Topics in Statistical Theory — Summary

Lucas Riedstra

October 17, 2020

Contents

1	Bas	ic concepts	2
	1.1	Parametric vs nonparametric models	2
	1.2	Estimating an arbitrary distribution function	2
	1.3	Order statistics and quantiles	E
	1.4	Concentration inequalities	6

1 Basic concepts

1.1 Parametric vs nonparametric models

Definition 1.1. A statistical model is a family of possible data-generating mechanisms. If the parameter space Θ is finite-dimensional, we speak of a parametric model.

A model is called well-specified if there is a $\vartheta_0 \in \Theta$ for which the data was generated from the distribution with parameter ϑ_0 , and otherwise it is called misspecified.

Recap 1.2. Let (Y_n) be a sequence of random vectors and Y a random vector.

- 1. We say that (Y_n) converges almost surely to Y, notation $Y_n \stackrel{\text{a.s.}}{\to} Y$, if $\mathbb{P}(Y_n \to Y) = 1$.
- 2. We say that (Y_n) converges in probability to Y, notation $Y_n \stackrel{P}{\to} Y$, if for every $\varepsilon > 0$ we have $\mathbb{P}(\|Y_n Y\| > \varepsilon) \to 0$.
- 3. We say that (Y_n) converges in distribution to Y, notation $Y_n \stackrel{\mathrm{d}}{\to} Y$, if $\mathbb{P}(Y_n \leq y) \to \mathbb{P}(Y \leq y)$ for all y where the distribution function of Y is continuous.

This is equivalent to the condition that $\mathbb{E}[f(Y_n)] \to \mathbb{E}[f(Y)]$ for all bounded Lipschitz functions f.

It is known that $Y_n \stackrel{\text{a.s.}}{\to} Y \implies Y_n \stackrel{\text{p}}{\to} Y \implies Y_n \stackrel{\text{d}}{\to} Y.$

If (Y_n) is a sequence of random vectors and (a_n) is a positive sequence, then we write $Y_n = O_p(a_n)$ if, for all $\varepsilon > 0$, there exists C > 0 such that for sufficiently large n we have

$$\mathbb{P}\bigg(\frac{\|Y_n\|}{a_n} > C\bigg) < \varepsilon.$$

We write $Y_n = o_n(a_n)$ if $Y_n/a_n \stackrel{p}{\to} 0$.

In a well-specified parametric model, the maximum likelihood estimator (MLE) $\hat{\vartheta}_n$ typically satisfies $\hat{\vartheta}_n - \vartheta_0 \in O_p(n^{-1/2})$. On the other hand, if the model is misspecified, any inference can give very misleading results. To circumvent this problem, we consider *nonparametric models*, which make much weaker assumptions. Such infinite-dimensional models are much less vulnerable to model misspecification, however we will typically pay a price in terms of a slower convergence rate than in well-specified parametric models.

Example 1.3. Examples of nonparametric models include:

- 1. Assume $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$ for some unknown distribution function F.
- 2. Assume $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f$ for some unknown density f belonging to a smoothness class.
- 3. Assume $Y_i = m(x_i) + \varepsilon_i$ (i = 1, ..., n), where the x_i are known, m is unknown and belongs to some smoothness class, and the ε_i are i.i.d. with $\mathbb{E}(\varepsilon_i) = 0$ and $\operatorname{Var}(\varepsilon_i) = \sigma^2$.

1.2 Estimating an arbitrary distribution function

Definition 1.4. Let \mathcal{F} denote the class of all distribution functions on \mathbb{R} and suppose $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F \in \mathcal{F}$. The *empirical distribution function* $\hat{F_n}$ of X_1, \ldots, X_n is defined as

$$\hat{F}_n(x) := \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \le x\}}.$$

Recap 1.5. The strong law of large numbers tells us that if (Y_n) are i.i.d. with finite mean μ , then $\bar{Y} := \frac{1}{n} \sum_{i=1}^{n} Y_i \stackrel{\text{a.s.}}{\to} \mu$.

Note that the strong law of large numbers immediately implies that $\hat{F}_n(x)$ converges almost surely to F(x) as $n \to \infty$. However, the following stronger result states that this convergence holds uniformly in x:

Theorem 1.6 (Glivenko-Cantelli). Let $X_1, X_2, \ldots \stackrel{\text{iid}}{\sim} F$. Then we have

$$\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right| \stackrel{\text{a.s.}}{\to} 0.$$

Proof. See lecture notes. The main idea of the proof is to "control" $\hat{F_n}$ in a finite number of points x_1, \ldots, x_k , and then deduce what happens between those points using the fact that distributions are increasing and right-continuous. On Wikipedia, a simplified proof can be found assuming that F is continuous, which still encapsulates the main idea.

