pfasbiomon

November 16, 2023

November 10, 2025
Type Package
Title PFAS Biomonitoring and In Vitro PODs to generate Margins of Exposure
Version 0.1.0
Author Richard Judson
Maintainer Richard Judson < judson.richard@epa.gov>
Description The package takes data from PFAS biomonitoring studies (blood, plasma) and in vitro bioactivity data and calculates margins of exposure (MoEs). This supports the manuscript titled ``A Comparison of In Vitro and In Vivo Points of Departure with Human Biomonitoring Levels for Per- and Polyfluoroalkyl Substances (PFAS)"
License GPL-3
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3

R topics documented:

ACToR.parse
ACToR.parse.fillin
dnt.check
driver
extract_NHANES
pfas.for.mdh
pfasBiomonitoringMerge
pfasBiomonitoringOldNewMergeForFiltering
pfasBiomonitoringOutliers
pfasBloodLevelxChainLength
pfasBloodLevelxChainLengthGG
pfasChemicalTable
pfasCorrrectedMOE
pfasCorrrectedMOE.noTK
pfasHalfLife
pfasInVitroVsRat
pfasMoeBoxplot
pfasMoeBoxplotOPPT
pfasPartitionCoefficients
pfasPerChemicalMoeBoxplot

2 dnt.check

pfasRawMoeBoxplotsGG	8
printCurrentFunction	9

Index 10

ACToR.parse

Parse the ACToR files and fill in the remaining missed data

Description

Parse the ACToR files and fill in the remaining missed data

Usage

```
ACToR.parse(dataset = "PFAS_3M")
```

Arguments

dir

The directory where the lists are stored

ACToR.parse.fillin

Parse the ACToR files

Description

Parse the ACToR files

Usage

```
ACToR.parse.fillin(
  datasets = c("Denmark", "Germany", "HealthCanada", "Japan", "Michigan",
        "Norway_Nordic", "Ohio", "Sweden")
)
```

Arguments

dir

The directory where the lists are stored

dnt.check

check the processing for the DNT PODs

Description

check the processing for the DNT PODs

Usage

```
dnt.check(to.file = F)
```

driver 3

driver

Run all of the analyzes starting with the hand-edited data file

Description

Run all of the analyzes starting with the hand-edited data file

Usage

driver()

extract_NHANES

Code to format the NHANES data Note that this will only run under R 4.x

Description

Code to format the NHANES data Note that this will only run under R 4.x

Usage

```
extract_NHANES(dir = "../data/", dataset = "PFAS_J")
```

Arguments

dir The directory to look for data

dataset The name of the NHANES dataset

pfas.for.mdh

Pull the PFAS data fro MDH

Description

Pull the PFAS data fro MDH

Usage

```
pfas.for.mdh(to.file = F)
```

 ${\tt pfasBiomonitoringMerge}$

Merge the ACToR data with NHANES and put in a common format

Description

Merge the ACToR data with NHANES and put in a common format

Usage

```
pfasBiomonitoringMerge()
```

 $\verb|pfasBiomonitoringOldNewMergeForFiltering| \\$

Setup the new filtered input file using the latest assays from Doris

Description

Setup the new filtered input file using the latest assays from Doris

Usage

```
pfasBiomonitoringOldNewMergeForFiltering()
```

pfasBiomonitoringOutliers

Find outliers

Description

Find outliers

Usage

pfasBiomonitoringOutliers()

pfasBloodLevelxChainLength

Plotthe blood levels by chain length

Description

Plotthe blood levels by chain length

Usage

```
pfasBloodLevelxChainLength(to.file = F)
```

Arguments

to.file If TRUE, write graphs to a filedata.version Label of folder where input data sits

 ${\tt pfasBloodLevelxChainLengthGG}$

Plotthe blood levels by chain length

Description

Plotthe blood levels by chain length

Usage

```
pfasBloodLevelxChainLengthGG(to.file = F)
```

Arguments

to.file If TRUE, write graphs to a filedata.version Label of folder where input data sits

pfasChemicalTable

Generate a table of the chemicals and the data we have for them

Description

Generate a table of the chemicals and the data we have for them

Usage

```
pfasChemicalTable()
```

pfasHalfLife

pfasCorrrectedMOE

Calculate the TK-corrected MOE values

Description

Calculate the TK-corrected MOE values

Usage

```
pfasCorrrectedMOE()
```

```
pfasCorrrectedMOE.noTK
```

Calculate the TK-corrected MOE values

Description

Calculate the TK-corrected MOE values

Usage

```
pfasCorrrectedMOE.noTK()
```

pfasHalfLife

Extract the half-life information from Dawson et al. supplemental file

Description

Extract the half-life information from Dawson et al. supplemental file

Usage

```
pfasHalfLife(species = "Human", route = "Oral")
```

Arguments

species The species to use route The exposre route

pfasInVitroVsRat 7

pfasInVitroVsRat

Compare the in vitro PODs vs the Rat POD concentration

Description

Compare the in vitro PODs vs the Rat POD concentration

Usage

```
pfasInVitroVsRat(to.file = F)
```

Arguments

to.file If TRUE, write graphs to a filedata.version Label of folder where input data sits

pfasMoeBoxplot

Plot the distribution of PODs

Description

Plot the distribution of PODs

Usage

```
pfasMoeBoxplot(to.file = F)
```

Arguments

dir

The directory where the lists are stored

 ${\tt pfasMoeBoxplotOPPT}$

Plot the distribution of PODs

Description

Plot the distribution of PODs

Usage

```
pfasMoeBoxplotOPPT(to.file = F)
```

Arguments

dir

The directory where the lists are stored

 ${\tt pfasPartitionCoefficients}$

Get the partition coefficients

Description

Get the partition coefficients

Usage

```
pfasPartitionCoefficients(species = "Human")
```

Arguments

to.file If TRUE, write graphs to a filedata.version Label of folder where input data sits

 ${\tt pfasPerChemicalMoeBoxplot}$

Build the raw MoE Boxplots

Description

Build the raw MoE Boxplots

Usage

```
pfasPerChemicalMoeBoxplot(to.file = F)
```

Arguments

to.file If TRUE, write graphs to a file

pfasRawMoeBoxplotsGG Build the raw MoE Boxplots

Description

Build the raw MoE Boxplots

Usage

```
pfasRawMoeBoxplotsGG(to.file = F)
```

Arguments

to.file If TRUE, write graphs to a file

printCurrentFunction 9

printCurrentFunction Print the name of the current function

Description

Print the name of the current function

Usage

```
printCurrentFunction(comment.string = NA)
```

Arguments

comment.string An optinal string to be printed

Index

```
ACToR.parse, 2
ACToR.parse.fillin, 2
dnt.check, 2
driver, 3
extract_NHANES, 3
pfas.for.mdh, 3
{\tt pfasBiomonitoringMerge, 4}
pfas Biomonitoring Old New Merge For Filtering,\\
pfasBiomonitoringOutliers, 4
{\tt pfasBloodLevelxChainLength, 5}
{\tt pfasBloodLevelxChainLengthGG, 5}
pfasChemicalTable, 5
pfasCorrrectedMOE, 6
pfasCorrrectedMOE.noTK, 6
pfasHalfLife, 6
pfasInVitroVsRat, 7
pfasMoeBoxplot, 7
pfasMoeBoxplotOPPT, 7
pfasPartitionCoefficients, 8
pfasPerChemicalMoeBoxplot, 8
{\tt pfasRawMoeBoxplotsGG, 8}
printCurrentFunction, 9
```