

工科数学分析

刘青青

§2.1 函数的极限

- ▶ 极限概念的引入
- ▶ 自变量趋于有限值时函数的 极限
- ▶ 单侧极限
- ▶ 自变量绝对值无限增大时函数的极限
- ▶ 函数值趋于无穷

◆ロト ◆部 ▶ ◆ 差 ▶ ◆ 差 ▶ り へ ⊙

极限概念的引入

刘徽《九章算术注》之割圆术:

"割之弥细, 所失之弥少. 割之 又割, 以至不可割, 则与圆周合体, 而无所失矣."

极限概念的引入

刘徽《九章算术注》之割圆术:

"割之弥细, 所失之弥少. 割之 又割, 以至不可割, 则与圆周合体, 而无所失矣."

从圆的内接正 6 边形出发, 每次将边加倍, 用正 $6 \times 2^{n-1}$ 边形的面积(或周长)近似圆的面积(或周长).

极限概念的引入

边数	面积
$6 \times 2^0 = 6$	$\frac{3\sqrt{3}}{2}$
$6 \times 2^1 = 12$	$\bar{3}$
$6 \times 2^2 = 24$	3.1
$6 \times 2^3 = 48$	3.13
$6 \times 2^4 = 96$	3.14
$6 \times 2^5 = 192$	3.141
:	:
$6 \times 2^9 = 3072$	3.1416
$0 \wedge 2 = 3012$	0.1410

例

求曲线 $y = x^2$ 在点 P(1,1) 处的切线的斜率.

▶ 在曲线上靠近点 P(1,1) 处取一点 $Q(x,x^2)$, 用割线的斜率近似切线的斜率.

X	PQ 斜率
2	3
1.5	2.5
1.1	2.1
1.01	2.01
1.001	2.001

х	PQ 斜率
0	1
0.5	1.5
0.9	1.9
0.99	1.99
0.999	1.999

▶ 随着点 Q 向 P 靠近, 割线 PQ 的斜率向 2 (固定的数) 靠近.

直观的极限概念

设 f(x) 是一个函数,若自变量 x 靠近一个固定的点 a 时,函数值 f(x) 无限靠近一个固定的数 A,则 A 是函数 f(x) 在 x 趋于 a 时的极限.

直观的极限概念

设 f(x) 是一个函数,若自变量 x 靠近一个固定的点 a 时,函数值 f(x) 无限靠近一个固定的数 A,则 A 是函数 f(x) 在 x 趋于 a 时的极限.

问题:

直观的极限概念

设 f(x) 是一个函数,若自变量 x 靠近一个固定的点 a 时,函数值 f(x) 无限靠近一个固定的数 A,则 A 是函数 f(x) 在 x 趋于 a 时的极限.

问题:

▶ 怎样才是无限靠近?

直观的极限概念

设 f(x) 是一个函数,若自变量 x 靠近一个固定的点 a 时,函数值 f(x) 无限靠近一个固定的数 A,则 A 是函数 f(x) 在 x 趋于 a 时的极限.

问题:

- ▶ 怎样才是无限靠近?
- ▶ 能否用逻辑的语言描述无限靠近?

▶ 无限靠近:

想靠多近就可以靠多近.

► 无限靠近: 想靠多近就可以靠多近.

▶ 直观的极限概念:

▶ 无限靠近:

想靠多近就可以靠多近.

- ▶ 直观的极限概念:
 - ▶ 在x靠近a的过程中,f(x)无限靠近A.

▶ 无限靠近:

想靠多近就可以靠多近.

- ▶ 直观的极限概念:
 - ▶ 在x 靠近a 的过程中,f(x) 无限靠近A.
 - ► 无论希望 f(x) 和 A 靠近到什么程度, 都可以在 x 靠近 a 的过程中实现.

例: x 趋于 0 时, $f(x) = x^2$ 的极限.

例: x 趋于 0 时, $f(x) = x^2$ 的极限.

▶ 直观感受:

x 趋于 0 时, $f(x) = x^2$ 无限靠近 A = 0.

问题:

当x趋于0时, $f(x) = x^2$ 是不是无限靠近A = 0呢?

问题:

当 x 趋于 0 时, $f(x) = x^2$ 是不是无限靠近 A = 0 呢?

