

NVIDIA Jetson Xavier NX

Design Guide

Document History

DG-09693-001_v1.7

Version Date Description of Change		Description of Change		
0.9	November 6, 2019	Preliminary Information		
0.91	February 7, 2020	• Updated Table 2-2		
		 Removed >1 min recommendation for power rail charging 		
		• Updated Table 3-1		
		 Added PCIe x1 interface support for Root Port operation 		
		• Updated Table 4-1		
		 Corrected controller # for PCIE0 pins, updated x1 PCIe to come from Xavier PEX Lane 11, and updated PEX lane changes in Table 4-2 		
		• Updated Table 4-3		
		 Updated USB2 pin numbers and removed 4.7uF cap on VDD_5V_USB to match P3509 implementation in Figure 4-1 		
		 Moved PCIe x1 to Lane 11, corrected PCIE0_TX3 and RX0 pin numbers, corrected x4 controller, and removed AC cap values on TX lines in Figure 4-8 		
		 Corrected controller # or x4 PCIe I/F, removed AC cap values on TX lines, and corrected PCIE0_TX3 and RX0 pin numbers in Figure 4-9 		
		 Updated PCIe controller numbers in Table 4-10 		
		 Changed pull ups on RST and INT to go to 3.3V and added level shifter to INT to SoC in Figure 4-10 		
		 Updated ethernet connections in Table 4-13 		
		 Updated DP_AUX_CH0_N and DP_AUX_CH0_N pin type since the interface can be used for HDMI in Table 5-1 		
		 Updated with 100Kohm PD and series resistors on DPx_HPD on connector side of level shifter in Figure 5-1 		
		 Updated DPx_HPD pin termination description in Table 5-4 		
		 Updated notes to Table 7-1 		
		 Updated notes to Table 8-1 		
		 Updated Figure 8-1 with Jetson module 		
		 Corrected PM3_PWM3 to GP_PWM6 in the fan section, Section 9.5 		
		• Corrected the Xavier signal connected GPIO14 pin in Table 9-12 and Figure 9-7		
		 Updated TX and RX to match module name in Table 9-13 		
		Updated checklist Table 12-1		
		• Updated Table 13-1		
		• Updated Table 13-2		
0.92	March 23, 2020	• Removed PMIC part # from Figure 2-1		
		 Added new chapter on module connector (Chapter 3) 		
		 Added note to Section 5.1 "USB" 		

Version	Date	Description of Change			
		• Updated Section 5.2 "PCIe"			
		 Updated Figure 5-9 and the note to include open-drain buffers on the control signals when NX is an Endpoint 			
		 Updated the notes to Table 5-9 			
		• Updated Table 5-10			
		 Updated eDP and DP pin descriptions in Table 6-1 			
		 Removed series resistor after the level shifter and added related note to Figure 6-1 			
		• Removed resistor divider on HPD in Figure 6-7			
		• Removed GPI008 for card select mention in Table 8-1			
		 Updated Figure 8-1 with the following: moved load switch enable to GPIO, moved card detect to generic GPIO, and removed series resistor on card detect line 			
		• Updated Table 8-3 with generic GPIO			
		 Replaced FET circuit used for level shifters with generic level shifter blocks in Figure 10-7 			
		 Removed design checklist and pin descriptions tables and made them separate attachments to this design guide 			
1.0	April 21, 2020	• Added note to Table 4-1 regarding direction of CLK_32K_OUT signal			
		 Added note to Table 5-2 regarding PEX_L4_RST* and PCIE_WAKE* signals 			
		• Updated Section 5.2 on PCIe			
		 Added Table 5-10 on PCIe Gen4 routing requirements 			
		 Added note to Table 6-1 regarding DP_AUX_CH[1:0]_HPD direction 			
		 Added note to Table 7-2 regarding CAM[1:0]_MCLK and CAM[1:0]_PWDN direction 			
		 Added note to Table 8-1 regarding SDMMC_CLK direction 			
		• Added note to Table 9-1 regarding I2S[1:0]_DOUT and _DIN direction			
		 Added note to Table 10-7 regarding UART pins 			
		 Updated Figure 10-5 to show on module buffers and added related note 			
		 Added note to Table 10-9 regarding CAN signals 			
		 Added note to Table 10-12 regarding GPI0014 and GPI0008 direction 			
		Updated attachments			
1.1	May 7, 2020	• Updated Table 5-5 with the following:			
		Updated Gen1 and Gen2 values			
		Removed redundant GND via reference requirement and accompanying note			
		Added Gen2 specific requirements to ESD			
		 Updated Table 6-5 with max trace lengths (more relaxed) and PTH vias (more restrictive) 			
		• Updated Table 7-4 with the following:			
		Removed max loading spec			

Version	Date	Description of Change		
		Removed "loosely coupled diff pair" comment from Intra pair		
		requirement note		
		Updated max trace delays and added max trace lengths Added max insertion loss		
		Changed max DQ to CLK skew for 1 Gbps		
		Changed max by to CEN skew for 1 obps		
1.2	August 13, 2020	 Added new chapter on developer kit feature considerations (Chapter 3) 		
		Removed note related to CLK_32K_OUT in Table 5-1		
		 Updated length/skew in Table 6-9 and Table 6-10 		
		• Added Figure 6-10 and Figure 6-11 on s-parameter plots (SDD21 and SD11)		
		 Updated Figure 9-1 and notes related to the VDD supply enable and current limiting 		
		• Removed reference to CAM_I2C used for on module power monitor in Section 11.1.1		
		• Removed mention of SPI2 pins in Table 11-6		
		Added bring-up checklist attachment (See reference in Chapter 14)		
		Updated design checklist and full pin description attachments		
1.3	November 4, 2020	• Updated USB SS hub design with publicly available part number in Section 3.2		
		 Added to note to clarify PCIe clock output and REFCLK input signaling type to Figure 6-8 and Figure 6-9 		
		Removed note under Figure 8-3 about CAM_I2C connection to on- module power monitor		
		Updated Table 8-4 based on new guidelines from IOSI after they used improved model		
		Updated Figure 10-1 with simpler more generic example of audio codec connection		
		Added Section 11.7 on USB recovery mode		
1.4	August 12, 2021	Updated block diagram Figure 2-1		
		• Added notes to Table 5-1		
		• Updated power supply and sequencing information in Section 5.1		
		Updated Section 6.1 on USB		
		• Updated USB 2.0 signal connections in Table 6-7		
		Made "Gigabit Ethernet" section its own chapter (Chapter 7)		
		Added section on test points for high-speed interfaces (Section 17.6)		
		Updated pin description attachment		
1.5	September 20, 2021	Removed WiFi/BT/Modem row in Table 2-1"Jetson Xavier NX Interfaces"		
		Updated Section 5.1 "Power Supply and Sequencing" text		
		Updated Figure 5-2 "Power Up Sequence (No Power Button – Auto Power On)"		
		• Added Figure 5-3 "Power Up Sequence (With Power Button)"		
		- Added Figure 3-3 Tower Op Sequence (With Fower Dutton)		

Version	Date	Description of Change		
		 Simplified pin types for PCIe and USB SS differential signals and updated PCIE_WAKE_N pull-up on module value in Table 6-2 "USB 3.1 and PCIe Pin Description" 		
		 Added note related to load switch to Figure 6-2 "USB SS Type A Example" 		
		 Reversed order of pins in Module Pin #s column to match [1:0] order in Module Pin Name column in Table 8-2 "DP and HDMI Pin Mapping" 		
		 Simplified HDMI/DP Pin Types Table 8-1 "eDP and DP Pin Descriptions" 		
1.6	February 25, 2022	 Updated descriptions for SHUTDOWN_REQ* and POWER_EN in Power Supply and Sequencing section. 		
		 Update power on sequence to include minimum delay from VDD_IN valid to POWER_EN active. 		
		 Correct PCIe/USB SS mapping table that has the wrong UPHY lanes (should be NVHS lanes) 		
		 Correct reference to PEX_CLK3 in Table 6-11 (PCIe Signal Connections). Should be PEX_CLK5. 		
		• Correct PCIe guidelines where loss should just be dB, not dB/in.		
		• Update CSI to support all 14 lanes (3x4 +1x2, 2x4 + 3x2, 1x4 + 5x2)		
		 Updated USB Recovery sections to include minimum requirement for entering Force Recovery mode. 		
		Add USB SS and Wireless Coexistence section		
1.7	November 16, 2022	Chapter 1 Intro: Added notes related to USB 3.2 and updated document to use USB 3.2 throughout		
		 Chapter 1 Intro: Added note related to replacing Master/Slave terminology and updated throughout document 		
		• Section 5.1: Added additional description for SHUTDOWN_REQ*		
		• Figure 5-5: Added power off initiated by de-asserting POWER_EN		
		Section 6.2: Added text related to PCIe polarity inversion support		
		• Table 6-11: Corrected pull-up value on-module for PCIE_WAKE*		
		• Figure 8-7: Corrected DP_AUX connections		
		• Figure 11-1: Corrected I2C pull-up voltage in note 2 under figure.		
		• Table 13-1: Removed SYS_RESET*		
		• Table 13-2: Corrected pull-up value on-module for PCIE_WAKE*		
		• Section 18.2/18.3/18.4: Updated text to use mm instead of in/mils		

Table of Contents

Chapter 1.	Introduction	1
1.1 Ref	erences	1
1.2 Abb	previations and Definitions	1
Chapter 2.	Jetson Xavier NX	3
Chapter 3.	Developer Kit Feature Considerations	7
3.1 But	ton Power MCU	7
3.2 USI	B SuperSpeed Hub	8
3.3 Pov	ver over Ethernet	8
3.4 TIT	XB0108 Level Shifters	8
3.5 Fea	tures Not to be Implemented	8
Chapter 4.	Modular Connector	9
4.1 Mod	dule Connector Details	9
4.2 Mod	dule to Mounting Hardware	9
4.3 Mod	dule Installation and Removal	10
Chapter 5.	Power	11
5.1 Pov	ver Supply and Sequencing	12
Chapter 6.	USB and PCIe	17
6.1 USF	B	19
6.1.1	USB 2.0 Design Guidelines	21
6.1.2	USB 3.2 Design Guidelines	21
6.1.2.1	· · · · · · · · · · · · · · ·	
6.2 PCI	e	26
6.2.1	PCIe Design Guidelines	29
Chapter 7.	Gigabit Ethernet	35
Chapter 8.	Display	38
8.1 eDF	P and DP	40
8.1.1	eDP and DP Routing Guidelines	41
8.2 HD	MI	45
Chapter 9.	MIPI CSI Video Input	54
9.1 CSI	Design Guidelines	59
Chapter 10.	SD Card and SDIO	61
Chapter 11.	Audio	64
Chapter 12.	Miscellaneous Interfaces	67
12.1 12C		67

12	2.1.1 I2C Design Guidelines	68
12.2	SPI	70
12	2.2.1 SPI Design Guidelines	71
12.3	UART	72
12.4	CAN	
12.5	Fan	
12.6	Debug	76
12.7	USB Recovery Mode	77
Chapte	r 13. PADS	78
13.1	Internal Pull-ups for Dual Voltage Block Pins Power at 1.8V	78
13.2	Schmitt Trigger Usage	78
13.3	Pins Pulled or Driven High During Power-ON	
Chapte	r 14. Unused Interface Terminations	81
14.1	Unused Multi-purpose Standard CMOS Pad Interfaces	81
14.2		
Chapte	r 15. USB 3.2 and Wireless Coexistence	82
15.1	Mitigation Techniques	82
Chapte	r 16. Design and Bring-Up Checklists	84
Chapte	r 17. Jetson Xavier NX Pin Descriptions	85
Chapte	r 18. General Routing Guidelines	88
18.1	Signal Name Conventions	86
18.2	Routing Guideline Format	87
18.3	Signal Routing Conventions	87
18.4	3	
	3.4.1 General PCB Routing Guidelines	
18.5	Common High-Speed Interface Requirements	
18.6	Test Points for High-Speed Interfaces	90

List of Figures

Figure 2-1.	Jetson Xavier NX Block Diagram	4
Figure 4-1.	Jetson Xavier NX Module Installed in SODIMM Connector	9
Figure 4-2.	Module to Connector Assembly Diagram	
Figure 5-1.	System Power and Control Block Diagram	13
Figure 5-2.	Power Up Sequence (No Power Button – Auto Power On)	14
Figure 5-3.	Power Up Sequence (With Power Button)	
Figure 5-4.	Power Down (Initiated by SHUTDOWN_REQ* Assertion)	15
Figure 5-5.	Power Down (Initiated by POWER_EN De-assertion)	15
Figure 5-6.	Power Down (Sudden Power Loss)	16
Figure 6-1.	USB 3.2 Micro B USB Device and Recovery Connection Example	20
Figure 6-2.	USB 3.2 Type A Host Only Connection Example	20
Figure 6-3.	IL/NEXT Plot (GEN1)	23
Figure 6-4.	IL/NEXT Plot (GEN2)	24
Figure 6-5.	Via Topology	24
Figure 6-6.	Component Order	24
Figure 6-7.	Component Placement	25
Figure 6-8.	ESD Layout Recommendations	25
Figure 6-9.	PCIe Root Port Connections Example	27
Figure 6-10.	PCIe Endpoint Connections Example	28
Figure 6-11.	Insertion Loss S-Parameter Plot (SDD21)	30
Figure 6-12.	Insertion Loss S-Parameter Plot (SDD11)	31
Figure 6-13.	AC Cap Voiding	31
Figure 6-14.	Connector Voiding	31
Figure 6-15.	Example Zig-Zag Routing	33
Figure 7-1.	Ethernet Connections	36
Figure 7-2.	Gigabit Ethernet Magnetics and RJ45 Connections	36
Figure 8-1.	DP and eDP Connection Example	40
Figure 8-2.	eDP and DP Differential Main Link Topology	41
Figure 8-3.	S-Parameter (up to HBR2)	43
Figure 8-4.	S-Parameter (up to HBR3)	44
Figure 8-5.	Via Topology #1	44
Figure 8-6.	Via Topology #2	44
Figure 8-7.	HDMI Connection Example	46
Figure 8-8.	HDMI Clk and Data Topology	47
Figure 8-9.	IL/FEXT Plot	50
Figure 8-10.	TDR Plot	50
Figure 8-11.	HDMI Via Topology	51

Figure 8-12.	Add-On Components – Top	51
Figure 8-13.	Add-on Components - Bottom	51
Figure 8-14.	AC Cap Void	51
Figure 8-15.	RPD/Choke, FET Placement	52
Figure 8-16.	ESD Footprint	52
Figure 8-17.	ESD Void	52
Figure 8-18.	SMT Pad Trace Entering	52
Figure 8-19.	SMT Pad Trace Between	53
Figure 8-20.	Connector Voiding	53
Figure 9-1.	4 Lane CSI Camera Connection Example	56
Figure 9-2.	CSI Connection Options	58
Figure 9-3.	Available Camera Control Pins	59
Figure 10-1.	SD Card Connection Example	62
Figure 11-1.	Audio Codec Connection Example	65
Figure 12-1.	I2C Connections	68
Figure 12-2.	SPI Connections	70
Figure 12-3.	Basic SPI Initiator and Target Connections	71
Figure 12-4.	SPI Topologies	71
Figure 12-5.	UART Connections	73
Figure 12-6.	CAN Connections	74
Figure 12-7.	Fan Connections	75
Figure 12-8.	Debug UART Connections	76
Figure 18-1.	General PCB Routing Guidelines	88
Figure 18-2.	Common Mode Choke	89
Figure 18-3.	Serpentine	90

List of Tables

Table 1-1.	Abbreviations and Definitions	2
Table 2-1.	Jetson Xavier NX Interfaces	
Table 2-2.	Jetson Xavier NX Connector (260-Pin SO-DIMM) Pin Out Matrix	5
Table 5-1.	Power and System Pin Description	11
Table 6-1.	USB 2.0 Pin Description	17
Table 6-2.	USB 3.2 and PCle Pin Description	
Table 6-3.	USB 3.2 and PCle Lane Mapping	19
Table 6-4.	USB 2.0 Interface Signal Routing Requirements	21
Table 6-5.	USB 3.1 Interface Signal Routing Requirements	
Table 6-6.	USB 2.0 Signal Connections	25
Table 6-7.	Miscellaneous USB Signal Connections	
Table 6-8.	USB 3.2 Signal Connections	26
Table 6-9.	PCIe Interface Signal Routing Requirements to Gen3	29
Table 6-10.	PCIe Gen4 Interface Signal Routing Requirements	
Table 6-11.	PCIe Signal Connections	33
Table 7-1.	Gigabit Ethernet Pin Descriptions	35
Table 7-2.	Ethernet MDI Interface Signal Routing Requirements	37
Table 7-3.	Ethernet Signal Connections	
Table 8-1.	eDP and DP Pin Descriptions	38
Table 8-2.	DP and HDMI Pin Mapping	39
Table 8-3.	ePD and DP Main Link Signal Requirements Including DP_AUX	41
Table 8-4.	eDP and DP Signal Connections	45
Table 8-5.	HDMI Interface Signal Routing Requirements	47
Table 8-6.	HDMI Signal Connections	53
Table 9-1.	CSI Pin Descriptions	54
Table 9-2.	Camera Miscellaneous Pin Descriptions	56
Table 9-3.	CSI Configurations	57
Table 9-4.	MIPI CSI Interface Signal Routing Requirements	59
Table 9-5.	MIPI CSI Signal Connections	60
Table 9-6.	Miscellaneous Camera Connections	60
Table 10-1.	SDIO Pin Descriptions	61
Table 10-2.	SD Card and SDIO Interface Signal Routing Requirements	62
Table 10-3.	SD Card and SDIO Signal Connections	63
Table 11-1.	Audio Pin Descriptions	64
Table 11-2.	I2S Interface Signal Routing Requirements	65
Table 11-3.	Audio Signal Connection	66
Table 12-1.	I2C Pin Descriptions	67

Table 12-2.	I2C Interface Signal Routing Requirements	69
Table 12-3.	I2C Signal Connections	69
Table 12-4.	SPI Pin Descriptions	70
Table 12-5.	SPI Interface Signal Routing Requirements	71
Table 12-6.	SPI Signal Connections	72
Table 12-7.	UART Pin Descriptions	72
Table 12-8.	UART Signal Connections	73
Table 12-9.	CAN Pin Descriptions	74
Table 12-10.	CAN Interface Signal Routing Requirements	74
Table 12-11.	CAN Signal Connections	75
Table 12-12.	Fan Pin Descriptions	75
Table 12-13.	Debug UART Pin Descriptions	76
Table 12-14.	Debug UART Connections	76
Table 13-1.	Pins Pulled or Driven High by Xavier Prior to SYS_RESET* Inactive	79
Table 13-2.	Pins with External Pull-ups to Supply on before SYS_RESET* Inactive	80
Table 14-1.	Unused MPIO Pins and Pin Group	
Table 18-1.	Signal Type Codes	86
Table 18-2.	Common High-Speed Interface Requirements	89

Chapter 1. Introduction

This design guide contains recommendations and guidelines for engineers to follow to create a product that is optimized to achieve the best performance from the interfaces supported by the NVIDIA® Jetson™ Xavier™ NX System-on-Module (SOM).

