¿Se puede dibujar la siguiente figura, empezando y terminando en el mismo punto, sin levantar e lápiz del papel?

¿Y esta otra?

Los puentes de Königsberg

Königsberg es famosa por ser la ciudad natal de Immanuel Kant, pero también es famosa por sus siete puentes y por el problema que consistía en saber si una persona podría cruzar todos los puentes una sola vez, volviendo al lugar de donde partió.

Los puentes de Königsberg

Este problema fue resuelto por Euler en 1736, quien demostró que no era posible. Para eso modeló el problema como un problema de grafos: recorrer todas las aristas de un grafo una y solo una vez, volviendo al vértice inicial.

• Un circuito Euleriano en un grafo o multigrafo *G* es un circuito que recorre cada arista una y sólo una vez.

- Un circuito Euleriano en un grafo o multigrafo *G* es un circuito que recorre cada arista una y sólo una vez.
- Un grafo o multigrafo es Euleriano si tiene un circuito Euleriano.

- Un circuito Euleriano en un grafo o multigrafo *G* es un circuito que recorre cada arista una y sólo una vez.
- Un grafo o multigrafo es Euleriano si tiene un circuito Euleriano.

- Un circuito Euleriano en un grafo o multigrafo *G* es un circuito que recorre cada arista una y sólo una vez.
- Un grafo o multigrafo es Euleriano si tiene un circuito Euleriano.

Ej:

Obs: Si un grafo tiene al menos dos componentes conexas no triviales, no puede tener camino ni circuito Euleriano.

El Teorema de Euler

Teorema

Son equivalentes, para G grafo o multigrafo conexo:

- 1. G es Euleriano.
- 2. Todo vértice de *G* tiene grado par.
- 3. Las aristas de G pueden particionarse en circuitos.

En base a los teoremas anteriores, ¿cuál es la complejidad computacional de saber si un grafo es o no Euleriano?

- En base a los teoremas anteriores, ¿cuál es la complejidad computacional de saber si un grafo es o no Euleriano?
- A partir de la demostración, se puede escribir un algoritmo para construir un circuito Euleriano para un grafo que tiene todos sus vértices de grado par.

Entrada: G = (V, E) conexo con d(v) par para todo $v \in V$. **Salida:** Un circuito Euleriano de G.

- Comenzar por cualquier vértice v y construir un ciclo Z.
- Mientras $E \setminus Z \neq \emptyset$ hacer:
 - Elegir w tal que exista $(w, u) \in Z$ y $(w, z) \in E \setminus Z$.
 - Desde *w* construir un ciclo *D* con $D \cap Z = \emptyset$.
 - Z := unir Z y D por medio de w.
- Fin mientras
- Retornar Z.

- Un camino Euleriano en un grafo o multigrafo G es un camino que recorre cada arista una y sólo una vez.
- Un grafo orientado o digrafo, se dice Euleriano si tiene un circuito orientado que pasa por cada arco de G exactamente una vez.

- Un camino Euleriano en un grafo o multigrafo G es un camino que recorre cada arista una y sólo una vez.
- Un grafo orientado o digrafo, se dice Euleriano si tiene un circuito orientado que pasa por cada arco de G exactamente una vez.

Teorema

Un grafo o multigrafo conexo tiene un camino Euleriano si y sólo si todos sus vértices tienen grado par salvo dos.

- Un camino Euleriano en un grafo o multigrafo G es un camino que recorre cada arista una y sólo una vez.
- Un grafo orientado o digrafo, se dice Euleriano si tiene un circuito orientado que pasa por cada arco de G exactamente una vez.

Teorema

Un grafo o multigrafo conexo tiene un camino Euleriano si y sólo si todos sus vértices tienen grado par salvo dos.

Teorema

Un digrafo conexo es Euleriano si y sólo si para todo vértice v de G se verfica que $d_{in}(v) = d_{out}(v)$.

Problema del cartero chino (Kuan, 1962)

Definición. Dado un grafo G = (V, E) con longitudes asignadas a sus aristas, $\ell : E \to \mathbb{R}_+$, el problema del cartero chino consiste en encontrar un circuito de longitud mínima que pase por cada arista de G al menos una vez.

