高等数字集成电路作业-第三章

Author: 文家宝

1. 基础概念问题

1. 请简要描述基于VerilogHDL语言对VLSI/FPGA设计带来的意义?

VerilogHDL语言以文本形式描述数字系统硬件结构行为,是一种用形式化方法来描述数字电路和系统的语言。在进行VLSI/FPGA设计的时候,可以自上而下的逐层描述自己的设计思想。可以把具体的模块组合并通过综合工具转化为门级网表,大大简化了VLSI/FPGA设计难度。

2. 请简要描述基于VerilogHDL语言完成的可综合电路与不可综合电路的特点?

可综合电路:是指VerilogHDL语言可以在标准单元库和特定的约束标准基础上,把设计的高层次描述转化成优化的门级网表。不可综合电路:VerilogHDL语言中不可以被综合成实际的硬件电路的语句。例如一些用于仿真验证的关键字,属于仿真验证语言,只能在仿真时使用,不能被综合成电路,如系统任务\$dsiplay, initial语句等。

3. 请简要描述阻塞描述语句与非阻塞描述语句的各自适用电路与使用注意事项?

阻塞赋值: 语句的串行执行,前面语句执行完,才可执行下一条语句,当前赋值语句正在执行时禁止其后的所有其他赋值语句的执行。适用于组合逻辑电路结构的设计,在描述组合逻辑的always块中使用阻塞赋值,会将电路综合成组合逻辑的电路结构。

非阻塞赋值: 语句的并行执行,时钟沿到来时,always模块中的赋值同时进行,不存在先后顺序,前面语句的执行,不会阻塞后面语句的执行。适用于时序逻辑电路结构的设计,在描述时序逻辑的always块中使用非阻塞赋值,会将电路综合成时序逻辑的电路结构。

注意事项:

- ①避免在通过一个always块中既用非阻塞赋值又用阻塞赋值。
- ②不要在不同的的always块中为同一个变量赋值。
- ③ 在赋值时不要使用延迟语句。
- 4. 请简要分析全同步电路与异步电路在常规VLSI电路设计过程中的设计应用注意事项与考虑思路?

同步电路:由时序电路和组合逻辑电路构成的电路,其所有操作都是在严格的时钟控制下完成的。这些时序电路共享同一个时钟CLK,而所有的状态变化都是在时钟的上升沿(或下降沿)完成的。

异步电路:核心逻辑使用组合电路实现,电路的主要信号、输出信号不依赖于任何一个时钟信号。

注意事项和考虑思路:

- ①异步电路设计时必须要考虑跨时钟域可能会导致的亚稳态问题,最简单的可以采用两级D触发器来实现 跨时 钟域处理。
- ②异步电路容易产生竞争冒险,应尽量采用同步电路来有效避免毛刺的影响,提高设计可靠性,并可以简化静态时序分析过程,便于验证时序性能。
- ③全同步电路所有的触发器状态同时刷新,信号延迟时间短,但结构复杂。异步电路结构简单,但触发器刷新不同步,信号延迟可能会累积导致状态异常。

5. 请简要分析Latch与D-Flip-Flop电路在常规VLSI电路设计过程中的设计应用注意事项与考虑思路? Latch:是电平触发的存储单元,数据存储的动作取决于输入时钟(或者使能)信号的电平值。锁存器在数据未锁存时,输出端的信号随输入信号变化,充当一个缓冲器,一旦锁存信号有效,则数据被锁存,输入信号不起作用。可以用于解决高速的控制器与慢速的外设的不同步问题和驱动能力问题。D-Flip-Flop:是边沿敏感的存储单元,数据的存储由某一信号(一般为时钟信号)的上升沿或者下降沿进行。可存储1bit的数据,是register的基本组成单位。

注意事项和考虑思路:

- ①锁存器Latch对毛刺敏感,不能异步复位,所以上电以后处于不确定的状态。
- ②锁存器Latch会增加静态时序分析的复杂度。
- ③生成锁存器需要更多的FPGA资源(查找表和触发器)。 一般设计时应注意代码规范,如case语句中需对未声明的case进行default处理。避免产生Latch。

2. 基于VerilogHDL进行逻辑电路设计

1. 向量前导1检测器

设计一个组合逻辑电路,检测输入32位0/1向量中从高到低第一个1出现的位置,如果向量为全0则输出32。例如:

输入00011000 10000000 00000000 00000000, 输出3;

输入00000000 11111111 00000000 00000000, 输出8;

输入00000000 00000000 00000000 00001010,输出28.