This design guide provides detailed information on the capabilities of the hardware module, which may differ from supported configurations by provided software. Refer to software release documentation for information on supported capabilities.

Note: All occurrences of USB 3.2 refer to "USB 3.2 Gen 1x1: SuperSpeed USB 5Gbps" and "USB 3.2 Gen 2x1: SuperSpeed USB 10Gbps" only. Also note that Gen 1x1 and Gen 2x1 are referred to simply as Gen1 and Gen2 in this design guide.

IMPORTANT: Throughout the design guide, references to "master" and "slave" configurations have been updated to "initiator" and "target" respectively.

1.1 References

Refer to the following list of documents or models for more information. Use the latest revision of all documents.

- Jetson Xavier NX Data Sheet
- Xavier (SoC) Technical Reference Manual
- Jetson Xavier NX Module Pinmux
- Jetson Xavier NX Thermal Design Guide
- ► Jetson Xavier NX SCL (Supported Component List)

1.2 Abbreviations and Definitions

Table 1-1 lists the abbreviations that may be used throughout this design and guide and their definitions.

Table 1-1. Abbreviations and Definitions

Abbreviation	Definition	
CAN	Controller Area Network	
CEC	Consumer Electronic Control	
CSI	Camera Serial Interface	
Diff	Differential	
DP	DisplayPort	
eDP	Embedded DisplayPort	
ESD	Electrostatic Discharge	
eMMC	Embedded MMC	
EMI	Electromagnetic Interference	
FET	Field Effect Transistor	
GPI0	General Purpose Input Output	
HDCP	High-bandwidth Digital Content Protection	
HDMI	High Definition Multimedia Interface	
I2C	Inter IC Interface	
I2S	Inter IC Sound Interface	
LCD	Liquid Crystal Display	
LD0	Low Dropout (voltage regulator)	
LPDDR4x	Low Power Double Data Rate DRAM, Fourth generation	
MDI	Medium-Dependent Interface	
MIL	1/1000th of an inch	
MIPI	Mobile Industry Processor Interface	
mm	Millimeter	
PCle	Peripheral Component Interconnect Express interface	
PCM	Pulse Code Modulation	
PHY	Physical Interface (that is, USB PHY)	
ps	Pico-Seconds	
PMIC	Power Management Integrated Circuit	
RJ45	8P8C modular connector used in Ethernet and other data links	
RTC	Real Time Clock	
SD Card	Secure Digital Card	
SDIO	Secure Digital I/O Interface	
SE	Single-Ended	
SPI	Serial Peripheral Interface	
TMDS	Transition-Minimized Differential Signaling	
UART	Universal Asynchronous Receiver-Transmitter	
USB	Universal Serial Bus	

Chapter 2. Jetson Xavier NX

The Jetson Xavier NX resides at the center of the embedded system solution and includes:

- ► Power (PMIC/Regulators, etc.)
- ▶ DRAM (8 GB, 128-bit LPDDR4x)
- ► eMMC (16 GB)
- ► Gigabit Ethernet Controller
- Power Monitor
- ▶ QSPI NOR (32 MB Boot device)

In addition, a wide range of interfaces are available at the main connector for use on the carrier board as shown in Table 2-1 and Figure 2-1.

Table 2-1. Jetson Xavier NX Interfaces

Category	Function	Category	Function
USB	USB 2.0 interface (3x)	LAN	Gigabit ethernet
058	USB 3.2 (1x)	I2C	4x
PCIe	PCIe (x1 and x4)	UART	3x
Camera	CSI (14 lanes: 3 x4 + 1 x2 or 6 x2)	SPI	2x
	Control, clock	CAN	1x
5: .	HDMI/eDP/DP (2x)	Fan	FAN PWM and tach input
Display	DP_AUX/HPD (2x), CEC (1x)	Debug	UART
A	I2S interface (2x)	System	Power control, reset, alerts
Audio	Initiator clock	Power	Main input and battery back-up for RTC
SD Card/SDIO	SD Card or SDIO interface (1x)		

Figure 2-1. Jetson Xavier NX Block Diagram

Table 2-2. Jetson Xavier NX Connector (260-Pin SO-DIMM) Pin Out Matrix

Module Signal Name	Pin #		Pin #	Module Signal Name
GND	1		2	GND
CSI1_D0_N	3		4	CSI0_D0_N
CSI1_D0_P	5		6	CSI0_D0_P
GND	7		8	GND
CSI1_CLK_N	9		10	CSI0_CLK_N
CSI1_CLK_P	11		12	CSI0_CLK_P
GND	13		14	GND
CSI1_D1_N	15		16	CSI0_D1_N
CSI1_D1_P	17		18	CSI0_D1_P
GND	19		20	GND
CSI3_D0_N	21		22	CSI2_D0_N
CSI3_D0_P	23		24	CSI2_D0_P
GND	25		26	GND
CSI3_CLK_N	27		28	CSI2_CLK_N
CSI3_CLK_P	29		30	CSI2_CLK_P
GND	31		32	GND
CSI3_D1_N	33		34	CSI2_D1_N
CSI3_D1_P	35	35		CSI2_D1_P
GND	37		38	GND
DP0_TXD0_N	39		40	CSI4_D2_N
DP0_TXD0_P	41		42	CSI4_D2_P
GND	43		44	GND
DP0_TXD1_N	45		46	CSI4_D0_N
DP0_TXD1_P	47		48	CSI4_D0_P
GND	49		50	GND
DP0_TXD2_N	51		52	CSI4_CLK_N
DP0_TXD2_P	53		54	CSI4_CLK_P
GND	55		56	GND
DP0_TXD3_N	57		58	CSI4_D1_N
DP0_TXD3_P	59		60	CSI4_D1_P
GND	61		62	GND
DP1_TXD0_N	63		64	CSI4_D3_N
DP1_TXD0_P	65		66	CSI4_D3_P
GND	67		68	GND
DP1_TXD1_N	69		70	DSI_D0_N
DP1_TXD1_P	71		72	DSI_D0_P
GND	73		74	GND

Module Signal Name	Pin #	Pin #	Module Signal Name
PCIE0_RX0_P	133	134	PCIE0_TX0_N
GND	135	136	PCIE0_TX0_P
PCIE0_RX1_N	137	138	GND
PCIE0_RX1_P	139	140	PCIE0_TX1_N
GND	141	142	PCIE0_TX1_P
CAN_RX	143	144	GND
KEY	KEY	KEY	KEY
CAN_TX	145	146	GND
GND	147	148	PCIE0_TX2_N
PCIE0_RX2_N	149	150	PCIE0_TX2_P
PCIE0_RX2_P	151	152	GND
GND	153	154	PCIE0_TX3_N
PCIE0_RX3_N	155	156	PCIE0_TX3_P
PCIE0_RX3_P	157	158	GND
GND	159	160	PCIE0_CLK_N
USBSS_RX_N	161	162	PCIE0_CLK_P
USBSS_RX_P	163	164	GND
GND	165	166	USBSS_TX_N
PCIE1_RX0_N	167	168	USBSS_TX_P
PCIE1_RX0_P	169	170	GND
GND	171	172	PCIE1_TX0_N
PCIE1_CLK_N	173	174	PCIE1_TX0_P
PCIE1_CLK_P	175	176	GND
GND	177	178	MOD_SLEEP*
PCIE_WAKE*	179	180	PCIE0_CLKREQ*
PCIE0_RST*	181	182	PCIE1_CLKREQ*
PCIE1_RST*	183	184	GBE_MDI0_N
I2C0_SCL	185	186	GBE_MDI0_P
I2C0_SDA	187	188	GBE_LED_LINK
I2C1_SCL	189	190	GBE_MDI1_N
I2C1_SDA	191	192	GBE_MDI1_P
I2S0_DOUT	193	194	GBE_LED_ACT
12S0_DIN	195	196	GBE_MDI2_N
12S0_FS	197	198	GBE_MDI2_P
I2S0_SCLK	199	200	GND
GND	201	202	GBE_MDI3_N
UART1_TXD	203	204	GBE_MDI3_P

Module Signal Name	Pin #		Pin#	Module Signal Name
DP1_TXD2_N	75		76	DSI_CLK_N
DP1_TXD2_P	77		78	DSI_CLK_P
GND	79		80	GND
DP1_TXD3_N	81		82	DSI_D1_N
DP1_TXD3_P	83		84	DSI_D1_P
GND	85		86	GND
GP1000	87		88	DP0_HPD
SPI0_MOSI	89		90	DP0_AUX_N
SPI0_SCK	91		92	DP0_AUX_P
SPI0_MIS0	93		94	HDMI_CEC
SPI0_CS0*	95		96	DP1_HPD
SPI0_CS1*	97		98	DP1_AUX_N
UARTO_TXD	99		100	DP1_AUX_P
UARTO_RXD	101		102	GND
UART0_RTS*	103		104	SPI1_MOSI
UARTO_CTS*	105		106	SPI1_SCK
GND	107		108	SPI1_MIS0
USB0_D_N	109		110	SPI1_CS0*
USB0_D_P	111		112	SPI1_CS1*
GND	113		114	CAM0_PWDN
USB1_D_N	115		116	CAM0_MCLK
USB1_D_P	117		118	GPI001
GND	119		120	CAM1_PWDN
USB2_D_N	121		122	CAM1_MCLK
USB2_D_P	123		124	GPI002
GND	125		126	GPI003
GPI004	GPI004 127		128	GPI005
GND	129		130	GPI006
PCIE0_RX0_N	131		132	GND

Module Signal Name	Pin #	Pin #	Module Signal Name	
UART1_RXD	205	206	GPI007	
UART1_RTS*	207	208	GPI008	
UART1_CTS*	209	210	CLK_32K_OUT	
GP1009	211	212	GPI010	
CAM_I2C_SCL	213	214	FORCE_RECOVERY*	
CAM_I2C_SDA	215	216	GPI011	
GND	217	218	GPI012	
SDMMC_DAT0	219	220	I2S1_DOUT	
SDMMC_DAT1	221	222	I2S1_DIN	
SDMMC_DAT2	223	224	12S1_FS	
SDMMC_DAT3	225	226	I2S1_SCLK	
SDMMC_CMD	227	228	GPI013	
SDMMC_CLK	229	230	GPI014	
GND	231	232	I2C2_SCL	
SHUTDOWN_REQ*	233	234	I2C2_SDA	
PMIC_BBAT	235	236	UART2_TXD	
POWER_EN	237	238	UART2_RXD	
SYS_RESET*	239	240	SLEEP/WAKE*	
GND	241	242	GND	
GND	243	244	GND	
GND	245	246	GND	
GND	247	248	GND	
GND	249	250	GND	
VDD_IN	251	252	VDD_IN	
VDD_IN	253	254	VDD_IN	
VDD_IN	255	256	VDD_IN	
VDD_IN	257	258	VDD_IN	
VDD_IN	259	260	VDD_IN	

Legend Ground Power

Chapter 3. Developer Kit Feature Considerations

The Jetson Xavier NX Developer Kit Carrier Board design files are provided as a reference design. This chapter describes details necessary for designers to know to replicate certain features if desired. In addition, aspects of the design that are specific to the NVIDIA Developer Kit usage but not useful or supported on a custom carrier board are also identified.

Most of the features implemented on the Jetson Xavier NX Developer Kit carrier board design can be duplicated by copying the connections from the P3509 carrier board reference design. Some of the following features have aspects that would require additional information.

- Button Power MCU (EFM8SB10F2G)
- ▶ USB SuperSpeed Hub (Realtek RTS5489)
- Power over Ethernet (PoE)
- ► TI TXB0108 level shifters
- ► ID EEPROM (Not to be copied from reference design)

3.1 Button Power MCU

The Developer Kit carrier board implements a button power MCU (EFM8SB10F2G). This device is programmed with firmware that is available on the Jetson Download Center. The posting is titled "Jetson AGX Xavier and Jetson Xavier NX Power Button Supervisor Firmware." The connections used on the reference design must be followed exactly and the firmware provided must be used to ensure correct functionality.

3.2 USB SuperSpeed Hub

The USB SS hub design uses a Realtek RTS5420 device. The hub circuit includes a SPI FLASH device which holds configuration information. A design intending to duplicate the developer kit hub implementation should include the same SPI FLASH programmed to match, or the hub should be customized with fuses with the same settings. The configuration in the SPI FLASH includes the following:

- ▶ Power enables (DPS1/2/3/4_PWR) set to be active high
- Charging feature disabled
- ▶ SSC valid

3.3 Power over Ethernet

The P3509 carrier board includes a 4-pin Power over Ethernet (PoE) header (J19) which brings out the VC power pins of the Ethernet connector. In order to use this alternate PoE power mechanism to power a custom carrier board, the design would require a power converter to take the high voltage PoE supply (38V-60V) and convert it to the correct voltage for the custom carrier board.

3.4 TI TXB0108 Level Shifters

The P3509 carrier board uses these level shifters to shift many of the signals going to the 40-pin header from 1.8V to 3.3V. The design of these level shifters supports bidirectional signaling without the use of a direction signal but has some side effects that should be considered. See the *Jetson Nano Developer Kit 40-Pin Expansion Header GPIO Usage Considerations Applications Note* for details.

3.5 Features Not to be Implemented

The Jetson Xavier NX Developer Kit carrier board features that should not be copied as they are not required or useful for a custom carrier board design. The ID EEPROM (P3509 - U17) is a feature that is used for NVIDIA internal purposes, but not useful on a custom design. A similar function may be desired for a custom design, but the NVIDIA software will not interact with these devices and the I2C address used by the developer kit carrier board ID EEPROM on the I2C2 interface (7'h57) should be avoided.

Chapter 4. Modular Connector

4.1 Module Connector Details

Jetson Xavier NX modules connect to the carrier board using a 260-pin SODIMM connector. The mating connector used on the developer kit carrier board is listed in the Jetson Xavier NX SCL (Supported Components List). This connector is a DDR4 SODIMM, 260-pin, right-angle, standard key type. The full height of the connector is 9.2 mm. Refer to the connector specification for details. Other heights are available.

4.2 Module to Mounting Hardware

The Jetson Xavier NX module is installed in the SODIMM connector which has latching mechanisms to hold the board in place. In addition, it is required that the module is mounted to the main carrier board PCB using metal standoffs and screws (or equivalent), both for mechanical integrity and to provide additional grounding points. The developer kit uses threaded standoffs that are hex, 4.5 mm widths (narrow diameter) x 6.57 ± 0.1 mm length. These have M2.5 threads. The screws used are M2.5 x 3.7 mm, pad head.

Other SODIMM connector heights are available. If a different height connector is used, the standoff height will have to be adjusted accordingly to account for the difference in height from main PCB to module PCB.

Figure 4-1. Jetson Xavier NX Module Installed in SODIMM Connector

4.3 Module Installation and Removal

To install the Jetson Xavier NX module correctly, follow the sequence and mounting hardware instructions:

Here are some suggested assembly guidelines.

- 1. Assemble any required thermal solution on the module.
- 2. Install the module
 - a) Start with baseboard that has suitable standoff to match SODIMM connector height.
 - b) Insert module fully at an angle of 25-35 degree into the SODIMM connector.
 - c) Arc down the module board until the SODIMM connector latch engages.
 - d) Secure the module to the baseboard with screws into the standoff/spacer. The developer kit (shown in Figure 3 2) uses a standoff and screws to secure the module to the system/base- board.

Figure 4-2. Module to Connector Assembly Diagram

To remove the module correctly, follow the reverse of the installation sequence.

Chapter 5. Power

Power for the module is supplied on the **VDD_IN** pins and is nominally 5.0V (see the Jetson Xavier NX Data Sheet for supply tolerance and maximum current).

CAUTION: Jetson Xavier NX is not hot-pluggable. Before installing or removing the module, the main power supply (to VDD_IN pins) must be disconnected and adequate time allowed for the various power rails to fully discharge.

Table 5-1. Power and System Pin Description

Pin #	Module Pin Name	Xavier Pin Name	Usage/Description	Recommended Usage	Directio n	Pin Type
251 V 260	VDD_IN	_	Main power – Supplies PMIC and other regulators	Main DC input	Input	5.0V
235	PMIC_BBAT	-	PMIC Battery Back-up. Optionally used to provide back-up power for the Real-Time-Clock (RTC). Connects to Lithium Cell or super capacitor on Carrier Board. PMIC is supply when charging cap or coin cell. Super cap or coin cell is source when system is disconnected from power. Charging is enabled by default in software. If non-rechargeable battery is to be used, charging should be disabled.	Battery Back-up using coin cell.	Bidir	Input Range: 1.65V-5.5V Output Options: 2.5V, 3.0V, 3.3V, 3.5V
214	FORCE_ RECOVERY*	SOC_GPI000	Force Recovery strap pin. Held low when SYS_RESET* goes high (i.e. during power-on) places system in USB recovery mode	System	Input	CMOS - 1.8V
240	SLEEP/WAKE*	POWER_ON	Sleep/Wake. Configured as GPIO for optional use to indicate the system should enter or exit sleep mode.	System	Input	CMOS - 5.0V
233	SHUTDOWN_ REQ*	_	When driven/pulled low by the module, requests the carrier board to shut down. ~5kΩ pull-up to VDD_IN (5V) on the module.	System	Output	Open Drain, 5.0V
237	POWER_EN	(PMIC EN0 through converter logic)	Signal for module on/off: high level on, low level off. Connects to module PMIC EN0 through converter logic. POWER_EN is routed to a Schmitt trigger buffer on the module. A 100kΩ pulldown is also on the module.	System	Input	Analog 5.0V
239	SYS_RESET*	SYS_RESET_IN_ N	Module Reset. Reset to the module when driven low by the carrier board. Used as carrier board supply enable when pulled high by the module	System	Bidir	Open Drain, 1.8V

Pin #	Module Pin Name	Xavier Pin Name	Usage/Description	Recommended Usage	Directio n	Pin Type
			when module power sequence is complete. Used to ensure proper power on/off sequencing between module and carrier board supplies. $1k\Omega$ pull-up to 1.8V on the module.			
178	MOD_SLEEP*	SOC_PWR_REQ	Module Sleep. When active (low), indicates module has gone to Sleep (SC7) mode.	Control of HDMI termination FET. See Figure 8-7.	Output	CMOS - 1.8V
210	CLK_32K_OUT	(PMIC GPI04 32K CLK Out)	Sleep/Suspend clock	Sleep/suspend clock for devices such as M.2 Key E	Output	CMOS - 1.8V

Notes:

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The directions for FORCE_RECOVERY* and SLEEP/WAKE* signals are true when used for those functions. Otherwise as GPIOs, the direction is bidirectional.

