Problem 1 (a) Calculate the image of the sequence (3,0,2) under Gödel numbering and show your work. If this image does not exist, prove it.

Answer:

$$3+1$$
 $3+1$
 $3+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$
 $5+1$

(b) Calculate the pre-image of the number 2940 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

$$2940 = 10.094 = 10.$$

(c) Calculate the pre-image of the number 3850 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

LAST NAME:

FIRST NAME:

(d) Let m be the image of the sequence

$$s = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$

under Gödel numbering. Represent the pre-image of the number 78 m as a function of the (components of) sequence s. If such a representation does not exist, prove it.

Answer:

$$98m = 6.13 = 2.3.13$$

answer:

[(x,+1, (x2+1, (x3, (x4 x5) x6+1)

(e) Let n be the image of the sequence

$$\langle x_1, x_2, x_3, x_4 \rangle$$

under Gödel numbering. Represent the image of the sequence $(x_1+2, x_2+1, x_3, x_4, 1)$

as a function of n. If such a representation does not exist, prove it.

Answer:

answer

n.22.3.11=

= 12.121m

=11452m

(a) Calculate the image of the se-Problem 1 quence $\langle 5, 0, 1 \rangle$ under Gödel numbering and show your work. If this image does not exist, prove it.

Answer:

$$2^{5+1} \cdot 3^{0+1} \cdot 5^{1+1}$$
 $2^{6} \cdot 3^{0} \cdot 5^{2} = 10^{2} \cdot 3^{0} \cdot 16$
 $= 148007$

(b) Calculate the pre-image of the number 2730 under Gödel numbering and show your work. If this pre-image does not exist, prove it.

Answer:

(c) Calculate the pre-image of the number 6930 under Gödel numbering and show your work. If this preimage does not exist, prove it.

Answer:

LAST NAME:

FIRST NAME:

(d) Let n be the image of the sequence

$$\langle x_1, x_2, x_3, x_4 \rangle$$

under Gödel numbering. Represent the image of the sequence $\langle x_1+1, x_2, x_3+1, x_4, 2 \rangle$

as a function of n. If such a representation does not exist, prove it.

Answer:

Mo2.5011

(e) Let m be the image of the sequence

$$s = \langle x_1, x_2, x_3, x_4, x_5, x_6 \rangle$$

under Gödel numbering. Represent the pre-image of the number 143 m as a function of the (components of) sequence s. If such a representation does not exist, prove it.

Answer:

143 = 13001)

(4, 42, 43, 44, 45+1, 46+1)

LAST NAME:

FIRST NAME:

 $\left(cd\cup baa\cup\left(c\left(c\cup d\right)c\right)^{*}\right)\left(c\left(da\right)^{*}\cup bd^{*}a\right)^{*}$

(a) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

Answer:

(c) State the cardinality of the set L. (If L is a finite set, state the exact number of elements of L. Otherwise, state that L is infinite and specify whether it is countable or not.)

Answer:

Lis infinite and

(b) Write a complete formal definition of a contextfree grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

V= 25, A, D, B, E, FJ, 2 = 29,6,0,d3 G= (V, E, P, S)

7: 5-E APS A ecd baa D D-ON/DD/ccc/cdc B-EA/BB/CE/bFa E, + daEIN F-ebFIA

LAST NAME:

 $(a (b \cup c)^* \cup db^*c)^* (ab \cup dcc \cup (abaa)^*)$

(a) Write a complete formal definition of a contextfree grammar that generates the language L. If such a grammar does not exist, state it and explain why.

(c) State the cardinality of the set L. (If L is a finite set, state the exact number of elements of L. Otherwise, state that L is infinite and specify whether it is countable or not.)

Answer:

Answer: G=(V, &, P, S

e MIAA/aD/d

(b) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

Answer:

LAST	NAME:		

FIRST NAME:

Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c\}$ whose length is not greater Problem 3 than 3.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c\}$ where the number of a's is not less than 2.

(a) Write a regular expression that represents the language L_1 . If such a regular expression does not exist, state it and explain why.

