Problem: Multivariate Polynomial – Bài Tập: Đa Thúc Nhiều Biến

Nguyễn Quản Bá Hồng*

Ngày 2 tháng 10 năm 2024

Tóm tắt nội dung

This text is a part of the series Some Topics in Elementary STEM & Beyond: URL: https://nqbh.github.io/elementary_STEM.

Latest version:

- Problem: Multivariate Polynomial Bài Tập: Da Thức Nhiều Biến.

 PDF: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_8/multivariate_polynomial/problem/NQBH_multivariate_polynomial_problem.pdf.
- $T_EX: \verb|URL:| https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_8/multivariate_polynomial/problem/NQBH_multivariate_polynomial_problem.tex.$
- Problem & Solution: Multivariate Polynomial Bài Tập & Lời Giải: Da Thức Nhiều Biến.

 PDF: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_8/multivariate_polynomial/problem/NQBH_multivariate_polynomial_solution.pdf.
 - TEX: URL: https://github.com/NQBH/elementary_STEM_beyond/blob/main/elementary_mathematics/grade_8/multivariate_polynomial/problem/NQBH_multivariate_polynomial_solution.tex.

Muc luc

1	Multivariate Monomial Polynomial – Đơn Thức & Đa Thức Nhiều Biến	1
2	Operators \pm Multivariate Polyonimals – Phép \pm Đa Thức Nhiều Biến	2
3	Operators ·,: Multivariate Polynomial – Phép ·,: Đa Thức Nhiều Biến	3
4	Algebraic Identity – Hằng Đẳng Thức Đáng Nhớ	4
5	Phân Tích Đa Thức Thành Nhân Tử. Các Phương Pháp Thông Thường	7
6	Phân Tích Đa Thức Thành Nhân Tử Bằng 1 Số Phương Pháp Khác	8
7	Monomial & Polynomial Divisions – Chia Đơn Thức & Đa Thức	9
8	Số Chính Phương	10
9	Miscellaneous	11
\mathbf{T}	Tài liệu	11

1 Multivariate Monomial Polynomial – Đơn Thức & Đa Thức Nhiều Biến

- $\textbf{1} \ ([\text{Tuy23}], \, \text{VD1}, \, \text{p. 4}). \ \textit{Cho 3 biểu thức} \ A = \frac{4xy}{x^2 2xy + y^2}, \ B = x^2 2xy + y^2, \ C = -4xy. \ \textit{(a) Cho biết biểu thức nào là đơn thức nhiều biến, là đa thức nhiều biến? (b) Với <math>x = -\frac{1}{2}, \ y = \frac{1}{2}, \ \text{chứng minh 2 biểu thức } B, C \ \textit{có cùng 1 giá trị.}$
- 2 ([Tuy23], 1., p. 5). Cho đơn thức $A = -2mx^3y^4$, m là hằng. Cho biết: (a) Hệ số & phần biến của đơn thức A. (b) Bậc của đơn thức A đối với từng biến & đối với tập hợp các biến.
- **3** ([Tuy23], 2., p. 5). Cho $x^2 = 3$, $y^2 = \frac{1}{3}$. Tính giá trị của đa thức $A = x^4 x^2y^2 + y^4$.
- 4 ([Tuy23], 3., p. 5). Tìm các đơn thức đồng dạng trong 5 đơn thức sau ($a \neq 0$ là hằng): $P = \frac{4}{5}x^4y^3xy$, $Q = \frac{2}{3}a^3x^3y^2x^2y$, $R = 6a^2x^2y^4ax^3$, M = -10, $N = \frac{7}{6}$.

^{*}A Scientist & Creative Artist Wannabe. E-mail: nguyenquanbahong@gmail.com. Bến Tre City, Việt Nam.

- 5 ([Tuy23], 4., p. 5). Cho 3 đơn thức nhiều biến: $A = ab^2x^4y^3$, $B = ax^4y^3$, $C = b^2x^4y^3$. Các đơn thức nào đồng dạng với nhau nếu: (a) a, b là hằng $\neq 0$ còn x, y là biến. (b) $a \neq 0$ là hằng còn b, x, y là biến. (c) $b \neq 0$ là hằng còn a, x, y là biến.
- 6 ([Tuy23], 5., p. 5). Cho biểu thức $A = \frac{-4ax^2y^5}{(b+1)^3}$. Trong 3 trường hợp sau đây, trường hợp nào A là đơn thức? (a) a, b là hằng. (b) a là hằng. (c) b là hằng. Trong trường hợp đó, cho biết hệ số \mathcal{E} bậc của đơn thức đối với mỗi biến \mathcal{E} đối với tập hợp của biến.

${f 2}$ Operators \pm Multivariate Polyonimals – Phép \pm ${f Da}$ Thức Nhiều Biến

- 7 ([Tuy23], VD2, p. 6). Cho 2 đơn thức $A=3m^2x^2y^3z$, $B=12x^2y^3z$ ($m\neq 0$ là hằng). (a) Tính hiệu A-B. (b) Xác định m để giá trị của 2 đơn thức A,B luôn bằng nhau với mọi $x,y,z\in\mathbb{R}$.
- 8 ([Tuy23], VD3, p. 6). Cho 3 đa thức A=8a-9b, B=5b-c, C=3c-2a trong đó $a,b,c\in\mathbb{N}$. Không thực hiện phép tính, cho biết tính ABC có giá trị là số chẵn hay lẻ?
- 9 ([Tuy23], 6., p. 7). Cho 2 đa thức $A=3x^4-2x^3y+5xy^3-y^4$, $B=-8x^4+2x^3y-9x^2y^2-xy^3+4y^4$. Tính tổng A+B & hiệu A-B bằng 2 cách: Cộng trừ theo hàng ngang. Cộng trừ theo cột dọc.
- **10** ([Tuy23], 7., p. 7). Chứng minh $o \forall n \in \mathbb{N}^*$: (a) $8 \cdot 2^n + 2^{n+1}$ có tận cùng bằng chữ số 0. (b) $3^{n+3} 2 \cdot 3^n + 2^{n+5} 7 \cdot 2^n \stackrel{.}{:} 25$. (c) $4^{n+3} + 4^{n+2} 4^{n+1} 4^n \stackrel{.}{:} 300$.
- 11 ([Tuy23], 8., p. 7). Viết tích 31 · 5² thành tổng của 3 lũy thừa cơ số 5 với số mũ là 3 số tự nhiên liên tiếp.
- 12 ([Tuy23], 9., p. 7). Viết $2 \text{ số tự nhiên sau dưới dạng 1 đa thức có } 2 \text{ biến } x, y: (a) <math>\overline{xyz}$. (b) $\overline{yxy5}$.
- **13** ([Tuy23], 10., p. 7). Cho da thức $P = ax^4y^3 + 10xy^2 + 4y^3 2x^4y^3 3xy^2 + bx^3y^4$. biết a, b là hằng & đa thức P có bậc 3, tìm a, b.
- **14** ([Tuy23], 11., p. 7). Tính tổng $S = \overline{ab} + \overline{abc} + \overline{ba} \overline{bac}$.
- 15 ([Tuy23], 12., p. 7). Chứng minh tổng của 4 số lẻ liên tiếp thì chia hết cho 8.
- **16** ([Tuy23], 13., p. 7). Cho 3 đa thức $A = 16x^4 8x^3y + 7x^2y^2 9y^4$, $B = -15x^4 + 3x^3y 5x^2y^2 6y^4$, $C = 5x^3y + 3x^2y^2 + 17y^4 + 1$. Chứng minh ít nhất 1 trong 3 đa thức này có giá trị dương $\forall x, y \in \mathbb{R}$.
- 17 ([Tuy23], 14., p. 7). Cho đa thức $A = 2x^2 + |7x 1| (5 x + 2x^2)$. (a) Thu gọn A. (b) Tìm x để A = 2.
- **18** ([Tuy23], 15., p. 7). Tính giá trị của 2 đa thức sau biết x y = 0. (a) A = 7x 7y + 4ax 4ay 5. (b) $B = x(x^2 + y^2) y(x^2 + y^2) + 3$.
- **19** ([Tuy23], 16., p. 7). Cho 2 đa thức $A = xyz xy^2 xz^2$, $B = y^3 + z^3$. Chứng minh nếu x y z = 0 thì A, B là 2 đa thức đối nhau.
- **20** ([Tuy23], 17., p. 7). Tính giá trị của đa thức $A = 4x^4 + 7x^2y^2 + 3y^4 + 5y^2$ với $x^2 + y^2 = 5$.
- **21** ([Bìn23], VD1, p. 3). (a) Xác định dấu của c biết $2a^3bc$ trái dấu với $-3a^5b^3c^2$. (b) Mở rộng.
- **22** ([Bìn23], VD2, p. 3). Tính hợp lý giá trị biểu thức $A = 2\frac{1}{135} \cdot \frac{1}{651} \frac{1}{105} \cdot 3\frac{650}{651} \frac{4}{315 \cdot 651} + \frac{4}{105}$ bằng cách thay số bởi chữ.
- 23 ([Bìn23], VD3, p. 3). Tìm các số có 3 chữ số sao cho hiệu của số ấy & số gồm 3 chữ số ấy viết theo thứ tự ngược lại là 1 số chính phương.
- **24** ([Bìn23], VD4, p. 3). Cho đa thức $P(x) = x^3 + ax^2 + bx + c$ với 3 hằng số $a, b, c \in \mathbb{R}$. Biết P(2) = P(3) = 0. Tính P(5) P(0).
- **25** ([Bìn23], VD5, p. 4). Chứng minh đẳng thức $(x-a)(y-a)(z-a) = xyz + a^2(x+y+z) a(xy+yz+zx) a^3$.
- **26** ([Bìn23], 1., p. 4). Rút gọn biểu thức (2x-3y)-(x-2y) với $x=a^2+2ab+b^2$, $y=a^2-2ab+b^2$.
- **27** ([Bìn23], 2., p. 4). Xác định đa thức A biết $A + 6x^2 4xy = 7x^2 8xy + y^2$.
- 28 ([Bìn23], 3., p. 4). Chứng minh: (a) Tổng của 1 số tự nhiên có 2 chữ số với số gồm 2 chữ số ấy viết theo thứ tự ngược lại là 1 số chia hết cho 11. (b) Hiệu của 1 số tự nhiên có 2 chữ số với số gồm 2 chữ số ấy viết theo thứ tự ngược lại là 1 số chia hết cho 9.
- 29 ([Bìn23], 4., p. 4). Tìm các số tự nhiên có 2 chữ số sao cho tổng của số ấy & số viết theo thứ tự ngược lại là 1 số chính phương.
- **30** ([Bin23], 5., p. 4). Tim số tự nhiên \overline{abc} , a > b > c > 0 sao cho $\overline{abc} + \overline{bca} + \overline{cab} = 666$.
- **31** ([Bìn23], 6., p. 4). Có số tự nhiên \overline{abc} nào mà tổng $\overline{abc} + \overline{bca} + \overline{cab}$ là 1 số chính phương không?

