13주차 3차시 인터넷 관리 구조

[학습목표]

- 1. 네트워크 관리 프로토콜인 SNMP와 MIB에 대해 설명할 수 있다.
- 2. SNMPv2에 대해서 설명할 수 있다.

학습내용1: 네트워크 관리 프로토콜인 SNMP

1. 개요

- SNMP : 실제적으로 프로토콜 자체, 데이터베이스 정의, 관련된 개념을 포함한 네트워크 관리에 대한 명세서들을 모아놓은 것
- 전형적인 SNMP 프로토콜의 구성

- SNMP (Simple Network Management Protocol)
 - 네트워크 호스트들이 네트워크 관리를 위해 필요한 정보를 주고받기 위해 사용

RFC 문서	설 명	
RFC 1155	Structure of Management Information (SMI) - 관리 정보의 정의를 위하여 공동의 구조들 그리고 검증 계획을 지정	
RFC 1156	Management Information Base (MIB-1) - 어떤 사물들을 관리하는 것을 포함하며 그들의 이름 문법, 정의, 접근 그리고 상태를 지정	
RFC 1157	Simple Network Management Protocol (SNMP) - 관리국과 에이전트 사이의 통신을 정의	
RFC 1212	Concise MIB Definitions - 어떻게 MIB를 간결하고 서술적으로 write 하는지를 정의	
RFC 1213	Management Information Base (MIB-2) - 114에서 171까지의 수를 넓히는 새로운 MIB를 지원하는 RFC 1156의 개정판	
RFC 1215	A Convention for Defining Transfer use with the SNMP - SNMP가 사용하는 Trap을 규정하는 straight-forward 법을 규정	
RFC 1239	Reassignment의 시험적인 MIB에서 표준 MIB - 시험적인 MIB를 정의하는 RFC 1229, 1230, 1231, 1232, 1233의 최신판	

- SNMP의 프로토콜 동작
 - GetRequest, GetNextRequest, GetBulkRequest와 같은 Gets, Set, Trap 메시지로 구성

- 관리국들 간의 통신은 InformRequest를 이용하며, Gets와 Set은 관리국에서 만들어져 에이전트에서 실행되며 트랩은 에이전트에서 만들어져 관리국에게 알림

• SNMP 메시지 및 PDU 형태

• SNMP 메시지 구조

- CMIP와 SNMP의 비교
 - 객체지향적인 GDMO와 그렇지 않은 SMI에 가장 큰 차이
 - 모든 장비의 통합관리라는 개념의 TMN하에서는 CMIP가 채택

	CMIP	SNMP	
스키마(schema) GDMO		SMI	
상속성, 동질성	지원함	지원 안함	
객체 관계성	포함 형태	테이블 형태	
객체 이름	구분된 이름	객체 확인자	
범위, 필터링	지원함	지원 안함	
통신 방식	연결형	비연결형(v2는 연결형 규정)	
관리 방식	event-driven	trap-polling	
통신 확인	응답 확인 또는 선택	응답 확인 기능 없음	
기본 서비스	M-Get, M-Set, M-Delete, M-Create, M- Action, M-Event-Report, M-Cancel-Get	Get, Get-Next, Set, Trap Get-Response Get-Bulk(v2), Get-Info- Req(v2)	

2. MIB (Management Information Base)

- 정의
 - TCP/IP에 기반을 둔 네트워크 관리 시스템의 기초는 관리하려는 요소에 관한 정보를 포함하는 데이터 베이스
 - 관리하려는 자원을 Object로 표현하며, MIB는 이러한 Object들의 구조적인 모임
- 관리 개체는 MIB의 Object 값을 읽음으로써 노드의 자원을 감시하며, 그러한 값들을 변경하여 노드의 자원을 제어
- SMI (Structure of Management Information)
 - MIB이 구성되고 정의되어 질 수 있는 범위 내에서의 일반적인 골격을 정의
 - MIB에서 쓰일 수 있는 데이터의 형태와 MIB의 자원들이 어떻게 나타내어지고 이름 붙여지는지를 정의
 - SMI은 MIB내에서의 단순성과 확장성만을 고려

- MIB 구조

- MIB-II

- MIB-I의 두 번째 버전으로 몇 개의 Object와 몇 개의 그룹을 더한 MIB-I의 부분 집합
- MIB-II Object는 아래의 그룹으로 나뉨
 - system: 시스템에 관한 전체 정보
 - interfaces: 시스템으로부터 서브네트워크에 대한 각각의 인터페이스에 대한 정보
 - at (address translation): 인터넷에서의 주소변환 표에 대해 서술
 - ip: 임의의 서브네트 마스크를 지원하는 IP 경로설정 서브시스템들을 위한 정보
 - icmp: ICMP의 구현과 실행 연구와 관련된 정보
 - tcp: 지원되는 최대 연결 개수, 연결된 개수, 특정 연결 정보(connection state, local address, local port, remote address, 그리고remote port)
 - udp: 수신된 UDP 데이터그램의 총 개수와 에러 개수에 관한 정보
 - egp: 다양한 메시지 개수와 EGP 이웃에 관련된 정보
 - transmission: 각 시스템 인터페이스에서의 전송 기법과 접근 프로토콜에 관한 정보
 - snmp: SNMP에 관련된 정보

- RMON (Remote network MONitoring)

