# CS 156:Introduction to Artificial Intelligence

**Instructor: Dr. Sayma Akther** 

San José State University

#### Criteria for Strategy Evaluation

- **Completeness**: Can the strategy always find a solution if one exists?
- Optimality: Can it find the least-cost solution?
- Time Complexity: How long does it take to find a solution?
- Space Complexity: How much memory does it need?

#### Search Strategies

- Uninformed Search (Blind Search): No additional information about states and the quality of actions. Example: Breadth-First Search (BFS), Depth-First Search (DFS).
- Informed Search: Uses knowledge about the problem to find solutions more efficiently. Often relies on heuristics. Example: A\* search.

# Uninformed Search

#### Breadth-First Search (BFS)

Explores all neighbor nodes at the current depth before moving to nodes at the next depth level.

- Generate children of a state, adds the children to the end of the open list
- Level-by-level search
- Order in which children are inserted on open list is arbitrary
- In tree, assume children are considered left-to-right unless specified differently
- Number of children is "branching factor" b

# BFS Example



branching factor b = 2

#### Breadth-First Search (BFS)

- Assume goal node at level d with constant branching factor b
- Time complexity (measured in #nodes generated)

```
 > 1 (1^{st} level) + b (2^{nd} level) + b^2 (3^{rd} level) + ... + b^d (goal level) + (b^{d+1} - b) = O(b^d+1)
```

- This assumes goal on far right of level
- Space complexity
  - $\triangleright$  At most majority of nodes at level d + majority of nodes at level d+1 = O(b<sup>d+1</sup>)
  - > Exponential time and space
- Features
  - ➤ Simple to implement
  - > Complete
  - > Finds shortest solution (not necessarily least-cost unless all operators have equal cost)

#### Depth-First Search (DFS)

- Adds the children to the front of the open list
- Follow leftmost path to bottom, then backtrack
- Expand deepest node first

DFS Example



#### Depth-First Search (DFS)

#### Time complexity

- In the worst case, search entire space
- Goal may be at level d but tree may continue to level m, m>=d
- O(b<sup>m</sup>)
- Particularly bad if tree is infinitely deep

#### Space complexity

- Only need to save one set of children at each level
- 1 + b + b + ... + b (m levels total) = O(bm)

#### Benefits

- May not always find solution
- Solution is not necessarily shortest or least cost
- If many solutions, may find one quickly (quickly moves to depth d)
- Simple to implement
- Space often bigger constraint, so more usable than BFS for large problems

#### Uniform Cost Search

- Cost from root to current node n is g(n)
  - Add operator costs along path
- First goal found is least-cost solution
- Space & time can be exponential because large subtrees with inexpensive steps may be explored before useful paths with costly steps
- If costs are equal, time and space are O(b<sup>d</sup>)
  - Otherwise, complexity related to cost of optimal solution



Open list: C



Open list: B(2) T(1) O(3) E(2) P(5)



Open list: T(1) B(2) E(2) O(3) P(5)



Open list: B(2) E(2) O(3) P(5)



Open list: E(2) O(3) P(5)



Open list: E(2) O(3) A(3) S(5) P(5) R(6)



Open list: O(3) A(3) S(5) P(5) R(6)



Open list: O(3) A(3) S(5) P(5) R(6) G(7)



Open list: A(3) S(5) P(5) R(6) G(7)



Open list: A(3) I(4) S(5) N(5) P(5) R(6) G(7)



Open list: I(4) P(5) S(5) N(5) R(6) G(7)



Open list: P(5) S(5) N(5) R(6) Z(6) G(7)



Open list: S(5) N(5) R(6) Z(6) F(6) G(7) D(8) L(10)



Open list: N(5) R(6) Z(6) F(6) G(7) D(8) L(10)



Open list: Z(6) F(6) G(7) D(8) L(10)



Open list: F(6) G(7) D(8) L(10)



# Informed Search

#### Comparison of Uninformed and Informed

- 1. Knowledge
- 2. Efficiency
- 3. Good
- 4. Completeness

#### Heuristic Functions

- **Definition**: A heuristic is a function that estimates how close a state is to a goal. It doesn't guarantee a perfect solution, but it guides the search in a promising direction.
- **Usage**: Represented as h(n) where n is a node. The function returns an estimated cost from node n to the goal.

