

Machine Learning: Chenhao Tan University of Colorado Boulder

Slides adapted from Jordan Boyd-Graber, Chris Ketelsen

Logistics

- HW1 grades & solutions out
- HW2 available on Github, due in 4 days

Outline

Train-val-test

K-fold cross validation

Evaluate classifiers

Machine Learning: Chenhao Tan

The story so far

We've seen several machine learning models now (decision tree, KNN, perceptron, Logistic Regression, etc)

You've done your own experiments where you've selected hyperparameters:

- K in K-nearest neighbors
- number of epochs in perceptron

We've talked about the importance of evaluating a learning model on unseen validation data

You've been introduced to the confusion matrix and what it can tell you about how your learning algorithm makes mistakes

Machine Learning: Chenhao Tan | Boulder | 4

The story so far

We've seen several machine learning models now (decision tree, KNN, perceptron, Logistic Regression, etc)

You've done your own experiments where you've selected hyperparameters:

- K in K-nearest neighbors
- number of epochs in perceptron

We've talked about the importance of evaluating a learning model on unseen validation data

You've been introduced to the confusion matrix and what it can tell you about how your learning algorithm makes mistakes

Next:

- Validation
- Evaluation metrics

Train-val-test

- training: run machine learning algorithm m times (e.g., parameter search).
- validation error: Errors $\operatorname{Err}_{S_{\mathrm{val}}}(\hat{h}_i)$ is an estimate of $\operatorname{Err}_P(h_i)$.
- selection: Use h_i with $\min \mathrm{Err}_{S_{\mathrm{val}}}(\hat{h}_i)$ for prediction on test examples.

Machine Learning: Chenhao Tan | Boulder | 5 of 20

Train-val-test

Typical ratio:

- 70%/10%/20%
- 80%/10%/10%

Outline

Train-val-tes

K-fold cross validation

Evaluate classifiers

When the number of training instances is small, it seems wasteful to have a separate validation set. What can we do?

Machine Learning: Chenhao Tan | Boulder

When the number of training instances is small, it seems wasteful to have a separate validation set. What can we do?

Using all training data:

- Input: a sample *S* and a learning algorithm *A*.
- Procedure: Randomly split S into K equally-sized folds

$$S_1,\ldots,S_K$$

For each S_i , apply A to S_{-i} , get \hat{h}_i , and compute $\text{Err}_{S_i}(\hat{h}_i)$

• Training performance estimates: $\frac{1}{K} \sum_{i=1}^{K} \operatorname{Err}_{S_i}(\hat{h}_i)$

Machine Learning: Chenhao Tan Roulder

Example use:

5-fold CV: Randomly split N=25 examples into five folds F_i , i=1,2,3,4,5,

train on	test on	error rate
F_1, F_2, F_3, F_4	F_5	1/5
F_1, F_2, F_3, F_5	F_4	0/5
F_1, F_2, F_4, F_5	F_3	0/5
F_1, F_3, F_4, F_5	F_2	2/5
F_2, F_3, F_4, F_5	F_1	0/5

Average error rate: $\frac{1}{5}\sum_{i=1}^{5} \operatorname{Err}_{F_i} = 12\%$

Example use:

5-fold CV: Randomly split N=25 examples into five folds F_i , i=1,2,3,4,5,

train on	test on	error rate
F_1, F_2, F_3, F_4	F_5	1/5
F_1, F_2, F_3, F_5	F_4	0/5
F_1, F_2, F_4, F_5	F_3	0/5
F_1, F_3, F_4, F_5	F_2	2/5
F_2, F_3, F_4, F_5	F_1	0/5

Average error rate: $\frac{1}{5} \sum_{i=1}^{5} \operatorname{Err}_{F_i} = 12\%$

Repeat this process for different hyperparameters and find the hyperparameter with the lowest error rate.

Another example:

- Find good features F using S_{train}
- Split S_{train} into K folds
- For each fold, use the rest training data and features F to build a classifier and estimate prediction error using average error rates on each fold

Machine Learning: Chenhao Tan | Boulder | 10 of

Another example (This is wrong!):

- Find good features F using S_{train}
- Split S_{train} into K folds
- For each fold, use the rest training data and features F to build a classifier and estimate prediction error using average error rates on each fold

Note: the feature selection step actually has information about the supposedly heldout set.

Never ever touch your test data in any way!

Machine Learning: Chenhao Tan | Boulder | 11 of

K-fold cross validation can be used for

- selecting best models from training data
- nested cross-validation for performance estimation

Leave-one out cross validation

A special case where k = N

LOOCV error rate

$$\frac{1}{n} \sum_{i=1}^{n} I(y_i \neq \hat{y}_i^{h_{-i}}),$$

where h_{-i} represents the model trained using all the instances other than i.