▶ 能否让它们的距离 $|f(x) - A| = |x^2 - 0| < 1$? Easy: 只需 |x| < 1,即 x 和 0 的距离小于 1.

问题:

当 x 趋于 0 时, $f(x) = x^2$ 是不是无限靠近 A = 0 呢?

- ▶ 能否让它们的距离 $|f(x) A| = |x^2 0| < 1$? Easy: 只需 |x| < 1, 即 x 和 0 的距离小于 1.
- ▶ 能否让它们的距离 $|f(x) A| = |x^2 0| < 0.01$? Easy: 只需 |x| < 0.1, 即 x 和 0 的距离小于 0.1.

问题:

当 x 趋于 0 时, $f(x) = x^2$ 是不是无限靠近 A = 0 呢?

- ▶ 能否让它们的距离 $|f(x) A| = |x^2 0| < 1$? Easy: 只需 |x| < 1, 即 x 和 0 的距离小于 1.
- ▶ 能否让它们的距离 $|f(x) A| = |x^2 0| < 0.01$? Easy: 只需 |x| < 0.1, 即 x 和 0 的距离小于 0.1.

问题:

当 x 趋于 0 时, $f(x) = x^2$ 是不是无限靠近 A = 0 呢?

- ▶ 能否让它们的距离 $|f(x) A| = |x^2 0| < 1$? Easy: 只需 |x| < 1, 即 x 和 0 的距离小于 1.
- ▶ 能否让它们的距离 $|f(x) A| = |x^2 0| < 0.01$? Easy: 只需 |x| < 0.1,即 x 和 0 的距离小于 0.1.

Crazy Idea:

用 ε 表示一个任意的正数, 能否让它们的距离 $|f(x)-A|=|x^2-0|<\varepsilon$? 只需要 $|x|<\sqrt{\varepsilon}$.

极限的逻辑定义

▶ 极限的严格定义由 Weierstrass 在 1841-1856 年间给出。

极限的逻辑定义

▶ 极限的严格定义由 Weierstrass 在 1841-1856 年间给出。

极限的定义 $(\varepsilon - \delta)$

设函数f(x)在a的一个空心邻域内有定义。若

- $\blacktriangleright \forall \varepsilon > 0,$
- ∃δ > 0, 使得
- ▶ 当 $0 < |x-a| < \delta$ 时, 恒有

$$|f(x) - A| < \varepsilon$$
.

则称A 是函数f(x) 在x 趋于a 时的极限,表示为

$$\lim_{x \to a} f(x) = A.$$

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \forall \varepsilon > 0,$
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon.$$

ε 的理解:

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \forall \varepsilon > 0$,
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon.$$

ε 的理解:

ε 控制
 f(x) 与 A 的距离
 (靠近程度);

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \forall \varepsilon > 0$,
- 3δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

ε 的理解:

- ε 控制
 f(x) 与 A 的距离
 (靠近程度);
- ► ε 的任意性: f(x) 与 A 无限靠近.

δ 的理解:

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \ \forall \varepsilon > 0,$
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon.$$

$$\lim_{x \to a} f(x) = A.$$

- ightharpoonup $\forall \varepsilon > 0$,
- ► ∃δ > 0, 使得
- ▶ 当 $0 < |x-a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

δ 的理解:

 $ightharpoonup \delta$ 控制 为了 f(x) 与 A 的距离小于 ε , 自变量 x 允许的变化范围;

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \ \forall \varepsilon > 0$,
- ► ∃δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon.$$

δ 的理解:

- δ 控制
 为了 f(x) 与 A 的距离小于 ε,
 自变量 x 允许的变化范围;
- ▶ δ 的存在性: $f(x) 与 A 靠近到 \varepsilon 的程度能实现,$ 只需自变量满足条件 $0 < |x a| < \delta$.

