

Human face detection

Applications

- Automatic selection of camera settings
- Personalized advertising campaigns
- User Authentication
- Law Enforcement
- Healthcare

Human face detection

- Haar features for face detection
- Integral image
- Nearest Neighbour classifier
- Support Vector Machine

Face detection process

Face detection framework

• For each window:

- Features?
- Classifier?

What are Good Features?

• Interest points (Edges, Corners, SIFT)?

• Facial Components (Templates)?

Characteristics of Good features

• Discriminate Face/Non-face

• Extremely fast to compute

Haar features

Discriminative ability of Haar features

 $V_A = 64$

 $V_A = 16$

 $V_A \approx 0$

 $\overline{V_A} = -127$

• Sensitive to Directionality of patterns

Detecting faces of different size

Computing Haar features

Response to Filter H_A at location (i, j):

$$V_A[i,j] = \sum_m \sum_n I[m-i,n-j] H_A[m,n]$$

 $V_A[i,j] = \sum$ (pixel intensities in white area)

 $-\sum$ (pixels intensities in black area)

Haar feature: Computation cost

• Value = Σ (pixel intensities in white) – Σ (pixels intensities in black)

• Computation cost = (N*M - 1) additions per pixel per filter per scale

Integral image

• A table that holds sum of all pixel values to the left and top of a given pixel including

itself

Image I					- U-	Integral Image II					II	
96	104	172	130	126	130		680	1449	2433	3253	4118	50
95	111	168	122	130	137		584	1249	2061	2751	3490	429
97	113	147	108	125	142		489	1043	1687	2255	2864	35
98	112	132	108	123	133		392	833	1330	1790	2274	279
97	109	124	111	123	134		294	623	988	1340	1701	209
99	110	120	116	116	129		197	417	658	899	1137	139
98	110	121	125	122	129		98	208	329	454	576	70

Summation within a Rectangle

$$Sum = II_P - II_Q - II_S + II_R$$
$$= 3490 - 1137 - 1249 + 417$$
$$= 1521$$

Computation Cost: Only 3 additions

98	110	121	125	122	129		98	208	329	454	576	705	
99	110	120	116	116	129	R—	197	417	658	899	1137	1395	0
97	109	124	111	123	134	Λ-	294	623	988	1340	1701	2093	-Q
98	112	132	108	123	133		392	833	1330	1790	2274	2799	
97	113	147	108	125	142		489	1043	1687	2255	2864	3531	
95	111	168	122	130	137	s—	584	1249	2061	2751	3490	1294	P
96	104	172	130	126	130	3	680	1449	2433	3253	4118	5052	- 1
Image I						In	teg	ral	Ima	age	II		

Haar response using Integral image

Value = Σ (pixel intensities in white) – Σ (pixels intensities in black)

$$= (\Pi_{\mathrm{O}} - \Pi_{\mathrm{T}} + \Pi_{\mathrm{R}} - \Pi_{\mathrm{S}}) - (\Pi_{\mathrm{P}} - \Pi_{\mathrm{Q}} + \Pi_{\mathrm{T}} - \Pi_{\mathrm{O}})$$

$$=(2061-329+98-584)-(3490-576+329-2061)$$

= 64

Computation cost: Only 7 additions

98	110	121	125	122	129			
99	110	120	116	116	129			
97	109	124	111	123	134			
98	112	132	108	123	133			
97	113	147	108	125	142			
95	111	168	122	130	137			
96	104	172	130	126	130			
Image I								

Q

R

Integral Image II

Computing Integral image

• $\Pi_{A} = \Pi_{B} + \Pi_{C} - \Pi_{D} + I_{A}$

Haar features using Integral image

- Integral image needs to be computed once per test image
- Allows fast computations for Haar features

Programs

- 1. Design Haar filters of different scales
- 2. Form Integral Image from test image
- 3. Calculate Haar features using Integral image & Haar filters of different scales