Матан, коллок - 1 Бурмашев Григорий 31 октября 2020 г.

Рациональные числа

Рациональные числа (\mathbb{Q})— числа вида $\frac{p}{q}$, где q - натуральное, а p - целое. Два рациональных числа задают одно и тоже число, если $p_1q_2=p_2q_1$

Вещественные числа

Множество вещественных чисел $\mathbb R$ отождествляется с множеством всех бесконечных десятичных дробей вида $\pm a_0a_1a_2\ldots$, где $a_0=0, a_j\in\{0,\ldots 9\}$ и записи в которых с какого-то момента стоят только девятки — запрещены. Число $\pm 0,000\ldots$ — совпадает с числом 0 и называется нулем. На множесте вещественных чисел определены все операции множества рациональных чисел. Для вещественных чисел определен модуль числа |a|, такой, что:

$$\begin{cases} |a| = a & a \ge 0 \\ |a| = -a & a \le 0 \end{cases}$$

Важно помнить о неравенстве треугольника:

$$|a+b| \le |a| + |b|$$

$$||a| - |b|| \le |a+b|$$

Принцип полноты

Множество А лежит **левее** множества В, если $a \le b \ \forall \ a \in A, b \in B$. Число «с» **разделяет** множества А и В, если $a \le c \ \forall \ a \in A$ и $c \le b \ \forall \ b \in B$

Если для произвольных непустых множеств A левее B найдется разделяющий их элемент, то выполняется так называемый **принцип полноты**

На множестве вещественных чисел выполняется принцип полноты.

Доказательство:

Пусть есть множества A и B. Пусть A лежит левее B. Если A состоит только из неположительных чисел, а B — только из неотрицательных, тогда разделителем является ноль. Пускай теперь в A есть неотрицательный элемент, тогда в B есть только положительные числа (т.к A левее B). Построим число — разделитель $c = c_0c_1c_2\dots$

Рассмотрим множество всех натуральных чисел, с которых начинаются элементы множества В. Пусть b_0 — наименьшее из таких чисел и $b_0=c_0$. Теперь среди всех чисел в В, начинающихся с b_0 найдем наименьшую следующую цифру, пусть теперь она равна b_1 и $b_1=c_1$. Теперь посмотрим на все числа в В, начинающиеся с b_0b_1 и проделаем ту же самую операцию.

Мы получили бесконечную десятичную дробь $c_0c_1c_2\dots$ Стоит заметить, что подряд идущих девяток в нем не будет, т.к мы запретили такие записи в В. Покажем теперь, что это число – разделитель множеств A и B.

Во первых, $c \leq b \ \forall b \in B$. Либо $\mathbf{b} = \mathbf{c}$ (тогда все окей), либо $b \neq c$. Во втором случае пусть $b_0 = c_0, \ldots, b_{k-1} = c_{k-1}$ и $b_k \neq c_k$. Тогда, по построению числа с $c_k < b_k \to c < b$.

Покажем теперь, что $a \leq c$. От обратного: пусть a > c, т.е $a \geq c$ и $a \neq c$. Тогда найдется позиция k, для которой $a_0 = c_0, \ldots, a_{k-1} = c_{k-1}$ и $a_k > c_k$. Но по построению числа с есть такой b, что $b_0 = c_0, \ldots b_k = c_k$ и получается, что a > b, что противоречит условию. Значит с – действительно разделитель для двух множеств A и B.

Иррациональность числа $\sqrt{2}$

Пусть $\frac{p}{q}=x^2=2$, тогда $p^2=2q^2$ и p – четное, т.е его можно представить как $p=2p_1$, откуда $2p_1^2=q^2$, а значит и q – четное. Но тогда $\frac{p}{q}$ не является конечным решением и противоречит нашему предположению об отсутствии общих делителей. Мы знаем, что на множестве вещественных чисел выполняется принцип полноты (теорема 4 из лекции 1). А значит если взять два множества A и B, такие, что:

$$A = \{a : a > 0, a^2 \le 2\}$$

$$B = \{b : b > 0, b^2 \ge 2\}$$

Если их элементы принадлежат множеству вещественных чисел, то, согласно принципу полноты, найдется элемент с, который будет их разделять, причем такой с, что $c^2=2$

