- [1] http://www.accuray.com/ck/how9.htm and http://www.cksociety.org/.
- [2] http://www.intuitivesurgical.com/about_intuitive/index.html.
- [3] http://computermotion.wwwa.com/productsandsolutions/products/zeus/ index.cfm.
- [4] http://www.aemdesign.com.
- [5] http://www.sbsi-sol-optimize.com/NPSOL.htm.
- [6] http://www.vni.com.
- [7] http://www.nag.com.
- [8] Webster's Ninth New Collegiate Dictionary. Merriam-Webster, Inc., Spring-field, MA, 1990.
- [9] R. Abraham, J. Marsden, and T. Ratiu. *Manifolds, Tensor Analysis, and Applications*. Springer-Verlag, New York, 2 edition, 1988.
- [10] R. Abraham and J. E. Marsden. Foundations of Mechanics. Addison-Wesley, 1985.
- [11] E. U. Acar and H. Choset. Sensor-based coverage of unknown environments: Incremental construction of Morse decompositions. *International Journal of Robotics Research*, 21:345–366, April 2002.
- [12] E. U. Acar, H. Choset, A. A. Rizzi, P. Atkar, and D. Hull. Morse decompositions for coverage tasks. *International Journal of Robotics Research*, 21:331–344, April 2002.
- [13] S. Akella, W. Huang, K. Lynch, and M. Mason. Parts feeding on a conveyor with a one joint robot. *Algorithmica (Special Issue on Robotics)*, 26(3/4):313–344, 2000.
- [14] M. Akinc, K. E. Bekris, B. Chen, A. Ladd, E. Plaku, and L. E. Kavraki. Probabilistic roadmaps of trees for parallel computation of multiple query roadmaps. In *International Symposium on Robotics Research*, 2003. Book to appear.

[15] R. Alami, J. Laumond, and T. Siméon. Two manipulation planning algorithms. In K. Goldberg, D. Halperin, J. C. Latombe, and R. Wilson, editors, *Algorithmic Foundations of Robotics*, pages 109–125. A.K. Peters, 1995.

- [16] R. Alami, T. Siméon, and J. P. Laumond. A geometrical approach to planning manipulation tasks. In *International Symposium on Robotics Research*, pages 113–119, 1989.
- [17] P. Allen and I. Stamos. Integration of range and image sensing for photorealistic 3D modeling. In *IEEE International Conference on Robotics and Automation*, 2000.
- [18] N. M. Amato, B. Bayazit, L. Dale, C. Jones, and D. Vallejo. OBPRM: An obstacle-based PRM for 3d workspaces. In P. Agarwal, L. E. Kavraki, and M. Mason, editors, *Robotics: The Algorithmic Perspective*, pages 156–168. AK Peters, 1998.
- [19] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing good distance metrics and local planners for probabilistic roadmap methods. In *IEEE International Conference on Robotics and Automation*, pages 630–637, 1998.
- [20] N. M. Amato, K. Dill, and G. Song. Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. In *International Conference on Research in Computational Molecular Biology*, pages 2–11, April 2002.
- [21] N. M. Amato and G. Song. Using motion planning to study protein folding pathways. In *International Conference on Research in Computational Molecular Biology*, pages 287–296, 2001.
- [22] E. Anshelevich, S. Owens, F. Lamiraux, and L. E. Kavraki. Deformable volumes in path planning applications. In *IEEE International Conference on Robotics and Automation*, pages 2290–2295, 2000.
- [23] M. Apaydin, D. Brutlag, C. Guestrin, D. Hsu, J. C. Latombe, and C. Varm. Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. *Journal of Computational Biology*, 10:257–281, 2003.
- [24] M. Apaydin, C. Guestrin, C. Varma, D. Brutlag, and J. C. Latombe. Studying protein-ligand interactions with stochastic roadmap simulation. *Bioinformatics*, 18(2):18–26, 2002.
- [25] M. S. Apaydin, D. L. Brutlag, C. Guestrin, D. Hsu, and J. C. Latombe. Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. In *International Conference on Research in Computational Molecular Biology*, pages 12–21, April 2002.

[26] V. I. Arnold. Mathematical Methods of Classical Mechanics. Springer-Verlag, 1989.

- [27] K. Arras, N. Tomatis, B. Jensen, and R. Siegwart. Multisensor on-the-fly localization: Precision and reliability for applications. *Robotics and Autonomous Systems*, 34(2-3):131–143, 2001.
- [28] K. Arras and S. Vestli. Hybrid, high-precision localization for the mail distributing mobile robot system MOPS. In *IEEE International Conference on Robotics and Automation*, 1998.
- [29] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-line non-linear/non-Gaussian Bayesian tracking. *IEEE Transactions on Signal Processing*, 50(2):174–188, 2002.
- [30] S. Arya, D. M. Mount. Approximate nearest neighbor queries in fixed dimensions. In *47th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 271–280, 1993.
- [31] F. Aurenhammer. Voronoi diagrams—A survey of a fundamental geometric structure. *ACM Computing Surveys*, 23:345–405, 1991.
- [32] D. Avots, E. Lim, R. Thibaux, and S. Thrun. A probabilistic technique for simultaneous localization and door state estimation with mobile robots in dynamic environments. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2002.
- [33] B. Baginski. Motion planning for manipulators with many degrees of freedom—The BB Method. Ph.D. Thesis, Technische Universität München, 1998.
- [34] J. Baillieul and B. Lehman. Open-loop control using oscillatory inputs. In *CRC Control Handbook*, pages 967–980. CRC Press, Boca Raton, FL, 1996.
- [35] D. J. Balkcom and M. T. Mason. Time optimal trajectories for differential drive vehicles. *International Journal of Robotics Research*, 21(3):199–217, Mar. 2002.
- [36] J. Barraquand and P. Ferbach. A penalty function method for constrained motion planning. In *IEEE International Conference on Robotics and Automation*, pages 1235–1242, 1994.
- [37] J. Barraquand, L. E. Kavraki, J. C. Latombe, T.-Y. Li, R. Motwani, and P. Raghavan. A random sampling scheme for robot path planning. *International Journal of Robotics Research*, 16(6):759–774, 1997.
- [38] J. Barraquand, B. Langlois, and J. C. Latombe. Numerical potential field techniques for robot path planning. *IEEE Transactions on Man and Cybernetics*, 22(2):224–241, Mar/Apr 1992.

[39] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation approach. Technical Report STAN-CS-89-1257, Stanford University, Stanford CA, 1989.

- [40] J. Barraquand and J. C. Latombe. Robot motion planning: A distributed representation approach. *International Journal of Robotics Research*, 10(6):628–649, Dec. 1991.
- [41] J. Barraquand and J. C. Latombe. Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles. *Algorithmica*, 10:121–155, 1993.
- [42] S. Basu, R. Pollack, and M.-F. Roy. *Algorithms in Real Algebraic Geometry*. Springer-Verlag, 2003.
- [43] K. E. Bekris, B. Chen, A. Ladd, E. Plaku, and L. E. Kavraki. Multiple query motion planning using single query primitives. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 656–661, 2003.
- [44] J. Bentley. Multidimensional divide and conquer. *Communications of the ACM*, 23(4), 1980.
- [45] D. Bertsekas. *Nonlinear Programming*. Athena Scientific, Belmont, MA, second edition, 1999.
- [46] P. Besl and N. McKay. A method for registration of 3D shapes. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 18(14):239–256, 1992.
- [47] P. Bessiere, E. Mazer, and J.-M. Ahuactzin. Planning in continuous space with forbidden regions: The Ariadne's clew algorithm. In K. Goldberg, K. Goldberg, R. Wilson, and D. Halperin, editors, *Algorithmic Foundations of Robotics* (WAFR), pages 39–47. A.K. Peters, Wellsley MA, 1995.
- [48] P. Bessiere, E. Mazer, and J.-M. Ahuactzin. The ariadne's clew algorithm. *Journal of Artificial Intelligence Research (JAIR)*, 9:295–316, 1998.
- [49] J. T. Betts. Survey of numerical methods for trajectory optimization. *AIAA Journal of Guidance, Control, and Dynamics*, 21(2):193–207, March-April 1998.
- [50] A. M. Bloch. *Nonholonomic Mechanics and Control*. Springer, New York, 2003.
- [51] J. E. Bobrow, S. Dubowsky, and J. S. Gibson. Time-optimal control of robotic manipulators along specified paths. *International Journal of Robotics Research*, 4(3):3–17, Fall 1985.
- [52] R. Bohlin. Path planning in practice: Lazy evaluation on a multi-resolution grid. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2001.

[53] R. Bohlin and L. E. Kavraki. Path planning using lazy PRM. In *IEEE International Conference on Robotics and Automation*, pages 521–528, 2000.

