INVESTIGACION

NOMBRE: Jhoselin Sofia Marca Mamani

MATERIA: Analisis Numerico

SIGLA: SIS-254

Comenzamos este informe, con un ejercicio de un libro, en el cual nos daban datos de la altura en pies (ft) y la temperatura en grados Fahrenheit (°F) .

21. The boiling temperature of water T_B at various altitudes h is given in the following table. Determine a linear equation in the form $T_B = mh + b$ that best fits the data. Use the equation for calculating the boiling temperature at 5,000 m. Make a plot of the points and the equation.

h (ft)	-1,000	0	3,000	8,000	15,000	22,000	28,000
T(°F)	213.9	212	206.2	196.2	184.4	172.6	163.1

Con ayuda de estos datos, hicimos el informe, pero para lograr este informe necesitábamos saber la altura que tiene La Paz y El Alto y pregunte a la IA lo siguiente y este fue el resultado.

¿A que temperatura hierve el agua en La Paz (Bolivia, 3640 m. sobre el nivel del mar)? ¿y en El Alto (4150 m)?

La Paz, Bolivia, se encuentra a aproximadamente 3,650 metros sobre el nivel del mar, lo que la convierte en una de las capitales más altas del mundo. El Alto, que está justo al lado de La Paz, está a una altitud aún mayor, aproximadamente a 4,150 metros sobre el nivel del mar.

La temperatura de ebullición del agua disminuye a medida que aumenta la altitud debido a la menor presión atmosférica.

En La Paz (aproximadamente a 3,650 metros sobre el nivel del mar), el agua hierve a aproximadamente 88 °C (190 °F).

En El Alto (aproximadamente a 4,150 metros sobre el nivel del mar), el agua hierve a alrededor de **87 °C** (188 °F).

Esto significa que el agua hierve a temperaturas más bajas en estas altitudes en comparación con el nivel del mar, donde hierve a **100 °C** (212 °F).

Asi que tenemos los siguientes datos:

Ciudad	m	pies(ft)	°C	°F
La Paz	3640	11942.26	88	190
El Alto	4150	13615.49	87	188

hicimos el ejercicio en exel, con el método de interpolación de Newton en Exel y el lagrange en línea.

METODO DE NEWTON EN EXEL DE LA PAZ

LA PAZ

	h(ft)	t(ºF)	dfi 1er nivel	dif 2do nivel	dif 3er. Nivel	dif 4to.nivel	dif 5to nivel
					2.8571E-	-1.9651E-	9.6754E-
0	0	212	-0.0019	-1.5E-08	12	16	21
					-1.4662E-	7.4398E-	
1	3000	206.3	-0.00202	2.78571E-08	12	17	
			-	-2.94283E-	3.9377E-		
2	8000	196.2	0.00168571	22	13		
			-				
3	15000	184.4	0.00168571	7.87546E-09			
			-				
4	22000	172.6	0.00158333				
5	28000	163.1					
	11942.26	190					

P3(x) = f(x0) + F[x0,x1] (x-x0) + F[x0,x1,x2] (x-x0)(x-x1) + F[x0,x1,x2,x3] (x-x0)(x-x1)(x-x2)

p3(x)= 189.288936

error

E= **0.00496591**

METODO DE NEWTON EN EXEL DE EL ALTO

EL ALTO

	h(ft)	t(ºF)	dfi 1er nivel	dif 2do nivel	dif 3er. Nivel	dif 4to.nivel	dif 5to nivel
					2.8571E-	-1.9651E-	9.6754E-
0	0	212	-0.0019	-1.5E-08	12	16	21
					-1.4662E-	7.4398E-	
1	3000	206.3	-0.00202	2.78571E-08	12	17	
			-	-2.94283E-	3.9377E-		•
2	8000	196.2	0.00168571	22	13		
			-				
3	15000	184.4	0.00168571	7.87546E-09			
			-		•		
4	22000	172.6	0.00158333				
5	28000	163.1		•			
	13615.49	188					

 $P3(x) = \qquad \qquad f(x0) + F[x0,x1] \; (\; x-x0) \; + F[x0,x1,x2] \; (x-x0)(x-x1) + \; F[x0,x1,x2,x3] \; \; (x-x0)(x-x1)(x-x2)$

error

E= **0.00311446**

METODO DE LAGRANGE LA PAZ

Polinomio de Lagrange

Puntos Int	erpo	lad	los
------------	------	-----	-----

х	190	11942.26
у	211.68	189.29

METODO DE LAGRANGE EL ALTO

DATOS OBTENIDOS

ciudad Valor real		V. calculado(Newton)	Error	V. Obtenido(Lagrange)	
La Paz	190	189.288936	0.004965915	189,29	
El Alto	188	186.593487	0.003114456	186,59	

CONCLUSION

Por los datos obtenidos, podemos concluir que ambos métodos son muy buenos, pero Lagrange tiene ventaja, ya que es más preciso que el de Newton, el error de Newton es más que el error de Lagrange, sin embargo, para que Newton sea más preciso, deberíamos tomar varios datos.