

Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ

Τομέας Επικοινωνιών, Ηλεκτρονικής και Συστημάτων Πληροφορικής

Εργαστήριο Ηλεκτρονικής

Ηλεκτρονική Ι

40 Εξάμηνο, Ακαδημαϊκό Έτος 2018-2019

1η Σειρά Ασκήσεων

Αναπληρωτής Καθ. Παύλος-Πέτρος Σωτηριάδης

19 Απριλίου 2019

Μελέτη: Επανάληψη των προαπαιτούμενων γνώσεων που βασίζονται στο μάθημα της Ανάλυσης Γραμμικών Κυκλωμάτων, κεφάλαιο 6 από την 7η έκδοση του βιβλίου Sedra-Smith (εκτός από τις ενότητες 6.1.4, 6.2.3 και 6.4 που θα συζητηθούν)

Διευκρινίσεις:

- Οι ασκήσεις είναι ατομικές και παραδίδονται μόνο ηλεκτρονικά στη σελίδα του μαθήματος στο mycourses, έως και την Παρασκευή, 10 Μαΐου 2019. Η μορφή του αρχείου να είναι PDF
- Χρησιμοποιήστε τα Θεωρήματα Thévenin, Norton, Επαλληλίας και Millman όσο μπορείτε περισσότερο. Κάθε επιστημονικά τεκμηριωμένη λύση θα θεωρηθεί ορθή.
- Όλες οι ασκήσεις της σειράς βαθμολογούνται ισοδύναμα
- Ορθή επίλυση όλων των σειρών ασκήσεων που θα δοθούν μέσα στο εξάμηνο προσδίδει βαθμολογικό bonus ως και 1 μονάδα στον τελικό βαθμό

Δίνεται το κύκλωμα του Σχήματος 1.

- 1. Βρείτε την κατά Thevenin ισοδύναμη πηγή και σύνθετη αντίσταση για το δικτύωμα αριστερά των σημείων Α και Β.
- 2. Χρησιμοποιώντας το ισοδύναμο Thevenin βρείτε το ρεύμα I_L.

Σχήμα 1

Ασκηση 2

Για το κύκλωμα γέφυρας του Σχήματος 2.

- 1. Βρείτε το ισοδύναμο Thevenin όπως φαίνεται από την αντίσταση R_L .
- 2. Υποθέτοντας ότι R₁=R₂=R₃=R₄=R, βρείτε το ισοδύναμο Norton.
- 3. Θεωρώντας ότι V_b =20V, R_1 =1 Ω , R_2 =2 Ω , R_3 =3 Ω , R_4 =4 Ω και R_L =10 Ω , βρείτε την τάση u_{ab}.

Άσκηση 3

Δίνεται το κύκλωμα του Σχήματος 3.

- 1. Βρείτε το ισοδύναμο Thevenin για το δικτύωμα αριστερά των σημείων a και b
- 2. Βρείτε το ρεύμα Ι..

Βρείτε το ισοδύναμο Thevenin για το δικτύωμα αριστερά των σημείων a και b του κυκλώματος του σχήματος 4, στις περιπτώσεις όπου:

- 1. k=0
- 2. k=0.1

Σχήμα 4

Άσκηση 5

Στο κύκλωμα του Σχήματος 5, για τις τιμές R_1 =20k Ω , R_2 =10k Ω , R_3 =1k Ω , R_4 =2k Ω και β =50, και χρησιμοποιώντας το θεώρημα Thevenin για τις αντιστάσεις R_1 και R_2 , βρείτε την τιμή της τάσης στα άκρα της αντίστασης R_4 . Ποια η λειτουργία του κυκλώματος αυτού;

Σχήμα 5

Άσκηση 6

Στο κύκλωμα του σχήματος 6, να βρεθεί το ισοδύναμο Thevenin μεταξύ των ακροδεκτών a και b και να υπολογιστεί το ρεύμα που διαρρέει την αντίσταση 14Ω.

