(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 01.12.1999 Bulletin 1999/48

(51) Int. Cl.⁶: **B62D 7/22**

(21) Application number: 99110183.3

(22) Date of filing: 26.05.1999

(84) Designated Contracting States: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE Designated Extension States: AL LT LV MK RO SI

(30) Priority: 28.05.1998 JP 14675598

(71) Applicant: Musashi Seimitsu Kogyo Kabushiki Kaisha Toyohashi-Shi, Aichi-Ken (JP)

(72) Inventor: Kondo, Yasuhiro Gamagori-shi, Aichi-ken (JP)

(74) Representative: Liesegang, Eva Forrester & Boehmert, Franz-Josef-Strasse 38 80801 München (DE)

(54)Joint assembly for car steering systems

(57)The joint assembly (1) for a car steering system has a first ball joint (11), a tubular collar (25), an elastic member (26) and a second ball joint (21). The second ball joint (21) has a stem (23) provided with a recess (23a). The tubular collar (25) has a protrusion (25a) at an inside thereof and provided around the stem (23) in such a manner that the protrusion (25a) confronts the recess (13a). The elastic member (26) is provided between the recess (23a) of the stem (23) and the pro-

trusion (25a) of the collar (25). The first ball joint (11) has a hole (19) for accommodating the collar (25) covering the stem (23). According to the joint assembly (1), vibration generated at the wheel (71) is absorbed by the elastic member (26) and seldom gives the driver uncomfortableness or causes the driver to err in driving the car.

FIG. 2

Description

BACKGROUND OF THE INVENTION

Field of the Invention

[0001] This invention relates to a joint assembly for a steering system of a car or the like.

Disclosure of the related art

[0002] There are various types of car steering system. For example, the rack-pinion type of car steering system has a structure described below. As shown in Fig.8, a wheel support member 164 which supports a wheel 171 is connected with a rack bar (not shown) of a rack assembly 152 via a joint assembly 101 having a first ball joint 111. The rack teeth on the rack bar engage with a steering gear (not shown) arranged at the end portion of a steering shaft 154 extending from the steering wheel 155. According to this structure, rotational movement produced by rotating the steering wheel 155 is converted into linear movement in the car-width direction by the steering gear and the rack teeth, so that the wheel support member 164 is pulled or pushed to change the direction of the wheel 171.

[0003] As shown in Fig.9, a joint assembly 101, which joins the wheel support member 164 to the bar of the rack in the above structure, consists of a first ball joint 111 and a second ball joint 121. The first ball joint 111 has a housing 118 which is provided with a cylindrical threaded hole 119 at the end portion near the second ball joint. The second ball joint 121 has a ball stud 122 which is provided with a threaded stem 123. A male screw 123a of the threaded stem 123 and a female screw 118d of the cylindrical threaded hole 119 are engaged with each other, and are locked with a nut 141. [0004] Vibration generated at the wheel 171 is transmitted to the joint assembly 101 via the wheel support member 164 when the wheel 171 rides over protrusions on the road while the car is moving or when the car suddenly starts or stops. The vibration can moreover be transmitted to the steering wheel 155 which the driver directly manipulates. Therefore, the vibration gives uncomfortableness to the driver or causes the driver to err in driving the car.

SUMMARY OF THE INVENTION

[0005] It is an object of the present invention to solve those problems and to provide a joint assembly for car steering systems which can suppress the transmission of vibration from the wheel to the steering wheel.

[0006] According to the present invention, a joint assembly comprises: a ball joint having a stem provided with a recess; a tubular collar having a protrusion at an inside thereof and provided around the stem in such a manner that the protrusion confronts the recess; an

elastic member filled between and secured to the recess of the stem and the protrusion of the collar; and another ball joint having a hole for accommodating the collar covering the stem.

[0007] According to the feature, vibration generated at the wheel is absorbed by the elastic member and seldom gives uncomfortableness to the driver or causes the driver to err in driving the car.

[0008] The recess is preferably circumferentially formed on an outside of the stem. The protrusion is also preferably circumferentially formed on an inside of the collar.

