Density of States and carrier density

https://nanohub.org/wiki/CarrierStatisticsPage/Image:Image.png

University of Colorado Boulder

Copyright @ 2017 University of Colorado

Intrinsic and extrinsic semiconductors

Energy Band Structure

https://upload.wikimedia.org/wikipedia/commons/thumb/0/04/Band_structure_Si_schematic.svg/580px-Band_structure_Si_schematic.svg.png

Intrinsic semiconductors

$$\Pi(T) = P(T) = \Pi_{i}(T)$$

- @ en(mx) -> 1 Ex within +/- K
 - 3 KOTKEF EF>MIDGAP

Extrinsic semiconductors

Treat impurities as an additional charge

So, you can really see from this example

Metals, Insulators & Semiconductors

Semiconductors:

- How small is small enough?
 - Enough to thermally excite electrons across band gap
 - < 2~3 eV.</p>
- Energy bandgaps of semiconductors (room temp.):

InSb: 0.16 eV

Ge: 0.67 eV

Si: 1.12 eV

GaAs: 1.42 eV

GaP: 2.2 eV

GaN: 3.5 eV

ZnS: 3.68 eV

So now, let's talk about the rigorous definition of a semiconductor.

Rigorous definition of semiconductor

The solids that are insulators at T = 0 K but whose energy bandgap is of such a size that thermal excitation leads to observable conductivity at temperatures below its melting point are called the semiconductors.

Carrier Density $n(T) = \int_{E}^{\infty} dE g_{c}(E) f(E)$ Density of states Probability

$$E = \frac{k^2k^2}{2m^2} = \frac{k^2}{2m^2} \left(k_x^2 + k_y^2 + k_z^2 \right)$$

g(E)dE~#states/volume

Ground state of Nelectron system

EYEF

allowed state per (271)3/v = volume & crystal

halves times E to the one half.

ULX)= W(X+L

EF-EV>>>KBT

=> Fermi Dirac Statistics

2 Boltzman (classical Statistics

EKEV

us to come up with analytic expressions for our integrals.

$$\Pi(T) = \int_{E_{c}}^{\infty} dE g_{c}(E) exp(-\frac{(E-E_{p})}{k_{B}T})$$

$$P(T) = \int_{-\infty}^{E_{v}} dE g_{v}(E) exp(-\frac{(E_{f}-E)}{k_{B}T})$$

$$\Pi(T) = N_{c}(T) exp(-\frac{(E_{c}-E_{p})}{k_{B}T})$$

Eg over K sub BT.

40

University of Colorado Boulder

Copyright © 2017 University of Cold

Fermi levels

Intrinsic semiconductor

$$E_F = E_i = E_v + \frac{1}{2}E_g + \frac{3}{4}k_BT ln\left(\frac{m_v^*}{m_c^*}\right)$$

Extrinsic semiconductor, p doped with $p = N_A$

$$E_F = E_i - k_B T ln\left(\frac{N_A}{n_i}\right) \text{ or } E_F - E_v = k_B T ln\left(\frac{N_v}{N_A}\right)$$

So now, let's look at the case

Fermi levels

Intrinsic semiconductor

$$E_F = E_i = E_v + \frac{1}{2}E_g + \frac{3}{4}k_BT ln\left(\frac{m_v^*}{m_c^*}\right)$$

Extrinsic semiconductor, p doped with $p = N_A$

$$E_F = E_i - k_B T ln\left(\frac{N_A}{n_i}\right) \text{ or } E_F - E_v = k_B T ln\left(\frac{N_v}{N_A}\right)$$

So E_F is now equal to E_i minus k_B T,

Donor Energy Level

will change the energy level that appears.

Donor Energy Level

Impurity Energy Levels

This is just showing you the flexibility that you now have in engineering,

University of Colorado Boulder

Copyright © 2017 University of Colorado

Impurity Energy Levels

the conduction band and then also acceptors that are close to the valence

University of Colorado Boulder

band.

Copyright @ 2017 University of Colorado

Charge neutrality

Fully ionized impurities

the one half plus or minus one half N D minus N A.

Press Esc to exit full screen

to the knobs that we have from doping and also from temperature.

Recommended References

The references below are the go-to references for semiconductor physics. These texts are completely optional, but note that the last text is freely available.

- S. M. Sze, Physics of Semiconductor Devices, Wiley, 2007.
- G. Streetman and S. Banerjee, Solid State Electronic Devices, Prentice Hall, 2000
- K. F. Brennan, The Physics of Semiconductors, Cambridge, 1999
- B. Van Zeghbroeck, Principles of Semiconductor Devices