Machine Learning: Chenhao Tan

Outline

Train-val-tes

K-fold cross validation

Evaluate classifiers

Evaluating learned hypothesis

- Goal: Find h with small prediction error $Err_P(h)$ over P(X, Y)
- Question: What is $\mathrm{Err}_P(\hat{h})$ of \hat{h} obtained from training data S_{train}
- Training error and test error
 - \circ Training error: $\mathrm{Err}_{S_{\mathrm{train}}}(\hat{h})$
 - \circ Test error: $\mathrm{Err}_{S_{\mathrm{test}}}(\hat{h})$ is an estimate of $\mathrm{Err}_{P}(\hat{h})$

Machine Learning: Chenhao Tan | Boulder | 15 of

Key questions in practice

- Is model (hypothesis) \hat{h}_1 better than \hat{h}_2 ?
- Is algorithm A_1 better than A_2 ?

Machine Learning: Chenhao Tan

What is the true error of a hypothesis?

• Apply \hat{h} to S_{test} , for each $(x, y) \in S_{\text{test}}$ observer $\Delta(\hat{h}(x), y)$.

Machine Learning: Chenhao Tan

What is the true error of a hypothesis?

- Apply \hat{h} to S_{test} , for each $(x, y) \in S_{\text{test}}$ observer $\Delta(\hat{h}(x), y)$.
- Binomial distribution estimates: assume that each toss is independent and the probability of heads is p, then the probability of observing x heads in a sample of n independent coin tosses is

$$\Pr(X = x | p, n) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

17 of 20

What is the true error of a hypothesis?

- Apply \hat{h} to S_{test} , for each $(x, y) \in S_{\text{test}}$ observer $\Delta(\hat{h}(x), y)$.
- Binomial distribution estimates: assume that each toss is independent and the probability of heads is p, then the probability of observing x heads in a sample of *n* independent coin tosses is

$$\Pr(X = x | p, n) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

- Normal approximation
- $\operatorname{Err}(\hat{h}) = \hat{p} = \frac{1}{n} \sum_{i=1}^{n} \Delta(\hat{h}(\mathbf{x}_i), y_i)$
- Confidence interval: $\hat{p} \pm z_{\alpha} \sqrt{\frac{1}{n}\hat{p}(1-\hat{p})}$

Same test sample

• Apply \hat{h}_1 and \hat{h}_2 to S_{test}

Same test sample

- Apply \hat{h}_1 and \hat{h}_2 to S_{test}
- Decide if $\operatorname{Err}_P(\hat{h}_1) \neq \operatorname{Err}_P(\hat{h}_2)$
- Null hypothesis: $\mathrm{Err}_{S_{\mathrm{test}}}(\hat{h}_1)$ and $\mathrm{Err}_{S_{\mathrm{test}}}(\hat{h}_2)$ come from binomial distributions with same pBinomial Sign Test (McNemar's Test)

Machine Learning: Chenhao Tan | Boulder | 18 c

Different test samples

• Apply \hat{h}_1 to $S_{\mathrm{test}1}$ and \hat{h}_2 to $S_{\mathrm{test}2}$

Different test samples

- Apply \hat{h}_1 to $S_{ ext{test}1}$ and \hat{h}_2 to $S_{ ext{test}2}$
- Decide if $\operatorname{Err}_P(\hat{h}_1) \neq \operatorname{Err}_P(\hat{h}_2)$
- Null hypothesis: $\mathrm{Err}_{S_{\mathrm{test}1}}(\hat{h}_1)$ and $\mathrm{Err}_{S_{\mathrm{test}2}}(\hat{h}_2)$ come from binomial distributions with same p t-test

Machine Learning: Chenhao Tan | Boulder | 19 of

Is learning algorithm A_1 better than A_2 ?

- Given k samples of $S_1 ldots S_k$ of labeled instances from P(X, Y), each S_i randomly split into $S_{\text{test}}^i, S_{\text{train}}^i$.
- For each i, train A_1 , A_2 on S^i_{train} , obtain $\hat{h}_i^{A_1}$ and $\hat{h}_i^{A_2}$, apply to S^i_{test} and compute $\text{Err}_{S_{\text{test}}}(\hat{h}_i^{A_1}), \text{Err}_{S_{\text{test}}}(\hat{h}_i^{A_2})$

Machine Learning: Chenhao Tan | Boulder | 20 of 20

Is learning algorithm A_1 better than A_2 ?

- Given k samples of $S_1 ldots S_k$ of labeled instances from P(X, Y), each S_i randomly split into $S_{\text{test}}^i, S_{\text{train}}^i$.
- For each i, train A_1 , A_2 on S^i_{train} , obtain $\hat{h}^{A_1}_i$ and $\hat{h}^{A_2}_i$, apply to S^i_{test} and compute $\text{Err}_{S_{\text{test}}}(\hat{h}^{A_1}_i), \text{Err}_{S_{\text{test}}}(\hat{h}^{A_2}_i)$
- Decide, if $E_S(Err_P(A_1(S_{train}))) \neq E_S(Err_P(A_2(S_{train})))$
- Null hypothesis: $\operatorname{Err}_{S_{\operatorname{test}}}(A_1(S_{\operatorname{train}}))$ and $\operatorname{Err}_{S_{\operatorname{test}}}(A_2(S_{\operatorname{train}}))$ come from same distribution over samples S t-test or Wilcoxon Signed-Rank Test

Machine Learning: Chenhao Tan | Boulder | 20 of 20