Convolutional Neural Networks for Visual Recognition (Spring 2019)

Lecture 1 | Introduction to CNN for Visual Recognition

Lecture 2 | Image Classification

• k-Nearest Neighbor

on images never used

- L1 (Manhattan) distance: \$d_1(I_1,I_2)=\sum_p{|I_1^p-I_2^p|}\$
- L2 (Euclidean) distance: \$d_1(I_1,I_2)=\sqrt{\sum_p{(I_1^p-I_2^p)^2}}\$
- Setting Hyperparameters
 - 1. Split data into train, validation, and test (only used once)
 - 2. Cross-Validation: Split data into folds
- Linear Classification
 - \circ \$s=f(x,W) = Wx + b\$

Lecture 3 | Loss Functions and Optimization

- Multiclass SVM
 - $\cdot $L_i=\sum_{j\in \mathbb{Z}}\max(0,f(x_i;W)_{j-f(x_i;W)}\{y_i\}+1)$
 - o Loss Function: $\$ L=\frac{1}{N}\sum_{i=1}^NL_i=\frac{1}{N}\sum_{j\in\mathbb{N}}\sum_{j\in\mathbb{N}}\int_{\mathbb{N}}\sum_{j\in\mathbb{N}}\int_{\mathbb{N}
- Regularization
 - $^{$L(W)=\frac{1}{N}\sum_{i=1}^{NL_i(f(x_i,W),y_i)+\lambda_{R(W)}}$}$
 - L2 regularization: \$R(W)=\sum_k\sum_IW_{k,I}^2\$
 - L1 regularization: \$R(W)=\sum_k\sum_l|W_{k,l}|\$
 - Elastic net (L1 + L2): \$R(W)=\sum_k\sum_l\beta{W_{k,l}^2}+|W_{k,l}|\$
 - o Dropout, Batch normalization, Stochastic depth, fractional pooling, etc
- Softmax Classifier (Multinomial Logistic Regression)
 - $\circ \quad Softmax \ Function: \\ $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_{j\in S_i}} $$
 - \$L_i=-log(\frac{e^{s_k}}{\sum_j{e^{s_j}}})\$
 - $^{\circ} Loss Function: $$L=\frac{1}{N}\sum_{i=1}^NL_i=-\frac{1}{N}\log(\frac{e^{s_i}})$
- Stochastic Gradient Descent (SGD) is:
 - On-line Gradient Descent
 - Minibatch Gradient Descent (MGD)
 - Batch gradient descent (BGD)
- Image Features

- Gradient
 - o Numerical gradient: slow , approximate , easy to write
- Computational graphs
 - Patterns in Gradient Flow

- How to compute gradients?
 - Computational graphs + Backpropagation
 - backprop with scalars
 - vector-valued functions

Lecture 5 | Convolutional Neural Networks

- Fully Connected Layer
- Convolution Layer
 - Accepts a volumne of size \$W H D\$
 - Hyperpararmeters
 - \$K:\ number\ of\ filters\$
 - \$F:\ spatial\ extent\ of\ filter\$
 - \$S:\ stride\$
 - \$P:\ zero\ padding\$
 - o Produces a volume of size
 - \$W=(W-F+2P)/S+1\$
 - \$H=(H-F+2P)/S+1\$
 - \$D=K\$
 - The number of parameters: \$(F·F·D)·K+K\$
 - Pooling:
 - \$W=(W-F)/S+1\$
 - \$H=(H-F)/S+1\$
 - \$D=D\$

Lecture 6 | Training Neural Networks I

- 1. Sample a batch of data
- 2. Forward prop it through the graph (network), get loss
- 3. **Backprop** to calculate the gradients
- 4. Update the parameters using the gradient

Activation Functions (Use ReLU)

Activation functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x,x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

ELU

- Sigmoid problems
 - 1. Saturated neurons "kill" the gradients
 - 2. Sigmoid outputs are not zero-centered
 - 3. exp() is a bit compute expensive
- tanh problems
 - 1. still kills gradients when saturated
- ReLU problems
 - 1. Not zero-centered output
- Leaky ReLU
 - 1. Does not saturate-
 - 2. Computationally efficient-
 - 3. Converges much faster than sigmoid/tanh in practice! (e.g. 6x)-
 - 4. will not "die"
- Parametric Rectifier (PReLU)
- Exponential Linear Units (ELU)
 - All benefits of ReLU-Closer to zero mean outputs
 - Negative saturation regime compared with Leaky ReLU adds some robustness to noise
- Maxout "Neuron"

Use ReLU. Be careful with your learning rates Try out Leaky ReLU / Maxout / ELU Try out tanh but don't expect much Don't use sigmoid

Data Preprocessing (Images: subtract mean)

- **zero-centered** (image only this)
- normalized data
- PCA
- Whitening

Weight Initialization (Use Xavier/He init/MSRA)

- tanh + "Xavier" Initialization: std = 1/sqrt(Din)
- ReLU + He et al. Initialization: std = sqrt(Din / 2)
- ReLU + Kaiming / MSRA Initialization: std = sqrt(2 / Din)

Batch Normalization (Use)

Batch Normalization

[loffe and Szegedy, 2015]

Input: $x: N \times D$

it:
$$x: N \times D$$

$$\mu_j = \frac{1}{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \mu_j = \frac{1}{N} \sum$$

 $\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,j} \quad \mbox{ Per-channel mean,} \\ \mbox{ shape is D}$

Learnable scale and shift parameters:

$$\gamma, \beta: D$$

$$\gamma, eta:D$$

$$\gamma, \rho$$
 . D

Learning
$$\gamma = \sigma$$
, $\beta = \mu$ will recover the identity function!

