Truly Important from Lecture 5

$$U_{tot} = \frac{1}{2} \iiint_{Vol} \epsilon_0 \epsilon_r |\vec{E}(\vec{r}')|^2 d\vec{r}'$$

EE1P21 Electricity and Magnetism

Capacitors

Topic 6

Storing electrostatic energy

Learning Objectives

What is a capacitor
What is the capacitance
Why they typically involve dielectrics

Capacitors

Devices to store electrostatic energy

Symbol

- They are composed by a pair of conductors, **insulated** from each other.
- Opposite and equal charges.

 Work used in separating charge is stored as potential energy in the capacitor.

What we will see today

For all capacitors the **Energy stored** can be expressed as:

$$U_{tot} = \frac{1}{2} Q_1 \Delta V$$

 Q_1 is the charge in each conductor ΔV is the potential difference between the two conductors

We will motivate/demonstrate this fact

Every capacitor is characterized by ratio of charge and voltage: **Capacitance**

$$C = \frac{Q_1}{\Delta V}$$

Parallel Plate Capacitor

We shall see the capacitance

for the simplest realization:

Capacitor Energy

Energy stored in any system

$$U_{tot} = \frac{1}{2} \iiint_{Vol} \rho(\vec{r}') V(\vec{r}') d\vec{r}'$$

If the charge is superficial
$$\rho(\vec{r}') = \sigma(\vec{r}')\chi(\vec{r}')$$
 Existence function
$$\chi(\vec{r}') = \begin{cases} 1 & \forall \ \vec{r}' \in metal \\ 0 & \forall \ \vec{r}' \in (Vol-metal) \end{cases}$$

The Volumetric integral is a surface integral, because only where $\rho(\vec{r}') \neq 0$, $\rho(\vec{r}')V(\vec{r}') \neq 0$

And since there are always two plates....

$$U_{tot} = \frac{1}{2} \iint_{A_1} \sigma_1(\vec{r}') V(\vec{r}') d\vec{r}' + \frac{1}{2} \iint_{A_2} \sigma_2(\vec{r}') V(\vec{r}') d\vec{r}'$$

Parallel Plate Capacitor Charge

$$U_{tot} = \frac{1}{2} \iint\limits_{A_1} \sigma_1(\vec{r}') V(\vec{r}') d\vec{r}' + \frac{1}{2} \iint\limits_{A_2} \sigma_2(\vec{r}') V(\vec{r}') d\vec{r}'$$

Key approximation

$$\sigma_1(\vec{r}') \sim \frac{Q_1}{A_1}$$

$$\sigma_2(\vec{r}') \sim -\frac{Q_1}{A_2}$$

Charge uniformly distributed on panels

Given this approximation let us calculate the energy

Parallel Plate Capacitor Potential

Conductors = equipotentials

$$V(\vec{r} \in A_1) = V\left(0,0,\frac{d}{2}\right)$$

$$V(\vec{r} \in A_2) = V\left(0,0,-\frac{d}{2}\right)$$

$$V\left(0,0,\frac{d}{2}\right) = V_1$$

$$V\left(0,0,-\frac{d}{2}\right) = V_2$$

$$U_{tot} = \frac{1}{2} \iint_{A_1} \sigma_1(\vec{r}') V(\vec{r}') d\vec{r}' + \frac{1}{2} \iint_{A_2} \sigma_2(\vec{r}') V(\vec{r}') d\vec{r}'$$

$$V(\vec{r}') \neq 0 \ \forall \ \vec{r}'$$

only needs to be specified in surfaces

Parallel Plate Capacitor Energy

$$U_{tot} = \frac{1}{2} \iint\limits_{A_1} \sigma_1(\vec{r}') V(\vec{r}') d\vec{r}' + \frac{1}{2} \iint\limits_{A_2} \sigma_2(\vec{r}') V(\vec{r}') d\vec{r}'$$

