

Amendments to the Claims

- 1. (CANCELED)
- 2. (CURRENTLY AMENDED) A compound of formula (Ia):

$$\mathbb{R}^{1}$$
 \mathbb{N}^{6}
 \mathbb{R}^{3}
 \mathbb{R}^{3}

or a pharmaceutically acceptable salt, $\frac{\text{prodrug}}{\text{prodrug}}$ tautomer $\frac{\text{or}}{\text{or}}$ hydrate $\frac{\text{or solvate}}{\text{or solvate}}$ thereof, wherein \mathbb{R}^1 is

wherein R^{2a} is independently selected from the group consisting of: (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_{10}) cycloalkyl, (C_5-C_{10}) aryl, (C_1-C_6) alkylaryl, amino, carbonyl, carboxyl, (C_2-C_6) acid, (C_1-C_6) ester, (C_1-C_6) alkoxy, nitro, halo, hydroxyl, (C_1-C_6) alkoxy (C_1-C_6) ester, and where (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, (C_3-C_{10}) cycloalkyl, (C_5-C_{10}) aryl, amino, (C_2-C_6) acid, (C_1-C_6) ester, and (C_1-C_6) alkoxy of R^{2a} is optionally substituted by at least one moiety independently selected from the group consisting of halo, (C_1-C_6) alkyl,

```
phenyl-(C=O)-[((C_1-C_6)alkyl)-N]-, H_2N-(C=O)-NH-, (C_1-C_6)alkyl-HN-(C=O)-NH-, ((C_1-
 C_6)alkyl)<sub>2</sub>N-(C=O)-NH-, (C_1-C_6)alkyl-HN-(C=O)-[((C_1-C_6)alkyl)-N]-,
((C_1-C_6)alkyl)_2N-(C=O)-[(C_1-C_6)alkyl-N]-, phenyl-HN-(C=O)-NH-,
(phenyl)_2N-(C=O)-NH-, phenyl-HN-(C=O)-[((C_1-C_6)alkyl)-N]-,
(phenyl-)_2N-(C=O)-[((C_1-C_6)alkyl)-N]-, (C_1-C_6)alkyl-O-(C=O)-NH-,
(C_1-C_6)alkyl-O-(C=O)-[((C_1-C_6)alkyl)-N]-, phenyl-O-(C=O)-NH-,
phenyl-O-(C=O)-[(alkyl)-N]-, (C<sub>1</sub>-C<sub>6</sub>)alkyl-SO<sub>2</sub>NH-, phenyl-SO<sub>2</sub>NH-,
 (C_1-C_6)alkyl-SO_2-, phenyl-SO_2-, hydroxy, (C_1-C_6)alkoxy, perhalo(C_1-C_6)alkoxy, phenoxy,
(C_1-C_6) alkyl-(C=O)-O-, (C_1-C_6) ester-(C_1-C_6) alkyl-O-, phenyl-(C=O)-O-, (C_1-C_6) alkyl-(C=O)-O-, (C_1-C_6)-O-, (C_1-C_6)
C_6)alkyl-HN-(C=O)-O-, ((C_1-C_6)alkyl)<sub>2</sub>N-(C=O)-O-, phenyl-HN-(C=O)-O-, and (phenyl)<sub>2</sub>N-
(C=O)-O-;
each R<sup>3</sup> is independently selected from the group consisting of: hydrogen, halo, halo(C<sub>1</sub>-
C_6)alkyl, (C_1-C_6)alkyl, (C_2-C_6)alkenyl, (C_2-C_6)alkynyl,
perhalo(C_1-C_6)alkyl, phenyl, (C_5-C_{10})heterocyclic,
(C<sub>3</sub>-C<sub>10</sub>)cycloalkyl, hydroxy, (C<sub>1</sub>-C<sub>6</sub>)alkoxy, perhalo(C<sub>1</sub>-C<sub>6</sub>)alkoxy, phenoxy,
(C_5-C_{10})heteroaryl-O-, (C_5-C_{10})heterocyclic-O-, (C_3-C_{10})cycloalkyl-O-,
(C_1-C_6)alkyl-S-, (C_1-C_6)alkyl-SO<sub>2</sub>-, (C_1-C_6)alkyl-NH-SO<sub>2</sub>-, (C_2-C_6)alkyl-NH-SO<sub>2</sub>-, (C_1-C_6)alkyl-NH-SO<sub>2</sub>-, (C_1-C_6)
<sub>6</sub>HN-, (C_1-C_6)alkyl HN-, (C_1-C_6)alkylamino, [(C_1-C_6)alkyl]<sub>2</sub>-amino,
(C_1-C_6)alkyl-SO_2-NH-, amino(C=O)-, aminoO_2S-, (C_1-C_6)alkyl-(C=O)-NH-,
(C_1-C_6)alkyl-(C=O)-(((C_1-C_6)alkyl)-N]-, phenyl-(C=O)-NH-, phenyl-(C=O)-((C_1-C_6)alkyl)-N]-
C_6)alkyl)-N]-, (C_1-C_6)alkyl-(C=O)-, phenyl-(C=O)-,
(C_5-C_{10})heteroaryl-(C=O)-, (C_5-C_{10})heterocyclic-(C=O)-, (C_3-C_{10})cycloalkyl-(C=O)-, HO-
(C=O)-, (C_1-C_6)alkyl-O-(C=O)-, H_2N(C=O)-, (C_1-C_6)alkyl-NH-(C=O)-,
[(C_1-C_6)alkyl]_2-N-(C=O)-, phenyl-NH-(C=O)-, phenyl-[((C_1-C_6)alkyl)-N]-(C=O)-, (C<sub>5</sub>-
```

