Assignment 3 Problem 3

Which of the following binary trees must have height $O(\log n)$? Justify your answer.

a) There is a constant c > 0 such that for all nodes z in T, $z.left.height \le z.right.height + c$.

This tree does not have height $O(\log n)$. Since there is no restriction on the height of the left subtree of a node, therefore, we can have a tree like all nodes are added on the right for each node. And for such tree, the height is $\Theta(n)$

- **b)** Every node z that is not a leaf in T has exactly two children.
 - This tree does not have height $O(\log n)$. We can also provide an example that the tree has the height $\Theta(n)$. Considering a tree that except the first level(which only contains a root), all levels has two nodes, one is a leaf, and another one is not. Therefore, let h be the height of the tree, and n be the number of nodes, we have the relation: 2*(h-1)+1=n rearrange and take logarithm on both sides, we have $h-1=\log(n-1)$ which implies that $h\in\Theta(\log n)$
- c) Given a BST T, let N(z) be the number of nodes in the subtree rooted at z. If z is an empty subtree, then N(z) = 0.

There is a constant $0 < c \le 1$ such that for every node z in T, $N(z.left) \ge c \times N(z.right) - 1$ and $N(z.right) \ge c \times N(z.left) - 1$.

This tree has height $O(\log n)$.

We have the relation $N(left) \ge c \times N(right) - 1$ and $N(right) \ge c \times N(left) - 1$.

If we know the N(left), then we can get $c \times N(left) - 1 \le N(right) \le \frac{N(left) + 1}{c}$

Fix n, let h(n) be the max hight for n-node tree. We have the relation h(n) = h(left) + 1 if we assume that $N(left) \ge N(right)$

Also, we have that N(left) + N(right) + 1 = n and $N(right) = c \times N(left) - 1$

Simplifying, then we get $N(left) = \frac{n}{c+1}$ and $h(n) = h(\frac{n}{c+1}) + 1$

Note that $1 < c + 1 \le 2$

when n = 0, $h(0) = -1 \le \log(n+1) = 0$

when n = 1, $h(1) = 0 < \log(n+1) = \log 2 = 1$

assume for i < n, we have $h(i) \le \log(i+1)$

 $h(n) = 1 + h(\frac{n}{c+1}) \le \log(\frac{n}{c+1}) + 1 = \log(\frac{n}{c+1}) + \log 2 = \log(\frac{2n}{c+1}) \in O(\log n)$

By induction, we prove that for such BST with n nodes, the height is $O(\log n)$