Human Activity Detection with Smartphone Data

by Benjamin Stano

Activity Detection Using Smartphones

- Predicts users action based on sensors
- Smartphones have accelerometer, gyroscope standard
- Smartphones ideal for HAD
 - Endless data
 - Countless uses

Practical Applications

- HAD has many practical uses:
 - Biometric Security
 - Elderly and youth care
 - Industrial Manufacturing and Assisting
 - Daily Life and Fitness monitoring

Research Questions

- Questions to answer:
 - 1. Predict subject activity while using their smartphone
 - 2. Many sensor inputs, which are important?
 - 3. Many modeling types, which one is ideal?

Introducing the Data

Human Activity Recognition Using Smartphones

- 30 volunteers performing same 6 actions
 - Laying, Standing, Sitting, Walking, Walking Upstairs, and Walking Downstairs
- Manually labeled as six actions
- 50 Hz intervals, or every 0.02 seconds
- Data split: 70% training, 30% testing
 - 7352 training instances, 2947 testing instances
- 561 features in total
 - Triaxial acceleration and estimated body acceleration
 - Triaxial angular momentum

source:

Is the Training Data Balanced?

- Unbalanced training set leads to model error
- Percentages relative to total counts
- Outcome is balanced in the training set

Smartphone Activity Label Distribution Amoung The Training Set

Passive vs. Active Activities

- Plot shows max acceleration readings for each activity type
- Passive: standing, sitting, laying
 - Very clustered
- Active: walking, walking upstairs, walking downstairs
 - Much more variable

Exploring Feature Sets

Exploring Different Feature Sizes

- Find most efficient feature set
- Many models easily overburdened
- Outcome could go unexplained
- HAD data rife with variance
- Use Random Forest Classifier to test different feature sets
 - Easy to train and adaptable
 - Gives feature importance

Exploring Different Feature Sizes contd.

- 4 feature sets in total trained and tested with RFC
- Use set containing all original features (561)
- Make 3 multiple new feature sets:
 - 1. Highly correlated feature pairs (171)
 - 2. Features chosen by SelectFromModel (77)
 - 3. Using 77 most important features (77)
- Compare/contrast Selection and Importance sets

RFC Feature Set Performance Comparison

- Number of features and runtime normalized
- As number of features decreases, runtime decreases along with it
- Performance decreases slightly, but not a large change

Feature Set Performance Comparison

Feature Set	All	Correlation	Selection	Importance
Number of Features			77 (13.7%)	77 (13.7%)
Runtime (in seconds)	7.0122 (100%)	4.1100 (58.6%)	2.2421 (32.0%)	2.2181 (31.6%)
Testing Accuracy	90.0%	89.3%	89.1%	87.7%
Training Accuracy	100%	99.9%	100%	99.9%

Feature Set Findings

- All had most accuracy, longest runtime
- Correlation much faster, similar accuracy
- Selection performed best, efficient and accurate
 - Use this one to model
- Importance set performed very poorly
- Important to select intelligently while reducing dimensions

Exploring Different Models

Models Used

- Determine most efficient model
- Model using the Selection feature set
- Use 5 different model types:
 - Random Forest Classifier
 - Extra Trees Classifier
 - K Nearest Neighbors Classifier
 - Support Vector Classifier
 - Lasso Logistic Regression

Normalized Performance Comparison

Model Performance Comparison

Model Type	Random Forest	Extra Trees	K Nearest Neighbors	Support Vector	Logistic
Runtime (in seconds)	2.2869	0.5156	7.3311	8.8154	39.9392
Testing Accuracy	89.1%	88.9%	90.6%	90.8%	92.9%
Training Accuracy	99.9%	100%	98.3%	94.6%	96.5%
CV score (5 folds)	88.2%	86.7%	88.7%	90.8%	89.8%

Model Type Findings

- RFC performed well overall
 - Best if runtime is most important
- XTC performed worst, overfit
- KNNC not as good as other choices
- SVMC performed best overfall
 - Best blend of accuracy and efficiency
- Logistic most accurate, may have underlying problems
 - May be best if accuracy is most important

Conclusions

Overview

- Data: Human Activity Recognition Using Smartphones
- Feature Sets:
 - All, 561
 - Correlation, 170
 - Selection, 77
 - o Importance, 77
- Models Used: RFC, Xtra, KNN, SVC, Logistic

Findings

- Removing features improves efficiency, low effect on accuracy
- Best feature set for modeling is SelectFromModel
- Best model: Support Vector Classifier
 - Best blend of efficiency and performance
 - Best CV score
- RFC if efficiency is important

References

Dataset:

https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

Citations:

- Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. Human Activity Recognition on Smartphones using a Multiclass Hardware-Friendly Support Vector Machine. International Workshop of Ambient Assisted Living (IWAAL 2012). Vitoria-Gasteiz, Spain. Dec 2012
- Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra and Jorge L. Reyes-Ortiz. A Public Domain Dataset for Human Activity Recognition Using Smartphones. 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.
- Jorge Luis Reyes-Ortiz, Alessandro Ghio, Xavier Parra-Llanas, Davide Anguita, Joan Cabestany, Andreu Català. Human Activity and Motion Disorder Recognition: Towards Smarter Interactive Cognitive Environments. 21st European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2013. Bruges, Belgium 24-26 April 2013.
- o http://www.ijirst.org/articles/IJIRSTV2I4024.pdf
- https://www.profactor.at/en/research/industrial-assistive-systems/visual-computing/projects/instructme/
- https://ieeexplore.ieee.org/document/7737171/
- https://ieeexplore.ieee.org/abstract/document/4358934/

Appendix

Outcome Class Balance of Test Set

Smartphone Activity Label Distribution Amoung The Testing Set

- Testing Set is more balanced than training set
- Not as important for modeling

Passive vs. Active contd. 2

- Plot shows standard deviation t-sensor acceleration for all activities
- Passive activities tend to have more lower standard deviation
- Passive less variable, Active more variable

Passive vs. Active contd. 3

- Plot shows max f-sensor acceleration for all activities
- Passive activities tend to have more lower standard deviation
- Passive less variable, Active more variable

Passive vs. Active contd. 4

- Plot shows standard deviation f-sensor acceleration for all activities
- Passive activities tend to have more lower standard deviation
- Passive less variable, Active more variable

