Objective: The objective of this assignment is to perform binary classification on the hepatitis dataset using a Decision Tree classifier. Students will be required to read the dataset from a GitHub repository, build a Decision Tree model, and evaluate its performance using various metrics

```
import pandas as pd
import matplotlib.pyplot as plt
from sklearn import tree
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
import numpy as np
import plotly.express as px
```

1.Data Loading

"h he df	l= ttps:// patitis = pd.r .head()	csv ead_d	ii .		tent.c	om/rash	nakil-	ds/Publ	lic-Datas	sets/m	ain/	
0 1 2 3 4	Class 0 0 0 0	AGE 30 50 78 31 34	SEX 2 1 1 1	STEROII 1.0 2.0 Nal 2.0	9 9 9 N	IVIRALS 2 2 2 1 2		TIGUE N 2 1 1 2 2	MALAISE 2 2 2 2 2 2	ANORE	XIA 2 2 2 2 2 2 2	\
VA 0	LIVER RICES	BIG \ 1.0	LIVER	FIRM 9	SPLEEN		BLE S 2.0 2.0	2.0 2.0	2.0 2.0	9	2.0	
2		2.0		2.0		2	2.0	2.0	2.0	9	2.0	
4	DTI TDI	2.0		2.0			2.0	2.0	2.(2.0	
0 1 2 3 4	BILIRU	1.0 0.9 0.7 0.7	ALN PI	HOSPHATI 85.0 135.0 96.0 46.0 Nal	9 18 9 42 9 32 9 52	.0 .0 .0	3.5 4.0 4.0 4.0 4.0	Na Na 80 .	aN aN aN	0L0GY 1 1 1 1		

<pre>df.describe().T</pre>						
	count	mean	std	min	25%	50%
75% \	154.0	0 207702	0 407051	0 0	0 00	0 0
Class 0.00	154.0	0.207792	0.407051	0.0	0.00	0.0
AGE	154.0	41.246753	12.593344	7.0	32.00	39.0
50.00				,	5	
SEX	154.0	1.103896	0.306121	1.0	1.00	1.0
1.00						
STEROID	153.0	1.509804	0.501546	1.0	1.00	2.0
2.00	1540	1 044156	0 262001	1 0	2 00	2.0
ANTIVIRALS 2.00	154.0	1.844156	0.363891	1.0	2.00	2.0
FATIGUE	154.0	1.350649	0.478730	1.0	1.00	1.0
2.00	134.0	1.550045	0.470730	1.0	1.00	1.0
MALAISE	154.0	1.603896	0.490682	1.0	1.00	2.0
2.00						
ANOREXIA	154.0	1.792208	0.407051	1.0	2.00	2.0
2.00						
LIVER BIG	145.0	1.827586	0.379049	1.0	2.00	2.0
2.00 LIVER FIRM	144.0	1.583333	0.494727	1.0	1.00	2.0
2.00	144.0	1.303333	0.494727	1.0	1.00	2.0
SPLEEN PALPABLE	150.0	1.800000	0.401340	1.0	2.00	2.0
2.00			01.1020.10			
SPIDERS	150.0	1.660000	0.475296	1.0	1.00	2.0
2.00						
ASCITES	150.0	1.866667	0.341073	1.0	2.00	2.0
2.00	150 0	1 000000	0 226050	1 0	2.00	2.0
VARICES 2.00	150.0	1.880000	0.326050	1.0	2.00	2.0
BILIRUBIN	149.0	1.427517	1.212149	0.3	0.70	1.0
1.50	2.5.0	11 12/01/	1122210	0.5	0.70	
ALK PHOSPHATE	126.0	105.325397	51.508109	26.0	74.25	85.0
132.25						
SG0T	151.0	85.894040	89.650890	14.0	31.50	58.0
100.50	120 0	2 017266	0 651533	2 1	2 40	4.0
ALBUMIN 4.20	139.0	3.817266	0.651523	2.1	3.40	4.0
PROTIME	88.0	61.852273	22.875244	0.0	46.00	61.0
76.25	0010	011032273	221073211	0.0	10100	0110
HISTOLOGY	154.0	1.454545	0.499554	1.0	1.00	1.0
2.00						
Cl	max					
Class AGE	1.0 78.0					
SEX	2.0					
STEROID	2.0					

```
ANTIVIRALS
                     2.0
FATIGUE
                     2.0
MALAISE
                     2.0
ANOREXIA
                     2.0
LIVER BIG
                     2.0
LIVER FIRM
                     2.0
SPLEEN PALPABLE
                     2.0
SPIDERS
                     2.0
ASCITES
                     2.0
VARICES
                     2.0
BILIRUBIN
                     8.0
ALK PHOSPHATE
                  295.0
                  648.0
SG0T
ALBUMIN
                     6.4
PROTIME
                  100.0
HISTOLOGY
                     2.0
```

