1.1 LINEAR TOPOLOGIES

Fix a ground field *k*. From now on, a vector space will always mean a *k*-vector space.

Definition 1.1. A **linear topology** on a vector space *V* is a separated (Hausdorff) topology invariant under translations that admits an open local base around zero of vector subspaces. A vector space equipped with a linear topology will be referred as **linearly topologized**.

If we endow k with the discrete topology then V will become a topological vector space. From now on, endow k with the discrete topology.

Linear topologies behave nicely under basic topological operations.

Proposition 1.2. Let V be a linearly topologized vector space. Then

- (a) Any vector subspace of V is linearly topologized under its subspace topology.
- (b) If $W \subseteq V$ is a closed vector subspace then V/W is linearly topologized under its quotient topology.
- (c) If $\{V_{\alpha}\}_{\alpha}$ is a collection of linearly topologized vector spaces its product $\prod_{\alpha} V_{\alpha}$ and its direct sum $\bigoplus_{\alpha} V_{\alpha}$ is linearly topologized under its product topology.
- (d) If W is a vector subspace of V, then its topological closure \overline{W} also is a vector subspace of V.

Proof. Since intersection of vector subspaces is a vector subspace, (a) follows intersecting the fundamental system of neighborhoods in V by the vector subspace. For (b), let $\pi\colon V\to V/W$ be the quotient map. Since π is open and surjective the image of a local base is a local base; moreover, the image of a vector subspace under π is a vector subspace. In addition, since W is closed then V/W is Hausdorff. Now, for (c) let $\{U_{\alpha,\beta}\}_{\beta}$ be a local base of zero in V_{α} of vector subspaces, the

products $U_{\alpha_1,\beta_1} \times ... \times U_{\alpha_n,\beta_n} \times \prod_{\gamma} V_{\gamma}$, where γ ranges over $\alpha \neq \alpha_1,...,\alpha_n$, for any set $\{(\alpha_1,\beta_1,...,\alpha_n,\beta_n)\}$ form a fundamental system of neighborhoods around zero in $\prod_{\alpha} V_{\alpha}$ of open vector subspaces. Note that since $\bigoplus_{\alpha} V_{\alpha} \subseteq \prod_{\alpha} V_{\alpha}$ is a vector subspace (c) follows from (a). Finally, for (d), suppose $x,y \in \overline{W}$, then, for every open vector subspace U, $(x+U) \cap W \neq \emptyset$ and $(y+U) \cap W \neq \emptyset$, therefore for every $\alpha,\beta \in k$ we have $(\alpha x + U) \cap W \neq \emptyset$ and $(\beta y + U) \cap W \neq \emptyset$. Hence, $(\alpha x + \beta y + U) \cap W \neq \emptyset$ for every open vector subspace U and every pair $\alpha,\beta \in k$. It follows (d).

Remark 1.3. Using an argument similar to the previous proposition one can check that in the category $LinTop_k$ of linearly topologized vector spaces limits and colimits indexed by small categories exist.

Linear topologies are discrete over a finite dimensional vector space.

Proposition 1.4. A finite dimensional linearly topologized vector space V is discrete.

Proof. Let U be an open vector subspace and $0 \neq x \in U$, since V is separated there exists an open vector subspace U_x such that $x \notin U_x$. Thus, $\dim U_x \cap U < \dim U$. Since V is finite dimensional this process can be repeated only a finite amount of times; that is $\{0\}$ is open. It follows that V is discrete. \square

Commensurability

We introduce a partial order in the set of vector subspaces of a vector space V.

Definition 1.5. For vector subspaces A and B of a vector space V we say that $A \prec B$ if the quotient $A/(A \cap B) \cong (A+B)/B$ is finite dimensional (or equivalently $A \subseteq B+W$ for some finite dimensional W). In addition, we say that A and B are **commensurable** (denoted $A \sim B$) if $A \prec B$ and $B \prec A$.

Observe that $A \sim B$ if and only if $(A + B)/(A \cap B) \cong A/(A \cap B) \oplus B/(A \cap B)$ is finite dimensional. We will constantly refer to a vector space V being finite dimensional as $V \sim 0$.

