EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

08082841

PUBLICATION DATE

26-03-96

APPLICATION DATE

13-09-94

APPLICATION NUMBER

06243454

APPLICANT: CANON INC;

INVENTOR: OSAWA TOSHIFUMI;

INT.CL.

: G03B 17/18

TITLE

: DISPLAY DEVICE FOR CAMERA

ABSTRACT: PURPOSE: To make various kinds of indication in a display of a camera easy- to-see by easily distinguishing them.

> CONSTITUTION: This display device for the camera is provided with a control circuit 1 to which the output signals of a mode setting means 2 for setting an operation mode, an information setting means 3 for setting the information of a shutter speed, a numerical aperture, etc., and a battery checking means 5 for checking the voltage level of a battery are inputted, to control the camera. The control circuit 1 outputs the output signal to a liquid crystal display driver 6 and an LED back light driver 8, to control the display contents of the display 7 composed of a liquid crystal display panel with the display signal of the display driver 6 and controls color generated by respective back light means 9-11 of red, blue and green LEDs with the output signal of the back light driver 8, to change and display the color of the back light of the display 7.

COPYRIGHT: (C)1996,JPO

THIS PAGE BLANK (USPTO)

Mark Mark Agricultural

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-82841

(43)公開日 平成8年(1996)3月26日

(51) Int.Cl.6

識別記号 庁内整理番号

FΙ

技術表示箇所

G03B 17/18

Z

審査請求 未請求 請求項の数9 FD (全 12 頁)

(21)出願番号。

特願平6-243454

(22)出願日

平成6年(1994)9月13日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 大沢 敏文

東京都大田区下丸子3丁目30番2号 キヤ

ノン株式会社内

(74)代理人 弁理士 田村 光治

(54) 【発明の名称】 カメラの表示装置

(57)【要約】

【目的】 カメラの表示器における各種の表示を容易に 区別して見やすくすることを可能とする。

【構成】 動作モードを設定するモード設定手段2の出力信号とシャッタ速度や絞り値等の情報設定を行う情報設定手段3の出力信号と電池の電圧レベルを知るパッテリーチェック手段5の出力信号とを入力されてカメラ制御を行う制御回路1を有し、この制御回路1は液晶表示ドライバ6及びLEDパックライトドライバ8に対して出力信号を出力して、表示ドライバ6の表示信号により被晶表示パネルからなる表示器7の表示内容を制御するとともに、パックライトドライバ8の出力信号によりそれぞれ赤背縁LEDのパックライト手段9,10,11の発生させる色を制御して表示器7のバックライトの色を変化させて表示する。

1

【特許請求の範囲】

【請求項1】 モード設定手段の出力信号と情報設定手 段の出力信号と測光手段の出力信号とバッテリーチェッ ク手段の出力信号とを入力されて制御を行う制御回路を 有し、該制御回路は表示ドライバおよびバックライトド ライバに対して出力信号を出力して表示ドライバの表示 信号を制御して表示器の表示内容を制御するとともにバ ックライトドライバの出力信号を制御してバックライド 手段の発生させる色を制御して表示器のバックライトの 色を変化させることを特徴とするカメラの表示装置。

【請求項2】 該制御回路はモード設定手段の出力信号 の変化に応答して表示ドライバおよびバックライトドラ イバに対して出力信号を出力することを特徴とする請求 項1記載のカメラの表示装置。

【請求項3】 該制御回路はバッテリーチェック手段の 出力信号の変化に応答して表示ドライバおよびバックラ イトドライバに対して出力信号を出力することを特徴と する請求項1及び2記載のカメラの表示装置。

【請求項4】 該制御回路は測光手段の出力信号の変化 に応答して表示ドライバおよびパックライトドライバに 20 対して出力信号を出力することを特徴とする請求項1, 2, 3記載のカメラの表示装置。

【請求項5】 モード設定手段の出力信号と情報設定手 段の出力信号と測光手段の出力信号とバッテリーチェッ ク手段の出力信号とを入力されて制御を行う制御回路を 有し、該制御回路は多色表示ドライバに対して出力信号 を出力して多色表示ドライバの表示信号を制御して多色 表示器の表示内容と表示色とを制御することを特徴とす るカメラの表示装置。

【請求項6】 該制御回路はモード設定手段の出力信号 の変化に応答して多色表示ドライバに対して出力信号を 出力することを特徴とする請求項5記載のカメラの表示 装置。

【請求項7】 該制御回路はバッテリーチェック手段の 出力信号の変化に応答して多色表示ドライバに対して出 カ信号を出力することを特徴とする請求項5及び6記載 のカメラの表示装置。

【請求項8】 該制御回路は測光手段の出力信号の変化 に応答して多色表示ドライバに対して出力信号を出力す ることを特徴とする請求項5,6,7記載のカメラの表 40 示装置。

