ТЕОРИЯ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

Курс читает: Годовников Евгений Александрович

План курса

- 1.Комплексные числа (напоминание).
- 2.Общие сведения о системах управления.
- 3. Математические модели.
- 4. Типовые динамические звенья.
- 5. Структурные схемы.
- 6. Анализ систем автоматического управления

Комплексные числа

- $z = x + i \cdot y$ алгебраическая форма записи комплексного числа, где $i = \sqrt{-1}, \, x$ действительная часть комплексного числа, у-мнимая часть комплексного числа.
- $\mathbf{Z} = |z| \cdot e^{i \cdot \varphi}$ показательная форма записи комплексного числа, где $|z| = \sqrt{x^2 + y^2}$ модуль комплексного числа, $\varphi = arctg\left(\frac{y}{x}\right)$ аргумент комплексного числа.
- $Z = |z| \cdot (\cos(\varphi) + i \cdot \sin(\varphi))$ тригонометрическая форма записи комплексного числа, где $x = |z| \cdot \cos(\varphi)$, $y = |z| \cdot \sin(\varphi)$

- 1.Принцип управления (как нужно управлять).
- 2. Математические модели.
 - 3. Устойчивость работы.
 - 4. Качество управления.
 - 5. Синтез систем

Общие сведения о системах управления

Системы управления

• Например: круиз-контроль

Разомкнутая система (Open-loop Control)

Двигатель

Недостатки

- Чувствительна к изменению параметров
- Чувствительна к возмущениям

правления

• Нуждается в периодической настройке

Достоинства

- Проста в разработке
- не дорогая
- не влияет на устойчивость
- быстрая отработка задания

Авто

7

Замкнутая система (Closed-loop Control)

• Возможна медленная отработка задания

Система управления (из чего состоит?)

Система управления (регулятор)

Классификация систем управления (СУ по отклонению)

Классификация систем управления (СУ по возмущению)

Классификация систем управления (СУ с комбинированным управлением)

Классификация систем управления (адаптивная СУ)

Классификация систем управления (Уровень автоматизации)

Классификация систем управления (Задачи систем управления)

Классификация систем управления (По количеству входов и выходов)

Классификация систем управления (Характер сигналов системы)

Классификация систем управления (Характер сигналов системы)

Математические модели

Линейность и нелинейность

Цель любого управления – изменить состояние объекта нужным образом.

Модель – это объект, который используется для изучения другого объекта (оригинала).

Свойства:

$$U[\alpha \cdot x] = \alpha \cdot U[x]$$

$$U[x_1 + x_2] = U[x_1] + U[x_2]$$

Способы описания динамических свойств:

- -Дифференциальные уравнения;
- -Передаточные функции W(p);
- -Временные функции;
- -Частотные характеристики.

Дифференциальные уравнения

$$a_2 y^{(2)}(t) + a_1 y^{(1)}(t) + a_0 y(t) = b_2 x^{(2)}(t) + b_1 x^{(1)}(t) + a_0 x(t)$$

Здесь:

y(t) — временная функция выходного сигнала; x(t) — временная функция входного сигнала; $y^{(j)}(t)$ — j-я производная функции y(t); $x^{(j)}(t)$ — j-я производная функции x(t); a_m , b_m — постоянные коэффициенты уравнения при соответствующих переменных.

Преобразования Лапласа

Прямое преобразование Лапласа

$$X(s) = \int_{0}^{\infty} x(t)e^{-st}dt \qquad Y(s) = \int_{0}^{\infty} y(t)e^{-st}dt$$

Обратное преобразование Лапласа

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} F(j\omega) e^{j\omega t} d\omega$$

Паровая машина Уатта

Уравнения движения

- Примем:
 - ω скорость вращения маховика,
 - u перемещение муфты регулятора,
- Уравнение движения регулятора:

$$\ddot{\Delta u} = -A \cdot \Delta u - B \cdot \dot{\Delta u} + C \cdot \Delta \omega,$$

где $A\cdot\Delta u$ — сила тяжести, $B\cdot\dot{\Delta u}$ — сила вязкого трения, $C\cdot\Delta\omega$ — центробежная сила.

• Уравнение движения маховика:

$$\dot{\Delta\omega} = -M \cdot \Delta u,$$

где M – постоянная, включающая инерцию маховика и расход пара.

