The Product Rule

This rule applies to functions with terms that are multiplied together.

Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}.$$

EXAMPLE 7 Find the derivative of $y = (x^2 + 1)(x^3 + 3)$.

Solution

(a) From the Product Rule with $u = x^2 + 1$ and $v = x^3 + 3$, we find

$$\frac{d}{dx}[(x^2+1)(x^3+3)] = (x^2+1)(3x^2) + (x^3+3)(2x) \qquad \frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$
$$= 3x^4 + 3x^2 + 2x^4 + 6x$$
$$= 5x^4 + 3x^2 + 6x.$$

(b) This particular product can be differentiated as well (perhaps better) by multiplying out the original expression for *y* and differentiating the resulting polynomial:

$$y = (x^2 + 1)(x^3 + 3) = x^5 + x^3 + 3x^2 + 3$$
$$\frac{dy}{dx} = 5x^4 + 3x^2 + 6x.$$

This is in agreement with our first calculation.

The Quotient Rule

This rule applies to functions when terms are divided.

Derivative Quotient Rule

If u and v are differentiable at x and if $v(x) \neq 0$, then the quotient u/v is differentiable at x, and

$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}.$$

EXAMPLE 8 Find the derivative of (a) $y = \frac{t^2 - 1}{t^3 + 1}$, (b) $y = e^{-x}$.

Solution

(a) We apply the Quotient Rule with $u = t^2 - 1$ and $v = t^3 + 1$:

$$\frac{dy}{dt} = \frac{(t^3 + 1) \cdot 2t - (t^2 - 1) \cdot 3t^2}{(t^3 + 1)^2} \qquad \frac{d}{dt} \left(\frac{u}{v}\right) = \frac{v(du/dt) - u(dv/dt)}{v^2}$$

$$= \frac{2t^4 + 2t - 3t^4 + 3t^2}{(t^3 + 1)^2}$$

$$= \frac{-t^4 + 3t^2 + 2t}{(t^3 + 1)^2}.$$

EXAMPLE 9 Rather than using the Quotient Rule to find the derivative of

$$y = \frac{(x-1)(x^2 - 2x)}{x^4},$$

expand the numerator and divide by x^4 :

$$y = \frac{(x-1)(x^2-2x)}{x^4} = \frac{x^3-3x^2+2x}{x^4} = x^{-1}-3x^{-2}+2x^{-3}.$$

Then use the Sum and Power Rules:

$$\frac{dy}{dx} = -x^{-2} - 3(-2)x^{-3} + 2(-3)x^{-4}$$
$$= -\frac{1}{x^2} + \frac{6}{x^3} - \frac{6}{x^4}.$$

Second and Higher Order Derivatives

Since the derivative of a function is another function, we can take the derivative of the derivative and so on as many times as we want.

Second- and Higher-Order Derivatives

If y = f(x) is a differentiable function, then its derivative f'(x) is also a function. If f' is also differentiable, then we can differentiate f' to get a new function of x denoted by f''. So f'' = (f')'. The function f'' is called the **second derivative** of f because it is the derivative of the first derivative. It is written in several ways:

$$f''(x) = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{dy'}{dx} = y'' = D^2(f)(x) = D_x^2 f(x).$$

The symbol D^2 means the operation of differentiation is performed twice.

If $y = x^6$, then $y' = 6x^5$ and we have

$$y'' = \frac{dy'}{dx} = \frac{d}{dx}(6x^5) = 30x^4.$$

Thus $D^2(x^6) = 30x^4$.

How to Read the Symbols for Derivatives

y' "y prime"

y" "y double prime"

 $\frac{d^2y}{dx^2}$ "d squared y dx squared"

y''' "y triple prime" $v^{(n)}$ "v super n"

 $\frac{d^n y}{dx^n}$ "d to the n of y by dx to the n"

 D^n "D to the n"

If y" is differentiable, its derivative, $y''' = dy''/dx = d^3y/dx^3$, is the **third derivative** of y with respect to x. The names continue as you imagine, with

$$y^{(n)} = \frac{d}{dx}y^{(n-1)} = \frac{d^ny}{dx^n} = D^ny$$

denoting the nth derivative of y with respect to x for any positive integer n.

We can interpret the second derivative as the rate of change of the slope of the tangent to the graph of y = f(x) at each point. You will see in the next chapter that the second derivative reveals whether the graph bends upward or downward from the tangent line as we move off the point of tangency. In the next section, we interpret both the second and third derivatives in terms of motion along a straight line.

EXAMPLE 10 The first four derivatives of $y = x^3 - 3x^2 + 2$ are

First derivative: $y' = 3x^2 - 6x$

Second derivative: y'' = 6x - 6

Third derivative: y''' = 6

Fourth derivative: $y^{(4)} = 0$.

The function has derivatives of all orders, the fifth and later derivatives all being zero.