COMPLEX NUMBERS

Some questions (Assertion-Reason type) are given below. Each question contains Statement - 1 (Assertion) and Statement - 2 (Reason). Each question has 4 choices (A), (B), (C) and (D) out of which ONLY ONE is correct. So select the correct choice:

Choices are:

- (A) Statement 1 is True, Statement 2 is True; Statement 2 is a correct explanation for Statement 1.
- (B)Statement 1 is True, Statement 2 is True; Statement 2 is NOT a correct explanation for Statement 1.
- (C) Statement 1 is True, Statement 2 is False.
- (D) **Statement 1** is False, **Statement 2** is True.
- Let $z = e^{i\theta} = \cos\theta + i\sin\theta$ 344.

Statement 1: Value of $e^{iA} \cdot e^{iB} \cdot e^{iC} = -1$ if $A + B + C = \pi$. **Statement 2:** $arg(z) = \theta$ and |z| = 1.

345 Let $a_1, a_2, \dots, a_n \in \mathbb{R}^7$

Statement–1: Minimum value of $\frac{a_1}{a_2} + \frac{a_2}{a_3} + \dots + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1}$

Statement–2: For positive real numbers, $A.M \ge G.M$

Let $\log\left(\frac{5c}{a}\right)$, $\log\left(\frac{3b}{5c}\right)$ and $\log\left(\frac{a}{3b}\right)$ then A.P., where a, b, c are in G.P. If a, b, c represents the sides of a 346.

triangle. Then: Statement-1: Triangle represented by the sides a, b, c will be an isosceles triangle **Statement–2:** b + c < a

Let Z_1, Z_2 be two complex numbers represented by points on the curves $|z|=\sqrt{2}$ and $|z-3-3i|=2\sqrt{2}$. Then 347.

Statement–1: min $|z_1-z_2| = 0$ and max $|z_1-z_2| = 6\sqrt{2}$

Statement–2: Two curves $|z| = \sqrt{2}$ and $|z - 3 - 3i| = 2\sqrt{2}$ touch each other externally

Statement–1: If $|z-i| \le 2$ and $z_0 = 5 + 3i$, then the maximum value of $|iz + z_0|$ is 7 348.

Statement–2: For the complex numbers z_1 and z_2 $|z_1 + z_2| \le |z_1| + |z_2|$

349. Let z_1 and z_2 be complex number such that $|z_1 + z_2| = |z_1| + |z_2|$

> : $\arg\left(\frac{z_1}{z_2}\right) = 0$ Statement-1

Statement-2 : z_1 , z_2 and origin are collinear and z_1 , z_2 are on the same side of origin.

350. Let fourth roots of unity be z_1 , z_2 , z_3 and z_4 respectively

 $: z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0$ **Statement–2** : $z_1 + z_2 + z_3 + z_4 = 0$. Statement-1

351.

Let z_1, z_2, \ldots, z_n be the roots of $z^n = 1, n \in N$. **Statement-1**: $z_1, z_2, \ldots, z_n = (-1)^n$ **Statement-2**: Product of the roots of the equation $a_n x^n + a_{n-1} x^{n-1}$

 $+ a_{n-2} x^{n-2} + \ldots + a_1 x + a_0 = 0, a_n \neq 0, \text{ is } (-1)^n. \frac{a_0}{a_0}.$

Let z_1 , z_2 , z_3 and z_4 be the complex numbers satisfying $z_1 - z_2 = z_4 - z_3$. 352.

> Statement-1 z_1, z_2, z_3, z_4 are the vertices of a parallelogram

 $: \frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2}.$ Statement-2

: The minimum value of |z| + |z - i| is 0. 353. Statement-1

> : For any two complex number z_1 and z_2 , $|z_1 + z_2| \le |z_1| + |z_2|$. Statement-2

: Let z_1 and z_2 are two complex numbers such that $|z_1 - z_2| = |z_1 + z_2|$ then the orthocenter 354. Statement-1

of $\triangle AOB$ is $\frac{z_1 + z_2}{2}$. (where O is the origin)

- : In case of right angled triangle, orthocenter is that point at which triangle is right angled.
- **Statement–1:** If ω is complex cube root of unity then $(x-y)(x\omega-y)(x\omega^2-y)$ is equal to x^3+y^2 355.
- **Statement–2**: If ω is complex cube root of unity then $1 + \omega + \omega^2 = 0$ and $\omega^3 = 1$ **Statement-1**: If $|z| \le 4$, then greatest value of |z + 3 - 4i| is 9. 356.

