Wirtschaftsinformatik II – Meilicke/Stuckenschmidt

Syntax und Semantik von Beschreibungslogik

ONTOLOGIEN BESCHREIBUNGSLOGIK

Inhalt

- Ontologien, Aussagenlogik vs. Beschreibungslogik vs. Prädikatenlogik
- Syntax und Semantik Beschreibungslogik
- Beispiele für Formeln und deren Bedeutung
- Zentrale Begriffe: Logische Folgerung, Inkonsistenz, usw.
- Attribute um Datenwerte mit Logik zu verknüpfen
- Zusammenfassung und Ausblick

Ontologie

 Philosophie: Ontologie als Wissenschaft, die sich mit einer Einteilung des Seienden in Grundstrukturen beschäftigt

- Informatik: Ontologie als Formalisierung einer Domäne mit den Mitteln der Logik
- D.h. Menge von Formeln die Vokabular definieren

Logische Sprachen

- Aussagenlogik
- 0
- $-p \rightarrow (q \vee \neg q)$
- Kräht der Hahn auf dem Mist ändert sich's Wetter - oder's bleibt wie es ist.
- Beschreibungslogik

- $-M \sqsubseteq S$
- Alle Menschen sind sterblich
- Prädikatenlogik
 - $\quad \forall x \ M(x) \to S(x)$

Alle Menschen sind sterblich

Aus historischen Gründen spricht man im Kontext von Beschreibungslogik oft von Ontologien

Aussagenlogik vs. Beschreibungslogik

- Mit Aussagenlogik kann man vieles nur sehr umständlich ausdrücken ...
- Insbesondere machen Domänen mit unendlich (oder unbekannt vielen) Elementen Probleme
- ... aber:
 - Modelltheoretische Grundlagen sehr einfach (vgl. Wahrheitstabelle)
 - Effiziente Algorithmen vorhanden
- Idee: Obermenge von Aussagenlogik definieren, welche
 - es erleichtert komplexe Zusammenhänge einfach zu beschreiben
 - noch immer effizientere Berechnungen erlaubt

Prädikatenlogik vs. Beschreibungslogik

- Mit Prädikatenlogik kann man sehr viel ausdrücken ...
- ... aber:
 - Oft werden nur "spezielle Arten" von Formeln benötigt
 - Inferenz und Konsistenzprüfungen können in Prädikatenlogik sehr ineffizient sein
 - Komplexe Formeln sind nicht leicht verständlich für Fachexperten
- Idee: Teilmenge von Prädikatenlogik definieren, welche
 - "oft verwendete Formeltypen" unterstützt
 - effizientere Berechnungen erlaubt
 - leichter verständlich ist (spezielle Syntax)

Beschreibungslogik (DL)

- Beschreibungslogik ist eine solche logische Sprache
 - Englisch: Description Logics (DL)
- Aussagenlogik < DL < Prädikatenlogik
 - Alles was man mit Aussagenlogik ausdrücken kann, kann man mit DL ausdrücken, usw.
- Support durch Editoren (z.B. Protégé)
 - Leichtes Navigieren zwischen Konzepten und Indiviuen
 - Einfaches Editieren von Formeln
 - Zum Teil graphische Darstellung
- Effizientes Reasoning (Inferenz, Schlussfolgerung)

Hinweis

- Keine streng formale Einführung
- Kein Anspruch auf Vollständigkeit
- Zusammenhänge werden vereinfacht dargestellt

Dennoch ist die Materie nicht trivial und benötigt unsere volle Aufmerksamkeit!

