# A Hands-on Introduction to Graph Deep Learning, with Examples in PyTorch Geometric - III

Machine Learning and Dynamical Systems Seminar

November 16, 2023

Gabriele Santin (gabrielesantin.github.io)
Antonio Longa (antoniolonga.github.io)
Steve Azzolin (steveazzolin.github.io)
Francesco Ferrini (francescoferrini.github.io)

## Introduction About us



Gabriele Santin
Assistant professor at University of Venice (Venice, Italy)
gabriele.santin@unive.it
https://gabrielesantin.github.io/



Antonio Longa
Assistant professor University of Trento (Trento, Italy)
antonio.longa@unitn.it
https://antoniolonga.github.io/



<u>Steve Azzolin</u>
ELLIS PhD Student at FBK and University of Trento (Trento, Italy)
<u>steve.azzolin@unitn.it</u>
<a href="https://steveazzolin.github.io/">https://steveazzolin.github.io/</a>



Francesco Ferrini
PhD Student at University of Trento, (Trento, Italy)
<a href="mailto:francesco.ferrini@unitn.it">francesco.ferrini@unitn.it</a>
<a href="https://francescoferrini.github.io/">https://francescoferrini.github.io/</a>

## Introduction Organization and material

Tutorial in four parts (slides + Jupyter notebooks available at github.com/steveazzolin/gdl\_tutorial\_turinginst):

- Part I: November 2, Presenter: GS
   Goals: Motivations, Intro of basic concepts, definition of GNNs
- Part II: November 9, Presenter: AL
   Goals: Implementation of GNNs: How to implement a full GNN pipeline in PyTorch
   Geometric.
- Part III: November 16, Presenter: SA
   Goals: Explainability of GNNs: How to shed (a bit of) light into the black box
- Part IV: November 23, Presenter: FF
   Goals: Heterogeneity in GNNs: How can GNNs effectively model and incorporate a diversity of nodes and edges with different types.

## Introduction Agenda

- 1. Why XAI for deep learning models?
- 2. What can XAI do?
- 3. XAI4GNNs

Deep learning models achieve great performances in many tasks and they are more and more adopted also in

#### high-stakes applications

- Surveillance
- Crime rate predictions
- Medical Diagnosis
- Autonomous Driving
- ...





Deep learning performances more and more high-stakes approximation of the control of the control

- Surveilla
- Crime ra
- Medical

(A) **Cow: 0.99**, Pasture: 0.99, Grass: 0.99, No Person:

0.98, Mammal: 0.98



(B) No Person: 0.99, Water: 0.98, Beach: 0.97, Outdoors: 0.97, Seashore: 0.97



(C) No Person: 0.97,Mammal: 0.96, Water: 0.94,Beach: 0.94, Two: 0.94

Source tag present

Classified as horse

No source tag present

Deep learning models struggle to capture true causal relationships.

They instead pick up subtle/shortcut features correlated to the target label, but not causally associated to it



## Code Session I





## Why XAI for deep learning models? Not all ML models are created equal

#### White box\*

- Linear Models
- Decision Trees

Shallow models, good for tabular data, good with few data

#### Black box

- CNNs
- Transformers
- GNNs

(Very) Deep models, good for unstructured/high-dimensional data, shine with big data

<sup>\*</sup>caveat: Being simple does not imply being understandable by humans (think of a Decision Tree with thousands of leafs...) (Rudin, C. (2019))

## | Why XAI for deep learning models? | Not all ML models are created equal



<sup>\*</sup>caveat: Being simple does not imply being understandable by humans (think of a Decision Tree with thousands of leafs...) (Rudin, C. (2019))

## Why XAI for deep learning models? Not all ML models are created equal

- We need external tools to shed light on the rationales behind deep models' predictions
- We need to design new deep models equipped with better interpretability
  - Concept Bottleneck Models (grey box models) ("Concept Bottleneck Models", Pang Wei Koh, 2020)

