

## Muon Alignment with Tracks

Jim Pivarski

Alexei Safonov

Texas A&M University

Károly Banicz

US-CMS

Jim Bellinger

University of Wisconsin

8 December, 2008



- CSC Overlaps procedure in beam-halo data
  - Reached 300 μm accuracy!
  - Verified with photogrammetry
  - Everything makes sense in MC
  - Led to the discovery of a 10  $\mu$ m (compounded) error in the geometry description
- A first look at layer alignment with CSC Overlaps
- Wheel/disk alignment in CRAFT
  - Delivered a working system on time
  - Diagnostic of results: dependence on tracker, B error
  - Using muon residuals to measure bulk tracker misalignment
- Update on database comparison tool and photogrammetry database

## **CSC** Overlaps Alignment



- ▶ Baseline alignment procedure shown to require 10–100 pb<sup>-1</sup> for a few hundred micron precision
- Quicker alternative:
  - 1. relative alignment of chambers in each ring (CSC Overlaps)
  - 2. align whole ring relative to tracker with a small number of quality globalMuon tracks
- Particularly good for layer alignment

#### Overlaps chamber alignment:

- select tracks that pass through overlap of chambers in a ring
- require consistency in pair of segments: slope and intercept
- 3. solve system





System is over-constrained: must be consistent with a circle ("closure")



#### Interdependencies between alignment parameters are unidirectional

- 0. Fit segment of track in each chamber to  $\phi(z) = a + bz$
- 1. Align  $\varphi_y$  angles (rotation around vertical axis)

$$\Delta b \rightarrow 0$$

2. Align  $r\phi$  positions (rotation around beamline)

$$\Delta a \rightarrow 0$$

3. Align  $\varphi_z$  angles (rotation in the detector plane)

$$d(\Delta a)/dy \rightarrow 0$$



- Parameters decouple when aligned in this order (for example,  $\varphi_y$  depends only on  $\Delta b$ , but  $r\phi$  depends on  $\Delta a$  and  $\Delta b$ )
- ▶ These are all of the rigid-body parameters accessible to overlaps tracks

#### Demonstration in Monte Carlo Jim Pivarski





- Randomly misalign chambers and apply procedure using beam-halo Monte Carlo
  - statistics are roughly the same as September beam-halo
  - some chambers have more tracks, others less because  $\phi$ distribution not perfectly modeled
- Plot aligned position minus true position in simulation (resolution)
- Unaligned is grey, aligned is yellow; one histogram entry per chamber
  - ho  $\delta arphi_{
    m V} \sim 1$  mrad,  $\delta r \phi \sim 230~\mu{
    m m}$ ,  $\delta arphi_{
    m z} \sim 0.25~{
    m mrad}$







## Alignment in real data

- ► Aligned ME−2/1 and ME−3/1 using beam-halo data
- ► Compared with photogrammetry
  - only track-based alignment sensitive to  $\varphi_y$  (only two alignment pins)
- Plot corrections relative to ideal geometry for each chamber
  - track-based: solid histogram
  - photogrammetry: blue points
- Physical misalignments are  $\sim$ 2 mrad in  $\varphi_y$ , 1 mm in  $r\phi$ , and 1 mrad in  $\varphi_z$
- Corrections from independent methods follow each other closely





MF-2/1 chamber number





#### Determine accuracy from PG Jim Pivarski



8/26



- $\triangleright$  RMS difference between track-based and PG: 340  $\mu$ m, 0.42 mrad
- Photogrammetry  $r\phi$  uncertainty is  $(300/\sqrt{2}) \mu m = 210 \mu m$
- $r\phi$  errors in track-based method alone =  $\sqrt{340^2 210^2} = 270 \ \mu \text{m}$
- $\varphi_z$  errors =  $\sqrt{0.42^2 (0.3 \cdot \sqrt{2} \text{ mm}/1.85 \text{ m})^2} = 0.35 \text{ mrad}$





