Task: Exploratory Data Analysis - Retail

In this task, we will perform 'Exploratory Data Analysis' on dataset 'SampleSuperstore'. As a business manager, we will try to find out the weak areas where we can work to make more profit. Also, what all business problems can be derived by exploring the data.

By Gayathri R

Second

Second

Class

Class

2

Class

Consumer

Corporate

Consumer

```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import scipy.stats as stats
         from warnings import filterwarnings
         filterwarnings('ignore')
In [2]:
         #Reading the dataset
         retail = pd.read csv('SampleSuperstore.csv')
In [3]: retail
Out[3]:
                                                                                       Sub-
                  Ship
                                                           Postal
                                              City
                                                     State
                        Segment Country
                                                                 Region
                                                                         Category
                 Mode
                                                                                   Category
                                  United
                Second
                       Consumer
                                         Henderson Kentucky
                                                           42420
                                                                  South
                                                                          Furniture
                                                                                  Bookcases
                 Class
                                  States
```

Henderson Kentucky

Los Angeles California

Florida

Fort

Lauderdale

42420

33311

South

West

South

Furniture

Office

Supplies

Furniture

Chairs

Labels

Tables

United

States United

States

United

States

	Ship Mode	Seament	Country	City	State	Postal Code	Region	Category	Sub Category
4	Standard Class	C.onsumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage
9989	Second Class	(:onsilmer	United States	Miami	Florida	33180	South	Furniture	Furnishings
9990	Standard Class	(:onslimer	United States	Costa Mesa	California	92627	West	Furniture	Furnishings
999	Standard Class	(:onsilmer	United States	Costa Mesa	California	92627	West	Technology	Phones
9992	Standard Class	(.onglimer	United States	Costa Mesa	California	92627	West	Office Supplies	Pape
9993	Second Class	(:onsilmer	United States	Westminster	California	92683	West	Office Supplies	Appliances
9992	Standard Class Standard Class Second	d Consumer	United States United States	Costa Mesa	California	92627	West	Office Supplies Office	Pho Pa

9994 rows × 13 columns

In [4]: #top five observations
 retail.head()

Out[4]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	•
(Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Bookcases	261.
1	Second Class	Consumer	United States	Henderson	Kentucky	42420	South	Furniture	Chairs	731.
2	Second Class	Corporate	United States	Los Angeles	California	90036	West	Office Supplies	Labels	14.
(Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Furniture	Tables	957.
4	Standard Class	Consumer	United States	Fort Lauderdale	Florida	33311	South	Office Supplies	Storage	22.

```
#bottom five observations
In [5]:
          retail.tail()
Out[5]:
                                                                                              Sub-
                   Ship
                                                                Postal
                                                                       Region
                          Segment Country
                                                  City
                                                                                Category
                   Mode
                                                                 Code
                                                                                          Category
                 Second
                                     United
                         Consumer
                                                                                Furniture Furnishings
           9989
                                                Miami
                                                        Florida
                                                                33180
                                                                        South
                   Class
                                     States
                Standard
                                     United
           9990
                         Consumer
                                            Costa Mesa California
                                                                92627
                                                                                Furniture Furnishings
                                                                         West
                   Class
                                     States
                Standard
                                     United
                         Consumer
                                            Costa Mesa California
           9991
                                                                92627
                                                                         West Technology
                                                                                            Phones
                   Class
                                     States
                Standard
                                     United
                                                                                   Office
           9992
                         Consumer
                                            Costa Mesa California
                                                                92627
                                                                         West
                                                                                             Paper
                                     States
                   Class
                                                                                 Supplies
                  Second
                                                                                  Office
                                     United
                         Consumer
                                                                                         Appliances
           9993
                                           Westminster California
                                                                92683
                                                                         West
                   Class
                                     States
                                                                                 Supplies
In [6]:
          #data size
          retail.shape
Out[6]: (9994, 13)
          Reading the information that is provided in the dataset
In [7]:
          #data info
          retail.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 9994 entries, 0 to 9993
          Data columns (total 13 columns):
          Ship Mode
                             9994 non-null object
          Segment
                             9994 non-null object
                             9994 non-null object
          Country
```

