| $\mathcal{T}_{1^{-}}^{#1} + ^{\alpha}$     | $\Delta_{1}^{#6} \uparrow^{\alpha}$                                         | $\Delta_{1}^{#5} + \alpha$                    | $\Delta_{1}^{\#4} + ^{\alpha}$                      | $\Delta_{1}^{#3} + \alpha$                      | $\Delta_{1}^{#2} + \alpha$                      | $\Delta_{1}^{#1} \uparrow^{\alpha}$          | $\Delta_{1+}^{#3} + \alpha \beta$ | $\Delta_{1+}^{#2} \dagger^{\alpha\beta}$ | $\Delta_{1^+}^{\#1} + ^{\alpha\beta}$ |                                                                                                          |
|--------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------------------|-----------------------------------|------------------------------------------|---------------------------------------|----------------------------------------------------------------------------------------------------------|
| 0                                          | 0                                                                           | 0                                             | 0                                                   | 0                                               | 0                                               | 0                                            | 0                                 | $-\frac{2\sqrt{2}}{a_0}$                 | 0                                     | $\Delta_{1}^{\#1}{}_{lphaeta}$                                                                           |
| 0                                          | 0                                                                           | 0                                             | 0                                                   | 0                                               | 0                                               | 0                                            | 0                                 | $\frac{2}{a_0}$                          | $-\frac{2\sqrt{2}}{a_0}$              | $\Delta_{1}^{\#1}{}_{\alpha\beta} \ \Delta_{1}^{\#2}{}_{\alpha\beta} \ \Delta_{1}^{\#3}{}_{\alpha\beta}$ |
| 0                                          | 0                                                                           | 0                                             | 0                                                   | 0                                               | 0                                               | 0                                            | $\frac{4}{a_0}$                   | 0                                        | 0                                     | $\Delta_{1}^{\#3}{}_{\alpha\beta}$                                                                       |
| $\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$          | 0                                                                           | $\frac{\sqrt{\frac{2}{3}} k^2}{2a_0+a_0 k^2}$ | 0                                                   | $-\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$           | $\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$          | 0                                            | 0                                 | 0                                        | 0                                     | $\Delta_{1^- \; \alpha}^{\#1}$                                                                           |
| $\frac{ik(4+k^2)}{a_0(2+k^2)^2}$           | $-\frac{k^2}{\sqrt{6}(2a_0+a_0k^2)}$                                        | $\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$ | $-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$ | $\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$ | $\frac{(4+k^2)^2}{2a_0(2+k^2)^2}$               | $\frac{\sqrt{2}(4+k^2)}{a_0(2+k^2)}$         | 0                                 | 0                                        | 0                                     | $\Delta_{1^- \ \alpha}^{\# 2}$                                                                           |
| $-\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$ | $ \begin{array}{c c}  & 1 \\ -2 a_0 - \frac{8 a_0}{2 + 3 k^2} \end{array} $ | $\frac{-2+k^2}{3\sqrt{2}a_0(2+k^2)^2}$        | $\frac{\sqrt{5} (10+3 k^2)}{12 a_0 (2+k^2)}$        | $-\frac{76+52k^2+3k^4}{12a_0(2+k^2)^2}$         | $\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$ | $-\frac{2k^2}{\sqrt{3} a_0 (2+k^2)}$         | 0                                 | 0                                        | 0                                     | $\Delta_{1^-\alpha}^{\#3}$                                                                               |
| $\frac{i\sqrt{5}k}{2a_0+a_0k^2}$           | $-\frac{\sqrt{5}}{6a_0}$                                                    | $-\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$    | $\frac{1}{12 a_0}$                                  | $\frac{\sqrt{5} (10+3k^2)}{12 a_0 (2+k^2)}$     | $-\frac{\sqrt{5} k^2}{4a_0+2a_0 k^2}$           | 0                                            | 0                                 | 0                                        | 0                                     | $\Delta_{1^-~\alpha}^{\#4}$                                                                              |
| $-\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$ | $-\frac{\sqrt{2}(7+3k^2)}{3a_0(2+k^2)}$                                     | $\frac{2(17+14k^2+3k^4)}{3a_0(2+k^2)^2}$      | $\sqrt{\frac{5}{2}}$ $6a_0+3a_0k^2$                 | $\frac{-2+k^2}{3\sqrt{2}a_0(2+k^2)^2}$          | $\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$   | $\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$ | 0                                 | 0                                        | 0                                     | $\Delta_{1^- \ \alpha}^{\# 5}$                                                                           |
| $\frac{i\sqrt{\frac{2}{3}}k}{2a_0+a_0k^2}$ | 5<br>3 <i>a</i> 0                                                           | $\frac{\sqrt{2}(7+3k^2)}{3a_0(2+k^2)}$        | $-\frac{\sqrt{5}}{6a_0}$                            | $\frac{1}{-2a_0 - \frac{8a_0}{2+3k^2}}$         | $-\frac{k^2}{\sqrt{6} a_0 (2+k^2)}$             | 0                                            | 0                                 | 0                                        | 0                                     | $\Delta_{1^{-}\ \alpha}^{\#6}$                                                                           |
| $\frac{2k^2}{a_0(2+k^2)^2}$                | $-\frac{i\sqrt{\frac{2}{3}}k}{a_0(2+k^2)}$                                  | $\frac{2ik(3+k^2)}{\sqrt{3}a_0(2+k^2)^2}$     | $-\frac{i\sqrt{5}k}{a_0(2+k^2)}$                    | $\frac{ik(6+5k^2)}{\sqrt{6} a_0(2+k^2)^2}$      | $-\frac{ik(4+k^2)}{a_0(2+k^2)^2}$               | $-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$            | 0                                 | 0                                        | 0                                     | ${\mathcal T}_{1^-lpha}^{\#1}$                                                                           |