(aubucun) (aubucun) (aubucun)

(b) Write a regular expression that represents the language L_2 . If such a regular expression does not exist, state it and explain why.

Answer:

(bue /a (bue) a (aubue)

(c) Write a regular expression that represents the language $L_1 \cup L_2$. If such a regular expression does not exist, state it and explain why.

aubucus Kaubucus Maubucus) U (Suc Ja a Couc) a Caubuc Ja

(d) Write a regular expression that represents the language L_1L_1 . If such a regular expression does not exist, state it and explain why.

aubucus)(aubucus)(aubucus)(aubucus). Fubucun) (aubucun)

(e) State the cardinality of the set L_1 . (If L_1 is finite set, state the exact number of elements of L_1 . Otherwise, state that L_1 is infinite and specify whether it is countable or not.)

Answer:

1+3+9+27=

(f) State the cardinality of the set L_2 . (If L_2 is a finite set, state the exact number of elements of L_2 . Otherwise, state that L_2 is infinite and specify whether it is countable or not.)

infinite and counteble

(g) State the cardinality of the set L_1^* . (If L_1^* is a finite set, state the exact number of elements of L_1^* . Otherwise, state that L_1^* is infinite and specify whether it is countable or not.)

Answer:

supplied and conneple

(h) State the cardinality of the set $\mathcal{P}(L_2)$ (set of subsets of L_2). (If $\mathcal{P}(L_2)$ is a finite set, state the exact number of its elements. Otherwise, state that $\mathcal{P}(L_2)$ is infinite and specify whether it is countable or not.)

Answer:

inlimite and uncounteble

LAST NAME:	

DIDOT	NIAME.
FIRST	NAME:

Let L_1 be the set of exactly those strings over the alphabet $\{a, b, c\}$ whose length is equal to Problem 3 3 or 4.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c\}$ where the number of c's is not less than 3.

(a) Write a regular expression that represents the language L_1 . If such a regular expression does not exist, state it and explain why.

(aubuc) (aubuc) (aubuc) (aubucus)

(b) Write a regular expression that represents the language L_2 . If such a regular expression does not exist, state it and explain why.

(aub)ci(aub) ci(aub) c (aubue) Answer:

(c) Write a regular expression that represents the language L_1L_1 . If such a regular expression does not exist, state it and explain why.

(aubuc Kaubuc Kaubuc) (aubuc (aubuc) (aubuc) (aubuc) (aubuc) (aubuc) (aubuc) (aubuc)

(d) Write a regular expression that represents the language $L_1 \cup L_2$. If such a regular expression does not exist, state it and explain why.

(aubuc)(aubuc)(aubuc) (aubucu) (aub) & c (aub) & c (aub) oc (aubuc) & (e) State the cardinality of the set L_1 . (If L_1 is finite set, state the exact number of elements of L_1 . Otherwise,

state that L_1 is infinite and specify whether it is countable or not.)

Answer:

3 + 34 = 27 + 81 = 1108

(f) State the cardinality of the set L_2 . (If L_2 is a finite set, state the exact number of elements of L_2 . Otherwise, state that L_2 is infinite and specify whether it is countable or not.)

Answer:

intimise and countrible

(g) State the cardinality of the set $\mathcal{P}(L_2)$ (set of subsets of L_2). (If $\mathcal{P}(L_2)$ is a finite set, state the exact number of its elements. Otherwise, state that $\mathcal{P}(L_2)$ is infinite and specify whether it is countable or not.)

Answer:

jutinide and uncounteble

(h) State the cardinality of the set L_1^* . (If L_1^* is a finite set, state the exact number of elements of L_1^* . Otherwise, state that L_1^* is infinite and specify whether it is countable or not.)

Answer:

julimite and countable

Let L_1 be the set of exactly those Problem 4 strings over the alphabet $\{a, b, c, d\}$ whose length is divisible by 3.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ where the total number of c's and d's (together) is odd.