T-Box und A-Box

Eine Menge DL-Formeln, d.h. eine Ontologie, kann man einteilen in:

- TBox (Terminologie)
 - Besteht aus terminologischen Axiomen, in denen Beziehungen zwischen Konzepten und Rollen spezifiziert werden
 - Definiert das Vokabular, mit dem man über die Welt (oder einen Ausschnitt der Welt) reden möchte
- ABox (Fakten)
 - Besteht aus Behauptungen über <u>Instanzen</u> (Individuen)
 - In Behauptungen werden Konzepte und Rollen der TBox verwendet
 - Behauptungen = Assertions => Abox
- Beispiel für eine Ontologie:
 - Book \subseteq WrittenWork
 - Book(hobbit), writes(tolkien, hobbit)

Bausteine für T-Box und A-Box

- Konzepte (Klassen)
 - Atomare Konzepte (Konzeptnamen):
 - C, D, Person, Musical Artist
 - Komplexe Konzepte (Komplexe Konzeptbeschreibungen):
 - $C \sqcup D$, $\neg \exists writes. Book$
 - Wesentliches Konstruktionsprinzip komplexer Zusammenhänge
- Rollen (Properties)
 - Atomare Rollen (Rollennamen):
 - *P*, *R*, *writes*, *marriedTo*
 - Komplexe Rollen (Komplexe Rollenbeschreibungen):
 - P^{-1} , writes⁻¹
 - Schließt auch Attribute ein, bei denen eine Instanz mit einem Datenwert (String, Date, Integer, ...) verbunden wird

Axiome I (T-Box)

- Axiome zwischen Konzepten
 - $C \sqsubseteq D$ entspricht $\forall x \ C(x) \rightarrow D(x)$
 - $-C \equiv D$ entspricht $\forall x C(x) \leftrightarrow D(x)$
 - Kann daher auf $C \sqsubseteq D$ und $D \sqsubseteq C$ zurückgeführt werden
- Man sagt: C ist Subkonzept (Subklasse) von D, bzw. C ist äquivalent zu D
- Konzepte entsprechen einstelligen Prädikaten
- Rollen entsprechen zweistelligen Prädikaten
- Entsprechungen für höherstellige Prädikate gibt es nicht
- Entsprechungen zu Funktionen gibt es nicht
- Komplizierte Beziehungen können dadurch modelliert werden, dass statt atomarer Konzepte komplexe Konzeptbeschreibungen in den Axiomen auftauchen

Axiome II (T-Box)

- Rollen Axiome (analog zu Konzepten)
 - $P \sqsubseteq Q$ entspricht $\forall xy \ P(x,y) \rightarrow Q(x,y)$
 - $P \equiv Q$ entspricht $\forall xy \ P(x,y) \leftrightarrow Q(x,y)$
 - Kann daher auf $P \sqsubseteq Q$ und $Q \sqsubseteq P$ zurückgeführt werden
- ... es gibt Beschreibungslogikdialekte, die Rollen weiter spezifizieren können:
 - Transitivität: trans(P) entspricht $\forall x \forall y \forall z (P(x,y) \land P(y,z) \rightarrow P(x,z))$
 - Funktionalität: func(P) entspricht $\forall x \forall y \forall z (P(x,y) \land P(x,z) \rightarrow y = z)$
 - Symmetrie: sym(P) entspricht $\forall xy (P(x,y) \rightarrow P(y,x))$
 - Inverse Funktionalität, Reflexivität, Irreflexivität, Asymetrie

Axiome III

 Ignoriert man spezielle Ausnahmen, dann gibt es nur einen einzigen Typ von Axiomen:

 Komplexität ergibt sich nur dadurch was man links und rechts des Subsumptionssymbols notiert.

