MT10/P13 - TP3: Corps finis et codes correcteurs

Table des matières

1	Con	nstruction de corps finis	1
	1.1	Rappels théoriques sur les corps finis	1
	1.2	Rudiments de Sage pour les corps finis	2
	1.3	Dénombrement des polynômes irréductibles et unitaires de $\mathbb{F}_p[X]$	2
		1.3.1 Factorisation de $X^q - X$ dans $\mathbb{F}_p[X]$	2
		1.3.2 La fonction de Möbius	3
		1.3.3 Calcul du nombre de polynômes unitaires irréductibles de degré d dans	
		$\mathbb{F}_p[X]$	3
	1.4	Calcul de polynômes unitaires irréductibles de $\mathbb{F}_p[X]$	į
2	Les	codes de Reed et Solomon	4
	2.1	Définition des codes de Reed-Solomon généralisés (GRS)	4
	2.2	Cas sans erreur : décodage des GRS par interpolation de Lagrange	4
	2.3	Simulation d'erreurs de transmission	5
3	Cor	rection d'erreurs grâce aux GRS	5
	3.1	Le polynôme syndrome	Ę
	3.2	L'équation clef	6
	3.3	Résolution de l'équation clef par Euclide	7
	3.4	Localisation et évaluation des erreurs de transmission	7
4	Con	nclusion : une chaîne de transmission cryptée robuste	8
Re	Références bibliographiques		

Répondre aux questions posées au fil du texte. Les démonstrations des résultats cités sont rédigées dans le document [1].

1 Construction de corps finis

1.1 Rappels théoriques sur les corps finis

Si $p \in \mathbb{P}$, l'anneau $\mathbb{Z}/p\mathbb{Z}$ des entiers $modulo\ p$ est un corps qu'on notera 1 \mathbb{F}_p . Un corps fini est nécessairement de cardinal $q = p^n$, où $p \in \mathbb{P}$ est sa caractéristique et $n \in \mathbb{N}$. Un tel corps admet \mathbb{F}_p comme sous-corps, et peut être vu comme un \mathbb{F}_p -espace vectoriel de dimension n. On sait aussi que tout corps fini est commutatif (théorème de Wedderburn).

Si $P \in \mathbb{F}_p[X]$ est un polynôme irréductible, alors l'anneau quotient $\mathbb{F}_p[X]/(P)$ des polynômes modulo P est un corps. Si P est de degré n, le corps ainsi construit est de cardinal $q = p^n$. Pour tout $p \in \mathbb{P}$, il existe des polynômes de $\mathbb{F}_p[X]$ irréductibles de tout degré. De plus, deux corps

^{1.} Le \mathbb{F} est mis pour *field* qui veut dire champ. Les corps étaient auparavant appelés "champs de Galois", d'où aussi la notation GF , pour *Galois field*, utilisé dans Sage .

finis de même cardinal sont isomorphes. A isomorphisme près, tout corps fini s'obtient donc comme $\mathbb{F}_p[X]/(P)$ pour un certain $P \in \mathbb{F}_p[X]$ irréductible.

1.2 Rudiments de Sage pour les corps finis

De façon générale, on utilise la complétion (touche TAB) pour obtenir les méthodes qui s'appliquent à un objet. Voici une liste non exhaustive de commandes utiles dans le contexte des corps finis.

- les corps premiers \mathbb{F}_p : F5=GF(5), faire F5.+TAB pour la liste des méthodes associées
- les autres corps finis \mathbb{F}_q avec $q=p^n$: Fq.<a>=GF(q,name='a') et Sage choisit le modulo (polynôme irréductible de degré n), qu'on peut récupérer par Fq.modulus()
- $-\mathbb{F}_p[X]$ et les polynômes : R.<X>=GF(p)['X'], ou PolynomialRing
- l'espace vectoriel \mathbb{F}_p^k : V=VectorSpace(Fp,k)

Remarque : si Fq désigne le corps fini à $q = p^n$ éléments, alors Fq.vector_space() renvoie le \mathbb{F}_p -espace vectoriel de dimension n isomorphe à \mathbb{F}_q (comme \mathbb{F}_p -espace vectoriel), autrement dit \mathbb{F}_p^n .