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \forall \varepsilon > 0$,
- ▶ ∃δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

δ 的理解:

- δ 控制
 为了 f(x) 与 A 的距离小于 ε,
 自变量 x 允许的变化范围;
- ▶ δ 的存在性: f(x) 与 A 靠近到 ε 的程度能实现, 只需自变量满足条件 $0 < |x a| < \delta$.
- ▶ δ与ε有关。

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \ \forall \varepsilon > 0,$
- ∃δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon.$$

▶
$$0 < |x - a|$$
 表示 $x \neq a$;

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \ \forall \varepsilon > 0,$
- ∃δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon.$$

- ▶ 0 < |x a| 表示 $x \neq a$;
- ► f(x) 在 $x \to a$ 时的极限 仅依赖于 f(x) 在 a 附近的性态;

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \ \forall \varepsilon > 0$,
- ∃δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

- ▶ 0 < |x a| 表示 $x \neq a$;
- ► f(x) 在 $x \to a$ 时的极限 仅依赖于 f(x) 在 a 附近的性态;
- f(x) 在 x → a 时 是否有极限、
 极限是多少都与
 f 在 a 点的取值无关;

$$\lim_{x \to a} f(x) = A.$$

- $\blacktriangleright \ \forall \varepsilon > 0$,
- ∃δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

- ▶ 0 < |x a| 表示 $x \neq a$;
- ► f(x) 在 $x \to a$ 时的极限 仅依赖于 f(x) 在 a 附近的性态;
- ► f(x) 在 $x \to a$ 时 是否有极限、 极限是多少都与 f 在 a 点的取值无关;
- ► f(x) 在 $x \to a$ 时有极限 不要求 f(x) 在 a 有定义.

$$\lim_{x \to a} f(x) = A.$$

- ightharpoonup $\forall \varepsilon > 0$,
- 当 0 < |x a| < δ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

$$\lim_{x \to a} f(x) = A.$$

- ightharpoonup $\forall \varepsilon > 0$,
- ▶ $\exists \delta > 0$, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

► 无论所希望的 f(x) 与 A 靠近的 程度 ε 是多少;

$$\lim_{x \to a} f(x) = A.$$

- ightharpoonup $\forall \varepsilon > 0$,
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

- ► 无论所希望的 f(x) 与 A 靠近的程度 ε 是多少;
- ▶ 都能找到 δ ;

极限逻辑定义的理解

$$\lim_{x \to a} f(x) = A.$$

- ightharpoonup $\forall \varepsilon > 0$,
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon.$$

- ► 无论所希望的 f(x) 与 A 靠近的程度 ε 是多少;
- ▶ 都能找到 δ;
- ► 只要把自变量x 控制在 $0 < |x a| < \delta$ 的范围,

极限逻辑定义的理解

$$\lim_{x \to a} f(x) = A.$$

- ightharpoonup $\forall \varepsilon > 0$,
- 3δ > 0, 使得
- ▶ 当 $0 < |x a| < \delta$ 时,
- ▶ 恒有

$$|f(x) - A| < \varepsilon$$
.

- ► 无论所希望的 f(x) 与 A 靠近的 程度 ε 是多少;
- ▶ 都能找到 δ;
- ► 只要把自变量 x 控制在 $0 < |x-a| < \delta$ 的范围,
- ▶ f(x) 与 A 靠近到比 ε 更近的程度就可以实现。

证明函数的极限

例

利用极限的定义证明: $\lim_{x\to 0} x^2 = 0$.

证明:

- $\blacktriangleright \ \forall \varepsilon > 0,$
- $\blacktriangleright \ \exists \delta = \sqrt{\varepsilon},$
- ▶ 当 $0 < |x 0| < \delta$ 时,有

$$|x^2 - 0| < \delta^2 = \varepsilon.$$

▶ 因此, 由极限的定义,

$$\lim_{r \to 0} x^2 = 0.$$

分析:

▶ $\forall \varepsilon > 0$, 目标是

$$|x^2 - 0| < \varepsilon.$$

▶ 这一不等式在

$$|x| < \sqrt{\varepsilon}$$

时成立.

证明函数的极限

利用定义证明极限的一般方法:

利用定义证明极限的一般方法:

▶ 从不等式 $|f(x) - A| < \varepsilon$ 出发;

证明函数的极限

利用定义证明极限的一般方法:

- ▶ 从不等式 $|f(x) A| < \varepsilon$ 出发;
- ▶ 找合适的 δ 使得 点 a 空心 δ 邻域 $\{x: 0 < |x-a| < \delta\}$ 包含于 不等式的解集中.

证明函数的极限

利用定义证明极限的一般方法:

- ▶ 从不等式 $|f(x) A| < \varepsilon$ 出发;
- ▶ 找合适的 δ 使得 点 a 空心 δ 邻域 $\{x:0<|x-a|<\delta\}$ 包含于 不等式的解集中.
- ▶ 本质上是"解"不等式的问题.

