Index

Matrix MultiplicationVisual Understanding

Preliminary

- Diagonal Vector
- $\sigma(sigma), \tau(tau), \phi(phi), \psi(psi)$
- Element-wise op. in HE

• Algorithm

- Linear Transformation
- Homomorphic MM
- Improvements

Advanced Options

Matrix Transposition

- Rectangular MM
- Parallel Matrix Computation

5 Implementation

Visual Understanding

Α		
1	2	3
4	5	6
7	8	9

3 × 3 행렬

 1
 2
 3

 4
 5
 6

 7
 8
 9

X

В

3 × 3 행렬

Visual Understanding

Α		
1	2	3
4	5	6
7	8	9
A[0][]		

В		
1	2	3
4	5	6
7	8	9
B[][0]		

X

Visual Understanding

Α		
1	2	3
4	5	6
7	8	9
A[0][]		

X

Visual Understanding

→ Element wise representation?

 \rightarrow

Visual Understanding

X

	Α	
a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

 $egin{array}{c|cccc} b_0 & b_1 & b_2 \\ \hline b_3 & b_4 & b_5 \\ \hline b_6 & b_7 & b_8 \\ \hline \end{array}$

В

 \rightarrow

Visual Understanding

X

Α

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

В

b_0	b_1	b_2
b_3	b_4	b_5
b_6	b_7	b_8

a_0	a_1	a_2
a_4	a_5	a_3
a_8	a_6	a_7

a_1	a_2	a_0
a_5	a_3	a_4
a_6	a_7	a_8

	~3	~ /	~ 2
0	b_6	b_1	b_5
	b_0	b_4	b_8

a_2	a_0	a_1
a_3	a_4	a_5
a_7	a_8	a_6

sum

a_0	a_1	a_2
a_4	a_5	a_3
a_8	a_6	a_7

a_1	a_2	a_0
a_5	a_3	a_4
a_6	a_7	a_8

a_2	a_0	a_1
a_3	a_4	a_5
a_7	a_8	a_6

a_0	a_1	a_2

a_1	a_2	a_0

a_2	a_0	a_1

a_4	a_5	a_3

a_5	a_3	a_4

a_3	a_4	a_5

a_8	a_6	a_7

a_0	a_1	a_2
a_4	a_5	a_3
a_8	a_6	a_7

a_1	a_2	a_0
a_5	a_3	a_4
a_6	a_7	a_8

a_2	a_0	a_1
a_3	a_4	a_5
a_7	a_8	a_6

a_0	a_1	a_2
a_1	a_2	a_0
a_2	a_0	a_1

b_0	b_4	b_8
b_3	b_7	b_2
b_6	b_1	b_5

b_3	b ₇	b_2
b_6	b_1	b_5
b_0	b_4	b_8

b_6	b_1	b_5
b_0	b_4	b_8
b_3	b_7	b_2

b_0	
b_3	
b_6	

b_3	
b_6	
b_0	

b_6	
b_0	
b_3	

b_4	
b_7	
b_1	

b_7	
b_1	
b_4	

	b_1	
	b_4	
	b ₇	

	b_8
	b_2
	b_5

	b_2
	b_5
	b_8

	b_5
	b_8
	b_2

Visual Understanding

1	Λ	
ı		١.

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

В

	b_0	b_1	b_2
×	b_3	b_4	b_5
	b_6	b_7	b_8

Visual Understanding

Α

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

В

	b_0	b_1	b_2
Κ	b_3	b_4	b_5
	b_6	b_7	b_8

a_0	a_1	a_2
a_4	a_5	a_3
a_8	a_6	a_7

a_1	a_2	a_0
a_5	a_3	a_4
a_6	a_7	a_8

a_2	a_0	a_1
a_3	a_4	a_5
a_7	a_8	a_6

b_0	b_4	b_8
b_3	b_7	b_2
b_6	b_1	b_5

b_3	b_7	b_2
b_6	b_1	b_5
b_0	b_4	b_8

 \odot

b_6	b_1	b_5
b_0	b_4	b_8
b_3	b_7	b_2

Visual Understanding

a_0	a_1	a_2
a_4	a_5	a_3
a_8	a_6	a_7

	b_6	b_1	b_5
)	b_0	b_4	b_8
	b_3	b_7	b_2

a_0	a_1	a_2	a_4	a_5	a_3	a_8	a_6	a_7
•								
b_0	b_4	b_8	b_3	b_7	b_2	b_6	b_1	b_5

+

a_1	a_2	a_0	a_5	a_3	a_4	a_6	a_7	a_8
•								
b_3	b_7	b_2	<i>b</i> ₆	b_1	b_5	b_0	b_4	b_8

