

IMPORTANT-READ CAREFULLY: This Agreement ("Agreement") is a legal agreement between you (either an individual or a single entity) and O2 Micro International Limited ("O2 Micro") for the Confidential Datasheet that accompanies this Agreement ("Datasheet"). YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT BY ACCEPTING OR USING THIS DATASHEET. IF YOU DO NOT AGREE, DO NOT USE OR RETAIN THIS DATASHEET; YOU MAY RETURN IT TO O2 MICRO FOR A FULL REFUND, IF APPLICABLE.

- 1. This Agreement is intended to bind the recipient of this Datasheet ("Recipient") and prevent it from disclosing the confidential information contained therein ("Confidential Information") or from using the Confidential Information for purposes other than use or evaluation for purchase of the O2 Micro product set forth in the Datasheet.
- 2. Recipient agrees not to disclose the Confidential Information to third parties or to Recipient's employees except employees who are required to have the Confidential Information in order to carry out the contemplated purposes described in Section 1. Recipient agrees not to alter the Datasheet, detach this Agreement from the Datasheet or to remove the "Confidential" legend from the Datasheet. Recipient agrees that it will take all reasonable steps to protect the secrecy of and avoid disclosure or use of Confidential Information in order to prevent it from falling into the public domain or the possession of unauthorized persons which shall include the highest degree of care that Recipient utilizes to protect its own confidential information of similar nature. Recipient shall require each of its employees to whom Confidential Information is disclosed to hold such Confidential Information in confidence and not to disclose or, except in accordance with the terms hereof, use such Confidential Information. Recipient agrees to notify O2 Micro in writing of any misuse or misappropriation of such Confidential Information which may come to its attention.
- 3. Any Datasheet which have been furnished to Recipient shall be promptly returned, accompanied by all copies of such documentation and a certificate from an officer of the Recipient stating that the Recipient has fully complied with this Section 3, within five (5) days after receipt by Recipient of a written notice from O2 Micro requesting the return of the Confidential Information.
- 4. All information is provided "AS IS" and without any warranty, express, implied or otherwise, including but not limited to, any warranties regarding its accuracy, performance or non-infringement of third party rights, or its merchantability or fitness for a particular purpose. In no event shall O2 Micro be liable to Recipient for direct, special, incidental, consequential or punitive damages of any kind, including lost profits, by reason of any use by the Recipient of any Confidential Information. Nothing in this Agreement is intended to grant any rights under any O2 Micro patent, trade secret or copyright to Recipient, nor shall this Agreement grant Recipient any rights in or to O2 Micro's Confidential Information, except the limited right to review such Confidential Information solely for the purpose of determining whether to use or purchase the O2 Micro product set forth in the Datasheet.
- 5. This Agreement shall be governed by and construed under the laws of the State of California. The federal and state courts within the State of California shall have exclusive jurisdiction to adjudicate any dispute arising out of this Agreement. The Company hereby consents to jurisdiction and venue in the state and federal courts sitting in the State of California, and to accept service of process by U.S. certified or registered mail, return receipt requested, or by any other methods authorized by California law.
- 6. This Agreement shall be binding upon and for the benefit of O2 Micro, Recipient, their successors and assigns, provided Confidential Information may not be assigned or transferred, by operation of law or otherwise, without the prior written consent of O2 Micro. Failure to enforce any provision of this Agreement shall not constitute a waiver of any term hereof. Nothing contained in this Agreement shall be deemed to obligate either party to negotiate the terms of the proposed purchase in good faith or otherwise.
- 7. No waiver of a breach of any provision of this Agreement shall constitute a waiver of any prior, concurrent or subsequent breach of the same or any other provision hereof, and no waiver shall be effective unless granted in writing and signed by an authorized representative of O2 Micro. If any provision of this Agreement is held by a court of competent jurisdiction to be illegal, invalid or unenforceable, the other provisions shall remain in full force and effect, and the illegal, invalid or unenforceable provision shall be deemed replaced by a legal, valid and enforceable provision that most nearly reflects the intent of the parties in entering into this Agreement. This Agreement contains the entire agreement of the parties with respect to the subject matter hereof, and supersedes all prior and contemporaneous communications, understandings and agreements. This Agreement shall not be amended other than in writing signed by O2 Micro.

Battery Pack Protection and Monitor IC

FEATURES

- Supports 6-12 Series Li-ion Battery Cells including Cobalt, Manganese, Phosphate Cells and Fuel cells
- Supply Voltage Range from 9.0V to 60V
- Multi-channel ADC for voltage and temperature measurement
 - 12 channels for cell voltage measurement (12 bits).
 - 1 channel for internal temperature measurement (12 bits)
 - 2 channels for external temperature measurement(12 bits)
- Built-in Protections include:
 - Over voltage (OV)
 - Under voltage (UV)
 - Cell voltage unbalance (UB)
 - Over current (OC)
 - Short circuit (SC)
 - Over temperature (OT)
 - Under temperature (UT)
 - Over Voltage Permanent Fail (OVPF) (over voltage secondary protection)
- Embedded 64X16 Bits EEPROM supports
 (EEPROM write/erase life cycle is about
 100000 times at ambient temperature 25 °C)
 programmable settings of various
 protection thresholds/timers and
 protection release thresholds/timers
- Supports Internal Bleeding for Cell balance
- Supports separate charge and discharge loop
- Integrated 3.3V, 10V voltage regulator
- Integrated MOSFET driver
- Supports SMBus serial Interface
- ALERTN (low pulse unmasked interrupt) output support
- Low power consumption
 Full Power Mode < 500uA</p>

 Sleep Mode < 30uA

APPLICATIONS

- Electric Bicycle
- Electric Motorcycle

- Power Tools
- UPS backup battery
- Fuel Cell applications

GENERAL DESCRIPTION

OZ8940 is a highly integrated battery pack protection and monitor IC for managing Li-lon or Li-polymer pack in electric bicycle, electric motorcycle, power tools, and UPS applications. It supports 6-12 series Li-lon battery pack or Li-polymer or Fuel cells battery pack applications.

With integrated multi-channel 12-bit ADC, OZ8940 works constantly to monitor each cell's voltage, and the pack temperature to provide over-voltage, under-voltage, cell voltage unbalance, over-current, circuit, over-temperature and temperature safety protection. Working with embedded FET driver circuits, the protection circuits will independently shut off the FETs when the battery cells are experiencing extreme stress. When cell voltage is higher than the pre-set maximum rating voltage OVPF, OZ8940 can automatically assert the Permanent Fail (PF) signal to blow an external fuse to cut off the power line or to signal an alarm to user. All of the protection thresholds and their related delay time are programmable in EEPROM for different battery types and different applications.

"Balance on Demand (BOD)" technology has been embedded in the OZ8940 to support internal bleeding for cell voltage balance during charge state or idle state (no charge and discharge); BOD technology can achieve longer life cycle for the battery pack.

OZ8940 can work with external uP or MCU to implement more featured function.

ORDERING INFORMATION

Part Number	Temp Range	Package
OZ8940TN	-40°C to 85°C	LQFP32L

BLOCK DIAGRAM

PIN CONFIGURATION

PIN DESCRIPTION

		·	
Name	Pin No	I/O	Description
BAT1	1	1	Cell1 positive input
BAT0	2	Ţ	Cell1 negative input
CHG	3	0	Charge MOSFET control, Sink 10uA current at CHG FET ON, high impedance at CHG FET OFF.
scs	4	I	Short circuit external automatic release input/ and detection SC event in full power mode and sleep mode, the threshold is about 1V.
V33A	5	Power	3.3V power supply. Maximum supply is 30mA in full power mode, maximum supply is about 100uA in sleep mode.
GNDA	6	Ground	Analog ground
VD10V	7	Power	10V power supply for MOSFET driver. Maximum supply is 10mA in full power mode and sleep mode.
DSG	8	0	Discharge MOSFET control. Push-pull structure, drive to high level 10V to turn on DSG FET, drive to low level 0V to turn off DSG FET.
SRP	9	I	Current sense resistor positive terminal
SRN	10	I	Current sense resistor negative terminal
GPIO0/THERMV	11	I/O	General Purpose Input/Output Pin OR External thermal sensor driver voltage (3.3V)

Name	Pin No	I/O	Description		
GPIO1/THERM1	12	I/O	General Purpose Input/Output Pin OR External thermal sensor input		
GPIO2/THERM2	13	I/O	General Purpose Input/Output Pin OR External thermal sensor input 2		
SDA	14	I/O	SMBUS data input		
SCL	15	I/O	SMBUS clock input		
ALERTN/OVPF	16	0	Alert output to uP (active low) Over Voltage Permanent failure output. Active high		
EFETC	17	I/O	External FET control signal, can be configured to input or output		
GNDD	18	Ground	Digital ground		
GNDA	19	Ground	Analog ground		
VCC	20	Power	Chip Power supply		
VBAT	21	Power	Internal level shifter power supply		
BAT12	22	1	Cell12 positive input		
BAT11	23	1	Cell11 positive input		
BAT10	24	1	Cell10 positive input		
BAT9	25	I	Cell9 positive input		
BAT8	26	1	Cell8 positive input		
BAT7	27	1	Cell7 positive input		
BAT6	28	I	Cell6 positive input		
BAT5	29	I	Cell5 positive input		
BAT4	30	I	Cell4 positive input		
ВАТ3	31	I	Cell3 positive input		
BAT2	32	I	Cell2 positive input		

Note 1: All GPIO or open drain pins needs be pull-high or pull-low when not used.