Уравнения движения

- ullet Уравнение: $\ddot{\Delta u} + B \cdot \ddot{\Delta u} + A \cdot \dot{\Delta u} + CM \cdot \Delta u = 0$
- Решение: $\Delta u(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t} + C_3 e^{\lambda_3 t}$
- Характеристическое уравнение: $\lambda^3 + B\lambda^2 + A\lambda + CM = 0$
- Сделаем замены $\tilde{\lambda}=\frac{\lambda}{\sqrt[3]{CM}},\,x=\frac{B}{\sqrt[3]{CM}},\,y=\frac{A}{(CM)^{2/3}}$
- Получаем уравнение:

$$P(\tilde{\lambda}) = \tilde{\lambda}^3 + x \cdot \tilde{\lambda}^2 + y \cdot \tilde{\lambda} + 1 = 0$$

Передаточная функция

Передаточная функция W(p) есть отношение выходного сигнала к входному сигналу, представленное в операторной форме: $W(p) = \frac{выход}{2} = \frac{y(p)}{2}$

 $W(p) = \frac{b i x o \partial}{b x o \partial} = \frac{y(p)}{x(p)}$

Заменим d/dt на оператор Лапласа – p и получим:

$$W(p) = \frac{8b1x00}{8x00} = \frac{y(p)}{x(p)} = \frac{b_2 p^2 + b_1 p^1 + b_0}{a_2 p^2 + a_1 p^1 + a_0}$$
$$= \frac{(b_0 / a_0) \cdot (b_2 / b_0 p^2 + b_1 / b_0 p^1 + 1)}{a_2 / a_0 p^2 + a_1 / a_0 p^1 + 1}$$

Переходная характеристика

$$1(t) = \begin{cases} 0, \ t < 0 \\ 1, \ t \ge 0 \end{cases}$$

Единичный ступеньчатый сигнал

$$W(p) = \frac{y(p)}{x(p)} \Rightarrow L\{h(t)\} = H(p) = W(p) \cdot \frac{1}{p}$$

Импульсная характеристика (весовая функция) _____

$$\mathcal{S}(t) = egin{cases} \infty, \ t = 0 \\ 0, \ t
eq 0 \end{cases}, \int\limits_{-\infty}^{\infty} \mathcal{S}(t) dt = 1.$$
 Единичный импульсный сигнал

$$W(p) = \frac{y(p)}{x(p)} \Rightarrow L\{g(t)\} = G(p) = W(p) \cdot 1$$

Разложение дроби на сумму элементарных дробей

Имеем рациональную дробь R(x) вида:

$$R(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_0 x^n + a_1 x^{n-1} + \dots + a_{n-1} x + a_n}{b_0 x^m + b_1 x^{m-1} + \dots + b_{m-1} x + a_m},$$

где степени т>п.

Дробь такого вида можно представить, притом единственным образом, в виде суммы элементарных дробей:

$$R(x) = \frac{P_n(x)}{Q_m(x)} = \sum_{i=1}^n \sum_{j=1}^{k_n} \frac{A_{ij}}{(x - x_i)^j} + \sum_{l=1}^m \sum_{t=1}^{s_m} \frac{B_{lt} + C_{lt}x}{(x^2 + p_l x + q_l)^t}.$$

где А, В, С — некоторые действительные коэффициенты, обычно вычисляемые с помощью метода неопределённых коэффициентов.

Определение

Динамическое звено W – это оператор $W:\mathbb{D}'\to\mathbb{D}'$ со следующими свойствами:

- линейность,
- причинность,
- стационарность (не всегда).

Линейность

$$W\{\alpha \cdot u(t) + \beta \cdot v(t)\} = \alpha \cdot W\{u(t)\} + \beta \cdot W\{v(t)\}$$

Причинность

- Из u(t) = 0 при t < T следует x(t) = 0 при t < T
- Т.е. звено W не является оракулом, при формировании текущего выхода x(t) оно не угадывает будущие значения входящего сигнала u(t).

Стационарность

- Из $x(t)=W\big\{u(t)\big\}$ следует $x(t-T)=W\big\{u(t-T)\big\}$ для всех T .
- Т.е. при сдвиге входного сигнала по времени на T, выходной сигнал так же сдвигается на время T.

