물리 1 및 실험 보고서 [결과보고서]

포사체 운동 실험

소속	학번	이름	실험 조
AI 융합학부	20243265	김수현	6
실험날짜	2024.4.11. 목요일	제출날짜	2024.4.18 목요일
담당교수	이동재	담당조교	-

1. 실험제목

포사체 운동 실험

2. 실험목적

발사 각도에 따라 공이 이동하는 거리를 측정하여 포사체 운동에 관한 이론을 검증하고자 한다.

3. 실험이론

속력 v_0 의 빠르기로 수평면과의 θ 각을 이루며 공을 발사하면 공은 지면의 수평 방향으로는 $v_0\cos\theta$, 수직 방향으로는 $v_0\sin\theta$ 의 초기속도를 가지며, 지면의 수평 방향에 대해서는 등속도 운동, 수직 방향에 대해서는 등가속도 운동을 하며 이동한다.

<그림 1> 공이 발사될 때의 초기속도

공이 발사된 이후 공에 작용하는 힘은 공기저항을 무시하면 중력밖에 없어 수직 방향에 대해서 지면 쪽으로 중력을 받고, 수평 방향에 대해서는 힘이 가해지지 않기 때문이다. 따라서 공이 발사된 후 시간 t가 흐르면, 공이 수평 방향으로 이동한 거리 x(t)는

 $x(t) = (v_0 \cos\theta)t$ 이고, 그때 공의 수직 방향 속도 v_y 는

 $v_{y}(t) = v_{0}\sin\theta - gt$ 이다. (g는 중력가속도이다.)

3-1. 공이 출발점과 같은 높이에 도착한 경우

공의 수평 방향 속도가 0이 되면 공은 최고점에 도달한다. 그리고 3-1의 상황에서 공의 비행시간은 공이 최고점에 도달하는 데 걸리는 시간의 두 배이다. 최고점에 도달하는 데 걸리는 시간을 T_0 , 총 비행시간을 T_1 이라고 하면

$$v_0 \sin \theta - g \, T_0 = 0$$
, 따라서 $T_0 = rac{v_0 \sin heta}{g}$ 이고, $T_1 = 2 \, T_0 = rac{2 v_0 \sin heta}{g}$ 이다.

총 비행하는 동안 공이 수평으로 이동한 거리를 구해보면

 $x(T_1) = (v_0 \cos \theta) T_1 = \frac{v_0^2 2 \sin \theta \cos \theta}{g} = \frac{v_0^2 \sin 2 \theta}{g}$, 즉 초기 속력이 일정하다면 이론상 θ = 45°일 때 x(t)가 최댓값을 가진다.

3-2. 공이 출발점보다 낮은 곳에 도달하는 경우

도착점의 높이를 0으로 잡고, 출발점의 높이를 y_0 라 하면, 시간 t가 지났을 때 등가속도 운동공식

 $x=rac{1}{2}at^2+v_0t+x_0$ (이때, x는 나중위치, x₀는 초기위치, v₀는 초기 속도, t는 시간, a는 가속도이다.) 에 의하여 공의 높이 y는

$$y(t) = y_0 + (v_0 \sin \theta) t - \frac{1}{2} g t^2 \text{ olch}.$$

높이 0에 도달하는데 걸린 시간을 T_2 라고 하면 T_2 는 y(t) 식에서 t에 관한 이차방정식의 근의 공식을 통해 구할 수 있다. 이를 정리해보면

$$\mathsf{T_2} = \ \frac{v_0 \mathrm{sin}\theta + \sqrt{(v_0 \mathrm{sin}\theta)^2 + 2gy_0}}{g} \ \mathsf{Ol}\, \mathbb{Z},$$

공이 T_2 동안 비행할 때 수평으로 이동한 거리는 x(t)에 T_2 를 대입하면

$$x(T_2) = \left(\frac{v_0^2 \text{cos}\theta}{g}\right) \left\{\sin\theta + \sqrt{\sin^2\theta + (2gy_0/v_0^2)}\right\}$$

4. 관찰 및 결과

4-1. 출발 지점과 도착 지점의 높이가 같은 실험

수평 이동 거리

<표1> 발사 각도에 따른 수평 이동 거리 (단위:m)

각도 횟수	36°	39°	42°	45°	48°	51°	54°
1	1.227	1.296	1.330	1.338	1.323	1.280	1.249
2	1.234	1.302	1.317	1.328	1.329	1.287	1.251
3	1.232	1.290	1.312	1.328	1.329	1.280	1.246
평균거리	1.231	1.296	1.320	1.331	1.327	1.282	1.249

4-2. 출발 지점보다 도착 지점이 낮은 실험

수평 이동 거리

<표2> 발사 각도에 따른 수평 이동 거리 (단위:m) (y₀ =0.142m)

각도 횟수	36°	39°	42°	45°	48°	51°	54°
1	1.404	1.442	1.465	1.442	1.423	1.389	1.337
2	1.408	1.437	1.470	1.444	1.425	1.388	1.340
3	1.406	1.445	1.475	1.447	1.426	1.391	1.338
평균거리	1.406	1.441	1.470	1.444	1.425	1.389	1.338

5. 분석 및 토의

5-1. 출발 지점과 도착 지점의 높이가 같은 실험

<그림 2> 발사 각도에 따른 수평 이동 거리

<그림 3> 0 $^{\circ}$ \leq θ \leq $45 ^{\circ}$ 경우

<그림 4> 45° ≤ θ ≤ 90°경우

[질문 1] <그림 2>에서 이동 거리의 최대값은 발사각이 약 몇 도일 때인가?

