Assignment-2

Algebraic Geometry

Trishan Mondal, Soumya Dasgupta, Aaratrick Basu

CHAPTER 1

Problem 2.1. Parametrise the conic $C:(x^2+y^2=5)$ by considering a variable line though (2,1) and hence find all rational solutions of $x^2+y^2=5$.

Solution. Let ℓ be any line through the point (2,1) with slope t, then equation of ℓ is given by

$$y = t(x-2) + 1.$$

Now we know that ℓ intersects the conic $C: x^2+y^2-5=0$ at two points one of which is (2,1), to find the other point we substitute y=t(x-2)+1 in the equation $x^2+y^2-5=0$, we get that

$$(1+t^2)x^2 + 2t(1-2t)x + 4(t^2 - t - 1) = 0.$$

Since 2 is already a root of this equation we get the other root to be

$$x_t = \frac{2(t^2 - t - 1)}{1 + t^2} \Rightarrow y_t = \frac{-t^2 - 4t + 1}{1 + t^2}.$$

This gives us a bijection from $\varphi: (C \setminus \{(2,1)\}) \cap (\mathbb{Q} \times \mathbb{Q}) \to \mathbb{Q}$, as follows,

$$\varphi(x,y) = \frac{y-1}{x-2}.$$

With the inverse map given by $\varphi^{-1}(t)=\left(\frac{2(t^2-t-1)}{1+t^2},\frac{-t^2-4t+1}{1+t^2}\right)$. Thus we get all the rational solutions of $x^2+y^2=5$ are $\left\{\left(\frac{t^2-t-1}{1+t^2},\frac{-t^2-4t+1}{1+t^2}\right)\mid t\in\mathbb{Q}\right\}\cup\{(2,1)\}$.

Problem 2.2. Let p be a prime, by experimenting with various p, guess a necessary and sufficient condition for $x^2 + y^2 = p$ to have rational solutions; prove your guess.

Solution. We claim that $x^2 + y^2 = p$, has a rational solution if and only if p is prime of the form 4k + 1. From elementary number theory we know that if p = 4k + 1 for some k, then there exists integer a, b such that $a^2 + b^2 = p$, thus in this case $x^2 + y^2 = p$ has a rational solution.

 $a^2+b^2=p$, thus in this case $x^2+y^2=p$ has a rational solution. Conversely suppose $x^2+y^2=p$ has a rational solution, let $x=\frac{a}{b}$ and $y=\frac{c}{d}$ with $\gcd(a,b)=\gcd(c,d)=1$. Then we get that

$$(ad)^2 + (cb)^2 = p(bd)^2.$$

Now let q be a prime dividing b say $q^{\alpha} \mid b$, then from $(ad)^2 = b^2(pd^2 - c^2)$ we get that $q^{\alpha} \mid ad$, but $q \nmid a$, hence $q^{\alpha} \mid d$. Similarly we get that if r is prime divisor of d, say $r^{\beta} \mid d$, then $r^{\beta} \mid b$. Thus we can say that $b = \pm d$. Hence we get that

$$a^2 + c^2 = pb^2$$

Now if $p \mid c$, then we must have $p \mid a$, which in fact implies that $p \mid b$ (contradiction!), thus we must have $p \nmid c$ and $p \nmid a$. But then let $s = ac^{-1}$ modulo p, then $s^2 = -1$ modulo p. Thus the group \mathbb{F}_p^* has an element of order 4. Thus we get that

$$4 \mid |\mathbb{F}_{p}^{*}| = p - 1 \Rightarrow p = 4k + 1.$$

Hence, we have proved that $x^2 + y^2 = p$ has a rational solution if and only if p = 4k + 1 prime.

Problem 2.3. Let P_1, \ldots, P_4 be distinct points of \mathbb{P}^2 with no 3 collinear. Prove that there is a unique coordinate system in which the 4 points are (1,0,0), (0,1,0), (0,0,1) and (1,1,1). Find all conincs passing through P_1, \ldots, P_5 where $P_5 = (a,b,c)$ is some other point, and use this to give another proof of Corollary 1.10 and Corollary 1.11.

Solution. Note that since no three of P_1, P_2, P_3 and P_4 are collinear in \mathbb{P}^2_k (we fix a representation in k^3 for all of these points), we get that as points in k^3 any three of them are linearly independent. And we can always find $u_1, u_2, u_3 \in k \setminus \{0\}$ such that

$$P_4 = u_1 P_1 + u_2 P_2 + u_3 P_3.$$

None of u_1, u_2, u_3 can be 0, because otherwise the other three points would be collinear in \mathbb{P}^2_k . Now there exists an unique linear map $T: k^3 \to k^3$ such that $T(P_i) = \frac{1}{u_i} \mathbf{e}_i$ for i = 1, 2, 3. Then observe that $T(P_4) = (1, 1, 1)$. Now since $T(\lambda x) = \lambda T(x)$, we get that T induces a map from $\mathbb{P}^2_k \to \mathbb{P}^2_k$ such that $T(P_i) = [\mathbf{e}_i]$ for i = 1, 2, 3 and $T(P_4) = [1, 1, 1]$. Hence, we have proved that there exists a unique coordinate system in which the 4 points are (1, 0, 0), (0, 1, 0), (0, 0, 1) and (1, 1, 1).

