Linear Regression with multiple Variables (Multiple features) Al4003 - Applied Machine Learning

Dr. Mohsin Kamal

Department of Electrical Engineering National University of Computer and Emerging Sciences, Lahore, Pakistan

- Gradient descent for multiple variables
- 2 Gradient descent in practice
- Polynomial regression
- **Normal Equation**

- Gradient descent for multiple variables

Size (feet2)	No. of Bedrooms	No. of floors	Age of home	Price (\$k)
<i>X</i> ₁	X ₂	<i>x</i> ₃	<i>X</i> ₄	у
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

- $\mathbf{m} = \mathbf{N}$ umber of training examples i.e., 47
- n = number of features
- $x^{(i)}$ = input (features) of i^{th} training example
- $\mathbf{x}_{i}^{(i)}$ = value of feature j in i^{th} training example
- y's = "output" variable / "target" variable

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

How to represent it mathematically?

For convenience of notation, define $x_0 = 1$ let

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \Re^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in \Re^{n+1}$$

We can write it in multiplication form as:

$$h_{\theta}(x) = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \dots & \theta_n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

```
Hypothesis: h_{\theta}(x) = \theta^T x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + ... + \theta_n x_n
```

Parameters: θ

Cost function:
$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

Repeat {

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

(Simultaneously update for every j = 0, 1, 2, ..., n)

Gradient Descent

Previously (n=1):

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial \theta_i} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 (simultaneously update θ_0, θ_1)

Repeat { $\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$ (simultaneously update θ_i for i = 0, ..., n $\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)}$ $\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1} (h_{\theta}(x^{(i)}) - y^{(i)}) x_1^{(i)}$ $\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)}$

New algorithm $(n \ge 1)$:

•000000

- 2 Gradient descent in practice

Feature Scaling

Idea: Make sure features are on a similar scale.

$$x_1 = size (0 - 2000 feet^2)$$
 $x_1 = \frac{size (feet^2)}{2000}$
 $x_2 = no. of bedrooms (1 - 5)$ $x_2 = \frac{no. of bedrooms}{5}$

Feature Scaling

Get every feature into approximately a "" $-1 \le x_i < 1$ "" range.

Mean normalization:

Replace x_i with $x_i - \mu_i$ to make features have approximately zero mean (Do not apply to $x_0 = 1$). For example:

$$x_{1} = \frac{\text{size} - 1000}{2000} - 0.5 \le x_{1} \le 0.5$$

$$x_{2} = \frac{\text{#bedrooms} - 2}{4} - 0.5 \le x_{2} \le 0.5$$

$$x_{1} \leftarrow \frac{x_{1} - \mu_{1}}{s_{1}}$$

$$x_{2} \leftarrow \frac{x_{2} - \mu_{2}}{s_{2}}$$

where

- \blacksquare μ_i is the average value of x_i in training set, and
- \mathbf{s}_i is the range (max-min) or standard deviation.

Gradient descent

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

We will learn:

- "Debugging": How to make sure gradient descent is working correctly.
- How to choose learning rate α .

Making sure gradient descent is working correctly.

Example automatic convergence test:

Declare convergence if $J(\theta)$ decreases by less than 10^{-3} in one iteration.

Making sure gradient descent is working correctly.

- For sufficiently small α , $J(\theta)$ should decrease on every iteration
- But if α is too small, gradient descent can be slow to converge.

Summary:

- If α is too small: slow convergence.
- If α is too large: $J(\theta)$ may not decrease on every iteration; may not converge.

```
To choose \alpha, try ..., 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, ...
```

Polynomial regression •00000

- Polynomial regression

$$h_{\theta}(x) = \theta_0 + \theta_1 \times front + \theta_2 \times depth$$

Let $x_1 = front$ and $x_2 = depth$

We don't necessarily require only two features. Else, we can create new features as well. e.g.,

Area: $x = front \times depth$

Hence,

- What if your data is actually more complex than a simple straight line?
- Surprisingly, you can actually use a linear model to fit nonlinear data.
- A simple way to do this is to add powers of each feature as new features, then train a linear model on this extended set of features.
- This technique is called **Polynomial Regression**.

Polynomial regression 000000

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

= $\theta_0 + \theta_1 (size) + \theta_2 (size)^2 + \theta_3 (size)^3$

$$\theta_0 + \theta_1 x + \theta_2 x^2$$

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3$$

Polynomial regression 000000

We will require feature scaling because:

Choice of features

- **Normal Equation**

Normal equation: Method to solve for θ analytically.

When to use it?

Intuition: If 1D
$$(\theta \in \Re) J(\theta) = a\theta^2 + b\theta + c$$

how to minimize quadratic function?,

$$\frac{d}{d\theta}J(\theta)=\cdots=0$$

Solve for θ

When $\theta \in \Re^{n+1}$

$$J(\theta_0, \theta_1, \cdots, \theta_m) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

do,

$$\frac{\partial}{\partial \theta} J(\theta) = \cdots = 0$$
 (for every j)

Solve for $\theta_0, \theta_1, \cdots, \theta_m$

Training examples: m = 4.

	Size (feet ²)	Bedrooms	Floors	Age (years)	Price (k)
<i>x</i> ₀	<i>x</i> ₁	<i>X</i> ₂	<i>X</i> 3	<i>x</i> ₄	У
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$
$$\theta = (X^T X)^{-1} X^T y$$

m examples $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)}); n$ features.

$$x^{(i)} = \begin{bmatrix} x_0^{(i)} \\ x_1^{(i)} \\ x_2^{(i)} \\ \vdots \\ x_n^{(i)} \end{bmatrix} \in \Re^{n+1} \quad i.e., \quad x^{(2)} = \begin{bmatrix} x_0^{(2)} = 1 \\ x_1^{(2)} = 1416 \\ x_2^{(2)} = 3 \\ x_3^{(2)} = 2 \\ x_4^{(2)} = 40 \end{bmatrix}$$

Then.

$$X(design\ matrix) = \begin{bmatrix} \cdots (x^{(1)})^T \cdots \\ \cdots (x^{(2)})^T \cdots \\ \vdots \\ \cdots (x^{(m)})^T \cdots \end{bmatrix} = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix}$$

Feature scaling is not required in Normal equations method!

m training examples, *n* features.

Gradient Decent	Normal Equation	
Need to choose α	No need to choose α	
Needs many iterations	Doesn't need to iterate	
Works well even when n is large	Need to compute $(X^TX)^{-1}$	
	Slow if <i>n</i> is very large	