CS2020 – Data Structures and Algorithms Accelerated

Lecture 19 – All-Pairs Shortest Paths

stevenhalim@gmail.com

Outline

- What are we going to learn in this lecture?
 - Quick Review: the SSSP Problem
 - The All-Pairs Shortest Paths Problem
 - Some motivating examples
 - Floyd Warshall's Dynamic Programming algorithm
 - The code first ©
 - The DP formulation (long one)
 - Some Interesting Variants

The SSSP problem is about...

- 1. Finding the shortest path between a pair of vertices in the graph
- Finding the shortest paths between any pair of vertices
- 3. Finding the shortest paths between one vertex to the other vertices in the graph

What is the best SSSP algorithm on (+ or -) weighted general graph but without non-negative weight cycle?

- 1. BFS
- 2. Original Dijkstra's
- Modified Dijkstra's as shown in Lecture17
- 4. Bellman Ford's

Let's move on the the next topic

ALL-PAIRS SHORTEST PATHS

What is your knowledge level about APSP now?

- I have not heard about this APSP problem or its solution before
- I know this problem and its four liner Floyd Warshall's solution
- 3. I know how Floyd Warshall's algorithm works, not just how to code that four lines...

Motivating Problem 1

Diameter of a Graph

- The diameter of a graph is defined as the greatest shortest path distance between any pair of vertices
- For example, the diameter of this graph is 2
 - Paths with length equal to diameter are:
 - 1-0-3 (or the reverse path)
 - 1-2-3 (or the reverse path)
 - 1-0-4 (or the reverse path)
 - 2-0-4 (or the reverse path)
 - 2-3-4 (or the reverse path)

What is the diameter of this graph? (you will need some time to calculate this)

Motivating Problem 2

Analyzing the average number of clicks to browse WWW

- In year 2000, only 19 clicks are necessary to move from any page on the WWW to any other page :O
 - That is, if the pages on the web are viewed as vertices in a graph, then the average path length between arbitrary pairs of vertices in the graph is 19
 - For example, the average path length between arbitrary pair of vertices in this graph below is:

•
$$0 \rightarrow 1 = 1; 0 \rightarrow 2 = 1$$

•
$$1 \rightarrow 0 = 2$$
; $1 \rightarrow 2 = 1$

•
$$2 \rightarrow 0 = 1; 2 \rightarrow 1 = 2$$

• Average = (1+1+2+1+1+2) / 6 = 8 / 6 = 1.333

What is the average path length of this graph? (you will need some time to calculate this)

1.
$$22/10 = 2.200$$

$$2. 22/12 = 1.833$$

$$3. \ 23/12 = 1.917$$

$$4. \ 24/12 = 2.000$$

Motivating Problem 3

Finding the best meeting point

- Given a weighted graph that model a city and the travelling time between various places in that city
 - Find the best meeting point for two persons (there are lots of queries), one is currently in A and the other is in B
 - For example, the best meeting point between two persons currently in A = 0 and B = 3 is at vertex 2
 - B just need 1 unit of time to walk from $3 \rightarrow 2$ and then wait for A
 - A needs 12 units of time to walk from $0 \rightarrow 2$

What is the best meeting point for C and D? (you will need some time to calculate this)

- 1. Vertex 0, ____ units of time
- 2. Vertex 1, ___ units of time
- 3. Vertex 2, ___ units of time
- 4. Vertex 3, ___ units of time
- 5. Vertex 4, ___ units of time

All-Pairs Shortest Paths

- Problem definition:
 - Find shortest paths between any pair of vertices in the graph
- Several solutions from what we know earlier:
 - On unweighted graph
 - Call BFS V times, once from each vertex
 - Time complexity: $O(V * (V + E)) = O(V^3)$ if $E = O(V^2)$
 - On weighted graph, for simplicity, non (-ve) weighted graph
 - Call Dijkstra's V times, once from each vertex
 - Time complexity: $O(V * (V + E) * log V) = O(V^3 log V)$ if $E = O(V^2)$
 - Call Bellman Ford's V times, once from each vertex
 - Time complexity: $O(V * VE) = O(V^4)$ if $E = O(V^2)$

