香港考試及評核局 HONG KONG EXAMINATIONS AND ASSESSMENT AUTHORITY

2 0 1 2 年 香港中 學文憑考試 HONG KONG DIPLOMA OF SECONDARY EDUCATION EXAMINATION 2012

數學 延伸部分單元二(代數與微積分)

MATHEMATICS Extended Part Module 2 (Algebra and Calculus)

評 卷 參 考

MARKING SCHEME

本評卷參考乃香港考試及評核局專為今年本科考試而編寫,供閱卷員參考之用。閱卷員在完成閱卷工作後,若將本評卷參考提供其任教會考班的本科同事參閱,本局不表反對,但須切記,在任何情況下均不得容許本評卷參考落入學生手中。學生若索閱或求取此等文件,閱卷員/教師應嚴詞拒絕,因學生極可能將評卷參考視為標準答案,以致但知硬背死記,活剝生吞。這種落伍的學習態度,既不符現代教育原則,亦有違考試着重理解能力與運用技巧之旨。因此,本局籲請各閱卷員/教師通力合作,堅守上述原則。

This marking scheme has been prepared by the Hong Kong Examinations and Assessment Authority for markers' reference. The Authority has no objection to markers sharing it, after the completion of marking, with colleagues who are teaching the subject. However, under no circumstances should it be given to students because they are likely to regard it as a set of model answers. Markers/teachers should therefore firmly resist students' requests for access to this document. Our examinations emphasise the testing of understanding, the practical application of knowledge and the use of processing skills. Hence the use of model answers, or anything else which encourages rote memorisation, should be considered outmoded and pedagogically unsound. The Authority is counting on the co-operation of markers/teachers in this regard.

	Solution	Marks	Remarks
1.	$f(x) = e^{2x}$		
	$f'(0) = \lim_{h \to 0} \frac{e^{2(0+h)} - e^{2(0)}}{h}$	1M	
	$h \rightarrow 0$ h		$a^{2h}-1$
	$=\lim_{h\to 0}\frac{e^{2h}-1}{2h}\cdot 2$	1M	Accept $\lim_{h \to 0} \frac{e^{2h} - 1}{h}$
	= 2	1A	
		(3)	
-			
2.	$(1+ax)^n = 1 + nax + \frac{n(n-1)}{2}(ax)^2 + \cdots$	1M+1A	1A for $\frac{n(n-1)}{2}$
	Hence $na = 6$ and $\frac{n(n-1)}{2}a^2 = 16$.	1M	2
	•	1171	
	Solving, $\frac{n(n-1)}{2} \left(\frac{6}{n}\right)^2 = 16$		
	18(n-1) = 16n		,
	n = 9	1A	:
	Therefore, $a = \frac{2}{3}$.	1A	:
		(5)	
3.	For $n=1$, L.H.S. = $1 \times 2 = 2$ and R.H.S. = $1^2(1+1) = 2$		
	\therefore L.H.S. = R.H.S. and the statement is true for $n=1$.	1	
	Assume $1 \times 2 + 2 \times 5 + 3 \times 8 + \dots + k(3k-1) = k^2(k+1)$, where k is a positive integer.	1	
	$1 \times 2 + 2 \times 5 + 3 \times 8 + \dots + k(3k-1) + (k+1)[3(k+1)-1]$		
	$= k^{2}(k+1) + (k+1)(3k+2)$ by the assumption	1	
	$= (k+1)(k^2+3k+2)$	1	
	$= (k+1)^{2}(k+1+1)$ Hence the statement is true for $n = k+1$.	1	
	By the principle of mathematical induction, the statement is true for all positive integers n .	1	Follow through
		(5)	
			:
4.	(a) $\int \frac{x+1}{x} dx = \int \left(1 + \frac{1}{x}\right) dx$	1M	
	$= x + \ln x + C$	1A	
			4
	(b) Let $u = x^2 - 1$. du = 2xdx		
	$\int \frac{x^3}{x^2 - 1} dx = \int \frac{u + 1}{u} \cdot \frac{du}{2}$	1A	
	· · · · ·	""	
	$=\frac{1}{2}u + \frac{1}{2}\ln u + C$ by (a)	1M	
	$= \frac{1}{2}(x^2 - 1) + \frac{1}{2}\ln x^2 - 1 + C$	1A	OR $\frac{1}{2}x^2 + \frac{1}{2}\ln x^2 - 1 + C$
	2 2 1 1	(5)	

