Mathematics for Al

Adams Wai Kin Kong School of Computer Science and Engineering Nanyang Technological University, Singapore adamskong@ntu.edu.sg

The Inverse of a Matrix

The Inverse of a Matrix (1 of 3)

Definition

If A is an $n \times n$ matrix, an *inverse* of A is an $n \times n$ matrix A' with the property that

$$AA' = I$$
 and $A'A = I$

where $I = I_n$ is the $n \times n$ identity matrix. If such an A' exists, then A is called *invertible*.

The Inverse of a Matrix (2 of 3)

Theorem 3.6

If A is an invertible matrix, then its inverse is unique.

Theorem 3.7

If A is an invertible $n \times n$ matrix, then the system of linear equations given by $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$ for any \mathbf{b} in \mathbb{R}^n .

The Inverse of a Matrix (3 of 3)

Theorem 3.8

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, then A is invertible if $ad - bc \neq 0$, in which case

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If ad - bc = 0, then A is not invertible.

The expression ad - bc is called the **determinant** of A, denoted det A.

Example 3.24

Find the inverses of $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ and $B = \begin{bmatrix} 12 & -15 \\ 4 & -5 \end{bmatrix}$, if they exist.

Solution:

We have det $A = 1(4) - 2(3) = -2 \neq 0$, so A is invertible, with

$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$$

On the other hand, $\det B = 12(-5) - (-15)(4) = 0$, so *B* is not invertible.

Properties of Invertible Matrices

Properties of Invertible Matrices (1 of 3)

Theorem 3.9

a. If A is an invertible matrix, then A^{-1} is invertible and

$$(A^{-1})^{-1} = A$$

b. If *A* is an invertible matrix and *c* is a nonzero scalar, then *cA* is an invertible matrix and

$$(cA)^{-1} = \frac{1}{c}A^{-1}$$

c. If A and B are invertible matrices of the same size, then AB is invertible and

$$(AB)^{-1} = B^{-1}A^{-1}$$

Properties of Invertible Matrices (2 of 3)

d. If A is an invertible matrix, then A^T is invertible and

$$(A^T)^{-1} = (A^{-1})^T$$

e. If A is an invertible matrix, then A^n is invertible for all nonnegative integers n and

$$(A^n)^{-1} = (A^{-1})^n$$

Properties of Invertible Matrices (3 of 3)

The inverse of a product of invertible matrices is the product of their inverses in the reverse order.

Definition

If A is an invertible matrix and n is a positive integer, then A^{-n} is defined by

$$A^{-n} = (A^{-1})^n = (A^n)^{-1}$$

Example 3.26

Solve the following matrix equation for *X* (assuming that the matrices involved are such that all of the indicated operations are defined):

$$A^{-1}(BX)^{-1} = (A^{-1}B^3)^2$$

Example 3.26 – Solution

There are many ways to proceed here. One solution is

$$A^{-1}(BX)^{-1} = (A^{-1}B^{3})^{2} \Rightarrow ((BX)A)^{-1} = (A^{-1}B^{3})^{2}$$

$$\Rightarrow [((BX)A)^{-1}]^{-1} = [(A^{-1}B^{3})^{2}]^{-1}$$

$$\Rightarrow (BX)A = [(A^{-1}B^{3})(A^{-1}B^{3})]^{-1}$$

$$\Rightarrow (BX)A = B^{-3}(A^{-1})^{-1}B^{-3}(A^{-1})^{-1}$$

$$\Rightarrow BXA = B^{-3}AB^{-3}A$$

$$\Rightarrow B^{-1}BXAA^{-1} = B^{-1}B^{-3}AB^{-3}AA^{-1}$$

$$\Rightarrow IXI = B^{-4}AB^{-3}I$$

$$\Rightarrow X = B^{-4}AB^{-3}$$

Elementary Matrices

Elementary Matrices (1 of 3)

Definition

An *elementary matrix* is any matrix that can be obtained by performing an elementary row operation on an identity matrix.

Elementary Matrices (2 of 3)

Theorem 3.10

Let E be the elementary matrix obtained by performing an elementary row operation on I_n . If the same elementary row operation is performed on an $n \times r$ matrix A, the result is the same as the matrix EA.

Example 3.28 (1 of 2)

Let

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \text{ and } E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

Then E_1 corresponds to $R_2 \leftrightarrow R_3$, which is undone by doing $R_2 \leftrightarrow R_3$, again. Thus, ${E_1}^{-1} = E_1$. (Check by showing that $E_1^2 = E_1 E_1 = I$.) The matrix E_2 comes from $4R_2$, which is undone by performing $\frac{1}{4}R_2$.