+

a_2	a_0	a_1	a_3	a_4	a_5	a_7	a_8	a_6
•								
b_6	b_1	b_5	b_0	b_4	b_8	b_3	b_7	b_2

Diagonal Vector

Α

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

$$\boldsymbol{u_1} \quad \boxed{a_1 \quad a_5 \quad a_6}$$

$$u_2$$
 a_2 a_3 a_7

Diagonal Vector

Permutations – σ (sigma)

$$\sigma(A)_{i,j} = A_{i,i+j}$$

0 ←	a_0	a_1	a_2
1 ←	a_3	a_4	a_5
2 ←	a_6	a_7	a_8

a_0	a_1	a_2
a_4	a_5	a_3
a_8	a_6	a_7

Permutations $-\tau$ (tau)

$$\tau(A)_{i,j} = A_{i+j,i}$$

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

a_0	a_4	a_8
a_3	a_7	a_2
a_6	a_1	a_5

Permutations $\neg \phi$ (phi)

$$\phi(A)^k_{i,j} = A_{i,j+k}$$

k ←	a_0	a_1	a_2
k ←	a_3	a_4	a_5
k←	a_6	a_7	a_8

a_1	a_2	a_0
a_4	a_5	a_3
a_7	a_8	a_6

a_2	a_0	a_1
a_5	a_3	a_4
a_8	a_6	a_7

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

$$k = 1$$

$$k = 2$$

$$k = 3$$

Permutations $-\psi$ (psi)

$$\psi(A)^k_{i,j} = A_{i+k,j}$$

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

a_3	a_4	a_5
a_6	a_7	a_8
a_0	a_1	a_2

a_6	a_7	a_8
a_0	a_1	a_2
a_3	a_4	a_5

a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

$$\uparrow \qquad \uparrow \qquad \uparrow \\
k \qquad k \qquad k$$

$$k = 1$$

$$k = 2$$

$$k = 3$$

Permutations

q	$\phi(A)^k$	$E_{i,j} = E_{i,j}$	$A_{i,j+k}$	ı	$p(A)^{l}$	$i_{i,j} =$	$A_{i+k,j}$
k ←	a_0	a_1	a_2		a_0	a_1	a_2
k ←		a_4	a_5				
k ←	a_6	a_7	a_8		a_6	a_7	a_8
					†	†	†
					k	k	k

Element-wise op. in HE

Addition(+)

Multiplication(⊙)

Rotation($\rho(a; l)$)

Linear Transformation (Algorithm 1)

목표: 벡터 내 원소의 순서를 변경

$$U \cdot \boldsymbol{m} = \sum_{0 \le l < n} \boldsymbol{u}_l \odot \rho(\boldsymbol{m}; l)$$

1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1
1	1	1	1	1	1	1	1	1

 9×9 행렬 U

 $egin{array}{c} a_0 \\ a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \\ a_7 \\ a_8 \\ \end{array}$

9×1 벡터 **m**

 $u_k = (1, 1, 1, 1, 1, 1, 1, 1, 1)$

$U \cdot m = \sum$	$\boldsymbol{u}_l \odot \rho(\boldsymbol{m};l)$
0≤l<1	n

1	1	1	1	1	1	1	1	1
1	Z	1	1	1	1	1	1	1
1	1	f	1	1	1	1	1	1
1	1	1	f	1	1	1	1	1
1	1	1	1	f	1	1	1	1
1	1	1	1	1	f	1	1	1
1	1	1	1	1	1	f	1	1
1	1	1	1	1	1	1	y	1
1	1	1	1	1	1	1	1	1

$$\mathbf{u}_{0} \odot \rho(\mathbf{m}; \mathbf{0}) \\
= (1,1,1,1,1,1,1,1,1) \odot (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) \\
= (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

 $u_k = (1, 1, 1, 1, 1, 1, 1, 1, 1)$

$U \cdot m = \sum$	$\boldsymbol{u}_l \odot \rho(\boldsymbol{m};l)$
0≤l<1	n

a_0	1	1	1	1	1	1	1	1
1	a_1	1	1	1	1	1	1	1
1	1	a_2	1	1	1	1	1	1
1	1	1	a_3	1	1	1	1	1
1	1	1	1	a_4	1	1	1	1
1	1	1	1	1	a_5	1	1	1
1	1	1	1	1	1	a_6	1	1
1	1	1	1	1	1	1	a_7	1
1	1	1	1	1	1	1	1	a_8

$$\mathbf{u}_{0} \odot \rho(\mathbf{m}; \mathbf{0}) \\
= (1,1,1,1,1,1,1,1,1) \odot (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) \\
= (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
-------	-------	-------	-------	-------	-------	-------	-------	-------

