Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

aTD224 .12I33

States ment of ture

Natural Resources
Conservation
Service

Idaho Basin Outlook Report May 1, 1997

Basin Outlook Reports

Federal - State - Private **Cooperative Snow Surveys**

For more water supply and resource management information, contact:

Your local Natural Resources Conservation Service Office

Natural Resources Conservation Service Snow Surveys 3244 Elder Street, Room 124 Boise, ID 83705-4711 (208) 378-5740

How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high in the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Natural Resources Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthly or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthly and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

The United States Department of Agriculture (USDA) prohibits discrimination in its programs on the basis of race, color, national origin, sex, religion, age, disability, political beliefs and marital or familial status. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact the USDA Office of Communications at (202) 720-2791.

To file a complaint, write the Secretary of Agriculture, U.S. Department of Agriculture, Washington, D.C., 20250, or call 1-800-245-6340 (voice) or (202) 720-1127 (TDD). USDA is an equal employment opportunity employer.

IMPORTANT NOTICE - REVISION OF MAILING LIST

THIS NOTICE IS REQUIRED BY THE CONGRESSIONAL JOINT COMMITTEE ON PRINT FOR THE ANNUAL REVISION OF FREE MAILING LIST.

The Basin Outlook report is available on the internet at http://id.nrcs.usda.gov/ allowing you to obtain the Basin Outlook reports several days before this mailing. Other water supply products are available on the internet.

D Please check this box if you prefer internet access and can be removed from our mailing list.

The Basin Outlook Report for Idaho is published and distributed as a public service by the USDA, Natural Resources Conservation Service from January to May each year. In order to control the cost of this publication and ensure maximum use of the information we are required to examine our circulation annually.

Please mark the BASIN REPORT(S) you would like to receive.

[] G - General Outlook Report (mailed to all recipients)

[] #1 - Panhandle Region

[] #2 - Clearwater River Basin

[] #3 - Salmon River Basin

[] #4 - Weiser, Payette, Boise River Basins

[] #5 - Wood and Lost River Basins

[] #6 - Upper Snake River Basin

[] #7 - Southside Snake River Basins

[] #8 - Bear River Basin

COLUMBIA
RIVER BASIN

RIVER BASIN

SALKON
RIVER BASIN

FILE TOOD LITTLE TOOD
FILE THE BASIN

FILE TOOD LITTLE TOOD
FILE TOOD
FILE
FILE TOOD
FILE T

[] - Annual Data Summary Report (published after each water year, it contains individual snow course measurements, snow water equivalant and precipitation data from SNOTEL (SNOw TELemetry) stations, and the 1961-90 averages)

The above report is also available on the Centralized Forecast System (CFS) computer in Portland, Oregon. A terminal or computer with communication software, modem and phone line are required. Please contact the snow survey office if you are interested in computer access at (208) 378-5740.

[] Check if you selected different basins than you currently receive

[] Check if you no longer wish to receive the Basin Outlook Report for Idaho

NAME: AFFILIATION: ADDRESS: IS YOUR ADDRESS CORRECT?
[] YES [] NO
If NO, please make corrections.

G12345678
NATIONAL AGRICULTURAL LIBRARY
SERIAL RECORDS ROOM 002
10301 BALTIMORE BLVD
BELTSVILLE MD 20705-2351

Snow Survey and Water Supply Forecasting Government Performance Review Act Survey

The Natural Resources Conservation Service (NRCS), Snow Survey and Water Supply Forecasting Program has been designated as a pilot program under the Government Performance Review Act. As a registered user of the Centralized Forecasting System (CFS), you represent an important portion of the NRCS customer base.

According to the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB number for this information is 0505-0020. The time to complete this information collection is estimated to average one minute per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

Please take a few minu	tes to answer all four of	the following questions:	
•	ovided by the Natural Resounce Ake water use and management No	rces Conservation Service, Snow Sent decisions?	Survey and Water Supply
How satisfied are you with	the timeliness of the electro	nic and/or printed information prov	vided to you by the NRCS?
☐ Very Satisfied	☐ Satisfied	☐ Dissatisfied	☐ Very Dissatisfied
How satisfied are you with Very Satisfied	the usefulness of the water Satisfied	supply forecast information provid Dissatisfied	•
How satisfied are you with needs for information?	the responsiveness of NRC	S snow survey and water supply po	ersonnel to your requested
☐ Very Satisfied	☐ Satisfied	☐ Dissatisfied	☐ Very Dissatisfied
To file a complaint, write the 1127 (TDD). USDA is an eq		shington, DC, 20250, or call 1-800-2	245-6340 (voice) or (202) 720-

UNITED STATES DEPARTMENT OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE 3244 Elder Street, Room 124 Boise, Idaho 83705-4711 AN EQUAL OP

AN EQUAL OPPORTUNITY EMPLOYER

Postage Required

USDA Natural Resources Conservation Service Snow Survey Office 3244 Elder Street, Room 124 Boise, Idaho 83705-4711

IDAHO WATER SUPPLY OUTLOOK REPORT

MAY 1, 1997

SUMMARY

The potential for snow melt flooding and extreme streamflow peaks is real this year due to near record snow levels and high volume streamflow forecasts. The longer the snow remains in the higher elevations, the greater the potential for high streamflows and more severe flooding. A cool wet April brought well above normal precipitation across the state. Elevations above 8,000 feet continued accumulating snow while mid-elevation snowpacks started melting. April streamflows were 130-200% of normal, mainly a result of the high April precipitation and melting in mid-elevations. Snowpacks currently range from 130-160% of average across the state. Many reservoirs have been drafted to their lowest spring levels since they were first built in anticipation of this year's high runoff. Streamflow forecasts call for 130-180% of average for most streams with some central and north Idaho streams forecast at record volumes.

SNOWPACK

The snow continued accumulating in April at measuring stations above 7,800 feet in central and eastern Idaho while mid-elevation stations started melting. As a result of the delayed melt, snowpack percentages increased 10-30 percentage points from last month. This means the higher elevation snowpack has not started melting yet, and there is an extreme amount of snow to melt! Many individual snow measuring stations are reporting snow water content levels near or above their maximum May 1 levels. Overall, this will be a snow year to remember! Of the eight major river basins across the state, the Clearwater basin (166% of average) and upper Snake River basins (162%) are the second highest since records started in 1961. The Panhandle Region and the Salmon basin are the fourth highest at 145% of average. The central Idaho basins are the fifth and sixth highest at 140-150% of average. The snowpack in the southern Idaho basins and the Bear River basin is the seventh highest since 1961.

PRECIPITATION

A cool wet April brought above normal precipitation across the entire state. Cool temperatures kept melt rates below normal in mid-elevations and allowed the snowpack to continue accumulating in higher elevation areas. April precipitation was 160-170% of average in the Salmon, west-central mountains, and basins south of the Snake River. Elsewhere in the state, April precipitation was 130-140% of average. Precipitation for the water year ranges from a high of 150% of average in the Weiser-Payette-Boise basins to 128% in the Southside Snake River basins. Any additional precipitation received during the snow melt season will only add to the already high streamflow forecast volumes.

RESERVOIRS

Most major reservoirs across the state were drafted in preparation for this season's high runoff. Flood control operations will likely continue until peak inflows occur in late May or June. The irrigation season has started, and many canal systems are being used for flood control in passing excess flow. The Boise system is 40% full, the lowest April 30 storage since Lucky Peak was built in 1955. The Boise system will gradually start filling in May and complete filling after the peak inflows have passed. The Payette system is about half full. Brownlee Reservoir is one third full, the lowest April 30 level in years. Coeur d'Alene Lake is currently more than twice its summer storage level; Dworshak Reservoir is at its lowest April 30 storage level since 1972 when the reservoir was built. Little Wood and Mackay reservoirs are about half full; Magic Reservoir is at 94% of capacity. The eight major reservoirs in the upper Snake system are 53% of capacity. Owyhee and Wildhorse reservoirs are already full. Precautionary releases were made from Oakley and Salmon Falls reservoirs which are currently about 58% full. The major reservoirs across the state will fill, and summer drawdown of irrigation reservoirs will be delayed because of sustained high flows after the streams peak.

