Statističko testiranje očekivanja

Neven Miculinić

Fakultet Elektrotehnike i Računarstva neven miculinic@fer.hr

Uvod u Statističko testiranje

 Postupak donošenja odluke o odbacivanju ili ne odbacivanju statističke hipoteze zove se testiranje statističkih hipoteza

Uvod u Statističko testiranje

- Postupak donošenja odluke o odbacivanju ili ne odbacivanju statističke hipoteze zove se testiranje statističkih hipoteza
- Provodi kada se mora donijeti neka odluka (ono je binarno)

Uzorak i Statistika

• Uzorak *n*-torka (x_1, \ldots, x_n)

Uzorak i Statistika

- Uzorak *n*-torka (x_1, \ldots, x_n)
- Statistika $f(X_1, X_2, \dots X_n)$

Statističke Hipoteza

 Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X

Statističke Hipoteza

- Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X
- Nul hipoteza H₀

Statističke Hipoteza

- Statistička hipoteza je (bilo koja) pretpostavka o (populacijskoj) razdiobi od X
- Nul hipoteza H₀
- Altrenativna hipoteza H_a

• na FERu je 99% muškaraca

- na FERu je 99% muškaraca
- dnevno 1000 studenata FFZG idu u Cassandru

- na FERu je 99% muškaraca
- dnevno 1000 studenata FFZG idu u Cassandru
- Varijanca bodova na SISu je 15

Q. Where have all my socks gone?

Alternate Hypothesis Null Hypothesis

Extra-terrestrial beings have transported themselves into my house in order to steal my socks.

Aliens are not to blame. There is some other explanation for the disappearing socks.

Greške

		Nul hipoteza je	
		Točna	Netočna
Presuda testa je:		Greška 1. vrste	
	Odbaci	Lažno pozitivni	Točno
		$P = \alpha$	
			Greška 2. vrste
	Prihvati	Točno	Lažno negativni
			$P = \beta$

Područje prihvaćanja

Nivo značajnosti testa

lpha - definira se kao vjerojatnost u slučaju istinitosti H_0 test odbaci H_0

Područje prihvaćanja

Nivo značajnosti testa

lpha - definira se kao vjerojatnost u slučaju istinitosti H_0 test odbaci H_0

Snaga testa

 $1-\beta$ - definira se kao vjerojatnost odbacivanja H_0 u slucaju njene neistinitosti

Područje prihvaćanja

Nivo značajnosti testa

lpha - definira se kao vjerojatnost u slučaju istinitosti H_0 test odbaci H_0

Snaga testa

 $1-\beta$ - definira se kao vjerojatnost odbacivanja H_0 u slucaju njene neistinitosti

Područje prihvaćanja

Konstruira se interval nad kojem se statistika uzorka prihvaća s značajnošću α

P vrijednosti

p vrijednost se definira kao najmanja značajnost test, α , za koju bi ovaj uzorak presudili odbacivanjem nul hipoteze, H_0

t distribucija

Statističko testiranje očekivanja

Pretpostavke

- Populacija je normalno distribuirana
- uzorci su medusobno nezavisni

Hipoteza

- $H_0: \bar{x} = \mu$
- H_a : $\bar{x} \neq \mu$

Statistika

$$\frac{\sqrt{n}(\bar{x}-\mu)}{s}\sim t_{n-1}$$

Područje prihvaćanja

$$ar{x} \in \left\langle \mu - rac{s}{\sqrt{n}} \cdot t_{n-1, rac{lpha}{2}}, \mu + rac{s}{\sqrt{n}} \cdot t_{n-1, rac{lpha}{2}}
ight
angle$$

Zaključak

Zaključak

- Često nam je nul hipoteza suprotna od onoga što želi dokazati
- Ovakvi jednostavniji testovi bitni su za dokazivanje pretpostavka koje rabe snažniji testovi
- t-test jedan od načešćih testova

Pitanja?