【請求項9】 該制御回路はモード設定手段の出力信号 に応じて情報設定手段の出力信号と測光手段の出力信号 とに基づく露出情報を演算し、情報設定手段の出力信号 に応じた情報と該演算に基づく露出情報とを異なる表示 色にて表示させるように多色表示ドライバに対して出力 信号を出力して多色表示ドライバの表示信号を制御して 多色表示器の表示内容を制御するとともに表示色を変化 させることを特徴とする請求項5記載のカメラの表示装 置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、カメラ等に用いられる 表示装置に関するものである。

2

[0002]

【従来の技術】カメラの電子化が進み、高機能になるに つれてカメラにおける情報表示も多くの情報を表示する 必要性が生じてきており、最近においては液晶表示器に よってその情報表示を行う例が多くなっている。 このよ うな液晶表示器付きのカメラにおいては、その液晶表示 器内にカメラの動作モードを表わす各セグメントやシャ ッタ速度などの数値情報を表わすための複数の「日」の 字形の7セグメントが配置されている。

[00031

【発明が解決しようとする課題】ところで、カメラに設 けられる液晶表示器の大きさは限られており、カメラの 髙機能化が進む中でより多くの情報を表示しようとする 場合に前記した各セグメントは小さくなる傾向である し、何かの警告を表わす表示をする場合にそのための専 用のセグメントを設けることをしないで他のセグメント の点滅表示で代用することなどされており、カメラの使 用者にとって分かりづらい表示になってしまっている。

【0004】請求項1ないし4に示した本発明は、前述 従来技術の問題点に鑑み、表示の種別の識別をパックラ イトの色で分かりやすくしたカメラの表示装置を提供す ることを第1の目的とする。請求項5ないし8に示した 本発明は、前述従来技術の問題点に鑑み、表示の種別の 識別を表示セグメントの色で分かりやすくしたカメラの 表示装置を提供することを第2の目的とする。請求項9 に示した本発明は、前述従来技術の問題点に鑑み、露出 に関する情報の区別を表示セグメントの色で分かりやす くしたカメラの表示装置を提供することを第3の目的と する。

[0005]

【課題を解決するための手段】前述の第1の目的を達成 するために、請求項1に示した本発明のカメラの表示装 置は、モード設定手段の出力信号と情報設定手段の出力 信号と測光手段の出力信号とバッテリーチェック手段の 出力信号とを入力されて制御を行う制御回路を有し、該 制御回路は表示ドライバおよびバックライトドライバに 対して出力信号を出力して表示ドライバの表示信号を制 御して表示器の表示内容を制御するとともにバックライ トドライバの出力信号を制御してバックライド手段の発 生させる色を制御して表示器のバックライトの色を変化 させるものである。また、請求項2~4に示した本発明 は、該制御回路はモード設定手段の出力信号の変化、ま たはパッテリーチェック手段の出力信号の変化、あるい は測光手段の出力信号の変化に応答して表示ドライバお よびパックライトドライバに対して出力信号を出力して

50 表示ドライバの表示信号を制御して表示器の表示内容を

制御するようにしてもよい。

【0006】前述の第2の目的を達成するために、請求 項5に示した本発明のカメラの表示装置は、モード設定 手段の出力信号と情報設定手段の出力信号と測光手段の 出力信号とパッテリーチェック手段の出力信号とを入力 されて制御を行う制御回路を有し、該制御回路は多色表 示ドライバに対して出力信号を出力して多色表示ドライ バの表示信号を制御して多色表示器の表示内容と表示色 とを制御するものである。また、請求項6~8に示した 本発明は、該制御回路はモード設定手段の出力信号の変 10 化、またはパッテリーチェック手段の出力信号の変化、 あるいは測光手段の出力信号の変化に応答して多色表示 ドライバに対して出力信号を出力して多色表示ドライバ の表示信号を制御して多色表示器の表示内容を制御する とともに表示色を変化させるようにしてもよい。前述の 第3の目的を達成するために、請求項9に示した発明で は、該制御回路はモード設定手段の出力信号に応じて情 報設定手段の出力信号と測光手段の出力信号とに基づく 成出情報を演算し、情報設定手段の出力信号に応じた情 **報と該演算に基づく露出情報とを異なる表示色にて表示 20** させるように多色表示ドライバに対して出力信号を出力 して多色表示ドライバの表示信号を制御して多色表示器 の表示内容を制御するとともに表示色を変化させるよう にしてもよい。

[0007]

【作用】以上の構成の請求項1~4に示した発明は、従 来小さなセグメント表示を見なければ区別できなかった 設定されているモード等の表示や何らかの警告表示を表 示器のパックライトの色の変化により容易に区別でき