Частотные характеристики

Частотные характеристики САУ характеризуют реакцию систем на синусоидальное входное воздействие в установившемся режиме.

$$x(t) = \sin(\omega \cdot t) \implies y(t) = A(\omega) \cdot \sin(\omega \cdot t + \varphi(\omega))$$

Частотные характеристики

Зная передаточную функцию W(p), можно получить амплитудно-фазовую частотную характеристику, путем замены оператора Лапласа – p, на мнимое число – jw.

$$W(p) \Rightarrow$$
 замена $\langle p = j\omega \rangle \Rightarrow W(j\omega)$

- АФЧХ

$$W(j\omega) = |W(j\omega)| \cdot e^{j \cdot \arg(W(j\omega))} = N(\omega) + j \cdot M(\omega)$$

- АЧХ

$$|W(j\omega)| = A(\omega) = \sqrt{N(\omega)^2 + M(\omega)^2},$$

$$-\Phi \Psi X$$

$$arg(W(j\omega)) = \varphi(\omega) = arctg\left(\frac{M(\omega)}{N(\omega)}\right),$$

где -
$$N(\omega) = \text{Re}(W(j\omega)); M(\omega) = \text{Im}(W(j\omega))$$

Частотные характеристики

Логарифмические частотные характеристики

AАЧХ $A(\omega) \Rightarrow L(\omega) = 20 \cdot \lg(A(\omega)) \ (Дб)$ - ось ординат $\omega \Rightarrow \lg(\omega)$ (Декада) - ось абсцисс

$$\phi(\omega)\Rightarrow ($$
не меняется $)$ $\phi(\omega)$ - ось ординат $\omega\Rightarrow \lg(\omega)$ (Декада) - ось абсцисс

Свойства:

1)
$$W_1(\omega) \cdot W_2(\omega) \Rightarrow \begin{cases} L(\omega) = 20 \cdot \lg(A_1(\omega)) + 20 \cdot \lg(A_2(\omega)) \\ \varphi(\omega) = \varphi_1(\omega) + \varphi_2(\omega) \end{cases}$$

2) Асимптотические ЛАЧХ

Асимптотические ЛАЧХ

- 1.Определить все сопрягающие частоты $\omega_{\mathbf{x}}$ т.е. корни полиномов числителя и знаменателя, взятые с обратным знаком.
- 2. Преобразуется частотная передаточная функция к виду

$$W(j\omega) = K \cdot \frac{\prod_{m} \left(j \frac{\omega}{\omega_{m}} + 1 \right)}{\prod_{n} \left(j \frac{\omega}{\omega_{n}} + 1 \right)}$$

 $W(j\omega) = K \cdot \frac{\prod_{m} \left(j \frac{\omega}{\omega_{m}} + 1 \right)}{\prod_{m} \left(j \frac{\omega}{\omega_{m}} + 1 \right)}$ 3.Выполняется построение асимптотических характеристик отдельных элементов передаточной функции. Т.е. $\left(j \frac{\omega}{\omega_{\kappa}} + 1 \right)$ для компонент

4. Суммируем асимптоты. Причем асимптоты числителя со знаком «+», а асимптоты знаменателя со знаком «-».

Особенности построения асимптот

Для сомножителя $\left(j\frac{\omega}{\omega_{\kappa}}+1\right)$ в знаменателе (числителе) $W(j\omega)$

асимптота имеет вид:

В числителе

В знаменателе

Особенности построения асимптот

Для сомножителя $j\omega$ в знаменателе (числителе) $W(j\omega)$ асимптота имеет вид:

В числителе

В знаменателе

Пример

$$W(s) = \frac{5s + 50}{s^2 + 25s + 100}$$

- 1.Определим сопрягающие частоты
- корни числителя $s_I = -10$
- корни знаменателя $s_2 = -5$ $s_3 = -20$

$$W(j\omega) = \frac{5(j\omega+10)}{(j\omega+5)(j\omega+20)}$$
 тогда сопрягающие частоты: $\omega_1 = !0, \quad \omega_2 = 5, \quad \omega_3 = 20$

Пример

$$W(j\omega) = \frac{50}{100} \frac{(j\frac{\omega}{10} + 1)}{(j\frac{\omega}{5} + 1)(j\frac{\omega}{20} + 1)} = 0.5 \frac{(j\frac{\omega}{10} + 1)}{(j\frac{\omega}{5} + 1)(j\frac{\omega}{20} + 1)}$$

