Chapter 3: Linear Methods for Regression

Junrui Di

Contents

1.	Introduction	1
2.	Linear regression models and least square	1
3.	Subset selection	3
4.	Shrinkage methods	3
5.	Methods using derived input directions	5

1. Introduction

Linear regression assumes that the regression function E(Y|X) is linear in the inputs X_1, \ldots, X_p .

2. Linear regression models and least square

- [1.] Linear regression from a least square point of view (minimal assumption about the distribution)
 - Form: $f(X) = \beta_0 + \sum_{j=1}^{p} X_j \beta_j$
 - Data: $\{x_i, y_i\}$ i = 1...N, each $x_i = (x_{i1}...x_{ip})^T$ is a feature vector, with parameters $\beta = (\beta_0, \beta_1, ..., \beta_p)^T$
 - Least square: To minimize $RSS(\beta) = \sum_{i=1}^{N} (y_i f(x_i))^2 = \sum_{i=1}^{N} (y_i \beta_0 \sum_{j=1}^{p} x_{ij}\beta_j)^2$ or $RSS(\beta) = (\mathbf{y} \mathbf{X}\beta)^T(\mathbf{y} \mathbf{X}\beta)$ in matrix form. **LSE makes no assumptions about the validity of the model form**
 - LSE: $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$
 - Fitted value: $\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$. $\mathbf{H} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}$ is the projector of \mathbf{y} onto the subspace spanned by column space of \mathbf{X} .
 - Inference on parameters (assuming y_i 's are uncorrelated and gave constant variance σ^2 , and x_i are fixed)

$$- Var(\hat{\beta}) = (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$$
$$- \hat{\sigma}^2 = \frac{1}{N-p-1} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

- [2.] Linear regression with Gaussian error
 - Model Assumption: $Y = \beta_0 + \sum_{j=1}^p X_j \beta_j + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$

• Distributional properties of model parameters

$$\begin{aligned}
&-\hat{\beta} \sim N(\beta, (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2) \\
&- (N - p - 1)\hat{\sigma}^2 \sim \sigma^2 \chi_{N-p-1}^2 \\
&- \hat{\beta} \text{ and } \hat{\sigma}^2 \text{ are statistically independent.}
\end{aligned}$$

• Inference on single parameter β_i

Under $H_o: \beta_j = 0$, $z_j = \frac{\hat{\beta}_k}{\hat{\sigma}\sqrt{(\mathbf{X}^T\mathbf{X})_{ii}^{-1}}} \sim t_{N-p-1}$, and β_j has a $1 - 2\alpha$ confidence interval of $(\hat{\beta}_j - z^{1-\alpha}\hat{\sigma}\sqrt{(\mathbf{X}^T\mathbf{X})_{ii}^{-1}}, \hat{\beta}_j + z^{1-\alpha}\hat{\sigma}\sqrt{(\mathbf{X}^T\mathbf{X})_{ii}^{-1}})$

Nested Model Comparison (test whether the added variables are necessary to the model)

$$F = \frac{(\text{RSS}_0 - \text{RSS}_1)/(p_1 - p_0)}{\text{RSS}_1/(N - p_1 - 1)} \sim F_{p_1 - p_0, N - p_1 - 1}, \text{ where RSS}_1 \text{ is for the larger model}$$

2.1 The Gauss-Markow Theorem

Least square estimates of β have the smallest variance among all linear unbiased estimates.

The least square estimator to estimate parameters $\theta = \alpha^T \beta$ is $\hat{\theta} = \alpha^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$. It is an unbiased estimator, i.e. $E(\alpha^T \hat{\beta}) = \alpha^T \beta$. Gauss-Markow theorem states that $Var(\alpha \hat{\beta})$ has the smallest variance for any unbiased estimator.

We may want to trade a little bias for larger reduction in variance.

2.2 Regression by succesive orthogonolization

Algorithm 3.1 Regression by Successive Orthogonalization.

- 1. Initialize $\mathbf{z}_0 = \mathbf{x}_0 = \mathbf{1}$.
- 2. For $j = 1, 2, \dots, p$

Regress
$$\mathbf{x}_j$$
 on $\mathbf{z}_0, \mathbf{z}_1, \dots, \mathbf{z}_{j-1}$ to produce coefficients $\hat{\gamma}_{\ell j} = \langle \mathbf{z}_\ell, \mathbf{x}_j \rangle / \langle \mathbf{z}_\ell, \mathbf{z}_\ell \rangle$, $\ell = 0, \dots, j-1$ and residual vector $\mathbf{z}_j = \mathbf{x}_j - \sum_{k=0}^{j-1} \hat{\gamma}_{kj} \mathbf{z}_k$.

3. Regress **y** on the residual \mathbf{z}_p to give the estimate $\hat{\beta}_p$.

Figure 1: Gram-Schmidt procedure for multiple regression

2.3 Multiple outcomes

Data: $Y_1...Y_K$, with the model $Y_k = \beta_{0k} + \sum_{j=1}^p X_j \beta_{jk} + \epsilon_k$, with the matrix form $\mathbf{Y} = \mathbf{XB} + \mathbf{E}$, where \mathbf{Y} is $N \times K$, \mathbf{X} is $N \times p + 1$, and \mathbf{B} us $(p+1) \times K$.

$$RSS(\mathbf{B}) = \sum_{k} \sum_{i} (y_{ik} - f_k(x_i))^2 = tr(\mathbf{Y} - \mathbf{X}\mathbf{B})^T(\mathbf{Y} - \mathbf{X}\mathbf{B}) \text{ is the RSs with LSE } \hat{\mathbf{B}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$$

3. Subset selection

- a. Best subset selection
- b. Forward and backward selection

4. Shrinkage methods

4.1 Ridge regression

• RSS

$$\hat{\beta}^{\text{ridge}} = \operatorname{argmin}_{\beta} \{ \sum_{i=1}^{N} (y_i - \beta_0 \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \}$$

or in the matrix form

$$RSS(\lambda) = (\mathbf{y} - \mathbf{X}\beta)^T (\mathbf{y} - \mathbf{X}\beta) + \lambda \beta^T \beta$$

with the solution

$$\hat{\beta}^{\text{ridge}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{v}$$

Even if $\mathbf{X}^T \mathbf{X}$ is not of full rank, $(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})$ is still nonsingular.