TYPICAL APPLICATION SCHEMATICS

Hardware Mode PACK+ CHG_IN+ PACK-R9 1.2M R22 R20 230K R19 230K 8 3 OCHG_IN+ BAT9 BAT7 BAT6 BAT5 BAT3 BAT3 D8 IN414 0.1uF 0.1uF RFD 51 D1 IN4148 ₹ ¥ ¥

DC CHARACTERISTICS

Absolute Maximum Ratings

Supply voltage range		VCC,VBAT	-0.3V to 60V
	Analog	SRP,SRN	-0.3V to 5.5V
	Analog	THERM1(12bits ADC input),THERM2(12bits)	-0.3V to 5.5V
	Analog	BAT0 to BAT1,BAT1 to BAT2,BAT2 to	-0.3V to 5.5V
Input		BAT3,BAT3 to BAT4,BAT4 to BAT5,BAT5 to	
l input		BAT6,BAT6 to BAT7,BAT7 to BAT8, BAT8 to	
		BAT9, BAT9 to BAT10, BAT10 to BAT11, BAT11	
		to BAT12	
	Analog	SCS	-0.3V to 60V
	Analog	CHG(10uA sink current)	-0.3V to 60V
	Analog	DSG	-0.3V to 12V
Output	Analog	THERMV(power supply for temperature sense	-0.3V to 5.5V
		resistor)	
	Digital	ALERTN/OVPF	-0.3V to 5.5V
I/O	Digital	GPIO[0:2], SCL, SDA, EFETC,	-0.3V to 5.5V
Operating free-air temperature range, TA		erature range, TA	-40°C to 85°C
Storage ter	Storage temperature range, Tstg		-55℃ to 150℃
Lead tempe	erature(solde	ering, 10 sec)	300℃

Note 1: All voltages are with respect to ground of this device except BATn - BAT(n-1), where n=1,2,3,4,5,6,7,8,9,10,11,12cell voltage

Note 2: Ground refers to common node of GNDA and GNDD

Electrical Characteristics

Power Supply					
Parameter	Test Conditions	MIN	TYP	MAX	Unit
Supply Voltage(VCC)		9		60	V
Cupply Current	Full Power Mode			500	uA
Supply Current	Sleep Mode			30	uA

General Purpose Inputs And Outputs(GPIO)					
Parameter	Test Conditions	MIN	TYP	MAX	Unit
V _{IH} High-level Input Voltage		2			V
V⊩ Low-level Input Voltage				0.8	V
Vон Output Voltage High	ILoad=-0.5mA	V3.3-0.7			V
Vol Output Voltage Low	ILoad=0.5mA			0.4	V
Current Drive Capability	GPIO0		1		mA
Current Drive Capability	GPIO1, 2		8		mA

Note 1: All GPIO or open drain pins needs be pull-high or pull-low when not used.

3.3V LDO Regulator					
Parameter	Test Conditions	MIN	TYP	MAX	Unit
Regulator Output Voltage (Full power mode)	I _o <30mA	2.97	3.3	3.63	V
Line Regulation @ iload=20mA				200	mV
Load Regulation @ Vcc=32V				127	mV
3.3V Current Limit (Full power mode)				30	mA
Regulator Output Voltage (sleep mode)	I _o <100uA	2.8	2.95		V
Current Limit (sleep mode)				100	uA

10V LDO Regulator					
Parameter	Test Conditions	MIN	TYP	MAX	Unit
Regulator Output Voltage (Full power mode, Sleep mode)	I _o <10mA	9.45	10.5	11.55	V
Line Regulation @ iload=5mA				500	mV
Load Regulation @ Vcc=32V				1500	mV
10V Current Limit				10	mA

Multi-Channel ADC						
Parameter		Test Conditions	MIN	TYP	MAX	Unit
	Input Voltage Range		0.45		5	V
	Resolution			12 bits		
Lion-ion Cell Voltage Channel	Conversion Time			16		mS
Voltage Charmer	Offset		Auto	offset cance	ellation	
	Slope Support slope calibration MCU application					
	Input Voltage Range		0.1		2.5	V
	Resolution			12 bits		
Internal Temperature (1 channel)	Conversion Time			16		mS
(1 charmer)	Offset		Auto	offset cance	ellation	
	Slope		Support slope calibration in MCU application			
	Input Voltage Range		0.1 2.5		2.5	V
GPIO[1:2] channel	Resolution			12 bits		
	Conversion Time			16		mS
	Offset		Auto offset cancellation		ellation	
	Slope		Support slope calibration in MCU application			

Internal Oscillator						
Parameter	Test Conditions	MIN	TYP	MAX	Unit	
512kHz Oscillator Frequency		470	512	552	KHz	
32kHz Oscillator Frequency		25.6	32	38.4	KHz	

Over-Current(OC) And Short-Circuit(SC) Protection					
Parameter	Test Conditions	MIN	MAX	Step/Unit	
	Charge Over Current (COC)	10mV	105mV	5mV	
OC Detection Threshold Range (Voltage across SRP & SRN)	Discharge Over Current 0(DOC0)	30mV	285mV	5mV	
	Discharge Over Current 1(DOC1)	50mV	620mV	10mV	
	COC	N	/A		
OC Hysteresis Value	DOC0	10	mV	mV	
	DOC1	20	mV	mV	
	COC	2ms	512ms	Note1	
OC Delay Time (8-bit setup)	DOC0	2ms	16S	Note2	
	DOC1	32us	256mS	Note3	
	COC	1s	8s	Variable	
OC Release Time (3-bit setup)	DOC0	1s	4s	Variable	
	DOC1	1		Minute	
SC Detection Threshold Range (SCS pin voltage)	SC	1.0	1.2	V	
SC Hysteresis Value	SC	N	/A		
SC Delay Time (8-bit setup)	SC	128us	1ms	Note 4	
SC Release Time (3-bit setup)	SC	1min		Minute	

Note1: The 3 bits are used to indicate the COC delay time as following:

COC delay	COC delay time	COC delay	COC delay time
3'b000	2ms	3'b100	64ms
3'b001	4ms	3'b101	128ms
3'b010	8ms	3'b110	256ms
3'b011	16ms	3'b111	512ms

Note2: The 4 bits are used to indicate the DOC0 delay time as following:

DOC0 delay	DOC0 delay time	DOC0 delay	DOC0 delay time
4'b0000	2ms	4'b1000	256ms
4'b0001	4ms	4'b1001	512ms
4'b0010	8ms	4'b1010	768ms
4'b0011	16ms	4'b1011	1s
4'b0100	32ms	4'b1100	2s
4'b0101	64ms	4'b1101	4s
4'b0110	96ms	4'b1110	8s
4'b0111	128ms	4'b1111	16s

Note3: The 4 bits are used to indicate the DOC1 delay time as following:

DOC1 delay	DOC1 delay time	DOC1 delay	DOC1 delay time
4'b0000	32us	4'b1000	8ms
4'b0001	64us	4'b1001	16ms
4'b0010	128us	4'b1010	32ms
4'b0011	256us	4'b1011	48ms
4'b0100	512us	4'b1100	64ms
4'b0101	1ms	4'b1101	96ms
4'b0110	2ms	4'b1110	128ms
4'b0111	4ms	4'b1111	256ms

Note4: The 2 bits are used to indicate the SC delay time as following:

SC delay	SC delay time	SC delay	SC delay time
2'b00	0us	2'b10	512us
2'b01	128us	2'h11	1ms

Over-Voltage(OV) And Under-Voltage(UV) Protection					
Parameter	Test Condition	MIN	TYP	MAX	Unit/step
OV Detection Threshold Value		12bits pro	grammable	(0-5V)	V
OV Release Value		12bits programmable (0-5V) V			V
OV Delay Time (2-bit setup)		2 8		8	Scan Cycle
OV Release Time (same as OV delay time)		2		8	Scan Cycle
UV Detection Threshold Value		12bits programmable (0-5V) V		V	
UV Release Value		12bits programmable (0-5V) V		V	
UV Delay Time (4-bit setup)		1		8	Scan Cycle
UV Release Time (same as UV delay time)		1		8	Scan Cycle

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Over Voltage Permanent Fail(OVPF) Protection					
Parameter	Test Conditions	MIN	TYP	MAX	units/step
OVPF Threshold Range 12bits programmable (0-5V)			V		
OVPF Release Value		12bits programmable (0-5V)			V
OVPF Delay Time			8		Scan Cycle
OVPF Release Time (same as					
OVPF delay time)			8		Scan Cycle

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Internal Thermal Protection (OT & UT)					
Parameter	Test Conditions	MIN	TYP	MAX	Unit/Step
OT Detection Threshold value		User	Programma	able	1°C /2.1mV
OT Detection release Range		User	Programma	able	1°C /2.1mV
OT Delay Time (2-bit setup) 2 8			Scan Cycle		
OT Release Time (same as OT delay time)		2		8	Scan Cycle
UT Detection Threshold Value		User Programmable V		V	
UT Detection Release Value		User Programmable V		V	
UT Delay Time (2-bit setup)		2		8	Scan Cycle
UT Release Time (same as UT delay time)		2		8	Scan Cycle

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

External Thermal Protection (OT & UT)					
Parameter	Test Conditions	MIN	TYP	MAX	Unit/Step
OT Detection Threshold value		User	Programma	able	(Note1)
OT Detection release Range		User	Programma	able	(Note1)
OT Delay Time (2-bit setup)		2		8	Scan Cycle
OT Release Time (same as OT delay time)		2		8	Scan Cycle
UT Detection Threshold Value		User	Programma	able	V
UT Detection Release Value		User Programmable		V	
UT Delay Time (2-bit setup)		2		8	Scan Cycle
UT Release Time (same as UT delay time)		2		8	Scan Cycle

Note1: Depends on external temperature sensor characteristics, refer to 'External Temperature Sensor'.

