Modelos não Paramétricos

Ricardo Accioly

Nesta apresentação vamos ver passo a passo como obter uma estimativa da curva de sobrevivência através do método de Kaplan-Meier.

Nesta apresentação vamos ver passo a passo como obter uma estimativa da curva de sobrevivência através do método de Kaplan-Meier.

Vamos inicialmente utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Nesta apresentação vamos ver passo a passo como obter uma estimativa da curva de sobrevivência através do método de Kaplan-Meier.

Vamos inicialmente utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

Nesta apresentação vamos ver passo a passo como obter uma estimativa da curva de sobrevivência através do método de Kaplan-Meier.

Vamos inicialmente utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

O objetivo é verificar se o tratamento proposto, 6MP, tem efeito sobre a doença.

Nesta apresentação vamos ver passo a passo como obter uma estimativa da curva de sobrevivência através do método de Kaplan-Meier.

Vamos inicialmente utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

O objetivo é verificar se o tratamento proposto, 6MP, tem efeito sobre a doença.

Existem dois grupos de pacientes. 21 receberam 6MP que é um medicamento para tratar leucemia e os outros 21 receberam placebo.

Nesta apresentação vamos ver passo a passo como obter uma estimativa da curva de sobrevivência através do método de Kaplan-Meier.

Vamos inicialmente utilizar o pacote survival que é a principal referência em modelos de análise de sobrevivência.

Vamos usar neste exemplo dados de pacientes com leucemia.

O objetivo é verificar se o tratamento proposto, 6MP, tem efeito sobre a doença.

Existem dois grupos de pacientes. 21 receberam 6MP que é um medicamento para tratar leucemia e os outros 21 receberam placebo.

O evento falha aqui é ocorrer uma recaída na doença.

Método de Kaplan-Meier

library(survival)

library(survival)

tempo<- c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,

library (survival)

library (survival)

tempo<- c(6,6,6,6,7,9,10,10,11,13,16,17,19,20,22,23,

Call: survfit(formula = Surv(tempos, status) ~ 1, data = dados) time n.risk n.event survival std.err lower 95% CI upper 95% CI 21 0.857 0.0764 0.720 1.000 6 7 17 0.807 0.0869 0.653 0.996 10 15 0.753 0.0963 0.586 0.968 1 12 0.690 0.1068 0.510 0.935 13 1 0.627 0.1141 0.439 0.896 16 11 1 22 7 0.538 0.1282 0.337 0.858 1 23 6 0.448 0.1346 0.249 0.807

tempo2<- c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,

tempo2<- c(1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,

Call: survfit(formula = Surv(tempos, status) ~ 1, data = dados2) time n.risk n.event survival std.err lower 95% CI upper 95% CI 2 0.9048 0.0641 0.78754 21 1.000 19 0.8095 0.0857 0.65785 0.996 0.7619 0.0929 3 17 0.59988 0.968 0.6667 0.1029 0.902 16 0.49268 0.5714 0.1080 5 14 0.39455 0.828 0.3810 0.1060 0.657 12 0.22085 0.2857 0.0986 11 8 0.14529 0.562 12 0.1905 0.0857 0.07887 0.460 6 15 0.1429 0.0764 0.05011 0.407 0.0952 0.0641 17 3 0.02549 0.356 0.0476 0.0465 0.00703 0.322 22 2

NaN

NA

NA

23

1

1

0.0000

Vamos agora criar dois grupos de pacientes e fazer a análise conjunta

tempo2g <- c(tempo, tempo2)</pre>

tempo2g <- c(tempo, tempo2)
status2g <- c(status, status2)</pre>

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g
ajusteKM3 <- survfit(Surv(tempos, status) ~ grupos,</pre>
```


tempo2g <- c(tempo, tempo2)
status2g <- c(status, status2)</pre>

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g
ajusteKM3 <- survfit(Surv(tempos, status) ~ grupos,</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g
ajusteKM3 <- survfit(Surv(tempos, status) ~ grupos,
summary(ajusteKM3)</pre>
```

Call: survfit(formula = Surv(tempos, status) ~ grupos, data = dados3)

grupos=1

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
6	21	3	0.857	0.0764		0.720		1.000
7	17	1	0.807	0.0869		0.653		0.996
10	15	1	0.753	0.0963		0.586		0.968
13	12	1	0.690	0.1068		0.510		0.935
16	11	1	0.627	0.1141		0.439		0.896
22	7	1	0.538	0.1282		0.337		0.858
23	6	1	0.448	0.1346		0.249		0.807

time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
1	21	2	0.9048	0.0641	0.78754	1.000
2	19	2	0.8095	0.0857	0.65785	0.996
3	17	1	0.7619	0.0929	0.59988	0.968
4	16	2	0.6667	0.1029	0.49268	0.902
5	14	2	0.5714	0.1080	0.39455	0.828
8	12	4	0.3810	0.1060	0.22085	0.657
11	8	2	0.2857	0.0986	0.14529	0.562
12	6	2	0.1905	0.0857	0.07887	0.460
15	4	1	0.1429	0.0764	0.05011	0.407
17	3	1	0.0952	0.0641	0.02549	0.356
22	2	1	0.0476	0.0465	0.00703	0.322
23	1	1	0.0000	NaN	NA	NA