- [54] R. Bohlin and L. E. Kavraki. A randomized algorithm for robot path planning based on lazy evaluation. In P. Pardalos, S. Rajasekaran, and J. Rolim, editors, *Handbook on Randomized Computing*, pages 221–249. Kluwer Academic Publishers, 2001.
- [55] K.-F. Böhringer, B. R. Donald, L. E. Kavraki, and F. Lamiraux. Part orientation to one or two stable equilibria using programmable force fields. *IEEE Transactions on Robotics and Automation*, 16(2):731–747, 2000.
- [56] K. Böhringer, B. R. Donald, and N. MacDonald. Programmable vector fields for distributed manipulation, with application to mems actuator arrays and vibratory part feeders. *International Journal of Robotics Research*, 18:168– 200, Feb. 1999.
- [57] J. A. Bondy and U. S. R. Murty. *Graph Theory with Applications*. John Wiley and Sons Inc., New York, NY, 2000.
- [58] B. Bonnard. Contrôlabilité des systèmes nonlinéaires. *C. R. Acad. Sci. Paris*, 292:535–537, 1981.
- [59] V. Boor, N. H. Overmars, and A. F. van der Stappen. The Gaussian sampling strategy for probabilistic roadmap planners. In *IEEE International Conference* on Robotics and Automation, pages 1018–1023, 1999.
- [60] W. M. Boothby. An Introduction to Differentiable Manifolds and Riemannian Geometry. Academic Press, 1986.
- [61] J. Borenstein, B. Everett, and L. Feng. *Navigating Mobile Robots: Systems and Techniques*. A.K. Peters, Ltd., Wellesley, MA, 1996.
- [62] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang. Quasi-randomized path planning. In *IEEE International Conference on Robotics and Automation*, pages 1481–1487, 2001.
- [63] G. E. Bredon. *Topology and Geometry*. Springer-Verlag, New York, NY, 1993.
- [64] T. Bretl, J. C. Latombe, and S. Rock. Toward autonomous free climbing robots. In *International Symposium on Robotics Research*, 2003. Book to appear.
- [65] R. W. Brockett. Nonlinear systems and differential geometry. *Proceedings of the IEEE*, 64(1):61–72, Jan. 1976.
- [66] R. W. Brockett. Control theory and singular Riemannian geometry. In P. J. Hilton and G. S. Young, editors, *New Directions in Applied Mathematics*, pages 11–27. Springer-Verlag, 1982.
- [67] R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration space for findpath with rotation. *IEEE Transactions Systems, Man, and Cybernetics*, 15:224–233, 1985.

[68] R. A. Brooks. Solving the find-path problem by good representation of free space. *IEEE Transactions on Systems, Man, and Cybernetics*, 13(3):190–197, 1983.

- [69] R. C. Brost. Analysis and Planning of Planar Manipulation Tasks. PhD thesis, Carnegie Mellon University, Jan. 1991. Available as Technical Report CMU-CS-91-149.
- [70] R. C. Brost. Computing the possible rest configurations of two interacting polygons. In *IEEE International Conference on Robotics and Automation*, pages 686–693, Apr. 1991.
- [71] A. E. Bryson. *Dynamic Optimization*. Addison-Wesley, 1998.
- [72] A. E. Bryson and Y. C. Ho. Applied Optimal Control. Hemisphere Publishing, New York, 1975.
- [73] J. Buhmann, W. Burgard, A. Cremers, D. Fox, T. Hofmann, F. Schneider, J. Strikos, and S. Thrun. The mobile robot RHINO. *AI Magazine*, 16(2):31–38, Summer 1995.
- [74] F. Bullo. Series expansions for the evolution of mechanical control systems. *SIAM Journal on Control and Optimization*, 40(1):166–190, 2001.
- [75] F. Bullo. Averaging and vibrational control of mechanical systems. *SIAM Journal on Control and Optimization*, 41:542–562, 2002.
- [76] F. Bullo, N. E. Leonard, and A. D. Lewis. Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups. *IEEE Transactions on Automatic Control*, 45(8):1437–1454, 2000.
- [77] F. Bullo and A. D. Lewis. Geometric Control of Mechanical Systems. Springer, 2004.
- [78] F. Bullo, A. D. Lewis, and K. M. Lynch. Controllable kinematic reductions for mechanical systems: Concepts, computational tools, and examples. In 2002 International Symposium on the Mathematical Theory of Networks and Systems, Aug. 2002.
- [79] F. Bullo and K. M. Lynch. Kinematic controllability for decoupled trajectory planning of underactuated mechanical systems. *IEEE Transactions on Robotics* and Automation, 17(4):402–412, Aug. 2001.
- [80] F. Bullo and M. Žefran. On mechanical control systems with nonholonomic constraints and symmetries. *Systems and Control Letters*, 45(2):133–143, Jan. 2002.
- [81] W. Burgard, A. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive museum tour-guide robot. *Artificial Intelligence*, 114(1-2), 2000.

[82] W. Burgard, A. Derr, D. Fox, and A. Cremers. Integrating global position estimation and position tracking for mobile robots: the dynamic Markov localization approach. In *IEEE/RSJ International Conference on Intelligent Robots* and Systems, 1998.

- [83] W. Burgard, D. Fox, D. Hennig, and T. Schmidt. Estimating the absolute position of a mobile robot using position probability grids. In *Proc. of the National Conference on Artificial Intelligence (AAAI)*, 1996.
- [84] W. Burgard, D. Fox, H. Jans, C. Matenar, and S. Thrun. Sonar-based mapping of large-scale mobile robot environments using EM. In *Proc. of the International Conference on Machine Learning (ICML)*, 1999.
- [85] L. Bushnell, D. Tilbury, and S. Sastry. Steering three-input nonholonomic systems: The fire-truck example. *International Journal of Robotics Research*, 14(4):366–381, 1995.
- [86] Z. J. Butler, A. A. Rizzi, and R. L. Hollis. Contact sensor-based coverage of rectilinear environments. In *Proc. of IEEE Int'l Symposium on Intelligent Control*, Sept. 1999.
- [87] P. E. Caines and E. S. Lemch. On the global controllability of Hamiltonian and other nonlinear systems: Fountains and recurrence. In *IEEE International Conference on Decision and Control*, pages 3575–3580, 1998.
- [88] S. Cameron. Collision detection by four-dimensional intersection testing. *IEEE Transactions on Robotics and Automation*, pages 291–302, 1990.
- [89] S. Cameron. Enhancing GJK: Computing minimum distance and penetration distances between convex polyhedra. In *IEEE International Conference on Robotics and Automation*, pages 3112–3117, 1997.
- [90] J. F. Canny. The Complexity of Robot Motion Planning. MIT Press, Cambridge, MA, 1988.
- [91] J. F. Canny. Constructing roadmaps of semi-algebraic sets I: Completeness. *Artificial Intelligence*, 37:203–222, 1988.
- [92] J. F. Canny. Computing roadmaps of general semi-algebraic sets. *The Computer Journal*, 35(5):504–514, 1993.
- [93] J. F. Canny and M. Lin. An opportunistic global path planner. *Algorithmica*, 10:102–120, 1993.
- [94] J. F. Canny, J. Reif, B. Donald, and P. Xavier. On the complexity of kinodynamic planning. In *IEEE Symposium on the Foundations of Computer Science*, pages 306–316, White Plains, NY, 1988.
- [95] J. F. Canny. Some algebraic and geometric computations in PSPACE. In *Proc.* 20th ACM Symposium on the Theory of Computing, pages 460–469, 1998.

[96] Z. L. Cao, Y. Huang, and E. Hall. Region filling operations with random obstacle avoidance for mobile robots. *Journal of Robotic systems*, pages 87–102, February 1988.

- [97] J. Carpenter, P. Clifford, and P. Fernhead. An improved particle filter for non-linear problems. *IEE Proceedings on Radar and Sonar Navigation*, 146(2-7), 1999.
- [98] A. Casal. *Reconfiguration Planning for Modular Self-Reconfigurable Robots*. PhD thesis, Stanford University, Stanford, CA, 2002.
- [99] J. Castellanos, J. Montiel, J. Neira, and J. Tardós. The SPmap: A probabilistic framework for simultaneous localization and map building. *IEEE Transactions on Robotics and Automation*, 15(5):948–953, 1999.
- [100] J. Castellanos and J. Tardós. *Mobile Robot Localization and Map Building:* A Multisensor Fusion Approach. Kluwer Academic Publishers, Boston, MA, 2000.
- [101] P. C. Chen and Y. K. Hwang. SANDROS: A motion planner with performance proportional to task difficulty. *IEEE International Conference on Robotics and Automation*, pages 2346–2353, 1992.
- [102] P. C. Chen and Y. K. Hwang. SANDROS: A dynamic graph search algorithm for motion planning. *IEEE Transactions on Robotics and Automation*, 14(3):390–403, June 1998.
- [103] P. Cheng and S. M. LaValle. Reducing metric sensitivity in randomized trajectory design. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 43–48, 2001.
- [104] H. Choset. Nonsmooth analysis, convex analysis, and their applications to motion planning. *Special Issue of the Int. Jour. of Comp. Geom. and Apps.*, 1998.
- [105] H. Choset and J. Burdick. Sensor based motion planning: Incremental construction of the hierarchical generalized Voronoi graph. *International Journal of Robotics Research*, 19(2):126–148, February 2000.
- [106] H. Choset and J. Burdick. Sensor based motion planning: The hierarchical generalized Voronoi graph. *International Journal of Robotics Research*, 19(2):96–125, February 2000.
- [107] H. Choset and J. Y. Lee. Sensor-based construction of a retract-like structure for a planar rod robot. *IEEE Transaction of Robotics and Automation*, 17, 2001.
- [108] H. Choset and K. Nagatani. Topological simultaneous localization and mapping (T-SLAM). *IEEE Transactions on Robotics Automation*, 17, April 2001.

