A Study of T-Avoiding Elements in Coxeter Groups

Taryn Laird

Northern Arizona University
Department of Mathematics and Statistics

NAU Thesis Defense April 29, 2016

Coxeter Systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle$$

where $m(s,t) \ge 2$ for all $s \ne t$.

Coxeter Systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle$$

where $m(s,t) \ge 2$ for all $s \ne t$.

Comment

Since s and t are involutions, the relation $(st)^{m(s,t)} = e$ can be rewritten as

$$m(s,t) = 2 \implies st = ts$$
 commutations

Coxeter Systems

Definition

A Coxeter system consists of a group W (called a Coxeter group) generated by a set S of involutions with presentation

$$W = \langle S \mid s^2 = e, (st)^{m(s,t)} = e \rangle$$

where $m(s,t) \ge 2$ for all $s \ne t$.

Comment

Since s and t are involutions, the relation $(st)^{m(s,t)} = e$ can be rewritten as

$$m(s,t) = 2 \implies st = ts$$
 } commutations $m(s,t) = 3 \implies sts = tst$ $m(s,t) = 4 \implies stst = tsts$ } braid relations

Coxeter Graphs

Definition

We can encode (W, S) with a unique Coxeter graph Γ having:

- vertex set *S*:
- edges $\{s, t\}$ labeled m(s, t) whenever $m(s, t) \ge 3$;

Coxeter Graphs

Definition

We can encode (W, S) with a unique Coxeter graph Γ having:

- vertex set *S*:
- edges $\{s,t\}$ labeled m(s,t) whenever $m(s,t) \ge 3$;

Comments

- if m(s, t) = 3, we omit label.
- If s and t are not connected in Γ, then s and t commute.
- Given Γ , we can uniquely reconstruct the corresponding (W, S).

Coxeter groups of type A

Coxeter groups of type A_n ($n \ge 1$) are defined by:

$$s_1$$
 s_2 s_3 s_{n-1} s_n

Coxeter groups of type *A*

Coxeter groups of type A_n ($n \ge 1$) are defined by:

$$s_1$$
 s_2 s_3 s_{n-1} s_n

Then $W(A_n)$ is generated by $\{s_1, s_2, \dots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = 1$ for all *i*,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1.

Coxeter groups of type A

Coxeter groups of type A_n ($n \ge 1$) are defined by:

$$s_1$$
 s_2 s_3 s_{n-1} s_n

Then $W(A_n)$ is generated by $\{s_1, s_2, \dots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = 1$ for all *i*,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1.

 $W(A_n)$ is isomorphic to the symmetric group, Sym_{n+1} , under the correspondence

$$s_i \mapsto (i, i+1),$$

where (i, i+1) is the adjacent transposition exchanging i and i+1.

Coxeter groups of type B

Coxeter groups of type B_n ($n \ge 2$) are defined by:

Coxeter groups of type B

Coxeter groups of type B_n ($n \ge 2$) are defined by:

Then $W(B_n)$ is generated by $\{s_1, s_2, \dots, s_{n-1}\}$ and is subject to defining relations

- 1. $s_i^2 = 1$ for all *i*,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and $1 < i, j \le n$,
- 4. $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$.

Coxeter groups of type B

Coxeter groups of type B_n ($n \ge 2$) are defined by:

Then $W(B_n)$ is generated by $\{s_1, s_2, \dots, s_{n-1}\}$ and is subject to defining relations

- 1. $s_i^2 = 1$ for all *i*,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and $1 < i, j \le n$,
- 4. $s_0 s_1 s_0 s_1 = s_1 s_0 s_1 s_0$.

 $W(B_n)$ is a finite group of order $n!2^n$ (wreath product of \mathbb{Z}_2 and the symmetric group).

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Here, we see that $W(\widetilde{C}_n)$ is generated by $\{s_0, \dots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = 1$ for all *i*,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and 1 < i, j < n + 1,
- 4. $s_i s_j s_i s_j = s_j s_i s_j s_i$ if $\{i, j\} = \{0, 1\}$ or $\{n 1, n\}$.

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Here, we see that $W(\widetilde{C}_n)$ is generated by $\{s_0, \dots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = 1$ for all *i*,
- 2. $s_i s_j = s_j s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and 1 < i, j < n + 1,
- 4. $s_i s_j s_i s_j = s_j s_i s_j s_i$ if $\{i, j\} = \{0, 1\}$ or $\{n 1, n\}$.

 $W(\widetilde{C}_n)$ is an infinite group.

Coxeter groups of type \widetilde{C}_n $(n \ge 2)$ are defined by:

Here, we see that $W(\widetilde{C}_n)$ is generated by $\{s_0, \dots, s_n\}$ and is subject to defining relations

- 1. $s_i^2 = 1$ for all *i*,
- 2. $s_i s_i = s_i s_i$ if |i j| > 1,
- 3. $s_i s_j s_i = s_j s_i s_j$ if |i j| = 1 and 1 < i, j < n + 1,
- 4. $s_i s_j s_i s_j = s_j s_i s_j s_i$ if $\{i, j\} = \{0, 1\}$ or $\{n 1, n\}$.

