Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

07 de junho de 2016

Plano de Aula

- Pensamento
- 2 Revisão
 - União e Intersecção de Grafos
- Grafos Bipartidos

Bônus (0,5 pt)

Desafio

- E 1.151 Prove que se um grafo G não é conexo, então seu complemento \overline{G} é conexo;
- Candidaturas até amanhã (07 de junho, 13h30);
- Apresentação e resposta por escrito → segunda (14 de junho, 15h30);
- 20 minutos de apresentação.

Referência

FEOFILOFF, P. Exercícios de Teoria dos Grafos, BCC, IME-USP, 2012.

Sumário

- Pensamento
- 2 Revisão
 - União e Intersecção de Grafos
- Grafos Bipartidos

Pensamento .

Pensamento

Frase

Mas eis a hora de partir: eu para morte, vós para a vida. Quem de nós segue o melhor rumo ninguém o sabe, exceto os deuses.

Quem?

Sócrates (??? - 399 a.C.) Filósofo grego.

Sumário

- Pensamento
- 2 Revisão
 - União e Intersecção de Grafos
- Grafos Bipartidos

União e Intersecção de Grafos

União

A união de dois grafos G e H é o grafo $(V_G \cup V_H, E_G \cup E_H)$. É natural denotar esse grafo por $G \cup H$.

Intersecção

A intersecção de dois grafos G e H é o grafo ($V_G \cap V_H, E_G \cap E_H$). É natural denotar esse grafo por $G \cap H$.

Alguns cuidados...

Para evitar grafos sem vértices, só trataremos da interação $G \cap H$ se $V_G \cap V_H$ não for vazio.

União e Intersecção de Grafos

Grafos disjuntos

Dois grafos G e H são **disjuntos** se os conjuntos V_G e V_H são disjuntos.

Corolário

Se G e H são disjuntos, então E_G e E_H são disjuntos.

Sumário

- Pensamento
- 2 Revisão
 - União e Intersecção de Grafos
- Grafos Bipartidos

Definição

Um grafo G é **bipartido** se existe uma bipartição $\{U, W\}$ de V_G tal que toda aresta de G tem uma ponta em U e outra em W.

Definição

Um grafo G é **bipartido** se existe uma bipartição $\{U, W\}$ de V_G tal que toda aresta de G tem uma ponta em U e outra em W.

Lembrando... Bipartição!

Uma bipartição de um conjunto V é um par $\{U, W\}$ de conjuntos não vazios tal que $U \cup W = V$ e $U \cap W = \emptyset$.

Definição

Um grafo G é **bipartido** se existe uma bipartição $\{U, W\}$ de V_G tal que toda aresta de G tem uma ponta em U e outra em W.

Lembrando... Bipartição!

Uma bipartição de um conjunto V é um par $\{U, W\}$ de conjuntos não vazios tal que $U \cup W = V$ e $U \cap W = \emptyset$.

Notação

 Para explicitar a partição, podemos dizer que o grafo é {U, W}-bipartido.

Definição

Um grafo G é bipartido se existe uma bipartição $\{U, W\}$ de V_G tal que toda aresta de G tem uma ponta em U e outra em W.

Lembrando... Bipartição!

Uma bipartição de um conjunto V é um par $\{U, W\}$ de conjuntos não vazios tal que $U \cup W = V$ e $U \cap W = \emptyset$.

Notação

- Para explicitar a partição, podemos dizer que o grafo é $\{U, W\}$ -bipartido.
- Se G é um grafo $\{U, W\}$ -bipartido, podemos dizer, informalmente, que os elementos de $\it U$ são os **vértices** brancos e os de W são os vértices pretos do grafo.

Grafo $\{U, W\}$ -bipartido completo

Um grafo $\{U, W\}$ -bipartido é **completo** se todo vértice branco é adjacente a todos os vértices pretos.

Grafo $\{U, W\}$ -bipartido completo

Um grafo $\{U, W\}$ -bipartido é **completo** se todo vértice branco é adjacente a todos os vértices pretos.

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

Estrela

ullet Uma **estrela** é um grafo $K_{1,q}$;

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

Estrela

- Uma estrela é um grafo $K_{1,q}$;
- Se q ≥ 2, o centro da estrela é o único vértice que incide em duas ou mais arestas;

$K_{p,q}$

Um $K_{p,q}$ é um grafo bipartido completo com p vértices brancos e q pretos.

Estrela

- Uma estrela é um grafo $K_{1,q}$;
- Se q ≥ 2, o centro da estrela é o único vértice que incide em duas ou mais arestas;
- Se q < 2, a estrela não tem centro.

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

07 de junho de 2016