| $\Delta_{0^{-}}^{#1}$ † | T <sub>0</sub> <sup>#2</sup> †                 | $\mathcal{T}_{0^{+}}^{#1}$ †                  | $\Delta_{0^{+4}}^{#4}$ †                             | $\Delta_{0^{+3}}^{#3}$ †                     | $\Delta_{0}^{#2}$ †                          | $\Delta_{0^{+}}^{*1}$ †                      |                              |
|-------------------------|------------------------------------------------|-----------------------------------------------|------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|------------------------------|
| 0                       | $\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$            | 2 i √2<br>a0 k                                | $-\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$                 | $-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$ | $\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$         | 0                                            | $\Delta_{0}^{\#1}$           |
| 0                       | $-\frac{72ik}{a_0(16+3k^2)^2}$                 | $\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$           | $\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$          | $\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$         | $-\frac{144}{a_0 (16+3 k^2)^2}$              | $4\sqrt{6}$ $16a_0+3a_0k^2$                  | $\Delta_{0}^{#2}$            |
| 0                       | $\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$          | $\frac{8i}{\sqrt{3}(16a_0k + 3a_0k^3)}$       | $\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$         | $\frac{16(35+6k^2)}{3a_0(16+3k^2)^2}$        | $\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$         | $-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$ | $\Delta_0^{\#3}$             |
| 0                       | $-\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$ | $\frac{8i\sqrt{\frac{2}{3}}}{16a_0k+3a_0k^3}$ | $\frac{32(13+3k^2)}{3a_0(16+3k^2)^2}$                | $\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$ | $-\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$ | $-\frac{8}{\sqrt{3} (16 a_0 + 3 a_0 k^2)}$   | $\Delta_0^{\#4}$             |
| 0                       | $\frac{4\sqrt{3}}{16a_0 + 3a_0 k^2}$           | $\frac{4}{a_0 k^2}$                           | $     8i \sqrt{\frac{2}{3}}     16a_0 k + 3a_0 k^3 $ | $\frac{8i}{\sqrt{3} (16a_0k + 3a_0k^3)}$     | $\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$          | $-\frac{2i\sqrt{2}}{a_0k}$                   | ${\mathcal T}^{\#1}_{0^+}$   |
| 0                       | $-\frac{36 k^2}{a_0 (16+3 k^2)^2}$             | $\frac{4\sqrt{3}}{16a_0+3a_0k^2}$             | $\frac{4i\sqrt{2}k(10+3k^2)}{a_0(16+3k^2)^2}$        | $-\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$       | $\frac{72ik}{a_0(16+3k^2)^2}$                | $-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$         | T <sub>0</sub> <sup>#2</sup> |
| $-\frac{2}{a_0}$        | 0                                              | 0                                             | 0                                                    | 0                                            | 0                                            | 0                                            | $\Delta_{0^{\bar{-}}}^{\#1}$ |

