NUMBER BASES

Summary:

- 1. Number bases are different ways of writing down numbers.
- **2.** The most common base system is base **10**.
- 3. The digits of a number in any base are less than the base itself
- 4. The digits 10 and 11 are represented by t and e respectively in number bases

NOTE:

- (i) Base 10 is called decimal base
- (ii) Base 2 is called binary base
- (iii) Base 3 is called trinary base
- (iv) Base 8 is called octal base

EXAMPLES:

- 1. Convert the following to base ten
 - (i) 1011_{two}
- (ii) 346_{seven} (iii) 2210_{three}
- (iv) 2et_{twelve}
- (v) $312 \cdot 21$ four (vi) $0 \cdot 12$ six

solution

(i)
$$1011_{two} = (1 \times 2^3) + (0 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

= $(1 \times 8) + (0 \times 4) + (1 \times 2) + (1 \times 1)$
= 11_{ten}

(iv)
$$312 \cdot 21_{four} = (3 \times 4^{2}) + (1 \times 4^{1}) + (2 \times 4^{0}) + (2 \times 4^{-1}) + (1 \times 4^{-2})$$

 $= (3 \times 16) + (1 \times 4) + (2 \times 1) + (2 \times \frac{1}{4}) + (2 \times \frac{1}{16})$
 $= 54 + \frac{1}{2} + \frac{1}{16}$
 $= 54 \cdot \frac{9}{16}_{ten}$ or $54 \cdot 5625_{ten}$

CONVERTING FROM BASE TEN TO OTHER BASES

Summary:

- (i) Divide the number repeatedly by the required bases
- (ii) The remainder in reverse order gives the required number

EXAMPLES:

1. Convert 64_{ten} to base three

3	64	R	
3	21	1	1
3	7	0	
	2	1	

$$\therefore 64_{ten} = 2101_{three}$$

- 2. Convert 246_{ten} to base five
- 3. Convert 2101_{three} to base seven

Hint: First convert 2101_{three} to base ten

2101_{three} =
$$(2 \times 3^3) + (1 \times 3^2) + (0 \times 3^1) + (1 \times 3^0)$$

= 64_{ten}

7	64	R	*
7	9	1	
	1	2	

$$\therefore 2101_{three} = 121_{seven}$$

5. Find the value of **n** in the following equations:

(i)
$$45_n = 1112_{three}$$

$$(ii)21_n = 19_{ten}$$

(i)
$$45_n = 1112_{three}$$
 (ii) $21_n = 19_{ten}$ (iii) $303_n = 410_{six}$

$$(iv) 202_n = 37_{nine}$$

$$(iv) 202_n = 37_{nine}$$
 $(v) 112_n + 304_n = 421_n$

OPERATIONS WITH ANY BASE OTHER THAN 10

ADDITION:

If the sum of the digits exceeds the base, divide that sum by the base then write down the remainder and carry the whole number.

EXAMPLES:

1. Workout the following leaving your answer in the base indicated

(i)
$$136_{seven} + 254_{seven}$$

$$(ii)$$
 232 $five + 344$ $five$

(iii)
$$28.57_{nine} + 6.34_{nine}$$

Solution:

$$(i) 136_{seven} + 254_{seven} = \frac{423_{seven}}{423_{seven}}$$

$$(ii) 232 five +344 five \hline 1131 five$$

(iii)
$$28.57$$
 nine $+6.34$ nine 36.02 nine

2. Workout 122_{three} + 461_{seven} giving your answer in base five

Hint: First convert 122_{three} and 461_{seven} to base ten and then finally express the answer in the required base

$$122_{three} = (1 \times 3^{2}) + (2 \times 3^{1}) + (2 \times 3^{0}) = 17_{ten}$$

$$461_{seven} = (4 \times 7^{2}) + (6 \times 7^{1}) + (1 \times 7^{0}) = 239_{ten}$$

$$\Rightarrow 122_{three} + 461_{seven} = 17_{ten} + 239_{ten} = 256_{ten}$$

5	256	R	
5	51	1	1
5	10	1	
	2	0	

$$\therefore 122_{three} + 461_{seven} = 2011_{five}$$

SUBTRACTION:

In case of borrowing the new value is the sum of the base and the digit which was small.