模块输入输出功能定义:

名称	方向	位宽	描述
data_in	Input	32	输入0/1向量
pos_out	Output	6	前导1出现位置,取值范围0~32

实现思路一:纯MUX多选

```
data_in[20] ? 6'd11 :
data_in[19] ? 6'd12 :
data_in[18] ? 6'd13 :
data_in[17] ? 6'd14 :
data_in[16] ? 6'd15 :
data_in[15] ? 6'd16 :
data_in[14] ? 6'd17 :
data_in[13] ? 6'd18 :
data_in[12] ? 6'd19 :
data_in[11] ? 6'd20 :
data_in[10] ? 6'd21 :
data_in[9] ? 6'd22 :
data_in[8] ? 6'd23 :
data_in[7] ? 6'd24 :
data_in[6] ? 6'd25 :
data_in[5] ? 6'd26 :
data_in[4] ? 6'd27 :
data_in[3] ? 6'd28 :
data_in[2] ? 6'd29 :
data_in[1] ? 6'd30 :
data_in[0] ? 6'd31 :
              6'd32;
```


逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为434Mhz,采用最小面积约束进行综合

```
#=======Fnv
set RST_NAME
                        rst
set CLK_NAME
                        clk
set CLK_PERIOD_I
                        2.3
set CLK_PERIOD
                        [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                        [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                        [expr $CLK_PERIOD*0.1]
set CLK NETWORK LATENCY
                        [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                        [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
                          0
set OUTPUT_DELAY_MAX
                        [expr $CLK_PERIOD*0.4]
```

CLK_NAME]] ===================================	<u> </u>	ıts] [get_po	rts
et MAX_CAP et ALL_INPUT_EX_CLK [remove CLK_NAME]] ==================================	1.5 /e_from_collection [all_inpu======Define Design	uts] [get_pon	rts
et ALL_INPUT_EX_CLK [remove CLK_NAME]] ===================================	/e_from_collection [all_inpu ======Define Design	uts] [get_po	rts
CLK_NAME]] ===================================	======Define Design	uts] [get_po	rts
Point clock clk (rise edge) clock network delay (idea data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFFT) VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/	<u> </u>		
GUIDANCE: use the default et_max_area 0 Point clock clk (rise edge) clock network delay (idea data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFFT VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/	=======		
Point clock clk (rise edge) clock network delay (idea data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFFT) VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/			
clock clk (rise edge) clock network delay (idea data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFFT) VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/			
clock network delay (idea data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFFT VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/		Incr	Path
clock network delay (idea data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFFT VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/			
clock network delay (idea data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFFT VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/		0.00	0.00
data_in_r_reg_25_/CK (DFF data_in_r_reg_25_/Q (DFF1 VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/	al)	0.44	
data_in_r_reg_25_/Q (DFFT VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/		0.00	0.44
VectorDetector_m1_u0/data VectorDetector_m1_u0/U106 VectorDetector_m1_u0/U81/		0.47	
VectorDetector_m1_u0/U81/	a_in[25] (VectorDetector_m1))	
VectorDetector_m1_u0/U81/		0.00	0.91
	S/Y (INVX8M)	0.06	0.97
VectorDetector_m1_u0/U27/		0.10	1.07
	· ·	0.06	1.12
VectorDetector_m1_u0/U96/		0.09	
VectorDetector_m1_u0/U74/	· · ·	0.06	1.27
VectorDetector_m1_u0/U77/		0.08	1.36
VectorDetector_m1_u0/U86/		0.06	1.42
VectorDetector_m1_u0/U30/		0.08	1.50
VectorDetector_m1_u0/U128	,	0.14	1.63
VectorDetector_m1_u0/U145 VectorDetector_m1_u0/U88/		0.15 0.09	1.78 1.87
VectorDetector_m1_u0/U144	,	0.18	2.05
VectorDetector_m1_u0/U87/	,	0.08	2.03
	_out[1] (VectorDetector_m1)	0.00	2.13
pos_out_reg_1_/RN (DFFTR)	`	0.00	2.13
data arrival time	· ··· /	0.00	2.13
clock clk (rise edge)		2.18	2.18
clock network delay (idea	al)	0.44	2.62
clock uncertainty		-0.11	2.51
pos_out_reg_1_/CK (DFFTR)	(4M)	0.00	2.51
library setup time		-0.39	2.13
data required time			2.13
data required time			2.13
data arrival time			-2.13
slack (VIOLATED: increase			
,	e significant digits)		
Internal	e significant digits)		0.00

Power Group Power (%)	Attrs	Power		Power	
io_pad 0.0000 (0.00%)	0.0000	0.0000		0.0000	
memory 0.0000 (0.00%)	0.0000	0.0000		0.0000	
black_box 0.0000 (0.00%)		0.0000		0.0000	
clock_network 0.0000 (0.00%)		0.0000		0.0000	
register 2.0219 (90.41%)	1.9678	5.4038e-02		1.0521e+05	
sequential 0.0000 (0.00%)		0.0000		0.0000	
combinational 0.2145 (9.59%)		0.1087		1.4091e+05	
Total 2.2365 mW				·	
Reference Attributes 	Library	Unit Area	Count	Total Area	
CLKINVX6M	ss_1v62_125c	10.976000	1	10.976000	
DFFTRX1M	ss_1v62_125c	48.294399	11	531.238392	n
DFFTRX4M	ss_1v62_125c	65.856003	27	1778.112076	n
INVX2M	ss_1v62_125c	6.585600	1	6.585600	
INVX4M	ss_1v62_125c	8.780800	9	79.027199	
INVXLM	ss_1v62_125c	6 585600	1	6.585600	
	2	100.806366	1	2100.806366	
VectorDetector_m1					