5.1 Power Supply and Sequencing

The carrier board receives the main power source and uses this to generate the enable to Jetson Xavier NX module (POWER_EN) after the carrier board has ensured the main supply is stable and the associated decoupling capacitors have charged. The carrier board supplies are not enabled at this time. Once POWER_EN is driven active (high), the module begins to Power-ON. When the module Power-ON sequence has completed, the SYS_RESET* signal is released (pulled high on module) and this is used by the carrier board to enable its various supplies.

Note: The carrier board cannot drive high or pull high any signals that are associated with the module when the module rails are off. If the designer cannot guarantee a signal will not be driven or pulled high, then either the power rail related to that signal should be left off, or the signals would need to be buffered to isolate them from the module pins. The buffers should only be enabled towards the module when SYS_RESET* goes high.

POWER EN

► POWER_EN is a level active signal. When high, the system powers on or stays on. When low, the system powers down or stays off. A minimum delay of 400 ms is required between VDD_IN valid to POWER_EN active

SYS RESET*

- ▶ SYS_RESET* is bidirectional. The signal is controlled by the PMIC during power-on and power-off. When the system is powered on, SYS_RESET* can be driven by the carrier board to reset the module. This results in a full system power cycle.
- ► The **SYS_RESET*** signal is asserted by the PMIC during power-on.
- ➤ SYS_RESET* is not asserted externally during the power-down sequence. When POWER_EN is de-asserted, the PMIC performs a power down sequence which includes asserting SYS_RESET*.

SHUTDOWN REQ*

- ► SHUTDOWN_REQ* is driven active (low) by the module if the system must be shut down, due to a software shutdown request, over-temperature event, undervoltage event, or other faults. The power control logic on the carrier board must drive POWER_EN inactive (low) if SHUTDOWN_REQ* is asserted.
- ► SHUTDOWN_REQ* is not driven during power-on. It is pulled up to the 5V supply, so stays inactive. If the system is on and reset is driven low, the PMIC will initiate a full power cycle and start the power-on sequence. Again, SHUTDOWN_REQ* is not asserted. SHUTDOWN_REQ* will only go low when the module determines the system needs to shut down.
- **SHUTDOWN_REQ*** comes from a latch on module and is cleared when **POWER_EN** goes low.
- ▶ If SHUTDOWN_REQ* is asserted, the carrier board must de-assert POWER_EN as soon as possible. One reason for this is to give the system enough time to do a correct power down sequence in the case of a sudden power loss case. In this case, once the 5V supply drops to ~4.2 V, the on-module VIN_PWR_BAD_N signal is asserted which results in SHUTDOWN_REQ* being asserted. The PMIC then starts the power down sequence which takes ~4 to 5 ms. The sequence must finish before the input voltage drops below 3.0 V to correctly power off the module.

Power Rail Discharge

To satisfy the power down sequencing requirement and prevent unwanted back drive from the carrier board to the module, the following must be true:

- ► The carrier board 3.3V power supply that powers any module I/O must be off within 1.5 ms of SYS RESET* assertion.
- ▶ The 1.8V power supply that powers any module I/O must be off within 4 ms.
- ▶ The power rails should be fully discharged before attempting to power back up.

Figure 5-1. System Power and Control Block Diagram

Note: Designs which implement an eFUSE or current limiting device on the input power rail of the module should select a part that DOES NOT limit reverse current.

Notes:

- 1. SHUTDOWN_REQ* is not driven during power up. The signal is pulled to VDD_IN.
- 2. SYS_RESET* is driven by the PMIC during power up.

Figure 5-3. Power Up Sequence (With Power Button)

Note:

- 1. SHUTDOWN_REQ* is not driven during power up. The signal is pulled to VDD_IN.
- 2. SYS_RESET* is driven by the PMIC during power up.

Figure 5-4. Power Down (Initiated by SHUTDOWN_REQ* Assertion)

Note: SYS_RESET* is driven by the PMIC during power down.

Figure 5-5. Power Down (Initiated by POWER_EN De-assertion)

Note: SYS_RESET* is driven by the PMIC during power down.

Figure 5-6. Power Down (Sudden Power Loss)

Note: SHUTDOWN_REQ* must always be serviced by the carrier board to toggle POWER_EN from high to low, even in cases of sudden power loss.

Chapter 6. USB and PCIe

Jetson Xavier NX allows multiple USB 2.0, USB 3.2 and PCIe interfaces to be brought out of the module.

▶ USB 2.0: 3x

▶ USB 3.2: 1x

► PCle: x1 + x4

The PCIe x4 interface supports both Root Port and Endpoint operation. The PCIe x1 interface supports only Root Port operation.

Table 6-1. USB 2.0 Pin Description

Pin #	Module Pin Name	Xavier Pin Name	Usage/Description	Recommended Usage	Directio n	Pin Type
87	GPI000	USB_VBUS_EN0	GPIO #0 (USB 0 VBUS Detect)	USB 2.0 Micro B	Bidir	Open Drain, 1.8V
109	USB0_D_N	USB0_DN		USB		
111	USB0_D_P	USB0_DP	USB 2.0 Port 0 Data	conn/device/hub (i.e. Micro B)	Bidir	USB PHY
115	USB1_D_N	USB1_DN		USB		
117	USB1_D_P	USB1_DP	USB 2.0 Port 1 Data	B 2.0 Port 1 Data conn/device/hub (i.e. USB 3.2 Hub)	Bidir	USB PHY
121	USB2_D_N	USB2_DN		USB		
123	USB2_D_P	USB2_DP	USB 2.0, Port 2 Data	conn/device/hub (i.e. M.2 Key E)	Bidir	USB PHY

Note: In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.

Table 6-2. USB 3.2 and PCIe Pin Description

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
131	PCIE0_RX0_N	NVHS0_RX0_N				
133	PCIE0_RX0_P	NVHS0_RX0_P	PCIe #0 Receive 0 (PCIe Ctrl #5 Lane 0)			
137	PCIE0_RX1_N	NVHS0_RX1_N	DOL 110 D	-		
139	PCIE0_RX1_P	NVHS0_RX1_P	PCIe #0 Receive 1 (PCIe Ctrl #5 Lane 1)			DOL DUN
149	PCIE0_RX2_N	NVHS0_RX2_N		-	Input	PCIe PHY
151	PCIE0_RX2_P	NVHS0_RX2_P	PCIe #0 Receive 2 (PCIe Ctrl #5 Lane 2)			
155	PCIE0_RX3_N	NVHS0_RX3_N		-		
157	PCIE0_RX3_P	NVHS0_RX3_P	PCIe #0 Receive 3 (PCIe Ctrl #5 Lane 3)			
134	PCIE0_TX0_N	NVHS0_TX0_N		-		
136	PCIE0_TX0_P	NVHS0_TX0_P	PCIe #0 Transmit 0 (PCIe Ctrl #5 Lane 0)			
140	PCIE0_TX1_N	NVHS0_TX1_N		-		
142	PCIE0_TX1_P	NVHS0_TX1_P	PCIe #0 Transmit 1 PCIe Ctrl #5 Lane 1)			501 5111
148	PCIE0_TX2_N	NVHS0_TX2_N		PCIe x4 conn/device (i.e.	Output	PCIe PHY
150	PCIE0_TX2_P	NVHS0_TX2_P	PCIe #0 Transmit 2 (PCIe Ctrl #5 Lane 2)	M.2 Key M)		
154	PCIE0_TX3_N	NVHS0_TX3_N		-		
156	PCIE0_TX3_P	NVHS0_TX3_P	PCIe #0 Transmit 3 (PCIe Ctrl #5 Lane 3)			
181	PCIE0_RST*	PEX_L5_RST_N	PCIe #0 Reset (PCIe Ctrl #5). 4.7kΩ pull-up to 3.3V on the module. Output when module is Root Port - input when module Endpoint.		Bidir	Open
180	PCIE0_CLKRE Q*	PEX_L5_CLKREQ_ N	PCIE #0 Clock Request (PCIe Ctrl #5). 47kΩ pullup to 3.3V on the module. Input when module is Root Port - output when module is Endpoint.		Biuli	Drain 3.3V
160	PCIE0_CLK_N	PEX_CLK5N or NVHS0_REFCLK_ N	PCIe #0 Reference Clock controlled by on- module mux by SoC CAN0_EN. When CAN0_EN is low, PEX_CLK5 is selected (reference clock		Bidir	
162	PCIE0_CLK_P	PEX_CLK5P or NVHS0_REFCLK_ P	when module is Root Port). When CAN0_EN is high, NVHS0_REFCLK is selected (reference clock input when Jetson Xavier NX is an Endpoint).			PCIe PHY
167	PCIE1_RX0_N	PEX_RX11_N	DOI: #4 D (DOI: Owl #4 L 0)		la acat	DOL- DUV
169	PCIE1_RX0_P	PEX_RX11_P	PCIe #1 Receive 0 (PCIe Ctrl #4 Lane 0)		Input	PCIe PHY
172	PCIE1_TX0_N	PEX_TX11_N	POL 114 T	-		DOL DUIV
174	PCIE1_TX0_P	PEX_TX11_P	PCIe #1 Transmit 0 (PCIe Ctrl #4 Lane 0)	DOI 1	Output	PCIe PHY
183	PCIE1_RST*	PEX_L4_RST_N	PCIe #1 Reset (PCIe Ctrl #4). 4.7kΩ pull-up to 3.3V on the module.	PCle x1 conn/device (i.e. M.2 Key E)	Output	Open Drain 3.3V
182	PCIE1_CLKRE Q*	PEX_L4_CLKREQ_ N	PCIE #1 Clock Request (PCIe Ctrl #4). 47k Ω pullup to 3.3V on the module.	1	Bidir	Open Drain 3.3V
173	PCIE1_CLK_N	PEX_CLK4N	PCIe #1 Reference Clock (PCIe Ctrl #4)		0++	DCIa DLIV
175	PCIE1_CLK_P	PEX_CLK4P	FOIE #1 Reference Clock [PCIe CTR #4]		Output	PCIe PHY
179	PCIE_WAKE*	PEX_WAKE_N	PCIe Wake. 47kΩ pull-up to 3.3V on the module.	Shared between x1 and x4 PCIe interfaces.	Input	Open Drain 3.3V

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
161	USBSS_RX_N	PEX_RX1_N	USB 3.2 Receive (USB 3.2 Ctrl #2)		Innut	USB 3.2
163	USBSS_RX_P	PEX_RX1_P	USB 3.2 Receive (USB 3.2 Ctrt #2)	USB 3.2	Input	PHY
166	USBSS_TX_N	PEX_TX1_N	UCD 2 2 T	connector, device or hub	0	USB 3.2
168	USBSS_TX_P	PEX_TX1_P	USB 3.2 Transmit (USB 3.2 Ctrl #2)		Output	PHY

Notes:

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The direction shown in this table for PEX_L4_RST* and PCIE_WAKE* signals is true when used for those PCIe functions. Otherwise, if used as GPIOs, the direction is bidirectional.

Table 6-3 shows the mapping options for Jetson Xavier NX.

Table 6-3. USB 3.2 and PCIe Lane Mapping

Module	e Pin Names	PCIEO_RX3_N/ P PCIEO_TX3_N/ P	PCIEO_RX2_N/ P PCIEO_TX2_N/ P	PCIE0_RX1_N/ PPCIE0_TX1_ N/P	PCIEO_RXO_N/ PPCIEO_TXO_ N/P	PCIE1_RX0_N/P PCIE1_TX0_N/P	USBSS_RX_N/P
X	avier Lanes	NVHS0 Lane 3	NVHS0 Lane 2	NVHS0 Lane 1	NVHS0 Lane 0	PEX Lane 11	PEX Lane 1
USB 3.2	PCle						
1	1x4 + 1x1	PCIe 0 lane 3 Controller #5	PCIe 0 lane 2 Controller #5	PCIe 0 lane 1 Controller #5	PCIe 0 lane 0 Controller #5	PCIe 1 lane 0 Controller #4	USB_SS Port #2
Recommended Usage P			x4 connector or	device (i.e. M.2 K	еу М)	PCle x1 connector or device (i.e. M.2 Key E)	USB 3.2 connector, device or hub

6.1 USB

Jetson Xavier NX support s up to three USB 2.0 ports and a single USB 3.2 port. Two examples are shown in Figure 6-1 and Figure 6-2.

Note: Some non-compliant USB 3.x devices will not function correctly unless USB 3.2 Gen2 is disabled.

The example shown in Figure 6-1 is for connections to a USB device only connector to be used to support recovery mode (See Section 12.7 for details on recovery mode) or a USB device if booted normally. A USB Micro B connector is shown in the example.

Figure 6-1. USB 3.2 Micro B USB Device and Recovery Connection Example

The example shown in Figure 6-2 is for connections to a USB 3.2 Type A connector to support host only. Recovery mode is not supported.

Figure 6-2. USB 3.2 Type A Host Only Connection Example

USB Host only connector (Type A)

Notes:

- 1. AC capacitors should be located close to either the USB connector, or the Jetson Xavier NX pins.
- 2. Connector used must be USB Implementers Forum certified if USB 3.2 is implemented.
- 3. The load switch supplying VBUS should have over current protection. In Figure 6-2 this is supported by routing the over current (OC) pin of the load switch to the GPI000 (USB VBUS EN0) which is bidirectional and can be used to detect an over current condition.

6.1.1 USB 2.0 Design Guidelines

These requirements apply to the USB 2.0 controller PHY interfaces: USB[2:0]_D_N/P

Table 6-4. USB 2.0 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency (high speed): Bit Rate/UI period/Frequency	480/2.083/240	Mbps/ns/MH z	
Max loading: High Speed / Full Speed / Low Speed	10 / 150 / 600	pF	
Reference plane	GND		
Trace impedance: Diff pair / SE)	90 / 50	Ω	±15%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Max trace length/delay	150 (960)	mm (ps)	
Max intra-pair skew between USBx_D_P and USBx_D_N	7.5	ps	

Notes:

6.1.2 USB 3.2 Design Guidelines

The following requirements apply to the USB 3.2 Port #2 PHY interface: **USBSS_TX_N/P**, **USBSS_RX_N/P**.

Table 6-5. USB 3.1 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification			
Data Rate / UI period			Device mode supports GEN1 speed
GEN1	5.0 / 200	Gbps / ps	only.
GEN2	10.0 / 100		
Max Number of Loads	1	load	
Termination	90 differential	Ω	On-die termination at TX & RX
Electrical Specification			
Insertion Loss (IL - Min)			• in Gen2 the loss budget is the same
Host			for all types of connector
GEN1 (Type C)	-2	dB @ 2.5GHz	dual role mode: host and device have
GEN1 (Type A)	-7	dB @ 2.5GHz	the same loss budget
GEN2	-5.4	dB @ 5GHz	[*] the consideration of Gen1 fixture
Device			loss
GEN1 (Micro AB)	-1[*]	dB @ 2.5GHz	
			The resonance dip could be caused by a
Resonance Dip Frequency	> 8	GHz	via stub for layer transition or trace
			stub for co-layout.
Time-domain Reflectometer (TDR) Dip			

^{1.} Up to four signal vias can share a single GND return via.

^{2.} Adjustments to the USB drive strength, slew rate, termination value settings should not be necessary, but if any are made, they MUST be done as an offset to default values instead of overwriting those values.

Parameter	Requirement	Units	Notes
GEN1	75	Ω	@ Tr = 200ps (10%-90%)
GEN2	75		@ Tr = 61ps (10%-90%)
Near End Crosstalk (NEXT)	< −45	dB	DC – 5GHz per each TX-RX NEXT. See
			(See Figure 6-3) and Figure 6-4)
Impedance	05 / /0		.150/
Trace Impedance: Diff pair / Single Ended	85 / 43	Ω	±15%. Intrinsic Zdf, does not account for coupling from other trace pairs
Reference plane	GND		Tor coupling from other trace pairs
Trace Length/Skew	OND		<u> </u>
Trace loss characteristic (max):			The following max length is derived
GEN1	0.7	dB/in @ 2.5GHz	based on this characteristic. The length
GEN2	0.9	dB/in @ 5GHz	constraint must be re-defined if loss
			characteristic is changed. The trace
			loss profile for Gen2 support is based
			on the dielectric material EM370(5).
Breakout Region – Max length	11	mm	Minimum trace width and spacing
Max Trace Length		mm (ps)	
GEN1 (Host)	152 (1014)		
GEN2 (Host/Device)	127 (850)		
Max Trace Length (Device) GEN1 only	51 (334)	mm (ps)	
Max Intra-Pair Skew (RX/TX_N to RX/TX_P)	0.15 (1)	mm (ps)	Do not perform length matching within
			breakout region. Trace length matching should be done before discontinuities.
Differential pair uncoupled length	6.29 (41.9)	mm (ps)	Should be done before discontinuities.
Trace Spacing for TX/RX Interleaving	0.27 (41.7)	ΠΠΠ (μ3)	<u> </u>
Trace Spacing: Microstrip / Stripline			
Pair-Pair	4x / 3x	Dielectric	
To Ref plane and SMT pad	4x / 3x	height	
To unrelated high-speed signals	4x / 3x		
Trace Spacing for TX/RX Non-interleaving			
TX-RX Xtalk is very critical in PCB trace routin	g. The ideal solution is	to route TX and RX	on different layers.
If routing on the same layer, strongly recomm			
If have to have interleaving routing in breakou	t, all the inter-pair spac	cing should follow t	he rule of inter-SNEXT (between TX/RX pair
spacing)			
The breakout trace width is suggested to be the			
Do not perform serpentine routing for intra-pa	air skew compensation	in the breakout req	
Min Inter-S _{NEXT} (between TX/RX)	/ 05	D: 1	This is the recommended dimensions
Breakout Main-route	4.85x 3x	Dielectric	for meeting the NEXT requirement. Stripline structure in a GSSG structure
Max length	JX	height	is assumed (holds in broadside-coupled
Breakout	11	mm	stripline structure)
Main-route	Max trace length -	111111	Striptine Structure)
Mulli Fodic	LBRK		
Via	1	1	
Topology	Y-pattern is recomm	ended	Y-pattern helps with Xtalk suppression.
11 37	Keep symmetry		It can also reduce the limit of the pair-
			pair distance. Review needed
			(NEXT/FEXT check) if via placement
			does not use Y-pattern. See Figure 6-5 .
GND via	Place GND via as syr		GND via is used to maintain return
	possible to data pair vias. Up to 4 signal vias (2 diff pairs) can share a		path, while its Xtalk suppression is
			limited
M # - (\ / /	single GND return vi	а	<u> </u>
Max # of Vias	/ if all of a DTU	.i	
PTH vias	4 if all vias are PTH via Not limited as long as total channel loss meets IL spec		
Micro Vias Max Via Stub Length	0.4		long via stub requires review (IL and
May Ala Sian Fellatii	U.4	mm	resonance dip check)
Additional Component Placement Order	1	<u>I</u>	1 - 1 - 2 - 2 - 1 - 1 - 1 - 1 - 1 - 1 -
Additional Component Lacement Order	Chin AC canacitor	[TX only] commor	n mode choke _ ESD _ Connector
	Tomp = 7.0 capacitor	01169) = 0011111101	

Parameter	Requirement	Units	Notes	
	See Figure 6-6.		See Figure 6-7.	
AC Cap				
Value: Min/Max	0.075 / 0.2	uF	0.1uF recommended. Only required for TX pair when routed to connector	
Location (max length to adjacent discontinuity)	8	mm	Discontinuity is connector, via, or component pad	
Voiding	GND/PWR void under/above cap is preferred		Voiding is required if AC cap size is 0603 or larger	
ESD (On-chip protection diode can withstand 2 stuffing option)	kV HMM. External ESD	is optional. Desigr	ns should include ESD footprint as a	
Max Junction capacitance (IO to GND)				
GEN1	0.8	pF	GEN1: SEMTECH RClamp0524p	
GEN2	0.35		GEN2: TPD4E02B04DQA	
Footprint	Pad should be on the	net – not trace	See Figure 6-8.	
	stub			
Location (max length to adjacent discontinuity)	8	mm	Discontinuity is connector, via, or component pad	
Common-mode Choke				
(Not recommended – only used if absolutely re	quired for EMI issues).	See Chapter 18 for	details on CMC if implemented.	
FPC (Additional length of Flexible Printed Circ	uit Board)		·	
The FPC routing should be included for PCB t	race calculations (max	ength, etc.)		
Characteristic Impedance	Same as PCB			
Loss characteristic	Strongly recommend being the same		If worse than PCB, the PCB and FPC	
	as the PCB or better		length must be re-estimated	
Connector				
SMT Connector GND Voiding	GND plane under signal pad should be voided. Size of void should be the same			
, and the second	size as the pad.			
Connector used must be USB-IF certified				
General: See Chapter 18 for guidelines related	d to serpentine routing,	routing over voids	and noise coupling	

The following figures show the USB 3.2. Interface signal routing requirements.