Conics passing through P_1, \ldots, P_5 where $P_5 = (a, b, c)$. Let $Q = Ax^2 + Bxy + Cy^2 + Dxz + Eyz + Fz^2$ represent a conic passing through P_1, \ldots, P_5 , then plugging in all the points, we get that

$$A=C=F=0$$
 and $B+D+E=0$ and $B(ab)+D(ac)+E(bc)=0$.

But then note that B+D+E=0 and B(ab)+D(ac)+E(bc)=0 defines a two planes, and the in order to find all the conics passing through P_1,\ldots,P_5 its sufficient to find the points in the intersection of the two planes. And it is obvious that the intersection of the two planes $\pi_1:B+D+E=0$ and $\pi_2:B(ab)+D(ac)+E(bc)=0$, is either a line (i.e., a one dimensional vector space) or a plane (when $(ab,ac,bc)=\lambda(1,1,1)$ for some $\lambda\in k$).

Proof of Corollary 1.10. Note that if $(ab,ac,bc)=\lambda(1,1,1)$ and $\lambda\neq 0$, then we get that a=b=c, hence $(a,b,c)=P_4$ in \mathbb{P}^2_k . On the other hand if $\lambda=0$, at least two among a,b,c is zero, and since $(a,b,c)\in\mathbb{P}^2_k$, the other coordinate has to be nonzero, hence in this case $(a,b,c)\in\{P_1,P_2,P_3\}$.

Hence if $P_5 \notin \{P_1, \dots, P_4\}$ (i.e., none of the fours points P_1, \dots, P_5 are collinear), we get that the intersection of the two planes π_1 and π_2 is a line, i.e., a one dimensional vector space, hence we can conclude that

$$\dim S_2(P_1,\ldots,P_5)=1.$$

Thus we have proved that if $P_1, \ldots, P_5 \in \mathbb{P}^2_k$ are distinct points and no 4 are collinear, there exists exactly one conic through P_1, \ldots, P_5 (which completes the proof of Corollary 1.10).

Proof of Corollary 1.11. Using Corollary 1.10, we can say that

$$1 = \dim S_2(P_1, \dots, P_5) \ge \dim S_2(P_1, \dots, P_n) - (5 - n)$$

since each point imposes at most one linear condition, hence we get that

$$\dim S_2(P_1,\ldots,P_n) \le 6 - n,$$

From the previous proposition we have seen $\dim S_2(P_1, \dots, P_n) \ge 6 - n$, so we get equality. which completes the proof of Corollary 1.11.

Problem 2.4. In (1.12) there is a list of possible ways in which two conics can intersect. Write down the equations showing that each possibility really occurs. Find all the singular conics in the corresponding pencils.

Problem 2.5. Let k be an algebraically closed field, and suppose given a quadratic and cubic form in U, V as in (1.8):

$$q(U,V) = a_0 U^2 + a_1 UV + a_2 V^2$$

$$c(U,V) = b_0 U^3 + b_1 U^2 V + b_2 UV^2 + b_3 V^3.$$

Prove that q and c have a common zero $(\eta : \tau) \in \mathbb{P}^1$ *if and only if*

$$\det \begin{vmatrix} a_0 & a_1 & a_2 & & & \\ & a_0 & a_1 & a_2 & & \\ & & a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 & b_3 & & \\ & b_0 & b_1 & b_2 & b_3 \end{vmatrix} = 0$$

We will show that q and c has a common factor if and only if there exists homogeneous polynomials r and s with degree 2 and 1 respectively such that rq + sc = 0.

If there exists a common root $[\eta,\tau]\in\mathbb{P}$ of q and c, WLOG assume that $\tau\neq 0$ (the case when $\eta\neq 0$ can be tackled similarly), then $[\alpha,1]\in\mathbb{P}^1_k$ is a common root of q and c. Thus we get that $q(U,V)=(U-\alpha V)q_1(U,V)$ and $c(U,V)=(U-\alpha V)c_1(U,V)$ were q_1 and c_1 are non-zero polynomials. Then we can take $r=c_1$ and $s=-q_1$ with then have $\deg r=2$ and $\deg s=1$ and rq+sc=0.

Conversely suppose there exists non zero homogeneous polynomials r, s with degree 2 and 1 respectively such that rq + sc = 0, then we get that rq = -sc. Now note that k[U, V] is a UFD we get that there exists some irreducible factor of q which divides c (because $\deg s < \deg q$, hence all the irreducible factors of q can not divide s). But then since k is algebraically closed the common irreducible factor has a root, hence q and c has a common root in \mathbb{P}^1_k .

