ITCS 531: Number Theory 3 - Primality testing

Rob Egrot

\mathbb{Z}_n

- ▶ In the previous class we saw that arithmetic modulo n 'makes sense'.
- ▶ I.e. we can define operations of addition, subtraction and multiplication on equivalence classes modulo n for all $n \in \mathbb{N} \setminus \{0\}$.
- ► The definition below is used to pick out the number system defined by looking at integers mod *n*.

Definition 1 (\mathbb{Z}_n)

If $n \in \mathbb{N} \setminus \{0\}$ then \mathbb{Z}_n is the set of integers mod n.

Multiplicative inverses

- In standard arithmetic over \mathbb{R} , every number except 0 has an inverse under multiplication.
- ▶ That is, for all $x \in \mathbb{R} \setminus \{0\}$ there is $y \in \mathbb{R} \setminus \{0\}$ with xy = 1.
- ▶ We write x^{-1} or $\frac{1}{x}$ for the multiplicative inverse of x.
- ▶ In the integers \mathbb{Z} , only the numbers 1 and -1 have an inverse.

▶ In \mathbb{Z}_n this is not usually true.

Inverses in \mathbb{Z}_n

Definition 2 (Modular multiplicative inverse)

For $a \in \mathbb{Z}$ we define $b \in \mathbb{Z}$ to be the multiplicative inverse, or just the *inverse*, of $a \mod n$ if $ab \equiv_n 1$.

- We write a^{-1} for the multiplicative inverse of a (when it exists!).
- Soon we will prove a result that tells us exactly when integers have an inverse mod *n*.

Coprimality

Definition 3 (Coprime)

Integers a and b are *coprime* if their highest common factor (HCF) is 1

Lemma 4

Let $a, b, c \in \mathbb{Z}$, let a|bc, and let a and b be coprime. Then a|c.

Proof.

This is exercise 3.1.

Now we have all we need to prove the first important result of the class.

When do inverses exist in \mathbb{Z}_n ?

Proposition 5

- ▶ Let $a \in \mathbb{Z}$ and let $n \in \mathbb{N} \setminus \{0\}$.
- Then a has multiplicative inverse mod n if and only if a and n are coprime.
- Moreover, the multiplicative inverse of a mod n is unique in \mathbb{Z}_n , whenever it exists.

Proof of proposition 5 part 1

- This proof has three parts.
 - We must show that if a and n are coprime, then a has an inverse in \mathbb{Z}_n .
 - Also if a has an inverse in \mathbb{Z}_n , then a and n are coprime.
 - Finally, if b and c are both inverses to a mod n, then $b \equiv_n c$.
- Suppose a and n are coprime.
- Since a and n are coprime, it follows from Bézout's identity that there are $x, y \in \mathbb{Z}$ with xa + yn = 1.
- ▶ So xa 1 = -yn, but this means that $xa \equiv_n 1$ by definition.
- ▶ So *a* has an inverse in \mathbb{Z}_n as required.

Proof of proposition 5 part 2

- Now suppose that a has an inverse, and call it x.
- ▶ Then we have $xa \equiv_n 1$.
- ▶ I.e. there is y with xa 1 = yn.
- ▶ We can rewrite this as xa yn = 1.
- ▶ Suppose d|a and d|n.
- ▶ Then d|(ax yn), and so d|1.
- ▶ The only way this can be true is if $d = \pm 1$.
- ▶ This means HCF(a, n) = 1, and so a and n are coprime.

Proof of proposition 5 part 3

- Finally, if an inverse to a exists then we have just shown that (a, n) must be coprime.
- ▶ Let $ab \equiv_n 1$ and $ac \equiv_n 1$.
- ▶ Then there are $k, l \in \mathbb{Z}$ with ab 1 = kn and ac 1 = ln.
- ► So a(b-c) = (k-l)n.
- ▶ We obviously have a|a(b-c).
- ▶ So by lemma 4 we must have a|(k-l).
- ▶ So $b c = \frac{k-l}{a}n$, and $\frac{k-l}{a} \in \mathbb{Z}$.
- ightharpoonup So $b \equiv_n c$.

Investigating prime factorization

- Now we know the basics of modular arithmetic, we can start to seriously study prime numbers and prime factorizations.
- ► The difficulty of finding the prime factors of large numbers is the basis for much of modern cryptography (i.e. RSA).
- An old result about prime numbers known as *Fermat's little theorem* will be important.
- ► This neat theorem gives us a kind of detector for numbers which are not prime (i.e. composite numbers).
- With some ingenuity this can be turned into a powerful probabilistic method for testing whether a number is prime.
- First we will need another small technical lemma.