Statement-2: $\forall z_1, z_2 \in \mathbb{C}$, $|z_1 + z_2| \le |z_1| + |z_2|$

<u>Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com</u> Phone : (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 COMPLEX NUMBERS PART 3 OF 3

Statement-1: The slope of line (2-3i) z + (2+3i) \overline{z} - 1 = 0 is $\frac{2}{3}$ 357.

Statement-2: The slope of line $\overline{a}z + a\overline{z} + b = 0$ be R & a be any non-zero complex. Constant is -

Statement-1: The value of $\sum_{k=1}^{6} \left(\sin \frac{2\pi k}{7} - i \cos \frac{2\pi k}{7} \right)$ is i 358.

Statement-2: The roots of the equation $z^n = 1$ are called the nth roots of unity where $z = \left(\frac{\cos 2\pi k}{n}\right) + i \sin\left(\frac{2\pi k}{n}\right)$ where k = 0, 1, 2, ... (n - 1)

- **Statement-1:** $|z_1 a| < a$, $|z_2 b| < b$, $|z_3 c| < c$, where a, b, c are +ve real nos, then $|z_1 + z_2 + z_3|$ is greater than 2|a| < c359.
- **Statement-1:** $(\cos 2 + i\sin 2)^{\pi} = 1$ 360.

Statement-2: $(\cos\theta + i\sin\theta)^n = \cos\theta + i\sin\theta$ it is not true when n is irrational number.

- **Statement-1:** If $\alpha_1, \alpha_2, \alpha_3 \dots \alpha_8$ be the 8th root of unity, then $\alpha_1^{16} + \alpha_2^{16} + \alpha_3^{16} + \dots + \alpha_8^{16} = 8$ 361. Statement-2: In case of sum of pth power of nth roots of unity sum = 0 if $p \neq kn$ where p, k, n are integers sum = n if p = kn.
- 362. **Statement-1:** Locus of z, satisfying the equation |z-1| + |z-8| = 16 is an ellipse of eccentricity 7/16Statement-2:: Sum of focal distances of any point is constant for an ellipse
- Statement-1: $\operatorname{arg}\left(\frac{Z_2}{Z_1}\right) = \operatorname{arg} z_2 \operatorname{arg} z_1 \& \operatorname{arg} z^n = \operatorname{n}(\operatorname{arg} z)$ Statement-2: If |z| = 1, then $\operatorname{arg}(z^2 + \overline{Z}) = \frac{1}{2} \operatorname{arg} z$. 363.
- **Statement-1:** If $|z z + i| \le 2$ then $\sqrt{5} 2 \le |z| \le \sqrt{5} + 2$ 364. **Statement-2:** If $|z-2+i| \le 2$ the z lies inside or on the circle having centre (2,-1) & radius 2.
- **Statement-1:** The area of the triangle on argand plane formed by the complex numbers z, iz and z + iz is $\frac{1}{2}|z|^2$ 365.

Statement-2: The angle between the two complex numbers z and iz is $\frac{\pi}{2}$

Statement-1: If $\left| \frac{zz_1 - z_2}{zz_1 + z_2} \right| = k$, $(z_1, z_2 \neq 0)$, then locus of z is circle. 366.

Statement-2: As, $\left| \frac{\mathbf{z} - \mathbf{z}_1}{\mathbf{z} - \mathbf{z}_2} \right| = \lambda$ represents a circle if, $\lambda \notin \{0, 1\}$

Statement-1: If z_1 and z_2 are two complex numbers such that $|z_1| = |z_2| + |z_1 - z_2|$, then Im $\left(\frac{z_1}{z_2}\right) = 0$. 367.

Statement-2: $arg(z) = 0 \Rightarrow z$ is purely real.

