(12)公開特許公報 (A) (11)特許出願公開番号

特開平6-33274

(43)公開日 平成6年(1994)2月8日

(51) Int. C1.5

識別記号

庁内整理番号

8414 - 4 K

FΙ

技術表示箇所

C 2 3 F 11/08 C 0 9 K 15/00

> 審査請求 有 請求項の数57

(全29頁)

(21)出願番号

特願平4-197673

(22)出願日

平成4年(1992)7月1日

(71)出願人 591048874

ファースト、ブランズ、コーポレーション FIRST BRANDS CORPOR

ATION

アメリカ合衆国コネチカット州、ダンベリ ー、ウースター、ハイツ、ロード、83

(72)発明者 ピーター、エム、ウォイチェシェス

アメリカ合衆国コネチカット州、ウッドベ

リー、ウェストウッド、ロード、37

(74)代理人 弁理士 佐藤 一雄 (外2名)

最終頁に続く

(54) 【発明の名称】循環不凍液/冷却剤の再腐食防止方法

(57)【要約】

(修正有)

【目的】内燃機関の冷却機構から循環された使用済み不 凍液/冷却剤の再腐食防止化方法及び再腐食防止化剤パ ッケージを提供する。

【構成】一種以上の腐食防止剤を冷却機構中の一種以上 の金属の腐食防止に有効な量で加えて、予め選択された 有効腐食防止量で、再腐食防止化剤パッケージの化学組 成を、前記循環された不凍液/冷却剤の化学組成に相関 させることからなり、それによって、再腐食防止化され た、循環された不凍液/冷却剤が形成される再腐食防止 方法。並びに、塩基安定化させたケイ酸塩を含み、pHが 12を超える第一添加剤、およびpHが12未満で、内燃 機関の冷却機構中の一種以上の金属の腐食防止に有効な 量の一種以上の腐食防止剤または緩衝剤を含む第二添加 剤からなり、それによって再腐食防止化された、循環さ れた不凍液/冷却剤が形成される再腐食防止化剤バッケ ージ。

:

【特許請求の範囲】

【請求項1】冷却機構内におけるその使用に関連し、循環方法の結果である化学組成を有する循環された不凍液/冷却剤の再腐食防止化方法であって、前記方法が、少なくとも一種の腐食防止剤を冷却機構中の少なくとも一種の金属の腐食防止に有効な量で加えることにより、予め選択された有効腐食防止量で、再腐食防止化剤パッケージの化学組成を、前記循環された不凍液/冷却剤の化学組成に相関させることからなり、それによって、前記予め選択された腐食防止化により再腐食防止化された、循環された不凍液/冷却剤が形成されることを特徴とする再腐食防止方法。

1

【請求項2】前記再腐食防止化剤パッケージ中の選択された腐食防止剤の濃度を、前記循環された不凍液/冷却剤中のその様な腐食防止剤の残留濃度に相関させて、ASTM試験方法D 1384-87またはASTM試験方法D 4340-89の必要条件に適合する再腐食防止化された不凍液/冷却剤を得ることを特徴とする、請求項1に記載の方法。

【請求項3】前記循環された不凍液/冷却剤が、有効腐食防止量未満の、前記循環された不凍液/冷却剤中の残留濃度で加えるべき少なくとも一種の腐食防止剤を前記再腐食防止化剤パッケージ中に、含むことを特徴とする、請求項1に記載の方法。

【請求項4】前記腐食防止剤の濃度を前記循環された不凍液/冷却剤中の濃度に対して調節することにより、再腐食防止化剤パッケージ中の腐食防止剤の有効濃度を、循環された不凍液/冷却剤中の成分の濃度に相関させ、前記再腐食防止化剤パッケージを第一添加剤および第二添加剤として用意し、前記第一添加剤が約12を超える30 时で有効量の塩基安定化させたケイ酸塩を含み、第二添加剤が有効量の少なくとも一種の腐食防止剤または緩衝剤を含み、前記循環された不凍液/冷却剤に、前記第一添加剤を加えてから、前記第二添加剤を加えることを特徴とする、請求項1に記載の方法。

【請求項5】ホウ酸塩、リン酸塩、ケイ酸塩、シリコーン、重量%のエチレングリコール、重量%の水、アゾールおよびモリブデン酸塩からなるグループから選択された少なくとも一種の成分の濃度を相関させることにより、前記循環された不凍液/冷却剤、再腐食防止化剤パ 40ッケージおよび再腐食防止化された、循環された不凍液/冷却剤を相関させ、前記再腐食防止化された、循環された不凍液/冷却剤に予め選択された腐食防止効果を与えることを特徴とする、請求項1に記載の方法。

【請求項6】再腐食防止化された、循環された不凍液/ 冷却剤のpHが約8.5~約11.5であることを特徴と する、請求項1に記載の方法。

【請求項7】再腐食防止化された、循環された不凍液/ 冷却剤のpHが約9.0~約10.5であることを特徴と する、請求項1に記載の方法。 【請求項8】再腐食防止化された不凍液/冷却剤が予め 選択された保存アルカリ度を有することを特徴とする、 請求項6に記載の方法。

【請求項9】第二の添加剤のpHが12未満であることを 特徴とする、請求項4に記載の方法。

【請求項10】前記循環方法が、約5重量%~約95重量%の多価アルコールを含み、少なくとも一種の重金属を含む水性組成物の処理を含み、前記方法が、(i) 有効量のpH調節剤を加えることにより、前記水性組成物のpH を約4.0~約7.5に調節し、pH調節した組成物を形成し、そこに前記重金属のための有効量の沈殿剤を加える工程、

を含むことを特徴とする、請求項1に記載の方法。

【請求項11】前記循環方法が、追加の下記の工程、(ii)pH調節した組成物に、少なくとも一種の重金属を含む 沈殿物を形成するのに有効な量の凝固剤および有効な量の凝集剤を加える工程、および(iii)pH 調節した組成物を第一の濾過手段を通過させて、重金属含有沈殿物を前記pH調節した組成物から除去する工程の少なくとも一つの工程を含むことを特徴とする、請求項10に記載の方法。

【請求項12】前記循環方法が、追加の下記の工程、(i v)前記工程(iii)のpH調節した組成物を第二の濾過手段を通過させ、約40ミクロンより大きな物質を物理的に分離する工程、(v)前記工程(iv)から得たpH調節組成物を有機分離手段に通し、前記pH調節組成物から前記多価アルコール以外の有機化合物を除去する工程、(vi)前記 pH調節組成物を第三の濾過手段に通し、約0.2ミクロンより大きな物質を物理的に分離する工程および、(vi i)前記工程(vi)のpH調節組成物をイオン交換体に通し、前記pH調節組成物中に存在する少なくとも一つの溶解した重金属を除去する工程の少なくとも一つの工程を含むことを特徴とする、請求項11に記載の方法。

【請求項13】前記循環方法が、追加の下記の工程、(vii)前記工程(vii)のpH調節組成物を水除去手段に通し、前記pH調節組成物から約10重量%~約100重量%の前記水を除去する工程、および(ix)前記工程(i)の前記最終pH調節組成物から前記沈殿物の一部をすくい取る工程の少なくとも一つの工程を含むことを特徴とする、請求項12に記載の方法。

【請求項14】前記水性組成物が、自動車の内燃機関の冷却機構から採取した、重金属を含む、多価アルコール含有不凍液/冷却剤であることを特徴とする、請求項1に記載の方法。

【請求項15】前記多価アルコールがエチレングリコールであることを特徴とする、請求項14に記載の方法。 【請求項16】前記エチレングリコールが30~70体 積%の量で存在することを特徴とする、請求項15に記載の方法。

50 【請求項17】前記冷却機構が自動車の冷却機構であ

り、前記重金属が、鉛、モリブデン、鉄、カリウム、マグネシウム、亜鉛、銅およびアルミニウムからなるグループから選択された少なくとも一種の重金属であることを特徴とする、請求項14に記載の方法。

【請求項18】前記多価アルコールが、メタノール、エタノール、プロパノール、ブタノール、エチレングリコール、プロピレングリコール、ジプロピレングリコール、グリセロール、ブテングリコール、プロピレングリコールのモノ酢酸エステル、グリセロールのモノエチルエーテル、グリセロールのジメチ 10ルエーテル、アルコキシアルカノールおよびそれらの混合物からなるグループから選択されるが、好ましいアルコールが、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール、およびそれらの混合物からなるグループから選択されることを特徴とする、請求項1に記載の方法。

【請求項19】前記多価アルコールが、エチレングリコール、ジエチレングリコール、プロピレングリコールおよびそれらの混合物からなるグループから選択されることを特徴とする、請求項18に記載の方法。

【請求項20】前記工程(i) におけるpHが約4.5~約7.0に調節されることを特徴とする、請求項10に記載の方法。

【請求項21】pH調節剤が、有機酸、無機酸、酸性有機塩、酸性無機塩およびそれらの混合物からなるグループから選択されることを特徴とする、請求項10に記載の方法。

【請求項22】pH調節剤が、硝酸、リン酸、硫酸、塩酸、カルボン酸およびそれらの混合物からなるグループから選択されることを特徴とする、請求項21に記載の30方法。

【請求項23】前記pH調節剤が硝酸であることを特徴とする、請求項22に記載の方法。

【請求項24】前記沈殿剤が、塩酸塩、硫酸塩、リン酸塩、硝酸アルミニウムおよびそれらの混合物からなるグループから選択されることを特徴とする、請求項10に記載の方法。

【請求項25】凝集剤が、陽イオン系凝集剤からなるグループから選択されることを特徴とする、請求項11に記載の方法。

【請求項26】凝固剤が、陽イオン系凝固剤からなるグループから選択されることを特徴とする、請求項11に記載の方法。

【請求項27】前記凝固剤の有効量が約75ppm ~約300ppm であり、前記凝集剤の有効量が約25ppm ~約300ppm であることを特徴とする、請求項11に記載の方法。

【請求項28】前記水性組成物が、内燃機関の冷却機構 し、前記工程(vi)から得たpH調節組成物中にから得られ、5体積%~95体積%のエチレングリコー なくとも一種の溶解した重金属を除去するコルを含み、約150ppm までの鉛を含み、前記pH調節剤 50 ことを特徴とする、請求項1に記載の方法。

が硝酸であり、前記沈殿剤がA1(NO₃)3・9 H₂ Oであり、前記凝固剤が約75ppm ~約300ppm の有 効量で存在し、前記凝集剤が約25ppm ~約300ppm の有効量で存在することを特徴とする、請求項10に記 載の方法。

【請求項29】処理した、pH調節した組成物が、未処理のpH調節した組成物と比較して、溶解度のより低い鉛を含むことを特徴とする、請求項10に記載の方法。

【請求項30】前記第一濾過手段が約100ミクロンより大きい物質を効果的に分離することを特徴とする、請求項11に記載の方法。

【請求項31】(a)前記第一濾過手段が100ミクロンより大きい物質を分離し、(b)前記第二濾過手段が40ミクロンより大きい物質を分離し、(c)前記有機分離手段が活性炭フィルターであり、(d)前記第三濾過手段が5ミクロンより大きい物質を分離し、(e)前記イオン交換手段が、少なくとも一種の重金属を除去する陽イオン交換手段である、

ことを特徴とする、請求項11に記載の方法。

20 【請求項32】前記方法が、約18.5~約45.5℃ の有効温度で、かつ有効圧力で実施されることを特徴と する、請求項10に記載の方法。

【請求項33】循環方法が、内燃機関の冷却機構から得 た、約5重量%~約95重量%の、エチレングリコー ル、ジエチレングリコールおよびプロピレングリコール からなるグループから選択された多価アルコールを含 み、鉛、モリブデン、カリウム、鉄、亜鉛、銅およびア ルミニウムからなるグループから選択された少なくとも 一つの溶解した重金属を含む水性の廃不凍液/冷却剤組 成物の処理を含み、前記方法が、(i) 有効量のpH調節剤 を加えることにより、前記水性組成物のpHを約4.0~ 約7.5に調節し、pH調節した組成物を形成し、有効温 度および有効圧力で、前記重金属の沈殿物を形成するの に有効な量の沈殿剤を加える工程、(ii)前記pH調節した 組成物に、重金属を含む沈殿物を形成するのに有効な量 の少なくとも一つの凝固剤および凝集剤を加える工程、 (iii) 前記工程(ii)のpH調節した組成物および前記重金 属含有沈殿物を第一の濾過手段を通過させて、約100 ミクロンより大きい前記重金属含有沈殿物を除去するエ 40 程、(iv)前記工程(iii) のpH調節した組成物を第二の濾 過手段を通過させ、約40ミクロンより大きな物質を物 理的に分離する工程、(v) 前記工程(iv)から得たpH調節 組成物を有機分離手段に通し、前記pH調節組成物の前記 多価アルコールから有機化合物を除去する工程、(vi)前 記pH調節組成物を第三の濾過手段に通し、約5ミクロン より大きな物質を物理的に分離する工程、および(vii) 前記工程(vi)のpH調節組成物を陽イオン交換手段に通 し、前記工程(vi)から得たpH調節組成物中に存在する少 なくとも一種の溶解した重金属を除去する工程からなる

【請求項34】前記方法が、追加の、(viii)前記工程(v ii) のpH調節組成物を水除去手段に通し、前記pH調節組 成物から約10重量%~約100重量%の前記水を除去 する工程を含むことを特徴とする、請求項26に記載の 方法。

【請求項35】前記重金属が鉛であり、前記廃不凍液/ 冷却剤が内燃機関の冷却機構から採取されていることを 特徴とする、請求項33に記載の方法。

【請求項36】前記多価アルコールが、エチレングリコ ールおよびジエチレングリコールの混合物からなること 10 を特徴とする、請求項33に記載の方法。

【請求項37】前記エチレングリコールが30~70体 積%の量で存在することを特徴とする、請求項36に記 載の方法。

【請求項38】前記冷却機構が自動車の冷却機構であ り、前記重金属が、鉛、モリブデン、カリウム、鉄、亜 鉛、マグネシウム、銅およびアルミニウムからなるグル ープから選択された少なくとも一種の重金属であること を特徴とする、請求項33に記載の方法。

【請求項39】前記多価アルコールがプロピレングリコ 20 ールであることを特徴とする、請求項33に記載の方 法。

【請求項40】前記工程(i) におけるpHが約4.5~約 7.0であることを特徴とする、請求項33に記載の方 法。

【請求項41】pH調節剤が、有機酸、無機酸、酸性有機 塩、酸性無機塩およびそれらの混合物からなるグループ から選択されることを特徴とする、請求項33に記載の 方法。

【請求項42】pH調節剤が、硝酸、リン酸、硫酸、塩 酸、カルボン酸およびそれらの混合物からなるグループ から選択されることを特徴とする、請求項41に記載の 方法。

【請求項43】前記pH調節剤が硝酸であることを特徴と する、請求項42に記載の方法。

【請求項44】前記沈殿剤が、塩酸塩、硫酸塩、リン酸 塩、硝酸アルミニウムおよびそれらの混合物からなるグ ループから選択されることを特徴とする、請求項33に 記載の方法。

【請求項45】凝集剤が、陽イオン系凝集剤からなるグ 40 ループから選択されることを特徴とする、請求項33に 記載の方法。

【請求項46】凝固剤が、陽イオン系凝固剤からなるグ ループから選択されることを特徴とする、請求項33に 記載の方法。

【請求項47】凝集剤がカルゴン7736であり、凝固 剤がカルゴン2466であることを特徴とする、請求項 33に記載の方法。

【請求項48】前記凝固剤の有効量が約75ppm ~約3 00ppm であり、前記凝集剤の有効量が約25ppm ~約 50 特徴とする、請求項54に記載の再腐食防止化剤パッケ

