Curso de Curvas e Superfícies - Parte I

Wellington José Leite da Silva¹

¹Escola de Matemática Aplicada da FGV (EMAP), Brazil

Apresentação

Apresentamos aqui uma linha de aprendizado do curso de curvas e superfícies apresentando definições, teoremas, exemplos e etc. Separados em 6 seções sendo elas: Curvas regulares, Difeomorfismo e Reparametrização, Curvatura, Teorema Fundamental de Curvas Plana, Curvas Regulares no \mathbb{R}^3 e Teorema Fundamental das Curvas Espaciais.

Com intuído de auxiliar o aprendizado aos tópicos apresentados e fornecer uma forma de visualização computacional apresentamos exemplos com códigos em *Sage-Math* [The Sage Developers 2022]. Aqui seguimos o livro [de Lima 2016] como principal e o [do Carmo 2010] como complementar. Adicionando sempre que possível, exemplos de visualizações em *SageMath*. As implementações, códigos usados para as mesmas assim como o *Tex* deste documento se concentram no repositório curvas-superficies ¹ que está disponível abertamente no github.

Todos os códigos apresentados nos exemplos podem ser facilmente generalizados para outros casos, é recomendável como forma de aprendizado rodar os códigos apresentados com outros exemplos de escolha do leitor.

1. Curvas regulares

Definição 1 Uma curva parametrizada α em \mathbb{R}^2 é uma aplicação $\gamma:I\to\mathbb{R}^2$ sendo $I\subset\mathbb{R}$ aberto, da forma

$$\alpha(t) = (x(t), y(t)), t \in I$$

onde x e y são funções diferenciáveis de t.

Exemplo 1.1 (Curva parametrizada diferenciável) A curva

$$\alpha(t) = (1/2\cos(3t) + 1/3\sin(t), 1/2\sin(3t) + 1/3\cos(t))$$

¹https://github.com/wellington36/curvas-superficies

é um exemplo de curva parametrizada diferenciável e podemos visualizar no sagemath da seguinte forma

Figure 1. Curva parametrizada

Definição 2 O conjunto imagem de uma curva γ , $\gamma(I) \subset \mathbb{R}^n$ é dito o **traço** de γ .

Definição 3 (Vetor tangente) Seja $\gamma: I \to \mathbb{R}^n$ com $\gamma(t) = (\gamma_1(t), \dots, \gamma_n(t))$ com $\gamma_i(y)$ diferenciáveis $\forall i, i = 1 \dots n$, o vetor

$$\gamma'(t) = (\gamma_1'(t), \dots, \gamma_n'(t))$$

é chamado **vetor tangente de** γ em t

Exemplo 1.2 (Vetores tangentes) Vamos mostrar os vetores tangentes a uma certa curva, aqui usamos o projeto SageManifolds ² uma extensão do SageMath para geometria diferencial que está incluso no Sage, então podemos visualizar vetores tangentes a uma curva da seguinte forma

```
1  # Define dimention and variables
2  M = Manifold(2, 'M')
3  X. < x, y > = M. chart()
4
5  # Define curve
6  c = M. curve([1/2 * cos(t) + 1/3 * sin(4 * t),
```

²https://sagemanifolds.obspm.fr/index.html

Figure 2. Vetores tangentes

Definição 4 (Curvas regulares) Seja $\gamma(t): I \to \mathbb{R}^n$ uma curva parametrizada diferenciável. Diz-se que γ é regular, quando $\gamma'(t) \neq 0$, $\forall t \in I$.

Definição 5 (Comprimento de arco) O comprimento de arco de α , de $\alpha(a)$ até $\alpha(b)$ definido por $L_a^b(\alpha)$ é

$$L_a^b(\alpha) = \int_a^b \|\alpha'(t)\| dt$$

Exemplo 1.3 (Comprimento de arco) O comprimento de arco da curva $\alpha(t) = (2\cos(t), 2\sin(t))$ pode ser encontrada fazendo

```
# Define curve

curve_alpha(s) = (2 * cos(s), 2 * sin(s))

# Calculate the derivative

x = get_vector_arguments(curve_alpha).pop()

curve_alpha_x = curve_alpha.derivative(x)

# Calcular comprimento de arco de 0 a t

t = var("t")

assume(t>0)

s = integrate(norm(curve_alpha_x), (x,0,t))

s = s. simplify_full()
```

```
13
14 # Plot equation
15 pretty_results((r"\int_0^t || C'(x) || dx", s))
```

$$\int_0^t ||C'(x)|| dx = 2t$$

Definição 6 Se $\gamma:(a,b)\to\mathbb{R}^n$ é uma c.p.³, sua **velocidade no ponto** $\gamma(t)$ é $\|\gamma'(t)\|$, e a curva é dita com **velocidade unitária** se $\|\gamma'(t)\|=1, \ \forall t\in(a,b)$ e é parametrizada por comprimento de arco.

