Dynamic General Equilibrium Modeling (3rd ed.) Chapter 10: The OLG Model with Income Uncertainty

PYTHON — JULIA — GAUSS

Burkhard Heer and Alfred Maußner University of Augsburg, Germany August 19, 2021

Contents

Motivation and Results

Dynamic General Equilibrium Modelling

- 2 The Overlapping Generations Model
- Calibration
- 4 Computation of the Stationary Equilibrium
- Results

Motivation

Research questions:

- What is the prototype OLG model for the study of redistributive economic policies?
- 4 How do we compute it?
- Trade-off speed and accuracy: Which algorithm/computer language should we use?
 DYTHOM

Motivation

Dynamic General Equilibrium Modelling

Overlapping generations model with endogenous income/wealth distribution:

- life-cycle savings
- uncertain lifetime
- uncertain earnings
- pay-as-you-go pensions
- endogenous labor supply

Motivation

	Gini Coefficient		
	US	OLG Model	
wages	0.375	0.375	
earnings	0.43-0.66	0.505	
wealth	0.80	0.66	

Note: US Data is taken from Budría Rodríguez et al. (2002) and Krueger et al. (2016).

Note: US Data is taken from Budría Rodríguez et al. (2002).

Note: US Data is taken from Budría Rodríguez et al. (2002).

Computation: PYTHON, JULIA or GAUSS?

Computational Methods

Interpolation	linear	cubic	cubic
Grid points			
$\overline{n_a}$	500	500	300
n_{ag}	1,000	1,000	1,000
Accuracy Young Old	0.00085 0.00231	0.00018 0.00052	0.00032 0.00140
Run time			
Julia	1h:29m:56s	1h:32m:43s	45m:37s
Gauss	27m:38s	1h:16m:34s	51m:56s
Python	32h:49m:37s	55h:30m:33s	48h:17m:04s

DOWNLOADS: PYTHON, JULIA or GAUSS

• PYTHON, JULIA and GAUSS CODES (with slides):

```
https://www.uni-augsburg.de/de/fakultaet/wiwi/prof/vwl/maussner/dgebook/.
```

PYTHON CODE explained in detail:

PYTHON program tutorial

OLG Model: Demographics

1. Demographics

- Dynamic General Equilibrium Modelling
- Every year, a new generation of equal measure is born at real-life age 21 corresponding to age s=1 in the model.
- Households live a maximum of T=70 years (corresponding to real-life age 90).
- Survival from age s to age s+1 is stochastic with probability ϕ_t^s .
- During their first $T^W=45$ years as workers, agents supply labor l^s_t at age s in period t enjoying leisure $1-l^s_t$.
- After T^W years, retirement is mandatory ($l_t^s = 0$ for $s > T^W$).
- ullet The maximum number of retirement periods amounts to T^R .

OLG Model: Demographics

Dynamic General Equilibrium Modelling

OLG Model: Demographics

- $N_t(s)$ number of households of age s at t.
- N_t total population
- Population growth rate $g_{n,t}$:

$$N_{t+1} = (1 + g_{n,t})N_t$$

• Newborn cohort growth rate n_t :

$$N_{t+1}(1) = (1 + n_t)N_t(1)$$

- In the stationary equilibrium:
 - \bullet ϕ^s constant
 - $n = q_n = 0.754\%$

2. Households

• Households maximize expected intertemporal utility:

$$\max \sum_{s=1}^{T} \beta^{s-1} \left(\prod_{j=1}^{s} \phi_{t+j-1}^{j-1} \right) \mathbb{E}_{t} \left[u(c_{t+s-1}^{s}, 1 - l_{t+s-1}^{s}) + v(g_{t+s-1}) \right],$$
(1)

• with instantaneous utility u(c, 1 - l):

$$u(c, 1-l) = \frac{\left(c^{\gamma}(1-l)^{1-\gamma}\right)^{1-\eta}}{1-\eta},$$

Equilibrium Modellii Come Mode

 β — discount factor $1/\eta$ — intertemporal elasticity of substitution (IES) γ — share of consumption in utility $v(q_t)$ — additive utility from government consumption

Net labor income:

$$y_t^s = (1 - \tau_t^l - \tau_t^p)\epsilon(s, \theta, e)A_t w_t l_t^s$$

 A_t — aggregate productivity with growth rate g_A

Dynamic General Equilibrium Modelling

idiosyncratic productivity:

$$\epsilon(s, \theta, e) = \theta e \bar{y}^s$$

 \bar{y}^s — age component of wage $e \in \{0.57, 1.43\}$ — permanent productivity type (high school/college)