1.3 Dénombrement des polynômes irréductibles et unitaires de $\mathbb{F}_p[X]$

On dit qu'un polynôme $P \in \mathbb{F}_p[X]$ est unitaire si son cœfficient dominant est égal à 1. Tout polynôme non nul de $\mathbb{F}_p[X]$ est égal au produit d'un polynôme unitaire par un élément de \mathbb{F}_n^* .

1.3.1 Factorisation de $X^q - X$ dans $\mathbb{F}_p[X]$

Soit $q = p^n$. Alors $X^q - X$ est le produit dans $\mathbb{F}_p[X]$ des polynômes $P \in \mathbb{F}_p[X]$ irréductibles et unitaires dont le degré divise n.

$$X^{q} - X = \prod_{\substack{P \in \mathbb{F}_{p}[X] \\ \text{irréductible, unitaire} \\ \deg(P)|n}} P(X) \tag{1}$$

Question 1: A l'aide de Sage, vérifier cette factorisation pour $X^q - X$ avec $q = 2^6$.

Désignons par $\mathrm{Irr}_p(k)$ le nombre de polynômes de degré k, irréductibles et unitaires, de $\mathbb{F}_p[X].$

$$\operatorname{Irr}_p(k) \stackrel{\text{def}}{=} \operatorname{card} \{ P \in \mathbb{F}_p[X] : \operatorname{deg}(P) = k, \operatorname{irr\'eductible}, \operatorname{unitaire} \}$$
 (2)

L'égalité des degrés dans la factorisation de X^q-X donne la relation :

$$p^{n} = \sum_{d|n} d \operatorname{Irr}_{p}(d). \tag{3}$$

Pour calculer les $\operatorname{Irr}_p(k)$, il suffit "d'inverser cette relation", et cela se fait grâce à la fonction de Möbius.

1.3.2 La fonction de Möbius

La fonction de Möbius est définie sur $\mathbb{N} \setminus \{0\}$ par :

$$\mu(1) = 1$$
 (4)
$$(\forall n > 1) \qquad \mu(n) = \begin{vmatrix} 0 & \text{si } n \text{ a un facteur carr\'e} \\ (-1)^r & \text{si } n \text{ est produit de } r \text{ nombres premiers} \\ & \text{deux \`a deux distincts} \end{vmatrix}$$

Comme l'indicatrice d'Euler, la fonction de Möbius est multiplicative, au sens où :

$$(\forall n, n' \in \mathbb{N} \setminus \{0\}) \qquad \operatorname{pgcd}(n, n') = 1 \implies \mu(nn') = \mu(n)\mu(n') \tag{5}$$

On a aussi une sorte de formule d'Euler pour la fonction de Möbius :

$$(\forall n \in \mathbb{N} \setminus \{0\}) \qquad \sum_{d|n} \mu(d) = \begin{vmatrix} 1 & \text{si} & n = 1 \\ 0 & \text{si} & n > 1 \end{vmatrix}$$
 (6)

Cette formule d'Euler très spéciale permet d'obtenir la formule d'inversion souhaitée.

Proposition 1 (formule d'inversion de Möbius) Soit une application $f : \mathbb{N} \setminus \{0\} \to \mathbb{C}$. Alors, si pour tout $n \in \mathbb{N} \setminus \{0\}$ on a posé $F(n) = \sum_{d|n} f(d)$, on a :

$$(\forall n \in \mathbb{N} \setminus \{0\})$$
 $f(n) = \sum_{d|n} \mu(\frac{n}{d})F(d)$

Question 2: Sage possède la fonction moebius qui calcule les $\mu(n)$. Consulter l'aide, puis vérifier :

- 1. que $\mu(n) \in \{-1, 0, 1\}$ pour les 100 premiers entiers naturels;
- 2. la formule d'Euler pour la fonction de Möbius pour les 100 premiers entiers naturels;
- 3. la formule d'inversion de Möbius pour le calcul de $\phi(100)$, où ϕ désigne l'indicatrice d'Euler, dont on rappelle qu'elle vérifie la formule d'Euler $n = \sum_{d|n} \phi(d)$.