¹ Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Unbalance Protection (UB)					
Parameter	Test Conditions	MIN	TYP	MAX	Unit/Step
UB Detection Threshold value		User	Programma	ıble	(Note1)
UB Delay Time (2-bit setup)		2		8	Scan Cycle
UB Release Time (same as UB delay time)		2		8	Scan Cycle

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Power MOSFET Driver Circuit					
Parameter	Test Conditions	MIN	TYP	MAX	Unit
CHG on, sink current (constant current source),			10		uA
CHG off, no sink current (high impedance)			0		uA
DSG High Level		9.45	10.5	11.55	V
DSG Low Level		0		0.5	V
Rise Time			TBD		
Fall Time			TBD		

AC TIMING

SMBUS Bus Timing

		Liı	nits		
Symbol	Parameter	Min Max	Max	Units	Note
FSMB	SMBUS Bus Operating Frequency	10	250	KHz	
t0	Bus free time between Stop and Start condition	4.7	-	μS	
t1	Hold time after (Repeated) Start condition. After this period, the first clock is generated	4.0	-	μЅ	
t2	Repeated Start condition set up time	4.7		μS	
t3	Stop Condition setup time	4.0	-	μS	
t4	Data hold time	150	-	ns	
t5	Data setup time	250	-	ns	
TIMOUT		25	35	ms	See Note 1
t6	Clock low period	4.7	-	μS	
t7	Clock high period	4.0	50	μS	See Note 2
TLOW:SEXT	Cumulative clock low extend time (slave device)	-	25	ms	See Note 3
TLOW:MEXT	Cumulative clock low extend time (master device)	-	10	ms	See Note 4
tF	Clock/Data Fall time	-	300	ns	See Note 5
tR	Clock/Data Rise Time	-	1000	ns	See Note 5

Note 1: A device will timeout when any clock low duration exceeds this value

Note 2: t5 Max provides a simple guaranteed method for devices to detect bus idle conditions.

Note 3: TLOW:SEXT is the cumulative time a slave device is allowed to extend the clock cycles in one message from the initial start to stop. If a slave device exceeds this time, it is expected to release both its clock and data lines and reset itself.

Note 4: TLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within one byte of a message as defined from start-to-ack, ack-to-ack, or ack-to-stop.

Note 5: Rise and Fall times are measured between 10% to 90% of the signal amplitude.

FUNCTIONAL DESCRIPTION

OZ8940 Power-Up Sequence

Fig.1 shows the OZ8940 power up sequence. When power supply is applied and VCC>9V, the 10V LDO and 3.3V LDO starts first. When Vldo3.3>2.4V, the power on reset block releases a Power-On-Reset (POR) signal to enable the 512KHz oscillator and initializes the digital section. When Power and clock are ready, the digital circuits will read EEPROM data, and then go to different working state based on the *auto_scan_start* setting.

In assembly state, the protection board of OZ8940 will be connected to the battery cells ,it is necessary that the **auto_scan_start** =0 (1 bit in EEPROM register auto_scan_start **[17h]**) will be set first so that OZ8940 does not do ADC scan to prevent errorneous operation.

After battery assembly and OZ8940 power up, **auto_scan_start** = 1 needs to be set and OZ8940 will directly go to the normal working state.

When Vcc is lower than 9V, the OZ8940 is in power off state. All LDOs, V3.3 and V10 are disabled and all MOSFETs are disabled.

Reset Generation (implemented in reset_ctrl)

In OZ8940, there are 2 system reset sources: one is power on reset when V3.3>2.4V; the other is generated when **sleep_support** and **sleep_nsupport** bits are not complementary to each other set by MCU or software.

OZ8940 Power Up Sequence Flowchart

Fig. 1 OZ8940 Power Up

Measurements

OZ8940's multi-channel ADC (as shown in Fig. 2) measures up to 12 cell voltages, internal temperature and external temperature based on cyclic scan and time slot method. It will periodically measure all these values by predefined scan rate. During one measurement period, voltage and other entities will be measured one by one in different time slot.

1. ADC Channel Description

a. Lion-ion Cell Voltage Channel (6~12 channels)

These channels are designed for cell voltage measurement.

Resolution: 12bits (signed)
Input Voltage Range: 0.45V~5.0V

Slope calibration can be implemented in MCU application for better accuracy.

b. Internal Temperature (1 channel)

This channel is designed for internal temperature sensor.

Resolution: 12bits (signed)
Input Voltage Range: 0.1V~2.5V

Slope calibration can be implemented in MCU application for better accuracy.

c. GPIO Channel (2 channel)

GPIO1 and GPIO2 can be configured as external temperature sensor (please refer to the external thermal sensor section) or other analog input in MCU application, for detailed configuration information please refer to EEPROM register *GPIO ctrl* [16h].

GPIO1, GPIO2 can be configure to the external thermal sensor

Accuracy: 12bits (signed)
Input Voltage Range: 0.1V~2.5V

Slope calibration can be implemented in MCU application for better accuracy.

GPIO1, GPIO2 can be configured to other analog input or digital I/O.

2. ADC Time Slot

 Maximum number of the adc channel is 15 (6~12 cell channels + 1 internal temperature + 2 possible external temperature channels)

ADC Channel Time

The ADC time as following: The adc clock is 256KHz, the longest scan period = (12bit ADC time) * 15 = 4164*15/256K=62460/256K=238.27ms. The ADC scan cycle is in 0.25 second.

Internal Bleeding

OZ8940 has embedded O2micro "Balance on Demand (BOD)" technology and Bleeding occurs:

- Battery pack is in charge state (current larger than charge current threshold) or in idle state (current smaller than charge current threshold and larger than discharge current threshold)
- The highest cell voltage exceeds the Bleeding Start voltage and the start bleeding voltage point is programmable (BLD Threshold: 12 Bits in EEPROM registers [2dh]),

Fig.2 External Bleeding Diagram

- The cell voltages' difference exceeds the Bleeding Accuracy and the Balance accuracy is 9.76mV~39mV programmable (Bleeding Accuracy: 3 Bits in EEPROM register [17h]).
- No error event except OV, like OT, UT, UV, UB, OC0, OC, SC. If any error event happens, bleeding stops right away.

This function can also support external bleeding by using some extra components (Fig.2).

Bleeding Control

- (1) During in the bleeding state, the scan rate is 1s (0.25s for adc scan, 0.75s for cell bleeding); during in the cell scan period, any bleeding is stopped; after every scan, do the maximum cell bleeding if it meets the bleeding condition (the maximum cell voltage > bleeding threshold, and the difference between max. cell and min. cell > bleeding_accuracy), while don't care if it has OV or not, and don't care if it is in charge state or in idle state.
- (2) When OT, UT, SC, OC, UB, UV FET disable or in_discharge occurs, any bleeding is stopped.
- (3) During in the non-bleeding state, the scan rate is 0.25s.

Battery Protection

OZ8940 includes a digital Battery Protection Engine (BPE), the BPE constantly monitors data from the ADC and other circuits described below. If a protection error condition is detected and persists, the BPE will force the charge and/or discharge MOSFET off.

Note: The following description for battery protection is based on **fet_control_sel = 0** in reg. 19h, for **fet_control_sel = 1**, please refer to **the MOSFET Control Matrix**.

Over-current (OC)

OZ8940 includes an independent hardware over-current detector that monitors the voltage across the sense resistor to detect over-current in either charge or discharge. There are 1 level for charge OC (COC) and 2 level for the discharge OC (DOC0 and DOC1). If the over-current condition continues for a programmable delay, the protection circuit will turn off the charge and discharge MOSFETs. The charge and discharge over-current thresholds are set in protection register and EEPROM.

In sleep mode, OC detection is not available, only when sleep wakeup timer expired or wakeup by I2C access, or charging /discharging or SC event happened, the OZ8940 will return to full power mode right away, then OC detection is available.

The over-current delay allows the system to momentarily accept a high current condition. This delay time can be programmed

our bo pro	9. 4	
	COC	5bits EEPROM (map to reg.) Control: Start: 10mV; Stop:105mV; Step:5mV
OC Value	DOC0	6bits EEPROM (map to reg.) Control: Start: 30mV; Stop:285mV; Step: 5mV
DOC1		6bits EEPROM (map to reg.) Control:Start:50mV; Stop:620mV; Step:10mV
Lluct	COC	N/A
Hyst. Value	DOC0	10mV
value	DOC1	20mV
	coc	3Bits EEPROM (map to reg.) control: "000": 2ms "001": 4ms "010": 8ms "011": 16ms "100": 64ms "101": 128ms "110": 256ms "111": 512ms
Delay Time	DOC0	4Bits EEPROM (map to reg.) control: "0000": 2ms "0001": 4ms "0010": 8ms "0011": 16ms "0100": 32ms "0101": 64ms "0110": 96ms "0111": 128ms "1000": 256ms "1001": 512ms "1010": 768ms "1011": 1s "1100": 2s "1101": 4s "1110": 8s "1111": 16s
	DOC1	4Bits EEPROM (map to reg.) control: "0000": 32us "0001": 64us "0010": 128us "0011": 256us "0100": 512us "0101": 1ms "0110": 2ms "0111": 4ms "1000": 8ms "1001": 16ms "1010": 32ms "1011": 48ms "1100": 64ms "1101": 96ms "1110": 128ms "1111": 256ms
	сос	2 bits EEPROM (map to reg.) Control: 00:1S; 01:2S; 10:4S; 11:8S
Release	DOC0	2 bits control EEPROm (map to reg.): 00: external release; 01: 1S; 10: 2S; 11; 4S
	DOC1	1 bit control: 0: external release; 1: 1 min. release

Short circuit (SC)

Short-circuit detection circuit independently sense the PACK- voltage when discharge MOSFET is on. When short-circuit condition is detected, OZ8940 will turn off charge and discharge MOSFETs. Short-circuit threshold is fixed and can't adjusted, but its delay time is programmable

SC threshold	1.0V+/- 300mV
Hysteresis Value	N/A
Delay Time	2 bits EEPROM (map to reg.) Configure: "00": 0, immediately (nature delay) "01": 128us "10": 512us "11": 1ms
Release	1 bit control: 0: external release; 1: 1 min. release

Even in sleep mode, the SC detector still alive. When short-circuit condition happened and detected in sleep mode, OZ8940 will OFF charge/discharge FETs and turn to full power working mode.

