Predicting Insurance Claim

Using sample data set of historical insurance claims to develop a model for Insurance claim prediction.

```
In [1]: import pandas as pd
    #Loading the data set

df = pd.read_csv('./insurance2.csv')
    df.head()
```

Out[1]:

	age	sex	bmi	children	smoker	region	charges	insuranceclaim
0	19	0	27.900	0	1	3	16884.92400	1
1	18	1	33.770	1	0	2	1725.55230	1
2	28	1	33.000	3	0	2	4449.46200	0
3	33	1	22.705	0	0	1	21984.47061	0
4	32	1	28.880	0	0	1	3866.85520	1

Data Preprocessing

```
In [2]: df.shape
Out[2]: (1338, 8)
```

In [3]: df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1338 entries, 0 to 1337
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	age	1338 non-null	int64
1	sex	1338 non-null	int64
2	bmi	1338 non-null	float64
3	children	1338 non-null	int64
4	smoker	1338 non-null	int64
5	region	1338 non-null	int64
6	charges	1338 non-null	float64
7	insuranceclaim	1338 non-null	int64

dtypes: float64(2), int64(6)

memory usage: 83.8 KB

In [4]: df.describe()

Out[4]:

	age	sex	bmi	children	smoker	region	charç
count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.0000
mean	39.207025	0.505232	30.663397	1.094918	0.204783	1.515695	13270.4222
std	14.049960	0.500160	6.098187	1.205493	0.403694	1.104885	12110.0112
min	18.000000	0.000000	15.960000	0.000000	0.000000	0.000000	1121.8739
25%	27.000000	0.000000	26.296250	0.000000	0.000000	1.000000	4740.2871
50%	39.000000	1.000000	30.400000	1.000000	0.000000	2.000000	9382.0330
75%	51.000000	1.000000	34.693750	2.000000	0.000000	2.000000	16639.9125
max	64.000000	1.000000	53.130000	5.000000	1.000000	3.000000	63770.4280
4							>

Exploratory Data Analysis(EDA)

```
In [5]: import matplotlib.pyplot as plt
import seaborn as sns

plt.title('Age Distribution')
plt.xlabel('Age')
plt.ylabel('Count')
plt.hist(df['age'], edgecolor='black')
plt.tight_layout()
plt.show()
```

C:\Users\SatyendraSingh\anaconda3\lib\site-packages\scipy__init__.py:155: Us
erWarning: A NumPy version >=1.18.5 and <1.25.0 is required for this version
of SciPy (detected version 1.26.4</pre>

warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"</pre>

Age Distribution 200 - 150 - 150 - 100 - 150 - 100 -

```
In [6]: plt.title('Gender Distribution')
sns.countplot(x= 'sex', data= df)
plt.show()
```



```
In [7]: plt.title ('BMI Distribution')
    sns.histplot(df['bmi'],kde = True)
    plt.show()
```



```
In [8]: plt.title('Children Distribution')
sns.histplot(df.children)
plt.show()
```



```
In [9]: plt.title('Smoker Distribution')
  plt.pie(df.smoker.value_counts(),labels= df.smoker.value_counts(),autopct='%.2-
  plt.show
```

Out[9]: <function matplotlib.pyplot.show(close=None, block=None)>

Smoker Distribution

Correlation Matrix

In [10]: df.corr()

Out[10]:

	age	sex	bmi	children	smoker	region	charges	insurar
age	1.000000	-0.020856	0.109272	0.042469	-0.025019	0.002127	0.299008	(
sex	-0.020856	1.000000	0.046371	0.017163	0.076185	0.004588	0.057292	(
bmi	0.109272	0.046371	1.000000	0.012759	0.003750	0.157566	0.198341	(
children	0.042469	0.017163	0.012759	1.000000	0.007673	0.016569	0.067998	-(
smoker	-0.025019	0.076185	0.003750	0.007673	1.000000	-0.002181	0.787251	(
region	0.002127	0.004588	0.157566	0.016569	-0.002181	1.000000	-0.006208	(
charges	0.299008	0.057292	0.198341	0.067998	0.787251	-0.006208	1.000000	(
insuranceclaim	0.113723	0.031565	0.384198	-0.409526	0.333261	0.020891	0.309418	
4								•

```
In [11]: from sklearn.model_selection import train_test_split
    from sklearn.preprocessing import StandardScaler
    from sklearn.dummy import DummyClassifier
    from sklearn.linear_model import LogisticRegression
    from sklearn.metrics import f1_score, accuracy_score, confusion_matrix, classing
```

Spliting the data into training and test data

```
In [12]: #plotting the data in x and y
y = df['insuranceclaim']
X = df.drop( ['insuranceclaim'],axis=1)

#train test split()
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.30)
```

Baseline Model

```
In [13]: dummy_clf = DummyClassifier(strategy="stratified")
    dummy_clf.fit(X_train, y_train)
    dummy_clf.predict(X_test)
    dummy_clf.score(X_test, y_test)
```

