

DECISION SUPPORT SYSTEM

Weighted Sum Model (WSM) Weighted Product Model (WPM)

TEACHING TEAM
DECISION SUPPORT SYSTEM COURSE

Weighted Sum Model (WSM)

Also known as Weighted Linear Combination (WLC) or Sum Additive Weighting (SAW)

Using the **additive utility assumption** principle \rightarrow The final value of the alternative is based on the addition of the values of the criteria

Suitable for use in single-dimensional conditions or all criteria have the same units

Preference Values in WSM

$$A_{WSM} = \sum_{j=1}^{N} a_{ij} w_j, for i = 1, 2, 3, ..., m$$

```
A_{WSM} = WSM value for each alternative N = number of criteria a_{ij} = criterion values for the i-th alternative and j-th criteria w_i = weight of the j-th criterion
```


Decision Making Steps in MADM

Understand the problems and objectives of decision making

Determine alternatives (A_{1...}A_m)

Determine criteria $(C_1...C_n)$

Determine the value of each criterion for each alternative

Normalize the value of each criterion for each alternative

Determine the weight of each criterion $(w_1...w_n)$

Calculating alternative values

Sensitivity test

Case Study 1 – Credit Worthiness

- In this case, there are four potential creditors who will be determined worthy of receiving credit, namely:
 - 1. Mrs. Lestari
 - 2. Mr. Amir
 - 3. Mr. Joko
 - 4. Mrs. Siti
- These four potential creditors are referred to as Alternative (A), namely the option that will be chosen by the decision maker, so that it is determined:
 - 1. Mrs. Lestari → A1
 - 2. Mr. Amir \rightarrow A2
 - 3. Mr. Joko \rightarrow A3
 - 4. Mrs. Siti \rightarrow A4

Case Study 1 – Credit Worthiness

The criteria or conditions for determining credit worthiness are referred to as Criteria (C), while the weight to determine the level of importance of the criteria is determined:

Criteria (Weight)

C1 -> Private Character (10%)

C3 \rightarrow Business Condition (25%)

 $C4 \rightarrow Earnings (20\%)$

 $C5 \rightarrow Warranty (15\%)$

C6 → Warranty Condition (15%)

C7 → Installment (5%)

Example of a Criterion Rating Scale

No	Scale Value	Value
1	Good	100
2	Enough	80
3	Less	50

Normalization

Benefit Attributes:

$$r_{ij} = S_{ij} / max(S_{ij})$$

Cost Attributes:

$$r_{ij} = min(S_{ij}) / S_{ij}$$

- The following is a decision matrix that represents the relationship between four alternatives and the seven criteria used in the case study of determining credit worthiness.
- How do you determine the ranking of potential creditors who are worthy of receiving credit?

Credit Worthiness Decision Matrix

				Criteria			
Alt	C1	C2	C3	C4	C5	C6	C7
A1	80	100	80	100	75	100	80
A2	50	100	100	80	75	100	80
A3	100	80	80	60	75	80	60
A4	100	80	80	80	75	60	80

Step 1 – Normalize Values

	Criteria							
	Alt	C1	C2	C3	C4	C 5	C6	C7
Example:	A1	(80)	100	80	100	75	100	80
$r_{11} = \frac{80}{\max(80; 50; 100; 100)} = \frac{80}{100} = 0.8$	A2	50	100	100	80	75	100	80
11107(00,00,100)	А3	100	80	80	60	75	80	60
$r_{21} = \frac{50}{\max(80; 50; 100; 100)} = \frac{50}{100} = 0.5$	A4	100	80	80	80	75	60	80

× –	100	_ 100 _ 1
$r_{31} =$	max(100; 100; 80; 80)	$-\frac{1}{100}$

Normalization matrix ·

				Criteria			
Alt	C1	C2	C3	C4	C5	C6	C 7
Λ1	0.8	1	8.0	1	1	1	1
A2	0.5	1	1	0.8	1	1	1
А3	1	0.8	8.0	0.6	1	0.8	0.75
A4	1	0.8	0.8	0.8	1	0.6	1

Step 2 – Calculate the Weight

	•							ı	Criteria			
					V	0.1	0.1	0.25	0.2	0.15	0.15	0.05
					А	lt C1	C2	C3	C4	C 5	C6	C7
					A	1 0.8	1	0.8	1	1	1	1
		e weight			А	2 0.5	1	1	0.8	1	1	1
ру	the r _{ij} va	iue			А	3 1	0.8	0.8	0.6	1	0.8	0.75
					A	4 1	0.8	0.8	0.8	1	0.6	1
					Criteria							
	w	0.1	0.1	0.25	0.2	0.15	0.15	0.05				
	Alt	C1	C2	C3	C4	C5	C6	C7				
	A1	0.08	0.1	0.2	0.2	0.15	0.15	0.05				
	A2	0.05	0.1	0.25	0.16	0.15	0.15	0.05				
	А3	0.1	0.08	0.2	0.12	0.15	0.09	0.0375				
	A4	0.1	0.08	0.2	0.16	0.15	0.12	0.05				

jti.polinema.ac.id

SISTEM PENDUKUNG KEPUTUSAN

Step 3 - Add up the Criteria Values

				Criteria				
Alt	C1	C2	C3	C4	C5	C6	C7	WSM
A1	0.08	0.1	0.2	0.2	0.15	0.15	0.05	0.93
A2	0.05	0.1	0.25	0.16	0.15	0.15	0.05	0.91
A3	0.1	0.08	0.2	0.12	0.15	0.09	0.0375	0.7775
A4	0.1	0.08	0.2	0.16	0.15	0.12	0.05	0.86