Предел последовательности

Предел последовательности а:

$$\lim_{n \to \infty} a_n = a$$

Последовательность a_n сходится к числу a, если:

$$\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N} : \forall n > N(\varepsilon) \ |a_n - a| < \varepsilon$$

Единственность предела

Пусть
$$\lim_{n\to\infty} a_n = a$$
, $\lim_{n\to\infty} a_n = b$, $a = b$

Доказательство:

От обратного: пусть $a \neq b$, тогда $|a-b| = \varepsilon_0 > 0$. Но по определению предела найдется номер N_1 , что $|a_n-a|<rac{arepsilon_0}{2}$ при $n>N_1$ и найдется номер N_2 , что $|a_n-b|<\frac{\varepsilon_0}{2}$ при $n>N_2$ Тогда при $n>\max\{N_1,N_2\}$:

$$\varepsilon_0 = |a - b| = |a - a_n + a_n - b| \le |a - a_n| + |a_n - b| < \varepsilon_0$$

Противоречие

Арифметические свойства

Пусть
$$\lim_{n \to \infty} a_n = a$$
, $\lim_{n \to \infty} b_n = b$. Тогда:

$$\lim_{n \to \infty} (a_n + b_n) = a + b$$

$$\lim_{n \to \infty} a_n b_n = ab$$

$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{a}{b}$$

Ограниченность сходящейся последовательности

Последовательность a_n называется ограниченной, если существуют такие числа $C, c \in \mathbb{R}$, что $c \le a_n \le C$ для каждого $n \in \mathbb{N}$

Сходящаяся последовательность ограничена

Доказательство по Шапошникову:

Начиная с какого-то номера N все элементы последовательности попадают в интервал $(a - \alpha, a + \beta)$, где а – предел последовательности. Возьмем элементы $a_1, a_2, \dots a_N$. Возьмем самый минимальный (пусть A) из них и самый максимальный (пусть B). Нам нужно взять интервал вида $[min(\alpha, A), max(\beta, B)]$ и тогда мы точно сможем захватить все элементы последовательности в интервал.

Доказательство по Косову:

Для $N \in \mathbb{N}: |a_n - a| < 1$ при n > N Тогда:

$$|a_n| = |a_n - a + a| \le |a_n - a| + |a| < 1 + |a|$$

Значит:

$$|a_n| \le M = max\{1 + |a|, |a_1|, \dots, |a_N|\}$$

T.e:

$$-M = c < a_n < C = M$$

Отделимость

Если $\lim_{n\to\infty}a_n=a$ и a>0, то найдется номер $\mathrm{N}\in\mathbb{N},$ для которого:

$$a_n > \frac{a}{2} > 0$$

Доказательство по Шапошникову:

Начиная с некоторого N, все элементы начнут попадать в интервал вида $\left(\frac{a}{2},\frac{3a}{2}\right)$. И в частности они оказываются больше, чем $\frac{a}{2}$.

Ч.Т.Д

Доказательство по Косову:

Взяв $\varepsilon = \frac{|a|}{2}$ мы получим номер $N \in \mathbb{N}$, для которого $|a_n - a| < \frac{|a|}{2}$ при n > N. Тогда, при n > N, выполнено $|a| - |a_n| \le |a_n - a| < \frac{|a|}{2}$, что равносильно доказываемому утверждению

Переход к пределу в неравенствах

Если $a_n \leq b_n$ при
 n > N для некоторого N, то $a \leq b$

Доказательство по Шапошникову:

Пусть b < а. Тогда по рисунку:

Доказательство по Косову:

Пусть $a-b=\varepsilon_0>0$. Тогда найдутся номера N_1,N_2 такие, что $|a_n-a|<\frac{\varepsilon_0}{2}$ при n $>N_1$ и $|b_n-b|<\frac{\varepsilon_0}{2}$ при n $>N_2$. Тогда:

$$\varepsilon_0 = a - b = a - a_n + a_n - b_n + b_n - b \le -a_n + b_n - b < \varepsilon_0$$

Противоречие

Лемма о зажатой последовательности

Пусть:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = a$$
$$a_n \le c_n \le b_n$$

Тогда:

$$\lim_{n \to \infty} c_n = a$$

Доказательство по Шапошникову:

По рисунку:

Доказательство по Косову:

Для каждого $\varepsilon>0$ найдутся номера $N_1\in\mathbb{N}, N_2\in\mathbb{N},$ для которых $|a_n-a|<\varepsilon$ и $|b_n-a|<\varepsilon$. Тогда при $n>\max\{N,N_1,N_2\}$ выполнено:

$$a - \varepsilon < a_n \le c_n \le b_n < b + \varepsilon$$

Принцип вложенных отрезков

Всякая последовательность вложенных отрезков имеет общую точку. Кроме того, если длины отрезков стремятся к нулю, то такая общая точка только одна.