Teorema 1 Toda curva regular pode ser reparametrizada por comprimento de arco.

2. Difeomorfismo e Reparametrizacao

Definição 7 (Difeomorfismo) Dado os conjuntos abertos $U \subset \mathbb{R}^n$ e $V \subset \mathbb{R}^n$. Uma bijeção $f: U \to V$ é dita **difeomorfismo** quando f e f^{-1} são diferenciáveis.

Definição 8 (Reparametrização) A curva $\beta(s)$ é dita uma **reparametrização** de $\alpha(t)$: $I \subset \mathbb{R} \to \mathbb{R}^2$ regular quando dados $I_0 \subset \mathbb{R}$ e $\phi: I_0 \to I$ difeomorfismo. Temos $\beta(S) = \alpha(\phi(S))$).

Definição 9 Seja $\alpha(t):(a,b)\to\mathbb{R}^2$ r $\beta(S):(c,d)\to\mathbb{R}^2$. Então

- $\beta(S)$ é uma reparametrização positiva de α se $\phi'(S) > 0$, $\forall S$
- $\beta(S)$ é uma reparametrização negativa de α se $\phi'(S) < 0$, $\forall S$

Definição 10 Qualquer reparametrização de uma c.p. regular é regular (i.e. difeomor-fismos preservam regularidade).

Exemplo 2.1 (Reparametrização por difeomorfismo) Seja a seguinte curva (que vou chamar aqui de flor)

$$\alpha(t) = (\cos(t) + \sin(4t), \sin(t) + \cos(4t))$$

podemos reparametrizar digamos pela função $\phi(t)=2t+1$ da seguinte forma, como de costume usando sagemath

³curva parametrizada

```
# Curve definition

alpha(t) = (cos(t) + sin(4 * t), sin(t) + cos(4 * t))

# Reparametrization

phi(x) = 2 * x + 1

beta(t) = alpha(phi(t))

# Plot

parametric_plot(alpha, (t,0, 2*pi), thickness=2)

parametric_plot(beta, (t,0, 2*pi), thickness=2, color='red')
```


Figure 3. Curva α

Figure 4. Curva α reparametrizada

Aqui ϕ é um difeomorfismo gerando uma reparametrização de α em particular o traço das curvas se mantém e β é uma reparametrização positiva

Proposição 1 A função L (comprimento de arco) é um difeomorfismo.

Definição 11 Toda curva regular $\alpha: I \to \mathbb{R}^2$ admite reparametrização por comprimento de arco.

Exemplo 2.2 (Reparametrização por comprimento de arco) Usaremos aqui a mesma curva usada para calcular o comprimento de arco no caso o círculo de raio 2 $\alpha(t) = (2\cos(t), 2\sin(t))$, com ela podemos obter sua parametrização por comprimento de arco fazendo os seguintes passos

```
1 # Curve definition
2 \ alpha(s) = (2 * cos(s), 2 * sin(s))
3
4 # Identify curve parameter
5 \quad x = get\_vector\_arguments(alpha).pop()
   # Calculate the derivatives
   alpha_x = alpha.derivative(x)
9
10 # Calculate arc length from 0 to t
11 \quad t = var("t")
12 assume(t>0)
13 comp\_arco = integrate(norm(alpha\_x), (x,0,t))
15 t = comp\_arco.arguments()[0]
16
17 # Find t in terms of s
18 \quad s = var("s")
19 param\_comp\_arco = solve(s == comp\_arco, t)[0]
20
21 # Replace original parameter in curve
   alpha\_subs = alpha(t).subs(param\_comp\_arco)
23 alpha\_subs = vector\_simplify(alpha\_subs)
24
25 # Reset function argument
26 alpha_param(s) = tuple(coord for coord in alpha_subs)
27
28 # New curve plot
29 print ("Curva reparametrizada:")
   pretty\_results((r"\alpha(s)", alpha\_param), use\_colon=True)
```

Curva reparametrizada:

$$\alpha(s): \quad s \mapsto \left(2\cos\left(\frac{1}{2}s\right), \, 2\sin\left(\frac{1}{2}s\right)\right)$$

A mesma sequência de comandos pode ser facilmente reproduzida em outras curvas.

