9.111 For the current-mirror-loaded differential pair in Fig. P9.111, find:

- (a) differential input resistance, R_{id}
- (b) A_d
- (c) CMRR

Assume $\beta = 100$, $|V_{BE}| = 0.7$ V, and $|V_A| = 60$ V.

Figure P9.111

9.112 For the current-mirror-loaded differential amplifier in Fig. P9.112, find:

- (a) differential input resistance, R_{id}
- (b) A_d
- (c) CMRR

Assume $\beta = 100$, $|V_{BE}| = 0.7 \text{ V}$, $|V_A| = 60 \text{ V}$, $V_t = 0.7 \text{ V}$, and $k'(W/L) = 2 \text{ mA/V}^2$.

Figure P9.112

Section 9.6: Multistage Amplifiers

9.113 Consider the circuit in Fig. 9.40 with the device geometries (in μ m) shown in Table P9.113. Let $I_{\rm REF}=225~\mu{\rm A},~|V_i|=0.75~{\rm V}$ for all devices, $\mu_n C_{ox}=180~\mu{\rm A/V}^2,~\mu_p C_{ox}=60~\mu{\rm A/V}^2,~|V_A|=9~{\rm V}$ for all devices, $V_{DD}=V_{SS}=1.5~{\rm V}$. Determine the width of $Q_6,~W$, that will ensure that the op amp will not have a systematic offset voltage. Then, for all devices evaluate $I_D,~|V_{OV}|,~|V_{GS}|,~g_m,~{\rm and}~r_o$. Provide your results in a table similar to Table 9.1. Also find $A_1,~A_2,~{\rm the~open-loop}~{\rm voltage}~{\rm gain},~{\rm the~input}$

 $+k\Omega$

he 13.

all
W,
tic

·s|,

.1. out Table P9.113

i						- Part of the Control			
	Transistor	Q_1	Q_2	Q_3	Q_4	Q_5	Q_6	Q_7	Q_8
	W/L	30/0.5	30/0.5	10/0.5	10/0.5	60/0.5	W/0.5	60/0.5	60/0.5

common-mode range, and the output voltage range. Neglect the effect of $V_{\rm A}$ on the bias currents.

D 9.114 The two-stage CMOS op amp in Fig. P9.114 is fabricated in a 0.18- μ m technology having $k_n' = 4k_p' = 400 \,\mu$ A/V², $V_m = -V_{lp} = 0.4$ V.

- (a) With A and B grounded, perform a dc design that will result in each of Q_1 , Q_2 , Q_3 , and Q_4 conducting a drain current of $100~\mu\text{A}$ and each of Q_6 and Q_7 a current of $200~\mu\text{A}$. Design so that all transistors operate at 0.2-V overdrive voltages. Specify the W/L ratio required for each MOSFET. Present your results in tabular form. What is the dc voltage at the output (ideally)?
- (b) Find the input common-mode range.
- (c) Find the allowable range of the output voltage.

(d) With $v_A = v_{id}/2$ and $v_B = -v_{id}/2$, find the voltage gain v_o/v_{id} . Assume an Early voltage of 6 V.

D *9.115 In a particular design of the CMOS op amp of Fig. 9.40 the designer wishes to investigate the effects of increasing the W/L ratio of both Q_1 and Q_2 by a factor of 4. Assuming that all other parameters are kept unchanged, refer to Example 9.6 to help you answer the following questions:

- (a) Find the resulting change in $|V_{OV}|$ and in g_m of Q_1 and Q_2 .
- (b) What change results in the voltage gain of the input stage? In the overall voltage gain?
- (c) What is the effect on the input offset voltages? (You might wish to refer to Section 9.4).

Figure P9.114

⁼ Multisim/PSpice; * = difficult problem; ** = more difficult; *** = very challenging; D = design problem