Example 3.28 (2 of 2)

Thus,

$$E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

which can be easily checked. Finally, E_3 corresponds to the elementary row operation $R_3 - 2R_1$, which can be undone by the elementary row operation $R_3 + 2R_1$. So, in this case,

$$E_3^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$

Elementary Matrices (3 of 3)

Theorem 3.11

Each elementary matrix is invertible, and its inverse is an elementary matrix of the same type.

The Fundamental Theorem of Invertible Matrices

The Fundamental Theorem of Invertible Matrices (1 of 2)

Theorem 3.12

The Fundamental Theorem of Invertible Matrices:

Version 1

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- b. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every **b** in \mathbb{R}^n .
- c. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- d. The reduced row echelon form of A is I_n .
- e. A is a product of elementary matrices.

Example 3.29

If possible, express $A = \begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix}$ as a product of elementary matrices.

Solution:

We row reduce A as follows:

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 3 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & 3 \\ 2 & 3 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 3 \\ 0 & -3 \end{bmatrix}$$

$$\xrightarrow{R_1 + R_2} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix} \xrightarrow{-\frac{1}{2}R_2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I_2$$

Example 3.29 – Solution (1 of 2)

Thus, the reduced row echelon form of A is the identity matrix, so the Fundamental Theorem assures us that A is invertible and can be written as a product of elementary matrices. We have $E_4E_3E_2E_1A = I$, where

$$E_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad E_4 = \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{3} \end{bmatrix}$$

are the elementary matrices corresponding to the four elementary row operations used to reduce *A* to *I*.

Example 3.29 – Solution (2 of 2)

As in the proof of the theorem, we have

$$A = (E_4 E_3 E_2 E_1)^{-1} = E_1^{-1} E_2^{-1} E_3^{-1} E_4^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$$

as required.

The Fundamental Theorem of Invertible Matrices (2 of 2)

Theorem 3.13

Let A be a square matrix. If B is a square matrix such that either AB = I or BA = I, then A is invertible and $B = A^{-1}$.

Theorem 3.14

Let A be a square matrix. If a sequence of elementary row operations reduces A to I, then the same sequence of elementary row operations transforms I into A^{-1} .

The Gauss-Jordan Method for Computing the Inverse

Example 3.30

Find the inverse of

$$A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 2 & 4 \\ 1 & 3 & -3 \end{bmatrix}$$

if it exists.

Example 3.30 – Solution (1 of 3)

Gauss-Jordan elimination produces

$$[A | I] = \begin{bmatrix} 1 & 2 & -1 & 1 & 0 & 0 \\ 2 & 2 & 4 & 0 & 1 & 0 \\ 1 & 3 & -3 & 0 & 0 & 1 \end{bmatrix}$$

Example 3.30 – Solution (2 of 3)

Example 3.30 – Solution (3 of 3)

Therefore,

$$A^{-1} = \begin{bmatrix} 9 & -\frac{3}{2} & -5 \\ -5 & 1 & 3 \\ -2 & \frac{1}{2} & 1 \end{bmatrix}$$

Subspaces, Basis, Dimension, and Rank

Subspaces, Basis, Dimension, and Rank (1 of 2)

Definition

A **subspace** of \mathbb{R}^n is any collection S of vectors in \mathbb{R}^n such that:

- 1. The zero vector **0** is in *S*.
- 2. If **u** and **v** are in *S*, then **u** + **v** is in *S*. (*S* is *closed under addition*.)
- 3. If **u** is in S and c is a scalar, then cu is in S. (S is closed under scalar multiplication.)

Example 3.37 (1 of 2)

Every line and plane through the origin in \mathbb{R}^3 is a subspace of \mathbb{R}^3 . It should be clear geometrically that properties (1) through (3) are satisfied. Here is an algebraic proof in the case of a plane through the origin.

Let \wp be a plane through the origin with direction vectors \mathbf{v}_1 and \mathbf{v}_2 . Hence, $\wp = \mathrm{span}(\mathbf{v}_1, \mathbf{v}_2)$. The zero vector $\mathbf{0}$ is in \wp , since $\mathbf{0} = 0\mathbf{v}_1 + 0\mathbf{v}_2$. Now let

$$\mathbf{u} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2$$
 and $\mathbf{v} = d_1 \mathbf{v}_1 + d_2 \mathbf{v}_2$

be two vectors in \wp .

