Average values

1160

Q_DEoS (cal/g)

Fernando G. Bastante 1, María Araújo Fernández 1, Eduardo Giráldez 1 CINTECX, GESSMin group, University of Vigo

DEOS DATABASE

 $w = \left(\frac{\partial D}{\partial \rho_o}\right)_O$ w (m/s per kg/m3) 3 37 Do (m/s) 2215 $C = \left(\frac{\partial D}{\partial Q}\right)_{Q_Q}$ **EXPLOSIVES** 238 CHNO Composition (mol/100a) Other elements (% weight X) hierarchy [CI+F+P+Si] as inerts C (m/s per cal/g) 1.0 ΔH°₂₉₈ (cal/g) reference Q_{v1} (cal/g) O X: {Cl+F+P+Si} Comp. type (Xiong) C (s) H2O (g) CO2 (g) N2 (g) H2 (g) O2 (g) Q_DEoS (cal/g Phi (KJ) Do (DEoS) w (DEoS) C (DEoS) Name 133 [8] 2.745 1.544 abh azobis(2,2',4,4',6,6'-hexanitrobiphenyl) 0.686 1.601 2.745 0.0 CHNO 3.0 0.343 1.201 0.801 0.000 0.000 1306 1460 5.28 2368 2.9 0.9 AFX902 -299 [c 1.046 3,745 3.651 1.826 CHNOX 1.826 0.000 1.826 0.047 0.000 652 756 1672 cis-1,3,4,6-tetranitrooctahydroimidazo-[4,5-d]imidazole 192 [3] 1.360 2.040 2.720 2.720 0.0 CHNO 2.0 0.510 1.020 0.850 1.360 0.000 0.000 1530 1581 6.92 2563 3.4 0.8 bchmx BCHMX/GAP (84/16) BCHMX/GAP (84/16) 335 [4 1.671 2.669 2.706 0.0 CHNO 3.0 1.109 1.334 0.562 1.353 0.000 0.000 1525 1635 6.79 2558 3.4 0.8 BCHMX/PIB (91/9) BCHMX/PIB (91/9) 148 [c] 1.827 2.976 2.475 2.525 0.0 CHNO 3.0 1.308 1.488 0.518 1.238 0.000 0.000 1365 1496 6.39 2420 0.9 BCHMX/SYLGARD (85/15) -97 [3] 2.883 2 346 CHNOX 0.530 0.000 3.4 BCHMX/SYLGARD (85/15) 1 549 2 502 5.6 1.018 1.442 1.173 0.000 1133 1235 2205 1.0 BCHMX/VITON (95/5) 94 [c] 1.426 2.031 2 584 2 584 3.3 CHNOX 0.641 1.016 0.784 1.292 0.000 0.000 1354 1418 2411 3.4 0.9 BCHMX/VITON (95/5) BCHMX/VITON (97/3) 1.399 2.035 2.638 CHNOX 0.589 1.017 0.810 1.319 1483 BCHMX/VITON (97/3 133 [c] 2.638 2.0 0.000 0.000 1424 2473 3.4 0.9 benzotris[1,2,5]oxadiazole-1,4,7-trioxide 551 [47] 2.380 0.000 2.380 2.380 0.0 CNO 3.0 1.190 0.000 1.190 1.190 0.000 0.000 1551 1670 5.84 2580 3.2 0.8 htnen his/2 2 2-trinitroethyl) nitramine -17 [48] 1.031 1.031 2.061 3 607 0.0 CHNO 1.0 0.000 0.515 1 031 1 031 0.000 0.515 1250 1250 6.22 2317 3 2 0.9 BTNEN/BTF (60/40) RTNFN/RTF (60/40) 210 [c] 1 570 0.618 2 189 3 116 0.0 CHNO 2.0 0.167 0.309 1 404 1 094 0.000 0.000 1692 1709 6.86 2695 32 0.8 BTNFN/HMX (30/70) BTNFN/HMX (30/70 37 [c] 1.255 2.200 2.509 2.973 0.0 CHNO 2.0 0.318 1.100 0.936 1.255 0.000 0.000 1522 1554 7.01 2556 3.4 0.8 BTNFN/HMX (32/68) BTNFN/HMX (32/68) 36 [c] 1.248 2.167 2.496 2.991 0.0 CHNO 2.0 0.294 1.083 0.954 1.248 0.000 0.000 1530 1559 7.03 2562 3.4 0.8 BTNEN/RDX (56/44) 1.171 2.343 CHNO 0.000 1623 1624 2639 0.8 BTNEN/RDX (56/44) 20 [c] 1.766 3.209 0.0 2.0 0.009 0.883 1.163 1.171 0.000 7.22 3.4 bis(trinitroethyl) urea -199 [48] 1.295 1.554 2.072 3.367 0.0 CHNO 1.0 0.000 0.777 1.295 1.036 0.000 0.000 1468 1468 6.75 2510 3.3 0.9 btneu bis-(2,2,2-trinitroethyl)-carbonate -388 [48] 0.773 1122 1122 1.288 1.031 1.546 3.865 0.0 CHNO 1.0 0.000 0.515 1.288 0.000 0.38 5.77 2194 3.1 1.0 cl-20 448 [4] 1.369 1.369 2.739 2.739 0.0 CHNO 2.0 0.342 0.685 1.027 1.369 0.000 0.000 1776 1810 7.31 2761 0.8 CL20/GAP (84/16) CL20/GAP (84/16) 320 [4 1.675 2.092 2.691 2,505 0.0 CHNO 3.0 0.946 1.046 0.729 1.346 0.000 0.000 1516 1611 6.68 2551 3.4 0.8 CL-20/HTPB (91/9) CL-20/HTPB (91/9) 407 [c] 1.890 2.258 2.500 2.500 0.0 CHNO 3.0 1.205 1.129 0.685 1.250 0.000 0.000 1584 1705 6.68 2608 3.3 0.8 CL-20/HTPB (92/8) CL-20/HTPB (92/8) 412 [c] 1.832 2.159 2.527 2.526 CHNO 1.109 1.080 0.723 1.263 0.000 0.000 1605 1716 2625 0.8 CL-20/PIB (91/9) CL-20/PIB (91/9) 381 [c] 1 835 2 366 2 492 2 542 0.0 CHNO 3.0 1 156 1 183 0.679 1 246 0.000 0.000 1588 1704 6.75 2611 2.3 0.8 -46 [3] CL20/SYLGARD (85/15) CL20/SYLGARD (85/15) 1 545 2 298 2 365 2 540 5.4 CHNOX 0.849 1 149 0.696 1 182 0.000 0.000 1187 1272 2257 3.4 1.0 COMP B COMPB 10 [c] 2.032 2.637 2.177 2.653 0.0 CHNO 3.0 1.364 1.318 0.667 1.089 0.000 0.000 1263 1399 6.00 2328 3.3 0.9 COMP C3 composition c3 (as single) -14 [8][10]average 1.899 2.829 2.339 2.599 0.0 CHNO 3.0 1.307 1.414 0.592 1.169 0.000 0.000 1230 1361 6.04 2298 3.3 0.9 COMP C4 COMP C4 33 [c] 1.818 3.578 2.458 2.508 0.0 CHNO 3.0 1.459 1.789 0.359 1.229 0.000 0.000 1260 1405 6.26 2325 3.4 0.9 3.3'-diamino-4.4'-azoxyfurazan 500 [35] 1.886 1.886 3.771 1.414 0.0 CHNO 3.0 1.650 0.943 0.236 1.886 0.000 0.000 1101 1266 5.58 2174 3.4 1.0 DAAF/HMX/VITON (45/50/5) 1224 DAAF/HMX/VITON (45/50/5) 166 [c] 1.658 2.293 3.048 1.987 3.3 CHNOX 1.237 1.146 0.420 1.524 0.000 0.000 1100 2173 3.4 1.0 DAAF/HMX/VITON (60/35/5 DAAF/HMX/VITON (60/35/5 232 [c] 1.738 2.170 3.208 1.794 3.3 CHNOX 1.383 1.085 0.354 1.604 0.000 0.000 1054 1193 2127 3.4 1.0 DAAF/HMX/VITON (80/15/5) DAAF/HMX/VITON (80/15/5) 320 [c] 1.845 2.007 3,422 3.3 CHNOX 1.578 1.004 0.266 1.711 0.000 993 1151 2064 DAAF/RDX/VITON (60/35/5) 234 [c] 1.738 2.170 3.208 3.3 CHNOX 1.383 0.354 1.604 0.000 0.000 1056 1195 2129 1.0 DAAF/RDX/VITON (60/35/5) 1.085 3.4 DAAF/RDX/VITON (80/15/5) 994 DAAF/RDX/VITON (80/15/5) 321 [c] 1.845 2.007 3.422 1.537 3.3 CHNOX 1.578 1.004 0.266 1.711 0.000 0.000 1151 2065 3.4 1.0 DAAF/VITON (95/5) DAAF/VITON (95/5) 386 [c 1.925 1.88 3.583 0.201 0.000 0.000 2016 3.4 1.1 1.791 1119 1,3-diamino-2,4,6-trinitrobenz -120 [8 2 468 2.056 2.056 2 468 0.0 CHNO 3.0 1 748 1 028 0.720 1 028 0.000 0.000 976 1151 5.02 2047 3 1 1.0 diethyleneglycol dinitrate -507 [8] 2.040 4.079 1.020 3.569 0.0 CHNO 3.0 1.275 2.040 0.765 0.510 0.000 0.000 1264 1391 6.25 2329 3.3 0.9 di(2-nitroxyethyl)-nitramine -314 [8] 1.666 3.332 1.666 3.332 0.0 CHNO 3.0 0.833 1.666 0.833 0.833 0.000 0.000 1349 1432 6.55 2406 3.4 0.9 dipam (2.2'.4.4'.6.6'-hexanitro-[1.1-biphenyl]-3.3'-diamine -44 [8] 2.642 1.321 1.761 2.642 0.0 CHNO 3.0 1.651 0.660 0.991 0.881 0.000 0.000 1104 1269 5.08 2177 3.0 1.0 1337 dipetn dipentaerythritol hexanitrate -446 [8] 1.907 3.052 1.144 3.624 0.0 CHNO 2.0 0.858 1.526 1.049 0.572 0.000 0.000 1423 6.34 2395 3.2 0.9 dinicrylamine hexanitrodiphenylamine 23 [48] 2.732 1.138 1.594 2.732 0.0 CHNO 3.0 1.651 0.569 1.081 0.797 0.000 0.000 1204 1369 5.18 2273 2.9 0.9 -243 [48] 0.0 CHNO 3.0 0.549 1062 1272 dmtnb dinitrophenoxyethylnitrate 2.929 2.563 1.098 2.929 2.105 1.281 0.824 0.000 0.000 5.02 2135 3.0 1.0 -187 [48] 1.167 CHNO 0.000 1240 dmttp ethyl picrate 3.111 2.722 2.722 0.0 3.0 2.430 1.361 0.681 0.583 0.000 997 4.80 2069 2.9 1.0 554 [47] 1.388 0.000 2.777 2.777 0.0 CNO 1.0 1.388 1.388 0.000 0.000 1860 1860 7.19 2825 0.8 dinitrodiazenofuroxan 0.000 0.000 3.5 dnaf DNAN/RDX/NTO (40/20/40) DNAN/RDX/NTO (40/20/40) -163 [c] 2.298 2.36 2.174 2.472 0.0 CHNO 3.0 1.654 1.183 0.644 1.08 0.000 0.000 1127 5.13 2032 3.2 1.1 -37 [8] 3.569 2.379 1.190 2.379 0.0 CHNO 3.0 2.974 1.190 0.595 0.595 0.000 0.000 913 1210 4.30 1979 dinitrobenzol dndmo n.n'-dinitro-n.n'- dimethyloxamide -355 [48] 1.941 2.911 1.941 2.911 0.0 CHNO 3.0 1.213 1.455 0.728 0.970 0.000 0.000 1050 1171 5.62 2123 3.3 1.0 3.4-bis(4-nitrofurazan-3-vl)furoxai 503 [35] 1.922 0.000 2.563 2.563 0.0 CNO 2.0 0.641 0.000 1.282 1.282 0.000 0.000 1644 1708 6.36 2657 3.3 0.8 1-methyl-3,5-dinitro-1,2,4-triazole 253 [35] 1.733 1.733 2.889 2.311 0.0 CHNO 1.011 0.867 0.722 1.444 0.000 0.000 1332 1433 6.18 2391 3.3 0.9 DNMT/HMX (49.5/50.5) DNMT/HMX (49.5/50.5) 156 [c] 1.540 2.222 2.794 2.508 0.0 CHNO 3.0 0.842 1.111 0.699 1.397 0.000 0.000 1371 1455 6.48 2425 3.4 0.9 3.4-dinitropyrazole 182 [35] 1 898 1 265 2 530 2 530 0.0 CHNO 3.0 0.949 0.633 0.949 1 265 0.000 0.000 1345 1440 6.03 2403 3 2 0.9 dinitroguanidine 0 [47] 0.671 2 013 3 354 2 683 0.0 CHNO 1.0 0.000 1.006 0.671 1 677 0.000 0.168 1213 1213 6.53 2281 3.6 0.9 dinitrofuroxany 389 [56] 1.538 0.000 2.307 3.076 0.0 CNO 1.0 0.000 0.000 1.538 1.153 0.000 0.000 1835 1835 7.03 2807 3.4 0.8 dntfo dp12 dn12 -228 [8] 1.428 2.856 0.952 1.904 36.2 CHNOX 1.190 1.428 0.238 0.476 0.000 0.000 702 821 1735 3.3 1.2 edad ethylenediamine dinitrate -837 [48] 1.075 5.373 2.149 3.224 0.0 CHNO 3.0 0.806 2.686 0.269 1.075 0.000 0.000 888 968 5.94 1952 3.7 1.1 0.0 1298 EDC-11 EDC-11 18 [c] 1.887 2.546 2.273 2.683 CHNO 3.0 1.183 1.273 0.705 1.137 0.000 0.000 1416 6.15 2360 3.3 0.9 EDC-24 EDC-24 40 [c] 1.640 3.279 2.566 2.566 0.0 CHNO 3.0 1.176 1.640 0.463 1.283 0.000 0.000 1305 1423 6.43 2367 3.4 0.9 edna ethylene dinitramine -165 [8] 1.332 2.665 CHNO 0.333 1.332 0.000 1204 1304 2273 ethylene glycol dinitrate -383 [8 1.315 2.630 1.315 CHNO 0.000 1.315 1.315 0.658 0.000 0.000 1614 7.29 2632 3.3 0.8 etdn -376 [12] 1.324 1.986 1.324 3.972 0.0 CHNO 1.0 0.000 0.993 1.324 0.662 0.000 0.166 1443 1443 6.74 2489 3.2 0.9 ammonium picrate -382 [8] 2.438 1.625 3.0 0.813 1087 4.99 1992 3.1 explosive of 1,1 [methylenebis (oxy)]bis [2-fluoro-2,2-dinitroethane] -555 [8 1.562 1.874 1.250 3.124 11.9 CHNOX 0.469 0.937 1.093 0.625 0.000 0.000 969 1015 2039 3 2 1 1 FM1 -505 [c³ 1 907 2 872 1 266 3 164 5.9 CHNOX 1 043 1 436 0.864 0.633 0.000 0.000 1033 1137 2106 3 2 1.0 FM1 fox-12 guanylurea dinitramide -406 [20] 0.956 3.347 3.347 2.391 0.0 CHNO 3.0 0.598 1.674 0.359 1.674 0.000 0.000 838 898 5.56 1897 3.7 1.1 diaminodinitroethylene -216 [35] 1.351 2.701 2.701 2.701 0.0 CHNO 3.0 0.675 1.351 0.675 1.351 0.000 0.000 1132 1200 6.10 2204 3.5 1.0 FOX-7/EVA (95.1/4.9) 3.0 FOX-7/EVA (95.1/4.9) -202 [c] 1.581 3.113 2.569 2.618 0.0 CHNO 1.050 1.556 0.531 1.284 0.000 0.000 1092 1197 5.94 2164 3.4 1.0 FOX-7/EVA (95/5) FOX-7/EVA (95/5) -202 [c] 1.586 3.121 2.566 2.617 0.0 CHNO 3.0 1.058 1.560 0.528 1.283 0.000 0.000 1091 1196 5.93 2164 3.4 1.0 FOX-7/TNT (30/70) -120 [c] 2.563 1.735 0.0 CHNO 3.0 1.821 0.742 0.867 1076 2149 3.1 FOX-7/TNT (30/70) 2.351 2.660 1.176 0.000 0.000 1258 5.23 1.0 FOX-7/TNT (60/40) FOX-7/TNT (60/40) -161 [c 2.043 2.501 2.149 2.677 0.0 CHNO 3.0 1.330 1.251 0.713 1.079 0.000 0.000 1100 1233 5.61 2173 3.3 1.0 FOX-7/VITON (95/5) -294 [c] 1.417 2.566 2.566 3.3 CHNOX 0.618 1.283 0.000 976 2.660 0.799 1.330 0.000 1056 2047 1.0 FOX-7/VITON (95/5) FOX-7/WAX (98.5/1.5) -215 [c] 1.437 2.875 2.661 2.661 CHNO 3.0 0.826 1.437 0.612 1.330 0.000 0.000 1109 1191 6.02 2181 1.0 FOX-7/WAX (98.5/1.5) 0.0 3.5 H2O2/H2O (90,5/9,5) -1573 [c] 0.000 6.376 0.000 5.849 0.0 но 1.0 0.000 3.188 0.000 0.000 0.000 1.330 270 270 3.49 1076 3.3 2.0 H2O2/H2O (90,5/9,5 hydrazinium azide 533 [57] 0.000 6.660 6.660 0.000 0.000 0.000 0.000 3.330 3.330 0.000 533 533 1512 5.2 5.96 1497 [57] 0.000 2.324 6.972 0.000 0.0 4.0 0.000 0.000 3.486 1.162 0.000 1497 1497 8.34 2535 4.4 0.8 HN 0.000 HAC/W (60/40) HAC/W (60/40) -619 [c] 0.000 5.835 4.183 2.220 0.0 HNO 5.0 0.000 2.220 0.000 2.092 0.697 0.000 665 665 5 77 1689 4.3 1.3 HAC/W (62/38) HAC/W (62/38) -513 [c] 0.000 5.660 4.323 2.109 0.0 HNO 5.0 0.000 2.109 0.000 2.161 0.720 0.000 706 706 5.94 1741 4.3 1.2

Fernando G. Bastante 1 , María Araújo Fernández 1 , Eduardo Giráldez 1 . CINTECX, GESSMin group, University of Vigo