实现思路二:二分法查找

```
assign pos_out = ( |data_in ) ? pos_out_w : 5'd32;
assign pos_out_w = ( | data_in[31:16] )?
                                           pos_out1
                                                           pos_out2;
assign pos_out1 =
                    ( |data_in[31:24] ) ?
                                          pos_out1_1
                                                        : pos_out1_2;
                    ( |data_in[15:8] ) ?
assign pos_out2 =
                                           pos_out2_1
                                                           pos_out2_2;
assign pos_out1_1 = ( |data_in[31:28] ) ?
                                              pos_out1_1_1
pos_out1_1_2;
                      ( |data_in[23:20] ) ?
assign pos_out1_2 =
                                              pos_out1_2_1
pos_out1_2_2;
assign pos_out2_1 = ( |data_in[15:12] ) ?
                                              pos_out2_1_1 :
pos_out2_1_2;
                      ( |data_in[7:4] ) ?
assign pos_out2_2 =
                                            pos_out2_2_1
pos_out2_2_2;
assign pos_out1_1_1 = ( |data_in[31:30] ) ?
                                               pos_out1_1_1_1
pos_out1_1_1_2;
assign pos_out1_1_2 = ( |data_in[27:26] )?
                                               pos_out1_1_2_1
pos_out1_1_2_2;
assign pos_out1_2_1 = ( |data_in[23:22] ) ?
                                               pos_out1_2_1_1
pos_out1_2_1_2;
assign pos_out1_2_2 = ( |data_in[19:18] ) ?
                                               pos_out1_2_2_1
pos_out1_2_2;
assign pos_out2_1_1 = ( |data_in[15:14] ) ?
                                              pos_out2_1_1_1
pos_out2_1_1_2;
assign pos_out2_1_2 = ( |data_in[11:8] ) ?
                                             pos_out2_1_2_1
pos_out2_1_2_2;
assign pos_out2_2_1 = ( |data_in[7:6] )?
                                              pos_out2_2_1_1
pos_out2_2_1_2;
assign pos_out2_2_2 = ( |data_in[3:2] )?
                                              pos_out2_2_2_1
pos_out2_2_2;
                         ( data_in[31] ) ?
assign pos_out1_1_1_1 =
                                              5'd0
                                                     : 5'd1;
                         ( data_in[29] ) ?
                                              5'd2
                                                       5'd3;
assign pos_out1_1_1_2 =
assign pos_out1_1_2_1 =
                          ( data_in[27] ) ?
                                              5'd4
                                                        5'd5;
assign pos_out1_1_2_1 =
                         ( data_in[25] ) ?
                                              5'd6
                                                        5'd7;
assign pos_out1_2_1_1 =
                         ( data_in[23] ) ?
                                              5'd8
                                                     : 5'd9;
                                              5'd10
                                                      : 5'd11;
assign pos_out1_2_1_2 =
                         ( data_in[21] ) ?
                                             5'd12
assign pos_out1_2_2_1 =
                         ( data_in[19] ) ?
                                                      : 5'd13;
assign pos_out1_2_2_2 =
                         ( data_in[17] ) ?
                                             5'd14
                                                        5'd15;
                                             5'd16
assign pos_out2_1_1 =
                         ( data_in[15] ) ?
                                                        5'd17;
assign pos_out2_1_1_2 =
                         ( data_in[13] ) ?
                                             5'd18
                                                      : 5'd19;
assign pos_out2_1_2_1 =
                         ( data_in[11] ) ?
                                             5'd20
                                                         5'd21;
assign pos_out2_1_2_1 =
                         ( data_in[9] ) ?
                                            5'd22
                                                    : 5'd23;
assign pos_out2_2_1_1 =
                         ( data_in[7] ) ?
                                            5'd24
                                                     : 5'd25;
                         ( data_in[5] ) ?
assign pos_out2_2_1_2 =
                                            5'd26
                                                     : 5'd27;
assign pos_out2_2_2_1 =
                          ( data_in[3] ) ?
                                            5'd28
                                                        5'd29;
assign pos_out2_2_2_2 =
                        ( data_in[<mark>1</mark>] ) ?
                                            5'd30
                                                     : 5'd31;
```


逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为588Mhz,采用最小面积约束进行综合

vars=========	=======Env =========	
set RST_NAME	rst	
set CLK_NAME	clk	
set CLK_PERIOD_I	1.7	
set CLK_PERIOD	<pre>[expr \$CLK_PERIOD_I*0.</pre>	95]
set CLK_SKEW	[expr \$CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY	<pre>[expr \$CLK_PERIOD*0.1]</pre>	
set CLK_NETWORK_LATENCY	<pre>[expr \$CLK_PERIOD*0.1]</pre>	
set CLK_TRAN	[expr \$CLK_PERIOD*0.01]
set INPUT_DELAY_MAX	[expr \$CLK_PERIOD*0.4]	
set INPUT_DELAY_MIN	0	
set OUTPUT_DELAY_MAX	<pre>[expr \$CLK_PERIOD*0.4]</pre>	
set OUTPUT_DELAY_MIN	0	
set MAX_FANOUT	6	
set MAX_TRAN	5	
set MAX_TRAN set MAX_CAP	1.5	
set MAX_CAP	1.5 nove_from_collection [all_ =======Define Design =========	inputs] [get_ports
set MAX_CAP set ALL_INPUT_EX_CLK [re \$CLK_NAME]] #==================================	1.5 nove_from_collection [all_ =======Define Design =========	inputs] [get_ports Path
set MAX_CAP set ALL_INPUT_EX_CLK [restance of the content of the	1.5 nove_from_collection [all_ =======Define Design ======= t Incr	Path
set MAX_CAP set ALL_INPUT_EX_CLK [restance of the color	1.5 nove_from_collection [all_ =======Define Design ======= .t Incr 0.00	Path 0.00
set MAX_CAP set ALL_INPUT_EX_CLK [restance of the content of the	1.5 nove_from_collection [all_ =======Define Design ====== .t Incr 0.00 leal) 0.32	Path 0.00 0.32
set MAX_CAP set ALL_INPUT_EX_CLK [restance of the color	1.5 nove_from_collection [all_ =======Define Design ====== .t Incr 0.00 Heal) 0.32 (X4M) 0.00	Path 0.00 0.32 0.32 r
set MAX_CAP set ALL_INPUT_EX_CLK [restance of the content of the	1.5 nove_from_collection [all_ =======Define Design ====== .t Incr 0.00 Heal) 0.32 (X4M) 0.00	Path 0.00 0.32