Example 3.37 (2 of 2)

Then

 $\mathbf{u} + \mathbf{v} = (c_1\mathbf{v}_1 + c_2\mathbf{v}_2) + (d_1\mathbf{v}_1 + d_2\mathbf{v}_2) = (c_1 + d_1)\mathbf{v}_1 + (c_2 + d_2)\mathbf{v}_2$ Thus, $\mathbf{u} + \mathbf{v}$ is a linear combination of \mathbf{v}_1 and \mathbf{v}_2 and so is in $\mathbf{\varnothing}$.

Now let c be a scalar. Then

$$c\mathbf{u} = c(c_1\mathbf{v}_1 + c_2\mathbf{v}_2) = (cc_1)\mathbf{v}_1 + (cc_2)\mathbf{v}_2$$

which shows that $c\mathbf{u}$ is also a linear combination of \mathbf{v}_1 and \mathbf{v}_2 and is therefore in \wp . We have shown that \wp satisfies properties (1) through (3) and hence is a subspace of \mathbb{R}^3 .

Subspaces, Basis, Dimension, and Rank (2 of 2)

Theorem 3.19

Let \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k be vectors in \mathbb{R}^n . Then span $(\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k)$ is a subspace of \mathbb{R}^n .

Example 3.38

Show that the set of all vectors $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ that satisfy the conditions x = 3y and z = -2y forms a subspace of \mathbb{R}^3 .

Solution:

Substituting the two conditions into $\begin{vmatrix} x \\ y \end{vmatrix}$ yields

$$\begin{bmatrix} 3y \\ y \\ -2y \end{bmatrix} = y \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$$

Example 3.38 – Solution

Since *y* is arbitrary, the given set of vectors is span $\begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}$ and is thus a subspace of \mathbb{R}^3 , by Theorem 3.19.

Subspaces Associated with Matrices

Subspaces Associated with Matrices (1 of 3)

Definition

Let A be an $m \times n$ matrix.

- 1. The **row space** of A is the subspace row(A) of \mathbb{R}^n spanned by the rows of A.
- 2. The *column space* of *A* is the subspace col(A) of \mathbb{R}^m spanned by the columns of *A*.

Example 3.41

Consider the matrix

$$A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 3 & -3 \end{bmatrix}$$

- (a) Determine whether $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ is in the column space of A.
- (b) Determine whether $w = \begin{bmatrix} 4 & 5 \end{bmatrix}$ is in the row space of A.
- (c) Describe row(A) and col(A).

Example 3.41 – Solution (1 of 4)

(a) We know that **b** is a linear combination of the columns of A if and only if the linear system $A\mathbf{x} = \mathbf{b}$ is consistent. We row reduce the augmented matrix as follows:

$$\begin{bmatrix} 1 & -1 & | & 1 \\ 0 & 1 & | & 2 \\ 3 & -3 & | & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{bmatrix}$$

Thus, the system is consistent (and, in fact, has a unique solution). Therefore, **b** is in col(*A*).

Example 3.41 – Solution (2 of 4)

(b) Elementary row operations simply create linear combinations of the rows of a matrix. That is, they produce vectors only in the row space of the matrix. If the vector \mathbf{w} is in row(A), then \mathbf{w} is a linear combination of the rows of A, so if we augment A by \mathbf{w} as $\begin{bmatrix} A \\ \mathbf{w} \end{bmatrix}$, it will be possible to apply elementary row operations to this augmented matrix to reduce it to form $\begin{bmatrix} A' \\ 0 \end{bmatrix}$ using only

elementary row operations of the form $R_i + kR_j$, where i > j—in other words, working from top to bottom in each column.

Example 3.41 – Solution (3 of 4)

We have

$$\begin{bmatrix} \frac{A}{\mathbf{w}} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ \frac{3}{4} & 5 \end{bmatrix} \xrightarrow{R_3 - 3R_1} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ \frac{0}{0} & 0 \end{bmatrix} \xrightarrow{R_4 - 9R_2} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ \frac{0}{0} & 0 \end{bmatrix}$$

Therefore, \mathbf{w} is a linear combination of the rows of A and thus \mathbf{w} is in row(A).

Example 3.41 – Solution (4 of 4)

(c) It is easy to check that, for any vector $\mathbf{w} = [x \ y]$, the augmented matrix $\left[\frac{A}{\mathbf{w}}\right]$ reduces to

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ \frac{0}{0} & 0 \end{bmatrix}$$

in a similar fashion. Therefore, every vector in \mathbb{R}^2 is in row(A), and so row(A) = \mathbb{R}^2 .