 θ — stochastic component: AR(1) process

$$\ln \theta' = \rho \ln \theta + \xi, \quad \xi \sim N(0, \sigma_{\xi})$$
 (3)

OLG Model: Age-specific productivity component

 \bar{y}^s

- Retirees receive lump-sum pension $y_t^s = pen_t$
- Budget constraint of the household at age s in period t:

$$k_{t+1}^{s+1} + b_{t+1}^{s+1} + (1 + \tau_t^c)c_t^s = y_t^s + tr_t + \left[1 + (1 - \tau_t^k)(r_t - \delta)\right]k_t^s + (1 + r^b)b_t^s$$
(4)

```
a_t^s=k_t^s+b_t^s — assets (wealth) of the s-year old in period t b_t^s, k_t^s — capital, government bonds
```

$$b_t^{s}$$
, k_t^{s} — capital, government bond

$$r_t$$
 — rate of return on capital

$$\boldsymbol{r}_t^b$$
 — real interest rate on government bonds

$$\delta$$
 — depreciation rate

$$au_{\scriptscriptstyle t}^{k}$$
 — capital income tax rate

$$\tau_t^l$$
 — labor income tax rate

$$au_t^{\stackrel{\circ}{p}}$$
 — pension contribution rate

$$au_t^p$$
 — pension contribution rate au_t^c — consumption tax rate

$$tr_t$$
 — government transfers

Dynamic General Equilibrium Modelling

• Value function of the household with individual state variable $z_s = (\theta, e, a)$ at age s:

$$V_{t}(z_{s}) = \max_{c,l,a'} \left\{ u(c, 1-l) + v(g) + \beta \phi_{t}^{s} \sum_{\theta'} prob(\theta'|\theta) V_{t+1}(z_{s+1}) \right\}$$
(5)

subject to the budget constraint (4) and the credit constraint

$$a \ge 0$$
.

OLG Model: Firms

3. Firms

- Perfect competition in goods and factor markets
- Cobb-Douglas production function:

$$Y_t = F(K_t, L_t) = K_t^{\alpha} (A_t L_t)^{1-\alpha}.$$
 (6)

Profits:

$$\Pi_t = Y_t - w_t A_t L_t - r_t K_t.$$

• Factors are rewarded with their marginal product:

$$w_t = (1 - \alpha) K_t^{\alpha} (A_t L_t)^{-\alpha}, \tag{7}$$

$$r_t = \alpha K_t^{\alpha - 1} (A_t L_t)^{1 - \alpha}. \tag{8}$$

OLG Model: Government

4. Government and Social Security

Government budget is financed by issuing government debt:

$$Tr_t + G_t + r_t^b B_t = Tax_t + Beq_t + B_{t+1} - B_t,$$
 (9)

with taxes Tax_t :

$$Tax_t = \tau_t^l A_t L_t w_t + \tau_t^k (r_t - \delta) K_t + \tau_t^c C_t, \qquad (10)$$

 C_t — aggregate consumption

 G_t — government consumption

 B_t — government bonds with rate of return r^b

ullet Government collects accidental bequests Beq_t .

OLG Model: Government

Balanced social security budget:

$$Pen_t = \tau_t^p A_t L_t w_t. \tag{11}$$

OLG Model: Equilibrium

5. Equilibrium

$$\Omega_t = K_t + B_t$$

 Ω_t — aggregate wealth

Equal after-tax return on bonds on capital:

$$(1 - \tau_t^k)(r_t - \delta) = r_t^b$$

3 Aggregate consistency conditions: labor L_t , wealth Ω_t , consumption C_t

OLG Model: Equilibrium

- → sum of individual variables = aggregate variable
- Goods markets equilibrium:

$$Y_t = C_t + G_t + K_{t+1} - (1 - \delta)K_t \tag{12}$$

6. Stationary Equilibrium

• Stationary individual variables \tilde{x}_t^s for $x \in \{c, y, k, b\}$ (with the exception of labor supply l_t):

$$\tilde{x}_t^s \equiv \frac{x_t^s}{A_t}$$

• Stationary aggregate variables X_t (with the exception of aggregate efficient labor L_t) for $X \in \{Pen, Tr, G, B, Beq, Tax, Y, K, C, \Omega\}$:

$$\tilde{X}_t \equiv \frac{X_t}{A_t N_t}.$$

- Aggregate stationary labor $\tilde{L}_t = L_t/N_t$.
- Moreover, individual and aggregate government transfers are identical:

$$\widetilde{Tr}_t = \widetilde{tr}_t.$$

 The budget constraint of the household in stationary variables is given by

$$(1+\tau_t^c)\tilde{c} = \tilde{y} + \left[1 + (1-\tau_t^k)(r_t - \delta)\right]\tilde{a} + \tilde{t}r - (1+g_A)\tilde{a}'$$
 (13)

enéral Equilibrium Modelling Modelling

with

$$\tilde{y} = \begin{cases} (1 - \tau_t^l - \tau_t^p) \epsilon(s, \theta, e) \, lw_t \\ \widetilde{pen} \end{cases}$$

$$s = 1, \dots, T^W,$$

$$s = T^W + 1, \dots, T.$$
(14)

Stationary Bellman equation:

$$V_t(\tilde{z}_s) = \max_{\tilde{c},l,\tilde{a}'} \left\{ u(\tilde{c},1-l) + v(\tilde{g}) + (1+g_A)^{\gamma(1-\eta)} \beta \phi_t^s \sum_{\theta'} \ prob(\theta'|\theta) \ V_{t+1}(\tilde{z}_{s+1}) \right\}, \tag{15}$$

with the terminal condition $V_t(\tilde{z}_{T+1}) = 0$ and:

$$ilde{z}_s = \left\{ egin{array}{ll} (heta, e, ilde{a}) & ext{case 1} \ (heta, e, ilde{a}, ilde{x}) & ext{case 2}, \end{array}
ight.$$

$$u(\tilde{c}, 1 - l) = \frac{\left(\tilde{c}^{\gamma} (1 - l)^{1 - \gamma}\right)^{1 - \eta}}{1 - \eta},\tag{17}$$

$$=\frac{u(c,1-l)}{A_t^{\gamma(1-\eta)}}\tag{18}$$

Dynamic General Equilibrium Modelling

Stationary Equilibrium

① Total population N_t is equal to the sum of all cohorts:

$$N_t = \sum_{s=1}^{T} N_t(s)$$

with associated constant shares of the s-year-old cohorts

$$\mu^s = \frac{N_t(s)}{N_t}.$$

Dynamic General Equilibrium Modelling

2 Population N_t and the youngest cohort $N_t(1)$ grow at the same rates $g_{N,t}=\frac{N_{t+1}}{N_t}-1$ and $n_t=\frac{N_{t+1}(1)}{N_t(1)}-1$, respectively, implying:

$$\frac{N_{t+1} - N_t}{N_t} = n.$$

① Households maximize their lifetime utility subject to their budget constraint (34) and the non-negative constraint on wealth, $\tilde{a} \geq 0$, as described by the solution to the Bellman equation (15) implying the optimal policy functions $\tilde{a}'(\tilde{z})$, $\tilde{c}(\tilde{z})$ and $l(\tilde{z})$ for next-period wealth, consumption and labor supply.

Aggregate effective labor supply is equal to the sum of the individual effective labor supplies:

$$\tilde{L}_{t} = \sum_{s=1}^{T^{w}} \sum_{i_{\theta}=1}^{n_{\theta}} \sum_{j=1}^{2} \sum_{i_{a}=1}^{n_{a}} \epsilon(s, \theta_{i_{\theta}}, e_{j}) \ l(s, \theta_{i_{\theta}}, e_{j}, \tilde{a}_{i_{a}}) \ f(s, \theta_{i_{\theta}}, e_{j}, \tilde{a}_{i_{a}}).$$
(19)

 $\textbf{ Aggregate wealth } \tilde{\Omega} \text{ is equal to the sum of the individual wealth levels:}$

$$\tilde{\Omega} = \sum_{s=1}^{T} \sum_{i_a=1}^{n_{\theta}} \sum_{i_a=1}^{2} \sum_{i_a=1}^{n_a} \tilde{a}_{i_a} f(s, \theta_{i_{\theta}}, e_j, \tilde{a}_{i_a}).$$
 (20)

