Introducción a la Lógica y la Computación

Mariana Badano Héctor Gramaglia Pedro Sánchez Terraf Mauricio Tellechea Guido Ivetta

FaMAF, 29 de octubre de 2021

Contenidos estimados para hoy

- Repaso
 - Expresiones regulares
 - Operaciones con lenguajes
 - *Regex* definen lenguajes regulares

- Zeorema de Kleene
 - Algoritmo

Operaciones con lenguajes

vacío
$$\emptyset$$
 singulete $\{x\}$ $(x \in \Sigma)$ x complemento $L^c = \Sigma^* \smallsetminus L$ intersección $L \cap L' = \{\alpha \mid \alpha \in L \text{ y } \alpha \in L'\}$ unión $L \cup L' = \{\alpha \mid \alpha \in L \text{ ó } \alpha \in L'\}$ $r+r'$ concatenación $LL' = \{\alpha\beta \mid \alpha \in L \text{ y } \beta \in L'\}$ rr' potencias $L^n = \begin{cases} \{\epsilon\} & \sin n = 0 \\ LL^k & \sin n = k+1 \end{cases}$ r^n clausura $L^* = \bigcup_{n \in \mathbb{N}} L^n$

Expresiones regulares

Fijado un alfabeto Σ , son el menor conjunto Regex que cumple:

vacío
$$\emptyset \in Regex$$
.
épsilon $\epsilon \in Regex$.
símbolo $x \in \Sigma \implies x \in Regex$.
unión $r_1, r_2 \in Regex \implies r_1 + r_2 \in Regex$.
concatenación $r_1, r_2 \in Regex \implies r_1 r_2 \in Regex$.
clausura $r \in Regex \implies r^* \in Regex$.

Expresiones regulares

Fijado un alfabeto Σ , son el menor conjunto Regex que cumple:

vacío
$$\emptyset \in Regex$$
.

épsilon $\epsilon \in Regex$.

símbolo $x \in \Sigma \implies x \in Regex$.

unión $r_1, r_2 \in Regex \implies r_1 + r_2 \in Regex$.

concatenación $r_1, r_2 \in Regex \implies r_1 r_2 \in Regex$.

clausura $r \in Regex \implies r^* \in Regex$.

 $L(\emptyset) := \emptyset$
 $L(\epsilon) := \{\epsilon\}$
 $L(x) := \{x\}$
 $L(r_1 + r_2) := L(r_1) \cup L(r_2)$
 $L(r_1 r_2) := L(r_1) L(r_2)$

 $L(r^*) := (L(r))^*$

Teorema

Para toda expresión regular r, existe un ϵ -NFA $\mathbb{A}(r)$ con un único estado final tal que $L(r)=L(\mathbb{A}(r))$.

Teorema

Para toda expresión regular r, existe un ϵ -NFA $\mathbb{A}(r)$ con un único estado final tal que $L(r)=L(\mathbb{A}(r))$.

Ahora, vemos la recíproca.

Teorema (Kleene)

Todo lenguaje regular es de la forma L(r) para alguna $r \in Regex$.

Teorema

Para toda expresión regular r, existe un ϵ -NFA $\mathbb{A}(r)$ con un único estado final tal que $L(r) = L(\mathbb{A}(r))$.

Ahora, vemos la recíproca.

Teorema (Kleene)

Todo lenguaje regular es de la forma L(r) para alguna $r \in Regex$.

Daremos un método recursivo para obtener a partir de un ϵ -NFA $\mathbb{A}=(\{q_0,\ldots,q_r\},\Sigma,\delta,q_0,\{q_f\})$ con un único estado final, una expresión regular que denota el lenguaje $L(\mathbb{A})$.

Teorema

Para toda expresión regular r, existe un ϵ -NFA $\mathbb{A}(r)$ con un único estado final tal que $L(r) = L(\mathbb{A}(r))$.

Ahora, vemos la recíproca.

Teorema (Kleene)

Todo lenguaje regular es de la forma L(r) para alguna $r \in Regex$.

Daremos un método recursivo para obtener a partir de un ϵ -NFA $\mathbb{A}=(\{q_0,\ldots,q_r\},\Sigma,\delta,q_0,\{q_f\})$ con un único estado final, una expresión regular que denota el lenguaje $L(\mathbb{A})$.

La recursión será en $|Q|=|\{q_0,\ldots,q_r\}|$, así que iremos quitando estados para pasar a autómatas más chicos.

