Hints on Interval Halving

The Guessing Game

Rules:

- You are trying to determine[s] for some secret non-negative real number s
- You know s is in the half-open-half-closed interval [lowEnough, tooHigh) where the end-points are integers
- You may ask only one kind of question about an integer guess g: is it true that s < g?</p>

The Guessing Game

Rules:

– You are trying to determine[s] for some secret non-negative real number

You know s is in the half

interval [lowEnd

end-points are i

You may ask onlinteger guess

n-half-closed

This notation, pronounced *floor of s*, means the greatest integer less than or equal to s; for non-negative s, it is also known as the *integer part of s*. (Example: |4.47| = 4)

Th€

The end-points have meaningful names:

<code>lowEnough</code> is low enough to be <code>[s]</code>,

and

<code>tooHigh</code> is too high to be <code>[s]</code>.

- Rules:
 - You are try
 non-negative rea

ber s

- You know s is in the f-open-half-closed interval [lowEnough, tooHigh) where the end-points are integers
- You may ask only one kind of question about an integer guess g: is it true that s < g?</p>

Approach to the Guessing Game

- As long as the interval [lowEnough, tooHigh] contains more than one integer (i.e., tooHigh lowEnough > 1), repeat:
 - Guess the floor of the midpoint of the interval as g, asking whether s < g
 - Depending on the answer to this question,
 replace either lowEnough or tooHigh with g
- When tooHigh lowEnough = 1, there is only one possible answer: lowEnough

Approach

• As long as tooHigh) (i.e., tooH.

The term *interval halving* for this algorithm (also called *bisection* or *binary search*) comes from the fact that each iteration eliminates half the previous interval.

repeat:

- Guess the floor of the midpoint of the interval as g, asking whether s < g
- Depending on the answer to this question,
 replace either lowEnough or tooHigh with g
- When tooHigh lowEnough = 1, there is only one possible answer: lowEnough

The Root-Guessing Game

Rules:

- You are trying to determine $\lfloor n^{1/r} \rfloor$ for given nonnegative *integers* n and r (and you can't compute $n^{1/r}$ directly, so $n^{1/r}$ is just like the secret *real* number s)
- You know $n^{1/r}$ is in the half-open-half-closed interval [lowEnough, tooHigh) where the end-points are *integers*
- You may ask only one kind of question about an *integer* guess g: is it true that $n^{1/r} < g$?

Approach to the Root-Guessing Game

- As long as the interval [lowEnough,
 tooHigh) contains more than one integer
 (i.e., tooHigh lowEnough > 1),
 repeat:
 - Guess the floor of the midpoint of the interval as g, asking whether $n^{1/r} < g$
 - Depending on the answer to this question,
 replace either lowEnough or tooHigh with g
- When tooHigh lowEnough = 1, there is only one possible answer: lowEnough

How Can This Algorithm Work?

- The problem seems to be that, without already knowing the secret number $n^{1/r}$, you cannot directly answer the question: is it true that $n^{1/r} < g$?
- Observe: answering whether $n^{1/r} < g$ is the same as answering whether $n < g^r$
 - In other words, if you can compute g^x , then you can guess $n^{1/x}$ using the same approach as you used to guess the secret number s

- What is the actual answer?
 - Since the 2^{nd} (i.e., square) root of 20 is about 4.47, we have $\lfloor 20^{1/2} \rfloor = 4$
 - Let's see how this can be determined by interval halving
- We need a starting interval known to contain 20^{1/2}
 - 0 is low enough to be the answer
 - -20 + 1 = 21 is too high to be the answer

```
[ g = 10. Is 20 < 10^2? Yes.
```

- So, 10 is too high to be $[20^{1/2}]$
- In other words, there is no point in ever guessing 10 or higher

```
Guess g = 5. Is 20 < 5^2? Yes.
```

- So, 5 is too high to be $[20^{1/2}]$
- In other words, there is no point in ever guessing 5 or higher

[]
$$g = 2$$
. Is $g = 2$? No.

- So, 2 is low enough to be $|20^{1/2}|$
- In other words, there is no point in ever guessing lower than 2

[]
$$2$$
 5 Squess $g = 3$. Is $20 < 3^2$? No.

- So, β is low enough to be $\lfloor 20^{1/2} \rfloor$
- In other words, there is no point in ever guessing lower than 3

[]
$$3$$
 5 Guess $g = 4$. Is $20 < 4^2$? No.

- So, 4 is low enough to be $|20^{1/2}|$
- In other words, there is no point in ever guessing lower than 4

⊢)
4 5

We now know that $4 \le 20^{1/2} < 5$ so the answer must be $\lfloor 20^{1/2} \rfloor = 4$.