

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования Московский госуларственный технически

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

по лабораторной работе № __3__

Название: Исследование синхронных счетчиков

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-41Б		E.A.
			Варламова
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А.Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы — изучение принципов построения счетчиков, овладение методом синтеза синхронных счетчиков, экспериментальная оценка динамических параметров счетчиков, изучение способов наращивания разрядности синхронных счетчиков.

1. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом на Т- триггерах. Проверить работу счётчика:

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рисунок 1 Четырёхразрядный синхронный суммирующий счётчик с параллельным переносом на T- триггерах от одиночных импульсов

Рисунок 2 Четырёхразрядный синхронный суммирующий счётчик с параллельным переносом на T- триггерах от импульсов генератора

Рисунок 3 Временные диаграммы четырёхразрядного синхронного суммирующего счётчика

Рисунок 4 Время задержки распространения счетчика

Полученная задержка равна 20.225 ns. Время, через которое закончатся все переходные процессы в триггере, и он будет готов к очередному импульсу, составляет удвоенное время задержки, т.е. \sim 40 ns. Максимальная частота счета, таким образом, составляет $1/(40 \text{ ns}) = 25 \text{ M}\Gamma$ ц.

2. Синтезировать двоично-десятичный счётчик с заданной последовательностью состояний. Начертить схему счётчика на элементах интегрального базиса (И-НЕ; И, ИЛИ, НЕ), синхронных ЈК-триггерах.

Вариант: 4: 0,1,2,3,4,5,8,9,10,11

Q3	Q2	Q1	Q0	Q3*	Q2*	Q1*	Q0*	Ј3	K3	J2	K2	J1	K1	J0	K0
0	0	0	0	0	0	0	1	0	*	0	*	0	*	1	*
0	0	0	1	0	0	1	0	0	*	0	*	1	*	*	1
0	0	1	0	0	0	1	1	0	*	0	*	*	0	1	*
0	0	1	1	0	1	0	0	0	*	1	*	*	1	*	1
0	1	0	0	0	1	0	1	0	*	*	0	0	*	1	*
0	1	0	1	1	0	0	0	1	*	*	1	0	*	*	1
1	0	0	0	1	0	0	1	*	0	0	*	0	*	1	*
1	0	0	1	1	0	1	0	*	0	0	*	1	*	*	1
1	0	1	0	1	0	1	1	*	0	0	*	*	0	1	*
1	0	1	1	0	0	0	0	*	1	0	*	*	1	*	1

Таблица 1 Обобщённая таблица функционирования счётчика

Минимизация:

	J3 = Q0 * Q2								
Q3,Q2/Q1,Q0	00	01	11	10					
00	0	0	0	0					
01	0	1	-	-					
11	-	-	-	-					
10	*	*	*	*					

Таблица 2 Минимизация J3

	K3 = Q0 * Q1								
Q3,Q2/Q1,Q0	00	01	11	10					
00	*	*	*	*					
01	*	*	-	-					
11	-	-	-	-					
10	0	0	1	0					

Таблица 3 Минимизация К3

J2 = Q0 * Q1 * (!Q3)								
Q3,Q2/Q1,Q0	00	01	11	10				
00	0	0	1	0				
01	*	*	-	-				
11	-	-	-	-				
10	0	0	0	0				

Таблица 4 Минимизация J2

	K2 = (!Q3) * Q0								
Q3,Q2/Q1,Q0	00	01	11	10					
00	*	*	*	*					
01	0	1	-	-					
11	-	-	-	-					
10	*	*	*	*					

Таблица 5 Минимизация K2

	J1 = Q0 * (!Q2)								
Q3,Q2/Q1,Q0	00	01	11	10					
00	0	1	*	*					
01	0	0	-	-					
11	-	-	-	-					
10	0	1	*	*					

Таблица 6 Минимизация J1

	K1 = Q0								
Q3,Q2/Q1,Q0	00	01	11	10					
00	*	*	1	0					
01	*	*	-	-					
11	-	-	-	-					
10	*	*	1	0					

Таблица 7 Минимизация К1

	$\mathbf{J0} = 1$								
Q3,Q2/Q1,Q0	00	01	11	10					
00	1	*	*	1					
01	1	*	-	-					
11	-	-	-	-					
10	1	*	*	1					

Таблица 8 Минимизация J0

		K0 = 1		
Q3,Q2/Q1,Q0	00	01	11	10
00	*	1	1	*
01	*	1	-	-
11	-	-	-	-
10	*	1	1	*

Таблица 9 Минимизация КО

Соберём схему:

Рисунок 5 Схема двоично-десятичного счётчика

Видим, что счётчик построен верно:

Рисунок 6 Временные диаграммы двоично-десятичного счётчика

3. Собрать десятичный счётчик, используя элементную базу приложения Multisim или учебного макета. Установить счётчик в начальное состояние, подав на установочные входы R соответствующий сигнал.

