### VC210 Recitation Class 3

Wei Xiwen

UM-SJTU JI

2020 Oct 12

### Contents

- Bond
  - Metal Bond
  - Ionic Bond
  - Covalent Bond
  - Octet Rule
  - Lewis Structure
  - Resonance Structure
  - Formal Charge
  - Eception of Octet Rule
  - Bond Properties
- 2 Molecular Structure
  - VSEPR
  - Polarity
  - Valence Bond Theory

- Bond
- 2 Molecular Structure

### Metal Bond

metal-metal positive ions in "electron sea" (delocalized electrons)



### Ionic Bond

- Metal (losing electrons)-nonmetal (gaining electrons)
- Electrostatic attraction between all the ions

#### Difference with covalent bond

- non-directional (没有方向性)
- unlimited number of atoms (没有饱和性)

- What is lattice energy: the energy **released** when separated ions bounded together.
- Higher lattice energy, stronger ionic bond, greater stability of crystal.

### Two important problems

- How to compare the lattice energy of different ionic compounds?
- How to calculate lattice energy using Born-Harber Circulation? (in Thermodynamics)

# Comparison of Lattice Energy

### The **procedure** is as follows:

- **1** Compare the electric charge: charge  $\uparrow$ , lattice energy  $\uparrow$ .
- ① Compare the radius of atom (when charge is same): radius  $\uparrow$ , lattice energy  $\downarrow$ .



# Further explanations

For better understanding, here's the theretical formula of lattice energy:

$$L = \frac{N_A M Z_+ Z_- e^2}{4\pi\epsilon_0 r_0} (1 - \frac{1}{n})$$

- $r_0$ : average distance between two ions.
- $Z_{+} \& Z_{-}$ : charge of ions. e.g.  $MgCl_{2}$ :  $Z_{+}=2$ ,  $Z_{-}=1$ .
- M, n: constants, for **corrections** (修正)

## Covalent Bond

- nonmetal-nonmetal
- ullet sharing electrons

### Atoms tend to have nobel-gas configuration in valence shell.

$$: \ddot{\mathbf{F}} \cdot + \cdot \ddot{\mathbf{F}} : - : \ddot{\mathbf{F}} - \ddot{\mathbf{F}} :$$

### Lewis Structure

- Line: bonding pair (single bond: 1 line; double bond: 2 lines, etc.).
- 2 Dots: lone pairs of electrons (**Don't forget!!**).
- For ionic bond: no lines (representing covalent bond); note electric charge.
- Occident with Octet Rule at most time.

## Exercise 1

Draw the Lewis structure of the following compounds:

- $\bullet$   $CH_2O$
- **1** HOCl
- MaBr

Hint: first connect all atoms with single bonds.

### Resonance Structure

#### Based on Lewis structure

- Keep relative positions of atoms.
- Only change position of electrons.
- Number of paired and unpaired electrons unchanged.

That is to say, move the position of bonds&charges.

## Example

 $CO_3^{2-}$ 



## Exercises 2



Draw the resonance structure of the following compounds.

- $O_3$
- $^{\circ}$   $NO_3^-$

# Formal Charge

Formal Charge = 
$$V - \left(L + \frac{1}{2}B\right)$$

- *V*-- number of valence electrons
- *L* -- number of lone-pair electrons
- *B* -- number of bonding electrons

#### Caution

The structure with lowest formal charge on each atoms is the most stable form. But sometimes it's not that case!

# Figure out the most stable structure

- Lower formal charge.
- More symmetrical structure.
- Atom with higher electronegativity has negative formal charge.

## Exercise 3

• Draw the resonance structures of NNO and HCNO. Find the most stable form.

# Exception of Octet Rule

#### Summary:

- Molecule with 1 unpaired electron.
- More than 8 electrons in valence shell. e.g. S, P, Cl, etc.
- Less than 8 electrons in valence shell. e.g. B

#### Expanded valence shell

If an atom has more than 8 electrons in valence shell,

- it is Period 3 or above, so d-orbital can be used.
- the radius should be large enough to hold more bonds.

## Exercise 4

Draw the Lewis structure of:

- $\bullet$   $PCl_5$
- $SO_4^{2-}$
- $\bullet$   $BF_3$

B is special!

# Bond Strength

#### Determinant factors:

- **9** Bond order: bond order  $\uparrow$ , bond strength  $\uparrow$ .
  - single bond: 1; double bond: 2; triple bond:3.
- **2** Bond length: bond length  $\downarrow$ , bond strength  $\uparrow$ .
  - Bond length=distance between two atoms, so the radius of atoms ↑, bond length ↑.

