

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 63-238166

(43)Date of publication of application : 04.10.1988

(51)Int.Cl. C08L101/00
C08G 61/10
C08G 61/12
H01L 29/28

(21)Application number : 62-073347 (71)Applicant : MITSUBISHI ELECTRIC CORP

(22)Date of filing : 26.03.1987 (72)Inventor : ISODA SATORU

KAMIYAMA TOMOTSUGU

KAWAKUBO HIROAKI

(54) ORGANIC ELECTRONIC ELEMENT MATERIAL

(57)Abstract:

PURPOSE: To obtain an organic electronic element material having anisotropy of electrical conduction controllable at molecular level, by using a functional molecule containing a functional group having electron-transmission ability in the molecule and transmitting electron between the functional groups according to a quantum mechanical tunneling mechanism.

CONSTITUTION: The objective organic electronic element substance is composed of a functional molecule containing plural functional composed of a functional molecule containing plural functional groups having electron transmission ability in the molecule and disposed in a manner that electron can be transmitted between the functional groups or composed of plural number of functional molecules each having one functional group and disposing the compounds in a manner that electron can be transmitted between said functional groups. The functional group is an oxidation-reduction substance selected from porphyrin derivatives, phthalocyanine derivatives, isoalloxazine derivatives, viologens and organometallic complexes. The skeleton of the functional molecule is a polymeric compound, a fatty acid or a cyclic organic compound.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than
the examiner's decision of rejection or
application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's
decision of rejection]

[Date of requesting appeal against examiner's
decision of rejection]

[Date of extinction of right]

⑩ 日本国特許庁 (JP)

⑪ 特許出願公開

⑫ 公開特許公報 (A)

昭63-238166

⑬ Int. Cl.

C 08 L 101/00
C 08 G 61/10
H 01 L 29/28

識別記号

L S Y
N L F
N L J

府内整理番号

7019-4J
A-2102-4J
A-2102-4J
6835-5F

⑭ 公開 昭和63年(1988)10月4日

審査請求 未請求 発明の数 1 (全7頁)

⑮ 発明の名称 有機電子素子材料

⑯ 特願 昭62-73347

⑰ 出願 昭62(1987)3月26日

⑱ 発明者 磯田悟 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社
中央研究所内
⑲ 発明者 上山智嗣 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社
中央研究所内
⑳ 発明者 川窪広明 兵庫県尼崎市塚口本町8丁目1番1号 三菱電機株式会社
中央研究所内
㉑ 出願人 三菱電機株式会社 東京都千代田区丸の内2丁目2番3号
㉒ 代理人 弁理士 大岩増雄 外2名

明細書

1. 発明の名称

有機電子素子材料

2. 特許請求の範囲

(1) 分子内に電子伝達能を持つ機能團を1個以上有する機能分子を構成材料とし、上記機能團間の電子伝達を量子力学的トンネリング機構に従わせることにより、上記電子伝達の方向に異方性を持たせ、その異方性を制御可能とした有機電子素子材料。

(2) 機能分子は、分子内に電子伝達能を持つ機能團を複数個有し、これらの機能團を相互に電子伝達が可能なように配置したものである特許請求の範囲第1項記載の有機電子素子材料。

(3) 機能分子は分子内に電子伝達能を持つ機能團を1個有するものであり、上記機能分子を複数個組合せて上記機能團間で電子伝達が可能なように配置した特許請求の範囲第1項記載の有機電子素子材料。

(4) 電子伝達能を持つ機能團は、ポルフィリン誘導体、フタロシアニン誘導体、イソアロキサジン誘導体、ピオロゲン類、および有機金属錯体のうちの少なくとも1種よりなる酸化還元物質である特許請求の範囲第1項ないし第3項の何れかに記載の有機電子素子材料。

導体、フタロシアニン誘導体、イソアロキサジン誘導体、ピオロゲン類、および有機金属錯体のうちの少なくとも1種よりなる酸化還元物質である特許請求の範囲第1項ないし第3項の何れかに記載の有機電子素子材料。

