Optimization Project: Support Vector Machine

K. Kamtue & Cl. Réda

ENS Cachan

January 12th, 2017

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
- 4 Demo

└ Project

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
- 4 Demo

Project

Support Machine Vector

Objective

Classify data

Project

Project

Support Machine Vector

Objective

Classify data

■ Applied to binary classification $(y_i \in \{1, -1\})$;

Project

Support Machine Vector

Objective

Classify data

- Applied to binary classification $(y_i \in \{1, -1\})$;
- Looking for a **hyperplane** $f: x \to \omega^T x$ such as:

$$\forall i, f(x_i) = \begin{cases} <0 & \text{si y=-1} \\ >0 & \text{si y=1} \end{cases} \Leftrightarrow \forall i, y_i \times f(x_i) > 0 \qquad (1)$$

 \sqsubseteq Project

Project Support Machine Vector

Figure: Example with two classes (red and blue)

Looking for the optimization problem

Naive optimization problem

 γ : distance between the lines f(x) = 1 and f(x) = -1.

Looking for the optimization problem

Naive optimization problem

 γ : distance between the lines f(x) = 1 and f(x) = -1.

$$\max_{w} \gamma = \frac{2}{\|w\|}$$
 subject to $\forall i, y_i \times f(x_i) > 0$

Looking for the optimization problem

Naive optimization problem

$$\gamma$$
: distance between the lines $f(x) = 1$ and $f(x) = -1$.

$$max_w \ \gamma = rac{2}{\|w\|}$$
 subject to $\forall i, y_i \times f(x_i) > 0$

$$\Leftrightarrow \min_{w} \frac{1}{2} ||w||^2$$
 subject to $\forall i, y_i \times f(x_i) > 0$

Beware: if the data set is not linearly separable!

Project description

Optimization problem

Optimization

Looking for the optimization problem

Figure: Example with two classes (red and blue)

Adapting the problem to non-separable sets

Let z_i be $max(0, 1 - y_i \times f(x_i))$ (Hinge loss).

Adapting the problem to non-separable sets

Let z_i be $max(0, 1 - y_i \times f(x_i))$ (Hinge loss).

Having the problem convex and always feasible

Penalty for classification errors with $(z_i)_i$ and C:

$$\begin{aligned} \min_{w,z} \ & \frac{1}{2} \|w\|^2 + C \sum_{i \leq m} z_i \\ \text{subject to} \\ \forall i, z_i \geq 0 \\ \forall i, y_i \times \left(\omega^T x_i\right) \geq 1 - z_i \end{aligned}$$

- ☐ Implementation
 - 1 Project description
 - Project
 - Optimization problem
 - Implementation
 - 2 Results
 - Testing the implementation
 - Plotting the classification frontier
 - 3 Extensions
 - 4 Demo

Solving the optimization problem

■ Use **Newton's method** to find ω :

Reminder: Update of ω with Newton's method

$$\omega_{n+1} \leftarrow \omega_n + s \times \nabla^2 obj(\omega_n)^{-1} \nabla obj(\omega_n)$$

(finding step size value s by backtracking line search)

Implementation Solving the optimization problem

• Use **Newton's method** to find ω :

Reminder: Update of ω with Newton's method

$$\omega_{n+1} \leftarrow \omega_n + s \times \nabla^2 obj(\omega_n)^{-1} \nabla obj(\omega_n)$$

(finding step size value s by backtracking line search)

■ Make the problem independant from dimension;

Solving the optimization problem

■ Use **Newton's method** to find ω :

Reminder: Update of ω with Newton's method

$$\omega_{n+1} \leftarrow \omega_n + s \times \nabla^2 obj(\omega_n)^{-1} \nabla obj(\omega_n)$$

(finding step size value s by backtracking line search)

- Make the problem independant from dimension;
- Use logarithmic barrier method.

