SVKM'S NMIMS MUKESH PATEL SCHOOL OF TECHNOLOGY MANAGEMENT & ENGINEERING

Programme: B. Tech (COMPUTER)

Year: III

Semester: V

Batch: 2014-15/2015-16

Academic Year: 2017-2018

Subject: Theoretical Computer Science

Date: 04 December 2017

Marks: 60 Time: 2.00 pm to 5.00 pm Durations 3 (hrs)

No. of Pagest OZ

Re-Examination

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover of the Answer Book, which is provided for their use.

- 1) Question No. <u>01</u> is compulsory,
- 2) Out of remaining questions, attempt any <u>04</u> questions.
- 3) In all <u>05</u> questions to be attempted.
- 4) All questions carry equal marks.
- 5) Answer to each new question to be started on a fresh page.
- 6) Figures in brackets on the right hand side indicate full marks.
- 7) Assume suitable data, if necessary.

Q.1.	a.	Solve any three. Design Mealy & Moore machine to calculate one's complement of the given binary number.	[04]
	b.	Design PDA for accepting language $L = \{a^nb^n \mid n > 0\}.$	[04]
	с.	Convert the Context Free Grammar(CFG) $G = (\{S,A,B\}, \{a,b\},P,S)$ in to equivalent Chomsky Normal form (CNF), whose production rules are $\{S \rightarrow AB, A \rightarrow BSB \mid bB \mid b, B \rightarrow aS \mid aB \mid b \}$.	[04]

- d. Differentiate between [04]
 - i. Pushdown Automata and Turing Machine.
 - ii. Finite Automata and Pushdown Automata
- e. Explain Chomsky Hierarchy of Languages. [04]
- Q.2. a. Convert the following regular expression in to equivalent English Statements
 i. (10+111)0*1. ii. (a+b)*baa(b+a)*. iii. 01(0+1)*. iv. a*(a*+b*)*. [04]
 - b. Construct NFA with-∈ & DFA for the regular expression "ab(a+b)*+ aab". [08]
- Q.3. a. Show that $L = \{x^n y^n z^n | n>0\}$ is not a regular language. [06]
 - b. Give Mealy Machine to convert every sequence of "1000" in to "1001" over [06] an alphabet {0+1}*.

Q.4.	a.	 Let G = ({S,A,B}, {a,b},P,S) be a context free grammar with production rules, P = {S→ AB ∈, A → aB, B → Sb} Find i. Leftmost derivation ii. Rightmost derivation & Derivation Tree for the string "aabbbb". 	[06]
	b.	Give Push Down Automata for accepting the strings of the language $L = \#w\#w^R\# \mid w \in \{0+1\}^*, w^R \text{ is the reverse of } w \text{ and } \# \text{ is any terminal symbol}\}.$	[06]
Q.5.	a.	Give Post machine for the Language $L = \{a^nb^nc^nd^n \mid n>0\}$.	[06]
	b.	Give Turing machine for the language $L = \{wcw \mid w \in \{0+1\}^* \text{ and } c \text{ is any input symbol}\}.$	[06]
Q.6.		Give Turing machine for the following. (Any two)	
×	a.	To evaluate the function F(x,y) such that F(x,y) = x-y, if x > y = 0 , otherwise Where x, y are any two unary numbers.	[06]
	b.	To evaluate the multiplication of two unary numbers.	[06]
	c.	To accept the language containing equal number of 0's and 1's over an alphabet {0+1}*. Also give proliferation for the input "0010011011".	[06]
Q.7.		Explain (any four)	
	a.	Halting problem of Turing Machine.	[03]
	b.	Post Correspondence Problem.	[03]
	c.	Difference between Mealy and Moore Machine.	[03]
	d.	Application of Finite automata in compiler construction.	[03]
	e.	Ambiguity in Grammar.	[03]
	f.	Un-decidability problem.	[03]
	g.	Closure properties of Context Free Languages.	[03]