발사각이 약 45도일 때 이동 거리의 최대값이 나타난다.

[질문 2] <그림 3>과 <그림 4>의 직선의 기울기는 각각 얼마인가?

<그림 3>의 기울기는 약 2.043이고, <그림 4>의 기울기는 약 1.675이다.

[질문 3] <그림 3>과 <그림 4>의 직선의 기울기는 어떤 정보를 제공하는가?

$$x(T_1) = (v_0 \cos \theta) \, T_1 = rac{v_0^2 2 \sin \theta \cos \theta}{g} = rac{v_0^2 \sin 2 \theta}{g}$$
 에서 식을 변형하면 $rac{x(T_1)}{\sin 2 \theta} = rac{v_0^2}{g}$ 인데 이론상 θ 가 0일 때 수평 이동 거리도 0이기 때문에 추세선을 그리면 $rac{x(T_1)}{\sin 2 \theta}$ 값이 기울기와 같을 것이므로 직선의 기울 기를 통하여 초기 속도값을 알 수 있다. 하지만 <그림 3>과 <그림 4>의 추세선은 θ 가 45도 근처인 값에 대해서만 추세선을 그렸기 때문에 이를 연장했을 때 원점을 지나지 않을 가능성이 높아 이것으로 초기 속도값을 파악하기에는 어려움이 있다.

[질문 4] 실험 시 발사기에서 발사된 공의 초기 속력을 구하라.

heta가 45도일 때의 값을 이용하여 값을 구해보면 (중력가속도 g = $9.81 \, \mathrm{m/s^2}$ 로 설정한다.) $\frac{1.331}{1} = \frac{v_0^2}{9.81}$ 의 식이 성립하므로 $v_0 \approx 3.613 \, m/s$ 이다.

5-2. 출발 지점보다 도착 지점이 낮은 실험

<그림 5> 발사 각도에 따른 수평거리

[질문 5] <그림 5>를 활용하여 이동 거리가 가장 큰 발사각을 추정하라.

<그림 5>를 참고하였을 때, 이동 거리가 가장 큰 발사각은 42도로 추정된다.

[질문 6] [질문 5]에서 구한 각도에 -3, 0, 3도를 더한 각도에 대하여 수평 도달 거리를 실험 이론에 있는 식을 이용하여 구하고 이동 거리가 가장 클 발사각을 추정하라.

$$x(T_2) = \left(\frac{v_0^2 \cos \theta}{g}\right) \left\{ \sin \theta + \sqrt{\sin^2 \theta + (2gy_0/v_0^2)} \right\}$$
 식에서 y_0 값은 4-2에서 기록하였고, 초기 속도는 [질문

4]에서 구했으므로 이를 이용하여 수평 도달 거리를 구해보면 39도는 약 1.458m, 42도는 1.465m, 45도는 1.460m이다. 따라서 식을 이용하여 구한 이동거리가 가장 클 발사각은 42도이다.

[질문 7] [질문 5]에서 구한 발사각과 [질문 6]에서 구한 발사각의 상대오차를 구하고, 오차의 원인을 설명하라.

[질문 5]와 [질문 6]에서 모두 42도의 발사각을 구해 상대오차는 0%이다.

생각해보기

1) 공의 출발지점과 도착지점의 높이가 같은 경우와 다른 경우, 각각 어떤 각도에서 최장거리를 갖는가?

실험 결과와 수식을 통한 계산으로부터 알 수 있듯이, 높이가 같은 경우엔 45도, 높이가 다른 경우에 서는 y_0 와 초기속도에 따라 변할 수 있지만 이번 실험에서는 42도에서 최장거리를 가졌다.

2) 공의 출발지점과 도착지점의 높이가 같은 경우와 다른 경우를 비교할 때, 어느 것의 최장 거리가 더 큰가?

실험 결과 표에서 봤을 때, 높이가 다른 경우 대부분 약 0.1m 정도 멀리 갔다. 따라서 최장거리는 도착지점의 높이가 다른 경우가 더 크다.

6. 결론

포사체 운동은 발사하는 각도에 따라 공이 이동하는 거리가 변한다는 것을 실험으로 확인할 수 있었다. 공의 출발지점과 도착지점의 높이가 같은 경우, 대개 45도의 각도에서 최장거리를 가지지만, 출발지점과 도착지점의 높이가 다를 경우, 높이 차와 초기 발사 속력에 따라 최장거리를 가지는 각도가 달라질 것이라는 것까지 유추해 볼 수 있다. 이번 실험에서는 전문 측정장비를 이용하여 높이와 거리를 측정한 것이 아니기 때문에 거리나 높이 측정에 어려움이 있었고, 이에 따라 오차가 발생했을 것이다. 더 세밀한 측정 장비를 이용하여 오차를 줄인다면 더 정확하고 의미있는 결과값을 얻을 수 있을 것이다. 또한, 추세선을 그려보는 과정에서도 결과값을 한정적으로 가지고있어 $\frac{x(T_1)}{\sin 2\theta} = \frac{v_0^2}{g}$ 과 기울기가 같다는 것을 확인해 볼 수 없었다. 더욱 각도를 다양하게 하여 실험한다면 추세선도 더 정확하게 나와이 과정도 확인해 볼 수 있을 것이다.

7. 참고문헌

김창배 외 8명. (2022). 대학물리학실험. 북스힐 Raymond A. Serway 외 1명. (2017). 핵심일반물리학 (이재희 외 1명 편역). 북스힐