1.3.3 Calcul du nombre de polynômes unitaires irréductibles de degré d dans $\mathbb{F}_p[X]$

La formule d'inversion de Möbius fournit finalement le résultat souhaité :

$$(\forall n \in \mathbb{N} \setminus \{0\}) \qquad \operatorname{Irr}_{p}(n) = \frac{1}{n} \sum_{d|n} \mu(\frac{n}{d}) p^{d} \tag{7}$$

Question 3: Ecrire une fonction Irr qui retourne $\operatorname{Irr}_p(n)$ quand p et n sont donnés en entrée. Dresser un tableau de $\operatorname{Irr}_p(n)$ pour p=2,3,5 et $n=1,\ldots,10$.

1.4 Calcul de polynômes unitaires irréductibles de $\mathbb{F}_p[X]$

Question 4: Déterminer tous les polynômes irréductibles de $\mathbb{F}_2[X]$ de degré inférieur ou égal à 10.

2 Les codes de Reed et Solomon

2.1 Définition des codes de Reed-Solomon généralisés (GRS)

Le message (numérisé) à transmettre est formé de mots de k lettres de \mathbb{F}_q ; chaque mot $\mathbf{x} \in \mathbb{F}_q^k$ est interprété comme un polynôme $f \in \mathbb{F}_q[X]_k$ de degré < k (c'est la signification du k en indice de $\mathbb{F}_q[X]_k$) dont les cœfficients sont les lettres du mot.

Définition 2 (code de Reed-Solomon généralisé)

Soient $0 \le k \le n \le q$, $\mathbf{v} = (v_0, v_1, \dots, v_{n-1}) \in \mathbb{F}_q^{*n}$ et

$$\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}_q^n \quad tel \ que \ i \neq j \Longrightarrow \alpha_i \neq \alpha_j.$$
 (8)

On définit alors le code de Reed-Solomon par

$$GRS_{n,k}(\alpha, \mathbf{v}) \stackrel{\text{def}}{=} \{ev_{\alpha,\mathbf{v}}(f) : f \in \mathbb{F}_q[X]_k\} \subset \mathbb{F}_q^n,$$
 (9)

où l'évaluation se fait par

$$ev_{\alpha,\mathbf{v}}(f) = (v_0 f(\alpha_0), v_1 f(\alpha_1), \dots, v_{n-1} f(\alpha_{n-1})) \in \mathbb{F}_q^n.$$

$$\tag{10}$$

Question 5: Ecrire une fonction codeGRS qui prenne en entrée un bloc de message $\mathbf{x} \in \mathbb{F}_q^k$ et qui retourne le code correspondant $\mathbf{y} = ev_{\alpha,\mathbf{v}}(f) = (v_0f(\alpha_0), v_1f(\alpha_1), \dots, v_{n-1}f(\alpha_{n-1})) \in \mathbb{F}_q^n$. Cette fonction codeGRS admettra aussi comme argument les paramètres $\mathbf{v} = (v_0, v_1, \dots, v_{n-1}) \in \mathbb{F}_q^n$ et $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}_q^n$.

2.2 Cas sans erreur : décodage des GRS par interpolation de Lagrange

Le codage GRS est une évaluation d'un polynôme en certains points. Son décodage est donc une interpolation : il s'agit de retrouver le polynôme à partir de ses valeurs prises en ces mêmes points. Pour cela, on utilise les polynômes de Lagrange.

Soit $\alpha = (\alpha_0, \alpha_1, \dots, \alpha_{n-1}) \in \mathbb{F}_q^n$ tel que $i \neq j \Longrightarrow \alpha_i \neq \alpha_j$. Les polynômes de Lagrange sont définis par

$$(\forall i \in \llbracket 0, n-1 \rrbracket) \qquad \boxed{L_i(X) = \prod_{\substack{j \in \llbracket 0, n-1 \rrbracket \\ j \neq i}} (X - \alpha_j)} \in \mathbb{F}_q[X]_n$$
 (11)

Ces polynômes rendent facile l'interpolation polynomiale par le lemme ci-dessous.

