Deutsches Patent- und Markenamt

München, den 02. Dezember 2004

Telefon: (0 89) 21 95 - 2740

Aktenzeichen: 103 54 177.2-12

Anmelder/Inhaber, SMC K.K.

80297 München Doutschoe Patent- und Markenamt

Patentanwälte Keil & Schaafhausen Cronstettenstr, 66 60322 Frankfurt

Ihr Zeichen: S 87 P 471

2 & Dez. 2004

Bitte Aktenzeichen und Anmeider/inhaber bei alien Eingaben und Zahlungen angeben!

Zutreffendes ist angekreuzt (X) und/oder ausgefühlt

Prüfungsantrag, Einzahlungstag am 04. Dezember 2003

Eingabe vom

eingegangen am

Die Prüfung der oben genannten Patentanmeldung hat zu dem nachstehenden Ergebnis geführt.

Zur Außerung wird eine Frist von

4 Monat(en)

gewährt. Die Frist beginnt en dem Tag zu laufen, der auf den Tag des Zugangs des Bescheids folgt.

Für Unterlagen, die der Außerung gegebenenfalls beigefügt werden (z. B. Beschreibung, Beschreibungsteile, Patentensprüche, Zeichnungen), sind je zwei Ausfertigungen auf gesonderten Blättern erforderlich. Die Außerung selbst wird nur in einfacher Ausfertigung benötigt.

Werden die Beschreibung, die Patentansprüche oder die Zeichnungen im Laufe des Verfahrens geändert, so hat der Anmelder, sofern die Änderungen nicht vom Deutschen Patent- und Markenamt vorgeschlagen sind, im Einzelnen anzugeben, an welcher Stelle die in den neuen Unterlagen beschriebenen Erfindungsmerkmale in den ursprünglichen Unterlagen offenbart sind.

In diesem Bescheid sind folgende Entgegenhaltungen erstmalig genannt. (Bei deren Nummerierung gilt diese auch für das weitere Verfahren):

- (1) DE 196 11 664 A1
- (2) US 6 321 776 B1
- (3) US 1 855 991
- (4) DE 198 11 254 A1
- (5) DE 198 11 191 A1

H/Ra

Hinweis auf die Möglichkeit der Gebrauchsmusterabzweigung

Der Anmekter einer mit Wirlaung für die Bundesrepublik Deutschland eingereichten Patentanmeldung kann eine Gebrauchsmusteranmeldung, die den gielichen Gegenstand betrifft, einreichen und gielichzeitig den Anmeldetag der früheren Patentanmeldung in Anspruch nehmen. Diese Abzweigung (§ 5 Gebreuchsmusdergegetz) ist bis zum Ablauf von 2 Monaten nach dem Ende des Monate möglich, in dem die Patentenmed-dung durch rechtsträttige Zurückweisung, freiwillige Rücknahme oder Rücknahmefiktion erfedigt, ein Einspruchsverfahren abgeschlossen oder - im Falle der Erteilung des Patents - die Frist für die Beschwerde gegen den Erteilungsbeschluss fruchtios verstrichen ist. Ausführliche Informationen über die Erfordernisse einer Gebrauchsmusteranmeidung, einschließlich der Abzweigung, enthält des Merkbiatt für Gebrauchsmusteranmeidung, einschließlich der Abzweigung, enthält des Merkbiatt für Gebrauchsmusteranmeidung. teranmelder (G 6181), welches kostenios beim Patent- und Markenamt und den Patentinformationszentren erhältlich ist.

Dokumentenannahme und Nachtbriefkasten

nur

Zweibrückenstraße 12

Hauptysbäude: Zweibrückenstraße 12 Zweibrückenetraße 5-7 (Breiterhof)

Cincinnetistraße 64 81534 Milhoched

edresse (für Frecht): Dautaches Petent- und Mad Palefon: (089) 2195-0 Palefax: (089) 2195-2221

No. Nr.: 700 010 54 BLZ: 700 000 00 BIC (SMIFT-Code): MARKDEF 1700 IBAN: DE84 7000 0000 0070 0010 54

2 -

L

Die Entgegenhaltungen (1) bis (3) beschreiben jeweils ein Zweiwegeventil mit:

einem Körper, in dem ein Fluiddurchgang ausgebildet ist,

einem Kolben, der in dem Körper vorgesehen und in Axialrichtung verschiebbar ist,

einer Welle, die integral mit dem Kolben verbunden ist,

einer ersten Membran, die mit einem Ende der Welle verbunden ist und den Fluiddurchgang verschließt, wenn die erste Membran auf einem an dem Körper ausgebildeten Ventilsitz aufsetzt, und

einer zweiten Membran, die koaxial über der ersten Membran angeordnet ist und zusammen mit der ersten Membran verschiebbar ist.

wobei ein Raum zwischen einem sich radial nach außen erstreckenden ersten Mantelabschnitt der ersten Membran und einem sich radial nach außen erstreckenden zweiten Mantelabschnitt der zweiten Membran ausgebildet ist.

