Rayleigh Diagnostic Values

Nick Featherstone

August 21, 2018

Contents

1	Overview of Diagnostic Outputs in Rayleigh	2
2	Definitions and Conventions2.1 Vector and Tensor Notation2.2 Reference-State Values2.3 Averaged and Fluctuating Values	2
3	The Equation Sets Solved by Rayleigh 3.1 Dimensional Anelastic Formulation of the MHD Equations	4
4	Diagnostic Code Tables	7
	4.1 Velocity Field	7
	4.2 Vorticity	11
	4.3 Kinetic Energy	12
	4.4 Thermal Variables	13
	4.5 thermal energy	16
	4.6 Magnetic Field	17
	4.7 $\nabla \times B$	21
	4.8 Magnetic Energy Density	22
	4.9 momentum equation	23
	4.10 thermal energy equation	25
	4.11 Induction Equation	28
	4.12 Angular Momentum	30
	4.13 Kinetic Energy Equation	31
	4.14 Magnetic Energy Equation	32

1 Overview of Diagnostic Outputs in Rayleigh

The purpose of this document is to describe Rayleigh's internal menu system used for specifying diagnostic outputs. Rayleigh's design includes an onboard diagnostics package that allows a user to output a variety of system quantities as the run evolves. These include system state variables, such as velocity and entropy, as well as derived quantities, such as the vector components of the Lorentz force and the kinetic energy density. Each diagnostic quantity is requested by adding its associated menu number to the $main_input$ file. Radial velocity, for instance, has menu code 1, θ -component of velocity has menu code 2, etc.

A few points to keep in mind are

- This document is intended to describe the diagnostics output menu only. A complete description of Rayleigh's diagnostic package is provided in Rayleigh/doc/Diagnostic_Plotting.pdf. A more in-depth description of the anelastic and Boussinesq modes available in Rayleigh is provided in Rayleigh/doc/user_guide.pdf.
- A number of *output methods* may be used to output any system diagnostic. No diagnostic is linked to a particular *output method*. The same diagnostic might be output in volume-averaged, azimuthally-averaged, and fully 3-D form, for instance.
- You may notice a good deal of redundancy in the available outputs. For instance, the azimuthal velocity, v_{ϕ} , and its zonal average, $\overline{v_{\phi}}$, are both available as outputs. Were the user to output both of these in an azimuthally-averaged format, the result would be the same. 3-D output, however, would not yield the same result. This redundancy has been added to help with post-processing calculations in which it can be useful to have all data products in a similar format.
- Given the degree of redundancy found in the list below, you may be surprised to notice that several values are not available for output at all. Some of these are best added as custom-user diagnostics and may be included in a future release. Many, however, may be obtained by considering either the sum, or difference, of those outputs already available.

2 Definitions and Conventions

2.1 Vector and Tensor Notation

All vector quantities are represented in bold italics. Components of a vector are indicated in non-bold italics, along with a subscript indicating the direction associated with that component. Unit vectors are written in lower-case, bold math font and are indicated by the use of a hat character. For example, a vector quantity a would represented as

$$\mathbf{a} = a_r \hat{\mathbf{a}} + a_\theta \hat{\boldsymbol{\theta}} + a_\phi \hat{\boldsymbol{\phi}}. \tag{1}$$

The symbols $(\hat{r}, \hat{\theta}, \hat{\phi})$ indicate the unit vectors in the (r, θ, ϕ) directions, and (a_r, a_θ, a_ϕ) indicate the components of \boldsymbol{a} along those directions respectively.

Vectors may be written in lower case, as with the velocity field v, or in upper case as with the magnetic field B. Tensors are indicated by bold, upper-case, script font, as with the viscous stress tensor \mathcal{D} . Tensor components are indicated in non-bold, and with directional subscripts (i.e., $\mathcal{D}_{r\theta}$).

2.2 Reference-State Values

The hat notation is also used to indicate reference-state quantities. These quantities are scalar, and they are not written in bold font. They vary only in radius and have no θ -dependence or ϕ -dependence. The reference-state density is indicated by $\hat{\rho}$ and the reference-state temperature by \hat{T} , for instance.

2.3 Averaged and Fluctuating Values

Most of the output variables have been decomposed into a zonally-averaged value, and a fluctuation about that average. The average is indicated by an overbar, such that

$$\overline{a} \equiv \frac{1}{2\pi} \int_0^{2\pi} a(r, \theta, \phi) \, d\phi. \tag{2}$$

Fluctations about that average are indicated by a prime superscript, such that

$$a' \equiv a(r, \theta, \phi) - \overline{a}(r, \theta) \tag{3}$$

Finally, some quantities are averaged over the full sphere. These are indicated by a double-zero subscript (i.e. $\ell = 0, m = 0$), such that

$$a_{00} \equiv \frac{1}{4\pi} \int_0^{2\pi} \int_0^{\pi} a(r, \theta, \phi) r \sin \theta d\theta d\phi. \tag{4}$$

3 The Equation Sets Solved by Rayleigh

Rayleigh solves the Boussinesq or anelastic MHD equations in spherical geometry. Both the equations that Rayleigh solves and its diagnostics can be formulated either dimensionally or nondimensionally. A nondimensional Boussinesq formulation, as well as dimensional and nondimensional anelastic formulations (based on a polytropic reference state) are provided as part of Rayleigh. The user may employ alternative formulations via the custom Reference-state interface. To do so, they must specify the functions f_i and the constants c_i in equations 5–11 at input time (in development).

The general form of the momentum equation solved by Rayleigh is given by

$$f_1(r) \left[\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \nabla \boldsymbol{v} + c_1 \hat{\boldsymbol{z}} \times \boldsymbol{v} \right] = c_2 f_2(r) \Theta \,\hat{\boldsymbol{r}} - c_3 f_1(r) \nabla \left(\frac{P}{f_1(r)} \right) + c_4 \left(\nabla \times \boldsymbol{B} \right) \times \boldsymbol{B} + c_5 \nabla \cdot \boldsymbol{\mathcal{D}}, \tag{5}$$

where the stress tensor \mathcal{D} is given by

$$\mathcal{D}_{ij} = 2f_1(r) f_3(r) \left[e_{ij} - \frac{1}{3} \nabla \cdot \boldsymbol{v} \right]. \tag{6}$$

The velocity field is denoted by v, the thermal anomoly by Θ , the pressure by P, and the magnetic field by B. All four of these quantities are 3-dimensional functions of position, in contrast to the 1-dimensional coefficient functions f_i . The velocity and magnetic fields are subject to the constraints

$$\nabla \cdot (\mathbf{f}_1(r)\,\boldsymbol{v}) = 0 \tag{7}$$

and

$$\nabla \cdot \boldsymbol{B} = 0 \tag{8}$$

respectively. The evolution of Θ is described

$$f_1(r) f_4(r) \left[\frac{\partial \Theta}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta \right] = c_6 \, \boldsymbol{\nabla} \cdot \left[f_1(r) f_4(r) f_5(r) \, \boldsymbol{\nabla} \Theta \right] + f_6(r) + c_8 \Phi(r, \theta, \phi) + c_9 f_7(r) \left[\boldsymbol{\nabla} \times \boldsymbol{B} \right]^2, \tag{9}$$

where the viscous heating Φ is given by

$$\Phi(r,\theta,\phi) = 2 f_1(r) f_3(r) \left[e_{ij} e_{ij} - \frac{1}{3} (\boldsymbol{\nabla} \cdot \boldsymbol{v})^2 \right].$$
 (10)

Finally, the evolution of B is described by the induction equation

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B} - c_7 \, f_7(r) \boldsymbol{\nabla} \times \boldsymbol{B}). \tag{11}$$

Equations 5–11 could have been formulated in other ways. For instance, we could combine f_1 and f_4 into a single function in Equation 10. The form of the equations presented here has been chosen to reflect that actually used in the code, which was originally written dimensionally. We now describe the dimensional anelastic and nondimensional Boussinesq formulations used in the code.

3.1 Dimensional Anelastic Formulation of the MHD Equations

When run in dimensional, anelastic mode (cgs units; **reference_type=2**), the following values are assigned to the functions f_i and the constants c_i :

$$\begin{split} &f_1(r) \rightarrow \hat{\rho}(r) & c_1 \rightarrow 2\Omega_0 \\ &f_2(r) \rightarrow \frac{\rho(\hat{r})}{c_P} g(r) & c_2 \rightarrow 1 \\ &f_3(r) \rightarrow \nu(r) & c_3 \rightarrow 1 \\ &f_4(r) \rightarrow \hat{T}(r) & c_4 \rightarrow \frac{1}{4\pi} \\ &f_5(r) \rightarrow \kappa(r) & c_5 \rightarrow 1 \\ &f_6(r) \rightarrow Q(r) & c_6 \rightarrow 1 \\ &f_7(r) \rightarrow \eta(r) & c_7 \rightarrow 1. \\ &c_8 \rightarrow 1 & c_9 \rightarrow \frac{1}{4\pi}. \end{split}$$

Here, $\hat{\rho}$ and \hat{T} are the reference-state density and temperature respectively. g is the gravitational acceleration, c_P is the specific heat at constant pressure, and Ω_0 is the frame rotation rate. The viscous, thermal, and magnetic diffusivities are given by ν , κ , and η respectively. Finally, Q(r) is an internal heating function; it might represent radiative heating or heating due to nuclear fusion, for instance. Note that in the anelastic formulation, the thermal variable Θ is interpreted is as entropy s, rather than temperature T. When these substitutions are made, Equations 5–11 transform as follows.

$$\hat{\rho}(r) \left[\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} + 2\Omega_0 \hat{\boldsymbol{z}} \times \boldsymbol{v} \right] = \frac{\hat{\rho}(r)}{c_P} g(r) \boldsymbol{\Theta} \, \hat{\boldsymbol{r}} + \hat{\rho}(r) \boldsymbol{\nabla} \left(\frac{P}{\hat{\rho}(r)} \right) + \frac{1}{4\pi} \left(\boldsymbol{\nabla} \times \boldsymbol{B} \right) \times \boldsymbol{B} + \boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{D}}$$
 Momentum
$$\hat{\rho}(r) \, \hat{T}(r) \left[\frac{\partial \boldsymbol{\Theta}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{\Theta} \right] = \boldsymbol{\nabla} \cdot \left[\hat{\rho}(r) \, \hat{T}(r) \, \kappa(r) \, \boldsymbol{\nabla} \boldsymbol{\Theta} \right] + Q(r) + \Phi(r, \theta, \phi) + \frac{\eta(r)}{4\pi} \left[\boldsymbol{\nabla} \times \boldsymbol{B} \right]^2$$
 Thermal Energy
$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times \left(\boldsymbol{v} \times \boldsymbol{B} - \eta(r) \boldsymbol{\nabla} \times \boldsymbol{B} \right)$$
 Induction
$$\mathcal{D}_{ij} = 2 \hat{\rho}(r) \, \nu(r) \left[e_{ij} - \frac{1}{3} \boldsymbol{\nabla} \cdot \boldsymbol{v} \right]$$
 Viscous Stress Tensor
$$\Phi(r, \theta, \phi) = 2 \, \hat{\rho}(r) \nu(r) \left[e_{ij} e_{ij} - \frac{1}{3} \left(\boldsymbol{\nabla} \cdot \boldsymbol{v} \right)^2 \right]$$
 Viscous Heating
$$\boldsymbol{\nabla} \cdot (\hat{\rho}(r) \, \boldsymbol{v}) = 0$$
 Solenoidal Mass Flux Solenoidal Magnetic Field

3.2 Nondimensional Boussinesq Formulation of the MHD Equations

Rayleigh can also be run using a nondimensional, Boussinesq formulation of the MHD equations (**reference_type=1**). The nondimensionalization employed is as follows:

$$\begin{array}{ccc} \text{Length} \to L & \text{(Shell Depth)} \\ & \text{Time} \to \frac{L^2}{\nu} & \text{(Viscous Timescale)} \\ & \text{Temperature} \to \Delta T & \text{(Temperature Contrast Across Shell)} \\ & \text{MagneticField} \to \sqrt{\rho\mu\eta\Omega_0}, \end{array}$$

where Ω_0 is the rotation rate of the grame, ρ is the (constant) density of the fluid, μ is the magnetic permeability, η is the magnetic diffusivity, and ν is the kinematic viscosity. After nondimensionalizing, the following nondimensional

numbers appear in our equations:

$$Pr=rac{
u}{\kappa}$$
 Prandtl Number $Pr=rac{
u}{\eta}$ Magnetic Prandtl Number $Pr=rac{
u}{\eta}$ Ekman Number $Pr=rac{
u}{\eta}$ Rayleigh Number,

where α is coefficient of thermal expansion, g_0 is the gravitational acceleration, and κ is the thermal diffusivity. Adopting this nondimensionalization is equivalent to assigning values to f_i and the constants c_i :

$$\begin{aligned} \mathbf{f}_1(r) &\to 1 & c_1 &\to \frac{2}{E} \\ \mathbf{f}_2(r) &\to \left(\frac{r}{r_o}\right)^n & c_2 &\to \frac{Ra}{E\,Pr} \\ \mathbf{f}_3(r) &\to 1 & c_3 &\to \frac{1}{E} \\ \mathbf{f}_4(r) &\to 1 & c_4 &\to \frac{1}{E\,Pm} \\ \mathbf{f}_5(r) &\to 1 & c_5 &\to 0 \\ \mathbf{f}_6(r) &\to 0 & c_6 &\to \frac{1}{Pr} \\ \mathbf{f}_7(r) &\to 1 & c_7 &\to \frac{1}{Pm}. \\ c_8 &\to 0 & c_9 &\to 0. \end{aligned}$$

Note that our choice of $f_2(r)$ allows gravity to vary with radius based on the value of the exponent n, which has a default value of 0 in the code. Note also that our definition of Ra assumes fixed-temperature boundary conditions. We might choose specify fixed-flux boundary conditions and/or an internal heating through a suitable choice $f_6(r)$, in which case the meaning of Ra in our equation set changes, with Ra denoting a flux Rayleigh number instead. In addition, ohmic and viscous heating, which do not appear in the Boussinesq formulation, are turned off when this nondimensionalization is specified at runtime. When these substitutions are made, Equations 5–11 transform as follows.