Lemme 3 (interpolation de Lagrange)

Pour tout polynôme $f \in \mathbb{F}_q[X]_n$, on a l'identité

$$f(X) = \sum_{i \in [0, n-1]} f(\alpha_i) (L_i(\alpha_i))^{-1} L_i(X)$$
(12)

Question 6: Ecrire une fonction decodeGRS qui réalise la réciproque de la fonction codeGRS. Tester sur quelques exemples. Que se passe-t-il si les points α_i ne sont pas deux à deux distincts?

2.3 Simulation d'erreurs de transmission

Résumons les étapes du processus de codage-décodage par GRS :

- 1. Le message (numérisé) à transmettre est formé de mots de k lettres de \mathbb{F}_q ; chaque mot $\mathbf{x} \in \mathbb{F}_q^k$ est interprété comme un polynôme $f \in \mathbb{F}_q[X]_k$ dont les cœfficients sont les lettres du mot
- 2. Chaque $f \in \mathbb{F}_q[X]_k$ est codé par

$$\mathbf{y} = ev_{\alpha,\mathbf{v}}(f) = (v_0 f(\alpha_0), v_1 f(\alpha_1), \dots, v_{n-1} f(\alpha_{n-1})) \in \mathbb{F}_q^n, \tag{13}$$

et y est envoyé dans le canal de transmission.

3. Des éventuelles erreurs font qu'à l'extrémité du canal de transmission on reçoit

$$\mathbf{y}' = \mathbf{y} + \mathbf{e} \in \mathbb{F}_q^n. \tag{14}$$

4. Il s'agira ensuite de récupérer le mot de code transmis \mathbf{y} à partir du mot reçu \mathbf{y}' , et c'est l'objet de la section suivante.

Question 7: Ecrire une fonction errTrans qui simule des erreurs de transmission. errTrans prendra en entrée le mot de code \mathbf{y} et retournera un mot $\mathbf{y}' \in \mathbb{F}_q^n$. Cette fonction admettra aussi comme argument un entier Nb_err indiquant le nombre d'erreurs de transmission, chaque erreur sera tirée aléatoirement dans \mathbb{F}_q^* .

Question 8: Vérifier sur un exemple que l'interpolation de Lagrange donne n'importe quoi dès qu'il y a une erreur de transmission.

3 Correction d'erreurs grâce aux GRS

Dans toute cette section, $0 \le k \le n \le q$, et on pose r = n - k. On notera aussi $C = GRS_{n,k}(\alpha, \mathbf{v})$.

3.1 Le polynôme syndrome

Le mot reçu \mathbf{y}' est éventuellement différent du mot de code envoyé \mathbf{y} . On peut tester si $\mathbf{y}' \in C$ grâce à la formulation de Goppa (voir [1, Théorème 26 p.18]). Ceci conduit à définir le **polynôme syndrome** par :

$$S(X) = S_{\mathbf{y}'}(X) \stackrel{\text{def}}{=} \sum_{i \in [0, n-1]} y_i' u_i (1 - \alpha_i X)^{-1} \qquad [X^r]$$

$$= \sum_{i \in [0, n-1]} y_i' \left(v_i^{-1} L_i(\alpha_i)^{-1} \right) \left(\sum_{j \in [0, r-1]} (\alpha_i X)^j \right)$$

$$= \underbrace{S_{\mathbf{y}}(X)}_{=0} + S_{\mathbf{e}}(X) = S_{\mathbf{e}}(X) \quad \in \mathbb{F}_q[X]_r$$

$$(15)$$

On a alors l'alternative :

(i) soit S(X) = 0, et donc $\mathbf{y}' \in C$ et on décode par $\widehat{\mathbf{y}} = \mathbf{y}'$ (on ne fait rien!). Dans ce cas, on sait que :

- $-\sin w(\mathbf{e}) \le d-1 = r$, alors $\mathbf{e} = 0$, et le décodage est un succès : $\hat{\mathbf{y}} = \mathbf{y}$.
- si $w(\mathbf{e}) \ge d = r + 1$, alors il est possible que, bien que $\mathbf{y}' \in C$, \mathbf{y}' ne soit pas le mot de code envoyé. Le décodage peut être un échec.
- (ii) soit $S(X) \neq 0$, donc $\mathbf{y'} \notin C$ et $w(\mathbf{e}) \geq 1$. On sait que si $w(\mathbf{e}) \leq \frac{d-1}{2} = \frac{r}{2}$, alors \mathbf{y} est l'élément de C le plus proche de $\mathbf{y'}$. On décodera donc par $[\widehat{\mathbf{y}} = \mathbf{y'} \widehat{\mathbf{e}}]$, où $\widehat{\mathbf{e}}$ reste à déterminer parmi les éléments de \mathbb{F}_q^n de même syndrome que \mathbf{e} (et donc que $\mathbf{y'}$). C'est l'objet de ce qui va suivre.