Proposition 1.6. Let V be a vector spaces and A, B and C be vector subspaces, then:

(a) If $A \sim B$ and $B \sim C$ then

$$\frac{A+B+C}{A\cap B\cap C}\sim 0$$

(b) If $A \prec B$ and $B \prec C$ then $A \prec C$. Moreover, commensurability is an equivalence relation.

Proof. Consider the following exact sequences

$$0 \to \frac{A \cap B}{A \cap B \cap C} \to \frac{B}{B \cap C'}$$

and,

$$0 \to \frac{A \cap B}{A \cap B \cap C} \to \frac{A + B}{A \cap B \cap C} \to \frac{A + B}{A \cap B} \to 0$$

induced by inclusions. The first inclusion plus the fact that $B \sim C$ imply that $(A \cap B)/(A \cap B \cap C)$ is finite dimensional. Now, since $A \sim B$ it follows that $(A+B)/(A \cap B)$ is finite dimensional. Hence, the second exact sequence concludes that $(A+B)/(A \cap B \cap C)$. A symmetrical argument shows that $(B+C)/(A \cap B \cap C) \sim 0$. These prove (a). For (b), the inclusion

$$0 \to \frac{A+C}{A\cap C} \to \frac{A+B+C}{A\cap B\cap C}$$

plus (a) implies transitivity.

Now, we state and prove some useful properties on the relation \prec .

Lemma 1.7. (a) If $A \subseteq B$ then $A \prec B$.

- (b) If $A \prec B$ then $f(A) \prec f(B)$ for any k-linear map f
- (c) It holds that

$$\sum_{i=1}^{m} A_i \prec \bigcap_{j=1}^{n} B_j \iff A_i \prec B_j \text{ for all } i \text{ and } j.$$

Proof. First, (a) is immediate from the definition of \prec . Second, for (b) the map f factors as

$$A/(A \cap B) \to f(A)/(f(A) \cap f(B)) \to 0$$

Finally, for (c), if $\sum_{i=1}^{m} A_i \prec \bigcap_{j=1}^{n} B_j$ holds then by (a) above, for all i and j we have

$$A_i \prec \sum_{i=1}^m A_i \prec \bigcap_{j=1}^n B_j \prec B_j$$

On the other hand, if $A_i \prec B_j$ for all i and j then there exists finite dimensional subspaces W_{ij} such that $A_i \subseteq B_j + W_{ij}$ for all i and j. Therefore,

$$\sum_{i=1}^{m} A_i \subseteq \bigcap_{j=1}^{n} B_j + \sum_{i=1}^{m} \sum_{j=1}^{n} W_{ij}.$$

Next, we consider another useful lemma.

Lemma 1.8. Let A, B, A', B' be vector subspaces of a vector space V and suppose that $A \sim A'$ and $B \sim B'$. Then $A + B \sim A' + B'$ and $A \cap B \sim A' \cap B'$.

Proof. The following exact sequence

$$0 \to \frac{A+A'+B+B'}{A\cap A'\cap B\cap B'} \to \frac{A+A'}{A\cap A'} \oplus \frac{B+B'}{B\cap B'} \to \frac{A+A'+B+B'}{(A\cap A')+(B\cap B')} \to 0$$

plus $A \sim A'$ and $B \sim B'$ imply that both spaces

$$\frac{A+A'+B+B'}{A\cap A'\cap B\cap B'} \quad \text{and,} \frac{A+A'+B+B'}{(A\cap A')+(B\cap B')}$$

are finite dimensional. Since, $(A + A' + B + B')/(A + A') \cap (B + B')$ is a quotient of the second space and $((A \cap A') + (B \cap B'))/((A \cap A') \cap (B \cap B'))$ is a subspace of the first space we can conclude $A + B \sim A' + B'$ and $A \cap B \sim A' \cap B'$.

If we consider the set of equivalence classes of \sim on a vector space V then \prec is a partial order on it and by Lemma 1.8 above it inherits operations \cap and +.

