Удвоение куба

Взгляд на задачу под другим углом.

АСКАРБЕКОВ АЛМАС СЕРИКОВИЧ

almas@diamondsection.com 23 мая 2018 г.

Аннотация

Удвоение куба — классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба[1].

Задача сводится к тому, что необходимо построить отрезок равный $\sqrt[3]{2}$ используя циркуль и неразмеченную линейку.

В 1837 году Пьер Ванцель доказал, что эта задача не может быть решена с помощью циркуля и линейки.

Оглавление

1			3
	1.1	Построение	3
		1.1.1 Доказательство	8
	1.2	Определение	11
	1.3	Заключение	12
	1.4	Приложение	13
	1.5	Ссылки	14
	1.6	Благодарность	14

Глава 1

1.1 Построение

1. Построим базовые линии и окружности радиусом r=1 как показано на рис 1.1.

Рис. 1.1: Базовые окружности

2. Затем построим прямоугольный треугольник $\triangle ANB$ (Рис. 1.2) со стороной t=0.75.

Рис. 1.2: Прямоугольный треугольник

Вычислим гипотенузу:

$$s = \overline{NB} = \sqrt{a^2 + t^2} = \sqrt{1^2 + 0.75^2} = 1.25 \tag{1.1}$$

3. Отсюда отношение катета к гипотенузе:

$$\frac{a}{s} = \cos \angle ABN = \frac{1}{1.25} = 0.8. \tag{1.2}$$

Что бы построить это отношение проведем линию через точки N и B. Мы получим точку O и точку P. (см. Рис. 1.3)

4. Теперь построим окружность с центром B и радиусом = BP (см. Рис 1.4)

5. Затем построим луч из точки C(2,0) через точку Q которая является пересечением окружности и отрезка \overline{BG} . (см. Рис. 1.5).

6. Затем получим точку R как показано на рис. 1.6

Отрезок BR это биссектриса \triangle BQC (см. Рис. 1.7)

Итак у нас есть треугольник \triangle BQC где $BQ = BP = \frac{a}{s} = \cos \angle ABN$.

Рис. 1.7: Треугольник BQC

7. Вычислим биссектрису BR по формуле длины биссектрисы для угла в 60 градусов:

$$f = \frac{2nk}{k+n} \times \cos 60^{\circ} = \frac{2nk}{k+n} \times \frac{\sqrt{3}}{2}$$
 (1.3)

где: k = BQ = 0.8; n = BC = 1; следовательно:

$$f = \frac{2 \times 0.8}{1 + 0.8} \times \frac{\sqrt{3}}{2} \approx 0.769800358919501 \tag{1.4}$$

8. Построим окружность с радиусом = f и центром в точке B(1,0) и получим точку D (см. Рис. 1.8)

Рис. 1.8: Окружность где радиус = биссектриса BR

9. Затем снова построим прямоугольный треугольник $\triangle BDC$ как показано на рис. 1.9.

Итак мы получили прямоугольный треугольник $\triangle BDC$. Соответсвенно дальше мы повторяем действия:

строим значение косинуса

строим треугольник с углом в 60 градусов

находим биссектрису

строим прямоугольный треугольник

и так снова и снова.

Повторяя эти построения, через n-ное построение мы получим $\sqrt[3]{2}$ как длину гипотенузы прямоугольного треугольника. Таким образом длина гипотенузы вычисляемая по приведенной последовательности стремится к $\sqrt[3]{2}$.

.

1.1.1 Доказательство

Основная идея похожа на концепцию рекурсии.

