MATEMATIK 1

Konya Jeknik Üniversitesi Mühendislik ve Doğa Bilimleri Fakültesi Mühendislik Jemel Bilimleri Bölümü

Prof. Dr. Abdullah Selçuk KURBANLI

2020

TÜREV VE UYGULAMALARI

7.1. Türev

 $a,b\in\mathbb{R}$ olmak üzere $f:(a,b)\to\mathbb{R}$ fonksiyonu verilmiş olsun. Bir $x_0\in(a,b)$ için

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

limiti varsa, bu limit değerine f fonksiyonunun x_0 noktasındaki türevi denir ve bu durumda f fonksiyonuna x_0 noktasında diferensiyellenebilir denir. f'nin x_0 daki türevi $f'(x_0)$ veya $\frac{df}{dx}(x_0)$ ile gösterilir.

y = f(x) fonksiyonunun için y' veya $\frac{dy}{dx}$ gösterimleri de kullanılabilir.

Türevin tanımı farklı şekillerde yapılabilir. Örneğin, $h \neq 0$ olmak üzere

$$x = x_0 + h$$
 için $x \to x_0$ ise $h \to 0$

dır. Bu durumda

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

elde edilir.

Örnek 7.1.1. $f: \mathbb{R} \to \mathbb{R}$ tanımlı $f(x) = 5x^2$ fonksiyonunun türevini hesaplayınız.

Çözüm.
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{5(x+h)^2 - 5x^2}{h}$$

$$= \lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 - 5x^2}{h} = \lim_{h \to 0} \frac{10xh + 5h^2}{h}$$

$$= \lim_{h \to 0} \frac{h(10x + 5h)}{h} = \lim_{h \to 0} (10x + 5h) = 10x$$

Yani, f'(x) = 10x dir.

Not. Eğer y=f(x) fonksiyonunun (a,b) aralığının her x_0 noktasında türevi varsa, kısaca bu aralıkta türevlidir denir. $\frac{f(x)-f(x_0)}{x-x_0} \text{ ifadesinin } x \to x_0 \text{ için limiti yoksa } f \text{ fonksiyonunun}$

 x_0 noktasında türevi yoktur denir.

Uyarı 7.1.1. f fonksiyonunun herhangi bir x_0 noktasında türevli olması için bu noktada tanımlı ve sürekli olması gerekmektedir.

7.2. Soldan ve Sağdan Türev

 $f:(a,b)\to\mathbb{R}$ fonksiyonunda $x_0\in(a,b)$ için

$$\lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0}$$

limiti varsa, bu limit değerine f fonksiyonunun x_0 noktasındaki soldan türevi denir ve $f'_-(x_0)$ veya $f'(x_0^-)$ ile gösterilir. Benzer şekilde,

$$\lim_{x \to x_0^{+}} \frac{f(x) - f(x_0)}{x - x_0}$$

limiti varsa, bu limit değerine de f fonksiyonunun x_0 noktasındaki sağdan türevi denir ve $f'_+(x_0)$ veya $f'(x_0^+)$ ile gösterilir.

f fonksiyonunun x_0 noktasında türevli olması için gerek ve yeter şart $f'(x_0^+) = f'(x_0^-)$ olmasıdır.

Teorem 7.2.1. Eğer f fonksiyonu herhangi bir x_0 noktasında türevli ise bu noktada süreklidir.

Uyarı 7.2.1. Teorem 7.2.1 in karşıtı her zaman doğru değildir.

Örnek 7.2.1. $f: \mathbb{R} \to \mathbb{R}$ tanımlı f(x) = |x| fonksiyonunu ele alalım.

Çözüm.

