Oleaning for Polyops

Does it converse? If so, to what?

Erfan Sayedsalehi, Nima Akbarzadeh, Amit Sinha, Aditya Mahajan McGill University

Env state: $\mathbb{P}(S_{t+1} | S_t, A_t)$ Agent state: $Z_{t+1} = f(Z_t, Y_{t+1}, A_t)$

Recurrent Q-learning

$$\begin{split} \hat{Q}_{t+1}(z_t, \alpha_t) &= \hat{Q}_t(z_t, \alpha_t) \\ + \alpha_t(z_t, \alpha_t) \left[R_t + \gamma \max_{\alpha' \in \mathcal{A}} \hat{Q}_t(z_{t+1}, \alpha') - \hat{Q}_t(z_t, \alpha_t) \right] \end{split}$$

Conceptual Difficulty?

No DP corresponding to QL recursion because:

- $\mathbb{E}[R_t \mid Z_t, A_t]$ is not time-homogeneous.
- The controlled process $\{Z_t\}_{t\geqslant 1}$ is not Markov. So cannot seek fixed point of "standard" Bellman op.

O1: Does it converse?

Assumptions

- (A1) Restrict to tabular setting
- (A2) The exploration policy $\pi_{\exp}: \mathbb{Z} \to \Delta(A)$ is such that the Markov chain $\{(S_t, Y_t, Z_t, A_t)\}_{t \ge 1}$ has a unique stationary distribution ξ . Plus, $\xi(s, y, z, \alpha) > 0$.
- (A3) $\alpha_{t}(z, \alpha) = \mathbb{I}_{\{Z_{t}=z, A_{t}=\alpha\}} / \sum_{\tau=1}^{t} \mathbb{I}_{\{Z_{\tau}=z, A_{\tau}=\alpha\}}$

Convergence Result

Under (A1)–(A3), $\hat{Q}_t \rightarrow Q_\xi^*$ a.s., where

$$Q_{\xi}^*(z, a) = \sum_{s \in S} \xi(s \mid z, a) \quad r(s, a)$$

$$+ \gamma \sum_{(s',y')} P(s'|s,a) O(y'|s') V_{\xi}^*(f(z,y',a))$$

$+\alpha_t(z_t, \alpha_t) \left[\hat{R}_t + \gamma \max_{\alpha' \in \mathcal{A}} \hat{Q}_t(z_{t+1}, \alpha') - \hat{Q}_t(z_t, \alpha_t) \right]$ Q2: How good is the converged solution?

- $\varepsilon = \sup_{t \ge 1} \max_{h_t, a_t} \left| \mathbb{E}[r(S_t, a_t) \mid h_t, a_t] \sum_{s \in S} r(s, a_t) \xi(s | \sigma_t(h_t), a_t) \right|$
- $\delta_{\mathfrak{F}} = \sup_{t \geq 1} \max_{h_t, a_t} \boxed{d_{\mathfrak{F}}} \left(\mathbb{P}(Z_{t+1} = \cdot \mid h_t, a_t), P_{\xi}(\cdot \mid \sigma_t(h_t), a_t) \right)$

IPM (Integral probability metric)

- d_s: IPM, e.g., TV, Wasserstein, MMD, etc.
- $\rho_{\mathfrak{F}}$: Depends on IPM, e.g., $||\cdot||_{\infty}$, Lip(\cdot), $||\cdot||_{\mathcal{H}}$, etc.

Approximation Result

For any history h_t:

$$\left|V_t^*(h_t) - V_t^{\pi_{\xi}^* \circ \sigma_t}(h_t)\right|$$

$$\leqslant (1-\gamma)^{-1} \left[\varepsilon + \gamma \delta_{\mathfrak{F}} \rho_{\mathfrak{F}} (V_{\xi}^*) \right]$$

03: Can this help in RII

Environment	RQL-AIS	ND-R2D2
SimpleCrossingS9N2	0.944 ± 0.007	0.757 ± 0.423
LavaCrossingS9N2	0.926 ± 0.014	0.934 ± 0.034
RedBlueDoors-8x8	0.977 ± 0.009	0.962 ± 0.018
MultiRoom-N2-S4	0.790 ± 0.049	0.839 ± 0.010
DoorKey-8x8	0.942 ± 0.038	0.371 ± 0.508
ObstructedMaze-1DI	0.916 ± 0.020	0.000 ± 0.000
KeyCorridorS3R2	0.885 ± 0.038	0.000 ± 0.000
UnlockPickup	0.517 ± 0.474	0.000 ± 0.000
·		

