Andrew Vu - CS156 HW4

March 12, 2022

1 CS156 (Introduction to AI), Spring 2022

2 Homework 4 submission

- 2.0.1 Roster Name: Andrew Vu
- 2.0.2 Student ID: 015055911
- 2.0.3 Email address: andrew.k.vu@sjsu.edu

Any special notes or anything you would like to communicate to me about this homework submission goes in here.

2.1 References and sources

List all your references and sources here. This includes all sites/discussion boards/blogs/posts/etc. where you grabbed some code examples. - SVM.Breast - SVM.Iris - https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.cross_val_score.html - https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html - https://www.adamsmith.haus/python/answers/how-to-rotate-axis-labels-in-matplotlib-in-python - https://www.datacamp.com/community/tutorials/principal-component-analysis-in-python

2.2 Solution

Load libraries and set random number generator seed

```
[198]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  from sklearn.preprocessing import StandardScaler
  from sklearn.model_selection import StratifiedKFold
  from sklearn.model_selection import cross_val_score
  from sklearn.model_selection import train_test_split
  from sklearn.svm import LinearSVC
  from sklearn.svm import SVC
  from sklearn.model_selection import StratifiedKFold
  from sklearn.metrics import classification_report
  from sklearn.metrics import plot_confusion_matrix
  from sklearn.metrics import accuracy_score, precision_score, recall_score
  from sklearn.decomposition import PCA
```

```
[199]: np.random.seed(42)
```

Code the solution

2.3 1. Load the Dataset

```
[200]: mRNA_file = pd.read_csv(r'C:\Users\Andrew\CS156 Jupyter_
        →Files\hw4input\homework4_input_data.csv')
[201]: df = pd.DataFrame(mRNA_file, columns=mRNA_file.columns)
       df.head()
       columns = df.columns[1:3001]
       X = df[columns]
       Y = df['Class']
       df['Class'] = Y
       class_names =_
        → ["Bladder", "Breast", "Colon", "Glioblastoma", "Head&Neck", "Kidney", "Leukemia", "LungAdeno", "Lun
       print(X.shape, Y.shape)
       # print(X)
       # print(Y)
      (4336, 3000) (4336,)
               Leukemia
               Leukemia
      1
               Leukemia
      3
               Leukemia
      4
               Leukemia
      4331
                Uterine
      4332
                Uterine
      4333
                Uterine
      4334
                Uterine
      4335
                Uterine
      Name: Class, Length: 4336, dtype: object
[202]: df.describe()
[202]:
                      ASS1
                                    SPX
                                             C6orf141
                                                                SP5
                                                                              SP6
              4336.000000
       count
                            4336.000000
                                          4336.000000
                                                       4336.000000
                                                                     4336.000000
       mean
                  6.493217
                               0.875979
                                             2.547433
                                                           2.024070
                                                                         2.788808
                  1.341540
                               1.322937
                                             1.712000
                                                                         1.385994
       std
                                                           1.442751
       min
                  0.000000
                               0.000000
                                             0.000000
                                                           0.000000
                                                                        0.000000
       25%
                  5.697111
                               0.000000
                                             1.105780
                                                           0.999840
                                                                        1.810114
       50%
                  6.588478
                               0.279846
                                             2.391468
                                                           1.710090
                                                                        2.679240
       75%
                 7.415357
                               1.159160
                                                           2.976235
                                             3.819411
                                                                        3.748897
       max
                10.753816
                               6.531445
                                             8.714974
                                                           7.458509
                                                                        7.685174
```

