Feasibility of developing a stock assessment model for Main Hawaiian Islands Yellowfin Tuna Fishery

Part Deux

John Sibert, Retirement-failure Consulting

sibert@hawaii.edu

Combined HDAR and NOAA Catch Time Series

WCPFC Stock Assessments

MFCL Region 2

Feasibility questions

- 1. Can we contrive a simple model of the MHI YFT population and fishery?
- 2. Can the model parameters be estimated from the data?
- 3. Are the model biomass estimates plausible?

Principle model assumptions

- 1. The dynamics of the population of YFT in the MHI follows a simple Schaefer model.
- 2. Fishing mortality is represented by a random walk.
- 3. Predicted catch by gear is the product of estimated fishing mortality for each gear and average predicted biomass during a year.
- 4. Optional use of MFCL biomass estimate as index of abundance so that local abundance is approximately proportional to the index biomass.

Technical features

- 1. Fishing mortality and biomass are random effects.
- 2. Process errors associated with population growth, fishing mortality random walk, and biomass index proportionality are assumed to be equal and represented by a single parameter (σ_P) .
- 3. Two alternate logistic model parameterizations:

a)
$$K = \frac{4\widetilde{Y}}{r}$$
; $r = 2F_{\widetilde{Y}}$

- b) $K = d \cdot B_1$
- 4. Zero-inflated log-normal catch likelihood.
- 5. Optional log-normal prior on r with $\tilde{r} = 0.486$ and $\sigma_r = 0.8$,
- 6. Analytic solution to Schaefer ODE for stable propagation through time.

Estimabilty

Index		None		MFCL 2	
Parameterization		$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$	$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$
Designation		A	В	C	D
n		4	5	5	6
$-\log L$		-237.238	-237.968	-247.175	-243.343
$ G _{max}$		0.0016409	33.1289	3.51082e-05	3.77653
B_1	Initial Biomass		1184.2		2802.3
d	$K = dB_1$		9.6674		2.6348
\widetilde{Y}	MSY	1147.5	1199.3	1288.7	1032.6
$F_{\widetilde{Y}}$	F at MSY	0.82239	0.20952	0.1668	0.2797
r	Growth Rate	1.6448	0.41904	0.3336	0.5594
K	Equilibrium Biomass	2790.8	11448	15452	7383.5
σ_P	Process Error	0.37416	0.36757	0.2743	0.2649
σ_Y	Observation Error	0.41693	0.43062	0.46924	0.47614
Q	Index Proportionality			0.04321	0.016535

Estimated Biomass Trends

Production

Omitting r prior

Index	None		MFCL 2	
Parameterization	$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$	$\widetilde{Y} F_{\widetilde{Y}}$	$B_1 d$
Designation	A	В	C	D
n	4	5	5	6
$-\log L$	-284.898	-236.212	-246.302	-242.176
$ G _{max}$	2.45563	151.693	1.24795e-05	39.9125
B_1		1540.2		_
$\mid d \mid$		12.567		
\widetilde{Y}		1274.9	1579.3	_
$F_{\widetilde{Y}}$		0.13174	0.1293	
r		0.26347	0.25859	_
K		19355	24430	_
σ_P		0.35682	0.27044	_
σ_Y		0.43481	0.47162	_
Q			0.073752	_

Alternate forcing: MFCL Region 4