100ppm であることを特徴とする、請求項33に記載 の方法。

【請求項49】前記廃不凍液/冷却剤組成物が、5体積 %~95体積%のエチレングリコールを含み、約250 ppm までの鉛を含み、前記pH調節剤が硝酸であり、前記 沈殿剤がAl(NO₃)₃・9H₂ Oであり、前記凝固 剤が約75ppm ~約300ppmの有効量で存在し、前記 凝集剤が約25ppm ~約300ppm の有効量で存在する ことを特徴とする、請求項33に記載の方法。

【請求項50】処理した廃不凍液/冷却剤組成物が、未 処理の不凍液/冷却剤組成物と比較して、溶解度のより 低い鉛を含むことを特徴とする、請求項33に記載の方

【請求項51】循環された不凍液/冷却剤に添加するた めの2成分再腐食防止化剤パッケージであって、有効量 の塩基安定化させたケイ酸塩を含み、pHが12を超える 第一添加剤、およびpHが12未満で、内燃機関の冷却機 構中の少なくとも一種の金属の腐食防止に有効な量の少 なくとも一種の腐食防止剤または緩衝剤を含む第二添加 剤からなり、それによって予め選択された腐食防止特性 を有する再腐食防止化された、循環された不凍液/冷却 剤が形成されることを特徴とする、再腐食防止化剤バッ ケージ。

【請求項52】予め選択された腐食防止効果を得るため に、前記第一添加剤および前記第二添加剤の成分の濃度 が、循環された不凍液/冷却剤の化学成分の残留濃度に 相関されていることを特徴とする、請求項51に記載の 再腐食防止化剤パッケージ。

【請求項53】前記再腐食防止化された、循環された不 凍液/冷却剤中の少なくとも一種の腐食防止剤の有効腐 食防止量が、前記循環された不凍液/冷却剤中のそれよ りも大きいことを特徴とする、請求項52に記載の再腐 食防止化剤パッケージ。

【請求項54】冷却機構内で使用した結果である化学成 分を含む循環された不凍液/冷却剤を再腐食防止化する ための請求項1に記載する再腐食防止化剤パッケージで あって、前記再腐食防止化剤パッケージが、前記循環さ れた不凍液/冷却剤の化学成分の濃度に関して、前記循 環された不凍液/冷却剤中の化学成分の濃度に相関さ

れ、前記再腐食防止化剤パッケージを第一添加剤および 第二添加剤として用意し、前記第一添加剤が有効量の塩 基安定化させたケイ酸塩を含み、12を超えるpHを有 し、前記第二添加剤が有効量の少なくとも一種の腐食防 止剤または緩衝剤を含み、それによって有効腐食防止量 の少なくとも一種の腐食防止剤を有し、約9.0~1 0.5のpHを有する、再腐食防止化された、循環された 不凍液/冷却剤が形成されることを特徴とする、再腐食

【請求項55】第二添加剤のpHが12未満であることを

防止化剤パッケージ。

40

ージ。

【請求項56】前記塩基安定化させたケイ酸塩が、再腐食防止化、循環された不凍液/冷却剤中で安定化されたシリコーンであることを特徴とする、請求項4に記載の方法。

【請求項57】前記塩基安定化させたケイ酸塩が、再腐食防止化、循環された不凍液/冷却剤中で安定化されたシリコーンであることを特徴とする、請求項51に記載の再腐食防止化剤パッケージ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、内燃機関の冷却機構から循環される、使用済み不凍液/冷却剤の、腐食防止剤を有効な腐食防止量で加える、再腐食防止化に関する。 再腐食防止化された、循環不凍液/冷却剤は、「新しい」不凍液/冷却剤として冷却機構に再投入することができる。本発明は、内燃機関の冷却機構から循環される不凍液/冷却剤の処理に特に有効である。

[0002]

【従来の技術】エチレングリコール水溶液の精製および 20 使用済み不凍液/冷却剤組成物用の腐食防止剤に関する 先行技術を、以下に説明する。

【0003】米国特許第3,732,320号は、エチレングリコールの製造行程から得られるエチレングリコールの鉄含有量を下げるための精製方法を開示している。この方法では、酸サイクル中でエチレングリコールを陽イオン交換樹脂と接触させている。鉄の除去が特許権所有者の主目的であるが、この特許権所有者は、「微量で存在する鉄および他の金属性汚染物」を陽イオン交換処理により除去できると一般的に述べている。

【0004】米国特許第4,118,582号は、ポリエステルの製造から回収された未反応エチレングリコールから、溶解したアンチモン触媒を除去するための回収方法を記載している。この回収方法では、廃グリコールのpHを約2~7に調節し、アルカリ金属の水素化ホウ素塩と反応させて金属アンチモン沈殿物を形成し、酸素を絶って廃グリコール(ポリエステル製造からの未反応エチレングリコール)から金属アンチモン沈殿物を分離し、続いて廃グリコールからエチレングリコールを蒸留している。

【0005】米国特許第4,260,827号は、低分子量ポリヒドロキシル化合物の水溶液精製方法を開示している。この方法は、カルシウムおよび/または鉛を含むした後、それらの化合物を精製することを目的としている。この方法には、多くの処理および蒸留行程が関与している。低分子量ポリヒドロキシル化合物の水溶液を使用する、3段階濾過方式の不凍液再生機械(クリヤーカンルのよび、200分離する。低分子量ポリヒドロキシル化合物の水溶液を使用する、3段階濾過方式の不凍液再生機械(クリヤーカンルのよび、200分離する。低分子量ポリヒドロケーンのよび、200分離する。低分子量ポリヒドロケーンのよび、200分離する。低分子量ポリヒドロケーンのよび、200分離する。低分子量ポリヒドロケーンのよび、200分離する。低分子量ポリヒドロケーンのよび、200分離を発表している。濾過された、200分離する。低分子量ポリヒドロケーンのは、200分離を発表している。濾過された不凍液は添加剤パッケージと混合されて、自動車の冷却キシル化合物のメタノールが、200分離で、200分離では、200分離で、200分離では、

調節し、メタノール処理溶液からのカルシウムおよび/または鉛化合物の沈殿を最大にすることができる。析出物(沈殿物)を濾過して分離し、残留溶液を陽イオン交換体で処理する。次いで残留溶液を蒸留し、低沸点留分を除去する。本質的に低分子量ポリヒドロキシル化合物を含む蒸留液を陰イオン交換体で処理する。

【0006】上記の方法は、製造された生成物を精製する、または精製して未反応原料を商業的製法の結果として存在する特殊な試薬から回収する必要がある製造方法を目的としている。その様な方法では、少量で、良く知られた汚染物を含む組成物の精製を扱っている。

【0007】自動車の冷却系から出る、エチレングリコール含有量の多い液体の精製は、処理により除去すべき汚染物に関して、著しく複雑な問題を提起する。例えば、廃不凍液/冷却剤の精製は、その不凍液/冷却剤がさらされていた過酷な環境のために、さらに、処理すべき廃不凍液/冷却剤中に一般的に存在する特殊な化学成分のために、著しく異なった処理方法である。廃不凍液/冷却剤の処理に伴う複雑さのために、廃不凍液/冷却剤溶液を処理するための試みがほとんどなされていないのも驚くには当たらない。

【0008】米国特許第4,791,890号は、自動 車の冷却機構用の洗い流し方法(気泡を含む洗い流し液 を使用)を開示しているが、そこでこの特許権所有者は 濾過工程を含めている(302で)。この特許権所有者 は、廃不凍液/冷却剤の他の処理は提供していない。米 国特許第4,793,403号は、冷却液の処理に使用 するための冷却剤系を開示している。液体冷却剤を濾過 して冷却剤液体から汚染物を除去する。この特許権所有 者は、段落3の11~28行で化学処理を説明している が、あいまいな表現で、しかも元の不凍液/冷却剤中に 前から存在している化学成分の添加、すなわち新しい添 加剤の添加を説明しているに過ぎない。この特許権所有 者は、フィルターを通して粒状および凝固した物質を除 去し(28)、続いて化学薬品を加えて水性液体を処理 する方法を開示している。この特許権所有者は特別な処 理を開示してはおらず、単にその様な薬品には腐食防止 剤、すなわち防錆化合物、pH調節薬品、および新しい凍 結防止化合物(例えばグリコール)が含まれることに言 及しているに過ぎない。さらに、段落3の38~48行 で、フィルター41は、電荷を中和するための金属イオ ンを与えるために「金属粉末」を含むことができる。同 様に、クリヤーーフロ社は、ステンレス鋼スクリーンフ ィルター、5ミクロンまでの大きさの物質を除去するた めの予備フィルター、および分子状の不純物(約50オ ングストローム)を除去するための第三のフィルターを 使用する、3段階濾過方式の不凍液再生機械(クリヤー -フロAF250) の詳細を発表している。濾過された 不凍液は添加剤パッケージと混合されて、自動車の冷却

剤の精製を行なうための化学的な除去工程は記載されて いない。

【0009】米国特許第4,946,595号は、使用 済み冷却剤を物理的および化学的に処理し、好ましくな い不純物、分解副生成物、溶解した金属汚染物、沈泥お よび他の好ましくない浮遊粒状物質を除去する方法を開 示している。この方法では、金属成分を酸化して粒状金 属酸化物の沈殿物を形成し、冷却剤を塩形成剤と接触さ せて有機酸と反応させ、冷却剤を濾過して粒状沈殿物を 除去し、リン酸塩、ホスホン酸塩、ケイ酸塩、ホウ酸 塩、亜硝酸塩、硝酸塩、アゾール、変性「アクリル酸 塩」およびモリブデン酸塩からなるグループから選択さ れた腐食防止剤を加え、pHを9.5~10.5に調節 し、「それによって、除去前の元の冷却剤組成物の腐食 能力と同等またはそれより優れた腐食能力を有する再生 冷却剤組成物を提供する。」この方法は、再腐食防止化 した、循環使用済み不凍液を提供する際の循環不凍液/ 冷却剤の特性 (または他のファクター) を評価できてい ない。

【0010】先行技術に関する上記の説明から、先行技 20 術は、使用済みエチレングリコール系熱交換流体、特に自動車冷却機構からの使用済み不凍液/冷却剤を精製するための有効な方法は開示していないことが分かる。特に、米国特許第4,793,403号における、およびクリヤーーフロAF250アンチーフリーズリサイクラーによる、重金属およびエチレングリコール以外の有機化合物などの汚染物に対する、廃不凍液/冷却剤の効果的な処理行程が欠けていることは注目に値する。さらに、その様な方法は、処理すべき廃不凍液/冷却剤がオイル成分を含む場合には、それらの使用に対して特に整 30 告している。その様な使用制限のために、その様な方法の商業的な使用が著しく少なくなっている。

【0011】循環不凍液/冷却剤の再腐食防止化 純粋エチレングリコールに添加するための腐食防止剤の 有効量に関しては著しい数の先行技術が存在するが、処 理した使用済み不凍液/冷却剤の再腐食防止化に関して は先行技術がほとんど存在しない。使用済み不凍液/冷 却剤の処理方法に関する最近の特許の一つは、米国特許 第4,946,595号である。この特許権所有者は、 処理方法に加えて、リン酸塩、ホスホン酸塩、ケイ酸 塩、ホウ酸塩、亜硝酸塩、硝酸塩、アゾール、変性アク リル酸塩およびモリブデン酸塩からなるグループから選 択された好適な腐食防止剤、および最終溶液pHを約9. 5~10.5に調節するための公知の緩衝剤の添加を開 示している。この特許権所有者の目的は、物理的および 化学的処理を行ない、腐食防止剤を加え、最終pHを約 9.5~10.5に調節する前の、エンジン冷却機構内 の冷却剤の腐食能力と同等、またはより優れた腐食能力 を有する循環冷却剤組成物を提供することである。この 特許権所有者は、公知の腐食防止剤の一般的な特徴を記 50

載している(段落5の51~63行)が、それらの相互 関係については評価しておらず、腐食防止剤の使用と循 環された、使用済み不凍液/冷却剤の化学組成との関係 に関しては評価していない。この特許権所有者は、すべ ての処理成分(酸化剤、塩形成剤、腐食防止剤および緩 衝剤)を一つの化学組成物として使用済み不凍液/冷却 剤に添加できると記載している(段落5の51~54 行)。この記載により、この特許権所有者は、循環され た、使用済み不凍液/冷却剤の腐食再防止の複雑さを理 10 解していないことが分かる。未処理の使用済み不凍液/ 冷却剤に添加するのに、単一の化学添加剤組成物を使用 していることから、この特許権所有者は、単一の化学添 加剤の成分に関して相互作用を理解しておらず、腐食防 止剤の添加方法を決定する目的で、明らかに使用済み不 凍液/冷却剤を未使用不凍液/冷却剤と同等であると考 えていることが分かる。この特許権所有者は、使用済み 不凍液/冷却剤(使用の結果、元の不凍液/冷却剤程良 質ではないので交換される)と同等の腐食防止を求めて いるだけなので、この特許権所有者は、腐食防止剤によ る再腐食防止化を純粋エチレングリコールの腐食防止に 使用する濃度でよいと考えている。さらに、この特許権 所有者は実施例で、固定濃度の化学添加剤組成物の使用 を説明しているが、そこでは添加量を最終不凍液/冷却 剤のpHのみによって決定しており、腐食防止剤の濃度を 調整していない。この様に、循環された、使用済み不凍 液/冷却剤の過去を評価していないので、得られる再腐 食防止化冷却剤の腐食防止特性は、単なる偶然の結果で ある。このことは、この特許権所有者が、最終的な再腐 食防止化した、処理した冷却剤がエンジン冷却機構から 取り出した使用済み不凍液/冷却剤と同じくらい良好で あることだけを要求していること、およびその使用済み 不凍液/冷却剤が冷却機構を腐食から保護するのに最早 効果的ではないために冷却機構から取り出すことを考え ると、極めて明らかである。

10

【0012】本発明は、内燃機関の冷却機構で使用した後循環された、使用済み不凍液/冷却剤に再び腐食防止効果を与えるための方法に関する。循環された使用済み不凍液/冷却剤の化学的および物理的特性は、内燃機関の冷却機構に再使用するための、再腐食防止化した、循環不凍液/冷却剤を得るために使用する場合、独特な問題を引き起こすことが分かっている。純粋エチレングリコールの代わりに循環された不凍液/冷却剤を使用すると、純粋エチレングリコールから不凍液/冷却剤を製造するのにこれまで使用されてきた組成物および製造工程では、効果的な腐食防止特性を備えた不凍液/冷却剤組成物は得られないことが分かった。

【0013】本発明は、不凍液/冷却剤の使用経歴と相関する「再腐食防止化パッケージ」を提供することにより、上記の問題を解決する。循環された、使用済み不凍液/冷却剤の特性を考慮せずに、その循環された不凍液

/冷却剤に腐食防止剤を無差別に加えることにより得ら れる再腐食防止化した、循環不凍液/冷却剤と比較し て、特定の循環された不凍液/冷却剤の残留化学成分 に、再腐食防止化した、循環不凍液/冷却剤の望ましい 効果的な腐食防止特性を相関させることにより、最終的 な再腐食防止化した、循環不凍液/冷却剤の効果的な腐 食防止特性を改良することができる。特定の循環方法に より循環された、使用済み不凍液/冷却剤中のケイ酸塩 濃度、保存アルカリ度および腐食防止剤を、再腐食防止 化剤パッケージ中の化学成分の濃度と相関させることに 10 より、再腐食防止化された、循環された、使用済み不凍 液/冷却剤を低い有効コストで得ることができる。この 相関関係、および再腐食防止化剤パッケージおよび再腐 食防止化され、循環された使用済み不凍液/冷却剤の特 性を以下に詳細に説明する。

【0014】本発明は、循環された不凍液/冷却剤の 「化学的指紋」(その循環された不凍液/冷却剤が得ら れた特定の循環方法に基づく)を、最終的な再腐食防止 化された、循環された不凍液/冷却剤の望ましい有効腐 食防止特性に相関させなければならないこと、および再 腐食防止化剤パッケージの各成分の濃度はこの相関関係 を反映することに初めて気が付いた。

