Sprawozdanie z ćwiczenia laboratoryjnego z Projektowania Algorytmów i Metod Sztucznej Inteligencji

Sprawozdanie wykonał:

Rafał Januszewski

Data wykonywania: 22.03.2016 r. **Termin zajęć:** poniedziałek 08:15

SPRAWOZDANIE Z LABORATORIUM 3.

Do pomiaru czasu wpisywania liczb pseudolosowych do struktur danych posłużyła funkcja gettimeofday() z biblioteki sys/time.h . Wszystkie programy były kompilowane i wykonywane pod sytemem Ubuntu 14.04.04 LTS.

1) Pomiar czasu wpisywania liczb losowych do stosu zbudowanego w oparciu o bibliotekę STL

Liczba elementów w tablicy	Czas trwania [ms]
1 000	0,387
10 000	3,502
100 000	24,861
500 000	84,054

2) Pomiar czasu wpisywania liczb losowych do stosu zbudowanego na tablicy powiększanej dwukrotnie

Liczba elementów w tablicy	Czas trwania [ms]
1 000	0,233
10 000	3,103
100 000	17,35
500 000	82,174

3) Pomiar czasu wpisywania liczb losowych do stosu zbudowanego na tablicy powiększanej o stałą (o 10)

Liczba elementów w tablicy	Czas trwania [ms]
1 000	0,786
10 000	32,539
100 000	2881,51
500 000	76405,5

4) Pomiar czasu wpisywania liczb losowych do kolejki zbudowanej w oparciu o bibliotekę STL

Liczba elementów w tablicy	Czas trwania [ms]
1 000	0,460
10 000	2,135
100 000	22,174
500 000	78,669

5) Pomiar czasu wpisywania liczb losowych do kolejki zbudowanej na liście jednokierunkowej

Liczba elementów w tablicy	Czas trwania [ms]
1 000	0,546
10 000	3,919
100 000	31,515
500 000	98,905

6) Pomiar czasu wpisywania liczb losowych do kolejki zbudowanej na tablicy powiększanej dwukrotnie

Liczba elementów w tablicy	Czas trwania [ms]
1 000	0,336
10 000	3,393
100 000	23,634
500 000	84,146

7) Pomiar czasu wpisywania liczb losowych do kolejki zbudowanej na tablicy powiększanej o stałą (o 10)

Liczba elementów w tablicy	Czas trwania [ms]
1 000	1,063
10 000	49,111
100 000	2706,62
500 000	73904,1

Wnioski

Na podstawie wyników pomiaru czasu wpisywania liczb na stos można stwierdzić, że najmniejszą złożoność obliczeniową uzyskuje się implementując stos na tablicy o podwajanej wielkości. Złożoność obliczeniowa implementacji stosu w oparciu o tą tablicę jest zbliżona do liniowej. Największą złożoność obliczeniową można uzykać konstruując stos w oparciu o tablicę powiększaną o stałą. W tym przypadku złożonąć obliczeniowa rośnie wykładniczą wraz ze wzrostem ilości danych.

Z otrzymanych wyników pomiaru czas wpisywania liczb do kolejki wynika, że najmniejszą złożoność obliczeniową można uzykać konstruująć kolejkę w oparciu o bibliotekę STL. Złożoność ta również jest zbliżona do liniowej.

Nieznacznie większą złożoność obliczeniową uzyskuje się przy zastosowaniu podwajanej tablicy i listy jednokierunkowej. Największą złożoność obliczeniową – tak jak w przypadku stosu ma implementacja kolejki w oparciu o tablicę powiększaną o stałą.

Literatura

materiały ze strony http://www.songho.ca/misc/timer/timer.htm