

Oliver Killane

29/10/21

Lecture Recording

Lecture recording is available here

Definition by Induction for SimpleExp

To define a function on all expressions in **SimpleExp**:

- define f(n) directly, for each number n.
- define $f(E_1 + E_2)$ in terms of $f(E_1)$ and $f(E_2)$. define $f(E_1 \times E_2)$ in terms of $f(E_1)$ and $f(E_2)$.

For example, we can do this with den:

$$den(E) = n \leftrightarrow E \Downarrow n$$

Evaluation

Many Steps of Evaluation

Given \rightarrow we can define a new relation \rightarrow^* as:

$$E \to^* E' \leftrightarrow (E = E' \lor E \to E_1 \to E_2 \to \cdots \to E_k \to E')$$

For expressions, the final answer is n if $E \to^* n$.

Multi-Step Reductions

The relation $E \to^n E'$ is defined using mathematics induction by:

- Base Case $E \to^0 E$ for all $E \in SimpleExp$
- Inductive Case

For every $E, E' \in SimpleExp, E \rightarrow^{k+1} E'$ if and only if there is some E'' such that:

$$E \to^k E'' \land E'' \to E'$$

• Definition

 \rightarrow^* - there are some number of steps to evaluate to E'.

$$E \to^* E' \Leftrightarrow \exists n. [E \to^n E']$$

Properties of \rightarrow

- **Determinacy** If $E \to E_1$ and $E \to E_2$ then $E_1 = E_2$.
- Confluence If $E \to^* E_1$ and $E \to^* E_2$ then there exists E' such that $E_1 \to^* E'$ and $E_2 \to^* E'$.

- Unique answer If $E \to^* n_1$ and $E \to^* n_2$ then $n_1 = n_2$.
- Normal Forms Normal form is numbers (N) for any E, E = n or $E \to E'$ for some E'.
- Normalisation No infinite sequences of expressions E_1, E_2, E_3, \ldots such that for all $i \in \mathbb{N}$ $E_1 \to E_{i+1}$ (Every path goes to a normal form).

Confluence of Small Step

We can prove a lemma expressing confluence:

 $L_1: \forall n \in \mathbb{N}. \forall E, E_1, E_2 \in SimpleExp.[E \to^n E_1 \land E \to^* E_2 \Rightarrow \exists E' \in SimpleExp.[E_1 \to^* E' \land E_2 \to^* E']]$

$Lemma \Rightarrow Confluence$

Confluence is: $\forall E, E_1, E_2 \in SimpleExp.[E \rightarrow^* E_1 \land E \rightarrow^* E_2 \Rightarrow \exists E' \in SimpleExp.[E_1 \rightarrow^*$ $E' \wedge E_2 \rightarrow^* E'$]] From lemma L_1

- Take some arbitrary $E, E_1, E_2 \in SimpleExp$, assume confluence holds. (Initial Setup)
- (2)(By Confluence)
- $(3) \quad \exists n \in \mathbb{N}. [E \to^n E_1]$ (By 2 & definition of \rightarrow^*)
- (4) Hence L_1 (By 3)

Determinacy of Small Step

We create a property P:

$$P(E) \stackrel{def}{=} \forall E_1, E_2 \in SimpleExp.[E \rightarrow E_1 \land E \rightarrow E_2 \Rightarrow E_1 = E_2]$$

There are 3 rules that apply:

(A)
$$\frac{E \to E'}{n_1 + n_2 \to n} \ n = n_1 + n_2$$
 (B) $\frac{E \to E'}{n + E \to n + E'}$ (C) $\frac{E_1 \to E'_1}{E_1 + E_2 \to E'_1 + E_2}$

Base Case

Take arbitrary $n \in \mathbb{N}$ and $E_1, E_2 \in SimpleExp$ such that $n \to E_1 \land n \to E_2$ to show $E_1 = E_2$.

- (By inversion on A,B & C)
- (By 1)
- (By 2)
- (By 3)
- $\begin{array}{ll} (1) & n \not \to \\ (2) & \neg (n \to E_1) \\ (3) & \neg (n \to E_1 \wedge n \to E_2) \\ (4) & n \to E_1 \wedge n \to E_2 \Rightarrow E_1 = E_2 \\ (5) & E \to E_1 \wedge E \to E_2 \Rightarrow E_1 = E_2 \end{array}$ (By 4)

Hence P(n)

Inductive Step

Take arbitrary E, E_1, E_2 such that $E = E_1 + E_2$ Inductive Hypothesis:

$$IH_1 = P(E_1)$$

$$IH_2 = P(E_2)$$

Assume there exists $E_3, E_4 \in SimpleExp$ such that $E_1 + E_2 \rightarrow E_3$ and $E_1 + E_2 \rightarrow E_4$. To show $E_3 = E_4$.

From inversion on A, B & C there are 3 cases to consider:

For A:

(1)	There exists $n_1, n_2 \in \mathbb{N}$ such that $E_1 = n_1$ and $E_2 = n_2$	(By case A)
(3)	$E_3 = n_1 + n_2$	(By 1, A)
(4)	$E_4 = n_1 + n_2$	(By 1, A)
(5)	$E_3 = E_4$	$(By \ 3 \ \& \ 4)$

For B:

(1)	There exists $n \in \mathbb{N}$ such that $E_1 = n$	(By case B)
(2)	There exists $E' \in SimpleExp$ such that $E_2 \to E'$	(By case B)
(3)	$E_3 = n + E'$	(By case B)
(4)	There exists $E'' \in SimpleExp$ such that $E_2 \to E''$	(By case B)
(5)	$E_4 = n + E''$	(By case B)
(6)	E' = E''	(By IH_2)
(7)	$E_3 = E_A$	(By 3.5 & 6)

For C:

(1) There exists $E' \in SimpleExp$ such that $E_1 \rightarrow E'$ (By case C) (2) There exists $E'' \in SimpleExp$ such that $E_1 \rightarrow E''$ (By case C) (3) $E_3 = E' + E_2$ (By case C) (4) $E_4 = E'' + E_2$ (By case C) (5) E' = E'' (By IH_1) (6) $E_3 = E_4$ (By 3,4 & 5)

(If E reduces to E_1 in n steps, and to E_2 in some number of steps, then there must be some E' that E_1 and E_2 reduce to.)

Base Case

The base cases has n = 0. Hence $E = E_1$, and hence $E_1 \to^* E_2$ and $E_1 \to^* E'$

Inductive Case

Next we assume confluence for up to k steps, and attempt to prove for k+1 steps.

We have two cases:

Case 1: $E_3 = E'$, this is easy as $E_2 \to^* E' \to^0 E3 \to^1 E1$.

Case 2: $E_3 \to^1 E'' \to^* E'$, in this case as $E_3 \to^1 E1$ we know by determinacy that $E'' = E_1$ and hence $E_1 \to^* E'$.

