IPv6 - Multicast

Introdução aos endereços Multicast

Tipos de endereços IPv6

- Endereço utilizado por um dispositivo para enviar uma única instância para muitos dispositivos (um-para-vários)
- Equivalente a 224.0.0.0/4 em IPv4
- Dois tipos de endereços multicast:
 - Assigned
 - Solicited-Node

16

Traffic

24

Flow Label

- **IPv6 origem** Sempre unicast
- **IPv6 Destino** Unicast, *multicast*, ou anycast.

IPv6

The remaining portion of IPv6 address space are reserved by IETF for future use.

 O Scope é um campo de 4-bit usado para definir o alcance do pacote multicast

- **Scope** (lista parcial):
 - 0 Reserved
 - 1 Interface-Local scope
 - 2 Link-Local scope
 - 5 Site-Local scope
 - 8 Organization-Local scope
 - E Global scope

- Flag
 - **0** Atribuído pela IANA.
 - Inclui os endereços assigned e solicited-node multicast.
 - 1 Atribuído "dinamicamente"
 - Um exemplo pode ser FF18::CAFE:1234, usado por uma aplicação multicast dentro do scope *organizational*.

- RFC 2375, IPv6 Multicast Address Assignments
- Reference for assigned multicast addresses:
 - (IANA) IPv6 Multicast Address Space Registry http://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

Atribuição de Endereços Multicast IPv6

- IPv6 multicast routing tem de estar *enable*
 - Router(config)# ipv6 multicast-routing

Verificar Endereços Multicast IPv6 no router

```
Router# show ipv6 interface gigabitethernet 0/0
GibabitEthernet0/0 is up, line protocol is up
  IPv6 is enabled, link-local address is FE80::1
  Global unicast address(es):
    2001:DB8:CAFE:1::1, subnet is 2001:DB8:CAFE:1::/64
  Joined group address(es):
                                Member of these Multicast Groups
    FF02::1 All-IPv6 devices on this link
                           All-IPv6 routers on this link: IPv6 routing enabled
   FF02::2
   FF02::5
                             OSPFv3 All OSPF Routers (similar to 224.0.0.5)
                                OSPFv3 All DR Routers (similar to 224.0.0.6)
   FF02::6
    FF02::1:FF00:1 Solicited-node multicast addresses
<output omitted for brevity>
```

Multicast

Porque o Multicast

O multicast é usado em várias situações:

- Comunicação dentro de links
- Protocolos de encaminhamento
- Ensino à distância
- Serviços de broadcast de vídeo, rádio, TV
- A entrega de pacotes é mais eficiente do que no unicast

Organização do Multicast

O multicast organizado em árvore:

- organização em árvore
- um único tronco e muitas folhas
- uma única cópia que sai da fonte é replicada para os recetores
- não existem restrições físicas para os recetores (comunicação global)

Multicast Protocolos

O multicast IPv6 e os protocolos:

- o endereço multicast representa um destino para onde os pacotes são enviados
- o endereço multicast IPv6 começa sempre por FF00::/8
- a associação dos terminais é feita pelo protocolo Multicast Listener Discovery (MLD)
- o tráfego multicast é enviado ao longo da árvore multicast
- o IPv6 apenas suporta o protocolo de encaminhamento multicast Protocol Independent
 Multicast (PIM)
 - o PIM cria a árvore multicast
 - as funções do PIM em IPv6 são iguais às em IPv4

Tipos de Grupos Multicast

1. Any Source Multicast (ASM)

2. Source Specific Multicast (SSM)

3. Embedded RP groups

Flags Multicast

An IPv6 multicast address has the prefix FF00::/8 (1111 1111)

8Bits	4 Bits	4 Bits	112 Bits
1111 1111	0 R P T	Scope	Group ID (Variable Format)

Flags	
R = 0	No embedded RP
R = 1	Embedded RP
P = 0	Not based on unicast
P = 1	Based on unicast
T = 0 T = 1	Permanent address (IANA assigned) Temporary address (local assigned)