Solution		Marks	Remarks
Solution $y = \frac{x^2 + x + 1}{x + 1}$		Marks	reina ro
$x+1$ $= x + \frac{1}{x+1}$ $\frac{dy}{dx} = 1 - \frac{1}{(x+1)^2}$		1M 1A	OR $\frac{x^2 + 2x}{(x+1)^2}$
$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \text{when} x = -2 \text{or} 0$	$ \begin{array}{c cccc} $	1M	(x+1)
Alternative Solution $\frac{d^2y}{dx^2} = \frac{2}{(x+1)^3}$ When $x = 0$, $\frac{d^2y}{dx^2} = 2 > 0$, when $x = -2$, $\frac{d^2y}{dx^2} = -2$	-2 < 0 .	} 1M	
Hence (0,1) is a minimum point. The vertical asymptote is $x = -1$. $\lim_{x \to \pm \infty} \frac{1}{x+1} = 0$		1A 1A	Accept $\lim_{x \to \infty} \frac{1}{x+1} = 0$
$\therefore \text{ the oblique asymptote is } y = x$		1A (6)	
. (a) Let the radius of the water surface be $a \text{ cm}$. By considering similar triangles, $\frac{a-3}{4-3} = \frac{h}{10}$. i.e. $a = \frac{h+30}{10}$		1M	<u>4</u> → ↑
$V = \frac{\pi}{3} h \left[3^2 + 3 \left(\frac{h+30}{10} \right) + \left(\frac{h+30}{10} \right)^2 \right]$		1M	
$= \frac{\pi}{300} h[900 + 30(h+30) + (h^2 + 60h + 900)]$ $= \frac{\pi}{300} (h^3 + 90h^2 + 2700h)$		1	√ 3
(b) $\frac{dV}{dt} = \frac{\pi}{300} (3h^2 + 180h + 2700) \frac{dh}{dt}$ $\therefore 7\pi = \frac{\pi}{300} [3(5)^2 + 180(5) + 2700] \frac{dh}{dt}$		1M+1A	
$\frac{dh}{dt} = \frac{4}{7}$ i.e. the rate of increase of depth of water is $\frac{4}{7}$ cm	s ⁻¹ .	1A	
		(6)	

	Solution	Marks	Remarks
7. (a		Widths	Romarks
7. (6	$= (6\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \times (2\mathbf{i} + \mathbf{j}) $	1M	
	,	11V1	$\frac{E}{}$
	$= \mathbf{i} - 2\mathbf{j} + 2\mathbf{k} $		C/ $F/$
	$=\sqrt{1^2+2^2+2^2}$		1
	=3	1A	
			//B $/D$
(t	The volume of the parallelepiped OADBECFG		O A
	$= (6\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \times (2\mathbf{i} + \mathbf{j}) \cdot (5\mathbf{i} - \mathbf{j} + 2\mathbf{k})$	1M	
	$= (\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}) \cdot (5\mathbf{i} - \mathbf{j} + 2\mathbf{k})$		
	=1.5+(-2)(-1)+2.2		
	=11		
			volume
	Hence, the distance between point C and plane $OADB$ is $\frac{11}{3}$.	1M+1A	1M for height = $\frac{\text{volume}}{\text{base}}$
		(5)	base
	<i>k</i>	(3)	
0 (-	$\begin{array}{cccccccccccccccccccccccccccccccccccc$;
8. (a	The augmented matrix is $\begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & -1 & 5 & 6 \end{pmatrix}$		
	$ \sim \begin{pmatrix} $	1M	
	$\begin{pmatrix} 0 & -3 & 3 & & 6 \end{pmatrix}$		
	$\sim \begin{pmatrix} 1 & 1 & 1 & 0 \\ 0 & 1 & -1 & -2 \end{pmatrix}$		
	$\begin{pmatrix} 0 & 1 & -1 & & -2 \end{pmatrix}$		
	Let $z = t$, where t is a real number. Then $y = t - 2$ and $x = 2 - 2t$.	1A	OR Solution Set =
			$\{(2-2t, t-2, t): t \in \mathbf{R}\}$
(t	Substitute $(x, y, z) = (2 - 2t, t - 2, t)$ into the last equation:	1M	
	$(2-2t)-(t-2)+\lambda(t)=4$,	
	$(\lambda - 3)t = 0$		
	When $\lambda \neq 3$, $t = 0$.		
		1.4	
	(x, y, z) = (2, -2, 0)	1A	
	When $\lambda = 3$, t can be any real number.		
	$\therefore (x, y, z) = (2-2t, t-2, t)$	1A	
	Alternative Collection		
	Alternative Solution		
			1
	The augmented matrix is $ \begin{pmatrix} 1 & 1 & 1 & 0 \\ 2 & -1 & 5 & 6 \\ 1 & -1 & \lambda & 4 \end{pmatrix} $		
	$\begin{pmatrix} 1 & -1 & \lambda & & 4 \end{pmatrix}$		•
	(1 1 1 0)		
	$ \sim \begin{pmatrix} $	1M	
		1111	
	$\begin{pmatrix} 1 & 1 & 1 & & 0 \end{pmatrix}$		
	~ 0 1 -1 -2		
	$ \sim $		
	When $\lambda \neq 3$, $z = 0$.		
	$\therefore (x, y, z) = (2, -2, 0)$	1A	
		IA	
	When $\lambda = 3$, z can be any real number.	1.4	
	\therefore $(x, y, z) = (2-2t, t-2, t)$, where t is a real number.	1A	
		(5)	* · · · · · · · · · · · · · · · · · · ·
		(3)	

