DATA ANALYSIS PORTFOLIO

By Ravi Kumar

ABOUT ME

Hi, I am Ravi Kumar. I have a technical background and hold a bachelor's degree (B. Tech) in Electrical Engineering from KIIT University, Bhubaneswar – Odisha. I have around 4 years of experience working as a QA Analyst in several IT Companies. Having great interest in Data Analytics, I plan to transition my career from a QA Analyst to Data Analyst or Business Analyst roles.

Further, I will list below the data analytics projects I have worked upon and also the technology stack used to perform the required analysis.

TABLE OF CONTENTS

About Me

Table Of Contents

Module -1 Project: Data Analytics Process

Module -2 Project: Instagram User Analytics

Module -3 Project: Operation & Metric Analytics

Module -4 Project: Hiring Process Analytics

Module -5 Project: IMDB Movie Analysis

Module -6 Project: Bank Loan Case Study

Module -7 Project: XYZ Ads Airing Report

Module -8 Project: ABC Call Volume Trend

Conclusion

Module -1 Project: Data Analytics Process

This was the very first project we were given. This involved about the real-life applications of data analytics. In our day-to-day life activities, we use data analytics everyday without even realizing it.

Our task was to give examples of real-life scenarios where we use data analytics and also write down the different data analytics processes. Data Analytics process contains several steps i.e., PLAN, PREPARE, PROCESS, ANALYZE, SHARE, ACT. I gave two examples – first was travel planning and second was house renovation or interior designing.

I used MS Office Word to write down the scenarios.

Module -2 Project: Instagram User Analytics

The second project was Instagram user Analytics. This project was based on the queries raised by the product team of Instagram on various issues. They raised various queries and I used different SQL functions to solve and then used MS Office PowerPoint to prepare a detailed report on them.

The following queries were raised by the marketing team: -

- 1. People who have been using platform for the longest time.
- 2. Who are the inactive users.
- 3. Which user has got the most likes on a photo.
- 4. Which are the most popular hashtags on Instagram.
- 5. Which is the best day to launch Ads.

The following queries were raised by the investors: -

- 1. How active are users on Instagram
- 2. Is Instagram crowded with fake and dummy accounts.

I first began with importing the data to SQL database. Then closely went through the data set by analyzing each column and type of values they store. After that I checked for any duplicate or null values or if any data cleaning is required. Then I began with the analysis and found out the answers.

1. People who have been using platform for the longest time.

2. Who are the inactive users.

3. Which user has got the most likes on a photo.

4. Which is the best day to launch Ads.

The following queries were raised by the investors: -

1. How active are users on Instagram

Total no of users on Instagram

Total no of photos

Module -3 Project: Operation & Metric Analytics

The third project was Operation Analytics and investigating metric spikes. Operation Analytics is the analysis done for the complete end to end operations of a company. This helps the company to understand in which areas they can improve. On the other hand, metric spike is done to understand certain trends like daily increase or dip in engagement, sales figures etc.

I first imported the data to SQL database and used certain SQL functions to get desired answers and then prepared a presentation in MS Office PowerPoint with relevant explanation.

There were two different case studies with different data sets for each one – Job Data and Investigating metric spike.

A brief description of both case studies and output required form both of them are given below: -

CASE STUDY 01 (JOB DATA)

- 1. Amount of jobs reviewed over time.
- 2. No. of events happening per second.
- 3. Share of each language for different contents.
- 4. Rows that have same values present in them.

CASE STUDY 02 (INVESTIGATING METRIC SPIKE)

- 5. To measure the activeness of a user.
- 6. Amount of users growing over time for a product.
- 7. Users getting retained weekly after signing up for a product.
- 8. To measure the activeness of a user weekly.
- 9. Users engaging with the email service.