Στο κύκλωμα του σχήματος 7, να βρείτε το ισοδύναμο Thevenin μεταξύ των ακροδεκτών Aκαι B

Άσκηση 8

Για το κύκλωμα του σχήματος 8, βρείτε το κέρδος τάσης u_0/u_1 και το κέρδος ρεύματος i_0/i_s .

Άσκηση 9

Για το κύκλωμα του σχήματος 9 να βρείτε την τάση εξόδου u_0 .

Στο κύκλωμα του σχήματος 10, να βρεθεί η τιμή της αντίστασης R_X , ώστε η τιμή του κέρδους I_O/u_s να είναι ίση με -0.227 Ampere/Volt.

Άσκηση 11

Στο κύκλωμα του σχήματος 11, να βρεθεί η αντίσταση εισόδου R_{in} που «βλέπουν» τα άκρα που είναι σηματοδοτημένα με >>.

Σχήμα 11

Ασκηση 12

Στο κύκλωμα του σχήματος 12, να βρεθεί η αντίσταση εισόδου R_{in} που «βλέπουν» τα άκρα που είναι σηματοδοτημένα με >>.

Σχήμα 12

Στο κύκλωμα του σχήματος 13, να βρεθεί το ισοδύναμο Norton του δικτυώματος αριστερά των ακροδεκτών >> (χωρίς να συνυπολογιστεί το φορτίο Load).

Σχήμα 13

Άσκηση 14

Στο κύκλωμα του σχήματος 14, να βρεθεί το ισοδύναμο Thevenin του δικτυώματος αριστερά των ακροδεκτών >> (χωρίς να συνυπολογιστεί το φορτίο Load).

Σχήμα 14

Άσκηση 15

Στο κύκλωμα του σχήματος 15, να βρεθεί η τιμή της διαγωγιμότητας g, έτσι ώστε η τάση εξόδου του κυκλώματος να είναι v_o =10Volts.

Σχήμα 15

Από την 7^{η} έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.3

Άσκηση 17

Από την 7^η έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.4

Άσκηση 18

Από την 7^{η} έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.16

Άσκηση 19

Από την 7^{η} έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.17

Άσκηση 20

Από την 7^{η} έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.29

Άσκηση 21

Από την 7^η έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.31

Άσκηση 22

Από την 7^{η} έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.32

Άσκηση 23

Από την 7^{η} έκδοση του βιβλίου των Sedra & Smith «Μικροηλεκτρονικά κυκλώματα»: Πρόβλημα 6.35

Στο παρακάτω κύκλωμα (σχήμα 16-npn τρανζίστορ 2N2222), δίνονται οι ακόλουθες ενδεικτικές τιμές $V_{BE}=0.8~V$ και $V_{CE}=10~V$. Αφού το σχεδιάσετε στο LT Spice:

- **A**. Σχεδιάστε την καμπύλη IC ως προς V_{BE} , μεταβάλλοντας το V_{BE} από 0 μέχρι 0.8~V με βήμα 0.01~V. Τί παρατηρείτε;
- **B**. Σχεδιάστε την καμπύλη I_C ως προς V_{CE} , μεταβάλλοντας το V_{CE} από 0 μέχρι 10 V με βήμα 0.01 V, για V_{BE} = 0.6, 0.7 και 0.8 V. Τί παρατηρείτε;

Σχήμα 16

Άσκηση 25

Σχεδιάστε στο LTSPICE το παρακάτω κύκλωμα (σχήμα 17-pnp τρανζίστορ 2N2907). Ενδεικτικές τιμές $V_{EB}=0.8~V$ και $V_{EC}=10~V$

- **A**. Σχεδιάστε την καμπύλη I_C ως προς V_{EB} , μεταβάλλοντας το V_{EB} από 0 μέχρι 0.8 V με βήμα 0.01 V. Τί παρατηρείτε;
- **B**. Σχεδιάστε την καμπύλη I_C ως προς V_{EC} , μεταβάλλοντας το V_{EC} από 0 μέχρι 10 V με βήμα 0.01 V, για V_{EB} = 0.6, 0.7 και 0.8 V. Τί παρατηρείτε;

Σχεδιάστε στο LTSPICE τον ενισχυτή κοινού εκπομπού με NPN τρανζίστορ του σχήματος 18.