		Solution	Marks	Remarks
9.	(a)	$\int x \sin x dx = x(-\cos x) - \int (-\cos x) dx$	1M	
		$= -x\cos x + \sin x + C$	1 A	W -
	(b)	The volume $= \pi \int_0^{\pi} x \sin x dx$	1M	$ \begin{array}{c c} 1M & \text{for } V = \pi \int y^2 dx \\ y_0 & & & \\ \end{array} $
		$= \pi[-x\cos x + \sin x]_0^{\pi}$		$y = \sqrt{x \sin x}$
		$= \pi [-x \cos x + \sin x]_0$ $= \pi^2$	1 A	
			(4)	ο π
0.	(a)	Let F be a point on AB such that $OF \perp AB$. Let OA be x .		
		$\therefore AF = \frac{1}{2}$ and $\angle AOF = 2\theta$ (properties of isos. \triangle)		020
		In $\triangle OAF$, $\sin 2\theta = \frac{1}{2} \frac{1}{x}$	1M	A y Y F
		Alternative Solution		
		In $\triangle OAB$, $\frac{1}{\sin 4\theta} = \frac{x}{\sin(90^\circ - 2\theta)}$	1M	OR $x^2 = x^2 + 1^2 - 2x\cos(90^\circ - 26^\circ)$
		$x = \frac{1}{2\sin 2\theta} $ (1)		
		In $\triangle OAY$, $\frac{y}{\sin \theta} = \frac{x}{\sin(90^\circ + \theta)}$ (2)	1M	
		Substitute (1) into (2): $\frac{y}{\sin \theta} = \frac{1}{2\sin 2\theta} \cdot \frac{1}{\cos \theta}$	1M	
		Alternative Solution		
		In $\triangle OAY$, $\frac{y}{\sin \theta} = \frac{OY}{\sin \angle OAY}$	1M	0
		In $\triangle OBY$, $\frac{1-y}{\sin 3\theta} = \frac{OY}{\sin \angle OBY}$	1M	$\theta/3\theta$
		$ sin 3\theta sin \angle OBY \therefore \angle OAY = \angle OBY (base \angle s, isos. \Delta s) $		A y Y 1-y
		$\therefore \frac{y}{\sin \theta} = \frac{1 - y}{3 \sin \theta - 4 \sin^3 \theta}$	1M	
		$\sin \theta = 3\sin \theta - 4\sin^3 \theta$ $3y - 4y\sin^2 \theta = 1 - y$		
		$4y(1-\sin^2\theta)=1$		
	•	$y = \frac{1}{4}\sec^2\theta$	1	· .
	(b)	$0^{\circ} < 4\theta < 180^{\circ}$	1M	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
		$\frac{1}{4}\sec^2 0^\circ < y < \frac{1}{4}\sec^2 45^\circ \text{ since } \sec^2 \theta \text{ is an increasing function for } 0^\circ < \theta < 45^\circ $		Accept using "≤" sign
		i.e. $\frac{1}{4} < y < \frac{1}{2}$	1A	
		· · · · · · · · · · · · · · · · · · ·	(6)	17

		Solution	Marks	Remarks
1. (a)	$\begin{vmatrix} 1-\\ 2\end{vmatrix}$	$\begin{vmatrix} -x & 4 \\ 2 & 3-x \end{vmatrix} = 0$		
		$\frac{3-x}{(3-x)(3-x)-2\cdot 4} = 0$	1M	
		-4x - 5 = 0 -1 or 5	1A	
	~ –			
			(2)	
(b)) (i)	$ \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = -1 \cdot \begin{pmatrix} a \\ b \end{pmatrix} $		
		$\begin{cases} a+4b=-a\\ 2a+3b=-b \end{cases}$	1M €	
		a+2b=0	(1) 1A <	
		$ \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} c \\ 1 \end{pmatrix} = 5 \begin{pmatrix} c \\ 1 \end{pmatrix} $		Either one
				Either one
		$\begin{cases} c+4=5c \\ 2c+3=5 \end{cases}$	2)	
		$ \begin{vmatrix} c & = 1 \\ a & c \\ b & 1 \end{vmatrix} = 1 $	2) =	
		$\begin{vmatrix} b & 1 \end{vmatrix}^{-1}$ By (2), $a-b=1$	(3) 1M	For $a-bc=1$
		Solving (1) and (3), we have $a = \frac{2}{3}$ and $b = \frac{-1}{3}$.		101 4 - 50 - 1
		, (,)		
		$\therefore P = \begin{pmatrix} \frac{2}{3} & 1 \\ \frac{-1}{2} & 1 \end{pmatrix}$	1A	
		$\left(\overline{3}^{-1}\right)$		
	(ii)	$P^{-1} = \frac{1}{\frac{2}{3} + \frac{1}{3}} \begin{pmatrix} 1 & \frac{1}{3} \\ -1 & \frac{2}{3} \end{pmatrix}^{t}$		
	()	$\frac{2}{3} + \frac{1}{3} \left(-1 \frac{2}{3} \right)$		
		$= \begin{pmatrix} 1 & -1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$	1M	
		$P^{-1} \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} P = \begin{pmatrix} \frac{1}{3} & -\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & 1 \\ -\frac{1}{3} & 1 \end{pmatrix}$		
				OR $ \begin{pmatrix} 1 & -1 \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{-2}{3} & 5 \\ \frac{1}{3} & 5 \end{pmatrix} $
		$\begin{pmatrix} -1 & 1 \\ 5 & 10 \end{pmatrix} \begin{pmatrix} \frac{2}{3} & 1 \end{pmatrix}$		$\begin{bmatrix} 1 & -1 \\ 1 & 2 \end{bmatrix} \begin{pmatrix} -2 \\ 3 & 5 \end{bmatrix}$
		$= \begin{pmatrix} -1 & 1 \\ \frac{5}{3} & \frac{10}{3} \end{pmatrix} \begin{pmatrix} \frac{2}{3} & 1 \\ -\frac{1}{3} & 1 \end{pmatrix}$ $= \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix}$	IM	$ \left \begin{array}{c c} OR & \left(\frac{1}{3} & \frac{2}{3} \right) & \frac{1}{2} & 5 \end{array} \right $
		$\begin{pmatrix} 1 & 0 \end{pmatrix}$	1 A	(3)
		-(0 5)	IA IA	