Step 4 – Ranking

				Criteria				
Alt	C1	C2	C3	C4	C5	C6	C7	WSM
A1	0.08	0.1	0.2	0.2	0.15	0.15	0.05	0.93
A2	0.05	0.1	0.25	0.16	0.15	0.15	0.05	0.91
A3	0.1	0.08	0.2	0.12	0.15	0.09	0.0375	0.7775
A4	0.1	0.08	0.2	0.16	0.15	0.12	0.05	0.86

So, the alternative ranking order is

A1 > A2 > A4 > A3

Rank 1: Mrs. Lestari

Rank 2: Mr. Amir

Rank 3: Mrs. Siti

Rank 4: Mr. Joko

Weighted Product Model (WPM)

Similar to WSM, only in WPM a multiplication operation is performed

WPM is **dimensionless** because its structure can eliminate the units used

Due to its dimensionless nature, WPM can be used in different criteria unit conditions

Preference Values in WPM

$$A_{WPM} = \prod_{j=1}^{N} (a_{ij})^{w_j}, for \ i = 1, 2, 3, ..., m$$

 $A_{WPM} = WPM$ value for each alternative N = number of criteria a_{ij} = criterion values for the i-th alternative and j-th criteria $w_i = weight$ of the j-th criterion

Implementation in the Same Case

Criteria (Weight)

C1 > Private Character (10%)

C3 → Business Condition (25%)

C4 → Earnings (20%)

 $C5 \rightarrow Warranty (15\%)$

C6 → Warranty Condition (15%)

C7 → Installment (5%)

Example of a Criterion Rating Scale

No	Scale Value	Value
1	Good	100
2	Enough	80
3	Less	50

Normalization

Benefit Attributes:

$$r_{ij} = S_{ij} / max(S_{ij})$$

Cost Attributes:

$$r_{ij} = min(S_{ij}) / S_{ij}$$

Fast Forward to Normalization

				Criteria			
W	0.1	0.1	0.25	0.2	0.15	0.15	0.05
Alt	C1	C2	C3	C4	C 5	C6	C7
A1	0.8	1	0.8	1	1	1	1
A2	0.5	1	1	0.8	1	1	1
A3	1	0.8	0.8	0.6	1	0.6	0.75
A4	1	0.8	0.8	0.8	1	0.8	1

Notes

- The WPM normalization process is the same as the WSM normalization process
- We can use the same technique

Step 2 / 3 — Calculate WPM Weights and Values

				Criteria			
W	0.1	0.1	0.25	0.2	0.15	0.15	0.05
Alt	C1	C2	C3	C4	C 5	C6	C7
A1	0.8	1	0.8	1	1	1	1
A2	0.5	1	1	0.8	1	1	1
A3	1	0 8	0.8	0.6	1	0.6	0.75
A4	1	0.8	0.8	0.8	1	0.8	1
$A1_{wpp}$	m = 0.8	$0.1 * 1^{0}$	$^{.1}*0.8^{0}$	$0.25 * 1^{0}$	$^{.2}*1^{0.1}$	$^{5}*1^{0.15}$	$5 * 1^{0.05}$

Step 4 - Ranking

Alt	WPM
A1	9.25E-01
A2	8.92E-01
A3	7.62E-01
A4	8.55E-01

So, the alternative ranking order is

A1 > A2 > A4 > A3

Rank 1: Mrs. Lestari

Rank 2: Mr. Amir

Rank 3: Mrs. Siti

Rank 4: Mr. Joko

Another Approach to Ranking - Vector

$$VA_{WPM} = \frac{A_i}{\sum_{i=1}^{M} A_i}$$

 $VA_{WPM} = WPM$ vector value for each alternative M = number of alternatives $A_i = WPM$ value of the i - th alternative

Ranking with Vectors

_	Alt	WPM	WPM Vector	
	A1	9.25E-01	2.69E-01	$VA_{wpm} = 9.25E - 01$ $9.25E - 01 + 8.92E - 01 + 7.62E - 01 + 8.55E - 01$
	A2	8.92E-01	2.60E-01	
	A3	7.62E-01	2.22E-01	
	A4	8.55E-01	2.49E-01	
	SUM	3.43498		

So, the alternative ranking order is A1 > A2 > A4 > A3

Rank 1: Mrs. Lestari

Rank 2: Mr. Amir

Rank 3: Mrs. Siti

Rank 4: Mr. Joko