

planetmath.org

Math for the people, by the people.

point preventing uniform convergence

 ${\bf Canonical\ name} \quad {\bf PointPreventingUniformConvergence}$

Date of creation 2013-03-22 17:27:18 Last modified on 2013-03-22 17:27:18

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872) Entry type Theorem Classification msc 40A30

Related topic NotUniformlyContinuousFunction

Related topic LimitFunctionOfSequence

Theorem. If the sequence f_1, f_2, f_3, \ldots of real functions converges at each point of the interval [a, b] but does not converge uniformly on this interval, then there exists at least one point x_0 of the interval such that the function sequence converges uniformly on no closed sub-interval of [a, b] containing x_0 .

Proof. Let the limit function of the sequence on the interval [a, b] be f. According the entry uniform convergence on union interval, the sequence can not converge uniformly to f both half-intervals $[a, \frac{a+b}{2}]$ and $[\frac{a+b}{2}, b]$, since otherwise it would do it on the union [a, b]. Denote by $[a_1, b_1]$ the first (fom left) of those half-intervals on which the convergence is not uniform. We have $[a, b] \supset [a_1, b_1]$. Then the interval $[a_1, b_1]$ is halved and chosen its half-interval $[a_2, b_2]$ on which the convergence is not uniform. We can continue similarly arbitrarily far and obtain a unique endless sequence

$$[a, b] \supset [a_1, b_1] \supset [a_2, b_2] \supset \dots$$

of nested intervals on which the convergence of the function sequence is not uniform, and besides the length of the intervals tend to zero:

$$\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} \frac{b - a}{2^n} = 0.$$

The nested interval theorem thus gives a unique real number x_0 belonging to each of the intervals [a, b] and $[a_n, b_n]$. Then $\lim_{n\to\infty} a_n = x_0 = \lim_{n\to\infty} b_n$. Let us choose α and β such that $a \leq \alpha \leq x_0 \leq \beta \leq b$. There exist the integers n_1 and n_2 such that

$$|a_n - x_0| = x_0 - a_n \le x_0 - \alpha$$
 when $n > n_1$

$$|b_n - x_0| = b_n - x_0 \le \beta - x_0$$
 when $n > n_2$.

Therefore

$$\alpha \le a_n \le x_0 \le b_n \le \beta$$
 when $n > \max\{n_1, n_2\}$.

This means that $f_n \to f$ not uniformly on $[a_n, b_n] \subset [\alpha, \beta]$, whence the function sequence does not converge uniformly on the arbitrarily chosen subinterval $[\alpha, \beta]$ of [a, b] containing x_0 .