Problema del cartero chino (Kuan, 1962)

Definición. Dado un grafo G = (V, E) con longitudes asignadas a sus aristas, $\ell : E \to \mathbb{R}_+$, el problema del cartero chino consiste en encontrar un circuito de longitud mínima que pase por cada arista de G al menos una vez.

- Si G es Euleriano, un circuito Euleriano es la solución del problema del cartero chino.
- Existen algoritmos polinomiales para el problema del cartero chino cuando G es orientado o no orientado.
- Sin embargo, no se conocen algoritmos polinomiales si el grafo es mixto (tiene tanto aristas orientadas como aristas no orientadas).

El juego de Hamilton

En 1859 Hamilton inventó un juego que consistía en encontrar un recorrido de todos los vértices de un dodecaedro sin repetir vértices y volviendo al original.

 Un camino Hamiltoniano en un grafo G es un camino que recorre cada vértice una y sólo una vez.

- Un camino Hamiltoniano en un grafo G es un camino que recorre cada vértice una y sólo una vez.
- Un circuito Hamiltoniano en un grafo G es un circuito que recorre cada vértice una y sólo una vez.

- Un camino Hamiltoniano en un grafo G es un camino que recorre cada vértice una y sólo una vez.
- Un circuito Hamiltoniano en un grafo G es un circuito que recorre cada vértice una y sólo una vez.
- Un grafo es Hamiltoniano si tiene un circuito Hamiltoniano.

- Un camino Hamiltoniano en un grafo G es un camino que recorre cada vértice una y sólo una vez.
- Un circuito Hamiltoniano en un grafo G es un circuito que recorre cada vértice una y sólo una vez.
- Un grafo es Hamiltoniano si tiene un circuito Hamiltoniano.

Ej:

Obs: Si un grafo no es conexo, no puede tener camino ni circuito Hamiltoniano.

Grafos Hamiltonianos: Ejemplo

Grafos Hamiltonianos: Ejemplo

Grafos Hamiltonianos: Ejemplo

Teorema (condición necesaria). Sea G un grafo conexo. Si existe $W \subset V$ tal que $G \setminus W$ tiene c componentes conexas con c > |W| entonces G no es Hamiltoniano.

¿Es cierta la recíproca de este teorema?

Teorema (condición necesaria). Sea G un grafo conexo. Si existe $W \subset V$ tal que $G \setminus W$ tiene c componentes conexas con c > |W| entonces G no es Hamiltoniano.

¿Es cierta la recíproca de este teorema?

Teorema (Dirac, 1952) (condición suficiente). Sea G un grafo con $n \ge 3$ y tal que para todo $v \in V$ se verifica que $d(v) \ge n/2$. Entonces G es Hamiltoniano.

¿Es cierta la recíproca de este teorema?

 No se conocen condiciones necesarias y suficientes que caractericen en forma "elegante" a los grafos Hamiltonianos.

- No se conocen condiciones necesarias y suficientes que caractericen en forma "elegante" a los grafos Hamiltonianos.
- No se conocen algoritmos polinomiales para determinar si un grafo es Hamiltoniano o no (algoritmos de reconocimiento).

- No se conocen condiciones necesarias y suficientes que caractericen en forma "elegante" a los grafos Hamiltonianos.
- No se conocen algoritmos polinomiales para determinar si un grafo es Hamiltoniano o no (algoritmos de reconocimiento).
- Más aún, se sospecha que no existen (!) algoritmos polinomiales para este problema (¿cómo se demuestra esto?).

El problema del viajante de comercio (TSP)

 El problema del viajante de comercio se trata de un viajante que debe recorrer lo más pronto posible cierta cantidad de ciudades y volver finalmente a la ciudad donde vive.

El problema del viajante de comercio (TSP)

- El problema del viajante de comercio se trata de un viajante que debe recorrer lo más pronto posible cierta cantidad de ciudades y volver finalmente a la ciudad donde vive.
- En términos de grafos, es encontrar un camino Hamiltoniano de longitud mínima en un grafo completo con longitudes asociadas a sus aristas.

- El problema del viajante de comercio se trata de un viajante que debe recorrer lo más pronto posible cierta cantidad de ciudades y volver finalmente a la ciudad donde vive.
- En términos de grafos, es encontrar un camino Hamiltoniano de longitud mínima en un grafo completo con longitudes asociadas a sus aristas.
- En su versión de decisión, la entrada es un grafo completo G con longitudes asociadas a sus aristas y un número k, y la pregunta es "Existe en G un circuito Hamiltoniano de longitud ≤ k?".

