Computer Architecture

Some questions & answers

Prof. Nizamettin AYDIN, PhD

naydin@yildiz.edu.tr

http://www3.yildiz.edu.tr/~naydin

Q48 - A48

- Suppose that a given process requires a virtual address space of 2⁸ words and physical addresses in the computing system contain 7 bits.
- Assume also that pages are 32 words in length
- **a.** How many frames does the physical memory has?
 - $-2^7/32 = 128/32 = 4$ frames
- **b.** How many pages does the virtual memory has?
 - $-2^{8}/32 = 256/32 = 8$ pages

Q48 - A48

- If some pages from the process have been brought into main memory as illustrated in the following figure,
- c. what will be the contents of the page table?

	Frame #	Valid Bit
0	2	1
1	-	0
2	-	0
1 2 3 4 5 6	0	1
4	1	1
5	(<u>1</u>)	0
6	(B)	0
7	3	1

Q48-A48

- The logical page number is translated into a physical page frame through a lookup in the page table.
- d. What will be the format for the virtual address?

Page Offset

3 bits 5 bits

e. What will be the format for the physical address?

Page Offset
2 bits 5 bits

Q48-A48

- Suppose the system now generates the virtual address $13_{10} = 0D_{16} = 00001101_2$.
- f. What will be the values of page field and offset field of virtual address?
 - the page field = $0 = 000_2$
 - the offset field = $13 = 01101_2$

- g. What will be the values of frame field and offset field of physical address?
 - the frame field = $2 = 10_2$
 - the offset field = $13 = 01101_2$

Q49

 The following code is a part of an assembler program written for a three address machine type processor.

I1: ADD R7, R5, R6
I2: MUL R8, R7, R4
I3: ADD R4, R2, R1
I4: DIV R8, R1, R3

- Identify the type of all possible dependencies in this code.
 - true data or write-read dependency
 - output or write-write dependency
 - antidependency or read-write dependency

A49

 True data or write-read dependency: I1, I2 (R7, R7) 11: ADD **R7**, R5, R6 12: MUL R8, R7, R4 13: **ADD R4, R2, R1** 14: **DIV R8, R1, R3** Output or write-write dependency: I2, I4 (R8, R8) 11: **ADD R7, R5, R6** 12: MUL **R8**, R7, R4 13: **ADD R4, R2, R1** 14: DIV **R8**, R1, R3 Antidependency or read-write dependency: I2, I3 (R4, R4) 11: ADD R7, R5, R6 12: MUL R8, R7, R4 13: ADD R4, R2, R1

14: **DIV R8, R1, R3**