Алгоритм выглядит так:

1 итерация:

$$\frac{1}{\sqrt{a^2 + t_0^2}} = t_1; \quad \frac{2 \times t_1}{1 + t_1} \times \frac{\sqrt{3}}{2} = t_2 \tag{1.5}$$

2 итерация

$$\frac{1}{\sqrt{a^2 + t_2^2}} = t_3; \quad \frac{2 \times t_3}{1 + t_3} \times \frac{\sqrt{3}}{2} = t_4 \dots \tag{1.6}$$

n-ная итерация:

$$\frac{1}{\sqrt{a^2 + t_n^2}} = t_{n+1}; \quad \frac{2 \times t_{n+1}}{1 + t_{n+1}} \times \frac{\sqrt{3}}{2} = t_{n+2} \quad \dots \tag{1.7}$$

Где $t_0=t=0.75$. Здесь мы выбрали 0.75 для удобства, т.к. это значение легко построить циркулем. Однако мы получим $\sqrt[3]{2}$ при любом произвольно выбранном отрезке и результат вычислений будет стремится к $\sqrt[3]{2}$. Точность зависит от количества итераций, соответсвенно мы можем получить результат с любой заданной точностью: 10^{-9} , 10^{-19} или 10^{-29} и т.д.

1 итерация: $\triangle ANB$; где AN=t=0.75; гипотенуза и косинус соответсвенно:

$$NB = \sqrt{1^2 + 0.75^2} = 1.25 \tag{1.8}$$

$$\cos = \frac{1}{1.25} = 0.8 \tag{1.9}$$

биссектриса:

$$\frac{2 \times 0.8}{1 + 0.8} \times \frac{\sqrt{3}}{2} \approx 0.769800358919501 \tag{1.10}$$

гипотенуза:

$$\sqrt{1^2 + 0.769800358919501^2} \approx 1.261979632400061 \tag{1.11}$$

2 итерация:

$$\cos = \frac{1}{1,261979632400061} \approx 0,792405815693061 \tag{1.12}$$

биссектриса:

$$\frac{2 \times 0.792405815693061}{1 + 0.792405815693061} \times \frac{\sqrt{3}}{2} \approx 0.765723432147395 \tag{1.13}$$

гипотенуза:

$$\sqrt{1^2 + 0.765723432147395^2} \approx 1.259496873572772 \tag{1.14}$$

Я вычислил значения для 20-ти итераций, затем проанализировал данные. В таблице 1.1 первая колонка содержит значения катета, во второй колонке значения гипотенузы.

iteration	катет=биссектриса	гипотенуза
1	0.769800358919501	1.261979632400061
2	0.765723432147395	1.259496873572772
3	0.766564817073686	1.260008578849848
4	0.766391253457252	1.259902993637120
5	0.766427060119643	1.259924774930487
6	0.766419673248706	1.259920281423651
7	0.766421197157344	1.259921208430153
8	0.766420882775838	1.259921017189131
9	0.76642094763258	1.259921056642051
10	0.766420934252668	1.259921048502934
11	0.766420937012937	1.259921050182029
12	0.766420936443495	1.259921049835633
13	0.76642093656097	1.259921049907094
14	0.766420936536735	1.259921049892352
15	0.766420936541735	1.259921049895393
16	0.766420936540704	1.259921049894766
17	0.766420936540916	1.259921049894895
18	0.766420936540872	1.259921049894869
19	0.766420936540881	1.259921049894874
20	0.766420936540879	1.259921049894873

Таблица 1.1: Значения для 20-ти треугольников

После анализа данных 1 и применения модели регрессии, получилось кубическое уравнение:

$$y = 0.375x^3 - 0.5x^2 + 1.25x (1.15)$$

Рис. 1.10: Функция

¹Значения гипотенузы

Нас интересует значение гипотенузы на 20-ой строке (Таблица 1.1) и значение медианы (см. Статистику на рис. 1.11).

Итак это значение = **1.259921049894873** = $\sqrt[3]{2}$ с точностью до 10^{-15} .

Истинное значение $\sqrt[3]{2} = 1.25992104989487316...$ с точностью до 10^{-17} .[2]

Здесь стоит отметить что мы получили результат с точностью до 10^{-15} потому что в таблице были использованы данные округленные до 10^{-15} , следовательно если мы будем использовать данные округленные до 10^{-25} в итоге мы получим значение $\sqrt[3]{2}$ с точностью до 10^{-25} . Статистика и график 2 на рис. 1.12 наглядно показывают что результат стремится к $\sqrt[3]{2}$.

