넣어야될것

수치적으로 적기(구체적인 액션/전공적인요소)

질문사항:서론과 본론의 발표시간 분배? 서론은 기본적으로 배경지식관련해서 말하기에 발표시간은 줄여야 하나 본론에서의 이해를 돕기위한 필수요소는 최대한 집어넣을것

- 1.센서융합과/f-pointnet(센서융합부분은 적게)
- 2.캘리브레이션
- 3.싱크로나이즈
- 4.키티데이터셋
- 5.라벨링(2d/3d)

서론 5장으로 주제 나누어서 꽉꽉 채울것 그리고 대 주제에 맞게 유기적으로 5개의 페이지가 연결되도록 발표내용 쓰기

rotation_Y설명 그리고 포인트 클라우드에서 rotation_z가 나왔기에 어떻게 roation_y로 하기 위한 방법론적 설명

3d라벨링으로 bin파일을 라벨링해서 나온 txt파일에서의 rotaion값은 라이다 좌표계로써 rotaion_z이기에 이를 kitti형식으로 맞추어주기 위한방법을 체크하였다. 3d라벨링 파이썬 파일의 rotaion_z를 rotation_y로 변환하는 코드를 우리의 카메라 라이다 좌표계와 비교 분석한 결과 다음의 식을 도출 하였다. rotation_y = self.round_dec(-(abs2rel_rotation(rotation_z) - math.pi / 2) #rotate_y=-(rotate_z-pi/2)

- https://github.com/poornimajd/synchronization
- https://aihub.or.kr/sites/default/files/2020-12/41_116. 실내 라이다 및 카메라 동기화 데이터 소개(분야41)_v1.0_201125.pdf

•

- ros에서 라이다와 카메라의 서로 다른 출력 주기를 맞춰주기 위해 시간동기화 코드 실행
- 라이다 데이터를 저장하는 노드와 카메라 데이터를 저장하는 노드가
- 동시에 /signal 노드로부터의 신호에 맞춰 파일 쌍 생성 (npy, png 쌍)
- 단, 이 방법은 각 센서의 데이터가 각각의 queue에 들어오는 시점이 정확히 일치하지 않는 것을 고려하지 않은 방법으로, 한 쌍의 npy, png 파일 간 약 0.1s의 시간적 오차가 존재하는 것으로 관찰됨.

- 그럼에도 불구하고, 위와 같은 시스템을 적용하여 원하는 시점 주변의 라이다-카메라 데이터 쌍을 구분하여 획득할 수 있는 효과를 기대할 수 있음.
- 카메라와 라이다 취득된 데이터 싱크 맞는지 확인

•

- 카메라hz와 라이다 hz 설명하기
- 카메라 라이다 같이 설치된 사진 넣기

1. 서론

- 본 연구에서는 frsutum pointnet 모델을 이용해 ~을 얻고자 했다
- 프러스텀 포인트넷 구조+프러스텀관련내용 (이미지포인트,클라우드)
- kitti데이터셋 내용(프러스텀 포인트넷에 필요한)→간단하게
- 센서융합내용
 - 。 싱크로나이즈
 - https://www.oxts.com/ko/blog/when-worlds-collide/
 - https://github.com/poornimajd/synchronization
 - https://aihub.or.kr/sites/default/files/2020-12/41_116. 실내 라이다 및 카메라
 동기화 데이터 소개(분야41)_v1.0_201125.pdf
 - 。 캘리브레이션내용(이론적으로)
 - https://eehoeskrap.tistory.com/511
 - https://robonote.tistory.com/13
 - https://dragonitecio.tistory.com/338
- 라벨링(2d/3d)

https://github.com/SaiPrajwal95/annotate-to-KITTI

https://github.com/ch-

sa/labelCloud/blob/master/labelCloud/label_formats/kitti_format.py

2. 본론

- 키티로 돌리기
 - 환경세팅(프러스텀 포인트넷 실행에 필요한)

• 커스텀데이터셋 만들어서 돌리기

2.1.싱크로나이즈

https://github.com/poornimajd/synchronization

lidar roslaunch → ocams roslaunch → rosbag play 두개→ sync_event_gen.py→cam_gen.py→lidar_gen.py

파일 명: timestamp + (timestamp - system time)

png/npy 추출 프레임단위

2.2.kitti형식 맞추기(cal/png/txt/bin)

a.png

kitti형식이 png이기 때문에 png로 변환하면 된다.

b.bin

bin파일 만드는 방법에 대해 시도해 본 부분 다 집어넣고 결과적으로 bin만드는 방법과 코드 올려놓기(일단 kitti 데이터셋에서 bin파일 열어보고

3d 라벨링 결과도 마찬가지로, 폴더 별로 넣어놓아도 되고 한 폴더 안에 txt만 다 넣어놓아도 됨.