DEoS DATABASE

Margin M	DEOS DATABASE																w (n	Ave DEoS (cal/g) n/s per kg/m³) (m/s)	1160 3.37 2215	$w = \left(\frac{\partial D}{\partial \rho_0}\right)$	Q	
March Marc			AH° (cal/a) .	CH	INO Composit						-41						•			,		
March Marc				С	Н				_						107							
Margin M																						1.1
Margin M																						0.9
March Marc						0.2.0								0.0.0								0.9
Mathematics																						0.9
Marche M					2.082		3.124	0.0	CHNO	2.0		1.041	1.041	1.041		0.000	1512	1564		2547	3.3	0.8
March Marc	hmx	cyclotetramethylenetetranitramine	61 [8]	1.351	2.701	2.701	2.701	0.0	CHNO	3.0	0.675	1.351	0.675	1.351	0.000	0.000	1409	1476	6.77	2459	3.5	0.9
	HMX/EXON (91/9)	HMX/EXON (91/9)	-31 [c]	1.448	2.648	2.446	2.446	6.6	CHNOX		0.887	1.324	0.561	1.223	0.000	0.000	1173	1262		2244	3.4	1.0
	HMX/GAP (84/16)	HMX/GAP (84/16)			2.877	2.714	2.460	0.0	CHNO	3.0	1.132	1.439	0.511		0.000	0.000		1520			3.4	0.9
		HMX/HN (75/25)	-110 [c]	1.013	3.341	2.815	2.815	0.0	CHNO	2.0	0.441	1.670	0.572	1.407	0.000	0.000	1350	1394	6.94	2407	3.6	0.9
										3.0									6.25			0.9
																						1.0
																						1.3
																						1.2
																						1.2
MATERIAN																						
MATTER PROPERTY PRO																						1.1
MACHINE PROPERTY OF STATE 1																						1.1
MACHINISTRICATION MACHINISTRICATION 150 170																						1.0
MATHEMATIC MAT										3,0									5.98			0.9
MACHINE (1972) MACH																			6.17			0.9
MACHINE MACH	HMX/TNT (75/25)	HMX/TNT (75/25)					2.686	0.0	CHNO	3.0	1.084	1.288	0.699	1.178	0.000			1428		2380	3.3	0.9
MANUFER (1989) MANU	HMX/TNT (78/22)	HMX/TNT (78/22)	30 [c]	1.732	2.591	2.398	2.688	0.0	CHNO	3.0	1.035	1.296	0.696	1.199	0.000	0.000	1330	1434	6.33	2389	3.4	0.9
Mary Number of Part		HMX/TNT (80/20)	33 [c]	1.697	2.601	2.425	2.689	0.0	CHNO	3.0	1.003	1.301	0.694	1.213	0.000	0.000	1337	1438	6.37	2396	3.4	0.9
Part	HMX/TNT (89/11)	HMX/TNT (89/11)	45 [c]	1.541	2.646	2.549	2.695	0.0	CHNO	3.0	0.855	1.323	0.686	1.275	0.000	0.000	1369	1455	6.55	2424	3.4	0.9
Part	HMX/TNT (90/10)	HMX/TNT (90/10)	47 [c]	1.524	2.651	2.563	2.695	0.0	CHNO	3.0	0.839	1.326	0.685	1.282	0.000	0.000	1373	1457	6.57	2428	3.4	0.9
Product Prod	hn	hydrazine nitrate	-621 [8]	0.000	5.260	3.156	3.156	0.0	HNO	1.0	0.000	2.630	0.000	1.578	0.000	0.263	899	899	6.34	1965	3.9	1.1
Pubme 1,24	hnab	2,2',4,4',6,6'-hexanitroazobenzene																				0.9
Internal Process Pro																						0.8
Page 1,2 1,4 1,5	hnbp																					0.9
																						1.2
																						1.0
March Marc																						1.0
Page Depropriente 123 185 2.85 6.66 0.92 2.85 0.0 CMO 4.0 2.85 2.85 0.0 CMO 4.0 2.85 2.85 0.0 0.07 0.07 0.07 0.00 122 131	7 (7, 7, 7)					0.000																1.3
LMA-1599/TIPON (1967) LMA-	IMX-104																					1.1
LM-379/VITON (95/6) LM-379/VITON (95/6) LM-379/VITON (95/6) LM-379/VITON (95/6) LM-379/VITON (95/6) LM-379/VITON (95/6) LS-326 LS-3	ipn									4.0									5.31			1.1
Mod																						0.9
LYOP										2.0									6.05			0.9
LKOP										3.0									0.93			1.1
LY-09 LY-0																						1.0
LY-10																						0.9
																						0.9
Exist Exis	LX-11	LX-11		1.615	2.535	2.161	2.161	13.2	CHNOX		1.168	1.268	0.447	1.081	0.000	0.000		846		1769	3.4	1.2
LK-15										3.0								1423	6.51			0.9
Manifol																						1.0
M6N-II MEN-II ME	LX-17	LX-17	-237 [c]	2.295	2.186	2.150	2.150	5.7	CHNOX		1.767	1.093	0.528	1.075	0.000	0.000	715	892		1752	3.2	1.2
MRN-II MRN-II MRN-II -747 [c] 2,000 7,055 1,329 3,096 0.0 CHNO 5.0 2,000 3,096 0.000 0,665 0,402 0.000 837 1043 5,74 1895 3.6 nmethod method m	manitrol	mannitol hexanitrate	-336 [48]	1.327	1.769	1.327	3.981	0.0	CHNO	1.0	0.000	0.885	1.327	0.663	0.000	0.221	1423	1423	6.64	2471	3.2	0.9
methol m	md																					0.9
ng nitrogenine sign of the serious paralleline nitrogenice sign of the serious parallel nitrogenic par																						1.1
Ing. nitroglycerine -390 [8] 1.321 2.202 1.321 3.963 0.0 CHNO 1.0 0.000 1.101 1.321 0.661 0.000 0.110 1.489 1.489 6.89 2.528 3.3 0 mm nitromethane -4.43 [8] 1.638 4.915 1.638 3.277 0.0 CHNO 3.0 1.229 2.457 0.410 0.819 0.000 0.000 1.240 1.363 6.54 2.307 3.5 0 0 mm enthylintrate -4.79 [48] 1.298 3.894 1.298 3.894 0.0 CHNO 3.0 1.229 2.457 0.410 0.819 0.000 0.000 1.50	metn																					0.9
In Informethane	nag																					1.1
Insert Methylnikrate Met	ng																					0.8
no nitric oxide 617 [33] 0.000 0.000 3.333 3.333 0.0 NO 1.0 0.000 0.000 0.000 1.666 0.000 1.666 617 617 4.53 1627 3.1 1 1 nona 22/27/4/4/-6/6/6-nonanitroterphenyl 43 [48] 2.833 0.0 CHNO 3.0 CHNO 3.0 1.613 0.394 1.220 0.000 0.000 1257 1418 5.15 2322 2.9 0.000 nona nitroguandine 1.221 [47] 0.961 3.844 3.844 1.922 0.0 CHNO 5.0 0.961 1.922 0.000 1.922 0.000 0.000 794 489 5.51 2322 2.9 0.000 NO/ESTANE [95/5] NO/ESTANE [95/5] NO/ESTANE [95/5] 1.614 0.000 0.0	nm																					0.9
Deciding Control Con	nmet																					0.8
nq ntroguandine 4.21 [47] 0.961 3.844 3.844 1.922 0.0 CHNO 5.0 0.961 1.922 0.000 1.922 0.000 0.000 7.94 8.90 5.50 1.846 3.8 1.8 NO/ESTANE (95/5) NO/ESTANE (95/5) 1.924 0.000 1.922 0.000 1.922 0.000 0.000 7.94 8.90 5.50 1.846 3.8 1.912 0.000 1.925 0.000 0.000 7.94 8.90 5.50 1.846 3.8 1.912 0.000 1.925 0.000 0.000 7.92 8.90 5.50 1.926 0.000 NO/ESTANE (95/5) NO/ES																						1.3
NO/ESTANE (95/5) NO/ESTANE (95/5) NO/ESTANE (95/5) -257 [c] 1.169 4.026 3.661 1.914 0.0 CHNO 5.0 1.169 1.914 0.000 1.830 0.099 0.000 732 849 5.30 1772 3.7 1 NO/INIT(35/65) NO/INIT(35/65) -128 [c] 2.340 2.376 2.204 2.390 0.0 CHNO 3.0 1.839 1.383 0.501 1.102 0.000 0.000 961 1145 5.17 0.31 3.2 1 NO/INIT(95/50) NO/INIT(95/5	nona																					0.9
NO/TNT(35/65)	nq																					
NO/TNT[59/50] NO/TNT[69/20] -150 [c] 2.021 3.022 2.582 2.282 0.0 CHNO 3.0 1.636 1.511 0.385 1.291 0.000 0.000 923 1086 5.27 1990 3.3 1 NO/TNT[80/20] NO/TNT[69/20] NO/TNT[69/20] -150 [c] 1.373 3.679 3.591 1.994 0.0 CHNO 3.0 1.291 1.786 0.000 0.000 845 968 5.44 195 3.6 1 NO/TNT[99/20] NO/TNT[99/20																						1.2
NO/TNT[80/20] NO/TNT[80/20] NO/TNT[80/20] 1-22 [c] 1.385 3.515 3.39 2.066 0.0 CHNO 3.0 1.231 1.788 0.154 1.670 0.000 0.000 845 988 5.44 1905 3.6 1 NO/TNT[90/10] NO/TNT[90/10] 1-20 [c] 1.73 3.679 3.591 1.994 0.0 CHNO 3.0 1.096 1.881 0.079 1.796 0.000 0.000 819 929 5.47 1805 3.7 1 NO/TNT[90/10] NO									Cilito		2.000	1.500		1.101						2001		1.1
NO/TINT[99/10)																						1.1
NO_TINT[95/5)																						1.1
nto 3-nitro-1/2,4 triazol5-one -215 [8] 1.538 1.538 3.075 2.307 0.0 CHNO 3.0 0.769 0.769 0.769 1.538 0.00 0.000 875 952 5.16 1938 3.4 1 NTO/RNYT(50/12/38) NTO/RNYT(50/12/38) -129 [c] 2.102 1.930 2.364 2.481 0.0 CHNO 3.0 1.344 0.955 0.758 1.152 0.000 0.000 1007 1141 5.27 2079 3.2 1 NTO/INT (60/70) NTO/INT (30/70) -147 [c] 2.619 2.002 1.847 2.541 0.0 CHNO 3.0 1.849 1.001 0.770 0.924 0.00 0.000 999 1113 4.92 2.079 3.1 1 NTO/INT (60/50) NTO/INT (50/50) -147 [c] 2.310 1.870 2.198 2.474 0.0 CHNO 3.0 1.540 0.935 0.770 1.099 0.000 0.00 963 1117																						1.1
NTO/INT (50/12/38) NTO/INT (50/12/38) NTO/INT (50/12/38) -129 [c] 2.102 1.930 2.364 2.481 0.0 CHNO 3.0 1.344 0.955 0.758 1.182 0.000 0.000 1007 1141 5.72 2079 3.2 1.000	nto																					1.1
NTO/INT [30/70] NTO/INT [30/70] -119 [c] 2.619 2.002 1.847 2.541 0.0 CHNO 3.0 1.849 1.001 0.770 0.924 0.000 0.000 999 1183 4.98 2070 3.1 1 1.007	NTO/RDX/TNT (50/12/38)																					1.0
NTO/TNT (50/50) NTO/TNT (50/50) -147 (c) 2.310 1.870 2.198 2.474 0.0 CHNO 3.0 1.540 0.935 0.770 1.099 0.000 0.000 963 1117 5.05 2033 3.2 1 NTO/TNT (60/40) NTO/TNT (60/40) -161 [c] 2.155 1.803 2.374 2.441 0.0 CHNO 3.0 1.386 0.992 0.770 1.187 0.000 0.000 946 1084 5.08 2015 3.2 1 NTO/TNT (60/40) OCTOL 0 CTOL 0 2 [c] 1.761 2.583 2.374 2.687 0.0 CHNO 3.0 1.968 1.291 0.698 1.187 0.000 1.000 1324 1430 6.30 2384 3.3 0.01 Ont 0 ctanitroterphenyl 33 [48] 3.049 1.016 1.355 2.711 0.0 CHNO 3.0 1.968 0.508 1.010 0.678 0.000 0.000 1168 1363 4.89 2239 2.8 1									Cilito						0.000							1.0
NTO/TNT (60/40) NTO/TNT (60/40) -161 [c] 2.155 1.803 2.374 2.441 0.0 CHNO 3.0 1.386 0.902 0.770 1.187 0.000 0.000 946 1.084 5.08 2015 3.2 1 0.000 0.00																						1.1
OCTOL OCTOL 28 [c] 1.761 2.583 2.374 2.687 0.0 CHNO 3.0 1.063 1.291 0.698 1.187 0.000 0.000 1324 1430 6.30 2384 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-, (-,,-,																					1.1
ont octanitroterphenyl 33 [48] 3.049 1.016 1.355 2.711 0.0 CHNO 3.0 1.948 0.508 1.101 0.678 0.000 0.000 1168 1363 4.89 2239 2.8 1																						0.9
																						1.0
			-36 [c]	2.114	2.816	2.109	2.639	0.0		3.0	1.499	1.408	0.616	1.055	0.000	0.000		1357	5.85		3.3	0.9

Average values

1160

Q_DEoS (cal/g)

Fernando G. Bastante 1, María Araújo Fernández 1, Eduardo Giráldez 1 CINTECX, GESSMin group, University of Vigo

