COMS 331: Theory of Computing, Spring 2023 Homework Assignment 8

Neha Maddali Due at 10:00PM, Wednesday, April 12, on Gradescope.

Problem 51.

To prove that $\forall B$ is co-c.e. given that B is co-c.e., we need to show that there exists a TM that can semi-decide $\forall B$. Let M be a TM that semi-decides B. We construct a new TM N that semi-decides $\forall B$ as follows:

On input x, N first runs M on all possible inputs w. If M halts and $\langle x,w\rangle \notin B$ for some w, then N rejects x. If M doesn't halt on some input w, N also doesn't halt on input x. If x is not in $\forall B$, then there exists some w such that $\langle x,w\rangle \notin B$. In this case, M will eventually halt on w and reject x, so N will also reject x. So, if N halts and rejects x, we can conclude that x is not in $\forall B$. Otherwise, if $x \in \forall B$, then for all possible inputs w, $\langle x,w\rangle \in B$. This means that M will either halt and accept x on all possible inputs w, or M will not halt on some input w. If M halts and accepts x on all possible inputs w, then N will also halt and accept x. If M doesn't halt on some input w, then N also doesn't halt on input x. Thus, N semi-decides $\forall B$ and so $\forall B$ is co-c.e.

Problem 52.

Let M be a TM that semi-decides A. Construct a new TM N that decides B as follows: On input x, for each i and for each string w of length i, if $\langle x, w \rangle \in A$, accept x and continue to the next string w, else reject x.

The language B decided by N consists of all strings x such that for every w, $\langle x, w \rangle \in A$. First, suppose that $x \in A$. Then, for every w, either $\langle x, w \rangle \in A$ or $\langle x, w \rangle \notin A$. If $\langle x, w \rangle \in A$ for every w, then x is in the language decided by N, because N checks all possible strings w and continues to the next one if $\langle x, w \rangle \in A$. Otherwise, there exists some w such that $\langle x, w \rangle \notin A$, so N will reject x. Now suppose that $x \notin A$. Then, there exists some w such that $\langle x, w \rangle \notin A$. Since N checks all possible strings w in lexicographic order and rejects x if $\langle x, w \rangle \notin A$ for some w, it will reject x. Thus $A = \forall B$ where B is the decidable language decided by N. \blacksquare

Problem 53.

Graph(f) is the linear line f(n)=n+2

Graph⁺(f) is everything above the line $f(n)=n+2, \forall n \in N$

Graph⁻(f) is everything below the line $f(n)=n+2, \forall n \in N$

Problem 54.a.

Graph(G) is not decidable. To prove this, use a reduction from the Halting problem. Assume that Graph(G) is decidable and consider a TM M takes input x. We can define a function f(n) as such: run M for n steps on input x, and output n+1 if M has not halted within n steps, and output the value it would have printed on the tape if it had halted within n steps. Then Graph(G) would be able to decide whether (n, f(n)) is in Graph(G), which is equivalent to deciding whether M halts within n steps on input x. But this contradicts the undecidability of the Halting problem we learned from lecture. This means that Graph(G) is not decidable.

Problem 54.b.

Graph(G) is c.e. Show that there exists a TM M that can generate all pairs (n, G(n)) for $n \in N$. M is as follows: on input k, (1) generate all pairs (n, m) for n, $m \leq k$. (2) For each such pair, check if m=G(n). (3) If m=G(n), output the pair (n,m). TM M will eventually generate all pairs (n, G(n)) for $n \in N$. Thus, Graph(G) is c.e.

Problem 54.c.

Graph(G) is not co-c.e. To prove this, we can show that it complement is not c.e. The complement of Graph(G) is the set of all pairs (n,k) such that $k \leq G(n)$. Assume that the complement of Graph(G) is c.e. and let M be a TM that enumerates it. Use M to compute G(n) as follows: for each n, we simulate the computation of M on all pairs (n,k) until the largest k is found such that (n,k) is enumerated by M. Then G(n) is equal to k+1. But this contradicts the fact that G is not computable, since we have just show how to compute it using a computably enumerable procedure. Therefore, the complement of Graph(G) is not c.e., which implies that Graph(G) is not co-c.e.