I went through the data set closely, analyzed every column and checked for any duplicates or if any data cleaning is required. Then I began with finding solutions for above mentioned queries. Solutions to them are as below –

CASE STUDY 01 (JOB DATA)

1. Amount of jobs reviewed over time.

2. No. of events happening per second.

3. Share of each language for different contents.

4. Rows that have same values present in them.

CASE STUDY 02 (INVESTIGATING METRIC SPIKE)

5. To measure the activeness of a user.

6. Amount of users growing over time for a product.

```
SQL File 4° × events
 use opr_n_ma ;
           weeknum,
           new active user.
           sum(new_active_user)over(order by year,weeknum rows between unbounded preceding and current row) as cum_active_user
       FROM
 11
          extract(year from activated_at) as year,
 12
           extract(week from activated at) as weeknum,
 13
          count(distinct user_id) as new_active_user
 14
       FROM
 15
          users
 16
 17
          state = 'active'
 18
        group by
 19
          year,
 20
           weeknum
 21
 22
| Export: | Wrap Cell Content: IA
   year weeknum new_active_user cum_active_user
  2013 0
               23
                           23
  2013 0 23 25 25 25 2013 1 30 53
  2013
                           101
  2013 3 36
                       137
  2013
                           167
Result 47 ×

    Read Only
```

7. Users getting retained weekly after signing up for a product.

8. To measure the activeness of a user weekly.

9. Users engaging with the email service.

```
SQL File 4* events SQL File 6* SQL File 7" ×
 🗎 🗎 | 🏂 🟂 👰 🕒 | 🗞 | 💿 🚳 | Don't Limit
                                                            • | 🏡 | 🍼 🔍 🗻 🖃
         180.0*SUM(case when email_cat = 'email_open' then 1 else 0 END)/SUM(case when email_cat = 'email_sent' then 1 else 0 END) as email_open_rate,
180.0*SUM(case when email_cat = 'email_clicked' then 1 else 0 END)/SUM(case when email_cat = 'email_sent' then 1 else 0 END) as email_clicked_rate
          FROM
          when action IN ('sent_weekly_digest', 'sent_reengagement_email')
             THEN 'email_sent'
  10
        when action IN ('email_open')
            THEN 'email_open'
  11
  12 when action IN ('email_clickthrough')
13  THEN 'email_clicked'
  14 END as email_cat
15 FROM email_events
16 ) a
  17
  18
 Export: Wrap Cell Content: IA
```

After thorough analysis, we found out the answers for every question asked.

Module -4 Project: Hiring Process Analytics

The fourth project I did was hiring process analytics. It is the most important function of a company. Companies get to know about number of hirings, number of resignations, number of rejections, interviews, types of jobs, vacancies etc.

A brief description of the case study and output required is given below: -

- 1. How many males and females are Hired?
- 2. What is the average salary offered in this company?
- 3. Draw the class intervals for salary in the company?
- 4. Draw Pie Chart / Bar Graph (or any other graph) to show proportion of people working different department?
- 5. Represent different post tiers using chart/graph?

Before beginning with the analysis, I first went through the data, tried to understand every column, then checked for any duplicate data or if any data cleaning is required. After verifying all above mentioned processes I began with getting solutions for above mentioned problem statements.

The data was present in excel so performed the analysis in MS Excel and prepared a detailed report in MS PowerPoint. In order to make the report more presentable, used Pivot Tables to draw graphs. The answers are as follows -

1. How many males and females are Hired?

The formula used in excel was as follows: -

- COUNTIFS (C:C,"Hired", D:D,"Male")
- COUNTIFS (C:C,"Hired", D:D, "Female")

2. What is the average salary offered in this company?

3. Draw the class intervals for salary in the company?

4. Draw Pie Chart / Bar Graph (or any other graph) to show proportion of people working different department?

5. Represent different post tiers using chart/graph?

Module -5 Project: IMDB Movie Analysis

This is the fifth project I did. This was based on the movie rating platform IMDB. IMDB collects large amount of data of each movie like actors, directors, producers' names, public rating, budget, earnings, stores them in their databases and then analyses them based on their requirements. This project gives a brief idea about the movie analysis done by IMDB to give ratings based on different criteria.

Output required is given below: -

- 1. Clean the data
- 2. Find the movies with the highest profit?
- 3. Find IMDB Top 250
- 4. Find the best directors
- 5. Find popular genres
- 6. Find the critic-favorite and audience-favorite actors

The data was given in excel format, so I first tried to understand the data and variables stored in each column, then went on with data cleaning and finally beginning with the analysis. I used MS Excel to study and analyze data and then used MS PowerPoint to prepare a detailed report for the same.

