Práctico 5

Conjuntos Consistentes y Completitud del Cálculo Proposicional

Ejercicio 1

Determine cuáles de los siguientes conjuntos son consistentes y cuáles no. Justifique.

- a. $\{\neg p_1 \land p_2 \rightarrow p_0, p_1 \rightarrow (\neg p_0 \rightarrow p_2), p_0 \leftrightarrow \neg p_2\}$
- b. $\{p_0 \to p_1, p_1 \to p_2, p_2 \to p_3, p_3 \to \neg p_0\}$
- c. $\{p_0, p_1, p_1 \to \neg p_0\}$
- d. $\{p_0 \to p_1, p_0 \land p_2 \to p_1 \land p_3, p_0 \land p_2 \land p_4 \to p_1 \land p_3 \land p_5, \ldots\}$
- e. $\{p_0, \neg p_1 \land p_2, p_1 \to \neg p_2\}$

Ejercicio 2

- a. Demuestre que el conjunto \emptyset es consistente y que PROP es inconsistente.
- b. Dé dos conjuntos consistentes, uno de cardinal finito, no vacío y otro de cardinal infinito. Justifique su respuesta.
- c. Dé dos conjuntos inconsistentes, uno de cardinal finito mayor que uno y otro, distinto de PROP, de cardinal infinito. Justifique su respuesta.
- d. Para cada una de las siguientes afirmaciones indique si es verdadera o falsa, justificando en cada caso.
 - I. Para todo Γ y Δ subconjuntos consistentes de PROP, $\Gamma \cup \Delta$ es consistente.
 - II. Para todo Γ y Δ subconjuntos de PROP, si Γ es consistente y Δ es inconsistente, entonces $\Gamma \cap \Delta$ es consistente.

Ejercicio 3

Demuestre que las siguientes afirmaciones son equivalentes.

- a. El conjunto $\{\varphi_1 \dots \varphi_n\}$ es inconsistente
- b. $\vdash \neg(\varphi_1 \land \ldots \land \varphi_n)$
- c. $\vdash \varphi_2 \land \ldots \land \varphi_n \rightarrow \neg \varphi_1$

Ejercicio 4 (Teorema de compacidad)

Demuestre que un conjunto Γ es consistente si y sólo si todo subconjunto finito $\Delta \subseteq \Gamma$ es consistente.

Observación Γ es inconsistente si y solo si existe un subconjunto finito $\Delta \subseteq \Gamma$ inconsistente.

Ejercicio 5

Sea $\Gamma \subseteq PROP$ un conjunto consistente. Pruebe que:

 Γ es consistente maximal si y sólo si para toda $\varphi \in PROP$ se cumple que $\varphi \in \Gamma$ o $\neg \varphi \in \Gamma$.

Ejercicio 6

Un conjunto Γ es completo si y sólo si es consistente y para toda $\varphi \in PROP$ se cumple que: $\Gamma \vdash \varphi$ o $\Gamma \vdash \neg \varphi$.

- a. Demuestre que el conjunto $\{p_0, p_1\}$ no es completo.
- b. Demuestre que el conjunto $P = \{p_0, p_1, p_2, \dots, p_n, \dots\}$ es completo.
- c. De un conjunto R, $R \subseteq PROP$, $R \cap P = \emptyset$ tal que R es completo.

Ejercicio 7

Demuestre que $Cons(\Gamma) = {\sigma \mid \Gamma \vdash \sigma}$ es consistente maximal si y sólo si Γ es completo.

Ejercicio 8

Un conjunto Γ es una teoría si y sólo si $Cons(\Gamma) \subseteq \Gamma$.

- a. Dé dos conjuntos Γ_1 y Γ_2 que sean teorías.
- b. Indique cuáles de las siguientes afirmaciones son correctas y cuáles no. Justifique su respuesta:
 - Si Γ es teoría entonces Γ es consistente.
 - Si Γ es teoría entonces Γ es inconsistente.
 - Si Γ es una teoría inconsistente entonces $\Gamma = \texttt{PROP}$.
 - Cons(Γ) es consistente si y sólo si Γ es consistente.