Solution	Marks	Remarks
(iii) $P^{-1} \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} P = \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix}$		
$ \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix} = P \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} P^{-1} $	1M	
$ \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}^{12} = \underbrace{P \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} P^{-1} P \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} P^{-1} \cdots P \begin{pmatrix} -1 & 0 \\ 0 & 5 \end{pmatrix} P^{-1}}_{12 \text{ times}} $		
$=P\begin{pmatrix} -1 & 0\\ 0 & 5 \end{pmatrix}^{12}P^{-1}$	1M	
$= \begin{pmatrix} \frac{2}{3} & 1\\ -\frac{1}{3} & 1 \end{pmatrix} \begin{pmatrix} 1 & 0\\ 0 & 5^{12} \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{-1}{3} \\ \frac{1}{3} & \frac{2}{3} \end{pmatrix}$	1M	For $\begin{pmatrix} 1 & 0 \\ 0 & 5^{12} \end{pmatrix}$
$= \begin{pmatrix} \frac{2}{3} & 5^{12} \\ \frac{-1}{3} & 5^{12} \end{pmatrix} \begin{pmatrix} \frac{1}{3} & \frac{2}{3} \end{pmatrix}$		For $\begin{pmatrix} 1 & 0 \\ 0 & 5^{12} \end{pmatrix}$ $OR \begin{pmatrix} \frac{2}{3} & 1 \\ \frac{-1}{3} & 1 \end{pmatrix} \begin{pmatrix} \frac{1}{5^{12}} & \frac{-1}{3} \\ \frac{5^{12}}{3} & \frac{2 \cdot 5^{12}}{3} \end{pmatrix}$
$= \begin{pmatrix} \frac{5^{12} + 2}{3} & \frac{2 \cdot 5^{12} - 2}{3} \\ \frac{5^{12} - 1}{3} & \frac{2 \cdot 5^{12} + 1}{3} \end{pmatrix}$	1A	OR (81380209 162760416 81380208 162760417
	(11)	
Let $\overrightarrow{AG} = \frac{\overrightarrow{AC} + \lambda \overrightarrow{AD}}{1 + \lambda}$. Since \overrightarrow{AG} lies on a median, $\overrightarrow{AG} = k \frac{\overrightarrow{AC} + \overrightarrow{AB}}{2} = k \frac{\overrightarrow{AC} + 2\overrightarrow{AD}}{2}$ for some k .		
Comparing the two expressions of \overrightarrow{AG} , we get $\lambda = 2$.		C A
$\overrightarrow{AG} = \frac{\overrightarrow{AC} + 2\overrightarrow{AD}}{3}$	1A	F
$=\frac{\overrightarrow{AC} + \overrightarrow{AB}}{3}$		O O
$=\frac{3}{(\mathbf{c}-\mathbf{a})+(\mathbf{b}-\mathbf{a})}$	1M	A E D For tip-to-tail method
Alternative Solution 1 Let M be the mid-point of BC .		
$\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AM}$	1A	
$=\frac{2}{3}\cdot\frac{\overrightarrow{AC}+\overrightarrow{AB}}{2}$,
$=\frac{3}{(\mathbf{c}-\mathbf{a})+(\mathbf{b}-\mathbf{a})}$	1M	For tip-to-tail method
		•
$\overrightarrow{AG} = \overrightarrow{OG} - \overrightarrow{OA}$	1M	
$=\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}-\mathbf{a}$	1A	For $\frac{a+b+c}{3}$
$=\frac{\mathbf{b}+\mathbf{c}-2\mathbf{a}}{3}$	1.4	3
=3	1A	

	Solution	Marks	Remarks
) (i)	Since O is the circumcentre of the $\triangle ABC$, $OD \perp AB$. $\therefore OD//CE$ $\angle DOG = \angle CFG$ (alt. $\angle s$, $OD//CF$)	1	C C
	$\angle ODG = \angle FCG$ (alt. \angle s, $OD//CF$)		F
	$\angle OGD = \angle FGC$ (vert. opp. $\angle s$)		
	$\therefore \Delta DOG \sim \Delta CFG (A.A.A.)$ $FG: GO = CG: GD (corr. sides, \sim \Delta s)$	1	
	= 2:1	1A	$egin{array}{cccccccccccccccccccccccccccccccccccc$
(ii)	$\overrightarrow{AG} = \frac{\overrightarrow{AF} + 2\overrightarrow{AO}}{3}$	1M	For using (b)(i)
	$\overrightarrow{AF} = 3\overrightarrow{AG} - 2\overrightarrow{AO}$		
		134	Farancia (a)
	$=3\cdot\frac{\mathbf{b}+\mathbf{c}-2\mathbf{a}}{3}-2(-\mathbf{a})$	1M	For using (a)
	$\overrightarrow{AH} = \overrightarrow{AG} + \overrightarrow{GF}$		1 1
	$= \overrightarrow{AG} + \overrightarrow{OG}$ $= \overrightarrow{AG} + 2\overrightarrow{OG}$	1 _M	For using (b)(i)
	$= \frac{\mathbf{b} + \mathbf{c} - 2\mathbf{a}}{3} + 2 \cdot \frac{\mathbf{a} + \mathbf{b} + \mathbf{c}}{3}$		
	=	1M	For using (a)
	Alternative Solution 2		:
	$\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{CF}$	111	
	$= \overrightarrow{AC} + 2\overrightarrow{OD}$ $= \overrightarrow{AC} + \overrightarrow{OA} + \overrightarrow{OB}$	1M	
	= AC + OA + OB $= (c - a) + a + b$	1M	
	Alternative Solution 3		
	$\overrightarrow{AF} = \overrightarrow{OF} - \overrightarrow{OA}$		'
	$=3\overrightarrow{OG}-\overrightarrow{OA}$	1M	For using (b)(i)
	$=3\cdot\frac{\mathbf{a}+\mathbf{b}+\mathbf{c}}{3}-\mathbf{a}$	1M	
	$= \mathbf{b} + \mathbf{c}$	1	
	$\overrightarrow{AF} \cdot \overrightarrow{BC} = (\mathbf{b} + \mathbf{c}) \cdot (\mathbf{c} - \mathbf{b})$	1M	
	$=\left \mathbf{c}\right ^{2}-\left \mathbf{b}\right ^{2}$		
	= 0 (: O is the circumcentre)	1A	
	$\therefore AF \perp BC$		
	\therefore AF is another altitude of $\triangle ABC$.		
	Alternative Solution	124	
	$\overrightarrow{BF} \cdot \overrightarrow{AC} = (\overrightarrow{BA} + \overrightarrow{AF}) \cdot \overrightarrow{AC}$ $= (\mathbf{a} - \mathbf{b} + \mathbf{b} + \mathbf{c}) \cdot (\mathbf{c} - \mathbf{a})$	1M	
	$= \mathbf{c} ^2 - \mathbf{a} ^2$ $= (\mathbf{c} + \mathbf{c}) $ is the circumcentre.	1A	
	$= 0 \qquad (\because O \text{ is the circumcentre})$ $\therefore BF \perp AC$	IA	
	$\therefore BF \perp AC$ $\therefore BF \text{ is another altitude of } \Delta ABC .$		
	\therefore F is the orthocentre of $\triangle ABC$.	1	
		(9)	-

