Discrete Mathematics

Long question 2

Let Ω be a universal set and define a relation between subsets A, B $\subseteq \Omega$ by A \cong B $\Leftrightarrow \exists$ a bijection f: A \to B. Prove carefully that \cong is an equivalence relation. [6 marks

What does it mean to say that a set is countable?

[2 marks]

State without proof the Schröder-Bernstein theorem concerning the existence of a bijection between two sets.

[2 marks]

Show that the integers and the rational numbers are countable but that the real numbers are uncountable.

[6 marks]

An ML program consists of a finite sequence of characters drawn from a finite alphabet. Show that the set of ML programs is countable. [4 marks]

Answer

Reflexive by considering identity function. Symmetric since inverse of bijection is a bijection. Transistive because composition of bijections is a bijection.

A is countable if $A \cong N$, the natural numbers, (or if A is finite).

Given injections $A \to B$ and $B \to A$, \exists a bijection $A \to B$.

 $z \to 2z + 1$ if z > 0, -2z otherwise. $a/b \to 2^a 5^b$ if a > 0, $3^{-a} 5^b$ otherwise and use S-B. Show P(N) uncountable by contradiction, construct injection P(N) \to R by $\{a_i\} \to \Sigma \cdot 10^{-ai}$ and use S-B for contradiction.

Let A_n be the programs of length n and so finite. Countable union of finite sets is countable.