# **Fence Colouring**

You have N fences, and you want to colour them. You have N total types of colours numbered  $1,2,\ldots,N$ .

Currently, all the N fences are coloured with the type 1 colour. At the end, you want the i-th fence to have a colour of  $A_i$  for every  $1 \leq i \leq N$ .

You can choose to do one of the following at each minute:

- Colour all N fences at the same time with type X colour, where you can choose  $X(1 \le X \le N)$ .
- Colour a specific fence i with type X colour, where you can choose  $X(1 \le X \le N)$ .

Both of the above operations take only 1 minute to perform. What is the minimum number of minutes needed to colour the entire fence as desired.

# **Input Format**

- ullet The first line of input will contain a single integer T , denoting the number of test cases.
- Each test case consists of multiple lines of input.
  - $\circ$  The first line of each test case contains N the number of fences.
  - $\circ$  The second line contains N integers  $A_1, A_2, \ldots, A_N$ .

### **Output Format**

For each test case, output on a new line the minimum time needed to colour all  ${\cal N}$  fences.

#### Constraints

- $1 \le T \le 10^4$
- $\bullet \quad 2 \leq N \leq 2 \cdot 10^5$
- $1 \leq A_i \leq N$
- The sum of N over all test cases does not exceed  $2\cdot 10^5\,.$

## Sample 1:



# **Explanation:**