Empirisch-experimentelle Forschungsmethoden in der Anwendung

Seminar

Deskriptive Statistik und Boxplot

Von den Daten zu Kennzahlen und Diagrammen

Themen heute:

- Rückblick auf Data Cleaning
- Deskriptive Statistik
 - Lagemaße
 - Streumaße
 - Interpretation
- Erste Plots mit ggplot2

Kurzer Rückblick

- AnalyseScript.R
 - Bibliotheken laden
 - erhobene Daten laden
 - Daten cleanen
 - Skalen berechnen
 - (Auswertung)
 - (Grafiken)

```
AnalyseScript.R ×
        Source on Save
    # Analyse Skript
    #### Bibliotheken laden
    # install.packages("tidyverse")
 5
    # install.packages("psych")
 6
    library(tidyverse)
    source("qualtricshelpers.R")
```


- .csv-Datei ist von Qualtrics erstellt
- Noch kein gutes Format für uns:
 - Überflüssige Spalten
 - Obere zwei Spalten: Mischung aus Fragetext, Variablenname und Itemtext

qualtrics-export.csv

qualtrics-export.csv

raw <- load_qualtrics_csv(,,data/qualtrics-export.csv")</pre>

- Besser: Jede Zeile entspricht einem Probanden
- Aber: Immer noch zu viele Spalten
- Variablennamen sind zu lang und nicht aussagekräftig

raw

Überflüssige Spalten entfernen:

Variablen umbenennen:
 names(raw.short)[4] <- "ati_1"
 usw.

^	gender [‡]	age 🗦	edu1 [‡]	edu2 [‡]	ATI_1	ATI_2	
1	weiblich	24	Abitur/Fachabitur	Hochschulabschluss	NA	NA	
2	männlich	29	Abitur/Fachabitur	Hochschulabschluss	Stimme zu	Stimme zu	
3	männlich	20	Haupt-/ Volksschulsabschluss	noch keine Ausbildung	Stimme gar nicht zu	Stimme nic	raw.short
4	männlich	34	NA	Hochschulabschluss	Stimme eher nicht zu		

Codebook

• Elegantere Variante, um die Variablen umzubenennen:

generate_codebook(raw.short, filename, "data/codebook.csv")

codebook <- read_codebook("data/codebook_final.csv")</pre>

Codebook_final.csv

•	variable [‡]	variable_old [‡]	text	info
1	gender	gender	Bitte geben Sie Ihr Geschlecht an:	{"ImportId":"QID4"}
2	age	age	Bitte geben Sie Ihr Alter in Jahren an:	{"ImportId":"QID5_TEXT"}
3	edu1	edu1	Bitte geben Sie Ihren höchsten Schulabschluss an:	{"ImportId":"QID6"}
4	edu2	edu2	Bitte geben Sie Ihren höchsten Ausbildungsabschluss	{"ImportId":"QID7"}
5	ati_1	ATI_1	Im Folgenden geht es um "technische Systeme" im All	{"ImportId":"QID2_1"}
6	ati_2	ATI_2	Im Folgenden geht es um "technische Systeme" im All	{"ImportId":"QID2_2"}

- Schlüsselt Variablennamen gegen den Fragetext auf.
- Nächster Schritt: Variablenname für raw.short übernehmen:
- names(raw.short) <- codebook\$variable</pre>

codebook

Zuweisung der Datentypen: as.factor

_	gender [‡]	age ‡	edu1 [‡]	edu2 [‡]	ati_1	ati_2	‡	
1	weiblich	24	Abitur/Fachabitur Hochschulabschluss NA		NA			
2	männlich	29	Abitur/Fachabitur	Hochschulabschluss	Stimme zu	Stimme zu		
3	männlich	20	Haupt-/ Volksschulsabschluss	noch keine Ausbildung	Stimme gar nicht zu	Stimmo nicht zu		
4	männlich 34 NA		Hochschulabschluss	Stimme eher nicht zu	Stim rav	w.sł		
5	männlich	22	(noch) kein Schulabschluss	noch keine Ausbildung	Stimme gar nicht zu			
6	männlich	23	Realschulabschluss	Berufsausbildung	Stimme eher nicht zu	Stimme nicht zu		

- Variablennamen sind jetzt "selbsterklärend"
- Nächster Schritt: Zuweisung der Datentypen, falls Variable kategorial:

raw.short\$gender <- as.factor(raw.short\$gender)