Note: NRCS reports reservoir information in terms of usable volumes, which includes both active, inactive, and in some cases dead storage. Other operators may report reservoir contents in different terms. For additional information, see the reservoir definitions at the end of this report.

STREAMFLOW

The likelihood of high streamflow peaks and flooding is real this year, a result of the abundant snow levels. Spring precipitation and air temperatures during the snow melt season will determine the magnitude and timing of streamflow peaks across the state. Moderate air temperatures with little or no precipitation this spring will help melt the snow gradually. April streamflows were above average throughout the state. This was largely a result of the well above average April precipitation and snowpack melting in the low and mid-elevations. April streamflow percentages ranged from almost 200% of average in the Boise basin to near average in the Owyhee basin with most streams reporting in the 130-160% of average range. May-July streamflow forecasts are for near record volumes for the Coeur d'Alene, St. Joe, NF Clearwater, Payette and Boise rivers. Elsewhere across the state, the forecasts remain high except for the Owyhee basin which is forecast slightly above normal. The Panhandle, Clearwater and Salmon basins are forecast at 150-190% of the May-July average. The central mountain streams (Payette, Boise, Wood and Lost basins) are forecast at 170-190% of average. The upper Snake and Bear river basins are forecast at 130-160% of average. The high desert streams across southern Idaho are projected at 125-160% of average for the residual periods.

RECREATION OUTLOOK

Snowpack levels across most of Idaho are in the top seven highest years since 1961 and a guarantee there will be an abundance of water this season. Snowpack percentages currently range from 140-170% of average across the state with some measuring stations setting new maximum May 1 snow water content levels. All major streams in Idaho are forecast at 130-190% of average and will provide an extended boating season after the snow melt streamflow peaks pass. High snowpacks and seasonal volumes also have the potential to produce high peak flows this season. The magnitude and timing of the streamflow peaks depend upon spring air temperatures and precipitation during the snow melt season. Novice river runners should be aware of the hazards of high flows and cold water and exercise caution until water levels drop to a safe level. Currently, many reservoirs have been drafted to record low storage levels in preparation for this season's high runoff. These reservoirs will fill after the streamflow peaks occur and should remain full well into the summer. Backcountry access may be delayed this year because of deep snow levels, washed out roads or trails, and downed trees.

WATER SUPPLY FORECASTING PRODUCTS ON THE INTERNET

Water Supply Forecasting products are now available on the INTERNET. These products include the SNOTEL Update Reports, State Basin Outlook Reports, and products previously published in the Water Supply Outlook for the Western United States.

The Universal Resource Locator (URL) for our home page is: http://id.nrcs.usda.gov You can access the Anonymous FTP server by pointing your INTERNET browser (Netscape, Mosaic, etc.) to: ftp://ftp.wcc.nrcs.usda.gov

We will continue to add more products to our Home Page and Anonymous FTP server and welcome any comments and suggestions you might have. Questions and comments should be directed to the NRCS Snow Survey.

Natural Resources Conservation Service Snow Survey Staff 3244 Elder Street, Room 124 Boise, Idaho 83705-4711 Phone (208) 378-5740 Email snow@id.nrcs.usda.gov

IDAHO SURFACE WATER SUPPLY INDEX (SWSI) As of May 1, 1997

The surface water supply index (swsi) is predictive indicator of surface water availability within a watershed for the spring and summer water use season. The index is calculated by combining pre-runoff reservoir storage (carryover) with forecasts of spring and summer streamflow. SWSI values are scaled from +4.1 (abundant supply) to -4.1 (extremely dry), with a value of zero indicating a median water supply as compared to historical occurrences.

SWSI values are published January through May, and provide a more comprehensive outlook of water availability than either streamflow forecasts or reservoir storage figures alone. The SWSI index allows comparison of water availability between basins for drought or flood severity analysis. Threshold SWSI values have been established for most basins to indicate the potential for agricultural water shortages.

The following agencies and cooperators provide assistance in the preparation of the Surface Water Supply Index for Idaho:

US Department of Commerce, National Weather Service US Bureau of Reclamation Idaho Water Users Association US Army Corps of Engineers Idaho Department of Water Recourses PacifiCorp

BASIN or REGION	SWSI Value	Most Recent Year With Similar SWSI Value	/gricultural Water Supply Shortage May Occur When SWSI is Less Than
PANHANDLE	3.9	1972	NA
CLEARWATER	3.0	1975	NA
SALMON	3.6	1984	NA
WEISER	1.3	1978	NA
PAYETTE	4.1	1974	NA
BOISE	4.1	1965	-2 .6
BIG WOOD	3.5	1982	-1.4
LITTLE WOOD	2.8	1984	-2 .1
BIG LOST	2.8	1986	-0.8
LITTLE LOST	3.6	1965	0.0
HENRYS FORK	3.7	1982	-3.3
SNAKE (AMERICAN FALLS)	3.0	1982	-2 .0
OAKLEY	2.0	1985	0.0
SALMON FALLS	3.3	1976	0.0
BRUNEAU	3.6	1971	NA
OWYHEE	2.0	1996	NA
BEAR RIVER	1.4	1982	-3.8

SWSI SCALE, PERCENT CHANCE OF EXCEEDANCE, AND INTERPRETATION

Note: The Percent Chance of Exceedance is an indicator of how often a range of SWSI values might be expected to occur. Each SWSI unit represents about 12% of the historical occurrences. As an example of interpreting the above scale, the SWSI can be expected to be greater than -3.0, 87% of the time and less than -3.0, 13% of the time. Half the time, the SWSI will be below and half the time above a value of zero. The interval between -1.5 and +1.5 described as "Near Normal Water Supply", represents three SWSI units and would be expected to occur about one third (36%) of the time.

BASIN-WIDE SNOWPACK SUMMARY

MAY 1997

BASIN	PERCENT OF LAST YEAR	AVERAGE
**********	*****	*****
Kootenai ab Bonners Ferry Moyie River	15 4 % 116%	153% 126%
Priest River	227%	149%
Pend Oreille River	155%	162%
Rathdrum Creek	526%	
Hayden Lake		available
Coeur d'Alene River	198%	145%
St. Joe River	169%	165%
Spokane River	197%	152%
Palouse River	****	
North Fork Clearwater	174%	169%
Lochsa River	159%	182%
Selway River	161%	
Clearwater Basin Total	169%	168%
Salmon River ab Salmon	123%	160%
Lemhi River	131%	152%
Middle Fork Salmon River	111%	146%
South Fork Salmon River	119%	137%
Little Salmon River	119%	120%
Salmon Basin Total	123%	145%
Mann Creek	232%	125%
Weiser River	135%	115%
North Fork Payette	124%	127%
	126%	136%
South Fork Payette	123%	130%
Payette Basin Total Middle & North Fork Boise	145%	150%
South Fork Boise River	132%	157%
Mores Creek	153%	144%
Boise Basin Total	143%	149%
		available
Canyon Creek	133%	162%
Big Wood ab Magic Camas Creek	184%	145%
Big Wood Basin Total	136%	160%
Little Wood River	151%	180%
Fish Creek		available
Big Lost River	136%	155%
Little Lost River	134%	138%
Camas-Beaver Creeks	132%	
Henrys Fork River	129%	154%
Teton River	120%	
Snake above Jackson Lake	115%	156%
Gros Ventre River	108%	148%
Hoback River	114%	167%
Greys River	117%	162%
Salt River	123%	155%
Snake above Palisades	116%	
Willow Creek	150%	207%
Blackfoot River	123%	
Portneuf River	129%	
Snake abv American Falls Resv	118%	161%
Raft River	152%	
Goose-Trapper Creeks	157%	
Salmon Falls Creek	129%	144%
Bruneau River	118%	
Owyhee Basin Total	116%	
Smiths & Thomas Forks	123%	149%
Bear River ab WY-ID line	104%	
Montpelier Creek	359%	
Mink Creek	144%	
Cub River	150%	
Bear River ab ID-UT line	118%	
Malad River	****	
Green River ab Warren Bridge	109%	

