Assignment 2

Lecturer: Yizheng Zhao

April 5, 2023

* This assignment, due on 23rd April, contributes to 10% of the total mark of the course.

Question 1. Closure under Disjoint Union

Recall Theorem 3.8 from the lecture, which says that the disjoint union of a family of models of an \mathcal{ALC} -TBox \mathcal{T} is again a model of \mathcal{T} . Note that the disjoint union is only defined for concept and role names.

• Extend the notion of disjoint union to individual names such that the following holds: for any family $(\mathcal{I}_{\nu})_{\nu \in \Omega}$ of models of an \mathcal{ALC} -knowledge base \mathcal{K} , the disjoint union $\biguplus_{\nu \in \Omega} \mathcal{I}_{\nu}$ is also a model of \mathcal{K} .

Question 2. Closure under Disjoint Union

Let $\mathcal{K} = \{\mathcal{T}, \mathcal{A}\}$ be a consistent \mathcal{ALC} -KB. We write $C \sqsubseteq_{\mathcal{K}} D$ if $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$ holds for every model \mathcal{I} of \mathcal{K} .

• Prove that for all \mathcal{ALC} -concepts C and D we have $C \sqsubseteq_{\mathcal{K}} D$ iff $C \sqsubseteq_{\mathcal{T}} D$.

Hint: Use the modified definition of disjoint union from the previous question.

Question 3. Finite Model Property (fmp)

Let C be an \mathcal{ALC} -concept that is satisfiable w.r.t. an \mathcal{ALC} -TBox \mathcal{T} . Show truth or falsity of the following statement:

- for all $m \geq 1$ there is a finite model \mathcal{I}_m of \mathcal{T} such that $|C^{\mathcal{I}_m}| \geq m$.
- Does it hold if the condition " $|C^{\mathcal{I}_m}| \geq m$ " is replaced by " $|C^{\mathcal{I}_m}| = m$ "?

Question 4. Bisimulation over Filtration

Let C be an \mathcal{ALC} -concept, \mathcal{T} an \mathcal{ALC} -TBox, \mathcal{I} an interpretation and \mathcal{J} its filtration w.r.t. $sub(C) \cup sub(\mathcal{T})$ (see Definition 3.14 for the definition of filtration). Show truth or falsity of the following statement:

• the relation $\rho = \{(\mathsf{d}, [\mathsf{d}]) \mid \mathsf{d} \in \Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and $\mathcal{J}.$

Hint: If the above relation ρ were a bisimulation, why do we have to explicitly prove Lemma 3.15 in the lecture? Wouldn't Lemma 3.15 then be a consequence of Theorem 3.2?

Question 5. Bisimulation within the Same Interpretation

We define "bisimulations on \mathcal{I} " as bisimulations between an interpretation \mathcal{I} and itself. Let $d, e \in \Delta^{\mathcal{I}}$ be two elements. We write $d \approx_{\mathcal{I}} e$ if they are bisimilar, i.e., if there is a bisimulation ρ on \mathcal{I} such that $d \rho e$.

• Show that $\approx_{\mathcal{I}}$ is a bisimulation on \mathcal{I} .

Consider the interpretation \mathcal{J} defined like the filtration, but with $\approx_{\mathcal{I}}$ instead of \simeq .

- Show that $\rho = \{(\mathsf{d}, [\mathsf{d}]_{\approx_{\mathcal{T}}}) \mid \mathsf{d} \in \Delta^{\mathcal{I}}\}$ is a bisimulation between \mathcal{I} and \mathcal{J} .
- Show that, if \mathcal{I} is a model of an \mathcal{ALC} -concept C w.r.t. an \mathcal{ALC} -TBox \mathcal{T} , then so is \mathcal{J} .
- Why can't we use the previous result to show the finite model property for \mathcal{ALC} ?

Question 6. Unravelling

Draw the unravelling of the following interpretation \mathcal{I} at d up to depth 5, i.e., restricted to d-paths of length at most 5 (see Definition 3.21):

Question 7. Tree Model Property (tmp)

• Show the truth or falsity of the following statement: if \mathcal{K} is an \mathcal{ALC} -KB and C an \mathcal{ALC} -concept such that C is satisfiable w.r.t. \mathcal{K} , then C has a tree model w.r.t. \mathcal{K} .

Question 8. Tableau Algorithm

• Apply the Tableau algorithm consistent (A) to the following ABox:

$$\mathcal{A} = \{(b,a): r, (a,b): r, (a,c): s, (c,b): s, a: \exists s.A, b: \forall r.((\forall s.\neg A) \sqcup (\exists r.B)), c: \forall s.(B \sqcap (\forall s.\bot))\}.$$

If A is consistent, draw the model generated by the algorithm.

Question 9. Extension of Tableau Algorithm

We consider the concept constructor \rightarrow (implication) with the following semantics:

$$(C \to D)^{\mathcal{I}} := \{ x \in \Delta^{\mathcal{I}} \mid x \in C^{\mathcal{I}} \text{ implies } x \in D^{\mathcal{I}} \}.$$

To extend consistent (A) to this constructor, we propose two alternative new expansion rules:

The deterministic \rightarrow -rule

Condition: A contains $a: C \to D$ and a: C, but not a: D

Action: $A \longrightarrow A \cup \{a:D\}$

The nondeterministic →-rule

Condition: A contains $a:C\to D$, but neither $a:\dot\neg C$ nor a:D

Action: $A \longrightarrow A \cup \{a: X\}$ for some $X \in \{ \dot{\neg} C, D \}$

For each rule, determine whether the extended algorithm remains terminating, sound, and complete.

Question 10. Modification of Tableau Algorithm

We consider an \mathcal{ALC} TBox \mathcal{T} consisting only of the following two kinds of axioms:

- role inclusions of the form $r \sqsubseteq s$, and
- role disjointness constraints of the form $\operatorname{disjoint}(r,s)$.

where r and s are role names. An interpretation $\mathcal I$ satisfies these axioms if

- $r^{\mathcal{I}} \subseteq s^{\mathcal{I}}$, and
- $r^{\mathcal{I}} \cap s^{\mathcal{I}} = \emptyset$, respectively.

Modify the Tableau algorithm consistent (A) to decide the consistency of (T,A), where A is an ABox and T a TBox containing only role inclusions and role disjointness constraints. Show that the algorithm remains terminating, sound, and complete.