SPIM

O SPIM é um simulador que executa programas escritos para os processadores MIPS R2000 e R3000. Ele é capaz de ler e executar arquivos em linguagem de montagem do MIPS. Um manual detalhado deste simulador feito pelo próprio autor pode ser encontrado <u>aqui</u>.

A seguir serão apresentadas rapidamente algumas de suas principais funções e será demonstrada a sua utilização em exemplos práticos, para que este possa ser usado na elaboração do Projeto 2.

Para que você possa se familiarizar com o funcionamento do software, veja antes familiarizando-se com a interface do SPIM (apenas o PCSPIM).

Para executar seus programas escritos em linguagem de montagem do MIPS, estes devem ser feitos em um editor de texto comum, como o notepad.exe. Estes arquivos deverão ser salvos com a extensão ".s" ou ".asm" para depois serem abertos e executados pelo SPIM.

A seguir são apresentados alguns exemplos de programas que podem auxiliar no desenvolvimento do projeto:

Exemplo 1 - Trabalhando com registradores

Exemplo 2 - Trabalhando com dados em memória

Familiarizando-se com o SPIM

O QtSpim é composto por cinco janelas principais, que são:

1. Messages

Contém as mensagens geradas pelo Spim para o usuário. Geralmente são apresentadas mensagens sobre o carregamento do programa ou a execução do mesmo e erros ocorridos se for o caso.

```
Memory and registers cleared

SPIM Version 9.1.18 of January 3, 2017
Copyright 1990-2017 by James Larus.
All Rights Reserved.

SPIM is distributed under a BSD license.
See the file README for a full copyright notice.
QtSPIM is linked to the Qt library, which is distributed under the GNU Lesser General Public License version 3 and version 2.1.
```

2. Text Segment

Nesta janela é mostrado as instruções que foram carregadas em memória. As instruções aparecem em duas colunas, a da direita para o código que foi carregado e a da esquerda para as instruções geradas pelo Spim.

```
Text
      Data
                                                                                                                         User Text Segment [00400000]..[00440000]
                                                                           ; 183: lw $a0 0($sp) # argc
[00400000] 8fa40000
                                 lw $4, 0($29)
[00400000] 27a50004
[00400008] 24a60004
[00400000] 00041080
[00400010] 00023021
[00400014] 00000000
[00400016] 00000000
[00400010] 34020000a
                                                                          ; 184: addiu $a1 $sp 4 # argv
; 185: addiu $a2 $a1 4 # envp
; 186: sll $v0 $a0 2
                                 addiu $5, $29, 4
addiu $6, $5, 4
                                 sll $2, $4, 2
                                 addu $6, $6, $2
                                                                           : 187: addu $a2 $a2 $v0
                                                                          ; 188: jal main
; 189: nop
; 191: li $v0 10
                                 jal 0x00000000 [main]
                                 nop
ori $2, $0, 10
[00400020] 0000000c
                                                                           ; 192: syscall # syscall 10 (exit)
```