PANHANDLE REGION MAY 1, 1997

WATER SUPPLY OUTLOOK

Cool weather in April started melting the snowpack at low and mid-elevations while higher elevations continued increasing in snow. April precipitation was 134% of average. Precipitation for the water year is 140% of average, even greater than last year. Snowpacks are around 45-65% above average, the highest since the early 1970s. Even the lower elevation basins of Palouse River and Rathdrum Creek are still well above the normal May 1 amounts. Snow water content in this region ranges from 8 inches of snow water at Sherwin SNOTEL site, located at 3,200 feet in the St. Maries River basin, to 92 inches at Bear Mountain, located at 5,400 feet east of Pend Oreille Lake along the Idaho/Montana border. With this amount of snow on the ground, the concern for flooding remains high. Reservoir storage is above normal for the natural lakes and reservoirs in this region with Coeur d'Alene Lake at twice its summer storage level. Streamflow forecasts call for record high May-July volumes for the Coeur d'Alene River, (191% of average) and St. Joe River, (181%). With snowpacks well above average, rivers will be high for an extended period of time this spring and summer. Residents in low lying areas should monitor streams closely when warm weather arrives or if rain occurs during the snow melt period.

Streamflow Forecasts - May 1, 1997

		<<=====	:Drier ====	== Future Co	onditions ==	==== Wetter	. ====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	= Chance Of E 50% (Most (1000AF)		30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
KOOTENAI at Leonia (1,2)	MAY-JUL	6356	7150	7510	118	7870	8664	6365
	MAY-SEP	7463	8389	8810	118	9231	10157	7465
CLARK FK at Whitehorse Rpds (1,2)	MAY-JUL	12788	14034	14600	146	15166	16412	10020
	MAY-SEP	14277	15668	16300	146	16932	18323	11200
PEND OREILLE Lake Inflow (1,2)	MAY-JUL	14645	15989	16600	150	17211	18555	11070
	MAY-SEP	16230	17722	18400	150	19078	20570	12290
PRIEST nr Priest River (1,2)	MAY-JUL	690	800	850	136	900	1010	627
	MAY-SEP	765	875	925	136	975	1085	680
COEUR D'ALENE at Enaville	MAY-JUL	784	853	900	191	947	1016	472
	MAY-SEP	851	922	970	190	1018	1089	512
ST.JOE at Calder	MAY-JUL	1464	1545	1600	182	1655	1736	881
	MAY-SEP	1579	1663	1720	181	1777	1861	949
SPOKANE near Post Falls (2)	MAY-JUL	2915	3132	3280	188	3428	3645	1749
	MAY-SEP	3069	3290	3440	186	3590	3811	1846
SPOKANE at Long Lake	MAY-JUL	3328	3555	3710	188	3865	4092	1975
	MAY-SEP	3719	3952	4110	187	4268	4501	2198

	PANHANDLE REGION ge (1000 AF) - End	of April			PANHANDLE REGION Watershed Snowpack Analysis - May 1, 1997						
Reservoir	Usable Capacity	*** Usa This Year			Watershed	Number of Data Sites	This Yea	r as % of			
THE NEW MODEL	 ====================================	1341.0	Year 	Avg ====================================			141	Average ====================================			
HUNGRY HORSE	3451.0				Kootenai ab Bonners F						
FLATHEAD LAKE	1791.0	1082.0	1224.0	937.2	Moyie River	3	116	126			
NOXON RAPIDS	335.0	326.8	324.3	208.7	Priest River	5	227	149			
PEND OREILLE	1561.3	1098.1	1079.5	920.7	Pend Oreille River	91	157	164			
COEUR D'ALENE	238.5	546.5	399.5	246.7	Rathdrum Creek	1	526	153			
PRIEST LAKE	119.3	110.0	126.0	96.2	Hayden Lake	0	0	0			
					Coeur d'Alene River	7	231	155			
					St. Joe River	2	169	165			
					Spokane River	10	217	158			
					Palouse River	1	0	195			

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

CLEARWATER RIVER BASIN MAY 1, 1997

WATER SUPPLY OUTLOOK

The snowpack in the Clearwater basin is the second highest May 1 level since records started in 1961. Higher elevation stations continued increasing in snow water during April while melting occurred in low and midelevation areas. However, cool weather in April kept melt rates below normal and increased the Clearwater basin snowpack to 166% of average. Many stations are at or have exceeded their record May 1 snow water content levels. Lost Lake SNOTEL site, located at 6,110 feet near the North Fork Clearwater and St. Joe basin divide, has 103 inches of snow water, just below the maximum of 107 inches measured on May 1, 1974. Precipitation in April was 142% of average and is 143% for the water year, about the same as this time last year. Dworshak Reservoir was drafted in preparation for the high runoff and is currently less than half full. Inflow to Dworshak Reservoir for the May-July period is forecast at 3.5 million acre-feet, a near record volume. The Clearwater River at Spalding is forecast at 152% of average. With the snowpack at near record high levels, stream levels will be high for an extended period this spring and summer. How high the streams rise and when they peak depends on spring air temperatures and precipitation. Residents in low lying areas should monitor streams closely when warm weather arrives or if rain occurs during the snow melt period.

CLEARWATER RIVER BASIN Streamflow Forecasts - May 1, 1997

		<<=====	= Drier		Future Co	nditions ===	==== Wetter	. ====>>		
Forecast Point	Forecast Period	90% (1000AF)	70% (1000A	5 5	0% (Most	exceeding * == Probable) (% AVG.)	30% (1000AF)	10% (1000AF		0-Yr Avg. (1000AF)
DWORSHAK RESV INFLOW (2)	MAY-JUL MAY-SEP	3161 3453	3363 3660		3500 3800	173 173	3637 3940	3839 4147		2029 2202
CLEARWATER at Orofino (1)	MAY-JUL MAY-SEP	4920 5265	5566 5956		5860 6270	153 153	6154 6584	6800 7275		3831 4089
CLEARWATER at Spalding (1,2)	MAY-JUL MAY-SEP	7782 8357	8661 9301		9060 9730	152 152	9459 10159	10338 11103		5972 6405
CLEARWA Reservoir Storage (TER RIVER BASI 1000 AF) - End					CLE/ Watershed Sno	NRWATER RIVER OWPACK Analys		1, 19	97
Reservoir	Usable Capacity	*** Usab This Year	le Stora Last Year	ge *** Avg	Water	shed	Numbe of Data Si	==	is Yea st Yr	r as % of Average
DWORSHAK	3459 . 0	1545.8	====== 2623.5	2276.0		Fork Clearwa	ater 10	17		170 166

Selway River

Clearwater Basin Total

157

168

5

17

162

167

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

SALMON RIVER BASIN MAY 1, 1997

WATER SUPPLY OUTLOOK

April precipitation was 159% of average and has been above average every month this water year with the exception of February. Cool wet weather in April started melting the snow gradually but at below normal melt rates. As a result, snowpack percentages increased from last month and now range from 120% of average in the Little Salmon basin to 160% in the Salmon River above Salmon. Overall, the Salmon basin snowpack is 145% of average, topped only by years 1971, 1974 and 1982. Streamflow forecasts for the residual May-September period call for 166% of average for the Salmon River at Salmon and 148% for the Salmon River at White Bird. The abundant snow levels, which are the fourth highest since records started in 1961, will provide an extended boating season after the snow melt streamflow peaks occur. River runners should use caution when evaluating their high water boating capabilities. Extreme whitewater conditions are a real possibility during the peak flow period this year. Spring precipitation and air temperatures during the snow melt season will determine the magnitude and timing of streamflow peaks on the Salmon River and its tributaries.