【0008】以上の構成の請求項5~8に示した発明 は、同じく従来小さなセグメント表示を見なければ区別 できなかった設定されているモード等の表示や何らかの 警告表示を表示セグメントの色の変化により容易に区別 できる。また、請求項9に示した発明は、表示セグメン トの表示色の違いにより使用者自身が設定した情報とカ メラが演算した情報とを明確に区別して表示することが できる。

[0009]

【実施例】以下、本発明の第1実施例を図1ないし図3 に基づいて説明する。図1は本実施例の表示装置を作動 するための電気回路のブロック図である。図1におい て、1はマイクロコンピュータ等によりなる制御回路で ある。2はカメラの動作モードを設定するためのモード 設定手段、3はシャッタ速度や絞り値等の情報設定を行 うための情報設定手段、4は被写体の輝度情報を得るた めの測光手段、5は電源となる電池の電圧レベルを知る ためのバッテリーチェック手段である。そして、該モー ド設定手段2及び情報設定手段3のそれぞれの設定情報 と該測光手段4及びバッテリーチェック手段5のそれぞ 50 バッテリー不適を表示するセグメントが点滅した赤色を

れの出力は制御回路1に入力されてカメラを制御するた めの制御情報となっている。

【0010】6は例えば液晶表示ドライバからなる表示 ドライバで、制御回路1からの出力信号で作動される。 7 は例えば透過型液晶表示パネルからなる表示器で、シ ャッタ速度等の数値情報を表わすための複数の「日」の 字形の7セグメント等が配置されており、該表示ドライ パ6の駆動出力が与えられて各セグメントが点灯表示さ れる。8は例えばLEDドライバからなるバックライト ドライバで、制御回路1が出力するバックライト制御用 の信号に基づき駆動出力を行う。9,10,11は例え ばLEDからなるパックライト手段であって、本実施例 ではそれぞれ赤色LED, 青色LED, 緑色LEDであ り、該バックライトドライバ8の出力信号が入力されて 点灯される。

【0011】前記表示器7に配置される表示セグメント の具体例を図2に示す。図に示すように、表示セグメン トとして4桁の7セグメント7aと小数点を含む2桁の 7セグメント7bと電池の外形を表わしたセグメント7 cとを有する。本実施例では、4桁の7セグメント7a はシャッタ速度情報を表わすために使用され、小数点を 含む2桁の7セグメント7bは絞り値情報表わすために 使用され、電池の外形を表わしたセグメント7cは電池 の電圧が不十分な場合のバッテリー不適の警告を表わす ために使用される。

【0012】以上の構成の本実施例の制御回路1の具体 的な動作を図3のフローチャートを用いて説明する。ま ず、不図示の電源スイッチがオンされて制御回路1が動 作可能となると、動作ステップをスタートする。ステッ プ1では制御回路1は自身のメモリやフラグ及びポート などの初期化を行う。ステップ2ではパッテリーチェッ ク手段5からの出力信号を読み込んで所定の判定レベル と比較する。その比較した結果において、バッテリーが カメラを動作させるのに充分な電圧を出力していると判 断される場合にはステップ5に進むが、もしもパッテリ ーがカメラを動作させるのに充分な電圧を出力していな いと判断される場合にはステップ3に進む。

【0013】ステップ3では制御回路1は表示ドライバ 6に対して表示器7の内のパッテリー不適を表示するセ グメント7 c を点灯させるように情報を出力し、これに より表示器7のセグメント7cが点灯表示される。ステ ップ4では制御回路1はバックライトドライバ8に対し て赤色LED9を点滅点灯するように情報を出力し、こ れによりバックライト手段としては赤色のバックライト にて表示器7を点滅させながら透過照明することにな り、ステップ3にて点灯したバッテリー不適を表示する セグメント7cが点滅した赤色を背景光として表示され **てステップ2へ戻る。以上のようにバッテリーがカメラ** を動作させるに充分な電圧を出力していない場合には、

30

背景光として表示されるのみであり、カメラは作動しない。

【0014】一方、前記ステップ2で前述のようにバッテリーがカメラを動作させるに充分な電圧を出力していると判断される場合にはステップ5に進む。ステップ5では制御回路1は自身のフラグである測光値警告フラグWFを0にクリアする。ここでは前記ステップ1にて初期化されているので、このステップは特別な意味を持たないが、後のステップにてフラグWFが一度1になった後の解除にこのステップは使われる。ステップ6では制御回路1はモード設定手段2の出力を読み込んでマニュアル露出モードが設定されているか、自動露出モードが設定されているかをチェックする。もしもマニュアル露出モードが設定されていれば、ステップ7へ進む。

