2011年全国统一高考化学试卷(新课标)

一、选择题

1. 下列叙述正确的是()

A. 1.00molNaCl 中含有 6.02×10²³ 个 NaCl 分子

В	. 1.00molNaCl 무	Þ,所有 Na⁺的最	外层电子总数为8>	$\times 6.02 \times 10^{23}$		
C.	. 欲配置 1.00L,	1.00mol. L ^型 1的	NaCl 溶液,可将 58	8.5gNaCl 溶于 1.00L 水中		
D	. 电解 58.5g 熔	融的 NaCl,能产生	生 22.4L 氯气(标准	E状况)、23.0g 金属钠		
2. 分	}子式为 C₅H ₁₁ Cl	的同分异构体共	有(不考虑立体异构	构) ()		
Α	. 6种	B. 7种	C. 8种	D. 9种		
3. 7	下列反应中,属-	于取代反应的是	()			
$ \text{2CH}_3\text{CH}_2\text{OH} \xrightarrow{\text{ACH}_2 \text{SO}_4} \text{CH}_2 = \text{CH}_2 + \text{H}_2\text{O} $						
$ \text{③CH}_3\text{COOH+CH}_3\text{CH}_2\text{OH} $						
$4C_6$	H ₆ +HNO ₃ Δ (C ₆ H ₅ NO ₂ +H ₂ O.				
Α	. 12	B. 34	c. ①③	D. 24		
4. 丬	将浓度为 0.1mo	I●Lº¹HF 溶液加水	不断稀释,下列行	各量始终保持增大的是		
(()					
Α	. c (H ⁺)	B. K _a (HF)	$C. \frac{c(F^-)}{c(H^+)}$	D. $\frac{c(H^+)}{c(HF)}$		
5. 钐	失镍蓄电池又称	爱迪生电池,放电	目时的总反应为: Fe	e+Ni ₂ O ₃ +3H ₂ O=Fe(OH)		
₂+2Ni(OH)₂下列有关该电池的说法不正确的是()						
A. 电池的电解液为碱性溶液,正极为 Ni ₂ O ₃ 、负极为 Fe						
В	B. 电池放电时,负极反应为 Fe+2OH⑩2e『=Fe(OH) ₂					
C.	C. 电池充电过程中,阴极附近溶液的碱性减弱					
D	D. 电池充电时,阳极反应为 2Ni(OH) ₂ +2OH⑩2e『=Ni ₂ O ₃ +3H ₂ O					
6. 肖		反应的离子方程式	弋 为()			
A	. 硫化亚铁溶于	稀硝酸中: FeS+2	2H ⁺ =Fe ²⁺ +H ₂ S↑			
В	. NH₄HCO₃溶于	过量的 NaOH 溶剂	夜中:HCO₃ [□] +OH [□] =C	CO ₃ ²¹² +H ₂ O		
第1 页 (共 7 页)						

- C. 少量 SO₂ 通入苯酚钠溶液中: C₆H₅O[®]+SO₂+H₂O=C₆H₅OH+HSO₃®
- D. 大理石溶于醋酸中: CaCO₃+2CH₃COOH=Ca²⁺+2CH₃COO[®]+CO₂个+H₂O
- 7. 短周期元素 W、X、Y和 Z 的原子序数依次增大. 元素 W 是制备一种高效电池的重要材料, X 原子的最外层电子数是内层电子数的 2 倍, 元素 Y 是地壳中含量最丰富的金属元素, Z 原子的最外层电子数是其电子层数的 2 倍. 下列说法错误的是()
 - A. 元素 W、X 的氯化物中,各原子均满足 8 电子的稳定结构
 - B. 元素 X 与氢形成的原子比为 1: 1 的化合物有很多种
 - C. 元素 Y 的单质与氢氧化钠溶液或盐酸反应均有氢气生成
 - D. 元素 Z 可与元素 X 形成共价化合物 XZ,

二、解答题(共3小题,满分29分)

8. (14 分)0.80gCuSO₄•5H₂O 样品受热脱水过程的热重曲线(样品质量随温度变化的曲线)如图所示.

请回答下列问题:

- (1) 试确定 200℃时固体物质的化学式 (要求写出推断过程):
- (2)取 270℃所得样品,于 570℃灼烧得到的主要产物是黑色粉末和一种氧化性气体,该反应的化学方程式为_____. 把该黑色粉末溶解于稀硫酸中,经浓缩、冷却,有晶体析出,该晶体的化学式为_____, 其存在的最高温度是 :
- (3)上述氧化性气体与水反应生成一种化合物,该化合物的浓溶液与 Cu 在加热时发生反应的化学方程式为_____;
- (4) 在 0.10mol•L^{□1} 硫酸铜溶液中加入氢氧化钠稀溶液充分搅拌,有浅蓝色氢 第2页(共7页)

10. (**15** 分)氢化钙固体登山运动员常用的能源提供剂.某兴趣小组长拟选用如下装置制备氢化钙.

请回答下列问题:

- (1)请选择必要的装置,按气流方向连接顺序为_____(填仪器接口的字母编号)
- (2)根据完整的实验装置进行实验,实验步骤如下:检查装置气密性后,装入药品;打开分液漏斗活塞_____(请按正确的顺序填入下列步骤的标号).
- A. 加热反应一段时间

B. 收集气体并检验其纯度

C. 关闭分液漏斗活塞

- D. 停止加热, 充分冷却
- (3)实验结束后,某同学取少量产物,小心加入水中,观察到有气泡冒出,溶液中加入酚酞后显红色,该同学据此断,上述实验确有 CaH₂ 生成.
- ①写出 CaH2与水反应的化学方程式 ;
- ②该同学的判断不正确,原因是 .
- (4)请你设计一个实验,用化学方法区分钙与氢化钙,写出实验简要步骤及观察到的现象_____(5)登山运动员常用氢化钙作为能源提供剂,与氢气相比,其优点是_____.