Injective multiplication

Lemma 6

Let $a \in \mathbb{Z} \setminus \{0\}$ and $n \in \mathbb{N} \setminus \{0\}$ be coprime. Then, for all $b, c \in \mathbb{Z}$, if $ab \equiv_n ac$, we have $b \equiv_n c$.

Proof.

- Since a and n are coprime, by proposition 5 we know a has a multiplicative inverse a^{-1} (mod n).
- ightharpoonup So $a^{-1}ab \equiv_n a^{-1}ac$.
- ▶ And so $b \equiv_n c$ by definition of the inverse.

Fermat's little theorem

Theorem 7 (Fermat's little theorem)

If p is prime then $a^{p-1} \equiv_p 1$ whenever a and p are coprime.

Proof.

▶ By lemma 6 we have

$$\{1,2,3,\dots,p-1\} = \{a \mod p, 2a \mod p, 3a \mod p,\dots,(p-1)a \mod p\}.$$

► So, by multiplying

$$(p-1)! \equiv_p a^{p-1}(p-1)!.$$
 (†)

- Now, since p is prime, it follows that p cannot divide (p-1)!.
- ▶ So p and (p-1)! are coprime.
- ▶ By proposition 5 it follows that (p-1)! has an inverse modulo p.
- ▶ Multiplying (†) by this inverse gives $a^{p-1} \equiv_p 1$ as required.

Primality testing with Fermat's little theorem

- Fermat's little theorem gives us an efficient way we can test whether a number is prime.
- ▶ Given $n \in \mathbb{N}$ we pick a with 1 < a < n, then calculate a^{n-1} mod n.
- ▶ If this is not 1 then *n* is not prime, by Fermat's little theorem.
 - As if n is prime then a would automatically be coprime with n.
- ▶ However, $a^{n-1} \equiv_n 1$ does not imply that n is prime.
- ► This is because Fermat's little theorem only tells us that if p is prime then $a^{p-1} \equiv_p 1$.
- lt doesn't say that if p is *not* prime then $a^{p-1} \not\equiv_p 1$.
- ► For example, $341 = 11 \times 31$, but $2^{340} \equiv_{341} 1$.

Evidence for primality

▶ Passing Fermat's test does give us evidence that a number is prime, due to the following result.

Lemma 8

Let $n \in \mathbb{N}$ and suppose there is $1 \le a < n$ such that a is coprime with n and $a^{n-1} \not\equiv_n 1$. Then the modular inequality $b^{n-1} \not\equiv_n 1$ must hold for at least half the natural numbers b less than n.

Proof.

- ▶ Suppose b < n and b passes Fermat's test (i.e. $b^{n-1} \equiv_n 1$).
- Then ab fails Fermat's test, because $(ab)^{n-1} = a^{n-1}b^{n-1} \equiv_n a^{n-1} \not\equiv 1$.
- ▶ Moreover, if $ab \equiv_n ac$ for 1 < b, c < n then b = c (lemma 6).
- ➤ So every element that passes Fermat's test has a partner that doesn't, and these partners are all distinct.
- So there are at least as many elements that fail as that pass.

Probabilistic primality testing

- ▶ If there is at least one value a that is coprime with n with $a^{n-1} \not\equiv_n 1$, this gives us a good test for determining whether a number n is prime:
 - We repeat Fermat's test k times with different random numbers a with 1 < a < n.</p>
 - ▶ If the test fails for any *a* we conclude with certainty that *n* is not prime (by the little theorem).
 - If every test is passed we conclude that the probability that n is not prime must be at most $\frac{1}{2^k}$.
 - ▶ Because, if *n* is not prime, every *a* provides at least a 50% chance of making *n* fail the test.
 - So, for high confidence just choose large k.
 - ► This test is always correct when it says a number is composite, but it occasionally says a number is prime when it is not.

Problems with Carmichael numbers

- ► There is a small problem with this.
- Lemma 8 relies on the existence of at least one a that is coprime with n and fails Fermat's test (i.e. $a^{n-1} \not\equiv_n 1$).
- Unfortunately, there are composite numbers where every coprime a passes Fermat's test.
- These numbers are called Carmichael numbers.
- The smallest Carmichael number is 561.
- This is not prime as $561 = 3 \times 11 \times 17$, but for every 1 < a < 561 that is coprime to 561 we have $a^{560} \equiv_{561} 1$.
- So our probability calculation from before is not correct.
- ► There are an infinite number of Carmichael numbers, but they are rare, so Fermat's test works most of the time.
- There are also more advanced methods, like the Rabin-Miller test.