clock clk (rise of clock network de clock uncertainty output external of data required times	lay (ideal) / delay ne	6 - 6 - 6).32).08).65	1.86 1.21 1.21	
data required timed data arrival time	ne e			1.21 -1.11	
slack (MET)				0.10	
	nternal	Switching		Leakage	
Total Power Group Power (%)		Power		Power	
io_pad	 0.0000	0.0000		0.0000	
0.0000 (0.00%) memory	0.0000	0.0000		0.0000	
0.0000 (0.00%) black_box	0.0000	0.0000		0.0000	
0.0000 (0.00%) clock_network	0.0000	0.0000		0.0000	
0.0000 (0.00%) register 1.9602 (97.42%)	1.8731	8.6959e-02		5.8106e+04	
sequential 0.0000 (0.00%)	0.0000	0.0000		0.0000	
combinational 3.62 5.1841e-02 (2.5	257e-02	1.5568e-02		1.6268e+04	
Total 2.0120 mW	1.9094 mW	0.1025	mW	7.4374e+04 pW	
Reference Attributes	Library	Unit Area	Count	Total Area	
AND2X1M	ss_1v62_125c	10.976000	38	417.087994	
DFFQX1M	ss_1v62_125c			1264.435181	n
DFFQX4M	ss_1v62_125c			250.252808	
INVXLM	ss_1v62_125c			6.585600	
VectorDetector_m2		0.000000	1	0.000000	b
 Total 5 references				1938.361582	

结论:

二分法更优秀,逻辑延时更小。有更理想的PPA。

2. 序列检测器

设计一个序列检测同步时序逻辑电路,要实现的功能如下:

当已有输入码流出现序列111000或101110时输出检测信号为1,否则输出为0。在时序上检测到完整序列的下一个时钟周期输出检测结果。输入信号有效为1时表示当前输入有效,否则表示无效。之前输入依旧计入序列中并不清零,即允许序列重叠检测。例如:

[1]001110001101110000

[O] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1

模块输入输出功能定义:

名称	方向	位宽	描述
clk	Input	1	系统时钟
rst_n	Input	1	异步复位,低电平有效
din_vld	Input	1	异步复位,低电平有效
din	Input	1	异步复位,低电平有效
result	Output	1	异步复位,低电平有效

实现思路一:序列检测状态机

```
top:
check_sequence_1 check_sequence_1_1(
    .clk    (clk),
    .rst_n    (rst_n),
    .din    (din),
    .result (result_1)
);

check_sequence_2 check_sequence_2_1(
    .clk    (clk),
    .rst_n    (rst_n),
    .din    (din),
    .result (result_2)
);

assign result = result_1 | result_2;
```

```
check_sequence_1:
  always @(*)begin
    case(state)
    IDLE:
              if(din) begin
                  next_state <= A;</pre>
              end
              else begin
                   next_state <= IDLE;</pre>
    A:
              if(din) begin
                  next_state <= B;</pre>
              end
              else begin
                  next_state <= IDLE;</pre>
              end
    B:
              if(din) begin
                  next_state <= C;</pre>
              end
              else begin
                  next_state <= IDLE;</pre>
              end
    C:
              if(!din) begin
                  next_state <= D;</pre>
              end
              else begin
                  next_state <= A;</pre>
              end
    D:
              if(!din) begin
                  next_state <= E;</pre>
              end
              else begin
                  next_state <= A;</pre>
              end
    E:
              if(!din) begin
                  next_state <= F;</pre>
              end
              else begin
                  next_state <= A;</pre>
              end
    F:
              if( din) begin
                  next_state <= A;</pre>
              end
              else begin
                  next_state <= IDLE;</pre>
              end
    default:
                 next_state <= IDLE;</pre>
    endcase
  end
  always @(*) begin
    if(state==F)begin
         result <= 1;
    end
```

```
else begin
    result <= 0;
end
end</pre>
```


