

Curso: 2014/2015 Convocatoria: Julio

ASIGNATURA: TECNOLOGÍA INDUSTRIAL II

Estructura de la prueba

La prueba se compone de dos opciones, "A" y "B", cada una de las cuales consta de cuatro cuestiones teóricas y cuatro prácticas.

Instrucciones

El alumno debe elegir una de las dos opciones (A o B) y responder sólo a dos de las cuatro preguntas teóricas y a dos de los cuatro problemas o aplicaciones prácticas.

<u>Puntuación</u>

La **nota máxima** que un alumno puede obtener en el examen es de **10 puntos**, 5 correspondientes a las cuestiones teóricas y otros 5 a los problemas o aplicaciones prácticas. **Todas y cada una** de las preguntas tienen el mismo valor de **2,5 puntos**.

Duración de la prueba

La duración máxima de la prueba es de 1h 30m.

Curso: 2014/2015 Convocatoria: Julio

ASIGNATURA: TECNOLOGÍA INDUSTRIAL II

OPCIÓN A

PREGUNTAS TEÓRICAS

Pregunta nº 1.

Clasificación y tipos de ensayos según los tres criterios básicos. Atendiendo a la forma de realizar los ensayos, explicar que tipos de ensayos se pueden realizar.

Pregunta nº 2.

Decir qué es un tratamiento térmico. Nombrar los diferentes tratamientos térmicos y termoquímicos.

Pregunta nº 3.

Representar el esquema de un motor de corriente continua de excitación independiente, y su circuito eléctrico equivalente. Explicar cómo se conectan el circuito inductor y el inducido de dicho motor.

Pregunta nº 4.

¿Cómo funcionan los cilindros de simple efecto en la automatización neumática?

PROBLEMAS O APLICACIONES PRÁCTICAS

Problema 1.

Una barra de aluminio de 80,25 mm² está sometida a una carga de 30.000 daN y una de acero de 30 mm de diámetro a 50.000 daN. ¿En cuál de ellas es mayor la tensión normal?

Problema 2.

Se deposita Zn sobre las dos caras de un cátodo de acero de $2 \times 1 \text{ cm}^2$ y espesor despreciable, utilizando una corriente de 10 A. Calcular la masa de Zn depositado por hora y el tiempo necesario para hacer una película de Zn de 0,05 mm de espesor. $P_m = 65,38 \text{ g/mol}$

Problema 3.

Un objeto de 1 kg de masa cae desde 1.000 m de altura, partiendo del reposo, sobre un recipiente que contiene 10 litros de agua, (calor específico 1 kcal/kg °C) a la temperatura de 15°C y que se encuentra al nivel del suelo. Si toda la energía cinética del objeto se invierte en calentar el líquido, calcular la temperatura final del mismo.

Problema 4.

Una nevera funciona según un Ciclo de Carnot, enfriando a una velocidad de 7.000 kJ/h. La temperatura del interior es de –10 °C. En el exterior hay una temperatura de 28 °C. Se pide:

- a) ¿Qué potencia del motor debe tener la nevera para conseguir esa temperatura?
- b) Si el rendimiento de la nevera fuera del 60% del rendimiento ideal de Carnot, ¿cuál debería ser entonces la potencia del motor?

Curso: 2014/2015 Convocatoria: Julio

ASIGNATURA: TECNOLOGÍA INDUSTRIAL II

OPCIÓN B

PREGUNTAS TEÓRICAS

Pregunta nº 1.

Demostrar los teoremas:

a) a+a•b=a

b) $a + \overline{a} \cdot b = a + b$

c) $b \cdot (a + \overline{b}) = a \cdot b$

Pregunta nº 2.

Sabemos que cuando el óxido aparece en la superficie de un metal se pueden presentar tres casos. Nómbralos y pon un ejemplo del metal en el cual tiene lugar cada uno de esos casos..

Pregunta nº 3.

¿Cómo funcionan los cilindros de doble efecto en la automatización neumática?

Pregunta nº 4.

En un sistema de control, definir los tipos de señales que pueden existir.

PROBLEMAS O APLICACIONES PRÁCTICAS

Problema 1.

¿Cuál es el alargamiento experimentado por una probeta de acero de 20 mm de diámetro y de 200 mm de longitud cuando está sometida a un esfuerzo de tracción de 105N? (E = 21*1010 N/m²).

Problema 2.

Una máquina frigorífica trabaja entre dos focos de calor que están a -10 °C y 25 °C de temperatura. El rendimiento de la máquina es la cuarta parte del rendimiento del ciclo ideal de funcionamiento. Si la máquina cede a la fuente caliente 2600 J. Calcular:

- a) El rendimiento del frigorífico
- b) Cuánta energía se extrae del foco frio
- c) El trabajo ejercido por el compresor sobre el sistema.

Problema 3.

Un motor de automóvil cuya potencia es de 70 CV consume 16 litros de gasolina por hora. El poder calorífico de la gasolina es de 9.900 kcal/kg y la densidad de la gasolina es 0,75 kg/l- Calcular el rendimiento del motor.

Problema 4.

Calcular las intensidades de línea, de fase y el triángulo de potencias de un motor trifásico de 40 CV que se ha conectado a una línea de 380 V con una conexión en estrella, si su rendimiento es de 85% y su factor de potencia de 0,8.

Curso: 2014/2015 Convocatoria: Julio

ASIGNATURA: TECNOLOGÍA INDUSTRIAL II

CRITERIOS ESPECÍFICOS DE CORRECCIÓN

Estructura de la prueba

La prueba se compone de dos opciones, "A" y "B", cada una de las cuales consta de cuatro cuestiones teóricas y cuatro prácticas.

Instrucciones

El alumno debe elegir una de las dos opciones (A o B) y responder sólo a dos de las cuatro preguntas teóricas y a dos de los cuatro problemas o aplicaciones prácticas.

<u>Puntuación</u>

La **nota máxima** que un alumno puede obtener en el examen es de **10 puntos**, 5 correspondientes a las cuestiones teóricas y otros 5 a los problemas o aplicaciones prácticas.

Todas y cada una de las preguntas tienen el mismo valor de 2,5 puntos.

Duración de la prueba

La duración máxima de la prueba es de 1h 30m.