Entrada: Un grafo G = (V, E) completo y una función de distancias $\ell : E \to \mathbb{R}_+$.

Salida: Un circuito Hamiltoniano $C \subseteq E$ que minimice la distancia total $\ell(C) = \sum_{i \in C} \ell(ij)$.

 Se trata de una generalización del problema de camino Hamiltoniano (¿por qué?).

Entrada: Un grafo G = (V, E) completo y una función de distancias $\ell : E \to \mathbb{R}_+$.

Salida: Un circuito Hamiltoniano $C \subseteq E$ que minimice la distancia total $\ell(C) = \sum_{i \in C} \ell(ij)$.

- Se trata de una generalización del problema de camino Hamiltoniano (¿por qué?).
- Como consecuencia, no se conocen algoritmos polinomiales para resolver el TSP (¿¿por qué??).

Entrada: Un grafo G = (V, E) completo y una función de distancias $\ell : E \to \mathbb{R}_+$.

Salida: Un circuito Hamiltoniano $C \subseteq E$ que minimice la distancia total $\ell(C) = \sum_{i \in C} \ell(ij)$.

- Se trata de una generalización del problema de camino Hamiltoniano (¿por qué?).
- Como consecuencia, no se conocen algoritmos polinomiales para resolver el TSP (¿¿por qué??).
- Pausa filosófica:

Entrada: Un grafo G = (V, E) completo y una función de distancias $\ell : E \to \mathbb{R}_+$.

Salida: Un circuito Hamiltoniano $C \subseteq E$ que minimice la distancia total $\ell(C) = \sum_{i \in C} \ell(ij)$.

- Se trata de una generalización del problema de camino Hamiltoniano (¿por qué?).
- Como consecuencia, no se conocen algoritmos polinomiales para resolver el TSP (¿¿por qué??).
- Pausa filosófica: ... entonces qué hacemos?

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

Un esquema de fuerza bruta puede no ser mala idea.

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

- Un esquema de fuerza bruta puede no ser mala idea.
- En caso contrario, intentar con un backtracking.

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

- Un esquema de fuerza bruta puede no ser mala idea.
- En caso contrario, intentar con un backtracking.

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

- Un esquema de fuerza bruta puede no ser mala idea.
- En caso contrario, intentar con un backtracking.

Si las instancias hacen imposibles estos procedimientos ...

Intentar una heurística golosa.

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

- Un esquema de fuerza bruta puede no ser mala idea.
- En caso contrario, intentar con un backtracking.

- Intentar una heurística golosa.
- Generar aleatoriamente muchas soluciones y quedarse con la mejor!

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

- Un esquema de fuerza bruta puede no ser mala idea.
- En caso contrario, intentar con un backtracking.

- Intentar una heurística golosa.
- Generar aleatoriamente muchas soluciones y quedarse con la mejor!
- Variantes más sofisticadas: búsqueda local,

Opciones inmediatas:

Si las instancias que tenemos que resolver no son muy grandes ...

- Un esquema de fuerza bruta puede no ser mala idea.
- En caso contrario, intentar con un backtracking.

- Intentar una heurística golosa.
- Generar aleatoriamente muchas soluciones y quedarse con la mejor!
- Variantes más sofisticadas: búsqueda local, búsqueda tabú, simulated annealing, etc.

Recorridos con cuatro ciudades

Recorridos con cinco ciudades

• ¿Cuántos recorridos tengo en un caso con 10 ciudades?

¿Cuántos recorridos tengo en un caso con 10 ciudades? 181440

- ¿Cuántos recorridos tengo en un caso con 10 ciudades? 181440
- ¿Cuántos recorridos tengo en un caso con 50 ciudades?

- ¿Cuántos recorridos tengo en un caso con 10 ciudades? 181440
- ¿Cuántos recorridos tengo en un caso con 50 ciudades?
 3041409320171337804361260816606476884437764156896
 05120000000000

- ¿Cuántos recorridos tengo en un caso con 10 ciudades? 181440
- ¿Cuántos recorridos tengo en un caso con 50 ciudades?
 3041409320171337804361260816606476884437764156896
 05120000000000
- ¿Cuántos recorridos tengo en un caso con 100 ciudades?

