環論 (第11回)

11 UFD

整数環 \mathbb{Z} のように素因数分解できる整域を UFD という. 今回はまず可換環上で素数にあたる概念を定義し、 さらに UFD の定義や性質について述べる.

定義 11-1(素元と既約元)

可換環 A と $a, b, \pi \in A$ $(\pi \neq 0, \pi \notin A^{\times})$ を考える.

- (1) b = ua $(u \in A)$ と表せるとき, a は b を割るといい, $a \mid b$ で表す. $a \mid b$ でないとき, $a \nmid b$ で表す.
- (2) a = ub $(u \in A^{\times})$ と表せるとき, a と b は **同伴**といい, $a \sim b$ で表す.
- (3) 次の条件を満たすとき π を**素元**という.

 $\pi \mid xy \ (x, y \in A) \Rightarrow \pi \mid x \ \sharp \, t \ \exists \ \pi \mid y.$

(4) 次の条件を満たすとき π を**既約元**という.

 $x \mid \pi \ (x \in A) \Rightarrow \pi \sim x \ \sharp \, \hbar \, l \sharp \ x \in A^{\times}.$

問題 11-1 Aを整域とし, $a,b,\pi \in A \setminus \{0\}$ とする. このとき, 次を示せ.

- (1) $a \sim b \iff (a) = (b)$.
- (2) π が素元 \iff (π) は素イデアル.

定理 11-1

整数環 ℤ において考える.

- (1) $a \sim b \iff a = \pm b$.
- (2) 素数 p は素元である.
- (3) 素数 p は既約元である.

[証明]

- (1) $\mathbb{Z}^{\times} = \{\pm 1\}$ より従う.
- (2) 定理 9-2 より (p) は素イデアルである. 従って p は素元である.

copyright ⓒ 大学数学の授業ノート

(3) $x \mid p \ (x \in \mathbb{Z})$ とすると, $x = \pm 1, \pm p$ のいずれか. $x = \pm 1$ なら $x \in \mathbb{Z}^{\times}$ であり, $x = \pm p$ なら $x \sim p$. よって p は既約元である.

定理 11-2

整域 A において素元は既約元である.

[証明]

 π を素元とする. $x \mid \pi \ (x \in A)$ とする. このとき, $\pi = xy \ (y \in A)$ と表せる. π は素元なので $\pi \mid x$ または $\pi \mid y$.

- (i) $\pi\mid x$ のとき. $x=\pi z$ $(z\in A)$ と表すと, $\pi=\pi yz$ である. A は整域より 1=yz である. $z\in A^{\times}$ より $\pi\sim x$.
- (ii) $\pi \mid y$ のとき. $y = \pi w$ ($w \in A$) と表せるので, $\pi = \pi x w$ である. 1 = x w より $x \in A^{\times}$.
- (i), (ii) より π は既約元である.

例題 11-1

整域 $A = \{a + b\sqrt{-1} \mid a, b \in \mathbb{Z}\}$ を考える. $A^{\times} = \{\pm 1, \pm \sqrt{-1}\}$ に注意する (例題 3-2).

- (1) $1+\sqrt{-1} \mid 2$ および $1+\sqrt{-1} \nmid 2+\sqrt{-1}$ を示せ.
- (2) $1+\sqrt{-1}$ が既約元であることを示せ.
- (3) $1 + \sqrt{-1}$ が素元であることを示せ.

[証明]

$$\frac{2+\sqrt{-1}}{1+\sqrt{-1}} = \frac{3}{2} - \frac{1}{2}\sqrt{-1} \not\in A$$

(2) α $|1+\sqrt{-1}$ とする. $1+\sqrt{-1}=\alpha\beta$ $(\beta\in A)$ と表せる. ここで、

$$\alpha = a + b\sqrt{-1}, \quad \beta = c + d\sqrt{-1} \quad (a, b, c, d \in \mathbb{Z})$$

と表す. 定理 3-2 の写像 $N: A \to \mathbb{Z}$ $(x+y\sqrt{-1} \mapsto x^2+y^2)$ を考えると,

$$2 = N(1 + \sqrt{-1}) = N(\alpha)N(\beta) = (a^2 + b^2)(c^2 + d^2).$$

- (i) $a^2 + b^2 = 1$ $\emptyset \ \xi \ \xi$, $(a, b) = (\pm 1, 0)$, $(0, \pm 1)$. $\xi \supset \tau \ \alpha \in A^{\times}$.
- (ii) $a^2+b^2=2$ のとき, $(a,b)=(1,\pm 1),\; (-1,\pm 1).$ このとき, α は $1\pm\sqrt{-1},\; -1\pm\sqrt{-1}$ のいず れかより,

$$(1+\sqrt{-1})u \quad (u \in A^{\times})$$

の形でかける. よって $\alpha \sim 1 + \sqrt{-1}$.

