# Содержание

- 1 Первая квадратичная форма поверхности
  - Определение, свойства, примеры
  - Изометрии
- Вторая квадратичная форма поверхности
  - Координатное определение
  - Гауссово отображение и оператор Вейнгартена
  - Соприкасающийся параболоид, кривизна по направлению

# Что такое поверхность

Будем изучать m-мерные поверхности в  $\mathbb{R}^N$ . Классический случай: m=2 и N=3.

Слово «поверхность» может означать разные объекты:

- **②** Вложенное многообразие гладкое подмногообразие  $M^m \subset \mathbb{R}^N$ .
- Регулярная поверхность гладкое погружение  $r \colon U \to \mathbb{R}^N$ , где  $U \subset \mathbb{R}^m$  открыто.
  Это будет наш основной способ задания поверхностей.
- Погруженное многообразие гладкое погружение  $r \colon M \to \mathbb{R}^N$ , где  $M^m$  произвольное гладкое многообразие.
  Этот класс включает «самопересекающиеся поверхности» с нетривиальной топологией. Нам пока не понадобится.

В основном будем изучать локальную геометрию. Локально между тремя видами объектов разницы нет.



#### Обозначения

Рассматриваем регулярную поверхность  $r: U \subset \mathbb{R}^m \to \mathbb{R}^N$ .

Для локальных вопросов можно считать, что это простая поверхность, параметризующая  $M \subset \mathbb{R}^N$ .

Координаты в U обозначаем  $(x_1, \ldots, x_m)$  или (x, y). Рассматриваем точки  $x \in U$  и  $p = r(x) \in M$ .

#### Наблюдения:

- Дифференциал  $d_x r$  линейный изоморфизм между  $\mathbb{R}^m$  и  $T_n M$ .
- Он переводит вектор из  $\mathbb{R}^m$  в вектор из  $T_pM$  с теми же координатами в карте  $r^{-1}$ .
- Базисные векторы этих координат в  $T_p M$  частные производные  $r_{x_1}, \ldots, r_{x_m}$   $(r_{x_i} = \frac{\partial r}{\partial x_i})$ .

### Информация

Есть традиция обозначать координаты в U буквами  $u_1, \ldots, u_m$  или  $(\underline{u}, \underline{v})$ . Встречается во многих книгах.



dr: R - IpM

# Содержание

- 1 Первая квадратичная форма поверхности
  - Определение, свойства, примеры
  - Изометрии
- Вторая квадратичная форма поверхности
  - Координатное определение
  - Гауссово отображение и оператор Вейнгартена
  - Соприкасающийся параболоид, кривизна по направлению

# Определение

Надо вспомнить: соответствие между квадратичными и симметричными билинейными формами, матрица билинейной формы.

 $B \rightleftharpoons Q(x) = B(x,x)$ 

 $\frac{e_1, - \cdot \cdot \cdot}{e_i \cdot \cdot \cdot} = B(e_i, e_j).$ 

Janush Janush Janush Janush Janush Janush Janush

X-ben . up. 60. Summer no, econ B(., x) 4 B annequana ( B(x,y)=B(y,x) Luciusme

former

hax

# Определение

Надо вспомнить: соответствие между квадратичными и симметричными билинейными формами, матрица билинейной формы.

### Определение

Первая фундаментальная форма (метрический тензор) поверхности  $r\colon U \to \mathbb{R}^N$  в точке  $x \in U$  — это (в зависимости от контекста) одна из следующих вещей:

① Симметричная билинейная форма **I** на  $\mathbb{R}^m$ , определяемая равенством

$$\mathbf{I}(v,w) = \langle d_X r(v), d_X r(w) \rangle, \qquad v, w \in \mathbb{R}^m$$

- **2** Квадратичная форма на  $\mathbb{R}^m$ , соответствующая этой билинейной форме.
- Матрица этой билинейной формы.

Обозначения: I, g. Краткая запись:  $I = \langle dr, dr \rangle$ .

Для матрицы:  $(g_{ij})$  или  $\begin{pmatrix} E & F \\ F & G \end{pmatrix}$  (при m=2).



# Тривиальные наблюдения

• I соответствует скалярному произведению на  $T_pM$  при изоморфизме  $d_x r \colon \mathbb{R}^m \to T_pM$ .



Лекция 9

• І положительно определена.