DEOS DATABASE

 $w = \left(\frac{\partial D}{\partial \rho_o}\right)_O$ w (m/s per kg/m3) 3 37 Do (m/s) 2215 $C = \left(\frac{\partial D}{\partial Q}\right)_{Q_Q}$ **EXPLOSIVES** 238 CHNO Composition (mol/100a) Other elements (% weight X) hierarchy [CI+F+P+Si] as inerts C (m/s per cal/g) 1.0 ΔH°₂₉₈ (cal/g) reference Q_{v1} (cal/g) Name O X: {Cl+F+P+Si} Comp. type (Xiong) C (s) H2O (g) CO2 (g) N2 (g) H2 (g) O2 (g) Q_DEoS (cal/g Phi (KJ) Do (DEoS) w (DEoS) C (DEoS) PBX-9007 PBX-9007 65 [c] 1.970 3.218 2.431 2.440 0.0 CHNO 3.0 1.554 1.609 0.416 1.216 0.000 0.000 1230 1386 6.04 2298 3.4 0.9 PBX-9010 PBX-9010 -80 [c] 1.409 2.480 2.431 2.431 7.6 CHNOX 0.813 1.240 0.596 1.216 0.000 0.000 1115 1197 2188 3.4 1.0 PRY-9011 PRY-9011 -40 [c] 1 729 3 181 2.450 2 607 0.0 CHNO 3.0 1 220 1 590 0.508 1 225 0.000 0.000 1235 1357 6.20 2302 3.4 0.9 PBX-9205 PBX-9205 58 [c] 1.826 3.141 2.485 2.506 0.0 CHNO 3.0 1.359 1.570 0.468 1.243 0.000 0.000 1270 1406 6.21 2334 3.4 0.9 PBX-9404 PBX-9404 8 [c] 1.401 2.745 2.565 2.690 1.4 CHNOX 0.743 1.373 0.659 1.282 0.000 0.000 1346 1420 2404 3.5 0.9 PBX-9407 PBX-9407 1.412 2.668 2.539 2.539 4.2 CHNOX 0.603 1.270 0.000 1265 1346 2330 8 [c] 0.810 1.334 0.000 3.5 0.9 PBX-9408 PBX-9408 12 [c] 1.426 2.781 2.574 2.679 1.2 CHNOX 0.782 1.391 0.644 1.287 0.000 0.000 1344 1422 2401 3.5 0.9 PBX9501 1.467 2.603 CHNO 3.0 0.835 0.633 1.301 0.000 1358 1441 6.60 2414 0.9 22 [c] 2.850 2.690 0.0 1.425 0.000 3.5 PBX9502 -206 [c] 2.305 2.232 2.208 2.208 3.8 CHNOX 1.759 1.116 0.546 1.104 0.000 0.000 777 953 1826 3.2 1.2 PBX9502 PBX9503 -175 [c] 2.159 2.289 2.265 3.8 CHNOX 0.560 1.132 0.000 0.000 853 1013 1914 3.2 1.1 pentaerythritol tetranitrate -407 [8] 1.582 2.531 1.265 3.796 0.0 CHNO 2.0 0.316 1.265 1.265 0.633 0.000 0.000 1483 1514 6.79 2523 3.3 0.9 PENTOLITE PENTOLITE -243 [c] 2.332 2.366 1.293 CHNO 1.314 1.183 1.018 0.647 0.000 0.000 1267 1398 2332 3.1 0.9 PETN/TNT (20/80 PETN/TNT (20/80 -144 [c] 2.782 2.267 1.310 2.872 0.0 CHNO 3.0 1.912 1.134 0.869 0.655 0.000 0.000 1138 1329 5.22 2210 3.0 1.0 PETN/TNT (60/40) PETN/TNT (60/40) -276 [c] 2 182 2 399 1 287 3 334 0.0 CHNO 3.0 1 114 1 199 1.067 0.644 0.000 0.000 1310 1422 5 99 2371 3.1 0.9 PETN/TNT/RDX (20/30/50) PETN/TNT/RDX (20/30/50) -72 [c] 1 916 2 517 2 000 2 902 0.0 CHNO 3.0 1 094 1 259 0.822 1 000 0.000 0.000 1319 1429 6 18 2279 33 0.9 1-fluoro-2.4.6-trinitrobenzene -268 [8 2.596 0.865 1.298 2.596 8.2 CHNOX 1.515 0.433 1.082 0.649 0.000 0.000 848 999 1908 2.9 1.1 PICRATOI PICRATOI -236 [c] 2.747 2.324 1.479 2.747 0.0 CHNO 3.0 1.955 1.162 0.792 0.740 0.000 0.000 985 1181 4.93 2056 3.0 1.0 picric trinitrophenol -224 [8] 2.619 1.309 1.309 3.055 0.0 CHNO 3.0 1.419 0.655 1.200 0.655 0.000 0.000 1142 1283 5.17 2213 3.0 1.0 n-(2,2-nitropropyl)-n,2,2-trinitro-1-propanamine 3.0 -170 [48] 1.839 1.839 0.0 CHNO 0.766 0.920 0.000 1330 1437 2389 3.3 0.9 ppam 3.066 3.066 1.073 1.533 0.000 6.35 PRNQ/HMX/CARNAUBA (30/68/2) PRNQ/HMX/CARNAUBA (30/68/2) -73 [c] 1.882 4.175 2.658 2.247 0.0 CHNO 3.0 1.802 2.087 0.080 1.329 0.000 0.000 1029 1209 5.76 2101 3.5 1.0 PRNO/NO/HMX (34/35/31) -179 [c] 1.686 4.509 3.113 CHNO 1.975 0.000 1.557 0.000 794 962 1846 PRNO/NO/HMX (34/35/31) PYX/PE (95/5) 35 [c] 2.902 1.625 1.682 CHNO 2.060 0.813 0.842 0.841 0.000 0.000 1297 4.94 2164 3.0 PYX/PE (95/5) 2464 cyclomethylenetr 66 [8] 1.351 2.701 2.701 2.701 0.0 CHNO 3.0 0.675 1.351 0.675 1.351 0.000 0.000 1415 1482 6.78 3.5 0.9 RDX/ESTANE (80/20) RDX/ESTANE (80/20 -137 [c 2.107 3.66 2.199 CHNO 0.341 0.000 1242 2138 RDX/EVA (80/20) RDX/EVA (80/20) 66 [c] 2.291 4.380 2.161 2 363 0.0 CHNO 3.0 2 204 2.190 0.086 1.081 0.000 0.000 1192 1413 5.90 2262 3.4 0.9 66 [c] RDX/EVA (95/5) RDX/FVA (95/5 1 586 3 121 2 566 2 617 0.0 CHNO 3.0 1.058 1 560 0.528 1 283 0.000 0.000 1359 1465 6.57 2415 3.4 0.9 RDX/EXON (90/10 RDX/FXON (90/10) -30 [c] 1.452 2.646 2.434 2.434 6.9 CHNOX 0.897 1.323 0.555 1.217 0.000 0.000 1168 1257 2239 3.4 1.0 RDX/GAP (84/16) RDX/GAP (84/16) 214 [4] 1.657 3.214 2.708 2.433 CHNO 3.0 1.244 1.607 0.413 1.354 0.000 0.000 1407 1531 6.63 2457 0.9 0.0 RDX/HTPB (80/20) RDX/HTPB (80/20) 52 [c] 2.512 4.410 2.180 2.178 0.0 CHNO 4.0 2.512 2.178 0.000 1.090 0.027 0.000 1060 1311 5.49 2133 3.3 1.0 RDX/HTPB (82/18) RDX/HTPB (82/18) 25 [c] 2.352 4.243 2.228 2.266 0.0 CHNO 3.0 2.280 2.121 0.072 1.114 0.000 0.000 1092 1320 5.63 2165 3.3 1.0 RDX/HTPB (85/15) 2.222 2.310 0.0 CHNO 3.0 0.000 1150 2221 1.0 RDX/HTPB (85/15) 56 [c] 3.983 2.309 2.063 1.992 0.159 1.155 0.000 1356 5.81 3.4 RDX/PIB (91/9) RDX/PIB (91/9) 33 [c] 1.818 3.578 2.458 2.508 0.0 CHNO 3.0 1.459 1.789 0.359 1.229 0.000 0.000 1260 1405 6.26 2325 3.4 0.9 RDX/SYLGARD (85/15) RDX/SYLGARD (85/15) -224 [3] 1.529 3,407 2.310 2.487 6.1 CHNOX 1.137 1.704 0.392 1.155 0.000 0.000 1016 1130 3.5 2088 1.0 RDX/TATB/HTPB (65/20/15) 2.417 3.908 2.235 CHNO 3.0 1.117 0.000 1047 1275 5.45 2120 3.3 1.0 RDX/TATB/HTPB (65/20/15) 14 [c] 2.234 0.0 2.277 1.954 0.140 0.000 RDX/TATB/HTPB (70/15/15) RDX/TATB/HTPB (70/15/15) 24 [c] 2.368 3.927 2.253 2.252 0.0 CHNO 3.0 2.223 1.963 0.145 1.127 0.000 0.000 1073 1295 5.54 2146 3.3 1.0 RDX/TATB/HTPB (75/10/15) RDX/TATB/HTPB (75/10/15) 35 [c] 2.319 3.945 2.272 2.271 CHNO 3.0 2.170 1.973 0.149 1.136 0.000 0.000 1098 1315 5.63 2171 3.3 1.0 1.322 RDX/TFNA (65/35) -189 [c] 1.512 2.643 2.263 2.516 7.2 CHNOX 0.914 0.597 1.131 0.000 0.000 1045 1137 2118 RDX/TFNA (65/35) 1.0 RDX/TNT (30/70) RDX/TNT (30/70) -35 [c] 2.563 2.351 1.735 2.660 0.0 CHNO 3.0 1.821 1.176 0.742 0.867 0.000 0.000 1160 1342 5.40 2232 3.1 1.0 RDX/TNT (50/50) RDX/TNT (50/50) -6 [c] 2.216 2.451 2.011 2.671 0.0 CHNO 3.0 1.493 1.226 0.723 1.006 0.000 0.000 1233 1382 5.79 2300 3.2 0.9 RDX/TNT (60/40) RDX/TNT (60/40) 8 [c] 2 043 2 501 2 149 2 677 0.0 CHNO 3.0 1 330 1 251 0.713 1.075 0.000 0.000 1269 1402 5 98 2334 2.2 0.9 RDX/TNT (64/36) RDX/TNT (64/36) 14 [c] 1 974 2 521 2 204 2 680 0.0 CHNO 3.0 1 264 1 261 0.710 1 102 0.000 0.000 1284 1410 6.06 2347 22 0.9 RDX/TNT (65/35) RDX/TNT (65/35) 16 [c] 1.957 2.526 2.218 2.680 0.0 CHNO 3.0 1.248 1.263 0.709 1.109 0.000 0.000 1287 1412 6.08 2351 3.3 0.9 RDX/TNT (70/30) RDX/TNT (70/30) 23 [c] 1.870 2.551 2.287 2.683 0.0 CHNO 3.0 1.166 1.276 0.704 1.144 0.000 0.000 1306 1422 6.18 2367 3.3 0.9 RDX/TNT (75/25) RDX/TNT (75/25) 30 [c] 1.783 2.576 2.356 2.686 0.0 CHNO 3.0 1.084 1.288 0.699 1.178 0.000 0.000 1324 1432 6.28 2384 3.3 0.9 RDX/TNT (77/23) 1.749 2.688 0.0 CHNO 3.0 1331 2390 RDX/TNT (77/23) 33 [c] 2.586 2.384 1.052 1.293 0.697 1.192 0.000 0.000 1436 6.32 3.4 0.9 RDX/TNT (78/22) RDX/TNT (78/22) 34 [c] 1.732 2.591 2.398 2.688 0.0 CHNO 3.0 1.035 1.296 0.696 1.199 0.000 0.000 1335 1438 6.34 2393 3.4 0.9 RDX/TNT (80/20) 37 [c] RDX/TNT (80/20) 1.697 2.601 2.425 2.689 0.0 CHNO 3.0 1.003 1.301 0.694 1.213 0.000 0.000 1342 1442 6.38 2400 3.4 0.9 RDX/TNT (90/10) RDX/TNT (90/10 52 [c] 1.524 2.651 2.563 CHNO 3.0 0.839 0.685 0.000 1462 6.58 2432 RDX/VITON (95/5) RDX/VITON (95/5) -26 [c] 1.417 2.660 2.566 2.566 3.3 CHNO 0.799 1.330 0.618 1.283 0.000 0.000 1244 1324 2311 3.5 0.9 RDX/WAX (94/6) 3.0 RDX/WAX (94/6 41 [c] 1.697 3.39 2.539 2.539 CHNO 1.276 1.697 0.421 1.270 0.000 0.000 1290 1418 6.38 2353 RDX/WAX (95/5) RDX/WAX (95/5) 45 [c] 1.640 3.279 2.566 2.566 0.0 CHNO 3.0 1.176 1.640 0.463 1.283 0.000 0.000 1311 1428 6.44 2372 3.4 0.9 RX23 RX23 -405 [c] 0.000 6.820 3 822 2 474 0.0 HNO 5.0 0.000 2 474 0.000 1 911 0.936 0.000 1025 1025 7 38 2097 44 1.0 RY26 -76 [c] 1.959 2.722 2 423 2 487 0.0 CHNO 3.0 1.396 1.361 0.563 1.211 0.000 0.000 1101 1241 5.69 2174 3.3 1.0 RX26 RX27 RX27 158 [c] 3.004 0.989 1.906 1.906 CHNOX 2.299 0.495 0.706 0.953 0.000 0.000 878 1108 1941 2.9 1.1 5.7 RX36 183 [c] 1.866 1.480 2.426 2.426 3.3 CHNOX 1.023 0.740 0.843 1.213 0.000 0.000 1301 1403 2363 3.2 0.9 RX36 RX41 RX41 -129 [c] 1.341 1.703 2.414 2.817 3.3 CHNOX 0.358 0.852 0.983 1.207 0.000 0.000 1251 1287 2317 3.4 0.9 RX45 RX45 36 [c] 1.569 2.232 3.680 1.472 3.8 CHNOX 1.391 1.116 0.178 1.840 0.000 0.000 709 849 1745 3.5 1.2 RX47 RX47 -30 [c] 2.312 1.481 2.167 2.167 CHNOX 1.599 0.740 0.713 1.084 0.000 0.000 909 1069 1975 3.1 1.1 RX48 34 [c] 2.446 1.186 1.915 2.299 5.8 CHNOX 1.593 0.593 0.853 0.958 0.000 0.000 1020 1179 2092 RX48 3.0 1.0 RX52AI RX52AE -285 [c] 2.149 2.345 1.911 2.579 3.8 CHNOX 1.445 1.173 0.703 0.955 0.000 0.000 910 1055 1976 3.2 1.1 schemb [2-nitro-3-(nitrooxy)-2-[(nitrooxy)methyl][propyl]-nitrate -191 [48] 1.398 2.097 1.398 3.845 0.0 CHNO 0.000 1.049 1.398 0.699 0.000 0.000 1730 1730 7.38 2725 3.3 0.8 1,3,7,9-tetranitrobenzotriazolo-[2,1-a]benzotriazole 285 [8] 3.091 1.030 2.061 2.061 CHNO 2.318 0.515 0.773 1.030 0.000 0.000 1077 1309 4.68 2150 2.9 1.0 tacot 1,3,5-triazido-2,4,6-triazine (cyanuric triazide) 1071 [47] 1.470 0.000 5 879 0.000 0.0 4.0 1.470 0.000 0.000 2 940 0.000 0.000 924 1071 5.09 1991 3.6 1.1 CN 1,3,5-triamino-2,4,6-trinitrobenzene 2.324 2.324 CHNO 1 743 0.581 1.162 1967 -143 [8] 2.324 2.324 0.0 3.0 1.162 0.000 0.000 1075 4.97 3.2 1.1 TATB/KELF (90/10) TATB/KELF (90/10) -268 [c] 2.285 2.140 2.092 2.092 7.6 CHNOX 1.774 1.070 0.511 1.046 0.000 0.000 653 831 1674 3.2 1.3 TATB/TNT (30/70) -98 [c] 2.855 0.811 TATB/TNT (30/70 2.238 1.622 2.546 0.0 CHNO 3.0 2.141 1.119 0.714 0.000 0.000 1006 1220 4.90 2078 3.0 1.0 n-methyl-n-nitro-2 4 6-trinitroaniline 28 [48] 2 438 1 741 1 741 2 786 0.0 CHNO 3.0 1 480 0.871 0.958 0.871 0.000 0.000 1284 1432 5 64 2348 3.1 0.9 TKX-50/VITON (95/5) TKX-50/VITON (95/5) 340 [c] 0.938 3 312 4 023 1 609 33 CHNOX 0.938 1 609 0.000 2 011 0.047 0.000 1177 1271 2247 3.8 1.0 2.4.6-trinitroaniline -78 [48] 2.630 1.753 1.753 2.630 0.0 CHNO 3.0 1.753 0.877 0.877 0.877 0.000 0.000 1078 1253 5.10 2151 3.0 1.0 tnan 2.4.6-trinitroanisole -149 [48] 2.879 2.056 1.234 2.879 0.0 CHNO 3.0 1.954 1.028 0.925 0.617 0.000 0.000 1120 1315 5.09 2192 3.0 1.0 42 [48] 2.815 2.815 0.0 CHNO 3.0 1.760 1.056 0.000 1266 1442 5.29 2331 2.9 tnb trinitrobenceno 1.408 1.408 0.704 0.704 0.000 0.9 1.627 2384 tneof tris(2.2.2-trinitroethyl)orthoformate -232 [48] 1.265 1.265 3,796 0.0 CHNO 1.0 0.000 0.633 1.265 0.813 0.000 0.316 1324 1324 6.33 3.2 0.9 trinitroethyltrinitrobutyrate -307 [48] 1.554 1.554 1.554 3.626 0.0 CHNO 2.0 0.129 0.777 1.424 0.777 0.000 1469 1481 2511 3.2 0.9 tnetb 0.000 6.59

PREDICTIVE MODEL FOR EXPLOSIVE DETONATION PARAMETERS FROM AN EQUATION OF STATE BASED ON DETONATION VELOCITY. Physical Chemistry Chemical Physics 2022

DEoS DATABASE

DEOS DATABASE																w (Aver DEoS (cal/g) m/s per kg/m³) (m/s)	1160 3.37 2215	$w = \left(\frac{1}{6}\right)$	*	
EXPLOSIVES	238		CH	INO Composit	ion (mol/100g) Othe	er elements (% wei	ght X)			h	nierarchy	[0	[l+F+P+Si] as i	nerts		n/s per cal/g)	1.0	$c = \left(\frac{c}{c}\right)$	$\left(\frac{\partial D}{\partial Q}\right)_{\rho_0}$	
Acronym	Name	ΔH° ₂₉₈ (cal/g) reference	с	н	N	0	X: {Cl+F+P+Si}	Comp.	type (Xiong)	C (s)	H2O (g)	CO2 (g)	N2 (g)	H2 (g)	O2 (g)	Q_DEoS (cal/g)	Q _{KJ} (cal/g)	Phi (KJ) D	o (DEoS) w	(DEoS) C	(DEoS)
tnm	tetranitromethane	45 [47]	0.510	0.000	2.040	4.081	0.0	CNO	1.0	0.000	0.000	0.510	1.020	0.000	1.530	525	525	4.01	1501	3.1	1.4
TNM/BENZ (76.4/23.6)	TNM/BENZ (76.4/23.6)	70 [c]	2.202	1.813	1.559	3.118	0.0	CHNO	2.0	1.097	0.906	1.106	0.779	0.000	0.000	1524	1634	6.29	2557	3.1	0.8
TNM/NM (0.071/1)	TNM/NM (0.071/1)	-352 [c]	1.429	4.002	1.713	3.426	0.0	CHNO	3.0	0.716	2.001	0.712	0.856	0.000	0.000	1403	1474	6.94	2454	3.5	0.9
TNM/NM (0.25/1)	TNM/NM (0.25/1)	-226 [c]	1.136	2.726	1.817	3.635	0.0	CHNO	2.0	0.000	1.363	1.136	0.909	0.000	0.000	1630	1630	7.45	2645	3.4	0.8
TNM/NM (0.5/1)	TNM/NM (0.5/1)	-142 [c]	0.943	1.886	1.886	3.772	0.0	CHNO	1.0	0.000	0.943	0.943	0.943	0.000	0.472	1290	1290	6.52	2353	3.3	0.9
TNM/NM (60/40)	TNM/NM (60/40)	-684 [c]	1.554	4.993	1.224	3.697	0.0	CHNO	3.0	0.954	2.497	0.600	0.612	0.000	0.000	1228	1323	6.59	2295	3.5	0.9
TNM/NM (70/30)	TNM/NM (70/30)	-502 [c]	1.293	3.745	1.428	3.793	0.0	CHNO	2.0	0.333	1.873	0.960	0.714	0.000	0.000	1450	1483	7.11	2495	3.4	0.9
TNM/NM (80/20)	TNM/NM (80/20)	-320 [c]	1.032	2.497	1.632	3.889	0.0	CHNO	1.0	0.000	1.248	1.032	0.816	0.000	0.288	1373	1373	6.82	2427	3.3	0.9
TNM/NM (90/10)	TNM/NM (90/10)	-137 [c]	0.771	1.248	1.836	3.985	0.0	CHNO	1.0	0.000	0.624	0.771	0.918	0.000	0.909	949	949	5.53	2018	3.1	1.1
tnt	2,4,6-trinitrotoluene	-78 [47]	3.082	2.201	1.321	2.642	0.0	CHNO	3.0	2.311	1.101	0.770	0.660	0.000	0.000	1051	1282	4.84	2124	2.9	1.0
TNT/FOX-12(50/50)	TNT/FOX-12(50/50)	-242 [c]	2.019	2.774	2.334	2.516	0.0	CHNO	3.0	1.455	1.387	0.565	1.167	0.000	0.000	945	1090	5.30	2014	3.3	1.1
tntab	trinitrotriazidobenzene	803 [8]	1.785	0.000	3.570	1.785	0.0	CNO	3.0	0.892	0.000	0.892	1.785	0.000	0.000	1553	1643	6.27	2582	3.5	0.8
tntmta	trinitrosotrimethylenetriamine	387 [48]	1.723	3.446	3.446	1.723	0.0	CHNO	4.0	1.723	1.723	0.000	1.723	0.000	0.000	1211	1383	6.15	2279	3.5	0.9
TO/NM (14.5/85.5)	TO/NM (14.5/85.5)	-374 [c]	2.502	5.461	1.401	2.801	0.0	CHNO	3.0	2.467	2.731	0.035	0.700	0.000	0.000	991	1238	5.49	2062	3.3	1.0
ttnh	1,3,4,6-tetranitroglycouril	31 [48]	1.242	0.621	2.484	3.105	0.0	CHNO	1.0	0.000	0.310	1.242	1.242	0.000	0.155	1378	1378	6.38	2432	3.3	0.9
X-0341	X-0341	-196 [c]	2.259	2.250	2.226	2.226	3.8	CHNOX		1.708	1.125	0.550	1.113	0.000	0.000	801	972		1854	3.2	1.2
X-0342	X-0342	-186 [c]	2.212	2.268	2.244	2.244	3.8	CHNOX		1.657	1.134	0.555	1.122	0.000	0.000	825	991		1882	3.2	1.1
X-0343	X-0343	-177 [c]	2.166	2.286	2.262	2.262	3.8	CHNOX		1.607	1.143	0.559	1.131	0.000	0.000	850	1010		1909	3.2	1.1
X-0344	X-0344	-157 [c]	2.074	2.322	2.298	2.298	3.8	CHNOX		1.505	1.161	0.568	1.149	0.000	0.000	898	1048		1963	3.3	1.1