Типовые динамические звенья

Усилитель

$$W(p) = k$$
 - Передаточная функция

$$h(t) = k$$
 - Переходная характеристика

$$g(t) = k \cdot \delta(t)$$
 - Импульсная характеристика

$$A(\omega) = k$$
 - AYX

$$\varphi(\omega) = 0$$
 - ФЧХ, ЛФЧХ

$$L(\omega) = 20 \cdot \lg(k)$$
 - ЛАЧХ

Апериодическое звено

$$W(p) = rac{k}{Tp+1}$$
 - Передаточная функция $h(t) = k igg(1-e^{-rac{t}{T}}igg)$ - Переходная характеристика $g(t) = rac{k}{T} \cdot e^{-rac{t}{T}}$ - Импульсная характеристика $W(j\omega) = rac{k}{\sqrt{1+(\omega \cdot T)^2}} \cdot e^{-j \cdot arctg(\omega T)}$ - АФЧХ

$$L(\omega) = 20 \cdot \lg(k) - 20 \cdot \lg(\sqrt{1 + (\omega T)^2})$$
 - дачх

Апериодическое звено

Переходная характеристика

Импульсная характеристика

ЛАЧХ

ЛФЧХ

Колебательное звено

$$W(p) = \frac{k}{T^2 p^2 + 2T \xi p + 1}$$
 - Передаточная функция

$$W(j\omega) = \frac{k}{\sqrt{\left[1 + (\omega \cdot T)^2\right]^2 + 4(\xi \cdot T \cdot \omega)^2}} \cdot e^{-j \cdot arctg\left(\frac{2\xi\omega T}{1 - (\omega T)^2}\right)} - A\Phi \Psi X$$

$$L(\omega) = 20 \cdot \lg(k) - 20 \cdot \lg(\sqrt{\left[1 - (\omega \cdot T)^2\right]^2 + 4\left(\xi \cdot T \cdot \omega\right)^2}) \quad \text{- ДАЧХ}$$

Колебательное звено

Переходная характеристика

Импульсная характеристика

Интегрирующее звено

$$W(p) = \frac{k}{p}$$
 - Передаточная функция

$$h(t) = k \cdot t$$
 - Переходная характеристика

$$g(t) = k \ (npu \ t \ge 0)$$
 - Импульсная характеристика

$$W(j\omega) = k \cdot \omega \cdot e^{-j \cdot 90^{\circ}}$$
 - АФЧХ

$$L(\omega) = 20 \cdot \lg(k) - 20 \cdot \lg(\omega)$$
 - AAYX

Интегрирующее звено

Переходная характеристика

Импульсная характеристика

Идеально дифференцирующее звено

$$W(p) = k \cdot p$$
 - Передаточная функция

Физически не реализуемое, так как звено реагирует не на изменение самой входной величины, а на изменение ее производной, то есть на тенденцию развития событий.

$$h(t) = \delta(t) \cdot k$$
 - Переходная характеристика

$$g(t) = \frac{d\delta(t)}{dt}k$$
 - Импульсная характеристика

$$W(j\omega) = k \cdot \omega \cdot e^{-j \cdot 90^{\circ}}$$
 - АФЧХ

$$L(\omega) = 20 \cdot \lg(k) + 20 \cdot \lg(\omega)$$
 - AAYX

Идеально дифференцирующее звено

Форсирующее звено

$$W(p) = k \cdot (T \cdot p + 1)$$
 - Передаточная функция

Физически не реализуемое

$$h(t) = k \cdot (T \cdot \delta(t) + 1(t))$$
 - Переходная характеристика

$$W(j\omega) = k\sqrt{1 + (\omega \cdot T)^2} \cdot e^{j \cdot arctg(\omega T)}$$
 - АФЧХ

$$L(\omega) = 20 \cdot \lg(k) + 20 \cdot \lg(\sqrt{1 + (\omega T)^2})$$
 - дачх

Форсирующее звено

Структурные схемы

Разветвление сигнала:

Параллельное и последовательное соединение звеньев:

Для контура с отрицательной обратной связью:

Если обратная связь положительная то в знаменателе будет стоять знак «минус».

Прямой перенос сигнала через ПФ:

Обратный перенос сигнала через ПФ:

Прямой перенос суммирующего звена:

Обратный перенос суммирующего звена:

Прямой перенос суммирующего звена:

Передаточные функции систем

Передаточная функция по управлению

$$W_{y}(p) = \frac{W_{1}(p) \cdot W_{2}(p) \cdot W_{3}(p)}{1 + W_{1}(p) \cdot W_{2}(p) \cdot W_{3}(p) \cdot W_{4}(p)}$$