## What can XAI do? Use cases

- Hybrid Decision Making
- Algorithmic Recourse
- Inspect and debug models (our focus)

## | What can XAI do? | Hybrid Decision Making









#### | What can XAI do? | Hybrid Decision Making









## | What can XAI do? | Algorithmic Recourse

 "the systematic process of reversing unfavourable decisions by algorithms and bureaucracies across a range of counterfactual scenarios"
 [Venkatasubramanian & Alfano, 2020; Karimi et al., 2021]



User

"Unfortunately, we cannot offer you any loan"

Decision Maker Black-Box Model

## | What can XAI do? | Algorithmic Recourse



User

Decision Maker Black-Box Model

## What can XAI do? Model Debugging

#### A bunch of methods have been proposed over time:

- Shapley values: Explaining prediction models and individual predictions with feature contributions. E. Štrumbelj et al., Knowledge and information systems, 2013
- CAM: Is Object Localization for Free? Weakly-Supervised Learning
   With Convolutional Neural Networks. M. Oquab et al., CVPR, 2015
- LIME: "Why Should I Trust You?" Explaining the Predictions of Any Classifier . M. T. Ribeiro et al., ACM SIGKDD, 2016
- Integrated Gradients: Axiomatic Attribution for Deep Networks. M.
   Sundararajan, ICML, 2017

• ...

## | What can XAI do? | Model Debugging

For image-like data the explanation is an heatmap or as relevance regions













(b) Explanation

Figure 11: Raw data and explanation of a bad model's prediction in the "Husky vs Wolf" task.

#### XAI4GNNs

The graph domain poses unique challenges

- Unstructured data type
- Discrete objects
- Node/Edge/Graph attributes
- Different type of explanation

Develop novel techniques for GNNs

#### XAI4GNNs

**Images** 





Graph

Node attribution



Edge attribution



### XAI4GNNs Taxonomy



## | XAI4GNNs | Local Explanations

Local (or Instance-level) Explainers highlight the input features most relevant for the prediction of the model to explain



### | XAI4GNNs | Local Explanations

Local (or Instance-level) Explainers highlight the input features most relevant for the prediction of the model to explain



#### Edge attribution

#### Intuitively

- 1. If an edge is relevant, then removing it will decrease the confidence of the prediction
- 2. So, to find  $G_s$  seek for edges whose removal do not impact the prediction of the model, and remove them

#### Mathematically

$$max_{G_S}MI(Y,G_S) = max_{G_S}H(Y) - H(Y|G_S) = min_{G_S}H(Y|G_S)$$

Operationally, G<sub>S</sub> is found by optimizing a mask over the graph



#### Intuitively

- 1. Based on the same principles as **GNNExplainer**
- Instead of optimizing a mask for each input graph, train a Neural
   Network that given the features of an edge predicts its importance

### XAI4GNNs PGExplainer



#### | XAI4GNNs | GNNExplainer vs PGExplainer

#### **GNNE**xplainer

Train a mask for each graph

#### **PGExplainer**

- Train a MLP once for all graphs
- Do inference with the MLP for each explanation

## XAI4GNNs Evaluation Metrics

- If ground truth available
  - accuracy/F1 of the explainer
- If not, unsupervised metrics

$$\bigcirc Sparsity = \frac{1}{N} \sum_{i=1}^{N} \left(1 - \frac{|E_i|}{|G_i|}\right)$$

$$\bigcirc \quad Fidelity_{+} = \frac{1}{N} \sum_{i=1}^{N} (f(G_{i})_{\hat{y}} - f(G_{i} \setminus E_{i})_{\hat{y}})$$