- (i), (ii) より $1 + \sqrt{-1}$ は A の既約元.
- (3) $1+\sqrt{-1}\mid\alpha\beta\;(\alpha,\beta\in A)$ とする. ここで,

$$\alpha = a + b\sqrt{-1}, \quad \beta = c + d\sqrt{-1} \quad (a, b, c, d \in \mathbb{Z})$$

と置く. このとき

$$2 = N(1 + \sqrt{-1}) \mid N(\alpha)N(\beta) = (a^2 + b^2)(c^2 + d^2).$$

よって $2 | (a^2 + b^2)$ または $2 | (c^2 + d^2)$.

仮に $2 \mid a^2 + b^2$ とする. このとき, a, b の偶奇は一致する. a, b が共に偶数のとき, (a, b) = (2s, 2t) $(s, t \in \mathbb{Z})$ と表すと,

$$\alpha = 2(s + t\sqrt{-1}) = (1 + \sqrt{-1})(1 - \sqrt{-1})(s + t\sqrt{-1}).$$

よって $1+\sqrt{-1} \mid \alpha$ である. a,b が共に奇数のとき, (a,b)=(2s+1,2t+1) $(s,t\in\mathbb{Z})$ と表すと,

$$\alpha = (1 + \sqrt{-1}) + 2(s + t\sqrt{-1}) = (1 + \sqrt{-1}) + (1 + \sqrt{-1})(1 - \sqrt{-1})(s + t\sqrt{-1})$$

より, $1+\sqrt{-1}$ | α である.

 $2 \mid c^2 + d^2$ の場合も同様に $1 + \sqrt{-1} \mid \beta$ が分かる. 以上より $1 + \sqrt{-1}$ は素元である.

[**補足**] $1+\sqrt{-1}$ が既約元かつ素元であることは次のようにも示せる. $(1+\sqrt{-1})$ は A の素イデアルである (定理 9-1 と問題 9-3). よって $1+\sqrt{-1}$ は素元で、また定理 11-2 より既約元でもある.

問題 11-2

整域 $A = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\}$ を考える.

- (1) $1+\sqrt{-5} \mid 6$ および $1-\sqrt{-5} \nmid 1+\sqrt{-5}$ を示せ.
- (2) $A^{\times} = \{\pm 1\}.$
- (3) $1+\sqrt{-5}$ は既約元であることを示せ.
- (4) $1+\sqrt{-5}$ は素元でないことを示せ

定義 11-2 (UFD)

A を整域とする. 任意の $x \in A$ $(x \notin A^{\times} \cup \{0\})$ が素元の積で表せるとき, A を **UFD** という.

整数環 \mathbb{Z} の場合を考える. 任意の整数 $x \in \mathbb{Z}$ $(x \notin \{0, \pm 1\})$ は次の形で表せる.

例 11-1 より (δp_1) , p_2 , ..., p_k は素元である. よって \mathbb{Z} は UFD である.

定理 11-3 (素元分解の一意性)

A を UFD とする. $x \in A (x \notin A^{\times} \cup \{0\})$ が

と2通りに表せたとする. このとき, s=t であり, $p_1,...,p_s$ 順番を入れ替えると

$$p_i \sim q_i \quad (i = 1, 2, ..., s).$$

つまり、素元の積への表し方は同伴の差を除いて一意的である.

[証明]

s に関する帰納法で示す.

(I) s=1 のとき. つまり、

$$x = p_1 = q_1 q_2 \cdots q_t$$

とする. $t \ge 2$ と仮定する. p_1 は素元より既約元でもある. $q_1 \mid p_1$ より $q_1 \in A^\times$ または $p_1 \sim q_1$ である. q_1 は素元より $p_1 \sim q_1$. 従って $q_1 = up_1$ ($u \in A^\times$) と表せる. よって

$$1 = uq_2 \cdots q_t$$
.

このとき, $q_2 \in A^{\times}$ となり矛盾. 従って t = 1 であり, $p_1 = q_1$ となる. 特に $p_1 \sim q_1$ である.

(II) s-1 まで正しいと仮定し、

$$x = p_1 p_2 \cdots p_s = q_1 q_2 \cdots q_t$$

とする. p_s は素元より, $p_s \mid q_j$ となる j がある. j=t として問題ない. (I) と同様の議論で $q_t=up_s~(u\in A^\times)$ と表せる. よって

$$p_1 p_2 \cdots p_{s-1} = q_1 q_2 \cdots (u q_{t-1}).$$

帰納法の仮定より s-1=t-1 ($\Rightarrow s=t$) であり, 順番を入れ替えると

$$p_i \sim q_i \quad (i = 1, 2, ..., s - 2), \quad p_{s-1} \sim uq_{s-1} \sim q_{s-1}.$$

また $p_s \sim q_s$ である. よって s のときも正しい.

問題 11-3 UFD において, 既約元は素元であることを示せ.

4