

Tecnológico de Estudios Superiores de Ixtapaluca 📧

Nombre del alumno: Gallardo Hernández Evelyn Aline

Matricula: 202118340 Profesor, Ebner Juárez Elías

Cuestionario Escrito 1er parcial. Calificación:

Materia Análisis y Modelado de Datos

Valor total 30%

Instrucciones: contesta correctamente subrayando la respuesta correcta. Debes de entregar escrito a mano correctamente los códigos utilizados, así como compartir en GitHub un repositorio "cuestionario1_nombrealumno" al usuario profebner.

Problema 1: Una empresa de retail ha recopilado datos de ventas de múltiples sucursales, pero presenta valores faltantes, datos duplicados y errores tipográficos. El equipo de análisis de datos necesita limpiar el dataset antes de realizar análisis.

Tareas:

- 1. Cargar un dataset en R
- 2. Identificar y manejar valores faltantes
- 3. Detectar y eliminar valores duplicados
- 4. Estandarizar formatos de nombres de productos

Cuestionario de Evaluación

- 1. ¿Qué función se usa para eliminar valores duplicados en un dataframe en R?
 - a) remove_duplicates()
 - b) distinct()
 - c) filter_duplicates()
- 2. ¿Cuál es la mejor manera de tratar valores faltantes en una columna numérica?
 - a) Eliminarlos directamente siempre
 - b) Imputarlos con la media o mediana
 - c) Dejar los valores faltantes sin cambios
- 3. ¿Qué paquete de R facilita la manipulación de datos de manera eficiente?
 - a) ggplot2
 - b) tidyverse
 - c)
 - d) shiny

Problema 2 : Un equipo de marketing necesita analizar datos de interacción en redes sociales, pero los datos están en diferentes formatos y escalas, lo que dificulta el análisis.

Tareas:

- 1. Convertir variables categóricas en factores
- 2. Normalizar valores numéricos
- 3. Crear nuevas variables derivadas
- 4. Convertir fechas en formato adecuado

Cuestionario de Evaluación

- 1. ¿Qué función se usa para normalizar datos en R?
 - a) normalize()
 - b) scale()
 - c) rescale()
- 2. ¿Cuál es la ventaja de convertir variables categóricas en factores en R?
 - a) Permite realizar operaciones matemáticas en ellas
 - b) Mejora la eficiencia en el procesamiento y análisis
 - c) Hace que el dataset ocupe más memoria
- 3. ¿Qué función permite transformar una columna de texto en una fecha en R?
 - a) to_date()
 - b) as.Date()
 - c) convert_date()

Problema 3: Un analista de datos necesita fusionar dos datasets: uno con información de clientes y otro con sus compras. Es necesario unirlos de manera eficiente.

Tareas:

- 1. Cargar y explorar los dos datasets en R.
- 2. Unir los datasets
- 3. Verificar si hay claves duplicadas o valores faltantes después de la fusión.
- 4. Realizar una consulta de resumen para verificar la correcta integración.

- 1. ¿Cuál de las siguientes funciones se usa para unir dos datasets en R por una clave común?
 - a) merge()
 - b) left_join()
 - c) concat()
- 2. ¿Qué función permite identificar si hay valores duplicados en una columna clave?
 - a) table()
 - b) duplicated()
 - c) unique()

- 3. ¿Qué ocurre si se usa inner_join() en lugar de left_join()?
 - a) Se eliminan las filas sin coincidencias en ambas tablas
 - b) Se mantienen todas las filas de la tabla izquierda
 - c) Se duplican los valores de la clave

Problema 4: Un equipo financiero está analizando transacciones, pero ha detectado valores extremadamente altos o bajos en los datos. Es necesario identificar y manejar los outliers.

Tareas:

- 1. Identificar outliers mediante diagramas de caja
- 2. Usar el rango intercuartil para determinar límites de outliers.
- 3. Manejar los valores atípicos mediante eliminación o transformación
- 4. Comparar estadísticas antes y después del tratamiento.

Cuestionario de Evaluación

- 1. ¿Cuál es una forma común de identificar outliers en un dataset?
 - a) Usar un histograma
 - b) Aplicar la técnica del rango intercuartil (IQR)
 - c) Convertir los valores en c'{
 - d) eros
- 2. ¿Qué gráfico es más adecuado para visualizar outliers?
 - a) Diagrama de caja
 - b) Gráfico de dispersión
 - c) Gráfico de barras
- 3. ¿Cuál es una estrategia válida para manejar outliers en un dataset?
 - a) Eliminarlos sin análisis previo
 - b) Sustituirlos por la media o mediana
 - c) Ignorarlos completamente

Problema 5: Se ha recopilado información de una encuesta con respuestas en formato de texto, pero se necesita transformar las variables categóricas en valores numéricos para análisis estadístico.

