

Aula 5 – Decisão Racional sob Condições de Ignorância II

Teoria da Decisão - 2023.1

Lucas Thevenard

Respostas dos exercícios

T1.1 - Maximin

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

T1.1 - Maximin

	EDM1	EDM2	EDM3
Α	10*	40	35
В	10*	20	44
С	4*	52	45

T1.1 - Maximin

	EDM1	EDM2	EDM3
Α	- 10 -	40	35
В	-10 -	20	44
-C-	-4-	- 52 -	- 45 -

T1.1 - Maximin

	EDM1	EDM2	EDM3
Α	-10 -	40	35*
В	- 10 -	20*	44
-C-	-4-	- 52 -	- 45 -

T1.1 - Maximin

	EDM1	EDM2	EDM3
A **	- 10 -	40	35*
В	-10 -	20*	44
-C-	-4-	- 52 -	- 45 -

Solução (Maximin): Alternativa A

Opções

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

	EDM1	EDM2	EDM3
Α	10 - 10	52 - 40	45 - 35
В	10 - 10	52 - 20	45 - 44
С	10 - 4	52 - 52	45 - 45

Opções

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

	EDM1	EDM2	EDM3
Α	0	12	10
В	0	32	1
С	6	0	0

Opções

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

	EDM1	EDM2	EDM3
Α	0	12*	10
В	0	32*	1
С	6 *	0	0

Opções

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

Arrependimento

	EDM1	EDM2	EDM3
Α	0	12*	10
В	0	32*	1
C**	6 *	0	0

Solução (Minimax): Alternativa C

T1.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

$$V_x = aMax + (1-a)Min \mid a=0,25$$

T1.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0,25 \ V_A &= (0,25 imes 40) + (0,75 imes 10) = 17,5 \ V_B &= (0,25 imes 44) + (0,75 imes 10) = 18,5 \ V_T &= (0,25 imes 52) + (0,75 imes 4) = 16 \end{aligned}$$

T1.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	10	40	35
B**	10	20	44
С	4	52	45

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0, 25 \ V_A &= (0, 25 imes 40) + (0, 75 imes 10) = 17, 5 \ V_B &= (0, 25 imes 44) + (0, 75 imes 10) = 18, 5 \ V_T &= (0, 25 imes 52) + (0, 75 imes 4) = 16 \end{aligned}$$

Solução (Otimismo): Alternativa B

T1.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

T1.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
С	4	52	45

$$V_A = 10 + 40 + 35 = 85$$

$$V_B = 10 + 20 + 44 = 74$$

$$V_C = 4 + 52 + 45 = 101$$

T1.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	10	40	35
В	10	20	44
C**	4	52	45

$$V_A = 10 + 40 + 35 = 85$$

$$V_B = 10 + 20 + 44 = 74$$

$$V_C = 4 + 52 + 45 = 101$$

Solução (Razão Insuficiente): Alternativa C

Resultados da Tabela 1

- Maximin: Alternativa A
- Minimax: Alternativa C
- Regra do Otimismo: Alternativa B
- Postulado da Razão Insuficiente: Alternativa C

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	20	0*	30
В	60	0*	10
С	0*	20	40

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	20	-0-	30
В	60	-0-	10
С	-0-	20	40

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	20*	-0-	30
В	60	-0-	10 *
С	-0-	20*	40

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	- 20 -	-0-	30
-B-	-60 -	-0-	-10 -
С	-0-	- 20 -	40

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	- 20 -	-0-	30*
-B-	-60 -	-0-	-10 -
С	-0-	- 20 -	40*

T2.1 - Maximin

	EDM1	EDM2	EDM3
Α	- 20 -	-0-	30*
-B-	-60 -	-0-	-10 -
C**	-0-	- 20 -	40*

Solução (Maximin): Alternativa C

Opções

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

	EDM1	EDM2	EDM3
A	60 - 20	20 - 0	40 - 30
В	60 - 60	20 - 0	40 - 10
С	60 - 0	20 - 20	40 - 40

Opções

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

	EDM1	EDM2	EDM3
Α	40	20	10
В	0	20	30
С	60	0	0

Opções

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

	EDM1	EDM2	EDM3
Α	40*	20	10
В	0	20	30*
С	60*	0	0

Opções

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

Arrependimento

	EDM1	EDM2	EDM3
А	40*	20	10
B**	0	20	30*
С	60*	0	0

Solução (Minimax): Alternativa B

T2.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

$$V_x = aMax + (1-a)Min \mid a=0,7$$

T2.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0,7 \ V_A &= (0,7 imes 30) + (0,3 imes 0) = 21 \ V_B &= (0,7 imes 60) + (0,3 imes 0) = 42 \ V_C &= (0,7 imes 40) + (0,3 imes 0) = 28 \end{aligned}$$

