Rechnernetze

Prof. Dr.-Ing. Martin Hübner

https://users.informatik.haw-hamburg.de/~huebner

Gliederung der Vorlesung

Top-Down-Ansatz:

Wir starten bei Anwendungen und hören vor der Bitübertragungsschicht auf

Inhalt:

- 1. Die Struktur des Internets
- 2. Anwendungsschicht
- 3. Analyse grundlegender Netzwerk-Eigenschaften
- 4. Transportschicht
- 5. Netzwerkschicht & Routing
- 6. Sicherungsschicht & LAN

Literaturempfehlungen

 James F. Kurose, Keith W. Ross: Computernetze – Der Top-Down-Ansatz, Pearson Studium, 6. Auflage, 2014 [JK/KR] Grundlage der Vorlesung (auch Quelle vieler Folien), didaktisch hervorragend, liest sich super!

Online-Version HAW-Bibliothek: https://katalog.haw-hamburg.de/vufind/Record/1694018881 [Zugriff nur im Netz der HAW Hamburg \rightarrow VPN-Zugang]

 Andrew S. Tanenbaum, David J. Wetherall: Computernetzwerke, Pearson Studium, 5. Auflage, 2012 [ATN] Umfangreiches, sehr gut geschriebenes Standardwerk

Online-Version HAW-Bibliothek: https://katalog.haw-hamburg.de/vufind/Record/773063056 [Zugriff nur im Netz der HAW Hamburg → VPN-Zugang]

... viele Bücher zum Themen Rechnernetze. Schwerpunkt: Internet und TCP/IP!

HAW Hamburg Rechnernetze HBN Kapitel 1

Kapitel 1

Die Struktur des Internets

- 1. Die Architektur des Internets
- 2. Protokollschichten

Folie 5

Grundlegende Bestandteile des Internets

- ISP: Internet Service Provider
- Millionen von verbundenen Computern und Geräten: Hosts ("Endgeräte")
 - PCs, Notebooks, Tablets, Server
 - Smartphones, IP-Telefone, Fernseher, Armbanduhren, ...

führen Netzwerk-Applikationen aus

- Kommunikationsverbindungen:
 - Kupferkabel (Twisted Pair, Koaxial)
 - Glasfaserkabel
 - Terrestrischer Funk (WLAN, Mobilfunk, Richtfunk)
 - Geostationäre Satelliten
- Router / Switches:
 Weitergabe von Daten-Paketen
 durch das Netzwerk

"Coole" Internet-Endgeräte

IP-Bilderrahmen http://www.ceiva.com

Armbanduhr mit Internetanschluss http://www.apple.com/de/watch/

Web-Toaster mit Wettervorhersage (kommerziell nicht erfolgreich)

Home-Security-Rover HSR-1 mit HD-Video, weltweit fernsteuerbar

http://www.7links.me

Rechnernetze HBN Kapitel 1

"Hello Barbie"-Puppe mit Internet-Anbindung

Internet-Zugriff für Navigation, Unterhaltung, Support

HAW Hamburg Folie 7

Grundlegende Bestandteile des Internets

- Internet: "Netzwerk von Netzwerken"
- Lose Hierarchisch
- Öffentliches Internet / privates Intranet
- ISP: Internet Service Provider
- Über ISP greifen Hosts auf das Internet zu
- > Ein ISP betreibt ein Netzwerk mit Routern
- ISPs sind wiederum untereinander verbunden
- Kleine lokale ISPs werden durch nationale und internationale übergeordnete ISPs (AT&T, Sprint, NTT, ...) verbunden

Anbindung von Firmennetzwerken / ISPs ===

- Zugangs-Netz: Firmennetzwerk oder lokaler ISP
- IXP: Internet Exchange Point für den Datenaustausch zwischen mehreren ISPs
- CDN: Content Distribution Network (z.B. Google, Microsoft, Netflix, Amazon, Akamai, ...) für die schnelle Auslieferung von Videos, Suchanfragen etc. mit vielen zusätzlichen Servern in IXPs und Zugangs-Netzen

Anbindung privater Heim-Netzwerke

Typische Komponenten:

- DSL "Digital Subscriber Line" Modem (Telefonleitung) oder Kabel-Modem (TV-Kabel) oder Glasfaser-Modem
- Router (mit integrierter Firewall) \rightarrow Kap. 4
- Privates LAN über Ethernet-Switch \rightarrow Kap. 5
- Zusätzlich WLAN-Zugang → Kap. 5

