Camera VFE – MSM8994 Bayer Statistics Overview

QUALCOMM°

Qualcomm Technologies, Inc.

80-NM328-706 B

Confidential and Proprietary – Qualcomm Technologies, Inc.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Qualcomm is a trademark of Qualcomm Incorporated, registered in the United States and other countries. All Qualcomm Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

> Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 Ŭ.S.A.

© 2014-2015 Qualcomm Technologies, Inc. and/or its affiliated companies. All rights reserved.

Revision History

Revision	Date	Description
А	Aug 2014	Initial release
В	Mar 2015	Updated slide 19 and 21

Contents

- HDR Bayer Histogram Statistics
- HDR Bayer Exposure (BE) Statistics
- Dual Bayer Focus Statistics
- Bayer Grid Statistics
- Bayer Histogram Statistics
- Row/Column Sum (RS/CS) Statistics
- Image Histogram
- Skin Tone Detection
- Skin Tone Statistics
- References
- Questions?

HDR Bayer Histogram Statistics

HDR Bayer Histogram Statistics

- Two independent sets of HDR bhist Generic Region Controllers (GRCs) and outputs for HDR F0 and F1 lines
- 1024-bin histogram collected for each R, Gr, Gb, B channel from Region of Interest (RoI)
- Rol is composed of regions of 2x2 pixels
- Each histogram bin is 25 bits to support 6240x16384

Name	Bits	Description	Double buffered
Enable	1	0x0 – Disable histogram0x1 – Enable histogram	Yes
Region vertical offset	14	Vertical offset of RoI, must be multiple of 4	Yes
Region horizontal offset	13	Horizontal offset of Rol, must be even	Yes
Vertical region number	12	Vertical number of the regions of Bayer 2x2 pixels	Yes
Horizontal region number	12	Horizontal number of the regions of Bayer 2x2 pixels	Yes

C
R Histogram Bin 0, bits 24:0
B Histogram Bin 0, bits 24:0
Gr Histogram Bin 0, bits 24:0
Gb Histogram Bin 0, bits 24:0
R Histogram Bin 1, bits 24:0
B Histogram Bin 1, bits 24:0
Gr Histogram Bin 1, bits 24:0
Gb Histogram Bin 1, bits 24:0
<u></u>
R Histogram Bin 1023, bits 24:0
B Histogram Bin 1023, bits 24:0
Gr Histogram Bin 1023, bits 24:0
Gb Histogram Bin 1023, bits 24:0

HDR Bayer Histogram Statistics (cont.)

Confidential and Proprietary – Qualcomm Technologies, Inc.

HDR Bayer Histogram Statistics (cont.)

Configuration bhist_stats_reg.h

```
typedef struct ISP_StatsBhist_CfgCmdType {

/* VFE_STATS_BHIST_RGN_OFFSET_CFG

uint32_t rgnHOffset : 13;

uint32_t /* reserved */ : 3;

uint32_t rgnVOffset : 12;

uint32_t /* reserved */ : 4;

/* VFE_STATS_BHIST_RGN_SIZE_CFG */

uint32_t rgnHNum : 12;

uint32_t rgnVNum : 11;

uint32_t /* reserved 23:31 */ : 9;

} __attribute__((packed, aligned(4)))

ISP StatsBhist CfgCmdType;
```

Output q3a_stats_hw.h

```
typedef struct {
  uint32_t bayer_r_hist[MAX_BHIST_STATS_NUM];
  uint32_t bayer_b_hist[MAX_BHIST_STATS_NUM];
  uint32_t bayer_gr_hist[MAX_BHIST_STATS_NUM];
  uint32_t bayer_gb_hist[MAX_BHIST_STATS_NUM];
  uint32_t num_bins;
  stats_hdr_mode_t hdr_mode;
} q3a_bhist_stats_t;
```


HDR Bayer Exposure (BE) Statistics

HDR Bayer Exposure (BE) Statistics

- Rol is divided into a grid with up to 160x90 regions for 6240x16384 image size
- Collect the following statistics for each block
 - Number of saturated and nonsaturated nondark pixels
 - Sum and number of 14-bit R, B, Gr, Gb values that are within low and high thresholds

Name	Bits	Description	Double buffered
Enable	1	 0x0 – Disable grid statistics 0x1 – Enable grid statistics 	Yes
Site selection	1	0x0 – Before BPC0x1 – Before HDR fusion	Yes
Input field selection	2	 0x0 – All lines 0x1 – HDR F0 lines 0x2 – HDR F1 lines 	Yes
en_quad_sync	1	Enable quad-synchronized R/Gr/Gb/B thresholding	Yes
Region vertical offset	14	Offset from top edge of image for Rol, must be even	Yes
Region horizontal offset	13	Offset from left edge of image for RoI, must be even	Yes
Block height	10	Height of regions in pixels; must be even; range is [2, 512]	Yes
Block width	9	Width of regions in pixels; must be even; range is [4, 390]	Yes
Number of vertical blocks	7	Number of regions in vertical direction; range is [1, 90]	Yes
Number of horizontal blocks	8	Number of regions in horizontal direction; range is [1, 160]	Yes
R, B, Gr, Gb high threshold	14x4	Pixel > high threshold is counted as saturated	Yes
R, B, Gr, Gb low threshold	14x4	Pixel < low threshold is counted as dark	Yes

- Number of dark pixels for region n = region width * region height B cnt –
 R cnt Gb cnt Gr cnt B sat_cnt R sat_cnt Gb sat_cnt Gr sat_cnt
- Statistics are read out from left-to-right, top-to-bottom from the grid Maximum output entries 12 * 160* 90 = 172,800

