Dose response relationship between blood concentrations of THC and crash culpability risk: meta-regression of culpability studies

Type: Mini review

Authors: Matthew A Albrecht^{1*}, Razi Hasan¹, Damir Kekez¹, Huaqiong Zhou²

- 1. Western Australian Centre for Road Safety Research, School of Psychological Science, The University of Western Australia, Perth, Western Australia, Australia
- 2. Curtin School of Nursing, Curtin University, Perth, Western Australia, Australia

^{*} Correspondence to Matthew.Albrecht@uwa.edu.au

Abstract

Recent meta-analyses on the risk associated with the detection of tetrahydrocannabinol (THC) in blood and crash risk indicate a ~10-80% increase in crash culpability for detection of THC. However, the meta-analyses did not analyse a dose-response relationship between blood concentrations of THC and risk necessary to better understand the crash risk associated with THC and to inform public risk tolerances surrounding THC and driving. Here, we leverage these recent meta-analyses to understand whether there is a blood concentration crash culpability risk relationship. We show that crash culpability risk increases with increasing THC concentration, with an inflection around 1.5-3.0 ng/ml where risk begins to increase. There is a doubling of risk around 5 ng/ml, and a potential quadrupling of risk around 10 ng/ml. Conversely, blood THC concentrations below ~1.5 ng/ml indicate practically no risk (<30% increase). More studies are needed to better define risk for the lower and higher bands of blood THC concentrations. Consideration of blood concentration risk relationships are necessary for public discussions surrounding THC and crash risk.

Introduction

Recent meta-analyses on the risk associated with the detection of THC in blood and crash risk have come to the conclusion that there is a 1.1-1.8 odds of an increase in culpability when THC is detected (Rogeberg 2019; Preuss et al. 2021; White and Burns 2021). Interestingly, White and Burns (2021) stated:

"Overall, the evidence for THC dose effects from the 17 studies is unconvincing"

While a review published around the same time by Preuss et al. (2021) stated:

"High quality culpability studies (SIGN) noted that there is a dose effect of higher THC blood concentrations with increased risk for fatal crashes and those with injuries."

Some of the disparity potentially comes from the lack of a formal meta-regression analysis on this same group of papers investigating the blood-concentration crash culpability risk relationship. Indeed, much of the discussion in White et al. (2021) on the lack of relationship is likely due to insufficient power present in any single study to properly identify the association and there was no attempt to formally pool studies that attempted to answer the dose question together into a single meta-regression analysis. Another component to the disparity is because of the high fat solubility of THC, and therefore its distribution kinetics are incredibly divergent between individuals and relates inconsistently to impairment. For example, recent meta-analysis

neuropsychological performance studies by McCartney et al. (2022) demonstrates a fairly relationship between blood concentrations and cognitive impairment. Although, meta-analysis the regressed performance on blood THC concentrations using a linear function, when most bloodconcentration or dose-response curves are logarithmic scale sigmoidal on a hyperbolic on a linear scale). It would also be beneficial to examine more specific domains (e.g., in their previous analysis where they broke down tests into sub-domains: McCartney et al. 2021).

Importantly, the failure to properly separate out blood concentrations and identify riskcurves has led to situations where the "detection"-based association with crash risk is presented as the crash risk for THC. For example, in a recent hearing before the New South Wales State Australian parliament, it was repeatedly stated that the crash risk from THC is a general modest increase of ~40% (Standing Committee on Law and Justice 2022). But this is a detection-only based crash risk, potentially missing important risk stratification for lower and higher blood concentrations of THC. A clearer delineation around blood-concentration crash culpability risk relationships is needed to better inform and calibrate risk tolerances.

Aims

Here, we leverage these recent meta-analyses to show that there is indeed a clear blood concentration crash-risk/culpability relationship. The risk is practically negligible for low concentrations under ~ 1 ng/ml, but increases to $\sim 4x$ for concentrations $> \sim 10$ ng/ml and may be larger for concentrations $> \sim 10$ ng/ml due to uncertainty.

Methods

Included papers and search

We extracted papers from three recent metaanalyses on THC associations with crash culpability risk (Rogeberg 2019; Preuss et al. 2021; White and Burns 2021). As the previous meta-analyses were thorough in their search criteria and execution, we do not repeat the whole meta-analysis procedure here. We attempted to update the meta-analyses by including more recent papers using the search strategy in White and Burns (2021), amended to focus only on "culpability" or "responsibility" papers through inclusion of these search terms in the search. Search terms are included in the supplementary material (S1). A total of 37 records were retrieved from the initial search across 4 (PubMed, PsycInfo, databases Embase, Scopus), following removal of duplicates (n=15), 23 records remained to be assessed against inclusion criteria. Screening of the abstracts and full text was conducted by MA and HZ independently. No new papers were identified for inclusion.

