

BIOLOGY

Chapter 7
Genética mendeliana
y no mendeliana

5to

SECONDARY

HELICO	MOTIVATION	01
Ver		

Ciencia biológica que estudia los mecanismos de la herencia y las variaciones

Herencia: es la transmisión de características físicas de generación en generación

GEN

Segmento de ADN. Factor de la herencia

ALELOS

Variaciones de un gen

Alelo Dominantes: A, B, C, D

Alelo Recesivo: a, b, c, d

GENOTIPO

Todos los genes

Genotipo Homocigote o Puro

Alelos iguales

Gen. Homocigote Dominante: AA, BB, CC

Gen. Homocigote Recesivo: aa, bb, cc, dd

Genotipo Heterocigote o Híbrido

Alelos diferentes

Aa, Bb, Cc, Dd

FENOTIPO

Características, expresión del genotipo. Ejemplos: Color, tamaño, etc.

LOCUS

Espacio físico ocupado por un gen

LOCI

Plural de locus.

fuente: diseño Carmen Eugenia Piña L.

Genética Mendeliana

Modelo de estudio: planta de guisante Pisum sativum, amplia gama de variedades, ciclo de vida corto, fáciles de analizar, puede autopolinizarse. Da abundante descendencia. Padre de la Genética: **Gregor Mendel**

RASGOS PROPIOS DEL Pisum sativum

https://www.youtube.com/watch?v=J If37UkApig&t=325s

Leyes de Mendel

1ra ley de Mendel:

- Principio de Uniformidad
- Monohibridismo o Segregación

Uniformidad de los híbridos de la primera generación: Cuando se cruzan dos variedades individuos de raza pura ambos (homocigotos) para un determinado carácter, todos los híbridos de la primera generación son iguales.

SEPARACIÓN O DISYUNCIÓN DE LOS ALELOS. Mendel tomó plantas procedentes de las semillas de la primera generación (F1) del experimento anterior, amarillas Aa, y las polinizó entre sí. Del cruce obtuvo semillas amarillas y verdes en la proporción 3:1 (75% amarillas y 25% verdes). Así pues, aunque el alelo que determina la coloración verde de las semillas parecía haber quedado oculto en la primera generación filial, vuelve a

manifestarse en esta segunda generación.

O1

Ejercicio:

Se cruzan dos plantas puras, una de semillas amarillas con otra de verdes. Hallar F1 y F2 si el color amarillo es el dominante.

P: Generación parental (padres)

F1: Generación Filial 1 (hijos)

F2: Generación filial 2 (hijos de los hijos)

Color de semilla: amarillo (A) verde (a)

Para hallar F2: Cruzando dos F1:

F2: AA, Aa, Aa, aa

Genotipos de la F2

Proporción genotípica: 1 AA, 2Aa, 1aa **1: 2: 1** (1/4, 1/2, ¼) (25%, 50%, 25%)

F2: 3 Amarillos, 1 verde

Fenotipo de la F2

Proporción fenotípica: 3 amarillos, 1 verde (3/4, ¼) (75%, 25%)

2da ley de Mendel:

- Principio de Uniformidad
- Segregación independiente de caracteres o
 Dihibridismo.

Tipos de semillas

B, carácter amarillo, dominante sobre b, carácter verde

Mendel se planteó cómo se heredarían dos caracteres. Para ello cruzó guisantes amarillos lisos con guisantes verdes rugosos.

En la primera generación obtuvo guisantes amarillos lisos.

Al cruzar los guisantes amarillos lisos obtenidos dieron la siguiente segregación:

9 amarillos lisos

3 verdes lisos

3 amarillos rugosos

1 verde rugoso.

De esta manera demostró que los caracteres color y textura eran independientes.

AaBb x AaBb AB Ab aB ab AB Ab aB ab				
			7 110 01	
	AB	Ab	аВ	ab
AB	AA,BB	AA,Bb	Aa,BB	Aa,Bb
Ab	AA,Bb	AA,bb	Aa,Bb	Aa,bb
аВ	Aa,BB	Aa,Bb	aa,BB	aa,Bb
ab	Aa,Bb	Aa,bb	aa,Bb	aa.bb

Ejercicio:

Se cruzan dos plantas doblemente puras, una de semillas amarillas y lisas con otra de verdes y rugosas. Hallar F1 y F2 si el color amarillo y la forma lisa son dominantes.

Color de semilla: amarillo (A) verde (a) Forma de la semilla: Lisa (B) rugosa (b)

F1: 100% AaBb

Genotipo de la F1: dihíbrido

F1: 100% Amarillos y lisos

Fenotipo de la F1

Cruzando dos F1:

AaBb

AB Ab aB ab

AaBb

AB Ab aB ab

	AB	Ab	aB	ab
AB	AABB	AABb	AaBB	AaBb
Ab	AABb	AAbb	AaBb	Aabb
aВ	AaBB	AaBb	aaBB	aaBb
ab	AaBb	Aabb	aaBb	aabb