$$\left[\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} + \frac{2}{E} \hat{\boldsymbol{z}} \times \boldsymbol{v} \right] = \frac{Ra}{Pr} \left(\frac{r}{r_o} \right)^n \Theta \, \hat{\boldsymbol{r}} - \frac{1}{E} \boldsymbol{\nabla} P + \frac{1}{E\,Pm} \left(\boldsymbol{\nabla} \times \boldsymbol{B} \right) \times \boldsymbol{B} + \boldsymbol{\nabla}^2 \boldsymbol{v} \qquad \text{Momentum}$$

$$\left[\frac{\partial \Theta}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \Theta \right] = \frac{1}{Pr} \boldsymbol{\nabla}^2 \Theta \qquad \qquad \text{Thermal Energy}$$

$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times (\boldsymbol{v} \times \boldsymbol{B}) + \frac{1}{Pm} \boldsymbol{\nabla}^2 \boldsymbol{B} \qquad \qquad \text{Induction}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{v} = 0 \qquad \qquad \text{Solenoidal Velocity Field}$$

$$\boldsymbol{\nabla} \cdot \boldsymbol{B} = 0 \qquad \qquad \text{Solenoidal Magnetic Field}$$

3.3 Nondimensional Anelastic MHD Equations

To run in nondimensional anelastic mode, you must set **reference_type=3** in the Reference_Namelist. The reference state is assumed to be polytropic with a $\frac{1}{r^2}$ profile for gravity. Transport coefficients ν , κ , η are assumed to be constant in radius. When this mode is active, the following nondimensionalization is used (following Heimpel et al., 2016, *Nat. Geo*, 9, 19):

$$\begin{array}{c} \operatorname{Length} \to L & \text{(Shell Depth)} \\ \operatorname{Time} \to \frac{1}{\Omega_0} & \text{(Rotational Timescale)} \\ \operatorname{Temperature} \to T_o \equiv \hat{T}(r_{\text{max}}) & \text{(Reference - State Temperature at Upper Boundary)} \\ \operatorname{Density} \to \rho_o \equiv \hat{\rho}(r_{\text{max}}) & \text{(Reference - State Density at Upper Boundary)} \\ \operatorname{Entropy} \to \Delta s & \text{(Entropy Constrast Across Shell)} \\ \operatorname{Magnetic Field} \to \sqrt{\tilde{\rho}(r_{\text{max}})\mu\eta\Omega_0}. & \end{array}$$

When run in this mode, Rayleigh employs a polytropic background state, with an assumed $\frac{1}{r^2}$ variation in gravity. These choices result in the functions f_i and the constants c_i (tildes indicate nondimensional reference-state variables):

$$\begin{split} &f_1(r) \to \tilde{\rho}(r) & c_1 \to 2 \\ &f_2(r) \to \rho \tilde{r}) \frac{r_{\max}^2}{r^2} & c_2 \to \mathrm{Ra}^* \\ &f_3(r) \to 1 & c_3 \to 1 \\ &f_4(r) \to \tilde{T}(r) & c_4 \to \frac{\mathrm{E}}{\mathrm{Pm}} \\ &f_5(r) \to 1 & c_5 \to \mathrm{E} \\ &f_6(r) \to Q(r) & c_6 \to \frac{\mathrm{E}}{\mathrm{Pr}} \\ &f_7(r) \to 1 & c_7 \to \frac{\mathrm{E}}{\mathrm{Pm}} \\ &c_8 \to \frac{\mathrm{E}\,\mathrm{Di}}{\mathrm{Ra}^*} & c_9 \to \frac{\mathrm{E}^2\,\mathrm{Di}}{\mathrm{Pm}^2\mathrm{Ra}^*}. \end{split}$$

Two new nondimensional numbers appear in our equations. Di, the dissipation number, is defined by

$$Di = \frac{g_o L}{c_P T_o}, \tag{12}$$

where g_o and T_o are the gravitational acceleration and temperature at the outer boundary respectively. Once more, the thermal anomoly Θ should be interpreted as entropy s. The symbol Ra* is the modified Rayleigh number, given by

$$Ra^* = \frac{g_o}{c_P \Omega_0^2} \frac{\Delta s}{L} \tag{13}$$

We arrive at the following nondimensionalized equations:

$$\frac{\partial \boldsymbol{v}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{v} + 2\hat{\boldsymbol{z}} \times \boldsymbol{v} = \operatorname{Ra}^* \frac{r_{\max}^2}{r^2} \boldsymbol{\Theta} \, \hat{\boldsymbol{r}} + \boldsymbol{\nabla} \left(\frac{P}{\tilde{\rho}(r)} \right) + \frac{\operatorname{E}}{\operatorname{Pm} \tilde{\rho}} \left(\boldsymbol{\nabla} \times \boldsymbol{B} \right) \times \boldsymbol{B} + \frac{\operatorname{E}}{\rho(\tilde{r})} \boldsymbol{\nabla} \cdot \boldsymbol{\mathcal{D}}$$
 Momentum
$$\tilde{\rho}(r) \, \tilde{T}(r) \left[\frac{\partial \boldsymbol{\Theta}}{\partial t} + \boldsymbol{v} \cdot \boldsymbol{\nabla} \boldsymbol{\Theta} \right] = \frac{\operatorname{E}}{\operatorname{Pr}} \boldsymbol{\nabla} \cdot \left[\tilde{\rho}(r) \, \tilde{T}(r) \, \boldsymbol{\nabla} \boldsymbol{\Theta} \right] + Q(r) + \frac{\operatorname{E} \operatorname{Di}}{\operatorname{Ra}^*} \boldsymbol{\Phi}(r, \theta, \phi) + \frac{\operatorname{Di} \operatorname{E}^2}{\operatorname{Pm}^2 \operatorname{Ra}^*} \left[\boldsymbol{\nabla} \times \boldsymbol{B} \right]^2$$
 Thermal Energy
$$\frac{\partial \boldsymbol{B}}{\partial t} = \boldsymbol{\nabla} \times \left(\boldsymbol{v} \times \boldsymbol{B} - \frac{\operatorname{E}}{\operatorname{Pm}} \boldsymbol{\nabla} \times \boldsymbol{B} \right)$$
 Induction
$$\mathcal{D}_{ij} = 2\tilde{\rho}(r) \left[e_{ij} - \frac{1}{3} \boldsymbol{\nabla} \cdot \boldsymbol{v} \right]$$
 Viscous Stress Tensor
$$\boldsymbol{\Phi}(r, \theta, \phi) = 2 \, \tilde{\rho}(r) \left[e_{ij} e_{ij} - \frac{1}{3} \left(\boldsymbol{\nabla} \cdot \boldsymbol{v} \right)^2 \right]$$
 Viscous Heating
$$\boldsymbol{\nabla} \cdot (\tilde{\rho}(r) \, \boldsymbol{v}) = 0$$
 Solenoidal Mass Flux Solenoidal Magnetic Field

4 Diagnostic Code Tables

The remainder of this document contains tables enumerating the menu codes necessary to specify diagnostic outputs in Rayleigh.

4.1 Velocity Field

Output quantities related to the velocity field, its gradients, and its associated mass flux f_1v are defined here.

Value	Code	Variable	Value	Code	Variable
v_r	1	v_r	$\frac{\partial v_{\phi}}{\partial \theta}$	21	$dv_{phi}dt$
v_{θ}	2	v_theta	$\frac{\partial v_r'}{\partial \theta}$	22	dvp_r_dt
v_{ϕ}	3	v_phi	$\frac{\partial v_{\theta}'}{\partial \theta}$	23	dvp_theta_dt
v_r'	4	vp_r	$\frac{\partial v_{\phi}'}{\partial \theta}$	24	dvp_phi_dt
v'_{θ}	5	vp_theta	$\frac{\partial \overline{v_r}}{\partial \theta}$	25	dvm_r_dt
v_ϕ'	6	vp_phi	$\frac{\partial \overline{v_{\theta}}}{\partial \theta}$	26	dvm_theta_dt
$\overline{v_r}$	7	vm_r	$\frac{\partial \overline{v_{\phi}}}{\partial \theta}$	27	dvm_phi_dt
$\overline{v_{\theta}}$	8	vm_theta	$\frac{\partial v_r}{\partial \phi}$	28	dv_r_dp
$\overline{v_\phi}$	9	vm_phi	$\frac{\partial v_{\theta}}{\partial \phi}$	29	$dv_{theta}dp$
$\frac{\partial v_r}{\partial r}$	10	dv_r_dr	$\frac{\partial v_{\phi}}{\partial \phi}$	30	dv_phi_dp
$\frac{\partial v_{\theta}}{\partial r}$	11	$dv_{theta}dr$	$\frac{\partial v_r'}{\partial \phi}$	31	dvp_r_dp
$rac{\partial v_{\phi}}{\partial r}$	12	dv_phi_dr	$\frac{\partial v_{\theta}'}{\partial \phi}$	32	dvp_theta_dp
$\frac{\partial v_r'}{\partial r}$	13	dvp_r_dr	$\frac{\partial v'_{\phi}}{\partial \phi}$	33	dvp_phi_dp
$\frac{\partial v_{\theta}'}{\partial r}$	14	dvp_theta_dr	$\frac{\partial \overline{v_r}}{\partial \phi}$	34	dvm_r_dp
$\frac{\partial v_{\phi}'}{\partial r}$	15	dvp_phi_dr	$\frac{\partial \overline{v_{\theta}}}{\partial \phi}$	35	dvm_theta_dp
$\frac{\partial \overline{v_r}}{\partial r}$	16	dvm_r_dr	$\frac{\partial \overline{v_{\phi}}}{\partial \phi}$	36	dvm_phi_dp
$\frac{\partial \overline{v_{\theta}}}{\partial r}$	17	dvm_theta_dr	$\frac{1}{r} \frac{\partial v_r}{\partial \theta}$	37	dv_r_dtr
$\frac{\partial \overline{v_{\phi}}}{\partial r}$	18	dvm_phi_dr	$\frac{1}{r} \frac{\partial v_{\theta}}{\partial \theta}$	38	$dv_{theta_{dtr}}$
$\frac{\partial v_r}{\partial \theta}$	19	$\mathrm{dv}_{-}\mathrm{r}_{-}\mathrm{dt}$	$\frac{1}{r} \frac{\partial v_{\phi}}{\partial \theta}$	39	$dv_{phi}dtr$
$\frac{\partial v_{\theta}}{\partial \theta}$	20	$dv_{theta_{dt}}$	$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	40	dvp_r_dtr

Value	Code	Variable	Value	Code	Variable
$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	41	dvp_theta_dtr	$\frac{\partial^2 \overline{v_r}}{\partial r^2}$	61	dvm_r_d2r
$\frac{1}{r} \frac{\partial v_r'}{\partial \theta}$	42	dvp_phi_dtr	$\frac{\partial^2 \overline{v_{\theta}}}{\partial r^2}$	62	dvm_theta_d2r
$\frac{1}{r} \frac{\partial \overline{v_r}}{\partial \theta}$	43	dvm_r_dtr	$\frac{\partial^2 \overline{v_\phi}}{\partial r^2}$	63	dvm_phi_d2r
$\frac{1}{r} \frac{\partial \overline{v_{\theta}}}{\partial \theta}$	44	$dvm_{theta_{dtr}}$	$\frac{\partial^2 v_r}{\partial \theta^2}$	64	dv_r_d2t
$\frac{1}{r} \frac{\partial \overline{v_{\phi}}}{\partial \theta}$	45	dvm_phi_dtr	$\frac{\partial^2 v_{\theta}}{\partial \theta^2}$	65	dv_theta_d2t
$\frac{1}{r \sin \theta} \frac{\partial v_r}{\partial \phi}$	46	dv_r_dprs	$\frac{\partial^2 v_{\phi}}{\partial \theta^2}$	66	$dv_{-}phi_{-}d2t$
$\frac{1}{r \sin \theta} \frac{\partial v_{\theta}}{\partial \phi}$	47	dv_{theta_dprs}	$\frac{\partial^2 v_r'}{\partial \theta^2}$	67	dvp_r_d2t
$\frac{1}{r \mathrm{sin}\theta} \frac{\partial v_{\phi}}{\partial \phi}$	48	dv_phi_dprs	$\frac{\partial^2 v_{\theta}'}{\partial \theta^2}$	68	dvp_theta_d2t
$\frac{1}{r \sin \theta} \frac{\partial v_r'}{\partial \phi}$	49	dvp_r_dprs	$\frac{\partial^2 v_\phi'}{\partial \theta^2}$	69	dvp_phi_d2t
$\frac{1}{r \sin \theta} \frac{\partial v_{\theta}'}{\partial \phi}$	50	dvp_theta_dprs	$\frac{\partial^2 \overline{v_r}}{\partial \theta^2}$	70	dvm_r_d2t
$\frac{1}{r \sin \theta} \frac{\partial v_{\phi}'}{\partial \phi}$	51	dvp_phi_dprs	$\frac{\partial^2 \overline{v_{\theta}}}{\partial \theta^2}$	71	dvm_theta_d2t
$\frac{1}{r \sin \theta} \frac{\partial \overline{v_r}}{\partial \phi}$	52	dvm_r_dprs	$\frac{\partial^2 \overline{v_\phi}}{\partial \theta^2}$	72	dvm_phi_d2t
$\frac{1}{r \sin \theta} \frac{\partial \overline{v_{\theta}}}{\partial \phi}$	53	dvm_theta_dprs	$\frac{\partial^2 v_r}{\partial \phi^2}$	73	dv_r_d2p
$\frac{1}{r \sin \theta} \frac{\partial \overline{v_{\phi}}}{\partial \phi}$	54	dvm_phi_dprs	$\frac{\partial^2 v_{\theta}}{\partial \phi^2}$	74	dv_theta_d2p
$\frac{\partial^2 v_r}{\partial r^2}$	55	dv_r_d2r	$\frac{\partial^2 v_{\phi}}{\partial \phi^2}$	75	$dv_{phi}d2p$
$\frac{\partial^2 v_{\theta}}{\partial r^2}$	56	dv_theta_d2r	$\frac{\partial^2 v_r'}{\partial \phi^2}$	76	dvp_r_d2p
$\frac{\partial^2 v_{\phi}}{\partial r^2}$	57	dv_phi_d2r	$\frac{\partial^2 v_\theta'}{\partial \phi^2}$	77	dvp_theta_d2p
$\frac{\partial^2 v_r'}{\partial r^2}$	58	dvp_r_d2r	$\frac{\partial^2 v_\phi'}{\partial \phi^2}$	78	dvp_phi_d2p
$\frac{\partial^2 v_\theta'}{\partial r^2}$	59	dvp_theta_d2r	$\frac{\partial^2 \overline{v_r}}{\partial \phi^2}$	79	dvm_r_d2p
$\frac{\partial^2 v_\phi'}{\partial r^2}$	60	dvp_phi_d2r	$\frac{\partial^2 \overline{v_{\theta}}}{\partial \phi^2}$	80	dvm_theta_d2p

