CS 506, Online	Homework 3	Dr. David Nassimi
Foundations of CS	Proofs	

Study Module 3: Proofs Proof by Contrapositive, Contradiction, and Induction

- 1. Use **contrapositive proof** method for each of the following.
 - (a) There are 10 boxes. Prove that if 40 balls are placed in the boxes, then at least one box has four or more balls.
 - (b) Let x be a real number. Prove that if x^2 is irrational, then x must be irrational.
- 2. Use **contrapositive proof** for each of the following, where the domain of n is positive integers.
 - (a) Prove that if n^2 is not divisible by 3, then n is not divisible by 3.
 - (b) Prove that if n^2 is divisible by 3, then n is divisible by 3. (Hint: If n is not divisible by 3, then n = 3k + r, where k is an integer quotient and r is a non-zero remainder, $r \in \{1, 2\}$.)
- 3. Let x and y be two real numbers and let A = (x + y)/2. We want to formally prove that if (x < y) then

$$x < A < y$$
.

You are not allowed to state it as a known fact that the average of two values fall between those two values! Rather, you must provide a formal proof in two ways:

- (a) **Direct Method**; and
- (b) Contrapositive method.

Hints: For direct proof, assume x < y, and show that 2x < x + y < 2y. For contrapositive proof, assume $\neg(x < A < y)$, which means $\neg[(x < A) \land (A < y)]$, which is

$$(A < x) \lor (A > y).$$

Then provide the proof for each of the two cases in the OR statement.

- 4. Use **proof by contradiction** for each of the following, where x and y are positive real numbers.
 - (a) Suppose $xy \ge 400$. Prove that at least one of the two numbers must be ≥ 20 .
 - (b) Suppose x is rational and y is irrational. Prove that x * y is irrational.
 - (c) Suppose x is rational and y is irrational. Prove that x + y is irrational.
- 5. Use proof by **contradiction** to show that $\sqrt{3}$ is irrational.

Hint: The proof is similar to the proof we did in class for $\sqrt{2}$. Here, use the fact that if n^2 is divisible by 3, then n is divisible by 3. (This was proved in one of the problems above.)

6. Prove by induction that all integers of the following form are divisible by 4, for all integers $n \geq 1$.

$$f(n) = 5^n - 1$$

7. Use **induction** to prove each of the following formulas.

(a) Arithmetic series sum:

$$S(n) = \sum_{i=1}^{n} (i) = \frac{n(n+1)}{2}$$

(b)

$$S(n) = \sum_{i=1}^{n} (i^2) = \frac{n(n+1)(2n+1)}{6}$$

(c) Geometric series sum, $a \neq 1$:

$$S(n) = \sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}.$$

8. A saving bank pays interest rate of 5%, compounded annually. Consider an initial deposit of \$1000. Let F_n be the total amount at the end of year n. This function may be expressed recursively as follows:

$$F_0 = 1000,$$

 $F_n = 1.05 * F_{n-1}, n > 1.$

(This recursive definition is called a recurrence equation.)

- (a) Compute F_1, F_2, \dots, F_{10} and tabulate results (to get a feel for how the amount compounds).
- (b) Prove by induction on n that

$$F_n = 1000 * (1.05)^n, n \ge 0.$$

Additional Exercises (Not to be handed-in)

9. Let P denote the set of positive integers ≥ 2 . For $i \geq 2$, define X_i as the set of integers that are greater than i and divisible by i.

$$X_i = \{ik \mid k \text{ is an integer } \geq 2\}.$$

Describe in plain words what the following set is and justify your answer.

$$P - \bigcup_{i=2}^{\infty} X_i.$$

10. Let the average of n real numbers (x_1, x_2, \dots, x_n) be

$$A = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Prove by **contradiction** that

$$S: \exists i \ (x_i \leq A) \land \exists j \ (x_i \geq A).$$

Hint: In order to prove S is true, start by supposing that S is false, and show that will lead to a contradiction (which cannot be true), thus concluding that S must be true.