- $\blacksquare \mathbb{A} = (\{q_0,\ldots,q_r\},\Sigma,\delta,q_0,\{q_f\}).$
- $\blacksquare L(\mathbb{A}) =: \underline{L}_{0f}(Q)$

- $\mathbb{A} = (\{q_0, \ldots, q_r\}, \Sigma, \delta, q_0, \{q_f\}).$
- lacksquare $L(\mathbb{A})=:L_{0f}(Q)$ \longrightarrow palabras que arrancan en q_0 y terminan en q_f .

- $\blacksquare \mathbb{A} = (\{q_0,\ldots,q_r\},\Sigma,\delta,q_0,\{q_f\}).$

En general, supongamos $R \subseteq Q$.

Definición

 $L_{nm}(R) :=$ palabras que arrancan en q_n y terminan en q_m , involucrando sólo estados en R.

- $\blacksquare \mathbb{A} = (\{q_0,\ldots,q_r\},\Sigma,\delta,q_0,\{q_f\}).$
- $lacksquare L(\mathbb{A})=:L_{0f}(Q)$ palabras que arrancan en q_0 y terminan en q_f .

En general, supongamos $R \subseteq Q$.

Definición

 $L_{nm}(R) :=$ palabras que arrancan en q_n y terminan en q_m , involucrando sólo estados en R.

Pueden pasar por q_n varias veces

$$\alpha = \alpha_1 \alpha_2 \alpha_3 \in L_{nm}(R) \longrightarrow q_n \xrightarrow{\alpha_1} q_n \xrightarrow{\alpha_2} q_n \xrightarrow{\alpha_3} q_m$$

- $\blacksquare \mathbb{A} = (\{q_0,\ldots,q_r\},\Sigma,\delta,q_0,\{q_f\}).$
- $L(\mathbb{A}) =: L_{0f}(Q)$ palabras que arrancan en q_0 y terminan en q_f .

En general, supongamos $R \subseteq Q$.

Definición

 $L_{nm}(R) :=$ palabras que arrancan en q_n y terminan en q_m , involucrando sólo estados en R.

Pueden pasar por q_n varias veces

$$\alpha = \alpha_1 \alpha_2 \alpha_3 \in L_{nm}(R) \quad \leadsto \quad q_n \stackrel{\alpha_1}{\Longrightarrow} q_n \stackrel{\alpha_2}{\Longrightarrow} q_n \stackrel{\alpha_3}{\Longrightarrow} q_m$$

Definición

- $I_n(R) :=$ palabras que salen y vuelven a $q_n \sin pasar$ en el medio por él (e involucrando sólo estados en R).
- $F_{nm}(R) :=$ palabras que salen de q_n y llegan a q_m sin pasar nuevamente por q_n (e involucrando sólo estados en R).

Algoritmo del Teorema de Kleene, primera capa

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (s\'olo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R\text{)}.$

Algoritmo del Teorema de Kleene, primera capa

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (s\'olo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R).$

$$\overbrace{q_n \xrightarrow{\alpha_1} q_n \xrightarrow{\alpha_2} q_n \xrightarrow{\alpha_3} q_m}^{I_n(R)}$$

Algoritmo del Teorema de Kleene, primera capa

- $\blacksquare L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (s\'olo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R\text{)}.$

$$\overbrace{q_n \xrightarrow{\alpha_1} q_n \xrightarrow{\alpha_2} q_n \xrightarrow{\alpha_3} q_m}^{I_n(R)}$$

Luego

$$L_{nn}(R) := I_n(R)^*$$

 $L_{nm}(R) := I_n(R)^* F_{nm}(R)$ si $n \neq m$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (sólo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R).$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (sólo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R).$

$$q_n \xrightarrow{a \beta b} q_n$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (s\'olo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R).$

$$q_n \xrightarrow{a \beta b} q_n \longrightarrow q_n \xrightarrow{a} q_t \xrightarrow{\beta} q_s \xrightarrow{b} q_n$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (sólo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R).$

$$q_n \xrightarrow{a \beta b} q_n \longrightarrow q_n \xrightarrow{a} \underbrace{q_t \xrightarrow{\beta} q_s}_{L_{ts}(R \setminus \{q_n\})} \xrightarrow{b} q_n$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (sólo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R).$

$$q_n \xrightarrow{a\beta b} q_n \longrightarrow q_n \xrightarrow{a} \underbrace{q_t \xrightarrow{\beta} q_s}_{L_{ts}(R \setminus \{q_n\})} \xrightarrow{b} q_n$$

