

SEQUENCE LISTING

<110> DeliaTroph Pharmaceuticals Inc.
Frost, Gregory I.
Kundu, Anirban
Bookbinder, Louis H.

<120> HUMAN CHONDROITINASE GLYCOPROTEIN (CHASEGP), PROCESS FOR PREPARING THE SAME, AND PHARMACEUTICAL COMPOSITIONS COMPRISING THEREOF

<130> DELIA1330WO

<150> US 60/433,532
<151> 2002-12-16

<160> 10

<170> PatentIn version 3.1

<210> 1
<211> 481
<212> PRT
<213> Homo sapiens

<400> 1

Met Lys Val Leu Ser Glu Gly Gln Leu Lys Leu Cys Val Val Gln Pro
1 5 10 15

Val His Leu Thr Ser Trp Leu Leu Ile Phe Phe Ile Leu Lys Ser Ile
20 25 30

Ser Cys Leu Lys Pro Ala Arg Leu Pro Ile Tyr Gln Arg Lys Pro Phe
35 40 45

Ile Ala Ala Trp Asn Ala Pro Thr Asp Gln Cys Leu Ile Lys Tyr Asn
50 55 60

Leu Arg Leu Asn Leu Lys Met Phe Pro Val Ile Gly Ser Pro Leu Ala
65 70 75 80

Lys Ala Arg Gly Gln Asn Val Thr Ile Phe Tyr Val Asn Arg Leu Gly
85 90 95

Tyr Tyr Pro Trp Tyr Thr Ser Gln Gly Val Pro Ile Asn Gly Gly Leu
100 105 110

Pro Gln Asn Ile Ser Leu Gln Val His Leu Glu Lys Ala Asp Gln Asp
115 120 125

Ile Asn Tyr Tyr Ile Pro Ala Glu Asp Phe Ser Gly Leu Ala Val Ile
130 135 140

Asp Trp Glu Tyr Trp Arg Pro Gln Trp Ala Arg Asn Trp Asn Ser Lys
145 150 155 160

Asp Val Tyr Arg Gln Lys Ser Arg Lys Leu Ile Ser Asp Met Gly Lys
165 170 175

Asn Val Ser Ala Thr Asp Ile Glu Tyr Leu Ala Lys Val Thr Phe Glu
180 185 190

Glu Ser Ala Lys Ala Phe Met Lys Glu Thr Ile Lys Leu Gly Ile Lys
195 200 205

Ser Arg Pro Lys Gly Leu Trp Gly Tyr Tyr Leu Tyr Pro Asp Cys His
210 215 220

Asn Tyr Asn Val Tyr Ala Pro Asn Tyr Ser Gly Ser Cys Pro Glu Asp
225 230 235 240

Glu Val Leu Arg Asn Asn Glu Leu Ser Trp Leu Trp Asn Ser Ser Ala
245 250 255

Ala Leu Tyr Pro Ser Ile Cys Val Trp Lys Ser Leu Gly Asp Ser Glu
260 265 270

Asn Ile Leu Arg Phe Ser Lys Phe Arg Val His Glu Ser Met Arg Ile
275 280 285

Ser Thr Met Thr Ser His Asp Tyr Ala Leu Pro Val Phe Val Tyr Thr
290 295 300

Arg Leu Gly Tyr Arg Asp Glu Pro Leu Phe Phe Leu Ser Lys Gln Asp
305 310 315 320

Leu Val Ser Thr Ile Gly Glu Ser Ala Ala Leu Gly Ala Ala Gly Ile
325 330 335

Val Ile Trp Gly Asp Met Asn Leu Thr Ala Ser Lys Ala Asn Cys Thr
340 345 350

Lys Val Lys Gln Phe Val Ser Ser Asp Leu Gly Ser Tyr Ile Ala Asn
355 360 365

Val Thr Arg Ala Ala Glu Val Cys Ser Leu His Leu Cys Arg Asn Asn
370 375 380

Gly Arg Cys Ile Arg Lys Met Trp Asn Ala Pro Ser Tyr Leu His Leu
385 390 395 400

Asn Pro Ala Ser Tyr His Ile Glu Ala Ser Glu Asp Gly Glu Phe Thr
405 410 415

Val Lys Gly Lys Ala Ser Asp Thr Asp Leu Ala Val Met Ala Asp Thr
420 425 430

Phe Ser Cys His Cys Tyr Gln Gly Tyr Glu Gly Ala Asp Cys Arg Glu
435 440 445

Ile Lys Thr Ala Asp Gly Cys Ser Gly Val Ser Pro Ser Pro Gly Ser
450 455 460

Leu Met Thr Leu Cys Leu Leu Leu Ala Ser Tyr Arg Ser Ile Gln
