Problème de soutien Enoncé

Étude de la série
$$\sum_{n\geqslant 0} \ln\left(1+e^{-nx}\right)$$

Pour $n \in \mathbb{N}$, on considère l'application f_n définie sur \mathbb{R} par : $f_n(x) = \ln(1 + e^{-nx})$.

Pour tout réel x tel que la série $\sum_{n\geqslant 0} f_n(x)$ converge, on note $f(x)=\sum_{n=0}^{+\infty} f_n(x)$

Partie I: Convergence, monotonie et convexité

- 1. Montrer que le domaine de définition de f est $D =]0, +\infty[$
- 2. Soit a un réel strictement positif
 - (a) Montrer que $\sum_{n\geqslant 0} f_n$ converge uniformément sur $[a,+\infty[$
 - (b) A-t-on une convergence uniforme sur]0, a]?
- 3. Montrer que f est continue $]0, +\infty[$
- 4. Calculer la limite $\lim_{x\to +\infty} f(x)$ que l'on note λ
- 5. (a) Étudier la monotonie et la convexité de f_n sur $]0, +\infty[$
 - (b) En déduire la monotonie et la convexité de f sur $]0,+\infty[$

Partie II: Équivalent en 0

Soit x un réel strictement positif et φ_x l'application définie sur $[0,+\infty[$ par :

$$\varphi_x(t) = \ln\left(1 + e^{-tx}\right)$$

- 6. Justifier l'intégrabilité de φ_x sur $[0,+\infty[$
- 7. Montrer que

$$\int_0^{+\infty} \varphi_x(t) \, \mathrm{d}t \leqslant f(x) \leqslant \ln(2) + \int_0^{+\infty} \varphi_x(t) \, \mathrm{d}t$$

8. Soit g la fonction définie sur $]-1,+\infty[$ par

$$g(y) = \begin{cases} \frac{\ln(1+y)}{y} & \text{si } y \neq 0\\ 1 & \text{si } y = 0 \end{cases}$$

Montrer que g est développable en série entière en 0 et écrire son développement

- 9. (a) Montrer soigneusement que $\int_0^1 g(y) \, \mathrm{d}y = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2}$
 - (b) On admet que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi}{6}$, montrer que $\int_0^1 g(y) \, \mathrm{d}y = \frac{\pi^2}{12}$
- 10. (a) Trouver une relation entre $\int_0^{+\infty} \varphi_x(t) dt$ et $\int_0^1 g(y) dy$.
 - (b) En déduire qu'il existe une constante μ tel que $f(x) \sim \frac{\mu}{r \to 0+} \frac{\mu}{r}$

Partie III: Une autre expression de f

Soit $x \in]0, +\infty[$.

11. Montrer que la suite double $\left(\frac{(-1)^{k-1}e^{-nkx}}{k}\right)_{(k,n)\in\mathbb{N}^{*2}}$ est sommable.

Problème de soutien Enoncé

Étude de la série
$$\sum_{n\geqslant 0} \ln\left(1+e^{-nx}\right)$$

12. En déduire que
$$f(x) = \ln(2) + \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(e^{kx} - 1)}$$

13. Déterminer une valeur de
$$n$$
 pour que $f(1) - \ln(2) \simeq \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k(e^k - 1)}$ à 10^{-3} près

Partie IV: Régularité de f

- 14. Pour $n \in \mathbb{N}^*$, on pose $I_n = \{(p,q) \in \mathbb{N}^{*2} \mid pq = n\}$.
 - (a) Montrer que $(I_n)_{n\in\mathbb{N}^*}$ est une partition de \mathbb{N}^{*2}
 - (b) En déduire que pour tout $x \in \mathbb{R}_+^*$: $f(x) = \ln(2) + \sum_{n=1}^{+\infty} \omega_n e^{-nx}$ où $\omega_n = \sum_{k|n} \frac{(-1)^{k-1}}{k}$
- 15. Pour $n \geqslant 1$, on définit l'application g_n sur \mathbb{R}_+^* par $g_n(x) = \omega_n e^{-nx}$
 - (a) Soit $p \in \mathbb{N}$. Montrer que $\sum_{n\geqslant 1} g_n^{(p)}$ converge uniformément sur tout segment inclus dans $]0,+\infty[$
 - (b) Montrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^*