Tareas:

- 1. Convertir variables cualitativas en numéricas
- 2. Aplicar codificación
- 3. Comparar cómo los modelos de machine learning reaccionan a diferentes codificaciones.

- 1. ¿Por qué es importante codificar variables categóricas en modelos predictivos?
 - a) Porque los modelos solo aceptan datos numéricos

- b) Porque mejora la visualización de datos
- c) No es importante codificarlas
- 2. ¿Qué técnica de codificación de variables categóricas crea múltiples columnas binarias?
 - a) One-hot encoding
 - b) Label encoding
 - c) Scaling
- 3. ¿Qué función en R se usa para transformar variables categóricas en factores numéricos?
 - a) factorize()
 - b) as.factor()
 - c) convert()

Problema 6: Un hospital ha recolectado datos de pacientes, pero algunas variables como presión arterial y nivel de glucosa tienen valores faltantes. El equipo de análisis necesita decidir cómo tratarlos antes de realizar estudios estadísticos.

Tareas

- 1. Cargar el dataset en R usando read.csv().
- 2. Identificar los valores faltantes con is.na() y summary().
- 3. Aplicar distintas estrategias para manejarlos: eliminación (na.omit()), imputación con la media (tidyverse::replace_na()), o interpolación.
- 4. Comparar los efectos de cada estrategia en el dataset final.

Cuestionario de Evaluación

- 1. ¿Qué función en R permite identificar valores faltantes en un dataframe?
 - a) missing values()
 - b) is.na()
- c) find NA()
 - 2. ¿Cuál es una estrategia válida para manejar valores faltantes en una columna numérica?
 - a) Eliminarlos sin analizar su impacto
 - b) Imputarlos con la media o la mediana
 - c) Dejar los valores sin cambios y proceder con el análisis
 - 3. ¿Cuál es una posible desventaja de eliminar todas las filas con valores faltantes?
 - a) Puede reducir la cantidad de datos y afectar la representatividad
 - b) No hay ninguna desventaja
 - c) Mejora la calidad de los datos siempre

Problema 7: Una empresa de inversiones necesita comparar el desempeño financiero de diversas empresas, pero los datos están en distintas escalas. Se requiere normalizar y estandarizar los datos para hacer comparaciones justas.

- 1. Cargar el dataset de indicadores financieros.
- 2. Aplicar estandarización utilizando scale().
- 3. Aplicar normalización con la fórmula (x min(x)) / (max(x) min(x)).
- 4. Evaluar las diferencias entre ambas transformaciones y decidir cuál es más adecuada.

- 1. ¿Cuál es la diferencia entre estandarización y normalización?
 - a) La estandarización ajusta los valores a una media de 0 y desviación estándar de 1, mientras que la normalización los escala entre 0 y 1
 - b) No hay diferencia entre ambas técnicas
 - c) La normalización siempre da mejores resultados
- 2. ¿Qué función de R permite estandarizar datos?
 - a) normalize()
 - b) scale()
 - c) standardize()
- 3. ¿En qué caso es más útil la normalización en lugar de la estandarización?
 - a) Cuando los datos tienen distribuciones con valores extremos
 - b) Cuando se requiere comparar datos en diferentes escalas
 - c) Cuando se trabaja con variables categóricas

Problema 8: Una empresa de comercio electrónico tiene un dataset con información de clientes y otro con el historial de compras. Se necesita fusionar ambas bases para **Tareas**

- 1. Cargar los dos datasets en R.
- 2. Fusionar los datos usando left join() de dplyr.
- 3. Detectar y manejar duplicados con distinct().
- 4. Verificar si hay inconsistencias después de la integración.

Cuestionario de Evaluación

- 1. ¿Qué función en R se usa para unir datasets por una columna común?
 - a) merge()
 - b) left join()
 - c) combine()
- 2. ¿Qué ocurre si se usa inner_join() en lugar de left_join()?
 - a) Se eliminan las filas sin coincidencias en ambas tablas
 - b) Se mantienen todas las filas de la tabla izquierda
 - c) Se duplican las filas sin coincidencias
- 3. ¿Cómo se identifican valores duplicados en R?
 - a) duplicated()
 - b) unique()
 - c) filter_duplicates()

Problema 9: Un equipo de calidad de una fábrica detectó que ciertos valores de producción están fuera de lo esperado. Se necesita identificar y decidir qué hacer con estos valores atípicos.

Tareas

- 1. Visualizar los datos con un diagrama de caja usando ggplot2::geom_boxplot().
- 2. Determinar outliers utilizando el rango intercuartil (IQR).
- 3. Aplicar estrategias para manejarlos: eliminación, transformación o imputación.
- 4. Analizar el impacto de cada estrategia en el dataset.