Value	Code	Variable	Value	Code	Variable
$\frac{\partial^2 \overline{v_\phi}}{\partial \phi^2}$	81	dvm_phi_d2p	$\frac{\partial^2 v_{\theta}}{\partial \theta \partial \phi}$	101	$dv_{theta}d2tp$
$\frac{\partial^2 v_r}{\partial r \partial \theta}$	82	dv_r_d2rt	$\frac{\partial^2 v_{\phi}}{\partial \theta \partial \phi}$	102	$dv_{-}phi_{-}d2tp$
$\frac{\partial^2 v_{\theta}}{\partial r \partial \theta}$	83	$dv_{theta}d2rt$	$\frac{\partial^2 v_r'}{\partial \theta \partial \phi}$	103	dvp_r_d2tp
$\frac{\partial^2 v_{\phi}}{\partial r \partial \theta}$	84	dv_phi_d2rt	$\frac{\partial^2 v_\theta'}{\partial \theta \partial \phi}$	104	dvp_theta_d2tp
$\frac{\partial^2 v_r'}{\partial r \partial \theta}$	85	$\mathrm{dvp}_{-}\mathrm{r}_{-}\mathrm{d}2\mathrm{rt}$	$\frac{\partial^2 v_\phi'}{\partial \theta \partial \phi}$	105	dvp_phi_d2tp
$\frac{\partial^2 v_\theta'}{\partial r \partial \theta}$	86	dvp_theta_d2rt	$\frac{\partial^2 \overline{v_r}}{\partial \theta \partial \phi}$	106	dvm_r_d2tp
$\frac{\partial^2 v_\phi'}{\partial r \partial \theta}$	87	dvp_phi_d2rt	$\frac{\partial^2 \overline{v_{\theta}}}{\partial \theta \partial \phi}$	107	dvm_theta_d2tp
$\frac{\partial^2 \overline{v_r}}{\partial r \partial \theta}$	88	dvm_r_d2rt	$\frac{\partial^2 \overline{v_\phi}}{\partial \theta \partial \phi}$	108	dvm_phi_d2tp
$\frac{\partial^2 \overline{v_{\theta}}}{\partial r \partial \theta}$	89	dvm_theta_d2rt			
$\frac{\partial^2 \overline{v_\phi}}{\partial r \partial \theta}$	90	dvm_phi_d2rt			
$\frac{\partial^2 v_r}{\partial r \partial \phi}$	91	dv_r_d2rp			
$\frac{\partial^2 v_{\theta}}{\partial r \partial \phi}$	92	$dv_{theta}d2rp$			
$\frac{\partial^2 v_\phi}{\partial r \partial \phi}$	93	dv_phi_d2rp			
$\frac{\partial^2 v_r'}{\partial r \partial \phi}$	94	dvp_r_d2rp			
$\frac{\partial^2 v_\theta'}{\partial r \partial \phi}$	95	dvp_theta_d2rp			
$\frac{\partial^2 v_\phi'}{\partial r \partial \phi}$	96	dvp_phi_d2rp			
$\frac{\partial^2 \overline{v_r}}{\partial r \partial \phi}$	97	dvm_r_d2rp			
$\frac{\partial^2 \overline{v_{\theta}}}{\partial r \partial \phi}$	98	dvm_theta_d2rp			
$\frac{\partial^2 \overline{v_\phi}}{\partial r \partial \phi}$	99	dvm_phi_d2rp			
$\frac{\partial^2 v_r}{\partial \theta \partial \phi}$	100	dv_r_d2tp			

Value	Code	Variable	Value	Code	Variable
$f_1 v_r$	201	rhov_r	$f_1 v'_{\phi}$	206	rhovp_phi
f_1v_{θ}	202	rhov_theta	$f_1\overline{v_r}$	207	rhovm_r
$f_1 v_{\phi}$	203	${ m rhov_phi}$	$f_1 \overline{v_{\theta}}$	208	${\it rhovm_theta}$
$f_1v'_r$	204	rhovp_r	$f_1\overline{v_\phi}$	209	rhovm_phi
$f_1v'_{\theta}$	205	${\rm rhovp_theta}$			

Value	Code	Variable	Value	Code	Variable
ω_r	301	vort_r	$\omega' \cdot \omega'$	313	${\it enstrophy_pp}$
$\omega_{ heta}$	302	vort_theta	ω_r^2	314	vort_r_sq
ω_{ϕ}	303	$\mathrm{vort}_{ extsf{-}}\mathrm{phi}$	$\omega_{ heta}^2$	315	$vort_theta_sq$
ω_r'	304	vortp_r	ω_{ϕ}^2	316	vort_phi_sq
ω'_{θ}	305	$vortp_theta$	$\omega_r'^2$	317	vortp_r_sq
ω_{ϕ}'	306	vortp_phi	$\omega_{ heta}'^2$	318	vortp_theta_sq
$\overline{\omega_r}$	307	$vortm_r$	$\omega_{\phi}^{\prime 2}$	319	vortp_phi_sq
$\overline{\omega_{ heta}}$	308	vortm_theta	$\overline{\omega_r}^2$	320	vortm_r_sq
$\overline{\omega_\phi}$	309	vortm_phi	$\overline{\omega_{\theta}}^2$	321	vortm_theta_sq
$\omega \cdot \omega$	310	enstrophy	$\overline{\omega_{\phi}}^2$	322	vortm_phi_sq
$\omega'\cdot\overline{\omega}$	311	$enstrophy_pm$	Z	323	zstream
$\overline{\omega}\cdot\overline{\omega}$	312	enstrophy_mm			

4.2 Vorticity

Codes associated with the vorticity field ω are defined here. The vorticity field ω is given by

$$\boldsymbol{\omega} = \boldsymbol{\nabla} \times \boldsymbol{v}.\tag{14}$$

Value	Code	Variable	Value	Code	Variable
$\frac{1}{2}\mathbf{f}_1 \boldsymbol{v}^2$	401	kinetic_energy	v^2	413	vsq
$\frac{1}{2}\mathbf{f}_1v_r^2$	402	radial_ke	v_r^2	414	radial_vsq
$\frac{1}{2}\mathbf{f}_1v_\theta^2$	403	theta_ke	v_{θ}^{2}	415	$theta_vsq$
$\frac{1}{2}\mathbf{f}_1v_\phi^2$	404	phi_ke	v_{ϕ}^{2}	416	phi_vsq
$\frac{1}{2}\mathbf{f}_1\overline{m{v}}^2$	405	$mkinetic_energy$	$\overline{m{v}}^2$	417	mvsq
$\frac{1}{2}\mathbf{f}_1\overline{v_r}^2$	406	radial_mke	$\overline{v_r}^2$	418	radial_mvsq
$\frac{1}{2}f_1\overline{v_\theta}^2$	407	$theta_mke$	$\overline{v_{\theta}}^2$	419	theta_mvsq
$\frac{1}{2}\mathbf{f}_1\overline{v_\phi}^2$	408	phi₋mke	$\overline{v_{\phi}}^2$	420	phi_mvsq
$\frac{1}{2}\mathbf{f}_1 \boldsymbol{v'}^2$	409	pkinetic_energy	$oldsymbol{v'}^2$	421	pvsq
$\frac{1}{2}\mathbf{f}_1 v_r'^2$	410	radial_pke	$v_r'^2$	422	radial_pvsq
$\frac{1}{2}\mathbf{f}_1v_{\theta}^{\prime 2}$	411	$theta_pke$	$v_{\theta}^{\prime 2}$	423	$theta_pvsq$
$\frac{1}{2}f_1v_\phi'^2$	412	phi_pke	$v_{\phi}^{\prime 2}$	424	phi_pvsq

4.3 Kinetic Energy

Codes associated with the generalized kinetic energy density, $\frac{1}{2}f_1(r)v^2$, are defined here.

4.4 Thermal Variables

Codes associated with the thermal variables Θ and P, and their gradients, are defined here.

Value	Code	Variable	Value	Code	Variable
Θ	501	entropy	$\frac{\partial\Theta'}{\partial\phi}$	521	entropy_p_dphi
P	502	pressure	$\frac{\partial P'}{\partial \phi}$	522	pressure_p_dphi
Θ'	503	$\rm entropy_p$	$\frac{\partial \overline{\Theta}}{\partial \phi}$	523	$entropy_m_dphi$
P'	504	pressure_p	$\frac{\partial \overline{P}}{\partial \phi}$	524	pressure_m_dphi
$\overline{\Theta}$	505	entropy_m	$\frac{1}{r} \frac{\partial \Theta}{\partial \theta}$	525	$entropy_dtr$
\overline{P}	506	pressure_m	$\frac{1}{r}\frac{\partial P}{\partial \theta}$	526	pressure_dtr
$\frac{\partial\Theta}{\partial r}$	507	${ m entropy_dr}$	$\frac{1}{r} \frac{\partial \Theta'}{\partial \theta}$	527	$entropy_p_dtr$
$\frac{\partial P}{\partial r}$	508	pressure_dr	$\frac{1}{r} \frac{\partial P'}{\partial \theta}$	528	$pressure_p_dtr$
$\frac{\partial \Theta'}{\partial r}$	509	entropy_p_dr	$\frac{1}{r} \frac{\partial \overline{\Theta}}{\partial \theta}$	529	$entropy_m_dtr$
$\frac{\partial P'}{\partial r}$	510	pressure_p_dr	$\frac{1}{r} \frac{\partial \overline{P}}{\partial \theta}$	530	$pressure_m_dtr$
$\frac{\partial \overline{\Theta}}{\partial r}$	511	$entropy_m_dr$	$\frac{1}{r \sin \theta} \frac{\partial \Theta}{\partial \phi}$	531	$entropy_dprs$
$\frac{\partial \overline{P}}{\partial r}$	512	pressure_m_dr	$\frac{1}{r \sin \theta} \frac{\partial P}{\partial \phi}$	532	$pressure_dprs$
$\frac{\partial\Theta}{\partial\theta}$	513	$entropy_dtheta$	$\frac{1}{r \sin \theta} \frac{\partial \Theta'}{\partial \phi}$	533	$entropy_p_dprs$
$\frac{\partial P}{\partial \theta}$	514	$pressure_dtheta$	$\frac{1}{r \sin \theta} \frac{\partial P'}{\partial \phi}$	534	pressure_p_dprs
$\frac{\partial \Theta'}{\partial \theta}$	515	$entropy_p_dtheta$	$\frac{1}{r \sin \theta} \frac{\partial \overline{\Theta}}{\partial \phi}$	535	$entropy_m_dprs$
$\frac{\partial P'}{\partial \theta}$	516	pressure_p_dtheta	$\frac{1}{r \sin \theta} \frac{\partial \overline{P}}{\partial \phi}$	536	pressure_m_dprs
$\frac{\partial \overline{\Theta}}{\partial \theta}$	517	entropy_m_dtheta	$\frac{\partial^2 \Theta}{\partial r^2}$	537	$entropy_d2r$
$\frac{\partial \overline{P}}{\partial \theta}$	518	pressure_m_dtheta	$\frac{\partial^2 P}{\partial r^2}$	538	pressure_d2r
$\frac{\partial\Theta}{\partial\phi}$	519	entropy_dphi	$\frac{\partial^2 \Theta'}{\partial r^2}$	539	$entropy_p_d2r$
$\frac{\partial P}{\partial \phi}$	520	pressure_dphi	$\frac{\partial^2 P'}{\partial r^2}$	540	pressure_p_d2r

