A Theorical Analysis of Fitted Q-Iteration

Jacob Harder University of Copenhagen

January 22, 2020

1 Introduction

1.1 Reinforcement Learning

In Reinforcement Learning (RL) we are concerned with finding an optimal policy for an agent in some environment. Typically (also in the case of Q-learning) this environment is a Markov decision process

Definition 1. A Markov decision process (MDP) (S, A, P, R, γ) consists of

- S a set of states
- \mathcal{A} a set of actions
- $P: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathcal{S})$ its Markov transition kernel
- $R: \mathcal{S} \times \mathcal{A} \to \mathcal{P}(\mathbb{R})$ its immediate reward distribution
- $\gamma \in (0,1)$ the discount factor

A policy (for an MDP) is a function

$$\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$$

With this we can define the state-value function $V^{\pi}: \mathcal{S} \to \mathbb{R}$

$$V^{\pi}(s) = \mathbb{E}\left(\sum_{t \ge 0} \gamma^t R_t \mid R_t \sim R(S_t, A_t), S_t \sim P(S_{t-1}, A_{t-1}), A_t \sim \pi(S_t), S_0 = s\right)$$

And the state-action-value (Q-) function $Q^{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$

$$Q^{\pi}(s, a) = \mathbb{E}(R(s, a) + \gamma V^{\pi}(S_0) \mid S_0 \sim P(s, a))$$

The optimal Q-function is defined as

$$Q^*(s,a) = \sup_{\pi} Q^{\pi}(s,a)$$

One can show that there is a policy π^* such that $Q^* = Q^{\pi^*}$. This is the optimal policy - the goal of RL.

Note that V^{π} , Q^{π} and Q^* are usually infeasible to calculate to machine precision, unless $\mathcal{S} \times \mathcal{A}$ is finite and not very big.

1.2 Q-Learning

Let $\pi: \mathcal{S} \to \mathcal{P}(\mathcal{A})$ be a policy. We define the operator

$$(P^{\pi}Q)(s,a) = \mathbb{E}(Q(S',A') \mid S' \sim P(s,a), A' \sim \pi(S'))$$

Intuitively this operator yields the expected state-action-value function when looking one step ahead following the policy π and taking expectation over Q.

We define the operator T^{π} called the Bellman operator by

$$(T^{\pi}Q)(s,a) = \mathbb{E}R(s,a) + \gamma(P^{\pi}Q)(s,a)$$

This operator adjust the Q function to look more like Q^{π} making one "iteration" of "propagation of rewards" discounting with γ . Indeed it is easily seen that Q^{π} is a fixed point for T^{π} .

The greedy policy π with respect to a state-action value function Q is the one for which $\pi(s,a)=1$ when $a=\operatorname{argmax}_a Q(s,a)$ and 0 otherwise.

$$(TQ)(s,a) = T^{\pi_Q}Q$$

called the Bellman optimality operator.

The Bellman optimality equation is says that $Q^* = TQ^*$.

1.3 Artificial Neural Networks

Definition 2. An **ANN** (Artificial Neural Network) with structure $\{d_i\}_{i=0}^{L+1} \subseteq \mathbb{N}$, activation functions $\sigma_i = (\sigma_{ij} : \mathbb{R} \to \mathbb{R})_{j=1}^{d_i}$ and weights $\{W_i \in M^{d_i \times d_{i-1}}, v_i \in \mathbb{R}^{d_i}\}_{i=1}^{L+1}$ is the function $F : \mathbb{R}^{d_0} \to \mathbb{R}^{d_{L+1}}$

$$F(x) = w_{L+1} \circ \sigma_L \circ w_L \circ \sigma_{L-1} \circ \cdots \circ w_1 x$$

where w_i is the affine function $x \mapsto W_i x + v_i$ for all i.

Here $\sigma_i(x_1, ..., x_{d_i}) = (\sigma_{i1}(x_1), ..., \sigma_{id_i}(x_{d_i})).$

 $L \in \mathbb{N}_0$ is called the number of hidden layers.

 d_i is the number of neurons or nodes in layer i.

An ANN is called *deep* if there are two or more hidden layers.

1.4 Fitted Q-Iteration

We here present the algorithm which everything in this paper revolves around:

Algorithm 1: Fitted Q-Iteration Algorithm

Input: MDP (S, A, P, R, γ) , function class \mathcal{F} , sampling distribution ν , number of iterations K, number of samples n, initial estimator \widetilde{Q}_0

for $k = 0, 1, 2, \dots, K - 1$ do

Sample i.i.d. observations $\{(S_i, A_i), i \in [n]\}$ from ν obtain

 $R_i \sim R(S_i, A_i)$ and $S_i' \sim P(S_i, A_i)$

Let $Y_i = R_i + \gamma \cdot \max_{a \in \mathcal{A}} \widetilde{Q}_k(S_i', a)$

Update action-value function:

$$\widetilde{Q}_{k+1} \leftarrow \underset{f \in \mathcal{F}}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f(S_i, A_i))^2$$

