Linear Regression

Yuan Yao

Department of Mathematics Hong Kong University of Science and Technology

Chapter 3

Spring, 2018

About the Course

- Course web: https://yuany-pku.github.io/2018_math4432/
- Related courses:
 - Statistical Learning: Math 5470 by Bingyi JING
 - Unsupervised learning: CSIC5011 2017, Topological and Geometric Data Reduction

```
(http://math.stanford.edu/~yuany/course/2017.fall/)
```

Deep learning: Math 6380o
 (https://deeplearning-math.github.io/)

Summary of The Bias-Variance Trade-Off

Consider $y_i = f(x_i) + \epsilon_i$, i = 1, ..., n where ϵ_i are mean 0 with variance σ^2 . An estimate function from data \mathcal{D} is denoted as $\hat{f}(x; \mathcal{D})$ or simply $\hat{f}(x)$, then the expected predicted error is

$$\begin{aligned} \mathsf{EPE}(x) &= E((Y - \hat{f}(x))^2 | X = x) \\ &= E((\epsilon + f(x) - \hat{f}(x))^2 | X = x) \\ &= E\{((\epsilon + f(x) - E(\hat{f}(x)) + E(\hat{f}(x)) - \hat{f}(x))^2 | X = x\} \\ &= \sigma^2 + (f(x) - E(\hat{f}_k(x)))^2 + \mathsf{var}(\hat{f}(x)) \\ &= \underbrace{\sigma^2 + \mathsf{Bias}^2 + \mathsf{Variance}}_{\mathsf{Reducible}} \end{aligned}$$

◄□▶
■
■
■
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

- **Bias** refers to the error that is introduced by approximating a real-life problem, which may be extremely complicated, by a much simpler model.
- Variance refers to the amount by which \hat{f} would change if we estimated it using a different training data set. Since the training data are used to fit the statistical learning method, different training data sets will result in a different \hat{f} . But ideally the estimate for f should not vary too much between training sets.
- **Bias and variance trade-off**: The optimal predictive ability is the one that leads to balance between bias and variance.

Bias-variance tradeoff

Elements of Statistical Learning (2nd Ed.) @Hastie, Tibshirani & Friedman 2009 Chap 2

FIGURE 2.11. Test and training error as a function of model complexity.

General models/methods

- linear models, generalized linear models.
- K-Nearest-Neighbor (KNN)
- Kernel methods
- local polynomial regression
- regression and smoothing splines
- Tree based methods and boosting
- SVM
- projection pursuit and neural networks.

Prediction vs. Interpretability

Figure: "Occam's Razor" or "Simplicity is beauty" or "Everything else the same, bring the simplest model". Vote for parsimonious models or bet on sparsity

Yuan Yao (HKUST) Chapter 3 Spring, 2018 7 / 9

- 1 3.1. Simple linear regression
- 2 3.2 Multiple linear regression
- 3.3. The least squares estimation
- 4 3.4. The statistical properties of the least squares estimates.
- **5** 3.5 The variance decomposition and analysis of variance (ANOVA).
- **10** 3.6. More about prediction
- 3.7. The optimality of the least squares estimation.
- **8** 3.8. Assessing the regression model.
- 3.9. Variable selection.
- 10 3.10. A comparison with KNN through a simulated example

Outline

- 1 3.1. Simple linear regression
- 2 3.2 Multiple linear regression
- 3.3. The least squares estimation
- 4 3.4. The statistical properties of the least squares estimates.
- 5 3.5 The variance decomposition and analysis of variance (ANOVA).
- 6 3.6. More about prediction
- 7 3.7. The optimality of the least squares estimation.
- 8 3.8. Assessing the regression model.
- 9 3.9. Variable selection.
- 10 3.10. A comparison with KNN through a simulated example

About linear regression model

- Fundamental statistical models. (supervised learning)
- Covering one-sample, two-sample, multiple sample problems.
- Most illustrative on various important issues: fitting, prediciton, model checking, ...
- In-depth understanding of linear model helps learning further topics.
- This chapter is slightly more advanced than Chapter 3 of ISLR

The formulation

• Consider linear regression model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \qquad i = 1, ..., n$$

where y_i, x_i are the *i*-th observation of the response and covariates. Here x_i is of 1-dimension.

