

What is the Sun

• Mass: 1,989x10³⁰kg

• Size: Ø 1,39x10⁶km

• Distance: 149,6x10⁶km

• 73,5% H, 25%He

→ rest 1,5%: O,C,...

Structure of the Sun

- Solar interiors
 - Core
 - Radiative zone
 - Convective zone
- Solar atmosphere
 - Photosphere
 - Chromosphere
 - Transition region
 - Corona

Differential rotation

- Convective Zone from surface down 30% of radius
- plasma rotates around the Sun
- slowly at poles (33.5 days), faster at equator (25.6 days)
- Mean rotation 27 days

$$\omega = A + B\sin\varphi + C\sin^4\varphi$$

 $A = 14.713 \pm 0.0491 ^{\circ}/d$

 $B = -2.396 \pm 0.188$ °/d

 $C = -1.787 \pm 0.253$ °/d

Solar magnetic field

- Magnetic star
- Dynamo theory
- Generation by the motion (convection) of conductive plasma inside the Sun
- Drives all solar activity
- Open magnetic field lines extend into space → interplanetary magnetic field (IMF)
- Magnetic field fluctuates significantly (times scales ranging from a fraction of a second to billions of years)

Solar wind

- created by the outward expansion of plasma from the corona
- Sun's gravity can't hold extremely heated plasma down
- carries some of Sun's magnetic field (IMF)
- Forms the heliosphere
- reaches speeds of over one million miles per hour
- "bow shocks" forms whenever it is forced to flow around the planets

Solar wind

Mean solar wind properties near Earth

Parameter	Property	value
Composition		96%H+,4% (0-20%) He++, e-
Density	n _p ≈n _e	6 (0.1-100) cm ⁻³
Velocity	u _p ≈u _e =u	470 (170-2000) km/s
Protonenfluss	n _p u	3*10 ¹² m ⁻² s ⁻¹
Temperatur	Т	10 ⁵ (3500-5*10 ⁵) K
Interplanetary magnetic field	В	3.5 (0.2-50) nT
		Pröles (2001)

Prölss (2001)

Parker Spiral

- Solar rotation winds up its magnetic field lines above its polar regions into a large rotating spiral,
- Magnetic current sheet: enormous continuous magnetic wave of ion particles in the Heliosphere
- spiral wavy shape known as Parker Spiral

Sunspots

- areas of lower surface temperatures which appear dark (in Photosphere)
- caused by intense magnetic disturbances
- occur due to the Sun's magnetic field expanding up to the photosphere
- Hot gas travels to the top of the convective zone and cools down
- can last from anywhere between one hour to seven months

Solar cycle

Maunder butterfly diagram

Prominences

- loops of magnetic field lines trap some solar wind plasma and hold it back from escaping Sun.
- Anchored in the Photosphere
- rise up through the Chromosphere
- Often in a loop shape
- mass within a Prominence is typically on the order of 100 billion tons
- Differential rotation causes magnetic field lines to become twisted
- Eruption occurs when such a structure becomes unstable

Choronal holes

- Large dark patches in the Sun's corona, which are most prevalent and stable at the poles
- Magnetic field lines extend outwards into space → interplanetary magnetic field
- Emit constant stream of high speed solar wind "streamers"
- Leave regions of low density plasma and
- Lower temperature when compared to their surroundings

Conveyors belts

- Meridional Plasma Flows in the Convection Zone
- Both branches of the conveyor belt take about forty years to complete one revolution.
- The top of the belts skim the sun's surface, sweeping up knots of solar plasma magnetism and propelling them towards the poles.
- Suppress sunspots by counteracting magnetic diffusion at the sun's equator.