- 32 ([Bìn23], 7., p. 4). (a) Tìm số tự nhiên chia hết cho 7 có 3 chữ số biết tổng các chữố của số đó bằng 14. (b) Tìm số tự nhiên chia hết cho 7 có 3 chữ số khác nhau & tổng các chữ số chia hết cho 7.
- **33** ([Bìn23], 8., p. 4). (a) Tìm số tự nhiên \overline{abc} có 3 chữ số khác nhau sao cho 3a + 5b = 8c. (b) Tìm số tự nhiên \overline{abc} có 3 chữ số khác nhau $\mathscr E$ khác 0 sao cho \overline{abc} bằng trung bình cộng của \overline{bca} , \overline{cab} .
- **34** ([Bìn23], 9., p. 4). Tìm các số tự nhiên có 2 chữ số sao cho số đó bằng: (a) 6 lần tích các chữ số của số đó. (b) 2 lần tích các chữ số của số đó.
- **35** ([Bìn23], 10., p. 4). Tìm số tự nhiên abcd sao cho số đó chia hết cho tích của ab, cd.
- **36** ([Bìn23], 11., p. 4). 2 đơn thức $-3x^4y$, $5x^2y^3$ có thể cùng giá trị dương không?
- **37** ([Bìn23], 12., p. 4). Chứng minh 3 đơn thức $-\frac{1}{4}x^3y^4, -\frac{4}{5}x^4y^3, \frac{1}{2}xy$ không thể cùng có giá trị âm.
- **38** ([Bìn23], 13., p. 5). 2 đơn thức $-2a^5b^2$, $3a^2b^6$ cùng dấu. Tìm dấu của a.
- **39** ([Bìn23], 14., p. 5). 4 đơn thức ad, -bc, -ac, -bd có thể cùng có giá trị âm không?
- **40** ([Bìn23], 15., p. 5). Rút gọn biểu thức $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$.
- **41** ([Bin23], 16., p. 5). Cho a+b+c=2p. (a) Chứng minh đẳng thức $2bc+b^2+c^2-a^2=4p(p-a)$. (b) Viết & chứng minh các đẳng thức tương tự.
- **42** ([Bìn23], 17., p. 5). Cho a+b+c=0. Chứng minh A=B=C với A=a(a+b)(a+c), B=b(b+c)(b+a), C=c(c+a)(c+b).
- **43** ([Bìn23], 18., p. 5). Xét 2 ví dụ: $53 \cdot 57 = 3021, 72 \cdot 78 = 5616$. Xây dựng quy tắc nhân nhẩm 2 số có 2 chữ số, trong đó các chữ số hàng chục bằng nhau, còn các chữ số hàng dơn vị có tổng bằng 10.
- 44 ([Bìn23], 19., p. 5). (a) Tìm đa thức P(x) có các hệ số là số tự nhiên nhỏ hơn 10 sao cho P(10) = 520. (b) Tìm đa thức P(x) có các hệ số là số tự nhiên nhỏ hơn 4 sao cho P(4) = 156.

3 Operators ·,: Multivariate Polynomial – Phép ·,: Đa Thức Nhiều Biến

- **45** ([Tuy23], VD4, p. 8). Cho 3 đơn thức $A = -3xy^3$, $B = 8xy^2$, $C = \frac{5}{3}x^2y$. Chứng minh 3 đơn thức này không thể cùng có giá trị đương.
- **46** ([Tuy23], VD5, p. 9). Chứng minh đẳng thức $(x+y)(x+y+2) 2(x+1)(y+1) + 2 = x^2y^2$.
- **47** ([Tuy23], VD6, p. 9). Tim giá trị của biểu thức $A = (5x^5 + 5x^4) : 5x^2 (2x^4 8x^2 6x + 12) : (2x 4) tại <math>x = -2$.
- **48** ([Tuy23], 18., p. 9). Cho biểu thức $E = x(x-y) + y(x+y) (x+y)(x-y) 2y^2$. Với mọi giá trị của x, y thì giá trị của biểu thức E là 1 số âm hay là 1 số dương?
- **49** ([Tuy23], 19., p. 9). Cho xy = 1. Chúng minh đẳng thức x(y+1) + y(x+1) = (x+1)(y+1).
- **50** ([Tuy23], 20., p. 9). Chứng minh đẳng thức $(x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4$.
- **51** ([Tuy23], 21., p. 9). Tìm $n \in \mathbb{N}$ để mỗi phép chia sau đều là phép chia hết: (a) $7x^{n+2}y^n : 4x^3y^4$. (b) $-\frac{2}{3}x^{2n}y^7 : \frac{4}{9}x^{n+3}y^n$.
- **52** ([Tuy23], 22., p. 10). Tîm x, y biết: [(x-2y)(x-7y)-(x-2y)(x+2y)]: (x-2y)=18.
- **53** ([Tuy23], 23., p. 10). Tìm giá trị của biểu thức $A = (3x^4 x^2 2x) : (3x^2 + 3x + 2) + (x^4 x^2) : (x^2 x)$ tại x = -5.
- **54** ([Tuy23], 24., p. 10). Không làm phép chia đa thức, tìm số dư trong phép chia đa thức f(x) cho đa thức g(x) trong 3 trường hợp sau: (a) $f(x) = x^{101} + x^{102} + x^{103} + 51$, g(x) = x + 1. (b) $f(x) = 2x^3 3x^2 + 4x 17$, g(x) = x 2. (c) $f(x) = x^4 + 5x^3 + 6x + 30$, g(x) = x + 5.
- **55** ([Tuy23], 25., p. 10). Tìm các giá trị của m, n để đa thức $A = 2x^4 + 3x^3 3x^2 + mx + n$ chia hết cho đa thức $B = x^2 + 1$.
- **56** ([Tuy23], 26., p. 10). Chứng minh đa thức $f(x) = (x^2 + 4x 20)^{51} + (x^3 2x 22)^{50} 2$ chia hết cho đa thức x 3.
- 57 ([Tuy23], 27., p. 10). Cho đa thức $A = -3x^3 + 20x^2 + 20x + 10$. Chia đa thức A cho đa thức B được thương là 3x + 1 \mathcal{E} dư x + 6. Tìm đa thức B.
- **58** ([Tuy23], 28., p. 10). Cho đa thức $4x^3 + ax + b$ chia hết cho 2 đa thức x 2 & x + 1. Tính 2a 3b.
- **59** ([Tuy23], 29., p. 10). Tìm giá trị nguyên của x để giá trị của đa thức $A = 10x^4 13x^3 9x^2 + x + 19$ chia hết cho giá trị của đa thức B = 2x 3.

