Agenda for today!

-) Comparing iterations using graph

-) Time (omplexity - Def. and Notations (Asymtotic
-) Log basics + Iteration Problems - Big O)

-) Space (on plexity
-) TLE

-) Importance of (onstrainsts)

Two algorithms developed by Vijay A Hariom to solve problem.

Algo	No. of iterations
Vijay	100 * log (N)
Hariom	Nho

For small input (NZ=3500) => Hariom alogo performs better (Blue Line)

For large input (N > 2500) =) Vijoy's algo performs botten

In today's world data is huge

- -) Indian Us Pak match viewship was 18 millions.
- -) Baby Shark vied has 2.8 views.

We use Asymptotic Analysis to estimate the performance of an Algorith who input is large.

Asymptotic Analysis of Algorithms: Big (0) Notations
Analysis to get perforce of Algorithms for
large inputs.

Calculation of Big (0)

Steps:

- -) Calculate iterations based on input size.
- -) Ignore lower order terms
- -) Ignore constant coefficients

$$Ex': 100 * log(N) =) O(log(N))$$

$$N/10 =) O(N)$$

$$N^2 + N + 10 = 0$$
 Order = 2

No. of iteration:
$$4N^2 + 3N + 1$$

$$N = 36$$

Quiz 1:
$$F(N) = 4N + 3Nlog(N) + 1$$

 $O(F(N)) = O(Nlog(N))$

Quij 2: $4N\log(N) + 3NSgrt(N) + 10^{16}$ O(F(N)) = O(NSgrt(N))

Q why do we neglect lower order terms? $N^2 + 10 N$

N	Total Itnation: N2+10N	tun = 10N	/ of 10 N in total iterations (10N/(N2+10N)) * 100
	102+10×10 = 200		$\frac{100}{200}$ x $100 = 50\%$
100	1002+10=100=10+10	102 = 103	$\frac{10^{3}}{10^{4}+10^{3}} \times \frac{10^{6}}{10^{4}+10^{3}} = \frac{\text{close to}}{9^{2}}.$
			108+108 Clso to

Conclusion: We can pay that as the Input Size increases, contribution of Lover order Terms decreases

Which also do you choose => Algo with lesson item.

Mohan's Algo	Maddalas Algo	Winner for Langue Input
10 . log N	\sim	Mohon
100 = log N	\sim	Mohan
9 * N	N^2	Mohan
10 × N	N2/10	Moher
N & log 2	100 * N	Maddala

10 lag 104	10 4	10 - 1000	(1000)
1300	10000	= 104	$=\frac{10^6}{10}=10^5$
100 s log 10 6	(O ⁶	104 × lg 104	100 \$ 104
2000 2 × 10 ³	106	15	100x104=106
		Thy	106
		10 b x lag 10 6	100×10 b = 108
		20 × 10 6	
		$\mathcal{L}_{\mathbf{X}}$	

Conclusion: There is no effect of constant conflicients for higher values.

Isbus with Big (o)

: Non-deterministic noture of Dig (o)

Issu 1:

Alok =) $10^3 N$: Big 0: O(N)Raksh; + =) N^2 : Big 0: $O(N^2)$

Inbut Size	Alok's Algo	Fakohit's Algo	Better?
$N = \{0\}$	104	102	Rakshit
		(o 4	Rak Bhit
N = 100	105		f l
N= (03	(06	(<i>v</i> ^b	Erval
N= (03+1	103 6 (10341)	(10 ³ +1) de (10 ³ +1)	Al.R
N= (0 ⁴	107	(08	Alok

Sometimes that high value is very high.

IDDU 2:

Swaj's Code:

Ituations: N Bigo: O(N)

Akshay's Cod:

for Cint i = 1, i < = N, i + = 2) { (= (+1);

Iterations: N/2

Big 0: 0(N)

In both, Big O is O(N) but we know second code is better.

when 2 algoriths have some Big O value than we are not capable of identify which is better.

Basics of Logarithn

Q What is in the meaning of Low?

Logarithm is the inverse of exponential function.

a How to read the statement "logb (a)"?

To what power we need to naise b, such that we get a.

$$b = a \log_b a$$

$$2^{6} = 64$$

$$3^3 = 27$$

$$5^2 = 25$$

4)
$$\log(32) = 5$$

$$\log_2(10) = 3$$

$$2^{\frac{1}{3}} = 10$$
 $2^{\frac{3}{4}} = 16$

$$log(40) = 5$$

Some very basic property of log:

$$\log(2^{16}) = 6$$

$$2^{\frac{1}{2}} = \frac{1}{2} = 6$$

$$log_a(a^{\prime N}) = N$$

$$2^{K} = N$$
Take $\log b$ base 2 on both sides
 $\log 2^{K} = \log N$
 $K = \log N$

Only do integer division.