City 9994 non-null object 9994 non-null object State Postal Code 9994 non-null int64 Region 9994 non-null object Category 9994 non-null object Sub-Category 9994 non-null object 9994 non-null float64 Sales Quantity 9994 non-null int64 Discount 9994 non-null float64 Profit 9994 non-null float64 dtypes: float64(3), int64(2), object(8)

memory usage: 1015.1+ KB

In [8]: #checking for missing data retail.isnull()

Out[8]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sub- Category	Sales	Quanti
0	False	False	False	False	False	False	False	False	False	False	Fals
1	False	False	False	False	False	False	False	False	False	False	Fals
2	False	False	False	False	False	False	False	False	False	False	Fals
3	False	False	False	False	False	False	False	False	False	False	Fals
4	False	False	False	False	False	False	False	False	False	False	Fals
9989	False	False	False	False	False	False	False	False	False	False	Fals
9990	False	False	False	False	False	False	False	False	False	False	Fals
9991	False	False	False	False	False	False	False	False	False	False	Fals
9992	False	False	False	False	False	False	False	False	False	False	Fals
9993	False	False	False	False	False	False	False	False	False	False	Fals

9994 rows × 13 columns

```
In [9]: retail.isnull().sum()
 Out[9]: Ship Mode
           Segment
                              0
           Country
           City
           State
           Postal Code
           Region
           Category
           Sub-Category
           Sales
           Quantity
           Discount
                              0
           Profit
                              0
           dtype: int64
In [10]: sns.heatmap(retail.isnull(),yticklabels=False,cbar=False,cmap='viridis'
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x21efb8bd248>
                    Country
                                                     Discount
            Ship Mode
                       City
                           State
                                   Region
                                      Category
                                                 Quantity
                               Postal Code
                                          Sub-Category
```

In [11]: #statistics of the data
 retail.describe()

Out[11]:

	Postal Code	Sales	Quantity	Discount	Profit
count	9994.000000	9994.000000	9994.000000	9994.000000	9994.000000
mean	55190.379428	229.858001	3.789574	0.156203	28.656896
std	32063.693350	623.245101	2.225110	0.206452	234.260108
min	1040.000000	0.444000	1.000000	0.000000	-6599.978000
25%	23223.000000	17.280000	2.000000	0.000000	1.728750
50%	56430.500000	54.490000	3.000000	0.200000	8.666500
75%	90008.000000	209.940000	5.000000	0.200000	29.364000
max	99301.000000	22638.480000	14.000000	0.800000	8399.976000

Checking for the duplicate data

In [12]: #checking for duplicate data

retail.duplicated().sum()

Out[12]: 17

In [13]: duplicate=retail.duplicated()

retail[duplicate]

Out[13]:

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sı Catego
950	Standard Class	Home Office	United States	Philadelphia	Pennsylvania	19120	East	Office Supplies	Par
3406	Standard Class	Home Office	United States	Columbus	Ohio	43229	East	Furniture	Cha