(a) Draw a state-transition graph of a finite automaton that accepts the language L_1 . If such an automaton does not exist, state it and explain why.

(b) Draw a state-transition graph of a finite automaton that accepts the language L_2 . If such an automaton does not exist, state it and explain why.

(c) Draw a state-transition graph of a finite automaton that accepts the language $L_1 \cap L_2$. If such an automaton does not exist, state it and explain why.

LAST NAME:

FIRST NAME:

(d) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_1}$ (the complement of L_1 .) If such an automaton does not exist, state it and explain why.

(e) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_2}$ (the complement of L_2 .) If such an automaton does not exist, state it and explain why.

Let L_2 be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ where the total number of a's and c's (together) is divisible by 3.

(a) Draw a state-transition graph of a finite automaton that accepts the language L_1 . If such an automaton does not exist, state it and explain why.

(b) Draw a state-transition graph of a finite automaton that accepts the language L_2 . If such an automaton does not exist, state it and explain why.

(c) Draw a state-transition graph of a finite automaton that accepts the language $L_1 \cap L_2$. If such an automaton does not exist, state it and explain why.

ME

Answer:

(d) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_1}$ (the complement of L_1 .) If such an automaton does not exist, state it and explain why.

Answer:

(e) Draw a state-transition graph of a finite automaton that accepts the language $\overline{L_2}$ (the complement of L_2 .) If such an automaton does not exist, state it and explain why.

Problem 5 Let L be the set of exactly those strings over the alphabet $\{a, b, c\}$ which satisfy all of the following properties:

- 1. begins and ends with the same letter;
- 2. contains exactly two c's.
- (a) Write a regular expression that represents the language L. If such a regular expression does not exist, state it and explain why.

Answer:

a(aub)*c(aub)*c(aub)*L

b(aub)*c(aub)*c(aub)*L

c(aub)*c(aub)*C

(b) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

LAST NAME:	
FIRST NAME:	

(c) Write a complete formal definition of a context-free grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer: G = (V, S, P, S) $S = \{a, b, c\}$ $V = \{a, b, c\}$ $P = \{a, b, c\}$ $P = \{a, b\}$ $P = \{a, b\}$

(d) Draw a state-transition graph of a finite automaton that accepts the language $L \cap c^*$. If such an automaton does not exist, state it and explain why.

Answer:

- 1. first letter is either a or b;
- 2. last letter is either b or c;
- 3. first letter is different from the last letter;
- 4. contains exactly two c's.
- (a) Write a regular expression that represents the language L. If such a regular expression does not exist, state it and explain why.

a (aub) c (aub) c (aub) b Answer: a (aub) & c (aub) p (aub) & c (aub) &

(b) Draw a state-transition graph of a finite automaton that accepts the language L. If such an automaton does not exist, state it and explain why.

LAST NAME:

FIRST NAME:

(c) Write a complete formal definition of a contextfree grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

(d) Draw a state-transition graph of a finite automaton that accepts the language $L \cap a c^*$. If such an automaton does not exist, state it and explain why.

Answer:

FIRST NAME:

Problem 6 Let L_1, L_2 be languages over the alphabet $\{a, b, c, d, g, e\}$, defined as follows:

$$L_1 = \{g^{3k} e^{2i+3} d^{2\ell} c^{2t+1} b^{\ell} a^k\}$$

$$L_2 = \{c^{2m+3} a^{3m+1} d^{2n} g^{j+2} e^{3p} b^{j+1}\}$$
where $m, j, n, p, i, k, \ell, t \ge 0$.

(a) Write a complete formal definition of a contextfree grammar that generates L_1 . If such a grammar does not exist, state it and explain why.

Answer:

G=(V,S,P,T)

J=da,b,c,d,g)

V=dT,A,B,D

A-D

A-e eeAleee

D+ccD/C

D+ccD/C

(b) Write a complete formal definition of a contextfree grammar that generates L_2 . If such a grammar does not exist, state it and explain why.

