Worksheet 2

Due 10/13

1. We know how to obtain the general solution from a linear system. Let's try to reverse it. Find a linear system who's general solution is

$$(x_1, x_2, x_3, x_4) = (1, 2, 3, 4) + s_1(5, 6, 7, 8) + s_2(9, 0, 1, 2).$$

- 2. Suppose A is a matrix. Let v, w be distinct (meaning $x \neq y$) vectors that solve Ax = 0 so Av = 0 and Aw = 0 (0 here of course means the zero vector!). Let L be the line that passes through v and w. If u is on L, then Au = 0. Why? This exercise suggests that solution spaces are convex.
- 3. Let $z_1, z_2 \in \mathbb{R}$ and let $S = \{(1, z_1, z_2), (2, 1, 0), (1, 0, -1)\}.$
- Find some values for z_1 and z_2 such that S spans \mathbb{R}^3 .
- Find some values for z_1 and z_2 such that S does not span \mathbb{R}^3 .
- Find all values for z_1 and z_2 such that S spans \mathbb{R}^3 . (In the process of solving this problem, some of you will be tempted to divide by zero. Resist that temptation.)
- 4. Consider the following linear system that came from the book and the lecture.

$$2x_1 - 6x_2 - x_3 + 8x_4 = 0 (1)$$

$$x_1 - 3x_2 - x_3 + 6x_4 = 0 (2)$$

$$-x_1 + 3x_2 - x_3 + 2x_4 = 0. (3)$$

Using row reduction, we see that a general solution is of the form $x = s_1(3,1,0,0) + s_2(-2,0,4,1)$. Let $v_1 = (2,1,-1), v_2 = (-6,-3,3), v_3 = (-1,-1,2), v_4 = (8,6,2)$.

- Is $\{v_1, v_2, v_3, v_4\}$ is linearly independent set? The answer should be no.
- Express v_1 as a linear combination of v_2, v_3, v_4 .
- Express v_2 as a linear combination of v_1, v_3, v_4 .
- Express v_3 as a linear combination of v_1, v_2, v_4 .
- Express v_4 as a linear combination of v_1, v_2, v_3 .
- 5. Suppose $\{v_1, v_2, v_3\}$ is a linearly dependent set. Is it always the case that we can write v_1 as a linear combination of v_2 and v_3 ? If not, come up with a counterexample.
- 6. Come up with a inconsistent linear system whose associated homogenous linear system is consistent.