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^N (x_{i,j} - \mu_j)^2 \quad \text{Per-channel var,} \\ \hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}} \quad \text{Normalized x,} \\ \text{Shape is N x D}$$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$
 Output, Shape is N x D

Babysitting the Learning Process

- 1. Double checkout the loss is reasonable
- 2. learning rate: 1e-5 ~ 1e-3

Hyperparameter Optimization

- 1. Only run a few epochs first
- 2. If the cost is ever > 3 * original cost, breat out
- 3. Random Search Hyperparameter > Grid Search Hyperparameter

Lecture 7 | Training Neural Networks II

Fancier optimization

- Adam is a good default choice in many cases; it often works ok even with constant learning rate
- SGD + Momentum can outperform Adam but may require more tuning of LR and schedule
 - Try cosine schedule, very few hyperparameters!
- If you can afford to do full batch updates then try out **L-BFGS** (and don't forget to disable all sources of noise)
- Problems with SGD (梯度方向?)
 - 1. Loss function has high condition number

2021/11/12 README.md

- ratio of largest to smallest singular value of the Hessian matrix is large
- 2. Local minima / Saddle points
- 3. Our gradients come from minibatches so they can be noisy

```
SGD: x_{t+1}=x_t-\alpha {t+1}=x_t-\beta 
\alpha{(\rho_{v_t}+\tau)} \ SGD + Nesterov Momentum: $x_{t+1}=x_t+\rho_{v_t}-\alpha{(\rho_{v_t}+\tau)} \ SGD + \alpha{(\rho_{v_t}+\tau)} \ SGD + \alpha{(\rho_{v
\alpha {\tau_t = x_t + rho\{v_t\}}
```

• AdaGrad => RMSProp (Leaky AdaGrad) (梯度大小)

AdaGrad

```
grad_squared = 0
                 while True:
                   dx = compute\_gradient(x)
                  grad_squared += dx * dx
                   x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
                 grad_squared = 0
                while True:
RMSProp
                  dx = compute\_gradient(x)
                  grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
                  x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

Adam (almost)

Adam (full form)

```
first_moment = 0
second_moment = 0
for t in range(1, num_iterations):
                                                                         Momentum
 dx = compute\_gradient(x)
 first_moment = beta1 * first_moment + (1 - beta1) * dx
 second moment = beta2 * second moment + (1 - beta2)
  first_unbias = first_moment / (1 - beta1 ** t)
                                                                         Bias correction
  second_unbias = second_moment / (1 - beta2 ** t)
 x -= learning_rate * first_unbias / (np.sqrt(second_unbias)
                                                                       AdaGrad / RMSProp
```

Learning Rate Decay (common with momentum & less common with Adam)

Cosine:
$$\alpha_t = \frac{1}{2}\alpha_0 \left(1 + \cos(t\pi/T)\right)$$

Linear: $\alpha_t = \alpha_0(1 - t/T)$

Inverse sqrt: $\alpha_t = \alpha_0/\sqrt{t}$

- Second-Order Optimization (without learning rate)
 - First-Order Optimization
 - 1. Use gradient form linear approximation
 - 2. Step to minimize the approximation

- 1. Use gradient and Hessian to form quadratic approximation
- 2. Step to the minima of the approximation second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

Hessian has O(N²) elements Inverting takes O(N³) N = (Tens or Hundreds of) Millions

• Model Ensembles: Tips and Tricks

Regularization

- Add term to loss
- Dropout: In each forward pass, randomly set some neurons to zero
 - Probability of dropping is a hyperparameter; 0.5 is common
- Batch Normalization
- Data Augmentation
 - Horizontal Flips
 - Random crops and scales
 - Color Jitter
 - Simple: Randomize contrast and brightness
 - Complex: Apply PCA to all [R, G, B]
 - Random mix/combinations of:
 - translation, rotation, stretching, shearing, lens distortions
- DropConnect (set weights to 0)
- Fractional Max Pooling
- Stochastic Depth
- Cutout
- Mixup

Tansfer learning

	very similar dataset	very different dataset
very little data	Use Linear Classifier on top layer	You're in trouble Try linear classifier from different stages
quite a lot of	Finetune a few layers	Finetune a larger number of layers

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there
- 2. Transfer learn to your dataset

Deep learning frameworks provide a "Model Zoo" of pretrained models so you don't need to train your own Caffe: https://github.com/BVLC/caffe/wiki/Model-Zoo TensorFlow: https://github.com/tensorflow/models PyTorch: https://github.com/pytorch/vision

Choosing Hyperparameters

- 1. Check initial loss
- 2. Overfit a small sample
- 3. Find LR that makes loss go down
- 4. Coarse grid, train for ~1-5 epochs
- 5. Refine grid, train longer
- 6. Look at loss curves