BACCALAUREAT GENERAL

MATHEMATIQUES

Série S

Enseignement Spécifique

Durée de l'épreuve : 4 heures

Coefficient: 7

Ce sujet comporte 7 pages numérotées de 1 à 7

Du papier millimétré est mis à la disposition des candidats.

L'utilisation d'une calculatrice est autorisée.

Le candidat doit traiter tous les exercices.

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

EXERCICE 1 (7 points)

(Commun à tous les candidats)

Les parties A et B sont indépendantes

Partie A

Une boite contient 200 médailles souvenir dont 50 sont argentées, les autres dorées.

Parmi les argentées 60% représentent le château de Blois, 30% le château de Langeais, les autres le château de Saumur.

Parmi les dorées 40% représentent le château de Blois, les autres le château de Langeais.

On tire au hasard une médaille de la boite. Le tirage est considéré équiprobable et on note :

- A l'évènement « la médaille tirée est argentée » ;
- D l'évènement « la médaille tirée est dorée » ;
- B l'évènement « la médaille tirée représente le château de Blois » ;
- L l'évènement « la médaille tirée représente le château de Langeais » ;
- S l'évènement « la médaille tirée représente le château de Saumur ».
- 1) Dans cette question, on donnera les résultats sous la forme d'une fraction irréductible.
 - a) Calculer la probabilité que la médaille tirée soit argentée et représente le château de Langeais.
 - b) Montrer que la probabilité que la médaille tirée représente le château de Langeais est égale à $\frac{21}{40}$.
 - c) Sachant que la médaille tirée représente le château de Langeais, quelle est la probabilité que celle-ci soit dorée ?
- 2) Sachant que la médaille tirée représente le château de Saumur, donner la probabilité que celle-ci soit argentée.

Partie B

Une médaille est dite conforme lorsque sa masse est comprise entre 9,9 et 10,1 grammes. On dispose de deux machines M_1 et M_2 pour produire les médailles.

- 1) Après plusieurs séries de tests, on estime qu'une machine M_1 produit des médailles dont la masse X en grammes suit la loi normale d'espérance 10 et d'écart-type 0, 06.
 - On note C l'évènement « la médaille est conforme ».
 - Calculer la probabilité qu'une médaille produite par la machine M₁ ne soit pas conforme.
 - On donnera le résultat arrondi à 10^{-3} près.
- 2) La proportion des médailles non conformes produites par la machine M_1 étant jugée trop importante, on utilise une machine M_2 qui produit des médailles dont la masse Y en grammes suit la loi normale d'espérance $\mu=10$ et d'écart-type σ .
 - a) Soit Z la variable aléatoire égale à $\frac{Y-10}{\sigma}$. Quelle est la loi suivie par la variable Z?
 - **b**) Sachant que cette machine produit 6 % de pièces non conformes, déterminer la valeur arrondie au millième de σ .

EXERCICE 2 (3 points)

(commun à tous les candidats)

On considère les fonctions f et g définies sur l'intervalle $[0\ ;\ 16]$ par

$$f(x) = \ln(x+1)$$
 et $g(x) = \ln(x+1) + 1 - \cos(x)$.

Dans un repère du plan $\left(O, \overrightarrow{i}, \overrightarrow{j}\right)$, on note \mathscr{C}_f et \mathscr{C}_g les courbes représentatives des fonctions f et g.

Ces courbes sont données en annexe 1.

Comparer les aires des deux surfaces hachurées sur ce graphique.

