

Perceptual Edge

Digital signal processing Lab Presenter: KIM JONGHYUN

Contents

001 Concept

• Perceptual edge

002 Proposed method

- Bi-directional detection
- Implementation details

003 Result

001 Concept

Digital Signal Processing Lab

Perceptual edge

Perceptual edge

Perceptual edge : Object-level edge

002 Proposed method

Digital Signal Processing Lab

Bi-Directional Cascade Network for Perceptual Edge Detection

Jianzhong He¹, Shiliang Zhang¹, Ming Yang², Yanhu Shan², Tiejun Huang¹

¹Peking University, ²Horizon Robotics, Inc.

{jianzhonghe,slzhang.jdl,tjhuang}@pku.edu.cn,m-yang4@u.northwestern.edu, yanhu.shan@gmail.com

Bi-directional & Cascaded

- Y: Ground truth edge map
- Ys: Annotated edges corresponding to a scale s

$$Y = \sum_{s=1}^{S} Y_s,\tag{1}$$

Sum of different scales of edge maps = GT

- Ps: Edge prediction at scale s
- Ls: Training loss
- X: Input image
- T: Train set

$$\mathcal{L}_s = \sum_{X \in \mathbb{T}} |P_s - Y_s|,\tag{2}$$

To find approximate Ys by training Eq(2)

How to get Ys?

To get Y_1 , $Y - \sum_{i \neq 1} P_i$

edges P_s at layer s should approximate Y_s , i.e., $P_s \sim Y - \sum_{i \neq s} P_i$.

edges P_s at layer s should approximate Y_s , i.e., $P_s \sim Y - \sum_{i \neq s} P_i$.

- L: Training objective
- \hat{Y} : Prediction at all scales
- Y: Ground truth

$$\mathcal{L} = \mathcal{L}(\hat{Y}, Y)$$
, where $\hat{Y} = \sum_{i} P_{i}$.

$$\frac{\partial(L)}{\partial(P_s)} = \frac{\partial(L(\hat{Y}, Y))}{\partial(P_s)} = \frac{\partial(L(\hat{Y}, Y))}{\partial(\hat{Y})} \cdot \frac{\partial(\hat{Y})}{\partial(P_s)}.$$
 (4)

Calculate the gradient at a scale s

- \hat{Y} : Prediction at all scales
- P_s, P_i : Prediction at s and i scales
- ∂: Partial derivative

$$\frac{\partial(L)}{\partial(P_s)} = \frac{\partial(L(\hat{Y}, Y))}{\partial(P_s)} = \frac{\partial(L(\hat{Y}, Y))}{\partial(\hat{Y})} \cdot \frac{\partial(\hat{Y})}{\partial(P_s)}. \tag{4}$$

$$\frac{\partial(\hat{Y})}{\partial(P_s)} = \frac{\partial(\hat{Y})}{\partial(P_s)} = 1.$$

All gradient at any scale is the same as "1"

$$\hat{Y} = \sum_{i} P_{i}.$$
 $\frac{\partial (P_{1} + P_{2} + \dots + P_{i} + \dots P_{s})}{\partial (P_{i}) \text{ or } \partial (P_{s})}$

if "s" is 3, then use predictions in 1, 2 scales

Why do not use scale 4? $P_4 \sim Y - (P_1 + P_2 + P_3)$

if "s" is 1, then use predictions in 2, 3 scales

For scale s, the predicted edges P_s^{s2d} and P_s^{d2s} approximate to Y_s^{s2d} and Y_s^{d2s} , respectively. Their combination is a reasonable approximation to Y_s , *i.e.*,

$$P_s^{s2d} + P_s^{d2s} \sim 2Y - \sum_{i < s} P_i^{s2d} - \sum_{i > s} P_i^{d2s},$$
 (6)

where the edges predicted at scales $i \neq s$ are depressed. Therefore, we use $P_s^{s2d} + P_s^{d2s}$ to interpolate the edge prediction at scale s.

Final loss using bi-directional method

- Dataset: BSDS500, NYUDv2, Multicue
- Optimizer: SGD
- Batch size: 10
- Learning rate: 1e-6 (decrease 10 times after every 10k iterations.)
- Total iterations: 40k for BSDS500 and NYUDv2, 4k for Multicue
- Augmentation: randomly cropping 500x500

003 Result

Digital Signal Processing Lab

Prediction at scale s

Figure 4. Examples of edges detected by different ID Blocks (IDB for short). Each ID Block generates two edge predictions, P^{s2d} and P^{d2s} , respectively.

Boundary and edge

003 Result

Comparison with SOTA

YOU