Covariances Between ISM and Timing Parameters in Millisecond Pulsars

Timothy Dolch Willie Kunert Ryan Shannon Dan Stinebring Joris Verbiest

Refractive effects in the ISM

From Shannon 2011 (PhD Dissertation)

- Time delay due to angle-ofarrival θ is ∝ θ²
- Frequency dependence: $\theta \propto v^{-2}$
- $\Delta t_{AOA} \propto v^{-4}$
- Here we assume Kolmogorov power spectrum for (isotropic) spatial fluctuations in refractive screen
- Focus here on refractive effects time delays due to diffraction as well
- Result varying DM as well as refractive component

Model for timing residuals

- N_{davs} = 128 (about every 2 weeks over 5 yr)
- Linear least squares no iterations

$$\Delta_t(\nu) = A + Bt_i + Ct_i^2 + \frac{DM(t_i)}{\nu^2}$$

- DM at each time is a separate parameter for the model – 131 parameters total
- Time cadence is varied to be more and more "Poisson" -like

Residuals after DM term removed: 1GHz

Residuals after DM term removed: 2GHz

Single iteration residuals after DM term removed: 1 GHz

Single iteration residuals after DM term removed: 2 GHz

Covariance Matrix of Model Parameters

Scatter in B Parameter

Scatter in C Parameter

Scatter in Refractive Time Delay

Scatter in Refractive Time Delay

Towards modeling the ISM beyond DM

- Beyond Kolmogorov fluctuation spectrum
- Introduction of anisotropies
- as timing residuals approach 10ns, explicit modeling of refractive and diffractive effects should be employed in addition to DM variations