EXAMPLES:

- 1. Workout the following leaving your answer in the base indicated
 - $^{(i)}$ 72 $_{eight}$ $^{-}$ 43 $_{eight}$
 - (ii) 254_{eight} 217_{eight}
 - (iii) $30 \cdot 241_{five} 14 \cdot 143_{five}$

Solution:

- $(i) 72_{eight}$ -43_{eight} -27_{eight}
- $\begin{array}{c} \textit{(iii)} \quad \textit{30} \cdot \textit{241} \\ \textit{five} \\ + \quad \textit{14} \cdot \textit{143} \\ \textit{five} \\ \hline \\ \hline \quad \textit{14} \cdot \textit{043} \\ \textit{five} \end{array}$

2. Workout $221_{three} - 101_{two}$ giving your answer in base four

Hint: First convert 221_{three} and 101_{two} to base ten and then finally express the answer in the required base

$$22I_{three} = (2 \times 3^{2}) + (2 \times 3^{1}) + (1 \times 3^{0}) = 25_{ten}$$

$$10I_{two} = (1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0}) = 5_{ten}$$

$$\Rightarrow 22I_{three} - 10I_{two} = 25_{ten} - 5_{ten} = 20_{ten}$$

$$\frac{4 \quad 20 \quad R}{4 \quad 4 \quad 0}$$

$$\therefore 221_{three} - 101_{two} = 110_{four}$$

MULTIPLICATION AND DIVISION

EXAMPLES:

1. Workout the following leaving your answer in the base indicated

(i)
$$152_{eight} \times 43_{eight}$$

(ii)
$$et5_{twelve} \times 8t_{twelve}$$

(iii)
$$124$$
 five \times 32 five

Solution:

$$(i) 152_{eight} \times 43_{eight} \times 476 \\ +650 \\ \hline 7176_{eight}$$

$$(ii) et5 \\ twelve \\ \times 8t \\ twelve \\ \hline 9t82 \\ +7te4 \\ \hline 88t02 \\ twelve$$

$$(iii) 124 five \\ \times 32 five \\ \hline 303 \\ +432 \\ \hline 10123 five$$

2. Workout $1011_{two} \times 12_{three}$ giving your answer in binary base

Hint: First convert 1011_{two} and 12_{three} to base ten and then finally express the answer in the required base

$$1011_{two} = (1 \times 2^{3}) + (0 \times 2^{2}) + (1 \times 2^{1}) + (1 \times 2^{0}) = 11_{ten}$$

$$12_{three} = (1 \times 3^{1}) + (2 \times 3^{0}) = 5_{ten}$$

$$\Rightarrow 1011_{two} \times 12_{three} = 11_{ten} \times 5_{ten} = 55_{ten}$$

2	55	R	_
2	27	1	
2	13	1	-
2	6	1	*
2	3	0	
	1	1	

$$\therefore 1011_{two} \times 12_{three} = 110111_{two}$$

3. Workout the following leaving your answer in the base indicated

$$(ii) 110111_{two} \div 101_{two}$$

Solution:

(i) Hint: First convert 2001_{three} and 12_{three} to base ten and then finally express the answer in the required base

$$2001_{three} = (2 \times 3^3) + (0 \times 3^2) + (0 \times 3^1) + (1 \times 3^0) = 55_{ten}$$

$$12_{three} = (1 \times 3^1) + (2 \times 3^0) = 5_{ten}$$

$$\Rightarrow$$
 2001_{three} \div 12_{three} = 55_{ten} \div 5_{ten} = 11_{ten}

3	11	R	1
3	3	2	
	1	0	
	<u> </u>		

$$\therefore 2001_{three} \div 12_{three} = 102_{three}$$

$$(ii) 110111_{two} = (1 \times 2^5) + (1 \times 2^4) + (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

$$= 55_{ten}$$

$$101_{two} = (1 \times 2^2) + (0 \times 2^1) + (1 \times 2^0) = 5_{ten}$$

$$\Rightarrow$$
 110111_{two} \div 101_{two} = 55_{ten} \div 5_{ten} = 11_{ten}

2	11	R	
2	5	1	1
2	2	1	
	1	0	

$$\therefore 110111_{two} \div 101_{two} = 1011_{two}$$

EER:

- 1. Convert the following to base ten
 - (i) 2212_{three}
- (ii) 1011_{two} (iii) 234 five
- 2. Express 0.24_{six} as a fraction in base ten
- 3. Express $45 \cdot 3_{six}$ in base ten using point notation

- 4. Find the value of n if $45_n = 100001_{two}$
- 5. Find the value of n if $103_n + 26_n = 131_n$
- 6. Convert 102_{three} to binary base
- 7. Workout the following leaving your answer in the base indicated

(i)
$$152_{eight} \times 43_{eight}$$

(ii)
$$et5_{twelve} \times 8t_{twelve}$$

8. Arrange the following numbers $^{36}eight$, $^{302}four$ and $^{202}three$ in ascending order