Subspaces Associated with Matrices (2 of 3)

Theorem 3.20

Let *B* be any matrix that is row equivalent to a matrix *A*. Then row(B) = row(A).

Theorem 3.21

Let A be an $m \times n$ matrix and let N be the set of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. Then N is a subspace of \mathbb{R}^n .

Subspaces Associated with Matrices (3 of 3)

Definition

Let A be an $m \times n$ matrix. The **null space** of A is the subspace of \mathbb{R}^n consisting of solutions of the homogeneous linear system $A\mathbf{x} = \mathbf{0}$. It is denoted by null(A).

Theorem 3.22

Let A be a matrix whose entries are real numbers. For any system of linear equations $A\mathbf{x} = \mathbf{b}$, exactly one of the following is true:

- a. There is no solution.
- b. There is a unique solution.
- c. There are infinitely many solutions.

Basis

Basis (1 of 3)

Definition

A *basis* for a subspace S of \mathbb{R}^n is a set of vectors in S that

- 1. spans S and
- 2. is linearly independent.

Example 3.42

The standard unit vectors \mathbf{e}_1 , \mathbf{e}_2 , ... \mathbf{e}_n in \mathbb{R}^n are linearly independent and span \mathbb{R}^n . Therefore, they form a basis for \mathbb{R}^n , called the **standard basis**.

Example 3.44

Find a basis for $S = \text{span}(\mathbf{u}, \mathbf{v}, \mathbf{w})$, where

$$\mathbf{u} = \begin{bmatrix} 3 \\ -1 \\ 5 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} 0 \\ -5 \\ 1 \end{bmatrix}$$

Solution:

The vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} already span S, so they will be a basis for S if they are also linearly independent. It is easy to determine that they are not; indeed, $\mathbf{w} = 2\mathbf{u} - 3\mathbf{v}$.

Example 3.44 – Solution

Therefore, we can ignore \mathbf{w} , since any linear combinations involving \mathbf{u} , \mathbf{v} , and \mathbf{w} can be rewritten to involve \mathbf{u} and \mathbf{v} alone. This implies that $S = \mathrm{span} (\mathbf{u}, \mathbf{v}, \mathbf{w}) = \mathrm{span} (\mathbf{u}, \mathbf{v})$, and since \mathbf{u} and \mathbf{v} are certainly linearly independent, they form a basis for S. (Geometrically, this means that \mathbf{u} , \mathbf{v} , and \mathbf{w} all lie in the same plane and \mathbf{u} and \mathbf{v} can serve as a set of direction vectors for this plane.)

Basis (2 of 3)

Following is a summary of the most effective procedure to use to find bases for the row space, the column space, and the null space of a matrix *A*.

- 1. Find the reduced row echelon form R of A.
- Use the nonzero row vectors of R (containing the leading 1s) to form a basis for row(A).
- 3. Use the column vectors of A that correspond to the columns of R containing the leading 1s (the pivot columns) to form a basis for col(A).

Basis (3 of 3)

4. Solve for the leading variables of $R\mathbf{x} = \mathbf{0}$ in terms of the free variables, set the free variables equal to parameters, substitute back into \mathbf{x} , and write the result as a linear combination of f vectors (where f is the number of free variables). These f vectors form a basis for null(A).

Example

$$A = \begin{bmatrix} 1 & 0 & 1 | 0 \\ 0 & 2 & 3 | 0 \\ 0 & 4 & 6 | 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 1 | 0 \\ 0 & 1 & 3/2 | 0 \\ 0 & 0 & 0 | 0 \end{bmatrix}$$

$$row(A) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 3/2 \end{bmatrix} \end{pmatrix}, col(A) = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ 4 \end{bmatrix})$$

Solve
$$\begin{bmatrix} 1 & 0 & 1 & |0| \\ 0 & 1 & 3/2 & |0| \\ 0 & 0 & 0 & |0| \end{bmatrix}$$
. We have $x = -z, y = -3/2z, null(A) = \begin{pmatrix} \begin{bmatrix} -1 \\ -3/2 \\ 1 \end{pmatrix} \end{pmatrix}$

Dimension and Rank

Dimension and Rank (1 of 8)

Theorem 3.23

The Basis Theorem

Let S be a subspace of \mathbb{R}^n . Then any two bases for S have the same number of vectors.

Definition

If S is a subspace of \mathbb{R}^n , then the number of vectors in a basis for S is called the *dimension* of S, denoted dim S.

