# 2011-(03)mar-10: dag 15

1) Vilket är identitetselementet?

Jo, a \* c = c ger a är identitetselement  $\rightarrow$  ger rad 1 och kolumn 1.

Grupptabellen är en latinsk kvadrat, så c \* f = b, ...

| * | а | b | С | d | f         | g |
|---|---|---|---|---|-----------|---|
| а | a | b | С | d | f d b c g | g |
| b | b | a | g | f | d         | C |
| С | С | f | a | g | b         | a |
| d | d | g | f | a | С         | b |
| f | f | c | d | b | g         | a |
| g | g | d | b | С | a         | f |

- a) Gruppen är inte abelsk, ty b \* c = g  $\neq$  g = c \* b.
- b) a \* c = 1 \* c ger a = 1 som ovan.
- c) Inverser:  $a^{-1} = a$ ,  $b^{-1} = b$ ,  $c^{-1} = c$ ,  $d^{-1} = d$ ,  $f^{-1} = g$ ,  $g^{-1} = f$  ty till exempel f \* g = a (= 1)
- d) o(a) = 1, o(b) = o(c) = o(d) = 2, o(f) = o(g) = 3ty  $b^2 = a$ , men  $b^{-1} \neq a$ ,  $f^1 \neq a$ ,  $f^2 = g \neq a$ ,  $f^3 = a$ .

Cykliska delgrupper:

$$(a) = \{a\}$$
  
 $(b) = \{a, b\}$   
 $(c) = \{a, c\}$   
 $(d) = \{a, d\}$   
 $(f) = \{a, f, g\}$   
 $(g) = \{a, g, f\}$   
 $(f) = \{a, f, g\} = (g)$ 

e)  $\underline{a * b * c} * \overline{d} * \overline{f} * q = b * g * a = c * a = c$ 

- 2) G en grupp med identitetselement 1, a, b, c,  $d \in G$ 
  - a) Finn det  $x \in G$  som uppfyller (givet att ett sådant finns)

$$\begin{cases} ax^2 = b \\ x^3 = 1 \end{cases}$$

$$ax^2 = b \Rightarrow ax^3 = bx \Rightarrow \{x^3 = 1\} \Rightarrow a = bx \Rightarrow x = b^{-1}a$$

b) På samma sätt

$$\begin{cases} (xax)^3 = bx & (1) \\ x^2a = (xa)^{-1} & (2) \end{cases}$$

$$bx = {(1)} = (xax)^3 = xax^2ax^2ax = {(2)} = xa(xa)^{-1}(xa)^{-1}x = (xa)^{-1}x$$

så bxa = 
$$(xa)^{-1}xa = 1$$
  
så  $x = b^{-1}a^{-1}$ 

d) Visa 
$$(abc)^{-1} = abc \Rightarrow (bca)^{-1} = bca$$

Jo, 
$$(abc)^{-1} = abc \Rightarrow bc\underline{a} \cdot \underline{bc}a = bc(abc)^{-1}a = \underline{a^{-1}abc(abc)^{-1}}a = a^{-1}\cdot 1\cdot a = 1$$

så bca = 
$$(bca)^{-1}$$

$$bca \cdot bca = 1 = bca \cdot (bca)^{-1}$$

f) Visa 
$$b^2ab = a^{-1} \Rightarrow det finns s \in H med a = s^3$$

Io, 
$$b^2ab = a^{-1} \Rightarrow ba = b^{-1}a^{-1}b^{-1}$$

$$(ba)^3 = b^{-1}a^{-1}b^{-1}baba = b^{-1}a^{-1}aba = b^{-1}ba = a$$

3) 
$$G_1 = (\mathbb{Z}_8; +), G_2 = (U(\mathbb{Z}_{15}); \cdot)$$

De invertabla elementen i  $\mathbb{Z}_{15}$ , det vill säga alla x med sgd(x; 15) = 1

## a) Grupptabeller:

| $G_1$ : | + | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|---------|---|---|---|---|---|---|---|---|---|
|         | 0 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
|         | 1 | 1 | 2 |   | 4 | 5 | 6 | 7 | 0 |
|         | 2 | 2 | 3 | 4 | 5 | 6 | 7 | 0 | 1 |
|         | 3 | 3 | 4 | 5 | 6 | 7 | 0 | 1 | 2 |
|         | 4 | 4 | 5 | 6 | 7 | 0 | 1 | 2 | 3 |
|         | 5 | 5 | 6 | 7 | 0 | 1 | 2 | 3 | 4 |
|         | 6 | 6 | 7 |   | 1 | 2 | 3 | 4 | 5 |
|         | 7 | 7 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

| G <sub>2</sub> : |    | 1  | 2  | 4                       | 7  | 8  | 11 | 13 | 14  |
|------------------|----|----|----|-------------------------|----|----|----|----|-----|
|                  | 1  | 1  | 2  | 4                       | 7  | 8  | 11 | 13 | 14  |
|                  | 2  | 2  | 4  | 8                       | 14 | 1  | 7  | 11 | 13  |
|                  | 4  | 4  | 8  | 4<br>8<br>13<br>2<br>14 | 13 | 2  | 14 | 7  | 11  |
|                  | 7  | 7  | 14 | 13                      | 4  | 11 | 2  | 1  | 8   |
|                  | 8  | 8  | 1  | 2                       | 11 | 4  | 13 | 14 | 7   |
|                  | 11 | 11 | 7  | 14                      | 2  | 13 |    | 8  | 4   |
|                  | 13 | 13 | 11 | /                       | Ţ  | 14 | 8  | 4  | 2   |
|                  | 14 | 14 | 13 | 11                      | 8  | 7  | 4  | 2  | (1) |

 $(U(\mathbb{Z}_m); \cdot)$  är en grupp för alla m = 1, 2, ...