【0015】本再腐食防止化方法は、循環された、多価 アルコール含有不凍液/冷却剤を使用する。一実施形態 では、自動車の内燃機関の熱交換機構から得られる、約 5~約95重量%のエチレングリコールおよび少なくと も一つの金属、一般的に重金属、および/または除去す べきオイル成分を含む不凍液/冷却剤を使用する。この 実施形態で効果的な、米国特許出願第07/564、2 62号に記載されている循環方法は、一般的に、

- (i) 有効量のpH調節剤を加えることにより、該多価アル コール含有組成物のpHを約4.0~約7.5に調節し、 pH調節した組成物を形成すること、および
- (ii)そのpH調節した組成物中に存在する、少なくとも一 つの金属、好ましくは少なくとも一つの重金属、および /またはオイル成分のための、有効量の沈殿剤を加える こと、および
- (iii) 好ましくは、前記工程(ii)のpH調節した組成物 に、少なくとも一つの金属を含む沈殿物を形成するのに 有効量の凝固剤および有効量の凝集剤を加えること、お 40 よび
- (iv)pH調節した組成物を第一の濾過手段を通過させて、 該金属含有沈殿物の大部分を除去すること、および所望 により、該pH調節した組成物の表面析出物を物理的に除 去することからなる。

【0016】上記の工程に加えて、米国特許出願第07 /564,262号(1990年8月8日出願)の循環 方法は、下記の工程の一つ以上をも含むことができる。 (v) 第一の濾過手段を通過したpH調節組成物を第二の濾 過手段に通し、第一の濾過手段で濾別された粒子よりも 50 小さな粒子を物理的に分離する。

- (vi)第二の濾過手段を通過したpH調節組成物を有機分離 手段に通し、そのpH調節組成物から(多価アルコール以 外の) 有機化合物を除去する。
- (vii) 該pH調節組成物を第三の濾過手段に通し、該第二 濾過手段で分離された粒子よりも小さな粒子を物理的に 分離する。

(viii)濾過後の該pH調節組成物を陰イオンおよび/また は陽イオン交換体に通し、少なくとも一つの溶解した金 属、好ましくは重金属を該pH調節組成物から除去する。

【0017】以下に説明する様に、本発明により再腐食 防止化できる循環された不凍液/冷却剤を得るのに、使 用済み不凍液/冷却剤のための他の循環方法も使用でき る。

【0018】内燃機関の冷却機構から不凍液/冷却剤を 循環させることが著しく重要になっている。特に、使用 済み (「廃」と呼ばれることも多い) 不凍液/冷却剤の 処分に関連して、その様な水性エチレングリコール混合 物の循環が非常に注目されている。使用済み不凍液/冷 却剤を物理的ならびに化学的に処理してその不凍液/冷 却剤中に存在する分解生成物および他の化学成分、例え ば元の不凍液/冷却剤中の腐食防止剤を除去し、次いで 循環された不凍液/冷却剤のための「再腐食防止化剤パ ッケージ」を加えることにより、使用済み不凍液/冷却 剤を循環させ、それによって、純粋エチレングリコール から製造した不凍液/冷却剤と同じ能力を有する不凍液 /冷却剤を形成するのが理想的である。「再腐食防止化 剤パッケージ」は、冷却機構の一構成部分として存在す る金属の腐食を防止するのに有効な化学成分を与え、冷 30 却機構中の金属の腐食を防止するのに有効な、再腐食防 止化された、循環された不凍液/冷却剤を提供するもの でなければならない。使用済み不凍液/冷却剤のための 幾つかの循環方法が考えられている。使用済み不凍液/ 冷却剤のための代表的な循環方法は、例えば1990年 8月8日に出願された審査中の「多価アルコールの水溶 液の処理方法」と題する米国特許出願第07/564、 262号、および米国特許第4,946,595号に記 載されている。その様な循環方法から循環された不凍液 /冷却剤は、内燃機関用の不凍液/冷却剤としての以前 の使用、およびそれが得られた循環方法に直接関連した 独特な化学的特性を有する水/エチレングリコール混合 物を与える。循環された不凍液/冷却剤のこの独特な使 用経歴およびその結果得られる特性は、循環された廃不 凍液/冷却剤に効果的な腐食防止量の腐食防止剤を与え るために使用される「再腐食防止化剤パッケージ」を決 定する上で、これまで考慮されていない。例えば、米国 特許第4,946,595号は(段落5の初め、64行 目以降で)、腐食防止剤は公知のどの様な腐食防止剤で もよいと述べている。さらに、実施例1および請求項に 記載されている様に、この特許は、「再腐食防止化剤パ

(8)

ッケージ」の成分の相関関係をまったく無視して腐食防 止剤を加えており、さらに、循環された使用済み不凍液 / 冷却剤の使用経歴およびその循環された使用済み不凍 液/冷却剤中に存在する残留化学成分との関係におけ る、化学成分の相対濃度の選択を考慮していない。

[0019]

【発明が解決しようとする課題】本発明は、前述した先 行技術の欠点を克服し、内燃機関の冷却機構で使用した 後循環された使用済み不凍液/冷却剤を再腐食防止化す るための方法に関する。循環された使用済み不凍液/冷 10 却剤の化学特性は、内燃機関の冷却機構で再使用するた めの再腐食防止化された、循環された使用済み不凍液/ 冷却剤の製造に使用すると、独特な問題をもたらすこと が分かった。純粋エチレングリコールの代わりに循環さ れた不凍液/冷却剤を使用する場合、純粋エチレングリ コールから不凍液/冷却剤を製造するのにこれまで使用 されている腐食防止剤の濃度では、望ましい効果的な腐 食防止特性を備えた不凍液/冷却剤組成物が得られな い。さらに、循環された不凍液/冷却剤から不凍液/冷 却剤を製造するコストは、本発明により、再腐食防止化 20 剤パッケージを循環された不凍液/冷却剤の化学的指紋 に相関させることにより、著しく低減させることができ る。

【0020】本発明は、不凍液/冷却剤の使用経歴と相 関関係にある「再腐食防止化剤パッケージ」を提供する ことにより、上記の問題を解決する。再腐食防止化され た、循環された不凍液/冷却剤の望ましい有効腐食防止 特性を、特定の循環された不凍液/冷却剤の残留化学成 分と相関させることにより、再腐食防止化された、循環 された不凍液/冷却剤の有効腐食防止特性は、不凍液/ 冷却剤の化学的特性を考慮せずに、循環された不凍液/ 冷却剤に腐食防止剤を無差別に加えて得た特性と比較し て、改良することができる。本発明の方法により、循環 された使用済み不凍液/冷却剤のケイ酸塩の濃度、保存 アルカリ度および腐食防止剤の様な濃度パラメータおよ び再腐食防止化剤パッケージ中の化学成分の濃度を相関 させ、冷却機構で再使用するための効果的な腐食防止特 性を有する再腐食防止化された不凍液/冷却剤を提供す る。この相関関係およびその結果得られる、再腐食防止 化剤パッケージおよび再腐食防止化された、循環された 40 不凍液/冷却剤の化学的および物理的特性を以下に詳細 に説明し、実施例で立証する。

[0021]

【課題を解決するための手段】最初に、使用済み不凍液 /冷却剤を循環のために内燃機関の冷却機構から取り出 した時の、不凍液/冷却剤の独特な特性を理解すること が重要である。さらに、不凍液/冷却剤の性質により、 「循環された」不凍液/冷却剤を得るために使用される 工程から特定の精製および処理工程は除外されるので、

使い易さにより定義されることを理解することも重要で ある。使用済み不凍液/冷却剤の処理に関連してここで 使用する用語「循環された」には、一つ以上の化学的添 加剤を使用済み不凍液/冷却剤に加え、その使用済み不 凍液/冷却剤中の化学成分を除去または安定化する化学 処理工程、特定の物質を除去するための物理的分離(例 えば濾過または遠心力による分離)、水性多価アルコー ルから一つ以上の化学成分を除去するための吸着および 吸収工程、陽イオンおよび/または陰イオン交換工程、 その他の、使用済み不凍液/冷却剤の組成プロファイル (化学的指紋) の変化を引き起こす処理工程が含まれ る。用語「循環された」は、使用済み不凍液/冷却剤か ら開始し、化学処理、脱水または蒸留により、非水性多 価アルコール、例えば本質的に純粋な、使用済み不凍液 /冷却剤に見られる化学成分を含まない未使用エチレン グリコールと本質的に同じ最終生成物が得られる様なエ 程は含まない。再腐食防止化剤パッケージに対する循環 された不凍液/冷却剤の相関関係を理解するには、廃不 凍液/冷却剤の以前の使用環境が重要なので、この使用 環境について以下に考察する。

【0022】不凍液/冷却剤および冷却機構

用語「熱交換機構」は、ここではすべての熱交換機構を 含み、自動車、トラック、オートバイ、飛行機、列車、 トラクター、発電機、コンプレッサー、等に一般的に使 用されている様な、内燃機関用の「冷却機構」を含む。 自動車およびトラックにおける冷却機構は、内燃機関用 のその様な熱交換機構の代表例である。自動車の熱交換 機構およびその構造はこの分野では良く知られており、 アルミニウムおよび鉛半田を始めとする幾つかの金属を 含むが、これらの金属は時間と共に、物理的な摩耗およ び/または化学的な作用により冷却機構内の作動不凍液 /冷却剤中に溶解することがある。用語「使用済み不凍 液/冷却剤」とは、ここでは自動車の冷却機構を含む熱 交換機構内である期間不凍液および/または冷却剤とし て作動した不凍液/冷却剤を意味する。

【0023】廃不凍液/冷却剤中に存在する金属成分に 関連してここで使用される用語「金属」は、アルミニウ ムおよびマグネシウムおよび鉛、鉄、亜鉛、マンガン、 銅およびモリブデンの様な「重金属」などの金属を含 む。アルミニウムは、先行技術で理解されている「重金 属」ではないが、ここで使用する用語「重金属」は、廃 不凍液/冷却剤中に存在する、本方法で除去すべき金属 成分に関して、アルミニウムを含む。冷却機構の構造に より、アルミニウム表面が作動している不凍液/冷却剤 と接触する結果、廃不凍液/冷却剤がアルミニウムを含 むのは一般的である。

【0024】熱交換機構に使用される不凍液/冷却剤 は、一般に各種の化学成分およびアルコール(メタノー ル、エタノール、プロパノール、ブタノール、エチレン ここで使用する用語「循環された」は、一部、経済的な 50 グリコール、ジエチレングリコール、プロピレングリコ

ール、ジプロピレングリコール、グリセロール、ブテン グリコール、プロピレングリコールのモノ酢酸エステ ル、グリコールのモノエチルエーテル、グリセロールの ジメチルエーテル、アルコキシアルカノールおよびそれ らの混合物)の混合物であるが、エチレングリコール、 ジエチレングリコール、プロピレングリコール、ジプロ ピレングリコール、およびそれらの混合物からなるグル ープから選択されたアルコールが好ましい。市販の不凍 液/冷却剤は、一般的にエチレングリコール、水、およ びそれを使用する特定の熱交換機構に腐食防止効果また 10 は他の利点を与える追加の化学成分からなる。さらに、 市販の不凍液/冷却剤の製造に使用される等級のエチレ ングリコール中には、約10%位までのジエチレングリ

コールが存在できることは良く知られている。 【0025】内燃機関の冷却機構にはエチレングリコー ル/水混合物系の不凍液/冷却剤が広く使用されている ので、本発明は、内燃機関の冷却機構のための熱交換流 体としてこれまで使用されているエチレングリコール系 不凍液/冷却剤と関連してこれまで使用されている広範 囲の組成物を考慮している。代表的なエチレングリコー 20 ル系不凍液/冷却剤は、自動車の冷却機構用腐食防止剤 としてシリコーン/ケイ酸塩添加剤および/または各種 カルボン酸を含む不凍液/冷却剤である。他の所望によ り使用する添加剤は、一般的に市販の不凍液/冷却剤 に、その不凍液/冷却剤の重量に対して50重量%未満 の少量で使用される。所望により不凍液/冷却剤に含ま れる添加剤の代表例としては、例えば、オイルおよび本 発明の疎水化剤、例えばモリブデン酸塩、モノおよび/ またはジ脂肪族酸塩、例えばセバシン酸塩、炭酸塩、ケ イ酸塩、アルカリ金属硝酸塩、アルカリ金属亜硝酸塩、 ジイソプロピルアミンニトリル、ジシクロヘキシルアミ ンニトリル、ベンゾトリアゾール、亜鉛化合物、カルシ ウム化合物、リン酸塩、安息香酸塩、等、またはそれら の混合物と混合された、アルミニウムまたは他の金属の ための公知の腐食防止剤がある。さらに、各種の金属の ためのこれらの公知の防止剤の一つ以上は、「防止効果 量」で、すなわち、これらの防止剤を含まない不凍液/ 冷却剤により与えられる腐食防止と比較して、腐食防止 すべき金属(例えば銅、鋼、黄銅、アルミニウム、鋳 鉄、半田、等)の表面に対して適度の腐食防止効果を与 40 えるのに十分な量で存在する。所望により市販の不凍液 /冷却剤中に存在し得る他の添加剤には、湿潤剤および 界面活性剤、例えばイオン系および脂肪族アルコールの ポリ(オキシアルキレン)付加物の様な非イオン系界面 活性剤、良く知られたポリシロキサンおよびポリオキシ アルキレンの様な消泡剤および/または潤滑剤、ジチオ リン酸亜鉛およびチオカルバミン酸亜鉛の様な摩耗防止 剤、潤滑剤、例えばシリコーンポンプ潤滑剤、および他 の、不凍液/冷却剤の分野で公知の、不凍液/冷却剤の 使用により達成すべき不凍液/冷却剤特性に悪影響を与 50

えない原料がある。

【0026】熱交換機構で使用した後、すなわち使用後 に集めた時に(例えば自動車の冷却機構からの「廃」ま たは「使用済み」不凍液/冷却剤)、本発明により処理 できる多価アルコール系の代表的な不凍液/冷却剤組成 物には、ここに参考として含める米国特許第4,66 4, 833, 4, 287, 077, 4, 725, 40 5, 4, 704, 220, 4, 684, 474, 4, 6 85, 475, 4, 687, 590, 4, 701, 27 7, 4, 561, 990, 4, 578, 205, 4, 5 84, 11, 4, 587, 028, 4, 588, 51 3, 4, 592, 853, 4, 629, 807, 4, 6 47, 392, 4, 657, 689, 4, 759, 86 4、4,851,145、4,810,406および 4,345,712号に記載されている不凍液/冷却剤 があるが、これらに限定するものではない。

【0027】上記の特許では、その様な冷却機構の金属 表面を効果的に保護する化学成分の組合わせを開示して いるが、その様な組合わせは一般的に「防止剤パッケー ジ」と呼ばれる。

【0028】内燃機関の熱交換機構から取り出した廃不 凍液/冷却剤は、エチレングリコールまたは他の多価ア ルコールを含むのが特徴で、一般的に約5体積%~約9 5体積%、好ましくは約30体積%~約70体積%のエ チレングリコールおよび/または他の多価アルコールを 含む混合物である。不凍液/冷却剤中に存在するエチレ ングリコールおよび/または他の多価アルコールの実際 の量は、幾つかのファクターにより異なる。例えば、内 燃機関の冷却機構中にある不凍液/冷却剤を「交換」す る際、冷却機構を空にし、取り出した不凍液/冷却剤を 容器に集める。次いで一般的に冷却機構を水および/ま たは少量の洗浄剤を含む水で洗い流す。この本質的な水 溶液は一般的に本来の廃不凍液/冷却剤と同じ保持容器 中に流されるので、循環すべき液体混合物中のエチレン グリコール濃度はさらに低下する。さらに、廃不凍液/ 冷却剤は一般的に、鉛、鉄、亜鉛、マンガン、銅、モリ ブデン、およびアルミニウムからなるグループから選択 された少なくとも一つの重金属および内燃機関からの、 または不凍液/冷却剤除去後の汚染により混入する各種 の有機オイルを含むのが特徴である。