Bu fonksiyon sürekli bir fonksiyon olmasına rağmen x = 0 noktasında türevi yoktur. Bunu göstermek için sağdan ve soldan türevleri inceleyelim.

$$f'(0^+) = \lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{|x|}{x} = \lim_{x \to 0^+} \frac{x}{x} = +1$$

ve

$$f'(0^{-}) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = -1$$

olup, $f'(0^+) \neq f'(0^-)$ olur ki bu da f fonksiyonunun x = 0 noktasında türevi olmadığı anlamına gelir.

7.3. Türevin Cebirsel Özellikleri

7.3.1. f(x) = c (c sabit) ise f'(x) = 0 dir.

Örnek 7.3.1.1.

- f(x) = 2 ise f'(x) = 0 dir.
- y = 4 ise y' = 0 dir.
- $\frac{d}{dx}(0.5) = 0$ dir.

7.3.2. $f(x) = cx^n$ (c sabit ve $n \in \mathbb{R}$) ise $f'(x) = cnx^{n-1}$ dir.

Örnek 7.3.2.1.

- $f(x) = 3x^4$ ise $f'(x) = 12x^3$ dür.
- $y = 2x^{10}$ ise $y' = 20x^9$ dur.
- $\frac{d}{dx}(100x^5) = 500x^4 \text{ dür.}$

7.3.3. f ve g diferensiyellenebilen iki fonksiyon olmak üzere,

7.3.3.1.
$$(f+g)'=f'+g'$$

Örnek 7.3.3.1.

• $y = 15x^{20} - 20x^{15}$ ise $y' = 300x^{19} - 300x^{14} = 300x^{14}(x^5 - 1)$ dir.

•
$$z = 2t^3 + 4t + 2$$
 ise $\frac{dz}{dt} = 6t^2 + 4$ dür.

•
$$y = 5x^7 + 2x^6 - 12x^4 + 2x - 17$$
 ise $y' = 35x^6 + 12x^5 - 48x^3 + 2$ dir.

7.3.3.2.
$$(f.g)' = f'.g + g'.f$$

Örnek 7.3.3.2.
$$y = (x^2 + 4x)(x^3 + 2x^2 + 4)$$
 ise $y' = ?$

Çözüm.
$$y' = (2x+4)(x^3+2x^2+4)+(3x^2+4x)(x^2+4x)$$

= $2x^4+4x^3+8x+4x^3+8x^2+16+3x^4+12x^3+4x^3+16x^2$
= $5x^4+24x^3+24x^2+8x+16$ dir.

7.3.3.3.
$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - g' \cdot f}{g^2} (g(x) \neq 0)$$

Örnek 7.3.3.3.
$$f(x) = \frac{3x^2 + 2x}{x + 5}$$
 ise $f'(2) = ?$

Çözüm.

$$f'(x) = \frac{(6x+2)(x+5) - (3x^2 + 2x)}{(x+5)^2} = \frac{6x^2 + 30x + 2x + 10 - 3x^2 - 2x}{(x+5)^2}$$
$$= \frac{3x^2 + 30x + 10}{(x+5)^2}$$

$$f'(2) = \frac{3.2^2 + 30.2 + 10}{(2+5)^2} = \frac{82}{49}$$
 dur.

7.3.3.4.
$$(f^n)' = n.f^{n-1}.f'$$
 ve $(\sqrt[n]{f})' = \frac{f'}{n.\sqrt[n]{f^{n-1}}}$ $(n \in \mathbb{R})$

Örnek 7.3.3.4.
$$f(x) = \sqrt[5]{3x+2}$$
 ise $f'(x) = ?$

Çözüm.
$$f'(x) = \frac{(3x+2)'}{5.\sqrt[5]{(3x+2)^4}} = \frac{3}{5.\sqrt[5]{(3x+2)^4}}$$
 dir.

7.4. Bileşke Fonksiyonun Türevi

 $f,g:\mathbb{R}\to\mathbb{R}$ iki fonksiyon olmak üzere, g fonksiyonu x noktasında, f fonksiyonu da g(x) noktasında diferensiyellenebilir ise,

$$(f \circ g)'(x) = f'(g(x)).g'(x)$$

dir.