We sub-selected papers in these metaanalyses that had attempted to better identify blood-concentration relationships with THC by presenting the outcomes from different bands of THC (e.g., <1 ng/ml, 1-5 ng/ml, and >5 ng/ml). Further inclusion criteria were that the papers needed to describe odds ratios adjusted for alcohol (and possibly other covariates) or present THC-alone odds ratios. Data were extracted for each category, and included the concentration band, odds ratio, and 95% confidence interval. Given that the presented data were in categories, we took the midpoint of bounded THC concentration categories and treated unbounded concentration categories by adding 0.5 ng/ml to the lower limit of the unbounded category. We also attempted to find reference in the paper to a median or average concentration for the unbounded category, but this was only available in 1 paper.

Table 1 presents the included papers excluding duplicate analyses (Longo et al. 2000; Drummer et al. 2004, 2020; Laumon et al. 2005; Poulsen et al. 2014; Martin et al. 2017; Brubacher et al. 2019).

Table 1. Included papers and data extraction

			THCCond	entrations	Odds Ratios			Study Characteristics		
		•	Bands	Value		Lower	Upper	Sample		Adjusted/
Study	Author	Year	Reported	Modelled	Estimate	95%CI	95 % C	Size	Severity	THC-only
1	Drummer et al.	2020	0	0	1			1728	Injured	Adjusted
			1-4.9	2.5	1.6	0.9	2.7	59		
			5-9.9	7.5	1.9	0.7	5	19		
			≯5	5.5	3.2	1.3	7.2	31		
			>10	10.5	10	1.3	82	12		
2	Brubacher et al.	2019	0	0	1			1660	Injured	Adjusted
			0-1.9	1	1.09	0.63	1.92	77		
			2-4.9	3.5	1.16	0.66	2.13	68		
			≯5	5.5	1.74	0.59	6.36	20		
3	Martin et al.	2017	<1	0	1			3734	Fatal	Adjusted
			1-2.9	2	1.4	0.86	2.23	159		
			3-4.9	4	1.92	0.84	4.42	64		
			≯5	5.5	2.47	1.2	5.09	102		
4	Drummer et al.	2004	0	0	1			1704	Fatal	THC-only
			<5	2.5	0.827	0.238	3.78	11		
			≯5	5.5	6.6	1.5	28	49		
5	Laumon et al.	2005	0	0	1			9013	Fatal	Adjusted
			<1	0.5	1.57	0.84	2.95	78		
			1-2.9	1.5	1.54	1.09	2.18	298		
			3-4.9	3.5	2.13	1.22	3.73	143		
			≯5	5.5	2.21	1.32	3.38	240		
6	Poulsen et al.	2014	0	0	1			533	Fatal	Adjusted
			<2	1.5	1.42	0.63	3.24	88		
			2-4.9	3.5	0.98	0.44	2.21	80		
			≯5	5.5	1.61	0.62	4.22	72		
7	Longo et al.	2000	0	0	1			1887	Injured	THC-only
			∢	0.5	0.36	0.07	1.85	7		
			1-2	1.5	0.52	0.2	1.33	19		
			>2.1	2.5	1.79	0.67	4.79	18		

Analysis - Meta-Regression

Data were imported into R version 4.1.1 for analysis. The weights for each odds ratio were derived by calculating the standard error of the log_e odds ratio ([upper 95% CI - lower 95% CI]/[2 * 1.96]) and taking the inverse square of the loge odds ratio standard error (1/se²). The log_e odds ratios were then entered into a mixed-effects regression model as the dependent variable, with random intercepts and slopes for each study. The fitting of the overall intercept was suppressed and defined as 0 at a log₁₀ THC concentration of -0.8 (~0.16 ng/ml), and a sensitivity analysis was conducted by reducing the value to -2. The intercept suppression was done because - by definition - the control group has an odds ratio of 1 or log_e odds ratio of 0. The

Restricted cubic splines were obtained from the "rms" package (Harrell 2024), fit using the "glmmTMB" package (Brooks et al. 2017), and effects plot using "ggplot2" (Wickham 2016) and the "ggeffects" (Lüdecke 2018) packages.

Table 2 – coefficients for THC from the metaregression model

* log(THC)' and log(THC)'' represents the restricted cubic spline variables

Results

THC blood concentration and culpability risk relationship

There was a significant relationship between crash culpability risk and blood concentration

relationship between the \log_e odds ratio and blood concentration of THC was modelled on the \log_{10} scale using a restricted cubic spline with 4 knots, to account for any non-linearity in effect. Knots were located at the 5%, 40%, 60% and 95% quantiles, which corresponded to THC concentrations of 0.5, 2.5, 3.5, and 7.5 ng/ml (on the \log_{10} scale, these were located at -0.30, 0.40, 0.54, and 0.88).