EoS DATABASE	220	********	e of data			_	residu			-		uals P	Gamma (γ) cor	relation (Cn	NO explosives)	Jones	ina Graneise	n parameters (DEoS M
Number of Explosives	238	Number P	r of data P				Statistics V	elocity DEoS			Statistics	pressure DEoS		кі	DEoS		α	Γ
	KJ (only CHNO)	449	224			RMRS	3.4%	1.7%		RMRS	7.0%	6.0%		r 0.44		average values	0.27	0.60
	DEoS	519	263			MAPR	2.5%	1.3%		MAPR	5.6%	4.9%				standar deviation	0.02	0.06
						P97,5	8.2%	3.9%		P97,5	17.0%	12.6%						
		experimental data				lated D				lated P								
Acr	density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference	Dкі (m/s)	D_DEoS (m/s)	RRD KJ	RRD_DEoS	Ркі (kbar)	P_DEoS (kbar)	RRP KJ	RRP_DEoS	γ experimental	Υĸı	Y_DEoS		α	<i>r</i>
	1.64	7200	nan	[8]	7269	7138	1.0%	-0.9% -0.7%	221	223 267							0.25	0.54
902	1.78	7600 8340	nan 290	[48]	7692	7545 8191	1.2%	-0.7%	261	267		-3.9%					0.25	0.80
mx	1.78	8780	nan	[40]	8807	8660	0.3%	-1.4%	342	346		-3.5%				_	0.33	0.60
mx	1.79	8650	nan	[4]	8842	8694	2.2%	0.5%	346	350							0.26	0.60
MX/GAP (84/16)	1.62	8292	nan	[4]	8173	8078	-1.4%	-2.6%	278	279							0.25	0.57
IMX/PIB (91/9)	1.66	8266	nan	[44]	8066	8023	-2.4%	-2.9%	275	278							0.26	0.59
MX/SYLGARD (85/15)	1.58	7858	nan	[3]		7612		-3.1%		236							0.27	0.61
MX/VITON (95/5)	1.78	8520	nan	[24]		8464		-0.7%		328							0.27	0.61
MX/VITON (95/5)	1.82	8740	nan	[24]		8600		-1.6%		344							0.27	0.62
MX/VITON (97/3)[**]	1.79	8650	nan	[3]		8578		-0.8%		339							0.27	0.61
	1.76	8260	nan	[8]	8023	8250	-2.9%	-0.1%	282	315							0.26	0.57
	1.82	NaN	338	[2]	8213	8443			301	339	-10.9%	0.3%					0.26	0.58
	1.84	NaN	345	[2]	8276	8507			308	347	-10.8%	0.7%					0.26	0.58
	1.85	8490	340	[8]	8308	8539	-2.1%	0.6%	311	351	-8.5%	3.4%	2.92	3.10	2.84		0.26	0.59
	1.86	8490	360	[8]	8340	8572	-1.8%	1.0%	315	356	-12.6%	-1.2%	2.72	3.11	2.84		0.26	0.59
	1.90	8620	nan	[46]	8467	8701	-1.8%	0.9%	328	373							0.26	0.60
en	1.27	6130	nan	[30]	6676	6354	8.9%	3.7%	156	140							0.24	0.51
en en	1.41	6880 7650	nan nan	[30]	7135 7855	6800 7499	3.7% 2.7%	-1.2% -2.0%	193 257	175 240							0.24	0.53
en en	1.63	7650 8460	nan nan	[30] [50]	7855 8556	7499 8179	1.1%	-2.0%	329	240 316							0.26	0.58
en en	1.84	8460 8500	nan nan	[30]	8556	8179 8262	1.1%	-3.3%	329	316							0.27	0.62
en en	1.88	NaN	364	[30]	8677	8297	1.770	*4.070	343	331	-5.8%	-9.0%					0.27	0.62
en	1.91	8660	nan	[30]	8772	8389	1.3%	-3.1%	353	343	5.070	5.070					0.27	0.63
n	1.92	8780	nan	[50]	8805	8421	0.3%	-4.1%	357	347							0.28	0.63
n	1.93	8657	357.6	[55]	8821	8437	1.9%	-2.5%	359	349	0.4%	-2.4%	3.03	3.17	2.93		0.28	0.63
en	1.95	8800	nan	[30]	8903	8516	1.2%	-3.2%	368	359				7.2.			0.28	0.64
en	1.96	8850	nan	[48]	8936	8548	1.0%	-3.4%	372	364							0.28	0.64
EN/BTF (60/40)	1.86	8700	nan	[50]	9043	8676	3.9%	-0.3%	370	367							0.26	0.57
IEN/HMX (30/70)	1.91	9020	nan	[50]	9316	9125	3.3%	1.2%	399	407							0.27	0.62
EN/HMX (32/68)	1.88	8884	nan	[55]	9229	9030	3.9%	1.6%	388	394							0.27	0.62
EN/RDX (56/44)	1.85	8701	nan	[55]	9226	8923	6.0%	2.6%	383	381							0.26	0.60
eu	1.86	9000	nan	[48]	8971	8714	-0.3%	-3.2%	364	364							0.27	0.61
3	1.85	8060	nan	[48]	8258	7957	2.5%	-1.3%	307	299							0.27	0.63
.0	1.96	9440	nan	[44]	9690	9369	2.6%	-0.7%	438	446							0.26	0.60
.0	1.98	9473	nan	[4]	9761	9437	3.0%	-0.4%	447	456							0.27	0.60
0/GAP (84/16)	1.73	8676	nan	[4]	8479	8362	-2.3%	-3.6%	311	316							0.26	0.58
20/HTPB (91/9) 20/HTPB (92/8)	1.84	8850	nan nan	[9]	8857 8975	8692 8793	-0.8%	-1.8% -2.9%	353 364	362 374							0.26	0.59
20/PIB (91/9)	1.77	9052 8594	nan	[9] [44]	8664	8499	0.8%	-2.9%	330	334						_	0.26	0.58
0/SYLGARD (85/15)	1.66	8277	nan	[3]	8004	7861	0.6%	-5.0%	330	264							0.27	0.61
MP B	1.56	7480	nan	[10]	7490	7436	0.1%	-0.6%	227	227							0.26	0.57
1P B	1.61	7670	nan	[10]	7651	7600	-0.3%	-0.9%	242	243							0.26	0.58
MP B	1.67	7868	272	[34]	7843	7796	-0.3%	-0.9%	261	264	-4.2%	-3.0%	2.80	2.94	2.85		0.26	0.59
AP B	1.67	7690	256.5	[34]	7847	7800	2.0%	1.4%	261	264	1.7%	3.0%	2.85	2.94	2.85		0.26	0.59
MP B	1.67	7890	267	[34]	7856	7810	-0.4%	-1.0%	262	265	-1.9%	-0.7%	2.90	2.95	2.85		0.26	0.59
MP B	1.69	7840	267.5	[34]	7914	7868	0.9%	0.4%	268	272	0.0%	1.5%	2.89	2.96	2.86		0.26	0.60
IP B	1.70	7850	283	[34]	7940	7895	1.1%	0.6%	270	274	-4.6%	-3.0%	2.70	2.97	2.86		0.26	0.60
IP B	1.70	7750	272	[34]	7950	7904	2.6%	2.0%	271	276	-0.4%	1.3%	2.76	2.97	2.86		0.26	0.60
IP B	1.71	8022	293	[34]	7979	7934	-0.5%	-1.1%	274	279	-6.5%	-4.8%	2.76	2.98	2.87		0.26	0.60
IP B	1.72	7920	295	[8]	8004	7960	1.1%	0.5%	276	282	-6.3%	-4.5%	2.66	2.99	2.87		0.27	0.60
IP B	1.72	7990	nan	[10]	8004	7960	0.2%	-0.4%	276	282							0.27	0.60
1P B	1.73	7980	297.7	[34]	8033	7990	0.7%	0.1%	279	285	-6.2%	-4.2%	2.70	2.99	2.87		0.27	0.60
IP B	1.73	7950	263	[34]	8036	7993	1.1%	0.5%	280	285	6.3%	8.5%	3.16	3.00	2.87		0.27	0.60
1P B 1P B	1.73 1.73	7886 8000	275 300	[34]	8036 8046	7993 8003	1.9% 0.6%	1.4% 0.0%	280 281	285 287	1.7% -6.5%	3.8% -4.5%	2.91 2.70	3.00	2.87		0.27	0.60
P C3	1.73	7630	300 nan	[34]	7643	7633	0.6%	0.0%	281	287	-0.5%	-4.5%	2./0	3.00	2.87		0.27	0.60
P C4	1.66	8370	nan nan	[8]	7979	8007	-4.7%	-4.3%	269	275							0.26	0.59
1 04	1.69	7930	nan 306	[8]	7611	7913	-4.7%	-4.3%	269	269	-19.4%	-12.2%	2.46	2.96	2.93		0.27	0.63
F/HMX/VITON (45/50/5)	1.72	7930 8120	nan	[35]	7011	8054	-4.070	-0.2%	241	283	-13.470	-12.270	2.40	2.50	2.33		0.28	0.64
HMX/VITON (60/35/5)	1.70	7970	nan	[35]		7921		-0.6%		270							0.28	0.64
F/HMX/VITON (80/15/5)	1.67	7760	nan	[35]		7731		-0.6%		253							0.28	0.65
F/RDX/VITON (60/35/5)	1.67	7910	nan	[35]		7820		-1.1%		260							0.28	0.64
F/RDX/VITON (80/15/5)	1.66	7760	nan	[35]		7698		-0.8%		249							0.28	0.64
F/VITON (95/5)	1.65	7660	nan	[35]		7596		-0.8%		241							0.28	0.65
7 111011 (33/3)	1.78	7600	251	[8]	7503	7605	-1.3%	0.1%	248	261	-1.2%	4.0%	3.10	3.04	2.94		0.28	0.64
)	1.79	7520	259	[10]	7526	7630	0.1%	1.5%	250	264	-3.4%	1.8%	2.90	3.05	2.95		0.28	0.64
b	1.79	7585	257	[34]	7532	7637	-0.7%	0.7%	251	264	-2.4%	2.9%	3.01	3.05	2.95		0.28	0.64
)	1.80	7600	251	[8]	7562	7668	-0.5%	0.9%	254	268	1.0%	6.7%	3.14		2.95		0.28	0.65

DEOS DATABASE							resid	uals D			resi	duals P	Gamma (γ) con	relation (CHI	NO explosive	rs) Jones ar	nd Grünei	sen parameter:	rs (DEoS Model)
Number of Explosive	s 238	Numbe	r of data				Statistics	velocity			Statistics	pressure							
	KJ (only CHNO)	D	<u>Р</u> 224	-		RMRS _	KJ 3.4%	DEoS 1.7%		RMRS	KJ 7.0%	DEoS 6.0%	,	r 0.44	DEoS 0.53	average values	α 0.27	Г 0.60	
	DEoS	519	263			MAPR	2.5%	1.3%		MAPR	5.6%	4.9%				standar deviation	0.02	0.06	
						P97,5	8.2%	3.9%		P97,5	17.0%	12.6%							
Acr	density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference	DKI (m/s)	D_DEoS (m/s)	RRD KJ	RRD DEoS	саісі Ркі (kbar)	P DEoS (kbar)	RRP KJ	RRP DEoS	ν	γκι	ν		α	Г	
datb	1.84	7690	nan	[48]	7679	7793	-0.1%	1.3%	265	282	144.10	02.00	γ _{experimental}	T KI	Y_DEoS		0.28	0.66	
degn	1.38	6760	nan	[8]	7054	6843	4.4%	1.2%	185	174							0.24	0.53	
degn	1.38	6600	nan	[48]	7068	6856	7.1%	3.9%	186	175							0.24	0.53	
dina	1.00 1.36	5950 7000	nan	[33]	5947 7157	5763 6971	-0.1% 2.2%	-3.1% -0.4%	102 189	94 178							0.22 0.24	0.45	
dina	1.48	7400	nan	[16]	7560	7374	2.2%	-0.4%	224	214							0.25	0.55	
dina	1.55	7580	nan	[16]	7795	7609	2.8%	0.4%	245	236							0.25	0.57	
dina	1.60	7720	nan	[23]	7963	7777	3.1%	0.7%	261	254							0.26	0.58	
dina	1.64 1.67	7800 8000	nan	[16] [48]	8098 8198	7911 8011	3.8% 2.5%	1.4%	275 285	268 279							0.26 0.26	0.58	
dipam	1.76	7400	nan	[8]	7482	7452	1.1%	0.7%	245	253							0.27	0.60	
dipam	1.79	7500	nan	[48]	7570	7542	0.9%	0.6%	253	262							0.27	0.61	
dipetn	1.63	7530	nan	[48]	7930	7661	5.3%	1.7%	262	251							0.26	0.57	
dipicrylamine dmtnb	1.60 1.60	7140 6820	nan nan	[48] [48]	7082 6972	6988 6884	-0.8% 2.2%	-2.1% 0.9%	207 200	207 199							0.25 0.26	0.55	
dmttp	1.60	6800	nan	[48]	6816	6786	0.2%	-0.2%	191	192							0.26	0.58	
dnaf	1.77	9100	nan	[47]	8938	9005	-1.8%	-1.0%	351	377							0.25	0.57	
dnaf	1.88	9450	nan	[47]	9325	9389	-1.3%	-0.6%	396	431							0.26	0.59	
dnaf DNAN/RDX/NTO (40/20/40)	1.94 1.64	9700 7190	nan 220	[21] [53]	9536 7151	9598 7256	-1.7% -0.5%	-1.0% 0.9%	421 214	463 220	-2.9%	0.1%	2.84	2.91	2.91		0.26 0.27	0.60	
dnb	1.49	6100	nan	[48]	6158	6195	1.0%	1.6%	149	151	,		2.0-				0.25	0.56	
dndmo	1.52	7100	nan	[48]	7124	7126	0.3%	0.4%	202	200							0.26	0.59	
dnff	1.86 1.56	8930 7850	nan	[35]	8704 7602	8880 7598	-2.5% -3.2%	-0.6% -3.2%	343 234	381 237							0.26 0.25	0.59	
DNMT/HMX (49.5/50.5)	1.73	8390	nan	[35]	8351	8322	-0.5%	-0.8%	302	309							0.25	0.60	
dnp	1.75	8100	nan	[35]	8121	8055	0.3%	-0.6%	288	295							0.26	0.59	
dnq	1.88	9200	nan	[56]	8892	9010	-3.3%	-2.1%	360	382							0.29	0.67	
dntfx dp12	1.96 1.26	9660 5970	nan 125	[56] [8]	9500	9483 5903	-1.7%	-1.8% -1.1%	421	457 114		-9.1%					0.26 0.26	0.60	
edad	1.30	6660	nan	[33]	6620	6754	-0.6%	1.4%	156	153		-5.176					0.27	0.61	
edad	1.60	7670	nan	[48]	7579	7862	-1.2%	2.5%	237	246							0.29	0.68	
EDC-11	1.78	8213	315	[14]	8309	8255	1.2%	0.5%	304	312	-3.4%	-0.9%	2.82	3.04	2.89		0.27	0.61	
EDC-24 edna	1.78 1.66	8710 8240	nan	[14] [48]	8476 8122	8491 8218	-2.7% -1.4%	-2.5% -0.3%	316 278	327 286							0.27 0.27	0.63	
etdn	1.48	7300	nan	[48]	7971	7576	9.2%	3.8%	249	229							0.24	0.53	
etn	1.65	7940	nan	[32]	8244	7825	3.8%	-1.5%	286	267							0.25	0.56	
etn	1.68	7887	nan	[51]	8354	7928	5.9%	0.5%	297	278							0.25	0.57	
etn etn	1.70 1.70	8027 7994	nan	[32] [51]	8415 8428	7986 7999	4.8% 5.4%	-0.5% 0.1%	303 305	285 286							0.26 0.26	0.57	
explosive d	1.48	6700	nan	[8]	6595	6604	-1.6%	-1.4%	170	168							0.26	0.59	
explosive d	1.55	6850	nan	[8]	6801	6822	-0.7%	-0.4%	187	186							0.27	0.60	
explosive d fefo	1.63 1.59	7150 7500	nan 250	[48]	7035	7071 7148	-1.6%	-1.1% -4.7%	206	209 209		-16.5%					0.27 0.27	0.62	
fefo	1.61	7450	245	[8]		7212		-3.2%		215		-12.4%					0.27	0.62	
FM1	1.51	6570	190	[8]		6976		6.2%		191		0.7%					0.26	0.59	
fox-12	1.67	7970	261.1	[20]	7539	8025	-5.4%	0.7%	240	264	-7.9%	1.2%	3.05	2.94	3.06		0.30	0.71	
fox-7 fox-7	1.78 1.78	8375 8405	284 292	[54] [54]	8268 8268	8395 8395	-1.3% -1.6%	0.2% -0.1%	301 301	316 316	6.0% 3.1%	11.3% 8.3%	3.40 3.31	3.04 3.04	2.97 2.97		0.28 0.28	0.66	
fox-7	1.89	8870	nan	[56]	8608	8760	-3.0%	-1.2%	338	361	3.170	0.570	5.51	5.04	2.37		0.29	0.68	
FOX-7/EVA (95.1/4.9)	1.69	8110	251	[26]	7855	7978	-3.1%	-1.6%	263	273	4.8%	8.6%	3.42	2.96	2.94		0.28	0.64	
FOX-7/EVA (95/5) FOX-7/TNT (30/70)	1.65 1.62	7730 7060	241 nan	[26]	7725 7175	7838 7160	-0.1% 1.6%	1.4%	250 214	258 216	3.9%	7.0%	3.08	2.92	2.92		0.27 0.26	0.63	
FOX-7/TNT (30/70) FOX-7/TNT (60/40)	1.62	7600	nan	[52] [52]	7175	7160	1.6%	1.4%	253	259							0.26	0.59	
FOX-7/VITON (95/5)	1.85	8400	nan	[35]		8434		0.4%		326							0.30	0.70	
FOX-7/WAX (98.5/1.5)	1.76	8335	nan	[1]	8136	8273	-2.4%	-0.7%	289	303							0.28	0.65	
H2O2/H2O (90,5/9,5)[*] ha	1.39 1.20	6140 7320	nan nan	[37] [19]	5297 6311	5731 7706	-13.7% -13.8%	-6.7% 5.3%	105 134	107 169							0.35 0.34	0.85	
hac	1.13	7570	166	[39]	7191	7498	-5.0%	-1.0%	165	170	-0.6%	2.3%	2.89	2.53	2.73		0.24	0.54	
HAC/W (60/40)	1.09	6270	nan	[39]	5861	6380	-6.5%	1.8%	107	112							0.28	0.65	
HAC/W (62/38)	1.09	6350	nan	[39]	5951	6446	-6.3%	1.5%	110	115							0.28	0.64	
HAC/W (69/31) HAC/W (78/26)	1.10 1.11	6630 7070	nan	[39]	6226 6574	6655 6938	-6.1% -7.0%	0.4% -1.9%	121 136	125 139							0.27 0.26	0.61	
HAC/W (78/20)	1.11	7390	nan	[39]	6875	7201	-7.0%	-2.6%	150	153							0.25	0.56	
HAC/W (93/7)	1.12	7470	nan	[39]	7013	7328	-6.1%	-1.9%	156	160							0.25	0.55	
HAC/W (98/2)	1.13	7540	nan	[39]	7146	7454	-5.2%	-1.1%	163	167							0.25	0.54	
hco	1.79	8520 5800	nan 110	[33]	8748 6043	8499 5937	2.7% 4.2%	-0.2% 2.4%	339 105	337 100	-4.1%	-9.1%	2.06	2.46	2.52		0.26 0.22	0.59	
hmx	1.18	6670	155	[8]	6658	6563	-0.2%	-1.6%	147	140	-5.3%	-9.6%	2.39	2.56	2.63		0.23	0.50	
hmx	1.20	6580	160	[8]	6727	6632	2.2%	0.8%	152	145	-5.1%	-9.3%	2.25	2.58	2.64		0.23	0.50	

Fernando G. Bastante ¹ , María Araújo Fernández ¹ , Eduardo Giráldez ¹ . CINTECX, GESSMin group, University of Vigo

