Terceira Avaliação de Conteúdo - Turma B1

Petrucio Viana GAN-IME-UFF

As resoluções devem:

- 1. estar redigidas e diagramadas de acordo com os modelos apresentados nas aulas e nas notas de aula;
- 2. conter os detalhes necessários para que uma pessoa que domine um mínimo do conteúdo as entendam.
- 1. Determine se as sentenças φ e $\neg \psi$ são equivalentes. Justifique.
 - (a) φ : Não acontece que x ser primo seja necessário e suficiente para x ser ímpar. ψ : x é primo ou não é ímpar.
 - (b) φ : s ser perpendicular a t é necessário para r ser paralela a s e perpendicular a t.

 ψ : r ser paralela a s e s não ser perpendicular a t é suficiente para r não ser perpendicular a t.

2. Determine se temos um passo lógico. Justifique.

(a)
$$p, p \lor q \models p \to q$$
.

(b)
$$p \to q, q \to \neg r \models \neg p \vee \neg r$$
.

3. Demonstre a validade dos seguintes argumentos.

$$\begin{array}{c}
\neg p \lor (q \to r) \\
\neg (\neg t \lor \neg p) \\
\end{array}$$
(a)
$$\frac{t \to q}{r \lor s}$$

$$(b) \frac{a \wedge (c \to \neg b)}{\neg c \to b}$$

 $(a \to b) \lor (a \land \neg c)$

4. Mostrar que o argumento cujas premissas são:

O enunciado é verdadeiro em sentido absoluto se é verdadeiro e sua verdade não depende do contexto. E se não é verdadeiro em sentido absoluto, ele é falso ou sua verdade depende do contexto. Além disso, o enunciado tem contraexemplo ou é verdadeiro em sentido absoluto, mas não ambas estas coisas.

e cuja conclusão é a negação de:

GAN 00166

O enunciado é verdadeiro em sentido absoluto se e somente se tem contraexemplo.

é válido, apresentando uma demonstração que **não usa** a $Negação do \leftrightarrow como$ passo lógico.

Advertência.

- Segue, abaixo, para cada questão, uma resolução elaborada (semântica) e escrita (sintaxe), de acordo com o conteúdo e os métodos que estudamos.
- Elas devem ser usadas do seguinte modo:
 - 1. Releia o enunciado da questão atentamente.
 - 2. Medite sobre como você a teria resolvido, agora que a avaliação já passou.
 - 3. Escreva uma resolução para a questão, baseada nas ideias que você está tendo agora.
 - 4. Relembre o que você escreveu na sua folha de respostas (que está comigo para correção) e veja se o que você respondeu antes corresponde ao que você respondeu agora.
 - 5. Compare o que você escreveu tanto agora quanto antes com a resolução que estou apresentando; veja se há discrepâncias; avalie se é necessário revisar a matéria já estudada, refazer alguns exercícios, tirar novas dúvidas; etc.
- Você pode ter elaborado resoluções alternativas corretas, tanto na ideia (semântica), quanto na redação (sintaxe).

Um exercício de muito valor:

Pense em como as árvores de refutação podem ajudar na resolução destas questões; e resolva cada uma delas aplicando este procedimento.

Nas questões 3 e 4, finja que as demonstrações não estão sendo pedidas.

Resolução da Questão 1:

(a) Legenda:

 $p: x \in \mathsf{primo}$.

 $i: x \in \mathsf{impar}.$

Simbolização:

$$\varphi: \neg(p \leftrightarrow i).$$

$$\psi: p \lor \neg i.$$

Negação:

$$\neg \psi : \neg (p \vee \neg i)$$

é equivalente a

$$\neg p \land \neg \neg i$$

é equivalente a

$$\neg p \wedge i$$
.

 φ e $\neg \psi$ não são equivalentes: Tomando

$$p: V \in i: F$$
,

temos

$$\varphi : \neg (p \leftrightarrow i) : \neg (V \leftrightarrow F) : \neg F : V$$

enquanto que

$$\neg \psi : \neg p \wedge i : \neg V \wedge F : F.$$

(b) Legenda:

p: s é perpendicular a t.

q: r é paralela a s.

r: r é perpendicular a t.

