1. (a) Posem, per exemple, l'origen de coordenades al punt A, d'on surt el vehicle que circula a $25\,m/s$

Plantegem un sistema d'equacions

$$\begin{cases} x = 25t \\ x = 4000 - 20(t-2) \end{cases}$$

d'on

$$25t = 4000 - 20t + 40$$

i finalment,

$$45t = 4040 \rightarrow t = \frac{4040}{5} = 89,78 \, s$$

i

$$x = 25t = 25 \cdot 89,78 = 2244,44 \, m$$

Notem que el temps calculat es mesura respecte al cotxe que surt del punt A, així com l'espai recorregut. Si volem saber el temps que tarden a trobar-se i l'espai recorregut respecte al segon cotxe hauríem de fer

$$t = 89,78 - 2 = 87,78 s$$
 $x = 4000 - 2244,44 = 1755,56 m$

(b) Ara no podem triar, hem de posar al darrere el que va més ràpid per tal que el problema tingui solució. Encara podríem posar l'origen de coordenades al punt B o en qualsevol altre punt. Tornem a posar-lo al punt A.

El sistema ara s'escriu

$$\begin{cases} x = 25t \\ x = 4000 + 20(t - 2) \end{cases}$$

d'on

$$25t = 4000 + 20t - 40$$

i finalment,

$$5t = 3960 \rightarrow t = \frac{3960}{5} = 792 \, s$$

i

$$x = 25t = 25 \cdot 792 = 19800 \, m$$

Des del vehicle que va partir del punt B serà

$$t = 792 - 2 = 790 \, s$$
 $x = 19800 - 4000 = 15800 \, m$

2. Situem el cotxe a l'origen d'espai i temps així la seva equació del moviment (que és de segon grau) no complicarà els càlculs. D'aquesta manera, li assignarem el temps inicial a la moto i pensarem que la moto havia passat pel semàfor 10 segons abans de que arrenqui el cotxe.

Plantegem un sistema d'equacions

$$\begin{cases} x = \frac{1}{2} \cdot 3t^2 \\ x = 30(t+10) \end{cases}$$

llavors

$$\frac{1}{2} \cdot 3t^2 = 30(t+10)$$

d'on s'obté fàcilment

$$3t^2 - 60t - 600 = 0$$

que es pot simplificar per quedar

$$t^2 - 20t - 200 = 0$$

i

$$t = \frac{20 \pm \sqrt{20^2 + 4 \cdot 200}}{2} = \frac{20 \pm \sqrt{1200}}{2}$$

amb solucions $t_1=27, 3\,s,\, t_2=-7, 3\,s.$ Ens interessa la solució positiva.

L'espai recorregut pels dos al trobar-se valdrà

$$x = 30(t+10) = 30 \cdot (27, 3+10) = 1119 m$$

3. Representem la situació qualitativament en una gràfica espai temps

Podem plantejar un sistema d'equacions

$$\begin{cases} x = 20000 - \frac{1}{2} \cdot 5t^2 \\ x = \frac{1}{2} \cdot 3 \cdot t^2 \end{cases}$$

Igualant-les

$$20000 - \frac{1}{2} \cdot 5t^2 = \frac{1}{2} \cdot 3 \cdot t^2$$

d'on

$$40000 - 5t^2 = 3t^2$$

i

$$8t^2 = 40000 \rightarrow t = \pm \sqrt{5000} = \pm 70,7 \, s$$

Ens quedem amb la solució positiva. La distància recorreguda des del punt que va sortir el primer val

$$x = \frac{1}{2} \cdot 3 \cdot t^2 = \frac{1}{2} \cdot 3 \cdot (70, 7)^2 = 7500 \, m$$

