Artificial Neural Network

CS-EJ3311 - Deep Learning with Python 24.10.-11.12.2022 Aalto University & FiTech.io

31.10.2022 Shamsi Abdurakhmanova

First artificial neuron models (~1950)

Figure 9.13: McCulloch-Pitts computation model of neuron (Image credit for NN: http://wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis-html/node12.html)

Deep Learning hype - Why now?

- Harware advances
- Optimization methods advances
- Big Data

House price prediction

- house area,
- n.o. rooms/ bathrooms,
- neuborhood,
- · building age,
- future rennovations,
- etc.

House price prediction

- house area = x_1
- n.o. rooms/ bathrooms = x_2
- neuborhood = x_3
- building age = x_4
- future rennovations = x_5

$$w_1 x_1 + w_2 x_2 + w_2 x_2 + w_3 x_3 + w_4 x_4 = \hat{y}$$

Historical Data

$$\hat{y} = wx + b$$

Linear Regression

Linear Regression - Bias

$$\hat{y} = 20 * 0.1 + 0.5 * (-4) + 0.1 * 10 = 1$$

$$w_1=20$$
 $w_1=0.1$ weighted sum prediction $w_2=0.5$ $w_3=10$ $w_3=0.1$

$$\hat{y} = \sigma(w_1 x_1 + \dots + w_n x_n)$$

$$\hat{y} = \sigma(20 * 0.1 + 0.5 * (-4) + 0.1 * 10) \approx 0.73$$

$$\sigma = \frac{1}{1 + e^{-x}}$$

Logistic Regression

"Atom" of the ANN – artificial neuron or unit of ANN

ANN – stacked elementary units

Why stacking neurons?

To build more complex & flexible model

$$\hat{y} = wx$$

$$\hat{y} = w_1 x^2 + w_2 x + w_3$$

To "detect" various combinations of inputs

Feedforward ANN

How many layers/ neurons?

https://www.deeplearningbook.org/contents/mlp.html

In summary, a feedforward network with a single layer is sufficient to represent any function, but the layer may be infeasibly large and may fail to learn and generalize correctly. In many circumstances, using deeper models can reduce the number of units required to represent the desired function and can reduce the amount of generalization error.

ANN without activation functions

ANN without activation functions – linear predictor

$$h^{(\mathbf{w})}(\mathbf{x}) = \mathbf{w}^T \mathbf{x} = \sum_{i=1}^d w_i x_i$$

linearly non-separable data

Introducing non-linearity with activation functions

Activation functions

input layer

hidden layer

- ReLU
- Leaky ReLU
- ELU
- tanh

output layer

- sigmoid
- softmax
- None

ANN PLAYGROUND

Output layer for regression

Score(s) – output of the last layer neuron(s) before applying activation function.

Classification task

Binary

- spamy=1
- not spamy=0

Multiclass

Multilabel

Binary

Multiclass

Multilabel

- spam
- not spam y=0

Sigmoid

0.83

Softmax

0.03 0.14 0.00

Sigmoid

0.38

Output layer for Binary clf

Output layer for Multiclass clf

Output layer for Multilabel clf

applied independently to each element

Output (predictions)

 \hat{y}_i

0.77

0.95

0.13

scores s_i

-0.5 1.2 3 -2

Sigmoid

$$\frac{e^{s_i}}{\sum_{j=1}^{C} e^{s_j}}$$

outputs sums up to 1, depends on all elements

 $03 \rightarrow c$

 $14 \longrightarrow dog$

cat

dog

not cat

not dog

0.83

0.00

Cross-entropy loss

 $CE = -\sum_{i}^{C} y_{i} \log(\hat{y}_{i})$

+ Sigmoid

Binary CE

$$y_2 = 1 - y_1$$

$$\hat{y}_2 = 1 - \hat{y}_1$$

Binary

spam not spam

Multilabel

n.o. classes

$$CE = -\sum_{i=1}^{C=2} y_i \log(\hat{y}_i) = -y_1 \log(\hat{y}_1) - (1 - y_1) \log(1 - \hat{y}_1)$$

Cross-entropy loss

$$CE = -\sum_{i}^{C} y_{i} \log(\hat{y}_{i})$$

Multiclass

 $\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = y_i \text{ for non-positive class}$

 y_i for positive class is one

+ Softmax

Categorical CE

$$CE = -\sum_{i}^{C} y_i \log(\hat{y}_i) = -\log\left(\frac{e^{Sp}}{\sum_{j=1}^{C} e^{Sj}}\right) \text{ score for positive class}$$