(Entgegenhaltung (1): Fig. 1. -4; Entgegenhaltung (2): Fig. 1, 2, 4; Entgegenhaltung (3): Fig. 6 -8).

Die Möglichkeit, den Kolben nicht durch einen direkten Antrieb, sondem auch durch einen gesonderten Pilotdruck zu verschieben, zeigen z.B. die Entgegenhaltungen (4) und (5).

Der Patentanspruch 1 ist damit mangels erfinderischer Tätigkeit nicht gewährbar.

п

Die nachgeordneten Ansprüche 2 bis 11 fallen bereits mit dem nichtgewährbaren Ansprüch 1.

- 3 -

Die Merkmale der Ansprüche 2, 3 und 5 zelgen auch die Entgegenhaltungen (1) und (3).

(Entgegenhaltung (1): Spalte 2, Zeile 26 – 42; Entgegenhaltung (3): Fig. 6 – 8).

Dass das Pufferelement gemäß Anspruch 4 aus dem gleichen Material wie die Membranen besteht, wird durch die Entgegenhaltung (1) nahe gelegt.

Die Merkmale der Ansprüche 6 und 7 sind aus der Entgegenhaltung (5) bekannt.

Das Merkmal des Anspruchs 8 zeigen die Entgegenhaltungen (1) und (3), sowie die Merkmale des Anspruchs 9 die Entgegenhaltungen (4) und (5).

Druckfluide und Arbeitsfluide sind bei Ventilen in Jeder Form möglich, also auch Stickstoffgas und chemische Lösungen gemäß den Ansprüchen 10 und 11.

Mit den vorliegenden Unterlagen kann eine Patenterteilung nicht in Aussicht gestellt werden; es muss vielmehr mit der Zurückweisung der Anmeldung gerechnet werden.

Falls eine Außerung in der Sache nicht beabsichtigt ist, wird eine formlose Mitteilung über den Erhalt des Bescheides erbeten.

Prüfungsstelle für Klasse F 16 K

Diply-Ing. Jahn Hausruf 3400

H/Ra

Anlage:

Abl. v. 5 Entgegenhaltungen

Valve with flow duct in valve housing

Patent number:

DE19611664

Publication date:

1996-11-14

Inventor:

NAEGEL HEINZ M [DE]

Applicant:

ARCA REGLER GMBH [DE]

Classification:

- International:

F16K7/12

- european:

F16K7/12C; F16K41/12

Application number: DE19961011664 19960325

Priority number(s): DE19961011664 19960325; DE19952007638U

19950509

Abstract of **DE19611664**

The valve (1,51) is in a valve housing (2,52) interspersed with a through-flow channel (3,53) in which the valve seat (5) is situated. Relative to the valve seat is a mobile fastening or locking member (13,60,61), which has a membrane (28,60) connected to it. The membrane is locked between its restraints in a hollow space system (35,73). There may be a separation between the hollow space system and the restraints. The hollow space system may be connected together with a leak detector mechanism (41,77) that is made from viewing glass. A pressure sensor (35,73) may be pneumatically connected to the hollow space system, and coupled to the leak detector mechanism.