 $oldsymbol{0}$ Firms maximize profits implying the factor prices w and r

$$w = (1 - \alpha)\tilde{K}^{\alpha}\tilde{L}^{-\alpha},\tag{21a}$$

$$r = \alpha \tilde{K}^{\alpha - 1} \tilde{L}^{1 - \alpha}. \tag{21b}$$

$$r^b = (1 - \tau_r^k)(r - \delta).$$
 (22)

In capital market equilibrium,

$$\tilde{\Omega} = \tilde{B} + \tilde{K}. \tag{23}$$

② At the beginning of period t+1, the government collects accidental bequests from the s-year old households who do not survive from period t until period t+1:

$$\begin{split} \frac{\widetilde{Beq}'}{(1+n)(1+g_A)} &= \sum_{s=2}^T \sum_{i_\theta=1}^{n_\theta} \sum_{j=1}^2 \sum_{i_a=1}^{n_a} (1-\phi^s) \times \\ & \left[1 + (1-\tau^k)(r-\delta) \right] \, \widetilde{a}'(s,\theta_{i_\theta},e_j,\widetilde{a}_{i_a}) \, f(s,\theta_{i_\theta},e_j,\widetilde{a}_{i_a}), \end{split}$$

where \widetilde{Beq}' denotes next-period accidental bequests.

The goods markets clear:

$$\tilde{Y} = \tilde{C} + \tilde{G} + (1 + g_A)(1 + n)K' - (1 - \delta)K,$$
(24)

where aggregate consumption $\hat{\boldsymbol{C}}$ is the sum of individual consumptions:

$$C = \sum_{s=1}^{T} \sum_{i_{\theta}=1}^{n_{\theta}} \sum_{j=1}^{2} \sum_{i_{\alpha}=1}^{n_{\alpha}} \tilde{c}(s, \theta_{i_{\theta}}, e_{j}, \tilde{a}_{i_{\alpha}}) f(s, \theta_{i_{\theta}}, e_{j}, \tilde{a}_{i_{\alpha}}).$$
 (25)

① The densitive function $f(s, \theta, e, \tilde{a})$ (and the associated distribution function $F(s, \theta, e, \tilde{a})$) of the per-capita variables (detrended by aggregate productivity A_t) are constant, f(.) = f'(.) (F'(.) = F(.)). The dynamics of the distribution function $F(s, \theta, e, \tilde{a})$ evolves according to

$$F'(s+1,\theta',e,\tilde{a}') = \sum_{\theta'} \sum_{\tilde{a}=\tilde{a}'^{-1}(s,\theta,e,\tilde{a})} Prob(\theta'|\theta) \frac{\phi^s}{1+n} F(s,\theta,e,\tilde{a}),$$
(26)

where, on the right-hand side of the equation, we sum over all the productivity types θ' in period t+1 in the outer sum and the maximum wealth levels \tilde{a} in period t that imply a next-period level \tilde{a}' for given (s,θ,e) in the inner sum.

The distribution of $z=(s,\theta,e,\tilde{a})$ among the newborn cohorties constant and is presented by:

$$F(1, \theta, e, \tilde{a}) = \begin{cases} \mu^1 \times \nu(\theta) \times \pi(e) & \text{if } \tilde{a} = 0 \\ 0 & \text{else,} \end{cases}$$

where $\nu(\theta)$ and $\pi(e)$ denote the shares of the θ and e productivity types in the cohorts (assumed to be constant over age s).

Calibration

Parameter	Value	Description	Dynamic General Equilibrium Modelling
α	0.35	production elasticity of capital	
δ	8.3%	depreciation rate of capital	€ Springer
g_A	2.0%	growth rate of output	
$1/\eta$	1/2	intertemporal elasticity of substitution	
γ	0.33	preference parameter for utility weight of con	nsumption
β	1.011	discount factor	
n	0.754%	population growth rate	
$ au^l + au^p$	28%	tax on labor income	
$ au^k$	36%	tax on capital income	
$ au^c$	5%	tax on consumption	
G/Y	18%	share of government spending in steady-stat	e production
$B^{'}\!/Y$	63%	debt-output ratio	•
repl	35.2%	gross pension replacement rate	
$\{e_1,e_2\}$	$\{0.57, 1.43\}$	permanent productivity types	

Calibration of the labor efficiency of the s-year old household, $\epsilon(s,\theta,e)=\theta e \bar{y}^s$

