

Principles and Practice of Sleep Medicine Chapter 114

Physiologic Effects of OSA

- Intermittent hypoxia
- Exaggerated negative swings in intrathoracic pressure
 - Leads to oxidant stress in brain and myocardium
 - Finding seen in those with poor LV function and in those with pulmonary hypertension
- Terminal arousals
 - Lead to heightened sympathetic tone
- OSA a major risk factor for cardiovascular disease, including hypertension, stroke, MI, and CHF

Clinical Features

- History
 - Snoring
 - Heavy snoring most common symptom
 - About 50% of men and 25% of women snore
 - Must be accompanied by other symptoms
 - Sleepiness
 - Assessed by Epworth Sleepiness Scale
 - Greater than 10 suggest significant sleepiness
 - Patients can underreport and overreport

Clinical Signs and Symptoms

- Nighttime Signs and Symptoms:
 - Snoring
 - Gasping for air
 - Periods of silence followed by snort or gasp (observed apneic episodes)
 - Tossing and turning
 - Sweating
 - GERD
 - Nocturia
 - Dry mouth or sore throat

Clinical Signs and Symptoms

- Daytime Signs and Symptoms:
 - EDS or fatigue
 - Impaired driving
 - Personality changes
 - Memory problems
 - Poor concentration and attention
 - Poor judgment
 - Decreased response time
 - Morning headaches
 - Impotence
 - Cognitive impairment
 - Vision problems

Gender and Symptoms

- Gender and Symptoms
 - Females
 - Insomnia
 - Less likely to have observed apneas
 - More likely to have diagnosed mood disorder and hypothyroidism and symptoms of RLS, nightmares, palpitations, and hallucinations
 - Males
 - Tend to use alcohol and caffeine more

Prevalence in Disease-Specific Cohorts

- OSA associated with cardiac, cerebrovascular, pulmonary, metabolic, and other comorbid diseases
- Up to 50% of patients with systemic hypertension have OSA
- OSA seen in 64% of those with difficult to control hypertension
- High prevalence of OSA in those with A Fib
- 11% of those with cardiomyopathy (LV ejection fraction < 45%) have OSA
 - CSA is seen more frequently in this group

Prevalence in Disease-Specific Cohorts

- 61% of those with systolic heart failure have a SRBD
 - 50% have OSA
 - CSA present in the remainder
- Three- to four-fold increased risk of stroke in moderate to severe OSA patients
- OSA associated with type 2 diabetes and metabolic syndrome
 - 58% with type 2 diabetes have an elevated AHI
 - In obese patients with type 2 diabetes, 87% have OSA

Prevalence in Disease-Specific Cohorts

- OSA also seen in patients with:
 - COPD
 - Asthma
 - Chronic kidney disease
 - Nocturnal GERD

Physical Findings

- Central obesity
 - BMI > 28 reflects risk factor for OSA
 - 40% of those with BMI >40 and 50% of those with BMI >50 have significant SDB
- Neck circumference
 - Men with circumference > 17 in (43 cm) and women with circumference > 16 in (41 cm) have greater risk
- Nasal obstructions
- Hypertension

Other Risk Factors

Age > 65 years

Male gender

Postmenopausal women

Positive family history

Alcohol ingestion near bedtime

Tobacco use

Sedatives

Other Risk Factors Sleep deprivation

Sleeping in supine position

Allergies and nasal congestion

Craniofacial abnormalities

Clinical Examination

- Complete physical needed
 - Should be screened for comorbidities
- Obesity and Neck Circumference
 - Must take height, weight, BMI, and neck circumference
 - Neck circumference > 40cm = high risk for OSA
- QOL assessment
 - Use of Functional Outcomes of Sleep Questionnaire (FOSQ)

Clinical Examination

- Upper airway
 - Look for abnormalities
 - Patient should be examined in both seated and supine positions
 - Oropharynx exam looks for large tongue
 - Chronic snoring effects can be seen as edema of uvula
 - Can be done via endoscopy or MRI
 - Mallampati and Friedman scales

Diagnosis

- PSG
 - Gold standard is overnight PSG
- Definitions
 - AHI
 - AASM scoring manual
 - Apnea = drop in peak thermocouple excursion by > 90% of baseline, lasting at least 10 seconds
 - Obstructive = Respiratory effort
 - Central = No respiratory effort
 - Mixed = Effort absent at beginning with resumption of effort before resumption of airflow