Now it is evident that rq+sc=0 for some non-zero homogeneous polynomials r,s of degree 2,1 respectively if and only if the polynomials u^2q,UVq,V^2q,Uc and Vc are linearly dependent. Thus q and c has a common root if there exists $x_0,\ldots,x_4\in k$ (not all zero) such that

$$x_0U^2q + x_1UVq + x_2V^2q + x_3Uc + x_4Vc = 0. (1)$$

Since homogeneous forms of degree 4, has a basis $\{U^4, U^3V, U^2V^2, UV^3, V^4\}$ writing in terms of this basis we get that equation (1) holds if and only if

$$\underbrace{\begin{bmatrix} a_0 & 0 & 0 & b_0 & 0 \\ a_1 & a_0 & 0 & b_1 & b_2 \\ a_2 & a_1 & a_0 & b_2 & b_3 \\ 0 & a_2 & a_1 & b_3 & b_2 \\ 0 & 0 & a_2 & 0 & b_3 \end{bmatrix}}_{\text{res}_{a_1} c} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Thus we get that they have a common root if and only if the matrix $res_{q,c}$ is nonsingular, that is, the determinant $det(res_{q,c}) = 0$, which is equivalent to saying

$$\det \begin{vmatrix} a_0 & a_1 & a_2 \\ & a_0 & a_1 & a_2 \\ & & a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 & b_3 \\ & b_0 & b_1 & b_2 & b_3 \end{vmatrix} = 0$$

Hence, proved.

CHAPTER 2

Problem 2.6. Let $C: (y^2 = x^3 + x^2) \subset \mathbb{R}^2$. Show that a variable line through (0,0) meets C at one further point, and hence deduce the parametrisation of C given in (2.1). Do the same for $(y^2 = x^3)$ and $(x^3 = y^3 - y^4)$.

• We are given the curve $C:(y^2=x^3+x^2)$. Consider the variable line $y=\lambda x$. Plugging this in the equation defining C we get,

$$\lambda^2 x^2 = x^3 + x^2 \implies x^2 (x + 1 - \lambda^2) = 0.$$

So, for $x \neq 0$ we get $x = \lambda^2 - 1$, and hence, $y = \lambda^3 - \lambda$. Therefore C is parametrised as $t \mapsto (t - 1, t^2 - t)$.

• We are given the curve $C: y^2 = x^3$. Consider the variable line $y = \lambda x$. Plugging this in the equation defining C we get,

$$\lambda^2 x^2 = x^3 \implies x^2 (x - \lambda^2) = 0.$$

So, for $x \neq 0$ we get $x = \lambda^2$, and hence, $y = \lambda^3$. Therefore C is parametrised as $t \mapsto (t^2, t^3)$.

• We are given the curve $C: x^3 = y^3 - y^4$. Consider the variable line $x = \lambda y$. Plugging this in the equation defining C we get,

$$\lambda^3 y^3 = y^3 - y^4 \implies y^3 (\lambda^3 - 1 + y) = 0.$$

So, for $y \neq 0$ we get $y = -\lambda^3 + 1$, and hence, $x = -\lambda^4 + \lambda$. Therefore C is parametrised as $t \mapsto (-t^4 + t, -t^3 + 1)$.

Problem 2.7. Let $\varphi: \mathbb{R}^1 \to \mathbb{R}^2$ be the map given by $t \mapsto (t^2, t^3)$; prove directly that any polynomial $f \in \mathbb{R}[X, Y]$ vanishing on the image $C = \varphi(\mathbb{R}^1)$ is divisible by $Y^2 - X^3$. Determine what property of a field k will ensure that the result holds for $\varphi: k \to k^2$ given by the same formula. Do the same for $t \mapsto (t^2 - 1, t^3 - t)$.

By the Euclidean algorithm for polynomials in Y, we get

$$f(X,Y) = a(X,Y)(Y^2 - X^3) + Yb(X) + c(X),$$

for some polynomials $a \in \mathbb{R}[X,Y]$, $b,c \in \mathbb{R}[X]$. Putting $X=t^2,Y=t^3$ we get,

$$0 = f(t^2, t^3) = t^3 b(t^2) + c(t^2).$$

But then, $t^3b(t^2)$ contains only odd terms in t and $c(t^2)$ contains only even terms in t. Hence, b=c=0 and so, $Y^2-X^3\mid f$ if f vanishes on $C=\{(t^2,t^3)\mid t\in\mathbb{R}\}.$

The property of the field k necessary for the above proof to go through is that k must be an infinite field.