(5) 機能分子は骨格部として、高分子化合物、脂肪酸、環状有機化合物、またはこれらの物質の誘導体を有する特許請求の範囲第1項ないし第4項の何れかに記載の有機電子素子材料。

(6) 高分子化合物は、ポリペプチド、ポリスクレオチド、ポリアミド、ビニルポリマー、ポリエステル、兀電子共役系ポリマー、ポリイミド、ポリアミドイミド、またはフェノール系ポリマーである特許請求の範囲第5項記載の有機電子素子材料。

(7) 兀電子共役系ポリマーは、ポリアセチレン、ポリビロール、またはポリバラフェニレンである特許請求の範囲第6項記載の有機電子素子材料。

(8) 脂肪酸は、ステアリン酸またはドデカン酸である特許請求の範囲第5項記載の有機電子素子材料。

(9) 現状有機化合物は、シクロデキストリンである特許請求の範囲範囲第5項記載の有機電子素子材料。

(10) 骨格部に、金属と直接化学結合を行う官能基を有する特許請求の範囲第1項ないし第9項の何れかに記載の有機電子素子材料。

(11) 官能基はSH基またはSiCl基である特許請求の範囲第10項記載有機電子素子材料。

3. 発明の詳細な説明

(産業上の利用分野)

この発明は電子素子に用いる電子材料に関するもので、電子伝達能をもつ機能團を利用して電気伝導の異方性を分子レベルの超微細な大きさ(数十~数百Å)で制御することができるようとしたものである。

(従来の技術)

従来、例えば青木昌治著「電子物性工学」電子通信学会編P、284に示されるように電子素子に用いられている電子材料、例えばSi半導体では、結晶の帯理論により導電性が発現することが知ら

このため、イオン注入を微細領域に行うなどの微細加工技術を駆使して素子としての微細化を図ってきた。LSIはその良い例である。

ところでLSIのメモリ容量と演算速度を上昇させるには、素子そのものの微細化が不可欠であるが、Siを電子材料とする素子では0.2μm程度の微細パターンで電子の平均自由行程度と素子サイズとがほぼ等しくなり、素子の独立性が保たれなくなるという限界を抱えている。このように、現行の素子材料を用いることでは、素子の微細化の点で限界があるため、新しい電気伝導の機構に基づく電子素子材料であって上記0.2μmの壁を破ることができる材料が求められている。

この発明は上記のような要求に答えるためになされたものであり、電気伝導の方向異方性を分子レベルで制御できる電子素子材料を得ることを目的とする。

(問題点を解決するための手段)

ところで、微生物の生体膜及び高等生物のミトコンドリアの内膜中には、それぞれ機能は異なる

れている。第8図にP形シリコンのエネルギー準位図を示す。S_i結晶中にインジウムなどの不純物が存在すると図に示すように不純物単位を形成し、充满帶から電子を受けとり充满帶に正孔が生じこれがキャリアとなり導電性を呈する。

このように、S_i半導体では結晶場の中での帯構造で電気伝導の性質が規定されている。このため、導電性をもたらすキャリア(電子或は正孔)は、結晶構造の中を拡散してランダムに移動するため、伝導方向の分子レベルの超微細な大きさ(数十~数百Å)での制御は不可能である。

S_i半導体に限らず、現在迄に使用されている電子材料では、伝導方向を分子レベルで制御可能なものは知られていない。

(発明が解決しようとする問題点)

従来の電気伝導性電子材料は、以上のような帯理論を伝導機構とするものが大半であり、そうでない場合もキャリアの存在空間が1000Å以上の広がりをもっているために、伝導方向を分子レベルの大きさに制御することが不可能であった。

が、H₂、有機酸、NAD(P)H(Nicotinamide Adenine Dinucleotide (Phosphate))などの還元性の化学物質から電子を引き抜く酵素蛋白質とともに、その引き抜かれた電子を生体膜の定められた方向に運ぶ電子伝達能を有する蛋白質(以下、電子伝達蛋白質と記す)が複数種類存在している。そしてこれらの電子伝達蛋白質は生体膜中に一定の配向性をもって埋め込まれ、分子間で電子伝達が起こるよう特異的な分子間配置をとっている。