EXERCICE 3 (6 points)

(Commun à tous les candidats)

Dans le repère orthonormé $\left(O,\overrightarrow{i},\overrightarrow{j},\overrightarrow{k}\right)$ de l'espace, on considère pour tout réel m, le plan P_m d'équation

$$\frac{1}{4}m^2x + (m-1)y + \frac{1}{2}mz - 3 = 0.$$

- 1) Pour quelle(s) valeur(s) de m le point A(1; 1; 1) appartient-il au plan P_m ?
- 2) Montrer que les plans P_1 et P_{-4} sont sécants selon la droite (d) de représentation paramétrique

$$(d) \begin{cases} x = 12 - 2t \\ y = 9 - 2t \\ z = t \end{cases} \text{ avec } t \in \mathbb{R}.$$

- 3) a) Montrer que l'intersection entre P_0 et (d) est un point noté B dont on déterminera les coordonnées.
 - **b**) Justifier que pour tout réel m, le point B appartient au plan P_m .
 - c) Montrer que le point B est l'unique point appartenant à P_m pour tout réel m.
- 4) Dans cette question, on considère deux entiers relatifs m et m' tels que

$$-10 \leqslant m \leqslant 10$$
 et $-10 \leqslant m' \leqslant 10$.

On souhaite déterminer les valeurs de m et de m' pour lesquelles P_m et $P_{m'}$ sont perpendiculaires.

- a) Vérifier que P_1 et P_{-4} sont perpendiculaires.
- **b**) Montrer que les plans P_m et $P_{m'}$ sont perpendiculaires si et seulement si

$$\left(\frac{mm'}{4}\right)^2 + (m-1)(m'-1) + \frac{mm'}{4} = 0.$$

c) On donne l'algorithme suivant :

Variables :	m et m' entiers relatifs
Traitement :	Pour m allant de -10 à 10 : Pour m' allant de -10 à 10 : Si $(mm')^2+16(m-1)(m'-1)+4mm'=0$ Alors Afficher $(m\;;\;m')$ Fin du Pour Fin du Pour

Quel est le rôle de cet algorithme?

d) Cet algorithme affiche six couples d'entiers dont (-4; 1), (0; 1) et (5; -4). Écrire les six couples dans l'ordre d'affichage de l'algorithme.

EXERCICE 4 (5 points)

(candidats n'ayant pas suivi l'enseignement de spécialité)

On considère les nombres complexes z_n définis, pour tout entier naturel n, par

$$z_0 = 1$$
 et $z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)z_n$.

On note A_n le point d'affixe z_n dans le repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$ de l'annexe 2. L'objet de cet exercice est d'étudier la construction des points A_n .

- 1) a) Vérifier que $1 + i \frac{\sqrt{3}}{3} = \frac{2}{\sqrt{3}} e^{i \frac{\pi}{6}}$.
 - **b**) En déduire z_1 et z_2 sous forme exponentielle.
- 2) a) Montrer que pour tout entier naturel n,

$$z_n = \left(\frac{2}{\sqrt{3}}\right)^n e^{in\frac{\pi}{6}}.$$

- **b**) Pour quelles valeurs de n, les points O, A_0 et A_n sont-ils alignés ?
- 3) Pour tout entier naturel n, on pose $d_n = |z_{n+1} z_n|$.
 - a) Interpréter géométriquement d_n .
 - **b**) Calculer d_0 .
 - c) Montrer que pour tout entier naturel n non nul,

$$z_{n+2} - z_{n+1} = \left(1 + i\frac{\sqrt{3}}{3}\right)(z_{n+1} - z_n).$$

d) En déduire que la suite $(d_n)_{n\geqslant 0}$ est géométrique puis que pour tout entier naturel n,

$$d_n = \frac{\sqrt{3}}{3} \left(\frac{2}{\sqrt{3}}\right)^n.$$

4) a) Montrer que pour tout entier naturel n,

$$|z_{n+1}|^2 = |z_n|^2 + d_n^2$$
.

- **b**) En déduire que, pour tout entier naturel n, le triangle OA_nA_{n+1} est rectangle en A_n .
- c) Construire, à la règle non graduée et au compas, le point A_5 sur la figure de l'annexe 2 à rendre avec la copie.
- **d)** Justifier cette construction.

ANNEXE 1 de l'exercice 2

À RENDRE AVEC LA COPIE

ANNEXE 2 de l'exercice 4