	Solution	Marks	Remarks
13. (a) (i)	$\tan u = \frac{-1 + \cos\frac{2\pi}{5}}{\sin\frac{2\pi}{5}}$		
	$= \frac{-1 + 1 - 2\sin^2\frac{\pi}{5}}{2\sin\frac{\pi}{5}\cos\frac{\pi}{5}}$	1M	
	$= -\tan \frac{\pi}{5}$ $= \tan \frac{-\pi}{5}$ $\therefore u = \frac{-\pi}{5} \text{for } \frac{-\pi}{2} < u < \frac{\pi}{2}$	1	
(ii)	$\tan v = \frac{1 + \cos \frac{2\pi}{5}}{\sin \frac{2\pi}{5}}$		
	$ \frac{\sin\frac{2\pi}{5}}{2\sin\frac{\pi}{5}\cos\frac{\pi}{5}} = \frac{1+2\cos^2\frac{\pi}{5}-1}{2\sin\frac{\pi}{5}\cos\frac{\pi}{5}} $	1M	
	$= \cot \frac{\pi}{5}$ $= \tan \left(\frac{\pi}{2} - \frac{\pi}{5}\right)$		
	$\therefore v = \frac{3\pi}{10} \text{for } \frac{-\pi}{2} < v < \frac{\pi}{2}$	1A (4)	
(b) (i)	$x^2 + 2x\cos\frac{2\pi}{5} + 1$		·
	$x^{2} + 2x\cos\frac{2\pi}{5} + \cos^{2}\frac{2\pi}{5} + \sin^{2}\frac{2\pi}{5}$ $= (x + \cos\frac{2\pi}{5})^{2} + \sin^{2}\frac{2\pi}{5}$	1A	
(ii)	$\int_{-1}^{1} \frac{\sin\frac{2\pi}{5}}{x^2 + 2x\cos\frac{2\pi}{5} + 1} dx = \int_{-1}^{1} \frac{\sin\frac{2\pi}{5}}{(x + \cos\frac{2\pi}{5})^2 + \sin^2\frac{2\pi}{5}} dx$		
	Let $x + \cos \frac{2\pi}{5} = \sin \frac{2\pi}{5} \tan \theta$	1M	· ·
	$\therefore dx = \sin \frac{2\pi}{5} \sec^2 \theta d\theta$	1A	
	When $x = -1$, $\tan \theta = \frac{-1 + \cos \frac{2\pi}{5}}{\sin \frac{2\pi}{5}}$ which gives $\theta = \frac{-\pi}{5}$ (by (a)(i))	1M	For using (a)
	When $x = 1$, $\tan \theta = \frac{1 + \cos \frac{2\pi}{5}}{\sin \frac{2\pi}{5}}$ which gives $\theta = \frac{3\pi}{10}$ (by (a)(ii))		