Linear compactness

Definition 1.9. Let V be a linearly topologized vector space. A closed subset $L \subseteq V$ is **linearly compact** (respectively **linearly cocompact**) if for every open vector subspace U we have $L \prec U$ (respectively $V/(L+U) \sim 0$).

Linear compactness behaves just as compactness if one uses the correct words.

Proposition 1.10. *Let V be a linearly compact vector space, then*

(a) If $A \subseteq V$ is a vector subspace such that for every open vector subspace U of V it holds $A \prec U$ then \overline{A} is linearly compact.

- (b) If $f: V \to W$ is a continuous linear homomorphism then $\overline{f(V)}$ is linearly compact.
- (c) If V is discrete then $V \sim 0$.
- (d) Every closed vector subspace of V is linearly compact.
- (e) (Tychonov) If $\{V_{\alpha}\}_{\alpha}$ is a collection of linearly compact vector spaces then its product $\prod_{\alpha} V_{\alpha}$ and its direct sum $\bigoplus_{\alpha} V_{\alpha}$ are linearly compact.

Proof. Let U be any open vector subspace of V, then A+U is closed, that is $A+U=\overline{A+U}\supseteq \overline{A}+U\supseteq A+U$, thus, $\overline{A}+U=A+U$. Since, $(A+U)/U\sim 0$ then $(\overline{A}+U)/U\sim 0$. We get (a).

For (b), since f is a continuous linear map $V \prec f^{-1}(U)$ for all U open vector subspace of W, hence by Lemma 1.7 $f(V) \prec U$ for all open vector subspaces U of W. By the previous observation and (a) we get (b). If V is discrete, then $\{0\}$ is an open vector subspace of E, thus $V \prec U$, we get (c).

For (d), if $A \subseteq V$ is a closed vector subspace, and $V \prec U$ for all open vector subspaces U by Lemma 1.7 we get $A \prec U$.

Finally, for (d), it is enough proving for open vector subspaces $U = \prod_{\beta} U_{\beta} \times \prod_{\gamma} V_{\gamma}$ where β ranges over a finite set, γ ranges over $\alpha \neq \beta$ and U_{β} is an open vector subspace of V_{β} . Then, the quotient

$$\prod_{\alpha} V_{\alpha}/U \cong \prod_{\beta} V_{\beta}/U_{\beta}$$

where \cong is a topological and algebraic isomorphism. Since V_{α} is linearly compact for all α and β ranges over a finite set we conclude that $\prod_{\alpha} V_{\alpha}/U$ is finite dimensional; therefore, $\prod_{\alpha} V_{\alpha}$ is linearly compact. The proof is analogous for $\bigoplus_{\alpha} V_{\alpha}$.

Completion

Definition 1.11. If *V* be a linearly topologized vector space, recall that *V* is said to be **complete** if

$$V \cong \varprojlim_{U \in \operatorname{Op}(V)} V/U$$

where $\operatorname{Op}(V)$ runs through all open vector subspaces of V. In particular, this implies that for every base $\mathscr U$ of zero made from open vector subspaces of V we have

$$V \cong \varprojlim_{U \in \mathscr{U}} V/U$$

1.2 TATE SPACES

Lattices

Definition 1.12. If V is a linearly topologized vector space we say that a **c-lattice** is an open linearly compact subspace of V, *dually* a discrete linearly cocompact subspace is a **d-lattice**.

First, we prove that existence of a c-lattice in a linearly topologized vector space is equivalent to existence of a d-lattice.

Proposition 1.13. A linearly topologized vector space V has a clattice if and only if it has a d-lattice.

Proof. Suppose L is a c-lattice in V, choose any direct complement D of L, that is, $V = L \oplus D$. Since L is open, then D is discrete as $D \cap L = 0$, thus 0 is open in D. Moreover, D is closed as it is the fiber of 0 under the projection $V \to L$ (which is continuous because L is open). Finally, we check that D is linearly cocompact: let U be any open vector subspace of V, the composition $L \hookrightarrow V \twoheadrightarrow V/(D+U)$ induces a surjection

$$L/(L \cap U) \rightarrow V/(D+U)$$

thus, since $\dim L/(L\cap U)<\infty$ we conclude $\dim V/(D+U)<\infty$.