2.Data Preprocessing

```
#shape
df.shape
(154, 20)
df.info() #information
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 154 entries, 0 to 153
Data columns (total 20 columns):
#
     Column
                       Non-Null Count
                                        Dtype
- - -
 0
                       154 non-null
                                        int64
     Class
 1
     AGE
                       154 non-null
                                        int64
 2
                       154 non-null
     SEX
                                        int64
 3
     STEROID
                       153 non-null
                                        float64
 4
                       154 non-null
                                        int64
     ANTIVIRALS
 5
     FATIGUE
                       154 non-null
                                        int64
                       154 non-null
 6
     MALAISE
                                        int64
 7
     ANOREXIA
                       154 non-null
                                        int64
 8
                       145 non-null
     LIVER BIG
                                        float64
 9
                       144 non-null
                                        float64
     LIVER FIRM
10
    SPLEEN PALPABLE
                       150 non-null
                                        float64
 11
     SPIDERS
                       150 non-null
                                        float64
 12
     ASCITES
                       150 non-null
                                        float64
 13
    VARICES
                       150 non-null
                                        float64
 14
     BILIRUBIN
                       149 non-null
                                        float64
 15
     ALK PHOSPHATE
                       126 non-null
                                        float64
     SG0T
                       151 non-null
                                        float64
 16
```

```
17
     ALBUMIN
                       139 non-null
                                        float64
18
                       88 non-null
                                        float64
     PROTIME
19
     HISTOLOGY
                       154 non-null
                                        int64
dtypes: float64(12), int64(8)
memory usage: 24.2 KB
df.isnull().sum() #finding missing values
Class
                     0
                     0
AGE
SEX
                     0
                     1
STER0ID
                     0
ANTIVIRALS
                     0
FATIGUE
                     0
MALAISE
ANOREXIA
                     0
                     9
LIVER BIG
LIVER FIRM
                    10
SPLEEN PALPABLE
                     4
SPIDERS
                     4
ASCITES
                     4
VARICES
                     4
                     5
BILIRUBIN
ALK PHOSPHATE
                    28
                     3
SG0T
                    15
ALBUMIN
PROTIME
                    66
HISTOLOGY
                     0
dtype: int64
df.isnull().sum()/ df.shape[0]*100 #percentage of missing values
Class
                     0.000000
AGE
                     0.000000
SEX
                     0.000000
STEROID
                     0.649351
ANTIVIRALS
                     0.000000
FATIGUE
                     0.000000
MALAISE
                     0.000000
ANOREXIA
                     0.000000
LIVER BIG
                     5.844156
LIVER FIRM
                     6.493506
                     2.597403
SPLEEN PALPABLE
SPIDERS
                     2.597403
                     2.597403
ASCITES
VARICES
                     2.597403
BILIRUBIN
                     3.246753
ALK PHOSPHATE
                    18.181818
SG0T
                     1.948052
ALBUMIN
                     9.740260
```

