WHO DO YOU THINK YOU ARE?

Identifying Research Software Engineering Personas From Developer / Repository Interaction Data

Felicity 'Flic' Anderson†*, Dr. Julien Sindt† & Prof. Neil Chue Hong†

†EPCC, University of Edinburgh

*Felicity.Anderson@ed.ac.uk

0: RSE Personas from GitHub Data

We mined 45 GitHub repositories to attempt to identify **data-driven RSE Personas** for 791 contributors.

We hypothesised 4 main RSE Personas (Fig.2); we can confirm 'Active Leaders' and 'Occasional Contributors', others are less clear...

1: How to Create Data-Driven RSE Personas

Fig. 1: Data gathering workflow.

Zenodo was used to source for GitHub repositories with a DOI.

Hypothesised RSE Personas

Fig. 2: Hypothesised RSE Personas.

Repositories in the dataset contained a mean of 18 repo-individuals (min=10, max=50). Repository interactions were analysed across variables (see Fig.5)

approximating 'depth' (MRC) and 'breadth' (UIT) of contributions.

Hierarchical Clustering identified **3 clusters** (Fig.4: Calinski–Harabasz index 757.60, N=3 clusters) from similarities across interaction data.

Fig. 4: Dendrogram for Hierarchical Clustering using Ward method and Euclidean distance.

714 repo-individuals fall into one cluster category, with the remaining 77 across two remaining categories. Cluster 0: 90.27%, (red); Cluster 2: 7.46%, (gold); Cluster 1: 2.28%, (navy).

Cluster diversity was moderate: 84.4% (38) of the 45 repositories contain RSEs from 2 clusters. 6 (13.3%) had all clusters, 1 repository contained only a single cluster.

VARIABLE	DESCRIPTION & CALCULATION	CONCEPT
Repo-Individual	An RSE, contributing 1+ interaction within a RS repository in the study. Repo-Individual = GH Username + Repository Name combination	The unit of study.
Included Interaction Types	Five types of repository interactions covered by this study. "commit created", "issue ticket created", "issue ticket closed", "issue ticket assigned to individual", "pull request created"	Interaction Types examined to generate RSE Personas.
Unique Interaction Types	UIT = Unique categories of interaction Repo-Individual has made within their repository. (Minimum = 1, Maximum = 5). UIT = +1 for each Unique Included Interaction Type	BREADTH of repository interactions all included types.
Repository Contribution [Interaction Type]	RC[type] = Percentage of repo's interactions of [type] by this Repo-Individual. % RC[type] = (Repo-Individual's Number of Interactions of [Interaction Type] / Total Interactions of [Interaction Type] for their Repository) * 100 E.g. Repo has 1000 commits, and a repo-individual created 200: (200 / 1000) * 100 = 20%	DEPTH of repository interactions of a specific type.
Mean Repository Contribution	MRC = Mean percentage score across ALL Interaction Types for a Repo-Individual. % MRC = (RC1 + RC2 + RC3 + RC4 + RC5) / Max UIT (5) E.g. Repo-individual's score might be (200/1000 + 10/50 + 5/15 + 0/5 + 1/2) / 5 = 24.6%	DEPTH of repository interactions of all included types.

Fig. 5: Key variable definitions and relationship to hypotheses.

2: Identifying (with) RSE Personas

Fig. 6: RC values for Commit Creation and Pull (PR)
Request Creation, across UIT.

Fig.6 shows contrasting patterns of behaviours between clusters for committing and PRs, supported by ANOVA results (p < 0.001).

Fig. 7: Distribution of Repo-Individuals across UIT.

Fig.7 indicates the majority of repoindividuals only contribute to 1 UIT. These are the 482 (60.9%) RSEs from 41 repositories who only create commits. Conversely, only 18 (2.3%) repoindividuals displayed interactions from all valid interaction types.

Fig. 8: MRC highly significant (p < 0.001) by Cluster.

Differences in MRC between clusters are highly significant (p < 0.001) across all relationships (Fig.8).

Fig. 9: Variation in % MRC across UIT.

ANOVA and Tukeys HSD tests identify MRC varying significantly across UIT categories (p < 0.001), while low:high pairings of UIT are highly significant.

3: Evaluating RSE Personas Approach

Active Leaders map to Cluster 1 as a RSE Persona type with high UIT and high MRC values (Fig.9). Despite rarity (2% of repo-individuals), they generate >50% their repositories' interactions.

Cluster 0 maps well to hypothesised 'Occasional Contributors', showing low 'MRC' values and skewing strongly to very low 'UIT'. Could be examined for possible sub-clusters.

'Focused Developers' RSE Persona was disproved by no clusters with high MRC and low UIT, so is rejected as hypothesised.

The 'Project Managers' RSE Persona is rejected as unclear - Cluster 2 does occupy the low MRC space, but may show possible bimodality in relation to UIT.

Variables 'MRC' and 'RC pull-request-created' are significant and explain high variance in Principal Component Analysis (PCA), acting as a robust basis for RSE Personas. UIT does not explain cluster variance well. This could be due to the differing 'combinations' of interactions confusing the picture.

Ask Me About Limitations... Skews towards 'best practices'; not all interactions are equal; project comparison difficulties; capturing changes over time; real-world validity-checking...

4: Using RSE Personas

Next Steps... Include more UITs (code review, discussions, merges); compare other languages - data vs HPC?; explore time and commit category data more deeply...

Future Work... RSE Persona dynamics - co-occurrences or limiting factors?; RSE Persona Fluidity - do personas change over time/repos?); create Taxonomy of RSE Personas with descriptive characteristics to aid usage.