T-Поколение 2024-2025. В. Суффиксный массив Т-Банк, 15.02.2025

Задача А. Циклические сдвиги

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

k-м $uu\kappa$ лическим $c\partial в$ игом строки S называется строка, полученная перестановкой k первых символов строки S в конец строки.

Рассмотрим все различные циклические сдвиги строки S и отсортируем их по возрастанию. Требуется вычислить i-ю строчку этого массива.

Например, для строки abacabac существует четыре различных циклических сдвига: нулевой (abacabac), первый (bacabaca), второй (acabacab) и третий (cabacaba). После сортировки по возрастанию получится такой массив: abacabac, acabacab, bacabaca, cabacaba.

Формат входных данных

В первой строке входного файла записана строка S, длиной не более 100 000 символов с ASCII-кодами от 32 до 126. Во второй строке содержится единственное целое число k ($1 \le k \le 100\,000$).

Формат выходных данных

В выходной файл выведите k-й по возрастанию циклический сдвиг строки S, или слово IMPOSSIBLE, если такого сдвига не существует.

стандартный вывод
cabacaba

Задача В. Суффиксный массив (2 балла)

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Постройте суффиксный массив для заданной строки s.

Формат входных данных

Первая строка входного файла содержит строку s ($1 \le |s| \le 400\,000$). Строка состоит из строчных латинских букв.

Формат выходных данных

Выведите |s| различных чисел — номера первых символов суффиксов строки s так, чтобы соответствующие суффиксы были упорядочены в лексикографически возрастающем порядке.

стандартный ввод	стандартный вывод
ababb	1 3 5 2 4

Задача С. Просто LCP

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Дана строка длины N и отсортированный массив суффиксов этой строки (т.е. суффиксный массив), вам нужно вычислить LCP. При сортировке строка а считается меньше строки аа. LCP — наибольший общий префикс двух последовательных суффиксов в суффиксном массиве.

Формат входных данных

В первой строке число N ($1 \le N \le 10^5$). На второй строке файла дана N строчных латинских букв. В третьей строке N чисел от 1 до N — суффиксный массив (числом i кодируется суффикс, начинающийся с i-го символа).

Формат выходных данных

Выведите N-1 число — значения LCP.

Примеры

стандартный ввод	стандартный вывод
5	1
cacao	0
2 4 1 3 5	2
	0
3	0
bab	1
2 3 1	

Замечание

Суффиксный массив для строки сасао:

acao

ao

cacao

cao

0

Задача D. Задача про негра

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 16 мегабайт

Как известно, у негров бывают очень длинные и сложные имена. Кроме того, ходят слухи, что эти имена генерируются случайно (https://www.youtube.com/watch?v=vJJEVBMt0EQ).

Напишите алгоритм, который вычисляет суффиксный массив заданного имени, используя O(1) дополнительной памяти.

Чтобы не получить ML, ваш код может выглядеть так:

```
#include <stdio.h>
#include <stdlib.h>

int main() {
    int n; scanf("%d", &n);
    char* s = (char*)malloc(n + 1);
    scanf("%s", s);
    int *res = (int*)malloc((n + 1) * sizeof(*res));
    /*
    your solution here...
    */
    for (int i = 0; i < n; ++i)
        printf("%d ", res[i]);
    printf("%c", 10);
}</pre>
```

Формат входных данных

В первой строке дано целое число $n\ (1\leqslant n\leqslant 2\cdot 10^6)$ — длина имени негра.

Во второй строке записано имя негра, состоящее из строчных букв латинского алфавита.

Гарантируется, что имя негра сгенерировано случайно.

Формат выходных данных

Выведите n целых чисел — суффиксный массив имени негра.

Т-Поколение 2024-2025. В. Суффиксный массив Т-Банк, 15.02.2025

стандартный ввод	стандартный вывод
12	12 9 6 1 3 2 10 7 4 11 8 5
uvuvwevwe	
12	12 6 4 9 2 7 1 5 10 11 3 8
onyetenyevwe	
10	9 4 2 7 10 5 1 6 8 3
ugwemuhwem	
4	3 1 4 2
osas	

T-Поколение 2024-2025. В. Суффиксный массив Т-Банк, 15.02.2025

Задача Е. Различные подстроки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 256 мегабайт

Дана строка S. Назовем ее подстрокой строку с i-го по j-й символ ($i\leqslant j$). Ваша задача — посчитать количество различных подстрок данной строки.

Формат входных данных

Во входном файле находится одна строка S, состоящая не более, чем из $200\,000$ символов. Все символы в строке — маленькие латинские буквы.

Формат выходных данных

В выходной файл выведите единственное число — количество различных подстрок заданной строки.