$U \cdot \mathbf{m} = \sum_{0 \le l < n} \mathbf{u}_l \odot \rho(\mathbf{m}; l)$

a_0	1	1	1	1	1	1	1	1
1	a_1	Y	1	1	1	1	1	1
1	1	a_2	y	1	1	1	1	1
1	1	1	a_3	f	1	1	1	1
1	1	1	1	a_4	y	1	1	1
1	1	1	1	1	a_5	f	1	1
1	1	1	1	1	1	a_6	y	1
1	1	1	1	1	1	1	a_7	y
1	1	1	1	1	1	1	1	a_8

$$u_{k} = (1,1,1,1,1,1,1,1,1)$$

$$u_{0} \odot \rho(\mathbf{m}; \mathbf{0})$$

$$= (1,1,1,1,1,1,1,1,1) \odot (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$= (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$u_{1} \odot \rho(\mathbf{m}; \mathbf{1})$$

$$= (1,1,1,1,1,1,1,1,1) \odot (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

$$= (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

$$\begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \end{bmatrix}$$

Linear Transformation (Algorithm 1)

a_0	a_1	1	1	1	1	1	1	1
a_0	a_1	a_2	1	1	1	1	1	1
1	1	a_2	a_3	1	1	1	1	1
1	1	1	a_3	a_4	1	1	1	1
1	1	1	1	a_4	a_5	1	1	1
1	1	1	1	1	a_5	a_6	1	1
1	1	1	1	1	1	a_6	a_7	1
1	1	1	1	1	1	1	a_7	a_8
1	1	1	1	1	1	1	1	a _o

$$u_{k} = (1, 1, 1, 1, 1, 1, 1, 1, 1)$$

$$u_{0} \odot \rho(\mathbf{m}; \mathbf{0})$$

$$= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) \odot (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$= (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$u_{1} \odot \rho(\mathbf{m}; \mathbf{1})$$

$$= (1, 1, 1, 1, 1, 1, 1, 1, 1, 1) \odot (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

$$= (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

 $U \cdot \mathbf{m} = \sum_{l} \mathbf{u}_{l} \odot \rho(\mathbf{m}; l)$

$$\begin{bmatrix} a_0 & a_1 & a_2 & a_3 & a_4 & a_5 & a_6 & a_7 & a_8 \end{bmatrix}$$

Linear Transformation (Algorithm 1)

	$\boldsymbol{u}_l \odot \rho(\boldsymbol{m};l)$
0≤ <i>l</i> < <i>n</i>	

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8

$$u_{k} = (1,1,1,1,1,1,1,1,1)$$

$$u_{0} \odot \rho(\mathbf{m}; \mathbf{0})$$

$$= (1,1,1,1,1,1,1,1,1) \odot (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$= (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$u_{1} \odot \rho(\mathbf{m}; \mathbf{1})$$

$$= (1,1,1,1,1,1,1,1,1) \odot (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

$$= (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

 a_0 a_1 a_2 a_3 a_4 a_5 a_6 a_7 a_8

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8

$$u_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) + u_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}) + u_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}) + u_{3} \odot \rho(\mathbf{m}; 3) = (a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}) + u_{4} \odot \rho(\mathbf{m}; 4) = (a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}) + u_{5} \odot \rho(\mathbf{m}; 5) = (a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}) + u_{6} \odot \rho(\mathbf{m}; 6) = (a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}) + u_{7} \odot \rho(\mathbf{m}; 7) = (a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}) + u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$U \cdot \boldsymbol{m} = \sum_{0 \le l < n} \boldsymbol{u}_l \odot \rho(\boldsymbol{m}; l)$$

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8

$$u_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) + u_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}) + u_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}) + u_{3} \odot \rho(\mathbf{m}; 3) = (a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}) + u_{4} \odot \rho(\mathbf{m}; 4) = (a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}) + u_{5} \odot \rho(\mathbf{m}; 5) = (a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}) + u_{6} \odot \rho(\mathbf{m}; 6) = (a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}) + u_{7} \odot \rho(\mathbf{m}; 7) = (a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}) + u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$U \cdot \mathbf{m} = \sum_{0 \le l \le n} \mathbf{u}_l \odot \rho(\mathbf{m}; l)$$