Over-voltage (OV)

The protection engine performs over-voltage detection by comparing 12 bits values from the ADC with an OV threshold, which is programmable. The threshold is setup in EEPROM. When over-voltage condition is detected, OZ8940 will turn off the charge FET after a delay time. This delay time is programmed in EEPROM.

In sleep mode, OV detection is not available, only when sleep wakeup timer expired or wakeup by I2C access, or charging /discharging or SC event, the OZ8940 will return to full power mode, then OV detection is available.

OV Value	12Bits EEPROM programmable
OV Delay Time	2Bits EEPROM (map to reg.) Control:1.2. 4. 8 scan cycles
Release Value	12Bits EEPROM programmable
Release Delay Time	Same as OV delay time

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Under-voltage (UV)

Under-voltage detection operates in the same way as over-voltage detection. Its threshold also can be programmed. The threshold is setup in EEPROM. Under-voltage protection has the same delay time as the over-voltage protection.

In sleep mode, UV detection is not available, only when sleep wakeup timer expired or wakeup by I2C access, or charging /discharging or SC event, the OZ8940 will return to full power mode, then UV detection is available.

UV Value	12Bits EEPROM programmable
UV Delay Time	2 Bits EEPROM (map to reg.) Control:1, 2, 4, 8 scan cycles (Share with OV)
Release Value	12Bits EEPROM programmable
Release Delay Time	Same as UV delay time

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Cells voltage unbalance (UB)

When cell to cell voltage difference is large compared to the set value (12 bits EEPROM configuration) for longer than delay time (set as 2 bits of EEPROM configuration), OZ8940 will turn off the charge and discharge MOSFET. This protection can act as the cell voltage sense wire disconnection detection function. When one or more cell's sense wire disconnection is detected, the sensed cell's voltage compared to any other adjoining cell is larger than 1.2V while it's own cell voltage is higher than 2.2V, this characteristic can be used as the wire disconnection detection.

In sleep mode, UB detection is not available, only when sleep wakeup timer expires or wakeup by I2C access takes place, or charging /discharging or SC event, the OZ8940 will return to full power mode, then UB detection is available.

UB value	12Bits EEPROM programmable				
UB delay	2 Bits EEPROM (map to reg.) Control: 2, 4, 6, 8 scan cycles				
Release Value	12 Bits EEPROM programmable				
Release Delay Time	Same as UB delay				

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Thermal Protection (OT & UT)

Thermal protection is performed based on inputs from both the internal temperature sensor and the optional external temperature sensors. Thermal information may be used to temporarily interrupt the charge cycle, or to disable discharge; OZ8940 provides both low temperature and high temperature protection.

In sleep mode, OT/UT detection is not available, only when sleep wakeup timer expired or wakeup by I2C access, or charging /discharging or SC event, the OZ8940 will return to full power mode, then OT/UT detection is available.

OT Value	External: 12Bits EEPROM Internal: 12Bits EEPROM
OT Delay Time	2Bits EEPROM (map to reg.) control: 2, 4, 6, 8 scan cycles
Release Value	External: 12Bits EEPROM Internal: 12Bits EEPROM
Release Delay Time	Same as OT delay time

LIT Value	Charge	External: 12Bits EEPROM / Internal: 12Bits EEPROM
O i value	Discharge	N/A
UT Del	ay Time	2Bits EEPROM (map to reg.) control: 2, 4, 6, 8 scan cycles (Share with OT)
Release Value	Charge	External: 12Bits EEPROM Internal: 12Bits EEPROM
value	Discharge	N/A
Release D	Delay Time	Same as UT delay time

Note: 1 Scan cycle time = 0.25s for the non-bleeding period and 1s for the bleeding time

Over Voltage Permanent Failure (OVPF)

In case the OV protection fails, such as when the charge control mosfet is broken, OZ8940 provides the secondary protection PF function, there are 12Bits EEPROM for the OVPF threshold voltage and 12Bits EEPROM for the release voltage, when the cell voltage exceeds the threshold voltage and after a delay of 8 scan times, the OVPF event occurs and OZ8940 will send out the PF signal to blow the fuse, only when the cell voltage is less than the PF release voltage and delay 8 scan times, the PF signal can be released.

In OVPF, the discharge MOSFET and charge MOSFET are kept on previous status, and OZ8940 is still in full power mode when OVPF occurs, and scan rate is 0.25S.

Power Mode

To save power, OZ8940 works in different power modes according to the system status. There are 2 power modes as shown below:

Full Power Mode: < 500µA Sleep Mode: < 30uA

Fig. 4 OZ8940 Power Mode Diagram

Detail description for power mode transition

State Description (Fig. 4)

State	
State	Description
Full Power	Voltage, temp. scan
	Safety protection check
	V3.3 (can supply up to 30mA) and V10 (can supply up to 10mA) power supply enabled
	OCP,SCP current detector and wakeup integrator block enabled
	Wake-up timer disabled
Sleep	Stop voltage and temp scan
	Stop safety protection check except for SC event detection based on SCS pin
	Backup V3.3 (can only supply 100uA) and V10 (can supply up to 10mA) supply enabled
	Wake-up integrator for current detector, Wakeup timer enabled
	SC detection based on SCS pin enabled

Transition Description

Transition	Initial State	Condition	Final State
1	Full Power	 No charge/discharge and No OV, OT, UT, OC, SC, event for 4 consecutive scan times Note: OZ8940 can enter into sleep mode in UV and UB event. No bleeding event SMBUS is not active 	Sleep
2	Sleep	 sleep timer expired SC event occurs SMBUS activity charge/discharge current (detected by wake-up integrator) 	Full Power

Notes

(1) The wake-up integrator is always enabled in sleep mode. It monitors charge/discharge current, so that in_charge, in_discharge or idle state can be identified.

- Once any cell is in bleeding (i.e. bleeding condition is met), OZ8940 changes the scan rate from 0.25s to 1s, i.e. 0.25s for ADC scan, and 0.75s for bleeding.
- (3) If no protection event (no OV, OT/UT, OC/SC) occurs and no bleeding in idle state (no charge and discharge) for four consecutive ADC scan cycles, OZ8940 will enter sleep mode. SC (Short-circuit) event, wake-up integrator detect charge/discharge current, SMBus activity or wakeup timer (1 or 4 Minutes) expiry will wake up OZ8940 from sleep mode to full power mode. After wakeup, the 12h~1fh EEPROM data will be automatically mapped again into the corresponding operation registers to improve reliability.

MOSFET Control Matrix

If **fet_control_sel=0** in **reg. 19h**, please refer the FET control as follows:

Events	ALERTR and Status	MOSFET State
1.No protection event		DSG and CHG on
2.Normal to short circuit(SC) event	sc_alert_flag=1	DSG and CHG off
3.Normal to over current(OC) event	oc_alert_flag=1	DSG and CHG off
4.Normal to over temperature(OT) event	ot_alert_flag=1	DSG and CHG off
5.Normal to unbalance(UB) event	ub_alert_flag=1	DSG and CHG off
6.Normal to under temperature(UT) only event	ut_alert_flag=1	DSG on and CHG off
7.Normal to under temperature(UT) and in discharge event	ut_alert_flag=1	DSG and CHG on
8.Normal to under voltage (UV) and no charge event	uv_alert_flag=1	DSG off and CHG on
9.Normal to under voltage (UV) and in charge event	uv_alert_flag=1	DSG and CHG on
10.Normal to under voltage (UV) and under temperature (UT) event	uv_alert_flag=1 & ut_alert_flag=1	DSG and CHG off
11.Normal to over voltage (OV) and no discharge event	ov_alert_flag=1	DSG on and CHG off
12.Normal to over voltage (OV) and in discharge event	ov_alert_flag=1	DSG and CHG on
13.Normal to over voltage (OV) and under voltage(UV) event	ov_alert_flag=1& uv_alert_flag=1	DSG and CHG off
14. Over Voltage PF(OVPF) event	ovpf_alert_flag=1	DSG and CHG keep on previous status

If **fet_control_sel = 1 in reg.19h**, please refer to FET control as follows:

Events	ALERTR and Status				MOSFET State
1 No protection event				DSG and CHG on	
2.Normal to unbalance(UB)	UB	UB OT ALERTR			
over temperature(OT) event	0	1	ot_	DSG and CHG	
	1	0	ub_	alert_flag=1	off
	1	1		alert_flag=1& _alert_flag=1	
3.Normal to charge over current(COC) & no under voltage(!UV) event			oc_alert_fl	ag=1	DSG on and CHG off
4.Normal to charge over current(COC) & under voltage(UV) event		oc_ale	ert_flag=1& u	v_alert_flag=1	DSG and CHG off
4.Normal to short circuit(SC) discharge over current0 (DOC0) discharge over current1(DOC1)&no over voltage(!OV) &no under temperature(!UT) event		oc_al	DSG off and CHG on		
5.Normal to short circuit(SC) discharge over current0	OV	UT	SC,DOC0, DOC1	ALERTR	
(DOC0) discharge over current1(DOC1)&over voltage(OV) under	0	1	1	oc_alert_flag=1 sc_alert_flag=1 & ut_alert_flag=1	
temperature(UT) event	1	0	1	oc_alert_flag=1 sc_alert_flag=1 & ov_alert_flag=1	DSG and CHG off
	1	1	1	oc_alert_flag=1 sc_alert_flag=1 & ov_alert_flag=1 & ut_alert_flag=1	
6. Normal to no over voltage(!OV) & no under	N disch		ut_alert_flag=1		DSG on and CHG off
voltage(!UV) & under temperature(UT) event	disch	arge	ut_alert_flag=1		DSG and CHG on
7.Normal to no over voltage(!OV) & under	No charg	je	uv_alert_flag=1		DSG off and CHG on
voltage(UV) & no under temperature(!UT)	char	ge	uv_a	uv_alert_flag=1	
8.Normal to no over voltage(!OV) & under voltage(UV) & under temperature(UT) event	Normal to no over Iltage(!OV) & under uv_alert_flag=1& ut_alert_flag=1				DSG and CHG off

Events	A	MOSFET State		
9 Normal to over voltage(OV) & no under voltage(!UV) &	Charge/ Discharge	OV	ALERTR	
(under temperature(UT) or no under temperature (!UT)	No discharge	1	ov_alert_flag=1	DSG on and CHG off
event	discharge	1	ov_alert_flag=1	DSG and CHG on
10.Normal to over voltage (OV) & under voltage(UV) & (under temperature(UT) or no under temperature(!UT) event	ov_alert_flag=1 & uv_alert_flag=1			DSG and CHG off
11 Over Voltage PF		ovpf_alert	_flag=1	DSG and CHG keep on previous status

Alert (interrupt) Operation

If OZ8940 co-work with external MCU, it can output negative pulse interrupt signal to inform MCU what happened. The interrupt signal will be generated when one ADC data is finished, or SC, OC, OV, UV, OT, UT, UB, or OVPF happened.

