



# Lógica Proposicional Conectivas

Docente: Anabel N. Ruiz

#### Repaso de Conectivas

| р | ¬ p |
|---|-----|
| 0 | 1   |
| 1 | 0   |

#### Negación

| р | q | p/q |
|---|---|-----|
| 1 | 1 | 1   |
| 1 | 0 | 0   |
| 0 | 1 | 0   |
| 0 | 0 | 0   |

#### Conjunción

| р | q | p√q |
|---|---|-----|
| 1 | 1 | 1   |
| 1 | 0 | 1   |
| 0 | 1 | 1   |
| 0 | 0 | 0   |

Disyunción

#### Repaso de Conectivas

| p | q | $p \longrightarrow q$ |
|---|---|-----------------------|
| 1 | 1 | 1                     |
| 1 | 0 | 0                     |
| 0 | 1 | 1                     |
| 0 | 0 | 1                     |

#### Condicional o Implicación

| p | q | $p \longleftrightarrow q$ |
|---|---|---------------------------|
| 1 | 1 | 1                         |
| 1 | 0 | 0                         |
| 0 | 1 | 0                         |
| 0 | 0 | 1                         |

Bicondicional o Equivalencia

| p | q | p⊻q |
|---|---|-----|
| 1 | 1 | 0   |
| 1 | 0 | 1   |
| 0 | 1 | 1   |
| 0 | 0 | 0   |

Disyunción Excluyente

# Jerarquía de Conectivas



## Fórmulas Bien Formadas (FBF)

- Una FBF sólo puede contener símbolos del siguiente conjunto:
  - -letras minúsculas que representen variables proposicionales
  - -los conectivos lógicos (en nuestro caso: ¬,  $\land$ ,  $\lor$ ,  $\longrightarrow$ ,  $\longleftrightarrow$ ,  $\veebar$ )
  - y los símbolos auxiliares de agrupación (paréntesis, corchetes y llaves, izquierdos y derechos)

## Fórmulas Bien Formadas (FBF)

Las siguientes reglas permiten construir una fórmula bien formada (FBF):

- 1. Una variable proposicional es una fórmula bien formada, también llamada fórmula atómica.
- 2. Si P es una fórmula bien formada, ¬ P también es una fórmula bien formada.
- 3. Si P y Q son FBF, (P  $\land$  Q), (P  $\lor$  Q), (P  $\lor$  Q), (P  $\rightarrow$  Q) y (P  $\leftrightarrow$  Q) son fórmulas bien formadas.
- 4. Todas las fórmulas bien formadas se obtienen aplicando las reglas 1, 2 y 3.

#### **Ejemplos**

- P es FBF?
- $((P \rightarrow Q) \rightarrow R)$  es FBF?
- $(P \rightarrow Q \rightarrow R)$  es FBF?
- $(P \rightarrow (Q \rightarrow R) \text{ es FBF}?$
- ¬ A es FBF?
- (¬ P ∧¬ Q) es FBF?
- (P ¬∧ Q) es FBF?
- $\neg [(P \rightarrow Q) \rightarrow R] \text{ es FBF?}$

## Clasificación: Tautología

 Una FBF es una tautología si es verdadera para todas sus posibles interpretaciones. Una tautología también se conoce como una fórmula válida.

Ejemplo 1: p / ¬ p

| p | ¬ p | рИ¬р |
|---|-----|------|
| 0 | 1   | 1    |
| 1 | 0   | 1    |

#### Clasificación: Contradicción

 Una FBF es una contradicción si es falsa para todas sus posibles interpretaciones. Una contradicción también se conoce como una fórmula inconsistente o una fórmula insatisfactible.

Ejemplo 1: p / ¬ p

| p | <b>¬</b> p | р / ¬ р |
|---|------------|---------|
| 0 | 1          | 0       |
| 1 | 0          | 0       |

#### Clasificación: Consistente

 Una FBF que al menos tiene una interpretación verdadera se conoce como una fórmula consistente o satisfactible. Es decir, si para al menos una de las combinaciones de los valores de verdad de sus variables proposicionales la fórmula se evalúa con el valor de verdad Verdadero

Ejemplo: p ✓ q

| p | q | р∨р |
|---|---|-----|
| 1 | 1 | 1   |
| 1 | 0 | 1   |
| 0 | 1 | 1   |
| 0 | 0 | 0   |

## Clasificación: Contingencia

 Una FBF es una contingencia si alguna de las combinaciones de los valores de verdad de sus variables se evalúa como verdadero y alguna de las combinaciones de los valores de verdad de sus variables se evalúa como falso.