Figure 6-4. IL/NEXT Plot (GEN2)

Figure 6-5. Via Topology

Figure 6-6. Component Order

Figure 6-7. Component Placement

Figure 6-8. ESD Layout Recommendations

6.1.2.1 Common USB Routing Guidelines

If routing to USB device or USB connector includes a flex or 2nd PCB, the total routing including all PCBs/flexes must be used for the max trace and skew calculations.

Keep critical USB related traces away from other signal traces or unrelated power traces/areas or power supply components

Table 6-6. USB 2.0 Signal Connections

Module Ball Name	Туре	Termination	Description
USB[2:0]_D_P USB[2:0]_D_N	DIFF I/O	If used, 90Ω common-mode chokes close to connector. ESD Protection between choke and connector on each line to GND	USB Differential Data Pair: Connect to USB connector, Mini-Card socket, hub or another device on the PCB.

Table 6-7. Miscellaneous USB Signal Connections

Module Pin Name	Туре	Termination	Description
GPI000 (USB_VBUS_EN0)	1/0		USB0 VBUS Enable: Connect to enable and overcurrent pins of load switch (through 100ohm series resistor to OC pin).
GPIO (VBUS Detect)		5V to 1.8V level shifter	VBUS Detect: Connect to VBUS pin of USB connector receiving USB0_+/- interface through level shifter.

Table 6-8. USB 3.2 Signal Connections

Module Pin Name	Туре	Termination	Description
USBSS_TX_N/P (USB 3.2 Port #2)	DIFF Out	Series 0.1uF caps. ESD Protection near connector if required.	USB 3.2 Differential Transmit Data Pairs: Connect to USB 3.2 connectors, hubs or other devices on the PCB.
USBSS_RX_N/P (USB 3.2 Port #2)	DIFF In	If routed directly to a peripheral on the board, AC caps are needed for the peripheral TX lines. ESD protection near connector if required.	USB 3.2 Differential Receive Data Pairs: Connect to USB 3.2 connectors, hubs or other devices on the PCB.

6.2 PCIe

Jetson Xavier NX brings two PCIe interfaces to the module pins for up to 5 total lanes $(1 \times 4 + 1 \times 1)$ for use on the carrier board. The PCIe x4 interface operates up to Gen4 speed and supports both Root Port and Endpoint operation. The PCIe x1 interface operates only up to Gen3 speed and supports only Root Port operation. Figure 6-9 shows both the x1 and x4 interfaces as Root Ports. Figure 6-10 shows the x4 interfaces as an Endpoint. Lane reversal and polarity inversion (P/N swapping) is supported.

Figure 6-9. PCIe Root Port Connections Example

- 1. For Root Port operation, the mux should be set to output the PEX_CLK5 signals. CANO_EN which is used for the mux select should be set low.
- 2. AC Capacitors required on RX lines on carrier board if connected directly to device. They should not be on the carrier board if connected to PCIe connector, M.2 Key M, etc. In those cases, the AC caps are on the board connected to those connectors.
- 3. See design guidelines for correct AC capacitor values.
- 4. The PCIe REFCLK inputs and PCIEx_CLK clock outputs comply to the PCIe CEM specification "REFCLK DC Specifications and AC Timing Requirements." The clocks are HCSL compatible.

Figure 6-10 shows the x4 interface configured as Endpoint for the PCIe Endpoint connections.

Figure 6-10. PCIe Endpoint Connections Example

- For Endpoint operation, the mux should be set to input the reference clock from the PCIe Root Port device to the Jetson Xavier NX NVHS0_REFCLK pins. CAN0_EN which is used for the mux select should be set high.
- 2. AC capacitors required on RX lines on carrier board if connected directly to device. They should not be on the carrier board if connected to PCIe connector, M.2 Key M, etc. In those cases, the AC caps are on the board connected to those connectors.
- 3. See design guidelines for correct AC capacitor values.
- 4. Open-drain buffers are required on the PCIe control signals when Jetson Xavier NX is configured as Endpoint. These isolate the lines from the on-module pull-ups as well as ensure the Endpoint and Root Port devices do not have their pads driven high before power is applied (3V3_RP is 3.3V supply on the Root Port side and 3V3_EP is the 3.3V supply on the Endpoint side.
- 5. The PCIe REFCLK inputs and PCIEx_CLK clock outputs comply to the PCIe CEM specification "REFCLK DC Specifications and AC Timing Requirements." The clocks are HCSL compatible.

6.2.1 PCIe Design Guidelines

The following tables provide the PCIe routing guidelines for the PCIe #1 (x1) or PCIe #0 (x4) interfaces. PCIe #1 supports up to Gen3 and the first table applies. PCIe #0 supports up to Gen4 and if the design will need to operate at Gen4 speed, the second routing table applies.

Table 6-9. PCIe Interface Signal Routing Requirements to Gen3

Parameter	Requirement	Units	Notes
Specification			
Data Rate / UI Period	8.0 / 125	Gbps / ps	4.0GHz, half-rate architecture
Configuration / Device Organization	1	Load	
Topology	Point-point		Unidirectional, differential
Termination	50	Ω	To GND Single Ended for P & N
Impedance	1		
Trace Impedance differential / Single	85 / 50	0	+15%. See Note 1
Ended			
Reference plane	GND		
Spacing			<u>'</u>
Trace Spacing (Stripline/Microstrip)			TX and RX should not be routed on the
Pair – Pair	3x / 4x	Dielectric	same layer. See Note 2.
To plane and capacitor pad	3x / 4x		
To unrelated high-speed signals	3x / 4x		
Length/Skew	·	·	
Trace loss budget (for carrier board routing)			@ 4GHz (See Figure 6-3),
Routing direct to device	-11.5	dB	Loss: GEN3 budget – module – end
<u>-</u>			device – safety margin (-22dB + 3.5dB +
Routing to PCIe/M.2 connector	-7.5		4dB + 3dB)
			Loss: GEN3 budget – module – end
			device – safety margin (-22dB + 3.5dB +
			8dB + 3dB)
Breakout region (Max Length)	41.9	ps	Minimum width and spacing. 4x or
			wider dielectric height spacing is
			preferred
Max trace length (delay)			Mid-loss PCB of 0.8dB/in (Microstrip) o
Direct to device on carrier board			0.75dB/in (Stripline) is used. Also,
Stripline	15.3 (2680)	in (ps)	175ps/in for Stripline routing and
Microstrip	14.4 (2160)		150ps/in for Microstrip.
Routed to PCle or M.2 connector			
Stripline	10 (1750)		
Microstrip	9.4 (1400)		
Max PCB via distance from the BGA	41.9	ps	Max distance from BGA ball to first PCE
	()	()	via.
PCB within pair (intra-pair) skew	0.075 (0.5)	mm (ps)	Do trace length matching before hitting
AAPal to the control of the control	0.055 (0.5)	()	discontinuities. See notes 3 and 4.
Within pair (intra-pair) matching between	0.075 (0.5)	mm (ps)	See notes 3 and 4.
subsequent discontinuities	11.0		
Differential pair uncoupled length	41.9	ps	
Via	1 =		
Via placement			ossible to data pair vias. GND via distance
	should be placed le	ss than 1x the diff	pair via pitch
Max # of Vias			
PTH Vias	2 for TX traces and 2	2 tor RX trace	
Micro-Vias	No requirement		T
Max Via stub length	0.4	mm	Longer via stubs would require review
Routing signals over antipads	Not allowed		

Parameter	Requirement	Units	Notes
AC Cap			
Value GEN1/GEN2: Min/Max GEN3: Min/Max	0.075 / 0.265 0.176 / 0.265	uF	0.1uF or 0.22uF recommended for GEN1 or GEN2. 0.22uF recommended for GEN3. Only required for TX pair when routed to connector
Location (max length to adjacent discontinuity)	8	mm	Discontinuity such as edge finger, component pad
Voiding	Voiding the plane dir pad 3-4 mils larger t is recommended.	,	See Figure 6-13.
Connector			
Voiding	Voiding the plane directly under the pad 5.7 mils larger than the pad size is recommended.		See Figure 6-14.
General: See Chapter 18 for guidelines rel	ated to serpentine routing, r	outing over voids	and noise coupling

- 1. The PCIe spec. has $40-60\Omega$ absolute min/max trace impedance, which can be used instead of the 50Ω , \pm 15%.
- 2. If routing in the same layer is necessary, route group TX and RX separately without mixing RX/TX routes and keep distance between nearest TX/RX trace and RX to other signals 3x RX-RX separation.
- 3. For trace loss >= 0.7dB/in @ 2.5 GHz, the max trace length should be 7 inches. To reduce trace loss, ensure the loss tangent of the dielectric material and roughness of the metal are tightly controlled.
- 4. The average of the differential signals is used for length matching.
- 5. Do length matching before Via transitions to different layers or any discontinuity to minimize common mode conversion.

Figure 6-13. AC Cap Voiding

Figure 6-14. Connector Voiding

Table 6-10. PCIe Gen4 Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification		·	
Data Rate / UI Period	16.0 / 62.5	Gbps/ps	8.0GHz, half-rate architecture
Topology	Point-point		Unidirectional, differential. Driven by
Termination	43	Ω	To GND Single Ended for P and N
Impedance			,
Trace Impedance			±15%
differential / Single Ended	85 / 50	Ω	_1070
Reference plane	GND		
Fiber-weave effect	Use spread-glass instead of regular weave) to minimiz Use zig-zag route straight to minim	r-glass (sparse te intra-pair skew instead of ize skew, this is a	See Figure 6-15
	mandatory for PC	le gen4 design	
Spacing			
Trace Spacing (Stripline) Pair – Pair To plane and capacitor pad To unrelated high-speed signals	4x 4x 4x	Dielectric	TX and RX should not be routed on the same layer. If this is required in a design, they should not be interleaved, and the spacing between the closest RX and TX lanes must be 9x Dielectric spacing.
Length/Skew			· · · · · · · · · · · · · · · · · · ·
Trace loss budget (for carrier board routing) Routing direct to device Routing to PCIe/M.2 connector	-16 -10.5	dB	(a 4GHz (See Figure 6-3), Loss: GEN4 budget – module – end device – safety margin (-28dB + 5dB + 4dB + 3dB) Loss: GEN3 budget – module – end device – safety margin (-28dB + 5dB + 9.5dB + 3dB)
Breakout region (Max Length)	41.9	ps	Minimum width and spacing. 4x or wider dielectric height spacing is preferred
Max trace length (delay) Direct to device on carrier board Stripline Microstrip Routed to PCIe or M.2 connector Stripline Microstrip	11.9 (2070) 10.9 (1630) 7.8 (1360) 7.1 (1070)	in (ps)	Mid-loss PCB of 1.47dB/in (Microstrip) or 1.35dB/in (Stripline) is used. Also, 175ps/in for Stripline routing and 150ps/in for Microstrip.
Max PCB via distance from the Device/Connector	41.9	ps	Max distance from Device ball or Connector pin to first PCB via.
PCB within pair (intra-pair) skew	0.15 (0.5)	mm (ps)	Do trace length matching before hitting discontinuities.
Within pair (intra-pair) matching between subsequent discontinuities	0.15 (0.5)	mm (ps)	
Differential pair uncoupled length	41.9	ps	
Via Via placement			ssible to data pair vias. GND via distance
Max # of Vias	should be placed les	s man ix me diif p	Use micro via or back drilled via - no vi stub allowed.
Max Via stub length	na		Not Allowed
AC Cap			

Parameter	Requirement	Units	Notes
Value Min/Max	0.22	uF	20%, 0402 X5R or better. Only required
			for TX pair when routed to connector.
			Place close to TX side.
Voiding	Voiding the plane dire	ctly under the	See Figure 6-13.
	pad 3-4 mils larger th	nan the pad size	
	is required.		
MIsc.			
GND fill rule	Remove unwanted G	ND fill that is eitl	her floating or act like antenna
Connector			
Voiding	Void all layers of gol	den finger area	See Figure 6-14.
	under the pad 5.7 mi	ils larger than	
	the pad size is recon	nmended.	
General: See Chapter 18 for guidel	lines related to serpentine routing, re	outing over voids a	and noise coupling

- 1. The PCIe spec. has $40-60\Omega$ absolute min/max trace impedance, which can be used instead of the 50Ω , \pm 15%.
- 2. If routing in the same layer is necessary, route group TX and RX separately without mixing RX/TX routes and keep distance between nearest TX/RX trace and RX to other signals 3x RX-RX separation.
- 3. The average of the differential signals is used for length matching.
- 4. Do length matching before Via transitions to different layers or any discontinuity to minimize common mode conversion.

Figure 6-15. Example Zig-Zag Routing

Table 6-11. PCIe Signal Connections

Module Pin Name	Туре	Termination	Description
PCle Interface 0 (x4	– Controller #5)		
PCIE0_TX3_N/P PCIE0_TX2_N/P PCIE0_TX1_N/P PCIE0_TX0_N/P	DIFF OUT	Series 0.22uF Capacitor	Differential Transmit Data Pairs: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.
PCIE0_RX3_N/P PCIE0_RX2_N/P PCIE0_RX1_N/P PCIE0_RX0_N/P	DIFF IN	Series 0.22uF capacitors near Jetson Xavier NX pins or device if device on main PCB.	Differential Receive Data Pairs: Connect to RX_N/P pins of PCle connector or TX_N/P pin of PCle device through AC cap according to supported configuration.
PCIE0_CLK_N/P	DIFF OUT (Rootport) DIFF IN (Endpoint)		Differential Reference Clock Output: Connected to a mux on the module that selects either PEX_CLK5 or NVHS0_REFCLK. Connect to REFCLK_N/P pins of PCIe device/connector. For Root Port operation, set the mux to select PEX_CLK5 (CAN0_EN = 0). For Endpoint, set the mux to select NVHS0_REFCLK (CAN_EN = 1).

Module Pin Name	Туре	Termination	Description
PCIE0_CLKREQ*	I/O	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIEO_CLK: Connect to CLKREQ pins on device/connector(s). If the module is configured as an Endpoint, include open-drain buffers between the clock request pin on the module and the device/connector. One buffer should have the output to the module and be powered by the 3.3V rail on the module. The other buffer should have the output pointing at the connector/device and be powered by the 3.3V rail at the connector/device. These buffers isolate the on-module pull-up resistors as well as ensures the pins on both the Root Port and Endpoint sides will not be driven high before the associated power is enabled.
PCIE0_RST*	Controller #/	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s). If the module is configured as an Endpoint, include an open-drain buffer between the reset pin on the module and the device/connector powered by the 3.3V rail at the connector/device. The buffer should have the output toward the module. This isolates the on-module pull-up resistor as well as ensures this signal will not be pulled/driven high before the module is powered on.
PCIe Interface 1 (x1		C : 000 F	D'' 'IT 'ID I D' O II TV N/D : (DO)
PCIE1_TX0_N/P	DIFF OUT	Series 0.22uF Capacitor	Differential Transmit Data Pair: Connect to TX_N/P pins of PCIe connector or RX_N/P pin of PCIe device through AC cap according to supported configuration.
PCIE1_RX0_N/P	DIFF IN	Series 0.22uF capacitors near Jetson Xavier NX pins or device if device on main PCB.	Differential Receive Data Pair: Connect to RX_N/P pins of PCIe connector or TX_N/P pin of PCIe device through AC cap according to supported configuration.
PCIE1_CLK_N/P	DIFF OUT		Differential Reference Clock Output: Connect to REFCLK_N/P pins of PCIe device/connector
PCIE1_CLKREQ*	I/O (Root Port) I (Endpoint)	47kΩ pull-up to VDD_3V3_SYS on module	PCIe Clock Request for PCIE1_CLK: Connect to CLKREQ pins on device/connector(s)
PCIE1_RST*	0 (Root Port) I (Endpoint)	4.7kΩ pull-up to VDD_3V3_SYS on module	PCIe Reset: Connect to PERST pins on device/connector(s)
Common			
PCIE_WAKE*	I	100kΩ pull-up to VDD_3V3_SYS on module	PCIe Wake: Connect to WAKE pins on device or connector. If the module is configured as an Endpoint, include an open-drain buffer between the wake pin on the module and the device/connector powered by the 3.3V rail at the connector/device. The buffer should have the output toward the connector/device. This isolates the onmodule pull-up resistors as well as ensures this signal will not be pulled/driven high before the Root Port is powered on.

Chapter 7. Gigabit Ethernet

Jetson Xavier NX integrates a Realtek RTL8211FDI Gigabit Ethernet PHY. The magnetics and RJ45 connector is implemented on the carrier board.

Table 7-1. Gigabit Ethernet Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
194	GBE_LED_AC T	_	Ethernet Activity LED (Yellow)		Output	
188	GBE_LED_LIN	-	Ethernet Link LED (Green)		Output	
184	GBE_MDI0_N	-	OLE Town (company Date 0	LAN	Bidir	MDI
186	GBE_MDI0_P	-	GbE Transformer Data 0			
190	GBE_MDI1_N	-	OLE Towns form on Date 1			
192	GBE_MDI1_P	_	GbE Transformer Data 1			
196	GBE_MDI2_N	_	OLE Torreform Date 2			
198	GBE_MDI2_P	-	GbE Transformer Data 2			
202	GBE_MDI3_N	-	OLE Town (company Date 2)			
204	GBE_MDI3_P	-	GbE Transformer Data 3			

Notes: In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.

