Lista VI

Guilherme NUSP: 8943160 e Leonardo NUSP: 9793436

Exercício 1

Seja $(X_1,...,X_n)$ uma amostra aleatória de $X \sim Pois(\theta)$, em que o parâmetro $\theta \in \Theta = \{1,2,3\}$.

a) $H_0: \theta = 1$ versus $H_1: \theta = 3$. Considere as seguintes duas funções testes:

$$\delta_{aj}(X_1, ..., X_n) = \begin{cases} 1, & \text{se } \bar{X_n} \ge k_j, \ j \in \{1, 2\} \\ 0, & c.c. \end{cases}$$

Em que $\bar{X_n}$ é a média amostral e $k_1=2.5$ e $k_2=3.$

(i) Calcule o tamanho do teste para cada função teste δa_1 e δa_2 Faça um gráfico para cada tamanho do teste (para cada função teste) em relação ao tamanho amostral $n \in [1, 100]$.

Resolução

(ii) Verifique qual é o teste mais poderoso δa_1 ou δa_2 , deixe sua resposta em função de n. Faça o gráfico do poder do teste em função n.

Resolução

b) $H_0: \theta = 2$ versus $H_1: \theta \in \{1,3\}$. Considere a seguinte função teste:

$$\delta_b(X_1, ..., X_n) = \begin{cases} 1, & \text{se } \bar{X_n} \le 1.5 \text{ ou } \bar{X_n} \ge 2.5, \\ 0, & c.c. \end{cases}$$

(i) Calcule o tamanho do teste δ_b e discuta as diferenças entre o tamanho do teste e o nível de significância para este caso.

Resolução

(ii) Para n=2, calcule a função poder e mostre o gráfico em função de $\theta \in \{1,2,3\}$.

Resolução

c) $H_0: \theta \in \{1, 2\}$ versus $H_1: \theta = 3$. Considere a seguinte função teste:

$$\delta_c(X_1, ..., X_n) = \begin{cases} 1, & \text{se } \bar{X_n} \ge k, \\ 0, & c.c. \end{cases}$$

(i) Apresente a fórmula do tamanho do teste em termos de k.

Resolução

(ii) Faça um gráfico do poder do teste contra a alternativa $\theta_A=3$ em função do tamanho amostral $n\in[1,100].$

1

Resolução

Exercício 2

Seja X_1 uma amostra aleatória de $X \sim Pois(\theta)$, em que o parâmetro $\theta \in \{\theta_0, \theta_1\}, \theta_0 \neq \theta_1$ e

Seja a hipótese nula $H_0: \theta = \theta_0$ e a alternativa $H_1: \theta = \theta_1$. Considere a função teste na forma

$$\delta(X_1) = \begin{cases} 1, & \text{se } X_1 \neq k, \\ 0, & c.c. \end{cases}$$

a) Faça o gráfico do tamanho do teste para $k = \{0, 1, 2, 3, 4\}$.

Resolução

b) Calcule o poder do teste para $k = \{0, 1, 2, 3, 4\}$ e faça o gráfico.

Resolução

c) Para qual k o teste tem nível de significância $\alpha = 0.2$.

Resolução

Exercício 3

Seja $(X_1,...,X_n)$ uma amostra aleatória de $X \sim N(\mu,\sigma^2)$, com $(\mu,\sigma^2) \in \Theta \subseteq \mathbb{R} \times \mathbb{R}_+$,

- a) Seja a hipótese nula $H_0: \mu \leq 0$ e a alternativa $H_1: \mu > 0$, (suponha σ^2 conhecido).
- (i) Construa o teste uniformemente mais poderoso.

Resolução

(ii) Suponha agora que a hipótese nula seja $H_0: \mu = 0$ e a alternativa $H_1: \mu \neq 0$. Construa o teste de razão dde verossimilhanças generalizado e calcule o valor-p (nível descritivo) associado.

Resolução

- b) Seja a hipótese nula $H_0: \sigma^2 \geq 2$ e alternativa $H_1: \sigma^2 < 2$, (suponha μ conhecido).
- (i) Construa o teste uniformemente mais poderoso.

Resolução

(ii) Suponha agora que a hipótese nula seja $H_0: \sigma^2 = 2$ e alternativa $H_1: \sigma^2 \neq 2$. Construa o teste de razão de verossimilhanças generalizado e calculo o valor-p associado.

Resolução

Exercício 4

Seja $(X_1,...,X_n)$ uma amostra aleatória de $X \sim Pois(\theta)$, em que o parâmetro $\theta \in \Theta \subseteq \mathbb{R}_+$

a) Seja a hipótese nula $H_0: \theta \leq 1$ e alternativa $H_1: \theta \geq 1$. Encontre o teste uniformemente mais poderoso, para uma amostra n=40 e um entre (0.05,0.06)

Resolução

b) Mostre que não existe um teste uniformemente mais poderoso de tamanho 0.05.

Resolução

c) Utilizando a amostra abaixo, verifique que se a H_0 e rejeitada ao nível de significância $\alpha = 0.06$, justifique.

Dica: Utilize o fato para n = 40, o quantil 0.95 da distribuição Poisson com parâmetro $\theta = n$ é $q_{0.95} = 51$.

Resolução

Exercício 5

Seja $(X_1,...,X_n)$ uma amostra aleatória de $X \sim f_\theta$, tal que

$$f_{\theta}(x) = \begin{cases} \theta^2 x e^{-\theta x}, & \text{se } x > 0, \ \theta > 0, \\ 0, & c.c. \end{cases}$$

- a) Seja a hipótese nula $H_0: \theta = 1$ e alternativa $H_1: \theta < 1$,
- (i) Encontre o teste mais poderoso de tamanho α a utilizando o lema de Neyman-Pearson.

Resolução

(ii) Calcule a região crítica para n=10 e tamanho do teste $\alpha=0.05$.

Resolução

(iii) Para a amostra abaixo, verefique se a H_0 é rejeitada para um nível de significância $\alpha = 0.05$.

$$2.59,\ 0.48,\ 2.72,\ 0.93,\ 5.68,\ 2.28,\ 3.92,\ 4.08,\ 0.61,\ 2.59.$$

Resolução

b) Seja a hipótese nula $H_0: \theta = 1$ e alternativa $H_1: \theta \neq 1$. Construa o teste de razão de verossimilhanças generalizado e calule valor-p (nível descritivo) associado.

Dica: Utilize o fato $2\theta \sum_{i=1}^{n} X_i \sim \chi_{2n}^2$, e use a tabela referente a distribuição para $\alpha = 0.05$.

Resolução