 $(X^2_3 = 95.1, p < 0.0001)$. Restricted cubic spline coefficients for log(THC) predicting log_e(OR) are presented in table 2. Figure 1 shows the blood concentration vs crash risk relationship. Risk increased with increasing THC concentration, with an inflection around 1.5-3 ng/ml and a doubling of risk around 5 ng/ml. Risk was predicted to increase to the available limits of the data at ~10 ng/ml, estimated to confer an increased risk of culpability by 4.0x (95% CI = 3.0 - 5.5).

Discussion

Moreover, nearly every paper shows an increase in risk with increasing

We show a robust blood-concentration crash culpid bility Culpskility Culpskility Culpskility elakion skind concentration of THC socient attions. This suggests that previous relationship from the restricted cubic spline with grey shading indicating the 95% CI.

failures to demonstrate a concentration-risk relationship are due to low sample sizes for the necessary blood THC concentration bands. Studies that assess risk relationships categorising studies bv into concentration bands inadvertently are hindering power to detect a relationship; categorising continuous variables reduces power and leads to non-physiological offs between categories arbitrary cut (Bennette and Vickers 2012).

The increased delineation of risk also allows better identification low-risk of concentrations of THC. For concentrations under 1.5 ng/ml, the risk is very modest, probably under 30%. While the exact level of risk that should be publicly accepted is outside the scope of this paper, the clear blood-concentration risk relationship observed when all available studies that have attempted to stratify THC concentrations are analysed, can contribute to risk tolerance discourse. Concentration ranges around ~1.5-2.5 ng/ml shows the threshold upswing in the curve, with a cross-over to a crash risk of ~2x around a concentration of 5.0 ng/ml and ~4x around 10 ng/ml. This is roughly similar to the culpability risk associated with a blood alcohol concentration of 0.08-0.10 (Høye and Storesund Hesjevoll 2023).

Limitations

There is a restricted number of studies that have delineated the upper end of blood THC concentrations on crash risk. Additionally, studies very rarely report the delay between the collection time of the sample and the time of the incident. Reporting sample/incident delays is crucial for determining whether the concentration of THC at the time of the incident may be substantially higher. Failure to report sampling delays also misses important key considerations about quantity and recency of use that likely elevate risk. Future studies should aim to report more detailed groupings blood THC of concentrations and the delays between obtaining a sample and the incident.

Conclusion

These results indicate that the blood-concentration risk relationship is relatively well-defined for THC. Questions remain surrounding how much of an increased risk is associated with a high blood concentration of THC, i.e., does the risk continue to increase beyond ~10 ng/ml or does risk plateau around an OR of 4. Similarly, low blood THC

concentrations are consistent with other papers associating detection of any THC with risk, and estimates a < 30% increase in risk for THC < 1.5 ng/ml. Dose-response relationships should be considered for future discussions surrounding THC and crash risk.

References

- Bennette C, Vickers A (2012) Against quantiles: categorization of continuous variables in epidemiologic research, and its discontents. BMC Medical Research Methodology 12:21. https://doi.org/10.1186/1471-2288-12-21
- Brooks ME, Kristensen K, Van Benthem KJ, et al (2017) glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R journal 9:378-400
- Brubacher JR, Chan H, Erdelyi S, et al (2019) Cannabis use as a risk factor for causing motor vehicle crashes: a prospective study. Addiction 114:1616–1626. https://doi.org/10.1111/add.14663
- Drummer OH, Gerostamoulos D, Di Rago M, et al (2020) Odds of culpability associated with use of impairing drugs in injured drivers in Victoria, Australia. Accident Analysis & Prevention 135:105389. https://doi.org/10.1016/j.aap.2019.105389
- Drummer OH, Gerostamoulos J, Batziris H, et al (2004) The involvement of drugs in drivers of motor vehicles killed in Australian road traffic crashes.

 Accident Analysis & Prevention 36:239–248.

 https://doi.org/10.1016/S0001-4575(02)00153-7
- Harrell FE (2024) rms: Regression Modeling Strategies
- Høye AK, Storesund Hesjevoll I (2023) Alcohol and driving—How bad is the combination? A meta-analysis. Traffic Injury Prevention 24:373–378. https://doi.org/10.1080/15389588.202 3.2204984
- Laumon B, Gadegbeku B, Martin J-L, Biecheler M-B (2005) Cannabis intoxication and

