

Tensor Analysis for Evolving Networks Tamara G. Kolda

Workshop on Time-varying Complex Network Analysis Cambridge, UK, September 19, 2012

Office of Advanced Scientific Computing Research

Networks, Matrices, Factor Analysis

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

- Networks correspond to sparse matrices
 - Symmetric ⇒ Undirected
 - Asymmetric ⇒ Directed
 - Rectangular ⇒ Bipartite
 - Binary ⇒ Unweighted
- Matrix analysis yields insight
 - Ranking methods
 - PageRank (Page et al., 1999)
 - Hubs & Authorities (Kleinberg, 1999)
 - Eigenvalues
 - Pattern indications (Gleich, SIAM CSE 2011)
 - Eigenvectors of Laplacian
 - Partitioning (Pothen, Simon, Liou, 1990)
 - Estimating commute time (Fouss et al., 2007)
 - Matrix factorization
 - Dimension reduction
 - Unsupervised learning
 - Nonnegative, sparse, etc.

Aside: Gleich's work on Eigevalues as **The Sandia's Von Neumann Fellow**

http://www.slideshare.net/dgleich/the-spectre-of-the-spectrum

Matrix Factorizations for Analysis

Singular Value Decomposition (SVD)

$$\min \sum_{ij} (x_{ij} - m_{ij})^2 \quad \text{subject to} \quad m_{ij} = \sum_r \lambda_r \ a_{ir} \ b_{jr}$$

Key references: Beltrami (1873), Pearson (1901), Eckart & Young (1936)

Authors

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Authors

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \approx \underbrace{\begin{bmatrix} .91 & -.38 \\ .72 & .75 \\ .19 & .75 \\ .91 & -.38 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} 1.15 & 0 \\ .41 & 1.06 \\ .83 & -.53 \end{bmatrix}}_{\mathbf{B}^{\mathsf{T}}}^{\mathsf{T}}$$

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \approx \begin{bmatrix} .91 & -.38 \\ .72 & .75 \\ .19 & .75 \\ .91 & -.38 \end{bmatrix} \underbrace{\begin{bmatrix} 1.15 & 0 \\ .41 & 1.06 \\ .83 & -.53 \end{bmatrix}^{\mathsf{T}}}_{\mathbf{B}^{\mathsf{T}}}$$

Authors

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \approx \underbrace{\begin{bmatrix} .91 & -.38 \\ .72 & .75 \\ .19 & .75 \\ .91 & -.38 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} 1.15 & 0 \\ .41 & 1.06 \\ .83 & -.53 \end{bmatrix}}_{\mathbf{B}^{\mathsf{T}}}^{\mathsf{T}}$$

Authors

$$\mathbf{X} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \approx \underbrace{\begin{bmatrix} .91 & -.38 \\ .72 & .75 \\ .19 & .75 \\ .91 & -.38 \end{bmatrix}}_{\mathbf{A}} \underbrace{\begin{bmatrix} 1.15 & 0 \\ .41 & 1.06 \\ .83 & -.53 \end{bmatrix}}_{\mathbf{B}^{\mathsf{T}}}$$

2-Way Models Suffer from "Gauge Freedom"

$$\mathbf{X} \approx \mathbf{A}\mathbf{B}^{\mathsf{T}} = \underbrace{\begin{bmatrix} .39 & .90 \\ 1.04 & -.04 \\ .66 & -.41 \\ .39 & .90 \end{bmatrix}}_{\hat{\mathbf{A}} - \mathbf{A}\mathbf{S}} \underbrace{\begin{bmatrix} .83 & 0.80 \\ 1.04 & -.48 \\ .23 & .96 \end{bmatrix}^{\mathsf{T}}}_{\hat{\mathbf{B}}^{\mathsf{T}} = (\mathbf{B}\mathbf{S}^{-1})^{\mathsf{T}}}$$