Étude de la série
$$\sum_{n\geqslant 0} \ln\left(1+e^{-nx}\right)$$

Partie I: Convergence, monotonie et convexité

- 1. Soit $x \in \mathbb{R}$
 - Si $x \leq 0$, alors $f_n(x) \geqslant \ln(2) \not\to 0$, donc la série $\sum_{n \geqslant 0} f_n(x)$ diverge grossièrement;
 - Si x > 0, alors $f_n(x) = \ln(1 + e^{-nx}) \sim e^{-nx}$ et la SATP $\sum_{n \geqslant 0} e^{-nx}$ est géométrique de raison $e^{-x} \in]0,1[$,

donc elle converge, alors par le critère de comparaison des séries à termes positifs $\sum_{n\geq 0} f_n(x)$ converge

Donc le domaine de définition de f est $]0, +\infty[$

- 2. Soit a un réel strictement positif
 - (a) Soit $x \in [a, +\infty[$, alors pour tout $n \in \mathbb{N}$, la fonction f_n est positive et décroissante sur \mathbb{R}_+^* , donc $f_n(x) \le f_n(a)$. Or la série $\sum_{n\geqslant 0} f_n(a)$ converge, donc la série $\sum_{n\geqslant 0} f_n$ converge normalement sur $[a, +\infty[$, puis elle converge uniformément sur $[a, +\infty[$
 - (b) Comme $||f_n||_{\infty}^{]0,a]} = \ln 2 \not\to 0$, donc la série $\sum_{n\geq 0} f_n$ ne converge pas uniformément sur]0,a]
- 3. Pour tout $n \in \mathbb{N}$, l'application f_n est continue sur \mathbb{R}_+^* ;
 - Soit $[a,b] \subset \mathbb{R}_+^*$, la série de fonctions $\sum_{n\geqslant 0} f_n$ converge uniformément sur $[a,+\infty[$, donc elle l'est sur [a,b]

Donc f est continue sur \mathbb{R}_+^*

4. La série $\sum_{n\geqslant 0} f_n$ converge uniformément sur $[a,+\infty[$ pour tout $a\in\mathbb{R}_+^*$ et pour tout $n\geqslant 0$,

$$f_n(x) \xrightarrow[x \to +\infty]{} \ell_n = \begin{cases} \ln 2 & \text{si } n = 0\\ 0 & \text{sinon} \end{cases}$$

Par le théorème d'interversion limite somme, f admet une limite finie en $+\infty$ et

$$\lim_{x \to +\infty} f(x) = \sum_{n=0}^{+\infty} \ell_n = \ln 2$$

Donc $\lambda = \ln 2$

5. (a) Soit $n \ge 0$, la fonction f_n est deux fois dérivable sur $]0, +\infty[$, avec

$$f'_n(x) = \frac{-ne^{-nx}}{1 + e^{-nx}} = \frac{-n}{1 + e^{nx}} \le 0$$
 et $f''_n(x) = \frac{n^2 e^{nx}}{(1 + e^{nx})^2} \ge 0$

Donc f_n est décroissante et convexe sur $]0, +\infty[$

- (b) **Monotonie**: Soit $x, y \in]0, +\infty[$ tels que x < y, alors pour tout $n \in \mathbb{N}$, on a $f_n(y) \leqslant f_n(x)$. Les deux séries $\sum_{n\geqslant 0} f_n(x)$ et $\sum_{n\geqslant 0} f_n(y)$ sont convergentes, alors $\sum_{n=0}^{+\infty} f_n(y) \leqslant \sum_{n=0}^{+\infty} f_n(x)$, soit $f(y) \leqslant f(x)$
 - Convexité: Soit $x, y \in]0, +\infty[$ et $\lambda \in [0, 1]$. Pour tout $n \in \mathbb{N}$, la fonction f_n est convexe sur $]0, +\infty[$: elle vérifie alors l'inégalité de convexité, soit

$$f_n(\lambda x + (1 - \lambda)y) \leq \lambda f_n(x) + (1 - \lambda)f_n(y)$$

Les deux membres de cette inégalité sont les termes de deux séries convergentes, donc

$$\sum_{n=0}^{+\infty} f_n \left(\lambda x + (1-\lambda)y \right) \leqslant \lambda \sum_{n=0}^{+\infty} f_n \left(x \right) + (1-\lambda) \sum_{n=0}^{+\infty} f_n \left(y \right)$$

Étude de la série
$$\sum_{n\geqslant 0} \ln\left(1+e^{-nx}\right)$$

Soit

$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$$

D'où f est convexe.