Fakten (Assertions, A-Box)

a und b seien Instanzen (Individuen, Entitäten)

```
-C(a) entspricht C(a)

-P(a,b) entspricht P(a,b)

-a=b entspricht a=b

-a \neq b entspricht a \neq b
```

- Soweit keine Unterschiede zu Prädikatenlogik
- Aber: In DL gibt es keine Variablen
 - So etwas wie P(x,y) oder C(x) wird niemals als Formel oder Teil einer Formel vorkommen

Nochmal: T-Box und A-Box

- TBox (Terminologie)
 - Besteht aus terminologischen Axiomen in denen Beziehungen zwischen Konzepten und Rollen spezifiziert werden
 - Definiert das Vokabular, mit dem man über die Welt (oder einen Ausschnitt der Welt) reden möchte
- ABox (Fakten)
 - Besteht aus Behauptungen über <u>Instanzen</u> (Individuen)
 - In Behauptungen werden Konzepte und Rollen der TBox verwendet
 - Behauptungen = Assertions => Abox
- Beispiel:
 - Book \sqsubseteq WrittenWork, WrittenWork \equiv \exists writtenBy. Person
 - Book(hobbit), writes(tolkien, hobbit)

Interpretation und Universum

• I steht für die Interpretation, die Instanzen auf Elemente aus Δ , Konzepte auf Teilmengen aus Δ , und Rollen auf Teilmengen aus $\Delta \times \Delta$ abbildet. Δ entspricht dem Universum.

- $a^I = 4 \in \Delta$
- $C^I = \{4,5,6\} \subseteq \Delta$
- $P^I = \{\langle 8,9 \rangle, \langle 7,9 \rangle\} \subseteq \Delta \times \Delta$

Statt I(...) benutzt man üblicherweise im Kontext der Beschreibungslogik das hochgestellte ... I um auf die Interpretation von ... Bezug zu nehmen! Statt U verwendet man Δ .

Interpretation von Komplexem

- Vorige Folie: Eine bestimmte Interpretation I definiert worauf die Grundbausteine (Instanzausdrücke, Konzeptnamen, Rollennamen) abgebildet werden
- Die Syntax von DL legt fest welche komplexen (zusammengesetzen) Ausdrücke es gibt
 - In DL vor allem komplexe Konzeptbeschreibungen
- Die Semantik legt fest was die komplexen Audrücke unter einer Interpretation I bedeuten, gegeben die Bedeutung der Bausteine unter I
 - Bedeutung der Grundbausteine unter I = worauf I die Grundbausteine abbildet

Modell und Interpretation

Ignoriert man spezielle Ausnahmen, dann gibt es nur einen einzigen Typ von Axiomen:

$$A \sqsubseteq B$$

Nicht vergessen: $A \equiv B$ entspricht $A \sqsubseteq B$ und $B \sqsubseteq A$

- Komplexität ergibt sich nur dadurch was man für A und B einsetzt
 - Wird auf den folgenden Folien definiert
- Eine Interpretation I ist ein Modell für das Axiom $A \sqsubseteq B$, genau dann wenn $A^I \subseteq B^I$
 - Gilt für Konzept und Rollen Subsumption gleichermaßen

Aufzählung

- Syntax: Seien a,b,c Instanzausdrücke, dann ist {a,b,c} ein Konzept und wird Nominalkonzept genannt
- Semantik: $\{a, b, c\}^I = \{a^I, b^I, c^I\}$
- Verwendungsbeispiel: Der Vorstand besteht aus Dr. Meier, Frau Schmidt und Frau Dr. Jansen (und aus sonst niemandem).
 - *VorstandsMitglied* \equiv {*meier*, *schmidt*, *jansen*}

Konjunktion und Disjunktion

- Syntax: Seien F und G beliebige Konzepte, dann ist sowohl $F \sqcap G$ ein Konzept als auch $F \sqcup G$
 - Man bezeichnet $F \sqcap G$ als "F und G" (Konjunktion)
 - Man bezeichnet $F \sqcup G$ als "F oder G" (Disjunktion)
- Semantik:
 - $-(F \sqcap G)^I = F^I \cap G^I$
 - $-(F \sqcup G)^I = F^I \cup G^I$
- Verwendungsbeispiel: Jeder Mensch ist ein Mann oder eine Frau (oder beides), und umgekehrt
 - $Human \equiv Man \sqcup Woman$