【0015】ステップ7では制御回路1は情報設定手段3より設定されているシャッタ速度や絞り値等の情報を読み込み、これらの情報を表示ドライバ6に対して出力して表示器7の中の複数の「日」の字形の7セグメントによって表示させる。ステップ8では制御回路1はバックライトドライバ8に対して青色LED10を点灯するように情報を出力する。これにより、バックライト手段としては青色のバックライトにて表示器7を透過照明することになり、マニュアル露出モードが設定されている場合においては前記ステップ7にて点灯させたシャッタ速度や絞り値等の情報が青色を背景光として表示される。

【0016】ステップ9では制御回路1は不図示のレリーズスイッチがオンされているかどうかをチェックする。レリーズスイッチがオフされているならばステップ2へ戻って前記したステップを繰り返す。レリーズスイッチがオンされているならば、レリーズルーチンへ進んでシャッタの制御等を行うが、レリーズルーチンの詳細な説明は本発明と直接のかかわりがないので省略する。

【0017】前述ステップ6にてモード設定手段2の出力が自動露出モードとなっている場合にはステップ10に進む。ステップ10では制御回路1は測光手段4の出力を読み込んで被写体の輝度情報を得る。ステップ11では制御回路1は前記ステップ10にて読み込んだ被写体の輝度情報が測光手段4の測光可能な範囲内を越えてしまっている可能性があるものかどうかをチェックする。もしも測光手段4の測光可能な範囲内を越えてしまっている可能性がある場合はステップ12へ進む。

【0018】ステップ12は制御回路1は自身のフラグである測光値警告フラグWFを1にする。なお、前記ステップ11にて被写体の輝度情報が測光手段4の測光可能な範囲内を越えてしまっている可能性がない場合はステップ12を通らずにステップ13へ進む。ステップ13では制御回路1は前記ステップ10にて読み込んだ被写体の輝度情報をもとに適正な露出を与えるためのシャッタ速度と絞り値を演算する。ステップ14では制御回50

路1は前記ステップ13にて演算したシャッタ速度と絞り値が当該カメラの制御可能なシャッタ速度範囲内であるか、また絞り値範囲内であるかをチェックする。もしもシャッタ速度と絞り値とのいずれか一方でも制御可能な範囲内でない場合にはステップ15へ進む。

【0019】ステップ15では制御回路1は自身のフラグである測光値警告フラグWFを1にする。なお、前記ステップ14にてシャッタ速度と絞り値とのどちらも制御可能な範囲内にある場合にはステップ15を通らずにステップ16へ進む。ステップ16では制御回路1は前記ステップ13にて演算されたシャッタ速度と絞り値の情報を表示ドライバ6に対して出力して表示器7のなかの複数の「日」の字形の7セグメントによって表示させる。ステップ17では制御回路1は自身のフラグである測光値警告フラグWFが0であるか1であるかをチェックする。もしも、0であるとするとステップ18へ進む。

【0020】ステップ18では制御回路1はバックライ トドライバ8に対して緑色LED11を点灯するように 情報を出力する。これによりバックライト手段としては 緑色のパックライトにて表示器7を透過照明することに なり、自動露出モードが設定されている場合において は、前記ステップ16にて点灯させたシャッタ速度や絞 り値等の情報が緑色を背景光として表示される。つま り、測光値警告フラグWFが 0 である場合とは、測光手 段4の測光可能な範囲内を越えてしまっている可能性も なく、シャッタ速度と絞り値とのどちらも制御可能な範 囲内にある場合であるから、適正な露光が得られる場合 であり、適正な露光が得られることを意味して背景光が 緑色になる。また、マニュアル露出モードが設定されて いる場合においては前記ステップ7にて点灯させたシャ ッタ速度や絞り値等の情報が青色を背景光として表示さ れることとも区別される。もしも、前記ステップ17に て測光値警告フラグWFが1であると、ステップ19へ

【0021】ステップ19では制御回路1はバックライトドライパ8に対して赤色LED9を点灯するように情報を出力する。これによりバックライト手段としては赤色のバックライトにて表示器7を透過照明することになり、ステップ16にて点灯させたシャッタ速度や絞り値等の情報が赤色を背景光として表示される。つまり、測光値警告フラグWFが1である場合とは測光手段4の測光可能な範囲内を越えてしまっている可能性があるが、シャッタ速度と絞り値とのどちらかが制御可能な範囲内にない場合であるから、適正な露光が得られない場合であり、適正な露光が得られないよとを意味して背景光が赤色になる。ステップ18またはステップ19実行後はステップ9へ進み、前記ステップを繰り返す。