【0029】また、不凍液/冷却剤は、一般的に多価ア ルコール成分以外の、一つ以上の有機化合物を含む。そ の様な有機化合物は、本来の不凍液/冷却剤に機能添加 剤を加えた結果、あるいは多価アルコール、例えばエチ レングリコール、または元の不凍液/冷却剤中に含まれ ていた他の有機化合物の分解生成物として存在すること がある。例えば、自動車の冷却機構中で不凍液/冷却剤 が受ける作動条件下で、作動不凍液/冷却剤中に存在す るエチレングリコールおよび他の有機化合物が熱分解に より有機性の分解生成物を生じることは良く知られてい

る。エチレングリコールの代表的な有機性分解生成物に は、ギ酸、グリコール酸および酢酸があるが、これらに 限定するものではない。また、不凍液/冷却剤は腐食防 止剤として無機化合物を含むことが知られており、その 例としてはケイ酸塩、硝酸塩、亜硝酸塩、シリコーン化 合物、リン酸塩、塩化物、硫酸塩、炭酸塩およびそれら の混合物、および水中に一般的に含まれる塩があるが、 これらに限定するものではない。

【0030】冷却機構から取り出される使用済み不凍液 <u>/冷却剤の概要</u>

一般的に、循環工程では、幾つかの冷却機構から取り出 され、混合された大量の使用済み不凍液/冷却剤を処理* *するので、循環すべき使用済み不凍液/冷却剤の化学組 成を知ることが重要である。例えば、循環工程は、使用 済み不凍液/冷却剤を単一の集積容器中に混合するの で、平均20~30の冷却機構から取り出した使用済み 不凍液/冷却剤を処理することになる。その結果、ほと んどの循環工程にとって、使用済み不凍液/冷却剤を混 合するために、原料として使用する使用済み不凍液/冷 却剤に類似性がある。

【0031】商業的な不凍液/冷却剤交換施設から採取 10 した使用済み不凍液/冷却剤(洗浄液、例えば水を含 む)の分析結果を、表Aに示す。 [0032]

<u>表A</u>

成分❤️	低值 [⋘]	高值 [©]	平均值 00, 00
pН	8.5	10.0	9.3
重量%EG	12.1	40.0	28.8
重量%DEG	0.5	3.5	1.37
重量%PG	ND	2.02	0.96
TSS	6 4	1846	5 4 4
NO2	1 0	5 0	1 5
NОз	5 6	7 4 0	469
P	1 2 5	7 3 0	4 3 8
C 1	1	3 1	18.5
F	N D	9	5
硫酸塩	2 2	169	100
В	6 7	2 5 8	164.4
Cu	2.0	15.9	6.1
Fе	7.6	583	82.5
A 1	1.8	71.3	13.7
Рb	1.5	1 3 6	25.6
Ca	1.5	34.1	9.13
K	2 3 4	1 4 0 6	7 4 5
Мg	0.9	19.9	5.9
Мо	3.6	56.8	17.8
Na	676	2074	1 4 2 0
Si	40.8	269.1	126.8
Sn	0.9	24.7	11.8
Zn	1.1	27.6	5.8
TTZ	1 3 0	370	242.7
酢酸塩	1 2	2 1 9	48.9
グリコール酸塩	1 2 1	8 5 8	503
キ酸塩	2	2 4 1	129
安息香酸塩	1 0	2590	3 8 5
EDTA	4 0	6 4	4 6
オイル	N D	1. 0	0.03

① 低、高および平均値(重量%で示す以外はppm) は、米国の商業的不凍液/冷却剤事業所の収集タンクか 得た。

② 略号は下記の意味を有する。 EG=エチレングリコ ら採取した30個の55ガロン不凍液/冷却剤試料から 50 ール、DEG=ジエチレングリコール、PG=プロビレ

③ 濃度はppm で表す。成分はすべて可溶および不溶形の合計として表す。

【0033】廃不凍液/冷却剤の処理方法

I. 循環された不凍液/冷却剤を与えるための効果的な 方法の一つは、ここにその全文を参考として提示した、 1990年8月8日出願の「多価アルコールの水溶液の 処理方法」と題する米国特許出願第07/564,26 2号に記載されている。米国特許出願第07/564, 262号の循環方法では、自動車の内燃機関の熱交換機 構から、約5~約95重量%の多価アルコール、一般的 に約30~70重量%のエチレングリコール、少なくと も一つの金属、および一般的にオイル成分を含む不凍液 20 /冷却剤を採取する。この循環方法は、一般的に、(i) 有効量のpH調節剤を加えることにより、該多価アルコー ル含有組成物のpHを約4.0~約7.5に調節し、pH調 節した組成物を形成すること、および(ii)そのpH調節し た組成物中に存在する、少なくとも一つの重金属および /またはオイル成分のための、有効量の沈殿剤を加える こと、からなる。

【0034】上記の工程に加えて、米国特許出願第07/564,262号の循環方法は、下記の工程の一つ以上をも含むことができる。

(iii) 好ましくは、工程(ii)のpH調節した組成物に、少 なくとも一つの重金属を含む沈殿物を形成するのに有効 量の凝固剤および有効量の凝集剤を加えること、(iv)pH 調節した組成物を第一の濾過手段を通過させて、該重金 属含有沈殿物の大部分を除去すること、(v) 第一の濾過 手段の後、pH調節組成物を有機分離手段に通し、そのpH 調節組成物から(多価アルコール以外の)有機化合物を 除去すること、(vi)第一の濾過手段を通過したpH調節組 成物を第二の濾過手段に通し、第一の濾過手段で濾別さ れた粒子よりも小さな粒子を物理的に分離すること、(v 40 ii) 該pH調節組成物を第三の濾過手段に通し、該第二濾 過手段で分離された粒子よりも小さな粒子を物理的に分 離すること、および(viii)濾過後の該pH調節組成物をイ オン交換体(陰イオンおよび/または陽イオン)に通 し、少なくとも一つの溶解した重金属を該pH調節組成物 から除去すること。沈殿剤を加える前に、有効量のpH調 節剤を加えることにより、廃不凍液/冷却剤の有効pHを 好ましくは約4.0~約7.5、より好ましくは約4. 5~7.0に調節して重金属の沈殿を促進する。pHの調 節により、廃不凍液/冷却剤中に存在する重金属の沈殿 50

を促進するが、同時にpHを十分高く調節して重金属化合 物の酸による溶解を最小に抑える。pHを必要なpHに効果 的に調節できるならどの様なpH調節剤でも使用できる が、pH調節剤として硝酸を、沈殿剤として硝酸アルミニ ウムと併用することにより、驚くべきことに、内燃機関 の冷却機構から取り出した廃不凍液/冷却剤中に存在す る、可溶性ならびに不溶性の鉛化合物を沈殿させ、オイ ル成分を除去できることが分かった。ここで、有機酸、 酸性有機塩、無機酸および酸性無機塩を使用して不凍液 10 / 冷却剤のpHを効果的に調節することができる。代表的 な酸としては、硝酸、リン酸、硫酸、塩酸、カルボン 酸、およびそれらの混合物等がある。pH調節剤および/ または沈殿剤として効果的な塩の代表例としては、カル シウム、マグネシウム、亜鉛、アルミニウムおよび鉄の 塩化物および硝酸塩、マグネシウム、亜鉛、アルミニウ ムおよび鉄の硫酸塩、等がある。腐食性陰イオンおよび /またはpH調節の際に廃不凍液/冷却剤中に存在する重 金属の沈殿を妨害することがある陰イオンの導入を防ぐ ためにpH調節剤として硝酸を使用することは有利である が、酸性塩、好ましくは硝酸アルミニウム水和物、例え ばA1 (NO₃)₃・9H₂ OでpH調節および重金属沈 殿を同時に行うことも本発明の範囲内である。

20

【0035】沈殿剤を選択することにより、pH調節した 不凍液/冷却剤中で重金属の沈殿物を形成することがで きる。凝固剤および/または凝集剤を使用する場合、沈 殿剤は、固体沈殿物を実際に形成する必要はなく、廃不 凍液/冷却剤中に存在する重金属および/またはオイル を、凝固剤および凝集剤の存在下で、沈殿し易くすれば よい。凝固剤および/または凝集剤を使用せずに沈殿剤 を使用する場合、沈殿物の形成および分離の速度は、効 率的な商業的使用には遅すぎる場合があることが観察さ れているが、それにも拘わらず、本発明の長所は達成さ れる。沈殿剤は、廃不凍液/冷却剤中に存在する重金属 の必要量を沈殿させるのに効果的な量だけ添加される。 上に述べた様に、廃不凍液/冷却剤中に最も一般的に見 られる重金属は鉛(鉛半田の腐食から生じるPb)、鉄 (水およびラジエーターの腐食から生じるFe)、亜鉛 (金属腐食から、および不凍液/冷却剤中に使用される 亜鉛塩から生じる2n)、銅(ラジエーターの腐食か ら) および (水ポンプ、ラジエーター、エンジンヘッド およびエンジンプロックの)腐食により生じるアルミニ ウムである。廃不凍液/冷却剤に溶解している鉛および 鉄の濃度は、それぞれ鉛が約100ppm までのオーダー で、鉄が約25ppm までのオーダーであることが観察さ れている。また、不溶の鉛成分は約150ppm までの濃 度で存在し、不溶の鉄成分は約600ppm までの濃度で 存在することも観察されている。一般的な鉛および鉄の 総濃度は表Aに示してある。その様な濃度のPbおよび Feに対する沈殿剤の有効量は、一般的に約100ppm ~約6000ppm (沈殿剤としてA1 (NO₃)₃・9

H2 Oを使用した場合)、好ましくは約500ppm ~約 5000ppm である。使用する沈殿剤の有効量は、沈殿 させるべき重金属の当量に関連し、重金属沈殿物を形成 するのに効果的な、選択した沈殿剤の当量により異な る。

【0036】上記の様に、沈殿剤は、調節したpH値で、 廃不凍液/冷却剤中に存在する少なくとも一つの重金属 の本質的に不溶な化合物を形成するのに効果的な有機お よび/または無機化合物のグループから選択することが でき、リン酸塩、塩酸塩、硫酸塩、シュウ酸塩、等の重 10 金属塩を含むことができる。「本質的に不溶」の用語 は、約pH4.0~pH7.5で沈殿可能な一つ以上の物質 を形成する重金属種を意味する。驚くべきことに、硝酸 (pH調節剤として)で不凍液/冷却剤のpHを(約4.0 ~約7.5に)調節した後、鉛に対する沈殿剤として硝 酸アルミニウム (A1 (NO₃)₃・9H₂O) を使用 するのが鉛沈殿物の形成に特に有利であり、さらに凝固 剤および/または凝集剤を使用して沈殿物を形成するの に最も有利であることが分かった。硝酸アルミニウムが 効果的に鉛の沈殿物を形成する正確な機構は十分には理 20 解されていないが、鉛との化学反応に関連している、お よび/または水酸化アルミニウムまたは酸化アルミニウ ムまたは硝酸アルミニウムの添加により本来の場所に形 成された他のアルミニウム化合物の表面に対する鉛化合 物の吸着が関与しているのであろう。

【0037】凝固剤および凝縮剤の選択は、処理するア ルコール系不凍液/冷却剤と相関関係にあり、沈殿物形 成および機械的フィルターによる沈殿物の分離を効果的 に行うために選択する。凝固剤は、カルゴン2466、 シアナミド572C、等およびそれらの混合物等を始め 30 とする、良く知られた市販の凝固剤のどれでもよい。凝 集剤は、プリマフロック^R C-3、マグニフロック^R 5 72C、カルゴン7736、シアナミド1820Aおよ びそれらの混合物等を始めとする、良く知られた市販の 凝集剤のどれでもよい。カルゴンPOL-E-Z^R 24 66は、カルゴンコーポレーションから販売されている 高分子量、高電荷陽イオン系高分子電解質である。プリ マフロックペ C-3は、水溶性ポリアミン (29~31 %)として特徴付けられる陽イオン系高分子電解質であ り、ローム アンド ハース社から市販されている。カ 40 ルゴンPOL-E-ZR 7736は、カルゴンコーポレ ーションから販売されている高分子量、陰イオン系高分 子電解質である。マグニフロック® 572C (凝集剤) は、アメリカン シアナミド社から入手できる非常に分 子量が低い、液体陽イオン系凝集剤である。シアナミド 1820Aは、アメリカン シアナミド社から入手でき る陽イオン系凝集剤である。水系で固体を沈殿させるた めの凝固剤および凝集剤の選択は、ここに参考として含 める「ザ ナルコ ウォーター ハンドブック」、第2 版、(ISBM 0-07-045872-3)、19

88、第2部、第8章、8.3~8.23頁の考察から 明らかな様に良く知られている。

【0038】米国特許出願第07/564,262号の 循環方法の一実施形態では、不凍液/冷却剤が、自動車 またはトラックの内燃機関の冷却機構から取り出した廃 不凍液/冷却剤であり、pH調節剤として硝酸によりその pHを約4.5~約7.0に調節し、次いで沈殿剤として 有効量の硝酸アルミニウムで処理し、続いて凝固剤、好 ましくはカルゴン2466、および凝集剤、好ましくは カルゴン7736を加えている。凝固剤の有効量は一般 的に約75ppm ~約300ppm 、好ましくは約150pp m ~約225ppm である。凝集剤の有効量は一般的に約 2 5 ppm ~約300 ppm 、好ましくは約50 ppm ~約1 00ppm である。不凍液/冷却剤をpH調節剤および沈殿 剤で処理した後、凝固剤および凝集剤を加える場合、そ の凝固剤および凝集剤の溶液における、凝固剤および凝 集剤の有効濃度範囲があることが観察されている。驚く べきことに、市販の凝固剤および凝集剤は、本方法で効 果的に使用される濃度よりも著しく高い濃度で市販され ていることが分かった。例えば、自動車用の鉛を含む不 凍液/冷却剤を、有効量の硝酸および硝酸アルミニウム で処理した後、凝固剤としてカルゴン2466および凝 集剤としてカルゴン7736で処理する場合、それらの 市販の凝固剤および凝集剤を、水または他の好適な溶剤 を加えることにより、その本来の市販濃度から希釈する のが有利である。例えば、本発明に使用するには、10 0部 (重量部または体積部) の凝固剤カルゴン2466 または凝集剤カルゴン7736を水と混合して40、0 0 0部の凝固剤または凝集剤溶液を形成するのが好まし い。上記の水で希釈することにより、水混合物中の凝固 剤または凝集剤の有効濃度が得られ、その際、凝固剤ま たは凝集剤の濃度は、その凝固剤または凝集剤の市販濃 度の0.25%~5.0%になる。希釈した凝固剤また は凝集剤を使用して得られる有利な効果および凝固剤お よび凝集剤の濃度と不凍液/冷却剤との有利な相関関係 に関する正確な理由は十分には分かっていないが、最初 に配合されたエチレングリコール系不凍液/冷却剤を内 燃機関の冷却機構内で使用すること、および大量の液体 を混合する際の特有の難しさにより引き起こされる凝固 剤または凝集剤の局所的な濃度から得られる独特な化学 的環境に関係している可能性がある。自動車の冷却機構 から取り出した不凍液/冷却剤中に存在することが観察 されている重金属の範囲に基づいて上に述べた様に、濃 度における実際の相関関係が凝固剤および凝集剤の有効 濃度をもたらすと考えられる。