Time-Varying Networks & Tensors

- Time-varying networks correspond naturally to 3-way tensors
 - Time must be "binned"
- Additional modes correspond to higher-order tensors
 - Link type (like, post, IM, msg)

- Tensor factorizations yield insights similar to matrix case
 - Tensor factorizations
 - Canonical decomposition
 - Poisson tensor decomposition
 - Coupled matrix/tensor
 - Other factorizations
 - Tucker2 decomposition
 - DEDICOM

Matrix Factorizations for Analysis

Think: SVD or NMF

$$\min \sum_{ij} (x_{ij} - m_{ij})^2 \quad \text{subject to} \quad m_{ij} = \sum_r \lambda_r \ a_{ir} \ b_{jr}$$

Key references: Beltrami (1873), Pearson (1901), Eckart & Young (1936)

Multi-way Factorizations for Analysis

CANDECOMP/PARAFAC (CP) Model

Key references: Hitchcock (1927), Harshman (1970), Carroll and Chang (1970)

Uniqueness of Tensor Factorization

- $k_A = k$ -rank of a matrix A = maximum value of k such that any k columns are linearly independent
- Factorization essentially unique if

$$k_{\mathbf{A}} + k_{\mathbf{B}} + k_{\mathbf{C}} \ge 2R + 2$$

 Essentially unique = unique up to permutation and scaling ambiguities = no gauge freedom (unlike matrix case)

Example: DBLP Data

DBLP has data from 1936-2007 (used only "inproceedings" from 1991-2000)

Training Data	10 Years: 1991-2000	
# Authors (min 10 papers)	7108	
# Conferences	1103	
Links	113k (0.14% dense)	

Nonzeros defined by:

$$x_{ijk} = \log(c_{ijk}) + 1 \text{ if } c_{ijk} > 0$$

Conference

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010

Example: DBLP Data

DBLP Component #30 (of 50)

DBLP Component #5 (of 50)

DBLP Component #19 (of 50)

DBLP Component #43 (of 50)

DBLP Component #10 (of 50)

Extension: Temporal Link Prediction

- Problem: Predicting future connections
 - Between computers on a network
 - Between "persons of interest" and places
 - Between buyers and products
- "Needle in the Haystack" Problem
 - # possible connections is huge!
 - # actual connections is small!
- Solution: Represent past connections as tensor
 - Example: Buyer x Object x Date
 - Factorize to look for temporal patterns
 - Use regression to predict future behavior

Example Prediction Results

- Predict who will publish at which conference based on 10 years past data
 - Data: DBLP 1997-2006 / 2007
 - 21K Authors x 2K Conferences
 - 1997-2006: 377K Links
 - 2007: 41K (20k New)
 - Top-1000 Predicted Links
 - Random: 1
 - Our Method: 733
 - Top-1000 New Only [Hard]
 - Random: ½
 - Our Method: 83

Acar, Dunlavy, & Kolda, Temporal Link Prediction using Matrix and Tensor Factorizations, ACM TKDD, 2010

Conference

What does " \approx " mean?

- Typically, we minimize the least-squares error
- This corresponds to maximizing the likelihood, assuming a **Gaussian distribution**

$$x_{\mathbf{i}} \sim N(m_{\mathbf{i}}, \sigma^2)$$

Maximize this:

likelihood(
$$\mathbf{M}$$
) = $\prod_{\mathbf{i}} \frac{\exp(-(x_{\mathbf{i}} - m_{\mathbf{i}})^2 / 2\sigma^2)}{2\pi\sigma^2}$
log-likelihood(\mathbf{M}) = $c_1 - c_2 \sum_{\mathbf{i}} (x_{\mathbf{i}} - m_{\mathbf{i}})^2$

By monotonicity of log, same as maximizing this:

log-likelihood(
$$\mathbf{M}$$
) = $c_1^{\mathbf{i}} - c_2 \sum_{\mathbf{i}} (x_{\mathbf{i}} - m_{\mathbf{i}})^2$

Gaussian often Works Well, But.

