Algoritmos genéticos

Introducción

Objetivo

Implementar un motor de algoritmos genéticos para encontrar el equipamiento óptimo para un personaje de un juego.

Función de Fitness

Función de Fitness

```
Fuerza _{personaje} = 100 * tanh (0,01 * Fuerza _{item})

Agilidad _{personaje} = tanh (0,01 * Agilidad _{item})

Pericia _{personaje} = 0,6 * tanh (0,01 * Pericia _{item})

Resistencia _{personaje} = tanh (0,01 * Resistencia _{item})

Vida _{personaje} = 100 * tanh (0,01 * Vida _{item})
```

¡Por el uso de la tangente hiperbólica puede haber saturación! Cuando una de las propiedades llega a la saturación, no hay que seguir intentando incrementarla.

Función de Fitness

1.6 1.4 1.0 0.8 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 Altura

DEM vs Altura

- La altura de los defensores debería rondar el valor 1.3
- La altura de los arqueros debería rondar el valor 1.9
- Difícil de predecir para guerreros y asesinos

Implementación

Representación de los personajes

Representación del individuo

La estructura del cromosoma es una cadena de doubles, que representan el equipamiento del personaje y su altura.

El equipamiento del personaje está representados por los id de las botas, arma, casco, guantes y pechera respectivamente.

Diversidad

Se implementaron tres formas de definir la diversidad:

- Diversidad por aptitud
- Diversidad por equipamiento
- Diversidad por características

Diversidad por Aptitud

Dada una población P, definimos la **diversidad por aptitud** como:

$$diversity_P = \frac{\sigma(F_P)}{\overline{F_P}}$$

Siendo $\sigma(F_P)$ el desvío estándar y $\overline{F_P}$ la media de la aptitud (fitness) de la población P.

Diversidad por características

Dada una población *P*, definimos la diversidad de la característica *X* como:

$$diversity_{X_P} = \frac{\sigma(X_P)}{\overline{X_P}}$$

Siendo $\sigma(X_P)$ el desvío estándar y $\overline{X_P}$ la media de la característica X de la población P.

Y definimos la diversidad por características de la población P como el promedio de la diversidad de las características correspondientes, siendo estas la fuerza, agilidad, pericia, resistencia y vida.

Diversidad por características

$$diversity_P = \frac{diversity_{A_P} + diversity_{R_P} + diversity_{V_P}}{3}$$

$$diversity_{A_P} = \frac{\sigma(A_P)}{\overline{A_P}} \qquad diversity_{R_P} = \frac{\sigma(R_P)}{\overline{R_P}} \qquad diversity_{V_P} = \frac{\sigma(V_P)}{\overline{V_P}}$$

Diversidad por equipamiento

Dada una población *P*, definimos la diversidad del equipamiento *Q* como la fracción entre la cantidad de ítems usados únicos de este tipo de equipamiento menos uno, y la cantidad de ítems distintos que existen, es decir:

$$diversity_{Q_P} = \frac{\#Q_P Usados - 1}{\#Q}$$

Es decir que si hay 200 cascos y en la población sólo se utilizan 11 distintos, la diversidad de cascos es de 0.05.

Y definimos la **diversidad por equipamiento** de la población *P* como el **promedio** de la diversidad de los equipamientos correspondientes.

Diversidad de equipamiento

Dada una población P de 3 individuos, un conjunto de 45 botas, uno de 10 Armas y otro de 8 cascos.

		Población	
	11	ıs	13
Botas	10	10	10
Armas	110	20	110
Casco	8	7	45

$$diversity_{B_P} = \frac{1-1}{45}$$
 $diversity_{A_P} = \frac{2-1}{10}$ $diversity_{C_P} = \frac{3-1}{8}$

$$diversity_P = \frac{0 + 0.1 + 0.25}{3} \cong 0.1167$$

Condiciones de Corte

- Estructura
- Cantidad de generaciones
- Contenido
- En torno a un óptimo

Métodos de Selección

- Ruleta
- Boltzmann
- Torneo: Determinístico y Probabilístico
- Ranking
- Elite
- Universal
- Compound (combina dos métodos de selección)

Métodos de Mutación

- Clásica
- No uniforme

Métodos de Cruza

- Anular-Crossover
- OnePoint-Crossover
- TwoPoint-Crossover
- Uniform-Crossover

Algoritmo

```
while(!condicion de corte) {
    Selección
    Cruza {
        Creación de hijos
        Mutación
    }
    Reemplazo
}
```

Las partes de color se pueden intercambiar para usar cualquiera de las distintas implementaciones

Pruebas y Resultados

Prueba de corte por contenido

Se busca ver cuál sería un buen parámetro de corte para el corte por contenido, se utiliza una configuración probada previamente.

Se sabe que el máximo está alrededor de 30,94. Se quiere saber para qué *N* se puede conseguir algo parecido, se hacen 10 pruebas y se toma el promedio.

