# GENERAL CHEMISTRY

Principles and Modern Applications

**TENTH EDITION** 

**PETRUCCI** 

**HERRING** 

MADURA

**BISSONNETTE** 

# Matter: Its Properties and Measurement

General Chemistry: Chapter 1

# Chemistry: Science that deals with the composition and properties of Matter

## What is Matter?

Matter: Occupies space, has mass and inertia

**Composition:** Parts or components

ex. H<sub>2</sub>O, 11.19% H and 88.81% O

**Properties:** Distinguishing features

physical and chemical properties

physical property: does not involve a change in composition chemical property: involves conversion into a new kind of matter, with different composition

## Classification of Matter

Matter is made of **atoms**.

Elements (periodic table). 112 elements known

About 90 of them available from natural sources

Compounds are comprised of two or more elements.

**Molecules** are the smallest units of compounds.



Single compound or element: pure õsubstanceö

Several compounds or elements: mixture (can be separated by physical process)

# Separation of Mixtures. Physical Processes

Filtration



Distillation





Chromatography

▲ FIGURE 1-5

**Separating Mixtures: a physical process** 

# Chemical processes



Copyright © 2007 Pearson Prentice Hall, Inc.

Ammonium dichromate decomposes into chromium(III) oxide, nitrogen and water when heated

▲ FIGURE 1-6

A chemical change: decomposition of ammonium dichromate

#### A classification scheme for matter



General Chemistry: Chapter 1

Copyright © 2011 Pearson Canada Inc.

# Sates of Matter: solid, liquid, gas



Gas: molecules are separated by large distances expanding to a the volume of their container

Solid: molecules are in close contact, with strong interactions between them holding them rigid

> Liquid: molecules are in intermediate contact, not rigidly associated with each other; will assume the shape of its container

# Examples:

## Physical or chemical properties?

- 1. Iron nail is attracted to a magnet
- 2. Bronze statue develops a õgreenö coating over time

#### Substances or mixtures?

- 1. Clean fresh air
- 2. Ice
- 3. Seawater
- 4. Bronze

# Examples

How would you separate the following mixtures into their components?

- 1. Ground glass and sucrose
- 2. Pure water from seawater
- 3. Oil and water
- 4. Iron from iron oxide

## 1-4 The Measurement of Matter

| TABLE 1.1 SI Base Quantities                                                                |                                                                      |                               |  |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------|--|--|
| Physical Quantity                                                                           | Unit                                                                 | Symbol                        |  |  |
| Length Mass Time Temperature Amount of substance <sup>b</sup> Electric current <sup>c</sup> | meter <sup>a</sup><br>kilogram<br>second<br>kelvin<br>mole<br>ampere | m<br>kg<br>s<br>K<br>mol<br>A |  |  |
| Luminous intensity <sup>d</sup>                                                             | candela                                                              | cd                            |  |  |

All other physical quantities have units that are derived from these seven base quantities (example: volume)

#### Slide 10

This table needs to be replaced with table in the new colour scheme. Philip Dutton, 3/3/2010PD4

## **TABLE 1.2** SI Prefixes

## decimal system

| Multiple         | Prefix          |  |
|------------------|-----------------|--|
| 10 <sup>18</sup> | exa (E)         |  |
| $10^{15}$        | peta (P)        |  |
| $10^{12}$        | tera (T)        |  |
| $10^{9}$         | giga (G)        |  |
| $10^{6}$         | mega (M)        |  |
| $10^{3}$         | kilo (k)        |  |
| $10^{2}$         | hecto (h)       |  |
| $10^{1}$         | deka (da)       |  |
| $10^{-1}$        | deci (d)        |  |
| <br>$10^{-2}$    | centi (c)       |  |
| $10^{-3}$        | milli (m)       |  |
| $10^{-6}$        | micro $(\mu)^a$ |  |
| $10^{-9}$        | nano (n)        |  |
| $10^{-12}$       | pico (p)        |  |
| $10^{-15}$       | femto (f)       |  |
| $10^{-18}$       | atto (a)        |  |
| $10^{-21}$       | zepto (z)       |  |
| $10^{-24}$       | yocto (y)       |  |
| 2001 0 1 1       |                 |  |

<sup>a</sup>The Greek letter  $\mu$  (pronounced "mew").