Доказательство:

Пусть A – множество всех возможных начал отрезков, а B – множество всех возможных концов отрезков. Тогда:

$$\forall n, m \in \mathbb{N} : [a_{n+m}; b_{n+m}] \subset [a_n; b_n] \to a_n \le a_{n+m}$$

$$\forall n, m \in \mathbb{N} : [a_{n+m}; b_{n+m}] \subset [a_n; b_n] \to b_{n+m} \le b_m$$

А значит $\forall n,m \in \mathbb{N}: a_n \leq a_{n+m} \leq b_{n+m} \leq b_m$. Т.е $a_n \leq b_m$ Тогда по принципу полноты найдется такое с, которое будет разделять эти два множества, т.е $a_n \leq c \leq b_m$, в частности $a_n \leq c \leq b_n$, т.е $c \in [a_n,b_n]$ для любых $n \in \mathbb{N}$

Пускай общих точек две: c и c' и при этом c < c'. Тогда $a_n \le c < c' \le b_n$ и $c'-c \le b_n-a_n$, что противоречит тому, что $\lim_{n\to\infty}(b_n-a_n)=0$. Найдется номер $N\in\mathbb{N}$, для которого $b_n-a_n < c'-c$ при каждом n>N

Геометрическая интерпретация $\mathbb R$

Сопоставим десятичной дроби $0a_1a_2a_3\dots$ последовательность вложенных отрезков по следующему правилу. Разделим отрезок [0, 1] на 10 равных частей и выберем из получившихся 10-ти отрезков a_1+1 й по счету. Теперь проделываем ту же самую операцию и берем a_2+1 й по счету и так далее... Получаем последовательность вложенных отрезков, причем длина отрезка на n-ом шаге равна $\frac{1}{10^n}$ По уже доказанной выше теореме существует единственная общая точка построенной последовательности вложенных отрезков, причем только одна, совпадающая с нашим исходным числом

Точные верхние и нижние грани

Число b называется **верхней гранью** множества A, если $a \leq b$ для каждого числа $a \in A$ Если есть хотя бы одна верхняя грань, то множество называется **ограниченным сверху**. Наименьшая из верхних граней множества A называется **точной верхней гранью** множества A и обозначается как sup A (супремум).

Аналогично для **нижней грани**, только $b \le a$ и называется это inf A (инфимум).

Ограниченное и сверху и снизу множество называется ограниченным.

Пусть A - непустое ограниченное сверху (снизу) множество. Тогда существует точная верхняя (нижняя) грань sup A (inf A)

Доказательство:

Пусть A – непустое ограниченное сверху множество из условия. В – непустое (по условию) множество его верхних граней. Тогда A лежит левее В и существует разделяющий их элемент с. Он является верхней гранью для A и с $\leq b$ для каждой верхней грани множества A. По определению с = \sup A

Наличие inf A доказывается аналогично или переходом к множеству -A

Теорема Вейерштрасса

Пускай последовательность $\{a_n\}_{n=1}^{\infty}$ не убывает $(a_n \leq a_{n+1})$ и ограничена сверху. Тогда эта последовательность сходится к своему супремуму.

Аналогично, пусть последовательность $\{a_n\}_{n=1}^{\infty}$ не возрастает $(a_n \ge a_{n+1})$ и ограничена снизу. Тогда эта последовательность сходится к своему инфимуму.