Scope	
1	Node
2	Link
3	Subnet
4	Admin
5	Site
8	Organization
E	Global

Endereço Multicast baseado no endereço unicast

8 Bits	4 Bits	4 Bits	8 Bits	8 Bits	64 Bits	32 Bits
1111 1111	0011	Scope	Rsvd	PLen	Unicast Prefix	Group ID

Endereço Multicast Embedded RP

Mapeamento IPv6 para data link (MAC) address:

- IPv4 usa ARP
- IPv6 usa mensagens ICMPv6 Neighbor Discovery
 - Neighbor Solicitation (via Solicited-Node)
 - Neighbor Advertisement
- Os dispositivos guardam esta informação em Neighbor Cache

Endereço Multicast Solicited-Node

- Neighbor Discovery Protocol (ARP do IPv4)
 - Neighbor Solicitation
 - Neighbor Advertisement

ICMP Type	135 NS
IPv6 Source	A Unicast
	B Solicited Node Multicast FF02::1:FF00:B
Data	FE80:: address of A
Code	0 (need link layer)
Query	What is B link layer address?

ICMP Type	136 NA
IPv6 Source	B Unicast
IPv6 Destination	A Unicast
ICMP Option	Type 2 (Target response)
Data	Link Layer address of B
*Flags	R = Router S = Response to Solicitation O = Override cache information

Multicast Listener Discovery (MLD)

MLD

- O MLD é um componente do IPv6
- MLD é usado pelos routers IPv6 para descobrir os dispositivos que pretendem escutar um grupo multicast
- Semelhante ao IGMP do IPv4
- O MLD funciona com mensagens ICMPv6
- O MLD está descrito na RFC 3810 e RFC 4604

MLD - usa duas mensagens

MLD	IGMP	Message Type	ICMPv6 Type	Function
MLDv2 (RFC 3810)	IGMPv3 (RFC 3376)	Listener Query	130	Used to find out if there are any multicast listeners
		Listener Report	143	Enhanced reporting, multiple groups and sources

- Query router pergunta se alguém pretende ouvir um dado grupo
- Report os dispositivos dizem ao router que querem ouvir ou dado grupo

MLDv2 - Report

FF02::16 - Routers com capacidade

Protocol Independent Multicast (PIM)

PIM - RFC 4601

- PIM é o único protocolo de encaminhamento multicast para
 IPv6
- Constrói a tabela de encaminhamento multicast nos routers
- Modos de funcionamento
 - PIM Sparse-Mode (PIM-SM) RP obrigatório (Multiple sources, single group)
 - Bi-directional PIM (PIM-BiDir) RP obrigatório;
 Bi-Directional many-to-many (hosts can be sources and receivers)
 - PIM Source-Specific Multicast (PIM-SSM) Sem RP
 (Single source, single group) (S, G)

Address	Meaning	Scope	
FF02::1	All nodes	Link-local	
FF02::2	All routers	Link-local	
FF02::9	All RIP routers	Link-local	
FF02::1:FFXX:XXXX	Solicited-node	Link-local	
FF02::4	DVMRP routers	Link-local	
FF02::5	All OSPF routers	Link-local	
FF02::6	OSPF designated routers	Link-local	
FF02::A	All EIGRP routers	Link-local	
FF02::D	All PIM routers	Link-local	
FF05::101	All NTP routers	Site-local	
FF05::1:3	All DHCP routers	Site-local	

PIM - Exemplos

- Exemplo de uma árvore Multicast
- Os estados multicast são identificados por (Source, Group)

PIM - Exemplos

- Exemplo de uma árvore Multicast partilhada
- Os estados multicast são identificados por (Source, Group)

PIM - Exemplos

- Exemplo de uma árvore Multicast partilhada
 bidirecional
- Os estados multicast são identificados por (Source, Group)

PIM - Encaminhamento Multicast

- O encaminhamento Multicast é o oposto de encaminhamento Unicast
 - O unicast está preocupado com para onde o pacote vai
 - O multicast está preocupado com de onde o pacote vem
- O multicast usa *reverse-Path Forwarding* (RPF)
 - Verifica se os pacotes multicast de um grupo chegam pela interface que conduz à fonte
 - Se não, são descartados
 - Este procedimento evita loops
- O procedimento RPF para PIM utiliza a tabela de encaminhamento unicast para encontrar a fonte