Beautiful Days at the Movies

Lily likes to play games with integers and their reversals. For some integer x, we define reversed(x) to be the reversal of all digits in x. For example, reversed(123) = 321, reversed(21) = 12, and reversed(120) = 21.

Logan wants to go to the movies with Lily on some day x satisfying $i \le x \le j$, but he knows she only goes to the movies on days she considers to be *beautiful*. Lily considers a day to be *beautiful* if the absolute value of the difference between x and reversed(x) is evenly divisible by k.

Given i, j, and k, count and print the number of beautiful days when Logan and Lily can go to the movies.

Input Format

A single line of three space-separated integers describing the respective values of i, j, and k.

Constraints

- $1 < i < j < 2 \times 10^6$
- $1 < k < 2 \times 10^9$

Output Format

Print the number of *beautiful* days in the inclusive range between i and j.

Sample Input

20 23 6

Sample Output

2

Explanation

Logan wants to go to the movies on days 20, 21, 22, and 23. We perform the following calculations to determine which days are *beautiful*:

- ullet Day 20 is $\emph{beautiful}$ because the following evaluates to a whole number: $\frac{|20-02|}{6}=3$
- ullet Day 21 is *not beautiful* because the following doesn't evaluate to a whole number: $rac{|21-12|}{6}=1.5$
- ullet Day 22 is *beautiful* because the following evaluates to a whole number: $\frac{|22-22|}{6}=0$
- ullet Day 23 is *not beautiful* because the following doesn't evaluate to a whole number: $rac{|23-32|}{6}=1.5$

Only two days, 20 and 22, in this interval are beautiful. Thus, we print 2 as our answer.