Floyd Warshall's – Sneak Preview

- We use an Adjacency Matrix: D[|V|][|V|]
 - Originally D[i][j] contains the weight of edge(i, j)
 - After Floyd Warshall's stop, it contains the weight of path(i, j)
 - It is usually a nice algorithm for the pre-processing part [©]

```
for (int k = 0; k < V; k++)
  for (int i = 0; i < V; i++)
  for (int j = 0; j < V; j++)
    D[i][j] = Math.min(D[i][j], D[i][k] + D[k][j]);</pre>
```

- O(V³) since we have three nested loops!
 - Apparently, if we only given a short amount of time, we can only solve the APSP problem for small graph, as none of the APSP solution shown here runs better than O(V³)...

Floyd Warshall's - Basic Idea (1)

- Assume that the vertices are labeled as [0 .. V 1]. Now let sp(i, j, k) denotes the shortest path between vertex i and vertex j with the restriction that the vertices on the shortest path (excluding i and j) can only consist of vertices from [0 .. k]
 - How Robert Floyd and Stephen Warshall managed to arrive at this formulation is beyond this lecture...
- Initially k = -1 (or to say, we only use direct edges only)
 - Then, iteratively add k until k = V 1

Floyd Warshall's – Basic Idea (2)

Suppose we want to know the shortest path between vertex 3 and 4, using any intermediate vertices from k = [0 .. 4], i.e. sp(3, 4, 4)

Floyd Warshall's – Basic Idea (3)

Direct Edges Only

$$i = 3, j = 4, k = -1$$

We will monitor these two values

The current content of Adjacency Matrix D at $\mathbf{k} = -\mathbf{1}$

k = -1	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	3	3	0	5
4	∞	∞	∞	∞	0

Floyd Warshall's – Basic Idea (4)

Vertex 0 is allowed

$$i = 3, j = 4, k = 0$$

sp(3, 2, 0) = 2 sp(2, 4, 0) = 1 sp(3, 4, 0) = 4

The current content of Adjacency Matrix D at **k** = **0**

k = 0	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

Floyd Warshall's – Basic Idea (4)

Vertices 0-1 are allowed

$$i = 3, j = 4, k = 1$$

sp(3, 2, 1) = 2 sp(2, 4, 1) = 1 sp(3, 4, 1) = 4

The current content of Adjacency Matrix D at $\mathbf{k} = \mathbf{1}$

k = 1	0	1	2	3	4
0	0	2	1	6	3
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

Floyd Warshall's – Basic Idea (5)

Vertices 0-2 are allowed

$$i = 3, j = 4, k = 2$$

sp(3, 2, 2) = 2 sp(2, 4, 2) = 1 sp(3, 4, 2) = 3

The current content of Adjacency Matrix D at **k = 2**

k = 2	0	1	2	3	4
0	0	2	1	6	2
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

Floyd Warshall's – Basic Idea (6)

Vertices 0-3 are allowed

$$i = 3, j = 4, k = 3$$

sp(3, 2, 2) = 2 sp(2, 4, 2) = 1 sp(3, 4, 2) = 3

The current content of Adjacency Matrix D at $\mathbf{k} = \mathbf{3}$

k = 3	0	1	2	3	4
0	0	2	1	6	2
1	5	0	6	4	7
2	6	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

Floyd Warshall's – Basic Idea (7)

Vertices 0-3 are allowed

$$i = 3, j = 4, k = 3$$

sp(3, 2, 2) = 2 sp(2, 4, 2) = 1 sp(3, 4, 2) = 3

The current content of Adjacency Matrix D at $\mathbf{k} = \mathbf{4}$

k = 4	0	1	2	3	4
0	0	2	1	6	2
1	5	0	6	4	7
2	6	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

