1. Prove that if (x_n) converges to $x \neq 0$ and x_n is non-zero for all n, then $\left(\frac{1}{x_n}\right)$ converges to $\frac{1}{x}$.

- 2. (a) Prove that if (s_n) is monotone increasing and unbounded, then $\lim_{n\to\infty} s_n = +\infty$
 - (b) Give an example of a sequence that is unbounded but does not diverge to infinity.

Solution:

- (a) (s_n) is monotone increasing thus for all n, $s_{n+1} \ge s_n$. Since (s_n) is unbounded for any $M \in \mathbb{R}$ there exists an $N \in \mathbb{R}$ such that for n > N we have that $s_n > M$. combining these two facts we get that for n > N, $s_n > M$ thus (s_n) converges to infinity.
- (b) $a_n = n(-1)^n$
- 3. (a) Prove that [a, b] is a closed subset of \mathbb{R}
 - (b) Prove that [a, b) is not a closed subset of \mathbb{R}

Solution:

- (a) Suppose (x_n) converges to x and $\{x_n : n \in \mathbb{N}\} \subseteq [a,b]$. We know that $a \leq x_n \leq b$ for all n. Thus $0 \leq x_n a$ and $b x_n \geq 0$ for all n. By limit laws we can say that $(x_n a)$ converges to x a and that $(b x_n)$ converges to b x. By problem 10 on Worksheet 10 which states if (s_n) is a convergent sequence and that $s_n \geq 0$ for all but finitely many values of n, then $\lim_{n \to \infty} \geq 0$, we have that $x a \geq 0$ and $b x \geq 0$ thus we have $x \geq a$ and $b \geq x$ combining these inequalities we get that $a \leq x \leq b$. Thus $\lim_{n \to \infty} \in [a, b]$ and hence [a, b] is a closed subset of \mathbb{R} .
- (b) Consider the sequence $a_n = b \frac{b-a}{n}$. Note that $a \le b \frac{b-a}{n} < b$ for all n, as $\frac{b-a}{n}$ is always greater than 0 thus $b \frac{b-a}{n}$ must be less than b. a_n is lower bounded by a for n = 1 and for n > 1 it is less than b as described above. Using results proven in class

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b - \frac{b - a}{n} = \lim_{n \to \infty} b - \lim_{n \to \infty} \frac{b - a}{n} = b - 0 = b$$

Using results proven in class that $\lim_{n\to\infty} 1/n = 0$ and result from the homework stating $\lim_{n\to\infty} cx_n = c \lim_{n\to\infty} x_n$. Note that $\lim_{n\to\infty} a_n \notin [a,b)$ thus [a,b) is not a closed subset of \mathbb{R} .

4. Find the supremum and infimum of $\{1-\frac{1}{n}:n\in\mathbb{N}\}$ and prove that your answer is correct.

Solution:

 $\sup\{1-\frac{1}{n}:n\in\mathbb{N}\}=1$. Note that $1>1-\frac{1}{n}$ for all n. Thus 1 is an upper bound for the set. Further, for all $\varepsilon>0$, by the Archimedean property there exists some $N\in\mathbb{N}$ such that $N>1/\varepsilon$. Then $1-1/N>1-\varepsilon$ and thus $1-\varepsilon$ is not an upper bound for all $\varepsilon>0$. Thus $\sup\{1-\frac{1}{n}:n\in\mathbb{N}\}=1$. Claim $\inf\{1-\frac{1}{n}:n\in\mathbb{N}\}=0$. Firstly, 0<1-1/n for all n thus 0 is a lower bound for the set. Moreover, for any $\varepsilon>0$ we want to show it is not a lower bound of the set. By the Archimedean principle we know there exists a

natural number N such that $N>\frac{1}{1+\varepsilon}$ for all $\varepsilon>0$. Rearranging the inequality we get that $1-\frac{1}{N}<\varepsilon$. Thus $0+\varepsilon$ is not a lower bound of the set for all $\varepsilon>0$. Hence we have that $\inf\{1-\frac{1}{n}:n\in\mathbb{N}\}=0$.

5. Suppose that S and T are non-empty subsets of \mathbb{R} and that for any $s \in S$ and $t \in T$, $s \leq t$. Prove that sup $S \leq \inf T$.

Solution:

Fix some $t \in T$. Then $s \leq t$ for all $s \in S$. Thus t is an upper bound of S, since $\sup S$ is the least upper bound we have that $\sup S \leq t$ for all $t \in T$. Thus $\sup S$ is a lower bound for T, then by definition of infimum we have that $\sup S \leq \inf T$ because the infinum is the greatest lower bound.