PAUL A GUSS

Data supplied from the esp@cenet database - Worldwide

- ® BUNDESREPUBLIK ® Offenlegungsschrift [®] DE 196 11 664 A 1
- (5) Int. CL.º: F16K7/12

DEUTSCHLAND

PATENTAMT

② Aktenzeichen:

198 11 684.3

Anmeldetag:

25. 3.98

Offenlegungstag:

(3) Innere Priorităt: (3) (3) (3) 09.05.95 DE 295076380

(7) Anmelder:

Arca Regler GmbH, 47918 Tönisvorst, DE

(74) Vertreter:

Paul, D., Dipl.-Ing., Pat.-Anw., 41484 Neuss

@ Erfinder:

Nāgal, Heinz M., 54550 Daun, DE

Prüfungsantrag gam. § 44 PatG ist gestellt

- · (S) Ventil
 - Ein Ventii (1, 51) weist einen ein Ventiigehäuse (2, 52) durchsetzenden Durchflußkanai (3, 53), einen Ventiisitz (5) im Durchflußkanai (3) und einen relativ zu dem Ventiisitz (5) bewegliches Verschlußglied (13, 60, 61) suf, wobei zum Verschlußgßed einen Membran (28, 50) gehört. Erfindungsgemäß schließt die Membran (28, 60) zwischen Ihren Einspannungen ein Hohlraumsystem (35, 73) ain.

Die folgenden Angaben alnd den vom Anmeider eingereichten Unterlagen entnommen BUNDESDRUCKEREI 09. 98 602 048/635

DE 196 11 664 A1

1

Beschreibung

Die Erfindung betrifft ein Ventil mit einem ein Ventilgehäuse durchsetzenden Durchflußkanal, einem Ventilsitz im Durchflußkanal und einem relativ zu dem Ventilsitz beweglichen Verschlußglied, wobei zum Verschlußglied eine Membran gehört.

Solche Ventile werden insbesondere in der Prozeßindustrie, beispielsweise im Chemie-, Biochemie- und Petrochemiebereich eingesetzt. In diesen Bereichen wird besonderer Wert auf die Sterilität solcher Ventile gelegt. Dies ist gefährdet, wenn Teile des Ventils, beispielsweise die Ventilstange, aus dem Ventilgehäuse herausragen und in diesem Bereich durch Gleitdichtungen abgedichtet werden müssen.

Im Stand der Technik sind Ventile bekannt, die in konventioneller Weise ein Ventilgehäuse mit einem diesen durchsetzenden Durchflußkanal haben, wobei in dem Durchflußkanal ein Ventilsitz angeordnet ist. Mit dem Ventilsitz wirkt ein Verschlußglied — meist beste-20 hend aus einem Ventilkegel und einer damit verbundenen Ventilstange - zusammen, das relativ zu dem Ventilsitz bewegbar ist, um den Volumenstrom durch das Ventil zu steuern (vgl. "STERIPAC"-Ventile der Firma von Rohr Armaturen AG, Muttenz/Schweiz). Zur 25 gehäuseseitigen Abdichtung ist eine ringförmige Membran vorgesehen, die jeweils abdichtend außenseitig am Ventilgehäuse und innenseitig am Verschlußglied eingespannt ist. Aufgrund dieser Abdichtung ist der Durchflußkanal des Ventils auf einfache Weise sterilisierbar 3 und bleibt auch während des Betriebs steril, da von au-Ben, d. h. über den Gehäuseausgang der Ventilstange, keine störenden Substanzen in den Durchflußkanal eindringen können.

Wenn das bekannte Ventil bei hohen Drücken eingesetzt wird, unterliegt die Membran hohen Belastungen, da an ihr ein entsprechend großer Differenzdruck wirkt. Zwar ist der Raum auf der dem Durchflußkanal abgewandten Seite der Membran nach außen offen, so daß eventuelle Leckagen bemerkt werden können. Dies 40 reicht jedoch für einen sicheren Betrieb des Ventils nicht aus.

Daneben sind die klassischen Membranventile bekannt, bei denen das Verschlußglied aus einer Ventilstange und einer an deren unteren Ende angebrachten Membran besteht, wobei die Membran zur Steuerung der Prozeßflüssigkeit dient. Solche Membranventile lassen sich wegen der großen Fläche der Membran nicht bei hohen Drücken einsetzen. Außerdem besteht auch hier das Problem, daß eine Beschädigung der Membran 50 unbemerkt bleibt.

Ein weiteres Problem von Membranen enthaltenden Ventilen besteht darin, daß die maximale Durchbiegung sich auf die Einspannungen konzentrieren. An diesen Stellen lagern sich jedoch insbesondere bei vertikaler Einbaulage in der Regel scharfe Kristalle aggressiver Medien ab und führen zum frühzeitigen Verschleiß mit der Folge, daß die Membranen in regelmäßigen Abständen ausgewechselt werden müssen.

