Prova scritta di Elettrotecnica

Corso di Laurea in Ingegneria Informatica

Pisa 31/1/2024 Allieva/o: Matricola: Matricola:

1) Determinare il circuito equivalente di Thevenin fra i punti 1 e 2 del circuito in figura.

i(t) = 5 A (costante);
R = 10
$$\Omega$$
;
 α = 10 V/A;
 β = 0.2 A/V.
V_{TH} = 40 V;

 $R_{TH} = 8 \Omega;$

2) Determinare l'andamento temporale della corrente i(t) indicata in figura e la potenza attiva erogata dal generatore v₁(t).

$$v_1(t) = 10\sqrt{2}\sin(1000t) \text{ V};$$

 $v_2(t) = 20\sqrt{2}\sin(1000t + \pi/2) \text{ V};$
 $v_3(t) = 30\sqrt{2}\sin(1000t + \pi) \text{ V};$
 $R = 10 \Omega;$
 $L = 10 \text{ mH};$
 $C = 1 \text{ mF}.$

P = -2.22 W.

3) Determinare l'andamento temporale della corrente i(t) per $-\infty < t < +\infty$, ipotizzando che il circuito si trovi a regime per tempi negativi.

v(t) = 10 V (costante);
j(t) = u(-t) A;
L₁ = 15 mH;
L₂ = 15 mH;
M = 10 mH;
R = 10 Ω.
i(t) =
$$\left(-1 + \frac{2}{3}e^{-666.67t}u(t)\right)$$
 A

Determinare la rappresentazione a parametri \mathbf{Y} della rete a due porte indicata in figura, ipotizzando che il circuito si trovi a regime periodico sinusoidale con pulsazione $\boldsymbol{\omega}$.

R = 10 Ω ; L = 10 mH; C = 100 μ F; α = 2; ω = 1000 rad/s.

$$\overline{Y} = \begin{bmatrix} 0.1 & -0.1 + 0.1j \\ -0.1 - 0.1j & 0.2 - 0.1j \end{bmatrix} S$$