【0039】不凍液/冷却剤は、pH調節剤および沈殿剤 で処理し、別の実施形態では上記の様に凝固剤および凝 集剤で処理した後、固体相(沈殿物)および液体相を形 成する。沈殿物は、機械的なフィルターにより除去され る。その上、沈殿物の一部は処理した不凍液/冷却剤の

50

表面存在するので、処理した不凍液/冷却剤を適当に攪 拌することにより、処理した不凍液/冷却剤の上部から 沈殿物をすくい取ることができる。さらに、混合タンク 内の不凍液/冷却剤の表面上に廃不凍液/冷却剤の再循 環流を導入する方が、混合タンク内の不凍液/冷却剤の 表面下に廃不凍液/冷却剤の再循環流を導入する場合に 形成される沈殿物の形と比較して、表面からすくい取る のに好適な沈殿物を形成するのに有利であることが分か った。したがって、混合タンク内の廃不凍液/冷却剤 を、不凍液/冷却剤の表面下から、その表面から十分高 10 い位置に再循環させ、再循環される不凍液/冷却剤を空 気にさらしてある程度空気と接触させるのが、沈殿物を すくい取り易い形状にするのに効果的である。この再循 環は、pH調節剤および沈殿剤を添加する前に開始するの が好ましい。処理した不凍液/冷却剤の表面から沈殿物 をすくい取る工程は、濾過により除去する沈殿物の量が 少なくなるので有利である。濾過により除去する沈殿物 の量が減少すると、処理工程を実行できる速度が増加 し、濾過手段の寿命が長くなり、濾過手段を交換する回 数が少なくなる。濾過手段により除去される有効粒子径 20 は、一部、1回の、または複数回の濾過工程を採用する かによって異なる。1回濾過工程を使用する場合、濾過 手段は、粒径が約50ミクロンを超える粒子を除去する のが好ましいが、1回だけの濾過工程は使用されない。 この最初の濾過が連続濾過手段の最初の濾過手段である 場合、この最初の濾過手段は粒径が約100ミクロンを 超える粒子を除去するのが好ましい。一実施形態では、 少なくとも3つの濾過工程を使用し、その際、最初の濾 過手段が約100ミクロンを超える粒子を除去し、第二 の濾過手段が約40ミクロンを超える粒子を除去し、第 30 三の濾過手段が約5ミクロンを超える粒子を除去するの が有利であることが分かった。第四のフィルターを使用 することができるが、その場合、その様な第四の濾過手 段は約0.2ミクロンより大きい、好ましくは約0.1 μより大きい粒子を除去するのが最適である。上記の有 効濾過径を有する機械的濾過手段は先行技術で良く知ら れている。ここに記載する様に、所望により、有機分離 フィルターを上記の機械的フィルターと併用することが できる。

【0040】別の実施形態では、処理し、濾過した廃不 40 凍液/冷却剤を、オイル、アルデヒドおよび有機酸など の有機化合物を除去するための活性フィルターに通す。 その様な活性フィルターの代表例は、パーキン ハニフ ィン コーポレーション・コマーシャル フィルターズ グループからフルフロ#の商品名で販売されている各 種活性炭フィルター、またはペンフィールド リキッド トリートメントから販売されているNo. 2アンタサイ トフィルターである。フルフロ#フィルターは活性炭表 面を備えたハニカムフィルター構造が特徴で、ペンフィ

である。活性炭フィルターは有機分離手段として作用 し、廃不凍液/冷却剤を形成する多価アルコール/水混 合物から有機化合物を除去するのに効果的である。 【0041】約5ミクロンより大きい物質、より好まし くは約0.2ミクロンより大きい物質を除去するには、 (上記の有機分離手段の前または後に) 廃不凍液/冷却 剤に2つ以上の濾過手段を備えるのが有利である。一つ 以上の追加の機械的濾過工程を第一の濾過手段と併用す るのが、大量の有機および無機化合物および大小の粒状 固体を分離するのに最も有利であることが分かった。

【0042】さらに、一連の、径が徐々に小さくなるフ ィルターを備えることにより、小細孔径フィルターが大 きな粒子で詰まる可能性が効果的に排除される。一実施 形態では、第一の濾過手段が約100ミクロンを超える 物質を除去し、第二の濾過手段が約40ミクロンを超え る物質を除去し、第三の濾過手段が約5ミクロンを超え る物質を除去し、第四の濾過手段が約0.2ミクロンを 超える物質を除去する。

【0043】本方法の別の実施形態では、廃不凍液/冷 却剤中に存在する可溶化された物質を除去するために、 少なくとも一つのイオン交換樹脂による処理を行うこと ができる。本方法の最初のpH調節により、一つ以上の重 金属が可溶化して陽イオンおよび/または陰イオンを形 成する可能性がある。pH約4.0~約7.5への調節 は、その様な重金属の可溶化された陽イオン系および/ または陰イオン系物質、特に可溶化された鉛系物質の形 成を最小に抑える様に選択する。pH調節剤、沈殿剤、凝 固剤および凝集剤を加えた後、その様な可溶化された陽 イオン系物質 (2ppm の最低測定限界未満の)、例えば 可溶化された鉛は存在しないことが観察されているが、 本質的に可溶化された重金属がまったく存在しない様に するために、濾過した廃不凍液/冷却剤を陽イオンおよ び/または陰イオン交換樹脂で処理するのが有利である と考えられる。また、その様なイオン交換体は、約2. 0ミクロンより大きな径を有する物質を効果的に除去す る濾過手段として作用することも分かっている。さら に、可溶化された物質の中には0.005より大きな細 孔径を有する濾過手段を通過し、可溶化された物質とし て止まるものがあるので、イオン交換材料を使用してそ の様な物質を物理的以外の方法で選択的に除去するのが 有利である。

【0044】廃不凍液/冷却剤を取扱い易く、廃棄し易 くするために、可溶化された重金属はすべて除去するの が有利である。そこで、濾過した廃不凍液/冷却剤を、 可溶化された重金属陽イオンまたは陰イオンの除去に効 果的な陽イオン交換および/または陰イオン交換樹脂で 処理するとよい。可溶化された重金属陽イオンの除去に 効果的な陽イオン交換樹脂には、ローム アンド ハー スDP-1、ロームアンド ハースアンバーライトRI ールドフィルターはゆるく充填したカーボンフィルター 50 RC-718、デュオライトRC-464、ビュロライ

トR C-106およびイオニックR CNNの様な良く知 られた陽イオン交換樹脂がある。ローム アンド ハー スアンパーライトRIRC-718は、可溶化された鉛 の除去効果およびその価格から好ましい。アンバーライ トR IRC-718は、約4.0~約7.5のpH範囲で アルカリ金属またはアルカリ土類金属よりも重金属陽イ オンに対して高い親和力を有するキレート化陽イオン交 換樹脂であり、ダウ ケミカル社のSBR樹脂、スチレ ンージビニルベンゼン材料から形成されており、ローム アンド ハースから市販されている。ここで使用でき 10 る陰イオン交換樹脂には、ローム アンド ハースアン バーライトRIRA400、ピュロライトRA-60 0、イオニックRASB-1およびデュオライトRA-109がある。処理した不凍液/冷却剤中には硝酸塩の 様な陰イオンが高濃度で存在するので、陰イオン交換樹 脂の使用が常に有利であるとは限らない。それでも、例 えば陰イオン交換樹脂が一つ以上の陰イオン系物質を選 別できる様な、陰イオン交換樹脂を使用するのが有利で ある場合もある。さらに、陽イオンおよび陰イオンの両 方の交換特性を有するイオン交換樹脂があることも良く 知られており、その様な二重交換樹脂もここで使用でき る。例えば、ここに含める米国特許第4、908、13 7号の非交換媒体は、重金属イオンの除去に効果的な、 新規な非交換媒体であると考えられる。

【0045】廃不凍液/冷却剤にpH調節剤、沈殿剤、凝固剤および凝集剤を添加して不溶性の重金属化合物を沈殿させ、好適な機械的濾過を行った後に、陽イオンおよび/または陰イオン交換樹脂による処理(イオン交換)を行うことができる。大きな粒状物質の存在は、ほとんどのイオン交換材料の目詰まりを起こす傾向があるので、機械的濾過工程により約5ミクロンより大きな粒子を除去してからイオン交換工程を行うのが好ましい。

【0046】「濾過手段」とは、物質(有機物質および無機物質の両方を含む)を大きさにより物理的に分離するための、先行技術でこれまで知られている各種の濾過装置は市販されている。例えば、100ミクロン以上の最初の濾過手段は、ここに含める、3M販売パンフレット70-0701-3209-0(201)iii1989に記載されている様な、ポリプロピレンおよびステンレ40ス鋼から形成された3Mブランド液体フィルターバッグでよい。約40ミクロン以上の分離能力を有する第二の濾過手段は、ここに含める、3M販売パンフレット70-0702-2790-8(201.5)11に記載されている様な、ひだを付けたポリプロピレンからなる3Mブランド液体カートリッジフィルターでよい。

【0047】一実施形態では、陽イオン交換樹脂による 処理の一部または全部を陰イオン交換樹脂による処理で 置き換えることができる。場合により、重金属は存在し ても、陰イオン系物質に変換してもよい。場合により、 重金属を陰イオン系物質として除去するのが、陽イオン系物質として除去するよりも効果的であるので、廃不凍液/冷却剤を処理して重金属の陰イオン系物質を形成するのが有利である場合がある。廃不凍液/冷却剤を自動車の冷却機構に使用するための作動不凍液/冷却剤に再処理するには、その廃不凍液/冷却剤の保存アルカリ度を高くするのが望ましいので、その様な陰イオン系物質を形成するのが有利な場合がある。

【0048】本発明の様々な実施形態から得られる最終 組成物は、一つ以上の重金属成分の濃度が低く、一般的 に約5~約95重量%の多価アルコール、好ましくはエ チレングリコールを含み、約5ppm 未満の、一般的に約 2 ppm 未満の可溶性鉛を含むのが特徴である。これらの 水性多価アルコール組成物は、不凍液/冷却剤組成物の 製造にこれまで使用されている腐食防止剤を加えること により、作動不凍液/冷却剤の製造に、あるいは多価ア ルコールの他の一般的な用途に使用することができる。 【0049】不凍液/冷却剤に使用する場合、その様な 腐食防止剤は、廃不凍液/冷却剤中に存在する、本方法 により除去されなかった腐食防止剤組成物の残留濃度と 相関関係にある有効量で使用する。例えば、沈殿、有機 物質分離および機械的濾過の各工程は、可溶化されたシ リカおよび硝酸塩を完全に除去するには効果的でないこ とがあるので、本方法から得られる組成物にはそれらの 物質が存在することがある。処理した廃不凍液/冷却剤 の化学分析により、効果的な作動不凍液/冷却剤を形成 するために処理した水性不凍液/冷却剤に加えるべき腐 食防止剤の有効量を求める基準が得られる。作動不凍液 の形成には、望ましい凝固点を有する溶液を得るため に、エチレングリコールまたは新しい不凍液の追加、ま 30 たは水の除去を必要とする場合がある。水性エチレング リコールから水を除去するには、蒸留、抽出または他の 公知の分離手段を使用する。

【0050】米国特許出願第07/564,262の循環方法の様々な工程は、不凍液/冷却剤が液体状態にある、好ましくは約18 \mathbb{C} \sim 約45 \mathbb{C} の効果的な温度で、効果的な圧力、好ましくは約0.9 気圧 \sim 約1.1 気圧で行うが、他の温度または圧力が工程を促進することもある。

40 【0051】pH調節剤、沈殿剤凝固剤および凝集剤の添加により形成された沈殿物をせん断力の高い機械的ポンプに通すのは好ましくないことが分かっている。これは、せん断力の高い機械的ポンプは、機械的せん断により、より小さな粒子を形成する傾向があり、大型のフィルターで粒子を除去するのがより困難になるためである。したがって、ポンプ手段は最初の濾過工程の後に置き、最初の濾過手段の後に吸引作用を与えるか、あるいはダイアフラムポンプまたは他の低せん断型ポンプを最初の濾過手段の前に置くのが好ましい。高せん断ポンプの代表例は、MOYNORSPポンプ(ロビン&ワイヤ

社から市販)であり、低せん断ポンプの代表例は、ツイン ダイアフラム ポンプ (AROコーポレーションから市販)である。また、pH調節剤、沈殿剤、凝集剤および凝固剤を加える容器内の不凍液/冷却剤の表面から沈殿物をすくい取ることにより、高せん断ポンプに伴う問題を著しく低減するのに十分な沈殿物を除去できることも分かっている。

【0052】米国特許出願第07/564, 262号の 循環方法は、バッチ方式でも連続方式でも実行できる。 バッチ方式で行う場合、ある一定量の廃不凍液/冷却剤 を容器内に入れて本方法を実行する。pH調節剤および沈 殿剤を加え、次いで凝固剤および凝集剤を加えることに より、沈殿が形成される。次いで、容器の内容物を最初 の濾過手段により濾過し、液相から沈殿物を除去する。 この最初の濾過工程では、機械的な摩耗により形成され る粒子径の小さい部分を最小に抑えるために、沈殿物に 対する機械的作用は最小に抑えるのが有利であることが 分かった。その様な機械的摩耗は、すべての原料を加え た後、手動で約5分間混合し、この間に混合物の表面か ら沈殿物をすくい取ることにより、最小に抑えることが できる。次いで、pH調節した組成物を、一つ以上の濾過 手段、有機物質分離手段、追加の濾過手段およびイオン 交換手段を順次通過させることができる。

【0053】この処理した不凍液/冷却剤は、それ以上処理せずに作動不凍液/冷却剤の成分として使用するのに適している、あるいは蒸留により水および/または有機成分を除去し、多価アルコール含有量が高い溶液を得ることができる。あるいは、本方法は、上記のバッチ方式で使用する工程に基づいて連続方式で実行するのにも十分に適している。

【0054】米国特許出願第07/564,262号の 循環方法は、処理した不凍液/冷却剤に防止剤および他 の好適な薬品を加えた後、それを内燃機関の冷却機構に 戻す、不凍液/冷却剤交換方法における連続循環方法と しても使用できる。処理した不凍液/冷却剤をエンジン の冷却機構に再導入する方法は、ここに参考として含め る米国特許第4,149,574、Re. 31,27 4、4,791,890および4,792,403号に 記載されている。例えば、米国特許第4,793,40 3号では、取り出した冷却剤を処理するための第二の手 40 段(段落3の11行~段落3の28行参照)を本方法で 置き換えることができる。一実施形態では、本方法は、 ここに参考として含める1988年5月31日提出の、 「洗い流しおよび充填方法および装置」と題する、審査 中の米国特許出願第200,347号の方法における中 間処理工程として使用できる。

【0055】II.「エンジン冷却剤を循環するための方法および装置」と題する米国特許第4,946,59 5号に記載される様な循環方法は、本発明により再腐食* *防止化するための循環された使用済み不凍液/冷却剤を 得ることができる循環方法として使用することができ る

【0056】幾つかの異なった循環方法が先行技術で開発され、市販されている。これらの循環方法には、1)限外濾過、2)化学的濾過、3)沈殿、酸化およびイオン化による化学的濾過、4)イオン化による化学的濾過、5)減圧蒸留、6)イオン交換による濾過、7)遠心濾過、および8)逆浸透がある。その様な商業的循環方法に共通している要素は、循環された不凍液/冷却剤が純粋なエチレングリコールとは異なる化学的指紋を有することである。この化学的指紋は、不凍液/冷却剤の使用経歴、すなわちその冷却機構における使用およびその使用の結果その中に含まれる化学成分、および冷却機構で使用された後、その不凍液/冷却剤を処理するのに使用された循環方法に由来する。

【0057】<u>再腐食防止化剤パッケージおよび再腐食防止化された、循環不凍液/冷却剤の製造方法</u>

下記の「再腐食防止化剤パッケージ」が、本発明によ り、幾つかの異なった循環方法から得た、循環された使 用済み不凍液/冷却剤に加えた場合(添加剤パッケージ #1は添加剤パッケージ#2の前に)、自動車の冷却機 構の金属部品を腐食から保護するのに効果的である (以 下に説明する様に、ASTM試験方法D-1384-8 7およびD-4340-89に合格) ことが分かった。 再腐食防止化剤パッケージ中の各成分の濃度は、有効量 の腐食防止剤および緩衝剤を加えることにより、循環さ れた使用済み不凍液/冷却剤の化学的指紋に相関させ、 予め選択した腐食防止特性を備えた、自動車冷却機構用 (再腐食防止化剤A~E) および大型トラック用 (再腐 食防止化剤 C、DおよびE)の再腐食防止化した、循環 された使用済み不凍液/冷却剤を得た。機構が自動車ま たは大型トラックの冷却機構である場合、相関関係を持 たせるために考慮すべき代表的な化学的指紋は、緩衝剤 (ホウ酸塩、リン酸塩、等)の濃度、エチレングリコー ル含有量、ケイ酸塩、腐食防止剤(例えばモリブデン酸 塩、アゾール、等)、保存アルカリ度およびpHである。 循環された使用済み不凍液/冷却剤中のこれらの化学成 分の濃度は、最終的な不凍液/冷却剤のための予め選択 された有効腐食防止剤濃度(例えばゼネラルモータース 処方6043または予め選択された濃度として選択)に 相関する再腐食防止化剤パッケージ中の相当する成分に 相関させ、次いで評価の際にASTM試験方法D-13 84-87およびD-4340-89に合格した。下記 の再腐食防止化剤パッケージを、本発明により、括弧内 に示す循環された不凍液/冷却剤1ガロン当たりの量で 使用した。

[0058]

30

添加剤パッケージ#2

添加剤パッケージ#1

		12:07 81.12	
成分	重量%	成分	重量%
水	54.43	ケイ酸ナトリウム等級40	58.041
エチレングリコール中		水酸化ナトリウム50%	11.354
ポラックス20%	15.24	水	30.605
水酸化カリウム45%	18.42		
リン酸75%	5.58		
ナトリウムトリルトリ			
アゾール50%	1.00	(0.5 fl.oz./gal.)	
モリブデン酸ナトリウム			
35%	4.75		
シリコーン	0.58		
(6 fl.oz./gal.)			

