

New York

Exploiting Quasi-Direct Drive Actuation in a Knee Exoskeleton for Effective Human-Robot Interaction

Peter Phung, Sainan Zhang, Hao Su*

Biomechatronics and Intelligent Robotics lab, Department of Mechanical Engineering, City University of New York, City College, New York, NY, 10031, USA

Website: http://haosu-robotics.github.io Email: hao.su@ccny.cuny.edu

Motivation/Introduction

- More than \$15 billion yearly due to physical overexertion of workers
- Stooping, kneeling and squatting increase the risk of developing bursitis, tendinitis, or osteoarthritis of the knee
- Exoskeletons have potential to mitigate the injury incidence and augment human
- Goal: lightweight, compliant, versatile devices to reduce musculoskeletal injuries

Tethered and Portable Soft Exoskeleton Systems

 Tethered System: lightweight, scientific platform to study control and biomechanics

biomechanics		
Specification	Table	
Motor Torque	2Nm	
Motor Speed	1500 RPM	
Output Torque:	72 Nm Los	
Output Speed:	4.4 rad/s	
Range of Motion:	130 degree	
Gear Ratio	36:1	
Total Weight	< 1 kg	
(Unilateral):	< i kg	
 Tothorod Systom: 	liabtwoiabt	

 Tethered System: lightweight, scientific platform to study control and biomechanics

Diomodiamo			
Specification Table			
Motor Torque	1.1 Nm		
Motor Speed	250 RPM		
Output Torque:	20 Nm		
Output Speed:	26.2 rad/s		
Range of Motion:	160 degree		
Gear Ratio	6:1		
Total Weight (Unilateral): Hardware of Knee	2.5 kg		
 Hardware of Knee 	e Exoskeletoi		

Exoskeleton Innovations

Acknowledgment

This work is supported by the National Science Foundation grant IIS 1830613, CMMI -Career 1944655, NIH R01EB029765, and Grove School of Engineering, The City University of New York, City College.

Reference

[1] S. Yu, etc. Design and Control of a High-Torque and Highly Backdrivable Hybrid Soft Exoskeleton for Knee Injury Prevention During Squatting. IEEE Robotics and Automation Letters, 2019 [2] J. Yang, etc. Machine Learning Based Adaptive Gait Phase Estimation Using Inertial Measurement Sensors. Design of Medical Devices Conference. American Society of Mechanical Engineers Digital Collection, 2019

High Torque Density Motor Our EC-90 motor Elat

Property	motor	Flat
Motors:		
Mass(g):	244	648
Nominal Power(W):	314	107
Nominal Voltage(V):	42	48
Nominal Current(A):	7.47	2.12
Nominal Torque(Nm):	2	0.5
Nominal Speed(RPM):	1500	2080
Nominal Speed(rad/s):	157	217
Power Density(W/Kg):	1145	165
Torque Density (Nm/Kg):	7.29	0.76

Versatile Dynamic Model Based Control

- Human Quasi-Static Model Based Control for Squatting and Stooping
- A versatile biomechanics model for both squatting and stooping

Delayed Output Feedback Control Algorithm for Walking

Experimental Result

The backdrivability performance of the knee exoskeleton in the unpowered mode and zero torque tracking control. The average backdrive torque is 0.92 Nm and 0.34 Nm respectively

The tracking performance of the 10%, 30%, 50% of knee torque assistance in three squatting cycles. The RMS of the absolute error between the desired and actual torque trajectory was 0.3 Nm, 0.22 Nm, and 0.29 Nm in 10%, 30%, and 50% knee assistance respectively.

It shows the average of EMG in 15 squat cycles (three healthy subjects with 5 cycles each). The result shows that the exoskeleton effectively reduced activities of three knee extensor muscles.

Squat Cycle(%)