Metabolites and metabolomics

Examples from the literature

Metabolomics for prediction

- Widespread metabolic changes are known to be associated with many diseases
- The evaluation of metabolite profiles might help us to understand biochemical basis of disease and we can use these for prediction
- Developing sensitive prediction and prognostic tools is important to improve identification of high risk individuals and to customize treatment with specific strategies to maximise resources

Metabolomics for prediction of Type 2 diabetes

- The incidence of type 2 diabetes (T2D) is increasing worldwide
- It is often diagnosed with a fasting glucose test (FGT)
- Specificity is poor for low risk groups
- This study found that when evaluating FGT, traditional risk factors (TRF) and metabolites:
 - a combined model predicted future T2D with the best discrimination
 - a metabolomic prediction model outperformed the FGT for predicting future T2D in certain subpopulations

Metabolomics for prediction

- Erasmus Rucephen Family (ERF) study
- N=2,776, 1,571 followed up for (mean)
 11.3 years
- 137 developed T2D, 1,434 did not
- Metabolite predictors = 261 markers measured either by NMR or MS
- 24 of these selected by LASSO as independent T2D metabolomic predictors
- TRF predictors: age, sex, family history, BMI, waist circumference, hypertension, HDL-cholesterol, and triglycerides

Flowchart showing metabolite selection https://doi.org/10.1007/s11306-017-1239-2

Results for all groups

- Model performance assessed by area under the curve (AUC (95% CI)) and receiver operator characteristics (ROC) curves and continuous Net Reclassification Improvement (NRI)
- Combined model performs best

Model	AUC (95% ci)
ERF metabolites	0.81 (0.77, 0.85)
Fasting glucose	0.84 (0.81, 0.88)
ERF metabolites + fasting glucose	0.88 (0.84, 0.91)
ERF metabolites + fasting glucose + TRF's	0.89 (0.86, 0.92)

Results

However when populations were stratified by age, sex or weight, the AUC of the metabolite model is higher in females, those of normal weight and individuals <50 years

Group	Model	AUC (95% ci)
Females	ERF metabolites	0.88 (0.83, 0.92)
	Fasting glucose	0.84 (0.79, 0.90)
Males	ERF metabolites	0.78 (0.72, 0.84)
	Fasting glucose	0.83 (0.79, 0.88)
Normal BMI	ERF metabolites	0.85 (0.75, 0.95)
	Fasting glucose	0.80 (0.66, 0.93)
Overweight or obese	ERF metabolites	0.81 (0.76, 0.85)
	Fasting glucose	0.83 (0.79, 0.87)
Age <50	ERF metabolites	0.86 (0.78, 0.94)
	Fasting glucose	0.77 (0.67, 0.87)
Elderly	ERF metabolites	0.83 (0.78, 0.87)
	Fasting glucose	0.84 (0.80, 0.88)

Take home

- A combined model of metabolites, TRFs and FGT = best predictor of future
 T2D
- Metabolite models predict future T2D better than FGT in female, normal weight and < 50 years individuals
- LASSO method supports previous evidence suggesting isoleucine and tyrosine are independent predictors of T2D

- Opens up new opportunities for testing causal inference using Mendelian randomization
- Potential bias coming from some individuals taking lipid-lowering medication (although this was controlled for in each analysis)
- Needs validation

