ESTUDIOS DE EMISIONES

MÉTODOS EPA Método 4. Determinación de humedad

Método 4 EPA-USA. Contenido de humedad

El propósito de este método es extraer una muestra de gas de la chimenea de la fuente a una tasa constante; la humedad es removida de los gases efluentes y determinada volumétrica o gravimétricamente,

Método 4 EPA-USA. Métodos aproximados

a) El gas de chimenea está saturado:,

Si los gases se encuentran saturados (gotas), solamente se requiere medir la temperatura. Es la temperatura a la cual se obtiene la mayor cantidad de agua posible en un gas saturado.

$$B_{ws} = \frac{\text{SVP}}{P_{bar} + \frac{P_g}{13.6}}$$

Método 4 EPA-USA. Métodos aproximados

Temperature	Pressure	Temperature	Pressure	Temperature	Pressure	Temperature	Pressure
(degrees C)	(mmHg)						
0	4.6	25	23.8	50	92.5	75	289.1
1	4.9	26	25.2	51	97.2	76	301.4
2	5.3	27	26.7	52	102.1	77	314.1
3	5.7	28	28.3	53	107.2	78	327.3
4	6.1	29	30	54	112.5	79	341
5	6.5	30	31.8	55	118	80	355.1
6	7	31	33.7	56	123.8	81	369.7
7	7.5	32	35.7	57	129.8	82	384.9
8	8	33	37.7	58	136.1	83	400.6
9	8.6	34	39.9	59	142.6	84	416.8
10	9.2	35	42.2	60	149.4	85	433.6
11	9.8	36	44.6	61	156.4	86	450.9
12	10.5	37	47.1	62	163.8	87	468.7
13	11.2	38	49.7	63	171.4	88	487.1
14	12	39	52.4	64	179.3	89	506.1
15	12.8	40	55.3	65	187.5	90	525.8
16	13.6	41	58.3	66	196.1	91	546
17	14.5	42	61.5	67	205	92	567
18	15.5	43	64.8	68	214.2	93	588.6
19	16.5	44	68.3	69	223.7	94	610.9
20	17.5	45	71.9	70	233.7	95	633.9
21	18.7	46	75.7	71	243.9	96	657.6
22	19.8	47	79.6	72	254.6	97	682.1
23	21.1	48	83.7	73	265.7	98	707.3
24	22.4	49	88	74	277.2	99	733.2
						100	760

Método 4 EPA-USA. Métodos aproximados

b) El gas de la chimenea está insaturado (T bulbo seco, bulbo húmedo):

Se exponen los dos termómetros a los gases de la chimenea, la lectura se realiza cuando las temperaturas se estabilicen.

El contenido de humedad se determina así,

$$B_{ws} = \frac{V_p}{P_s}$$

$$V_p = V_{ps} - \left((0.000367) P_s \left(t_d - t_w \right) \left[1 + \frac{(t_w - 32)}{1571} \right] \right)$$

 B_{ws} = fracción volumétrica de agua recogida, ml. V_p = presión de vapor, in Hg. P_s = presión absoluta en el punto de medición, in Hg. V_{ps} = Presión de vapor saturado, in Hg. t_d = T bulbo seco, F. t_w = T bulbo humedo, F

Método 4 EPA-USA. Procedimiento estándar

No.	tiempo	t_s	ΔH	Volumen	ΔV	t_{mi}	t_{mo}	$ t_{imp} $
	(min)	(F)	(in H ₂ O)	(ft 3)	(ft^3)	(F)	(F)	(F)
	0	129		517.321				
1	5	133	1	519.950	2.63	68	68	68
2	10	136	1	522.590	2.64	72	69	65
3	15	137	1	525.210	2.62	76	70	65
4	20	137	1	527.850	2.64	78	71	66
5	25	137	1	530.490	2.64	80	72	66
6	30	138	1	533.100	2.61	84	73	65
7	35	138	1	535.730	2.63	86	75	65
8	40	137	1	538.360	2.63	88	75	66
9	45	137	1	541.000	2.64	90	76	67
10	50	135	1	543.620	2.62	93	78	67
11	55	130	1	546.250	2.63	95	79	68
12	60	129	1	548.860	2.61	96	80	68

