$\psi(V) = a_1^1 b_1^1 + a_1^2 b_2^1 - a_1^1 b_1^2 - a_1^2 b_2^2 + a_2^1 b_1^1 + a_2^2 b_2^1 - a_2^1 b_1^2 - a_2^2 b_2^2$ $\psi(H) = a_1^1 b_1^1 + a_1^2 b_2^1 + a_1^1 b_1^2 + a_1^2 b_2^2 - a_2^1 b_1^1 - a_2^2 b_2^1 - a_2^1 b_1^2 - a_2^2 b_2^2$ $\psi(D) = a_1^1 b_1^1 + a_1^2 b_2^1 - a_1^1 b_1^2 - a_1^2 b_2^2 - a_2^1 b_1^1 - a_2^2 b_2^1 + a_2^1 b_1^2 + a_2^2 b_2^2$

Notice that $W(A) \cdot W(B) = W(A \cdot B)$, in the case of 2×2 matrices.

This can then be compared to the coefficients of $W(A \cdot B)$ which were

 $\psi(A) = a_1^1 b_1^1 + a_1^2 b_2^1 + a_1^1 b_1^2 + a_1^2 b_2^2 + a_2^1 b_1^1 + a_2^2 b_2^1 + a_2^1 b_1^2 + a_2^2 b_2^2$