Задача 1

Постановка

Существует алфавит размера m. Сколько можно построить строк длины n, чтобы любая подстрока длины k являлась палиндромом. Подстрока - это палиндромом, если она одинаково читается как слева направо, так и справа налево.

Входные данные

Строка содержит три целых числа: n, m и k.

Выходные данные

Одно целое число — количество строк.

Пример 1

Входные данные	Выходные данные
111	1

Входные данные	Выходные данные
5 2 4	2

Задача 2

Постановка

В зоопарке живёт n панд. Все они стоят в ряд и пронумерованы от 1 до n. Рост i-й панды равен a_i .

Группа - не пустой непрерывный отрезок этого ряда. Силой группы является минимальная высота панды в этой группе.

Майку хочется знать для каждого x, такого что $1 \le x \le n$, найти максимальную силу группы размера x.

Входные данные

В первой строке ввода записано целое число n, количество панд. Во второй строке записано n целых чисел $a_1, a_2, ..., a_n$ — высоты панд.

Выходные данные

Выведите n целых чисел - максимальных сил групп для заданных значений x.

Входные данные	Выходные данные
10	6443322111
1234543216	

Задача З

Постановка

Есть массив a размера n.

Подпоследовательность может быть получена из a с помощью удаления некоторых элементов без изменения порядка.

Цена подпоследовательности s определяется как минимум между:

- Максимумом по числам, стоящим на нечетных позициях.
- Максимумом по числам, стоящим на четных позициях.

Все позиции нумеруются с 1. Можно определить цену s так:

$$\min(\max(s_1, s_3, s_5, \dots), \max(s_2, s_4, s_6, \dots)).$$

Необходимо найти минимальную цену подпоследовательности размера k.

Входные данные

В первой строке находится два целых числа n и k - размер массива a и размер подпоследовательности.

В следующей строке находится n целых чисел a_1, a_2, \ldots, a_n — элементы массива a.

Выходные данные

Выведите минимальную цену подпоследовательности размера k.

Пример 1

Входные данные	Выходные данные
4 2	1
1 2 3 4	

Пример 2

Входные данные	Выходные данные
6 4	3
5 3 50 2 4 5	

Входные данные	Выходные данные
43	2
1 2 3 4	

Задача 4

Постановка

Есть расположенные в линию лампы (количество n). Лампа изначально имеет одно из состояний: выключена (0) или включена (1).

Вам дано k подмножеств A_1, \ldots, A_k множества ламп $1, 2, \ldots, n$, таких что пересечение любых трех подмножеств пусто.

Можно взять одно из k подмножеств и изменить состояние всех ламп из этого подмножества на противоположное. Гарантируется, что для данных подмножеств можно совершить несколько операций так, чтобы все лампы стали включенными.

Обозначим за m_i минимальное количество операций, которое вы должны совершить, чтобы первые i ламп оказались включенными. Обратите внимание, что при этом состояние других ламп (с номерами между i+1 и n) может быть любым.

Необходимо посчитать минимальное количество операций которое нужно совершить, чтобы первые i ламп оказались включенными для всех i ($1 \le i \le n$).

Входные данные

В первой строке n и k.

Во второй строе записаны начальные состояния всех ламп.

Далее следуют описания k подмножеств:

- В первой строке находится целое число c ($1 \le c \le n$) количество элементов в подмножестве.
- Во второй строке находится c целых чисел x_1, \ldots, x_c ($1 \le x_i \le n$) элементы подмножества.

Выходные данные

Необходимо через пробел вывести минимальные количества операций необходимых для того чтобы включить лампы от 1 до i для всех i.

Входные данные	Выходные данные
73	
0011100	
3	1233333
1 4 6	
3	
3 4 7	
2	
23	

Пример 2

Входные данные	Выходные данные
5 3	
00011	
3	11111
123	
1	
4	
3	
3 4 5	

Входные данные	Выходные данные
19 5	
1001001001100000110	
2	
23	0111222333344444445
2	
56	
2	
89	
5	
12 13 14 15 16	
1	
19	