General Equations

• KCL: $\sum I_{in} = \sum I_{Out} \rightarrow \text{Node's Input Current} = \text{Node's Output Current}$ • KVL: $\sum V = 0 \rightarrow \text{Voltage across a loop totals to } 0$.

• Ohm's Law: V = IR

Phasors

Phasors will only show us the steady_state response of the circuit, not the transient response.

Eq: $v(t) = V_M \cos(\omega t + \theta) \leftrightarrow \bar{V} = V_M \angle \theta_v = V_M e^{j\theta_v} = V_M (\cos \theta_v + j \sin \theta_v)$

You can use phasors with Nodal Analysis, Mesh/Loop Analysis, Superposition, and Thevenin and Norton Equivalencies.

$z_1 = x_1 + y_2 = r_1 \angle \phi_1, z_2 = x_2 + y_2 = r_2 \angle \phi_2$
$z_1 = x_1 + y_2 = r_1 \angle \phi_1, z_2 = x_2 + y_2 = r_2 \angle \phi_2 + r_3 \angle \phi_2$

Addition	$z_1 + z_2 = (x_1 + x_2) + j(y_1 + y_2)$		
Subtraction	$z_1 - z_2 = (x_1 - x_2) + j(y_1 - y_2)$		
Multiplication	$z_1 z_2 = r_1 r_2 \angle \left(\phi_1 + \phi_2\right)$		
Division	$\frac{z_1}{z_2} = \frac{r_1}{r_2} \angle \left(\phi_1 - \phi_2\right)$		
Reciprocal	$\frac{1}{z_1} = \frac{1}{z_1} \angle - \phi_1$		
Square Root	$\sqrt{z_1} = \sqrt{r_1} \angle \frac{\phi_1}{2}$		
Complex Conjugate	$z_1^* = x - \jmath y = r \angle - \phi_1 = re^{-\jmath \phi_1}$		

RMS/Complex Power/Max Power Transfer

 $\bullet \ X_{rms} = \sqrt{\frac{1}{T} \int_{0}^{T} x(t)^{2} dt}$ $\bullet \ P_{avg} = \frac{1}{2} \operatorname{Re}\{\mathbf{VI}^{*}\} = \frac{1}{2} V_{m} I_{m} \cos (\theta_{v} - \theta_{i})$ $\bullet \ \mathbf{S} = I_{rms}^{2} \mathbf{Z} = \frac{V_{rms}^{2}}{\mathbf{Z}^{*}} = \mathbf{V}_{rms} \mathbf{I}_{rms}^{*}$ $\bullet \sum_{k=1}^{n} S_{k}$ $\bullet \ C = \frac{Q_{C}}{\omega V_{rms}^{2}} = \frac{P(\tan \theta_{1} - \tan \theta_{2})}{\omega V_{rms}^{2}}$ $\bullet \ L = \frac{V_{rms}^{2}}{\omega (Q_{r} - Q_{r})}$

Name	Symbol	${f Equation(s)}$	Units
Complex Power	S	$\frac{P}{Pf} \angle \arccos(Pf) = P + jQ = \mathbf{V}_{rms} \mathbf{I}_{rms}^* = \mathbf{V}_{rms} \mathbf{I}_{rms} \angle (\theta_v - \theta_i)$	VA
Apparent Power	S	$\ \mathbf{S}\ = \mathbf{V}_{rms} \mathbf{I}_{rms} = \sqrt{P^2 + Q^2}$	VA
Real Power	P	$Re{S} = S * Pf = S cos (\theta_v - \theta_i)$	W
Reactive (Imaginary) Power	Q	$\operatorname{Im}\{\mathbf{S}\} = S\sin\left(\theta_v - \theta_i\right)$	VAR
Power Factor	Pf	$\frac{P}{S} = \cos(\theta_v - \theta_i)$	Lead/Lag

