1. กำหนดให้ 43x-180=0 จงเขียนโปรแกรม Graphical method ในการหาคำตอบ x เมื่อ 0<=x<=10

แบบ modified Graphical method ที่มีการ scan ทีละ 1 (x=x+1) และเมื่อได้ว่าคำตอบอยู่ช่วงใด [y,z] แล้ว ค่อยมาทำการ scan ทีละ 0.000001 (x=x+0.000001) ในช่วงคำตอบ [y,z]

- 2. จงใช้วิธี Bisection เพื่อคำนวณหาค่า $\sqrt[4]{13}$ โดยกำหนดค่าขอบเขตเริ่มต้นระหว่าง 1.5 และ 2.0
 - 2.1 ทำด้วยมือ 4 iterations
 - 2.2 เขียนโปรแกรมโดยผลลัพธ์ที่ได้ไม่มีการเปลี่ยนแปลงจุดทศนิยม 6 ตำแหน่ง
- 3 ให้นักเรียนเขียนโปรแกมการถอดรากที่ n ของจำนวนเต็ม x, $\binom{n}{\sqrt{x}}$ โดยใช้วิธี Bisection ตัวอย่างเช่น กำหนดให้ x=38 n = 2 แล้ว $\sqrt[2]{38}=6.1644$ Input

บรรทัดที่ $1 \times n$ แสดงจำนวน \times และจำนวน n เว้นวรรคด้วยช่องว่าง โดย $2 \le n \le x \le 2000000$

บรรทัดที่ 2 xl xr ขอบเขตเริ่มต้นระหว่าง 0 และ 1000000

<u>Output</u>

บรรทัดที่ 1 ผลลัพธ์ $\binom{n}{\sqrt{X}}$ โดยแสดงทศนิยม 4 ตำแหน่ง

ตัวอย่างข้อมูล

Input	<u>Output</u>
38 2	6.1644
1265256 12	3.2249

4. จากรูปของวิธี False position

Compute x_1 -from: $\tan \theta = \tan \beta$

$$x_1 = \frac{x_L f(x_R) - x_R f(x_L)}{f(x_R) - f(x_L)}$$

จงพิสูจน์ว่า

- 5. จงใช้วิธี False position เพื่อคำนวณหาค่า $\sqrt[4]{13}$ โดยกำหนดค่าขอบเขตเริ่มต้นระหว่าง 1.5 และ 2.0
 - 2.1 ทำด้วยมือ 4 iterations
 - 2.2 เขียนโปรแกรมโดยผลลัพธ์ที่ได้ไม่มีการเปลี่ยนแปลงจุดทศนิยม 6 ตำแหน่ง
- 6 ให้นักเรียนเขียนโปรแกมการถอดรากที่ n ของจำนวนเต็ม x, $\binom{n}{\sqrt{x}}$ โดยใช้วิธี False position ตัวอย่างเช่น กำหนดให้ x=38 n = 2 แล้ว $\sqrt[2]{38}=6.1644$ Input

บรรทัดที่ 1 x n แสดงจำนวน x และจำนวน n เว้นวรรคด้วยช่องว่าง โดย $2 \leq n \leq x \leq 2000000$

บรรทัดที่ 2 xl xr ขอบเขตเริ่มต้นระหว่าง 0 และ 1000000

<u>Output</u>

บรรทัดที่ 1 ผลลัพธ์ $\binom{n}{\sqrt{X}}$ โดยแสดงทศนิยม 4 ตำแหน่ง

ตัวอย่างข้อมูล

Input	<u>Output</u>
38 2	6.1644
1265256 12	3.2249