Question 9: Ecrire une fonction Syndrome qui prend en entrée un mot reçu $\mathbf{y}' \in \mathbb{F}_q^n$, ainsi que les paramètres α et \mathbf{v} , et retourne le polynôme syndrome correspondant S(X).

Question 10: Vérifier sur des exemples que $\mathbf{y}' \in C \iff S(X) = 0$.

3.2 L'équation clef

On va voir que la seule connaissance du polynôme syndrome S(X) suffit à reconstruire le mot de code transmis. Désignons par B l'ensemble des positions des erreurs, i.e.

$$B \stackrel{\text{def}}{=} \{ i \in [0, n-1] : e_i \neq 0 \}.$$
 (16)

On a alors

$$S(X) = \sum_{b \in B} e_b u_b (1 - \alpha_b X)^{-1} \qquad [X^r].$$
 (17)

Chassons les dénominateurs pour obtenir :

$$\underbrace{\prod_{b \in B} (1 - \alpha_b X) S(X)}_{=\sigma(X)} S(X) = \underbrace{\sum_{b \in B} e_b u_b}_{b' \in B} \underbrace{\prod_{b' \in B} (1 - \alpha_{b'} X)}_{=\omega(X)} [X^r]. \tag{18}$$

C'est la fameuse équation clef:

$$\sigma(X)S(X) = \omega(X) \qquad [X^r], \tag{19}$$

où, pour des raisons qui seront bientôt clarifiées,

- le polynôme $\sigma(X)$ s'appelle le **polynôme localisateur** des erreurs;
- le polynôme $\omega(X)$ s'appelle le **polynôme évaluateur** des erreurs.

Remarquons que les polynômes σ et ω ne sont pas calculables à partir de leur définition puisqu'on ne connait ni B, ni les e_b . Par contre, on espérer trouver des solutions de l'équation clef qui vérifient en plus $\sigma(0) = 1$ et $\operatorname{pgcd}(\sigma, \omega) = 1$ (lire [1, p.19-20]). Si on écrit l'équation clef sous la forme

$$u(X)X^{r} + \sigma(X)S(X) = \omega(X), \tag{20}$$

on pense irrésistiblement à l'algorithme d'Euclide, et c'est l'objet de la section suivante.

^{2.} Par définition de la distance minimale, voir [1].

3.3 Résolution de l'équation clef par Euclide

Ce résultat fondamental est démontré dans [1, Théorème 29 p.22].

Théorème 4 (résolution de l'équation clef par Euclide)

Soit un code $GRS_{n,k}(\alpha, \mathbf{v})$ de paramètres (q, n, k, d). Posons r = n - k. Soit un polynôme syndrome non nul $S \in \mathbb{F}_q[X]_r$. Alors l'algorithme d'Euclide étendu tronqué se termine :

$$r_{0}(X) = X^{r} \; ; \; u_{0}(X) = 1 \; ; v_{0}(X) = 0 \; ;$$

$$r_{1}(X) = S(X) \; ; \; u_{1}(X) = 0 \; ; v_{1}(X) = 1 \; ; \; j = 1 \; ;$$

$$Tant \; que \; \deg(r_{j}) \geq \frac{r}{2} \; faire \; :$$

$$r_{j-1}(X) = r_{j}(X)q_{j}(X) + r_{j+1}(X) \; ; \quad (division \; euclidienne)$$

$$u_{j+1}(X) = u_{j-1}(X) - u_{j}(X)q_{j}(X) \; ;$$

$$v_{j+1}(X) = v_{j-1}(X) - v_{j}(X)q_{j}(X) \; ;$$

$$j = j+1 \; ;$$

$$\widetilde{\sigma}(X) = v_{j}(X) \; ;$$

$$\widetilde{\omega}(X) = r_{j}(X) \; ;$$

A la fin de cet algorithme, on obtient

$$u_j(X)X^r + \widetilde{\sigma}(X)S(X) = \widetilde{\omega}(X) \quad et \quad \deg(\widetilde{\omega}) < \frac{r}{2}.$$
 (22)