X

Proporción Fenotípica de la F2: 9:3:3:1

A_B_: amarillos lisos 9/16

A_bb: amarillos rugosos 3/16

aaB_: verdes lisos 3/16

aabb: verdes rugosos 1/16

HERENCIA NO MENDELIANA

DOMINANCIA INCOMPLETA

Tablero de Punnett: cruza

DOMINANCIA INCOMPLETA

CODOMINANCIA

Caso: Ganado Bovino Shorton Ruano

CODOMINANCIA

Caso: Ganado Bovino Shorton Ruano

CODOMINANCIA

CACA

C^RC^R

	CR	CR
CA	CACR	CACR
CA	CACR	CACR

HERENCIA MULTIALÉLICA: SISTEMA SANGUÍNEO ABO

FENOTIPO	GENOTIPO	GLOBULO ROJO	ANTICUERPOS
Λ	IA IA		antiB —C
А	I ^A i		
В	IB IB	B B B B	Anti A
В	I ^B i	B B B	_
AB	I A I B	B	
O	ijij		antiA antiB

Ejercicio:

Se casa una mujer del grupo A heterocigota con un varón B heterocigoto. Hallar el genotipo y el fenotipo de la descendencia.

F1: 25% AB, 25% A, 25% B, 25% O

Fenotipo de la F1

HERENCIA LIGADA AL SEXO

CARACTERES LIGADOS AL
CROMOSOMA X (GENES
GINÁNDRICOS) EL DALTONISMO,
LA HEMOFILIA

DALTONISMO: Incapacidad para

distinguir colores

XD: gen normal

Xd: gen del Daltonismo

HEMOFILIA: Incapacidad para

coagular

XH: gen normal

Xh: gen de la Hemofilia

Mujer que ve normal, pero porta el gen del Daltonismo

Daltonismo

Mujer con
coagulación

coagulación normal, pero porta el gen de la Hemofilia

FENOTIPOS	GENOTIPOS		
I LINOTIF 03	MUJERES	VARONES	
SANOS	XD XD	XD Y	
PORTADORA	XD Xd		
DALTÓNICOS	Xd Xd	Xd Y	

FENOTIPOS	GENOTIPOS		
	MUJERES	VARONES	
SANOS	XH XH	XH Y	
PORTADORA	XH Xh		
HEMOFÍLICOS	Xh Xh	Xh Y	

BIOLOGY

HELICOPRACTICE

5TO

SECONDARY

HELICO | PRACTICE

- 1. Gregor Mendel eligió la alverja para realizar los cruces que lo condujeron a descubrirol las leyes de la herencia, ¿Qué características de la alverja la hacen el objeto de estudio Ideal?
- A) Es de fácil manejo
- B) Tiene ciclo de vida corto
- C) Se autopoliniza
- D) A, ByC

D) A, ByC

- 2. Son características dominantes excepto:
- A) Semilla amarilla
- B) Flor terminal
- C) Cabello rizado
- D) Tallo alto

B) Flor terminal

- 3. Cuando en un cruce reproductivo los alelos se expresan totalmente estamos hablando de:
- A) La codominancia
- B) La herencia ligada al sexo
- C) La herencia intermedia
- D) La herencia poligénica.

A) La codominancia

- **4.** Ana se casa con Pedro y tienen a su hijo Ramón que nace con tipo sanguíneo AB ¿Qué podemos deducir de este nacimiento?
- A) Cumple la primera ley de Mendel
- B) Se trata de la herencia intermedia
- C) Es un caso de codominancia
- D) Es otro caso de herencia ligada al cromosoma sexual Y
- C) Es un caso de codominancia

- 5. Si en un experimento de genética cruzamos una planta de flores axiales de Pisum sativum y obtenemos una descendencia de 240 individuos de los que 80 tienen flores terminales ¿Qué podemos deducir de los resultados obtenidos?
- A) Se cumple la segunda ley de Mendel
- B) La proporción fenotípica es 1, 2, 1
- C) Se cumple la ley de la segregación de los alelos
- D) ByC

C) Se cumple la ley de la separación de los alelos

ley o principio de la segregación consiste en que del cruce de dos individuos de la primera generación filial (Aa) tendrá lugar una segunda generación filial en la cual reaparecerá el fenotipo y genotipo del individuo recesivo (aa), resultando lo siguiente: Aa x Aa = AA, Aa, Aa, aa. Es decir, el carácter recesivo permanecía oculto en una proporción de 1 a 4.

6) La imagen adjunta nos muestra la distribución atípica del fenotipo en el cruce de la F1 que da una F2 en la que no se cumple la proporción 3 a 1 (fenotípica) y 1, 2, 1 (genotípica) de Mendel si no que, como podemos apreciar en la imagen en la F2 coinciden las proporciones fenotípica y genotípica. De acuerdo con lo que observamos en la imagen.

¿Qué tipo de herencia se esta cumpliendo de acuerdo con la imagen?

- A) Codominancia
- B) Herencia intermedia
- C) Herencia poligénica
- D) Herencia ligada al cromosoma sexual

A) Herencia intermedia

7. En el gráfico adjunto tenemos datos del índice de masa corporal de una población de alumnos de 5to. de secundaria y podemos apreciar que el IMC de la mayor parte de dicha población va de 20 al 23, pero en menor medida se dan una amplia variedad de índices. Si tenemos en cuenta lo estudiado en nuestras clases de genética, ¿Que patrón de herencia siguen los resultados de esta

medición?

- A) Codominancia
- B) Herencia poligénica
- C) Herencia ligada al sexo
- D) Herencia mendeliana

B) Herencia poligénica