$$U_{tot} = \frac{1}{2} \iint_{A_1} \frac{Q_1}{A_1} V_1 d\vec{r}' - \frac{1}{2} \iint_{A_2} \frac{Q_1}{A_2} V_2 d\vec{r}'$$

$$U_{tot} = \frac{1}{2} [Q_1 V_1 - Q_1 V_2] = \frac{1}{2} Q_1 \Delta V$$

$$\sigma_1(\vec{r}') \sim \frac{Q_1}{A_1} \qquad V(\vec{r} \in A_1) = V_1$$

$$\sigma_2(\vec{r}') \sim -\frac{Q_1}{A_2} \qquad V(\vec{r} \in A_2) = V_2$$

$$\Delta V = V_1 - V_2$$

Capacitor Energy

$$U_{tot} = \frac{1}{2} \iiint_{Vol} \rho(\vec{r}') V(\vec{r}') d\vec{r}'$$

Using

The charge is superficial

Charge uniformly distributed on panels

Conductors = equipotentials

$$U_{tot} = \frac{1}{2} Q_1 \Delta V$$

Applies to all capacitors not only Parallel Plate

Capacitance

If
$$Q_1$$
 and ΔV are given the **energy** is calculated $U_{tot} = \frac{1}{2} Q_1 \Delta V$

It would be useful to be able to provide the energy once only the charge, or only the voltage is given.

Capacitance is introduced as the charge stored per unit potential difference:

$$C = \frac{Q_1}{\Delta V}$$

Its SI unit is the **farad** (F): 1 F = 1 C/V

Energy expressions with capacitance

$$U_{tot} = \frac{1}{2} \Delta V Q_1$$

$$C = \frac{Q_1}{\Delta V}$$

$$U_{tot} = \frac{1}{2}C(\Delta V)^2$$

$$U_{tot} = \frac{1}{2} \frac{Q_1^2}{C}$$

The energy can also be expressed in terms of the voltage and capacitance

Or in terms of the charge and the capacitance

Capacitor design

A classic physics based design problem could be:

select the shape of the conductors so that you can store a large energy.

Geometry

Energy

Parallel Plate Capacitance

Capacitance
$$C = \frac{Q_1}{\Lambda V}$$

$$C = \frac{Q_1}{\Delta V}$$

$$V(\vec{r}) = \iiint\limits_{Vol} k \frac{\rho(\vec{r}')}{|\vec{r} - \vec{r}'|} d\vec{r}'$$

Using the fact that charge is uniformly distributed on two surfaces

Key approximation

$$\sigma_1(\vec{r}') \sim \frac{Q_1}{A}$$
 $\sigma_2(\vec{r}') \sim -\frac{Q_1}{A}$

Charge uniformly distributed on panels

$$V(\vec{r}) = \frac{Q_1}{A} k \iint_{A_1} \frac{1}{|\vec{r} - \vec{r_i}|} d\vec{r_i} - \frac{Q_1}{A} k \iint_{A_2} \frac{1}{|\vec{r} - \vec{r_i}|} d\vec{r_i}$$

Parallel Plate Capacitance: specifications

$$C = \frac{Q_1}{\Delta V}$$

$$\Delta V = V(\vec{r}_1) - V(\vec{r}_2)$$

$$V(\vec{r}_1) = V\left(0,0,\frac{d}{2}\right)$$

$$\Delta V = V(\vec{r}_1) - V(\vec{r}_2)$$

$$V(\vec{r}_2) = V\left(0,0,-\frac{d}{2}\right)$$

$$V(\vec{r}_{i}) = \frac{Q_{1}}{A} k \iint_{A_{1}} \frac{1}{|\vec{r}_{i} - \vec{r}'|} d\vec{r}' - \frac{Q_{1}}{A} k \iint_{A_{2}} \frac{1}{|\vec{r}_{i} - \vec{r}'|} d\vec{r}'$$