Floyd Warshall's - DP (1)

Recursive Solution / Optimal Sub structure

 $D_{i,j}^{-1}$: Edge weight of the original graph

 $D_{i,j}^{k}$: Shortest distance from i to j involving [0..k] only as intermediate vertices

$$D_{i,j}^{k} = \begin{cases} w_{i,j} & \text{for } k = -1\\ \min(D_{i,j}^{k-1}, D_{i,k}^{k-1} + D_{k,j}^{k-1}) & \text{for } k \ge 0 \end{cases}$$

Not using vertex k

Using vertex k

Floyd Warshall's – DP (2)

Overlapping Sub problems

 Avoiding re-computation: To fill out an entry in the table k, we make use of entries in table k - 1

	•
K	

k = 1	0	1	2	3	4
0	0	2	1	6	3
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	4
4	∞	∞	∞	∞	0

$$k=1$$

k = 2	0	1	2	3	4
0	0	2	1	6	2
1	∞	0	∞	4	∞
2	∞	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

$$k=2$$

Floyd Warshall's – DP (3)

The Final Code

```
int[][] D = new int[V][V]; // 2D adjacency matrix
for (int i = 0; i < V; i++) { // initialization phase
 Arrays.fill(D[i], 1000000000); // cannot use nCopies
 D[i][i] = 0;
for (int i = 0; i < E; i++) { // direct edges
 u = sc.nextInt(); v = sc.nextInt(); w = sc.nextInt();
 D[u][v] = w; // directed weighted edge
// main loop, O(V^3)
for (int k = 0; k < V; k++) // be careful, put k first
  for (int i = 0; i < V; i++) // before i
    for (int j = 0; j < V; j++) // and then j
     D[i][j] = Math.min(D[i][j], D[i][k] + D[k][j]);
```

Floyd Warshall's algorithm...

- 1. Code looks easy, but I still do not understand the DP formulation
- 2. Lunderstand both the code and the DP formulation ©

10 minutes break, and then...

VARIANTS OF FLOYD WARSHALL'S

Only for those who already know Floyd Warshall's algorithm before you can select up to 4 times

- I have used it to compute
 the actual all-pairs shortest
 path, not just the shortest
 path length
- 2. I have used it for transitive closure
- 3. I have used it for minimax/maximin (Quiz 2 ©)
- 4. I have used it to compute "safest path"

Variant 1 — Print the Actual SP (1)

- We have learned to use array/Vector p (predecessor/ parent) to record the BFS/DFS/SP Spanning Tree
 - But now, we are dealing with all-pairs of paths :O
- Solution: use predecessor matrix p
 - let p be a 2D predecessor matrix, where p[i][j] is the last vertex before j on a shortest path from i to j, i.e. i -> ... -> p[i][j] -> j
 - Initially, p[i][j] = i for all pairs of i and j
 - If D[i][k] + D[k][j] < D[i][j], then D[i][j] = D[i][k] + D[k][j] and p[i][j] = p[k][j] ← this will be the last vertex before j in the shortest path

Variant 1 – Print the Actual SP (2)

- The two matrices, **D** and **p**
 - Shortest path from $3 \sim \rightarrow 4$
 - $-3 \rightarrow 0 \rightarrow 2 \rightarrow 4$

D	0	1	2	3	4
0	0	2	1	6	3
1	5	0	6	4	7
2	6	1	0	5	1
3	1	3	2	0	3
4	∞	∞	∞	∞	0

р	0	1	2	3	4
0	0	0	0	1	2
1	3	1	0	1	2
2	3	2	2	1	2
3	3	0	0	3	2
4	4	4	4	4	4

Variant 2 – Transitive Closure (1)

