Estudo dirigido sobre o capítulo 5 (parte 2) — camada de enlace

1. Liste outras redes locais que concorreram com a Ethernet.

 Token ring, FDDI e ATM – são tecnologias mais complexas e mais caras do que a Ethernet

2. Descreva rapidamente cada um dos campos de um quadro Ethernet.

- Campo de dados (46 a 1500 bytes) se um datagrama IP tiver menos do que 46 bytes, o campo de dados terá de ser recheado
- Endereço de destino e endereço de fonte o adaptador destino só repassa o conteúdo do campo de dados para a camada de rede se o endereço de destino for o seu ou o endereço broadcast
- Campo de tipo usado para multiplexação para a camada de rede
- Verificação de redundância cíclica
- Preâmbulo (8 bytes) os primeiros sete bytes do preâmbulo servem para "despertar" os adaptadores receptores e sincronizar seus relógios com o relógio do remetente
 - Os dois últimos bits do oitavo byte do preâmbulo alertam o adaptador destino de que "algo importante" está chegando

3. O que é a transmissão em banda-base?

- A Ethernet usa transmissão em banda-base, isto é, o adaptador envia um sinal digital diretamente ao canal broadcast
- A placa de interface não desloca o sinal para outra banda de frequência, como é feito nos sistemas ADSL e de modem a cabo

4. Que tipo de serviço a Ethernet fornece (um serviço não confiável não orientado pra conexão)?

- Serviço não orientado para conexão envia quadros sem se conectar ao destino
- Serviço não confiável quando um quadro não passa na verificação CRC, o adaptador destino simplesmente o descarta
- Essas características tornam a Ethernet simples e barata

5. O que faz o protocolo de acesso múltiplo CSMA/CD?

- Um adaptador pode começar a transmitir a qualquer tempo, ou seja, não há noção de compartilhamentos de tempo
- Um adaptador nunca transmite um quadro quando percebe que algum outro adaptador está transmitindo, ou seja, ele usa detecção de portadora
- Um adaptador que está transmitindo aborta sua transmissão quando percebe que algum outro adaptador está transmitindo, ou seja, usa detecção de colisão
- Antes de tentar uma retransmissão, um adaptador espera um período de tempo aleatório que é caracteristicamente pequeno em comparação com o tempo de transmissão de um quadro

6. Como um adaptador Ethernet detecta a portadora e colisões?

 Adaptadores Ethernet realizam essas duas tarefas medindo os níveis de tensão antes e durante a transmissão

7. Qual é o objetivo do sinal de reforço de colisão ?

- É garantir que todos os outros adaptadores que estejam transmitindo fiquem cientes da colisão
- Os poucos bits de uma transmissão abortada podem não constituir energia suficiente para que um nó detecte a colisão
- O sinal de reforço da colisão é de 48 bits

8. O que é o backoff exponencial?

- Após abortar (isto é, transmitir o sinal de reforço), o adaptador entra em fase de backoff exponencial
- Especificamente, quando está transmitindo um dado quadro, após sofrer a enésima colisão em seguida para este quadro, o adaptador escolhe um valor para K aleatoriamente de {0,1,2,...,2^m-1), onde m=min(n,10)
- O adaptador então espera K*512 tempos de bits e reenvia o quadro

9. Descreva os acrônimos que descrevem as diferentes versões da Ethernet.

- 10 BASE-T, 10BASE-2, 100BASE-T, 1000BASE-LX e 10GBASE-T
- A primeira parte do acrônimo se refere à velocidade padrão: 10, 100, 1000 ou 10G
- BASE se refere à banda base da Ethernet, significando que a mídia física só suporta o tráfego da Ethernet; quase todos os padrões 802.3 são para banda base
- A parte final do acrônimo se refere à mídia física em si; geralmente um T se refere a um cabo de par trançado de fios de cobre

10. Há necessidade de um protocolo MAC na Ethernet atual? Por que ?

- Em uma Ethernet LAN com um comutador não ocorrem colisões, portanto não existe a necessidade de um protocolo MAC
- Entretanto, o formato do quadro Ethernet continua inalterado por mais de 30 anos, mesmo a tecnologia tendo experimentado um aumento de velocidade de três ordens de grandeza

11. O que são filtragem e roteamento?

- Filtragem é a capacidade de um comutador que determina se um quadro deve ser repassado para alguma interface ou se deve apenas ser descartado
- Repasse é a capacidade de um comutador que determina as interfaces para as quais um quadro deve ser dirigido e então dirigir o quadro a essas interfaces

12. O que há nos registros de uma tabela de comutação?

- O endereço MAC do nó
- A interface do comutador que leva em direção ao nó
- O horário em que o registro para o nó foi colocado na tabela

13. Como é alcançada a capacidade autodidata de um comutador?

- A tabela de comutação inicialmente está vazia
- Para cada quadro recebido em uma interface, o comutador armazena em sua tabela (1) o endereço MAC que está no campo endereço de fonte, (2) a interface da qual veio o quadro e (3) o horário corrente
- O comutador apagará um endereço na tabela se nenhum quadro que tenha aquele endereço como endereço de fonte for recebido após um certo período de tempo (o tempo de envelhecimento)

14. Quais são as vantagens em se usar comutadores em vez de enlaces *broadcast* como barramentos ou hub com topologias em estrela?