DEOS DATABASE						_	residu			_		uals P	Gamma (γ) con	relation (CH	NO explosives)	Jones	and Grüneise	n parameters (DEoS Mode
Number of Explosives	238	Number	of data				Statistics V	velocity DEoS			Statistics .	pressure DEoS		кі	DEoS		α	Γ
	KJ (only CHNO)	449	224			RMRS	3.4%	1.7%		RMRS	7.0%	6.0%		r 0.44		averaae values	0.27	0.60
	DEoS	519	263			MAPR	2.5%	1.3%		MAPR	5.6%	4.9%				standar deviation	0.02	0.06
		experimental data			calcul	P97,5 ated D	8.2%	3.9%	calcui	P97,5 lated P	17.0%	12.6%						
Acr	density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference	DKJ (m/s)	D DEoS (m/s)	RRD KJ	RRD DEoS	Ркі (kbar)	P DEoS (kbar)	RRP KJ	RRP DEoS	Y experimental	Yκı	Υ_DEoS		α	Г
х	1.40	7300	210	[8]	7410	7328	1.5%	0.4%	207	201	-1.6%	-4.2%	2.55	2.72	2.74		0.25	0.54
х	1.60	7910	280	[8]	8093	8024	2.3%	1.4%	270	269	-3.6%	-3.8%	2.58	2.88	2.82		0.26	0.58
x	1.72	8480	nan	[29]	8503	8441	0.3%	-0.5%	312	316							0.27	0.60
х	1.77	8500	323	[38]	8674	8615	2.0%	1.4%	330	338	2.3%	4.5%	2.96	3.03	2.89		0.27	0.61
X	1.80	NaN	361	[2]	8776	8719			342	351	-5.4%	-2.9%					0.27	0.62
x	1.81	8780	nan	[29]	8817	8761	0.4%	-0.2%	346	356							0.27	0.62
(1.88	9050	nan	[50]	9032	8980	-0.2%	-0.8%	371	385							0.28	0.63
(1.89	9100	405	[8]	9083	9032	-0.2%	-0.7%	377	392	-7.0%	-3.2%	2.86	3.14	2.93		0.28	0.64
<u>(</u>	1.89 1.90	9110 9110	390 393	[8]	9083 9118	9032 9067	-0.3% 0.1%	-0.9% -0.5%	377 381	392 397	-3.4% -3.1%	0.5%	3.02 3.01	3.14 3.15	2.93		0.28	0.64
x X	1.90	9150	nan	[48]	9118	9067	-0.4%	-0.5%	381	397	-3.1%	0.9%	3.01	3.15	2.94		0.28	0.64
X/EXON (91/9)	1.83	8665	343	[14]	3110	8545	*0.470	-1.4%	301	337		-1.6%					0.28	0.66
X/GAP (84/16)	1.64	8384	nan	[4]	8120	8083	-3.1%	-3.6%	276	280		-1.070					0.26	0.58
X/HN (75/25)	1.86	9100	nan	[14]	9096	9126	0.0%	0.3%	374	391							0.28	0.65
(/PIB (91/9)	1.67	8318	nan	[44]	8004	8037	-3.8%	-3.4%	271	278							0.27	0.61
(/SYLGARD (85/15)	1.59	7936	nan	[3]		7633		-3.8%		237							0.27	0.63
(/TATB/VITON (10/80/10)	1.84	7400	245	[5]		7554		2.1%		255		4.2%					0.31	0.74
X/TATB/VITON (20/70/10)	1.84	7410	253	[5]		7671		3.5%		265		4.6%					0.31	0.73
X/TATB/VITON (30/60/10)	1.82	7640	260	[5]		7722		1.1%		267		2.6%					0.30	0.72
X/TATB/VITON (40/50/10)	1.83	7730	278	[5]		7868		1.8%		279		0.5%					0.30	0.71
X/TATB/VITON (50/40/10)	1.83	7910	290	[5]		7979		0.9%		288		-0.6%					0.30	0.70
X/TATB/VITON (60/30/10)	1.83	8120	300	[5]		8089		-0.4%		297		-0.9%					0.30	0.69
X/TATB/VITON (70/20/10)	1.83	8190	304	[5]		8198		0.1%		306		0.7%					0.29	0.68
X/TATB/VITON (80/10/10)	1.84	8240	312	[5]	7005	8339	2.20/	1.2%	220	319	10.40/	2.3%	2.01	2.00	2.02		0.29	0.68
X/TNT (60/40) X/TNT (60/40)	1.60 1.63	7360 7550	216 226	[38]	7605 7701	7544 7642	3.3% 2.0%	2.5% 1.2%	238 247	239 249	10.4% 9.5%	10.4%	3.01 3.11	2.88	2.82		0.26 0.26	0.58 0.58
K/TNT (60/40)	1.67	7590	241	[38]	7701	7772	3.2%	2.4%	260	262	7.7%	8.9%	2.99	2.91	2.85		0.26	0.59
X/TNT (60/40)	1.70	7680	253	[38]	7926	7870	3.2%	2.5%	269	273	6.4%	7.9%	2.96	2.97	2.86		0.26	0.60
X/TNT (60/40)	1.75	8000	nan	[52]	8086	8033	1.1%	0.4%	285	291	0.470	7.570	2.50	2.37	2.00		0.27	0.61
X/TNT (60/40)	1.80	8160	320	[8]	8247	8196	1.1%	0.4%	302	310	-5.7%	-3.0%	2.75	3.06	2.89		0.27	0.62
X/TNT (70/30)	1.60	7520	227	[38]	7728	7665	2.8%	1.9%	246	246	8.4%	8.4%	2.99	2.88	2.82		0.26	0.58
X/TNT (70/30)	1.64	7680	243	[38]	7858	7797	2.3%	1.5%	259	260	6.4%	7.0%	2.98	2.92	2.83		0.26	0.59
X/TNT (70/30)	1.68	7810	257	[38]	7989	7930	2.3%	1.5%	271	274	5.6%	6.7%	2.99	2.95	2.85		0.26	0.59
IX/TNT (70/30)	1.70	7900	267	[38]	8054	7996	2.0%	1.2%	278	282	4.1%	5.5%	2.97	2.97	2.86		0.26	0.60
IX/TNT (70/30)	1.77	8192	295	[45]	8283	8228	1.1%	0.4%	301	308	2.1%	4.6%	3.03	3.03	2.89		0.27	0.61
X/TNT (75/25)	1.82	8550	306.5	[34]	8516	8463	-0.4%	-1.0%	324	334	5.7%	9.0%	3.34	3.08	2.90		0.27	0.62
IX/TNT (75/25)	1.81	8480	nan	[8]	8480	8426	0.0%	-0.6%	320	329							0.27	0.62
IX/TNT (78/22)	1.82	NaN	342	[8]	8553	8499	2.00/	4.40/	327	337	-4.5%	-1.6%	2.00	2.00	2.02		0.27	0.62
IX/TNT (80/20) IX/TNT (80/20)	1.61	7730 7820	242 251	[38]	7884 7983	7818 7919	2.0%	1.1%	257 267	257 268	6.3%	6.3%	2.98	2.89	2.82		0.26	0.58
IX/TNT (80/20)	1.68	7950	265	[38]	8116	8054	2.1%	1.3%	280	283	5.7%	6.7%	3.01	2.92	2.85		0.26	0.59
X/TNT (80/20)	1.71	8050	278	[38]	8215	8155	2.1%	1.3%	290	294	4.4%	5.9%	2.99	2.98	2.86		0.26	0.60
X/TNT (80/20)	1.82	8523	331	[45]	8579	8526	0.7%	0.0%	329	339	-0.7%	2.3%	2.99	3.08	2.91		0.27	0.62
X/TNT (89/11)	1.84	8778	352	[45]	8766	8713	-0.1%	-0.7%	345	357	-1.9%	1.4%	3.03	3.09	2.91		0.27	0.63
X/TNT (90/10)	1.60	7850	247	[38]	7972	7904	1.6%	0.7%	262	262	6.0%	5.9%	2.99	2.88	2.82		0.26	0.58
X/TNT (90/10)	1.65	8000	266	[38]	8140	8076	1.8%	0.9%	279	280	4.7%	5.3%	2.97	2.92	2.84		0.26	0.59
X/TNT (90/10)	1.71	8200	288	[38]	8342	8281	1.7%	1.0%	299	303	3.9%	5.3%	2.99	2.98	2.87		0.27	0.60
K/TNT (90/10)	1.75	8320	303	[38]	8477	8418	1.9%	1.2%	313	319	3.4%	5.4%	3.00	3.01	2.88		0.27	0.61
	1.63	8691	nan	[14]	7920	8354	-8.9%	-3.9%	261	279							0.30	0.71
)	1.60	7310	205	[8]	7196	7091	-1.6%	-3.0%	213	215	4.1%	4.7%	3.17	2.88	2.75		0.25	0.54
	1.97 1.97	9340 9300	430 420	[8]	9338 9348	9250 9260	0.0%	-1.0% -0.4%	408 409	437 439	-5.2%	1.7%	3.00 3.06	3.21	2.85		0.26	0.59
	1.97	9300	420 400	[55] [34]	9348	9260	0.5%	-0.4%	409	439 439	-2.7% 2.2%	4.5% 9.7%	3.06	3.22	2.86		0.26	0.60
	2.00	9535	400 nan	[46]	9348	9260	-0.6%	-0.8%	409	439 452	Z.Z%	9.7%	5.30	3.22	2.80		0.26	0.60
0	1.60	7100	nan	[48]	7075	6945	-0.6%	-2.2%	206	206							0.25	0.54
n .	1.86	7580	nan	[46]	7373	7496	-2.7%	-1.1%	246	256							0.23	0.73
	1.00	5100	73	[8]	5131	5082	0.6%	-0.3%	76	75	4.1%	2.2%	2.56	2.46	2.46		0.22	0.44
	1.20	5740	115	[8]	5711	5653	-0.5%	-1.5%	109	107	-4.8%	-6.7%	2.44	2.58	2.58		0.23	0.48
	1.40	6340	160	[8]	6291	6224	-0.8%	-1.8%	149	148	-6.9%	-7.7%	2.52	2.72	2.67		0.24	0.51
	1.60	6800	nan	[8]	6871	6795	1.0%	-0.1%	195	196							0.25	0.55
	1.66	7030	215	[8]	7045	6967	0.2%	-0.9%	209	213	-2.6%	-1.0%	2.82	2.93	2.78		0.25	0.56
	1.70	7000	210	[38]	7161	7081	2.3%	1.2%	220	224	4.6%	6.8%	2.97	2.97	2.80		0.25	0.57
	1.70	7000	nan	[8]	7161	7081	2.3%	1.2%	220	224							0.25	0.57
	1.74	7130	nan	[48]	7277	7195	2.1%	0.9%	230	236							0.26	0.58
HN (21/79)	1.44	8600	nan	[14]	7888	8425	-8.3%	-2.0%	239	255							0.29	0.68
HN (70/30)	1.14	8025	nan	[14]	6625	7904	-17.4%	-1.5%	141	170							0.33	0.79
-104	1.72	7705	nan	[36]	7414	7578	-3.8%	-1.6%	237	250							0.28	0.65
-104	1.76 1.04	7714 5400	nan	[43]	7512 5474	7685 5429	-2.6% 1.4%	-0.4% 0.5%	247 89	261 83						_	0.28	0.66

DEOS DATABASE							resid	luals D			resi	iduals P	Gamma (γ) co	rrelation (CH	NO explosi	ives) Jones	and Grüneis	en parameters (DEoS Model)
Number of Explosiv	ves 238	Number	r of data				Statistics	velocity			Statistics	pressure						
		D	P	_		·	KJ	DEoS			KJ	DEoS		КЈ	DEoS		α	Γ
	KJ (only CHNO) DEoS	449 519	224 263			RMRS MAPR	3.4% 2.5%	1.7% 1.3%		RMRS MAPR	7.0% 5.6%			r 0.44	0.53	average values standar deviation	0.27 0.02	0.60 0.06
	DEGS	313	203			P97,5	8.2%			P97,5	17.0%					standar deviation	0.02	0.00
		experimental data			calcu	lated D			calc	ulated P								
Acr	density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference	Dкі (m/s)	D_DEoS (m/s)	RRD KJ	RRD_DEoS	Ркі (kbar)	P_DEoS (kbar)	RRP KJ	RRP_DEoS	Y experimental	γκι	Y_DEoS		α	Γ
LLM-105/VITON (95/5)	1.78	7980	nan	[35]		7880		-1.3%		285							0.27	0.60
LLM-175/VITON (95/5)	1.65	7730	nan	[35]		7472		-3.3%		241							0.26	0.58
LX-01 LX-01	1.24	6840 NaN	nan 156	[8]	6952 7195	6739 6979	1.6%	-1.5%	166 186	155 174	19.0%	11.3%				-	0.23	0.50
LX-04	1.86	8460	350	[8]	7195	8281		-2.1%	190	314	19.0%	-10.2%					0.24	0.51
LX-04	1.87	8480	320	[13]		8308		-2.0%		317		-0.8%					0.30	0.71
LX-04	1.87	8480	345	[34]		8305		-2.1%		317		-8.1%					0.30	0.71
LX-04	1.87	8540	nan	[10]		8315		-2.6%		318							0.30	0.71
LX-07	1.85	8590	377.3	[34]		8479		-1.3%		332		-11.9%				_	0.29	0.68
LX-07 LX-09	1.87 1.86	8640 8820	nan 366.3	[8]		8547 8855		-1.1% 0.4%		341 371		1.4%				-	0.29	0.68 0.63
LX-09	1.84	8810	377	[8]		8783		-0.3%		362		-4.0%				-	0.27	0.63
LX-10	1.84	8810	372	[34]		8662		-1.7%		349		-6.1%				-	0.28	0.65
LX-10	1.86	8820	375	[8]		8728		-1.0%		358		-4.6%					0.28	0.65
LX-10	1.87	8850	375	[10]		8762		-1.0%		362		-3.4%				_	0.28	0.65
LX-11	1.86	8320 8760	nan	[8]	8643	8027 8629	-1.3%	-3.5% -1.5%	332	291 344						_	0.32	0.75
LX-14 LX-14	1.81	8800	nan 370	[14] [8]	8643 8710	8698	-1.3%	-1.5%	340	353	-8.2%	-4.7%	2.83	3.09	2.93		0.27	0.63
LX-14	1.84	8830	370	[8]	8743	8733	-1.0%	-1.1%	344	357	-7.1%	-3.5%	2.88	3.09	2.93	-	0.28	0.63
LX-14	1.87	8840	nan	[9]	8844	8836	0.0%	0.0%	355	371							0.28	0.64
LX-15	1.58	6840	nan	[8]		6591		-3.6%		181							0.25	0.56
LX-17	1.91	7630	260	[8]		7807		2.3%		283		8.9%				_	0.31	0.74
manitrol md	1.75 1.73	8260 9000	nan nan	[48]	8522 8849	8068 8804	3.2% -1.7%	-2.3% -2.2%	317 339	298 344						-	0.26	0.58
MEN-II	1.02	5490	nan	[8]	5626	5590	2.5%	1.8%	93	86						-	0.24	0.54
metn	1.46	7180	nan	[48]	7378	7145	2.8%	-0.5%	211	199							0.25	0.54
nag	1.65	8600	nan	[48]	7904	8505	-8.1%	-1.1%	263	293							0.30	0.71
ng	1.59	7650	253	[10]	8133	7726	6.3%	1.0%	272	252	7.3%	-0.3%	2.68	2.87	2.76		0.25	0.55
ng	1.59 1.60	7580 7700	nan 253	[14]	8133 8168	7726	7.3% 6.1%	1.9% 0.8%	272	252 256	0.70/	1.1%	2.75	2.88	2.77	-	0.25	0.55
ng ng	1.60	7740	253 nan	[8]	8168	7759 7759	5.5%	0.8%	275 275	256	8.7%	1.1%	2.75	2.88	2.77		0.25	0.55
nm	1.13	6250	128	[31]	6372	6238	2.0%	-0.2%	130	121	1.3%	-5.8%	2.44	2.53	2.64		0.23	0.50
nm	1.13	6250	133	[31]	6372	6238	2.0%	-0.2%	130	121	-2.5%	-9.4%	2.31	2.53	2.64		0.23	0.50
nm	1.13	6370	125	[34]	6379	6245	0.1%	-2.0%	130	121	4.1%	-3.2%	2.67	2.53	2.64		0.23	0.50
nm	1.13 1.13	6280 6350	120 125	[8]	6379 6379	6245 6245	1.6% 0.5%	-0.6% -1.6%	130 130	121 121	8.5% 4.1%	0.8% -3.2%	2.71 2.65	2.53 2.53	2.64	-	0.23	0.50 0.50
nm nm	1.13	6299	134	[8]	6389	6256	1.4%	-0.7%	131	121	-2.3%	-9.2%	2.35	2.53	2.64		0.23	0.50
nm	1.14	6370	nan	[48]	6413	6280	0.7%	-1.4%	132	123	-2.570	-5.270	2.33	2.33	2.04		0.23	0.50
nmet	1.21	6750	nan	[48]	7031	6728	4.2%	-0.3%	167	152							0.23	0.49
no	1.30	5620	103	[14]	5785	5613	2.9%	-0.1%	119	106	15.9%	2.6%	2.99	2.64	2.88		0.27	0.61
nona	1.70	7400	nan	[8]	7359	7217	-0.6%	-2.5%	232	234							0.25	0.56
nona	1.78 1.00	7560 5460	nan nan	[48]	7597 5448	7448 5612	0.5% -0.2%	-1.5% 2.8%	254 86	259 84							0.26 0.25	0.57 0.55
ng	1.40	NaN	158	[18]	6680	7119	-0.270	2.070	168	178	6.3%	12.9%					0.29	0.66
nq	1.51	7540	nan	[15]	7031	7549	-6.8%	0.1%	196	214							0.30	0.69
nq	1.55	7650	nan	[8]	7142	7684	-6.6%	0.4%	206	226							0.30	0.70
nq	1.62	7930	nan	[8]	7357	7948	-7.2%	0.2%	225	251							0.31	0.72
nq	1.63 1.63	7980 NaN	nan 256	[15] [29]	7385 7385	7982 7982	-7.5%	0.0%	227 227	254 254	-11.2%	-0.7%				-	0.31	0.72 0.72
ng	1.64	7940	nan	[29]	7403	8004	-6.8%	0.8%	229	257	*11.270	-0.776				_	0.31	0.72
nq	1.65	7980	nan	[29]	7453	8065	-6.6%	1.1%	234	263							0.31	0.73
nq	1.70	8200	nan	[48]	7604	8249	-7.3%	0.6%	248	281							0.31	0.74
nq	1.72	NaN	245	[8]	7665	8325			254	289	3.5%	18.1%					0.32	0.75
nq NQ/ESTANE (95/5)	1.78 1.70	8590 8280	nan 268	[8]	7850 7460	8551 8128	-8.6% -9.9%	-0.5% -1.8%	272 238	314 272	-11.0%	1.4%	3.35	2.97	3.13		0.32	0.76 0.76
NQ/TNT(35/65)	1.66	NaN	212	[14]	7460	7373	-3.370	*1.070	238	230	4.4%	8.4%	3.33	2.37	3.13	· -	0.32	0.63
NQ/TNT(50/50)	1.67	NaN	221	[18]	7340	7564			228	240	3.1%	8.7%					0.28	0.65
NQ/TNT(50/50)	1.66	7400	nan	[18]	7334	7557	-0.9%	2.1%	227	240							0.28	0.65
NQ/TNT(50/50)	1.64	7280	nan	[18]	7274	7490	-0.1%	2.9%	222	233						- L	0.28	0.65
NQ/TNT(50/50)	1.64	7620 7430	nan	[18]	7259	7474	-4.7%	-1.9%	220	231							0.28	0.65
NQ/TNT(50/50) NQ/TNT(80/20)	1.64 1.69	7430 7833	nan nan	[18]	7253 7528	7467 7987	-2.4% -3.9%	0.5% 2.0%	220 242	231 266							0.28	0.65 0.71
NQ/TNT(90/10)	1.70	8022	nan	[18]	7585	8136	-5.5%	1.4%	246	276						-	0.30	0.73
NQ/TNT(95/5)	1.69	8056	nan	[18]	7564	8156	-6.1%	1.2%	244	275							0.31	0.73
nto	1.00	5269	nan	[33]	5275	5321	0.1%	1.0%	80	77							0.24	0.51
nto	1.80	8020	nan	[35]	7660	8028	-4.5%	0.1%	260	287							0.30	0.70
nto nto	1.83 1.86	8090 8200	nan nan	[35]	7749 7839	8129 8231	-4.2% -4.4%	0.5%	269 278	298 310						-	0.30	0.71 0.71
nto	1.87	8180	nan	[35]	7868	8264	-4.4%	1.0%	278	314							0.30	0.72
	1.07			. [33]			2.070			, 314								

