3.1 Simple Linear Regression

October 24, 2014

Linear Regression

- Supervised learning
 - Useful for predicting a quantitative response
- Examples:
 - 1. Is there a relationship between budget and sales?
 - 2. Which media contribute to sales?
 - 3. Are these relationships linear?
- Other examples?

Simple Linear Regression

Predicting quantitative Y based on a single predictor X

 β_0 and β_1 = Model Coefficients/Parameters Unknown

Simple Linear Regression

• We can use the training equation to produce estimates for β_o and β_1 and then can predict future outcomes (Y) using this equation:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

Estimating the Coefficients

- We want to estimate the slope and intercept so it is close as possible to the "true" data or outcome
- Using advertising dataset with 200 different markets
 - Budget
 - Product sales
- Want to obtain coefficient estimates so that the linear model fits the data well and approximates the data well
 - Most common approach is to minimize the least squares

Residual Sum of Squares

 Prediction for Y based on the ith value of X

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$$

 e is the difference between ith observed response and the ith value that is predicted by the mode (Residual)

$$e_i = y_i - \hat{y}_i$$

RSS =
$$e_1^2 + e_2^2 + \dots + e_n^2$$
,

Least Squares to minimize the RSS

Accuracy of Coefficient Estimates

True Relationship between X and Y

For an unknown function (f) where e is a mean-zero random error

For *f* to be estimated by a linear function:

βo (intercept) = expected Y when X=0

 β 1 (slope) = average increase in Y with a 1-unit increase in X

Population Regression Line:

$$Y = \beta_0 + \beta_1 X + \epsilon.$$

Red Line = True Relationship f(X) = 2 + 3X (population regression line) Dark Blue = Least Squares Line

Right Graph = light blue lines that represent 10 different least squares (on average the least squares are close to the population regression line)

$$Y = 2 + 3X + \epsilon$$

Standard Error and Confidence Intervals

 Standard Error: Difference between the population mean and the estimate of the population mean

$$Var(\hat{\mu}) = SE(\hat{\mu})^2 = \frac{\sigma^2}{n},$$

 95% Confidence Intervals: A range that with 95% probability will be a true estimate of a parameter

$$\hat{eta}_1 \pm 2 \cdot \mathrm{SE}(\hat{eta}_1).$$
 $\hat{eta}_0 \pm 2 \cdot \mathrm{SE}(\hat{eta}_0).$ Slope Intercept

Hypothesis Testing

- Standard errors can be used to perform hypothesis tests
- Null Hypothesis: Ho: β1 = 0
 no relationship between X and Y
- Alternative Hypothesis: H1: βo ≠ 0
 Some relationship between X and Y

Hypothesis Testing

- When $\beta 1 = 0$ the model reduces to $Y = \beta o + \epsilon$ (X is not associated with Y)
- How do we know the β1 is "far" from zero so we are confident that it is NOT zero?

T-statistic: number of standard deviations the estimate of β1 is away from zero

$$t = \frac{\hat{\beta}_1 - 0}{\text{SE}(\hat{\beta}_1)},$$

P-value: the probability of observing any value = |t| assuming $\beta 1 = 0$

Final Model from Advertising Data

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

- Least Squares Model: the number of units sold with the TV advertising budget
- Coefficients of estimates: $\beta 0 = 7$ and $\beta 0 = 0.05$ are large compared to the Std Error
- Large difference between estimates and std error = large t-statistic
- Therefore, we can reject the null hypothesis that $\beta o = 0$ or $\beta 1 = 0$

Assessing model accuracy

Quantity	Value
Residual standard error	3.26
R^2	0.612
F-statistic	312.1

Assessing model accuracy

- Residual standard error (RSE): average amount the response will deviate from the true regression line
 - Up to the scientist to decide whether the deviation is acceptable
 - In the case of our advertising example the RES = 3.26 or 3,260 units. Is this ok?
- R² statistic: proportion of variance explained by the model
 - Will always be between 0 and 1
 - Proportion of variability in Y that can be explained by X
 - Advertising data: R2 is 0.61, is this ok?

Lab

- Boston dataset
- Median house value (medv) for 506 neighborhoods in Boston
- Predict medv using 13 different variables
 - Rm: average number of rooms per house
 - Age: average age of house
 - Lstat: percent of households with low SES

Lab: relationship between medv and Istat

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 34.55384 0.56263 61.41 <2e-16 *** lstat -0.95005 0.03873 -24.53 <2e-16 ***
```

- Residual standard error: 6.216 on 504 degrees of freedom
- Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
- F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16

Prediction of the relationship using different values of Istat

	fit (prediction)	lwr	upr
5:	29.80359	29.00741	30.59978
10:	25.05335	24.47413	25.63256
15:	20.30310	19.73159	20.87461

Relationship between medv and Istat

Medv and Lstat with a regression line

Evidence of non-linearity in the relationship

