Data Mining

Ying Liu, Prof., Ph.D

School of Computer Science and Technology
University of Chinese Academy of Sciences
Data Mining and High Performance Computing Lab

Review

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Classification vs. Prediction

Classification

- Predict categorical class labels (discrete or nominal)
- Classify records (constructs a model) based on the training set and the class labels in a classifying attribute and then use the rules to classify new records

Prediction

 Model continuous-valued functions, i.e., predict unknown or missing values

Typical applications

- Credit approval
- Target marketing
- Medical diagnosis
- Fraud detection
- Intrusion detection

Classification—A Two-Step Process

- Model construction: describing a set of predetermined classes
 - Each tuple/sample is assumed to belong to a predefined class, as determined by the class label attribute
 - The set of tuples used for model construction is training set
 - The model is represented as classification rules, decision trees, or mathematical formulae

Classification—A Two-Step Process

- Model usage: for classifying future or unknown objects
 - Estimate accuracy of the model
 - The known label of test sample is compared with the classified result from the model
 - Accuracy rate is the percentage of test set samples that are correctly classified by the model
 - Test set is independent of training set, otherwise over-fitting will occur
 - If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Classification

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, establish classes or clusters in the data

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Issues: Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues: Evaluating Classification Methods

Accuracy

- classifier accuracy: predicting class label
- predictor accuracy: guessing value of predicted attributes

Speed

- time to construct the model (training time)
- time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Evaluating Classifier Accuracy

- Holdout
 - Train on 2/3
 - Test on 1/3
- Cross validation: k-fold cross validation
 - Partition data set into k parts
 - Train on random (k-1) parts, test on 1 part
 - Repeat k times
 - Average accuracy

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Classification by Decision Tree Induction

- Decision tree
 - A flow-chart-like tree structure
 - Internal node denotes a splitting test on an attribute
 - Branch represents an outcome of the test
 - Leaf node represents class distribution
- Decision tree generation -- two phases
 - Tree construction
 - At start, all the training examples are at the root
 - Partition examples recursively based on selected attributes
 - Tree pruning
 - Identify and remove branches that reflect noise or outliers
- Use of decision tree: Classifying an unknown sample

Classification by Decision Tree Induction

Generate_decision_tree (D, attribute_list)

- (1) create a node *N*;
- (2) if tuples in D are all of the same class, C then
- (3) return N as a leaf node labeled with the class C;
- (4) **if** *attribute_list* is empty **then**
- (5) return N as a leaf node labeled with the majority class in D; // majority voting
- (6) apply Attribute_selection_method(*D*, *attribute_list*) to find the highest information gain;
- (7) label node N with test-attribute;
- (8) **for each** value a_i of *test-attribute* // partition the tuples and grow subtrees for each partition
- (9) Grow a branch from node N for test-attribute = a_i ; // a partition
- (10) Let s_i be the set of samples in D for which test-attribute = a_i ;
- (11) **if** s_i is empty **then**
- (12) attach a leaf labeled with the majority class in D to node N;
- (13) else attach the node returned by **Generate_decision_tree**(s_i , attribute_list) to node N;
- (14) end for

Decision Tree Induction: Training Dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Decision Tree

income	student	credit_rating	class
high high medium low medium	no no no yes yes	fair excellent fair fair excellent	no no no yes yes

income	student	credit_rating	class
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
medium	yes	fair	yes
medium	no	excellent	no

income	student	credit_rating	class
high	no	fair	yes
low	yes	excellent	yes
medium	no	excellent	yes
high	yes	fair	yes

Output: A Decision Tree for "buys_computer"

Algorithm for Decision Tree Induction

- Basic algorithm (a greedy algorithm)
 - Tree is constructed in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are categorical (if continuous-valued, they are discretized in advance)
 - Examples are partitioned recursively based on selected attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain, Gini index)
- Conditions for stopping partitioning
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning majority voting is employed for classifying the leaf

Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Assume there are two classes, P and N
 - Let the set of examples S contain p elements of class P and n elements of class N
 - The amount of information, needed to classify sample

$$I(p,n) = -\frac{p}{p+n}\log_2\frac{p}{p+n} - \frac{n}{p+n}\log_2\frac{n}{p+n}$$