## Ring consistency (closure)

Jim Pivarski





- ► Each residual distribution represents the difference in alignment between two chambers
- Must sum to zero:  $(x_1 x_2) + (x_2 x_3) + ... + (x_N x_1) = 0$
- $ightharpoonup arphi_y$  and  $arphi_z$  residuals have always summed to zero ("closed")
- $ightharpoonup r\phi$  residuals closed in MC, but not in data
- ► Agreement with photogrammetry ruled out possibility of alignment mistake; pointed to error in CMSSW chamber description
  - ▶ active volume of chambers is 2.5 mm closer to beamline, *or*
  - $\blacktriangleright$  active volume is 800  $\mu\mathrm{m}$  wider than in description
- lacktriangle Oleg found 10  $\mu$ m rounding error in strip width description
  - multiplied by  ${\sim}80$  strips  $\approx$  800  $\mu\mathrm{m}$  wider active volume
- ▶ Implemented correction; ME-2/1, -3/1 closure is now perfect!

|                                |        | before (mm) | after (mm)       |
|--------------------------------|--------|-------------|------------------|
| $\sum (r\phi_i - r\phi_{i+1})$ | ME-2/1 | +14.30      | $-0.72 \pm 0.42$ |
| chamber i                      | ME-3/1 | +15.90      | $-0.36\pm0.51$   |



- ▶ Reached goal for ME2,3,4/1 accuracy in real data
- Routine algorithm can align any ring except ME3/1 (no overlaps)
  - requested new CSCOverlapsAlignmentAlgorithm package in CVS
  - important for rings to be complete (no missing chambers): possible to work around a missing chamber by applying external constraints (e.g. straight line monitors)
- ► Triggers and AlCa paths defined to collect overlaps events from beam-halo and first collisions
  - $\triangleright$  Collisions muons will provide more uniform  $\phi$  and R coverage
  - Very little data needed: this 300  $\mu$ m resolution comes from 9 minutes of beam-halo!

# Early Look at CSC Layers

### CSC layer alignment

Jim Pivarski 12/26





- ► Internal chamber data can only simultaneously determine four layers and a straight track, insensitive to shear
  - method of fixing track to layers 1 and 6:





- Overlap events allow us to add one degree of freedom per chamber
  - five layers is enough to describe complete internal alignment



#### Plots of layer residuals

Jim Pivarski 13/26



Test in Monte Carlo with 36× statistics (folded all pairs)

residuals (blue points) reproduce misalignment pattern (histogram)



Example in data: chamber 7, layer 1 and chamber 8, layer 6 are fixed



## Typical scale and resolution

Jim Pivarski 14/26



- technique requires chambers to be previously aligned
- (and must be followed by a chamber re-alignment)
- About half as large as misalignments observed in MTCC (which was ME+)
- ▶ Resolution with full beam-halo run is  $40-100~\mu{\rm m}$ , hard to see misalignments
- I have not cross-checked these with FAST measurements yet



#### Status and conclusions

- ▶ Not yet integrated into an alignment routine: just illustrative plots
- ► Layers only need to be aligned once
- ▶ Definitive CSC layer alignment will probably be done with early collisions

## Global Alignment in CRAFT

## We have globalMuons!

Jim Pivarski 16/26

- ► First real-data tests of full baseline HIP procedure:
  - select globalMuon tracks
  - refit, ignoring muon hits
  - use unbiased residuals to align wheels/disks/chambers



- ► Features of CRAFT
  - 10s–100s of thousands of globalMuons in barrel
  - thousands in endcap
  - ▶ magnetic field to select high momentum, minimize alignment errors due to  $\vec{B}$ -field error and multiple scattering
- ▶ Delivered a functional workflow and constants in time for CRAFT re-reco
  - but constants not fully understood, not used in this re-reco

## Momentum cut/extrapolation

Jim Pivarski

35000

30000

17/26



- $\triangleright$   $\vec{B}$ -field errors and multiple scattering affect low-momentum tracks
- ▶ Alignment error  $\rightarrow$  0 as  $|p| \rightarrow \infty$
- ▶ Plot vs. curvature  $(q/p_T)$ , fit around 0
  - constant = misalignment
  - antisymmetric in  $q = \vec{B}$  errors
  - symmetric in q = scattering







Endcap disk +2

Barrel wheel -2

Curvature as q/pT (1/GeV)

