МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ
компьютерной	безопасности	И
криптографии		

Комбинаторная теория полугрупп

ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студента 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Никитина Арсения Владимировича

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	подпись, дата	

СОДЕРЖАНИЕ

1	Цел	ь работы и порядок ее выполнения	3
2	Teop	ретические сведения	4
	2.1	Алгоритм построения подполугруппы по заданному порождаю-	
		щему множеству и таблице Кэли	4
	2.2	Алгоритм построения полугруппы бинарных отношений по по-	
		рождающему множеству	5
	2.3	Алгоритм построения полугруппы по порождающему множеству	
		и определяющим соотношениям	7
3	Пра	ктическая часть	9
4	Про	граммная реализация рассмотренных алгоритмов	2
	4.1	Результаты тестирования программы	2
	4.2	Коды программ, реализующих рассмотренные алгоритмы	5
34	к пи	очение 2	2.1

1 Цель работы и порядок ее выполнения

Цель работы — изучение основных понятий теории полугрупп.

Порядок выполнения работы:

- 1. Рассмотреть понятия полугруппы, подполугруппы и порождающего множества. Разработать алгоритм построения подполугрупп по таблице Кэли.
- 2. Разработать алгоритм построения полугруппы бинарных отношений по заданному порождающему множеству.
- 3. Рассмотреть понятия подгруппы, порождающего множества и определяющих соотношений. Разработать алгоритм построения полугруппы по порождающему множеству и определяющим соотношениям.

2 Теоретические сведения

Полугруппа — это алгебра $S=(S,\cdot)$ с одной ассоциативной бинарной операцией \cdot , т.е. выполняется $(x\cdot y)\cdot z=x\cdot (y\cdot z)$ для $\forall x,y,z\in S$. Если полугрупповая операция называется умножением (или сложением), то полугруппу называют мультипликативной (или аддитивной).

Подмножество X полугруппы S называется подполугруппой, если X устойчиво относительно операции умножения, т.е. $\forall x,y\in X$ выполняется свойство: $x\cdot y\in X$. В этом случае множество X с ограничением на нем операции умножения исходной полугруппы S образует полугруппу.

2.1 Алгоритм построения подполугруппы по заданному порождающему множеству и таблице Кэли

 Bxod Порождающее множество S длины n, подмножество множества subset , таблица Кэли $C=(a_{ij})$ размерности $n\times n$.

Выход Подполугруппа $\langle X \rangle \subset S$.

- 1. Создать переменную $x_current = subset$.
- 2. Создать переменную $x_previous = ''$.
- 3. Цикл пока $x_current \neq x_previous$.
 - a) Создать пустой список x_l .
 - σ) Цикл по i от 1 до $|x_current|$, цикл по j от 1 до |subset|.
 - і. Создать переменную x и присвоить ей номер позиции $x_current[i]$ в множестве S.
 - іі. Создать переменную y и присвоить ей номер позиции subset[j] в множестве S.
 - ііі. Добавить в список x_l значение C[x][y].
 - $\boldsymbol{\theta}$) Присвоить $x_previous$ значение $x_current$.
 - $\it c$) Присвоить $\it x_current$ объединение полученных из переменных $\it x_l$ и $\it x_current$ множеств и сделать из $\it x_current$ список.
 - ∂) Отсортировать $x_current$ по возрастанию.
 - e) Если $x_current = x_previous$, то ответ $x_current$.

Трудоемкость алгоритма $O(n^3)$.

В силу общего свойства подалгебр пересечение любого семейства X_i $(i \in I)$ подполугрупп полугруппы S является подполугруппой S и, значит, множество Sub(S) всех подполугрупп полугруппы S является системой замы-

каний. множество X. Такая полугруппа обозначается символом $\langle X \rangle$ и называется подполугруппой S, порождённой множеством X. При этом множество X называется также **порождающим множеством** подполугруппы $\langle X \rangle$. В частности, если $\langle X \rangle = S$, то X называется порождающим множеством полугруппы S и говорят, что множество X порождает полугруппу S.

