

Un modèle des prairies de montagne intégrant la plasticité phénotypique

Clément Viguier

IRSTEA Grenoble - EMGR – EDGE Supervision Björn Reineking

Evaluer l'évolution future des niveaux de services écosystémiques

Lien mécanistique entre le climat et les modes de gestion, et les niveaux de services écosystémiques

Du climat aux services

Climat

Gestion

Services

- Fourrage
- Fleurs
- Séquestration C

Du climat aux services

Déterminer la distribution des traits

- Hétérogénéité
- Interactions
- Stratégies multiples

Réponses et motifs complexes

Difficile de prédire la réponse de la communauté

Règles d'assemblages Réponse des espèces Interactions

Lien mécanistique =

Compromis d'allocation et de traits d'histoire de vie (= variabilité inter-spécifique) Plasticité des plantes (= variabilité intra-spécifique)

Un modèle centré sur la communauté

Molécule	Organe	Individu	Communauté	Paysage
S	s/min mm	h/j cm	j cm/m	j/sem. m/km
Modèles p	hysio	Modèles à base d'individus		DGVMs

Modèle – vue générale

dominantes

Modèle – Représentation de la diversité ?

Compromis d'allocation

Tissus **actifs**Tissus **structuraux**

- → Leaf Economic Spectrum
- → Relier allocation et paramètres physiologiques

Reich et al., *Ecological Monographs*, Vol. 62, No. 3 (Sep., 1992), pp. 365-392 Wright et al., *Nature*, 2004, vol 428

Variabilité intra-spécifique et plasticité phénotypique

Variabilité intra-spécifique

Variance decomposition into the different levels. From Albert and al. 2010.

20 R= 0.74; P = 0.002
R= 0.01; P= 0.87

10 950 1050 1150 1250 1350 1450 1550 1550 1750 1850

Elevation (m)

20-40% de la variabilité expliquée

Réponses spécifiques contrastées (signes et amplitude)

Génétique

Épigénétique

Comment représenter la plasticité ?

Plasticité **adaptative** = faire mieux dans le futur

- →Quel futur?
- → A quelle vitesse ?
- → Avec quelles limites?

Plasticité phénotypique Equilibre fonctionnel – exemple

⊅ Eau/Lumière

- → part des tissus actifs foliaire
- ≥part des tissus actifs racines
- *¬* rapport feuilles/racines

Plasticité phénotypique Quel futur ?

« A priori » génétique Stabilise et contraint le « chemin stratégique »

Expérience individuelle

Ajustement aux variations de conditions

« Réactivité »

Définit la stabilité du phénotype

= Estimationdes conditionsfutures

Plasticité phénotypique Une vision du futur déterminante

Conclusion à propos du modèle

- Compétition explicite pour des ressources aériennes et souterraines
- Représentation simplifiée des communautés (diversité de stratégie, résolution, interactions, ...)
- Intégration de la plasticité phénotypique

Questions à explorer

Le rôle de la plasticité dans...

- ... la réponse à un gradient
- ... le maintien de la diversité
- ... la relation diversité-productivité
- ... la réponse aux différents scénarios de gestion
- ... la résistance aux invasions

Merci pour votre attention!

Des questions, suggestions, remarques...?

Source de variabilité intra-spécifique Rôle de la plasticité et de l'environnement local

Tester les différences de signe et d'amplitude le long du gradient d'altitude

Turn-over = importance de l'adaptation locale

Homogénéité = mécanismes manquants

Similaire = confirme le rôle de la plasticité phénotypique

Rôle de la capacité de plasticité ? Rôle de la perception des conditions ?

Comment la plasticité impacte la coexistence ?

Tester les différences de diversité en fonction du mécanisme de plasticité phénotypique

Modèle – Variables (plantes)

Multitude d'axes de différenciation

Espèces (stratégie)

- Masse des graines
- Maturité des plants
- Actif/structural feuilles
- Actif/structural racines
- Coefficient d'allocation
- « A priori » des conditions environnementales
- Réactivité
- Coefficient de forme
- Coefficient d'occupation de l'espace

Paramètres physiologiques communs à toutes les espèces

Individus (état)

- Masse des racines
- Masse des feuilles
- Ratio actif/structural feuilles
- Ratio actif/structural racines
- Masse tissus reproducteurs
- Age
- Disponibilité estimée des ressources
- Position
- Rayons
- Hauteur
- Productivité nette
- Jour consécutif de sécheresse

Modèle – Variables (environnement)

Sol

- Profondeur
- Teneur critique en eau
- Teneur en eau de saturation
- Teneur en eau
- LAI
- (Température)

Atmosphère

- Luminosité
- Température

Représentation dans l'espace

Compétition pour les ressources

Exemple de la lumière

La lumière incidente absorbée par chaque couche

Chaque couche est homogène

Disponibilité totale
= lumière absorbée dans chaque
couche de chaque pixel

Relations supposées

- SLA longévité
- SRL longévité
- SLA respiration
- SRL respiration
- SLA WUE
- Masse des graines taux de germination & survie

Inter-specific (=turn-over)

Intra-specific variations