Der Erfindung liegt somit die Aufgabe zugrunde, ein 60 Ventil der eingangs genannten Art so zu gestalten, daß eine verbesserte Lebensdauer erreicht wird.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Membran zwischen ihren Einspannungen vorzugsweise mit Abstand zu diesen ein Hohlraumsystem 65 einschließt. Dieses Hohlraumsystem führt zu einer veränderten Biegecharakteristik mit der Folge, daß die Durchbiegungen in unmittelbarer Nähe der Einspan-

nungen auf ein Minimum reduziert werden. Entsprechend werden hierdurch die vorbeschriebenen Verschleißprobleme gelöst. Das Ventil hat eine erheblich längere Lebensdauer.

2

In besonders bevorzugter Ausbildung wird das Hohlraumsystem erfindungsgemäß für eine Leckanzeige benutzt. Hierzu ist das Hohlraumsystem mit einer Leckanzeigevorrichtung verbunden. Bei einer Beschädigung
der Membran auf der Seite des Durchflußkanals dringt
10 Prozeßfüssigkeit in das Hohlraumsystem ein, wobei
dies durch die Leckanzeigeeinrichtung von außen bemerkbar gemacht wird. Auf diese Weise ist ein Membranbruch bzw. eine Membranbeschädigung frühzeitig
von außen feststellbar, so daß Gegenmaßnahmen, bei15 spielsweise der Austausch der Membran, getroffen werden können.

Die Leckanzeigeeinrichtung kann als Schauglas ausgebildet sein, das Verbindung mit dem Hohlraumsystem hat. Statt dessen kann aber auch ein mit dem Hohlraumsystem pneumatisch in Verbindung stehender Drucksensor vorgesehen sein, der mit der Leckanzeigeeinrichtung gekoppelt ist. Alternativ oder in Kombination dazu kann auch ein mit dem Hohlraumsystem in Verbindung stehender Feuchtesensor vorgesehen sein, der mit der Leckanzeigeeinrichtung verbunden ist.

Zur Herstellung des Hohlraumsystems kann die Membran aus zwei aufeinanderliegenden Membranscheiben bestehen, die beabstandete Bereiche aufweisen. Dabei kann eine der beiden Membranscheiben in enseitig ausgenommen ausgebildet sein, und zwar vorzugsweise die weniger beanspruchte stützhohlraumseitige Membranscheibe. Zur Beabstandung der Membranscheiben ist es möglich, innen- und/oder außenseitig Abstandhalter vorzusehen, die das Hohlraumsystem begrenzen. Alternativ oder in Kombination dazu können aber auch in dem Hohlraumsystem Abstandhalter vorhanden sein.

Das Hohlraumsystem kann als ein einziger Hohlraum ausgebildet sein. Es kann aber auch aus miteinander in Verbindung stehenden Kanälen bestehen, die sich beispielsweise als Ringnuten in Umfangsrichtung und/oder sternförmig, d. h. radial erstrecken.

Die Erfindung ist auf alle Ventilarten anwendbar, die eine Membran aufweisen, welche dem Prozeßmedium ausgesetzt ist. Hierzu zählen insbesondere die klassischen Membranventile, aber auch solche, bei denen die Membran außenseitig am Ventilgehäuse und innenseitig am Verschlußglied eingespannt ist. Die Erfindung ist besonders vorteilhaft dann anzuwenden, wenn auf der dem Durchflußkanal abgewandten Seite der Membran eine Dichtung zwischen Verschlußglied und Ventilgehäuse angeordnet ist, die mit der Membran einen geschlossenen Stützhohlraum einschließt, welcher mit einem inkompressiblen, verformbaren Stützmedium gefüllt ist, wobei das Verschlußglied auf der dem Durchflußkanal abgewandten Seite der Membran eine solche Formgebung hat, daß das Volumen des Stützhohlraums bei Bewegung des Verschlußglieds im wesentlichen konstant bleibt. In diesem Fall wird nämlich eine Beschädigung der Membran auch auf der Rückseite angezeigt, da dann das Stützmedium in das Hohlraumsystem eindringt und zu einer Anzeige durch die Leckanzeigeeinrichtung führt.

