A Literate Approach for Improving the Verifiability, Reusability and Reproducibility of Scientific Computing Software

Spencer Smith, Jacques Carette, Dan Szymczak, Steven Palmer

> Computing and Software Department Faculty of Engineering McMaster University

CAIMS 2017, Third Canadian Symposium in Numerical Analysis and Scientific Computing (CSNASC):
Simulation, July 18, 2017

Scope

Motivatio

DDD

Overvie Exampl SRS

Qualitie

.

Conclusion

References

- Goal Improve quality of {SCS}
- Idea Adapt ideas from SE
- Document Driven Design
 - Good improves quality
 - Bad "manual" approach is too much work
- Solution
 - Capture knowledge
 - Generate all things
 - Avoid duplication
 - Traceability
- Showing great promise
 - · Significant work yet to do
 - Looking for examples/partners

Scope: Large/Multiyear

Scope: Program Families

Scope: End User Developers

Scope: Physical Science

Motivation: Safety

Motivation: (Re)certification

Slide 9 of 33

Scone

Motivation

חחח

Overvie Examp SRS

Qualities

.

Conclusion

References

Motivation: Improve Quality

Slide 10 of 33

Scope

Motivatio

DDD

Overview Example

Qualities

.

Conclusion

References

"Faked" Rational Design Process

SWHS example at https://github.com/smiths/swhs

Slide 11 of 33

Scope

Motivation

DDD

Overvie Example SRS

Conclusions

References

The Challenge

- Documentation provides advantages
 - Improves verifiability, reusability, reproducibility, etc.
 - From Parnas (2010)
 - easier reuse of old designs
 - better communication about requirements
 - more useful design reviews
 - etc.
 - New doc found 27 errors (Smith and Koothoor, 2016)
 - Developers see advantage (Smith et al., 2016)
- But documentation is felt to be ...
 - Too long
 - Too difficult to maintain
 - Not amenable to change
 - · Too tied to waterfall process
 - Reports counterproductive (Roache, 1998)
- The Solution?

Slide 12 of 33

Scope

Motivatio

Drasil

Overview

SRS

Qualities

i uture vvo

Conclusion

References

Slide 13 of 33

Overview

SRS

Knowledge Capture

Slide 14 of 33

Scope

Motivation

Monvano

Draci

Overview

SRS

Qualities

i uture vvo

Conclusion

References

Drasil

Slide 15 of 33

Scope

Motivatio

Drasil

Overview Example SRS

Qualitie

i uture vvoi

Conclusion

References

Slide 16 of 33

Scope

Motivatio

11101110110

Drasil

Example SRS

Qualitie

Future Wo

Conclusion

References

$J_{\mbox{tol}}$ in SRS.pdf

Refname	DD:sdf.tol
Label	J_{tol}
Units	
Omes	
Equation	$J_{tol} = \log \left(\log \left(\frac{1}{1 - P_{btol}} \right) \frac{\left(\frac{a}{1000} \frac{b}{1000} \right)^{m-1}}{k \left((E*1000) \left(\frac{b}{1000} \right)^2 \right)^m * LDF} \right)$
Description	J_{tol} is the stress distribution factor (Function) based on Pbtol P_{btol} is the tolerable probability of breakage a is the plate length (long dimension) b is the plate width (short dimension) m is the surface flaw parameter k is the surface flaw parameter E is the modulus of elasticity of glass E is the actual thickness E is the load duration factor

J_{tol} in SRS.tex

```
\noindent \begin{minipage}{\textwidth}
\begin{tabular}{p{0.2\textwidth} p{0.73\textwidth}}
\toprule \textbf{Refname} & \textbf{DD:sdf.tol}
\phantomsection
\label{DD:sdf.tol}
\\ \midrule \\
Label & $J_{tol}$
\\ \midrule \\
Units &
\\ \midrule \\
Equation & $J_{tol}$ = $\log\left(\log\left(\frac{1}{1-P_
    {btol}}\right)\frac{\left(\frac{a}{1000}\frac{b}
    {1000}\right)^{m-1}}{k\left(\left(E*1000\right)\right)}
    (\frac{h}{1000}\right)^{2}\right)^{m}*LDF}\right)$
\\ \midrule \\
Description & $J_{tol}$ is the stress distribution factor
     (Function) based on
              Pbtol\newline$P_{btol}$ is the tolerable
                  probability of breakage ...
\end{minipage}\\
```

J_{tol} in SRS.html

```
<a id="">
<div class="equation">
<em>J<sub>tol</sub></em> = log(log(<div class="fraction">
<span class="fup">
1
</span>
<span class="fdn">
1 − <em>P<sub>btol</sub></em>
</span>
</div>)<div class="fraction">
<span class="fup">
(<div class="fraction">
<span class="fup">
<em>a</em>
</span>
<span class="fdn">
1000
</span>
</div><div class="fraction">
. . .
```

J_{tol} in Python

J_{tol} in Java

J_{tol} in Drasil (Haskell)

```
stressDistFac = makeVC "stressDistFac" (nounPhraseSP
  $ "stress distribution" ++ " factor (Function)") cJ
sdf tol = makeVC "sdf tol" (nounPhraseSP $
  "stress distribution" ++
  " factor (Function) based on Pbtol")
  (sub (stressDistFac ^. symbol) (Atomic "tol"))
tolStrDisFac_eq :: Expr
tolStrDisFac_eq = log (log ((1) / ((1) - (C pb_tol)))
  * ((Grouping (((C plate_len) / (1000)) * ((C
     plate width) / (1000)))) : ^
  ((C sflawParamM) - (1)) / ((C sflawParamK) *
  (Grouping (Grouping ((C mod elas) * (1000)) *
  (square (Grouping ((C act_thick) / (1000))))
  )) : (C sflawParamM) * (C loadDF))))
tolStrDisFac :: ODefinition
tolStrDisFac = mkDataDef sdf tol tolStrDisFac eq
```