3	31		265 5011		
†	31:30	Region n	n, R Sum, (29:0)		
	31:30	Region n	, B Sum, (29:0)		
	31:30	Region n,	Gr Sum, (29:0)		
	31:30	Region n,	Gb Sum, (29:0)		
رب ر ا	Re	gion n, B Cnt, (31:16)	Region n, R Cnt, (15:0)		
12 entries per region	Reg	gion n, Gb Cnt, (31:16)	Region n, Gr Cnt, (15:0)		
2 er er re	31:30	Region n, Satu	urated R Sum, (29:0)		
	31:30	Region n, Sati	urated B Sum, (29:0)		
	31:30	Region n, Satu	urated Gr Sum, (29:0)		
	31:30	Region n, Satu	urated Gb Sum, (29:0)		
	Regi	on n, B Sat_cnt, (31:16)	Region n, R Sat_cnt, (15:0)		
\downarrow	Regio	n n, Gb Sat_cnt, (31:16)	Region n, Gr Sat_cnt, (15:0)		

Configuration hdr_be_stats_reg46.h

```
typedef struct ISP_StatsHdrBe_CfgCmdType {
/* STATS HDR BE RGN OFFSET CFG */
uint32 t
            rgnHOffset
                             : 13;
uint32 t
          /* reserved */
                               3;
          ranVOffset
uint32 t
                               14:
uint32 t
           /*reserved */
/* STATS HDR BE RGN NUM CFG */
uint32 t
            rgnHNum
                                8;
uint32 t
            /* reserved */
                               8:
uint32 t
            ranVNum
                                7;
uint32 t
            /* reserved */
                               9:
/* STATS HDR BE RGN SIZE CFG */
uint32 t
            ranWidth
                               9;
                               7;
uint32 t
            /* reserved */
uint32 t
                               9;
            rgnHeight
uint32 t
            /* reserved */
                            : 7;
```

```
/* STATS HDR_BE_HI_THRESHOLD_CFG_0 */
 uint32 t
            rMax
                              14;
 uint32 t
            /* reserved */
 uint32 t
            arMax
                              14:
 uint32 t
            /* reserved */
 /* STATS_HDR_BE_HI_THRESHOLD_CFG_1 */
 uint32 t
            bMax
                              14;
 uint32 t
            /* reserved */
 uint32 t
            abMax
                               14:
 uint32 t
            /* reserved */
 /* STATS HDR BE LO THRESHOLD CFG 0 */
 uint32 t
            rMin
                           : 14:
 uint32 t
            /* reserved */
 uint32 t
            arMin
                              14;
            /* reserved */
 uint32 t
                             : 2;
/* STATS HDR BE LO THRESHOLD CFG 1 */
            bMin
 uint32 t
                              14:
 uint32 t
            /* reserved */
 uint32 t
            abMin
                              14:
            /* reserved */
 uint32 t
}__attribute__((packed, aligned(4)))
ISP StatsHdrBe CfgCmdType;
```

Output q3a_stats_hw.h

```
typedef struct {
 uint32 t be region h num;
 uint32_t be_region_v_num;
 uint32_t be_r_sum[MAX_BE_STATS_NUM];
 uint32_t be_b_sum[MAX_BE_STATS_NUM];
 uint32_t be_gr_sum[MAX_BE_STATS_NUM];
 uint32_t be_gb_sum[MAX_BE_STATS_NUM];
 uint32 t be r num[MAX BE STATS NUM];
 uint32_t be_b_num[MAX_BE_STATS_NUM];
 uint32_t be_gr_num[MAX_BE_STATS_NUM];
 uint32 t be gb num[MAX BE STATS NUM];
 uint32_t be_r_sat_sum[MAX_BE_STATS_NUM];
 uint32_t be_b_sat_sum[MAX_BE_STATS_NUM];
 uint32_t be_gr_sat_sum[MAX_BE_STATS_NUM];
 uint32_t be_gb_sat_sum[MAX_BE_STATS_NUM];
 uint32_t be_r_sat_num[MAX_BE_STATS_NUM];
  uint32 t be b sat num[MAX BE STATS NUM];
 uint32_t be_gr_sat_num[MAX_BE_STATS_NUM];
 uint32_t be_gb_sat_num[MAX_BE_STATS_NUM];
  stats_hdr_mode_t hdr_mode;
} q3a_hdr_be_stats_t;
```


Dual Bayer Focus Statistics

Dual Bayer Focus Statistics

Architecture – Add one set of Bayer focus filters with downscaler

- Rol is divided into a grid with up to 18x14 regions
- Both BF kernels before and after downscaler have the same number of horizontal and vertical regions
- Calculate the following statistics for each region
 - Sharpness for R, B, Gr, Gb channels; only the 8 Most Significant Bits (MSBs) of each pixel used in the filter
 - Sum of R, B, Gr, Gb values; only the 8 MSBs of each pixel used in the sum

