2007-PH

EE24BTECH11060 - sruthi bijili

- 18) The energy levels of a particle of mass m in a potential of the form $v(x) = \begin{cases} \infty, x \le 0 \\ \frac{1}{2}m\omega^2x^2, x > 0 \end{cases}$ are given in terms of quantum numbers n = 0, 1, 2, 3, ..., n
 - a) $\left(n + \frac{1}{2}\right)h\omega$

 - b) $\left(2n + \frac{1}{2}\right)h\omega$ c) $\left(2n + \frac{3}{2}\right)h\omega$
- 19) The electromagnetic field due to a point charge must be described by lienard-weichart potentials when
 - a) the point charge is highly accelerated.
 - b) the electric and magnetic fields are not perpendicular.
 - c) the point charge is moving with velocity close to that of light.
 - d) the calculation is done for the radiation zone, i.e. far away from the charge.
- 20) The strangeness quantum number is conserved in
 - a) strong, weak and electromagnetic interactions.
 - b) weak and electromagnetic interactions only.
 - c) strong and weak interactions only.
 - d) strong and electromagnetic interactions only.
- 21) The eigenvalues and eigenvectors of the matrix $\begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ are

a) 6, 1 and
$$\begin{bmatrix} 4 \\ 1 \end{bmatrix}$$
, $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$
b) 2, 5 and $\begin{bmatrix} 4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$
c) 6, 1 and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$
d) 2, 5 and $\begin{bmatrix} 1 \\ 4 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$

- 22) A vector field is defined everywhere as $\mathbf{F} = \frac{y^2}{L}\hat{i} + z\hat{k}$. The net flux of \mathbf{F} associated with a cube of side L, with one vector at the origin and sides along the positive X, Y and Z axes, is
 - a) $2L^{3}$
 - b) $4L^{3}$
 - c) $8L^3$

- d) $10L^{3}$
- 23) $\mathbf{r} = x\hat{i} + y\hat{j}$, then
 - a) $\nabla \cdot \mathbf{r} = 0$ and $\nabla |\mathbf{r}| = \mathbf{r}$
 - b) $\nabla \cdot \mathbf{r} = 2$ and $\nabla |\mathbf{r}| = \hat{r}$
 - c) $\nabla \cdot \mathbf{r} = 2$ and $\nabla |\mathbf{r}| = \frac{\hat{r}}{2}$
 - d) $\nabla \cdot \mathbf{r} = 3$ and $\nabla |\mathbf{r}| = \frac{\hbar}{2}$
- 24) Consider a vector $\mathbf{p} = 2\hat{i} + 2\hat{j} + 2\hat{k}$ in the coordinate system $(\hat{i}, \hat{j}, \hat{k})$. The axes are rotated anti-clockwise about Y axis by an angle 60°. The vector $\dot{\mathbf{p}}$ in the rotated coordinate system $(\hat{i}', \hat{j}', \hat{k}')$ is
 - a) $(1 + \sqrt{3})\hat{i}' + 3\hat{j}' + (1 \sqrt{3})\hat{k}'$
 - b) $(1 \sqrt{3})\hat{i}' + 3\hat{j}' + (1 + \sqrt{3})\hat{k}'$

 - c) $(1 \sqrt{3})\hat{i}' + (3 + \sqrt{3})\hat{j}' + 2\hat{k}'$ d) $(1 \sqrt{3})\hat{i}' + (3 \sqrt{3})\hat{j}' + 2\hat{k}'$
- 25) the counter integral $\oint \frac{1}{z^4 + a^4} dz$ is to be evaluated on a circle of radius 2a centered at the origin .It will have contributions only from the points
 - a) $\frac{1+i}{\sqrt{2}}a$ and $-\frac{1+i}{\sqrt{2}}a$
 - b) ia and –
 - c) $ia, -ia, \frac{1-i}{\sqrt{2}}a \text{ and } -\frac{1-i}{\sqrt{2}}a$
 - d) $\frac{1+i}{\sqrt{2}}a, -\frac{1+i}{\sqrt{2}}a, \frac{1-i}{\sqrt{2}}a$ and $-\frac{1-i}{\sqrt{2}}a$
- 26) Inverse Laplace transform of $\frac{s+1}{s^2-4}$ is
 - a) $\cos 2x + \frac{1}{2} \sin 2x$
 - b) $\cos x + \frac{1}{2} \sin x$
 - c) $\cosh x + \frac{1}{2} \sinh x$
 - d) $\cosh 2x + \frac{1}{2} \sinh 2x$
- 27) The points, where the series solution of the Legendre differential equation $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + \frac{3}{2}(\frac{3}{2}+1)y = 0$ will diverge, are located at
 - a) 0 and 1
 - b) 0 and -1
 - c) -1 and 1
 - d) $\frac{3}{2}$ and $\frac{5}{2}$
- 28) Solution of differential equation $x\frac{dy}{dx} + y = x^4$, with the boundary condition that Y = 1, at x = 1, is
 - a) $v = 5x^4 4$
 - b) $y = \frac{x^4}{5} + \frac{4x}{5}$ c) $y = \frac{4x^4}{5} + \frac{1}{5x}$