T2.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	20	0	30
B**	60	0	10
С	0	20	40

$$egin{aligned} V_x &= aMax + (1-a)Min \mid a = 0,7 \ V_A &= (0,7 imes 30) + (0,3 imes 0) = 21 \ V_B &= (0,7 imes 60) + (0,3 imes 0) = 42 \ V_C &= (0,7 imes 40) + (0,3 imes 0) = 28 \end{aligned}$$

Solução (Regra do Otimismo): Alternativa B

T2.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

T2.4 - Postulado da Razão Insuficiente

_	EDM1	EDM2	EDM3
Α	20	0	30
В	60	0	10
С	0	20	40

$$V_A = 20 + 0 + 30 = 50$$

$$V_B = 60 + 0 + 10 = 70$$

$$V_C = 0 + 20 + 40 = 60$$

T2.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	20	0	30
B**	60	0	10
С	0	20	40

$$V_A = 20 + 0 + 30 = 50$$

$$V_B = 60 + 0 + 10 = 70$$

$$V_C = 0 + 20 + 40 = 60$$

Solução (Razão Insuficiente): Alternativa B

Resultados da Tabela 2

- Maximin: Alternativa C
- Minimax: Alternativa B
- Regra do Otimismo: Alternativa B
- Postulado da Razão Insuficiente: Alternativa B

T3.1 - Maximin

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
С	0	10	2000

T3.1 - Maximin

	EDM1	EDM2	EDM3
Α	1000	10*	30
В	60*	80	70
С	0*	10	2000

T3.1 - Maximin

	EDM1	EDM2	EDM3
Α	1000	10 *	30
B**	60*	80	70
С	0*	10	2000

Solução (Maximin): Alternativa B

Opções

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
С	0	10	2000

Arrependimento

	EDM1	EDM2	EDM3
Α	1000 - 1000	80 - 10	2000 - 30
В	1000 - 60	80 - 80	2000 - 70
С	1000 - 0	80 - 10	2000 - 2000

Opções

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
С	0	10	2000

Arrependimento

	EDM1	EDM2	EDM3
Α	0	70	1970
В	940	0	1930
С	1000	70	0

Opções

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
С	0	10	2000

Arrependimento

	EDM1	EDM2	EDM3
Α	0	70	1970 *
В	940	0	1930*
С	1000*	70	0

Opções

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
C**	0	10	2000

Arrependimento

	EDM1	EDM2	EDM3
Α	0	70	1970 *
В	940	0	1930 *
С	1000*	70	0

Solução (Minimax): Alternativa C

T3.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
С	0	10	2000

$$V_x = aMax + (1-a)Min \mid a=0,1$$

$$egin{aligned} V_A &= (0,1 imes 1000) + (0,9 imes 10) = 109 \ V_B &= (0,1 imes 80) + (0,9 imes 60) = 62 \ V_C &= (0,1 imes 2000) + (0,9 imes 0) = 200 \end{aligned}$$

T3.3 - Regra do Otimismo

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
C**	0	10	2000

$$V_x = aMax + (1-a)Min \mid a=0,1$$

$$egin{aligned} V_A &= (0,1 imes 1000) + (0,9 imes 10) = 109 \ V_B &= (0,1 imes 80) + (0,9 imes 60) = 62 \ V_C &= (0,1 imes 2000) + (0,9 imes 0) = 200 \end{aligned}$$

Solução (Regra do Otimismo): Alternativa C

T3.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
С	0	10	2000

T3.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
С	0	10	2000

$$V_A = 1000 + 10 + 30 = 1040$$

$$V_B = 60 + 80 + 70 = 210$$

$$V_C = 0 + 10 + 2000 = 2010$$

T3.4 - Postulado da Razão Insuficiente

	EDM1	EDM2	EDM3
Α	1000	10	30
В	60	80	70
C**	0	10	2000

$$V_A = 1000 + 10 + 30 = 1040$$

$$V_B = 60 + 80 + 70 = 210$$

$$V_C = 0 + 10 + 2000 = 2010$$

Solução (Razão Insuficiente): Alternativa C

Resultados da Tabela 3

- Maximin: Alternativa B
- Minimax: Alternativa C
- Regra do Otimismo: Alternativa C
- Postulado da Razão Insuficiente: Alternativa C

Exercício 2: Há alguma diferença entre os métodos de solução?

	EDM1	EDM2	EDM3
Α	1	2	4
В	2	4	8
С	4	8	16

- Não, pois $C \succ B \succ A$.
- A alternativa A é estritamente dominada pela alternativa B, que, por sua vez, é estritamente dominada pela alternativa C. Logo, qualquer método irá escolher a alternativa C.

Exercício 2: Há alguma diferença entre os métodos de solução?