Information Gain in Decision Tree Induction

- Assume that attribute A have v distinct values, {a₁, a₂, ..., a_v}
- Training set S will be partitioned into sets $\{S_1, S_2, ..., S_v\}$
 - If S_i contains p_i examples of P and n_i examples of N, the entropy, or the expected information based on the partitioning into subsets by attribute A is

$$E(A) = \sum_{i=1}^{\nu} \frac{p_i + n_i}{p + n} I(p_i, n_i)$$

Information gain of A

$$Gain(A) = I(p,n) - E(A)$$

Attribute Selection by Information Gain Computation

- Class P: buys_computer = "yes"
- Class N: buys_computer = "no"
- I(p, n) = I(9, 5) = 0.940
- Compute the entropy for age:

age	p _i	n _i	I(p _i , n _i)
<=30	2	3	0.971
3040	4	0	0
>40	3	2	0.971

$$E(age) = \frac{5}{14}I(2,3) + \frac{4}{14}I(4,0) + \frac{5}{14}I(3,2) = 0.694$$

Hence

$$Gain(age) = I(p,n) - E(age)$$
$$= 0.246$$

Exercise

- Please calculate the information gain of income, student, and credit_rating, respectively.
- Gain(income) = 0.029
- Gain(Student) = 0.151
- Gain(credit_rating) = 0.048

Gain Ratio for Attribute Selection (C4.5)

- Information gain measure is biased towards attributes with a large number of values
- C4.5 (a successor of ID3) uses gain ratio to overcome the problem (normalization to information gain) $SplitInfo_A(D) = -\sum_{i=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2(\frac{|D_j|}{|D|})$

$$SplitInfo_{A}(D) = -\frac{4}{14} \times \log_{2}(\frac{4}{14}) - \frac{6}{14} \times \log_{2}(\frac{6}{14}) - \frac{4}{14} \times \log_{2}(\frac{4}{14}) = 0.926$$

- GainRatio(A) = Gain(A)/SplitInfo(A)
- Ex.
 - gain_ratio(income) = 0.029/0.926 = 0.031
- The attribute with the maximum gain ratio is selected as the splitting attribute

Gini Index (CART, IBM Intelligent Miner)

- If a data set T contains examples from n classes, gini index, gini(T) is defined as $gini(T) = 1 \sum_{j=1}^{n} p_{j}^{2}$
 - where p_i is the relative frequency of class j in T.
- If a data set T is split into two subsets T₁ and T₂ with sizes N₁ and N₂ respectively, the gini index of the split data contains examples from n classes, the gini index of the split is defined as

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

■ The attribute provides the smallest gini_{split}(T) is chosen to split the node (need to enumerate all possible splitting points for each attribute).

Gini index (CART, IBM IntelligentMiner)

- The lowest is the best
- All attributes are assumed continuous-valued
- Can be modified for categorical attributes
- Ex. D has 9 tuples in buys_computer = "yes" and 5 in "no"

$$gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

Suppose the attribute income partitions D into 10 in D₁: {medium, high} and 4 in D₂

$$\begin{split} \textit{gini}_{\textit{income} \in \{\textit{medium}, \; high\}} \; \; (D) = & \left(\frac{10}{14}\right) \! Gini(D_1) + \left(\frac{4}{14}\right) \! Gini \; (D_2) \\ & = \frac{10}{14} (1 - (\frac{6}{10})^2 - (\frac{4}{10})^2) + \frac{4}{14} (1 - (\frac{1}{4})^2 - (\frac{3}{4})^2) \\ & = 0.450 \end{split}$$

Extracting Classification Rules from Trees

- Represent the knowledge in the form of IF-THEN rules
- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction
- The leaf node holds the class prediction
- Rules are easier for humans to understand
- Example

```
IF age = "<=30" AND student = "no" THEN buys_computer = "no"

IF age = "<=30" AND student = "yes" THEN buys_computer = "yes"

IF age = "31...40" THEN buys_computer = "yes"

IF age = ">40" AND credit_rating = "excellent" THEN buys_computer = "no"

IF age = "<=30" AND credit_rating = "fair" THEN buys_computer = "yes"
```

