Homework 2

Ex.1


```
main.py
چ
           memoized = \{0: 1, 1: 1\}
Θ
        3 - def fib(n):
             if (n in memoized):
        4
◉
               return(memoized[n])
        6
               memoized[n] = fib(n-1) + fib(n-2)
釒
        8
               return(memoized[n])
0
       10 - for i in range(40):
             print(i+1,fib(i))
JS
```

Program that generates Fibonacci numbers

```
main.py
          memoized = \{0: 1, 1: 1\}
◉
       2
       3 def fib(n):
            if (n in memoized):
       4
◉
              return(memoized[n])
              memoized[n] = fib(n-1) + fib(n-2)
釒
              print(" Golden ratio=",fib(n-1)/fib(n-2))
       8
              return(memoized[n])
➌
       10
       11 for i in range(40):
            print(i+1,fib(i))
```

The ratio of successive Fibonacci numbers approaches the golden ratio. Here's a program to explore this connection.

```
9 34
10 55
11 89
12 144
13 233
14 377
15 610
16 987
17 1597
18 2584
19 4181
20 6765
21 10946
22 17711
23 28657
24 46368
25 75025
26 121393
27 196418
28 317811
29 514229
30 832040
31 1346269
32 2178309
33 3524578
34 5702887
35 9227465
36 14930352
37 24157817
38 39088169
39 63245986
40 102334155
```

```
Golden ratio= 1.0
     Golden ratio= 2.0
     Golden ratio= 1.5
     Golden ratio= 1.6666666666666667
Golden ratio= 1.6
7 13
     Golden ratio= 1.625
     Golden ratio= 1.6153846153846154
9 34
     Golden ratio= 1.619047619047619
10 55
     Golden ratio= 1.6176470588235294
11 89
     Golden ratio= 1.6181818181818182
    Golden ratio= 1.6179775280898876
13 233
     Golden ratio= 1.6180555555555556
     Golden ratio= 1.6180257510729614
     Golden ratio= 1.6180371352785146
16 987
     Golden ratio= 1.618032786885246
     Golden ratio= 1.618034447821682
18 2584
     Golden ratio= 1.6180338134001253
    Golden ratio= 1.618034055727554
20 6765
     Golden ratio= 1.6180339631667064
    Golden ratio= 1.6180339985218033
```

n ratio= 1.618033985017358

```
Golden ratio= 1.6180339901755971
24 46368
    Golden ratio= 1.618033988205325
25 75025
    Golden ratio= 1.618033988957902
26 121393
    Golden ratio= 1.6180339886704431
  196418
    Golden ratio= 1.6180339887802426
28 317811
    Golden ratio= 1.618033988738303
     Golden ratio= 1.6180339887543225
    Golden ratio= 1.6180339887482036
31 1346269
    Golden ratio= 1.6180339887505408
32 2178309
    Golden ratio= 1.6180339887496482
33 3524578
    Golden ratio= 1.618033988749989
34 5702887
    Golden ratio= 1.618033988749859
35 9227465
    Golden ratio= 1.6180339887499087
  14930352
    Golden ratio= 1.6180339887498896
37 24157817
    Golden ratio= 1.618033988749897
     Golden ratio= 1.618033988749894
    Golden ratio= 1.6180339887498951
40 102334155
```

Thus we have found that the ratio of successive terms of a Fibonacci sequence a_{n+1}/a_n , which is equal to b_n/a_n , converges to the Golden Ratio.

the resistance R of the thermistor and the temperature T is given by

$$\frac{1}{T} = 1.129241 \times 10^{-3} + 2.341077 \times 10^{-4} \log R + 8.775468 \times *10^{-8} \left(\log R\right)^{3}$$

$$\frac{1}{19.01 + 273.15} = 1.129241 \times 10^{-3} + 2.341077 \times 10^{-4} \log R + 8.775468 \times *10^{-8} \left(\log R\right)^{3} \tag{1}$$

$$\frac{1}{18.99 + 273.15} = 1.129241 \times 10^{-3} + 2.341077 \times 10^{-4} \log R + 8.775468 \times *10^{-8} \left(\log R\right)^3 \tag{2}$$