【0022】図4及び図5は本発明の第2実施例を示す ものである。説明を簡単にするために前述第1実施例と 同一部分には同一符号を付し、相違する点のみを説明する。図4は本実施例の表示装置を作動するための電気回路のブロック図である。本実施例では、前述第1実施例における表示ドライバ6,表示器7及びバックライドドライバ8,パックライト手段9~11に代えて、制御回路1に接続される例えばカラー液晶表示ドライバからなる多色表示ドライバ21及びこれに接続される例えばカラー型液晶表示パネルからなるカラー表示可能な多色表示器22で構成されるものである。その他の構成は前述第1実施例と同様である。

【0023】以上の構成の本実施例において、多色表示器22には前述第1実施例の表示器7と同様にシャッタ速度等の数値情報を表わすための複数の「日」の字形の7セグメント等が配置されており、多色表示ドライバ21の駆動出力が与えられて各セグメントが点灯表示される。なお、多色表示ドライバ21と多色表示器22をドットマトリスクタイプのセグメント構成とすることで、複数の「日」の字形の7セグメントと電池の外形を表わしたセグメントを持たせなくても同等の表示を行わせることができることはいうまでもない。

【0024】以下、本実施例の制御回路1の具体的な動作を図5のフローチャートを用いて説明する。まず、不図示の電源スイッチがオンされて制御回路1が動作可能となると、動作ステップをスタートする。ステップ21では制御回路1は自身のメモリやフラグ及びポートなどの初期化を行う。ステップ22ではバッテリーチェック手段5からの出力信号を読み込んで所定の判定レベルと比較する。その比較した結果において、バッテリーがカメラを動作させるのに充分な電圧を出力していると判断される場合にはステップ24に進むが、もしもバッテリーがカメラを動作させるのに充分な電圧を出力していないと判断される場合にはステップ23に進む。

【0025】ステップ23では制御回路1は表示ドライバ21に対して多色表示器22の内のバッテリー不適を表示するセグメントを赤色に点滅点灯させるように情報を出力し、これにより多色表示器22にはバッテリー不適を表示するセグメントが赤色で点滅点灯表示されてステップ22へ戻る。以上のようにバッテリーがカメラを動作させるに充分な電圧を出力していない場合には、バッテリー不適を表示するセグメントが点滅赤色にて表示されるのみであり、カメラは作動しない。

【0026】一方、前記ステップ22で前述のようにバッテリーがカメラを動作させるに充分な電圧を出力していると判断される場合にはステップ24に進む。ステップ24では制御回路1は自身のフラグである測光値警告フラグWFを0にクリアする。ここでは前記ステップ21にて初期化されているので、このステップは特別な意味を持たないが、後のステップにてフラグWFが一度1になった後の解除にこのステップは使われる。ステップ25では制御回路1はモード設定手段2の出力を読み込50

んでマニュアル露出モードが設定されているか、自動露出モードが設定されているかをチェックする。もしもマニュアル露出モードが設定されていれば、ステップ26 へ進む。

【0027】ステップ26では制御回路1は情報設定手 段3より設定されているシャッタ速度や絞り値等の情報 を読み込み、これらの情報を多色表示ドライバ21に対 して青色にて表示させるように出力して多色表示器22 の中の複数の「日」の字形の7セグメントによって青色 10 表示させる。こうして、マニュアル露出モードが設定さ れている場合においてはシャッタ速度や絞り値等の情報 が青色表示される。ステップ27では制御回路1は不図 示のレリーズスイッチがオンされているかどうかをチェ ックする。レリーズスイッチがオフされているならばス テップ22へ戻って前記したステップを繰り返す。レリ ーズスイッチがオンされているならば、レリーズルーチ ンへ進んでシャッタの制御等を行うが、レリーズルーチ ンの詳細な説明は本発明と直接のかかわりがないので前 述実施例と同様に省略する。

20 【0028】前述ステップ25にてモード設定手段2の出力が自動露出モードとなっている場合にはステップ28に進む。ステップ28では制御回路1は測光手段4の出力を読み込んで被写体の輝度情報を得る。ステップ29では制御回路1は前記ステップ28にて読み込んだ被写体の輝度情報が測光手段4の測光可能な範囲内を越えてしまっている可能性があるものかどうかをチェックする。もしも測光手段4の測光可能な範囲内を越えてしまっている可能性がある場合はステップ30へ進む。

【0029】ステップ30は制御回路1は自身のフラグである測光値警告フラグWFを1にする。なお、前記ステップ29にて被写体の輝度情報が測光手段4の測光可能な範囲内を越えてしまっている可能性がない場合はステップ30を通らずにステップ31へ進む。ステップ31では制御回路1は前記ステップ28にて読み込んだ被写体の輝度情報をもとに適正な露出を与えるためのシャッタ速度と絞り値を演算する。ステップ32では制御回路1は前記ステップ31にて演算したシャッタ速度と絞り値が当該カメラの制御可能なシャッタ速度範囲内であるか、また絞り値範囲内であるかをチェックする。もしもシャッタ速度と絞り値とのいずれか一方でも制御可能な範囲内でない場合にはステップ33へ進む。