2.2 Алгоритм построения полугруппы бинарных отношений по порождающему множеству

Для реализации алгоритма используется вспомогательный алгоритм $insert_matrix$, представляющий из себя добавление в исходное матричное множество матрично перемноженных подмножеств множества.

 Bxod Порождающее множество S длины n,k матриц бинарных отношений $M_k = (m_{k_{ij}})$ размерности $n \times n.$

Выход Полугруппа S, таблица Кэли C_s полугруппы S.

- 1. Создать пустые отсортированные словари $in_matrices$ и $out_matrices$
- 2. Создать переменную cur = 0.
- 3. Создать пустое множество sets.
- 4. Цикл по i от 1 до k.
 - а) Присвоить $in_matrices$ по ключу char(65 + cur) значение M_i .
 - б) Переменной cur присвоить значение cur + 1.
 - в) Присвоить $out_matrices$ по ключу M_i значение char(65 + cur).
 - ϵ) Добавить M_i во множество sets.
- 5. Создать множество group и присвоить копию множества sets.
- 6. Создать переменную flag и присвоить ей значение True (данная переменная требуется для того, чтобы была выполнена хотя бы одна итерация следующего цикла).
- 7. Создать переменную $cur_updated = 0$
- 8. Цикл пока $group \neq sets \mid\mid Flag$.
 - a) Переменной flag присвоить значение False.
 - σ) Цикл по i от 1 до |sets|, цикл по j от 1 до |sets|.
 - і. Создать переменную new_matrix и присвоить ей умножение матрицы sets[i] на матрицу sets[j] (алгоритм перемножения матриц был рассмотрен в лабораторной работе $\mathbb{N} 1$).
 - іі. Если new_matrix не находится в group, то:
 - А. Присвоить $in_matrices$ по ключу $char(65+cur+cur_updated)$

значение new_matrix .

- Б. Переменной $cur_updated$ присвоить значение $cur_updated+1$.
- В. Присвоить $out_matrices$ по ключу new_matrix значение $char(65+cur+cur_updated).$
- Γ . Добавить во множество group матрицу new_matrix .
- 9. Если group = sets:
 - a) Полугруппа получается в результате поиска по ключу в словаре $out_matrices$, где ключами будут являться элементы множества sets.
 - δ) Множеству sets присвоить значение $insert_matrix(sets, n)$.
 - e) Цикл по i от 1 до $|out_matrices|$, цикл по j от 1 до $|out_matrices|$.
 - і. Таблица Кэли получается в результате перемножения матриц $in_matrices$ по индексу char(65+i) и $in_matrices$ по индексу char(65+j). Затем происходит поиск значения в словаре $out_matrices$ по полученному в результате перемножения матриц ключу.
- 10. Ответ полугруппа sets и ее таблица Кэли.

Трудоемкость алгоритма $O(|out_matrices|^2n^3)$, так как алгоритм умножения матриц имеет трудоемкость $O(n^3)$.

Для любой конечной полугруппы S найдется такой конечный алфавит A, что для некоторого отображения $\phi:A\to S$ выполняется равенство $\langle \phi(A)\rangle=S$ и, значит, $S\cong A^+/ker\phi$ этом случае множество A называется множеством порождающих символов полугруппы S (относительно отображения $\phi:A\to S$). Если при этом для слов $w_1,w_2\in A$ выполняется равенство $\phi(w_1)=\phi(w_2)$, т.е. $w_1\equiv w_2(ker\phi)$, то говорят, что на S выполняется соотношение $w_1=w_2$ (относительно отображения $\phi:A\to S$).

Очевидно, что в общем случае множество таких соотношений $w_1=w_2$ для всех пар $(w_1,w_2)\in ker\phi$ будет бесконечным и не представляется возможности эффективно описать полугруппу S в виде полугруппы классов конгруэнции $ker\phi$. Однако в некоторых случаях можно выбрать такое сравнительно простое подмножество $\rho\subset ker\phi$, которое однозначно определяет конгруэнцию $ker\phi$ как наименьшую конгруэнцию полугруппы A^+ , содержащую отношение ρ , т.е. $ker\phi=f_{con}(\rho)=f_{eq}(f_{req}(\rho))$.

