DEVOIR À LA MAISON N°02

- ▶ Le devoir devra être rédigé sur des copies *doubles*.
- ▶ Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

EXERCICE 1.

Dans tout l'énoncé, n désigne un entier naturel supérieur ou égal à 3.

Dans la deuxième question de cet exercice, la notation $\sum_{0 \le 2k \le n}$ signifie que la somme porte sur les indices k

tels que $0 \le 2k \le n$. De même, $\sum_{0 \le 2k+1 \le n}$ signifie que la somme porte sur les indices k tels que $0 \le 2k+1 \le n$.

Cela permet notamment de séparer élégamment les termes d'indices pairs et impairs d'une somme sans avoir à considérer la parité de n:

$$\sum_{k=0}^{n} a_k = \sum_{0 \le 2k \le n} a_{2k} + \sum_{0 \le 2k+1 \le n} a_{2k+1}$$

- **1.** On définit la fonction f_n telle que $f_n(x) = (x+1)^n$ pour tout $x \in \mathbb{R}$.
 - a. Donner une expression développée de $f_n(x)$ à l'aide de la formule du binôme de Newton.
 - **b.** En calculant $f'_n(1)$ de deux manières, simplifier la somme $\sum_{k=1}^{n} k \binom{n}{k}$
 - c. En calculant $f_n''(1)$ de deux manières, simplifier la somme $\sum_{k=1}^{n} k(k-1) \binom{n}{k}$.
 - **d.** Déduire des questions précédentes une expression simple de $\sum_{k=1}^{n} k^2 \binom{n}{k}$.
- **2.** On définit la fonction g_n telle que $g_n(x) = f_n(x) + f_n(-x)$ pour tout $x \in \mathbb{R}$.
 - **a.** Montrer que $g_n(x) = 2 \sum_{n \geq 2k \leq n} {n \choose 2k} x^{2k}$ pour tout $x \in \mathbb{R}$.
 - **b.** En calculant $g'_n(1)$ de deux manières, montrer que $\sum_{n \leq 2k \leq n} k \binom{n}{2k} = 2^{n-3}n$.
 - c. En calculant $g_n''(1)$ de deux manières, montrer que $\sum_{0 \le k \le n} k^2 \binom{n}{2k} = 2^{n-5} n(n+1)$.

EXERCICE 2.

Pour $n \in \mathbb{N}$, on pose

$$a_n = \frac{1}{n+1} \binom{2n}{n}$$
 $S_n = \sum_{k=0}^n a_k a_{n-k}$ $T_n = \sum_{k=0}^n k a_k a_{n-k}$

- 1. Calculer a_0, a_1, a_2, a_3, a_4 ainsi que S_0, S_1, S_2, S_3, S_4 . Que remarque-t-on?
- **2.** Justifier que pour tout $n \in \mathbb{N}$,

$$T_n = \sum_{k=0}^{n} (n-k)a_{n-k}a_k$$

En déduire que $2T_n = nS_n$.

3. Montrer que pour tout $n \in \mathbb{N}$,

$$(n+2)a_{n+1} = 2(2n+1)a_n$$

4. Déduire des questions précédentes que pour tout $n \in \mathbb{N}$

$$T_{n+1} + S_{n+1} = a_{n+1} + 2(n+1)S_n$$

puis que

$$\frac{n+3}{2}S_{n+1} = a_{n+1} + 2(n+1)S_n$$

- 5. En déduire par récurrence que $S_n = a_{n+1}$ pour tout $n \in \mathbb{N}$.
- **6.** Montrer que a_n est un entier naturel pour tout $n \in \mathbb{N}$.