- Permanent efficiency types: $\{e_1, e_2\} = \{0.57, 1.43\}$ with $\pi(e_i) = 1/2, \ j = 1, 2$
- \Rightarrow wages of college graduates are about 150% higher than that of the high school graduates
 - Age-efficiency \bar{y}^s as estimated by Hansen (1993)
 - Stochastic component θ
 - $n_{\theta} = 5$ grid points
 - log-normal distribution of wages for the 21-year old with $\sigma_m = 0.38$

• $\theta_{i\theta}$ are equally spaced and range from $-m\sigma_{y_1}$ to $m\sigma_{y_1}$. We choose m=1.0 so that the Gini coefficient of hourly wages amounts to 0.374 implying:

$$\Theta = (0.4688, 0.6847, 1.0000, 1.4605, 2.1332)$$

with corresponding logarithmic values

$$\ln \Theta = (-0.7576, -0.3788, 0.0000, 0.3788, 0.7576).$$

• Probability of having productivity $\theta_{i_{\theta}}$: area under the normal distribution implying the initial distribution among the 21-year-old agents for each permanent productivity type e_i , i=1,2:

$$\nu(\theta) = \begin{pmatrix} 0.1783\\ 0.2010\\ 0.2413\\ 0.2010\\ 0.1783 \end{pmatrix}$$

- AR(1) process for $\ln \theta$: $\ln \theta' = \rho \ln \theta + \nu \mu \xi$ with $\xi \sim N(0, \sigma_{\xi})$
- $\Rightarrow \rho = 0.96$ and $\sigma_{\varepsilon}^2 = 0.045$ as in Huggett (1996)

Dynamic General Equilibrium Modelling

→ The transition probabilities are computed using Tauchen's method as described in Algorithm 12.2.1 implying the finite Markov-chain transition matrix:

$$Prob(\theta'|\theta) = \begin{pmatrix} 0.7734 & 0.2210 & 0.0056 & 0.0000 & 0.0000 \\ 0.1675 & 0.6268 & 0.2011 & 0.0046 & 0.0000 \\ 0.0037 & 0.1823 & 0.6281 & 0.1823 & 0.0033 \\ 0.0000 & 0.0046 & 0.2011 & 0.6268 & 0.1675 \\ 0.0000 & 0.0000 & 0.0056 & 0.2210 & 0.7734 \end{pmatrix}.$$

$$(27)$$

Dynamic General Equilibrium Modelling And Agent Assets

Algorithm

- Parameterize the model and choose asset grids for the individual state space.
- ② Make initial guesses of the steady state values of the aggregate capital stock \tilde{K} , labor \tilde{L} , mean working hours \bar{l} , labor income taxes τ^l , the social security contribution rate τ^p and government transfers \tilde{tr} .
- **3** Compute the values w and r which solve the firm's first-order conditions and compute \widetilde{pen} .
- Compute the household's decision functions by backward induction using value function iteration.

- Occupied the optimal path for consumption, savings and laborated supply for the new-born generation by forward induction given the initial asset level $\tilde{a}^1=0$ and distribution of idiosyncratic productivities e and θ .
- $\hbox{ {\bf 0} Compute the aggregate savings $\widetilde{\Omega}$, labor supply \widetilde{L}, mean working hours \overline{l}, aggregate taxes \widetilde{Tax} and transfers \widetilde{tr}.}$
- Update the aggregate variables and return to step 3 until convergence.
- Update the asset grid of the individual state space if necessary and return to step 3 until convergence.

Program AK70_stochastic_income: PYTHON, JULIA or GAUSS

• PYTHON, JULIA and GAUSS CODES (with slides):

```
https://www.uni-augsburg.de/de/fakultaet/wiwi/prof/vwl/maussner/dgebook/.
```

• PYTHON CODE explained in detail:

PYTHON program tutorial

Step 1: Parameterize the model and choose asset grids for the individual state space.

