Име		,
Ф.No,	група	

Тема СИ20-П-1. Дадено е уравнението

$$y' = x(1 - y)\cot(x^2 - 1).$$

- 1. Напишете уравнението на тангентата към интегралната крива на това уравнение, която минава през точката $(\xi, \eta) \in \mathbb{R}^2$. Опишете метод за построяване на поле от прави (slope field) на даденото уравнение.
- 2. Начертайте полето от прави на това уравнение в правоъгълник Π , съдържащ точката (-2,1). Решете символно в подходящ интервал задачата на Коши за даденото уравнение с начално условие $y(x_0) = y_0$, където точката (x_0, y_0) , се въвежда чрез кликване с мишката в Π . Начертайте в същия прозорец графиката на намереното приближение на решението на получената задача на Коши.

Име		 	 	,
Ф.No	, група			

Тема СИ20-П-2. Дадена е задачата на Коши

$$y' = y^2 - x, \ y(0) = -1.$$

- 1. Решете числено дадената задача с ode45 в интервала [2,4] и начертайте с черен цвят графиката на намереното приближение на решението ?
- 2. Начертайте с различни цветове графиките на приближенията $y_0(x), y_1(x)$ и $y_5(x)$ на решението получени с метода на Пикар.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-3. Дадена е системата

$$\dot{x} = x$$
$$\dot{y} = x^2 - y.$$

- 1. Намерете нейните равновесни точки. Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- 2. Начертайте фазов портрет на написанта линейна система в подточка (1). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име		,
Ф.No,	група	

Тема СИ20-П-4. Дадена е задачата на Коши

$$xy' + 3x = 9y, \ y(2) = -1.$$

- 1. Решете символно дадената задача и начертайте с черен цвят графиката на решението и в интервала [2, 4].
- 2. Начертайте с различни цветове графиките на приближенията $y_0(x), y_1(x)$ и $y_5(x)$ на решението получени с метода на Пикар.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-5. Дадена е системата

$$\begin{vmatrix} \dot{x} = 3x - y + 2 \\ \dot{y} = x - y - 1. \end{vmatrix}$$

- 1. Намерете равноесната точка на системата и я изследвайте относно устойчивост. Определете типа на намерената равновесна точка.
- 2. Начертайте фазов портрет на системата в околност на равновесната точка. Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име		 	 	,
Ф.No	група .			

Тема СИ20-П-6. Трептенето на струна се моделира със следната задача

$$|u_{tt} - \frac{3}{2}u_{xx} = 0, \quad t > 0, \quad 0 < x < 4,$$

$$|u|_{t=0} = \begin{cases} 50(x^2 - 3x + 2)^3, & x \in [1, 2] \\ 0, & x \in [0, 1) \cup (2, 4], \end{cases}$$

$$|u_t|_{t=0} = 0, \quad 0 \le x \le 4,$$

$$|u|_{x=0} = 0, \quad u_x|_{x=4} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 50-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t \in [0,12]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		 ,
Ф.No,	група	

Тема СИ20-П-7. Дадена е системата

$$\dot{x} = y(y+3)$$
$$\dot{y} = x - 2y.$$

- 1. Намерете нейните равновесни точки. Начертайте векторното поле на тази система в правоъгълник, който съдържа намерените равновесни точки и с негова помощ изследвайте за устойчивост равновесните положения.
- 2. За решението на задачата на Коши за дадената система с начални условия $x(0) = x_0, y(0) = y_0$ направете анимация на движението на точката (x(t), y(t)) във фазовата равнина за $t \in [0, 10]$, като точката (x_0, y_0) се въвежда чрез кликване с мишката в избрания правоъгълник.

Име	
Ф.No, груг	ıa

Тема СИ20-П-8. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$|u_t - \frac{7}{8}u_{xx} = 0, \quad t > 0, \quad 0 < x < 5,$$

$$|u|_{t=0} = \begin{cases} 7\sin^3\frac{\pi x}{2}, & x \in [2, 5] \\ 0, & x \in [0, 2), \end{cases}$$

$$|u|_{x=0} = 0, \quad u_x|_{x=5} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 47-та частична сума на реда за u(x,t) за да направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,8]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	,
Ф.No	ъупа

Тема СИ20-П-9. Движението на полуограничена струна се моделира със следната смесена задача

$$\begin{aligned} u_{tt} - \frac{2}{\pi} u_{xx} &= 0, \quad t > 0, \quad x > 0, \\ u|_{t=0} &= \begin{cases} \sin^3(x + \frac{3\pi}{2}), & x \in \left[\frac{\pi}{2}, \frac{3\pi}{2}\right] \\ 0, & x \in \left[0, \frac{\pi}{2}\right) \cup \left(\frac{3\pi}{2}, +\infty\right), \end{cases} \\ u_t|_{t=0} &= \sin\frac{15x}{16}, \quad x \ge 0, \\ u_x|_{x=0} &= 0, \quad t \ge 0. \end{aligned}$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{0 \le x \le 8\}$ за $t \in [0,5]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		٠.,
Ф.No,	група	

Тема СИ20-П-10. Дадена е задачата на Коши

$$y'' - 2y' + 5y = 0$$

 $y(0) = 1, y'(0) = 2.$

- 1. Сведете дадената задача до задача на Коши за линейна нормална система от първи ред за функции $y_1(t)$ и $y_2(t)$.
- 2. Решете символно получената задача на Коши и начертайте с различни цветове графиките на функциите $y_1(t)$ и $y_2(t)$ в интервала [0,8]. Разположете двете графики в един прозорец.
- 3. Коя от начертаните криви е графика на решението y(t) на дадената задача? Намерете най-голямата стойност на функцията y(t) в указания интервал и маркирайте съответстващата и точка върху графиката на тази функция.