逻辑综合: 采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为,采用最小面积约束进行综合

```
#=======Env
Vars============
set RST_NAME
                         rst_n
set CLK_NAME
                         clk
set CLK_PERIOD_I
set CLK_PERIOD
                         [expr $CLK_PERIOD_I*0.95]
                         [expr $CLK_PERIOD*0.05]
set CLK_SKEW
set CLK_SOURCE_LATENCY
                         [expr $CLK_PERIOD*0.1]
                         [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
set CLK_TRAN
                         [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
set OUTPUT_DELAY_MAX
                         [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MIN
                           0
set MAX_FANOUT
                        6
set MAX_TRAN
                        5
set MAX_CAP
                        1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment==========
#GUIDANCE: use the default
set_max_area 0
 Point
                                                    Incr
                                                              Path
```

-				
clock clk	(rise edge)		0.00	0.00
	ork delay (ideal)		0.28	0.28
	, ,	eg_0_/CK (DFFRHQX8M)	0.00	0.28 r
		eg_0_/Q (DFFRHQX8M)	0.27	0.56 f
	ence_2_1/U5/Y (IN		0.07	0.62 r
	ence_2_1/U3/Y (NA		0.12	0.74 f
•	ence_2_1/U4/Y (IN	•	0.10	0.84 r
		check_sequence_2)	0.00	
U2/Y (NOR2	· · · · · · · · · · · · · · · · · · ·	eneck_sequence_2)	0.07	0.91 f
U1/Y (INVX	,		0.16	1.07 r
result (ou	•		0.00	1.07 r
data arriv	•		0.00	1.07
uata arriv	at time			1.07
	(rise edge)		1.42	1.42
clock netw	ork delay (ideal)	0.28	1.71	
clock unce	rtainty	-0.07	1.64	
output ext	ernal delay	-0.57	1.07	
data requi	red time		1.07	
- data requi	red time			1.07
data requi				-1.07
- slack (MET)			0.00
- slack (MET) Internal	Switching	Leakage	0.00
Total	Internal	· ·	Leakage	0.00
Total Power Group	Internal Power	· ·	Leakage Power	0.00
Total Power Group	Internal Power %) Attrs	Power	Power	
Total Power Group Power (Internal Power https://www.near.com/power.com	· ·	Power	
Total Power Group Power (Internal Power https://www.near.com/power.com	Power	Power	
Total Power Group Power (io_pad	Internal Power %) Attrs 0.0000	Power	Power	
Total Power Group Power (io_pad 0.0000 (Internal Power	Power 0.0000	Power	
Total Power Group Power (io_pad 0.0000 (memory	Internal Power %) Attrs 0.0000 0.00%) 0.0000	Power	Power	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (Internal Power	Power 0.0000 0.0000	Power 0.0000 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%)	Power 0.0000	Power	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) 0.0000 0.00%)	Power 0.0000 0.0000 0.0000	Power 0.0000 0.0000 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) 0.0000 0.00%) k 0.0000	Power 0.0000 0.0000	Power 0.0000 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (Internal Power 100000000000000000000000000000000000	Power 0.0000 0.0000 0.0000 0.0000	Power 0.0000 0.0000 0.0000 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) 1.0245	Power 0.0000 0.0000 0.0000	Power 0.0000 0.0000 0.0000 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register 1.0366 (9	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) 1.0245 7.29%)	Power 0.0000 0.0000 0.0000 1.2040e-02	Power 0.0000 0.0000 0.0000 0.0000 2.4081e+04	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register 1.0366 (9 sequential	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) 1.0245 7.29%) 0.0000	Power 0.0000 0.0000 0.0000 0.0000	Power 0.0000 0.0000 0.0000 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register 1.0366 (9 sequential 0.0000 (Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) 1.0245 7.29%) 0.0000 0.00%)	Power 0.0000 0.0000 0.0000 1.2040e-02 0.0000	Power 0.0000 0.0000 0.0000 2.4081e+04 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register 1.0366 (9 sequential 0.0000 (combinationa	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) k 0.0000 0.00%) 1.0245 7.29%) 0.0000 0.00%) 1.3581e-02	Power 0.0000 0.0000 0.0000 1.2040e-02	Power 0.0000 0.0000 0.0000 2.4081e+04 0.0000	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register 1.0366 (9 sequential 0.0000 (combinationa 2.8821e-02	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) k 0.0000 0.00%) 1.0245 7.29%) 0.0000 0.00%) 1 1.3581e-02 (2.71%)	Power 0.0000 0.0000 0.0000 1.2040e-02 0.0000	Power 0.0000 0.0000 0.0000 0.0000 2.4081e+04 0.0000 1.6098e+04	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register 1.0366 (9 sequential 0.0000 (combinationa 2.8821e-02	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) k 0.0000 0.00%) 1.0245 7.29%) 0.0000 0.00%) 1.3581e-02 (2.71%)	Power 0.0000 0.0000 0.0000 0.0000 1.2040e-02 0.0000 1.5224e-02	Power 0.0000 0.0000 0.0000 0.0000 2.4081e+04 0.0000 1.6098e+04	
Total Power Group Power (io_pad 0.0000 (memory 0.0000 (black_box 0.0000 (clock_networ 0.0000 (register 1.0366 (9 sequential 0.0000 (combinationa 2.8821e-02	Internal Power %) Attrs 0.0000 0.00%) 0.0000 0.00%) 0.0000 0.00%) k 0.0000 0.00%) 1.0245 7.29%) 0.0000 0.00%) 1 1.3581e-02 (2.71%)	Power 0.0000 0.0000 0.0000 0.0000 1.2040e-02 0.0000 1.5224e-02	Power 0.0000 0.0000 0.0000 0.0000 2.4081e+04 0.0000 1.6098e+04	