| $\Gamma_{2^{-}}^{#2} \dagger^{\alpha\beta\chi}$ | $\Gamma_{2}^{#1} \dagger^{\alpha\beta\chi}$ | $h_{2+}^{\#1} \dagger^{\alpha\beta}$ | $\Gamma_{2+}^{#3} \dagger^{\alpha\beta}$ | $\Gamma_{2+}^{#2} + \alpha \beta$ | $\Gamma_{2+}^{*1} + \alpha \beta$ |                                       |
|-------------------------------------------------|---------------------------------------------|--------------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|---------------------------------------|
| 0                                               | 0                                           | $-\frac{ia_0k}{4\sqrt{2}}$           | 0                                        | 0                                 | $\frac{a_0}{4}$                   | $\Gamma_{2}^{++}\alpha\beta$          |
| 0                                               | 0                                           | $-\frac{i a_0 k}{4 \sqrt{3}}$        | 0                                        | $-\frac{a_0}{2}$                  | 0                                 | $\Gamma_{2}^{\#2} + \alpha\beta$      |
| 0                                               | 0                                           | $\frac{i a_0 k}{4 \sqrt{6}}$         | $\frac{a_0}{4}$                          | 0                                 | 0                                 | $\Gamma_{2}^{*+}\alpha\beta$          |
| 0                                               | 0                                           | 0                                    | $-\frac{ia_0k}{4\sqrt{6}}$               | $\frac{i a_0 k}{4 \sqrt{3}}$      | $\frac{i a_0 k}{4 \sqrt{2}}$      | $h_{2}^{++}\alpha\beta$               |
| 0                                               | $\frac{a_0}{4}$                             | 0                                    | 0                                        | 0                                 | 0                                 | $\Gamma_{2^{-}\alpha\beta\chi}^{\#1}$ |
| $\frac{a_0}{4}$                                 | 0                                           | 0                                    | 0                                        | 0                                 | 0                                 | $\Gamma_{2^{-}}^{\#2}\alpha\beta\chi$ |

| $\Delta_{3}^{\#1}{}_{\alpha\beta\chi}$ |                  |  |                                            | $\Gamma_{3}^{\#1}_{\alpha\beta\chi}$ |
|----------------------------------------|------------------|--|--------------------------------------------|--------------------------------------|
| $^{#_1}_{3}$ † $^{\alpha\beta\chi}$    | $-\frac{2}{a_0}$ |  | $\Gamma_3^{\#1} \dagger^{\alpha\beta\chi}$ | $-\frac{a_0}{2}$                     |

|                                               | $\Delta_{2}^{\#1}\alpha\beta$     | $\Delta_{2}^{\#2} \alpha \beta$   | $\Delta_{2}^{\#3} \alpha \beta$     | $\mathcal{T}_{2}^{\#1}_{\alpha\beta}$ | $\Delta_{2}^{\#1}_{\alpha\beta\chi}$ | $\Delta_{2}^{\#2}_{\alpha\beta\chi}$ |
|-----------------------------------------------|-----------------------------------|-----------------------------------|-------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| $\Delta_{2}^{#1} \dagger^{\alpha\beta}$       | 0                                 | $\frac{2\sqrt{\frac{2}{3}}}{a_0}$ | $\frac{4}{\sqrt{3} a_0}$            | $\frac{4i\sqrt{2}}{a_0k}$             | 0                                    | 0                                    |
| $\Delta_{2}^{\#2} \dagger^{\alpha\beta}$      | $\frac{2\sqrt{\frac{2}{3}}}{a_0}$ | $-\frac{8}{3a_0}$                 | $-\frac{2\sqrt{2}}{3a_0}$           | $-\frac{4i}{\sqrt{3} a_0 k}$          | 0                                    | 0                                    |
| $\Delta_{2}^{#3} \dagger^{\alpha\beta}$       | $\frac{4}{\sqrt{3}}a_0$           | $-\frac{2\sqrt{2}}{3a_0}$         | 8<br>3 <i>a</i> <sub>0</sub>        | $-\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$  | 0                                    | 0                                    |
| ${\mathcal T}_2^{\sharp 1} \dagger^{lphaeta}$ | $-\frac{4i\sqrt{2}}{a_0k}$        | $\frac{4i}{\sqrt{3} a_0 k}$       | $\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$ | $-\frac{8}{a_0 k^2}$                  | 0                                    | 0                                    |
| $\Delta_2^{#1} \dagger^{\alpha\beta\chi}$     | 0                                 | 0                                 | 0                                   | 0                                     | $\frac{4}{a_0}$                      | 0                                    |
| $\Delta_2^{\#2} + \alpha \beta \chi$          | 0                                 | 0                                 | 0                                   | 0                                     | 0                                    | 4                                    |