Име		٠.,
Ф.No,	група	

Тема СИ20-П-11. Дадено е уравнението

$$x(y')^{2} + (x+y)y' + y = 0.$$

- 1. Намерете негонвите обикновени и особени точки. Начертайте с черен цвят дискриминатната крива на уравнението в интервала [-8,8]. Тя интегрална крива ли е на даденото уравнение?
- 2. Начертайте графиките в интервала [-8,8] на решенията на уравнението, които минават през обикновена точка, въвеждана чрез кликване с мишката в правоъгълника $[-8,8] \times [-6,6]$. Ако кликвате в точка, през която не минава решение, то изведете съобщение за това.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-12. Дадена е системата

$$\begin{vmatrix} \dot{x} = x - x^3 \\ \dot{y} = -y. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- 2. Начертайте фазов портрет на написанта линейна система в подточка (1). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име	,
Ф.No	ъупа

Тема СИ20-П-13. Движението на ограничена струна се моделира със следната смесена задача

$$\begin{aligned} u_{tt} &= \frac{1}{\pi^2} u_{xx}, & t > 0, \ 0 < x < 3\pi, \\ u|_{t=0} &= \cos 2x \\ u_t|_{t=0} &= -\cos x, & 0 \le x \le 3\pi, \\ u_x|_{x=0} &= 0, \ u_x|_{x=3\pi} = 0 & t \ge 0. \end{aligned}$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{0 \le x \le 8\}$ за $t \in [0,6]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-14. Трептенето на струна се моделира със следната задача

$$u_{tt} = \frac{5}{4}u_{xx}, \quad t > 0, \quad 0 < x < \pi^2,$$

$$u|_{t=0} = \begin{cases} 10(x-\pi)^3 \sin^3(\pi x), & x \in [1,\pi] \\ 0, & x \in [0,1) \cup (\pi,\pi^2], \end{cases}$$

$$u_t|_{t=0} = \sin\frac{2x}{\pi}, \quad 0 \le x \le \pi^2,$$

$$u|_{x=0} = 0, \quad u|_{x=\pi^2} = 0, \quad t \ge 0,$$

където e е неперовото число.

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 60-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t \in [0,13]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		٠.,
Ф.No,	група	

Тема СИ20-П-15. Дадена е задачата на Коши

$$\begin{vmatrix} y'' + 2y' + 17y = 0 \\ y(0) = 1, \ y'(0) = 2. \end{vmatrix}$$

- 1. Сведете дадената задача до задача на Коши за линейна нормална система от първи ред за функции $y_1(t)$ и $y_2(t)$.
- 2. Решете символно получената задача на Коши и начертайте с различни цветове графиките на функциите $y_1(t)$ и $y_2(t)$ в интервала [0,8]. Разположете двете графики в един прозорец.
- 3. Коя от начертаните криви е графика на решението y(t) на дадената задача? Намерете най-голямата стойност на функцията y(t) в указания интервал и маркирайте съответстващата и́ точка върху графиката на тази функция.

Име	,
Ф.No	ъупа

Тема СИ20-П-16. Движението на неограничена струна се моделира със следната задача на Коши

$$| u_{tt} = 10u_{xx}, \quad t > 0, \quad x \in \mathbb{R},$$

$$| u|_{t=0} = \begin{cases} -\sin^3 \frac{\pi}{4}(x+3), & x \in [1,5] \\ 0, & x \in \mathbb{R} \setminus [1,5], \end{cases}$$

$$| u_t|_{t=0} = \cos \pi x, \quad x \in \mathbb{R}.$$

- 1. Напишете решението на дадената задача с помощта на формулата на Даламбер.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{-7 \le x \le 7\}$ за $t \in [0,7]$. Начертайте със зелен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1 = 0, t_2 = 0.6, t_3 = 3$ и означете коя графика за кое t се отнася.

Име		,
Ф. No,	група	

Тема СИ20-П-17. Трептенето на струна се моделира със следната задача

$$\begin{aligned} u_{tt} &= \frac{11}{4} u_{xx}, & t > 0, \ 0 < x < \frac{9}{2}, \\ u|_{t=0} &= \begin{cases} -5(x-1)^3 \sin^3 \frac{\pi x}{2}, & x \in [1,2] \\ 0, & x \in [0,1) \cup (2, \frac{9}{2}], \end{cases} \\ u_t|_{t=0} &= \sin 2\pi x, \ 0 \le x \le \frac{9}{2}, \\ u|_{x=0} &= 0, \ u_x|_{x=\frac{9}{2}} = 0, \ t \ge 0. \end{aligned}$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 55-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t \in [0,12]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-18. Движението на полуограничена струна се моделира със следната смесена задача

$$|u_{tt} = \frac{1}{9}u_{xx}, \quad t > 0, \quad x > 0,$$

$$|u|_{t=0} = \begin{cases} 20\sin^3(2x^2 - 4x + 3), & x \in [1, \frac{3}{2}] \\ 0, & x \in [0, 1) \cup (\frac{3}{2}, +\infty), \end{cases}$$

$$|u_t|_{t=0} = \cos\frac{\pi x}{10}, \quad x \ge 0,$$

$$|u_x|_{x=0} = 0, \quad t \ge 0.$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{0 \le x \le 10\}$ за $t \in [0,10]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		 	 	,
Ф.No	група .			

Тема СИ20-П-19. Дадена е задачата на Коши за уравнението на хармоничния осцилатор

$$\begin{cases} y'' + 3y = a\cos(\omega_0 t) \\ y(0) = 1, \ y'(0) = -1. \end{cases}$$

- 1. Решете символно дадената задача при a=0. Начертайте графиката на намереното решение в интервала [0,30].
- 2. При a=2 изберете подходяща стойност на честота ω_0 на външната сила, така че да демонстрирате явлението биене/резонанс. Решете символно получената задача и начертайте графиката на решението и́ в същия интеравл, както в подточка (1). Разположете графиките от двете подточки една под друга.

Име		 	 	,
Ф.No	група .			

Тема СИ20-П-20. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$| u_t = \frac{1}{10}u_{xx}, \quad t > 0, \quad 0 < x < 2,$$

$$| u|_{t=0} = \sin\frac{3\pi x}{4} - \sin\frac{5\pi x}{4}, \quad 0 \le x \le 2,$$

$$| u|_{x=0} = 0, \quad u_x|_{x=2} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Намерете явен вид на решението u(x,t) и направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,10]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-21. Дадена е системата

$$\begin{vmatrix} \dot{x} = -x - \frac{1}{2}y + 1 \\ \dot{y} = -\frac{9}{2}x - y + 2. \end{vmatrix}$$

- 1. Намерете равноесната точка на системата и я изследвайте относно устойчивост. Определете типа на намерената равновесна точка.
- 2. Начертайте фазов портрет на системата в околност на равновесната точка. Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име	,
Ф.No	ъупа

Тема СИ20-П-22. Движението на струна се моделира със следната задача

$$| u_{tt} = a^2 u_{xx}, \quad t > 0, \quad 0 < x < 10,$$

$$| u|_{t=0} = \begin{cases} -5(x-\pi)^2(x-2\pi)^2, & x \in [\pi, 2\pi] \\ 0, & x \in [0, \pi) \cup (2\pi, 10], \end{cases}$$

$$| u|_{t=0} = 0, \quad 0 \le x \le 10,$$

$$| u|_{x=0} = 0, \quad u_x|_{x=10} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и намерете нейните собствени стойности и собствени функции. Решете полученото уравнение за функциите $T_k(t)$. Напишете как се пресмятат коефициентите в получения ред за u(x,t).
- 2. Използвайте 35-та частична сума на реда за u(x,t) за да начертаете с MATLAB:
- в един прозорец положението на стураната в моментите $t_1=0,\,t_2=2,\,t_3=5,$ при a=0,6.
- в друг прозорец положението на струната в същите моменти, когато a=2. Означете коя графика за кое t се отнася.