Figure 7-1. Ethernet Connections

Figure 7-2. Gigabit Ethernet Magnetics and RJ45 Connections

Table 7-2. Ethernet MDI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Reference plane	GND		
Trace impedance Diff pair / Single Ended	100 / 50	Ω	$\pm 15\%.$ Differential impedance target is $100\Omega.$ 90Ω can be used if 100Ω is not achievable
Min trace spacing (pair-pair)	0.763	mm	
Max trace length/delay	109 (690)	mm (ps)	
Max within pair (intra-pair) skew	0.15 (1)	mm (ps)	
Number of vias	minimum		Ideally there should be no vias, but if required for breakout to Ethernet controller or magnetics, keep very close to either device.

Table 7-3. Ethernet Signal Connections

Module Pin Name	Туре	Termination	Description
GBE_MDI[3:0]_N/P	DIFF I/O		Gigabit Ethernet MDI IF Pairs: Connect to Magnetics -/+ pins
GBE_LED_LINK	0	110Ω (minimum) series resistor	Gigabit Ethernet Link LED: Connect to green LED cathode on RJ45 connector. Anode connected to VDD_3V3_SYS
GBE_LED_ACT	0	110Ω (minimum) series resistor	Gigabit Ethernet Activity LED: Connect to yellow LED cathode on RJ45 connector. Anode connected to VDD_3V3_SYS

Chapter 8. Display

Jetson Xavier NX designs can select from several display options including VESA® Embedded DisplayPort® (eDP) for embedded displays, and HDMI™ or DisplayPort (DP) for external displays. The two display interfaces can be run simultaneously.

Table 8-1. eDP and DP Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Direction	Pin Type
90	DP0_AUX_N	DP_AUX_CH0_N	DisplayPort 0 Aux- or HDMI DDC SDA			(eDP/DP)
92	DP0_AUX_P	DP_AUX_CH0_P	DisplayPort 0 Aux+ or HDMI DDC SCL		Bidir	or Open- Drain, 1.8V (3.3V tolerant - DDC)
39	DP0_TXD0_N	HDMI_DP0_TXDN0	Disals Dest Olean Oct IIDMI 2			
41	DP0_TXD0_P	HDMI_DP0_TXDP0	DisplayPort 0 Lane 0 or HDMI Lane 2			
45	DP0_TXD1_N	HDMI_DP0_TXDN1	DisplayPort 0 or HDMI Lane 1	DP connector		HDMI/DP Diff pair
47	DP0_TXD1_P	HDMI_DP0_TXDP1	Displayment of HDMI Calle 1	DP connector	Output	
51	DP0_TXD2_N	HDMI_DP0_TXDN2	DisplayPort 0 Lane 2 or HDMI Lane 0			
53	DP0_TXD2_P	HDMI_DP0_TXDP2	DisplayPort o Lane 2 or HDMI Lane o			
57	DP0_TXD3_N	HDMI_DP0_TXDN3	DisplayPort 0 Lane 2 or HDMLCII/Lane			
59	DP0_TXD3_P	HDMI_DP0_TXDP3	DisplayPort 0 Lane 3– or HDMI Clk Lane			
88	DP0_HPD	DP_AUX_CH0_HPD	HDMI or DisplayPort 0 Hot Plug Detect. Must be active high for DP. For HDMI, the polarity can be changed in SW.		Input	CMOS - 1.8V
98	DP1_AUX_N	DP_AUX_CH1_N	Display Port 1 Aux- or HDMI DDC SDA			(eDP/DP)
100	DP1_AUX_P	DP_AUX_CH1_P	Display Port 1 Aux+ or HDMI DDC SCL		Bidir	or Open- Drain, 1.8V (3.3V tolerant - DDC)
63	DP1_TXD0_N	HDMI_DP1_TXDN0	DisplayPort 1 Lang 0 or HDMH 2	HDMI Connector		
65	DP1_TXD0_P	HDMI_DP1_TXDP0	DisplayPort 1 Lane 0 or HDMI Lane 2			
69	DP1_TXD1_N	HDMI_DP1_TXDN1	DisplayPort 1 or HDMI Lang 1		Output	HDMI/DP Diff pair
71	DP1_TXD1_P	HDMI_DP1_TXDP1	DisplayPort 1 or HDMI Lane 1			
75	DP1_TXD2_N	HDMI_DP1_TXDN2	DisplayPort 1 Lane 2 or HDMI Lane 0			

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Direction	Pin Type
77	DP1_TXD2_P	HDMI_DP1_TXDP2				
81	DP1_TXD3_N	HDMI_DP1_TXDN3	Disaba Bast 11 and 2 and IDMI Olla Large			
83	DP1_TXD3_P	HDMI_DP1_TXDP3	DisplayPort 1 Lane 3 or HDMI Clk Lane			
96	DP1_HPD	DP_AUX_CH1_HP	Display Port 1 or HDMI Hot Plug Detect. Must be active high for DP. For HDMI, the polarity can be changed in SW.		Input	CMOS - 1.8V
94	HDMI_CEC	HDMI_CEC	HDMI CEC		Bidir	Open Drain, 1.8V

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The direction shown in this table for DP_AUX_CH[1:0]_HPD is true when used for Hot-plug Detect. Otherwise, if used as GPIOs, the direction is bidirectional.

A standard DP 1.4 or HDMI V2.0 interface is supported. These share the same set of interface pins, so either DisplayPort or HDMI can be supported natively.

Table 8-2. DP and HDMI Pin Mapping

Module Pin Name	Module Pin #s	HDMI	DP
DP[1:0]_TXD3_P	83 / 59	TXC+	TX3+
DP[1:0]_TXD3_N	81 / 57	TXC -	TX3-
DP[1:0]_TXD2_P	77 / 53	TX0+	TX2+
DP[1:0]_TXD2_N	75 / 51	TX0-	TX2-
DP[1:0]_TXD1_P	71 / 47	TX1+	TX1+
DP[1:0]_TXD1_N	69 / 45	TX1-	TX1-
DP[1:0]_TXD0_P	65 / 41	TX2+	TX0+
DP[1:0]_TXD0_N	63 / 39	TX2-	TX0-

8.1 eDP and DP

Figure 8-1 shows the DP and eDP connection example.

Figure 8-1. DP and eDP Connection Example

Notes:

- 1. Level shifter required on DPO_HPD to avoid the pin from being driven when Jetson Xavier NX is off. The level shifter must be non-inverting (preserve the polarity of the HPD signal from the display). The reference design uses a BJT level shifter and a resistor divider is needed. See the reference design if a similar approach will be used.
- 2. Load Switch enable is from powergood pin of main 3.3V supply.

8.1.1 eDP and DP Routing Guidelines

The following routing requirements meet the eDP and DP routing guidelines.

Figure 8-2. eDP and DP Differential Main Link Topology

Table 8-3. ePD and DP Main Link Signal Requirements Including DP_AUX

Parameter	Requirement	Units	Notes
Specification			
Max data rate / Min UI			Per data lane
RBR	1.6 / 617	Gbps/ps	
HBR	2.7 / 370		
HBR2	5.4 / 185		
HBR3	8.1 / 123		
Number of loads / topology	1	load	Point-Point, differential, unidirectional
Termination	100	Ω	On die at TX/RX
Electrical Spec	·		
IL (min)			
RBR	-0.7	dB @ 0.81GHz	
HBR	-1.2	dB @ 1.35GHz	
HBR2	-2.4	dB @ 2.7GHz	
HBR3	-4.0	dB @ 4.05GHz	
Resonance dip frequency (min)			
HBR2	8	GHz	
HBR3	12		
TDR dip (min)	85	Ω	@ Tr-200ps (10%-90%)
FEXT (max)	-40	dB @ DC	See Figure 8-3 and TBD
	-30	dB @ 2.7GHz	
	-30	dB @ 2.7GHz	
Impedance			
Trace impedance Diff pair	90	Ω (±15%)	100Ω is the spec. target.
	85		85Ω is preferable as it can provide better trace loss characteristic performance. See Note 1.
Reference plane	GND		

Parameter	Requirement	Units	Notes
Trace Length, Spacing and Skew	•		
Trace loss characteristic (max)			The max lengths are derived based on
Up to HBR2	0.81	dB/in@ 2.7GHz	this characteristic. See Note 2.
HBR3	0.7	dB/in@ 4.0GHz	
Max PCB via dist, from connector			
RBR/HBR	No requirement	mm (in)	
HBR2/HBR3	7.63 (0.3)		
Max trace length/delay from Jetson Xavier NX			
TX to connector (Up to HBR3)			
Stripline	100 (700)	mm (ps)	175ps/inch assumption for stripline,
Microstrip	100 (600)	ππτ (ρ3)	150ps/inch for microstrip.
Trace spacing (pair-pair)	100 (000)		
Stripline	3x	dielectric	
Microstrip (HBR/RBR)	4x	uletectric	
Microstrip (HBR2/HBR3)	5x		
<u> </u>	U.A.		
Trace spacing (Main link to AUX)	2/ 5	dialantaia	
Stripline/Microstrip	3x / 5x	dielectric	
Max intra-pair (within pair) skew	0.15 (1)	mm (ps)	See Note 3
Max inter-pair (pair-pair) skew	150	ps	See Note 4
Via			
Max GND transition via distance	< 1x	diff pair pitch	For signals switching reference layers, add symmetrical GND stitching via near signal vias.
Via Structure			
Impedance dip (min)	97	Ω @ 200ps	The via dimension is required for HDMI-
	92	Ω @ 35ps	DP co-layout.
Recommended via dimension Drill/Pad	200/400	um	
for impedance control			
Antipad (min)	840	um	
Via pitch (min)	880	um	
Topology	Y-pattern is recomm Keep symmetry	nended	Y-pattern helps with Xtalk suppression. It can also reduce the limit of pair-pair distance. Need review (NEXT/FEXT check) if via placement is not Y-pattern See eDP/DP guideline Figure 8-5
	For in-line via, the d of one lane to the ad another lane >= 1.2r center.	ljacent via from	See eDP/DP guideline Figure 8-6
GND via	Place GND via as symmetrically as possible to data pair vias. Up to four signal vias (2 diff pairs) can share a single GND return via		GND via is used to maintain a return path, while its Xtalk suppression is limited.
Max # of vias			
PTH vias	2 if all vias are PTH	via	
Micro vias	Not limited as long a loss meets IL spec	as total channel	
Max via stub length	0.4	mm	
AC Cap	1	1	1

Parameter	Requirement	Units	Notes
Value	0.1	uF	Discrete 0402
Max distance from AC cap to connector			
RBR/HBR	No requirement	in	
HBR2/HBR3	0.5		
Voiding			HBR2: Voiding the plane directly under
RBR/HBR	No requirement		the pad 3-4 mils larger than the pad
HBR2/HBR3	Voiding required		size is recommended.
Connector	·	·	·
Voiding			HBR2: Standard DP connector: Voiding
RBR/HBR	No requirement		requirement is stack-up dependent. For
HBR2/HBR3	Voiding required		typical stack-ups, voiding on the layer under the connector pad is required to
			be 5.7 mil larger than the connector
			pad.

General: See Chapter 18 for guidelines related to Serpentine routing, routing over voids and noise coupling

Notes:

- 1. For eDP/DP, the spec puts a higher priority on the trace loss characteristic than on the impedance. However, before selecting 85Ω for impedance, it is important to make sure the selected stack-up, material and trace dimension can achieve the needed low loss characteristic.
- 2. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion.
- 4. The average of the differential signals is used for length matching.

The following figures show the eDP and DP interface signal routing requirements.

Figure 8-3. S-Parameter (up to HBR2)

Figure 8-4. S-Parameter (up to HBR3)

Figure 8-5. Via Topology #1

Figure 8-6. Via Topology #2

Table 8-4. eDP and DP Signal Connections

Module Pin Name	Type	Termination	Description
DPx_TXD[3:0]_N/P	0	Series 0.1uF capacitors and ESD to GND on all.	eDP/DP Differential CLK/Data Lanes: Connect to matching pins on display connector.
DPx_AUX_N/P	I/OD	Series 0.1uF capacitors. 100kΩ pulldown on DP0_AUX_P and 100kΩ pull-up to VDD_3V3_SYS on DP0_AUX_N. ESD to GND on both.	eDP/DP: Auxiliary Channels: Connect to AUX_CH-/+ on display connector.
DPx_HPD	I	Level shifter (1.8V on module side, 3.3V on DP/eDP connector side) and ESD to GND	eDP/DP: Hot Plug Detect: Connect to HPD pin on display connector through level shifter.

8.2 HDMI

A standard DP 1.2a or HDMI V2.0 interface is supported. See Figure 8-7 for more details.

Figure 8-7. HDMI Connection Example

- 1. Level shifters required on DDC/HPD. Xavier pads are not 5V tolerant and cannot directly meet HDMI VIL/VIH requirements. HPD level shifter can be non-inverting or inverting. The HPD level shifter in the reference design is inverting. The reference design uses a BJT level shifter and a resistor divider is needed. See the reference design if a similar approach will be used.
- 2. If EMI/ESD devices are necessary, they must be tuned to minimize the impact to signal quality, which must meet the timing and electrical requirements of the HDMI specification for the modes to be supported. See requirements and recommendations in the related sections of the "HDMI Interface Signal Routing Requirements" table (Table 8-5).
- 3. The DP1_TXx pads are native DP pads and require series AC capacitors (ACCAP) and pull-downs (RPD) to be HDMI compliant. The 499Ω, 1% pull-downs must be disabled when Jetson Xavier NX is off or in sleep mode to meet the HDMI VOFF requirement. The enable to the FET, enables the pull-downs when the HDMI interface is to be used. Chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 4. Series resistors RS are required. See the RS section in Table 8-5 for details.
- 5. See reference design for CEC level shifting/blocking circuit.

Figure 8-8. HDMI Clk and Data Topology

- 1. RPD pad must be on the main trace. RPD and ACCAP must be on same layer.
- 2. Chokes (600 Ω @ 100 MHz) or narrow traces (1 uH @ DC-100 MHz) between pull-downs and FET are chokes between pull-downs and FET are optional improvements for HDMI 2.0 operation.
- 3. The trace after the main route via should be routed on the top or bottom layer of the PCB, and either with 100 ohm differential impedance, or as uncoupled 50 ohm SE traces.
- 4. RS series resistor is required to meet HDMI 2.0 compliance. See the RS section in Table 8-5 for details.

Table 8-5. HDMI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Specification			
Max frequency / UI	5.94 / 168	Gbps / ps	Per lane – not total link bandwidth
Topology	Point to point		Unidirectional, differential
Termination			Differential To 3.3V at receiver
At receiver	100	Ω	To GND near connector
On-board	500		
Electrical Specification			
IL	<= 1.7	dB @ 1GHz	
	<= 2	dB @ 1.5GHz	
	<= 3	dB @ 3GHz	
	< 6	dB @ 6GHz	
resonance dip frequency	> 12	GHz	
TDR dip	>= 85	Ω @ Tr=200ps	10%-90%. If TDR dip is 75~85ohm that
			dip width should < 250ps
FEXT (PSFEXT)	<= -50	dB at DC	PSNEXT is derived from an algebraic
	<= -40	dB at 3GHz	summation of the individual NEXT effects
	<= -40	dB at 6GHz	on each pair by the other pairs
	IL/FEXT plot: See H	DMI Guideline	TDR plot: See Figure 8-10
	Figure 8-9		
Impedance			

Parameter	Requirement	Units	Notes
Trace impedance: Diff pair	100	Ω	±10%. Target is 100Ω. 95Ω for the
			breakout and main route is an
			implementation option.
Reference plane	GND		
Trace spacing/Length/Skew	0.0	ID /: 0.0011	<u></u>
Trace loss characteristic:	< 0.8	dB/in. @ 3GHz dB/in. @ 1.5GHz	The max length is derived based on this characteristic. See Note 1.
Trace spacing (pair-pair)	V 0.4	ub/iii. tu 1.30112	For Stripline, this is 3x of the thinner of
Stripline	3x	dielectric	above and below.
Microstrip: pre 1.4b	4x		
Microstrip: 1.4b/2.0	5x to 7x		
Trace spacing (Main link to DDC)			For Stripline, this is 3x of the thinner of
Stripline	3x	dielectric	above and below.
Microstrip Max total length/delay (1.4b/2.0 - up to	5x		Propagation delay: 175ps/in. for stripline,
5.94Gbps)			150ps/in. for microstrip). Stripline is
Stripline	100 (690)	mm (ps)	preferred.
Microstrip (5x spacing)	90 (531)		
Microstrip (7x spacing)	100 (590)		
Max Total Length/Delay (Pre-1.4b - (up to			Propagation delay: 175ps/in. for stripline,
165Mhz)	05 / (1500)	()	150ps/in. for microstrip).
Microstrip Stripline	254 (1500) 225 (1500)	mm (ps)	
Max intra-pair (within pair) skew	0.15 (1)	mm (ps)	See notes 1, 2, and 3
Max inter-pair (pair to pair) skew	150	ps	See notes 1, 2, and 3
Max GND transition via distance	1x	Diff pair via pitch	For signals switching reference layers,
			add one or two ground stitching vias. It is
			recommended they be symmetrical to
			signal vias.
Via			
Topology	Y-pattern is recomkeep symmetry	nmended	Xtalk suppression is the best by Y-pattern. Also it can reduce the limit of
Minimum impedance dip	97	Ω@200ps	pair-pair distance. Need review
Thin the same of t	92	Ω@35ps	(NEXT/FEXT check) if via placement is
Recommended via dimension			not Y-pattern. See Figure 8-11
drill/pad	200/400	uM	
Antipad	840		
via pitch	880		OND
GND via	Place GND via as sympossible to data pair		GND via is used to maintain return path, while its Xtalk suppression is limited
	signal vias (2 diff pair		wifite its Atatk suppression is tillifted
	single GND return via		
Max # of vias			
PTH via	2 if all vias are PTH v		
u-via	Not limited if total ch	nannel loss	
Max via stub longth	meets IL spec.		long via stub requires review (II and
Max via stub length	0.4	mm	long via stub requires review (IL and resonance dip check)
Topology		1	1
The main route via dimensions should comply v	vith the via structure ru	les (See via	See topology in Figure 8-8
section)			
For the connector pin vias, follow the rules for			
The traces after main route via should be route	d as 100Ω differential o	r as uncoupled	
50ohm SE traces on PCB top or bottom.		I	
Max distance from RPD to main trace (seg B)	1	mm	
Max distance from AC cap to RPD stubbing	~0	mm	
point (seg A) Max distance between ESD and signal via	3	mm	
Add-on Components	l o	mm	<u> </u>
Aug on components			

