# Bases de données (CS443)

#4, Modèle relationnel: algèbre relationnelle

#### Arthur Baudet

Grenoble INP - Esisar

2023-2024



## Sources

- équipe BD de Lyon1
- équipe BD de Lille1

Avec leur autorisation, of course.

#### Le modèle relationnel

Rappel, on a une structuration en tables.

| Étudiants | NUMETUD | NOMETUD   | PRENOMETUD | AGE | FORMATION |
|-----------|---------|-----------|------------|-----|-----------|
|           | 28      | Codd      | Edgar      | 20  | 3         |
|           | 32      | Armstrong | William    | 20  | 4         |
|           | 53      | Fagin     | Ronald     | 19  | 3         |
|           | 107     | Bunneman  | Peter      | 18  | 3         |

| Enseignants | NUM                      | ENS .      | NOMENS                                      | PREN   | OMENS                             | GRADE                 |
|-------------|--------------------------|------------|---------------------------------------------|--------|-----------------------------------|-----------------------|
|             | 505<br>212<br>343<br>147 | 23<br>34 I | Tarjan<br>Mannila<br>Papadimitriou<br>Bagan | H<br>S | obert<br>eikki<br>piros<br>Ilaume | PR<br>MCF<br>PR<br>CR |
| E           | ncadre                   | NUME       | NS NUA                                      | IETUD  | DATE                              |                       |
|             |                          | 5050       |                                             | 53     | 2005                              |                       |
|             |                          | 3434       |                                             | 28     | 2020                              |                       |
|             |                          | 5050       |                                             | 28     | 2015                              |                       |
|             |                          | 2123       |                                             | 32     | 2019                              |                       |

Maintenant, on veut manipuler ces tables, ie faire des requêtes.

## Le modèle relationnel - requêtes

#### Définition

Une requête est :

- une expression ensembliste qui calcule une relation (en algèbre relationnelle)
- une instruction (commande) qui retourne une table (en SQL).

## Plan

Algèbre Relationnelle

## Formalisme!

#### Attention formalisme

Mais ce n'est rien qu'une formalisation des opérations sur les tables!

Dans le modèle relationnel, les tables sont supposées construites.

## Algèbre relationnelle : opérations sur les relations

Soient des relations  $r_i$  définies sur des schémas  $R_i$ :

- La projection  $\pi_X(r)$  ne conserve que les attributs de X ( $\subseteq R$ );
- La sélection  $\sigma_C(r)$  filtre les tuples de r (lignes) suivant la condition C.
- Le renommage  $\rho[X/X']$  renomme l'attribut X' en X.
- La jointure  $r_1 \bowtie r_2$  "combine" les tuples de  $r_1$  et  $r_2$ .

On fera attention aux domaines de définition.

# Projection $\pi_X(r)$

employe

| NoEmp | Nom    | Année | NoDep |  |
|-------|--------|-------|-------|--|
| 1045  | Dupond | 1978  | 03    |  |
| 2067  | Dupont | 1965  | 06    |  |
| 0456  | Martin | 1981  | 03    |  |
| 0278  | Martin | 1987  | 05    |  |
| 0789  | Blanc  | 1981  | 06    |  |

 $annee\_naissance = \pi_{Nom,Annee}(employe)$  retourne (vaut) la relation :

# Projection $\pi_X(r)$

|       | ellibloxe |
|-------|-----------|
| NoEmp | Nom       |

| NoEmp | Nom    | Année | NoDep |   |
|-------|--------|-------|-------|---|
| 1045  | Dupond | 1978  | 03    |   |
| 2067  | Dupont | 1965  | 06    |   |
| 0456  | Martin | 1981  | 03    |   |
| 0278  | Martin | 1987  | 05    | _ |
| 0789  | Blanc  | 1981  | 06    |   |

 $annee\_naissance = \pi_{Nom,Annee}(employe)$  retourne (vaut) la relation :

#### annee naissance

| Nom    | Année |
|--------|-------|
| Dupond | 1978  |
| Dupont | 1965  |
| Martin | 1981  |
| Martin | 1987  |
| Blanc  | 1981  |

# Sélection $\sigma_{\mathcal{C}}(r)$

#### employe

| NoEmp | Nom    | Année | NoDep |  |
|-------|--------|-------|-------|--|
| 1045  | Dupond | 1978  | 03    |  |
| 2067  | Dupont | 1965  | 06    |  |
| 0456  | Martin | 1981  | 03    |  |
| 0278  | Martin | 1987  | 05    |  |
| 0789  | Blanc  | 1981  | 06    |  |

Liste des employé(e)s du département 03 né(e)s avant 1980:

# Sélection $\sigma_{\mathcal{C}}(r)$

#### employe

| NoEmp | Nom    | Année | NoDep |  |
|-------|--------|-------|-------|--|
| 1045  | Dupond | 1978  | 03    |  |
| 2067  | Dupont | 1965  | 06    |  |
| 0456  | Martin | 1981  | 03    |  |
| 0278  | Martin | 1987  | 05    |  |
| 0789  | Blanc  | 1981  | 06    |  |

Liste des employé(e)s du département 03 né(e)s avant 1980 :  $ancien = \sigma_{annee < 1980 \land NoDep=03}(employe)$ 

#### **ANCIEN**

| NoEmp | Nom    | Annee | NoDep |
|-------|--------|-------|-------|
| 1045  | Dupond | 1978  | 03    |

# Renommage $\rho[X/X'](r)$

Ce n'est rien d'autre qu'une substitution!

employe

| NoEmp | Nom    | Année | NoDep |  |
|-------|--------|-------|-------|--|
| 1045  | Dupond | 1978  | 03    |  |
| 2067  | Dupont | 1965  | 06    |  |
| 0456  | Martin | 1981  | 03    |  |
| 0278  | Martin | 1987  | 05    |  |
| 0789  | Blanc  | 1981  | 06    |  |

Renommons deux colonnes:

# Renommage $\rho[X/X'](r)$

#### Ce n'est rien d'autre qu'une substitution!

employe

| NoEmp | Nom    | Année | NoDep |  |
|-------|--------|-------|-------|--|
| 1045  | Dupond | 1978  | 03    |  |
| 2067  | Dupont | 1965  | 06    |  |
| 0456  | Martin | 1981  | 03    |  |
| 0278  | Martin | 1987  | 05    |  |
| 0789  | Blanc  | 1981  | 06    |  |

Renommons deux colonnes :  $new = \rho[IdEmp/NoEmp, Dpt/NoDep](employe)$ 

employe

|       | Cilipioyc |       |     |  |
|-------|-----------|-------|-----|--|
| ldEmp | Nom       | Année | Dpt |  |
| 1045  | Dupond    | 1978  | 03  |  |
| 2067  | Dupont    | 1965  | 06  |  |
| 0456  | Martin    | 1981  | 03  |  |
| 0278  | Martin    | 1987  | 05  |  |
| 0789  | Blanc     | 1981  | 06  |  |
|       |           |       |     |  |

#### Jointure

Pour la jointure  $\bowtie_C$  il nous faut d'abord la définition du produit cartésien, donc passons d'abord aux opérations ensemblistes.

## Algèbre Relationnelle (suite)

Puisque les relations sont des ensembles de tuples, on bénéficie en plus de tous les opérateurs ensemblistes.

- A condition d'avoir R = S:
  - Différence  $(r_1 \setminus r_2)$ .
  - Intersection  $(r_1 \cap r_2)$ .
  - Union  $(r_1 \cup r_2)$ .
- A condition d'avoir  $R \cap S = \emptyset$
- Produit cartésien  $(r_1 \times r_2)$ . La relation obtenue est sur le schéma  $R_1 \cup R_2$ .

Pour les conditions sur le schéma, on peut les "forcer" par le renommage préalable

## Union, Intersection, Différence

#### **EMPLOYE 1**

| NoEmp | Nom    | Annee | NoDep |
|-------|--------|-------|-------|
| 1045  | Dupond | 1978  | 03    |
| 2067  | Dupont | 1965  | 06    |
| 0456  | Martin | 1981  | 03    |

#### **EMPLOYE 2**

| NoEmp | Nom    | Annee | NoDep |
|-------|--------|-------|-------|
| 1045  | Dupond | 1978  | 03    |
| 0278  | Martin | 1987  | 05    |
| 0789  | Blanc  | 1981  | 06    |

Que valent  $EMPLOYE1 \oplus EMPLOYE2$  avec  $\oplus \in \{\cup, \cap, \setminus\}$ ?

#### **Domaines**

On fera attention aux domaines de définition des opérations.

#### Produit cartésien

#### Définition

Le produit cartésien de deux relations  $r_1 \times r_2$  (de cardinal  $n_i$ ) est une relation sur le schéma  $R_1 \cup R_2$  (les schémas sont supposés disjoints). Les tuples de la relation sont la concaténation d'un élément/tuple de  $r_1$  et d'un élément/tuple de  $r_2$ .