Partie II: Équivalent en 0

Soit x un réel strictement positif et φ_x l'application définie sur $[0, +\infty[$ par :

$$\varphi_x(t) = \ln\left(1 + e^{-tx}\right)$$

- 6. Soit x > 0.
 - L'application $\varphi_x: t \longmapsto \ln(1 + e^{-tx})$ est continue sur \mathbb{R}^+

— En
$$+\infty$$
: On a $\ln(1+e^{-tx}) \underset{+\infty}{\sim} e^{-xt} = o\left(\frac{1}{t^2}\right)$

Donc φ_x est intégrable sur \mathbb{R}^+

7. La fonction φ_x est continue et décroissance sur $[0, +\infty[$, alors pour $t \in [k, k+1]$, on a :

$$\varphi_x(t) \leqslant \varphi_x(k) \quad \Rightarrow \quad \int_k^{k+1} \varphi_x(t) \, \mathrm{d}t \leqslant \varphi_x(k)$$

On somme ces inégalités de k allant de 0 à $+\infty$, on obtient

$$\int_0^{+\infty} \varphi_x(t) \, \mathrm{d}t \leqslant f(x)$$

De même pour $t \in [k-1, k]$, on a :

$$\varphi_x(k) \leqslant \varphi_x(t) \quad \Rightarrow \quad \varphi_x(k) \leqslant \int_{k-1}^k \varphi_x(t) \, \mathrm{d}t$$

On somme ces inégalités de k allant de 1 à $+\infty$, on obtient

$$\sum_{k=1}^{+\infty} \varphi_x(k) \leqslant \int_0^{+\infty} \varphi_x(t) \, \mathrm{d}t$$

En ajoutant le terme manquant $\varphi_x(0) = \ln(2)$ aux deux membres de l'inégalité précédente, on obtient

$$f(x) \leqslant \ln(2) + \int_0^{+\infty} \varphi_x(t) dt$$

Ainsi l'encadrement demandé

$$\int_0^{+\infty} \varphi_x(t) \, \mathrm{d}t \leqslant f(x) \leqslant \ln(2) + \int_0^{+\infty} \varphi_x(t) \, \mathrm{d}t \tag{1}$$

8. La fonction $x \mapsto \ln(1+x)$ est développable en série entière sur]-1,1] et on a :

$$\forall x \in]-1,1], \ln(1+x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^n$$

Alors pour tout $x \in]-1,1] \setminus \{0\}$, on a $g(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} x^{n-1}$. Cette relation est aussi valable pour x=0. Donc g est développable en série entière en 0

9. (a) — Pour tout $n \ge 1$, l'application $g_n : x \longmapsto \frac{(-1)^{n-1}}{n} x^{n-1}$ est continue sur [0,1]

Étude de la série
$$\sum_{n \geqslant 0} \ln \left(1 + e^{-nx} \right)$$

— La série $\sum_{n\geqslant 1}g_n$ converge simplement sur [0,1], car pour tout $x\in[0,1]$, la série $\sum_{n\geqslant 1}g_n(x)$ est alternée vérifiant le critère spécial des séries alternées. En outre pour tout $x\in[0,1]$ et $n\in\mathbb{N}^*$, on a

$$|R_n(x)| = \left| \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1}}{k} x^{k-1} \right| \leqslant \frac{x^n}{n+1} \leqslant \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0$$

Ainsi la série $\sum_{n\geq 1} g_n$ converge uniformément sur [0,1]

Alors d'après le théorème d'interversion de \sum et \int , on a

$$\int_0^1 g(y) \, \mathrm{d}y = \int_0^1 \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} y^{n-1} \, \mathrm{d}y = \sum_{n=1}^{+\infty} \int_0^1 \frac{(-1)^{n-1}}{n} y^{n-1} \, \mathrm{d}y = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^2} y^{n-1} \, \mathrm{d}y = \sum_{n=1}^{+\infty} \frac{$$

(b) La famille $\left(\frac{(-1)^{k-1}}{k^2}\right)_{k\in\mathbb{N}^*}$ est sommable et les deux parties $I_1 = \{2k+1 \mid k \in \mathbb{N}\}$ et $I_2 = \{2k \mid k \in \mathbb{N}^*\}$ forment une partition de \mathbb{N}^* , alors par le théorème de la sommation par paquets, les deux familles $\left(\frac{1}{(2k+1)^2}\right)_{k\in\mathbb{N}^*}$ et $\left(\frac{1}{4k^2}\right)_{k\in\mathbb{N}^*}$ sont sommables et on a