Örnek 7.4.1. $f(x) = x^5$ ve $g(x) = x^2 + 2x - 5$ ise $(f \circ g)'(x) = ?$

Çözüm. $(f \circ g)'(x) = f'(g(x)).g'(x) = 5(x^2 + 2x - 5)^4(2x + 2) \text{ dir.}$

7.5. Bir Fonksiyonun Ters Fonksiyonunun Türevi

 $f:A\to B$, $x\to f(x)$ fonksiyonu bire-bir ve örten ise $f^{-1}:B\to A$ fonksiyonu da bire-bir ve örtendir. $f^{-1}:B\to A$, $y\to x=f^{-1}(y)$ fonksiyonunun türevi

$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{f'[f^{-1}(y)]}$$

dir.

Örnek 7.5.1. $f:[1,+\infty) \to [2,+\infty)$ tanımlanan $f(x) = x^2 - 2x + 3$ fonksiyonu için $(f^{-1})'(x) = ?$

Çözüm.
$$(f^{-1})'(y) = \frac{1}{f'(x)} = \frac{1}{2x-2}$$
 dir.

Buradan,
$$y = f(x) = (x-1)^2 + 2$$
 ise $(x-1) = \sqrt{y-2}$ ve

 $x = \sqrt{y-2} + 1$ olduğundan

$$(f^{-1})'(y) = \frac{1}{2\sqrt{y-2}}$$

bulunur. Sonuç olarak

$$(f^{-1})'(x) = \frac{1}{2\sqrt{x-2}}$$

elde edilir.

7.6. Kapalı Fonksiyonların Türevi

x ve y değişkenler olmak üzere F(x,y)=0 eşitliğinden y=f(x) ifadesi elde edilemiyorsa, f fonksiyonu F(x,y)=0 denklemi ile kapalı olarak tanımlanmıştır denir.

Örnek 7.6.1. $x^2 + 3y^2 - 4 = 0$ denklemi ile verilen kapalı fonksiyonun türevini hesaplayınız.

Çözüm. $x^2 + 3y^2 - 4 = 0$ fonksiyonunun türevi, 2x + 6.y.y' = 0 olup, buradan y' çekilirse $y' = \frac{-2x}{6y}$ elde edilir.

Kapalı fonksiyonların türevi pratik bir yolla aşağıdaki gibi hesaplanabilir. x değişken ve y ise x'e bağımlı değişken olmak üzere, x değişken y sabit kabul edilerek bulunan F_x' ve y değişken x sabit kabul edilerek bulunan F_y' türevleri için

$$\frac{dy}{dx} = -\frac{F_x'}{F_y'}$$

dir.

Örnek 7.6.2. $F(x, y) = x^4 + y^4 - x^3 - y^3 + 2xy + 4 = 0$ denklemi ile verilen kapalı fonksiyonun türevini hesaplayınız.

Çözüm. $F'_x = 4x^3 - 3x^2 + 2y$ ve $F'_y = 4y^3 - 3y^2 + 2x$ olduğundan,

$$\frac{dy}{dx} = -\frac{F_x'}{F_y'} = -\frac{4x^3 - 3x^2 + 2y}{4y^3 - 3y^2 + 2x}$$

dir.

7.7. Parametrik Fonksiyonların Türevi

x ve y, t değişkenine bağımlı ifadeler olmak üzere, x = f(t)

ve y = g(t) ise

$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$$

dir.

Örnek 7.7.1. $x = f(t) = t^2 - 2t$ ve $y = g(t) = t^3 + 5t + 2$ ise $\frac{dy}{dx}$ in

t = 5 için değerini hesaplayınız.

Çözüm.
$$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{dt}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{3t^2 + 5}{2t - 2}$$
 dir.

Buradan
$$\frac{dy}{dx}\Big|_{t=5} = \frac{3.5^2 + 5}{2.5 - 2} = 10$$
 dur.