On obtient alors une table de taille de  $n_1 * n_2$  tuples

Source : équipe BD LIP6

## Produit cartésien, exemple

## Employe3

| NoEmp | Nom    | Annee | NoDep |
|-------|--------|-------|-------|
| 2067  | Dupont | 1965  | 06    |
| 0456  | Martin | 1981  | 03    |

#### Departement

| NoDep2 | Intitule     | Taille |
|--------|--------------|--------|
| 03     | Comptabilité | 6      |
| 06     | Informatique | 10     |

 $\textit{RES} = \textit{EMPLOYE3} \times \textit{DEPARTEMENT}$  fournit la table :

## Produit cartésien, exemple

## Employe3

| NoEmp | Nom    | Annee | NoDep |
|-------|--------|-------|-------|
| 2067  | Dupont | 1965  | 06    |
| 0456  | Martin | 1981  | 03    |

#### Departement

| NoDep2 | Intitule     | Taille |
|--------|--------------|--------|
| 03     | Comptabilité | 6      |
| 06     | Informatique | 10     |

#### $RES = EMPLOYE3 \times DEPARTEMENT$ fournit la table :

| NoEmp | Nom    | Annee | NoDep | NoDep2 | Intitule     | Taille |
|-------|--------|-------|-------|--------|--------------|--------|
| 2067  | Dupont | 1965  | 06    | 03     | Comptabilité | 6      |
| 2067  | Dupont | 1965  | 06    | 06     | Informatique | 10     |
| 0456  | Martin | 1981  | 03    | 03     | Comptabilité | 6      |
| 0456  | Martin | 1981  | 03    | 06     | Informatique | 10     |

# Jointure (def)

#### Soient:

- deux tables R et S avec  $R \cap S = \emptyset$ .
- F une formule logique comportant au moins un atome  $A_i \oplus B_j$  ( $\oplus$  opérateur de comparaison) avec  $A_i$  (resp  $B_j$ ) attribut de R (resp. S)

Alors la jointure est le sous-ensemble des tuples du produit cartésien  $R \times S$  qui satisfont F, cad :

$$R \bowtie_{\mathsf{F}} S =_{\mathsf{def}} \sigma(R \times S)$$

## Types de jointures

- équijointure : la formule F n'utilise que l'égalité
- $\theta$ -jointure : la formule F utilise (aussi) des comparaisons
- la jointure dite naturelle.

La jointure naturelle se fait sur des schémas comportant des attributs en commun :

$$R(\mathbf{X}, Y) \bowtie_{JN} S(\mathbf{X}, Y') =_{def} \pi_{S.X,Y,Y'} \Big( \sigma_{R.X=S.X} \big( \underline{\rho[X/R.X](R)} \times \underline{\rho[X/S.X](S)} \big) \big)$$

- Le renommage souligné sert à effectuer un produit cartésien correct.
- La partie en bleue filtre celui-ci pour ne garder que les lignes dans lesquelles S.X = R.X
- La projection sert à éliminer une des deux colonnes S.X (ici) ou R.X
- (il resterait à renommer l'autre colonne)

# Exemple d'équi-jointure

## **Employe**

| n°empl | nom_e  | ville_e | age_e | n°chef_e |
|--------|--------|---------|-------|----------|
| 141    | dupond | paris   | 40    | 500      |
| 36     | durand | tours   | 40    | 500      |
| 251    | parent | agen    | 25    | 60       |

#### Chef

| n°chef | nom_c   | age_c |
|--------|---------|-------|
| 500    | albert  | 50    |
| 60     | jacquet | 40    |

## Quelle jointure pour :

| n°empl | nom_e  | ville_e | age_e | n°chef_e | n°chef | nom_c   | age_c |
|--------|--------|---------|-------|----------|--------|---------|-------|
| 141    | dupond | paris   | 40    | 500      | 500    | albert  | 50    |
| 36     | durand | tours   | 40    | 500      | 500    | albert  | 50    |
| 251    | parent | agen    | 25    | 60       | 60     | jacquet | 40    |

## Exemple d'équi-jointure

## **Employe**

| n°empl | nom_e  | ville_e | age_e | n°chef_e |
|--------|--------|---------|-------|----------|
| 141    | dupond | paris   | 40    | 500      |
| 36     | durand | tours   | 40    | 500      |
| 251    | parent | agen    | 25    | 60       |

## Chef

| n°chef | nom_c   | age_c |
|--------|---------|-------|
| 500    | albert  | 50    |
| 60     | jacquet | 40    |

Quelle jointure pour :  $Employe \bowtie_{nchef_e=nchef} Chef$ 

| n°empl | nom_e  | ville_e | age_e | n°chef_e | n°chef | nom_c   | age_c |
|--------|--------|---------|-------|----------|--------|---------|-------|
| 141    | dupond | paris   | 40    | 500      | 500    | albert  | 50    |
| 36     | durand | tours   | 40    | 500      | 500    | albert  | 50    |
| 251    | parent | agen    | 25    | 60       | 60     | jacquet | 40    |