Two sets of filter coefficients for kernel 1 and kernel 2

BF Register Fields

Name	Bits	Description	Double- buffered
Enable	1	 0x0 – Disable focus statistics 0x1 – Enable focus statistics 	Yes
Site selection	2	 0x0 – Before BPC 0x1 – Before HDR fusion 0x2/0x3 – Before demosaic 	Yes
Input field selection	2	 0x0 – All lines 0x1 – HDR F0 lines 0x2 – HDR F1 lines 	Yes
Rol vertical offset	14	Offset from top edge of image for Rol, must be even	Yes
Rol horizontal offset	13	Offset from left edge of image for RoI, must be even	Yes
Region height	11	Height of region in pixels; must be even; range is [2, 1492]	Yes
Region width	10	Width of region in pixels; must be even; range is [6, 566]	Yes
Number of vertical regions	4	Number of regions in vertical direction before and after downscaler; range is [1, 14]	Yes
Number of horizontal regions	5	Number of regions in horizontal direction before and after downscaler; range is [1, 18]	Yes
a0, a1,, a10, a11, a12,, a21	5s x22	2x11 HPF coefficients; signed values; all 4 channels share the same filter	Yes
FV threshold before downscaler, R/Gr/Gb/B	23u x4	Minimum value of pixel sharpness that enables the region sharpness, sum, and pixel count accumulations	Yes
Downscaler H input size (N)	14	Per-channel input width, common to all 4 channels, n means n+1; stripe-related downscaler registers are all 0s	Yes
Downscaler H output size (M)	14	Per-channel output width, common to all 4 channels, n means n+1	Yes

BF Register Fields (cont.)

Name	Bits	Description	Double- buffered
Downscaler H phases Q2	2	 0x0 - M/N=[1/69, 1/16] 0x1 - M/N=(1/16, 1/8] 0x2 - M/N=(1/8, 1/4] 0x3 - M/N=(1/4, 1] 	Yes
Downscaler H multiplication factor	21	N/M in (14+Q2), unsigned	Yes
Downscaler V input size (N)	14	Per-channel input height, common to all 4 channels, n means n+1; stripe related downscaler registers are all 0s	Yes
Downscaler V output size (M)	14	Per-channel output height, common to all 4 channels, n means n+1	Yes
Downscaler V phases Q2	2	 0x0 - M/N=[1/69, 1/16] 0x1 - M/N=(1/16, 1/8] 0x2 - M/N=(1/8, 1/4] 0x3 - M/N=(1/4, 1] 	Yes
Downscaler V multiplication factor	21	N/M in (14+Q2), unsigned	Yes
Scaled input field selection 2		 0x0 – All lines 0x1 – HDR F0 lines 0x2 – HDR F1 lines 	Yes
Rol vertical offset	14	After downscaler offset from top edge of image for Rol, must be even	Yes
Rol horizontal offset	13	After downscaler offset from left edge of image for Rol, must be even	Yes
Region height	11	After downscaler height of region in pixels; must be even; range is [2, 1492]	Yes
Region width	10	After downscaler width of region in pixels; must be even; range is [8, 566]	Yes
b0, b1,, b10, b11, b12,, b21	5s x22	After downscaler 2x11 HPF coefficients; signed values for all 4 channels	Yes
FV threshold after downscaler, R/Gr/Gb/B	23u x4	Minimum value of pixel sharpness that enables the region sharpness, sum, and pixel count accumulations	Yes

- BF output buffer format
- Average R, B, Gr, Gb calculated by:
 - avg R = R sum / (R number)
 - avg B = B sum / (B number)
 - avg Gr = Gr sum / (Gr number)
 - avg Gb = Gb sum / (Gb number)
- Statistics are read out from left-to-right, top-to-bottom from the grids
 Maximum output entries, 20 * 18 *
 14 = 5,040 64-bit buffers for both
 sets of BF filters

	¥25/J	Region n, B Sum, (63:	Region n, R Sum, (31:0)	
	R	Region n, Gb Sum, (63	3:32)	Region n, Gr Sum, (31:0)
		63:41		Region n, R Sharpness, (40:0)
		63:41		Region n, B Sharpness, (40:0)
rries gion		63:41		Region n, Gr Sharpness, (40:0)
per region	off	63:41		Region n, Gb Sharpness, (40:0)
1/8	63:58	Region n, R Cnt, (57:40)	39:33	Region n, R Max, (32:0)
26.	63:58	Region n, B Cnt, (57:40)	39:33	Region n, B Max, (32:0)
	63:58	Region n, Gr Cnt, (57:40)	39:33	Region n, Gr Max, (32:0)
V	63:58	Region n, Gb Cnt, (57:40)	39:33	Region n, Gb Max, (32:0)
A	Scal	led Region n, B Sum,	(63:32)	Scaled Region n, R Sum, (31:0
	Scale	ed Region n, Gb Sum,	(63:32)	Scaled Region n, Gr Sum, (31:0
		63:41	Down	scaled Region n, R Sharpness, (40:0
		63:41	Down	scaled Region n, B Sharpness, (40:0
rries gion		63:41	Downs	scaled Region n, Gr Sharpness, (40:0
10 entries per region		63:41	Downs	scaled Region n, Gb Sharpness, (40:
	63:58	Scaled Region n, R Cnt, (57:40)	39:33	Downscaled Region n, R Max, (32
	63:58	Scaled Region n, B Cnt, (57:40)	39:33	Downscaled Region n, B Max, (32
			1	
	63:58	Scaled Region n, Gr Cnt, (57:40)	39:33	Downscaled Region n, Gr Max, (32

- Maximum 18 (H) x 14 (V) regions
- Pad of 2 rows/columns required on all four sides
- Height of a region must be >2
- Width of a region must be > 8

For the region highlighted in yellow:

R Sharpness =
$$\lambda(R_{0,4}) + \lambda(R_{0,6}) + \lambda(R_{2,4}) + \lambda(R_{2,6})$$