【0030】ステップ33では制御回路1は自身のフラグである測光値警告フラグWFを1にする。なお、前記ステップ32にてシャッタ速度と絞り値とのどちらも制御可能な範囲内にある場合にはステップ33を通らずにステップ34へ進む。ステップ34では制御回路1は自身のフラグである測光値警告フラグWFが0であるか1であるかをチェックする。もしも、0であるとするとステップ35へ進む。

【0031】ステップ35では制御回路1は前記ステッ

40

プ31にて演算されたシャッタ速度と絞り値の情報を多 色表示ドライパ21に対して緑色にて表示させるよう出 力して多色表示器22のなかの複数の「日」の字形の7 セグメントによって緑色表示させる。こうして、自動露 出モードが設定されている場合において測光値警告フラ グWFが0である場合にはシャッタ速度や絞り値等の情 報が緑色表示される。つまり、測光値警告フラグWFが 0である場合とは、測光手段4の測光可能な範囲内を越 えてしまっている可能性もなく、シャッタ速度と絞り値 とのどちらも制御可能な範囲内にある場合であるから、 適正な露光が得られる場合であり、適正な露光が得られ ることを意味してシャッタ速度や絞り値等の情報が緑色 表示になる。また、マニュアル露出モードが設定されて いる場合においては前記ステップ26にて点灯させたシ ャッタ速度や絞り値等の情報が青色表示されることとも 区別される。もしも、前記ステップ34にて測光値警告 フラグWFが1であると、ステップ36へ進む。

【0032】ステップ36では制御回路1は前記ステップ31でシャッタ速度や絞り値等の情報を表示ドライバ21に対して赤色にて表示させるよう出力して表示器22のなかの複数の「日」の字形の7セグメントによって赤色表示させる。こうして、自動露出モードが設定されている場合において、測光値警告フラグWFが1である場合にはシャッタ速度や絞り値等の情報が赤色表示される。つまり、測光値警告フラグWFが1である場合とは耐光手段4の測光可能な範囲内を越えてしまっている可能性があるが、シャッタ速度と絞り値とのどちらかが制御可能な範囲内にない場合であるから、適正な露光が得られない場合であり、適正な露光が得られないとを意味してシャッタ速度や絞り値等の情報が赤色表示になる。

【0033】図6及び図7は本発明の第3実施例を説明 するフローチャートである。なお、その電気回路構成に ついては前述第2実施例の図4と同様である。そこで、 本実施例の制御回路1の具体的な動作を図6及び図7の フローチャートを用いて説明する。まず、不図示の電源 スイッチがオンされて制御回路1が動作可能となると、 動作ステップをスタートする。ステップ41では制御回 路1は自身のメモリやフラグ及びポートなどの初期化を 行う。ステップ42では制御回路1はモード設定手段2 の出力を読み込んでマニュアル露出モードが設定されて いるか他の自動露出モードが設定されているかをチェッ クする。もしも、マニュアル露出モードが設定されてい るとすると、ステップ43へ進む。ステップ43では制 御回路1は情報設定手段3より設定されているシャッタ 速度や絞り値の情報を読み込み、マニュアル設定されて いる情報値を知る。

【0034】ステップ44では制御回路1は前記ステップ43にて得られたマニュアル設定されている情報値を 多色表示ドライバ21に対してともに青色にて表示させ *50* るように出力して多色表示器 2 2 の中の複数の「日」の字形の7セグメントによって青色表示させる。こうして、マニュアル露出モードが設定されている場合においてはシャッタ速度情報や絞り値情報はともに青色表示される。ステップ 4 5 では制御回路 1 は不図示のレリーズスイッチがオンされているかどうかをチェックする。レリーズスイッチがオフされているならばステップ 4 2 へ戻って前記したステップを繰り返す。レリーズスイッチがオフされているならば、レリーズルーチンへ進んでシャッタの制御等を行うが、レリーズルーチンの詳細な説明は本発明と直接のかかわりがないので前述実施例と同様に省略する。

【0035】前述ステップ42にてモード設定手段2の出力がマニュアル露出モード以外となっている場合にはステップ46に進む。ステップ46では制御回路1はモード設定手段2の出力を読み込んでシャッタ速度優先自動露出モードが設定されているかどうかをチェックする。もしも、そうであるならばステップ47へ進む。ステップ47では制御回路1は情報設定手段3より設定されているシャッタ速度の情報を読み込み、マニュアル設定されている情報値を知る。ステップ48では制御回路1は測光手段4の出力を読み込んで被写体の輝度情報を得る。