In der Zeichnung ist die Erfindung anhand eines Ausführungsbeispiels näher veranschaulicht. Es zeigen:

Fig. 1 einen Vertikalschnitt durch den unteren Teil eines erfindungsgemäßen Ventils;

Fig. 2 einen Ausschnitt der Darstellung gemäß Fig. 1

DE 196 11 664 A1

3

mit durchflußkanalseitiger Beschädigung der Membran; Fig. 3 den Ausschnitt gemäß Fig. 2 mit stützhohlraumseitiger Beschädigung der Membran;

Fig. 4 einen Längsschnitt durch ein Membranventil und

Fig. 5 einen Querschnitt durch das Membranventil gemäß Fig. 4.

Das sich insbesondere aus Fig. 1 ergebende Ventil 1 hat ein Ventilgehäuse 2, das von einem Durchflußkanal 3 durchsetzt wird. Der Durchflußkanal 3 wird von einem untenseitig vorstehenden, vertikalen Einlaßstutzen 4, einem Ventilsitz 5, einem Ventilhohlraum 6 und einem sich daran waagerecht anschließenden Auslaßstutzen 7 gebildet.

Das Ventilgehäuse 2 ist in ein Gehäuseunterteil 8 und ein Gehäuseoberteil 9 aufgeteilt, wobei Gehäuseunterteil 8 und Gehäuseoberteil 9 an der Trennfläche 10 aufeinanderliegenden und über mehrere Zylinderschrauben 11, welche über den Umfang verteilt sind, miteinander verspannt sind. Im Gehäuseoberteil 9 ist ein im 20 Querschnitt zylindrischer Führungsraum 12 eingeformt, in dem ein Verschlußglied 13 geführt ist.

Das Verschlußglied 13 weist einen untenseitig in den Ventilraum 6 hineinragenden Ventilkörper 14 und einen darüber angeordneten Differentialkolben 15 sowie eine 25 Ventilstange 16 auf. Die Ventilstange 16 ragt bis in den Ventilkörper 14 hinein und ist dort über ein Gewinde 17 derart verschraubt, daß der Ventilkörper 14 gegen den Differentialkolben 15 und dieser wiederum gegen einen Absatz 18 an der Ventilstange 16 in Bereiche des oberen 30 Endes des Differentialkolbens 15 verspannt werden. Die Ventilstange 16 durchsetzt einen Gehäusehals 19 und ist dort in elner Führungshülse 20 geführt. Ihr außenseitig vorstehendes Ende ist mit einem Anschlußgewinde 21 versehen, über das die Ventilstange 16 beispielsweise 35 mit einem Membranantrieb verbunden werden kann.

Die Ventilstange 16 ist in diesem Bereich von einem Ventiljoch 22 umgeben, welches auf einer Basisplatte 22a aufgeschweißt ist. Diese ist mittels einer Nutmutter 22b gegen die Oberseite des Gehäuseoberteils 9 verspannt. Ein Faltenbalg 23 schützt den Austritt der Ventilstange 16 aus dem Gehäusehals 19 gegen Eindringen von Verunreinigungen.

In die Wandung des Führungsraums 12 ist eine Ringnut eingeformt, in der ein als Quadring ausgebildeter
Gleitdichtring 24 eingesetzt ist. Er liegt an der Außenseite des Differentialkolbens 15 an. Ein weiterer Gleitdichtring 25 liegt an der Außenseite der Ventilstange 16
an und ist in einer Ringnut im Gehäusehals 19 angeordnet. Beide Gleitdichtringe 24, 25 schließen den Führungsraum 12 ein, der Verbindung zu einem Kontrollkanal 26 hat, der zur Außenseite hin mittels einer Verschlußschraube 27 gesperrt ist. Über den Kontrollkanal
26 kann nach Entfernen der Verschlußschraube 27 geprüft werden, ob Flüssigkeit in den Führungsraum 12
55
eingedrungen ist.

Der Ventilraum 6 wird obenseitig durch einen Membranring 28 abgeschlossen. Dieser ist innenseitig zwischen Ventilkörper 14 und Differentialkolben 15 sowie außenseitig zwischen Gehäuseunterteil 8 und Gehäuseoberteil 9 jeweils abdichtend eingespannt, Der Membranring 28 ist biegsam und elastisch, so daß die Vertikalbeweglichkeit des Verschlußglieds 13 hierdurch nicht wesentlich beeinflußt wird.