[109] H. Choset, K. Nagatani, and A. Rizzi. Sensor based planning: Using a honing strategy and local map method to implement the generalized Voronoi graph. In *SPIE Conference on Systems and Manufacturing*, Pittsburgh, PA, 1997.

- [110] H. Choset and P. Pignon. Coverage path planning: The boustrophedon decomposition. In *Proceedings of the International Conference on Field and Service Robotics*, Canberra, Australia, December 1997.
- [111] P. Choudhury and K. M. Lynch. Trajectory planning for second-order underactuated mechanical systems in the presence of obstacles. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, *Algorithmic Foundations* of *Robotics V*, pages 559–575. Springer-Verlag, 2002.
- [112] W.-L. Chow. Uber systemen von linearen partiellen differentialgleichungen erster ordnung. *Math. Ann.*, 117:98–105, 1939.
- [113] S. Ciarcia. An ultrasonic ranging system. *Byte Magazine*, pages 113–123, October 1984.
- [114] F. H. Clarke. *Optimization and Nonsmooth Analysis*. Society of Industrial and Applied Mathematics, Philadelphia, PA, 1990.
- [115] J. D. Cohen, M. C. Lin, D. Manocha, and M. K. Ponamgi. I-COLLIDE: An interactive and exact collision detection system for large-scale environments. In *Symposium on Interactive 3D Graphics*, pages 189–196, 218, 1995.
- [116] J. Colegrave and A. Branch. A case study of autonomous household vacuum cleaner. In *AIAA/NASA CIRFFSS*, 1994.
- [117] G. E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In *Lecture Notes in Computer Science*, volume 33, pages 134–183. Springer-Verlag, 1975.
- [118] H. Cormen, C. Leiserson, and R. Rivest. *Introduction to Algorithms*. MIT Press, Cambridge, MA, 1990.
- [119] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. *Introduction to Algorithms*. MIT Press, 2002.
- [120] J. Cortes, S. Martinez, J. P. Ostrowski, and H. Zhang. Simple mechanical control systems with constraints and symmetry. SIAM Journal on Control and Optimization, 41(3):851–874, 2002.
- [121] J. Cortés, T. Simeon, and J.-P. Laumond. A random loop generator for planning the motions of closed kinematic chains. In *IEEE International Conference on Robotics and Automation*, pages 2141–2146, 2002.
- [122] J. Crowley. World modeling and position estimation for a mobile robot using ultrasound ranging. In *IEEE International Conference on Robotics and Automation*, 1989.

[123] T. Danner and L. E. Kavraki. Randomized planning for short inspection paths. In *IEEE International Conference on Robotics and Automation*, pages 971–976, San Fransisco, CA, April 2000. IEEE Press.

- [124] M. de Berg, M. van Kreveld, and M. Overmars. *Computational Geometry: Algorithms and Applications*. Springer, Berlin, 1997.
- [125] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo Localization for mobile robots. In *IEEE International Conference on Robotics and Automation*, 1999.
- [126] F. Dellaert, S. Seitz, C. Thorpe, and S. Thrun. Structure from motion without correspondence. In *Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, 2000.
- [127] A. O. Dempster, A. N. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society, Series B*, 39(1):1–38, 1977.
- [128] G. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba. A solution to the simultaneous localisation and map building (SLAM) problem. *IEEE Transactions on Robotics and Automation*, 2001.
- [129] A. W. Divelbiss and J. Wen. Nonholonomic path planning with inequality constraints. In *IEEE International Conference on Decision and Control*, pages 2712–2717, 1993.
- [130] A. W. Divelbiss and J.-T. Wen. A path space approach to nonholonomic motion planning in the presence of obstacles. *IEEE Transactions on Robotics and Automation*, 13(3):443–451, 1997.
- [131] M. P. do Carmo. Riemannian Geometry. Birkhäuser, Boston, MA, 1992.
- [132] B. R. Donald. A search algorithm for motion planning with six degrees of freedom. *Artificial Intelligence*, 31:295–353, 1987.
- [133] B. R. Donald, P. Xavier, J. Canny, and J. Reif. Kinodynamic motion planning. *Journal of the Association for Computing Machinery*, 40(5):1048–1066, Nov. 1993.
- [134] B. R. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning for Cartesian robots and open chain manipulators. *Algorithmica*, 4(6):480–530, 1995.
- [135] B. R. Donald and P. Xavier. Provably good approximation algorithms for optimal kinodynamic planning: robots with decoupled dynamics bounds. *Algorithmica*, 4(6):443–479, 1995.
- [136] A. Doucet. On sequential simulation-based methods for Bayesian filtering. Technical report, Department of Engeneering, University of Cambridge, 1998.

[137] A. Doucet, J. de Freitas, K. Murphy, and S. Russel. Rao-Blackwellised particle filtering for dynamic Bayesian networks. In *Proc. of the Conference on Uncertainty in Artificial Intelligence (UAI)*, 2000.

- [138] A. Doucet, N. de Freitas, and N. Gordon. *Sequential Monte Carlo Methods in Practice*. Springer Verlag, 2001.
- [139] D. Duff, M. Yim, and K. Roufas. Evolution of polybot: A modular reconfigurable robot. In *Proc. of the Harmonic Drive Intl. Symposium*, Nagano, Japan, 2001.
- [140] S. Ehmann and M. C. Lin. Swift: Accelerated distance computation between convex polyhedra by multi-level Voronoi marching. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2000.
- [141] S. A. Ehmann and M. C. Lin. Geometric algorithms: Accurate and fast proximity queries between polyhedra using convex surface decomposition. *Computer Graphics Forum—Proc. of Eurographics*, 20:500–510, 2001.
- [142] A. Elfes. Sonar-based real-world mapping and navigation. *IEEE Journal of Robotics and Automation*, RA-3:249–265, June 1987.
- [143] A. Elfes. Occupancy Grids: A Probabilistic Framework for Robot Percepti on and Navigation. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, 1989.
- [144] A. Elfes. Using occupancy grids for mobile robot perception and navigation. *IEEE Computer*, pages 46–57, 1989.
- [145] S. Engelson. *Passive Map Learning and Visual Place Recognition*. PhD thesis, Department of Computer Science, Yale University, 1994.
- [146] M. Erdmann and M. Mason. An exploration of sensorless manipulation. *IEEE Tr. on Rob. and Autom.*, 4(4):369–379, 1988.
- [147] C. Fernandes, L. Gurvits, and Z. Li. Optimal nonholonomic motion planning for a falling cat. In Z. Li and J. Canny, editors, *Nonholonomic Motion Planning*. Kluwer Academic, 1993.
- [148] C. Fernandes, L. Gurvits, and Z. Li. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies. *IEEE Transactions on Automatic Control*, 30(3):450–463, Mar. 1994.
- [149] R. Fitch, Z. Butler, and D. Rus. Reconfiguration planning for heterogeneous self-reconfiguring robots. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2003.
- [150] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for smoothing paths of mobile robots. In *IEEE International Conference on Robotics and Automation*, volume 1, pages 832–839, 1993.

[151] S. Fleury, P. Souères, J.-P. Laumond, and R. Chatila. Primitives for smoothing mobile robot trajectories. *IEEE Transactions on Robotics and Automation*, 11:441–448, 1995.

- [152] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. On differentially flat nonlinear systems. In *IFAC Symposium NOLCOS*, pages 408–412, 1992.
- [153] M. Fliess, J. Lévine, P. Martin, and P. Rouchon. Flatness and defect of nonlinear systems: Introductory theory and examples. *International Journal of Control*, 61(6):1327–1361, 1995.
- [154] A. T. Fomenko and T. L. Kunii. *Topological Modeling for Visualization*. Springer-Verlag, Tokyo, 1997.
- [155] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based hybrid motion planner. In *IEEE/RSJ International Conference on Intelligent Robots* and Systems, 2001.
- [156] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo localization: Efficient position estimation for mobile robots. In *Proc. of the National Conference on Artificial Intelligence (AAAI)*, 1999.
- [157] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A probabilistic approach to collaborative multi-robot localization. *Autonomous Robots*, 8(3), 2000.
- [158] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic environments. *Journal of Artificial Intelligence Research (JAIR)*, 11:391–427, 1999.
- [159] T. Fraichard and J.-M. Ahuactzin. Smooth path planning for cars. In *IEEE International Conference on Robotics and Automation*, pages 3722–3727, Seoul, Korea, 2001.
- [160] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile autonomous vehicles. *AIAA Journal of Guidance, Control, and Dynamics*, 25(1):116–129, 2002.
- [161] C. Früh and A. Zakhor. 3D model generation for cities using aerial photographs and ground level laser scans. In *Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)*, 2001.
- [162] R. Geraerts and M. Overmars. A comparative study of probabilistic roadmap planners. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, *Algorithmic Foundations of Robotics V*, pages 43–58. Springer-Verlag, 2003.
- [163] E. Gilbert, D. Johnson, and S. Keerthi. A fast procedure for computing distance between complex objects in three-dimensional space. *IEEE Transactions on Robotics and Automation*, 4:193–203, 1988.

[164] P. E. Gill, W. Murray, and M. H. Wright. *Practical Optimization*. Academic Press, New York, 1981.