SALMON RIVER BASIN Streamflow Forecasts - May 1, 1997

		<<=====	Drier ====	==	Future Co	nditions =	-	Wetter	=====>	>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50	0% (Most	xceeding * Probable) (% AVG.)		30% 1000AF)	10% (1000A		30-Yr Avg. (1000AF)
SALMON at Salmon (1)	MAY-JUL MAY-SEP	1012 1186	1210 1422		1300 1530	168 166		1390 1638	1588 1874		772 922
SALMON at White Bird (1)	MAY-JUL MAY-SEP	6693 7512	7468 8381		7820 8775	148 148		8172 9169	8947 10038		5284 5930
SALM Reservoir Storage	========= ON RIVER BASIN (1000 AF) - End	of April			======================================	Watershed S		RIVER B k Analys		y 1, 1	======= 997
Reservoir	Usable Capacity	*** Usabl This Year	e Storage * Last Year A	** \vg	Water	shed		Numbe of Data Si	=	his Ye ===== ast Yr	ar as % of Average
					Salmo	n River ab	Salmor	8	1	23	160
					Lemhi	River		5	1	29	149
					Middl	e Fork Salr	mon Riv	er 3	1	11	146

3

4

24

South Fork Salmon River

Little Salmon River

Salmon Basin Total

119

119

123

137

120

145

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

WEISER, PAYETTE, BOISE RIVER BASINS MAY 1, 1997

WATER SUPPLY OUTLOOK

April precipitation was 164% of average and is 150% for the water year, the highest in the state. Cool wet weather in April melted the snow at normal melt rates in the Weiser and Payette basins. As a result, snowpack percentages are about the same as last month, 130% of average in the Payette and 115% in the Weiser basin. However, in the Boise basin, sites above approximately 7,800 feet in elevation continued accumulating in snow water. The higher elevation snowpack is the second highest since 1952, only exceeded in 1974. Overall the snowpack in the Boise basin is 149% of average. Reservoirs in the Boise system were drafted in preparation for the high runoff. Current reservoir storage in the Boise system is 417,000 acre-feet (40% of capacity) and is the lowest April 30 storage since Lucky Peak was built in 1955. The Payette system is about half full. The May-July streamflow forecasts for the Boise and Payette rivers call for record high streamflow volumes. The Boise River at Boise is forecast at 195% of average. The Payette River near Horse Bend is forecast at 185% of average, while the Weiser River is forecast at 124% of average. Residents in low lying areas should be prepared for high flows and monitor stream levels closely when warm weather arrives or if rain occurs during the snow melt period.

WEISER, PAYETTE, BOISE RIVER BASINS Streamflow Forecasts - May 1, 1997

		<<=====	= Drier :			nditions ====	Wett	er ===	=>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000Al		50% (Most	xceeding * === Probable) (% AVG.)	30% (1000AF		0% 00AF)	30-Yr Avg. (1000AF)
WEISER nr Weiser (1)	MAY-JUL MAY-SEP	171 190	267 300		310 350	124 125	353 395		449 504	250 280
SF PAYETTE at Lowman	MAY-JUL MAY-SEP	619 7 00	644 727		661 745	176 173	678 763		703 790	375 431
DEADWOOD RESERVOIR Inflow (1,2)	MAY-JUL MAY-SEP	193 204	208 220		215 227	179 179	222 234		237 250	120 127
NF PAYETTE nr Cascade (1,2)	MAY-JUL MAY-SEP	624 672	690 743		720 775	177 175	750 807		816 878	407 442
NF PAYETTE nr Banks (2)	MAY-JUL MAY-SEP	806 867	868 934		910 980	178 177	952 1026		014 093	512 554
PAYETTE nr Horseshoe Bend (1,2)	MAY-JUL MAY-SEP	2167 2385	2334 2567		2410 2650	185 184	2486 2733		653 915	1304 1442
BOISE near Twin Springs (1)	MAY-JUL MAY-SEP	861 960	915 1018		940 1045	185 185	965 1072		019 1 3 0	509 564
SF BOISE at Anderson Rnch Dm (1,2)	MAY-JUL MAY-SEP	706 763	778 841		810 87 6	188 186	842 911		914 989	432 470
MORES CK nr Arrowrock Dam	MAY-JUL MAY-SEP	134 144	141 151		146 156	190 190	151 161		158 168	77 82
BOISE nr Boise (1,2)	MAY-JUL MAY-SEP	1921 2120	2058 2268		2120 2335	195 194	2182 2402		319 550	1090 1204
						WEISER, PAN				
Reservoir	Usable	*** Usab		ge ***				===== ber f		ear as % of
	Capacity	This Year	Last Year	Avg	Water	sned		Sites	Last '	
MANN CREEK	11.1	10.8	11.1	10.4	Mann	Creek		1	226	122
CASCADE	703.2	378.5	535.0	411.7	Weise	r River		3	134	114
DEADWOOD	161.9	70.4	128.0	101.1	North	Fork Payette		7	124	127
ANDERSON RANCH	464.2	210.8	312.5	327.2	South	Fork Payette		4	126	136
ARROWROCK	286.6	104.1	198.9	214.9	Payet	te Basin Total	. 1	2	123	130
LUCKY PEAK	293.2	102.4	152.7	182.9	Middl	e & North For	c Boise	6	145	150
LAKE LOWELL (DEER FLAT)	177.1	124.9	135.2	169.8	South	Fork Boise R	iver	6	132	157
					Mores	Creek		4	153	144
					Boise	Basin Total	1	2	143	149
					Canyo	on Creek		0	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

WOOD and LOST RIVER BASINS MAY 1, 1997

WATER SUPPLY OUTLOOK

After two months of below normal precipitation, the pattern changed and April brought precipitation that was 35% above normal. Precipitation since the water year started in October is 146% of average. Snow measuring stations above 8,000 feet in elevation continued accumulating snow during April while midelevation areas started melting. The Big Wood/Camas basin snowpack is 160% of average, the highest since 1982, while the snowpack in the Big Lost basin is 146% of average. Overall, the combined snowpack in the Wood and Lost basin is 153% of average, the fifth highest since 1961. Magic Reservoir is 94% full while Little Wood and Mackay are about half full. With near record snow levels, the May-July streamflow forecasts remain high and call for the highest projected flows in the Big Wood basin. Magic Reservoir inflow is forecast at 400,000 acre-feet, 199% of average. The Little Wood River is forecast at 175% of average while the Big Lost River below Mackay is forecast at 144% of average. There will be plenty of water to fill these reservoirs. Spring precipitation and air temperatures during the snow melt season will determine when and how high the streams peak this season. Residents in low lying areas should be prepared for high flows and monitor stream levels closely when warm weather arrives or if rain occurs during the snow melt period.

WOOD AND LOST RIVER BASINS Streamflow Forecasts - May 1, 1997

		<<======	: Drier ====	== Future Co	onditions =	===== Wetter	· ====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50% (Most	•	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
BIG WOOD at Hailey (1)	MAY-JUL	318	357	375	167	394	437	224
	MAY-SEP	368	410	430	167	450	497	257
BIG WOOD near Bellevue	MAY-JUL	247	274	294	189	314	345	156
	MAY-SEP	267	296	317	187	338	371	170
CAMAS CREEK near Blaine	MAY-JUL	58	67	73	175	80	90	42
	MAY-SEP	59	68	74	174	81	91	43
BIG WOOD below Magic Dam (2)	MAY-JUL	356	382	400	199	418	444	201
	MAY-SEP	382	411	430	199	449	478	216
LITTLE WOOD near Carey (2)	MAY-JUL	96	107	114	175	121	132	65
	MAY-SEP	108	119	127	174	135	146	73
BIG LOST at Howell Ranch	MAY-JUL	216	230	240	142	250	264	169
	MAY-SEP	249	266	277	142	288	305	195
BIG LOST below Mackay Reservoir (2)	MAY-JUL	176	190	200	144	210	224	139
	MAY-SEP	219	235	245	143	255	271	171
LITTLE LOST blw Wet Creek	MAY-JUL	34	38	41	150	43	47	27
	MAY-SEP	43	48	52	147	55	60	35

