MPSI 2

Programme des colles de mathématiques.

Semaine 15: du lundi 7 février au vendredi 11.

Liste des questions de cours

- $\mathbf{1}^{\circ}$) Montrer que la solution générale d'une équation différentielle linéaire d'ordre 1 s'obtient en ajoutant une solution particulière à la solution générale de l'équation sans second membre.
- 2°) Quelles sont les solutions de l'équation (H): y'=a(t)y? Justifiez.
- 3°) Présenter la méthode de variation de la constante.
- $\mathbf{4}^{\circ}) \;$ Résoudre $(E) \; : \; y'-ty=2te^{\frac{t^2}{2}}.$
- ${\bf 5}^{\circ}$) Résolution de (E): y"=a(x)y'+b(x)y+c(x) lorsque l'on dispose d'une solution particulière de l'équation sans second membre qui ne s'annule pas.
- 6°) Etablir les formules donnant les solutions de (H): y"+ay'+by=0, où a et b sont des constantes.
- 7°) Enoncer et démontrer le théorème indiquant la forme d'une solution particulière de
- $(E): y" + ay' + by = e^{\lambda x}P(x)$, où a et b sont des constantes, où $\lambda \in \mathbb{K}$ et où P est une application polynomiale.
- **8**°) Résoudre (E): y" 2y' + y = cht.
- 9°) Résoudre (E) : $y'' + 2y' + 2y = 2e^{-t}\cos t$.

Thèmes de la semaine

1 La structure d'espace vectoriel en révisions

2 Équations différentielles linéaires

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .

2.1 Équations différentielles linéaires d'ordre 1

On s'intéresse aux équations différentielles (E): y' = a(t)y + b(t) et (H): y' = a(t)y en l'inconnue y, où I est un intervalle, et où a et b sont deux applications continues de I dans \mathbb{K} . (H) est l'équation homogène (ou bien l'équation sans second membre, ESSM) associée à (E).

Problème de Cauchy relatif à (E) et à une condition initiale de la forme $y(t_0) = y_0$.

La solution générale de (E) s'obtient en ajoutant une solution particulière de (E) à la solution générale de (H).

Principe de superposition des solutions.

Solutions de l'équation (H).

Méthode de variation de la constante. Existence et unicité au problème de Cauchy.

2.2 Équations différentielles linéaires d'ordre 2

2.2.1 Équations à coefficients quelconques

Une équation différentielle linéaire d'ordre 2 est de la forme (E) : y'' = a(x)y' + b(x)y + c(x) où a, b, c sont trois applications continues d'un intervalle I dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} . L'équation homogène associée est (H) : y'' = a(x)y' + b(x)y.

$$S_E = \{y_0 + y/y \in S_H\} = y_0 + S_H.$$

Principe de superposition des solutions.

Problème de Cauchy relatif à (E) et à des conditions initiales de la forme $y(x_0) = y_0$ et $y'(x_0) = y'_0$.

Théorème de Cauchy-Lipschitz. Pour tout $(x_0, y_0, y_0') \in I \times \mathbb{K} \times \mathbb{K}$, il y a existence et unicité au problème de Cauchy relatif à (E) et au triplet (x_0, y_0, y_0') .

Résolution de (E) lorsque l'on dispose d'une solution particulière de (H) qui ne s'annule pas.

Exemples de raccordements de solutions.

2.2.2 Equations linéaires d'ordre 2 à coefficients constants

Ici, (E): y" + ay' + by = f(x), où $f: I \longrightarrow \mathbb{K}$ est continue, et où a et b sont des constantes. L'équation homogène associée est (H): y" + ay' + by = 0.

Solutions de (H) en fonction des racines du polynôme caractéristique $\chi = X^2 + aX + b$.

Solution particulière de (E), lorsque $f(x) = e^{\lambda x} P(x)$, où $\lambda \in \mathbb{K}$ et où P est un polynôme.

2.3 Equations à variables séparables (hors programme)

$$a(t) - b(y)y' = 0 \iff \frac{d(A(t) - B(y(t)))}{dt} = 0$$
, où A et B sont des primitives de a et de b .

Plus généralement, $a(t)c(y) - b(y)d(t)y' = 0 \iff \frac{a(t)}{d(t)} - y'\frac{b(y)}{c(y)} = 0$, mais il faut gérer les problèmes de "division par 0".

Prévisions pour la semaine prochaine :

Normes et suites de vecteurs.