

Introduction

- UniAD is a unified framework for autonomous driving that integrates perception, prediction, and planning tasks into a single end-to-end system.
- Unlike traditional modular approaches,
 UniAD adopts a planning-oriented
 philosophy, ensuring that all preceding tasks
 contribute directly to safe and efficient
 driving decisions.
- The framework uses query-based interfaces to connect modules, enabling flexible feature sharing and robust task coordination

Background

- Traditional autonomous driving systems often rely on standalone models for individual tasks or multi-task learning paradigms with separate heads, which can lead to cascading errors and poor task coordination.
- End-to-end approaches have emerged to unify perception, prediction, and planning but often lack interpretability and robustness in dynamic urban environments.
- UniAD addresses these challenges by explicitly modeling intermediate representations (e.g., occupancy maps, agent trajectories) and optimizing the system for planning as the ultimate goal.

Design	A mmanach]	Perceptio	n	Predic	Diam	
	Approach	Det.	Track	Map	Motion	Occ.	Plan
	NMP [101]	/			/		1
(b)	NEAT [19]			1			1
	BEVerse [105]	1		✓		✓	
(c.1)	[14, 16, 78, 97]						1
	PnPNet [†] [57]	1	1		/		8
	ViP3D [†] [30]	1	1		1		
(- O)	P3 [82]					/	1
(c.2)	MP3 [11]			1	,	1	1
	ST-P3 [38]			1		1	1
	LAV [15]	1		✓	1		1
(c.3)	UniAD (ours)	1	1	/	1	1	1

Model Architecture

Motionformer

• **Structure**: MotionFormer consists of N stacked transformer layers for agent-agent, agent-map, and agent-goal interactions.

Modules:

- Agent-agent and agent-map interactions use standard transformer decoder layers.
- Agent-goal interaction is based on the deformable cross-attention module.
- Inputs:
- ITs: Scene-level anchor endpoint.
- ITa: Clustered agent-level anchor endpoint.
- x^0 0: Current position of the agent.
- x^Tl-1 : Predicted goal point from the previous layer.
- Qctxl-1: Query context from the preceding layer.

OccFormer

 Structure: OccFormer comprises To sequential blocks, where each block predicts the occupancy for a specific frame within the temporal horizon.

• Features Incorporated:

 Dense Scene Features: Encoded from BEV representations for global scene understanding.

Sparse Agent Features: Derived from track query
 (QA), agent position (PA), and motion query (QX) to
 inject agent-level knowledge.

• Instance-Level Occupancy:

Generated via matrix multiplication between Q_x agent-level features and decoded dense features at the end of each block (O^At)

Planner

• Inputs:

- QegoA: Ego-vehicle query from the tracking module.
- Qegoctx: Ego-vehicle query from the motion forecasting module.
- High-level command embeddings indicating navigation directions (e.g., turn left, go straight).

Processing:

- Queries are encoded via MLP layers and aggregated using max-pooling to select salient modal features.
- BEV feature interaction is performed using stacked transformer decoder layers (N layers).

• Output:

• Predicts future waypoints (τ^{\wedge}) for ego-vehicle planning while optimizing trajectories to avoid collisions based on predicted occupancy maps (O^).

Loss Function

$$L_1 = L_{\text{track}} + L_{\text{map}}$$
.

$$L_2 = L_{\text{track}} + L_{\text{map}} + L_{\text{motion}} + L_{\text{occ}} + L_{\text{plan}}.$$

Stage One Loss Function

Combines tracking loss (Hungarian loss with Focal and L1 components) and mapping loss (Focal, L1, GloU, and Dice losses) to pre-train perception tasks:

Stage Two Loss Function

Integrates all task-specific losses (tracking, mapping, motion forecasting, occupancy prediction, and planning) for end-to-end training

Qualitative Results

- Task Results: Predictions from motion and occupancy modules are consistent, visualized in surround-view images and BEV.
- **Ego-Vehicle Behavior:** Ego vehicle yields to a front black car, demonstrating safe decision-making.
- Agent Representation: Each agent is illustrated with a unique color for clarity.
- Trajectory Visualization:
 - Image View: Displays top-1 trajectory from motion forecasting.
 - BEV View: Shows top-3 trajectories for better spatial understanding.

Quantitative Results

Method	AMOTA↑	AMOTP↓	Recall [†]	IDS↓
Immortal Tracker [†] [93]	0.378	1.119	0.478	936
ViP3D [30]	0.217	1.625	0.363	-
QD3DT [36]	0.242	1.518	0.399	-
MUTR3D [104]	0.294	1.498	0.427	3822
UniAD	0.359	1.320	0.467	906

Method	Lanes†	Drivable [†]	Divider↑	Crossing [↑]
VPN [72]	18.0	76.0		-
LSS [76]	18.3	73.9	-	-
BEVFormer [55]	23.9	77.5	-	-
BEVerse [†] [105]	-	-	30.6	17.2
UniAD	31.3	69.1	25.7	13.8

Multi-object tracking

- UniAD Performance: Outperforms previous end-to-end MOT techniques with image inputs on all metrics.
- Comparison Note: Tracking-by-detection methods with post-association are implemented using BEVFormer for fair evaluation.

