

Notation List

For Cambridge International Mathematics Qualifications

For use from 2020

Mathematical notation

Examinations for CIE syllabuses may use relevant notation from the following list.

1 Set notation

€	is an element of
∉	is not an element of
$\{x_1, x_2, \ldots\}$	the set with elements x_1, x_2, \dots
$\{x:\ldots\}$	the set of all x such that
n(A)	the number of elements in set A
Ø	the empty set
E	the universal set
U	the universal set (for 0607 IGCSE International Mathematics)
A'	the complement of the set A
\mathbb{N}	the set of natural numbers, $\{1, 2, 3,\}$
$\mathbb Z$	the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
Q	the set of rational numbers, $\left\{\frac{p}{q}: p, q \in \mathbb{Z}, q \neq 0\right\}$
\mathbb{R}	the set of real numbers
\mathbb{C}	the set of complex numbers
(x, y)	the ordered pair x , y
⊆	is a subset of
C	is a proper subset of
U	union
Λ	intersection
[a,b]	the closed interval $\{x \in \mathbb{R} : a \le x \le b\}$
[a,b)	the interval $\{x \in \mathbb{R} : a \leq x \leq b\}$
(a, b]	the interval $\{x \in \mathbb{R} : a < x \le b\}$
(a, b)	the open interval $\{x \in \mathbb{R} : a < x < b\}$
(S, \circ)	the group consisting of the set S with binary operation \circ

2 Miscellaneous symbols

=	is equal to
<i>≠</i>	is not equal to
≣	is identical to or is congruent to
≈	is approximately equal to
~	is distributed as
≅	is isomorphic to
∞	is proportional to
<	is less than
≼	is less than or equal to
>	is greater than
≽	is greater than or equal to
∞	infinity
\Rightarrow	implies
\Leftarrow	is implied by
\Leftrightarrow	implies and is implied by (is equivalent to)

3 Operations

a + ba plus b a-ba minus b $a \times b$, aba multiplied by b $a \div b, \frac{a}{b}$ a divided by b $a_1 + a_2 + ... + a_n$ \sqrt{a} the non-negative square root of a, for $a \in \mathbb{R}$, $a \ge 0$ the (real) *n*th root of a, for $a \in \mathbb{R}$, where $\sqrt[n]{a} \ge 0$ for $a \ge 0$ $\sqrt[n]{a}$ the modulus of a |a|n!n factorial the binomial coefficient $\frac{n!}{r!(n-r)!}$ for $n, r \in \mathbb{Z}$ and $0 \le r \le n$

4 Functions

f(x)the value of the function f at x $f: A \rightarrow B$ f is a function under which each element of set A has an image in set B $f: x \mapsto y$ the function f maps the element x to the element y the inverse function of the one-one function f the composite function of f and g which is defined by gf(x) = g(f(x))gf $\lim f(x)$ the limit of f(x) as x tends to a Δx , δx an increment of xdy the derivative of y with respect to x $\mathrm{d}x$ $d^n y$ the *n*th derivative of y with respect to x $f'(x), f''(x), ..., f^{(n)}(x)$ the first, second, ..., nth derivatives of f(x) with respect to xthe indefinite integral of y with respect to x $\int y \, dx$ $\int_{a}^{b} y \, \mathrm{d}x$ the definite integral of y with respect to x between the limits x = a and x = bthe first, second, ... derivatives of x with respect to t $\dot{x}, \ddot{x}, \ldots$

5 Exponential and logarithmic functions

e base of natural logarithms e^x , exp(x) exponential function of x $log_a x$ logarithm to the base a of x ln x natural logarithm of xlg x, $log_{10} x$ logarithm of x to base 10