- Responses are sometimes called dependent variables or outputs;
- covariates called independent variables or inputs or features or predictors or regressors.
- obtain the parameter estimation and making prediction of any responses on given covariates.

Example: Advertising data

The data contains 200 observations.

Sample size: n = 200.

Sales: y_i , i = 1..., n.

TV (bugdets): $x_{i1}, i = 1, ..., n$.

Radio (budgets): x_{i2} , i = 1, ..., n.

Newspaper (budgets): x_{i3} , i = 1, ..., n.

Example: Advertising data

990

Simple linear regression

For the time being, we only consider one covariate: TV. The linear regression model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i, \qquad i = 1, ..., n$$

Estimating the coefficient by the least squares

Minimizing the sum of squares of error:

$$\sum_{i=1}^{n} (y_i = \beta_0 + \beta_1 x_{i1})^2.$$

The estimator is

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Here $x_i = x_{i1}$.

Illustrating least squares

Inference

$$\frac{\hat{\beta}_{1} - \beta_{1}}{s\sqrt{1/\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}} \sim t_{n-2}$$

$$\frac{\hat{\beta}_{0} - \beta_{0}}{s\sqrt{1/n + \bar{x}^{2}/\sum_{i=1}^{n}(x_{i} - \bar{x})^{2}}} \sim t_{n-2}$$

where

$$s^2 = \mathsf{RSS}/(n-2)$$

is an unbiased estimator of the variance of the error, and, setting $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ as the so-called fitted value,

$$RSS = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

are so-called residual sum of squares.

Details would be provided in multiple linear regression.

Result of the estimation

TABLE 3.1. (from ISLR) The advertising data: coefficients of the LSE for the regression on number of units sold on TV advertising budget. An increase of \$1000 in the TV advertising budget would cause an increase of sales of about 50 units.

	Coefficient	Std.error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Yuan Yao (HKUST) Chapter 3 Spring, 2018 18 / 93

Outline

- 1 3.1. Simple linear regression
- 2 3.2 Multiple linear regression
- 3.3. The least squares estimation
- 4 3.4. The statistical properties of the least squares estimates.
- 5 3.5 The variance decomposition and analysis of variance (ANOVA).
- 6 3.6. More about prediction
- 7 3.7. The optimality of the least squares estimation.
- 8 3.8. Assessing the regression model.
- 9 3.9. Variable selection.
- 10 3.10. A comparison with KNN through a simulated example

Linear models formulation

Consider linear regression model:

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip} + \epsilon_i, \qquad i = 1, \dots, n$$
 (2.1)

where $y_i, x_i = (x_{i1}, ..., x_{ip})$ are the *i*-th observation of the response and covariates.

- Responses are sometimes called dependent variables or outputs;
- covariates called independent variables or inputs or regressors.
- obtain the parameter estimation and making prediction of any responses on given covariates.

Example: Advertising data

Now, we consider three covariates: TV, radio and newspapers.

The number of covarites p = 3.

The linear regression model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} + \epsilon_i, \qquad i = 1, ..., n$$

Estimating the coefficient by the least squares

Minimizing the sum of squares of error:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \beta_2 x_{i2} - \beta_3 x_{i3})^2.$$

which is

$$\sum_{i=1}^n (y_i - \beta^T x_i)^2$$

The expression of the LSE of β , as a vector, has a simple matrix expression, even though the estimator of the individual $\hat{\beta}_i$ is not eqaully simple.

Illustrating the least squares

Result of the estimation

TABLE 3.9. (from ISLR) The advertising data: coefficients of the LSE for the regression on number of units sold on TV, radio and newspaper advertising budgets.