Copyright © 2011 Pearson Canada Inc.

#### Slide 11

This table needs to be replaced with the one in the new colour scheme  $\mbox{\sc Philip}$  Dutton, 3/3/2010PD5

## Mass

Mass is the **quantity** of matter in an object.

SI Unit: Kilogram

Weight is the force of gravity on an object

$$W \alpha m \qquad W = g \times m$$



## Temperature:

water =  $0^{\circ}$ C

#### SI Unit: Kelvin



water =  $100^{\circ}$ C



Kelvin scale: assigns 0K to the lowest possible temperature (= −273.15°C) interval size (degree) is the same as the Celsius scale

# Volume (derived unit)



General Chemistry: Chapter 1

Copyright © 2011 Pearson Canada Inc.

#### **SI Units**

**Non-SI Units** 

| Length | meter, m |
|--------|----------|
|--------|----------|

Length Angstrom, Å, 10<sup>-8</sup> cm

Mass Kilogram, kg

Volume Liter, L, 10<sup>-3</sup> m<sup>3</sup>

Time second, s

Energy Calorie, cal, 4.184 J

Temperature Kelvin, K

Pressure

Quantity Mole,  $6.022 \times 10^{23} \,\mathrm{mol^{-1}}$ 

 $1 \text{ Atm} = 1.064 \times 10^2 \text{ kPa}$ 

1 Atm = 760 mm Hg

#### **Derived Units**

Force Newton, kg m s<sup>-2</sup>

Pressure Pascal, kg m<sup>-1</sup> s<sup>-2</sup>

Energy Joule, kg m<sup>2</sup> s<sup>-2</sup>

## (SI: Systeme Internationale døUnites)

General Chemistry: Chapter 1

Copyright © 2011 Pearson Canada Inc.

# Density = mass/volume

$$d = m/V$$

$$m=Vd$$

$$V=m/d$$

Units: g/mL

Mass and volume are **extensive** properties (depend on the quantity)

Density is an intensive property

Can use the **density** (d) to obtain <u>mass</u> if the <u>volume</u> is known, or the <u>volume</u> is the <u>mass</u> is known

# Example

What is the mass of a cube of osmium that is 1.25 inches on each side?

Have volume, need density = 
$$\frac{22.59 \text{g/cm}^3}{2.5 \text{tcm}}$$
 (125) in  $\frac{2.5 \text{tcm}}{1.25 \text{ in}}$   $\frac{$ 

#### Slide 17

Replace figure, density value is wrong Philip Dutton, 3/3/2010 PD1

 $32.007 \text{ cm}^3 = V$   $d = 22.59 \text{ g/m}^3$ 

 $m = dV = 32.007 g_{\chi}^{2} \chi^{22.59} 9/cm^{2}$ 

# Percent Composition (example)

Seawater is 3.5% sodium chloride (salt) by mass

õthere are 3.5g of sodium chloride per 100g of seawaterö

3.5g(NaCl)/100g(seawater)

# Using percent composition (conversion factor):

Can obtain the mass of sodium chloride in a sample of seawater of a given mass

Or, the mass of seawater that contains a given amount of sodium chloride

# Example

Seawater is 3.5% sodium chloride (salt) by mass

õthere are 3.5g of sodium chloride per 100g of seawaterö

3.5g(NaCl)/100g(seawater)

## Using percent composition (conversion factor):

How much NaCl is there in 670g of seawater? 3.5% by

### Uncertainties in Scientific Measurements

## Systematic errors.

Thermometer constantly 2° C too low.

### Random errors

Limitation in reading a scale.

## Precision

Reproducibility of a measurement.

## Accuracy

How close to the real value.