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8

$$u_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) + u_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}) + u_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}) + u_{3} \odot \rho(\mathbf{m}; 3) = (a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}) + u_{4} \odot \rho(\mathbf{m}; 4) = (a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}) + u_{5} \odot \rho(\mathbf{m}; 5) = (a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}) + u_{6} \odot \rho(\mathbf{m}; 6) = (a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}) + u_{7} \odot \rho(\mathbf{m}; 7) = (a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}) + u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$U \cdot \mathbf{m} = \sum_{0 \le l \le n} \mathbf{u}_l \odot \rho(\mathbf{m}; l)$$

Linear Transformation (Algorithm 1)

$U \cdot m = \sum_{n=1}^{\infty}$	$\boldsymbol{u}_l \odot \rho(\boldsymbol{m};l)$
0≤ <i>l</i> < <i>n</i>	ļ.

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8

a_2
a_3
a_7

sigma matrix

 $U^{\sigma} \cdot \boldsymbol{m}$

 a_0

 a_1

 a_2

 a_4

 a_5

 a_3

 a_8

 a_6

 a_7

$$U \cdot \boldsymbol{m} = \sum_{0 \le l < n} \boldsymbol{u}_l \odot \rho(\boldsymbol{m}; l)$$

1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0

sigma matrix $LinTrans(ct. A; U^{\sigma})$

tau matrix LinTrans(ct. Β; <mark>U</mark>^τ)

0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0	0

phi matrix *LinTrans(ct. A0; V*¹)

0	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0

psi matrix
LinTrans(ct. B0; W¹)

Linear Transformation (Algorithm 1)

7	Ø	Ø	0	0	0	0	0	0
0	×	Ø	Ø	0	0	0	0	0
0	6	y	Ø	0	0	0	0	0
0	Ø	6	Ø	¥	0	0	0	0
0	0	ø	þ	ø	¥	Ø	0	0
0	0	0	¥	6	Ø	Ø	Ø	0
0	0	0	0	Q	0	Ø	0	7
0	0	0	0	0	Ø	7	Ø	0
0	0	0	0	0	0	0	+	0

sigma matrix
$LinTrans(ct. A; U^{\sigma})$

a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8

*	0	0	0	0	0	0	0	0
0	ø	0	0	y	0	0	Ó	0
0	0	Ø	0	0	Ø	0	0	1
0	0	0	f	0	0	Ø	0	0
0	Ø	0	0	ø	0	0	¥	0
0	0	¥	0	0	ø	0	0	0
O	0	0	Ø	0	0	f	0	0
0	7	0	0	Ø	0	0	ø	0
0	0	0	0	0	4	0	0	0

tau matrix $LinTrans(ct. B; U^{\tau})$

Linear Transformation (Algorithm 1)

0	1	0	0	0	0	0	0	0
0	0	y	0	0	0	0	0	0
1	0	0	8	0	0	0	0	0
0	0	0	0	Y	0	0	0	0
0	0	0	0	0	V	0	0	0
0	0	0	Y	0	0	9	0	0
0	0	0	0	0	0	0	1	0
0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	1	0	0

phi matrix
$LinTrans(ct. A0; V^1)$

0	0	0	/	0	0	0	0	0
0	0	0	0	7	0	0	0	0
0	0	0	0	0	7	0	0	0
0	0	0	0	0	0	7	0	0
0	0	0	0	0	0	0	7	0
0	0	0	0	0	0	0	0	/
1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0
							_	

psi matrix
LinTrans(ct. B0; W¹)

Homomorphic Matrix Multiplication (Algorithm 2)

목표

a_0	a_1	a_2	a_4	a_5	a_3	a_8	a_6	a_7	· •	b_0	b_4	b_8	b_3	<i>b</i> ₇	b_2	b_6	b_1	b_5
a_1	a_2	a_0	a_5	a_3	a_4	a_6	a_7	a_8	0	b_3	<i>b</i> ₇	b_2	b_6	b_1	b_5	b_0	b_4	b_8
a_2	a_0	a_1	a_3	a_4	a_5	a_7	a_8	a_6	· •	b_6	b_1	b_5	b_0	b_4	b_8	b_3	<i>b</i> ₇	b_2

Homomorphic Matrix Multiplication (Algorithm 2)

목표

 \odot b_1 b_3 b_7 b_2 b_6 b_5 b_4 b_8 a_1 a_2 a_6 a_0 a_5 a_3 a_4 a_7

 \odot b_5 b_4 b_6 b_1 b_8 b_3 b_7 b_2 a_2 a_0 a_1 a_7 a_6 b_0 a_3 a_4 a_5 a_8

Homomorphic Matrix Multiplication (Algorithm 2)

목표

Homomorphic Matrix Multiplication (Algorithm 2)