Gr Sharpness = $\lambda(Gr_{0,5}) + \lambda(Gr_{0,7}) + \lambda(Gr_{2,5}) + \lambda(Gr_{2,7})$
Gb Sharpness = $\lambda(Gb_{1,4}) + \lambda(Gb_{1,6}) + \lambda(Gb_{3,4}) + \lambda(Gb_{3,6})$
B Sharpness = $\lambda(B_{1,5}) + \lambda(B_{1,7}) + \lambda(B_{3,5}) + \lambda(B_{3,7})$
Filter Definition : $\lambda(X_{i,j}) =$
ABS $(a_0 \cdot X_{i,j-10} + \dots + a_5 \cdot X_{i,j} + \dots + a_{10} \cdot X_{i,j+10} + a_{11} \cdot X_{i+2,j-10} + \dots + a_{16} \cdot X_{i+2,j} + \dots + a_{21} \cdot X_{i+2,j+10})$

R00	Gr01	R02	Gr03	R04	Gr05	R06	Gr07	R08	Gr09	
Gb10	B11	Gb12	B13	Gb14	B15	Gb16	B17	Gb18	B19	
R20	Gr21	R22	Gr23	R24	Gr25	R26	Gr27	R28	Gr29	
Gb30	B31	Gb32	B33	Gb34	B35	Gb36	B37	Gb38	B39	
R40	Gr41	R42	Gr43	R44	Gr45	R46	Gr47	R48	Gr49	
Gb50	B51	Gb52	B53	Gb54	B55	Gb56	B57	Gb58	B59	
R60	Gr61	R62	Gr63	R64	Gr65	R66	Gr67	R68	Gr69	
Gb70	B71	Gb72	B73	Gb74	B75	Gb76	B77	Gb78	B79	:

/* VFE_STATS_BF_FILTER_CFG_2 */ Configuration bf stats reg.h uint32 t b fv min 23: typedef struct ISP_StatsBf_CfgCmdType { uint32 t /* reserved 23:31 */ /* VFE_STATS_BF_RGN_OFFSET_CFG /* VFE STATS BF FILTER CFG 3 */ : 13: uint32 t rgnHOffset uint32 t gb fv min 3: uint32 t /* reserved */ uint32 t /* reserved 23:31 */ rgnVOffset uint32 t 14: /* VFE STATS BF FILTER COEFF 0 */ uint32 t /*reserved */ 5; int32 t a00 /* VFE_STATS_BF_RGN_NUM_CFG */ int32 t a01 uint32 t rgnHNum 5: int32_t a02 uint32 t /* reserved */ 11: int32_t a03 rgnVNum uint32 t 4: int32 t a04 /* reserved */ 12; uint32 t uint32 t /* reserved 25 */ /* VFE_STATS_BF_RGN_SIZE_CFG */ int32 t a05 uint32 t rgnWidth : 10: uint32_t /* reserved 31 */ uint32 t /* reserved */ 6: /* VFE_STATS_BF_FILTER_COEFF_1 */ ranHeiaht uint32 t 11: int32 t a06 5; /* reserved */ uint32 t 5: int32 t a07 /* VFE_STATS_BF_FILTER_CFG_0 */ int32 t a08 uint32 t r fy min uint32 t /* reserved */ 1: uint32 t /* reserved 23:31 */ : int32 t a09 /* VFE_STATS_BF_FILTER_CFG_1 */ uint32 t /* reserved 21:23 */ gr fv min uint32 t : 23: int32 t a10 uint32 t /* reserved 23:31 */ : 9: uint32 t /* reserved 29:31 */ :

Confidential and Proprietary - Qualcomm Technologies, Inc.

```
/* VFE_STATS_BF_FILTER_COEFF_2 */
                                                         Output q3a_stats_hw.h
 int32 t
            a11
                            5;
                                                         typedef struct {
 int32 t
            a12
                             5;
                                                          uint32 t config id;
 int32 t
            a13
                                                          uint32_t bf_region_h_num;
 uint32 t
           /* reserved */
                            : 1;
                                                          uint32_t bf_region_v_num;
 int32 t
            a14
                                                          uint8 t use max fv;
 int32 t
            a15
                                                          uint32_t bf_r_sum[MAX_BF_STATS_NUM];
 int32 t
            a16
                                                          uint32 t bf b sum[MAX BF STATS NUM];
 uint32 t
           /* reserved */
                            : 1:
                                                          uint32 t bf gr sum[MAX BF STATS NUM];
 /* VFE_STATS_BF_FILTER_COEFF_3 */
                                                          uint32 t bf gb sum[MAX BF STATS NUM]:
                             5;
 int32 t
            a17
                                                          uint64 t bf r sharp[MAX BF STATS NUM];
 int32 t
                             5;
            a18
                                                          uint64 t bf b sharp[MAX BF STATS NUM];
 int32 t
            a19
                                                          uint64 t bf gr sharp[MAX BF STATS NUM];
 uint32 t
           /* reserved */
                            : 1:
                                                          uint64 t bf gb sharp[MAX BF STATS NUM];
 int32 t
            a20
                                                          uint32 t bf r num[MAX BF STATS NUM]:
 int32 t
            a21
                                                          uint32 t bf b num[MAX BF STATS NUM];
 uint32 t
           /* reserved 26:31 */ : 6:
                                                          uint32 t bf gr num[MAX BF STATS NUM];
 attribute ((packed, aligned(4))) ISP StatsBf CfgCmdType;
                                                          uint32 t bf gb num[MAX BF STATS NUM];
                                                          uint64 t bf r max fv[MAX BF STATS NUM];
                                                          uint64_t bf_b_max_fv[MAX_BF_STATS_NUM];
                                                          uint64 t bf gr max fv[MAX BF STATS NUM];
```

uint64_t bf_gb_max_fv[MAX_BF_STATS_NUM];

