

Project Details

Motivation

- Understand the word choice of movie reviews that influence Rotten Tomato movie classifications as positive or negative
- A simple rating can majorly influence views and overall perceptions of a film

Context

 This relationship is valuable for filmmakers to understand genre preferences and trends, marketers to make informed decisions before ratings are released and the audiences to better recognize potential critic bias

Project Details

Hypothesis:

 The sentiment of a movie review can be accurately predicted by the presence of specific keywords in the review

Research Question:

 What keywords are most frequently used in movie critic reviews that correlate to positive and negative sentiments?

Modeling Approach:

Sentiment Classification, TF-IDF Analysis [1] [2], and Chi-Squared Feature
 Collection

Data

- Acquisition: Kaggle. There were no licensing or ethical concerns
- 1,444,963 total movie critic reviews,
 with each row representing an
 individual text review
- Cleaned dataset to remove ~16,000 duplicate reviews and ~70,000 values in the review column leaving
 1,359,668 usable movie reviews

Data Dictionary

Column	Description	Туре
movieTitle	unique identifier for movie each review	Object
year_created	year when the review was created	Datetime
isTopCritic	Boolean flag indicating if the critic is recognized as a top critic.	Boolean
fresh_or_rotten	Review classification state (e.g., "fresh" or "rotten")	Object
review	full text of the review	Object

Analysis Plan & Justification

-remove duplicate and null review -remove unnecessary columns -Use LLM model to classify reviews as either pos/neg

-calculate
TF-IDF score
for pos/neg
reviews
-filter out
neutral words

-Chi-squared statistic of the top 10 words associated with pos and neg reviews

-Train a logistic regression model to classify movie reviews as either positive or negative based on their TF-IDF features.

Tricky Analysis Decision

NLTK vs. LLM

- Switched from using manual sentiment analysis with NLTK to using an LLM
- LLMs are far better at understanding language contextually

Bias and Uncertainty Validation

- Dataset difficulties:
 - Sarcasm in reviews
 - "This movie is great if you are a fan of garbage cinema"
 - "If you ever have a few hours of your life you never want to get back, this movie is a terrific choice"
 - Critic Bias
 - Changing society
 - Dataset contains reviews from many years ago,
 changing views on what constitutes a good movie
 - Corrected by only taking reviews from 20 years to present
 - Still includes Pre-Covid reviews

Results & Conclusions

- We found our final model to be 72% accurate
- We reject the null hypothesis (desired 80% accuracy)
- Positive reviews were easier to predict

Model Evaluation Metrics: Accuracy: 0.7210 Precision: 0.7364 Recall: 0.8790 F1 Score: 0.8014					
Classification Report:					
	precision	recall	f1-score	support	
NEGATIVE POSITIVE	0.67 0.74	0.44 0.88	0.53 0.80	719 1281	
accuracy			0.72	2000	
macro avg	0.70	0.66	0.67	2000	
weighted avg	0.71	0.72	0.70	2000	

Next Steps

- Adjust and implement more rules using an NLTK model
- This would allow for the highest possible accuracy
- Test the new model on different review mediums

References, Resources, Acknowledgements

Jablonski, J. (2023, October 21). *Natural language processing with python's NLTK package*. Real Python. https://realpython.com/nltk-nlp-python/

P. Choksi, "Rotten Tomatoes Movie Reviews - 1.44M rows," *Kaggle.com*, 2024.

https://www.kaggle.com/datasets/priyamchoksi/rotten-tomato-movie-reviews-1-44m-rows (accessed Sep. 22, 2024).

Pipelines. Hugging Face Documentation. (n.d.)

https://huggingface.co/docs/transformers/en/main classes/pipelines

Wang, S., & Manning, C. D. (n.d.). *Baselines and Bigrams: Simple, Good Sentiment and Topic Classification*. https://aclanthology.org/P12-2018.pdf

Welcome to Vadersentiment's documentation! VaderSentiment 3.3.1 documentation. (n.d.-b).

https://vadersentiment.readthedocs.io/en/latest/

Wu, J. Y., & Pao, Y. (n.d.-b). *Predicting Sentiment from Rotten Tomatoes Movie Reviews*. https://nlp.stanford.edu/courses/cs224n/2012/reports/WuJean PaoYuanyuan 224nReport.pdf

Github Repository: https://github.com/erinmoulton/Sentiment-Prediction-of-Rotten-Tomatoes-Critic-Movie-Reviews

Questions?

Word Cloud of Most Significant Words in Movie Reviews