证明: $\lim_{x\to a} \sin x = \sin a$.

证明: $\lim_{x\to a} \sin x = \sin a$.

分析:

∀ε > 0, 考虑不等式

 $|\sin x - \sin a| < \varepsilon.$

证明: $\lim_{x\to a} \sin x = \sin a$.

分析:

∀ε > 0, 考虑不等式

$$|\sin x - \sin a| < \varepsilon$$
.

▶ 直接解不等式困难,可先将不等式左侧适当放大

$$|\sin x - \sin a| = 2 \left| \cos \frac{x+a}{2} \sin \frac{x-a}{2} \right| \leqslant 2 \left| \sin \frac{x-a}{2} \right| \leqslant |x-a|.$$

证明: $\lim_{x\to a} \sin x = \sin a$.

分析:

∀ε > 0, 考虑不等式

$$|\sin x - \sin a| < \varepsilon$$
.

▶ 直接解不等式困难,可先将不等式左侧适当放大

$$|\sin x - \sin a| = 2 \left| \cos \frac{x+a}{2} \sin \frac{x-a}{2} \right| \leqslant 2 \left| \sin \frac{x-a}{2} \right| \leqslant |x-a|.$$

▶ 满足不等式 $|x-a| < \varepsilon$ 的 x 一定满足 $|\sin x - \sin a| < \varepsilon$.

证明: $\lim_{x\to a} \sin x = \sin a$.

证明:

- $\blacktriangleright \forall \varepsilon > 0$,
- ▶ 存在 $\delta = \varepsilon$, 当 $0 < |x a| < \varepsilon$ 时,

$$\left|\sin x - \sin a\right| = 2\left|\cos \frac{x+a}{2}\sin \frac{x-a}{2}\right| \leqslant 2\left|\sin \frac{x-a}{2}\right| \leqslant |x-a| < \varepsilon.$$

▶ 因此, 由极限的定义知: $\lim_{x \to a} \sin x = \sin a$.

证明函数极限的常用策略:

证明函数极限的常用策略:

▶ 利用定义证明函数极限的<mark>核心是:</mark> 通过求解不等式 $|f(x) - A| < \varepsilon$ 去寻找 δ .

证明函数的极限: 常用策略

证明函数极限的常用策略:

- ▶ 利用定义证明函数极限的核心是: 通过求解不等式 $|f(x) - A| < \varepsilon$ 去寻找 δ .
- 直接求解不等式 |f(x) A| < ε 通常非常困难, 我们的目标不是完全地求解不等式, 而仅仅是找到不等式解集中点 a 的一个空心邻域.
- ▶ 通常可采用如下策略:把 |f(x) A| 适当放大

$$|f(x) - A| \leqslant \varphi(|x - a|)$$

使得 $\varphi(|x-a|) < \varepsilon$ 容易求解.

证明函数的极限: 常用策略

证明函数极限的常用策略:

- ▶ 利用定义证明函数极限的核心是: 通过求解不等式 $|f(x) - A| < \varepsilon$ 去寻找 δ .
- 直接求解不等式 |f(x) A| < ε 通常非常困难, 我们的目标不是完全地求解不等式, 而仅仅是找到不等式解集中点 a 的一个空心邻域.
- ▶ 通常可采用如下策略:
 把 |f(x) A| 适当放大

$$|f(x) - A| \le \varphi(|x - a|)$$

使得 $\varphi(|x-a|) < \varepsilon$ 容易求解.

▶ 理论依据: 不等式 $\varphi(|x-a|) < \varepsilon$ 的解一定是 $|f(x) - A| < \varepsilon$ 的解.

利用极限的定义证明

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4} = \frac{1}{4}.$$

利用定义证明极限

例

利用极限的定义证明

$$\lim_{x \to 2} \frac{x - 2}{x^2 - 4} = \frac{1}{4}.$$

Tips:

在通过不等式 $|f(x)-A|<\varepsilon$ 寻找 δ 时,可以先限制 x 在 $|x-a|<\delta_0$ 的范围,

进而在此附加条件下去寻找证明极限所需的 δ .

利用定义证明极限

例

设a > 0,证明

$$\lim_{x \to a} \sqrt{x} = \sqrt{a}.$$

利用定义证明极限

例

设a > 0,证明

$$\lim_{x \to a} \sqrt{x} = \sqrt{a}.$$

Tips: 分子或分母有理化是数学分析中常用的技巧.

