Modulformen 1 – Übungsgruppe 03. November 2021

Wintersemester 2021/22

A: Besprechung 1. Übungszettel

Aufgabe 1

- (a) Falsch, denn es gilt $DV(-1, 0, \frac{1}{3}, 1) = 2 \neq 2 2i = DV(0, i, 2i, 1)$ (4 Proposition 1.12).
- (b) Wahr. Zunächst gilt $c \neq 0$, da sonst $\varphi(\infty) = \infty = \varphi(z_2)$ mit $z_2 \neq \infty$ (f φ bijektiv). Dann ist

$$\varphi(z) = \begin{cases} \frac{az+b}{cz+d} &, z \in \mathbb{C} \setminus \{-\frac{d}{c}\} \\ \infty &, z = z_2 \stackrel{!}{=} -\frac{d}{c} \end{cases}$$

die gesuchte Möbiustransformation. Es folgt $d=-cz_2$ und wegen $0=\varphi(z_1)$ zudem $b=-az_1$. Die gewünschte Form von φ resultiert mit $\tilde{c}:=\frac{a}{c}\neq 0$ aus der Matrix $M=\left(\begin{smallmatrix} a & -az_1 \\ b & -cz_2 \end{smallmatrix}\right)$.

(c) Wahr, denn es gilt φ ist bijektiv mit Umkehrabbildung φ^{-1} (Proposition 1.3) und φ, φ^{-1} sind meromorph und damit stetig als Möbiustransformationen auf $\bar{\mathbb{C}}$ (Beispiel 5.35).

Aufgabe 2

- (a) Die Rückrichtung ist unmittelbar klar. Die Aussage $\varphi_M(z)=\varphi_N(z)$ für alle $z\in \bar{\mathbb{C}}$ ist wegen $\varphi_{MN}=\varphi_M\circ\varphi_N$ und $\varphi_{I_2}=\mathrm{id}$ äquivalent zu $\varphi_{N^{-1}M}(z)=z$. OE ist daher $N=I_2$ und die Behauptung folgt aus der Fixpunktgleichung $cz^2+(d-a)z-b=0$.
- (b) Aussage (i) folgt unmittelbar aus (ii). Die Inklusion $\mathfrak{M}\subseteq \operatorname{Aut}(\bar{\mathbb{C}})$ ist ebenfalls klar. Sei also $f\in\operatorname{Aut}(\bar{\mathbb{C}})$. Dann ist $f=\frac{P}{Q}$ rational (Korollar 8.5) mit teilerfremden Polynomen P,Q und $d:=\max\{\deg(P),\deg(Q)\}$. Dann nimmt f jeden Wert aus $\bar{\mathbb{C}}$ genau d-mal an (Satz 3.3 †) und wegen Bijektivität hat der Quotient die Form $f(z)=\frac{az+b}{cz+d}$ mit $a,b,c,d\in\mathbb{C}$. Man folgert leicht per Kontraposition, dass $M=\left(\begin{smallmatrix} a&b\\c&d\end{smallmatrix}\right)\in\operatorname{GL}_2(\mathbb{C})$ gelten muss.

Aufgabe 3

- (a) Wegen $A\langle z\rangle=z$ folgt aus $A\langle B\langle z\rangle\rangle=B\langle A\langle z\rangle\rangle$, dass $B\langle z\rangle=z$ ein Fixpunkt der Möbiustransformation unter A ist. Ist w ein anderer Fixpunkt der Möbiustransformation unter B ist, so gilt dies auch für $A\langle w\rangle$. Für die drei Fixpunkte $z,w,A\langle w\rangle$ folgt letztlich $z=w=A\langle w\rangle$ und damit die Behauptung.
- (b) Der parabolische Fall wurde in (a) gezeigt. Andernfalls ist $A \in \operatorname{SL}_2(\mathbb{C})$ zu der Matrix $\begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$ konjugiert, wobei $\lambda_1, \lambda_2 \in \mathbb{C}^*$ mit $\lambda_1 \neq \lambda_2$ gerade die Eigenwerte von A sind. Ihre Eigenräume sind eindimensional. Wegen AB = BA ist Bv_i Eigenvektor von A zu λ_i , falls v_i Eigenvektor von A zu λ_i für $i \in \{1,2\}$ ist. Es ergibt sich, dass v_i Eigenvektor von B ist und dann folgt die Aussage mit: $z \in \mathbb{C}$ Fixpunkt unter $\varphi_A \Leftrightarrow \binom{v}{1}$ ist Eigenvektor von $A \in \operatorname{GL}_2(\mathbb{C})$.