6 Circular and hyperbolic functions

```
\begin{array}{ll} \sin,\;\cos,\;\tan\\ \cos\!ec,\;\sec,\;\cot\end{array} \qquad \text{the circular functions} \begin{array}{ll} \sin^{-1},\;\cos^{-1},\;\tan^{-1}\\ \cos\!ec^{-1},\;\sec^{-1},\;\cot^{-1}\end{array} \qquad \text{the inverse circular functions} \begin{array}{ll} \sinh,\;\cosh,\;\tanh\\ \cosh,\;\tanh\\ \cosh,\;\sinh\end{array} \qquad \text{the hyperbolic functions} \begin{array}{ll} \sinh^{-1},\;\cosh^{-1},\;\tanh^{-1}\\ \cosh^{-1},\;\operatorname{sech}^{-1},\;\coth^{-1}\end{array} \qquad \text{the inverse hyperbolic functions}
```

7 Complex numbers

i	the imaginary unit, $i^2 = -1$
z	a complex number, $z = x + iy = r(\cos \theta + i \sin \theta)$
Re z	the real part of z, Re $z = x$
Im z	the imaginary part of z, Im $z = y$
z	the modulus of z, $ z = \sqrt{x^2 + y^2}$
arg z	the argument of z, arg $z = \theta$ where $-\pi < \theta \le \pi$
z^*	the complex conjugate of z , $x - iy$

8 Matrices

M	a matrix M
\mathbf{M}^{-1}	the inverse of the non-singular square matrix \mathbf{M}
det M, M	the determinant of the square matrix \mathbf{M}
I	an identity (or unit) matrix

9 Vectors

a	the vector a
\overrightarrow{AB}	the vector represented in magnitude and direction by the directed line segment AB
â	a unit vector in the direction of a
i, j, k	unit vectors in the directions of the Cartesian coordinate axes
$\binom{x}{y}, \binom{x}{y}$	the vectors $x\mathbf{i} + y\mathbf{j}$ (in 2 dimensions) and $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ (in 3 dimensions)
$ \mathbf{a} , a$	the magnitude of a
$ \overrightarrow{AB} $, AB	the magnitude of \overline{AB}
a.b	the scalar product of a and b
$\mathbf{a} \times \mathbf{b}$	the vector product of a and b

10 Probability and statistics

o i robublity and sta	instes
A, B, C, \dots	events
$A \cup B$	union of the events A and B
$A \cap B$	intersection of the events A and B
P(A)	probability of the event A
A'	complement of the event A
$P(A \mid B)$	probability of the event A conditional on the event B
$^{n}C_{r}$	the number of combinations of r objects from n, ${}^{n}C_{r} = {n \choose r} = \frac{n!}{r!(n-r)!}$
$^{n}P_{r}$	the number of permutations of <i>r</i> objects from <i>n</i> , ${}^{n}P_{r} = \frac{n!}{(n-r)!}$
X, Y, R, \dots	random variables
x, y, r, \dots	values of the random variables X, Y, R, \dots
x_1, x_2, \ldots	observations
f_1, f_2, \ldots	frequencies with which the observations x_1, x_2, \dots occur
p(x)	probability function $P(X = x)$ of the discrete random variable X
p_1, p_2, \dots	probabilities of the values x_1, x_2, \dots of the discrete random variable X
f(x)	value of the probability density function of a continuous random variable X
F(x)	value of the cumulative distribution function of a continuous random variable X
E(X)	expectation of the random variable X
E(g(X))	expectation of $g(X)$
Var(X)	variance of the random variable X
$G_X(t)$	probability generating function for the discrete random variable X
$M_X(t)$	moment generating function for the random variable X
B(n, p)	binomial distribution with parameters n and p
Geo(p)	geometric distribution with parameter p
$Po(\lambda)$	Poisson distribution with parameter λ
$N(\mu, \sigma^2)$	normal distribution with mean μ and variance σ^2
μ	population mean
σ^2	population variance
σ	population standard deviation
\overline{x}	sample mean, $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
s^2	unbiased estimate of population variance from a sample, $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$
ho	product moment correlation coefficient for a population
r	product moment correlation coefficient for a sample
ф	probability density function of the standardised normal variable $Z \sim N(0, 1)$
Φ	cumulative distribution function of the standardised normal variable $Z \sim N(0, 1)$
H_0, H_1	null and alternative hypotheses for a hypothesis test
-	