} q3a bf stats t;

Bayer Grid Statistics

Bayer Grid Statistics

- Rol is divided into a grid with up to 160x90 regions for 6240x16384 image size
- Collect the following statistics for each block
 - Number of saturated and nonsaturated nondark pixels
 - Sum and number of 14-bit R, B, Gr, Gb values that are within low and high thresholds

Name	Bits	Description	Double- buffered
Enable	1	0x0 – Disable grid statistics 0x1 – Enable grid statistics	Yes
en_quad_sync	1	Enable quad-synchronized R/Gr/Gb/B thresholding	Yes
Region vertical offset	14	Offset from top edge of image for Rol, must be even	Yes
Region horizontal offset	13	Offset from left edge of image for Rol, must be even	Yes
Block height	10	Height of regions in pixels; must be even; range is [2, 512]	Yes
Block width	9	Width of regions in pixels; must be even; range is [4, 390]	Yes
Number of vertical blocks	7	Number of regions in vertical direction; range is [1, 90]	Yes
Number of horizontal blocks	8	Number of regions in horizontal direction; range is [1, 160]	Yes
R, B, Gr, Gb high threshold	14x4	Pixel > high threshold is counted as saturated	Yes
R, B, Gr, Gb low threshold	14x4	Pixel < low threshold is counted as dark	Yes

- Number of dark pixels for region n = region width * region height B cnt –
 R cnt Gb cnt Gr cnt B sat_cnt R sat_cnt Gb sat_cnt Gr sat_cnt
- Statistics are read out from left-to-right, top-to-bottom from the grid Maximum output entries, 12 * 160* 90 = 172,800

. 3	1		42,00		
lack	31:30	Region n	n, R Sum, (29:0)		
	31:30	Region n	, B Sum, (29:0)		
	31:30	Region n	Gr Sum, (29:0)		
	31:30	Region n,	gion n, Gb Sum, (29:0)		
"	Re	gion n, B Cnt, (31:16)	Region n, R Cnt, (15:0)		
12 entries per region	Reg	gion n, Gb Cnt, (31:16)	Region n, Gr Cnt, (15:0)		
2 er er re	31:30	Region n, Satu	urated R Sum, (29:0)		
_ 	31:30	Region n, Satu	urated B Sum, (29:0)		
	31:30	Region n, Satu	urated Gr Sum, (29:0)		
	31:30	Region n, Satu	rated Gb Sum, (29:0)		
	Regi	on n, B Sat_cnt, (31:16)	Region n, R Sat_cnt, (15:0)		
\downarrow	Regio	on n, Gb Sat_cnt, (31:16)	Region n, Gr Sat_cnt, (15:0)		

Configuration bg_stats_reg46.h

```
typedef struct ISP_StatsBg_CfgCmdType {
                                                  /* VFE STATS BG HI THRESHOLD CFG 1 */
/* VFE_STATS_BG_RGN_OFFSET_CFG */
                                                    uint32 t
                                                               bMax
                                                                              : 14;
 uint32 t
            ranHOffset
                            : 13;
                                                    uint32 t
                                                              /*reserved */
 uint32 t
          /* reserved */
                                                    uint32 t
                                                               gbMax
 uint32 t
         rgnVOffset
                                                    uint32 t
                                                              /*reserved */
         /*reserved */
                                                    /* VFE STATS BG LO THRESHOLD CFG 0 */
 uint32 t
/* VFE_STATS_BG_RGN_NUM_CFG */
                                                    uint32 t
                                                               rMin
                                                                             : 14;
 uint32 t
          rgnHNum
                                                    uint32 t
                                                              /*reserved */
                               8:
 uint32 t
          /* reserved */
                                                    uint32 t
                                                               grMin
                                                                             : 14:
         rgnVNum
                                                    uint32 t
                                                              /*reserved */
 uint32 t
 uint32 t
          /* reserved */
                                                    /* VFE STATS BG LO THRESHOLD CFG 1 */
/* VFE_STATS_BG_RGN_SIZE_CFG */
                                                    uint32 t
                                                               bMin
                                                                             : 14;
 uint32 t
          rgnWidth
                              9;
                                                    uint32 t
                                                              /*reserved */
 uint32 t
          /* reserved */
                                                    uint32 t qbMin
                                                                              : 14:
 uint32 t
          rgnHeight
                             10:
                                                    uint32 t
                                                              /*reserved */
          /* reserved */
 uint32 t
                                                   } __attribute__((packed, aligned(4)))
/* VFE_STATS_BG_HI_THRESHOLD CFG 0 */
                                                   ISP StatsBq CfqCmdType:
 uint32 t
            rMax
                          : 14;
 uint32 t
          /*reserved */
                           : 2;
          grMax
 uint32 t
                           : 14:
 uint32 t
           /*reserved */
```