• **Ejemplo:**  $p \rightarrow \neg (p \lor q)$ 

| p | q | р∨р | ¬(p // q) | $p \rightarrow \neg (p \lor q)$ |
|---|---|-----|-----------|---------------------------------|
| 1 | 1 | 1   | 0         | 0                               |
| 1 | 0 | 1   | 0         | 0                               |
| 0 | 1 | 1   | 0         | 1                               |
| 0 | 0 | 0   | 1         | 1                               |

# Implicación Lógica y Equivalencia Lógica

- Sean p y q dos fórmulas bien formuladas, diremos que:
  - "p implica lógicamente a q" o que "q es consecuencia lógica de p" (lo denotaremos con p ⇒ q) si la forma enunciativa p → q es una tautología.
  - "p es lógicamente equivalente a q" (lo denotaremos con  $\mathbf{p} \Leftrightarrow \mathbf{q}$  o bien  $\mathbf{p} \equiv \mathbf{q}$ ) si la forma enunciativa  $\mathbf{p} \leftrightarrow \mathbf{q}$  es una tautología.

## Ejemplo de Equivalencia Lógica

Demostraremos la equivalencia  $\neg$  (p  $\lor$  q) es lógicamente equivalente a ( $\neg$  p)  $\land$  ( $\neg$  q), para ello analizaremos la fórmula enunciativa:  $\neg$  (p  $\lor$  q)  $\longleftrightarrow$  ( $\neg$  p)  $\land$  ( $\neg$  q), que debería ser una tautología.

| p | q | р∨р | ¬(p // q) | ¬ p |   |   | <pre>¬ (p \(\sigma\) q) \(\to\) (¬ p) \(\sigma\) (¬ q)</pre> |
|---|---|-----|-----------|-----|---|---|--------------------------------------------------------------|
| 1 | 1 | 1   | 0         | 0   | 0 | 0 | 1                                                            |
| 1 | 0 | 1   | 0         | 0   | 1 | 0 | 1                                                            |
| 0 | 1 | 1   | 0         | 1   | 0 | 0 | 1                                                            |
| 0 | 0 | 0   | 1         | 1   | 1 | 1 | 1                                                            |

#### Fórmulas Equivalentes

- Al evaluar 2 fórmulas, y se observa que todas sus interpretaciones son iguales, se dice que ambas fórmulas son equivalentes.
- Ejemplo:
- $\neg$  ( $p \leftrightarrow q$ ) es equivalente con  $p \lor q$

| p | q | $p \leftrightarrow q$ | $\neg (p \leftrightarrow q)$ |
|---|---|-----------------------|------------------------------|
| 1 | 1 | 1                     | 0                            |
| 1 | 0 | 0                     | 1                            |
| 0 | 1 | 0                     | 1                            |
| 0 | 0 | 1                     | 0                            |

| p | q | p⊻q |
|---|---|-----|
| 1 | 1 | 0   |
| 1 | 0 | 1   |
| 0 | 1 | 1   |
| 0 | 0 | 0   |

# Leyes de la Lógica Proposicional

| Ley de Doble Negación           | ¬ (¬ p) ⇔ p                                                           |
|---------------------------------|-----------------------------------------------------------------------|
| Ley Conmutativa de la           | $p \land q \Leftrightarrow q \land p$                                 |
| Conjunción                      |                                                                       |
| Ley Conmutativa de la           | $p \lor q \Leftrightarrow q \lor p$                                   |
| Disyunción                      |                                                                       |
| Ley Asociativa de la Conjunción | $(p \land q) \land r \Leftrightarrow p \land (q \land r)$             |
| Ley Asociativa de la Disyunción | $(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$                 |
| Leyes de De Morgan              | $\neg$ (p $\lor$ q) $\Leftrightarrow$ ( $\neg$ p) $\land$ ( $\neg$ q) |
|                                 | $\neg$ (p $\land$ q) $\Leftrightarrow$ ( $\neg$ p) $\lor$ ( $\neg$ q) |
| Ley Distributiva                | $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$     |
|                                 | $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$      |