라이다 파일이 npy로 되어있어서 bin 파일로 변경해준 후, 라벨링 진행 npy \rightarrow csv[0:5] \rightarrow csv[0:3] \rightarrow txt \rightarrow bin

```
import pandas as pd
import numpy as np
import os.path
import struct

filePath = 'npy파일이 있는 폴더명'
filePath1 = '생성할 csv파일이 있을 폴더명'
fileAll = os.listdir(filePath)

for file in fileAll:
    a = np.load(filePath + file)
    a1 = np.savetxt(filePath1 + file[:-4] +'.csv',a,fmt='%7f', delimiter=",")

filePath2 = '생성된 csv파일이 있는 폴더명'
fileAll2 = os.listdir(filePath2)
os.makedirs(filePath2+'./txt')
for file1 in fileAll2:
    b = pd.read_csv(filePath2 + file1, header=None)
```

```
b1 = b.iloc[:, [0, 1, 2, 3]]
  b1.to_csv(filePath2+'/txt/'+ file1[:-4] + '.txt', sep=' ',index=False, head
er=False)
os.makedirs(filePath2+'./bin')
dirroot = r"생성한 txt파일이 있는 폴더명"
newdirroot=r"생성할 bin파일이 있는 폴더명"
for dirnames in os.listdir(dirroot):
  if dirnames.split('.')[-1]!='txt':
     continue
  bin_filename=dirnames.split('.txt')[0] +'.bin'
  txt_file=open(dirroot + dirnames,'r')
  bin_file=open(newdirroot + bin_filename,'wb')
  lines=txt_file.readlines()
  for j,line in enumerate(lines):
     if j == 0:
       continue
     curLine=line.split(' ')[0:3]
     curLine.append(line.split(' ')[3])
     for i in range(len(curLine)):
       if len(curLine[i])==0:
          continue
       if i == 3:
          parsedata = struct.pack("f",float(curLine[i]))
          bin_file.write(parsedata)
       else:
          parsedata = struct.pack("f",float(curLine[i]))
          bin_file.write(parsedata)
  bin_file.close()
  txt_file.close()
```

1.bin	2021-12-15 오후 4:52	BIN 파일	136KB
2.bin	2021-12-15 오후 4:52	BIN 파일	136KB
3.bin	2021-12-15 오후 4:52	BIN 파일	136KB
4.bin	2021-12-15 오후 4:52	BIN 파일	136KB
5.bin	2021-12-15 오후 4:52	BIN 파일	136KB

- → 우분투 터미널 or window의 파이참으로 실행하여 bin 파일로 변경
 - ▼ 폴더 생성 및 경로예시
 - 1. txt2bin폴더 내부에 csv, npy 폴더를 생성한다.

2. 파이썬 파일 하나 생성하여 다음과 같은 코드를 입력한다.

```
import pandas as pd
import numpy as np
import os.path
import struct
filePath = '/home/kayeon/txt2bin/npy/'
filePath1 = '/home/kayeon/txt2bin/csv/'
fileAll = os.listdir(filePath)
for file in fileAll:
    a = np.load(filePath + file)
    a1 = np.savetxt(filePath1 + file[:-4] +'.csv',a,fmt='%7f', delimiter=",'
filePath2 = '/home/kayeon/txt2bin/csv/'
fileAll2 = os.listdir(filePath2)
os.makedirs(filePath2+'./txt')
for file1 in fileAll2:
  b = pd.read_csv(filePath2 + file1, header=None)
  b1 = b.iloc[:, [0, 1, 2, 3]]
```

```
b1.to_csv(filePath2+'/txt/'+ file1[:-4] + '.txt', sep=' ',index=False, hear
os.makedirs(filePath2+'./bin')
dirroot = "/home/kayeon/txt2bin/csv/txt/"
newdirroot="/home/kayeon/txt2bin/csv/bin/"
for dirnames in os.listdir(dirroot):
  if dirnames.split('.')[-1]!='txt':
     continue
  bin_filename=dirnames.split('.txt')[0] +'.bin'
  txt_file=open(dirroot + dirnames,'r')
  bin_file=open(newdirroot + bin_filename,'wb')
  lines=txt_file.readlines()
  for j,line in enumerate(lines):
     if j == 0:
       continue
     curLine=line.split(' ')[0:3]
     curLine.append(line.split(' ')[3])
     for i in range(len(curLine)):
       if len(curLine[i])==0:
          continue
       if i == 3:
          parsedata = struct.pack("f",float(curLine[i]))
          bin_file.write(parsedata)
       else:
          parsedata = struct.pack("f",float(curLine[i]))
          bin_file.write(parsedata)
  bin_file.close()
  txt_file.close()
```

폴더의 경로는 위와 같이 설정한다.

