FEEL: Featured Event Embedding Learning

I-Ta Lee, Dan Goldwasser **Purdue University**

Introduction

- Statistical Script Learning (SSL) is one efficient way to acquire world knowledge, conduct common sense reasoning, and disambiguate texts.
 - The learned models are helpful in many Natural Language Processing (NLP) tasks that need common sense inference, such as question answering, machine reading, coreference resolution and so on.

What is "Scripts"?

- Scripts, introduced by Schank and Abelson (1977), are structured knowledge representations capturing the relationships between event sequences and their participants.
 - Scenarios repeat themselves.

How to use SSL models?

Jenny went to a restaurant and ordered a lasagna plate. Jenny liked the food and felt satisfied.

Which of the following events could happen *next*?

- (a) She scolded the server.
- (b) She fell asleep
- (c) She left a big tip.
- (d) She ran out of battery
- (e) She was angry

Narrative Cloze Test (Chamber and Jurafsky 08')
Multiple-Choice (Granroth-Wilding et al., 2016)

Previous Works

Previous works focus on capturing patterns between events at lexicon level.

FEEL: Featured Event Embedding Learning

- We propose FEEL, an SSL model, which is designed to capture fine-grained event features that can be exploited to reduce ambiguity when inferring future events.
 - We believe considering an event as an predicate and a set of interested features is a more flexible setting, as it allows plug-in features.

Example Features

- Sentiment Polarity of a given event can impact the probability distribution of future events
 - Given "Jenny liked the food" Positive Sentiment
 - "She left a big tip" is more probable than "She scolded the server" to happen Positive Negative
- Animacy of the event arguments
 - "This song is sick!"
 - "This person is sick!"

Hierarchical Script Model

 Event sequences are hierarchical in nature if we consider their features

Model Objectives

$$p(C(e)|e) = \prod_{e' \in C(e)} p(e'|e) = \prod_{e' \in C(e)} \frac{\exp(v_{e'} \cdot v_e)}{\sum_{e' \in E} \exp(v_{e*} \cdot v_e)}$$

Skip-Gram (T. Mikolov et al., 2013)

Multi-Task Learning

- We have
 - the inter-event objective:
 - event-event (C)
 - the intra-event objectives:
 - event-subj (S), event-object (O), event-prep (P), event-sentiment (S), event-animacy (A)
- Optimize them using Margin-based Ranking Loss

$$L_i(e) = \sum_{e' \in c(e)} \sum_{e^* \notin c(e)} \max(0, \delta - v_e \cdot v_{e'} + v_e \cdot v_{e^*})$$

$$i \in \{C, S, O, P, T, A\}$$

$$\mathcal{L}(e) = \lambda_r ||w|| + \sum_{i \in \{C, S, O, P, T, A\}} \lambda_I L_i$$

Basic Evaluation: Multi-Choice Narrative Cloze (MCNC)

(Granroth-Wilding et al., 2016)

Jenny went to a restaurant and ordered a lasagna plate. Jenny liked the food and felt satisfied.

Which of the following events could happen *next*?

- (a) She scolded the server.
- (b) She fell asleep
- (c) She left a big tip.
- (d) She ran out of battery
- (e) She was angry.

More interesting evaluation tasks (1)

- Multi-Choice Narrative Sequences (MCNS)
 - Evaluate Models' ability to do longer inference

More interesting evaluation tasks (2)

- Multi-Choice Narrative Explanation (MCNE)
 - Evaluate Models' ability to explain what happens in between
 - Story Explanation

Jenny went to a restaurant and left a big tip.

Which of the following event chains *explain* what happened?

- (a) She ordered her food and liked it.
- (b) She hate her food and left angry.
- (c) She walked to a bus station and got on a bus.

