F18T3A5

- a) Sei $a \in \mathbb{C}$. Die Funktion f sei auf $\mathbb{C} \setminus \{a\}$ holomorph und habe bei a eine wesentliche Singularität. Sei außerdem g eine auf ganz \mathbb{C} holomorphe Funktion. Beweise folgende Aussage: Falls $g(a) \neq 0$, so hat die Produktfunktion h = fg bei a eine wesentliche Singularität.
- b) Seien a und f wie in Aufgabenteil a), $g = (z a)^n$ für ein $n \in \mathbb{Z}$. Zeige, dass die Produktfunktion h = fg in a eine wesentliche Singularität besitzt.
- c) Seien a und f wie in Aufgabenteil a), g sei auf \mathbb{C} meromorph. Beweise folgende Aussage: Die Produktfunktion h = fg ist auf \mathbb{C} genau dann meromorph, wenn $g \equiv 0$. (Mit $g \equiv 0$ ist hier jene Funktion gemeint, die ganz $\mathbb{C} \setminus \{a\}$ auf die Null abbildet.

Zu a):

Die Funktion h ist auf $\mathbb{C}\setminus\{a\}$ holomorph. Sie hat also bei a eine isolierte Singularität. Wir verwenden die Klassifikation isolierter Singularitäten holomorpher Funktionen. Die isolierte Singularität von h ist entweder hebbar (1. Fall) oder ein Pol (2. Fall) oder wesentlich (3. Fall). Im 3. Fall gilt die zu zeigende Behauptung; daher genügt es, den 1. Fall und den 2. Fall zu einem Widerspruch zu führen. Nehmen wir also den 1. oder 2. Fall an: h besitze bei a eine hebbare Singularität oder einen Pol. Die Funktion h ist nicht konstant Null.

(Begründung dazu: Der Kehrwert $\frac{1}{g}$ ist wegen der Annahme $g(a) \neq 0$ in einer offenen Umgebung U von a definiert und holomorph, und $f|_{U\setminus\{a\}} = \frac{h}{g}$ ist nicht konstant 0, da f bei a eine wesentliche Singularität besitzt.)

Also besitzt in beiden Fällen (1 und 2) die Funktion h eine Darstellung der Form

$$h(z) = (z - a)^m k(z)$$

mit einer ganz-holomorphen Funktion k mit $k(a) \neq 0$ und einer ganzen Zahl $m \in \mathbb{Z}$, wobei $m \geq 0$ im 1. Fall und m < 0 im 2. Fall. Dann ist (mit der Umgebung U von oben) $f(z) = (z-a)^m \frac{k(z)}{g(z)}$ für $z \in U \setminus a$, wobei $\frac{k}{g}$ auf U holomorph mit $\frac{k(a)}{g(a)} \neq 0$ ist. Die Funktion f besitzt also im 1. Fall ebenfalls eine hebbare Singularität bei a und im 2. Fall ebenfalls einen Pol der Ordnung |m| bei a, im Widerspruch dazu, dass f eine wesentliche Singularität bei a besitzt.

Bemerkung: Der Beweis funktioniert ebenso, wenn f nur auf einer offenen punktierten Umgebung von a definiert und holomorph ist, und auch g nur auf einer offenen Umgebung von a definiert und holomorph ist. Wir brauchen das in Teilaufgabe c).

Zu b):

Es sei

$$f(z) = \sum_{m \in \mathbb{Z}} b_m (z - a)^m$$

die in einer punktierten Umgebung U^* von a konvergente Laurentreihe von f. Weil f eine wesentliche Singularität in a besitzt, gilt $b_m \neq 0$ für unendlich viele $m \in \mathbb{Z}$ mit m < 0. Dann besitzt h die in U^* konvergente Laurentreihe

$$h(z) = \sum_{m \in \mathbb{Z}} b_m (z - a)^{m+n} = \sum_{m \in \mathbb{Z}} b_{m-n} (z - a)^m,$$

wobei $b_{m-n} \neq 0$ für unendlich viele $m \in \mathbb{Z}$ mit m < 0. Das bedeutet: h besitzt eine wesentliche Singularität in a.

Bemerkung: Der Beweis funktioniert auch hier ebenso, wenn f nur auf einer offenen punktierten Umgebung von a definiert und holomorph ist.

Zu c):

"⇒": Es sei h=fg meromorph. Wir gehen indirekt vor und nehmen dazu an: $g\neq 0$. Nach dem Identitätssatz für holomorphe Funktionen sind alle Einschränkungen von g auf beliebige punktierte offene Umgebungen von a nicht konstant gleich 0, da $\mathbb{C}\setminus\{a\}$ zusammenhängend ist. Also besitzt für eine geeignete offene Umgebung U von a die meromorphe Funktion g eine Darstellung der Gestalt $g(z)=(z-a)^mk(z)$ für alle $z\in U\setminus\{a\}$ mit geeignetem $m\in\mathbb{Z}$ und einer holomorphen Funktion $k:U\to\mathbb{C}$ mit $k(a)\neq 0$. Nach Teilaufgabe a) mit der in der Bemerkung formulierten Abschwächung der Voraussetzung besitzt fk eine wesentliche Singularität bei a. Dann besitzt auch $z\mapsto h(z)=f(z)k(z)(z-a)^m$ nach Teilaufgabe b) (inkl. Bemerkung) eine wesentliche Singularität bei a, im Widerspruch zu ihrer Meromorphie.

" \Leftarrow ": Ist $g \equiv 0$, so folgt auch $h = fg \equiv 0$. Also ist h meromorph.