TP Statistiques 2

Nawal Belaid, Nicolas Brunel et Salim Amoukou 28 Fevrier 2020

Echantillon, Théorème Central Limite, Estimation Monte Carlo

Ceci est un brève illustration du théorème central limite et une sensibilisation à l'estimation "par Monte Carlo".

- 1. Soit $\mu=1,\ \sigma=2$. Simuler N=1000 échantillons i.i.d $S^i=(X^i_1,\ldots,X^i_n), i=1\ldots,N,$ de taille $n=5,\ 30,\ 100,$ et dont la loi commune est une loi gaussienne de $\mathcal{N}(\mu,\sigma^2)$.
 - Calculer les moyennes et variances empiriques $\bar{X}_{n,i}$ et $\sigma_{n,i}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{X}_n)^2$ pour $i = 1, \dots, N$. Tracer l'histogramme des moyennes empiriques. Quelle est la loi théorique de la moyenne empirique ? A l'aide d'une renormalisation adéquate (a_n, b_n) , montrer que $U_{n,i} = \frac{\bar{X}_{n,i} a_n}{b_n}$ a une loi connue que vous expliciterez. Comparez histogramme des $U_{n,i}$ et distribution théorique. Quelle est l'influence de la taille de l'échantillon n.
- 2. Simuler N=1000 échantillons i.i.d de loi commune Pareto $\mathcal{P}(a,\alpha)$ (la densité est $f(x;a,\alpha)=\alpha\frac{a^{\alpha}}{x^{\alpha+1}}1_{[a,+\infty[})$ de taille n=5,30,100. Calculer les moyennes et variances empiriques $\bar{X}_{n,i}$ et $\sigma_{n,i}^2$. Vérifier que l'espérance théorique d'une loi de Pareto est $E[X]=\frac{\alpha a}{\alpha-1}$ (avec la formule $\int_0^{+\infty}P(X>t)dt$). On rappelle que la variance d'une Pareto est $V(X)=\left(\frac{\alpha a}{\alpha-1}\right)^2\frac{\alpha}{\alpha-2}$ (pour $\alpha\geq 2$). Tracer l'histogramme des moyennes empiriques. Quelle est la loi théorique de la moyenne empirique? A l'aide d'une renormalisation adéquate (a_n,b_n) , montrer que $U_{n,i}=\frac{\bar{X}_{n,i}-a_n}{b_n}$ a une loi que vous pouvez approchez. Comparez histogramme et "distribution théorique approchée". Quelle est l'influence de la taille de l'échantillon n sur la qualité de cette approximation?
- 3. Simuler N=1000 échantillons i.i.d de loi de Poisson de taille n=5, 30, 100. Calculer les moyennes et variances empiriques \bar{X}_n et σ_n^2 . Rappeler les expressions théoriques de la moyenne et variance d'une loi de Poisson? Tracer l'histogramme des moyennes empiriques. Quelle est la loi théorique de la moyenne empirique? A l'aide d'une renormalisation adéquate (a_n,b_n) , montrer que $U_{n,i}=\frac{\bar{X}_{n,i}-a_n}{b_n}$ a une loi que vous pouvez approchez. Comparez histogramme et "distribution théorique approchée". Quelle est l'influence de la taille de l'échantillon n?
- 4. Déduire des expérimentations précédentes une méthodologie d'estimation de quantités de la forme $E[T(X_1,\ldots,X_n)]$ où T est une statistique d'un échantillon (X_1,\ldots,X_n) que l'on est capable de simuler "facilement". Vous expliciterez comment n influence la qualité de cette approximation.

Moyenne et phénomène de concentration

Nous allons montrer que la moyenne d'une variable aléatoire est un résumé déterministe d'une v.a., dont la qualité est $\operatorname{contr} \tilde{A}$ 'lée par la variance.

- 1. Rappeler l'inégalité de Bienaymé-Chebychef dans les cas Gaussien et Poisson.
- 2. Estimer par Monte Carlo les probabilités de déviation d'une variable aléatoire de sa moyenne.
 - (a) Exprimer $P(|X \mu| \ge \delta)$ comme l'espérance d'une certaine variable aléatoire Z.
 - (b) Simuler un échantillon de taille N Z_1, Z_2, \ldots, Z_N de meme loi que Z (dans le cas Gaussien, Pareto et Poisson) on prendra N grand. Déterminer une estimation de $P(|X \mu| \ge \delta)$. Pouvez vous déterminer la précision de cette estimation?

- (c) Comparer avec les bornes obtenues par Bienaymé Chebychev pour plusieurs δ . Faites varier σ .
- (d) Dans le cas Gaussien et Poisson, comparer les estimations Monte-Carlo de $P(X \mu \ge \delta)$ avec les bornes données par les inégalités Chernoff pour plusieurs δ et σ (cf. cours).
- 3. Simuler un échantillon de taille n=20 pour les lois de Gauss et de Poisson (choisir σ , λ approprié)
 - (a) Calculer les bornes de Chernoff dans le cas échantillon pour \bar{X}_n . Faites varier n=20, 100, 1000.
 - (b) En déduire un estimateur de μ et λ respectivement.
- 4. Simuler un échantillon de taille n=20 d'une loi de Cauchy $\mathcal{C}(\theta)$ de densit? $f(x,\theta)=\frac{1}{\pi}\frac{1}{1+(x-\theta)^2}$.
 - (a) Calculer la moyenne empirique \bar{X}_n . Faites varier la taille de l'échantillon $n=20,\,100,\,1000,\,10000.$ Qu'en déduire ?
 - (b) Expliquer ce comportement. On se rappellera notamment que la fonction caractéristique s'écrit $\phi_{\theta}(t) = \exp(i\theta t |t|)$.
 - (c) Quelle est la médiane d'une loi de Cauchy $\mathcal{C}(\theta)$? En déduire un estimateur de θ pour n=20,100,1000.