3. Curvatura

Definição 12 (Função Ângulo) Dada uma curva diferenciável $\gamma: I \to S^1$, onde S^1 é o círculo de \mathbb{R}^2 com centro na origem e raio 1, diz-se que $\theta: I \to \mathbb{R}$ é uma **função-ângulo** de γ , quando

$$\gamma(s) = (\cos(\theta(s)), \sin(\theta(s)), \forall s \in I$$

Definição 13 (Curvatura) Seja $\alpha: I \to \mathbb{R}$ unit-speed. Designando-se o vetor tangente de α em $s \in I$ por T(s), podemos afirmar que a curva $T(s) = I \to S^1$ admite função ângulo

$$T(s) = (\cos(\theta(s)), \sin(\theta(s)), \forall s \in I$$

Daí a **curvatura** de α em $s \in I$ é definida por

$$K(s) = \theta'(s) = det(\alpha'(s), \alpha''(s))$$

Exemplo 3.1 (Exemplo curvatura) A curvatura da curva $\alpha(t) = (2\sin(t), 2\cos(t))$, pode ser calculada fazendo

```
# Curve definition
curve(t) = (2 * cos(t), 2 * sin(t))

# Calculate the derivatives
curve_t = curve_derivative(t)
curve_tt = curve_t. derivative(t)

# Calculate J(c'(t))
curve_t_rotation(t) = (- curve_t[1], curve_t[0])

# Calculate the curvature
curvatura = curve_t_rotation.dot_product(curve_tt)/norm(curve_t)^3
curvatura = curvatura.simplify_full()

# Plot
pretty_results((r"K(s)", curvatura), use_colon=True)
```

$$K(s): \frac{1}{2}$$

4. Teorema Fundamental de Curvas Plana

Teorema 2 (Função-ângulo diferenciável) Seja $\gamma:I\to S^1$ uma curva diferenciável. Então, γ admite uma função ângulo $\theta:I\to\mathbb{R}$, a qual é diferenciável. Além disso, toda função-ângulo de γ , a qual é diferenciável, difere de θ por uma constante.

Corolário 2.1 Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}$ e seja $\beta(s)=\alpha(\theta(s))$ a parametrização por comprimento de arco de α , a curvatura de α em $t\in I$ é $K_{\alpha}(t)$, e, por definição é a curvatura de β em $\theta^{-1}(t)$, isto é

$$K_{\alpha} := K_{\beta}(\theta^{-1}(t))$$

Definição 14 (Diedro de Frenet) Seja $\alpha:I\subset\mathbb{R}\to\mathbb{R}^2$ uma curva regular parametrizada por comprimento de arco. Dado $s\in I$, o vetor N(s)=JT(s) é dito o vetor normal de α em $s\in I$. A base ortonormal de \mathbb{R}^2 formado por T(s) e N(s) é chamada **Dietro de Frenet** em s.

Exemplo 4.1 (Diedro de Frenet) *Vamos encontrar aqui os vetores T e N do Diedro de Frenet da curva* $\alpha(t) = (\sin(2t), \cos(t))$

```
# Curve definition
2 alpha(t) = (sin(2 * t), cos(t))
3
4 # Diedro de Frenet
5 T(t) = alpha.derivative(t)/norm(alpha.derivative(t))
6
7 N(t) = (-T[1], T[0])
8
9 # Plot
10 pretty_results((r"T(t)", T))
11 pretty_results((r"N(t)", N))
```

$$T(t): t \mapsto \left(\frac{2\cos(2t)}{\sqrt{4\cos(2t)^2 + \sin(t)^2}}, -\frac{\sin(t)}{\sqrt{4\cos(2t)^2 + \sin(t)^2}}\right)$$

$$N(t): t \mapsto \left(\frac{\sin(t)}{\sqrt{4\cos(2t)^2 + \sin(t)^2}}, \frac{2\cos(2t)}{\sqrt{4\cos(2t)^2 + \sin(t)^2}}\right)$$