	EDM1	EDM2	EDM3
- A -	-1-	-2-	-4-
-B-	-2-	-4-	-8-
C**	4	8	16

Solução (Todos os métodos): Alternativa C

Roteiro da aula

- Critérios de racionalidade e decisões coletivas
- Decisão sob ignorância na Teoria da Justiça de Rawls

1. Critérios de racionalidade e decisões coletivas

Ordenação de preferências

- Completude: para quaisquer opções A e B, ao menos uma das seguintes opções deve valer: $A \succsim B$, ou $A \preceq B$.
- Reflexividade: indivíduos são indiferentes a opções idênticas, ou seja, qualquer opção A é tão boa quanto ela mesma, portanto: $A\sim A$.
- Transitividade: as opções devem poder ser ordenadas de forma não circular, obedecendo à regra da transitividade: $A \succsim B \succsim C \implies A \succsim C$.

Decisões coletivas (votação)

- Problema da agregação de preferências
- Paradoxo de Condorcet
 - Indivíduo 1: $A \succ B \succ C$
 - \circ Indivíduo 2: $B \succ C \succ A$
 - Indivíduo 3: $C \succ A \succ B$
- Resultado da votação: $A \succ B \succ C \succ A$ (viola a transitividade)
 - Teorema de Arrow: processos de votação ordinais não conseguem garantir a preservação de um grupo de propriedades desejáveis.

Condições desejáveis em sistemas de votação (Arrow)

- Sistema não-ditatorial: preferências de múltiplos indivíduos devem ser consideradas.
- **Domínio irrestrito (universalidade)**: o sistema deve produzir um único conjunto completo de ordenação de todas as preferências dos indivíduos.
 - Todas as preferências devem ser consideradas,
 - Conjuntos de preferências idênticas devem produzir a mesma ordenação.
- Independência de alternativas irrelevantes: a ordenação de pares de alternativas deve depender apenas da ordenação das duas alternativas envolvidas.

Condições desejáveis em sistemas de votação (Arrow)

- Monotonicidade (associação positiva): cada indivíduo não deve ser capaz de prejudicar uma alternativa por avaliá-la melhor.
- Não-imposição (soberania cidadã): todas as formas de ordenação devem ser potencialmente possíveis.
- Eficiência de pareto (unanimidade): se todos preferem uma opção a outra, o resultado social deve refletir essa preferência.

Condições desejáveis em sistemas de votação (Arrow)

- Sistema não-ditatorial
- Domínio irrestrito (universalidade)
- Independência de alternativas irrelevantes
- Monotonicidade (associação positiva)
- Não-imposição (soberania cidadã)
- Eficiência de pareto (unanimidade)

Mas o que isso significa?

2. Decisão sob ignorância na Teoria da Justiça de Rawls

Leitura do trecho de Teoria da Justiça

Teoria da Justiça de Rawls

- Posição original e véu da ignorância: Decisão sob condição de ignorância.
- Por que adotar o método Maximin?
 - Ignorância radical: Impossibilidade de atribuir probabilidades, de estabelecer valorações cardinais ou mesmo de considerar todos os Estados do Mundo.
 - Indivíduos devem justificar suas opções e preferem garantir um mínimo necessário.
 - Seria irracional assumir riscos intoleráveis.
- **Princípio da diferença**: avaliação das instituições com base em seus efeitos sobre os indivíduos menos favorecidos pela distribuição social.

Harsanyi

- Refutação do método Maximin: Decisões morais não deveriam ser tomadas com base nos piores cenários possíveis, mas sim com base na utilidade esperada das alternativas disponíveis.
 - Exemplo: decisão entre um emprego ruim em Nova lorque ou um emprego melhor em Chicago.
- Implicações imorais do Princípio da Diferença em certos casos.
 - Exemplo: Doação de órgãos deve privilegiar os mais enfermos?
- Probabilidades subjetivas (bayesianas) X Probabilidades empíricas (frequentismo).

HARSANYI, John. Can the Maximin Principle Serve as a Basis for Morality? A Critique of John Rawls's Theory. The American Political Science Review, Vol. 69, No. 2 (Jun., 1975), pp. 594-606.

Outras críticas?

- Decorrências da ignorância radical não são completamente exploradas por Ralws.
- É possível evitar riscos intolerfáveis?
 - o Dilema das vítimas invisíveis (Jean Tirole).
- É possível avaliar as consequências? Nossas preferências seriam estáticas?
 - Forma de neo-kantianismo? A Teoria da Justiça pode se apartar de um contexto histórico-cultural?
 - Perspectiva do estruturalismo histórico (Foucault): relações de poder situadas historicamente moldam nossa forma de conceber a realidade, influenciando nossas ideias e preferências.

L.A. Paul

- Professora de filosofia e ciência cognitiva em Yale.
- Escreveu o livro "Transformative
 Experience" (2014) e o paper "What
 you can't expect when you're
 expecting" (2015).

