次のような母集団を考える。

数字(データとして出てくるもの)	3	5	6	9
_{相対度数 (池の面積=抽出確率)}	0.3	0.3	0.2	0.2

①この母集団の母平均を求めるには、数字と相対度数を掛けて、合計すれば 12120

数字	相対度数	数字×相対度数
3	0.3	
5	0.3	
6	0.2	
9	0.2	
	合計	

②これより、母平均 μ = () となる。

③さらに、この母集団から、無数に近いデータを抽出してヒストグラムを作 ったものを下のグラフに書き込め。

母分散 σ^2 と母標準偏差 σ を求める練習をしよう。

次のような母集団を考える。

数字(データとして出てくるもの)	11	9	4	1
相対度数(池の面積=抽出確率)	0.3	0.3	0.2	0.2

①まず、この母集団の母平均μを求める。

数字	相対度数	数字×相対度数
11	0.3	
9	0.3	
4	0.2	
1	0.2	
	合計	

これより、母平均 μ = () となる。

②次に偏差を求めて、それを2乗し、相対度数を掛けて合計しよう。

数字	偏差	偏差の2乗	相対度数	偏差の2乗×相対度数
11			0.3	
9			0.3	
-			0.3	
4			0.2	
1			0.2	

③これより母分散= ()となる。

$$3$$
これより年の版 (3) 1には、 (3)

)となる。

次のような母集団を考える。

数字(データとして出てくるもの)	1	2	3	4
報子(P 相対度数(池の面積=出現確率)	$0.25(\frac{1}{4})$	$0.25(\frac{1}{4})$	$0.25(\frac{1}{4})$	$0.25(\frac{1}{4})$

①標本平均の相対度数を求めるための表を作ろう。空欄を埋めよ。

	1	2	3	4
1				
2				
3				
4				

Չ標本平均の相対度数の表を作ろう。

標本平均	1	1.5	2	2.5	3	3.5	4
相対度数	16	16	16	16	16	16	16

^{多この表をヒストグラムにしよう。}

母集団を、日本の成人女性全体の身長データとしよう。 この母集団の母平均は160センチ、母標準偏差は10センチだとする。

①この母集団からデータを 1 個だけ取り出すとき、それを予言し95パ Lの確率で当てたいなら、	
トの確率で当てたいなら、	ーセン

() -1.96× () ~ () +1.96× () txわち、() ~ () に入ると予言すればいい。

②この母集団からデータを 4 個だけ取り出して標本平均を作る。 それを予言し95パーセントの確率で当てたいなら、

() -1.96× () ~ () +1.96× () すなわち、() ~ () に入ると予言すればいい。

③この母集団からデータを25個だけ取り出して標本平均を作る。 それを予言し95パーセントの確率で当てたいなら、

() -1.96× () ~ () +1.96× () すなわち、() ~ () に入ると予言すればいい。

※解答は203ページ

ある人が血圧を計測しているとしよう。

この人の血圧の計測値を母集団とすると、それは現在の実際の血圧 μを母平均として、母標準偏差が10の正規分布をしているとする。

①この人が1回だけ血圧を測った。計測値は130であった。このとき、実際の血圧(=母平均 μ)を区間推定しよう。

それには不等式

$$-1.96 \le \frac{() - \mu}{()} \le +1.96$$

を満たすμの範囲を求めればいい。

これを解くと、95パーセント信頼区間は

$$(\qquad) \leq \mu \leq (\qquad) \ \, \mathsf{b} \,$$

②次に4回計測して、次の4個のデータを得たとしよう。

131 135 140 138

この4個のデータの標本平均は、 x = () となる。

また \bar{x} の標準偏差は、 $10\div$ () = () である。

このとき、真実の血圧μを区間推定するには、不等式

を満たすμの範囲を求めればいい。

これを解くと、95パーセント信頼区間は

$$(\qquad) \leq \mu \leq (\qquad) \ \, \mathsf{E} \, \mathsf{G} \, \mathsf{G} \, .$$

