Workshop 1: Apply System Design Framework to Netflix || Facebook

Step 1. Understand the problem and establish design scope:

Functional Requirements:

- Support For Play / Pause, Fast Forward, Rewind
- Creation / Login User Profiles, Curated Recommendations, Search
- Account State Management
- Subscription Management

Non-Functional Requirements

- Low Latency
- High Availability
- Fault Tolerance
- Cost Efficiency
- Scalability {}

Workloads & Constraints:

- Mainly read-heavy
- Large Media Files
- Heavy Network Bandwidth Consumption
- Global Distribution Needed

Assumptions & Estimations:

High Level Assumptions

Average Movie Size:

• Average Movie Length [1]: $pprox 131 \mathrm{minutes}$

- Uses Adaptive Bitrate Streaming via DASH^[2], so no clear way to determine, but, they^[3] state the following:
 - (The following are adjusted estimates because of the shorter average runtime)
 - Standard Definition (SD): Approximately 1.2 GB.
 - High Definition (HD): Approximately 3.5 GB.
 - Ultra High Definition (4K): Approximately 7 GB.

Estimate % based on quality

- All titles are probably in SD (100%)
- HD for say 80%
- 4K for say 30%

Weighted Average:

• (1.0 * 1.2GB) + (0.8 * 3.5GB) + (0.3 * 7GB) = ~ 6GB approx

Number Of Titles:

• Total Titles: Depends on the region, US had \approx 6,621 movies^[4]; AUS had \approx 4,462 movies^[5], so globally \approx 7000 titles total.

Therefore Sum Total: $pprox 6 \mathrm{GB} imes 7000 \mathrm{titles} = pprox 42 \mathrm{TB}$

- DAU $^{[6]}$: $pprox 302 ext{M} imes 0.5 pprox 151 ext{M}$
- ullet Each user watches pprox 5 titles per day, that's pprox 775 Million titles Watched Per Day.
- Assuming a 200:1 read to write ration, that's pprox 3.875 Million titles written per day.
 - $\circ~$ thats, $3.875M imes 6{
 m GB} pprox 23{
 m TB}$
- ullet Total File Size: $pprox 98\mathrm{TB}$

QPS Estimation

Read QPS:

- ullet Reads Per Day = 3.875M imes 200 = 775M
- ullet Per Second = $rac{775M}{24 imes60 imes60}pprox9000rps$

6/23/25, 9:17 AM soln.

Write QPS:

ullet Writes Per Second = $rac{3.875M}{86400}pprox45wps$

QPS SUMMARY

• Reads: ~9k/s

• Writes: ~45/s

• Peak Traffic:

• Reads: 18k/s

Writes: 90/s

Step 2. Propose a High-Level Design and Get Buy-In:

5/23/25, 9:17 AM soln.:

Step 3: Dive into the details

Identify Bottlenecks & Mitigation:

Component	Potential Bottleneck	Mitigation Strategy
CDN	Sudden traffic spikes during premieres	Use regional CDNs, cache popular content aggressively
Auth Service	Mass Login(e.g., new movie drop)	Introduce rate limiting, cache auth tokens, async session validation
Recommendation Engine	Heavy ML model computation	Use pre-computed recommendations with nightly batch jobs, cache results
Video Transcoding	CPU-intensive and slow	Do it asynchronously, use specialized GPU clusters, queue

6/23/25, 9:17 AM soln.m

Component	Potential Bottleneck	Mitigation Strategy
		using priority system

Replication & Scaling Plan

Layer	Strategy
Video Storage	Globally replicated via object stores
Databases	Partition by region + entity (user_id, movie_id); strong consistency only where needed
User Profiles	Eventually consistent replicas, cache-first design
Recommendation s	Pre-generated

Resilience Methods

Component	Resilience Strategy
All Services	Circuit Breakers
Microservices Comm.	Timeout fallback responses, dead-letter queues for failed jobs, latency monkey
Data Loss	Daily backups, versioned storage buckets
Chaos Monkey	Randomly kills instances to test auto-healing; Netflix uses it in prod
UI	Graceful fallback ("Try Again", offline support, loading states, degraded mode)

