Diffusion thermique

Table des matières

1	Loi de Fourier	
	1.1 Flux thermique	2
	1.2 Vecteur densité volumique du courant thermique	2
	1.3 Loi de Fourier	3
2		3
	2.1 Bilan thermique unidimensionnel	3
	2.2 Cas générale	
	2.3 Conditions limites	4
3		5
	3.1 Définition	
	3.2 Association des résistances thermiques	5
	3.2.1 Association en série	
	3.2.2 Association en parallèle	6
	3.3 Analogie avec le calcul de capacité	6
4	Transfert thermique par convection	7
	4.1 Définitions	7
	4.2 Loi de Newton	7

Le transfert thermique se fait, sous trois modes :

- Conduction thermique: transfert thermique qui intervient dans un milieu de température non homogène et sans mouvement macroscopique de la matière (cas des solides)
- Convection thermique : transfert thermique qui intervient dans un milieu avec déplacement du milieu (cas des liquides et les gaz)
- Rayonnement thermique : la puissance thermique est émise par tout système matériel à température non nulle (T \neq 0K), sous forme de rayonnement électromagnétique.

1 Loi de Fourier

1.1 Flux thermique

Soit un système (S) séparé de l'extérieur par une surface fermée (Σ). Le système (S) reçoit algébriquement un transfert thermique δQ à travers (Σ)

• Flux thermique : On appelle flux thermique (puissance thermique) Φ du système (S),l'énergie thermique reçue par ce système par unité du temps.

$$\Phi = \frac{\delta Q}{dt}$$

- les dimensions du flux thermique : $[\Phi] = M.L^2.T^{-3}$
- unité de Φ : watt (W)
- Φ est une grandeur algébrique :
 - $ightharpoonup \Phi > 0$: le système reçoit l'énergie thermique
 - $ightharpoonup \Phi < 0$: le système perd l'énergie thermique

1.2 Vecteur densité volumique du courant thermique

Considérons un système (S) séparé de l'extérieur par un surface (Σ)

 \vec{n} : vecteur unitaire dirrigé vers l'extérieur

• Définition : le vecteur densité volumique de courant \overrightarrow{j}_{th} est défini par

$$\Phi = \iint_{(\Sigma)} \overrightarrow{j}_{th} dS \overrightarrow{n}$$

• le flux élémentaire $d\Phi$

$$d\Phi = \overrightarrow{j}_{th}.dS.\overrightarrow{n}$$

• l'unité de j_{th} : W. m^{-2}

1.3 Loi de Fourier

• Enoncé : Dans un milieu matériel de température non uniforme, le vecteur densité volumique du courant thermique suit la loi phénoménologique

$$\overrightarrow{j}_{th} = -\lambda . \overrightarrow{grad} T$$

 λ représente la conductivité thermique du milieu (W.K⁻¹.m⁻¹.)

- le signe moins indique que le transfert thermique s'effectue toujours dans le sens des températures décroissantes.
- la loi de Fourier est valable seulement aux faibles variations de températures
- Ordre de grandeur de λ

matériaux cuivre acier verre bois eau air
$$\lambda(W.m^{-1}.K^{-1})$$
 390 16 1,2 0,25 0,6 0,026

• Analogie avec la loi d'Ohm

Type de conduction	Flux	Loi locale
Conduction thermique	flux thermique	Loi de Fourier
	$\Phi = \iint_{(\Sigma)} \overrightarrow{j}_{th} . \overrightarrow{dS}$	$\overrightarrow{j}_{th} = -\lambda \overrightarrow{grad} \mathbf{T}$
Conduction électrique	courant électrique	Loi d'Ohm
	$I = \iint_{(\Sigma)} \overrightarrow{j} . \overrightarrow{dS}$	$\overrightarrow{j}(M,t) = -\gamma \overrightarrow{grad} V$
		γ : conductivité électrique
		V : potentiel scalaire

2 Equation de diffusion thermique

2.1 Bilan thermique unidimensionnel

Considèrons un conducteur métallique cylindrique de section S, de conductivité thermique λ , de masse volumique ρ et de capacité thermique massique c supposée constante