- **Statement-1:** If $\alpha = \cos\left(\frac{2\pi}{7}\right) + i\sin\left(\frac{2\pi}{7}\right)$, $p = \alpha + \alpha^2 + \alpha^4$, $q = \alpha^3 + \alpha^5 + \alpha^6$, then the equation whose roots 368. are p and q is $x^2 + x + 2 = 0$ **Statement-2:** If α is a root of $z^7 = 1$, then $1 + \alpha + \alpha^2 + \ldots + \alpha^6 = 0$.
- **Statement-1:** If $|z| < \sqrt{2} 1$ then $|z|^2 + 2z \cos\alpha$ is less than one. 369. **Statement-2:** $|z_1 + z_2| < |z_1| + |z_2|$. Also $|\cos \alpha| \le 1$.
- **Statement-1:** The number of complex number satisfying the equation $|z|^2 + P|z| + q = 0$ (p, q, \in R) is atmost 2. 370. Statement-2: A quadratic equation in which all the co-efficients are non-zero real can have exactly two roots.
- **Statement-1:** If $\left|\beta + \frac{1}{\beta}\right| = 1$ ($\beta \neq 0$) is a complex number, then the maximum value of $|\beta|$ is $\frac{\sqrt{5+1}}{2}$. 371.

Statement-2: On the locus $\left|\beta + \frac{1}{\beta}\right| = 1$ the farthest distance from origin is $\frac{\sqrt{5+1}}{2}$.

<u>Download FREE Study Package from www.TekoClasses.com</u> & Learn on Video www.MathsBySuhag.com Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 COMPLEX NUMBERS PART 3 OF 3

Statement-1: The locus of z moving in the Argand plane such that $\arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{2}$ is a circle. 372.

Statement-2: This is represent a circle, whose centre is origin and radius is 2.

<u>ANSWER</u>									
344. B	345. A	346. D	347. A	348. A	349. A	350. B			
351. D	352. A	353. D	354. D	355. D	356. A	357 A			
358. A	359. D	360. D	361. A	362. A	363. B	364. A			
365. A	366. D	367. A	368. A	369. A	370. D	371. A			
372. A									

345. Using
$$AM \ge GM$$
 $\frac{a_1}{a_2} + \frac{a_2}{a_3} + ... + \frac{a_{n-1}}{a_n} + \frac{a_n}{a_1} \ge n \left(\frac{a_1}{a_2} \cdot \frac{a_2}{a_3} \cdot ... \cdot \frac{a_n}{a_1} \right)^{1/n} \Rightarrow \frac{a_1}{a_2} + \frac{a_2}{a_3} + ... + \frac{a_n}{a_1} \ge n$

Hence (A) is correct option

346.
$$2\log \frac{3b}{5c} = \log \frac{5c}{a} + \log \frac{a}{3b} \Rightarrow \left(\frac{3b}{5c}\right)^2 = \frac{5c}{a} \cdot \frac{a}{3b} \Rightarrow 3b = 5c$$

Also,
$$b^2 = ac \implies 9ac = 25c^2 \text{ or } 9a = 25c \therefore \frac{9a}{5} = 5c = 3b \implies \frac{a}{5} = \frac{b}{3} = \frac{c}{9/5} \implies b + c < a$$

∴ (D) is the correct answer

347. From the diagram it is clear that both circles touch each other externally

$$\therefore \min |z_1 - z_2| = 0$$

$$\max |z_1 - z_2| = \sqrt{36 + 36} = 6\sqrt{2}$$
Hence (A) is correct entire

Hence (A) is correct option.

348.
$$|iz + z_0| = |i(z - i) - 1 + 5 + 3i| = |i(z - i) + 4 + 3i|$$

 $\leq |i| |z - i| + |4 + 3i| \leq 7$

Hence (A) is the correct option.

349. (A)
$$\arg(z_1) = \arg(z_2)$$

$$\therefore \arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) = 0.$$

350. (B) Fourth roots of unity are
$$-1, 1, -i$$
 and i

$$\therefore z_1^2 + z_2^2 + z_3^2 + z_4^2 = 0$$

and
$$z_1 + z_2 + z_3 + z_4 = 0$$
.

Hence if
$$z_1, z_2, \ldots, z_n$$
 are roots of $z^n - 1 = 0$, then $z_1, z_2, \ldots, z_n = (-1)^n$. $\frac{(-1)}{1} = (-1)^{n+1}$,

which is never equal to $(-1)^n$

Hence (d) is the correct answer.

Both statements - I and II are true and statement - II is the correct reasoning of statement - I, because 352. $\frac{z_1 + z_3}{2} = \frac{z_2 + z_4}{2}$ \Rightarrow mid point of join of z_1 , z_3 and z_2 , z_4 are same, which is the necessary and sufficient ABCD, quadrilateral when $A(z_1)$,

 $C \equiv C(z_3)$, $D \equiv D(z_4)$ to be a parallelogram

 $B(z_2)$, Hence (A) is the correct answer.

