

On Some Fast And Robust Classifiers For HDLSS Data

Sarbojit Roy $^{\,1}$ – Jyotishka Ray Choudhury $^{\,2}$ – Subhajit Dutta $^{\,1}$

 1 Indian Institute of Technology Kanpur 2 Indian Statistical Institute Kolkata

Classification in High Dimension, Low Sample Size Settings

Suppose $\mathbf{X}_i = (X_{i1}, \dots, X_{ip})^{\top}$ and $\mathbf{Y}_j = (Y_{j1}, \dots, Y_{jp})^{\top}$ are i.i.d. random vectors from distribution functions \mathbf{F}_1 and \mathbf{F}_2 , respectively, for $1 \le i \le n_1$ and $1 \le j \le n_2$. Let $\mathcal{X} = \mathcal{X}_1 \cup \mathcal{X}_2$ denote the training sample of size $n = n_1 + n_2$, where $\mathcal{X}_1 = \{\mathbf{X}_1, \dots, \mathbf{X}_{n_1}\}$ and $\mathcal{X}_2 = \{\mathbf{Y}_1, \dots, \mathbf{Y}_{n_2}\}$. The class prior probabilities $0 < \pi_1, \pi_2 < 1$ satisfy $\pi_1 + \pi_2 = 1$.

Given the training sample χ , our aim is to develop a classifier δ such that its misclassification probability Δ goes to zero under fairly general conditions in the high dimension, low sample size (HDLSS) regime, where n is held fixed while $p \to \infty$.

Limitations of Existing Classifiers

- $\mu_1 = E[\mathbf{X}], \, \mu_2 = E[\mathbf{Y}], \, \Sigma_1 = Cov[\mathbf{X}] \text{ and } \Sigma_2 = Cov[\mathbf{Y}].$
- Define $\nu^2 = \lim_{p \to \infty} \frac{1}{p} \|\mu_1 \mu_2\|^2$ and $\sigma_j^2 = \lim_{p \to \infty} \frac{1}{p} \operatorname{trace}(\Sigma_j)$ for j = 1, 2.
- Existing classifiers yield perfect classification (i.e., $\Delta \to 0$ as $p \to \infty$) if
- $\nu^2 > |\sigma_1^2 \sigma_2^2|$ for the nearest neighbor (NN) classifier, average distance (AVG) classifier, support vector machines (SVM) [2].
- $\nu^2 > 0$, or $\sigma_1^2 \neq \sigma_2^2$ for the scale adjusted AVG (SAVG) classifier [1].
- In HDLSS settings, behavior of the existing classifiers is governed by the constants ν^2 , σ_1^2 and σ_2^2 .

Our Contribution

We propose classifiers that are robust, computationally fast, free from tuning parameters and have strong theoretical properties.

A Robust and Tuning-free Classifier

Define $h(u, v) = \sin^{-1}\left((1+uv)/\sqrt{(1+u^2)(1+v^2)}\right)/2\pi$ for $u, v \in \mathbb{R}$ and $\bar{h}(\mathbf{u}, \mathbf{v}) = \frac{1}{p} \sum_{k=1}^p h(u_k, v_k)$ for $\mathbf{u} = (u_1, \dots, v_p)^\top, \mathbf{v} = (v_1, \dots, v_p)^\top \in \mathbb{R}^p$.

$$\bar{T}_{11} = \sum_{i < j} \frac{\bar{h}(\mathbf{X}_i, \mathbf{X}_j)}{n_1(n_1 - 1)}, \ \bar{T}_{12} = \sum_{i, j} \frac{\bar{h}(\mathbf{X}_i, \mathbf{Y}_j)}{n_1 n_2}, \ \bar{T}_{22} = \sum_{i < j} \frac{\bar{h}(\mathbf{Y}_i, \mathbf{Y}_j)}{n_2(n_2 - 1)},$$

 $\bar{T}_1(\mathbf{z}) = \frac{1}{n_1} \sum_{i=1}^{n_1} \bar{h}(\mathbf{X}_i, \mathbf{z}), \ \bar{T}_2(\mathbf{z}) = \frac{1}{n_2} \sum_{i=1}^{n_2} \bar{h}(\mathbf{Y}_i, \mathbf{z}), \ \bar{L}_j(\mathbf{z}) = \bar{T}_{jj} - 2\bar{T}_j(\mathbf{z}) \ \text{for} \ j = 1, 2.$