- [165] B. Glavina. Solving findpath by combination of goal-directed and randomized search. In *IEEE International Conference on Robotics and Automation*, pages 1718–1723, 1990.
- [166] K. Y. Goldberg. Orienting polygonal parts without sensors. *Algorithmica*, 10:201–225, 1993.
- [167] N. Gordon, D. Salmond, and A. Smith. Novel approach to nonlinear/non-Gaussian Bayesian state estimation. *IEE Proceedings F*, 140(2):107–113, 1993.
- [168] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A hierarchical structure for rapid interference detection. *Computer Graphics*, 30(Annual Conference Series):171–180, 1996.
- [169] P. Grandjean and A. Robert de Saint Vincent. 3-D modeling of indoor scenes by fusion of noisy range and stereo data. In *IEEE International Conference on Robotics and Automation*, 1989.
- [170] F. Gravoit, S. Cambon, and R. Alami. Asymov: a planner that deals with intricate symbolic and geometric problems. In *International Symposium on Robotics Research*, 2003. Book to appear.
- [171] L. J. Guibas, C. Holleman, and L. E. Kavraki. A probabilistic roadmap planner for flexible objects with a workspace medial-axis-based sampling approach. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 254–260, 1999.
- [172] L. J. Guibas, J. C. Latombe, S. M. LaValle, D. Lin, and R. Motwani. A visibility-based pursuit-evasion problem. *International Journal of Computational Geometry and Applications*, 9(4/5):471–512, August/October 1999.
- [173] V. Guillemin and A. Pollack, editors. *Differential Topology*. Prentice-Hall, Inc., New Jersey, 1974.
- [174] K. Gupta and Z. Guo. Motion planning with many degrees of freedom: sequential search with backtracking. *IEEE Transactions on Robotics and Automation*, 6(11):897–906, 1995.
- [175] L. Gurvits. Averaging approach to nonholonomic motion planning. In *IEEE International Conference on Robotics and Automation*, pages 2541–2546, 1992.
- [176] J. Gutmann and D. Fox. An experimental comparison of localization methods continued. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2002.

[177] J.-S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental comparison of localization methods. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 1998.

- [178] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environments. In *Proc. of the IEEE Int. Symp. on Computational Intelligence in Robotics and Automation (CIRA)*, 1999.
- [179] J.-S. Gutmann and C. Schlegel. AMOS: Comparison of scan matching approaches for self-localization in indoor environments. In *Proc. of the 1st Euromicro Workshop on Advanced Mobile Robots*. IEEE Computer Society Press, 1996.
- [180] J.-S. Gutmann, T. Weigel, and B. Nebel. A fast, accurate, and robust method for self-localization in polygonal environments using laser-range-finders. *Advanced Robotics Journal*, 14(8):651–668, 2001.
- [181] D. Hähnel, W. Burgard, D. Fox, and S. Thrun. A highly efficient FastSLAM algorithm for generating cyclic maps of large-scale environments from raw laser range measurements. Submitted for publication.
- [182] D. Hähnel, D. Schulz, and W. Burgard. Map building with mobile robots in populated environments. In *Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2002.
- [183] D. Halperin and M. Sharir. A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment. *Discrete Computational Geometry*, 16:121–134, 1996.
- [184] L. Han and N. M. Amato. A kinematics-based probabilistic roadmap for closed chain systems. In B. R. Donald, K. Lynch, and D. Rus, editors, *New Directions in Algorithmic and Computational Robotics*, pages 233–246. AK Peters, 2001.
- [185] G. Heinzinger, P. Jacobs, J. Canny, and B. Paden. Time-optimal trajectories for a robot manipulator: A provably good approximation algorithm. In *IEEE International Conference on Robotics and Automation*, pages 150–156, 1989.
- [186] G. Heinzinger and B. Paden. Bounds on robot dynamics. In *IEEE International Conference on Robotics and Automation*, pages 1227–1232, Scottsdale, Arizona, 1989.
- [187] S. Hert, S. Tiwari, and V. Lumelsky. A Terrain-Covering Algorithm for an AUV. *Autonomous Robots*, 3:91–119, 1996.
- [188] J. Hertzberg and F. Kirchner. Landmark-based autonomous navigation in sewerage pipes. In *Proc. of the First Euromicro Workshop on Advanced Mobile Robots*, 1996.
- [189] H. Hirukawa, B. Mourrain, and Y. Papegay. A symbolic-numeric silhouette algorithm. In *Intelligent Robots and Systems*, pages 2358–2365, Nov 2000.

[190] C. Hofner and G. Schmidt. Path planning and guidance techniques for an autonomous mobile cleaning robot. *Robotics and Autonomous Systems*, 14:199–212, 1995.

- [191] C. Holleman and L. E. Kavraki. A framework for using the workspace medial axis in PRM planners. In *IEEE International Conference on Robotics and Automation*, pages 1408–1413, 2000.
- [192] D. Hsu. *Randomized Single-Query Motion Planning In Expansive Spaces*. PhD thesis, Department of Computer Science, Stanford University, 2000.
- [193] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling narrow passages with probabilistic roadmap planners. In *IEEE International Conference on Robotics and Automation*, 2003.
- [194] D. Hsu, L. E. Kavraki, J. C. Latombe, R. Motwani, and S. Sorkin. On finding narrow passages with probabilistic roadmap planners. In e. a. P. Agarwal, editor, *Robotics: The Algorithmic Perspective*, pages 141–154. A.K. Peters, Wellesley, MA, 1998.
- [195] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Randomized kinodynamic motion planning with moving obstacles. *International Journal of Robotics Research*, 21(3):233–255, 2002.
- [196] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. In *IEEE International Conference on Robotics and Automation*, pages 2719–2726, 1997.
- [197] D. Hsu, J. C. Latombe, and R. Motwani. Path planning in expansive configuration spaces. *International Journal of Computational Geometry and Applications*, 9(4/5):495–512, 1998.
- [198] Y. Y. Huang, Z. L. Cao, and E. Hall. Region filling operations for mobile robot using computer graphics. In *Proceedings of the IEEE Conference on Robotics and Automation*, pages 1607–1614, 1986.
- [199] T. C. Hudson, M. C. Lin, J. Cohen, S. Gottschalk, and D. Manocha. V-COLLIDE: Accelerated collision detection for VRML. In R. Carey and P. Strauss, editors, *VRML 97: Second Symposium on the Virtual Reality Modeling Language*, pages 119–125, New York City, NY, 1997. ACM Press.
- [200] S. Iannitti and K. M. Lynch. Exact minimum control switch motion planning for the snakeboard. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2003.
- [201] M. Isard and A. Blake. Condensation—conditional density propagation for visual tracking. *International Journal of Computer Vision*, 29(1), 1998.
- [202] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag, 1985.

[203] P. Isto. A two-level search algorithm for motion planning. In *IEEE International Conference on Robotics and Automation*, pages 2025–2031, 1997.

- [204] P. Isto. Constructing probabilistic roadmaps with powerful local planning and path optimization. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 2323–2328, 2002.
- [205] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guaranteed near-time-optimal trajectories for a manipulator in a cluttered workspace. In *International Workshop on Sensorial Integration for Industrial Robots: Architectures and Applications*, Zaragoza, Spain, 1989.
- [206] P. Jacobs, G. Heinzinger, J. Canny, and B. Paden. Planning guaranteed near-time-optimal trajectories for a manipulator in a cluttered workspace. Technical Report RAMP 89-15, University of California, Berkeley, Engineering Systems Research Center, Sept. 1989.
- [207] K. Janich. Topology. Spring-Verlag, New York, NY, 1984.
- [208] R. Jarvis. Collision free trajectory planning using distance transforms. *Mech Eng Trans of the IE Aust*, ME10:197–191, 1985.
- [209] P. Jensfelt and S. Kristensen. Active global localisation for a mobile robot using multiple hypothesis tracking. *IEEE Transactions on Robotics and Automation*, 17(5):748–760, Oct. 2001.
- [210] X. Ji and J. Xiao. Planning motion compliant to complex contact states. *International Journal of Robotics Research*, 20(6):446–465, 2001.
- [211] V. Jurdjevic. Geometric Control Theory. Cambridge University Press, 1997.
- [212] V. Jurdjevic and H. J. Sussmann. Control systems on Lie groups. *Journal of Differential Equations*, 12:313–329, 1972.
- [213] L. Kaelbling, A. Cassandra, and J. Kurien. Acting under uncertainty: Discrete Bayesian models for mobile-robot navigation. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 1996.
- [214] T. Kailath. Linear Systems. Prentice-Hall, 1980.
- [215] R. Kalman. A new approach to linear filtering and prediction problems. *Trans. of the ASME, Journal of basic engineering,* 82:35–45, March 1960.
- [216] I. Kamon, E. Rimon, and E. Rivlin. Tangentbug: A range-sensor based navigation algorithm. *Int. Journal of Robotics Research*, 17(9):934–953, 1998.
- [217] I. Kamon, E. Rivlin, and E. Rimon. A new range-sensor based globally convergent navigation for mobile robots. In *IEEE Int'l. Conf. on Robotics and Automation*, Minneapolis, MN, April 1996.
- [218] K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for dynamic probabilistic networks. In *Proc. of the 11th Annual Conference on Uncertainty in AI (UAI)*, 1995.

[219] K. Kant and S. Zucker. Toward efficient trajectory planning: Path velocity decomposition. *International Journal of Robotics Research*, 5:72–89, 1986.