Let f vanish on $\{(t^2-1,t^3-1)\mid t\in k\}$. We will show that f is divisible by $Y^2-X^3-X^2$ in k[X,Y]. By the Euclidean algorithm for polynomials in Y, we get

$$f(X,Y) = a(X,Y)(Y^2 - X^3 - X^2) + Yb(X) + c(X),$$

for some polynomials $a \in k[X,Y]$, $b,c \in k[X]$. Putting $X=t^2-1,Y=t^3-1$ we get,

$$0 = f(t^2 - 1, t^3 - 1) = (t^3 - t)b(t^2 - 1) + c(t^2 - 1).$$

Let $\deg b = k$, $\deg c = l$, so that $\deg(t^3 - t)b(t^2 - 1) = 2k + 3$ and $\deg c(t^2 - 1) = 2l$. Therefore, if their sum is 0 for all t, we must have b = c = 0.

Problem 2.8. Let $C: (f=0) \subset k^2$, and let $P=(a,b) \in C$; assume that $\frac{\partial f}{\partial x} \neq 0$. Prove that the line

$$L: \left(\frac{\partial f}{\partial x} \cdot (x-a) + \frac{\partial f}{\partial y} \cdot (y-b) = 0\right)$$

is the tangent line to C at P, that is, the unique line L of k^2 for which $f|_L$ has a multiple root at P.

Suppose ℓ is a line through P=(a,b) such that $f|_{\ell}$ has a multiple root at P. Let ℓ be parametrised as $(x,y)=(a,b)+(\lambda,\mu)t$. Then, $f|_{\ell}(t)=f(a+\lambda t,b+\mu t)$. $P\in C$ means $f|_{\ell}(0)=f(P)=0$ and the multiple root at P means $f|_{\ell}(0)=0$. But, by the chain rule,

$$f|'_{\ell}(0) = \lambda \frac{\partial f}{\partial x}\Big|_{P} + \mu \frac{\partial f}{\partial y}\Big|_{P},$$

and so, $f|_{\ell}$ having a multiple root at P exactly means that $\ell \subseteq L$. As both these spaces are affine subspaces of dimension 1 through P, we get $\ell = L$, which proves the uniqueness of L.

Problem 2.9. Let $C: (y^2 = x^3 + 4x)$, with the simplified group law (2.13). Show that the tangent line to C at P = (2,4) passes through (0,0), and deduce that P is a point of order 4 in the group law.

Let $f=y^2-x^3+4x$, so that $\frac{\partial f}{\partial x}=-16, \frac{\partial f}{\partial y}=8$. Then, the tangent line to C:(f=0) is given by

$$\frac{\partial f}{\partial x}\Big|_{P}(x-2) + \frac{\partial f}{\partial y}\Big|_{P}(y-4) = 0 \implies y = 2x.$$

This line clearly passes through (0,0). Therefore, $P+P=\overline{(0,0)}=(0,0)$ using the group law on the cubic, and so $4P=(0,0)+(0,0)=\mathcal{O}$, the point at infinity. Hence, P is an element of order 4.

Problem 2.10. Let $C:(y^2=x^3+ax+b)\subset\mathbb{R}^2$ be non-singular; find all points of order 2 in the group law, and understand what group they form. Now explain geometrically how you would set about finding all points of order 4 on C.

In the simplified group law, (x, y) is an element of order 2 iff $\overline{(x, y)} = (x, -y)$ is equal to (x, y), i.e, y = 0 or $(x, y) = \mathcal{O}$ is the point at infinity. We now consider the following two cases.

- Suppose that $x^3 + ax + b = 0$ has a single real root α . Then, the cubic C has a single component which intersects the y-axis at $(\alpha, 0)$. Then the only point of order 2 is $(0, \alpha)$ and this forms the cyclic group on 2 elements with the identity \mathcal{O} , the point at infinity.
- Suppose that $x^3 + ax + b = 0$ has three real roots α, β, γ . Then the cubic C has two components which intersect the y-axis at $(\alpha, 0), (\beta, 0), (\gamma, 0)$. These three points are the only points of order 2 on C, and they form a group isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, with identity as \mathcal{O} .

If $P \in C$ is a point of order 4, it satisfies $4P = \mathcal{O}$, i.e, 2P is a point of order 2. With the previous results, we can find all such P geometrically by constructing the lines through the points where C intersects the y-axis and finding at which point (if any) where these lines are tangent to C.

Problem 2.11. Let x, z be coordinates on k^2 , and let $f \in k[x, z]$; write f as

$$f = a + bx + cz + dx^2 + exz + fz^2 + \cdots$$

Write down the conditions in terms of a, b, c, \ldots that must hold in order that

- $P = (0,0) \in C : (f = 0)$
- the tangent line to C at P is (z=0)
- P is an inflexion point of C with (z = 0) as the tangent line.
- $f(P) = 0 \implies a = 0$.
- The line $\ell: (z=0)$ can be parametrised as $t \mapsto (t,0)$, and so $f|_{\ell}(t) = a + bt + dt^2 + \cdots$. ℓ is a tangent at P iff $f|'_{\ell}(P) = 0$, i.e, b = 0.
- P is an inflexion point iff $f|''_{\ell}(P) = 0$, i.e, d = 0.

