Day	Min Temp	Max Temp	Summary
Monday	11C	22C	A clear day with lots of sunshine. However, the strong breeze will bring down the temperatures.
Tuesday	9C	19C	Cloudy with rain, across many northern regions. Clear spells across most of Scotland and Northern Ireland, but rain reaching the far northwest.
Wednesday	10C	21C	Rain will still linger for the morning. Conditions will improve by early afternoon and continue throughout the evening.

Raw sludge pumping		
	$\mid 12 \; ext{min/hr} \mid$	
schedule		
Sludge pumping rate	68 GPM	
Raw sludge %TS	5.2%	
Raw sludge %VS	72.5%	
Digester sludge %VS	56%	
Gas production	$\frac{12ft^3}{lb\ VS\ destroyed\ -\ day}$	
Percent CO_2	34%	
Other gases	1%	
Pure methane net heat value	932 $\frac{BTU}{ft^3}$	

Two aeration tanks – 0.5 MG each	Two final clarifiers – 0.25 MG each
Final effluent = $20 \frac{mg}{l}$	m WAS = 7500~ppm
$MLSS = 3600 \frac{mg}{L}$	MLSS volatile solids content $=80\%$

Country List			
Country Name or	ISO ALPHA 2	ISO ALPHA 3	ISO numeric Code
Area Name	Code	Code	
Afghanistan	AF	AFG	004
Aland Islands	AX	ALA	248
Albania	AL	ALB	008
Algeria	DZ	DZA	012
American Samoa	AS	ASM	016
Andorra	AD	AND	020
Angola	AO	AGO	024

Country List			
Country Name or	ISO ALPHA 2	ISO ALPHA 3	
Area Name	Code		
Afghanistan	AF	AFG	
Aland Islands	AX	ALA	
Albania	AL	ALB	
Algeria	DZ	DZA	
American Samoa	AS	ASM	
Andorra	AD	AND	
Angola	AO	AGO	

	Country List	
Country Name or Area Name	ISO ALPHA 2 Code	ISO ALPHA 3
${ m Afghanistan}$	AF	AFG
Aland Islands	AX	ALA
Albania	${ m AL}$	ALB
Algeria	DZ	DZA
American Samoa	AS	ASM
Andorra	AD	4 of 34 AND

	Country List	
Country Name or Area Name	ISO ALPHA 2 Code	ISO ALPHA 3
Afghanistan	AF	AFG
Aland Islands	AX	ALA
Albania	m AL	ALB
${ m Algeria}$	DZ	${ m DZA}$
American Samoa	AS	$_{ m ASM}$
Andorra	AD	5 of 34 AND

	Country List	
Country Name or Area Name	ISO ALPHA 2 Code	ISO ALPHA 3
${ m Afghanistan}$	${ m AF}$	${ m AFG}$
Aland Islands	AX	ALA
Albania	${ m AL}$	${ m ALB}$
Algeria	DZ	DZA
American Samoa	AS	$_{ m ASM}$
Andorra	AD	7 of 34 AND

Amoeba

 ${\bf Stalked Cilliate}$

Flagellate

Suctorian

A Head	A Second Head	A Third Head
${\rm Some~text}$	Some really longer text	Text text text

This is the first	second
$3\mathrm{rd}$	and the last cell

Wastewater Chemicals			
PROCESS	ACTION	CHEMICAL USED	
Collections	Odor Control	Caustic Soda (pH control)	
		Magnesium Hydroxide (pH control)	
		Hydrogen Peroxide (Oxidant)	
		Sodium Nitrate (Bio. Degradation)	
		Iron Salts (Precipitant)	
Primary	CEPT	Ferric Chloride (Coagulant)	
		Anionic Polymer (Flocculant)	
Secondary	Filament Control	Bleach	
		Polymer	
Nutrient Removal	Phosphorous Removal	Iron Salts (Precipitant)	
Anaerobic Digestion	pH control		
Tertiary Treatment	$\operatorname{Disinfection}$	$\operatorname{Chlorine}/\operatorname{Bleach}$	
	Dechlorination	Sodium Bisulfite	
		Sulfur Dioxide	
Dewatering	Flocculation	Cationic Polymer	
Plant Odor Control	Foul Air Scrubbing	Hydrogen Peroxide (Oxidant)	
		Bleach (Oxidant)	
		Caustic Soda (pH Control)	
		Muriatic Acid (pH Control & Scrubber	
		Descaling)	
Anaerobic Digestion	Hydrogen Sulfide Control	Iron Salts (Precipitant)	