3. Data Segment

Mostra os dados carregados em memória e os dados da pilha.

```
Data
                  Text
Data
User data segment [10000000]..[10040000]
[10000000]..[1003ffff] 00000000
User Stack [7fffff7b4]..[80000000]
                         7ffff870
                                   00000000
[7fffff7b4]
              00000001
                                                          . . . . p . . . . . . .
              7fffffel
                        7fffffb8
                                   7fffff81
                                             7fffff45
                                                          . . . . . . . . . . . E . . .
[7ffff7c0]
                                                          . . . . | . . . P . . . 2 . . .
[7ffff7d0]
              7fffff14
                         7ffffef7
                                   7ffffed3
                                              7ffffeal
[7fffff7e0]
              7ffffe94
                        7ffffe7c
                                   7ffffe50
                                              7ffffe32
[7ffff7f0]
              7ffffelb
                         7ffffdf8
                                   7ffffdcd
                                              7ffffdbf
[7ffff800]
              7ffffc6c
                         7ffffc2e
                                   7ffffc13
                                              7ffffbf6
[7ffff810]
              7ffffbad 7ffffb9b
                                   7ffffb83
                                              7ffffb68
                                                            . . . . . . . . . .
                                                                                  . h . .
              7ffffb44
[7ffff820]
                         7ffffblb
                                   7ffffafd
                                              7ffffa92
                                                            . . . . . . . . . . . . . . .
[7ffff830]
              7ffffa7b
                         7ffffa3e
                                   7ffffa0f
                                              7ffff9fb
[7ffff840]
              7ffff9cc
                         7ffff9bd
                                   7ffff9a7
                                              7ffff97e
                                                          v . . . ; . . . . . . . . . . .
[7ffff850]
              7ffff956
                         7ffff93b
                                   7ffff911
                                              7ffff900
[7ffff860]
              7ffff8e3
                         7ffff8dl
                                   00000000
                                              00000000
                                                          C:/pannain/aulas
/arq_mc722_mc732
_mc613/aula_arq_
[7ffff870]
              702f3a43
                         616e6e61
                                   612f6e69
                                              73616c75
              7172612f
[7ffff8801
                         37636d5f
                                   6d5f3232
                                              32333763
                                                          _ m c 6 1 3 / a u 1 a _ a r q
2 0 / a u 1 a s _ 1 a b _ a r q
_ 2 s 2 0 / 1 a b _ 2 s 2 0 / 1
a b _ 0 2 / 1 a b _ 0 0
[7ffff890]
              36636d5f
                         612f3331
                                   5f616c75
                                              5f717261
[7ffff8a0]
              612f3032
                         73616c75
                                   62616c5f
                                              7172615f
[7ffff8b0]
              3273325f
                         616c2f30
                                   73325f62
                                              6c2f3032
                                                          _ 2 s 2 U / 1 a b _ 2 2 5 . s
a b _ 0 2 / 1 a b _ 0 2 _ 5 . s
. w in dir = C : \ W I N D O
[7ffff8c0]
              305f6261
                         616c2f32
                                   32305f62
                                              732e355f
[7ffff8d0]
              6e697700
                         3d726964
                                   575c3a43
                                              4f444e49
[7ffff8e0]
              55005357
                         50524553
                                   49464f52
                                              433d454c
                                                          WS.USERPROFILE = C
                                                          :\Users\pannain
[7ffff8f0]
              73555c3a
                         5c737265
                                   6e6e6170
                                              006e6961
                                                          USERNAME = pannai
[7ffff900]
              52455355
                         454d414e
                                   6e61703d
                                              6e69616e
                                                           . U S E R D O M A I N
[7ffff9101
              45535500
                         4d4f4452
                                   5f4e4941
                                              4d414f52
                                                                                   ROAM
                                                          INGPROFILE = DESKT
[7ffff9201
              50474e49
                         49464f52
                                   443d454c
                                              544b5345
              372d504f
                                   55004143
                                                          OP-7KRQ2CA.USER
[7ffff930]
                         3251524b
                                              44524553
[7ffff940]
              49414d4f
                         45443d4e
                                   4f544b53
                                              4b372d50
                                                          OMAIN = DESKTOP-7K
[7ffff9501
              43325152
                         4d540041
                                   3a433d50
                                              6573555c
                                                          RO2CA.TMP=C:\Use
              705c7372
[7ffff960]
                         616e6e61
                                   415c6e69
                                              61447070
                                                          rs\pannain\AppD
[7ffff970]
              4c5c6174
                         6c61636f
                                   6d65545c
                                              45540070
                                                                Loc
                                                                         1 \ T e m p . T E
                                                          MP=C:\Users\pannain\AppData\Loca
[7ffff980]
              433d504d
                         73555c3a
                                   5c737265
                                              6e6e6170
                                   5c617461
[7ffff990]
              5c6e6961
                         44707041
                                              61636f4c
                                                          1 \ Temp. System Roo
                         5300706d
[7ffff9a0]
              65545c6c
                                   65747379
                                              6f6f526d
                         4-40E7E-
                                   ESETAFAA
```

4. Registers

Esta janela mostra os valores armazenados em todos os registradores do MIPS, incluindo os da unidade de ponto flutuante (FPU).