^{*} 米国特許出願第07/564,262号の方法から得 *止化。

た循環された使用済み不凍液/冷却剤のための再腐食防* [0059]

再腐食防止化剤パッケージB*

添加剤パッケージ#1

添加剤パッケージ#2

成分	重量%	成分	重量%
エチレングリコール	45.0000	エチレングリコール	26.6342
水	26.2331	水	36.2484
水酸化ナトリウム50%	13.3155	エチレングリコール中	
		ボラックス20%	22.9573
ナトリウムメルカプト		モリブデン酸ナトリウム	
ベンゾチアゾール50%	9.3704	35%	8.6895
シリコーン	0.9938	ナトリウムトリルトリ	
ケイ酸ナトリウム		アゾール50%	2.4026
(等級40)	4.9323	リン酸75%	3.0340
あわ止め剤	0.1139	ウラニン染料40%	0.0340
アリザリン染料	0.0510	(4 fl.oz./gal.)	
(4 fl.oz./gal.)			

^{*} 自動車冷却機構用ゼネラルモータース処方6043に

※浸透)に添加する。

類似の最終不凍液/冷却剤を得るための、循環工程(逆※

[0060]

再腐食防止化剤パッケージC*

添加剤	パ	<u>ック</u>	 <u>ジ</u>	#	1

添加剤パッケージ#2

		TOTAL TOTAL	11
成分	重量%		重量%
エチレングリコール	9.1383	E G中ボラックス20%	99.9660
水	56.7889	ウラニン染料	0.0340
エチレングリコール中			
ボラックス20%	13.5771		
水酸化ナトリウム50%	7.6996		
リン酸75%	3.0340		
ナトリウムトリルトリ			
アゾール	4.2002		
シリコーン	0.3256		
ケイ酸ナトリウム			
(等級40)	1.8895	(6 fl.oz./gal.)	
(6 fl.oz./gal.)			
12 - 1 - 1 - 1 - 1 - 1 - 1 - 1	0 0 0 0 -	1 12 15 1 1 1 1 1 1	

^{*} 大型車冷却機構用ゼネラルモータース処方6038に

★浸透) に添加する。

類似の最終不凍液/冷却剤を得るための、循環工程(逆★

[0061]

添加剤パッケージ#1

添加剤パッケージ#2

成分	重量%	成分	重量%
エチレングリコール	28.7986	水	20.7099
水	54.0478	エチレングリコール中	
水酸化ナトリウム50%	12.2767	ボラックス20%	76.5018
ナトリウムトリルトリ		リン酸75%	2.7543
アゾール	2.3986	ウラニン染料	0.0340
シリコーン	0.3880		
ケイ酸ナトリウム	1.9256	(4 fl.oz./gal.)	
あわ止め剤	0.1139		
アリザリン染料	0.0510		
(4 fl.oz./gal.)			

^{*} 大型車冷却機構用ゼネラルモータース処方6038に

*浸透)に添加する。

類似の最終不凍液/冷却剤を得るための、循環工程(逆*

[0062]

再腐食防止化剤パッケージE*

添加剤パッケージ#1		<u>添加剤パッケージ#2</u>		
<u>自動車用</u>		自動車/大型用		
成分	重量%	成分	重量%	
エチレングリコール	11.8396	エチレングリコール	28.4081	
水	54.8685	水	43.0527	
水酸化ナトリウム50%	9.2549	エチレングリコール中		
モリブデン酸ナトリウム		ボラックス20%	22.9573	
35%	8.6895	ナトリウムトリルトリ		
ナトリウムメルカプト		アゾール50%	2.4000	
ベンゾチアゾール50%	9.3704	リン酸75%	3.0340	
シリコーン	0.9938	あわ止め剤	0.1139	
ケイ酸ナトリウム		ウラニン染料40%	0.0340	
(等級40)	4.9323	(4 fl.oz./gal.)		
アリザリン染料	0.0510			
(4 fl.oz./gal.)				

再腐食防止化剤パッケージE* (続き)

添加剤パッケージ#1

大型用

	重量%
水	31.7714
エチレングリコール中ボラックス20%	53.5445
水酸化ナトリウム50%	12.3195
シリコーン	0.3880
ケイ酸ナトリウム	1.9256
アリザリン染料	0.0510
(4 fl.oz./gal.)	

* 添加剤パッケージ#2を量再腐食防止化剤パッケージ に共通にして、自動車冷却機構用ゼネラルモータース処 方6043に類似の最終不凍液/冷却剤および大型車冷 却機構用ゼネラルモータース処方6038に類似の最終 不凍液/冷却剤を得るための、商業的工程(逆浸透)に 添加する。

【0063】循環された使用済み不凍液/冷却剤の化学 的指紋を、再腐食防止化された、循環された不凍液/冷 却剤中の化学成分の濃度に相関させることは、最終的な 50

不凍液/冷却剤の望ましい腐食防止特性を選択すること である。一般的に、最終的な不凍液/冷却剤は、内燃機 関の選択された冷却機構に対する腐食防止剤の有効濃度 を与える様に再腐食防止化する。不凍液/冷却剤の腐食 防止を評価する標準を与えるために、不凍液/冷却剤に 対する幾つかの試験方法が開発されている。2種類の良 く知られた試験方法は、ここに参考として含める、下記 のASTM試験方法である。

ASTM試験方法	標題
$D-1384-87^{\circ}$	ガラス容器内のエンジン冷却剤に対する腐食試験の
	ための標準試験方法
D-4340-89 ^{co}	断熱条件下におけるエンジン冷却剤中の鋳造アルミ
	ニウム合金の腐食に関する煙漁試験方法

①:現在の版は1987年11月27日に承認され、1988年1月に出版された。本来はD-1384-55 Tとして出版された。前の版はD-1384-80である。

②:現在の版は1989年3月31日に承認された。前 10 の版はD-4340-84である。

【0064】本発明の添加剤パッケージ中の化学成分の 濃度を、循環された使用済み不凍液/冷却剤の化学的指 紋に相関させるための、最終的な再腐食防止化された不 凍液/冷却剤の有効腐食防止特性を決定する際、AST M D-1384-87 statas TM D-4340 -89の性能規準を相関関係の基準として選択すること ができる。循環された使用済み不凍液/冷却剤は、予め 選択された腐食防止効果を与えるのに有効な腐食防止量 で最終的な再腐食防止化された、循環された不凍液/冷 20 却剤中に存在するのが望ましい、少なくとも一つの腐食 防止剤の有効腐食防止量より少ない腐食防止剤を有する のが特徴である。あるいは、相関関係は、最終製品に対 して予め選択された腐食防止特性に基づく予め選択され た性能規準を使用して求めることができる。例えば、最 終製品の望ましい有効腐食防止特性は、不十分な使用、 または最終製品が異なった冷却機構に使用される(例え ば、自動車の冷却機構に使用されるか、またはトラック の冷却機構に使用されるかで、異なった冷却機構の構造 材料には異なった金属が使用されているので、腐食防止*30

*の要件が異なる)か、否かに関する差のために、上記の ASTM試験方法により要求される特性未満として選択 することができる。循環された使用済み不凍液/冷却剤 中の腐食防止剤の有効量を相関させる際の他の要件は、ゼネラルモータース処方GM6043の様な良く知られ た不凍液/冷却剤組成物中の化学成分の望ましい濃度を 考慮し、その中に含まれている腐食防止剤の有効量を循環された使用済み不凍液/冷却剤の化学的指紋に相関させることである。

【0065】「廃不凍液/冷却剤の処理方法」と題する上記の部分に記載されている多くの特許から明らかな様に、市販の不凍液/冷却剤の化学的成分はこの分野では良く知られている。未使用エチレングリコール/水混合物のための新規な腐食防止系を提供することは本発明の範囲外である。その代わりに、本発明は、循環された不凍液/冷却剤(内燃機関の冷却機構で使用した後循環された)を使用して冷却機構で再使用するための不凍液/冷却剤を製造することができる方法を提供する。恐らく、本発明を理解するための最も簡単な方法は、異なった循環方法から得られる循環された使用済み不凍液/冷却剤の「化学的指紋」の多様性を理解することであろう。幾つかの商業的循環方法から下記の化学的指紋が得られた。

[0066]

化学成分	商業的方法 [©] , [©]	米国特許出願	FPPF [©]	B G 40, 45
		第07/564,262号②,	⑤	
リン	0	2 6 1	699	0
ホウ素	1 1 8	186	267	0
硝酸塩	8 4 6	3500	780	0
ケイ素	3 7	6 1	1 3 1	1 2
ттz	178	114	402	0
<u>モリブデン</u>	0	0	0	0

①:市販の循環方法を使用して行う循環方法。

②:1990年8月8日提出の米国特許出願第07/564,262号により行う方法。

③: 腐食防止剤または緩衝剤を加えずに、米国特許第4,946,595号により行う方法。

④:BGプロダクツ社、ウイチタ、カンサスから市販されている循環方法により行う方法(ラジエーター リポーター、1991年10月、20巻、No.10、RR90~111参照)。

⑤:約38~55重量%の水を含む循環/冷却剤。

【0067】4種類の異なった循環方法から得た循環さ

40 れた使用済み不凍液/冷却剤に関する上記の化学的指紋から容易に分かる様に、循環された使用済み不凍液/冷却剤の化学的指紋に関して、4つの方法の間で著しい相違がある。本発明以前は、その様な循環された使用済み不凍液/冷却剤の再腐食防止化は特別であり、大型トラック輸送事業で使用するためにあるSCA(補足コード化添加剤)再腐食防止化剤パッケージを使用していた。この事実の代表例は、米国特許第4,946,595号の実施例1で使用されている化学添加剤である。その亜硝酸塩を含む化学添加剤およびその化学添加剤の使用濃度は、大型トラック用の再腐食防止化添加剤として使用

されるSCA成分の代表例である。亜硝酸塩を含む腐食 防止剤パッケージが自動車冷却機構には現在使用されて いないことはこの業界では良く知られている。

【0068】本発明の一実施形態では、例えばASTM 試験方法ASTM D-1384-87および/または ASTM試験方法D-4340-89の腐食防止試験に 適合する腐食防止剤の予め選択された有効腐食防止量を 得るために、循環された使用済み不凍液/冷却剤中のリ ン、ホウ素、ケイ素、硝酸塩、トリルトリアゾール (T TZ) およびモリブデンの少なくとも一つの濃度を、再 10 腐食防止化された、循環された使用済み不凍液/冷却剤 中のそれらの濃度に相関させる。前に述べた様に、この 相関関係は循環された使用済み不凍液/冷却剤の化学的 指紋を考慮するが、その際、特定の化学的指紋は使用さ れた特定の循環方法に関係する。有効腐食防止特性を得 るための、特定循環方法に関する化学的指紋に対する相 関関係は、実施例に記載する。

【0069】一実施形態では、再腐食防止化剤パッケー ジは、12を超えるpHで塩基で安定化したケイ酸塩(例 未満のpHで安定した腐食防止剤または最終的な再腐食防 止化された、循環された不凍液/冷却剤を約12未満の pHで緩衝するための緩衝剤を含む第二成分(約12未満 のpHで)の、2つの別個の添加成分として添加される。 [0070]

【実施例】下記の実施例は、本発明に係わる再腐食防止 化パッケージ、製造方法および使用方法をさらに説明す るが、本発明を制限するものではない。これらの実施例 において使用される下記の略号は、次の意味を有する。

重量%: 重量パーセント

EG: エチレングリコール

DEG: ジエチレングリコール

PG: プロピレングリコール

TTZ: トリルトリアゾール

MBT: メルカプトベンゾチアゾール

ΝОз: 硝酸塩 SO₄:

硫酸塩 F : フッ化物

C1: 塩化物

EDTA: エチレンジアミン四酢酸

TSS: 総浮遊固体 (ppm 、 0 . 4 5 ミクロンフィ

ルターによる重量分析)

不溶有機相としての重量%オイル オイル: 元素はそれらの化学記号で、例えばA1はアルミニウ ム、Pbは鉛、等

ml: ミリリットル

ND: 2 ppm 以上で検出されず

部/100万 ppm :

シリコーン:代表的なシリコーンは米国特許第4,72 5,405号(ここに参考として含める)に記載されて 50 溶形で、本発明に係わる処理の前後で示す。その上、最

いる。

【0071】下記の実施例は、1990年8月8日提出 の米国特許出願第07/564,262号の実施例を含 み、この方法および本発明の実施例により得られる循環 された使用済み不凍液/冷却剤の特性を確認する。実施 例1、2および3は米国特許出願第07/564,26 2号からその全文を引用している。実施例5~10で は、ケイ酸ナトリウムは延期で安定化したケイ酸ナトリ ウムであり、各「パッケージA」のpHは少なくとも1 2.0である。ケイ素の値は、米国特許第4,725, 405号に示される比で存在するケイ酸塩およびシリコ ーンからのケイ素を表し、したがって実施例5~10の シリコーンはケイ酸塩によるケイ素値で報告してある。 実施例1

廃不凍液/冷却剤を、商業的な不凍液/冷却剤交換施設 で、自動車およびトラックエンジンの冷却機構から得 た。この廃不凍液/冷却剤を本発明により、下記の装置 で、記載する順に処理した。

(1) 混合タンク、(2) 1/2" ダイアフラムポン えばケイ酸ナトリウム)を含む第一成分、および約12 20 プ、(3)32"バッグフィルター(3M 527A、 99. 99が20ミクロン)、(4) 12" バッグフィ ルター (マクマスター カー 5167K56、100 ミクロン)