F	WOOD AND LOS Reservoir Storage (1000					WOOD AND Watershed Snowpa	LOST RIVER BAS ck Analysis -		97
Reservoir		Usable *** U Capacity This Year		ble Stora Last Year	ge *** Avg	Watershed	Number of Data Sites	This Year as % of ======= Last Yr Average	
MAGIC		191.5	180.7	168.7	167.7	Big Wood ab Magic	7	134	162
LITTLE WOOD		30.0	14.2	26.9	24.6	Camas Creek	2	184	145
MACKAY		44.4	22.2	36.0	34.2	Big Wood Basin Total	9	137	160
						Little Wood River	3	151	180
						Fish Creek	0	0	0
						Big Lost River	6	135	146
						Little Lost River	3	134	138

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

UPPER SNAKE RIVER BASIN MAY 1, 1997

WATER SUPPLY OUTLOOK

April precipitation was 137% of average and is 138% for the water year. Snow water content continued accumulating at sites above 7,500 feet in elevation. Mid-elevation sites started melting during April but at below normal melt rates. As a result of the delayed melt, snowpack percentages increased from last month. The Henrys Fork snowpack is currently 154% of average, the third highest since records started in 1973. The Teton basin snowpack is 157% of average, only exceeded by year 1982. The snowpack in the Snake basin above Palisades Reservoir is 159% of average. Snowpacks in the lower elevation drainages of Portneuf and Willow creek basins are twice normal as a result of the delayed melt. Overall, the snowpack in the Snake River basin above American Falls is 162% of average, only exceeded by 1971. Reservoirs have been drafted in preparation of the high runoff. The combined storage for the eight major reservoirs in this region is 53% of capacity. Streamflow forecasts remain high and call for 130-160% of average for most streams in the area. Residents in low lying areas should be prepared for high flows when the snow starts melting. With near record snowpacks, the potential for flooding is high this year and river levels will be above normal for the rest of the runoff season.

UPPER SNAKE RIVER BASIN

		Streamflo							
		<<==== :	= Drier =	=====	uture Co	onditions =====	== Wetter	====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF	50	% (Most	xceeding * ==== Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
HENRYS FORK nr Ashton (2)	MAY-JUL MAY-SEP	533 750	576 807		605 845	140 137	634 883	677 940	432 618
HENRYS FORK nr Rexburg (2)	MAY-JUL MAY-SEP	1438 1901	1513 1996		1565 2060	154 154	1617 2124	1692 2219	1016 1339
FALLS RIVER nr Squirrel (1,2)	MAY-JUL MAY-SEP	376 453	405 490		419 506	130 130	433 522	462 559	322 390
TETON abv S Leigh Ck nr Driggs	MAY-JUL MAY-SEP	181 247	197 267		208 280	160 158	219 293	235 313	130 177
TETON nr St. Anthony (2)	MAY-JUL MAY-SEP	459 5 55	497 600		523 630	159 154	549 660	587 705	329 408
SNAKE nr Moran (1,2)	MAY-SEP	1088	1172		1210	149	1248	1332	814
SNAKE R abv Palisades Rsvr nr Alpine	MAY-JUL MAY-SEP	3071 3561	3241 3 <i>7</i> 50		3356 3879	162 160	3471 4008	3641 4197	2070 2431
GREYS R abv Palisades Reservoir	MAY-JUL MAY-SEP	347 405	375 438		395 460	133 133	415 482	443 515	296 345
SALT abv Reservoir nr Etna	MAY-JUL MAY-SEP	282 378	328 430		360 465	138 136	392 500	438 552	261 341
PALISADES RESV INFLOW (1,2)	MAY-JUL MAY-SEP	3995 4703	4307 5052		4448 5210	154 152	4589 5368	4901 5717	2889 3426
SNAKE nr Heise (2)	MAY-JUL MAY-SEP	4338 5093	4569 5359		4725 5540	154 151	4881 5721	5112 5987	3073 3670
SNAKE nr Blackfoot (1,2)	MAY-JUL MAY-SEP	5236 6889	5899 7605		6200 7930	156 158	6501 8255	7164 8971	3981 5019
PORTNEUF at Topaz	MAY-JUL MAY-SEP	59 89	66 94		71 98	129 129	76 102	83 107	55 76
AMERICAN FALLS RESV INFLOW (1,2)	MAY-JUL MAY-SEP	3676 3821	4346 4680		4650 5070	189 188	4954 5460	5624 6319	2463 2700
UPPER SNAKE Reservoir Storage (1000			=========			UPPER Watershed Snowp	SNAKE RIVER Dack Analysi		1997
======================================	Usable Capacity	*** Usab This	le Storag Last	e ***		**************************************	Number of		/ear as % of
		Year	Year	Avg			Data Sit	tes Last '	r Average
HENRYS LAKE ISLAND PARK GRASSY LAKE JACKSON LAKE	90.4 135.2 15.2 847.0	77.0 114.4 13.7 432.2	87.1 124.0 13.7 530.7	81.8 125.7 11.7 456.5	Henry Tetor	s-Beaver Creeks vs Fork River n River e above Jackson	2 10 8 Lake 8	132 128 124 115	161 154 157 155
DAI 19ADES	1400.0	250 0	406.4	950 n		Ventre River	3	108	148

950.0

59.4

274.6

1542.9

Snake above Palisades

Snake abv American Falls

Gros Ventre River

Hoback River

Willow Creek

Blackfoot River

Portneuf River

Greys River

Salt River

108

114

117

123

116

149

123

129

148 167

162

155

159

198 149

202

162

3

26

2

The average is computed for the 1961-1990 base period.

AMERICAN FALLS

PALISADES

BLACKFOOT

RIRIE

1400.0

348.7 1672.6

80.5

259.9

73.6

250.0

1203.6

406.4

73.9

273.7

1393.3

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

^{(2) -} The value is natural volume - actual volume may be affected by upstream water management.

SOUTHSIDE SNAKE RIVER BASINS MAY 1, 1997

WATER SUPPLY OUTLOOK

Cool wet weather in April brought additional moisture in these southern Idaho basins and kept the snow melting at below normal rates. As a result of the delayed melt, snowpack percentages increased from last month and are currently 189% of average in Goose Creek, around 140% in Salmon Falls and Bruneau basins, and near normal in the Owyhee basin. Overall, these basins south of the Snake River are the seventh highest since 1961. Oakley and Salmon Falls reservoirs are around 58% full while Owyhee and Wildhorse reservoirs are already full. Streamflow forecasts call for 130% of average for Oakley Reservoir inflow and 152% for Salmon Falls Creek. The snow melt streamflow peak has already occurred in the Owyhee and Raft rivers. The above average snowpack will keep the residual flows high for an extended period this summer. Reservoir operators and residents in low lying areas should be prepared for high streamflows when warm weather arrives and starts melting the high elevation snowpack. Any additional precipitation during the snow melt season will only add to the already high forecast volumes.