 $W(\widetilde{C}_n)$ is an infinite group.

Comment

We can obtain $W(A_n)$ and $W(B_n)$ from $W(C_n)$ by removing the appropriate generators and corresponding relations. In fact, we can obtain $W(B_n)$ in two ways.

Reduced expressions

Definition

A word $s_{x_1}s_{x_2}\cdots s_{x_m}\in S^*$ is called an expression for $w\in W$ if it is equal to w when considered as a group element.

Reduced expressions

Definition

A word $s_{x_1}s_{x_2}\cdots s_{x_m}\in S^*$ is called an expression for $w\in W$ if it is equal to w when considered as a group element.

If m is minimal, it is a reduced expression, and the length of w is $\ell(w) := m$.

Reduced expressions

Definition

A word $s_{x_1}s_{x_2}\cdots s_{x_m}\in S^*$ is called an expression for $w\in W$ if it is equal to w when considered as a group element.

If m is minimal, it is a reduced expression, and the length of w is $\ell(w) := m$.

Given $w \in W$, if we wish to emphasize a fixed, possibly reduced, expression for w, we represent it as

$$\overline{W} = s_{x_1} s_{x_2} \cdots s_{x_m}.$$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well defined by Matsumoto's theorem.

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well defined by Matsumoto's theorem.

Example

Let $\overline{w} = s_2 s_1 s_2 s_3 s_1$ be a fixed expression for $w \in W(A_3)$. We see that

s251525351

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well defined by Matsumoto's theorem.

Example

Let $\overline{w} = s_2 s_1 s_2 s_3 s_1$ be a fixed expression for $w \in W(A_3)$. We see that

$$s_2s_1s_2s_3s_1 = s_1s_2s_1s_3s_1$$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well defined by Matsumoto's theorem.

Example

Let $\overline{w} = s_2 s_1 s_2 s_3 s_1$ be a fixed expression for $w \in W(A_3)$. We see that

$$s_2s_1s_2s_3s_1 = s_1s_2s_1s_3s_1 = s_1s_2s_1s_1s_3$$

Theorem (Matsumoto)

Any two reduced expressions for $w \in W$ differ by a sequence of commutations and braid moves.

Definition

We define supp(w) to be the set of generators appearing in any reduced expression for w. This is well defined by Matsumoto's theorem.

Example

Let $\overline{w} = s_2 s_1 s_2 s_3 s_1$ be a fixed expression for $w \in W(A_3)$. We see that

$$s_2s_1s_2s_3s_1 = s_1s_2s_1s_3s_1 = s_1s_2s_1s_1s_3 = s_1s_2s_3$$

This implies that \overline{w} was not reduced. However, it turns out that $s_1s_2s_3$ is a reduced expression for w. Then $\mathrm{supp}(w)=\{s_1s_2s_3\}$ and $\ell(w)=3$.

Fully Commutative Elements

Definition

Let (W, S) be a Coxeter system of type Γ . We say that $w \in W(\Gamma)$ is fully commutative (FC) if any two reduced expressions for w can be transformed into each other via iterated commutations. The set of FC elements is denoted FC(Γ).

Theorem (Stembridge)

 $w \in FC(\Gamma)$ if and only if no reduced expression for w contains a braid.

Comment

It follows from Stembridge that $W(\widetilde{C}_n)$ contains an infinite number of FC elements, while $W(A_n)$ and $W(B_n)$ do not.

Fully Commutative Elements

Comment

The elements of $FC(C_n)$ are precisely those whose reduced expressions avoid the consecutive subwords $s_i s_j s_i$ for $m(s_i, s_j) = 3$, $s_0 s_1 s_0 s_1$, and $s_{n-1} s_n s_{n-1} s_n$.

Fully Commutative Elements

Comment

The elements of $FC(C_n)$ are precisely those whose reduced expressions avoid the consecutive subwords $s_i s_j s_i$ for $m(s_i, s_j) = 3$, $s_0 s_1 s_0 s_1$, and $s_{n-1} s_n s_{n-1} s_n$.

Example

Let $\overline{w} = s_0 s_2 s_4 s_3 s_2 s_1$ be a reduced expression for $w \in W(\widetilde{C}_4)$. We see that

$$s_0 s_2 s_4 s_3 s_2 s_1 = s_0 s_4 s_2 s_3 s_2 s_1.$$

Since w has one of the forbidden consecutive subwords, w is not FC.

Heaps

We introduce heaps through an example.

Example

Heaps

We introduce heaps through an example.

Example

Example

Example

Example

Example

Example

Heaps

We introduce heaps through an example.

Example

Example