Negation

- Syntax: Sei F ein beliebiges Konzept, dann ist $\neg F$ ein Konzept
 - Man bezeichnet $\neg F$ als "die Negation von F"
- Semantik: $\neg F^I = \Delta \setminus F^I$
- Verwendungsbeispiel: Personen und Organisationen sind Agenten, wobei es keine Personen gibt, die zugleich Organisationen sind.
 - Organisation \sqsubseteq Agent
 - $Person \sqsubseteq Agent$
 - Person $\sqsubseteq \neg Organisation$

Nichts und Alles

- Syntax: Es seien ⊥ und ⊤ zwei vordefinierte Konzeptnamen
 - Man bezeichnet ⊥ als "bottom-Konzept"
 - Man bezeichnet T als "top-Konzept"
- Semantik:

$$-\perp^I=\emptyset$$

$$- T^I = \Delta$$

- Verwendungsbeispiel: Nichts kann zugleich eine Organisation und eine Person sein
 - Person \sqcap Organisation $\sqsubseteq \bot$

Inverse Rollen

- Syntax: Es sei P eine beliebige Rolle, dann ist auch P^{-1} eine Rolle
 - Man bezeichnet P^{-1} als "inverse Rolle zu P"
- Semantik:

$$-(P^{-1})^{I} = \{\langle y, x \rangle \mid \langle x, y \rangle \in P^{I} \}$$

- Verwendungsbeispiel: Wenn x mit y verheiratet ist, dann ist auch y mit x verheiratet
 - $marriedTo \equiv marriedTo^{-1}$

Existenz- und Allquantor

- Syntax: Es sei P eine beliebige Rolle, und F ein beliebiges Konzept, dann ist sowohl $\exists P.F$ als auch $\forall P.F$ ein Konzept
 - Man nennt Konstrukte dieser Art Existenz-Restriktionen bzw. Wert-Restriktionen
- Semantik:

$$- (\exists P. F)^I = \{x \mid \exists y \langle x, y \rangle \in P^I \land y \in C^I \}$$

$- (\exists P.F)^I = \{x \mid \exists y \langle x, y \rangle \in P^I \land y \in C^I\}$	1	0	0
$- (\forall P.F)^I = \{x \mid \forall y \langle x, y \rangle \in P^I \to y \in C^I \}$	1	1	1

- Vegetarier essen nur Pflanzen
 - Vegetarian $\sqsubseteq \forall eats.Plant$
- Jeder Autor hat mindesten ein Buch geschrieben
 - Author $\sqsubseteq \exists written. Book$

1

 $a \rightarrow b$

1

Existenz- und Allquantor

∃ writes.Poem

(diejenigen, die mindestens ein Gedicht geschrieben haben)

Gegeben Δ = {mary, john, joe, susi, p1, p2, p3, p4, n1, n2, n3} mit der Interpretation:

writes	
mary	p1
mary	n1
john	n1
john	n2
john	n3
joe	p2
joe	рЗ
joe	p4

Poem	
p1	
p2	
р3	
p4	

Novel
n1
n2
n3

∀ writes. Poem

(diejenigen, die nur Gedichte geschrieben haben, oder nichts geschrieben haben)

Es folgt:

∃ writes. Poem	
mary	
joe	

∀ writes. Poem	
susi	
joe	
p1	
p2	
(alle p und n)	