Име		 	 	,
Ф.No	група .			

Тема СИ20-П-23. Трептенето на струна се моделира със следната задача

$$|u_{tt} = \frac{1}{4}u_{xx}, \quad t > 0, \quad 0 < x < \sqrt{7},$$

$$|u|_{t=0} = 0, \quad u_t|_{t=0} = x^3(x - \sqrt{7})^3, \quad 0 \le x \le \sqrt{7},$$

$$|u|_{x=0} = 0, \quad u|_{x=\sqrt{7}} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=1}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 50-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t \in [0,15]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No	ърупа

Тема СИ20-П-24. Дадено е уравнението

$$y' = x(y+2)\sin(x^2 - 1).$$

- 1. Напишете уравнението на тангентата към интегралната крива на това уравнение, която минава през точката $(\xi, \eta) \in \mathbb{R}^2$. Опишете метод за построяване на поле от прави (slope field) на даденото уравнение.
- 2. Начертайте полето от прави (slope field) на това уравнение в в правоъгълник Π , съдържащ точката (0,1). Решете символно задачата на Коши за даденото уравнение с начално условие $y(x_0) = y_0$, където точката (x_0, y_0) , се въвежда чрез кликване с мишката в Π . Начертайте в същия прозорец графиката на решението на получената задача на Коши.

Име	,
Ф.No	ъупа

Тема СИ20-П-25. Дадена е задачата на Коши за уравнението на хармоничния осцилатор

$$y'' + 9y = a\cos(\omega_0 t) y(0) = -1, y'(0) = 1.$$

- 1. Решете символно дадената задача при a=0. Начертайте графиката на намереното решение в интервала [0,30].
- 2. При a=4 изберете подходяща стойност на честота ω_0 на външната сила, така че да демонстрирате явлението биене/резонанс. Решете символно получената задача и начертайте графиката на решението и́ в същия интеравл, както в подточка (1). Разположете графиките от двете подточки една под друга.

Име	,
Ф.No	ъупа

Тема СИ20-П-26. Движението на ограничена струна се моделира със следната смесена задача

$$|u_{tt} = \frac{1}{15}u_{xx}, \quad t > 0, \quad 0 < x < 5,$$

$$|u|_{t=0} = \begin{cases} 10(x-2)\sin^3(\pi x), & x \in [1,2] \\ 0, & x \in [0,1) \cup (2,5], \end{cases}$$

$$|u_t|_{t=0} = \cos\frac{\pi x}{5}, \quad 0 \le x \le 5,$$

$$|u_x|_{x=0} = 0, \quad u_x|_{x=5} = 0 \quad t \ge 0.$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на струната за $t \in [0,9]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	,
Ф.No	ъупа

Тема СИ20-П-27. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$|u_t = c^2 u_{xx}, \quad t > 0, \quad 0 < x < 18,$$

$$|u|_{t=0} = \begin{cases} 100(1 - \cos\frac{\pi x}{2})^3, & x \in [7, 8] \\ 0, & x \in [0, 7) \cup (8, 18], \end{cases}$$

$$|u|_{x=0} = 0, \quad u|_{x=18} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=1}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
 - 2. Използайте 35 частична сума в получения ред и начертайте
- в един прозорец графиките на разпределението на температурата в пръта в моментите $t_1=0,\,t_2=1,\,t_3=3,$ при a=0,4.
- в друг прозорец графиките на разпределението на температурата в пръта в моменти, когато a=0.8 Означете коя графика за кое t се отнася.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-28. Дадена е системата

$$\begin{vmatrix} \dot{x} = x - y + 2 \\ \dot{y} = x + y - 4. \end{vmatrix}$$

- 1. Намерете равноесната точка на системата и я изследвайте относно устойчивост. Определете типа на намерената равновесна точка.
- 2. Начертайте фазов портрет на системата в околност на равновесната точка. Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име	
Ф.No	ърупа

Тема СИ20-П-29. Дадено е уравнението

$$(y')^2 - 8y' + 4x - y = 0.$$

- 1. Намерете неговите обикновени и особени точки. Начертайте с черен цвят дискриминатната крива на уравнението в интервала [-15, 15]. Тя интегрална крива ли е на даденото уравнение?
- 2. Начертайте графиките в интервала [-15, 15] на решенията на уравнението, които минават през обикновена точка, въвеждана чрез кликване с мишката в правоъгълника $[-15, 15] \times [-10, 10]$. Ако кликвате в точка, през която не минава решение, то изведете съобщение за това.

Име		,
Ф. No,	група	

Тема СИ20-П-30. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$u_{t} = \frac{1}{3}u_{xx}, \quad t > 0, \quad 0 < x < \frac{\pi}{3},$$

$$u|_{t=0} = \begin{cases} 11\sin^{3}(4x^{2} - 5x + 1), & x \in \left[\frac{1}{4}, 1\right] \\ 0, & x \in \left[0, \frac{1}{4}\right) \cup \left(1, \frac{\pi}{3}\right], \end{cases}$$

$$u|_{x=0} = 0, \quad u_{x}|_{x=\frac{\pi}{3}} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 45-та частична сума на реда за u(x,t) за да направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,3]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-31. Трептенето на струна се моделира със следната задача

$$\begin{aligned} u_{tt} &= \frac{1}{4}u_{xx}, & t > 0, \ 0 < x < 7, \\ u|_{t=0} &= -30(x^2 - 7x)^3, \ u_t|_{t=0} = 0 \ 0 \le x \le 7, \\ u|_{x=0} &= 0, \ u_x|_{x=7} = 0, \ t \ge 0. \end{aligned}$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 40-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t\in [0,12]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-32. Движението на неограничена струна се моделира със следната задача на Коши

$$| u_{tt} = 9u_{xx}, \quad t > 0, \quad x \in \mathbb{R},$$

$$| u|_{t=0} = \begin{cases} -50(x-5)^3(x-\pi)^3, & x \in [\pi, 5] \\ 0, & x \in \mathbb{R} \setminus [\pi, 5], \end{cases}$$

$$| u_t|_{t=0} = 0, \quad x \in \mathbb{R}.$$

- 1. Напишете решението на дадената задача с помощта на формулата на Даламбер.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{-50 \le x \le 50\}$ за $t \in [0,5]$. Начертайте със зелен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1 = 0, t_2 = 1, t_3 = 3$ и означете коя графика за кое t се отнася.