Diagnosis

Type of Apnea

	CENTRAL	OBSTRUCTIVE	MIXED
Airflow	√	√	W
Diaphragmatic Excursions	w-~	www.ww.	w ww
Arterial Oxygen Saturation (S _a o ₂)			

Diagnosis

- AASM scoring manual
 - Hypopnea = Requires nasal pressure transducer
 - Recommended rule=
 Reduction of nasal pressure
 excursion by > 30% of baseline,
 lasting at least 10 seconds,
 with > 3% desat or causes an
 arousal
 - Alternate rule = Reduction of nasal pressure excursion by at least 30%, lasting at least 10 seconds, with 4% desat

Diagnostic Criteria

• OSA

- 5 or more obstructed breathing events per hour of sleep
- CMS reimburses for CPAP for AHI >15 or an AHI >5 with associated hypertension, stroke, sleepiness, ischemic heart disease, or mood disorder

Other Diagnostic Approaches

- Prediction Formulas and Questionnaires
 - Questionnaires collect self-reported data from patient about signs and symptoms
 - Formulas include physical measures such as BP, BMI, or neck circumference
 - Try to predict AHI severity
 - Among most useful prediction formulas:
 - History of witnessed apneas
 - Males
 - BMI
 - Neck circumference
 - Specific oropharyngeal measurements also highly predictive

Other Diagnostic Approaches

- Home Sleep Testing
 - Controversy over accuracy
 - Screening has potential to delay diagnosis and result in false-negative results
 - Home monitoring can potentially:
 - Increase accessibility to sleep testing
 - Enhance patient convenience
 - Reduce costs
 - Better sleep in home environment
 - Problems:
 - Equipment problems can't be corrected
 - Non-OSA disorders can't be detected
 - Can't perform split night studies and get patients on treatment faster
 - Some testing devices shown to be fairly accurate
 - Can only be used if no comorbidities present

Other Diagnostic Approaches

- Other diagnostic tools
 - Oximetry
 - Actigraphy
 - Measure of arterial tone

Clinical Course and Prevention

- SDB risk factor for:
 - Hypertension
 - Car crashes
 - Neurocognitive dysfunction
 - Cardiovascular disease
 - Impotence
 - Depression
 - Glucose intolerance
 - Reduced quality of life
 - Increased healthcare costs

Clinical Course and Prevention

- SDB progression can occur over relatively short time
- Worsening of AHI with weight gain is greater than reduction in AHI with comparable degree of weight loss
 - Weight gain more common than weight loss in SDB patients
- Because of dangerous side effects, need for diagnosis is public health problem

- General measures
 - Modifying unhealthy behavior has major role in treating OSA
 - Weight loss can be curative
 - Even modest weight loss (10%) can relieve mild SDB
 - Relationship between weight, sleep, and appetite mediated in part by leptin, cortisol, insulin, and metabolic rate
 - Weight loss by dietary modification takes time
 - Minority can maintain weight loss
 - Quit smoking
 - Muscle relaxants (including alcohol and sleeping pills) can make apneas longer

- General measures
 - Some patients have chronic rhinitis
 - Intranasal corticosteroid therapy may improve apnea severity but not snoring or sleep quality
 - Some patients have supine-dependent apnea
- CPAP
 - First line of treatment
 - Typically applied in range from 5-15 cm H2O through nasal or full face mask
 - Start at 5 cm and gradually increase until SDB eliminated
 - Machine can go up to 20 cm H2O though
 - Split night studies current standard approach

- CPAP
 - Autotitrating machines more common now
 - Devices infer upper airway narrowing or collapse by real-time assessment of flow
 - Might not all be equally effective
 - Should have an in-lab titration if following factors exist:
 - Severe O2 desats
 - Sleep disruption
 - Mask leaks
 - Sleep with mouth open
 - Hypoventilation or possible central apnea
 - Can have better rates of compliance

- CPAP
 - Patient compliance is key and difficult part of CPAP
 - About 50-60% of patients comply with therapy
 - Compliance rate comparable to common medical recommendation compliance
 - Humidification and education may improve compliance
 - Complications
 - Ulcer, rashes, or irritation on bridge of nose
 - Chest or sinus discomfort
 - Claustrophobia
 - Nasal congestion

- CPAP
 - Associated with reversal of many OSA complications:
 - Mortality
 - Auto accidents
 - Hypertension and other cardiovascular diseases
 - Cognitive impairment
 - Sleepiness
 - Increased healthcare costs
 - Impaired quality of life
 - Depression
 - Impotence