Value	Code	Variable	Value	Code	Variable
$\frac{\partial^2 \overline{\Theta}}{\partial r^2}$	541	entropy_m_d2r	$\frac{\partial^2 \Theta}{\partial r \partial \phi}$	561	entropy_d2rp
$\frac{\partial^2 \overline{P}}{\partial r^2}$	542	$pressure_m_d2r$	$\frac{\partial^2 P}{\partial r \partial \phi}$	562	pressure_d2rp
$\frac{\partial^2 \Theta}{\partial \theta^2}$	543	$entropy_d2t$	$\frac{\partial^2 \Theta'}{\partial r \partial \phi}$	563	$entropy_p_d2rp$
$\frac{\partial^2 P}{\partial \theta^2}$	544	$pressure_d2t$	$\frac{\partial^2 P'}{\partial r \partial \phi}$	564	pressure_p_d2rp
$\frac{\partial^2 \Theta'}{\partial \theta^2}$	545	$entropy_p_d2t$	$\frac{\partial^2 \overline{\Theta}}{\partial r \partial \phi}$	565	$entropy_m_d2rp$
$\frac{\partial^2 P'}{\partial \theta^2}$	546	$pressure_p_d2t$	$\frac{\partial^2 \overline{P}}{\partial r \partial \phi}$	566	$pressure_m_d2rp$
$\frac{\partial^2 \overline{\Theta}}{\partial \theta^2}$	547	$entropy_m_d2t$	$\frac{\partial^2 \Theta}{\partial \theta \partial \phi}$	567	$entropy_d2tp$
$\frac{\partial^2 \overline{P}}{\partial \theta^2}$	548	$pressure_m_d2t$	$\frac{\partial^2 P}{\partial \theta \partial \phi}$	568	$pressure_d2tp$
$\frac{\partial^2 \Theta}{\partial \phi^2}$	549	$entropy_d2p$	$\frac{\partial^2 \Theta'}{\partial \theta \partial \phi}$	569	$entropy_p_d2tp$
$\frac{\partial^2 P}{\partial \phi^2}$	550	$pressure_d2p$	$\frac{\partial^2 P'}{\partial \theta \partial \phi}$	570	$pressure_p_d2tp$
$\frac{\partial^2 \Theta'}{\partial \phi^2}$	551	$entropy_p_d2p$	$\frac{\partial^2 \overline{\Theta}}{\partial \theta \partial \phi}$	571	$entropy_m_d2tp$
$\frac{\partial^2 P'}{\partial \phi^2}$	552	$pressure_p_d2p$	$\frac{\partial^2 \overline{P}}{\partial \theta \partial \phi}$	572	$pressure_m_d2tp$
$\frac{\partial^2 \overline{\Theta}}{\partial \phi^2}$	553	$entropy_m_d2p$	$\frac{\partial}{\partial r} \left(\frac{P}{\hat{\rho}} \right)$	573	$rhopressure_dr$
$\frac{\partial^2 \overline{P}}{\partial \phi^2}$	554	$pressure_m_d2p$	$\frac{\partial}{\partial r} \left(\frac{P'}{\hat{\rho}} \right)$	574	$rhopressurep_dr$
$\frac{\partial^2\Theta}{\partial r\partial\theta}$	555	entropy_d2rt	$\frac{\partial}{\partial r} \left(\frac{\overline{P}}{\hat{\rho}} \right)$	575	rhopressurem_dr
$\frac{\partial^2 P}{\partial r \partial \theta}$	556	$pressure_d2rt$			
$\frac{\partial^2 \Theta'}{\partial r \partial \theta}$	557	$entropy_p_d2rt$			
$\frac{\partial^2 P'}{\partial r \partial \theta}$	558	pressure_p_d2rt			
$\frac{\partial^2 \overline{\Theta}}{\partial r \partial \theta}$	559	$entropy_m_d2rt$			
$\frac{\partial^2 \overline{P}}{\partial r \partial \theta}$	560	pressure_m_d2rt			

Value	Code	Variable	Value	Code	Variable
$f_1f_4\Theta$	701	thermal_energy_full	$(f_1f_4\Theta)^2$	707	thermal_energy_sq
$f_1f_4\Theta$	702	thermal_energy_p	$(f_1f_4\Theta)^2$	708	thermal_energyp_sq
$f_1f_4\overline{\Theta}$	703	$thermal_energy_m$	$\left(f_1f_4\overline{\Theta}\right)^2$	709	$thermal_energym_sq$
$c_P \hat{\rho} T$	704	enthalpy_full	$(c_P\hat{\rho}T)^2$	710	$enthalpy_sq$
$c_P \hat{\rho} T'$	705	$enthalpy_p$	$(c_P\hat{\rho}T')^2$	711	$enthalpyp_sq$
$c_P \hat{\rho} \overline{T}$	706	$enthalpy_m$	$\left(c_P\hat{\rho}\overline{T}\right)^2$	712	$enthalpym_sq$

4.5 thermal energy

Codes associated with the thermal energy density and the enthalpy are defined here.

4.6 Magnetic Field

Codes associated with the magnetic field \boldsymbol{B} and its gradients appear here.

Value	Code	Variable	Value	Code	Variable
B_r	801	b_r	$\frac{\partial B_{\phi}}{\partial \theta}$	821	db_phi_dt
B_{θ}	802	b_theta	$\frac{\partial B_r'}{\partial \theta}$	822	dbp_r_dt
B_{ϕ}	803	b_phi	$\frac{\partial B'_{\theta}}{\partial \theta}$	823	dbp_theta_dt
B'_r	804	bp_r	$\frac{\partial B'_{\phi}}{\partial \theta}$	824	dbp_phi_dt
B'_{θ}	805	bp_theta	$\frac{\partial \overline{B_r}}{\partial \theta}$	825	dbm_r_dt
B_ϕ'	806	bp_phi	$\frac{\partial \overline{B_{\theta}}}{\partial \theta}$	826	dbm_theta_dt
$\overline{B_r}$	807	bm_r	$\frac{\partial \overline{B_{\phi}}}{\partial \theta}$	827	$dbm_{-}phi_{-}dt$
$\overline{B_{ heta}}$	808	$bm_{-}theta$	$\frac{\partial B_r}{\partial \phi}$	828	db_r_dp
$\overline{B_{\phi}}$	809	bm_phi	$\frac{\partial B_{\theta}}{\partial \phi}$	829	db_theta_dp
$\frac{\partial B_r}{\partial r}$	810	db_r_dr	$\frac{\partial B_{\phi}}{\partial \phi}$	830	db_phi_dp
$\frac{\partial B_{\theta}}{\partial r}$	811	db_{theta_dr}	$\frac{\partial B_r'}{\partial \phi}$	831	dbp_r_dp
$\frac{\partial B_{\phi}}{\partial r}$	812	db_phi_dr	$\frac{\partial B'_{\theta}}{\partial \phi}$	832	dbp_theta_dp
$\frac{\partial B_r'}{\partial r}$	813	dbp_r_dr	$\frac{\partial B'_{\phi}}{\partial \phi}$	833	dbp_phi_dp
$\frac{\partial B_{\theta}'}{\partial r}$	814	dbp_theta_dr	$\frac{\partial \overline{B_r}}{\partial \phi}$	834	dbm_r_dp
$\frac{\partial B'_{\phi}}{\partial r}$	815	dbp_phi_dr	$\frac{\partial \overline{B_{\theta}}}{\partial \phi}$	835	dbm_theta_dp
$\frac{\partial \overline{B_r}}{\partial r}$	816	dbm_r_dr	$\frac{\partial \overline{B_{\phi}}}{\partial \phi}$	836	dbm_phi_dp
$\frac{\partial \overline{B_{\theta}}}{\partial r}$	817	dbm_theta_dr	$\frac{1}{r} \frac{\partial B_r}{\partial \theta}$	837	db_r_dtr
$\frac{\partial \overline{B_{\phi}}}{\partial r}$	818	dbm_phi_dr	$\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta}$	838	db_{theta_dtr}
$\frac{\partial B_r}{\partial \theta}$	819	$\mathrm{db_r_dt}$	$\frac{1}{r} \frac{\partial B_{\phi}}{\partial \theta}$	839	$db_{phi}dtr$
$\frac{\partial B_{\theta}}{\partial \theta}$	820	db_theta_dt	$\frac{1}{r} \frac{\partial B_r'}{\partial \theta}$	840	dbp_r_dtr

Value	Code	Variable	Value	Code	Variable
$\frac{1}{r} \frac{\partial B_r'}{\partial \theta}$	841	dbp_theta_dtr	$\frac{\partial^2 \overline{B_r}}{\partial r^2}$	861	dbm_r_d2r
$\frac{1}{r} \frac{\partial B_r'}{\partial \theta}$	842	dbp_phi_dtr	$\frac{\partial^2 \overline{B_{\theta}}}{\partial r^2}$	862	dbm_theta_d2r
$\frac{1}{r} \frac{\partial \overline{B_r}}{\partial \theta}$	843	dbm_r_dtr	$\frac{\partial^2 \overline{B_\phi}}{\partial r^2}$	863	dbm_phi_d2r
$\frac{1}{r} \frac{\partial \overline{B_{\theta}}}{\partial \theta}$	844	dbm_theta_dtr	$\frac{\partial^2 B_r}{\partial \theta^2}$	864	db_r_d2t
$\frac{1}{r} \frac{\partial \overline{B_{\phi}}}{\partial \theta}$	845	dbm_phi_dtr	$\frac{\partial^2 B_{\theta}}{\partial \theta^2}$	865	$db_{theta_{d2}}$
$\frac{1}{r \sin \theta} \frac{\partial B_r}{\partial \phi}$	846	db_r_dprs	$\frac{\partial^2 B_{\phi}}{\partial \theta^2}$	866	db_phi_d2t
$\frac{1}{r \sin \theta} \frac{\partial B_{\theta}}{\partial \phi}$	847	db_{theta_dprs}	$\frac{\partial^2 B_r'}{\partial \theta^2}$	867	dbp_r_d2t
$\frac{1}{r \sin \theta} \frac{\partial B_{\phi}}{\partial \phi}$	848	db_phi_dprs	$\frac{\partial^2 B_\theta'}{\partial \theta^2}$	868	$dbp_{-}theta_{-}d2t$
$\frac{1}{r \sin \theta} \frac{\partial B_r'}{\partial \phi}$	849	dbp_r_dprs	$\frac{\partial^2 B'_{\phi}}{\partial \theta^2}$	869	dbp_phi_d2t
$\frac{1}{r \sin \theta} \frac{\partial B_{\theta}'}{\partial \phi}$	850	dbp_theta_dprs	$\frac{\partial^2 \overline{B_r}}{\partial \theta^2}$	870	dbm_r_d2t
$\frac{1}{r \sin \theta} \frac{\partial B_{\phi}'}{\partial \phi}$	851	dbp_phi_dprs	$\frac{\partial^2 \overline{B_{\theta}}}{\partial \theta^2}$	871	dbm_theta_d2t
$\frac{1}{r \sin \theta} \frac{\partial \overline{B_r}}{\partial \phi}$	852	dbm_r_dprs	$\frac{\partial^2 \overline{B_\phi}}{\partial \theta^2}$	872	dbm_phi_d2t
$\frac{1}{r \sin \theta} \frac{\partial \overline{B_{\theta}}}{\partial \phi}$	853	dbm_theta_dprs	$\frac{\partial^2 B_r}{\partial \phi^2}$	873	$\mathrm{db_r_d2p}$
$\frac{1}{r \sin \theta} \frac{\partial \overline{B_{\phi}}}{\partial \phi}$	854	dbm_phi_dprs	$\frac{\partial^2 B_{\theta}}{\partial \phi^2}$	874	$db_{-}theta_{-}d2p$
$\frac{\partial^2 B_r}{\partial r^2}$	855	$\mathrm{db}_{-}\mathrm{r}_{-}\mathrm{d}2\mathrm{r}$	$\frac{\partial^2 B_{\phi}}{\partial \phi^2}$	875	$db_{-}phi_{-}d2p$
$\frac{\partial^2 B_{\theta}}{\partial r^2}$	856	$db_{theta}d2r$	$\frac{\partial^2 B_r'}{\partial \phi^2}$	876	dbp_r_d2p
$\frac{\partial^2 B_\phi}{\partial r^2}$	857	db_phi_d2r	$\frac{\partial^2 B_{\theta}'}{\partial \phi^2}$	877	dbp_theta_d2p
$\frac{\partial^2 B_r'}{\partial r^2}$	858	dbp_r_d2r	$\frac{\partial^2 B'_{\phi}}{\partial \phi^2}$	878	dbp_phi_d2p
$\frac{\partial^2 B_\theta'}{\partial r^2}$	859	dbp_theta_d2r	$\frac{\partial^2 \overline{B_r}}{\partial \phi^2}$	879	dbm_r_d2p
$\frac{\partial^2 B_\phi'}{\partial r^2}$	860	dbp_phi_d2r	$\frac{\partial^2 \overline{B_{\theta}}}{\partial \phi^2}$	880	dbm_theta_d2p

Value	Code	Variable	Value	Code	Variable
$\frac{\partial^2 \overline{B_\phi}}{\partial \phi^2}$	881	dbm_phi_d2p	$\frac{\partial^2 B_{\theta}}{\partial \theta \partial \phi}$	901	db_theta_d2tp
$\frac{\partial^2 B_r}{\partial r \partial \theta}$	882	db_r_d2rt	$\frac{\partial^2 B_{\phi}}{\partial \theta \partial \phi}$	902	$db_{phi}d2tp$
$\frac{\partial^2 B_{\theta}}{\partial r \partial \theta}$	883	db_theta_d2rt	$\frac{\partial^2 B_r'}{\partial \theta \partial \phi}$	903	dbp_r_d2tp
$\frac{\partial^2 B_{\phi}}{\partial r \partial \theta}$	884	db_phi_d2rt	$\frac{\partial^2 B_{\theta}'}{\partial \theta \partial \phi}$	904	dbp_theta_d2tp
$\frac{\partial^2 B_r'}{\partial r \partial \theta}$	885	$\mathrm{dbp_r_d2rt}$	$\frac{\partial^2 B_\phi'}{\partial \theta \partial \phi}$	905	dbp_phi_d2tp
$\frac{\partial^2 B_{\theta}'}{\partial r \partial \theta}$	886	dbp_theta_d2rt	$\frac{\partial^2 \overline{B_r}}{\partial \theta \partial \phi}$	906	dbm_r_d2tp
$\frac{\partial^2 B'_{\phi}}{\partial r \partial \theta}$	887	dbp_phi_d2rt	$\frac{\partial^2 \overline{B_{\theta}}}{\partial \theta \partial \phi}$	907	dbm_theta_d2tp
$\frac{\partial^2 \overline{B_r}}{\partial r \partial \theta}$	888	dbm_r_d2rt	$\frac{\partial^2 \overline{B_\phi}}{\partial \theta \partial \phi}$	908	dbm_phi_d2tp
$\frac{\partial^2 \overline{B_{\theta}}}{\partial r \partial \theta}$	889	dbm_theta_d2rt			
$\frac{\partial^2 \overline{B_\phi}}{\partial r \partial \theta}$	890	dbm_phi_d2rt			
$\frac{\partial^2 B_r}{\partial r \partial \phi}$	891	db_r_d2rp			
$\frac{\partial^2 B_{\theta}}{\partial r \partial \phi}$	892	db_theta_d2rp			
$\frac{\partial^2 B_{\phi}}{\partial r \partial \phi}$	893	db_phi_d2rp			
$\frac{\partial^2 B_r'}{\partial r \partial \phi}$	894	dbp_r_d2rp			
$\frac{\partial^2 B_{\theta}'}{\partial r \partial \phi}$	895	dbp_theta_d2rp			
$\frac{\partial^2 B'_{\phi}}{\partial r \partial \phi}$	896	dbp_phi_d2rp			
$\frac{\partial^2 \overline{B_r}}{\partial r \partial \phi}$	897	dbm_r_d2rp			
$\frac{\partial^2 \overline{B_{\theta}}}{\partial r \partial \phi}$	898	dbm_theta_d2rp			
$\frac{\partial^2 \overline{B_\phi}}{\partial r \partial \phi}$	899	dbm_phi_d2rp			
$\frac{\partial^2 B_r}{\partial \theta \partial \phi}$	900	db_r_d2tp			