Simbolização:

$$\varphi: (q \wedge r) \to p.$$

$$\psi: (q \land \neg p) \to \neg r.$$

Negação:

$$\neg \psi : \neg [(q \land \neg p) \rightarrow \neg r]$$

é equivalente a

$$q \wedge \neg p \wedge \neg \neg r$$

é equivalente a

$$q \wedge \neg p \wedge r.$$

 φ e $\neg \psi$ não são equivalentes: Tomando

$$p: F, q: V \in r: V$$

temos

$$\varphi: (q \wedge r) \to p: (V \wedge V) \to F: V \to F: F$$

enquanto que

$$\neg \psi: q \wedge \neg p \wedge r: V \wedge \neg F \wedge V: V \wedge V \wedge V: V.$$

Resolução da Questão 2:

(a) Classificação: Não é um passo lógico.

Justificativa: Tomando $p: V \in q: F$, temos

$$p: V, p \vee q: V \in p \rightarrow q: F$$
.

(b) Classificação: É um passo lógico.

Justificativa: Supondo $p \to q$ e $q \to \neg r$, temos:

$$\neg p \lor q \in \neg q \lor \neg r;$$
daí, "cortando q com $\neg q$ ", temos $\neg p \lor \neg r.$

Sugestão: Para entender ainda melhor a questão 2(b) e dominar completamente a regra que aplicada na sua resolução, revise o texto O Método de Holmes: Uma Aplicação da Lógica dos Conectivos na Resolução de Mistérios.

Resolução da Questão 3:

(a) Demonstração:

$$\begin{array}{llll} \mathsf{P} & 1. & \neg p \lor (q \to r) \\ \mathsf{P} & 2. & \neg (\neg t \lor \neg p) \\ \mathsf{P} & 3. & t \to q \\ 2 & 4. & \neg \neg t \land \neg \neg p \\ 4 & 5. & t \land p \\ 5 & 6. & t \\ 3,6 & 7. & q \\ 5 & 8. & p \\ 1,8 & 9. & q \to r \\ 7,9 & 10. & r \\ 10 & 11. & r \lor s & \Box \end{array}$$

(b) Demonstração:

$$\begin{array}{llll} \mathsf{P} & 1. & (a \to b) \lor (a \land \neg c) \\ \mathsf{P} & 2. & a \land (c \to \neg b) \\ \mathsf{P} & 3. & \neg c \to b \\ 2 & 4. & a \\ 1,4 & 5. & b \lor (a \land \neg c) \\ 2 & 6. & c \to \neg b \\ 6 & 7. & b \to \neg c \\ 5,7 & 8. & \neg c \lor (a \land \neg c) \\ 8 & 9. & \neg c \lor \neg c \\ 9 & 10. & \neg c & \Box \\ \end{array}$$

Resolução da Questão 4:

Legenda:

p: O enunciado é verdadeiro em sentido absoluto.

q: O enunciado é verdadeiro.

r: A verdade do enunciado depende do contexto.

 $s: \mathsf{O}$ enunciado tem contraexemplo.

Simbolização: Assumindo que "ser falso" é a negação de "ser verdadeiro":

Demonstração:

P 1. $(q \land \neg r) \rightarrow p$

P 2. $\neg p \rightarrow (\neg q \lor r)$

P 3. $(s \lor p) \land \neg (s \land p)$

3 4. $(s \lor p) \land (\neg s \lor \neg p)$

4 5. $(s \land \neg s) \lor (s \land \neg p) \lor (p \land \neg s) \lor (p \land \neg p)$

5 6. $(s \land \neg p) \lor (p \land \neg s)$

6 7. $(p \land \neg s) \lor (s \land \neg p)$

7 8. $\neg (p \to s) \lor \neg (s \to p)$

8 9. $\neg[(p \rightarrow s) \land (s \rightarrow p)]$

9 10. $\neg(p \leftrightarrow s)$ \square