PROTIME 42.857143 HISTOLOGY 0.000000

dtype: float64

#handling the missing value
df = df.drop('PROTIME', axis=1)
df

df									
\	Class	AGE	SEX	STER0I	D ANT	IVIRALS	FATIGUE	MALAISE	ANOREXIA
0	0	30	2	1.	0	2	2	2	2
1	0	50	1	1.	0	2	1	2	2
2	0	78	1	2.	0	2	1	2	2
3	0	31	1	Na	N	1	2	2	2
4	0	34	1	2.	0	2	2	2	2
149	1	46	1	2.	0	2	1	1	1
150	0	44	1	2.	0	2	1	2	2
151	0	61	1	1.	0	2	1	1	2
152	0	53	2	1.	0	2	1	2	2
153	1	43	1	2.	0	2	1	2	2
	LTVED	DTC	LTVED	ГТОМ	CDI EEN	PALPABL		C ACCITE	C VADICEC
\	LIVER		LIVER		SPLEEN				
0		1.0		2.0		2.	9 2.	0 2.0	9 2.0
1		1.0		2.0		2.	9 2.	0 2.0	9 2.0
2		2.0		2.0		2.	9 2.	0 2.0	9 2.0
3		2.0		2.0		2.	0 2.	0 2.0	0 2.0
4		2.0		2.0		2.	0 2.	0 2.0	0 2.0
149		2.0		2.0		2.	9 1.	0 1.0	0 1.0
150		2.0		1.0		2.	0 2.	0 2.0	0 2.0
151		1.0		1.0		2.	9 1.	0 2.0	0 2.0

152		2.0		2.0		1.0	1.0	2.0
		2 0		2.0		1 0	1 0	1 0
3	•	2.0		2.0		1.0	1.0	1.0
		1.0 0.9 0.7 0.7 1.0	ALK PH	0SPHATE 85.0 135.0 96.0 46.0 NaN	SGOT 18.0 42.0 32.0 52.0 200.0	ALBUMIN 4.0 3.5 4.0 4.0 4.0		1 1 1 1
9 0 1 2		7.6 9.9 9.8 1.5		NaN 126.0 75.0 81.0 100.0		3.3 4.3 4.1 4.1 3.1		2 2 2 2 2 2
54	rows x	19 c	olumns	1				
d	Class		e.fit_	transform STEROII			FATIGUE	MALAISE
0RE	0.0	30.0	2.0	1.000000	a	2.0	2.0	2.0
0	0.0	50.0		1.000000		2.0	1.0	2.0
9	0.0	78.0	1.0	2.00000	9	2.0	1.0	2.0
^	0.0	31.0	1.0	1.509804	1	1.0	2.0	2.0
0 0	0.0	34.0	1.0	2.00000	9	2.0	2.0	2.0
1								
9	1.0	46.0	1.0	2.00000	9	2.0	1.0	1.0
0	0.0	44.0	1.0	2.00000	9	2.0	1.0	2.0
0 1 0	0.0	61.0	1.0	1.00000	9	2.0	1.0	1.0
62 0	0.0	53.0	2.0	1.00000	9	2.0	1.0	2.0

2.0							
\	LIVER BIG	LIVER FIRM	SPLEEN	PALPABLE	SPIDERS	ASCITES	VARICES
ò	1.0	2.0		2.0	2.0	2.0	2.0
1	1.0	2.0		2.0	2.0	2.0	2.0
2	2.0	2.0		2.0	2.0	2.0	2.0
3	2.0	2.0		2.0	2.0	2.0	2.0
4	2.0	2.0		2.0	2.0	2.0	2.0
149	2.0	2.0		2.0	1.0	1.0	1.0
150	2.0	1.0		2.0	2.0	2.0	2.0
151	1.0	1.0		2.0	1.0	2.0	2.0
152	2.0	2.0		1.0	1.0	2.0	1.0
153	2.0	2.0		1.0	1.0	1.0	2.0
0 1 2 3 4 	BILIRUBIN 1.0 0.9 0.7 0.7 1.0 7.6	105.32539	00 18. 00 42. 00 32. 00 52. 07 200. 	0 4. 0 3. 0 4. 0 4. 0 4. 0 3.	0 5 0 0	1.0 1.0 1.0 1.0 1.0 2.0	
150 151 152 153	0.9 0.8 1.5 1.2	126.00006 75.00006 81.00006 100.00006	00 20. 00 19.	0 4. 0 4.	1 1	2.0 2.0 2.0 2.0	
[154	rows x 19	columns]					
df.d	uplicated()	.sum() #find	ing dupl	icates			
0							
df.i	snull(). <mark>sum</mark>	()					
Clas AGE SEX	S	0 0 0					

```
STEROID
                    0
ANTIVIRALS
                    0
FATIGUE
                    0
MALAISE
                    0
ANOREXIA
                    0
LIVER BIG
                    0
                    0
LIVER FIRM
SPLEEN PALPABLE
                    0
SPIDERS
                    0
ASCITES
                    0
VARICES
                    0
                    0
BILIRUBIN
ALK PHOSPHATE
                    0
SG0T
                    0
ALBUMIN
                    0
HISTOLOGY
                    0
dtype: int64
df.nunique()
Class
                     2
                     49
AGE
                     2
SEX
                      3
STEROID
                      2
ANTIVIRALS
                      2
FATIGUE
                      2
MALAISE
                      2
ANOREXIA
                      3
LIVER BIG
                      3
LIVER FIRM
SPLEEN PALPABLE
                      3
                      3
SPIDERS
                     3
ASCITES
VARICES
                     3
                     35
BILIRUBIN
ALK PHOSPHATE
                    84
SG0T
                    85
ALBUMIN
                    30
HISTOLOGY
                      2
dtype: int64
```

