AALBORG UNIVERSITY

Design of non-linear controller for hysteresis cancellation

Control and Automation: 9th. Semester project

Group: CA9-939

Third year of study Control and Automation Fredrik Bajers Vej 7 DK-9220 Aalborg Ø, Danmark

http://www.es.aau.dk

AALBORG UNIVERSITY

STUDENT REPORT

Title:

Design a non-linear controller for hysteresis cancellation

Project period:

P9, Autumn semester 2017

Projectgroup:

CA9-939

Participants:

Jacob Naundrup Pedersen

Supervisors:

Brian Kongsgaard Nielsen Jan Dimon Bendtsen Carsten Skovmose Kallesøe

Copies: 5
Pages: 85

Completed: 10-01-2018

Abstract:

Preface

This report has been created by Jacob Naundrup Pedersen. The project is performed on the 3rd semester of the master control and automation at Aalborg University. The project is constructed in an internship at Grundfos. Grundfos has contributed with the test setup for the project. The student has followed two courses at Aalborg University, non-linear systems and machine learning.

The report is intended for people with a background knowledge corresponding to a third-semester master student at Control and Automation, Aalborg University. The following programming languages MATLAB and Simulink are used in the project. All graphical elements in the report are constructed by the author. Otherwise, a reference to the source, is stated in the figure text.

Sources are indicated by [name,year], and can be found in the bibliography list at the given [name,year].

Jacob Naundrup Pede	rsen

Contents

Nomenclature	ix
1 Introduction	1
Bibliography	3
A Appendix	5

Nomenclature

Abbreviation

${f A}{f b}{f b}{f reviation}$	Definition
AAU	Aalborg University
OD	Opening degree
Stiction	Static friction
MM	Mickey Mouse
BBB	BeagleBone Black
KCL	Kirchoff current law

Symbols

\mathbf{Symbol}	Description	${f Units}$
\overline{A}	Area	m^2
q	Water flow	m^3/s
D	Diameter meter	m
r	Radius	m
ω	Velocity	rad/s
U_a	Voltage	J/C
N	Gear ratio	
au	Torque	Nm
i_a	Current	C/s
R_a	Resistance	Ω
L_a	Inductor	H
K	Electromotive force	$rac{V \cdot s}{rad}$
F	Force	$\stackrel{\scriptstyle rate}{N}$
θ	Angle	rad
Δp	Differential pressure	bar
K_{vs}	Conductivity for fully-open valve	m^3/h
v	Velocity	m/s
m	Mass	kg
V	Volume	m^3
ho	Density	kg/m^3
l	${f Length}$	m
f	Friction factor	
h_f	Surface resistance	m
g	Gravitational acceleration	m/s^2
k_L	Form-loss coefficient	
h_l	Form resistance	m
h	Pressure	m
J	Inertance	kg/m^4
a_n	Pump parameters	
T	Temperature	$^{\circ}C$

Group 939 Contents

c Specific heat capacity $\frac{J}{kg \cdot K}$ m_n Mass flow kg/s

Introduction

Indled med noget historie om kloakker hej

Bibliography

Appendix A