

Hyperparameter optimization

Cross validation

Overview

- Hyperparameters
- The holdout method ("validation" partition)
- K-fold cross validation
- Examples of k-fold cross-validation
- Interpretation of learning & validation curves. How detect:
 - Underfitting (High bias)
 - Overfitting (High variance)

Hyperparameters

- Last time we defined hyperparameters
- Can anyone remember the definition?
- Hyperparameters are **non-trainable** model parameters that have an affect on a models performance
 - Examples include max depth in a decision tree, number of decision trees in a random forest model, any regularization technique, etc.
 - No clear distinction between what is considered a "hyperparameter", and what is considered a different model architecture entirely.
- Hyperparameter optimization is also referred to as *model tuning*

The holdout method ("validation" partition)

- Last time talked about the need for a third partition when splitting the dataset
- Does anybody remember why we wanted the additional "validation" partition?
 - If we use the test-partition to adjust a models hyperparameters, we are indirectly training the model on the test-partition.
 - Thus the test-partition is **no longer "unseen"** by the model and we risk **overfitting** the model **on the test-set** if we also use the test-partition for final evaluation of the model
- Despite this, many still use the test-partition for both model tuning and final model evaluation. This is bad practice

The holdout method ("validation" partition)

 The method of splitting the full dataset into training partition and an evaluation partition is referred to as the hold out method

The holdout method ("validation" partition)

- The big disadvantage with holdout cross-validation is that the performance of particular model hyperparameter configurations could be highly sensitive to how the training set is partitioned into train and validation sets.
- This leads us to the second variation of cross-validation
 k-fold cross-validation

- For k-fold CV we still perform the initial holdout split into training set and test set
- We then partition the training set into k folds
- K-fold cross-validation is then performed in k iterations. For each iteration (i):
 - \sim Set the validation partition equal to fold *i*
 - Reset the models trainable parameters
 - \sim Train the model on the remaining k-1 folds
 - Evaluate the model on the validation partition and store the accuracy (or other metric)
- After all iterations are complete → Compute average accuracy
- Additional plus is that we can compute the uncertainty of the models performance

- The higher we set k
 - Model validation becomes more thorough
 - Model validation becomes more computationally expensive
- Empirical evidence shows that k=10 is a good starting point
 - A compromise between bias & model variance and computational cost
 [see book page 198]
- If working with a relatively **small dataset** k > 10
- If working with a relatively large dataset k < 10

- Important to maintain distributions of dataset in folds
 - StratifiedKFold from sklearn.model_selection
 - cross_val_score from sklearn.model_selection
- Leave-one-out-cross-validation (LOOCV)
 - \sim Special case of k-fold CV where one sets k = n (number of total samples)
- cross_val_score has a parameter n_jobs which specifies the number of CPU cores used for CV. Can be used to speed up the computations

Examples K-fold CV

- K_fold_CV_with_sklearn.ipynb
 - Example of how to perform k-fold CV and pipelines to evaluate a model

Hyperparameter optimization

Learning & validation curve interpretation

Repitition bias/variance (underfitting/overfitting)

- High variance: Model is too complex → too many degrees of freedom or trainable parameters in this model
 - Model tends to do well (overfit) on the training data
 - Does not generalize well on unseen data
 - Big gap between training accuracy and validation accuracy
- High bias: Model is not complex enough → too few trainable parameters for this model, or too strict regularization constraints
 - Model performs poorly on training data and unseen data

- A learning curve is a plot of a models **accuracy vs.** # **samples** in the training set
 - Train accuracy vs number of training samples
 - Validation accuracy vs number of training samples
- Validation curves are related to learning curves, but instead of varying the number of training samples, we vary the value of model parameters

- There will always be a level of irreducible error
- The aim is to find the optimal trade-off between bias and variance that minimizes overall error
- Since there is a level of irreducible error, desired accuracy is set to less than 1 in the following illustrations

Underfitting, try:

- Construct or collect more features
- More flexible modelling
- Less regularisation

Overfitting, try:

- More data / fewer features
- Less flexible modelling
- More regularization

Balanced fitting, try:

- Pat yourself on the back
- Perform victory dance
- Brag about it

Examples Learning/Validation curves

- learning n validation curves.ipynb
 - Example learning/validation curves can be applied for model development

Thank you for listening