Overfitting and Tree Pruning

- Overfitting: An induced tree may overfit the training data
 - Too many branches, some may reflect anomalies due to noise or outliers
 - Poor accuracy for unseen samples
- Two approaches to avoid overfitting
 - Prepruning: Halt tree construction early—do not split a node if this would result in the goodness measure falling below a threshold
 - Difficult to choose an appropriate threshold
 - Postpruning: Remove branches from a "fully grown" tree—get a sequence of progressively pruned trees
 - Use a set of data different from the training data to decide which is the "best pruned tree"

Comments on Decision Tree Induction

- Relatively faster learning speed (than other classification methods)
- Convertible to simple and easy to understand classification rules
- Comparable classification accuracy with other methods
- Comparably scalable to large database

Enhancements to Basic Decision Tree Induction

- Allow for continuous-valued attributes
 - Dynamically define new discrete-valued attributes that partition the continuous attribute value into a discrete set of intervals
- Handle missing attribute values
 - Assign the most common value of the attribute
- Attribute construction
 - Create new attributes based on existing ones

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Bayesian Classification

A statistical classifier

Perform *probabilistic prediction, i.e.,* predict class membership probabilities

Foundation

Based on Bayes' Theorem

Assumption

The effect of an attribute on a given class is independent of other attributes

Performance

A simple Bayesian classifier, *naïve Bayesian classifier*, has comparable performance with decision tree and selected neural network classifiers

Bayesian Theorem: Basics

- Let X be a data sample, class label is unknown
- Let H be a hypothesis, e.g. X belongs to class C
- Classification is to determine P(H|X), the probability that the hypothesis holds given the observed data sample X
- \blacksquare P(*H*), the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
- \blacksquare P(X): probability that sample data is observed
- Arr P(X|H), the probability of observing the sample X, given that the hypothesis holds
 - E.g., Given that X will buy computer, what is the prob. that X is 31..40?

Bayesian Theorem

Given training data X, probability of a hypothesis H, P(H|X), follows the Bayes Theorem

$$P(H|\mathbf{X}) = \frac{P(\mathbf{X}|H)P(H)}{P(\mathbf{X})}$$

- Predict X belongs to C_i iff the probability $P(C_i|X)$ is the highest among all the $P(C_k|X)$ for all the k classes
- Practical difficulty: require initial knowledge of many probabilities, significant computational cost

Naïve Bayesian Classifier

- Let D be a training set of tuples and their associated class labels, and each tuple is represented by an n-D attribute vector $X = (x_1, x_2, ..., x_n)$
- Suppose there are m classes C₁, C₂, ..., C_m
- Classification is to derive the maximum posteriori, i.e., the maximal P(C_i|X)
- This can be derived from Bayes Theorem

$$P(C_i|\mathbf{X}) = \frac{P(\mathbf{X}|C_i)P(C_i)}{P(\mathbf{X})}$$

Since P(X) is constant for all classes, only

$$P(C_i|\mathbf{X}) = P(\mathbf{X}|C_i)P(C_i)$$

needs to be maximized

P(C_i) can be obtained from training data set s_i/s

Derivation of Naïve Bayes Classifier

Assumption: attributes are conditionally independent (i.e., no dependence relation between attributes):

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times ... \times P(x_n \mid C_i)$$

- This greatly reduces the computation cost: Only counts the class distribution
- If A_k is categorical, $P(x_k|C_i) = s_{ik}/s_i$, count the distribution
- If A_k is continuous-valued, P(x_k|C_i) is usually computed based on Gaussian distribution with a mean μ and standard deviation σ

$$g(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

and $P(x_k|C_i)$ is

$$P(X_k|C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$$

Exercise

Predict what class does the data sample

X = (age <= 30,
Income = medium,
Student = yes
Credit_rating = Fair) belong to?