Zuweisung der Datentypen: ordered

_	gender [‡]	age ‡	edu1 [‡]	edu2	ati_1	ati_2
1	weiblich	24	Abitur/Fachabitur	Hochschulabschluss	NA	NA
2	männlich	29	Abitur/Fachabitur	Hochschulabschluss	Stimme zu	Stimme zu
3	männlich	20	Haupt-/ Volksschulsabschluss	noch keine Ausbildung	Stimme gar nicht zu	Stimme nicht zu
4	männlich	34	NA	Hochschulabschluss	Stimme eher nicht zu	Stimme eher nicht zu

• Zuweisung der Datentypen, falls Variable ordinal:

scale.zustimmung <-c("Stimme gar nicht zu",</pre>

"Stimme nicht zu",

"Stimme eher nicht zu",

"Stimme eher zu",

"Stimme zu",

"Stimme völlig zu")

raw.short\$ati_1 <- ordered(raw.short\$ati_1, levels = scale.zustimmung)
raw.short\$ati_2 <- ordered(raw.short\$ati_2, levels = scale.zustimmung)</pre>

raw.short

Challenge: Verschiedene Skalen

```
scale.zustimmung <-c("Stimme gar nicht zu", scale.zutreffe "Stimme nicht zu", "Stimme eher nicht zu", "Stimme eher zu", "Stimme zu", "Stimme zu", "Stimme völlig zu") "

scale.zustimmung2 <-c("Stimme gar nicht zu", scale.gerne <
```

```
scale.zustimmung2 <-c("Stimme gar nicht zu",

"Stimme nicht zu",

"Stimme eher nicht zu",

"Stimme eher zu",

"Stimme zu",

"Stimme sehr zu")
```

```
scale.gerne <-c("Auf keinen Fall",

"ungerne",

"eher ungerne",

"eher gerne",

"gerne",

"Sehr gerne")
```


Skalenbildung

```
schluesselliste <- list(ATI = c("ati_1", "ati_2", "-ati_3", "ati_4", "ati_5", "-ati_6", "ati_7", "-ati_8", "ati_9"),

VBA = c("-vb_allg_1", "vb_allg_2", "-vb_allg_3", "vb_allg_4"),

AAZ = c("-aaz_1", "aaz_2", "-aaz_3", "aaz_4", "aaz_5", "aaz_6", "aaz_7", "aaz_8"),

PRO = c("pro_1", "pro_2", "pro_3", "pro_4"),

PRE = c("pre_1", "pre_2", "pre_3", "pre_4")
```

schluesselliste	list [5]	List of length 5
ATI	character [9]	'ati_1' 'ati_2' '-ati_3' 'ati_4' 'ati_5' '-ati_6'
VBA	character [4]	'-vb_allg_1' 'vb_allg_2' '-vb_allg_3' 'vb_allg_4'
AAZ	character [8]	'-aaz_1' 'aaz_2' '-aaz_3' 'aaz_4' 'aaz_5' 'aaz_6'
PRO	character [4]	'pro_1' 'pro_2' 'pro_3' 'pro_4'
PRE	character [4]	'pre_1' 'pre_2' 'pre_3' 'pre_4'

Skalenberechnung

scores <- scoreItems(schluesselliste, raw.short, min = 1, max = 6)

```
scores
                          list [16] (S3: psych, score.iten List of length 16
                          double [11 x 5]
                                                       3.61 5.11 2.89 3.33 2.89 3.33 4.00 3.50 4.00 3.50 4.
    scores
    missing
                          double [11 x 5]
                                                       90000040400008880014440004440
                          double [1 x 5]
                                                       0.871 -0.539 0.890 0.554 0.853
    alpha
                          double [1 x 5]
                                                       0.429 -0.096 0.503 0.237 0.592
    av.r
                          double [1 x 5]
                                                       6.77 -0.35 8.11 1.24 5.81
    sn
```

Nächster Schritt: Aufbau eines Datasets data:

data <- bind_cols(raw.short, as.tibble(scores\$scores))</pre>

Erstellung der finalen Datenmatrix

data <- bind_cols(raw.short, as.tibble(scores\$scores))</pre>

age	gender	ati_1	[]	comments	ATI	[]	PRE
25	männlich	Stimme nicht zu	[]	NA	3.375	[]	2.555
22	männlich	Stimme nicht zu	[]	NA	3.500	[]	3.225
1	männlich	Stimme völlig zu	[]	NA	3.500	[]	4.125