- [220] L. E. Kavraki. Part orientation with programmable vector fields: Two stable equilibria for most parts. In *IEEE International Conference on Robotics and Automation*, pages 20–25, Albuquerque, New Mexico, Apr. 1997.
- [221] L. E. Kavraki. *Random Networks in Configuration Space for Fast Path Planning*. PhD thesis, Stanford University, 1995.
- [222] L. E. Kavraki, M. Kolountzakis, and J. C. Latombe. Analysis of probabilistic roadmaps for path planning. In *IEEE International Conference on Robotics and Automation*, pages 3020–3026, 1996.
- [223] L. E. Kavraki, M. N. Kolountzakis, and J. C. Latombe. Analysis of probabilistic roadmaps for path planning. *IEEE Transactions on Robotics and Automation*, 14(1):166–171, February 1998.
- [224] L. E. Kavraki, F. Lamiraux, and C. Holleman. Towards planning for elastic objects. In P. Agrawal, L. E. Kavraki, and M. Mason, editors, *Robotics: The Algorithmic Perspective*, pages 313–325. A.K. Peters, 1998.
- [225] L. E. Kavraki and J. C. Latombe. Randomized preprocessing of configuration space for fast path planning. Technical Report STAN-CS-93-1490, Dept. Comput. Sci., Stanford Univ., Stanford, CA, 1993.
- [226] L. E. Kavraki and J. C. Latombe. Randomized preprocessing of configuration space for path planning. In *IEEE International Conference on Robotics and Automation*, pages 2138–2139, 1994.
- [227] L. E. Kavraki and J. C. Latombe. Probabilistic roadmaps for robot path planning. In K. Gupta and A. P. del Pobil, editors, *Practical Motion Planning in Robotics: Current Approaches and Future Challenges*, pages 33–53. John Wiley, West Sussex, England, 1998.
- [228] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan. Randomized query processing in robot motion planning. In *Proc. ACM Symp. on Theory of Computing*, pages 353–362, 1995.
- [229] L. E. Kavraki, J. C. Latombe, R. Motwani, and P. Raghavan. Randomized query processing in robot path planning. *Journal of Computer and System Sciences*, 57(1):50–60, August 1998.
- [230] L. E. Kavraki, J. C. Latombe, and R. Wilson. On the complexity of assembly partitioning. *Information Processing Letters*, 48:229–235, 1993.
- [231] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars. Probabilistic roadmaps for path planning in high-dimensional configuration spaces. *IEEE Transactions on Robotics and Automation*, 12(4):566–580, June 1996.

[232] H. Keller. *Lectures on Numerical Methods in Bifurcation Problems*. Tata Institute of Fundamental Research, Bombay, India, 1987.

- [233] S. D. Kelly and R. M. Murray. Geometric phases and robotic locomotion. *Journal of Robotic Systems*, 12(6):417–431, 1995.
- [234] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. *International Journal of Robotics Research*, 5:90–98, 1986.
- [235] R. Kindel, D. Hsu, J. C. Latombe, and S. Rock. Kinodynamic motion planning amidst moving obstacles. In *IEEE International Conference on Robotics and Automation*, pages 537–543, 2000.
- [236] D. E. Kirk. Optimal Control Theory. Prentice-Hall Inc., 1970.
- [237] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, O. E., and H. Matsubara. RoboCup: A challenge problem for AI. *AI Magazine*, 18(1):73–85, 1997.
- [238] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient collision detection using bounding volume hierarchies of *k*-DOPs. *IEEE Transactions on Visualization and Computer Graphics*, 4(1):21–36, 1998.
- [239] D. E. Koditschek and E. Rimon. Robot navigation functions on manifolds with boundary. *Advances in Applied Mathematics*, 11:412–442, 1990.
- [240] S. Koenig and R. Simmons. A robot navigation architecture based on partially observable Markov decision process models. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors, *Artificial Intelligence and Mobile Robots*. MIT/AAAI Press, Cambridge, MA, 1998.
- [241] Y. Koga, K. Kondo, J. Kuffner, and J. C. Latombe. Planning motions with intentions. *Computer Graphics (SIGGRAPH'94)*, pages 395–408, 1994.
- [242] Y. Koga and J. C. Latombe. Experiments in dual-arm manipulation planning. In *IEEE International Conference on Robotics and Automation*, pages 2238–2245, 1992.
- [243] Y. Koga and J. C. Latombe. On multi-arm manipulation planning. In *IEEE International Conference on Robotics and Automation*, pages 945–952, 1994.
- [244] K. Kondo. Motion planning with six degrees of freedom by multistrategic bidirectional heuristic free-space enumeration. *IEEE Transactions on Robotics and Automation*, 7:267–277, 1991.
- [245] K. Konolige. Markov localization using correlation. In *Proc. of the International Joint Conference on Artificial Intelligence (IJCAI)*, 1999.
- [246] J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body path planning. In *IEEE International Conference on Robotics and Automation*, 2004.

[247] J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning for humanoid robots under obstacle and dynamic balance constraints. In *IEEE International Conference on Robotics and Automation*, pages 692–698, Seoul, Korea, May 2001.

- [248] J. J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Motion planning for humanoid robots. In *International Symposium on Robotics Research*, 2003. Book to appear.
- [249] J. J. Kuffner and S. M. LaValle. RRT-connect: An efficient approach to single-query path planning. In *IEEE International Conference on Robotics and Automation*, pages 995–1001, 2000.
- [250] B. Kuipers and Y. Byan. A robot exploration and mapping strategy based on a semantic hierarchy of spatial representations. *Journal of Robotics and Autonomous Systems*, 8:47–63, 1991.
- [251] A. M. Ladd and L. E. Kavraki. Motion planning for knot untangling. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, *Algorithmic Foundations of Robotics V*, pages 7–24. Springer-Verlag, 2002.
- [252] A. M. Ladd and L. E. Kavraki. Measure theoretic analysis of probabilistic path planning. *IEEE Transactions on Robotics and Automation*, 20(2):229–242, 2004.
- [253] G. Lafferriere and H. Sussmann. Motion planning for controllable systems without drift. In *IEEE International Conference on Robotics and Automation*, pages 1148–1153, Sacramento, CA, 1991.
- [254] G. Lafferriere and H. J. Sussmann. A differential geometric approach to motion planning. In Z. Li and J. Canny, editors, *Nonholonomic Motion Planning*. Kluwer Academic, 1993.
- [255] F. Lamiraux and L. E. Kavraki. Planning paths for elastic objects under manipulation constraints. *International Journal of Robotics Research*, 20(3):188–208, 2001.
- [256] F. Lamiraux and L. E. Kavraki. Positioning of symmetric and nonsymmetric parts using radial and constant fields: Computation of al equilibrium configurations. *International Journal of Robotics Research*, 20(8):635–659, 2001.
- [257] F. Lamiraux and J.-P. Laumond. On the expected complexity of random path planning. In *IEEE International Conference on Robotics and Automation*, pages 3014–3019, 1996.
- [258] F. Lamiraux and J.-P. Laumond. Smooth motion planning for car-like vehicles. *IEEE Transactions on Robotics and Automation*, 17(4):498–502, Aug. 2001.

[259] F. Lamiraux, S. Sekhavat, and J.-P. Laumond. Motion planning and control for Hilare pulling a trailer. *IEEE Transactions on Robotics and Automation*, 15(4):640–652, Aug. 1999.

- [260] S. Land and H. Choset. Coverage path planning for landmine location. In *Third International Symposium on Technology and the Mine Problem*, Monterey, CA, April 1998.
- [261] E. Larsen, S. Gottschalk, M. Lin, and D. Manocha. Fast proximity queries with swept sphere volumes. Technical Report TR99-018, Department of Computer Science, University of North Carolina at Chapel Hill, North Carolina, 1999.
- [262] J. C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, Boston, MA, 1991.
- [263] J. C. Latombe. Personal communication.
- [264] J.-P. Laumond and R. Alami. A geometrical approach to planning manipulation tasks: The case of a circular robot and a movable circular object amidst polygonal obstacles. Report 88314, LAAS/CNRS, Toulouse, France, 1989.
- [265] J.-P. Laumond. Controllability of a multibody mobile robot. *IEEE Transactions on Robotics and Automation*, 9(6):755–763, Dec. 1993.
- [266] J.-P. Laumond. Robot motion planning and control. Springer, 1998.
- [267] J.-P. Laumond, P. E. Jacobs, M. Taïx, and R. M. Murray. A motion planner for nonholonomic mobile robots. *IEEE Transactions on Robotics and Automation*, 10(5):577–593, Oct. 1994.
- [268] S. M. LaValle, J. Yakey, and L. E. Kavraki. Randomized path planning for linkages with closed kinematics chains. *IEEE Transactions on Robotics and Automation*, 17(6):951–959, 2001.
- [269] S. M. LaValle and M. S. Branicky. On the relationship between classical grid search and probabilistic roadmaps. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, *Algorithmic Foundations of Robotics V*, pages 59–76. Springer-Verlag, 2002.
- [270] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In *IEEE International Conference on Robotics and Automation*, pages 473–479, 1999.
- [271] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. *International Journal of Robotics Research*, 20(5):378–400, May 2001.
- [272] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress and prospects. In B. R. Donald, K. Lynch, and D. Rus, editors, *New Directions in Algorithmic and Computational Robotics*, pages 293–308. AK Peters, 2001.
- [273] S. M. Lavalle, D. Lin, L. J. Guibas, J. C. Latombe, and R. Motwani. Finding an unpredictable target in a workspace with obstacles. In *IEEE International Conference on Robotics and Automation*, pages 1677–1682, 1997.