Out[13]: 0.5373134328358209

Logistic Regression

```
In [14]: logreg = LogisticRegression()
         logreg.fit(X_train, y_train)
         y_pred_log = logreg.predict(X_test)
         lr_acc_score = accuracy_score(y_test,y_pred_log)
         lr_f1_score = f1_score(y_test,y_pred_log)
         lr_conf_matrix = confusion_matrix(y_test,y_pred_log)
         ##Print
         print(f"Test Accuracy score : {lr_acc_score}")
         print(f"Test F1 : {lr_f1_score}")
         print('\n')
         print("Confusion matrix")
         print(lr_conf_matrix)
         print(classification_report(y_test, y_pred_log))
         Test Accuracy score : 0.7885572139303483
         Test F1: 0.8232848232848233
         Confusion matrix
         [[119 48]
          [ 37 198]]
                       precision
                                    recall f1-score
                                                       support
```

```
In [15]: plt.title("Confusion Matrix(Logistic Regression)")
    sns.heatmap(lr_conf_matrix,annot = True,fmt='d')
    plt.xlabel('Predicted Value')
    plt.ylabel('True Value')
    plt.show()
```


Decision Tree

```
In [16]: from sklearn.tree import DecisionTreeClassifier
Tree = DecisionTreeClassifier()
Tree.fit(X_train,y_train)
y_pred_Tree = Tree.predict(X_test)

Tree_acc_score = accuracy_score(y_test,y_pred_Tree)
Tree_f1_score = f1_score(y_test,y_pred_Tree)
Tree_conf_matrix = confusion_matrix(y_test,y_pred_Tree)
print(f"Test acc Score : {Tree_acc_score}")
print(f"Test F1 Score : {Tree_f1_score}")
print(Tree_conf_matrix)

print(classification_report(y_test, y_pred_Tree))
Test acc Score : 0.9676616915422885
```

Test F1 Score : 0.9721627408993575 [[162 5] [8 227]]						
	precision	recall	f1-score	support		
0	0.95	0.97	0.96	167		
1	0.98	0.97	0.97	235		
accuracy			0.97	402		
macro avg	0.97	0.97	0.97	402		
weighted avg	0.97	0.97	0.97	402		

Naive Bayes

```
In [18]: from sklearn.naive_bayes import GaussianNB
         NB = GaussianNB()
         NB.fit(X_train,y_train)
         y_pred_NB = NB.predict(X_test)
         NB_acc_score = accuracy_score(y_test,y_pred_NB)
         NB_f1_score = f1_score(y_test,y_pred_NB)
         NB_conf_matrix = confusion_matrix(y_test,y_pred_NB)
         print(f"Test aCC score : {NB_acc_score}")
         print(f"Test f1 SCORE : {NB_f1_score}")
         print("Confusion matrix")
         print(NB conf matrix)
         print(classification_report(y_test, y_pred_NB))
         Test aCC score : 0.763681592039801
         Test f1 SCORE: 0.7642679900744417
         Confusion matrix
         [[153 14]
          [ 81 154]]
                       precision
                                     recall f1-score
                                                        support
                                       0.92
                     0
                             0.65
                                                 0.76
                                                            167
                     1
                             0.92
                                       0.66
                                                 0.76
                                                            235
             accuracy
                                                 0.76
                                                            402
            macro avg
                             0.79
                                       0.79
                                                 0.76
                                                            402
         weighted avg
                             0.81
                                       0.76
                                                 0.76
                                                            402
```


Random Forest

```
In [20]: from sklearn.ensemble import RandomForestClassifier
         RF = RandomForestClassifier()
         RF.fit(X_train,y_train)
         RF_y_pred = RF.predict(X_test)
         RF_acc_score = accuracy_score(y_test,RF_y_pred)
         RF_f1_score = f1_score(y_test,RF_y_pred)
         RF_Conf_Matrix = confusion_matrix(y_test,RF_y_pred)
         print(f"Test aCC score : {RF acc score}")
         print(f"Test f1 SCORE : {RF f1 score}")
         print("Confusion matrix")
         print(RF_Conf_Matrix)
         print(classification_report(y_test, RF_y_pred))
         Test aCC score: 0.9527363184079602
         Test f1 SCORE: 0.9587852494577007
         Confusion matrix
         [[162
                 5]
          [ 14 221]]
                       precision
                                     recall f1-score
                                                        support
                    0
                            0.92
                                       0.97
                                                 0.94
                                                            167
                             0.98
                                       0.94
                                                 0.96
                                                            235
                                                 0.95
                                                            402
             accuracy
                            0.95
                                       0.96
                                                 0.95
                                                            402
            macro avg
         weighted avg
                            0.95
                                       0.95
                                                 0.95
                                                            402
```


Out[22]:

	Model	Acuuracy
0	Dummy Classifer	0.475124
1	Logistic Regression	0.788557
2	Decision Tree	0.967662
3	Random Forest	0.952736
4	Naive Byes	0.763682

Conclusion: From all 5 classification model used for the input dataset, Decision Tree has the best Accuracy.

Prediciting sample values

C:\Users\SatyendraSingh\anaconda3\lib\site-packages\sklearn\base.py:450: User
Warning: X does not have valid feature names, but DecisionTreeClassifier was
fitted with feature names
 warnings.warn(

Out[23]: array([0, 1], dtype=int64)

Conclusion: Sample values 'a' has predicted claim values as 0 whereas 'b' has 1.