Now, suppose D is a d-lattice. Thus, there exists an open vector subspace U such that $U \cap D = 0$. This time, choose L a direct complement for D containing U. Analogous as the proof for D being discrete and closed in the previous paragraph it follows the one for L being open. We just check that L is linearly compact. Let U be any open vector subspace, the composition $V \twoheadrightarrow L \twoheadrightarrow L/(L \cap U)$ induces a surjection

$$V/(D+(L\cap U)) \twoheadrightarrow L/(L\cap U)$$

since both L and U are open, also $L \cap U$, thus dim $V/(D + (L \cap U)) < \infty$. It follows, dim $L/(L \cap U) < \infty$ and L linearly compact.

Remark 1.14. Note that in the proof of Proposition 1.13 it is not strictly necessary to choose a direct complement, one can choose a direct complement up to finite dimension; that is, $L + D \sim V$ and $L \cap D \sim 0$.

We now give a characterization of lattices in terms of \prec .

Proposition 1.15. If V admits a c-lattice, then the set of c-lattices constitutes a base of zero of mutually commensurable vector subspaces.

Proof. If L and L' are two c-lattices in V then $L \prec L'$ and $L' \prec L$ because both are open; therefore, all c-lattices are commensurable. Moreover, if U is any open vector subspace and L is a c-lattice we claim that $L \cap U$ is a c-lattice. Indeed, let U' be any open vector subspace, then $L \cap U \prec L \prec U'$. In addition, since L and U are open, $L \cap U$ is open. Thus $L \cap U \subseteq U$ is a c-lattice, this proves the statement.

We're now ready to introduce the definition of a Tate space.

Definition 1.16. A **Tate space** V is a complete linearly topologized vector space that admits a c-lattice. By the previous proposition and the observation in Definition 1.11 we get

$$V \cong \varprojlim_{L \in \mathscr{L}(V)} V/L$$

where $\mathcal{L}(V)$ runs through all c-lattices of V.

Example 1.17. We give some examples of Tate spaces.

- (a) Any vector space endowed with the discrete topology is a Tate space.
- (b) If $\{V_{\alpha}\}_{\alpha}$ is any pro-system of finite dimensional vector spaces (thus, each one endowed with the discrete topology by Proposition 1.4), let V be their inverse limit endowed with the inverse limit topology. We claim that this is a linearly compact space. Indeed, if we realize V as a subspace of the product $\prod_{\alpha} V_{\alpha}$, then basic open vector subspaces are just restriction of finite coordinates. Hence, the quotient of V by any basic open vector subspace is a finite product of V_{α} , since all V_{α} are finite dimensional we conclude that V is linearly compact and therefore a Tate space.
- (c) Let V = k(t) with the topology generated by letting $t^n k[[t]]$ for $n \in \mathbb{Z}$ be a system of neighborhoods of zero. Then, $V = k[[t]] \oplus tk[t^{-1}]$ where k[[t]] is the completion of k[x] in the $\langle x \rangle$ -adic topology, hence by the previous item linearly compact and, since it is open is a c-lattice. By the argument given in Proposition 1.13 $tk[t^{-1}]$ is a d-lattice. Therefore, V is a Tate space that is not linearly compact nor discrete.

Duality

If V is a Tate space we consider the following topology on the dual space V^* (where by dual space we mean topological dual). Open vector subspaces are given by

$$L^{\perp} = \{ \phi \in E^* : \phi |_{L} = 0 \}$$

where L is a linearly compact subspace. Equivalently, one can define open vector subspaces in E^* to be D^* where D a direct complement of a linearly compact vector subspace L in E (in this case $D^* \hookrightarrow E^*$ using the decomposition $L \oplus D$).

First, we prove that the word *dually* in Definition 1.9 actually makes sense.

Lemma 1.18. Duality interchanges linearly compact with discrete spaces and vice-versa.