7.8. Yüksek Mertebeden Türevler

 $f:A\to\mathbb{R}$ olmak üzere y=f(x) A'da istenildiği kadar türevlenebilen bir fonksiyon olsun. Bu durumda;

1. Türev:
$$y' = f'(x) = \frac{dy}{dx}$$

2. Türev:
$$y'' = f''(x) = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{d^2y}{dx^2}$$

3. Türev:
$$y''' = f'''(x) = \frac{d}{dx} \left(\frac{d^2 y}{dx^2} \right) = \frac{d^3 y}{dx^3}$$

.

.

•

n. Türev:
$$y^{(n)} = f^{(n)}(x) = \frac{d}{dx} \left(\frac{d^{n-1}y}{dx^{n-1}} \right) = \frac{d^ny}{dx^n}$$
 dir.

Örnek 7.8.1.
$$y = f(x) = \frac{1}{x}$$
 ise $\frac{d^n y}{dx^n} = ?$

Çözüm.

$$\frac{dy}{dx} = -\frac{1}{x^2} = (-1) \cdot \frac{1!}{x^2}, \qquad \frac{d^2y}{dx^2} = \frac{2}{x^3} = (-1)^2 \cdot \frac{2!}{x^3},$$

$$\frac{d^3y}{dx^3} = -\frac{6}{x^4} = (-1)^3 \cdot \frac{3!}{x^4}, \dots, \frac{d^ny}{dx^n} = (-1)^n \cdot \frac{n!}{x^{n+1}} \text{ dir.}$$

7.9. Trigonometrik Fonksiyonların Türevi

7.9.1.
$$(\sin x)' = \cos x$$
, $(\sin f(x))' = f'(x) \cdot \cos f(x)$

$$(\sin^n f(x))' = n.(\sin f(x))^{n-1}.\cos f(x).f'(x)$$

7.9.2.
$$(\cos x)' = -\sin x$$
, $(\cos f(x))' = -f'(x) \cdot \sin f(x)$

$$(\cos^n f(x))' = -n.(\cos f(x))^{n-1}.\sin f(x).f'(x)$$

7.9.3.
$$(\tan x)' = 1 + \tan^2 x = \frac{1}{\cos^2 x} = \sec^2 x$$

$$(\tan f(x))' = f'(x).(1 + \tan^2 f(x)) = \frac{f'(x)}{\cos^2 f(x)} = f'(x).\sec^2 f(x)$$

$$(\tan^n f(x))' = n.(\tan f(x))^{n-1}.(1 + \tan^2 f(x)).f'(x)$$

7.9.4.
$$(\cot x)' = -(1 + \cot^2 x) = -\frac{1}{\sin^2 x} = -\cos ec^2 x$$

$$(\cot f(x))' = -f'(x).(1 + \cot^2 f(x)) = -\frac{f'(x)}{\sin^2 f(x)} = -f'(x).\cos ec^2 f(x)$$

$$(\cot^n f(x))' = -n.(\cot f(x))^{n-1}.(1 + \cot^2 f(x)).f'(x)$$

Örnek 7.9.1. $f(x) = \sin 5x + \cos 4x$ ise f'(x) = ?

Çözüm.
$$f'(x) = 5.\cos 5x + (-\sin 4x).4$$

= $5.\cos 5x - 4.\sin 4x$ dir.

Örnek 7.9.2.
$$f(x) = \sin^4(5x + 2)$$
 ise $f'(x) = ?$

Çözüm.
$$f'(x) = 4.\sin^3(5x+2).\cos(5x+2).(5x+2)'$$

= $4.\sin^3(5x+2).\cos(5x+2).5$
= $20.\sin^3(5x+2).\cos(5x+2)$ dir.