Online mapping

- Performance: UniAD achieves competitive results against state-of-the-art perception-oriented methods with comprehensive road semantics.
- **Segmentation Metric:** Reports segmentation IoU (%) for lanes, drivable areas, dividers, and crossings.
- Comparison Note: Methods are implemented with BEVFormer for fair evaluation

Quantitative Results

Method	$minADE(m)\downarrow$	$minFDE(m)\!\!\downarrow$	$MR\!\!\downarrow$	EPA†
PnPNet [†] [57]	1.15	1.95	0.226	0.222
ViP3D [30]	2.05	2.84	0.246	0.226
Constant Pos.	5.80	10.27	0.347	(-)
Constant Vel.	2.13	4.01	0.318	-
UniAD	0.71	1.02	0.151	0.456

Motion forecasting.

- Performance: UniAD significantly outperforms prior vision-based end-to-end methods across all metrics.
- Comparative Settings: Evaluated with two vehicle modeling settings—constant positions and constant velocities.
- Reimplementation: Prior methods reimplemented with BEVFormer for fair comparisons.

Method	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑
FIERY [35]	59.4	36.7	50.2	29.9
StretchBEV [1]	55.5	37.1	46.0	29.0
ST-P3 [38]	-	38.9	-	32.1
BEVerse [†] [105]	61.4	40.9	54.3	36.1
UniAD	63.4	40.2	54.7	33.5

Occupancy prediction

- Improvement in Nearby Areas: UniAD achieves significant gains in near evaluation ranges (30×30m), critical for planning accuracy.
- **Evaluation Ranges:** Results are reported for "n." (near) and "f." (far, 50×50m) evaluation ranges.
- Training Note: Models trained with heavy augmentations yield improved occupancy prediction metrics.

Quantitative Results

Method		L2($m)\downarrow$	Col. Rate(%)↓						
Method	1s	2s	3s	Avg.	1s	2s	3s	Avg.		
NMP [†] [101]	-	-	2.31	-	-	-	1.92	-		
SA-NMP [†] [101]	-	-	2.05	-	-	-	1.59	-		
FF [†] [37]	0.55	1.20	2.54	1.43	0.06	0.17	1.07	0.43		
EO [†] [47]	0.67	1.36	2.78	1.60	0.04	0.09	0.88	0.33		
ST-P3 [38]	1.33	2.11	2.90	2.11	0.23	0.62	1.27	0.71		
UniAD	0.48	0.96	1.65	1.03	0.05	0.17	0.71	0.31		

Planning

- **Performance:** UniAD achieves the lowest L2 error and collision rate across all time intervals.
- Comparison: Outperforms LiDAR-based methods in most cases, demonstrating superior safety.
- Validation: Results verify the effectiveness of integrating motion and occupancy prediction for safe planning.

Ablation Study

ID	Scene-1. Anch.	Goal Inter.	Ego Q	NLO.			*	minFDE -mAP*	ID	Cross. Attn.	Attn. Mask	Mask Feat.	IoU-n.↑	IoU-f.↑	VPQ-n.↑	VPQ-f.↑	ID	BEV Att.	Col. Loss	Occ. Optim.	1s	L2↓ 2s	3s	1s	ol. Rate $2s$	e↓ 3s
1	,				0.844	1.336	0.177	0.246	1				61.2	39.7	51.5	31.8	1	()		- /	0.44	0.99	1.71	0.56	0.88	1.64
3	/	/			0.768 0.755	1.159 1.130	0.164 0.168	0.267 0.264	2	1			61.3	39.4	51.0	31.8	2	1			0.44	1.04		0.35		
4	/	/	/		0.747	1.096	0.156	0.266	3	/	✓		62.3	39.7	52.4	32.5	3	1	1		0.44	1.02	1.76	0.30	0.51	1.39
5	/	/	/	/	0.710	1.004	0.146	0.273	4	1	✓	1	62.6	39.5	53.2	32.8	4	1	/	/	0.54	1.09	1.81	0.13	0.42	1.05

Ablation for designs in the **motion forecasting module**

Ablation for designs in the occupancy prediction module

Ablation for designs in the **planning module**

Strengths

- UniAD integrates perception, prediction, and planning into a unified end-to-end framework for enhanced coordination.
- Query-based design enables flexible feature sharing across tasks, improving accuracy and task interaction.
- Achieved state-of-the-art performance in motion forecasting, occupancy prediction, and safe planning metrics.
- Reduces cascading errors and enhances interpretability through explicit intermediate representations.

Cruising around urban areas

Obstacles avoidance visualization

Weakness

- High computational complexity limits deployment on resource-constrained platforms.
- Struggles with long-tail scenarios like large trailers or poorly lit environments.
- Adding more tasks may increase system complexity and training difficulty.

Applications in Embodied environment

- Urban Autonomous Driving: Real-time navigation in dense traffic, handling tasks like obstacle avoidance and pedestrian yielding.
- 2. **Simulated Driving (CARLA):** Testing UniAD's performance in diverse traffic scenarios such as intersections and roundabouts.
- Warehouse Robots: Guiding autonomous robots for dynamic obstacle avoidance and route planning in warehouses.
- 4. **Collaborative Driving:** Coordinating vehicle-to-vehicle communication for safe and efficient traffic flow.

Result

Future Scope, and Extensions:

Conclusion:

- UniAD introduces a novel planning-oriented framework that unifies perception, prediction, and planning tasks, achieving state-of-the-art performance across multiple benchmarks.
- The query-based design ensures effective task coordination and interpretability, paving the way for safer and more robust autonomous driving systems.

Future Scope:

- Optimize the framework for lightweight deployment in real-time applications.
- Extend UniAD to include additional tasks like depth estimation and behavior prediction.
- Explore vehicle-to-vehicle communication for collaborative driving scenarios.

