

UNIVERSIDADE FEDERAL DO PARÁ CAMPUS UNIVERSITÁRIO DE TUCURUÍ FACULDADE DE ENGENHARIA DE COMPUTAÇÃO

Primeira Fase Projeto de Banco de Dados - Banco de dados de doação de sangue

ELISEU PEREIRA DE SOUSA
JOÃO GOMES SIQUEIRA NETO
LUCAS RUAN DE CARVALHO
REGINALDO DE CARVALHO SANTOS

Tucuruí-PA 2023

ELISEU PEREIRA DE SOUSA JOÃO GOMES SIQUEIRA NETO LUCAS RUAN DE CARVALHO REGINALDO DE CARVALHO SANTOS

Projeto de Banco de Dados - Banco de dados de doação de sangue

Trabalho apresentado para a disciplina de Banco de Dados I do curso de Engenharia de Computação Tucuruí, UFPAcomo requisito de avaliação (parcial) orientado pelo professor Marcos Tulio Amaris Conzalez.

SUMÁRIO

1 - Introdução	4
2 - Definição dos requisitos funcionais	4
2.1 - Prioridade dos Requisitos	5
3 - Projeto conceitual do banco de dados relacional	5
4 - Modelo Lógico do banco de dados	6
5 - Dicionário de dados	7
6 - Diagrama Físico	9
7 - Código fonte SQL	9
7.1 - Consultas	10
7.2 - Views	11
7.3 - Trigger	11
8 - Conclusão	12
9 - Referências Bibliográficas	12

1 - Introdução

O banco de dados de doação de sangue consiste em um sistema que armazena informações de doadores de sangue e unidades de sangue coletadas. Ele permite a gestão dos estoques de sangue em hospitais, o rastreamento das doações, a identificação de doadores compatíveis com receptores e o controle da qualidade do sangue coletado. Com essa ferramenta, é possível garantir a disponibilidade de sangue para quem precisa, além de assegurar a segurança e eficácia do processo de transfusão.

2 - Definição dos requisitos funcionais

Os requisitos funcionais do sistema são apresentados na tabela abaixo.

Quadro 1: Requisitos funcionais

Identificador	Descrição	Prioridade
RF01	Cadastro de doadores de sangue.	Alta
RF02	Gerenciamento de estoque de sangue.	Alta
RF03	Agendamento de doações.	Alta
RF04	Consulta de disponibilidade de tipo sanguíneo	Média
RF05	Solicitação de sangue por hospitais.	Alta
RF06	Relatórios estatísticos.	Média
RF07	Integração de unidades de doação de sangue	Alta
RF08	Registrar unidade de doação de sangue.	Alta
RF09	Remover doador do sistema de doação de sangue.	Média
RF10	Atualizar dados cadastrais de um doador no sistema.	Média
RF11	Pesquisar por doadores cadastrados no sistema.	Baixa
RF12	Triagem de doadores.	Média
RF13	Notificação de resultados de testes.	Média
RF14	Agendamento de campanhas de doação.	Média
RF15	Notificação de vencimento de prazos.	Média
RF16	Integração com redes sociais.	Baixa
RF17	Doação em nome de terceiros.	Baixa
RF18	Acompanhamento pós-doação.	Baixa

Fonte: Elaboração Própria.

2.1 - Prioridade dos Requisitos

Foram adotados as seguintes denominações para estabelecer a prioridade dos requisitos: alta, média e baixa.

- Alta: Requisitos considerados cruciais e indispensáveis para o funcionamento adequado do sistema.
- Média: Requisitos importantes, mas não considerados tão críticos quanto os de prioridade alta.
- Baixa: Requisitos considerados menos urgentes ou menos essenciais para o sistema. São requisitos que podem ser adiados ou até mesmo descartados, se necessários, sem prejudicar o funcionamento fundamental do sistema.