Parameter	Requirement	Units	Notes
Example of a case where space is limited for	Top: See Figure 8-12		Bottom: See Figure 8-12
placing components.			
AC Cap	0.1		
Value	0.1	uF	
Max via distance from BGA	7.62 (52.5)	mm (ps)	TI III AO
Location	must be placed before resistor	e pull-down	The distance between the AC cap and the HDMI connector is not restricted.
Placement			
PTH design	Place cap on bottom labove core	layer if main route	
Micro-via design	Place cap on top layer below core Not Restricted	r if main route	
Void	GND (or PWR) void ur	dor/aboyo tho	See Figure 8-13
Volu	cap is needed. Void s		See Figure 6-13
	1x dielectric height ke		
Pull-down Resistor (Rpp), choke/FET	1x dietectric fleight ke	cepout distance	<u> </u>
Value	500	0	
Location.	Must be placed after		Placement: See Figure 8-15
Layer of placement	Same layer as AC cap		Flacement: See Figure 6-15
Layer or pracement	choke can be placed of layer thru a PTH via		
Choke between Rpp and FET choke			Can be choke or Trace. Recommended
	600 or	Ω@100MHz	option for HDMI2.0 HF1-9 improvement.
Max trace Rdc	1	uH@DC-100MHz	·
Max trace length	≤20	mΩ	
	4	mm	
Void	GND/PWR void under preferred	/above cap is	
Common-mode Choke (Not recommended – or See Chapter 18 for details on CMC if implement ESD (On-chip protection diode can withstand 2k	ed.		
	N HIMM. EXTERNAL ESD I	s optional. Designs	s should include ESD footprint as a stuffing
option) Max junction capacitance	0.35	pF	e.g. Texas Instruments
option) Max junction capacitance (IO to GND)	0.35	pF	e.g. Texas Instruments TPD4E02B04DQAR
option) Max junction capacitance		pF	e.g. Texas Instruments
option) Max junction capacitance (IO to GND)	0.35 Pad right on the net i	pF instead of trace	e.g. Texas Instruments TPD4E02B04DQAR
option) Max junction capacitance (IO to GND) Footprint	0.35 Pad right on the net is stub After pull-down resis	pF instead of trace tor/CMC and	e.g. Texas Instruments TPD4E02B04DQAR
option) Max junction capacitance (IO to GND) Footprint Location Void	0.35 Pad right on the net stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair	pF instead of trace tor/CMC and //above the cap is mm x 2mm for 1	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16
option) Max junction capacitance (IO to GND) Footprint Location	0.35 Pad right on the net stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair	pF instead of trace tor/CMC and //above the cap is mm x 2mm for 1	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16
option) Max junction capacitance (IO to GND) Footprint Location Void Series Resistor (Rs) – Series resistor on N/P page	0.35 Pad right on the net is stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair ath for HDMI 2.0 (mandate) \$\leq\$ 6	pF Instead of trace tor/CMC and I/above the cap is mm x 2mm for 1 atory)	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16 See Figure 8-17 ± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram,
option) Max junction capacitance (IO to GND) Footprint Location Void Series Resistor (Rs) – Series resistor on N/P pa	0.35 Pad right on the net is stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair ath for HDMI 2.0 (mandate) \$\leq\$ 6 After all components connector GND/PWR void under	pF Instead of trace tor/CMC and I/above the cap is mm x 2mm for 1 atory) Ω and before HDMI I/above the Rs device	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16 See Figure 8-17 ± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram,
option) Max junction capacitance (IO to GND) Footprint Location Void Series Resistor (Rs) – Series resistor on N/P particular value Location Void	0.35 Pad right on the net is stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair ath for HDMI 2.0 (manda After all components connector	pF Instead of trace tor/CMC and I/above the cap is mm x 2mm for 1 atory) Ω and before HDMI I/above the Rs device	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16 See Figure 8-17 ± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test
option) Max junction capacitance (IO to GND) Footprint Location Void Series Resistor (Rs) – Series resistor on N/P particular value Location Void Trace at Component Region	0.35 Pad right on the net is stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair ath for HDMI 2.0 (mandate) ≤ 6 After all components connector GND/PWR void under dielectric height keep	pF Instead of trace tor/CMC and Instead of trace tor/CMC and Instead of trace Instead of t	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16 See Figure 8-17 ± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test ce is needed. Void size = SMT area + 1x
option) Max junction capacitance (IO to GND) Footprint Location Void Series Resistor (Rs) – Series resistor on N/P particular value Location Void Trace at Component Region Value	D.35 Pad right on the net is stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair ath for HDMI 2.0 (manda s 6) After all components connector GND/PWR void under dielectric height keep	pF Instead of trace tor/CMC and Instead of trace tor/CMC and Instead of trace tor/CMC and Instead of trace To a tory Ω and before HDMI Instead of trace Ω	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16 See Figure 8-17 ± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test
option) Max junction capacitance [IO to GND] Footprint Location Void Series Resistor [Rs] – Series resistor on N/P particular value Location Void Trace at Component Region Value Location	D.35 Pad right on the net is stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair ath for HDMI 2.0 (manda s 6) After all components connector GND/PWR void under dielectric height keep	pF Instead of trace tor/CMC and Instead of trace tor/CMC and Instead of trace tor/CMC and Instead of trace To a tory Ω and before HDMI Instead of trace Ω	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16
option) Max junction capacitance (IO to GND) Footprint Location Void Series Resistor (Rs) – Series resistor on N/P particular value Location Void Trace at Component Region Value	D.35 Pad right on the net is stub After pull-down resist before Rs GND/PWR void under needed. Void size = 1 pair ath for HDMI 2.0 (manda s 6) After all components connector GND/PWR void under dielectric height keep	pF Instead of trace tor/CMC and Instead of trace tor/CMC and Instead of trace tor/CMC and Instead of trace To a tory Ω and before HDMI Instead of trace Ω	e.g. Texas Instruments TPD4E02B04DQAR See Figure 8-16 See Figure 8-17 ± 10%. Oohm is acceptable if the design passes the HDMI2.0 HF1-9 test. Otherwise, adjust the Rs value to ensure the HDMI2.0 tests pass: Eye diagram, Vlow test and HF1-9 TDR test ce is needed. Void size = SMT area + 1x

Parameter	Requirement	Units	Notes
Connector voiding	Voiding the ground b	elow the signal	See Figure 8-20
	lanes 0.1448(5.7mil)	larger than the	
	pin itself		
General: See Chanter 18 for quide	lines related to Sernentine routing	outing over voids	and noise counling

- 1. Longer trace lengths may be possible if the total trace loss is equal to or better than the target. If the loss is greater, the max trace lengths will need to be reduced.
- 2. The average of the differential signals is used for length matching.
- 3. Do not perform length matching within breakout region. Recommend doing trace length matching to <1ps before vias or any discontinuity to minimize common mode conversion
- 4. If routing includes a flex or 2nd PCB, the max trace delay and skew calculations must include all the PCBs/flex routing. Solutions with flex/2nd PCB may not achieve maximum frequency operation.

The following figures show the HDMI interface signal routing requirements.

Figure 8-9. IL/FEXT Plot

Figure 8-10. TDR Plot

Figure 8-11. HDMI Via Topology

Figure 8-12. Add-On Components – Top

Figure 8-13. Add-on Components – Bottom

Figure 8-14. AC Cap Void

Figure 8-15. RPD/Choke, FET Placement

Figure 8-16. ESD Footprint

Figure 8-17. ESD Void

Figure 8-18. SMT Pad Trace Entering

Figure 8-19. SMT Pad Trace Between

Figure 8-20. Connector Voiding

Table 8-6. HDMI Signal Connections

Module Pin Name	Туре	Termination (see note on ESD)	Description
DPx_TXD3_N/P	DIFF OUT	0.1uF series ACcap → 500Ω Rpd (controlled by FET) → ESD to GND →.≼6Ω Rs (series resistor)	HDMI Differential Clock: Connect to C-/C+ and pins on HDMI connector
DPx_TXD[2:0]_N/P	DIFF OUT		HDMI Differential Data: Connect to HDMI Data pins (See Table 8-2)
DPx_HPD	1	From module pin: $10k\Omega$ PU to $1.8V \rightarrow$ level shifter $\rightarrow 100k\Omega$ series resistor. $100k\Omega$ to GND on connector side $\rightarrow 100pF/12pF$ caps to GND \rightarrow ESD to GND .	HDMI Hot Plug Detect: Connect to HPD pin on HDMI connector
HDMI_CEC	I/OD	Gating circuitry, See connection figure for details.	HDMI Consumer Electronics Control: Connect to CEC on HDMI connector through circuitry.
DPx_AUX_N/P	I/OD	From module pins: $10k\Omega$ PU to $3.3V \rightarrow$ level shifter \rightarrow $1.8k\Omega$ PU to $5V \rightarrow$ ESD to GND	HDMI: DDC Interface – Clock and Data: Connect DP1_AUX_N to SDA and DP1_AUX_P to SCL on HDMI connector
HDMI 5V Supply	Р	Adequate decoupling (0.1uF and 10uF recommended) on supply near connector and ESD to GND.	HDMI 5V supply to connector: Connect to +5V on HDMI connector.

Note: Any ESD and/or EMI solutions must support targeted modes (frequencies).

Chapter 9. MIPI CSI Video Input

Jetson Xavier NX brings fourteen MIPI CSI lanes to the connector. Up to three quad-lane camera streams plus one dual-lane stream or up to six dual-lane camera streams are supported. Each data lane has a peak bandwidth of up to 2.5 Gbps. The following maximum configurations are supported:

- \rightarrow 3 x4 + 1 x2
- \triangleright 2 x4 + 3 x2
- \rightarrow 1 x4 + 5 x2
- ► 6 x2

Table 9-1. CSI Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
10	CSI0_CLK_N	CSI_A_CLK_N	Company OCLO Clark			
12	CSI0_CLK_P	CSI_A_CLK_P	Camera, CSI 0 Clock			
4	CSI0_D0_N	CSI_A_D0_N	Carrage CCLO Data 0	2-lane Camera #1, 4-lane		MIPI D- PHY
6	CSI0_D0_P	CSI_A_D0_P	Camera, CSI 0 Data 0	Camera #1 (lower 2 lanes)		
16	CSI0_D1_N	CSI_A_D1_N	Company OCLO Data 1			
18	CSI0_D1_P	CSI_A_D1_P	Camera, CSI 0 Data 1			
9	CSI1_CLK_N	CSI_B_CLK_N	Company OCI 1 Olaska	2-lane Camera	Input	
11	CSI1_CLK_P	CSI_B_CLK_P	- Camera, CSI 1 Clock			
3	CSI1_D0_N	CSI_B_D0_N	Company OCI 1 Data 0	#2, 4-lane		
5	CSI1_D0_P	CSI_B_D0_P	- Camera, CSI 1 Data 0	Camera #1		
15	CSI1_D1_N	CSI_B_D1_N	Carrage CCI 1 Data 1	(upper 2 lanes)		
17	CSI1_D1_P	CSI_B_D1_P	Camera, CSI 1 Data 1			
28	CSI2_CLK_N	CSI_C_CLK_N	0			
30	CSI2_CLK_P	CSI_C_CLK_P	Camera, CSI 2 Clock			
22	CSI2_D0_N	CSI_C_D0_N	0.000	2-lane Camera #3, 4-lane Camera #2 (lower 2 lanes)		
24	CSI2_D0_P	CSI_C_D0_P	Camera, CSI 2 Data 0			
34	CSI2_D1_N	CSI_C_D1_N	0 0010 D + 1			
36	CSI2_D1_P	CSI_C_D1_P	Camera, CSI 2 Data 1			

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
27	CSI3_CLK_N	CSI_D_CLK_N	0			
29	CSI3_CLK_P	CSI_D_CLK_P	Camera, CSI 3 Clock			
21	CSI3_D0_N	CSI_D_D0_N	2-lane Camera #4, 4-lane			
23	CSI3_D0_P	CSI_D_D0_P	Camera, CSI 3 Data 0	Camera #2		
33	CSI3_D1_N	CSI_D_D1_N	0.0000	(upper 2 lanes)		
35	CSI3_D1_P	CSI_D_D1_P	Camera, CSI 3 Data 1			
52	CSI4_CLK_N	CSI_E_CLK_N	0			
54	CSI4_CLK_P	CSI_E_CLK_P	Camera, CSI 4 Clock			
46	CSI4_D0_N	CSI_E_D0_N	0.001/ D 0	2-lane Camera #5, 4-lane		
48	CSI4_D0_P	CSI_E_D0_P	Camera, CSI 4 Data 0	Camera #3 (lower 2 lanes)		
58	CSI4_D1_N	CSI_E_D1_N	0.001/ D 1			
60	CSI4_D1_P	CSI_E_D1_P	Camera, CSI 4 Data 1			
40	CSI4_D2_N	CSI_F_D0_N	0.001/ D 0			
42	CSI4_D2_P	CSI_F_D0_P	Camera, CSI 4 Data 2	4-lane Camera		
64	CSI4_D3_N	CSI_F_D1_N	0.001/ D. 1.0	#3 (upper 2 lanes)		
66	CSI4_D3_P	CSI_F_D1_P	Camera, CSI 4 Data 3			
76	DSI_CLK_N	CSI_G_CLK_N	0.0015.01			
78	DSI_CLK_P	CSI_G_CLK_P	Camera, CSI 5 Clock			
70	DSI_D0_N	CSI_G_D0_N	October OCLE Date O	2-lane Camera #6		
72	DSI_D0_P	CSI_G_D0_P	Camera, CSI 5 Data 0			
82	DSI_D1_N	CSI_G_D1_N	Communication of the Communica			
84	DSI_D1_P	CSI_G_D1_P	Camera, CSI 5 Data 1			

Notes: In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.

Table 9-2. Camera Miscellaneous Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
213	CAM_I2C_SCL	CAM_I2C_SCL	Cameras		Open	
215	CAM_I2C_SDA	CAM_I2C_SDA	Camera I2C. 2.2kΩ pull-up to 3.3V on the module.	(shared)	Bidir	Drain - 3.3V
116	CAM0_MCLK	EXTPERIPH1_C LK	Camera 0 Reference Clock	Camera #1		
114	CAM0_PWDN	SOC_GPI004	Camera 0 Powerdown or GPIO		0	
122	CAM1_MCLK	EXTPERIPH2_C LK	Camera 1 Reference Clock	Camera #2	Output	CMOS - 1.8V
120	CAM1_PWDN	SOC_GPI005	Camera 1 Powerdown or GPIO			
118	GPI001	SOC_GPI041	GPIO #1 or Generic Clock Output #1	Camera #3 Output		
216	GPI011	SOC_GPI042	GPIO #11 or Generic Clock Output #2	Camera #4	(note)	

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The direction shown in this table for CAM[1:0]_MCLK and CAM[1:0]_PWDN is true when used for those functions. These pins are GPIOs and can support input or output (bidirectional). The direction indicated for GPIO01 and GPIO11 is associated with their use as clock outputs.

Figure 9-1. 4 Lane CSI Camera Connection Example

Table 9-3. CSI Configurations

Camera s	CSIO CLK/Data[1:0	CSI 1 CLK	CSI1 Data[1:0	CSI2 CLK/Data[1:0	CSI 3 CLK	CSI3 Data[1:0	CSI4 CLK/Data[1:0]	CSI4 DATA[3:2]	CSI5 (DSI pins) CLK/Data[1:0
	_			_		_		_]
2-Lanes Each									
1 of 6	V								
cameras									
2 of 6		√	√						
cameras									
3 of 6				V					
cameras									
4 of 6					V	V			
cameras									
5 of 6							V		
cameras									
6 of 6									V
cameras									
4-Lanes									
Each									
1 of 3	V		V						
cameras									
2 of 3				V		V			
cameras									
3 of 3							V	V	
cameras									

^{1.} CSI 4 can be used as a x1, x2, or x4 CSI interface.

^{2.} Each 2-lane options shown can also be used for one single lane camera.

Figure 9-2. CSI Connection Options

Figure 9-3. Available Camera Control Pins

9.1 CSI Design Guidelines

The following tables describe the design guidelines for the CSI design.

Table 9-4. MIPI CSI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Data Rate (per data lane) for High-Speed	2.5	Gbps	
mode	10	MHz	
Max Frequency (for Low Power mode)			
Number of loads	1	load	
Reference plane	GND		
Trace impedance: Diff pair / SE	90-100 / 45-50	Ω	±10%
Via proximity (signal to reference)	< 0.65 (3.8)	mm (ps)	
Intra-pair trace spacing	0.15mm	mm	Can be adjusted to meet Differential Impedance.
Trace spacing: Microstrip / Stripline	2x / 2x	dielectric	
Max PCB breakout delay	48	ps	
Max Insertion loss			
1 Gbps	3.00	dB	
1.5 Gbps	2.90		
2.5 Gbps	1.92		
Max trace delay / length			
1 Gbps (Stripline/Microstrip) 1.5 Gbps	2526 (421) / 2487 (421)	ps (mm)	
2.5 Gbps	1913 (319) / 1885 (319)		
	900 (150) / 886 (150)		

Parameter	Requirement	Units	Notes
Max intra-pair skew	1	ps	
Max trace delay skew between DQ and CLK 1 / 1.5 / 2.5 Gbps	40 / 26.7 / 16	ps	DQ includes all the data lines associated with a single clock. This may be 2 differential data lanes for a x2 interface, or 4 differential data lanes for a x4 interface.

Keep critical traces away from other signal traces or unrelated power traces/areas or power supply components

Note: Any EMI/ESD devices must be tuned to minimize impact to signal quality and meet the timing and Vil/Vih requirements at the receiver and maintain signal quality and meet requirements for the frequencies supported by the design.

Table 9-5. MIPI CSI Signal Connections

Module Pin Name		Туре	Termination	Description
CSI[4:0]_CLK_N/P #[5:1]	Camera	I	See note	CSI Differential Clocks: Connect to clock pins of camera. See Table 9-3 for details
DSI_CLK_N/P	Camera #6			
CSI[3:0]_D[1:0]_N/F #[4:1]	^o Camera	1/0	See note	CSI Differential Data Lanes: Connect to data pins of camera. See Table 9-3 for details
CSI4_D[3:0]_N/P	Camera #5			
DSI_D[1:0]_N/P	Camera #6			

Table 9-6. Miscellaneous Camera Connections

Module Pin Name	Туре	Termination	Description
CAM_I2C_CLK CAM_I2C_DAT	0 I/0	2.2kΩ pull-ups VDD_3V3_SYS (on Jetson Xavier NX).	Camera I2C Interface: Connect to I2C SCL and SDA pins of imager.
CAM[1:0]_MCLK GPI001 (opt. MCLK2) GPI011 (opt. MCLK3)	0		Camera Clocks: Connect to camera reference clock inputs.
CAM[1:0]_PWDN	0		Camera Power Control signals (or GPIOs [1:0]): Connect to power down pins on camera(s).