Problem 2.12. Let $C \subset \mathbb{P}^2_k$ be a plane cubic, and suppose that $P \in C$ is an inflexion point; prove that a change of coordinates in \mathbb{P}^2_k can be used to bring C into the normal form

$$Y^2Z = X^3 + aX^2Z + bXZ^2 + cZ^3.$$

We first fix coordinates so that P=(0,1,0) and the tangent to C at P is given by $\ell:(z=0)$. By Problem 6 above, we get that C is defined as the zero locus of a polynomial of the form $y^2z+yA(x,z)+B(x,z)$, where A,B are homogenous polynomials of degrees 2 and 3 respectively. We now find the vertical tangents of C apart from ℓ . The vertical line $x=\lambda z$ will be tangent to C iff λ is a root of the discriminant $-(A(\lambda,1))^2+4B(\lambda,1)$. Bezout's theorem tells us that any such line must have intersection multiplicity 2 with C, because $\deg C=3$

and any vertical line must meet C at P. Therefore, there are 3 simple roots of the discriminant, and we get 3 distinct points P_1 , P_2 , P_3 on C at which the corresponding tangents meet C other than P.

We now claim that the points P_j are collinear. Let P' be the third point of intersection of $\overrightarrow{P_1P_2}$ and C. Consider the three cubics C, $\overrightarrow{PP_1}+\overrightarrow{PP_2}+\overrightarrow{PP'}$, $\ell+2\overrightarrow{P_1P_2}$. As these cubics intersect in the 8 points $3P,2P_1,2P_2,P'$, they must intersect at a ninth point by the Cayley-Bacharach theorem. This point must clearly be P', and so $\overrightarrow{PP'}$ intersects C twice at P', i.e, $P'=P_3$. By an appropriate change of coordinates, we can assume that $P_1=(0,0,1),P_2=(1,0,1)$ and $P_3=(\alpha,0,1)$ for some α . These can be performed without affecting the coordinates of P and the line ℓ , and so all of the above remains valid. But now, $A(\lambda,1)$ must vanish at $\lambda=0,1,\alpha$, which simply means that A is identically 0. Therefore, the equation of C becomes

$$y^2z - x(x-z)(x-\alpha z) = 0,$$

which on expanding out the product is of the form to be shown.

Problem 2.13. Consider the curve $C:(z=x^3)\subset k^2$; C is the image of the bijective map $\varphi:k\to C$ by $t\mapsto (t,t^3)$, so it inherits a group law from the additive group k. Prove that this is the unique group law on C such that (0,0) is the neutral element and

$$P+Q+R=0 \iff P,Q,R$$
 are collinear,

for $P, Q, R \in C$.

Throughout this solution, the notation P(t) means $P=(t,t^3)\in C$. Suppose we give C the additive law induced from the abelian group structure of k, i.e, P(t)+Q(s)=R(t+s). Then,

$$P(u) + Q(v) + R(w) = 0$$

$$\iff u + v + w = 0$$

$$\iff w^2 + u^2 + wu = u^2 + v^2 + uv$$

$$\iff \frac{w^3 - u^3}{u^3 - v^3} = \frac{w - u}{u - v}$$

and the last equivalence simply means that R(w) is collinear with P(u), Q(v). Therefore, the group law inherited from k indeed satisfies the required condition.

Now suppose there is some law * on C such that the required condition holds. We need to show that $P(t) + Q(s) = (t+s, (t+s)^3)$ for all $P, Q \in C$. Consider the point $R = (x, x^3)$ on C which is collinear with P, Q. Then,

$$\frac{x^3 - t^3}{t^3 - s^3} = \frac{x - t}{t - s} \implies (x - t)(x - s)(x + t + s) = 0,$$

and so, $R = (-t-s, (-t-s)^3)$. By the condition given we therefore get $(t, t^3) * (s, s^3) * (-t-s, (-t-s)^3) = (0, 0)$. Putting s = 0, and using the fact that (0, 0) is the identity element, we get $\overline{P(t)} = (-t, -t^3)$. As P + Q + R = (0, 0) means that $R = \overline{(P+Q)}$, and we have shown that for P(t), Q(s) we must have R(-t-s), we get P * Q is given by $(t+s, (t+s)^3)$. This is exactly the group law inherited from k, which proves the uniqueness.

Problem 2.14. Prove that for $u, v \in \mathbb{Z}$,

$$u^2 + v^2, u^2 - v^2$$
 both squares $\implies v = 0$.

