

PROBLEM STATEMENT

Evaluating large language models for in-context (zero-shot & one-shot) performance on GLUE dataset:

Models : GPT-Neo, BART, OPT, Bloom

Tasks:

CoLA (Corpus of Linguistic Acceptability): A binary classification task to determine whether a given sentence is grammatically correct.

SST-2 (Stanford Sentiment Treebank): Binary classification task to determine whether a given sentence has a positive or negative sentiment.

EXPERIMENT DESIGN

ZeroShot Prompts

CoLA: "Determine if the following sentence is grammatically correct: Sentence: '{sentence}': SST-2: "Determine the sentiment of the following sentence: Sentence: '{sentence}', Sentiment: "

OneShot Prompts

CoLA: "Given the example: Sentence: 'He went to the store.'\n-Grammatically correct: ye

• prompt: Determine if the following sentence is grammatically correct:\n-Sentence: '{sentence}'\n-Grammatically correct: "

SST-2: "Given the example:\n- Sentence: love this movie!'\n- Sentiment: positive.

 prompt: Determine the sentiment of the following sentence:\n-Sentence: '{sentence}'\n-Sentiment: "

Few Shot Prompts

CoLA: k: 3 examples:

- "Sentence: 'He went to the store.'\n Grammatically correct: yes"
- "Sentence: 'The children was playing.'\n Grammatically correct: no"
- "Sentence: 'She is writing an essay.'\n Grammatically correct: yes"

prompt: "Given the examples:\n{examples}\n\nDetermine if the following sentence is grammatically correct:\n- Sentence: '{sentence}'\n- Grammatically correct: "

SST-2: k: 3 examples:

- "Sentence: 'I love this movie!'\n Sentiment: positive"
- "Sentence: 'The food was terrible.'\n Sentiment: negative"
- "Sentence: 'This book is really boring.'\n Sentiment: negative"

prompt: "Given the examples:\n{examples}\n\nDetermine the sentiment of the following sentence:\n-Sentence: '{sentence}'\n- Sentiment: "

BLOOM RESULTS

		BLOOM 560M		BLOC	OM 3B	BLOOMZ 560M	
		CoLA	SST2	CoLA	SST2	CoLA	SST2
	Accuracy	0.3087	0.4908	0.3106	0.4908	0.3615	0.9037
	Precision	0.0953	0.2409	0.4982	0.2409	0.6143	0.908
	Recall	0.3087	0.4908	0.3106	0.4908	0.3615	0.9037
Zero - shot	F1	0.1457	0.3232	0.1579	0.3232	0.2827	0.9035
	Accuracy	0.3087	0.492	0.3375	0.4908	0.3078	0.6411
	Precision	0.0953	0.5153	0.564	0.2409	0.0951	0.7353
	Recall	0.3087	0.492	0.3375	0.4908	0.3078	0.6411
One - shot	F1	0.1457	0.3375	0.2401	0.3232	0.1453	0.6048

OPT RESULTS

		125M		1.3B		2.7B		6.7B	
		CoLA	SST2	CoLA	SST2	CoLA	SST2	CoLA	SST2
Accuracy	zero shot	0.3087	0.4908	0.3087	0.4908	0.3365	0.4908	0.3087	0.4908
	one - shot	0.3087	0.4908	0.3087	0.4897	0.3087	0.4943	0.3087	0.4759
Precision	zero shot	0.0953	0.2409	0.0953	0.2409	0.5711	0.2409	0.0953	0.2409
	one - shot	0.0953	0.2409	0.0953	0.4103	0.0953	0.555	0.0953	0.4763
Recall	zero shot	0.3087	0.4908	0.3087	0.4908	0.3365	0.4908	0.3087	0.4908
	one - shot	0.3087	0.4908	0.3087	0.4897	0.3087	0.4943	0.3087	0.4759
F1	zero shot	0.1457	0.3232	0.1457	0.3232	0.2347	0.3232	0.1457	0.3232
	one - shot	0.1457	0.3232	0.1457	0.3247	0.1457	0.3405	0.1457	0.4603

RESULTS: ONE SHOT ZERO SHOT

RESULTS: PARAMETER INCREASE

Model Size/Parameter increase doesn't show any increase in the Performance of the tasks.

INTERPRETATION OF RESULTS

- All selected Pre-Trained models selected have shown to have similar scores for all classification metrics.
- This is because these models are not able to generate meaningful results due to lack of contextual understanding.

```
Generated Ouput: Choose either positive or negative sentiment of the sentence 'a better title, for all concerned, might be swept under the rug. ':

The following sentence is a paraph
Result:paraph, Pred Label: 0
Given Sentence: a wildly inconsistent emotional experience.

Generated Ouput: Choose either positive or negative sentiment of the sentence 'a wildly inconsistent emotional experience. ':

The sentence 'a wildly inconsistent
Result:inconsistent, Pred Label: 0
Given Sentence: given how heavy-handed and portent-heavy it is, this could be the worst thing soderbergh has ever done.

Generated Ouput: Choose either positive or negative sentiment of the sentence 'given how heavy-handed and portent-heavy it is, this could be the worst thing soderbergh has ever done. ':

The sentence 'given how heavy
Result:heavy, Pred Label: 0
```

INTERPRETATION RESULTS: ACCURACY OF ALL MODELS

Fine Tuning & Instruction Tuned Model shows a significant increase in the accuracy compared to just Pretrained Language Modelling.

	Model	CoLA	SST2
Zero - shot	BLOOM 3B	0.3106	0.4908
	BLOOMZ 560M	0.3615	0.9037
	GPT NEO	0.3087	0.4908
	BART Base	0.3087	0.49
	BART FINE - TUNED	0.38	0.88
	OPT 2.7B	0.3365	0.4908
	BLOOM 3B	0.3375	0.4908
	BLOOMZ 560M	0.3078	0.6411
One - shot	GPT NEO	0.3077	0.4908
One - snot	BART	0.3087	0.49
	BART FINE - TUNED	0.38	0.88
	OPT 2.7B	0.3087	0.4943

1

Limited capacity and training data: Smaller models do not have the extensive capacity and training data of larger models like GPT-3, which hinders their ability to generalize effectively in zero-shot learning tasks.

2

Fine-tuning and instruction tuning: Models like BART and BLOOMZ provide better zeroshot performance by adapting the model to specific tasks or enabling better understanding of instructions.

Conclusion

3

Contextual understanding: Zero-shot, few-shot, and one-shot learning might produce similar performance if the model cannot effectively leverage the context provided, which is more prevalent in smaller models with limited contextual understanding.

Compute resource limitations:
Smaller models might not be as
effective as zero-shot learners in
scenarios with limited computational
resources. They may require finetuning to achieve satisfactory
performance on specific tasks.

Conclusion

5

Model architecture and capacity: The architecture of a model may not play a significant role in zero-shot learning. Instead, the capacity of the model, the quality of training data, and fine-tuning or instruction tuning strategies are more critical.

6

Parameter increase and performance: A slight increase in model parameters might not result in a significant improvement in zeroshot performance. The relationship between model size, performance, and computational resources is complex and may require further analysis to determine optimal trade-offs.