关于极限定义中的 ε

例

设函数f(x) 在a 的某个空心邻域有定义.

下列说法哪些与 $\lim_{x\to a} f(x) = A$ 等价?

▶
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使得当 $0 < |x - a| < \delta$ 时, $|f(x) - A| < 2\varepsilon$.

▶
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使得当 $0 < |x - a| < \delta$ 时, $|f(x) - A| < \frac{1}{\varepsilon}$.

▶
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使得当 $0 < |x - a| < \delta$ 时, $|f(x) - A| < \varepsilon^2$.

▶
$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, $\notin \exists \delta = 0 < |x - a| < \delta$ $\forall \delta \in S$, $|f(x) - A| < \varepsilon + 1$.

关于极限定义中的 ε

例

设函数f(x)在a的某个空心邻域有定义.

下列说法哪些与 $\lim_{x\to a} f(x) = A$ 等价?

- ▶ $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $0 < |x a| < \delta$ 时, $|f(x) A| < 2\varepsilon$.
- ▶ $\forall \varepsilon > 0, \exists \delta > 0$, 使得当 $0 < |x a| < \delta$ 时, $|f(x) A| < \frac{1}{\varepsilon}$.
- ▶ $\forall \varepsilon > 0, \exists \delta > 0$, 使得当 $0 < |x a| < \delta$ 时, $|f(x) A| < \varepsilon^2$.
- ▶ $\forall \varepsilon > 0$, $\exists \delta > 0$, 使得当 $0 < |x a| < \delta$ 时, $|f(x) A| < \varepsilon + 1$.

在极限的定义中, ε 是任意正实数,我们强调的是 ε 的<mark>任意小</mark>. 因此, 2ε , $\sqrt{\varepsilon}$, ε^2 , $\frac{\varepsilon}{3}$ 等都可表示一个任意小的正数,但 $\varepsilon+1$ 不能.

极限的几何意义

$\lim_{x \to a} f(x) = A$ 有如下几何涵义:

对于 y = A 的任意带状邻域 $\{(x,y)|A - \varepsilon < y < A + \varepsilon\}.$

必有x的空心邻域

$$\{x|0<|x-a|<\delta\}$$

使得 f(x) 在此空心邻域内的 图像完全落入带状区域。

$\overline{\lim_{x\to a}} f(x) \neq A$ 的定义

若 ∃
$$\varepsilon_0$$
 > 0, ∀ δ > 0, ∃ x_δ 满足 0 < $|x_\delta - a|$ < δ 但是

$$|f(x_{\delta}) - A| \geqslant \varepsilon_0,$$

则称A 不是函数f(x) 在x 趋于a 时的极限.

$\overline{\lim_{x\to a}} f(x) \neq A$ 的定义

若
$$\exists \varepsilon_0 > 0$$
, $\forall \delta > 0$, $\exists x_\delta$ 满足 $0 < |x_\delta - a| < \delta$ 但是

$$|f(x_{\delta}) - A| \geqslant \varepsilon_0,$$

则称A 不是函数f(x) 在x 趋于a 时的极限.

例

证明:
$$\lim_{x\to 2} 3x \neq 5$$
.

极限的直观理解和 $\varepsilon - \delta$ 定义

ight
ight
ight
ho 利用 $\varepsilon-\delta$ 定义证明函数的极限必须事先知道极限值 A.

极限的直观理解和 $\varepsilon-\delta$ 定义

- ightharpoons 利用 $\varepsilon \delta$ 定义证明函数的极限必须事先知道极限值 A.
- ightharpoonup 极限值 A 通常是通过直观猜测得到, 再通过 $\varepsilon-\delta$ 定义证明.

极限的直观理解和 $\varepsilon - \delta$ 定义

- ▶ 利用 ε − δ 定义证明函数的极限必须事先知道极限值 A.
- lacktriangle 极限值 A 通常是通过直观猜测得到, 再通过 $\varepsilon-\delta$ 定义证明.
- ▶ $\varepsilon \delta$ 定义无法用于直接计算极限.

