MSRI Soergel bimodule workshop

June/July 2017

Week 1 Day 1 Morning: Supplementary/Advanced Exercises

Coxeter groups

- 1. To practice with Coxeter groups, we play with some embeddings and foldings.
 - a) Let $\{s, t, u\}$ be the simple reflections inside the Coxeter group of type A_3 . Show that the subgroup generated by (su) and t is a Coxeter group of type $B_2 = I_2(4)$, with simple reflections $\{su, t\}$, by checking the braid relation. This implies that B_2 embeds inside A_3 as the invariants under a certain automorphism σ , induced by a diagram automorphism.
 - b) Let $\{s, t, u, v\}$ be the simple reflections inside the Coxeter group of type A_4 . Show that the subgroup generated by (su) and (tv) is a Coxeter group of type $H_2 = I_2(5)$, with simple reflections $\{su, tv\}$. However, this subgroup is not the invariants of any diagram automorphism.
 - c) Embed the Coxeter group of type $I_2(m)$ inside the Coxeter group of type A_{m-1} for $m \geq 3$, using products of distinct simple reflections.
- 2. More embedding exercises.
 - a) Embed H_3 inside D_6 . Embed H_4 inside E_8 . Generalize this.
 - b) Look at star-shaped Coxeter groups: A_2 , A_3 , D_4 , D_4 , and so forth. Consider the subgroup generated by the hub and by the product of the spokes. What subgroups do you get?
- 3. Now we do the previous exercises "in reverse." Let (W, S) be a Coxeter group, and fix $s \in S$. Consider the set Γ_s of elements of W which have a unique reduced expression, and which have s in their right descent set. Γ_s has the structure of a labeled graph, where each element $w \in \Gamma_s$ is labeled by the (unique!) element $t \in S$ in its left descent set, and where w, v are connected by an edge if and only if w = uv for some $u \in S$.
 - a) Let $\{s,t\}$ be the simple reflections in type B_2 . Compute that Γ_s is A_3 , with the labelings corresponding to the embedding of B_2 inside A_3 from Q1.
 - b) Do the same for $I_2(m)$ and A_{m-1} .
 - c) Let (W, S) be the Coxeter group of type H_4 . For $s \in S$, compute the labeled graph Γ_s .
 - d) Repeat the exercise for $I_2(\infty)$. What labeled graph do you obtain?

(If you know about such things, Γ_s is the W-graph of the left cell containing s. See Lusztig "Some examples of square integrable functions on a p-adic group".)

- **4.** Here is a non-Coxeter presentation of S_4 , which Ben is quite interested in. This is a very optional exercise. The generators are s = (12), t = (13), u = (14).
 - a) Which braid relations do these satisfy? If there were only braid relations, what Coxeter group would it be?
 - b) What additional relations are satisfied?
 - c) Count the number of elements of each length with respect to this presentation.

- 5. The even signed symmetric group ESS_n was defined as the subgroup of the signed symmetric group SS_n where the number of sign changes was a multiple of 2. Let $m \in \mathbb{Z}$, m > 2. Prove that (unless n is small) the subset of SS_n where the number of sign changes is a multiple of m is not a subgroup.
- **6.** Coxeter systems (W, S) are equipped with a standard length function ℓ , but can also be equipped with non-standard length functions, sometimes called *weights*. A weight L is a map $W \to \mathbb{Z}$ satisfying L(uv) = L(u) + L(v) whenever $\ell(uv) = \ell(u) + \ell(v)$. Deduce the following elementary facts.
 - a) A weight function L is determined by the weights L(s) of the simple reflections. Moreover, L(s) = L(t) whenever m_{st} is odd.
 - b) Suppose one has an embedding of Coxeter groups $\iota: (W, S) \hookrightarrow (W', S')$ as in Q1, where each simple reflection $s \in S$ is sent to a product Πt of commuting simple reflections $t \in S'$. This equips (W, S) with a weight L, given by $L(s) = \ell(\iota(s))$. For each possible value of m_{st} , what are the possible values of the ratio of L(s) to L(t)? It will help to remind oneself of the classification of finite Coxeter groups.
- 7. Continuing Q3 from basic: The dual Coxeter complex is a CW complex obtained by dualizing the Coxeter complex. In other words, there is a 0-cell for each simplex, a 1-cell connecting 0-cells if the simplices meet in a (codimension 1) face, a 2-cell glued along 1-cells if the faces all meet in a codimension 2 face, etc. Show that the dual Coxeter complex can be constructed directly as follows:
 - There is a 0-cell for each $w \in W$. Said another way, there is a 0-cell for each coset of the trivial subgroup.
 - There is a 1-cell for each pair $\{w, ws\}$ with s a simple reflection. Said another way, there is a 1-cell for each coset of each rank 1 parabolic subgroup.
 - There is a 2-cell for each coset of each finite rank 2 parabolic subgroup.
 - . . .
 - There is a k-cell for each coset of each finite rank k parabolic subgroup.
 - However, if the rank of W is n, then the process ends at k = n 1.

Also, draw the dual Coxeter complex for the same list of Coxeter groups.

Remark. In fact, one can also construct the *completed dual Coxeter complex* by also including the step k = n. This makes no difference when W is infinite, but glues in a single n-cell when W is finite. The resulting complex is contractible. This is shown in Ronan, "Lectures on buildings."

Generalizing the reflection representation

- 8. We will now use the term "Cartan matrix" to refer to any matrix indexed by S, satisfying $a_{s,s} = 2$ and $a_{s,t} = 0 \iff a_{t,s} = 0$, with coefficients in a base ring k (not necessarily integers). A Cartan matrix need not be symmetric, or even symmetrizable (i.e. conjugate by a diagonal matrix to a symmetric matrix).
 - a) Given a Cartan matrix, one can still construct a vector space \mathfrak{h}^* with involutions $s \in S$ acting upon it. Show that (st) has order m if and only if $a_{s,t}a_{t,s}$ is algebraically equivalent to $[2]^2$ for q a primitive 2m-th root of unity.

- b) Show that any Cartan matrix admitting a representation of a Weyl group, and satisfying $a_{s,t} = 0 \iff a_{t,s} = 0$, is symmetrizable.
- c) Show that the following matrix admits a representation of the affine Weyl group \tilde{A}_4 , for any $q \in \mathbb{C}^*$. When is it symmetrizable? When is it conjugate, by a diagonal matrix, to a representation defined over \mathbb{R} ?

$$A = \begin{pmatrix} 2 & -1 & 0 & 0 & -q^{-1} \\ -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 2 & -q \\ -q & 0 & 0 & -q^{-1} & 2 \end{pmatrix}.$$