[274] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot motion planning using rasterizing computer graphics hardware. *Computer Graphics*, 24(4):327–335, 1990.

- [275] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile robots. In *IEEE International Conference on Robotics and Automation*, 2000.
- [276] J. J. Leonard and H. Durrant-Whyte. *Directed Sonar Sensing for Mobile Robot Navigation*. Kluwer Academic, Boston, MA, 1992.
- [277] J. J. Leonard and H. Feder. A computationally efficient method for large-scale concurrent mapping and localization. In J. Hollerbach and D. Koditschek, editors, *Proceedings of the Ninth International Symposium on Robotics Research*, Salt Lake City, Utah, 1999.
- [278] J. J. Leonard and H. Durrant-Whyte. Simultaneous map building and localization for an autonomous mobile robot. In *IEEE/RSJ International Workshop on Intelligent Robots and Systems*, pages 1442–1447, May 1991.
- [279] N. E. Leonard. Control synthesis and adaptation for an underactuated autonomous underwater vehicle. *IEEE Journal of Oceanic Engineering*, 20(3):211–220, July 1995.
- [280] N. E. Leonard and P. S. Krishnaprasad. Motion control of drift-free, left-invariant systems on Lie groups. *IEEE Transactions on Automatic Control*, 40(9):1539–1554, Sept. 1995.
- [281] P. Leven and S. Hutchinson. Real-time path planning in changing environments. *International Journal of Robotics Research*, 21(12):999–1030, Dec. 2002.
- [282] P. Leven and S. Hutchinson. Using manipulability to bias sampling during the construction of probabilistic roadmaps. *IEEE Transactions on Robotics and Automation*, 19(6):1020–1026, Dec. 2003.
- [283] A. D. Lewis. When is a mechanical control system kinematic? In *IEEE Conference on Decision and Control*, pages 1162–1167, Dec. 1999.
- [284] A. D. Lewis. Simple mechanical control systems with constraints. *IEEE Transactions on Automatic Control*, 45(8):1420–1436, 2000.
- [285] A. D. Lewis and R. M. Murray. Configuration controllability of simple mechanical control systems. *SIAM Journal on Control and Optimization*, 35(3):766–790, May 1997.
- [286] A. D. Lewis and R. M. Murray. Configuration controllability of simple mechanical control systems. *SIAM Review*, 41(3):555–574, 1999.
- [287] F. L. Lewis and V. L. Syrmos. *Optimal Control*. John Wiley and Sons, Inc., 1995.
- [288] Z. Li and J. Canny. Nonholonomic Motion Planning. Kluwer Academic, 1993.

[289] K. Lian, L. Wang, and L. Fu. Controllability of spacecraft systems in a central gravitational field. *IEEE Transactions on Automatic Control*, 39(12):2426–2440, Dec. 1994.

- [290] M. C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection: Algorithms and applications. In J.-P. Laumond and M. Overmars, editors, *Algorithms for Robotic Motion and Manipulation*, pages 129–142. A K Peters, Wellesley, MA, 1997.
- [291] S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice methods for motion planning. In *IEEE International Conference on Robotics and Automation*, pages 2920–2927, 2003.
- [292] S. R. Lindemann and S. M. LaValle. Current issues in sampling-based motion planning. In *International Symposium on Robotics Research*, 2003. Book to appear.
- [293] G. Liu and Z. Li. A unified geometric approach to modeling and control of constrained mechanical systems. *IEEE Transactions on Robotics and Automation*, 18(4):574–587, Aug. 2002.
- [294] Y. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots among polygonal and curved obstacles. *International Journal of Robotics Research*, 11(4):376–382, 1992.
- [295] C. Lobry. Controllability of nonlinear systems on compact manifolds. *SIAM Journal on Control*, 12(1):1–4, 1974.
- [296] I. Lotan, F. Schwarzer, D. Halperin, and J. C. Latombe. Efficient maintenance and self-collision testing for kinematic chains. In *Proceedings of the 18th annual Symposium on Computational geometry*, pages 43–52. ACM Press, 2002.
- [297] T. Lozano-Pérez. A simple motion-planning algorithm for general robot manipulators. *IEEE Journal of Robotics and Automation*, RA-3(3):224–238, 1987.
- [298] T. Lozano-Perez and M. Wesley. An algorithm for planning collision-free paths among polyhedral obstacles. *Communications of the ACM*, 22(10):560–570, 1979.
- [299] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping. *Autonomous Robots*, 4:333–349, 1997.
- [300] V. Lumelsky, S. Mukhopadhyay, and K. Sun. Dynamic path planning in sensor-based terrain acquisition. *IEEE Transactions on Robotics and Automation*, 6(4):462–472, August 1990.
- [301] V. Lumelsky and A. Stepanov. Path planning strategies for point mobile automaton moving amidst unknown obstacles of arbitrary shape. *Algorithmica*, 2:403–430, 1987.

[302] J. E. Luntz, W. Messner, and H. Choset. Distributed manipulation using discrete actuator arrays. *International Journal of Robotics Research*, 20(7):553–582, 2001.

- [303] K. M. Lynch. Controllability of a planar body with unilateral thrusters. *IEEE Transactions on Automatic Control*, 44(6):1206–1211, June 1999.
- [304] K. M. Lynch and C. K. Black. Recurrence, controllability, and stabilization of juggling. *IEEE Transactions on Robotics and Automation*, 17(2):113–124, Apr. 2001.
- [305] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie. Collision-free trajectory planning for a 3-DOF robot with a passive joint. *International Journal of Robotics Research*, 19(12):1171–1184, Dec. 2000.
- [306] D. K. M. Ben-Or and J. Reif. The complexity of elementary algebra and geometry. *Journal of Computational Sciences*, 32:251–264, 1986.
- [307] J. Marsden. Elementary Classical Analysis. W. H. Freeman and Company, New York, 1974.
- [308] J. Marsden and T. Ratiu. *Introduction to Mechanics and Symmetry*. Springer-Verlag, New York, 1994.
- [309] P. Martin, R. M. Murray, and P. Rouchon. Flat systems. In G. Bastin and M. Gevers, editors, 1997 European Control Conference Plenary Lectures and Mini-Courses. 1997.
- [310] S. Martinez, J. Cortés, and F. Bullo. A catalog of inverse-kinematics planners for underactuated systems on matrix Lie groups. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2003.
- [311] M. T. Mason. *Manipulation by grasping and pushing operations*. PhD thesis, MIT, Artificial Intelligence Laboratory, 1982.
- [312] M. T. Mason. Mechanics of Robotic Manipulation. MIT Press, 2001.
- [313] P. Maybeck. The Kalman filter: An introduction to concepts. In *Autonomous Robot Vehicles*. Springer verlag, 1990.
- [314] M. B. Milam, K. Mushambi, and R. M. Murray. A new computational approach to real-time trajectory generation for constrained mechanical systems. In *IEEE International Conference on Decision and Control*, 2000.
- [315] J. Milnor. *Morse Theory*. Princeton University Press, Princeton, NJ, 1963.
- [316] B. Mirtich. V-clip: Fast and robust polyhedral collision detection. *ACM Transactions on Graphics*, 17(3):177–208, 1998.
- [317] M. Moll, K. Goldberg, M. A. Erdmann, and R. Fearing. Aligning parts for micro assemblies. *Assembly Automation*, 22(1):46–54, Feb. 2002.

[318] M. Moll and L. E. Kavraki. Path planning for minimal energy curves of constant length. In *IEEE International Conference on Robotics and Automation*, pages 2826–2831, 2004.

- [319] M. Moll and L. E. Kavraki. Path planning for variable resolution minimal energy curves of constant length. In *IEEE International Conference on Robotics and Automation*, 2005.
- [320] M. Montemerlo and S. Thrun. Simultaneous localization and mapping problem with unknown data association using FastSLAM. In *IEEE International Conference on Robotics and Automation*, 2003.
- [321] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to the simultaneous localization and mapping problem. In *Proc. of the National Conference on Artificial Intelligence (AAAI)*, 2002.
- [322] M. Montemerlo, S. Thrun, and W. Whittaker. Conditional particle filters for simultaneous mobile robot localization and people tracking. In *IEEE International Conference on Robotics and Automation*, 2002.
- [323] M. Morales, S. Rodriguez, and N. M. Amato. Improving the connectivity of prm roadmaps. In *IEEE International Conference on Robotics and Automation*, pages 4427–4432, 2003.
- [324] H. Moravec. Sensor fusion in certainty grids for mobile robots. *AI Magazine*, pages 61–74, Summer 1988.
- [325] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In *IEEE International Conference on Robotics and Automation*, 1985.
- [326] J. J. Moré and S. J. Wright. Optimization Software Guide. SIAM, Philadelphia, PA, 1993.
- [327] K. A. Morgansen. *Temporal patterns in learning and control*. PhD thesis, Harvard University, 1999.
- [328] K. A. Morgansen, P. A. Vela, and J. W. Burdick. Trajectory stabilization for a planar carangiform robot fish. In *IEEE International Conference on Robotics and Automation*, 2002.
- [329] K. Murphy. Bayesian map learning in dynamic environments. In *Neural Info. Proc. Systems (NIPS)*, 1999.
- [330] R. M. Murray, Z. Li, and S. S. Sastry. *A Mathematical Introduction to Robotic Manipulation*. CRC Press, 1994.
- [331] R. M. Murray, M. Rathinam, and W. Sluis. Differential flatness of mechanical control systems: A catalog of prototype systems. In *ASME Int Mech Eng Congress and Expo*, 1995.
- [332] R. M. Murray and S. S. Sastry. Nonholonomic motion planning: Steering using sinusoids. *IEEE Transactions on Automatic Control*, 38(5):700–716, 1993.

