EE301A: Digital Signal Processing

Computer Assingment I

Ankush Singh 150107

February 18, 2018

Ans 1.(a) Observe that the final output is given by:

$$d_n = (b_n + jc_n)e^{-j\Theta_n}$$

$$\implies d_n = b_n e^{-j\Theta_n} + c_n e^{j(\frac{\pi}{2} - \Theta_n)}$$

Equating the real and imaginary parts of both sides and using the relation $d_n = a_n$ we get:

$$0 = -b_n \sin(\Theta_n) + c_n \cos(\Theta_n) \tag{1}$$

$$a_n = b_n \cos(\Theta_n) + c_n \sin(\Theta_n) \tag{2}$$

Multiplying with $\cos(\Theta_n)$ in (1) and $\sin(\Theta_n)$ in (2) and adding we get:

$$c_n = a_n \sin(\Theta_n) \tag{3}$$

Again multiplying with $\sin(\Theta_n)$ in (1) and with $\cos(\Theta_n)$ in (2) and subtracting (1) from (2) we get:

$$b_n = a_n \cos(\Theta_n) \tag{4}$$

But it is given that $b_n = a_n \cos(\frac{n\pi}{2})$. Thus from (4) we get

$$\Theta_n = \frac{n\pi}{2}$$

Given $a_n = p((n - n_o)T_s)$, we observe that a_n is symmetric about n = 50 where $n \in \{1, 2, ..., 100\}$. From (2), both sides should be symmetric about n = 50.

Since b_n and $\cos(\Theta_n)$ is already symmetric about n=50, we have $b_n\cos(\Theta_n)$ symmetric about n=50. Thus $c_n\sin(\Theta_n)$ should also be symmetric about n=50.

We have $c_n = \hat{b_{n+n_1}}$ which is just a n_1 point left shifted version of $\hat{b_n}$. $\hat{b_n} = b_n \star h_n$.

From the plot of c_n (unshifted), we observe that it is symmetric about n=150 where $n \in \{1, 2, ..., 300\}$. $c_n \sin(\frac{n\pi}{2})$ is also symmetric about n=150.

Since in order to make $d_n = a_n$, we must have $c_n \sin(\Theta_n)$ symmetric about n=50, we need to left the shift c_n by n=100 so that finally it is symmetric about n=50. Thus, n_1 should be 100.

$$n_1 = 100$$

Figure 1: Plot of c_n unshifted : symmetric about $n{=}150$

Figure 2: (b). Plot of ${\cal A}_n$ and ${\cal D}_n$ vs time in linear scale

Figure 3: (c).101-point DFT of $|A(w)|^2$ in semilog scale

Figure 4: (d).201-point DFT of $|H(w)|^2$ in linear scale