Example Questions for Final Exam

1- Write a program that <u>inserts</u> an element into a **sparse matrix**. Take *column*, *row* and *new value* from the user.

Example:

$$\mathbf{A} = \begin{pmatrix} 1.5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2.3 & 0 & 1.4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3.7 & 0 & 0 & -2.7 & 0 & 0 \\ 0 & -1.6 & 0 & 2.3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5.8 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7.4 & 0 & 0 \\ 0 & 0 & 1.9 & 0 & 0 & 0 & 4.9 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3.6 \end{pmatrix}$$

	(1.5	0	0	0	0	0	0	0
	0	2.3	0	1.4	0	0	0	0
	0	0	3.7	0	0	-2.7	0	0
A —	0	-1.6	0	2.3(9.9	0	0	0
A =	0	0	0	0	5.8	0	0	0
	0	0	0	0	0	7.4	0	0
	0	0	1.9	0	0	0	4.9	0
	0	0 2.3 0 -1.6 0 0 0	0	0	0	0	0	3.6

row	8	0	1	1	2	2	3	3	4	5	6	6	7
column	8	0	1	3	2	5	1	3	4	5	2	6	7
value	12	1.5	2.3	1.4	3.7	-2.7	-1.6	2.3	5.8	7.4	1.9	4.9	3.6

row	8	0	1	1	2	2	3	3	3	4	5	6	6	7
column	8	0	1	3	2	5	1	3	4	4	5	2	6	7
value	13	1.5	2.3	1.4	3.7	-2.7	-1.6	2.3	9.9	5.8	7.4	1.9	4.9	3.6

Input:

row = 3

column= 4

value= 9.9

Output:

8 8 13

0 0 1.5

1 1 2.3

1 3 1.4 2 2 3.7

2 5 -2.7

3 1 -1.6

3 3 2.3

3 4 9.9

4 4 5.8

5 5 7.4

6 2 1.9

6 6 4.9 7 7 3.6

2- Assume that there is a polynomial expression which is stored as a **string**.

Write a **C# program** that takes a *new term* from the user and places it to the polynomial expression.

Notes: 1) Polynomial expression only contains + (plus) symbol, x symbol and numbers.

2) The exponent of the new term doesn't exist in the polynomial expression.

Example:

Polynomial expression: 3x12+2x9+5x4+20x3+15

Polynomial expression: x15+4x10+5x7+16x

Input string: 14x6 Input string: 8x12

Output string: 3x12+2x9+14x6+5x4+20x3+15 Output string: x15+8x12+4x10+5x7+16x

Example:

3- Write two solutions (**recursive** and **non-recursive** (**iterative**) solution) to sum squares from n to m.

SumS(n,m) =
$$n^2 + (n+1)^2 + (n+2)^2 + ... + m^2$$

Example:

```
Inputs: n=2 m=4
Output: 2^2 + 3^2 + 4^2 = 29
```

4- Create a <u>structured</u> dictionary array used to convert words from English to Turkish and from Turkish to English. You should write two **functions** *EnglishToTurkish* and *TurkishToEnglish*.

The user selects the direction of the conversion from a menu.

- 1- from English to Turkish
- 2- from Turkish to English

Apple, Elma
Banana, Muz
Book, Kitap
Key, Anahtar
March, Mart
Sale, Satış
Sea, Deniz
Table, Masa
Yellow, Sarı

5- Given an array of integers, find the *length* and *location* of the longest contiguous sequence of equal *values*.

Example

```
int[] numbers= { 1, 2, 2, 1, 5, 1, 1, 7, 7, 7, 7, 1, 1};
Output: number=7 length=4 starting position=8
```