- LAN 세그먼트에 대한 각종 성능 관련 통계 데이터를 수집하고 저장
- SNMP를 이용하여 관리국에게 필요한 정보 전달
- 원격지에서 NMS를 이용하여 필요한 조치를 가능케 함
- 각종 네트워크 성능에 관련된 통계자료를 수집 및 분석하여 관리국이 필요한 정보만을 가공하고 리포트
- RMON MIB은 RFC 1757에 정의

학습내용2 : SNMPv2

1. SNMPv2 (Simple Network Management Protocol ver.2)

- 1) 등장 배경
- 관리해야 될 네트워크가 커지면서 성능상의 문제
- 대용량의 데이터 검색 문제, 트랩(trap) 정보의 확인 불가
- 취약한 보안 문제, SMIv1(Structure of Management Information Version 1)의 미흡, 관리시스템간의 통신 미지원 등

RFC 문서	설명		
RFC 1901	Community 기반의 SNMPv2를 소개		
RFC 1902	MIB Structure를 정의		
RFC 1903	Textual Conventions를 정의		
RFC 1904	Conformance Statements를 정의		
RFC 1905	Protocol Operations을 정의		
RFC 1906	Transport Mappings을 정의		
RFC 1907	MIB을 정의		
RFC 1908	버전1과 버전2의 공존에 대해 설명		

- 비집중 네트워크 관리
- 네트워크가 방대해지고 트래픽이 증가함에 따라 중앙 집중적인 네트워크 관리 구조는 전체 네트워크를 관리하기에는 관리국에 너무 많은 부하를 중
 - 이러한 구조는 관리국에 너무나 많은 부하를 줄뿐만 아니라 네트워크 전체의 트래픽을 증가시킴
 - 분산 네트워크 관리
 - 여러 개의 관리국이 존재하게 되는데 이들 각 관리국들은 관리하고자 하는 네트워크 전체 중에 일부의 에이전트들을 관리
 - 이들 관리국들은 자신이 관리하는 에이전트에 대한 관리 책임도 가지고 있지만 이들 관리국은 더 높은 단계의 관리국으로부터의 제어를 받음
 - 이러한 구조는 트래픽을 분산시키므로 전체적으로 네트워크 트래픽을 줄일 수 있고 관리국에 집중된 부하를 분산시킬 수 있음
- 대량 데이터 전송
 - SNMPv1에서는 한번의 요청에 제한된 데이터만을 교환
 - 에이전트나 관리국에서는 필요한 정보를 얻기 위해서 여러 번의 요청을 발생 시킴
 - 한번에 많은 메시지를 교환할 수 있도록 하기 위해서 SNMPv2에서는 SNMPv1의 Get 명령을 개선하여 GetBulk라는 새로운 명령을 추가

- 보안

- 인증된 사용자만이 SNMP를 이용하여 네트워크 관리 기능을 수행
- 인증된 사용자만이 에이전트로부터 네트워크 관리를 위해 필요한 정보를 요청
- 인증
 - 인증은 에이전트가 인증된 관리자로부터 온 명령에 대해서만 응답하도록 정당한 관리자인지를 확인하는 것
- 비화
 - 제3자가 관리자와 에이전트 사이에 메시지 교환에 대한 도청을 못하도록 메시지 자체를 암호화하여 보내므로 제3자가 전혀 알아볼 수 없도록 함
- 접근
 - 피관리 개체 즉 에이전트가 관리자에 따라 서로 다른 접근 권한을 제공

2. SNMPv3 (Simple Network Management Protocol ver.3)

- SNMP v1과 v2가 함께 결합하여 사용되는 보안 기능을 정의
- RFC 2271에서는 현재와 미래의 모든 SNMP 관련 버전들의 아키텍처를 기술
- RFC 2275는 액세스 제어 기능을 서술

- RFC 정의

SNMP Version	RFC	기 능
	RFC 1155	TCP/IP 네트워크상에서의 관리 정보의 구조
CNINADOA	RFC 1157	SNMP 관리 프로토콜 정의
SNMPv1	RFC 1213	Linux 및 VxWorks상에서의 MIB II 구현
	RFC 1215	SNMP상에서의 trap 정의
CNIMPOR	RFC 1901	SNMPv2 소개
SNMPv2	RFC 1907	SNMPv2상에서의 MIB
	RFC 2571	SNMP 관리 프레임워크 구성을 위한 구조 정의
	RFC 2572	메시지 Processing과 Dispatching 정의
CNIMD _{1/2}	RFC 2573	SNMPv3 응용 프로그램들 정의
SNMPv3	RFC 2574	사용자 기반의 보안에 대한 정의
	RFC 2575	View 기반의 접근 제어 모델 정의
	RFC 2576	SNMP v1, v2 & v3 MIB사이의 연관성 정의

[학습정리]

- 1. SNMP에서 프로토콜 동작은 Gets, Set, Trap의 3가지 서비스로 이루어진다.
- 2. 네트워크 관리 시스템에서 TCP/IP에 기반을 둔 네트워크 관리 시스템의 기초는 관리하려는 요소에 관한 정보를 포함하는 데이터베이스인 MIB이다.
- 3. SNMP 프로토콜은 단순하고 빠르며 쉬우나, 다수의 문제점이 발견되어 이를 보안한 SNMPv2 규격이 발표되었다.