	Ship Mode	Segment	Country	City	State	Postal Code	Region	Category	Sı Catego
3670	Standard Class	Consumer	United States	Salem	Oregon	97301	West	Office Supplies	Par
4117	Standard Class	Consumer	United States	Los Angeles	California	90036	West	Office Supplies	Par
4553	Standard Class	Consumer	United States	San Francisco	California	94122	West	Office Supplies	Par
5905	Same Day	Home Office	United States	San Francisco	California	94122	West	Office Supplies	Lab
6146	Standard Class	Corporate	United States	San Francisco	California	94122	West	Office Supplies	
6334	Standard Class	Consumer	United States	New York City	New York	10011	East	Office Supplies	Par
6357	Standard Class	Corporate	United States	Seattle	Washington	98103	West	Office Supplies	Par
7608	Standard Class	Consumer	United States	San Francisco	California	94122	West	Office Supplies	Par
7735	Standard Class	Corporate	United States	Seattle	Washington	98105	West	Office Supplies	Par
7759	Standard Class	Corporate	United States	Houston	Texas	77041	Central	Office Supplies	Par
8032	First Class	Consumer	United States	Houston	Texas	77041	Central	Office Supplies	Par
8095	Second Class	Consumer	United States	Seattle	Washington	98115	West	Office Supplies	Par
9262	Standard Class	Consumer	United States	Detroit	Michigan	48227	Central	Furniture	Cha
9363	Standard Class	Home Office	United States	Seattle	Washington	98105	West	Furniture	Furnishir
9477	Second Class	Corporate	United States	Chicago	Illinois	60653	Central	Office Supplies	Binde
4									•

```
In [14]: retail.drop duplicates(inplace = True)
In [15]: #confirming all duplicates are removed
         rd = retail.duplicated()
         rd.sum()
Out[15]: 0
In [16]: #checking the unique values
         retail.nunique()
Out[16]: Ship Mode
                            4
         Segment
                            3
         Country
                            1
         City
                          531
         State
                            49
         Postal Code
                          631
         Region
                            4
         Category
                            3
         Sub-Category
                           17
         Sales
                         5825
         Quantity
                           14
         Discount
                           12
         Profit
                         7287
         dtype: int64
In [17]: retail.State.unique()
Out[17]: array(['Kentucky', 'California', 'Florida', 'North Carolina',
                 'Washington', 'Texas', 'Wisconsin', 'Utah', 'Nebraska',
                'Pennsylvania', 'Illinois', 'Minnesota', 'Michigan', 'Delaware',
                'Indiana', 'New York', 'Arizona', 'Virginia', 'Tennessee',
                'Alabama', 'South Carolina', 'Oregon', 'Colorado', 'Iowa', 'Ohi
         ο',
                'Missouri', 'Oklahoma', 'New Mexico', 'Louisiana', 'Connecticu
         t',
                'New Jersey', 'Massachusetts', 'Georgia', 'Nevada', 'Rhode Islan
         d',
                'Mississippi', 'Arkansas', 'Montana', 'New Hampshire', 'Marylan
```

```
d',
                   'District of Columbia', 'Kansas', 'Vermont', 'Maine',
                   'South Dakota', 'Idaho', 'North Dakota', 'Wyoming',
                   'West Virginia'], dtype=object)
In [18]: retail.Country.unique()
Out[18]: array(['United States'], dtype=object)
In [19]: #removing the unimportant columns
          retail=retail.drop(['Country', 'Postal Code'], axis=1)
In [20]: #summary of dataset
          retail.describe()
Out[20]:
                       Sales
                                Quantity
                                           Discount
                                                         Profit
                  9977.000000 9977.000000 9977.000000
                                                    9977.00000
           count
                   230.148902
                                3.790719
                                           0.156278
                                                      28.69013
           mean
                                           0.206455
             std
                   623.721409
                                2.226657
                                                     234.45784
                     0.444000
                                1.000000
                                           0.000000 -6599.97800
             min
            25%
                    17.300000
                                2.000000
                                           0.000000
                                                       1.72620
            50%
                    54.816000
                                3.000000
                                           0.200000
                                                       8.67100
            75%
                   209.970000
                                5.000000
                                           0.200000
                                                      29.37200
            max 22638.480000
                               14.000000
                                           0.800000
                                                    8399.97600
          retail.hist(figsize=(15, 10), bins=50)
In [21]:
          plt.show()
```


Checking the statistical relation between the various rows & columns

In [22]: #Correlation between the Sales, Quantity, Discount and Profit
retail.corr()

Out[22]:

	Sales	Quantity	Discount	Profit
Sales	1.000000	0.200722	-0.028311	0.479067
Quantity	0.200722	1.000000	0.008678	0.066211
Discount	-0.028311	0.008678	1.000000	-0.219662

```
Sales Quantity Discount
                                                  Profit
              Profit 0.479067 0.066211 -0.219662
                                                1.000000
In [23]: #Checking correlation between columns visually
           f,ax = plt.subplots(figsize=(15, 10))
           sns.heatmap(retail.corr(),annot=True)
Out[23]: <matplotlib.axes._subplots.AxesSubplot at 0x21efe65e848>
                                                                                           - 1.00
                                                                                           - 0.75
                                                       0.0087
                                                                         0.066
                                                                                           - 0.50
                                                                                           - 0.25
                     -0.028
                                      0.0087
                                                                                           - 0.00
                                                                          1
Profit
                     Sales
                                     Quantity
                                                       Discount
In [24]: #Covariance between the Sales, Quantity, Discount and Profit
           retail.cov()
```

Out[24]:

		Sales	Quantity	Discount	Profit
	Sales	389028.396022	278.765576	-3.645637	70057.067126
	Quantity	278.765576	4.958001	0.003990	34.565743
	Discount	-3.645637	0.003990	0.042624	-10.632751
	Profit	70057.067126	34.565743	-10.632751	54970.478824

```
In [25]: #Checking correlation between columns visually
    f,ax = plt.subplots(figsize=(15, 10))
    sns.heatmap(retail.cov(),annot=True)
```

Out[25]: <matplotlib.axes._subplots.AxesSubplot at 0x21efe6d54c8>

Data Visualization & Analysis

	Ship Mode	Segment	City	State	Region	Category	Sub- Category	Sales	Quantity	C
0	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Bookcases	261.9600	2	
1	Second Class	Consumer	Henderson	Kentucky	South	Furniture	Chairs	731.9400	3	
2	Second Class	Corporate	Los Angeles	California	West	Office Supplies	Labels	14.6200	2	
3	Standard Class	Consumer	Fort Lauderdale	Florida	South	Furniture	Tables	957.5775	5	
4	Standard Class	Consumer	Fort Lauderdale	Florida	South	Office Supplies	Storage	22.3680	2	
4										•

Establishing the relationship between Sales, Quantity, Discount & Profit

```
In [28]: sns.pairplot(retail)
```

Out[28]: <seaborn.axisgrid.PairGrid at 0x21efe965f08>


```
In [29]: #category wise sales in different regions
   plt.figure(figsize=[20,15])
   ax = sns.catplot(x="Region", y="Sales", hue="Category", data=retail, ki
   nd='bar', aspect=3, height=5)
```

<Figure size 1440x1080 with 0 Axes>

Analyzing Orders

Orders of different states in the USA

```
In [30]: retail['State'].value_counts().plot(kind = 'bar', figsize=(20,15))
```

Out[30]: <matplotlib.axes._subplots.AxesSubplot at 0x21efdcd8748>

Top 50 cities with maximum orders

```
In [31]: retail['City'].value_counts().head(50).plot(kind = 'bar', figsize=(20,1 5))
```

Out[31]: <matplotlib.axes._subplots.AxesSubplot at 0x21e81709248>

Bottom 50 cities with minimum orders

```
In [32]: retail['City'].value_counts().tail(50).plot(kind = 'bar', figsize=(20,1
5))
```

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x21e811df748>

Analyzing

Profits by Shipmode

```
sns.catplot('Ship Mode', 'Profit', data=shipmode_profit, kind='bar', as
           pect=3, height=5)
Out[33]: <seaborn.axisgrid.FacetGrid at 0x21e82405d48>
            160000
            140000
            120000
            100000
             80000
             60000
             40000
             20000
                                                                                   Same Day
                       Standard Class
                                           Second Class
                                                               First Class
                                                     Ship Mode
          Profits by Segment
In [34]: segment_profit=retail.groupby('Segment')['Profit'].sum().reset_index().
           sort_values(by='Profit', ascending=False)
           sns.catplot('Segment', 'Profit', data=segment profit, kind='bar', aspec
           t=3, height=5)
Out[34]: <seaborn.axisgrid.FacetGrid at 0x21e81dc9cc8>
            140000
            120000
            100000
             80000
             60000
             40000
             20000
```