Der Membranring 28 und der untere Gleitdichtring 65 24 schließen einen Stützhohlraum 29 ein, der vollständig mit einer inkompressiblen Stützflüssigkeit gefüllt ist. Zum Stützhohlraum 29 gehört auch ein Befüllkanal 30,

der nach außen hin durch eine Verschlußschraube 31 gesperrt ist. Die Stiltzflüssigkeit bildet ein Gegenpokter zu der Prozeßflüssigkeit, die im Betrieb durch den Durchflußkanal 3 fließt, und vermeidet, daß der Mem-

5 branring 28 ausgebeult und damit hohen Zugbeanspruchungen ausgesetzt wird. Infolgedessen kann das Ventil I auch in Prozessen mit hohen Betriebsdrücken verwendet werden. Die Stützfütssigkeit besteht vorzugsweise aus einer indifferenten Substanz, wobei sie ein physiologisch unbedenkliches Schmiermittel enthalten kann. Dies sorgt für eine hohe Lebensdauer des unteren Gleitdichtrings 24.

Die besondere Formgebung des Differentialkolbens 15 hat zur Folge, daß das Volumen des Stützhohlraums 29 bei der Vertikalbewegung des Verschlußglieds 13 konstant bleibt. Hierfür weist der Differentialkolben 15 einen Absatz 32 auf, über den sich der Querschnitt des Differentialkolbens 15 zum Membranring 28 hin verringert. Bei einer Bewegung des Verschlußglieds 13 in Öffnungsrichtung, also nach oben, verringert sich der in den Stützhohlraum 29 hineinragende Volumenanteil des Differentialkolbens 15 oberhalb des Absatzes 18, so daß sich im oberen Bereich des Stützhohlraums 29 eine Volumenvergrößerung ergibt, die der Volumenverringerung durch das Anheben des Membranrings 28 entspricht. Bei einer Abwärtsbewegung des Verschlußglieds 13 in Schließrichtung kompensiert die Verdrängungswirkung, die durch das Einfahren des oberen Teils des Differentialkolbens 15 in den Stützhohlraum 29 entsteht, die Volumenvergrößerung infolge der Abwärtsbewegung des Membranrings 28.

Der Membranring 28 ist zweiteilig aufgebaut, d. h. er besteht aus zwei aufeinanderliegenden Membranscheiben 33, 34, welche den gleichen Innen- und Außendurchmesser haben. Die obere Membranscheibe 33 ist in dem Bereich zwischen Ventigehäuse 2 und Verschlußglied 13 ausgenommen, so daß ein Ringhohlraum 35 gebildet wird. Damit er unter Druckbeanspruchung nicht zusammengepreßt wird, sind in dem Ringhohlraum 35 Abstandhalter — beispielhaft mit 36 bezeichnet — angeordnet. Es kann sich dabei um Metallelemente oder drähte handeln.

Der Ringhohlraum 35 geht in dieser Ansicht links bis in die Einspannung zwischen Gehäuseunterteil 8 und Gehäuseoberteil 9 und hat dort Verbindung zu einem Leckagekanal 37. Dieser setzt sich im Gehäuseoberteil 9 bis in ein Sackloch 38 fort, in das eine Leckageschraube 39 eingeschraubt ist. Diese wird von einem Vertikalkanal 40 durchsetzt, der Verbindung mit dem Leckagekanal 37 hat und obenseitig in einem Hohlraum mündet, der von einem Schauglas 41 umschlossen ist. Das Schauglas 41 ist mit Hilfe einer Hutmutter 42 auf der Leckageschraube 39 besetsigt.

In Fig. 2 ist erkennbar, daß die untere Membranscheibe 34 eine Beschädigung 43 aufweist. Aufgrund dieser Beschädigung 43 dringt die den Durchflußkanal 3 durchsetzende Prozeßflüssigkeit in den Ringhohlraum 35 ein. Sie fließt über den Leckagekanal 37, das Sackloch 38 und den Vertikalkanal 40 in den vom Schauglas 41 umschlossenen Hohlraum. Auf diese Weise kann von außen beobachtet werden, ob der Membranring 28 beschädigt ist.

In Fig. 3 weist die obere Membranscheibe 33 eine Beschädigung 44 auf. In diesem Fall dringt die in dem Stützhohlraum 29 befindliche Stützflüssigkeit in den Ringhohlraum 35 ein und gelangt ebenfalls bis in den vom Schauglas 41 umschlossenen Hohlraum. Sofern die Stützflüssigkeit eine andere Farbe hat als die Prozeß-

DE 196 11 664 **A**1

5

flüssigkeit, kann anhand des Schauglases nicht nur festgestellt werden, daß eine Beschädigung 43, 44 des Membranrings 28 vorliegt, sondern auch auf welcher Seite der Membranring 28 beschädigt ist, d. h. ob die obere oder die untere Membranscheibe 33, 34 gebrochen ist.