三、选修部分

11. 【化学圆选修 2: 化学与技术】

- 普通纸张的主要成分是纤维素,在早期的纸张生产中,常采用纸张表面涂敷明 砚的工艺,以填补其表面的微孔,防止墨迹扩散,请回答下列问题:
 - (1)人们发现纸张会发生酸性腐蚀而变脆、破损,严重威胁纸质文物的保存.经分析检验,发现酸性腐蚀主要与造纸中涂敷明矾的工艺有关,其中的化学原理是______;为了防止纸张的酸性腐蚀,可在纸浆中加入碳酸钙等添加剂,该工艺原理的化学(离子)方程式为_____.
 - (2) 为了保护这些纸质文物,有人建议采取下列措施:
- ①喷洒碱性溶液,如稀氢氧化钠溶液或氨水等.这样操作产生的主要问题是_____;
- ②喷洒 Zn(C₂H₅)₂. Zn(C₂H₅)₂可以与水反应生成氧化锌和乙烷. 用化学(离子)方程式表示该方法生成氧化锌及防止酸性腐蚀的原理____、____.
 - (3) 现代造纸工艺常用钛白粉(TiO_2)替代明矾. 钛白粉的一种工业制法是以钛铁矿(主要成分为 $FeTiO_3$)为原料按下列过程进行的,请完成下列化学方程式:
- ① FeTiO₃+ C+ Cl_2 900° $TiCl_4$ + FeCl₃+ CO
- ②_____TiCl₄+____O₂ $\frac{1000-1400^{\circ}C}{}$ _____TiO₂+____Cl₂.
- **12.** 氮化硼 (BN) 是一种重要的功能陶瓷材料。以天然硼砂为起始物,经过一系列反应可以得到 BF_3 和 BN,如下图所示

请回答下列问题:

- (1) 由 B₂O₃ 制备 BF₃、BN 的化学方程式依次是 、 ;

(3)在BF ₃ 分子中,F@B@F的键角是,B原子的杂化轨道类型						
为,BF ₃ 和过量 NaF 作用可生成 NaBF ₄ ,BF ₄ [®] 的立体结构为;						
(4) 在与石墨结构相似的六方氮化硼晶体中,层内 B 原子与 N 原子之间的化						
学键为,层间作用力为;						
(5) 六方氮化硼在高温高压下,可以转化为立方氮化硼,其结构与金刚石相						
似,硬度与金刚石相当,晶胞边长为 361.5pm,立方氮化硼晶胞中含有						
个氮原子、个硼原子,立方氮化硼的密度是g•pm [™] (只要求						
列算式,不必计算出数值,阿伏伽德罗常数为 N_A)。						
13. 香豆素是一种天然香料,存在于黑香豆、兰花等植物中.工业上常用水杨						
醛 与 乙 酸 酐 在 催 化 剂 存 在 下 加 热 反 应 制 得:						
CHO OH + LO M MENTAL M						
以下是由甲苯为原料生产香豆素的一种合成路线(部分反应条件及副产物已略						
去						
CH ₃ Cl ₂ A NaOH/H ₂ O B Cl ₃ C ₂ H ₃ O 光照 C ₂ H ₆ OCl ₂ D 乙酸酐 香豆素						
已知以下信息:						
已知以下信息:						
已知以下信息: ①A 中有五种不同化学环境的氢						
已知以下信息: ①A 中有五种不同化学环境的氢 ②B 可与 FeCl ₃ 溶液发生显色反应						
已知以下信息: ①A 中有五种不同化学环境的氢 ②B 可与 FeCl ₃ 溶液发生显色反应 ③同一个碳原子上连有两个羟基通常不稳定,易脱水形成羰基.						
已知以下信息: ①A 中有五种不同化学环境的氢 ②B 可与 FeCl ₃ 溶液发生显色反应 ③同一个碳原子上连有两个羟基通常不稳定,易脱水形成羰基. 请回答下列问题:						
已知以下信息: ①A中有五种不同化学环境的氢 ②B可与 FeCl ₃ 溶液发生显色反应 ③同一个碳原子上连有两个羟基通常不稳定,易脱水形成羰基. 请回答下列问题: (1)香豆素的分子式为;						
已知以下信息: ①A中有五种不同化学环境的氢 ②B可与 FeCl ₃ 溶液发生显色反应 ③同一个碳原子上连有两个羟基通常不稳定,易脱水形成羰基. 请回答下列问题: (1)香豆素的分子式为; (2)由甲苯生成 A 的反应类型为; A 的化学名称为						
已知以下信息: ①A中有五种不同化学环境的氢 ②B可与 FeCl ₃ 溶液发生显色反应 ③同一个碳原子上连有两个羟基通常不稳定,易脱水形成羰基. 请回答下列问题: (1)香豆素的分子式为; (2)由甲苯生成 A 的反应类型为; A 的化学名称为; (3)由 B 生成 C 的化学反应方程式为;						
已知以下信息: ①A中有五种不同化学环境的氢 ②B可与 FeCl ₃ 溶液发生显色反应 ③同一个碳原子上连有两个羟基通常不稳定,易脱水形成羰基. 请回答下列问题: (1)香豆素的分子式为; (2)由甲苯生成 A 的反应类型为; A 的化学名称为; (3)由 B 生成 C 的化学反应方程式为;						

②能够与饱和碳酸氢钠溶液反应放出	CO 的是	(写结构简式)
乙肥ゆ一饱和恢散圣物冷拟又巡风击	CO ₂ 的定	(与箔构间式)