Value	Code	Variable	Value	Code	Variable
\mathcal{J}_r	1001	j_r	$\overline{\mathcal{J}}\cdot\overline{\mathcal{J}}$	1012	$\mathrm{jm}_{-}\mathrm{sq}$
\mathcal{J}'_r	1002	jp_r	$\overline{\mathcal{J}}\cdot \mathcal{J}'$	1013	jpm_sq
$\overline{\mathcal{J}}_r$	1003	$\mathrm{jm}_{-}\mathrm{r}$	$\left(\mathcal{J}_r ight)^2$	1014	j_r_sq
$\mathcal{J}_{ heta}$	1004	j₋theta	$\left(\mathcal{J}_r'\right)^2$	1015	jp_r_sq
$\mathcal{J}_{ heta}'$	1005	jp_theta	$\left(\overline{\mathcal{J}}_r ight)^2$	1016	jm_r_sq
$\overline{\mathcal{J}}_{ heta}$	1006	jm_theta	$\left(\mathcal{J}_{ heta} ight)^2$	1017	j_theta_sq
\mathcal{J}_{ϕ}	1007	j_phi	$\left(\mathcal{J}_{ heta}^{\prime} ight)^{2}$	1018	jp_theta_sq
\mathcal{J}_ϕ'	1008	jp_phi	$\left(\overline{\mathcal{J}}_{ heta} ight)^2$	1019	jm_theta_sq
$\overline{\mathcal{J}}_{\phi}$	1009	jm₋phi	$\left(\mathcal{J}_{\phi} ight)^{2}$	1020	j_phi_sq
$\mathcal{J}\cdot\mathcal{J}$	1010	j_sq	$\left(\mathcal{J}_\phi' ight)^2$	1021	jp_phi_sq
$\mathcal{J}'\cdot\mathcal{J}'$	1011	jp_sq	$\left(\overline{\mathcal{J}}_{\phi} ight)^2$	1022	jm_phi_sq

We use the shorthand ${\mathcal J}$ to denote the curl of ${\boldsymbol B}$, namely

$$\mathcal{J} \equiv \nabla \times B. \tag{15}$$

4.7 $\nabla \times B$

Value	Code	Variable	Value	Code	Variable
$\frac{1}{2}c_4 \boldsymbol{B}^2$	1101	magnetic_energy	$\frac{1}{2}c_4\overline{B_{\theta}}^2$	1107	theta_mme
$\frac{1}{2}c_4B_r^2$	1102	radial_me	$\frac{1}{2}c_4\overline{B_\phi}^2$	1108	phi_mme
$\frac{1}{2}c_4B_\theta^2$	1103	$theta_me$	$\frac{1}{2}c_4 B'^2$	1109	pmagnetic_energy
$\frac{1}{2}c_4B_\phi^2$	1104	phi_me	$\frac{1}{2}c_4B_r'^2$	1110	radial_pme
$\frac{1}{2}c_4\overline{m{B}}^2$	1105	$mmagnetic_energy$	$\frac{1}{2}c_4B_{\theta}^{\prime 2}$	1111	theta_pme
$\frac{1}{2}c_4\overline{B_r}^2$	1106	radial_mme	$\frac{1}{2}c_4B_{\phi}^{\prime 2}$	1112	phi_pme

4.8 Magnetic Energy Density

Output codes related to the generalized magnetic energy density, $\frac{1}{2}c_4B^2$, are defined here.

Value	Code	Variable	Value	Code	Variable
$\mathbf{f}_1 \left[oldsymbol{v} \cdot oldsymbol{ abla} oldsymbol{v} ight]_r$	1201	v_grad_v_r	$-c_1 \mathrm{f}_1 \left[\hat{oldsymbol{z}} imes oldsymbol{v} ight]_{\phi}$	1221	Coriolis_Force_phi
$\mathbf{f}_1 \left[oldsymbol{v} \cdot oldsymbol{ abla} oldsymbol{v} ight]_{ heta}$	1202	$v_grad_v_theta$	$-c_1 \mathbf{f}_1 \left[\hat{\boldsymbol{z}} \times \boldsymbol{v'} \right]_r$	1222	Coriolis_pForce_r
$\mathbf{f}_1 \left[oldsymbol{v} \cdot oldsymbol{ abla} oldsymbol{v} ight]_{\phi}$	1203	v_grad_v_phi	$-c_1 \mathrm{f}_1 \left[\hat{m{z}} imes m{v'} ight]_{ heta}$	1223	Coriolis_pForce_theta
$\mathbf{f}_1 \left[oldsymbol{v'} \cdot oldsymbol{ abla} \overline{oldsymbol{v}} ight]_r$	1204	vp_grad_vm_r	$-c_1 \mathrm{f}_1 \left[\hat{\boldsymbol{z}} \times \boldsymbol{v'} \right]_{\phi}$	1224	Coriolis_pForce_phi
$\mathbf{f}_1 \left[oldsymbol{v'} \cdot oldsymbol{ abla} \overline{oldsymbol{v}} ight]_{ heta}$	1205	$vp_grad_vm_theta$	$-c_1 \mathbf{f}_1 \left[\hat{\boldsymbol{z}} \times \overline{\boldsymbol{v}} \right]_r$	1225	Coriolis_mForce_r
$\mathbf{f}_1 \left[oldsymbol{v'} \cdot oldsymbol{ abla} \overline{oldsymbol{v}} ight]_{\phi}$	1206	vp_grad_vm_phi	$-c_1 \mathbf{f}_1 \left[\hat{\boldsymbol{z}} \times \overline{\boldsymbol{v}} \right]_{\theta}$	1226	Coriolis_mForce_theta
$\mathbf{f}_1 \left[\overline{oldsymbol{v}} \cdot oldsymbol{ abla} oldsymbol{v'} ight]_r$	1207	$vm_grad_vp_r$	$-c_1 \mathbf{f}_1 \left[\hat{\boldsymbol{z}} \times \overline{\boldsymbol{v}} \right]_{\phi}$	1227	Coriolis_mForce_phi
$\mathbf{f}_1 \left[\overline{oldsymbol{v}} \cdot oldsymbol{ abla} oldsymbol{v'} ight]_{ heta}$	1208	$vm_grad_vp_theta$	$c_5 \left[\mathbf{\nabla} \cdot \mathbf{\mathcal{D}} \right]_r$	1228	viscous_Force_r
$\mathbf{f}_1 \left[\overline{oldsymbol{v}} \cdot oldsymbol{ abla} oldsymbol{v'} ight]_{\phi}$	1209	vm_grad_vp_phi	$c_5 \left[\mathbf{\nabla} \cdot \mathbf{\mathcal{D}} \right]_{\theta}$	1229	viscous_Force_theta
$\mathbf{f}_1 \left[oldsymbol{v'} \cdot oldsymbol{ abla} oldsymbol{v'} ight]_r$	1210	vp_grad_vp_r	$c_5 \left[\mathbf{\nabla} \cdot \mathbf{\mathcal{D}} \right]_{\phi}$	1230	viscous_Force_phi
$\mathbf{f}_1 \left[oldsymbol{v'} \cdot oldsymbol{ abla} oldsymbol{v'} ight]_{ heta}$	1211	$vp_grad_vp_theta$	$c_5 \left[\mathbf{\nabla} \cdot \mathbf{\mathcal{D}'} \right]_r$	1231	viscous_pForce_r
$\mathbf{f}_1 \left[oldsymbol{v'} \cdot oldsymbol{ abla} oldsymbol{v'} ight]_{\phi}$	1212	vp_grad_vp_phi	$c_5 \left[\mathbf{\nabla} \cdot \mathbf{\mathcal{D}'} \right]_{\theta}$	1232	viscous_pForce_theta
$\mathbf{f}_1 \left[\overline{oldsymbol{v}} \cdot oldsymbol{ abla} \overline{oldsymbol{v}} ight]_r$	1213	vm_grad_vm_r	$c_5 \left[\mathbf{\nabla} \cdot \mathbf{\mathcal{D}'} \right]_{\phi}$	1233	viscous_pForce_phi
$\mathbf{f}_1 \left[\overline{oldsymbol{v}} \cdot oldsymbol{ abla} \overline{oldsymbol{v}} ight]_{ heta}$	1214	$vm_grad_vm_theta$	$c_5 \left[\mathbf{\nabla} \cdot \overline{\mathbf{\mathcal{D}}} \right]_r$	1234	viscous_mForce_r
$\mathbf{f}_1 \left[\overline{oldsymbol{v}} \cdot oldsymbol{ abla} \overline{oldsymbol{v}} ight]_{\phi}$	1215	vm_grad_vm_phi	$c_5 \left[\mathbf{\nabla} \cdot \overline{\mathbf{D}} \right]_{\theta}$	1235	$viscous_mForce_theta$
$c_2 f_2 \Theta$	1216	buoyancy_force	$c_5 \left[\mathbf{\nabla} \cdot \overline{\mathbf{\mathcal{D}}} \right]_{\phi}$	1236	viscous_mForce_phi
$c_2 f_2 \Theta'$	1217	buoyancy_pforce	$-c_3 f_1 \frac{\partial}{\partial r} \left(\frac{P}{f_1} \right)$	1237	pressure_Force_r
$c_2 \mathbf{f}_2 \overline{\Theta}$	1218	buoyancy_mforce	$-c_3 \frac{1}{r} \frac{\partial P}{\partial \theta}$	1238	pressure_Force_theta
$-c_1 \mathbf{f}_1 \left[\hat{\boldsymbol{z}} \times \boldsymbol{v} \right]_r$	1219	Coriolis_Force_r	$-c_3 \frac{1}{r \sin \theta} \frac{\partial P}{\partial \phi}$	1239	pressure_Force_phi
$-c_1 \mathrm{f}_1 \left[\hat{oldsymbol{z}} imes oldsymbol{v} ight]_{ heta}$	1220	Coriolis_Force_theta	$-c_3 f_1 \frac{\partial}{\partial r} \left(\frac{P'}{f_1} \right)$	1240	pressure_pForce_r

4.9 momentum equation

All terms from the momentum equation, and their Reynolds decomposition, are defined here.

Value	Code	Variable	Value	Code	Variable
$-c_3 \frac{1}{r} \frac{\partial P'}{\partial \theta}$	1241	pressure_pForce_theta	$c_4 \left[(\mathbf{\nabla} \times \mathbf{B'}) \times \mathbf{B'} \right]_{\theta}$	1261	jp_cross_bp_theta
$-c_3 \frac{1}{r \sin \theta} \frac{\partial P'}{\partial \phi}$	1242	pressure_pForce_phi	$c_4 \left[\left(oldsymbol{ abla} imes oldsymbol{B'} ight) imes oldsymbol{B'} ight]_{\phi}$	1262	jp_cross_bp_phi
$-c_3 \mathrm{f}_1 \frac{\partial}{\partial r} \left(\frac{\overline{P}}{\mathrm{f}_1} \right)$	1243	pressure_mForce_r			
$-c_3 \frac{1}{r} \frac{\partial \overline{P}}{\partial \theta}$	1244	pressure_mForce_theta			
$-c_3 \frac{1}{r \sin \theta} \frac{\partial \overline{P}}{\partial \phi}$	1245	pressure_mForce_phi			
$c_2 \mathbf{f}_2 \Theta_{00}$	1246	buoyancy_force_ell0			
$-c_3 \mathbf{f}_1 \frac{\partial}{\partial r} \left(\frac{P_{00}}{\mathbf{f}_1} \right)$	1247	pressure_force_ell0_r			
$c_4 \left[(\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} \right]_r$	1248	j_cross_b_r			
$c_4 [(\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}]_{\theta}$	1249	$j_{cross_b_theta}$			
$c_4 \left[(\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B} \right]_{\phi}$	1250	j_cross_b_phi			
$c_4 \left[(\boldsymbol{\nabla} \times \boldsymbol{B'}) \times \overline{\boldsymbol{B}} \right]_r$	1251	$\rm jp_cross_bm_r$			
$c_4\left[(\mathbf{\nabla}\times\mathbf{B'})\times\overline{\mathbf{B}}\right]_{\theta}$	1252	jp_cross_bm_theta			
$c_4 \left[(\boldsymbol{\nabla} \times \boldsymbol{B'}) \times \overline{\boldsymbol{B}} \right]_{\phi}$	1253	jp_cross_bm_phi			
$c_4\left[\left(\mathbf{\nabla}\times\overline{\boldsymbol{B}}\right)\times\boldsymbol{B'}\right]_r$	1254	jm_cross_bp_r			
$c_4\left[\left(\mathbf{\nabla}\times\overline{\mathbf{B}}\right)\times\mathbf{B'}\right]_{\theta}$	1255	$jm_cross_bp_theta$			
$c_4\left[\left(\mathbf{\nabla}\times\overline{oldsymbol{B}}\right) imesoldsymbol{B'} ight]_{\phi}$	1256	jm_cross_bp_phi			
$c_4 \left[\left(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}} \right) \times \overline{\boldsymbol{B}} \right]_r$	1257	jm_cross_bm_r			
$c_4 \left[\left(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}} \right) \times \overline{\boldsymbol{B}} \right]_{\theta}$	1258	$jm_cross_bm_theta$			
$c_4 \left[\left(\boldsymbol{\nabla} \times \overline{\boldsymbol{B}} \right) \times \overline{\boldsymbol{B}} \right]_{\phi}$	1259	jm_cross_bm_phi			
$c_4\left[\left(\mathbf{\nabla}\times\mathbf{B'}\right)\times\mathbf{B'}\right]_r$	1260	jp_cross_bp_r			

4.10 thermal energy equation

Terms from the thermal energy equation, and their Reynolds decomposition, are defined here.

