Sistemi Complessi: Modelli e Simulazioni Sciami di Droni con ARGoS

Preziosa A. 866142 Refolli F. 865955

July 23, 2024

Indice

- Introduzione
- 2 La Simulazione
- 3 Esempio
- 4 Esperimenti
 - Task Executor
 - Task Allocator
- I Limiti
- 6 Conclusioni

Introduzione

Swarm Robotics

ARGoS

Architettura di ARGoS

La Simulazione

Modello della Simulazione

Task Allocator

Varianti del Task Allocator

Nelle prove sul task allocator variano i seguenti componenti:

- Scelta iniziale target: Random o Nearest.
- Review: presente o no.
- (se review presente) Review: Probable Minority vs Probable Random

Durante le prove sul task allocator veniva usata la variante di task executor con decollo verticale, LP come potenziale e senza rumore negli attuatori.

Task Executor

Task Executor: I Potenziali

Detta d la distanza tra due corpi soggetti alla forza repulsiva (i droni), A un moltiplicatore specifico di ogni potenziale utilizzato per ottimizzarne l'intensità e D una distanza media che si vuole mantenere tra due droni, si riportano le formule per ricavare le forze di attrazione:

•
$$GP(d) = -A_{GP} \frac{|D-d|}{d}$$

•
$$JP(d) = -A_{JP} \frac{D-d}{d^2}$$

•
$$LP(d) = -A_{LP}4(\frac{D^6}{d} - \frac{D^{12}}{d})$$

Si riportano anche i valori dei coefficienti A che abbiamo utilizzato:

- $A_{GP} = 4.0$
- $A_{JP} = 16.0$
- $A_{IP} = 0.2$

Varianti del Task Executor

Nelle prove sul task executor variano i seguenti componenti:

- Potenziale: uno tra LP, GP e JP.
- Rumore nell'attuatore: presente o no.
- Tipo di decollo: **Verticale** o **Diretto**.

Durante le prove sul task executor veniva usata la variante di task allocator con ???

Esempio

Situazione Iniziale

Fase di Ascesa

Situazione Finale

Esperimenti

I Potenziali a Confronto / 1

I Potenziali a Confronto / 2

I Potenziali a Confronto / 3

Decollo Verticale e Decollo Diretto / 1

Figure: Velocità media voluta dai droni nel tempo con Decollo Verticale

Figure: Velocità media voluta dai droni nel tempo con Decollo Diretto

Decollo Verticale e Decollo Diretto / 2

Figure: Distanza minima tra droni nel tempo con Decollo Verticale

Figure: Distanza minima tra droni nel tempo con Decollo Diretto

Aggiunta di Rumore

Figure: Velocità media voluta dai droni nel tempo con Decollo Verticale e Rumore

Figure: Velocità media voluta dai droni nel tempo con Decollo Diretto e Rumore

Scelta Iniziale: Random vs Nearest / 1

Figure: Distanza media dal target nel tempo con scelta iniziale Nearest

Figure: Distanza media dal target nel tempo con scelta iniziale Random

Scelta Iniziale: Random vs Nearest / 2

Fase di Review / 1

Figure: distanza media dei droni dai target con scelta iniziale Nearest

Figure: distanza media dei droni dai target con scelta iniziale Random

Fase di Review / 2

Figure: varianza di distribuzione dei droni sui target con probabilità di cambio bassa

Figure: confronto varianza di distribuzione dei droni sui target con probabilità di cambio bassa e alta

I Limiti

ARGoS

Forze di Separazione

Modellazione delle Collisioni

Criterio di Arresto

I Limiti

Generalità

Conclusioni

Fine