- Eliminação de colisões
- Enlaces heterogêneos pois enlaces são isolados uns dos outros
- Gerenciamento podem isolar placas com problemas e gerar estatísticas de uso por exemplo

15. Liste os prós e contras de comutadores e roteadores.

- Enquanto um roteador é um comutador de pacotes de camada 3, um comutador opera com protocolos de camada 2
- Comutadores são do tipo plug-and-play;
 - podem ter velocidades altas de filtragem e repasse;
 - uma rede de grande porte exigiria, também, tabelas ARP grandes gerando tráfego e processamento ARP substanciais;
 - não oferecem nenhuma proteção contra tempestades de broadcast
- Roteadores fornecem proteção de firewall contra as tempestades de broadcast de camada 2;
 - não são plug-and-play, precisam dos seus endereços IPs configurados;
 - apresentam tempo de processamento maior por pacote do que comutadores

 Professor Sandro Neves Soares

 INSTITUTO FEDERA

16. Quais são as desvantagens de uma rede montada via uma hierarquia de comutadores e que podem ser contornadas pelo uso de VLANs?

- Falta de isolamento de tráfego: o tráfego broadcast (por ex., quadros carregando mensagens ARP e DHCP ou quadros com endereços de destino que ainda não foram apreendidas por um comutador com aprendizagem automática) tem que ainda percorrer toda a rede institucional
- Uso ineficiente de comutadores: quando há poucos nós conectados sobram portas nos comutadores
- Gerenciamento de usuários: cabeamento físico deve ser mudado para conectar o funcionário a um comutador diferente

17. Explique o funcionamento de VLANS

- Um comutador que suporta VLANs permite que diversas redes locais virtuais sejam implementadas através de uma única infraestrutura física de uma rede local
- Em uma VLAN baseada em pontos, as interfaces do comutador são divididas em grupos pelo gerente da rede
- Cada grupo constitui uma VLAN, com as interfaces em cada VLAN formando um domínio de broadcast

17. Explique o funcionamento de VLANS

18. O que é o PPP: o protocolo ponto a ponto ?

- É um protocolo de camada de enlace que opera sobre um enlace ponto a ponto
- O PPP se tornou o protocolo preferido para conectar usuários residenciais a seus ISPs por meio de uma conexão discada

19. Liste as exigências originais da IETF para o projeto PPP.

- Enquadramento do pacote o remetente deve ser capaz de pegar um pacote da camada de rede e encapsulá-lo dentro do quadro PPP
- Transparência o PPP não deve impor nenhuma restrição sobre os dados que aparecem no pacote da camada de rede
- Múltiplos protocolos de camada de rede
- Múltiplos tipos de enlaces
- Detecção de erros
- Vida da conexão habilidade de detectar falhas no nível de enlace e sinalizar esta condição de erro à camada de rede
- Negociação do endereço de camada de rede deve fornecer um mecanismo para que as camadas de redes comunicantes aprendam ou configurem mutuamente seus endereços de camada de rede
- Simplicidade

20. O que é a técnica de *byte stuffing* no protocolo PPP ?

- O que ocorre se o padrão do flag ocorre em outro local do pacote?
- O PPP define um byte de controle especial de escape, 01111101
- Se a sequência do flag aparecer em outro lugar do quadro, exceto no campo do flag, o PPP precederá aquele exemplar do padrão de flag com o byte de controle de escape

20. O que é a técnica de *byte stuffing* no protocolo PPP ?

padrão de byte de *flag* mais byte incluído nos dados transmitidos

Professor Sandro Neves Soares

21. Qual é a relação entre MPLS e redes virtuais privadas ?

- Observa-se que o MPLS pode ser, e tem sido, utilizado para implementar as denominadas redes virtuais privadas
- Ao implementar uma VPN para um cliente, um ISP utiliza uma rede habilitada para MPLS para conectar as várias redes do cliente
- O MPLS também pode ser usado para isolar os recursos e o endereçamento utilizados pela VPN do cliente dos outros usuários que estão passando através da rede do ISP