Solution	Marks	Remarks
$\therefore \int_{-1}^{1} \frac{\sin\frac{2\pi}{5}}{x^2 + 2x\cos\frac{2\pi}{5} + 1} dx = \int_{-\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{\sin^2\frac{2\pi}{5}\sec^2\theta}{\sin^2\frac{2\pi}{5}(\tan^2\theta + 1)} d\theta$ $= [\theta]_{-\frac{\pi}{2}}^{\frac{3\pi}{10}}$	1A	For integrand
$= [0] \frac{\pi}{5}$ $= \frac{\pi}{2}$	1A (6)	
(c) $\int_{-1}^{1} \frac{\sin \frac{7\pi}{5}}{x^2 + 2x \cos \frac{7\pi}{5} + 1} dx = \int_{-1}^{1} \frac{-\sin \frac{2\pi}{5}}{x^2 - 2x \cos \frac{2\pi}{5} + 1} dx$	1A	
Let $y = -x$. dy = -dx When $x = -1$, $y = 1$; when $x = 1$, $y = -1$.	1M	
$\therefore \int_{-1}^{1} \frac{\sin \frac{7\pi}{5}}{x^2 + 2x \cos \frac{7\pi}{5} + 1} dx = \int_{1}^{-1} \frac{-\sin \frac{2\pi}{5}}{y^2 + 2y \cos \frac{2\pi}{5} + 1} dx$		
Alternative Solution $\int_{-1}^{1} \frac{\sin \frac{7\pi}{5}}{x^2 + 2x \cos \frac{7\pi}{5} + 1} dx = \int_{-1}^{1} \frac{\sin \frac{7\pi}{5}}{(x + \cos \frac{7\pi}{5})^2 + \sin^2 \frac{7\pi}{5}} dx$		
Let $x + \cos \frac{7\pi}{5} = \sin \frac{7\pi}{5} \tan \theta$ $\therefore dx = \sin \frac{7\pi}{5} \sec^2 \theta d\theta$	1M	
When $x = -1$, $\theta = \frac{3\pi}{10}$; when $x = 1$, $\theta = \frac{-\pi}{5}$. $\therefore \int_{-1}^{1} \frac{\sin \frac{7\pi}{5}}{x^2 + 2x \cos \frac{7\pi}{5} + 1} dx = \int_{\frac{3\pi}{10}}^{\frac{-\pi}{5}} \frac{\sin^2 \frac{7\pi}{5} \sec^2 \theta}{\sin^2 \frac{7\pi}{5} (\tan^2 \theta + 1)} d\theta$	1A	
$=\frac{-\pi}{2}$ by (b)(ii)	1A (3)	
14. (a) $y = kx^p$ $\frac{dy}{dx} = kpx^{p-1}$	1A	
The slope of the tangent to Γ at A is kpa^{p-1} .		
$\therefore \frac{ka^{p} - 0}{a - (-a)} = kpa^{p-1}$ $p = \frac{1}{2}$	1M	
2	(3)	

(ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{3} \left(\frac{y}{2\sqrt{3}} \right)^{2} dy - \frac{1}{2} (2)^{2} \frac{\pi}{6}$ $IM = \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{3} \frac{3}{3} \left(\frac{y}{2\sqrt{3}} \right)^{2} dy - \frac{1}{2} (2)^{2} \frac{\pi}{6}$ $IM = \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2} \cdot \frac{3}{2}$		Solution	Marks	Remarks
$k-t = -\sqrt{3} \text{for } \sqrt{3} \text{frejected}$ Slope of $AP = \frac{k-t}{1-0}$ Slope of $AB = \frac{k}{2} \text{(by (a))}$ $\therefore (k-t)\frac{k}{2} = -1 (2) 1A$ Substitute (1) into (2): $(-\sqrt{3})\frac{k}{2} = -1$ Alternative Solution According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$. $\angle ORB = \angle ARP \text{(vert. opp. } \angle S)$ $\therefore \angle RBO = \angle RPA \text{and let the angles be } \theta$. Since $PA = 2 \text{and } QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2} \text{(by (a))}$ $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ $k = \frac{2\sqrt{3}}{3}$ 1 (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4-1} + \int_{0}^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^{\frac{2}{3}} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3}\right]^{\frac{3}{3}} - \frac{\pi}{3}$ $1M$ $= \frac{1}{2} \cdot 1 \cdot \sqrt{4-1} + \frac{2\sqrt{3}}{3} \left(\frac{y}{3}\right)^{\frac{2\sqrt{3}}{3}} - \frac{\pi}{3}$ $1M$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3}\right]^{\frac{3}{3}} - \frac{\pi}{3}$ $1M$	(b) (i)			
Slope of $AP = \frac{k-t}{1-0}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore (k-t)\frac{k}{2} = -1$ Substitute (1) into (2): $(-\sqrt{3})\frac{k}{2} = -1$ Alternative Solution According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$. $\angle ORB = \angle ARP$ (vert. opp. $\angle s$) $\therefore \angle RBO = \angle RPA$ and let the angles be θ . Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ $k = \frac{2\sqrt{3}}{3}$ 1 (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{A-1} + \int_{0}^{2\sqrt{3}} \frac{\sqrt{y}}{2\sqrt{3}} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{\sqrt{3}}{3} \right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ IM $B(-1, 0)$ B			1M	OR $t = k + \sqrt{4 - 1}$
Slope of $AP = \frac{k-1}{1-0}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore (k-t)\frac{k}{2} = -1$ Substitute (1) into (2): $(-\sqrt{3})\frac{k}{2} = -1$ Alternative Solution According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$. $\angle ORB = \angle ARP$ (vert. opp. $\angle S$) $\therefore \angle RBO = \angle RPA$ and let the angles be θ . Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ $k = \frac{2\sqrt{3}}{3}$ 1 (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{A-1} + \int_{0}^{2\sqrt{3}} \frac{\sqrt{y}}{2\sqrt{3}}^2 dy - \frac{1}{2}(2)^2 \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3} \right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ $ M $ $ M $ $ A $ $ $		1		$\bigwedge^{\mathcal{N}}_{C}$
Substitute (1) into (2): $(-\sqrt{3})\frac{k}{2} = -1$ Alternative Solution According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$. $\angle ORB = \angle ARP$ (vert. opp. $\angle S$) $\therefore \angle RBO = \angle RPA$ and let the angles be θ . Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ (ii) The shaded area = area of ΔPQA + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{3} \left(\frac{y}{2\sqrt{3}} \right)^{2} dy - \frac{1}{2} (2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ 1M $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{3} \left(\frac{y}{2\sqrt{3}} \right)^{2} dy - \frac{1}{2} (2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ 1M $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$		Slope of $AP = \frac{\kappa - t}{1 - 0}$		
Substitute (1) into (2): $(-\sqrt{3})\frac{k}{2} = -1$ Alternative Solution According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$. $\angle ORB = \angle ARP$ (vert. opp. $\angle S$) $\therefore \angle RBO = \angle RPA$ and let the angles be θ . Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ (ii) The shaded area $= \arcsin \Delta PQA + \arcsin \theta$ left of Γ from O to $A - \arcsin \theta$ sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{2\sqrt{3}} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]^{2\sqrt{3}} - \frac{\pi}{3}$ IM $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{2\sqrt{3}} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]^{2\sqrt{3}} - \frac{\pi}{3}$ IM $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]^{2\sqrt{3}} - \frac{\pi}{3}$ IM $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]^{2\sqrt{3}} - \frac{\pi}{3}$ IM $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]^{2\sqrt{3}} - \frac{\pi}{3}$		Slope of $AB = \frac{k}{2}$ (by (a))	1M	P(0,t)
Substitute (1) into (2): $(-\sqrt{3})\frac{2}{2} = -1$ Alternative Solution According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$. $\angle ORB = \angle ARP$ (vert. opp. $\angle S$) $\therefore \angle RBO = \angle RPA$ and let the angles be θ . Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ $k = \frac{2\sqrt{3}}{3}$ 1 (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^{2} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3}\right]_{0}^{3} - \frac{\pi}{3}$ 1M $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3}\right]_{0}^{3} - \frac{\pi}{3}$		$\therefore (k-t)\frac{k}{2} = -1 \qquad (2)$	1A	
According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$. $\angle ORB = \angle ARP$ (vert. opp. $\angle s$) $\therefore \angle RBO = \angle RPA$ and let the angles be θ . Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ $k = \frac{2\sqrt{3}}{3}$ 1 (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^{2} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3}\right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ 1M		Substitute (1) into (2): $(-\sqrt{3})\frac{k}{2} = -1$		
$\angle ORB = \angle ARP (\text{vert. opp. } \angle s)$ $\therefore \angle RBO = \angle RPA \text{ and let the angles be } \theta .$ Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ $\text{Slope of } AB = \frac{k}{2} (\text{by (a)})$ $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ $k = \frac{2\sqrt{3}}{3}$ 1 (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{2\frac{\sqrt{3}}{3}} \frac{y}{3} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ $1M$ $B(-1, 0)$ D		Alternative Solution		
Since $PA = 2$ and let the angles be θ . Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$ Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ (ii) The shaded area = area of ΔPQA + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{2\sqrt{3}} \frac{y}{3} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3} \right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ IM $B(-1, 0) \xrightarrow{R}$ $A(1, k)$ $B(-1, 0) \xrightarrow{R}$ $A(1, k)$ $A(1, k)$ $A(1, k)$ $A(1, k)$ $A(1, k)$		According to the figure, $\angle ROB = \angle RAP = \frac{\pi}{2}$.		N ^y
Slope of $AB = \frac{k}{2}$ (by (a)) $\therefore \tan \frac{\pi}{6} = \frac{k}{2}$ $k = \frac{2\sqrt{3}}{3}$ 1 (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \frac{y}{3} \left(\frac{y}{2\sqrt{3}} \right)^{2} dy - \frac{1}{2} (2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left(\frac{y^{3}}{3} \right)^{\frac{2\sqrt{3}}{3}} - \frac{\pi}{3}$ 1M $B(-1, 0)$ $B(-1, 0)$ $B(-1, 0)$ $B(-1, 0)$ $B(-1, 0)$		` ** <i>'</i>	1M	C
$k = \frac{2\sqrt{3}}{3}$ (ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^{2} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3}\right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$ 1M $B(-1, 0)$ $B(-1,$		Since $PA = 2$ and $QA = 1$, $\theta = \frac{\pi}{6}$	1 A	P
(ii) The shaded area = area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_{0}^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^{2} dy - \frac{1}{2}(2)^{2} \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^{3}}{3}\right]_{0}^{2\sqrt{3}} - \frac{\pi}{3}$		Slope of $AB = \frac{k}{2}$ (by (a))	1M	Ø\2
$k = \frac{2\sqrt{3}}{3}$ (ii) The shaded area $= \text{area of } \Delta PQA + \text{area on the left of } \Gamma \text{ from } O \text{ to } A - \text{area of sector } PAS$ $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_0^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^2 dy - \frac{1}{2}(2)^2 \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3}\right]_0^{2\sqrt{3}} - \frac{\pi}{3}$ $1M$ $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_0^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^2 dy - \frac{1}{2}(2)^2 \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3}\right]_0^{2\sqrt{3}} - \frac{\pi}{3}$ $1M$ $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \frac{1}{2} \cdot \frac{\sqrt{3}}{3} - \frac{\pi}{3}$ $1M$ $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \frac{1}{2} \cdot \frac{\sqrt{3}}{3} - \frac{\pi}{3}$ $1M \cdot 1M \cdot 1A$		$\therefore \tan \frac{\pi}{6} = \frac{k}{2}$		B(-1,0)
(ii) The shaded area $= \text{area of } \Delta PQA + \text{area on the left of } \Gamma \text{ from } O \text{ to } A - \text{area of sector } PAS$ $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_0^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^2 dy - \frac{1}{2} (2)^2 \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3}\right]_0^{2\sqrt{3}} - \frac{\pi}{3}$		$k = \frac{2\sqrt{3}}{3}$	1	$\begin{vmatrix} B(-1,0) & Y \\ O \end{vmatrix}$
= area of ΔPQA + area on the left of Γ from O to A – area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_0^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^2 dy - \frac{1}{2}(2)^2 \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3}\right]_0^{2\sqrt{3}} - \frac{\pi}{3}$ $1M$ $B(-1, 0)$ $B(-1, 0)$		3		
= area of ΔPQA + area on the left of Γ from O to A – area of sector PAS $= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_0^{2\sqrt{3}} \left(\frac{y}{2\sqrt{3}}\right)^2 dy - \frac{1}{2}(2)^2 \frac{\pi}{6}$ $= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3}\right]_0^{2\sqrt{3}} - \frac{\pi}{3}$ $1M$ $B(-1, 0)$ $B(-1, 0)$	(;;)	The shaded area		A ^y
$= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3} \right]_0^{\frac{2\sqrt{3}}{3}} - \frac{\pi}{3}$ $1M$ $B(-1, 0)$ $B(-1, 0)$	(π)	= area of $\triangle PQA$ + area on the left of Γ from O to A - area of sector PAS	1M	
$= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3} \right]_0^{2\sqrt{3}} - \frac{\pi}{3}$ $1M$ $B(-1, 0)$ $B(-1, 0)$		$= \frac{1}{2} \cdot 1 \cdot \sqrt{4 - 1} + \int_0^{2\sqrt{3}} \left(\frac{y}{\frac{2\sqrt{3}}{2}} \right)^2 dy - \frac{1}{2} (2)^2 \frac{\pi}{6}$	1M+1A	
			·	
Alternative Solution 1		$= \frac{\sqrt{3}}{2} + \frac{3}{4} \left[\frac{y^3}{3} \right]_0^3 - \frac{\pi}{3}$	1M	B(-1,0)
		Alternative Solution 1		/ 0
$t = k + \sqrt{3}$				A ^V
$=\frac{5\sqrt{3}}{3}$		$=\frac{5\sqrt{3}}{3}$		C
The shaded area = area of trapezium $OFAP$ – area of sector PAS – area under Γ from O to A 1M $P(0, t)$			1M	P(0,t)
$= \frac{1}{2} \left(\frac{2\sqrt{3}}{3} + \frac{5\sqrt{3}}{3} \right) (1) - \frac{1}{2} (2)^2 \frac{\pi}{6} - \int_0^1 \frac{2\sqrt{3}}{3} x^{\frac{1}{2}} dx$ $1M+1A$		· .		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
			1M	B(-1,0) $A(1,k)$
$\begin{bmatrix} \frac{1}{6} - \frac{1}{3} - \frac{1}{9} \end{bmatrix}_0$		6 3 9 [] 0	1141	