∃ writes. Poem □ ∀ writes. Poem
joe

Übersicht: Komplexe Konzepte und Rollen

Konzept / Rolle	Interpretation	Bedeutung
\top^I	Δ	Top-Konzept,
\perp^I	Ø (leere Menge)	Bottom-Konzept
$\neg C^I$	$\Delta \setminus C^I$	Negation
$(B \sqcap C)^I$	$B^I \cap C^I$	Konjunktion
$(B \sqcup C)^I$	$B^I \cup C^I$	Disjunktion
$(\exists P.C)^I$	$\{x \mid \exists y \langle x, y \rangle \in P^I \land y \in C^I\}$	Existenz Restriktion
$(\forall P.C)^I$	$\{x\mid \forall y\langle x,y\rangle\in P^I\to y\in C^I\}$	Value Restriktion
$(P^{-1})^I$	$\{\langle y, x \rangle \mid \langle x, y \rangle \in P^I \}$	Inverse Rolle
$\{a_1,\ldots,a_n\}^{\mathrm{I}}$	$\{a_1^I,, a_n^I\}$	Nominalkonzepte

Modell / Erfüllbarkeit

- Eine Interpretation I ist ein Modell für ein Axiom/Assertion genau dann, wenn die jeweilige Bedingung (Tabelle) erfüllt ist
 - Alternative Redeweise: Die Interpretation I erfüllt das Axiom bzw. die Assertion.

Axiom/Assertion	Bedingung
$B \sqsubseteq C$ (Konzepte)	$B^I \subseteq C^I$
$P \sqsubseteq Q$ (Rollen)	$P^I \subseteq Q^I$
trans(P)	$\langle x, y \rangle \in R^I \land \langle y, z \rangle \in R^I \rightarrow \langle x, z \rangle \in R^I$
C(a)	$a^I \in C^I$
P(a,b)	$\langle a^I, b^I \rangle \in P^I$
$a = b$ bzw. $a \neq b$	$a^I = b^I$ bzw. $a^I \neq b^I$

Modellieren und Modelle

- Eine Menge von DL Formeln entspricht einer Ontologie
- Mittels einer Ontologie wollen wir einen Auschnitt der Wirklichkeit modellieren
 - T-Box: Allgemeine Zusammenhänge
 - A-Box: Konkrete Aussagen
- Die Menge der Interpretationen zerfällt in Interpretationen, die Modelle der Ontologie sind, und solche, die das nicht sind
 - All das, was möglicherweise unter Berücksichtigung unseres Wissens gilt, entspricht einem der Modelle
 - Die Wirklichkeit selbst entspricht (hoffentlich) einem dieser Modelle
 - All das, was nicht sein kann, entspricht einer Interpretation, die kein Modell ist

Nutzen von Inferenz

- Folgt ein bestimmtes Axiom/Assertion aus der Ontologie
 - Ist die Universität Mannheim eine Top-Universität?
- Anfragen können unter Berücksichtigung der Axiome beantwortet werden
 - Nenne mir alle Top-Universitäten in Hessen!
- Vokabular (TBox) kann auf Fehler überprüft werden
 - Gibt es unerfüllbare Klassen / unerwartete Konsequenzen?
- Fakten können auf Fehler überprüft werden
 - Ist die Ontologie konsistent? Stecken in den Daten Widersprüche?

Inferenz

- Es sei
 - T die TBox,
 - A die ABox,
 - $O = A \cup T$ die gesamte Ontologie
- Ein Axiom oder ein Fakt α folgt aus der Ontologie O, g.d.w. jedes Modell für O auch ein Modell für α ist
 - Man schreibt $0 = \alpha$
 - Alternative Ausdrucksweise: α folgt g.d.w. jede Interpretation die O erfüllt, erfüllt auch α
- Wenn α nicht folgt, schreibt man
 - $O \not\models \alpha$
 - Achtung: $O \not\models \alpha$ ist nicht dasselbe wie $O \models \neg \alpha$

Erinnerung

Beispiele

- Folgt eine bestimmtes Axiom/Assertion aus der Ontologie
 - Ist die Universität Mannheim eine Top-Universität?
 - $Gilt O \models TopUniversity(unima)$?