Output q3a_stats_hw.h

```
typedef struct {
    uint32_t bg_region_h_num; /* 64, max 72 */
    uint32_t bg_region_v_num; /* 48, max 54 */
    uint32_t region_pixel_cnt;
    uint32_t bg_region_height;
    uint32_t bg_region_width;
    uint32_t bg_r_sum[MAX_BG_STATS_NUM];
    uint32_t bg_s_sum[MAX_BG_STATS_NUM];
    uint32_t bg_gr_sum[MAX_BG_STATS_NUM];
    uint32_t bg_gs_sum[MAX_BG_STATS_NUM];
    uint32_t bg_r_num[MAX_BG_STATS_NUM];
    uint32_t bg_s_num[MAX_BG_STATS_NUM];
    uint32_t bg_gr_num[MAX_BG_STATS_NUM];
    uint32_t bg_gr_num[MAX_BG_STATS_NUM];
    uint32_t bg_gs_num[MAX_BG_STATS_NUM];
    uint32_t bg_gs_num[MAX_BG_STATS_NUM];
```

```
/* this section is valid only when BG_EXTENDED_SATURATED is set */
uint32_t bg_r_sat_sum[MAX_BG_STATS_NUM];
uint32_t bg_b_sat_sum[MAX_BG_STATS_NUM];
uint32_t bg_gr_sat_sum[MAX_BG_STATS_NUM];
uint32_t bg_gb_sat_sum[MAX_BG_STATS_NUM];
uint32_t bg_r_sat_num[MAX_BG_STATS_NUM];
uint32_t bg_b_sat_num[MAX_BG_STATS_NUM];
uint32_t bg_gr_sat_num[MAX_BG_STATS_NUM];
uint32_t bg_gb_sat_num[MAX_BG_STATS_NUM];
uint32_t ex_fields;
} q3a_bg_stats_t;
```


Bayer Histogram Statistics

Bayer Histogram Statistics

- 4096-bin histogram collected for each R, Gr, Gb, B channel from Rol
- Rol is composed of regions of 2x2 pixels
- Each histogram bin is 25 bits to support 6240x16384

Name	Bits	Description	Double- buffered
Enable	1	0x0 – Disable histogram 0x1 – Enable histogram	Yes
Region vertical offset	14	Offset from top edge of image for Rol, must be even	Yes
Region horizontal offset	13	Offset from left edge of image for Rol, must be even	Yes
Vertical region number	13	Vertical number of the regions of 2x2 pixels	Yes
Horizontal region number	12	Horizontal number of the regions of 2x2 pixels	Yes

31:25	R Histogram Bin 0, bits 24:0
31:25	B Histogram Bin 0, bits 24:0
31:25	Gr Histogram Bin 0, bits 24:0
31:25	Gb Histogram Bin 0, bits 24:0
31:25	R Histogram Bin 1, bits 24:0
1:25	B Histogram Bin 1, bits 24:0
1:25	Gr Histogram Bin 1, bits 24:0
1:25	Gb Histogram Bin 1, bits 24:0
1:25	
1:25	
1:25	
1:25	<u>, , , , , , , , , , , , , , , , , , , </u>
1:25	R Histogram Bin 4095, bits 24:0
1:25	B Histogram Bin 4095, bits 24:0
1:25	Gr Histogram Bin 4095, bits 24:0
1:25	Gb Histogram Bin 4095, bits 24:0

Bayer Histogram Statistics (cont.)

Bayer Histogram Statistics (cont.)

Configuration bhist_stats_reg.h

```
typedef struct ISP_StatsBhist_CfgCmdType {
/* VFE STATS BHIST RGN OFFSET CFG */
uint32 t
          rgnHOffset
                           : 13;
uint32 t /* reserved */
uint32 t rgnVOffset
uint32 t /*reserved */
/* VFE_STATS_BHIST_RGN_SIZE_CFG */
 uint32 t rgnHNum
                               12;
uint32 t rgnVNum
                               11:
          /* reserved 23:31 */
 uint32 t
} __attribute__((packed, aligned(4)))
ISP StatsBhist CfgCmdType:
```

Output q3a_stats_hw.h

```
typedef struct {
  uint32_t bayer_r_hist[MAX_BHIST_STATS_NUM];
  uint32_t bayer_b_hist[MAX_BHIST_STATS_NUM];
  uint32_t bayer_gr_hist[MAX_BHIST_STATS_NUM];
  uint32_t bayer_gb_hist[MAX_BHIST_STATS_NUM];
  uint32_t num_bins;
  stats_hdr_mode_t hdr_mode;
} q3a_bhist_stats_t;
```


Row/Column Sum (RS/CS) Statistics

Row/Column Sum (RS/CS) Statistics

- Statistics color conversion outputs 12-bit Y for RS/CS statistics
- Legacy post-demosaic AWB statistics to be removed
- Row sums (RS) / column sums (CS) v.2
 - 4 sets of Row Sums of 1/4 image/Rol width

One set of Column Sums of 1/4 image/Rol height are reused four times

 Different software combinations for full width RS / full height CS or regional RS/CS for frame registration

Row/Column Sum (RS/CS) Statistics (cont.)

- Operates on viewfinder and continuous snapshot modes up to 6240x16384
- Rol is divided to up to four equal width/height chunks for RS/CS respectively
- Accumulate Y for every row, no more than 4,096 row sums
- Accumulate Y for every other column, no more than 1,560 column sums
- Accumulator clamping at the maximum value
- Output rowsums[.] and colsums[.]