	Coefficient	Std.error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Yuan Yao (HKUST) Chapter 3 Spring, 2018 24 / 93

Outline

- 1 3.1. Simple linear regression
- 2 3.2 Multiple linear regression
- 3.3. The least squares estimation
- 4 3.4. The statistical properties of the least squares estimates.
- 5 3.5 The variance decomposition and analysis of variance (ANOVA).
- 6 3.6. More about prediction
- 7 3.7. The optimality of the least squares estimation.
- 8 3.8. Assessing the regression model.
- 9 3.9. Variable selection.
- 10 3.10. A comparison with KNN through a simulated example

Notations

With slight abuse of notation, in this chapter, we use

$$\mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{pmatrix}$$
$$= \begin{pmatrix} \mathbf{1} : \mathbf{x}_1 : \mathbf{x}_2 : \dots : \mathbf{x}_p \end{pmatrix}.$$

Here a column of ones, $\mathbf{1}$, is added, which corresponds to the intercept β_0 . Then \mathbf{X} is a n by p+1 matrix.

Recall that

$$\mathbf{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \quad \beta = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}, \quad \epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix}, \quad \mathbf{x}_j = \begin{pmatrix} x_{1j} \\ \vdots \\ x_{nj} \end{pmatrix}$$

The least squares criterion

The least squares criterion is try to minimize the sum of squares:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_p x_{ip})^2.$$

Using matrix algebra, the above sum of squares is

$$\|\mathbf{y} - \mathbf{X}\beta\|^2 = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta).$$

The LSE, fitted values and residuals

By some linear algebra calcuation, the least squares estimator of β is then

$$\hat{eta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}.$$

Then

$$\hat{\mathbf{y}} = \mathbf{X}\hat{eta}$$

is called the fitted values; viewed as the predicted values of the reponses based on the linear model.

Terminology and notation

$$\mathbf{y} - \hat{\mathbf{y}}$$

are called residuals, which is denoted as $\hat{\epsilon}$. The sum of squares of these residuals

$$\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \|\mathbf{y} - \hat{\mathbf{y}}\|^{2}.$$

- The zero-correlation of two variables from multivariate normal random variable implies their independence.
- Suppose $\mathbf{z} = (z_1, ..., z_n)^T$, and z_i are iid standard normal random variables.
- Let $z_1 = Az$ and $z_2 = Bz$ with A and B are two nonrandom matrices.
- Then

$$cov(\mathbf{z}_1, \mathbf{z}_2) = \mathbf{AB}^T = 0$$

implies the independence between z_1 and z_2 .

• We also call \mathbf{z}_1 and \mathbf{z}_2 orthogonal.

Orthogonality

• The residual $\hat{\epsilon}$ is orthogonal to all columns of **X**, i.e, all $\mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_p$. This can be seen by

$$\mathbf{X}^{T}\hat{\epsilon} = \mathbf{X}^{T}\mathbf{y} - \mathbf{X}^{T}\mathbf{X}\hat{\beta}$$

$$= \mathbf{X}^{T}\mathbf{y} - \mathbf{X}^{T}\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{y} = 0.$$

• The residual vector $\hat{\epsilon}$ is orthogonal to the hyperplane formed by vectors $\mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_p$ in n dimensional real space.

A proof of the LSE

$$\begin{aligned} & \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2 \\ &= \|\mathbf{y} - \mathbf{X}\hat{\beta} - \mathbf{X}(\mathbf{b} - \hat{\beta})\|^2 \\ &= \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2 + \|\mathbf{X}(\mathbf{b} - \hat{\beta})\|^2 \quad \text{by orthogonality} \\ &\geq \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2 \end{aligned}$$

- The fitted value $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$, which, also as a vector in n dimensional real space, is a linear combination of the vectors $\mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_p$, with the p+1 linear combination coefficients being the components of $\hat{\beta}$.
- The fitted values are orthogonal to the residuals, i.e., $\hat{\mathbf{y}}$ is orthogonal to $\mathbf{y} \hat{\mathbf{y}}$ or

$$\hat{\mathbf{y}}^T(\mathbf{y} - \hat{\mathbf{y}}) = 0.$$

This implies

$$\|\mathbf{y}\|^2 = \|\hat{\mathbf{y}}\|^2 + \|\mathbf{y} - \hat{\mathbf{y}}\|^2.$$

The projection matrix

- Let $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$.
- This *n* by *n* matrix is called projection matrix or hat matrix.
- It has the property that, for any vector, \mathbf{b} in n dimensional real space $\mathbf{H}\mathbf{b}$ projects \mathbf{b} onto the linear space formed by the columns of \mathbf{X} .
- Hb is in this linear space formed by the columns of X.
- And $\mathbf{b} \mathbf{H}\mathbf{b}$ is orthogonal to this space.

