1 Auxiliary Shapes and Basic Keys

Those shapes are not intended for end users.

1.1 Auxiliary shapes

A set of auxiliary shapes are defined, but not meant to be used otherwise, though their anchors might be relevant:

 ${m Note:}$ The main point being that, regardless of the sub-shape orientation, the intuitive geographical coordinates applies.

1.2 General Keys

The following set of keys allow for shape fine tunning:

outer sep	Text outer separation, initial value: 1.5pt	
inner sep	Text inner separation, initial value: 1pt	
thickness	Components thickness (relative to the drawing thickness), initial value: 2	
tip len	tip len (current source). initial value: 4pt	
tip type	possible values: triangle and bezier. initial value: triangle	
minussign len	Minus sign len (voltage source). initial value: \pgf@circ@Rlen/14	
plussign len	Plus sign len (voltage source). initial value: 1.1\pgf@circ@Rlen/14	
source radius	The base radius. initial value: 0.3\pgf@circ@Rlen	
round sources	Sources will be round ones	
control sources	Sources will be control/diamond ones	
generic, european	Impedances will be generic rectangles	
zigzag, american	Impedances will be draw as zigzags	

Note: Those keys can be used with all the following components: $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{ToQuad} \rangle$, $\langle \text{ToThevenin} \rangle$ and $\langle \text{ToNorton} \rangle$.

2 Z, Y, G, H Quadripoles

A set of configurable Quadripoles is defined, whereas quadripoles parameters (for instance Z_{11} , Z_{12} , Z_{21} and Z_{22}) are <key-value> parameters.

2.1 The Base Quadripole

The base shape just draws a base box and sets some connection anchors: 1+, 1-, $inner\ 1+$, $inner\ 1-$, 2+, 2-, $inner\ 2+$ and $inner\ 2-$, besides the geographic ones:

And also a set of (meant for) text anchors:

2.2 Customization keys

Additionally, one has:

outer x fit to

(CoordB)

The 'box' width base width Ditto, half width. Initial value:2\pgf@circ@Rlen. half base width The distance between 1+ and 1-. The 'box' full height is equal to 2*(half base height base height + height ext + height ext+). Ditto, half height. Initial value:\pgf@circ@Rlen/7 half base height Initial value:2\pgf@circ@Rlen/7 height ext Initial value:0 height ext+ and inner1+/1-/2+/2-. distance between the 'box' initial value: inner ext \pgf@circ@Rlen/7 'box' 1+/1-/2+/2-. initial $\operatorname{distance}$ between the value: outer ext 5\pgf@circ@Rlen/14 If set, the inner anchors will be marked. inner marks If set, the outer anchors will be marked. outer marks The shape will be inverted, more or less like 'x scale=-1'. invert Case a Voltage source is zero, a series impedance will be draw vertically. alt, opt

2

outer x fit= $\{\langle CoordA \rangle\}$ $\{\langle CoordB \rangle\}$. The width will be set so that $\langle 1+ \rangle$ and

 $\langle 2+ \rangle$ (or $\langle 1- \rangle$ and $\langle 2- \rangle$, depending on the used anchor) will fit $\langle CoordA \rangle$ and

inner x fit to
y fit to

inner x fit= $\{\langle CoordA \rangle\}$ $\{\langle CoordB \rangle\}$. The width will be set so that $\langle Inner 1+ \rangle$ and $\langle Inner 2+ \rangle$ (or $\langle Inner 1- \rangle$ and $\langle Inner 2- \rangle$, depending on the used anchor) will fit $\langle CoordA \rangle$ and $\langle CoordB \rangle$

y $fit=\{\langle \texttt{CoordA}\rangle\}\{\langle \texttt{CoordB}\rangle\}$. In the case of a quadripole, the distance between, lets say 1+ and 1- will be made equal to the distance between CoordA and CoordB. In the case of a Thevenin/Norton, 1+ and 1- will fit CoordA and CoordB respectively.

Note: outer x fit and inner x fit might result in a shape rotation. y fit in case of a quadripole will never result in a rotation, while in case of a thevenin/norton it might.

Note: Those keys can be used with all the following components: $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{ToQuad} \rangle$, $\langle \text{ToThevenin} \rangle$ and $\langle \text{ToNorton} \rangle$.

A small example of the 'fit to' keys:

\LaTeX Code:

\LaTeX Result:

2.3 Quad

This is just the base shape, to be used in cases whereas one just want to emphasises part of a circuit (using, for instance, the inner x fit to key, or just mark a two port black box.

Note: There is also a *ToQuad* to be used in a *to[]* path, in which case the key outer x fit to style will be triggered with the starting and ending points of the *to[]* path.

