emStart Sprint 1 Status Report

Members: Ivan Borra, Matthew Gasper, Matthew Grabasch, TJ Scherer, and Matthew Selph

Project Introduction

Background

- Emulating system for an existing small radio telescope (SRT).
- SRT shall track a system in space.
- Must emulate Earth's rotation, as well as azimuth and altitude of SRT

Prototype set-up

Purpose

- Research
- Development
- Debugging
- Education

Example SRT

Design Considerations

- Assumptions:
 - Satellite transmits consistently
 - System in space stationary
- Earth emulator changed to 2-DOF arm.
- Do not interfere with radio frequencies.

- Simple design to be packaged for education purposes.
- Radio defined telescope hardware is predetermined.

Review of Last Semester

Climbing the Learning Curve

- Improved our understanding of the goal
- Researched the topics to complete the goal
- Planned out the execution of our tasks
- Implemented the design in hardware

Prototype

- Functional prototype
 - Demonstrates the motion of Earth and SRT
 - Does not implement actual SRT software
 - Uses different communication protocols
- Exposed planning flaws
 - Weight constraints
 - Testing limitations

What We're Doing Different This Semester

Main Goals

- Emulate the Alfa ROT2Prog controller using an Arduino
- 2. Run the current SRT software to control the motion of the ground antenna
- 3. Emulate the rotation of the Earth using custom software and the ROT2Prog interface
- 4. Emulate the signal strength based on the direction of the antenna

Software

- Integrate code changes into SRT software
- Use SRT software to control the antenna movement
- Write Arduino program to emulate the ROT2Prog serial protocol
 - Should control both pan-tilt mounts
 - Should determine the attenuation strength
- Write Python program to emulate the rotation of the Earth
 - Should include a user interface to simplify the process
 - User can control the current time of the emulation

Hardware

- Single Arduino receives commands to control Earth and antenna motion
 - Must use two fully independent serial interfaces
 - Must control the attenuator based on direction of antenna
- Attenuator added between antenna and SDR
 - Reduce signal strength when the antenna is pointing away from the object in space
- Two independent pan-tilts
 - Earth controlled by custom software
 - Antenna controlled by SRT software

Sprint 1 Accomplishments

Hardware Acquisition

- Generated BOM
 - o 2x SPT50 Pan-Tilts
 - o 4x HS-55 Servos
 - 1x Attenuator
 - o 2x USB breakouts
 - 1x Coaxial Cable
- Part Replacement
 - Shipping times made us find a substitution for the attenuator

Item Name	Purpose	Item Link	Item Cost	Quantity	Total Item Cost
Attenuator	To reduce amplitude of in coming signals	https://www.walma	\$13.18	1	\$13.18
Coaxial Cable	to connect Attenuator to SDR	https://www.amazi	\$9.99	1	\$9.99
Pan-tilt	To move the antenna	https://www.serv	\$19.99	2	\$39.98
Servo	To move the antenna	https://www.servoo	\$13.49	4	\$53.96
Usb breakout	To connect Arduino to Attenuator	https://www.amazo	\$7.99	2	\$15.98
				Total:	\$133.09

Bill of Materials (BOM)

System Hardware Architecture

Software Development

Our Plan for the Future

Project Timeline

Sprint 2 Goals

- Get the SRT software running
 - Make code changes
- Get the Arduino running
 - Receive commands
- Get the Earth software running
 - Process astronomy data
 - Send commands

Sprint 3 Goals

- Improve documentation
- Simplify code
- Improve SRT code
- Finely tune the attenuator
- Add Earth GUI features

Questions?

Thank You!