Lecture9: Inversion charge

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Inversion?

- Remember that the substrate is doped with the p-type dopants.
 - We expect that the holes are found in the silicon substrate.
 - However, when a sufficiently large gate voltage is applied, the electrons are found, as if it is doped with the n-type dopants.
 - Those electrons are called as the "inversion electrons."

Electron charge density

- When $V_G < V_{TH}$,
 - The electron charge density vanishes.

$$Q_{elec} = 0$$

- When $V_G > V_{TH}$,
 - The electron charge density is proportional to $V_G V_{TH}$.

$$|Q_{elec}| = C_{ox}(V_G - V_{TH})$$

- (Here, Q_{elec} and C_{ox} are quantites per area.)

$|Q_{elec}|$ versus V_G

- It is piecewise linear. Therefore, it is nonlinear.
 - Digital application: ON $(V_G = V_{DD})$ / OFF $(V_G = 0)$
 - Analog application: Linear part

Engineering questions

- Which one is good?
 - Large C_{ox} or small C_{ox} ?
 - High V_{TH} or low V_{TH} ?

Answers

- We want to have a large C_{ox} . Therefore, a thin oxide layer is desirable.
- Depending on V_{DD} , an appropriate value of V_{TH} should be chosen. By changing the metal or the substrate doping, we can control V_{TH} .