Define π_K as the greedy policy w.r.t. \widetilde{Q}_K

Output: An estimator \tilde{Q}_K of Q^* and policy π_K

1.5 Assumption 1: Holder Smoothness

Definition 3. Let $\mathcal{D} \subseteq \mathbb{R}^r$ be compact and $\beta, H > 0$. A function $f : \mathcal{D} \to \mathbb{R}$ we call Holder smooth if

$$\sum_{\alpha: |\alpha| < \beta} \|\partial^{\alpha} f\|_{\infty} + \sum_{\alpha: \|\alpha\|_{1} = \|\beta\|} \sup_{x \neq y} \frac{|\partial^{\alpha} (f(x) - f(y))|}{\|x - y\|_{\infty}^{\beta - \|\beta\|}} \le H$$

Where $\alpha = (\alpha_1, \dots, \alpha_r) \in \mathbb{N}^r$. We write $f \in C_r(\mathcal{D}, \beta, H)$.

Definition 4. We consider families of Compositions of Holder Functions

$$\mathcal{G}(\{p_j, t_j, \beta_j, H_j\}_{j \in [q]})$$

where $t_j, p_j \in \mathbb{N}$, $t_j \leq p_j$ and $H_j, \beta_j > 0$, defined as containing f when $f = g_q \circ \cdots \circ g_1$ for $g_j : [a_j, b_j]^{p_j} \to [a_{j+1}, b_{j+1}]^{p_{j+1}}$ functions on some real hypercubes that only depend on t_j of their inputs for each of their components g_{jk} , and satisfies $g_{jk} \in C_{t_j}([a_j, b_j]_j^t, \beta_j, H_j)$.

Assumption 1. Let

$$\mathcal{G}_0 = \{ f : \mathcal{S} \times \mathcal{A} \to \mathbb{R} : f(\cdot, a) \in \mathcal{G}(\{p_i, t_i, \beta_i, H_i\}_{i \in [a]}), \forall a \in \mathcal{A} \}$$

It is assumed that $Tf \in \mathcal{G}_0$ for any $f \in \mathcal{F}_0$.

I.e. when using the Bellman optimality operator on our sparse ReLU networks, we should stay in the class of compositions of Holder smooth functions.

1.6 Assumption 2: Concentration Coefficients

Assumption 2. Let $\nu_1, \nu_2 \in \mathcal{P}(\mathcal{S} \times \mathcal{A})$ be probability measures, Lebesgue-absolutely continuous in \mathcal{S} Define

$$\kappa(m, \nu_1, \nu_2) = \sup_{\pi_1, \dots, \pi_m} \left[\mathbb{E}_{v_2} \left(\frac{\mathrm{d}(P^{\pi_m} \dots P^{\pi_1} \nu_1)}{\mathrm{d}\nu_2} \right)^2 \right]^{1/2}$$

Let ν be the sampling distribution from the algorithm, and mu the distribution over which we measure the error in the main theorem, then we assume

$$(1-\gamma)^2 \sum_{m>1} \gamma^{m-1} m \kappa(m,\mu,\nu) = \phi_{\mu,\nu} < \infty$$

1.7 The Main Theorem

Theorem 1 (Yang, Xie, Wang). For any $K \in \mathbb{N}$ let Q^{π_K} be the action-value function corresponding to policy π_K which is return by Algorithm 1, when run with a sparse ReLU network on the form

$$\mathcal{F}_0 = \{ f(\cdot, a) \in \mathcal{F}(L^*, \{d_j^*\}_{j=0}^{L^*+1}, s^*) \mid a \in \mathcal{A} \}$$

where

$$L^* \lesssim (\log n)^{\xi'}, d_0 = r, d_i^*, d_{L+1} = 1, \lesssim n^{\xi'}, s^* \times n^{\alpha^*} \cdot (\log n)^{\xi'}$$

Let μ be any distribution over $\mathcal{S} \times \mathcal{A}$. Under assumptions assumption 1 and ?? $\|Q^* - Q^{\pi_K}\|_{1,\mu} \leq C \cdot \frac{\phi_{\mu,\nu} \cdot \gamma}{(1-\gamma)^2} \cdot |\mathcal{A}| \cdot (\log n)^{\xi^*} \cdot n^{(\alpha^*-1)/2} + \frac{4\gamma^{K+1}}{(1-\gamma)^2} \cdot R_{\max}$ Here $\alpha^* \in (0,1), C, \xi', \xi^*, \phi_{\mu,\nu} \in \mathbb{R}_+$ are constants depending on the assumptions and R_{\max} the maximum possible reward.

2 Disambiguation

- $I_m = [0,1]^m$.
- $C(X) = \{ f : X \to \mathbb{R} \mid f \text{continuous} \}.$
- $C_{\mathbb{C}}(X) = \{ f : X \to \mathbb{C} \mid f \text{continuous} \}.$
- ANN: artificial neural network see definition 2.

3 Universal Approximator Theorem

Theorem 2 (Universal Approximation Theorem for ANNs). Let $\sigma : \mathbb{R} \to \mathbb{R}$ be non-constant, bounded and continuous function. Let $\varepsilon > 0$ and $f \in C(I_m)$. Then there exists a 1-layer ANN F with activation function σ such that

$$||F - f||_{\infty} < \varepsilon$$

4 Main theorem