Tradeoff Vitals

Trade-off	Netflix Approach
Latency vs Cost	Pay premium for low-latency CDNs, cache content close to users
Consistency vs Availability	Prioritize availability, use eventual consistency for user- generated data
Durability vs Speed	Use write-ahead logs + background replication to balance
Batch vs Real-time Processing	Batch for ML workloads, real-time for metrics and playback data

Step 4: Wrap Up with Bottlenecks, Improvements, and Scaling Paths

Fallback & Recovery:

- Auth Faliure -> Serve Cached Session Tokens
- Recommendation Engine Faliure -> Default Popular Titles or user's past favourites
- Search Timeout -> Show default category

Comparison: This vs Real-World Netflix System

This architecture aims to capture a solid high-level overview of how a streaming service like Netflix could function. It includes key components such as client devices (TV, web, mobile), DNS resolution, media services (filtering, segmentation, transcoding), and a search system with language detection and metadata indexing.

However, in reality, Netflix's architecture is far more complex and optimized for massive scale. Some of the more obvious differences include:

- DNS Resolution: While DNS resolution does happen, Netflix uses AWS Route53 along with their proprietary global traffic controller to route users to the closest Open Connect CDN edge server, not just a simple domain resolution.
- Media Service: The media pipeline involves studio-level ingestion, automated quality checks, and multiple encoding passes tailored for device and network conditions handled by their internal tools like Cosmos and Titus.

5/23/25, 9:17 AM soln.

Search & Recommendation: For search and recommendations, Netflix goes beyond
metadata indexing. Their system uses a knowledge graph, deep learning-based query
understanding, and reinforcement learning models to personalize rankings in real time.
 Playback is handled via adaptive bitrate streaming (DASH), with manifests generated
dynamically per device.

- Faliure & Recovery: The real Netflix architecture emphasizes resilience through heavy chaos engineering. They use tools like Chaos Monkey, Janitor Monkey, Latency Monkey etc. They have multi-level fallback strategies and have predictive scaling.
- Data Storage: Netflix uses a mix of Cassandra, DynamoDB, EVCache, and multi-layered object storage (S3) with tunable consistency per data type. They replicate data globally with region-aware routing and carefully balance consistency and availability depending on the service needs.
- Tradeoffs: Cost vs Latency is heavily optimized in the real Netflix, they own their own CDNs to cut costs, while keeping the latency low. Recommendations are updated near real-time using multiple ML models running simultaniously

While a high-level architecture can capture the essential components of a streaming platform—such as media processing, user authentication, content delivery, and recommendation systems—the real-world implementation at Netflix demonstrates the immense complexity required to operate at global scale. Netflix's system is deeply optimized for reliability, performance, and cost-efficiency through advanced tools, automated pipelines, and intelligent traffic management. Their use of chaos engineering, real-time personalization, and globally distributed infrastructure illustrates how engineering is critical to delivering seamless streaming experiences to hundreds of millions of users worldwide.

Scaling Path: 1M -> 100M

Phase	Action
1M → 10M	Horizontal scaling, CDN expansion, DB sharding by region/entity
10M → 100M	Multi-region data centers, async pipelines for all writes, stronger cache hierarchy

- 1. $\underline{\text{https://thedailyaztec.com/117837/opinion/despite-growing-criticism-the-length-of-movies-arent-getting-too-long/} \ \underline{\boldsymbol{\epsilon}}$
- 2. https://www.quora.com/Does-Netflix-use-Dash ←
- 3. $\underline{\text{https://www.quora.com/What-is-the-average-size-of-a-3-hour-movie-file-on-Netflix}} \; \underline{\boldsymbol{\leftarrow}}$

5/23/25, 9:17 AM soln.mc

 $\textbf{4.} \ \underline{\text{https://www.whats-on-netflix.com/news/netflix-originals-now-make-up-55-of-us-library/} \; \underline{\boldsymbol{\leftarrow}} \\$

- 5. https://www.tomsguide.com/reference/netflix-price-australia $\underline{\leftarrow}$