Име		,
Ф.No,	група	

Тема СИ20-П-33. Дадено е уравнението

$$y' = y \ t g(x)((2 - \cos(x)) \ y - 2).$$

- 1. Напишете уравнението на тангентата към интегралната крива на това уравнение, която минава през точката $(\xi, \eta) \in \mathbb{R}^2$. Опишете метод за построяване на поле от прави (slope field) на даденото уравнение.
- 2. Начертайте полето от прави на това уравнение в правоъгълник Π , съдържащ точката (0,0). Решете символно в подходящ интервал задачата на Коши за даденото уравнение с начално условие $y(x_0) = y_0$, където точката (x_0, y_0) , се въвежда чрез кликване с мишката в Π . Начертайте в същия прозорец графиката на намереното приближение на решението на получената задача на Коши.

Име	
Ф.No	ърупа

Тема СИ20-П-34. Дадено е уравнението

$$x(y')^{2} + (x - y)y' - y = 0.$$

- 1. Намерете неговите обикновени и особени точки. Начертайте с черен цвят дискриминатната крива на уравнението в интервала [-10, 10]. Тя интегрална крива ли е на даденото уравнение?
- 2. Начертайте графиките в интервала [-10, 10] на решенията на уравнението, които минават през обикновена точка, въвеждана чрез кликване с мишката в правоъгълника $[-10, 10] \times [-8, 8]$. Ако кликвате в точка, през която не минава решение, то изведете съобщение за това.

Име	,
Ф.No	ъупа

Тема СИ20-П-35. Дадена е задачата на Коши за уравнението на хармоничния осцилатор

$$\begin{vmatrix} y'' + 9y = a(\sin(\omega_0 t) + \cos(\omega_0 t)) \\ y(0) = 1, \ y'(0) = -1. \end{vmatrix}$$

- 1. Решете символно дадената задача при a=0. Начертайте графиката на намереното решение в интервала [0,30].
- 2. При a=2 изберете подходяща стойност на честота ω_0 на външната сила, така че да демонстрирате явлението биене/резонанс. Решете символно получената задача и начертайте графиката на решението и́ в същия интеравл, както в подточка (1). Разположете графиките от двете подточки една под друга.

Име	,
Ф.No	ъупа

Тема СИ20-П-36. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$|u_t = \frac{1}{5}u_{xx}, \quad t > 0, \quad 0 < x < \pi,$$

$$|u|_{t=0} = \begin{cases} \sin^3(6x), & x \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right] \\ 0, & x \in \left[0, \frac{\pi}{3}\right) \cup \left(\frac{\pi}{2}, \pi\right], \end{cases}$$

$$|u|_{x=0} = 0, \quad u_x|_{x=\pi} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 38-та частична сума на реда за u(x,t) за да направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,5]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-37. Дадена е задачата на Коши за уравнението на хармоничния осцилатор

$$\begin{vmatrix} y'' + 4y = a(\sin(\omega_0 t) + \cos(\omega_0 t)) \\ y(0) = 2, \ y'(0) = 1. \end{vmatrix}$$

- 1. Решете символно дадената задача при a=0. Начертайте графиката на намереното решение в интервала [0,20].
- 2. При a=6 изберете подходяща стойност на честота ω_0 на външната сила, така че да демонстрирате явлението биене/резонанс. Решете символно получената задача и начертайте графиката на решението и́ в същия интеравл, както в подточка (1). Разположете графиките от двете подточки една под друга.

Име	
Ф.No, груг	ıa

Тема СИ20-П-38. Движението на полуограничена струна се моделира със следната смесена задача

$$u_{tt} = \frac{2}{15}u_{xx}, \quad t > 0, \quad x > 0,$$

$$u|_{t=0} = \begin{cases} -10(x-1)^3 \cos^3 \frac{\pi x}{4}, & x \in [1,2]\\ 0, & x \in [0,1) \cup (2,+\infty), \end{cases}$$

$$u_t|_{t=0} = \sin(\pi x), \quad x \ge 0,$$

$$u_x|_{x=0} = 0, \quad t \ge 0.$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{-20 \le x \le 20\}$ за $t \in [0,10]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-39. Движението на неограничена струна се моделира със следната задача на Коши

$$|u_{tt} = 2u_{xx}, \quad t > 0, \quad x \in \mathbb{R},$$

$$|u|_{t=0} = \begin{cases} (x+5)^3 \cos^3(\frac{\pi}{16}x), & x \in [-8, -5] \\ 0, & x \in \mathbb{R} \setminus [-8, -5], \end{cases}$$

$$|u_t|_{t=0} = \sin \pi x, \quad x \in \mathbb{R}.$$

- 1. Напишете решението на дадената задача с помощта на формулата на Даламбер.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C=\{-50\leq x\leq 30\}$ за $t\in[0,10]$. Начертайте със зелен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1=0,\,t_2=1,\,t_3=3$ и означете коя графика за кое t се отнася.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-40. Дадена е системата

$$\begin{vmatrix} \dot{x} = y(y-1) \\ \dot{y} = -x - 2y. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Начертайте векторното поле на тази система в правоъгълник, който съдържа намерените равновесни точки и с негова помощ изследвайте за устойчивост равновесните положения.
- 2. За решението на задачата на Коши за дадената система с начални условия $x(0) = x_0, y(0) = y_0$ направете анимация на движението на точката (x(t), y(t)) във фазовата равнина за $t \in [0, 10]$, като точката (x_0, y_0) се въвежда чрез кликване с мишката в избрания правоъгълник.

Име		,
Ф. No,	група	

Тема СИ20-П-41. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$| u_t = c^2 u_{xx}, \quad t > 0, \quad 0 < x < 3\pi,$$

$$| u|_{t=0} = \begin{cases} 20\sin(x) - 18\sin\frac{x}{2}, & x \in [7, 8] \\ 0, & x \in [0, 7) \cup (8, 3\pi], \end{cases}$$

$$| u|_{x=0} = 0, \quad u_x|_{x=3\pi} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
 - 2. Намерете явен вид на решението и начертайте
- в един прозорец графиките на разпределението на температурата в пръта в моментите $t_1=0,\,t_2=1,\,t_3=2,$ при c=0,2.
- в друг прозорец графиките на разпределението на температурата в пръта в моменти, когато c=0.4 Означете коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-42. Движението на неограничена струна се моделира със следната задача на Коши

$$| u_{tt} = 5u_{xx}, \quad t > 0, \quad x \in \mathbb{R},$$

$$| u|_{t=0} = \begin{cases} -4\cos^3\left(\frac{\pi}{8}(x-2)\right), & x \in [2,14] \\ 0, & x \in \mathbb{R} \setminus [1,14], \end{cases}$$

$$| u_t|_{t=0} = -\cos x, \quad x \in \mathbb{R}.$$

- 1. Напишете решението на дадената задача с помощта на формулата на Даламбер.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{-10 \le x \le 100\}$ за $t \in [0,6]$. Начертайте със зелен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1 = 0, t_2 = 1, t_3 = 3$ и означете коя графика за кое t се отнася.