|                                | $\Gamma_{0}^{\#1}$           | Γ <sub>0</sub> <sup>#2</sup> | Γ <sub>0</sub> <sup>#3</sup>  | Γ <sub>0</sub> <sup>#4</sup>  | $h_{0}^{\#1}$                 | $h_{0}^{\#2}$                | Γ <sub>0</sub> - |
|--------------------------------|------------------------------|------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------------|------------------|
| $\Gamma_{0}^{\#1}$ †           | $-\frac{a_0}{2}$             | 0                            | 0                             | 0                             | $-\frac{i a_0 k}{2 \sqrt{2}}$ | 0                            | 0                |
| $\Gamma_{0}^{\#2}$ †           | 0                            | 0                            | <u>a<sub>0</sub></u><br>2     | $-\frac{a_0}{2\sqrt{2}}$      | 0                             | 0                            | 0                |
| Γ <sub>0</sub> <sup>#3</sup> † | 0                            | <u>a<sub>0</sub></u><br>2    | 0                             | $-\frac{a_0}{2\sqrt{2}}$      | $\frac{i a_0 k}{4 \sqrt{3}}$  | $-\frac{1}{4}ia_0k$          | 0                |
| Γ <sub>0</sub> <sup>#4</sup> † | 0                            | $-\frac{a_0}{2\sqrt{2}}$     | $-\frac{a_0}{2\sqrt{2}}$      | <u>a<sub>0</sub></u><br>2     | $-\frac{i a_0 k}{4 \sqrt{6}}$ | $\frac{i a_0 k}{4 \sqrt{2}}$ | 0                |
| $h_0^{\#1}$ †                  | $\frac{i a_0 k}{2 \sqrt{2}}$ | 0                            | $-\frac{i a_0 k}{4 \sqrt{3}}$ | $\frac{i a_0 k}{4 \sqrt{6}}$  | 0                             | 0                            | 0                |
| $h_0^{\#2}$ †                  | 0                            | 0                            | <u>i a 0 k</u><br>4           | $-\frac{i a_0 k}{4 \sqrt{2}}$ | 0                             | 0                            | 0                |
| Γ <sub>0</sub> -1 †            | 0                            | 0                            | 0                             | 0                             | 0                             | 0                            | $-\frac{a_0}{2}$ |

 $\frac{i a_0 k}{4 \sqrt{2}}$ 

 $\frac{1}{4} i \sqrt{\frac{5}{6}} a_0 k$ 

 $-\frac{a_0}{6\sqrt{2}}$ 

 $\sqrt{\frac{5}{2}}$ 

<u>a</u>0 3

 $\frac{\sqrt{5} a_0}{6}$ 

 $\sqrt{\frac{5}{2}}a_0$ 

 $\begin{array}{c|c}
-\frac{a_0}{6} \\
-\frac{\sqrt{5} a_0}{6} \\
\hline
\frac{a_0}{6 \sqrt{2}} \\
\frac{5a_0}{12}
\end{array}$ 

 $\frac{ia_0k}{4\sqrt{6}}$   $-\frac{1}{4}\bar{l}\sqrt{\frac{5}{6}}a_0k$   $\frac{ia_0k}{4\sqrt{3}}$   $\frac{ia_0k}{4\sqrt{6}}$ 

 $\begin{array}{c}
\sqrt{5} a_0 \\
6 \\
3
\end{array}$ 

 $0 \frac{a_0}{2\sqrt{2}}$ 

 $\frac{a_0}{4}$ 

 $\frac{a_0}{2\sqrt{2}}$ 

 $\frac{i a_0 k}{4 \sqrt{2}}$ 

Γ<sub>1-α</sub> 0

Γ<sub>1</sub>- α 0

 $\Gamma_{1^{-}\alpha}^{\#6}$ 

| Source constraints                                                                                                          |   | La             |
|-----------------------------------------------------------------------------------------------------------------------------|---|----------------|
| SO(3) irreps                                                                                                                | # | - 1            |
| $2\mathcal{T}_{0^{+}}^{\#2} - \bar{\imath}k\Delta_{0^{+}}^{\#2} == 0$                                                       | 1 | $\frac{1}{2}a$ |
| $\Delta_{0^{+}}^{\#3} + 2 \Delta_{0^{+}}^{\#4} + 3 \Delta_{0^{+}}^{\#2} == 0$                                               | 1 | 4 1            |
| $6  \mathcal{T}_{1}^{\#1\alpha} - i  k  (3  \Delta_{1}^{\#2\alpha} - \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$ | 3 | 2 Ad           |
| $2 \Delta_{1}^{\#6\alpha} + \Delta_{1}^{\#4\alpha} + 2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} == 0$                | 3 | Au             |
| Total #:                                                                                                                    | 8 |                |
|                                                                                                                             |   |                |

## Lagrangian density

 $-\frac{1}{2} a_0 \Gamma^{\alpha\beta\chi} \Gamma_{\beta\chi\alpha} + \frac{1}{2} a_0 \Gamma^{\alpha\beta}_{\alpha} \Gamma^{\chi}_{\beta\chi} - \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} + \frac{1}{4} a_0 h^{\chi}_{\chi} \partial_{\beta} \Gamma^{\alpha\beta}_{\alpha} - \frac{1}{2} a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} + \frac{1}{2} a_0 h_{\beta\chi} \partial^{\chi} \Gamma^{\alpha\beta}_{\alpha}$ 

Added source term:  $h^{\alpha\beta} \mathcal{T}_{\alpha\beta} + \Gamma^{\alpha\beta\chi} \Delta_{\alpha\beta\chi}$ 



Unitarity conditions  $a_0 < 0$ 

(No massive particles)