Class 1 - 7.10.2021

Alessandro Bramucci

1

 $\mathbf{2}$

Contents

1) R language essentials

2) Matrix operations

1) R language essentials	
# R can be used as a calculator 2 + 2	
## [1] 4	
exp(0)	
## [1] 1	
$\log(1)$	
## [1] 0	
# Assigning a value to the object x x <- 15	
<pre># To remove the object rm(x)</pre>	
# R handle data vectors as single objects. We can easily create data vectors $x \leftarrow c(1, 2, 3)$	
# We can check the names of the objects stored in the environment ls()	
## [1] "x"	
<pre># To remove all objects from the environment rm(list = ls())</pre>	
# R can easily create sequences of numbers a <- 1:10	
a <- 1:10 b <- seq(from = 1, to = 10, by = 1)	
# Generating random numbers from a normal distribution specifying mean and standard deviation set.seed(1234)	n; t
rnorm(n = 10, mean = 0, sd = 1)	

```
[7] -0.5747400 -0.5466319 -0.5644520 -0.8900378
# Assigning (a vector of) random numbers to an object called y
y \leftarrow rnorm(10, 0, 1)
# Length of the vector y
length(y)
## [1] 10
# Logical operations. The operator "==" force R to make a "true or false" judgment
2 + 3 == 5
## [1] TRUE
sqrt(25) == 4
## [1] FALSE
# Other classical operators
100 >= 100
## [1] TRUE
99 > 100
## [1] FALSE
99 != 100
## [1] TRUE
!(1==1) # One is not equal to one -> FALSE!
## [1] FALSE
(1==1) | (2==3) # One is equal to one OR two is equal to three -> TRUE!
## [1] TRUE
(1==1) & (2==3) # One is equal to one AND two is equal to three -> FALSE!
```

2) Matrix operations

[1] FALSE

R can perform standard matrix algebra operations. We can use matrix algebra functions in R to solve our problem from class.

$$7x + 5y - 3z = 163x - 5y + 2z = -85x + 3y - 7z = 0$$

First, we rewrite the system using matrix and vector notation:

$$\mathbf{A} = \begin{bmatrix} 7 & 5 & -3 \\ 3 & -5 & 2 \\ 5 & 3 & -7 \end{bmatrix} \mathbf{b} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \mathbf{r} = \begin{bmatrix} 16 \\ -8 \\ 0 \end{bmatrix}$$

In order to obtain the result vector b, we have to rearrange the model performing some simple matrix algebra operations.

$$\mathbf{A}^{-1}\mathbf{A}\mathbf{b} = \mathbf{A}^{-1}\mathbf{r}$$
remember that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}\mathbf{b} = \mathbf{A}^{-1}\mathbf{r}$

We are now ready to solve our system of equations using R:

```
data <- c(7, 5, -3, 3, -5, 2, 5, 3, -7)

A <- matrix(data, nrow = 3, ncol = 3, byrow = TRUE)

r <- c(16, -8, 0)

b <- solve(A) %*% r

b</pre>
```

```
## [,1]
## [1,] 1
## [2,] 3
## [3,] 2
```