SOUTHSIDE SNAKE RIVER BASINS Streamflow Forecasts - May 1, 1997

	<<====	Drier ====	== Future Co	nditions ==	===== Wetter	· ====>>	
Forecast Period	90% (1000AF)	70% (1000AF)	50% (Most	Probable)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
MAY-JUL MAY-SEP	19.8 23	23 27	26 30	130 130	29 33	33 38	20 23
MAY-JUL MAY-SEP	65 71	78 84	87 93	152 151	96 103	111 118	57 62
MAY-JUL MAY-SEP	195 207	232 246	260 275	161 159	289 305	335 353	162 173
MAY-JUL	5.7	10.5	14.5	119	19.2	27	12.2
MAY-JUL	41	56	67	115	77	92	58
MAY-JUL	203	238	263	132	290	331	200
MAY-JUL MAY-SEP	209 239	242 273	265 298	126 125	290 324	328 364	210 238
MAY-JUL	2.01	4.62	6.40	126	8.18	10.79	5.10
MAY-JUL			2650	130			2038
MAY-JUL			2670	129			2077
MAY-JUL			6580	174			3793
MAY-JUL			7480	175			4276
MAY-JUL MAY-SEP	24210 28395	26472 31012	27500 32200	162 164	28528 33388	30790 36005	16940 19650
	Period MAY-JUL MAY-SEP MAY-JUL MAY-SEP MAY-JUL	Forecast Period 90% (1000AF) MAY-JUL 19.8 MAY-SEP 23 MAY-JUL 65 MAY-SEP 71 MAY-JUL 195 MAY-SEP 207 MAY-JUL 5.7 MAY-JUL 203 MAY-JUL 203 MAY-JUL 209 MAY-SEP 239 MAY-JUL 209 MAY-JUL 201 MAY-JUL 2.01 MAY-JUL 2.01 MAY-JUL MAY-JUL MAY-JUL 24210	Forecast Period 90% 70% (1000AF) (1000AF) MAY-JUL 19.8 23 27 MAY-SEP 23 27 MAY-JUL 65 78 MAY-SEP 71 84 MAY-JUL 195 232 MAY-SEP 207 246 MAY-JUL 5.7 10.5 MAY-JUL 41 56 MAY-JUL 203 238 MAY-JUL 203 238 MAY-JUL 209 242 MAY-SEP 239 273 MAY-JUL 2.01 4.62 MAY-JUL MAY-JUL MAY-JUL MAY-JUL MAY-JUL 24210 26472	Forecast Period 90% 70% (1000AF) 50% (Most (1000AF) (1000AF) (1000AF) MAY-JUL 19.8 23 26 30 26 30 30 30 30 30 30 30 30 30 30 30 30 30	Forecast Period	Forecast Period	Period 90% (1000AF) (1000AF) 50% (Most Probable) (1000AF) 30% (1000AF) (1000AF) MAY-JUL 19.8 23 27 30 130 33 38 MAY-JUL 65 78 MAY-SEP 71 84 93 151 103 118 MAY-JUL 195 232 260 161 289 335 MAY-SEP 207 246 275 159 305 353 MAY-JUL 5.7 10.5 14.5 119 19.2 27 MAY-JUL 203 238 263 132 290 331 MAY-SEP 239 273 298 125 324 364 MAY-JUL 209 242 265 126 290 328 MAY-SEP 239 273 298 125 324 364 MAY-JUL 2.01 4.62 6.40 126 8.18 10.79 MAY-JUL 3.01 4.62 6.80 174 MAY-JUL 4.62 6.80 174 MAY-JUL 3.01 4.62 7480 175 MAY-JUL 3.01 24210 26472 27500 162 28528 30790

	ge (1000 AF) - End				Watershed Snowpa	snake RIVER B		97
Reservoir	Usable Capacity	*** Usa This	ble Stora Last	ge ***	Watershed	Number of		r as % of
		Year	Year	Avg		Data Sites	Last Yr	Average
OAKLEY	77.4	45.3	42.8	39.2	Raft River	1	152	232
SALMON FALLS	182.6	101.2	100.6	81.4	Goose-Trapper Creeks	3	158	189
WILDHORSE RESERVOIR	71.5	75.2	69.8	47.2	Salmon Falls Creek	5	129	144
OWYHEE	715.0	715.9	713.0	619.0	Bruneau River	5	118	134
BROWNLEE	1419.3	488.8	756.9	959.9	Owyhee Basin Total	7	116	101

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

BEAR RIVER BASIN MAY 1, 1997

WATER SUPPLY OUTLOOK

April precipitation was 125% of average, bringing the water year total to 134%. Mid-elevation sites are starting to melt but cool temperatures during April kept melt rates below normal. As a result, snowpack percentages increased from last month and are now around 50% above average in southeast Idaho. Overall, the Bear River basin snowpack is 160% of average, the highest since 1986. Bear Lake is three fourths full while Montpelier Creek Reservoir is two thirds full. Streamflow forecasts for the May-July period remain high and call for 143% of average for Montpelier Creek and 147% for the Bear River at Stewart Dam. Operators of the numerous small reservoirs in the area should monitor storage, inflow and outflow rates to help mitigate flooding and maintain adequate space for peak inflows. With the abundant snowpack, residents in low lying areas should be aware of the possibility of high flows when the snow starts melting. Any additional spring precipitation will only add to the already high forecast volumes. Streamflow volumes will be above normal for the remainder of the runoff season.

BEAR RIVER BASIN Streamflow Forecasts - May 1, 1997

		<<=====	Drier ===	== Future Co	onditions ==	===== Wetter	· ====>>	
Forecast Point	Forecast Period	90% (1000AF)	70% (1000AF)	50% (Most	Exceeding * = Probable) (% AVG.)	30% (1000AF)	10% (1000AF)	30-Yr Avg. (1000AF)
BEAR R nr Randolph, UT	MAY-JUL	80	107	125	142	143	170	88
	MAY-SEP	86	117	138	142	159	190	97
SMITHS FORK nr Border, WY	MAY-JUL	118	128	135	147	142	152	92
	MAY-SEP	140	152	160	147	168	180	109
THOMAS FK nr WY-ID State Line	MAY-JUL	24	32	38	141	46	60	27
	MAY-SEP	27	35	42	140	50	64	30
BEAR R blw Stewart Dam nr Montpelier	MAY-JUL	257	301	330	147	359	403	225
	MAY-SEP	305	356	390	148	424	475	264
MONTPELIER CK nr Montpelier (2)	MAY-JUL	8.85	11.12	13.00	143	15.19	19.10	9.10
	MAY-SEP	10.6	13.1	15.0	142	17.2	21	10.6
CUB R nr Preston	MAY-JUL	56	61	64	149	67	72	43
BEAR RIV		of Appil				BEAR RIVER BA		1007

Reservoir Sto	rage (1000 AF) - End	of April			Watershed Snowpack	Analysis -	May 1, 19	97
Reservoir	Usable Sapasity		ble Stor	age ***	Watershed	Number of	This Yea	r as % of
Reservoii	Capacity	This Year	Last Year	Avg		Data Sites	Last Yr	Average
WOODRUFF NARROWS	57.3	57.3	57.3		Smiths & Thomas Forks	3	123	149
WOODRUFF CREEK	4.0	4.0	4.0		Bear River ab WY-ID lir	ne 10	104	151
BEAR LAKE	1421.0	1023.0	722.0	1059.0	Montpelier Creek	2	129	154
MONTPELIER CREEK	4.0	2.7	3.4	2.2	Mink Creek	1	144	123
					Cub River	1	150	252
					Bear River ab ID-UT lin	ne 17	118	160
					Malad River	1	0	0

^{* 90%, 70%, 30%,} and 10% chances of exceeding are the probabilities that the actual volume will exceed the volumes in the table.

^{(1) -} The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.(2) - The value is natural volume - actual volume may be affected by upstream water management.

Streamflow forecasts are projections of runoff volumes that would have occurred naturally without influences from upstream reservoirs or diversions. These values are referred to as natural or adjusted flows. To make these adjustments, changes in reservoir storage, diversions, and interbasin transfers are added or subtracted from the observed (actual) streamflow volumes. The following list documents the adjustments made to each forecast point in this report.

Panhandle River Basins

KOOTENAI R AT LEONIA, ID

- + LAKE KOOCANUSA (STORAGE CHANGE) CLARK FORK R AT WHITEHORSE RAPIDS, ID
- + HUNGRY HORSE (STORAGE CHANGE)
- + FLATHEAD LAKE (STORAGE CHANGE)
- + NOXON RAPIDS RESV (STORAGE CHANGE) PEND OREILLE LAKE INFLOW, ID
- + PEND OREILLE R AT NEWPORT, WA
- + HUNGRY HORSE (STORAGE CHANGE)
- + FLATHEAD LAKE (STORAGE CHANGE)
- + NOXON RAPIDS (STORAGE CHANGE
- + PEND OREILLE LAKE (STORAGE CHANGE)

+ PRIEST LAKE (STORAGE CHANGE) PRIEST R NR PRIEST R, ID

- COEUR D'ALENE R AT ENAVILLE, ID No Corrections ST. JOE R AT CALDER, ID - No Corrections SPOKANE R NR POST FALLS, ID
- + COEUR D'ALENE LAKE (STORAGE CHANGE) SPOKANE R AT LONG LAKE, ID
- + COEUR D'ALENE LAKE (STORAGE CHANGE)

