

M-net: A Convolutional Neural Network for Deep Brain Structure Segmentation

Raghav Mehta and Jayanthi Sivaswamy

Centre for Visual Information Technology (CVIT)

IIIT Hyderabad, India

Segmentation problem

T1 MRI

Deep Brain

Structure

Segmentation

Deep Brain Structures

Motivation

Morphometry of deep brain structures is an *important* biomarker for various neurodegenerative diseases.

Huntington Disease (Basal Ganglia)

Parkinson's Disease (Putamen)

Alzheimer's Disease (Hippocampus)

Related Work ¹

Registration based methods ²

- Non-rigid registration of training atlases to the new volume
- Followed by label Fusion
- Time intensive (20-25 hours)
- Unsuitable for applications which are time critical

Model based methods 3,4

- Learn a mathematical model using atlases (during training)
- Segment the new volume using the learnt model
- Efficient (15-20 minutes)
- Suitable for applications which are time critical

⁽¹⁾ Iglesias et al., MedIA 2015 (Review Paper)

⁽²⁾ Heckemann et al., Neurolmage 2006

⁽³⁾ Patenaude et al., Neurolmage 2011 (FSL-FIRST)

⁽⁴⁾ Fischl et al, Neuron 2002 (Freesurfer)

Machine Learning based Methods

Pose segmentation as a classification task:

Random Forest + Markov Random Field 1

Multi Scale - CNN + Random Walker ²

Fully Convolutional NN + Markov Random Field 3

⁽¹⁾ Alchatzidis et al. BMVC 2014

⁽²⁾ Bao et al., CMBBEIV 2016

⁽³⁾ Shakeri et al., ISBI 2016

Inspiration

U-Net 1,2 - Proposed for microscopy

- (1) Olaf Ronneberger et al., MICCAI-2015 (2D)
- (2) Ozgun Cicek et al., MICCAI-2016 (3D)

Proposal 1: modified input stage

Add a 3D-to-2D converter as a front end

This is to ensure label consistency

Proposal 2 - more modifications

Original intensity at multiple scales

Supervision

Experiments

Datasets:

- Internet Brain Segmentation Repository (IBSR)
- 18 volumes; 256x256x12; 1x1x1.5 mm³
- MICCAI-2013 SATA Diencephalon Challenge (Midbrain) – Open competition
- 35 training + 12 testing volumes; 256x256x300;
 1x1x1 mm³
- Annotations for 7 subcortical (left/right) structures:

Accumbens Area, Amygdala, Pallidum, Caudate, Hippocampus Putamen and Thalamus

Implementation

- CNN trained on K40 GPU with 12 GB of RAM
- Training time ~ 3 days
- Code in Python with Keras library ¹
- Optimizer: Adam ²
- Hyper parameters: LR = 0.001, β₁ = 0.9, β₂= 0.999 and ε=10⁻⁰⁸
- Number of neighbor slices (n): 25

⁽¹⁾ Fran Chollet, 2015 (https://github.com/fchollet/keras)

⁽²⁾ Klngma et al.,arXiv - 2014

Results on IBSR

Mean Dice coefficient

	Freesurfer ¹	FSL ²	RF+	FCN +	MS-	U-net + 3D-	M-net
	Tool	Tool	MRF ³	MRF ⁴	CNN+MRF ⁵	to-2D Conv	
Accumbens	0.69	0.73	0.60	0.63	0.69	0.71	0.75
Amygdala	0.69	0.70	0.62	0.64	0.67	0.70	0.73
Pallidum	0.71	0.76	0.62	0.75	0.80	0.80	0.82
Caudate	0.82	0.83	0.78	0.78	0.87	0.85	0.87
Hippocampus	0.77	0.81	0.59	0.71	0.82	0.81	0.82
Putamen	0.81	0.84	0.77	0.83	0.88	0.89	0.90
Thalamus	0.86	0.88	0.80	0.87	0.90	0.88	0.90
Overall	0.76	0.79	0.69	0.75	0.80	0.81	0.83

- (1) Fischl et al., Neuron 2002
- (2) Patenaude et al., Neurolmage 2011
- (3) Alchatzidis et al., BMVC 2014
- (4) Shakeri et al., ISBI 2016
- (5) Bao et al., CMBBEIV 2016

Results on IBSR

Results on SATA Diencephalon

Mean Dice coefficient

FSL-FIRST: 0.82437 Freesurfer: 0.75761

Results: SATA Diencephalon

Summary

Proposed M-net

- Labels 3D MRI volumes slice by slice
- Label consistency and low memory requirement
- Computationally efficient (~5 min on standard CPU)
- No need for post-processing
- M-net can be used for segmentation of any 3D dataset

Thank You!

Funded by Department of Science and Technology, Gov. of India

Whole Brain Segmentation

MICCAI 2012 Multi-Atlas Labeling Challenge 1

- 15 Training Volumes, 20 Testing Volumes
- Segmentation into 134 structures
 - 98 cortical
 - 36 non-cortical

Mean Dice coefficient

U-net 2D : 0.6624

U-net + 3D-to-2D conv : 0.6971

M-net : 0.7278

Comparison with 3D network

Mean Dice Coefficient on IBSR dataset

	M-net	3D FCNN ¹	
Pallidum	0.82	0.86	
Caudate	0.87	0.91	
Putamen	0.90	0.90	
Thalamus	0.90	0.92	

(1) Dolz, J., Desrosiers, C. and Ayed, I.B., **2016**. 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. *arXiv* preprint arXiv:1612.03925.

Deep Brain Structures

R. Accumbens Area L. Accumbens Area R. Amygdala L. Amygdala R. Caudate L. Caudate R. Hippocampus L. Hippocampus R. Pallidum L. Pallidum R. Putamen L. Putamen R. Thalamus L. Thalamus