The insights drawn from the data sets are as follows -

- 1. Clean the data
- 2. Find the movies with the highest profit?

Ans – Movie with the highest profit is Avatar.

3. Find IMDB Top 250

4. Find the best directors

The top 10 directors are as below: -

In .		
director_name	imdb_score	top 10 directors
John Blanchard Average	9.5	John Blanchard Average
John Blanchard	9.5	Frank Darabont Average
Frank Darabont Average	9.3	Francis Ford Coppola Average
Frank Darabont	9.3	John Stockwell Average
Francis Ford Coppola Average	9.2	Christopher Nolan Average
Francis Ford Coppola	9.2	Francis Ford Coppola Average
John Stockwell Average	9.1	Peter Jackson Average
John Stockwell	9.1	Steven Spielberg Average
Christopher Nolan Average	9	Quentin Tarantino Average
Christopher Nolan	9	Sergio Leone Average
Francis Ford Coppola Average	9	
Francis Ford Coppola	9	
Peter Jackson Average	8.9	
Ma		

5. Find popular genres

genres	imdb_score	top 10 genres
Comedy	9.5	Comedy Average
Comedy Average	9.5	Crime Drama Average
Crime Drama	9.3	Drama Average
Crime Drama Average	9.3	Action Average
Crime Drama	9.2	Action Crime Drama Thriller Average
Crime Drama Average	9.2	Crime Drama Thriller Average
Drama	9.1	Biography Drama History Average
Drama Average	9.1	Western Average
Drama	9.1	Action Adventure Sci-Fi Thriller Average
Drama Average	9.1	Action Adventure Drama Fantasy Average
Action	9.1	
Action Average	9.1	
Action Crime Drama Thriller	9	
Action Crima Drama Thriller Average	0	

6. Find the critic-favorite and audience-favorite actors

This completes our analysis as all questions have now been answered.

Module -6 Project: Bank Loan Case Study

This project is about a case study relayed to a Bank Loan. We have to carry out an EDA (Exploratory Data Analysis). Based on our analysis, we will get the solution for required questions.

I first analyzed the data. While analyzing, I found out that data had a lot of missing values. So, my first task was to get the missing values by performing mean, median and mode functions as required. So, I began by cleaning the data and then finding the outliers so as to make the data standardized. To perform the analysis, I used MS Excel 2019 for analysis and used MS Word to prepare the report.

So, let's begin with analysis......

1. Present the overall approach of the analysis. Mention the problem statement and the analysis approach briefly

First, we imported the data to excel.

Then, in order to clean data I, highlighted the blank cells first.

2. Identify the missing data and use appropriate method to deal with it. (Remove columns/or replace it with an appropriate value)

I found out the blank percentage and median of the column and filled the empty spaces there. (This is just for one table. Actual cleaning and filling of data is shown in excel file attached for other columns).

3. Identify if there are outliers in the dataset. Also, mention why do you think it is an outlier.

Foe Numerical columns, I found out the outliers and chose the value for the upper whisker as shown below. The credit amount value above 195000 is considered to be an upper whisker.

4. Identify if there is data imbalance in the data. Find the ratio of data imbalance. The ratio of imbalance for Target Table came out to be 91.92:8.07.

5. Explain the results of univariate, segmented univariate, bivariate analysis, etc. **in business terms.**

The results of univariate, segmented univariate, bivariate analysis are as follows -

To perform the analysis, I first divided the data into two sets i.e. Target - 0 and Target - 1

AMT_CREDIT

WEEKDAY_APPR_PROCESS_START

**	~
Target - 1	
WEEKDAY_APPR_PROCESS_START	Count
Sunday	1283
Monday	3934
Tuesday	4501
Wednesday	4238
Thursday	4098
Friday	4101
Saturday	2670

Target - 0		
WEEKDAY_APPR_PROCESS_START	Count	
Sunday	14898	
Monday	46780	
Tuesday	49400	
Wednesday	47696	
Thursday	46493	
Friday	46237	
Saturday	31182	

INSIGHTS – We can conclude that application starting process is less on Saturday and Sunday.