Row/Column Sum (RS/CS) Statistics – RS Hardware Interface

Register name	Bits	Description	Programming frequency
RS_EN	1	 0x0 – Disable flicker detection row sum 0x1 – Enable flicker detection row sum 	Initialization, double buffered
rs_rgn_h_offset	13	Programmable offset of the starting pixel for row sum	Every couple frames, double buffered
rs_rgn_v_offset	14	Programmable offset of the starting line for row sum	Every couple frames, double buffered
rs_rgn_h_num	2	(Number of horizontal chunks, c) – 1, 1 ≤ c ≤ 4, default c is 1	Every couple frames, double buffered
rs_rgn_v_num	12	(Rol height)/n – 1, must be less than 4096	Every couple frames, double buffered
rs_rgn_width	13	Number of columns per region, (RoI width)/c – 1	Every couple frames, double buffered
rs_rgn_height	2	(Number of rows per region, n) – 1, 1 ≤ n ≤ 4, default n is 1	Every couple frames, double buffered
RS_SHIFT_BITS	4	Number of bits to be right shifted for row sum; range is 0~10	Every couple frames, double buffered

Row/Column Sum (RS/CS) Statistics – CS Hardware Interface

Register name	Bits	Description	Programming frequency
CS_EN	1	 0x0 – Disable column sum 0x1 – Enable column sum 	Initialization, double buffered
cs_rgn_h_offset	13	Programmable offset of the starting pixel for column sum	Every couple frames, double buffered
cs_rgn_v_offset	14	Programmable offset of the starting line for column sum	Every couple frames, double buffered
cs_rgn_h_num	11	(Rol width)/n – 1, must be less than 1560 and (cs_rgn_h_num 8) must be in [4, 7]	Every couple frames, double buffered
cs_rgn_v_num	2	(Number of vertical chunks, c) – 1, 1 ≤ c ≤ 4, default c is 1	Every couple frames, double buffered
cs_rgn_width	2	(Number of columns per region, n) – 1, 2 ≤ n ≤ 4, default n is 2	Every couple frames, double buffered
cs_rgn_height	14	Number of rows per region, (Rol height)/c – 1	Every couple frames, double buffered
CS_SHIFT_BITS	4	Number of bits to be right shifted for column sum; range is 0~10	Every couple frames, double buffered

Row/Column Sum (RS/CS) Statistics – Statistics Output

Register name	Bits	Description	Reporting frequency
Rowsum[4x4096]	16	Row sum outputs for the frame	When row sums are requested
Colsum[4x1560]	16	Column sum outputs for the frame	When column sums are requested

Column Sum

Row/Column Sum (RS/CS) Statistics

Configuration rs_stats_reg46.h

Configuration cs_stats_reg46.h

```
typedef struct ISP_StatsRs_CfgType {
                                                     typedef struct ISP_StatsCs_CfgType {
/* VFE STATS RS RGN OFFSET CFG */
                                                      /* VFE STATS CS RGN OFFSET CFG */
            rgnHOffset
                           : 13;
                                                      uint32 t
                                                                  rgnHOffset
                                                                                    13:
 uint32 t
                                                      uint32 t /* reserved */
 uint32 t
          /* reserved */
                              3:
                                                                                     3;
 uint32 t
          rgnVOffset
                           : 13;
                                                      uint32_t rgnVOffset
                                                                                    14:
                                                      uint32 t /* reserved */
                                                                                    2:
 uint32 t
          /* reserved */
                             3:
                                                       /* VFE STATS CS RGN NUM CFG */
/* VFE STATS RS RGN NUM CFG */
            rgnHNum
                                                                  rgnHNum
 uint32 t
                              2;
                                                      uint32 t
                                                                                    11:
 uint32 t
                                                               /* reserved */
          /* reserved */
                           : 14:
                                                      uint32 t
                                                                                     5:
                             12:
                                                               rgnVNum
 uint32 t
          rgnVNum
                                                      uint32 t
 uint32 t
           /* reserved */
                             4:
                                                      uint32 t
                                                                /* reserved */
                                                                                  : 14;
/* VFE STATS RS RGN SIZE CFG */
                                                      /* VFE STATS CS RGN SIZE CFG */
                                                      uint32 t
 uint32 t
            ranWidth
                             13:
                                                                  rgnWidth
                                                                                    2;
          /* reserved */
                              3:
                                                                /* reserved */
 uint32 t
                                                      uint32 t
                                                                                    14:
 uint32 t
          ranHeight
                                                      uint32 t
                                                                                    14;
                                                               ranHeiaht
 uint32 t
          /* reserved */
                             14:
                                                      uint32 t
                                                                 /* reserved */
  attribute ((packed, aligned(4))) ISP StatsRs CfgType;
                                                     } attribute ((packed, aligned(4))) ISP StatsCs CfgType;
```

Row/Column Sum (RS/CS) Statistics (cont.)

Output q3a_stats_hw.h

```
typedef struct {
  uint32_t num_col_sum;
  uint32_t col_sum[MAX_CS_STATS_NUM * 4];
} q3a_cs_stats_t;

typedef struct {
  uint32_t num_row_sum;
  uint32_t row_sum[MAX_RS_H_REGIONS][MAX_RS_STATS_NUM];
  uint32_t num_h_regions;
  uint32_t num_v_regions;
} q3a_rs_stats_t;
```


Image Histogram

Image Histogram

- Histogram collections of the Y/Cb/Cr, G, B, R channels
 - For LA, display, and other features
 - Advanced AEC
 - Simultaneous Y/Cb/Cr, G, B, and R image histogram outputs
 - Bin value clamping at the maximum value (2²⁴ 1) and truncated and clamped to 16 bits

Image Histogram (cont.)