Име		٠.,
Ф.No,	група	

Тема СИ20-П-43. Дадена е задачата на Коши

$$y'' - 2y' + 17y = 0$$

$$y(0) = -1, \ y'(0) = 1.$$

- 1. Сведете дадената задача до задача на Коши за линейна нормална система от първи ред за функции $y_1(t)$ и $y_2(t)$.
- 2. Решете символно получената задача на Коши и начертайте с различни цветове графиките на функциите $y_1(t)$ и $y_2(t)$ в интервала [0,8]. Разположете двете графики в един прозорец.
- 3. Коя от начертаните криви е графика на решението y(t) на дадената задача? Намерете най-голямата стойност на функцията y(t) в указания интервал и маркирайте съответстващата и точка върху графиката на тази функция.

Име		 	 	,
Ф.No	, група			

Тема СИ20-П-44. Дадена е системата

$$\begin{vmatrix} \dot{x} = -x \\ \dot{y} = y^2(1 - y^2). \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- 2. Начертайте фазов портрет на написанта линейна система в подточка (1). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име	
Ф.No, груг	ıa

Тема СИ20-П-45. Движението на полуограничена струна се моделира със следната смесена задача

$$u_{tt} = \frac{3}{4}u_{xx}, \quad t > 0, \quad x > 0,$$

$$u|_{t=0} = \begin{cases} \sin^3((x-2)(x-3\pi)), & x \in [2,3\pi] \\ 0, & x \in [0,2) \cup (3\pi, +\infty), \end{cases}$$

$$u_t|_{t=0} = 0.5 \sin x, \quad x \ge 0,$$

$$u|_{x=0} = 0, \quad t \ge 0.$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{0 \le x \le 50\}$ за $t \in [0,9]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		٠.,
Ф.No,	група	

Тема СИ20-П-46. Дадена е задачата на Коши

$$\begin{vmatrix} y'' + 2y' + 2y = 0 \\ y(0) = 1, \ y'(0) = 0. \end{vmatrix}$$

- 1. Сведете дадената задача до задача на Коши за линейна нормална система от първи ред за функции $y_1(t)$ и $y_2(t)$.
- 2. Решете символно получената задача на Коши и начертайте с различни цветове графиките на функциите $y_1(t)$ и $y_2(t)$ в интервала [0,8]. Разположете двете графики в един прозорец.
- 3. Коя от начертаните криви е графика на решението y(t) на дадената задача? Намерете най-голямата стойност на функцията y(t) в указания интервал и маркирайте съответстващата и точка върху графиката на тази функция.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-47. Дадена е системата

$$\begin{vmatrix} \dot{x} = y(y-2) \\ \dot{y} = -x - 2y. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Начертайте векторното поле на тази система в правоъгълник, който съдържа намерените равновесни точки и с негова помощ изследвайте за устойчивост равновесните положения.
- 2. За решението на задачата на Коши за дадената система с начални условия $x(0) = x_0, y(0) = y_0$ направете анимация на движението на точката (x(t), y(t)) във фазовата равнина за $t \in [0, 10]$, като точката (x_0, y_0) се въвежда чрез кликване с мишката в избрания правоъгълник.

Име		
Ф. No,	група	

Тема СИ20-П-48. Дадена е задачата на Коши за уравнението на хармоничния осцилатор

$$\begin{vmatrix} y'' + y = a(\sin(\omega_0 t) + \cos(\omega_0 t)) \\ y(0) = -1, \ y'(0) = -1. \end{vmatrix}$$

- 1. Решете символно дадената задача при a=0. Начертайте графиката на намереното решение в интервала [0,30].
- 2. При a=5 изберете подходяща стойност на честота ω_0 на външната сила, така че да демонстрирате явлението биене/резонанс. Решете символно получената задача и начертайте графиката на решението и́ в същия интеравл, както в подточка (1). Разположете графиките от двете подточки една под друга.

Име	,
Ф.No	ъупа

Тема СИ20-П-49. Трептенето на струна се моделира със следната задача

$$|u_{tt} = \frac{1}{5}u_{xx}, \quad t > 0, \quad 0 < x < \pi^{3},$$

$$u|_{t=0} = 0, \quad 0 \le x \le \pi^{3},$$

$$u_{t}|_{t=0} = \begin{cases} -20(x-1)^{3}(x-\pi)^{3}, & x \in [1,\pi] \\ 0, & x \in [0,1) \cup (\pi,\pi^{3}], \end{cases}$$

$$u|_{x=0} = 0, \quad u|_{x=\pi^{3}} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 35-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t \in [0,12]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-50. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$|u_t = \frac{1}{7}u_{xx}, \quad t > 0, \quad 0 < x < 3\pi,$$

$$|u|_{t=0} = \begin{cases} 2(x-\pi)^3 \cos^3 \frac{\pi x}{10}, & x \in [\pi, 5] \\ 0, & x \in [0, \pi) \cup (5, 3\pi], \end{cases}$$

$$|u|_{x=0} = 0, \quad u_x|_{x=3\pi} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 51-та частична сума на реда за u(x,t) за да направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,5]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No	ърупа

Тема СИ20-П-51. Дадено е уравнението

$$y = (y')^2 + 10y' - 5x.$$

- 1. Намерете неговите обикновени и особени точки. Начертайте с черен цвят дискриминатната крива на уравнението в интервала [-9, 9]. Тя интегрална крива ли е на даденото уравнение?
- 2. Начертайте графиките в интервала [-14,14] на решенията на уравнението, които минават през обикновена точка, въвеждана чрез кликване с мишката в квадрата $[-9,9] \times [-9,9]$. Ако кликвате в точка, през която не минава решение, то изведете съобщение за това.