- 1. ¿Cómo se detectan valores atípicos en un conjunto de datos?
 - a) Usando diagramas de caja y la técnica del rango intercuartil

- b) Eliminando cualquier dato que parezca extraño
- c) Usando solo la media y la desviación estándar
- 2. ¿Cuál de los siguientes métodos es adecuado para visualizar outliers?
 - a) Gráfico de barras
 - b) Diagrama de caja
 - c) Histograma
- 3. ¿Cuál es una estrategia válida para manejar valores atípicos?
 - a) Siempre eliminarlos
 - b) Analizar su impacto y considerar imputaciones o transformaciones
 - c) Ignorarlos y proceder con el análisis

Problema 10: Se han recopilado respuestas de una encuesta donde las variables son de tipo categórico (por ejemplo, satisfacción del cliente: "baja", "media", "alta"). Se requiere convertir estos datos en formato numérico para análisis estadístico.

Tareas

- 1. Convertir variables categóricas en factores con as.factor().
- 2. Aplicar codificación one-hot con model.matrix().
- 3. Evaluar cómo estas transformaciones impactan en modelos de regresión.

- 1. ¿Por qué es importante codificar variables categóricas en modelos predictivos?
 - a) Porque los modelos estadísticos requieren datos numéricos
 - b) Porque es obligatorio para todas las variables
 - c) No es necesario codificarlas
- 2. ¿Qué técnica de codificación crea múltiples columnas binarias?
 - a) One-hot encoding
 - b) Label encoding
 - c) Scaling
- 3. ¿Qué función permite convertir una variable categórica en un factor en R?
 - a) as.factor()
 - b) convert()
 - c) factorize()

Corgai el dataset	
data 4 - read cov ("data cov")	
Maneyo de valores faltantes	
pant (15. na (data)) prot (summary (data))	
for I col in colnames (data)) { If Lany (is no Idata [[Col]]])) { If [is nomine (data [[Col]]])) { media [[col]] <- If else (is no Idata [[col]]), media col, data [[col]] ? TISE	(1)
Hoda lable-firq <- table (data [[(o)])) meda ool 2- name o (table frq I will max (table-freq))] data [[(o)] <- if else (is, na (data [[col)]) mode (o), data [(cd))
Eliminar Valores de 4 - distinct (data) HEUSean distinc	
Lest nombre producto "/on/, coloamos (data) E data d nombre producto (tolower (+ nombre producto)	ucto))

																											-									
		con	CKS	id	1																									1						
	ro	d s	9	tu sla	ta	Info	ter de	200	-	aci	3.	as fac	to	C.	Cyc	to	本出	01	Cvo	le of	+	MC	10	n t	era -U	LC	er ic	1								
	rec	d	1 2	201	col	4	1	S.	na	ah	- (10	d	1	4	Co.	ch 17	a,	f	nn			11	-/	1				10/		Y	(1)				
			10-11	(x	X	70	total	m=	T	RI	ne	111	1	37	2=	1	B	0 6		1/																
	Fe	d			1			T	\$	nai	me (01	n	to	va	CC	10	ar S)	ny	LIN	n	ne	X	-	100	3	no	D FV	er	8 1	nte	rae	LLA	rcs)	
	TTO VED	1 30	WY IN	23	1		40	0.0	ma	1	LYT	d	\$	1	e	4	C.		II y	1	m	Le)												-	
	16	15	l Im	(1 1	50	ep.	an	en I	2		4	3	. 1	101	me	1		1	ec	S	+	1	5	~										-	
	Cons		ol s					4				T												910		mi	ny	no	×	(*	Cal	\$1	40	la	1)	
15	L'a	1.19	here	che X	+3	(v	eol a	\$ 4	fe Do	chate	a ,	1	1	a \$	the a	11	ha	× 5.	tv	X	F	**	mei	+=		-	00	1	1	d	14	· m	14	->	L.	
																																	1	1		
		-			-													-																		

Problema 3
Libreria
library (dplyx)
fusionado - morge (chientos, compras, by = "id-chiente, all = TRUE)
Varificar Lidavos du plicadas
diplicados < + fusionado 7. > /1. group - by (Id= cliente y. > 1. Filter(n
pant (d opliados)
Consultar resumen.
Vesumen 4-fisimado 1.7%
group-by (1d-cliente) 1/27/. Summarise (total compras=n(),
mento-total 2 som (mondo, na com = TRUE)
Problema 4
transacciones L- data, framal
Monto = C (rnoin (50, mean = 1000, 5d = 200);
200,150)
gg plo + (transaculares, acs (y = Manta)) +
goon box plot (fill = "Skyblut", polar = "black") +
y = "Manto de fransciació") +
the me and mall)
Rango Interna (1+1)
Q12-quantile (transacciones & Monto, 025)
12n2-03-01