scaling

```
from sklearn.preprocessing import MinMaxScaler
scale = MinMaxScaler()
for j in df.columns:
    if df[j].nunique() > 1:
        df[j] = scale.fit_transform(df[[j]])
df
```

ANORI	Class	AGE	SEX	STEROID	ANTIVIRALS	5 FATIGUE	MALAISE	
0	EXIA \ 0.0	0.323944	1.0	0.000000	1.0	1.0	1.0	
1.0 1	0.0	0.605634	0.0	0.000000	1.0	0.0	1.0	
1.0 2	0.0	1.000000	0.0	1.000000	1.0	0.0	1.0	
1.0 3	0.0	0.338028	0.0	0.509804	0.6	1.0	1.0	
1.0	0.0	0.380282	0.0	1.000000	1.6	1.0	1.0	
1.0								
149	1.0	0.549296	0.0	1.000000			0.0	
0.0								
150 1.0	0.0	0.521127	0.0	1.000000			1.0	
151 1.0	0.0	0.760563	0.0	0.000000	1.6	0.0	0.0	
152 1.0	0.0	0.647887	1.0	0.000000	1.6	0.0	1.0	
153 1.0	1.0	0.507042	0.0	1.000000	1.0	0.0	1.0	
1.0	LIVER	BIG LIVER	ETDM	CDLEEN	PALPABLE SF	OTDEDC AC	CITES VAF	RICES
V				SELLLIN				
0		0.0	1.0		1.0	1.0	1.0	1.0
1	(0.0	1.0		1.0	1.0	1.0	1.0
2		1.0	1.0		1.0	1.0	1.0	1.0
3		1.0	1.0		1.0	1.0	1.0	1.0
4		1.0	1.0		1.0	1.0	1.0	1.0
149		1.0	1.0		1.0	0.0	0.0	0.0
150		1.0	0.0		1.0	1.0	1.0	1.0
151		0.0	0.0		1.0	0.0	1.0	1.0
152		1.0	1.0		0.0	0.0	1.0	0.0
153		1.0	1.0		0.0	0.0	0.0	1.0
	BILIRU	BIN ALK PH	HOSPH/	ATE .	SGOT ALBUM	1IN HISTOL	_OGY	

```
0
      0.090909
                      0.219331
                                 0.006309
                                           0.441860
                                                            0.0
1
                      0.405204
                                                            0.0
      0.077922
                                 0.044164
                                           0.325581
2
      0.051948
                      0.260223
                                 0.028391
                                           0.441860
                                                            0.0
3
      0.051948
                      0.074349
                                 0.059937
                                           0.441860
                                                            0.0
4
      0.090909
                      0.294890
                                 0.293375
                                           0.441860
                                                            0.0
                                                             . . .
      0.948052
                      0.294890
149
                                 0.359621
                                           0.279070
                                                            1.0
150
      0.077922
                      0.371747
                                 0.201893
                                           0.511628
                                                            1.0
                      0.182156
                                 0.009464
                                                            1.0
151
      0.064935
                                           0.465116
152
      0.155844
                      0.204461
                                 0.007886
                                           0.465116
                                                            1.0
                      0.275093
153
      0.116883
                                 0.007886
                                           0.232558
                                                            1.0
[154 rows x 19 columns]
df.HISTOLOGY.value_counts()
0.0
       84
1.0
       70
Name: HISTOLOGY, dtype: int64
sns.countplot(x='HISTOLOGY', data=df)
<AxesSubplot:xlabel='HISTOLOGY', ylabel='count'>
```



```
df.SEX.value_counts()

0.0    138
1.0    16
Name: SEX, dtype: int64
sns.countplot(x = 'SEX', data=df, hue='HISTOLOGY')
<AxesSubplot:xlabel='SEX', ylabel='count'>
```



```
#data spliting
x = df.drop(["HISTOLOGY"],axis = 1)
y = df["HISTOLOGY"]
Χ
     Class
                 AGE SEX
                            STER0ID
                                     ANTIVIRALS
                                                 FATIGUE
                                                          MALAISE
ANOREXIA \
       0.0 0.323944 1.0 0.000000
                                                              1.0
                                            1.0
                                                     1.0
1.0
       0.0 0.605634 0.0 0.000000
1
                                            1.0
                                                     0.0
                                                              1.0
1.0
2
       0.0 1.000000 0.0
                          1.000000
                                            1.0
                                                     0.0
                                                              1.0
1.0
       0.0 0.338028 0.0 0.509804
                                            0.0
                                                     1.0
                                                              1.0
```

