resources/usblogo.png

1

UNIVERSIDAD SIMÓN BOLÍVAR DECANATO DE ESTUDIOS PROFESIONALES COORDINACIÓN DE MATEMÁTICAS

ESTUDIO COMPARATIVO DE TRES DEMOSTRACIONES DEL TEOREMA DE INCONSISTENCIA DE KUNEN.

Por:
Jhonny Lanzuisi Berrizbeitia
Realizado con la asesoría de:
Jesús Nieto Martínez

PROYECTO DE GRADO

Presentado ante la Ilustre Universidad Simón Bolívar como requisito parcial para optar al título de Licenciatura en Matemáticas Puras

10

11

LISTA DE SÍMBOLOS

En la lista siguiente, C es un conjunto.

14

Símbolo	Significado	
$\mathscr{P}(C)$	Conjunto de partes.	
$\sup(C)$	Supremo, es decir, $\bigcup C$	
$\operatorname{cf} C$	Cofinalidad	

LISTA DE ABREVIATURAS

	Abreviatura	Significado
	${ m ZF}$	Teoría de conjuntos de Zermelo-Fraenkel.
	\mathbf{AC}	Axioma de elección.
18	\mathbf{ZFC}	ZF al añadir AC.
	NBG	Teoría de conjuntos de Von Neumann, Bernays y Gödel.
	CH	Hipótesis del continuo: $2^{\aleph_0} = \aleph_1$.
	c. n. a.	Cerrado no acotado.

ÍNDICE GENERAL

20	1.	Noci	iones básicas	1
21		1.1.	Filtros	1
22		1.2.	Conjuntos Estacionarios	2
23		1.3.	Teoría de Modelos	5
24		1.4.	Inmersiones Elementales	5

CAPÍTULO 1

NOCIONES BÁSICAS

27

26

- Este capítulo establece varios conceptos básicos que serán necesarios más adelante. Las
- nociones de filtro, ideal, ultrafiltro y filtro κ -completo junto con los conjuntos no acotados y
- estacionarios componen las definiciones de conjuntos más elementales que harán falta.
- Luego, un rápido repaso de la teoría de modelos permitirá abordar las inmersiones elemen-
- tales, que son una pieza central del teorema de Kunen.

33 1.1 Filtros

- Esta sección se ocupa de dar las definiciones básicas de filtros, que serán necesarias a lo
- largo del texto. Los filtros caracterizan a conjuntos "grandes" dentro de un conjunto dado C.
- DEFINICIÓN 1.1. Sea C un conjunto no vacío. Un conjunto $F \subset \mathcal{P}(C)$ es un filtro si se
- 37 cumplen las siguientes condiciones:
- a) $C \in F \text{ y } \emptyset \notin F$.
- b) Si $X, Y \in F$ entonces $X \cap Y \in F$.
- c) Si $X, Y \subset C$, $X \in F$ y $X \subset Y$ entonces $Y \in F$.
- DEFINICIÓN 1.2. Sea F un filtro sobre C. F es ultrafiltro si, para todo $X \subset C$, se tiene que
- $X \in F \text{ o } X S \in F.$
- Una caracterización equivalente para ultrafiltros viene dada por la propiedad de maxima-
- 44 lidad:
- TEOREMA 1.1. Sea F un filtro sobre C. F es ultrafiltro si, y solo si, es maximal.

- La siguiente definición es central para la teoría de cardinales medibles.
- Definición 1.3. Sea κ un cardinal regular y F un filtro sobre C. F es κ -completo siempre
- 48 que dada una familia de conjuntos $\{X_{\alpha} \in F \colon \alpha < \kappa\}$, se tiene que

$$\bigcap X_{\alpha} \in F$$
.

- Un ejemplo que une los conceptos tratados hasta ahora es, como ya se mencionó, la definición de cardinal medible.
- DEFINICIÓN 1.4. Sea $\kappa > \omega$ un cardinal. κ es medible si existe un ultrafiltro κ -completo sobre κ .