- Anfragen können unter Berücksichtigung der Axiome beantwortet werden
 - Nenne mir alle Top-Universitäten in Hessen!
 - Füge zur T-Box hinzu: $TopUniHessen ≡ TopUniversity ⊓ ∃locatedIn. {Hessen}$
 - Finde alle Instanzen a für die gilt $O \models TopUniHessen(a)$

Kohärenz

- Eine Ontologie ist kohärent, g.d.w. alle Konzepte erfüllbar sind
- Ein Konzept C ist erfüllbar g.d.w. ein Modell I für O existiert mit $C^I \neq \emptyset$
 - Gleichbedeutend mit $O \not\models C \sqsubseteq \bot$
- Eine Ontologie, in der alle Konzepte erfüllbar sind, ist eine kohärente Ontologie
- Idee: Inkohärenz ist ein Anzeichen für einen Modellierungsfehler

Inkohärenz: Beispiel

- Eine Ontologie O wird kollaborativ entwickelt:
 - Der Experte für Bauwesen fügt folgende Axiome hinzu
 - $Building \sqsubseteq PhysicalObject$
 - $Skyscraper \sqsubseteq Building$
 - Institutional Building \sqsubseteq Building
 - $Library \subseteq Institutional Building$
 - CityHall

 ☐ InstitutionalBuilding
 - ...
 - Der Philosoph fügt folgende Axiome hinzu
 - $PhysicalObject \sqsubseteq \neg Organisation$
 - Person $\sqsubseteq \neg Organisation$
 - ...
 - Der Ökonom fügt folgende Axiome hinzu
 - $Company \subseteq Organisation$
 - $Library \subseteq Organisation$
 - ...

Inkohärenz – Beispiel

- Minimale inkohärente Teilmenge von O
 - 1. Building \sqsubseteq PhysicalObject
 - 2. InstitutionalBuilding \sqsubseteq Building
 - 3. Library \sqsubseteq InstitutionalBuilding
 - 4. PhysicalObject $\sqsubseteq \neg Organisation$
 - 5. Library \sqsubseteq Organisation

locatedIn		
unima-informatik-bib	A5	
unima-phil-bib	А3	
unima-verwaltung	L1	

- Frage: Wo ist der Fehler, welches Axiom ist inkorrekt?
- Angemessenere Modellierung?
 - LibraryBuidling \sqsubseteq InstitutionalBuilding
 - LibraryBuilding ≡ Building $\sqcap \exists locatedIn^{-1}$.Library

Konsistenz

- Eine Ontologie O ist konsistent, wenn es eine Interpretation I mit einem nicht leeren Universum $\Delta \neq \emptyset$ gibt, so dass I ein Modell für O ist
 - Lässt sich keine solche Interpretation konstruieren, dann ist O inkonsistent
 - Inkonsistente Ontologie = Kein Modell = Kontradiktion
- Beispiele für inkonsistente Ontologien

```
 \triangleright O = \{ C(a), C \sqsubseteq \bot \} 
 \triangleright O = \{ C(a), D(a), C \sqsubseteq \neg D \} 
 \triangleright O = \{ a = b, C(a), \exists P. \top \sqsubseteq D, P(a,b), C \sqsubseteq \neg D \}
```


Inkonsistenz: Beobachtungen

- Geben sei eine inkohärente Ontologie O
 - Wird einem unerfüllbaren Konzept eine Instanz zugeordnet, dann wird O inkonsistent
- Aus einer inkonsistenten Ontologie O folgt alles!
 - Da O kein Modell besitzt, gilt für eine beliebiges Axiom α die Inferenz $O \models \alpha$
- Da man Inkonsistenz verhindern muss, will man auch Inkohärenz verhindern
 - Man möchte die definierten Konzepte und Rollen ja verwenden!
 - Ausnahmen, sind Ontologien, die man verwendet, um zu beweisen, dass etwas nicht existiert

Nutzen von Inferenz

- Folgt ein bestimmtes Axiom/Assertion aus der Ontologie
 - Ist die Universität Mannheim eine Top-Universität?
- Anfragen können unter Berücksichtigung der Axiome beantwortet werden
 - Nenne mir alle Top-Universitäten in Hessen!
- Vokabular (TBox) kann auf Kohärenz überprüft werden
 - Gibt es unerfüllbare Klassen / unerwartete Konsequenzen?
- Fakten können auf Fehler überprüft werden
 - Ist die Ontologie konsistent? Stecken in den Daten Widersprüche?

