

ABSTRACT

When laminating two types of film (1, 2) with different melting points on the two sides of a metal sheet (3), the thickness of the low melting point side film (2) is adjusted. Specifically, the thickness d_2 of the low melting point side film (2) at the part sandwiched between the lamination roll (10) and metal sheet (3) is made a range defined by $d_2 \geq k(\Delta MP - \Delta T)/V$.

Here, ΔMP is the difference of melting points of the two types of film, k is $k \geq 2$, $0 < \Delta T = MP_1 - \Phi T_i \leq 50$ ($^{\circ}$ C) (T_i is the metal sheet temperature at the inlet side of the rolls, V is the sheet running speed, Φ is a constant determined by the heat removal conditions at the time of lamination, where $0.75 \leq \Phi < 1$). Due to this, sticking of the low melting point side film (2) to the lamination roll (10) can be prevented.