

PYTHON PROGRAMMING AND MACHINE LEARNING

DEEP LEARNING

Yunghans Irawan (yirawan@nus.edu.sg)

Objectives

 Understand the application of transfer learning and able to implement a simple transfer learning classifier

 Understand major deep learning architecture and their related terminology

TRANSFER LEARNING

Transfer Learning

- Instead of training a deep learning model from scratch, we take a known good model and use it as the base/starting point for another model
- We train the new model using our data and labels
- We can get a good result quickly

Transfer Learning Procedure

Intuition behind Deep Learning Model

 The perceptrons in the network represent different concepts

 Imagine them as a detector for something

- The lower layers contains low level detectors
- The higher layers contains high level detectors

Transfer Learning

- When we do transfer learning, we use the high level detectors to provide us useful features from our samples.
- We then train our neural network classifiers based on these features

DEEP LEARNING ARCHITECTURES

A mostly complete chart of

Neural Networks

©2016 Fjodor van Veen - asimovinstitute.org

Deep Feed Forward (DFF)

Gated Recurrent Unit (GRU)

- Input Cell
- Noisy Input Cell
- Hidden Cell
- Probablistic Hidden Cell

Backfed Input Cell

- Spiking Hidden Cell
- Output Cell
- Match Input Output Cell
- Recurrent Cell
- Memory Cell
- Different Memory Cell
- Kernel
- Convolution or Pool

Feed Forward (FF)

Radial Basis Network (RBF)

Recurrent Neural Network (RNN)

Long / Short Term Memory (LSTM)

Auto Encoder (AE)

Variational AE (VAE)

Denoising AE (DAE)

Sparse AE (SAE)

National University of Singapore

Convolutional Neural Network

- The goal of a CNN is to learn higher-order features in the data via convolutions.
- They are well suited to object recognition with images and consistently top image classification competitions. They can identify faces, individuals, street signs, platypuses, and many other aspects of visual data.
- Other applications
 - optical character recognition,
 - analyzing words as discrete textual units
 - analyzing sound.

CNN

CNN Architecture Overview

Input layer

Feature-extraction layers

Classification layers

CNN General Pattern

The feature-extraction layers have a general repeating pattern of the sequence:

- Convolution layer
 - We express the Rectified Linear Unit (ReLU)
 activation function as a layer in the diagram here
 to match up to other literature.
- Pooling layer
 - These layers find a number of features in the images and progressively construct higher-order features. This corresponds directly to the ongoing theme in deep learning by which features are automatically learned as opposed to traditionally hand engineered.

Convolution

CNN Summary

- Evolved for specialized feature extraction from image data.
- Layers that are good at finding features no matter where they "roam" across columns.
- Very common for image classification.

Recurrent Neural Network

- Popular for their ability to send information over time steps
- Take each vector from a sequence of input vectors and model them one at a time. This allows the network to retain state while modeling each input vector across the window of input vectors.
- RNN is able to model the time dimension

RNN vs. Normal Feed Forward Data

Feed-Forward Network Data

Recurrent Network Data

S
u
и
3
₹
\mathcal{C}
\tilde{c}
Ę
$\tilde{\mathcal{S}}$
~

	Values
albumin	0.0
alp	1.0
alt	0.5
ast	0.0

		0	1	2	3	4	
ברוחו רחומוווווז	albumin	0.0	0.0	0.5	0.0	0.0	
	alp	0.0	0.1	0.0	0.0	0.2	
	alt	0.0	0.0	0.0	0.9	0.0	
	ast	0.0	0.0	0.0	0.0	0.4	
>							

LSTM Networks

- LSTM networks are the most commonly used variation of Recurrent Neural Networks
- Introduced in 1997 by Hochreiter and Schmidhuber
- The critical component of the LSTM is the memory cell and the gates (including the forget gate, but also the input gate). The contents of the memory cell are modulated by the input gates and forget gates.

Normal Feed Forward vs LSTM

Input Values Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer Output Values

Common use for LSTM

- Generating sentences (e.g., characterlevel language models)
- Classifying time-series
- Speech recognition
- Handwriting recognition
- Polyphonic music modeling

LSTM Unit as variant of a neuro National University of Singapore

Image credit: Deep Learning book

Generative Adversarial Networks

- GANs have been shown to be quite adept at synthesizing novel new images based on other training images.
- Can be extended to model other domains such as :
 - Sound
 - Video
 - Generating images from text descriptions

Generative Adversarial Networks

 uses unsupervised learning to train two models in parallel.

National University of Singapore

Generative Adversarial Networks

- Create a constant battle between the two network
- Generator try to fool the discriminator
- Discriminator try not to be fooled

- When modeling images, the discriminator network is typically a standard CNN
- The generative network in GANs generates data (or images) with a special kind of layer called a deconvolutional layer

GAN example

- DeepFake
 - https://www.youtube.com/watch?v=T76bK2t2 <u>r8g</u>

Style Transfer

Summary

- We have discussed
 - Transfer Learning
 - Convolutional Neural Network (CNN)
 - Recurrent Neural Network (RNN)
 - Generative Adversarial Network (GAN)
- These represent some of the exciting innovation in neural network and deep learning.
- There are a lot of opportunity for creative applications of these techniques.