Answer:

G=(V,S,P,Tz)

V=LTz,E,F,H,Jy

S=Lajacidy

P,Tz & EFH

EACCE accolacco

F & dd F IN

H + 9 H b 199 Jb

J A eee J IN

(c) Write a complete formal definition of a context-free grammar that generates $(L_1 \cup L_2)^*$. If such a grammar does not exist, state it and explain why.

Answer:

G=(V, S, P, S)

V=dS, Tn, A, B, D, T2, F)

S=La, D, c, d]

S=La, D, c, d]

T1-Sts T1 a | AB

A ee A | eee | Fodd F| N

B add B b | D | H a S H b

D acct | C | H a gg J a

T2 e E F H | J a eee N

E + CCE a a a | ccc a

(d) Write a complete formal definition of a context-

(d) Write a complete formal definition of a context-free grammar that generates $L_1^* \cup L_2^*$. If such a grammar does not exist, state it and explain why.

Answer: $A = \{V_1 S_1, P_1 S_2\}$ $A = \{A_1, A_2, C_1, C_2, A_3, B_3\}$ $A = \{A_1, A_2, A_3, A_4, B_5\}$ $A = \{A_1, A_2, A_5\}$ $A = \{A_1, A_2, A_5\}$ A =

Let L_1, L_2 be languages over the al-Problem 6 phabet $\{a, b, c, d, g, e\}$, defined as follows:

$$L_{1} = \{a^{3m+2} c^{2m+1} e^{2n} b^{j+3} g^{3p} d^{j+2}\}$$

$$L_{2} = \{b^{k} g_{s}^{2i+1} a^{\ell} e^{2t+3} d^{2\ell} c^{3k}\}$$
where $m, i, n, p, i, k, \ell, t \ge 0$.

where $m, j, n, p, i, k, \ell, t \ge 0$.

(a) Write a complete formal definition of a contextfree grammar that generates L_1 . If such a grammar does not exist, state it and explain why.

Answer:

(b) Write a complete formal definition of a contextfree grammar that generates L_2 . If such a grammar does not exist, state it and explain why.

Answer: J + ee]/cee FIRST NAME:

(c) Write a complete formal definition of a contextfree grammar that generates $L_1^* \cup L_2^*$. If such a grammar does not exist, state it and explain why.

Answer: aa Acclacic

(d) Write a complete formal definition of a contextfree grammar that generates $(L_1 \cup L_2)^*$. If such a grammar does not exist, state it and explain why.

Arana Acclaric

Problem 7 Let L be the set of exactly those strings over the alphabet $\{a, b, c, d\}$ which satisfy all of the following properties.

- 1. the string is a concatenation of four non-empty palindromes;
- 2. three of the four palindromes have an odd length;
- 3. one of the four palindromes has an even length;
- 4. the four palindromes may appear in any order;
- 5. the middle symbol of each of the three oddlength palindromes is different from d;
- 6. the middle two symbols of the even-length palindrome are different from a.

Write a complete formal definition of a context-free grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

P. S & EDDD | DEDD | DDDDE

E & QEa | bEb | cEc | dEd | bb | cc | dd

Dea Da | bD b | cDc | a | b | c

LAST NAME:	
FIRST NAME:	

Problem 7 Let L be the set of exactly those strings over the alphabet $\{a,b,c\}$ which satisfy all of the following properties.

- 1. the string is a concatenation of four non-empty palindromes;
- 2. three of the four palindromes have an even length;
- 3. one of the four palindromes has an odd length;
- 4. the four palindromes may appear in any order;
- 5. the middle symbol of the odd-length palindrome is different from a;
- 6. the middle two symbols of each of the three even-length palindromes are different from d.

Write a complete formal definition of a context-free grammar that generates the language L. If such a grammar does not exist, state it and explain why.

Answer:

G=(V,S,P,S) L=la,b,c] V=LS,E,D] P:S+DEEE|EDEE|EEDE|EEED E+aEa|bEb|cEc|aa|bb|cc D+aDa|bDb|cDc|b|c

LAST NAME:

FIRST NAME: