Exercise Solutions for Math 20

Equations in Quadratic Form and with Radicals and Absolute Values

Nile Jocson <novoseiversia@gmail.com>

November 10, 2024

Contents

1	Fine	d the solution set of the following inequalities.
	1.1	$\frac{2x+1}{4} \le \frac{2x}{3} + \frac{1}{6} \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	1.2	$-2 < 5 + 3x < 20 \dots$
	1.3	$\frac{x}{x-1} > -1 \dots \dots \dots \dots \dots \dots \dots \dots \dots $
	1.4	$\frac{x}{x+1} \ge \frac{2}{x+3} \dots \dots$
	1.5	$\left \frac{9-2x}{4x}\right \ge 1$
		$\left \frac{x}{2x-3}\right \le 1 \dots \dots$
	1.7	0 < x - 5 < 2

1 Find the solution set of the following inequalities.

1.1 $\frac{2x+1}{4} \le \frac{2x}{3} + \frac{1}{6}$

$$\Rightarrow \frac{3(2x+1)}{12} \le \frac{4(2x)}{12} + \frac{2}{12}$$

$$\Rightarrow \frac{6x+3}{12} \le \frac{8x+2}{12}$$

$$\Rightarrow 6x+3 \le 8x+2$$

$$\Rightarrow 3-2 \le 8x-6x$$

$$\Rightarrow 1 \le 2x$$

$$\Rightarrow x \ge \frac{1}{2}$$

$$\Rightarrow x \in [\frac{1}{2}, +\infty)$$
Final answer.

1.2 -2 < 5 + 3x < 20

$\Rightarrow -7 < 3x < 15$	Solve for x .
$\Rightarrow -\frac{7}{3} < x < 5$	
$\Rightarrow x \in \left(-\frac{7}{3}, 5\right)$	Final answer.

1.3 $\frac{x}{x-1} > -1$

$\Rightarrow \frac{x}{x-1} + 1 > 0$	Solve for x .					
$\Rightarrow \frac{x}{x-1} + \frac{x-1}{x-1} > 0$						
$\Rightarrow \frac{x+x-1}{x-1} > 0$						
$\Rightarrow \frac{2x-1}{x-1} > 0$				x = 1 is an undefined point.		
				Create a table of signs.		
	1	$\frac{1}{2}$	l			
2x-1	_	+	+			
x-1	_	_	+			
$\frac{2x-1}{x-1}$	+	_	+			
$\Rightarrow x \in (-\infty, \frac{1}{2})$	$\Rightarrow x \in (-\infty, \frac{1}{2}) \cup (1, +\infty)$ Final answer.					

1.4 $\frac{x}{x+1} \ge \frac{2}{x+3}$

$\Rightarrow \frac{x}{x+1} - \frac{2}{x+3} \ge 0$	Solve for x .

Continued on next page

$$\Rightarrow \frac{x(x+3)}{(x+1)(x+3)} - \frac{2(x+1)}{(x+1)(x+3)} \ge 0$$

$$\Rightarrow \frac{x(x+5)}{(x+1)(x+3)} - \frac{x(x+2)}{(x+1)(x+3)} \ge 0$$

$$\Rightarrow \frac{x^2+3x-2x-2}{(x+1)(x+3)} \ge 0$$

$$\Rightarrow \frac{x^2+x-2}{(x+1)(x+2)} > 0$$

$$\Rightarrow \frac{(x-1)(x+2)}{(x+1)(x+3)} \ge 0$$

LCM = (x+1)(x+3)

Factor by grouping. $x \in \{-3, -1\}$ are undefined points.

Create a table of signs.

	_	-3 –	-2 –	1	l
x-1	_	_	_	-	+
x + 2	_	_	+	+	+
x + 1	_	_	_	+	+
x + 3	-	+	+	+	+
$\frac{(x-1)(x+2)}{(x+1)(x+3)}$	+	-	+	_	+

$$\Rightarrow (-\infty, -3) \cup [-2, -1) \cup [1, +\infty)$$

Final answer. Don't include undefined points.

 $|a| \ge b \Rightarrow a \ge b$ or $a \le -b$. Solve for $a \ge b$.

 $|a| \ge b \Rightarrow a \ge b$ or $a \le -b$. Solve for $a \le -b$.

1.5 $\left| \frac{9-2x}{4x} \right| \ge 1$

$$\Rightarrow \frac{9-2x}{4x} \ge 1$$

$$\Rightarrow \frac{9-2x}{4x} \ge 1$$

$$\Rightarrow \frac{9-2x}{4x} - 1 \ge 0$$

$$\Rightarrow \frac{9-2x}{4x} - \frac{4x}{4x} \ge 0$$

$$\Rightarrow \frac{9-2x-4x}{4x} \ge 0$$

$$\Rightarrow \frac{9-6x}{4x} \ge 0$$

$$\Rightarrow \frac{9-6x}{x} \ge 0$$

$$\Rightarrow \frac{9-6x}{x} \ge 0$$

$$\Rightarrow \frac{2x-3}{x} \le 0$$

$$\Rightarrow \frac{9-2x}{4} - \frac{4x}{4} > 0$$

$$\Rightarrow \frac{9-2x-4x}{4\pi} > 0$$

$$\Rightarrow \frac{9-6x}{6} > 0$$

$$\Rightarrow \frac{9-6x}{2} > 0$$

$$\Rightarrow \frac{-3(2x-3)}{2} > 0$$

$$\Rightarrow \frac{2x-3}{2} < 0$$

x = 0 is an undefined point.

Create a table of signs.

	()	3 2
2x-3	_	_	+
x	_	+	+
$\frac{2x-3}{x}$	+	_	+

$$\Rightarrow x \in (0, \frac{3}{2}]$$

$$\Rightarrow \frac{9-2x}{4x} \leq -1$$

$$\Rightarrow \frac{3}{4x} + 1 \le 0$$

$$\Rightarrow x \in (0, \frac{3}{2}]$$

$$\Rightarrow \frac{9-2x}{4x} \le -1$$

$$\Rightarrow \frac{9-2x}{4x} + 1 \le 0$$

$$\Rightarrow \frac{9-2x}{4x} + \frac{4x}{4x} \le 0$$

$$\Rightarrow \frac{9-2x+4x}{4x} \le 0$$

$$\Rightarrow \frac{9-2x+4x}{4x} \leq 0$$

$$\Rightarrow \frac{2x+9}{6} < 0$$

Continued on next page

x = 0 is an undefined point.

Create a table of signs.

	$-\frac{9}{2}$ 0				
2x + 9	_	+	+		
x	_	_	+		
$\frac{2x+9}{x}$	+	_	+		

$$\Rightarrow x \in \left[-\frac{9}{2}, 0\right]$$

$$\Rightarrow x \in \left[-\frac{9}{2}, 0\right)$$
$$\Rightarrow x \in \left[-\frac{9}{2}, 0\right) \cup \left(0, \frac{3}{2}\right]$$

Final answer. Combine intervals.

1.6 $\left| \frac{x}{2x-3} \right| \le 1$

$$\Rightarrow \frac{x}{2x-3} \le 1$$

$$\Rightarrow \frac{x}{2x-3} - 1 \le 0$$

$$\Rightarrow \frac{x}{2x-3} - \frac{2x-3}{2x-3} \le 0$$

$$\Rightarrow \frac{x - (2x-3)}{2x-3} \le 0$$

$$\Rightarrow \frac{x - 2x + 3}{2x-3} \le 0$$

$$\Rightarrow \frac{x - 2x + 3}{2x-3} \le 0$$

$$\Rightarrow \frac{-x+3}{2x-3} \le 0$$

$$\Rightarrow \frac{x-(2x-3)}{2x-3} \leq 0$$

$$\Rightarrow \frac{x-2x+3}{2x-3} \le 0$$

$$\Rightarrow \frac{-x+3}{2x-3} \leq 0$$

$$\Rightarrow \frac{-(x-3)}{2x-3} \le 0$$
$$\Rightarrow \frac{x-3}{2x-3} \ge 0$$

$$\Rightarrow \frac{x-3}{2x-3} \ge 0$$

 $|a| \le b \Rightarrow a \le b$ and $a \ge -b$. Solve for $a \le b$.

 $x = \frac{3}{2}$ is an undefined point.

Create a table of signs.

	$\frac{3}{2}$ 3			
x-3	_	_	+	
2x-3	_	+	+	
$\frac{x-3}{2x-3}$	+	_	+	

$$\Rightarrow x \in (-\infty, \frac{3}{2}) \cup [3, +\infty)$$

$$\Rightarrow \frac{x}{2x-3} \ge -1$$

$$\Rightarrow \frac{x}{2x-3} + 1 \ge 0$$

$$\Rightarrow \frac{x}{2x-3} + \frac{2x-3}{2x-3} \ge 0$$
$$\Rightarrow \frac{x+2x-3}{2x-3} \ge 0$$

$$\Rightarrow \frac{x+2x-3}{2x-3} \geq 0$$

$$\Rightarrow \frac{3x-3}{2x-2} \geq 0$$

$$\Rightarrow \frac{3x-3}{2x-3} \ge 0$$
$$\Rightarrow \frac{3(x-1)}{2x-3} \ge 0$$

$$\Rightarrow \frac{x-1}{2x-3} \ge 0$$

 $|a| \le b \Rightarrow a \le b$ and $a \ge -b$. Solve for $a \ge -b$.

 $x = \frac{3}{2}$ is an undefined point.

Create a table of signs.

Continued on next page

	$1 \frac{3}{2}$						
x-1	_	+	+				
2x-3	_	_	+				
$\frac{x-1}{2x-3}$	+	_	+				
$\Rightarrow x \in (-\infty, 1] \cup (\frac{3}{2}, +\infty)$							
$\Rightarrow x \in ((-\infty, \frac{3}{2}) \cup [3, +\infty)) \cap ((-\infty, 1] \cup (\frac{3}{2}, +\infty))$							
$\Rightarrow x \in (-\infty, 1] \cup [3, +\infty)$							

1.7 0 < |x - 5| < 2

$\Rightarrow x-5 > 0, x-5 < 2$	Split the inequality.
$\Rightarrow x - 5 > 0$	$ a > b \Rightarrow a > b$ or $a < -b$. Solve for $a > b$.
$\Rightarrow x > 5$	
$\Rightarrow x \in (5, +\infty)$	
$\Rightarrow x - 5 < 0$	$ a > b \Rightarrow a > b$ or $a < -b$. Solve for $a < -b$.
$\Rightarrow x < 5$	
$\Rightarrow x \in (-\infty, 5)$	
$\Rightarrow x-5 < 2$	$ a < b \Rightarrow a < b$ and $a > -b$. Solve for $a < b$.
$\Rightarrow x < 7$	
$\Rightarrow x \in (-\infty, 7)$	
$\Rightarrow x-5 > -2$	$ a < b \Rightarrow a < b \text{ and } a > -b$. Solve for $a > -b$.
$\Rightarrow x > 3$	
$\Rightarrow x \in (3, +\infty)$	
$\Rightarrow x \in ((-\infty, 5) \cup (5, +\infty)) \cap ((-\infty, 7) \cap (3, +\infty))$	Combine intervals.
$\Rightarrow x \in ((-\infty, 5) \cup (5, +\infty)) \cap (3, 7)$	
$\Rightarrow x \in (3,5) \cup (5,7)$	Final answer.
	■,