Clearwater River Basin

CLEARWATER R AT OROFINO, ID - No Corrections DWORSHAK RESERVOIR INFLOW, ID

- + CLEARWATER R NR PECK, ID
- + DWORSHAK RESV (STORAGE CHANGE)
- CLEARWATER R AT OROFINO, ID

CLEARWATER R AT SPALDING, ID

+ DWORSHAK RESV (STORAGE CHANGE)

Salmon River Basin

SALMON R AT WHITE BIRD, ID - No Corrections SALMON R AT SALMON, ID - No Corrections

Weiser, Payette, Boise River Basins

SF PAYETTE R AT LOWMAN, ID - No Corrections WEISER R NR WEISER, ID - No Corrections DEADWOOD RESERVOIR INFLOW, ID

- + DEADWOOD R BLW DEADWOOD RESV NR LOWMAN
 - + DEADWOOD RESV (STORAGE CHANGE) NF PAYETTE R AT CASCADE, ID
- + CASCADE RESV (STORAGE CHANGE)
- NF PAYETTE R NR BANKS, ID
- + CASCADE RESV (STORAGE CHANGE) PAYETTE R NR HORSESHOE BEND, ID
- + DEADWOOD RESV (STORAGE CHANGE)
- + CASCADE RESV (STORAGE CHANGE)
- + ANDERSON RANCH RESV (STORAGE CHANGE) BOISE R NR TWIN SPRINGS, ID - No Corrections SF BOISE R AT ANDERSON RANCH DAM, ID
- MORES CK NR ARROWROCK DAM, ID No Corrections BOISE R NR BOISE, ID
- + ANDERSON RANCH RESV (STORAGE CHANGE)
- + ARROWROCK RESV (STORAGE CHANGE)
- + LUCKY PEAK RESV (STORAGE CHANGE)

Wood and Lost River Basins

BIG WOOD R BLW MAGIC DAM NR RICHFIELD, ID BIG WOOD R NR BELLEVUE, ID - No Corrections BIG WOOD R AT HAILEY, ID - No Corrections CAMAS CK NR BLAINE, ID - No Corrections

- + MAGIC RESV (STORAGE CHANGE) LITTLE WOOD R NR CAREY, ID
- BIG LOST R AT HOWELL RANCH NR CHILLY, ID No BIG LOST R BLW MACKAY RESV NR MACKAY, ID + LITTLE WOOD RESV (STORAGE CHANGE) + MACKAY RESV (STORAGE CHANGE) Corrections

LITTLE LOST R BLW WET CK NR HOWE, ID - No Corrections

Upper Snake River Basin

HENRYS FORK NR ASHTON, ID

- + HENRYS LAKE (STORAGE CHANGE)
- + ISLAND PARK RESV (STORAGE CHANGE) HENRYS FORK NR REXBURG, ID

+ HENRYS LAKE (STORAGE CHANGE)

- + ISLAND PARK RESV (STORAGE CHANGE)
- + DIV FM HENRYS FK BTW ASHTON & ST. ANTHONY, ID
- + DIV FM HENRYS FK BTW ST. ANTHONY & REXBURG, ID

FALLS R NR SQUIRREL, ID (Discontinued)

+ GRASSY LAKE (STORAGE CHANGE)

TETON R ABV SO LEIGH CK NR DRIGGS, ID - No Corrections TETON R NR ST. ANTHONY, ID

- CROSS CUT CANAL
- + SUM OF DIVERSIONS ABV GAGE

SNAKE R NR MORAN, WY

- + JACKSON LAKE (STORAGE CHANGE)
- SNAKE R ABV PALISADES RESV NR ALPINE, WY PACIFIC CK AT MORAN, WY - No Corrections
- GREYS R ABV PALISADES RESV, WY No Corrections SALT R ABV RESV NR ETNA, WY - No Corrections + JACKSON LAKE (STORAGE CHANGE) PALISADES RESERVOIR INFLOW, ID
- + SNAKE R NR IRWIN, ID
- + PALISADES RESV (STORAGE CHANGE)
- + JACKSON LAKE (STORAGE CHANGE)

SNAKE R NR HEISE, ID

- + PALISADES RESV (STORAGE CHANGE)
 - + JACKSON LAKE (STORAGE CHANGE)

SNAKE R NR BLACKFOOT, ID

+ PALISADES RESV (STORAGE CHANGE)

+ JACKSON LAKE (STORAGE CHANGE)

+ DIV FM SNAKE R BTW HEISE AND SHELLY GAGES

+ DIV FM SNAKE R BTW SHELLY AND BLACKFT, ID

PORTNEUF R AT TOPAZ, ID - No Corrections

+ SNAKE R AT NEELEY, ID

AMERICAN FALLS RESERVOIR INFLOW, ID

- + AMERICAN FALLS (STORAGE CHANGE)
 - + PALISADES RESV (STORAGE CHANGE) + JACKSON LAKE (STORAGE CHANGE)

Southside Snake River Basins

RESERVOIR CAPACITY DEFINITIONS - Different egencies use various definitions when reporting reservoir capacity and contents. Reservoir storage

OAKLEY RESERVOIR INFLOW, ID

- + GOOSE CK ABV TRAPPER CK NR OAKLEY, ID
- + TRAPPER CK NR OAKLEY, ID

SALMON FALLS CK NR SAN JACINTO, NV - No Corrections BRUNEAU R NR HOT SPRINGS, ID - No Corrections OWYHEE R NR GOLD CK, NV

- + WILDHORSE RESV (STORAGE CHANGE)
 - OWYHEE R NR ROME, OR
- + WILDHORSE RESV (STORAGE CHANGE)
- + JORDAN VALLEY RESV (STORAGE CHANGE) OWYHEE RESERVOIR INFLOW, OR
- + OWYHEE R BLW OWYHEE DAM, OR
- + OWYHEE RESV (STORAGE CHANGE)
- SUCCOR CK NR JORDAN VALLEY, OR No Corrections + DIV TO NORTH AND SOUTH CANALS SNAKE R NR MURPHY, ID - No Corrections SNAKE R - KING HILL, ID - No Corrections SNAKE R AT WEISER, ID - No Corrections SNAKE R AT HELLS CANYON DAM, ID
- + BROWNLEE RESV (STORAGE CHANGE)

Bear River Basin

BEAR R NR RANDOLPH, UT

- + SULPHUR CK RESV (STORAGE CHANGE)
- + CHAPMAN CANAL DIVERSION
- + WOODRUFF NARROWS RESV (STORAGE CHANGE) THOMAS FORK NR WY-ID STATELINE - No Corrections SMITHS FORK NR BORDER, WY · No Corrections BEAR R BLW STEWART DAM, ID
- + SULPHUR CK RESV (STORAGE CHANGE)
- CHAPMAN CANAL DIVERSION
- WOODRUFF NARROWS RESV (STORAGE CHANGE)
 - TOTAL OF 12 CANALS
- + WESTFORK CANAL
- DINGLE INLET CANAL
- RAINBOW INLET CANAL