목표

Homomorphic Matrix Multiplication (Algorithm 2)

```
Step 1
ct. A0 = LinTrans(ct. A; U^{\sigma})
ct. B0 = LinTrans(ct. B; U^{\tau})
Step 2
ct. Ak = LinTrans(ct. A0; V^{k})
ct. Bk = LinTrans(ct. B0; W^{k})
Step 3
ct. AB = \sum_{k=0}^{d-1} ct. Ak \odot ct. Bk
```


$$b_0 \mid b_1 \mid b_2 \mid b_3 \mid b_4 \mid b_5 \mid b_6 \mid b_7 \mid b_8 \mid \longleftarrow -3$$

									i	
$a \cdot h$	a_4b_7	a-h-	a.h.	a_{-h}	a - h -	a.h.	a.h.	a - h -	← ?	3
u_3v_6	$\mu_4 \nu_7$	$ u_5v_8 $	u_6v_0	$ u_7v_1 $	$\mu_8 \nu_2$	$ u_0v_3 $	$ u_1v_4 $	u_2v_5	•	_

$$\mathbf{u}_0 \odot \rho(\mathbf{m}; 0) = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8)$$

$$\mathbf{u}_1 \odot \rho(\mathbf{m}; 1) = (a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0)$$

$$\mathbf{u}_2 \odot \rho(\mathbf{m}; 2) = (a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0, a_1)$$

$$\mathbf{u}_3 \odot \rho(\mathbf{m}; 3) = (a_3, a_4, a_5, a_6, a_7, a_8, a_0, a_1, a_2)$$

$$\mathbf{u}_4 \odot \rho(\mathbf{m}; 4) = (a_4, a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3)$$

$$\mathbf{u}_5 \odot \rho(\mathbf{m}; 5) = (a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4)$$

$$\mathbf{u}_6 \odot \rho(\mathbf{m}; 6) = (a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5)$$

$$\mathbf{u}_7 \odot \rho(\mathbf{m}; 7) = (a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6)$$

$$\mathbf{u}_8 \odot \rho(\mathbf{m}; 8) = (a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$$

$$\rho(\mathbf{u}_0;0)\odot\rho(\mathbf{m};0)$$

$$\rho(\mathbf{u}_1;0) \odot \rho(\mathbf{m};1)$$

$$\rho(\boldsymbol{u}_2;0)\odot\rho(\boldsymbol{m};2)$$

$$\mathbf{u}_0 \odot \rho(\mathbf{m}; 0) = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8)$$

$$\mathbf{u}_1 \odot \rho(\mathbf{m}; 1) = (a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0)$$

$$\mathbf{u}_2 \odot \rho(\mathbf{m}; 2) = (a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0, a_1)$$

$$\mathbf{u}_3 \odot \rho(\mathbf{m}; 3) = (a_3, a_4, a_5, a_6, a_7, a_8, a_0, a_1, a_2)$$

$$\mathbf{u}_4 \odot \rho(\mathbf{m}; 4) = (a_4, a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3)$$

$$\mathbf{u}_5 \odot \rho(\mathbf{m}; 5) = (a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4)$$

$$\mathbf{u}_6 \odot \rho(\mathbf{m}; 6) = (a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5)$$

$$\mathbf{u}_7 \odot \rho(\mathbf{m}; 7) = (a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6)$$

$$\mathbf{u}_8 \odot \rho(\mathbf{m}; 8) = (a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$$

$$\rho(\mathbf{u}_0;0) \odot \rho(\mathbf{m};0)$$

$$\rho(\boldsymbol{u}_1;0) \odot \rho(\boldsymbol{m};1)$$

$$\rho(\boldsymbol{u}_2;0)\odot\rho(\boldsymbol{m};2)$$

$$\rho(\boldsymbol{u}_3; -3) \odot \rho(\boldsymbol{m}; 0)$$

$$\rho(\boldsymbol{u}_5; -3) \odot \rho(\boldsymbol{m}; 2)$$

$$\mathbf{u}_0 \odot \rho(\mathbf{m}; 0) = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8)$$

$$\mathbf{u}_1 \odot \rho(\mathbf{m}; 1) = (a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0)$$

$$\mathbf{u}_2 \odot \rho(\mathbf{m}; 2) = (a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0, a_1)$$

$$\mathbf{u}_3 \odot \rho(\mathbf{m}; 3) = (a_3, a_4, a_5, a_6, a_7, a_8, a_0, a_1, a_2)$$

$$\mathbf{u}_4 \odot \rho(\mathbf{m}; 4) = (a_4, a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3)$$