Theorem 1.7 (Dvoretzky-Kiefer-Wolfowitz). Under the conditions of theorem 1.6, for every $\varepsilon > 0$ it holds that

$$\mathbb{P}_F\left(\sup_{x\in\mathbb{R}}\left|\hat{F}_n(x) - F(x)\right| > \varepsilon\right) \le 2e^{-2n\varepsilon^2},$$

and this is a tight bound.

We will not prover this theorem, however, we will explore a few consequences. One of these consequences is the following:

Corollary 1.8 (Uniform Glivenko-Cantelli theorem). Under the conditions of theorem 1.6, for every $\varepsilon > 0$, it holds that

$$\sup_{F\in\mathcal{F}} \mathbb{P}_F\left(\sup_{m>n}\sup_{x\in\mathbb{R}} \left| \hat{F}_m(x) - F(x) \right| > \varepsilon \right) \to 0 \quad as \ n \to \infty.$$

Proof. By a union bound, the DKW inequality, and convergence of the geometric series we have

$$\sup_{F \in \mathcal{F}} \mathbb{P}_F \left(\sup_{m \ge n} \sup_{x \in \mathbb{R}} \left| \hat{F}_m(x) - F(x) \right| > \varepsilon \right) \le \sup_{F \in \mathcal{F}} \sum_{m = n} \mathbb{P}_F \left(\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right| > \varepsilon \right)$$

$$\le 2 \sum_{m = n}^{\infty} e^{-2m\varepsilon^2},$$

which converges to 0 as it is the tail of a converging sum.

For another consequence, we consider the problem of finding a confidence band for F. Given $\alpha \in (0,1)$, set $\varepsilon_n := \sqrt{-\frac{1}{2n} \log(\alpha/2)}$. Then the DKW inequality tells us that

$$\mathbb{P}_F\left(\sup_{x\in\mathbb{R}}\left|\hat{F}_n(x) - F(x)\right| > \varepsilon_n\right) \le \alpha,$$

or equivalently, that

$$\mathbb{P}_F\Big(\hat{F}_n(x) - \varepsilon_n \le F(x) \le \hat{F}_n(x) + \varepsilon_n \text{ for all } x \in \mathbb{R}\Big) \ge 1 - \alpha.$$

We can say even more.

Recap 1.9. For any distribution function F, its quantile function is defined as

$$F^{-1}: (0,1] \to \mathbb{R} \cup \{\infty\}: p \mapsto \inf\{x \in \mathbb{R} \mid F(x) \ge p\}.$$

When necessary, we also define $F^{-1}(0) := \sup \{x \in \mathbb{R} \mid F(x) = 0\}.$

If $U \sim U(0,1)$ and $X \sim F$, then for any $x \in \mathbb{R}$ we have

$$\mathbb{P}(F^{-1}(U) \le x) = \mathbb{P}(U \le F(x)) = F(x) = \mathbb{P}(X \le x).$$

This can be written simply as $F^{-1}(U) \stackrel{d}{=} X$.

Let $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$ with empirical distribution function \hat{G}_n , and let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. Then, we have

$$\hat{G}_n(F(x)) = \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{U_i \le F(x)\}} \stackrel{\mathrm{d}}{=} \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X \le x\}} = \hat{F}_n(x),$$

where $\stackrel{d}{=}$ means equality in distribution. It follows that

$$\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right| \stackrel{\mathrm{d}}{=} \sup_{x \in \mathbb{R}} \left| \hat{G}_n(F(x)) - F(x) \right| \le \sup_{t \in [0,1]} \left| \hat{G}_n(t) - t \right|,$$

with equality if F is continuous. We conclude that if F is continuous, the distribution of $\sup_{x \in \mathbb{R}} \left| \hat{F}_n(x) - F(x) \right|$ does not depend on F.

Other generalisations of theorem 1.6 include Uniform Laws of Large Numbers. Let X, X_1, \ldots, X_n be i.i.d. on a measurable space $(\mathcal{X}, \mathcal{A})$, and \mathcal{G} a class of measurable functions on \mathcal{X} . We say that \mathcal{G} satisfies a ULLN if

$$\sup_{g \in \mathcal{G}} \left| \frac{1}{n} \sum_{i=1}^{n} g(X_i) - \mathbb{E}[g(X)] \right| \stackrel{\text{a.s.}}{\to} 0.$$

In theorem 1.6, we showed that $\mathcal{G} = \{1_{\{\cdot \leq x\}} \mid x \in \mathbb{R}\}$ satisfies a ULLN.

