Interactive rendering of 2D structures with RDKit

Paolo Tosco, Nico Pulver, Nik Stiefl 11th RDKit UGM 12 October 2022

NIBR / GDC

Agenda

Where we were (2021)

Where we are (2022)

What next

Where we were (2021)

LYYLYYLY

LYYLYYLY YYYYXYYYYY

Visualize 2D molecules: from server-based...

- Several apps (Python, Java, JS, .NET) @NIBR need 2D structure visualization
- This used to be handled through a web service based on the Avalon depicter
- The client requested a 2D layout to the server (SMILES or CTAB)
- The server generated the 2D layout as a PNG image and exposed it to the client through a URL
- Several configuration options were available
 - Width, height
 - Align the layout to a scaffold (SMILES or CTAB)
 - Font, coloring, etc.

...to client-based

- Shut down the Avalon Depicter web service
- Generate all depictions in the clients (Python, JS, Java, .NET) using RDKit

```
<img width="300px" height="250px"</pre>
src="https://[...]/services/depicter/mol-
(C)C)O)(C)O)C)C)O)(C)O&w=300&h=250">
```


From PNG to scalable vector images

Move from a static PNG image to a vector image (HTML5 canvas, SVG)

RDKit, RDKit everywhere

- All the base functionality is available in the RDKit C++ core
- Can be accessed from any language RDKit has wrappers for (C, Python, Java, JS, .NET)

```
ROMol erythromycin =
RWMol.MolFromSmiles("CC[C@@H]1[C@@]([C@@H]([C@H](C(=0)[C@@H](C[C@@]([C@
@H]([C@H](([C@H]((C@H](C(=0)01)C)0[C@H]2C[C@@]([C@H](([C@H](02)C)0)(C)0
C)C)0[C@H]3[C@@H]([C@H](C[C@H](03)C)N(C)C)0)(C)0)(C)0");
using (MolDraw2DSVG molDraw = new MolDraw2DSVG(300, 250)) {
   RDKFuncs.setPreferCoordGen(true);
   erythromycin.compute2DCoords();
   RDKFuncs.setPreferCoordGen(false);
   erythromycin.normalizeDepiction();
   erythromycin.straightenDepiction();
   erythromycin.straightenDepiction();
   molDraw.drawMolecule(erythromycin);
   molDraw.finishDrawing();
   string svg = molDraw.getDrawingText();
   File.WriteAllText("C:/Temp/erythromycin_csharp.svg", svg);
}
```


Interactive rendering of 2D structures in the browser

At the 2021 RDKit **UGM I presented** a PoC JS library to do interactive rendering of 2D structures in the browser

Shortcomings

- My initial PoC was computing 2D layouts in the main thread
- This can be quite CPU-intensive for big hairy molecules
- The UI becomes unresponsive while the main thread is locked

Human insulin

Where we are (2022)

LYYLYYLY

LYYLYYLY YYYYXYYYYY

Web Workers!

Web
Workers
are started
as soon as
rdkitstructurerenderer
loads

2D layout jobs are submitted to **Web Workers**

Long running jobs are not an issue

- The UI remains responsive also in the presence of long running jobs as there are multiple Web Workers
- Structures are displayed asynchronously

Scaffold alignment (1)

mol.generate_aligned_cords(scaffold, opts)

This MinimalLib function generates a 2D layout for mol by rebuilding side chains *ex* novo around the constrained scaffold

Based on RDDepict::generateDepictionMatching2DStructure

Scaffold alignment (2)

JSMol.generate_aligned_cords(scaffold, opts)

This MinimalLib function generates a 2D layout for mol by rebuilding side chains *ex* novo around the constrained scaffold

- Based on RDDepict::generateDepictionMatching2DStructure
- Molecules in a chemical series can be oriented consistently

Scaffold alignment (3)

 Rebuilding coordinates ex novo may alter the way sidechains were originally drawn

Conservative scaffold alignment (1)

JSMol.generate_aligned_cords(scaffold, opts)
 now supports an alignOnly mode

maraviroc

maraviroc.generate_aligned_
coords(triazole_scaffold,
'{"useCoordGen":true,
 "alignOnly":true}}')

Conservative scaffold alignment (2)

 rdkit-structure-renderer will do a conservative scaffold alignment unless explicitly asked to rebuild coordinates ex novo

Non-conservative scaffold alignment

 If the molecule does not have original coordinates, the "Recompute 2D" option is greyed out, since coordinates are anyway rebuilt ex novo

NIBR web apps: Intuence Discovery

PandasTools issues (minor)

Jupyter Notebook performance

- I have had the feeling for a while that Jupyter Notebooks become sluggish after some uptime
- Google did not provide many relevant hits on that
- I was under the impression that this was happening in particular when working with pandas DataFrames
- And my DataFrames always have molecules
- Is PandasTools the culprit?

How PandasTools used to work

- Chem.Mol.__str__ is redirected to PrintAsBase64PNGString such that molecules are visualized as PNG or SVG images rather than as strings (e.g., <rdkit.Chem.rdchem.Mol object at 0x7fa6bc5441c0>)
- This means that a 2D layout may take place at each Chem.Mol.__str__ call

PandasTools issues (major)

New PandasTools (using formatters)

What next

YYXYYXYYY YLYXYYXXX

^+\^+\^+\^+ YYLYYLYY YYLYYLYYY LYYLYYLYYY LYYLYYLYY LYYLYYLYY LYYLYYLYY

Summary

- We have open-sourced on GitHub rdkit-structure-renderer, a JS app which enables interactive 2D molecule rendering in the browser
- The only dependency is on RDKit MinimalLib
- Interactive 2D molecule rendering can be enabled in Jupyter Lab with a single line of code and used for visualizing
 - Individual molecules
 - Grids of molecules with MolsToGridImage
 - pandas DataFrames through PandasTools
- We contributed improvements to PandasTools and scaffold alignment

Outlook

- Enable built-in magnifying lens functionality
- Enable further interactivity (molecule/atom property visualization, click/hover perception, etc.)
- Extend the interactivity to other environments (KNIME, .NET apps)
- Collect feedback from internal users and external community

Acknowledgments

- NIBR
 - Riccardo Vianello
 - Andreas Liistro
 - Nik Clare
 - Grégori Gerebtzoff
 - Robert Strulak
 - Daniil Tkachev
 - Ekaterina Stepanova
 - Jimmy Kromann
 - [...]

- Datagrok
 - Leonid Stolbov
 - Alex Paramanov
 - Andrew Skalkin
 - **–** [...]

- RDKit
 - Greg Landrum
 - David Cosgrove
 - Brian Kelley
 - **–** [...]
- Schrödinger
 - Nic Zonta
 - Rachel Walker
 - Ricardo Rodríguez
 - [...]

Thank you

YYYYXYYYYY