Χρησιμοποιήστε το τρανζίστορ 2N2222.

Η τάση τροφοδοσίας είναι 10V (Vcc=10V), η αντίσταση συλλέκτη $5K\Omega$, η αντίσταση εκπομπού $2K\Omega$. Οι αντιστάσεις που πολώνουν τη βάση (διαιρέτης τάσης) έχουν τιμές $100K\Omega$ (τροφοδοσία-βάση) και $10K\Omega$ (βάση-γη). Η αντίσταση της πηγής σήματος είναι 100Ω και η αντίσταση φορτίου $10K\Omega$. Οι τιμές για τους πυκνωτές σύζευξης (coupling) είναι 5μ F για την είσοδο και 3μ F για την έξοδο. Ο πυκνωτής διαρροής (bypass) στον εκπομπό είναι 3μ F. Η πηγή του σήματος εισόδου είναι ημιτονική με DC offset 0, πλάτος 1mV και συχνότητα 2KHz.

A. Βρείτε τις DC τάσεις και τα DC ρεύματα στους ακροδέκτες του τρανζίστορ (εικονίδιο "Run" \rightarrow DC op pnt).

B. Τρέξτε μεταβατική προσομοίωση (transient) από t=0ms μέχρι t=200ms. Δείτε την κυματομορφή της τελευταίας περιόδου του σήματος της τάσης Vout.

Για το διαφορικό ζεύγος του σχήματος 19 με BJT τρανζίστορ δίνονται VT = 25 mV. Χρησιμοποιώντας το εκθετικό μοντέλο Μεγάλου σήματος (βλ. Σχήμα 6.5 βιβλίο) (και αγνοώντας το φαινόμενο Early) βρείτε τις εκφράσεις για τα ρεύματα ic1 , ic2 καθώς και για το λόγο ic1 /ic2 ως συνάρτηση της διαφοράς των τάσεων στις βάσεις u_{B1} - u_{B2} . Στη συνέχεια εκφράστε την διαφορά ic1-ic2 ως συνάρτηση f της διαφοράς τάσης u_{B1} - u_{B2} .

Βρείτε την τιμή του διαφορικού σήματος εισόδου u_{B1} - u_{B2} η οποία επαρκεί για να προκαλέσει ρεύμα i_{E1} =0.99*I.

Θέτοντας u_{B2} =0 και μεταβάλλοντας την u_{B1} από -10 V_T μέχρι +10 V_T σχεδιάστε στο LTSPICE την τάση u_{c2} - u_{c1} .

Για την σχεδίαση στο LTSPICE επιλέξετε Vcc=10V, I=2mA, Rc=2kΩ. Χρησιμοποιείστε το μοντέλο 2N222 για το BJT τρανζίστορ.

Θεωρώντας δεδομένα τα V_T , β , I_s των τρανσιστορς (όλα ιδια) καθώς και τα I_{EE} , V_1 , V_2 , και χρησιμοποιώντας το εκθετικό μοντέλο Μεγάλου σήματος (σχήμα 6.5 βιβλίου, χωρίς φαινόμενο Early) καθώς και υποβοηθούμενοι από το αποτέλεσμα της προηγούμενης άσκησης, βρείτε εκφράσεις (ως συνάρτηση των I_{EE} , V_T , V_1 , V_2) για τα ρεύματα I_{C1} , I_{C2} , I_{C3} , I_{C4} , I_{C5} , I_{C6} και για τη διαφορά $\Delta I = I_{C3} + I_{C5} - (I_{C6} - I_{C4})$.

Σας ευχόμαστε καλό Πάσχα