• premier principe sur une tranche du conducteur comprise entre x et x + dx

$$dU = \delta Q + \delta W$$

- > δQ: transfert thermique entre la tranche et le milieu extérieur
- ► $\delta W = -P_{ext} dV = 0$: car il s'agit d'un solide

$$dU = c.dmdT = \rho cSdxdT = \delta Q$$
$$\delta Q = \rho cSdxdT$$

• le flux thermique (compté dans le sens entrant) traversant la face située à l'abscisse x:

$$\Phi(x, t) = j_{th}(x, t)S$$

• le flux thermique traverssant la face à l'abscisse x + dx:

$$\Phi(x+dx) = j_{th}(x+dx).S$$

• bilan du flux thermique

$$d\Phi = \phi(x, t) - \Phi(x + dx, t) = \left[j_{th}(x) - j_{th}(x + dx) \right] S = -\frac{\partial j_{th}}{\partial x} dx. S$$

- d'autre part on a : $\delta Q = d\Phi dt \Rightarrow \rho c S dx dT = -\frac{\partial j_{th}}{\partial x} dx. S dt$
- $j_{th} = -\lambda \frac{\partial T}{\partial x}$

$$\frac{\partial^2 \mathbf{T}}{\partial^2 x} - \frac{\rho c}{\lambda} \frac{\partial \mathbf{T}}{\partial t} = 0$$

- D = $\frac{\lambda}{\rho c}$: diffusivité thermique $(m^2.s^{-1})$
- l'équation de la diffusion thermique

$$\frac{\partial^2 \mathbf{T}}{\partial^2 x} - \frac{1}{\mathbf{D}} \frac{\partial \mathbf{T}}{\partial t} = 0$$

2.2 Cas générale

On montre que l'équation de la diffusion thermique s'écrit sous la forme

$$\Delta \mathbf{T} - \frac{1}{\mathbf{D}} \frac{\partial \mathbf{T}}{\partial t} = \mathbf{0}$$

•Remarque : si dans la tranche étudiée , existe une source délivrant une puissance thermique volumique p, l'équation de la diffusion s'écrit sous la forme

$$\Delta \mathbf{T} - \frac{1}{\mathbf{D}} \frac{\partial \mathbf{T}}{\partial t} = -\frac{p}{\lambda}$$

- en régime permanent l'équation de la diffusion thermique s'écrit sous la forme :
 - en absence d'une source thermique : $\Delta T = 0$
 - en présence d'une source thermique : $\Delta T = -\frac{p}{\lambda}$

2.3 Conditions limites

Nature de la condition aux limites	Conséquence sur les grandeurs thermiques
surface en contact avec un thermostat	température de la surface
de température T ₀	$T = T_0$
surface parfaitement calorifugée	nullité de la composante normale du vecteur densité
	du flux thermique en tout point de la surface calorifugée :
	$j_{th} = 0$

3 Résistance et conductance thermique

3.1 Définition

Considérons un matériau sans source thermique locale (p=0), sous forme d'un barreau homogène de longueur L et de section S

- en travail en régime permanent ou T ne dépend que d'une seule variable \boldsymbol{x}
- $T(0) = T_1; T(L) = T_2$

•
$$\frac{d^2T}{dx^2} = 0 \Rightarrow T(x, t) = \frac{T_2 - T_1}{L}x + T_1$$

$$T(x, t) = \frac{T_2 - T_1}{L}x + T_1$$

•
$$\overrightarrow{j}_{th} = -\lambda \frac{d\mathbf{T}}{dx} \overrightarrow{e}_x = \lambda \frac{\mathbf{T}_1 - \mathbf{T}_2}{\mathbf{L}} \overrightarrow{e}_x$$

• le flux thermique traverssant une section S du barreau : $\Phi = \iint_S \overrightarrow{j}_{th} dS \overrightarrow{e}_x$

$$\Phi = \frac{\lambda S}{L}(T_1 - T_2)$$

•Définition : On définit la résistance thermique par

$$R_{th} = \frac{T_1 - T_2}{\Phi}$$

la conductance thermique est : $G_{th} = \frac{1}{R_{th}}$

- la résistance rhermique du barreau : $R_{th} = \frac{L}{\lambda S}$
- la conductance thermique : $G_{th} = \frac{\lambda S}{L}$

3.2 Association des résistances thermiques

3.2.1 Association en série

On parle d'association en série de deux conducteurs thermiques si ces deux conducteurs, ayant une section commune, sont traversés par le même flux.