53 1.2 Conjuntos Estacionarios

- El principal objetivo de esta sección es establecer un teorema de Solovay, acerca de particiones con conjuntos estacionarios, usando el teorema 1.3 de Fodor.
- Sea C un conjunto y $X \subset C$, diremos que X es no acotado en C si sup(X) = C. Si C es además un conjunto de ordinales, un ordinal límite α es punto límite de C si sup $(C \cap \alpha) = \alpha$.
- DEFINICIÓN 1.5. Sea κ un cardinal regular no numerable. Un conjunto $C \subset \kappa$ es cerrado no acotado (c. n. a.) si C es no acotado en κ y contiene a todos sus puntos límites menores que κ . Un conjunto $S \subset \kappa$ es estacionario si para cada conjunto c. n. a. $C \subset \kappa$ se tiene $S \cap C \neq \emptyset$.
- Será de utilidad saber el comportamiento de los conjuntos c. n. a. bajo intersecciones. Para este fin, definimos, dada $\langle X_{\alpha} : \alpha < \kappa \rangle$ una sucesión de subconjuntos de κ , la intersección diagonal de X_{α} como:

- TEOREMA 1.2. Sea κ un cardinal regular no numerable y $\{C_{\alpha}\}_{\alpha<\kappa}$ una familia de c. n. a. en κ , entonces:
- a) $C_{\alpha} \cap C_{\beta}$ es c. n. a. $(\alpha, \beta < \kappa)$.
- b) $\bigcap_{\alpha < \kappa} C_{\alpha}$ es c. n. a.
- c) $\triangle_{\alpha < \kappa} C_{\alpha}$ es c. n. a.
- 69 Demostración. Veamos cada parte por separado.

a) Es claro que $C \cap D$ es cerrado. Veamos que es no acotado. Sea $\alpha < \kappa$. Dado que C es no acotado, existe $\alpha_1 \in C$ tal que $\alpha_1 > \alpha$. De la misma forma, existe $\alpha_2 \in D$ tal que $\alpha_2 > \alpha_1$. Podemos seguir con este proceso para obtener una sucesión creciente:

$$\alpha < \alpha_1 < \alpha_2 < \dots$$

Sea β el límite de la sucesión de arriba. Entonces $\beta < \kappa$ y $\beta \in C$ y $\beta \in D$.

b) La demostración será por inducción. Sea $\lambda < \kappa$ y $\langle C_{\alpha} : \alpha < \lambda \rangle$ una sucesión de conjuntos c. n. a. en κ . Para los ordinales sucesores, podemos simplemente aplicar el punto a). Si λ es ordinal límite, asumiremos que el teorema es cierto para cada $\alpha < \lambda$. Podemos ahora sustituir cada C_{α} por $\bigcap_{\xi \leq \alpha} C_{\xi}$ y obtenemos una sucesión decreciente con la misma intersección. Entonces a partir de ahora:

$$C_0 \subset C_1 \subset C_2 \subset \dots$$

serán c. n. a. y $C = \bigcap_{\alpha < \lambda} C_{\alpha}$. Por la misma razón que el punto a), no es difícil ver que C es cerrado. Veamos que es no acotado. Sea $\alpha < \kappa$, construiremos una sucesión de la siguiente forma: sea $\beta_0 \in C_0$ mayor que α , y para cada $\xi < \lambda$ se tomará $\beta_{\xi} \in C_{\xi}$ tal que $\beta_{\xi} > \sup \{\beta_{\nu} : \nu < \xi\}$. Dado que κ es regular y $\lambda < \kappa$, la sucesión que se acaba de describir existe y su límite β es menor que κ . Para cada $\eta < \lambda$, β es límite de una sucesión $\langle \beta_{\xi} : \eta \leq \xi < \lambda \rangle$ en C_{η} , por lo que $\beta \in C_{\eta}$ y esto implica $\beta \in C$.