# Leyes de la Lógica Proposicional

| Ley de Doble Negación | ¬ (¬ p) ⇔ p                             |
|-----------------------|-----------------------------------------|
| Leyes de Idempotencia | $p \wedge p \Leftrightarrow p$          |
|                       | $p \lor p \Leftrightarrow p$            |
| Leyes de Absorción    | $p \lor (p \land q) \Leftrightarrow p$  |
|                       | $p \wedge (p \vee q) \Leftrightarrow p$ |
| Leyes de los Neutros  | $p \land V \Leftrightarrow p$           |
|                       | $p \lor F \Leftrightarrow p$            |
| Leyes de Dominación   | $p \wedge F \Leftrightarrow F$          |
|                       | $p \lor V \Leftrightarrow V$            |
| Leyes de los Inversos | p ∧ ¬ p ⇔ F                             |
|                       | $p \lor \neg p \Leftrightarrow V$       |

## Leyes de la Lógica Proposicional

| Ley de la Disyunción excluyente            | $p \times q \Leftrightarrow (p \wedge \neg q) \vee (q \wedge \neg p)$                       |
|--------------------------------------------|---------------------------------------------------------------------------------------------|
| Ley asociativa de la disyunción excluyente | $(p \times q) \times r \Leftrightarrow p \times (q \times r)$                               |
| Ley del condicional                        | p → q ⇔ ¬p // q                                                                             |
| Ley del contrarecíproco del condicional    | $p \longrightarrow q \Leftrightarrow \neg q \longrightarrow \neg p$                         |
| Ley de la negación del condicional         | ¬(p→q) ⇔ p ⁄l¬q                                                                             |
| Ley del bicondicional                      | $p \longleftrightarrow q \Leftrightarrow (p \longrightarrow q) \land (q \longrightarrow p)$ |
| Ley de la negación del bicondicional       | ¬(p↔q) ⇔ (p/l¬q) V (q/l¬p)                                                                  |

#### Uso de las Leyes Lógicas

#### La Leyes lógicas se usan para:

- Demostrar otras equivalencias, especialmente donde intervienen muchas variables proposicionales.
- Encontrar frases equivalentes, que transmitan el mismo mensaje y, por supuesto, conserven el valor de verdad.
- Demostrar la validez de un razonamiento

#### **Formas Normales**

**Forma enunciativa restringida** a una forma enunciativa en la que solamente figuran las conectivas ¬, ∧, ∨.

Una fórmula está en **Forma Normal Disyuntiva** FND si es una disyunción de conjunciones de literales.

$$(\neg p \land q) \lor (\neg q \land p)$$

 $(\neg p \lor q) \land (\neg q \lor p)$ 

Una fórmula está en **Forma Normal Conjuntiva** FNC si es una conjunción de disyunciones de literales.

# Conjuntos adecuados de conectivas

- Un conjunto adecuado de conectivas es un conjunto tal que toda función de verdad puede representarse por medio de una forma enunciativa en la que solo aparezcan conectivas de dicho conjunto.
- Los pares  $\{\neg, \land\}$ ,  $\{\neg, \lor\}$  y  $\{\neg, \to\}$  son conjuntos adecuados de conectivas.

#### Reducción de Conectivas

Si consideramos que el  $\leftrightarrow$  es la conjunción del  $\rightarrow$  en una dirección con el mismo  $\rightarrow$  en la otra, con las 4 conectivas restantes, haciendo uso de "conjunto adecuando de conectivas" podemos definir el resto.

|             | Negación y<br>Conjunción<br>{¬, ∧} | Negación y<br>Disyunción<br>{¬,∨} | Negación y<br>Condicional $\{\neg, \rightarrow\}$ |
|-------------|------------------------------------|-----------------------------------|---------------------------------------------------|
| Conjunción  | -                                  | ¬ (¬x ✓ ¬y)                       | ¬ (x → ¬y)                                        |
| Disyunción  | ¬ (¬x ∕  ¬y)                       | _                                 | $\neg x \longrightarrow y$                        |
| Condicional | ¬ (x ∕ 1 ¬y)                       | ¬x                                | -                                                 |

#### Nor

 Se denota con ↓ y no es más que la negación de la disyunción, es decir ¬ (p ∨ q). Su tabla de verdad es por lo tanto la siguiente:

| p | q | р↓р |
|---|---|-----|
| 1 | 1 | 0   |
| 1 | 0 | 0   |
| 0 | 1 | 0   |
| 0 | 0 | 1   |

#### Nand

 Se denota con | y no es más que la negación de la conjunción, es decir ¬ (p ∧ q). Su tabla de verdad es por lo tanto:

| p | q | p   q |
|---|---|-------|
| 1 | 1 | 0     |
| 1 | 0 | 1     |
| 0 | 1 | 1     |
| 0 | 0 | 1     |