It	em	
${ m Animal}$	$\operatorname{Description}$	Price (\$)
Gnat	per gram	13.65
	each	0.01
Gnu	$\operatorname{stuffed}$	92.50
Emu	$\operatorname{stuffed}$	33.33
${\bf Armadillo}$	${\rm frozen}$	8.99

my.Lboro	$\operatorname{Advantages}$	Disadvantages
4	 Accessibility Up to date information Fulfil students needs and wants 	 Accessibility Up to date information Fulfil students needs and wants

Table 1: my.Lboro Analysis

Day	Min Temp	Max Temp	Summary
Monday	11C	$22\mathrm{C}$	A clear day with lots of sun-
			shine. However, the strong
			breeze will bring down the tem-
			peratures.
Tuesday	9C	19C	Cloudy with rain, across many
			northern regions. Clear spells
			across most of Scotland and
			Northern Ireland, but rain
			reaching the far northwest.
$\operatorname{Wednesday}$	10C	21C	Rain will still linger for the
			morning. Conditions will
			improve by early afternoon
			and continue throughout the
			evening.

			Shabbii Bab
so specify	the skip after a line explicitly using glue after the line	terminator	
Color			
red			
blue			
Color			
red			
blue			
STG 0			
	Mineral	Color	
	Ruby	rod	
	icuby	reu	
	Sapphire	blue	
	Color red	red blue Color red blue Ruby	red blue Color red blue Mineral Color Ruby red

An alternative way to adjust the rule spacing is to add

Item

Animal	${\bf Description}$	Price (\$)
Gnat	per gram	13.65
	each	0.01
${ m Gnu}$	${\rm stuffed}$	92.50
${ m Emu}$	$\operatorname{stuffed}$	33.33
${f Arma}$ dillo	${ m frozen}$	8.99

	A	
	1	
Foo	2	
	3	
	4	
	1	
Bar	2	
	3	
	4	

Time	$\mathbf{Flow},\mathbf{MGD}$	Time
$06:00~\mathrm{AM}$	5.8	$12{:}00~\mathrm{pm}$
07:00 AM	6.4	01:00 pm
08:00 AM	6.8	02:00 pm
09:00 AM	7.2	03:00 pm
10:00 AM	6.8	04:00 pm
11:00 AM	7.2	05:00 pm

Types of Distribution Systems

Dead-end or Tree Distribution System

In this type of water distribution system, one main pipeline runs through the center of the building, and the sub-mains branch lines off from both sides. The sub-main lines are divided into several branch lines for service connection to a particular house.

Ring Distribution System

Here, the main pipeline encloses the system. The branch pipes are connected cross-wise to the mains and also to each other.

Radial Distribution System

In this types of water distribution system, the whole buildings are divided into several distribution areas. Each building has a centrally located elevated reservoir from where distribution pipes run radially towards the periphery of the distribution areas.

Grid Iron Distribution System

		Branch
Main Pipe		
	Sub	

Main supply lines run through the center, and sub mains branch off in perpendicular directions. The branch interconnects the sub-mains. All types of pipes are interconnected - no dead ends. Water can reach any given point from many directions, which allows more flexible operation, particularly when repairs are required.

Dead-end or Tree Distribution System

In this type of water distribution system, one main pipeline runs through the center of the building, and the sub-mains branch lines off from both sides. The sub-main lines are divided into several branch lines for service connection to a particular house.

Ring Distribution System

Here, the main pipeline encloses the system. The branch pipes are connected cross-wise to the mains and also to each other.

Lead and Copper Tap and WQP Tap Monitoring					
		Number of Pb/Cu Tap		Number of WQP Tap	
Size Category	System Size	Sample S	Sites ³	Sample Sites ⁴	
		Standard	Reduced	Standard	Reduced
Large	> 100K	100	50	25	10
Large	50,001 - 100K	60	30	10	7
Medium	10,001 - 50K	60	30	10	7
Wedium	3,301 - 10K	40	20	3	3
	501 - 3,300	20	10	2	2
Small	101 - 500	10	5	1	1
	≤ 100	5	5	1	1

³ With written State approval, PWSs can collect < 5 samples if all taps used for human consumption are sampled.

Table 13: Lead and Copper Tap and WQP Tap Monitoring

⁴ Two WQP tap samples are collected at each sampling site.

