Clasificación y Análisis de Artículos Biomédicos

Informe Técnico Final

Yulián Bedoya ybedoyab@unal.edu.co

26 de agosto de 2025

Índice

1.	Resumen	2
2.	Diseño de la Solución	2
	2.1. Arquitectura General	2
	2.2. Flujo de Datos	2
3.	Backend (Python)	3
	3.1. Tecnologías y Dependencias	3
	3.2. Endpoints Principales	3
	3.3. Pipeline de Entrenamiento	3
4.	Frontend (Next.js)	3
	4.1. Vistas y Navegación	3
5.	Evaluación del Desempeño	3
	5.1. Métrica Principal	3
	5.2. Matriz de Confusión	4
	5.3. Procedimiento de Evaluación	4
6.	Resultados y Evidencias	4
	6.1. Métricas del Modelo	4
	6.2. Predicciones del Modelo	5
	6.3. Análisis del Dataset	5
7	Reflexiones y Trabajo Futuro	5

1. Resumen

Este informe presenta la solución desarrollada para la clasificación y análisis de artículos médicos. Incluye la arquitectura general del sistema (backend en Python y frontend en Next.js), el flujo de datos, el pipeline de preprocesamiento, el modelo utilizado (Regresión Logística con TF–IDF), y la interfaz de usuario con visualización de métricas, análisis y demo.

2. Diseño de la Solución

2.1. Arquitectura General

Describir brevemente el diagrama de arquitectura (incluir imagen una vez generada):

2.2. Flujo de Datos

Desde la carga del CSV hasta la generación de métricas y predicciones con columna group_predicted.

3. Backend (Python)

3.1. Tecnologías y Dependencias

Python 3.10+, Flask/FastAPI (según implementación), NumPy, pandas, scikit-learn, etc. (ver backend/requirements.txt).

3.2. Endpoints Principales

- /api/uploaddataset: carga de CSV (title, abstract, group).
- /api/starttraining: entrena el modelo con TF-IDF + Regresión Logística.
- /api/modelmetrics: expone métricas (F1 ponderado, accuracy, precision, recall).
- /api/confusionmatrix: devuelve matriz de confusión.
- /api/predictions: devuelve predicciones y genera group_predicted.
- /api/predictionscsv: descarga CSV con group_predicted.

3.3. Pipeline de Entrenamiento

- 1. Limpieza y normalización de texto (minúsculas, signos, espacios).
- 2. Vectorización TF-IDF con n-gramas.
- 3. Entrenamiento de Regresión Logística (clase uno contra resto).
- 4. Validación (hold-out o CV). Almacenar métricas y matriz de confusión.

4. Frontend (Next.js)

4.1. Vistas y Navegación

- Resumen y carga de dataset.
- Entrenamiento con barra de progreso.
- Métricas (grid 2x2, tarjeta destacada, indicador de rendimiento).
- Análisis (estadísticas de dataset, distribuciones, texto).
- Demo (clasificación manual).
- Predicciones (tabla paginada, filtros, descarga de CSV con group_predicted).

5. Evaluación del Desempeño

5.1. Métrica Principal

F1 ponderado (weighted F1). También se reportan accuracy, precision y recall.

Figura 2: Enter Caption

5.2. Matriz de Confusión

5.3. Procedimiento de Evaluación

- 1. Cargar CSV con title, abstract, group.
- 2. Entrenar el modelo.
- 3. Realizar predicción para obtener group_predicted.
- 4. Calcular métricas y matriz de confusión.
- 5. Descargar CSV con predicciones.

6. Resultados y Evidencias

6.1. Métricas del Modelo

(a) Resumen de métricas

(b) Indicador de rendimiento y detalles

6.2. Predicciones del Modelo

(a) Vista de predicciones en el frontend

 $\begin{array}{cccc} \text{(b)} & \text{CSV} & \text{descargado} & \text{con} & \text{columna} \\ \text{\texttt{group_predicted}} & & & \end{array}$

6.3. Análisis del Dataset

(a) Resumen del dataset

(b) Distribuciones y estadísticas de texto

7. Reflexiones y Trabajo Futuro

Limitaciones, posibles mejoras (mejoras del preprocesamiento, modelos más robustos, interpretabilidad, despliegue, MLOps).

Repositorio y Reproducibilidad

- URL del repositorio: github.com/tu-repo-publico
- Instrucciones de ejecución en README (backend y frontend).
- Versionado y evidencias de pruebas.