4 Algebraic Identity – Hằng Đẳng Thức Đáng Nhớ

- **60** ([Tuy23], VD7, p. 11). Cho x + y = 9, xy = 14. Tính giá trị của 3 biểu thức: x y, $x^2 + y^2$, $x^3 + y^3$.
- **61** ([Tuy23], VD8, p. 12). Tìm GTNN của biểu thức $A = (x + 3y 5)^2 6xy + 26$.
- **62** ([Tuy23], 30., p. 12). Chứng minh đẳng thức: (a) $(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1) = 2^{32}-1$. (b) $100^2+103^2+105^2+94^2 = 101^2+98^2+96^2+107^2$.
- **63** (Mở rộng [Tuy23], 30., p. 12). Tính: (a) $\prod_{i=1}^{n} (2^{2^i} + 1) = (2+1)(2^{2^1} + 1)(2^{2^2} + 1)(2^{2^3} + 1) \cdots (2^{2^n} + 1), \prod_{i=m}^{n} (2^{2^i} + 1) = (2^{2^m} + 1)(2^{2^{m+1}} + 1) \cdots (2^{2^n} + 1)$. (b) $\prod_{i=1}^{n} (a^{2^i} + 1), \prod_{i=m}^{n} (a^{2^i} + 1)$. (c) $\prod_{i=m}^{n} (a^{2^i} + b^{2^i})$.
- **64** ([Tuy23], 31., p. 12). Tinh hợp lý, $\forall a, b \in \mathbb{R}$, $\forall m, n \in \mathbb{N}$, $m \le n$: (a) $\frac{258^2 242^2}{254^2 246^2}$. (b) $263^2 + 74 \cdot 263 + 37^2$. (c) $136^2 92 \cdot 136 + 46^2$. (d) $(50^2 + 48^2 + 46^2 + \dots + 2^2) (49^2 + 47^2 + 45^2 + \dots + 1^2)$.
- **65** ([Tuy23], 32., p. 12). Cho $a, b \in \mathbb{R}$ thỏa $2(a^2 + b^2) = (a b)^2$. Chứng minh a, b là 2 số đối nhau.
- **66** ([Tuy23], 33., p. 12). Cho $a, b, x, y \in \mathbb{R}^*$ thỏa $(a^2 + b^2)(x^2 + y^2) = (ax + by)^2$. Tìm hệ thức liên hệ giữa 4 số a, b, x, y.
- **67** ([Tuy23], 34., p. 12). Cho $a^2 + b^2 + c^2 = ab + bc + ca$. Chứng minh a = b = c.
- **68** ([Tuy23], 35., p. 12). Chứng minh không có $x, y \in \mathbb{R}$ nào thỏa mãn đẳng thức: (a) $3x^2 + y^2 + 10x 2xy + 26 = 0$. (b) $4x^2 + 3y^2 4x + 30y + 78 = 0$.
- **69** ([Tuy23], 36., p. 12). Cho $a \in \mathbb{N}$. Chứng minh đẳng thức $(10a+5)^2 = 100a(a+1) + 25$. Áp dụng để tính nhẩm $35^2, 85^2, 105^2$.
- 70 ([Tuy23], 37., p. 13). Chứng minh: (a) Biểu thức $A = x^2 + x + 1$ luôn luôn dương $\forall x \in \mathbb{R}$. (b) Biểu thức $B = x^2 xy + y^2$ luôn luôn dương $\forall x \in \mathbb{R}$ không đồng thời bằng 0. (c) Biểu thức $C = 4x 10 x^2$ luôn luôn âm $\forall x \in \mathbb{R}$. (d) Tìm các biểu thức bậc 2 luôn dương dương, luôn luôn âm tương tự.
- **71** ([Tuy23], 38., p. 13). Tìm GTNN của biểu thức: (a) $A = 25x^2 + 3y^2 10x + 11$. (b) $B = (x 3)^2 + (x 11)^2$. (c) C = (x + 1)(x 2)(x 3)(x 6).
- **72** ([Tuy23], 39., p. 13). Tìm GTLN của biểu thức: (a) $2x x^2$. (b) $B = 19 6x 9x^2$.
- **73** ([Tuy23], 40., p. 13). Chứng minh: (a) 2 số chẵn hơn kém nhau 4 đơn vị thì hiệu các bình phương của chúng chia hết cho 16. (b) 2 số lẻ hơn kém nhau 6 đơn vị thì hiệu bình phương của chúng chia hết cho 24.
- **74** ([Tuy23], 41., p. 13). Cho x > y > 0, x y = 7, xy = 60. Không tính x, y, tính: (a) $x^2 y^2$. (b) $x^4 + y^4$.
- **75** ([Tuy23], 42., p. 13). Cho a+b+c=2p. Chứng minh: (a) $a^2-b^2-c^2+2bc=4(p-b)(p-c)$. (b) $p^2+(p-a)^2+(p-b)^2+(p-c)^2=a^2+b^2+c^2$.
- **76** ([Tuy23], 43., p. 13). Cho $a = m^2 + n^2, b^2 = m^2 n^2, c = 2mn$. Chứng minh $a^2 = b^2 + c^2$.
- 77 ([Tuy23], 44., p. 13). Tính giá trị biểu thức: (a) $A = x^3 + 9x^2 + 27x + 27$ với x = -103. (b) $B = x^3 15x^2 + 75x$ với x = 25. (c) $C = (x+1)(x-1)(x^2+x+1)(x^2-x+1)$ với x = -3.
- **78** ([Tuy23], 45., p. 13). Cho x y = 2. Tính giá trị biểu thức $A = 2(x^3 y^3) 3(x + y)^2$.
- **79** ([Tuy23], 46., p. 13). Cho x + y + z = 0. Chứng minh $x^3 + y^3 + z^3 = 3xyz$.
- **80** ([Tuy23], 47., p. 13). Rút gọn biểu thức $A = (x y 1)^3 (x y + 1)^3 + 6(x y)^2$.
- **81** ([Tuy23], 48., p. 13). Cho $(x+2y)(x^2-2xy+4y^2)=0, (x-2y)(x^2+2xy+4y^2)=16$. Tim x,y.
- **82** ([Tuy23], 49., p. 13). Chứng minh: $742^3 692^3 \\dots \\cdots \\cd$
- **83** ([Tuy23], 50., p. 13). Cho a + b + c + d = 0. Chứng minh: $a^3 + b^3 + c^3 + d^3 = 3(b+c)(ad-bc)$.
- **84** ([Tuy23], 51., p. 13). Cho a+b+c=0. Chúng minh: (a) $(ab+bc+ca)^2=a^2b^2+b^2c^2+c^2a^2$. (b) $a^4+b^4+c^4=2(ab+bc+ca)^2$.
- **85** ([Tuy23], 52., p. 14). Xác định 2 hệ số a, b để đa thức $A = x^4 2x^3 + 3x^2 + ax + b$ là bình phương của 1 đa thức.
- **86** ([Tuy23], 53., p. 14). Cho a+b+c=0, $a^2+b^2+c^2=1$. Chứng minh $a^4+b^4+c^4=\frac{1}{2}$.
- 87 ([Tuy23], 54., p. 14). Cho $a,b,c\in\mathbb{R}$ không đồng thời bằng 0. Chứng minh có ít nhất 1 trong 3 biểu thức sau có giá trị dương: $x=(a-b+c)^2+8ab,y=(a-b+c)^2+8bc,z=(a-b+c)^2-8ca$.
- 88 ([Tuy23], 55., p. 14). Tính tổng các hệ số của tất cả các hạng tử trong khai triển của nhị thức: (a) $(5x-3)^2$. (b) $(3x-4y)^{20}$.
- 89 ([Tuy23], 56., p. 14). Da thức $(x+2)^5$ được khai triển theo lũy thừa giảm của x. Biết hạng tử thứ 2 & hạng tử thứ 3 có giá trị bằng nhau khi cho x=a,y=b, trong đó a,b là 2 số thực dương, a-b=1. Tìm a,b.