2.3.1 Quad Keys

name	$\langle \text{node-name} \rangle$, when using a to[] path
I1	Initial value:\$I_1\$
T2	Initial value:\$I_2\$
V 1	Initial value: \$V_1\$
V2	Initial value: \$V 2\$
V Z	· - ·

2.3.2 Example of fit to uses

Squeezing a Quadripole between two parts of a circuit (nodes C and D):

\LaTeX Code:

```
1 \resizebox{0.4\textwidth}{!}{
2 \begin{tikzpicture}
3 \draw (0,0) coordinate(ref) \showcoord(ref)<45:0.2> to[R=R1] ++(0,2) coordinate(A) \showcoord(A)<45:0.2> to[R=R
2] ++(0,2) coordinate(B) \showcoord(B)<45:0.2>
4 --++(2,0) coordinate(C) \showcoord(C)<45:0.2> (C |- ref) coordinate(C1) \showcoord(C1)<45:0.2> -- (ref);
5 \draw (C) ++(7,0) coordinate(D) \showcoord(D)<45:0.2> -- ++(0.5,0) to[R=R3] ++(0,-3) -- ++(2,0) to[R=R4] ++(0,3) -- ++(0.5,0) coordinate(E) \showcoord(E)<45:0.2>;
6 \draw (C) node[Quad,anchor=1+,y fit to={C}{C1},outer x fit to={C}{D}]{};
7 \end{tikzpicture}}
```

$\LaTeX \ \operatorname{Result}:$

Fitting some circuit inside the Quadripole (nodes C and E):

LATEX Code:

```
1 \resizebox{0.4\textwidth}{!}{
2 \begin{tikzpicture}
3 \draw (0,0) coordinate(ref) \showcoord(ref)<45:0.2> to [R=R1] ++(0,2) coordinate(A) \showcoord(A)<45:0.2> to [R=R
2] ++(0,2) coordinate(B) \showcoord(B)<45:0.2>
4 --++(2,0) coordinate(C) \showcoord(C)<45:0.2> (C |- ref) coordinate(C1) \showcoord(C1)<45:0.2> -- (ref);
5 \draw (C) ++(7,0) coordinate(D) \showcoord(D)<45:0.2> -- ++(0.5,0) to [R=R3] ++(0,-3) -- ++(2,0) to [R=R4] ++(0,3) -- ++(0.5,0) coordinate(E) \showcoord(E)<45:0.2>;
6 \draw (C) node [Quad,anchor=inner 1+,y fit to={C}{C1},inner x fit to={C}{E}]{};
7 \end{tikzpicture}
```

$\LaTeX \ \operatorname{Result:}$

2.4 Quad Z

This shape, besides the base anchors (see ??) it has 4 internal nodes: <node>-Z11, <node>-Z12, <node>-Z21 and <node>-Z22 and each of those sub-nodes has geographic anchors as defined at ??.

Note: There is also a ToQuad Z to be used in a to[] path, in which case the key outer x fit to style will be triggered with the starting and ending points of the to[] path.

2.4.1 Quad Z keys

name	$\langle node-name \rangle$, when using a to[] path.
I1	Initial value:\$I_1\$
I2	Initial value:\$I_2\$
V1	Initial value: \$V_1\$

```
Initial value:$V_2$
V2
                     Initial value:$Z_{11}$
Z11
                     Initial value:Z_{12}
Z12
                     Initial value:Z_{21}
7.21
                     Initial value:Z_{22}
Z22
                     changes the label position. Defaults to: {south west}{top left}
Z11 label pos
                     changes the label position. Defaults to: {south east}{top left}
Z12 label pos
                     changes the label position. Defaults to: {north west}{bottom right}
Z21 label pos
                     changes the label position. Defaults to: {south east}{top right}
Z22 label pos
```

Note: The label pos keys expects two anchor names (... label pos= $\{\langle anchor \ A \rangle\}$ $\{\langle anchor \ B \rangle\}$). The first anchors refers the sub-shape node and the second anchor is the text one.

2.5 Quad Y

This shape, besides the base anchors (see ??) it has 4 internal nodes: <node>-Y11, <node>-Y12, <node>-Y21 and <node>-Y22 and each of those sub-nodes has geographic anchors as defined at ??.

Note: There is also a ToQuad Y to be used in a to[] path, in which case the key outer x fit to style will be triggered with the starting and ending points of the to[] path.

2.5.1 Quad Y keys

name	$\langle \text{node-name} \rangle$, when using a to[] path.
I1	Initial value:\$I_1\$
12	Initial value:\$I_2\$
V1	Initial value:\$V_1\$
V2	Initial value:\$V_2\$
Y11	Initial value:\\$Y_{11}\\$
Y12	Initial value:\$Y_{12}\$
Y21	Initial value:\$Y_{21}\$

Note: The label pos keys expects two anchor names (... label pos= $\{\langle anchor \ A \rangle\}$). The first anchors refers the sub-shape node and the second anchor is the text one.