1.0											
4	0.0	0.3	80282	0.0	1.000	000		1.0	1.0	1.0	
1.0											
				• • •							
149	1.0	0.5	49296	0.0	1.000	000		1.0	0.0	0.0	
0.0 150	0.0	0.5	21127	0.0	1.000	1000		1.0	0.0	1.0	
1.0	0.0	0.5	21127	0.0	1.000	000		1.0	0.0	1.0	
151	0.0	0.7	60563	0.0	0.000	000		1.0	0.0	0.0	
1.0 152	0.0	0.6	47887	1.0	0.000	000		1.0	0.0	1.0	
1.0	1.0	۰	07040	0 0	1 000	000		1.0	0 0	1.0	
153 1.0	1.0	0.5	07042	0.0	1.000	0000		1.0	0.0	1.0	
	LTVED	DTC	L TVED	СТОМ	CDLE	EN DALE	\	CDIDEDC	ACCTTE	C \/AF)TCEC
\	LIVER	BIG	LIVER	LTKM	SPLE	EN PALF	ABLE	SPIDERS	ASCITE	5 VAR	RICES
0		0.0		1.0			1.0	1.0	1.	0	1.0
1		0.0		1.0			1.0	1.0	1.	0	1.0
2		1.0		1.0			1.0	1.0	1.	O	1.0
3		1.0		1.0			1.0	1.0	1.	9	1.0
4		1.0		1.0			1.0	1.0	1.	0	1.0
149		1.0		1.0			1.0	0.0	0.	0	0.0
150		1.0		0.0			1.0	1.0	1.	9	1.0
151		0.0		0.0			1.0	0.0	1.	0	1.0
152		1.0		1.0			0.0	0.0	1.	0	0.0
153		1.0		1.0			0.0	0.0	0.	0	1.0
133		1.0		1.0			0.0	0.0	0.	ט	1.0
	BILIRU	RTN	ALK PH	ΙΛΟΡΗΔ	TF	SG01	- ΔΙ	LBUMIN			
0	0.090	909	6	0.2193	31 0	.006309	0.4	441860			
0 1 2 3 4	0.077 0.051			0.4052 0.2602		0.044164 0.028391		325581 441860			
3	0.051			0.2002	49 0	.059937	0.4	441860			
	0.090		(2948		.293375		441860			
149	0.948			2948		.35962	0.2	279070			
150	0.077	922	(9.3717	47 0	.201893	0.5	511628			

```
151
      0.064935
                     0.182156 0.009464
                                          0.465116
152
      0.155844
                     0.204461 0.007886
                                          0.465116
153
      0.116883
                     0.275093 0.007886
                                          0.232558
[154 rows x 18 columns]
У
0
       0.0
1
       0.0
2
       0.0
3
       0.0
4
       0.0
149
      1.0
150
       1.0
151
       1.0
152
       1.0
153
       1.0
Name: HISTOLOGY, Length: 154, dtype: float64
from sklearn.model selection import train test split
xtrain, xtest, ytrain, ytest = train test split(x,y), random state=42,
train size=.70)
xtrain.shape
(107, 18)
```