Örnek 7.9.3.
$$f(x) = \tan(2x^3 + 8x^2 + 4x)$$
 ise $f'(x) = ?$

Çözüm.
$$f'(x) = (6x^2 + 16x + 4)[1 + \tan^2(2x^3 + 8x^2 + 4x)]$$
 dir.

Örnek 7.9.4.
$$f(x) = \tan 2x + \cot(4x^2)$$
 ise $f'(x) = ?$

Çözüm.
$$f'(x) = 2.(1 + \tan^2(2x)) - (8x).[1 + \cot^2(4x^2)]$$

= $2 + 2\tan^2(2x) - 8x + 8x.\cot^2(4x^2)$
= $2\tan^2(2x) + 8x.\cot^2(4x^2) - 8x + 2 \text{ dir.}$

7.10. Ters Trigonometrik Fonksiyonların Türevi

7.10.1.
$$f: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow [-1, +1], \quad f(x) = \sin x \quad \text{fonksiyonunun ters}$$

fonksiyonu $f^{-1}(x) = \arcsin x$ dir. Bu fonksiyonun türevi

$$(f^{-1}(x))' = (\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$
 ve $(\arcsin u(x))' = \frac{u'(x)}{\sqrt{1 - (u(x))^2}}$

dir.

7.10.2. $f:[0,\pi] \to [-1,+1], \quad f(x) = \cos x$ fonksiyonunun ters

fonksiyonu $f^{-1}(x) = \arccos x$ dir. Bu fonksiyonun türevi

$$(f^{-1}(x))' = (\arccos x)' = \frac{-1}{\sqrt{1-x^2}}$$
 ve $(\arccos u(x))' = \frac{-u'(x)}{\sqrt{1-(u(x))^2}}$

dir.

7.10.3. $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \to (-\infty,+\infty)$, $f(x) = \tan x$ fonksiyonunun ters

fonksiyonu $f^{-1}(x) = \arctan x \operatorname{dir}$. Bu fonksiyonun türevi

$$(f^{-1}(x))' = (\arctan x)' = \frac{1}{1+x^2}$$
 ve $(\arctan u(x))' = \frac{u'(x)}{1+(u(x))^2}$

dir.

7.10.4. $f:(0,\pi)\to(-\infty,+\infty)$, $f(x)=\cot x$ fonksiyonunun ters

fonksiyonu $f^{-1}(x) = arc \cot x \operatorname{dir}$. Bu fonksiyonun türevi

$$(f^{-1}(x))' = (arc \cot x)' = \frac{-1}{1+x^2}$$
 ve $(arc \cot u(x))' = \frac{-u'(x)}{1+(u(x))^2}$

dir.

Örnek 7.10.1. $f(x) = \arcsin(x^2 + 2x)$ ise f'(x) = ?

Çözüm.
$$f'(x) = \frac{(x^2 + 2x)'}{\sqrt{1 - (x^2 + 2x)^2}} = \frac{2x + 2}{\sqrt{-x^4 - 4x^3 - 4x^2 + 1}}$$
dir.

Örnek 7.10.2. $f(z) = \arccos(z^3)$ ise f'(z) = ?

Çözüm.
$$f'(z) = -\frac{(z^3)'}{\sqrt{1-(z^3)^2}} = -\frac{3z^2}{\sqrt{1-z^6}} dir.$$

Örnek 7.10.3. $f(x) = \arcsin(\cos x)$ ise f'(x) = ?

Çözüm.
$$f'(x) = \frac{(\cos x)'}{\sqrt{1 - (\cos x)^2}} = \frac{-\sin x}{\sqrt{1 - \cos^2 x}} = -\frac{\sin x}{\sin x} = -1 \text{ dir.}$$

Örnek 7.10.4. $f(x) = \arctan(x^3 + 1) + arc \cot(x^3 + 1)$ ise f'(x) = ?

Çözüm.
$$f'(x) = \frac{(x^3 + 1)'}{1 + (x^3 + 1)^2} + \frac{-(x^3 + 1)'}{1 + (x^3 + 1)^2} = 0$$
 dır.