Let $x, y \in \mathbb{Z}$ such that $u^2 + v^2 = x^2, u^2 - v^2 = y^2$, and assume $v \neq 0$. By dividing out any common divisors on both sides, we can assume without loss of generality that u, v, x, y are all pairwise coprime. Now, any odd square is congruent to 1 modulo 4, and any even square is 0 modulo 4. Therefore, as u, v have different parity, x^2 must be congruent to 1 mod 4, and so x is odd. If u is even and v is odd, we get $v^2 \equiv -1 \mod 4$, which is not possible! So, u is odd, v is even and v is odd as well. Now consider the following factorisations:

$$(x-u)(x+u) = v^{2}$$

$$(u-y)(u+y) = v^{2}$$

$$(x-y)(x+y) = 2v^{2}$$

$$(2u-(x+y))(2u+(x+y)) = 2(x^{2}+y^{2}) - (x+y)^{2} = (x-y)^{2}.$$

It is easily checked that as u, v, x, y are pairwise coprime and u, x, y are odd, v is even, the pairs of factors occurring on the LHS of each factorisation only share powers of 2 as common factors. Without loss of generality, we assume that $4 \nmid (x - y)$, replacing y by -y if necessary.

Let $v=2\widetilde{v}, x-u=2a, x+u=2b$ where a,b are coprime. Then, $4ab=4\widetilde{v}^2 \implies ab=\widetilde{v}^2$. By the fundamental theorem of arithmetic, we get both a,b are squares and so, $x-u=2v_1^2$ for some v_1 . Similarly, we get $u-y=2u_1^2$ for some u_1 . If x-y=2c, x+y=2d where $2\nmid c$ and c,d are coprime, we get $cd=2\widetilde{v}^2$. By assumption that $2\nmid c$, we get $cd=2v_1^2$ are squares and so $cd=2v_1^2$ for some $cd=2v_1^2$ for some

$$2u_1^2 + 2v_1^2 = u - y + x - u = x - y = 2x_1^2 \implies u_1^2 + v_1^2 = x_1^2$$

$$2u_1^2 - 2v_1^2 = u - y - x + u = 2u - (x + y) = 2y_1^2 \implies u_1^2 - v_1^2 = y_1^2.$$

Further, $|v_1|<\sqrt{x-u}\le |v|$. Therefore, if we assume that (u,v) is a pair of coprime integers such that both u^2+v^2 and u^2-v^2 are squares, we arrive at a new pair (u_1,v_1) of coprime integers such that the same holds for this pair and $|v_1|<|v|$. By assumption $|v|\ne 0$, so we get an infinite set of pairs (u_j,v_j) such that $U-j^2+v_j^2,u_j^2-v_j^2$ are both squares and $|v_j|<|v_{j-1}|$. But this is impossible! Hence, by contradiction, we get v=0.

CHAPTER 4

§ Problem 4.2

The polynomial map $\varphi: \mathbb{A}^1_k \to \mathbb{A}^3_k$ is given by $X \mapsto (X, X^2, X^3)$. Let us call C be the image of φ . Let us consider the map

$$\varphi^*: k[X, Y, Z] \to k[T]$$

given by $X \to T, Y \to T^2, Z \to T^3$. We can see $(X^2 - Y, X^3 - Z)$ is contained in $\ker \varphi^*$, any elemenent $f \in k[X,Y,Z]$ can be written as, (using Eucledian algorithm twice)

$$f(x,y,z) = (x^3 - z)f_1(x,y,z) + (x^2 - z)f_2(x,y) + f_3(x)$$

If $f \in \ker \varphi^*$ then $f(T,T^2,T^3)=0$ in other words $f_3(T)=0$ for any T. So, any $f \in \ker \varphi^*$ is contained in (X^3-Z,X^2-Y) . It also proves that the ideal is a prime ideal, so $V(x^3-z,x^3-y)$ is irreducible. Thus we get, $C=V(x^3-z,x^3-y)$ and hence C is Algebraic set. Note that the co-ordinate rings for C is $K[C]=k[X,Y,Z]/I(V)\simeq k[X,Y,Z]/(X^2-Y,X^3-Z)$ and for \mathbb{A}^1_k it is, $K[\mathbb{A}^1_k]=k[T]$. We have seen φ^* gives us the isomorphism between co-ordinate rings we can say the Algebraic set C and \mathbb{A}^1_k are isomorphic.