Das in Fig. 4 und 5 dargestellte Ventil 51 hat den Aufbau eines typischen Membranventils. Es hat ein Ventilgehäuse 52 mit einem dieses im wesentlichen horizontal durchsetzenden Durchflußkanal 53. An den beiderseitigen Enden des Durchflußkanals 53 wird das 10 Ventilgehäuse 52 durch jeweils einen Flansch 54, 55 begrenzt. Innenseitig ist der Durchflußkanal mit einer allseitigen Beschichtung 56 als Korrosionsschutz versehen. In der Mitte des Durchflußkanals 53 ragt ein Formteil 57 hoch, dessen Oberseite eine Art Ventilsitz bildet.

Das Ventilgehäuse 52 ist in ein Gehäuseunterteil 58 und ein Gehäuseoberteil 59 aufgeteilt. Dabei verläuft der Durchflußkanal 53 im wesentlichen im Gehäuseunterteil 58. Dieses hat in der Mitte eine Öffnung, welche von dem haubenartigen Gehäuseoberteil 59 verschlos- 20 sen ist. Zwischen Gehäuseunterteil 58 und Gehäuseoberteil 59 ist eine Membran 60 mit ihrer Außenseite dichtend eingespannt. Sie befindet sich in Schließstellung, d. h. sie liegt an dem Formteil 57 an und versperrt hierdurch die bei angehobener Membran 60 vorhande- 25 ne Verbindung zwischen den beiden Teilen des Durchflußkanals 53.

Mittig ist die Membran 60 an einer Ventilspindel 61 befestigt. Die Ventilspindel 61 weist außenseitig ein Gewinde 62 auf. An ihrem unteren Ende ist ein Stützkörper 30 63 aufgeschraubt, dessen Unterseite an der Rückseite der Membran 60 anliegt und diese abstützt.

In eine obenseitige Öffnung des Gehäuseoberteils 59 ist eine Spindelführung 64 angesetzt, welche innenseitig ein Gewinde aufweist, in das das Gewinde 62 der Ventilspindel 61 einfaßt. Durch Drehen der Ventilspindel 61 in die eine Richtung kann diese zusammen mit der Membran 60 angehoben und in der anderen Richtung abgesenkt werden. Für die Drehbewegung weist die Ventilspindel 61 an der Oberseite ein Handrad 65 auf, das 40 drehfest mit der Ventilspindel 61 verbunden ist und mittels einer Mutter 66 gegen eine Haube 67 verspannt ist. Die Haube 67 liegt über einen Dichtungsring 68 an der Außenseite der Spindelführung 64 an und vermeidet auf diese Weise die Beaufschlagung des Gewindes 62 mit 45 Staub oder dergieichen.

Die Membran 60 ist mehrteilig aufgebaut, d. h. sie besteht im wesentlichen aus zwei aufeinanderliegenden Membranscheiben 69, 70, die den gleichen Außendurchmesser haben. An der Außenseite ist zwischen den bei- 50 den Membranscheiben 69, 70 ein Distanzring 71 eingespannt. Auch innenseitig werden die beiden Membranscheiben 69, 70 im Bereich der Verbindung mit der Ventilspindel 61 durch einen Distanzvorsprung 72 auf Abstand gehalten. Distanzring 71 und Distanzvorsprung 72 55 sorgen dafür, daß zwischen den beiden Membranscheiben 69, 70 ein Ringhohlraum 73 entsteht. Er enthält zusätzlich Abstandhalter - beispielhaft mit 74 bezeichnet -, um den Abstand der beiden Membranscheiben 69, 70 auch im mittleren Bereich des Ringhohlraums 73 60 konstantzuhalten, und zwar auch unter Betriebsdruck

Wie sich aus Fig. 5 ergibt, geht der Ringhohlraum 73 in dieser Ansicht nach rechts bis in die Einspannung zwischen Gehäuseoberteil 59 und Gehäuseunterteil 58. Dort ist eine Hülse 75 eingeformt, welche bis zu einer 65 Leckageschraube 76 geht. Auf diese Leckageschraube 76 ist eine Schaugiasmutter 77 aufgeschraubt, die ein hier nicht näher dargestelltes Schauglas aufweist.