18. 99+273-15 = 1. 129041 10-3+2.341072-10" (n/B)+8. 175468-10-8 [lo(B)]3
\$(B) = 2.34 1099-10 + (n/B) = 0, as B = 14000 Steration 1
The estimate of the root is
B ₁ = R ₀ - £(R ₀) (R ₀ - R ₋₁)
$f(R_0) = 2.341077 \cdot 10^{-4} \ln(R_0) + 8.775468 \cdot 10^{-8} \ln(R_0) \cdot 10^{-3} - 2.9293775 \cdot 10^{-3} = 2.341077 \cdot 10^{-4} \ln(1500) + 8.775468 \cdot 10^{-8} \ln(1500) \cdot 10^{-3} - 2.293775 \cdot 10^{-3} = 3.5383 \cdot 10^{-5}$
$L(R_1) = 2.341077 \cdot 10^{-4} \ln(R_1) + 8.775468 \cdot 10^{-8} \ln(R_1)^{3} - 2.293775 \cdot 10^{-3} = $ $= 2.341077 \cdot 10^{-4} \ln(4900) + 8.775468 \cdot 10^{-8} \ln(4900)^{3} - 2.293775 \cdot 10^{-3} = $
= 1.7663-10
$R_1 = 1500 - \frac{(3.5383 \cdot 10^{-5})(15000 - 14000)}{(3.5383 \cdot 10^{-5})(-1.7563 \cdot 10^{-5})} = 13014$
The absolute relative approximate error /ea/at the end of iteration;
Ral = 1 R1 - Ro 1. 100% = 13014-15000 1.100 = 15. 257%
The number of significant digits at liast correct is zero as we need an absolute relative approximate error of less than 5% for one significant digit to be correct in our result.

```
The estimate of the ract is

R3 - R1 - $(R1) - $(R2) - $(R3) -
```

```
1 clear all
 2 clc
 3 syms R
 4 % write the equation to be solved
 5 f = log(R) *2.341077*10^{-4} + log(R)^3*8.775468*10^{-8} -2.293775*10^{-3};
 6 % derivative of the function
 7 g = diff(f);
 8 n = 3; % number of decimal places
9 epsilon = 0.5*10^(2-n);
10 R0 = 15000; % initial guess
11 %%
12 □for i=1:100
13 f0 = vpa(subs(f,R,R0)); %function value at R0
14 f0 der = vpa(subs(g,R,R0)); %function derivative at R0
15 y = R0 - f0/f0 der; % update the next guess
16 | err = abs(y-R0);
17 dif err<epsilon
18 break
19 end
20 R0 = y;
21 Lend
22 %%
23 y = y - rem(y, 10^-n)
24 %fprintf('The Root is : %f ',y);
```

Ex.4

Order of convergence= 1.9617575539126844

It tends to 2 . It is quadratic.


```
1 pfunction dummy=bisc newton secant()
 2 clc;
 3 clear all;
 4
 5 \mid f=@(e^(x-pi)+cos(x)-x+pi); %function
 6 fp=0 (-sin(x)+e^(x-pi)-1); % derivative of unction
 8 tol=1e-8;
9
10 a=0;
11 b=5; % interval
12 \times 0=5;
13 disp('Root by Bisection method')
   y=bisecion(f,a,b,tol) % function calling
14
15
16 a1=0;
17 b1=5; % interval
18 disp('Root by fixed point method')
19 Cl=fixedp(g,x0,tol) % function calling
20
21 disp('Root by Newton method')
22 y2=newt(f,x0,tol)% function calling
23
24 a2=0;
25 b2=5; % interval
26
27 disp('Root by Secant method')
28 y1=secn(f,a2,b2,tol)% function calling
```



```
1 // C++ program for implementation of Newton Raphson Method for
2 // solving equations
5 using namespace std;
7 // An example function whose solution is determined using
8 // Bisection Method. The function is xn+1 = cos xn - 1 + xn
9 double func(double x)
       return cos(x)-1+x;
14 // Derivative of the above function which is 1-\sin(x)
15 double derivFunc(double x)
       return 1-sin(x);
20 // Function to find the root
21 void newtonRaphson(double x)
       double h = func(x) / derivFunc(x);
       while (abs(h) >= EPSILON)
          h = func(x)/derivFunc(x);
29
30
       cout << "The value of the root is : " << x;</pre>
35 // Driver program to test above
       double x0 = -0.1; // Initial values assumed
       newtonRaphson(x0);
```

$$\lambda n = \frac{x_n - x_{n-1}}{x_{n-1} - x_{n-2}}$$

n	χ_n	$x_n - x_{n-1}$	λn
0	2.0		
1	2.1248	0.124834	
2	2.2148	0.089944	0,720705
3	2.2805	0.065698	0.72997777
4	2.3289	0.048386	0.736468797
5	2.3647	0.035827	0,74022727272
6	2.3913	0.026624	0.74567669172
7	2.4111	0.019835	0.74567669172
8	2.4260	0.014803	0,747626262
9	2.4370	0.011062	0,74224161073
10	2.4453	0.0082745	0,752227

Anz = 0,06569	1248	0,729977777
Any = 0,048386	2198	9,73646879756
105 = 0,035827	705	0,74022727272
7 n6 = 0,026624 2,3647 - 2.36	789	0,743687150838
1n7 - 0,019835 2,3913-2.364	= 0,	74567669172
MR = 0,014803 24/11-2.39/3	= 0,	74762626262
7g = 0,041 062 2.4260 - 2.4411	= 0,	742241610738
10 = 0,0082745. 2.4370-2.4260.		7 5 2227

a)An iterative method is called convergent if the corresponding sequence converges for given initial approximations. Out function is convergent because it tends to the initial value 2.

b) Yes.

c) When the condition is satisfied, Newton's method converges, and it also converges faster than almost any other alternative iteration scheme based on other methods of coverting the original f(x) to a function with a fixed point.