【0036】ステップ49では制御回路は前記ステップ48にて得られた被写体の輝度情報と前記ステップ47にて得られたシャッタ速度の情報をもとに適正露出となるような絞り値を演算する。ステップ50では制御回路1は前記ステップ49にて演算された絞り値が当該カメラの制御可能な絞り値範囲内であるかをチェックする。もしも、制御可能な範囲内であるならばステップ51へ進む。

【0037】ステップ51では制御回路1は前記ステップ47にて得られたマニュアル設定されているシャッタ速度情報値を多色表示ドライバ21に対して青色にて表示させるように出力するとともに、前記ステップ49にて演算して得られた絞り値情報を多色表示ドライバ21に対して緑色にて表示させるように出力する。これにより、多色表示器22のなかの複数の「日」の字形の7セグメントによってシャッタ速度情報は青色表示させられ、絞り値情報は緑色表示させられる。こうして、マニュアル露出モードが設定されている場合においては、シャッタ速度情報と絞り値情報はともに青色表示されたものに対して、シャッタ速度優先自動露出モードにおいてはカメラが演算した絞り値情報が緑色表示させられるので区別される。

【0038】前記ステップ50にて演算された絞り値が 当該カメラの制御可能な絞り値範囲内ではないと判断された場合にはステップ52へ進む。ステップ52では制 御回路1は前記ステップ47にて得られたマニュアル設 定されているシャッタ速度情報値を多色表示ドライバ2

1に対して青色にて表示させるように出力するとともに、前記ステップ49にて演算して得られた絞り値情報を多色表示ドライバ21に対して赤色にて表示させるように出力する。これにより、多色表示器22のなかの複数の「日」の字形の7セグメントによってシャッタ速度情報は青色表示させられ、絞り値情報は赤色表示させられる。前記ステップ50にて演算された絞り値が当該カメラの制御可能な絞り値範囲内ではない場合とは適正な露出が得られない場合であり、適正な露出が得られる場合に前記ステップ51で絞り値情報は緑色表示されるものと区別される。

【0039】前記ステップ51またはステップ52を終了すると、前記ステップ45へ進み、前述したステップを繰り返す。前記ステップ46にてシャッタ速度優先自動露出モードが設定されていない場合にはステップ53へ進む。ステップ53では制御回路1はモードが設定されているかどうかをチェックする。もしも、そうであるならばステップ54へ進む。ステップ54では制御回路1は情報設定手段3より設定されている絞り値の情報を20読み込み、マニュアル設定されている情報値を知る。ステップ55では制御回路1は測光手段4の出力を読み込んで被写体の輝度情報を得る。

【0040】ステップ56では制御回路1は前記ステップ55にて得られた被写体の輝度情報と前記ステップ54にて得られた被写体の輝度情報と前記ステップ54にて得られた絞り値の情報をもとに適正露出となるようなシャッタ速度を演算する。ステップ57では制御回路1は前記ステップ56にて演算されたシャッタ速度が当該カメラの制御可能なシャッタ速度範囲内であるかをチェックする。もしも、制御可能な範囲内であるならば30ステップ58へ進む。

【0041】ステップ58では制御回路1は前記ステッ プ54にて得られたマニュアル設定されている絞り情報 値を多色表示ドライバ21に対して青色にて表示させる ように出力するとともに、前記ステップ56にて演算し て得られたシャッタ速度情報を多色表示ドライバ21に 対して緑色にて表示させるように出力する。これによ り、多色表示器 2 2 のなかの複数の「日」の字形の 7 セ グメントによってシャッタ速度情報は緑色表示させら れ、絞り値情報は背色表示させられる。こうして、マニ ュアル露出モードが設定されている場合においては、シ ャッタ速度情報と絞り値情報はともに青色表示され、シ ャッタ速度優先自動露出モードにおいてはシャッタ速度 情報は青色表示し、カメラが演算した絞り値情報が緑色 表示したものに対し、絞り優先自動露出モードにおいて はシャッタ速度情報は緑色表示させられ、絞り値情報は **青色表示させられるので区別される。**

【0042】前記ステップ57にて演算されたシャッタ 速度が当該カメラの制御可能なシャッタ速度範囲内では ないと判断された場合にはステップ59へ進む。ステッ プ59では制御回路1は前記ステップ54にて得られたマニュアル設定されている絞り情報値を多色表示ドライバ21に対して青色にて表示させるように出力するとともに、前記ステップ56にて演算して得られたシャッタ速度情報を多色表示ドライバ21に対して赤色にて表示させるように出力する。これにより、多色表示器22のなかの複数の「日」の字形の7セグメントによってシャッタ速度情報は赤色表示させられ、絞り値情報は青色表示させられる。前記ステップ57にて演算されたシャッタ速度が当該カメラの制御可能なシャッタ速度範囲内ではないと判断された場合とは適正な露出が得られない場合であり、適正な露出が得られる場合に前記ステップ58でシャッタ速度情報は緑色表示されるものと区別される。