Chapter 10. SD Card and SDIO

Jetson Xavier NX uses one SDMMC interface for on-module eMMC (SDMMC4 on Xavier) and brings one to the connector pins for SD Card or SDIO use.

Table 10-1. SDIO Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
229	SDMMC_CLK	SDMMC3_CLK	SD Card or SDIO Clock		Output	
227	SDMMC_CMD	SDMMC3_CMD	SD Card or SDIO Command			CMOS - 1.8V/3.3V
219	SDMMC_DAT0	SDMMC3_DAT0	SD Card or SDIO Data 0	SD Card or SDIO	Bidir	
221	SDMMC_DAT1	SDMMC3_DAT1	SD Card or SDIO Data 1	Device		
223	SDMMC_DAT2	SDMMC3_DAT2	SD Card or SDIO Data 2			
225	SDMMC_DAT3	SDMMC3_DAT3	SD Card or SDIO Data 3			

Notes:

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The direction shown in the table above for SDMMC_CLK is true when used for that function. If used as a GPIO, the pin supports input or output (bidirectional).
- 3. If the SDMMC pins are connected to a 1.8V only device, the interface voltage should be configured for 1.8V operation in the Pinmux.

Figure 10-1.SD Card Connection Example

Notes:

- The supply or load switch for the SD Card VDD must be enabled with a GPIO from Jetson. This
 is required for correct operation after a warm boot. The GPIO used should be selected so VDD
 is not powered on by default.
- 2. The supply (regulator, load switch, etc.) used to supply the SD Card VDD rail should be current limited if the supply is shorted to GND.
- 3. Having 0Ω , 0402 resistor is recommended in case of issues with EMI where it can be replaced with an appropriate device.

Table 10-2. SD Card and SDIO Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency			See Note 1
3.3V Signaling			
DS	25 (12.5)	MHz (MB/s)	
HS	50 (25)		
1.8V Signaling			
SDR12	25 (12.5)		
SDR25	50 (25)		
SDR50	100 (50)		
SDR104	208 (104)		
DDR50	50 (50)		
Topology	Point to point		
Reference plane	GND or PWR		See Note 2
Trace impedance	50	Ω	±15%. 45Ω optional depending on stack-up
Max via count			Independent of stack-up layers.
PTH	4		Depends on stack-up layers.

Parameter	Requirement	Units	Notes
HDI	10		
Via proximity (Signal to reference)	< 3.8 (24)	mm (ps)	Up to four signal vias can share 1 GND return via
Trace spacing – Microstrip / Stripline	4x / 3x	dielectric	
Trace length			
SDR50 / SDR25 / SDR12 / HS / DS			
Min	16 (100)	mm (ps)	
Max	139 (876)		
SDR104 / DDR50			
Min	16 (100)		
Max	83 (521)		
Max trace length/delay skew in/between CLK			See Note 3
and CMD/DAT	14 (87.5)	mm (ps)	
SDR50/SDR25/SDR12/HS/DS	2 (12.5)		
SDR104 / DDR50			

Keep CLK, CMD and DATA traces away from other signal traces or unrelated power traces/areas or power supply components

Notes:

- 1. Actual frequencies may be lower due to clock source/divider limitations.
- 2. If PWR, 0.01uF decoupling cap required for return current.

Table 10-3. SD Card and SDIO Signal Connections

Function Signal Name	Туре	Termination	Description
SDMMC_CLK	0		SD Card / SDIO Clock: Connect to CLK pin of device.
SDMMC_CMD	1/0		SD Card / SDIO Command: Connect to CMD pin of device
SDMMC_D[3:0]	1/0		SD Card / SDIO Data: Connect to Data pins of device
GPI0	I		SD Card Detect (Optional): Connect available GPIO on module to CD pin of SD Card socket.

Chapter 11. Audio

Xavier supports multiple PCM and I2S audio interfaces. It also includes a flexible audio port switching architecture.

Table 11-1. Audio Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
199	I2S0_SCLK	DAP5_SCLK	I2S Audio Port 0 Clock		Bidir	
197	12S0_FS	DAP5_FS	I2S Audio Port 0 Left/Right Clock		Bidir	
193	I2S0_DOUT	DAP5_DOUT	I2S Audio Port 0 Data Out	Audio Device	udio Device Output (note)	
195	12S0_DIN	DAP5_DIN	I2S Audio Port 0 Data In			
226	I2S1_SCLK	DAP3_SCLK	I2S Audio Port 1 Clock		Bidir	CMOS -
224	I2S1_FS	DAP3_FS	I2S Audio Port 1 Left/Right Clock		Bidir	1.8V
220	I2S1_DOUT	DAP3_DOUT	I2S Audio Port 1 Data Out	[note]		
222	I2S1_DIN	DAP3_DIN	I2S Audio Port 1 Data In			
211	GPI009	AUD_MCLK	GPIO #9 or Audio Codec Clock	Audio Device	Output (note)	

Notes:

^{1.} In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.

^{2.} The direction indicated for I2S[1:0]_DOUT and _DIN are associated with their use as I2S data lines. The direction for GPI009 is associated with its use as Audio Clock. The pins support GPI0 functionality, so support both input and output operation (bidirectional).

Figure 11-1. Audio Codec Connection Example

Notes:

- 1. The Interrupt pin from the audio codec can connect to any available Jetson Xavier NX GPIO. If the pin must be wake-capable, choose one of the GPIOs that supports this function.
- 2. I2C2 supports 1.8V operation since the interface is pulled to 1.8V through 2.2 $k\Omega$ resistors on the module. If another I2C interface on Jetson Xavier NX is used, a level shifter will be required as all the others are 3.3V.
- 3. Refer to the Intel High Definition Audio/AC'97 website for the latest information: https://www.intel.com/content/www/us/en/support/articles/000005512/boards-and-kits/desktop-boards.html.

Table 11-2. I2S Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Configuration / device organization	1	load	
Max loading	8	pF	
Reference plane	GND		
Breakout region impedance	Min width/spacing		
Trace impedance	50	Ω	±20%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See note 1
Trace spacing Microstrip or Stripline	2x	dielectric	
Max trace length/delay	~22 (3600)	In (ps)	See note 2
Max trace length/delay skew between SCLK and SDATA_OUT/IN	~1.6 (250)	In (ps)	See note 2

Note: Up to four signal vias can share a single GND return via.

Table 11-3. Audio Signal Connection

Module Pin Name	Туре	Termination	Description
I2S[1:0]_SCLK	1/0		I2S Serial Clock: Connect to I2S/PCM CLK pin of audio device.
I2S[1:0]_FS	1/0		I2S Frame Select (Left/Right Clock): Connect to corresponding pin of audio device.
I2S[1:0]_DOUT	1/0		I2S Data Output: Connect to data input pin of audio device.
I2S[1:0]_DIN	1		I2S Data Input: Connect to data output pin of audio device.
GPI009	0		Audio Codec Clock: Connect to clock pin of audio codec.

Chapter 12. Miscellaneous Interfaces

12.1 I2C

Jetson Xavier NX brings four I2C interfaces to the connector pins. **CAM_I2C** is included in the camera pin description table earlier in this design guide. The assignments in the "I2C Interface Mapping" table should be used where applicable for the I2C interfaces.

Table 12-1. I2C Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Direction	Pin Type
185	I2C0_SCL	GEN2_I2C_SCL	General I2C 0 Clock. 2.2k Ω pull-up to 3.3V on module.			Open Drain – 3.3V
187	I2C0_SDA	GEN2_I2C_SDA	General I2C 0 Data. $2.2k\Omega$ pull-up to $3.3V$ on the module.	100 ()	Bidir	Open Drain – 3.3V
189	I2C1_SCL	DP_AUX_CH3_P	General I2C 1 Clock. 2.2k Ω pull-up to 3.3V on the module.			Open Drain – 3.3V
191	I2C1_SDA	DP_AUX_CH3_N	General I2C 1 Data. $2.2k\Omega$ pull-up to $3.3V$ on the module.	I2C (general)	Blair	Open Drain – 3.3V
232	I2C2_SCL	GEN1_I2C_SCL	General I2C 2 Clock. 2.2k Ω pull-up to 1.8V on the module.			Open Drain – 1.8V
234	I2C2_SDA	GEN1_I2C_SDA	General I2C 2 Data. $2.2k\Omega$ pull-up to $1.8V$ on the module.			Open Drain – 1.8V

Notes: In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.

Figure 12-1. I2C Connections

12.1.1 I2C Design Guidelines

Care must be taken to ensure I2C peripherals on same I2C bus connected to Jetson Xavier NX do not have duplicate addresses. Addresses can be in two forms: 7-bit, with the read/write bit removed or 8-bit including the read/write bit. Be sure to compare I2C device addresses using the same form (all 7-bit or all 8-bit format). The I2C2 interface is connected to an EEPROM on the module which uses I2C address 7'h50.

Notes:

- 1. The Jetson Xavier NX I2C interfaces have 2.2 $k\Omega$ pull-ups on the module. Pads for additional pull-ups are recommended in case a stronger pull-up is required due to additional loading on the interfaces.
- 2. IF I2C interfaces are routed to M.2 Key E or Key M connectors, it is recommended that 0Ω series be included to allow these to be disconnected. Some M.2 Key E and Key M cards can cause conflicts with other devices connected to the I2C interfaces.

Table 12-2. I2C Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency: Standard-mode / Fm / Fm+	100 / 400 / 1000	kHz	See Note 1
Topology	Single ended, bi-dire	ectional, multiple ir	nitiators/targets
Max loading: Standard-mode / Fm / Fm+	400	pF	Total of all loads
Reference plane	GND or PWR		
Trace impedance	50 – 60	Ω	±15%
Trace spacing	1x	dielectric	
Max trace length/delay			
Standard Mode	3400 (~20)	ps (in)	
Fm, Fm+ Modes	1700 (~10)	1700 (~10) ps (in)	

Notes:

- 1. Fm = Fast-mode, Fm+ = Fast-mode Plus
- 2. Avoid routing I2C signals near noisy traces, supplies or components such as a switching power regulator.
- 3. No requirement for decoupling caps for PWR reference.

Table 12-3. I2C Signal Connections

Module Pin Name	Type	Termination	Description
I2C0_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on Jetson Xavier NX	I2C #0 Clock and Data. Connect to CLK and Data pins of any 3.3V devices
I2C1_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on Jetson Xavier NX	I2C #1 Clock and Data. Connect to CLK and Data pins of 3.3V devices.
I2C2_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_1V8 on Jetson Xavier NX	I2C #2 Clock and Data. Connect to CLK and Data pins of any 1.8V devices
CAM_I2C_SCL/SDA	I/OD	2.2kΩ pull-ups to VDD_3V3_SYS on Jetson Xavier NX	Camera I2C Clock and Data. Connect to CLK and Data pins of any 3.3V devices

Notes:

- 1. If some devices require a different voltage level than others connected to the same I2C bus, level shifters are required.
- 2. For I2C interfaces that are pulled up to 1.8V, disable the E_I0_HV option for these pads. For I2C interfaces that are pulled up to 3.3V, enable the E_I0_HV option. The E_I0_HV option is selected in the Pinmux registers.

12.2 SPI

The Jetson Xavier NX brings out two of the Xavier SPI interfaces. See Figure 12-2.

Table 12-4. SPI Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
91	SPI0_SCK	SPI1_SCK	SPI 0 Clock			
93	SPI0_MISO	SPI1_MIS0	SPI 0 Initiator In / Target Out #0 or #1			
89	SPI0_MOSI	SPI1_M0SI	SPI 0 Initiator Out / Target In	770 01 77		
95	SPI0_CS0*	SPI1_CS0	SPI 0 Chip Select 0 SPI #0 Device #0			
97	SPI0_CS1*	SPI1_CS1	SPI 0 Chip Select 1 SPI #0 Device #1		Bidir	CMOS -
106	SPI1_SCK	SPI3_SCK	SPI 1 Clock		Bidir	1.8V
108	SPI1_MIS0	SPI3_MISO	SPI 1 Initiator In / Target Out #0 or #1			
104	SPI1_MOSI	SPI3_MOSI	SPI 1 Initiator Out / Target In	#0 01 #1		
110	SPI1_CS0*	SPI3_CS0	SPI 1 Chip Select 0	SPI #1 Device #0		
112	SPI1_CS1*	SPI3_CS1	SPI 1 Chip Select 1	SPI #1 Device #1		

Notes: In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.

Figure 12-2. SPI Connections

Figure 12-3 shows the basic connections used.

Figure 12-3. Basic SPI Initiator and Target Connections

12.2.1 SPI Design Guidelines

The following guidelines meet the SPI design guidelines.

Figure 12-4. SPI Topologies

Table 12-5. SPI Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max frequency	65	MHz	
Configuration / device organization	4	load	
Max loading (total of all loads)	15	pF	
Reference plane	GND		
Breakout region impedance	Minimum width and spacing		
Max PCB breakout delay	75	ps	
Trace impedance	50 - 60	Ω	±15%
Via proximity (signal to reference)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing: Microstrip / Stripline	4x / 3x	dielectric	
Max trace length/delay (PCB main trunk) For MOSI, MISO, SCK and CS Point-point 2x-load star/daisy	195 (1228) 120 (756)	mm (ps)	
Max trace length/delay (Branch-A) for MOSI, MISO, SCK and CS 2x-load star/daisy	75 (472)	mm (ps)	
Max trace length/delay skew from MOSI, MISO and CS to SCK	16 (100)	mm (ps)	At any point

Table 12-6. SPI Signal Connections

Module Pin Names (Function)	Type	Termination	Description
SPI[1:0]_CLK	1/0		SPI Clock.: Connect to peripheral CLK pin(s)
SPI[1:0]_MOSI	1/0		SPI Data Output: Connect to target peripheral MOSI pin(s)
SPI[1:0]_MIS0	1/0		SPI Data Input: Connect to target peripheral MISO pin(s)
SPI[1:0]_CS[1:0]*	1/0		SPI Chip Selects.: Connect one CSx* pin per SPI interface to
			each target peripheral CS pin on the interface

12.3 **UART**

The Jetson Xavier NX brings three UARTs out to the main connector. See Figure 12-5 for typical assignments of the three available UARTs.

Table 12-7. UART Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
99	UARTO_TXD	UART2_TX	UART 0 Transmit		Output	
101	UARTO_RXD	UART2_RX	UART 0 Receive	UART general	Input	
103	UARTO_RTS*	UART2_RTS	UART 0 Request to Send	(i.e. M.2 Key E)	Output	
105	UARTO_CTS*	UART2_CTS	UART 0 Clear to Send		Input	
203	UART1_TXD	UART1_TX	UART 1 Transmit		Output	CMOS -
205	UART1_RXD	UART1_RX	UART 1 Receive		Input	1.8V
207	UART1_RTS*	UART1_RTS	UART 1 Request to Send	UART general	Output	
209	UART1_CTS*	UART1_CTS	UART 1 Clear to Send		Input	
236	UART2_TXD	UART3_TX	UART 2 Transmit.	B. I. IIABT	Output	
238	UART2_RXD	UART3_RX	UART 2 Receive	Debug UART	Input	

Notes:

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The direction indicated for the UART pins except for is true when used for that function. Otherwise, these pins support GPIO functionality and most can support both input and output (bidirectional) functionality. The exception is UARTO_TXD, UARTO_RTS* and UART1_TXD. These have output-only buffers on the module to keep them from being affected by connected devices during boot as they are associated with SoC strapping pins.

Figure 12-5. UART Connections

Note: The buffers on UART0_TXD, UART0_RTS* and UART1_TXD are there to prevent connected devices from changing the pin state during power-on. These pins are associated with SoC Strapping pins.

Table 12-8. UART Signal Connections

Ball Name	Туре	Termination	Description
UART[2:0]_TXD	0		UART Transmit: Connect to peripheral RXD pin of device
UART[2:0]_RXD	I		UART Receive: Connect to peripheral TXD pin of device
UART[1:0]_CTS*	I		UART Clear to Send: Connect to peripheral RTS pin of device
UART[1:0]_RTS*	0		UART Request to Send: Connect to peripheral CTS pin of device

12.4 CAN

Jetson Xavier NX brings a single controlled area network (CAN) interface to the main connector.

Table 12-9. CAN Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
143	CAN_RX	CAN0_DIN	CAN Receive	OANI DUN	Input	CMOS – 3.3V
145	CAN_TX	CAN0_DOUT	CAN Transmit	CAN PHY Output		CMOS – 3.3V

Notes:

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The direction indicated for the CAN signals are associated with that usage. The pins support GPIO functionality, so support both input and output operation (bidirectional).

Figure 12-6. CAN Connections

Table 12-10. CAN Interface Signal Routing Requirements

Parameter	Requirement	Units	Notes
Max Data Rate / Frequency	5	Mbps / MHz	
Configuration / Device Organization	1	load	
Reference plane	GND		
Trace Impedance	50	Ω	±15%
Via proximity (Signal via to GND return via)	< 3.8 (24)	mm (ps)	See Note 1
Trace spacing: Microstrip / Stripline	4x / 3x	dielectric	
Max Trace Length (for RX & TX only)	223 (1360)	mm (ps)	See Note 2
Max Trace Length/Delay Skew from RX to TX	8 (50)	mm (ps)	See Note 2

Table 12-11. CAN Signal Connections

Module Pin Name	Туре	Termination	Description
CAN_TX	0		CAN Transmit: Connect to matching pin of device
CAN_RX	1		CAN Receive: Connect to Peripheral pin of device

12.5 Fan

Jetson Xavier NX provides PWM and Tachometer functionality for controlling a fan as part of the thermal solution. Information on the PWM and Tachometer pins and functions can be found in the following locations:

- Jetson Xavier NX Pin Mux
 - This is used to configure GPI014 (PWM) for FAN_PWM and GPI008 for FAN_TACH. The pin used for FAN_PWM is configured as GP_PWM6. The pin used for FAN_TACH is configured as a GPI0.
- ➤ Xavier (SoC) Technical Reference Manual (TRM)
 - Functional descriptions and related registers can be found in the TRM for the FAN_PWM (PWM chapter).

Table 12-12. Fan Pin Descriptions

Pin #	Module Pin Name	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
230	GPI014	SOC_GPI013	Fan PWM	Fan	Output (note)	CMOS – 1.8V
208	GPI008	SOC_GPI022	Fan tachometer	Fan	Input (note)	CMOS – 1.8V

Notes:

- 1. In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.
- 2. The direction indicated for GPI0014 and GPI008 is associated with their use as Fan PWM/Tach. The pins support GPI0 functionality, so support both input and output operation (bidirectional).

Figure 12-7. Fan Connections

12.6 Debug

Jetson Xavier NX supports a UART for debugging purposes. The UART intended for debug is UART2 with is routed to a level shifter then to a 12-pin automation header on the developer kit carrier board.