Име		,
Ф.No,	група	

Тема СИ20-П-52. Дадена е системата

$$\begin{vmatrix} \dot{x} = y(y+2) \\ \dot{y} = -x + 2y. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Начертайте векторното поле на тази система в правоъгълник, който съдържа намерените равновесни точки и с негова помощ изследвайте за устойчивост равновесните положения.
- 2. За решението на задачата на Коши за дадената система с начални условия $x(0) = x_0, y(0) = y_0$ направете анимация на движението на точката (x(t), y(t)) във фазовата равнина за $t \in [0, 10]$, като точката (x_0, y_0) се въвежда чрез кликване с мишката в избрания правоъгълник.

Име	
Ф.No, груг	ıa

Тема СИ20-П-53. Движението на струна се моделира със следната задача

$$\begin{aligned} u_{tt} &= \frac{\pi}{4} u_{xx}, & t > 0, \ 0 < x < \frac{7\pi}{2}, \\ u|_{t=0} &= \begin{cases} (1 - \cos x)^3, & x \in [\pi, 3\pi] \\ 0, & x \in [0, \pi) \cup (3\pi, \frac{7\pi}{2}], \end{cases} \\ u_{t}|_{t=0} &= 0, \quad 0 \le x \le \frac{5\pi}{2}, \\ u|_{x=0} &= 0, \quad u_{x}|_{x=\frac{7\pi}{2}} = 0, \quad t \ge 0. \end{aligned}$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=1}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 35-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t \in [0,16]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No	ърупа

Тема СИ20-П-54. Дадено е уравнението

$$5(y')^2 + 20y' - 2x - y = 0.$$

- 1. Намерете неговите обикновени и особени точки. Начертайте с черен цвят дискриминатната крива на уравнението в интервала [-6,6]. Тя интегрална крива ли е на даденото уравнение?
- 2. Начертайте графиките в интервала [-6,6] на решенията на уравнението, които минават през обикновена точка, въвеждана чрез кликване с мишката в правоъгълника $[-6,6] \times [-8,8]$. Ако кликвате в точка, през която не минава решение, то изведете съобщение за това.

Име	,
Ф.No	ъупа

Тема СИ20-П-55. Трептенето на струна се моделира със следната задача

$$\begin{aligned} u_{tt} &= \frac{5}{9} u_{xx}, & t > 0, \ 0 < x < 9, \\ u|_{t=0} &= \begin{cases} -(1 - \sin \frac{\pi x}{2})^3, & x \in [3, 7] \\ 0, & x \in [0, 3) \cup (7, 9], \end{cases} \\ u_{t}|_{t=0} &= -\sin \frac{\pi x}{3}, \ 0 \le x \le 9, \\ u|_{x=0} &= 0, \ u|_{x=9} = 0, \ t \ge 0. \end{aligned}$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t)=\sum_{k=1}^\infty X_k(x)T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 54-та частична сума на реда за u(x,t) за да направете на MatLab анимация на трептенето на струната за $t \in [0,16]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		,
Ф.No,	група	

Тема СИ20-П-56. Дадена е системата

$$\begin{vmatrix} \dot{x} = (y+1)(y-1) \\ \dot{y} = x - 2y. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Начертайте векторното поле на тази система в правоъгълник, който съдържа намерените равновесни точки и с негова помощ изследвайте за устойчивост равновесните положения.
- 2. За решението на задачата на Коши за дадената система с начални условия $x(0) = x_0, y(0) = y_0$ направете анимация на движението на точката (x(t), y(t)) във фазовата равнина за $t \in [0, 10]$, като точката (x_0, y_0) се въвежда чрез кликване с мишката в избрания правоъгълник.

Име		 	 ,
Ф.No,	група .		

Тема СИ20-П-57. Движението на струна се моделира със следната задача

$$\begin{aligned} u_{tt} &= a^2 u_{xx}, & t > 0, \ 0 < x < 5\pi, \\ u|_{t=0} &= \begin{cases} 7(x-5)^3 (x-6)^3, & x \in [5,6] \\ 0, & x \in [0,5) \cup (6,5\pi], \end{cases} \\ u_t|_{t=0} &= 0, & 0 \le x \le 5\pi, \\ u_x|_{x=0} &= 0, & u_x|_{x=5\pi} = 0, & t \ge 0. \end{aligned}$$

- 1. Намерете решението на задачата с помощта на формулата на Даламбер и метода на отраженията за $t \in [0, 17]$.
 - 2. Начертайте
- в един прозорец положението на стураната в моментите $t_1=0,\,t_2=1,\,t_3=3,$ при a=0,5.
- в друг прозорец положението на струната в същите моменти, когато a=1. Означете коя графика за кое t се отнася.

Име		٠.,
Ф.No,	рупа	

Тема СИ20-П-58. Движението на полуограничена струна се моделира със следната смесена задача

$$\begin{aligned} u_{tt} &= \frac{2}{\pi^2} u_{xx}, & t > 0, & x > 0, \\ u|_{t=0} &= \begin{cases} (1 + \cos\frac{x}{2})^3, & x \in [2\pi, 6\pi] \\ 0, & x \in [0, 2\pi) \cup (6\pi, +\infty), \end{cases} \\ u_t|_{t=0} &= \sin x, & x \ge 0, \\ u_x|_{x=0} &= 0, & t \ge 0. \end{aligned}$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{0 \le x \le 10\pi\}$ за $t \in [0,8]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No	ърупа

Тема СИ20-П-59. Дадено е уравнението

$$(y')^2 - (x - y)y' - xy = 0.$$

- 1. Намерете неговите обикновени и особени точки. Начертайте с черен цвят дискриминатната крива на уравнението в интервала [-14, 14]. Тя интегрална крива ли е на даденото уравнение?
- 2. Начертайте графиките в интервала [-14, 14] на решенията на уравнението, които минават през обикновена точка, въвеждана чрез кликване с мишката в правоъгълника $[-14, 14] \times [-10, 10]$. Ако кликвате в точка, през която не минава решение, то изведете съобщение за това.

Име	,
Ф.No	ъупа

Тема СИ20-П-60. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$u_{t} = \frac{2}{9}u_{xx}, \quad t > 0, \quad 0 < x < 8,$$

$$u|_{t=0} = \begin{cases} 20(1 + \sin\frac{\pi x}{2})^{3}, & x \in [3, 7] \\ 0, & x \in [0, 1) \cup (3, 8], \end{cases}$$

$$u|_{x=0} = 0, \quad u_{x}|_{x=8} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 38-та частична сума на реда за u(x,t) за да направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,8]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име			
Ф.No,	група	••••	

Тема СИ20-П-61. Дадена е системата

$$\begin{vmatrix} \dot{x} = -x + xy \\ \dot{y} = -2y + xy. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- 2. Начертайте фазов портрет на написанта линейна система в подточка (1). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име		,
Ф.No,	група	

Тема СИ20-П-62. Дадено е уравнението

$$y' = 2x(y+3)\sin(x^2 - 2).$$

- 1. Напишете уравнението на тангентата към интегралната крива на това уравнение, която минава през точката $(\xi, \eta) \in \mathbb{R}^2$. Опишете метод за построяване на поле от прави (slope field) на даденото уравнение.
- 2. Начертайте полето от прави (slope field) на това уравнение в в правоъгълник Π , съдържащ точката (0,-1). Решете символно задачата на Коши за даденото уравнение с начално условие $y(x_0) = y_0$, където точката (x_0, y_0) , се въвежда чрез кликване с мишката в Π . Начертайте в същия прозорец графиката на решението на получената задача на Коши.

