Chapter 1

Introduction to Algorithms.

1.1 Peaks-Finding.

Example 1.1.1 (Leading Example.). Consider an n-length array A such that $A_1, A_2, ..., A_n \in \mathbb{R}$. We will say that A_j is a peak (local minimum) if he's greater than his neighbors. Namely, $A_i \geq A_{i\pm 1}$ if $i\pm 1 \in [n]$. Whenever $i\pm 1$ is not in the range [n], we will define the inequality $A_i \geq A_{i\pm 1}$ to hold trivially. For example, for n=1, $A_1=A_n$ is always a peak. Write an algorithm that, given A, returns the position of an arbitrary peak.

Example 1.1.2. Warming up. How many peaks do the following arrays contain?

1.
$$A[i] = 1 \ \forall i \in [n]$$

2.
$$A[i] = \begin{cases} i & i < n/2 \\ n/2 - i & \text{else} \end{cases}$$

3.
$$A[i] = i \ \forall i \in [n]$$

1.2 Naive solution.

To better understand the problem, let's first examine a simple solution before proposing a more intriguing one. Consider the algorithm examining each of the items A_i one by one.

```
Result: returns a peak of A_1...A_n \in \mathbb{R}^n
1 for i \in [n] do
2 | if A_i is a peak then
3 | return i
4 | end
5 end
```

Algorithm 1: naive peak-find alg.

Correctness. We will say that an algorithm is correct, with respect to a given task, if it computes the task for any input. Let's prove that the above algorithm is doing the job.

Proof. Assume towards contradiction that there exists an n-length array A such that the algorithm peak-find fails to find one of its peaks, in particular, the Alg. either returns $j' \in [n]$ such that $A_{j'}$ is not a peak or does not return at all (never reach line (3)).

- 1. Let's handle first the case in which returning indeed occurred. Denote by j the first position of a peak in A, and note that if the algorithm gets to line (2) in the jth iteration then either it returns j or A_j is not a peak. Hence it must hold that j' < j. But satisfaction of the condition on line (2) can happen only if $A_{j'}$ is a peak, which contradicts the minimality of j.
- 2. In the case that no position has been returned, it follows that the algorithm didn't return in any of the first j iterations and gets to iteration number j+1, which means that the condition on line (2) was not satisfied in contradiction to the fact that A_j is a peak.

Running Time. Question, How would you compare the performance of two different algorithms? What will be the running time of the naive peak-find algorithm? On the lecture you will see a well-defined way to treat such questions, but for the sake of getting the general picture, let's assume that we pay for any comparison a quanta of processing time, and in overall, checking if an item in a given position is a peak, cost at most $c \in \mathbb{N}$ time, a constant independent on n.

Question, In the worst case scenario, how many local checks does peak-finding do? For the third example in Example 1.1.2, the naive algorithm will have to check each item, so the running time adds up to at most $c \cdot n$.

1.3 Naive alg. recursive version.

Now, we will show a recursive version of the navie peak-find algorithm for demonstrating how correctness can be proved by induction.

```
Result: returns a peak of A_1...A_n \in \mathbb{R}^n

1 if A_1 \geq A[2] or n=1 then

2 | return 1

3 end

4 return 1 + peak-find(A_2,..A_n)

Algorithm 2: naive recursive peak-find alg.
```

Claim 1.3.1. Let $A = A_1, \ldots, A_n$ be an array, and $A' = A_2, A_3, \ldots, A_n$ be the n-1 length array obtained by taking all of A's items except the first. If $A_1 \leq A_2$, then any peak of A' is also a peak of A.

Proof. Let A'_i be a peak of A'. Split into cases upon on the value of j.

1. If n-1>j>1, then $A_j'\geq A_{j\pm 1}'$, but for any $j\in [2,n-2]$ we have $A_j'=A_{j+1}$ and therefore $A_{j+1}\geq A_{j+1\pm 1}\Rightarrow A_{j+1}$ is a peak in A.

- 2. If j'=1, then $A_1'>A_2'\Rightarrow A_2\geq A_3$ and by combining the assumption that $A_1\leq A_2$ we have that $A_2\geq A_1,A_3$. So $A_2=A_1'$ is also a peak.
- 3. The last case j = n 1 is left as an exercise.

One can prove a much more general claim by following almost the same argument presented above.

Claim 1.3.2. Let $A = A_1, \ldots, A_n$ be an array, and $A' = A_{j+1}, A_{j+2}, \ldots, A_n$ be the n - j length array. If $A_j \leq A_{j+1}$, then any peak of A' is also a peak of A.

We are ready to prove the correctness of the recursive version by induction using Claim 1.3.1.