# Тривиальные наблюдения

- I соответствует скалярному произведению на  $T_pM$  при изоморфизме  $d_x r \colon \mathbb{R}^m \to T_pM$ .
- І положительно определена.
- $g_{ij} = \langle r_{x_i}, r_{x_i} \rangle$ .
- Т.е. это матрица Грама стандартного базиса  $T_p M$ .

$$\begin{aligned}
g\ddot{g} &= I(e_i, e_j) = \\
&= \left(\frac{\partial \Gamma}{\partial x_i}, \frac{\partial \Gamma}{\partial x_j}\right) \\
I(x_i) &= \frac{\partial \Gamma}{\partial x_i}
\end{aligned}$$

28 октября 2020 г.

# Тривиальные наблюдения

- I соответствует скалярному произведению на  $T_pM$  при изоморфизме  $d_x r \colon \mathbb{R}^m \to T_pM$ .
- І положительно определена.
- $g_{ij} = \langle r_{x_i}, r_{x_i} \rangle$ .
- Т.е. это матрица Грама стандартного базиса  $T_p M$ . ( $rac{r}{r}$ )
- ullet Матрица  $(g_{ij})$  невырождена,  $\det(g_{ij})>0$ .\_\_\_\_\_\_
- Невырожденность матрицы один из способов проверки регулярности поверхности.



#### Свойства

• І позволяет считать длины касательных векторов. Длина касательного вектора с координатами  $\xi = (\xi_1, \dots, \xi_m)$  равна

$$\sqrt{I(\xi,\xi)} = \sqrt{\sum g_{ij}\xi_{i}\xi_{j}}$$

$$|\xi,\eta\rangle = \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}$$



#### Свойства

• I позволяет считать длины касательных векторов. Длина касательного вектора с координатами  $\xi = (\xi_1, \dots, \xi_m)$  равна

$$\sqrt{\mathbf{I}(\xi,\xi)} = \sqrt{\sum g_{ij}\xi_i\xi_j}$$

• Аналогично, есть формула для угла между касательными векторами с координатами  $\xi$  и  $\eta$ :

$$\angle (\xi, \eta) = \frac{\mathbf{I}(\xi, \eta)}{\sqrt{\mathbf{I}(\xi, \xi)\mathbf{I}(\eta, \eta)}}$$



# Свойства — продолжение

• I позволяет считать длины кривых на поверхности. Для кривой  $\gamma(t) = r(x(t)) = r(x_1(t), \dots, x_n(t))$  вектор скорости равен

$$\frac{d_{\chi(t)}}{dt} = \frac{\gamma'(t) = dr(x'(t))}{dr(x'(t))} = \sum_{i} x'_{i}(t) r_{x_{i}}(x(t)).$$
To be some  $x(t)$ 

Отсюда

$$\ell(\gamma) = \int \sqrt{\mathbf{I}_{x(t)}(x'(t), x'(t))} = \sqrt{\sum g_{ij}(x(t)) x'_{i}(t) x'_{j}(t)}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad$$

$$x(t) = \sum_{i=1}^{n} x_i^i(t) \cdot e_i$$
 $dr(x'(t)) = \sum_{i=1}^{n} x_i^i(t) \cdot dr(e_i)$ 



### Свойства — продолжение

• I позволяет считать длины кривых на поверхности. Для кривой  $\gamma(t)=r(x(t))=r(x_1(t),\dots,x_n(t))$  вектор скорости равен

$$\gamma'(t) = dr(x'(t)) = \sum x_i'(t) r_{x_i}(x(t)).$$

Отсюда

$$\ell(\gamma) = \int \sqrt{\mathbf{I}_{\mathsf{X}(t)}(\mathsf{X}'(t), \mathsf{X}'(t))} = \sqrt{\sum g_{ij}(\mathsf{X}(t)) \, \mathsf{X}'_i(t) \, \mathsf{X}'_j(t)}$$

• I позволяет считать площадь (*k*-мерный объём) поверхности:

$$area(r(U)) = \int_U \sqrt{\det(g_{ij})}$$

Доказательство (вместе с определением объема) будет на анализе.



8 / 56

Лекция 9

28 октября 2020 г.

