

Linear

Model

Son Nguyen

A review of Linear Model for Regression

• Given the data

ullet How are y and x related?

A review of Linear Model for Regression

• Given the data

ullet Linear model predicts y is a linear combination of x_1 , x_2

$$\hat{y} = \underbrace{w_0 + w_1 x_1 + w_2 x_2}_{\text{in the proof of th$$

A review of Linear Model for Regression

• Given the data

• Linear model predicts y is a linear combination of x_1 , x_2

$$\hat{y} = \underline{w_0} + \underline{w_1}x_1 + \underline{w_2}x_2$$

- ullet The goal of linear model is to solve for $w_0,\,w_1$ and w_2
- To **train** a linear model is to find w_0 , w_1 and w_2

• **Step 1**: Define the loss function $l(y,\hat{y})$

- Step 1: Define the loss function $l(y,\hat{y})$
- **Step 2**: Find w that minimizes the total loss function.

• Least Squared Method uses the **square loss**

$$l(\hat{y},y) = (\hat{y}-y)^2$$

• Least Squared Method uses the **square loss**

$$(y,y)=(\hat{y}-y)^2$$

• We want to find w_0 , w_1 and w_2 that minimizes a loss function.

distence

x_1	x_2	$oldsymbol{y}$	$\hat{\boldsymbol{y}} = \boldsymbol{w}_0 + \boldsymbol{w}_1 \boldsymbol{x}_1 + \boldsymbol{w}_2 \boldsymbol{x}_2$	$(\hat{y}-y)^2$
1	0	-2	$w_0 + w_1 \cdot 1 + w_2 \cdot 0$	$(w_0 + w_1 \cdot 1 + w_2 \cdot 0 + 2)^2$
2	1	0	$w_0 + w_1 \cdot 2 + w_2 \cdot 1$	$(w_0 + w_1 \cdot 2 + w_2 \cdot 1 - 0)^2$ (2)
3	-2	-1	$w_0+w_1\cdot 3+w_2\cdot -2$	$(w_0 + w_1 \cdot 3 + w_2 \cdot -2 + 1)^2$
4	3	1	$w_0 + w_1 \cdot 4 + w_2 \cdot 3$	$(w_0 + w_1 \cdot 4 + w_2 \cdot 3 - 1)^2$

`

• Least Squared Method uses the **square loss**

$$l(\hat{y},y) = (\hat{y}-y)^2$$

• We want to find w_0 , w_1 and w_2 that minimizes a **loss function**.

• The total loss function:

$$L = L(w_0, w_1, w_2) = (w_0 + w_1 + 2)^2 + (w_0 + 2w_1 + w_2)^2 \ + (w_0 + 3w_1 - 2w_2 + 1)^2 + (w_0 + 4w_1 + 3w_2 - 1)^2$$

• Least Squared Method uses the **square loss**

$$l(\hat{y},y) = (\hat{y} - y)^2$$

- We want to find w_0 , w_1 and w_2 that minimizes a **loss function**.
- The total loss function:

$$L = L(w_0, w_1, w_2) = (w_0 + w_1 + 2)^2 + (w_0 + 2w_1 + w_2)^2 \ + (w_0 + 3w_1 - 2w_2 + 1)^2 + (w_0 + 4w_1 + 3w_2 - 1)^2$$

• Solve for the partial derivatives equaling 0 to find w_0 , w_1 and w_2 .

How about other loss functions?

• Absolute loss:

$$L(\hat{y},y) = |\hat{y} - y|$$

• The total loss function:

$$L = L(w_0, w_1, w_2) = |w_0 + w_1 + 2| + |w_0 + 2w_1 + w_2| \ + |w_0 + 3w_1 - 2w_2 + 1| + |w_0 + 4w_1 + 3w_2 - 1|$$

- Use (inear Programming to find w_0 , w_1 and w_2 that minimizes the total loss.
- Least absolute deviations regression

Linear Models

How about other loss functions?