Dimension and Rank (2 of 8)

Theorem 3.24

The row and column spaces of a matrix A have the same dimension.

Definition

The *rank* of a matrix *A* is the dimension of its row and column spaces and is denoted by rank(*A*).

Dimension and Rank (3 of 8)

Theorem 3.25

For any matrix A,

$$rank(A^T) = rank(A)$$

Definition

The *nullity* of a matrix A is the dimension of its null space and is denoted by nullity(A).

Dimension and Rank (4 of 8)

Theorem 3.26
The Rank Theorem

If A is an $m \times n$ matrix, then

$$rank(A) + nullity(A) = n$$

Example 3.51

Find the nullity of each of the following matrices:

$$M = \begin{bmatrix} 2 & 3 \\ 1 & 5 \\ 4 & 7 \\ 3 & 6 \end{bmatrix}$$
 and
$$N = \begin{bmatrix} 2 & 1 & -2 & -1 \\ 4 & 4 & -3 & 1 \\ 2 & 7 & 1 & 8 \end{bmatrix}$$

Example 3.51 – Solution (1 of 2)

Since the two columns of M are clearly linearly independent, rank(M) = 2. Thus, by the Rank Theorem, nullity(M) = 2 - rank(M) = 2 - 2 = 0.

There is no obvious dependence among the rows or columns of N, so we apply row operations to reduce it to

$$\begin{bmatrix} 2 & 1 & -2 & -1 \\ 0 & 2 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Example 3.51 – Solution (2 of 2)

We have reduced the matrix far enough (we do not need *reduced* row echelon form here, since we are not looking for a basis for the null space). We see that there are only two nonzero rows, so rank(N) = 2.

Hence, nullity(*N*) = 4 - rank(N) = 4 - 2 = 2.

Dimension and Rank (5 of 8)

Theorem 3.27

The Fundamental Theorem of Invertible Matrices: Version 2

Let A be an $n \times n$ matrix. The following statements are equivalent:

- a. A is invertible.
- b. $A\mathbf{x} = \mathbf{b}$ has a unique solution for every **b** in \mathbb{R}^n .
- c. $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- d. The reduced row echelon form of A is I_n .

Dimension and Rank (6 of 8)

- e. A is a product of elementary matrices.
- f. rank(A) = n
- g. $\operatorname{nullity}(A) = 0$
- h. The column vectors of A are linearly independent.
- i. The column vectors of A span \mathbb{R}^n .
- j. The column vectors of A form a basis for \mathbb{R}^n .
- k. The row vectors of A are linearly independent.

Dimension and Rank (7 of 8)

- I. The row vectors of A span \mathbb{R}^n .
- m. The row vectors of A form a basis for \mathbb{R}^n .

Dimension and Rank (8 of 8)

Theorem 3.28

Let A be an $m \times n$ matrix. Then:

a.
$$rank(A^TA) = rank(A)$$

b. The $n \times n$ matrix A^TA is invertible if and only if rank (A) = n.

Coordinates

Coordinates (1 of 2)

Theorem 3.29

Let S be a subspace of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ be a basis for S. For every vector \mathbf{v} in S, there is exactly one way to write \mathbf{v} as a linear combination of the basis vectors in \mathscr{B} :

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k$$

Coordinates (2 of 2)

Definition

Let S be a subspace of \mathbb{R}^n and let $\mathscr{B} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a basis for S. Let \mathbf{v} be a vector in S, and write $\mathbf{v} = c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_k\mathbf{v}_k$. Then c_1, c_2, \dots, c_k are called the **coordinates of \mathbf{v} with respect to \mathcal{B}**, and the column vector

$$[\mathbf{v}]_{\mathcal{B}} = egin{bmatrix} c_1 \ c_2 \ dots \ c_k \end{bmatrix}$$

is called the coordinate vector of v with respect to \mathcal{B} .

Example 3.53

Let $\mathscr{E} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$ be the standard basis for \mathbb{R}^3 . Find the coordinate vector of

$$\mathbf{v} = \begin{bmatrix} 2 \\ 7 \\ 4 \end{bmatrix}$$

with respect to \mathcal{E} .

Example 3.53 – Solution

Since
$$\mathbf{v} = 2\mathbf{e}_1 + 7\mathbf{e}_2 + 4\mathbf{e}_3$$
,

$$[\mathbf{v}]_{\mathcal{E}} = \begin{bmatrix} 2 \\ 7 \\ 4 \end{bmatrix}$$