Име	
Ф.No, груг	ıa

Тема СИ20-П-63. Дадена е задачата на Коши за уравнението на хармоничния осцилатор

$$\begin{vmatrix} y'' + 5y = a(\sin(\omega_0 t) + \cos(\omega_0 t)) \\ y(0) = -1, \ y'(0) = -1. \end{vmatrix}$$

- 1. Решете символно дадената задача при a=0. Начертайте графиката на намереното решение в интервала [0,30].
- 2. При a=4 изберете подходяща стойност на честота ω_0 на външната сила, така че да демонстрирате явлението биене/резонанс. Решете символно получената задача и начертайте графиката на решението и́ в същия интеравл, както в подточка (1). Разположете графиките от двете подточки една под друга.

Име	,
Ф.No	група

Тема СИ20-П-64. Дадена е системата

$$\begin{vmatrix} \dot{x} = x + \frac{1}{2}y - 1 \\ \dot{y} = \frac{9}{2}x + y - 2. \end{vmatrix}$$

- 1. Намерете равноесната точка на системата и я изследвайте относно устойчивост. Определете типа на намерената равновесна точка.
- 2. Начертайте фазов портрет на системата в околност на равновесната точка. Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име		 ,
Ф.No,	група	

Тема СИ20-П-65. Дадена е задачата на Коши

$$xy' - 4x = 6y, \ y(1) = -2.$$

- 1. Решете символно дадената задача и начертайте с черен цвят графиката на решението и в интервала [1, 3].
- 2. Начертайте с различни цветове графиките на приближенията $y_0(x), y_1(x)$ и $y_5(x)$ на решението получени с метода на Пикар.

Име		,
Ф.No,	група	

Тема СИ20-П-66. Дадено е уравнението

$$y' = y(tg(x) + y^3 \cos(x))$$

- 1. Напишете уравнението на тангентата към интегралната крива на това уравнение, която минава през точката $(\xi, \eta) \in \mathbb{R}^2$. Опишете метод за построяване на поле от прави (slope field) на даденото уравнение.
- 2. Начертайте полето от прави на това уравнение в правоъгълник Π , съдържащ точката (1.5,0). Решете символно в подходящ интервал задачата на Коши за даденото уравнение с начално условие $y(x_0) = y_0$, където точката (x_0, y_0) , се въвежда чрез кликване с мишката в Π . Начертайте в същия прозорец графиката на намереното приближение на решението на получената задача на Коши.

Име	,
Ф.No	ъупа

Тема СИ20-П-67. Движението на ограничена струна се моделира със следната смесена задача

$$\begin{aligned} u_{tt} &= \frac{1}{6}u_{xx}, & t > 0, \ 0 < x < 10, \\ u|_{t=0} &= \cos\frac{\pi x}{5}, \ u_t|_{t=0} = -\cos\frac{\pi x}{10}, \ 0 \le x \le 10, \\ u_x|_{x=0} &= 0, u_x|_{x=10} \ t \ge 0. \end{aligned}$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на струната за $t \in [0,10]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-68. Движението на неограничена струна се моделира със следната задача на Коши

$$|u_{tt} = 4u_{xx}, \quad t > 0, \quad x \in \mathbb{R},$$

$$|u|_{t=0} = \begin{cases} (1 - e^{x^2 + 12x + 20})^3, & x \in [-10, -2] \\ 0, & x \in \mathbb{R} \setminus [-10, -2], \end{cases}$$

$$|u_t|_{t=0} = 0, \quad x \in \mathbb{R}.$$

- 1. Напишете решението на дадената задача с помощта на формулата на Даламбер.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{-20 \le x \le 20\}$ за $t \in [0,6]$. Начертайте със зелен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1 = 0, t_2 = 0.5, t_3 = 1$ и означете коя графика за кое t се отнася.

Име	
Ф.No	ърупа

Тема СИ20-П-69. Трептенето на струна се моделира със следната задача

$$|u_{tt} = \frac{2}{9}u_{xx}, \quad t > 0, \quad 0 < x < 11,$$

$$|u|_{t=0} = \begin{cases} 5(1 - \ln(x^2 - 3x + 3))^3, & x \in [1, 2] \\ 0, & x \in [0, 1) \cup (2, 11], \end{cases}$$

$$|u_t|_{t=0} = \sin\frac{\pi x}{11}, \quad 0 \le x \le \frac{\pi}{2},$$

$$|u|_{x=0} = 0, \quad |u_x|_{x=11} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 55-та частична сума на реда за u(x,t) за да направете на MatLab анимация на движението на струната за $t \in [0,13]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-70. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$| u_t = \frac{1}{3}u_{xx}, \quad t > 0, \quad 0 < x < \pi,$$

$$| u|_{t=0} = \sin\frac{3x}{2} - \sin\frac{x}{2}, \quad 0 \le x \le \pi,$$

$$| u|_{x=0} = 0, \quad u_x|_{x=\pi} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Намерете явен вид на решението u(x,t) и направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,3]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	,
Ф.No	ъупа

Тема СИ20-П-71. Движението на струна се моделира със следната залача

$$\begin{aligned} |u_{tt} &= 2u_{xx}, & t > 0, \ 0 < x < 5\pi, \\ |u|_{t=0} &= 0, \ 0 \le x \le 5\pi \\ |u_t|_{t=0} &= \begin{cases} (\ln(x^2 - 5\pi + 1 + 6\pi^2) - 1)^3, & x \in [2\pi, 3\pi] \\ 0, & x \in [0, 2\pi) \cup (3\pi, 5\pi], \end{cases} \\ |u|_{x=0} &= 0, \quad u|_{x=5\pi} = 0, \quad t \ge 0. \end{aligned}$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=1}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 33-та частична сума на реда за u(x,t) за да направете на MatLab анимация на движението на струната за $t \in [0,14]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No	ъупа

Тема СИ20-П-72. Движението на полуограничена струна се моделира със следната смесена задача

$$| u_{tt} = \frac{1}{\pi} u_{xx}, \quad t > 0, \quad x > 0,$$

$$| u|_{t=0} = \sin \frac{x}{2}, \quad u_t|_{t=0} = 2 \sin \frac{3x}{2}, \quad x \ge 0,$$

$$| u|_{x=0} = 0, \quad t \ge 0.$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{0 \le x \le 2\pi\}$ за $t \in [0, 10]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		 	
Ф.No,	група		

Тема СИ20-П-73. Дадена е задачата на Коши

$$y' = x^2 - y$$
, $y(1) = 2$.

