

Dashboard

Courses

PW Skills Lab Job Porta**l** Experience Portal Become an affiliate

Hall of Fame

KHUSHI~

Quiz 3 for Lecture 4

17 out of 20 correct

1. Wh	nat is the purpose of the General Linear Model (GLM)?	
	To analyze the relationship between dependent and independent variables	
\circ	To perform feature selection in regression models	
\circ	To apply regularization techniques in machine learning algorithms	
\bigcirc	To optimize the parameters in SVM models	
Explanation: The General Linear Model (GLM) is a flexible statistical framework used to analyze the relationship between a dependent variable and one or more independent variables. It encompasses various regression techniques, such as linear regression, logistic regression, and ANOVA.		
2. W	hich of the following regression techniques is suitable for predicting continuous numerical values?	
	Linear Regression	
\bigcirc	Logistic Regression	
\bigcirc	Decision Tree Regression	
\bigcirc	Support Vector Regression	
	nation: Linear Regression is a regression technique used to model the relationship between a dependent variable and one or more bendent variables. It is suitable for predicting continuous numerical values.	
3. W	hich of the following loss functions is commonly used in linear regression?	
\bigcirc	Mean Absolute Error (MAE)	
	Mean Squared Error (MSE)	
\bigcirc	Cross-Entropy Loss	
\circ	Hinge Loss	
-	nation: Mean Squared Error (MSE) is commonly used in linear regression. It measures the average squared difference between the cted and actual values. The goal in linear regression is to minimize the MSE to obtain the best-fitting line.	
4. W	hat is the purpose of an optimizer in machine learning?	
\bigcirc	To compute the gradient of the loss function	
\bigcirc	To select the optimal learning rate for the model	
	To minimize the loss function and find the optimal model parameters	
\bigcirc	To regularize the model and prevent overfitting	

Explanation: An optimizer in machine learning is responsible for minimizing the loss function by adjusting the model's parameters. It searches for the optimal set of parameters that minimize the difference between predicted and actual values.

5. Which optimization algorithm is commonly used in Gradient Descent?		
	Stochastic Gradient Descent (SGD)	
\bigcirc	Adam	
\bigcirc	RMSprop	
\bigcirc	Adagrad	
6. What is the purpose of regularization in machine learning?		
\bigcirc	To increase the complexity of the model	
	To reduce the model's generalization error	
\bigcirc	To decrease the training time	
\bigcirc	To improve the model's accuracy on the training data	
Explanation : Regularization techniques aim to prevent overfitting by adding a penalty term to the loss function. It helps the model generalize well to unseen data by discouraging complex patterns that may only fit the training data.		
7. Which regularization technique encourages sparsity by adding an L1 penalty to the loss function?		
	Lasso regularization	
\bigcirc	Ridge regularization	
\bigcirc	Elastic Net regularization	
\bigcirc	Dropout regularization	
	nation: Lasso regularization adds an L1 penalty to the loss function, promoting sparsity in the model. It tends to shrink the cients of less important features towards zero, effectively performing feature selection.	
8. In	Support Vector Machines (SVM), what is the purpose of the kernel function?	
	To map the input data to a higher-dimensional feature space	
\bigcirc	To regularize the model and prevent overfitting	
\bigcirc	To compute the margin between support vectors	
\bigcirc	To minimize the misclassification rate	
	nation: The kernel function in SVM allows the model to implicitly transform the input data into a higher-dimensional feature space, e the data becomes linearly separable. It enables SVM to handle complex non-linear decision boundaries.	
9. Which of the following is a disadvantage of Decision Trees?		
	Prone to overfitting	
\bigcirc	Cannot handle categorical variables	
\bigcirc	Require extensive computational resources	
\circ	Limited to binary classification problems	

Explanation: Decision Trees have a tendency to overfit the training data, capturing intricate patterns that may not generalize well to unseen data. Techniques like pruning and regularization can be used to mitigate overfitting.

