Idea: define regular LT properties to be those languages of infinite words over the alphabet **2**^{AP} that have a representation by a finite automata

- regular safety properties:
 NFA-representation for the bad prefixes
- other regular LT properties: representation by ω -automata, i.e., acceptors for infinite words

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

E is called regular iff the language $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A} \text{ over the alphabet } 2^{AP}$ is regular.

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subset Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

```
run for a word A_0A_1 \dots A_{n-1} \in \Sigma^*:

state sequence \pi = q_0 \ q_1 \dots q_n where q_0 \in Q_0

and q_{i+1} \in \delta(q_i, A_i) for 0 \le i < n

run \pi is called accepting if q_n \in F
```

NFA
$$\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$$

- Q finite set of states
- Σ alphabet \longleftarrow here: $\Sigma = 2^{AP}$
- $\delta: Q \times \Sigma \to 2^Q$ transition relation
- $Q_0 \subseteq Q$ set of initial states
- $F \subseteq Q$ set of final states, also called accept states

accepted language $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^*$ is given by:

 $\mathcal{L}(\mathcal{A})$ = set of finite words over Σ that have an accepting run in \mathcal{A}

ononfinal state

final state

accepted language $\mathcal{L}(A)$:

set of all finite words over $\{A, B\}$ ending with letter A

NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ over the alphabet $\Sigma = 2^{AP}$ symbolic notation for the labels of transitions:

If Φ is a propositional formula over AP then $q \xrightarrow{\Phi} p$ stands for the set of transitions $q \xrightarrow{A} p$ where $A \subseteq AP$ such that $A \models \Phi$

Example: if
$$AP = \{a, b, c\}$$
 then
$$q \xrightarrow{a \land \neg b} p \stackrel{\frown}{=} \{q \xrightarrow{A} p : A = \{a, c\} \text{ or } A = \{a\}\}$$

$$q \xrightarrow{true} p \qquad \stackrel{\frown}{=} \{q \xrightarrow{A} p : A \subseteq AP\}$$

A safety property $E \subseteq (2^{AP})^{\omega}$ is called regular iff $BadPref = \text{set of all bad prefixes for } E \subseteq (2^{AP})^+$ $BadPref = \mathcal{L}(\mathcal{A}) \text{ for some NFA } \mathcal{A}$ $\text{over the alphabet } 2^{AP}$ is regular.

$$AP = \{a, b\}$$

$$\text{symbolic notation:}$$

$$\text{true}$$

$$\text{true}$$

$$\text{true}$$

safety property E: " $a \land \neg b$ never holds twice in a row"

"Every red phase is preceded by a yellow phase" set of all infinite words $A_0 A_1 A_2 \dots$ s.t. for all $i \ge 0$: $red \in A_i \implies i \ge 1$ and $yellow \in A_{i-1}$

DFA for all (possibly non-minimal) bad prefixes

Let $E \subseteq (2^{AP})^{\omega}$ be a safety property.

BadPref = set of all bad prefixes for E

MinBadPref = set of minimal bad prefixes for E

Claim: BadPref is regular ← MinBadPref is regular

" \Leftarrow ": Let \mathcal{A} be an NFA for *MinBadPref*.

An NFA \mathcal{A}' for **BadPref** is obtained from \mathcal{A} by adding self-loops $p \xrightarrow{true} p$ to all final states p.

" \Longrightarrow ": Let \mathcal{A} be a DFA for **BadPref**.

A DFA A' for **MinBadPref** is obtained from A by removing all outgoing transitions of final states.

Every invariant is regular.

correct.

Let E be an invariant with invariant condition Φ

is a DFA for the language of all minimal bad prefixes

Example: DFA for *MUTEX*

"The two processes are never simultaneously in their critical sections"

DFA for minimal bad prefixes over the alphabet 2^{AP} where $AP = \{ crit_1, crit_2 \}$

Every safety property is regular.

wrong. e.g.,
$$AP = \{pay, drink\}$$

 $E = \text{ set of alle infinite words } A_0 A_1 A_2 ... \in (2^{AP})^{\omega}$ such that for all $j \in \mathbb{N}$:

$$\left|\left\{i \leq j : pay \in A_i\right\}\right| \geq \left|\left\{i \leq j : drink \in A_i\right\}\right|$$

- *E* is a safety property, but
- the language of (minimal) bad prefixes is not regular

```
given: finite TS T

regular safety property E

(represented by an NFA for its bad prefixes)
```

question: does $T \models E$ hold ?

method: relies on an analogy between the tasks:

- checking language inclusion for NFA
- model checking regular safety properties

language inclusion for NFA	verification of regular safety properties
$\mathcal{L}(\mathcal{A}_1) \subseteq \mathcal{L}(\mathcal{A}_2)$?	$Traces(T) \subseteq E$?
check whether $\mathcal{L}(\mathcal{A}_1) \cap (\Sigma^* \setminus \mathcal{L}(\mathcal{A}_2))$ is empty	check whether $Traces_{fin}(T) \cap BadPref$ is empty
1. complement A_2 , i.e., construct NFA $\overline{A_2}$ with $\mathcal{L}(\overline{A_2}) = \Sigma^* \setminus \mathcal{L}(A_2)$	1. construct NFA \mathcal{A} for the bad prefixes $\mathcal{L}(\overline{\mathcal{A}}) = BadPref$
2. construct NFA \mathcal{A} with $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\overline{\mathcal{A}_2})$	2. construct TS T' with $Traces_{fin}(T') = \dots$
3. check if $\mathcal{L}(A) = \emptyset$	3. invariant checking for <i>T'</i>

finite transition system
$$T=(S,Act,\rightarrow,S_0,AP,L)$$
 NFA for bad prefixes $A=(Q,2^{AP},\delta,Q_0,F)$ $A=(Q,2^{AP},A_0,G_0,$

$$\mathcal{T} = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $\mathcal{T} \otimes \mathcal{A} \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$
$$\frac{s \stackrel{\alpha}{\longrightarrow} s' \quad \wedge \quad q' \in \delta(q, L(s'))}{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} ' \langle s', q' \rangle}$$
 initial states: $S'_0 = \left\{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \right\}$ for $P \subseteq Q$ and $A \subseteq AP$: $\delta(P, A) = \bigcup_{p \in P} \delta(p, A)$

$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 transition system $A = (Q, 2^{AP}, \delta, Q_0, F)$ NFA product-TS $T \otimes A \stackrel{\text{def}}{=} (S \times Q, Act, \longrightarrow', S'_0, AP', L')$
$$\underline{s \stackrel{\alpha}{\longrightarrow} s' \quad \land \quad q' \in \delta(q, L(s'))}_{\langle s, q \rangle \stackrel{\alpha}{\longrightarrow} '\langle s', q' \rangle}$$
 initial states: $S'_0 = \{ \langle s_0, q \rangle : s_0 \in S_0, q \in \delta(Q_0, L(s_0)) \}$ set of atomic propositions: $AP' = Q$ labeling function: $L'(\langle s, q \rangle) = \{q\}$

transition system T over

 $AP = \{red, yellow\}$

DFA \mathcal{A} for the bad prefixes for $\boldsymbol{\mathcal{E}}$

T satisfies the safety property E
"every red phase is preceded by a yellow phase"

invariant condition $\neg q_F$ holds for all reachable states

definition of the product of

- a transition system $T = (S, Act, \rightarrow, S_0, AP, L)$ without terminal states
- an NFA $\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$

then the product $T \otimes A = (S \times Q, Act, \rightarrow', ...)$ is a TS

without terminal states

assumptions on the NFA A:

- A is non-blocking, i.e.,
 - $Q_0 \neq \emptyset \land \forall q \in Q \forall A \in 2^{AP}. \delta(q, A) \neq \emptyset$
- no initial state of \mathcal{A} is final, i.e., $Q_0 \cap F = \emptyset$

NFA A

equivalent NFA \mathcal{A}'

blocks for input $\{a\} \varnothing \{a\}$

non-blocking

NFA \mathcal{A} with $Q_0 \cap F \neq \emptyset$

ightarrow NFA \mathcal{A}' with $Q_0 \cap F = \emptyset$

$$\mathcal{L}(\mathcal{A}') = \mathcal{L}(\mathcal{A}) \setminus \{\varepsilon\}$$

note: if **A** is an NFA for the bad prefixes of a safety property then

$$\varepsilon \notin \mathcal{L}(\mathcal{A}) = BadPref$$

Let
$$T = (S, Act, \rightarrow, S_0, AP, L)$$
 be a transition system (without terminal states)

$$\mathcal{A} = (Q, 2^{AP}, \delta, Q_0, F)$$
 be an NFA for the bad prefixes of a regular safety property E (non-blocking and $Q_0 \cap F = \emptyset$)

The following statements are equivalent:

- (1) $T \models E$
- $(2) \quad Traces_{fin}(T) \cap \mathcal{L}(A) = \emptyset$
- (3) $T \otimes A \models \text{invariant "always } \neg F$ "

where "
$$\neg F$$
" denotes $\bigwedge_{q \in F} \neg q$

 q_1

DFA for bad prefixes

true

 q_0

safety property *E* The circuit will never

(10) (01)

ouput two ones after each other

input: finite TS **7**,

NFA \mathcal{A} for the bad prefixes of $\boldsymbol{\mathcal{E}}$

output: "yes" if $T \models E$

otherwise "no" + error indication

construct product transition system $T \otimes A$ check whether $T \otimes A \models$ "always $\neg F$ " if so, then return "yes" if not, then return "no" \leftarrow and an error indication

where F = set of final states in A

If T is a finite transition system then $Traces_{fin}(T)$ is regular.

correct. T can be transformed into an **NFA**.

