Application No: 10/623,894

Docket No: BIO-5020NP EFS Filing June 29 2006

AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in this application:

1. (Currently Amended) A method for making a piezoelectric transducer having a plurality

of intertwined individual helical transducer segments comprising:

machining a ceramic material blank into a tubular configuration to form a ceramic tube;

coating the ceramic tube with a metallic layer;

machining helical grooves in the metal coated ceramic tube to form an inner electrode

and a plurality of helically intertwined outer electrodes, each outer electrode having its own

connection pad and electrical connection, and being associated with a functionally discrete

transducer segment; and

transforming the ceramic material forming the ceramic tube into a piezoelectric crystal.

2. (Original) The method of claim 1 wherein the step of machining the blank comprises

core drilling and turning the blank using a CNC machine.

3. (Original) The method of claim 2 wherein the step of core drilling and turning the blank

comprises utilizing a quadruple YAG laser at about 700 nanometer wavelength, hooked to a

rotary mandrel CAD/CAM machine.

- 2 -

Docket No: BIO-5020NP EFS Filing June 29 2006

4. (Original) The method of claim 1 wherein the step of coating the tubular ceramic

material with a metallic layer comprises plating the tubular ceramic material using a metal

plating process.

5. (Original) The method of claim 1 wherein the step of coating the tubular ceramic

material with a metallic layer comprises sputtering the ceramic tube with metal using a sputtering

process.

6. (Original) The method of claim 1 wherein the step of machining comprises laser etching

the metallic coating over the ceramic tube to form inner and outer electrodes.

7. (Original) The method of claim 1 wherein the step of machining comprises laser etching

the metallic coating over the ceramic tube to form helical grooves that segment the transducer

into the functionally discrete transducer segments.

8. (Withdrawn) The method of claim 1 wherein the step of transforming the ceramic

material forming the ceramic tube into a piezoelectric crystal comprises shorting the transducer

segments.

- 3 -

Docket No: BIO-5020NP EFS Filing June 29 2006

9. (Withdrawn) The method of claim 8 wherein the step of shorting the transducer segments comprises creating a temporary connection of comparatively low resistance between the transducer segments.

10. (Withdrawn) The method of claim 1 wherein the step of transforming the ceramic material forming the ceramic tube into a piezoelectric crystal comprises poling the ceramic tube.

11. (Withdrawn) The method of claim 10 wherein the step of poling the ceramic tube comprises:

heating the ceramic tube beyond its Kerrie point; and apply an electric field.

- 12. (Withdrawn) The method of claim 1 further comprising the step of polishing the outer surface of the ceramic tube before coating the ceramic tube with a metallic layer.
- 13. (Withdrawn) The method of claim 12 wherein the step of polishing the outer surface of the ceramic tube comprises:

mounting the ceramic tube to a spinning mandrel;

rotating the mandrel at a high rate of speed; and

contacting the rotating ceramic tube with a fine abrasive material.

Docket No: BIO-5020NP EFS Filing June 29 2006

14. (Previously Presented) The method of claim 1 further comprising the step of mounting

the ceramic tube to a mandrel for addition additional support during machining.

15. (Original) The method of claim 1 further comprising the step of applying a matching

layer over the segmented transducer.

16. (Original) The method of claim 15 wherein the step of applying a matching layer

comprises laminating the matching layer over the transducer.

17. (Original) The method of claim 15 wherein the step of applying a matching layer

comprises coating the transducer with a polymer using a process selected from the group

consisting of spray coating, dip coating, chemical vapor deposition, plasma coating, co-extrusion

coating, spin coating and insert molding.

18. (Withdrawn) A method of making a piezoelectric transducer, having a plurality of

intertwined helical transducer segments, from a PZT ceramic tube comprising:

coating the inside and outside of the ceramic tube with a metallic layer to form an inner

electrode and an outer electrode; and

etching at least the outer electrode to form a plurality of intertwined helical transducer

segments.

- 5 -

19. (Withdrawn) A method of making an ultrasound transducer with a helical phased array comprising:

providing a cylindrical piezoelectric transducer having a piezoelectric material disposed between a cylindrical inner electrode and a cylindrical outer electrode;

machining grooves through at least the outer electrode to segment the transducer into a plurality of functionally discrete intertwined helical transducer segments.

20. (New) A method for making a piezoelectric transducer having a plurality of intertwined individual helical transducer segments comprising:

machining a ceramic material blank into a tubular configuration to form a ceramic tube; coating the ceramic tube with a metallic layer;

machining helical grooves in the metal coated ceramic tube to form an inner electrode and a plurality of helically intertwined outer electrodes, each outer electrode being substantially electrically insulated from the immediately adjacent outer electrode; and

transforming the ceramic material forming the ceramic tube into a piezoelectric crystal.