Pipe Material	${f Advantages}$
	• Numbers of joints are less because
	these are available in long lengths.
Steel: These are fabricated by rolling	• The pipes are cheap at the first cost.
the mild steel plates to proper diameter	• The pipes are durable and strong
and can be joined by riveting or weld-	enough to resist high.
ing. Steel pipe is coupled by a variety	
of methods; threaded couplings, welded	• The pipes are flexible to some ex-
couplings, Dresser™type couplings, Vic-	tent laid on curves, and they can
taulic™couplings, flanges and rubber ring push-on joints.	therefore 5. Transportation is easy because of lightweight.
	• Cost of these pipes is moderate.
	• Pipes are cheap and durable.
Polyvinyl chloride (PVC)	• The pipes are flexible, light in weight
• Polyvinyi chioride (PvC)	and they can easy to mold any shape.
• Cross linked PVC (CPVC)	and only can easy to more any energe.
	• Does not corrode, tuberculate or
	support bacteria growth like metal
	pipe.
	• Comparatively DI pipes possess
	greater ductility and impact resis-
	tance than CI pipes.
	• Lighten then CI pines so that easy to
Ductile iron (DI): Typically, the pipe is	 Lighter than CI pipes so that easy to handle and transport.
manufactured using centrifugal casting	nandie and transport.
in metal or resin-lined molds. Protective	• The pipes are easy to join and simple

- A physical separation between the free-flowing discharge
- Should not be used in an area with dangerous atmospher
- An "approved air gap" shall be at least twice the diamet less than 1 inch (2.54 cm).

Common Applications - Lethal hazards (raw sewa

Atmospheric Vacuum Breaker Assembly (AVB)

- Also known as the non-pressure type vacuum breaker, it body causes the air inlet valve to close the air inlet port(
- When the flow of water stops the air inlet valve falls and ing air to enter and satisfy the vacuum.
- A shutoff valve immediately upstream may be an integra
- An atmospheric vacuum breaker is designed to protect as siphonage condition only.

Common Applications - Irrigation systems

Spill Resistant Vacuum Breaker

- Its assembly consists of an independently operating inter charge side of the check valve.
- The assembly is to be equipped with a properly located in

CLASS	MATERIAL INVOLVED	
CLASS A	This class of fire involves ordinary combustibles or fibrous material, such as wood, paper, cloth, paper, and some plastics.	
CLASS B	Class B fire is flammable or combustible liquids such as gasoline, diesel, kerosene, paint, paint thinners, and propane.	
CLASS C	A Class C fire is energized electrical equipment, such as motors, motor controls, switches panel boxes, and power tools.	

METAL ION (CATION)

NON-METAL ION (ANION)

Calcium - Ca ⁺²	$Carbonate - CO_3^{-1}$
----------------------------	-------------------------

Magnesium -
$$\mathrm{Mg^{+2}}$$
 Bicarbonate - $\mathrm{HCO_3}^{-1}$

$$\label{eq:manganese - Mn^{+2}} \text{Hydroxide - OH}^{-1}$$

Iron - Fe
$$^{+2/+3}$$
 Sulfate - $\mathrm{SO_4}^{-2}$

Aluminum -
$$Al^{+3}$$
 Chloride - Cl^{-1}

Sodium - Na^{+1}

Copper -
$$Cu^{+2/+3}$$

Table 6: Salts constituents

CHEMICAL NAME

FORMULA

Aluminum sulfate ${\rm Al}_2({\rm SO}_4)_3$

Calcium oxide CaO

Calcium hydroxide $Ca(OH)_2$

Calcium carbonate CaCO₃

Calcium hydroxide $Ca(OH)_2$

Magnesium carbonate $Mg(CO_3)_2$

Magnesium bicarbonate $Mg(HCO_3)_2$

Sodium hydroxide NaOH

Sodium carbonate Na_2CO_3

Ferrous sulfate FeSO₄

Ferric chloride FeCl₃

11 '1

Parameter	Container	
Coliform, Total or Fecal, Chlorinated Water	Sterile Container ${ m w}/$ thiosulfate	Coo free
Giardia and Cryp- tosporidium	10 L plastic con- tainer	Coo free
Alkalinity, Turbidity,	Plastic or Glass	Сос
${ m Metals, General}$	Plastic or Glass, ${\rm Rinsed} \ {\rm w}/\ 1{:}1$ ${\rm HNO}3$	Nit
${ m Hardness,\ Total}$	Plastic or Glass	Nit
рН	Plastic or Glass	Noi
Nitrogen and phospho- rous compounds	Plastic or Glass	Sub

Fresh water	2.50%	Surface water
		Ground water
		Glaciers and ice caps
Other saline water	0.90%	
Oceans	96.50%	