- fatal road crashes in France: population based case-control study. BMJ 331:1371. https://doi.org/10.1136/bmj.38648.617 986.1F
- Longo MC, Hunter CE, Lokan RJ, et al (2000)
 The prevalence of alcohol,
 cannabinoids, benzodiazepines and
 stimulants amongst injured drivers
 and their role in driver culpability: Part
 II: The relationship between drug
 prevalence and drug concentration,
 and driver culpability. Accident
 Analysis & Prevention 32:623–632.
 https://doi.org/10.1016/S00014575(99)00110-4
- Lüdecke D (2018) ggeffects: Tidy Data Frames of Marginal Effects from Regression Models. Journal of Open Source Software 3:
- Martin J-L, Gadegbeku B, Wu D, et al (2017) Cannabis, alcohol and fatal road accidents. PLOS ONE 12:e0187320. https://doi.org/10.1371/journal.pone.0 187320
- McCartney D, Arkell TR, Irwin C, et al (2022)
 Are blood and oral fluid Δ9tetrahydrocannabinol (THC) and
 metabolite concentrations related to
 impairment? A meta-regression
 analysis. Neuroscience &
 Biobehavioral Reviews 134:104433.
 https://doi.org/10.1016/j.neubiorev.20
 21.11.004
- McCartney D, Arkell TR, Irwin C, McGregor IS (2021) Determining the magnitude and duration of acute $\Delta 9$ -tetrahydrocannabinol ($\Delta 9$ -THC)-induced driving and cognitive impairment: A systematic and meta-

- analytic review. Neuroscience & Biobehavioral Reviews 126:175–193. https://doi.org/10.1016/j.neubiorev.20 21.01.003
- Poulsen H, Moar R, Pirie R (2014) The culpability of drivers killed in New Zealand road crashes and their use of alcohol and other drugs. Accident Analysis & Prevention 67:119–128. https://doi.org/10.1016/j.aap.2014.02.019
- Preuss UW, Huestis MA, Schneider M, et al (2021) Cannabis Use and Car Crashes: A Review. Frontiers in Psychiatry 12:
- Rogeberg O (2019) A meta-analysis of the crash risk of cannabis-positive drivers in culpability studies—Avoiding interpretational bias. Accident Analysis & Prevention 123:69–78. https://doi.org/10.1016/j.aap.2018.11.011
- White MA, Burns NR (2021) The risk of being culpable for or involved in a road crash after using cannabis: A systematic review and meta-analyses. Drug Science, Policy and Law 7:20503245211055381. https://doi.org/10.1177/20503245211055381
- Wickham H (2016) ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York
- (2022) Road Transport Amendment (Medicinal cannabis exemptions from offences)
 Bill 2021. Standing Committee on Law and Justice, Sydney, NSW, Australia

Supplementary Material

S1 - Search

PubMed

"Accidents, Traffic"[mh]

OR

("Motor Vehicles"[mh] or ("Automobiles"[mh] OR cars[tw] OR cars[tw] OR automobile*[tw] OR vehicle*[tw] OR vehicular[tw] OR traffic*[tw] OR road[tw] OR offroad[tw]) AND (accident*[tw] OR crash*[tw] OR collision*[tw] OR collide*[tw] OR injury[tw] OR injuries[tw] OR fatal*[tw]))

AND

"Cannabis"[mh] OR "Cannabinoids"[mh] OR "Marijuana Smoking"[mh] OR "Marijuana Use"[mh] OR hemp[tw] OR cannabis[tw] OR marihuana[tw] OR marijuana[tw] OR pot[tw] OR hash[tw] OR hashish[tw] OR ganja[tw] OR thc[tw] OR tetrahydrocannabinol[tw]

AND

(culpab* OR responsib*) Limit: English, 2020>

PsycInfo

motor traffic accidents/

OR

(motor vehicle/ or car/ or (car or cars or automobile* or vehicle* or vehicular or traffic* or road or "off-road").tw.) and (accident* or crash* or collision* or collide* or injury or injuries or fatal*).tw.

AND

exp cannabis/ or exp cannabinoids/ or "cannabis use"/ OR (hemp OR cannabis OR marihuana OR marijuana OR pot OR hash OR hashish OR ganja OR the OR tetrahydrocannabinol).tw.

AND

(culpab* OR responsib*) Limit: English, 2020>

Embase

traffic accident/

OR

(motor vehicle/ or car/ or (car or cars or automobile* or vehicle* or vehicular or traffic* or road or "off-road").tw.) and (accident* or crash* or collision* or collide* or injury or injuries or fatal*).tw.

AND

cannabis/ or exp cannabinoids/ or "cannabis use"/ or cannabis smoking/ OR (hemp OR cannabis OR marihuana OR marijuana OR pot OR hash OR hashish OR ganja OR the OR tetrahydrocannabinol).tw.

AND

(culpab* OR responsib*) Limit: English, 2020>

Scopus

Title/Abstract/Keyword

(car OR cars OR automobile* OR vehicle* OR vehicular OR traffic* OR road OR "offroad") AND (accident* OR crash* OR collision* OR collide* OR injury OR injuries OR fatal*)

AND

hemp OR cannabis OR marihuana OR marijuana OR pot OR hash OR hashish OR ganja OR the OR tetrahydrocannabinol

AND

(culpab* OR responsib*) Limit: English, 2020>