7.11. Logaritma Fonksiyonunun Türevi

$$(\log_a x)' = \frac{1}{x} \cdot \log_a e$$
 ve $(\log_a u(x))' = \frac{u'(x)}{u(x)} \cdot \log_a e$

Örnek 7.11.1.
$$(\ln x)' = \frac{1}{x}$$
 ve $(\ln u(x))' = \frac{u'(x)}{u(x)}$ dir.

Örnek 7.11.2.
$$f(x) = \log_3(x^3 + 2x^2 + 3x)$$
 ise $f'(x) = ?$

Çözüm.
$$f'(x) = \frac{(x^3 + 2x^2 + 3x)'}{x^3 + 2x^2 + 3x} \log_3 e = \frac{3x^2 + 4x + 3}{x^3 + 2x^2 + 3x} \log_3 e$$
 dir.

7.12. Üstel Fonksiyonun Türevi

 $a \in \mathbb{R}^+$ ve $a \neq 1$ olmak üzere bire-bir ve örten olan $\log_a : \mathbb{R}^+ \to \mathbb{R}$ fonksiyonunun ters fonksiyonu olan a^x fonksiyonuna üstel fonksiyon denir. Üstel fonksiyonun türevi ise,

$$(a^{x})' = a^{x} \cdot \ln a$$
 ve $(a^{u(x)})' = u'(x) \cdot a^{u(x)} \cdot \ln a$

dır.

Örnek 7.12.1.
$$(e^x)' = e^x$$
 ve $(e^{u(x)})' = u'(x).e^{u(x)}$ dir.

Örnek 7.12.2.
$$f(x) = 5^{x^4 + 2x} + e^{\cos x}$$
 ise $f'(x) = ?$

Çözüm.
$$f'(x) = (x^4 + 2x)'.5^{x^4 + 2x}.\ln 5 + (\cos x)'.e^{\cos x}$$

= $(4x^3 + 2).5^{x^4 + 2x}.\ln 5 - \sin x.e^{\cos x} \text{ dir.}$

7.13. Hiperbolik ve Ters Hiperbolik Fonksiyonların Türevi

7.13.1.
$$(\sinh x)' = \cosh x$$
, $(\sinh f(x))' = f'(x) \cdot \cosh f(x)$
 $(\sinh^n f(x))' = n \cdot (\sinh f(x))^{n-1} \cdot \cosh f(x) \cdot f'(x)$

7.13.2.
$$(\cosh x)' = \sinh x$$
, $(\cosh f(x))' = f'(x) \cdot \sinh f(x)$
 $(\cosh^n f(x))' = n \cdot (\cosh f(x))^{n-1} \cdot \sinh f(x) \cdot f'(x)$

7.13.3.
$$(\tanh x)' = 1 - \tanh^2 x = \frac{1}{\cosh^2 x} = \operatorname{sech}^2 x$$

 $(\tanh f(x))' = f'(x).(1 - \tan^2 f(x)) = \frac{f'(x)}{\cosh^2 f(x)} = f'(x).\operatorname{sech}^2 f(x)$
 $(\tanh^n f(x))' = n.(\tanh f(x))^{n-1}.(1 - \tan^2 f(x)).f'(x)$

7.13.4.
$$(\coth x)' = (1 - \coth^2 x) = -\frac{1}{\sinh^2 x} = -\csc^2 x$$

$$(\coth f(x))' = f'(x).(1 - \coth^2 f(x)) = -\frac{f'(x)}{\sinh^2 f(x)} = -f'(x).\cos \operatorname{ech}^2 f(x)$$

$$(\coth^n f(x))' = n.(\coth f(x))^{n-1}.(1 - \coth^2 f(x)).f'(x)$$

- 7.13.5. $(\operatorname{sech} x)' = -\operatorname{sec} hx$. $\tanh x$
- **7.13.6.** $(\cosh x)' = -\cosh x \cdot \coth x$
- **7.13.7.** Her $x \in \mathbb{R}$ için

$$(\arg \sinh x)' = \frac{1}{\sqrt{x^2 + 1}}, \ (\arg \sinh f(x))' = \frac{f'(x)}{\sqrt{f^2(x) + 1}}$$

