Redes Neuronales

Una introducción...

Frank Rosenblatt, en la década de los 50, se inspira en las neuronas

biológicas...

...para definir lo que se conoce como neurona artificial...

- Núcleo celular: Zona de procesamiento.
- **Dendritas**: Zonas receptoras.
- Axón: Líneas de transmisión.
- Axones terminales (sinapsis): Conexiones excitadoras o inhibidoras.

$$x1 = 23, x2 = 68, x3 = 170$$

 $w1 = 1, w2 = 2, w3 = 3$
 $23(1) + 68(2) + 170(3) = 669$

El Perceptrón

 Neurona artificial o unidad básica de inferencia en forma de discriminador lineal.

$$y = f(ec{w} \cdot ec{x}) = f\left(\sum_j w_j x_j
ight)$$

Donde:

• x_j : característica j de la muestra.

• w_j : peso sináptico

ullet f : función de activación

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Presentación

Del Prof. Pablo Sanz

Salida esperada: 1290

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Primera lectura

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Modificación de pesos

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Entrenamiento (FP)

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Entrenamiento (FP)

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Entrenamiento (FP)

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Ajuste de pesos ¿Fuerza bruta?

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Ajuste de pesos (BP)

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Ajuste de pesos (BP)

Backpropagation

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Error Acum: 4789

$$J=1/2 . \sum (y-y')^2$$

$$J=1/2 . \sum (y-y')^2$$

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2. \sum (y-y')^2$$

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2 . \sum (y-y')^2$$

W

$$J=1/2 . \sum (y-y')^2$$

0.0 0.1 0.2 0.3 0.4

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2. \sum (y-y')^2$$

0.0 0.1 0.2 0.3 0.4

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2 . \sum (y-y')^2$$

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2 . \sum (y-y')^2$$

$$J=1/2 . \sum (y-y')^2$$

0.0 0.1 0.2 0.3 0.4

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2 . \sum (y-y')^2$$

W

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2 . \sum (y-y')^2$$

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2. \sum (y-y')^2$$

Id	Sem Ant	Oro	Tend	P prox Sem
1	1816	1288	1	1290
2	1810	1276	1	1295
3	1860	1290	0	1290
4	1799	1277	0	1280
5	1790	1280	1	1286
6	1877	1270	0	1277

Error Acum: 50

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J=1/2 . \sum (y-y')^2$$

Para llegar a este punto, se han realizado 4 "saltos:

Al tamaño de estos saltos se les conoce como: Tasa de Aprendizaje (Learn Rate - α)

α pequeñas = fuerza bruta α grandes = difícil de hallar el mínimo global

0.0 0.1 0.2 0.3 0.4

- Útil cuando la función de coste es convexa.
- Puede caer en óptimos locales si la función no es convexa.
- La mayoría de las veces se requieren de modelos no lineales, que requieren a su vez funciones de pérdida que son no convexas.

- Una función es CÓNCAVA o presenta su concavidad hacia abajo cuando dados dos puntos cualesquiera el segmento que los une queda por debajo de la curva.
- Una función es CONVEXA o presenta su concavidad hacia arriba si dados dos puntos de la curva el segmento que los une queda por encima de la curva.
- Los puntos en los que la curvatura pasa de cóncava a convexa o viceversa se llaman PUNTOS DE INFLEXIÓN

- **Definición #1:** Una función y=f(x) es CÓNCAVA en un intervalo cuando las tangentes a la curva en los puntos de dicho intervalo quedan por encima de la curva.
- **Definición #2:** Una función y=f(x) será CONVEXA en un intervalo cuando las tangentes a la curva en los puntos de dicho intervalo quedan por debajo de la curva.

De una forma más concreta:

Sea una función f que posea primera y segunda derivada diferentes de cero, es decir:

$$\exists f'(x) \neq 0$$

 $\exists f''(x) \neq 0$

Entonces:

- **Definición #1:** Una función y=f(x) es CÓNCAVA si f''(x) < 0
- **Definición #2:** Una función y=f(x) será CONVEXA si f''(x) > 0

Ejemplo:

Sea
$$f(x) = x^3 + 2x^2 + 1$$

Tenemos que:

f es cónvaca en
$$(-\infty, -\frac{2}{3})$$
 y
f es convexa en $(-\frac{2}{3}, +\infty)$

Donde: $-\frac{2}{3}$ es el punto de inflexión.

Esto es porque:

- $f'(x) = 3x^2 + 4x$ y f''(x) = 6x + 4 son differentes de cero.
- $f''(x) = 0 \rightarrow 6x + 4 = 0 \rightarrow x = -\frac{2}{3}$

Función no convexa vs Función convexa

Descenso del Gradiente estocástico

- Útil cuando la función de coste es no convexa
- La estrategia es igual que la anterior, pero ajustando los pesos por cada muestra en lugar de esperar a consumir todas las muestras.

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

$$J = y - y'$$

Descenso del Gradiente / estocástico

- Ambos métodos presentan ventajas y desventajas
- Para el descenso del gradiente se requiere de suficiente memoria de computador durante el proceso.
- Para el descenso del gradiente estocástico se requiere de un rápido acceso a disco.
- Para lidiar un poco con las ventajas/desventajas de ambos utilizamos una estrategia híbrida conocida como **minibatch**.

Id	Sem Ant	P prox Sem
1	1816	1290
2	1810	1295
3	1860	1290
4	1799	1280
5	1790	1286
6	1877	1277

Una función de coste no convexa

Descenso del Gradiente / estocástico

¡En 2 o más dimensiones es similar!

Funciones de coste

- La función de coste depende del tipo de problema a resolver: regresión o clasificación.
- Una función que suele funcionar muy bien en problemas de clasificación es la entropía cruzada

$$J(p,q) = \sum_{x} p(x) \log(q(x))$$

Función de entropía cruzada:

- * Cuantifica la diferencia entre dos distribuciones de probabilidad.
- * Describe la pérdida entre dos distribuciones de probabilidad.

Hasta los momentos...

- Perceptrón
- Foward Propagation
- Algunas funciones de coste
- Descenso del gradiente
- Backpropagation

Redes Neuronales

- Cada neurona tiene sus propios pesos/parámetros. En aplicaciones comunes suelen ser desde miles a millones de parámetros para toda la red.
- Deep Learning es encontrar esos pesos de manera eficiente, bajo la condición de realizar correctamente una tarea objetivo.
- Existen diversas arquitecturas de redes neuronales.
- Se pueden usar para regresión y clasificación.

A continuación...

- Redes neuronales, clasificación
- Funciones de activación
- Métricas y medidas de rendimiento
- Ejemplos avanzados
- Procesamiento de imágenes
- Introducción a las redes neuronales convolucionales