Передаточная функция по возмущающему воздействию:

$$W_F(p) = -\frac{W_3(p)}{1 + W_1(p) \cdot W_2(p) \cdot W_3(p) \cdot W_4(p)}$$

Передаточная функция по рассогласованию:

$$W_{E}(p) = \frac{1}{1 + W_{1}(p) \cdot W_{2}(p) \cdot W_{3}(p) \cdot W_{4}(p)}$$
$$x(p) = W_{v}(p) \cdot G(p) + W_{F}(p) \cdot F(p)$$

$$E(p) = G(p) - x_4(p),$$

$$x_1(p) = E(p) \cdot W_1(p),$$

$$x_2(p) = x_1(p) \cdot W_2(p),$$

$$x_3(p) = x_2(p) - F(p),$$

$$x(p) = x_3(p) \cdot W_3(p),$$

$$x_4(p) = x(p) \cdot W_4(p).$$

Анализ САУ

Анализ САУ

Устойчивость

Устойчивость автоматической системы

свойство системы возвращаться в исходное состояние равновесия после прекращения воздействия, выведшего систему из этого состояния. Неустойчивая система не возвращается в исходное состояние, а непрерывно удаляется от него.

Общее условие устойчивости — для устойчивости линейной автоматической системы управления необходимо и достаточно, чтобы вещественные части всех корней характеристического уравнения системы были отрицательными.

Общие сведения об устойчивости САУ

Критерии устойчивости (критерий Гурвица)

Характеристическое уравнение замкнутой САУ:

$$\Delta(s) = a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n$$

Все корни полинома $\Delta(s)$ имеют отрицательные вещественные части тогда и только тогда, когда все n главных миноров матрицы H_n (определителей Гурвица) положительны.

Пример для полинома пятого порядка (n=5):

$$H_5 = \begin{bmatrix} a_1 & a_3 & a_5 & 0 & 0 \\ a_0 & a_2 & a_4 & 0 & 0 \\ 0 & a_1 & a_3 & a_5 & 0 \\ 0 & a_0 & a_2 & a_4 & 0 \\ 0 & 0 & a_1 & a_3 & a_5 \end{bmatrix} \quad (a_0 > 0)$$

$$D_{1} = a_{1} > 0 , \quad D_{2} = \begin{vmatrix} a_{1} & a_{3} \\ a_{0} & a_{2} \end{vmatrix} > 0 , \quad D_{3} = \begin{vmatrix} a_{1} & a_{3} & a_{5} \\ a_{0} & a_{2} & a_{4} \\ 0 & a_{1} & a_{3} \end{vmatrix} > 0 , \quad D_{4} = \begin{vmatrix} a_{1} & a_{3} & a_{5} & 0 \\ a_{0} & a_{2} & a_{4} & 0 \\ 0 & a_{1} & a_{3} & a_{5} \\ 0 & a_{0} & a_{2} & a_{4} \end{vmatrix} > 0 .$$

Критерии устойчивости (критерий Найквиста)

В случае если разомкнутая система устойчива, то замкнутая устойчива тогда и только тогда, когда годограф **разомкнутой** системы $L(j\omega)$ не охватывает точку (-1; 0j).

Критерий Михайлова

Автоматическая система управления, описываемая уравнением n-го порядка, устойчива, если при изменении ω от 0 до ∞ характеристический вектор системы $F(j\omega)$ повернется против часовой стрелки на угол $n^*\pi/2$, не обращаясь при этом в нуль.

Это означает, что характеристическая кривая устойчивой системы должна при изменении ω от 0 до ∞ пройти последовательно через n квадрантов.

Критерий Михайлова

Логарифмические частотные характеристики

Показатели качества

- 1) прямые определяемые непосредственно по кривой переходного процесса,
- 2) корневые определяемые по корням характеристического полинома,
- 3) частотные по частотным характеристикам,
- 4) интегральные получаемые путем интегрирования функций.

Оценки качества переходной характеристики

Формула Хевисайда

$$h(t) = \frac{K(0)}{D(0)} + \sum_{k=1}^{n} \frac{K(s_k)}{s_k D'(s_k)} e^{S_K t}$$

Перерегулирование

$$\delta = \frac{X \max - Xycm}{X \max} \cdot 100\%$$

Оценки качества переходной характеристики

Переходная характеристика

Оценки качества переходной характеристики

Степень затухания
$$\Psi = 1 - \frac{A_{_{3}}}{A_{_{1}}}$$
 Статическая ошибка $\epsilon_{_{CT}} = x - x_{_{ycT}}$

Время регулирования (время переходного процесса) T_{Π} определяется следующим образом: Находится допустимое отклонение $\Delta = 5\%$ х_{уст} и строятся асимптоты $\pm \Delta$ Время ТП соответствует последней точке пересечения х(t) с данной границей. То есть время, когда колебания регулируемой величины перестают превышать 5 % от установившегося значения.