Так как в случае $(w_1,w_2)\in \rho$ по-прежнему выполняется равенство $\phi(w_1)=\phi(w_2)$, то будем писать $w_1=w_2$ и называть такие выражения **определяющими соотношениями**. Из таких соотношений конгруэнция $ker\phi$ строится с помощью применения следующих процедур к словам $u,v\in A^+$:

- 1. слово v непосредственно выводится из слова u, если v получается из u заменой некоторого подслова w_1 на слово w_2 , удовлетворяющее определяющему соотношению $w_1 = w_2$, т.е. $(u, v) = (xw_1y, xw_2y)$ для некоторых $x, y \in A^*$;
- 2. слово v выводится из слова u, если v получается из u с помощью конечного числа применения процедуры 1.

Если все выполняющиеся на S соотношения выводятся из определяющих соотношений совокупности ρ , то конгруэнция $ker\phi$ полностью определяется отношением ρ и выражение $< A : w_1 = w_2 : (w_1, w_2) \in \rho >$ называется копредставлением полугруппы S.

Обозначим символом A^+ множество всех непустых слов над алфавитом и символом A^* — множество слов $A^* = A^+ \cup \{\Lambda\}$. На этих множествах слов определена операция умножения, которая называется операцией конкатенации слов и определяется по правилу: любым словам $w_1 = a_1 \dots a_n$ и $w_2 = b_1 \dots b_m$ операция конкатенации ставит в соответствие слово $w_1 \cdot w_2 = a_1 \dots a_n b_1 \dots b_n$. В результате множество слов A^+ с операцией конкатенации образует полугруппу, которая называется полугруппой слов над алфавитом A, и множество слов A^* с операцией конкатенации образует полугруппу с единичным элементом Λ , которая называется моноидом слов над алфавитом A.

2.3 Алгоритм построения полугруппы по порождающему множеству и определяющим соотношениям

 $Bxo\partial$ Элементы алфавита Alph длины m, определяющие соотношения rules в количестве n штук.

Выход Полугруппа и ее таблица Кэли.

- 1. Создать пустое множество *new_semigroup*.
- 2. Создать список semigroup и заполнить его элементами алфавита Alph.
- 3. Цикл пока $new_semigroup \neq semigroup$.
 - a) Создать пустой список new_elems .
 - σ) Цикл по i от 1 до |semigroup|, цикл по j от 1 до |semigroup|.

- і. Создать переменную new_elem и присвоить ей значение конкатенации слов semigroup[i] + semigroup[j].
- іі. Создать переменную $new_elem_copy = ''$
- ііі. Цикл пока $new_elem_copy \neq new_elem$.
 - А. Цикл по key, value из словаря rules.
 - Если key находится в new_elem , то в new_elem заменить key на value.
- iv. Добавить в список new_elems строку new_elem .
- в) Множеству $new_semigroup$ присвоить копию semigroup.
- $\it e$) Цикл по $\it i$ от 1 до $|new_elems|$.
 - i. Если $new_elems[i]$ не находится в semigroup, то добавить $new_elems[i]$ в semigroup.
- 4. Создать пустой список matrix.
- 5. Цикл по i от 1 до |semigroup|.
 - a) Создать пустой список $matrix_string$.
 - σ) Цикл по j от 1 до |semigroup|.
 - i. Создать переменную $new_elem = semigroup[i] + semigroup[j]$.
 - іі. Создать переменную $new_elem_copy="$.
 - ііі. Цикл пока $new_elem_copy \neq new_elem$.
 - А. Переменной new_elem_copy присвоить копию new_elem .
 - Б. Цикл по $key,\ value$ из словаря rules.
 - Если key находится в new_elem , то заменить в new_elem key на value.
 - в) Добавить new_elem в $matrix_string$.
- 6. Добавить $matrix_string$ в список matrix.
- 7. Ответ элементы полугруппы semigroup и таблица Кэли matrix полугруппы semigroup.

