Census Analysis

A Tech Talent South Production

Powered by Conor and Owen

Hello!

We are Conor and Owen!

Aspiring Data Scientists hoping to bring some unique insights using historical Census Data

Table of Contents

1. Overview

What? Who? Why?

Objective

 Provide high-level analysis of the Census data set Predict if an individual's income is more or less than \$50k/year

Data Overview

- Extracted from 1994 census bureau database
- 15 original data columns such as age, education, marital.status etc.
 - Transformed based on preliminary analysis (see Data Cleaning and Data Engineering slides)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns): Column Non-Null Count Dtype workclass 32561 non-null object fnlwgt 32561 non-null education object education.num 32561 non-null marital.status 32561 non-null occupation object relationship 32561 non-null race capital.gain 12 hours.per.week 32561 non-null native.country 32561 non-null object 32561 non-null object dtypes: int64(6), object(9)

011

memory usage: 3.7+ MB

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week	native.country	income
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	Female	0	4356	40	United-States	<=50K
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Female	0	4356	18	United-States	<=50K
2	66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Female	0	4356	40	United-States	<=50K
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900	40	United-States	<=50K
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900	40	United-States	<=50K

2. Preliminary Analysis

Data Cleaning and Visualization

Data Cleaning

- "?" in 'workclass', 'occupation', and 'native.country' columns
 - Change to null values, then fill them with the mode (most commonly appearing value) for that column

```
data[data == '?'] = np.nan
for column in ['workclass','occupation','native.country']:
    data[column].fillna(data[column].mode()[0], inplace=True)
```

- Income is a categorical variable
 - '<=50K' or '>50K'
- As the target variable, it needs to be numerical

```
#Replace the categorical variables with numerical variables
data['income'] = data['income'].replace({'<=50K':0, '>50K':1})
```

Data Visualization

- Extracted from 1994 census bureau database
- 15 original data columns such as age, education, marital.status etc.
 - Transformed based on preliminary analysis (see Data Cleaning and Data Engineering slides)

<class 'pandas.core.frame.DataFrame'> RangeIndex: 32561 entries, 0 to 32560 Data columns (total 15 columns): Non-Null Count Dtype workclass object fnlwgt education object education.num 32561 non-null marital.status 32561 non-null occupation object relationship capital.gain 12 hours.per.week 32561 non-null native.country 32561 non-null object 32561 non-null dtypes: int64(6), object(9)

01

memory usage: 3.7+ MB

	age	workclass	fnlwgt	education	education.num	marital.status	occupation	relationship	race	sex	capital.gain	capital.loss	hours.per.week	native.country	income
0	90	?	77053	HS-grad	9	Widowed	?	Not-in-family	White	Female	0	4356	40	United-States	<=50K
1	82	Private	132870	HS-grad	9	Widowed	Exec- managerial	Not-in-family	White	Female	0	4356	18	United-States	<=50K
2	66	?	186061	Some- college	10	Widowed	?	Unmarried	Black	Female	0	4356	40	United-States	<=50K
3	54	Private	140359	7th-8th	4	Divorced	Machine- op-inspct	Unmarried	White	Female	0	3900	40	United-States	<=50K
4	41	Private	264663	Some- college	10	Separated	Prof- specialty	Own-child	White	Female	0	3900	40	United-States	<=50K

GDS Overview

https://datastudio.google.com/reporting/3a9c195c-3a28-4a99-bda7-6acbfa4a068f

GDS Zoom In: Income

Average Capital Loss by Income

GDS Overview 2

https://datastudio.google.com/reporting/3a9c195c-3a28-4a99-bda7-6acbfa4a068f

GDS Zoom In: Demographics

Visuals - Categorical part 1

Occupation vs Workclass

Sex

Visuals - Categorical part 2

Race

Native Country

001

Visuals - Categorical part 2

 Relationship vs Marital Status

001

Visuals - Numerical part 1

- Education.num strong correlation (.34) with income
- Age, Capital.gain and Hours/week all decent indicators

Visuals - Numerical part 2

• Age, Hours/Week, Education Number

3. Data Engineering

Data Engineering

- Group 'relationship', 'race', 'sex', and 'occupation' by observed changes (from visualizations) and assign binary groups (0 or 1) to them
- O Drop 'native.country', 'workclass', 'marital.status', 'education'
 - Redundant and uninformative columns

4. ML Modeling

Data Cleaning and Visualization

All models are wrong, but some are useful.