3 - Projeto conceitual do banco de dados relacional

Para desenvolver a modelagem de dados, primeiramente foi necessário desenvolver o diagrama entidade relacionamento, que descreve entidades envolvidas com seus respectivos atributos e como eles se relacionam. Abaixo podemos observar oque significa cada característica em um DER.

- Entidade: É conjunto de objetos da realidade modelada, sobre os quais se deseja manter informações no banco de dados;
- Relacionamento: É conjunto de associações entre entidades;
- Atributo: É o dado que é associado a cada ocorrência (instância) de uma entidade ou de um relacionamento;
- Atributo Composto: Atributos compostos podem ser divididos em sub partes menores, que representam outros atributos. Um exemplo de atributo composto é endereço que pode inclusive criar um hierarquia de valores compostos;
- Atributos Multivalorados: Em alguns casos um atributo pode ter um conjunto de valores para a mesma entidade.

O diagrama Entidade Relacionamento é uma ferramenta essencial para a modelagem e projeto de bancos de dados, pois ajuda a compreender as entidades envolvidas, seus atributos e os relacionamentos entre elas. Ele facilita a comunicação entre os envolvidos no processo de criação do banco de dados e serve como base para a implementação do modelo lógico. Podemos observar na imagem abaixo.

Figura 1: Diagrama Entidade Relacionamento Estendido1

Fonte: Elaboração Própria.

4 - Modelo Lógico do banco de dados

O modelo lógico define a estrutura interna do banco de dados, incluindo as tabelas, os campos e os relacionamentos entre eles. Ele é projetado para ser independente de um SGBD específico. É onde será feito a adequação de padrão, nomenclatura, normalização, integridade referencial e define as chaves primárias e estrangeiras dentro do banco de dados, como é ilustrado na figura abaixo.

•

¹ Link para o Diagrama online

Total State Control Co

Figura 2: Diagrama Lógico do Banco de Dados

Fonte: Elaboração Própria.

5 - Dicionário de dados

O dicionário de dados é uma coleção organizada e detalhada de informações sobre os elementos do banco de dados, como tabelas, colunas, tipos de dados, restrições, relacionamentos e outras características. Ele atua como uma referência centralizada para todas as definições e descrições dos dados em um sistema de banco de dados. Podemos observar nas seguintes tabelas referente ao nosso banco de dados.

Entidade: Pessoa									
Atributos Classe Domínio Tamanho Descrição									
ld	Determinante	Numérico	10	Número único de identificação da pessoa					
CPF	Determinante	Numérico	11	Número do cpf da pessoa					
Nome	Simples	Texto	50	Nome da pessoa					
Contato	Simples	Texto	20	Contato da pessoa					
Data_Nascimento	Simples	Data	10	Data de nascimento da pessoa					

Entidade: Endereco									
Atributos	Classe	Domínio	Tamanho	Descrição					
Id	Determinante	Numérico	10	Número único de identificação da pessoa					
Rua	Simples	Texto	11	Nome da rua					
Bairro	Simples	Texto	50	Nome do bairro					
Numero	Simples	Numérico	20	Número da casa					
Cidade	Simples	Texto	50	Cidade do doador					
UF	Simples	Texto	50	Cidade do doador					
ID_Pessoa	Determinante	Numérico	10	Número único de referência da Pessoa					

Entidade: Doacao								
Atributos	Classe	Domínio	Taman ho	Descrição				
ID	Determinante	Numérico	10	Número único de identificação da doação				
Data_validade	Simples	Data	10	Data de validade da doação				
Vol_coletado	Simples	Texto	20	Volume coletado da doação				
Data_coleta	Simples	Data	10	Data da coleta da doação				
ID_doador	Determinante	Numérico	10	Número de referência do doador				
ID_Equipe_Medica	Determinante	Numérico	10	Número único de referência da Equipe médica				
ID_unidade_coleta	Determinante	Numérico	10	Número único de referência da unidade de coleta				