Solution	Marks
Alternative Solution 2 $t = k + \sqrt{3}$ $= \frac{5\sqrt{3}}{3}$ The solution 2	-
The shaded area = area of $\triangle OAP$ + area of $\triangle OAF$ - area of sector PAS - area under Γ from O to A	1 1M
$= \frac{1}{2} \left(\frac{5\sqrt{3}}{3} \right) (1) + \frac{1}{2} (1) \left(\frac{2\sqrt{3}}{3} \right) - \frac{1}{2} (2)^2 \frac{\pi}{6} - \int_0^1 \frac{2\sqrt{3}}{3} x^{\frac{1}{2}} dx$	1M+1A
$=\frac{5\sqrt{3}}{6}+\frac{\sqrt{3}}{3}-\frac{\pi}{3}-\frac{4\sqrt{3}}{9}\left[x^{\frac{3}{2}}\right]_{0}^{1}$	1M
Alternative Solution 3 $t = k + \sqrt{3}$ $= \frac{5\sqrt{3}}{2}$	
The equation of C is $x^2 + \left(y - \frac{5\sqrt{3}}{3}\right)^2 = 4$.	1A
Hence, the equation of \widehat{AS} is $y = \frac{5\sqrt{3}}{3} - \sqrt{4 - x^2}$.	
The shaded area = $\int_0^1 \left(\frac{5\sqrt{3}}{3} - \sqrt{4 - x^2} - \frac{2\sqrt{3}}{3} x^{\frac{1}{2}} \right) dx$	1M
For $\int_0^1 \sqrt{4 - x^2} dx$, let $x = 2 \sin \phi$.	
$\therefore dx = 2\cos\phi d\phi$	
When $x=1$, $\phi = \frac{\pi}{6}$; when $x=0$, $\phi = 0$.	
$\int_0^1 \sqrt{4 - x^2} \mathrm{d}x = \int_0^{\frac{\pi}{6}} \sqrt{4 - 4\sin^2 \phi} 2\cos \phi \mathrm{d}\phi$	1M

 $=\int_0^{\frac{\pi}{6}} 2(1+\cos 2\phi) \,\mathrm{d}\phi$

 $= \left[2\phi + \sin 2\phi\right]^{\frac{\pi}{6}}$

 $= \frac{\pi}{3} + \frac{\sqrt{3}}{2}$ Hence, the shaded area

 $=\frac{13\sqrt{3}}{18} - \frac{\pi}{3}$

 $= \left[\frac{5\sqrt{3}}{3} x - \frac{4\sqrt{3}}{9} x^{\frac{3}{2}} \right]_{0}^{1} - \left(\frac{\pi}{3} + \frac{\sqrt{3}}{2} \right)$

Remarks

1M