NAME_CONTRACT_TYPE

Target - 1		
NAME_CONTRACT_TYPE	Count	
Cash loans	23221	
Revolving loans	1604	
Target - 0		
NAME_CONTRACT_TYPE	Count	
Cash loans	255011	
Revolving loans	27675	
NAME_CONTRACT_TYPE	Count	Target
Cash loans	255011	1
Revolving loans	27675	1
Cash loans	23221	0
Revolving loans	1604	0

INSIGHTS – We can conclude that people prefer cash type loans more than other. People take more cash loans.

NAME_HOUSING_TYPE

Target	- 1
NAME_HOUSING_TYI	Count
House / apartment	21272
Co-op apartment	89
Municipal apartment	955
Office apartment	172
Rented apartment	601
With parents	1736
Target	- 0
NAME_HOUSING_TY	Count
House / apartment	251596
Co-op apartment	1033
Municipal apartment	10228
Office apartment	2445
Rented apartment	4280
With parents	13104

NAME_HOUSING_TY	Count	Target		
House / apartment	21272	1		
Co-op apartment	89	1		
Municipal apartment	955	1		
Office apartment	172	1		
Rented apartment	601	1		
With parents	1736	1		
House / apartment	251596	0		
	1033	0		
Co-op apartment				
Municipal apartment	10228	0		
Office apartment	2445	0		
Rented apartment	4280	0		
With parents	13104	0		
Sum of Count	Column Labels 🔻			
Row Labels	0	1	Grand Total	
Co-op apartment	1033	89	1122	
House / apartment	251596	21272	272868	
Municipal apartment	10228	955	11183	
Office apartment	2445	172	2617	
Rented apartment	4280	601	4881	
With parents	13104	1736	14840	
Grand Total	282686	24825	307511	

INSIGHTS – We can conclude that people living in houses fall in both the category of default loans and non-default loans.

6. Find the top 10 **correlation** for the Client with payment difficulties and all other cases (Target variable).

To find the correlation, we again divide the data into two sets based on Targets and consider Target -1 as defaulters.

NAME_EDUCATION_TYPE

INSIGHTS – We can find that people with education type as Secondary/Secondary Special are more likely to default and people with education type Academic degree default the least.

NAME_CONTRACT_TYPE and AMT_APPLICATION

INSIGHTS – If we sum the total amount for loan in applications, we find that that people mostly take cash loans.

AMT APPLICATION and AMT CREDIT

IX.	ی	J	v
AMT_APPLICATION	AMT_CREDIT		1
17145	17145	Correlation Coefficient	
607500	679671	0.975777217	
112500	136444.5		
450000	470790		
337500	404055		
315000	340573.5		
0	0		
0	0		

INSIGHTS – We find that the correlation coefficient is 0.9758 using excel formula =CORREAL.

AMT_INCOME_TOTAL and AMT_ANNUITY

W	Х	Υ	Z
AMT_INCOME_TOTAL	AMT_ANNUITY		
202500	24700.5		Correlation Coefficient
270000	35698.5		0.191657428
67500	6750		
135000	29686.5		
121500	21865.5		
99000	27517.5		

INSIGHTS – We find that the correlation coefficient is 0.19166 using excel formula =CORREAL.

CONCLUSION – From the above analysis, we can find out what kind of people and can repay loan, what kinds of loan people prefer to take, people taking loans come from what background, what is their source of income, for what type of people, the loan applications are refused and based on which conditions.

RESULTS: -

- 1. People with academic degree have less defaults.
- 2. People prefer cash loans more than any other type.
- 3. People with secondary/secondary special as education type have more chances of defaulting loans.
- 4. People who have less than 5 years of employment have high default rate.
- 5. Focused variable for application file Target.
- 6. Focused variable for Previous application file NAME CONTRACT STATUS.
- 7. Important fields to consider for loan repayment are –
- 8. NAME EDUCATION TYPE
- 9. AMT INCOME TOTAL
- 10. DAYS EMPLOYED
- 11. AMT_CREDIT
- 12. People with lower total income are more likely to default.
- 13. People with high Credit amount are less likely to default.

