Solutions to Algebraic Curves

Meng-Gen Tsai plover@gmail.com

March 10, 2021

Contents

Chapter 1: Affine Algebraic Sets	2
1.1. Algebraic Preliminaries	2
Problem 1.1.*	2
Problem 1.5.*	3
Problem 1.6.*	3
1.2. Affine Space and Algebraic Sets	4
Problem 1.8.*	4
Problem 1.11	5
Problem 1.15.*	6
Chapter TODO	7
Section TODO	7
Problem TODO	7

Chapter 1: Affine Algebraic Sets

1.1. Algebraic Preliminaries

Problem 1.1.*

Let R be a domain.

- (a) If f, g are forms of degree r, s respectively in $R[x_1, \ldots, x_n]$, show that fg is a form of degree r + s.
- (b) Show that any factor of a form in $R[x_1, ..., x_n]$ is also a form.

Proof of (a).

(1) Write

$$f = \sum_{(i)} a_{(i)} x^{(i)},$$
$$g = \sum_{(j)} b_{(j)} x^{(j)},$$

where $\sum_{(i)}$ is the summation over $(i)=(i_1,\ldots,i_n)$ with $i_1+\cdots+i_n=r$ and $\sum_{(j)}$ is the summation over $(j)=(j_1,\ldots,j_n)$ with $j_1+\cdots+j_n=s$.

(2) Hence,

$$fg = \sum_{(i)} \sum_{(j)} a_{(i)} b_{(j)} x^{(i)} x^{(j)}$$
$$= \sum_{(i),(j)} a_{(i)} b_{(j)} x^{(k)}$$

where $(k) = (i_1 + j_1, \dots, i_n + j_n)$ with $(i_1 + j_1) + \dots + (i_n + j_n) = r + s$. Each $x^{(k)}$ is the form of degree r + s and $a_{(i)}b_{(j)} \in R$. Hence fg is a form of degree r + s.

Proof of (b).

- (1) Given any form $f \in R[x_1, \ldots, x_n]$, and write f = gh. It suffices to show that g is a form as well. (So does h.)
- (2) Write

$$g = g_0 + \dots + g_r, \qquad h = h_0 + \dots + h_s$$

where $g_r \neq 0$ and $h_s \neq 0$. So

$$f = gh = g_0h_0 + \dots + g_rh_s.$$

Since R is a domain, $R[x_1, ..., x_n]$ is a domain and thus $g_r h_s \neq 0$. The maximality of r and s implies that $\deg f = r + s$. Therefore, by the maximality of r + s, $f = g_r h_s$, or $g = g_r$, or g is a form.

Problem 1.5.*

Let k be any field. Show that there are an infinitely number of irreducible monic polynomials in k[x]. (Hint: Suppose f_1, \ldots, f_n were all of them, and factor $f_1 \cdots f_n + 1$ into irreducible factors.)

Proof (Due to Euclid).

(1) If f_1, \ldots, f_n were all irreducible monic polynomials, then we consider

$$g = f_1 \cdots f_n + 1 \in k[x].$$

So there is an irreducible monic polynomial $f=f_i$ dividing g for some i since

$$\deg g = \deg f_1 + \dots + \deg f_n \ge 1.$$

(2) However, f would divide the difference

$$g - f_1 \cdots f_{i-1} f_i f_{i+1} \cdots f_n = 1,$$

contrary to $\deg f_i \geq 1$.

Problem 1.6.*

Show that any algebraically closed field is infinite. (Hint: The irreducible monic polynomials are x-a, $a \in k$.)

Proof (Due to Euclid).

(1) Let k be an algebraically closed field. If a_1, \ldots, a_n were all elements in k, then we consider a monic polynomials

$$f(x) = (x - a_1) \cdots (x - a_n) + 1 \in k[x].$$

(2) Since k is algebraically closed, there is an element $a \in k$ such that f(a) = 0. By assumption, $a = a_i$ for some $1 \le i \le n$, and thus $f(a) = f(a_i) = 1$, contrary to the fact that a field is a commutative ring where $0 \ne 1$ and all nonzero elements are invertible.

1.2. Affine Space and Algebraic Sets

Problem 1.8.*

Show that the algebraic subsets of $\mathbf{A}^1(k)$ are just the finite subsets, together with $\mathbf{A}^1(k)$ itself.

Proof.