Internal Temperature Sensor

OZ8940 takes advantage of silicon device physics and circuit design technology for the internal temperature sensor. The internal temperature sensor generates a voltage level which is proportional to the temperature. As Fig.5 showing below, with a temperature increase of 1°C, internal temperature sensor output voltage will increase 2.0976mV. The offset can be get from the 12Bit EEPROM which measured in the ATE test. So, if at T0, ADC reading out VT0, the characteristic curve function can be get:

VTS (mV)=2.0976*T+(VT0-2.0976*T0)

Fig. 5 Internal Temperature Sensor Curve

External Temperature Sensor

OZ8940 provides 3 GPIOs for external temperature detection, the application circuitry is shown in Fig.6. We recommend using 103 NTC type thermistor.

103 NTC Thermistor RT characteristics are shown in Fig. 7. The sensed voltage Vt characteristics are shown in Fig. 8

For Example: Vt2=3.3V * RT2 / (RB2 + RT2)

Fig.6 External Temperature Sensor Application

V(t)

Vt Characteristics

Fig.7 Thermistor RT characteristics

Fig.8 The sensed voltage Vt characteristics

Power MOSFET Driver Control

Smart MOSFET driver is designed for N-type MOSFET controlled charge, and discharge. The driver also supports parallel and series charge discharge loop.

The charge and discharge MOSFET are controlled through protection register, subject to override by the Battery Protection Engine (BPE). OZ8940 also provides a pin (EFETC) for external MOSFET control signal input or internal MOSFET control signal outputit makes the MOSFET control very flexible. The discharge (DSG) MOSFET gate-to-source voltage is clamped to 10V (typical) when MOSFET is in ON state; CHG pin internally embedded a 10uA current sink for P-type charge driver or level shift for N-type charge MOSFET driver in ON state. When charge MOSFET in OFF state, this 10uA current source is disable and CHG pin is

Note 2Bits in EEPROM configure the PIN's function: charge & discharge FET off (input), charge FET off (input), discharge FET off (input) and discharge FET off (output)

in high impedance state. The charge MOSFET gate-to-source voltage is decided by external divider resistor and the pack voltage. MOSFET driver circuits are shown in Fig.9 and Fig.10.

Fig.9 MOSFET drive circuit with P-type charge MOSFET

Fig.10 MOSFET drive circuit with N-type charge MOSFET

Serial Communication Bus

OZ8940 supports SMBus communication interface. The SMBUS master can access OZ8940's registers with SMBUS protocol. In this condition, OZ8940 is working as an SMBUS slave device.

2-wire SMBUS Bus

In OZ8940, the 3-bit SMBus address config specifies the 8-bit SMBus address as 8'h60 + 2*N.

The following slave address byte indicates the SMBus device address is 8-bit 60h (Bit7~bit1 is the device address, the bit0 selects SMBus read or write).

Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0	1	1	0	0	0	0	r/wn

Write Data Access

In write data access, there are some bytes transmitted from master to slave as following:

slave address byte: slv_addr[6:0], r/wn; register index byte: reg_index[7:0];

write data bytes: write data.

slv_addr[6:0] is the SMBus address to select an SMBus device.

r/wn is the read/write bit. If "1", selects read access; if "0", selects write access. Here for write data access, it is "0".

reg_index[7:0] is used to select register index. write data are the data for write data access.

The above diagram shows the timing of writing data access. At first is slave_addr[6:0] to select one slave node; the next byte is reg_index to define the register index; the next bytes are some bytes data for write.

The first write address is reg_index. Once one byte data is written successful, the internal register address will be +1 automatically so that the next bytes data will be written in continuous address registers.

Read Data Access

For the read data access, there are two cases: one is with setting reg_index; the other is without setting reg_index.

In read data access with setting reg_index, there are some bytes transmitted as following:

slave address byte from master to slave: slv_addr[6:0], r/wn; register index byte from master to slave: reg_index[7:0]; read data bytes from slave to master: read data.

The above diagram shows the read data access with setting reg_index. First is the slave address to select one slave device; then is reg_index to select the register index; then is repeated start; then is slave address again, next are some bytes read data from slave device.

Timeout

Consideration the reliability, if SCL or SDA line is kept low for more than 25ms, the SMBus engine will be reset and guarantee not to drive the SCL or SDA to low by OZ8940.

Wake-up Integrator and charge/discharge detector

The wake-up integrator is used to detect small charge / discharge current and make decision that the system is in charge, or in discharge state.

For saving power, OZ8940 will enter into sleep mode if charge/discharge current less than the threshold for four consecutive ADC scan cycles and no safety events happen. In this case, the wakeup integrator is used to wakeup OZ8940 from sleep mode when charge/discharge current is detected. In the sleep mode, backup 3.3V power supply provides system power, internal 32KHz oscillator provides system clock, wakeup integrator monitors the charge/discharge current and SCS circuit provides short circuit protection. If the charge/discharge current is higher than the wakeup current threshold, the integrator wakes up the whole system. If SCS pin detects short circuit event, it will turn off discharge MOSFET immediately, then inform the OZ8940 to wakeup. Additionally, OZ8940 also provides wakeup timer and SMBUS bus activity wakeup mechanism.

The Wake-up charge and discharge current can be adjusted by setting <code>chg/dsg_ integ_ctrl[1:0]</code> in EEPROM register <code>integrator control [18h]</code>.

Wake-up current can be estimated using the equation below.

$$(I_{\min} \times R_{\text{sens}}) \times F_{\text{osc32k}} \times T_{\text{integ}} = 2.0V$$

Here, I_{\min} is the minimum charge/discharge current to wake up the system

 $R_{\rm sens}$ is resistance of sense resistor,

 $F_{
m osc32k}$ is the output frequency of internal 32k clock which is between 21k and 37k.

 $T_{\rm integ}$ is the integrating time for discharge or charge which can be programmed in EEPROM register *integrator control* [18h]. The threshold voltage 2.0V is a fixed design value.

For example,
$$F_{\rm osc32k}=26K, R_{\rm sens}=2.5m\Omega, T_{\rm integ}=64mS$$

Then we can get $I_{\rm min} = 2000/(2.5 \times 26 \times 64) = 0.48 A$

In sleep mode, when discharge or charge current is higher than 0.48A, OZ8940 will wake up from sleep mode in about 64mS. Otherwise, OZ8940 will stay in sleep mode.

EEPROM AND OPERATION REGISTERS MAP

OZ8940 has two types of registers. One type is OZ8940's operation registers which addresses from 00h to 3fh; the other type is embedded EEPROM registers which addresses from 00h to 3fh. Software can directly access OZ8940's operation registers via SMBUS; and software can access the EEPROM registers indirectly by access the operation registers 08h~0bh.

EEPROM registers are used to store important battery pack, battery cell information and to configure the OZ8940 chip. Operation registers are used to store ADC instant data, OZ8940 status information, and some parameters to control OZ8940 state-machine, etc. When system is powered on, the data in EEPROM register 12h-1fh will be loaded into the Operation registers 12h-1fh respectively. Fig. 11 shows the configuration of EEPROM registers and Operation registers.

Fig.11 Configuration of EEPROM Register and Operation Register

Page 29

OZ8940 Operation Registers

The EEPROM data from 12h to 1fh will be mapped into the operation registers from 12h to 1fh.

Reg.	Register	Bit Number										
(hex)	Name	7	6	5	4	3	2	1	0			
00	OZ8940Ver		chip_id	d[3:0]			chip_ver	sion[3:0]				
01			Reserved									
02	ADCDR1		adc_da	ta[3:0]		adc_cha	nnel[3:0]					
03	ADCDR2				adc_dat	a[11:4]						
04	MinDR1		cell_min_e	data[3:0]		cell_min_channel[3:0]						
05	MinDR2				cell_min_d	lata[11:4]						
06	MaxDR1		hannel[3:0]									
07	MaxDR2	cell_max_data[11:4]										
80	EEHByte		Reserved									
09	EELByte		ee_data[7:0]									
_ 0a	EEADDR	Reser	ved			ee_ad	addr[5:0]					
Ob	EECTRL	ee_busy	Rese	erved	ee_mo	de[1:0]		ee_op_code[2:0]				
0с	SYSSR1	chg_enable	dsg_enable	in_charge	in_discharge	ov_fet_disable	uv_fet_disable	ot_fet_disable	ut_fet_disable			
0d	SYSSR2	ub_fet_disable	sc_fet_disable	coc_fet_disable	doc0_fet_disabl e	doc1_fet_disabl e	scp	соср	docp0			
0 e	SYSSR3	docp1	in_bleeding	sleep_state	ref_enable	cd_enable	ocp_enable	scp_enable	ovpf			
Of	ALERTR	adc_alert_flag	sc_alert_flag	oc_alert_flag	ov_alert_flag	uv_alert_flag	ot_alert_flag	ut_alert_flag	ub_alert_flag			
10	WakeupFR	integ_wakeup_flag	sc_wakeup_flag	SMBUS_wakeu p_flag	timer_wakeup_fl ag	ovpf_alert_flag	Reserved					
11~14					Rese	rved						
15	ATEctrl	ate_freeze				Reserved						
16	SYSconfig	gpio_cti	rl[1:0]		SMBus_addr[2:0]		cell_number[2:0]					
17	MiscCtrl	auto_scan_start	sleep_time	ovpf_enable	Reserved	bleeding_ad	ccuracy[1:0]		ode[1:0]			
18	IntegratorCtrl		Rese	rved		chg_integ	g_ctrl[1:0]	dsg_inte	g_ctrl[1:0]			
. 19	COCctrl	fet_control_sel		ease[1:0]		coc_ctrl[4:0]						
1a	DOC0ctrl	doc0_rele				doc0_ctrl[5:0]						
1b	DOC01delay		doc0_de	lay[3:0]		doc1_delay[3:0]						
1c	DOC1ctrl	sc_release	doc1_release			doc1_c	ctrl[5:0]					
1d	COCSCdelay		Reserved			coc_delay[2:0]		sc_de	ay[1:0]			
1e	VTUBTimeou t	user_freeze	ub_enable	ovuv_tim	ovuv_timeout[1:0] otut		eout[1:0]	ub_timeout[1:0]				
1 f	FunctionCtrl	ee_enable	test_enable	Reserved			sleep_support sleep_nsupport					
20	OUVtimer	Reser	served ov_timer[2:0]			uv_timer[2:0]						
21	OUTtimer	Reser	ved		ot_timer[2:0]	ut_timer[2:0]						
22	UBtimer	Reserved					ub_timer[2:0]					
23~3f	Reserved				Rese	rved						