353.
$$|z+i-z| \le |z| + |i-z|$$

 $\Rightarrow |z| + |z-i| \ge |i| = 1$

:. Hence (d) is the correct answer.

354.
$$|z_1 - z_2|^2 = |z_1 + z_2|^2$$

$$\Rightarrow z_1 \overline{z}_2 + \overline{z}_1 z_2 = 0 \Rightarrow |z_1 - z_2|^2 = |z_1|^2 + |z_2|^2$$

 \Rightarrow \triangle AOB is right angled at O.

: orthocenter is the origin.

:. Hence (d) is the correct answer.

355. (D)
$$(x - y) (x\omega - y) (x\omega^2 - y)$$

= $x^3 \omega^2 - x^2 y\omega - x^2 y\omega^2 + xy^2 - x^2 y\omega + xy^2 \omega + xy^2 \omega^2 - y^3 = x^3 - y^3$

Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com

Phone: (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 COMPLEX NUMBERS

Since

$$|z + 3 - 4i| \le |z| + |3 - 4i| = 9$$
 (: $|z| \le 4$).

357. Option (A) is correct.

358.
$$\sum_{k=1}^{6} (-i) \left(\cos \frac{2\pi k}{7} - i \sin \frac{2\pi k}{7} \right)$$

$$= (-i) \sum_{k<1}^{6} z^{k} = (-i) \left(\frac{z - z^{7}}{1 - z} \right) [\because z^{7} = 1]$$

$$= (-i) (-1) = i$$
 Ans. (A)

359.
$$|z_1 + z_2 + z_3| = |z_1 - a + z_2 - b + z_3 - c + (a + b + c)$$

 $\leq |z_1 - a| + |z_2 - b| + |z_3 - c| + |a + b + c| \leq 2|a + b + c|$ Ans. (D)

360.
$$(\cos 2 + i \sin 2)^{\pi}$$
 can not be evaluated because demoviers theorem does not hold for irrational index.

361. 1,
$$\alpha$$
, α^2 , ... α^7 are 8, 8th root of unity then after raising 16th power, we get 1, α^{16} , α^{32} , α^{48} ... α^{112} 1 + α^{16} + α^{32} + α^{48} + ... + α^{112}

Now
$$\alpha^8 = 1$$

So
$$\alpha^{16} = 1$$

$$1 + 1 + 1 + \ldots + 1 = 8$$

'A' is correct.

$$\frac{1}{2}|z||iz|$$

$$=\frac{|z|^2}{2}$$

$$\left| \frac{zz_1 - z_2}{z_1 z + z_2} \right| = k \implies \left| \frac{z - \frac{z_2}{z_1}}{z + \frac{z_2}{z_1}} \right| = k$$

Clearly, if $k \neq 0$, 1; then z would lie on a circle. If k = 1, z would lie on the perpendicular bisector of line segment joining $\frac{z_2}{z_1}$ and $\frac{-z_2}{z_1}$ and represents a point, if k = 0.

367. We have, arg
$$(z) = 0 \Rightarrow z$$
 is purely real. R is true

Also,
$$|z_1| = |z_2| + |z_1 - z_2|$$

$$\Rightarrow (|z_1|^2 + |z_2|^2 - 2|z_1| |z_2| \cos(\theta_1 - \theta_2))$$

= $|z_1|^2 + |z_2|^2 - 2|z_1| |z_2|$

$$-|z_1|^2 + |z_2|^2 - 2|z_1||z_2|^2$$

$$\Rightarrow \cos(\theta_1 - \theta_2) = 1 \Rightarrow \theta_1 - \theta_2 = 0$$

$$\Rightarrow \arg\left(\frac{z_1}{z_2}\right) = 0 \Rightarrow \frac{z_1}{z_2} \text{ is purely real.}$$

$$I_{m}\left(\frac{z_{1}}{z_{2}}\right)=0\tag{A}$$

$$\alpha$$
 is seventh root of unity $\Rightarrow 1 + \alpha + \alpha^2 + ... + \alpha^6 = 0$

$$\Rightarrow$$
 p + q = -1.

$$pq = \alpha^4 + \alpha^6 + \alpha^7 + \alpha^5 + \alpha^7 + \alpha^8 + \alpha^7 + \alpha^9 + \alpha^{10} = 3 - 1 = 2.$$

 \therefore $x^2 + x + 2 = 0$ is the req. equation.