Q3	Q2	Q1	Q0	Q3*	Q2*	Q1*	Q0*	Ј3	K3	J2	K2	J1	K1	J0	K0
0	0	0	0	0	0	0	1	0	*	0	*	0	*	1	*
0	0	0	1	0	0	1	0	0	*	0	*	1	*	*	1
0	0	1	0	0	0	1	1	0	*	0	*	*	0	1	*
0	0	1	1	0	1	0	0	0	*	1	*	*	1	*	1
0	1	0	0	0	1	0	1	0	*	*	0	0	*	1	*
0	1	0	1	0	1	1	0	0	*	*	0	1	*	*	1
0	1	1	0	0	1	1	1	0	*	*	0	*	0	1	*
0	1	1	1	1	0	0	0	1	*	*	1	*	1	*	1
1	0	0	0	1	0	0	1	*	0	0	*	0	*	1	*
1	0	0	1	0	0	0	0	*	1	0	*	0	*	*	1

Таблица 10 Обобщённая таблица функционирования десятичного счётчика

Минимизация:

J3 = Q0 *Q1* Q2								
Q3,Q2/Q1,Q0	00	01	11	10				
00	0	0	0	0				
01	0	0	1	0				
11	-	-	-	-				
10	*	*	-	-				

Таблица 11 Минимизация **J**3

K3 = Q0					
Q3,Q2/Q1,Q0	00	01	11	10	
00	*	*	*	*	
01	*	*	*	*	
11	-	-	-	-	
10	0	1	-	-	

Таблица 11 Минимизация К3

J2 = Q0 * Q1					
Q3,Q2/Q1,Q0	00	01	11	10	
00	0	0	1	0	
01	*	*	*	*	
11	-	-	-	-	
10	0	0	-	-	

Таблица 11 Минимизация J3

K2 = Q0 * Q1					
Q3,Q2/Q1,Q0	00	01	11	10	
00	*	*	*	*	
01	0	0	1	0	
11	-	-	-	-	
10	*	*	-	-	

Таблица 11 Минимизация J2

J1 = (!Q3) * Q0					
Q3,Q2/Q1,Q0	00	01	11	10	
00	0	1	*	*	
01	0	1	*	*	
11	-	-	-	-	
10	0	0	-	-	

Таблица 11 Минимизация J1

K1 = Q0					
Q3,Q2/Q1,Q0	00	01	11	10	
00	*	*	1	0	
01	*	*	1	0	
11	-	-	-	-	
10	*	*	-	-	

Таблица 11 Минимизация К1

$\mathbf{J0} = 1$					
Q3,Q2/Q1,Q0	00	01	11	10	
00	1	*	*	1	
01	1	*	*	1	
11	-	-	-	-	
10	1	*	-	-	

Таблица 11 Минимизация J0

K0 = 1					
Q3,Q2/Q1,Q0	00	01	11	10	
00	*	1	1	*	
01	*	1	1	*	
11	-	-	-	-	
10	*	1	-	-	

Таблица 11 Минимизация К0

Построим схему:

Рисунок 7 Схема десятичного счётчика

Видим, что схема построена корректно:

Рисунок 8 Временные диаграммы десятичного счётчика

4. Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом. Проверить работу счётчика:

- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рисунок 9 Схема четырёхразрядного счётчика на D-триггерах от одиночных импульсов

Рисунок 10 Схема четырёхразрядного счётчика на D-триггерах от импульсов генератора

Рисунок 11 Временные диаграммы четырёхразрядного счётчика на D-триггерах

Рисунок 12 Время задержки четырёхразрядного счётчика на D-триггерах

Полученная задержка равна 8.373 ns. Время, через которое закончатся все переходные процессы в триггере, и он будет готов к очередному импульсу, составляет удвоенное время задержки, т.е. ~ 16 ns. Максимальная частота счета, таким образом, составляет 1/(16 ns) = 62.5 МГц.

- **5.** Исследование четырёхразрядного синхронного суммирующего счётчика с параллельным переносом ИС К555ИЕ9, аналог ИС 74LS160. Проверить работу счётчика:
- от одиночных импульсов, подключив к прямым выходам разрядов световые индикаторы,
- от импульсов генератора.

Просмотреть на экране логического анализатора (осциллографа) временную диаграмму сигналов на входе и выходах счетчика, провести анализ временной диаграммы сигналов счетчика. Измерить время задержки распространения счетчика и максимальную частоту счета.

Рисунок 13 Суммирующий счётчик ИС 74LS160 от одиночных импульсов

Рисунок 14 Суммирующий счётчик ИС 74LS160

6. Исследование схем наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями и по структуре «быстрого» счета.

Рисунок 15 Схема наращивания разрядности счетчиков ИЕ9 до четырех секций с последовательным переносом между секциями

Рисунок 16 Схема наращивания разрядности счетчиков ИЕ9 до четырех секций по структуре «быстрого» счета

Вывод: в результате выполнения работы были изучены принципы построения счетчиков, получены навыки синтеза синхронных счетчиков, были экспериментально оценены динамические параметры счетчиков, изучены способы наращивания разрядности синхронных счетчиков.