The least squares projection

Elements of Statistical Learning (2nd Ed.) © Hastie, Tibshirani & Friedman 2009 Chap 3

FIGURE 3.2. The N-dimensional geometry of least squares regression with two predictors. The outcome vector \mathbf{y} is orthogonally projected onto the hyperplane spanned by the input vectors \mathbf{x}_1 and \mathbf{x}_2 . The projection $\hat{\mathbf{y}}$ represents the vector of the least squares predictions

∢ ≣ →

symmetric and idempotent

- projection matrix **H** is symmetric and idempotent; i.e., $\mathbf{H}^2 = \mathbf{H}$.
- eigenvalues are either 1 or 0.
- All eigenvectors associated with eigenvalue 1 form a space, say \mathcal{L}_1 ;
- Those with eigenvalue 0 form the orthogonal space, \mathcal{L}_0 , of \mathcal{L}_1 .
- Then **H** is the projection onto space \mathcal{L}_1 and I H is the projection onto \mathcal{L}_0 , where I is the n by n identity matrix.

Matrix decomposition

• Suppose, for convenience $n \ge p$, any matrix n by p matrix A can always be decomposed into

$$A = UDV^T$$

where **U** is $n \times p$ orthogonal matrix, **D** is a $p \times p$ diagonal matrix and **V** is $p \times p$ orthogonal matrix. In particular

$$X = UR$$

where R = DV.

• If A and B^T are two matrices of same dimension, then

$$trace(AB) = trace(BA).$$

Outline

- 1 3.1. Simple linear regression
- 2 3.2 Multiple linear regression
- 3.3. The least squares estimation
- 4 3.4. The statistical properties of the least squares estimates.
- 5 3.5 The variance decomposition and analysis of variance (ANOVA).
- 6 3.6. More about prediction
- 7 3.7. The optimality of the least squares estimation.
- 8 3.8. Assessing the regression model.
- 3.9. Variable selection.
- 10 3.10. A comparison with KNN through a simulated example

Model assumptions

- The linear regression model general assumes the error ϵ_i has zero conditional mean and constant conditional variance σ^2 , and the covariates x_i are non-random;
- Independence across the observations
- A more restrictive (but common) assumption: the errors follow normal distribution, i.e, $N(0, \sigma^2)$.

Statistical properties of LSE

$$\hat{\beta} \sim \mathcal{N}(\beta, \sigma^2(\mathbf{X}^T\mathbf{X})^{-1});$$

$$\mathsf{RSS} = \sum_{i=1}^n \hat{\epsilon}_i^2 = \sum_{i=1}^n (y_i - \hat{y}_i)^2 \sim \sigma^2 \chi_{n-p-1}^2$$

$$\hat{\beta} \text{ and RSS are independent}$$

$$s^2 = \mathsf{RSS}/(n-p-1) \text{ unbiased estimate of } \sigma^2$$

$$\frac{\hat{\beta}_j - \beta_j}{s\sqrt{c_{jj}}} \sim t_{n-p-1}$$

$$\frac{(\hat{\beta}-\beta)^T(\mathbf{X}^T\mathbf{X})(\hat{\beta}-\beta)/p}{s^2} \sim F_{p+1,n-p-1}$$

where $c_{00}, c_{11}, ..., c_{pp}$ are the diagonal elements of $(\mathbf{X}^T\mathbf{X})^{-1}$.

Understanding

$$cov(\hat{\beta}, \hat{\epsilon})$$

$$= cov(\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\epsilon, (\mathbf{I} - \mathbf{H})\epsilon)$$

$$= \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^Tvar(\epsilon)(\mathbf{I} - \mathbf{H})$$

$$= 0$$

because **H** is idempotent.

Confidence intervals

For example,

$$\hat{\beta}_{j} \pm t_{n-p-1}(\alpha/2)s\sqrt{c_{jj}}$$

is a confidence interval for β_j at confidence level $1-\alpha$. Here $t_{n-p-1}(\alpha/2)$ is the $1-\alpha/2$ percentile of the *t*-distribution with degree of freedom n-p-1.

