

Grafos: árbol de recubrimiento mínimo

árbol de recubrimiento mínimo

Dado un grafo G(A,V) un **árbol de recubrimiento mínimo** (MST - Minimum Spanning Tree) es un árbol (subgrafo conexo y sin ciclos) que contiene todos los vértices del grafo ponderado no dirigido G y además su peso es **mínimo** (menor o igual que el de los otros árboles de recubrimiento

árbol de recubrimiento mínimo

Un árbol de recubrimiento mínimo es un subgrafo que contiene todos los vértices del grafo original pero tiene V-1 aristas

La principal aplicación de los árboles de recubrimiento mínimos está en el campo del diseño de redes

Joseph Kruskal

- 1. Ordenar las aristas en orden de peso creciente
- Tomar la arista con menor peso y agregarla al árbol, si la arista forma un ciclo se descarta, sino se agrega al árbol
- Repetir el paso 2 hasta que se hayan agregado V-1 aristas que conforman el árbol de recubrimiento mínimo

Paso 1: (7,6)

Paso 1: (7,6) Paso 2: (6,5)

Paso 1: (7,6)

Paso 2: (6,5)

Paso 3: (2,8)

Paso 1: (7,6)

Paso 2: (6,5)

Paso 3: (2,8)

Paso 4: (0,1)

Paso 1: (7,6)

Paso 2: (6,5)

Paso 3: (2,8)

Paso 4: (0,1)

Paso 5: (2,5)

algoritmo de Kruskal: eficiencia

La complejidad es de O (a log v) Siendo v el número de vértices y a el número de aristas del grafo.

Implementá el algoritmo de Kruscal para hallar un árbol de recubrimiento mínimo en un grafo. Partiendo una representación como lista de aristas.


```
#include<algorithm>

struct Arista{
  int origen;
  int destino;
  int peso;
  bool operator < (const Arista& a1) const {
     return (peso < a1.peso);
  }</pre>
```

```
sort(aristas, aristas+a);
```


};


```
class Grafo {
     private:
           int v;
           int a;
           int na;
           Arista* aristas;
           int Find(int* padre, int i);
           void Union(int* padre, int x, int y);
     public:
           Grafo(int,int);
           ~Grafo();
           void AgregarArista(int,int,int);
           void Mostrar();
           void Kruskal();
};
```



```
int compararArista(const void* a, const void* b)
   Arista* pa = (Arista*)a;
   Arista* pb = (Arista*)b;
    return pa->peso > pb->peso;
```



```
void Grafo::Kruskal(){
    Arista resultado[v];
    int r = 0; // indice resultado
    int o = 0; // indice para las aristas ordenadas
    int* padre = new int[a];
     for (int i = 0; i < a; i++){
           padre[i] = -1:
     sort(aristas, aristas+a);
     while (r < v - 1){
           Arista aristaCandidata = aristas[o++];
            int x = Find(padre, aristaCandidata.origen);
            int y = Find(padre, aristaCandidata.destino);
           if (x != y){
                resultado[r++] = aristaCandidata;
                Union(padre, x, y);
```



```
cout << "Arbol de recubrimiento mínimo" << endl;
for (int i = 0; i < r; ++i)
        cout << resultado[i].origen <<" --- " << resultado[i].destino <<" = " << resultado[i].peso <<
endl;
    return;
}</pre>
```

algoritmo de Prim

- Como el algoritmo de Kruskal también es un algoritmo voraz
- Comienza con un árbol de recubrimiento mínimo vacío
- Mantiene dos conjuntos de vértices: uno con aquellos incluidos en el árbol de recubrimiento mínimo y otro con aquellos que todavía no han sido incluidos
- En cada paso se consideran todas las aristas que unen ambos conjuntos y se elige la de menor peso. Una vez que se selecciona la arista se agrega el vértice opuesto al árbol de recubrimiento mínimo

algoritmo de Prim

Robert C. Prim

Vojtěch Jarník

algoritmo de Prim

- 1. Crear un conjunto mst que mantiene la información de los vértices que han sido ya agregados al árbol.
- Inicializar con INFINITO todos los vértices del grafo. Inicializar con 0 el vértice inicial así es seleccionado primero
- Mientras mst no contenga todos los vértices:
 - a. Seleccionar el vértice u que todavía no está en mst y tiene el mínimo valor
 - b. Incluir u en mst.
 - c. Actualizar el valor de los vértices adyacentes a u: para cada vértice v adyacente a u, si el peso de (u,v) es menor que el valor asignado actualmente a v, actualizarlo con el peso de (u,v)

algoritmo de Prim: eficiencia

La complejida es de O (v²) Siendo v el número de vértices del grafo.

Como n-1
$$\leq$$
 a \leq n (n - 1) se cumple, entonces:

- Si a ≅ n conviene utilizar Kruskal
- Si a ≅ n2 conviene utilizar Prim

Ejercicio 1.21.

Implementá el algoritmo de Prim para hallar un árbol de recubrimiento mínimo en un grafo. Partiendo una representación mediante matriz de adyacencia.

Ejercicios adicionales

Ejercicio 1.24.

Escribí una función que determine si en un grafo dirigido hay un ciclo. Esto puede ser determinado mediante una variante de la búsqueda en profundidad (DFS).

Ejercicio 1.25.

Escribí una función que determine si un grafo es un grafo estrella

Criterio;

Para V = 1 habrá un solo nodo

Para V >= 2: todos los vértices tienen que tener grado 1 menos un vértice que tendrá grado V-1

Ejercicio 1.28.

Escribí una función que cuente a cuántas ciudades no se puede llegar desde una ciudad principal usando rutas asfaltadas. El mapa de rutas está representado por un grafo no dirigido

Criterio;

Usar búsqueda en profundidad - DFS

Ejercicio 1.29.

Escribí una función que imprima el nivel en que se encuentra cada nodo desde un nodo determinado

Criterio;

Usar búsqueda en anchura - BFS

AED II

Ejercicio 1.30.

Utilizá el algoritmo de Dijkstra para hallar manualmente el camino más corto desde el vértice 5 a los demás vértices