Recap 1.10. We recall the central limit theorem: if X_1, \ldots, X_n are i.i.d. random variables with mean μ and variance $\sigma^2 < \infty$, then $\sqrt{n}(\bar{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$.

Dividing by σ yields

$$\frac{\sqrt{n}(\bar{X_n} - \mu)}{\sigma} \stackrel{\mathrm{d}}{\to} N(0, 1),$$

and multiplying both sides by n and writing $V_i = \sum_{j=1}^i X_j$ we obtain

$$\frac{V_i - \mathbb{E}V_i}{\sqrt{\operatorname{Var}(V_i)}} \stackrel{\mathrm{d}}{\to} N(0, 1).$$

Another extension starts with the observation that $\sqrt{n} \left(\hat{F}_n(x) - F(x) \right) \stackrel{d}{\to} N(0, \sigma^2)$, where

$$\sigma^2 = \operatorname{Var}(\mathbb{1}_{\{X \le x\}}) = \mathbb{E}[\mathbb{1}_{X \le x}^2] - \mathbb{E}[\mathbb{1}_{X \le x}]^2 = F(x) - F(x)^2 = F(x)(1 - F(x)).$$

This can be strengthened by considering $(\sqrt{n}(\hat{F}_n(x) - F(x)) \stackrel{\text{d}}{\to} N(0, \sigma^2) \mid x \in \mathbb{R})$ as a stochastic process.

Order statistics and quantiles 1.3

Definition 1.11. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F \in \mathcal{F}$. The *order statistics* are the ordered samples $X_{(1)} \leq \cdots \leq X_{(n)}$ (where the original order is preserved in case of a tie).

The order statistics of the uniform distribution can be computed explicitly:

Proposition 1.12. Let $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$, let $Y_1, \ldots, Y_{n+1} \stackrel{\text{iid}}{\sim} \operatorname{Exp}(1)$, and write $S_j := \sum_{i=1}^j Y_j$ (j = 1, ..., n + 1). Then

$$U_{(j)} \stackrel{\mathrm{d}}{=} \frac{S_j}{S_{n+1}} \sim \operatorname{Beta}(j, n-j+1) \quad \text{for } j = 1, \dots, n.$$

Proof. See example sheet 1, question 1.

Definition 1.13. Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. Then the sample quantile function is defined as

$$\hat{F}_n^{-1}(p) = \inf \left\{ x \in \mathbb{R} \mid \hat{F}_n(x) \ge p \right\}.$$

Proposition 1.14. It holds that $\hat{F}_n^{-1}(p) = X_{(\lceil np \rceil)}$.

Proof. By definition, $\hat{F}_n^{-1}(p)$ is the smallest value of x for which $\hat{F}(x)$ is larger than p. Note that

$$\hat{F}(x) \geq p \iff \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{X_i \leq x\}} \geq p \iff \sum_{i=1}^n \mathbb{1}_{\{X_i \leq x\}} \geq np \iff \sum_{i=1}^n \mathbb{1}_{\{X_i \leq x\}} \geq \lceil np \rceil.$$

The smallest value of x for which this occurs is the smallest value of x such that exactly $\lceil np \rceil$ of the variables X_1, \ldots, X_n satisfy $X_i \leq x$. We conclude that $\hat{F}_n^{-1}(p) = X_{(\lceil np \rceil)}$

For $p = \frac{1}{2}$ for example, this proposition tells us that $\hat{F}_n^{-1}(p) = X_{(\lceil n/2 \rceil)}$, the median of the data. We now explore the distribution of $X_{(\lceil np \rceil)}$.

Recap 1.15. We recall two theorems. The first is *Slutsky's theorem*:

Theorem 1.16. Let (Y_n) and (Z_n) be sequences of random vectors with $Y_n \stackrel{d}{\to} Y$ and $Z_n \stackrel{p}{\to} c$ for some constant c. If g is a continuous real-valued function, then $g(Y_n, Z_n) \stackrel{d}{\to} g(Y, c)$.