- ¿Cuántos recorridos tengo en un caso con 10 ciudades? 181440
- ¿Cuántos recorridos tengo en un caso con 50 ciudades?
 3041409320171337804361260816606476884437764156896
 05120000000000

- ¿Cuántos recorridos tengo en un caso con 10 ciudades? 181440
- ¿Cuántos recorridos tengo en un caso con 50 ciudades?
 3041409320171337804361260816606476884437764156896
 05120000000000
- ¿Cuántos recorridos tengo en un caso con n ciudades?

¿Cuántos recorridos tengo en un caso con 10 ciudades? 181440

- ¿Cuántos recorridos tengo en un caso con 50 ciudades?
 3041409320171337804361260816606476884437764156896
 05120000000000
- ¿Cuántos recorridos tengo en un caso con n ciudades?

$$\frac{(n-1)}{2}$$

Hipótesis: Las distancias cumplen la desigualdad triangular: $\ell(ij) + \ell(jk) \ge \ell(ik)$ para todo $i, j, k \in V$.

Hipótesis: Las distancias cumplen la desigualdad triangular: $\ell(ij) + \ell(jk) \ge \ell(ik)$ para todo $i, j, k \in V$.

- Obtener un árbol generador mínimo $T = (V_T, E_T)$ de G.
- Duplicar las aristas de E_T , obteniendo un nuevo árbol T'.
- Encontrar un circuito Euleriano C en T' (siempre existe!).
- Transformar C en un circuito Hamiltoniano salteando vértices ya visitados.

Teorema. Si ℓ_{\min} es la longitud de la solución óptima del TSP para la instancia (G,ℓ) y ℓ_{heur} es la longitud de la solución generada por la heurística anterior, entonces

$$\frac{\ell_{\text{heur}}}{\ell_{\text{min}}} \leq 2.$$

 En virtud de este teorema, decimos que esta heurística es un algoritmo 2-aproximado.

Teorema. Si ℓ_{\min} es la longitud de la solución óptima del TSP para la instancia (G,ℓ) y ℓ_{heur} es la longitud de la solución generada por la heurística anterior, entonces

$$\frac{\ell_{\text{heur}}}{\ell_{\text{min}}} \leq 2.$$

- En virtud de este teorema, decimos que esta heurística es un algoritmo 2-aproximado.
- ¿Se puede mejorar?

Heurística de Cristofides (1976)

- Obtener un árbol generador mínimo $T = (V_T, E_T)$ de G.
- Sea I ⊆ V_T el conjunto de vértices con grado impar en T.
 Encontrar un matching perfecto de peso mínimo M en el subgrafo de G inducido por I.
- Combinar las aristas de M y T para formar un multigrafo H.
- Encontrar un circuito Euleriano C en H (siempre existe!).
- Transformar C en un circuito Hamiltoniano salteando vértices ya visitados.

Heurística de Cristofides (1976)

Teorema (Cristofides, 1976). Si ℓ_{min} es la longitud de la solución óptima del TSP para la instancia (G,ℓ) y ℓ_{heur} es la longitud de la solución generada por la heurística anterior, entonces

$$\frac{\ell_{\text{heur}}}{\ell_{\text{min}}} \leq 3/2.$$

¿Se puede mejorar?

Heurística de Cristofides (1976)

Teorema (Cristofides, 1976). Si ℓ_{min} es la longitud de la solución óptima del TSP para la instancia (G,ℓ) y ℓ_{heur} es la longitud de la solución generada por la heurística anterior, entonces

$$\frac{\ell_{\text{heur}}}{\ell_{\text{min}}} \leq 3/2.$$

- ¿Se puede mejorar?
- Si las distancias ℓ son euclídeas en el plano, entonces existe un algoritmo (1+1/c)-aproximado con complejidad $O(n(\log n)^{O(c\sqrt{2})})$.

Desde el punto de vista de algoritmos exactos, el enfoque más exitoso a la fecha está dado por algoritmos basados en programación lineal entera.

Soluciones óptimas para el TSP

- En 1954 Dantzig, Fulkerson y Johnson resolvieron un caso de 49 ciudades del TSP.
- "Resolvieron" significa que D,F&J demostraron que la solución que presentaban era la mejor de un conjunto de 60 decillones de soluciones posibles.