465 470 475 480

Leu

<210> 2
<211> 481
<212> PRT
<213> Mus musculus

<220>
<221> SIGNAL
<222> (1)..(34)
<223>

<400> 2

Met Gln Leu Leu Pro Glu Gly Gln Leu Arg Leu Cys Val Phe Gln Pro
1 5 10 15

Val His Leu Thr Ser Gly Leu Leu Ile Leu Phe Ile Leu Lys Ser Ile
20 25 30

Ser Ser Leu Lys Pro Ala Arg Leu Pro Val Tyr Gln Arg Lys Pro Phe
35 40 45

Ile Ala Ala Trp Asn Ala Pro Thr Asp Leu Cys Leu Ile Lys Tyr Asn
50 55 60

Leu Thr Leu Asn Leu Lys Val Phe Gln Met Val Gly Ser Pro Arg Leu
65 70 75 80

Lys Asp Arg Gly Gln Asn Val Val Ile Phe Tyr Ala Asn Arg Leu Gly

85

90

95

Tyr Tyr Pro Trp Tyr Thr Ser Glu Gly Val Pro Ile Asn Gly Gly Leu
100 105 110

Pro Gln Asn Thr Ser Leu Gln Val His Leu Lys Gly Ala Gly Gln Asp
115 120 125

Ile Asn Tyr Tyr Ile Pro Ser Glu Asn Phe Ser Gly Leu Ala Val Ile
130 135 140

Asp Trp Glu Tyr Trp Arg Pro Gln Trp Ala Arg Asn Trp Asn Thr Lys
145 150 155 160

Asp Ile Tyr Arg Gln Lys Ser Arg Thr Leu Ile Ser Asp Met Lys Glu
165 170 175

Asn Ile Ser Ala Ala Asp Ile Glu Tyr Ser Ala Lys Ala Thr Phe Glu
180 185 190

Lys Ser Ala Lys Ala Phe Met Glu Glu Thr Ile Lys Leu Gly Ser Lys
195 200 205

Ser Arg Pro Lys Gly Leu Trp Gly Tyr Tyr Leu Tyr Pro Asp Cys His
210 215 220

Asn Tyr Asn Val Tyr Ala Thr Asn Tyr Thr Gly Ser Cys Pro Glu Glu
225 230 235 240

Glu Val Leu Arg Asn Asn Asp Leu Ser Trp Leu Trp Asn Ser Ser Thr
245 250 255

Ala Leu Tyr Pro Ala Val Ser Ile Arg Lys Ser Phe Ala Asp Ser Glu
260 265 270

Asn Thr Leu His Phe Ser Arg Phe Arg Val Arg Glu Ser Leu Arg Ile
275 280 285

Ser Thr Met Thr Ser Gln Asp Tyr Ala Leu Pro Val Phe Val Tyr Thr
290 295 300

Gln Leu Gly Tyr Lys Glu Glu Pro Leu Leu Phe Pro Phe Lys Gln Asp
305 310 315 320

Leu Ile Ser Thr Ile Gly Glu Ser Ala Ala Leu Gly Ala Ala Gly Ile
325 330 335

Val Val Trp Gly Asp Met Asn Leu Thr Ser Ser Glu Glu Asn Cys Thr
 340 345 350

Lys Val Asn Arg Phe Val Asn Ser Asp Phe Gly Ser Tyr Ile Ile Asn
 355 360 365

Val Thr Arg Ala Ala Glu Val Ser Ser Arg His Leu Cys Lys Asn Asn
 370 375 380

Gly Arg Cys Val Arg Lys Thr Trp Lys Ala Ala His Tyr Leu His Leu
 385 390 395 400

Asn Pro Ala Ser Tyr His Ile Glu Ala Ser Glu Asp Gly Glu Phe Ile
 405 410 415

Val Arg Gly Arg Ala Ser Asp Thr Asp Leu Ala Val Met Ala Glu Asn
 420 425 430

Phe Leu Cys His Cys Tyr Glu Gly Tyr Glu Gly Ala Asp Cys Arg Glu
 435 440 445

Met Thr Glu Ala Ser Gly Pro Ser Gly Leu Ser Leu Ser Ser Ser Ser
 450 455 460

Val Ile Thr Leu Cys Leu Leu Val Leu Ala Gly Tyr Gln Ser Ile Gln
 465 470 475 480

Leu

<210> 3
 <211> 2414
 <212> DNA
 <213> Homo sapiens

<400> 3		
cgcccgggca ggtcttatt ttatattgc tatctatssc ttttcctttt tttttttttt	60	
tttttgagat gaagtcttac tctgttgcggc aggctggagt gtagtgggt gatctcggct	120	