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k^2} = -\sum_{k=1}^{+\infty} \frac{1}{4k^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

$$= -\sum_{k=1}^{+\infty} \frac{1}{2k^2} + \sum_{k=1}^{+\infty} \frac{1}{4k^2} + \sum_{k=0}^{+\infty} \frac{1}{(2k+1)^2}$$

$$= -\sum_{k=1}^{+\infty} \frac{1}{2k^2} + \sum_{k=1}^{+\infty} \frac{1}{k^2} = \sum_{k=1}^{+\infty} \frac{1}{2k^2} = \frac{\pi^2}{12}$$

Donc
$$\int_0^1 g(y) \, \mathrm{d}y = \frac{\pi^2}{12}$$

10. (a) L'application $\psi: \left\{ \begin{array}{ccc}]0,+\infty[& \longrightarrow &]0,1[\\ t & \longmapsto & e^{-xt} \end{array} \right.$ est une bijection de \mathcal{C}^1 de $]0,+\infty[$ vers]0,1[et $\int_0^1 g(y)\,\mathrm{d}y$ converge, donc

$$\int_0^1 g(y) \, dy = \int_0^{+\infty} \frac{\ln(1 + e^{-xt})}{e^{-xt}} |\psi'(t)| \, dt$$
$$= x \int_0^{+\infty} \ln(1 + e^{-xt}) \, dt$$
$$= x \int_0^{+\infty} \varphi_x(t) \, dt$$

Donc
$$\int_0^{+\infty} \varphi_x(t) dt = \frac{1}{x} \int_0^1 g(y) dy = \frac{\pi}{12x}$$
.

(b) D'après l'encadrement 1, on a : $\frac{\pi}{12x} \leqslant f(x) \leqslant \ln 2 + \frac{\pi}{12x}$, donc $f(x) \underset{x \to 0^+}{\sim} \frac{\pi}{12x}$

Partie III: Régularité de f

Soit $x \in]0, +\infty[$.

11. — Pour $k \in \mathbb{N}^*$, la série $\sum_{n\geqslant 1} \frac{e^{-nkx}}{k}$ est géométrique de raison $e^{-kx} \in]0,1[$, donc elle converge de somme $T_k = \frac{1}{k} \frac{e^{-kx}}{1-e^{-kx}} \sim \frac{e^{-kx}}{k};$

Étude de la série
$$\sum_{n\geqslant 0} \ln\left(1+e^{-nx}\right)$$

— La SATP $\sum_{k\geqslant 1}\frac{e^{-kx}}{k}$ est convergente, d'après la règle de D'Alembert, et par le critère de comparaison des SATP $\sum_{k\geqslant 1}T_k$ converge

D'où la sommabilité de la suite double $\left(\frac{(-1)^{k-1}e^{-nkx}}{k}\right)_{(k,n)\in\mathbb{N}^{*2}}$ est sommable.

12. Par le théorème de Fubini

$$\sum_{n=1}^{+\infty} \sum_{k=1}^{+\infty} \frac{(-1)^{k-1} e^{-nkx}}{k} = \sum_{k=1}^{+\infty} \sum_{n=1}^{+\infty} \frac{(-1)^{k-1} e^{-nkx}}{k}$$

Avec $\forall n \in \mathbb{N}^*, e^{-nx} \in]0,1[$ et $\forall t \in]-1,1], \ln(1+t) = \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k} t^k$, on tire

$$\sum_{k=1}^{+\infty} \frac{(-1)^{k-1} e^{-nkx}}{k} = \ln\left(1 + e^{-nx}\right)$$

En outre $\forall k \in \mathbb{N}^*, e^{-kx} \in]0,1[:$

$$\sum_{n=1}^{+\infty} \frac{(-1)^{k-1}e^{-nkx}}{k} = \frac{(-1)^{k-1}}{k} \frac{e^{-kx}}{1 - e^{-kx}} = \frac{(-1)^{k-1}}{k} \frac{1}{e^{kx} - 1}$$

$$\text{Donc } f(x) = \sum_{n=0}^{+\infty} \ln \left(1 + e^{-nx} \right) = \ln(2) + \sum_{n=1}^{+\infty} \ln \left(1 + e^{-nx} \right) = \ln(2) + \sum_{k=1}^{+\infty} \frac{(-1)^{k-1}}{k(e^{kx} - 1)}$$

