Assignment 2

Due: September 13, 2012

- 1. {S.W. 2.24} Suppose Y_i is distributed i.i.d. $N(0, \sigma^2)$ for i = 1, 2, ..., n.
 - (a) Show that $\mathbb{E}[Y_i^2/\sigma^2] = 1$
 - (b) Show that $W = (1/\sigma^2) \sum_{i=1}^n Y_i^2$ is distributed χ_n^2 .
 - (c) Show that $\mathbb{E}[W] = n$. [Hint: Use your answer to (a).]
 - (d) Show that $V = Y_1/\sqrt{\frac{\sum_{i=2}^n Y_i^2}{n-1}}$ is distributed t_{n-1} .
- 2. {Goldberger 8.3} Consider these alternative populations for a random variable X:
 - Bernoulli with parameter p = 0.5.
 - Normal with parameters $\mu = 0.5$, $\sigma^2 = 0.25$.
 - Exponential with parameter $\lambda = 2$.

Let A be the event $\{0.3 < X \le 0.7\}$. For each population, find $\mathbb{E}[X]$, V(X), and Pr(A).

- 3. {S.W. 2.15} Suppose Y_i , i = 1, 2, ..., n, are i.i.d. random variables, each distributed N(10, 4).
 - (a) Compute $\Pr(9.6 \le \overline{Y} \le 10.4)$ when (i) n=20, (ii) n=100, and (iii) n=1,000.
 - (b) Suppose c is a positive number. Show that $\Pr(10 c \le \overline{Y} \le 10 + c)$ becomes close to 1.0 as n grows large.
 - (c) Use your answer in (b) to argue that \overline{Y} converges in probability to 10.
- 4. {Goldberger 9.3} Let \overline{X} denote the sample mean in random sampling, sample size n, from a population in which the random variable $X \sim \text{exponential}(\lambda)$. For convenience, let $\theta = \mathbb{E}[X] = 1/\lambda$. So $\mathbb{E}[\overline{X}] = \theta$, $V(\overline{X}) = \theta^2/n$, plim $\overline{X} = \theta$, and the limiting distribution of $\sqrt{n}(\overline{X} \theta)$ is $N(0, \theta^2)$. Consider the sample statistic $U = 1/\overline{X}$.
 - (a) Use a Slutsky theorem to show that plim $U = \lambda$.

- (b) Use the Delta method to find the limiting distribution of $\sqrt{n}(U-\lambda)$.
- (c) Use your result to approximate $\Pr(U \leq 5/2)$ in random sampling, sample size 16, from an exponential population with $\lambda = 2$.
- (d) Find the exact $Pr(U \leq 5/2)$.
- 5. {Ruud, 6.1 & 8.1} Carry out the following Monte Carlo (i.e. simulation) experiment¹:
 - Generate 100 draws of a pseudorandom variable $x_i \sim \text{Unif}[0, 10]$.
 - Generate pseudorandom variable y_i from a normal distribution with conditional mean $\mathbb{E}[y_i|x_i] = 10 x_i$, i = 1, 2, ... 100 and conditional variance 25 (or conditional standard deviation 5).
 - Compute the OLS fitted coefficients of the regression $\mathbb{E}[Y|X] = \beta_0 + \beta_1 X$
 - (a) Repeat the second two steps of the above procedure 1000 times (i.e. holding x constant) and compute the sample means of the coefficient estimates each time. How do the sample means compare with the population coefficients? Show a histogram or density estimate of each coefficient to see the distribution of $\hat{\beta}_0$ and $\hat{\beta}_1$.
 - (b) Also save s^2 for each fit and check whether it appears to be an unbiased estimate of the conditional variance of $y_i|x_i$.

¹If you choose to do this in STATA, a useful primer can be found here: http://www.learneconometrics.com/pdf/MCstata/MCstata.pdf