GEOMETRIA DIFERENCIAL

Seminari 12
Formes diferencials

Exercici 12.1. Recordeu les següents propietats elementals del producte exterior i la diferencial exterior:

$$\alpha \wedge \beta = (-1)^{pq} \beta \wedge \alpha,$$

$$d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^{p} \alpha \wedge (d\beta),$$

$$d(d\alpha) = 0,$$

on p és el grau de α i q és el grau de β .

a) Comproveu que si ω és una 2n+1-forma diferencial, aleshores $\omega \wedge \omega = 0$. Doneu un exemple de 2-forma diferencial ω tal que $\omega \wedge \omega \neq 0$.

a) Per ser ω de grau senar $\omega \wedge \omega = -\omega \wedge \omega$ llavors $\omega \wedge \omega = 0$. Considerem a \mathbb{R}^4 la 2-forma $\omega = dx \wedge dz + dy \wedge dt$, el producte és dues vegades l'element de volum canònic.

b) Proveu que si α i β són formes tancades aleshores $\alpha \wedge \beta$ també ho és.

Es inmmediat a partir de la segona fórmula.

$$d(\alpha \wedge \beta) = (d\alpha) \wedge \beta + (-1)^p \alpha \wedge (d\beta)$$

c) Proveu que si α és tancada i β exacta llavors $\alpha \wedge \beta$ és exacta (recordeu que ω és tancada si $d\omega = 0$ i exacta si existeix η tal que $d\eta = \omega$).

Si $\beta = d\eta$ llavors $d(\alpha \wedge \eta) = \pm \alpha \wedge \beta$ triant bé el signe hem acabat.

d) Si f és una funció tal que df = 0, què podem dir de f?

f serà contant en cada component connexa del domini.

Exercici 12.2. Si $\omega = x \, dy - dz$, $\eta = 2z^2 \, dx$, $\mu = dx - yz \, dy$,

- a) Calculeu $x \omega + \eta$, $z \eta z \mu$, $\omega \wedge \mu$, $(2\omega y \mu) \wedge \eta$, $\omega \wedge \eta \wedge \mu$.
- b) Donats els camps $X = z^2 \frac{\partial}{\partial x} \frac{\partial}{\partial y}$ i $Y = y \frac{\partial}{\partial x} + e^x \frac{\partial}{\partial z}$ calculeu $\omega(X)$ i $\omega \wedge \mu(X, X Y)$.

omega = xdy - dz $nu = 2z^2 dx$ mu = dx - yzdy

 $2z^2dx + x^2dy - xdz$ $(2z^3-z)\,\mathrm{d}x+yz^2\mathrm{d}y$ $omega \wedge nu = -2xz^2 dx \wedge dy + 2z^2 dx \wedge dz$ $(-2y^2z^3 - 4xz^2) dx \wedge dy + 4z^2 dx \wedge dz$ $omega \wedge nu \wedge mu = 2yz^3 dx \wedge dy \wedge dz$

b)

$$-yze^x - z^2e^x + xy$$

Exercici 12.3. Calculeu la imatge recíproca (o pull-back) de la forma diferencial ω per l'aplicació T en els següents casos:

- a) $T: \mathbb{R} \to \mathbb{R}^3, T(s) = (s, s^2, e^s), \omega = dx + xdz$
- b) $T: \mathbb{R}^2 \to \mathbb{R}^3$, T(s,t) = (t, s, st), $\omega = zdx \wedge dz$
- c) $T: \mathbb{R}^3 \to \mathbb{R}^4$, T(s, t, u) = (st, tu, us, s + t + u), $\omega = x_4^2 dx_1 \wedge dx_2 \wedge dx_3$
- a) W = dx + x + 1 $T^{2}w = T^{2}x + T^{2}(x + 1) = d(x + 1) + (x + 1) + (x + 1)$ $= ds + s \cdot d(e^{s}) = ds + se^{s}ds = (M+se^{s})ds$

$$(7^{k}\omega)\left(\frac{\partial}{\partial s}\right) = \omega(dT,\frac{\partial}{\partial s}) = \omega(\frac{\partial T}{\partial s}$$

b) Thw = st (dt nd(st)) = st. 2trats

 $2(x+y+z)^2xyzdx \wedge dy \wedge dz$

Exercici 12.4. Calculeu $d\omega$ en els casos següents:

a)
$$\omega = xdy + ydx$$
.

d)
$$\omega = f(x)dy$$
.

b)
$$\omega = (dy - xdz) \wedge (xydx + 3dy + zdz)$$
.

e)
$$\omega = \cos(xy^2)dx \wedge dz$$
.

c)
$$\omega = f(x, y)dx \wedge dy$$
.

f)
$$\omega = xdy \wedge dz + ydz \wedge dx + zdx \wedge dy$$
.

e)
$$dw = -2y \cdot Sh(x_2^2) dy \wedge dx \wedge dz$$

= $2y \cdot Sh(x_2^2) dx \wedge dz$

Exercici 12.5. A $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ considerem ω tal que $\omega(X,Y) = \langle iX,Y \rangle$ per $X,Y \in \mathcal{X}(\mathbb{R}^{2n})$.