Both A and R are true and R is correct explanation of A.

369.

$$|z^2 + 2z\cos\alpha| < |z^2| + |2z\cos\alpha| < |z^2| + 2|z| |\cos\alpha|$$

$$<(\sqrt{2}-1)^2+2(\sqrt{2}-1)<1.$$

 $(:: |\cos\alpha| \le 1).$

 $\frac{z-2}{z+2} = \left| \frac{z-2}{z+2} \right| e^{i\pi/2} = \left| \frac{z-2z+2}{z+2} i \right| \dots (i)$

therefore
$$\frac{\overline{z}-2}{\overline{z}+2} = \left| \frac{\overline{z}-2}{\overline{z}+2} \right| (-1) = -\left| \frac{z-2}{z+2} \right| i \dots (ii)$$

$$\frac{z-2}{z+2} + \frac{\overline{z}-2}{\overline{z}+2} = 0$$

i.e.,
$$(z-2)$$
 $\overline{z}+2$) $+(z+2)$ $(\overline{z}-2)=0$, $2z\overline{z}-8=0$

$$|z|^2 = 4$$
 : $x^2 + y^2 = 4$.

Ans. (a)

Imp. Que. From Competitive Exams

- The number of real values of a satisfying the equation $a^2 2a \sin x + 1 = 0$ is
 - (a) Zero
- (b) One
- (c) Two
- (d) Infinite
- For positive integers n_1 , n_2 the value of the expression $(1+i)^{n_1} + (1+i^3)^{n_1} + (1+i^5)^{n_2} + (1+i^7)^{n_2}$ where $i = \sqrt{-1}$ is a 2. real number if and only if **[IIT 1996]**
 - (a) $n_1 = n_2 + 1$
- (b) $n_1 = n_2 1$
- (c) $n_1 = n_2$
- (d) $n_1 > 0, n_2 > 0$
- Given that the equation $z^2 + (p+iq)z + r + is = 0$, where p, q, r, s are real and non-zero has a real root, then
 - (a) $pqr = r^2 + p^2s$
- $(b) \quad prs = q^2 + r^2 p$
- (c) $qrs = p^2 + s^2q$
- (d) $pqs = s^2 + q^2r$
- If $x = -5 + 2\sqrt{-4}$, then the value of the expression $x^4 + 9x^3 + 35x^2 x + 4$ is

[IIT 1972]

- (a) 160
- (b) -160
- (c) 60
- (d) -60
- 5. If $\sqrt{3} + i = (a + ib)(c + id)$, then $\tan^{-1}\left(\frac{b}{a}\right) + \tan^{-1}\left(\frac{d}{c}\right)$ has the value

 - (a) $\frac{\pi}{3} + 2n\pi, n \in I$ (b) $n\pi + \frac{\pi}{6}, n \in I$

 - (c) $n\pi \frac{\pi}{3}, n \in I$ (d) $2n\pi \frac{\pi}{3}, n \in I$
- If $a = \cos \alpha + i \sin \alpha$, $b = \cos \beta + i \sin \beta$,
 - $c = \cos \gamma + i \sin \gamma$ and $\frac{b}{c} + \frac{c}{a} + \frac{a}{b} = 1$, then $\cos(\beta \gamma) + \cos(\gamma \alpha) + \cos(\alpha \beta)$ is equal to [RPET 2001]
 - (a) 3/2
- (b) -3/2

(c) 0

- (d) 1
- If (1+i)(1+2i)(1+3i)...(1+ni) = a+ib, then $2.5.10...(1+n^2)$ is equal to 7.