•
$$T_1 - T_3 = (T_1 - T_2) + (T_2 - T_3) = R_{th1} \cdot \Phi + R_{th2} \cdot \Phi = R_{theq} \cdot \Phi$$

$$R_{theq} = R_{th1} + R_{th2}$$

3.2.2 Association en parallèle

On parle de l'association en parallèle de deux conducteurs thermiques si ces deux conducteurs sont soumis à la même différence de température T_1-T_2

3.3 Analogie avec le calcul de capacité

la géométrie du barreau peut aussi être comparée à un condensateur formé de deux armature planes et parallèles ,d'aire S séparées par une distance L,l'espace entre les armatures est supposé vide.

Grandeurs thermiques	Grandeurs associées au condensateur
vecteur densité de courant thermique	champ électrique entre
\overrightarrow{j} th	les armatures multiplié ε_0 : $\varepsilon_0 \overrightarrow{E}$
Température T	Potentiel électrique V
Loi de Fourier $\overrightarrow{j}_{th} = -\lambda \overrightarrow{grad} T$	définition du potentiel
	$\varepsilon_0 \overrightarrow{E} = -\varepsilon_0 \overrightarrow{grad} V$
conductivité thermique λ	permittivité du vide ϵ_0
flux thermique $\Phi = \iint_{S} \overrightarrow{j}_{th} dS \overrightarrow{n}$	charge d'une armature : $Q = \iint_{S} \varepsilon_0 \overrightarrow{E} dS \overrightarrow{n}$
conductance thermique : $G_{th} = \frac{\Phi}{T_1 - T_2}$	Capacité $C = \frac{Q}{V_1 - V_2}$
Conducteur thermique d'un barreau $G_{th} = \frac{\lambda S}{L}$	Capacité du condensateur plan C = $\frac{\varepsilon_0 S}{L}$

4 Transfert thermique par convection

4.1 Définitions

•Convection : la convection est le mouvement macroscopique d'une certaine quantité de matière

On distingue entre deux types de convections :

- convection forcée : le mouvement du fluide est imposé par une pompe ou un ventilateur
- convection naturelle : le mouvement du fluide est dû à la poussée d'Archimède sur le fluide chaud qui s'élève tandis que le fluide plus froid descend

4.2 Loi de Newton

▶ Notion du couche limite

Au voisinage de la paroi,le champ des vitesses et le champ de température du fluide ne sont pas uniforme. Ils varient dans une domaine restreint, perpendiculairement à la paroi, appelé Couche limite. La température varie de T_p (sur la paroi) à T_f (fluide)

► Loi de Newton

• Enoncé : la densité surfacique du flux sortant du paroi $\varphi_{sortant}$ est proportionnelle à la différence de température entre la paroi (T_p) et le fluide (T_f) .

$$\varphi_{sortant} = h(T_p - T_f)$$

h : coefficient conducto-convectif ou coefficient de Newton(W. m^{-2} .K $^{-1}$)

- h dépend de la nature du paroi, de la nature du fluide et de son vitesse
- le flux thermique sortant s'obtient par l'intégration sur la surface (Σ) en contact avec le fluide

$$\Phi_{sortant} = \iint_{(\Sigma)} \varphi_{sortant} d\Sigma = h(T_p - T_f)\Sigma$$

• à la surface d'un solide (T_s) en contact avec un fluide (T_f) , le densité du flux conductoconvectif est :

$$\overrightarrow{j}_{th} = h(\mathbf{T}_s - \mathbf{T}_f) \overrightarrow{n}_{ext}$$

 \overrightarrow{n}_{ext} : la normale extérieure au solide