2

SUPERVISOR'S USE ONLY

91164

Level 2 Chemistry, 2017

91164 Demonstrate understanding of bonding, structure, properties and energy changes

2.00 p.m. Thursday 16 November 2017 Credits: Five

Achievement	Achievement with Merit	Achievement with Excellence	
Demonstrate understanding of bonding, structure, properties and energy	Demonstrate in-depth understanding of bonding, structure, properties and	Demonstrate comprehensive understanding of bonding, structure,	
changes.	energy changes.	properties and energy changes.	

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

A periodic table is provided on the Resource Sheet L2–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–12 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL

(a) When solid calcium chloride, $CaCl_2(s)$, reacts with water, the temperature increases.

Circle the term that best describes this reaction.

endothermic

exothermic

Give a reason for your choice.

- (b) When a person sweats, water is lost from the body by evaporation. This is an endothermic process. This evaporation speeds up when a person exercises.
 - (i) Explain why the evaporation of water in sweat from the body is endothermic, and why exercise increases this evaporation.

(ii) Draw a labelled enthalpy diagram for the evaporation of water, $H_2O(\ell)$.

$$H_2O(\ell) \rightarrow H_2O(g)$$

$$\Delta_{\mathbf{r}}H^{\circ} = 40.7 \text{ kJ mol}^{-1}$$

H/hdplpdud

Reaction proceeds

sodium chloride, Na	CI, in water.	
Support your answer	with a labelled diagram.	
Space for diagram		
Space for anagram		

Thormita rosatio	ong occur when a matel a	vida ranata with a rest	al novedor	
Thermite reactions occur when a metal oxide reacts with a metal powder. The equations for two thermite reactions are given below:				
Reaction 1: Fe ₂ O ₃ (s) + 2Al(s) \rightarrow 2Fe(s) + Al ₂ O ₃ (s) $\Delta_r H^\circ = -852 \text{ kJ mol}^-$				
	$3CuO(s) + 2AI(s) \rightarrow 3$		$\Delta_{\mathbf{r}}H^{\circ} = -1520 \text{ kJ mol}^{-1}$ $\Delta_{\mathbf{r}}H^{\circ} = -1520 \text{ kJ mol}^{-1}$	
Reaction 2.	3000(3) 1 2AI(3) -> 0	100(3) 1 Ai ₂ 0 ₃ (3)	$\Delta_{\mathbf{r}}^{II} = -1320 \text{ KJ info}$	
Use calculations oxide, CuO(s), valuminium power	will produce more heat en	al oxide, iron(III) oxide all ox	de, $Fe_2O_3(s)$, or copper(II) each metal oxide is reacted with	
$M(\mathrm{Fe_2O_3})$	$= 160 \text{ g mol}^{-1}$	M(CuO) = 79.6	g mol ⁻¹	

QUESTION TWO

(ii)

ASSESSOR'S USE ONLY

(a) (i) Draw the Lewis structure (electron dot diagram) for the following molecules, and name their shapes.

Molecule	HOCI	COCI ₂	NF ₃
Lewis structure			
Name of shape			
Approximate bond angle around the central atom	109.5°	120°	109.5°

(b) Three-dimensional diagrams for two molecules are shown below.

ASSESSOR'S
USF ONLY

Molecule	CI	CI
Name	Dichloromethane	Tetrachloromethane
Polarity of molecule		

(i)	In the boxes above, identify the polarity of each molecule, by writing either polar o non-polar .
(ji)	Justify your choices

sustify your enoices.		

Use calculations to determine which of Reaction 1 or Reaction 2 releases more energy.

Reaction 1:
$$N_2H_4(g) + O_2(g) \rightarrow N_2(g) + 2H_2O(g)$$

Reaction 2:
$$N_2H_4(g) + 2F_2(g) \rightarrow N_2(g) + 4HF(g)$$

The structure of each chemical species is shown in the box below.

Use the average bond enthalpies given in the table below.

Bond	Average Bond enthalpy /kJ mol ⁻¹	Bond	Average Bond enthalpy /kJ mol ⁻¹
Н–Н	436	N-N	158
H–F	567	F–F	159
N-H	391	O=O	498
О–Н	463	N≡N	945

now your working and include appropriate units in your answer.					

QUESTION THREE

ASSESSOR'S USE ONLY

(a) Complete the table below by stating the type of solid, the type of particle, and the type of bonding (attractive forces) between the particles in each solid.

Solid	Type of solid	Type of particle	Attractive forces between particles
Al (s) (aluminium)			
MgCl ₂ (s) (magnesium chloride)			
S ₈ (s) (sulfur)			

Al(s)	$MgCl_2(s)$	S ₈ (s)
Justify your choice, re substances.	ferring to the attractive forces b	between the particles of ALL three

Question Three continues on the following page.

ASSESSOR'S USE ONLY

$Al(s)$ $MgCl_2(s)$ $S_8(s)$			
A1(3)	1419O1 ₂ (3)	08(3)	
Justify your choice by referring to the structure and bonding of your chosen substance.			
You may include a diagram or diagrams in your answer.			
Space for diagram			

	Extra paper if required.		
QUESTION NUMBER	Write the question number(s) if applicable.	ASSESSOR USE ONLY	
NUMBER		-	

ASSESSOR'S USE ONLY

		Extra pape	er if required.	
QUESTION		Write the question n	umber(s) if applicable.	
QUESTION NUMBER	L	<u> </u>	.,	J