## Exemple de $\theta$ -jointure

| n°empl | nom_e   | ville_e | age_e | n°chef_e) |
|--------|---------|---------|-------|-----------|
| 141    | dupond  | paris   | 40    | 500       |
| 36     | durand  | tours   | 40    | 500       |
| 251    | parent  | agen    | 25    | 600       |
| 27     | barbier | paris   | 53    | 500       |
| 125    | lefevre | paris   | 30    | 523       |
| 208    | legrand | evry    | 39    | 523       |
|        |         |         |       |           |

| n°chef | nom_c   | age_c |
|--------|---------|-------|
| 500    | albert  | 50    |
| 60     | jacquet | 40    |
| 523    | durieux | 35    |

## Quelle jointure pour?

| n°empl | nom_e   | ville_e | age_e | n°chef_e | n°chef | nom_c   | age_c |
|--------|---------|---------|-------|----------|--------|---------|-------|
| 27     | barbier | paris   | 53    | 500      | 500    | albert  | 40    |
| 208    | legrand | evry    | 39    | 523      | 523    | durieux | 35    |

# Exemple de $\theta$ -jointure

| n°empl | nom_e   | ville_e | age_e | n°chef_e) |
|--------|---------|---------|-------|-----------|
| 141    | dupond  | paris   | 40    | 500       |
| 36     | durand  | tours   | 40    | 500       |
| 251    | parent  | agen    | 25    | 600       |
| 27     | barbier | paris   | 53    | 500       |
| 125    | lefevre | paris   | 30    | 523       |
| 208    | legrand | evry    | 39    | 523       |

| n°chef | nom_c   | age_c |
|--------|---------|-------|
| 500    | albert  | 50    |
| 60     | jacquet | 40    |
| 523    | durieux | 35    |

Quelle jointure pour? *Employe*  $\bowtie_{nchef_e=nchef \land age_e > age_c}$  *Chef* 

| n°empl | nom_e   | ville_e | age_e | n°chef_e | n°chef | nom_c   | age_c |
|--------|---------|---------|-------|----------|--------|---------|-------|
| 27     | barbier | paris   | 53    | 500      | 500    | albert  | 40    |
| 208    | legrand | evry    | 39    | 523      | 523    | durieux | 35    |

## Exemple de jointure naturelle

| EMPLO |        |      |       |
|-------|--------|------|-------|
| NoEmp | Nom A  | nnée | NoDep |
| 1045  | Dupond | 1978 | 03    |
| 2067  | Dupont | 1965 | 06    |
| 0456  |        | 1981 | 03    |
| 0278  | Martin | 1987 | 05    |
| 0789  | Blanc  | 1981 | 06    |

|   |      | DEPARTEMENT |        |        |  |  |  |  |  |  |  |
|---|------|-------------|--------|--------|--|--|--|--|--|--|--|
|   | NoI  | ep Intitule | Taille | NoResp |  |  |  |  |  |  |  |
|   | 03   | Compta      |        | 0456   |  |  |  |  |  |  |  |
|   | 06   | Info        | 10     | 1249   |  |  |  |  |  |  |  |
|   | 05   | Achats      | 3      | 0278   |  |  |  |  |  |  |  |
| Ч | - 00 | Acidata     |        | 0270   |  |  |  |  |  |  |  |

## INFO-EMP = EMPLOYE >< DEPARTEMENT

| INFO-EN | /IP    |      |      |   |          |        |        |
|---------|--------|------|------|---|----------|--------|--------|
| NoEmp   | Nom A  | nnée | NoDe | р | Intitulé | Taille | NoResp |
| 1045    | Dupond | 1978 | 03   |   | Compta   | 6      | 0456   |
| 2067    | Dupont | 1965 | 06   |   | Info     | 10     | 1249   |
| 0456    | Martin | 1981 | 03   |   | Compta   | 6      | 0456   |
| 0278    | Martin | 1987 | 05   |   | Achats   | 3      | 0278   |
| 0789    | Blanc  | 1981 | 06   |   | Info     | 10     | 1249   |