Detailed Operation Register Information

Register 00h - Chip ID & Revision Register (OZ8940Ver)

Bit #	Name	Description		Reset Value
7:4	chip_id[3:0]	This indicates the chip ID of OZ8940.	R	2h
3:0	chip_version[3:0]	This indicates the chip revision of OZ8940. "0" indicates A version, "1" indicates B version, "2" indicates C version,, and so on.	R	0h

Register 01h - Reserved Register

Register 02h & 03h - ADC Data Register (ADCDR1 & ADCDR2)

This two registers are used to save the ADC data for every channel, The adc_channel[3:0] is used to distinguish this data belong to which channel.

Bit #	Name (Reg.02h)	Description	R/W	Reset
7:4	adc_data[3:0]	the ADC data low byte		0h
3:0	adc_channel[3:0]	"0000": don't use; "0001" ~ "1100": indicates cell1 ~ cell12; "1101": internal temperature chanel; "1110": gpio1 channel; "1111": gpio2 channel.	R	0h

Bit #	Name(Reg.03h)	Description	R/W	Reset
7:0	adc_data[11:4]	the ADC data high byte	R	0h

Register 04h & 05h - Min. Cell ADC Data Register (MinDR1 & MinDR2)

This two registers are used to save the minimum cell voltage ADC data.

Bit #	Name(Reg.04h)	Description		Reset
7:4	cell_min_data[3:0]	the ADC data low byte of the minimum cell voltage		0h
3:0	cell_min_channel[3:0]	"0000": don't use; "0001" ~ "1100": indicates cell1 ~ cell12; "1101"~"1111": Reserved.	R	0h

Bit #	Name(Reg.05h)	Description	R/W	Reset
7:0	cell_min_data[11:4]	the ADC data high byte of the minimum cell voltage	R	0h

Register 06h & 07h - Max. Cell ADC Data Register (MaxDR1 & MaxDR2)

This two registers are used to save the maximum cell voltage ADC data.

Bit #	Name(Reg.06h)	Description		Reset
7:4	cell_max_data[3:0]	the ADC data low byte of the maximum cell voltage	R	0h
3:0	cell_max_channel[3:0]	"0000": don't use; "0001" ~ "1100": indicates cell1 ~ cell12; "1101"~"1111": Reserved.	R	0h

Bit #	Name(Reg.07h)	Description	R/W	Reset
7:0	cell_max_data[11:4]	the ADC data high byte of the maximum cell voltage	R	00h

Register 08h & 09h – EEPROM Data Register (EEHByte & EELByte)

The EEPROM word is 16bits, but for our application, the EEPROM word is organized as 12bits, so the high byte is only 4bits. If you want to write one byte in EEPROM, ee_data[11:8] (Reg. 08h) don't care.

Bit #	Name(Reg.08h)	Description		default
7:4	Reserved	Reserved (unimplemented)		
3:0	ee_data[11:8]	high byte for eeprom	RW	0h

Bi	# Name(Reg.09h)	Description	R/W	default
7:	0 ee_data[7:0]	low byte for eeprom	RW	00h

Register 0ah – EEPROM Address Register (EEADDR)

Bit #	Name	Description	R/W	default
7:6	Reserved	Reserved (unimplemented)		
5:0	ee_addr	used to access the EEPROM from 00h ~ 3fh.	RW	0h

Register 0bh - EEPROM Control Register (EECTRL)

Bit #	Name	Description	R/W	Default
7	ee_busy	This bit is high indicating the eeprom is being accessed. After the access, it is low. Only when this bit is low, the software can start another eeprom's access.	R	0h
6:5	Reserved	Reserved (unimplemented)		
4:3	ee_mode These bits are used to select eeprom mode. If set to "11", select eeprom mode; if set to other values, select non-eeprom mode. In eeprom mode, software can access the eeprom and the safety scan is disabled. In non-eeprom mode, software can not access the eeprom.		RW	0h

Bit #	Name		Description		R/W	Default
		These bits are used to specify th	e eeprom's accesses as following:			
		ee_op_code[2:0]	Access			
	ee_op_code 3'b000 no access 3'b011 Word erase 3'b010 Word write 3'b011 Block erase 3'b100 Block Write for EE Test 3'b101 Normal read 3'b110 do mapping	3'b000	no access			
		3'b001	Word erase		RW	
2:0		3'b010	Word write			0h
		3'b011	Block erase			
		Block Write for EE Test				
		Normal read				
		do mapping				
		3'b111	Reserved			

Register 0ch - System Status Register1 (SYSSR1)

Bit #	Name	Description	R/W	default
7	chg_enable	active high to enable charge MOSFET	R	0
6	dsg_enable	active high to enable discharge MOSFET	R	0
5	in_charge	active high to indicate system is in charge state	R	0
4	in_discharge	active high to indicate system is in discharge state	R	0
3	ov_fet_disable	active high to indicate over voltage has been confirmed, the reset value after reset is "1" for more safety, because the charge MOSFET will be switched off when this bit is set to 1.	R	1
2	uv_fet_disable	active high to indicate under voltage has been confirmed, the reset value after reset is "1" for more safety, because the discharge MOSFET will be switched off when this bit is set to 1.	R	1
1	ot_fet_disable	ctive high to indicate over temperature has been confirmed		0
0	ut_fet_disable	active high to indicate under temperature has been confirmed	R	0

Register 0dh - System Status Register2 (SYSSR2)

Bit #	Name	Description	R/W	default
7	ub_fet_disable	ctive high to indicate unbalance has been confirmed		0
6	sc_fet_disable	active high to indicate short circuit has been confirmed	R	0
5	coc_fet_disable	active high to indicate charge over current has been confirmed	R	0
4	doc0_fet_disable	active high to indicate discharge level0 over current has been confirmed	R	0
3	doc1_fet_disable	active high to indicate discharge level1 over current has been confirmed	R	0
2	scp	short circuit signal from analog block	R	0
1	соср	charge over current signal from analog	R	0
0	docp0	discharge over current level0 signal from analog	R	0

Register 0eh - System Status Register3 (SYSSR3)

	Register con System status registers (51 corts)					
Bit #	Name	Description	R/W	default		
7	docp1	scharge over current level1 signal from analog		0		
6	in_bleeding	in_bleeding active high to indicate bleeding condition is met (max cell voltage > bleeding threshold, and max cell voltage – min cell voltage > bleeding accuracy)		0		
5	sleep_state	active high to indicate system is in sleep state	R	0		
4	ref_enable	to observe ref_enable signal	R	0		
3	cd_enable	to observe cd_enable signal	R	0		

Bit #	Name	Description	R/W	default
2	ocp_enable	to observe ocp_enable signal	R	0
1	scp_enable	to observe scp_enable signal	R	0
0	ovpf	active high to indicate OV PF has been confirmed.	R	0

Register 0fh - Alert Flag Register (ALERTR)

Bit #	Name	Description	RWC	defult
7	adc_alert_flag	set by hardware when one adc data (including adc fft) is finished, and cleared by SMBUS writing one to this bit.	RC	0
6	sc_alert_flag	by hardware when sc is confirmed, and cleared by SMBUS writing one to bit.		0
5	oc_alert_flag	set by hardware when oc is confirmed, and cleared by SMBUS writing one to this bit.	RC	0
4	ov_alert_flag	set by hardware when ov is confirmed, and cleared by SMBUS writing one to this bit.	RC	0
3	uv_alert_flag	set by hardware when uv is confirmed, and cleared by SMBUS writing one to this bit.	RC	0
2	ot_alert_flag	set by hardware when ot is confirmed, and cleared by SMBUS writing one to this bit.	RC	0
1	ut_alert_flag	set by hardware when ut is confirmed, and cleared by SMBUS writing one to this bit.	RC	0
0	ub_alert_flag	set by hardware when ub is confirmed, and cleared by SMBUS writing one to this bit.	RC	0

Note: one low pulse unmasked interrupt signal will be generated when one adc data is finished, or SC, OC, OV, UV, OT, UT, UB or OVPF happened.