Ejercicio 9

Sea $\Gamma \subseteq \mathsf{PROP}$. Demuestre que Γ es consistente maximal si y sólo si Γ es una teoría y además existe una única valuación v tal que $v(\Gamma) = 1$.

(Nota: $v(\Gamma) = 1$ denota que para toda $\varphi \in \Gamma$ se cumple que $v(\varphi) = 1$)

Ejercicio 10

- a. Demuestre que las siguientes afirmaciones son equivalentes:
 - I. Γ es completo.
 - II. Γ es consistente y para cualquier $\varphi, \psi \in \mathsf{PROP}$ se cumple que: $\Gamma \vdash \varphi \lor \psi$ si y sólo si $\Gamma \vdash \varphi$ o $\Gamma \vdash \psi$.
- b. Demuestre que las siguientes afirmaciones son equivalentes:
 - I. Γ es consistente maximal.
 - II. Γ es una teoría consistente y para cualquier $\varphi, \psi \in \mathsf{PROP}$ se cumple que: $\varphi \lor \psi \in \Gamma$ si y sólo si $\varphi \in \Gamma$ o $\psi \in \Gamma$.

Ejercicio 11

Decimos que φ es independiente de Γ si $\Gamma \not\vdash \varphi$ y $\Gamma \not\vdash \neg \varphi$.

- a. Dé un conjunto Γ y una fórmula φ tales que φ sea independiente de Γ . Justifique su respuesta.
- b. Demuestre que $p_1 \to p_2$ es independiente de $\{p_1 \leftrightarrow p_0 \land \neg p_2, p_2 \to p_0\}$

Ejercicio 12

Dados los siguientes conjuntos:

- $\Gamma_k = \{p_i : i \text{ es múltiplo de } k\}$
- $\Delta_k = \{ \neg p_i : i \text{ no es múltiplo de } k \}$
- a. Demuestre que
 - I. $(\bar{\forall} k \in \mathbb{N})\Gamma_k \not\vdash \bot$
 - II. $(\forall k \in \mathbb{N})\Delta_k \not\vdash \bot$
 - III. $(\overline{\forall} n \in \mathbb{N}, m \in \mathbb{N})$ si n < m y n > 0 entonces $\Gamma_n \cup \Delta_m \vdash \bot$ (Observar que n no es múltiplo de m.)
- b. Indique si se cumple la siguiente afirmación. Demuestre o dé un contraejemplo según corresponda.

$$(\bar{\forall} k \in \mathbb{N}) \text{Cons}(\Gamma_k \cup \Delta_k)$$
 es consistente maximal.

Ejercicio 13

Sea $P = \{p_i \mid i \in N\}$ el conjunto de letras proposicionales. Para cada $I \subseteq N$ considere el conjunto $L(I) = \{p_i \mid i \in I\} \cup \{\neg p_i \mid i \notin I\}$

- a. Pruebe que $L(\{2\}) \cup \{p_0\}$ es inconsistente.
- b. Pruebe que para todo $I \subseteq N$, Cons(L(I)) es consistente maximal.

Ejercicio 14

Considere el siguiente conjunto $\Gamma = \{p_0, p_1\}$

- a. Pruebe que $\neg p_2 \notin Cons(\Gamma)$.
- b. Defina una teoría T consistente que cumpla las siguientes condiciones:
 - $Cons(\Gamma) \subset T$
 - $\neg p_2 \in T$
 - \blacksquare T no es consistente maximal.

Justifique su respuesta.

- c. Defina un conjunto consistente maximal Δ_0 tal que $T \subset \Delta_0$.
- d. Defina un conjunto consistente maximal Δ_1 tal que $\Gamma \subset \Delta_1$ pero $T \not\subseteq \Delta_1$.
- e. Determine si las siguientes afirmaciones son verdaderas.
 - I. $\Delta_0 \cup \Delta_1$ es teoría.
 - II. $\Delta_0 \cup \Delta_1$ es consistente.