Value	Code	Variable	Value	Code	Variable
$\mathbf{f}_1\mathbf{f}_4oldsymbol{v}\cdotoldsymbol{ abla}\Theta$	1401	$rhotv_grad_s$	$-c_6 oldsymbol{ abla} \cdot oldsymbol{F}_{cond}$	1421	s_diff
$\mathbf{f}_1\mathbf{f}_4oldsymbol{v'}\cdotoldsymbol{ abla}\Theta'$	1402	rhotvp_grad_sp	$-c_6 oldsymbol{ abla} \cdot oldsymbol{F'}_{cond}$	1422	sp_diff
$f_1f_4oldsymbol{v'}\cdotoldsymbol{ abla}\overline{\Theta}$	1403	$rhotvp_grad_sm$	$-c_6 oldsymbol{ abla} \cdot \overline{oldsymbol{F}}_{cond}$	1423	$\mathrm{sm_diff}$
$f_1f_4\overline{\boldsymbol{v}}\cdot\boldsymbol{ abla}\overline{\Theta}$	1404	$rhotvm_grad_sm$	$c_6 f_1 f_4 f_5 \left(\frac{\partial^2 \Theta}{\partial r^2} + \frac{\partial \Theta}{\partial r} \left[\frac{2}{r} + \frac{\mathrm{d}}{\mathrm{dr}} \ln \left\{ f_1 f_4 f_5 \right\} \right] \right)$	1424	s_diff_r
$f_1f_4\overline{\boldsymbol{v}}\cdot\boldsymbol{\nabla}\Theta'$	1405	$rhotvm_grad_sp$	$c_{6}f_{1}f_{4}f_{5}\left(\frac{\partial^{2}\Theta'}{\partial r^{2}}+\frac{\partial\Theta'}{\partial r}\left[\frac{2}{r}+\frac{d}{dr}\ln\left\{f_{1}f_{4}f_{5}\right\}\right]\right)$	1425	$\mathrm{sp_diff_r}$
$f_1 f_4 v_r \frac{\partial s}{\partial r}$	1406	rhotvr_grad_s	$c_{6}f_{1}f_{4}f_{5}\left(\frac{\partial^{2}\overline{\Theta}}{\partial r^{2}}+\frac{\partial\overline{\Theta}}{\partial r}\left[\frac{2}{r}+\frac{d}{dr}\ln\left\{f_{1}f_{4}f_{5}\right\}\right]\right)$	1426	$\mathrm{sm_diff_r}$
$f_1 f_4 v_r' \frac{\partial \Theta'}{\partial r}$	1407	$rhotvpr_grad_sp$	$c_6 \frac{f_1 f_4 f_5}{r^2} \left(\frac{\partial^2 \Theta}{\partial \theta^2} + \cot \theta \frac{\partial s}{\partial \theta} \right)$	1427	s_diff_theta
$f_1 f_4 v_r' \frac{\partial \overline{\Theta}}{\partial r}$	1408	$rhotvpr_grad_sm$	$c_6 \frac{f_1 f_4 f_5}{r^2} \left(\frac{\partial^2 \Theta'}{\partial \theta^2} + \cot \theta \frac{\partial \Theta'}{\partial \theta} \right)$	1428	sp_diff_theta
$f_1 f_4 \overline{v_r} \frac{\partial \overline{\Theta}}{\partial r}$	1409	rhotvmr_grad_sm	$c_6 \frac{f_1 f_4 f_5}{r^2} \left(\frac{\partial^2 \overline{\Theta}}{\partial \theta^2} + \cot \theta \frac{\partial \overline{\Theta}}{\partial \theta} \right)$	1429	sm_diff_theta
$f_1 f_4 \overline{v_r} \frac{\partial \Theta'}{\partial r}$	1410	rhotvmr_grad_sp	$c_6 \frac{f_1 f_4 f_5}{r^2 \sin^2 \theta} \frac{\partial^2 \Theta}{\partial \phi^2}$	1430	s_diff_phi
$f_1 f_4 \frac{v_\theta}{r} \frac{\partial \Theta}{\partial \theta}$	1411	$rhotvt_grad_s$	$c_6 \frac{f_1 f_4 f_5}{r^2 \sin^2 \theta} \frac{\partial^2 \Theta'}{\partial \phi^2}$	1431	$\mathrm{sp_diff_phi}$
$f_1 f_4 \frac{v_{\theta}'}{r} \frac{\partial \Theta'}{\partial \theta}$	1412	$rhotvpt_grad_sp$	$c_6 rac{f_1 f_4 f_5}{r^2 \sin^2 heta} rac{\partial^2 \overline{\Theta}}{\partial \phi^2}$	1432	sm_diff_phi
$f_1 f_4 \frac{v_{\theta}'}{r} \frac{\partial \overline{\Theta}}{\partial \theta}$	1413	$rhotvpt_grad_sm$	$F_Q(r)$	1433	vol_heat_flux
$f_1 f_4 \frac{\overline{v_{\theta}}}{r} \frac{\partial \overline{\Theta}}{\partial \theta}$	1414	$rhotvmt_grad_sm$	$\mathrm{f}_6(r)$	1434	vol_heating
$f_1 f_4 \frac{\overline{v_{\theta}}}{r} \frac{\partial \Theta'}{\partial \theta}$	1415	$rhotvmt_grad_sp$	$c_5\Phi(r, heta,\phi)$	1435	visc_heating
$f_1 f_4 \frac{v_\phi}{r \sin \theta} \frac{\partial \Theta}{\partial \phi}$	1416	rhotvp_grad_s	$\mathrm{f}_{7}c_{4}\left(\mathcal{J^{\prime}}\cdot\mathcal{J^{\prime}} ight)$	1436	$ohmic_heat$
$f_1 f_4 \frac{v_\phi'}{r \sin \theta} \frac{\partial \Theta'}{\partial \phi}$	1417	$rhotvpp_grad_sp$	$\mathrm{f}_{7}c_{4}\left(\mathcal{J}^{\prime}\cdot\mathcal{J}^{\prime} ight)$	1437	ohmic_heat_pp
$f_1 f_4 \frac{v_{\phi}'}{r \sin \theta} \frac{\partial \overline{\Theta}}{\partial \phi}$	1418	$rhotvpp_grad_sm$	$\mathrm{f}_{7}c_{4}\left(\overline{\mathcal{J}}\cdot\overline{\mathcal{J}} ight)$	1438	ohmic_heat_pm
$f_1 f_4 \frac{\overline{v_\phi}}{r \sin \theta} \frac{\partial \overline{\Theta}}{\partial \phi}$	1419	$rhotvmp_grad_sm$	$\mathrm{f}_{7}c_{4}\left(\overline{\mathcal{J}}\cdot\mathcal{J}^{\prime} ight)$	1439	$ohmic_heat_mm$
$f_1 f_4 \frac{\overline{v_\phi}}{r \sin \theta} \frac{\partial \Theta'}{\partial \phi}$	1420	rhotvmp_grad_sp	$\mathrm{f}_1\mathrm{f}_4v_r\Theta$	1440	$rhot_vr_s$

Value	Code	Variable	Value	Code	Variable
$f_1 f_4 v_r' \Theta'$	1441	$rhot_vrp_sp$	$c_P \mathbf{f}_1 v_r' \overline{T}$	1461	enth_flux_rpm
$f_1 f_4 v_r' \overline{\Theta}$	1442	${ m rhot_vrp_sm}$	$c_P \mathbf{f}_1 v_{\theta}' \overline{T}$	1462	enth_flux_thetapm
$f_1 f_4 \overline{v_r} \Theta'$	1443	${ m rhot_vrm_sp}$	$c_P \mathbf{f}_1 v_\phi' \overline{T}$	1463	$enth_flux_phipm$
$f_1 f_4 \overline{v_r} \overline{\Theta}$	1444	${ m rhot_vrm_sm}$	$c_P \mathbf{f}_1 \overline{v_r} T'$	1464	enth_flux_rmp
$f_1 f_4 v_\theta \Theta$	1445	${ m rhot_vt_s}$	$c_P \mathbf{f}_1 \overline{v_{\theta}} T'$	1465	$enth_flux_thetamp$
$f_1 f_4 v_\theta' \Theta'$	1446	${ m rhot_vtp_sp}$	$c_P f_1 \overline{v_\phi} T'$	1466	enth_flux_phimp
$f_1 f_4 v_{\theta}' \overline{\Theta}$	1447	${ m rhot_vtp_sm}$	$c_P \mathbf{f}_1 \overline{v_r} \overline{T}$	1467	$enth_flux_rmm$
$f_1 f_4 \overline{v_{\theta}} \Theta'$	1448	$rhot_vtm_sp$	$c_P \mathbf{f}_1 \overline{v_\theta} \overline{T}$	1468	enth_flux_thetamm
$f_1 f_4 \overline{v_{\theta}} \overline{\Theta}$	1449	$rhot_vtm_sm$	$c_P \mathrm{f}_1 \overline{v_\phi} \overline{T}$	1469	$enth_flux_phimm$
$f_1 f_4 v_\phi \Theta$	1450	${ m rhot_vp_s}$	$-c_6 f_1 f_4 f_5 \frac{\partial \Theta}{\partial r}$	1470	cond_flux_r
$f_1 f_4 v_\phi' \Theta'$	1451	${ m rhot_vpp_sp}$	$-c_6 f_1 f_4 f_5 \frac{1}{r} \frac{\partial \Theta}{\partial \theta}$	1471	$cond_flux_theta$
$f_1 f_4 v_\phi' \overline{\Theta}$	1452	${ m rhot_vpp_sm}$	$-c_6 f_1 f_4 f_5 \frac{1}{r \sin \theta} \frac{\partial \Theta}{\partial \phi}$	1472	cond_flux_phi
$f_1 f_4 \overline{v_\phi} \Theta'$	1453	$rhot_vpm_sp$	$-c_6 f_1 f_4 f_5 \frac{\partial \Theta'}{\partial r}$	1473	$\operatorname{cond_fluxp_r}$
$f_1 f_4 \overline{v_\phi} \overline{\Theta}$	1454	rhot_vpm_sm	$-c_6 f_1 f_4 f_5 \frac{1}{r} \frac{\partial \Theta'}{\partial \theta}$	1474	$cond_fluxp_theta$
$c_P \mathbf{f}_1 v_r T$	1455	$enth_flux_r$	$-c_6 f_1 f_4 f_5 \frac{1}{r \sin \theta} \frac{\partial \Theta'}{\partial \phi}$	1475	cond_fluxp_phi
$c_P \mathbf{f}_1 v_{\theta} T$	1456	enth_flux_theta	$-c_6 f_1 f_4 f_5 \frac{\partial \overline{\Theta}}{\partial r}$	1476	cond_fluxm_r
$c_P \mathbf{f}_1 v_{\phi} T$	1457	$enth_flux_phi$	$-c_6 \mathbf{f}_1 \mathbf{f}_4 \mathbf{f}_5 \frac{1}{r} \frac{\partial \overline{\Theta}}{\partial \theta}$	1477	$cond_fluxm_theta$
$c_P \mathbf{f}_1 v_r' T'$	1458	enth_flux_rpp	$-c_6 f_1 f_4 f_5 \frac{1}{r \sin \theta} \frac{\partial \overline{\Theta}}{\partial \phi}$	1478	cond_fluxm_phi
$c_P f_1 v_{\theta}' T'$	1459	$enth_flux_thetapp$			
$c_P \mathbf{f}_1 v_\phi' T'$	1460	enth_flux_phipp			