5. Console

No Spim é possível usar uma espécie de "console" para exibir mensagens e receber entrada de dados.

Serviços do Sistema

O Spim possui uma lista de serviços implementados para auxiliar principalmente na interface com o usuário por meio de um console. Para utilizar um desses serviços, basta colocar em \$v0 o código do serviço, definir os parâmetros (se houverem) e em seguida utilizar a instrução syscall.

Serviço	Código	Parâmetros	Resultados	Descrição
print_int	1	\$a0 = integer		Escreve um valor inteiro no console.
print_float	2	\$f12 = float		
print_double	3	\$f12 = double		
print_string	4	\$a0 = string		Escreve uma string no console.
read_int	5		integer (em \$v0)	Lê um valor inteiro entrado no console.
read_float	6		float (em \$f0)	
read_double	7		double (em \$f0	
read_string	8	\$a0 = buffer, \$a1 = length		Lê uma string do console (n caracteres)
sbrk	9	\$a0 = quantidade	endereço (em \$v0)	Retorna um ponteiro para um bloco de memória contendo n bytes)
exit	10			Encerra a execução do programa.

Exemplo 1 - Trabalhando com registradores

Abra o notepad.exe (ou outro editor se preferir). Executaremos o exemplo apresentado a seguir, cujo objetivo é realizar a operação f = (g + h) - (i + j).

Detalhe importante: Para ques os programas possam ser executados no SPIM, deverá **sempre** ser definido onde o programa deverá ser iniciado. Isto é feito através da declaração do símbolo *main*, da seguinte maneira:

Agora podemos entrar com as instruções do programa. De início, precisamos atribuir valores para as variáveis g, h, i e j (registradores \$s1, \$s2, \$s3 e \$s4 respectivamente). Para isso entraremos com o seguinte código:

O uso das instruções *li* e *addi* foi proposital para demonstrar essas duas formas de carga de valores imediatos em registradores. Agora vamos executar a operação colocando o resultado em \$s0.

```
add $t0,$s1,$s2  # registrador $t0 contém g + h

add $t1,$s3,$s4  # registrador $t1 contém i + j

sub $s0,$t0,$t1  # registrador $s0 contém (g + h) - (i + j)
```

Salve o arquivo com o nome de "arq1.s" e abra-o no SPIM através do menu File, Open. Abra a janela dos Registradores no menu Window, Registers. Observe que os registradores estão todos zerados. Agora clique no menu Simulator, e simule. Isto irá executar o código. Observe agora a mudança no estado dos registradores (em vermelho).

```
Int Regs [16]
                = 400020
= 0
 BadVAddr = 0
Status = 3000ff10
                 = 0
 HI
 LO
                 = 0
 RO
        [r0] = 0
        [at] = 0
        [v0] = a
R2
        [v1] = 0
R3
        [a0] = 1
[a1] = 7ffff7b8
[a2] = 7ffff7c0
R4
R5
R6 [a2] = 7fi

R7 [a3] = 0

R8 [t0] = 33

R9 [t1] = 1f

R10 [t2] = 0

R11 [t3] = 0

R12 [t4] = 0
R13 [t5] = 0
R14 [t6] = 0
R15 [t7] = 0
R16 [s0] = 14
R17 [s1] = f
R18 [s2] = 24
R19 [s3] = c
R20 [s4] = 13
R21 [s5] = 0
R22 [s6] = 0
R23 [s7] = 0
 R24 [t8] = 0
R25 [t9] = 0
R26 [k0] = 0
R27 [k1] = 0
```

O \$s0 contém o resultado da nossa operação: 14h (os valores dos registradores estão todos em hexadecimal). Conferindo: (15+36) = 51; (12+19) = 31; (51-31) = 20 = (14h).