Доказательство:

Пусть $M = \sup \{a_n : n \in \mathbb{N}\} = \sup a_n$. Тогда для каждого $\varepsilon > 0$ найдется номер $N \in \mathbb{N}$, для которого $M - \varepsilon < a_N$ (иначе $M - \varepsilon$ – верхняя грань, чего не может быть). В силу того, что последовательность неубывающая, при каждом n > N выполнено:

$$M - \varepsilon < a_N < a_n < M < M + \varepsilon$$

Тем самым, по определению $M = \lim a_n$

Пример рекуррентной формулы для вычисления $\sqrt{2}$

Пусть:

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right), \quad a_1 = 2$$

Можно заметить, что:

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \ge \frac{1}{2} \cdot 2\sqrt{a_n \cdot \frac{2}{a_n}} = \sqrt{2}$$

A значит $a_n \ge \sqrt{2}$. Кроме того:

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{2}{a_n} \right) \le \frac{1}{2} \left(a_n + \frac{a_n^2}{a_n} \right) = a_n$$
$$a_{n+1} \le a_n$$

По Вейерштрассу у этой последовательности существует предел а. Т.к $a_n \geq 0$, то и $a \geq 0$. По арифметике пределов получаем:

$$a = \frac{1}{2}\left(a + \frac{2}{a}\right) = \sqrt{2}$$

Оценка скорости сходимости

Хз

Фундаментальная последовательность

Последовательность a_n фундаментальна (или удовл. условию Коши) если:

$$\forall \varepsilon > 0 \ \exists N : \forall n, m > N \ |a_n - a_m| < \varepsilon$$

Если последовательность a_n сходится, то a_n – фундаментальна.

Доказательство:

Пусть предел равен а. Это значит, что:

$$\forall \varepsilon > 0 \; \exists N \; \forall \; n > N \; |a_n - a| < \varepsilon$$

Пусть m > N и n > N. Тогда:

$$|a_m - a_n| < |a_m - a| + |a_n - a| < 2\varepsilon$$

Если последовательность фундаментальна, то она ограничена

Доказательство:

Пусть $\varepsilon = 1$. Тогда:

$$\exists N: \forall n, m > N |a_n - a_m| < 1$$

СМ листок

Если a_n фундаментальна + ограничена (из пунктяяяа выше), то она сходится

СМ листок

Критерий Коши

Последовательность a_n сходится к конечному пределу тогда и только тогда, когда она фундаментальна.

Если сходится \rightarrow фундаментальна.

Если фундаментальна → сходится

Цепная дробь $\sqrt{2}$

Пускай:

$$a_{n+1} = 1 + \frac{1}{1+a_n}, \ a_1 = 1$$

Заметим, что $a_n \ge 1$ и:

$$|a_{n+1} - a_n| = \left| \frac{1}{1 + a_n} + \frac{1}{1 + a_{n-1}} \right| = \frac{|a_n - a_{n-1}|}{(1 + a_n)(1 + a_{n-1})} \le \frac{1}{4} |a_n - a_{n-1}| \le \left(\frac{1}{4}\right)^{n-1} |a_2 - a_1| = \left(\frac{1}{4}\right)^{n-1} \frac{1}{2}$$

Отсюда при m > n:

$$|a_m - a_n| \le |a_m - a_{m-1}| + \dots + |a_{n+1} - a_n| \le \frac{1}{2} \cdot \left(\left(\left(\frac{1}{4} \right)^{m-2} + \dots + \left(\frac{1}{4} \right)^{n-1} \right) \right) =$$

$$= \frac{1}{2} \cdot \left(\frac{1}{4} \right)^{n-1} \cdot \frac{1 - \left(\frac{1}{4} \right)^{m-n}}{1 - \frac{1}{4}} \le \frac{8}{3} \left(\frac{1}{4} \right)^n$$

 Т.к $(\frac{1}{4})^n \to 0$, то для любого $\varepsilon > 0 \;\; \exists N: \frac{1}{4}^n < \varepsilon$ Таким образом, для последовательности выполнен критерий Коши, а значит существует $\lim_{n\to\infty} a_n = a$ По арифметике предела число а удовлетворяет уравнению:

$$a(1+a) = 1 + a + 1 \leftrightarrow a^2 = a \leftrightarrow a = \sqrt{2}$$

Билет № 6

Числовые ряды

Числовым рядом с членами a_n называется выражение:

$$a_1 + a_2 + a_3 + \ldots = \sum_{k=1}^{\infty} a_k$$

Конечные суммы $S_n:=\sum\limits_{k=1}^\infty a_k$ называют **частичными суммами** ряда

$$\sum_{k=1}^{\infty} a_k$$

Число A называют суммой ряда, если предел $S_n = A$

Пишут:

$$A = \sum_{n=1}^{\infty} a_n$$

Если предел S_n конечен, то говорят, что **ряд сходится**. Если предел бесконечен или не существует, то говорят, что **ряд расходится**.