单侧极限

▶ 左极限:

设 f(x) 在 a 的某个左邻域内有定义.

$$\forall \varepsilon > 0$$
, $\exists \delta > 0$, 使得 $-\delta < x - a < 0$ 时, 有 $|f(x) - A| < \varepsilon$,

则称f(x) 在x 趋于a 时的左极限为A, 记为

$$\lim_{x \to a^{-}} f(x) = A.$$

单侧极限

▶ 左极限:

设f(x)在a的某个左邻域内有定义.

$$\forall \varepsilon > 0, \, \exists \delta > 0, \, \text{\&}\ \{a - \delta < x - a < 0 \, \text{th}, \, \text{$\widehat{\eta}$ } |f(x) - A| < \varepsilon,$$

则称f(x) 在x 趋于a 时的左极限为A, 记为

$$\lim_{x \to a^{-}} f(x) = A.$$

▶ 右极限:

设f(x) 在a 的某个右邻域内有定义.

$$\forall \varepsilon > 0, \exists \delta > 0,$$
使得 $0 < x - a < \delta$ 时, 有 $|f(x) - A| < \varepsilon$,

则称f(x) 在x 趋于a 时的右极限为A, 记为

$$\lim_{x \to a^+} f(x) = A.$$

证明:

- $\blacktriangleright \lim_{x \to 0^+} \frac{x}{|x|} = 1.$

定理

$$\lim_{x \to a} f(x) = A$$
 当且仅当 $\lim_{x \to a^-} f(x)$ 和 $\lim_{x \to a^+} f(x)$ 都存在且

$$\lim_{x \to a^{-}} f(x) = A = \lim_{x \to a^{+}} f(x).$$

定理

$$\lim_{x \to a} f(x) = A$$
 当且仅当 $\lim_{x \to a^{-}} f(x)$ 和 $\lim_{x \to a^{+}} f(x)$ 都存在且

$$\lim_{x \to a^{-}} f(x) = A = \lim_{x \to a^{+}} f(x).$$

此性质常用于判断分段函数当 x 趋近于分段点时的极限.

设

$$f(x) = \begin{cases} a^x, & x < 0, \\ bx + c, & 0 \le x \le 1, \\ 3 - x, & x > 1, \end{cases}$$

试确定 b, c 的值, 使得 $\lim_{x\to 0} f(x)$ 和 $\lim_{x\to 1} f(x)$ 都存在, 并求极限值.

自变量趋向于无穷的过程

▶ $x \to +\infty$: x 无限增大

自变量趋向于无穷的过程

▶ $x \to +\infty$: x 无限增大

▶ $x \to -\infty$: -x 无限增大

自变量趋向于无穷的过程

- ▶ $x \to +\infty$: x 无限增大
- ▶ $x \to -\infty$: -x 无限增大
- ▶ $x \to \infty$: |x| 无限增大

自变量趋向于无穷的过程

- ▶ $x \to +\infty$: x 无限增大
- ▶ $x \to -\infty$: -x 无限增大
- ▶ $x \to \infty$: |x| 无限增大

$$\lim_{x\to -\infty} \arctan x = -\frac{\pi}{2}, \qquad \lim_{x\to +\infty} \arctan x = \frac{\pi}{2}.$$

定义 $(\varepsilon - X)$

设函数 f(x) 在 |x| 充分大时有定义, A 为一个常数.

若 $\forall \varepsilon > 0$, $\exists X > 0$, 使得当 |x| > X 时, 恒有 $|f(x) - A| < \varepsilon$,

则称 A 为 f(x) 当 $x \to \infty$ 时的极限, 记为

$$\lim_{x \to \infty} f(x) = A.$$

$\lim_{x\to\infty} f(x) = A \ 有如下几何涵义:$

对于y = A的任意带状邻域

$$\{(x,y)|A-\varepsilon < y < A+\varepsilon\}$$
.

函数 f(x) 在 |x| 充分大时(左右 两端)的图像完全落入带状区域。

▶ 若 $\forall \varepsilon > 0$, $\exists X > 0$, 使得当 x > X 时, 有 $|f(x) - A| < \varepsilon$, 则称 A 为 f(x) 当 $x \to +\infty$ 时的极限, 记为 $\lim_{x \to +\infty} f(x) = A$.