2.6 Quad G

This shape, besides the base anchors (see ??) it has 4 internal nodes: <node>-G11, <node>-G12, <node>-G21 and <node>-G22 and each of those sub-nodes has geographic anchors as defined at ??.

Note: There is also a ToQuad G to be used in a to[] path, in which case the key outer x fit to style will be triggered with the starting and ending points of the to[] path.

2.6.1 Quad G keys

```
\langle \text{node-name} \rangle, when using a to [] path.
name
                       Initial value:I_1
Ι1
                       Initial value:$I_2$
12
                       Initial value:$V_1$
V1
                      Initial value:$V_2$
V2
                      Initial value:G_{11}
G11
                      Initial value:G_{12}
G12
                       Initial value:G_{21}
G21
                       Initial value:G_{22}
G22
                      changes the label position. Defaults to: {south west}{top left}
G11 label pos
                       changes the label position. Defaults to: {south east}{top left}
G12 label pos
                       changes the label position. Defaults to: {north west}{bottom right}
G21 label pos
```

changes the label position. Defaults to: {south east}{top right}

Note: The label pos keys expects two anchor names (... label pos= $\{\langle anchor \ A \rangle\}$ $\{\langle anchor \ B \rangle\}$). The first anchors refers the sub-shape node and the second anchor is the text one.

2.7 Quad H

This shape, besides the base anchors (see ??) it has 4 internal nodes: <node>-H11, <node>-H12, <node>-H21 and <node>-H22 and each of those sub-nodes has geographic anchors as defined at ??.

Note: There is also a ToQuad H to be used in a to[] path, in which case the key outer x fit to style will be triggered with the starting and ending points of the to[] path.

2.7.1 Quad H keys

```
\langle \text{node-name} \rangle, when using a to [] path.
name
                       Initial value:$I_1$
T 1
                       Initial value:$I_2$
12
                       Initial value:$V_1$
V1
                       Initial value:$V_2$
V2
                       Initial value:$H_{11}$
H11
                       Initial value:$H_{12}$
H12
                       Initial value:$H_{21}$
H21
                       Initial value:H_{22}
H22
                       changes the label position. Defaults to: {south west}{top left}
H11 label pos
                       changes the label position. Defaults to: {south east}{top left}
H12 label pos
                       changes the label position. Defaults to: {north west}{bottom right}
H21 label pos
                       changes the label position. Defaults to: {north west}{bottom right}
H22 label pos
```

Note: The label pos keys expects two anchor names (... label pos= $\{\langle anchor\ A\rangle\}$ $\{\langle anchor\ B\rangle\}$). The first anchors refers the sub-shape node and the second anchor is the text one.

3 Thevenin, Norton single port dipoles

3.1 The Base Black Box

The base shape just draws a base box and sets some connection anchors: 1+, 1-, $inner\ 1+$, $inner\ 1-$, besides the geographic and text ones:

3.2 Customization keys

Additionally, one has:

y fit to

The 'box' width base width Ditto, half width. Initial value:2\pgf@circ@Rlen. half base width The distance between 1+ and 1-. The 'box' full height is equal to 2*(half base height base height + height ext + height ext+). Ditto, half height. Initial value:\pgf@circ@Rlen/7 half base height Initial value:2\pgf@circ@Rlen/7 height ext Initial value:0 height ext+ distance between the 'box' and inner1+/1-/2+/2-.initial value: inner ext \pgf@circ@Rlen/7 between the 'box' 1+/1-/2+/2-. initial value: $_{
m distance}$ outer ext 5\pgf@circ@Rlen/14 If set, the inner anchors will be marked. inner marks If set, the outer anchors will be marked. outer marks The shape will be inverted, more or less like 'x scale=-1'. invert Case a Voltage source is zero, a series impedance will be draw vertically. alt, opt outer x fit= $\{\langle CoordA \rangle\} \{\langle CoordB \rangle\}$. The width will be set so that $\langle 1+ \rangle$ and outer x fit to $\langle 2+\rangle$ (or $\langle 1-\rangle$ and $\langle 2-\rangle$, depending on the used anchor) will fit $\langle CoordA\rangle$ and (CoordB) inner x fit= $\{\langle CoordA \rangle\} \{\langle CoordB \rangle\}$. The width will be set so that $\langle inner$ inner x fit to 1+) and (inner 2+) (or (inner 1-) and (inner 2-), depending on the used anchor) will fit (CoordA) and (CoordB)

Note: outer x fit and inner x fit might result in a shape rotation. y fit in case of a quadripole will never result in a rotation, while in case of a thevenin/norton it might.

y fit={ $\langle CoordA \rangle$ } { $\langle CoordB \rangle$ }. In the case of a quadripole, the distance be-

tween, lets say 1+ and 1- will be made equal to the distance between CoordA and CoordB. In the case of a Thevenin/Norton, 1+ and 1- will fit CoordA and

Note: Those keys can be used with all the following components: $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{Quad} \rangle$, $\langle \text{ToQuad} \rangle$, $\langle \text{ToThevenin} \rangle$ and $\langle \text{ToNorton} \rangle$.