[333] Y. Nakamura, T. Suzuki, and M. Koinuma. Nonlinear behavior and control of a nonholonomic free-joint manipulator. *IEEE Transactions on Robotics and Automation*, 13(6):853–862, 1997.

- [334] P. Newman, J. Leonard, J. Neira, and J. Tardós. Explore and return: Experimental validation of real time concurrent mapping and localization. In *IEEE International Conference on Robotics and Automation*, 2002.
- [335] C. Nielsen and L. E. Kavraki. A two level fuzzy PRM for manipulation planning. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 1716–1722, Japan, 2000.
- [336] D. Nieuwenhuisen and M. H. Overmars. Useful cycles in probabilistic roadmap graphs. In *IEEE International Conference on Robotics and Automation*, pages 446–452, 2004.
- [337] C. Nissoux, T. Simeon, and J.-P. Laumond. Visibility based probabilistic roadmaps. *Advanced Robotics Journal*, 14(6), 2000.
- [338] J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag, 1999.
- [339] I. Nourbakhsh, R. Powers, and S. Birchfield. DERVISH an office-navigating robot. *AI Magazine*, 16(2), 1995.
- [340] C. Ó'Dúnlaing and C. Yap. A "retraction" method for planning the motion of a disc. *Algorithmica*, 6:104–111, 1985.
- [341] M. Ollis and A. Stentz. First results in vision-based crop line tracking. In *IEEE International Conference on Robotics and Automation*, 1996.
- [342] J. P. Ostrowski and J. W. Burdick. The geometric mechanics of undulatory robotic locomotion. *International Journal of Robotics Research*, 17(7):683–701, July 1998.
- [343] J. P. Ostrowski, J. P. Desai, and V. Kumar. Optimal gait selection for non-holonomic locomotion systems. *International Journal of Robotics Research*, 19(3):225–237, Mar. 2000.
- [344] M. Overmars. A random approach to motion planning. Technical Report RUU-CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, Oct. 1992.
- [345] M. Overmars and P. Švestka. A probabilistic learning approach to motion planning. In K. Goldberg, D. Halperin, J. C. Latombe, and R. Wilson, editors, *Algorithmic Foundations of Robotics (WAFR)*, pages 19–37. A. K. Peters, Ltd, 1995.
- [346] R. Parr and A. Eliazar. DP-SLAM: Fast, robust simultaneous localization and mapping without predetermined landmarks. In *Proc. of the International Joint Conference on Artificial Intelligence (IJCAI)*, 2003.

[347] J. Pearl. *Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference*. Morgan Kaufmann Publishers, Inc., 1988.

- [348] F. Pfeiffer and R. Johanni. A concept for manipulator trajectory planning. *IEEE Journal of Robotics and Automation*, RA-3(2):115–123, 1987.
- [349] J. M. Phillips, N. Bedrossian, and L. E. Kavraki. Guided expansive spaces trees: A search strategy for motion- and cost-constrained state spaces. In *IEEE International Conference on Robotics and Automation*, pages 3968–3973, 2004.
- [350] J. Phillips, L. Kavraki, and N. Bedrossian. Spacecraft rendezvous and docking with real-time, randomized optimization. In AIAA Guidance, Navigation, and Control, 2003.
- [351] A. Piazza, M. Romano, and C. G. L. Bianco. G³-splines for the path planning of wheeled mobile robots. In *European Control Conference*, 2003.
- [352] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning for a rigid body based on hardware accelarated Voronoi sampling. In B. R. Donald, K. Lynch, and D. Rus, editors, *New Directions in Algorithmic and Computa*tional Robotics. AK Peters, 2001.
- [353] E. Plaku and L. E. Kavraki. Distributed sampling-based roadmap of trees for large-scale motion planning. In *IEEE International Conference on Robotics and Automation*, 2005.
- [354] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko. *The Mathematical Theory of Optimal Processes*. Interscience Publishers, 1962.
- [355] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. P. Bessière, and C. Laugier. Safe and autonomous navigation for a car-like robot among pedestrian. In *IARP Int. Workshop on Service, Assistive and Personal Robots*, 2003.
- [356] F. Preparata and M. I. Shamos. *Computational Geometry: An Introduction*. Springer-Verlag, 1985. p198–257.
- [357] S. Quinlan. Efficient distance computation between nonconvex objects. In *IEEE International Conference on Robotics and Automation*, pages 3324–3329, 1994.
- [358] A. Rao and K. Goldberg. Manipulating algebraic parts in the plane. *IEEE Tr. on Rob. and Autom.*, 11:598–602, 1995.
- [359] N. Rao, N. Stolzfus, and S. Iyengar. A retraction method for learned navigation in unknown terrains for a circular robot. *IEEE Transactions on Robotics and Automation*, 7:699–707, October 1991.
- [360] J. A. Reeds and L. A. Shepp. Optimal paths for a car that goes both forwards and backwards. *Pacific Journal of Mathematics*, 145(2):367–393, 1990.

[361] J. Reif. Complexity of the mover's problem and generalizations. In *Proc. 20th IEEE Symposium on Foundations of Computer Science*, pages 421–427, 1979.

- [362] J. H. Reif and H. Wang. Nonuniform discretization for kinodynamic motion planning and its applications. *SIAM Journal of Computing*, 30(1):161–190, 2000.
- [363] D. Reznik, E. Moshkivich, and J. F. Canny. Building a universal planar manipulator. In K.-F. Böhringer and H. Choset, editors, *Distributed Manipulation*, pages 147–171. Kluwer Academic Publishers, Boston, 2000.
- [364] E. Rimon and D. E. Koditschek. Exact robot navigation using artificial potential functions. *IEEE Transactions on Robotics and Automation*, 8(5):501–518, October 1992.
- [365] T. Röfer. Using histogram correlation to create consistent laser scan maps. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, 2002.
- [366] H. Rohnert. Shortest path in the plane with convex polygonal obstacles. *Information Processing Letters*, 23:71–76, 1986.
- [367] G. Sánchez and J. C. Latombe. On delaying collision checking in prm planning: Application to multi-robot coor dination. *International Journal of Robotics Research*, 21(1):5–26, 2002.
- [368] S. S. Sastry. *Nonlinear Systems: Analysis, Stability, and Control.* Springer-Verlag, New York, 1999.
- [369] D. H. Sattinger and O. L. Weaver. *Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics*. Springer-Verlag, 1986.
- [370] A. Scheuer and T. Fraichard. Collision-free and continuous-curvature path planning for car-like robots. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 1304–1311, Osaka, Japan, 1997.
- [371] B. Schiele and J. Crowley. A comparison of position estimation techniques using occupancy grids. In *IEEE International Conference on Robotics and Automation*, 1994.
- [372] B. Schutz. *Geometrical methods of mathematical physics*. Cambridge University Press, 1980.
- [373] J. T. Schwartz and M. Sharir. On the piano movers' problem: II. General techniques for computing topological properties of real algebraic manifolds. *Advances in Applied Mathematics*, 4:298–351, 1983.
- [374] J. T. Schwartz and M. Sharir. On the piano movers' problem: V. The case of a rod moving in three-dimensional space amidst polyhedral obstacles. *Communications on Pure and Applied Mathematics*, 37:815–848, 1984.

[375] J. T. Schwartz and M. Sharir. A survey of motion planning and related geometric algorithms. *Artificial Intelligence.*, 37:157–169, 1988.