[0009] An outside diameter of the stem is preferably larger than an inside diameter of the protrusion of the collar. In the case, withdrawal of the stem 23 is surely prevented.

[0010] The hole is preferably provided with a restraining portion for restraining the collar. In the case, the protrusion of the collar is prevented from being forcibly enlarged by shift of the stem along the axis thereof.

[0011] According to the present invention, another joint assembly comprises: a joint assembly comprising: a ball joint having a stem provided with a plurality of recesses; a tubular collar having a plurality of protrusions at an inside thereof and provided around the stem in such a manner that the protrusions confront the recesses; an elastic member filled between and secured to the recesses of the stem and the protrusions of the collar; and another ball joint having a hole for accommodating the collar covering the stem.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012]

Fig.1 is a schematic view of a steering mechanism including a joint assembly in a first embodiment of the invention;

Fig.2 is a schematic partial sectional view of the joint assembly in Fig.1;

Fig.3A is an enlarged view of the "A" section of Fig.2 in a normal state;

Fig.3B is an enlarged view of the "A" section of Fig.2 in a state in which the stem is pulled;

Figs.4A to 4C are explanatory views of manufacturing steps for a bush assembly;

Figs.5A and 5B are explanatory views of a first manufacturing step for the bush assembly;

Fig.6 is an explanatory view of a second manufacturing step for the bush assembly:

Fig.7 is a partial sectional view of the joint assembly in a second embodiment of the invention;

Fig.8 is a schematic view of a steering mechanism including a conventional joint assembly; and

Fig.9 is a schematic partial sectional view of the conventional joint assembly.

DESCRIPTION OF THE PREFERRED EMBODI-MENTS

[0013] Preferred embodiments of the present invention will now be described in detail with reference to the 5 accompanying drawings.

[0014] Fig. 1 shows a joint assembly 1 of a car steering system and its associated units. A suspension unit 61 has; a wheel support member 64 which supports a wheel 71, and an upper arm 62 and a lower arm 63 which connect and support the wheel support member 64 and the body of the car. The wheel support member 64 is connected with a rack bar (not shown) of a rack assembly 52 via the joint assembly 1 comprising a first ball joint 11. Rack teeth on the rack bar engage with a steering gear (not shown) arranged at an end portion of a steering shaft 54 extending from a steering wheel 55. Rotational movement produced by rotating the steering wheel 55 is converted into linear movement in the carwidth direction by the steering gear and the rack teeth, so that the wheel support member 64 is pulled or pushed to change the direction of the wheel 71.

[0015] As shown in Fig.2, the joint assembly 1, which is used in the steering mechanism, comprises a first ball joint 11 and a second ball joint 21.

[0016] The first ball joint 11 comprises a ball stud 12, which has a spherical head 14 and a stem 13 extending from the spherical head 14 and having a threaded portion 13a on the side opposite to the spherical head 14. The spherical head 14 of the ball stud 12 is held by a bearing 15 made of a synthetic resin. The bearing 15 is held by a housing 18 which has a smaller opening 18a, a larger opening 18b and a shank 18c extending therefrom. The stem 13 of the ball stud 12 protrudes through the smaller opening 18a. A closure disk 16 is fitted and secured to the inside circumference of the larger opening 18b by plastic deformation. The shank 18c of the housing 18 extends perpendicularly to the axis of the ball stud 12 and is provided with a cylindrical hole 19 at the terminal portion thereof. A boot 17 made of an elastic material is fitted in the region from an outer circumference of the stem 13 of the ball stud 12 to the outer circumference of the smaller opening 18a of the housing 18.