	ITGA8	ATP2A1	ATP2A3	ITGA2	ITGA3		\
count	4336.000000	4336.000000	4336.000000	4336.000000	4336.000000	•••	
mean	2.838891	2.413940	5.273215	4.531003	6.358596	•••	
std	1.147753	1.535475	1.570749	1.198838	1.524787	•••	
min	0.000000	0.00000	0.000000	1.197540	0.000000	•••	
25%	2.055747	1.497904	4.215464	3.813267	5.600968		
50%	2.630627	2.061542	5.211668	4.398703	6.357384	•••	
75%	3.439166	2.858414	6.405440	5.331706	7.364287	•••	
max	7.041480	10.548175	10.840692	8.464498	10.031628	•••	
	SULT1B1	IKZF1	SLC14A1	TCEAL2	TCEAL7	\	
count	4336.000000	4336.000000	4336.000000	4336.000000	4336.000000		
mean	1.347919	4.490551	1.933813	1.628066	2.083775		
std	1.342945	1.281910	1.314929	1.694187	1.368720		
min	0.000000	0.000000	0.000000	0.000000	0.000000		
25%	0.350634	3.745679	1.122227	0.288757	1.079199		
50%	0.897331	4.490178	1.567558	0.999664	1.784131		
75%	2.088001	5.119473	2.091528	2.583887	2.742996		
max	7.199111	9.034211	7.237835	7.120254	6.901291		
	TCEAL5	VCAN	CDR1	KRBOX1	SELL		
count	4336.000000	4336.000000	4336.000000	4336.000000	4336.000000		
mean	1.000454	7.176974	6.762318	1.764221	3.516539		
std	1.282440	1.285927	3.121063	1.190842	1.496502		
min	0.000000	1.807468	0.000000	0.000000	0.000000		
25%	0.000000	6.466050	5.784987	0.875012	2.394757		
50%	0.428042	7.346725	7.762936	1.421289	3.475282		
75%	1.499093	8.090525	8.925813	2.575496	4.371683		
max	5.933580	11.307692	14.115754	6.007571	8.039268		

[8 rows x 3000 columns]

2.4 2. PCA Plot for Input Data

```
[204]: # using library for PCA for dimensionality reduction to 2 dimensions
       pca_cancer = PCA(n_components=2)
       principalComponents = pca_cancer.fit_transform(X)
       pca_df = pd.DataFrame(data = principalComponents, columns=['pc1', 'pc2'])
       pca_df
[204]:
                  pc1
                              pc2
      0
            82.045989 46.713045
       1
            76.722515 37.919089
            76.643204 39.867660
       3
            74.817222 36.351110
            79.694762 43.781024
       4331 -0.807812 -18.340427
       4332 26.635546 6.047577
       4333 -6.453130 -2.468526
       4334
            1.549730 3.374944
       4335
             9.115588 9.490036
       [4336 rows x 2 columns]
[206]: print('Explained variation per principal component: {}'.format(pca_cancer.
       →explained_variance_ratio_))
      Explained variation per principal component: [0.09413699 0.08021269]
[207]: # plotting
       plt.figure(figsize=(15,10))
       plt.xlabel('Principal Component - 1')
       plt.ylabel('Principal Component - 2')
       for tumor in colors:
           indicesToKeep = df['Class'] == tumor
          plt.scatter(pca_df.loc[indicesToKeep, 'pc1'], pca_df.loc[indicesToKeep,_u
       \rightarrow'pc2'], c = colors[tumor], s = 50)
       plt.title('PCA of 12 tumor types')
       plt.show()
```


2.5 3. Normalize Data using StandardScaler

```
[208]: scaler = StandardScaler()
X_rescaled = scaler.fit_transform(X)
```

2.6 4. Training and Test Datasets

[209]: ((3468, 3000), (3468,), (868, 3000), (868,))

2.7 5. Define SVM model hyperparameters

```
[210]: model = LinearSVC(multi_class='ovr', class_weight='balanced').fit(X_train, ⊔ → Y_train)
```

2.8 6. Run/Report results from 5-fold cross-validation

```
[211]: # using cross_val_score from library
# cv = 5 fold cross validation
cross_vals = cross_val_score(model, X_train, Y_train, cv=5)
print('Individual cross-validation accuracies: ' + str(cross_vals))
print('Mean cross validation accuracy: ' + str(cross_vals.mean()))
```

Individual cross-validation accuracies: [0.95821326 0.96685879 0.96253602
0.96536797 0.96681097]
Mean cross validation accuracy: 0.9639574002686395