Entidade: Agendamento								
Atributos	Classe	Domínio	Tamanho	Descrição				
ID	Determinante	Numérico	10	Número único do agendamento				
Hora	Simples	Numérico	5	Hora do agendamento				
Local	Simples	Texto	20	Local do agendamento				
Status	Simples	Texto	20	Status do agendamento				
Data	Simples	Data	10	Data do agendamento				
Observações	Simples	Texto	45	Observações sobre o agendamento da pessoa				
ID_Doador	Determinante	Numérico	10	Número único de referência do doador				

Ao todo são 12 entidades, as outras possuem a mesma estrutura, disponibilizaremos o link com o restante das tabelas.²

_

² Link para planilha com tabelas do Dicionário de dados

6 - Diagrama Físico

7 - Código fonte SQL

Após todas as etapas acima foi possível a implementação do script SQL, podemos observar abaixo o exemplo de criação de algumas das tabelas usadas no projeto.

CREATE DATABASE Banco_doacao;

USE banco doacao;

CREATE TABLE IF NOT EXISTS Pessoa (
ID INT NOT NULL,
CPF VARCHAR(14) NOT NULL,
Nome VARCHAR(45) NOT NULL,
Sexo VARCHAR(1) NOT NULL,

Contato VARCHAR(45) NOT NULL,
Data_nascimento DATE NOT NULL,
PRIMARY KEY (ID),
UNIQUE INDEX CPF_UNIQUE (CPF ASC) VISIBLE)
ENGINE = InnoDB;

CREATE TABLE IF NOT EXISTS Endereco (

ID INT NOT NULL,
Rua VARCHAR(45) NOT NULL,
Bairro VARCHAR(45) NOT NULL,
Numero VARCHAR(8) NOT NULL,
Cidade VARCHAR(45) NOT NULL,
UF VARCHAR(2) NOT NULL,
Pessoa_Id INT NOT NULL,
PRIMARY KEY (ID),
FOREIGN KEY (Pessoa_Id) REFERENCES Pessoa (Id)
ON DELETE CASCADE
ON UPDATE CASCADE)

Ao todo são 13 tabelas criadas, as outras 11 possuem a mesma estrutura, o que difere é que algumas podem ter mais ou menos atributos e chaves estrangeiras.

7.1 - Consultas

ENGINE = InnoDB;

Foi implementado a criação de SELECTS para realização de consultas dentro do banco de dados de doação de sangue, a fim de verificar a ligação entre as tabelas e chaves estrangeiras, podemos observar nas imagens abaixo:

mysql> SELECT Pessoa.Nome, Funcionario.Cargo, Endereco.Bairro, Endereco.Rua, Endereco.Numero, Endereco.Cidade, Endereco.UF, Unidade_coleta.Nome -> FROM Pessoa, Funcionario, Endereco, Unidade_coleta -> WHERE Unidade_coleta.Nome = 'Hemopa' and Pessoa.ID = Funcionario.Pessoa_Id and Endereco.Pessoa_Id = Pessoa.ID;								
Nome	Cargo		Rua	Numero			Nome	
Amaris Gonzales Enfermeiro Vila Permanente Carajás 48 Tucuruí PA Hemopa Jorge Pinto Enfermeiro Serra Azul Mato Grosso 50 Tucuruí PA Hemopa Douglas Dilva Médico Vila Marabá Santa Maria 111 Vila Permanente PA Hemopa Cristina Maria Recepcionista Centro Colombo 658 Tucuruí PA Hemopa								
4 rows in set (0.00	sec)							

