April 28, 2014

Due: Monday, April 28

Name: ____

Plotting solutions in the phase plane

Sage commands that will be useful include

plot_vector_field(), parametric_plot(), and A. eigenspaces_right() (where A is a square matrix).

Remember, you can use the help() command to get information on any of these commands.

Last time, we saw that if the 2 × 2 matrix A has real eigenvalues r_1 and r_2 with corresponding eigenvectors $\xi^{(1)}$ and $\xi^{(2)}$, then

$$\xi^{(1)}e^{r_1t}, \quad \xi^{(2)}e^{r_2t}$$

are (vector-valued) solutions of the homogeneous system $\mathbf{x}' = A\mathbf{x}$.

1. For each of the 2×2 systems, use Sage to plot solutions in the phase plane. Make some notes about how the solutions appear. The last two will be rather different from the others.

(a)

$$x_1' = 3x_1 - 2x_2$$
$$x_2' = 2x_1 - 2x_2$$

(e)

$$x_1' = -2x_1 + x_2$$
$$x_2' = x_1 - 2x_2$$

(b)

$$x_1' = x_1 - 2x_2$$
$$x_2' = 3x_1 - 4x_2$$

(f)

$$x_1' = \frac{5}{4}x_1 + \frac{3}{4}x_2$$
$$x_2' = \frac{3}{4}x_1 + \frac{5}{4}x_2$$

(c)

$$x_1' = 2x_1 - x_2$$
$$x_2' = 3x_1 - 2x_2$$

(g)

$$x_1' = 4x_1 - 3x_2$$
$$x_2' = 8x_1 - 6x_2$$

(d)

$$x_1' = x_1 + x_2$$
$$x_2' = 4x_1 - 2x_2$$

(h)

$$x_1' = 3x_1 + 6x_2$$
$$x_2' = -x_1 - 2x_2$$