Fernando G. Bastante ¹ , María Araújo Fernández ¹ , Eduardo Giráldez ¹ . CINTECX, GESSMin group, University of Vigo

EoS DATABASE							residu	ials D			resin	luals P	Gamma (v) c	orrelation (CF	INO explosives)	Jones an	d Grüneise	n parameters (DEoS Model,
Number of Explosives	238	Number	of data			_	Statistics	velocity		_	Statistics	pressure				301123 011		
		D	P	•		_	KJ	DEoS		-	KJ	DEoS		КЈ	DEoS		α	Γ
	KJ (only CHNO) DEoS	449 519	224 263			RMRS MAPR	3.4% 2.5%	1.7% 1.3%		RMRS MAPR	7.0% 5.6%	6.0% 4.9%		r 0.44	0.53	average values standar deviation	0.27 0.02	0.60 0.06
	5205	313	203			P97,5	8.2%	3.9%		P97,5	17.0%	12.6%				Standar acriation	0.02	0.00
		experimental data				ated D			calcul									
Acr	density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference	DKI (m/s)	D_DEoS (m/s)	RRD KJ	RRD_DEoS	Ркі (kbar)	P_DEoS (kbar)	RRP KJ	RRP_DEoS	γ _{experimental}	γκι	Y_DEoS		α	Γ
TO/RDX/TNT (50/12/38)	1.87	8220 7660	nan 265	[35] [22]	7868 7722	8264 7852	-4.3% 0.8%	0.5% 2.5%	281	314 279	-0.5%	5.3%	2.97	3.05	2.96		0.30	0.72
TO/TNT (30/70)	1.64	6900	nan	[52]	7060	7097	2.3%	2.9%	209	213	-0.576	3.370	2.57	3.03	2.50		0.27	0.60
TO/TNT (50/50)	1.71	7370	226	[22]	7317	7430	-0.7%	0.8%	230	240	1.9%	6.3%	3.11	2.98	2.93		0.28	0.63
O/TNT (60/40)	1.69	7300 7840	nan	[52]	7279	7425	-0.3%	1.7%	226	237							0.28	0.64
O/TNT (60/40) TOL	1.78 1.81	7840 8476	256 343	[22] [14]	7546 8494	7713 8440	-3.8% 0.2%	-1.6% -0.4%	251 321	330	-2.0% -6.4%	4.1%	3.27 2.79	3.04	2.97		0.28	0.66
TOL	1.81	8450	338	[8]	8497	8443	0.6%	-0.1%	321	331	-4.9%	-2.1%	2.82	3.07	2.90		0.27	0.62
t	1.80	7330	nan	[48]	7457	7360	1.7%	0.4%	247	254							0.26	0.58
K-41	1.70	7830	nan	[35]	7843	7825	0.2%	-0.1%	264	269							0.27	0.60
(-9007 (-9007	1.64 1.60	8090 NaN	nan 265	[8] [10]	7776 7647	7807 7673	-3.9%	-3.5%	253 241	259 245	-9.0%	-7.6%					0.26	0.60 0.59
(-9010	1.78	8363	319	[55]	7047	8301		-0.7%	241	310	-5.0%	-3.0%					0.28	0.65
-9010	1.78	8370	328	[8]		8297		-0.9%		309		-5.7%					0.28	0.65
(-9011	1.77	8500	324	[8]	8304	8337	-2.3%	-1.9%	303	314	-6.5%	-3.2%	2.95	3.03	2.92		0.27	0.63
K-9205 K-9404	1.67 1.84	8170 8800	nan 365	[8] [14]	7982	7994 8769	-2.3%	-2.1% -0.4%	270	276 360		-1.3%					0.27	0.60 0.63
-9404	1.84	8800 8800	365	[8]		8769 8769		-0.4%		360		-1.3% -4.0%					0.28	0.63
(-9407	1.60	7910	287	[8]		7855		-0.7%		256		-10.8%					0.26	0.60
(-9408	1.84	8787	nan	[14]		8770		-0.2%		361							0.28	0.63
(9501	1.83	8802	nan	[7]	8774	8743	-0.3%	-0.7%	345	357							0.27	0.63
(9501	1.84 1.91	8830 7710	nan nan	[8]	8801	8771 7906	-0.3%	-0.7% 2.5%	348	361 292							0.28	0.63 0.72
9502	1.90	7710	289	[10]		7858		1.9%		287		-0.7%					0.31	0.72
9503	1.90	7710	nan	[8]		8043		4.3%		303							0.30	0.71
t	1.23	6370	139	[8]	6839	6546	7.4%	2.8%	160	146	15.1%	5.3%	2.59	2.60	2.60		0.23	0.48
t t	1.23	6364 6590	143.2 160	[25] [8]	6832 6942	6539 6644	7.4% 5.3%	0.8%	159 168	146 154	11.4% 4.9%	1.9%	2.47	2.59	2.60		0.23	0.48
t	1.38	6910	173	[34]	7352	7036	6.4%	1.8%	201	186	16.4%	7.5%	2.81	2.70	2.67		0.24	0.51
t	1.45	7178	207.4	[25]	7585	7259	5.7%	1.1%	222	206	6.9%	-0.7%	2.60	2.76	2.70		0.24	0.53
t	1.45	7180	208	[8]	7592	7265	5.7%	1.2%	222	207	6.9%	-0.7%	2.59	2.76	2.70		0.24	0.53
nt nt	1.50 1.53	7480 7490	240 225	[8]	7763 7865	7429 7527	3.8% 5.0%	-0.7% 0.5%	238 248	222 232	-0.9% 10.0%	-7.4% 3.0%	2.50 2.81	2.80	2.73		0.24	0.53
nt	1.60	7737	263.7	[34]	8095	7746	4.6%	0.1%	270	254	2.3%	-3.5%	2.63	2.88	2.77		0.25	0.55
nt	1.60	7900	nan	[10]	8105	7756	2.6%	-1.8%	271	255							0.25	0.55
nt	1.60	7750	266	[8]	8105	7756	4.6%	0.1%	271	255	1.8%	-4.0%	2.61	2.88	2.77		0.25	0.55
nt nt	1.66 1.67	7926 7980	nan 300	[51] [10]	8320 8344	7962 7985	5.0% 4.6%	0.5%	292 295	278 280	-1.7%	-6.5%	2.54	2.94	2.80		0.25	0.56
nt	1.70	8070	307	[8]	8447	8083	4.7%	0.1%	306	292	-0.4%	-5.0%	2.61	2.97	2.81		0.26	0.57
nt	1.70	8082	302.1	[25]	8457	8093	4.6%	0.1%	307	293	1.5%	-3.1%	2.68	2.97	2.81		0.26	0.57
nt	1.76	8260	nan	[10]	8652	8279	4.7%	0.2%	328	315							0.26	0.58
it it	1.76	8270	310	[8]	8652	8279	4.6%	0.1%	328	315	5.7%	1.6%	2.88	3.02	2.83		0.26	0.58
t	1.76 1.76	8270 8263	337 314.3	[8] [25]	8652 8662	8279 8289	4.6%	0.1%	328 329	315 316	-2.8% 4.6%	-6.5% 0.6%	2.57 2.83	3.02	2.83		0.26	0.58
t	1.77	8300	335	[14]	8686	8312	4.7%	0.1%	331	319	-1.1%	-4.8%	2.64	3.03	2.83		0.26	0.58
ITOLITE	1.64	7530	nan	[8]	7612	7416	1.1%	-1.5%	243	237	4.511	6.00			2.00		0.25	0.57
ITOLITE ITOLITE	1.64	7520 7520	256.3 252	[34]	7625 7625	7428 7428	1.4%	-1.2% -1.2%	244	239 239	-4.9% -3.2%	-6.9% -5.3%	2.63 2.69	2.92	2.80		0.25	0.57
ITOLITE	1.65	7465	nan	[34]	7644	7447	2.4%	-0.2%	244	241	13.270	-3.370	2.09	2.32	2.00		0.26	0.57
ITOLITE	1.66	7448	241	[34]	7675	7478	3.1%	0.4%	249	244	3.2%	1.1%	2.82	2.93	2.81		0.26	0.57
ITOLITE	1.68	7650	251	[8]	7739	7540	1.2%	-1.4%	255	250	1.4%	-0.3%	2.92	2.95	2.82		0.26	0.58
ITOLITE ITOLITE	1.68	7520 7530	nan nan	[10] [8]	7739 7802	7540 7602	2.9% 3.6%	0.3% 1.0%	255 261	250 257							0.26	0.58
TOLITE	1.71	7750	nan	[8]	7833	7633	1.1%	-1.5%	264	260							0.26	0.58
N/TNT (20/80)	1.59	6980	180	[45]	7075	6975	1.4%	-0.1%	205	204	14.1%	13.3%	3.30	2.87	2.79		0.25	0.57
N/TNT (60/40)	1.65	7530	242	[45]	7772	7542	3.2%	0.2%	254	247	4.9%	2.1%	2.87	2.92	2.80		0.25	0.57
I/TNT (60/40)	1.67 1.68	7525 7610	231 248	[45]	7836	7605 7636	4.1%	1.1%	260	254 257	12.6%	9.8%	3.09	2.94 2.95	2.81		0.26 0.26	0.57
N/TNT (60/40) N/TNT/RDX (20/30/50)	1.71	7890	248	[45] [45]	7868 8094	7974	3.4% 2.6%	0.3% 1.1%	263 282	282	6.1% 5.7%	3.6% 6.0%	2.92 2.99	2.95	2.81		0.26	0.57 0.59
, ., (25,50,50)	1.83	7290	270	[8]	2234	7201	/0	-1.2%	-32	240	2/0	-11.2%	2.55	2.50			0.28	0.65
RATOL	1.63	6970	nan	[8]	6997	6989	0.4%	0.3%	204	206							0.26	0.60
ic	1.60	7100	nan	[8]	7073	6943	-0.4%	-2.2%	206	204							0.25	0.56
ic	1.71	7350 7260	nan nan	[48]	7401 7401	7268 7268	0.7% 1.9%	-1.1% 0.1%	236 236	236 236							0.26	0.58 0.58
ic ic	1.71	7570	nan nan	[8]	7550	7268	-0.3%	-2.0%	236	23b 251							0.26	0.58
m	1.73	8100	nan	[48]	8268	8125	2.1%	0.3%	296	296							0.26	0.60
IQ/HMX/CARNAUBA (30/68/2)	1.64	7900	nan	[35]	7589	7803	-3.9%	-1.2%	241	253							0.28	0.64
NQ/NQ/HMX (34/35/31) E/PE (95/5)	1.59 1.56	7710 7097	nan nan	[35] [14]	7204 6782	7647 6766	-6.6% -4.4%	-0.8% -4.7%	213 186	230 188							0.30	0.70

Fernando G. Bastante 1 , María Araújo Fernández 1 , Eduardo Giráldez 1 . CINTECX, GESSMin group, University of Vigo

DEoS DATABASE							resio	luals D			resi	duals P	Gamma (γ) cor	rrelation (CHI	NO explosives)	Jones :	and Grüne	isen parameters (L	DEoS Model)
Number of Explosives	238	Number	of data				Statistics KI				Statistics KI								
	KJ (only CHNO)	449	224	-		RMRS	3.4%	DEoS 1.7%		RMRS	7.0%	DEoS 6.0%		r 0.44	DEoS 0.53	average values	α 0.27	Г 0.60	
	DEoS	519	263			MAPR	2.5%	1.3%		MAPR	5.6%	4.9%		0.44	0.55	standar deviation	0.02	0.06	
						P97,5	8.2%	3.9%		P97,5		12.6%							
		experimental data				ated D				ılated P									
Acr	density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference	DKI (m/s)	D_DEoS (m/s)	RRD KJ	RRD_DEoS	Ркі (kbar)	P_DEoS (kbar)	RRP KJ	RRP_DEoS	γ _{experimental}	γκι	Y_DEoS		α	Γ	
rdx rdx	1.00	5981 6100	nan 89	[14]	6049 6049	5942 5942	1.1% -0.8%	-0.7% -2.6%	106 106	100 100	18.7%	12.6%	3.18	2.46	2.52		0.22	0.46	
rdx	1.00	6030	108	[38]	6049	5942	0.3%	-1.5%	106	100	-2.2%	-7.2%	2.37	2.46	2.52		0.22	0.46	
rdx	1.07	6260	116	[34]	6289	6185	0.5%	-1.2%	121	115	4.3%	-1.0%	2.61	2.50	2.56		0.23	0.47	
rdx	1.10	6180	122	[8]	6391	6290	3.4%	1.8%	128	121	4.8%	-0.4%	2.44	2.51	2.58		0.23	0.48	
rdx	1.10	6115	112.7	[34]	6391	6290	4.5%	2.9%	128	121	13.4%	7.8%	2.65	2.51	2.58		0.23	0.48	
rdx rdx	1.17 1.20	6648 6770	134.4 152	[34]	6641 6733	6543 6637	-0.1% -0.5%	-1.6% -2.0%	145 152	139 145	8.2% 0.1%	3.1% -4.4%	2.86 2.62	2.56 2.58	2.62	_	0.23	0.49	
rdx	1.22	6609	148.9	[34]	6788	6693	2.7%	1.3%	156	149	4.9%	0.3%	2.57	2.59	2.65		0.23	0.50	
rdx	1.29	7000	164	[34]	7041	6950	0.6%	-0.7%	176	169	7.2%	3.2%	2.85	2.64	2.68		0.24	0.52	
rdx	1.29	7036	166.2	[38]	7041	6950	0.1%	-1.2%	176	169	5.8%	1.8%	2.84	2.64	2.68		0.24	0.52	
rdx	1.29	7000	166	[8]	7041	6950	0.6%	-0.7%	176	169	5.9%	1.9%	2.81	2.64	2.68		0.24	0.52	
rdx rdx	1.40 1.46	7460 7600	213 211	[8]	7417 7622	7333 7542	-0.6% 0.3%	-1.7% -0.8%	207 225	201 221	-2.8% 6.7%	-5.4% 4.6%	2.66 3.00	2.72	2.74	_	0.25	0.54	
rdx	1.46	7600	208	[8]	7622	7542	0.3%	-0.8%	225	221	8.3%	6.1%	3.05	2.77	2.76		0.25	0.55	
rdx	1.46	7626	209.8	[38]	7622	7542	-0.1%	-1.1%	225	221	7.3%	5.2%	3.05	2.77	2.76		0.25	0.55	
rdx	1.59	8077	259	[38]	8066	7994	-0.1%	-1.0%	267	266	3.1%	2.7%	3.00	2.87	2.82		0.26	0.58	
rdx	1.60	8250	nan	[10]	8101	8029	-1.8%	-2.7%	270	270							0.26	0.58	
rdx	1.60	8130	263	[8]	8101	8029	-0.4%	-1.2%	270	270	2.8%	2.6%	3.02	2.88	2.82	_	0.26	0.58	
rdx rdx	1.66 1.71	8240 NaN	nan 314	[8]	8306 8477	8237 8411	0.8%	0.0%	291 309	293 313	-1.6%	-0.4%					0.26	0.59	
rdx	1.72	8460	313	[8]	8511	8446	0.6%	-0.2%	313	317	-0.1%	1.3%	2.93	2.99	2.87		0.27	0.60	
rdx	1.72	8528	310	[38]	8511	8446	-0.2%	-1.0%	313	317	0.8%	2.3%	3.04	2.99	2.87		0.27	0.60	
rdx	1.72	8460	308.5	[34]	8511	8446	0.6%	-0.2%	313	317	1.3%	2.7%	2.99	2.99	2.87		0.27	0.60	
rdx	1.76	8622	325	[34]	8655	8592	0.4%	-0.3%	328	335	0.9%	3.0%	3.03	3.02	2.89		0.27	0.61	
rdx rdx	1.77 1.80	8700 8750	338 341	[8]	8682 8785	8620 8724	-0.2%	-0.9% -0.3%	331 342	338 351	-2.1% 0.4%	0.0%	2.96 3.04	3.03	2.89		0.27	0.61	
rdx	1.80	8754	347	[31]	8785	8724	0.4%	-0.3%	342	351	-1.4%	1.2%	2.98	3.06	2.90		0.27	0.62	
rdx	1.80	8800	nan	[48]	8785	8724	-0.2%	-0.9%	342	351							0.27	0.62	
rdx	1.80	NaN	350	[31]	8785	8724			342	351	-2.2%	0.3%					0.27	0.62	
rdx	1.80	NaN	385	[31]	8785	8724			342	351	-11.1%	-8.8%					0.27	0.62	
RDX/ESTANE (80/20) RDX/EVA (80/20)	1.20 1.28	6290 6500	nan nan	[28]	6150 6538	6148 6557	-2.2% 0.6%	-2.3% 0.9%	127 151	123 148							0.24	0.52	
RDX/EVA (80/20)	1.56	7630	nan	[28]	7847	7803	2.8%	2.3%	250	249							0.24	0.58	
RDX/EVA (95/5)	1.63	8248	269	[26]	8065	8027	-2.2%	-2.7%	271	273	0.8%	1.5%	3.12	2.91	2.84		0.26	0.59	
RDX/EXON (90/10)	1.79	8404	320	[14]		8374		-0.4%		317		-0.9%					0.28	0.65	
RDX/GAP (84/16)	1.59	8074	nan	[4]	7976	7949	-1.2%	-1.6%	261	263							0.26	0.58	
RDX/HTPB (80/20) RDX/HTPB (82/18)	1.43 1.52	7200 7526	nan nan	[28]	6767 7132	6878 7239	-6.0% -5.2%	-4.5% -3.8%	175 203	177 207							0.26	0.57 0.59	
RDX/HTPB (85/15)	1.43	7200	nan	[4] [28]	6958	7017	-3.4%	-2.5%	185	186							0.25	0.59	
RDX/PIB (91/9)	1.61	8055	nan	[44]	7814	7836	-3.0%	-2.7%	253	256							0.26	0.59	
RDX/SYLGARD (85/15)	1.54	7682	nan	[3]		7429		-3.3%		218							0.27	0.62	
RDX/TATB/HTPB (65/20/15)	1.49	7100	nan	[28]	6927	7035	-2.4%	-0.9%	189	192							0.26	0.59	
RDX/TATB/HTPB (70/15/15)	1.47	7120	nan	[28]	6921	7015	-2.8%	-1.5%	187	189							0.26	0.58	
RDX/TATB/HTPB (75/10/15) RDX/TFNA (65/35)	1.45 1.75	7150 8220	nan 324	[28]	6913	6994 8088	-3.3%	-2.2% -1.6%	184	186 289		-10.8%					0.26	0.57	
RDX/TNT (30/70)	1.64	7230	nan	[52]	7354	7305	1.7%	1.0%	226	229		10.0%					0.26	0.58	
RDX/TNT (50/50)	1.63	7660	231	[8]	7579	7522	-1.1%	-1.8%	240	241	3.7%	4.3%	3.14	2.91	2.83		0.26	0.58	
RDX/TNT (50/50)	1.65	7540	251	[45]	7642	7586	1.4%	0.6%	246	248	-2.2%	-1.3%	2.74	2.92	2.83		0.26	0.58	
RDX/TNT (60/40)	1.49 1.52	7195 7250	192 200	[38]	7256 7352	7189 7287	0.8%	-0.1% 0.5%	207 215	204 213	7.8% 7.7%	6.4%	3.02 2.99	2.79 2.82	2.77		0.25	0.55 0.56	
RDX/TNT (60/40) RDX/TNT (60/40)	1.54	7300	200	[38]	7352	7352	1.6%	0.5%	215	220	7.7%	6.6%	2.99	2.82	2.78	_	0.25	0.56	
RDX/TNT (60/40)	1.59	7415	219	[38]	7577	7515	2.2%	1.3%	236	236	7.6%	7.6%	2.99	2.87	2.81		0.26	0.57	
RDX/TNT (60/40)	1.68	7640	nan	[52]	7866	7808	3.0%	2.2%	263	266							0.26	0.59	
RDX/TNT (60/40)	1.72	7890	287	[8]	7995	7938	1.3%	0.6%	276	281	-3.9%	-2.3%	2.73	2.99	2.86		0.26	0.60	
RDX/TNT (60/40)	1.72	7840	287	[22]	7995	7938	2.0%	1.3%	276	281	-3.9%	-2.3%	2.68	2.99	2.86		0.26	0.60	
RDX/TNT (60/40) RDX/TNT (60/40)	1.73 1.73	NaN 7977	268 275	[31]	8027 8027	7971 7971	0.6%	-0.1%	279 279	284 284	4.1% 1.5%	6.0% 3.4%	3.00	3.00	2.87	_	0.27	0.60	
RDX/TNT (60/40)	1.73	NaN	292	[31]	8027	7971	0.070	5.170	279	284	-4.5%	-2.7%	5.00	3.00	2.07		0.27	0.60	
RDX/TNT (60/40)	1.74	8090	nan	[8]	8059	8003	-0.4%	-1.1%	282	288							0.27	0.60	
RDX/TNT (60/40)	1.79	8130	309	[45]	8220	8166	1.1%	0.4%	299	307	-3.3%	-0.7%	2.83	3.05	2.89		0.27	0.61	
RDX/TNT (64/36)	1.71	8030	294	[14]	8024	7966	-0.1%	-0.8%	277	282	-5.7%	-4.2%	2.76	2.98	2.86		0.26	0.60	
RDX/TNT (65/35) RDX/TNT (70/30)	1.72	8040 7290	292 197	[8]	8060 7374	8002 7304	0.2% 1.2%	-0.5% 0.2%	280 214	285 211	-4.0% 8.5%	-2.4% 7.0%	2.81 3.02	2.99	2.86	_	0.26	0.60	
RDX/TNT (70/30)	1.49	7290	207	[38]	7472	7403	1.4%	0.2%	214	220	7.5%	6.3%	2.99	2.79	2.77		0.25	0.56	
RDX/TNT (70/30)	1.55	7460	216	[38]	7570	7503	1.5%	0.6%	231	230	7.1%	6.4%	2.99	2.84	2.80		0.25	0.57	
RDX/TNT (70/30)	1.59	7580	227	[38]	7701	7635	1.6%	0.7%	243	243	7.2%	7.1%	3.02	2.87	2.81		0.26	0.57	
RDX/TNT (70/30)	1.59	7580	216	[45]	7701	7635	1.6%	0.7%	243	243	12.7%	12.5%	3.23	2.87	2.81		0.26	0.57	
RDX/TNT (70/30)	1.73	8060	nan	[8]	8158	8099	1.2%	0.5%	288	293							0.27	0.60	