# Замена координат

Пусть r и  $\widetilde{r}$  — две параметризации одной поверхности,  $\varphi$  — отображение перехода между ними ( $\widetilde{r}=r\circ\varphi$ ) Тогда их первые формы  $\mathbf I$  и  $\widetilde{\mathbf I}$  в соответствующих точках x и  $\varphi(x)$  связаны соотношением

$$\widetilde{\mathbf{I}}_{\boldsymbol{\varphi}(x)}(v,w) = \mathbf{I}_{\boldsymbol{\varphi}}(d_{x}\varphi(v),d_{x}\varphi(w)), \qquad v,w \in \mathbb{R}^{m}$$

Т.е.  $\mathbf{I}_{\varphi(x)}$  соответствует  $\mathbf{I}_x$  при линейном изоморфизме  $d_x \varphi \colon \mathbb{R}^m \to \mathbb{R}^m$ .

В матричной записи:

$$[\widetilde{\mathbf{I}}_{\mathbf{g}(\mathbf{x})}] = [d_{\mathbf{x}}\varphi]^{T}[\mathbf{I}_{\mathbf{x}}][d_{\mathbf{x}}\varphi]$$

где квадратные скобки обозначают матрицы билинейных форм и линейных отображений.

$$\frac{1}{|a_{q(u)}|} = \frac{1}{|a_{q(u)}|} = \frac{1}{|a_{q($$

Лекция 9 28 октября 2020 г.

### Примеры: плоскость

• Для плоскости в декартовых координатах

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$





# Примеры: плоскость

• Для плоскости в декартовых координатах

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



x(4)13(4)



$$\left( \begin{array}{c} P_1 \ \ \ \end{array} \right) \sim \begin{array}{c} \boxed{ \quad \ \ \, \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & \rho^2 \end{pmatrix} }$$



 $\Longrightarrow$  Длина кривой с полярными координатами ho(t), arphi(t) равна

$$\int_{T} \sqrt{\rho'^{2} + \underline{\rho}^{2} \varphi'^{2}} dt$$

$$E = | \Gamma_{\rho}|^{2} = | F | F | F | F | F |$$

$$G = | \Gamma_{\mu}|^{2} = | F | F | F |$$

R2-103.





$$\Gamma(p,q) = (p \cos q, p \sin q)0)$$

$$\Gamma_{q}^{\dagger} = (\omega s q, \sin q, 0)$$

$$\Gamma_{q}^{\dagger} = (p \sin q, p \cos q, 0)$$

$$\Gamma = (\frac{E}{FG}) = (\frac{1}{2})^{2}$$

$$\Gamma = (\frac{1}{2})^{2}$$

# Примеры: цилиндр

Для цилиндра  $S^1 imes \mathbb{R}$  можно выбрать параметризацию

$$r(x,y) = (\cos x, \sin x, y)$$

Получается

$$r_x = (-\sin x, \cos x, 0)$$

$$r_y=(0,0,1)$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

 $\Longrightarrow r$  сохраняет длины и углы





# Примеры: сфера

Для сферы со сферическими координатами  $\theta \in [0,\pi]$ ,  $\varphi \in \mathbb{R} \pmod{2\pi}$ :

$$r(\theta, \varphi) = (\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)$$

$$r_{\theta} = (\cos \theta \cos \varphi, \cos \theta \sin \varphi, -\sin \theta)$$

$$r_{\varphi} = (-\sin \theta \sin \varphi, \sin \theta \cos \varphi, 0)$$

$$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & \sin^2 \theta \end{pmatrix}$$



Лекция 9

28 октября 2020 г.

# Для записей

### Содержание

- 1 Первая квадратичная форма поверхности
  - Определение, свойства, примеры
  - Изометрии
- Вторая квадратичная форма поверхности
  - Координатное определение
  - Гауссово отображение и оператор Вейнгартена
  - Соприкасающийся параболоид, кривизна по направлению

### Определение

#### Определение

Пусть  $M_1, M_2$  — поверхности (одинаковой размерности). Изометрия между  $M_1$  и  $M_2$  — диффеоморфизм  $f: M_1 \to M_2$  такой, что для любой точки  $p \in M_1$ , дифференциал  $d_p f: T_p M_1 \to T_{f(p)} M_2$  сохраняет скалярное произведение.

Поверхности изометричны, если существует изометрия между ними.

#### Замечание

Интуитивный смысл: изометрия изгибает поверхность без внутренних растяжений и сжатий.



Лекция 9 28 октября 2020 г.

