Learning Vector Quantization solved Numerical

By Devesh Mishra (202404)

by bevesti within a (202 to 1)	
e.g. Construct and test on LVQ net with five vectors assigned to 2 classes. The given vectors along with classes are:	
Vectors	Assigned clars (Cluster)
X1 = [0 0 1 1]	1
X2 = [1 0 0 0]	2
X3= [0001]	2
X4 = [1 1 0 0]	1
X5 = [0 1 1 0]	1
consider learning rate (d) = 0.1	
solution >	
X1 W11 W12	Class > Y1
X2 W21	
W31 W22 W42	class 2 -> Y2
". Here every vector how four inputs and no. of output	
classes are 2.	with 4 inputs and
classes are 2. . We draw a neural network with 4 inputs and	
2 outputs.	
Number of output classes given in ploblem 42.	
1 He work and	
initial weight vectors!	$W_{2} = [1 000]$

no of input in each vector are 4 (ie. i=1,2,3,4) so, to initialize the weight matrix we have to consider 4 rows.

Also there are 2 output classes so, we have to consider two columns (ie j=1,2).

>) So, weiger matrox has 4 rows 2 comms.

$$\Rightarrow$$
 initialized weight matrix $(w_{ij}) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 0 \end{bmatrix}$
or (first weight matrix)

Now, from remaining three vectors, consider first input vector(X_3): $X_i = (X_1, X_2, X_3, X_4) = (0 0 0 1)$ and target cluster = 2

so we will find out distance between weight vector 1 and X_3 , weight vector 2 and X_3 with the help of Euclidean Distance.

and first input vector by the formula:

[Dj = \frac{2}{2} (Wij - \tilde{x})^2

first we calculate distance b/w column 1 and X_3 :column means j > 1,

$$D_1 = \sum_{i=1}^{n} (w_{i1} - x_i)^2$$

$$D_1 = (0-0)^2 + (0-0)^2 + (1-0)^2 + (1-1)^2 = 1$$

Ainilarly: $D_2 = (1-0)^2 + (0-0)^2 + (0-0)^2 + (0-1)^2 = 2$ Compare D_1 and D_2 . \Rightarrow $D_1 < D_2$ So winning cluster is j=1 (by considering the minimum value). Update the weight of only column j=1:

Equations to update the weights are:-

Wij (new) = Wij (old) - a (Xi - Wij (old)]

(why we are updating because, Given input vector the belongs to target cluster 2, winning cluster 1.1)

But target cluster & winning cluster).

"It is '\p' sign: we put minus in formula.

Suppose Target cluster = winning cluster, then we will put plus in formula.

 $W_{11}(\text{new}) = 0 - 0.1(0-0) = 0$ $W_{21}(\text{new}) = 0 - 0.1(0-0) = 0$ $W_{31}(\text{new}) = 1 - 0.1(0-1) = 1.1$ $W_{41}(\text{new}) = 1 - 0.1(1-1) = 1$ So, new weight matrix $(W_{i1}) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1.1 & 0 \\ 1 & 0 \end{bmatrix}$

Consider, next input vector ie Way X4 = (1 1 00) its target censer = 1 Similarly we will find out Dy using updated weight matrix $W_{ij} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ $D_1 = (0-1)^2 + (0-1)^2 + (1.1-0)^2 + (1-0)^2 = 4.21$ $D_2 = (1-1)^2 + (0-1)^2 + (0-0)^2 + (0-0)^2 = 1$ Here! D2 < D1 so winning cluster is = 2 by Considering minimum value. So update column g=20f Wig update weight of column 2 as: -W12 = 1 - 0.1 (1-1) = 1 0 - 0.1(0-0) = 0 W42 (new) = 0 - 0.1 (0-0) =0 \Rightarrow $w_{ij} = \begin{bmatrix} 0 & 1 \\ 0 & -0.1 \\ 1.1 & 0 \end{bmatrix}$ 7 Now Consider next input vector X5 = (0110) its target cluster = 1 ... Again: $D_1 = (0-0)^2 + (0-1)^2 + (1-1)^2 + (1-0)^2 = 2.01$ $D_2 = (1-0)^2 + (-0.1-1)^2 + (0-1)^2 + (0-0)^2 = 3.21$ Di (D) (Winning ve ctor = 1, & Target cluster = 1)

$$W_{ij}(new) = W_{ij}(old) + \alpha [X_i - W_{ij}(old)]$$

$$W_{11}(new) = 0 + 0.1(0-0) = 0$$

$$W_{12}(new) = 0 + 0.1(1-0) = 0.1$$

$$W_{31}(new) = 1.1 + 0.1(1-1.1) = 1.09$$

$$W_{41}(new) = 1 + 0.1(0-1) = 0.9$$
So final updated weight matrix $(W_{ij}) = \begin{bmatrix} 0 & 1 \\ 0.1 & -0.1 \\ 1.09 & 0 \\ 0.9 & 0 \end{bmatrix}$
There way we can update the weight of the learning vector quantization neural network.