- Surgery
 - Uvulopalatopharyngoplasty (UPPP)
 - Most commonly performed to correct OSA and best studied
 - Success rate of approximately 50%
 - Less effective in more severely affected, heavier patients
 - Outcomes poorer for those with BMI >30 or with lowest SaO2 less than 88%
 - Relapse occurs in as many as half who get initial response
 - Complications:
 - Postoperative bleeding
 - Voice change
 - Perioperative upper airway obstruction
 - Death

- Surgery
 - Laser-assisted uvulopalatopharyngoplasty (LAUP)
 - Success rate of 0% to 48% for OSA
 - Done as an outpatient procedure
 - Surgeons feel only appropriate for snoring and rarely undertaken for OSA treatment
 - Palatal Implants
 - Office-based treatment for reduction of snoring and treatment of mild to moderate OSA
 - Cylindrical implants made of braided material inserted under local anesthesia into upper soft palate to stiffen tissue and reduce flutter
 - Not recommended as first-line therapy in OSA patients, especially with moderate to severe OSA

- Surgery
 - Oromaxillofacial surgery
 - Maxillomandibular advancement (MMA) may be beneficial for nonobese patients who can't or won't accept CPAP
 - Septoplasty
 - Radiofrequency volumetric tissue reduction (Somnoplasty)
 - Has been applied to palate, tongue base, and nasal septum
 - Safer and less painful than LAUP
 - Not considered a cure for OSA
 - Used mainly for snoring
 - Tonsillectomy Ineffective in adults

- Surgery
 - Tracheostomy
 - First and only approach to very severe OSA in those who can't tolerate CPAP or Bilevel PAP and face an immediate life-threatening risk
 - Last resort treatment
 - Bariatric surgery
 - Gastric bypass treatment of choice due to greater weight loss and better weight loss maintenance
 - Laparoscopic approach has fewer complications
 - Rates of success can be 50% reduction in AHI/RDI and improvement of symptoms

- Oral appliances
 - Can be indicated for patients with mild SDB or CPAP intolerant
 - Beneficial effects on snoring, sleepiness, and mild SDB
 - CPAP more effective in treating SDB events
 - More patients prefer oral appliances
 - · More effective than UPPP
 - Complications:
 - Craniofacial and bite changes
 - Exacerbation of TMJ pain
 - Contraindications:
 - · Insufficient teeth
 - Periodontal problems
 - TMJ disorder

- Negative Sleep Studies
 - Contributing factors:
 - Poor-quality sleep
 - Absence of REM
 - Sleeping on one's side rather than supine
 - Omitting usual alcohol or sedative agent on study night
 - Insensitive monitors of airflow or respiratory effort
- CPAP Compliance
 - Next to weight loss, most significant challenge
 - CMS payment contingent on patient compliance
 - Non-compliant patients must be educated of risks and document discussion in medical record

- Driving Risk
 - SDB increases accident risk
- Inadequate response
 - Repeat studies uncommon due to:
 - Cost
 - Inconvenience
- Sleepiness after CPAP treatment
 - Common
 - Types:
 - Excellent initial response to treatment and becomes sleepy again
 - Never had an improvement in sleepiness despite CPAP use

- Managing OSA in Special Patient Groups
 - COPD
 - Overlap syndrome = Have COPD and OSA
 - Sometimes still hypoxemic despite correction of apneas and hypopneas
 - Sometimes Bilevel PAP, with or without a backup rate, helps
 - Supplemental O2 can be added to CPAP circuit
 - Smoking cessation imperative
 - Perioperative Patients
 - Helps to minimize complications following surgery
 - Some surgeries require sleep study prior to surgery

- Managing OSA in Special Patient Groups
 - Critically III Patients
 - Increased healthcare costs due to comorbidities
 - May end up in ICU due to CPAP noncompliance
 - Intubation may be most definitive and effective initial course for critically ill patients with OSA and respiratory distress
 - Tracheostomy is long-term solution
 - Treatment-Emergent Central Apneas or Complex Sleep Apnea
 - Complex Sleep Apnea = Central apneas and periodic breathing that develop when CPAP is applied to treat OSA patients
 - More prevalent in older men with CHF
 - Can appear when patients are overtitrated
 - ASV effective and well tolerated in about 50% of patients