Abstract of the disclosure

From compounds of formula II

$$\begin{array}{c|c} R_1 & & \\ \hline \\ R_2 & & \\ \hline \\ R_3 & & \\ \hline \\ \\ \end{array} \\ \begin{array}{c} R_4 \\ \hline \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} R_6 \\ \\ \\ \\ \\ \\ \end{array} \\ \end{array}$$
 (II),

wherein R₁ and R₂ are independently of one another H, C₁-C₆alkyl, C₁-C₆halogenalkyl, C₁- $C_6 alkoxy, \ C_1 - C_6 alkoxy - C_1 - C_6 alkyl, \ or \ C_1 - C_6 alkyloxy, \ R_3 \ is \ C_1 - C_6 alkyl, \ R_4 \ is \ C_1 - C_6 alkyloxy, \ R_3 - C_6 alkyloxy, \ R_4 - C_6 alkyloxy, \ R_6 - C_6 alkyloxy, \ R_7 - C_6 alkyloxy, \ R_8 - C_8 - C_$ C_6 alkyl, and R_5 is C_1 - C_6 alkyl, C_1 - C_6 hydroxyalkyl, C_1 - C_6 alkoxy- C_1 - C_6 -alkyl, C_1 - C_6 alkanoyloxy-C₁-C₆alkyl, C₁-C₆aminoalkyl, C₁-C₆-alkylamino-C₁-C₆-alkyl, C₁-C₆-alkyl, $C_6\text{-alkyl},\ C_1\text{-}C_6\text{-alkyl},\ C_1\text{$ $C_1 - C_6 alkyl, \quad C_1 - C_6 alkyl - HN - C(O) - C_1 - C_6 alkyl \quad \text{or} \quad (C_1 - C_6 alkyl)_2 N - C(O) - C_1 - C_6 - alkyl, \quad R_6 \quad \text{is} \quad C_1 - C_6 - alkyl - C_1 -$ C₆alkyl, R₇ is C₁-C₆alkyl or C₁-C₆alkoxy, or R₆ and R₇ together are tetramethylene, pentamethylene, 3-oxa-1,5-pentylene or -CH2CH2O- substituted, if necessary, with C1-C4-Alkyl, phenyl or benzyl, it is possible - through halolactonization, azidation of the halogen group, ring opening with an amine R₅-NH₂, and reduction of the azide group to form the amino group - to prepare compounds of formula !

$$\begin{array}{c|c} R_1 & OH & R_4 \\ \hline \\ R_2 & NH_2 & O \end{array}$$
 (I),

wherein R₅ is C₁-C₆alkyl, C₁-C₆hydroxyalkyl, C₁-C₆alkoxy-C₁-C₆alkyl, C₁-C₆alkanoyloxy-C₁- C_6 alkyl, C_1 - C_6 aminoalkyl, C_1 - C_6 alkylamino- C_1 - C_6 alkyl, C_1 - C_6 dialkylamino- C_1 - C_6 -alkyl, C_1 - C_6 alkanoylamido- C_1 - C_6 alkyl, $HO(O)C-C_1$ - C_6 alkyl, C_1 - C_6 alkyl-O- $(O)C-C_1$ - C_6 alkyl, $H_2N-C(O)$ - $C_1 - C_6 alkyl, \ C_1 - C_6 alkyl - HN - C(O) - C_1 - C_6 alkyl \ or \ (C_1 - C_6 alkyl)_2 - N - C(O) - C_1 - C_6 alkyl. \ If \ 2(S), 7(R) - C_6 alkyl - C_6 al$ diastereomer of formula II is used, the 2(S),4(S),5(S),7(S)-diastereomer of formula la

$$\begin{array}{c|c} R_1 & OH & R_4 \\ \hline \\ R_2 & NH_2 & O \end{array}$$
(Ia)

is obtained in a high degree of purity.