Problema 3

Elías López Rivera ¹, Adolfo Ángel Cardoso Vásquez ², Jonathan Sayid Mercado Martínez ³

 3 Instituto Politécnico Nacional $^{1\,2}$ Universidad Nacional Autónoma de México

26 de enero de 2025

1. Enunciado

Sean $A, B \in M_n(\mathbb{F})$ y [A, B] = AB - BA, demostrar que $[A, B] \neq I_n$

2. Solución

Procedemos por contradicción, como $[A, B] = I_n$, podemos afirmar que $tr[A, B] = tr(I_n) \implies tr[A, B] = 1^n$, como la suma de matrices esta bien definida se sigue $tr(AB) - tr(BA) = 1^n$, sea:

$$tr(AB) = \sum_{i=1}^{n} (AB)_{i,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i,j} B_{j,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} B_{j,i} A_{i,j} = \sum_{j=1}^{n} \sum_{i=1}^{n} B_{j,i} A_{i,j}$$

$$= \sum_{j=1}^{n} (BA)_{j,j} = tr(BA)$$

Por tanto se tiene que tr[A,B]=0, lo cual claramente es una contradicción, se concluye $[A,B]\neq I_n$