 $^{^{\}dagger \circledcirc}$ Vorlesungsausarbeitung zum WS 2002/03 von Prof. Dr. Klaus Fritzsche

B: Algebra - Grundkenntnisse

Definition: [Linksnebenklasse, Index]

Sei G eine Gruppe, U eine Untergruppe und $x \in G$. Dann heißt $xU := \{xu \mid u \in U\}$ die Linksnebenklasse bzgl. U. Es gilt $G/U := \{xU \mid x \in G\}$ und die Mächtigkeit |G/U| heißt Index [G:U]. Der Satz von Lagrange liefert die Beziehung $|G| = |U| \cdot [G:U]$.

Definition: [Normalteiler]

Eine Untergruppe $N \subseteq G$ zur Gruppe G heißt Normalteiler in G, wenn gilt: $\forall x \in G : xN = Nx$.

Definition: [Operation, Bahn, Stabilisator]

Sei S eine Menge und $m: G \times S \to S$ eine Abbildung.

- m heißt Operation von G auf S, wenn für alle $s \in S$ gilt: (MN,s) = (M,(N,s)) und (e,s) = s für das neutrale Element $e \in G$.
- Die Menge $Gs := \{x \circ s \mid x \in G\}$ heißt Bahn, $G_s := \{x \in G \mid x \circ s = s\}$ heißt Stabilisator von $s \in S$ unter der Operation m von G auf S.

Definition: [Ideal]

Sei R ein Ring. Dann heißt $I \subseteq R$ Ideal, falls I eine Untergruppe von (R, +) ist und $RI \subseteq I$.

Satz: [Restklassenring]

Sei R ein Ring und I ein Ideal. Definiere $R/I := \{x + I \mid x \in R\}$ und $\varphi : R \to R/I, x \mapsto x + I$. Dann ist R/I ein Ring und φ ein Ringhomomorphismus mit $\ker(\varphi) = I$.

Satz: [Chinesischer Restsatz]

Für teilerfremde ganze Zahlen a, b gibt es einen Ringisomorphismus $\mathbb{Z}/ab\mathbb{Z} \cong \mathbb{Z}/a\mathbb{Z} \times \mathbb{Z}/b\mathbb{Z}$.

Definition: [Einheit]

Sei R ein Ring. Das Element $r \in R$ heißt Einheit gdw. es ein $s \in R$ gibt mit rs = 1. Wir schreiben dann $r \in R^* := \{r \in R \mid r \text{ Einheit}\}.$

C: Anwendungen auf die Funktionentheorie

$$\Gamma = \operatorname{SL}_2(\mathbb{Z}), \ \bar{\Gamma} = \operatorname{SL}_2(\mathbb{Z}) / \pm \operatorname{id}, \ \Gamma_\infty = \{ \pm \left(\begin{smallmatrix} 1 & n \\ 0 & 1 \end{smallmatrix} \right) \mid n \in \mathbb{Z} \} \ \text{und} \ \Gamma(N) = \{ M \in \Gamma \mid M \equiv I_2 \mod N \}$$

Satz: [Gruppenoperationen]

Die Gruppe $GL_2(\mathbb{C})$ bzw. $SL_2(\mathbb{R})$ operiert via Möbiustransformationen $(M,z)\mapsto \varphi_M(z)$ transitiv auf \mathbb{C} bzw. der oberen Halbebene \mathbb{H} .

Satz: [Erzeuger von $SL_2(\mathbb{Z})$]

Die Gruppe
$$\mathrm{SL}_2(\mathbb{Z})$$
 wird von den Matrizen $S=\begin{pmatrix}0&-1\\1&0\end{pmatrix}$ und $T=\begin{pmatrix}1&1\\0&1\end{pmatrix}$ erzeugt.

Definition: [Standard-Fundamentalbereich]

Die Menge $\mathcal{F}:=\left\{z\in\mathbb{H}\mid |z|\geq 1 \text{ und } |\operatorname{Re}(z)|\leq \frac{1}{2}\right\}$ ist der Standard-Fundamentalbereich für die Aktion von $\operatorname{SL}_2(\mathbb{Z})$ auf \mathbb{H} .

Satz: [Hauptkongruenzuntergruppe]

Die Hauptkongruenzuntergruppe $\Gamma(N)$ ist ein Normalteiler in Γ .

Satz: $\mathbb{Z}/n\mathbb{Z}$

Es gilt

$$\left(\mathbb{Z}/NZ\right)^*\cong\prod_{p\mid N}\left(\mathbb{Z}/N_p\mathbb{Z}\right)^*$$
 und $\mathrm{SL}_2\left(\mathbb{Z}/N\mathbb{Z}\right)\cong\prod_{p\mid N}\mathrm{SL}_2\left(\mathbb{Z}/N_p\mathbb{Z}\right)$,

wobei $N=\prod_p N_p$ Zerlegung von N in Primzahlpotenzen N_p sei (folgt aus chinesischem Restsatz).