Proof. If L is a linearly compact vector space, then L^{\perp} is open in L^* , thus L^* is discrete. If D is discrete, then $D \cong k^{\oplus \Lambda}$ for some Λ and endowing $k^{\oplus \Lambda}$ with the discrete topology the previous isomorphism is a homeomorphism too. Moreover, since D is discrete every linear functional is continuous. Using Remark 1.3 and the well known identity (where maps are isomorphisms in LinTop $_k$)

$$(k^{\oplus \Lambda})^* = \operatorname{Hom}_k(k^{\oplus \Lambda}, k) \cong \prod_{\Lambda} \operatorname{Hom}_k(k, k) \cong \prod_{\Lambda} k$$

we get the desired result by Tychonov's theorem in Proposition 1.10.

Remark 1.19. Note that in the proof of the previous lemma the dual space of a discrete space is complete, as it is an arbitrary product of k endowed with the product topology.

Proposition 1.20. If V is a Tate space then V^* with the topology previously introduced is also a Tate space.

Proof. If we decompose $V = L \oplus D$ where L is a c-lattice and D a d-lattice then $V^* \cong L^* \oplus D^*$ and by Lemma 1.18 L^* is discrete and D^* is linearly compact. Observe that D^* is open in V^* since it is the kernel of the projection $V^* \to V^*/L^{\perp}$ and V^*/L^{\perp} is discrete by the description of our topology in the dual V^* . Since L^* is discrete, then it is complete. Moreover, by the previous remark, D^* is complete, hence V^* is complete too. \square

We're ready to prove the analog of Pontryagin's duality for locally compact groups in our context.

Theorem 1.21. For a Tate space V the canonical map $V \to V^{**}$ is an isomorphism.

Proof. It is enough to prove it for complete linearly compact spaces and discrete spaces, as every Tate space can be decomposed into a direct sum of a c-lattice and a d-lattice. First, we do it for discrete spaces. Suppose D is a discrete vector space. Then, the canonical map

$$ev: D \rightarrow D^{**}$$

is open and continuous because D and D^{**} are both discrete by Lemma 1.18. Moreover, it is injective, because for every nonzero $v \in D$ there exists a linear continuous functional $\phi \in D^*$ such that $\phi(v) \neq 0$. Finally, we prove surjectivity. Let $\psi \in D^{**}$. Since $\ker \psi$ is open it contains a basic open vector subspace A^{\perp} such that $A \subseteq D$ is a linearly compact subspace. Therefore, since D^* is linearly compact it follows that $D^* \sim A^{\perp}$, that is, the quotient D^*/A^{\perp} is finite dimensional. Recall that the inclusion $\iota \colon A \to D$ induces an isomorphism $D^*/A^{\perp} \to A^*$ which is a homeomorphism since both spaces are discrete. We can factor ψ so that the following diagram commutes

However, A^* is finite dimensional, therefore, there exists some $a \in A$ such that $\overline{\psi} = \operatorname{ev}_a$ as maps from $A^* \to k$. Moreover, since $A^{\perp} \subseteq \ker \psi$ we conclude that $\psi = \operatorname{ev}_a$ as maps $D^* \to k$. This implies surjectivity. Thus $D \to D^{**}$ is an isomorphism of topological vector spaces.

Now, suppose L is a complete linearly compact space. We check first that the map

$$ev: L \to L^{**}$$

is continuous. Let A^{\perp} be an open vector subspace in L^{**} where $A \subseteq L^*$ is a linearly compact subspace. By Lemma 1.18 L^*

is discrete, hence A is finite dimensional. Suppose that $A = \operatorname{span}(\phi_1, \ldots, \phi_n)$ for some $\phi_1, \ldots, \phi_n \in A$. Then, $\operatorname{ev}^{-1}(A^{\perp}) = \ker \phi_1 \cap \ldots \cap \ker \phi_n$ which is open in L. Now, we check that ev is injective. Let $v \in L$ be a nonzero vector. Choose a decomposition of $L = U \oplus F$ where U is open and F is finite dimensional containing v (this can be done because L is separated and linearly compact). Let ϕ be a linear functional such that restricted to U is zero and $\phi(v) \neq 0$. Since U is open and F discrete such ϕ exists and it is continuous. This implies injectivity of ev. Now we check that ev is surjective. Since L is complete