Solución record (en 2001) de 15112 ciudades de Alemania

- Resuelta en una red de 110 máquinas en las universidades de Rice y Princeton, por Applegate, Bixby, Chvátal y Cook.
- Tiempo total de cómputo de 22.6 años de una PC de 500 MHz.
- Longitud total de aproximadamente 66.000 Km (Un poco más de una vuelta y media a la tierra por el ecuador).

Solución record (en 2004) de 24978 ciudades de Suecia

- Resuelta por Applegate, Bixby, Chvátal, Cook y Helsgaun.
- Longitud total de aproximadamente 72.500 Km.

Año	Equipo	Ciudades
1954	G. Dantzig, R. Fulkerson y S. Johnson	49

1954	G. Dantzig, R. Fulkerson y S. Johnson	49
1971	M. Held y R.M. Karp	64
1975	P. M. Camerini, L. Fratta y F. Maffioli	100
1977	M. Grötschel	120

Ciudades

Equipo

Año

1954	G. Dantzig, R. Fulkerson y S. Johnson	49	
1971	M. Held y R.M. Karp	64	
1975	P. M. Camerini, L. Fratta y F. Maffioli	100	
1977	M. Grötschel	120	
1980	H. Crowder y M. W. Padberg	318	
1987	M. Padberg y G. Rinaldi	532	
1987	M. Grötschel y O. Holland	666	

Ciudades

2,392

Año

1987

Equipo

M. Padberg y G. Rinaldi

Año	Equipo	Ciudades
1954	G. Dantzig, R. Fulkerson y S. Johnson	49
1971	M. Held y R.M. Karp	64
1975	P. M. Camerini, L. Fratta y F. Maffioli	100
1977	M. Grötschel	120
1980	H. Crowder y M. W. Padberg	318
1987	M. Padberg y G. Rinaldi	532
1987	M. Grötschel y O. Holland	666
1987	M. Padberg y G. Rinaldi	2,392
1994	D. Applegate, R. Bixby, V. Chvátal y W. Cook	7,397
1998	D. Applegate, R. Bixby, V. Chvátal y W. Cook	13,509
2001	D. Applegate, R. Bixby, V. Chvátal y W. Cook	15,112
2004	D. Applegate, R. Bixby, V. Chvátal y W. Cook	24,978
2005	D. Applegate, R. Bixby, V. Chvátal, W. Cook,	33,810
2006	D. Espinoza, M. Goycoolea y K. Helsgaun	

Año	Equipo	Ciudades
1954	G. Dantzig, R. Fulkerson y S. Johnson	49
1971	M. Held y R.M. Karp	64
1975	P. M. Camerini, L. Fratta y F. Maffioli	100
1977	M. Grötschel	120
1980	H. Crowder y M. W. Padberg	318
1987	M. Padberg y G. Rinaldi	532
1987	M. Grötschel y O. Holland	666
1987	M. Padberg y G. Rinaldi	2,392
1994	D. Applegate, R. Bixby, V. Chvátal y W. Cook	7,397
1998	D. Applegate, R. Bixby, V. Chvátal y W. Cook	13,509
2001	D. Applegate, R. Bixby, V. Chvátal y W. Cook	15,112
2004	D. Applegate, R. Bixby, V. Chvátal y W. Cook	24,978
2005	D. Applegate, R. Bixby, V. Chvátal, W. Cook,	33,810
2006	D. Espinoza, M. Goycoolea y K. Helsgaun	

Año	Equipo	Ciudades
1954	G. Dantzig, R. Fulkerson y S. Johnson	49
1971	M. Held y R.M. Karp	64
1975	P. M. Camerini, L. Fratta y F. Maffioli	100
1977	M. Grötschel	120
1980	H. Crowder y M. W. Padberg	318
1987	M. Padberg y G. Rinaldi	532
1987	M. Grötschel y O. Holland	666
1987	M. Padberg y G. Rinaldi	2,392
1994	D. Applegate, R. Bixby, V. Chvátal y W. Cook	7,397
1998	D. Applegate, R. Bixby, V. Chvátal y W. Cook	13,509
2001	D. Applegate, R. Bixby, V. Chvátal y W. Cook	15,112
2004	D. Applegate, R. Bixby, V. Chvátal y W. Cook	24,978
2005	D. Applegate, R. Bixby, V. Chvátal, W. Cook,	33,810
2006	D. Espinoza, M. Goycoolea y K. Helsgaun	85,900