Трудоемкость алгоритма составляет $O(n^n)$ (процесс построения соотношений является бесконечным).

3 Практическая часть

Saganue 1			
G F= (123)	9 = (123)		
Upecono, re	no un- Co,	men Spagolanin	f. g ngwiyaen
raynyny S.	= Cf, g 7 x	georgofanut u	n-GaX
commonal com	1421-06	£ 9, £ 2, 6, 9 £, 0	2
+2=(1-3).	1 = 123	(122)	
f q = (123) (123) (332)	123	9 f = (332) (123) = (123)
g ² =(23)((23)	1 4 6 2	0	
Baranne 2			
0 1123457		3 45 12 23 999 - 22	3 4 5
0 0 = (33252)	00= 22	1 0 0	323
	2 3	3 2	232
- NX - D=	A Lask	200	
Bugno and	acidal =7	7 aa molemon	9 4
med and son	in hour	eggentel yeur	urpsone
Tongs earn	cruman	10 greenenny	n versumes
	10000000	26 to aremen	m Sugem
1700	Kangon		
curemo per	oney Born	ue 12345	ige Koll
m. e T = 2	4	22323	

agazine 3 :x4=4x out 1119. ve sub my custe quinter Kongo E Codoù omn. = 19 ann. warry n custor Early own ways y rever long on xy2x=x242 custa Konip E Gre oner. inee Briger empu custary X4 na wareob Workp- 8 moules Opp. C mornomino go

*	x	y	y^2	xy	xy^2
x	y	xy	xy^2	y^2	y
y	xy	y^2	y	xy^2	xy
y^2	xy^2	y	y^2	xy	xy^2
xy	y^2	xy^2	xy	y	y
xy^2	y	xy	xy^2	y	y

4 Программная реализация рассмотренных алгоритмов

4.1 Результаты тестирования программы

```
Выберите действие:
Построить подполугруппу по таблице Кэли (1)
Построить полугруппу бинарных отношений по порождающему множеству (2)
Построить полугруппу по порождающему множеству и определяющим соотношениям (3)

Введите элементы множества: 1 2 3 4
Введите элементы подмножества: 1 2
Введите значения таблицы Кэли множества, для которой будет строится подполугруппа:
    1 2 3 4
1 1 2 2 3
2 3 4 4 3
3 1 2 2 2
4 1 2 3 4
Подполугруппа: {1, 2, 3, 4}
```

Рисунок 1

```
Построить полугруппу по порождающему множеству и определяющим соотношениям (3)

Введите количество элементов на множестве: 3

Введите количество матриц в порождающем множестве: 2

Введите количество матриц в порождающем множестве: 2

Введите матрицу А

1 2 3

1 1 1 0

Введите матрицу В

1 2 3

1 1 1 1

2 0 0 0

3 0 0 0

Полученная полугруппа:

6 :

1 1 0

1 1 0
```

Рисунок 2

```
F:
1 1 1
1 1 1
1 1 1
E :
1 1 0
0 0 0
0 0 0
D:
1 1 1
1 1 1
0 0 0
B :
1 1 1
0 0 0
0 0 0
C :
1 1 0
1 1 0
```