- **90** ([Tuy23], 57., p. 14). Tính: (a) $(x+2)^5$. (b) $(x-1)^6$. (c) $(x-1)^5$.
- **91** ([Tuy23], 58., p. 14). Tìm số dư của phép chia 38^{10} cho $13 \& 38^{9}$ cho 13.
- **92** ([Tuy23], 59., p. 14). Chứng minh 2 chữ số tận cùng của 7^{43} là 43.
- 93 ([Bìn23], VD6, p. 5). Chứng minh số 3599 viết được dưới dạng tích của 2 số tự nhiên khác 1.
- **94** ([Bìn23], VD7, p. 5). Tîm $x \in \mathbb{N}$ biết x + 15, x 74 là 2 số chính phương.
- 95 ([Bìn23], VD8, p. 6). Chứng minh biểu thức $A = x^2 + 2(x+1)^2 + 3(x+2)^2 + 4(x+3)^2$ viết được dưới dạng tổng các bình phương của 2 biểu thức.
- **96** ([Bìn23], VD9, p. 6). Tìm GTNN của tổng a + b + c + d biết $\frac{a}{2} = \frac{b}{4} = \frac{c}{6} = \frac{d}{b+8}$.
- 97 ([Bìn23], VD10, p. 6). Cho x + y + z = 0, xy + yz + zx = 0. Chứng minh x = y = z.
- 98 ([Bìn23], VD11, p. 6, tổng các số chính phương đan dấu). (a) Tính $A = -1^2 + 2^2 3^2 + 4^2 \dots 99^2 + 100^2$. (b) Tính $A = -1^2 + 2^2 3^2 + 4^2 \dots + (-1)^n n^2$, $\forall n \in \mathbb{N}^*$.
- **99** ([Bìn23], VD12, p. 7). Cho $x + y = a + b, x^2 + y^2 = a^2 + b^2$. Chứng minh $x^3 + y^3 = a^3 + b^3$.
- **100** ([Bin23], VD13, p. 7). (a) Cho a b = 1, $a^3 b^3 = 1$. Tính a, b. (b) Cho a + b = m, a b = n. Tính $ab, a^3 b^3$ theo m, n.
- **101** ([Bìn23], 20., p. 7). *Tính:* (a) $\frac{63^2 47^2}{215^2 105^2}$. (b) $\frac{437^2 363^2}{537^2 463^2}$
- **102** ([Bin23], 21., p. 7). So sánh $A = 26^2 24^2$, $B = 27^2 25^2$.
- **103** ([Bìn23], 22., p. 7). Tim $x \in \mathbb{R}$ biết $4(x+1)^2 + (2x-1)^2 8(x-1)(x+1) = 11$.
- $\textbf{104} \ ([\texttt{Bin23}], 23., \text{ p. 8}). \ \ \textit{R\'{u}t gon biểu thức: (a)} \ 2x(2x-1)^2 3x(x+3)(x-3) 4x(x+1)^2. \ \ (b) \ (a-b+c)^2 (b-c)^2 + 2ab 2ac. \ \ (c) \ (3x+1)^2 2(3x+1)(3x+5) + (3x+5)^2. \ \ (d) \ (3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1). \ \ (e) \ \ (a+b-c)^2 + (a-b+c)^2 2(b-c)^2. \ \ (f) \ \ (a+b+c)^2 + (a-b-c)^2 + (b-c-a)^2 + (c-a-b)^2. \ \ \ (g) \ \ (a+b+c+d)^2 + (a+b-c-d)^2 + (a+c-b-d)^2 + (a+d-b-c)^2. \ \ \)$
- **105** ([Bin23], 24., p. 8). Tinh $A = 1^2 2^2 3^2 + 4^2 + 5^2 6^2 7^2 + 8^2 + \dots + 97^2 98^2 99^2 + 100^2$.
- **106** ([Bin23], 25., p. 8). Cho $a^2 + b^2 + c^2 = m$. Tính giá trị biểu thức $A = (2a + 2b c)^2 + (2b + 2c a)^2 + (2c + 2a b)^2$ theo m.
- 107 ([Bìn23], 26., p. 8). Viết số dưới dạng tích của 2 số tự nhiên khác 1: (a0 899. (b) 9991.
- **108** ([Bìn23], 27., p. 8). Chứng minh hiệu $7778^2 2223^2$ là 1 số gồm toàn các chữ số như nhau.
- **109** ([Bìn23], 28., p. 8). Xác định đa thức P(x) thỏa $P(x-1) = x^2 4x + 7$.
- **110** ([Bìn23], 29., p. 8). Chứng minh hằng đẳng thức: (a) $(a+b+c)^2 + a^2 + b^2 + c^2 = (a+b)^2 + (b+c)^2 + (c+a)^2$. (b) $x^4 + y^4 + (x+y)^4 = 2(x^2 + xy + y^2)^2$.
- 111 ([Bin23], 30., p. 8). Cho $a^2 b^2 = 4c^2$. Chứng minh hằng đẳng thức $(5a 3b + 8c)(5a 3b 8c) = (3a 5b)^2$.
- **112** ([Bìn23], 31., p. 8). Chứng minh nếu $(a^2 + b^2)(x^2 + y^2) = (ax + by)^2$ với $x, y \in \mathbb{R}^*$ thì $\frac{a}{x} = \frac{b}{y}$.
- **113** ([Bìn23], 32., p. 8). Chứng minh nếu $(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) = (ax + by + cz)^2 \ với \ x, y, z \in \mathbb{R}^* \ thì \ \frac{a}{x} = \frac{b}{y} = \frac{c}{z}$.
- **114** ([Bin23], 33., p. 8). Cho $(a+b)^2 = 2(a^2+b^2)$. Chứng minh a=b.
- 115 ([Bìn23], 34., p. 8). Chứng minh a = b = c nếu: (a) $a^2 + b^2 + c^2 = ab + bc + ca$. (b) $(a + b + c)^2 = 3(a^2 + b^2 + c^2)$. (c) $(a + b + c)^2 = 3(ab + bc + ca)$.
- **116** ([Bìn23], 35., p. 8). Viết biểu thức dưới dạng tổng của 3 bình phương: (a) $(a+b+c)^2 + a^2 + b^2 + c^2$. (b) 2(a-b)(c-b) + 2(b-a)(c-a) + 2(b-c)(a-c).
- **117** ([Bìn23], 36., p. 8). Tính giá trị biểu thức $a^4 + b^4 + c^4$ biết a + b + c = 0 &: (a) $a^2 + b^2 + c^2 = 2$. (b) $a^2 + b^2 + c^2 = 1$. (c) $a^2 + b^2 + c^2 = m \in \mathbb{R}$.
- **118** ([Bìn23], 37., p. 8). Cho a+b+c=0. Chứng minh $a^4+b^4+c^4$ bằng mỗi biểu thức: (a) $2(a^2b^2+b^2c^2+c^2a^2)$. (b) $2(ab+bc+ca)^2$. (c) $\frac{1}{2}(a^2+b^2+c^2)^2$.
- 119 ([Bìn23], 38., p. 8). Chứng minh biểu thức luôn luôn có giá trị dương với mọi giá trị của biến: (a) $9x^2 6x + 2$. (b) $x^2 + x + 1$. (c) $2x^2 + 2x + 1$.
- **120** ([Bìn23], 39., p. 9). Tìm GTNN của biểu thức: (a) $A = x^2 3x + 5$. (b) $B = (2x 1)^2 + (x + 2)^2$.

- **121** ([Bìn23], 40., p. 9). Tìm GTLN của biểu thức: (a) $A = 4 x^2 + 2x$. (b) $B = 4x x^2$.
- **122** ([Bìn23], 41., p. 9). Tìm GTNN của biểu thức $A = x^2 + y^2 x y xy$.
- 123 ([Bìn23], 42., p. 9). Chứng minh: (a) Nếu $p, p^2 + 8$ là 2 số nguyên tố thì $p^2 + 2$ cũng là số nguyên tố. (b) Nếu $p, 8p^2 + 1$ là $2 s \hat{o} nguy \hat{e} n t \hat{o} thì 2p + 1 cũng là s \hat{o} nguy \hat{e} n t \hat{o}.$
- **124** ([Bìn23], 43., p. 9). Chứng minh 999991, 1000027 là 2 hợp số.
- **125** ([Bìn23], 44., p. 9). Tính: (a) $(x-2)^3 x(x+1)(x-1) + 6x(x-3)$. (b) $(x-2)(x^2-2x+4)(x+2)(x^2+2x+4)$.
- **126** ([Bin23], 45., p. 9). $Tim\ x \in \mathbb{R}$ $bi\acute{e}t$: (a) $(x-3)(x^2+3x+9)+x(x+2)(2-x)=1$. (b) $(x+1)^3-(x-1)^3-6(x-1)^2=-10$.
- 127 ([Bìn23], 46., p. 9). Rút gọn biểu thức: $(a) (a+b+c)^3 (b+c-a)^3 (c+a-b)^3 (a+b-c)^3$. $(b) (a+b)^3 + (b+c)^3 + (b+c)^3 + (b+c)^3$ $(c+a)^3 - 3(a+b)(b+c)(c+a)$.
- 128 ([Bìn23], 47., p. 9). Chứng minh hằng đẳng thức: (a) $(a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)$. (b) $a^3+b^3+c^3-3abc=1$ $(a+b+c)(a^2+b^2+c^2-ab-bc-ca).$
- **129** ([Bin23], 48., p. 9). Cho a + b + c = 0. Chứng minh $a^3 + b^3 + c^3 = 3abc$.
- 130 ([Bìn23], 49., p. 9). Cho x + y = a, xy = b với $a, b \in \mathbb{R}$ thỏa điều kiện $a^2 \ge 4b$. Tính giá trị biểu thức theo a, b: (a) $x^2 + y^2$. (b) $x^3 + y^3$. (c) $x^4 + y^4$. (d) $x^5 + y^5$.
- 131 ([Bìn23], 50., p. 9). (a) Cho x + y = 1. Tính giá trị biểu thức $x^3 + y^3 + 3xy$. (b) Cho x y = 1. Tính giá trị biểu thức $x^3 - y^3 - 3xy$.
- **132** ([Bìn23], 51., p. 9). Cho a + b = 1. Tính giá trị biểu thức $A = a^3 + b^3 + 3ab(a^2 + b^2) + 6a^2b^2(a + b)$.
- 133 ([Bìn23], 52., p. 9). (a) Cho $x + y = 2, x^2 + y^2 = 10$. Tính giá trị biểu thức $x^3 + y^3$. (b) Cho $x + y = a, x^2 + y^2 = b$ với $a,b \in \mathbb{R}$ thỏa điều kiện $2b \ge a^2$. Tính giá trị biểu thức $x^3 + y^3$ theo a,b.
- **134** ([Bìn23], 53., p. 9). Cho a + b + c = 4, $a^2 + b^2 + c^2 = 30$. Tính giá tri biểu thức $a^3 + b^3 + c^3 3abc$.
- **135** ([Bin23], 54., p. 9). Cho $(a+b+c)^3 (b+c-a)^3 (c+a-b)^3 (a+b-c)^3 = 1$. Tinh abc.
- **136** ([Bin23], 55., p. 9). Cho x + y = 1, $ab(x^2 + y^2) + xy(a^2 + b^2) = ab$. Biết $xy \neq 0$, chứng minh a = b.
- **137** ([Bìn23], 56., p. 9). Chứng minh nếu a + b = c thì $a^4 + b^4 + c^4 = 2a^2b^2 + 2b^2c^2 + 2c^2a^2$.
- 138 ([Bìn23], 57., pp. 9-10). Chứng minh: (a) Nếu n là tổng của 2 số chính phương thì 2n cũng là tổng của 2 số chính phương. (b) Nếu 2n là tổng của 2 số chính phương thì n cũng là tổng của 2 số chính phương. (c) Nếu n là tổng của 2 số chính phương thì n^2 cũng là tổng của 2 số chính phương. (d) Nếu m,n đều là tổng của 2 số chính phương thì tích mn cũng là tổng của 2 số chính phương.
- 139 ([Bìn23], 58., p. 10). Mỗi số sau là bình phương của số tự nhiên nào? (a) $A = \underbrace{9 \dots 9}_{n} \underbrace{0 \dots 0}_{n} 25$. (b) $B = \underbrace{9 \dots 9}_{n} \underbrace{8 \dots 0}_{n} 1$. (c) $C = \underbrace{4 \dots 4}_{n} \underbrace{8 \dots 8}_{n-1} 9$. (d) $D = \underbrace{1 \dots 1}_{n} \underbrace{2 \dots 2}_{n+1} 5$. (e) $E = \underbrace{1 \dots 1}_{2n} \underbrace{2 \dots 2}_{n}$. (f) $F = \underbrace{1 \dots 1}_{2n} + \underbrace{4 \dots 4}_{n} + 1$.
- $\textbf{140} \ ([\underline{\mathtt{Bin23}}], \ 59., \ \mathtt{p.} \ 10). \ \textit{(a)} \ \textit{Cho} \ a = \underbrace{1\ldots 1}_{n}, b = 1\underbrace{0\ldots 0}_{n-1} 5. \ \textit{Chứng minh ab} + 1 \ \textit{là số chính phương. (b)} \ \textit{Cho} \ 1 \ \textit{dãy số có số}$

hạng đầu là 16, các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước: 16, 1156, 111556, . . . Chứng minh mọi số hạng của dãy đều là số chính phương.

