

Corso di

Fondamenti d'Automatica

Prof. Giovanni Ulivi

Dipartimento di Informatica ed Automazione

Via Vasca Navale 79, Roma

e-mail: ulivi@dia.uniroma3.it

Controllo Automatico

Definire le strategie (leggi di controllo) affinchè un sistema (processo industriale, macchina, allevamento, ...) svolga i suoi compiti con ridotto o nullo intervento umano.

Dotare il sistema di capacità decisionale (intelligenza?).

Importanza delle tecnologie di calcolo automatico

Sistema: insieme complesso e organizzato di componenti legati da relazioni di causa e effetto

Cosa é l'Automatica

Analisi e Controllo dei Sistemi Dinamici

Modellazione

- Ottenere una rappresentazione matematica basata sulla fisica del sistema Σ da controllare (analiticamente o sperimentalmente)
- Studio delle soluzioni (comportamento di Σ)
 - Analitiche (in forma chiusa)
 - Computazionali (simulazioni)
- Modifica, Controllo
 - Ricerca di metodi per controllare senza intervento umano il comportamento del sistema Σ

Il sistema da controllare è spesso detto Processo (processo industriale, qcosa che evolve in modo regolare)

Decomposizione Gerarchica di un Sistema

Decomposizione Strutturale di un Sistema

Esprime quelle relazioni di causa-effetto a noi necessarie per capire il funzionamento del sistema e per poter intervenire su di esso!

Controllo manuale della velocità

Controllo manuale del livello

- Riempire un secchio di acqua è un'operazione che richiede l'intervento di:
 - Un sistema di misura
 - Un sistema di controllo
 - Un sistema di attuazione

Controllo automatico del livello

Controllo di temperatura

La controreazione (feedback)

Negli schemi di controllo visti sino ad ora si evidenzia la presenza di un LOOP

Regolatore di Watt

•Governor (1787)

L'applicazione di questo congegno alla macchina a vapore (1765) riveste una grande importanza nella storia della tecnica perchè esso fu il capostipite di una numerosissima famiglia di apparecchi automatici di controllo, tutti indispensabili per il corretto funzionamento degli impianti.

Il "governor" faceva accelerare la macchina se rallentava per il troppo carico o la faceva rallentare dopo una accelerazione dovuta a diminuzione di carico.

Governor per Mulino a vento

- Automatismo in un mulino a vento di epoca precedente quella di Watt.
- Questo ingegnoso
 meccanismo regolava in
 modo automatico la
 distanza tra le due macine,
 distanza che tendeva a
 cambiare in seguito ad
 ogni variazione di velocità
 del mulino.

Il mugnaio doveva fare la regolazione manualmente, per mezzo di una leva.

Regolatore di Watt

Più veloce gira l'asse,

più le masse sono spinte dalla forza centrifuga,

più la valvola si chiude.

Come scegliere i parametri (M, rapp. di trasm.)? Occorre un modello dinamico matematico.

Tecnologie di implementazione

Tecnologie

Meccanica (<1940)

- + elettronica analogica
- + calcolatori (>1965)
- + microprocessori

Le tecnologie si sono stratificate

Fase:

Preistoria (regolatore di Watt)

Controllo classico Funz. di trasferimento (dominio di s e ω)

Controllo moderno Var. di stato (algebra lineare)

Controllo embedded, distribuito, PLC

Controllo di Posizione

- · Finché i due angoli sono diversi,
 - l'amplificatore ha tensione di ingresso ≠ 0,
 - il motore ruota,
 - e la differenza tra gli angoli si riduce.
- · Quando gli angoli sono uguali
 - L'errore è nullo
 - Il motore si ferma

Simboli

Amplificatore differenziale

Motore:

converte en. elettrica in en. meccanica e viceversa

avvolgimento
di eccitazione
(oppure magnete
permanente)

Motore in c.c.

Blocchi strutturali: rel. causa - effetto

intuitivi

Ingressi: li possiamo imporre (es.posizione acceleratore, tensione su un motore, angolo del timone)

Disturbi: agiscono indipendentemente (es. vento, coppia resistente, corrente in mare)

Uscite: ciò che ci interessa (es. velocità, angolo asse del motore, angolo di rotta)

Misure: grandezze derivate da alcune di quelle del sistema (es. posizione ago del tachimetro, lettura goniometro, lettura bussola)

Parametri: le "costanti" che appaiono nel modello del sistema (es. massa della moto, inerzia del motore, carico della nave)

Blocchi Strutturali

Controllo di posizione dell'asse di un motore

Strutture di controllo "a catena aperta"

Controllo a catena aperta

E' piuttosto <u>pianificazione</u> e non controllo

Strutture "a catena chiusa"

Controllo a catena chiusa

Controllo a catena chiusa con feed-forward

Obiettivi del Controllo

STABILITA'

Ingressi e disturbi limitati producono effetti limitati

Inoltre

- L'uscita segue gli andamenti desiderati, con date tolleranze in condizioni ideali.
- La risposta è veloce.
- Rumori di diverse provenienze sono filtrati.
- Incertezze sui parametri non influenzano l'uscita.
- Disturbi esterni non influenzano l'uscita.

Per ogni punto: Specifiche di Progetto

- 1. Precisione a regime (caratt. statiche)
- 2. Prontezza di risposta (Risposta armonica: banda passante, risposta al gradino, tempo di salita)
- 3. Precisione dinamica (Sovraelongazione della risposta al gradino, costanza della risposta armonica)

Argomenti del corso

Sviluppo di modelli matematici appropriati

Funzioni di trasferimento

Risposta armonica

Spazio di stato

Effetti delle interconnessioni

Analisi delle proprietà dei Sistemi

Stabilità

Comportamento a regime

Comportamento nei transitori

Sintesi dei controllori

Specifiche

sintesi a Tempo continuo

sintesi a Tempo discreto

Regolazione =

l'uscita è mantenuta costante

Asservimento =

l'uscita segue l'ingresso (tracking)

Servomeccanismo =

l'uscita è una grandezza meccanica

(posizione, velocità)

Sistemi Complessi

I sistemi a larga scala presentano spesso una struttura decomponibile in moduli (sottosistemi) interagenti fra loro.

Organizzazione spesso di tipo gerarchico a livelli

Piattaforma Motorizzata

Piattaforma motorizzata

Controllo di Robot mobile

Fabbrica Automatica