Table 12-13. Debug UART Pin Descriptions

Pin #	Module Pin Name (see note 4)	Xavier Signal	Usage/Description	Recommended Usage	Directio n	Pin Type
238	UART2_RXD	UART3_TX	UART 2 receive	Dahua HADT	Input	CMOS -
236	UART2_TXD	UART3_RX	UART 2 transmit	Debug UART	Output	1.8V

Note: In the Type/Dir column, Output is from Jetson Xavier NX. Input is to Jetson Xavier NX. Bidir is for Bidirectional signals.

Table 12-14. Debug UART Connections

Module Pin Name	Туре	Termination	Description
UART2_TXD	0		UART #2 Transmit: Connect to RX pin of serial device
UART2_RXD	I	If level shifter implemented, 100kΩ to supply on the non- Jetson Xavier NX side of the device.	UART #2 Receive: Connect to TX pin of serial device

Figure 12-8. Debug UART Connections

Note: If level shifter is implemented, pull-up is required on the RXD line on the non-Jetson Xavier NX side of the level shifter. This is required to keep the input from floating and toggling when no device is connected to the debug UART.

12.7 USB Recovery Mode

USB Recovery mode provides an alternate boot device (USB). In this mode, the system is connected to a host system and boots over USB. This is used when a new image needs to be flashed. To enter USB recovery mode, the **FORCE_RECOVERY*** pin is held low when **SYS_RESET*** goes high which can be when the system is powered on or **SYS_RESET*** is asserted after the system is powered on.

- ► **FORCE_RECOVERY*** is the SoC RCM0 strap.
- ► Only **USB0_D_N/P** supports USB Recovery Mode.

No other signals are required or supported for entering Force Recovery mode. Neither VBUS or ID detection is needed. As long as the force recovery strap is held low coming out of reset, Jetson Xavier NX will configure USB0 as a device and enter recovery mode.

See the USB section (Section 6.1) for an example figure that shows USB0 connected to a USB Micro B connector.

Chapter 13. PADS

Jetson Xavier NX signals that come from the SoC may glitch when the associated power rail is enabled. This may affect pins that are used as GPIO outputs. Designers should take this into account. GPIO outputs that must maintain a low state even while the power rail is being ramped up may require special handling.

13.1 Internal Pull-ups for Dual Voltage Block Pins Power at 1.8V

Several of the MPIO pads are on blocks designed to be powered at either 1.8V or 3.3V. These blocks are powered at 1.8V on Jetson Xavier NX, and the internal pull-up at initial Power-ON is not effective. The signal may only be pulled up a fraction of the 1.8V rail. Once the system boots, software can configure the pins for 1.8V operation and the internal pull-ups will work correctly. If these signals need the pull-ups during Power-ON, external pull-up resistors should be added. The following pins listed are the affected pins. These are the Jetson Xavier NX pins on the dual voltage blocks powered at 1.8V with Power-ON reset default of Internal pull-up enabled.

- ► SDMMC DATO
- ► SDMMC_DAT1
- ► SDMMC DAT2
- ► SDMMC DAT3
- ► SDMMC CMD
- ► SPI1 CS0*
- ▶ SPI1 CS1*

13.2 Schmitt Trigger Usage

The MPIO pins have an option to enable or disable Schmitt-trigger mode on a per-pin basis. This mode is recommended for pins used for edge-sensitive functions such as input clocks, or other functions where each edge detected will affect the operation of a device. Schmitt-trigger mode provides better noise immunity and can help avoid extra edges from being "seen" by the Xavier inputs. Input clocks include the I2S and SPI clocks (I2Sx_SCLK and SPIx_SCK) when Xavier

is in target mode. The **FAN_TACH** pin [GPI08] is another input that could be affected by noise on the signal edges. The **SDMMC_CLK** pin, while used to output the clock, also sample the clock at the input to help with read timing. Therefore, the **SDMMC_CLK** pin may benefit from enabling Schmitt-trigger mode. Care should be taken if the Schmitt-trigger mode setting is changed from the default initialization mode as this can influence interface timing.

13.3 Pins Pulled or Driven High During Power-ON

The Jetson Xavier NX is powered up before the carrier board (See Section 5.1 for power sequencing). Table 13-1 lists the pins on Jetson Xavier NX that default to being pulled or driven high. Care must be taken on the carrier board design to ensure that any of these pins that connect to devices on the carrier board (or devices connected to the carrier board) do not cause damage or excessive leakage to those devices. Some of the ways to avoid issues with sensitive devices are:

- External pull-downs on the carrier board that are strong enough to keep the signals low are one solution, given that this does not affect the function of the pin.
- ▶ Buffers or level shifters can be used to separate the signals from devices that may be affected. The buffer/shifter should be disabled until the device power is enabled.

Table 13-1. Pins Pulled or Driven High by Xavier Prior to SYS_RESET*
Inactive

Jetson Xavier NX Pin	Power-ON reset Default	Pull-up Strength (kΩ)	Jetson Xavier NX Pin	Power-ON reset Default	Pull-up Strength (kΩ)
SLEEP/WAKE*	Internal pull-up	~100	SPI0_CS0*	Internal pull-up	~15
FORCE_RECOVERY*	Internal pull-up	~100	SPI0_CS1*	Internal pull-up	~15
UART1_RXD	Internal pull-up	~100	SPI1_CS0*	Internal pull-up	~18
			SPI1_CS1*	Internal pull-up	~18

Table 13-2. Pins with External Pull-ups to Supply on before SYS_RESET* Inactive

Jetson Xavier NX Pin	Pull-up Supply Voltage (V)	External Pull-up (kΩ)	Jetson Xavier NX Pin	Pull-up Supply Voltage (V)	External Pull-up (kΩ)
I2C0_SCL/SDA	3.3	2.2	SPI1_CS0*	1.8	100
I2C1_SCL/SDA	3.3	2.2	SPI1_CS1*	1.8	100
I2C2_SCL/SDA	1.8	2.2	PCIE[1:0]_CLKREQ *	3.3	47
CAM_I2C_SCL/SDA	3.3	2.2	PCIE[1:0]_RST*	3.3	4.7
			PCIE_WAKE*N	3.3	47

Chapter 14. Unused Interface Terminations

14.1 Unused Multi-purpose Standard CMOS Pad Interfaces

The following Jetson Xavier NX pins (and groups of pins) are Xavier MPIO pins that support either special function IOs (SFIO) and/or GPIO capabilities. Any unused pins or portions of pin groups listed in Table 14-1 that are not used can be left unconnected.

Table 14-1. Unused MPIO Pins and Pin Group

Jetson Xavier NX Pins / Pin Groups	Jetson Xavier NX Pins / Pin Groups
FORCE_RECOVERY*	SDMMC
GPI000	I2S
PCIE[1:0]_CLK/RST/CLKREQ/WAKE	UART
GPI0 xx	I2C
DP0_HPD, DP1_HPD, HDMI_CEC	SPI
CAM Control, Clock	

14.2 Unused Dedicated Special Purpose Pad Interfaces

See the Unused SFIO (Special Function I/O) interface pins section in the design checklist attached to this design quide.

Chapter 15. USB 3.2 and Wireless Coexistence

USB 3.2 supports a 5 Gbps (or multiple) signaling rate. The USB 3.2 specification requires USB 3.2 data to be scrambled and spread spectrum is required. The noise from the USB 3.2 data spectrum has been found from around DC to 4 GHz and beyond. This noise can desensitize nearby receivers operating in the cellular and WiFi 2.4 GHz band. This includes, for example, WiFi 802.11b/g/n or Bluetooth® including Bluetooth mouse devices, Bluetooth keyboards, and so on. This noise causes:

- WiFi sensitivity degradation
- Wireless link throughput drop
- Wireless operation range degradation.

This chapter is focusing on USB 3.2, but other high-speed interfaces such as HDMI, DP, and so on. can also cause issues with wireless subsystems. The issues and recommended mitigation techniques would be similar.

15.1 Mitigation Techniques

Each design is different due to unique construction and relative location of USB 3.2 circuits and connectors and receiving antenna. Depending on the level of noise generated, emitted, radiated, and coupled to receiver antenna, some or all the recommendations might need to be implemented to limit unwanted noise from radiating from the circuit.

The following mitigation techniques described will help minimize the USB 3.2 de-sense.

INCREASE THE USB 3.2 TO ANTENNA SEPARATION

During the placement phase of the design, care must be taken to identify the noise source and try to physically increase the separation between the noise source and antenna. One of the major noise sources is the USB 3.2 connector itself. If possible, the antenna or USB 3.2 location can be changed to increase physical isolation. In general, doubling the distance between antenna and noise source, reduces the coupling by around 6 dB.

USB SS CONNECTOR PART SELECTION: CHOOSE A BETTER USB 3.2 PART

A USB 3.2 connector has many metal fingers that are perfect in length for radiating in and around the 2.4 GHz band and beyond. A USB 3.2 connector should be selected to minimize radiation from the USB 3.2 part itself. Some recommendations are:

- Connector fully enclosed by metal
- No slots in the connector walls, or if there are slots, the size is very small. Also, the number of slots should be minimal.
- Connector has as many grounding legs as possible. More legs provide better grounding from the USB 3.2 exterior to the PCB and the structure is less likely to radiate. Choose four legged connectors over two legged connectors and so on.

The quality of the external USB 3.2 device used in the USB 3.2 port will have impact on the overall experience. If the external USB 3.2 device used in the USB 3.2 port is of poor quality, the part itself will radiate and issues will continue. A plastic base USB 3.2 device works inferior compared to fully metalized USB 3.2 devices.

GROUND THE USB 3.2 PART SOLIDLY

The USB 3.2 connector is grounded through "the grounding legs" previously mentioned. Care must be taken to ensure the leg area is a very good RF ground. One way to do this is to increase the number of ground vias placed in the "grounding leg" area.

IMPROVE THE ROUTING AND GROUNDING AROUND THE USB 3.2 PART AREA

The routing and grounding around the USB 3.2 connector part area must be handled carefully. Since this area is very "hot," any traces running on the surface layer below the physical connector part can pick up noise and transfer it to other areas or radiate the noise. These traces need to be moved to an inner layer, and this area needs to be made a very good ground.

BURY THE USB 3.2 LINES IN INNER LAYERS

The USB 3.2 lines should be routed as impedance controlled differential pairs, with ground on either side and on the layers above and below.

SHIELD THE USB 3.2 CONNECTOR PART

The radiation from the USB 3.2 connector part is very strong. Need to make a "shield" and put on top of the USB 3.2 connectors. The shield must touch the USB 3.2 body in multiple points. The shield track must have number of grounding vias so that any emitted noise from the USB 3.2 connector is swiftly grounded.

Chapter 16. Design and Bring-Up Checklists

The design checklist is intended to help ensure that the correct connections have been made in a design. The check items describe connections for the various interfaces and the "Same/Diff/NA" column is intended to be used to indicate whether the design matches the check item description, is different, or is not applicable to the design. The bring-up checklist is intended to provide basic items to check during bring-up for power delivery and the various interfaces used in a design.

To access the attached files, click the **Attachment** icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (**Open, Save**) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Chapter 17. Jetson Xavier NX Pin Descriptions

The Jetson Xavier NX pin description is attached to this design guide.

To access the attached files, click the **Attachment** icon on the left-hand toolbar on this PDF (using Adobe Acrobat Reader or Adobe Acrobat). Select the file and use the Tool Bar options (**Open, Save**) to retrieve the documents. Excel files with the .nvxlsx extension will need to be renamed to .xlsx to open.

Chapter 18. General Routing Guidelines

18.1 Signal Name Conventions

The following conventions are used in describing the signals for Xavier:

- ➤ Signal names use a mnemonic to represent the function of the signal. For example, Secure Digital Interface Command signal is represented as SDMMC_CMD, written in bold to distinguish it from other text. All active-low signals are identified by an asterisk (*) after the signal name. For example, SYS_RESET* indicates an active-low signal. Active-high signals do not have the asterisk after the signal names. For example, SDMMC_CMD indicates an active-high signal. Differential signals are identified as a pair with the same names that end with _P and _N (for positive and negative, respectively). For example, CSI_0_D0_P and CSI_0_D0_N indicate a differential signal pair.
- ▶ The signal I/O type is represented as a code to indicate the operational characteristics of the signal. The following table lists the I/O codes used in the signal description tables.

Table 18-1. Signal Type Codes

Code	Definition
А	Analog
DIFF I/O	Bidirectional Differential Input/Output
DIFF IN	Differential Input
DIFF OUT Differential Output	
I/O Bidirectional Input/Output	
1	Input
0	Output
OD	Open Drain Output
I/OD	Bidirectional Input / Open Drain Output
Р	Power

18.2 Routing Guideline Format

The routing guidelines have the following format to specify how a signal should be routed.

- ▶ Breakout traces are traces routed from BGA ball either to a point beyond the ball array, or to another layer where full normal spacing guidelines can be met. Breakout trace delay limited to 12.5 mm unless otherwise specified.
- After breakout, signal should be routed according to specified impedance for differential, single-ended, or both (for example: HDMI). Trace spacing to other signals also specified.
- Follow max and min trace delays where specified. Trace delays are typically shown in mm or in terms of signal delay in pico-seconds (ps) or both.
 - For differential signals, trace spacing to other signals must be larger of specified × dielectric height or inter-pair spacing
 - Spacing to other signals/pairs cannot be smaller than spacing between complementary signals (intra-pair).
 - Total trace delay depends on signal velocity which is different between outer (microstrip) and inner (stripline) layers of a PCB.

18.3 Signal Routing Conventions

Throughout this design guide, the following signal routing conventions are used:

- ► SE Impedance (/ Diff Impedance) at x Dielectric Height Spacing
 - SE impedance of trace (along with diff impedance for diff pairs) is achieved by spacing requirement. Spacing is multiple of dielectric height. Dielectric height is typically different for microstrip and stripline.

Note: Trace spacing requirement applies to SE traces or differential pairs to other SE traces or differential pairs. It does not apply to traces making up a differential pair. For this case, spacing/trace widths are chosen to meet differential impedance requirement.

18.4 Routing Guidelines

Pay close attention when routing high speed interfaces, such as HDMI/DP, USB 3.2, PCIe or DSI/CSI. Each of these interfaces has strict routing rules for the trace impedance, width, spacing, total delay, and delay/flight time matching. The following guidelines provide an overview of the routing guidelines and notations used in this document.

➤ Controlled Impedance

Each interface has different trace impedance requirements and spacing to other traces. It is up to designer to calculate trace width and spacing required to achieve specified SE and Diff impedances. Unless otherwise noted, trace impedance values are ±15%.

- Max Trace Lengths/Delays
 Trace lengths/delays should include the carrier board PCB routing (where the Jetson
 Xavier NX mating connector resides) and any additional routing on a Flex/ secondary PCB
 segment connected to main PCB. The max length/delay should be from Jetson Xavier NX
 to the actual connector (i.e. USB, HDMI, etc.) or device (i.e. onboard USB device, Display
 driver IC, camera imager IC, etc.)
- ► Trace Delay/Flight Time Matching Signal flight time is the time it takes for a signal to propagate from one end (driver) to other end (receiver). One way to get same flight time for signal within signal group is to match trace lengths within specified delay in the signal group.
 - Total trace delay = Carrier PCB trace delay only. Do not exceed maximum trace delay specified.
 - It is recommended to match trace delays based on flight time of signals. For example, outer-layer signal velocity could be 5.9 ps/mm and inner-layer 6.9 ps/mm. If one signal is routed 250 mm on the outer layer and second signal is routed 250 mm in the inner layer, the difference in flight time between two signals will be 250 ps! That is a big difference if required matching is 15 ps (trace delay matching). To fix this, inner trace needs to be 36 mm shorter or outer trace needs to be 42 mm longer.
 - In this design guide, terms such as intra-pair and inter-pair are used when describing differential pair delays. Intra-pair refers to matching traces within differential pair (for example, true to complement trace matching). Inter-pair matching refers to matching differential pairs average delays to other differential pair average delays.

18.4.1 General PCB Routing Guidelines

For GSSG stack-up to minimize crosstalk, signal should be routed in such a way that they are not on top of each other in two routing layers (see Figure 18-1).

Do not route other signals or power traces/areas directly under or over critical high-speed interface signals.

Figure 18-1. General PCB Routing Guidelines

Note: The requirements detailed in the interface signal routing requirements tables must be met for all interfaces implemented or proper operation cannot be guaranteed.

18.5 Common High-Speed Interface Requirements

The following table describes the common high-speed interface requirements.

Table 18-2. Common High-Speed Interface Requirements

Parameter		Requirement	Units	Notes
Common-mode Choke	(Not recommended – only i	used if absolutely	required for EMI i	issues)
Preferred device				Type: TDK ACM2012D-900-2P. Only if needed. Place near connector. Refer to Common Mode Choke Requirement section.
Location - Max distance from to adjacent discontinuities – ex, connector, AC cap)		8 (53)	mm (ps)	TDK ACM2012D-900-2P See Figure 18-2
Common-mode impedance @ 100MHz Min/Max		65/90	Ω	- - - - - -
Max Rdc		0.3	Ω	
Differential TDR impedance		90	Ω	
Min Sdd21 @ 2.5GHz		2.22	dB	
Max Scc21 @ 2.5GHz		19.2	dB	
Serpentine				·
Min bend angle		135	deg (a)	S1 must be taken care to consider Xtalk
Dimension	Min A Spacing Min B, C Length Min Jog Width	4x 1.5x 3x	Trace width	to adjacent pair. See USB 3.2 Guideline in Figure 18-3.
General		1	1	'
Routing over Voids		Routing over voids not allowed except void around device ball/pin the signal is routed to.		
Noise Coupling		Keep critical high-speed traces away from other signal traces or unrelated power traces/areas or power supply components		

The following figures show the common high-speed interface signal routing requirements.

Figure 18-2. Common Mode Choke

Figure 18-3. Serpentine

18.6 Test Points for High-Speed Interfaces

Ideally, test points are not preferred on very high-speed interface traces as they can degrade signal integrity. However, to be able to do compliance testing, or interface tuning where applicable, it may be necessary to include test points at least for early revisions of a design. The test points are generally required near the receiver. If a connector or some other device (capacitor, resistor, and so on) exists near the receiver, the pins can be used as test points without creating additional signal degradation. Where connector or discrete device pins are not accessible near the receiver end of an interface, it may be necessary to include test points. When test points are needed for very high-speed interface signals, follow these recommendations:

- ► Test points should be very small (less than 0.5 mm).
- ▶ Test points should be located on the existing trace (no stub).
- ► If the test points are placed on differential signals, they should be symmetric for each P and N signal.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale"). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

Unless specifically agreed to in writing by NVIDIA, NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer's own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer's sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer's product designs may affect the quality and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA'S aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, Jetson, and Xavier are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDM

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

Bluetooth

The Bluetooth word mark and logos are registered trademarks owned by the Bluetooth SIG, Inc., and any use of such marks by NVIDIA is under license.

Copyright

© 2019 – 2022 NVIDIA Corporation. All rights reserved.