J_{tol} without Unit Conversion

1	Reference Material 3 1.1 Table of Units
	1.1 Table of Units 3 1.2 Table of Symbols 3 1.3 Abbreviations and Acronyms 4
2	Introduction 5 2.1 Purpose of Document 5 2.2 Scope of Requirements 5 2.3 Characteristics of Intended Reader 6 2.4 Organization of Document 6
3	Stakeholders 6 3.1 The Client 6 3.2 The Customer 6
4	General System Description 6 4.1 User Characteristics 7 4.2 System Constraints 7
5	Scope of the Project 7 5.1 Product Use Case Table 7 5.2 Individual Product Use Cases 7
6	Specific System Description 8 6.1 Problem Description 8 6.1.1 Terminology and Definitions 8 6.1.2 Physical System Description 10 6.1.3 Goal Statements 10 6.2 Solution Characteristics Specification 10 6.2.1 Assumptions 10 6.2.2 Theoretical Models 12 6.2.3 General Definitions 13 6.2.4 Data Definitions 13 6.2.5 Instance Models 17 6.2.6 Data Constraints 18
7	Requirements 19 7.1 Functional Requirements 19 7.2 Non-Functional Requirements 21
8	Likely Changes 21

Traceability Graph

Slide 25 of 33

Scope

Motivatio

DDD

Overview Example SRS

Qualities

Conclusion

Verifiability

Var	Constraints	Typical Value	Uncertainty
L	L > 0	1.5 m	10%
ρ_{P}	$ ho_P>0$	1007 kg/m ³	10%

$$E_{W} = \int_{0}^{t} h_{C} A_{C} (T_{C} - T_{W}(t)) dt - \int_{0}^{t} h_{P} A_{P} (T_{W}(t) - T_{P}(t)) dt$$

- If wrong, wrong everywhere
- Sanity checks captured and reused
- · Generate guards against invalid input
- Generate test cases
- Generate view suitable for inspection
- Traceability for verification of change

Slide 26 of 33

Scope

Motivatio

DDD

Overvier Example SRS

Qualities

. . .

Conclusions

References

Reusability

- De-embed knowledge
- Reuse throughout document
 - Units
 - Symbols
 - Descriptions
 - Traceability information
- Reuse between documents
 - SRS
 - MIS
 - Code
 - Test cases
- Reuse between projects
 - Knowledge reuse
 - · A family of related models, or reuse of pieces
 - Conservation of thermal energy
 - Interpolation
 - Etc.

Slide 27 of 33

Scope

Motivation

DDD

Overview Example SRS

Qualities

Future W

Conclusion

References

Reproducibility

- Usual emphasis is on reproducing code execution
- However, Ionescu and Jansson (2012) show reproducibility challenges due to undocumented:
 - Assumptions
 - Modifications
 - Hacks
- Shouldn't it be easier to independently replicate the work of others?
- Require theory, assumptions, equations, etc.
- Drasil can potentially check for completeness and consistency

Slide 28 of 33

Scope

Motivatio

DDD

Drasi

Exampl

Qualities

Future Work

Conclusion

References

Future Work

Slide 30 of 33

Scope

Motivation

DDD

Overvie Example SRS

Qualitie

i uture vvoi

Conclusions

References

Drasil Framework for LSS

- SCS has the opportunity to lead other software fields
- Document driven design is feasible
- Requires an investment of time
- Documentation does not have to be painful
- Develop/refactor via practical case studies
- Ontology may naturally emerge

Slide 31 of 33

Silue 31 01 3

Scope

Motivatio

חחו

Overvie Exampl SRS

Qualitie

Future Wo

Conclusion

References

References I

Cezar Ionescu and Patrik Jansson. Dependently-Typed Programming in Scientific Computing — Examples from Economic Modelling. In *Revised Selected Papers of the 24th International Symposium on Implementation and Application of Functional Languages*, volume 8241 of *Lecture Notes in Computer Science*, pages 140–156. Springer International Publishing, 2012. doi: 10.1007/978-3-642-41582-1_9.

David Lorge Parnas. Precise documentation: The key to better software. In *The Future of Software Engineering*, pages 125–148, 2010. doi:

10.1007/978-3-642-15187-3_8. URL http: //dx.doi.org/10.1007/978-3-642-15187-3_8.

Slide 32 of 33

Motivatio

DDD

Overvier Example SRS

Qualitie

Future Wo

Conclusion

References

References II

- Patrick J. Roache. *Verification and Validation in Computational Science and Engineering*. Hermosa Publishers, Albuquerque, New Mexico, 1998.
- W. Spencer Smith and Nirmitha Koothoor. A document-driven method for certifying scientific computing software for use in nuclear safety analysis. *Nuclear Engineering and Technology*, 48(2):404–418, April 2016. ISSN 1738-5733. doi: http://dx.doi.org/10.1016/j.net.2015.11.008. URL

http://www.sciencedirect.com/science/article/pii/S1738573315002582.

Slide 33 of 33

Scope

Motivatio

DDD

Overvie Exampl SRS

Quanties

Future Wo

Conclusion

References

References III

W. Spencer Smith, Thulasi Jegatheesan, and Diane F. Kelly. Advantages, disadvantages and misunderstandings about document driven design for scientific software. In *Proceedings of the Fourth International Workshop on Software Engineering for High Performance Computing in Computational Science and Engineering (SE-HPCCE)*, November 2016. 8 pp.