- Asset grid A on asset space:
 - Policy function: $n_a = 500$
 - Distribution function: $n_{aq} = 1,000$
- Computation of the stationary cohort shares μ^s :
 - Set $\mu^1 = 1.0$
 - Iterate over $s=2,\ldots,70$:

$$\mu^{s+1} = \frac{\phi^s}{1+n} \mu^s \tag{28}$$

• Normalize the sum of the measures to one: Divide the μ^s by $\sum_s \mu^s$

Step 2: Make initial guesses of the steady state values

•
$$r = 3\% \Rightarrow \tilde{K} = 1.708$$

• $\tilde{\Omega} \approx 1.26 \tilde{K}$ (follows from B/Y = 0.63 in model and $K/Y \approx 3.0$ in the US)

•
$$\widetilde{tr} = 0.01$$

Step 3: Compute the values w, r and \widetilde{pen}

- ightarrow initial step in the outer loop over aggregate variables $ilde{K}$, $ilde{L}$, $ilde{tr}$
- \rightarrow outer loop iterates over Step 3-7
 - Computation of factor prices w and r:

$$w_t = (1 - \alpha)\tilde{K}_t^{\alpha} \left(\tilde{L}_t\right)^{-\alpha},$$
 (29a)

$$r_t = \alpha \tilde{K}_t^{\alpha - 1} \left(\tilde{L}_t \right)^{1 - \alpha}. \tag{29b}$$

• Computation of $\widetilde{pen} = repl \times w \, \overline{l}$

Step 4: Compute the household's policy functions with value function iteration

$$V_{t}(\tilde{z}_{s}) = \max_{\tilde{c}, l, \tilde{a}'} \left\{ u(\tilde{c}, 1 - l) + v(\tilde{g}) + (1 + g_{A})^{\gamma(1 - \eta)} \beta \phi_{t}^{s} \sum_{\theta'} prob(\theta'|\theta) V_{t+1}(\tilde{z}_{s+1}) \right\}, \quad (30)$$

- \bullet Retiree: One-dimensional optimization w.r.t. \tilde{a}' using GOLDEN SECTION SEARCH (GSS)
- ullet Worker: Two-dimensional optimization w.r.t. $ilde{a}'$ and l
- ⇒ nested optimization
 - Outer function (value function): \tilde{a}' using GSS
 - Inner function (foc labor): l

$$l = \gamma - \frac{1 - \gamma}{(1 - \tau^l - \tau^p)\epsilon(s, \theta, e)w} \left(\left[1 + (1 - \tau^k)(r - \delta) \right] \tilde{a} + \tilde{tr} - (1 + g_A)\tilde{a}' \right) \tag{31}$$

 \bullet Solving the value function backwards starting in last period of life s

with

$$\tilde{c}_t^T = \frac{\widetilde{pen} + [1 + (1 - \tau^k)(r - \delta)]\tilde{a}^T + \widetilde{tr}}{1 + \tau^c}.$$
(33)

• Ages s = 69 = T - 1:

$$\begin{split} V^{T-1}(\tilde{a}^{T-1}) & = & \max_{\tilde{a}^T} \left\{ u \left(\frac{\widetilde{pen} + [1 + (1 - \tau^k)(r - \delta)]\tilde{a}^{T-1} + \widetilde{tr} - (1 + g_A)\tilde{a}^T}{1 + \tau^c}, 1 \right) \right. \\ & \left. + (1 + g_A)^{\gamma(1-\eta)}\beta\phi^{T-1} \; V^T(\tilde{a}^T) \right\}. \end{split}$$

 $V^T(\tilde{a}^T) = u(\tilde{c}^T, 1)$

- ullet \tilde{a}^T may not be a grid point
- ⇒ interpolation: linear, cubic
- Ages $s = 68, \ldots, 46$ as above

• Worker's value function at ages $s=45,\ldots,1$ at all n_a grid points over and for all productivity types $\{e_1,e_2\}$ and $\{\theta_1,\ldots,\theta_5\}$:

- ullet Each time when we compute the term u(c,1-l), we
 - compute l from the first-order condition w.r.t. labor
 - and c with the help of the budget constraint:

$$(1+\tau^c)\tilde{c} = (1-\tau^l-\tau^p)\epsilon(s,\theta,e)\,lw + \left[1+(1-\tau^k)(r-\delta)\right]\tilde{a} + \tilde{t}r - (1+g_A)\tilde{a}' \eqno(34)$$

- We store the value function V(.) and the optimal policy functions $\tilde{a}'(.)$, $\tilde{c}(.)$ and l(.) at all grid points and for all productivity types.
- ⇒ Time-consuming step