10. What is the purpose of ensemble techniques in machine learning?		
To combine multiple weak models to create a stronger model		
To reduce the model's complexity		
To improve the model's interpretability		
To reduce the training time		
Explanation : Ensemble techniques combine the predictions of multiple individual models to create a more accurate and robust model. By aggregating the predictions of different models, ensemble techniques can improve prediction accuracy and handle complex patterns in the data.		
11. Which ensemble technique combines multiple models through weighted voting?		
Bagging		
Boosting		
Random Forest		
○ AdaBoost		
Explanation: AdaBoost (Adaptive Boosting) is an ensemble technique that combines multiple weak models through weighted voting. It assigns higher weights to misclassified samples, allowing subsequent models to focus on correctly classifying those samples.		
12. Which ensemble technique builds multiple models sequentially, where each model corrects the mistakes of the previous model?		
Bagging		
Boosting		
O Random Forest		
○ Gradient Boosting		
Explanation : Boosting is an ensemble technique that builds multiple models sequentially. Each subsequent model focuses on correcting the mistakes of the previous model by assigning higher weights to misclassified samples. Examples include AdaBoost and Gradient Boosting.		
13. Which ensemble technique creates multiple models using bootstrapped samples and combines their predictions through averaging or voting?		
Bagging		
Boosting		
Random Forest		
○ Stacking		
Explanation : Bagging (Bootstrap Aggregating) is an ensemble technique that creates multiple models using bootstrapped samples of the training data. The predictions of these models are combined through averaging or voting to make final predictions.		
14. What is the purpose of feature importance in ensemble models?		
To measure the accuracy of the model		

	To assess the performance of individual features in making predictions	
\bigcirc	To determine the optimal number of features to use	
\bigcirc	To reduce the computational complexity of the model	
Explanation: Feature importance in ensemble models measures the contribution of individual features towards making accurate predictions. It helps identify the most influential features and assess their relevance in the model's performance.		
15. v	Which ensemble technique combines the predictions of multiple models through a weighted linear combination?	
\bigcirc	Bagging	
\bigcirc	Boosting	
\bigcirc	Random Forest	
	Stacking	
Explanation : Stacking is an ensemble technique that combines the predictions of multiple models through a weighted linear combination. It trains a meta-model on the predictions of the base models to make final predictions		
16. v	which regularization technique can be used in both linear regression and logistic regression?	
\bigcirc	L1 regularization	
	L2 regularization	
\bigcirc	Ridge regularization	
\bigcirc	Elastic Net regularization	
	nation: Elastic Net regularization combines both L1 and L2 regularization penalties. It can be used in both linear regression and ic regression to shrink the coefficients towards zero and prevent overfitting.	
17. v	/hich optimization algorithm is commonly used in training deep neural networks?	
\bigcirc	Stochastic Gradient Descent (SGD)	
	Adam	
\bigcirc	RMSprop	
\bigcirc	Adagrad	
	nation: Adam (Adaptive Moment Estimation) is a popular optimization algorithm used in training deep neural networks. It bines the advantages of AdaGrad and RMSprop, providing adaptive learning rates and momentum.	
18. v	Which of the following loss functions is commonly used in logistic regression?	
\bigcirc	Mean Absolute Error (MAE)	
\bigcirc	Mean Squared Error (MSE)	
	Cross-Entropy Loss	
\bigcirc	Hinge Loss	

Explanation: Cross-Entropy Loss, also known as Log Loss, is commonly used in logistic regression. It measures the difference between the predicted probabilities and the true class labels

	Support Vector Machines (SVM)
\bigcirc	Decision Trees
\bigcirc	Random Forests
\bigcirc	Gradient Boosting
	nation: Random Forests can be used for both classification and regression tasks. It is an ensemble technique that combines ple decision trees to make predictions.
20. \	Which of the following is a non-parametric classification algorithm?
\bigcirc	Logistic Regression
\bigcirc	Linear Discriminant Analysis (LDA)
	K-Nearest Neighbors (KNN)
\bigcirc	Naive Bayes

19. Which algorithm can be used for both classification and regression tasks?

Explanation: K-Nearest Neighbors (KNN) is a non-parametric classification algorithm that makes predictions based on the majority vote of the k nearest neighbors in the training data.

Submit