명지대학교 ICT융합대학 정보통신공학과 강환일 교수 연구실 소개

정보 및 전산지능 연구실

주관기관: 명지대

협력기업: ㈜ 이드웨어

정보 및 전산지능 연구실 (지도교수: 강환일)

- 1. 정보및 전산지능 연구실 현재 주요 연구내용
 - 음성인식 인식율 개선
 - 저전력을 이용한 최소형 콘트롤러 장착연구
 - 딥러닝 내용 심화 연구
- 2. 음성인식 상세 연구내용
 - 세부 연구내용 연결 관계 다이아그램
- 3. 최적화 기법 비교 연구
 - Adam, Adagrad, Adadelta 및 RMSProp 등 최적화 기법 비교
- 4. Adam optimizer의 learning rate 및 성능 비교
 - Adam optimizer의 learning rate simulation
- 5. 음성 신호 속성인 멜주파수 캡스트럼 계수에 의한 성능 비교
 - 속성크기에 의한 최적화 기법 비교
- 6. 링크 정보
 - https://blog.naver.com/hwanilkang
 - https://github.com/hwankang/deep-learning-lab
 - hwanilkang@naver.com hwan@mju.ac.kr

https://github.com/hwankang/deep-learning-lab

https://blog.naver.com/hwanilkang

https://blog.naver.com/hwanilkang

1. 정보 및 전산지능연구실 현재 주요 연구 내용

- ◆딥러닝 (deep learning) 기반 음식인식 인식율 개선
 - 암호 구호 인식 시스템 -> 스마트 팩토리에 적용
 - 핵심어 인식 시스템 채용
 - 협력기업: ㈜이드웨어
- ◆저전력을 이용한 최소형 콘트롤러 장착연구
 - 암호 구호를 쉽게 변경 가능 (무선으로 암호 구호 변경 가능)

- ◆딥러닝(deep learning) 내용연구
 - Mobile net, Resnet 의 음식인식 응용
 - Adam, Adagrad, Adadelta 및 RMSProp 등 최적화 기법 비교
 - GPU 여부에 따른 성능 비교

2. 음성인식 상세 연구내용

- 핵심어 인식 (Keyword spotting)에 관한 연구임
- 알고리즘은 depth separable convolutional neural network (DS-CNN)* 를 이용함
 데이터 수집, 정련, 훈련를 진행하고 모델을 양자화하여 Raspberry PI에 장착함

3. 최적화 기법 비교 연구

- 4가지 최적화 기법에 따른 핵심어 인식율 바교
- 성능은 Adagrad> Adam> RMSProp > Adadelta 의 순서로 좋다.
- 학습율에 따라 성능은 다르다.

최적화기법 (optimizer)	학습율(learning	rate)	Accuracy (%) (train)	Accuracy (%) (validation, best validation)	Accuracy (%) (test)
Adam	0.0005	,0.0001,	0.00002	96.00	92.94(92.31)	93.50
RMSProp	0.0005	,0.0001,	0.00002	95.50	93.00(93.32)	93.31
Adadelta	0.5,	0.1,	0.02	94.00	92.24(92.31)	92.31
Adagrad	0.05,	0.01,	0.002	97.00	93.99(94.29)	94.19

Steps (10000, 10000, 10000) Batch size 200

구글 speech data 이용 12개의 단어 분류

4. Adam optimizer의 learning rate 및 성능 비교

최적화기법	학습율	Accuracy (%) (훈련)	Accuracy (%) (유효, best 유효)	Accuracy (%) (test)
Adam	0.0005,0.0001,0.00002	96.00	92.31(92.94)	93.50
Adam	0.05,0.01,0.002	97.50	94.83(95.19)	94.95
Adam	0.05,0.01,0.001	98.00	94.98(95.28)	94.89
Adam	0.06,0.02,0.004	96.00	95.07(95.32)	94.85
Adam	0.05,0.01,0.004	96.00	94.89(95.03)	94.76
Adam	0.05,0.02,0.001	97.50	94.62(95.03)	94.70
Adam	0.05,0.01,0.004	97.00	94.58(94.98)	94.72
Adam	0.06,0.02,0.002	96.50	95.01(95.10)	94.68
Adam	0.05,0.01,0.004	97.00	94.67(95.07)	94.58
Adam	0.05,0.01,0.003	97.50	94.49(94.76)	94.52
Adam	0.06,0.02,0.005	97.50	94.78 (94.94)	94.23

Steps (10000, 10000, 10000)

Batch size 200

Validation data:4445, test data::4890

5. 음성신호 속성인 멜주파수 캡스트럼 계수 기반 성능비교

• 구글 speech dataset에서 stop 핵심어를 인식하는 프로그램에서 최적화 방법의 성능 비교

5. 음성신호 속성인 멜주파수 캡스트럼 계수에 의한 성능비교

Adagrad>Adam>Adadelta>RMSProp

	Adam	RMSProp	Adadelta	Adagrad	
정확도					
	0.0001	0.0001	0.1	0.001	학습율
훈련	0.9969	0.9983	0.9996	1.0000	
유효	0.9817	0.9847	0.9868	0.9812	
테스트	0.9852	0.9844	0.9745	0.9894	

model.compile(loss='binary_crossentropy',optimizer='Adam',learning_rate=0.0001,metrics=['acc']) 30회 수행 구글 데이터에서 핵심어 stop 인식 시스템 MFCC 계수 (10,25)

6. 링크 정보

- https://github.com/hwankang/deep-learning-lab
 - 음성인식 자료 피피티
 - 인공지능 코드

- https://blog.naver.com/hwanilkang
 - 음식인식 다이아 그램 구성
 - 일상의 일
- ♦ hwanilkang@naver.com hwan@mju.ac.kr
 - Email