Acheev Bhagat

MATLAB 3

Problem 1

AREF =

1.0000 0 0 -0.0105 0.0105 0 1.0000 0 2.0526 -1.0526 0 0 1.0000 2.8105 -1.8105 0 0 0 0 0

w is in the column space of A because AREF is consistent where AREF is the reduced echelon matrix built from A augmented by w. w is not in the null space of A because ANUL is not the zero vector where ANUL is A multiplied by w.

Problem 2

A =

191319	120919	411515	19451	216746	-165597	339262	340134
423715	166831	628660	557032	-60931	241318	105547	334183
-1163317	-821749	-1603066	-1180627	7 -26316	2 -90208	30 -8604	82 -1004395
-417088	-164248	-727651	-405012	-84818	-5861	-271346	-464635
238633	137581	452209	123258	167483	-75715	301553	339370
392109	413485	436751	342693	173846	516251	415866	299544

ARANK =

3

ANUL =

```
    -0.6711
    0.5627
    0.1069
    0.2326
    -0.0492

    0.6318
    0.5444
    -0.1161
    0.1749
    -0.1767

    0.0674
    -0.3308
    -0.4223
    0.0674
    -0.4531

    0.2503
    -0.0221
    0.5958
    -0.3681
    0.0187

    -0.1777
    0.1203
    -0.0285
    -0.8076
    -0.2119
```

```
-0.1951 -0.3214 -0.3236 -0.0654 0.1343
-0.0363 -0.3956 0.5375 0.3299 0.0027
0.1114 0.0528 -0.2176 -0.0999 0.8353
```

ANULRANK =

5

AxANUL =

6.1863e-10

ANUL vectors are indeed in the null space because when multiplied back with A the results are 0. In addition, they are linearly independent because their rank is 5.

Problem 3

F =

8 4 -1 6 -1 9 5 -4 8 4 -3 1 -9 4 11 -6 -4 6 -7 -8 0 4 -7 10 -7

FREF =

1.0000 0 0 -0.5000 3.0000 0 1.0000 0 2.5000 -7.0000 0 1.0000 0 -3.0000 0 0 0 0 0 0 0 0 0 0

The first three columns are F are independent, so they would form the basis of the space spanned by the vectors.

Problem 4

```
A =
  []
A =
 1.0000 0.8415 -0.4161 0.4546
A =
 1.0000 0.8415 -0.4161 0.4546
 2.0000 0.9093 -0.6536 -0.3784
A =
 1.0000 0.8415 -0.4161 0.4546
 2.0000 0.9093 -0.6536 -0.3784
 3.0000 0.1411 0.9602 -0.1397
A =
 1.0000 0.8415 -0.4161 0.4546
 2.0000 0.9093 -0.6536 -0.3784
 3.0000 0.1411 0.9602 -0.1397
 4.0000 -0.7568 -0.1455 0.4947
detA =
 -6.0242
```

The set of functions is linearly independent because its determinant is not 0.

Problem 5

rankA =

3

The coefficients of the polynomials don't result in a rank of 4 so the polynomials don't form the basis of P3.

Problem 6

ans =							
0.5213	0.2095	0.3998					
0.0626	0.3744	0.0626					
0.4161	0.4161	0.5377					
ans =							
0.4512	0.3540	0.4365					
0.0821	0.1793	0.0821					
0.4667	0.4667	0.4815					
ans =							
0.4390	0.4087	0.4372					
0.0882	0.1185	0.0882					
0.4728	0.4728	0.4746					
ans =							
0.4364	0.4269	0.4362					
0.0900	0.0995	0.0900					
0.4736	0.4736	0.4738					
ans =							
0.4357	0.4327	0.4357					
0.0906	0.0936	0.0906					
0.4737	0.4737	0.4737					
ans =							
0.4355	0.4346	0.4355					

ans =

0.43540.43510.43540.09090.09120.0909

0.0908 0.0917 0.0908

0.4737 0.4737 0.4737

```
0.4737 0.4737 0.4737

ans =

0.4354 0.4353 0.4354

0.0909 0.0910 0.0909

0.4737 0.4737 0.4737

ans =

0.4354 0.4354 0.4354

0.0909 0.0909 0.0909

0.4737 0.4737 0.4737

ans =

0.4354 0.4354 0.4354

0.0909 0.0909 0.0909

0.4737 0.4737 0.4737
```

Every time Q is raised to the power of 10, each row approaches a different value. Row 1 approaches 0.4354, Row 2 approached 0.0909, and Row 3 approaches 0.4737. Therefore, as k approaches infinity each row of the system will approach 0.4354, 0.0909, and 0.4737. The steady-state vector p for this system is

P =

0.6701

0.1399

0.7290