Abstract Algebra

Introduction to Finite Field

We can define GF(5) on the set Z_5 (5 is a prime) with addition and multiplication operators as shown

+	0	1	2	3	4
0	0	1		3	4
1	1	2	3	4	0
2 3	2 3 4	3	4	0	1
3	3	4	0	1	2
4	4	0	ĭ	2	3

Addition

×	0	1	2	3	4
0	0	0	0 2 4	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	13	4	2
4	0	4	3	2	1

Multiplication

Multiplicative inverse

For the sets of polynomials in $GF(2^n)$, a group of polynomials of degree n is defined as the modulus. Such polynomials are referred to as irreducible polynomials.

Degree	Irreducible Polynomials
1	(x+1),(x)
2	$(x^2 + x + 1)$
3	$(x^3 + x^2 + 1), (x^3 + x + 1)$
4	$(x^4 + x^3 + x^2 + x + 1), (x^4 + x^3 + 1), (x^4 + x + 1)$
5	$(x^5 + x^2 + 1), (x^5 + x^3 + x^2 + x + 1), (x^5 + x^4 + x^3 + x + 1),$ $(x^5 + x^4 + x^3 + x^2 + 1), (x^5 + x^4 + x^2 + x + 1)$

Example

Let us define a $GF(2^2)$ field in which the set has four 2-bit words: $\{00, 01, 10, 11\}$. We can redefine addition and multiplication for this field in such a way that all properties of these operations are satisfied, as shown in.

			_	An	example	e of	^{c}GI	F(2)	2) f	ield
	A	Addi			-	Mu	ltip	lica	tion	l
\bigoplus	00	01	10	11	\otimes	00	01	10	11	
00	00	01	10	11	00	00	00	00	00	
01	01	00	11	10	01	00	01	10	11	
10	10	11	00	01	10	00	10	11	01	
11	11	10	01	00	11	00	11	01	10	
	Id	enti	ity:	00	. ,	Ide	enti	ity:	01	

The $GF(2^3)$ field has 8 elements. We use the irreducible polynomial $(x^3 + x^2 + 1)$ and show the addition and multiplication tables for this field. We show both 3-bit words and the polynomials. Note that there are two irreducible polynomials for degree 3. The other one, $(x^3 + x + 1)$, yields a totally different table for multiplication.

Let $K = GF(2^4)$, F = GF(2), with defining primitive polynomial f(x) given by

$$f(x) = x^3 + x + 1$$

Then, if α is a root of f(x), we have $f(\alpha)=0$, which implies that

$$f(\alpha) = \alpha^3 + \alpha + 1 = 0$$

This equation over GF(2), means that α satisfies the following equation

$$\alpha^3 = \alpha + 1$$
.

Using the above equation, one can now express each one of the 7 nonzero elements of *K* over *F* as is shown in the next table.

$GF(2^3)$ Field element generate from $f(x) = x^3 + x + 1$

$$0 \qquad 0 \qquad 000$$

$$\alpha^{0} = 1 \qquad 001$$

$$\alpha^{1} = \alpha^{1} \qquad 010$$

$$\alpha^{2} = \alpha^{2} \qquad 100$$

$$\alpha^{3} = \alpha + 1 \qquad 101$$

$$\alpha^{4} = \alpha^{2} + \alpha \qquad 110$$

$$\alpha^{5} = \alpha^{2} + \alpha + 1 \qquad 111$$

$$\alpha^{6} = \alpha^{2} + 1 \qquad 101$$

Table 4.6 Polynomial Arithmetic Modulo $(x^3 + x + 1)$

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	Х	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	x + 1	X	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$
010	X	х	x + 1	0	1	$x^{2} + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	χ^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	X	x+1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^{2} + x$	1	0	x + 1	X
110	$x^{2} + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	х	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^{2} + x$	$x^2 + 1$	x^2	x + 1	х	1	0

(a) Addition

	×	000	001	010 X	$011 \\ x + 1$	$\frac{100}{x^2}$	$x^2 + 1$	$110 \\ x^2 + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	X	x + 1	x ²	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	X	0	х	x^2	$x^{2} + x$	x + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	x + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	X
100	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^{2} + x$	х	$x^2 + 1$	1
101	$x^2 + 1$	0	$x^2 + 1$	1	x^2	х	$x^2 + x + 1$	x + 1	$x^2 + x$
110	$x^2 + x$	0	$x^2 + x$	$x^2 + x + 1$	1	$x^2 + 1$	x + 1	X	x^2
111	$x^2 + x + 1$	0	$x^2 + x + 1$	$x^2 + 1$	X	1	$x^{2} + x$	x^2	x+1