Si, de plus, le mot d'erreur \mathbf{e} est de poids $w(\mathbf{e}) \leq \frac{d-1}{2} = \frac{r}{2}$, alors on a

$$\begin{cases}
\sigma(X) &= \widetilde{\sigma}(0)^{-1}\widetilde{\sigma}(X) \\
\omega(X) &= \widetilde{\sigma}(0)^{-1}\widetilde{\omega}(X)
\end{cases}$$
(23)

où σ et ω sont respectivement les polynômes localisateur et évaluateur pour l'erreur ${\bf e}$.

Question 11: Ecrire une fonction Clef qui, à partir du polynôme syndrome S(X), retourne les polynômes localisateur et évaluateur σ et ω . Vérifier sur un exemple que l'équation clef est satisfaite.

3.4 Localisation et évaluation des erreurs de transmission

La résolution de l'équation clef a permis de calculer les polynômes σ et ω . Il reste à en déduire l'erreur de transmission.

 \bullet Le polynôme localisateur des erreurs σ porte bien son nom puisqu'effectivement sa connaissance permet de calculer

$$B = \{b \in [0, n-1] : \sigma(\alpha_b^{-1}) = 0\}.$$
(24)

• Pour le calcul des erreurs e_b , on a (voir [1, Théorème 29 p.20])

$$(\forall b \in B) \qquad \omega(\alpha_b^{-1}) = e_b u_b \prod_{\substack{b' \in B \\ b' \neq b}} (1 - \alpha_{b'} \alpha_b^{-1}), \tag{25}$$

et il s'agit donc de calculer $\prod b' \in B \ (1 - \alpha_{b'} \alpha_b^{-1})$. Pour cela, remarquons que $b' \neq b$

$$(\forall b \in B) \qquad \sigma(X) = (1 - \alpha_b X) \prod_{\substack{b' \in B \\ b' \neq b}} (1 - \alpha_{b'} X). \tag{26}$$

Par dérivation, puis par évaluation, il vient successivement

$$\sigma'(X) = -\alpha_b \prod_{\substack{b' \in B \\ b' \neq b}} (1 - \alpha_{b'}X) + (1 - \alpha_b X) \left(\prod_{\substack{b' \in B \\ b' \neq b}} (1 - \alpha_{b'}X) \right)'$$

$$\sigma'(\alpha_b^{-1}) = -\alpha_b \prod_{\substack{b' \in B \\ b' \neq b}} (1 - \alpha_{b'}\alpha_b^{-1}). \tag{27}$$

On en déduit $-\alpha_b\omega(\alpha_b^{-1})=e_bu_b\sigma'(\alpha_b^{-1})$, et on calculera finalement les erreurs par

$$(\forall b \in B) \qquad e_b = -\alpha_b \omega(\alpha_b^{-1}) \left(u_b \sigma'(\alpha_b^{-1}) \right)^{-1}. \tag{28}$$

Question 12: Ecrire une fonction Erreur qui, à partir des polynômes localisateur et évaluateur σ et ω , renvoie l'erreur de transmission e. Vérifier sur un exemple que ça fonctionne, à condition que $w(\mathbf{e})$ soit suffisamment petit.

4 Conclusion : une chaîne de transmission cryptée robuste

Question 13: Utiliser vos fonctions RSA du TP précédents pour simuler une chaîne de transmission de message :

- 1. message alphabétique clair;
- 2. message numérique crypté RSA;
- 3. message codé GRS envoyé;
- 4. message reçu (avec erreurs éventuelles);
- 5. message décodé GRS;
- 6. message numérique décrypté;
- 7. message alphabétique reconstitué.

Exemple de paramètres : $(q, n, k, d) = (2^8, q - 1, k, n - k + 1)$, faire des essais avec différents k < n.

Références

[1] V. Robin. Les codes correcteurs d'erreurs de Reed et Solomon. Manuscript UTC, mai 2012.