- Gaussian (normal) distribution
 - Default model, and for good reason
 - Limiting distribution of the sum of random variables
- Some data are better explained elsewise
 - Non-symmetric errors (e.g., data that grows exponentially)
 - Data with outliers or multiple modes
 - Etc.
- Poisson distribution
 - Associated with count data
 - Discrete, nonnegative
 - High counts can be reasonably approximated by a Gaussian

Poisson Tensor Factorization (PTF)

$$x_{\mathbf{i}} \sim \text{Poisson}(m_{\mathbf{i}})$$

$$P(X = x) = \frac{\exp(-m)m^x}{x!}$$

- Poisson preferred for sparse count data
- Automatically nonnegative
- More difficult objective function than least squares
- Note that this objective is also called Kullback-Liebler (KL) divergence

Maximize this:

likelihood(
$$\mathbf{M}$$
) = $\prod_{\mathbf{i}} \frac{\exp(-m_{\mathbf{i}}) \ m_{\mathbf{i}}^{x_{\mathbf{i}}}}{x_{\mathbf{i}}!}$

log-likelihood(
$$\mathfrak{M}$$
) = $c - \sum_{\mathbf{i}} m_{\mathbf{i}} - x_{\mathbf{i}} \log(m_{\mathbf{i}})$

Motivating Example: Enron Email

- Emails from Enron FERC investigation
 - 8540 Messages
 - 28 Months (from Dec 1999 to Mar 2002)
 - 105 People (sent and received at least one email every month)
 - x_{ijk} = # emails from sender i to recipient j in month k
 - 105 x 105 x 28 = 308,700 possible entries
 - 8,500 nonzero counts
 - 3% dense
- Questions: What can we learn about this data?
 - Each person labeled by Zhou et al. (2007);
 see also Owen and Perry (2010)
 - Seniority: 57% senior, 43% junior
 - Gender: 67% male, 33% female
 - Department: 24% legal, 31% trading, 45% other

This information is not part of the tensor factorization

Enron Email Data (Component 1)

Legal Dept; Mostly Female

Enron Email Data (Component 3)

Enron Email Data (Component 4)

Enron Email Data (Component 5)

Other; Mostly Female

Enron Email Data (Component 10)

Other (45%)

We define what " \approx " means

- Least squares
- Nonnegative least squares
- KL divergence
- Sparsity
- Etc.

Coupled Factorizations (Slide from Acar)

Cold-start problem in Link Prediction

Slide from Evrim Acar, TRICAP 2012. Belgium

We face with the cold-start problem when a new user starts using an application, e.g., location-activity recommender system. This will correspond to a completely missing slice for the new user.

For the missing slice i (for i=1,2,..I):

Original values Using CMTF $Vec(\hat{\mathbf{X}}_i)$ $Vec(\hat{\mathbf{X}}_i)$

 $x_{ijk} = \begin{cases} 1 & \text{if user i performs activity j at location k,} \\ 0 & \text{otherwise.} \end{cases}$

We cannot use low-rank approximation of a tensor to fill in the missing slice. However, we can use additional sources of information through the coupled model:

$$\mathbf{Y} \approx \mathbf{A}\mathbf{D}^T$$

$$\mathfrak{X} \approx [\![\mathbf{A}, \mathbf{B}, \textcolor{red}{\mathbf{C}}]\!]$$

$$\mathbf{Z} \approx \mathbf{C}\mathbf{E}^\mathsf{T}$$

Average ROC curve for I=146 users

Ermis, Acar and Cemgil, Link Prediction via Generalized Coupled Tensor Factorisation, ECML/PKDD 2012

Another model: DEDICOM

- DEDICOM = DEcomposition into Directional COMponents, Harshman (1978)
 - Family of models called PARATUCK2
- a_{ik} = strength of person i in group k
- r_{kl} = interaction of groups k & l
- d_{kkt} = stretch of group k at time t

Bader, Harshman and Kolda. *Temporal Analysis of Semantic Graphs using ASALSAN*, ICDM 2007, pp. 33-42, 2007

