Esame Scritto 26/03/2019 Esperimentazioni II – Primo Modulo A scelta, risolvere due dei seguenti problemi

1) Un generatore reale di corrente quando viene collegato ad un carico di 50Ω eroga nel ramo del carico una corrente di 0.2 A, mentre quando è collegato ad una resistenza di 30Ω la corrente che attraversa la resistenza è di 0.3 A. Calcolare le quantità caratteristiche del generatore reale di corrente.

Un generatore reale è rappresentabile con un generatore ideale ed una resistenza in parallelo. Si può poi convertire tutto in un generatore equivalente di tensione oppure procedere con il generatore di corrente.

$$I_1 = \frac{V_x}{50 + R_x} = 0.2 A$$
 e $I_2 = \frac{V_x}{30 + R_x} = 0.3 A$. Risolvendo il sistema: $V_x = 12 \ Ve \ R_x = 10 \ \Omega$, quindi

 $I_x = 1.2$ A. In alternativa si può fare con il partitore di corrente, mantenedo il generatore reale di corrente:

$$I_1 = \frac{R_x}{R_x + 50} \cdot I_x = 0.2 A$$
 e $I_2 = \frac{R_x}{R_x + 30} \cdot I_x = 0.3 A$.

Dato il circuito in figura, calcolare la tensione V_{cc} sapendo che $V_{ce} = 3.7 \text{ V}$ e che h_{FE} del transistor vale 100.

$$Ib = \frac{3 - 0.7}{100} = 2.3 \cdot 10^{-2} \, mA$$

La corrente di base vale:

Quindi (se il transistor non è saturo) la corrente di collettore vale:

$$Ic = 2,3 \cdot 10^{-3} \cdot 100 = 2,3 \, mA$$

Applico il teorema di Thevenin fra il collettore e l'emittore:

$$\operatorname{Re} q = \frac{2 \cdot 2}{2 + 2} = 1 k \Omega$$

$$\operatorname{Veq} = \frac{V_{cc}}{2 + 2} 2 = \frac{V_{cc}}{2}$$

Il circuito può allora essere sostituito dal suo equivalente di Thevenin:

Sapendo che Ic = 2,3 mA, la tensione ai capi della resistenza è V_{R2} = 1·2,3=2,3 V Si ottiene $V_{cc} = \frac{V_{cc}}{2} - 2,3 = 3,7 V$, quindi $V_{cc} = 12 V$.

3) Un motore elettrico è alimentato con la tensione della rete nazionale ed è modellizzabile con una resistenza di 230Ω in serie ad un'induttanza di 1 H.

Calcolare il valore del condensatore da introdurre nel circuito affinché la potenza attiva assorbita dalla rete sia massima e calcolare il valore della potenza attiva.

Affinché la potenza attiva sia massima è necessario che la parte reattiva sia nulla, cioè il sistema sia in risonanza:

a)
$$\omega^2 LC = 1$$
 $\omega = 2\pi f = 2\pi 50 \text{ Hz} = 314 \text{ rad/s}$ $C = \frac{1}{314^2 \cdot 1} F = 10 \mu F$.

b) L'impedenza totale risulta:
$$Z=230+(j\omega L+\frac{1}{j\omega C})=R$$
 e la potenza attiva è $P_{attiva}=\frac{V^2}{R}=\frac{230^2}{230}W=230W$.