[0017] The second ball joint 21 comprises a ball stud 22, which has a spherical head 24 and a stem 23 extending from the spherical head 24 and having a diameter smaller than the inside diameter of the cylindrical hole 19 of the first ball joint 11. The stem 23 of the ball stud 22 is provided with a circumferential or annular recess 23a near the end portion on the side of the first ball joint. A tubular collar 25 is arranged around the end portion on the side of the first joint, concentrically with the stem 23. The collar 25 is provided with an annular protrusion 25a, which extends circumferentially of the coller 25 and protrudes toward the center axis, at a location facing or confronting the recess 23a of the stem 23. The protrusion 25a is formed by radially inwardly

deforming an annular wall portion of the collar 25. An elastic member 26 is provided in the gap between the collar 25 and the stem 23. As shown in Fig.3A, the outside diameter D of the stem 23 in the region without the recess 23a is larger than the inside diameter d of the protrusion 25a of the collar 25 in this case. A circumferential gap S is formed between the recessed outside wall of the protrusion 25a of the collar 25 and the cylindrical hole 19.

[0018] As shown in Fig.2, the spherical head 24 of the second ball joint 21 is held by a bearing 99 made of a synthetic resin. The bearing 99 is held by a housing 27 having an opening 27a. The stem 23 of the ball stud 22 protrudes through the opening 27a. The housing 27 is provided with a male threaded portion 29 on the side opposite to the opening 27a. The male threaded portion 29 engages with a female threaded portion 42 of a shifting bar 41 (for example, a rack bar) via a washer 43 for preventing undesirable rotation. A boot 28 made of an elastic material is provided to cover an area from an outside circumference of the stem 23 of the ball stud 22 to the outside circumference of a shifting bar case (not shown).

[0019] Manufacturing steps of the jointing portion "A" of the first ball joint 11 and the second ball joint 21 will be described below, with reference to Figs.4A to 6.

[0020] As shown in Fig.4A, there are prepared the ball stud 22, and the cylindrical collar 25 which has the inside diameter larger than the outside diameter D of the stem 23 of the ball stud 22 at the end portion on the side of the first ball joint 11. The collar 25 extends straight along the center axis thereof. As shown in Fig.5A, the collar 25 is arranged around the end portion of the stem 23 of the ball stud 22, concentrically with the stem 23. The ball stud 22 and the collar 25 are supported by a support jig (not shown) in the relative position shown. As shown in Fig.5B, the collar 25 is pressformed between an upper mold 82 and an lower mold 83 which have semi-annular shaping protrusions 82a and 83a at portions corresponding to halves of the recess 23a of the ball stud 22, respectively, in such a manner that the space K between the collar 25 and the stem 23 has a substantially even thickness. That is, this press-forming operation deforms the collar 25 to form the annular protrusion 25a. In this case, the protrusion 25a is formed in such a manner that an inside diameter d thereof is smaller than the outside diameter D of the stem 23.

[0021] Then, as shown in Fig. 6, the collar 25 and the ball stud 22 are arranged in a shaping mold 91 in such a manner that the space K between the stem 23 and the collar 25 has a substantially even thickness. That is, molds 91a and 91c holding the stem 23 and a mold 91b holding the collar 25 are positioned in such a manner that the space K has a substantially even thickness. Then, an elastic material is introduced into the space K by a supply means 92 to form the elastic member 26. As a result, a bush assembly 31 is completed as shown in

Fig.4C.

[0022] The bush assembly 31 provided on the second ball joint 21 is pressed and introduced into the cylindrical hole 19 of the first ball joint 11, and is fixed thereinto by plastic deformation.

[0023] As shown in Fig.1, the joint assembly 1 of this embodiment is used in such a manner that the first ball joint 11 is connected with the wheel support member 64 supporting the wheel 71 and the second ball joint 21 is connected with the rack bar (not shown) of the rack assembly 52. Therefore, vibration generated at the wheel 71 is effectively absorbed by the elastic member 26 and is not transmitted to the steering wheel 55 connected with the rack bar. Thus, vibration seldom gives the driver uncomfortableness or causes the driver to err in driving the car.

[0024] As shown in Fig.3B, shifting movement of the first ball joint 11 and the second ball joint 21 along the axis thereof is restricted within a deformable range of the elastic member 26 between the protrusion 25a of the collar 25 and the recess 23a of the stem 23. Thus, a "play-less" sensation is achieved in the directional manipulation of the wheel 71 by rotating the steering wheel 55. In addition, removal of the stem 23 out of the hole 19 is surely prevented.