Ordinary least squares regression	Least absolute deviations regression
Not very robust	Robust
Stable solution	Unstable solution
Always one solution	Possibly multiple solutions

A general framework

- **Problem**: Given the data of x_1, x_2, \ldots, x_d, y , establish the *best* relation between y and $x = [x_1, x_2, \ldots, x_d]$.
- A solution framework:
 - \circ Step 1: Assume the model function $\hat{y}=f(x,w)$, where w is a parameter vector.
 - \circ Step 2: Define the loss function $l(y,\hat{y})$
 - \circ Step 3: Find w that minimizes the loss function using gradient descent

LASSO

• Consider a linear model

$$y=100x_1+0.01x_2+50x_3-0.002x_4$$

- x_2 and x_4 are not important because the coefficients are too small.
- We want to get rid of x_2 and x_4

LASSO - Principle

- LASSO forces the sum of the absolute value of the coefficients to be less than a fixed value.
- which forces certain coefficients (slopes) to be set to zero
- effectively making the model simpler

Linear Model vs. LASSO - Principle

• Linear Model minimizes

• LASSO minimizes

- The greater α , the easier w_1 and w_2 will be zeros.
- When $\alpha=0$, LASSO is the linear model.

0.0

x

LASSO for Variables Selection

• Data

• Assume that the truth relation between the input $x_1, x_2, x_3, x_4, x_5, x_6$ and the output y is

$$y = 4x_2 + 3x_4 + 7x_6$$

- ullet We see that only x_2 , x_4 and x_6 impact y
- ullet LASSO can help to identify variables that have effect on y

LASSO for Variables Selection

• The result when training the linear model and the LASSO

- In Linear Model, x_1 , x_3 and x_5 have effect on y (which is WRONG!)
- In LASSO, x_1 , x_3 and x_5 have no effect on y (CORRECT!)
- LASSO can also be applied before another model.

• How are y and x related?

Logistic furcha $f(t) = \frac{1}{1+e}$ $f(t) = \frac{1}{1+e}$

• Logistic Regression models $P(y=1|x) = \hat{y}$ as:

(=)

$$\hat{y} = \frac{1}{1 + e^{-(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2)}}$$

• OR,

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight)=w_0+w_1\cdot x_1+w_2\cdot x_2$$

where \hat{y} is the predicted value of the probability of y=1 given x_1 and x_2 .

• Logistic Regression models $P(y=1|x)=\hat{y}$ as:

$$\hat{y} = rac{1}{1 + e^{-(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2)}}$$

• OR,

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight)=w_0+w_1\cdot x_1+w_2\cdot x_2$$

where \hat{y} is the predicted value of the probability of y=1 given x_1 and x_2 .

$$\log\left(rac{\hat{y}}{1-\hat{y}}
ight)=w_0+w_1\cdot x_1+w_2\cdot x_2$$

- $\left(\frac{\hat{y}}{1-\hat{y}}\right)$ is also called odd-ratio.
- Logistic Regression assumes that the log of the odd ratio is linear.

How to find w_0, w_1, w_2 ?

- **Step 1**: Define the loss function $l(\hat{y}, y)$
- **Step 2**: Find w that minimizes the total loss function

• Define the loss function: We use the log-loss or cross-entropy loss function

$$\widehat{l(\hat{y},y)} = -y\log(\hat{y}) - (1-y)\log(1-\hat{y})$$

• Total Loss:

$$egin{aligned} L(w_0,w_1,w_2) &= -\log\left(rac{1}{1+e^{-w_0-w_1}}
ight) \ &-\log\left(1-rac{1}{1+e^{-w_0-2w_1-w_2}}
ight) \ &-\log\left(1-rac{1}{1+e^{-w_0-3w_1+w_2}}
ight) \ &-\log\left(rac{1}{1+e^{-w_0-4w_1-3w_2}}
ight) \end{aligned}$$

ullet We need to find w_0, w_1, w_2 that minimizes the total loss

\ \ \	4		prodicted (true	
. 6	1				
. 3		7	D		一 一
. 2	0		0	Ö	

not the square loss

mis closs fication = 1/3

Logistic Regression

• The idea is the same as for linear model

.

