FAIR CAUSAL INFERENCE FOR FUNCTIONAL DATA

Computational Statistics Conference; Bologna, 2022

Tim Mensinger & Dominik Liebl

University of Bonn

Who Am I?

- Tim Mensinger
- PhD Candidate in Economics, University of Bonn
- Focus:
 - Econometrics & Statistics
 - Causal Inference
 - Programming

Motivation

- Foot striking patterns:
 - forefoot or heel
- Is one of them *better*?
 - Consider one metric:
 Force on ankle joints
- What's the effect of forefoot running on ankle joint loading?

Data

Data Structure

Outcomes	Controls	Treatment
$Y_i \in C^1[0,1]$	$X_i \in \mathbb{R}^p$	$W_i \in \{0,1\}$

Potential Outcomes:

$$\circ \; Y_i(1), Y_i(0) \in C^1[0,1]$$

$$\circ \ Y_i = W_i Y_i(1) + (1 - W_i) Y_i(0)$$

$$\circ$$
 SUTVA: $Y_i = Y_i(W_i)$

Object of Interest

Average treatment effect function:

$$au(t) = \mathbb{E}[Y_i(1)(t) - Y_i(0)(t)]$$

for $t \in [0,1]$

Identification under unconfoundness and overlap:

$$\circ \; (Y_i(1),Y_i(0)) \perp \!\!\! \perp W_i|X_i|$$

Plan

1. Find relevant control variables

Utilize causal graphs from causal inference literature

2. Choose a suitable estimator

• Utilize methods from econometrics literature

3. Construct confidence bands

Utilize results from functional data literature

Find relevant control variables

Directed Acyclical Graph

- ullet For $t\in [0,1]$
- Not all variables relevant for estimation of $\hat{\mathbb{P}}$ and $\hat{\mathbb{E}}$
- Structure may change with *t*

Choose a suitable estimator

Augmented Inverse Propensity Score Weighting

- Estimate (mean) potential outcome functions
- Correct bias using inverse propensity score weighting

Doubly Robust

$$\hat{A}(t) = rac{1}{n} \sum_{i=1}^n \hat{\mathbb{E}}[Y_i(1)(t)|X_i] - \hat{\mathbb{E}}[Y_i(0)(t)|X_i]$$

$$\hat{B}(t) = \frac{1}{n} \sum_{i=1}^{n} W_i \frac{Y_i(t) - \hat{\mathbb{E}}[Y_i(1)(t)|X_i]}{\hat{\mathbb{P}}[W_i = 1|X_i]} - (1 - W_i) \frac{Y_i(t) - \hat{\mathbb{E}}[Y_i(0)(t)|X_i]}{\hat{\mathbb{P}}[W_i = 0|X_i]}$$

$$\hat{\tau}(t) = \hat{A}(t) - \hat{B}(t)$$

- ullet Propensity score estimator: $\hat{\mathbb{P}}[W_i = w | X_i]$
- ullet Conditional mean estimators: $\hat{\mathbb{E}}[Y_i(w)(t)|X_i]$

Construct Confidence Bands

Simultaneous Confidence Bands

Update this slide

- Need:
 - Asymptotically Gaussian estimator
 - Consistent estimator of its covariance kernel (and derivative)
- Get:
 - Simultaneous and fair confidence bands
 - --Liebl and Reimherr (2022)

Theorem

Under regularity conditions

$$\sqrt{n}(\hat{ au}- au)\stackrel{d}{\longrightarrow} \mathcal{GP}(0,c)$$

• Further, we can construct a uniformly consistent estimator \hat{c} of c.

Proof Outline

Fairness

- This slide needs to be updated!!
- Fairness:

$$\lim_{n o\infty} \mathbb{P}_{H_0}[ext{reject } H_0 ext{ over } [a_{j-1},a_j]] \leq lpha(a_j-a_{j-1})$$

Results

Final Remarks

Working on:

- Improving minimal assumption set
- Monte Carlo Simulations
- Python and R package

Contact

- Email: tmensinger@uni-bonn.de
- GitHub: timmens/compstat
- Website: <u>tmensinger.com</u>