Barrel wheel 0

## Measuring the $\vec{B}$ -field (aside)

- Jim Pivarski 18/26
- CMS

- A method like this can also be used to measure the CMS  $\vec{B}$ -field
- " $\phi_z$  residual" ( $\approx$  local x residual divided by R) is most influenced by  $\vec{B}$ -field error at  $\eta = 0$
- ► Can derive  $\approx 0.0035$  T (0.1%) error from slope of wheel 0 alignment plot
  - average scale correction through all stations
  - demonstration of statistical power
- ▶ 10%  $\vec{B}$ -error observed between stations 3 and 4 in a more focused study (Ugo Gasparini)





▶ (Large  $\vec{B}$ -error in a small region is suppressed by  $\ell$  in the alignment plot)

radius of curvature (R)

## $\phi_z$ alignment results







Jim Pivarski 19/26



- ▶ Aligned  $\phi_z$  for all wheels/disks with the  $q/p_T \rightarrow 0$  method
- Observed a large (2.5 mrad) twist in the minus endcap
- Reproducible in all
  - ▶ stable 3.8 T runs (top plot)
    - tracker alignments (middle) (CRUZET, CRAFT-HIP, CRAFT-MillePede)
    - Muon-MillePede: same effect
- Divide into smaller bins: replace wheel number with z position (bottom plot)
  - real misalignment indicated by discontinuities
  - external bias indicated by variation inside wheels

#### Check for bias from the tracker

Jim Pivarski







20/26

► Broad distribution of cosmic rays averages over the detector at the unconstrained part of the track

▶ Plot muon  $\phi_z$  residuals vs.  $Z_{PCA}$  (black)

 Slope (0.2 mrad across TOB) may indicate a twist in the tracker which gets extrapolated to muon system

- Zijin Guo added a tracker twist by hand (0.6 mrad, blue points): easily observed
- Need to resolve muon and tracker twists simultaneously



#### z alignment results



- Jim Pivarski 21/26
- CMS

▶ Effect is large and negative: globalMuons think that the real CMS is *wider* than ideal geometry by 14 mm across barrel (0.2%)

- z-expansion is a weak mode of the tracker, hard to determine with tracks
- ► Unfortunately, muon residuals can't resolve a plausible *z*-expansion (black vs. blue: 0.1% tracker stretch)
- ► But we can see large displacements of TEC relative to TOB (discontinuity)



## Tracker z alignment study

Jim Pivarski 22/26





- ► Tracker displacements are a scale multiple of muon z residual discontinuities, about 10 times smaller (lever arm of propagation)
- $\triangleright$  Select parts of the tracker by cutting on  $R_{PCA}$  and by removing tracker hits from refit







- ▶ We have the machinery to produce constants (works in MC, see CSA08)
- Now that we have a large collection of tracks with magnetic field, we can diagnose real-data effects:
  - ightharpoonup momentum dependent ( $\vec{B}$  error, multiple scattering)
  - dependence on tracker alignment
  - propagator/refitter errors? (not ruled out)
- Comparison with hardware alignment is not the only validation
  - many cross-checks are available in track dataset
- Optimal CRAFT alignment would include standAloneMuons:



Awaiting cosmic ray-aware standAloneMuon refitter from tracking group

## **Updates on Tools**

### Updates on Tools

Jim Pivarski



- Database comparison tool (Jim Bellinger)
  - performs local comparisons of





25/26

- showing only chamber-by-chamber differences complete and in CVS (MuonGeometryArrange)
- Conversion of photogrammetry results into CSCAlignmentRcd (Karoly and Oleg)
  - for easier comparison with track-based/hardware alignments (via Jim's tool)

ME2/1 in geometry B, removing overall translation/rotation,

- for long-term archival
- most issues resolved: working on z heights of PG targets and sign conventions



- ► The CSC Overlaps procedure really works!
  - we will be able to align complete rings in 3 d.o.f. with desired precision
  - built-in consistency check revealed a geometry error that was quickly fixed
- Overlaps provide a path to CSC layer alignment
- Baseline alignment workflow is functional, but produces puzzling results
  - $\blacktriangleright$  muon alignment,  $\vec{B}$ -field commissioning, and tracker alignment, are interrelated but seperable
  - track dataset is rich enough to contain many cross-checks; standAloneMuons will reveal more
- Database comparison tool is ready for use (and is being used)
- Photogrammetry results will be uploaded to the offline database