### Calculating bond order

B.O. = 
$$\frac{number\ of\ bonds}{number\ of\ bonding\ pairs}$$



## Exercise 5

(From the slides of Prof. Sun)Write the bond order of:

- $\bullet$   $CO_2$
- $CO_3^{2-}$

Remember: the bond order in a resonance structure need to take the average.

- Bond
- 2 Molecular Structure

## VSEPR.

Draw the Lewis structure. Find the formula:

The generic formula "AX<sub>n</sub>E<sub>m</sub>" "A" represent a central atom. "X" a bonded electron region "E" a lone pair electron region



Bonding pair: electrons in covalence bond Nonbonding pair (lone pair): electrons located on one atom

Find the corresponding molecular shape on your cheating paper.

## VSEPR table

| Number of<br>Electron<br>Dense Areas | Electron-<br>Pair<br>Geometry | Molecular Geometry   |                    |                 |                 |                 |
|--------------------------------------|-------------------------------|----------------------|--------------------|-----------------|-----------------|-----------------|
|                                      |                               | No Lone<br>Pairs     | 1 Ione<br>Pair     | 2 Ione<br>Pairs | 3 Ione<br>Pairs | 4 Ione<br>Pairs |
| 2                                    | Linear                        | Linear               |                    |                 |                 |                 |
| 3                                    | Trigonal<br>planar            | Trigonal planar      | Bent               |                 |                 |                 |
| 4                                    | Tetrahedral                   | Tetrahedral          | Trigonal pyramidal | Bent            |                 |                 |
| 5                                    | Trigonal<br>bipyramidal       | Trigonal bipyramidal | Seesaw             | T-shaped        | Linear          |                 |
| 6                                    | Octahedral                    | Octahedral           | Square pyramidal   | Square planar   | T-shaped        | Linear          |

# The Effect of Non-bonding Pair

The repulsion between electron pairs:

Non-bonding&non-bonding>non-bonding&bonding>bonding&bonding This will cause the change of bond angle:







# Polarity

How to figure whether a molecule is polar or non-polar:

- Are there **polar bonds**? If a molecule only has non-polar bonds, it must be non-polar.
- Is the **molecule shape symmetric**? Asymmetric: must be polar.
- Judge if the dipole can cancel each other out.

## Exercise 6

(From Prof. Sun's slides) Predict the polarity of following molecules.

$$A. \qquad B. \qquad C. \qquad D.$$

$$F_{H_{A}} = \frac{1}{1000} \frac{1}{1000}$$

# Valence Bond Theory

How bonds form: two valence orbitals of two atoms overlap, so two electrons of opposite spin in the orbitals overlap.

#### Caution

Pay attention to the connection with Quantum mechanics (wave functions, electron clouds, etc.)

## Head-to-head

## Forming $\sigma$ -bond.



# Side-by-side

## Forming $\pi$ **-bond**.



# Bond strength in VB

- Single bond: 1  $\sigma$ -bond
- Double bond: 1  $\sigma$ -bond & 1  $\pi$ -bond
- Triple bond: 1  $\sigma$ -bond & 2  $\pi$ -bond

Overlap  $\uparrow$ , bond strength  $\uparrow \implies \sigma$ -bond is stronger than  $\pi$ -bond.

## Hybrization

- Find the type of hybrization.
  - Remember in VSEPR, formula:  $AX_nE_m$ .
  - $\bullet$  k=m+n

$$sp: k = 2$$
  
 $sp^2: k = 3$   
 $sp^3: k = 4$   
 $sp^3d: k = 5$   
 $sp^3d^2: k = 6$ 

2 Check the table to find the molecular shape.

| Types of hybridization                       | Geometry               |  |  |
|----------------------------------------------|------------------------|--|--|
| sp hybridisation                             | Linear                 |  |  |
| sp <sup>2</sup> hybridisation                | Triangular planar      |  |  |
| sp <sup>3</sup> hybridisation                | Tetrahedral            |  |  |
| dsp <sup>2</sup> hybridisation               | Square planar          |  |  |
| dsp <sup>3</sup> hybridisation               | Trigonal bipyramidal   |  |  |
| d <sup>2</sup> sp <sup>3</sup> hybridisation | Octahedral             |  |  |
| d <sup>3</sup> sp <sup>3</sup> hybridisation | Pentagonal bipyramidal |  |  |

### End

Thanks for your attendance.

Get prepare for your Quiz 1! Start early or stay up late!