Exemplo 2 - Trabalhando com dados em memória

Detalhe importante: O acesso à memória do SPIM em nossos programas deve ser feito com valores acima da posição inicial do global pointer (10008000h). Esta é a parte da memória do SPIM que iremos utilizar para armazenar nossos dados. Mais a frente veremos também como armazenar dados "constantes" de uma forma mais prática, sem a necessidade de utilizar as instruções de store.

Vamos fazer um exercício simples de acesso a memória:

Tendo-se um array de 100 elementos (words) que inicia no endereço de memória 5000 (em direção aos endereços crescentes) transfira este array para o endereço 6000.

Primeiro precisamos carregar na memória este array de elementos que foi considerado no enunciado. Como as posições de memória 5000 e 6000 estão fora da área que temos acesso na memória, utilizaremos o \$gp (global pointer) + 5000 como endereço inicial do array fonte. Já para o array destino, utilizaremos o valor de \$gp + 6000.

Desta forma temos os ponteiros necessários para trabalhar com o primeiro array. O \$s0 será o ponteiro e será incrementado sempre em 4 posições para apontar para a próxima word (próximo elemento). Vamos armazenar nele um dado qualquer, como por exemplo um valor incrementado sempre em 9 (9, 18, 27, 36...)

Detalhe importante: Para marcar pontos importantes no programa, utilizamos "labels" (rótulos). É através deles que executamos funções como jump e branch. Para definir um label, coloque um identificador seguido do sinal de dois pontos, ex: "repetir:" e escreva o código. Neste exercício faremos um loop para preencher os 100 elementos do array, por isso vamos precisar de um label para chamar a cada iteração. Quando o label é chamado (através de um bne por exemplo) a próxima instrução a ser executada é a da linha seguinte ao label.

```
# Carrega no reg. temporário $t0 um valor para ser armazenado no array dados:
sw $t0,0($s0) # Armazena o valor na posição do
```

```
array apontada por $s0

# Aponta para a próxima posição no array (incrementa em 4 o ponteiro)

# Altera o valor a ser armazenado no array (incrementa em 9)

bne $s0,$s2,dados

# Enquanto não chegar ao fim do array, repete o laço
```

Vamos executar esta primeira parte do programa para testarmos o armazenamento dos valores do array. Salve o arquivo com o nome de "arq_2a.s" e abra-o no SPIM. Execute o código (F5 e depois OK). Vamos verificar se ocorreu tudo bem. Na janela dos registradores o \$50 deverá estar em 10009518h que é a marca do final do array (o array inicia em 10009388h e o último elemento está em 10009514Ch). O registrador \$t0 contém o valor 38Dh (909 em decimal), ou seja, o valor que seria armazenado na posição seguinte a última. Até aqui tudo Ok.

Agora verificaremos os valores em memória. Abra a janela Data Segment (Window, Data Segment). Ela deverá estar assim:

Data				
User data s	segment [1000	0000][10	040000]	
[100000000].	[100081f3]	00000000		
[100081f4]	00000009	00000012	0000001b	
[10008200]	00000024	0000002d	00000036	0000003f
[10008210]	00000048	00000051	0000005a	00000063
[10008220]	0000006c	00000075	0000007e	00000087
[10008230]	00000090	00000099	000000a2	000000ab
[10008240]	000000b4	000000bd	000000c6	000000cf
[10008250]	000000d8	000000el	000000ea	000000f3
[10008260]	000000fc	00000105	0000010e	00000117
[10008270]	00000120	00000129	00000132	0000013b
[10008280]	00000144	0000014d	00000156	0000015f
[10008290]	00000168	00000171	0000017a	00000183
[100082a0]	0000018c	00000195	0000019e	000001a7
[100082b0]	000001b0	000001b9	000001c2	000001cb
[100082c0]	000001d4	000001dd	000001e6	000001ef
[100082d0]	000001f8	00000201	0000020a	00000213
[100082e0]	0000021c	00000225	0000022e	00000237
[100082f0]	00000240	00000249	00000252	0000025b
[10008300]	00000264	0000026d	00000276	0000027f
[10008310]	00000288	00000291	0000029a	000002a3
[10008320]	000002ac	000002b5	000002be	000002c7
[10008330]	000002d0	000002d9	000002e2	000002eb
[10008340]	000002f4	000002fd	00000306	0000030f
[10008350]	00000318	00000321	0000032a	00000333
[10008360]	0000033c	00000345	0000034e	00000357
[10008370]	00000360	00000369	00000372	0000037b
[10008380]	00000384	00000000	00000000	00000000
[10008390].	[1003ffff]	00000000		