$$L \cong \lim_{U \in \mathscr{U}} L/U$$

where \mathscr{U} runs over open vector subspaces of U. Let $\psi\colon L^*\to k$ be a continuous linear functional. By pulling back $\pi_U\colon L\to L/U$ we get an injection $\pi_U^*\colon (L/U)^*\hookrightarrow L^*$ for every $U\in\mathscr{U}$. Since L is linearly compact, then L/U is finite dimensional, thus, there exists some $v_U\in L$ such that $\psi\circ\pi_U^*=\operatorname{ev}_{v_U}$ where $\operatorname{ev}\colon L/U\to (L/U)^{**}$. In particular, observe that if $U,U'\in\mathscr{U}$ and $U'\subseteq U$ we get an induced injection $(L/U)^*\hookrightarrow (L/U')^*$ such that the following diagram

commutes. Observe that this implies that $(v_U)_{U\in\mathscr{U}}$ is a Cauchy net and by completeness of V it follows that it is convergent. Therefore, there exists some $v\in L$ limit of $(v_U)_{U\in\mathscr{U}}$. We claim that $\psi=\operatorname{ev}_v$. Let $\phi\in L^*$. Then, $\ker\phi$ is open and since L is linearly compact then $\ker\phi\sim L$. Hence, if we factor ϕ as follows

since $L/\ker \phi$ is discrete we conclude that $\overline{\phi}$ is continuous. In other words, the image of $\overline{\phi}$ under the inclusion $(L/\ker \phi)^* \hookrightarrow L^*$ is ϕ . Thus, $\psi(\phi) = \operatorname{ev}_{v_{\ker \phi}}(\overline{\phi})$ and by convergence $\psi(\phi) =$

 $\operatorname{ev}_v(\phi)$. This implies surjectivity of $\operatorname{ev}\colon L \to L^{**}$. To conclude, we prove that ev is open. Let U be any open vector subspace in L, thus $L = U \oplus F$ for some F finite dimensional. We claim that $\operatorname{ev}(U) = (F^*)^\perp$. First, the inclusion $\operatorname{ev}(U) \subseteq (F^*)^\perp$ is immediate. Let $\psi \in (F^*)^\perp$. Let $v \in L$ such that $\operatorname{ev}_v = \psi$. Write v = u + f where $v \in U$ and $v \in U$ and $v \in U$ and $v \in U$ is injective, it follows that there exists some $v \in U$ such that $v \in U$ if $v \in U$ if $v \in U$ in the injective, $v \in U$ and $v \in U$ and $v \in U$ in the injective is injective, it follows that $v \in U$ and $v \in U$ if $v \in U$ if v

Remark 1.22. Observe that completeness cannot be dropped in the definition of a Tate space while preserving duality. Indeed, if V is linearly compact but not complete its dual is discrete by Lemma 1.18 and by Remark 1.19 its double dual is complete, hence $V \rightarrow V^{**}$ cannot be an isomorphism.

Morphisms

A **morphism** of Tate spaces is a continuous linear homomorphism between Tate spaces.

Definition 1.23. A morphism $f: V \to W$ of Tate spaces is said to be **linearly compact** if the closure of f(V) is linearly compact in W. Dually, it is **discrete** if ker f is open in V.

First, we check the duality natural property for morphisms of Tate spaces.

Proposition 1.24. A morphism $f: V \to W$ of Tate spaces is linearly compact if and only if f^* is discrete.

Proof. Suppose f^* is linearly compact, then $\ker f^* = f(V)^{\perp}$. However, if $\phi \in W^*$ and $\phi(f(V)) = 0$ then $\phi(\overline{f(V)}) = 0$ by continuity of ϕ . Therefore, $\ker f^* = \overline{f(V)}^{\perp}$ which is open because $\overline{f(V)}$ is linearly compact. Now, suppose f^* is discrete. Thus, $\ker f^*$ contains a basic open subspace A^{\perp} such that A is linearly compact in W. Therefore, $\underline{f(V)} \subseteq A$ then $\overline{f(V)} \subseteq A$ and by item (c) in Proposition 1.10 $\overline{f(V)}$ is linearly compact. \square

Discrete and linearly compact operators form a 2-sided ideal in Hom; that is

Proposition 1.25. If f is a linearly compact operator (respectively discrete) then its composition (from any side) with an arbitrary morphism of Tate spaces is also linearly compact (respectively discrete).

