

Introducción al Cálculo - MAT1107

Rodrigo Vargas

¹ Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Chile

²LIES Laboratorio Interdisciplinario de Estadística Social, Pontificia Universidad Católica de Chile, Chile

6 de Abril de 2022

Desplazamientos verticales de gráficas

Suponga c > 0.

- Para graficar y = f(x) + c, desplace la gráfica de y = f(x) c unidades hacia arriba.
- 2 Para graficar y = f(x) c, desplace la gráfica de y = f(x) c unidades hacia abajo.

EJEMPLO 1 Use la gráfica de $f(x) = x^2$ para trazar la gráfica de cada función

- $g(x) = x^2 + 3$,
- $h(x) = x^2 2$.

Desplazamientos horizontales de gráficas

Suponga c > 0.

- Para graficar y = f(x c), desplace la gráfica de y = f(x) c unidades a la derecha.
- 2 Para graficar y = f(x + c), desplace la gráfica de y = f(x) c unidades a la izquierda.

EJEMPLO 2 Use la gráfica de $f(x) = x^2$ para trazar la gráfica de cada función

$$g(x) = (x+4)^2$$

$$h(x) = (x-2)^2$$

EJEMPLO 3 Trace la gráfica de $f(x) = \sqrt{x-1} + 3$. Determine el dominio y el recorrido.

Alargamiento y contracción verticales de gráficas

Para graficar y = cf(x):

- Si c > 1, alargue la gráfica de y = f(x) verticalmente en un factor c.
- ② Si 0 < c < 1, contraiga la gráfica de y = f(x) verticalmente en un factor de c.

EJEMPLO 4 Use la gráfica de $f(x) = x^2$ para trazar la gráfica de cada función

$$h(x) = \frac{1}{3}x^2$$
.

Alargamiento y contracción horizontales de gráficas

Para graficar y = f(cx):

- Si c > 1, contraiga la gráfica de y = f(x) horizontalmente en un factor 1/c.
- ② Si 0 < c < 1, alargue la gráfica de y = f(x) verticalmente en un factor de 1/c.

EJEMPLO 5 Use la gráfica de y = f(x) que se muestra en la figura.

Trace la gráfica de cada función

$$y = f(2x)$$

$$y = f\left(\frac{1}{2}x\right)$$

Gráficas que se reflejan

- Para graficar y = -f(x), refleje la gráfica de y = f(x) en el eje x.
- ② Para graficar y = f(-x), refleje la gráfica de y = f(x) en el eje y.

EJEMPLO 6 Trace la gráfica de cada función

$$f(x) = -x^2$$

$$(x) = \sqrt{-x}.$$

EJEMPLO 7 Considere la función $f: [-2,4] \rightarrow [-2,2]$ dada en la siguiente gráfica.

Definimos la función $g(x) = 2 - \frac{1}{2}f(-x+3)$, determine:

- Las transformaciones apropiadas que aplicadas a f den como resultado la función g.
- 2 El dominio y recorrido de la función g.

Solución Considere las transformaciones

$$r(x) = f(-x)$$

$$h(x) = r(x - 3)$$

$$\ell(x) = \frac{1}{2}h(x)$$

$$m(x) = -\ell(x)$$

$$n(x) = m(x) + 2$$

Reflexión con respecto al eje Y

Traslación 3 unidades a la derecha.

Alargamiento vertical de factor 2

Reflexión con respecto al eje *X*Traslación 2 unidades hacia arriba.

Note que

$$n(x) = m(x) + 2 = -\ell(x) + 2 = -\frac{1}{2}h(x) + 2 = -\frac{1}{2}r(x-3) + 2$$
$$= -\frac{1}{2}f(-(x-3)) + 2 = g(x).$$

$$y = r(x) = f(-x)$$

$$y = h(x) = r(x - 3)$$

$$y = \ell(x) = \frac{1}{2}h(x)$$

$$y = n(x) = m(x) + 2 = g(x)$$

Se sigue que el dominio de g es $\left[-1,5\right]$ y el recorrido es $\left[1,3\right]$.