cgctgcagcc actgcctcct gggttcaggt gattctcctg acttagcctc ctgagtggt	180	
gggactgcag gagcatgccca tcatgccag ctgatttttg tatttttagt agagatgggg	240	
tttcaccgtg ttggccagaa tggtttgcatt tcctgacctc aagtgatctg cctgcctcag	300	
cctcccaaaa tgttgggtac aggggtgagc caccgtgcct tgctattaat gccatctatt	360	
tcactgaaga ttccgcctct catttcttga gtcattttt ttaaatttcc ttaaatttggaa	420	

cttcacattt	tctgatgcct	ccttgtttag	cttaataact	gaccttctga	attcttttt	480
aggaaaatca	ggaatttctt	cttgggttgg	agccattgct	ggacatcctt	tgccattcaa	540
cctctgattt	gcacaagggt	actaaaggac	cagcagcaaa	caaaacgttt	ggtcttctag	600
agtgcactaa	agcagaagat	acgtaacatt	tttatcttac	catgaaagta	ttatctgaag	660
gacagttaaa	gctttgtgtt	gttcaaccag	tacatctcac	ttcatggctc	cttataatttt	720
ttattctaaa	gtctatctct	tgtctaaaac	ctgctcgact	tccaatttat	caaaggaaac	780
ctttatagc	tgcttggaaat	gctccaacag	atcagtgttt	gataaaatat	aatttaagac	840
taaatttgaa	aatgtttcct	gtgattggaa	gcccaactggc	caaggccagg	gggcaaaatg	900
tcactatatt	ttatgtcaac	agattgggat	actatccgtg	gtatacatca	caggggtcc	960
ccattaatgg	aggctccc	cagaacataa	gtttacaagt	acatctggaa	aaagctgacc	1020
aagatattaa	ttattacatc	cctgctgaag	atttcagtgg	acttgctgtt	atagattggg	1080
aatattggag	accacagtgg	gcccgaaact	ggaactcaaa	agatgtttac	agacagaagt	1140
caagaaagct	tattccgat	atggaaaga	atgtatcagc	taccgatatt	gaatatttag	1200
ccaaagtgac	ctttgaagaa	agtcaaaag	cttcatgaa	ggaaaccatc	aaattggaa	1260
ttaagagccg	acccaaaggc	ctttgggtt	attattata	tcctgattgc	cacaattata	1320
acgtttatgc	cccaaactac	tctgggtcat	gcccagaaga	cgaagtctt	aggaacaatg	1380
agctctctt	gctctggAAC	agcagtgtg	ctttatatcc	ttctatctgt	gtctggaaat	1440
cccttggaga	cagtggaaac	atttgcgt	tctccaaatt	tcgggtgcata	aatccatga	1500
ggatctccac	catgacatct	catgattatg	ctctgcctgt	atttgctac	acaaggctag	1560
ggtacagaga	tgaaccttta	ttttccctt	ctaagcaaga	tctagtcagc	accataggag	1620
aaagtgtgc	cttgggagct	gcaggcatg	ttatttgggg	agacatgaat	ttaactgcata	1680
ccaaggccaa	ctgtacaaag	gtgaagcagt	ttgtgagttc	tgatttaggg	agctacatag	1740
ccaatgtgac	cagagctgct	gaggtatgca	gccttcaccc	ctgcaggaac	aatggcaggt	1800
gcataaggaa	gatgtggAAC	gcgcccagtt	accttcactt	gaaccctgca	agttaccaca	1860
tagaggcctc	tgaggacggg	gagtttactg	tgaaaggaaa	agcatctgat	acagacctgg	1920
cagtgtatggc	agatacattt	tcctgtcatt	gttattcaggg	atatgaagga	gctgattgcata	1980
gagaaataaa	gacggctgat	ggctgctctg	gggtttcccc	ttctcctgg	tcactaatga	2040
cactttgtct	actgtttta	gcaagttatc	gaagcattca	gttgtgagat	aattgagttt	2100
aaagggaatt	gtgtggcctc	tagcctagtc	attaaagaa	ggatgtact	tataacattt	2160
tttttcttt	atgaattcta	ttgagagata	ttataagttag	acattatgt	tgtcacttaa	2220

cataaacaga aacattattt tatttgccctc cagtctggct aggaaaccag atctgggta	2280
aagtcaatgt acacttcctc cttattggaa tatttaagtt gcatttaaac taaaactagt	2340
ataatttagt cttttcatga atgtacatac ataaaattat acataaaaat attaaattat	2400
tcatttcaaa aaaa	2414

