BAB 1 SISTEM BILANGAN

A. Sejarah Perkembangan Bilangan Real

1. Bilangan Asli (N)

Sifat-sifatnya:

- a. Tertutup terhadap operasi + dan ×.
- b. Komutatif terhadap operasi + dan x, yaitu:

$$a+b=b+a$$

$$a \times b = b \times a$$

c. Asosiatif terhadap operasi + dan ×, yaitu:

$$a+(b+c)=(a+b)+c$$

$$a \times (b \times c) = (a \times b) \times c$$

2. Bilangan Bulat (Z)

Sifat-sifatnya:

- a. Tertutup terhadap operasi + dan ×.
- b. Komutatif terhadap operasi + dan ×, yaitu:

$$a+b=b+a$$

$$a \times b = b \times a$$

c. Asosiatif terhadap operasi + dan ×, yaitu:

$$a+(b+c)=(a+b)+c$$

$$a \times (b \times c) = (a \times b) \times c$$

- d. Elemen identitas 0 untuk +, dan elemen identitas 1 untuk \times .
- e. Invers + yaitu , dan invers × yaitu $\frac{1}{a}$, $a \in \mathbb{Z}$.

- 3. Bilangan Rasional (Q)
 - ⇒ Bilangan yang dapat dinyatakan sebagai perbandingan bilangan bulat atau hasil bagi bilangan bulat.

$$Q = \left\{ x \middle| x = \frac{a}{b} \text{ dengan } a, b \in Z \right\}$$

Contoh: $\frac{1}{2}, \frac{3}{4}, \frac{5}{7}$, dan sebagainya.

Sifat-sifatnya:

- a. Tertutup terhadap operasi + dan ×.
- b. Komutatif terhadap operasi + dan ×, yaitu:

$$a+b=b+a$$

$$a \times b = b \times a$$

c. Asosiatif terhadap operasi + dan x, yaitu:

$$a+(b+c)=(a+b)+c$$

 $a\times(b\times c)=(a\times b)\times c$

- d. Elemen identitas 0 untuk +, dan elemen identitas 1 untuk ×.
- 4. Bilangan Irasional (Q')
 - \Rightarrow Bilangan real yang tidak rasional, contoh: $\sqrt{2}, \pi, e$, dan sebagainya.

Gambar 1. 1. Jenis Bilangan Riil

Komponen Bilangan Real

Komponen Bilangan Real

- Dasar utama pengembangan matematika adalah teori bilangan dan geometri.
- Sistem bilangan real (diberi lambang R) adalah himpunan bilangan real yang disertai dengan operasi penjumlahan dan perkalian sehingga memenuhi aksioma lapangan, urutan dan kelengkapan.
- Suatu aksioma adalah basis dari sistem logika formal yang bersama-sama dengan aturan inferensi mendefinisikan logika.
- Kata aksioma dalam matematika juga disebut postulat yaitu suatu titik awal dari sistem logika.
 - Misalnya, 1+1=2
 - Melalui dua titik sembarang hanya dapat dibuat sebuah garis lurus.

- Definisi: pernyataan yg bernilai benar karena disepakati, dan tak perlu dibuktikan
 - Definisi di buat dengan menggunakan konsep yang belum terdifinisi dan atau konsep yang telah didifinisikan sebelumnya.
- Teorema adalah suatu pernyataan matematika yang masih memerlukan pembuktian dan pernyataan itu dapat ditunjukkan bernilai benar.

Aksioma lapangan

Pada R didefinisikan operasi penjumlahan dan perkalian (jumlah dan hasilkali bilangan real a dan b ditulis a + b dan ab) yang memenuhi aksioma berikut.

