Relations

Methods: Logic, Part 3a

Michael Franke

Topics covered

- (i) tuples
- (ii) Cartesian products
- (iii) relations
- (iv) properties of relations

Tuples

Order-sensitive collections

Sets

- order of elements is irrelevant $\{a,b\} = \{b,a\}$
- elements cannot reoccur $\{a, a\} = \{a\}$

Tuples

- order of elements is relevant $\langle a, b \rangle \neq \langle b, a \rangle$
- elements can reoccur $\langle a, a \rangle \neq \langle a \rangle$

Tuples

Terminology & notation

```
An n-tuple is a tuple with n elements (in order). For n=1, we conventionally define: \langle x \rangle = x. For small n \geq 1, there are special words: n=2 \text{ ordered pair} n=3 \text{ triple} n=4 \text{ quadruple} n=5 \text{ quintuple} ...
```

Cartesian products

The Cartesian product of two sets *X* and *Y* is a set of pairs:

$$X \times Y = \{ \langle x, y \rangle \mid x \in X \text{ and } y \in Y \}$$

Cartesian products

The Cartesian product of two sets *X* and *Y* is a set of pairs:

$$X \times Y = \{ \langle x, y \rangle \mid x \in X \text{ and } y \in Y \}$$

The Cartesian product of *n* sets is a set of *n*-tuples:

$$X_1 \times X_2, \ldots, \times X_n = \{\langle x_1, x_2, \ldots, x_n \rangle \mid x_i \in X_i \text{ for all } 1 \le i \le n\}$$

Cartesian products

The Cartesian product of two sets *X* and *Y* is a set of pairs:

$$X \times Y = \{ \langle x, y \rangle \mid x \in X \text{ and } y \in Y \}$$

The Cartesian product of *n* sets is a set of *n*-tuples:

$$X_1 \times X_2, \ldots, \times X_n = \{\langle x_1, x_2, \ldots, x_n \rangle \mid x_i \in X_i \text{ for all } 1 \le i \le n\}$$

Examples

$$X = \{a, b\}$$

$$Y = \{c, d\}$$

$$X \times Y = \{\langle a, c \rangle, \langle a, d \rangle, \langle b, c \rangle, \langle b, d \rangle\}$$

$$Y \times X = \{\langle c, a \rangle, \langle d, a \rangle, \langle c, b \rangle, \langle d, b \rangle\}$$

$$X \times X = \{\langle a, a \rangle, \langle a, b \rangle, \langle b, a \rangle, \langle b, b \rangle\}$$

Relations

Definition

Any subset of an *n*-place Cartesian product is called an *n*-ary relation.

Example

 $P = \{j, m, s\}$ is a set of people

 $L \subseteq P \times P$ is binary relation encoding who loves whom:

$$L = \{ \langle x, y \rangle \in P \times P \mid x \text{ loves } y \}$$
$$= \{ \langle j, j \rangle, \langle j, s \rangle, \langle m, s \rangle, \langle s, m \rangle \}$$

Relations

Terminology & notation

- $R \subseteq X \times Y$ is also called a *binary* relation
- if $\langle x, y \rangle \in R \subseteq X \times Y$, we can also use
 - prefix notation: Rxy [used in this course; except for math stuff like $1 \le 2$]
 - infix notation: *xRy*
 - postfix notation: *xyR*
- domain and range of binary relation $R \subseteq X \times Y$:

$$dom(R) = \{x \in X \mid \text{ there is some } y \in Y \text{ with } Rxy\}$$

$$range(R) = \{ y \in Y \mid \text{ there is some } x \in X \text{ with } Rxy \}$$

Properties of binary relations

Binary relation $R \subseteq X \times X$ is *reflexive* iff Rxx for all $x \in X$ *irreflexive* iff Rxx for no $x \in X$ *symmetric* iff for all $x, y \in X$ if Rxy then also Ryx*asymmetric* iff for no $x, y \in X$ both Rxy and Ryxanti-symmetric iff for all $x, y \in X$ if Rxy and Ryx, then x = y*transitive* iff for all $x, y \in X$ if Rxy and Ryz, then also Rxz*intransitive* iff for all $x, y \in X$ if Rxy and Ryz, then not Rxz*connected* iff for all $x, y \in X$ either Rxy or Ryx or x = y

Orders and equivalence relations

Binary relation $R \subseteq X \times X$ is said to be:

• a *partial weak order* iff *R* is reflexive, anti-symmetric and transitive

[example: relation " \subseteq " on $\mathcal{P}(Y)$]

• a *partial strict order* iff *R* is irreflexive, asymmetric and transitive

[example: relation " \subset " on $\mathcal{P}(Y)$]

• a *linear weak order* iff *R* is a partial weak order and connected

[example: relation " \leq " on \mathbb{N}]

• a *linear strict order* iff *R* is a partial strict order and connected

[example: relation "<" on \mathbb{N}]

ullet an *equivalence relation* iff R is reflexive, symmetric and transitive

[example: relation "has equal cardinality" on $\mathcal{P}(Y)$]