

KB-74 Applied Data Science

Math behind Machine Learning 4

Gradient descent, derivative, learning rate, update rules, batch gradient descent

Hypothesis: $h_{\theta}(x) = \theta_0 + \theta_1 x$

Parameters: θ_0, θ_1

Cost Function: $J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$

Goal: $\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$

Idea behind gradient descent

Have some function
$$J(\theta_0,\theta_1)$$
 $J(\theta_0,\theta_1)$ $J(\theta_0,\theta_1)$

Outline:

- Start with some θ_0, θ_1 (Say $\Theta_0 = 0$, $\Theta_1 = 0$)
- Keep changing $\underline{\theta_0},\underline{\theta_1}$ to reduce $\underline{J(\theta_0,\theta_1)}$ until we hopefully end up at a minimum

Idea behind gradient descent

Idea behind gradient descent

Gradient descent algorithm

Correct: Simultaneous update

$$temp0 := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)
temp1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)
\theta_0 := temp0
\theta_1 := temp1$$

Incorrect:

$$\Rightarrow \underline{\text{temp0}} := \theta_0 - \alpha \frac{\partial}{\partial \theta_0} J(\theta_0, \theta_1)$$

$$\rightarrow (\theta_0) := \text{temp} 0$$

$$\rightarrow \text{temp1} := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_0, \theta_1)$$

$$\rightarrow \theta_1 := \text{temp1}$$

θ_j :	$= \epsilon$	θ_j —	α ·	$\frac{\delta}{\delta \theta_j}$	·J(6	θ_0 , θ	1)	•	4	•	4	ė	•	a	a	d	a	ė	ė	٠
S	4	•	4	Ų U J	4	•	4	•	•	•	•									
$\frac{\delta}{\delta\theta}$	-J(6	θ_0, θ	$\theta_1)$	•	•	•	•	•	•	•	•		•	4	•	•	•	•	•	•
.)	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	4	•	•	•	•	•	•	•	•
•			•	•				•		•		•	•	•	•		•		•	•
•	•	•	4	å	•	•	•	4	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	4	•	•	4	4	4	4	•	4	•	•	4	•	•	•	•	•	•
•	4	•	•	4	4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
4	•	•	•	d	•	•	•	•	•	•	•	•	•	4	•	•	•	•	•	•
•	4	•	•		4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

θ_j	$=\epsilon$	θ_j —	α ·	$\frac{\delta}{\delta \theta_j}$	$J(\theta$	$_{0}$, θ	1)								•	•	•	•	•	4
θ_{j}	:=	4	ė ė		4	ė.	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	٠	4	•	•	•	•	•	•	•	•	4
4		٠	•	•	•	•	4	•	4	•	•	•	•	•	•	•	•	•	ė.	4
•	•	4	4	•	•	•	•	4	•	4	4	4	4	4	•	•	•	•	4	4
•	•	4	•	•	•	•	•	•	4	•	•	•	•	•	•	•	•	•	4	•
•	4	•	•	4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4	•
•	•	•	•	•	•	•	•	•	4	•	•	•	•	•	•	•	•	•	a	•
•	•	4	•	•	•	•	•	•	4	•	•	4	4	4	•	•	•	•	4	4
•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4

θ_{j}	:-	θ_j -	- α	$\frac{\delta}{\delta\theta}$	<u>-</u> J(θ_0 , (θ_1	•	4	ė	ė	ė	4	4	•	•	•	4	4	•
α:	•	•	•	•		•	•	4			•	•		•	•	•	•	4	•	•
•	•	•	•	٠	•	٠	•	•	٠	ė	•	٠	٠	4	•	•	•	•	•	•
•	٠	•	4	٠	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	٠	•	•
•	•	•	•			•		•		•	•	•			•	•	•	•	•	•
•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•
•	٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•		ė	•
•	4	4	•	•	4	•	4	•	4	•	٠	•	4	•	•	•	•	4	•	•
•	•	4	4		•	•	4	•	4	•		•	4	•	•	•	•	•	•	•
•	•	•	•	٠	•	٠	•	•		•	٠	٠		•	•	•	•	٠	•	•

Batch gradient descent

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples.

Derivation of update rules

$$\theta_j \coloneqq \theta_j - \alpha \cdot \sum_{i=1}^m J_j'(\theta)$$

$$J_j'(\theta) = \frac{\delta}{\delta \theta_j} J(\theta)$$

$$J_0'(\theta) = h_{\theta}(x^{(i)}) - y^{(i)}$$

$$J_1'(\theta) = (h_{\theta}(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

THE HAGUE

UNIVERSITY OF

APPLIED SCIENCES

Batch gradient descent update rules

$$\theta_j \coloneqq \theta_j - \alpha \cdot \sum_{i=1}^m J_j'(\theta)$$

$$\theta_0 \coloneqq \theta_0 - \alpha \cdot \sum_{i=1}^m h_{\theta}(x^{(i)}) - y^{(i)}$$

$$\theta_0 \coloneqq \theta_0 - \alpha \cdot \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) \cdot x^{(i)}$$

Gradient descent in action

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

THE HAGUE

UNIVERSITY OF

APPLIED SCIENCES

FACULTY IT & DESIGN