mysql> SELECT Pessoa.Nome, Doador.Tipo_sanguineo as 'Tipo Sanguineo', Endereco.Bairro, Endereco.Rua, Endereco.Numero, Endereco.Cidade, Endereco.UF -> FROM Pessoa, Endereco, Doador -> WHERE Doador.Tipo_sanguineo = 'O+' and Pessoa.ID = Doador.Pessoa_Id and Endereco.Pessoa_Id = Pessoa.ID;									
Nome	Tipo Sanguineo	Bairro	Rua	Numero	Cidade	UF			
Eliseu Souza Lucas Ruan	0+ 0+	Conquista Beira Rio	Bahia	99	Tucurui Tucurui Tucuruí	PA			
2 rows in set (0.00 sec)								

```
nysql> SELECT Pessoa.Nome, Funcionario.Cargo, Unidade_coleta.Nome AS Unidade_Coleta, Equipe_medica.Turno
    -> FROM Pessoa
   -> JOIN Funcionario ON Pessoa.ID = Funcionario.Pessoa_ID
   -> JOIN Equipe_medica ON Funcionario.ID = Equipe_medica.Funcionario_ID
   -> JOIN Unidade_coleta ON Funcionario.Unidade_coleta_ID = Unidade_coleta.ID;
 Nome
                   Cargo
                               | Unidade_Coleta | Turno |
 Amaris Gonzales
                   Enfermeiro
                                 Hemopa
                                                  Tarde
 Jorge Pinto
                   Enfermeiro
                                 Hemopa
                                                  Tarde
 Douglas Dilva
                   Médico
                                Hemopa
                                                  Tarde
 rows in set (0.00 sec)
```

7.2 - Views

Foi implementada a criação de uma VIEW para que quando chamada retorne de forma imediata um SELECT pré definido e nomeado uma VIEW, como podemos observar na imagem abaixo:

```
mysql> SELECT *FROM Tipo_O_positivo;
                                                Rua
                                                                            UF
                                   Bairro
                                                                  Cidade
 Nome
                 Tipo Sanguineo
                                                        Numero
 Eliseu Souza
                                   Conquista
                                                Piaui
                                                                            PΑ
                                                                  Tucurui
 Lucas Ruan
                                   Beira Rio
                                                Bahia
                                                        99
                                                                  Tucuruí
                                                                            PΑ
 rows in set (0.00 sec)
```

7.3 - Trigger

Criamos também um TRIGGER que funciona como um gatilho, para que quando um determinado dado de uma tabela seja alterado ele acione e altere o dado desejado em outra tabela, interligando as duas tabelas no quesito de remoção e atualização de dados.³

```
mysql> CREATE TRIGGER atualizar_aptdao
   -> AFTER UPDATE ON Triagem
   -> FOR EACH ROW
   -> BEGIN
   -> IF NEW.Resultado_aptdao = true THEN
   -> UPDATE Doador SET Historico_aptdao = true WHERE Doador.ID = NEW.Doador_ID;
   -> ELSE
   -> UPDATE Doador SET Historico_aptdao = false WHERE Doador.ID = NEW.Doador_ID;
   -> END IF;
   -> END
```

³ Link para o vídeo com a explicação do projeto.

8 - Conclusão

Deste modo, o projeto é apresentado e foi concluído visando todos os conceitos e funções de banco de dados vistos em sala de aula como sistemas gerenciadores orientado a objetos, diagramas entidades-relacionamento, diagrama lógico e modelagem física em SQL, assim fornecendo um acréscimo significativo para o aprendizado na área de banco de dados, sendo fundamental para o avanço neste projeto final da disciplina. A equipe enfrentou algumas dificuldades com a aplicação dos triggers e selects durante a modelagem, porém ao mesmo tempo pontos vantajosos para que durante a modelagem pudéssemos adquirir experiência com programação, sendo assim este projeto fornece muita experiência e servirá para estudos futuros nesta e em diversas outras disciplinas relacionadas.

9 - Referências Bibliográficas

ELMASRI, R.; NAVATHE, S. B. Sistemas de Banco de Dados. [s.l: s.n.].

CARLOS ALBERTO HEUSER. Projeto de banco de dados. Porto Alegre (Rs): Bookman, 2009.