- **141** ([Bìn23], 60., p. 10). Chứng minh ab + 1 là số chính phương với $a = \underbrace{1 \dots 1}_{n} 2, b = \underbrace{1 \dots 1}_{n} 4.$
- **142** ([Bìn23], 61., p. 10). Chứng minh $\forall a \in \mathbb{N}$, tồn tại $b \in \mathbb{N}b$ sao cho ab + 4 là số chính phương.
- **143** ([Bìn23], 62., p. 10). Cho $a = \underbrace{1 \dots 1}_{2n}, b = \underbrace{1 \dots 1}_{n+1}, c = \underbrace{6 \dots 6}_{n}$. Chứng minh a + b + c + 8 là số chính phương.
- **144** ([Bìn23], 63., p. 10). Chứng minh a là số chính phương nếu $a, b \in \mathbb{N}$ thỏa mãn: (a) $a^2 + b^2 = 2a(2a + b)$. (b) $a^2 + b^2 + 2ab = 2a(2a + b)$. 6a + 2b - 1.
- **145** ([Bìn23], 64., p. 10). Cho $a, b, c \in \mathbb{N}$ thỏa mãn $a^2 + b^2 + c^2 = 2(ab + bc + ca)$. Chứng minh: (a) ab + bc + ca là số chính phương. (b) ab, bc, ca là 3 số chính phương.
- **146** ([Bìn23], 65., p. 10). Tìm số chính phương lớn nhất nhỏ hơn $1\underbrace{0...0}_{20}1\underbrace{0...0}_{21}84$.
- **147** ([Bìn23], 66., p. 10). (a) Chứng minh biểu thức $10^{150} + 5 \cdot 10^{50} + 1$ không là lập phương của 1 số tự nhiên. (b) Chứng minh tích 3 số nguyên dương liên tiếp không là lập phương của 1 số tự nhiên.
- 148 ([Bìn23], 67., p. 10). Chứng minh số $A = \frac{1}{3} \left(\underbrace{1 \dots 1}_{2n} \underbrace{3 \dots 3}_{2n} \underbrace{0 \dots 0}_{2n} \right)$ là lập phương của 1 số tự nhiên.
- 149 ([Bìn23], 68., p. 10). Chia 27 quả cân có khối lượng 10, 20, 30, ..., 270 g thành 3 nhóm có khối lượng bằng nhau.
- **150** ([Bìn23], 69., p. 10). (a) Chia 18 quả cân có khối lượng 1², 2², ..., 18² g thành 3 nhóm có khối lượng bằng nhau. (b) Chia 27 quả cân có khối lượng $1^2, 2^2, \dots, 27^2$ g thành 3 nhóm có khối lượng bằng nhau.

5 Phân Tích Đa Thức Thành Nhân Tử. Các Phương Pháp Thông Thường

- **151** ([Tuy23], VD9, p. 15). Cho $x, y \in \mathbb{R}$, $x \neq y$, thỏa $9x(x-y) 10(y-x)^2 = 0$. Chứng minh x = 10y.
- **152** ([Tuy23], VD10, p. 15). Cho $A = 4a^2b^2 (a^2 + b^2 + c^2)^2$ trong đó $a, b, c \in \mathbb{R}$ là độ dài 3 cạnh 1 tam giác. Chứng minh A > 0.
- **153** ([Tuy23], 60., p. 16). Phân tích đa thức thành nhân tử: (a) $5x(x-2y) + 2(2y-x)^2$. (b) $7x(y-4)^2 (4-y)^3$. (c) $(4x-8)(x^2+6) (4x-8)(x+7) + 9(8-4x)$.
- **154** ([Tuy23], 61., p. 16). Chứng minh: (a) $43^2 + 43 \cdot 17 : 60$. (b) $27^5 3^{11} : 80$.
- 155 ([Tuy23], 62., p. 16). Tìm 1 số biết 3 lần bình phương của nó đúng bằng 2 lần lập phương của số ấy.
- **156** ([Tuy23], 63., p. 16). Có $x, y, z \in \mathbb{Z}$ nào thỏa mãn đồng thời:x

$$\begin{cases} x^3 + xyz = 957, \\ y^3 + xyz = 795, \\ z^3 + xyz = 579. \end{cases}$$

157 ([Tuy23], 64., p. 16). Chứng minh số $\underbrace{1\dots1}_n\underbrace{2\dots2}_n$ là tích 2 số nguyên liên tiếp.

Phân tích đa thức thành nhân tử:

- **158** ([Tuy23], 65., p. 16). (a) $100x^2 (x^2 + 25)^2$. (b) $(x y + 5)^2 2(x y + 5) + 1$.
- **159** ([Tuy23], 66., p. 16). $(x^2 + 4y^2 5)^2 16(x^2y^2 + 2xy + 1)$.
- **160** ([Tuy23], 67., p. 16). Chứng minh: (a) $21^{10} 1 \\dots 200$. (b) $39^{20} + 39^{13} \\dots 40$. (c) $2^{60} + 5^{30} \\dots 41$. (d) $2025^{2027} + 2027^{2025} \\dots 2026$.
- **161** ([Tuy23], 68., p. 16). Cho $n \in \mathbb{N}$ lê. Chứng minh $24^n + 1 : 25$ nhưng $24^n + 1 \not: 23$.
- **162** ([Tuy23], 69., p. 16). Cho $a \in \mathbb{N}$ le, a > 1. Chứng minh $(a-1)^{\frac{1}{2}(a-1)} 1 = a 2$.

Phân tích đa thức thành nhân tử:

- **163** ([Tuy23], 70., p. 16). (a) $x^2 xz 9y^2 + 3yz$. (b) $x^3 x^2 5x + 125$. (c) $x^3 + 2x^2 6x 27$. (d) $12x^3 + 4x^2 27x 9$.
- **164** ([Tuy23], 71., p. 16). (a) $x^4 25x^2 + 20x 4$. (b) $x^2(x^2 6) x^2 + 9$. (c) $ab(x^2 + y^2) xy(a^2 + b^2)$.
- **165** ([Tuy23], 72., p. 16). Tìm các cặp số $x, y \in \mathbb{R}$ sao cho x y = xy 1.
- **166** ([Tuy23], 73., p. 16). Cho $x, y \in \mathbb{R}$, $x \neq y$ sao cho $x^2 y = y^2 x$. Tính giá trị biểu thức $A = x^2 + 2xy + y^2 3x 3y$.
- **167** ([Tuy23], 74., p. 16). Cho $\frac{a-b}{b-c} = \frac{c-d}{d-a}$. Chứng minh a = c hoặc a+c = b+d.

Phân tích đa thức thành nhân tử:

- **168** ([Tuv23], 75., p. 17). (a) $4x^4 + 4x^3 x^2 x$. (b) $x^6 x^4 9x^3 + 9x^2$. (c) $x^4 4x^3 + 8x^2 16x + 16$.
- **169** ([Tuy23], 76., p. 17). (a) $(xy+4)^2 4(x+y)^2$. (b) $(ab-xy)^2 (bx-ay)^2$. (c) $(x^2+8x-34)^2 (3x^2-8x-2)^2$.
- **170** ([Tuy23], 77., p. 17). (a) $(a+b+c)^2 + (a-b+c)^2 4b^2$. (b) $a(b^2-c^2) b(c^2-a^2) + c(a^2-b^2)$. (c) $a^5+b^5-(a+b)^5$.
- 171 ([Tuy23], 78., p. 17). Chứng minh: (a) $999^4 + 999$ tận cùng 3 chữ số 0. (b) $49^5 49 cdots 100$.
- 172 ([Tuy23], 79., p. 17). Chứng minh: (a) Lập phương của 1 số nguyên trừ đi số nguyên đó thì chia hết cho 6. (b) Nếu tổng của 3 số nguyên chia hết cho 6 thì tổng các lập phương của chúng chia hết cho 6.
- 173 ([Tuy23], 80., p. 17). Cho $a \neq \pm b$, a(a+b)(a+c) = b(b+c)(b+a). Chúng minh a+b+c.
- 174 ([Tuy23], 81., p. 17). Cho $x^2y y^2x + x^2z z^2x + y^2z + z^2y = 2xyz$. Chứng minh trong 3 số x, y, z ít nhất cũng có 2 số bằng nhau hoặc đối nhau.
- 175 ([Tuy23], 82., p. 17). 1 tập hợp gồm $n \in \mathbb{N}$ số nguyên dương khác nhau có tổng là 360, n > 2. Chia tập hợp này thành 2 tập hợp con của A, B sao cho chúng không có phần tử chung, tập hợp A gồm có 2 phần tử, tập hợp B gồm các phần tử còn lại. Hỏi có tồn tại hay không cách chia như trên để tích các phần tử của A bằng tổng các phần tử của B.
- **176** ([Bìn23], VD14, p. 11). Phân tích đa thức thành nhân tử: $x^4 + x^3 + 2x^2 + x + 1$.
- 177 ([Bìn23], VD15, p. 11). Cho a + b + c = 0. Rút gọn biểu thức $A = a^3 + b^3 + c(a^2 + b^2) abc$.
- 178 ([Bìn23], VD16, p. 11). Phân tích đa thức thành nhân tử: $A = (x y)^3 + (y z)^3 + (z x)^3$.