Class:

C1:buys_computer = 'yes' C2:buys_computer = 'no'

age	income	<mark>student</mark>	redit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Solution

- P(C_i): P(buys_computer = "yes") = 9/14 = 0.643 P(buys_computer = "no") = 5/14= 0.357
- Compute P(X|C_i) for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222
P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

X = (age <= 30, income = medium, student = yes, credit_rating = fair)</p>

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 
 <math>P(X|buys\_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019

P(X|C_i)*P(C_i): P(X|buys\_computer = "yes") * <math>P(buys\_computer = "yes") = 0.028

P(X|buys\_computer = "no") * <math>P(buys\_computer = "no") = 0.007

Therefore, X belongs to class ("buys computer = yes")
```

2022 10 00

Naïve Bayesian Classifier: Comments

Advantages

- Easy to implement
- Good results obtained in most of the cases

Disadvantages

- Assumption: class conditional independence, therefore loss of accuracy
- Practically, dependencies do exist among variables
 - E.g., hospitals: patients: Profile: age, family history, etc. Symptoms: fever, cough etc., Disease: lung cancer, diabetes, etc.
 - Dependencies among these cannot be modeled by Naïve Bayesian Classifier
- How to deal with these dependencies?

Bayesian Belief Networks

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Classification by Backpropagation

- Backpropagation: A neural network learning algorithm
- Started by psychologists and neurobiologists to develop and test computational analogues of neurons
- A neural network: A set of connected input/output units where each connection has a weight associated with it
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class label of the input tuples

A Multi-Layer Feed-Forward Neural Network

Output layer

Hidden layer

Input layer

Input vector: X

43

Defining a Network Topology

- First decide the network topology: # of units in the input layer, # of hidden layers (if > 1), # of units in each hidden layer, and # of units in the output layer
- Normalizing the input values for each attribute measured in the training tuples to [0.0—1.0]
- For categorical attribute, one input unit per domain value, each initialized to 0
- Output, if for classification and more than two classes, one output unit per class is used
- Once a network has been trained and its accuracy is unacceptable, repeat the training process with a *different* network topology or a different set of initial weights

A Neuron (= a perceptron)

The n-dimensional input vector x is mapped into variable y by means of the scalar product and a nonlinear function mapping

Activation Function

sigmoid

$$f\left(x
ight) =rac{1}{1+e^{-x}}$$

tanh

$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

How A Multi-Layer Neural Network Works?

- The **inputs** to the network correspond to the attributes measured for each training tuple
- Inputs are fed simultaneously into the units making up the input layer
- They are then weighted and fed simultaneously to a **hidden layer**
- The number of hidden layers is arbitrary, although usually only one
- The weighted outputs of the last hidden layer are input to units making up the **output layer**, which emits the network's prediction
- The network is **feed-forward** in that none of the weights cycles back to an input unit or to an output unit of a previous layer
- From a statistical point of view, networks perform **nonlinear** regression: Given enough hidden units and enough training samples, they can closely approximate any function

47

Backpropagation

- Initialize weights and biases as random numbers
- Iteratively process a set of training tuples & compare the network's prediction with the actual known target value
- For each training tuple, the weights are modified to minimize the mean squared error between the network's prediction and the actual target value
- Modifications are made in the "backwards" direction: from the output layer, through each hidden layer down to the first hidden layer, hence "backpropagation"

Backpropagation

Algorithm: Backpropagation. Neural network learning for classification or prediction, using the backpropagation algorithm.

Input:

- D, a data set consisting of the training tuples and their associated target values;
- l, the learning rate;
- · network, a multilayer feed-forward network.

Output: A trained neural network.

Method:

```
Initialize all weights and biases in network;
 (1)
        while terminating condition is not satisfied {
 (2)
 (3)
             for each training tuple X in D {
 (4)
                      // Propogate the inputs forward:
                      for each input layer unit j {
 (5)
                               O_i = I_i; // output of an input unit is its actual input value
 (6)
                      for each hidden or output layer unit j {
 (7)
                               I_i = \sum_i w_{ii}O_i + \theta_i; // compute the net input of unit j with respect to the previous layer, i
 (8)
                               O_j = \frac{1}{1 + e^{-I_j}}; } // compute the output of each unit j
 (9)
(10)
                      // Backpropogate the errors;
(11)
                      for each unit j in the output layer
                               Err_i = O_i(1 - O_i)(T_i - O_i); // compute the error
(12)
                      for each unit j in the hidden layers, from the last to the first hidden layer
(13)
                               Err_i = O_i(1 - O_i)\sum_k Err_k w_{ik}; // compute the error with respect to the next higher layer, k
(14)
                      for each weight wij in network {
(15)
                               \Delta w_{ij} = (l)Err_iO_i; // weight increment
(16)
                               w_{ij} = w_{ij} + \Delta w_{ij}; \} // weight update
(17)
                      for each bias \hat{\theta}_i in network {
(18)
                               \Delta\theta_{i} = (l)Err_{i}; // bias increment
(19)
                               \theta_i = \theta_i + \Delta \theta_i; } // bias update
(20)
                      } }
(21)
```

$$g(z) = \frac{1}{1+e^{-z}}$$

$$f(x) = \frac{1}{1+e^{-x}} = (1+e^{-x})^{-1}$$

$$f(x)' = (-1) \times (1+e^{-x})^{-2} \times e^{-x} \times (-1)$$

$$= (1+e^{-x})^{-2} \times e^{-x}$$

$$= \frac{e^{-x}}{(1+e^{-x})^{2}}$$

$$= \frac{1+e^{-x}-1}{(1+e^{-x})^{2}}$$

$$= \frac{1+e^{x}}{(1+e^{-x})^{2}} - \frac{1}{(1+e^{-x})^{2}}$$

$$= \frac{1}{1+e^{-x}} - \frac{1}{(1+e^{-x})^{2}}$$

$$= \frac{1}{1+e^{-x}} (1-\frac{1}{1+e^{-x}})$$

Backpropagation

Steps

- Initialize weights (to small random #s) and biases in the network
- Propagate the inputs forward (by applying activation function)
- Backpropagate the error (by updating weights and biases)
- Terminating condition (when error is very small, etc.)

Exercise

x_1	x_2	x_3	w ₁₄	w ₁₅	w_{24}	w_{25}	w ₃₄	w_{35}	w ₄₆	w ₅₆	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

Unit j	Net input, I_j	Output, O_j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1 + e^{0.7}) = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1 + e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1 + e^{0.105}) = 0.474$

Exercise

Unit j	Err j
6	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311
5	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311 $(0.525)(1 - 0.525)(0.1311)(-0.2) = -0.0065$
4	(0.332)(1 - 0.332)(0.1311)(-0.3) = -0.0087

Weight or bias	New value
w ₄₆	-0.3 + (0.9)(0.1311)(0.332) = -0.261
w ₅₆	-0.2 + (0.9)(0.1311)(0.525) = -0.138
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192
<i>w</i> ₁₅	-0.3 + (0.9)(-0.0065)(1) = -0.306
w_{24}	0.4 + (0.9)(-0.0087)(0) = 0.4
w_{25}	0.1 + (0.9)(-0.0065)(0) = 0.1
w_{34}	-0.5 + (0.9)(-0.0087)(1) = -0.508
w_{35}	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
θ_5	0.2 + (0.9)(-0.0065) = 0.194
θ_4	-0.4 + (0.9)(-0.0087) = -0.408

Backpropagation and Interpretability

- Rule extraction from networks: network pruning
 - Simplify the network structure by removing weighted links that have the least effect on the trained network
 - The set of input and activation values are studied to derive rules describing the relationship between the input and hidden unit layers
- Sensitivity analysis: assess the impact that a given input variable has on a network output. The knowledge gained from this analysis can be represented in rules

2022-10-09 54

Neural Network as a Classifier

Strength

- High tolerance to noisy data
- Well-suited for continuous-valued inputs and outputs
- Successful on a wide array of real-world data
- Techniques have recently been developed for the extraction of rules from trained neural networks

Neural Network as a Classifier

Weakness

- Long training time
- Require a number of parameters typically best determined empirically, e.g., the network topology or "structure"
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of "hidden units" in the network

2022-10-09 56

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

The k-Nearest Neighbor Algorithm

- All instances correspond to points in the n-D space
- The nearest neighbor is defined in terms of Euclidean distance, $dist(X_1, X_2)$
- Target function could be discrete- or real- valued
- For discrete-valued, k-NN returns the most common value among the k training examples nearest to X_q

2022-10-09 58

Exercise

1. Consider the one-dimensional data set. Please classify the data point x=5.0 according to its 1-, 3-, and 5-nearest neighbors (using majority vote).

X	0.5	3.0	4.5	4.6	4.9	5.2	5.3	5.5	7.0	9.5
У	-	-	+	+	+	-	-	+	-	-

Discussion on the k-NN Algorithm

- k-NN for real-valued prediction for a given unknown tuple
 - Returns the mean values of the k nearest neighbors
- Robust to noisy data by averaging k-nearest neighbors
- Distance between neighbors could be dominated by irrelevant attributes
 - To overcome it, eliminate irrelevant attributes
- Lazy-learner
 - Not build a classifier
 - Store all the training samples