The second is the *delta method*:

Theorem 1.17. Let (Y_n) be a sequence of random vectors such that $\sqrt{n}(Y_n - \mu) \stackrel{d}{\to} Z$. If $g: \mathbb{R}^d \to \mathbb{R}$ is differentiable at μ , then

$$\sqrt{n}(g(Y_n) - g(\mu)) \stackrel{\mathrm{d}}{\to} g'(\mu)Z.$$

Lemma 1.18. If $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$ and $p \in (0,1)$, then $\sqrt{n}(U_{\lceil np \rceil} - p) \stackrel{\text{d}}{\rightarrow} N(0, p(1-p))$.

Proof. Let $Y_1, \ldots, Y_{n+1} \stackrel{\text{iid}}{\sim} \operatorname{Exp}(1)$, $V_n := \sum_{i=1}^{\lceil np \rceil} Y_i$ and $W_n := \sum_{i=\lceil np \rceil+1}^{n+1} Y_i$. Then V_n and W_n are independent, and we have seen that $U_{\lceil np \rceil} \sim \frac{V_n}{V_n + W_n}$. Noting that $\mathbb{E} V_n = \operatorname{Var}(V_n) = \lceil np \rceil$ we find

$$\sqrt{n} \left(\frac{V_n}{n} - p \right) = \frac{\sqrt{\lceil np \rceil}}{\sqrt{n}} \left(\frac{V_n - \lceil np \rceil}{\sqrt{\lceil np \rceil}} \right) + \frac{\lceil np \rceil - np}{\sqrt{n}}$$
$$= \frac{\sqrt{\lceil np \rceil}}{\sqrt{n}} \left(\frac{V_n - \mathbb{E}V_n}{\sqrt{\operatorname{Var}(V_n)}} \right) + \frac{\lceil np \rceil - np}{\sqrt{n}}.$$

Now, by the central limit theorem, the term between brackets converges to a standard N(0,1) distribution. The term $\sqrt{\lceil np \rceil} \sqrt{n}$ converges to \sqrt{p} and the term $(\lceil np \rceil - np)/\sqrt{n}$ converges to 0, so by Slutsky's lemma, we find

$$\sqrt{n}\left(\frac{V_n}{n}-p\right) \stackrel{\mathrm{d}}{\to} \sqrt{p}N(0,1) = N(0,p).$$

An analogous calculation shows that $\sqrt{n}\left(\frac{W_n}{n}-(1-p)\right)\to N(0,1-p)$. Now we define $g\colon (0,\infty)^2\to (0,\infty)$ by $g(x,y)\coloneqq x/(x+y)$, which is differentiable at (p,1-p). Note that the distribution of (V_n,W_n) is an $N(0,\binom{p\ 0}{0\ q})$ distribution. By the delta method we find

$$\begin{split} \sqrt{n} \big(U_{\lceil np \rceil} - p \big) & \stackrel{\mathrm{d}}{=} \sqrt{n} \bigg(g \bigg(\frac{V_n}{n}, \frac{W_n}{n} \bigg) - g(p, q) \bigg) \\ & \stackrel{\mathrm{d}}{\to} g'(p, 1 - p) N \bigg(0, \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} \bigg) \\ & = N \bigg(0, g'(p, 1 - p) \begin{pmatrix} p & 0 \\ 0 & q \end{pmatrix} g'(p, 1 - p)^\top \bigg) \\ & = N(0, p(1 - p)). \end{split}$$

We now relate what we know about the uniform distribution to the quantile function:

Theorem 1.19. Let $p \in (0,1)$ and let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} F$. Suppose that F is differentiable at $\xi_p :=$ $F^{-1}(p)$ with derivative $f(\xi_n)$. Then

$$\sqrt{n}(X_{(\lceil np \rceil)} - \xi_p) \stackrel{\mathrm{d}}{\to} N\left(0, \frac{p(1-p)}{f(\xi_p)^2}\right).$$

Proof. Let $U_1, \ldots, U_n \stackrel{\text{iid}}{\sim} U(0,1)$, then we know that $F^{-1}(U_i) \stackrel{\text{d}}{=} X_i$ and thus $F^{-1}(U_{(\lceil np \rceil)}) \stackrel{\text{d}}{=} X_{(\lceil np \rceil)}$. Applying the delta method with $g = F^{-1}$, together with the previous theorem yields

$$\sqrt{n}(X_{(\lceil np \rceil)} - \xi_p) = \sqrt{n}(F^{-1}(U_{(\lceil np \rceil)}) - F^{-1}(p)) \stackrel{d}{\to} (F^{-1})'(p) \cdot N(0, p(1-p)).$$

Noting that $(F^{-1})'(p) = \frac{1}{f(\xi_p)}$ yields the result.

