Emil Slomka, Tim Hilt Seite 1

Elektronik Formelsammlung

1 Grundlagen und Wiederholung

Übertragungsfunktion:

 $F = \frac{U_a}{U_e} = \frac{\text{Widerstände parallel zum Ausgang}}{\text{Widerstände parallel zum Eingang}}$

Berechnung zweier, paralleler Widerstände R_1 und R_2 :

$$R_1||R_2 = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Leistung:

$$P = \frac{U^2}{R} = U \cdot \frac{U}{R} = U \cdot I$$

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

2 Kondensator und Zeitkonstanten

Abbildung 1: Ladekurven Kondensator **Achtung:** $t = \Delta t = t_1 - t_0$

Zum Zeichnen im Zeitbereich: Arbeitsgerade von Anfangsspannung zur Endspannung zeichnen, mit t= au

Achtung: Immer alle Widerstände parallel und in Reihe zum Kondensator berücksichtigen und Übertragungsfunktion für Ladeziel verwenden!

Emil Slomka, Tim Hilt Seite 2

$$t= au$$
 $pprox 63\%$ von $|A-E|$ $t=2 au$ $pprox 86\%$ von $|A-E|$ $t=5 au$ $pprox 99\%$ von $|A-E|$

3 Filter

Im Fourierbereich: $\omega = 2\pi f$, im Laplacebereich: $j\omega = p$

	RC-Tiefpass	RC-Hochpass	RL-Tiefpass	RL-Hochpass
Übertragungsfunktion $rac{U_a}{U_e}=H(j\omega)$	$\frac{1}{1+j\omega RC}$	$rac{j\omega RC}{1+j\omega RC}$	$\frac{R}{R+j\omega L}$	$rac{j\omega L}{R+j\omega L}$
Grenzfrequenz f_G/ω_G	$\frac{1}{2\pi RC}; \frac{1}{RC}$	$\frac{1}{2\pi RC}$; $\frac{1}{RC}$	$\frac{R}{2\pi L}; \frac{R}{L}$	$\frac{R}{2\pi L}; \frac{R}{L}$

Tabelle 1: Grenzfrequenz und Übertragungsfunktionen

Dämpfung bei passiven Filtern erster Ordnung:

- 0 dB im Durchlassbereich
- 3 dB an der Grenzfrequenz f_G
- 6 dB pro Oktave (doppelte Frequenz) im Sperrbereich
- 20 dB pro Dekade (zehnfache Frequenz) im Sperrbereich

4 Transistor

Abbildung 2: Gleichstromersatzschaltbild eines Bipolartransistors