1 0 0

1 1 0 100 0 1 0 H : 1 1 0 1 1 0 0 0 0 Таблица Кэли: ABCDEFGH ACDGFHFGG BEBEBEE CGFGFGFGG DHDHDHDHH EEBEBEBEE FGFGFGFGG

GGFGFGFGG

Рисунок 5

4.2 Коды программ, реализующих рассмотренные алгоритмы

```
import sortedcontainers as s
 1
 2
    import numpy as np
 3
 4
   def multiply_matrices(a, b, n):
 5
 6
        ab = [[0 for _ in range(n)] for _ in range(n)]
        for i in range(n):
 7
            for j in range(n):
 8
 9
                for k in range(n):
                     if a[i][k] == 1 and b[k][j] == 1:
10
                         ab[i][j] = 1
11
                         break
12
13
        return ab
14
15
   def insert_matrix(sets, n):
16
        for subset in sets:
17
18
            for subset1 in sets:
                sets.add(make_tuples(multiply_matrices(subset, subset1, n)))
19
20
        return sets
21
22
   def make_tuples(matrix):
23
24
        return tuple(tuple(row) for row in matrix)
25
```

```
26
27
    def print_out(in_matrices, out_matrices, i , j, n):
28
         → print(chr(ord(out_matrices[make_tuples(multiply_matrices(in_matrices[chr(65
         \rightarrow + i)],
29
                                                                    in_matrices[chr(65
                                                                     \rightarrow + j)], n))]) -
                                                                     \rightarrow 1),
                                                                    end='')
30
31
32
33
   def task2():
        n = int(input('Введите количество элементов на множестве: '))
34
35
        st = [int(value)] for value in input(f'Beedume элементы порождающего]
         \rightarrow множества ({n}): ').split()]
        m = int(input('''Bведите количество матриц в порождающем множестве: '))
36
37
        in_matrices = s.SortedDict()
38
        out_matrices = s.SortedDict()
39
        sets = set()
40
        k = 0
41
42
        for i in range(0, m):
            print('Beedume матрицу', chr(65 + k))
43
            print(" ", *st)
44
            matrix = make_tuples([list(map(int, input(f "{st[i]} ").split())) for
45
             \rightarrow i in range(n)])
            sets.add(matrix)
46
47
            in_matrices[chr(65 + k)] = matrix
48
            k += 1
49
            out_matrices[matrix] = chr(65 + k)
50
51
        group = sets.copy()
        k_updated = 0
52
        while True:
53
54
            for value in sets:
55
                 for value1 in sets:
                     new_matrix = make_tuples(multiply_matrices(value, value1, n))
56
57
                     if new_matrix not in group:
58
                         in_matrices[chr(65 + k + k_updated)] = new_matrix
                         k\_updated += 1
59
60
                         out_matrices[new_matrix] = chr(65 + k + k_updated)
```

```
61
                         group.add(new_matrix)
 62
 63
             if group == sets:
 64
                 sets = insert_matrix(sets, n)
 65
                 print('Полученная полугруппа:')
 66
                 for subset in sets:
                     print(chr(ord(out_matrices[subset]) - 1), ':')
 67
                     for i in range(len(subset)):
 68
 69
                         print(*subset[i])
 70
                     print( ' \n ')
 71
                 print('Ta6nuya Kənu: ')
 72
                 print(' ', *[chr(65 + i) for i in range(len(out_matrices))])
                 for i in range(len(out_matrices)):
 73
 74
                     print(chr(65 + i), end=' ')
 75
                     for j in range(len(out_matrices)):
 76
                         print_out(in_matrices, out_matrices, i, j, n)
 77
                     print('\n')
 78
                 return
 79
             else:
 80
                 sets = group.copy()
 81
 82
     def check_associative(cayley, input_list):
 83
 84
         n = len(input_list)
 85
         for a in range(n):
 86
             for x in range(n):
 87
                 for z in range(n):
                     if cayley[x, input_list.index(str(cayley[a, z]))] \
 88
 89
                              != cayley[input_list.index(str(cayley[x, a])), z]:
 90
                         return False
 91
         return True
 92
 93
    def build_cayley():
 94
 95
         input_list = input('Введите элементы алфавита: ').split()
 96
         n = int(input('Введите количество определяющих соотношений: '))
 97
         rules = {}
 98
 99
         for i in range(n):
             print(f'Bведите элементы {i + 1}-го соотношения:')
100