- Jika a, b ∈ R, maka a + b ∈ R dan ab ∈ R, sifat tertutup terhadap penjumlahan dan perkalian.
- Jika a, b ∈ R, maka a + b = b + a dan ab = ba, sifat komutatif terhadap penjumlahan dan perkalian.
- Jika a, b, c ∈ R, maka (a + b) + c = a + (b + c) dan (ab) c = a (bc), sifat assistif terhadap penjumlahan dan perkalian.
- Terdapat 0 dan 1 ∈ R (0 ≠ 1) sehingga a + 0 = 0 dan a.1 = a untuk setiap a ∈ R, adanya unsur kesatuan terhadap penjumlahan dan perkalian. Bilangan 0 dinamakan unsur kesatuan terhadap penjumlahan dan 1 unsur kesatuan terhadap perkalian.
- Jika a ∈ R, maka terdapat -a ∈ R sehingga a + (-a) = 0, adanya unsur negatif atau invers terhadap penjumlahan. Bilangan real -a dinamakan negatif atau lawan dari a.
- Jika a ∈ R, a ≠ 0, maka terdapat a⁻¹ ∈ R sehingga a a⁻¹ = 1, adanya unsur kebalikan atau invers terhadap perkalian. Bilangan real a⁻¹ dinamakan kebalikan dari a.
- Jika a, b, c ∈ R, maka a(b + c) = ab + ac, sifat distributif.

Aksioma lapangan

Teorema 1.2 Misalkan a, b, c, dan d bilangan real, maka

- $a = b \Rightarrow a + c = b + c$ dan ac = bc.
- a + c = b + c ⇒ a = b (hukum pencoretan untuk penjumlahan).
- ac = bc, c ≠ 0 ⇒ a = b (hukum pencoretan untuk perkalian).
- $\bullet \ a(b-c) = ab ac.$
- -(-a) = a, $(a^{-1})^{-1} = a$, $a \neq 0$.
- a.0 = 0 = 0.a; a(-b) = (-a)b = -ab; dan (-a)(-b) = ab.
- $ab = 0 \Rightarrow a = 0$ atau b = 0.
- $\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc; b, d \neq 0.$
- $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$ dan $\frac{a}{c} \frac{b}{c} = \frac{a-b}{c}$, $c \neq 0$.
- $\frac{a}{c} + \frac{b}{d} = \frac{ad + bc}{cd}$ dan $\frac{a}{c} \frac{b}{d} = \frac{ad bc}{cd}$; $c, d \neq 0$.
- $\frac{a}{c} \cdot \frac{b}{d} = \frac{ab}{cd}$; $c, d \neq 0$, dan $\frac{a}{c} / \frac{b}{d} = \frac{ad}{bc}$; $b, c, d \neq 0$.

Aksioma lapangan

Teorema 2.1

Misalkan a ∈R, maka

- (i) a. 0 = 0
- (i) Berdasarkan M3, kita ketahui bahwa a.1 = a. Disini

$$a + a \cdot 0 = a \cdot 1 + a \cdot 0 = a \cdot (1 + 0)$$

= $a \cdot 1 = a$

Berdasarkan teorema 1.1, kita simpulkan bahwa a . 0 = 0

(M3) ada unsur 1 ∈R sedemikian sehingga 1. a = a dan a .1 = a untuk setiap a ∈R

Teorema 1.1

- (i) jika z, a di R sedemikian sehingga z + a = a, maka z = 0
- (ii) jika u. b di R dan $b \neq 0$ sedemikian sehingga u. b = b, maka b = 1

Catatan:

Desimal dan Bilangan Real

Setiap bilangan real dapat dinyatakan sebagai desimal tak berakhir.

Desimal dari bilangan rasional $\frac{a}{b}$ dapat diperoleh dengan membagikan b pada a.

Contoh:
$$\frac{2}{5} = 0,40000...$$
 dan $\frac{1}{3} = 0,3333...$

Berdasarkan contoh di atas, terlihat bahwa hasil pembagiannya menghasilkan desimal yang memiliki angka berulang. Lain halnya dengan bilangan irasional, seperti:

$$\sqrt{2} = 1,41421356...$$

 $\sqrt{3} = 1,73205...$
 $\pi = 3,14159...$

Terlihat bahwa bilangan irasional menghasilkan desimal yang tak berakhir dan tidak berulang.

• Menyatakan Q

- a. Pecahan ke desimal, contoh: $\frac{1}{4} = 0.25$; $\frac{1}{3} = 0.3333...$; dan seterusnya.
- b. Desimal ke pecahan
 - 1) Desimal ke pecahan terbatas

Contoh:
$$0,25 = 25 \times \frac{1}{100} = \frac{25}{100} = \frac{1}{4}$$

- 2) Desimal ke pecahan tak terhingga
 - 1) Metode Euler (Mengalikan Digit yang Berulang)

Aturan yang digunakan:

- ✓ Jika berulang 1, maka kalikan 10.
- ✓ Jika berulang 2, maka kalikan 100, dan seterusnya.