- Assessing the accuracy of the optimization:
 - Euler equation residua for the s-year old worker with wealth level \tilde{a} and productivity type $\epsilon(s,\theta,e)$,:

$$R(\tilde{a}) = 1 - \frac{\tilde{u}_c(\tilde{c}, 1 - l)}{\beta(1 + r^b)(1 + g_A)^{\gamma(1 - \eta) - 1}\phi^s \mathbb{E}\left\{\tilde{u}_c(\tilde{c}', 1 - l')\right\}}$$
(35)

derived from:

$$\frac{\partial \tilde{u}(\tilde{c}, 1-l)}{\partial \tilde{c}} = (1+g_A)^{\gamma(1-\eta)-1} \beta(1+r^b) \phi^s \mathbb{E} \left\{ \frac{\partial \tilde{u}(\tilde{c}', 1-l)}{\partial \tilde{c}'} \right\}.$$

 We compute the mean of all grid points (alternatively: weighted by measures of the households)

Step 5: Compute the distribution

- Endogenous wealth distribution $f(s,e,\theta,\tilde{a})$ over equispaced grid on $[\tilde{a}^{min},\tilde{a}^{max}]$ with $n_{ag}=1,000$ points
- Total grid points of f(.):

$$n_{ag} \times n_e \times n_\theta \times T^W + n_{ag} \times T^R = 1000 \times 2 \times 5 \times 45 + 1000 \times 25 = 475,000. \tag{36}$$

- \rightarrow stored in the variables 'gkw[\tilde{a},θ,e,s]' and 'gkr[\tilde{a},s]' in the program *AK70_stochastic_income.py*
 - Distribution at age s=1:

$$gkw[\tilde{a},\theta,e,1] = \begin{cases} \frac{1}{2}\mu^1v(\theta) & \text{if } \tilde{a} = 0\\ 0 & \text{else.} \end{cases}$$

- Computation of the distribution at age s=2:
 - We iterate over all grid points \tilde{a}_{i_a} , $i_a = 1, \dots, n_{aq}$ at age s=1 (and e_i and θ_{ia}) and compute the distribution of the 2-year-old workers in period t+1
 - As an example, consider low-skilled worker, $e = e_1$, with the idiosyncratic productivity $\theta_4 = 1.4605$ and zero wealth $\tilde{a} = 0.0$ at age s=1
 - \rightarrow with measure 'gkw[0, e_1 , θ_4 ,1]=0.00213' and next-period wealth a' given by 'awopt[0, e_1 , θ_4 ,1]=0.008365'.
 - Measure of those agents with $(0, e_1, \theta_4, 1)$ who survive until next period:

$$0.002129 \frac{\phi^1}{1+n} = 0.002111.$$

- the share $(1 \phi^s)$ dies
- ullet population grows with factor (1+n)

• $\tilde{a}' = 0.008365$ is not a grid point:

$$\tilde{a}_1 = 0 < 0.0008365 < \tilde{a}_2 = 0.02002.$$

•
$$(a_2 - \tilde{a}')/(\tilde{a}_2 - \tilde{a}_1) = 0.6$$
 at point \tilde{a}_1

•
$$(\tilde{a}' - \tilde{a}_1)/(\tilde{a}_2 - \tilde{a}_1) = 0.4$$
 at point \tilde{a}_2

- We have to consider the transition dynamics of the productivity type θ :
- \rightarrow E.g, the measure at point $(\tilde{a}_1,e_1,\theta_3,2)$ increases by

$$0.6 \cdot \underbrace{prob(\theta_3|\theta_4)}_{0.2011} \cdot \underbrace{gkw[0,e_1,\theta_4,1]}_{0.00211} \cdot \underbrace{\frac{\phi^1}{1+n}}_{0.9917} = 0.0002525$$

Computational time of Step 5:

PYTHON: 33 minutes

• JULIA: 11 seconds

GAUSS: 8 seconds

 We used exactly the same number of operations and stored the numbers with the same accuracy

Step 6: Compute $\tilde{\Omega}$, \tilde{l} , \widetilde{l} , \widetilde{Tax} and \widetilde{tr}

- Aggregate wealth $\tilde{\Omega}$: sum of \tilde{a} weighted by $f(s,e,\theta,\tilde{a})$
- Aggregate labor supply \tilde{L} : sum of $(\bar{y}^s e \theta) l$ weighted by measure $f(s,e,\theta,\tilde{a})$
- Capital market equilibrium:

$$\tilde{K} = \tilde{\Omega} - \tilde{B}$$

- Pension contribution rate τ^p : computed with the help of the social security budget.
- Computation of government transfers:
 - ullet government consumption $ilde{G}=0.18 ilde{Y}$

