- Connecting the physical world to the Web (Environmental, connected car, social&local, building management, home automation, personalized, logistic&shipping, identity&tracking, farming, energy grid, healthcare)
- IoT stack arsitektur

App	
Data processing dan platform	
Edge	
Thing/device	

3. Breaking down IoT architecture stack

4. Device/thing, yaitu sensor dan hardware/firmware

Device: banyak chipsets/pplatform yang menjadi pilihan.

Contoh: ARM, Raspberry Pi, Qualcomm, Intel Galileo, AMD, MARVEL, MICROCHIP, electric imp, NVIDIA, Arduino

Sensor dapat mendeteksi Suhu, radiasi, ozon, NOx, Noise, Kelembaban, humidity, GPS, CO, UV, CO2, PM, Glukosa, Oximetry, detak, temperature, kecepatan, dan lain-lain

Kerjaan sensor pintar: onboarding, menerima notifikasi, menerima konfig, mengirim data/events

- 5. Device edge: device hub/gateway dan device management
 - Kunci hak khususnya adalah untuk membangun dan mempertahankan koneksi aman, kuat, toleran kesalahan antara cloud dan perangkat yang berada di ujung (device dege) untuk:
- Mengumpulkan dan kumpulan data perangkat
- Mengelola perangkat

Referensi kemampuan untuk sebuah gateway: memungkinkan scalable, real-time, dapat diandalkan, performa tinggi dan data dapat dioperasikan dan pertukaran relasi pengaturan device antara publisher dan subscriber. Tantangan: terlalu banyak perbedaan ekosistem. Terlalu banyak gateway, hub, protocol, app

Solusi: butuh interoperabilitas antara device/mesin jadi mereka bias saling berkomunikasi

- 6. Data management and intelligence
 - Kebutuhan kemampuan untuk data management dan inteligen
- Data collection, storage, and analysis of sensor data
- Run rules on data streams
- · Trigger alerts
- Advanced analytics/machine learning
- Expose HTTP (REST) APIs

Contoh: data, http, connectivity |pengkayaan data | pattern discovery/model re-training | proses peristiwa waktu nyata | routing dan orchestration | identifikasi penyebab akibat | proses batch | connectivity solusi bigdata | analisis prediktif

- API lifecycle tooling dan platform: API runtime management dapat dibagi menjadi API desain/build:
- API desain lifecycle (ADA GAMBAR)

- API spec creation
- Reusable API pattern
- API mocking/modelling
- Deployment automation dan API runtime management
- Pembatasan tingkat/throttling
- Multi-tenant org/RBAC support

- API SLA management
- Deployment automation
- Custom policy engine
- API and data security8. Application PaaS (aPaaS)
 - Kemampuan: Host pada cloud, menyediakan platform untuk membangun aplikasi
 - Contoh: OS/DB, storage, server, network | desain dan alat development | managemen dan alat analisis | routing, mengubah, layanan orchestration | web, database, server aplikasi, portal administrasi
- End application: website industry specification mobile app dan mobile aPaaS adalah untuk driver tampilan mobile / table
- 10. Integrase iPaaS: middleware

IoT konsep yang setiap domain aplikasi tertentu berinteraksi dengan layanan domain independen, sedangkan di masing-masing domain sensor dan aktuatr berkomunikasi langsung dengan satu sama lain.

Arsitektur IoT adalah ilmu desain dan membangun struktur, layout,

formasi, pengaturan Tipe arsitektur:

. Tiga lapisan

Lapisan	lapisan aplikasi menyediakan manajemen								
aplikasi	global data dari lapisan jaringan.								
Lapisan	Lapisan Network juga bisa disebut								
jaringan	'Transmission Lapisan'. Lapisan ini aman								
	mentransfer informasi dari perangkat sensor								
	ke sistem pengolahan informasi. Dengan								
	demikian, lapisan Jaringan mentransfer								
	informasi dari lapisan Persepsi ke lapisan								
	Middleware.								
Lapisan	Lapisan Persepsi ini juga dikenal sebagai								
persepsi	'Device Lapisan'. Ini terdiri dari benda-benda								
	fisik dan perangkat sensor. Lapisan ini pada								
	dasarnya berkaitan dengan identifikasi dan								
	koleksi benda-benda informasi spesifik oleh								
	perangkat sensor. Informasi yang								
	dikumpulkan kemudian diteruskan ke								
	Jaringan lapisan untuk transmisi aman untuk								
	sistem pengolahan informasi.								