Module -7 Project: XYZ Ads Airing Report

This project is based on TV Ads airing report analysis. XYZ is an ads airing company. In this project we are provided with dataset having different TV Airing Brands, their product, their category. Dataset includes the network through which Ads are airing, types of networks like Cable/ Broadcast and the show name also on which Ads got aired. We can also see the data of Dayparts, Time zone and the time & date at which Ads got aired.

Here we have to analyse the brands and their advertisement strategies and most favourable brands and which brand has the highest share.

In this dataset, I first went through the data set to understand the details of the different variables and columns. I checked for any null values, missing or blank cells, duplicate data or if any data cleaning is required. After checking all these fields, I went up to perform the data analysis and answer the required questions. I used MS Excel 2019 to perform the analysis (used Pivot tables, different formulas) and MS Word 2019 to prepare a detailed report.

The questions asked along with their solutions are as follows -

Q1.) What is Pod Position? Does the Pod position number affect the amount spent on Ads for a specific period of time by a company? (Explain in Details with examples from the dataset provided)

Ans - Ad Pods" or "Podding" is a term used to refer to multiple ads that are placed together and then played back one after the other (back-to-back playback) in a single ad break.

Few important things to know about ad pod: -

- Individual ads in an ad pod have "sequence numbers" and these numbers determine the order in which the player should playback the ads.
- If an ad cannot be played, then the player moves on to the next ad based on the sequence number.
- The player must attempt to play all the ads in the pod, unless, the ads cannot be played back or they do not fit into the ad slot. For example, if three 30-second ads are returned for a 60-second ad slot.
- If an ad cannot be played, the player can playback the next ad in the sequence or playback a stand-alone/non-sequenced ad

Yes, the Pod position number affects the amount spent on Ads for a specific period of time by the company.

Q2.) What is the share of various brands in TV airings and how has it changed from Q1 to Q4 in 2021?

- Maruti Suzuki has the highest share in almost all quarters followed by Mahindra and Mahindra.
- Toyota has the lowest share in TV Airings.

Q.3.) Conduct a competitive analysis for the brands and define advertisement strategy of different brands and how it differs across the brands.

- Most of the brands spend most in daytime and least in overnight.
- Honda Cars spends relatively more in daytime than in other parts of day.
- Mahindra and Mahindra spend most in daytime.
- Maruti Suzuki spends most in primetime.

Q.4.) Mahindra and Mahindra want to run a digital ad campaign to complement its existing TV ads in Q1 of 2022. Based on the data from 2021, suggest a media plan to the CMO of Mahindra and Mahindra. Which audience should they target?

Company gave most ads during the primetime.

However, they should also increase ads during other times of day as there is audience throughout the day.

Module -8 Project: ABC Call Volume Trend

This project is based on call volume report analysis of a call center. ABC is a call center which has a separate team for voice process. In this project we are provided with dataset having details of agents, call duration, time duration, details on calls answered, abandoned and transferred. Data set also contains customer phone number, queue time, IVR time, date and time of call.

Here we have to analyse the rate of call which went unanswered and how many more agents are required to answer the call in both day and night shifts.

In this dataset, I first went through the data set to understand the details of the different variables and columns. I checked for any null values, missing or blank cells, duplicate data or if any data cleaning is required. After checking all these fields, I went up to perform the data analysis and answer the required questions. To perform the analysis, I used MS Excel 2019 for analysis and used MS Word to prepare the report.

Q1.) Calculate the average call time duration for all incoming calls received by agents (in each Time_Bucket).

- Average of call time duration answered by agents is 198.62 seconds.
- Average of call duration is highest between 10 to 11 am and 7 to 8 pm.

Q2.) Show the total volume/ number of calls coming in via charts/ graphs [Number of calls v/s Time]. You can select time in a bucket form (i.e. 1-2, 2-3,)

The number of calls increases from 9 am to 12 noon and then decreases.

Q3.) As you can see current abandon rate is approximately 30%. Propose a manpower plan required during each time bucket [between 9am to 9pm] to reduce the abandon rate to 10%. (i.e. You have to calculate minimum number of agents required in each time bucket so that at least 90 calls should be answered out of 100.)

