Künstliche Intelligenz selbst gemacht

Ein neuronales Netz mit Python entwickeln

Notationen im neuronalen Netz

- x_i *i*-ter Eintrag im Inputvektor des Trainingsdatensatzes
- $a_{j}^{\left(l
 ight)}$ Aktivierung des j-ten Neurons im Layer l
- $b^{(l)}$ Bias im Layer l zum Links-Rechts-Shift der Aktivierungsfunktion
- $w_{jk}^{(l)}$ Gewicht vom k-ten Neuron im Layer l-1 zum j-ten Neuron im Layer l
- $z_{j}^{(l)}$ Gewichtete Summe aller eingehenden Neuronenaktivierungen im j-ten Neuron im Layer l
- $\sigma^{(l)}$ Aktivierungsfunktion im Layer l
- y_i *i*-ter Eintrag im erwarteten Outputvektor des Trainingsdatensatzes

Aktivierungsfunktionen

Name	f(x)	f'(x) (1. Ableitung)
Rectified Linear Unit	$ReLU(x) = \begin{cases} x & \text{wenn } x > 0 \\ 0 & \text{sonst} \end{cases}$	$ReLU'(x) = \begin{cases} 1 & \text{wenn } x > 0 \\ 0 & \text{sonst} \end{cases}$
Sigmoid	$\sigma(x) = \frac{1}{1 + e^{-x}}$	$\sigma'(x) = \sigma(x) \cdot (1 - \sigma(x))$

Kostenfunktion bei Regression

Squared Error Loss: $C = (A^{(l)} - Y)^2$

Ableitung:

$$\frac{\partial C}{\partial w_{ik}^{(l)}} = \frac{\partial C}{\partial a_i^{(l)}} \frac{\partial a_j^{(l)}}{\partial z_i^{(l)}} \frac{\partial z_j^{(l)}}{\partial w_{ik}^{(l)}}$$

$$\frac{\partial z_j^{(l)}}{\partial w_{jk}^{(l)}} = \frac{\partial w_{jk}^{(l)} a_k^{(l-1)}}{\partial w_{jk}^{(l)}} = a_k^{(l-1)}$$

$$\frac{\partial a_j^{(l)}}{\partial z_j^{(l)}} = \sigma^{(l)'}(z_j^{(l)})$$

$$\frac{\partial C}{\partial a_j^{(l)}} = 2\left(a_j^{(l)} - y_j\right) \tag{4}$$

$$\frac{\partial C}{\partial a_j^{(l)}} = \sum_{i=0}^{n^{(l+1)}-1} \left(\frac{\partial C}{\partial a_i^{(l+1)}} \frac{\partial a_i^{(l+1)}}{\partial z_i^{(l+1)}} w_{ij}^{(l+1)} \right)$$
 5

$$\frac{\partial C}{\partial w_{ik}^{(l)}} = \frac{\partial C}{\partial a_i^{(l)}} \frac{\partial a_j^{(l)}}{\partial z_j^{(l)}} \cdot a_k^{(l-1)} = \delta_j^{(l)} \cdot a_k^{(l-1)}$$

$$\delta_j^{(l)} = \begin{cases} 2\left(a_j^{(l)} - y_j\right) \cdot \sigma^{(l)'}(z_j^{(l)}) & \text{für den Output-Layer} \\ \left(\sum_{i=0}^{n^{(l+1)}-1} \delta_j^{(l+1)} w_{ij}^{(l+1)}\right) \cdot \sigma^{(l)'}(z_j^{(l)}) & \text{für innere Layer} \end{cases}$$

Anpassung der Gewichte

$$\Delta w_{jk}^{(l)} = -\eta \cdot \frac{\partial C}{\partial w_{jk}^{(l)}} = -\eta \cdot \delta_j^{(l)} \cdot a_k^{(l-1)}$$

Softmax und Cross-Entropy Loss

Softmax:

$$\operatorname{softmax} \left(z_i^{(l)} \right) = \frac{e^{z_i^{(l)}}}{\sum\limits_{j=0}^{n^{(l)}-1} e^{z_j^{(l)}}} \qquad \operatorname{softmax}^* \left(z_i^{(l)} \right) = \frac{e^{z_i^{(l)} - \max \left(Z^{(l)} \right)}}{\sum\limits_{j=0}^{n^{(l)}-1} e^{z_j^{(l)} - \max \left(Z^{(l)} \right)}}$$

Cross-Entropy Loss:

$$C = -\sum_{i=0}^{n^{(l)}-1} y_i \cdot \ln\left(a_i^{(l)}\right)$$

Ableitung:

$$\frac{\partial s_i^{(l)}}{\partial z_j^{(l)}} = s_i^{(l)} \cdot \frac{\partial}{\partial z_j^{(l)}} \ln \left(s_i^{(l)} \right)$$

$$\frac{\partial z_i^{(l)}}{\partial z_j^{(l)}} = 1_{\{i=j\}} = \begin{cases} 1 & \text{falls } i = j \\ 0 & \text{sonst} \end{cases}$$

$$\frac{\partial s_i^{(l)}}{\partial z_j^{(l)}} = s_i^{(l)} \cdot \left(1_{\{i=j\}} - s_j^{(l)} \right)$$

$$\frac{\partial C}{\partial z_j^{(l)}} = s_j^{(l)} - y_j$$

$$\frac{\partial C}{\partial w_{jk}^{(l)}} = \left(s_j^{(l)} - y_j\right) \cdot a_k^{(l-1)}$$