Расчетное задание №3

1 Задание

Найти корень нелинейного уравнения из задчи 2 методом простой итерации. Для этого преобразовать уравнение f(x)=0 к виду, удобному для итераций и проверить выполнение условия сходимости. В качестве отрезка локализации взять отрезок, полученный методом бисекции при решении задачи 2. Найти корень методом простой итерации с точностью $\varepsilon=0.0001$.

$$f(x) = \ln(x+1) + x - 2$$
$$[a; b] = [1, 2000; 1, 2125]$$

2 Решение

1. Путем эквивалетных преобразований преобразовывем наше уравнение к виду $x = \varphi(x)$:

$$x = \varphi_1(x) \quad \varphi_1(x) = 2 - \ln(x+1)$$

$$x = \varphi_2(x) \quad \varphi_2(x) = e^{2-x} - 1$$

2. Выберем их этих двух методов тот, для которого в окресности корня \dot{x} выполнятеся неравенство $|\varphi_i'(x)| \leq q < 1 (i=1,2)$ и величина q является наименьшей, так как в этом случае скорость сходимости метода простой итерации является максимальной.

При оценке скорости сходимости q учтем, что полученный отрезок локализации [a;b] мал, поэтому производные $\varphi_i'(x)$ меняются на нем слабо. Вследствие этого для оценки q можно взять любую точку из этого отрезка. В нашем случае возьмем x=1,21 - приближенное значение корня, найденного методом бисекции:

$$\begin{array}{ll} \varphi_1'(x) = \frac{-1}{x+1} & \varphi_1'(1,21) = -0,452 \\ \varphi_2'(x) = -e^{2-x} & \varphi_2'(1,21) = -2,203 \end{array}$$

3. Таким образом, для нахождения корня \dot{x} метод $x^{(k)}=\varphi_2(x^{(k-1)})$ оказывается непригодным. Поэтому расчетная формула имеет вид: $x^{(k)}=\frac{2-\ln(x^{(k)}+1)}{x^{(k-1)}}$. В окрестности искомого корня этот метод обладает скоростью сходимости q=0,452.

Критейри окончания итераций:

$$|x^{(k)} - x^{(k-1)}| < \varepsilon_1$$

$$\varepsilon_1 = \frac{1 - q}{q} * \varepsilon \approx 1,21 * 10^{-4}$$

Результаты вычислений сведем в таблицу (при вычислениях удерживается 6 значащих цифр):

k	$x^{(k)}$	$ x^{(k)} - x^{(k-1)} $
0	1,210000	
1	1,207007	$\approx 2,99 * 10^{-3}$
2	1,208363	$\approx 1,36 * 10^{-3}$
3	1,207748	$\approx 6,15*10^{-4}$
4	1,208027	$\approx 3,36 * 10^{-4}$
5	1,207901	$\approx 1,26 * 10^{-4}$
6	1,207958	$\approx 5,70*10^{-5}$

Таким образом, найденное значение корня:

$$\dot{x} = 1,2079 \pm 0.0001$$