

A New Defense Against Adversarial Images: Turning a Weakness Into a Strength

Tao Yu*¹, Shengyuan Hu*¹, Chuan Guo¹, Wei-Lun Chao², Kilian Q. Weinberger¹

Department of Computer Science, Cornell University.

² Department of Computer Science and Engineering, The Ohio State University

Background

Neural Networks are prone to imperceptible changes in the input -- adversarial perturbations -- that alter the model's decision entirely.

☐ Common and inevitable:

- Gradient-guided search can perturb real images to any other class.
- Any classifier has a fundamental limit on the robustness that it can achieve for adversarial examples.

"bittern"
99.99% confidence

☐ Hard to defend against:

- Defenses such as adversarial training are very slow and not suitable for large datasets like ImageNet.
- ☐ State-of-the-art defense (TRADES) achieves only 56% accuracy against strongest attack with a drop of 11% clean accuracy on CIFAR10.

"canoe" 29.53% confidence

Vulnerability of Existing Defenses

Attackers can easily bypass defenses by optimizing them in black-box and white-box settings.

☐ Black-box:

Attackers can access model and defense structure, but not any parameter, one can use decision-based methods or natural gradients to optimize the defense criterion.

□ White-box:

Attackers have full knowledge of model and defense, one can use gradient-guided methods for differentiable functions or approximate non-differentiable functions with identity (BPDA) to optimize defense criterion.

Methodology

We propose a set of seemingly contradictory criteria to detect adversarial examples.

□ Robustness to random noise (C1):

Prediction of a real image \mathbf{x}_0 is robust to random noise, i.e., low density of adversarial perturbations ----> Input \mathbf{x} ' can be detected effectively.

----> However, input x" can bypass this detection.

☐ Existence of nearby adversarial examples (C2):

Gradient-guided attacks can easily find an adversarial example of $\mathbf{x_0}$. However, the optimization against **C1** makes it hard to find an "adversarial example" of the adversarial example \mathbf{x} ".

----> Adversarial example x" can be detected effectively.

----> C1+C2 can detect both adversaries x', x".

☐ Contradictory optimization for attackers:

- ❖ Optimizing C1 pulls the adversarial example away from the boundary (towards x").
- Optimizing C2 pulls the adversarial example close to the boundary (towards x').
 Optimizing C1+C2 during attack leads to competing objectives!

Detection Strategy

- \Box C1: Robustness to Gaussian noise ($\|\cdot\|_1$ between predictions of $\mathbf{x_0}$ w/ & w/o noises).
- ☐ C2t: Susceptibility to targeted iterative adversarial attack (# of iterations until success).
- ☐ C2u: Susceptibility to untargeted iterative adversarial attack.

Illustration of class

bird

desk

Experiment on ImageNet

- ☐ White and gray box:
 - ☐ Attack: 50 steps PGD and CW with different learning rates.
 - ☐ Model: pretrained ResNet-101 (Top-1 error: 22.63).
 - \Box Adversarial radius: $||\cdot||_{\infty} = 0.1$.

Attacker optimizes loss function designed to bypass C1 and C2(t/u)

PGD Carlini-Wagner

☐ Ablation study:Variations of white-box attack can still be detected.

	Detector	FPR	PGD	CW
	Small radius ($\tau = 0.03$) Small radius ($\tau = 0.03$)	$0.2 \\ 0.1$	$0.571 \\ 0.418$	0.713 0.500
	$\mathcal{L}^* = \mathcal{L}_1 + \mathcal{L}_2$ $\mathcal{L}^* = \mathcal{L}_1 + \mathcal{L}_2$	$0.2 \\ 0.1$	$0.695 \\ 0.527$	0.512 0.304
	Untargeted Attack Untargeted Attack	0.2 0.1	$0.994 \\ 0.987$	0.538 0.342

- ☐ Black box:
 - ☐ Attack: boundary attack against different detectors
- ☐ Model: pretrained ResNet-101.
- Adversarial radius: MSE 0.01 (equivalent to $\|\cdot\|_{\infty} = 0.1$).

