UÇANDA CDARTURS UNIVERSITU FACULTY OF SCIENCE FINAL ASSESSMENT 2ND SEMESTER 2007/2008 BSc II & III DIFFERENTIAL EQUATIONS II

Date: APRIL 30th, 2008

Time: 9: 00 AM - 12:00 NOON

INSTRUCTIONS

Read through the paper carefully

Attempt **ALL** questions in Section **A** and **THREE** from Section **B** but answer (a) OR (b) from questions 8, 9 and 10.

Show all your solutions clearly and neatly.

SECTION A:

- 1. Define the following:
 - (a) A partial differential equation (PDE)
 - (b) An order of PDE
 - (c) A linear PDE
 - (d) A general solution of PDE
- 2. Find a solution of $6\frac{\partial^2 y}{\partial x^2} + \frac{\partial^2 y}{\partial x \partial y} 2\frac{\partial^2 y}{\partial y^2} = 0$ which contains two arbitrary functions.
- 3. Determine whether the given function is even, odd or neither

(a)
$$f(x) = x^3 \sin 2x$$

(b)
$$f(x) = e^{-x} \cos 3x$$

- 4. Prove the following:
 - (a) If f and g are odd functions, then fg is an even function.
 - (b) If f is an even function and g is an odd function, the fg is an odd function.
- 5. Compute the Fourier series for f(x) = x(1-x), -p < x < p
- 6. Compute the Fourier sine series for $f(x) = x^2$, $0 < x < \pi$
- 7. Compute the Fourier cosine series for $f(x) = e^x$, 0 < x < 1

SECTION B

8. Find a formal solution to the given initial-boundary value problem:

(a)
$$\frac{\partial u}{\partial t} = 5 \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < p$, $t > 0$
 $u(0, t) = u(p - t) = 0$, $t > 0$

$$u(x, 0) = x(p - x),$$
 $0 < x < p$

(b)
$$\frac{\partial u}{\partial t} = 3 \frac{\partial^2 u}{\partial x^2}$$
, $0 < x < \pi$, $t > 0$
 $\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(\pi,t) = 0$, $t > 0$
 $u(x,0) = x$, $0 < x < \pi$

9. (a) Find a formal solution to the vibrating string problem governed by the given initial-boundary value problem:

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}, \qquad 0 < x < \pi , \quad t > 0$$

$$u(0, t) = u(\pi, t) = 0, \qquad t > 0$$

$$u(x, 0) = x^2 (\pi - x), \qquad 0 < x < \pi$$

$$\frac{\partial u}{\partial t}(x, 0) = 0, \qquad 0 < x < \pi$$

(b) Find a solution to the initial value problem

$$\frac{\partial^2 u}{\partial t^2} = 9 \frac{\partial^2 u}{\partial x^2}, \quad -\infty < x < \infty$$

$$u(x,0) = \cos 2x, \quad -\infty < x < \infty$$

$$\frac{\partial u}{\partial t}(x,0) = 1 - x, \quad -\infty < x < \infty$$

10. (a) Find a formal solution to the given boundary value problem:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \quad 0 < x < \pi, \quad 0 < y < \pi$$

$$\frac{\partial u}{\partial x}(0, y) = \frac{\partial u}{\partial x}(\pi, y) = 0, \quad 0 \le y \le \pi$$

$$u(x, 0) = \cos x - 2\cos 4x, \quad 0 \le x \le \pi$$

$$u(x, \pi) = 0, \quad 0 \le x \le \pi$$

(b) Find a solution to the Dirichlet boundary value problem for a disk:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2} = 0 , \quad 0 \le r \le 2, \quad -\pi \le \theta \le \pi$$

$$u(2,0) = \cos^2 \theta, \quad -\pi \le \theta \le \pi$$