Reference Attributes	Library	Unit Area	Count	Total Area		
 INVX14M	ss_1v62_125c					
		21.952000	1	21.952000		
NOR2X12M	ss_1v62_125c					
		35.123199	1	35.123199		
check_sequence_1		408.307203	1	408.307203	h,	n
check_sequence_2		408.307201	1	408.307201	h,	n
Total 4 references	3			873.689604		
Total 4 references	6			873.689604		

结论:

状态机检测更优秀,逻辑延时更小。有更理想的PPA

1. 二进制转BCD码逻辑

设计一个8位无符号二进制数(取值范围0~255)到10位BCD码的转换组合逻辑电路。其中12位BCD码定义如下:

输入8'b10100101(十进制165),输出10'b01_0110_0101; 输入8'b11110000(十进制240),输出10'b10_0100_0000.

模块输入输出功能定义:

名称	方向	位宽	描述
bin_in	Input	8	输入0/1向量
bcd_out	Output	10	前导1出现位置,取值范围0~32

实现思路一:移位加3

```
assign bcd_out = (counter==5'd15)? bcd_out_r[17:8] : 'b0;
assign flag = (counter==5'd15)? 1'b1 : 'b0;

always @(posedge clk ) begin
    if(rst)begin
    counter    <= 'b0;
    bcd_out_r <= bin_in;
    tmp_bcd_out_r <= bin_in;</pre>
```

```
end
    else if (sampling||(counter==5'd15))begin
                                  'b0;
        counter
                         <=
        bcd_out_r <= bin_in;</pre>
        tmp_bcd_out_r <= bin_in;</pre>
    end
    else begin
        if(counter[0]==0)begin
             bcd_out_r[17:1]
                                <= bcd_out_r[16:0];</pre>
             tmp_bcd_out_r[17:1] <= bcd_out_r[16:0];</pre>
             counter<=counter+1;
        end
        else begin
             if(tmp\_bcd\_out\_r[11:8]>=3'd5)begin
                 bcd_out_r[11:8] <= bcd_out_r[11:8] + 4'b0011;
            end
             else begin
                 bcd_out_r[11:8] <= bcd_out_r[11:8];
             end
             if(tmp\_bcd\_out\_r[15:12] >= 3'd5)begin
                 bcd_out_r[15:12] <= bcd_out_r[15:12] + 4'b0011;
             end
             else begin
                 bcd_out_r[15:12] <= bcd_out_r[15:12];
             end
             if(counter<5'd16)begin
                 counter <= counter + 1;
             end
             else begin
                 counter<='b0;
             end
        end
    end
end
```


逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为200Mhz,采用最小面积约束进行综合

```
#========Env
Vars==========
set RST_NAME
                          rst
set CLK_NAME
                          clk
set CLK_PERIOD_I
set CLK_PERIOD
                          [expr $CLK_PERIOD_I*0.95]
set CLK_SKEW
                          [expr $CLK_PERIOD*0.05]
set CLK_SOURCE_LATENCY
                          [expr $CLK_PERIOD*0.1]
set CLK_NETWORK_LATENCY
                          [expr $CLK_PERIOD*0.1]
set CLK_TRAN
                          [expr $CLK_PERIOD*0.01]
set INPUT_DELAY_MAX
                          [expr $CLK_PERIOD*0.4]
set INPUT_DELAY_MIN
                            0
                          [expr $CLK_PERIOD*0.4]
set OUTPUT_DELAY_MAX
set OUTPUT_DELAY_MIN
set MAX_FANOUT
                         5
set MAX_TRAN
set MAX_CAP
                         1.5
set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
#======Define Design
Environment===========
#GUIDANCE: use the default
set_max_area 0
  Point
                                                       Incr
                                                                 Path
 clock clk (rise edge)
                                                       0.00
                                                                  0.00
 clock network delay (ideal)
                                                       0.95
                                                                  0.95
 bin_in_r_reg_5_/CK (DFFTRX4M)
                                                                  0.95 r
                                                       0.00
  bin_in_r_reg_5_/Q (DFFTRX4M)
                                                       0.57
                                                                  1.52 r
  BinToBCD_m1_u0/bin_in[5] (BinToBCD_m1)
                                                       0.00
                                                                  1.52 r
  BinToBCD_m1_u0/div_2_u_div_u_add_PartRem_1_3/A[2]
(BinToBCD_m1_DW01_add_39)
                                                       0.00
                                                                  1.52 r
  BinToBCD_m1_u0/div_2_u_div_u_add_PartRem_1_3/U46/Y (INVXLM)
                                                                  1.69 f
  BinToBCD_m1_u0/div_2_u_div_u_add_PartRem_1_3/U43/Y (NOR2X2M)
                                                                  1.82 r
  BinToBCD_m1_u0/div_2_u_div_u_add_PartRem_1_3/U39/Y (AND3X2M)
                                                       0.20
                                                                  2.02 r
  BinToBCD_m1_u0/div_2_u_div_u_add_PartRem_1_3/C0 (BinToBCD_m1_DW01_add_39)
                                                                  2.02 r
                                                       0.00
  BinToBCD_m1_u0/U29/Y (INVXLM)
                                                       0.10
                                                                  2.11 f
  BinToBCD_m1_u0/U12/Y (A0I22X1M)
                                                       0.38
                                                                 2.50 r
  BinToBCD_m1_u0/U26/Y (NOR2X1M)
                                                                  2.73 f
                                                       0.23
  BinToBCD_m1_u0/U61/Y (A0I22X1M)
                                                       0.16
                                                                  2.89 r
  BinToBCD_m1_u0/U10/Y (AND2X2M)
                                                       0.21
                                                                  3.10 r
```