Berdasarkan middleware Lapisan Menyediakan pengaturan global aplikasi untuk aplikasi Lapisan Untuk mengatur layanan dan menghubungkan database muddleware Lapisan Fasilitasi komunikasi antara koordinasi aplikasi yang berbeda Lapisan Bagian dari jaringan computer infrastruktur iaringan yang backbone menghubungkan berbagai jaringan Keberadaan Lapisan system akses aplikasi Teknologi sendiri uiung

3. Arsitektur orientasi layanan

5. Arsitekti	ir orientasi iayanan						
Aplikasi	Menyediakan layanan yang diminta						
	kustomer						
Komposisi	Bertindak sebagai perasa						
layanan	sebenarnyasebagai repository dari semua						
	service						
Managemen	Memasangkan layanan dengan						
layanan	permintaan berdasarkan alamat dan nama						
Object	Transfer data yang dihasilkan oleh						
abstraction	lapisan obiek ke managemen layanan						

object	Menyajikan ulang sensor fisik yang								
	bertujuan untuk mengumpulkan dan								
	proses informasi								
4. Lima tir	ngkat								
Lapisan	Mengatur keseluruhhan aktivitas IoT dan								
bisnis	layanan. Kewajibannya adalah membangun								
	model bisnis, graf, flowchart, dan lain-lain								
Lapisan									
aplikasi									
Pengaturan									
layanan									
Object									

Aplikasi layer protocol untuk IoT

abstraction

object

- Fungsionalitas: menawarkan aplcation programming interface (api) dengan fungsi builth-in untuk pengguna akhir juga dan memberikan pilihan untuk memantau dan mengontrol perangkat akhir dari jarak jauh untuk cliet; bertindak sebagai asynchronous node intermediate antara akhir-perangkat dan aplikasi akhir yang berjalan pada perangkat seperti smartphone, tablet dan desktop
- Protocol:
- DDS,
- CoAP, adalah protocol transfer untuk konsrain nodedan jaringan. Berbasis UDP dan terbebani oleh sejarah. CoAP bertujuan untuk mencapai tujuan sederhana dengan kerumitan lebih sedikit. Motivasi: 1) simplicity dengan tenaga lebih sedikit dengan membutuhkan akses internet menjadi simple; 2) kuat; 3) efisien energi; 4) mampu beroperasi dengan teknologi saat ini. Menggunakan UDP. Menggunakan metode GET, PUT, POST, DELETE. Code respon, seperti 4.04 artinya 4*32+04

MQTT, adalah protocol open source untuk perangkat konstrain dan low-bandwidth, high-latency network. Memiliki transfer pesan publish/subscribe. Memiliki 3 komponen: publisher, broker, sunscriber. Menggunakan meknanisme routing one-to-one,one-to-many,many-to-may dan optimalkan M2M. Dibangun di atas TCP. QoS level: Fire and Forget(pesan dikirim seklai dan tanpa acknowledgemnt dibutuhkan), Deliverred at least once(pesan dikirim sekali dan acknowledgment dibutuhkan), Delivered exactly once(mekanisme four way handshake digunakan untuk meyakinkan pesan terkirim setidaknya sekali)

