Continuum Mechanics

Lecture 13 - Anisotropic Hyperelasticity

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

29 October, 2020

schedule

- 29 Oct Newtonian Fluids
- 3 Nov Newtonian Fluids
- 5 Nov Reynolds Transport Theorem
- 10 Nov Viscoelastic Materials
- 12 Nov Viscoelastic Materials

- newtonian fluids
- flow conditions

fluids in rigid motion

- We define a fluid as a material which is unable to resist shear stress at rest
- For a fluid in rigid body motion, the stress vector on any plane will be normal to that plane

$$T_{ii}n_i = \lambda n_i$$

- The symmetry of the stress tensor leads us to find that

$$T_{ij} = -p\delta_{ij}$$

3

compressible and incompressible fluids

- Most liquids can be treated as incompressible in many fluid problems
- Their change in density is negligible under a wide range of pressures
- Most gases, however, must be treated as compressible
- Recall the conservation of mass

$$\frac{D}{Dt}\rho + \rho \frac{\partial v_k}{\partial x_k} = 0$$

- Which for an incompressible material becomes

$$\frac{\partial v_k}{\partial x_k} = 0$$

 Density of an incompressible material can vary in space, as long as it does not vary in time

hydrostatics

– If we substitute $T_{ij}=-p\delta_{ij}$ into the equilibrium equations, we find

$$\frac{\partial p}{\partial x_i} = \rho B_i$$

- If gravity is the only body force and acts in x₃, then pressure will only be a function of x₃ (for static fluid)
- If the fluid is in rigid body motion then we have

$$-\frac{\partial p}{\partial x_i} + \rho B_i = \rho a_i$$

- You are planning to load your fish tank into your friend's car for transportation
- Your friend brags that he can accelerate from 0 to 60 in 5 seconds
- Assuming this is true, and your tank is 2'x4' and 2' deep, how deep can you fill the tank without allowing any spilling due to acceleration?

general motion of fluids

 For a fluid in general motion, we de-compose the stress tensor into two portions

$$T_{ij} = -p\delta_{ij} + T'_{ii}$$

Where T'_{ij} depends only on the rate of deformation and p is a scalar which does not depend on the rate of deformation

newtonian fluids

- For a fluid to be Newtonian, we make two assumptions
- First, we assume that T_{ij}^{\prime} is linearly dependent on D_{ij} and nothing else
- Second, we assume the fluid is isotropic
- This gives

$$T'_{ij} = \lambda D_{kk} \delta_{ij} + 2\mu D_{ij}$$

physical interpretation

- If we consider a shear flow given by the velocity field

$$v_1 = f(x_2)$$
 $v_2 = v_3 = 0$

- We have a rate of deformation tensor with

$$D_{12} = \frac{1}{2} \frac{dv_1}{dx_2}$$

- With all other $D_{ii} = 0$
- Thus we find $T_{12} = \mu \frac{dv_1}{dx_2}$
- μ relates shear stress to the rate of change of the angle, is known as viscosity

_

physical interpretation

 For a general velocity field, if we take 1/3 of the contraction of the viscous stress tensor, we find

$$\frac{1}{3}T'_{ii} = \left(\lambda + \frac{2\mu}{3}\right)D_{ii}$$

- The quantity $\left(\lambda+\frac{2\mu}{3}\right)$ relates the mean viscous normal stress to the change in volume
- It is often referred to as the bulk viscosity

1

incompressible fluid

- If a fluid is considered to be incompressible, then $D_{ii} = 0$
- This gives the constitutive equation

$$T_{ij} = -p\delta_{ij} + 2\mu D_{ij}$$

- It is convenient to write it in terms of the velocity vector

$$T_{ij} = -p\delta_{ij} + 2\mu(\mathbf{v}_{i,j} + \mathbf{v}_{j,i})$$

- If we recall Navier-Stokes equations of motion

$$\rho\left(\frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_i}\right) = \frac{\partial T_{ij}}{\partial x_i} + \rho B_i$$

 We can substitute the constitutive equation for newtonian fluids to find

$$\rho\left(\frac{\partial v_i}{\partial t} + v_j \frac{\partial v_i}{\partial x_j}\right) = \rho B_i - \frac{\partial p}{\partial x_i} + \mu \frac{\partial^2 v_i}{\partial x_j \partial x_j}$$