Aceptable
$$\Delta V_m = 0.9 < \frac{V \text{ final} - V \text{ inicial}}{\text{No. puntos}} < 1.1$$

Método 4 EPA-USA. Procedimiento estándar

Volumen de vapor de agua condensada

$$V_{wc(std)} = \frac{(V_f - V_i)\rho_w RT_{std}}{P_{std}M_w} = k_1(V_f - V_i)$$

Volumen de vapor de agua en silica gel

$$V_{wsg(std)} = \frac{(W_f - W_i)RT_{std}}{P_{std}M_w} = k_2(W_f - W_i)$$

donde ρ_w es la densidad del agua (0.9982 g/ml o 0.002201 lb/ml), R es la constante gases ideales (0.06236 mm. Hg m³/ g-mol K para unidades métricas o 21.85 in. Hg ft³/ lb-mol para unidades inglesas), M_w el peso molecular del agua (18.0 g/g-mol o 18.0 lb/lb-mol). k_1 es 0.04795 ft^3/ml en unidades inglesas y 0.001356 m^3/ml en unidades métricas. k_2 es 0.0480 ft^3/g en unidades inglesas y 0.001358 m^3/g en unidades métricas.

Método 4 EPA-USA. Procedimiento estándar

Volumen de gas seco corregido a condiciones estándar

Corregir el volumen de gas registrado por el medidor de gas seco a condiciones estándar (25°C y 760 mm Hg o 77°F y 29.92 in Hg) empleando la ecuación

$$V_{m(std)} = V_m Y \frac{T_{std}}{T_m} \frac{P_m}{P_{std}} = k_3 V_m Y \frac{P_m}{T_m}$$

donde K_3 es 0.39230 K/mm. Hg en unidades métricas (17.94 R/in. Hg en unidades inglesas)

Volumen de vapor de agua condensado

$$B_{ws} = \frac{V_{wc(std)} + V_{wsg(std)}}{V_{wc(std)} + V_{wsg(std)} + V_{m(std)}}$$

Método 4 EPA-USA. Ejercicio

* Determinar el contenido de humedad de un estudio de emisiones que utiliza el Método 4 EPA-USA estándar. Los datos obtenidos son los siguientes:

Volumen inicial del medidor de gas seco: 517.321 ft³

Volumen final del medidor de gas seco: 548.860 ft³

Volumen inicial de agua en burbujeadores: 420 ml

Volumen final de agua en burbujeadores: 475 ml

Peso inicial de silica gel: 220 g

Peso final de silica gel: 234 g

Presión barométrica es 22.04 in Hg

La constante de calibración del medidor de gas seco (Y) es 1.0

La temperatura en el medidor 78 °F

Método 4 EPA-USA. Ejercicio

$$V_{wc(std)} = \frac{(V_f - V_i)\rho_w RT_{std}}{P_{std}M_w} = 0.04795(475 - 420) = 2.63725 \text{ ft}^3$$

$$V_{wsg(std)} = \frac{(W_f - W_i)RT_{std}}{P_{std}M_w} = 0.0480(234 - 220) = 0.672 \text{ ft}^3$$

$$V_{m(std)} = k_3 V_{m(std)} Y \frac{P_m}{T_m} = (548.860 - 517.321) 17.94 (1.0) \frac{(22.04 + 1/13.6)}{(78 + 460)} = 23.256 \text{ ft}^3$$

$$B_{ws} = \frac{V_{wc(std)} + V_{wsg(std)}}{V_{wc(std)} + V_{wsg(std)} + V_{m(std)}} = \frac{2.637 + 0.672}{2.637 + 0.672 + 23.256} = 0.1245$$