BinToBCD_m1_u0/l	J23/Y (INVX4N	4)	0.09	3.19 f
BinToBCD_m1_u0/o	liv_2_u_div_u	u_add_PartRem_0_4/A	\[4]	
(BinToBCD_m1_DW01_	_add52)			
			0.00	3.19 f
BinToBCD_m1_u0/o	liv_2_u_div_u	u_add_PartRem_0_4/L	J23/Y (NOR2X2M)	
			0.21	3.40 r
BinToBCD_m1_u0/o	liv_2_u_div_u	u_add_PartRem_0_4/L	J3/Y (OAI21X6M)	
			0.11	3.51 f
BinToBCD m1 u0/o	liv 2 u div u	u_add_PartRem_0_4/0		
D11110D0D_III1_007 0	11 V_2_U_U_U V_(a_aaa_i ai ekeiii_o_+/ e	0.00	3.51 f
PinToPCD m1 u0/l	IE /V /TNV/VAM	١	0.10	
BinToBCD_m1_u0/L	•	•		
BinToBCD_m1_u0/L	-	-	0.12	
BinToBCD_m1_u0/l	-	-	0.28	4.01 f
BinToBCD_m1_u0/r	em_3_u_div_u	u_mx_PartRem_0_1_1/	,	
			0.30	4.32 f
BinToBCD_m1_u0/l	J15/Y (CLKIN\	VX2M)	0.09	4.41 r
BinToBCD_m1_u0/l	J101/Y (CLKNA	AND2X2M)	0.11	4.52 f
BinToBCD_m1_u0/l	J13/Y (A021X2	2M)	0.37	4.89 f
	`		Y (MX2XLM)	
			0.25	5.15 f
BinToBCD_m1_u0/k	ocd out[6] (F	BinToBCD m1)	0.00	5.15 f
bcd_out_reg_6_/F	`	•	0.00	5.15 f
data arrival tin	•	/	0.00	5.15
uata allivat til	ie			5.15
alaak alk (miaa	a data \		4 75	4 75
clock clk (rise	• ,		4.75	
clock network de	, ,		0.95	5.70
clock uncertaint	-		-0.24	5.46
bcd_out_reg_6_/0	•)	0.00	5.46 r
library setup ti	_me		-0.29	5.17
data required ti	_me			5.17
- data required ti	me			5.17
data arrival tin				-5.15
				-3.13
-				
slack (MET)				0.02
Internal S	Switchina	Leakage	Total	
Power Group F	_		Power	
Power (%)		. 07101	. 01101	
io_pad		0.0000	0.0000	
0.0000 (0.00%)				
nemory	0.0000	0.0000	0.0000	
0.0000 (0.00%)				
olack_box	0.0000	0.0000	0.0000	
0.0000 (0.00%)				
clock_network		0.0000	0.0000	
		0.0000	0.0000	
0.0000 (0.00%)		7 00502 00	0 50400404	
register		7.3058e-02	3.50190+04	
9.4240 (77.15%)				
sequential	0.0000	0.0000	0.0000	

```
0.0000 ( 0.00%)
combinational 6.4049e-02 6.1372e-02 1.2298e+05
0.1255 ( 22.85%)
______
  Total
         0.4149 mW 0.1344 mW 1.5860e+05 pW
0.5495 mW
  Reference Library Unit Area Count Total Area
Attributes
                      3114.988754 1 3114.988754 h
  BinToBCD_m1
  DFFTRX1M ss_1v62_125c
                       48.294399 14 676.121590 n
  DFFTRX2M ss_1v62_125c
                       50.489601 1 50.489601 n
  DFFTRX4M ss_1v62_125c
                       65.856003 3 197.568008 n
         ss_1v62_125c
  INVXLM
                       6.585600 1 6.585600
  Total 5 references
                                     4045.753553
1
```

实现思路二:除法取余

```
assign bcd_out = {d,c,b};
assign d=bin_in/8'd100;
assign c=(bin_in/8'd10)%10;
assign b=bin_in%10;
```


逻辑综合:

采用smic180nm工艺库PVT环境为SS工艺角进行综合,时钟最高频率为526Mhz,采用最小面积约束进行综合

```
set CLK_PERIOD_I
   set CLK_PERIOD
                               [expr $CLK_PERIOD_I*0.95]
   set CLK_SKEW
                               [expr $CLK_PERIOD*0.05]
   set CLK_SOURCE_LATENCY
                               [expr $CLK_PERIOD*0.1]
   set CLK_NETWORK_LATENCY
                               [expr $CLK_PERIOD*0.1]
   set CLK_TRAN
                               [expr $CLK_PERIOD*0.01]
   set INPUT DELAY MAX
                               [expr $CLK_PERIOD*0.4]
   set INPUT_DELAY_MIN
   set OUTPUT_DELAY_MAX
                               [expr $CLK_PERIOD*0.4]
                                 0
   set OUTPUT_DELAY_MIN
   set MAX_FANOUT
                              6
   set MAX_TRAN
                              5
   set MAX_CAP
                              1.5
   set ALL_INPUT_EX_CLK [remove_from_collection [all_inputs] [get_ports
$CLK_NAME]]
   #======Define Design
Environment==========
   #GUIDANCE: use the default
   set max area 0
  Point
                                                        Incr
                                                                  Path
```

clock clk (rise				
•	(anha		0.00	0.00
	- /			
clock network de	, ,		0.36	
input external d	lelay		0.72	
sampling (in)			0.00	1.08
BinToBCD_m2_u0/s	sampling (Bi	nToBCD_m2)	0.00	1.08
BinToBCD_m2_u0/U	J14/Y (CLKIN	VX24M)	0.03	1.12
BinToBCD_m2_u0/U	J81/Y (NAND2)	X12M)	0.06	1.18
BinToBCD_m2_u0/U	•	•	0.15	1.33
BinToBCD_m2_u0/U	`	,	0.06	
	`	,	0.21	
BinToBCD_m2_u0/U	•			
BinToBCD_m2_u0/U	•		0.09	
BinToBCD_m2_u0/U	•	*	0.24	1.93
BinToBCD_m2_u0/b	ocd_out_r_re	g_6_/D (DFFHQX1M)	0.00	1.93
data arrival tim	ie			1.93
clock clk (rise	edge)		1.80	1.80
clock network de	- /		0.36	
clock uncertaint	,		-0.09	
	•	g_6_/CK (DFFHQX1M)	0.00	
		A O (DELUÁYTM)		
library setup ti			-0.14	1.93
data required ti	ıııe			1.93
-				
data required ti	Lme			1.93
data arrival tim				-1.93
slack (MET)				0.00
I	Internal	Switching	Leakage	
Total		· ·	· ·	
Power Group) Attrs	Power	Power	
- ·	0.0000	0.0000	0.0000	
0.0000 (0.00%) memory	0.0000 0.0000		0.0000 0.0000	
0.0000 (0.00%) memory 0.0000 (0.00%) black_box	0.0000 0.0000 0.0000	0.0000		
0.0000 (0.00%) memory 0.0000 (0.00%) black_box 0.0000 (0.00%) clock_network	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000	0.0000	
io_pad 0.0000 (0.00%) memory 0.0000 (0.00%) black_box 0.0000 (0.00%) clock_network 0.0000 (0.00%) register	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	
0.0000 (0.00%) memory 0.0000 (0.00%) black_box 0.0000 (0.00%) clock_network 0.0000 (0.00%) register 2.5708 (95.22%) sequential	0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	
0.0000 (0.00%) memory 0.0000 (0.00%) black_box 0.0000 (0.00%) clock_network 0.0000 (0.00%) register 2.5708 (95.22%) sequential 0.0000 (0.00%) combinational 6.1	0.0000 0.0000 0.0000 0.0000 2.5410 0.0000	0.0000 0.0000 0.0000 0.0000 2.9666e-02	0.0000 0.0000 0.0000 9.3891e+04 0.0000	
0.0000 (0.00%) memory 0.0000 (0.00%) black_box 0.0000 (0.00%) clock_network 0.0000 (0.00%) register 2.5708 (95.22%) sequential 0.0000 (0.00%) combinational 6.1	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 2.9666e-02 0.0000	0.0000 0.0000 0.0000 9.3891e+04 0.0000 7.0323e+04	
0.0000 (0.00%) memory 0.0000 (0.00%) black_box 0.0000 (0.00%) clock_network 0.0000 (0.00%) register 2.5708 (95.22%) sequential 0.0000 (0.00%) combinational 6.1	0.0000 0.0000 0.0000 0.0000 2.5410 0.0000	0.0000 0.0000 0.0000 0.0000 2.9666e-02 0.0000 6.7197e-02	0.0000 0.0000 0.0000 9.3891e+04 0.0000 7.0323e+04	

D 6					
Reference Attributes	Library	Unit Area	Count	Total Area	
BinToBCD_m2		8071.084789	1	3071.084789	h, n
DFFQX1M	ss_1v62_125c	39.513599	7	276.595196	n
DFFQX2M	ss_1v62_125c	00.02000			
DFFQX4M	ss_1v62_125c	39.513599	1	39.513599	n
DFFQX4N	35_1002_1230	41.708801	10	417.088013	n
NOR2BX1M	ss_1v62_125c	40.070000	0	07 007000	
NOR2BX2M	ss_1v62_125c	10.976000	8	87.807999	
		10.976000	9	98.783998	
NOR2BXLM	ss_1v62_125c	10.976000	1	10.976000	
		10.970000	т	10.970000	

结论:

由于移位加3需要时序打拍且由于位宽较小故采用除法取余更优秀,逻辑延时更小。有更理想的PPA。