Пусть функция f(x) определена и ограничена на ограниченном замкнутом интервале [a, b]. Разобьём этот интервал на п интервалов  $a=x_0 < x_1 < ... < x_n=b$ . обозначим  $d=\max(\Delta x_i)$ . Выберем в каждом из интервалов по произвольной точке  $\varepsilon_i \in [x_{i-1},x_i]$  и составим интегральную сумму  $\sum_{i=1}^n f(\varepsilon_i)(x_i-x_{i-1})$ 

Если существует конечный предел интегральных сумм при  $\delta \to 0$ , и этот предел не зависит ни от выбора разбиения, ни от выбора точек  $\varepsilon_i$ , то такой предел называется определённым интегралом Римана от функции f(x) на отрезке[a,b],  $\lim_{d\to 0} \sum_{i=1}^n f(\varepsilon_i)(x_i-x_{i-1}) = \int_a^b f(x) dx$ 

Условие существования  $\forall \epsilon > 0, \ \exists \ \delta > 0$ , что для любого разбиения  $\max(\Delta x_i) < \delta$  выполняется неравенство  $|S-s| < \epsilon$ . Где  $S = \sum_{i=1}^n M_i \ \Delta x_i$ ,  $s = \sum_{i=1}^n m_i \ \Delta x_i$ , где  $M_i = \max\{f(x)\}$ ,  $m_i = \min\{f(x)\}$ ,  $x \in [x_{i-1}, x_i]$ 

Численное интегрирование: функция задана таблично  $(x_i, f(x_i))$ , пусть T-разбиение отрезка [a, b] такое, что  $\max(\Delta x_i) \to 0$ 

Задача численного интегрирования состоит в нахождении приближенного значения определенного интеграла с помощью некоторой приближенной формулы через известные значения подынтегральной функции f(x) в заданных точках. Пусть на отрезке [a,b] в узлах  $x_i$  заданы значения  $f(x_i)$ . Требуется приближенно вычислить интеграл Римана  $I = \int_a^b f(x) dx$ . Его можно вычислить с помощью квадратурных форму.

Простые квадратурные формулы можно вывести непосредственно из определения интеграла зафиксировав там некоторые  $n \geq 1$  получим  $\sum_{i=1}^n f(\epsilon_i) (x_i - x_{i-1})$ -общая формула прямоугольников. Или ее можно записать как  $\sum_i A_i f(\epsilon_i)$ . Где $\epsilon_i$  – узлы,  $A_i$ -весами (коэффициентами) квадратурной формулы.

Другие примеры квадратурных формул.

Если отрезок интегрирования [a;b] разбить на равные части длины h точками  $h=x_i-x_{i-1}=\frac{b-a}{n}, i=1,2,...,n$  и в качестве точек  $\varepsilon_i$  выбрать середины элементарных отрезков  $[x_{i-1},x_i], i=1,2,...,n$  то есть  $\varepsilon_i=x_{i-1}+\frac{h}{2}$  то приближенное равенство  $\sum_{i=1}^n f(\varepsilon_i)(x_i-x_{i-1})=\int_a^b f(x)dx$  можно записать в виде  $\int_a^b f(x)dx \approx h*\sum_{i=0}^{n-1} f\left(x_i+\frac{h}{2}\right)$  – формула средних прямоугольников. погрешность  $R(f)=\frac{f'(\varepsilon)}{2}(b-a)h^2$ 



Рис. 12.1. Геометрическая интерпретация общей формулы прямоугольников (12.3)

По аналогии:

Если  $\epsilon_i = x_{i-1}$  то получаем  $\int_a^b f(x) dx \approx h * \sum_{i=0}^{n-1} f(x_i)$ - это формула метода левых прямоугольников.

Если  $\epsilon_i=x_i$  то получаем  $\int_a^b f(x)dx \approx h*\sum_{i=1}^n f(x_i)$ - это формула метода правых прямоугольников.

Погрешность обоих методов  $R(f) = \frac{f'(\varepsilon)}{2}(b-a)h$