h(N) = Heuristic function

#### Calculate Heuristic Functions

```
h_1(N) = number of misplaced numbered tiles = 6
```

$$h_2(N)$$
 = sum of the (Manhattan) distances of every tile to its goal position =  $2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$ 

$$= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13$$

| 5 |   | 8 |
|---|---|---|
| 4 | 2 | 1 |
| 7 | 3 | 6 |

STATE(N)

| 1 | 2 | 3 |
|---|---|---|
| 4 | 5 | 6 |
| 7 | 8 |   |

Goal state

$$h_2(N) = |x_N - x_g| + |y_N - y_g|$$

(L<sub>1</sub> or Manhattan distance)

#### Calculate Heuristic Functions



$$h_1(N) = \sqrt{(x_N - x_g)^2 + (y_N - y_g)^2}$$
 (L<sub>2</sub> or Euclidean distance)

#### Best-First Search

- heuristic function h(n) gives an estimate of the distance from n to the goal
  - h(n)=0 for goal nodes
- E.g. straight-line distance for traveling problem



- Say: h(A) = 9, h(B) = 8, h(C) = 9, h(D) = 6, h(E) = 3, h(F) = 0
  - Typically assume that h is 0 at goal states

#### Best-First Search

expand nodes with lowest h values first



Rapidly finds the optimal solution!

goal state!

#### Best-First Search

expand nodes with lowest h values first



- Say: h(A) = 9, h(B) = 8, h(C) = 9, h(D) = 6, h(E) = 3, h(F) = 0



state = A,

h = 9



















#### Best-First Search

expand nodes with lowest h values first



- Say: h(A) = 9, h(B) = 8, h(C) = 9, h(D) = 6, h(E) = 3, h(F) = 0
  - - Rapidly finds the optimal solution!
    - Does it always?



state = A,

h = 9

#### A Bad Example for Greedy



- Say: h(A) = 9, h(B) = 5, h(D) = 6, h(E) = 3, h(F) = 0
- Problem: greedy evaluates the promise of a node only by how far is left to go, does not take cost incurred already into account

#### Beam Search

- A version of Best-First Search that uses only a predetermined number of best nodes.
- Limits its search to the kk most promising nodes, ensuring less memory usage.
  - **Pros**: Memory efficient.
  - Cons: May miss an optimal solution due to its limited scope.
  - n is the "beam width"
  - Only keep best (lowest-h) n nodes on open list



















#### Hill Climbing

- A type of local search that starts with an arbitrary solution and iteratively makes small changes to the solution, selecting the neighbor with the highest fitness value.
  - **Pros**: Simple to implement.
  - Cons: Prone to getting stuck in local maxima.
  - n is the "beam width"
    - n = 1, Hill climbing
    - n = infinity, Best first search





#### Hill Climbing Issues

- Also referred to as gradient descent
- Foothill problem / local maxima / local minima
- Can be solved with random walk or more steps



#### A\* Search

- Let g(n) be cost incurred already on path to n
- Expand nodes with lowest g(n) + h(n) first



- Say: h(A) = 9, h(B) = 5, h(D) = 6, h(E) = 3, h(F) = 0
- Note: if h=0 everywhere, then just uniform cost search

#### A\* Search

f(N) = g(N) + h(N), where: g(N) = cost of best path found so far to N



• Say: h(A) = 9, h(B) = 5, h(D) = 6, h(E) = 3, h(F) = 0



CS 156: Dr. Sayma Akther



Open List = C (0+2=2)



Open List = T (1+1=2), O (2+2=4), P (2+3=5), B (3+4=7)



Open List = O (2+2=4), P (2+3=5), B(3+4=7)



Open List = O (2+2=4), P (2+3=5), B(3+4=7)



Open List = O (2+2=4), P (2+3=5), B(3+4=7) I (6+1=7), N (7+44=51)





Open List = P (2+3=5), L (6+0=6), B (3+4=7) I (6+1=7), F (7+8=15), D (7+10=17), N (7+44=51)



Open List = L (6+0=6), B (3+4=7) I (6+1=7), F (7+8=15), D (7+10=17), N (7+44=51)