§ Problem 4.4

If $\varphi: X \to Y$ is an isomorphism between X and a subvariety $\varphi(X) \subset Y$, then there is a isomorphism between the co-ordinate rings $k[X] \simeq k[\varphi(X)]$. Since, $\varphi(X) \subset Y$ we can say, $I(Y) \subset I(\varphi(X)) \subseteq k[y_1, \cdots, y_n]$. This means we have a natural map

$$\pi: k[Y] \to k[\varphi(X)]$$

Any element in $k[\phi(X)]$ can be represented by $f+I(\varphi(X))$, where $f\notin I(\varphi(X))$, so $f\notin I(Y)$ and hence, f+I(Y) will represent an element of K[Y] which will maps to $f+I(\varphi(X))$ under π . Thus, we have a surjective map,

$$k[Y] \xrightarrow{\pi} k[\varphi(X)] \xrightarrow{\varphi^*} k[X]$$

It is not hard to note, $\varphi^* \circ \pi$ is the map $\Phi : K[Y] \to K[X]$.

For other direction suppose $\Phi: k[Y] \to k[X]$ is a surjective morphism. If $\ker \Phi = I$, it must be a prime ideal as $k[Y]/I \simeq k[X]$. The ring isomorphism induce isomorphism between variety X and subvariety X.

§ Problem 4.6

- (i) Let, g be a rational map defined by $x \mapsto \frac{x-1}{x+1}$ and f is the map defined by $\frac{1-x}{1+x}$. The composition $g \circ f = \mathrm{id}$. So the map $g \circ f$ has domain \mathbb{A}^1_k but domain of f is $\mathbb{A}^1_k \setminus \{-1\}$. So domain of $g \circ f$ is larger than $\mathrm{dom} \ f \cap f^{-1}(\mathrm{dom} \ g)$.
- (ii) Let C be any smooth curve through (0,0). Then since C is smooth, if C=V(g) for some $f\in\mathbb{R}[X,Y]$, it is not the case that $\frac{\partial g}{\partial x}=\frac{\partial f}{\partial y}=0$ at (0,0) (this is by the definition of smoothness). We may assume WLOG that $\frac{\partial f}{\partial y}\neq 0$ at (0,0). Then by the implicit function theorem, in some small (analytic) neighbourhood U of (0,0), C=(x,h(x)) for some $h:U\to\mathbb{R}$. h is smooth since C is. Then when $xy/\left(x^2+y^2\right)$ is restricted to C, in the neighbourhood U,

$$\frac{xy}{x^2 + y^2} = \frac{xh(x)}{x^2 + (h(x))^2}$$

which is smooth as h(x) is. On the other hand $xy/\left(x^2+y^2\right)$ is not continuous in \mathbb{R}^2 as if it was, then its limit as we approached (0,0) on the line x=0 and the line x=y would be the same, but

$$\lim_{t \to 0} \frac{0 \cdot t}{0^2 + t^2} = 0 \neq \frac{1}{2} = \lim_{t \to 0} \frac{t^2}{t^2 + t^2}$$

§ Problem 4.7

Let, $\varphi:\mathbb{A}^1_k\to C$ is the parametrization $t\mapsto (t^2-1,t(t^2-1))$. If φ was parametrization then the following map $\Phi:k[x,y]\to k[t]$ by $x\mapsto (t^2-1),y\mapsto t(t^2-1)$ should have induced isomorphic between $k[C]=k[x,y]/(y^2-x^2(x+1))$ and $k[\mathbb{A}^1_k]=k[t]$. But we know by isomorphism theorem, $k[x,y]/(y^2-x^2(x+1))=\mathrm{Im}(\Phi)=k[t^2-1,t(t^2-1)]$. We can show this is not the full k[t] as t is not in the above ideal. Otherwise,

$$t = g(-, -)(t^2 - 1) + f(-, -)(t^3 - t^2)$$

would give us 1 = 0, which is not possible. So, φ is not an isomorphism.

The restriction $\varphi': \mathbb{A}^1_k \setminus \{1\} \to C$ is an isomorphism. As the inverse image of (0,0) under the restriction map is one point -1 and at other points it is bijection. The map $\psi: C \setminus (0,0) \to \mathbb{A}^1_k$, given by $(x,y) \mapsto y/x$ will help us to say $\varphi: \mathbb{A}^1_k \setminus \{\pm 1\} \to C \setminus \{(0,0)\}$ is an isomorphism. And thus, it is a bijection. So the map, φ' we are given is also a bijection (isomorphism).

§ Problem 4.8

The given problem does not make any sense! We perhaps try to make the question correct by assuming $\psi:C\to \mathbb{A}^1_k$ is $(x,y)\mapsto y/x$. It's not hard to see this function is in k(C). So it a rational function. Let, $\varphi:\mathbb{A}^1_k\to C$ be the parametrization $t\mapsto (t^3-1,t(t^3-1))$. We can see $\psi\circ\varphi=\mathrm{id}$. The function y/x is not defined at x=0. On the curve $x=0\implies y=0$. The inverse image of (0,0) under the map φ is three points in k satisfying $t^3-1=0$ (assuming k to be algebraically closed). So the restriction of φ gives us isomorphism between

$$\mathbb{A}_k \setminus \{\text{3 points}\} \to C \setminus \{(0,0)\}$$

§ Problem 4.9

Just by degree analysis we can conclude (xt-yz) is irreducible and hence the ideal is prime. k[V] is given by k[x,y,z,t]/(xt-yz). We will show, x,y,z,t are irreducible thus xt=yz in the ring k[V] means it can't be UFD. If x as not irreducible then we could write x=fg now by degree analysis we can see one of f,g must have degree 0, degree 0 elements are unit. So, x is irreducible and our proof is complete.