- **179** ([Bìn23], VD17, p. 11). (a) Phân tích đa thức thành nhân tử: $a^3 + b^3 + c^3 3abc$. (b) Cho $a^3 + b^3 + c^3 = 3abc$. Chứng minh a + b + c = 0 hoặc a = b = c. (c) Cho $a^3 + b^3 + 3ab = 1$. Tính giá trị biểu thức a + b.
- **180** ([Bìn23], VD18, p. 11). Phân tích đa thức thành nhân tử: (a) $(a+b+c)^3 a^3 b^3 c^3$. (b) $8(x+y+z)^3 (x+y)^3 (y+z)^3 (z+x)^3$.
- **181** ([Bìn23], VD19, p. 12). Phân tích đa thức thành nhân tử: $A = x^2(y-z) + y^2(z-x) + z^2(x-y)$.
- **182** ([Bìn23], VD20, p. 12). Xét hằng đẳng thức $(x+1)^3 = x^3 + 3x^2 + 3x + 1$. Lần lượt cho x bằng $1, 2, \ldots, n$ rồi cộng từng vế n đẳng thức thu được để tính giá trị biểu thức $S(n) = \sum_{i=1}^n i^2 = 1^2 + 2^2 + \cdots + n^2$.
- **183** ([Bìn23], VD21, pp. 12–13). (a) Cho $A(n) = \sum_{i=1}^{n} i(i+1) = 1 \cdot 2 + 2 \cdot 3 + \ldots + n(n+1), \ \forall n \in \mathbb{N}^{\star}$. Chứng minh $A(n) = \frac{1}{3}n(n+1)(n+2)$. (b) Áp dụng để tính $S_2(n) = \sum_{i=1}^{n} i^2 = 1^2 + 2^2 + \cdots + n^2$.

Phân tích đa thức thành nhân tử:

- **184** ([Bin23], 70., p. 13). (a) $(ab-1)^2 + (a+b)^2$. (b) $x^3 + 2x^2 + 2x + 1$. (c) $x^3 4x^2 + 12x 27$. (d) $x^4 2x^3 + 2x 1$. (e) $x^4 + 2x^3 + 2x^2 + 2x + 1$.
- $\textbf{185} \ ([\underline{\text{Bin23}}], \ 71., \ \text{p. } 13). \ \ (a) \ x^2 2x 4y^2 4y. \ \ (b) \ x^4 + 2x^3 4x 4. \ \ (c) \ x^2 (1 x^2) 4 4x^2. \ \ (d) \ (1 + 2x)(1 2x) x(x + 2)(x 2). \ \ (e) \ x^2 + y^2 x^2y^2 + xy x y.$
- **186** ([Bìn23], 72., p. 13). Chứng minh $199^3 199 \\dots 200$.
- **187** ([Bin23], 73., p. 13). Tim $a, b \in \mathbb{R}$ biết $a^4 + b^4 = a^5 + b^5 = a^6 + b^6$.
- **188** ([Bìn23], 74., p. 13). Tính giá trị biểu thức $A = x^6 2x^4 + x^3 + x^2 x$ biết $x^3 x = 6$.
- **189** ([Bìn23], 75., p. 13). *Tính* x + y biết $x^3 + y^3 + 4xy = x^2 + y^2 + 4$.

Phân tích đa thức thành nhân tử:

- **190** ([Bin23], 76., p. 13). (a) $a(b^2 + c^2 + bc) + b(c^2 + a^2 + ca) + c(a^2 + b^2 + ab)$. (b) (a + b + c)(ab + bc + ca) abc. (c) $a(a + 2b)^3 b(2a + b)^3$.
- $\textbf{191} \ ([\underline{\text{Bin23}}], \ 77., \ \text{pp. } 13-14). \ \ (a) \ ab(a+b) bc(b+c) + ac(a-c). \ \ (b) \ a(b^2+c^2) + b(c^2+a^2) + c(a^2+b^2) + 2abc. \ \ (c) \ (a+b)(a^2-b^2) + (b+c)(b^2-c^2) + (c+a)(c^2-a^2). \ \ (d) \ a^3(b-c) + b^3(c-a) + c^3(a-b). \ \ (e) \ a^3(c-b^2) + b^3(a-c^2) + c^3(b-a^2) + abc(abc-1).$
- $\textbf{192} \ ([\underline{\text{Bin23}}], \ 78., \ \text{p. } 14). \ \ (a) \ \ a(b+c)^2(b-c) + b(c+a)^2(c-a) + c(a+b)^2(a-b). \ \ (b) \ \ a(b-c)^3 + b(c-a)^3 + c(a-b)^3. \ \ (c) \ \ a^2b^2(a-b) + b^2c^2(b-c) + c^2a^2(c-a). \ \ (d) \ \ a(b^2+c^2) + b(c^2+a^2) + c(a^2+b^2) 2abc a^3 b^3 c^3. \ \ (e) \ \ a^4(b-c) + b^4(c-a) + c^4(a-b) + c^4(a$
- **193** ([Bin23], 79., p. 14). (a) $(a+b+c)^3 (a+b-c)^3 (b+c-a)^3 (c+a-b)^3$. (b) abc (ab+bc+ca) + a+b+c-1.
- **194** ([Bìn23], 80., p. 14). Chứng minh nếu $a^2(b-c) + b^2(c-a) + c^2(a-b) = 0$ thì tồn tại 2 trong 3 số a, b, c bằng nhau.
- **195** ([Bìn23], 81., p. 14). Chứng minh: (a) Nếu $a^2 + b^2 = 2ab$ thì a = b. (b) Nếu $a^3 + b^3 + c^3 = 3abc$ & a, b, c > 0 thì a = b = c. (c) Nếu $a^4 + b^4 + c^4 + d^4 = 4abcd$ & a, b, c, d > 0 thì a = b = c = d.
- **196** ([Bìn23], 82., p. 14). Chứng minh: (a) Nếu ab + bc + ca = 1 thì $1 + a^2 = (a + b)(a + c)$. (b) Nếu a + b + c = 1 thì a + bc = (a + b)(a + c). (c) Nếu m = a + b + c thì $(am + bc)(bm + ca)(cm + ab) = (a + b)^2(b + c)^2(c + a)^2$.
- **197** ([Bìn23], 83., p. 14). Cho $a^2 + b^2 = 1$, $c^2 + d^2 = 1$, ac + bd = 0. Chứng minh ab + cd = 0.
- **198** ([Bìn23], 84., p. 14). Xét hằng đẳng thức $(x+1)^2 = x^2 + 2x + 1$. Lần lượt cho x bằng $1, 2, \ldots, n$ rồi cộng từng vế n đẳng thức thu được để tính giá trị biểu thức $S_1(n) = \sum_{i=1}^n i = 1 + 2 + \cdots + n$.
- **199** ([Bìn23], 85., p. 14). (a) Tính $S_3(n) = \sum_{i=1}^n i^3 = 1^3 + 2^3 + \dots + n^3$. (b) Chứng minh $S_3(n) = S_1^2(n), \forall n \in \mathbb{N}^*$.
- **200** ([Bìn23], 86., p. 14). Tính: (a) $A(n) = \sum_{i=1}^{n} i(i+2) = 1 \cdot 3 + 2 \cdot 5 + \dots + n(n+2)$. (b) $B(n) = \sum_{i=1}^{n} i(i+1)(i+2) = 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 4 + \dots + n(n+1)(n+2)$. (c) $C(n) = \sum_{i=1}^{n} i(i+1)(2i+1) = 1 \cdot 2 \cdot 3 + 2 \cdot 3 \cdot 5 + \dots + n(n+1)(2n+1)$.

6 Phân Tích Đa Thức Thành Nhân Tử Bằng 1 Số Phương Pháp Khác

Phân tích đa thức thành nhân tử:

- **201** ([Tuy23], VD11, p. 17). $A = 4x^2 8x + 3$.
- **202** ([Tuy23], VD12, p. 18). $A = 4x^4 + y^4$.
- **203** ([Tuy23], VD13, p. 18). $A = (x^2 3x 1)^2 12(x^2 3x 1) + 27$.
- **204** ([Tuy23], VD14, p. 19). Phân tích đa thức thành tích của 2 tam thức bậc 2 với hệ số nguyên: $A = x^4 3x^3 + 6x^2 5x + 3$.

Phân tích đa thức thành nhân tử:

- **205** ([Tuy23], 83., p. 19). (a) $3x^2 11x + 6$. (b) $8x^2 + 10x 3$. (c) $8x^2 2x 1$.
- **206** ([Tuy23], 84., p. 19). (a) $6x^2 + 7xy + 2y^2$. (b) $9x^2 9xy 4y^2$. (c) $x^2 y^2 + 10x 6y + 16$.
- **207** ([Tuy23], 85., p. 19). (a) $x^3 + x + 2$. (b) $x^3 2x 1$. (c) $x^3 + 3x^2 4$.
- **208** ([Tuy23], 86., p. 19). (a) $x^3y^3 + x^2y^2 + 4$. (b) $x^3 + 3x^2y 9xy^2 + 5y^3$.
- **209** ([Tuv23], 87., p. 20). (a) $x^4 + x^3 + 6x^2 + 5x + 5$. (b) $x^4 2x^3 12x^2 + 12x + 36$. (c) $x^8y^8 + x^4y^4 + 1$.
- **210** ([Tuy23], 88., p. 20). (a) $x^5 x^4 + x^3 x^2 2x + 2$. (b) $x^5 + x^4 x^3 + x^2 x + 2$.
- **211** ([Tuy23], 89., p. 20). (a) $x^4 + y^4 + (x+y)^4$. (b) $2(x^2 + x + 1)^2 (2x+1)^2 (x^2 + 2x)^2$.
- **212** ([Tuy23], 90., p. 20). (a) xy(x+y) + yz(y+z) + zx(z+x) + 3xyz. (b) xy(x+y) yz(y+z) zx(z-x). (c) $x(y^2-z^2) + y(z^2-x^2) + z(x^2-y^2)$.
- **213** ([Tuy23], 91., p. 20). Cho $a \in \mathbb{Z}$. Chứng minh $a^5 a : 30$.
- **214** ([Tuy23], 92., p. 20). Cho x > y > z. Chứng minh biểu thức $A = x^4(y-z) + y^4(z-x) + z^4(x-y)$ luôn luôn dương.
- **215** ([Tuy23], 93., p. 20). Cho x, y, z là 3 số thực dương thỏa (x + y)(y + z)(z + x) = 8xyz. Chứng minh x = y = z.