Hardware interface – Each region is 2x2 pixels

Name	Bits	Description	Programming frequency
Image Histogram Enable	1	0 – Disable image histogram collection 1 – Enable image histogram collection	Initialization, double buffered
Histogram Site Select	2	Specify site to collect image histogram • 0x0 – Before LTM • 0x1 – After LTM • 0x2 – Before Gamma LUT	Every frame, double buffered
Channel Select	2	Input select for YCC image histogram • 0x0 – Y • 0x1 – Cb • 0x2 – Cr	Every frame, double buffered
hist_rgn_h_offset	13	Horizontal offset of image histogram collection regions	Every frame, double buffered
hist_rgn_v_offset	14	Vertical offset of image histogram collection regions	Every frame, double buffered
hist_rgn_h_num	12	Horizontal number of regions for image histogram collection minus 1, and hist_rgn_h_offset + (hist_rgn_h_num+1) * 2 <= image_width	Every frame, double buffered
hist_rgn_v_num	13	Vertical number of regions for image histogram collection minus 1, and hist_rgn_v_offset + (hist_rgn_v_num+1) * 2 <= image_height	Every frame, double buffered
HIST_SHIFT_BITS	4	Right shift bits for image histogram count; range is 0~8	Every frame, double buffered

Statistics output

Name	Bits	Description
YCC_iHist[256]	16	Y/Cb/Cr image histogram, 256 entries of 16µ
G_iHist[256]	16	G image histogram, 256 entries of 16µ
B_iHist[256]	16	B image histogram, 256 entries of 16µ
R_iHist[256]	16	R image histogram, 256 entries of 16µ

Image Histogram (cont.)

Configuration ihist stats reg46.h

```
typedef struct ISP_StatsIhist_CfgType {
 /* VFE_STATS_IHIST_RGN_OFFSET_CFG_*/
 uint32 t
         rgnHOffset
                           : 13;
 uint32 t /* reserved */
                              3:
 uint32 t rgnVOffset
                           : 14:
 uint32 t /* reserved */
 /* VFE STATS IHIST RGN NUM CFG
        rgnHNum
                              12;
 uint32 t
 uint32 t /* reserved */
                              3;
                              14:
 uint32 t rgnVNum
         /* reserved */
                              3:
 uint32 t
  attribute ((packed, aligned(4)))
```

Output q3a stats hw.h

```
typedef struct {
 union {
  uint32 t histogram[MAX HIST STATS NUM];
  uint32 t r[MAX HIST STATS NUM];
 uint32 t g[MAX HIST STATS NUM];
 uint32_t b[MAX_HIST_STATS_NUM];
 uint32_t ycc[MAX_HIST_STATS_NUM];
 uint32 t num bins;
 uint32_t valid_fields;
} q3a ihist stats t;
```

ISP StatsIhist CfgType;

Skin Tone Detection

Skin Tone Detection

- Input data
 - 8 bit Y, Cb, Cr after gamma, tone mapping, and color conversion
 - Up to 6240x16384
- Skin tone map
 - Regions defined by generic region controller
 - Number of regions From 8x8 of skin tone prioritized AEC and AF to 128x96
 - Maximum bits of map 12,288 (3 MP on regions of 16x16 pixels → 128x96 regions)
 - Maximum number of accumulators per row is 128, clamping bitwidth = 19 ([0, 399360 = 6240 * 16384 / 256])
 - Minimum 16x16 pixels per region
 - Maximum 390x1024 pixels per region
 - For 3 MP or less, 8x8, 9x9, 16x16 regions are supported
 - For more than 3 MP, region number has to be 16x16 or 18x18; software then needs to combine them into 8x8 or 9x9

Skin Tone Statistics

Skin Tone Statistics – Hardware Interface

 GRC settings are to match AEC and/or AF on Viewfinder mode upon skin tone priority

Name	Bits	Description	Programming frequency
Enable	1	0x1 – Enable0x0 – Disable	Every frame (double-buffered)
Hmin, Hmax	10, 8	Min and max values of H range (Q8)	Every frame (double-buffered)
Ymin, Ymax	8	Min and max values of Y range (Q8)	Every frame (double-buffered)
ShY_min, ShY_max	8	Min and max values of S on Ymax level (Q8)	Every frame (double-buffered)
Smin_para, Smax_para	8	Parameters used to calculate Smin and Smax for each Y level (Q8)	Every frame (double-buffered)
skin_rgn_h_offset	13	Horizontal offset of the upper left corner of the skin tone regions	Every frame (double-buffered)
skin_rgn_v_offset	14	Vertical offset of the upper left corner of the skin tone regions	Every frame (double-buffered)
skin_rgn_width	9	Width of the skin tone regions in the map minus 1; range is [16, 390] – 1	Every frame (double-buffered)
skin_rgn_height	10	Height of the skin tone regions in the map minus 1; range is [16, 1024] – 1	Every frame (double-buffered)
skin_rgn_h_num	7	Number of horizontal regions in the skin tone map minus 1	Every frame (double-buffered)
skin_rgn_v_num	7	Number of vertical regions in the skin tone map minus 1	Every frame (double-buffered)
Threshold	19	Output skin region is set to 1 if the number of skin pixels in the region > Threshold	Every frame (double-buffered)

Skin Tone Statistics – Output

- The skin tone map is packed to 32-bit words from LSB line-by-line.
- MSB bits in the last 32-bit word of a line are skipped if the number of bits in the line is not the magnitude of 32.

Name	Bits	Description	Programming frequency
Skin	12, 288	Skin tone map based on regional decision	Every frame

References

Acronyms		
Term	Definition	
BE	Bayer Exposure	
GRC	Generic Region Controllers	
Rol	Region of Interest	
RS/CS	Row/Column Sum	

Questions?

https://support.cdmatech.com