стандартный ввод	стандартный вывод
aaba	8

Т-Поколение 2024-2025. В. Суффиксный массив Т-Банк, 15.02.2025

Задача F. Контрольное списывание (3 балла)

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Сегодня на уроке преподаватель Массивов Автомат Укконевич рассказывал своим ученикам про строки, суффиксные структуры и всё такое. Например, он рассказал им, как сравнить две строки А и В лексикографически. Если одна из них является префиксом другой, то более короткая будет лексикографически меньше, иначе необходимо сравнить символы стоящие на первой позиции, в которой они отличаются. Строка с меньшим по номеру в алфавите символом на данной позиции и будет лексикографически меньше.

Чтобы проверить понимание учениками нового материала, Автомат Укконевич дал им следующее задание: найти k-ю лексикографически непустую уникальную подстроку строки S.

Так как учитель знает, что Александр Г. и Илья С. очень любят списывать у известного в узких кругах Демида Г., каждый школьник получил своё число k и вынужден был обратиться к вам за помощью.

Формат входных данных

В первой строке входного файла находится строка S ($|S| \leq 10^5$). Вторая строка содержит число k ($1 \leq k \leq 10^{18}$) — порядковый номер запрашиваемой подстроки.

Формат выходных данных

Если ответ существует, выведите искомую подстроку строки S. В противном случае выведите её лексикографически максимальную подстроку.

стандартный ввод	стандартный вывод
abacaba 10	acab

Задача G. Рефрен

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Рассмотрим последовательность n целых чисел от 1 до m. Подпоследовательность подряд идущих чисел называется рефреном, если произведение ее длины на количество вхождений в последовательность максимально.

По заданной последовательности требуется найти ее рефрен.

Формат входных данных

Первая строка входного файла содержит два целых числа: n и m ($1 \le n \le 150\,000, 1 \le m \le 10$). Вторая строка содержит n целых чисел от 1 до m.

Формат выходных данных

Первая строка выходного файла должна содержать произведение длины рефрена на количество ее вхождений. Вторая строка должна содержать длину рефрена. Третья строка должна содержать последовательность которая является рефреном.

стандартный ввод	стандартный вывод
9 3	9
1 2 1 2 1 3 1 2 1	9
	1 2 1 2 1 3 1 2 1

T-Поколение 2024-2025. В. Суффиксный массив Т-Банк, 15.02.2025

Задача Н. Палиндромы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 0.5 секунд Ограничение по памяти: 256 мегабайт

Вам дана строка s из маленьких английских букв. Определим для подстроки $\kappa pacomy$ как количество вхождений подстроки в строку, умноженное на длину подстроки. Для данной строки найдите максимальную красоту среди всех её палиндромных подстрок.

Формат входных данных

Первая строка содержит строку s. Длина строки не превосходит $3 \cdot 10^5$.

Формат выходных данных

Выведите одно число — ответ на задачу.

стандартный ввод	стандартный вывод
abacaba	7
www	4

Задача І. Ключ к шифру (3 балла)

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Сейчас Эркюль Пуаро занят разоблачением международного преступного синдиката, занимающегося контрабандой предметов искусства. Полиция, сотрудничающая с Пуаро, перехватила зашифрованное письмо, содержащее информацию о месте и времени предстоящей сделки, на которой будет присутствовать и глава синдиката. Чтобы сорвать сделку и задержать главу синдиката, необходимо расшифровать перехваченное письмо.

Эркюль знает, что ключ к шифру вычисляется из строки s. Обозначим за f(w) длину максимального суффикса w, не равного w, который является и префиксом w. Например, f(abc) = 0, f(abab) = 2, f(aaa) = 2. Тогда ключом является максимум по всем t, являющимся подстроками s, величины $(|t| + f(t)^2)$. Помогите Эркюлю вычислить ключ.

Формат входных данных

В единственной строке дана строка s, состоящая из строчный латинских букв ($1 \le |s| \le 500\,000$).

Формат выходных данных

Выведите единственное целое число — искомый ключ к шифру.

стандартный ввод	стандартный вывод
ababaab	14

Задача Ј. Тандемные повторы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Дана строка s длины n.

<u>Тандемным повтором</u> в ней называются два вхождения какой-либо подстроки подряд. Иными словами, тандемный повтор описывается парой индексов i < j такими, что подстрока $s[i \dots j]$ — это две одинаковые строки, записанные подряд.

От вас требуется посчитать количество пар индексом i < j таких, что подстрока $s[i \dots j]$ является тандемным повтором.

Формат входных данных

Во входном файле находятся не более 30 тестов. Каждый тест состоит из единственной непустой строки, состоящей из символов $\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathbf{T}$. Длина строки не превосходит 10^5 . Входной файл заканчивается строкой $\mathbf{0}$.