> (5) 20" カートリッジフィルター (パルRF40 0、40ミクロン)、(6)10"活性炭(フィルター フルフロRC10、10ミクロン)、(7)20"フィ ルター (3M 323A、2ミクロン)、および (8) 陽イオン交換樹脂(ローム アンド ハース アンバー

【0072】5125ガロンの廃不凍液/冷却剤試料を 30 混合タンクに入れ、続いて11.889ガロンの70重 量%硝酸(残りは水)を加えた。次いで、混合タンクの 内容物を機械的ミキサーで20分間混合した。この混合 物に110.23ポンドのAl(NO3)3・9H2O 粉末を加えた。この混合物を6分間混合した。この混合 物に200ガロンの0.5重量%凝固剤カルゴン246 6 および 6 6 . 7 ガロンの 0 . 5 重量%凝集剤カルゴン 7736を加えた。得られた混合物を8時間混合し、上 記の順のフィルターで濾過した。

【0073】表ⅠおよびⅡは、本発明の方法により処理 する前と処理した後の廃不凍液/冷却剤の分析結果を示 す。表【で、エチレングリコール、ジエチレングリコー ルおよびプロピレングリコールの分析は標準的な屈折率 およびガスクロマトグラフィーにより行い、オイル百分 率はガスクロマトグラフィーにより測定し、総浮遊固体 は重量分析により測定し、その他の分析はすべて高圧液 体クロマトグラフィー (HPLC) 分析またはイオンク ロマトグラフィー (IC) により行った。表Ⅱは、幾つ かの金属のICP分析の結果を、それらの可溶および不

初の100ミクロンフィルターバッグにより集めた沈殿 物を分析した。表ⅠおよびⅡは、廃不凍液/冷却剤から 重金属、特に鉛、鉄、銅、アルミニウム、マグネシウ ム、亜鉛、およびオイルを除去する際の、本方法の効果 を立証している。表Ⅰは、本方法の一実施形態で、TT Z、BZT、オイル、安息香酸塩、グリコール酸塩およ び総浮遊固体 (TTS) の濃度が処理後に低下したこと を示している。表IIは、アルミニウム、ホウ素、カルシ ウム、鉄、カリウム、マグネシウム、モリブデン、リ ン、鉛、ケイ素および亜鉛の可溶形が減少したことを示 10 る、あるいは他の金属被覆分野で使用できる。 している。アルミニウム、ホウ素、鉄、マグネシウム、*

*モリブデン、リン、鉛および亜鉛の不溶形は減少した。 【0074】本発明に係わる処理の後、不凍液/冷却剤 中に可溶または不溶の鉛はICP分析の検出限界(2pp m) まで存在せず、したがって、現行の、および現在提 案されている環境保護局の規則に、非危険性物質として 適合することは特に重要である。さらに、沈殿物中の重 金属は水により浸出しない形であることも観察されてい る。その上、沈殿物は様々な有用な金属成分を含んでお り、セメント、コンクリートの成分として再使用でき

[0075]

<u>表 I</u>

	化学処理前後の不凍	液/冷却剤組成
分析	処理前	処理後
pН	8.3	6.39
EG、重量%	53.0	48.1
DEG、重量%	2.0	1.9
PG、重量%	0.33	0.34
TTZ、ppm	908	2 5 8
BZT, ppm	1 1 4	ND
NO_2 , ppm	9 2	1 1 5
NОз 、ppm	1029	4 1 6 6
安息香酸塩	3520	2896
オイル、%	0.5	ND
F, ppm	180	1.41
C1, ppm	1 3 7	1 4 1
SO_4 , ppm	290	2 5 9
酢酸塩	5 5	6 6
グリコール酸塩	8 2 0	6 6 0
ギ酸塩	199	197
すべての酸、%	0.05	0.04
TSS, ppm	5 0 9	19.0

表[[0,0]

元素名		溶形	<u>不容</u>	怪	沈殿物	
	前	後	前	後		
A 1	2.6	ND	6.1	ND	1 3 4 0	
В	434.8	303.6	23.7	3.2	1493	
Сa	14.7	ND	6.7	ND	100.1	
Fе	2.4	ND	23.6	ND	32.6	
K	1206	986.6	ND	ND	789.5	
Μg	8.1	ND	3.0	ND	30.6	
Мо	48.5	20.5	ND	ND	ND	
Na	2811	2 3 0 8	65.0	30.9	2 1 1 0	
P	646.1	240.8	24.9	ND	95.8	
Рb	3.0	ND	10.2	ND	11.5 ^{cs}	
Si	66.5	31.4	5.3	ND	15200	
Zn	5.6	ND	5.4	ND	5.0	

①:濃度 (ppm)

②:NDは2ppm 以上で検出されないことを示す。

③: EP毒性試験(抽出可能な鉛)結果は0.1ppm 未 満であった。

実施例2

自動車およびトラックエンジンの冷却機構から得た廃不 凍液/冷却剤を、本発明により、下記の装置を、記載す る順で使用して処理した。

(1) 30 ガロンタンク、(2) 1/2" ダイアフラム 空気ポンプ、(3)12"50ミクロンバッグフィルタ 10 ホウ素、鉄、リンおよびケイ素の可溶形が減少したこと 一(マクマスター カー 5167K56)

(4) 20" 40ミクロンカートリッジ (パルNo. RF 400)、(5)10"10ミクロンカーボンフィルタ - (フルフロNo. RC10)、(6)20"5ミクロン カートリッジフィルター (パルRF050)、および (7) 1. 8リットル陽イオン交換樹脂 (ローム アン ド ハース アンバーライトNo. IRC-718)。

【0076】10ガロンの廃不凍液/冷却剤試料を30 ガロン混合タンクに入れ、続いて60mlの70重量%硝 のAl (NO₃)₃・9H₂ O粉末を加えた。この混合 物を15分間混合した。この混合物に1135.5mlの 0.5重量%凝固剤カルゴン2466および378.5 mlの0.5重量%凝集剤カルゴン7736を加えた。得 られた混合物を30分間混合し、上記の順のフィルター で濾過した。

【0077】表III は、本発明の方法により処理する前*

*の廃不凍液/冷却剤の不凍液/冷却剤および金属の分析 結果を示す。この分析は ICP (誘導結合プラズマ)分 析により行った。表IVおよびVは、幾つかの金属および 化合物のICP分析結果を、本発明に係わる処理工程の 後の、それらの可溶および不溶形で示す。グラフィー

40

(IC) により行った。表IVおよびVは、廃不凍液/冷 却剤組成物から重金属、特に鉛およびモリブデンを除去 する際の、本方法の効果を立証している。表Vは、本方 法の一実施形態で、処理後に、カリウム、モリブデン、 を示している。アルミニウム、カルシウム、鉄、マグネ シウム、ナトリウム、ケイ素、リン、鉛および亜鉛の不 溶形は減少した。さらに、表IVは、本方法の、処理され た不凍液/冷却剤中のTTZ および安息香酸塩を除去 し、総浮遊固体 (TTS) を減少させる能力を立証して

【0078】本発明に係わる処理の後、不凍液/冷却剤 中に、ICP分析の検出限界(約2ppm 未満)内で検出 可能な鉛が存在しないことは特に重要である。さらに、 酸(残りは水)を加えた。この混合物に0.24ポンド 20 不凍液/冷却剤を5ミクロンフィルターおよび陽イオン 交換樹脂(有効フィルター径2.0ミクロン)を通過さ せているので、最終的な処理した不凍液/冷却剤は、鉛 含有量に基づく非危険性物質に関する現行の環境保護局 の規則に適合する。さらに、沈殿物中の重金属は水によ り浸出しない形であることも観察されている。

[0079]

<u> </u>
「凍液/冷却剤の組成
9.42
32.2
1. 2
0.6
2 5
9 1
262
ND
472
6 5 2
6 5 0

* 数値はマイクログラム/ミリリットル単位、NDは2 **%**[0080] ppm 以上で検出されないことを示す。.

Ж

B. 処理前σ	可溶物質
元素	平均*
Al	ND
В	179.8
Ca	ND
Cu	ND
Fе	11.5

- 1	''

K	334.9
Мg	ND
Мо	9. 7
Na	1509.0
P	464.0
Рb	ND
Si	70.7
Sn	ND
7. n	ND

* 数値はppm 単位、NDは2ppm 以上で検出されないこ 10*【0081】とを示す。

<u>C. 処理前の</u>	の不溶物質	
元素	平均*	
A 1	13.6	
В	9.9	
Ca	10.2	
Cu	N D	
Fе	80.7	
K	N D	
Мg	3.5	
Мо	ND	
Na	47.5	
P	24.9	
Рb	26.6	
Si	10.7	
Sn	ND	
Zn	7.4	

^{*} 数値はppm 単位、NDは2ppm 以上で検出されないこ Ж

%[0082]

とを示す。

表IV

測定項目	50μm	4 0 μm	カーボン	5 μm	陽イオン
	フィルター	フィルター	フィルター	フィルター	交換樹脂
	の後	の後	<u>の後</u>	の後	の後
重量%EG(GC)	28.3	28.5	28.3	28.5	28.5
重量%EG(RI)	29.9	30.0	29.8	30.0	30.0
рН	6.7	6.8	6.7	6.8	7.9
重量%DEG	1.05	1.02	0.98	0.99	0.96
重量%PG	0.51	0.51	0.51	0.48	0.51
F	7 6	7 4	7 5	7 6	7 7
C 1	2 3	2 3	2 3	2 3	2 5
S 0 4	9 6	9 7	9 8	9 7	107
TTZ	206	2 3 5	9 0	101	6 1
ΝОз	3 1 4 1	3017	2759	3 1 0 3	3 1 0 5
安息香酸塩	3 2 5	3 1 8	250	2 3 2	2 4 7
TSS/PPM	456	112	6 8	3 6	2 4

	<u>50ミクロ</u>	コンバッグの後	40ミクロンフ	ィルターの後
	可溶		可溶	
A 1	ND	131.7	ND	11.7

	43				44
В		155.8	16.8	161.8	9.7
Сa		N D	6.8	ND	4.0
Cu		ND	N D	ND	ND
Fе		ND	32.2	ND	ND
K		499.5	23.3	513.1	ND
Μg		ND	2. 0	ND	ND
Мо		7.7	ND	8.1	ND
Νa		1 4 1 4	73.2	1 4 3 4	21.6
P		190.9	161.2	194.7	7.8
Рb		ND	ND	ND	ND
Si		34.7	11.8	35.4	12.2
Sn		N D	ND	ND	ND
Zn		N D	3.8	N D	N D

* * [0083]

表V(続き)

元素	<u>カーボ</u>	ン後	5ミクロンフ	ィルター後	陽イオン交	換樹脂後
	可溶	丕溶	可溶	<u>不溶</u>	可溶	丕溶
Αl	ND	21.1	ND	3.2	ND	4.0
В	162.3	10.7	156.3	8.6	147.2	11.6
Сa	2.6	4.0	2.1	2.3	2.2	3.1
Cu	ND	ND	ND	ND	ND	ND
Fе	ND	3.1	ND	ND	ND	ND
K	526.7	ND1	509.6	ND	252.3	ND
Мg	ND	ND	ND	ND	ND	ND
Мо	8.7	ND	8.3	ND	ND	ND
Νa	1495	27.1	1440	19.2	1962	29.3
P	205.1	18.6	199.0	ND	202.0	ND
Рb	ND	ND	ND	ND	ND	ND
Si	34.8	3.9	33.9	3.0	33.7	6.5
Sn	ND	ND	ND	ND	ND	ND
<u>Zn</u>	ND	ND	ND	ND	ND	ND

【0084】<u>実施例3</u>

自動車およびトラックの廃不凍液/冷却剤を交換する事業所から廃不凍液/冷却剤を入手した。廃不凍液/冷却剤の一部に下記の化学処理の一つを行い、処理工程に対する別調節剤、沈殿剤、凝固剤および凝集剤変化の影響を確認した。各処理の凝固剤はカルゴン2466で、凝集剤はカルゴン7736であった。下記の10種類の異なった化学処理を行い、処理した不凍液/冷却剤試料が500ミリリットルであった以外は、上記の様にして処40理および分析を行った。

- 1:有機酸(酢酸CH₃ COOH、99.7%溶液)で 試料のpHを約7.0に調節した。0.75mlの有機酸で 処理し、続いて1.3gのA1(NO₃)₃・9H₂O を加え、次いで30mlの凝固剤(0.25体積%)溶液 を加え、続いて10mlの0.25%凝集剤に溶液を加え た。
- 2:1.9gのCa (NO₃)₃・2H₂ Oで試料のpH を約7.0に調節した (pH調節剤、凝固剤および凝集剤 は加えずに)。

- 3:0.75mlの無機酸 (70重量%硝酸)で試料のpHを約7.0に調節し、続いて沈殿剤として1.3gのA1(NO₃)₃・9H₂Oで処理し、さらに30mlの0.25%凝固剤溶液を加えた。
- 4:0.75 mlの硝酸溶液(70 重量% HNO_3)で試料のHを約7.0 に調節し、続いて沈殿剤として1.3 gの $A1(NO_3)_3\cdot 9H_2O$ を加え、さらに10 mlの0.25 重量%の凝集剤溶液を加えた。
- 5:0.75mlの硝酸水溶液(70重量%HNO₃)で 試料のpHを約7.0に調節し、続いて1.3gのA1 (NO₃)₃・9H₂Oを加え、さらに10mlの0.2 5重量%の凝集剤水溶液を加え、次いで30mlの0.2 5重量%の凝固剤水溶液を加えた。
- 6:0.75mlの硝酸水溶液(70重量%HNO。)で試料のpHを約7.0に調節し、続いて1.3gのAl(NO。)。・9H2Oで処理し、続いて10mlの0.25重量%の凝固剤溶液を加え、次いで30mlの0.25重量%の凝集剤水溶液を加えた。
- 50 7:0.75mlの硝酸水溶液 (70重量%HNO₃) で

*重量%の凝固剤水溶液を加え、次いで10mlの0.25

試料のpHを約7.0に調節し、続いて1.3gのAl (NO₃)₃・9H₂Oを混合し、続いて30mlの0. 25重量%の凝固剤溶液を加え、次いで10mlの0.2 5 重量%の凝集剤水溶液を加えた。

8:0.75mlの硝酸水溶液 (70%HNO3) で試料 のpHを約7.0に調節し、続いて1.3gのAl(NO a) a · 9 H₂ Oを混合し、続いて 15 mlの 0.5 重量 %の凝固剤溶液を加え、次いで5mlの0.5重量%の凝 集剤水溶液を加えた。

9:0.7mlのギ酸水溶液(88%ギ酸HCOOH)で 10 の使用、および幾つかの濃度の凝固剤および凝集剤の使 試料のpHを約7.0に調節し、続いて1.3gのA1 (NO₃)₃・9H₂ Oを混合し、続いて30mlの25*

重量%の凝集剤水溶液を加えた。

46

10:試料を30mlの0.25重量%の凝固剤水溶液お よび10mlの0.25重量%の凝集剤水溶液で処理した (pH調節剤および沈殿剤を含まない比較試料)。

【0085】次いで、上記の試料のそれぞれを25ミク ロンフィルターを通して濾過し、最終的な処理をした不 凍液/冷却剤を分析した。分析の結果を表VIに示す。表 VIは、pHを約4.0~約7.5に調節すること、沈殿剤 用により得られる驚くべき結果を示している。

[0086]

			表VI	·		
			処理番	号		
	比較*	1	2	3	4	5
рН	9. 1	5.87	7.5	5.54	5.18	5.39
A1, ppm	15.9	ND	ND	ND	ND	N D
B, ppm	146.2	1 2 5	147	1 2 7	1 2 5	1 2 5
Ca, ppm	3.2	2.4	33.2	3.0	3.4	2.8
Fe, ppm	24.7	ND	ND	ND	ND	N D
K, ppm	640.0	506	604	483	5 2 2	490
Mg, ppm	N D ***	ND	ND	ND	ND	ND
Mo, ppm	16.7	12.3	12.8	11.9	12.4	12.1
Na, ppm	1 4 7 1	1319	1437	1 3 6 6	1 3 6 7	1 3 3 1
P, ppm	4 4 4	1 4 2	61.9	1 3 9	1 3 7	1 4 0
Pb、ppm	19.7	ND	ND	ND	ND	ND
Si、ppm	109.3	44.7	55.2	44.5	45.9	39.8
Zn, ppm	7.2	ND	ND	ND	ND	N D