GF(2⁴) Field element generate from

$$f(x) = x^4 + x + 1$$

i	α^i	Coordinates
0	1	$(0\ 0\ 0\ 1)$
1	α	(0 0 1 0)
2	α^2	(0 1 0 0)
3	α^3	(1 0 0 0)
4	$\alpha^4 = \alpha + 1$	(0 0 1 1)
5	$\alpha^5 = \alpha^2 + \alpha$	(0 1 1 0)
6	$\alpha^6 = \alpha^3 + \alpha^2$	(1 1 0 0)
7	$\alpha^7 = \alpha^3 + \alpha + 1$	(1 0 1 1)
8	$\alpha^8 = \alpha^2 + 1$	(0 1 0 1)
9	$\alpha^9 = \alpha^3 + \alpha$	$(1 \ 0 \ 1 \ 0)$
10	$\alpha^{10} = \alpha^2 + \alpha + 1$	(0 1 1 1)
11	$\alpha^{11} = \alpha^3 + \alpha^2 + \alpha$	(1 1 1 0)
12	$\alpha^{12} = \alpha^3 + \alpha^2 + \alpha + 1$	(1 1 1 1)
13	$\alpha^{13} = \alpha^3 + \alpha^2 + 1$	(1 1 0 1)
14	$\alpha^{14} = \alpha^3 + 1$	(1 0 0 1)

Representation of an 8-bit word by a polynomial(under mod2)

n-bit word
$$\begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ \downarrow & \downarrow \\ \end{bmatrix}$$
Polynomial $\begin{bmatrix} 1x^7 + 0x^6 + 0x^5 + 1x^4 + 1x^3 + 0x^2 + 0x^1 + 1x^0 \end{bmatrix}$

First simplification

$$1x^7 + 1x^4 + 1x^3 + 1x^0$$

Second simplification

$$x^7 + x^4 + x^3 + 1$$

Polynomial addition

Let us do $(x^5 + x^2 + x) + (x^3 + x^2 + 1)$ in $GF(2^8)$. We use the symbol Å to show that we mean polynomial addition.

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 0x^{3} + 1x^{2} + 1x^{1} + 0x^{0} \oplus 0x^{7} + 0x^{6} + 0x^{5} + 0x^{4} + 1x^{3} + 1x^{2} + 0x^{1} + 1x^{0}$$

$$0x^{7} + 0x^{6} + 1x^{5} + 0x^{4} + 1x^{3} + 0x^{2} + 1x^{1} + 1x^{0} \rightarrow x^{5} + x^{3} + x + 1$$

Polynomial Multiplication

Find the result of $(x^5 + x^2 + x) \otimes (x^7 + x^4 + x^3 + x^2 + x)$ in GF(28) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$.

$$P_{1} \otimes P_{2} = x^{5}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x^{2}(x^{7} + x^{4} + x^{3} + x^{2} + x) + x(x^{7} + x^{4} + x^{3} + x^{2} + x)$$

$$P_{1} \otimes P_{2} = x^{12} + x^{9} + x^{8} + x^{7} + x^{6} + x^{9} + x^{6} + x^{5} + x^{4} + x^{3} + x^{8} + x^{5} + x^{4} + x^{3} + x^{2}$$

$$P_{1} \otimes P_{2} = (x^{12} + x^{7} + x^{2}) \mod (x^{8} + x^{4} + x^{3} + x + 1) = x^{5} + x^{3} + x^{2} + x + 1$$

Polynomial Divide

$$x^{4} + 1$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

$$x^{12} + x^{7} + x^{2}$$

$$x^{12} + x^{8} + x^{7} + x^{5} + x^{4}$$

$$x^{8} + x^{5} + x^{4} + x^{2}$$

$$x^{8} + x^{4} + x^{3} + x + 1$$

Remainder
$$x^5 + x^3 + x^2 + x + 1$$

Multiplication Using Computer

multiplying $P1 = (x^5 + x^2 + x)$ by

$$P2 = (x^7 + x^4 + x^3 + x^2 + x)$$

in GF(28) with irreducible polynomial $(x^8 + x^4 + x^3 + x + 1)$ using the algorithm described above. Note $x^8 = x^4 + x^3 + x + 1$