Переформулировка критерия Коши

Ряд $\sum_{k=1}^{\infty} a_k$ сходится тогда и только тогда, когда для каждого $\varepsilon>0$ найдется такой номер N, что для всех n>m>N выполнено:

$$\left| \sum_{k=m+1}^{n} a_k \right| = |S_n - S_m| < \varepsilon$$

Необходимое условие сходимости ряда

Если ряд сходится, то его слагаемые стремятся к нулю. **Обратное** — **неверно**

Доказательство:

По условию сходимости существует $\lim_{n\to\infty} S_n = A$. S_n стремится к A. S_{n-1} тоже стремится к A. Тогда:

$$a_n = S_n - S_{n-1} \to A - A = 0$$

Расходимость ряда $\frac{1}{n}$

Заметим, что:

$$\frac{1}{n+1} + \frac{1}{n+2} + \ldots + \frac{1}{2n} \ge n \cdot \frac{1}{2n} = \frac{1}{2}$$

Возьмем и сгруппируем S_{2^m} :

$$(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}) + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) + \dots + (\frac{1}{2^{m-1} + 1} + \dots + \frac{1}{2^m})$$

Каждая $S_{2^m} \geq \frac{1}{2}$. И всего таких группировок у нас m штук. Значит $S_{2^m} \geq \frac{m}{2}$. Помимо этого, каждая следующая S_n больше предыдущей (ибо мы к предыдущей сумме прибавляем какой-то положительный член) \rightarrow ряд расходится.

Условная и абсолютная сходимость

Говорят, что ряд сходится **абсолютно**, если сходится ряд $\sum_{k=1}^{\infty} |a_k|$. Говорят, что ряд сходится **условно**, если $\sum_{k=1}^{\infty} |a_k|$ расходится, а ряд $\sum_{k=1}^{\infty} a_k$ сходится

Из сходимости ряда $\sum\limits_{k=1}^{\infty}|a_k|$ следует сходимость ряда $\sum\limits_{k=1}^{\infty}a_k$

Сходимость рядов с неотрицательными слагаемыми

Если $a_n \ge 0$, то ряд сходится тогда и только тогда, когда последовательность его частичных сумм ограничена.

Доказательство: Последовательность частичных сумм не убывает, т.к $a_n \ge 0$. Каждая следующая сумма будет больше предыдущей, и если последовательность частичных сумм не будет ограничена, то она просто уйдет в бесконечность и сходится не будет.

Признак сравнения

Пусть $0 \le a_n \le b_n$, тогда:

Если ряд из b_n сходится, то и ряд из a_n сходится.

Если ряд из a_n расходится, то и b_n расходится.

Доказательство:

$$S_n^a = a_1 + \ldots + a_n \le b_1 + \ldots + b_n = S_n^b$$

Если последовательность частичных сумм S_n^b ограничена, то и S_n^a ограничена. А если S_n^a неограниченны, то и S_n^b неограниченны.

Признак Коши

Пусть $a_n \geq 0$, a_n сходится тогда, когда сходится $2^n a_{2^n}$

Доказательство:

Нужно как-то связать ограниченность частичных сумм. Пусть $2^m \le n < 2^{m+1}$

$$a_2 + 2a_4 + 4a_8 + \ldots + 2^{m-1}a_{2^m} \ge a_1 + a_2 + a_3 + \ldots + a_n \le a_1 + 2a_2 + 4a_4 + 8a_8 + \ldots + 2^m \cdot a_{2^m}$$

Сходимость и расходимость $\frac{1}{n^p}$

По доказанному выше он сходится, если сходится:

$$2^n \cdot \frac{1}{(2^n)^p} = \left(\frac{1}{2^{p-1}}\right)^n$$

А это геометрическая прогрессия, она сходится тогда, когда то, что внутри меньше единицы, а именно при p>1

Т.е наш ряд сходится тогда и только тогда, когда p>1 Иначе он расходится.

