Algebra I Blatt 6

Thorben Kastenholz Jendrik Stelzner

23. Mai 2014

Aufgabe 1

 $X\subseteq W$ ist genau dann die Verschwindungsmenge einer Menge von Polynomen $\mathfrak{a}\in \mathcal{P}(V)$, wenn f(x)=0 für alle $f\in \mathfrak{a}, x\in X$ und es für jedes $y\in W\smallsetminus X$ ein $f\in \mathfrak{a}$ gibt, so dass $f(y)\neq 0$. Für alle $y\in W\smallsetminus X$ ist dann f nicht Zarisksi-dicht in $X\cup\{y\}$.

Ist X für alle $y \in W \setminus X$ nicht Zariski-dicht in $X \cup \{y\}$, so ist X in keiner echt größeren Teilmenge von W Zariski-dicht, denn ist $X \subsetneq Y \subseteq W$ und X Zariski-dicht in Y, so ist X auch Zariski-dicht in $X \cup \{y\}$ für alle $y \in Y \setminus X$.

Ist X in keiner echt größeren Teilmenge von W Zariski-dicht, so betrachten wir

$$\mathfrak{a} := \mathcal{I}(X) = \{ f \in \mathcal{P}(V) \mid f(x) = 0 \text{ für alle } x \in X \}.$$

Es ist klar, dass $X \subseteq \mathcal{V}(\mathfrak{a})$, und da für alle $f \in \mathcal{P}(V)$

$$f_{|X} = 0 \Rightarrow f \in \mathfrak{a} \Rightarrow f_{|\mathcal{V}(\mathfrak{a})} = 0$$

liegt X Zariski-dicht in $\mathcal{V}(\mathfrak{a})$. Nach Annahme ist deshalb $X = \mathcal{V}(\mathfrak{a})$.