<210> 4	
<211> 3255	
<212> DNA	
<213> Mus musculus	
 <400> 4	
tggctctgga gcaggtgaat aaaggaccag caggcaaaca aaagcaaagg ttttaaaca	60
tagtttatca cagctgttct gctgagagga gagtggctt ttcactaact ccagtctata	120
tgtggcaaac ctgtctccac ccaaggaata gctattcacc ttttcgcta actggaagag	180
tgaaccaaag aggccctttg gattacgttg aagaaaaggt agtgaaggtt ctatcttac	240
atgcaactat tgcctgaagg acaattaaga ctctgtgtt ttcaaccagt acatcttaca	300
tcggggctgc tcatacttt tatcctgaag tctatctcat ccctaaaacc tgcccgactt	360
ccagtttatac aaaggaaacc ttttattgtc gcttggaaatg ctccaacaga cctgtgtttg	420
ataaaaatata attaaacact gaactaaaaa gtgttcaga tggttggaaag ccctcggtc	480
aaagacaggg ggcaaaatgt tgttatattt tatgccaaca gattgggata ttacccatgg	540
tatacatcag aagggttacc catcaatggc ggtcttcccc aaaacacaag cttacaagta	600
cacctgaaag gggctggcca ggatattaat tattacatcc cttctgaaaa tttcagtgg	660
cttgctgtta tagactggga atattggcgc ccacagtggg cccggaactg gaacacaaaag	720
gatatctaca gacagaagtc aagaactttt atttctgata tgaaagagaa catatctgt	780
gctgatattg aatattcagc caaggcaact tttgagaaaa gtgcaaaagc tttcatggag	840
gaaactatca aattgggaag taagagcaga cccaaaggcc tttgggtta ttattnat	900
cctgattgcc acaattataa tgtttatgcc acaaactata ctgggtcatg cccagaagag	960
gaagtttga ggaacaatga cctctctgg ctctggaca gcagtacagc cctgtatcct	1020
gctgtcagta ttaggaaatc cttgcagac agtggaaaca ctttgcactt ctcacgattt	1080
cgggtgcgtg aatcactgag gatttccacc atgacatcac aggattatgc tctgcctgta	1140
tttgcatac cacagctggg ctacaaagag gaaccttac tttcccttt taagcaagat	1200
ctaatttagta ccataggaga aagtgcgtcg ttggagcgg caggcattgt ttttgggaa	1260
gacatgaatt taacttcatc tgaggagaac tgtacgaaag tgaaccgctt tgtgaattct	1320
gattttggca gctacataat caatgtgacc agagcagctg aggtgtccag tcgtcacctt	1380