Definição 15 (Movimento Rígido) $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ é dita **movimento rígido**, quando preserva distancia, isto é, para quaisquer $p, q \in \mathbb{R}^2$

$$\|\Phi(p) - \Phi(q)\| = \|p - q\|$$

Teorema 3 Seja $\Phi: A + p_0$ um movimento rígido direto de \mathbb{R}^2 e $\alpha: I \to \mathbb{R}^2$ uma curva regular parametrizada por comprimento de arco. Então, $\beta = \Phi \circ \alpha: I \to \mathbb{R}^2$ é uma curva regular de \mathbb{R}^2 , parametrizada por comprimento de arco, tal que

$$K_{\alpha}(s) = K_{\beta}(s) \, \forall s \in I$$

Teorema 4 (Teorema Fundamental da Teoria Local das Curvas Planas) Sejam I um intervalo aberto da reta e $K: I \to \mathbb{R}$ uma função diferenciável.

- 1. Então existe uma curva diferenciavel $\alpha:I\to\mathbb{R}^2$, unit-speed, cuja função curvatura coincide com K.
- 2. Além disso, para toda $\beta: I \to \mathbb{R}^2$, unit-speed, que cumpre $K_\beta = K$, existe um movimento rígido $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $\alpha = \Phi \circ \beta$

Exemplo 4.2 (Construção de curva a partir da curvatura) Pelo teorema acima podemos construir uma curva a partir de uma função diferenciável (que será a curvatura) tomando, por exemplo, a função K(t)=1/t que seguimos da seguinte forma e obtemos uma curva cuja curvatura é K.

```
# Define curvature and theta_0
curvatura(t) = 1/t
theta_0 = 0

# Identify the Curve Parameter
t = curvatura.arguments()[0]
# Build Angle Function
theta(t) = integrate(curvatura(t), t) + theta_0

# Build Curve From Angle Function
```

```
12   aux(t) = (cos(theta(t)), sin(theta(t)))
13   14   curva_ang(t) = integrate(aux(t), t)
15   16   curva_ang = vector_simplify(curva_ang)
17   18   # Export function with n-tuple
19   curva_construida = tuple(coord for coord in curva_ang)
20   19   20   21   # Plot
21   parametric_plot(curva_construida, (t,0, 2 * pi), thickness=2)
22   #pretty_results((r"C(t)", curva_construida))
```


Figure 5. Curva pela curvatura

5. Curvas Regulares no \mathbb{R}^3

Definição 16 (Curvas no \mathbb{R}^3) As curvas diferenciáveis no \mathbb{R}^3 , são definidas de forma análoga ao \mathbb{R}^2 , isto é, uma **curva no** \mathbb{R}^3 é uma aplicação diferenciável de um intervalo I (aberto) em \mathbb{R}^3 , da forma

$$\alpha(t) = (x(t), y(t), z(t)), t \in I$$

Onde x, y e z são diferenciáveis, e a curva é dita **regular** quando

$$\alpha'(t) = (x'(t), y'(t), z'(t)) \neq (0, 0, 0), t \in I$$

Exemplo 5.1 (Curva no \mathbb{R}^3) *A curva*

$$\alpha(t) = (2t\sin(50t), 3t\cos(50t), t^2)$$

 \acute{E} um exemplo de curva regular no \mathbb{R}^3

```
1  # Curve definition
2  alpha(t) = (2 * t * sin(50 * t), 3 * t * cos(50 * t), t^2)
3
4  # Plot
5  parametric_plot(alpha, (t,0, 2*pi), thickness=2)
```


Figure 6. Curva no \mathbb{R}^3

Proposição 2 De forma análoga vale para \mathbb{R}^3 que

- Comprimento de arco é invariável por reparametrização.
- Toda curva regular admite reparametrização unit-speed ($\|\alpha'(t)\| = 1$).

Definição 17 (Curvatura no \mathbb{R}^3) Dada uma curva $\alpha:I\to\mathbb{R}$ regular parametrizada por comprimento de arco, a **curvatura** de α em $s\in I$ é definida como

$$K_{\alpha}(s) = \|\alpha''(s)\|$$

Definição 18 (2-regular) Seja uma curva regular $\alpha:I\to\mathbb{R}^3$ unit-speed, e $K_{\alpha}(s)>0, \forall s,\ ou\ seja,\ \alpha''(s)\neq 0,\ \forall s.$ Então dizemos que α é **2-regular**.