3.decision Tree Model

```
from sklearn.tree import DecisionTreeClassifier
dcls = DecisionTreeClassifier()
dcls.fit(xtrain, ytrain)
DecisionTreeClassifier()
plt.figure(figsize=(25,15))
tree.plot tree(dcls, feature names=x.columns, rounded=True,
filled=True, fontsize = 14)
 [Text(0.37083333333333335, 0.944444444444444, 'ASCITES <= 0.433\ngini</pre>
= 0.495 \setminus samples = 107 \setminus salue = [59.0, 48.0]'),
  Text(0.3375, 0.83333333333333334, 'gini = 0.0 \nsamples = 15 \nvalue = 0.0 \nsamples = 15 \nsamples = 15
[0, 15]'),
  Text(0.404166666666667, 0.833333333333334, 'SPIDERS <= 0.33\ngini =
0.46 \times = 92 \times = [59, 33]'
  0.488 \times = 26 \times = [11.0, 15.0]'),
```

```
= 0.444 \setminus samples = 12 \setminus salue = [8, 4]'),
  1]'),
   Text(0.1, 0.5, 'BILIRUBIN <= 0.084 \setminus gini = 0.397 \setminus gini = 11 \setminus 
= [8, 3]'),
   Text(0.0666666666666667, 0.388888888888888, 'AGE <= 0.401 \ngini =
0.5 \times = 6 \times = [3, 3]'
   2\nvalue = [0, 2]'),
   Text(0.1, 0.277777777777778, 'ALBUMIN <= 0.5 \ngini = 0.375 \nsamples
= 4 \cdot nvalue = [3, 1]'),
  Text(0.0666666666666666, 'gini = 0.0\nsamples =
3\nvalue = [3, 0]'),
  1\nvalue = [0, 1]'),
  5\nvalue = [5, 0]'),
   0.337 \times = 14 \times = [3, 11]'
   Text(0.23333333333333334, 0.5, 'Class <= 0.5 \ngini = 0.26 \nsamples =
13\nvalue = [2, 11]'),
  Text(0.2, 0.388888888888888889, 'gini = 0.0 \nsamples = 7 \nvalue = [0, 1]
7]'),
   0.444 \times = 6 \times = [2, 4]'),
  Text(0.2333333333333334, 0.2777777777778, 'gini = 0.0 \nsamples =
3\nvalue = [0, 3]'),
  Text(0.3, 0.2777777777778, 'MALAISE \leq 0.5\ngini = 0.444\nsamples
= 3 \ln u = [2, 1]'
   Text(0.2666666666666666, 0.166666666666666, 'gini = 0.0 \nsamples = 0.0 \nsa
1\nvalue = [0, 1]'),
   2\nvalue = [2, 0]'),
   Text(0.3, 0.5, 'gini = 0.0 \land samples = 1 \land value = [1, 0]'),
   Text(0.641666666666667, 0.72222222222222, 'ALK PHOSPHATE <= 0.291\
ngini = 0.397 \setminus samples = 66 \setminus nvalue = [48, 18]'),
   ngini = 0.255 \setminus nsamples = 40 \setminus nvalue = [34, 6]'),
   Text(0.3666666666666664, 0.5, 'LIVER BIG <= 0.414 \ngini = 0.087
nsamples = 22 \setminus nvalue = [21, 1]'),
   1\nvalue = [0, 1]'),
  Text(0.4, 0.38888888888888889, 'gini = 0.0 \nsamples = 21 \nvalue = [21, 1]
0]'),
   nvalue = [13, 5]'),
  Text(0.466666666666667, 0.388888888888889, 'gini = 0.0 \nsamples = 0.0 \nsam
6\nvalue = [6, 0]'),
```

```
0.486 \times 12 = 12 \times 12 = 17, 51
Text(0.5, 0.27777777777778, 'gini = 0.0 \nsamples = 3 \nvalue = [3, ]
0]'),
Text(0.5666666666666667, 0.2777777777778, 'SGOT <= 0.048 \ngini =
0.494\nsamples = 9\nvalue = [4, 5]'),
4\nvalue = [0, 4]'),
5\nvalue = [4, 1]'),
1\nvalue = [0, 1]'),
4\nvalue = [4, 0]'),
26\nvalue = [14, 12]'),
Text(0.8166666666666667, 0.5, 'BILIRUBIN <= 0.151 \setminus gini = 0.499 \setminus
nsamples = 23 \setminus nvalue = [11, 12]'),
0.495 \times = 20 \times = [11, 9]'
Text(0.7, 0.2777777777778, 'SGOT <= 0.008\ngini = 0.32\nsamples =
5\nvalue = [1, 4]'),
1\nvalue = [1, 0]'),
4\nvalue = [0, 4]'),
Text(0.866666666666667, 0.277777777778, 'ALK PHOSPHATE <= 0.342\
ngini = 0.444 \setminus samples = 15 \setminus nvalue = [10, 5]'),
nsamples = 9 \setminus nvalue = [8, 1]'),
Text(0.766666666666667, 0.0555555555555555, 'gini = 0.0 \nsamples =
1\nvalue = [0, 1]'),
8\nvalue = [8, 0]'),
= 0.444 \setminus samples = 6 \setminus salue = [2, 4]'),
0]'),
4\nvalue = [0, 4]'),
Text(0.85, 0.38888888888888889, 'gini = 0.0 \nsamples = 3 \nvalue = [0, ]
31'),
0]')]
```