 - d) $y = \frac{x^4}{5} + \frac{4}{5}$
- 29) Match the following

Column 2

(p) timelike vector

(q) Lorentz invariant

(r) tensor of rank 2

invariant

(s) conserved and Lorentz

Column 1

- (A) rest mass
- (B) charge
- (C) four-momentum
- (D) electromagnetic field

a)
$$P-2, Q-4, R-3, S-1$$

- b) P-4, O-2, R-1, S-3
- c) P-2, Q-4, R-1, S-3
- d) P-4, Q-2, R-3, S-1
- 30) The moment of inertia of a uniform sphere of radius r about an axis passing through its centre is given by $\frac{2}{5} \left(\frac{4\pi}{3} r^5 \rho\right)$. A rigid sphere of uniform mass density ρ and radius R has two smaller spheres of $\frac{R}{2}$ hollowed out of it, as shown in the figure. The moment of inertia of the resulting body about the Y axis is

- a) $\frac{\pi \rho R^3}{4}$
- b) $\frac{5\pi\rho R^3}{12}$
- c) $\frac{7\pi\rho R^5}{12}$
- d) $\frac{3\pi\rho R^5}{4}$
- 31) The Lagrangian of a particle of mass m is $L = \frac{m}{2} \left[\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2 + \left(\frac{dz}{dt} \right)^2 \right] \frac{V}{2} \left(x^2 + y^2 \right) + W \sin \omega t$, where V, W and ω are constants. The conserved quantities are
 - a) energy and z-component of linear momentum only.
 - b) energy and z-component of angular momentum only.
 - c) z-component of both linear and angular momenta only.
 - d) energy z-component of both linear and angular momenta.
- 32) Three particles of mass m each situated at $x_1(t)$, $x_2(t)$ and $x_3(t)$ respectively are connected by two springs of spring constant k and un-streched length l. The system

is free to oscillate only in one dimension along the straight line joning all the three particles. The Lagrangian of the system is

a)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_3}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 - l)^2 + \frac{k}{2} (x_3 - x_2 - l)^2$$

b)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_3}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_3 - l)^2 + \frac{k}{2} (x_3 - x_2 - l)^2$$

c)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_3}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 + l)^2 - \frac{k}{2} (x_3 - x_2 - l)^2$$

d)
$$L = \frac{m}{2} \left[\left(\frac{dx_1}{dt} \right)^2 + \left(\frac{dx_2}{dt} \right)^2 + \left(\frac{dx_3}{dt} \right)^2 \right] - \frac{k}{2} (x_1 - x_2 - l)^2 - \frac{k}{2} (x_3 - x_2 - l)^2$$

- 33) The Hamiltonian of a particle is $H = \frac{p^2}{2m} + pq$, where q is the generalized coordinate and p is the corresponding canonical momentum. The Lagrangian is
 - a) $\frac{m}{2} \left(\frac{dq}{dt} + q \right)^2$
 - b) $\frac{m}{2} \left(\frac{dq}{dt} q \right)^2$
 - c) $\frac{m}{2} \left[\left(\frac{dq}{dt} \right)^2 + q \frac{dq}{dt} q^2 \right]$
 - d) $\frac{m}{2} \left[\left(\frac{dq}{dt} \right)^2 q \frac{dq}{dt} + q^2 \right]$
- 34) A toroidal coil has N closely-wounded turns. Assume the current through the coil to be I and the toroid is filled with a magnetic material of relative permittivity μ_r . The magnitude of magnetic induction **B** is inside the toroid, at a radial distance r from the axis, is given by
 - a) $\mu_r \mu_0 NIr$
 - b) $\frac{\mu_r \mu_0 NI}{r}$
 - c) $\frac{\mu_r \mu_0 NI}{2\pi r}$
 - d) $2\pi\mu_r\mu_0NIr$