/ /		
Description	unit	
Total no of working days per week	days	6
Total unplanned leaves per month	days	4
Total working hours	hrs	9
Time spent in lunch and snacks	hrs	1.5
Actual working hours	perc	60%
Avg time agent is occupied		
(60% of 7.5 hrs) daily	hrs	4.5
Total no. of days in a month	days	30

Time taken on average to answer calls (sec)	199.314176
Time requirement to answer 90% of the calls (hrs)	255.6204308
Total working person required per day	57

Day Calls	Avg answered calls	total calls	total calls in %	No. of agents required
09_10	199.0691057	9588	8.13%	5
10_11	203.3310302	13313	11.28%	6
11_12	199.2550234	14626	12.40%	7
12_13	192.8887829	12652	10.72%	6
13_14	194.7401744	11561	9.80%	6
14_15	193.6770755	10561	8.95%	5
15_16	198.8889175	9159	7.76%	4
16_17	200.8681864	8788	7.45%	4
17_18	200.2487831	8534	7.23%	4
18_19	202.5509677	7238	6.13%	3
19_20	203.4060725	6463	5.48%	3
20_21	202.845993	5505	4.67%	3
Average	199.314176		100.00%	57

,				171	.,
Count of Duratio	on(hh:r Call Status	▼			
Days	abandon		answered	transfer	Grand Total
⊕ 01-Jan		684	3883	77	4644
⊕ 02-Jan		356	2935	60	3351
⊞ 03-Jan		599	4079	111	4789
⊞ 04-Jan		595	4404	114	5113
⊕ 05-Jan		536	4140	114	4790
⊕ 06-Jan		991	3875	85	4951
⊕ 07-Jan		1319	3587	42	4948
⊕ 08-Jan		1103	3519	50	4672
⊕ 09-Jan		962	2628	62	3652
⊕ 10-Jan		1212	3699	72	4983
⊞ 11-Jan		856	3695	86	4637
⊕ 12-Jan		1299	3297	47	4643
⊞ 13-Jan		738	3326	59	4123
⊞ 14-Jan		291	2832	32	3155
⊞ 15-Jan		304	2730	24	3058
⊞ 16-Jan		1191	3910	41	5142
⊕ 17-Jan		16636	5706	5	22347
⊞ 18-Jan		1738	4024	12	5774
⊞ 19-Jan		974	3717	12	4703
⊞ 20-Jan		833	3485	4	4322
⊞ 21-Jan		566	3104	5	3675
⊞ 22-Jan		239	3045	7	3291
⊞ 23-Jan		381	2832	12	3225
Grand Total		34403	82452	1133	117988
		1496	3585	49	5130
		29.16%	69.88%	0.96%	
		30.00%	70%	1%	

- Total agents required to answer 90% of calls per day is 57.
- The amount of answered calls are 70%, abandon are 30% and transferred are 1% approximately.

Q4.) Let's say customers also call this ABC insurance company in night but didn't get answer as there are no agents to answer, this creates a bad customer experience for this Insurance company. Suppose every 100 calls that customer made during 9 Am to 9 Pm, customer also made 30 calls in night between interval [9 Pm to 9 Am] and distribution of those 30 calls are as follows:

Now propose a manpower plan required during each time bucket in a day. Maximum Abandon rate assumption would be same 10%.

ч-	_			
Call volume daily (9 AM - 9pm)	5130			
If we provide support in night, (9 PM - 9 AM)	1539			
Additional hours required	76.68613			
Additional HC	17			
Total HC	74			
Note - all values are taken from previous sheet				
4.5 - avg time agent is occupied - taken from prev sheet				

:
uired
2
2
1
1
1
1
1
1
2
2
2
3
17

- First calculated the Time Distribution by dividing each calls distribution by total calls i.e. 30.
- Total agents required to answer 90% of calls at night is 17.

CONCLUSION

After performing all the projects, I came to know about the real-world application of this data. I came to know how these big product companies use data driven insights to get best results in minimum time. I came to know about the various applications and importance of tools like SQL, MS Excel, MS Word, MS PowerPoint, use of formulas, logics, commands, Pivot Tables, graphs etc. I also came to understand how meaningful results can be drawn form such huge amount of data if they are properly sorted and cleaned. They can give the most accurate insights about the operations of a company and what improvements can be made in order to grow.

THANK YOU