# Schéma de T : on ne garde qu'une seule fois les attributs communs

## Pause: Practise time!

| Étudiants | NUMETUD | NOMETUD   | PRENOMETUD | AGE | FORMATION |
|-----------|---------|-----------|------------|-----|-----------|
|           | 28      | Codd      | Edgar      | 20  | 3         |
|           | 32      | Armstrong | William    | 20  | 4         |
|           | 53      | Fagin     | Ronald     | 19  | 3         |
|           | 107     | Bunneman  | Peter      | 18  | 3         |

| Enseignants | NUM                      | ENS      | NOM                         | ENS  | PREN     | OMENS                            | GRADE                 |
|-------------|--------------------------|----------|-----------------------------|------|----------|----------------------------------|-----------------------|
|             | 50:<br>21:<br>34:<br>14: | 23<br>34 | Tar<br>Mar<br>Papadi<br>Bag | nila | He<br>Sp | obert<br>eikki<br>oiros<br>laume | PR<br>MCF<br>PR<br>CR |
| E           | ncadre                   | NUM      | IENS                        | NUM  | ETUD     | DATE                             |                       |
| _           |                          | 50       | 50                          | 5    | 3        | 2005                             |                       |
|             |                          | 34       | 434                         |      | 28 2020  |                                  |                       |
|             | 5                        |          | 50                          |      | 8        | 2015                             |                       |
|             |                          | 21       | 123 3                       |      | 32 2019  |                                  |                       |

- Prénom et nom de tou.te.s les étudiant.e.s
- Prénom et nom des enseignant.e.s qui ont le grade de PR
- Nom(s) des enseignant.e(s) qui encadrent l'étudiant 107
- Num des étudiant.e.s qui n'ont pas d'encadrant.e
- Prénom et nom de tou.te.s les étudiant.e.s et enseignant.e.s

## Requêtes algébriques

• Prénom et nom de tou.te.s les étudiant.e.s :

$$\pi_{PRENOMETUD,NOMETUD}(Etudiants)$$

• Prénom et nom des enseignant.e.s qui sont PR :

$$\pi_{PRENOMEND,NOMENS}(\sigma_{GRADE='PR'}(Enseignants))$$

• Nom(s) des enseignant.e(s) qui encadrent l'étudiant 107 :

$$\pi_{NOMENS}(Enseignants \bowtie_{\sigma_{NUMETUD=107}} (Encadre))$$

• Num des étudiant.e.s qui n'ont pas d'encadrant.e :

$$\pi_{NUMETUD}(Etudiants) \setminus \pi_{NUMETUD}(Encadre)$$

• Nom de tou.te.s les étudiant.e.s et enseignant.e.s :

$$\rho_{NOMETUD/NOM}(\pi_{NOMENS}(Etudiants)) \bigcup \rho_{NOMENS/NOM}(\pi_{NOMENS}(Enseignants))$$

## Requête sous forme d'arbre!

Chaque requête peut être décrite sous forme d'arbre :

$$\Pi_{Pname, \ Budget}(Project \bowtie \ \sigma_{Eno=`E1'}(Works)))$$



Pour quoi faire?

## Calcul Relationnel à Variable Tuples

Syntaxe :

$$\{x^{(n)}|F(x)\}$$

où  $x^{(n)}$  est un n-uplet (c'est à dire un tuple à n champs) et F est une formule logique du premier ordre; F(x) exprime donc de façon déclarative les conditions que chaque tuple x doit vérifier pour appartenir au résultat.

- x est une variable libre de F(x).
- On introduit si besoin des variables liées par des quantificateurs ∃ ou ∀. Ces variables permettent par exemple de parcourir les relations, pour être comparées à x.

## **Exemples Calcul Relationnel**

- Quel est le prenom et le nom de tous les étudiants
  - $\{x = (x_1, x_2) \mid \exists x' \in Etudiants((x_1, x_2) = x'[PRENOMETUD, NOMETUD])\}$
- Quel est le prenom et le nom des enseignants qui sont PR
- Quel est le nom des enseignants qui encadrent l'étudiant 53?
  - $\{x = (x_1) \mid \exists x' \in Encadre(x'[NUMETUD] = 107 \land \exists y' \in Enseignants(x'[NUMENS] = y'[NUMENS] \land y'[NOMENS] = x_1))\}$
- Quels est le num des étudiants qui n'ont pas d'encadrant.
  - $\{x = (x_1) \mid \exists x' \in Etudiants(x'[NUMETUD] = x_1 \land \forall y' \in Encadre(x'[NUMETUD] \neq y'[NUMETUD]))\}$
- Lister le nom de tous les étudiants et enseignants.
  - $\{x = (x_1) \mid \exists x' \in Etudiants(x'[NOMETUD] = x_1)\} \cup \{x = (x_1) \mid \exists x' \in Enseignants(x'[NOMENS] = x_1)\}$

## Next

Un langage pour ces requêtes?

## Bilan

Algèbre Relationnelle