1.4 Concentration inequalities

We turn our attention to concentration inequalities, with a focus on finite-sample results (instead of results that only hold for $n \to \infty$).

Definition 1.20. A random variable X with mean 0 is called sub-Gaussian with parameter σ^2 if

$$M_X(t) = \mathbb{E}(e^{tX}) \le e^{t^2\sigma^2/2}$$

for every $t \in \mathbb{R}$.

Note that equality holds when $X \sim N(0, \sigma^2)$, since the MGF of an $N(\mu, \sigma^2)$ distribution is given by $t \mapsto \exp(\mu t + \sigma^2 t^2/2)$.

Proposition 1.21. We consider some characterisations of sub-Gaussianity:

(a) Let X be sub-Gaussian with parameter σ^2 . Then

$$\max \left\{ \mathbb{P}(X \ge x), \mathbb{P}(X \le -x) \right\} \le e^{-x^2/(2\sigma^2)} \quad \text{for every } x \ge 0. \tag{1}$$

(b) Let X be a random variable which satisfies $\mathbb{E}(X) = 0$ and eq. (1). Then for every $q \in \mathbb{N}$ it holds that

$$\mathbb{E}(X^{2q}) \le 2 \cdot q! (2\sigma^2)^q \le q! (2\sigma)^{2q}.$$

(c) If X is a random variable with $\mathbb{E}(X) = 0$ and $\mathbb{E}(X^{2q}) \le q!C^{2q}$ for all $q \in \mathbb{N}$, then X is sub-Gaussian with parameter $4C^2$.

Recap 1.22. Recall the *tail bound formula* for the expectation: if X is a nonnegative random variable, then

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > x) \, \mathrm{d}x.$$

Furthermore, recall that the gamma function is defined for $z \in (0, \infty)$ by

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} \, \mathrm{d}x$$

and satisfies $\Gamma(n) = (n-1)!$ for all $n \in \mathbb{N}$.

Proof. (a) We first consider $\mathbb{P}(X \geq x)$. By Markov's inequality, we have for all $t \in \mathbb{R}$ that

$$\mathbb{P}(X \geq x) = \mathbb{P}(e^{tX} \geq e^{tx}) \leq e^{-tX} \mathbb{E}(e^{tX}) \leq e^{-tx + t^2\sigma^2/2}.$$

Since the LHS is independent of t, we can take the infimum over t on the RHS and obtain

$$\mathbb{P}(X \ge x) \le \inf_{t \in \mathbb{R}} e^{-tx + t^2\sigma^2/2} = e^{-x^2/(2\sigma^2)},$$

since the infimum of $t^2\sigma^2/2 - tx$ is attained at $t = x/\sigma^2$.

For $\mathbb{P}(X \leq -x) = \mathbb{P}(-X \geq x)$ we can use the fact that -X is also sub-Gaussian with parameter σ^2 .

(b) By the previous part, we have $\mathbb{P}(|X| \geq x) \leq 2e^{-x^2/(2\sigma^2)}$. Some calculations give

$$\begin{split} \mathbb{E}(X^{2q}) &= \int_0^\infty \mathbb{P}(X^{2q} \ge x) \, \mathrm{d}x = \int_0^\infty \mathbb{P}(|X| \ge x^{1/(2q)}) \\ &= 2q \int_0^\infty x^{2q-1} \mathbb{P}(|X| \ge x) \, \mathrm{d}x \\ &\le 4q \int_0^\infty x^{2q-1} e^{-x^2/(2\sigma^2)} \, \mathrm{d}x \, . \end{split}$$

Now set $t = x^2/2\sigma^2$, so that $x = \sigma(2t)^{1/2}$ and thus $dx = \sigma(2t)^{-1/2} dt$. Plugging that in we get

$$\mathbb{E}(X^{2q}) \le 4q \int_0^\infty (\sigma(2t)^{1/2})^{2q-1} e^{-t} \sigma(2t)^{-1/2} dt = 2^{q+1} q \sigma^{2q} \int_0^\infty t^{q-1} e^{-t} dt$$
$$= 2^{q+1} q \sigma^{2q} \Gamma(q) = 2 \cdot q! (2\sigma)^q.$$

(c) Note that $x \mapsto e^{-tx}$ is convex for every $t \in \mathbb{R}$, so $\mathbb{E}(e^{-tX}) \ge e^{-t\mathbb{E}(X)} \ge 1$ by Jensen's inequality.