Finite Automata

Automata

Finite Automata

Example: Vending Machines (small computing power)

Finite Automata

The simplest form of automata.

Transition Graph

Initial Configuration

Input String

a b b a

Reading the Input

Input finished

Output: "accept"

Rejection

| a b a |

Input finished

Another Rejection

 λ

Output:

"reject"

Another Example

Input finished

Rejection

Input finished

Output: "reject"

Formalities

Deterministic Finite Accepter (DFA)

$$M = (Q, \Sigma, \delta, q_0, F)$$

Q: set of states

 Σ : input alphabet

 δ : transition function

 q_0 : initial state

F : set of final states

Input Alphabet Σ

$$\Sigma = \{a,b\}$$

Set of States Q

$$Q = \{q_0, q_1, q_2, q_3, q_4, q_5\}$$

Initial State q_0

Set of Final States F

$$F = \{q_4\}$$

Transition Function δ

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, a) = q_1$$

$$\delta(q_0,b)=q_5$$

$$\delta(q_2,b)=q_3$$

Transition Function δ

δ	а	b	
<i>q</i> ₀	q_1	q ₅	
q_1	9 5	92	
92	q_5	<i>q</i> ₃	
<i>q</i> ₃	94	<i>q</i> ₅	a,b
<i>q</i> ₄	<i>q</i> ₅	<i>q</i> ₅	
<i>q</i> ₅	<i>q</i> ₅	<i>q</i> ₅	q_5
			b a a b a,b
			q_0 a q_1 b q_2 b q_3 a (q_4)

Extended Transition Function δ^*

$$\delta^*: Q \times \Sigma^* \to Q$$

$$\delta * (q_0, ab) = q_2$$

$$\delta * (q_0, abba) = q_4$$

$$\delta * (q_0, abbbaa) = q_5$$

Observation: There is a walk from q to q' with label w

$$\delta * (q, w) = q'$$

$$w = \sigma_1 \sigma_2 \cdots \sigma_k$$

$$q \xrightarrow{\sigma_1} \xrightarrow{\sigma_2} \xrightarrow{\sigma_2} q'$$

Example: There is a walk from q_0 to q_5 with label abbbaa

$$\delta * (q_0, abbbaa) = q_5$$

Languages Accepted by DFAs Take DFA $\,M\,$

Definition:

The language L(M) contains all input strings accepted by M

$$L(M)$$
 = { strings that drive M to a final state}

Example

$$L(M) = \{abba\}$$

Another Example

$$L(M) = \{\lambda, ab, abba\}$$

Formally

For a DFA
$$M = (Q, \Sigma, \delta, q_0, F)$$

Language accepted by M:

$$L(M) = \{ w \in \Sigma^* : \delta^*(q_0, w) \in F \}$$

$$q_0$$
 w $q' \in F$

Observation

Language rejected by M:

$$\overline{L(M)} = \{ w \in \Sigma^* : \mathcal{S}^*(q_0, w) \notin F \}$$

More Examples

$$L(M) = \{a^n b : n \ge 0\}$$

L(M)= { all strings with prefix ab }

L(M) = { all strings without substring 001 }

Regular Languages

A language L is regular if there is a DFA M such that L = L(M)

All regular languages form a language family

Examples of regular languages:

$$\{abba\}$$
 $\{\lambda, ab, abba\}$ $\{a^nb: n \ge 0\}$

```
{ all strings with prefix ab }
{ all strings without substring 001 }
```

There exist automata that accept these Languages (see previous slides).

Another Example

The language $L = \{awa : w \in \{a,b\}^*\}$ is regular:

There exist languages which are not Regular:

Example:
$$L=\{a^nb^n:n\geq 0\}$$

There is no DFA that accepts such a language

(we will prove this later in the class)