Math 104, HW12

Tianshuang (Ethan) Qiu December 6, 2021

1 Q1

1.1 a

First we know that $\sqrt{x^2} = |x|$. Since we know that $\frac{1}{n} \to 0$ and $\frac{1}{n^2} \to 0$, we can show uniform convergence by the following.

Let $\epsilon > 0$, pick N such that for all n > N, $\left| \frac{1}{n} \right| < \epsilon^2$. Now since |x| < 1 and the domain of the square root being positive,

$$f_n(x) = \sqrt{x^2 + \frac{1}{n}} \le \sqrt{x^2 + \frac{2}{\sqrt{n}}|x| + \frac{1}{n}} \le \sqrt{(x + \frac{1}{\sqrt{n}})^2}$$

By our first statement the above expression is equal to $|(x + \frac{1}{\sqrt{n}})|$. By our definition of N,

$$||(x + \frac{1}{\sqrt{n}})| - |x|| \le |x + \frac{1}{\sqrt{n}} - x| = |\frac{1}{\sqrt{n}}| < \epsilon$$

Thus we have $f_n \to |x|$ uniformly.

1.2 b

 $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$, and by the power rule we know that

$$f_n'(x) = \frac{x}{\sqrt{x^2 + \frac{1}{n}}}$$

1.3 c

Define $g:(-1,1)\to \mathbb{R},\ g(x)=-1\ \text{for}\ x\in(-1,0),\ g(x)=1\ \text{for}\ x\in(0,1),\ g(0)=0$

For any x < 0, let $a_n = \frac{1}{f'_n(x)} = \frac{\sqrt{x^2 + \frac{1}{n}}}{x}$. By part a we know that $\sqrt{x^2 + \frac{1}{n}} \to |x|$ uniformly. Let $\epsilon > 0$ we pick N such that $|\sqrt{x^2 + \frac{1}{n}} - |x|| < \epsilon x - x$, therefore

$$|a_n - (-1)| = \frac{\sqrt{x^2 + \frac{1}{n}} + x}{x} = \frac{|\sqrt{x^2 + \frac{1}{n}} - |x||}{x} < \frac{\epsilon x}{x} = \epsilon$$

If x > 0, the same is true because the denominator is now positive and the absolute value sign should be flipped. Finally, if x = 0, $f'_n(x) = g(x) = 0$. Thus $f'_n(x) \to g(x)$ pointwise.

Since $f'_n(x)$ is a polynomial divided by a non-zero polynomial, it is continuous for all values of n and for all values of $x \in (-1,1)$. However g(x) is not continuous at 0. By our theorem about uniform convergence of continuous functions, we know that $f'_n(x) \not\to g(x)$ uniformly.

$\mathbf{Q2}$ 2

For any $x \in (-1,1)$, shrink the domain of our power series to [(x+1)/2, (1-1)/2]x)/2]. Now since both of these end points are within our radius of convergence, $\sum_{n=0}^{\infty} x^n \to \frac{1}{1-x}$ uniformly. Then, we can take the derivative of both sides:

$$\left(\sum_{n=0}^{\infty} x^n \to \frac{1}{1-x}\right) = \sum_{n=1}^{\infty} nx^n$$

$$(\frac{1}{1-x})' = \frac{x}{(1-x)^2}$$

Thus $\sum_{n=1}^{\infty} nx^n \to \frac{x}{(1-x)^2}$

3 Q3

Let $x \in \mathbb{R}$, since $e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$,

$$(e^x)' = \sum_{j=1}^{\infty} \frac{jx^{j-1}}{j!}$$

However, since $\frac{jx^{j-1}}{j!} = \frac{x^{j-1}}{(j-1)!}$, since j begins at 1 and k at 0, each term can be matched bijectively to the first sum.

Thus they are the same sum. \blacksquare

4 Q4

Since $f(x) = e^{-x^2}$, by the last problem we know that it is equal to the sum of $\sum_{k=0}^{\infty} \frac{(1/-x^2)^k}{k!} = \sum_{k=0}^{\infty} (-1) \frac{1}{(-x)^{2k} k!}$