Aqui o SPIM apresenta os dados carregados em memória. Perceba que ele mostra somente as posições ocupadas. Os dados no array devem ser os seguintes: o valor 9 na primeira posição, o valor 18 na segunda e assim sucessivamente até o valor 900 na última posição. Podemos conferir os valores armazenados no nosso array: 9h, 12h, 1Bh... = 9, 18, 27... O último valor é 384h = 900.

Agora podemos continuar com o exercício. Vamos fazer a cópia dos dados para o array destino.

```
move $s0,$gp

addi $s0,$s0,5000  # Definimos novamente o ponteiro para os dados do array fonte ($gp + 5000)

move $s1,$gp

addi $s1,$s1,6000  # Ponteiro para os dados do array destino
```

```
(\$gp + 6000)
transfere:
                             # Armazena em t0 o conteúdo da posição
lw $t0,0($s0)
                            apontada por $s0 (array fonte)
                            # Armazena no array destino (apontado por
sw $t0,0($s1)
                            $s1) o valor carregado
                            # Incrementa s0 em 4 (para chegar-se ao
addi $s0,$s0,4
                            próximo elemento no array fonte)
                            # Incrementa s1 em 4 (para chegar-se ao
addi $s1,$s1,4
                            próximo elemento no array destino)
                            # Enquanto s0 não chegar em 400 (100
bne $s0,$s2,transfere
                             elementos), repete o laço
```

Salve novamente o arquivo ("arq_2b.s") e execute-o.

Agora a janela de dados vai apresentar os dois arrays, sendo que o segundo foi armazenado da posição 10009770h para cima. Observe que esta posição é o \$gp (10008000h) + 6000.

User data segment [10000000][10040000]									
[10000000]	[10009387]	00000000							
[10009388]	00000009	00000012							
[10009390]	0000001b	00000024	0000002d	00000036					
[100093a0]	0000003f	00000048	00000051	0000005a					
[100093b0]	00000063	0000006c	00000075	0000007e					
[100093c0]	00000087	00000090	00000099	000000a2					
[100093d0]	000000ab	000000b4	000000bd	000000c6					
[100093e0]	000000cf	000000d8	000000el	000000ea					
[100093f0]	000000f3	000000fc	00000105	0000010e					
[10009400]	00000117	00000120	00000129	00000132					
[10009410]	0000013b	00000144	0000014d	00000156					
[10009420]	0000015f	00000168	00000171	0000017a					
[10009430]	00000183	0000018c	00000195	0000019e					
[10009440]	000001a7	000001b0	000001b9	000001c2					
[10009450]	000001cb	000001d4	000001dd	000001e6					
[10009460]	00000lef	000001f8	00000201	0000020a					
[10009470]	00000213	0000021c	00000225	0000022e					
[10009480]	00000237	00000240	00000249	00000252					
[10009490]	0000025b	00000264	0000026d	00000276					
[100094a0]	0000027f	00000288	00000291	0000029a					
[100094b0]	000002a3	000002ac	000002b5	000002be					
[100094c0]	000002c7	000002d0	000002d9	000002e2					
[100094d0]	000002eb	000002f4	000002fd	00000306					
[100094e0]	0000030f	00000318	00000321	0000032a					
[100094f0]	00000333	0000033c	00000345	0000034e					
[10009500]	00000357	00000360	00000369	00000372					
[10009510]	0000037b	00000384	00000000	00000000					

Pronto! Os dados foram transferidos para o array destino.