$$\mathbf{u}_5 \odot \rho(\mathbf{m}; 5) = (a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4)$$

$$\mathbf{u}_6 \odot \rho(\mathbf{m}; 6) = (a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5)$$

$$\mathbf{u}_7 \odot \rho(\mathbf{m}; 7) = (a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6)$$

$$\mathbf{u}_8 \odot \rho(\mathbf{m}; 8) = (a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$$

$$\rho(\boldsymbol{u}_0;0)\odot\rho(\boldsymbol{m};0)$$

$$\rho(\mathbf{u}_1;0) \odot \rho(\mathbf{m};1)$$

$$\rho(\boldsymbol{u}_2;0)\odot\rho(\boldsymbol{m};2)$$

$$\rho(\boldsymbol{u}_3; -3) \odot \rho(\boldsymbol{m}; 0)$$

$$\rho(\boldsymbol{u}_5; -3) \odot \rho(\boldsymbol{m}; 2)$$

$$\rho(\mathbf{u}_6; -6) \odot \rho(\mathbf{m}; 0)$$

$$\rho(\boldsymbol{u}_7; -6) \odot \rho(\boldsymbol{m}; 1)$$

$$\rho(\boldsymbol{u}_8; -6) \odot \rho(\boldsymbol{m}; 2)$$

$$\begin{array}{c}
\mathbf{u}_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) \\
\mathbf{u}_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}) \\
\mathbf{u}_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1})
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0) \\
\rho(\mathbf{u}_{1}; 0) \odot \rho(\mathbf{m}; 1) \\
\rho(\mathbf{u}_{2}; 0) \odot \rho(\mathbf{m}; 1)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; -0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; -0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; -0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; -0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; -0) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{c}
\rho(\mathbf{u}_{0}; -0) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{u}_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) \\
\mathbf{u}_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}) \\
\mathbf{u}_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1})
\end{array}$$

$$\begin{array}{l}
\mathbf{u}_{3} \odot \rho(\mathbf{m}; 3) = (a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}) \\
\mathbf{u}_{4} \odot \rho(\mathbf{m}; 4) = (a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}) \\
\mathbf{u}_{5} \odot \rho(\mathbf{m}; 5) = (a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4})
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0) \\
\mathbf{p}(\mathbf{u}_{1}; 0) \odot \rho(\mathbf{m}; 1) \\
\rho(\mathbf{u}_{2}; 0) \odot \rho(\mathbf{m}; 2)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0) \\
\mathbf{p}(\mathbf{u}_{4}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)
\end{array}$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\begin{array}{l}
\mathbf{p}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0$$

$$\begin{array}{l}
\mathbf{n}(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0$$

$$\begin{array}{l}
\mathbf{n}(\mathbf{u}_{3}; -$$

$$u_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$u_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

$$u_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1})$$

$$u_{3} \odot \rho(\mathbf{m}; 3) = (a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2})$$

$$u_{4} \odot \rho(\mathbf{m}; 4) = (a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3})$$

$$u_{5} \odot \rho(\mathbf{m}; 5) = (a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4})$$

$$u_{6} \odot \rho(\mathbf{m}; 6) = (a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6})$$

$$u_{7} \odot \rho(\mathbf{m}; 7) = (a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6})$$

Further Improvements (BSGS)

$$\begin{array}{c}
\mathbf{u}_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}) \\
\mathbf{u}_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}) \\
\mathbf{u}_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}) \\
\mathbf{u}_{3} \odot \rho(\mathbf{m}; 3) = (a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}) \\
\mathbf{u}_{4} \odot \rho(\mathbf{m}; 4) = (a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}) \\
\mathbf{u}_{5} \odot \rho(\mathbf{m}; 5) = (a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}) \\
\mathbf{u}_{6} \odot \rho(\mathbf{m}; 6) = (a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}) \\
\mathbf{u}_{7} \odot \rho(\mathbf{m}; 7) = (a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}) \\
\mathbf{u}_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})
\end{array} \right] \rightarrow \rho(\mathbf{u}_{0}; 0) \odot \rho(\mathbf{m}; 0) \\
\rightarrow \rho(\mathbf{u}_{1}; 0) \odot \rho(\mathbf{m}; 1) \\
\rho(\mathbf{u}_{2}; 0) \odot \rho(\mathbf{m}; 2) \\
\rightarrow \rho(\mathbf{u}_{3}; -3) \odot \rho(\mathbf{m}; 0) \\
\rightarrow \rho(\mathbf{u}_{4}; -3) \odot \rho(\mathbf{m}; 0) \\
\rightarrow \rho(\mathbf{u}_{5}; -3) \odot \rho(\mathbf{m}; 2) \\
\rightarrow \rho(\mathbf{u}_{5}; -3) \odot \rho(\mathbf{m}; 2) \\
\rightarrow \rho(\mathbf{u}_{6}; -6) \odot \rho(\mathbf{m}; 0) \\
\rightarrow \rho(\mathbf{u}_{7}; -6) \odot \rho(\mathbf{m}; 1) \\
\rho(\mathbf{u}_{8}; -6) \odot \rho(\mathbf{m}; 2) \\
\rightarrow \rho(\mathbf{u}_{6}; -6) \odot \rho(\mathbf{m}; 2) \\
\rightarrow \rho(\mathbf{u}_{6}; -6) \odot \rho(\mathbf{m}; 2)$$