# Изометрии и первая форма

### Теорема

Пусть  $f: M_1 \to M_2$  — диффеоморфизм,  $r_i: U \to M_i$  — параметризация  $M_i$  (i=1,2,U общая),  $r_2=f\circ r_1$ . Тогда эквивалентны свойства:

- f изометрия
- ② Для всех  $x \in U$  первые формы  $r_1$  и  $r_2$  в точке x равны.

#### <u>Док</u>азательство.

Тривиально из определений.

$$I^{r_{1}}(\xi,\eta) = I^{r_{2}}(\xi,\eta)$$

$$\langle dr_{1}(\xi), dr_{2}(\eta) \rangle = \langle dr_{2}(\xi), dr_{2}(\eta) \rangle$$



# Изометрии и первая форма

### Теорема

Пусть  $f: M_1 \to M_2$  — диффеоморфизм,  $r_i: U \to M_i$  — параметризация  $M_i$  (i=1,2,U общая),  $r_2=f\circ r_1$ . Тогда эквивалентны свойства:

- f изометрия
- $m{Q}$  Для всех  $x \in U$  первые формы  $r_1$  и  $r_2$  в точке x равны.

#### <u>Док</u>азательство.

Тривиально из определений.

### Следствие

Простые поверхности  $M_1$  и  $M_2$  изометричны  $\iff$  у них есть такие параметризации  $r_i \colon U \to M_i$ , что их первые формы поточечно равны.



Лекция 9



# Примеры

• Цилиндр (над любой регулярной кривой) локально изометричен плоскости. (Для круглого цилиндра было, для произвольного аналогично).

$$\int_{1}^{12} fg^{2} = 1$$

$$= |y|^{2} = 1$$

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$



# Примеры

- Цилиндр (над любой регулярной кривой) локально изометричен плоскости.
   (Для круглого цилиндра было, для произвольного аналогично).
- Конус (над любой регулярной кривой) локально изометричен плоскости.
   (Доказательство с помощью полярных координат).

$$\begin{aligned}
\Gamma(x,y) &= X \cdot y(y). \\
\Gamma(x) &= X \cdot y(y). \\
\Gamma(x) &= X \cdot y'(y). \\
\Gamma(y) &= X \cdot y'(y). \\
E &= (\Gamma(x)^2 = |Y(y)|^2 = |X(y)|^2 = |X(y)|$$



### Внутренняя метрика

#### Определение

Пусть M — связная поверхность,  $p,q\in M$ . Внутреннее расстояние между p и q в M — инфимум длин кусочно-гладких кривых на M, соединяющих p и q.

#### Легко проверить, что

- M с этим расстоянием метрическое пространство
- Изометрии поверхностей сохраняют внутреннее расстояние

6 cource oup. reonequet.



### Внутренняя метрика

#### Определение

Пусть M — связная поверхность,  $p,q\in M$ . Внутреннее расстояние между p и q в M — инфимум длин кусочно-гладких кривых на M, соединяющих p и q.

Легко проверить, что

- М с этим расстоянием метрическое пространство
- Изометрии поверхностей сохраняют внутреннее расстояние.

#### Пример

Сфера не локально изометрична плоскости.

#### Доказательство.

На сфере другая формула длины окружности.



Лекция 9

### Внутренняя геометрия поверхности

Свойство (или характеристика) поверхности относится к внутренней геометрии, если оно одинаково у изометричных поверхностей.

Внутренние свойства — те и только те, которые определяются первой формой.

Например, к внутренней геометрии относятся длины, углы, площади на поверхности.

Кривизны и связанное с ними — обычно не относятся (хотя есть исключения).

# Римановы метрики (анонс)

### Определение

Риманово многообразие — гладкое многообразие M с дополнительной структурой: на каждом касательном пространстве  $T_p M$  задано скалярное произведение, которое гладко зависит от p (в смысле, который определим потом).

Эта структура называется римановой метрикой на M.

Например, риманову метрику в открытой области  $U \subset \mathbb{R}^m$  можно определить матричной функций  $g_{ij}$  типа первой формы (гладкой, симметричной и положительно определённой в каждой точке).

Всю внутреннюю геометрию поверхностей можно перевести на язык римановых метрик.

Есть теорема Нэша: любое риманово многообразие изометрично вкладывается в  $\mathbb{R}^N$  при достаточно большом N. (Доказывать её не будем).



Лекция 9