

Nome: Marcio Henrique Sobral Folmann - 12948________ Data: 19 de junho de 2018

1. Controle de Qualidade. Os dados a seguir foram obtidos em um ensaio R&R. Determine os parâmetros $\%R\&R_{VT}$ e $\%R\&R_{TOL}$ desses processos de medição e indique se eles são adequados ou não e o motivo (Extraído do livro Fundamentos de Metrologia Científica e Industrial de Armando Albertazzi G. Jr. e André R. de Souza, 2^a edição, página 409).

	Peças									
Operadores		1	2	3	4	5	6	7	8	9
	Medição 1	64.45	64.18	63.93	64.33	64.56	64.32	64.4	64.56	64.41
A	Medição 2	64.13	64.05	64.3	64.3	64.33	64.41	64.51	64.38	64.46
	Medição 3	64.33	64.4	64.35	64.21	64.44	64.54	64.39	64.12	64.48
	Medição 1	64.34	64.49	64.27	64.13	64.19	64.29	64.29	64.35	64.49
В	Medição 2	64.54	64.27	64.24	64.31	64.57	64.05	64.32	64.3	64.25
	Medição 3	64.22	64.1	64.3	64.13	64.22	64.2	64.08	64.26	64.23
	Medição 1	64.33	64.59	64.31	64.24	64.47	64.22	64.55	64.29	64.3
$\mid C \mid$	Medição 2	64.38	64.33	64.41	64.3	64.19	64.26	64.06	64.22	64.39
	Medição 3	64.14	64.34	64.41	64.36	64.32	64.14	64.18	63.93	64.24

2. Ajuste Linear. Para determinar a constante de elasticidade de uma mola, um estudante pendura várias massas M em uma extremidade da mola e mede a sua correspondente dimensão l. Os resultados obtidos estão apresentados na Tabela 1. Como a força $mg = k(l-l_0)$ é o comprimento da mola sem distensão, esses dados devem se ajustar a uma reta, $l = l_0 + (g/k)m$. Faça um ajuste por mínimos quadrados para essa reta, considerando os dados apresentados, e determine as melhores estimativas para l_0 e para k. Calcule o comprimento l e sua incerteza para o peso de 1kg (Extraído do livro Introdução à análise de erros de John R. Taylor, 2^a edição, página 200).

	Peso m (gramas)	200	300	400	500	600	700	800	900
Ì	Comprimento l (cm)	4.04	4.89	5.58	6.5	7.18	9.45	9.68	10.25

Tabela 1: Comprimento versus peso para uma mola M.

3. Medidas Correlacionadas. Considere o modelo matemático abaixo para medição de uma resistência com base nos valores simultaneamente observados de corrente e voltagem sob condições ambientais idênticas, utilizando um voltímetro e um amperímetro (ambos os instrumentos estavam com escala selecionada visando a menor incerteza associada ao conjunto de medições em questão, ver Tabelas 3 e 4), considerando a influência de correlação entre as variáveis e tendo ciência de que a temperatura ambiente estava oscilando entre 19°C e 21°C. Determine a incerteza no cálculo de R com 99.73% de confiança de acordo com a quantidade de algarismos significativos de acordo com o Método de Monte Carlo.

$$R = (V_a + V_{resol} + V_{calib} + V_{temp})/(I_a + I_{resol} + I_{calib} + I_{temp})$$
, sendo:

ĺ	N	1	2	3	4	5	6	7	8
	$V_a(V)$	11.57	11.24	8.9	9.82	8.02	11.11	10.52	9.06
Ì	$I_a (mA)$	116.673	112.784	89.261	97.332	80.832	110.307	106.189	91.062

Tabela 2: Medições simultâneas de voltagem e corrente

Faixa	Precisão
200mV, 2V, 20V, 200V	$\pm (0.5\% + 3D)$
1000V	$\pm (1.0\% + 5D)$

Tabela 3: Incerteza do voltímetro de 3 1/2 dígitos, segundo o certificado de calibração, válida para temperatura ambiente oscilando entre $-10^{\circ}C$ e $40^{\circ}C$.

Faixa	Incerteza
20mA	$\pm (0.8\% + 3D)$
200mA	$\pm (1.2\% + 4D)$
20A	$\pm (2.0\% + 5D)$

Tabela 4: Incerteza do amperímetro de 5 1/2 dígitos, segundo o certificado de calibração, válida para temperatura de $23^{\circ}C \pm 5^{\circ}C$ e umidade relativa < 75%.