Model-free reinforcement learning: Q-learning and SARSA

Model-free reinforcement learning: what if we do not know transitions *P* and reward function *r* of an MDP?

The Mystery Game:

https://programmingheroes.blogspot.com/2016/02/udacity-reinforcement-learning-mystery-game.html

Model-based vs model-free

MDP:

- Set of states S
- Transition probabilities <u>P_a(s'</u> | s)
- Reward function *r(s, a, s')* in real
- Discount factor γ

Q-learning

- 1. Initialise Q(s,a) arbitrarily
- 2. For each episode:
 - a. Initialise s (go to the initial state) —
 - b. Repeat for each step in the episode
 - i. Select the next action a to apply from s (using e.g. epsilon greedy, UCT) using Q(s,a)
 - ii. Execute action a and observe the reward r and new state s'
 - iii. $Q(s,a) := Q(s,a) + \alpha[r + \gamma \max a' Q(s',a') Q(s,a)]$
 - iv. s := s' ←

Q-Tables

_	State	Action					
		North	South	East	West		
	(0,0) (0,1)	0.53 0.61	0.36 0.27		_		
	(2,2) (2,3)	0.79 0.90					

SARSA example

	State	Action					
		North	South	East	West		
	(0,0)	0.53	0.36	0.36	0.21		
	(0,1)	0.61	0.27	0.23	0.23		
_	(2,2) (2,3)	0.79	0.72	0.900	0.72		

$$\mathscr{Y} Q(s,a) := Q(s,a) + \alpha[r + \gamma \max_{a'} a' Q(s',a') - Q(s,a)]$$

Learning rate $\alpha = 0.1$ Discount reward factor $\gamma = 0.9$

Q-learning:
Q((2,2), North) =
$$0.79 + 0.1*(0+)0.9*0.9 - 0.79$$
 = 0.792

$$\alpha \quad Q(s,a) := Q(s,a) + \alpha[r + \gamma Q(s',a') - Q(s,a)]$$

SARSA, with assumption that a' is West (on-policy action)
$$Q((2,2), North) = 0.79 + 0.1* (0 + 0.9*0.72 -0.79) = 0.7758$$

If a' was East is for SARSA, the update would be just the same as for Q-learning because East is the max action from (2,2)

Q-learning: Off-policy

- 1. Initialise Q(s,a) arbitrarily
- 2. For each episode:
 - a. Initialise s (go to the initial state)
 - b. Repeat for each step in the episode
 - i. Select the next action a to apply from s
 (using e.g. epsilon greedy, UCT) use Q(s,a)
 - ii. Execute action *a* and observe the reward *r* and new state *s'*
 - $\overrightarrow{Q(s,a)} := Q(s,a) + \alpha[r + \gamma \max a' Q(s',a') Q(s,a)]$ iv. s := s'
 - c. Until s is terminal

SARSA: On-policy learning

- 1. Initialise Q(s,a) arbitrarily
- 2. For each episode:
 - a. Initialise s (go to the initial state)
 - b. Select the next action *a* to apply from *s* (using e.g. epsilon greedy, UCT)
 - c. Repeat for each step in the episode
 - i. Execute action a and observe the reward r and new state s'
 - ii. Select the next action <u>a'</u> to apply from <u>s'</u> (using e.g. epsilon greedy, UCT)
 - $\overrightarrow{\text{iii.}} \ Q(s,a) := Q(s,a) + \alpha \left[r + \gamma \underline{Q(s',a')} Q(s,a) \right]$ iv. $s := s'; \underline{a} := \underline{a}';$
 - d. Until s is terminal

<u>Gridworld Q-Learning - Example 3 - The Cliff</u>

Learning to Play Freeway, using Reinforcement Learning