Last-layer activation function + loss

 Table 4.1 Choosing the right last-layer activation and loss function for your model

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse or binary_crossentropy

ANN – vectors and matrices

$$\mathbf{w}_{1}^{(1)} = (w_{1,1}^{(1)}, w_{1,2}^{(1)}, w_{1,3}^{(1)}, w_{1,4}^{(1)})$$

weight vector of 1st hidden neuron of 1st hidden layer

output of 1st hidden neuron of 1st hidden layer for *i*th datapoint

$$\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x}) = \mathbf{out}$$
(1,4) (4,1) (1,1)

$$\mathbf{w}_{1}^{(1)} = (w_{1,1}^{(1)}, w_{1,2}^{(1)}, w_{1,3}^{(1)}, w_{1,4}^{(1)})$$

Feature matrix; shape (m,4)

$$\mathbf{X} = \begin{bmatrix} x_1^{(1)} & \dots & x_4^{(1)} \\ \dots & \dots & \dots \\ x_1^{(m)} & \dots & x_4^{(m)} \end{bmatrix}$$

Weight matrix of the 1st hidden layer; shape (4,6)

$$\mathbf{W}^{(1)} = \begin{bmatrix} w_{1,1}^{(1)} & \dots & w_{6,1}^{(1)} \\ \dots & \dots & \dots \\ w_{1,4}^{(1)} & \dots & w_{6,4}^{(1)} \end{bmatrix}$$

output of 1st hidden layer for m datapoints

$$\sigma(XW^{(1)}) = h^{(1)}$$
(m,4) (4,6) (m,6)

output of 2nd hidden layer for m datapoints

$$\sigma(\mathbf{h}^{(1)}\mathbf{W}^{(2)}) = \mathbf{h}^{(2)}$$
(m,6) (6,6) (m,6)

output score for m datapoints

$$h^{(2)}W^{(3)} = score$$
(m,6) (6,1) (m,1)

How to find good model parameters?

n.o. parameters = 3*5 + 5*1

 $W_1, W_2, W_3, W_4, W_5, \dots ????$

Gradient Descent Algorithm

Forward pass

Gradient Descent Algorithm

Gradient Descent Algorithm

Hyperparameters

- Batch size
- Learning rate
- Epochs
- Optimizer

- n.o. neurons, layers
- activation functions

Hands on: shallow ANN for classification

Tools

Here we keep our code

Python libraries:

Data

- Data point: 28x28 grayscale image of shopping item
- Features: 28x28=784 pixel values (range 0-255)
- Labels: Product category (boot, shirt, hat, ...). 10 classes in total.

Typical Workflow

- 1. Data preprossing (scale 0-1), splitting (training/validation/test).
- 2. Define ANN model
- 3. Choose Loss function, Optimizer
- 4. Train ANN
- 5. Evaluate on unseen (test) dataset

Data preprossing

- 1. Scaling features to 0-1: makes it easier for algoritm to find "good" model parameters
- 2. Splitting (training/validation/test datasets):
 - Training to find "good" model parameters
 - Validation to choose model hyper-parameters (learning rate, n.o. epochs)
 - Test final performance evaluation

Define ANN model

```
model = keras.Sequential([
            layers.Dense(units=5, activation='relu',input_shape=(3,)),
            layers.Dense(units= 1, activation='sigmoid')
                                              \sim units=5 \frac{\text{ReLU}}{\max(0,x)}
input_shape=(3,)
                                                         units=1
                                                                  Sigmoid \sigma(x) = \frac{1}{1+e^{-x}}
```

Choose Loss function, Optimizer

Variation of basic Gradient Descent Algorithm

Compare predictions and labels

Easy to understand performance measure

Train ANN

Features and labels

```
history = model.fit(X_trainval,
	y_trainval,
	validation_split=0.2,
	batch_size=32,
	epochs=20,
	verbose=1)

Training data = 80%

Validation = 20%

Feed data by batches of
```

Printing info during training

Train ANN

Evaluate on test dataset

```
test_loss, test_accuracy = model.evaluate(X_test, y_test, verbose=0)
print('Accuracy on test dataset:', test_accuracy)
```