FST Mohammedia





#### UNIVERSITE HASSAN-II CASABLANCA

## Faculté des Sciences et Techniques de Mohammedia Département de Mathématiques

Concours d'accès à la première année de la filière d'ingénieur de Génie Mathématique et Informatique

# Épreuve d'analyse Durée 1 heure 30 mn

#### Exercice

1. Étudier la convergence de la série numérique de terme générale

$$\frac{\ln(n!)}{n^3}.$$

2. Soit f une fonction définie par

$$f(x) = \sum_{n=1}^{+\infty} (-1)^n \frac{e^{-nx}}{n^2 + 1}.$$

Étudier la continuité et la dérivabilité de f et f' sur son domaine de défintion que l'on déterminera .

### <u>Problème</u>

Le but de ce problème et le calcul de  $\int_0^{+\infty}e^{-t^2}dt$  à l'aide de connaissances générales en mathématiques.

- 1. Montrer que l'intégrale  $\int_0^{+\infty}e^{-t^2}dt$  est convergente. (On pourra utiliser la définition de  $\lim_{n\to+\infty}t^2e^{-t^2}=0$ )
- 2. Soit t un réel. Calculer la limite de la suite de terme général

$$u_n(t) = \left(1 - \frac{t^2}{n}\right)^n.$$

3. Soit  $f_n$  la fonction définie sur  $[0, +\infty[$  par

$$f_n(t) = \begin{cases} e^{-t^2} - \left(1 - \frac{t^2}{n}\right)^n & \text{si } t \le \sqrt{n} \\ 0, & \text{si } t > \sqrt{n}. \end{cases}$$

FST
Mohammedia

- (a) Etudier les variations de  $f_n$  pour  $n \geq 2$ .
- (b) Montrer que  $f_n$  représente un maximum pour une valeur  $\alpha_n$  que l'on **ne** demande **pas** de calculer.

(on pourra étudier la fonction auxiliaire  $g_n = t^2 + (n-1) \ln \left(1 - \frac{t^2}{n}\right)$ .

(c) Montrer que

$$f_n(\alpha_n) = \frac{\alpha_n^2}{n} \left( 1 - \frac{\alpha_n^2}{n} \right)^{n-1}.$$

4. On admet que  $f_n(\alpha_n) \sim \frac{2e^{-2}}{n-1}$   $(n \to +\infty)$ . Déduire de la question précédente que

$$\lim_{n \to +\infty} \int_{0}^{\sqrt{n}} f_n(t)dt = 0$$

puis que

$$\lim_{n \to +\infty} \int_0^{\sqrt{n}} \left(1 - \frac{t^2}{n}\right)^n dt = \int_0^{+\infty} e^{-t^2} dt$$

- 5. On pose  $I_n = \int_0^{\pi/2} (\cos t)^n dt$ 
  - (a) Montrer que  $I_{n+2} = \frac{n+1}{n+2} I_n$  (utiliser  $\cos^{(n)} t \sin^2 t = -\frac{1}{n+1} (\cos^{(n+1)} t)' \sin t$ ).
  - (b) En déduire que

$$I_{2n} = \frac{(2n-1)(2n-3)...3.1}{2n(2n-2)...2} \frac{\pi}{2} \text{ et } I_{2n+1} = \frac{2n(2n-2)...2}{(2n+1)(2n-1)...3.1}.$$

(c) On rappelle que  $I_0 = \frac{\pi}{2}$  et  $I_1 = 1$ .

Montrer que

$$(I_{2n+1})^2 = \frac{I_{2n+1}}{I_{2n}} \cdot \frac{\pi}{2(2n+1)}$$

et calculer

$$\lim_{n \to +\infty} \left( \sqrt{n} I_{2n+1} \right)^2.$$

- 6. Montrer que  $\sqrt{n}I_{2n+1} = \int_0^{\sqrt{n}} \left(1 \frac{t^2}{n}\right)^n dt$ .
- 7. En déduire en fin la valeur de  $\int_0^{+\infty} e^{-t^2} dt$ .

#### Fin de l'énoncé