Part	DEoS DATABASE						_		luals D				iduals P	Gamma (γ) c	orrelation (CHI	NO explosiv	es) Jone:	s and Grüneis	en parameters (DEoS Model)
Part	Number of Explosives	238		r of data															_
Part		KI (t- sump)		P 224	-		DA40C				04406								Γ
No. Section Process Process							,,,,,,,								0.44	0.55			
Mart							P97,5				P97,5								****
Section 1-90 190		6	experimental data										_						
Margin 14		density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference		D_DEoS (m/s)	RRD KJ	RRD_DEoS			RRP KJ			γκι		_		
Second Professor 15																			
Section 1-96																			
SQNYSTONS																			
Magnet 1979 175																	_		
Magnet 1979 1970																			
March 1-0 200 230 110 740 740 75		1.76		313				0.5%	-0.2%	303	310	-3.1%	-1.1%	2.85		2.88		0.27	0.61
Month Mont																			
MATHEMATICAL 140 776																			
	7 (2.7 -7												11471						
MARTHER PARTIES 150 7760 231 281 281 7780 292 293 294 29																			
	RDX/TNT (90/10)			231		7811	7738	0.9%	0.0%	246	244	6.6%	5.7%			2.80			0.57
Marging 1-66						8013		1.3%		266		3.8%	3.7%	2.93	2.89	2.83			
						9055		2 09/		274									
1.42 5660 258																			
				258					-3.4%			-10.1%	-4.4%	3.11	2.73	3.01		0.29	0.68
	RX26	1.84	8240	340		8172	8285	-0.8%	0.5%	300	318	-11.7%	-6.4%	2.67	3.09	2.97		0.28	0.66
PASE 1.56																			
PASS 175	11100																		
MAY 1.82 7.960 260 18																			
March 1.55																			
Marchard 1-76																			
Test 1.85																			
Ext	schembl			nan															
Test 1.50 79.00 rank 277 673 7327 7.976 0.48 178 205																			
Test																			
teb																	_		
Table 1.85												-0.3%	7.6%	3.04	3.09	3.01			
tarb	tatb		7660	259					3.0%			2.3%	10.8%	3.19	3.10	3.01			0.68
TABY EXP (69/10) 1-91 7-530 nan [14] 7-728 1-134					[8]														
TABPKIE 90710												-11.7%	-3.7%	2.72	3.14	3.03			
TATEMPT 100/70 1.65 6930 ran 152 7028						7930		-0.7%		291									
Etryl 1,20						7028		1 4%		208									
Estyn 1.36 6680 142 8 6638 6526 0.6% -2.3% 162 158 14.4% 11.2% 3.27 2.69 2.67 0.24 0.51		1.20		nan		6139	6035	-3.2%		126									0.48
tetryl 1.61 7580 226 8 7417 7294 2.1% 3.8% 228 227 0.7% 0.3% 3.09 2.89 2.78 0.25 0.56 tetryl 1.68 7500 239 8 7635 7509 1.8% 0.1% 248 249 3.7% 4.2% 2.95 2.95 2.95 0.56 tetryl 1.70 7560 nan (48) 7698 7571 1.8% 0.1% 248 249 3.7% 4.2% 2.96 2.95 2.95 0.26 0.57 tetryl 1.71 7850 nan (8) 7729 7602 1.5% 3.2% 2.57 2.99 1 0.26 0.58 tetryl 1.73 7720 nan (8) 7791 7663 0.9% 0.7% 263 266 0.57 tetryl 1.73 7720 nan (8) 7791 7663 0.9% 0.7% 263 266 0.57 tetryl 1.77 7500 nan (8) 7791 7663 0.9% 0.7% 263 266 0.57 tetryl 1.77 7500 nan (8) 7791 7663 0.9% 0.7% 253 2.60 0.56 tetryl 1.77 7500 nan (8) 7791 7663 0.9% 0.7% 253 2.60 0.57 tetryl 1.77 7500 nan (48) 7046 6.945 3.6% 2.1% 205 205 0.56 tetryl 1.69 7550 nan (48) 7046 6.945 3.6% 2.1% 205 205 0.57 thb 1.69 7550 nan (48) 7046 6.945 3.6% 2.1% 205 205 0.57 the 1.69 7550 nan (48) 7429 7236 1.1% 0.05% 230 305 0.50 0.25 0.56 tetryl 1.23 6280 nan (49) 6739 6431 7.3% 3.2% 1.55 1.44 0.05% 230 305 0.00 0.23 0.48 thetb 1.23 6280 nan (49) 6739 6431 7.3% 3.2% 1.55 1.44 0.05% 2.00 0.50 0.50 0.50 0.50 0.50 0.50 0.50	tetryl	1.36	6680	142		6638	6526	-0.6%	-2.3%	162	158	14.4%	11.2%	3.27	2.69	2.67		0.24	0.51
tetryl 1.68 7500 239 [8] 7635 7509 1.8% 0.1% 248 249 3.7% 4.2% 2.95 2.95 2.81 0.26 0.57 tetryl 1.70 7560 nan [48] 7698 7571 1.8% 0.1% 254 256 1.1% 1.71 7850 nan [8] 7729 7602 1.15% 3.2% 257 259 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2% 1.2%																			
tetryl 1.70 7560 nan [48] 7698 7571 1.8% 0.1% 254 256																			
tetryl 1.71 7850 nan [8] 7729 7602 -1.5% -3.2% 257 259 tetryl 1.73 7720 nan [8] 7791 7663 0.9% -0.7% 263 266 TKX-50/VITON (95/5) 1.77 8690 nan [48] 7821 7863 0.9% -0.27% 352 tma 1.72 7300 nan [48] 7946 0.9% 235 241 tman 1.61 6800 nan [48] 7046 6945 3.6% 2.1% 205 205 tmb 1.69 7330 nan [48] 7429 7286 1.1% -0.9% 236 237 tmef 1.80 3160 nan [48] 7429 7286 1.1% -0.9% 236 237 tmetb 1.23 6280 nan [49] 6739 6481 7.3% 3.2% 155 144 t												3.7%	4.2%	2.95	2.95	2.81			
Section 1.73 7720 Nam 18 7791 7663 0.9% -0.7% 263 266																			
Tana	tetryl																		
tran 1.61 6800 nan [48] 7046 6945 3.6% 2.1% 205 205																			
tnb 1.69 7350 nan [48] 7429 7286 1.1% -0.9% 236 237 Image: Control of the control																			
tneof 1.80 8160 nan [48] 8489 8090 4.0% -0.9% 320 305 9 9 0.26 0.60 tnetb 1.23 6280 nan [49] 6739 6481 7.3% 3.2% 155 144 9 14 9 0.23 0.48 tnetb 1.33 6640 nan [49] 7076 6804 6.6% 2.5% 182 169 9 1 0.23 0.50 tnetb 1.39 6860 nan [49] 7278 6998 6.1% 2.0% 198 185 9 0.24 0.51 0.24 0.51 0.24 0.52 0.24 0.51 0.24 0.52 1.5% 0.25 1.5% 2.25 2.12 9 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 <									=:=;=										
Inetb 1.23 6280 nan [49] 6739 6481 7.3% 3.2% 155 144 155 144 145 0.23 0.48 tnetb 1.39 6860 nan [49] 7278 6998 6.1% 2.0% 198 185																			
Inetb 1.33 6640 nan [49] 7076 6804 6.6% 2.5% 182 169 9 9 0.23 0.50 tretb 1.39 6860 nan [49] 7278 6998 6.1% 2.0% 198 185 9 9 0.24 0.51 0.24 0.51 0.24 0.52 0.51 0.24 0.52 0.51 0.24 0.52 0.51 0.24 0.52 0.51 0.24 0.52 0.51 0.24 0.52 0.52 0.52 0.52 0.58 1.6% 2.25 212 0.24 0.52 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.53 0.24 0.25 0.54 0.24 0.25 0.54 0.25 <																			
tnetb 1.45 7090 nan [42] 7480 7191 5.5% 1.4% 216 203 0.24 0.52 tnetb 1.48 7180 nan [42] 7582 728 5.6% 1.5% 225 212 0.24 0.53 tnetb 1.50 7240 nan [42] 7689 733 5.6% 1.6% 231 218 0.24 0.53 tnetb 1.54 7390 nan [42] 7784 7482 5.3% 1.2% 244 231 0.25 0.54 tnetb 1.55 7400 nan [42] 781 7546 5.4% 1.3% 250 237 0.25 0.54 tnetb 1.56 7450 nan [42] 7919 7611 4.9% 0.8% 256 244 <t< td=""><td></td><td></td><td>6640</td><td>nan</td><td></td><td></td><td></td><td></td><td></td><td>182</td><td>169</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			6640	nan						182	169								
tnetb 1.48 7180 nan [49] 7582 7228 5.6% 1.5% 225 212 1.50 2.24 0.53 tnetb 1.54 7390 nan [42] 7784 7482 5.3% 1.2% 244 231 1 0.24 0.53 tnetb 1.55 7400 nan [42] 7818 7514 5.6% 1.5% 247 234 1 0.25 0.54 tnetb 1.56 7450 nan [42] 7818 7514 5.6% 1.5% 247 234 1 0.25 0.54 tnetb 1.56 7450 nan [42] 7818 7546 5.4% 1.3% 250 237 1 0.25 0.54 tnetb 1.58 7550 nan [42] 7991 7611 4.9% 0.8% 256 244 1 1 2 0.25 0.55 tnetb 1.60 7700<	*******																		
Inetb 1.50 7240 nan [42] 7649 7353 5.6% 1.6% 231 218 9 <																			
tnetb 1.54 7390 nan [42] 7784 7482 5.3% 1.2% 244 231 9 9 9 0.25 0.54 tnetb 1.55 7400 nan (42) 7818 7514 5.6% 1.5% 247 234 9 237 9 0.25 0.54 tnetb 1.56 7450 nan (42) 7919 7611 4.9% 0.8% 256 244 9 0.25 0.55 tnetb 1.60 7700 nan (42) 7999 7611 4.9% 0.8% 256 244 9 0.25 0.55 tnetb 1.61 7740 nan (42) 7996 7675 3.7% -0.3% 263 251 9 2.25 0.55 tnetb 1.61 7740 nan (42) 8020 7708 3.6% -0.4% 266 254 9 2.25 0.55 tnetb																			
Inetb 1.55 7400 nan [42] 7818 7514 5.6% 1.5% 247 234 9 0.25 0.54 Inetb 1.56 7450 nan [42] 7851 7546 5.4% 1.3% 250 237 9 0.25 0.54 Inetb 1.58 7550 nan [42] 7991 7611 4.9% 0.8% 256 244 9 0.25 0.55 Inetb 1.60 7700 nan [42] 7986 7675 3.7% 40.3% 263 251 9 25 0.55 Inetb 1.61 7740 nan [42] 8020 7778 3.6% 40.4% 266 254 9 25 0.55 Inetb 1.65 7870 nan [42] 8155 7837 3.6% 40.4% 266 254 9 25 0.55 Inetb 1.67 7960 nan [42] </td <td></td>																			
tnetb 1.56 7450 nan [42] 7851 756 5.4% 1.3% 250 237 925 937 938 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																			
Inetb 1.58 7550 nan [42] 7919 7611 4.9% 0.8% 256 244 9 9 256 244 9 9 256 244 9 9 256 244 9 9 256 244 9 9 256 254 9 9 255 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.55 0.25 0.56 0.25 0.56 0.25 0.56 0.25 0.56 0.25 0.56 0.25 0.56 0.25 0.56 0.25 0.57 0.25 0.57 0.25 0.56 0.25 0.57 0.25 0.57 0.25 0.57 0.25 0.56 0.25 0.57																			
tnetb 1.61 7740 nan [42] 8020 7708 3.6% -0.4% 266 254 1.65 -0.25 0.55 tnetb 1.65 7870 nan [42] 8155 7837 3.6% -0.4% 280 268 1.67 -0.25 0.56 tnetb 1.67 7960 nan [42] 8252 7991 3.3% -0.7% 286 275 1.68 -0.25 0.56 tnetb 1.68 7990 nan [49] 8256 7934 3.3% -0.7% 290 279 1.68 -0.25 0.57					[42]														
Inetb 1.65 7870 nan [42] 8155 7837 3.6% -0.4% 280 268 6 0.25 0.56 tnetb 1.67 7960 nan (42) 8222 7901 3.3% -0.7% 286 275 9 9 0.25 0.56 tnetb 1.68 7990 nan (49) 8256 7934 3.3% -0.7% 290 279 9 9 2.75 0.25 0.57																			
tnetb 1.67 7960 nan [42] 8222 7901 3.3% -0.7% 286 275 1.68 990 nan [49] 8256 7934 3.3% -0.7% 290 279 9 9 0.25 0.57																			
tnetb 1.68 7990 nan [49] 8256 7934 3.3% -0.7% 290 279 0.25 0.57																	-		

Fernando G. Bastante 1 , María Araújo Fernández 1 , Eduardo Giráldez 1 . CINTECX, GESSMin group, University of Vigo

PREDICTIVE MODEL FOR EXPLOSIVE DETONATION PARAMETERS FROM AN EQUATION OF STATE BASED ON DETONATION VELOCITY. Physical Chemistry Chemical Physics 2022