Results: Multi-Choice Narrative Cloze

	Accuracy
Granroth-Wilding et al., 2016	0.4957
Wang et al., 2017	0.5512
Pred	0.4232
Pred+Args	0.5135
Pred+Args+S	0.5166
Pred+Args+A	0.5503
Pred+Args+S+A	0.5418

Results:

MCNS and MCNE

Accuracy	MCNS-Viterbi	MCNE-Viterbi
GloVe	0.353	0.385
GloVe+Pred	0.359	0.389
GloVe+Pred+Args	0.332	0.37
GloVe+Pred+Args+S	0.416	0.448
GloVe+Pred+Args+A	0.399	0.429
GloVe+Pred+Args+S+A	0.365	0.403

GloVe (J. Pennington et al., 2014)

Results: Shared Tasks

- Semantic Relatedness (SICK)
 - SemEval 2014 Shared Task
 - Regression Task with Neural Networks
 - Pearson Scores

Pearson	Pred+Args+A	Pred+Args+S+A	
GloVe	0.7102		
FEEL	0.6714	0.6714	
GloVe+FEEL	0.7676	0.7604	

- Implicit Discourse Sense (IDSC)
 - CONLL 2016 Shared Task
 - Multi-class Classification with Neural Networks
 - Micro-Average F1

Micro Average F1	Test	Blind Test
GloVe	0.2982	0.2815
GloVe+PredDep	0.2921	0.2886
GloVe+PredDep+Args	0.2983	0.2862
GloVe+PredDep+Args+S	0.2996	0.3102
GloVe+PredDep+Args+A	0.3063	0.3111
GloVe+PredDep+Args+S+A	0.3174	0.3111

Conclusions

- We proposed FEEL: Featured Event Embedding Learning
 - Hierarchical multi-task representation learning
 - Feature-enriched event embeddings
- We also proposed two novel tasks for evaluating structured event sequence.
 - Story Generation and Story Explanation
- We showed that
 - FEEL is competitive with the most recent state-of-the-art in the narrative cloze test.
 - The resulting embedding can be used as a strong representation for advanced semantic tasks.

Thanks for Listening. Any Questions?

Appendix

Cool Observations

- Animacy is more useful when making single prediction
- Sentiment is more useful when making multiple predictions
 - Sentimental Trajectory

Evaluation: Multi-Choice Narrative Cloze

	Accuracy
Granroth-Wilding et al., 2016	0.4957
Wang et al., 2017	0.5512
Pred	0.4232
Pred+Args	0.5135
Pred+Args+S	0.5166
Pred+Args+A	0.5503
Pred+Args+S+A	0.5418

Results: MCNS and MCNE

	MCNS-Viterbi	Baseline	Skyline	MCNE-Viterbi
GloVe	0.353	0.297	0.356	0.385
GloVe+PredDep	0.359	0.302	0.362	0.389
GloVe+PredDep+Args	0.332	0.366	0.434	0.37
GloVe+PredDep+Args+S	0.416	0.385	0.460	0.448
GloVe+PredDep+Args+A	0.399	0.396	0.465	0.429
GloVe+PredDep+Args+S+A	0.365	0.383	0.452	0.403

? ? ?

Evaluation: Shared Tasks

- Semantic Relatedness (SICK) SemEval 2014 Shared Task
 - Regression Task with Neural Networks
 - Pearson Scores

Pearson	PredDep	PredDep+Args	PredDep+Args+S	PredDep+Args+A	PredDep+Args+S+A
GloVe	0.7102				
FEEL	0.4452	0.6574	0.6791	0.6714	0.6714
GloVe+FEEL	0.7382	0.7572	0.7518	0.7676	0.7604

Evaluation: Shared Tasks

- Implicit Discourse Sense (IDSC)- CONLL 2016 Shared Task
 - Multi-class Classification with Neural Networks
 - Micro-Average F1

Micro Average F1	Test	Blind Test
GloVe	0.2982	0.2815
GloVe+PredDep	0.2921	0.2886
GloVe+PredDep+Args	0.2983	0.2862
GloVe+PredDep+Args+S	0.2996	0.3102
GloVe+PredDep+Args+A	0.3063	0.3111
GloVe+PredDep+Args+S+A	0.3174	0.3111

