COURSE AND EVALUATION PLAN

1. Course code : **EC206** 2. Course title : **Microprocessors**

3. L-T-P : **3-1-0** 4 Credits : **4**

5. Teaching department : **E&C** 6. Course instructor : **Dr. Aparna P.**

7. Pre-requisites : -Nil-

8. Course Objectives:

i. To introduce the stored program concept, computer organization, specifications of an Instruction Set Architecture.

- ii. To introduce the ARM processor programmers model and the concept of assembly level program.
- iii. To explain the functioning of processor, the processor modes and exceptions.
- iv. To introduce the concept of interfacing the processor to peripherals.

9. Course outcomes: On completion of this course the student will

- i. Have an insight to the stored program concept, computer organization, specifications of an Instruction Set Architecture.
- ii. Know the family of ARM processors, the organization of a typical ARM processor.
- iii. Be able to analyze and write assembly language programs for ARM processors.
- iv. Understand the interrupts and exception handling in ARM processors.

10. **Course Coverage** (50 – Lecture schedule):

Module	Contents	Lectures
Introduction to	◆ Introduction to computer organization	L1-L4
Microprocessors	◆ CISC, RISC, Concept of pipelining◆ Evolution of Microprocessors.	
Introduction to ARM	ARM overview, Programming Model	L5-L8
processor	◆ Processor and memory organization, concept of stack.	L3-L0
ARM Instruction set	◆ Data-processing Instructions	L9-L20
	◆ Data Transfer Instructions, Control Instructions, Additional special instructions	
	◆ Addressing modes & Instruction Encoding	
Self Study: HLL for ARM	◆ Architectural support for High-level languages	L20-L26
ARM Implementation,	◆ The data flow model for Data-processing Instructions, Data Transfer Instructions, Control	L27-L37
organization and execution.	Instructions	
	◆ ARM Instruction Datapath Timing	

	◆ The 3-stage pipe line organization, pipeline hazards, PC behavior	
ARM Processor Modes and Exceptions.	 ♦ Seven Processor Modes in Detail ♦ Exception Types, vector table, exception Handling, Priority 	L38-L44
Introduction to 16 bit Thumb instruction set (TIS)	 Need for TIS Thumb implementation and its encoding 	L45-L46
ARM interfacing to peripherals	◆ Interfacing ARM to GPIO, UART, DAC	L47-L-50

11. Reference Books:

- 1. "Assembly Language Programming ARM Cortex-M3" by Vincent Mahout, ISTE Ltd and John Wiley & Sons, Inc
- 2. https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m3

12. Evaluation Scheme:

I. Mid semester Exam : 25%II. Quizzes : 35%III. End semester Exam : 40%

Prepared By: Approved By

Dr. Aparna P.

Course Instructor.

Prof. N. S. V. Shet
Head, Dept. of E&C