DEoS DATABASE						_		uals D				uals P	Gamma (γ) co	rrelation (Ci	HNO explosives)	Jones	s and Grüneis	en parameters (DEoS N
Number of Explosiv	res 238	Number	•				Statistics				Statistics							
		D	P	_		_	KJ	DEoS			KJ	DEoS		KJ			α	Γ
	KJ (only CHNO)	449	224			RMRS	3.4%	1.7%		RMRS	7.0%	6.0%		r 0.44	4 0.53	average values	0.27	0.60
	DEoS	519	263			MAPR P97,5	2.5% 8.2%	1.3% 3.9%		MAPR P97,5	5.6% 17.0%	4.9% 12.6%				standar deviation	0.02	0.06
	,	experimental data			calcu	lated D	0.270	3.570	calc	ulated P	17.070	12.0%						
Acr	density (g/cc)	Dexp (m/s)	Pexp (kbar)	reference	Dкл (m/s)	D_DEoS (m/s)	RRD KJ	RRD_DEoS	Ркі (kbar)	P_DEoS (kbar)	RRP KJ	RRP_DEoS	γ _{experimental}	γκι	γ_DEoS		α	Г
netb	1.71	8100	nan	[49]	8357	8031	3.2%	-0.9%	300	290			Copermental	1.0	V_5005		0.26	0.57
netb	1.74	8210	nan	[42]	8458	8127	3.0%	-1.0%	311	301							0.26	0.58
etb	1.76	8290	nan	[42]	8525	8192	2.8%	-1.2%	318	309							0.26	0.58
netb	1.77	8310	nan	[42]	8559	8224	3.0%	-1.0%	322	313							0.26	0.58
netb	1.78	8300	nan	[48]	8593	8257	3.5%	-0.5%	325	317						_	0.26	0.58
etb	1.78	8260	nan	[42]	8593	8257	4.0%	0.0%	325	317						_	0.26	0.58
etb etb	1.78 1.79	8460 8270	nan	[10]	8593 8626	8257 8289	1.6% 4.3%	-2.4% 0.2%	325 329	317 321						_	0.26	0.58
nm	1.64	6360	159	[8]	6332	6540	-0.4%	2.8%	168	172	5.6%	7.9%	3.17	2.92	3.09	-	0.26	0.73
ım ım	1.64	6480	165	[8]	6332	6540	-0.4%	0.9%	168	172	1.8%	4.0%	3.17	2.92	3.09	-	0.31	0.73
ım	1.65	6450	155	[8]	6359	6571	-2.3%	1.9%	170	174	9.7%	12.3%	3.43	2.92	3.09		0.31	0.73
NM/BENZ (76.4/23.6)	1.36	6850	nan	[14]	7019	6794	2.5%	-0.8%	182	173	3.770	12.370	3.43	2.32	3.03		0.31	0.49
NM/NM (0.071/1)	1.20	6570	138	[14]	6799	6602	3.5%	0.5%	155	143	12.2%	4.0%	2.74	2.57	2.64		0.23	0.50
NM/NM (0.25/1)	1.31	6880	156	[14]	7453	7148	8.3%	3.9%	199	184	27.8%	17.9%	2.97	2.65			0.23	0.50
NM/NM (0.5/1)	1.40	6780	168	[14]	7265	6911	7.2%	1.9%	198	179	18.1%	6.7%	2.82	2.72			0.24	0.53
NM/NM (60/40)	1.15	6360	132	[31]	6470	6284	1.7%	-1.2%	136	124	2.9%	-5.8%	2.52	2.54			0.24	0.51
NM/NM (70/30)	1.24	6790	160	[6]	7033	6767	3.6%	-0.3%	170	156	6.4%	-2.6%	2.57	2.60			0.23	0.50
NM/NM (80/20)	1.35	6790	180	[6]	7265	6919	7.0%	1.9%	194	175	7.5%	-2.8%	2.46	2.68	2.69		0.24	0.52
NM/NM (90/10)	1.48	6760	187	[6]	6944	6605	2.7%	-2.3%	189	169	0.9%	-9.8%	2.62	2.78	2.83		0.26	0.58
t	1.00	5111	64	[38]	5112	5053	0.0%	-1.1%	75	73	17.9%	13.8%	3.08	2.46	2.51		0.22	0.45
nt	1.00	5000	67	[8]	5112	5053	2.2%	1.1%	75	73	12.6%	8.7%	2.73	2.46	2.51		0.22	0.45
nt	1.33	6076	nan	[38]	6063	6017	-0.2%	-1.0%	133	130							0.24	0.52
t	1.36	6200	124	[8]	6152	6107	-0.8%	-1.5%	140	137	12.5%	10.5%	3.22	2.69	2.70		0.24	0.52
t	1.38	6212	nan	[31]	6201	6157	-0.2%	-0.9%	143	141							0.24	0.53
nt	1.42	6363	nan	[31]	6320	6277	-0.7%	-1.3%	152	150						_	0.24	0.54
nt	1.45	NaN	161	[38]	6398	6356			158	156	-2.1%	-3.1%				_	0.25	0.54
nt .	1.45	6500	144	[8]	6412	6371	-1.3%	-2.0%	159	157	10.2%	9.2%	3.25	2.76	2.74	_	0.25	0.54
nt nt	1.54 1.57	6736 6814	nan	[34]	6681 6747	6643 6711	-0.8% -1.0%	-1.4% -1.5%	180 185	180 186						-	0.25	0.56
••	1.57	6880	184	[34]	6788	6752	-1.0%	-1.5%	188	190	2.4%	3.0%	3.06	2.87	2.80	_	0.25	0.57
nt nt	1.58	6872	nan	[10]	6814	6778	-0.8%	-1.9%	191	190	2.4%	3.0%	3.00	2.87	2.80	-	0.25	0.57
nt	1.59	6940	202	[38]	6817	6781	-1.8%	-2.3%	191	192	-5.6%	-4.8%	2.79	2.87	2.80		0.26	0.57
nt	1.59	6950	nan	[34]	6817	6781	-1.9%	-2.4%	191	192	-5.0%	-4.070	2.73	2.07	2.00		0.26	0.57
nt	1.59	6940	176.5	[10]	6817	6781	-1.8%	-2.3%	191	192	8.1%	8.9%	3.34	2.87	2.80		0.26	0.57
t	1.60	6700	189	[53]	6831	6796	2.0%	1.4%	192	194	1.6%	2.4%	2.79	2.88			0.26	0.57
t	1.61	6842	nan	[34]	6860	6825	0.3%	-0.2%	194	196	2.0.1						0.26	0.57
nt	1.62	6883	nan	[10]	6889	6854	0.1%	-0.4%	197	199							0.26	0.57
nt	1.63	NaN	210	[34]	6932	6898			200	203	-4.5%	-3.3%					0.26	0.58
t	1.63	7070	205	[8]	6932	6898	-1.9%	-2.4%	200	203	-2.2%	-1.0%	2.97	2.91	2.82		0.26	0.58
t	1.63	6940	190	[34]	6938	6904	0.0%	-0.5%	201	204	5.8%	7.2%	3.14	2.91	2.82		0.26	0.58
t	1.63	7070	205	[34]	6938	6904	-1.9%	-2.3%	201	204	-2.0%	-0.7%	2.98	2.91	2.82		0.26	0.58
t	1.64	6940	nan	[48]	6961	6928	0.3%	-0.2%	203	206							0.26	0.58
t	1.64	6930	210	[8]	6961	6928	0.5%	0.0%	203	206	-3.4%	-2.0%	2.75	2.92			0.26	0.58
t	1.64	6950	190	[31]	6961	6928	0.2%	-0.3%	203	206	6.8%	8.3%	3.17	2.92			0.26	0.58
t	1.64	6958	192	[31]	6961	6928	0.0%	-0.4%	203	206	5.7%	7.2%	3.14	2.92	2.82		0.26	0.58
t	1.64	NaN	195	[53]	6961	6928			203	206	4.1%	5.5%			_	_	0.26	0.58
t	1.64	NaN	217	[14]	6961	6928			203	206	-6.5%	-5.2%				-	0.26	0.58
IT/FOX-12(50/50)	1.65	7120	221	[18]	7317	7471	2.8%	4.9%	225	234	1.9%	5.8%	2.79	2.93	2.94		0.28	0.64
tab	1.74	8580	nan	[8]	8247	8647	-3.9%	0.8%	296	338						-	0.26	0.59
tmta	1.49	7300	nan	[14]	7355	7542	0.8%	3.3%	213	221							0.26	0.59
tmta	1.57	7800	nan	[48]	7615	7825	-2.4%	0.3%	236	248	1.20/	4.20/	2.74	2.51	2.66	-	0.27	0.60
D/NM (14.5/85.5)	1.09 2.01	5840	100	[14]	5716	5674 8991	-2.1%	-2.8%	101	96 412	1.3%	-4.3%	2.71	2.51	2.66		0.24	0.51
nh		9150	nan	[48]	9214		0.7%	-1.7%	401							-	0.28	0.64
0341	1.90 1.90	7816 7866	nan nan	[7]		7931 7979		1.5%		294 298						-	0.31	0.72
0342	1.90	7866 7915	nan	[7]		8029		1.4%		302						-	0.30	0.71
-0343	1.90	7915 8046	nan nan	[7]		8029 8121		0.9%		302				_	_	_	0.30	0.70

Fernando G. Bastante ¹, María Araújo Fernández ¹, Eduardo Giráldez ¹. PREDICTIVE MODEL FOR EXPLOSIVE DETONATION PARAMETERS FROM AN EQUATION OF STATE BASED ON DETONATION VELOCITY. Physical Chemistry Chemical Physics 2022 CINTECX, GESSMin group, University of Vigo

references

	A. Belaada and W. A. Trzciński, 1,1-Diamino-2,2-dinitroethene (DADNE, FOX-7) – Properties and Formulations (a Review), Cent. Eur. J. Energ. Mater. 2016, 2(13), 527–544.
2]	A. Dolgoborodov, M. Brajnikov, M. Makhov, N. Safronov, V. Kirilenko, Detonation parameters of pressed charges of benzotrifuroxane. Combust. Explos. Shock Waves 2013, 49, 723–730.
3]	A. Elbeih, M. M. Mohamed, T. Wafy, Sensitivity and detonation characteristics of selected nitramines bonded by sylgard binder, Propellants Explos. Pyrotech. 2016, 41(6), 1044–1049.
.]	A. K. Hussein, A. Elbeih, S. Zeman, The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines. RSC Adv. 2018, 8,17272-17278.
]	A. Singh, M. Kumar, P. Soni, M. Singh, A. Srivastava, Mechanical and explosive properties of plastic bonded explosives based on mixture of HMX and TATB. Def. Sci. J. 2013, 63(6), 622-629.
	A. V. Utkin, V. M. Mochalova, A. M. Astakhov, V. E. Rykova, S. A. Koldunov, Structure of detonation waves in mixtures of tetranitromethane with nitrobenzene and methanol. Combust. Explos. Shock Waves 2020, 56, 556–565.
1	A. W. Campbell, H. L. Flaugh, A. Popolato, A. J. B. Ramsay, Customized explosives based on plastic-bonded mixtures to TATB and HMX, Seventh Symposium (International) on Detonation, Annapolis, 19 Jun 1981, Los Alamos National Lab. (LANL), MD, USA 1981.
	B. C. McGee, M. L. Hobbs, M. R. Baer, Exponential 6 Parameterization for the JC23-EOS, Report SAND98-1191, Sandia National Laboratories, Albuquerque, NM, USA 1998.
	B. Le Roux, M. Golfier, M. Rat, S. Lecume, Development of a cast plastic bonded explosive with high CL20 content, Insensitive munitions & energetic materials technology symposium, Bristol, 24-28 april 2006, NDIA, MSIAC and IMEMG, UK 2006.
	B. M. Dobratz, P. C. Crawford, LINL Explosives: Handbook Properties of Chemical Explosive Simulants, Lawrence Livermore National Laboratory, California, CA, USA 1985.
	B. T. Fedoroff, O. E. Sheffield, Encyclopedia of explosives and related items, PATR 2700, Vol. 2, p. B270, Picatinny Arsenal, Dover, NJ, USA 1962.
	B. T. Fedoroff, O. E. Sheffield, Encyclopedia of explosives and related items, PATR 2700, Vol. 5, p. E124, Picatinny Arsenal, Dover, NJ, USA 1962.
	C. M. Tarver, Justion and Expression of detonating IX-94 using recent and older experimental data, AIP Conference Proceedings 1979, 100042 (2018)
	C. M. Talver, guimerical and globeling of Explosives and Propellants, Third Edition, CRC Press, 2008.
	C.L. witader, Nurician woutum, g168), The Explosers point in Upinitian, I mile ution in Cress, 2000. D. Price, A. Clairmont Ir, Clairmont Ir, G188), The Suppose of Nitrogramidine to a Strong Shock, NOLTR 67-169, US Naval Ordnance Laboratory, White Oak, MD, USA 1968.
	D. Price, A. R. Claimmont J., 1290), The Response of Nitrogrammone to a strong shock, NOLTR 67-199, US NAVA Ordinance Laboratory, White Oak, NOL, USA 12908. D. Price, The detonation velocity-loading density relation for selected explosives and mixtures of explosives. J. Energ. Mater. 1983, 1(1), 55-82.
	D. Price, The deconation resource-probability relation for selected explosives and mixtures of explosives, Energ. Mater. 1963, 1(1), 55-62. E.G. Francios, D.E. Chavez, J.T. Mang, V.E. Sanders, J.M. Lloyd, Shock sensitivity of Diaminoazoxyfurazan (DAP) using an instrumented Small Scale Gap Test, LA-UR-08-07858, 40th International Conference of ICT, Los Alamos National Laboratories, Los Alamos, NM, USA, 2009
	E-C Koch, Insensitive high explosives: IV. Nitroguanidine — Initiation & detonation, Def. Technol. 2019, 15(4), 467-487.
	G. S. Yakovleva, R. K. Kurbangalina, L. N. Stesik, Rate of detonation of hydrazonium azide. Combust. Explos. Shock Waves 1974, 10, 233-235.
	H. Östmark, A. Helte, T.E. Carlsson, N-guanylurea-dinitramide (FOX-12): A new extremely insensitive energetic material for explosives applications, Thirteenth International Detonation Symp., Norfolk, 23-28 Jul 2006, Office of Naval Research, VA, USA 2006.
	1. Zhukov, G. Kozak, Calculation of thermochemical and explosive characteristics of furoxanes. Central Eur. J. Energ. Mater. 2008, 5(34), 45-54.
	J. P. Lu, Evaluation of the Thermo Chemical Code Cheetah 2.0 for Modeling Explosives Performance. Report DSTO-TR-1199, Aeronautical and Maritime Research Laboratory, Melbourne, AU 2001.
	J. R. Stine, On predicting properties of explosives – detonation velocity. J. Energ. Mater. 1990, 8(1-2), 41-73.
	J. Rećko, R. Lewczuk, L. Szymańczyk, S. Zeman, Study on explosive properties of BCHMX. Proceedings of the 22nd Seminar on New Trends in Research of Energetic Materials: NTREM, Pardubice, 10-12 April 2019, University of Pardubice, CZ 2019.
	L. G. Green, E. L. Lee, Detonation pressure measurements on PETN, Proceedings of the 13th International Detonation Symposium, Norfolk, VA, United States 2006, pp. 1144-1150.
5]	M. A. Daniel, P. J. Davies, I. J. Lochert, FOX-7 for Insensitive Boosters, Report DSTO-TR-2449, Defence Science and Technology Organisation, Weapons Systems DIV, Edinburgh, AU 2010.
	M. A. Ilyushin, I. V. Tselinsky, I. V Shugalei, Environmentally friendly energetic materials for initiation devices. Cent. Eur. J. Energ. Mater. 2012, 9(4), 293-327.
3]	M. D. Joseph, S. K. Jangid,, R. S. Satpute, B. G. Polke, T. Nath, S. N. Asthana, A. S. Rao, Studies on Advanced RDX/TATB-Based Low Vulnerable Sheet Explosives with HTPB Binder, Propellants Explos. Pyrotech 2009, 34, 326–330.
9]	M. F. Gogulya, M. N. Makhov, A. Yu. Dolgoborodov, M. A. Brazhnikov, V. I. Arkhipov, V. G. Shchetinin, Mechanical sensitivity and detonation parameters of aluminized explosives. Combust. Explos. Shock Waves 2004, 40, 445-457.
0]	M. F. Gogulya, M. N. Makhov, M. A. Brazhnikov, A. Yu. Dolgoborodov, Detonation velocity of BTNEN/Al. Combust. Explos. Shock Waves 2006, 42, 480-485.
1]	M. J. Kamlet, J. M. Short, The chemistry of detonations. VI. A Rule for Gamma as a criterion for choice among conflicting detonation pressure measurements, Combust. Flame 1980, 38, 221-230.
2]	M. Künzel, R. Matyáš, O. Vodochodský, J. Pachman, Explosive properties of melt cast erythritol tetranitrate (ETN). Cent. Eur. J. Energ. Mater. 2017, 14(2), 418-429.
3]	N. V. Kozyrev, Reparametrization of the BKW equation of state for CHNO explosives which release no condensed carbon upon detonation. Cent. Eur. J. Energ. Mater. 2015, 12(4), 651-669.
1]	P. Cooper, Explosives Engineering, Wiley-VCH, NY, USA 1996.
5]	P. Samuels, K. Spangler, D. Iwaniuk, R. Cornell, E. L. Baker, L. I. Stiel, Detonation performance analyses for recent energetic molecules, AIP Conference Proceedings 1979, 2018, 150033.
5]	R. E. Cornell, E. T. Wrobel, An experimental investigation of corner-turning performance in a large double cylinder of highly-insensitive explosive. Propellants Explos. Pyrotech. 2021, 46, 378-388.
	R. Engelke, S. A. Sheffield, L. L. Davis, Experimental and Predicted Detonation Parameters for Liquid-Phase H202/H20 Mixtures, J. Phys. Chem. 2000, 104, 6894-6898.
	R. Jeremić, J. Bogdanov, Development of a new model for the calculation of the detonation parameters of high explosives, J. Serb. Chem. Soc. 2012, 77-3, 371–380.
	R. K. Kurbangalina, E. A. Patskov, L. N. Stesik, G. Yakovleva, Detonation of liquid hydrazoic acid and its aqueous solutions. J. Appl. Mech. Tech. Phys. 1970, 11, 672-677.
	R. Lewczuk, P. Koślik, J. Rećko, Performance of BCHMX in small charges. Propellants Explos. Pyrotech. 2020, 45, 581-586.
	R. Meyer, J. Köhler, A. Homburg, Explosives, Wiley-VCH Verlag GmbH, Weinheim, 2007.
	S. A. Kolesnikov, A. V. Utkin, Nonclassical steady-state detonation regimes in pressed TNETB. Combust. Explos. Shock Waves 2007, 43, 710–716.
	5. A. Viorestinovy, A. V. Okniji, n.C. Chiquete, M. Short, The geometric scaling of IMX-104 explosive: Colleges: Laves are size for cylindrical rate sticks and slab tests, in: Proc. 15th International Detonation Symposium (Eds.: J. Carney and J. Maienschein), Office of Naval Research, 2015, p. 534.
	5. V. Pincert, 3. Elbelh, Z. Aktien Preliminary study on several plastic bonded explosives based on cyclic nitramines. Chin. J. Energy, A. Elbelh, Z. Aktien Preliminary study on several plastic bonded explosives based on cyclic nitramines. Chin. J. Energy and J. Winderton and J
	3. Zenia, R. Circini, Z. Anstein. Prieminiary study on sever all piastic discussive explosives during the plastic discussive and critical several control of the plastic discussive and critical several control of the plastic discussive pressure of the plastic di
	v. V. I. Pepekin, B. L. Korsunskii, Y. N. Matyushin, Explosive properties of furoxense Combust. Explose Wave under Shock Waves 2008, 44, 110-114.
	V. I. Pepkenti, B. L. Norsunskii, T. N. i. Matyushini, Explosive properties of informaties. Acquisite explosives properties of informaties. Acquisite explosives properties of informaties. Acquisite explosives properties of information evolutions and limiting properties of information evolutions. Doll. Phys. Chem. 2007, 414, 119-161.
	v. I. Pepekin, Liniung detoriated relocates and animong progressing powers of original explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation progressing powers of original explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. Client. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin, Liniung detoriation parameters of explosives. Dokt. Project. 2007, 414, 195-101. V. I. Pepekin,
	V. M. Mochalova, A. V. Utkin, A. V. Anan'in, Effect of the degree of dispersion on the detonation wave structure in pressed TNETB. Combust. Explos. Shock Waves 2007, 43, 575–579. V. Pepekin, Development of High Efficiency Energetic Explosives, 22nd International Pyrotechnics Seminar, Fort Collins, 15-19 July 1996, The International Pyrotechnics Society, Colorado, USA 1996.
	V. W. Manner, D. N. Preston, B. C. Tappan, V. E. Sanders, G. W. Brown, E. Hartline, B. Jensen, Explosive performance properties of erythritol tetranitrate (ETN). Propellants Explos. Pyrotech. 2015, 40(4), 460-462.
	V. S. Mishra, S. R. Vadali, A. L. Bhagat, R. K. Garg, V. M. Kugaonkar, S. Raman, R. K. Sinha, S. Asthana, Studies on NTO-, FOX-7- and DNAN-based melt cast formulations. Cent. Eur. J. Energ. Mater. 2017, 14, 403–417.
	W. A. Trzcinski, S. Cudzilo, S. Dipak, M. Nita, A comparison of the sensitivity and performance characteristics of melt-pour explosives with TNT and DNAN binder. Cent. Eur. J. Energ., Mat. 2014, 11: 445-455
	W. A. Trzciński, S. Cudziło, Z. Chylek, L. Szymańczyk, Detonation properties of 1,1-diamino-2,2-dinitroethene (DADNE). J. Hazard. Mater. 2008, 157 (2-3): 605-612.
•	W. Xiong, A simple method for calculating detonation parameters of explosives, J. Energ. Mater. 1985, 3(4), 263-277.
	Y. A. Bogdanova, S. A. Gubin, B. L. Korsunskii, V. I. Pepekin, Detonation characteristics of powerful insensitive explosives. Combust. Explos. Shock Waves 2009, 45, 738-743.
	Y. A. Bogdanova, S. A. Gubin, A. A. Anikeev, S. B. Victorov, Thermodynamic modelling of detonation H-N-O high explosives, J. Phys.: Conf. Ser. 2015, 751, 012018.
	calculated value