

Art of Problem Solving 2011 ISI B.Math Entrance Exam

ISI B.Math Entrance Exam 2011

1	Given $a,x\in\mathbb{R}$ and $x\geq 0, a\geq 0$. Also $\sin(\sqrt{x+a})=\sin(\sqrt{x})$. What can you say about $a???$ Justify your answer.
2	Given two cubes R and S with integer sides of lengths r and s units respectively . If the difference between volumes of the two cubes is equal to the difference in their surface areas , then prove that $r=s$.
3	For $n \in \mathbb{N}$ prove that
	$\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \cdots \frac{2n-1}{2n} \le \frac{1}{\sqrt{2n+1}}.$
4	Let $t_1 < t_2 < t_3 < \cdots < t_{99}$ be real numbers. Consider a function $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x - t_1 + x - t_2 + \dots + x - t_{99} $. Show that $f(x)$ will attain minimum value at $x = t_{50}$.
5	Consider a sequence denoted by F_n of non-square numbers . $F_1=2,F_2=3,F_3=5$ and so on . Now , if $m^2\leq F_n<(m+1)^2$. Then prove that m is the integer closest to \sqrt{n} .
6	Let $f(x) = e^{-x} \ \forall \ x \ge 0$ and let g be a function defined as for every integer $k \ge 0$, a straight line joining $(k, f(k))$ and $(k+1, f(k+1))$. Find the area between the graphs of f and g .
7	If a_1, a_2, \dots, a_7 are not necessarily distinct real numbers such that $1 < a_i < 13$ for all i , then show that we can choose three of them such that they are the lengths of the sides of a triangle.
8	In a triangle ABC , we have a point O on BC . Now show that there exists a line l such that $l AO$ and l divides the triangle ABC into two halves of equal area .

Contributors: mynamearzo