Рис. 1.11: Анализ данных и статистика

Рис. 1.12: График

²График доступен по ссылке: https://www.geogebra.org/classic/TpwsEbx2

1.2 Определение

$$\lim_{n \to \infty} \frac{1}{\sqrt{1 + \left(\frac{2d_n}{1 + d_n} \frac{\sqrt{3}}{2}\right)^2}} = \frac{1}{\sqrt[3]{2}}$$
 (1.16)

$$\sqrt[3]{2} = \lim_{n \to \infty} \sqrt{1 + b_n^2} \tag{1.17}$$

где:

$$b_0 > 0, b_1 = \frac{1}{\sqrt{1+b_0^2}}, b_2 = \frac{2 \times b_1}{1+b_1} \times \frac{\sqrt{3}}{2}$$
 (1.18)

$$b_{n+1} = \frac{1}{\sqrt{1 + b_n^2}}, \qquad b_{n+2} = \frac{2 \times b_{n+1}}{1 + b_{n+1}} \times \frac{\sqrt{3}}{2}$$
 (1.19)

Таким образом в пределе мы получим (см. Рис. 1.13) следующее:

$$d = \frac{a}{s} = \frac{1}{\sqrt{1+b^2}} \tag{1.20}$$

$$b = g = \frac{2 \times d}{1+d} \times \frac{\sqrt{3}}{2} \tag{1.21}$$

$$s = \frac{1}{d} = \sqrt[3]{2} \tag{1.22}$$

1.3 Заключение

Мы видели, что применяя определенную последовательность действий, возможно получить $\sqrt[3]{2}$ с любой, какой угодно заданной точностью. При этом мы используем только циркуль и неразмеченную линейку. Также мы ознакомились с нетривиальным способом геометрических построений, который нигде до этого момента не упоминался.

1.4 Приложение

Я нашел интересное свойство треугольника со сторонами: $a=1;\,b=\sqrt{\varphi-1};\,c=\sqrt{\varphi}$ где $\varphi\approx 1.6180339887$ (см. Рис. 1.14)

Рис. 1.14: Интересный треугольник

Если мы возьмем **произвольную** сторону b для прямоугольного треугольника a=1, и рекурсивно применим следующее:

$$\frac{1}{\sqrt{a^2 + b^2}} = b_1; \ \frac{1}{\sqrt{a^2 + b_1^2}} = b_2; \ \frac{1}{\sqrt{a^2 + b_2^2}} = b_3; \ \dots \frac{1}{\sqrt{a^2 + b_{n-1}^2}} = b_n \tag{1.23}$$

То после n-ного количества итераций мы получим следующие значения:

$$a = 1; (1.24)$$

$$b = \sqrt{\varphi - 1} \tag{1.25}$$

$$c = \sqrt{\varphi} \tag{1.26}$$

Следовательно наш треугольник с произвольно выбранной стороной b стал равен треугольнику показанному на рис. 1.14.

Другими словами произвольно выбранная сторона b стремится к $\sqrt{\varphi-1}$

1.5 Ссылки

website: http://diamondsection.com

e-mail: jobspace@yandex.com

github: https://github.com/AlmasAskarbekov

1.6 Благодарность

https://geogebra.org

Keywords: Удвоение куба, античные задачи, $Geometric\ problems\ of\ Antiquity,\ geometry,\ doubling\ the\ cube,\ the\ delians\ problem$

Литература

- [1] https://en.wikipedia.org/wiki/Doubling_the_cube
- [2] https://oeis.org/A002580

@miscDiamondSection2018, author = Almas Askarbekov, title = Удвоение куба. Исследование, year = 2018, howpublished = https://github.com/DiamondSection/Doubling-the-cube-SolutionLatex, note = commit dbgsxxx