2.9 7. Train model and assess performance (prediction accuracy)

```
[212]: print('Accuracy of linear SVC on training set: {:.2f}'.format(model.

→score(X_train, Y_train)))

print('Accuracy of linear SVC on test set: {:.2f}'.format(model.score(X_test, □

→Y_test)))
```

Accuracy of linear SVC on training set: 1.00 Accuracy of linear SVC on test set: 0.98

2.10 8. Plot two confusion matrices for test set predictions

Confusion matrix, without normalization

```
66
      0
         0
            0
               0
                                      0]
                         0
                            0
                               0
                                   0
[ 0 175
        0
            0
               0
                   0
                      0
                         0
                            0
                               0
                                   0
                                      0]
                                     0]
  0 0 69 0 0
                   0
                    0 0
                            0 0
[ 0 0 0 21 0 0
                     0 0
                           0 0 0
                                     2]
[ 0 0 0 0 83 0
                    0 0 0 0 0
                                     0]
                     0 0
\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}
            0 0 84
                            0 0
                                 0
                                      0]
            0 0
                    20
                                      0]
```

```
83
                                                                0]
     0
          0
                0
                     0
                          0
                                0
                                     0
                                                2
                                                     0
                                                           0
 0
                0
                     0
                          0
                                0
                                     2
                                          2
                                              74
                                                     0
                                                          0
                                                                0]
 0
                                                                0]
     0
          0
                0
                     0
                          0
                                0
                                          0
                                                0
                                                    68
                                                          0
 0
          0
                8
                     0
                          0
                                0
                                     0
                                          0
                                                0
                                                     0
                                                         18
                                                                0]
 0
                                                0
                                                     0
                                                           0
                                                              86]]
     0
          0
                0
                     0
                                0
                                     0
                                          0
Normalized
              confusion matrix
                      0.
                             Ο.
                                                                     0.
                                                                            0.
[[1.
         0.
                0.
                                    0.
                                          0.
                                                 0.
                                                        0.
                                                              0.
                                                                                 ]
                                                                                 ٦
 [0.
                0.
                      0.
                             0.
                                    0.
                                          0.
                                                 0.
                                                              0.
                                                                     0.
                                                                            0.
         1.
                                                        0.
 [0.
         0.
                0.93 0.
                             0.
                                    0.
                                          0.
                                                 0.
                                                        0.
                                                              0.
                                                                     0.07 0.
                                                                                 ]
 [0.
                0.
                      0.91 0.
                                    0.
                                          0.
                                                              0.
                                                                     0.
                                                                            0.09]
         0.
                                                 0.
                                                        0.
 [0.
         0.
                0.
                      0.
                                    0.
                                          0.
                                                 0.
                                                        0.
                                                              0.
                                                                     0.
                                                                            0.
                                                                                 ]
                             1.
 [0.
         0.
                0.
                      0.
                             0.
                                          0.
                                                 0.
                                                        0.
                                                              0.
                                                                     0.
                                                                            0.
                                                                                 ]
                                    1.
 [0.
                                                                                 ]
                                          1.
                                                        0.
                                                              0.
                                                                     0.
                                                                            0.
         0.
                0.
                      0.
                             0.
                                    0.
                                                 0.
 [0.
                                                 0.98 0.02 0.
                                                                                 ]
         0.
                0.
                      0.
                             0.
                                    0.
                                          0.
                                                                     0.
                                                                            0.
                                                                                 ]
 [0.
         0.
                0.
                      0.
                             0.
                                    0.
                                          0.03 0.03 0.95 0.
                                                                     0.
                                                                            0.
                                                                                 ]
 [0.
         0.
                0.
                      0.
                             0.
                                    0.
                                          0.
                                                 0.
                                                        0.
                                                              1.
                                                                     0.
                                                                                 ]
 [0.
         0.
                0.31 0.
                             0.
                                    0.
                                          0.
                                                 0.
                                                        0.
                                                              0.
                                                                     0.69 0.
                                                                                 ]]
 [0.
         0.
                0.
                      0.
                             0.
                                    0.
                                          0.
                                                 0.
                                                        0.
                                                              0.
                                                                     0.
                                                                            1.
```


