第一节 SPICE简介

电路性能评估需解决问题:

- 1. 过程繁琐
- 2. 精度降低
- 3. 调试困难
- 4. 无法进行极限分析
- 5. 容差分析困难

由此,UCB在1972年开发了SPICE电路级模拟程序,1975年推出正式版本,1985年c语言改写,1988年被定为美国国家工业标准。 SPICE用于非线性直流分析、非线性瞬态分析和线性交流分析。

SPICE中元件可包括电阻、电容、电感、独立电压源、独立电流源、各种线性受控源、传输线以及有源半导体器件。

基于SPICE核的工具软件:

1. HSPICE

Synopsys公司,没有前端输入环境,不适合初级用户,主要应用于集成电路设计。

2. Pspice

Cadence公司,用户界面友好,主要应用于PCB板和系统级的设计。

第二节 SPICE模型

线性元件: 电阻、电容、电感、恒流(压)源等 非线性元件:二极管、三极管、MOS管等

电阻:

常用"R"表示,基本单位:欧姆(Ω),耗能元件 集成电路中分为无源电阻和有源电阻。

电阻色环标识:位数+倍乘数+允许误差 有源电阻是指采用晶体管进行适当的连接并使其工作在一定的状态,利用它的直流导通电阻和交流电阻作为电路中的电阻元件使用;

双极型晶体管和MOS晶体管可以担当有源电阻;使用运算放大器也可以搭建有源电阻。

电阻模型: RES=R[1+TC1(T-T0)+TC2(T-T0)2]; 其中R: 电阻初始值; TC1: 线性温度系数; TC2: 平方温度系数; T0: 室温

电容:

常用"C"表示,基本单位:法拉(F),储能元件

不同的电路应选用不同种类的电容器(电解、瓷介、纸介、涤纶、云母.....)

电容模型: CAP=C(1+VC1.V+VC2.V2); 其中C: 电容初始值; VC1: 线性电压系数; VC2: 平方电压系数

电感:

常用"L"表示,基本单位:亨(H),储存磁场能量元件

单匝线圈、多匝线圈

芯片电感的实现成为可能

电感模型: IND=L(1+IL1.I+IL2.I2); 其中L: 电感初始值; IL1: 线性电流系数; IL2: 平方电流系数

二极管:

电路中的符号为"VD"或"D";稳压二极管的符号为"ZD";由半导体制成,具有单向导电性

二极管等效电路模型

三极管:

电路中符号为"VT"、"Q"或"V";是一种电流控制电流的半导体器件;分为PNP型、NPN型

主要参数有:特征频率fT、放大倍数hFE、BVCEO、PCM

第三节 SPICE语法

标题语句:描述文件的第一行

第一行作为标题行打印而不作为电路的一部分进行分析 这一行必须设置。

注释语句: "*"后加字符串 不参与电路的模拟仿真 可以存在于任何位置

描述语句: 描述具体电路结构和参数

电阻: RXX N+ N- VALUE <TC=TC1<,TC2>> 电容: CXX N+ N- VALUE <IC=INCOND> 电感: LXX N+ N- VALUE <IC=INCOND> 双极型晶体管: QXX NC NB NE NMOS晶体管: MXX ND NG NS Ng

特性分析和控制语句: 分析功能, 如分析频率特性, 以及对输出的要求

直流工作点分析: .OP

瞬态特性分析: .TRAN TSTEP TSTOP

直流或小信号交流灵敏度分析(电感短路电容开路的情况下所观测变量OUTVAR(节点电压或电压源支路的电流)对电路中所有非零

器件参数的灵敏度)

交流特性分析(计算电流在给定的频率范围内的频率响应) 噪声分析(计算指定节点的噪声输出电压)

傅立叶分析 (对瞬态分析的结果进行傅立叶分析)

失真分析 (小信号失真分析)

零极点分析

结束语句: ".END"

标志电路描述语句的结束 位于描述语句文件的最后一行

第四节 Multisim器件库

第五节 Multisim虚拟仪器

力用表
函数发生器
瓦特表
示波器
四通道示波器
波特仪
频率计数
字发生器
逻辑分析仪
逻辑转换仪
IV分析仪
失真分析仪
频谱分析仪
网络分析仪

课间讨论 1. SPICE最初由哪个大学开发的?

UC Berkeley 2. 何时成为美国国家标准?

1988年 3. 主要应用于哪方面?

非线性直流分析、非线性瞬态分析和线性交流分析