 This gives three equations with four unknowns, we use the continuity equation to find the fourth unknown

$$\frac{\partial v_i}{\partial x_i} = 0$$

cylindrical and spherical coordinates

- Navier-Stokes equations in cylindrical and spherical coordinates are found on p. 364-365 of the text
- There is a typo in 6.8.1, should read

$$\begin{split} &\frac{\partial v_r}{\partial r} + v_r \frac{\partial v_r}{\partial r} + \frac{v_\theta}{r} \left(\frac{\partial v_r}{\partial \theta} - v_\theta \right) + v_z \frac{\partial v_r}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial r} + B_r \\ &+ \frac{\mu}{\rho} \left[\frac{\partial^2 v_r}{\partial r^2} + \frac{1}{r^2} \frac{\partial^2 v_r}{\partial \theta^2} + \frac{\partial^2 v_r}{\partial z^2} + \frac{1}{r} \frac{\partial v_r}{\partial r} - \frac{2}{r^2} \frac{\partial v_\theta}{\partial \theta} - \frac{v_r}{r^2} \right] \end{split}$$

-

nonslip

- A common assumption is that of nonslip boundaries
- Agrees well with experiments
- Both Newtonian and non-Newtonian fluids
- Fluid moves with boundary, for rigid boundaries the velocity at the boundary is 0

- -

streamline

- In general, fluid flow is characterized by a velocity field
- As a vector field, there are different ways in which to visualize the field
- Streamlines, pathlines, streaklines and timelines are common ways we talk about fluids

steady and unsteady flow

- A flow is called *steady* if it is fixed in time (at a fixed location)
- Otherwise it is called unsteady
- Steady flow does not mean the material derivative is zero $(D\Psi/Dt \neq 0)$
- But it does mean that the partial derivative with respect to time is zero $(\partial \Psi/\partial t=0)$
- For steady flow, streamlines, streaklines, and pathlines are the same

Τ

streamline

- A streamline is a curve which is instantaneously tangent to the velocity vector
- Experimentally, streamlines can be found on the surface of a fluid by sprinkling reflective particles and making a short-time exposure photograph
- Mathematically, streamlines can be found by considering a parametric equation for a curve $x_i = x_i(s)$
- We choose s so that $dx_i/ds = v_i$ and s = 0 corresponds to the point x_0 , which is the originating point of our streamline

streamline example

- Given the velocity field

$$v_i = \langle \frac{kx_1}{1 + \alpha t}, kx_2, 0 \rangle$$

find the streamline passing through (a_1, a_2, a_3) at time t

4.

pathline

- A pathline is the path traversed by a fluid particle
- Experimentally, pathlines can be found by using one reflective particle and a long-time exposure photograph
- Mathematically, the pathline can be obtained from the velocity field as follows

$$\frac{dx_i}{dt} = v_i(x_i, t)$$
$$x_i(t_0) = X_i$$

pathline example

- Given the velocity field

$$v_i = \langle \frac{kx_1}{1 + \alpha t}, kx_2, 0 \rangle$$

find the pathline passing through (a_1, a_2, a_3) at time t

01

streakline

- Streaklines are commonly found experimentally, but are difficult to express mathematically
- A streakline is formed when dye is steadily injected into a fluid from a fixed point
- The path that the very first point of dye follows is a pathline
- But the dye following behind is altered by the changing flow field, which makes the streakline left by the continuously injected dye different from a pathline

timeline

- The final common method for visualizing fluid flows is known as a timeline
- Fluid particles are marked at a given instance of time (often forming a line at t_0)
- After set intervals of time, lines are drawn between these particles
- These lines are called timelines

2:

laminar flow

- Laminar flow is very orderly
- Fluid particles move in smooth layers (laminae)
- Occurs when fluid flow is relatively slow

reynolds number

- Dimensionless parameter to compare how "fast" or "slow" a fluid is moving
- For experiments under otherwise identical conditions, reynolds number is used to determine whether flow will be laminar
- Ratio of inertial forces to viscous forces
- In a tube, Reynolds number is

$$N_R = \frac{v_m \rho d}{\mu}$$

- For water in a tube, $N_R < 2100$ gives laminar flow

turbulent flow

- In laminar flow, small perturbations are quickly overcome
- For turbulent flow, unsteady vortices appear and interact with each other
- Turbulent flows are highly irregular and chaotic
- Turbulence increases diffusivity, causing fluids to mix more quickly
- High Reynolds numbers correspond to turbulence, but how high depends on the specific experiment
- There is often a large transition range between laminar and turbulent flow

reading

- pp 365-375