Roots of polynomials in \mathbb{Z}_n

Remember that a polynomial with variable x and degree n is a function

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$
,

where a_0, \ldots, a_n are fixed parameters.

- ightharpoonup A polynomial over $\mathbb R$ can have, at most, the same number of real roots as its degree
 - A root of a single variable function f is a value x such that f(x) = 0.
- ▶ The Fundamental Theorem of Algebra says that polynomial over \mathbb{R} has exactly the number of complex roots as its degree, but this is not in the scope of this course.
- We will show soon that the limit on the number of roots of a polynomial we have just described also applies to polynomials over \mathbb{Z}_p , when p is prime.

A special case of polynomial division

▶ We will use this following lemma.

Lemma 9

If $x, y \in \mathbb{R}$ then

$$\frac{x^n - y^n}{x - y} = x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + xy^{n-2} + y^{n-1}.$$

Proof.

Direct calculation of

$$(x-y)(x^{n-1}+x^{n-2}y+x^{n-3}y^2+\ldots+xy^{n-2}+y^{n-1})$$

shows it is equal to $x^n - y^n$.

- ▶ I.e. the polynomial x y divides the polynomial $x^n y^n$.
- ightharpoonup Note that this works even if x = y.
- For polynomials, potential division by zero makes sense.

Polynomials over \mathbb{Z}_p

▶ Let f be a polynomial over \mathbb{Z} of degree n. I.e.

$$f(x) = a_0 + a_1x + a_2x^2 + \ldots + a_nx^n,$$

where $a_i \in \mathbb{Z}$ for all i and $a_n \neq 0$.

- Let *p* be a prime number.
- We define $f_p(x) = a'_0 + a'_1 x + a'_2 x^2 + \ldots + a'_n x^n$ where each $a'_i = a_i \mod p$ for all i.
- ▶ So f_p is f converted to being a polynomial over \mathbb{Z}_p .
- ► E.g. if $f(x) = 8 + 14x + 3x^2$, then $f_5(x) = 3 + 4x + 3x^2$.

Lagrange's theorem on polynomial roots

Theorem 10 (Lagrange)

Let p be prime, let $f(x) = a_0 + a_1x + \ldots + a_mx^m$ be a polynomial over \mathbb{Z} , and let f_p be as above. Suppose the degree of f_p is n. Then, unless every coefficient of f_p is zero, f_p has at most n distinct roots modulo p.

Lagrange's theorem on polynomial roots - proof 1

- ▶ You don't need to remember this proof.
- First note that the degree of f_p must be less than or equal to the degree of f, i.e. we must have $n \le m$.
- ▶ We induct on n, the degree of f_p .
- Remember we're trying to show f_p is either zero or has at most n roots (mod p).
- The result is clearly true when n=1, because here we have $f_p=a_0'+a_1'x$, and the root occurs when $x\equiv_p-a_0'a_1'^{-1}$.

Lagrange's theorem on polynomial roots - proof 2

- ▶ Suppose now that the result is true for all $n \le k$.
- ▶ Let the degree of f_p be k + 1.
- ▶ Suppose that f_p has a root b modulo p. I.e. $f_n(b) \equiv_p 0$.
- ▶ If such a root does not exist then we are done, as $0 \le n$.
- Consider the polynomial

$$f_p(x)-f_p(b)=a'_1(x-b)+a'_2(x^2-b^2)+\ldots+a'_{k+1}(x^{k+1}-b^{k+1}).$$

▶ By lemma 9, (x - b) divides $(x^l - b^l)$ for all $1 \le l \le k + 1$, so we can define a polynomial $g(x) = \frac{f_p(x) - f_p(b)}{x - b}$ over \mathbb{Z}_p .

Lagrange's theorem on polynomial roots - proof 3

- ▶ By definition of g we have $f_p(x) f_p(b) = (x b)g(x)$.
- ▶ Moreover, g has degree at most k.
- ▶ Let c be a root of $f_p(x)$ modulo p.
- ▶ Then, setting x = c we get $0 \equiv_p (c b)g(c)$, as b is also a root of $f_p \mod p$.
- ▶ I.e. p|(c-b)g(c).
- ► Since *p* is prime this means either
 - a) p|(b-c), which happens if and only $c \equiv_p b$, or
 - b) p|g(c), in which case c is a root of g(x) modulo p.
- ▶ But, by the inductive hypothesis, there are at most k roots of g modulo p.
- ▶ So there at most k+1 roots of f_p modulo p.