Quiz 3: How many we divide 9 by 2 till it

$$9 \longrightarrow 4 \longrightarrow 2 \longrightarrow 1$$

Quiz 3: How many we divide 27 by 2 till it

How many times we divide N by 2 till it runches 1?

$$N \longrightarrow N/2 \longrightarrow N/4 \longrightarrow N/8 \longrightarrow N$$

$$\frac{N}{2^{\circ}} \longrightarrow \frac{N}{2^{1}} \longrightarrow \frac{N}{2^{2}} \longrightarrow \frac{N}{2^{2}} \longrightarrow \frac{N}{2^{\kappa}}$$

$$\frac{N}{2^{K}} = 1$$

$$N = 2^{K}$$

$$K = \log_{2}^{N}$$

No. of steps: K steps = log_2N

Quiz S: No. of ituations:

$$N > 0$$

$$f = N$$

$$while (i > 1)$$

$$f = f/2,$$

$$f$$

$$i = N$$
 $i = N/2$
 $i = N/4$
 $i = N/8$
 $i = 1$
 $i = N/8$

Quiz b: No. of iterations:

$$N > = 0$$
 $\{a(i = 0; i < = N), i = i * 2\}\}$
 $i = 0$
 $i = 0$

dividing by 2? log N

$$\int_{0}^{0} \int_{0}^{\infty} (i=1)^{2} i = 10^{2} i + 10^{2}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (j=1)^{2} i = 10^{2} i + 10^{2}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (j=1)^{2} i = 10^{2} i + 10^{2}$$

Ċ		H of iterations
1 2 :	(1 N) (1 N)	\sim
lσ	CI NJ	N

Onis 9:

Ĺ	j:[1 ~]	H of iterations
1 2	(1 N) (1 N)	\sim
\sim	CI NJ	<i>N</i>

Multiplying for loop is working here but will not work always.

Ċ	j: [1 N] 22	H of iterations
1	124	log2N
2	15	logeN
	(·	
÷	ζ.	
• 0		V logger

Quij 11:

$$for (i = 1) i = 4 i i + 1)$$

$$fur (j = 1) j = 2 i i + 1)$$

ĺ	J [']	# itu
1 2 3 4	[12] [13] [14]	1 2 3 4
		10

$$\begin{cases}
\log (i=1), i \leq = N, i+1 \\
\log (j=1), j \leq = 0, j+1
\end{cases}$$

$$\begin{cases}
\log (j=1), j \leq = 0, j+1 \\
2, j \leq 1, j \leq 2, j+1
\end{cases}$$

$$\begin{cases}
2, j \leq 1, j \leq 2, j \leq 2, j+1
\end{cases}$$

$$\begin{cases}
2, j \leq 1, j \leq 2, j \leq 2, j \leq 2, j+1
\end{cases}$$

$$\begin{cases}
2, j \leq 1, j \leq 2, j \leq$$

$$A = 2 , N = 2 , N = N$$

$$A(N^{N-1}) = 2(2^{N}-1)$$

$$= 2(2^{N}-1)$$

$$= 2(2^{N}-1)$$

$$\begin{cases}
on(i=N, i>0; i=i(2)) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j + + 1) \\
fon(j=1); j <= i; j$$

$$N + \frac{N}{2} + \frac{N}{4} + \frac{N}{8} + \cdots$$

$$\frac{N}{2^{\circ}} + \frac{N}{2^{\circ}} + \frac{N}{2^{2}} + \frac{N}{2^{3}} + \dots \frac{N}{2^{K}}$$

$$\frac{N}{2K} = 1 \Rightarrow N = 2^{K} \Rightarrow K = \log_{2} N$$

$$\mathcal{N}\left(\frac{1}{2^{\circ}} + \frac{1}{2^{\prime}} + \frac{1}{2^{2}} + \frac{1}{2^{3}} - \cdots - \frac{1}{2^{\kappa}}\right) \qquad \begin{bmatrix} 0 & \kappa \end{bmatrix} = \frac{\kappa - 0 + 1}{\kappa + 1}$$

$$GP: A = 1 \quad A = 1/2 \quad \text{tf term} = K+1$$

$$\frac{A(1-9^{n})}{1-n} = \frac{1(1-(12)^{k+1})}{1-1/2} = \frac{\left(1-\frac{1}{2^{k+1}}\right)}{1/2}$$

$$= 2 \times (1 - \frac{1}{2^{\kappa} \cdot 2}) \qquad (2^{\kappa + 1} = 2 \times 2^{\kappa})$$

$$= 2^{\kappa} = 2^{\kappa \cdot 2} = N$$

$$= 2 \cdot (1 - \frac{1}{2^{\kappa}})$$

$$= 2 \cdot (1 - \frac{1}{2^{\kappa}})$$

$$= 2 - \frac{1}{N}$$

No. d'itartin:
$$N = \left(\frac{1}{2^{n+1}}, \frac{1}{2^{n+1}}, \frac{1}{2^{n+1}}\right)$$

$$= N(2 - \frac{1}{N})$$

$$= 2N - 1$$

Take away:
$$N + \frac{N}{2} + \frac{N}{4} \dots 1 = 2N-1$$

$$K = loj_2^N$$

$$2^K = N$$

$$2^{loj_2^N} = N$$