- [376] F. Schwarzer, M. Saha, and J. C. Latombe. Exact collision checking of robot paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson, editors, *Algorithmic Foundations of Robotics V*, pages 25–42. Springer-Verlag, 2002.
- [377] S. Sekhavat and J.-P. Laumond. Topological property of trajectories computed from sinusoidal inputs for nonholonomic chained form systems. In *IEEE International Conference on Robotics and Automation*, pages 3383–3388, 1996.
- [378] S. Sekhavat and J.-P. Laumond. Topological property for collision-free non-holonomic motion planning: the case of sinusoidal inputs for chained form systems. *IEEE Transactions on Robotics and Automation*, 14(5):671–680, Oct. 1998.
- [379] S. Sekhavat, P. Švestka, J.-P. Laumond, and M. H. Overmars. Multilevel path planning for nonholonomic robots using semiholonomic subsystems. *International Journal of Robotics Research*, 17(8):840–857, Aug. 1998.
- [380] J.-P. Serre. Lie Algebras and Lie Groups. W. A. Benjamin, New York, 1965.
- [381] J. Sethian. *Level Set Methods and Fast Marching Methods*. Cambridge University Press, Cambridge, UK, 1999.
- [382] H. Shatkay and L. Kaelbling. Learning topological maps with weak local odometric information. In *Proceedings of IJCAI-97*. IJCAI, Inc., 1997. 1997.
- [383] Z. Shiller and S. Dubowsky. On computing the global time-optimal motions of robotic manipulators in the presence of obstacles. *IEEE Transactions on Robotics and Automation*, 7(6): 785–797, Dec. 1991.
- [384] Z. Shiller and H.-H. Lu. Computation of path constrained time optimal motions with dynamic singularities. *ASME Journal of Dynamic Systems, Measurement, and Control*, 114:34–40, Mar. 1992.
- [385] K. G. Shin and N. D. McKay. Minimum-time control of robotic manipulators with geometric path constraints. *IEEE Transactions on Automatic Control*, 30(6):531–541, June 1985.
- [386] R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable environments. In *Proc. of the International Joint Conference on Artificial Intelligence (IJCAI)*, 1995.
- [387] A. Singh, J. C. Latombe, and D. Brutlag. A motion planning approach to flexible ligand binding. In *Intelligent Systems for Molecular Biology*, pages 252–261, 1999.

[388] J.-J. E. Slotine and H. S. Yang. Improving the efficiency of time-optimal path-following algorithms. *IEEE Transactions on Robotics and Automation*, 5(1):118–124, Feb. 1989.

- [389] R. Smith and P. Cheeseman. On the representation and estimation of spatial uncertainty. *The International Journal of Robotics Research*, 5(4):56–68, 1986.
- [390] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics. In I. Cox and G. Wilfong, editors, *Autonomous Robot Vehicles*. Springer Verlag, 1990.
- [391] E. Sontag. Gradient techniques for systems with no drift: A classical idea revisited. In *IEEE International Conference on Decision and Control*, pages 2706–2711, 1993.
- [392] E. D. Sontag. Control of systems without drift via generic loops. *IEEE Transactions on Automatic Control*, 40(7):1210–1219, July 1995.
- [393] O. J. Sørdalen. Conversion of a car with *n* trailers into a chained form. In *IEEE International Conference on Robotics and Automation*, pages 1382–1387, 1993.
- [394] P. Souères and J.-D. Boissonnat. Optimal trajectories for nonholonomic mobile robots. In J.-P. Laumond, editor, *Robot Motion Planning and Control*. Springer, 1998.
- [395] P. Souères and J.-P. Laumond. Shortest paths synthesis for a car-like robot. *IEEE Transactions on Automatic Control*, 41(5):672–688, May 1996.
- [396] R. F. Stengel. Optimal control and estimation. Dover, New York, 1994.
- [397] A. Stentz. Optimal and efficient path planning for unknown and dynamic environments. *International Journal of Robotics and Automation*, 10, 1995.
- [398] G. Strang. *Linear Algebra and Its Applications*. Orlando: Academic Press, 1980.
- [399] A. Sudsang and L. Kavraki. A geometric approach to designing a programmable force field with a unique stable equilibrium for parts in the plane. In *IEEE International Conference on Robotics and Automation (ICRA)*, pages 1079–1085, Seoul, 2001.
- [400] H. Sussmann. A continuation method for nonholonomic path-finding problems. In *IEEE International Conference on Decision and Control*, pages 2718–2723, 1993.
- [401] H. J. Sussmann. A general theorem on local controllability. *SIAM Journal on Control and Optimization*, 25(1):158–194, Jan. 1987.

[402] H. J. Sussmann and W. Tang. Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric techniques in nonlinear optimal control. Technical Report SYCON-91-10, Rutgers University, 1991.

- [403] I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region. *SIAM Journal of Computing*, 21(5):863–888, October 1992.
- [404] P. Švestka. A probabilistic approach to motion planning for car-like robots. Technical Report RUU-CS-93-18, Dept. Comput. Sci., Utrecht Univ., Utrecht, the Netherlands, 1993.
- [405] P. Śvestka and M. H. Overmars. Coordinated motion planning for multiple carlike robots using probabilistic roadmaps. In *IEEE International Conference on Robotics and Automation*, pages 1631–1636, 1995.
- [406] P. Švestka and J. Vleugels. Exact motion planning for tractor-trailer robots. In *IEEE International Conference on Robotics and Automation*, pages 2445–2450, 1995.
- [407] K. R. Symon. Mechanics. Addison-Wesley, 1971.
- [408] X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N. M. Amato. Using motion planning to study rna folding kinetics. In *International Conference on Research in Computational Molecular Biology*, 2004.
- [409] M. Teodoro, G. N. Phillips, and L. E. Kavraki. Molecular docking: A problem with thousands of degrees of freedom. In *IEEE International Conference on Robotics and Automation*, pages 960–966, 2001.
- [410] J. Thorpe. Elementary Topics in Differential Geometry. Springer-Verlag, 1985.
- [411] S. Thrun. Exploration and model building in mobile robot domains. In *Proc. of the IEEE International Conference on Neural Networks*, 1993.
- [412] S. Thrun. A probabilistic online mapping algorithm for teams of mobile robots. *International Journal of Robotics Research*, 20(5):335–363, 2001.
- [413] S. Thrun. Learning occupancy grids with forward sensor models. *Autonomous Robots*, 2002.
- [414] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D. Hähnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: A second generation mobile tour-guide robot. In *IEEE International Conference* on Robotics and Automation, 1999.
- [415] S. Thrun, A. Bücken, W. Burgard, D. Fox, T. Fröhlinghaus, D. Hennig, T. Hofmann, M. Krell, and T. Schimdt. Map learning and high-speed navigation in RHINO. In D. Kortenkamp, R. Bonasso, and R. Murphy, editors, *AI-based Mobile Robots: Case studies of successful robot systems*. MIT Press, Cambridge, MA, to appear.

[416] S. Thrun, W. Burgard, and D. Fox. A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping. In *IEEE International Conference on Robotics and Automation*, 2000.

- [417] S. Thrun, D. Fox, and W. Burgard. A probabilistic approach to concurrent mapping and localization for mobile robots. *Machine Learning and Autonomous Robots (joint issue)*, 31(1–3):29–53, 1998.
- [418] S. Thrun, J.-S. Gutmann, D. Fox, W. Burgard, and B. Kuipers. Integrating topological and metric maps for mobile robot navigation: A statistical approach. In *Proc. of the National Conference on Artificial Intelligence (AAAI)*, 1998.
- [419] D. Tilbury, R. Murray, and S. Sastry. Trajectory generation for the n-trailer problem using Goursat normal form. In *IEEE International Conference on Decision and Control*, 1993.
- [420] G. van den Bergen. Efficient collision detection of complex deformable models using AABB trees. *Journal of Graphics Tools: JGT*, 2(4):1–14, 1997.
- [421] G. van den Bergen. A fast and robust GJK implementation for collision detection of convex objects. *Journal of Graphics Tools: JGT*, 4(2):7–25, 1999.
- [422] P. Vela and J. W. Burdick. Control of biomimetic locomotion via averaging theory. In *IEEE International Conference on Robotics and Automation*, 2003.
- [423] P. A. Vela, K. A. Morgansen, and J. W. Burdick. Underwater locomotion from oscillatory shape deformations. In *IEEE International Conference on Decision and Control*, 2002.
- [424] G. Weiß, C. Wetzler, and E. von Puttkamer. Keeping track of position and orientation of moving indoor systems by correlation of range-finder scans. In *IEEE/RSJ International Conference on Intelligent Robots and Systems*, pages 595–601, 1994.
- [425] J. T. Wen. Control of nonholonomic systems. In W. S. Levine, editor, *The Control Handbook*, pages 1359–1368. CRC Press, 1996.
- [426] J. Wiegley, K. Goldberg, M. Peshkin, and M. Brokowski. A complete algorithm for designing passive fences to orient parts. In *Proc. Int. Conf. on Rob. and Autom.*, pages 1133–1139, 1996.
- [427] S. Wilmarth, N. M. Amato, and P. Stiller. MAPRM: A probabilistic roadmap planner with sampling on the medial axis of the free space. In *IEEE International Conference on Robotics and Automation*, pages 1024–1031, 1999.
- [428] R. Wilson and J. C. Latombe. Geometric reasoning about mechanical assembly. *Artificial Intelligence*, 71:371–396, 1995.
- [429] R. H. Wilson, L. E. Kavraki, J. C. Latombe, and T. Lozano-Pérez. Two-handed assembly sequencing. *International Journal of Robotics Research*, 14:335–350, 1995.

[430] B. Yamauchi and P. Langley. Place recognition in dynamic environments. *Journal of Robotic Systems*, 14(2):107–120, 1997.

- [431] M. Yim and A. Berlin. Two approaches to distributed manipulation. In K.-F. Böhringer and H. Choset, editors, *Distributed Manipulation*, pages 237–261. Kluwer Academic Publishers, Boston, 2000.
- [432] T. Yoshikawa. Manipulability of robotic mechanisms. *International Journal of Robotics Research*, 4(2):3–9, Apr. 1985.
- [433] M. Zhang and L. E. Kavraki. A new method for fast and accurate derivation of molecular conformations. *Journal of Chemical Information and Computer Sciences*, 42(1):64–70, 2002.