c) Llamemos D a $\triangle_{\alpha<\kappa} C_{\alpha}$. Veamos primero que D es cerrado. Sea entonces $\lambda<\kappa$ tal que $D\cap\lambda$ no está acotado en λ , esto es, que λ es punto límite de D. Tomemos $\beta\in\lambda$, entonces existe $\epsilon\in\lambda\cap D$ tal que $\beta<\epsilon$ pues $D\cap\lambda$ es no acotado. Como $\epsilon\in D$, existe C_{α} , con $\alpha<\epsilon<\lambda$, al que ϵ pertenece. Pero entonces, lo que hemos demostrado es que siempre que tomemos $\beta\in\lambda$ existe $\epsilon\in C_{\alpha}\cap\lambda$ que esta por encima de β o, equivalentemente, que $C_{\alpha}\cap\lambda$ es no acotado en λ . Al ser C_{α} cerrado tenemos $\lambda\in C_{\alpha}$ y esto implica $\lambda\in D$. Luego D es cerrado.

Solo falta ver que D es no acotado en κ . Para esto notemos que, debido al punto b), se puede reemplazar cada C_{α} por $\bigcap_{\xi \leq \alpha} C_{\xi}$ y obtenemos una sucesión decreciente $C_0 \subset C_1 \subset \ldots$ que no cambia el valor de D. Sea $\gamma \in \kappa$. Como cada C_{α} es no acotado en κ , podemos construir una sucesión $\langle \beta_n \colon n \in \omega \rangle$ de la siguiente forma: tomamos $\beta_0 \in C_0$ mayor que γ , luego dado β_n , tomamos $\beta_{n+1} \in C_{\beta_n}$ mayor que β_n . Llamemos $\beta = \lim_n \beta_n$ y tomemos $\xi < \beta$. Entonces existe $\beta_n > \xi$ y cada β_k con k > n pertenece a C_{β_n} , pues los C_{α} están encajados, por lo que $\beta \in C_{\beta_n}$ y $\beta \in C_{\xi}$. Pero esto muestra que $\beta \in D$ y

ı

que D es no acotado.

99

100

```
Definición 1.6. Una función de ordinales f en un conjunto S es regresiva, si f(\alpha) < \alpha para todo \alpha \in S.
```

TEOREMA 1.3 (Fodor). Sea f una función regresiva en un conjunto estacionario $E \subset \kappa$. Entonces existe $\alpha \in \kappa$ tal que $f^{-1}(\{\alpha\})$ es estacionario.

Demostración. Supongamos, en busca de una contradicción, que $f^{-1}(\{\alpha\})$ no es estacionario para todo $\alpha < \kappa$. Entonces existen conjuntos c. n. a. C_{α} tales que $C_{\alpha} \cap f^{-1}(\{\alpha\}) = \emptyset$, esto es, que $f(\gamma) \neq \alpha$ para todo $\gamma \in E \cap C_{\alpha}$. Si $D = \triangle_{\alpha < \kappa} C_{\alpha}$, por el teorema 1.2, D es c. n. a. en κ . Pero entonces $D \cap E \neq \emptyset$ y podemos tomar $\gamma \in D \cap E$, luego, $f(\gamma) \neq \alpha$ para todo $\alpha < \gamma$ lo que implica $f(\gamma) \geq \gamma$ y esto es una contradicción.

El siguiente es un teorema auxiliar, que será de utilidad para el teorema 1.5.

TEOREMA 1.4. Sea $E \subset \kappa$ un conjunto estacionario en κ y supongamos que todo ordinal perteneciente a E es regular no numerable. Entonces el conjunto

 $T = \{ \alpha \in E : E \cap \alpha \text{ no es un subconjunto estacionario de } \alpha \}$

113 es estacionario en κ .

Demostración. Veamos que T intersecta a todos los c. n. a. de κ . Sea C c. n. a. en κ y C' el subconjunto de los puntos límite de C. Tenemos que C' también es c. n. a. en κ por lo que podemos tomar el menor $\alpha \in C' \cap E$. Puesto que α es regular y punto límite de C, $C_{\alpha} \cap \alpha$ es un subconjunto c. n. a. de α , como también lo es $C' \cap \alpha$. Dado que α es el elemento más pequeño de $C' \cap E$, $C' \cap E \cap \alpha = \emptyset$. Esto último dice que $E \cap \alpha$ es no estacionario en α , y $\alpha \in T \cap C$.