CLUN CHARCINE CIVE OVE OSAS COM	(FECHA:	
Dutliers 2 - transacrops & Montal Fransaccion ed M	control limite Inferior Hrassacewas	
thanto Etransacciones 4 monto < 1 pain + lauthos) Manajar authors transacciones - fi tradus c - transacciones « t lumito - interior & transacciones & Monto «	ransacueres of Monto 70	
Practica 5 Codificaçá Ohe Hot		
enquesta & Id < - 1 nrow (encesta formala - one hot < as. formula (pastel ("n") L scoply [charsta is faction]] Collapse = ""+" one hot - c nioded < model matrix (formula - one hot - encoded dfd - as. data frame (bne encursta codificada one hot < merge (enc by , x = "Id" by , y = "formance") encursta codificada one hot hotsid < N	- hot - encoded df,	
1 f (! 1 sinull concrete podetica - la hol st formula jahrel < - as formula (pastr 1 " Varia + nuclei codifice labor) Esapply (concrest numera) & name (concepts - codificada - 1	variable - numerica)) { be som a u pust (alnowa (- co difi cade - la hel, is. abel) / n /	
modelo- label <- Im (formula label) label) print ("Accomen de (model")	are = encesta codificade	
		4

Practica 6 hospital & read (SV ("hospital, (SV")) som (15, na (hospital)) col Soms (15 na (hospital) Hospital - limpio namit (na, amit (hospital) Hospital - impotado - media K- hospital /- 7-/ Nent [Prosa - or treal = replace - nal erosin - artenal, na in = True Glocosa = regime - na (6 lucosa, mean (6 lucosa, na v m = TRE)) Pactica 7 emprosa L- read (5v ("emprosussu) Colomnas ponacios L- datos E, (("Ingresos" -" Utilialades Neto", "ROE" dates estaderizados 4- as data frant (scale (columnos-Normalizatia (x-min(x)) / max(x) - min(x)) no mail or & fincin (x) } (x-min(x, na. in= TROE)) / (max (x, maim = TRUE) -Comin (x, na. (m= TAUE dutos - normalizados Kdesta franc (19pp)y resumment estenderizadol - Sommary (datos astandicizados)

OTH OTH OTH									
Practica 8									
Chents 4- read	CSW (NC 1/2	ales to							
fusionado 4 - left	, chi	HPS C	a la la	W- W-	1 01	2011)			
fusionado L - left	John (Click	1. die	Hinc+ C	y - 10	la Cli				
duplicados 4-							1. 6,	(tech	(1)
group-by lid	asianado /. > t	1				THE L			
men to to to = 5	Sum (monto) n	erm =	RUED)						
								WELL	
Practice 9									
Set , seed (123									
Producention K- det	a franci								
Unidales=1 (1 mon 800, 850	m (50, mean	= 500	, ed =	50)					
200,150									
ggplo+(produce geom_bexplex	ion, aesly	Elmida that blue	les)) +	- 10	black	60			(
labol + 1+1= x						1			
									-
Q14-quantitle	production !	\$ mide	6,0.2.	2)		-100		411	
	* 1					141		N. I	
Produccia - sin	outliers 4	praduc	cum I	orduce	Can of	Uh. d.	1		-
limite -infena	& producin.	1 ma	de	1100		The state of the s	7		
					16 - 8	peno			

			[BEAL		IE (1																				
J		-	-	1	-	T	T	1				T	T					T	T	T	T	T	-												
7	Ca	ic.	fu	COL	9	10)	4									-		-	-	1	-													
	7	1+4	4	5	at	15	ta.	co	in	4	9	344	91	a:	5.	£	. (10	-	00	da .	4	\$	59	+	34	Lo	000	1)				I		
		ah			717							4														-									
	0	da.	h	ot	-	1	10	1	le	d	1	4	-	m	60	le!	0	MC	L tr	LX		la	15	Der.	15	te	10	dan	+	3	210	100	0	1	1
		a l										Conc		1	10		m		y v		- 0		0		N	1 -		0		-	-				
																							- 3							100		-	L. L.		
		00																4 +	1		4	2	LTI	CAZ	77.	1	100	2.8 1 3							
	E	0	00	e	4))	SL) IV	pa	av	4	-	n	0	de	10)												İ						1
						1									-				1								-				1				
			1														1		1	-										-	+	-			
																			1							I			I		1	1			
																													1		1	1			1
																								-							1				
																	1																		
																							-		1	1	1	-	-			-	-	-	+
																									1	1					-			1	-
																	-									-				1					
										-					-									-	-	-		-	1	-	1				
									-	-													1	1	-	1		-	H	-	-				
															-	-					-	-			1		-								
								-	-	-			-	+	1								1										1		