3. npy 폴더 내부에 npy파일들을 넣어준다.

4. 코드를 실행시키면, csv 폴더 내부에 txt 폴더와 bin 폴더가 생긴다. csv/bin 폴더 내부에 생성되는 bin 파일들이 3d labeling에서 사용하고자 하는 bin 파일들이다.

txt2bin/csv에 생성된 csv 파일들

tx2bin/csv/txt에 생성된 txt 파일들

txt2bin/csv/bin에 생성된 bin 파일들 → 이거 가지고 라벨링 진행하면 됨.

c.txt

type: class의 종류, 즉 객체의 종류 (Car, Van, Truck, Pedestrian, Person_sitting, Cyclist, Tram, Misc or DontCare)

truncated: 객체가 image boundary 안에 잘려있는 것을 나타낸다 (잘려있으면 1 아니면 0)

occluded: 컴퓨터 비전에서 사용하는 용어이며 0,1,2,3의 정수값을 가진다 -0: fully visible, 1: partly occluded, 2: largely occluded 3=unknown

alpha: [-pi:pi] 까지의 객체의 관찰 각도

bbox: image 내의 객체의 2차원의 bounding box, 4개의 값을 가지며 (0-based

index), 왼쪽, 위, 오른쪽, 아래 픽셀의 축들의 값을 의미한다.

dimensions: 3D 객체의 차원(높이, 너비, 길이), m단위, 값=3개

location: 3D 객체의 위치(x,y,z), 카메라 축을 기준, m단위, 값=3개

rotation_y: 카메라의 Y축을 기준으로 회전한 값

score= 실수 형 이며 detection(탐지)를 얼마나 잘했는지 나타낸다. 높을수록 좋다.

여기서 txt만드는 과정 구체적으로 적기 서론에서 말한 키티 데이터셋 구조 다시 한번 설명하고 2d 라벨링으로 클래스와 2d부분 채운다→디멘션은 객체의 크기이므로 객체의 크기를 측정함→3d라벨링으로 3d와 로테이션 값 채운다 →이때 라이다의 좌표계이기때 문에 카메라 좌표계로 변환과정필요→

라이다 카메라 축 변환하는 좌표계 ppt에 넣기

라이다 → 카메라 축 변환

 $(x, y, z) \rightarrow (-y, -z, x)$

 $(-(y-5.9), -(z-4.7), (x-4)) \rightarrow (-(y-0.059), -(z-0.047), (x-0.04))$

d.cali

2.3 트레이닝 돌리기 연구실 환경에서

데이터 셋 취득 시 다양한 환경에서 데이터셋 모으려고 노력

- 4가지 환경에서 취득
- exposure 값을 다양하게 7~8번 바꿈
- 17m까지 취득
- 배치 40번 이동

3. 마무리

• 결론

• 한계&개선사항

kitti 라이다 64채널 저희꺼 16채널 따라서 3d라벨링시 안 찍히는bin파일이 존재 training 안되는 원인 분석 training 돌리는 상황에서 오류 발생

```
cvlab2@cvlab2:~/frustum_pointnets_pytorch$ CUDA_VISIBLE_DEVICES=0 python3 train/
train_fpointnets.py --log_dir log
0
Traceback (most recent call last):
    File "train/train_fpointnets.py", line 107, in <module>
        num_workers=8,pin_memory=True)
    File "/home/cvlab2/.local/lib/python3.6/site-packages/torch/utils/data/dataloa
der.py", line 270, in __init__
        sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-ty
pe]
    File "/home/cvlab2/.local/lib/python3.6/site-packages/torch/utils/data/sampler
.py", line 103, in __init__
        "value, but got num_samples={}".format(self.num_samples))
ValueError: num_samples should be a positive integer value, but got num_samples=
0
```

- pickle 파일 이상함
- pickle 파일 생성하기 위한 calib 파일을 바꾸려고 노력 → 바꾸지 못함
- calib 파일을 임의로 바꿔보는 노력도 기울임
- bin, img, calib, label이 다 영향을 미치는 것 같음

https://o365inha-

my.sharepoint.com/personal/12181736_office_inha_ac_kr/_layouts/15/onedrive.aspx? id=%2Fpersonal%2F12181736_office_inha_ac_kr%2FDocuments%2F2021-2_Vision