Problem 55.a.

Graph⁺(G) is not decidable. To prove this, we can reduce the halting problem to Graph⁺(G), which is known to be undecidable. Given a TM M with an input w, we can construct a function $f: N \to N$ that is defined as follows: For any n, if M halts on input w in n or fewer steps, then let f(n) be the max number of steps M takes on any input. Otherwise, let f(n)=0. Given M and w, construct f as described and consider the upper graph of f, Graph⁺(f). We can see that $(n,k) \in Graph^+(f)$ if and only if k > G(f(n)), since G(f(n)) is the maximum number of steps that M takes on any input, if it halts in n steps or fewer. Therefore, we can decide whether M halts on input w in n steps of fewer

by checking whether $(n,k) \in Graph^+(f)$ for some k. So, $Graph^+(G)$ is undecidable.

Problem 55.b.

Graph⁺(G) is c.e. To prove this, we can construct a TM M that enumerates all pairs $(n,k) \in Graph^+(G)$ like so: (1) for each n, simulate G(n) until the smallest k is found such that k > G(n). (2) if such a k exists, output the pair (n,k). This TM will eventually enumerate all pairs $(n,k) \in Graph^+(G)$, since G is a rapidly growing function and k > G(n) can only happen for a finite number of n's. So, $Graph^+(G)$ is c.e.

Problem 55.c.

Graph⁺(G) is not co-c.e. We can reduce the complement of the halting problem to Graph⁺ (G). Given a TM M and an input w, construct a function f: $N \to N$ that is defined as follows: For any n, if M halts on input w in n or fewer steps, then let f(n)=1. Otherwise let f(n)=0. We can now show that there is a reduction from the complement of the halting problem to Graph⁺(G). Given M and w, we construct f as described, and we consider the complement of the upper graph of f as the set $\{(n,k) \in N \times N | k \le f(n)\}$. This set is the lower graph of a function g: $N \to N$, where g(n)=0 if M halts on input w in n steps or fewer, and g(n)=1 otherwise. Therefore, we can decide whether M halts on input w in n steps or fewer by checking whether $(n,k) \in Graph^+(G)$ for all $k \le f(n)$. Therefore, $Graph^+(G)$ is not co-c.e.

Problem 56.a.

Graph⁻(G) is not decidable. Given a TM M and an input x, we can construct a function f(n) that behaves like such: If M halts on input x in at most n steps, then f(n)=0. Otherwise, let k be the number of steps that M runs on input x before it halts. Then f(n)=k+1 for all n > k. f is a computable function, since we can simulate M on input x for n steps and determine whether it halts or not. Now, if we can decide (n,0) is in $Graph^-(f)$ or not, we can determine whether M halts on input x or not. This is because (n,0) is in $Graph^-(f)$ if and only if f(n)>0, which is true if and only if M halts on input x in at most n steps. We know that the halting problem is undecidable. So, there can't exist an algorithm that decides whether a given pair (n,k) is in $Graph^-(G)$ or not. So, $Graph^-(G)$ is not decidable.

Problem 56.b.

Graph⁻(G) is c.e. Construct a TM M that enumerates all pairs (n,k) where k < G(n). M simulates G on all natural numbers in parallel, and whenever it finds a pair (n,k) such that k < G(n), it outputs it. So Graph⁻(G) is c.e.

Problem 56.c.

Graph⁻(G) is not co-c.e. To prove this, determine whether there exists an algorithm that can list all the pairs in $N \times N$ that are not in Graph⁻(G). Let us assume there is such an algorithm. Then we can use it to decide whether a given pair (n,K) is in Graph⁻(G) or not. Run the algorithm to see if (n,k) is listed or not. If it is listed, then it is not in Graph⁻(G). Otherwise it is in Graph⁻(G). But, as shown in 56a, Graph⁻ is not decidable. Therefore, there can't exist an algorithm that can list all pairs in $N \times N$ that are not in Graph⁻(G). So Graph⁻(G) is not co-c.e.