4. Model Evaluation:

```
predict = dcls.predict(xtrain)
predict
array([0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 1., 0., 0., 1., 1.,
0.,
       0.,\ 0.,\ 0.,\ 0.,\ 0.,\ 1.,\ 0.,\ 1.,\ 1.,\ 0.,\ 1.,\ 1.,\ 0.,\ 1.,\ 1.,
0.,
       0., 1., 1., 0., 1., 1., 0., 0., 1., 1., 0., 0., 0., 0., 0., 1.,
0.,
       0., 0., 1., 1., 0., 1., 1., 0., 0., 0., 1., 0., 0., 0.,
1.,
       0., 1., 1., 0., 0., 1., 0., 1., 0., 1., 0., 1., 0., 1., 0.,
1.,
       0., 0., 1., 1., 0., 1., 0., 0., 1., 1., 1., 1., 1., 0., 1., 1.,
0.,
       0., 1., 0., 1., 1.])
dcls.score(xtrain, ytrain)
1.0
predict2 = dcls.predict(xtest)
predict2
```

Confusion Matrix

```
from sklearn.metrics import classification_report, accuracy_score,
precision score, recall score, f1 score,
confusion matrix, RocCurveDisplay
pred test = dcls.predict(xtest)
pred test
array([1., 1., 1., 1., 1., 0., 0., 0., 1., 0., 1., 1., 1., 0., 1., 1.,
       0., 0., 0., 0., 0., 1., 0., 0., 1., 1., 1., 0., 1., 1., 0., 0.,
1.,
       0., 1., 0., 0., 1., 0., 0., 0., 1., 0., 1., 0., 0.
dcls.score(xtest, ytest)
0.6808510638297872
accuracy score(ytest, dcls.predict(xtest))
0.6808510638297872
confusion matrix(ytest, pred test)
array([[17, 8],
      [ 7, 15]])
c mat = confusion matrix(ytest, dcls.predict(xtest))
c mat
array([[17, 8],
 [ 7, 15]])
sns.heatmap(c mat, annot=True )
<AxesSubplot:>
```


Precision

```
precision_score(ytest, dcls.predict(xtest))
0.6521739130434783
```

Recall

```
recall_score(ytest, dcls.predict(xtest))
0.68181818181818
```

F1 Score

```
f1_score(ytest, dcls.predict(xtest))
0.666666666666666
print(classification_report(ytest, dcls.predict(xtest)))
              precision
                           recall f1-score
                                              support
         0.0
                   0.71
                             0.68
                                       0.69
                                                   25
         1.0
                   0.65
                             0.68
                                       0.67
                                                   22
                                       0.68
                                                   47
    accuracy
```

|--|

AUC-ROC Score

```
RocCurveDisplay.from_predictions(ytest,dcls.predict(xtest))
plt.plot([0,1],[0,1])
plt.show()
```


#AUC=68, which is above 50% so the model will work but not much accurately