Slide from Brett Bader. TRICAP 2006, Greece

DEDICOM Roles

roles "Gov't affairs EMPLOYEE T. Jones - Employee, Financial Trading Group (ENA Legal) 0.64 0.02 -0.00-0.01-0.00S. Shackleton - Employee, ENA Legal 0.45M. Taylor - Manager, Financial Trading Group ENA Legal 0.370.01 0.02-0.00S. Bailey - Legal Assistant, ENA Legal 0.26 -0.00-0.01-0.00C S. Panus - Senior Legal Specialist, ENA Legal -0.00 -0.00 -0.00 0.26Legal M. Heard - Senior Legal Specialist, ENA Legal 0.23-0.000.00 -0.00J. Hodge - Asst General Counsel, ENA Legal 0.13 0.03 0.01 -0.00L. Kitchen - President, Enron Online 0.11 -0.09 0.530.00 S. Dickson - Employee, ENA Legal 0.09-0.000.00 -0.00E. Sager - VP and Asst Legal Counsel, ENA Legal 0.08 0.02 0.07 -0.00J. Dasovich - Employee, Government Relationship Executive 0.580.01 J. Steffes - VP, Government Affairs 0.00 0.53-0.06-0.01R. Shapiro - VP, Regulatory Affairs -0.00 0.400.10 -0.00Gov't S. Kean - VP, Chief of Staff -0.00 0.37-0.04-0.00R. Sanders - VP, Enron Wholesale Services 0.03 0.16-0.01 -0.00affairs D. Delainey - CEO, ENA and Enron Energy Services 0.01 0.090.09 -0.00-0.00 0.08 -0.00 S. Corman - VP, Regulatory Affairs 0.20M. Carson - Employee, Corporate and Environmental Policy -0.00 0.08 -0.02-0.00 S. Scott - Employee, Transwestern Pipeline Company (ETS) 0.08-0.000.04 -0.00J. Lavorato - CEO, Enron America 0.02 -0.04 0.490.00 M. Grigsby - Director, West Desk Gas Trading 0.00 -0.030.20-0.00Execs -G. Whalley - President, 0.01 -0.010.19 0.00 J. Steffes - VP, Government Affairs -0.020.18 0.00 0.00 trading K. Presto - VP, East Power Trading -0.05 0.00 0.01 0.18 0.00 S. Beck - COO. 0.01 -0.030.17B. Tycholiz - VP, Marketing 0.01 -0.020.160.00 J. Arnold - VP, Financial Enron Online 0.03-0.040.16 -0.00J. Williamson - Executive Assistant. 0.00 -0.020.14 0.01 K. Watson - Employee, Transwestern Pipeline Company (ETS) -0.00 0.01 0.59-0.00M. Lokay - Admin. Asst., Transwestern Pipeline Company (ETS) -0.00 0.01 0.01 0.42**Pipeline** L. Donoho - Employee, Transwestern Pipeline Company (ETS) -0.00 0.01 0.01 0.35M. McConnell - Employee, Transwestern Pipeline Company (ETS) 0.00 -0.000.01 0.260.22L. Blair - Employee, Northern Natural Gas Pipeline (ETS) -0.00 0.00 0.00 employees K. Hyatt - Director, Asset Development TW Pipeline Business (ETS) -0.00 0.01 0.00 0.20D. Schoolcraft - Employee, Gas Control (ETS) -0.00 0.00 0.00 0.18T. Geaccone - Manager, (ETS) 0.01 0.17 0.00 -0.00R. Hayslett - VP, Also CFO and Treasurer

Bader, Harshman and Kolda. Temporal Analysis of Semantic Graphs using ASALSAN, ICDM 2007, pp. 33-42, 2007

