

INTRODUCTION

PURPOSE
OVERVIEW
EXAMPLES
APPLICATIONS

NAIUE BAYE'S

P(h|d) = (P(d|h) * P(h)) / P(d)Where

- P(h|d) is the probability of hypothesis h given the data d. This is called the posterior probability.
- P(d|h) is the probability of data d given that the hypothesis h was true.
- P(h) is the probability of hypothesis h being true (regardless of the data). This is called the prior probability of h.
- P(d) is the probability of the data (regardless of the hypothesis).

PROCESS STEPS

CATEGORIES OF DATASETS

'alt.atheism',
'comp.graphics',
'comp.os.mswindows.misc',
'comp.sys.ibm.pc.ha
rdware',
'comp.sys.mac.hard
ware', 'misc.forsale',

'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',

'sci.space',
'soc.religion.christia
n', 'talk.politics.guns',
'talk.politics.mideast
', 'talk.politics.misc',
'talk.religion.misc'
'comp.windows.x',

WALKAROUND OFTHE CODE

IMPORTING MODULES AND PACKAGES


```
# defining all categories
categories = ['alt.atheism',
 'comp.graphics',
 'comp.os.ms-windows.misc',
 'comp.sys.ibm.pc.hardware',
 'comp.sys.mac.hardware',
 'comp.windows.x',
 'misc.forsale',
 'rec.autos',
 'rec.motorcycles',
 'rec.sport.baseball',
 'rec.sport.hockey',
 'sci.crypt',
 'sci.electronics',
 'sci.med',
 'sci.space',
 'soc.religion.christian',
 'talk.politics.guns',
 'talk.politics.mideast',
 'talk.politics.misc',
 'talk.religion.misc']
# training the data on these categories
train = fetch 20newsgroups(subset = 'train' , categories=categori
# testing the data for these categories
test = fetch 20newsgroups(subset = 'test' , categories=categories
# printing the training data
```

print(train.data[5])

DEFINING ALL CATEGORIES AND TRAINING AND TESTING DATA

from sklearn.feature extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import make_pipeline # creating a model based on multinomial bayes model = make pipeline(TfidfVectorizer() , MultinomialNB()) # training the model with the training data model.fit(train.data , train.target) # Creating labels for the test data labels = model.predict(test.data)

PREDICTING CATEGORIES

```
# predicting category on new data based on trained model
     def predict_category( s, train=train , model = model):
         pred = model.predict([s])
         return train.target_names[pred[0]]
[8] predict_category('sending load to international space station')
     'sci.space'
[12] file = open('/content/bhavya.txt.txt' , 'r')
     ten = file.read()
    predict_category(ten)
     'soc.religion.christian'
```

predicted label

alt.atheism comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware comp.sys.mac.hardware comp.windows.x misc.forsale rec.autos rec.motorcycles rec.sport.baseball rec.sport.hockey sci.crypt sci.electronics sci.med sci.space soc.religion.christian talk.politics.guns talk.politics.mideast talk.politics.misc talk.religion.misc

```
661 0 0 0
       100000
```

comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware soc.religion.christian alt.atheism comp.sys.mac.hardware comp.windows.x rec.autos rec.sport.baseball sci.crypt sci.electronics sci.med sci.space rec.motorcycles misc.forsale rec.sport.hockey

true label

talk.politics.mideast

talk.politics.guns

talk.politics.misc

talk.religion.misc

HEAT MAP