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, amino of R^3 is optionally substituted by at least one substituent independently selected from (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N_- , $Ph(CH_2)_{1-6}HN_-$, and (C_1-C_6) alkylHN_-;

 C_{10})heteroaryl-NH-(C=O), (C_5 - C_{10})heterocyclic-NH-(C=O), (C_3 - C_{10})cycloalkyl-NH-(C=O)- and (C_1 - C_6)alkyl-(C=O)-O-;

s is an integer from one to five;

```
R^4 \text{ is selected from the group consisting of: hydrogen, halo, halo}(C_1\text{-}C_6)\text{alkyl, }(C_2\text{-}C_6)\text{alkynyl, }(C_2\text{-}C_6)\text{alkenyl, }(C_2\text{-}C_6)\text{alkynyl, }(C_2\text{-}C_6)\text{alkynyl, }(C_3\text{-}C_{10})\text{heteroaryl, }(C_5\text{-}C_{10})\text{heteroeyelie, }(C_3\text{-}C_{10})\text{cycloalkyl, hydroxy, }(C_1\text{-}C_6)\text{alkoxy, perhalo}(C_1\text{-}C_6)\text{alkoxy, phenoxy, }(C_5\text{-}C_{10})\text{heteroaryl} \cdot O_+, (C_5\text{-}C_{10})\text{heteroeyelie} \cdot O_+, (C_3\text{-}C_{10})\text{cycloalkyl-}O_+, (C_1\text{-}C_6)\text{alkyl-SO}_2, (C_1\text{-}C_6)\text{alkyl-NH-SO}_2, O_2\text{N-, NC-, amino, }(C_1\text{-}C_6)\text{alkyl-SO}_2, (C_1\text{-}C_6)\text{alkyl-NH-SO}_2, O_2\text{N-, NC-, amino, }(C_1\text{-}C_6)\text{alkyl-SO}_2, NH_-, amino}(C=0)_-, aminoSO_2_-, (C_1\text{-}C_6)\text{alkyl-}(C=0)_-NH_-, (C_1\text{-}C_6)\text{alkyl-SO}_2, NH_-, amino}(C=0)_-, aminoSO_2_-, (C_1\text{-}C_6)\text{alkyl-}(C=0)_-NH_-, (C_1\text{-}C_6)\text{alkyl-}(C=0)_-, (C_1\text{-}C_6)\text{alkyl-N})_-, (C_1\text{-}C_6)\text{alkyl-}(C=0)_-, nhenyl-(C=0)_-, nhenyl-(C=0)_-, (C_5\text{-}C_{10})\text{heteroaryl-}(C=0)_-, (C_5\text{-}C_{10})\text{heteroeyelie-}(C=0)_-, (C_1\text{-}C_6)\text{alkyl-N})_-(C=0)_-, (C_1\text{-}C_6)\text{alkyl-N})_-(C=0)_-, (C_1\text{-}C_6)\text{alkyl-N})_-(C=0)_-, (C_5\text{-}C_{10})\text{heteroaryl-NH-}(C=0)_-, nhenyl-((C_1\text{-}C_6)\text{alkyl-N})_-(C=0)_-, (C_5\text{-}C_{10})\text{heteroeyelie-}(NH-(C=0)_-, (C_5\text{-}C_{10})\text{heteroaryl-NH-}(C=0)_-, (C_5\text{-}C_{10})\text{heteroeyelie-}(NH-(C=0)_-, (C_5\text{-}C_{10})\text{heter
```

where alkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclic, cycloalkyl, alkoxy, phenoxy, and amino of R^4 is optionally substituted by at least one substituent independently selected from the group consisting of (C_1-C_6) alkyl, (C_1-C_6) alkoxy, halo (C_1-C_6) alkyl, halo, H_2N_- , $Ph(CH_2)_{1-6}-NH_-$, and (C_1-C_6) alkyl NH_- ; and

```
R^6 \text{ is selected from the group consisting of hydrogen, } (C_1\text{-}C_6)\text{alkyl, } (C_2\text{-}C_6)\text{alkenyl, } (C_2\text{-}C_6)\text{alkynyl, phenyl, } (C_5\text{-}C_{10})\text{heteroaryl, } (C_5\text{-}C_{10})\text{heteroacyclie, } (C_3\text{-}C_{10})\text{cycloalkyl, } (C_1\text{-}C_6)\text{alkyl-}(SO_2)\text{-, phenyl-}(SO_2)\text{-, } H_2\text{N-}(SO_2)\text{-, } (C_1\text{-}C_6)\text{alkyl-}\text{NH-}(SO_2)\text{-, } (C_1\text{-}C_6)\text{alkyl-}(C=O)\text{-, phenyl-}\text{NH-}(SO_2)\text{-, } (phenyl)_2\text{N-}(SO_2)\text{-, } (C_1\text{-}C_6)\text{alkyl-}(C=O)\text{-, phenyl-}(C=O)\text{-, } (C_5\text{-}C_{10})\text{heteroaryl-}(C=O)\text{-, } (C_5\text{-}C_{10})\text{heteroacyclie-}(C=O)\text{-, } (C_3\text{-}C_{10})\text{cycloalkyl-}(C=O)\text{-, } (C_1\text{-}C_6)\text{alkyl-}O\text{-}(C=O)\text{-, } (C_1\text{-}C_6)\text{alkyl-}\text{NH-}(C=O)\text{-, } (C_3\text{-}C_{10})\text{cycloalkyl-}O\text{-}(C=O)\text{-, } (C_5\text{-}C_{10})\text{heteroacyclie-}\text{NH-}(C=O)\text{-, } (C_5\text{-
```