13. On a $f(1) - \ln(2) - \sum_{k=1}^{n} \frac{(-1)^{k-1}}{k(e^k - 1)} = \sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1}}{k(e^k - 1)}$ et $\sum_{k\geqslant 1} \frac{(-1)^{k-1}}{k(e^k - 1)}$ est une série alternée vérifiant le critère spécial des séries alternées donc $\left|\sum_{k=n+1}^{+\infty} \frac{(-1)^{k-1}}{k(e^k - 1)}\right| \leqslant \frac{1}{(n+1)(e^{n+1} - 1)}$, donc il suffit de choisir n tel que $\frac{1}{(n+1)(e^{n+1} - 1)} \leqslant 10^{-3}$. la valeur n = 5 répond à la question car $\frac{1}{6(e^6 - 1)} \simeq 0,0004$, donc $\sum_{k=1}^{5} \frac{(-1)^{k-1}}{k(e^k - 1)}$ est une valeur approchée de $f(1) - \ln(2)$ à 10^{-3} près

Partie IV: Régularité de f

- 14. Pour $n \in \mathbb{N}^*$, on pose $I_n = \{(p,q) \in \mathbb{N}^{*2} \mid pq = n\}$.
 - (a) Soit $n \in \mathbb{N}^*$ l'élément $(1, n) \in I_n$, donc $I_n \neq \emptyset$
 - Soit $m,n\in\mathbb{N}^*$ tels que $m\neq n.$ Si $(p,q)\in I_n\cap I_m,$ alors pq=m=n, donc m=n. Absurde
 - Pour tout $n \in \mathbb{N}^*$, on a $I_n \subset \mathbb{N}^{*2}$, donc $\bigcup_{n \in \mathbb{N}^*} I_n \subset \mathbb{N}^{*2}$. Inversement si $(p,q) \in \mathbb{N}^{*2}$, on pose n = pqq, donc $(p,q) \in I_n$, ainsi $\mathbb{N}^{*2} \subset \bigcup_{n \in \mathbb{N}^*} I_n$. D'où $\bigcup_{n \in \mathbb{N}^*} I_n = \mathbb{N}^{*2}$

On conclut que $(I_n)_{n\in\mathbb{N}^*}$ est une partition de \mathbb{N}^{*2} ;

Étude de la série
$$\sum_{n\geqslant 0} \ln\left(1+e^{-nx}\right)$$

(b) Par le théorème de la sommation par paquets on a :

$$f(x) - \ln 2 = \sum_{(p,q) \in \mathbb{N}^{*2}} \frac{(-1)^{q-1} e^{-pqx}}{q}$$

$$= \sum_{n=1}^{+\infty} \sum_{(p,q) \in I_n} \frac{(-1)^{q-1} e^{-pqx}}{q}$$

$$= \sum_{n=1}^{+\infty} \sum_{(p,q) \in I_n} \frac{(-1)^{q-1} e^{-nx}}{q}$$

$$= \sum_{n=1}^{+\infty} \sum_{q|n} \frac{(-1)^{q-1} e^{-nx}}{q}$$

Donc pour tout
$$x \in \mathbb{R}_+^*$$
: $f(x) - \ln 2 = \sum_{n=1}^{+\infty} \omega_n e^{-nx}$ où $\omega_n = \sum_{q|n} \frac{(-1)^{q-1}}{q}$

- 15. Remarquons que pour $n \ge 1$, on a $|\omega_n| \le H_n$, avec $H_n = \sum_{k=1}^n \frac{1}{k} \sim \ln(n)$
 - (a) L'application g_n est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^* et que $\forall x \in \mathbb{R}_+^* : g_n^{(p)}(x) = (-n)^p \omega_n e^{-nx}$. Soit $[a,b] \subset \in \mathbb{R}_+^*$, alors pour tout $x \in [a,b]$, on a

$$\left| g_n^{(p)}(x) \right| = n^p \left| \omega_n \right| e^{-nx} \leqslant n^p H_n e^{-na}$$

On a
$$\frac{(n+1)^p H_{n+1} e^{-(n+1)a}}{n^p H_n e^{-na}} \xrightarrow[n \to +\infty]{} e^{-a} < 1$$
. Par le critère de D'Alembert la série $\sum_{n\geqslant 1} n^p H_n e^{-na}$ converge,

donc $\sum_{n\geqslant 1}g_n^{(p)}$ converge normalement sur [a,b], et, par suite, elle converge uniformément sur [a,b]

- (b) On a
 - $--\forall n \in \mathbb{N}^*, g_n \in C^{\infty}(\mathbb{R}_+^*, \mathbb{R});$
 - La série $\sum_{n\geq 1} g_n$ converge simplement sur \mathbb{R}_+^* ;
 - $\forall p \geqslant 1, \sum_{n \geqslant 1} g_n^{(p)}$ converge uniformément sur tout $[a,b] \subset \mathbb{R}_+^*$.

D'après le théorème de dérivation terme à terme l'application f est de classe \mathcal{C}^{∞} sur \mathbb{R}_+^*