             elems = input().replace(" =", "").split()
101
```

```
102
             first_elem, second_elem = elems
             rules[first elem] = second elem
103
104
105
         semigroup = input_list.copy()
         while True:
106
107
             new elems = []
108
             for elem_1 in semigroup:
                 for elem_2 in semigroup:
109
110
                      new_elem = elem_1 + elem_2
                      while True:
111
112
                          new_elem_copy = str(new_elem)
113
                          for first_elem, second_elem in rules.items():
114
                              if first_elem in new_elem:
115
                                  new_elem = new_elem.replace(first_elem,

    second_elem)

116
                          if new_elem_copy == new_elem:
117
                              break
118
                     new_elems.append(new_elem)
             new_semigroup = set(semigroup.copy())
119
             for new_elem in new_elems:
120
121
                 if new_elem not in semigroup:
122
                      semigroup.append(new_elem)
123
             if new_semigroup == set(semigroup):
124
                 break
125
126
         semigroup = list(semigroup)
         matrix = []
127
         for elem_1 in semigroup:
128
129
             matrix_string = []
130
             for elem_2 in semigroup:
131
                 new_elem = elem_1 + elem_2
                 while True:
132
133
                      new_elem_copy = str(new_elem)
                      for first elem, second elem in rules.items():
134
135
                          if first_elem in new_elem:
136
                              new_elem = new_elem.replace(first_elem, second_elem)
137
                      if new_elem_copy == new_elem:
138
                          break
139
                 matrix_string.append(new_elem)
140
             matrix.append(matrix_string)
141
```

```
group_length = len(semigroup)
142
         matrix = np.array(matrix).reshape(group_length, group_length)
143
144
         print('Tonyrpynna: {', end='')
         print(*semigroup, sep=', ', end='')
145
         print('}')
146
147
         print('Ta6nuua Kənu:')
         for i in range(len(matrix)):
148
             print(*matrix[i], sep='\t')
149
150
151
152
    def build_sub_semigroup():
153
         input_list = input("Введите элементы множества: ").split()
154
         n = len(input_list)
155
156
         subset = input("Введите элементы подмножества: ").split()
157
158
         print("Введите значения таблицы Кэли множества, для которой будет строится
          → noдnoлугруппа: ")
         print(" ", *input_list)
159
         cayley = [list(map(str, input(f "{input_list[i]} ").split())) for i in
160
         \rightarrow range(n)]
         cayley_table = np.array(cayley).reshape(n, n)
161
162
163
         x_current = subset.copy()
164
         while True:
165
             x 1 = \Gamma
166
             for x in x_current:
                 for y in subset:
167
168

    x_l.append(cayley_table[input_list.index(x)][input_list.index(y)]

             previous_x = x_current.copy()
169
             x_current = list(set(x_current).union(set(x_l)))
170
171
             x_current.sort()
172
             if previous_x == x_current:
173
                 break
174
         print("∏o∂nonyrpynna: {", end='')
175
         print(*x_current, sep=', ', end='} \n')
176
177
178
    def main():
179
```

```
180
        print("Выберите действие: ")
        print("Построить подполугруппу по таблице Кэли (1)")
181
182
        print("Построить полугруппу бинарных отношений по порождающему множеству
        183
        print("Построить полугруппу по порождающему множеству и определяющим
        action = input()
184
185
        if action:
            if action == "1":
186
187
                build_sub_semigroup()
            if action == '2':
188
189
                task2()
            if action == '3':
190
191
                build_cayley()
192
193
194
    if __name__ == "__main__":
195
        main()
```

ЗАКЛЮЧЕНИЕ

В лабораторной работе были рассмотрены теоретические сведения о подгруппах, полугруппах, подполугруппах и порождающем множестве. На их основе были составлены алгоритмы построения подполугруппы по таблице Кэли, построения полугруппы бинарных отношений и ее таблицы Кэли по заданному порождающему множеству, построения полугруппы и ее таблицы Кэли по порождающему множеству и определяющим соотношениям. Для всех алгоритмов была произведена оценка трудоемкости.