$$\downarrow \qquad \qquad i=1,2 \qquad \qquad A_{1} = A_{2} = A_{1}$$

Potential on one plate: representation

$$V(\vec{r}_{1}) = \frac{Q_{1}}{A} k \iint_{A_{1}} \frac{1}{|\vec{r}_{1} - \vec{r}'|} d\vec{r}' - \frac{Q_{1}}{A} k \iint_{A_{2}} \frac{1}{|\vec{r}_{1} - \vec{r}'|} d\vec{r}'$$

$$V(0,0,0) = \frac{Q_{1}}{A} k \left[\iint_{A_{1}} \frac{1}{r'} d\vec{r}' - \iint_{A_{1}} \frac{1}{|\vec{r}_{2} - \vec{r}'|} d\vec{r}' \right]$$
Tubelft $r' = |\vec{r}'|$

General expression

Both integrals reference system centered in top panel

$$r' = |\vec{r}'|$$

Potential on one plate value

$$V(\vec{r_1}) = \frac{Q_1}{A} k \left[\iint\limits_{A_1} \frac{1}{r'} d\vec{r}' - \iint\limits_{A_1} \frac{1}{|(0,0,-d)-\vec{r}'|} d\vec{r}' \right] \xrightarrow{|\vec{r_2}-\vec{r'}|}$$

$$Cylindrical \\ parametrization \quad \vec{r}' = (\rho' cos \phi', \; \rho' sin \phi')$$

$$V(\vec{r_1}) = \frac{Q_1}{A} k \left[\int\limits_0^a \int\limits_0^{2\pi} \frac{1}{\rho'} \rho' d\rho' d\phi' - \int\limits_0^a \int\limits_0^{2\pi} \frac{1}{\sqrt{\rho'^2 + d^2}} \rho' d\rho' d\phi' \right]$$

$$V(\vec{r_1}) = \frac{Q_1}{A} k \left[\frac{1}{2\pi} \int\limits_0^{2\pi} \frac{1}{2\pi} \left[\frac{1}{2\pi} \left(\frac{1$$

Integral: Mathematical steps I

$$I = \int_{0}^{a} \int_{0}^{2\pi} \frac{1}{\rho} \rho d\rho d\phi - \int_{0}^{a} \int_{0}^{2\pi} \frac{1}{\sqrt{\rho^2 + d^2}} \rho d\rho d\phi$$

$$I = 2\pi \left\{ \int_{0}^{a} d\rho - \int_{0}^{a} \frac{1}{\sqrt{\rho^2 + d^2}} \rho d\rho \right\}$$

$$I = 2\pi \left\{ a - \int_{0}^{a} \frac{1}{\sqrt{\rho^{2} + d^{2}}} \rho d\rho \right\} = 2\pi \left\{ a - \sqrt{d^{2} + a^{2}} + d \right\}$$

Demonstration in the next slides

Integral: Mathematical steps II

$$\int_{0}^{a} \frac{1}{\sqrt{\rho^{2} + d^{2}}} \rho d\rho \qquad \sqrt{\rho^{2} + d^{2}} = d\sqrt{1 + \frac{\rho^{2}}{d^{2}}}$$

$$\int_{0}^{a} \frac{1}{d\sqrt{1 + \frac{\rho^{2}}{d^{2}}}} \rho d\rho = d \int_{0}^{a/d} \frac{y}{\sqrt{1 + y^{2}}} dy$$

$$\frac{\rho^{2}}{d^{2}} = y^{2}$$

Next slide

$$d\int_{0}^{a/d} \frac{y}{\sqrt{1+y^2}} dy = \sqrt{d^2 + a^2} - d$$

Integral: Mathematical steps III

$$d \int_{0}^{a/d} \frac{y}{\sqrt{1+y^2}} dy = \sqrt{d^2 + a^2} - d$$

$$\int_{0}^{a/d} \frac{y}{\sqrt{1+y^2}} dy = \sqrt{d^2 + a^2} - d$$

$$\int_{0}^{a/d} \frac{y}{\sqrt{1+y^2}} dy = \sqrt{d^2 + a^2} - d$$
Suggests to use integration per parts