Value	Code	Variable	Value	Code	Variable
$\left[oldsymbol{B} \cdot oldsymbol{ abla} oldsymbol{v} ight]_r$	1601	induct_shear_r	$\left[\overline{B}\cdotoldsymbol{ abla}\overline{v} ight]_{ heta}$	1621	induct_shear_vmbm_theta
$-\left(\mathbf{\nabla}\cdot\mathbf{v}\right)B_{r}$	1602	$induct_comp_r$	$-\left(\overline{oldsymbol{ abla}}\cdot\overline{oldsymbol{v}} ight)\overline{B_{ heta}}$	1622	induct_comp_vmbm_theta
$-\left[oldsymbol{v}\cdotoldsymbol{ abla}oldsymbol{B} ight]_{r}$	1603	$induct_advec_r$	$-\left[\overline{oldsymbol{v}}\cdotoldsymbol{ abla}\overline{oldsymbol{B}} ight]_{ heta}$	1623	$induct_advec_vmbm_theta$
$\left[oldsymbol{ abla} imes (oldsymbol{v} imes oldsymbol{B}) ight]_r$	1604	$induct_r$	$\left[oldsymbol{ abla} imes\left(\overline{oldsymbol{v}} imes\left(\overline{oldsymbol{v}} imes\overline{oldsymbol{B}} ight) ight]_{ heta}$	1624	$induct_vmbm_theta$
$-c_7 \left[\boldsymbol{\nabla} \times (\mathbf{f}_7 \boldsymbol{\nabla} \times \boldsymbol{B}) \right]_r$	1605	$induct_diff_r$	$-c_7 \left[\mathbf{\nabla} \times \left(f_7 \mathbf{\nabla} \times \overline{\mathbf{B}} \right) \right]_{\theta}$	1625	$induct_diff_bm_theta$
$\left[oldsymbol{B} \cdot oldsymbol{ abla} oldsymbol{v} ight]_{ heta}$	1606	induct_shear_theta	$\left[\overline{B}\cdotoldsymbol{ abla}\overline{v} ight]_{\phi}$	1626	induct_shear_vmbm_phi
$-\left(\mathbf{\nabla}\cdot\boldsymbol{v}\right)B_{\theta}$	1607	$induct_comp_theta$	$-\left(\overline{oldsymbol{ abla}}\cdot\overline{oldsymbol{v}} ight)\overline{B_{\phi}}$	1627	induct_comp_vmbm_phi
$-\left[oldsymbol{v}\cdotoldsymbol{ abla}oldsymbol{B} ight]_{ heta}$	1608	induct_advec_theta	$-\left[\overline{oldsymbol{v}}\cdotoldsymbol{ abla}\overline{oldsymbol{B}} ight]_{\phi}$	1628	induct_advec_vmbm_phi
$\left[oldsymbol{ abla} imes (oldsymbol{v} imes oldsymbol{B}) ight]_{ heta}$	1609	$induct_theta$	$\left[oldsymbol{ abla} imes\left(\overline{oldsymbol{v}} imes\left(\overline{oldsymbol{v}} imes\overline{oldsymbol{B}} ight) ight]_{\phi}$	1629	induct_vmbm_phi
$-c_7 \left[\boldsymbol{\nabla} \times (\mathbf{f}_7 \boldsymbol{\nabla} \times \boldsymbol{B}) \right]_{\theta}$	1610	$induct_diff_theta$	$-c_7 \left[\nabla \times \left(f_7 \nabla \times \overline{\boldsymbol{B}} \right) \right]_{\phi}$	1630	induct_diff_bm_phi
$\left[oldsymbol{B}\cdotoldsymbol{ abla}oldsymbol{v} ight]_{\phi}$	1611	$induct_shear_phi$	$\left[oldsymbol{B'} \cdot oldsymbol{ abla} \overline{v} ight]_r$	1631	induct_shear_vmbp_r
$-\left(\mathbf{ abla}\cdot\mathbf{v}\right)B_{\phi}$	1612	$induct_comp_phi$	$-\left(\overline{\mathbf{\nabla}}\cdot\overline{\boldsymbol{v}}\right)B_{r}^{\prime}$	1632	$induct_comp_vmbp_r$
$-\left[oldsymbol{v}\cdotoldsymbol{ abla}oldsymbol{B} ight]_{\phi}$	1613	$induct_advec_phi$	$-\left[\overline{oldsymbol{v}}\cdotoldsymbol{ abla}oldsymbol{B'} ight]_{r}$	1633	induct_advec_vmbp_r
$\left[oldsymbol{ abla} imes(oldsymbol{v} imesoldsymbol{B}) ight]_{\phi}$	1614	induct_phi	$\left[oldsymbol{ abla} imes\left(\overline{oldsymbol{v}} imesoldsymbol{B'} ight) ight]_{r}$	1634	$induct_vmbp_r$
$-c_7 \left[\boldsymbol{\nabla} \times (f_7 \boldsymbol{\nabla} \times \boldsymbol{B}) \right]_{\phi}$	1615	$induct_diff_phi$	$-c_7 \left[\boldsymbol{\nabla} \times (\mathbf{f}_7 \boldsymbol{\nabla} \times \boldsymbol{B'}) \right]_r$	1635	induct_diff_bp_r
$\left[\overline{B}\cdot oldsymbol{ abla}\overline{v} ight] _{r}$	1616	induct_shear_vmbm_r	$\left[oldsymbol{B'} \cdot oldsymbol{ abla} oldsymbol{ar{v}} ight]_{ heta}$	1636	induct_shear_vmbp_theta
$-\left(\overline{oldsymbol{ abla}}\cdot\overline{oldsymbol{v}} ight)\overline{B_{r}}$	1617	$induct_comp_vmbm_r$	$-\left(\overline{\mathbf{\nabla}}\cdot\overline{\boldsymbol{v}}\right)B_{ heta}'$	1637	$induct_comp_vmbp_theta$
$-\left[\overline{oldsymbol{v}}\cdotoldsymbol{ abla}\overline{oldsymbol{B}} ight]_{r}$	1618	induct_advec_vmbm_r	$-\left[\overline{oldsymbol{v}}\cdotoldsymbol{ abla}oldsymbol{B'} ight]_{ heta}$	1638	$induct_advec_vmbp_theta$
$\left[oldsymbol{ abla} imes\left(\overline{oldsymbol{v}} imes\overline{oldsymbol{B}} ight) ight]_{r}$	1619	$induct_vmbm_r$	$\left[oldsymbol{ abla} imes(\overline{oldsymbol{v}} imes oldsymbol{B'}) ight]_{ heta}$	1639	$induct_vmbp_theta$
$-c_7 \left[\mathbf{\nabla} \times \left(\mathbf{f}_7 \mathbf{\nabla} \times \overline{\mathbf{B}} \right) \right]_r$	1620	induct_diff_bm_r	$-c_7 \left[\mathbf{\nabla} \times (\mathbf{f}_7 \mathbf{\nabla} \times \mathbf{B'}) \right]_{\theta}$	1640	$induct_diff_bp_theta$

4.11 Induction Equation

Terms from the induction equation, and their Reynolds decomposition, are described here.

Value	Code	Variable	Value	Code	Variable
$\left[B^{\prime}\cdotar{m{v}} ight] _{\phi}$	1641	induct_shear_vmbp_phi	$\left[oldsymbol{ abla} imes (oldsymbol{v} imes oldsymbol{B'}) ight]_r$	1661	induct_vpbp_r
$-\left(\overline{\mathbf{\nabla}}\cdot\overline{\boldsymbol{v}}\right)B_{\phi}'$	1642	induct_comp_vmbp_phi	$\left[oldsymbol{B'} \cdot oldsymbol{ abla} oldsymbol{v'} ight]_{ heta}$	1662	induct_shear_vpbp_theta
$-\left[\overline{v}\cdotoldsymbol{ abla}B' ight]_{\phi}$	1643	$induct_advec_vmbp_phi$	$-\left(\boldsymbol{\nabla}\cdot\boldsymbol{v'}\right)B'_{\theta}$	1663	induct_comp_vpbp_theta
$\left[oldsymbol{ abla} imes\left(\overline{oldsymbol{v}} imesoldsymbol{B'} ight) ight]_{\phi}$	1644	induct_vmbp_phi	$-\left[oldsymbol{v'}\cdotoldsymbol{ abla}B' ight]_{ heta}$	1664	induct_advec_vpbp_theta
$-c_7 \left[\boldsymbol{\nabla} \times (\mathbf{f}_7 \boldsymbol{\nabla} \times \boldsymbol{B'}) \right]_{\phi}$	1645	$induct_diff_bp_phi$	$\left[oldsymbol{ abla} imes(oldsymbol{v} imesoldsymbol{B'}) ight]_{ heta}$	1665	$induct_vpbp_theta$
$\left[\overline{m{B}}\cdotm{ abla}m{v'} ight]_r$	1646	$induct_shear_vpbm_r$	$\left[oldsymbol{B'} \cdot oldsymbol{ abla} v' ight]_{\phi}$	1666	induct_shear_vpbp_phi
$-\left(\overline{oldsymbol{ abla}}\cdotoldsymbol{v'} ight)\overline{B_r}$	1647	$induct_comp_vpbm_r$	$-\left(\boldsymbol{\nabla}\cdot\boldsymbol{v'}\right)B'_{\phi}$	1667	$induct_comp_vpbp_phi$
$-\left[oldsymbol{v'}\cdotoldsymbol{ abla}\overline{B} ight]_r$	1648	induct_advec_vpbm_r	$-\left[oldsymbol{v'}\cdotoldsymbol{ abla} B' ight]_{\phi}$	1668	induct_advec_vpbp_phi
$\left[oldsymbol{ abla} imes\left(oldsymbol{v'} imes\overline{oldsymbol{B}} ight) ight]_{r}$	1649	$induct_vpbm_r$	$[oldsymbol{ abla} imes(oldsymbol{v} imesoldsymbol{B'})]_{\phi}$	1669	induct_vpbp_phi
$\left[\overline{m{B}}\cdotm{ abla}m{v'} ight]_{ heta}$	1650	induct_shear_vpbm_theta			1
$-\left(\overline{oldsymbol{ abla}}\cdot oldsymbol{v'} ight) \overline{B_{ heta}}$	1651	$induct_comp_vpbm_theta$			
$-\left[oldsymbol{v'}\cdotoldsymbol{ abla}\overline{B} ight]_{ heta}$	1652	$induct_advec_vpbm_theta$			
$\left[oldsymbol{ abla} imes\left(oldsymbol{v'} imes\overline{oldsymbol{B}} ight) ight]_{ heta}$	1653	$induct_vpbm_theta$			
$\left[\overline{m{B}}\cdotm{ abla}m{v'} ight]_{\phi}$	1654	induct_shear_vpbm_phi			
$-\left(\overline{oldsymbol{ abla}}\cdotoldsymbol{v'} ight) \overline{B_{\phi}}$	1655	$induct_comp_vpbm_phi$			
$-\left[oldsymbol{v'}\cdotoldsymbol{ abla}\overline{B} ight]_{\phi}$	1656	induct_advec_vpbm_phi			
$\left[oldsymbol{ abla} imes\left(oldsymbol{v'} imes\overline{oldsymbol{B}} ight) ight]_{\phi}$	1657	$induct_vpbm_phi$			
$\left[oldsymbol{B'}\cdotoldsymbol{ abla}oldsymbol{v'} ight]_r$	1658	induct_shear_vpbp_r			
$-\left(oldsymbol{ abla}\cdotoldsymbol{v'} ight)B_{r}'$	1659	$induct_comp_vpbp_r$			
$-\left[oldsymbol{v'}\cdotoldsymbol{ abla}oldsymbol{B'} ight]_r$	1660	$induct_advec_vpbp_r$			

Value	Code	Variable	Value	Code	Variable
$r \sin \theta \mathbf{f}_1 \left[\boldsymbol{v'} \cdot \boldsymbol{\nabla} \boldsymbol{v'} \right]_{\phi}$	1801	samom_advec_pp	$f_1 r \sin\! heta \overline{v_ heta} \overline{v_\phi}$	1810	famom_dr_theta
$r\sin\theta\mathbf{f}_1\left[\overline{\boldsymbol{v}}\cdot\boldsymbol{\nabla}\overline{\boldsymbol{v}}\right]_{\phi}$	1802	$samom_advec_mm$	$\frac{c_1}{2} f_1 r^2 \sin^2 \theta \overline{v_r}$	1811	famom_mean_r
$-c_1 f_1 r \sin\theta \left(\cos\theta v_\theta + \sin\theta v_r\right)$	1803	$samom_coriolis$	$\frac{c_1}{2} f_1 r^2 \sin^2 \theta \overline{v_{\theta}}$	1812	$famom_mean_theta$
$r\sin\theta\left[\mathbf{\nabla}\cdot\overline{\mathbf{\mathcal{D}}}\right]_{\phi}$	1804	$samom_diffusion$	$f_1 \nu \sin \theta \left(v_\phi - r \frac{\partial \overline{v_\phi}}{\partial r} \right)$	1813	$famom_diff_r$
$r \sin \theta c_4 \left[\left(\mathbf{\nabla} \times \overline{\mathbf{B}} \right) \times \overline{\mathbf{B}} \right]_{\phi}$	1805	samom_lorentz_mm	$f_1 \nu \left(\cos \theta \overline{v_\phi} - \sin \theta \frac{\partial \overline{v_\phi}}{\partial \theta} \right)$	1814	$famom_diff_theta$
$r \sin \theta c_4 \left[(\nabla \times \mathbf{B'}) \times \mathbf{B'} \right]_{\phi}$	1806	$samom_lorentz_pp$	$-r\sin\theta c_4 B_r' B_\phi'$	1815	$famom_maxstr_r$
$f_1 r \sin \theta v_r' v_\phi'$	1807	famom_fluct_r	$-r\sin\theta c_4 B_{\theta}' B_{\phi}'$	1816	famom_maxstr_theta
$\mathrm{f}_1 r \mathrm{sin} heta v_{ heta}' v_{\phi}'$	1808	$famom_fluct_theta$	$-r\sin\theta c_4 \overline{B_r} \overline{B_\phi}$	1817	$famom_magtor_r$
$f_1 r \sin \theta \ \overline{v_r} \ \overline{v_\phi}$	1809	famom_dr_r	$-r\sin\theta c_4\overline{B_\theta}\overline{B_\phi}$	1818	famom_magtor_theta

4.12 Angular Momentum

Terms from the angular momentum equation and their associated fluxes are defined here. Only those terms contributing to the axisymmetric mean are calculated. Terms of form $a'\bar{a}$, which do not contribute to the mean, are omitted.