• Discriminant: $\bar{L}(\mathbf{z}) = \bar{L}_2(\mathbf{z}) - \bar{L}_1(\mathbf{z})$. • Classifier: $\delta_1(\mathbf{z}) = \begin{cases} 1, & \text{if } \bar{L}(\mathbf{z}) > 0, \\ 2, & \text{otherwise.} \end{cases}$

A measure of distance between \mathbf{F}_1 and \mathbf{F}_2

- h is a bounded function and free of parameters.
- Define $\bar{\tau}_p = \mathrm{E}[\bar{h}(\mathbf{X}_1,\mathbf{X}_2)] + E[\bar{h}(\mathbf{Y}_1,\mathbf{Y}_2)] 2E[\bar{h}(\mathbf{X}_1,\mathbf{Y}_1)]$ for $p \geq 1$.
- Clearly, $\bar{\tau}_p \geq 0$. Equality holds iff $F_{1k} = F_{2k}$ for all $1 \leq k \leq p$ where F_{1k} and F_{2k} are one-dimensional marginals of \mathbf{F}_1 and \mathbf{F}_2 , respectively (see [3]).

- $\bar{\tau}_p$ is a measure of distance between \mathbf{F}_1 and \mathbf{F}_2 .
- Now, $\mathrm{E}[\bar{L}(\mathbf{Z}) \mid \mathbf{Z} \sim \mathbf{F}_1] = \bar{\tau}_p \geq 0$, while $\mathrm{E}[\bar{L}(\mathbf{Z}) \mid \mathbf{Z} \sim \mathbf{F}_2] = -\bar{\tau}_p \leq 0$.

Limitations of $ar{ au}_p$

Define $\bar{\tau}_p(1,1) = \mathrm{E}[\bar{h}(\mathbf{X}_1,\mathbf{X}_2)], \ \bar{\tau}_p(2,2) = E[\bar{h}(\mathbf{Y}_1,\mathbf{Y}_2)] \ \text{and} \ \bar{\tau}_p(1,2) = E[\bar{h}(\mathbf{X}_1,\mathbf{Y}_1)].$ Observe that $\bar{\tau}_p = \{\bar{\tau}_p(1,1) - \bar{\tau}_p(1,2)\} + \{\bar{\tau}_p(2,2) - \bar{\tau}_p(1,2)\}.$

- Suppose $\bar{\tau}_p(1,1) < \bar{\tau}_p(1,2) < \bar{\tau}_p(2,2)$. Then, the value of $\bar{\tau}_p$ may become small.
- An improved dissimilarity index: $\bar{\psi}_p = \{\bar{\tau}_p(1,1) \bar{\tau}_p(1,2)\}^2 + \{\bar{\tau}_p(2,2) \bar{\tau}_p(1,2)\}^2$.
- Squaring the terms before addition eliminates the possibility of cancellations.
- Further, $\overline{\psi}_p = 0$ iff $F_k = G_k$ for all $1 \le k \le p$.

A Classifier Based on $ar{\psi}_{v}$

Define $\bar{T} = \bar{T}_{11} - 2\bar{T}_{12} + \bar{T}_{22}$.

- Discriminant: $\bar{\theta}(\mathbf{z}) = \bar{T}\bar{L}(\mathbf{z})/2 + \left\{\bar{T}_{22} \bar{T}_{11}\right\}\left\{\bar{L}_1(\mathbf{z}) + \bar{L}_2(\mathbf{z}) + 2\bar{T}_{12}\right\}/2$.
- Classifier: $\delta_2(\mathbf{z}) = \begin{cases} 1, & \text{if } \bar{\theta}(\mathbf{z}) > 0, \\ 2, & \text{otherwise.} \end{cases}$

Asymptotic Behavior in HDLSS Settings

Suppose $\mathbf{U} = (U_1, \dots, U_p)^{\top}$ and $\mathbf{V} = (V_1, \dots, V_p)^{\top}$ are two independent vectors such that $\mathbf{U} \sim \mathbf{F}_j$ and $\mathbf{V} \sim \mathbf{F}_{j'}$ for $j, j' \in \{1, 2\}$. Let us assume the following:

Weak dependence among the component variables:

(A1)
$$\sum_{1 \le k < k' \le p} \text{Corr}(h(U_k, V_k), h(U_{k'}, V_{k'})) = o(p^2).$$

- Assumption (A1) is trivially satisfied if the component variables of the underlying distributions are independently distributed.
- It continues to hold when the components have weak dependence among them. For example, (A1) is satisfied when $\{h(U_k, V_k), k \ge 1\}$ has the ρ -mixing property.
- If assumption (A1) is satisfied, then we have the following:

${f Z} \sim {f F}_1$	$ \bar{L}(\mathbf{Z}) - \bar{ au}_p \stackrel{\mathrm{P}}{ o} 0$ and $ \bar{ heta}(\mathbf{Z}) - \bar{\psi}_p \stackrel{\mathrm{P}}{ o} 0$ as $p o \infty$
${f Z} \sim {f F}_2$	$ \bar{L}(\mathbf{Z}) + \bar{ au}_p \stackrel{\mathrm{P}}{ o} 0$ and $ \bar{ heta}(\mathbf{Z}) + \bar{\psi}_p \stackrel{\mathrm{P}}{ o} 0$ as $p \to \infty$.

