Análisis formal de complejidad para liberar_tabla_memoizacion

Sean n el número de filas y p el valor de pesoMax (de modo que el ciclo interno va de 0 a p).

1. Planteamiento de T(n, p):

$$T(n,p) = C_1 + \sum_{i=0}^{n-1} \left(\sum_{j=0}^{p} C_2 + C_3 \right) + C_4$$

Donde: - C_1 es el costo de entrar a la función, - C_2 es el costo de free (tabla[i][j]),

- C_3 es el costo de free(tabla[i]), - C_4 es el costo de free(tabla).

Resolviendo la sumatoria interna:

$$\sum_{j=0}^{p} C_2 = (p+1)C_2$$

Por lo tanto:

$$T(n,p) = C_1 + \sum_{i=0}^{n-1} ((p+1)C_2 + C_3) + C_4$$

$$T(n,p) = C_1 + n(p+1)C_2 + nC_3 + C_4$$

2. Demostración de cotas por límites

Tomando solo los términos dominantes para $n, p \to \infty$:

$$T(n,p) \approx n(p+1)C_2$$

Para $\mathcal{O}(np)$:

$$\lim_{n,p\to\infty}\frac{T(n,p)}{np}=\lim_{n,p\to\infty}\frac{n(p+1)C_2}{np}=C_2\lim_{p\to\infty}\frac{p+1}{p}=C_2$$

Por lo tanto, $T(n,p) \in \mathcal{O}(np)$.

Para $\Omega(np)$:

$$\lim_{n,p\to\infty}\frac{T(n,p)}{np}=C_2>0$$

Por lo tanto, $T(n,p) \in \Omega(np)$.

Para $\Theta(np)$:

$$0<\lim_{n,p\to\infty}\frac{T(n,p)}{np}<\infty$$

Por lo tanto, $T(n, p) \in \Theta(np)$.

3. Conclusión final:

• Mejor caso: $\Theta(np)$

• Peor caso: $\Theta(np)$

En todos los casos, la función recorre y libera la misma cantidad de memoria, por lo que la complejidad es la misma.