◆ロ > ◆昼 > ◆ き > ・ き ・ か へ ○

Confidence intervals

For a given value of input \mathbf{x} which is a p+1 vector (the first component is constant 1), its mean response is $\beta^T \mathbf{x}$. The confidence interval for this mean response is

$$\hat{\beta}^T \mathbf{x} \pm t_{n-p-1} (\alpha/2) s \sqrt{\mathbf{x}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}}$$

The confidence interval for β_j is a special case of the above formula by taking \mathbf{x} as a vector that all zero except the (j+1) entry corresponding β_j . (Because of β_0 , β_j is at the j+1th position of $\hat{\beta}$.)

Prediction interval

- To predict the actual response y, rather than its mean, we would use the same point estimator $\hat{\beta}^T \mathbf{x}$, but the accuracy is much decreased as more uncertainty in the randomness of the actual response from the error is involved.
- The confidence interval, often called prediction interval, for y is

$$\hat{\beta}^T \mathbf{x} \pm t_{n-p-1}(\alpha/2) s \sqrt{1 + \mathbf{x}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}}.$$

Outline

- 1 3.1. Simple linear regression
- 2 3.2 Multiple linear regression
- 3.3. The least squares estimation
- 4 3.4. The statistical properties of the least squares estimates.
- 5 3.5 The variance decomposition and analysis of variance (ANOVA).
- 6 3.6. More about prediction
- 7 3.7. The optimality of the least squares estimation.
- 8 3.8. Assessing the regression model.
- 9 3.9. Variable selection.
- 10 3.10. A comparison with KNN through a simulated example

Variance decomposition

Recall that

$$\|\mathbf{y}\|^2 = \|\hat{\mathbf{y}}\|^2 + \|\mathbf{y} - \hat{\mathbf{y}}\|^2.$$

The common variance decomposition takes a similar form, but leaving out sample mean,

$$\|\mathbf{y} - \bar{y}\|^2 = \|\hat{\mathbf{y}} - \bar{y}\|^2 + \|\mathbf{y} - \hat{\mathbf{y}}\|^2;$$

which is often written as

$$SS_{total} = SS_{reg} + SS_{error}$$
.

Understanding

- SS_{total} , the total sum of squares, measures the total variation in response.
- SS_{reg} , the sum of squares due to regression or, more precisely, due to the inputs, measures variation in response explained by that of the inputs.
- SS_{error}, the sum of squares due to error, measures the size of randomness due to error or noise.

The ANOVA table

Source of Variation	${\sf SumOfSquares}$	Degree of Freedom	Mean Squared	F-statistic
Regression Error Total	SS _{reg} SS _{error} SS _{total}	$p \\ n-p-1 \\ n-1$	MS _{reg} MS _{error}	MS_{reg}/MS_{error}

ANOVA).

where $\mathsf{MS}_{reg} = \mathsf{SS}_{reg}/p$ and $\mathsf{MS}_{error} = \mathsf{SS}_{error}/(n-p-1)$. And the F-statistic follows $F_{p,n-p-1}$ distribution under the hypothesis that $\beta_1 = \beta_2 = ...\beta_p = 0$, i.e., all inputs are unrelated with the output. The p-value is the probability for the distribution $F_{p+1,n-p-1}$ taking value greater than the value of the F-statistic.

Yuan Yao (HKUST) Chapter 3 Spring, 2018 50 / 9

General variance decomposition

- The above ANOVA is a special case of a general variance decomposition.
- Let \mathcal{L} be the linear space spanned by $\mathbf{1}, \mathbf{x}_1, ..., \mathbf{x}_p$, all columns of \mathbf{X} .
- The linear model assumption:

$$\mathbf{y} = \mathbf{X}\beta + \epsilon$$

can be written as $E(y) = X\beta$, or

$$E(y) \in \mathcal{L}$$
.

- The fitted values $\hat{\mathbf{y}}$ is projection of \mathbf{y} onto \mathcal{L} .
- $s^2 = \|\mathbf{y} \hat{\mathbf{y}}\|^2/(n-p-1)$ is the unbiased estimator of σ^2 .