- ullet accidental bequests Beq
- ullet aggregate consumption $ilde{C}$
- total taxes:

assumption
$$ilde{C}$$

$$\widetilde{Tax} = au^l w ilde{L} + au^k (r-\delta) ilde{K} + au^c ilde{C}$$

 government transfers: residual from government budget constant debt:

$$\widetilde{Tr} = \widetilde{Tax} + \left[(1+g_A)(1+n) - (1+r^b) \right] \widetilde{B} - \widetilde{G}$$

Step 7: Update aggregate variables and return to step 3 until convergence

- update the aggregate values of \widetilde{K} , \widetilde{L} , τ^p , τ^l , \widetilde{Tr} , \overline{l}
- we use a simple linear updating scheme: 80% old value plus 20% new value

Step 8: Update the asset grid of the individual state space if necessary

- \bullet Study distribution if \tilde{a}^{max} is a reasonable upper boundary for the asset grid
- Study the Euler residual: accuracy satisfactory?

Computation: PYTHON, JULIA or GAUSS?

Computational Methods

Interpolation	linear	cubic	cubic
Grid points			
$\overline{n_a}$	500	500	300
n_{ag}	1,000	1,000	1,000
Accuracy Young Old	0.00085 0.00231	0.00018 0.00052	0.00032 0.00140
Run time			
Julia	1h:29m:56s	1h:32m:43s	45m:37s
Gauss	27m:38s	1h:16m:34s	51m:56s
Python	32h:49m:37s	55h:30m:33s	48h:17m:04s

Results: Wealth-Age Profile

Results: Lorenz Curves Wealth

Results

	Gini Coefficient		
	US	OLG Model	
wages	0.375	0.375	
earnings	0.43-0.66	0.505	
wealth	0.80	0.66	

Missing elements to replicate wealth heterogeneity:

- Bequests: De Nardi and Yang (2016)
- ② Unemployment: Heer (2003)
- Asset-based means tests of social security: Hubbard et al. (1995)

Results

- Entrepreneurship (Bill Gates): Quadrini (2000), Cagetti and de Nardi (2009)
- Stochastic health: Jung and Tran (2016)
- Family heterogeneity, e.g. number of children, marital status: Holter et al. (2019)

References

- Budría Rodríguez, S., J. Díaz-Giménez, V. Quadrini, and J.-V. Ríos-Rull (2002). Updated Facts on the U.S. Distributions of Earnings, Income, and Wealth. Federal Reserve Bank of Minneapolis Quarterly Review, 2 35.
- Cagetti, M. and M. de Nardi (2009). Estate Taxation, Entrepreneurship, and Wealth. *American Economic Review 99*(1), 85 111.
- De Nardi, M. and F. Yang (2016). Wealth inequality, family background, and estate taxation. *Journal of Monetary Economics* 77, 130–145.
- Hansen, G. D. (1993). The cyclical and secular behavior of the labor input: Comparing efficiency units and hours worked. *Journal of Applied Econometrics* 8, 71–80.
- Heer, B. (2003). Welfare costs of inflation in a dynamic economy with search unemployment. *Journal of Economic Dynamics and Control* 28, 255 272.
- Holter, H. A., D. Krueger, and S. Stepanchuk (2019). How does tax progressivity and household heterogeneity affect laffer curves? *Quantitative Economics* 10(4), 1317–1356.

- Hubbard, R. G., J. Skinner, and S. P. Zeldes (1995). Precautionary saving social insurance. *Journal of Political Economy* 103, 360 399.
- Huggett, M. (1996). Wealth distribution in life-cycle economies. *Journal of Monetary Economics* 38(3), 469–494.
- Jung, J. and C. Tran (2016). Market inefficiency, insurance mandate and welfare: U.S. health care reform 2010. Review of Economic Dynamics 20, 132 – 159.
- Krueger, D., K. Mitman, and F. Perri (2016). Macroeconomics and household heterogeneity. In J. B. Taylor and H. Uhlig (Eds.), *Handbook of the Macroeconomics*, pp. 843–921. Elsevier.
- Quadrini, V. (2000). Entrepreneurship, saving and social mobility. *Review of Economic Dynamics* 3(1), 1–40.