

Patterns

(Class Slides)

Note: We are sharing these slides as lot of mathematical logic building was done on paper.

Hope these will help you in your learning process / 1

APNA COLLEGE

Nested Loops

Loop inside a loop

- 1) Outer doop: no of Rows
- 2) Inner doop; noig columns/ each row
- (3) Work in inne loop (each row)

Print Star pattern

- (1) outer loop -> Rows (i) -> Row mo'
 ntimes (1 to n)
 - inner 1000 (each rows)

 inner 1000 (each rows)

 il times (1 toli)
 - 3 work? - water * "

3 cont << endly

Print Inverted Star pattern

$$m=4$$
 $4=m-i+1$
 $3=m-i+1$
 $2=m-i+1$
 $1=m-i+1$

Print Half Pyramid pattern

R1 1

R2 12

R3 123

R4 1234

1 to 3

$$for(int i=1; i < = n; i + t)$$
 $for(int j=1; j < = i; j + t)$
 $cout < < j;$
 $cout < < j;$

- (2000) qool stro (1)
 - 2) inner 1000 (each row)
 (1 to i) > j
 - (3) work?

 cout << 1/3

Print Character Pyramid pattern

- (not) (100p) (vow)
 - 2) inne loop (eachrow)
 (1 to ?)
 - (3) wook?

 cout << ch;

 ch++; 11

Print Hollow Rectangle pattern

- (1 ton)
- 2 Invel doop (each row)

 cout << "* "; ||First

 for (1 to n-1) { } work

 else > " "

 Cout << " * "; |(dast

Inverted & Rotated Half-Pyramid

num=1

Print Floyd's Triangle

- (I to n)
 - 2) inne 100p (each row) elements (1 to 2)
 - 3 work?

 cout << num;

 num++;

Diamond Pattern

1st pyramid

(2005) (2005) (1 to n)

2) inclose (each son)
elements

a) (1 to
$$m-i$$
) cout << ""

b) (1 to $2 \times i-1$) cout < 2" *"

Diamond Pattern

2 nd pyramid

(rows)

(n to 1)

inner lægs (each von elements)

a) &p (1 to n-i)

b) st (2 to 2xi-1)

Print Butterfly Pattern

Pattern1 (2005) (2005) (140 m) 2) inne loss

Print Butterfly Pattern

$$2 \times (\eta - i) = 2 \times (\eta - 1) = 6$$

APNA