optionally substituted with at least one moiety independently selected from the group consisting of halo, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, perhalo(C₁-C₆)alkyl, (C₃- C_{10})cycloalkyl, phenyl, benzyl, (C_5-C_{10}) heterocyclic, (C_5-C_{10}) heteroaryl, (C_1-C_6) alkyl- SO_2 -, formyl, NC-, (C_1-C_6) alkyl-(C=O)-, (C_3C_{10}) cycloalkyl-(C=O)-, phenyl-(C=O)-, (C_5-C_{10}) heterocyclic (C=O)-, (C_5-C_{10}) heteroaryl (C=O)-, (C=O)-, (C_1-C_6) alkyl-O-(C=O)-, (C_3-C_{10}) cycloalkyl-O-(C=O)-, (C_5-C_{10}) heterocyclic-O-(C=O)-, (C_1-C_6) alkyl-O-(C=O)-, (C_3-C_{10}) cycloalkyl-O-(C=O)-, (C_5-C_{10}) heterocyclic-O-(C=O)-, (C_1-C_1) -C₆)alkyl-NH-(C=O)-, (C₃-C₁₀)cycloalkyl-NH-(C=O)-, phenyl-NH-(C=O)-, (C_5-C_{10}) heterocyclic-NH-(C=O)-, (C_5-C_{10}) heteroaryl-NH-(C=O)-, $((C_1-C_6)alkyl)_2$ -N-(C=O)-, phenyl- $[((C_1-C_6)alkyl)-N]-(C=O)$ -, hydroxy, $(C_1-C_6)alkoxy$, perhalo $(C_1-C_6)alkoxy$, $(C_3-C_6)alkoxy$, $(C_3-C_6)alkox$ C_{10})cycloalkyl-O-, phenoxy, (C_5-C_{10}) heterocyclic-O-, (C_5-C_{10}) heteroaryl-O-, (C_1-C_6) alkyl-(C=O)-O-, (C₃-C₁₀)cycloalkyl-(C=O)-O-, phenyl-(C=O)-O-, (C₅-C₁₀)heterocyclic (C=O)-O-, (C_5-C_{10}) heteroaryl (C_7-C_6) alkyl amino, (C_1-C_6) alkyl amino, $((C_1-C_6)$ alkyl)₂-amino, formamidyl, (C₁-C₆)alkyl-(C=O)-NH-, (C_3-C_{10}) cycloalkyl-(C=O)-NH-, phenyl-(C=O)-NH-, (C_5-C_{10}) heterocyclic-(C=O)-NH-, (C_5-C_{10}) C₆)alkyl-N]-, (C₁-C₆)alkyl-SO₂NH-, (C₃-C₁₀)cycloalkyl-SO₂NH-, phenyl-SO₂NH-, (C₅-C₁₀)heterocyclic SO₂NH and (C₅-C₁₀)heteroaryl-SO₂NH; wherein the phenyl or heteroaryl moiety of a R⁶ substituent is optionally further substituted with at least one radical independently selected from the group consisting of halo, (C_1-C_6) alkyl, (C_1-C_6) alkoxy, perfluoro(C_1 - C_6)alkyl and perfluoro(C_1 - C_6)alkoxy. with the proviso that \mathbb{R}^4 -contains at least one heteroatom.

- 3. (PREVIOUSLY CANCELED)
- 4. (PREVIOUSLY CANCELED)
- 5. (PREVIOUSLY CANCELED)
- 6. (PREVIOUSLY CANCELED)
- 7. (PREVIOUSLY CANCELED)
- 8. (PREVIOUSLY CANCELED)

- 9. (CANCELED)
- 10. (CANCELED)
- 11. (CANCELED)
- 12. (CANCELED)
- 13. (CANCELED)
- 14. (CANCELED)
- 15. (CANCELED)
- 16. (NEW) A compound selected from the group consisting of 1-Methyl-6-[3-(6-methyl-pyridin-2-yl)-1H-pyrazol-4-yl]-1H-benzotriazole, 1-Methyl-6-[1-methyl-3-(6-methyl-pyridin-2-yl)-1H-pyrazol-4-yl]-1H-benzotriazole and 2-Methyl-5-[3-(6-methyl-pyridin-2-yl)-1H-pyrazol-4-yl]-2H-benzotriazole; or a pharmaceutically acceptable salt thereof.
- 17. (NEW) A pharmaceutical composition comprising a compound chosen from the group consisting of 1-Methyl-6-[3-(6-methyl-pyridin-2-yl)-1H-pyrazol-4-yl]-1H-benzotriazole, 1-Methyl-6-[1-methyl-3-(6-methyl-pyridin-2-yl)-1H-pyrazol-4-yl]-1H-benzotriazole and 2-Methyl-5-[3-(6-methyl-pyridin-2-yl)-1H-pyrazol-4-yl]-2H-benzotriazole; or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.