[Karnataka CET 2002; Kerala (Engg.) 2002]

<u>Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com</u> Phone : (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 COMPLEX NUMBERS PART 3 OF 3 (a) $a^2 - b^2$ (b) $a^2 + b^2$ (d) $\sqrt{a^2 - b^2}$ (c) $\sqrt{a^2 + b^2}$ [Roorkee 1992] If z is a complex number, then the minimum value of |z| + |z-1| is (a) 1 (b) 0 (c) 1/2(d) None of these **9.** For any two complex numbers z_1 and z_2 and any real numbers a and b; $|(az_1 - bz_2)|^2 + |(bz_1 + az_2)|^2 =$ [IIT 1988] (a) $(a^2 + b^2)(|z_1| + |z_2|)$ (b) $(a^2 + b^2)(|z_1|^2 + |z_2|^2)$ (c) $(a^2 + b^2)(|z_1|^2 - |z_2|^2)$ (d) None of these **10.** The locus of z satisfying the inequality $\log_{1/3} |z+1| > \log_{1/3} |z-1|$ is (a) R(z) < 0(b) R(z) > 0(d) None of these (c) I(z) < 011. If $z_1 = a + ib$ and $z_2 = c + id$ are complex numbers such that $|z_1| = |z_2| = 1$ and $R(z_1 \overline{z_2}) = 0$, then the pair of complex numbers $w_1 = a + ic$ and $w_2 = b + id$ satisfies [IIT 1985] (a) $|w_1| = 1$ (b) $|w_2| = 1$ (c) $R(w_1 \overline{w_2}) = 0$, (d) All the above 12. Let z and w be two complex numbers such that $|z| \le 1$, $|w| \le 1$ and |z + iw| = |z - iw| = 2. Then z is equal to [IIT 1995] (a) 1 or i (b) i or -i(c) 1 or -1(d) i or -113. The maximum distance from the origin of coordinates to the point z satisfying the equation $\left|z + \frac{1}{z}\right| = a$ is (b) $\frac{1}{2}(\sqrt{a^2+2}+a)$ (a) $\frac{1}{2}(\sqrt{a^2+1}+a)$ (c) $\frac{1}{2}(\sqrt{a^2+4}+a)$ (d) None of these **14.** Find the complex number z satisfying the equations $\left|\frac{z-12}{z-8i}\right| = \frac{5}{3}$, $\left|\frac{z-4}{z-8}\right| = 1$ [Roorkee 19931 (a) 6 (b) $6 \pm 8i$ (d) None of these (c) 6+8i, 6+17i**15.** If z_1, z_2, z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = \left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right| = 1$, then $|z_1 + z_2 + z_3|$ is [MP PET 2004; IIT Screening 2000] (a) Equal to 1 (b) Less than 1 (c) Greater than 3 (d) Equal to 3 **16.** If $z_1 = 10 + 6i$, $z_2 = 4 + 6i$ and z is a complex number such that $amp\left(\frac{z - z_1}{z - z_2}\right) = \frac{\pi}{4}$, then the value of |z - 7 - 9i| is equal to [IIT 1990]

(b) $2\sqrt{2}$

(d) $2\sqrt{3}$

(a) $\sqrt{2}$

(c) $3\sqrt{2}$

<u>Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com</u> Phone : (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 COMPLEX NUMBERS PART 3 OF 3

17. If z_1, z_2, z_3 be three non-zero complex number, such that $z_2 \neq z_1, a = |z_1|, b = |z_2|$ and $c = |z_3|$ suppose that

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 0$$
, then $arg\left(\frac{z_3}{z_2}\right)$ is equal to

(a)
$$arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right)^2$$
 (b) $arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right)$

(b)
$$arg\left(\frac{z_2 - z_1}{z_3 - z_1}\right)$$

(c)
$$arg \left(\frac{z_3 - z_1}{z_2 - z_1}\right)^2$$
 (d) $arg \left(\frac{z_3 - z_1}{z_2 - z_1}\right)$

(d)
$$arg \left(\frac{z_3 - z_1}{z_2 - z_1} \right)$$

18. Let z and w be the two non-zero complex numbers such that |z| = |w| and $\arg z + \arg w = \pi$. Then z is equal to

[IIT 1995; AIEEE 2002]

(c)
$$\overline{w}$$

(d)
$$-\overline{w}$$

19. If $|z-25i| \le 15$, then $|\max.amp(z) - \min.amp(z)| =$

(a)
$$\cos^{-1} \left(\frac{3}{5} \right)$$

(a)
$$\cos^{-1}\left(\frac{3}{5}\right)$$
 (b) $\pi - 2\cos^{-1}\left(\frac{3}{5}\right)$

(c)
$$\frac{\pi}{2} + \cos^{-1}\left(\frac{3}{5}\right)$$

(c)
$$\frac{\pi}{2} + \cos^{-1}\left(\frac{3}{5}\right)$$
 (d) $\sin^{-1}\left(\frac{3}{5}\right) - \cos^{-1}\left(\frac{3}{5}\right)$