- 1. Base, single element array. Trivial.
- 2. Assumption, Assume that for any m-length array, such that m < n the alg returns a peak.
- 3. Step, consider an array A of length n. If A_1 is a peak, then the algorithm answers affirmatively on the first check, returning 1 and we are done. If not, namely $A_1 < A_2$, then by using Claim 1.3.1 we have that any peak of $A' = A_2, A_3, \ldots, A_n$ is also a peak of A. The length of A' is n-1 < n. Thus, by the induction assumption, the algorithm succeeds in returning on A' a peak which is also a peak of A.

1.4 An attempt for sophisticated solution.

We saw that we can find an arbitrary peak at $c \cdot n$ time, which raises the question, can we do better? Do we really have to touch all the elements to find a local maxima? Next, we will see two attempts to catch a peak at logarithmic cost. The first attempt fails to achieve correctness, but analyzing exactly why will guide us on how to come up with both an efficient and correct algorithm.

```
Result: returns a peak of A_1...A_n \in \mathbb{R}^n

1 i \leftarrow \lceil n/2 \rceil

2 if A_i is a peak then

3 | return i

4 end

5 else

6 | return i - 1 + \text{find-peak}(A_i, A_{i+1}..A_n)

7 end
```

Algorithm 3: fail attempt for more sophisticated alg.

Let's try to 'prove' it.

1. Base, single element array. Trivial.

- 2. Assumption, Assume that for any m-length array, such that m < n the alg returns a peak.
- 3. Step. If $A_{n/2}$ is a peak, we're done. What happens if it isn't? Is it still true that any peak of $A_i, A_{i+1}, \ldots, A_n$ is also a peak of A? Consider, for example, A[i] = n - i.

Sophisticated solution. 1.5

The example above points to the fact that we would like to have a similar claim to Claim 1.3.2 that relates the peaks of the split array to the original one. Let's prove

```
Result: returns a peak of A_1...A_n \in \mathbb{R}^n
i \leftarrow \lceil n/2 \rceil
2 if A_i is a peak then
3 return i
4 end
5 else if A_{i-1} \leq A_i then
     return i+ find-peak(A_{i+1}..A_n)
7 end
      return find-peak(A_1, A_2, A_3..A_{i-1})
10 end
```

Algorithm 4: sophisticated alg.

correction.

Proof. By induction.

- 1. Base, single element array. Trivial.
- 2. Assumption, Assume that for any m-length array, such that m < n the alg returns a peak.
- 3. Step, Consider an array A of length n. If $A_{\lceil n/2 \rceil}$ is a peak, then the algorithm answers affirmatively on the first check, returning $\lceil n/2 \rceil$ and we are done. If not, then either $A_{\lceil n/2 \rceil} < A_{\lceil n/2 \rceil - 1}$ or $A_{\lceil n/2 \rceil} < A_{\lceil n/2 \rceil + 1}$. We have already handled the first case, that is, using Claim 1.3.2 we have that any peak of $A' = A_{\lceil n/2 \rceil + 1}, A_{\lceil n/2 \rceil + 2}, \dots, A_n$ is also a peak of A. The length of A' is n/2 < n. So by the induction assumption, in the case where $A_{\lceil n/2 \rceil} < n$ $A_{\lceil n/2 \rceil - 1}$ the algorithm returns a peak. In the other case, we have $A_{\lceil n/2 \rceil} < 1$ $A_{\lceil n/2 \rceil+1}$ (otherwise $A_{\lceil n/2 \rceil}$ would be a peak). We leave finishing the proof as an exercise.

What's the running time? Denote by T(n) an upper bound on the running time. We claim that $T(n) \leq c_1 \log(n) - c_2$.

Proof. By induction.

- 1. Base. For the base case, $n \leq 3$ we get that $c_1 \log(1) + c_2 = c_2$ on the other hand only a single check made by the algorithm, so indeed the base case holds (Choosing $c_2 \geq$ the cost of a single check).
- 2. Induction Assumption. Assume that for any m < n, the algorithm runs in at most $c_1 \log(m) + c_2$ time.
- 3. Step. Notice that in the worst case, $\lceil n/2 \rceil$ is not a peak, and the algorithm calls itself recursively immediately after paying c_2 in the first check. Hence:

$$T(n) \le c_2 + T(n/2) \le c_2 + c_1 \log(\lceil n/2 \rceil) + c_2$$

= $c_1 - c_1 + c_2 + c_1 \log(\lceil n/2 \rceil) + c_2$
= $c_1 \log(2) + c \log(\lceil n/2 \rceil) + 2c_2 - c_1$
= $c_1 \log(2(\lceil n/2 \rceil)) + 2c_2 - c_1$

So, choosing $c_1 > c_2$ gives $2c_2 - c_1 < c_2$ and therefore:

$$T(n) \le c_1 \log(n) + c_2$$