F. Dupré

Exercice 1

On donne u_0 dans **R**, et l'on pose, tant que c'est possible, $u_{n+1} = \ln(1 + u_n)$.

- **a.** Donner une condition nécessaire et suffisante portant sur u_0 pour que la suite (u_n) soit entièrement définie.
 - **b.** Cette condition étant remplie, étudier la suite (u_n) .

On pose alors $v_n=u_{n+1}^a-u_n^a$. Déterminer une valeur de a pour laquelle la suite (v_n) possède une limite finie non nulle, et en déduire un équivalent de u_n .

Étude classique d'une suite $u_{n+1} = f(u_n)$ en un point de dérivée 1, problème de l'initialisation, obtention d'un équivalent par application du théorème de Cesàro.

Exercice 2

On donne deux réels strictement positifs u_0 et u_1 , et on construit par récurrence une suite en posant, pour tout entier n:

$$u_{n+2} = \sqrt{u_{n+1}} + \sqrt{u_n} .$$

- **a.** Déterminer les seules limites possibles de la suite (u_n) et prouver que l'une peut être exclue.
- **b.** On pose $\Delta_n = |u_n L|$ où L est la seule limite possible de la suite (u_n) . Prouver l'existence d'un réel k tel que 0 < k < 1/2, et vérifiant pour tout n: $\Delta_{n+2} \le k(\Delta_{n+1} + \Delta_n)$.
- **c.** On considère une suite (δ_n) définie par $\delta_0=\Delta_0$, $\delta_1=\Delta_1$, et $\forall n,\ \delta_{n+2}=k(\delta_{n+1}+\delta_n)$.

Etudier la limite de la suite (δ_n) , et conclure.

Récurrence non linéaire à deux termes.

Exercice 3

Soit λ un réel positif, et la suite (u_n) définie par $u_0 = 0$ et $u_{n+1} = \frac{\lambda}{1 + u_n^2}$.

- **a.** Quelles propriétés possède la suite (u_n) indépendamment de la valeur du paramètre λ ?
 - **b.** Étudier cette suite dans les trois cas suivants :

i.
$$\lambda = 5/8$$
;

ii.
$$\lambda = 2$$
;

iii.
$$\lambda = 10$$
.

Étude d'une suite $u_{n+1} = f(u_n)$ dépendant d'un paramètre influant sur la nature du point fixe.

Exercice 4

Trouver la limite de la suite (u_n) définie par :

$$u_0 = \frac{11}{2}$$
, $u_1 = \frac{61}{11}$, et $\forall n \in \mathbb{N}$, $u_{n+2} = 111 - \frac{1130}{u_{n+1}} + \frac{3000}{u_n u_{n+1}}$.

Quelle limite une calculatrice suggère-t-elle pour la suite (u_n) ? Pourquoi?

Postulat de la forme du terme général de la suite, récurrences linéaires à trois termes, effet des calculs approchés sur ordinateur.

Exercice 5

Pour $n \in \mathbb{N}$, on note u_n le nombre de parenthésages envisageables pour calculer un produit de n+1 termes avec une loi non associative. On posera conventionnellement $u_0=1$.

- **a.** Calculer u_1 , u_2 et u_3 .
- **b.** Établir la formule de récurrence $u_{n+1} = \sum_{k=0}^{n} u_k u_{n-k}$.
- **c.** On fait momentanément l'hypothèse que la série entière $\sum u_n x^n$ a un rayon de convergence non nul. Prouver que sa somme est solution d'une certaine équation du second degré.
- **c.** On envisage (pourquoi ?) la fonction g définie sur $]-\frac{1}{4},\frac{1}{4}[$ par $g(x) = \frac{1-\sqrt{1-4x}}{2x}$ si $x \ne 0$ et g(0) = ???

Prouver que g est développable en série entière sur $]-\frac{1}{4},\frac{1}{4}[$, et expliciter ce développement (que l'on notera formellement $\sum a_n x^n$).

d. Prouver que la suite (a_n) vérifie la même relation de récurrence que la suite (u_n) , puis en déduire que l'on a : $u_n = a_n \ \forall n \in \mathbb{N}$.

Exercice 6

On étudie ici un algorithme itératif permettant d'inverser les matrices dites "à diagonale dominante".

- **1. a.** Soit $M = (m_{i,j})$ une matrice carrée complexe d'ordre n, telle que pour tout entier i plus petit que n, on ait $\left|m_{i,i}\right| > \sum_{j \neq i} \left|m_{i,j}\right|$ (une telle matrice sera dite à diagonale dominante). Prouver que M est inversible.
- **b.** Soit $N=(n_{i,j})$ une matrice carrée complexe d'ordre n. Prouver que toute valeur propre complexe de N est dans la réunion des disques de centre $n_{i,i}$ et de rayon $\sum_{i \neq i} \left| n_{i,j} \right|$.

On fixe dans la suite une matrice $A = (a_{i,j})$ à diagonale dominante.

- **2.** On pose A = D + G où D est une matrice diagonale et G une matrice de diagonale nulle.
- **a.** Vérifier que A et D sont inversibles, et que l'équation AX = B est équivalente à X = A'X + B', où l'on a posé $A' = -D^{-1}G$ et $B' = D^{-1}B$.
- **b.** Prouver que le module de toutes les valeurs propres de A' est strictement plus petit que 1.
- **c.** Soit L l'unique solution du système AX = B. On définit une suite (X_p) en choisissant une matrice colonne X_0 quelconque et en posant, pour tout entier k: $X_{p+1} = A'X_p + B'$.

En étudiant la suite $(X_p - L)$, montrer que la suite (X_p) converge vers L.

Un problème de dénombrement naturel mène à une formule de récurrence inhabituelle. Emploi d'une stratégie adaptée à la formule de récurrence, obtention d'une formule explicite pour les termes de la suite, intervention des séries entières.

Un algorithme itératif de résolution approchée de systèmes linéaires.