- George E. P. Box

Model Choices

NAIVE BAYES

- Requires predictors be independent
- Works well with binary classification data and many data points
- Fast to employ

L

LOGISTIC REGRESSION

- The dependent variable is binary, multinomial, or ordinal (most often binary)
- No multicollinearity in the model (independence tenet)

- Can handle both numerical and categorical data.
- High Variance in the data can create totally unique "trees" (results)

DECISION TREE

- Used for both classification and regression problems
- Groups by "neighbors"

K-NEAREST NEIGHBOR

Applying Models

- Using Naive Bayes, Logistic Regression, K-Nearest Neighbors and Decision Trees
- Test_size set to 25%
- Seed set to 0

```
#Set features
X = data[['occupation', 'relationship', 'race', 'sex', 'age', 'fnlwgt', 'capital.gain', 'capital.loss', 'hours.per.week']]
#Set target Variable
y = data['income']

#Set test/train split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25,random_state=0)

#select the model
nb = GaussianNB()
#fit the model
nb.fit(X_train,y_train)
#predict based on the model
y_pred=nb.predict(X_test)
```

How to measure a model

- TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative
- Accuracy
 - (TP + TN) / (TP + TN + FP + FN)
 - Compares accurate predictions vs total # of predictions
 - Describes overall accuracy of the model
- Precision
 - (TP) / (TP + FP)
 - Compares accurate positive predictions vs all positive predictions
 - Describes a model's accuracy when only considering positive predictions made
- Recall
 - \cdot (TP) / (TP + FN)
 - Compares accurate positive predictions vs the true total of positive values
 - Describes model's accuracy to predict positives in relation to the entire dataset

5. Results

Comparing Models

 Using our handmade, binary numeric variables

-				
	Model	Accuracy	Precision	Recall
	Naive Bayes	79.58%	65.95%	30.33%
	Decision Tree	80.03%	58.00%	60.06%
)	Logistic Regression	79.91%	71.58%	26.64%
	KNN	77.80%	56.31%	32.28% 27

Applying sklearn preprocessing

 Easy way of turning categorical data into numerical, and standardizing it.

```
#create a list of our categorical columns for our for loop to iterate over
cats = ['workclass', 'education', 'marital.status', 'occupation', 'relationship', 'race', 'sex', 'native.country']
#set our sklearn LabelEncoder to a variable
label_encoder = LabelEncoder()
#For each column from our list, fit the LabelEncoder and then transform the column as such
for column in cats:
    label_encoder.fit(data2[column])
    data2[column] = label_encoder.transform(data2[column])
#set our sklearn StandardScaler to a variable (this is like standardizing with z-scores, applied to all our columns)
scaler = StandardScaler()
#set our train/test split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.25, random_state = 0)
#apply the scaler to the columns in test and train
x_train = pd.DataFrame(scaler.fit_transform(x_train), columns = x.columns)
x_test = pd.DataFrame(scaler.transform(x_test), columns = x.columns)
```


Label Encoding

- Using sklearn's LabelEncoder and StandardScaler functions for categorical variable transformation.
- Applying the same models to this new dataset

Model	Accuracy	Precision	Recall
Naive Bayes	79.90% ↑	67.88% ↑	30.39% ↑
Decision Tree	81.09% ↑↑	60.41% ↑	60.88% ↑
Logistic Regression	80.27% ↑	69.93% ↓ 010	30.80% ↑
KNN	82.37% ↑↑↑	64.80% ↑↑↑	57.64% ↑↑↑
			29

Changing the Seed

- Seed originally set to 0
 - Iterating through seeds 0-9 for each model

```
#Set test/train split
X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.25 random_state=0)
```

Naive Bayes

Naive Bayes

Logistic Regression

Logistic Regression

Decision Tree

Decision Tree

K-Nearest Neighbors

K-Nearest Neighbors

Results

- Most Accurate KNN
- Most Precise Logistic Regression
- Highest Recall Decision Tree

Summary

- Since there is neither a high cost associated with False Negatives nor False Positives, the best model to use to predict an individual's Income using the 1994 Census data is KNN.
- We are able to predict with over 80% accuracy whether or not someone will make greater than or less than \$50k
- Capital Gain, Age, and Hours Worked per Week were the strongest predictors of Income. All were positively correlated with >\$50k Income (i.e. as capital.gain/age/hours.worked increased so did likelihood of earning greater than \$50k

Appendix

Credits

Special thanks to all the people who made and released these awesome resources for free:

- O Presentation template by <u>SlidesCarnival</u> designed by Jimena Catalina <u>https://www.slidescarnival.com/aliena-free-presentation-template/4597#preview</u>
- Photographs by <u>Unsplash</u>
- This data was extracted from the 1994 Census bureau database by Ronny Kohavi and Barry Becker (Data Mining and Visualization, Silicon Graphics
- Ron Kohavi, "Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996. (PDF)
- Kaggle inspiration: https://www.kaggle.com/uciml/adult-census-income
- George Box image: https://en.wikipedia.org/wiki/File:GeorgeEPBox_(cropped).jpg

SlidesCarnival icons are editable shapes.

This means that you can:

- Resize them without losing quality.
- Change fill color and opacity.
- Change line color, width and style.

Isn't that nice?:)

Examples:

Find more icons at slidescarnival.com/extra-free-resources-icons-and-maps

Thank you!

Any questions?

You can find us at:

<u>owinters58@gmail.com</u>

<u>conoranderson2@gmail.com</u>

Diagrams and infographics

You can also use any emoji as an icon!

And of course it resizes without losing quality.

How? Follow Google instructions https://twitter.com/qoogledocs/status/730087240156643328