$x \to \pm \infty$ 时的极限

- ▶ 若 $\forall \varepsilon > 0$, $\exists X > 0$, 使得当 x > X 时, 有 $|f(x) A| < \varepsilon$, 则称 A 为 f(x) 当 $x \to +\infty$ 时的极限, 记为 $\lim_{x \to +\infty} f(x) = A$.
- ▶ 若 $\forall \varepsilon > 0$, $\exists X > 0$, 使得当 x < -X 时, 有 $|f(x) A| < \varepsilon$, 则称 A 为 f(x) 当 $x \to -\infty$ 时的极限, 记为 $\lim_{x \to -\infty} f(x) = A$.

$x \to \pm \infty$ 时的极限

- ▶ 若 $\forall \varepsilon > 0$, $\exists X > 0$, 使得当 x > X 时, 有 $|f(x) A| < \varepsilon$, 则称 A 为 f(x) 当 $x \to +\infty$ 时的极限, 记为 $\lim_{x \to +\infty} f(x) = A$.
- ▶ 若 $\forall \varepsilon > 0$, $\exists X > 0$, 使得当 x < -X 时, 有 $|f(x) A| < \varepsilon$, 则称 A 为 f(x) 当 $x \to -\infty$ 时的极限, 记为 $\lim_{x \to -\infty} f(x) = A$.
- ▶ $\lim_{x\to\infty} f(x) = A$ 当且仅当

$$\lim_{x \to +\infty} f(x) = A = \lim_{x \to -\infty} f(x).$$

例

- ightharpoonup 证明 $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)=1$.
- ightharpoonup 证明 $\lim_{x \to \infty} \sin x \neq 0$.

函数值趋于无穷的情形

某些函数 f(x) 当 $x \to a$ 或 $x \to \infty$ 时无限增大。

当 $x \to 0$ 时, $\frac{1}{|x|}$ 无限增大。

当 $x \to \infty$ 时, x^2 无限增大。

定义

设f(x)在a的某个邻域有定义.

若
$$\forall G > 0$$
, $∃δ > 0$, 使得当 $0 < |x - a| < δ$ 时, 恒有

$$|f(x)| > G,$$

则称 f(x) 当 $x \to a$ 时无穷大, 记为

$$\lim_{x \to a} f(x) = \infty.$$

▶ 类似地, 可以定义

▶ 正无穷大: $\lim_{x\to a} f(x) = +\infty$

▶ 负无穷大: $\lim_{x\to a} f(x) = -\infty$

▶ 类似地,可以定义

▶ 正无穷大:
$$\lim_{x\to a} f(x) = +\infty$$

▶ 负无穷大:
$$\lim_{x\to a} f(x) = -\infty$$

▶ 对于其他极限过程,包括:

$$x \to a^-, \quad x \to a^+, \quad x \to \infty, \quad x \to +\infty, \quad x \to -\infty.$$

也有相应的无穷大、正无穷大和负无穷大.

► 无穷大不是变量, 不是很大的数, 是函数极限过程的一种表现形式.

- ► 无穷大不是变量, 不是很大的数, 是函数极限过程的一种表现形式.
- ▶ 不能将 $\lim_{x\to a} f(x) = \infty$ 认为极限存在.

- ► 无穷大不是变量, 不是很大的数, 是函数极限过程的一种表现形式.
- ► 不能将 $\lim_{x\to a} f(x) = \infty$ 认为极限存在.
- 无穷大与无界函数的区别:无穷大一定是无界函数,但是无界函数未必是某个极限过程的无穷大.

例

- ▶ $f(x) = x \sin x$ 是无界函数, 但不是 $x \to \infty$ 时的无穷大.
- $\blacktriangleright \lim_{x \to 1} \frac{1}{x 1} = \infty.$

例

下列说法错误的是?

- ▶ A. 若 $\lim_{x \to \infty} f(x) = A$, 则 $\lim_{x \to +\infty} f(x) = A$.
- ▶ B. 若 $\lim_{x \to +\infty} f(x) = A$, 则 $\lim_{x \to \infty} f(x) = A$.
- ▶ D. $\vec{z} \lim_{x \to a} f(x) = \infty$, $y \lim_{x \to a} f(x) = +\infty$.

作业:

▶ 9月26日 习题2.1(A) 5. 6.

> 7.(1)(3). 10.

工

作业:

- ▶ 09月27日
 - 习题 2.1 (A)
 - 1. (1) (4).
 - 3. (2) (5).
 - 习题 2.1(B)
 - 2. (2)(5).
 - 5.