7.13.8. Her $x \ge 1$ için

$$(\arg\cosh x)' = \mp \frac{1}{\sqrt{x^2 - 1}}, \ (\arg\cosh f(x))' = \mp \frac{f'(x)}{\sqrt{f^2(x) - 1}}$$

7.13.9. -1 < x < 1 için

$$(\arg \tanh x)' = \frac{1}{1-x^2}, \ (\arg \tanh f(x))' = \frac{f'(x)}{1-f^2(x)}$$

7.13.10. |x| > 1 için

$$(\operatorname{arg} \coth x)' = \frac{-1}{1 - x^2}, \ (\operatorname{arg} \coth f(x))' = \frac{-f'(x)}{1 - f^2(x)}$$

7.13.11.
$$0 < x < 1$$
 için $(\arg \sec hx)' = \frac{1}{x\sqrt{1-x^2}}$

7.13.12.
$$x \ne 1$$
 için $(\arg \csc hx)' = \frac{1}{x\sqrt{1+x^2}}$

Örnek 7.13.1. $f(x) = \sinh x + \cosh 2x$ ise f'(x) = ?

Çözüm. $f'(x) = \cosh x + 2\sinh 2x \operatorname{dir}$.

Örnek 7.13.2. $f(x) = \sinh^4(2x+1)$ ise f'(x) = ?

Çözüm. $f'(x) = 8.\sinh^3(2x+1).\cosh(2x+1)$ dir.

Örnek 7.13.3. $f(x) = \tanh 2x + \coth(3x^2)$ ise f'(x) = ?

Çözüm.
$$f'(x) = 2.(1 - \tanh^2(2x)) + (6x).[\coth^2(3x^2) - 1]$$

= $2 - 2 \tanh^2(2x) + 6x.\coth^2(3x^2) - 6x$
= $-2 \tanh^2(2x) + 6x.\coth^2(3x^2) - 6x + 2 \text{ dir.}$

Örnek 7.13.4. $f(x) = \arg \sinh(\tan x)$ ise f'(x) = ?

Çözüm.

$$f(x) = \arg\sinh(\tan x) = \ln\left|\tan x + \sqrt{1 + \tan^2 x}\right| = \ln\left|\sec x + \tan x\right|$$

olduğundan

$$f'(x) = \left(\arg\sinh(\tan x)\right)' = \frac{1 + \tan^2 x + \frac{\sin x}{\cos^2 x}}{\tan x + \sec x} = \frac{1}{\cos x} \text{ dir.}$$

Örnek 7.13.5. $f(x) = \operatorname{arg} \tanh(e^x)$ ise f'(x) = ?

Çözüm.
$$f'(x) = \frac{(e^x)'}{1 - (e^x)^2} = \frac{e^x}{1 - e^{2x}}$$
 dir.

Kaynaklar:

- 1. G. B. Thomas ve Ark., **Thomas Calculus I**, Çeviri: R. Korkmaz, Beta Yayıncılık, İstanbul, 2009.
- 2. Prof. Dr. C. Çinar, Prof. Dr. İ. Yalçınkaya, Prof. Dr. A. S. Kurbanlı, Prof. Dr. D. Şimşek, **Genel Matematik**, Dizgi Ofset, 2013.
- 3. Prof. Dr. İ. Yalçınkaya, **Analiz III Diziler ve Seriler,** Dizgi Ofset, 2017.
- 4. H. İ. Karakaş, **Matematiğin Temelleri, Sayı Sistemleri ve Cebirsel Yapılar,** ODTÜ yayınları, 2011.