Proof. Let $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ be morphisms of Tate spaces such that g is linearly compact. Then, $g \circ f(A) \subseteq g(B)$ which is linearly compact, thus $g \circ f(A)$ is linearly compact too. On the other hand, note that $h(\overline{g(B)}) \subseteq \overline{h \circ g(B)}$; therefore $\overline{h(\overline{g(B)})} = \overline{h \circ g(B)}$. However, $\overline{g(B)}$ is linearly compact and by item(b) in Proposition 1.10 $h(\overline{g(B)})$ is linearly compact. In addition, the statement for discrete operators follows from the previous proposition.

Definition 1.26. Let V and W be Tate spaces. We denote $\operatorname{Hom}_+(V,W)$ to be the set of linearly compact morphisms and $\operatorname{Hom}_-(V,W)$ the set of discrete ones. Also, set $\operatorname{Hom}_0(V,W)$ to be $\operatorname{Hom}_+(V,W) \cap \operatorname{Hom}_-(V,W)$.

Proposition 1.27. The sets $\operatorname{Hom}_{-}(V, W), \operatorname{Hom}_{+}(V, W)$ and $\operatorname{Hom}_{0}(V, W)$ are vector subspaces of $\operatorname{Hom}(V, W)$. Moreover,

$$\operatorname{Hom}_{-}(V, W) + \operatorname{Hom}_{+}(V, W) = \operatorname{Hom}(V, W).$$

Proof. Let L be a c-lattice in V and consider $\pi\colon V\to L$ be a continuous linear projection. Then π realized as an element of $\operatorname{End}(V)$ satisfies $\pi\in\operatorname{End}_+(V)$ and $1-\pi\in\operatorname{End}_-(V)$. Hence, by Proposition 1.25 for every $f\in\operatorname{Hom}(V,W)$ $f\circ\pi$ and $f\circ(1-\pi)$ are linearly compact and discrete respectively. It follows

$$\operatorname{Hom}_{-}(V,W) + \operatorname{Hom}_{+}(V,W) = \operatorname{Hom}(V,W).$$

The other statements are immediate.

I'll include further theory if necessary.

2.1 FINITEPOTENT MAPS AND THEIR TRACE

Let k be a fixed ground field and V a vector space over k. In this section we will expand the notion of trace of a linear endomorphism to include certain operators even when V is infinite dimensional.

Finitepotent maps

Definition 2.1. We will say a linear map $f: V \to V$ is **finitepotent** if

$$\dim f^n(V) < \infty$$

for sufficiently large n.

We characterize finitepotent maps as follows.

Lemma 2.2. A linear map $f: V \to V$ is finitepotent if and only if there exists a subspace $W \subseteq V$ such that

- (i) $\dim f(W) < \infty$,
- (ii) $f(W) \subseteq W$,
- (iii) the induced map $\bar{f}: V/W \rightarrow V/W$ is nilpotent.

Proof. If f is finitepotent choose $W = f^n(V)$ for sufficiently large n. The first condition follows from definition. Also, $f(W) = f^{n+1}(V) \subseteq f^n(V) = W$. In addition, $\bar{f}^n = 0$. On the other hand, if such W exists, note that condition (ii) assures that \bar{f} is well defined. Moreover, as \bar{f} is nilpotent, $f^nV \subseteq W$ for sufficiently large n and by condition (i) above dim $f^n(V) < \infty$.

Trace

If f is a finitepotent map and W is as above, $\operatorname{tr}_V(f) \in k$ may be defined as $\operatorname{tr}_W(f)$ where $\operatorname{tr}_W(f)$ is the ordinary trace of f viewed as a endomorphism of W. First, we will check that this definition does not depend on the choice of W. Suppose

 $W_1, W_2 \subseteq V$ suffice the properties on Lemma 2.2, then $W = W_1 + W_2$ suffices them too. Hence, as the induced maps on W/W_1 and W/W_2 are nilpotent, they have have zero ordinary trace and since

$$\operatorname{tr}_{W}(f) = \operatorname{tr}_{W_{1}}(f) + \operatorname{tr}_{W/W_{1}}(f)$$

 $\operatorname{tr}_{W}(f) = \operatorname{tr}_{W_{2}}(f) + \operatorname{tr}_{W/W_{2}}(f)$,

we obtain $tr_{W_1}(f) = tr_{W_2}(f)$, our desired result.