標準正規分布に従って得られるデータを3回観測する。このとき、観測された3つの数値の2乗の和が2以上7未満である相対度数を、図表16-5を利用して求めてストス

```
      2以上の相対度数=(
      )

      7以上の相対度数=(
      )

      2以上7未満の相対度数=(
      ) - (
```

ある蝶の体長の母集団は母平均が80ミリの正規母集団とわかっている。こ のとき、観測した4個体の体長が、76ミリ、77ミリ、83ミリ、84ミリだった とする。このとき母分散を σ^2 とし、 σ^2 の95パーセント信頼区間を求めよ (図表17-1も参照)。

まず、Vを計算する。

$$V = \left(\frac{() - ()}{\sigma}\right)^2 + \left(\frac{() - ()}{\sigma}\right)^2 +$$

)のカイ二乗分布に従うので、 Vは自由度(

$$() \leq \frac{()}{\sigma^2} \leq ()$$

を満たす σ²が、求めるものである。これを解くと

したがって、95パーセント信頼区間は、

$$() \leq \sigma^2 \leq ()$$

となる。

正規母集団から4個のデータを抽出したら、

であった。このとき、標本平均は $\bar{x}=($)

次に、標本分散を計算しよう。

$$s^{2} = \frac{()^{2} + ()^{2} + ()^{2} + ()^{2} + ()^{2}}{()^{2} + ()^{2}} = ()$$

したがって、標本標準偏差 s = () である。

次に母分散 σ^2 を使って、Wを計算しよう。

$$W = \frac{ns^2}{\sigma^2} = \frac{() \times ()}{\sigma^2} = \frac{()}{\sigma^2}$$

このWは、自由度 () のカイ二乗分布に従うデータとなる。

「森園園」 ある蝶の体長を正規母集団とする。観測した4個体の体長が、76ミリ、77ミ 頼区間を求めよ。

まず、標本平均は()である。次に標本分散を計算する。

$$s^{2} = \frac{\{(\)-(\)\}^{2}+\{(\)-(\)\}^{2}+\{(\)-(\)\}^{2}+\{(\)-(\)\}^{2}}{(\)}$$

$$= \frac{(\)^{2}+(\)^{2}+(\)^{2}+(\)^{2}+(\)^{2}}{(\)} = (\)$$

さらにWを計算しよう。

$$W = \frac{()}{\sigma^2}$$

Wは自由度()のカイ二乗分布に従うので、

$$() \leq \frac{()}{\sigma^2} \leq ()$$

^{を満たすσ²}が、求めるものである。

これを解くと

したがって、95パーセント信頼区間は、 () ≤ σ²≤ ()

$$\xi x \delta_{\circ}^{2} \leq \sigma^{2} \leq ()$$

母平均 μ = 12の正規母集団から 4 個のデータを抽出したら、 3、9、11、17

であった。

以下の手順に従って、Tの値を計算せよ。

標本平均は<u>x</u> = ()

次に、標本分散 s²を計算しよう。

$$s^{2} = \frac{\{(\)-(\)\}^{2} + \{(\)-(\)\}^{2} + \{(\)-(\)\}^{2} + \{(\)-(\)\}^{2}}{(\)}$$

$$= (\)$$

したがって、標本標準偏差 s=()である。 これからTの値を計算しよう。

$$T = \frac{(\bar{x} - \mu)\sqrt{n-1}}{s} = \frac{()\sqrt{()}}{()} = ()$$

※解答は203ページ

ある居酒屋の店主が売り上げの予測を立てたいと考えた。店主は売り上げを正規母集団から観測されるデータとみなし、その母平均μを代表的な売り上げとして推定しようとした。伝票の中からランダムに8枚を抜き出してみると、次のような数字が出てきた。

45、39、42、57、28、33、40、52 (単位は万円) 母平均μを以下の手順で区間推定しよう。

 $(\qquad) \leq \mu \leq (\qquad)$

となる。

まず、標本平均は $\bar{\mathbf{x}}$ = ()である。次に標本分散を計算する。 $s^2 = \frac{()^2 + ()^2 + (\phantom{$

※解答は203ページ