0.00

-0.00

0.02

0.16

DEDICOM Patterns

Slide from Brett Bader, TRICAP 2006, Greece

Legal Government & regulatory affairs Trade executives Pipeline employees

ه.		affairs Trade	e execs Pipelif
	GON .	Trac	Pipe
440.2	1.6	-15.0	0.4
1.6	278.3	135.4	1.6
-29.3	70.7	201.6	-6.2
1.4	-4.6	-7.5	172.3

Bader, Harshman and Kolda. Temporal Analysis of Semantic Graphs using ASALSAN, ICDM 2007, pp. 33-42, 2007

DEDICOM Time Profiles

Slide from Brett Bader, TRICAP 2006, Greece

Bader, Harshman and Kolda. Temporal Analysis of Semantic Graphs using ASALSAN, ICDM 2007, pp. 33-42, 2007

SEC starts investigation

Sparse Tensor Computations

Tensor Toolbox for MATLAB
Bader & Kolda
plus
Acar, Dunlavy, Sun, et al.

- Many real-world data analysis problems are naturally expressed as in terms of a sparse tensor
 - Computer traffic analysis
 - Author-keyword analysis
 - Email analysis
 - Link prediction
 - Web page analysis

- Tensor Toolbox has 5000+ users
 - Main feature is support for sparse tensors

Benefits & Shortcomings of Tensor Analysis for Complex Networks

What Tensors Do

- Find clique-like structure in data (similar to matrix factorization)
- Capture temporal differences, since data is not merged

Shortcomings

- Picking the rank is more art than science
- Time is just another dimension no special treatment

Benefits

- Uniqueness of factorizations under mild conditions ⇒ Interpretable results
- "Natural" nonnegativity
- Constraints on the factors can impose sparsity, smoothness, etc.

Other issues

- Partial symmetries
- PageRank for tensors is not yet defined
- Nothing like the Gleich eigenvalue work

For more info: Tammy Kolda tgkolda@sandia.gov

Other Work in Network Analysis

- Realistic models of large-scale networks
 - Match degree distribution
 - Match clustering coefficient (CC)

Our model = Block Two-level Erdos-Renyi (BTER)

Hollywood 2011 (sym): 2M nodes, 114M edges (downloaded from LAW)

Total Run Time

BTER = 55 sec

CC via Sampling = 8 min (x2)

32 node MapReduce cluster

References

Tensors & Networks

- Acar, Kolda and Dunlavy. All-at-once Optimization for Coupled Matrix and Tensor Factorizations, MLG'11: Proc. Mining and Learning with Graphs, 2011
- Kolda, Bader and Kenny. Higher-Order Web Link Analysis Using Multilinear Algebra, ICDM 2005, pp. 242-249, 2005 (doi:10.1109/ICDM.2005.77)
- Chi and Kolda. On Tensors, Sparsity, and Nonnegative Factorizations, 2012, http://arxiv.org/abs/1112.2414
- Dunlavy, Kolda and Acar. Temporal Link Prediction using Matrix and Tensor Factorizations, ACM Trans. KDD 5(2), 2011 (doi:10.1145/1921632.1921636)
- (*) Coupled Factorizations: Ermis, Acar and Cemgil, Link Prediction via Generalized Coupled Tensor Factorisation, ECML/PKDD 2012

General

- Kolda and Bader. Tensor Decompositions and Applications, SIAM Review 51(3):455-500, Sep 2009. (doi:10.1137/07070111X)
- Bader and Kolda. Efficient MATLAB computations with sparse and factored tensors, SIAM J. Scientific Computing 30(1), 2007 (doi:10.1137/060676489)

Other Work

- DEDICOM: Bader, Harshman and Kolda. Temporal Analysis of Semantic Graphs using ASALSAN, ICDM 2007, pp. 33-42, 2007 (doi:10.1109/ICDM.2007.54)
- (*) Tucker: Sun, Tao, Faloutsos, Beyond Streams and Graphs: Dynamic Tensor Analysis, KDD'06, pp. 374-383, 2006 (doi:10.1145/1150402.1150445)

All available on my web page except those marked with asterisks.