 - High computational cost for each new tuple

Ensemble Methods: Increasing the Accuracy

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M₁, M₂, ..., M_k, with the aim of creating an improved model M*
- Popular ensemble methods
 - Bagging
 - Boosting

Bagging: Boostrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of d tuples, at each iteration i, a training set D_i is sampled with replacement from D
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X

Bagging: Boostrap Aggregation

Bagging: Boostrap Aggregation

- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significant better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

2022-10-09 64

Exercise

1. Following is a data set to construct a bagging classifier.

X	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
У	1	1	1	-1	-1	-1	-1	1	1	1

Examples chosen for training in each round are shown below:

X	0.1	0.2	0.2	0.3	0.4	0.4	0.5	0.6	0.9	0.9	
У	1	1	1	1	-1	-1	-1	-1	1	1 0	$0.35 < x \le 0.75 = y = -1$
X	1	1	1	0.5	0.5	1	0.9	1	1	1	$0.4 < x \le 0.65 => y = -1$
У	ı	I	I	-1	-1	I	ı	I	I	ı	
X	0.1	0.2	0.3	0.4	0.4	0.5	0.7	0.7	8.0	0.90	$0.35 < x \le 0.75 => y=-1$
У	1	1	1	-1	-1	-1	-1	-1	1	1	

Please predict the class label for the record x=0.38.

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses — weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1}, pay more attention to the training tuples that were misclassified by M_i
 - A series of k classifiers is iteratively learned
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy

Boosting

Boosting

- The boosting algorithm can be extended for the prediction of continuous values
- Comparing with bagging: boosting tends to achieve greater accuracy, but it also risks overfitting the model to misclassified data

2022-10-09 68

Bagging vs. Boosting

Model training:

- Bagging: random sampling, independent classifiers
- Boosting: subsequent classifier, M_{i+1}, pay more attention to the training tuples that were misclassified by M_i

Model usage:

- Bagging: equal weight
- Boosting: different weight assigned

Ensemble Methods

- Text mining
- Video pattern recognition
- Audio pattern recognition

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

What Is Prediction?

- (Numerical) prediction is similar to classification
 - construct a model
 - use model to predict continuous or ordered value for a given input
- Prediction is different from classification
 - Classification refers to predict categorical class label
 - Prediction models continuous-valued functions
- Major method for prediction: regression
 - model the relationship between one or more independent or predictor variables and a dependent or response variable
- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
- Other regression methods: generalized linear model, Poisson regression, log-linear models, regression trees, logistic
 regression

Linear Regression

Linear regression: a response variable y and a single predictor variable x

$$y = w_0 + w_1 x$$

where w₀ (intercept) and w₁ (slope) are regression coefficient

Method of least squares: estimates the best-fitting straight line $\sum_{i=0}^{|D|} (x_i - \bar{x})(y_i - \bar{y})$

 $w_{1} = \frac{\sum_{i=1}^{|D|} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{|D|} (x_{i} - \overline{x})^{2}} \qquad w_{0} = \overline{y} - w_{1}\overline{x}$

- Multiple linear regression: more than one predictor variable
 - Training data is of the form (X₁, y₁), (X₂, y₂),..., (X_{|D|}, y_{|D|})
 - Ex. For 2-D data, we may have: $y = w_0 + w_1 x_1 + w_2 x_2$
 - Solvable by extension of least square method or using SAS, S-Plus, R, Matlab
 - $_{\scriptscriptstyle{22\text{-}10\text{-}09}}$ Many nonlinear functions can be transformed into the above $_{\scriptscriptstyle{73}}$

Nonlinear Regression

 A polynomial regression model can be transformed into linear regression model. For example,

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$
convertible to linear with new variables: $x_2 = x^2$, $x_3 = x^3$

$$y = w_0 + w_1 x + w_2 x_2 + w_3 x_3$$

- Some models are intractable nonlinear (e.g., sum of exponential terms)
 - possible to obtain least square estimates through extensive calculation on more complex formulae

2022-10-09 74

Other Regression-Based Models

Generalized linear model:

- Foundation on which linear regression can be applied to modeling categorical response variables
- Logistic regression: models the prob. of some event occurring as a linear function of a set of predictor variables

Log(p/1-p) =
$$W_0 + W_1 X_1 + W_2 X_2 + ... + W_n X_n$$
, p is probability Y=1

- Poisson regression: models the data that exhibit a Poisson distribution
- Log-linear models: (for categorical data)
 - Approximate discrete multidimensional prob. distributions
 - Also useful for data compression and smoothing

$$log(y) = W_0 + W_1 X + W_2 X_2 + ... + W_n X_n$$

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Classifier Accuracy Measures

- Accuracy of a classifier M, acc(M): percentage of test set tuples that are correctly classified by the model M
 - Given m classes, CM_{i,j}, an entry in a confusion matrix, indicates # of tuples in class i that are labeled by the classifier as class j
 - Accuracy = (t-pos + t-neg)/ (pos + neg)
 - Error rate (misclassification rate) of M = 1 acc(M)

Predicted class

Actual class

	C ₁	C ₂	Total
C ₁	True positive	False negative	pos
C ₂	False positive	True negative	neg
Total	t-pos+f-pos	t-neg+f-neg	pos+neg

2022-10-09 77

Classifier Accuracy Measures

Alternative accuracy measures