20. If z_1, z_2 and z_3, z_4 are two pairs of conjugate complex numbers, then $arg\left(\frac{z_1}{z_2}\right) + arg\left(\frac{z_2}{z_2}\right)$ equals

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{3\pi}{2}$$

(d)
$$\pi$$

21. Let z, w be complex numbers such that $\overline{z} + i\overline{w} = 0$ and $arg zw = \pi$. Then arg z equals

[AIEEE

(a)
$$5\pi/4$$

(c)
$$3\pi / 4$$

(d)
$$\pi/4$$

22. If $(1+x)^n = C_0 + C_1x + C_2x^2 + \dots + C_nx^n$, then the value of $C_0 - C_2 + C_4 - C_6 + \dots$ is

(b)
$$2^{n} \cos \frac{n\pi}{2}$$

(c)
$$2^n \sin \frac{n\pi}{2}$$

(c)
$$2^n \sin \frac{n\pi}{2}$$
 (d) $2^{n/2} \cos \frac{n\pi}{4}$

23. If $x = \cos \theta + i \sin \theta$ and $y = \cos \phi + i \sin \phi$, then $x^m y^n + x^{-m} y^{-n}$ is equal to

- (a) $cos(m\theta + n\phi)$
- (b) $\cos(m\theta n\phi)$
- (c) $2\cos(m\theta + n\phi)$
- (d) $2\cos(m\theta n\phi)$

24. The value of $\sum_{r=1}^{8} \left(\sin \frac{2r\pi}{9} + i \cos \frac{2r\pi}{9} \right) is$

(a)
$$-1$$

25. If a, b, c and u, v, w are complex numbers representing the vertices of two triangles such that c = (1 - r)a + rb and w = (1 - r)u + rv, where r is a complex number, then the two triangles

- (a) Have the same area (b) Are similar
- (c) Are congruent
- (d) None of these

<u>Download FREE Study Package from www.TekoClasses.com & Learn on Video www.MathsBySuhag.com</u> Phone : (0755) 32 00 000, 98930 58881 WhatsApp 9009 260 559 COMPLEX NUMBERS PART 3 OF 3

26 .	Suppose	Z_1, Z_2, Z_3	are the vertices of	of an equilateral	triangle	inscribed	in the ci	rcle z =	2. If	$Z_1 = 1 + i\sqrt{3},$	then
	values of	z_3 and z_3	z ₂ are respectively	y		[IIT 199	94]				

- (a) $-2, 1-i\sqrt{3}$ (b) $2, 1+i\sqrt{3}$
- (c) $1 + i\sqrt{3} 2$
- (d) None of these
- 27. If the complex number z_1 , z_2 the origin form an equilateral triangle then $z_1^2 + z_2^2 =$

ΠΙΤ

19831

- (a) $z_1 z_2$
- (b) $z_1 \, \overline{z_2}$
- (c) $\overline{z_2} z_1$
- (d) $|z_1|^2 = |z_2|^2$
- **28.** If at least one value of the complex number z = x + iy satisfy the condition $|z + \sqrt{2}| = a^2 3a + 2$ and the inequality $|z+i\sqrt{2}| < a^2$, then
 - (a) a > 2
- (b) a = 2
- (c) a < 2
- (d) None of these
- **29.** If z, iz and z + iz are the vertices of a triangle whose area is 2 units, then the value of |z| is

[RPET 2000]

- (a) -2
- (b) 2
- (c) 4
- (d) 8
- **30.** If $z^2 + z |z| + |z|^2 = 0$, then the locus of z is
 - (a) A circle
- (b) A straight line
- (c) A pair of straight lines (d) None of these
- 31. If $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$ then $\cos 3\alpha + \cos 3\beta + \cos 3\gamma$ equals to **[Karnataka** CET
 - 20001
 - (a) 0 (b) $\cos(\alpha + \beta + \gamma)$

 - (c) $3\cos(\alpha + \beta + \gamma)$ (d) $3\sin(\alpha + \beta + \gamma)$
- 32. If $z_r = \cos \frac{r\alpha}{n^2} + i \sin \frac{r\alpha}{n^2}$, where $r = 1, 2, 3, \dots, n$, then $\lim_{n \to \infty} z_1 z_2 z_3 \dots z_n$ is equal to