- Stephen Warshall actually invented this algorithm for solving the transitive closure problem
 - Given a graph, determine if vertex i is connected to vertex j either directly (via an edge) or indirectly (via a path)
- Solution: modify the matrix D to contain only 0/1
 - In the main loop of Warshall's algorithm:

```
// Initially: D[i][i] = 0
// D[i][j] = 1 if edge(i, j) exist; 0 otherwise
// the three nested loops as per normal
D[i][j] = D[i][j] | (D[i][k] & D[k][j]);
```

Variant 2 – Transitive Closure (2)

The matrix **D**,
 before and after

D,init	0	1	2	3	4
0	0	1	1	0	1
1	0	0	0	1	0
2	0	1	0	0	1
3	1	0	1	0	1
4	0	0	0	0	0

D,final	0	1	2	3	4
0	1	1	1	1	1
1	1	1	1	1	1
2	1	1	1	1	1
3	1	1	1	1	1
4	0	0	0	0	0

Variant 3 – Minimax/Maximin (1)

- The minimax problem is a problem of finding the minimum of maximum edge weight along all possible paths from vertex i to vertex j (maximin is the reverse)
 - For a single path from i to j, we pick the maximum edge weight along this path
 - Then, for all possible paths from i to j, we pick the one with the minimum max-edge-weight
- Solution: again, modification of Floyd Warshall's

```
// Initially: D[i][i] = 0

// D[i][j] = weight of edge(i, j) exist; INF otherwise

// the three nested loops as per normal
D[i][j] = Math.min(D[i][j], Math.max(D[i][k], D[k][j]));
```

Variant 3 – Minimax/Maximin (2)

The minimax from 1 to 4 is 4, via edge (1, 3)

$$-1 \rightarrow 3 \rightarrow 0 \rightarrow 2 \rightarrow 4$$

D,init	0	1	2	3	4
0	0	2	1	∞	3
1	∞	0	∞	4	∞
2	∞	1	0	∞	1
3	1	∞	3	0	5
4	∞	∞	∞	∞	0

D,final	0	1	2	3	4
0	0	1	1	4	1
1	4	0	4	4	4
2	4	1	0	4	1
3	1	1	1	0	1
4	∞	∞	∞	∞	0

Variant 4 – Safest Paths (1)

- Given a directed graph where the edge weights represent the survival probabilities of passing through that edge, your task is to compute the safest path between two vertices
 - i.e. the path that maximizes the product of probabilities along the path
- Solution: again, modification of Floyd Warshall's

```
// Initially, D[i][i] = 1.0
// D[i][j] = weight(i, j), 0.0 otherwise
// the three nested loops as per normal
D[i][j] = Math.max(D[i][j], D[i][k] * D[k][j]);
```

Variant 4 – Safest Paths (2)

• The safest path from 1 to 4 is 0.20, via this path

$$-1 \rightarrow 3 \rightarrow 4$$

D,init	0	1	2	3	4
0	1.00	0.20	0.10	0.00	0.30
1	0.00	1.00	0.00	0.40	0.00
2	0.00	0.10	1.00	0.00	0.10
3	0.10	0.00	0.30	1.00	0.50
4	0.00	0.00	0.00	0.00	1.00

D,final	0	1	2	3	4
0	1.00	0.20	0.10	0.08	0.30
1	0.04	1.00	0.12	0.40	0.20
2	0.00	0.10	1.00	0.04	0.10
3	0.10	0.03	0.30	1.00	0.50
4	0.00	0.00	0.00	0.00	1.00

Java Implementations

- Let's see: FloydWarshallDemo.java
- Let's see how easy to change the basic form of Floyd Warshall's algorithm to its variants

Summary

- In this lecture, we have seen:
 - Introduction to the APSP problem
 - Introduction to the Floyd Warshall's DP algorithm
 - Introduction to 4 variants of Floyd Warshall's
 - Simple Java implementations
- This lecture is again not yet DP-heavy
 - Floyd Warshall's is a DP algorithm,
 but many just view this as "another graph algorithm"
- Next week is the (pure) DP week... get ready [©]