МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Севастопольский государственный университет» КАФЕДРА «ИНФОРМАЦИОННЫЕ СИСТЕМЫ»

Лабораторная работа № 1

По дисциплине «Инфокоммуникационные системы и сети»

Изучение конструкции современных кабельных линий связи.

Выполнил:

студент группы ИС/б-17-2-о

Горбенко К. Н.

Проверил:

Чернега В.С.

Севастополь 2020

1.ЦЕЛЬ РАБОТЫ

Изучение конструкции современных кабельных линий связи, используемых в локальных компьютерных сетях, исследование методов измерения переходных помех в симметричных линиях и степени искажений импульсов при передаче данных по кабелям связи.

2.ПОСТАНОВКА ЗАДАЧИ

- 4.1. Изучить параметры и характеристики проводных и оптических линий связи (выполняется в процессе домашней подготовки).
- 4.2. Создать эквивалентную модель симметричной двухпроводной линии связи (рисунок 2.11) в среде Proteus с заданными по варианту (см. ПРИЛОЖЕНИЕ А) параметрами.
- 4.3. Запустить симуляцию заданной модели при использовании 1, 5 и 8 сегментов модели линии связи.
- 4.4. Измерить амплитудно-частотную характеристику (АЧХ) и фазочастотную характеристику (ФЧХ) для 1, 5 и 8 сегментов и полосу пропускания для различных длин сегментов.
 - 4.5. Оформить результаты в виде таблиц и графиков.
 - 4.6. Сделать выводы по работе.
 - 4.7. Составить отчет.

3.ХОД РАБОТЫ

3.1 Построим схемы экспериментальных установок с 1, 5 и 8 сегментами и рассчитаем значения индуктивности, сопротивления и емкости для каждой схемы.

Рисунок 1 – Схема экспериментальной установки с 1 сегментом

$$R = R\pi * l/n = 80 * 16 = 1280 \ OM$$

 $L = L\pi * l/n = 8 * 10^{-3} * 16 = 1,28 \ \Gamma H$
 $C = C\pi * l/n = 2 * 10^{-6} * 16 = 32 \ MK\Phi$

Рисунок 2 – Схема экспериментальной установки с 5 сегментами

$$R = R\pi * l/n = 256 \text{ Om}$$

 $L = L\pi * l/n = 0.256 \text{ m}\Gamma$
 $C = C\pi * l/n = 6.4 \text{ mk}\Phi$

Рисунок 3 – Схема экспериментальной установки с 8 сегментами

$$R = R\Pi * l/n = 160 OM$$

 $L = L\Pi * l/n = 0.16 M\Gamma H$
 $C = C\Pi * l/n = 4 MK\Phi$

3.2 После моделирования и симуляции схем для каждой целесообразно создать таблицу, где будут записываться результаты измерений.

Таблица 1 - Результаты измерений для схемы с 5 сегментами

Частота (Гц)	Напряжение (мВ)	Сдвиг по времени	Сдвиг по фазе
30	82	3.5	37.8
60	94	1.1	23.76
100	95	0.5	18
200	98	0.16	11.52
500	99	0.035	6.3

3.3 Построим графики АЧХ и ФЧХ для каждой схемы.

Рисунок 7 - АЧХ и ФЧХ для схемы с 1 сегментом

Рисунок 8 - АЧХ и ФЧХ для схемы с 5 сегментами

Рисунок 9 - АЧХ и ФЧХ для схемы с 8 сегментом

выводы

В лабораторной работе рассмотрена эквивалентная схема для 1 километра цепи для расчета параметром однородных линий. Выяснено, чем больше частота входного сигнала, тем выше потери выходного сигнала. Соответственно, можно сделать вывод о том, что провод имеет характеристики, изменяющие значения Uвх и Uвых. Чем меньше частота входного сигнала, тем больше фазовый сдвиг между входным и выходным сигналами.