## Code Session II





### XAI4GNNs Taxonomy



### XAI4GNNs Taxonomy

#### Surveys on XAI4GNNs (not complete):

- Evaluating Explainability for Graph Neural Networks. C. Agarwal et al. 2022
- Probing GNN Explainers: A rigorous Theoretical and Empirical Analysis of GNN Explanation Methods. C. Agarwal et al., 2022
- Explainability in Graph Neural Networks: A Taxonomic Survey, H. Yuan et al., 2022
- Explaining the Explainers in Graph Neural Networks: a Comparative Study, A.
   Longa, S. Azzolin et al., 2022
- Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks,
   Zheng et al., 2023

#### | XAI4GNNs | Limitations

#### **Current limitations:**

- Too often random baselines surpass XAI tools
- Non-robustness of XAI tools
- OOD issue during perturbations
- Maybe excessive focus on final metrics, with little attention to whether the explanations actually help the human/the debugging (personal take)

### | XAI4GNNs | Global Explanations



## | XAI4GNNs | Global Explanations

Global (or Model-level) Explainers capture the behaviour of the model as a whole, abstracting individual noisy local explanations

#### Why global explanations?

Global Explainers are seldom studied + mining local explanations is hard:

- 1+ for every input sample
- 2. Often noisy
- 3. Difficult quality evaluation [1,2]

The **Global Logic-based GNN Explainer** (GLGExplainer) extracts logic formulas expressed in terms of learned human-understandable concepts.

Logic formulas with size constraints can be easily understood by human experts.

The Global Logic-based GNN Explainer (GLGExplainer) extracts logic

formulas expressed in terms of learned human-understandable concepts.

Logic formulas with size constraints can be easily understood by human experts.

Dataset with Mutag/Non Mutag compounds





#### **GLGExplainer** in short:

- Extract local explanations with a local explainer
- 2. Run GLGExplainer over those local explanations
- 3. Inspect the generated logic formulas



#### **GLGExplainer** in short:

So, GLGExplainer is learning how to combine individual local explanations into a single logic-based formula



#### **BAMultiShapes** dataset:

- Class0:  $\emptyset \lor H \lor G \lor W \lor (H \land G \land W)$
- Class1:  $(H \land G) \lor (W \land H) \lor (W \land G)$

BA H G W





Very few instances and only in train/val data

#### **BAMultiShapes** dataset:

• Class0:  $\emptyset \lor H \lor G \lor W \lor (H \land G \land W)$ 

• Class1:  $(H \wedge G) \vee (W \wedge H) \vee (W \wedge G)$ 

| _ | Split | BAMultiShapes |  |
|---|-------|---------------|--|
|   | Train | 0.94<br>0.94  |  |
|   | Val   | 0.94          |  |
|   | Test  | 0.99          |  |

| ВА | н | G | W |
|----|---|---|---|
| K  |   |   |   |





Very few instances and only in train/val data

#### **BAMultiShapes** dataset:

- Class0:  $\emptyset \vee H \vee G \vee W \vee (H \wedge G \wedge W)$
- Class1:  $(H \wedge G) \vee (W \wedge H) \vee (W \wedge G)$

| ВА | н | G | w |
|----|---|---|---|
| K  |   |   |   |



#### **Current limitations:**

- Number of concepts must be defined apriori
- Assumes a nicely working local explainer

#### Conclusions

- Common shortcomings of standard deep learning models
- Premises and potentials of XAI
- Examples (with some code) of XAI tools for the graph domain
- Limitations of current XAI tools

## **Conclusions What's Next**

Tutorial in four parts (slides + Jupyter notebooks available):

Part I: November 2, Presenter: GS

Goals: Motivations, Intro of basic concepts, definition of GNNs

Part II: November 9, Presenter: AL

Goals: Implementation of GNNs: How to implement a full GNN pipeline in PyTorch Geometric.

Part III: November 16, Presenter: SA

Goals: Explainability of GNNs: How to shed (a bit of) light into the black box

Part IV: November 23, Presenter: FF

Goals: Heterogeneity in GNNs: How can GNNs effectively model and incorporate a diversity of nodes and edges with different types.

# E.O.F.