Théorie des Langages

TD 3: Automates finis déterministes. Premiers exercices

Exercice 1

On considère l'automate fini déterministe \mathcal{A} suivant, défini sur l'alphabet $\Sigma = \{a,b\}$:

- 1. Les mots suivants appartiennent-ils au langage reconnu par l'automate ? abba, abbabb, abbabb, abbabaa
- 2. Donner tous les mots de longueur inférieure ou égale à quatre, reconnus par cet automate.

Exercice 2

Construire des automates reconnaissant les langages suivants sur l'alphabet $\Sigma = \{a,b\}$

- 1. Les langages finis élémentaires suivants : \emptyset , ε , $\{a\}$, $\{abba\}$, $\{ab$, $bb\}$, $\{ab$, $aa\}$.
- 2. Les mots commençants par a
- 3. Les mots contenant au moins un a
- 4. Les mots contenant (aba)
- 5. Les mots ne contenant pas (aba)
- 6. Les mots qui ont un nombre pair de a
- 7. Les mots qui ont un nombre pair de a et impair de b
- 8. Les mots qui ne contiennent ni aa ni bab

Exercice 3

Construire des automates reconnaissant les langages suivants sur l'alphabet $\Sigma = \{a,b\}$

- 1. $a^*, a^+, (a+b), (a+b)^*, (a+b)^+$
- 2. a*bba*, (ab)*a, (ab)*b, (ba)*b
- 3. b(a+b)*b

Exercice 4

Caractériser le langage reconnu par l'automate :

Exercice 5

Soit $\mathcal{A} = (Q, \Sigma, T, q0, A)$ un automate. Montrer que pour tout couple (q_1, q_2) d'états, le langage L constitué des mots dont la lecture fait passer de l'état q_1 à l'état q_2 , est automatique.

Exercice 6

On appelle miroir du mot $u=l_1l_2..l_p$ le mot $v=l_p..l_2l_1$. Et si L est un langage, on appelle miroir de L le langage constitué des miroirs des mots de L.

Montrer que si L est un langage automatique, son langage miroir est aussi automatique et donner un algorithme permettant de déduire d'un automate reconnaissant L, un automate reconnaissant son miroir.