$$\frac{d}{dy}\sinh^{-1}y = \frac{1}{\sqrt{1+y^2}}$$

$$d \int_0^{a/d} \frac{y}{\sqrt{1+y^2}} dy = d y \sinh^{-1} y \Big|_0^{a/d} - d \int_0^{a/d} \sinh^{-1} y \, dy$$

$$\int\limits_{0}^{a/d} \sinh^{-1} y \, dy = \left[y \sinh^{-1} y - \sqrt{1 + y^2} \right]_{0}^{a/d}$$

$$d \int_0^{a/d} \frac{y}{\sqrt{1+y^2}} dy = dy \sinh^{-1} y \Big]_0^{a/d} - d \Big[y \sinh^{-1} y - \sqrt{1+y^2} \Big]_0^{\frac{a}{d}}$$
$$= d \sqrt{1 + \left(\frac{a}{d}\right)^2} - d = \sqrt{d^2 + a^2} - d$$

Voltages

$$V(\vec{r}_1) = \frac{Q_1}{A} k \iint_A \frac{1}{|\vec{r}_1 - \vec{r}'|} d\vec{r}' - \frac{Q_1}{A} k \iint_A \frac{1}{|\vec{r}_1 - \vec{r}'|} d\vec{r}' \qquad V(\vec{r}_1) = \frac{Q_1}{A} k 2\pi \left\{ a - \sqrt{d^2 + a^2} + d \right\}$$

$$V(\vec{r}_2) = -\frac{Q_1}{A}k\iint\limits_{A_2} \frac{1}{|\vec{r}_2 - \vec{r}'|}d\vec{r}' + \frac{Q_1}{A}k\iint\limits_{A_1} \frac{1}{|\vec{r}_2 - \vec{r}'|}d\vec{r}' \qquad V(\vec{r}_2) = -\frac{Q_1}{A}k2\pi\left\{a - \sqrt{d^2 + a^2} + d\right\}$$

$$\Delta V = V(\vec{r}_1) - V(\vec{r}_2) = \frac{Q_1}{A} k 4\pi \left\{ a - \sqrt{d^2 + a^2} + d \right\}$$

$$\Delta V = \frac{Q_1}{A} \frac{1}{\epsilon_0 \epsilon_r} \left\{ a - \sqrt{d^2 + a^2} + d \right\}$$

$$k = \frac{1}{4\pi \epsilon_0 \epsilon_r} \begin{array}{c} Coulomb's \\ constant \end{array}$$

$$k = \frac{1}{4\pi\epsilon_0\epsilon_r}$$
 Coulomb's constant

Energy stored in Parallel Plate Capacitor

$$U_{tot} = \frac{1}{2} \iiint\limits_{Vol} \rho(\vec{r}') V(\vec{r}') d\vec{r}'$$

$$U_{tot} = \frac{1}{2} Q_1 \Delta V$$

$$U_{tot} = \frac{1}{2} \frac{Q_1^2}{A} \frac{1}{\epsilon_0 \epsilon_r} \left\{ a - \sqrt{d^2 + a^2} + d \right\}$$

The energy is proportional to the square of the charge in each plate

If $d \ll a$

$$V\left(\vec{r}=(0,0,\frac{d}{2})\right)\sim\frac{Q_1}{A}k2\pi d$$

$$V\left(\vec{r} = (0,0,\frac{d}{2})\right) \sim \frac{Q_1}{A}k2\pi d$$

$$V\left(\vec{r} = (0,0,-\frac{d}{2})\right) \sim -\frac{Q_1}{A}k2\pi d$$

$$U_{tot} \sim \frac{1}{2} Q_1^2 \frac{1}{\epsilon_0 \epsilon_r} \frac{d}{A}$$

Capacitance of Parallel Plate Capacitor

$$\Delta V = \frac{Q_1}{A} \frac{1}{\epsilon_0 \epsilon_r} \left\{ a - \sqrt{d^2 + a^2} + d \right\}$$

$$C = \frac{Q_1}{\Delta V} = \frac{\epsilon_0 \epsilon_r A}{\{a - \sqrt{d^2 + a^2} + d\}}$$