6

Bei einer Beschädigung der unteren Membranscheibe 70 dringt die den Durchflußkanal 53 durchsetzende ProzeBflüssigkeit in den Ringhohlraum 73 ein. Sie fließt dann von dort über die Hülse 75 und die Leckageschranbe 76 bis zur Schauglasmutter 77. Die Feststellung des Vorhandenseins der Prozeßflüssigkeit in der Schauglasmutter 77 gibt dann einen Hinweis darauf, daß die Membran 60 beschädigt und ausgewechselt werden muß.

Patentansprüche

1. Ventil (1, 51) mit einem ein Ventilgehäuse (2, 52) durchsetzenden Durchflußkanal (3, 53), einem Ventilsitz (5) im Durchflußkanal (3) und einem relativ zu dem Ventilsitz (5) beweglichen Verschlußglied (13, 60, 61), wobei zum Verschlußglied eine Membran (28, 60) gehört, dadurch gekennzeichnet, daß die Membran (28, 60) zwischen ihren Einspannungen ein Hohlraumsystem (35, 73) einschließt.

Ventil nach Anspruch 1, dadurch gekennzeichnet, daß das Hohlraumsystem (35, 73) Abstand zu den

Einspannungen hat.

3. Ventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Hohlraumsystem (35, 73) mit einer Leckanzeigeeinrichtung (41,77) verbunden ist. Ventil nach Anspruch 3, dadurch gekennzeichnet, daß die Leckanzeigeeinrichtung als Schauglas (41, 77) ausgebildet ist, das Verbindung mit dem Hohlraumsystem (35, 73) hat.

5. Ventil nach Anspruch 3, dadurch gekennzeichnet, daß ein mit dem Hohlraumsystem (35, 73) pneumatisch in Verbindung stehender Drucksensor vorgesehen ist, der mit der Leckanzeigeeinrichtung ge-

koppelt ist.

Ventil nach Anspruch 3, dadurch gekennzeichnet, daß ein mit dem Hohlraumsystem (35, 73) in Verbindung stehender Feuchtesensor vorgesehen ist. der mit der Leckanzeigeeinrichtung verbunden ist.
7. Ventil nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Membran (28, 60) aus zwei aufeinanderliegenden Membranscheiben (33, 34, 69, 70) besteht, die zur Bildung des Hohlraumsystems (35, 73) beabstandete Bereiche aufweisen.

8. Ventil nach Anspruch 7, dadurch gekennzeichnet, daß eine der beiden Membranscheiben (33, 34, 69,

70) innenseitig ausgenommen ist.

9. Ventil nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Hohlraumsystem (35, 73) innen- und/oder außenseitig durch Abstandhalter (71, 72) begrenzt ist.

10. Ventil nach einem der Ansprüche 1 bis 9, da-durch gekennzeichnet, daß in dem Hohlraumsystem (35, 73) Abstandhalter (36, 74) vorhanden sind. 11. Ventil nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß das Hohlraumsystem (35, 73) aus miteinander in Verbindung stehenden Kanālen besteht.

12. Ventil nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß das Ventil als Mem-

branventil (51) ausgebildet ist.

13. Ventil nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Membran (28) au-Benseitig am Ventilgehäuse (2) und innenseitig am Verschlußglied (13) befestigt ist.

14. Ventil nach Anspruch 13, dadurch gekennzeichnet, daß auf der dem Durchflußkanai (3) abgewandten Seite der Membran (28) eine Dichtung (24) zwischen Verschlußglied (13) und Ventilgehäuse (2) an-

DE 196 11 664 A1

geordnet ist, die mit der Membran (28) einen geschlossenen Stützhohlraum (29) einschließt, welcher mit einem inkompressiblen, verformbaren Stützmedium gefüllt ist, wobei das Verschlußglied (13) auf der dem Durchflußkanal (3) abgewandten Seite der Membran (28) eine solche Formgebung hat, daß das Volumen des Stützhohlraums (29) bei Bewegung des Verschlußglieds (13) im wesentlichen konstant bleibt.

Hierzu 2 Seite(n) Zeichnungen

- Leerseite -

ZEICHNUNGEN SEITE 2

Nummer: Int. Cl.⁶: Offenlegungstag: **DE 196 11 664 A1** F 16 K 7/12 14. November 1996

802 048/535