Contoh: x = 0,121212...., maka:

$$100x = 12,121212$$

$$x = 0,121212 -$$

$$99x = 12$$

$$x = \frac{12}{99} = \frac{4}{33}$$

2) Deret Waktu tak Hingga

$$s = \frac{a}{1 - r}$$

dengan a = suku pertama dan r = rasio

Contoh: 0,121212..., maka:

$$\frac{12}{100} + \frac{12}{100^2} + \frac{12}{100^3} + \dots$$

sehingga $a = \frac{12}{100}$ dan $r = \frac{1}{100}$. Akibatnya,

$$s = \frac{a}{1-r}$$

$$= \frac{\left(\frac{12}{100}\right)}{1 - \left(\frac{1}{100}\right)}$$

$$= \frac{\left(\frac{12}{100}\right)}{\left(\frac{99}{100}\right)}$$

$$= \frac{12}{100} = \frac{4}{100}$$

--

5. Bilangan Real (R)

Sifat-sifatnya:

- Dapat dinyatakan dalam sebuah garis bilangan.
- b. Menentukan sifat medan/lapangan/gelanggang dalam operasi + dan ×.

Sifat medan antara lain:

- 1) Tertutup terhadap operasi + dan ×.
- 2) Komutatif terhadap operasi + dan ×, yaitu:

$$a+b=b+a$$

$$a \times b = b \times a$$

3) Asosiatif terhadap operasi + dan ×, yaitu:

$$a+(b+c)=(a+b)+c$$

 $a\times(b\times c)=(a\times b)\times c$

- Elemen identitas 0 untuk +, dan elemen identitas 1 untuk x.
- 5) Invers + yaitu -, dan invers × yaitu $\frac{1}{a}$, $a \in Z$.
- Distributif pada operasi × terhadap +.

Contoh: Misalkan $a,b,c \in R$, maka:

$$a \times (b+c) = (a \times b) + (a \times c)$$

 $(a+b) \times c = (a \times c) + (b \times c)$

- c. Memenuhi sifat urutan.
 - 1) Trikotomi, $\forall a,b \in R$ maka hanya berlaku salah satu pernyataan berikut: a = b atau a < b atau a > b.
 - 2) Transitif, $\forall a,b,c \in R$ diperoleh jika a < b dan b < c maka: a < c.
 - 3) Adiktif, $\forall a,b,c \in R$ diperoleh jika a < b maka:

$$a + c < b + c$$

4) Multiplikatif, $\forall a, b, c \in R$ diperoleh jika a < b maka:

$$a \times c < b \times c$$
, jika $c > 0$
 $a \times c > b \times c$, jika $c < 0$

3. Hukum-hukum bilangan riil

Untuk melakukan operasi matematika berupa penjumlahan,pengurangan, perkalian dan pembagian pada bilangan riil maka perlu di perhatikan hukumhukum seperti yang dituliskan berikut ini:

Jika a dan b adalah bilangan-bilangan riil maka berlaku :

a.	a + b	hukum penjumlahan
b.	a.b	hukum perkalian
C.	a+b=b+a	hukum komutatif penjumlahan
d.	a.b = b.a	hukum komutatif perkalian
e.	a + 0 = 0 + a = a	hukum penjumlahan nol
f.	a . 0 = 0 . a = 0	hukum perkalian nol
g.	a . 1 = 1 . a = a	hukum perkalian satu
h.	a + (- a) = -a + a	hukum invers penjumlahan
i.	a . (1/a) = 1	hukum invers perkalian
j.	(a+b)+c=a+(b+c)	hukum asosiatif penjumlahan
k.	(ab) c = a (bc)	hukum asosiatif perkalian
I.	a (b + c) = ab + ac	hukum distributif

dimana a, b dan c merupakan bilangan-bilangan riil

Soal dan jawaban selingan matematika SMP

Carilah x pada gambar berikut

$$\Rightarrow$$
 Selesaikanlah : $\frac{1}{n}$ sin x = ?

$$\Rightarrow Jik \ a: \lim_{x\to 8} \frac{1}{x-8} = \infty, \text{ selesaikan } \lim_{x\to 5} \frac{1}{x-5} = ?$$