Biomecatrónica

Lugar geométrico de las raíces

¿Qué es un lugar geométrico?

Circunferencia

Es el lugar geométrico de los puntos en el plano que están a una distancia constante (radio) de un punto fijo llamado centro

Elipse

Es el lugar geométrico de los puntos en el plano cuya suma de distancias a dos puntos fijos, llamados focos, es constante

Parábola

Es el lugar geométrico de los puntos equidistantes de un punto fijo, llamado foco, y una línea recta fija, llamada directriz

Lugar geométrico

Conjunto de puntos que cumplen una propiedad o condición geométrica específica

El problema del sistema de control

Representación vectorial de complejos

¿Y con una función de transferencia?

Partiendo de la representación zpk de la función de transferencia, se pueden trazar m+n vectores que parten desde sus raíces hasta un punto en el plano

$$F(s) = \frac{\prod_{i=1}^{m} (s + z_i)}{\prod_{j=1}^{n} (s + p_j)}$$

$$M = \frac{\prod_{i=1}^{m} |(s+z_i)|}{\prod_{i=1}^{n} |(s+p_i)|} \qquad \theta = \sum_{i=1}^{m} \angle (s+z_i) - \sum_{j=1}^{n} \angle (s+p_j)$$

Medición de ángulos

$$G(s)H(s) = \frac{K(s+z_1)}{(s+p_1)(s+p_2)(s+p_3)(s+p_4)}$$

Ejemplo 1

Evalúe la siguiente función de transferencia en s = -3 + j4

$$F(s) = \frac{(s+1)}{s(s+2)}$$

Definición del lugar de raíces

Representación de las trayectorias de los polos de G(s) en lazo cerrado a medida que varía la ganancia K

Formulación matemática del LGR

s es un polo de lazo cerrado si cumple

$$KG(s)H(s) = -1$$

Esto quiere decir que

$$|KG(s)H(s)| = 1$$
 $\angle KG(s)H(s) = (2k+1)180^{\circ}$

Ejemplo 2

Evalúe si $s_1=-2+j3$ y $s_2=-2+j\sqrt{2}/2$ se encuentran sobre el LGR del sistema de la figura. En caso afirmativo, encuentre el valor de ganancia respectivo

Construcción del LGR

Construir exactamente el LGR es un proceso tedioso y que se realiza de manera más exacta usando MATLAB

Pero, se puede llegar a una aproximación mediante la aplicación de algunas reglas

Regla 1: Número de ramas

El número de ramas del lugar de las raíces es igual al número de polos en lazo abierto

Regla 2: Simetría

El lugar de raíces es simétrico respecto al eje real

Regla 3: Segmentos sobre el eje real

En el eje real, para K>0 el lugar geométrico de las raíces existe a la izquierda de un número impar de raíces finitas en lazo abierto sobre el eje real

Regla 4: Puntos de partida y llegada

El lugar de las raíces comienza en los polos finitos en lazo abierto de de G(s)H(s) y termina en los ceros finitos e infinitos de G(s)H(s)

Regla 5: Comportamiento en infinito

El lugar de las raíces se acerca a asíntotas rectas cuando el lugar geométrico se acerca al infinito

Además, la ecuación de las asíntotas viene dada por la intersección del eje real (σ_a) y el ángulo (θ_a) de la siguiente manera

$$\sigma_a = \frac{\sum \text{ polos finitos } - \sum \text{ ceros finitos}}{\text{\# polos finitos } - \text{\# ceros finitos}}$$

$$\theta_a = \frac{180^{\circ}(2k+1)}{\text{\# polos finitos } - \text{\# ceros finitos}}$$

$$k = 0, 1, 2, ...$$

Regla 6: Puntos de ruptura

El lugar de las raíces se separara (o regresará) del eje real a medida que los polos del sistema se desplazan desde el eje real al plano complejo

$$\sum_{1}^{m} \frac{1}{\sigma + z_i} = \sum_{1}^{n} \frac{1}{\sigma + p_i}$$