Phân tích đa thức thành nhân tử:

- **216** ([Tuy23], 94., p. 20). (a) $x^4 + 5x^3 + 10x 4$. (b) $x^3 + y^3 + z^3 3xyz$
- **217** ([Tuy23], 95., p. 20). (a) $x^7 + x^2 + 1$. (b) $x^8 + x + 1$.
- **218** ([Tuy23], 96., p. 20). (a) $x^5 + x^4 + 1$. (b) $x^{10} + x^5 + 1$.
- **219** ([Tuy23], 97., p. 20). Cho $x \in \mathbb{Z}$. Chứng minh $x^{200} + x^{100} + 1 : x^4 + x^2 + 1$.

Phân tích đa thức thành nhân tử:

- **220** ([Tuy23], 98., p. 20). (a) $A = x^2 2xy + y^2 + 3x 3y 4$. (b) $B = (12x^2 12xy + 3y^2) 10(2x y) + 8$.
- **221** ([Tuy23], 99., p. 20). (a) $A = (a-b)^3 + (b-c)^3 + (c-a)^3$. (b) $B = (a+b-2c)^3 + (b+c-2a)^3 + (c+a-2b)^3$.
- **222** ([Tuy23], 100., p. 20). (a) Chứng minh: $(x + y + z)^3 x^3 y^3 z^3 = 3(x + y)(y + z)(z + x)$. (b) Phân tích đa thức thành nhân tử: $A = (a + b + c)^3 + (a b c)^3 + (b c a)^3 + (c a b)^3$.

Phân tích đa thức thành nhân tử:

- **223** ([Tuy23], 101., p. 20). (a) $A = (x^2 2x)(x^2 2x 1) 6$. (b) $B = (x^2 + 4x 3)^2 5x(x^2 + 4x 3) + 6x^2$. (c) $C = (x^2 + x + 4) + 8x(x^2 + x + 4) + 15x^2$.
- **224** ([Tuy23], 102., p. 20). $2(x^2 6x + 1)^2 + 5(x^2 6x + 1)(x^2 + 1) + 2(x^2 + 1)^2$.
- **225** ([Tuy23], 103., p. 21). Cho $A = 4(x-2)(x-1)(x+4)(x+8) + 25x^2$. Chứng minh A không có giá trị âm.
- **226** ([Tuy23], 104., p. 21). Cho đa thức $A = 3x^4 + 11x^3 7x^2 2x 1$. Phân tích A thành tích của 1 nhị thức bậc nhất với 1 đa thức bậc 3 có hệ số nguyên sao cho hệ số cao nhất của đa thức bậc 3 là 1.
- **227** ([Tuy23], 105., p. 21). Cho đa thức $A = x^4 6x^3 + 11x^2 6x + 1$. Phân tích A thành tích của 2 tam thức bậc 2 với hệ số nguyên.
- **228** ([Tuy23], 106., p. 21). Cho đa thức $A = x^4 x^3 + 2x^2 11x 5$. Phân tích A thành tích của 2 tam thức bậc 2 với hệ số nguyên \mathcal{E} các hệ số cao nhất đều mang dấu dương.

7 Monomial & Polynomial Divisions – Chia Đơn Thức & Đa Thức

- **229** ([Bìn23], VD22, p. 15). Tìm $n \in \mathbb{N}$ để đa thức $A = 3x^{n-1}y^6 5x^{n+1}y^4$ chia hết cho đơn thức $B = 2x^3y^n$.
- **230** ([Bin23], VD23, p. 15). Tim du khi chia $x^7 + x^5 + x^3 + 1$ cho $x^2 1$.
- **231** ([Bìn23], VD24, p. 16). Chứng minh $x^{8n} + x^{4n} + 1$ chia hết cho $x^{2n} + x^n + 1$, $\forall n \in \mathbb{N}$.
- **232** ([Bìn23], VD25, p. 16). Chứng minh $x^{3m+1} + x^{3n+2} + 1 \\\vdots \\ x^2 + x + 1, \\ \forall m, n \in \mathbb{N}.$
- **233** ([Bìn23], VD26, p. 15). Chứng minh $x^{6m+4} + x^{6n+2} + 1 : x^2 x + 1, \forall m, n \in \mathbb{N}$.
- **234** ([Bìn23], VD27, p. 16). Cho $A(x) = (x^2 + x 1)^{10} + (x^2 x + 1)^{10} 2$. Chứng minh $A(x) : x^2 x$.

- **235** ([Bìn23], 87., p. 17). Chứng minh giá trị biểu thức $A = \frac{2}{3}x^2y^3 : \left(-\frac{1}{3}xy\right) + 2x(y-1)(y+1)$ không phụ thuộc vào giá trị của biến $y, \forall x, y \in \mathbb{R}^*$.
- **236** ([Bìn23], 88., p. 17). Tìm $n \in \mathbb{N}$ để đơn thức $A = 4x^{n+1}y^2$ chia hết cho đơn thức $B = 3x^3y^{n-1}$.
- **237** ([Bìn23], 89., p. 17). Tính rồi tìm GTNN của biểu thức $A = (9xy^2 6x^2y) : -3xy + (6x^2y + 2x^4) : 2x^2$.
- **238** ([Bìn23], 90., p. 17). Tìm $n \in \mathbb{N}$ để $A = 7x^{n-1}y^5 5x^3y^4$ chia hết cho $B = 5x^2y^n$.
- **239** ([Bìn23], 91., p. 17). Rút gọn biểu thức $[(x^3 + y^3) 2(x^2 y^2) + 3(x + y)^2] : (x + y)$.
- **240** ([Bìn23], 92., p. 17). chứng minh tồn tại $m, n \in \mathbb{R}$ để $x^4 + 1 : x^2 + mx + n$.
- **241** ([Bìn23], 93., p. 17). Tìm dư khi chia đa thức: (a) x^{41} : $(x^2 + 1)$. (b) x^{43} : $(x^2 + 1)$.
- **242** ([Bin23], 94., p. 17). Tim du khi chia $x^{99} + x^{55} + x^{11} + x + 7$ cho: (a) x + 1. (b) $x^2 + 1$.
- **243** ([Bìn23], 95., p. 17). Khi chia x^8 cho $x + \frac{1}{2}$, được thương là B(x) & dư là số r_1 . Khi chia B(x) cho $x + \frac{1}{2}$, được thương là C(x) & dư là số r_2 . Tính r_2 .
- **244** ([Bìn23], 96., p. 17). Chứng minh đa thức $x^{10} + x^2 + 1$ chia hết cho: (a) $x^2 + x + 1$. (b) $x^2 x + 1$.
- **245** ([Bìn23], 97., p. 17). Chứng minh: (a) $x^{50} + x^{10} + 1 \\deliant \\end{z}^{20} + x^{10} + 1$. (b) $x^2 x^9 x^{1945} \\deliant \\end{z}^{2} x + 1$. (c) $x^{10} 10x + 9 \\deliant \\end{z}^{2} (x 1)^2$. (d) $8x^9 9x^8 + 1 \\deliant \\end{z}^{2} (x 1)^2$.
- **246** ([Bin23], 98., p. 17). Chứng minh $A(x) = x^{99} + x^{88} + x^{77} + \dots + x^{11} + 1$ chia hết cho $B(x) = x^9 + x^8 + x^7 + \dots + x + 1$.
- **247** ([Bìn23], 99., p. 18). Chứng minh đa thức $(x+y)^6 + (x-y)^6 : x^2 + y^2$.
- **248** ([Bìn23], 100., p. 18). Chứng minh $\forall n \in \mathbb{N}$: (a) $(x+1)^{2n} x^{2n} 2x 1 \stackrel{.}{:} x(x+1)(2x+1)$. (b) $x^{4n+2} + 2x^{2n+1} + 1 \stackrel{.}{:} (x+1)^2$. (c) $(x+1)^{4n+2} + (x-1)^{4n+2} \stackrel{.}{:} x^2 + 1$.
- **249** ([Bìn23], 101., p. 18). Chứng minh $(x^n 1)(x^{n+1} 1) : (x + 1)(x 1)^2, \forall n \in \mathbb{N}$.
- **250** ([Bin23], 102., p. 18). Chứng minh $x^{6m+4} + x^{6n+2} + 1 : x^4 + x^2 + 1$.
- **251** ([Bìn23], 103., p. 18). Tìm $n \in \mathbb{N}$ sao cho $x^{2n} + x^n + 1 : x^2 + x + 1$.
- **252** ([Bìn23], 104., p. 18). Xác định hệ số $k \in \mathbb{R}$ để đa thức $A = x^3 + y^3 + z^3 + kxyz : x + y + z$.
- **253** ([Bìn23], 105., p. 18). Cho đa thức F(x) có các hệ số nguyên. Biết F(0), F(1) là 2 số lẻ. Chứng minh đa thức F(x) không có nghiệm nguyên.