Register 10h - Wakeup Event Flag Register (WakeupFR)

Bit #	Name	Description	R/C	default
7	integ_wakeup_flag	set by hardware when there is output from integrator in sleep state, and cleared by SMBUS writing one to this bit.	RC	0
6	scp_wakeup_flag	set by hardware when sc event occurs in sleep state, and cleared by SMBUS writing one to this bit.	RC	0
5	SMBUS_wakeup_flag	set by hardware when SMBUS access (slave address matched) occurs in sleep state, and cleared by SMBUS writing one to this bit.	RC	0
4	timer_wakeup_flag	set by hardware when the sleep timer (1 or 4 minutes) is expired, and cleared by SMBUS writing one to this bit.	RC	0
3	ovpf_alert_flag	set by hardware to indicate OV PF occurs ever, and cleared by SMBUS writing one to this bit.	RC	0
2:0	Reserved	Reserved (unimplemented)		

Register 11h~14h - Reserved

Register 15h - ATE Control Register (ATEctrl)

This register is mapped from EEPROM data 15h.

Bit #	Name	Description	R/W	Default
7		active high to freeze the mapped ATE data in internal register 12h~15h and the ATE data in EEPROM register from 00h~15h. But block erase is always open to SMBUS via the EEPROM controller when the EEPROM is enabled by ee_enable=1. This bit can only be read via SMBUS. This bit can be written by mapping the corresponding EEPROM data.		Oh
6:0	Reserved	Reserved (unimplemented)		

Register 16h - System Configuration Register (SYSconfig)

This register is mapped from EEPROM data 16h.

Bit #	Name		Description		R/W	Default
7:6	gpio_ctrl[1:0]	output for output this channel, gpid in normal work si "10": select gpio2 output for output this channel, gpid in normal work si "11": select gpio2 as digital output in	"01': select gpio1 as external temperature channel (gpio0 is configured as digital output for outputting 3.3V to power the external thermal sensor circuit when scanning this channel, gpio1 is configured as analog pin, gpio2 is configured as digital input pin in normal work state); "10": select gpio2 as external temperature channel (gpio0 is configured as digital output for outputting 3.3V to power the external thermal sensor circuit when scanning this channel, gpio2 is configured as analog pin, gpio1 is configured as digital input pin in normal work state); "11": select gpio1 and gpio2 as external temperature channels (gpio0 is configured as digital output for outputting 3.3V to power the external thermal sensor circuit when scanning this channel, gpio1 and gpio2 are configured as analog pin in normal work			
5:3	SMBus_addr[2:0]		s device address as 8'h60 + 2*N.		RW	0h
2:0	cell_number[2:0]	cell number 3'b000 3'b001 3'b010 3'b011 3'b100 3'b101 3'b110	n the battery pack as following: cell count in the battery pack Reserved, don't do scan 6 7 8 9 10 11		RW	Oh
		3'b111	12			

Register 17h – Misc Control Register (MiscCR) This register is mapped from EEPROM data 17h.

This register is mapped from EEPROM data 17h.						
Bit#	Name	Description	R/W	reset		
7	auto_scan_start	This bit will be checked only after power on reset or internal reset and after EEPROM mapping. After the reset mapping, if cell_number is not "000" and auto_scan_start = 1, ADC scan will be started.		0		
6	sleep_time	sleep_time '0': for 1 Minute; '1': for 4 Minutes.		0		
5	ovpf_enable	'0': disable OV PF output; '1': enable OV PF output to TCLK/ALERTN/OVPF pin	RW	0		

Bit #	Name	Description	R/W	reset
4	Reserved	Reserved (unimplemented)		
		Select bleeding accuracy as follows: 2 bits Bleeding accuracy		
		2'b00 4*2.44 = 9.76mv		
		2'b01 8*2.44 = 19.5mv		
3:2	bleeding_accuracy[1:0]	2'b10 12*2.44 = 29.3mv	RW	00
		2'b11 16*2.44 = 39.0mv		
		The cell bleeding is be stopped if the max_voltage – min_voltage <		
		bleeding accuracy.		
		Select EFETC pin function as following:		
		code EFETC pin function		
		00 If "1", force charge FET OFF; if "0", charge FET is decided by the internal logic.		
1:0	efetc_mode[1:0]	01 if "1", force discharge FET OFF; if "0", discharge fet is decided by the internal logic.	RW	0h
		If "1", force charge FET and discharge FET OFF; if "0", charge FET and discharge FET are decided by the internal logic.		
		11 output the internal discharge MOSFET control signal		

Register 18h – Integrator Control Register (IntegratorCtrl) This register is mapped from EEPROM data 18h.

Bit #	Name		Description	R/W	/ [Default
7:4	Reserved	Reserved (unimplemented)				
		Integration time for charge as fo	llowing:			
		charge integrator control	Integration time]		
3:2	chg_integ_ctrl[1:0]	2'b00	32ms	RW	,	00
0.2	0.1909_0[0]	2'b01	64ms	1 ""		
		2'b10	128ms	1		
		2'b11	256ms]		
		Integration time for discharge as	s following:			
		Discharge integrator control	Integration time]		
1:0	dsg_integ_ctrl[1:0]	2'b00	16ms	RW		00
	3	2'b01	32ms]		
		2'b10	64ms]		
		2'b11	128ms]		

Register 19h - COC Control Register (COCctrl)

This register is mapped from EEPROM data 19h.

Bit #	Name	Description	R/W	Reset
7	fet_control_sel	"0": switch off charge and dischare MOSFET when charge OC, discharge OC or/and SC occur, while don't care if in charge or in discharge state; "1": switch off charge MOSFET when COC occurs, while discharge MOSFET keeps on if no UV, no OT and no UB; switch off discharge MOSFET when DOC or/and SC occur, while charge MOSFET keeps on if no OV, no OT, no UT and no UB		
6:5	coc_release[1:0]	Control the charge OC release as following: 2-bit charge OC release 00 1s release. The charge OC will not be released until 1s time out. 01 2s release. The charge OC will not be released until 2s time out. 10 4s release. The charge OC will not be released until 4s time out. 11 8s release. The charge OC will not be released until 8s time out.	RW	00

Bit4 – Bit0 COC_ctrl [bit4:bit0]: Configure the charge over current threshold.

Bit4 - Bit0	COC threshold	Bit4 - Bit0	COC threshold
00000 - 00101	Reserved	10000	60mV / Rs
00110	10mV / Rs	10001	65mV / Rs
00111	15mV / Rs	10010	70mV / Rs
01000	20mV / Rs	10011	75mV / Rs
01001	25mV / Rs	10100	80mV / Rs
01010	30mV / Rs	10101	85mV / Rs
01011	35mV / Rs	10110	90mV / Rs
01100	40mV / Rs	10111	95mV / Rs
01101	45mV / Rs	11000	100mV / Rs
01110	50mV / Rs	11001	105mV / Rs
01111	55mV / Rs	10010 – 11111	Reserved

Register 1ah - Discharge OC0 Control Register (DOC0ctrl)

This register is mapped from EEPROM data 1ah.

Bit #	Name	•	Description	R/W	Reset
		Control t	he discharge OC0 release as following:		
		2-bit	Discharge OC0 release		
7:6	doc0_release[1:0]	00	External release. Release the doc0 if scp=0 (detected by SCS pin) after 1ms when doc0_fet_disable = 1.	RW	0h
		01	1s release. The discharge OC will not be released until 1s time out.		
		10	2s release. The discharge OC will not be released until 2s time out.		

11 4s release. The discharge OC will not be released until 4s time out.			1
---	--	--	---

Bit5 – Bit0 doc0_ctrl [bit5:bit0] Configure the discharge over current DOC0 threshold.

Bit5 – Bit0	DOC0 threshold	Bit5 – Bit0	DOC0 threshold
000000 - 000101	Reserved	100000	160mV / Rs
000110	30mV / Rs	100001	165mV / Rs
000111	35mV / Rs	100010	170mV / Rs
001000	40mV / Rs	100011	175mV / Rs
001001	45mV / Rs	100100	180mV / Rs
	•••		
011011	135mV / Rs	110110	270mV / Rs
011100	140mV / Rs	110111	275mV / Rs
011101	145mV / Rs	111000	280mV / Rs
011110	150mV / Rs	111001	285mV / Rs
011111	155mV / Rs	111010 – 111111	Reserved

Register 1bh – DOC0 & DOC1 Delay Register (DOC01delay) This register is mapped from EEPROM data 1bh.

Bit #	Name	m EEPROM data 1bh. Description	R/W	default
7:4	doc0_delay[3:0]	"0000": 2ms "0001": 4ms "0010": 8ms "0011": 16ms "0100": 32ms "0101": 64ms "0110": 96ms "0111": 128ms "1000": 256ms "1001": 512ms "1010": 768ms "1011": 1s "1100": 2s "1111": 16s	RW	Oh

Bit #	Name	Description	R/W	default
3:0	doc1_delay[3:0]	"0000": 32us "0001": 64us "0010": 128us "0011": 256us "0100": 512us "0101": 1ms "0110": 2ms "0111": 4ms "1000": 8ms "1001": 16ms "1010": 32ms "1011": 48ms "1101": 96ms "1111": 256ms	RW	0h

Register 1ch – DOC1 Control Register (DOC1ctrl) This register is mapped from EEPROM data 1ch.

Bit #	Name	Description	R/W	Reset
		Control the SC release as following:		
		1-bit SC release		
7	sc_release	0 External release. Release the SC if scp=0 (detected by SCS pin) after 1ms when sc_fet_disable = 1.	RW	0h
		1 1 minute release. The SC will not be released until 1 minute time out.		
		Control the Discharge OC1 release as following		
		1-bit Discharge OC1 release		
6	doc1_release	0 External release. Release the DOC1 if scp=0 (detected by SCS pin) after 1ms when sc_fet_disable = 1.		
		1 1 minute release. The DOC1 will not be released until 1 minute time out.		

Bit5 – Bit0 doc1_ctrl [bit5:bit0]: Configure the discharge over current DOC1 threshold.