- a) Proveu que ω és una 2-forma diferencial.
- b) Donar l'expressió de ω en coordenades cartesianes.
- c) Provar que ω és tancada.
- d) Calculeu $\omega \wedge \omega \wedge \stackrel{n}{\cdots} \wedge \omega$.
- e) Provar que $|\omega_p(X,Y)| \le a(X,Y)$ on a(X,Y) és l'àrea del paral·lelogram generat pels vectors X,Y tangents a \mathbb{R}^{2n} en el punt p. La igualtat es dona si i només si X,Y generen una recta complexa.
- a) ω és clarament bilineal. Vegem que és alternada:

$$\omega(Y,X) = \langle iY,X \rangle = \langle i^2Y,iX \rangle = -\langle iX,Y \rangle = -\omega(X,Y)$$

b) Si $(x_1, y_1, \dots, x_n, y_n)$ són les coordenades de \mathbb{C}^n , llavors

$$\omega(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}) = 0$$

$$\omega(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_i}) = 1$$

$$\omega(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial y_j}) = 0 \quad \text{si } i \neq j.$$

Per tant

$$\omega = dx_1 \wedge dy_1 + \cdots dx_n + \wedge dy_n$$

c) Els coeficients són constants, per tant $d\omega = 0$.

d)
$$\omega^n = (dx_1 \wedge dy_1 + \dots + dy_n)^n = n! dx_1 \wedge dy_1 \wedge \dots \wedge dx_n \wedge dy_n$$

e) Tant $\omega(X,Y)$ com a(X,Y) no canviem si sumem un múltiple de X a Y. Per tant, podem suposar que X,Y són ortogonals i a(X,Y)=|X||Y|. D'altra banda, $|\omega(X,Y)|=|\langle iX,Y\rangle|\leq |iX||Y|=|X||Y|$. La igualtat es dona només quan iX és paral.lel a Y i en aquest cas $X\mathbb{R}+Y\mathbb{R}$ és \mathbb{C} -subespai vectorial.

Exercici 12.6. Sigui α la 1-forma sobre \mathbb{R}^3 donada per $\alpha = ydx + xdy + zdz$ i $f: \mathbb{R}^2 \to \mathbb{R}^3$ l'aplicació $f(u,v) = (\cos u, \sin u, v)$. Trobeu una expressió per $f^*\alpha$ i per $d(f^*\alpha)$.

ft = shud(can) + can.d(shu)+vdv

= -shu du + calu du + vdv

= calu du + vdv

dd: dynex f dxiely + drdt =0

ftd = l(ftx)=0

Exercici 12.7. Per una funció f es defineix el gradient de f com el camp

$$\operatorname{grad} f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right).$$

Per un camp vectorial $X = (X_1, X_2, X_3)$ de \mathbb{R}^3 es defineixen la funció divergencia i el camp rotacional com

$$\operatorname{div} X = \frac{\partial X_1}{\partial x} + \frac{\partial X_2}{\partial y} + \frac{\partial X_3}{\partial z}, \quad \operatorname{rot} X = \begin{vmatrix} i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ X_1 & X_2 & X_3 \end{vmatrix} = \left(\frac{\partial X_3}{\partial y} - \frac{\partial X_2}{\partial z}, \frac{\partial X_1}{\partial z} - \frac{\partial X_3}{\partial x}, \frac{\partial X_2}{\partial x} - \frac{\partial X_1}{\partial y} \right)$$

Es defineixen també les formes diferencials

$$\begin{array}{lll} \omega_X^1 & = & X^1 \, dx + X^2 \, dy + X^3 \, dz \\ \\ \omega_X^2 & = & X^1 \, dy \wedge dz + X^2 \, dz \wedge dx + X^3 \, dx \wedge dy \\ \\ \omega_f^3 & = & f \, dx \wedge dy \wedge dz \end{array}$$

a) Comproveu que es compleix

$$df = \omega_{\operatorname{grad} f}^{1}$$

$$d(\omega_{X}^{1}) = \omega_{\operatorname{rot} X}^{2}$$

$$d(\omega_{X}^{2}) = \omega_{\operatorname{div} X}^{3}$$

b) Deduïu de l'apartat anterior que es compleixen les igualtats: rot grad $f=0=\operatorname{div}\operatorname{rot} X$

a) greaf) =
$$(f_{x}, f_{y}, f_{z})$$

 $\omega_{gru}(f) = f_{x} dx + f_{y} dx + f_{z} d^{2})$ =
$$df = f_{z} dx + f_{y} dx + f_{z} d^{2}$$

c) Do ...

Exercici 12.8. Si $f: \mathbb{R}^n \to \mathbb{R}^n$ i h és una funció, proveu que

$$f^*(h\ dx^1 \wedge \dots \wedge dx^n) = (h \circ f)(\det f')\ dx^1 \wedge \dots \wedge dx^n,$$

on f' denota la matriu jacobiana de f.

Solució: Recordem la definició: $(f^*\omega)_x(v_1,\ldots,v_r) = \omega_{f(x)}(df\cdot v_1,\ldots,df\cdot v_r)$ per una r-forma ω . Recordem també que $(v_1^*\wedge\cdots\wedge v_n^*)(u_1,\ldots,u_n) = \det A$ on A és la matriu quer te per columnes les components de u_i respecte la base $\{v_j\}$. A partir d'això és un calculet.