G1) 
$$\forall x, y \in G : x * y \in G$$

G2) 
$$\forall x, y, z \in G : (x * y) * z = x * (y * z)$$

G3) 
$$\exists I \in G : \forall x \in G : I * x = x * I = x$$

G4) 
$$\forall x \in G : \exists x^{-1} \in G : x * x^{-1} = x^{-1} * x = I$$

Ty:

G1: 
$$x, y \in U(\mathbb{Z}_m) \Rightarrow (xy)^{-1} = x^{-1}y^{-1}$$
  
 $(xyy^{-1}x^{-1} = xx^{-1} = 1)$ 

G2: · associativ i 
$$\mathbb{Z}_m$$

G3: 
$$1 \in U(\mathbb{Z}_m)$$
, identitetselementet

G4: x invertabel ger 
$$(x^{-1})^{-1} = x$$
 så  $x^{-1}$  invertabel.

### b) Ordningar för elementen:

| o(x):                          | 1 | 2              | 4                   | 8          |
|--------------------------------|---|----------------|---------------------|------------|
| $x \in G_1$ :<br>$x \in G_2$ : | 0 | 4<br>4, 11, 14 | 2, 6<br>2, 7, 8, 13 | 1, 3, 5, 7 |

# c) Cykliska delgrupper med sidoklasser(vänster- = högersidoklass ty abelska grupper)

|                  | Genererande<br>element delgrupper |                | sidoklasser                    |  |  |  |
|------------------|-----------------------------------|----------------|--------------------------------|--|--|--|
| G <sub>1</sub> : | 0                                 | {0}            | {0}, {1}, {2},, {7}            |  |  |  |
|                  | 4                                 | {0, 4}         | {0, 4}, {1, 5}, {2, 6}, {3, 7} |  |  |  |
|                  | 2, 6                              | {0, 2, 4, 6}   | {0, 2, 4, 6}, {1, 3, 5, 7}     |  |  |  |
|                  | 1                                 | G <sub>1</sub> | G <sub>1</sub>                 |  |  |  |

#### d) Alla delgrupper till G<sub>2</sub>?

Del de cykliska enligt ovan, dels: Ordningen måste vara 1, 2, 4 eller 8 (ty |H|\8)



Ordning 4? Elementens ordning måste vara 1 eller 2. (Ordningen 4 ger en cyklisk delgrupp!) Ingen i  $G_1$  (ty bara 0, 4 av ordningen 1, 2) i  $G_2$  kanske  $\{1, 4, 11, 14\}$ .

#### Ordning 8:

 $G_1$  är cyklisk;  $G_1 = \langle 1 \rangle = \langle 3 \rangle = \langle 5 \rangle = \langle 7 \rangle$ .  $G_2$  inte, inget element av ordning 8.

4) Är 
$$G_1 = (U(\mathbb{Z}_8); \cdot), G_2 = (U(\mathbb{Z}_{14}); \cdot)$$
 cykliska?

G är cyklisk omm o(g) = |G|, för något  $g \in G$ .

$$\begin{aligned} G_1 &= U(\mathbb{Z}_8) = \{1, 3, 5, 7\} \\ G_2 &= U(\mathbb{Z}_{14}) = \{1, 3, 5, 9, 11, 13\} \end{aligned}$$

Ordningen för elementen:

Ingen 4 (=  $|G_1|$ ) så  $G_1$  är inte cyklisk.

Så 
$$G_2$$
 är cyklisk.  
 $G_2 = \langle 3 \rangle = \langle 5 \rangle$ 

5)  $G = (\mathbb{Z}_{13} \setminus \{0\}; \cdot) (= (U(\mathbb{Z}_{13}); \cdot))$  är cyklisk. Finn alla generatorer.

|G| = 12 så vi söker  $g \in G$  med o(g) = 12.

Möjliga ordningar: 1, 2, 3, 4, 6, 12, så  $o(g) = 12 \text{ om } g^4, g^6 \neq 1.$ 

Generatorer: 2, 5, 7, 11

Potenser av 2

$$3.11 = 2^{4}.2p = 2^{11}$$
 logaritmer i bas 2.

6) Visa att  $g^{32}=1$  för alla  $g\in U(\mathbb{Z}_{64})=G.$ 

Jo, 
$$|U(\mathbb{Z}_{64})| = |\{x \in \{0, 1, ..., 63\} : sgd(x; 64) = 1 | = |\{1, 3, 5, ..., 63\}| = 32$$
 
$$g^{|G|} = 1 \text{ alla } g \in G$$