Tecniche di Preprocessing in C++ applicate a problemi lineari misto-interi (MIP)

Università degli Studi Di Milano

Marco Odore

20 ottobre 2016

MIP Preprocessing INDICE

Indice

1	Scopo del lavoro	3
	1.1 Tecniche implementate	3
2	Bounds Tightening	9

1 Scopo del lavoro

Il lavoro propone una possibile implementazione di alcune delle tecniche di preprocessing applicate ai problemi di ottimizzazione lineare misto-interi (MIP) e binary (BIP). Per validare la correttezza del software è stato realizzato un generatore randomico di problemi MIP/BIP da sottomettere poi in AMPL.

1.1 Tecniche implementate

Sono state implementate diverse tecniche adatte a diversi contesti della programmazione lineare:

- Riduzione dei bound sulle variabili (Bounds Tightening)
- Ricerca di vincoli non soddisfacibili (Detecting Infeasibility)
- Eliminazione di vincoli ridondanti (Detecting Redundant Constraints)
- Fissaggio delle variabili (Variables Fixing)
- Riduzione dei coefficienti nei problemi BIP (Coefficients Reduction)

2 Bounds Tightening

La riduzione dei bound è una tecnica applicabile a tutti i tipi di variabili, e cioè a quelle di tipo continuo, intero e binario.

Questo metodo di preprocessing consiste nell'iterare sui vincoli del problema verificando la presenza di bound migliori per ogni variabile esaminata. Il procedimento continua finché, una volta iterati tutti i vincoli, ci sono stati degli aggiornamenti sui bound.

Procedimento:

• Per ogni vincolo si considerano separatamente le variabili con coefficienti positivi da quelle con coefficienti negativi:

$$\sum_{a_{ij}>0} a_{ij}x_j + \sum_{a_{ij}<0} a_{ij}x_j \le b_i \quad \forall i$$

• Si isola una variabile k alla volta, cercando di ottimizzare i suoi bound:

$$a_{ik}x_k + \sum_{a_{ij}>0} a_{ij}x_j + \sum_{a_{ij}<0} a_{ij}x_j \le b_i$$

• Si passa poi al calcolo del possibile nuovo bound, che nel caso di variabile con coefficiente positivo sarà il nuovo upperbound u'_k , mentre nel caso di variabile con coefficiente negativo sarà il nuovo lowerbound l'_k :

$$if \ a_{ij} > 0:$$

$$u'_k = \frac{1}{a_{ik}} \left(b_i - \sum_{j \neq k, a_{ij} > 0} a_{ij} x_j + \sum_{a_{ij} < 0} a_{ij} x_j \right)$$

$$if \ a_{ij} < 0:$$

$$l'_k = \frac{1}{a_{ik}} \left(b_i - \sum_{a_{ij} > 0} a_{ij} x_j + \sum_{a_{j \neq k, ij} < 0} a_{ij} x_j \right)$$