- 1. Решете числено дадената задача с ode45 в интервала [2,4] и начертайте с черен цвят графиката на намереното приближение на решението ?
- 2. Начертайте с различни цветове графиките на приближенията $y_0(x), y_1(x)$ и $y_5(x)$ на решението получени с метода на Пикар.

Име	,
Ф.No	ъупа

Тема СИ20-П-74. Движението на неограничена струна се моделира със следната задача на Коши

$$|u_{tt} = 4u_{xx}, \quad t > 0, \quad x \in \mathbb{R},$$

$$|u|_{t=0} = \begin{cases} 5(1 - \cos(x^2 + 8x + 15))^3, & x \in [-5, -3] \\ 0, & x \in \mathbb{R} \setminus [-5, -3], \end{cases}$$

$$|u_t|_{t=0} = 0, \quad x \in \mathbb{R}.$$

- 1. Напишете решението на дадената задача с помощта на формулата на Даламбер.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{-40 \le x \le 20\}$ за $t \in [0,8]$. Начертайте със зелен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1 = 0, t_2 = 0.6, t_3 = 1.8$ и означете коя графика за кое t се отнася.

Име	
Ф.No	ърупа

Тема СИ20-П-75. Дадена е задачата на Коши

$$\begin{vmatrix} y'' - 2y' + 10y = 0 \\ y(0) = -1, \ y'(0) = -2. \end{vmatrix}$$

- 1. Сведете дадената задача до задача на Коши за линейна нормална система от първи ред за функции $y_1(t)$ и $y_2(t)$.
- 2. Решете символно получената задача на Коши и начертайте с различни цветове графиките на функциите $y_1(t)$ и $y_2(t)$ в интервала [0,8]. Разположете двете графики в един прозорец.
- 3. Коя от начертаните криви е графика на решението y(t) на дадената задача? Намерете най-голямата стойност на функцията y(t) в указания интервал и маркирайте съответстващата и точка върху графиката на тази функция.

Име	
Ф.No, груг	ıa

Тема СИ20-П-76. Разпределението на топлината в тънък хомогенен прът се моделира със следната смесена задача

$$u_{t} = \frac{\pi}{3}u_{xx}, \quad t > 0, \quad 0 < x < 8,$$

$$u|_{t=0} = \begin{cases} (1 - e^{x^{2} - 9x + 18})^{3}, & x \in [3, 6] \\ 0, & x \in [0, 3) \cup (6, 8], \end{cases}$$

$$u|_{x=0} = 0, \quad u_{x}|_{x=8} = 0, \quad t \ge 0.$$

- 1. Разделете променливите в задачата, като търсите решение от вида $u(x,t) = \sum_{k=0}^{\infty} X_k(x) T_k(t)$. За функциите $X_k(x)$ получете задача на Щурм-Лиувил и напишете нейните собствени стойности и собствени функции. Напишете кои са функциите $T_k(t)$ и кои са коефициентите в получения ред за u(x,t).
- 2. Използвайте 35-та частична сума на реда за u(x,t) за да направете на MatLab анимация на изменението на температурата в пръта за $t \in [0,13]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име		,
Ф.No,	група	

Тема СИ20-П-77. Дадена е системата

$$\begin{vmatrix} \dot{x} = y - x^2 \\ \dot{y} = -x + y^2. \end{vmatrix}$$

- 1. Намерете нейните равновесни точки. Напишете линейното приближение на системата в околност на една от намерените равновесни точки.
- 2. Начертайте фазов портрет на написанта линейна система в подточка (1). Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име		,
Ф.No,	група	

Тема СИ20-П-78. Дадена е системата

$$\begin{vmatrix} \dot{x} = -2x - y + 1 \\ \dot{y} = 5x - 2y - 2. \end{vmatrix}$$

- 1. Намерете равноесната точка на системата и я изследвайте относно устойчивост. Определете типа на намерената равновесна точка.
- 2. Начертайте фазов портрет на системата в околност на равновесната точка. Към всяка една от изобразените фазови криви (без равновесната точка) начертайте по един тангенциален вектор. Маркирайте със символа звезда положението на равновесие.

Име	
Ф.No, груг	ıa

Тема СИ20-П-79. Движението на полуограничена струна се моделира със следната смесена задача

$$| u_{tt} = \frac{3}{4}u_{xx}, \quad t > 0, \quad x > 0,$$

$$| u|_{t=0} = \begin{cases} (1 - \sin(\pi x))^3, & x \in \left[\frac{1}{2}, \frac{9}{2}\right] \\ 0, & x \in \left[0, \frac{1}{2}\right) \cup \left(\frac{9}{2}, +\infty\right), \end{cases}$$

$$| u_t|_{t=0} = \cos\frac{3\pi x}{16}, \quad x \ge 0,$$

$$| u_x|_{x=0} = 0, \quad t \ge 0.$$

- 1. Опишете как се получава решението на дадената задача с помощта на формулата на Даламбер и метода на отраженията.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C = \{0 \le x \le 8\}$ за $t \in [0,8]$. Начертайте в един прозорец една под друга графиките от направената анимация в началния, крайния и един междинен момент, като означите коя графика за кое t се отнася.

Име	
Ф.No, груг	ıa

Тема СИ20-П-80. Движението на неограничена струна се моделира със следната задача на Коши

$$u_{tt} = u_{xx}, \quad t > 0, \quad x \in \mathbb{R},$$

$$u|_{t=0} = \begin{cases} \arctan^3(x^2 + 5x + 6), & x \in [-3, -2] \\ 0, & x \in \mathbb{R} \setminus [-3, -2], \end{cases}$$

$$u_t|_{t=0} = 0, \quad x \in \mathbb{R}.$$

- 1. Напишете решението на дадената задача с помощта на формулата на Даламбер.
- 2. Направете на MatLab анимация на трептенето на частта от струната $C=\{-50\leq x\leq 10\}$ за $t\in[0,5]$. Начертайте със зелен цвят в един прозорец една под друга графиките от направената анимация в моментите $t_1=0,\,t_2=0.8,\,t_3=1.8$ и означете коя графика за кое t се отнася.