Elements

Relation	R	C	L
v-i	V = IR	$v = \frac{1}{C} \int_{t_0}^{t} i(x)dx + v(t_0)$	$v = L \frac{di}{dt}$
i-v	$I = \frac{V}{R}$	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v(x) dx + i(t_0)$
P or W	$P = I^2 R = \frac{V^2}{R}$	$P = \frac{1}{2}Cv_c^2$	$W = \frac{1}{2}Li_l^2$
Series	$R_{eq} = R_1 + R_2 + \ldots + R_n$	$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \ldots + \frac{1}{C_n}$	$L_{eq} = L_1 + L_2 + \ldots + L_n$
Parallel	$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$	$C_{eq} = C_1 + C_2 + \ldots + C_n$	$\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \ldots + \frac{1}{L_n}$
@ Steady State	Same (Nothing Happens)	Open Circuit	Short Circuit
Phasors	$Z_R = R$	$Z_C = \frac{1}{j\omega C}$	$Z_L = j\omega L$

Methods to Solve Equations

Nodal Analysis

- 1. # of Nodes? $\rightarrow n$
- 2. Make one node the reference node. Assign n-1 nodal voltages
- 3. For a **voltage** source, write a CONSTRAINT EQUATION (Con. Eq.). If there is a voltage source between 2 non-reference nodes, make that a **SUPERNODE**.
- 4. Write KCL at each node. (n-1) equations.
- 5. Solve Equations.

Mesh/Loop Analysis

- 1. # of Nodes? $\rightarrow n$ # of Branches? $\rightarrow b$ # of meshes/loops? $\rightarrow b-n+1=l$
- 2. Assign l loop currents.
- 3. For **current** sources, write a CONSTRAINT EQUATION (Con. Eq.). If there is a current source between 2 meshes, that's a **SUPERMESH**.
- 4. Write KVL for each mesh.
- 5. Solve Equations.

Superposition

- # of sources, n, determines the number of equations you will have.
- Shut off each source, one at a time, solving for the term that you want.
 - Voltage Source = S.C.
 - Current Source = O.C.
- Sum each of the individual terms together. $\sum_{i=1}^{n} x_i$

Source Transformations

ALL source transformations obey Ohm's Law. V = IR. This will **ONLY** work on impedances in series with **VOLTAGE** sources, or impedances in parallel with **CURRENT** sources.

Thevenin and Norton Equivalencies

- ONLY independent sources Zero all sources, find \mathbf{Z}_{eq} .
 - 0-ing Current Sources = O.C., 0-ing Voltage Sources = S.C.
 - Look at circuit from load's perspective for \mathbf{Z}_{eq}
 - $\mathbf{V}_{Th} = \mathbf{V}_{OC}, \, \mathbf{I}_N = \mathbf{I}_{SC}$
- BOTH dependent and independent sources
 - Find $\mathbf{V}_{Th} = \mathbf{V}_{OC}$, $\mathbf{I}_N = \mathbf{I}_{SC}$
 - Solve $\mathbf{Z}_{Th} = \frac{\mathbf{V}_{OC}}{\mathbf{I}_{SC}}$
- ONLY dependent sources
 - $\mathbf{V}_{Th} = 0, \mathbf{I}_N = 0$
 - $-\mathbf{Z}_{Th} = \mathbf{Z}_N \to \text{Attach test source } @ \text{load.}$
 - $\ast\,$ If voltage test source, find current. If current test source, find voltage
 - $-\mathbf{Z}_{Th} = \frac{\mathbf{V}_{Test}}{\mathbf{I}_{Test}}$

Maximum Power Transfer - AC

- $\mathbf{Z}_{Load} = \mathbf{Z}_{Th}^*, R_{Th} = \text{Re}\{\mathbf{Z}_{Th}\}, R_L = |\mathbf{Z}_{Th}| = \sqrt{R_{Th}^2 + (X_{Th} + X_L)^2}$
- $\bullet \ P_{max} = \frac{|\mathbf{V}_{Th}|^2}{8R_{Th}}$