Representation and Analysis of Dynamical Systems 1h20 – without documentation

The exercises are independent.

Exercise 1: Model and analysis of a pendulum

Consider a pendulum of mass m>0, friction c>0 and length l>0 and (Figure 1) and its nonlinear mechanical equation:

$$ml\ddot{\theta} = -mg\sin\theta - cl\dot{\theta}$$

Figure 1: Pendulum

Question 1.1:

Choose appropriate state variables and write the state-space representation.

$$\begin{cases} x_1 = \theta \\ x_2 = \dot{\theta} \end{cases}$$

$$\begin{cases} 0 = x_2 \\ 0 = -\frac{g}{l}\sin(x_1) - \frac{k}{m}x_2 \end{cases}$$

Question 1.2:

Find all equilibrium points of the system.

$$(x_1x_2) = (n \pi, 0)$$
 with $n = 0, \pm 1, \pm 2, ...$

Question 1.3:

Linearize the system around the equilibrium points, and determine if the system equilibria are locally asymptotically stable.

$$\frac{d}{dt}\Delta x = \begin{bmatrix} 0 & 1\\ -\frac{g}{l}(-1)^n & -\frac{k}{m} \end{bmatrix} \Delta x$$

Exercise 2: Stability issue (the 3 questions are independent)

Consider the open-loop transfer function of the system:

$$F(s) = \frac{X(s)}{U(s)} = \frac{10}{(s+1)\left(\frac{s^2}{100} + \frac{s}{10} + 1\right)}$$

Question 2.1:

Draw the approximate Bode diagrams of the system.

phase must reach -270°

frequencies $\omega_1=1$ and $\omega_2=10$ must be seen

damping >1 means no resonnant mode

Question 2.2:

The phase F(s) is equal to -135° for ω = 7 rad/s.

Compute the value of the gain Kc to obtain a controlled system with a phase margin of 45°.

Gain for $\omega = 7 \text{ rad/s} = 1.63 \Rightarrow \text{Kc} = 1/1.63 = 0.612$

Question 2.3:

Consider Kc = 1 (this is not the answer to the previous question).

Compute the static error of the closed-loop system (see Figure 2) in response to a unitary step.

error = 1/(1+Kc*Kstat)=1/11

Exercise 3: Control

Consider the system known by its transfer function:

$$F(s) = \frac{Y(s)}{U(s)} = \frac{200}{s^3 + 13 s^2 + 32 s + 20}$$

The final goal is to design a controller in order to achieve a closed loop bandwidth of approximately $4 \, rad/s$

Question 3.1:

The first goal is to design a proportional controller $C_1(s) = k_p$

We first approximate F(s) by $F_a(s) = \frac{20}{s^2 + 3 \, s + 2}$. The Bode diagram of $F_a(s)$ is given below:

3.1.1 Explain why F(s) can be approximated by $F_a(s)$ for the design of the closed loop proportional controller.

neglect the fast dynamic

fast dynamic faster than expected closed loop performance

3.1.2 Which value of k_p fulfills the requirement of a closed loop bandwidth of approximately $4\ rad/s$

$$k_p = 1$$

3.1.3 Demonstrate that the closed loop system ($C_1(s)$ and $F_a(s)$) can be approximated by a second order with natural frequency $\omega_0 \approx 4.6 \ rad/s$ and damping $\sigma \approx 0.3$

$$CL = \frac{k_p F_a(s)}{1 + k_p F_a(s)} = \frac{20}{s^2 + 3 s + 22} \approx \frac{10}{s^2 + 2 \times 0.3 \times 3.3 \times s + 4.6^2}$$

$$\omega_0 \approx 4.6; \ \sigma \approx 0.3$$

3

3.1.4 Explain why this controller with the real system ($C_1(s)$ and F(s)) will result to a much less damped controlled system

because phase is reduced (see Bode diagram)

Question 3.2

The proportional controller $C_1(s)=k_p$ is replaced by $C_2(s)=k_p\frac{1+s/4}{1+s/8}$

Explain why this controller will improve the damping of the closed loop system and won't affect that much the bandwidth.

Draw approximate Bode diagram. Show that phase \nearrow and magnitude not much affected