【0043】前記ステップ58またはステップ59を終了すると、前記ステップ45へ進み、前述したステップを繰り返す。前記ステップ53にて絞り優先自動露出モードが設定されていないと判断された場合にはプログラム自動露出モードが設定されているものと判断し、ステップ60へ進む。ステップ60では制御回路1は測光手段4の出力を読み込んで被写体の輝度情報を得る。

【0044】ステップ61では制御回路1は前記ステップ60にて得られた被写体の輝度情報をもとに適正な露出を与えるためのシャッタ速度と絞り値を演算する。ステップ62では制御回路1は前記ステップ61にて演算されたシャッタ速度と絞り値が当該カメラの制御可能なシャッタ速度範囲内であるか、また絞り値範囲内であるかをチェックする。もしも、シャッタ速度と絞り値とのどちらも制御可能な範囲内にある場合にはステップ63へ進む。

【0045】ステップ63では制御回路1は前記ステップ61にて演算されたシャッタ速度と絞り値の情報を多色表示ドライバ21に対して緑色にて表示させるように出力して、多色表示器22のなかの複数の「日」の字形の7セグメントによって緑色表示させる。こうして、マニュアル露出モードが設定されている場合においては、シャッタ速度情報と絞り値情報はともに青色表示され、シャッタ速度優先自動露出モードにおいてはシャッタ速度情報は青色表示し、カメラが演算した絞り値情報が緑色表示し、絞り優先自動露出モードにおいてはシャッタ速度情報は緑色表示し、絞り値情報は青色表示したものに対し、プログラム自動露出モードにおいては演算されたシャッタ速度と絞り値情報がともに緑色表示させられるので区別される。

【0046】前記ステップ62にて、もしもシャッタ速度と絞り値とのいずれか一方でも制御可能な範囲内ではないと判断された場合にはステップ64へ進む。ステップ64では制御回路1は前記ステップ61にて演算されたシャッタ速度と絞り値の情報を多色表示ドライバ21に対してともに赤色にて表示させるように出力して、多

50

40

色表示器22のなかの複数の「日」の字形の7セグメントによって赤色表示させる。前記ステップ61にて演算されたシャッタ速度と絞り値とのいずれか一方でも制御可能な範囲内ではないということは適正な露出が得られる場合であり、適正な露出が得られる場合に前記ステップ63でシャッタ速度情報と絞り値の情報はともに緑色表示させられるものと区別される。前記ステップ63またはステップ64を終了すると、前記ステップ45へ進み、前述したステップを繰り返す。

[0047]

【発明の効果】以上説明したように、請求項1~4に示した本発明では従来小さなセグメント表示を見なければ区別できなかった設定されているモードはバックライトの色の変化により容易に区別できるようになり、またバッテリー不適の警告表示や適正露出が得られない場合の警告表示もバックライトの色の変化により容易に区別できるようになる。

【0048】以上説明したように、請求項5~8に示した本発明では従来小さなセグメント表示を見なければ区別できなかった設定されているモードは表示セグメント 20の色の変化により容易に区別でき、またバッテリー不適の警告表示や適正露出が得られない場合の警告表示も表示セグメントの色の変化により容易に区別できるようになる。

【0049】以上説明したように、請求項9に示した本

発明では表示セグメントの表示色の違いにより使用者自身が設定した情報とカメラが演算した情報とを明確に区別して表示することができ、またこれらの表示セグメントの表示色の違いによりモード設定手段により設定された動作モードの区別も容易にできる。

14

【図面の簡単な説明】

【図1】本発明に係る第1実施例のカメラの表示装置の プロック回路図である。

【図2】その表示器の表示セグメントの表示例図であ 10 る。

【図3】その動作を説明するフローチャートである。

【図4】本発明の第2実施例のカメラの表示装置のプロック回路図である。

【図5】本発明の第3実施例のカメラの表示装置の動作を説明するフローチャートである。

【図6】本発明の第3実施例のカメラの表示装置の動作 を説明するフローチャートである。

【図7】図6のフローチャートの続きである。

【符号の説明】

1・・制御回路、2・・モード設定手段、3・・情報設定手段、4・・測光手段、5・・パッテリーチェック手段、6・・表示ドライバ、7・・表示器、8・・パックライトドライバ、9,10,11・・パックライト手段、21・・多色表示ドライバ、22・・多色表示器。

【図1】

[図4]

[図2]

[図3]

[図5]

[図6]

【図7】