8 Số Chính Phương

- **254** ([Tuy23], VD15, p. 22). Chứng minh $A = \underbrace{1 \dots 1}_{2n} 8 \cdot \underbrace{1 \dots 1}_{n} + 1$ là 1 số chính phương.
- **255** ([Tuy23], VD16, p. 22). Chứng minh: (a) Tổng của 3 số chính phương liên tiếp không là 1 số chính phương. (b) Tổng $S = \sum_{i=1}^{30} i^2 = 1^2 + 2^2 + \ldots + 30^2$ không là 1 số chính phương.
- **256** ([Tuy23], 107., p. 23). Có 2 số chính phương nào mà: (a) Có tổng bằng 4567? (b) Có hiệu bằng 7654?
- 257 ([Tuy23], 108., p. 23). Chứng minh tổng của 20 số chính phương liên tiếp không thể là số chính phương.
- **258** ([Tuy23], 109., p. 23). Cho 5 số chính phương bất kỳ có chữ số hàng đơn vị đều bằng 6 còn chữ số hàng chục thì khác nhau. Chứng minh tổng các chữ số hàng chục của 5 số chính phương đó cũng là 1 số chính phương.
- **259** ([Tuy23], 110., p. 23). Cho $a, b, c \neq 0$ là các chữ số. (a) Tính tổng S của tất cả các số có 3 chữ số tạo thành bởi cả 3 chữ số a, b, c. (b) Chứng minh S không phải là số chính phương.
- 260 ([Tuy23], 111., p. 23). Tìm 1 số chính phương có 4 chữ số biết 2 chữ số đầu giống nhau, 2 chữ số cuối giống nhau.
- **261** ([Tuy23], 112., p. 23). Chứng minh nếu n + 1, 2n + 1 đều là số chính phương thì n : 24.
- **262** ([Tuy23], 113., p. 23). Tim $n \in \mathbb{N}$ biết trong 3 mệnh đề sau có 2 mệnh đề đúng & 1 mệnh đề sai: (a) n có chữ số tận cùng là 2. (b) n + 20 là 1 số chính phương. (c) n 69 là 1 số chính phương.
- **263** ([Tuy23], 114., p. 23). Cho a là tổng của 2 số chính phương. Chứng minh: (a) 2a cũng là tổng của 2 số chính phương. (b) a^2 cũng là tổng của 2 số chính phương.
- **264** ([Tuy23], 115., p. 23). Cho a, b, c, d là 4 số chính phương. Chứng minh (a + b)(c + d) là tổng của 2 số chính phương.
- **265** ([Tuy23], 116., p. 23). Cho $x, y, z \in \mathbb{Z}$ sao cho x = y + z. Chứng minh 2(xy + xz yz) là tổng của 3 số chính phương.

- **266** ([Tuy23], 117., p. 23). Cho $a, b, c, d \in \mathbb{Z}$ thỏa a b = c + d. Chứng minh $a^2 + b^2 + c^2 + d^2$ luôn là tổng của 3 số chính phương.
- **267** ([Tuy23], 118., p. 23). Cho 2 số chính phương liên tiếp. Chứng minh tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ.
- **268** ([Tuy23], 119., p. 24). Cho $a_n = \sum_{i=1}^n i = 1 + 2 + \dots + n$. (a) Tính a_{n+1} . (b) Chứng minh $a_n + a_{n+1}$ là 1 số chính phương.
- **269** ([Tuy23], 120., p. 24). Cho a là tích của 4 số nguyên liên tiếp. Chứng minh a+1 là 1 số chính phương.
- **270** ([Tuy23], 121., p. 24). (a) Cho $a = \underbrace{1 \dots 1}_n 5, b = \underbrace{1 \dots 1}_n 9$. Chứng minh ab + 4 là 1 số chính phương. (b) Cho $a = \underbrace{1 \dots 1}_n, b = \underbrace{1 \dots 1}_n$
- $1\underbrace{0\dots0}_{n-2}11,\ n\in\mathbb{N},\ n\geq2.$ Chứng minh ab+4 là 1 số chính phương.
- **271** ([Tuy23], 122., p. 24). Cho $A = \underbrace{1 \dots 1}_{n} \underbrace{5 \dots 5}_{n} + 1$. Chứng minh A là 1 số chính phương.
- $\textbf{272} \; ([\textbf{Tuy23}], \, 123., \, \textbf{p. 24}). \; \textit{Chứng minh: (a)} \; A = \underbrace{1 \dots 1}_{2n} + \underbrace{4 \dots 4}_{n} + 1, \, n \in \mathbb{N} \; \textit{là số chính phương. (b)} \; B = \underbrace{1 \dots 1}_{2n} + \underbrace{1 \dots 1}_{n+1} + \underbrace{6 \dots 6}_{n} + 8,$
- $n \in \mathbb{N}$ là số chính phương.
- **273** ([Tuy23], 124., p. 24). Cho $a, b, c \in \mathbb{Z}$ thỏa ab + bc + ca = 1. Chứng minh $(a^2 + 1)(b^2 + 1)(c^2 + 1)$ là 1 số chính phương.
- **274** ([Tuy23], 125., p. 24). Tìm tất cả $n \in \mathbb{N}$ sao cho $n^2 + 1234$ là 1 số chính phương.
- **275** ([Tuy23], 126., p. 24). Tìm tất cả $n \in \mathbb{N}$ sao cho $2^n + 2^4 + 2^7$ là 1 số chính phương.
- **276** ([Tuy23], 127., p. 24). Tìm tất cả $n \in \mathbb{N}$ sao cho $n^2 + 2x + 200$ là 1 số chính phương.
- **277** ([Tuy23], 128., p. 24). Cho $A = p^4$ với p là 1 số nguyên tố. (a) Số A có các ước dương nào? (b) Tìm các giá trị của p để tổng các ước dương của A là 1 số chính phương.
- **278** ([Tuy23], 129., p. 24). Cho $a, b \in \mathbb{N}^*$ thỏa ab + 1 là 1 số chính phương. Chứng minh tồn tại $c \in \mathbb{N}^*$ sao cho ac + 1, bc + 1 đều là số chính phương.

9 Miscellaneous

- **279** ([Tuy23], VD17, p. 25). Phân tích đa thức thành nhân tử: A = (x-3)(x-1)(x+1)(x+3) + 15.
- **280** ([Tuy23], VD19, p. 26). Chứng minh $A = n^3 + (n+1)^3 + (n+2)^3 : 9, \forall n \in \mathbb{N}^*$.
- **281** ([Tuy23], 130., p. 27). Cho $a, b, x, y \in \mathbb{R}$ sao cho ab = 1, ax + by = 2. Chứng minh $xy \le 1$.
- **282** ([Tuy23], 131., p. 27). Chứng minh $A = x(x-y)(x+y)(x+2y) + y^4$ là bình phương của 1 đa thức.
- **283** ([Tuy23], 132., p. 27). Cho $x, y \in \mathbb{R}$ thỏa x + y + z = 0. Chứng minh: $(x^2 + y^2 + z^2)^2 = 2(x^4 + y^4 + z^4)$.
- **284** ([Tuy23], 133., p. 27). Cho $x, y \in \mathbb{R}^*$ thỏa $(x+y)^5 = x^5 + y^5$. Chứng minh x, y là 2 số đối nhau.
- **285** ([Tuy23], 134., p. 27). Cho $n \in \mathbb{N}$, n > 1. Chứng minh: (a) $20^n 1$ là hợp số. (b) $1000^n + 1$ là hợp số.
- **286** ([Tuy23], 135., p. 27). Phân tích đa thức thành nhân tử: (a) $A = x^9 x^7 + x^6 x^5 x^4 + x^3 x^2 + 1$. (b) $B = x^7 + x^5 + 1$.
- **287** ([Tuy23], 136., p. 27). Cho $x^2 y^2 = 1$. Tính giá trị biểu thức $A = 2(x^6 y^6) 3(x^4 + y^4)$.
- **288** ([Tuy23], 137., p. 27). Tìm số dư của phép chia S: 5 với $S = \sum_{i=1}^{8} i^n = 1^n + 2^n + \cdots + 8^n$ với $n \in \mathbb{N}$, n lẻ.
- **289** ([Tuy23], 138., p. 27). Cho a là 1 số chính phương, $m \in \mathbb{N}$ tùy ý. Chứng minh bao giờ cũng có $n \in \mathbb{N}$ sao cho a + mn là 1 số chính phương.
- **290** ([Tuy23], 139., p. 27). Cho $x, y \in \mathbb{Z}$. Chứng minh: (a) A = (x+1)(x+3)(x+4)(x+6) + 9 là 1 số chính phương. (b) $B = (x-y)(x-2y)(x-3y)(x-4y) + y^4$ là 1 số chính phương.
- **291** ([Tuy23], 140., p. 27). Chứng minh $\forall n \in \mathbb{N}^*$: (a) $1+3+5+\cdots+(2n-1)=n^2$. (b) $1^3+2^3+\cdots+n^3=(1+2+\cdots+n)^2=\frac{1}{4}n^2(n+1)^2$.

Tài liệu

- [Bìn23] Vũ Hữu Bình. Nâng Cao & Phát Triển Toán 8 Tâp 1. Nhà Xuất Bản Giáo Duc Việt Nam, 2023, p. 212.
- [Tuy23] Bùi Văn Tuyên. Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 8. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 188.