Подпоследовательность

Пусть задана последовательность a_n и последовательность возрастающих номеров $n_1 < n_2 < n_3 \dots n_k < n_{k+1}$, то последовательность a_{n_k} называется подпоследовательностью последовательности a_n .

Если последовательность сходится к а, то всякая подпоследовательность тоже сходится к а.

1. $n_k \geq k$

Докажем по индукции:

База:

 $k = 1 n_1 \ge 1$. Верно, т.к n_1 – натурально.

Шаг:

Пусть верно для k, докажем, что верно для k + 1:

$$n_{k+1} > n_k \ge k \to n_{k+1} \ge n_k + 1 \ge k + 1$$

2. По определению предела:

$$\forall \varepsilon > 0 \exists N : \forall n > N |a_n - a| < \varepsilon$$

Пусть
 k>N. Тогда $n_k\geq k>N.$ А значит неравенство выполняется и для
 $n_k,$ т.е:

$$|a_{n_k} - a| < \varepsilon$$

A значит $\lim a_n = \lim a_{n_k}$

Теорема Больцано

Если последовательность a_n ограничена, то в ней есть сходящаяся подпоследовательность.

Доказательство: Все элементы лежат внутри отрезка. Давайте поделим его пополам. Тогда очевидно, что хотя бы в одной половине бесконечно много элементов. Делим эту половину еще раз пополам и так далее. Мы получили последовательность вложенных отрезков, в каждом из них бесконечно много элементов. В системе вложенных отрезков есть общая точка с. Возьмем ее. А также в каждом из наших отрезков выберем элементы по порядку $a_{n_1}, a_{n_2}, a_{n_3}$ и так далее. Причем каждый из этих элементов отличается от с на длину отрезка. А если длина первого отрезка была 1, то:

$$|a_{n_k} - c| \le \frac{l}{2^{k-1}}$$

Следовательно все элементы приближаются к с и с – предел.

Частичные пределы

Предел подпоследовательности называется **частичным пределом**. Задача: описать множество частичных пределов.

1) $M_n \ge M_{n+1}$

Доказательство:

Т.к M_n – верхняя грань для $\{a_{n+1},a_{n+2},\ldots\}$. То она и верхняя грань для $\{a_{n+2},a_{n+3},\ldots\}$. Следовательно $M_{n+1}\leq M_n$

T.к a_n ограниченна, то и M_n ограниченна.

По теореме Вейерштрасса M_n невозрастает и ограничен и существует предел $M_n=M$

- 2) Для inf аналогично.
- 3) Докажем, что М частичный предел. Т.е нужно предьявить такую $a_{n_k},$ что $a_{n_k} \to M$

 n_1 : $M_1-a_{n_1}<1$ (M_1-1 – не верхняя грань для $a_2,a_3\ldots o\exists a_{n_1}$ из них: $M_1\geq a_{n_1}>M_1-1$

$$n_2$$
: $0 \le M_{n_1} - a_{n_2} < \frac{1}{2}$

Если уже построена n_k , то $n_{k+1} > n_k$ и:

$$n_{k+1}: 0 \ge M_{n_k} - a_{n_{k+1}} < \frac{1}{k+1}$$

Мы получили подпоследовательность a_{n_k} :

$$M_{n_{k-1}} - \frac{1}{k} \le a_{n_k} \le M_{n_k}$$

И левая, и правая часть сходится к M, а значит a_{n_k} сходится к M по теореме о зажатой последовательности и M – частичный предел.

Докажем, что любой частичный предел лежит между [m, M]. Т.е если произвольная подпоследовательность $a_{n_k} \to a$, то $a \in [m, M]$

$$m_{n_{k-1}} \le a_{n_k} \le M_{n_{k-1}}$$
$$m < a < M$$

Критерий сходимости в последовательности в терминах структуры множеств частичных пределов

Пусть a_n – ограниченная последовательность. a_n сходится тогда и только тогда, когда M=m=a, т.е верхний предел совпадает с нижним пределом. Верхний и нижний предел равны пределу последовательности.

Доказательство:

В прямую сторону: Если последовательность сходится, то и ее подпоследовательность сходится к тому же самому.

В обратную сторону:

$$\inf_{k>n-1} a_k \le a_n \le \sup_{k>n-1} a_k$$
$$m \le a \le M$$