rot(8), mult(9), add(8)

$$u_{0} \odot \rho(\mathbf{m}; 0) = (a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8})$$

$$u_{1} \odot \rho(\mathbf{m}; 1) = (a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0})$$

$$u_{2} \odot \rho(\mathbf{m}; 2) = (a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1})$$

$$u_{3} \odot \rho(\mathbf{m}; 3) = (a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2})$$

$$u_{4} \odot \rho(\mathbf{m}; 4) = (a_{4}, a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3})$$

$$u_{5} \odot \rho(\mathbf{m}; 5) = (a_{5}, a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4})$$

$$u_{6} \odot \rho(\mathbf{m}; 6) = (a_{6}, a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5})$$

$$u_{7} \odot \rho(\mathbf{m}; 7) = (a_{7}, a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6})$$

$$u_{8} \odot \rho(\mathbf{m}; 8) = (a_{8}, a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7})$$

$$d = 9$$
$$k = \sqrt{d} \cdot i + j$$

$$U \cdot \mathbf{m} = \sum_{0 \le l < n} \mathbf{u}_{l} \odot \rho(\mathbf{m}; l)$$

$$\sum_{\sqrt{-d} < i < \sqrt{d}} \rho(\sum_{0 \le j < \sqrt{d}} \mathbf{m}_{i,j}; \sqrt{d} \cdot i)$$

$$\rho(\mathbf{m}; j) \odot \rho(\mathbf{u}_{\sqrt{d} \cdot i + j}; -\sqrt{d} \cdot i)$$

Further Improvements (BSGS)

$$\mathbf{u}_0 \odot \rho(\mathbf{m}; 0) = (a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8)$$

$$\mathbf{u}_1 \odot \rho(\mathbf{m}; 1) = (a_1, a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0)$$

$$\mathbf{u}_2 \odot \rho(\mathbf{m}; 2) = (a_2, a_3, a_4, a_5, a_6, a_7, a_8, a_0, a_1)$$

$$u_3 \odot \rho(m;3) = (a_3, a_4, a_5, a_6, a_7, a_8, a_9, a_9, a_1, a_2)$$

$$\mathbf{u}_4 \odot \rho(\mathbf{m}; 4) = (a_4, a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3)$$

$$\mathbf{u}_5 \odot \rho(\mathbf{m}; 5) = (a_5, a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4)$$

$$u_6 \odot \rho(m; 6) = (a_6, a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5)$$

$$\mathbf{u}_7 \odot \rho(\mathbf{m}; 7) = (a_7, a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6)$$

$$\mathbf{u}_8 \odot \rho(\mathbf{m}; 8) = (a_8, a_0, a_1, a_2, a_3, a_4, a_5, a_6, a_7)$$

Precompute

$$\rho(\mathbf{u}_0;0)\odot\rho(\mathbf{m};0)$$

$$\rho(\mathbf{u_1}; \mathbf{0}) \odot \rho(\mathbf{m}; \mathbf{1}) \qquad \qquad \rho(\mathbf{u_{0-2}}; \mathbf{0})$$

$$\rho(\mathbf{u}_2; \mathbf{0}) \odot \rho(\mathbf{m}; 2)$$

$$\rho(\mathbf{u_3}; -3) \odot \rho(\mathbf{m}; 0)$$

$$\rho(u_4; -3) \odot \rho(m; 1)$$

$$\rho(\mathbf{u}_5; -3) \odot \rho(\mathbf{m}; 2)$$

$$\rho(\mathbf{u}_6; -6) \odot \rho(\mathbf{m}; 0)$$

$$\rho(\mathbf{u}_7; -6) \odot \rho(\mathbf{m}; 1)$$

$$\rho(\mathbf{u}_8; -6) \odot \rho(\mathbf{m}; 2) \rfloor$$

sigma matrix

rot(6), mult(7), add(6)

rot(4), mult(7), add(6)

