

planetmath.org

Math for the people, by the people.

opposite group

 ${\bf Canonical\ name \quad Opposite Group}$

Date of creation 2013-03-22 17:09:56 Last modified on 2013-03-22 17:09:56

Owner Wkbj79 (1863) Last modified by Wkbj79 (1863)

Numerical id 10

Author Wkbj79 (1863) Entry type Definition

Classification msc 08A99 Classification msc 20-00 Let G be a group under the operation *. The *opposite group* of G, denoted G^{op} , has the same underlying set as G, and its group operation is *' defined by $g_1 *' g_2 = g_2 * g_1$.

If G is abelian, then it is equal to its opposite group. Also, every group G (not necessarily abelian) is isomorphic to its opposite group: The http://planetmath.org/GroupIsomorphismisomorphism $\varphi \colon G \to G^{\mathrm{op}}$ is given by $\varphi(x) = x^{-1}$. More generally, any anti-automorphism $\psi \colon G \to G$ gives rise to a corresponding isomorphism $\psi' \colon G \to G^{\mathrm{op}}$ via $\psi'(g) = \psi(g)$, since $\psi'(g * h) = \psi(g * h) = \psi(h) * \psi(g) = \psi(g) *' \psi(h) = \psi'(g) *' \psi'(h)$.

Opposite groups are useful for converting a right action to a left action and vice versa. For example, if G is a group that acts on X on the , then a left action of G^{op} on X can be defined by $g^{\text{op}}x = xg$.

constructions occur in opposite ring and opposite category.