USN:										
------	--	--	--	--	--	--	--	--	--	--

B.N.M. Institute of Technology

An Autonomous Institution under VTU

Department of Information Science & Engineering Continuous Internal Assessment - II

Sem: IV **Sub: Design and Analysis of Algorithms**

Max Marks: 30

Note: Answer FOUR full questions selecting one full question from each part.

Sub code: 22ISE144

Marks	COs	POs/PSOs	Bloom's Cognitive Levels
-------	-----	----------	--------------------------------

Date: 22/07/2024

Time: 11:15-12:30PM

PART A

	IANIA				
1	Make use of the below graph to find an MST using Prims and Kruskal's Algorithms.	7	CO3	PO1, PO2, PO3, PO4, PSO1	Apply
	(OR)				
	Construct a Dijkstra's algorithm and find the Single Source Shortest Path (SSSP) for the following graph.				
2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	CO3	PO1, PO2, PO3, PO4, PSO1	Apply
	(e) 3 (f)				

USN:									
------	--	--	--	--	--	--	--	--	--

PART B

	IAKID				
3	Develop an algorithm to find all pair shortest path. Apply the algorithm to find the all pair shortest path of a below shown graph using dynamic programming.	8	CO4	PO1, PO2, PO3, PO4, PO12, PSO1	Apply
	(OR)				
4	Solve Travelling Sales Person problem using with 4 cities as shown below in the graph. Develop a solution to find the tour Cost using Dynamic Programming.	8	CO4	PO1, PO2, PO3, PO4, PO12, PSO1	Apply

PART C

5	Analyze with an example how backtracking technique is used in N-Queens problem for at least 2 different values of N.						CO5	PO1, PO2, PO3, PO4, PO12, PSO1	Analyze		
	(OR)										
	Analyze the example for optimal Binary Search tree.						PO1, PO2,				
6	Key	A	В	С	D	7	CO5	PO3, PO4, PO12,	Analyze		
	Probabilities	0.4	0.3	0.2	0.1			PSO1			

USN:										
------	--	--	--	--	--	--	--	--	--	--

PART D

7	Examine the below shown graph, can the regions be colored in such a way that no two adjacent regions have the same color using 4 colors. Plot one color state space tree. A (OR)	8	CO5	PO1, PO2, PO3, PO4, PO12, PSO1	Analyze
8	Inspect the graph given below and find the min cost tour using branch and bound. A 1 B C C	8	CO5	PO1, PO2, PO3, PO4, PO12, PSO1	Analyze

CO3: Apply various problem-solving methodologies such as greedy, decrease and conquer to solve a given problem

CO4: Apply the dynamic programming to estimate the computational complexity of different algorithms CO5: Apply and analyze the efficient algorithm design approaches in a problem specific manner in terms of backtracking, space and time complexity

BNMIT/T/23-06 Page 3 of 3 **REV: 3**