TD 10. Ensembles et applications.

Exercice 1. Soit E un ensemble et A, B, C des parties de E. Montrer :

$$(A \cap B \subset A \cap C)$$
 et $(A \cup B \subset A \cup C) \Longrightarrow B \subset C$.

Exercice 2. Soit E un ensemble, A et B des parties de E. Montrer que les propositions suivantes sont équivalentes:

- (i) $A \subset B$
- (ii) $\overline{B} \subset \overline{A}$
- (iii) $B \cup \overline{A} = E$

Exercice 3. Déterminer les ensembles demandés (on ne demande pas de justifier) :

a) Pour $f = \cos :$

$$f(\mathbb{R})$$
 ; $f^{-1}(\mathbb{R})$; $f([0,2\pi[)$; $f^{-1}(\{1\})$; $f^{-1}([-1,2])$; $f^{-1}(f([0,\pi]))$; $f^{-1}(\mathbb{Z})$

b) Pour f définie sur \mathbb{R}^* par $f(x) = \frac{1}{\sqrt{|x|}}$:

$$f([-1,0]\cup[0,1])$$
; $f^{-1}([-2,2])$; $f^{-1}([-\infty,0])$

Exercice 4. Discuter de l'injectivité, de la surjectivité et de la bijectivité de chacune des fonctions suivantes:

$$f_1: \mathbb{R} \to \mathbb{R}$$
 ; $f_2: \mathbb{R}^2 \to \mathbb{R}$
 $x \mapsto \frac{x}{\sqrt{x^2+1}}$; $f_2: \mathbb{R}^2 \to \mathbb{R}$

$$f_3: \mathbb{R}^2 \to \mathbb{R}^2$$
 ; $f_4: [-\pi, \pi] \to [-1, 1]^2$
 $(x, y) \mapsto (x + y, x - y)$ $x \mapsto (\cos x, \sin x)$

Exercice 5. On pose $f: \mathbb{N} \to \mathbb{N}$ et $g: \mathbb{N} \to \mathbb{N}$ $n \mapsto n+1$ $n \mapsto \begin{cases} n \mapsto n+1 \end{cases}$

$$n \mapsto n+1$$

$$n \mapsto \begin{cases} 0 & \text{si } n=0 \\ n-1 & \text{sinon.} \end{cases}$$

Discuter de l'injectivité, de la surjectivité et de la bijectivité des applications $f, g, f \circ g, g \circ f$.

Exercice 6. Soit $y \in \mathbb{R}$. Résoudre l'équation d'inconnue $x \in \mathbb{R}^+$: $\operatorname{ch} x = y$. Interpréter le résultat.

- Exercice 7. Soit $f: \mathbb{C}\backslash\{-i\} \to \mathbb{C}$. $z \mapsto \frac{z-i}{z+i}$ a) Montrer que f réalise une bijection de $\mathbb{C}\backslash\{-i\}$ sur un ensemble à déterminer, et expliciter la réciproque, que l'on notera f^{-1} .
 - b) On identifiera les complexes avec les points du plan.

Soit
$$P = \{z \in \mathbb{C} / \operatorname{Im}(z) > 0\}$$
. Déterminer $f(P)$.

Indication: traduire la proposition " $y \in f(P)$ " à l'aide de la fonction f^{-1} .

Exercice 8. Soit $g: \mathbb{C} \setminus \{i\} \to \mathbb{C}$ $z \mapsto \frac{2\overline{z}}{\overline{z}+i}$

- a) Montrer que g réalise une bijection de $\mathbb{C}\setminus\{i\}$ sur un ensemble à déterminer, et expliciter la réciproque, que l'on notera g^{-1} .
- b) On identifiera les complexes avec les points du plan. On note Γ le cercle de rayon 2 et de centre i. Déterminer $g(\Gamma)$.

Exercice 9. On pose $f(x) = \ln \left(3x + \sqrt{9x^2 + 1}\right)$.

- a) Montrer que f est définie sur \mathbb{R} .
- b) Montrer que f est bijective de \mathbb{R} sur \mathbb{R} et expliciter f^{-1} .

Exercice 10. Soient E, F, G et H des ensembles non vides, $f: E \to F$ et $g: F \to G$.

- a) Montrer que $g \circ f$ injective $\Longrightarrow f$ injective et que $g \circ f$ surjective $\Longrightarrow g$ surjective.
- b) Application : soit $h:G\to H$. On suppose que $g\circ f$ et $h\circ g$ sont bijectives. Montrer que f,g et h sont toutes trois bijectives.

Exercice 11. Sans se servir de l'exercice précédent.

Soient E, F et G des ensembles non vides, $f: E \to F$ et $g: F \to G$.

- a) Montrer que si $g \circ f$ est injective et f surjective, alors g est injective.
- b) Montrer que si $g \circ f$ est surjective et g injective, alors f est surjective.

Exercice 12. Soit E un ensemble. On note 1 la fonction constante égale à 1 sur $\mathcal{P}(E)$.

a) Montrer que pour toutes parties A, B de E,

$$\mathbb{1}_{\overline{A}} = 1 - \mathbb{1}_A \qquad \mathbb{1}_{A \cap B} = \mathbb{1}_A \mathbb{1}_B \qquad \mathbb{1}_{A \cup B} = \mathbb{1}_A + \mathbb{1}_B - \mathbb{1}_A \mathbb{1}_B \qquad \mathbb{1}_{A \setminus B} = \mathbb{1}_A - \mathbb{1}_A \mathbb{1}_B$$

b) On rappelle que pour toutes parties A, B de E, $A = B \iff \mathbb{1}_A = \mathbb{1}_B$. Se servir des fonctions indicatrices pour montrer que, pour toutes parties A, B de E,

$$(A \cup B) \cap \overline{(A \cap B)} = (A \cap \overline{B}) \cup (\overline{A} \cap B)$$

Cette partie de E dont on vient de donner deux "expressions" s'appelle la différence symétrique de A et de B, elle est notée $A\Delta B$. Sauriez-vous la représenter avec des "patates"?