Формат выходных данных

Для каждого теста выведите единственное число — количество тандемных повторов. Числа разделяйте переводами строк.

стандартный ввод	стандартный вывод
AGGA	1
AGAG	1
ATTCGATTCG	9
AAAA	4
0	

Задача К. Ненокку

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3 секунды Ограничение по памяти: 64 мегабайта

Очень известный автор не менее известной книги решил написать продолжение своего произведения. Он писал все свои книги на компьютере, подключенном к интернету. Из-за такой неосторожности мальчику Ненокку удалось получить доступ к еще ненаписанной книге. Каждый вечер мальчик залазил на компьютер писателя и записывал на свой компьютер новые записи. Ненокку, записав на свой компьютер очередную главу, заинтересовался, а использовал ли хоть раз писатель слово "книга". Но он не любит читать книги (он лучше полазает в интернете), и поэтому он просит вас узнать есть ли то или иное слово в тексте произведения. Но естественно его интересует не только одно слово, а достаточно много.

Формат входных данных

В каждой строчке входного файла записано одна из двух записей.

- 1. ? <слово> >то набор не более 50 латинских символов);
- 2. A <текст> (<текст> это набор не более 10^5 латинских символов).
- 1 означает просьбу проверить существование подстроки <слово> в произведение.
- 2 означает добавление в произведение <текст>.

Писатель только начал работать над произведением, поэтому он не мог написать более 10^5 символов. Суммарная длина всех запросов не превосходит 15 мегабайт плюс 12140 байт.

Формат выходных данных

Выведите на каждую строчку типа 1 "YES", если существует подстрока <слово>, и "NO" в противном случае. Не следует различать регистр букв.

стандартный ввод	стандартный вывод
? love	NO
? is	NO
A Loveis	YES
? love	NO
? WHO	YES
A Whoareyou	
? is	

Задача L. Поиск подстроки в подстроке

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 3.5 секунд Ограничение по памяти: 512 мегабайт

Опытным участникам соревнований по спортивному программированию хорошо известна классическая задача о нахождении количества вхождений подстроки в строку. Обычно она формулируется так: дана строка-образец s и строка t, требуется найти количество индексов, начиная с которых строка s содержится в строке t.

К сожалению, для решения этой задачи уже придумано множество алгоритмов, поэтому сама по себе она может быть интересна только в качестве упражнения, но не олимпиадной задачи. Однако, как это часто бывает со стандартными задачами, её легко усложнить — представим, что нас интересуют не сами строки s и t, а некоторые их подстроки $s[l_1 \dots r_1]$ и $t[l_2 \dots r_2]$.

Как вы уже, наверное, догадались, вам дано q запросов, i-й из которых задаёт некоторые подстроки $\bar{s}=s[l_{1i}\dots r_{1i}]$ и $\bar{t}=t[l_{2i}\dots r_{2i}]$. Для каждого такого запроса необходимо посчитать количество вхождений строки \bar{s} в строку \bar{t} .

Формат входных данных

Первая и вторая строки входных данных содержат строки s и t $(1\leqslant |s|,|t|\leqslant 2\cdot 10^5)$ соответственно. Строки состоят из маленьких букв английского алфавита.

В третьей строке задано одно число $q\ (1\leqslant q\leqslant 5\cdot 10^5)$ — количество запросов.

Каждая из следующих q строк содержит по четыре числа l_1 , r_1 , l_2 и r_2 $(1 \le l_1 \le r_1 \le |s|, 1 \le l_2 \le r_2 \le |t|)$, описывающих очередной запрос.

Формат выходных данных

Выведите q чисел — ответы на запросы.

Пример

стандартный ввод	стандартный вывод
abb	3
ababababb	1
5	2
1 2 1 7	1
2 3 2 9	4
3 3 4 7	
1 2 2 4	
1 1 1 9	

Замечание

Рассмотрим запросы в первом примере. Для индексации позиций вхождения будем использовать изначальные позиции в строке t.

- 1. $\bar{s} = ab, \bar{t} = abababa$. \bar{s} входит в \bar{t} , начиная с индексов [1, 3, 5].
- 2. $\bar{s} = bb, \bar{t} = babababb$. \bar{s} входит в \bar{t} , начиная с индекса [8].
- 3. $\bar{s} = b, \bar{t} = baba$. \bar{s} входит в \bar{t} , начиная с индексов [4, 6].
- 4. $\bar{s}=ab, \bar{t}=bab$. \bar{s} входит в \bar{t} , начиная с индекса [3].
- 5. $\bar{s}=a, \bar{t}=ababababb$. \bar{s} входит в \bar{t} , начиная с индексов [1,3,5,7].