Given function is fix) = x+lnx=0 Graph of fix)=x+lnx	1
(Di) x = - (n/x) = (0/x) => (p/x) = - (n/x)	
Therefore 1 pix) = 1/2/4/ in its domain. Range (-0, +00)	
(3) itie) X = X + e x	
$\frac{\langle p/x \rangle = x + e^{-x}, \langle qp'(x) \rangle = \frac{1}{2} \langle 1 - e^{-x} - 1 \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $ $= x \times \frac{\langle x + e^{-x} \rangle}{\langle x + e^{-x} \rangle} $	
$Q(x)$ $x = e^{-x} = q(x) = q(x)$	
$g'(x)=fe^{-x}/= e^{-x} =1$ $\forall x$ in the domain of f $\Rightarrow g(x)=x=e^{-x}$ will converge definitely	
9 and 3 can be used to find the rest of f.	

A Better	formula to solve this equation by Newson-Raphson meth
Newton Aa	whom method is given by:
Xp+1	= $x_n - f(x_n)$ We have $f(x) = x + ln(x)$ f(x) = 1 + 1 $a_0 = 0.5$
0.11	in the above itensitive from the we get
rutting h	=0 in the above iterative formula we get \$\(\(\lambda \) \(\lambda \) = \(\lambda \) \(\lambda \) \(\lambda \) = \(\lambda \) \(\lambda \) \(\lambda \) \(\lambda \) = \(\lambda \) \qua
7 = 10	$ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{9.5} - \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $ $ \frac{1}{f(x_0)} = \frac{0.5}{1 + \frac{1}{0.5}} = 0.5 - \frac{0.1931478}{3.} $
Second item	2/04
3 = 5	1- £1/2) - 0,56713894 - 0.567138987+6n/0.567138982) - 1 \$\frac{1}{2}\langle \langle \
	7 7/83.
	2.567/45831
Rellative	error = (x3 - x2) = 0.000006844543222. 567145831 is correct up to 5 digits. a root of the eq. x+ln(x) = 0.
13 18	a root of the eg. X+WIX) = V

```
2 from PIL import Image
  5 - if __name__ == "__main__":
              w, h, zoom = 1920,1080,1
               bitmap = Image.new("RGB", (w, h), "white")
13
               pix = bitmap.load()
              # setting up the variables according to 
# the equation to create the fractal 
cX, cY = -0.7, 0.27015 
moveX, moveY = 0.0, 0.0
20
               maxIter = 255
23
24
              for x in range(w):
    for y in range(h):
        zx = 1.5*(x - w/2)/(0.5*zoom*w) + moveX
        zy = 1.0*(y - h/2)/(0.5*zoom*h) + moveY
        i = maxIter
    while zx*zx + zy*zy < 4 and i > 1:
        tmp = zx*zx - zy*zy + cX
        zy,zx = 2.0*zx*zy + cY, tmp
        i -= 1
26
32
33
                           pix[x,y] = (i << 21) + (i << 10) + i*8
39
40
                bitmap.show()
```


n	x_n	$x_n - x_{n-1}$
0	1.00	
1	0.36788	-6.3212E - 01
2	0.69220	3.2432E - 01
3	0.50047	-1.9173E - 01
4	0.60624	1.0577E - 01
5	0.54540	-6.0848E - 02
6	0.57961	3.4217E - 02

 0.01001	0.4211L 02					
1						
(8).						
	- 6.3	2120-09	1			
12	= -	-	+ =			
	0,367	877				
7	-19	173 E-01				
1/3:						
	0,692	20 - 9,36	188			
3		01			100000	
114=	T, 05 +	7E-01	= 10	5778+-	19122	
	9,5004	2-9,69220			12177	
1		02			100000	,
15	-6,08	18 E - 02	12= -	6,9486	5291	
		1629-454	29 2		2= 2000	
16 =	3,4217	E-02	≈ 3,	42178+	1902	
	0,54540	- 960062	24		8305	
Dri	1	20 1/20	10011010	o Pour	erges bu	parly
11/	1 = 9 1	so ruc	sequera	P COTO	The state of the s	0
//	1	0 -001	boint			
	to the	fixed	pur no.			
	Test and					

We can also use Aitken extrapolation formula