Table 9: Distribution of Earth's Water

 $(From:\ Igor\ Shiklomanov's\ chapter\ "Worlds\ fresh\ water\ resources"\ in\ Peter\ H.\ Gleick\ (editor),$

1993, Water in Crisis: A guide to the world's Fresh water resources)

Name	Power	${f Number}$
one	10^{0}	1
${ m ten}$	10^1	10
hundred	10^{2}	100
${ m t}{ m housand}$	10^{3}	1,000
million	10^{6}	1,000,000
billion	10^{9}	1,000,000,000
$\mathrm{tent} \mathrm{h}$	10^{-1}	0.1
$\mathrm{hundredth}$	10^{-2}	0.01
${\it thous} {\it and} {\it th}$	10^{-3}	0.001
${\rm millionth}$	10^{-6}	0.000 001
billionth	10^{-9}	0.000 000 001

1000 has one significant digit: only the 1 is interesting (only it tells us anything specific); we don't know anything for sure about the hundreds, tens, or units places; the zeroes may just be placeholders; they may have rounded something off to get this value.
1000.0 has five significant digits: the ".0" tells us something interesting about the presumed accuracy of the measurement being made; namely, that the measurement is accurate to the tenths place, but that there happen to be zero tenths.
0.00035 has two significant digits: only the 3 and 5 tell us something; the other zeroes are placeholders, only providing information about relative size.
0.000350 has three significant digits: the last zero tells us that the measurement was made accurate to that last digit, which just happened to have a value of zero.
1006 has four significant digits: the 1 and 6 are interesting, and we have to count the zeroes, because they're between the two interesting numbers.
560 has two significant digits: the last zero is just a placeholder.
560. : notice that "point" after the zero! This has three significant digits, because the decimal point tells us that the measurement was made to the nearest unit, so the zero is not just a placeholder.
560.0 has four significant digits: the zero in the tenths place means that the measurement was made accurate to the tenths place, and that there just happen to be zero tenths; the 5 and 6 give useful information, and the other zero is between significant digits, and must therefore also be counted.

	${ m TCR/\ Nitrate/Nitrite}$	
	Sanitary Survey	
	Total Coliform Bacteria1	
	${ m Nitrate~(NO_3)}$	
	$\operatorname{Nitrite}\left(\operatorname{NO}_{2} ight)$	
	Reporting	
	${\bf Turbidity}$	
	Fluoride – if added	
	Entry Point Chlorine – if chlorine is added	
L	Entry Foint Chiorine – it chiorine is added	
	Distribution System Chlorine3	
L	Consumer Confidence Report	
	${\bf Disinfection/Disinfectant~By products}$	

 $\mathrm{Pop} < \!\! 500$

For Regulated Disinfectants			
Disinfectant	MRDL (mg/L)	MRDLG (mg/L)	
Chlorine	4.0 as Cl2	4 as Cl2	
Chloramines	4.0 as Cl2	4 as Cl2	
Chlorine dioxide	0.8 as CIO2	0.8 as ClO2	

Table 11: Disinfectant MRDLs

For Disinfection By-products			
Regulated Contaminants	MCL (mg/L)	MCLG (mg/L)	
		Three individual MCLGs were established:	
TTUNA	0.00	Bromodichloromethane at Zero	
TTHM 0.08	0.08	Dibromochloromethane at 0.06	
	Bromoform at Zero		
		Two individual MCLGs were established:	
HAA5		Dichloroacetic acid at Zero	
		Trichloroacetic acid at 0.3	
Bromate	0.01	7.000	
- For plants that use ozone	0.01	Zero	
Chlorite	1	0.0	
- For plants that use chlorine dioxide	1	0.8	

Table 12: Disinfectant By-products MCLs

${f Record}$	Minimum Record Retention Period
Microbiological analyses	5 years
Turbidity analyses	5 years
Chemical analyses	10 years
Sanitary survey documents	10 years
Variances and exemptions granted	5 years
Tier 1, Tier 2 and Tier 3 Notices	3 years
Level 1 and Level 2 assessments	5 years

Table 14: Summary of regulatory record-keeping requirements

Inorganics				
	With waiver	$\leq ext{MCL and}$ no waiver		
Surface water	Once every 10 years	Annual		
Ground water	Once every 10 years	Triennial		
	Volatil			
	Waiver with vul- nerability analysis	<detect and no waiver</detect 		
Surface water	Once every 10 years	${ m Annual}$		