このように、電子伝達蛋白質は生体膜中で精巧な配置をもって連鎖状に並んでいるため、電子を蛋白質連鎖に沿って流すことが可能で、電子の動きの方向を分子レベルで制御することができる。

第9図に電子伝達蛋白質の連鎖(電子伝達系)の一例として、ミトコンドリアの内膜の電子伝達系を模式的に示す。図において、(1)はミトコンドリアの内膜、(2)~(4)は電子伝達蛋白質であり、還元性有機物であるNADH(図中L)、コハク酸(図中M)からそれぞれNADH-Q還元酵素(2)、コハク酸脱水素酵素(3)により引き抜かれた電子は、

NADH - Q 還元酵素(9), コハク酸脱水素酵素(10) → チトクローム b (11) → チトクローム c (12) → チトクローム c (13) → チトクローム a (14) → チトクローム a (15) の経路で伝達し、出口側 N で最終的に酸素に渡され、水を生ずる。

第9図に示した電子伝達蛋白質は電子伝達時に酸化還元(レドックス)反応を伴い、各電子伝達蛋白質のレドックス電位の負の単位から正の単位へと分子レベルで方向を制御して電子を流すことができる。

最近の知見によれば、分子レベルで方向を制御して電子を流すことができる生体の電子伝達系の機能は、電子伝達蛋白質の中に存在するヘムなどの電子伝達能を有する機能團の特性によって量子力学的トンネリング機構(例えば文献 J. J. Hopfield: Proc. Natl. Acad. Sci., USA, 71, 3640(1974), に記載)に従って実現されていることが知られている。

したがって、生体内の電子伝達蛋白質と同様の機能分子、すなわち電子伝達能をもつ機能團とそ

の空間配置を規定する骨格部分からなる機能分子を人工的に合成し、それを単独あるいは複数分子組合せることにより、生体内の電子伝達系と同様に電子の移動方向を分子レベルで制御できると考えられる。

すなわち、この発明に係る有機電子素子材料は、分子内に電子伝達能を持つ機能團を1個以上有する機能分子を構成材料とし上記機能間の電子伝達を量子力学的トンネリング機構に従わせることにより、上記電子伝達の方向に異方性を持たせ、その異方性を制御可能としたものである。

(作用)

第1図は、電子伝達能をもつ機能團(3)を分子内に2個もつ機能分子(2)の单分子膜に2つの電極(2a), (2b)を設けた場合の模式図である。電子移動は、機能團間の距離と機能團の電子の波動関数の重なりに大きく依存するため、図中の実線で示した矢印の領域で電子が流れれるが破線の矢印の領域では電子が流れない。これにより第2図の如く電極を形成した場合、電極(1a)-(1b)間或いは電

極(1c)-(1d)間では電子が流れれるが、電極(1a)-(1c)間、(1a)-(1d)間、(1b)-(1d)間、(1b)-(1c)間では電子が流れない。このように、本件の有機電子素子材料により電子移動の方向性を分子レベルで制御することができる。この作用を実現できる。生体物質以外の電子材料は現在迄知られていない。

(実施例)

以下、本発明の一実施例を図について説明する。第3図は、電子伝達能をもつ機能團(3)を分子内に1個もつ機能分子(2)の三層累積膜を示している。三層の機能分子(2)を同一の分子で構成すると電子の移動度は分子(2a)から(2c)の方向と分子(2c)から(2a)の方向で同等であるが、三層の機能分子をそれぞれ異なる分子で構成すると分子(2a)から(2c)の方向と(2c)から(2a)の方向の電子の移動度を異なるものにすることが可能である。本図の場合も、第2図の場合と同様の原理により電子移動は図中実線の矢印部分で行なわれ、破線の矢印部分では行なわれない。

第4図は、電子伝達能をもつ機能團(3a), (3b),

(3c)を分子内に3個もつ機能分子(2)の单分子膜を示している。図中の実線矢印部分で電子移動が起こる。このように、機能團を電子の量子力学的トンネリングが起こる範囲内で任意に配置することにより、電子移動の通路(バス)を分子レベルで任意に設定することができる。