Value	Code	Variable	Value	Code	Variable
$-c_3\mathbf{f}_1\boldsymbol{v}\cdot\boldsymbol{\nabla}\left(\frac{P}{\mathbf{f}_1}\right)$	1901	press_work	$c_4 \overline{oldsymbol{v}} \cdot \left[\left(oldsymbol{ abla} imes \overline{oldsymbol{B}} ight) imes \overline{oldsymbol{B}} ight]$	1922	mag_work_mmm
$-c_3\mathbf{f}_1oldsymbol{v'}\cdotoldsymbol{ abla}\left(rac{P'}{\mathbf{f}_1} ight)$	1902	press_work_pp	$\frac{1}{2}\mathbf{f}_1v_r\ v^2$	1923	ke_flux_radial
$-c_3 \mathrm{f}_1 \overline{oldsymbol{v}} \cdot oldsymbol{ abla} \left(rac{\overline{P}}{\overline{\mathrm{f}_1}} ight)$	1903	$press_work_mm$	$\frac{1}{2}\mathbf{f}_1v_\theta\;v^2$	1924	ke_flux_theta
$c_2 v_r f_2 \Theta$	1904	buoy_work	$\frac{1}{2} f_1 v_\phi v^2$	1925	ke_flux_phi
$c_2 v_r' \mathbf{f}_2 \Theta'$	1905	buoy_work_pp	$rac{1}{2}\mathrm{f}_1\overline{v_r}\overline{v}^2$	1926	mke_mflux_radial
$c_2\overline{v_r}\mathbf{f}_2\overline{\Theta}$	1906	buoy_work_mm	$\frac{1}{2} \mathbf{f}_1 \overline{v_\theta} \overline{v}^2$	1927	mke_mflux_theta
$c_5 oldsymbol{v} \cdot [oldsymbol{ abla} \cdot oldsymbol{\mathcal{D}}]$	1907	visc_work	$rac{1}{2}\mathrm{f}_1\overline{v_\phi}\overline{v}^2$	1928	mke_mflux_phi
$c_5 oldsymbol{v'} \cdot [oldsymbol{ abla} \cdot oldsymbol{\mathcal{D}'}]$	1908	visc_work_pp	$\frac{1}{2}f_1 \overline{v_r} {v'}^2$	1929	pke_mflux_radial
$c_5 \overline{oldsymbol{v}} \cdot \left[oldsymbol{ abla} \cdot \overline{oldsymbol{\mathcal{D}}} ight]$	1909	visc_work_mm	$\frac{1}{2}f_1 \overline{v_\theta} v'^2$	1930	pke_mflux_theta
$\mathrm{f}_1 oldsymbol{v} \cdot [oldsymbol{v} \cdot oldsymbol{ abla} oldsymbol{v}]$	1910	advec_work	$\frac{1}{2} f_1 \overline{v_\phi} v'^2$	1931	pke_mflux_phi
$\mathbf{f}_1 oldsymbol{v'} \cdot [oldsymbol{v'} \cdot oldsymbol{ abla} oldsymbol{v'}]$	1911	$advec_work_ppp$	$\frac{1}{2} \mathbf{f}_1 v_r' {v'}^2$	1932	pke_pflux_radial
$\mathbf{f}_1 \overline{m{v}} \cdot [m{v'} \cdot m{ abla} m{v'}]$	1912	advec_work_mpp	$\frac{1}{2} f_1 v_{\theta}' v'^2$	1933	pke_pflux_theta
$\mathrm{f}_1 oldsymbol{v'} \cdot [\overline{oldsymbol{v}} \cdot oldsymbol{ abla} oldsymbol{v'}]$	1913	$advec_work_pmp$	$\frac{1}{2} f_1 v'_{\phi} v'^2$	1934	pke_pflux_phi
$\mathrm{f}_1 oldsymbol{v'} \cdot [oldsymbol{v'} \cdot oldsymbol{ abla} oldsymbol{\overline{v}}]$	1914	advec_work_ppm	$c_{5}\left[oldsymbol{v}\cdotoldsymbol{\mathcal{D}} ight]_{r}$	1935	visc_flux_r
$\mathrm{f}_1\overline{oldsymbol{v}}\cdot[\overline{oldsymbol{v}}\cdotoldsymbol{ abla}\overline{oldsymbol{v}}]$	1915	$advec_work_mmm$	$c_{5}\left[oldsymbol{v}\cdotoldsymbol{\mathcal{D}} ight]_{ heta}$	1936	$visc_flux_theta$
$c_4 \boldsymbol{v} \cdot [(\boldsymbol{\nabla} \times \boldsymbol{B}) \times \boldsymbol{B}]$	1916	${ m mag_work}$	$c_5 \left[oldsymbol{v} \cdot oldsymbol{\mathcal{D}} ight]_{\phi}$	1937	visc_flux_phi
$c_4 oldsymbol{v'} \cdot [(oldsymbol{ abla} imes oldsymbol{B'}) imes oldsymbol{B'}]$	1918	mag_work_ppp	$c_5 \left[oldsymbol{v'} \cdot oldsymbol{\mathcal{D}'} ight]_r$	1938	visc_fluxpp_r
$c_4\overline{\boldsymbol{v}}\cdot[(\boldsymbol{\nabla}\times\boldsymbol{B'})\times\boldsymbol{B'}]$	1919	mag_work_mpp	$c_5 \left[oldsymbol{v'} \cdot oldsymbol{\mathcal{D}'} ight]_{ heta}$	1939	visc_fluxpp_theta
$c_4 oldsymbol{v'} \cdot ig[ig(oldsymbol{ abla} imes oldsymbol{\overline{B}}ig) imes oldsymbol{B'}ig]$	1920	mag_work_pmp	$c_5 \left[oldsymbol{v'} \cdot oldsymbol{\mathcal{D}'} ight]_{\phi}$	1940	visc_fluxpp_phi
$c_4 oldsymbol{v'} \cdot igl[(oldsymbol{ abla} imes oldsymbol{B'}) imes oldsymbol{B} igr]$	1921	mag_work_ppm	$c_5 \left[\overline{oldsymbol{v}} \cdot \overline{oldsymbol{\mathcal{D}}} ight]_r$	1941	visc_fluxmm_r

4.13 Kinetic Energy Equation

Terms appearing in the kinetic energy equation $(v \cdot \frac{\partial \hat{\rho} v}{\partial t})$ are described here.

Value	Code	Variable	Value	Code	Variable
$c_5 \left[\overline{\boldsymbol{v}} \cdot \overline{\boldsymbol{\mathcal{D}}} \right]_{\theta}$	1942	visc_fluxmm_theta			
$c_5 \left[\overline{\boldsymbol{v}} \cdot \overline{\boldsymbol{\mathcal{D}}} \right]_{\phi}$	1943	visc_fluxmm_phi			
$-c_3v_rP$	1944	press_flux_r			
$-c_3v_{\theta}P$	1945	press_flux_theta			
$-c_3v_{\phi}P$	1946	press_flux_phi			
$-c_3v'_rP'$	1947	press_fluxpp_r			
$-c_3v'_{\theta}P'$	1948	press_fluxpp_theta			
$-c_3v'_{\phi}P'$	1949	press_fluxpp_phi			
$-c_3\overline{v_r}\overline{P}$	1950	press_fluxmm_r			
$-c_3\overline{v_\theta}\overline{P}$	1951	press_fluxmm_theta			
$-c_3\overline{v_\phi}\overline{P}$	1952	press_fluxmm_phi			
	1953	production_shear_ke			
	1954	production_shear_pke			
	1955	production_shear_mke			

4.14 Magnetic Energy Equation

Terms appearing in the Magnetic energy equation $(B \cdot \frac{\partial B}{\partial t})$ are described here.

Value	Code	Variable	Value	Code	Variable
$\left[\left(oldsymbol{v} imes oldsymbol{B} - \eta oldsymbol{\mathcal{J}} ight) imes oldsymbol{B} ight]_r$	2001	ecrossb_r	$oxed{oldsymbol{B'} \cdot igl[oldsymbol{ abla} imes igl(oldsymbol{v'} imes oxed{B} igr) igr]}$	2021	$induct_work_ppm$
$\left[\left(oldsymbol{v} imes oldsymbol{B} - \eta oldsymbol{\mathcal{J}} ight) imes oldsymbol{B} ight]_{ heta}$	2002	$ecrossb_theta$	$m{B'} \cdot [m{ abla} imes (m{\overline{v}} imes m{B'})]$	2022	$induct_work_pmp$
$[(oldsymbol{v} imesoldsymbol{B}-\etaoldsymbol{\mathcal{J}}) imesoldsymbol{B}]_{\phi}$	2003	ecrossb_phi	$\overline{m{B}}\cdot [m{ abla} imes (m{v'} imes m{B'})]$	2023	$induct_work_mpp$
$[(oldsymbol{v'} imes oldsymbol{B'} - \eta oldsymbol{\mathcal{J'}}) imes oldsymbol{B'}]_r$	2004	$ecrossb_ppp_r$	$\overline{oldsymbol{B}}\cdot\left[oldsymbol{ abla} imes\left(\overline{oldsymbol{v}} imes\left(\overline{oldsymbol{v}} imes\overline{oldsymbol{B}} ight) ight]$	2024	induct_work_mmm
$[(oldsymbol{v'} imes oldsymbol{B'} - \eta oldsymbol{\mathcal{J'}}) imes oldsymbol{B'}]_{ heta}$	2005	$ecrossb_ppp_theta$	$m{B} \cdot [m{B} \cdot m{ abla} m{v}]$	2025	$ishear_work$
$[(oldsymbol{v'} imesoldsymbol{B'}-\etaoldsymbol{\mathcal{J'}}) imesoldsymbol{B'}]_{\phi}$	2006	ecrossb_ppp_phi	$-B\cdot [v\cdot abla B]$	2026	iadvec_work
$\left[\left(\overline{oldsymbol{v}} imes\overline{oldsymbol{B}}-\eta\overline{oldsymbol{\mathcal{J}}} ight) imes\overline{oldsymbol{B}} ight]_{r}$	2007	$ecrossb_mmm_r$	$-oldsymbol{B}\cdot\left(oldsymbol{ abla}\cdotoldsymbol{v} ight)oldsymbol{B}$	2027	$icomp_work$
$\left[\left(\overline{oldsymbol{v}} imes\overline{oldsymbol{B}}-\eta\overline{oldsymbol{\mathcal{J}}} ight) imes\overline{oldsymbol{B}} ight]_{ heta}$	2008	ecrossb_mmm_theta	$B' \cdot igl[\overline{B} \cdot abla v' igr]$	2028	$is hear_work_pmp$
$\left[\left(\overline{oldsymbol{v}} imes\overline{oldsymbol{B}}-\eta\overline{oldsymbol{\mathcal{J}}} ight) imes\overline{oldsymbol{B}} ight]_{\phi}$	2009	ecrossb_mmm_phi	$-B'\cdot[\overline{v}\cdot abla B']$	2029	$iadvec_work_pmp$
$ig[(oldsymbol{v'} imesoldsymbol{B'}) imesoldsymbol{\overline{B}}ig]_r$	2010	$ecrossb_ppm_r$	$-B^{m{\prime}}\cdot\left(m{ abla}\cdot\overline{v} ight)B^{m{\prime}}$	2030	$icomp_work_pmp$
$ig[(oldsymbol{v'} imes oldsymbol{B'}) imes oldsymbol{\overline{B}} ig]_{ heta}$	2011	$ecrossb_ppm_theta$	$B'\cdot [B'\cdot oldsymbol{ abla} \overline{v}]$	2031	$is hear_work_ppm$
$ig[(oldsymbol{v'} imes oldsymbol{B'}) imes oldsymbol{\overline{B}} ig]_{\phi}$	2012	ecrossb_ppm_phi	$-B'\cdot ig[v'\cdot abla \overline{B}ig]$	2032	$iadvec_work_ppm$
$\left[\left(oldsymbol{v'} imes\overline{oldsymbol{B}} ight) imesoldsymbol{B'} ight]_r$	2013	$ecrossb_pmp_r$	$-oldsymbol{B'}\cdot (oldsymbol{ abla}\cdot oldsymbol{v'})\overline{oldsymbol{B}}$	2033	$icomp_work_ppm$
$\left[\left(oldsymbol{v'} imes\overline{oldsymbol{B}} ight) imesoldsymbol{B'} ight]_{ heta}$	2014	$ecrossb_pmp_theta$	$\overline{B}\cdot\left[\overline{B}\cdotoldsymbol{ abla}\overline{v} ight]$	2034	ishear_work_mmm
$\left[\left(oldsymbol{v'} imes\overline{oldsymbol{B}} ight) imesoldsymbol{B'} ight]_{\phi}$	2015	$ecrossb_pmp_phi$	$-\overline{B}\cdot\left[\overline{v}\cdot abla\overline{B} ight]$	2035	$iadvec_work_mmm$
$\left[\left(\overline{oldsymbol{v}} imesoldsymbol{B'} ight) imesoldsymbol{B'} ight]_r$	2016	$ecrossb_mpp_r$	$-\overline{B}\cdot\left(oldsymbol{ abla}\cdot\overline{oldsymbol{v}} ight)\overline{B}$	2036	$icomp_work_mmm$
$[(\overline{oldsymbol{v}} imes oldsymbol{B'}) imes oldsymbol{B'}]_{ heta}$	2017	$ecrossb_mpp_theta$	$\overline{B} \cdot [B' \cdot abla v']$	2037	$is hear_work_mpp$
$\left[\left(\overline{oldsymbol{v}} imesoldsymbol{B'} ight) imesoldsymbol{B'} ight]_{\phi}$	2018	ecrossb_mpp_phi	$-\overline{B}\cdot [v'\cdot abla B']$	2038	$iadvec_work_mpp$
$m{B} \cdot [m{ abla} imes (m{v} imes m{B})]$	2019	$induct_work$	$-\overline{oldsymbol{B}}\cdot\left(oldsymbol{ abla}\cdot v' ight)oldsymbol{B'}$	2039	$icomp_work_mpp$
$m{B'} \cdot [m{ abla} imes (m{v'} imes m{B'})]$	2020	$induct_work_ppp$	$B' \cdot [B' \cdot abla v']$	2040	$is hear_work_ppp$

Value	Code	Variable	Value	Code	Variable
$-B'\cdot [v'\cdot abla B']$	2041	iadvec_work_ppp			
$-m{B'}\cdot(m{ abla}\cdotm{v'})m{B'}$	2042	icomp_work_ppp			
$-c_7 \boldsymbol{B} \cdot [\boldsymbol{\nabla} \times (f_7 \boldsymbol{\nabla} \times \boldsymbol{B})]$	2043	$idiff_{-}work$			
$-c_7 \mathbf{B'} \cdot [\mathbf{\nabla} \times (f_7 \mathbf{\nabla} \times \mathbf{B'})]$	2044	idiff_work_pp			
$-c_7\overline{B}\cdot\left[\nabla\times\left(f_7\nabla\times\overline{B}\right)\right]$	2045	idiff_work_mm			