• Die roten Spalten sind in Skalen verrechnet und können entfernt werden:

```
data <- data %>%
  select(-starts_with("ati", ignore.case = F)) %>%
  select(-starts_with("vba", ignore.case = F))
```


Der Pipe-Operator %>%

```
data <- data %>%
  select(-starts_with("ati", ignore.case = F)) %>%
  select(-starts_with("vb", ignore.case = F)) %>%
  select(-starts_with("aaz", ignore.case = F)) %>%
  select(-starts_with("pre", ignore.case = F)) %>%
  select(-starts_with("pro", ignore.case = F))
```


Der Pipe-Operator

- Syntaktische (!) Funktion aus dem Tidyverse.
- Erlaubt uns, einen "Schachtelsatz" als Kette aufzuschreiben.

Peter, der einen schwarzen Rucksack dabei hatte, <mark>welcher goldene Knöpfe hatte</mark>, <mark>die schwer schließbar waren</mark>, <mark>und ein rotes Logo</mark>, und eine weiße Tasche, ging in die Vorlesung.

Oder

Peter ging in die Vorlesung.

Er hatte eine weiße Tasche und einen schwarzen Rucksack dabei.

Der Rucksack hatte ein rotes Logo und goldene Knöpfe.

Die Knöpfe waren schwer schließbar.

Der Pipe-Operator %>%

```
data <- select(select(data,-starts_with("ati", ignore.case = F))
, -starts_with("vb", ignore.case = F)), -starts_with("aaz", ignore.case = F))</pre>
```

```
data <- data %>%
```

```
select(______, -starts_with("ati", ignore.case = F)) %>%
select(_____, -starts_with("vb", ignore.case = F)) %>%
select(____, -starts_with("aaz", ignore.case = F)))
```


Der Pipe-Operator %>%

```
data <- select(select(data,-starts with("ati", ignore.case = F))
, -starts with("vb", ignore.case = F)), -starts with("aaz", ignore.case = F))
data <- data %>%
 select(-starts with("ati", ignore.case = F)) %>%
 select(-starts with("vb", ignore.case = F)) %>%
 select(-starts with("aaz", ignore.case = F)))
```


Finale Datenmatrix

•	gender	age [‡]	edu1 [‡]	edu2 [‡]	textfeld	abschluss	ATI [‡]	VBA [‡]	AAZ [‡]	PRO [‡]	PRE
1	weiblich	24	Abitur/Fachabitur	Hochschulabschl	NA	NA	3.611111	4.00	3.8125	2.5	3.125
2	männlich	29	Abitur/Fachabitur	Hochschulabschl	NA	NA	5.111111	3.50	3.8125	2.5	3.125
3	männlich	20	Haupt-/ Volkssch	noch keine Ausbi	NA	NA	2.888889	4.00	3.8125	2.5	3.125
4	männlich	34	NA	Hochschulabschl	asdasFS	NOP	3.333333	3.50	3.2500	3.0	3.000
5	männlich	22	(noch) kein Schul	noch keine Ausbi	NA	NA	2.888889	4.00	3.3750	2.5	2.750
6	männlich	23	Realschulabschluss	Berufsausbildung	ززا	NA	3.333333	3.75	1.7500	1.5	1.750
7	männlich	22	Abitur/Fachabitur	noch keine Ausbi	NA	NA	3.000000	3.25	3.6250	3.0	3.750
8	weiblich	22	Abitur/Fachabitur	Hochschulabschl	Leider fällt mir im	NA	4.333333	4.00	4.8750	2.5	3.375
9	weiblich	21	Abitur/Fachabitur	noch keine Ausbi	xxx	NA	3.888889	4.00	4.6250	3.5	5.000
10	weiblich	26	Haupt-/ Volkssch	Hochschulabschl	Schwer zu sagen	Tolle Umfrage. Vi	2.666667	4.00	3.6250	3.0	2.75
11	männlich	29	Abitur/Fachabitur	Hochschulabschl	Überhaupt keine	Bester Frageboge	4.666667	4.75	4.5000	4.0	4.37

Nächster Schritt: Deskriptive Statistik

Deskriptive Statistik und Grafiken

Live Demo

Der nächste Termin

Nächste Woche:

 Boxplot und Histogramm
 Hypothesen und Hypothesentests

- Hausaufgabe in Kleingruppe:
 - Siehe L2P und Slack

