Geometría 3

Sexta Tarea: Homotecias

Jhonny Lanzuisi, 1510759

Ejercicio 1

Sean O un punto en el plano, k una constante distinta de cero y ν un vector. La composición $T_{\nu} \circ T_{k}$ de la homotecia con centro en O y razón k con la traslación determinada por el vector ν es una homotecia. Determine su centro.

Solución. Sean el punto O, el vector ν y las transformaciones T_{ν} , T_k como en el enunciado. Para hallar el centro O' de la homotecia $T = T_{\nu} \circ T_k$ basta ver la intersección de dos rectas formadas por dos pares de puntos homólogos, es decir, si A, B son dos puntos del plano (como se ve en la figura 1) y A", B" sus homólogos por T entonces la intersección de las rectas AA" y BB" es O', el centro de la homotecia T buscado.

Nótese que la construcción anterior puede fallar en dos casos, o k=1 o los puntos A'', B'' están sobre la recta AB. En el primer caso la homotecia T_1 es una traslación y no existe ningún punto invariante O'. En el segundo caso basta con tomar cualquier otro punto C del plano exterior a la recta AB y repetir la construcción anterior con C en lugar de B.

Ejercicio 2

Demostrar que el paralelogramo obtenido de unir los puntos medios de un cuadrilátero cualquiera es homotético a aquel que se obtiene de tra- zar por los extremos de las diagonales, paralelas a la otra. Determinar el centro de la homotecia.

Solución. Sean ABCD un cuadrilátero y M_{AB} , M_{BC} , M_{CD} , M_{DA} los puntos medios de sus lados. Sean además O la intersección de las diagonales del cuadrilátero ABCD y M'_{AB} , M'_{BC} , M'_{CD} , M'_{DA} los vértices del paralelogramo formado al trazar por los extremos de las diagonales paralelas a la otra (como se ve en la figura 2).

Queremos ver que los paralelogramos $M_{AB}M_{BC}M_{CD}M_{DA}$ y $M'_{AB}M'_{BC}M'_{CD}M'_{DA}$ son hometéticos por la homotecia de centro en O.

Como los segmentos BO, M'_{BC} C y OC, BM'_{BC} son pararelos por construcción, el cuadrilatero BM'_{BC} CO es un paralelogramo. Las diagonales de este paralelogramo se intersectan en su punto medio, esto es, se intersectan en M_{BC} . De esto se sigue que los puntos O, M_{BC} , M'_{BC} son colineales y, además,

$$\frac{OM'_{BC}}{OM_{BC}} = 2.$$

Se obtiene un resultado similar al anterior sobre los tres puntos O, M_{CD}, M'_{CD} al considerar el paralelogramo $OCM'_{CD}D$. De esto se sigue que la imágen del segmento $M_{BC}M_{CD}$ por la homotecia de centro en O y razón k=2 es el segmento $M'_{BC}M'_{CD}$.

Figura 1: Determinación del centro de la homotecia T con k = 3/2.

Figura 2: Dos paralelogramos homotéticos, con razón de la homotecia $\mathbf{k}=2$.

Una razonamiento análogo al anterior, considerando esta vez los paralelogramos $M'_{AB}BOA$ y $AODM'_{DA}$, se usa para demostrar que el segmento $M_{AB}M_{DA}$ es homotético al segmento $M'_{AB}M'_{DA}$.

Entonces, por todo lo anterior, los paralelogramos $M_{AB}M_{BC}M_{CD}$ M_{DA} y $M'_{AB}M'_{BC}M'_{CD}M'_{DA}$ son homotéticos por la homotecia de centro en O y razón k=2.

Ejercicio 3

Sea ABCD una cuaterna armónica. Sea T_A la homotecia que transforma a C en D y T_B la homotecia que transforma a D en C. Muestre que $T = T_B \circ T_A$ es la simetría central con respecto a C.

Solución. Sean r_a la razón de T_A y r_b la razón de T_B .

Por un lado, se sigue directamente de la definición de T_A y T_B que

$$T(C) = T_{R}(T_{A}(C)) = T_{R}(D) = C,$$

y la homotecia T deja invariante al punto C.

Por otro lado, como AB separa armónicamente a CD (como en la figura 3) se cumple

$$\frac{AD}{AC} = -\frac{BD}{BC},$$

que implica,

$$\frac{BC}{BD}\frac{AD}{AC} = -1.$$

Pero BC/BD y AD/AC son precisamente las razones r_a y r_b . Luego el producto $r_a r_b = -1$ es la razón de T.

Hemos descubierto entonces que T es una homotecia de razón -1 y que deja invariante al punto C. Como todas las homotecias de razón -1 son simetrías centrales, se sigue que T es la simetría central con respecto de C, como se buscaba.

Figura 3: Cuaterna armónica. Razones $r_\alpha=2, r_b=1/2.$ Longitud de segmentos en relación a la unidad de medida u.