Corporate

Consumer

Home Office

Profits by Region

```
In [36]: region_profit=retail.groupby('Region')['Profit'].sum().reset_index().so
    rt_values(by='Profit', ascending=False)
    sns.catplot('Region', 'Profit', data=region_profit, kind='bar', aspect=
    3, height=5)
```

Out[36]: <seaborn.axisgrid.FacetGrid at 0x21e82336ec8>

Profits by Category

Out[37]: <seaborn.axisgrid.FacetGrid at 0x21e823362c8>

Profits by Sub-Categories

```
In [38]: subcategory_profit=retail.groupby('Sub-Category')['Profit'].sum().reset
    _index().sort_values(by='Profit', ascending=False)
    sns.catplot('Sub-Category', 'Profit', data=subcategory_profit, kind='ba
    r', aspect=3, height=5)
```

Out[38]: <seaborn.axisgrid.FacetGrid at 0x21e8232f1c8>

Profits of Top 10 States

```
In [39]: states_profit=retail.groupby('State')['Profit'].sum().reset_index().sor
t_values(by='Profit', ascending=False)
top10_states_profit=states_profit.head(10)
sns.catplot('State', 'Profit', data=top10_states_profit, kind='bar', as
pect=4, height=4)
```

Out[39]: <seaborn.axisgrid.FacetGrid at 0x21e832f7948>

Profits of Bottom 10 States

Out[40]: <seaborn.axisgrid.FacetGrid at 0x21e83665c88>

Profits of Top 10 Cities

```
In [41]: city_profit=retail.groupby('City')['Profit'].sum().reset_index().sort_v
    alues(by='Profit', ascending=False)
    top10_city_profit=city_profit.head(10)
    sns.catplot('City', 'Profit', data=top10_city_profit, kind='bar', aspec
    t=4, height=5)
```

Out[41]: <seaborn.axisgrid.FacetGrid at 0x21e83665cc8>

Profits of Bottom 10 Cities

Sales vs Profit

```
In [42]: sns.jointplot(retail['Sales'], retail['Profit'], kind = "reg").annotate
    (stats.pearsonr)
    plt.show()
```


Quantity vs Profit

```
In [43]: sns.jointplot(retail['Quantity'], retail['Profit'], kind = "reg").annot
    ate(stats.pearsonr)
    plt.show()
```


Discount vs Profit

```
In [44]: sns.jointplot(retail['Discount'], retail['Profit'], kind = "reg").annot
    ate(stats.pearsonr)
    plt.show()
```


Outcomes and Conclusion

Initially we have dropped the columns namely "Country" as entire dataset was of the United States only & "Postal Code" because we didn't find much need for keeping it.

It was observed that "Sales" positively affected the "Profit" to certain level while we did not find "Quantity" & "Discount" to be affecting the profit to maximum extent.

Sale of products were seen maximum in the "East" and "South" region of the country but Profit was seen maximum in "West" & "East" implying that although after selling maximum products in

Southern region the profit is minimum when compared to other region. Hence we need to rectify this issue and need to plan and exectue accordingly for geting the required profit.

"Standard Class" Shipmode generated maximum profits when compared to "Second Class" & "First Class". We have to look for generating moderate profit on the "Same Day".

Maximum profit was observed in "Technology" category while "Office Supplies" was not much behind while profit from "Furniture" category was really bad.

After checking out for profit in "Sub-Categories" we found out that "Tables" & "Bookcases" was showing negative as a result of which profit from "Furniture" category was the least.

It was observed that cities from where we received maximum orders, we also made significant amount of profit. For example, New York, Los Angeles, San Francisco, Seattle, San Diego etc.