Whatever is the shape the capacitance *approximately* depends only on the facing area

If $d \ll a$

$$C = \frac{Q_1}{\Delta V} \sim \frac{\epsilon_0 \epsilon_r A}{d}$$

Alternative Procedure for Parallel Plate Capacitance

A charged metal generates field:

$$E_n = \frac{\sigma}{\epsilon_0 \epsilon_r}$$

Where σ is the charge density

If Q is the total charge $\sigma \approx \frac{Q_1}{A}$

$$E_{normal} \sim \frac{Q}{A} \frac{1}{\epsilon_0 \epsilon_r}$$

$$E_{normal}d = \Delta V$$

And thus for a parallel plate capacitor

$$C = \frac{\epsilon_0 \epsilon_r A}{d}$$

$$\frac{Q_1}{\Delta V} = \frac{\epsilon_0 \epsilon_r A}{d}$$

Break-down in Gases

Break-down in Gases (2)

Strong electric fields can break molecules

Molecules aligned with field break!

Energy:

Potential Electrostatic

Kinetic energy

Strong Voltages

Increasing ΔV

In pumped vacuum no particles, you could pump up the voltage!

In air High Electric Fields (3MV/m) can break molecular ties of gas molecules

Capacitors and dielectrics

- Q_1 For the same charge Electric field becomes smaller

$$E_{ext} = \frac{Q_1}{A\epsilon_0\epsilon_r}$$

$$\Delta V = E_{ext}d$$

$$C = \frac{\epsilon_0\epsilon_r A}{A}$$

What does it mean

Given a battery of voltage ΔV ,

$$\int \Delta V, d$$

 ΔV , d

The capacitor

accumulates $q = \varepsilon_r C_0 V$ charges

$$\frac{1}{2}\epsilon_r C_0 V^2 > \frac{1}{2}CV^2$$

compared to q_0 = C_0 V charges

The total average electric field eventually is the same

$$E_{tot}^{ave} = E_{\text{ext}} = -\Delta V/d$$

Where is the energy accumulated?

Inside the polarized molecule

Break-down in Dielectrics

Charges within molecules go as far as stronger ordered chemical bonds allow

mechanism Same as gases; only stronger chemical bonds typically need to be broken than in gases.

Strong Voltages in dielectrics

Increasing ΔV

Much stronger electric fields are compatible with dielectrics with respect to gases

Table 23.1 Properties of Some Common Dielectrics

Dielectric Material	Dielectric Constant	Breakdown Field (MV/m)
Air	1.0006	3
Aluminum oxide	8.4	670
Glass (Pyrex)	5.6	14
Paper	3.5	14
Plexiglas	3.4	40
Polyethylene	2.3	50
Polystyrene	2.6	25
Quartz	3.8	8
Tantalum oxide	26	500
Teflon	2.1	60
Water	80	depends on time and puri

Truly Important from Lecture 6

$$U_{tot} = \frac{1}{2} \sum_{i=1}^{N} q_{1} q_{2} q_{1}$$

$$Q_{1} q_{3} Q_{2} q_{1}$$

$$Q_{3} Q_{N} q_{N}$$

$$Q_{i}V(\vec{r}_{i})$$

$$V(\vec{r}_{i}) = k \sum_{i=1; i \neq j} \frac{q_{i}}{r_{ij}}$$

$$U_{tot} = \frac{1}{2} \iiint_{Vol} \rho(\vec{r}') V(\vec{r}') d\vec{r}'$$

$$U_{tot} = \frac{1}{2} \iiint_{Vol} \epsilon_0 \epsilon_r |\vec{E}(\vec{r}')|^2 d\vec{r}'$$

$$U_{tot} = \frac{1}{2} Q_1 \Delta V \qquad 3$$

$$C = \frac{Q_1}{\Delta V} \quad U_{tot} = \frac{1}{2}C(\Delta V)^2$$

$$C = \frac{\epsilon_0 \epsilon_r A}{d}$$