tgcaagaata atgggaggtg tgtacggaag acatggaaag cagtcatta cctccattt	1440
aaccctgcaa gttaccacat agaggcctct gaggatggag aattcatagt gaggggaaga	1500
gcatcagaca ctgacctagc tgtatggca gagaattcc tatgtcactg ttatgaggga	1560
tatgaggggg ctgactgttag agaaatgaca gaggccagtg gcccctcggg gctttccctt	1620
tcctctagct ctgtaataac actgtgtctg ctagttctag caggttatca aagcattcag	1680
ttgtgacata attgacttta aaggaaatcg catcctttta aaaagggtgt taggaaacag	1740
atagacactc ttctctctta ggagttcctc tgagaggcct tataaatcaa catatgtgtc	1800
acaacataaa tagaacctgt taccttattt gctacacttt gtttagagcc agctttaaaa	1860
gaaccaaagca atgcacacca ttttcttact tgagtattt aattacactt aaattgaatt	1920
ttattctctt tctaattata taaacaccag tgtatacatg aatactaagt ttgttatttc	1980
aagcacattt tctaggttagc agtttaagga ctggttacaa tgtaaccacc tcattcaaca	2040
gatggatcaa ctcagccatg acccagtcaa ctaattcattc agagaaggtg aaatgcaggg	2100
ctactgtgcc agcctccccct tcacttgtat ctgtttccct gatggaggac agggttacta	2160
ccggtatggt ttcttaggaa agagaggtca gggacctggt tccaattcat cgcaaccatc	2220
aacctcttcc ttcatagacc ctaccagttt gcaaaccaca aaaaagggtcc aggattcatt	2280
gagctgtaga tccaaaagct gtatgtatgg tgactttga aagtgaaacc ttttatttaa	2340
tgaaaagtaa gttataagga aaatcagcta ctctgccttc ctctgctgcc catatcattt	2400
tgagtagtat acttggattt agaatccatt tgaacctgat ttaaatcatg cttccacaa	2460
tttatgtgtg gtataaatct tagcaaattt tttataatcc ctttttcca tctgaaattt	2520
ggtagtataa ttttatctta acaaatttagc acaggaattt gctctgcaact cctgggtct	2580
tagtgatgta agggatgcag gacaatctt tggtcaccaa agagaagtca agctgttcc	2640
ttccatggcc agggaccatt tatcatcaact tagacattgt gttgtggct tgagcgacac	2700
tctcagggga tacggtttc actccataaa gataatttag tggaaaaga agctcagaag	2760
tgatatgatg atgctgttaa agaagggcac caccactga tgtcttctct ttcttaactc	2820
tttcaactca ggatccctgc ttgccagagg tgactgtgaa agcttaattt tgaaatgtac	2880
gatacaaaca aacaaggctt taataataact gtgaatgaaa gttatgtta aatacataga	2940
ttagctattt agaaattaaa ttaatttttata tatgaaagta gatgtgatta gcactataga	3000
acatttacac aactttaata ataaccaaag aaatcaccaa caaacccta ccatatgctg	3060
gtaacttttg gtgtactatt tactaatatt tcttgtaaaa tgattttgtt attattgttg	3120
taattatatt ttatgatctg tgttcaatt tatgtgtga gtggtttca tatcatttca	3180
taatattcat gcatatttttaaaaaatctt ttctcttcc agtagaggga taaaaggtaa	3240

agatttatac aaacc

3255

<210> 5
 <211> 1269
 <212> DNA
 <213> Homo sapiens

<400> 5
 ctaaaacctg ctcgacttcc aatttatcaa aggaaacctt ttatagctgc ttggaatgct 60
 ccaacagatc agtgtttgat aaaatataat ttaagactaa atttggaaat gttcctgtg 120
 attggaagcc cactggccaa ggccaggggg caaaatgtca ctatatttta tgtcaacaga 180
 ttgggatact atccgtggta tacatcacag ggggtccccca ttaatggagg tctcccacag 240
 aacataagtt tacaagtaca tctggaaaaa gctgaccaag atattaatta ttacatccct 300
 gctgaagatt tcagtggact tgctgtata gattgggaat attggagacc acagtggcc 360
 cggaactgga actcaaaaga tgtttacaga cagaagtcaa gaaagcttat ttccgatatg 420
 gaaaaagaatg ttcagctac cgatattgaa tatttagcca aagtgaccc ttacatccct 480
 gcaaaagctt tcatgaagga aaccatcaa ttgggaatta agagccgacc caaaggcctt 540
 tggggttatt atttatatcc tgattgccac aattataacg tttatgcccc aaactactct 600
 gggtcatgcc cagaagacga agtcttgagg aacaatgagc tctcttgct ctggAACAGC 660
 agtgctgctt tatatccttc tatctgtgtc tggaaatccc ttggagacag tggaaacatt 720
 ttgcgttctt ccaaatttcg ggtgcattgaa tccatgagga tctccaccat gacatctcat 780
 gattatgctc tgcctgtatt tgtctacaca aggctagggt acagagatga acctttattt 840
 ttccttcata agcaagatct agtcagcacc ataggagaaa gtgctgcctt gggagctgca 900
 ggcattgtta tttggggaga catgaattt actgcatttca aggccaactg tacaagggtg 960
 aaggcatttt tgagttctga ttttagggagg tacatagccca atgtgaccag agctgctgag 1020
 gtatgcagcc ttcacctctg caggaacaat ggcagggtgca taaggaagat gtggAACGCG 1080
 cccagttacc ttcacttgaa ccctgcaagt taccacatag aggctctga ggacggggag 1140
 ttactgtga aaggaaaaagc atctgataca gacctggcag tggatggcaga tacattttcc 1200
 tgcattgtt atcaggata tgaaggagct gattgcagag aaataaagac ggctgatggc 1260
 tgctctggg 1269