HAW Hamburg Folie 10

Grundlegende Bestandteile des Internets

- Protokolle
- Steuerung, Senden, Empfangen von Nachrichten
- > z.B.: TCP, IP, HTTP, FTP, PPP, ...
- Protokolle legen das Format der Pakete und die Regeln zum Austausch der Pakete fest
- Protokolle müssen standardisiert/normiert sein, damit jede Netzwerkkomponente die Spielregeln zum Übertragen von Informationen kennt
- Internet Standards
- » RFC: Request for comments (http://www.rfc-editor.org)
 Normierungsdokumente für die Internet Protokolle
- IETF: Internet Engineering Task Force (http://www.ietf.org)
 Entwickelt / steuert die Entwicklung der RFC
- World Wide Web Consortium /W3C (http://www.w3.org)

Internet - Geschichte

- 1961: Warteschlangentheorie zeigt die Effizienz der Paketvermittlung (Kleinrock)
- 1969: Der erste ARPAnet Knoten geht in Betrieb
- 1970: ALOHAnet Satelliten- Netzwerk in Hawaii
- 1974: Cerf und Kahn: Internetworking-Prinzipien:
 - > Autonomie aller Teilnetze
 - "Best effort"-Dienstmodell keine Zusicherungen über Zustelldauern etc.
 - Zustandslose Router
 - Dezentrale Steuerung
- 1980 1990: Neue Netzwerke:
 - > CSnet (USA, Wissenschaftsnetz), BITnet (Unis), Minitel (BTX-Frankreich), ...
 - > 100.000 Rechner im weltweiten Netzverbund

Internet - Geschichte

- 1990: ARPAnet abgeschaltet
- Ab 1992: World Wide Web
 - Hypertext
 - > HTML, HTTP
 - 1994: Mosaic, später Netscape-Browser
 - ab 1995: Kommerzialisierung des WWW (E-Commerce)
 - ab 1998: Internet-"Hype"
- Ab 2000: Abflauen der Internet-Euphorie
 - Herauskristallisierunglängerfristiger Anwendungen
 - verstärkte Sicherheitsprobleme

- Ab 2005: "Web 2.0"
 - Soziale Netzwerke
 - Internettelefonie
 - > Internetvideo und –fernsehen
- Ab 2010:
 - ➤ Konzentrationsprozess
 (Google, Amazon, Facebook,
 Netflix, ...) mit eigenen weltweiten
 privaten Netzen (→ CDN)
 - Cloud-Computing
 - Schnelle Zugänge (DSL, Kabel, LTE)
 - ➤ Smartphones als Endgerät
 → "Überall-Internet"
 - Sicherheitsproblematik bleibt

Kapitel 1

Die Struktur des Internets

- 1. Die Architektur des Internets
- 2. Protokollschichten

Protokoll-Beispiele

Menschliches Protokoll --- Netzwerk-Protokoll

Was ist ein Protokoll?

Menschliche Protokolle:

- "Wie spät ist es?"
- "Ich habe eine Frage"
- Vorstellung (einer Person)
- ... Senden bestimmter Nachrichten
- ... verursachen bestimmte Reaktionen beim Empfang

Netzwerkprotokolle:

- Ausführung durch Maschinen
- Gesamte Kommunikation im Internet wird durch die Protokolle gesteuert
- Protokolle sind standardisiert

Definition: Protokoll

- Ein Protokoll definiert das Format und die Reihenfolge von Nachrichten, die zwischen zwei oder mehr kommunizierenden Einheiten ausgetauscht werden, sowie die Aktionen, die beim Senden und/oder beim Empfang einer Nachricht oder eines anderen Ereignisses unternommen werden.
- Ein Protokoll ist die Spezifikation einer Schnittstelle, keine Implementierungsbeschreibung!

Flughafen A

Protokoll-Architektur: Schichtenmodell

Beispiel: Organisation einer Flugreise

Ticket (Beschwerde) Ticket (Kauf) Gepäck (Aufgabe) Gepäck (Abholung) Flugsteig (Einstieg) Flugsteig (Ausstieg) Rollbahn (Start) Rollbahn (Landung) Flugstreckenlenkung Flugstreckenlenkung

-Iughafen

Flugstreckenlenkung

- Schichten: jede Schicht implementiert einen Dienst (Service)
 - mittels ihrer eigenen Schicht-internen Aktionen
 - nimmt Dienste der unteren Schichten in Anspruch

Verteilte Implementierung der Dienste einer Schicht ("peer-to-peer")

Ein Reisender nimmt die Dienste von oben nach unten (Abflug A) bzw. unten nach oben (Ankunft B) in Anspruch