Prueba de corte por contenido

- Tamaño de la población: 20
- Selección: 80% Ruleta 20% Elite
- Mutación: No uniforme con probabilidad $p_m = 0.01$
- \diamond Cruza: Uniforme con probabilidad p_c=0.5
- Condición de corte: Contenido, N generaciones
- Reemplazo: Método 2 (80% Boltzmann con t₀=400 20% Elite)

Prueba de corte por contenido

N	Mejor aptitud
5	18.3562
10	21.2164
50	25.3922
100	26.9686
500	30.8935
1000	30.9424
5000	30.9427

Prueba de corte por cantidad

Se busca ver cuál sería un buen parámetro de corte para el corte por cantidad, se utiliza una configuración probada previamente.

Se sabe que el máximo está alrededor de 30,94. Se quiere saber para qué *N* se puede conseguir algo parecido, se hacen 10 pruebas y se toma el promedio.

Prueba de corte por cantidad

- Tamaño de la población: 20
- Selección: 80% Ruleta 20% Elite
- \diamond Mutación: No uniforme con probabilidad $p_m = 0.01$
- \diamond Cruza: Uniforme con probabilidad p_c=0.5
- Condición de corte: Cantidad de Generaciones, N generaciones
- Reemplazo: Método 2 (80% Boltzmann con t₀=400 20% Elite)

Prueba de corte por cantidad

N	Mejor aptitud
5	17.6170
10	18.5901
50	21.2269
100	24.5442
500	28.6186
1000	29.3421
5000	30.6306

Variación de P_m en la siguiente configuración

- Tamaño de la población: 150
- Selección: 80% Ruleta 20% Elite
- Mutación: No uniforme
- \diamond Cruza: Uniforme con probabilidad p_c=0.5
- Condición de corte: 100 generaciones
- Reemplazo: Método 1

Nota: se realizaron 10 pruebas con cada p_m y se seleccionó para mostrar las de mejor fitness.

p_m=0 Best Fitness = 18.7391

Best chromosome fitness

Diversity

Generations

Generations

p_m=0.1 Best Fitness = 29.5649

Best chromosome fitness

Diversity

Generations

Generations

p_m=0.3 Best Fitness = 30.4334

Diversity

Generations

Generations

Prueba de mejores configuraciones para cada clase

- Tamaño de la población: 200
- Selección: 80% Ruleta 20% Elite
- Mutación: No uniforme con probabilidad p_m=0.01
- \diamond Cruza: Uniforme con probabilidad p_c=0.5
- Condición de corte: Contenido, 1000 generaciones
- Reemplazo: Método 2 (80% Boltzmann con to=400 20% Elite)

Nota: se realizaron 10 pruebas con cada clase y se seleccionó para mostrar las de mejor fitness.

Prueba de mejores configuraciones para cada clase

	Arquero1	Arquero2	Guerrero1	Guerrero2	Guerrero3	Defensor1	Defensor2	Asesino1	Asesino2
Botas	130	130	130	130	130	68	68	130	130
Armas	110	110	110	110	110	0	0	110	110
Casco	13	13	18	18	18	23	23	154	13
Guantes	11	11	11	11	11	48	48	11	11
Pechera	190	190	190	190	190	65	65	169	190
Altura	1.9152	1.9154	1.9151	1.9152	1.9156	1.3000	1.3000	1.9152	1.9152

Agilidad Ítem	0.6044	0.5579	0.3506	0.2921	0.3506	0.0558	0.0478	0.6467	0.5114
Fuerza Ítem	0.3422	0.2852	0.6115	0.6625	0.5606	0.0924	0.1092	0.3664	0.3993
Pericia Ítem	0.2835	0.3071	0.0536	0.0536	0.0893	0.0779	0.1169	0.2791	0.3544
Resistencia Ítem	0.0194	226	0.0429	0.0471	0.0515	0.6859	0.5879	0.0478	0.0355
Vida Ítem	0.0481	0.0577	0.0761	0.0676	0.0930	0.6619	0.6067	0.0207	0.0673
Ataque	39.6390	32.4293	34.2932	31.2652	33.8260	0.8452	1.1458	43.8141	43.6549
Defensa	0.7071	0.9226	0.4530	0.4258	0.7736	59.6884	51.9905	0.3481	1.2810
Aptitud	35.7458	29.2786	20.7571	18.9294	20.6051	53.8041	46.9060	30.7743	30.9427

Guerrero3

Guerrero2

Defensor1

Defensor2

Asesino1

Asesino2

Arquero1

Arquero2

Guerrero1

Conclusiones

Conclusiones

- Mejor tipo de diversidad, por ítems.
- Salieron beneficiadas las clases defensivas. Debido a la importancia de la Fuerza para el ataque y la falta de ítems que la provean en cantidad alta.
- Vemos como las clases híbridas tendieron a apuntar a enfocarse sólo en ataque o en defensa (no hay una combinación híbrida que pueda competir).
- Vemos que existe una altura óptima dependiendo de si el personaje se enfoca en ataque o en defensa.
- Vemos que la mejor combinación encontrada para cada clase es casi igual, dependiendo si se enfoca en el aspecto ofensivo o defensivo.

¡Muchas gracias!