[UPSEAT 2001]

- (a) $\cos \alpha + i \sin \alpha$
- (b) $\cos(\alpha/2) i\sin(\alpha/2)$
- (c) $e^{i\alpha/2}$
- (d) $\sqrt[3]{e^{i\alpha}}$
- 33. If the cube roots of unity be $1, \omega, \omega^2$, then the roots of the equation $(x-1)^3 + 8 = 0$ are

[IIT 1979; MNR 1986; DCE 2000; AIEEE 2005]

- (a) $-1.1 + 2\omega.1 + 2\omega^2$
- (b) $-1, 1-2\omega, 1-2\omega^2$
- (c) -1, -1, -1
- (d) None of these
- **34.** If $1, \omega, \omega^2, \omega^3, \ldots, \omega^{n-1}$ are the n, n^{th} roots of unity, then $(1-\omega)(1-\omega^2), \ldots, (1-\omega^{n-1})$ equals

[MNR 1992; IIT 1984; DCE 2001; MP PET 2004]

(a) 0

- (b) 1
- (c) n
- (d) n^2
- **35.** The value of the expression $1.(2-\omega)(2-\omega^2) + 2.(3-\omega)(3-\omega^2) + ...$

 $.... + (n-1).(n-\omega)(n-\omega^2)$

where ω is an imaginary cube root of unity, is [IIT 1996]

(a)
$$\frac{1}{2}(n-1)n(n^2+3n+4)$$

(b)
$$\frac{1}{4}(n-1)n(n^2+3n+4)$$

(c)
$$\frac{1}{2}(n+1)n(n^2+3n+4)$$

(d)
$$\frac{1}{4}(n+1)n(n^2+3n+4)$$

36. If
$$i = \sqrt{-1}$$
, then $4 + 5\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{334} + 3\left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)^{365}$ is equal to **[IIT 1999]**

(a)
$$1 - i\sqrt{3}$$

(b)
$$-1 + i\sqrt{3}$$

(c)
$$i\sqrt{3}$$

(d)
$$-i\sqrt{3}$$

37. If
$$a = \cos(2\pi/7) + i\sin(2\pi/7)$$
, then the quadratic equation whose roots are $\alpha = a + a^2 + a^4$ and $\beta = a^3 + a^5 + a^6$ is

(a)
$$x^2 - x + 2 = 0$$
 (b) $x^2 + x - 2 = 0$

(b)
$$x^2 + x - 2 = 0$$

(c)
$$x^2 - x - 2 = 0$$

(d)
$$x^2 + x + 2 = 0$$

38. Let z_1 and z_2 be n^{th} roots of unity which are ends of a line segment that subtend a right angle at the origin. Then *n* must be of the form

[IIT Screening 2001; Karnataka 2002]

(a)
$$4k + 1$$

(b)
$$4k + 2$$

(c)
$$4k + 3$$

39. Let ω is an imaginary cube roots of unity then the value of

$$2(\omega + 1)(\omega^2 + 1) + 3(2\omega + 1)(2\omega^2 + 1) + \dots$$

$$+(n+1)(n\omega+1)(n\omega^2+1)$$
 is **[Orissa JEE 2002]**

(a)
$$\left[\frac{n(n+1)}{2}\right]^2 + n$$
 (b) $\left[\frac{n(n+1)}{2}\right]^2$

(b)
$$\left\lceil \frac{n(n+1)}{2} \right\rceil^2$$

(c)
$$\left\lceil \frac{n(n+1)}{2} \right\rceil^2 - n$$
 (d) None of these

40. ω is an imaginary cube root of unity. If $(1+\omega^2)^m = (1+\omega^4)^m$, then least positive integral value of m is

[IIT Screening 2004]

(a) 6

(b) 5

(c) 4

(d) 3

ANSWER

1	С	2	d	3	d	4	b	5	b
6	d	7	b	8	а	9	b	10	а
11	d	12	С	13	С	14	С	15	а
16	С	17	С	18	d	19	b	20	а
21	С	22	d	23	С	24	d	25	b
26	а	27	а	28	а	29	b	30	С
31	С	32	С	33	b	34	С	35	b
36	С	37	D	38	d	39	a	40	d

For 38 Years Que. from IIT-JEE(Advanced) & 14 Years Que. from AIEEE (JEE Main) we distributed a book in class room