- (1) Show that k[x] is a PID if k is a field.
 - (a) Let I be an ideal of k[x].
 - (b) If $I = \{0\}$ then $I = \{0\}$ and I is principal.
 - (c) If $I \neq \{0\}$, then take f to be a polynomial of minimal degree in I. It suffices to show that I = (f). Clearly, $(f) \subseteq I$ since I is an ideal. Conversely, for any $g \in I$,

$$q(x) = f(x)h(x) + r(x)$$

for some $h, r \in k[x]$ with r = 0 or $\deg r < \deg f$. Now as

$$r = g - fh \in I$$
,

r=0 (otherwise contrary to the minimality of f), we have $g=fh\in (f)$ for all $g\in I.$

- (2) Let Y be an algebraic subset of $\mathbf{A}^1(k)$, say Y = V(I) for some ideal I of k[x]. Since k[x] is a PID, I = (f) for some $f \in k[x]$.
 - (a) If f = 0, then I = (0) and $Y = V(0) = \mathbf{A}^{1}(k)$.
 - (b) If $f \neq 0$, then f(x) = 0 has finitely many roots in k, say $a_1, \ldots, a_m \in k$. Hence,

$$Y = V(I) = V(f) = \{f(a) = 0 : a \in k\} = \{a_1, \dots, a_m\}$$

is a finite subsets of $A^1(k)$.

By (a)(b), the result is established.

Notes.

(1) By the Hilbert basis theorem, k[x] is Noetherian as k is Noetherian. Hence, for any algebraic subset Y = V(I) of $\mathbf{A}^1(k)$, we can write $I = (f_1, \dots, f_m)$. Note that

$$Y = V(I) = V(f_1) \cap \cdots \cap V(f_m).$$

Now apply the same argument to get the same conclusion.

(2) Suppose $k = \overline{k}$. $\mathbf{A}^1(k)$ is irreducible, because its only proper closed subsets are finite, yet it is infinite (because k is algebraically closed, hence infinite).

Problem 1.11.

Show that the following are algebraic sets:

- (a) $\{(t, t^2, t^3) \in \mathbf{A}^3(k) : t \in k\};$
- (b) $\{(\cos(t), \sin(t)) \in \mathbf{A}^2(\mathbb{R}) : t \in \mathbb{R}\};$
- (c) the set of points in $\mathbf{A}^2(\mathbb{R})$ whose polar coordinates (r, θ) satisfy the equation $r = \sin(\theta)$.

Proof of (a).

(1) The twisted cubic curve

$$Y = \{(t, t^2, t^3) \in \mathbf{A}^3(k) : t \in k\} = V(x^2 - y) \cap V(x^3 - z)$$

is algebraic. We say that Y is given by the parametric representation $x=t,\,y=t^2,\,z=t^3.$

- (2) The generators for the ideal I(Y) are $x^2 y$ and $x^3 z$.
- (3) Y is an affine variety of dimension 1.
- (4) The affine coordinate ring A(Y) is isomorphic to a polynomial ring in one variable over k.

Proof of (b). The circle

$$\{(\cos(t), \sin(t)) \in \mathbf{A}^2(\mathbb{R}) : t \in \mathbb{R}\} = V(x^2 - y^2 - 1)$$

is algebraic. \square

Proof of (c). The circle

$$\{(r,\theta): r = \sin(\theta)\} = V(x^2 + y^2 - y)$$

is algebraic again. \Box

Problem 1.15.*

Let $V \subseteq \mathbf{A}^n(k)$, $W \subseteq \mathbf{A}^m(k)$ be algebraic sets. Show that

$$V \times W = \{(a_1, \dots, a_n, b_1, \dots, b_m) : (a_1, \dots, a_n) \in V, (b_1, \dots, b_m) \in W\}$$

is an algebraic set in $\mathbf{A}^{n+m}(k)$. It is called the **product** of V and W.

Proof.

(1) Write

$$V = V(S_V) = \{ a \in \mathbf{A}^n(k) : f(a) = 0 \,\forall f \in S_V \}$$

$$W = V(S_W) = \{ b \in \mathbf{A}^m(k) : g(b) = 0 \,\forall g \in S_W \},$$

where $S_V \subseteq k[x_1, \ldots, x_n]$ and $S_W \subseteq k[y_1, \ldots, y_m]$. It suffices to show that

$$V \times W = V(S)$$
,

where $S \subseteq k[x_1, \ldots, x_n, y_1, \ldots, y_m]$ is the union of S_V and S_W .

(2) Here we can regard S_V as a subset of $k[x_1, \ldots, x_n, y_1, \ldots, y_m]$ since

$$k[x_1, \dots, x_n] \hookrightarrow (k[y_1, \dots, y_m])[x_1, \dots, x_n] = k[x_1, \dots, x_n, y_1, \dots, y_m].$$

(Similar treatment to S_W .)

(3) By construction, $V \times W \subseteq V(S)$. Conversely, given any $(a,b) \in V(S)$, we have h(a,b) = 0 for all $h \in S = S_V \cup S_W$ (by (2)). By construction, f(a) = 0 for all $f \in S_V$ since f only involve x_1, \ldots, x_n . Hence, $a \in V$. Similarly, $b \in W$. Therefore, $(a,b) \in V \times W$.

Chapter TODO

Section TODO

Problem TODO

TODO

Proof.

(1) TODO