- Degree of freedom df(λ) = tr[$\mathbf{X}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T$] = $\sum_{j=1}^{p} \frac{d_j^2}{d_j^2 + \lambda}$
- Ridge solutions are not equivariant under scaling of the inputs, and one normally standardizes the inputs before solving for estimation.

4.2 Lasso

• RSS

$$\hat{\beta}^{\text{lasso}} = \operatorname{argmin}_{\beta} \{ \sum_{i=1}^{N} (y_i - \beta_0 \sum_{j=1}^{p} x_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \}$$

* Shrinkage $s=t/\sum_{j}|\hat{\beta}_{j}|$ where $\hat{\beta}_{j}$ is the least square estimation.

4.3 Subset selection, ridge, and lasso

[1.] Orthonormal input matrix X

- Ridge: proportional shrinkage
- LASSO: translate by a constant factor and truncating at zero, i.e soft thresholding
- \bullet Best subject: drops all the variables with coefficient smaller than the Mth largest, i.e. hard thresholding

Estimator	Formula
Best subset (size M)	$\hat{\beta}_j \cdot I(\hat{\beta}_j \ge \hat{\beta}_{(M)})$
Ridge	$\hat{eta}_j/(1+\lambda)$
Lasso	$\operatorname{sign}(\hat{eta}_j)(\hat{eta}_j -\lambda)_+$

Figure 2: Gram-Schmidt procedure for multiple regression

Figure 3: Gram-Schmidt procedure for multiple regression

[2.] Nonorthogonal case

Elastic net

$$\lambda \sum_{j=1}^{p} (\alpha \beta_j^2 + (1-\alpha)|\beta_j|)$$

- 4.4 Least angle regression
- 5. Methods using derived input directions
- 5.1 Principal components regression

PC regression forms the derived input columns $\mathbf{z}_m = \mathbf{X}v_m$ and then regresses \mathbf{y} on $\mathbf{z}_1, \mathbf{z}_2, ..., \mathbf{z}_M$. Since they are orthogonal, each parameter is simply $\hat{\theta}_n = \frac{\langle \mathbf{z}_m, \mathbf{y} \rangle}{\langle \mathbf{z}_m, \mathbf{z}_m \rangle}$. It can be converted back to $\hat{\beta}_M^{pcr} = \sum_{m=1}^M \hat{\theta}_m v_m$.

The mth principal component direction v_m solveS:

$$\max_{\alpha} \text{Var}(\mathbf{X}\alpha)$$

subject to $||\alpha| = 1, \alpha^T \mathbf{S} v_l = 0, \quad l = 1, ...n - 1$

where S is the sample covariance

5.2 Partial least square

Algorithm 3.3 Partial Least Squares.

- 1. Standardize each \mathbf{x}_j to have mean zero and variance one. Set $\hat{\mathbf{y}}^{(0)} = \bar{y}\mathbf{1}$, and $\mathbf{x}_j^{(0)} = \mathbf{x}_j$, $j = 1, \dots, p$.
- 2. For $m = 1, 2, \dots, p$
 - (a) $\mathbf{z}_m = \sum_{j=1}^p \hat{\varphi}_{mj} \mathbf{x}_j^{(m-1)}$, where $\hat{\varphi}_{mj} = \langle \mathbf{x}_j^{(m-1)}, \mathbf{y} \rangle$.
 - (b) $\hat{\theta}_m = \langle \mathbf{z}_m, \mathbf{y} \rangle / \langle \mathbf{z}_m, \mathbf{z}_m \rangle$.
 - (c) $\hat{\mathbf{y}}^{(m)} = \hat{\mathbf{y}}^{(m-1)} + \hat{\theta}_m \mathbf{z}_m$.
 - (d) Orthogonalize each $\mathbf{x}_{j}^{(m-1)}$ with respect to \mathbf{z}_{m} : $\mathbf{x}_{j}^{(m)} = \mathbf{x}_{j}^{(m-1)} [\langle \mathbf{z}_{m}, \mathbf{x}_{j}^{(m-1)} \rangle / \langle \mathbf{z}_{m}, \mathbf{z}_{m} \rangle] \mathbf{z}_{m}$, $j = 1, 2, \dots, p$.
- 3. Output the sequence of fitted vectors $\{\hat{\mathbf{y}}^{(m)}\}_1^p$. Since the $\{\mathbf{z}_\ell\}_1^m$ are linear in the original \mathbf{x}_j , so is $\hat{\mathbf{y}}^{(m)} = \mathbf{X}\hat{\beta}^{\text{pls}}(m)$. These linear coefficients can be recovered from the sequence of PLS transformations.

Figure 4: Gram-Schmidt procedure for multiple regression

The mth PLS direction $\hat{\psi}_m$ solves:

$$\begin{aligned} & \max_{\alpha} & \operatorname{Corr}^{2}(\mathbf{y}, \mathbf{X}\alpha) \operatorname{Var}(\mathbf{X}\alpha) \\ & \text{subject to } ||\alpha| = 1, \alpha^{T} \mathbf{S} \hat{\psi}_{l} = 0, \quad l = 1, ... n - 1 \end{aligned}$$