* 自動車/トラックの冷却機構から得た時の、処理前の 30※**NDは2ppm 以上で検出されないことを示す。 不凍液/冷却剤。 Ж [0087]

<u>表VI (続き)</u>					
	-	処理番	号		
	6	7	88	9	1 0
рН	5.41	5.55	5.25	5.13	9.1
A1, ppm	ND	ND	ND	N D	3
B, ppm	1 2 1	127.4	130.6	129.4	1 2 8
Ca, ppm	ND	2.8	3.5	ND	ND
Fe, ppm	ND	ND	N D	N D	3. 0
K, ppm	487	490.0	506.4	5 1 7. 0	507.0
Mg, ppm	ND	ND	ND	N D	ND
Mo, ppm	ND	11.8	12.2	N D	13.3
Na, ppm	1 3 5 0	1 2 9 5	1 3 6 5	1 4 2 6	1210
P, ppm	1 3 6	1 4 1	1 4 7	1 3 9	3 3 1
Pb, ppm	ND	ND	ND	N D	2.8
Si, ppm	ND	40.7	40.6	N D	42.0
Zn, ppm	ND	N D	ND	ND	ND

表VIの結果は、pHを調節し、沈殿剤を使用し(例えば処 理番号6および9)、続いて凝固剤および凝集剤を加え る方が、凝固剤および凝集剤だけを使用する(例えば処 50 的であることを立証している。本発明の方法を使用する

理番号10)、または沈殿剤としてCa(NO₃)₃・ 2H2 Oだけを使用する(処理番号2)場合よりも効果

と(処理番号6および9の様に)、処理番号6および9 で処理した溶液は、鉄、モリブデン、ケイ素および亜鉛 の濃度が検出限界(2ppm)未満に下がることが分か る。さらに、処理6および9とも検出可能な可溶化した 鉛を除去したのに対し、処理番号10 (凝固剤および凝 集剤を加えただけ)で処理した製品は、2.8ppmのP b、3. 0ppm のFe、3. 0ppm のAlおよび13. 3ppm のMoを含んでいた。

【0088】<u>実施例4</u>

表VII に示す組成を有するプロピレングリコール系不凍 10 は約2ppm を超える検出水準で、幾つかの金属を含んで 液/冷却剤を使用して実施例3(処理番号7)の方法を 実行した。このプロピレングリコール系不凍液/冷却剤 は、この実施例で使用する「元の使用済み不凍液/冷却*

*剤」を与えるために自動車の冷却機構で不凍液/冷却剤 として使用されていた。pH調節剤 (HNO3)、沈殿剤 (A1 (NO₃)₃・9 H₂ O)、凝固剤 (カルゴン 2 466) および凝集剤 (カルゴン7736) による処理 を実施例3と同様に行い、下記の表VII に示す様な処理 したプロピレングリコール系不凍液/冷却剤を得た。表 VII に示す様に、本方法は、元の使用済み不凍液/冷却 剤からある量のカリウム、リンおよび総浮遊固体を除去 するのに効果的であった。元の使用済み不凍液/冷却剤 いなかったので、本発明によるこれらの金属の除去は定 量的に評価できなかった。

[0089]

- DFA	表VII	
試験	不凍液/冷却剤の特性	
	一 元の使用済み不凍液/冷却剤	
рН	8.2	6.1
PG、%	52.5	49.8
TTZ	2 8	26.0
安息香酸塩	ND	N D
ΝΟз	803	3700
S 04	171	1 5 2
F	8 0	6 6
C 1	5 0	5 0
TSS	2 3 8	1 4
A1, ppm	N D	ND
B, ppm	367.1	307.4
Ca, ppm	N D	N D
Cu	N D	N D
Fe、ppm	N D	ND
K, ppm	9 4	59.5
Mg、ppm	N D	ND
Mo, ppm	N D	ND
Na, ppm	2083	1759
P, ppm	749.8	285.4
РЬ、ppm	N D	N D
Si, ppm	5 7	48.8
Zn, ppm	N D	N D

【0090】<u>実施例5</u>

却剤(AC)を商業的循環工程から得た循環された不凍 液/冷却剤から調製する。循環された不凍液/冷却剤の 化学的指紋ならびに最終的な再腐食防止化された不凍液 /冷却剤中の化学成分の最終濃度を記載する。さらに、 最終的な不凍液/冷却剤を達成するために使用した2つ の添加剤中の化学成分濃度(循環された不凍液/冷却剤※

※1米国ガロン (128 oz.) あたり各添加剤4 oz.の添 本発明に係わる再腐食防止化した、使用済み不凍液/冷 40 加に基づく)を2つの添加剤パッケージ(AおよびB) として記載し、循環された不凍液/冷却剤に添加剤パッ ケージAを加えた後、添加剤パッケージBを加える。リ ンはリン酸塩を、ホウ素はホウ酸塩を、ケイ素はケイ酸 塩およびシリコーンを表すものとする。各パッケージ内 の化学成分は次のとおりである。

> <u>パッケージB</u> エチレングリコール (EG) 水 TTZ

мвт

ポラックス、EG中20%

50

※の添加剤中の化学成分濃度(循環された不凍液/冷却剤

20 の添加剤パッケージ (AおよびB) として記載し、循環

された不凍液/冷却剤に添加剤パッケージAを加えた

後、添加剤パッケージBを加える。リンはリン酸塩を、

ホウ素はホウ酸塩を、ケイ素はケイ酸塩およびシリコー

ンを表すものとする。各パッケージ内の化学成分は次の

1ガロンあたり各添加剤4 oz.の添加に基づく)を2つ

モリブデン酸ナトリウム

シリコーン

リン酸 あわ止め剤

ケイ酸Na

iv a

染料

本発明に係わる相関関係は下記のとおりである。

* * [0091]

とおりである。

染料

	循環AC (ppm)	最終AC (ppm)	添加剤 (ppm)
リン	0	782.0	26588
ホウ素	1 1 8	295.0	6 2 6 4
硝酸塩	8 4 3	729.0	0
ケイ素	3 7	227.0	6534
ттг	178	745.0	19634
あわ止め剤		33.5	1 1 3 9
染料		15.0	5 1 0
染料		10.0	3 4 0
水酸化ナトリウム	_	_	_*

^{*} 水酸化ナトリウムはpHを約9~約10.5に調節する ために加える。

【0092】 実施例6

本発明に係わる再腐食防止化した、使用済み不凍液/冷却剤 (AC) を商業的循環工程から得た循環された不凍液/冷却剤から調製する。循環された不凍液/冷却剤の化学的指紋ならびに最終的な再腐食防止化された不凍液/冷却剤中の化学成分の最終濃度を記載する。さらに、

最終的な不凍液/冷却剤を達成するために使用した2つ%

<u>パッケージA</u>	<u>パッケージB</u>
エチレングリコール (EG)	エチレングリコール (EG)
水	水
NaOH	ттz
MBT	ボラックス、EG中20%
モリブデン酸ナトリウム	リン酸
シリコーン	あわ止め剤
ケイ酸Na	染料
染料	

本発明に係わる相関関係は下記のとおりである。

	循環AC (ppm)	最終AC (ppm)	添加剤 (ppm)
リン	0	828.0	28152
ホウ素	1 1 8	186.0	2548
硝酸塩	8 4 6	905.0	3698
ケイ素	3 7	240.0	6976
ттг	178	542.0	1 2 7 3 2
あわ止め剤		33.5	1 1 3 9
染料		15.0	5 1 0
染料		10.0	3 4 0
水酸化ナトリウム	_	_	*

^{*} 水酸化ナトリウムはpHを約9~約10.5に調節する ために加える。

【0093】 実施例7

本発明に係わる再腐食防止化した、使用済み不凍液/冷却剤(AC)を、1990年8月8日提出野米国特許出 50 願第07/564,262号の循環方法により得た循環

(AおよびB)として記載し、循環された不凍液/冷却

剤に添加剤パッケージAを加えた後、添加剤パッケージ

Bを加える。リンはリン酸塩を、ホウ素はホウ酸塩を、

ケイ素はケイ酸塩およびシリコーンを表すものとする。

各パッケージ内の化学成分は次のとおりである。

*剤4 oz.の添加に基づく)を2つの添加剤パッケージ

された不凍液/冷却剤から調製する。循環された不凍液/冷却剤の化学的指紋ならびに最終的な再腐食防止化された不凍液/冷却剤中の化学成分の最終濃度を記載する。さらに、最終的な不凍液/冷却剤を達成するために使用した2つの添加剤中の化学成分濃度(循環された不凍液/冷却剤1米国ガロン(12802.)あたり各添加*

<u>パッケージA</u> エチレングリコール (EG) エチレングリコール (EG) 水 水 NaOH TTZ MBT ボラックス、EG中20% モリブデン酸ナトリウム リン酸 シリコーン あわ止め剤 ケイ酸Na 染料 染料

本発明に係わる相関関係は下記のとおりである。 ※ ※【0094】

	<u>循環AC(ppm)</u>	最終AC (ppm)	添加剤 (ppm)
リン	2 6 1	782.0	18236
ホウ素	186	295.0	4078
硝酸塩	3500	729.0	0
ケイ素	6 1	227.0	5766
TTZ	1 1 4	248.0	4784
あわ止め剤		33.5	1139
染料		15.0	5 1 0
染料		10.0	3 4 0
水酸化ナトリウム	-	_	*

* 水酸化ナトリウムはpHを約9~約10.5に調節するために加える。

【0095】実施例8

本発明に係わる再腐食防止化した、使用済み不凍液/冷却剤(AC)を、1990年8月8日提出野米国特許出願第07/564,262号の循環方法により得た循環された不凍液/冷却剤から調製する。循環された不凍液/冷却剤の化学的指紋ならびに最終的な再腐食防止化された不凍液/冷却剤中の化学成分の最終濃度を記載す ★

<u>パッケージA</u>	<u>パッケージB</u>
エチレングリコール (EG)	エチレングリコール (EG)
水	水
NaOH	ттz
мвт	ボラックス、EG中20%
モリブデン酸ナトリウム	リン酸
シリコーン	あわ止め剤
ケイ酸Na	染料
染料	

本発明に係わる相関関係は下記のとおりである。 ☆ ☆【0096】

	循環AC (ppm)	最終AC (ppm)	添加剤 (ppm)_
リン	2 6 1	782.0	18236
ホウ案	186	295.0	4078
硝酸塩	3500	729.0	0

★る。さらに、最終的な不凍液/冷却剤を達成するために使用した2つの添加剤中の化学成分濃度(循環された不)

30 凍液/冷却剤1米国ガロン(1280z.)あたり各添加剤4 0z.の添加に基づく)を2つの添加剤パッケージ(AおよびB)として記載し、循環された不凍液/冷却剤に添加剤パッケージAを加えた後、添加剤パッケージBを加える。リンはリン酸塩を、ホウ素はホウ酸塩を、ケイ素はケイ酸塩およびシリコーンを表すものとする。各パッケージ内の化学成分は次のとおりである。

*却剤を達成するために使用した2つの添加剤中の化学成

分濃度(循環された不凍液/冷却剤1米国ガロン(12

8 oz.) あたり各添加剤 4 oz.の添加に基づく) を2つ

された不凍液/冷却剤に添加剤パッケージAを加えた

後、添加剤パッケージBを加える。リンはリン酸塩を、

ホウ素はホウ酸塩を、ケイ素はケイ酸塩およびシリコー

ンを表すものとする。各パッケージ内の化学成分は次の

53			54
ケイ素	6 1	279.0	7534
TTZ	1 1 4	745.0	2 1 6 8 2
あわ止め剤		33.5	1139
染料		15.0	5 1 0
染料		10.0	3 4 0
水酸化ナトリウム	_		-*

* 水酸化ナトリウムはpHを約9~約10.5に調節する ために加える。

【0097】 実施例9

本発明に係わる再腐食防止化した、使用済み不凍液/冷 10 の添加剤パッケージ (AおよびB) として記載し、循環 却剤(AC)を、BGプロダクツ社から市販されている 循環方法により得た循環された不凍液/冷却剤から調製 する。循環された不凍液/冷却剤の化学的指紋ならびに 最終的な再腐食防止化された不凍液/冷却剤中の化学成 分の最終濃度を記載する。さらに、最終的な不凍液/冷*

<u>パッケージA</u>	<u>パッケージB</u>
エチレングリコール (EG)	エチレングリコール (EG)
水	水
NaOH	ттz
MBT	ボラックス、EG中20%
モリブデン酸ナトリウム	リン酸
シリコーン	あわ止め剤
ケイ酸Na	染料
染料	

本発明に係わる相関関係は下記のとおりである。

% % [0098]

とおりである。

	<u>循環AC(ppm)</u>	<u>最終AC(ppm)</u>	添加剤 (ppm)
リン	0	782.0	26588
ホウ素	0	295.0	10030
硝酸塩	0	729.0	24786
ケイ素	1 2	227.0	7718
ТТΖ	0	745.0	25330
あわ止め剤		33.5	1139
染料		15.0	5 1 0
染料		10.0	3 4 0
水酸化ナトリウム	_	_	_*

* 水酸化ナトリウムはpHを約9~約10.5に調節する ために加える。

【0099】 実施例10

本発明に係わる再腐食防止化した、使用済み不凍液/冷 40 却剤(AC)を、米国特許第4,946,595号の循 環方法により得た循環された不凍液/冷却剤から調製す る。循環された不凍液/冷却剤の化学的指紋ならびに最 終的な再腐食防止化された不凍液/冷却剤中の化学成分 の最終濃度を記載する。さらに、最終的な不凍液/冷却★

00 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<u>パッケージA</u>
エチレングリコール (EG)
水
NaOH
мвт

★剤を達成するために使用した2つの添加剤中の化学成分 濃度(循環された不凍液/冷却剤1米国ガロン(128 oz.) あたり各添加剤 4 oz.の添加に基づく) を 2 つの 添加剤パッケージ (AおよびB) として記載し、循環さ れた不凍液/冷却剤に添加剤パッケージAを加えた後、 添加剤パッケージBを加える。リンはリン酸塩を、ホウ 素はホウ酸塩を、ケイ素はケイ酸塩およびシリコーンを 表すものとする。各パッケージ内の化学成分は次のとお りである。

<u>パッケージB</u> エチレングリコール (EG) 水 TTZ ポラックス、EG中20%

モリブデン酸ナトリウム

リン酸

シリコーン

あわ止め剤

ケイ酸Na

染料

染料

本発明に係わる相関関係は下記のとおりである。

* * [0100]

	循環AC (ppm)	最終AC(ppm)	添加剤 (ppm)
リン	669	828.0	5784
ホウ素	267	186.0	0
硝酸塩	780	905.0	5 8 1 0
ケイ素	1 3 1	542.0	5 5 6 4
TTZ	402	542.0	5 5 6 4
あわ止め剤		33.5	1 1 3 9
染料		15.0	5 1 0
染料		10.0	3 4 0
水酸化ナトリウム	-	_	_*

^{*} 水酸化ナトリウムはpHを約9~約10.5に調節する※ ※ために加える。

フロントページの続き

(72)発明者 アレクセイ、ブイ、ゲルシュン アメリカ合衆国コネチカット州、ダンベリー、ペンボーク、ロード、ナンバー、57、 136 (72)発明者 スティーブン、エム、ウッドウォード アメリカ合衆国コネチカット州、レイクサ イド、ロード、23

56