Powers	Operation	New Result	Reduction	
$x^0 \otimes P_2$		$x^7 + x^4 + x^3 + x^2 + x$	No	
$x^1 \otimes P_2$	$x \otimes (x^7 + x^4 + x^3 + x^2 + x)$	$x^5 + x^2 + x + 1$	Yes	
$x^2 \otimes P_2$	$\boldsymbol{x} \otimes (x^5 + x^2 + x + 1)$	$x^6 + x^3 + x^2 + x$	No	
$x^3 \otimes P_2$	$\boldsymbol{x} \otimes (x^6 + x^3 + x^2 + x)$	$x^7 + x^4 + x^3 + x^2$	No	
$x^4 \otimes P_2$	$\boldsymbol{x} \otimes (x^7 + x^4 + x^3 + x^2)$	$x^5 + x + 1$	Yes	
$x^5 \otimes P_2$	$\boldsymbol{x} \otimes (x^5 + x + 1)$	$x^6 + x^2 + x$	No	
$\mathbf{P_1} \times \mathbf{P_2} = (x^6 + x^2 + x) + (x^6 + x^3 + x^2 + x) + (x^5 + x^2 + x + 1) = x^5 + x^3 + x^2 + x + 1$				

Order	primitive polynomial
3	$1 + x + x^3$
4	$1 + x + x^4$
5	$1 + x + x^5$
6	$1 + x^2 + x^6$
7	$1 + x^3 + x^7$
8	$1 + x^2 + x^3 + x^4 + x^8$
9	$1 + x^4 + x^9$
10	$1 + x^3 + x^{10}$
16	$1 + x + x^3 + x^{12} + x^{16}$

Lab 1

MATLAB

ส่วน1 พหุนาม

ตัวอย่าง ถ้า 1+x^3+x^4

เขียน MATLAB แทนได้

$$>> p1=[1 \ 0 \ 0 \ 1 \ 1]$$

- พหุนามลดทอนไม่ได้จะเป็นพหุนามปฐมฐาน (primitive polynomial) ลำดับ m ถ้า p(x) นำไปหารด้วยพหุนาม x^n+1 (n=2^m-1) แล้วลงตัว เพียงพหุนามเดียว
- 1.เขียน MATLAB ทดสอบ

```
>>p1=[1 1 0 1]% 1+x+x^3;

>>p2=[1 0 0 0 0 0 0 1]%1+x^7;

>>p3=[1 0 0 0 0 0 1]%1+x^6;

>>[q,r]=gfdeconv(p3,p1);
```

 ขียน MATLAB หา primitive polynomial ลำดับ 3 ได้(default)

>>m=3

>>poly=gfprimdf(m)

*จาก*พหุนามแบบปฐมฐานหน้า 15 ทดสอบตาราง

• 3. การทดสอบ primitive polynomial ลำดับ ใดๆ

>>gfprimck(poly)

•

• 4. แสดงการสร้าง GF(2^3) จากพหุนามปฐมฐาน

>>Index=[0;1;2;3;4;5;6]

>>p=2

>>poly=[1 1 0 1]

>>GF=gftuple(index,poly,p)

- -ทดลองสร้าง GF(2^4)จากพหุนามปฐมฐาน
- -สร้างสมาชิกทั้งหมดของ GF(2^4) ด้วยพหุนาม 1+x+x^4 หน้า 9

PYTHON

5.คูณภายใต้primitive polynomial $(x^8+x^4+x^3+x+1)$ ทดล คูณ P1xP2 หน้า 12-14

$$P1 = (x^5 + x^2 + x) = 0x26$$

$$P2 = (x^7 + x^4 + x^3 + x^2 + x) = 0x9e$$

$$P1xP2=0x2f$$

Note Python Bitwise Operator

Binary AND(&) OR(|) XOR(^)

ทดลอง

- >>>a=0xaa >>>b=0x55
- >>> a&b
- >>> a|b
- >>> hex(a^0x01)
- >>> hex(b<<1)
- >>> hex(0x02>>1)

ส่วน2 ทฤษฏีจำนวน PYTHON

- 1.โปรแกรมหา gcd จากหนังสือ Crypto for Inf security:
- CIS หน้า 2-3
- **def** gcd(a,b):
- while a!=0:
- a,b=b%a,a
- return b
- จากหนังสือ CIS ในแบบฝึกหัดข้อ 2.หน้า 2-39 เขียนโปรแกรมหา gcd ในแบบ recursive

- 3. จากหนังสือ CIS หน้า 5-8 แสดงโปรแกรมยกกำลัง
- from math import floor
- **def** powermod(a, m, n):
- x=1
- while m >=1:
- if m%2 == 1:
- x=(x*a)%n
- a=(a*a)%n
- m=floor(m/2)
- return x%n

สำหรับแบบฝึกหัดข้อ 3 หน้า 2-40 หมายเหตุโดยภาษา Python สามารถเขียน a**m%n