This definition extends some of the properties of the ordinary trace.

Lemma 2.3. (a) If dim $V < \infty$, any endomorphism f is finite potent and $\operatorname{tr}_V(f)$ coincides with the ordinary trace.

- (b) If f is nilpotent, then it is finite potent and $tr_V(f) = 0$.
- (c) If f is finitepotent and U is a subspace such that $fU \subseteq U$ then the induced maps on U and V/U are finitepotent and satisfy

$$\operatorname{tr}_V(f) = \operatorname{tr}_U(f) + \operatorname{tr}_{V/U}(f)$$

Proof. Both (a) and (b) are immediate. For (c) if W suffices the properties in Lemma 2.2 for f then $W \cap U$ and (W + U)/U suffice them for the induced maps, that is, they're finite potent. Since $W/(W \cap U) \cong W + U/U$, the diagram

$$W/(W \cap U) \xrightarrow{\cong} (W+U)/U$$

$$\downarrow f \qquad \qquad \downarrow f$$

$$W/(W \cap U) \xrightarrow{\cong} (W+U)/U$$

commutes and trace is invariant under conjugation, we get $\operatorname{tr}_{W/(W\cap U)}(f) = \operatorname{tr}_{(W+U)/U}(f)$. Hence

$$\operatorname{tr}_V(f) = \operatorname{tr}_W(f) = \operatorname{tr}_{W \cap U}(f) + \operatorname{tr}_{(W + U)/U}(f) = \operatorname{tr}_U(f) + \operatorname{tr}_{V/U}(f)$$

Definition 2.4. A subspace F of $\operatorname{End}_k(V)$ is said to be a **finite potent subspace** if there exists an n such that for any family of n elements $f_1, \ldots, f_n \in F$, the space $f_1 f_2 \cdots f_n V$ is finite dimensional.

The following is the natural linearity property for tr.

Proposition 2.5. *If* F *is a finite potent subspace then* $\operatorname{tr}_V \colon F \to k$ *is* k-linear

Proof. It is enough to prove it in the case that F is finite dimensional. Let $W = F^n V$ for n as in the definition of finitepotent subspace, thus dim $W < \infty$. Hence, for all $f \in F$, W suffices the conditions in Lemma 2.2. It follows that $\operatorname{tr}_V(f) = \operatorname{tr}_W(f)$ which is linear. □

add note in "general" linearity of trace when .bib is ready

Proposition 2.6. *If* $f,g \in \operatorname{End}_k(V)$ *and* fg *is finite potent then* gf *is also finite potent and*

$$\operatorname{tr}_V(fg) = \operatorname{tr}_V(gf).$$

Proof. Since fg is finitepotent let $W = (fg)^n V$ for sufficiently large n has finite dimension. On the other hand, $(gf)^{n+1}V = g(fg)^n f(V) \subseteq g(W)$, therefore, gf is also finitepotent. Let $W' = (gf)^n V$, then $g(W') \subseteq W$ and $f(W) \subseteq W'$. Thus,

 $\dim W' \le \dim g(W) \le \dim W$ and, $\dim W \le \dim f(W) \le \dim W'$,

which implies that $W \cong W'$ and that g and f induce mutually inverse isomorphism between W and W'. Moreover, the diagram

$$\begin{array}{ccc}
W & \xrightarrow{fg} & W \\
\downarrow g & & \downarrow g \\
W' & \xrightarrow{gf} & W'
\end{array}$$

commutes. We conclude $\operatorname{tr}_W(fg) = \operatorname{tr}_{W'}(gf)$ and it follows $\operatorname{tr}_V(fg) = \operatorname{tr}_V(gf)$.