Implementation

Independance from dimension: dual problem

After Lagrangian calculus and minimization in ω :

Independance from dimension: dual problem

After Lagrangian calculus and minimization in ω :

Dual problem

$$\max_{\lambda \in \mathbb{R}^{+m}} - \frac{1}{2} \| \sum_{i} \lambda_{i} y_{i} x_{i} \|_{2}^{2} + \mathbf{1}^{T} \lambda$$
 subject to $\forall i, 0 \leq \lambda_{i} \leq C$ (KKT conditions)

Independance from dimension: dual problem

After Lagrangian calculus and minimization in ω :

Dual problem

$$\begin{array}{l} \max_{\lambda \in \mathbb{R}^{+m}} - \frac{1}{2} \| \sum_{i} \lambda_{i} y_{i} x_{i} \|_{2}^{2} + \mathbf{1}^{T} \lambda \\ \text{subject to } \forall i, 0 \leq \lambda_{i} \leq \mathcal{C} \\ \text{(KKT conditions)} \end{array}$$

Get primal solution from dual solution

$$\omega^* = \sum_i \lambda_i^* y_i x_i$$

Make the problem independant from dimension

Use the kernel trick:

Dual problem

Let K be X^TX (linear kernel):

$$\max \ -\frac{1}{2}\lambda^T \operatorname{diag}(y) \operatorname{Kdiag}(y) \lambda + \mathbf{1}^T \lambda$$
 subject to $\forall i, 0 \leq \lambda_i \leq C$

- Project description

☐ Implementation

Implementation Delete inequality constraints

Use the logarithmic barrier method :

Delete inequality constraints

Use the logarithmic barrier method :

Barrier function

$$\begin{array}{l} \Phi(\lambda) = \sum_{i} (-log(C - \lambda_i) - log(\lambda_i)) \\ = -\sum_{i} log((C - \lambda_i)\lambda_i) \end{array}$$

Delete inequality constraints

Use the logarithmic barrier method :

Barrier function

$$\begin{aligned} \Phi(\lambda) &= \sum_{i} (-log(C - \lambda_i) - log(\lambda_i)) \\ &= -\sum_{i} log((C - \lambda_i)\lambda_i) \end{aligned}$$

Final optimization problem

$$\textit{max} \ - \tfrac{1}{2} \lambda^{\textit{T}} \textit{diag}(y) \textit{K} \textit{diag}(y) \lambda + \mathbf{1}^{\textit{T}} \lambda + \Phi(\lambda)$$

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
- 4 Demo

Testing the implementation

Newton's method convergence

Results

Testing the implementation

Testing the implementation Dependance on the sample size

Table: Time complexity dependance

Set	С	d	n	Iteration number	Time
1	5	40000	10	11	0.315
1	5	40	100	12	0.715
1	5	40	1000	large	> 1,000

Results

Lack Testing the implementation

Testing the implementation Speeding of convergence when C increases

Performed on the same sample set:

Test Set	С	d	n	#iterations	Time	Fail (%)
1	1	40	10	11	25.414	0
1	5	40	10	11	0.177	0
1	10	40	10	11	0.168	0

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
- 4 Demo

Plotting the classification frontier

Pour C = 5, n = 150, d = 200

Points centrés réduits avec des fonctions gaussiennes (2D) :

Plotting the classification frontier

Tracé de la frontière de classification

Pour C = 5, n = 150, d = 200

Points centrés réduits avec des fonctions gaussiennes (3D) :

Tracé de la frontière de classification

Pour C = 5, n = 150, d = 200

Génération avec des fonctions gaussiennes (2D) :

Tracé de la frontière de classification

Pour C = 5, n = 150, d = 200

Génération avec des fonctions gaussiennes (3D) :

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
- 4 Demo

Extensions

Adding to the project

Cross validation (choice of the best value for C);

Extensions

Adding to the project

- Cross validation (choice of the best value for C);
- Implementation of Coordinate Descent;

Extensions ACCPM results

Implementation of ACCPM;

Figure: For data of size 8, and dimension 2

- 1 Project description
 - Project
 - Optimization problem
 - Implementation
- 2 Results
 - Testing the implementation
 - Plotting the classification frontier
- 3 Extensions
- 4 Demo

LDemo

Demo of the SVM