Second part of this question does not make sense as y = 0 can't be contained in dom f.

§ 4.11

- (i) (i) If $V = V(\{f_i\} i \in I)$, and $W = V(\{g_j\} j \in J)$ for some I, J where $f_i \in k[X_1, \ldots, X_n]$, and $g_j \in k[X_1, \ldots, X_m]$. Then $V \times W = V\left(\left\{\bar{f}i\right\} i \in I \cup \left\{\bar{g}j\right\} j \in J\right)$ where $\bar{f}i$ is the image of f_i under the morphism $k[X_1, \ldots, X_n] \to k[X_1, \ldots, X_n + m]$ that sends X_k to X_k , and $\bar{g}j$ is the image of g_j under the morphism $k[X_1, \ldots, X_m] \to k[X_1, \ldots, X_n + m]$ that sends X_k to X_{n+k} .
- (ii) Let $V=W=A^1$. By the definition of product topologies and the definition of open sets in A^1 , the only open sets in $A^1 \times A^1$ with the product topology are the entire space minus finitely many horizontal and vertical lines. But the zero locus of X^2+Y^2-1 is closed in $A^1 \times A^1$ with the Zariski topology (by its definition), and its complement is not the entire space minus finitely many horizontal and vertical lines.
- (iii) Suppose that $V \times W$ was reducible. Then $V \times W = X_1 \cup X_2$ for some closed disjoint nonempty X_1, X_2 in A^{n+m} . Let $V_i = \{v \in A^n \mid \{v\} \times W \subset X_i\}$. Observe that $V_1 \coprod V_2 = V$. For clearly V_1, V_2 are disjoint since X_1, X_2 are disjoint. Moreover, for all $v \in V$, if $\{v\} \times W$ was contained in neither X_1 nor X_2 , the pullbacks of $X_1 \cap \{v\} \times W$ and $X_2 \cap \{v\} \times W$ along the inclusion $W \to V \times W$ (which is a continuous map) would show that W wasn't irreducible, contradiction. Finally, V_1, V_2 are closed since they are the intersections of the sets of the form $V_{1w} = \{v \in A^n \mid \{v\} \times \{w\} \subset X_1\}$ and $V_{2w} = \{v \in A^n \mid \{v\} \times \{w\} \subset X_2\}$ for all $y \in W$, but since those sets are the fibers of either point sets or the empty set in A^{n+m} under the inclusion $V \to V \times W$, and arbitrary intersections of closed sets are closed, the result follows.
- (iv) If $f: V \to V'$ and $g: W \to W'$ are isomorphisms, with the inverses $f^{-1}, g^{-1}, f \times g: V \times W \to V' \times W'$ is an isomorphism with the inverse $f^{-1} \times g^{-1}$.

§ 4.12

- (a) Let $f \in k(X,Y)$ be a rational function not regular at (0,0). Since k[X,Y] is a UFD, f = u/v for some $u,v \in k[X,Y]$ with no common factors. Then if v(0,0) = 0,v would not be a constant, so by exercise 3.13 (b) V(v) would be infinite, and f would not be regular at the points on the curve defined by the zero set of v.
- (b) Suppose for the sake of contradiction that $\mathbb{A}^2_k \setminus \{(0,0)\}$ is affine. The co-ordinate ring of $\mathbb{A}^2_k \setminus \{(0,0)\}$ is precisely the subring of functions $f \in k$ (\mathbb{A}^2_k) that are regular everywhere except (0,0). But by part (a), any such function must be regular at (0,0) too. So the co-ordinate ring of $\mathbb{A}^2_k \setminus \{(0,0)\}$ is just the ring of regular functions on \mathbb{A}^2_k , i.e. k[X,Y]. So the inclusion $\mathbb{A}^2_k \setminus \{(0,0)\} \hookrightarrow \mathbb{A}^2_k$ would induce a map from k[X,Y] to the

Ring of regular functions on $\mathbb{A}^2_k \setminus \{(0,0)\}$ that is surjective since the latter ring is just k[X,Y], and injective as if $f \in k[X,Y]$ is 0 on $\mathbb{A}^2_k \setminus \{(0,0)\}$, f=0. So the induced map would be a ring isomorphism, so the inclusion $\mathbb{A}^2_k \setminus \{(0,0)\} \hookrightarrow \mathbb{A}^2_k$ would have to be an isomorphism between varieties too, but it is not surjective. Contradiction.