Bit5 – Bit0	DOC1 threshold	Bit5 - Bit0	DOC1 threshold
000000 - 000010	Reserved	100000	340mV / Rs
000011	50mV / Rs	100001	350mV / Rs
000100	60mV / Rs	100010	360mV / Rs
000101	70mV / Rs	100011	370mV / Rs
000110	80mV / Rs	100100	380mV / Rs
000111	90mV / Rs	100101	390mV / Rs
001000	100mV / Rs	100110	400mV / Rs
001001	110mV / Rs	100111	410mV / Rs
,,,		***	
011011	290mV / Rs	111001	590mV / Rs
011100	300mV / Rs	111010	600mV / Rs
011101	310mV / Rs	111011	610mV / Rs
011110	320mV / Rs	111100	620mV / Rs
011111	330mV / Rs	111101 – 111111	Reserved

Register 1dh - COC & SC Delay Register (COCSCdelay)

This register is mapped from EEPROM data 1dh.

Bit #	Name	Description	R/W	Default
7:5	Reserved	Reserved (unimplemented)		
4:2	coc_delay[2:0]	"000": 2ms "001": 4ms "010": 8ms "011": 16ms "100": 64ms "101": 128ms "110": 256ms "111": 512ms	RW	000
1:0	sc_delay[1:0]	"00": 0, immediately (nature delay) "01": 128us "10": 512us "11": 1ms	RW	00

Register 1eh - OT/UT, OV/UV, UB Delay/Release and Parameter Freeze Register (TVUBTimeout)

This register is mapped from EEPROM data 1eh.

Bit #	Name	Description	R/W	Reset
7	user_freeze	active high to freeze the user parameter including internal register from 16h~1eh and EEPROM data from 16h~3fh. But the block erase is always open to SMBUS when ee_enable = 1. This bit can only be read via SMBUS, and can be written by mapping the corresponding EEPROM data.	RW	0
6	ub_enable	active high to enable Unbalance detection	RW	0
5:4	ovuv_timeout[1:0]	Control the OV delay time and release time as (2,4,6,8) scan cycles Control the UV delay time and release time as (1,2,4,8) scan cycles	RW	00
3:2	otut_timeout[1:0]	Control the OT/UT delay time and release time as (2,4,6,8) scan cycles	RW	00
1:0	ub_timeout[1:0]	Control the UB delay time and release time as (2,4,6,8) scan cycles	RW	00

Register 1fh - Function Control Register (FunctionCtrl)

This register is mapped from EEPROM data 1fh.

Bit #	Name	Description	R/W	Reset
7	ee_enable	active high to enable EEPROM operation (i.e. Reg.0bh is not checked until ee_enable = 1 for reliabilty). This bit can be directly read and written via SMBUS, and also can be written by EEPROM mapping.	RW	0
6:2	Reserved	Reserved (unimplemented)		
1	sleep_support	'1': support sleep function when sleep_nsupport = 0; '0': don't support sleep function when sleep_nsupport = 1; This bit is a critical bit, which must be the complement of sleep_nsupport. Otherwise an internal reset will be generated to reset the chip. So it can be used as soft reset. OZ8940 will enter sleep state when no events for 4 consecutive ADC scan cycles. OZ8940 will automatically do EEPROM mapping as soon as it is waked up.	RW	1
0	sleep_nsupport	'0': support sleep function when sleep_support = 1; '1': don't support sleep function when sleep_support = 0; This bit is a critical bit, which must also be the complement of sleep_support.	RW	0

Register 20h - OV/UV Timer Register (OUVtimer)

Bit #	Name	Description		Reset Value
7:6	Reserved	Reserved		
5:3	ov_timer[2:0]	ov timer(unit is a scan cycle)	R	0h
2:0	uv_timer[2:0]	uv timer(unit is a scan cycle)	R	0h

Register 21h - OT/UT Timer Register (OUTtimer)

Bit #	Name	Description	R/W	Reset Value
7:6	Reserved	Reserved		
5:3	ot_timer[2:0]	ot timer(unit is a scan cycle)	R	0h
2:0	ut_timer[2:0]	ut timer(unit is a scan cycle)	R	0h

Register 22h - UB Timer Register (UBtimer)

Bit #	Name	Description	R/W	Reset Value	
7:3	Reserved	Reserved.			
2:0	ub_timer[2:0]	UB timer (unit is a scan cycle).	R	0h	

Register 23h~3fh - Reserved Register

OZ8940 EEPROM Registers

OZ8940 EEPROM register is organized as 12 bits. 00h~1fh EEPROM bit11- bit8 are not used. EEPROM 12h~1fh bit7 – bit0 will be mapped to operation register 12h~1fh bit7 – bit0 correspondingly.

EEPROM Section	Description
00h~11h	Reserved
12h~1fh	This section is used to save the control data to control the system operation. Bit7 – bit0 of this section EEPROM registers will be automatically mapped into the operation register 12h~1fh one by one. Please see the corresponding description in operation register 12h~1fh.
20h~2fh Log Data	This section are used to save the required threshold and release value for OV, UV, OT, UT, UB, OVPF and Bleeding, which will not mapped into the operation registers. When needed, hardware will require EEPROM Controller to read out the corresponding data.

Data	Data	Bit Number								
index (hex)	Name	11~8	7	6 5 4 3 2 1 0						
00~14		Reserved								
15	ATEctrl	0000	ate_freeze	Reserved						
16	SYSconfig	0000	gpio_c	ctrl[1:0] SMBus_addr[2:0] cell_number[2:0]						
17	MiscCtrl	0000	auto_scan_s tart	sleep_time	ovpf_enable	Reserved	bleeding_acc	eeding_accuracy[1:0] efetc_mode[1:0]		ode[1:0]

Data	Data	Bit Number								
index	Name	11~8	7	6	5	5 4 3 2 1				0
(hex)				-	-					-
18	IntegratorCtrl	0000		Rese	erved		chg_integ_ctrl[1:0] dsg_integ_ctrl[1:0]			
19	COCctrl	0000	fet_control_s el							
1a	DOC0ctrl	0000	doc0_relea	se_ctrl[1:0]			doc0_ctr	1[5:0]		
1b	DOC01delay	0000		doc0_de	elay[3:0]			doc1_c	delay[3:0]	
1c	DOC1ctrl	0000	sc_release	doc1_releas e			doc1_ctr	1[5:0]		
1d	COCSCdelay	0000		Reserved		C	oc_delay[2:0]		sc_dela	ay[1:0]
1e	VTUBTimeout	0000	user_freeze	ub_enable	ovuv_tim	eout[1:0]	otut_time	out[1:0]	ub_time	out[1:0]
1f	FunctionCtrl	0000	ee_enable	ee_enable Reserved sleep_suppo				sleep_suppo rt	sleep_nsup port	
20	OV_Threshold		ov_threshold[11:0]							
21	OV_Release		ov_release[11:0]							
22	UV_Threshold		uv_threshold[11:0]							
23	UV_Release		uv_release[11:0]							
24	UB_ Threshold		ub_threshold[11:0]							
25	OTI_Threshold		OTI_threshold[11:0]							
26	OTI_Release		OTI_release[11:0]							
27	UTI_Threshold					TI_threshold[1				
28	UTI_Release		UTI_release[11:0]							
29	OTE_Threshold	ote_threshold[11:0]								
2a	OTE_Release		ote_release[11:0]							
2b	UTE_Threshold	ute_threshold[11:0]								
2c	UTE_Release	ute_release[11:0]								
2d	BLD_Threshold	bleeding_threshold[11:0]								
2e	OVPF_threshold	ovpf_threshold[11:0]								
2f	OVPF_release	ovpf_release[11:0]								
30~3f	user data Reserved	Reserved								

PACKAGE INFORMATION

32L LQFP 7x7mm Package Outline Drawing

TE:
REFER TO JEDEC STD MS-026 BBA
DIMENSIONS "D1" AND "E1" DO NOT INCLUDE MOLD PROTRUSIONS.
ALLOWABLE PROTRUSION IS 0.25 mm PER SIDE." DI" AND "E1" ARE
MAXIMUM PLASTIC BODY SIZE DIMENSIONS INCLUDE MOLD
MISMATCH

SYMBOL	DIMENSION (MM)						
SYMBOL	MIN	NOR	MAX				
Α	-	-	1.60				
A1	0.05	•	0.15				
A2	1.35	1.40	1.45				
р	0.30	-	0.45				
O	0.09	-	0.20				
D	9.00 BSC						
D1	7.00 BSC						
E	9.00 BSC						
E1	7.00 BSC						
е	0.80 BSC						
٦	0.45	-	0.75				
L1	1.00 REF						
θ	0°	-	7°				
θ1	0°	-	-				
θ2	11°	12°	13°				

IMPORTANT NOTICE

No portion of O₂Micro specifications/datasheets or any of its subparts may be reproduced in any form, or by any means, without prior written permission from O₂Micro.

O₂Micro and its subsidiaries reserve the right to make changes to their datasheets and/or products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

 O_2 Micro warrants performance of its products to the specifications applicable at the time of sale in accordance with O_2 Micro's standard warranty. Testing and other quality control techniques are UTIlized to the extent O_2 Micro deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customer acknowledges that O_2 Micro products are not designed, manufactured or intended for incorporation into any systems or products intended for use in connection with life support or other hazardous activities or environments in which the failure of the O_2 Micro products could lead to death, bodily injury, or property or environmental damage ("High Risk Activities"). O_2 Micro hereby disclaims all warranties, and O_2 Micro will have no liability to Customer or any third party, relating to the use of O_2 Micro products in connection with any High Risk Activities.

Any support, assistance, recommendation or information (collectively, "Support") that O_2 Micro may provide to you (including, without limitation, regarding the design, development or debugging of your circuit board or other application) is provided "AS IS." O_2 Micro does not make, and hereby disclaims, any warranties regarding any such Support, including, without limitation, any warranties of merchantability or fitness for a particular purpose, and any warranty that such Support will be accurate or error free or that your circuit board or other application will be operational or functional. O_2 Micro will have no liability to you under any legal theory in connection with your use of or reliance on such Support.

COPYRIGHT © 2005-2008, O₂Micro International Limited