COMP 652: ASSIGNMENT 3

CARLOS G. OLIVER (260425853)

1. Q1: PCA

Figure 1

2. Q2: Spectral methods for weighted automata

2.1. (a). We use a property of Hankel matrices which is: if $\operatorname{rank}(H_f) = n \Rightarrow$ there exists a weighted finite automaton \mathcal{A} with n states such that $g = g_{\mathcal{A}}$ for some function $g : \Sigma^* \to \mathbb{R}$ where Σ^* is the set of all strings that can be generated from alphabet Σ . In this example, the function g counts the number of 1s in a string generated from $\Sigma = \{0, 1\}$ the Hankel matrix H_g would take the form:

Date: April 12, 2017.

$$H_{g} = \begin{bmatrix} \lambda & 0 & 1 & 11 & \dots \\ \lambda & \begin{bmatrix} 0 & 0 & 1 & 2 & \dots \\ 0 & 0 & 1 & 2 & \dots \\ 1 & 1 & 2 & 3 & \dots \\ 2 & 2 & 3 & 4 & \dots \\ 3 & 3 & 4 & 5 & \dots \\ 2 & 2 & 3 & 4 & \dots \\ \vdots & \vdots & & \ddots \end{bmatrix}$$

The above matrix is arranged so all possible strings composed only of 1s, $Q = \{1\}^N \quad \forall N \in \mathbb{Z}^+$ precede all other strings $(\Sigma^* - Q)$ with the exception of $\{0\}^1$ and λ . If we order prefixes and suffixes in S in increasing N we can easily see that any row m in this sub block H_g^1 of H_g is a linear combination in the form $H_g^1(m,\cdot) = 2H_g^1(m,\cdot) - H_g^1(m-1,\cdot)$. The remaining entries in H_g are formed by prefixes and suffixes containing 0s which do not contribute to the evaluation of g and therefore can also be obtained from rows or columns in H^1 . Therefore the rank of H_g is 2 where only the λ or $\{0\}^1$ and the $\{1\}^1$ contribute to the row rank. The same can be shown for the column rank.

- 2.2. (b). If f is a probability distribution over Σ^* then we have $\sum_{s \in \Sigma^*} f(s) = 1$ gives a probability for every string in Σ^* . Then $f_{sub}(w)$ is the probability that the string w occurs in any word generated by Σ^* since u and v represent all possible prefixes and suffixes to the word w.
- 2.3. (c). Let $\Sigma_{w \in \Sigma^*} A_w \equiv S$.

(1)
$$S = (I - A_0 - A_1)^{-1} = (I - A_0 - A_1)S = I$$
$$(I - A_0 - A_1)SS^{-1} = S^{-1}$$
$$(I - A_0 - A_1)^{-1} = S$$

Now we use this identity to compute the sum of the function f over all words as $\sum_{w \in \Sigma^*} f(w)$. We can express the function over a string as

$$(2) f(w) = \alpha_0^T A w \alpha_\infty$$

So for all the words we have

(3)
$$\sum_{w \in \Sigma^*} f(w) = \sum_{w \in \Sigma^*} \alpha_0^T A_w \alpha_\infty$$
$$= \alpha_0^T \left(\sum_{w \in \Sigma^*} A_w \right) \alpha_\infty$$
$$= \alpha_0^T (I - A_0 - A_1)^{-1} \alpha_\infty$$

We can use this property to compute $f_{subsrting}(w)$ using an automaton by recognizing that the contribution of transition matrices from u and v to the sum can be reduced to the same identity as above as they sum over all of Σ^* .

$$f_{substring}(w) = \sum_{u \in \Sigma^*, v \in \Sigma^*} f(uwv)$$

$$= \sum_{u \in \Sigma^*, v \in \Sigma^*} \alpha_0^T A_u A_w A_v \alpha_\infty$$

$$= \alpha_0^T (I - A_0 - A_1)^{-1} A_w (I - A_0 - A_1)^{-1} \alpha_\infty$$

2.4. (d). Because the word uwv is in Σ^* and the training sample S is drawn from f also over Σ^* , having an automaton that represents this function would also give us a way to learn the function $f_{substring}$. From S we can construct the empirical Hankel matrix $\hat{H}_{f_{substring}}$ and recover the relevant sub-blocks. We can then perform SVD on H and solve for the necessary transition weights A_w and initial/final vectors α_0 , α_∞ from which we can produce the weighted automaton \hat{A} . In order to recover an estimate of f we would have to sample from the automaton over all $w \in \Sigma^*$ as this would compute the probability distribution over all words in Σ^* .

3. Q3: METHOD OF MOMENTS AND MULTIVIEW MODEL

FIGURE 2. Graphical representation of conditional independence relation between random variables $\mathbf{x_1}, \mathbf{x_2}, \mathbf{x_3}$ and h.

Since the $\mathbf{x_t}$ are conditionally independent given h we can decompose the conditional expectation of the cross moments.

(5)
$$\mathbb{E}[\mathbf{x_1} \otimes \mathbf{x_2} | h = j] = \mathbb{E}[\mathbf{x_1} | h = j] \otimes \mathbb{E}[\mathbf{x_2} | h = j] \quad \text{by conditional independence}$$

$$= \mu_{t=1,j} \otimes \mu_{t=2,j} \in \mathbb{R}^{d_1 \times d_2} \quad \text{by question statement}$$

$$= \sum_{i=1}^k w_i \mu_{1,i} \otimes \mu_{2,i}$$

(6)
$$\mathbb{E}[\mathbf{x_1} \otimes \mathbf{x_2} \otimes \mathbf{x_3} | h = j] = \sum_{i=1}^k w_i \mu_{1,i} \otimes \mu_{2,i} \otimes \mu_{3,i} \in \mathbb{R}^{d_1 \times d_2 \times d_3}$$