Luego

$$I_n(R) := \sum_{\substack{q_n \stackrel{a}{\longrightarrow} q_t \\ q_s \stackrel{b}{\longrightarrow} q_n}} a L_{ts}(R \setminus \{q_n\}) b$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (s\'olo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (s\'olo estados en } R).$

$$q_n \xrightarrow{a \beta b} q_n \longrightarrow q_n \xrightarrow{a} \underbrace{q_t \xrightarrow{\beta} q_s}_{L_{ts}(R \setminus \{q_n\})} \xrightarrow{b} q_n$$

Luego

$$I_n(R) := \sum_{\substack{q_n \stackrel{a}{\longrightarrow} q_t \\ q_s \stackrel{b}{\longrightarrow} q_n}} a L_{ts}(R \setminus \{q_n\}) b + \sum_{\substack{q_n \stackrel{c}{\longrightarrow} q_n \\ }} c \qquad (n \neq t, s)$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (s\'olo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (sólo estados en } R).$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (s\'olo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (sólo estados en } R).$

$$q_n \stackrel{a\, eta}{\Longrightarrow} q_m$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (sólo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (sólo estados en } R).$

$$q_n \xrightarrow{a\beta} q_m \quad \leadsto \quad q_n \xrightarrow{a} q_t \xrightarrow{\beta} q_m$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (sólo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (sólo estados en } R).$

$$q_n \stackrel{a\beta}{\Longrightarrow} q_m \quad \sim \sim \quad q_n \stackrel{a}{\longrightarrow} \underbrace{q_t \stackrel{\beta}{\Longrightarrow} q_m}_{L_{lm}(R \setminus \{q_n\})}$$

- $L_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ (sólo estados en } R).$
- $I_n(R) := \text{de } q_n$ a sí mismo sin repetirlo (sólo estados en R).
- $F_{nm}(R) := \text{de } q_n \text{ a } q_m \text{ sin repetir } q_n \text{ (sólo estados en } R).$

$$q_n \xrightarrow{a\beta} q_m \longrightarrow q_n \xrightarrow{a} \underbrace{q_t \xrightarrow{\beta} q_m}_{L_{tm}(R \setminus \{q_n\})}$$

De igual modo,

$$F_{nm}(R) := \sum_{q_n \xrightarrow{a} q_t} a L_{tm}(R \setminus \{q_n\}) \qquad (n \neq t, m)$$

No olvidar los casos base

Algoritmo recursivo de Kleene

$$L_{nm}(R) := \emptyset$$
 si q_n ó q_m no están en R
 $L_{nn}(R) := I_n(R)^*$
 $L_{nm}(R) := I_n(R)^* F_{nm}(R)$ si $n \neq m$
 $I_n(R) := \sum_{\substack{q_n \stackrel{a}{\longrightarrow} q_t \\ q_s \stackrel{b}{\longrightarrow} q_n}} a \, L_{ts}(R \setminus \{q_n\}) \, b \, + \sum_{\substack{q_n \stackrel{c}{\longrightarrow} q_n \\ q_s \stackrel{b}{\longrightarrow} q_n}} c \quad (n \neq t, s)$
 $F_{nm}(R) := \sum_{\substack{q_n \stackrel{a}{\longrightarrow} q_t \\ q_s \stackrel{c}{\longrightarrow} q_n}} a \, L_{tm}(R \setminus \{q_n\}) \qquad (n \neq t, m)$

$$L_{nm}(R) := \emptyset \quad \text{si } \{q_n, q_m\} \nsubseteq R$$
 $L_{nn}(R) := I_n(R)^*$
 $L_{nm}(R) := I_n(R)^* F_{nm}(R) \quad \text{si } n \neq m$

$$I_n(R) := \sum_{\substack{q_n \stackrel{a}{\longrightarrow} q_t \ q_s \stackrel{b}{\longrightarrow} q_n}} a L_{ts}(R \setminus \{q_n\}) b + \sum_{\substack{q_n \stackrel{c}{\longrightarrow} q_n \ q_s \stackrel{d}{\longrightarrow} q_n}} c$$
 $F_{nm}(R) := \sum_{\substack{m \in I \ q_n \\ m \in I}} a L_{tm}(R \setminus \{q_n\}) \qquad (n \neq t, s, m)$

 $q_n \xrightarrow{a} q_t$