중간 이후 추가된것

1.데이터 취득방법&시간동기화 코드찾기(수정 및 테스트)→시간동기화 코드로 데이터 취득

2.시나리오 회의

kitti형식에 맞추기(png/label/txt/bin)

- 3.카메라/라이다 켈리브레이션
- 4.kitti에서 txt파일 채우는 방법/npy에서 bin으로 바꾸는 방법 찾고 코드
- →npy→bin을 어떻게 바꿀지 연구했다. 처음에는 npy to txt
- →bin 어떻게 생겼는지 찾았다.(x y z intensity)

5.rgb detection

6.트레이닝 에러

5.1

→다음의 오류 발생

ightarrow역 추적한 결과 다음의 &문에서 값이 만족하지 않아 False가 뜨는걸로 생각해서 해결하려 했으나 m x

→다음으로 넘어갔지만

```
cvlab2@cvlab2:~/frustum_pointnets_pytorch_2$ CUDA_VISIBLE_DEVICES=0 python Traceback (most recent call last):
```

```
File "train/train_fpointnets.py", line 105, in <module> num_workers=8,pin_memory=True)
```

File "/home/cvlab2/.local/lib/python3.6/site-packages/torch/utils/data/dataloader sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-ty File "/home/cvlab2/.local/lib/python3.6/site-packages/torch/utils/data/sampler.py "value, but got num_samples={}".format(self.num_samples))

ValueError: num_samples should be a positive integer value, but got num_samples

→다음의 오류 발생

```
cvlab2@cvlab2:~/frustum_pointnets_pytorch$ CUDA_VISIBLE_DEVICES=0 python3 train/
train_fpointnets.py --log_dir log
0
Traceback (most recent call last):
   File "train/train_fpointnets.py", line 107, in <module>
        num_workers=8,pin_memory=True)
   File "/home/cvlab2/.local/lib/python3.6/site-packages/torch/utils/data/dataloa
der.py", line 270, in __init__
        sampler = RandomSampler(dataset, generator=generator) # type: ignore[arg-ty
pe]
   File "/home/cvlab2/.local/lib/python3.6/site-packages/torch/utils/data/sampler
.py", line 103, in __init__
        "value, but got num_samples={}".format(self.num_samples))
ValueError: num_samples should be a positive integer value, but got num_samples=
0
```

캘리브레이션 과정

캘리브레이션 과정 영상

https://s3-us-west-2.amazonaw s.com/secure.notion-static.com/ 1bf0b72e-c2e5-4179-b5d3-5860 bf3a04f6/cam_lidar_calib-2021-1 2-19_16.30.20.mov https://s3-us-west-2.amazonaw s.com/secure.notion-static.com/ b4c6dc50-1da0-415e-9fb4-5adf c7498913/cam_lidar_calib-2021-12-19_16.31.45.mov

https://s3-us-west -2.amazonaws.co m/secure.notion-st atic.com/4ba80bd 3-36d2-4d5c-830 8-033ca07b7f86/c am_lidar_calib-202 1-12-19_16.45.51.m https://s3-us-we st-2.amazonaws. com/secure.noti on-static.com/cb ebca3c-f1d5-4ff 7-8578-3e9d54 9333a0/cam_lid ar_calib-2021-12 -19_17.00.08.mov https://s3-us-west
-2.amazonaws.co
m/secure.notion-st
atic.com/6d24250
7-c791-4590-b35b
-62776d35a9fd/ca
m_lidar_calib-2021
-12-19_17.01.02.mo
v

projection 결과 영상

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/7d977114-9a 3c-4c1d-86aa-7206db2fe29a/cam_lidar_calib_projection-2021-12-19_16.37.0 6.mov

camera calibration

https://s3-us-west-2.amazonaws.com/secure.notion-static.com/7782a0cc-6 b41-4bb9-8139-2505038c2472/cam_calib-2021-12-20_00.29.40.mov

스테레오가 아닌 카메라라고 가정했을 때 결과

width

640

height

480

[narrow_stereo]

camera matrix 479.839587 0.000000 317.963111 0.000000 481.228546 240.255637 0.000000 0.000000 1.000000

distortion

-0.422100 0.177384 0.000969 -0.001623 0.000000

rectification

1.000000 0.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 1.000000

projection

378.725922 0.000000 314.700371 0.000000 0.000000 425.172180 240.900718 0.000000 0.000000 0.000000 1.000000 0.000000

2d 라벨링

3d 라벨링

데이터 시각화

바운딩 박스 내 49개 points

바운딩 박스 뒤 프러스텀. 137개 points

Select 2D Image Points - 1639899960

