Ritika Kumari(A20414073)

CSP554—Big Data Technologies

Assignment #7

Exercise 1)

Step A

Use the TestDataGen program from previous assignments to generate new data files

Copy the files to HDFS.

Command Executed:

java TestDataGen

hdfs dfs -copyFromLocal foodratings53475.txt /user/maria_dev/foodratings53475.csv

hdfs dfs -copyFromLocal foodplaces53475.txt hdfs:///user/maria_dev/foodplaces53475.csv

Magic Number = 53475

Step B

Load the 'foodratings' file as a 'csv' file into a DataFrame called ex1_foodratings. When doing so specify a schema having fields of the following names and types:

Field Name	Field Type
name	String
food1	Integer
placeid	Integer

As the results of this exercise provide the magic number, the code you execute and screen shots of the following commands:

foodratings.printSchema()

foodratings.head(5)

Command Executed:

execfile('/home/maria_dev/assign_7_q1.py')

Exercise 2)

Load the 'foodplaces' file as a 'csv' file into a DataFrame called foodplaces. When doing so specify a schema having fields of the following names and types:

Field Nampee	Field Ty
placeid	integer
placename	string

As the results of this exercise provide the code you execute and screen shots of the following commands:

foodratings.printSchema()

foodratings.head(5)

Command Executed:

```
vi assign_7_q2.py
```

from pyspark.sql.types import *

struct1 = StructType().add("placeid", IntegerType(), True).add("placename", StringType(), True)

foodplaces = spark.read.schema(struct1).csv('/user/maria_dev/foodplaces53475.csv')

foodplaces.printSchema()

print foodplaces.head(5)

execfile ('/home/maria_dev/assign_7_q2.py')

```
Activities | Terminal = | mark_devgsandhow.hdg-|

mark
```

Exercise 3)

Step A

Register the DataFrames created in exercise 1 and 2 as tables called "foodratingsT" and "foodplacesT"

Step B

Use a SQL query on the table "foodratingsT" to create a new DataFrame called foodratings_ex3 holding records which meet the following condition: food2 < 25 and food4 > 40

As the results of this step provide the code you execute and screen shots of the following commands:

foodratings.printSchema()

foodratings.head(5)

Step C

Use a SQL query on the table "foodplacesT" to create a new DataFrame called foodplaces_ex3 holding records which meet the following condition: placeid > 3

As the results of this step provide the code you execute and screen shots of the following commands:

```
foodratings.printSchema()
       foodratings.head(5)
Command Executed:
vi assign_7_q3.py
from pyspark.sql.types import *
structfr = StructType(
    [
        StructField("name", StringType(), True),
        StructField("food1",IntegerType(), True),
        StructField("food2",IntegerType(), True),
        StructField("food3",IntegerType(), True),
        StructField("food4",IntegerType(), True),
        StructField("placeid",IntegerType(), True)
    1
)
structfp = StructType().add("placeid", IntegerType(), True).add("placename",StringType(), True)
foodratings = spark.read.schema(structfr).csv('/user/maria_dev/foodratings53475.csv')
foodplaces = spark.read.schema(structfp).csv('/user/maria_dev/foodplaces53475.csv')
foodratings.createOrReplaceTempView("foodratingsT")
foodplaces.createOrReplaceTempView("foodplacesT")
foodratings_ex3 = spark.sql("SELECT * FROM foodratingsT WHERE food2 < 25 AND food4 > 40")
foodratings_ex3.printSchema()
```

print foodratings_ex3.head(5)

foodplaces_ex3 = spark.sql("SELECT * FROM foodplacesT WHERE placeid > 3")

foodplaces_ex3.printSchema()

print foodplaces_ex3.head(5)

execfile ('/home/maria_dev/assign_7_q3.py')

Exercise 4)

Use an operation (not a SQL query) on the DataFrame 'foodratings' create in exercise 1 to create a new DataFrame called foodratings_ex4 that includes only those records (rows) where the 'name' field is "Mel" and food3 < 25.

As the results of this step provide the code you execute and screen shots of the following commands:

foodratings.printSchema()

foodratings.head(5)

```
Command Executed:
vi assign_7_q4.py
```

```
from pyspark.sql.types import *
struct1 = StructType(
    [
        StructField("name", StringType(), True),
        StructField("food1",IntegerType(), True),
        StructField("food2",IntegerType(), True),
        StructField("food3",IntegerType(), True),
        StructField("food4",IntegerType(), True),
        StructField("placeid",IntegerType(), True)
    ]
)
foodratings = spark.read.schema(struct1).csv('/user/maria_dev/foodratings53475.csv')
foodratings_ex4 = foodratings.filter((foodratings['name'] == "Mel") & (foodratings['food3'] < 25))
foodratings_ex4.printSchema()
print foodratings_ex4.head(5)
execfile ('/home/maria_dev/assign_7_q4.py')
```

```
Active of the SSS View Search formmal Table Help

maria_der@sandbox.hdp:-

maria_dersandbox.hdp:-

maria_dersandbox.hdp:-
```

Exercise 5)

Use an operation (not a SQL query) on the DataFrame 'foodratings' create in exercise 1 to create a new DataFrame called foodratings_ex5 that includes only the columns (fields) 'name' and 'placeid'

As the results of this step provide the code you execute and screen shots of the following commands:

```
foodratings.printSchema()
foodratings.head(5)

Command Executed:
vi assign_7_q5.py
from pyspark.sql.types import *
struct1 = StructType(

[
StructField("name", StringType(), True),
StructField("food1",IntegerType(), True),
```

```
StructField("food2",IntegerType(), True),

StructField("food3",IntegerType(), True),

StructField("food4",IntegerType(), True),

StructField("placeid",IntegerType(), True)

]

)

foodratings = spark.read.schema(struct1).csv('/user/maria_dev/foodratings53475.csv')

foodratings_ex5 = foodratings.select(foodratings['name'],foodratings['placeid'])

foodratings_ex5.printSchema()

print foodratings_ex5.head(5)

execfile ('/home/maria_dev/assign_7_q5.py')
```

```
Exercise 6)
```

Use an operation on the DataFrame 'to create a new DataFrame called ex6 which is the inner join, on placeid, of the DataFrames 'foodratings; and 'foodplaces' created in exercises 1 and 2

As the results of this step provide the code you execute and screen shots of the following commands:

```
ex6.printSchema()
       ex6.head(5)
Command Executed:
vi assign_7_q6.py
from pyspark.sql.types import *
structfr = StructType(
    [
        StructField("name", StringType(), True),
        StructField("food1",IntegerType(), True),
        StructField("food2",IntegerType(), True),
        StructField("food3",IntegerType(), True),
        StructField("food4",IntegerType(), True),
        StructField("placeid",IntegerType(), True)
    1
)
structfp = StructType().add("placeid", IntegerType(), True).add("placename", StringType(), True)
foodratings = spark.read.schema(structfr).csv('/user/maria_dev/foodratings53475.csv')
foodplaces = spark.read.schema(structfp).csv('/user/maria_dev/foodplaces53475.csv')
```

ex6 = foodratings.join(foodplaces, foodratings.placeid == foodplaces.placeid, 'inner')

ex6.printSchema()

print ex6.head(5)

execfile ('/home/maria_dev/assign_7_q6.py')