[0025] Furthermore, a restraining portion 19a is formed at the end portion of the cylindrical hole 19 on the side of the second ball joint 21 by plastic deformation in the embodiment. Thus, both ends of the collar 25 are restrained by the bottom surface of the cylindrical hole 19 and the restraining portion 19a, respectively. Therefore, the protrusion 25a of the collar 25 is prevented from being forcibly enlarged by shift of the stem 23 along the axis thereof.

[0026] The joint assembly 1 in the above embodiment is provided with one recess 23a of the stem 23 and one protrusion 25a of the collar 25, but could be provided with a plurality of recesses and a plurality of protrusions arranged along the longitudinal direction of the stem 23 as shown in Fig.7.

Claims

1. A joint assembly comprising:

a ball joint having a stem provided with a recess;

a tubular collar having a protrusion at an inside thereof and provided around the stem in such a manner that the protrusion confronts the 50 recess;

an elastic member filled between and secured to the recess of the stem and the protrusion of the collar; and

another ball joint having a hole for accommodating the collar covering the stem.

2. A joint assembly according to claim 1, wherein the

recess is circumferentially formed on an outside of the stem.

- 3. A joint assembly according to claim 1 or 2, wherein the protrusion is circumferentially formed on an inside of the collar.
- 4. A joint assembly according to one of the preceding claims, wherein an outside diameter of the stem is larger than an inside diameter of the protrusion of the collar.
- 5. A joint assembly according to one of the preceding claims, wherein the hole is provided with a restraining portion for restraining the collar.
- 6. A joint assembly according to one of the preceding claims, wherein the joint assembly connects a shifting bar shiftable in a car-width direction and a wheel support member supporting a wheel.

7. A joint assembly comprising:

5

25

40

45

a ball joint having a stem provided with a plurality of recesses;

a tubular collar having a plurality of protrusions at an inside thereof and provided around the stem in such a manner that the protrusions confront the recesses:

an elastic member filled between and secured to the recesses of the stem and the protrusions of the collar; and

another ball joint having a hole for accommodating the collar covering the stem.

F | G. |

6

FIG. 3A

F I G. 3B

FIG. 4A

FIG. 4B

F 1 G. 4 C

FIG. 5A

F1G. 5B

9

F1G. 7

F I G. 9

F I G. 8

			•
			·

(12)

EUROPEAN PATENT APPLICATION

(88) Date of publication A3: 15.11.2000 Bulletin 2000/46

(51) Int. CI.⁷: **B62D 7/22**

- (43) Date of publication A2: 01.12.1999 Bulletin 1999/48
- (21) Application number: 99110183.3
- (22) Date of filing: 26.05.1999
- (84) Designated Contracting States:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Designated Extension States: AL LT LV MK RO SI

- (30) Priority: **28.05.1998 JP 14675598**
- (71) Applicant:

 Musashi Seimitsu Kogyo Kabushiki Kaisha
 Toyohashi-Shi, Aichi-Ken (JP)
- (72) Inventor: Kondo, Yasuhiro Gamagori-shi, Aichi-ken (JP)
- (74) Representative: Liesegang, Eva Forrester & Boehmert, Franz-Joseph-Strasse 38 80801 München (DE)

(54) Joint assembly for car steering systems

(57) The joint assembly (1) for a car steering system has a first ball joint (11), a tubular collar (25), an elastic member (26) and a second ball joint (21). The second ball joint (21) has a stem (23) provided with a recess (23a). The tubular collar (25) has a protrusion (25a) at an inside thereof and provided around the stem (23) in such a manner that the protrusion (25a) confronts the recess (13a). The elastic member (26) is provided between the recess (23a) of the stem (23) and the pro-

trusion (25a) of the collar (25). The first ball joint (11) has a hole (19) for accommodating the collar (25) covering the stem (23). According to the joint assembly (1), vibration generated at the wheel (71) is absorbed by the elastic member (26) and seldom gives the driver uncomfortableness or causes the driver to err in driving the car.