<210> 6
 <211> 423
 <212> PRT
 <213> Homo sapiens

<400> 6

Leu Lys Pro Ala Arg Leu Pro Ile Tyr Gln Arg Lys Pro Phe Ile Ala
1 5 10 15

Ala Trp Asn Ala Pro Thr Asp Gln Cys Leu Ile Lys Tyr Asn Leu Arg
20 25 30

Leu Asn Leu Lys Met Phe Pro Val Ile Gly Ser Pro Leu Ala Lys Ala
35 40 45

Arg Gly Gln Asn Val Thr Ile Phe Tyr Val Asn Arg Leu Gly Tyr Tyr
50 55 60

Pro Trp Tyr Thr Ser Gln Gly Val Pro Ile Asn Gly Gly Leu Pro Gln
65 70 75 80

Asn Ile Ser Leu Gln Val His Leu Glu Lys Ala Asp Gln Asp Ile Asn
85 90 95

Tyr Tyr Ile Pro Ala Glu Asp Phe Ser Gly Leu Ala Val Ile Asp Trp
100 105 110

Glu Tyr Trp Arg Pro Gln Trp Ala Arg Asn Trp Asn Ser Lys Asp Val
115 120 125

Tyr Arg Gln Lys Ser Arg Lys Leu Ile Ser Asp Met Gly Lys Asn Val
130 135 140

Ser Ala Thr Asp Ile Glu Tyr Leu Ala Lys Val Thr Phe Glu Glu Ser
145 150 155 160

Ala Lys Ala Phe Met Lys Glu Thr Ile Lys Leu Gly Ile Lys Ser Arg
165 170 175

Pro Lys Gly Leu Trp Gly Tyr Tyr Leu Tyr Pro Asp Cys His Asn Tyr
180 185 190

Asn Val Tyr Ala Pro Asn Tyr Ser Gly Ser Cys Pro Glu Asp Glu Val
195 200 205

Leu Arg Asn Asn Glu Leu Ser Trp Leu Trp Asn Ser Ser Ala Ala Leu
210 215 220

Tyr Pro Ser Ile Cys Val Trp Lys Ser Leu Gly Asp Ser Glu Asn Ile
225 230 235 240

11/12

Leu Arg Phe Ser Lys Phe Arg Val His Glu Ser Met Arg Ile Ser Thr
245 250 255

Met Thr Ser His Asp Tyr Ala Leu Pro Val Phe Val Tyr Thr Arg Leu
260 265 270

Gly Tyr Arg Asp Glu Pro Leu Phe Phe Leu Ser Lys Gln Asp Leu Val
275 280 285

Ser Thr Ile Gly Glu Ser Ala Ala Leu Gly Ala Ala Gly Ile Val Ile
290 295 300

Trp Gly Asp Met Asn Leu Thr Ala Ser Lys Ala Asn Cys Thr Lys Val
305 310 315 320

Lys Gln Phe Val Ser Ser Asp Leu Gly Ser Tyr Ile Ala Asn Val Thr
325 330 335

Arg Ala Ala Glu Val Cys Ser Leu His Leu Cys Arg Asn Asn Gly Arg
340 345 350

Cys Ile Arg Lys Met Trp Asn Ala Pro Ser Tyr Leu His Leu Asn Pro
355 360 365

Ala Ser Tyr His Ile Glu Ala Ser Glu Asp Gly Glu Phe Thr Val Lys
370 375 380

Gly Lys Ala Ser Asp Thr Asp Leu Ala Val Met Ala Asp Thr Phe Ser
385 390 395 400

Cys His Cys Tyr Gln Gly Tyr Glu Gly Ala Asp Cys Arg Glu Ile Lys
405 410 415

Thr Ala Asp Gly Cys Ser Gly
420

<210> 7
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> NHECHASEGP Forward Primer

<400> 7
ggccgctagc atgaaaagtat tatctgaagg acag

34

<210> 8

<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> BAMH1CHASEGP Reverse Primer

<400> 8
ggaatggatc ctcacaactg aatgcttcg

29

<210> 9
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> CHASEGPSTOPBAMH1 Reverse Primer

<400> 9
aattggatcc tcacccagag cagccatc

28

<210> 10
<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> CHASEGP455STOP BAMH1 Reverse Primer

<400> 10
aattggatcc tcagcagcca tcagccg

27