- MQTT-SN, XMPP,
- HTTP REST: arsitektur berupa web Sumber daya merupakan kunci untuk arsitektur Web: server dikendalikan abstraksi proses aplikasi membuat tersedia, diidentifikasi melalui URI. Klien mengakses sumber daya server yang dikendalikan secara sinkron permintaan-respon menggunakan metode seperti GET, PUT, POST, dan DELETE. Server memiliki keadaan asli dari sumber daya, dan akses ke representasi yang memungkinkan untuk caching, proksi-ing, dan mengarahkan permintaan dan tanggapan, memungkinkan interoperation mulus melalui proxy.Memiliki teknologi: HTML, HTTP/REST, URL. Code respon, seperti 404 not found

Komparasai antara protocol aplikasi IoT

Application Protocol	RESTful	Transport	Publish/ Subscribe	Request/ Response	Security	OoS	Header Size (Byte)
COAP	✓	UDP	✓	✓	DTLS	✓	4
MQTT	×	TCP	✓	×	SSL	✓	2
MQTT-SN	×	TCP	✓	×	SSL	✓	2
XMPP	×	TCP	✓	✓	SSL	×	-
AMQP	×	TCP	✓	×	SSL	✓	8
DDS	×	TCP UDP	~	×	SSL DTLS	1	-
HTTP	✓	TCP	×	✓	SSL	×	-

Standarisasi upaya dalam dukungan dari IoT

Application Protocol		SQQ	CoAP	AMQP	MOTT	NS-LLOW	,	XMPP	HTTP REST
Service Discovery		mDNS					DNS-SD		
Infrastructure Protocols	Routing Protocol Network Layer Link Layer	RPL 6LoWPAN IPv4/ IEEE 802.15.4					TPv6		
Inf	Physical/ Device Layer	LTE-A EPCglobal IEEE 802.15.					Z-Wave		
Influential Protocols		IEEE 1888.3, IPSec				IEEE 1905.1			

Layanan deteksi(Service Discovery Protocols(SDP)) adalah protocol jaringan yang dapat otomatis mendeteksi perangkat dan service (sensor) yang ditawarkan oleh perangkat pada jaringan komuter. Layanan penemuan membutuhkan bahasa yang sama untuk memungkinkan agen perangkat lunak untuk memanfaatkan salah satu layanan lain tanpa membutuhkan intervensi pengguna terus-menerus.

Protocol:

Multicast DNS (Mdns): basis service berupa Name Resolution. Mdns dapat dilakukan pada tugas dari unicast DNS server. Kelemahan utama mDNS adalah kebutuhan untuk caching entri DNS terutama ketika datang perangkat untuk sumber daya yang terbatas. Namun, waktu cache untuk interval tertentu dapat memecahkan masalah ini. Bonjour dan Avahi adalah dua implementasi terkenal yang meliputi mDNS. mDNS bertanya nama dengan mengirim pesan IP multicast ke semua node dalam domain lokal seperti yang ditunjukkan pada Gambar tersebut. Dengan query ini, klien meminta perangkat yang memiliki nama yang diberikan untuk membalas kembali. Ketika mesin target menerima namanya, itu multicast pesan respon yang berisi alamat IP-nya. Semua perangkat dalam jaringan yang mendapatkan pesan respon memperbarui cache lokal mereka menggunakan nama yang diberikan dan alamat IP.

DNS Service Discovery (DNS-SD): terdapat dua langkah pada proses Service Discovery. menemukan nama host dari layanan yang dibutuhkan seperti printer (fungsi pasangan dari layanan) dan pasangan alamat IP dengan nama host mereka menggunakan mDNS. Fungsi pasangan dari jasa yang dibutuhkan oleh klien disebut sebagai penemuan layanan berbasis DNS-(DNS-SD). DNS-SD, seperti mDNS, merupakan bagian dari bantuan konfigurasi nol untuk menghubungkan komputer tanpa administrasi eksternal dan konfigurasi. Kelemahan utama dari ini DNS-SD adalah kebutuhan untuk caching entri DNS terutama ketika datang perangkat untuk sumber daya yang terbatas. Namun, waktu cache untuk interval tertentu dapat memecahkan masalah ini. Bonjour dan Avahi adalah dua implementasi terkenal yang meliputi DNS-SD.