Definição 19 (Triedro de Frenet) Para α 2-regular, seja $T(s)=\alpha'(s)$ (vetor tangente), $N(s)=\frac{\alpha''(s)}{\|\alpha''(s)\|}$ (vetor normal) e $B(s)=T(s)\times N(s)$ (vetor binormal). Com estes

vetores estabelecemos um referencial chamado **Triedro de Frenet** formado pelos vetores $\{T(s), N(s), B(s)\}$, onde,

$$\begin{cases} B(s) = T(s) \times N(s) \\ N(s) = B(s) \times T(s) \\ T(s) = N(s) \times B(s) \end{cases}$$

Definição 20 (Curvatura e Torção) Seja uma curva α 2-regular em \mathbb{R}^3 não necessariamente parametrizada por comprimento de arco, então a **curvatura e a torção** de α são definidas respectivamente como

$$K_{\alpha}(t) = \frac{\|\alpha''(t) \times \alpha'(t)\|}{\|\alpha'(t)\|^3}$$

$$\mathcal{T}(t) = \frac{\langle (\alpha'(t) \times \alpha''(t)), \alpha'''(t) \rangle}{\|\alpha'(t) \times \alpha''(t)\|^2}$$

Exemplo 5.2 (Curvatura geral) Podemos calcular a curvatura no \mathbb{R}^3 da seguinte forma

```
# Curve
2 alpha(t) = (sin(2 * t), cos(2 * t), t)
3
4 # Calculate the derivatives
5 alpha_t = alpha.derivative(t)
6 alpha_tt = alpha_t.derivative(t)
7
8 # Apply General Curvature Formula
9 curvature = norm(alpha_t.cross_product(alpha_tt)) / norm(alpha_t)^3
10 curvature = curvature.simplify_full()
11
12 pretty_results((r"K(t)", curvature))
```

$$K(t) = \frac{4}{5}$$

Exemplo 5.3 (Torção) Seguindo a mesma ideia do exemplo acima podemos calcular a torção

```
1 # Curve

2 alpha(t) = (sin(2 * t), cos(2 * t), t)

3

4 # Calculate the derivatives

5 alpha_t = alpha.derivative(t)
```

```
alpha_tt = alpha_t.derivative(t)
alpha_ttt = alpha_tt.derivative(t)

# Get Vector Product of Velocity and Acceleration Vectors
prod_veloc_acel = alpha_t.cross_product(alpha_tt)

# Apply General Twist Formula
torcao = (prod_veloc_acel * alpha_ttt) / norm(prod_veloc_acel)^2
torcao = torcao.simplify_full()

pretty_results((r"\mathcal{T}(t)", torcao))
```

$$\mathcal{T}(t) = -\frac{2}{5}$$

Teorema 5 Seja $\alpha: I \to \mathbb{R}^3$ uma curva 2-regular unit-speed, então

$$\alpha \text{ \'e plana} \iff \mathcal{T}(s) \equiv 0, \ \forall s \in I$$

Teorema Fundamental das Curvas Espaciais

Teorema 6 (**Teorema Fundamental da Teoria Local das Curvas Espaciais**) Sejam I um intervalo aberto, $K:I\to\mathbb{R}$ uma função positiva diferenciável e $\mathcal{T}:I\to\mathbb{R}$ uma função diferenciável

- 1. Então existe uma curva diferenciavel $\alpha:I\to\mathbb{R}^3$, unit-speed, tal que K e \mathcal{T} concedem com a curvatura e torção de α respectivamente
- 2. Além disso, $\forall \beta: I \to \mathbb{R}^3$, unit-speed, que cumpre $K_\beta = K$ e $\mathcal{T}_\beta = \mathcal{T}$ existe um movimento rígido $\Phi: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $\alpha(s) = \Phi(\beta(s))$

References

de Lima, R. F. (2016). INTRODUÇÃO À GEOMETRIA DIFERENCIAL.

do Carmo, M. (2010). *Geometria diferencial de curvas e superfícies*. Textos Universitarios: Ciencias médicas. Sociedade Brasileira de Matemática.

The Sage Developers (2022). SageMath, the Sage Mathematics Software System (Version 9.5). https://www.sagemath.org.