Diferentes Tipos de Intervalo de Confiança

tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)</pre>

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g</pre>
```

grupos=1

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI	
6	21	3	0.857	0.0764		0.707		1.000	
7	17	1	0.807	0.0869		0.636		0.977	
10	15	1	0.753	0.0963		0.564		0.942	
13	12	1	0.690	0.1068		0.481		0.900	
16	11	1	0.627	0.1141		0.404		0.851	
22	7	1	0.538	0.1282		0.286		0.789	
23	6	1	0.448	0.1346		0.184		0.712	

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
1	21	2	0.9048	0.0641		0.7792		1.000
2	19	2	0.8095	0.0857		0.6416		0.977
3	17	1	0.7619	0.0929		0.5797		0.944
4	16	2	0.6667	0.1029		0.4650		0.868
5	14	2	0.5714	0.1080		0.3598		0.783
8	12	4	0.3810	0.1060		0.1733		0.589
11	8	2	0.2857	0.0986		0.0925		0.479
12	6	2	0.1905	0.0857		0.0225		0.358
15	4	1	0.1429	0.0764		0.0000		0.293
17	3	1	0.0952	0.0641		0.0000		0.221
22	2	1	0.0476	0.0465		0.0000		0.139
23	1	1	0.0000	NaN		NaN		NaN

tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)</pre>

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g</pre>
```

grupos=1

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
6	21	3	0.857	0.0764		0.720		1.000
7	17	1	0.807	0.0869		0.653		0.996
10	15	1	0.753	0.0963		0.586		0.968
13	12	1	0.690	0.1068		0.510		0.935
16	11	1	0.627	0.1141		0.439		0.896
22	7	1	0.538	0.1282		0.337		0.858
23	6	1	0.448	0.1346		0.249		0.807

time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
1	21	2	0.9048	0.0641	0.78754	1.000
2	19	2	0.8095	0.0857	0.65785	0.996
3	17	1	0.7619	0.0929	0.59988	0.968
4	16	2	0.6667	0.1029	0.49268	0.902
5	14	2	0.5714	0.1080	0.39455	0.828
8	12	4	0.3810	0.1060	0.22085	0.657
11	8	2	0.2857	0.0986	0.14529	0.562
12	6	2	0.1905	0.0857	0.07887	0.460
15	4	1	0.1429	0.0764	0.05011	0.407
17	3	1	0.0952	0.0641	0.02549	0.356
22	2	1	0.0476	0.0465	0.00703	0.322
23	1	1	0.0000	NaN	NA	NA

tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)</pre>

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))</pre>
```

```
tempo2g <- c(tempo,tempo2)
status2g <- c(status,status2)
grupos <- c(rep(1,21),rep(2,21))
dados3 <- data.frame(tempos=tempo2g, status=status2g</pre>
```

grupos=1

time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% C
6	21	3	0.857	0.0764		0.620		0.952
7	17	1	0.807	0.0869		0.563		0.923
10	15	1	0.753	0.0963		0.503		0.889
13	12	1	0.690	0.1068		0.432		0.849
16	11	1	0.627	0.1141		0.368		0.80
22	7	1	0.538	0.1282		0.268		0.74
23	6	1	0.448	0.1346		0.188		0.680

time	n.risk	n.event	survival	std.err	lower 95% CI	upper 95% CI
1	21	2	0.9048	0.0641	0.67005	0.975
2	19	2	0.8095	0.0857	0.56891	0.924
3	17	1	0.7619	0.0929	0.51939	0.893
4	16	2	0.6667	0.1029	0.42535	0.825
5	14	2	0.5714	0.1080	0.33798	0.749
8	12	4	0.3810	0.1060	0.18307	0.578
11	8	2	0.2857	0.0986	0.11656	0.482
12	6	2	0.1905	0.0857	0.05948	0.377
15	4	1	0.1429	0.0764	0.03566	0.321
17	3	1	0.0952	0.0641	0.01626	0.261
22	2	1	0.0476	0.0465	0.00332	0.197
23	1	1	0.0000	NaN	NA	NA

Vamos usar o pacote survminer para incrementar a visualização

library(survminer)

library(survminer)

dados <- data.frame(tempo=tempo2g, status=status2g,</pre>

library(survminer) dados <- data.frame(tempo=tempo2g, status=status2g, ajusteKM4 <- survfit(Surv(tempo2g, status2g) ~ grupo</pre>

library(survminer)

dados <- data.frame(tempo=tempo2g, status=status2g,
ajusteKM4 <- survfit(Surv(tempo2g, status2g) ~ grupo
ggsurvplot(ajusteKM4, data=dados)</pre>

dados <- data.frame(tempo=tempo2g, status=status2g,</pre>

dados <- data.frame(tempo=tempo2g, status=status2g,
fit4 <- survfit(Surv(tempo2g, status2g) ~ grupo, dat</pre>

```
dados <- data.frame(tempo=tempo2q, status=status2q,</pre>
fit4 <- survfit(Surv(tempo2q, status2q) ~ grupo, dat
ggsurvplot(
 fit4,
 data = dados,
 risk.table = TRUE,
 pval = FALSE,
 conf.int = TRUE,
 xlim = c(0,40),
 xlab = "Tempo em meses",
 ylab = "S(t)",
 break.time.by = 10,
 ggtheme = theme light(),
 risk.table.y.text.col = T,
 risk.table.y.text = FALSE
```