TEOREMA 1.5 (Solovay). Sea κ un cardinal regular no numerable. Entonces cada subconjunto estacionario de κ es la unión disjunta de κ subconjuntos estacionarios.

Demostración. Sea A un subconjunto estacionario de κ . Por el teorema 1.4, asumiremos que el conjunto W consistente de todos los $\alpha \in A$ tales que α es cardinal regular y $A \cap \alpha$ no es estacionario en α , es estacionario en κ . Existe entonces un conjunto c. n. a. $C_{\alpha} \subset \alpha$ tal que $A \cap C_{\alpha} = \emptyset$. Notemos que, por definición, $W \subset A$ por lo que $C_{\alpha} \cap W = \emptyset$. Sea $\langle a_{\xi}^{\alpha} : \xi < \alpha \rangle$ la enumeración creciente de C_{α} ,

7 1.3 Teoría de Modelos

La teoría de modelos es un área relativamente joven [1, pág. 3]. No obstante, su desarrollo ha sido crucial para la teoría de conjuntos y los cardinales grandes [2, pág. xv].

Se quiere definir lo que es un modelo para un lenguaje formal \mathcal{L} . Un lenguaje \mathcal{L} es un conjunto de símbolos relacionales, funcionales y constantes. Los símbolos relacionales y funcionales pueden tener cualquier cantidad finita de argumentos, lo que se conoce usualmente como su aridad, excepto cero.

Dado un conjunto cualquiera A, interesa darle significado a los símbolos de un lenguaje \mathcal{L} en A. Esto se logra a través de una interpretación, esto es, una correspondencia que asigna a cada relación n-aria P una relación $R \subset A^n$, a cada función m-aria una función $G: A^m \to A$ y a cada constante c un elemento c a.

DEFINICIÓN 1.7. Sea \mathcal{L} un lenguaje formal. Un modelo \mathfrak{A} para \mathcal{L} se define como,

$$\mathfrak{A} = \langle A, \mathcal{F} \rangle.$$

Donde A, que es un conjunto cualquiera, es el universo de $\mathfrak A$ y $\mathcal F$ es una interpretación de los símbolos de $\mathcal L$ en A.

Dada una sentencia ϕ de un lenguaje \mathcal{L} y \mathfrak{A} un modelo para \mathcal{L} , se escribirá $\mathfrak{A} \models \phi$ si la fórmula ϕ se satisface en \mathfrak{A} . Intuitivamente, la relación \models quiere decir que ϕ es verdadera en el modelo. Una definición rigurosa de \models es posible, y requiere inducción sobre la complejidad de ϕ (véase [1, §1.3] δ [3, §12]).

Dados dos modelos $\mathfrak{A}, \mathfrak{B}$ se dirá que \mathfrak{A} es elementalmente equivalente a \mathfrak{B} , en símbolos $\mathfrak{A} \equiv \mathfrak{B}$, si toda sentencia que es verdadera en \mathfrak{A} lo es también en \mathfrak{B} y viceversa.

 $\langle \text{Explicar un poco más que es } \mathcal{L}_{\in} \text{ y los } \in \text{-modelos} \rangle$ La definición 1.7 esta dada en forma general.

Normalmente interesarán modelos de \mathcal{L}_{\in} , el lenguaje de la teoría de conjuntos, o \in -modelos de la forma $\langle A, \in \rangle$.

1.4 Inmersiones Elementales

REFERENCIAS

$\langle Arreglar formato \rangle$

151

- ¹⁵³ [1] C. C. Chang y H. J. Keisler, "Model theory", Dover ed, Dover Publications, Mineola, N.Y, 650, (2012)
- ¹⁵⁵ [2] A. Kanamori, "The higher infinite: large cardinals in set theory from their beginnings", ¹⁵⁶ 2nd ed, Springer, Berlin, 536, (2009)
- 157 [3] T. J. Jech, "Set theory", The 3rd millennium ed., Springer, Berlin; New York, 769, (2003)