• Asymptotic separability of \mathbf{F}_1 and \mathbf{F}_2 :

(A2)
$$\liminf_{p\to\infty} \bar{\tau}_p > 0$$
.

- If the component variables are identically distributed, then (A2) is satisfied.
- (A2) also implies that $\liminf_{n \to \infty} \psi_p > 0$.

Theorem 1: Perfect Classification

If (A1) and (A2) are satisfied, then for any $\pi_1 > 0$, we have $\Delta_1 \to 0$ and $\Delta_2 \to 0$ as $p \to \infty$.

Relative Performance of δ_1 and δ_2

- Both δ_1 and δ_2 yield perfect classification under the same set of assumptions.
- We now provide a set of sufficient conditions under which one classifier outperforms the other. First, let us assume the following:

(A3) There exists a $p_0 \in \mathbb{N}$ such that $\bar{\tau}_p(1,2) > \min\{\bar{\tau}_p(1,1), \bar{\tau}_p(2,2)\}$ for all $p \geq p_0$.

• If assumption (A3) is satisfied, then either of $\bar{\tau}_p(1,1) - \bar{\tau}_p(1,2)$ and $\bar{\tau}_p(2,2) - \bar{\tau}_p(1,2)$ is positive, while the other quantity is negative.

Theorem 2: Ordering Between Δ_1 and Δ_2

If assumptions (A1) - (A3) are satisfied, then there exists an integer p'_0 such that $\Delta_2 \leq \Delta_1$ for all $p \geq p'_0$.

If the inequality in (A3) is inverted, then the ordering of Δ_1 and Δ_2 is reversed.

Simulation Study

Fix $1 \le k \le p$. Now, consider the following examples:

Example	$(u, \sigma_1^2, \sigma_2^2)$	$\bar{T}_{12} > \min\{\bar{T}_{11}, \bar{T}_{22}\}$
1. $X_{1k} \overset{i.i.d.}{\sim} N(1,1)$ and $Y_{1k} \overset{i.i.d.}{\sim} N(1,2)$	$\nu^2 < \sigma_1^2 - \sigma_2^2 $	True
2. $X_{1k} \overset{i.i.d.}{\sim} N(0,3)$ and $Y_{1k} \overset{i.i.d.}{\sim} t_3$	$\nu^2 = \sigma_1^2 - \sigma_2^2 = 0$	True
3. $X_{1k} \overset{i.i.d.}{\sim} C(0,1)$ and $Y_{1k} \overset{i.i.d.}{\sim} C(1,1)$	do not exist	False
4. $X_{1k} \overset{i.i.d.}{\sim} C(0,1)$ and $Y_{1k} \overset{i.i.d.}{\sim} C(0,2)$	do not exist	True
5. $X_{1k} \stackrel{i.i.d.}{\sim} Par(1,1)$ and $Y_{1k} \stackrel{i.i.d.}{\sim} Par(1.25,1)$	do not exist	True

 $N(\mu, \sigma)$: Gaussian distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma > 0$. t_{α} : the Student's t-distribution with $\alpha > 0$ degrees of freedom. $C(\mu, \sigma)$: Cauchy distribution with location $\mu \in \mathbb{R}$ and scale $\sigma > 0$. Par (θ, s) : Pareto distribution with $\theta > 0$ and scale s > 0.

References

- [1] Yao-Ban Chan and Peter Hall. Scale adjustments for classifiers in high-dimensional, low sample size settings. *Biometrika*, 96(2):469–478, 2009.
- [2] Peter Hall, J. S. Marron, and Amnon Neeman. Geometric representation of high dimension, low sample size data. Journal of the Royal Statistical Society Series B, 67(3):427–444, 2005.
- [3] Zhimei Li and Yaowu Zhang. On a projective ensemble approach to two sample test for equality of distributions. In *International Conference on Machine Learning*, pages 6020–6027. PMLR, 2020.