```
sensitivity = t-pos/pos /* true positive recognition rate */
specificity = t-neg/neg /* true negative recognition rate */
precision = t-pos/(t-pos + f-pos)
accuracy = sensitivity * pos/(pos + neg) + specificity * neg/(pos + neg)
= (t-pos + t-neg)/ (pos + neg)
```

Exercise

1. Please compute the sensitivity, specificity, precision and accuracy of the classifier.

classes	buy_computer = yes	buy_computer = no	total	recognition(%)
buy_computer = yes	6954	46	7000	99.34
buy_computer = no	412	2588	3000	86.27
total	7366	2634	10000	95.42

Exercise

1. Please compute the sensitivity, specificity, precision and accuracy of the classifier.

classes	buy_computer = yes	buy_computer = no	total	recognition(%)
buy_computer = yes	6954	46	7000	99.34
buy_computer = no	412	2588	3000	86.27
total	7366	2634	10000	95.42

Sensitivity = 6954/7000

Specificity = 2588/3000

Precision = 6954/7366

Accuracy = (6954+2588)/10000

Classification and Prediction

- What is classification?
 What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Classification by back propagation

- Other classification methods
- Prediction
- Accuracy and error measures
- Summary

Summary (I)

- Classification and prediction are two forms of data analysis that can be used to extract models describing important data classes or to predict future data trends.
- Effective and scalable methods have been developed for decision trees induction, Naive Bayesian classification, Backpropagation, knearest neighbor classifiers.

Summary (II)

- Linear, nonlinear, and generalized linear models of regression can be used for prediction. Many nonlinear problems can be converted to linear problems by performing transformations on the predictor variables.
- k-fold cross-validation is a recommended method for accuracy estimation.
- Bagging and boosting can be used to increase overall accuracy by learning and combining a series of individual models.
- No single method has been found to be superior over all others for all data sets.
- Issues such as accuracy, training time, robustness, interpretability, and scalability must be considered.