MONTPELIER CK NR MONTPELIER, ID

+ MONTPELIER CK RESV (STORAGE CHANGE) CUB R NR PRESTON, ID · No Corrections MONTPELIER CREEK

terms include dead, inactive, active, and surcharge storage. The table below lists these volumes for each reservoir in this report, and defines the stora volumes that NRCS uses when reporting capacity and current reservoir storage. In most cases, NRCS reports usable storage, which includes active an DEAD + INACTIVE + ACTIVE DEAD + INACTIVE + ACTIVE DEAD + INACTIVE + ACTIVE ACTIVE + SURCHARGE STORY . INACTIVE + ACTIVE INACTIVE + ACTIVE INACTIVE + ACTIVE INACTIVE + ACTIVE NACTIVE + ACTIVE INACTIVE + ACTIVE DEAD + ACTIVE NACS FIGURES ACTIVE THE NCI UDE ACTIVE CAPACITY 335,0 182.6 71.5 1971.0 1561.3 238.5 161.9 464.2 286.6 293.2 191.6 30.0 15.2 847.0 1400.0 348.7 1672.6 715.0 4.0 4.0 119.3 3459.0 --703.2 169.1 44 4 135.2 80.6 77.4 57.3 3451.0 90.4 1419.3 1421.0 NRCS SURCHARGE STORAGE 13.80 7.90 10.00 STORAGE 11.10 4.00 00.167 335.00 225.00 653.20 161.90 423.18 286.60 264.40 169.10 191.50 30.00 44.37 90.40 127.30 15.18 847.00 200.00 348.73 77.40 182.65 71.50 67.30 421.00 80.54 1672.60 715.00 3451.00 042.70 2007.002 976.30 ACTIVE STORAGE INACTIVE 112.40 13.50 28.00 0.24 41.00 28.80 8.00 09.991 1.60 8.00 1452.00 50.00 80.9 **14.00** STORAGE Jnknown Unknown 39.73 20.00 0.13 0.40 48.00 0.46 29.00 44.10 406.20 8.9 406.83 DEAD WEISER/BOISE/PAYETTE BASINS SOUTHSIDE SNAKE BASINS WOODRUFF NARROWS PANHANDLE REGION CLEARWATER BASIN WOOD/LOST BASINS UPPER SNAKE BASIN ANDERSON RANCH WOODRUFF CREEK BEAR RIVER BASIN AMERICAN FALLS HUNGRY HORSE FLATHEAD LAKE COEUR D'ALENE SALMON FALLS inactive storage. NOXON RAPIDS JACKSON LAKE GRASSY LAKE PEND OREILLE HENRYS LAKE LITTLE WOOD ARROWROCK LAKE LOWELL ISLAND PARK PRIEST LAKE MANN CREEK LUCKY PEAK RESERVOIR DEADWOOD BLACKFOOT DWORSHAK **WILDHORSE** BEAR LAKE **PALISADES** BROWNLEE CASCADE MACKAY OWYHEE OAKLEY MAGIC BASIN/

Interpreting Streamflow Forecasts

roduction

Each month, five forecasts are issued for each forecast point and each forecast period. Unless otherwise specified, all streamflows are for streamflow volumes that would occur naturally without any upstream influences. Water users need to know what the different forecasts represent if they are to use the information correctly when making operational decisions. The following is an explanation of each of the forecasts.

Most Probable (50 Percent Chance of Exceeding) Forecast. This forecast is the best estimate of streamflow volume that can be produced given current conditions and based on the outcome of similar past situations. There is a 50 percent chance that the streamflow volume will exceed this forecast value. There is a 50 percent chance that the streamflow volume will be less than this forecast value.

The most probable forecast will rarely be exactly right, due to errors resulting from future weather conditions and the forecast equation itself. This does not mean that users should not use the most probable forecast: it means that they need to evaluate existing cirumstances and determine the amount of risk they are willing to take by accepting this forecast value.

To Decrease the Chance of Having Too Little Water

If users want to make sure there is enough water available for their operations, they might determine that a 50 percent chance of the streamflow volume being lower than the most probable forecast is too much risk to take. To reduce the risk of not having enough water available during the forecast period, users can base their operational decisions on one of the forecasts with a greater chance of being exceeded (or possibly some point in-between). These include:

70 Percent Chance of Exceeding Forecast. There is a 70 percent chance that the streamflow volume will exceed this forecast value. There is a 30 percent chance the streamflow volume will be less than this forecast value.

90 Percent Chance of Exceeding Forecast. There is a 90 percent chance that the streamflow volume will exceed this forecast value. There is a 10 percent chance the streamflow volume will be less than this forecast value.

To Decrease the Chance of Having Too Much Water

If users want to make sure they don't have too much water, they might determine that a 50 percent chance of the streamflow being higher than the most probable forecast is too much of a risk to take. To reduce the risk of having too much water available during the forecast period, users can base their operational decisions on one of the forecasts with a smaller chance of being exceeded. These Include:

30 Percent Chance of Exceeding Forecast. There is a 30 percent chance that the streamflow volume will exceed this forecast value. There is a 70 percent chance the streamflow volume will be

than this lorecast value.

10 Percent Chance of Exceeding Forecast. There is a 10 percent chance that the streamflow volume will exceed this forecast value. There is a 90 percent chance the streamflow volume will be the this forecast value.

Using the forecasts - an example

Using the Most Probable Forecast. Using the example forecasts shown below, users can reasonably expect 36,000 acre-feet to flow past the gaging station on the Mary's River news Deeth between March 1 and July 31.

Using the Higher Exceedance Forecasts. If users anticipate a somewhat drier trend in the future (monthly and seasonal weather outlooks are available from the National Weather Service every two weeks), or if they are operating at a level where an unexpected shortage of water could cause problems, they might want to plan on receiving only 20,000 acre-feet (from the 70 percent chance of exceeding forecast). In seven out of ten years with similar conditions, streamflow volumes will exceed the 20,000 acre-foot forecast.

If users anticipate extremely dry conditions for the remainder of the season, or if they detrmine the risk of using the 70 percent chance of exceeding forecast is too great, then they might plan on receiving only 5000 acre-feet (from the 90 percent chance of exceeding forecast). Nine out of ten years with similar conditions, streamflow volumes will exceed the 5000 acre-foot forecast.

Using the Lower Exceedance Forecasts. If users expect wetter future conditions, or if the chance that the out of every ten years with similar conditions would produce streamflow volumes greater that 35,000 acre-feet was more than they would like to risk, they might plan on receiveing 52,000 acre-feet (from the 30 percent chance of exceeding forecast) to minimize potential flooding problems. Three out of ten years with similar conditions, streamflows will exceed the 52,000 acre-foot forecast.

In years when users expect extremely wet conditions for the remainder of the season and the threat of severe flooding and downstream damage exists, they might choose to use the 76,000 acre-foot (10 percent chance of exceeding) forecast for their water management operations. Streamflow volumes will exceed this level only one year out of ten.

		UPPER	HUMBOL	UPPER HUMBOLDT RIVER BASIN	BASIN			
			ST	REAMFLO	STREAMFLOW FORECASTS	ASTS		
		DRI	ER	FUTURE	K DRIERFUTURE CONDITIONSWETTER	WET	TER	
FORECAST POINT	FORECAST	1		Chance	Chance of Exceeding-		-	
	PERIOD	% 08	70 <u>%</u>	50%(Mos	50% (Most Probable)	30%	10%	25 YR
		(1000AF)	(1000AF) (1000AF)	(1000AF) (% AVG)	(% AVG)	(1000AF)	(1000AF)	(1000AF)
MARY'S RIVER	MAR-JUL	5.0	20.0	36	11	52	92	47
nr Deeth	APR-JUL	8.0	17.0	31	7.4	45	29	7
LAMOILLE CREEK	MARJUL	0.9	16.0	24	79	32	64	31
nr Lamoille	APR-JUL	4.0	15.0	22	75	8	¥	೫
NR HUMBOLDT RIVER	MAR-JUL	0.9	12.0	43	73	7.	121	29

For more information concerning streamflow forecasting ask your local NRCS field office for a copy of "A Field Office Guide for interpreting Streamflow Forecasts".

CONSERVATION OF WATER
BEGINS WITH THE
SNOW SURVEY

MAY 14'97 ≈ 0 .7 8 = 10 .

USDA, Natural Resources Conservation Service 3244 Elder Street, Room 124 Boise ID 83705-4711

OFFICIAL BUSINESS

NATIONAL AGRICULTURAL LIBRARY SERIAL RECORDS ROOM 002 10301 BALTIMORE BLVD BELTSVILLE MD 20705-2351

Issued by

Paul W. Johnson Chief Natural Resources Conservation Service U.S. Department of Agriculture Released by

Luana E. Kiger State Conservationist Natural Resources Conservation Service Boise, Idaho

Prepared by

Peter L. Palmer, Data Collection Office Supervisor Philip S. Morrisey, Hydrologist Ron Abramovich, Water Supply Specialist Gini Broyles, Statistical Assistant Bill J. Patterson, Electronics Technician Jeff Graham, Electronics Technician

