My abstract algebra exercises

Evgeny Markin

2023

Contents

Ι	Preliminaries							
1								
2								
II	Gı	ups						
3	Intr	luction to Groups						
	3.1	n Important Example						
		1.1						
		1.2						
		1.3						
		1.4						
		1.5						
		1.6						
	3.2	roups						
		2.1						
		2.2						
		2.3						
	3.3							
	3.4							
	3.5							
	3.6	yclic Groups						
		6.1						

Part I Preliminaries

Chapter 1

Relations and Functions

Chapter 2

The Integers and Modular Arithmetic

Part II

Groups

Chapter 3

Introduction to Groups

3.1 An Important Example

3.1.1

In
$$S_4$$
, let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix}$, and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$. Calculate $\sigma \tau$, $\tau \sigma$ and σ^{-1} .
$$\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix}$$
$$\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 2 & 4 \end{pmatrix}$$
$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \end{pmatrix}$$

3.1.2

In
$$S_5$$
, let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 4 & 1 & 3 & 5 \end{pmatrix}$ calculate $\sigma \tau \sigma$, $\sigma \sigma \tau$, σ^{-1} .
$$\sigma \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$$

$$\sigma \sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 5 & 4 & 3 & 1 \end{pmatrix}$$

$$\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$$

3.1.3

How many permutations are there in S_n ? In S_5 , how many permutations α satisfy $\alpha(2) = 2$?

We can follow that there are n! permutations total, and if we've got a restriction $\alpha(2) = 2$, then we've got (n-1)! permutation. For the case S_5 it means that there are 4! = 24 such permutations.

3.1.4

Let H be the set of all permutations $\alpha \in S_5$ satisfying $\alpha(2) = 2$. Which of the properties of closure, associativity, identit, inverses does H enjoy under composition? All of them

3.1.5

Consider the set of all functions from 6 to 6. Which of the ... Everything other then inverse

3.1.6

Let G be the set of all ... All of them

3.2 Groups

3.2.1

Give group tables for following additive grops: Z_3 , $Z_3 \times Z_2$

	0	1	2
0	0	1	2
1	1	2	0
2	2	0	1

last one is ommitted

3.2.2

Give group tables for the following groups: U(12), S_3

We follow that $U(12) = \{1, 5, 7, 11\}$. THus

	1	5	7	11
1	1	5	7	11
5	5	1	11	7
7	7	11	1	5
11	11	7	5	1

One of the programs in progs folder produces desired table for S_3 (and can produce one for any S_n for that matter).

3.2.3

Show that $G \times H$ is abelian iff G and H are both abelian

Was proven in dummit and foote, check 1.1.29

Rest of the exercises in this section were either already proven in DEF, are trivial, or could be solved at a later time if I encounter some gaps in the theory.

- 3.3
- 3.4
- 3.5

3.6 Cyclic Groups

3.6.1

Let $G = \langle a \rangle$ be a cyclic group of order 12. List every subgroup of G. 12's divisors are $\{1, 2, 3, 4, 6\}$, therefore subgroups of G are $\langle a^i \rangle$ for $i \in \{1, 2, 3, 4, 6\}$.