KM plots based on TBXT mRNA levels

Helena

08/09/2020

Boxplot shows distributuon of data

This is a boxplot summarising TBXT mRNA levels in normal colon tissue (GTex) vs primary colorectal adenoma (TCGA).

```
normal <- filter(samples, X_sample_type == "Normal Tissue")
cancer <- filter(samples, X_sample_type == "Primary Tumor")
boxplot(normal$T, cancer$T,
    at = c(1,2),
    names = c("Normal", "Cancer"),
    xlab = "Tissue type",
    ylab = "T expression (log2(norm_count+1))")</pre>
```


Tissue type

As you can see from the boxplot although the majority of samples in both datasets are similarly distributed with no/low TBXT mRNA, the cancer dataset has more outliers that exhibit higher TBXT expression.

Survival analyses (Kaplan Meier plots)

These analyses define a high Brachyury group and a low Brachyury group, look at the relative survival of those groups then test for a significant different in survival using a logrank test. You get different results depending on how you define the groups - where you put the cut-off between low and high. Here I go through

what the results are for lots of different definitions.

Above the max normal value

The max value for TBXT expression in the normal tissues (top dot in the boxplot) is:

```
max(normal$T)
```

```
## [1] 4.411
```

If we define 'High Brachyury' to be > 4.411 the analysis looks like this.

```
cancer <- cancer %>%
  mutate(T_group = ifelse(T > 4.4110, "> normal range", "normal range"))
cancer$T_group <- factor(cancer$T_group)
surv_object <- Surv(time = cancer$0S.time, event = cancer$0S)
fit1 <- survfit(surv_object ~ T_group, data = cancer)
ggsurvplot(fit1, data = cancer, pval = TRUE, xlab = "Time(days)")</pre>
```

Strata + T_group=> normal range + T_group=normal range

There appears to be a difference between the groups but it narrowly misses significance in the log-rank test. This table shows the number of people in each group and the number of 'events' (by which it means death). fit1

```
## Call: survfit(formula = surv_object ~ T_group, data = cancer)
##
##
      3 observations deleted due to missingness
##
                             n events median 0.95LCL 0.95UCL
## T group=> normal range
                                                  734
                           19
                                    6
                                          NA
                                                           NA
## T_group=normal range
                                                 2003
                           358
                                   79
                                        2821
                                                           NA
```

Top quartile (25%)

T_group_quart=Low

When we define 'High Brachyury' as the top quartile the analysis is as follows. Find top quartile:

```
summary(cancer$T)
##
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
    0.0000 0.0000 0.0000
                             0.8551 1.1160
Make the Kaplan-Meier plot:
cancer <- cancer %>%
  mutate(T_group_quart = ifelse(T >= 1.1160, "High", "Low"))
cancer$T_group_quart <- factor(cancer$T_group_quart)</pre>
surv_object <- Surv(time = cancer$0S.time, event = cancer$0S)</pre>
fit1 <- survfit(surv_object ~ T_group_quart, data = cancer)</pre>
ggsurvplot(fit1, data = cancer, pval = TRUE, xlab = "Time(days)")
                        Strata + T_group_quart=High + T_group_quart=Low
   1.00
Survival probability
0.50
0.25
              p = 0.79
   0.00
                             1000
                                                2000
            0
                                                                   3000
                                                                                      4000
                                            Time(days)
fit1
## Call: survfit(formula = surv_object ~ T_group_quart, data = cancer)
##
##
      3 observations deleted due to missingness
                         n events median 0.95LCL 0.95UCL
##
## T_group_quart=High 93
                                20
                                     1881
                                             1711
                                                        NA
```

There is no difference between the groups. I don't think this is particularly suprising because lots of these samples have TBXT values well within the range of the normal tissues.

2047

NA

65

2821

Arbitary cut-offs

So, starting from the cut-off of 4.4110 what happens if we bump the cut-off upwards slightly? First to 4.5.

```
cancer <- cancer %>%
  mutate(T_group_arb = ifelse(T > 4.5, "High","Low"))
cancer$T_group_arb <- factor(cancer$T_group_arb)
surv_object <- Surv(time = cancer$0S.time, event = cancer$0S)
fit1 <- survfit(surv_object ~ T_group_arb, data = cancer)
ggsurvplot(fit1, data = cancer, pval = TRUE, xlab = "Time(days)")</pre>
```

Strata + T_group_arb=High + T_group_arb=Low


```
1101
```

```
## Call: survfit(formula = surv_object ~ T_group_arb, data = cancer)
##
##
      3 observations deleted due to missingness
                      n events median 0.95LCL 0.95UCL
##
## T_group_arb=High 18
                              6
                                    NA
                                           494
                                                    NA
                            79
                                  2821
                                          2003
                                                    NA
## T_group_arb=Low 359
```

This loses only 1 patient from the high group and the results are now significant.

Using 4.6 as a cut-off we 'lose' one more patient from the 'High' group and it looks like this:

```
cancer <- cancer %>%
  mutate(T_group_arb = ifelse(T > 4.6, "High","Low"))
cancer$T_group_arb <- factor(cancer$T_group_arb)
surv_object <- Surv(time = cancer$0S.time, event = cancer$0S)
fit1 <- survfit(surv_object ~ T_group_arb, data = cancer)
ggsurvplot(fit1, data = cancer, pval = TRUE, xlab = "Time(days)")</pre>
```



```
## Call: survfit(formula = surv_object ~ T_group_arb, data = cancer)
##
##
      3 observations deleted due to missingness
##
                      n events median 0.95LCL 0.95UCL
## T_group_arb=High 17
                              6
                                    NA
                                           494
                                                    NA
## T_group_arb=Low 360
                             79
                                  2821
                                          2003
                                                    NA
```

There is a more significant difference between the groups.

If I do this for lots of different arbitary cutoffs (between high and low Brachyury) - the P value changes as follows:

Cut-off	P value	n	Events
Cut-on	1 value	11	Evenus
4.411	0.58	19	6
4.5	0.042	18	6
4.6	0.032	17	6
4.7	0.12	16	5
4.8	0.078	15	5
5.1	0.056	14	5
5.3	0.02	12	5
5.5	0.0075	11	5
5.7	0.0027	10	5
5.9	0.026	9	4
6.5	0.16	8	3
6.7	0.39	6	2

The cutoff which gives the lowest P value is 5.7 and the plot looks like this.

```
cancer <- cancer %>%
  mutate(T_group_arb = ifelse(T > 5.7, "High","Low"))
cancer$T_group_arb <- factor(cancer$T_group_arb)
surv_object <- Surv(time = cancer$0S.time, event = cancer$0S)
fit1 <- survfit(surv_object ~ T_group_arb, data = cancer)
ggsurvplot(fit1, data = cancer, pval = TRUE, xlab = "Time(days)")</pre>
```

Strata + T_group_arb=High + T_group_arb=Low


```
fit1
```

```
## Call: survfit(formula = surv_object ~ T_group_arb, data = cancer)
##
##
      3 observations deleted due to missingness
##
                      n events median 0.95LCL 0.95UCL
## T_group_arb=High
                              5
                                   734
                                           206
                                                     NA
## T_group_arb=Low 367
                             80
                                  2821
                                          2003
                                                     NA
```

Conclusion

There does seem to be a difference in prognosis between patients with >normal and normal levels of TBXT mRNA. The observation of a difference seems to be robust at many different cut-offs, but the level of statistical significance varies depending on the cut-off.