Dros

Given a row wise and column wise sorted matrix, find out whether element **k** is present or not.

$$D = \begin{bmatrix} -5 & -2 & 1 & 13 \\ -4 & 0 & 3 & 14 \\ & & k = 13 \rightarrow \text{True} \end{bmatrix}$$

$$= \begin{bmatrix} -9 & 2 & 6 & 18 \\ & & k = 2 \rightarrow \text{True} \end{bmatrix}$$

$$= \begin{bmatrix} -9 & 5 & 6 & 18 \\ & & & k = 15 \rightarrow \text{false} \end{bmatrix}$$

idea 1: Brute Force idea :-

Travel He whale Mahin.

T.C -> O(1).

igras: 3 mond years.

ideas:-

Say we are at 1 and want to find 0, where should we move?

-5	34	9	13
-4	0	3	14
-3	2	6	18

agin wise

Given a binary sorted matrix A of size N x N. Find the row with the maximum number of 1.

NOTE:

- If two rows have the maximum number of 1 then return the row which has a lower index.
- Assume each row to be sorted by values.

Example 1:

Dres -3 0 .

Example 2:

Bruke force

Iterate aver each row & count noig

Optimized dolm:

		9	١	2	3	4	5
→	0	0	0	0	<u></u>	0	0
<i>→</i>	1	0	<u>ه</u> ر	O	79	\	1
	2	0	J (0)	9	С	0	t
	3	0	J. 100 C	0	0	,	1
>	٦	<u>©</u> 4	ا ال	1	\ \	•	1
	5	6	۵	ಎ	t	V	١
		2			•	•	•

break 8:10 Am - 8:20 Am.

Jues 37

Given an matrix of N X N i.e. Mat[N][N], print boundary elements in clockwise direction.

m = 5

-1	2	3	4	5
1 6	7	8	9	10
11	12	13	14	15
16	17	18	19	20
21	22	23	24	25

ans 1 2 3 4 5 10 15 20 25

24 23 22 21 16 11 6

(010) %	<u> </u>	2	3	4	5
	<u>-6</u>	7	8	9	10
	11	12	13	14	15
	16	17	18	19	20
	21	22	23	24	25

1=0, 3=0',

, awar thing to the melo 1-a thing 11

for (K=1', K<N', K++) { //m-1

24+,1

٦

111:00, 3= 00

// himt on daments of last col

//i= may / 3= na

```
11 Irint or doments of last lew
  for (K=1', K<N', K++) { //m-1
     bring come C(2522);
   //i= may / 3= 0
11 trint to the melo no trint 11
 for (K=1', K<N', K++) & //m-1
      fright (and (12622);
      · -- ;
  //12 0 / 320
           Tico our)
            3.00000
         O
                     2
    0
                                   アニュ
    2
    3
```


Given an matrix of N X N i.e. Mat[N][N]. Print elements in spiral order in clockwise direction.

0/8-3 1 2 3 4 5 10 15 20 25 24 23 22 21 16 11 6 7 8 9 14

3 (124) slider , awar think to the mels no thing 11 for (K=1', K<N', KA+) & //m-1 frint (aux (13533); 11 Inint was down the col 40% (K=1', K<N', K++) { //m-1 frint (aux (17527); 11 print on doments of last lew for (K=1', K<N', K++) { //m-1 6--; 11 tail to dome mels no tains 11 for (K=1', K<N', K++) { //m-1 frint (aux C12C2Z); 1++, 5++,

3

Csaul

Given a matrix of N rows and M columns determine the sum of all the possible submatrices.

Sum of all subaway	Duy.
aur (2 = \$1,2,33	
&13 &23 &33,	
31,23 \$2,33 \$1,2,3]	
0 1 2 3	7
	· — ~ & R

	0	\	2	3	
	~	_			1 — 1 &R
-		(<u>®</u>)			
2		/		/	
3		_	_	/	
			-1		

TL BR 9 = 36

Be = (N-1) (M-5)

How to find the number of TL cells and BR cells in which (i,j) is part of.

Th > (1+1) *(5+1)

Be = (N-i) (M-5)

Total submatrices in which this call will be present.

(1/1) * (1/1) (N-1) * (M-1). => (1/1) (2/1) (Y-1) * (S-2) => 2/2/3/3/2 => 54

or 20',	T,C > O(N * 11)				
for (120; 1 <n; 1++)="" 2.0-="" {=""> 0(1)</n;>					
for C	5=0; J <m; th="" z++7="" {<=""></m;>				
	Th= (1+1)*(3+1)				
	BR = (n-1) (m-5)				
	Contribution = TL + BR + aur [i] (J];				
	on+= Contribution',				
3					
neleien					
J. W. Petson	one,				