HAW Hamburg Folie 19

Internet-Schichtenmodell

- Anwendungsschicht ("application layer"):
 Realisierung von verteilten Applikationen
 (Kommunikation zwischen <u>Prozessen</u> auf verschiedenen Hosts)
 - > HTTP, SMTP, FTP, (DNS), ...
- Transportschicht ("transport layer"):
 Organisation des Host-zu-Host Datentransfers
 - > TCP, UDP, ...
- Netzwerkschicht ("network layer"):
 Adressierung, Pfadermittlung und Weiterleitung von Paketen durch das Netzwerk von einem Quell- zu einem Zielhost
 - > IPv4, IPv6, Routing-Protokolle (OSPF, BGP)
- Sicherungsschicht ("data link layer"):
 Zuverlässiger Datentransfer zwischen physikalisch verbundenen Netzwerkelementen / in lokalen Netzen
 - PPP, Ethernet, WLAN (IEEE 802.x)
- Bitübertragungsschicht ("physical layer"):
 Darstellung von Bits, abhängig vom physik. Medium
 - Codierungs- und Modulationsverfahren

Anwendungsschicht

Transportschicht

Netzwerkschicht

Sicherungsschicht

Bitübertragungssch.

Logische Kommunikation zwischen

Schichten

Jede Schicht:

- ist verteilt
- (Teil-)Funktion der Schicht läuft in jedem Netzwerk-Knoten (Host/ggf. Router)
- (Teil-)Funktion führt Aktionen durch und tauscht mit anderen (Teil-) Funktionen derselben Schicht Nachrichten aus (Partner-zu-Partner)

Logische Kommunikation zwischen Schichten

Bsp.: Transportschicht

- übernimmt Daten von einer Anwendung
- fügt u.a. Adressinformationen und eine Prüfsumme hinzu
- sendet Paket zum Partner ("Peer") auf Zielhost
- wartet auf Quittung ("Acknowledgement")

Protokoll-Schichten und Datenübergabe

- Implementierung der logischen Kommunikation durch zusätzliche Header-Bits
- Jede Schicht
 - übernimmt Datenpakete von der nächst höheren (niedrigeren) Schicht
 - fügt Header-Informationen für den Partner hinzu (entfernt Header-Informationen des Partners) und erzeugt ein neues Paket
 - > übergibt das neue Paket an die nächst untere (obere) Schicht

Physikalische Kommunikation zwischen Schichten Sander

Ergänzung um Sicherheitsprotokolle

Jede Netzwerkschicht kann für die höheren Schichten eigene Sicherheitsdienste (z.B. Verschlüsselung, Datenintegritätssicherung, Authentifikation) zur Verfügung stellen

- ... können je nach Bedarf verwendet oder ausgelassen werden
- ... verwenden eigene Header-Informationen
- ... sind also optionale "Zusatzschichten"!

Das ISO/OSI-Schichtenmodell (historisch)

- Zwei zusätzliche Schichten:
- Darstellungsschicht ("presentation layer"):

Konventionen zur einheitlichen Darstellung von Zeichen und Datentypen

- (→ Netzwerkmanagement!)
- > ASN.1
- Sitzungsschicht ("session layer"):
 Dienste zur Verwaltung von Sessions (Wiederaufnahme etc.)
 - > z.B. TLS (SSL)
- → wurden im Internet nicht wirklich benötigt (Theorie)
- → oft in Anwendung integriert

Anwendungsschicht

Darstellungsschicht

Sitzungsschicht

Transportschicht

Netzwerkschicht

Sicherungsschicht

Bitübertragungssch.

Zusammenfassung: Protokollschichten

- Jede Schicht implementiert einen Dienst (Service)
 - mittels ihrer <u>eigenen</u> Schicht-internen Aktionen
 - nimmt Dienste der unteren Schichten in Anspruch
- Logische Kommunikation mit Partner derselben Schicht (horizontal) auf anderem Netzwerk-Knoten
- Physikalische Kommunikation mit Schichten auf demselben Netzwerk-Knoten (vertikal):
 - Daten kommen von der höheren Schicht
 - Verarbeitung / Anfügen von Headerinformationen für den Partner
 - Weitergabe an untere Schicht

Grundlegende Protokollfunktionen

Fehlerkontrolle

Fehlererkennung und -behebung

Flusskontrolle

Vermeiden der Überlastung eines Knotens

Segmentierung und Reassemblierung

Aufteilung großer Datenblöcke durch den Sender und Zusammensetzen beim Empfänger

Multiplexen

Gemeinsame Nutzung einer einzigen Verbindung durch mehrere gleiche Verbindungen einer höheren Schicht

Verbindungsaufbau / -abbau

Handshake mit einem Partner derselben Schicht

Grundlegende Dienstarten für Protokolle

Verbindungsorientiert

- Aufbau einer expliziten Verbindung zwischen den Partnern (Handshake)
- Speichern von Zustandsinformationen im Endsystem

Verbindungslos

- Kein Verbindungsaufbau
- Übertragung von einzelnen Nachrichten

Ende des 1. Kapitels: Was haben wir geschafft?

1. Die Architektur des Internets

2. Protokollschichten