Attribute

- Bisher kennengelernt
 - Individuen
 - Konzepte (=> einstellige Prädikate)
 - Rollen (=> zweistelligen Prädikate)
- Man unterscheidet zwischen dem (abstrakten) Universum und konkreten Wertebereichen
 - Individuen, Konzepte, und Rollen stehen für Elemente oder Teilmengen, oder Teilmengen von Paaren, aus dem (abstrakten) Universum
 - Konkrete Wertebereiche beinhalten Werte von Standarddatentypen
 - Strings ("Lord of the rings", "Heiner Stuckenschmidt")
 - Integer (-15, 42)
 - Double (3.14, 0.00001)
 - Date ...

Attribute

 Attribute ähneln Rollen, d.h. sie verhalten sich wie zweistellige Prädikate, mit dem Unterschied:

Rolle: hasBrother(a,b)

Wird abgebildet auf Element des (abstrakten) Universums

Attribut: birthYear(a, 1976)

Wird abgebildet auf Element des (abstrakten) Universums

Wert aus einem konreten Wertebereich hier z.B. Integer

Spezifikation von Attributen

- Attribute können wie Rollen durch Axiome eingeschränkt werden, wir können also
 - Subattribute definieren
 - Funktionalität spezifizieren
 - **–** ...
- Aber: Standardinferenz endet an der Grenze der abstrakten Domain
 - Mit Standardmethoden ist es nicht möglich auszudrücken, dass ein Erwachsener jemand ist, der 18 Jahre alt oder älter ist
 - Hier kann die Ausdrucksstärke um spezielle Regeln erweitert werden (nicht Thema der Vorlesung)
- Typische Beispiele:
 - hasName: ordnet einer Person ihren Namen zu (String)
 - hasHeight: spezifiziert eine Größe (z.B. Double)
 - born: gibt Geburtsdatum an (Date)
 - **–** ...

OWL

- Eine konkrete "Implementierung" von Beschreibungslogik ist die Web Ontology Language (OWL)
 - Wird eingesetzt in "Semantic Web" Anwendungen
 - Benutzt URIS um Instanzen eindeutig zu identifizieren
 - Mit RDF kompatibel bzw. die ABox kann mittels RDF notiert werden
 - RDF = Resource Description Framework
 - Im Kontext von Linked Open Data relevant
 - Wird von dem Editor Protege unterstützt
- Leider eine etwas anderen Redeweise für OWL
 - Attribute nennt man in Bezug auf OWL auch Datatype-Properties, oder einfach Data-Properties
 - Rollen nennt man in Bezug auf OWL auch Object-Properties
 - Konzepte nennt man in Bezug auf OWL auch Klassen (classes)

Zusammenfassung

- Beschreibungslogik vs. Prädikatenlogik
- Syntax und Semantik von Beschreibungslogik
 - Instanzen, Konzepte, Rollen
 - Komplexe Konzepte um komplexe Beziehungen auszudrücken
 - Einige Modellierungs Beispiele
- Inferenz, Kohärenz und Konsistenz
- Attribute um "konkrete" Aussagen zu treffen

Ausblick

- Wie funktioniert das Tableauverfahren für Beschreibungslogik
 - Für die eingeschränkte Sprachvariante ALC (Attributive Language with Complements)
- Was sind typische Arten von Axiomen und zu welchem Zweck werden diese eingesetzt
 - Konzepthierarchie definieren
 - Domain und Range von Rollen spezifizieren
 - **—** ...
- Wie modelliert man eine Ontologie / Beispiel