CoordB respectively.

3.3 Black Box, BB

This is just the base shape, to be used in cases whereas one just want to emphasises part of a circuit (using, for instance, the *inner x fit to* key, or just mark a single port black box.

Note: There is also a ToBlack Box to be used in a to[] path, in which case the key y fit to style will be triggered with the starting and ending points of the to[] path.

3.3.1 Black Box keys

```
name (node-name), when using a to[] path.

I1 Initial value:$I_1$

V1 Initial value:$V_1$
```

3.4 Example of fit to uses

Squeezing a Black Box between two parts of a circuit (nodes C and D):


```
\resizebox{0.4\textwidth}{!}{
\textbf{begin}{tikzpicture}}
\draw(0,0) coordinate(ref) \showcoord(ref)<45:0.2> to [R=R1] ++(0,2) coordinate(A) \showcoord(A)<45:0.2> to [R=R 2] ++(0,2) coordinate(B) \showcoord(B)<45:0.2>
\draw(2) -- ++(2,0) coordinate(C) \showcoord(C)<45:0.2> (C |- ref) coordinate(C1) \showcoord(C1)<45:0.2> -- (ref);
\draw(C) ++(7,0) coordinate(D) \showcoord(D)<45:0.2> -- ++(0.5,0) to [R=R3] ++(0,-3) -- ++(2,0) to [R=R4] \draw(C) \dra
```

LATEX Result:

Fitting some circuit inside the Black Box (nodes C and E):

LATEX Code:

```
1 \resizebox{0.4\textwidth}{!}{
2 \begin{tikzpicture}
3 \draw (0,0) coordinate(ref) \showcoord(ref)<45:0.2> to [R=R1] ++(0,2) coordinate(A) \showcoord(A)<45:0.2> to [R=R]
2] ++(0,2) coordinate(B) \showcoord(B)<45:0.2>
4 -- ++(2,0) coordinate(C) \showcoord(C)<45:0.2> (C |- ref) coordinate(C1) \showcoord(C1)<45:0.2> -- (ref);
5 \draw (C) ++(7,0) coordinate(D) \showcoord(D)<45:0.2> -- ++(0.5,0) to [R=R3] ++(0,-3) -- ++(2,0) to [R=R4] ++(0,3) -- ++(0.5,0) coordinate(E) \showcoord(E)<45:0.2>;
6 \draw (C) node [Black Box, anchor=inner 1+, y fit to={C}{C1}, inner x fit to={C}{E}]{};
7 \end{tikzpicture}
8 }
```

LATEX Result:

3.5 Thevenin

This is the classical Thevenin circuit. Besides the base anchors (see ??) it has 2 internal nodes: <node>-Zth and <node>-Vth and each of those sub-nodes has geographic anchors as defined at ??.

Note: There is also a *ToThevenin* to be used in a to[] path, in which case the key y fit to style will be triggered with the starting and ending points of the to[] path.

3.5.1 Thevenin keys

Note: The label pos keys expects two anchor names (... label pos= $\{\langle anchor \ A \rangle\}$ $\{\langle anchor \ B \rangle\}$). The first anchors refers the sub-shape node and the second anchor is the text one.

3.6 Norton

This is the classical Norton circuit. Besides the base anchors (see ??) it has 2 internal nodes: <node>-Yn and <node>-In and each of those sub-nodes has geographic anchors as defined at ??.

Note: There is also a ToNorton to be used in a to[] path, in which case the key y fit to style will be triggered with the starting and ending points of the to[] path.

3.6.1 Norton keys

```
name\( \) node-name \), when using a to [] path.I1Initial value:$I_1$V1Initial value:$V_1$YnInitial value:$Y_{N}$InInitial value:$I_{N}$Yn label poschanges the label position. Defaults to: {south west}{top left}In label poschanges the label position. Defaults to: {south east}{top left}
```

Note: The label pos keys expects two anchor names (... label pos= $\{\langle anchor\ A\rangle\}$ $\{\langle anchor\ B\rangle\}$). The first anchors refers the sub-shape node and the second anchor is the text one.