第5図は、電子伝達機能分子を三次元的に配列した場合の模式図である。機能分子を適当に配列させることにより電子は、機能團間を電子移動することができるため、例えば矢印で示すように三次元的な電子の移動方向を分子レベルで制御することができる。

なお、この発明の有機電子素子材料は、機能分子の骨格部分と機能團とが化学結合しており、さらに機能團の周囲の骨格部分と機能團とが三次元的な分子間相互作用をするように作成する。三次元的な分子間相互作用には、①静電相互作用、②配位結合、③水素結合、④疎水相互作用などの近距離力がある。これによって機能團の分子内の位置と配向性を規定でき、任意に異方性を制御でき

る。

第6図は配位結合を利用した場合の機能團と骨格部の相互作用を示す説明図であり、この例では機能團がヘム、骨格部がポリベブチドである。図面左側のヘムはポリベブチドのヒスチジン残基2個と配位結合しており、右側のヘムはポリベブチドのヒスチジンおよびメチオニン残基と配位結合している。このような構成にすることにより、2個のヘム間の距離を固定し、かつヘム間の配向性を相互に同一面内で平行に配位させることができ、量子力学的トンネリングを起こさせることができる。

第7図は静電作用を利用した場合の2個の機能分子間の相互作用を示す説明図であり、この例では機能團がヘム、骨格部がポリベブチドである。図面左側の分子のヘムはヒスチジン残基と配位結合し、右側の分子のヘムはヒスチジン残基およびメチオニン残基と配位結合している。これら2個の機能分子を組合せるのに、左側の分子のアミノ酸残基のアンモニウム基とがーと+の静電作用で

以上のように、この発明によれば、分子内に電子伝達能を持つ機能團を1個以上有する機能分子を構成材料とし、上記機能團間の電子伝達を量子力学的トンネリング機構に従わせることにより、上記電子伝達の方向に異方性を持たせ、その異方性を制御可能としたので、電気伝導の方向異方性を分子レベルで制御できる有機電子素子材料が得られる効果がある。

4. 図面の簡単な説明

第1図、第2図はこの発明による有機電子素子材料の作用を説明する模式図、第3図はこの発明の一実施例による機能團を分子内に一個持つ機能分子の三層累積膜を示す模式図、第4図はこの発明の他の実施例による機能團を分子内に3個持つ機能分子の単分子膜を示す模式図、第5図はこの発明の他の実施例による機能分子を三次元的に配列した場合を示す模式図、第6図は配位結合を利用した場合の機能團と骨格部の相互作用を示す説明図、第7図は静電作用を利用した場合の2個の機能分子間の相互作用を示す説明図、第8図はP

接合する分子間力を利用している。このように構成することにより、機能團間の距離と配向性を規定できる。

なお、機能團としては、例えばポルフィリン誘導体、フタロシアニン誘導体、イソアロキサン誘導体、ビオロゲン類、有機金属錯体等の酸化還元物質等が用いられ、骨格部としては、例えばポリベブチド、ポリスクレオチド、ポリアミド、ビニルポリマー、ポリエステル、兀電子共役系ポリマー、ポリイミド、ポリアミドイミド、フェノール系ポリマー等の高分子化合物や、ステアリン酸、ドデカン酸等の脂肪酸や、シクロデキストリン等の環状有機化合物等が用いられる。また、特に、兀電子共役系ポリマーとしては、ポリアセチレン、ポリビロール、ポリバラフェニレン等が用いられる。

さらに、骨格部に、金属と直接化学結合する例えばSH基、SI基等の官能基を有していると化学修飾への利用が容易となる。

(発明の効果)

形シリコンのエネルギー単位を示す説明図、第9図は電子伝達蛋白質の電子伝達の様子を示す説明図である。

図において、(1a)~(1d)は電極、(2)、(2a)~(2c)は機能分子、(3)、(3a)~(3c)は機能團である。

なお、各図中同一符号は同一または相当部分を示すものとする。

代理人 大岩増雄

第1図

第2図

第3図

第4図

第5図

第6図

第8図

第7図

第9図