Justifique su respuesta.

Ejercicio 15

Considere un conjunto infinito $\{\varphi_1, \varphi_2, \varphi_3, \ldots\} \subseteq PROP$. Demuestre que si para toda valuación v existe un natural n tal que $v(\varphi_n) = 1$, entonces existe un natural m tal que $\vdash \neg(\neg\varphi_1 \land \ldots \land \neg\varphi_m)$. Sugerencia: aplique el teorema de compacidad.

Ejercicio 16

Considere el lenguaje proposicional \mathcal{L}_0 con una única letra proposicional: p_0 y conectivos $\{\wedge, \vee\}$.

- a. De una definición inductiva de \mathcal{L}_0 .
- b. Considere la definición de valuación de forma análoga a PROP. ¿Cuántas valuaciones distintas existen?
- c. Análogamente a PROP se define

$$\alpha$$
 eq β si y solo si $(\overline{\forall}v : valuacion)v(\alpha) = v(\beta)$

Demuestre que para cualquier $\alpha \in \mathcal{L}_0$, α eq p_0 .

- d. Se define un cálculo \mathtt{DER}_0 , y se pretende demostrar la corrección y completitud de \mathcal{L}_0 con el cálculo \mathtt{DER}_0 .
 - a) Si $\varphi \in \mathcal{L}_0$, entonces $\varphi \in DER_0$

$$\begin{array}{c|c} \Gamma & & \Gamma \\ \hline b) \ \mathrm{Si} & \varphi & \in \mathtt{DER}_0, \ \mathrm{entonces} & & \\ \hline & & \varphi \\ \hline & p_0 & & \\ \end{array}$$

$$\begin{array}{c|c} \Gamma & & \Gamma \\ \hline c) \ \mathrm{Si} & p_0 & \in \mathtt{DER}_0 \ \mathrm{y} \ \varphi \in \mathcal{L}_0, \ \mathrm{entonces} \\ \hline & p_0 \\ \hline \hline & \varphi \\ \end{array} \in \mathtt{DER}_0$$

Para cualquier derivación $\mathcal{D} \in \mathtt{DER}_0$ se definen, análogamente a \mathtt{DER} , el conjunto de hipótesis $\mathtt{Hip}(D)$ y la conclusión $\mathtt{Conc}(D)$. Asimismo, se define la relación $\Gamma \vdash \varphi$.

- I. Demuestre que para cualquier $\varphi \in \mathcal{L}_0$ y $\Gamma \subseteq \mathcal{L}_0$ se cumple que: $\Gamma \vdash \varphi$ si y solamente si $\Gamma \neq \emptyset$.
- II. Demuestre que el sistema es correcto y completo, es decir,

para cualquier
$$\varphi \in \mathcal{L}_0$$
 y $\Gamma \subseteq \mathcal{L}_0$: $\Gamma \vdash \varphi$ si y solamente si $\Gamma \models \varphi$.

Ejercicio 17

Se considera $\Gamma \subseteq PROP$.

En el teórico se dan las definiciones de **conjunto consistente** y **consistente maximal** basados en la relación de derivación \vdash . También se dan caracterizaciones equivalentes expresadas en términos semánticos:

Caracterización semántica de la consistencia. Γ es consistente si y solo si existe una valuación v tal que $v(\Gamma) = 1$

Caracterización semántica de la consistencia maximal. Γ es consistente maximal si y solo si existe una valuación v tal que $\Gamma = \{ \varphi \in \mathtt{PROP} \mid v(\varphi) = 1 \}$

Demostrar la siguiente caracterización semántica para la definición de **conjunto completo** vista en el ejercicio 6:

Caracterización semántica de completitud. Γ es completo si y solo si existe una única valuación v que cumple $v(\Gamma) = 1$.