FIG. 2

EUROPEAN SEARCH REPORT

alegory	Citation of document with in of relevant passa		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI.5)
Y	FR 2 355 197 A (CITI 13 January 1978 (197 * page 1, line 1-18 * page 4, line 5-28 * page 8, line 19-27 * figure 1 *	78-01-13) * *	1-7	B62D7/22
Y	EP 0 654 617 A (HUT) 24 May 1995 (1995-0) * column 2, line 56 figure 3 *		1-7	
A	US 1 867 364 A (ROG 12 July 1932 (1932- * page 1, line 43-8	07-12)	1,6,7	
A	_	07–31)	1,6,7	TECHNICAL RELDS
	figure 6 *			SEARCHED (IN.C.S)
A	GB 2 050 271 A (YOL 7 January 1981 (198 * page 1, line 94-1	1-01-07)	1,2,6,7	B62D F16F F16C
	The present search report has	Date of completion of the secret		Exerciser
	MUNICH	21 September 20		ondeau, A
X:pa Y:pa do A:tex O:no	CATEGORY OF CITED DOCUMENTS inticularly relevant if taken alone undustry relevant if combined with and current of the same category chinological background on-written disclosure termediate document	T: theory or print E: earlier patent after the filing D: document ch	cipie underlying the document, but put	e invention olished on, or n

This annex lists the patent family members relating to the patent documents clied in the above—mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

ES 459773 A 01-04-19 EP 0654617 A 24-05-1995 FR 2712646 A 24-05-19 DE 69406088 D 13-11-19		alent document d in search rep		Publication date		Patent family member(s)	Publication date
DE 69406088 D 13-11-19 DE 69406088 T 05-03-19 ES 2107155 T 16-11-19 US 1867364 A 12-07-1932 NONE US 2757028 A 31-07-1956 CH 300428 A DE 882512 C FR 1012647 A 24-07-19 GB 2050271 A 07-01-1981 DE 2920637 A 04-12-19	FR	2355197	A	13-01-1978			27-10-19 01-04-19
DE 69406088 T 05-03-19 ES 2107155 T 16-11-19 US 1867364 A 12-07-1932 NONE US 2757028 A 31-07-1956 CH 300428 A DE 882512 C FR 1012647 A 24-07-19 GB 2050271 A 07-01-1981 DE 2920637 A 04-12-19	EP	0654617	A	- 24-05-1995	FR	2712646 A	24-05-19
ES 2107155 T 16-11-19 US 1867364 A 12-07-1932 NONE US 2757028 A 31-07-1956 CH 300428 A DE 882512 C FR 1012647 A 24-07-19 GB 2050271 A 07-01-1981 DE 2920637 A 04-12-19						69406088 D	13-11-19
US 1867364 A 12-07-1932 NONE US 2757028 A 31-07-1956 CH 300428 A DE 882512 C FR 1012647 A 24-07-1956 GB 2050271 A 07-01-1981 DE 2920637 A 04-12-1956							05-03-19
US 2757028 A 31-07-1956 CH 300428 A DE 882512 C FR 1012647 A 24-07-1956 DE 2920637 A 04-12-1956			ست مرس چه بره ا		ES	2107155 T	16-11-19
DE 882512 C FR 1012647 A 24-07-19 GB 2050271 A 07-01-1981 DE 2920637 A 04-12-19	US	1867364	A	12-07-1932	NON		
FR 1012647 A 24-07-19 GB 2050271 A 07-01-1981 DE 2920637 A 04-12-19	US	2757028	A	31-07-1956			
GB 2050271 A 07-01-1981 DE 2920637 A 04-12-19							
				· · · · · · · · · · · · · · · · · · ·	F R	1012647 A	24-07-1
FR 2457206 A 19-12-1	6B	2050271	A	07-01-1981	DE	2920637 A	04-12-19
					FR	2457206 A	19-12-19

For more details about this annex :see Official Journal of the European Patent Office, No. 12/82

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ OTHER: _____

THIS PAGE BLANK (USPTO)