Matrix Transposition

	Α	
a_0	a_1	a_2
a_3	a_4	a_5
a_6	a_7	a_8

a_0	a_3	a_6
a_1	a_4	a_7
a_2	a_5	a_8

Matrix Transposition

1	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	1	0	0
0	1	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	1	0
0	0	1	0	0	0	0	0	0
0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	0	0	1

transpose matrix $LinTrans(ct. A; U^T)$

Rectangular MM

		4			E	3
a_0	a_1	a_2	a_3		b_0	b_1
a_4	a_5	a_6	a_7	×	b_2	b_3
a_8	a_9	a_{10}	a_{11}		b_4	b_5
a_{12}	<i>a</i> ₁₃	a ₁₄	a ₁₅		b_6	b_7

	c_0	c_1	
	c_2	<i>c</i> ₃	
•	c_4	<i>c</i> ₅	
•	<i>c</i> ₆	<i>C</i> ₇	

AB

Rectangular MM

		4				3		3
a_0	a_1	a_2	a_3		b_0	b_1	b_0	b_1
a_4	a_5	a_6	a_7	×	b_2	b_3	b_2	b_3
a_8	a_9	a_{10}	a_{11}		b_4	b_5	b_4	b_5
a_{12}	a_{13}	a_{14}	a ₁₅		<i>b</i> ₆	<i>b</i> ₇	<i>b</i> ₆	b_7

Parallel Computation

d = 2g = 4

F	4
a_0	a_1
a_2	a_3

Α X

a_0	a_1
a_2	a_3

 c_0 c_1 c_3 c_2

В b_0 b_1 X b_2 b_3

 b_0 b_1 b_2 b_3

В

\mathcal{E}_0	c_1	
\mathcal{C}_2	c_3	

d_0	d_1
d_2	d_3

d_0	d_1
d_2	d_3

X

```
g개의 d \times d 행렬 (g \mod d^2 = 0)을 가정
```

$$\iota_g : \boldsymbol{a} \mapsto \left(A_k = \left(a_{g \cdot (d \cdot i + j) + k} \right) \right)_{0 \le k < g}$$

$$\rho(\boldsymbol{a};l) \rightarrow \rho(\boldsymbol{a};g\cdot l)$$

Parallel Computation

A|B|C|D

a_0	b_0	c_0	d_0
a_1	b_1	c_1	d_1
a_2	b_2	c_2	d_2
a_3	b_3	c_3	d_3

A|B|C|D

a_0	b_0	c_0	d_0
a_1	b_1	c_1	d_1
a_2	b_2	c_2	d_2
a_3	b_3	<i>c</i> ₃	d_3

$$\iota_g : \boldsymbol{a} \mapsto \left(A_k = \left(a_{g \cdot (d \cdot i + j) + k} \right) \right)_{0 \le k < g}$$

X

Parallel Computation

1	0	0	0
0	1	0	0
0	0	0	1
0	0	1	0

sigma matrix of 2×2

$oldsymbol{u}_0$	1	1	0	0
u_1	0	0	1	0
u_3	0	0	0	1

a_0	b_0	<i>c</i> ₀	d_0
a_1	b_1	c_1	d_1
a_2	b_2	c_2	d_2
a_3	b_3	<i>c</i> ₃	d_3

A|B|C|D

Parallel Computation

1	0	0	0
0	1	0	0
0	0	0	1
0	0	1	0

sigma matrix of 2×2

a_0	b_0	c_0	d_0
a_1	b_1	c_1	d_1
a_2	b_2	c_2	d_2
a_3	b_3	<i>c</i> ₃	d_3

A|B|C|D

Parallel Computation

1	1	0	0
1	1	0	0
1	1	0	0
1	1	0	0

a_0	b_0	c_0	d_0
a_1	b_1	c_1	d_1
a_2	b_2	c_2	d_2
a_3	b_3	c_3	d_3

 \boldsymbol{u}_0

A|B|C|D

Parallel Computation

Αl

)	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
B C D	a_0	b_0	c_0	d_0	a_1	b_1	c_1	d_1	a_2	b_2	<i>c</i> ₂	d_2	a_3	b_3	<i>c</i> ₃	d_3

$oldsymbol{u}_0$	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
AIBICID	a_0	b_0	c_0	d_0	a_1	b_1	c_1	d_1	a_2	b_2	c_2	d_2	a_3	b_3	<i>c</i> ₃	d_3

Implementation

Matrix Multiplication - Colab