```
In [1]: import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import matplotlib.patheffects as path_effects
         import matplotlib.pylab as pl
         import matplotlib.gridspec as gridspec
         import seaborn as sns
         import warnings
         %matplotlib inline
         sns.set(style='ticks', font_scale=1.2)
         warnings.filterwarnings('ignore')
In [2]: def conti var summary(x):
             UDF for getting customised summary for continuous variables
             # freq and missings
             n total = x.shape[0]
             n_{miss} = x.isna().sum()
             perc_miss = n_miss * 100 / n_total
             # outliers - igr
             q1 = x.quantile(0.25)
             q3 = x.quantile(0.75)
             iqr = q3 - q1
             lc_iqr = q1 - 1.5 * iqr
             uc_iqr = q3 + 1.5 * iqr
             return pd.Series([
                 x.dtype,
                 x.nunique(), n_total,
                 x.count(), n_miss, perc_miss,
                 x.sum(),
                x.mean(),
                x.std(),
                 x.var(), lc_iqr, uc_iqr,
                 x.min()
                x.quantile(0.01),
                 x.quantile(0.05),
                 x.quantile(0.10),
                 x.quantile(0.25),
                 x.quantile(0.5),
                 x.quantile(0.75),
                 x.quantile(0.90),
                 x.quantile(0.95),
                 x.quantile(0.99),
                 x.max()
             ],
                 'dtype', 'cardinality', 'n_tot', 'n', 'nmiss',
                 'perc_miss', 'sum', 'mean', 'std', 'var', 'lc_iqr', 
'uc_iqr', 'min', 'p1', 'p5', 'p10', 'p25', 'p50', 
'p75', 'p90', 'p95', 'p99', 'max'
             ])
In [3]: def cat_var_summary(x):
             UDF for getting customised summary for categorical variables
             Mode = x.value counts().sort values(ascending=False)[0:1].reset index()
             return pd.Series([
                 x.count()
                 x.nunique(),
                 x.isnull().sum(), Mode.iloc[0, 0], Mode.iloc[0, 1],
                 round(Mode.iloc[0, 1] * 100 / x.count(), 2)
                               index=['N', 'CARDINALITY', 'NMISS', 'MODE', 'FREQ', 'PERCENT'])
In [4]: bikes=pd.read_csv("bikes.csv")
In [5]: bikes
```

t[5]:		model_nai	me model_yea	ar kms_driv	ven own	er locatio	on mileaç	ge powe	r price
-	0	Bajaj Avenger Cruise 220 20	17 201	7 17000	Km first own	er hyderaba	ad \n\n 35 km	npl 19 bh	63500
	1	Royal Enfield Classic 350cc 20	116 201	6 50000	Km first own	ner hyderaba	ad \n\n 35 km	npl 19.80 bh	115000
	2	Hyosung GT250R 20	112 201	2 14795	Km first own	er hyderaba	ad \n\n 30 km	npl 28 bh	300000
	3	Bajaj Dominar 400 ABS 20	17 201	7 Mileage 28 K	ms first own	er pondicher	ry \n\n 28 Kn	ns 34.50 bh	100000
	4	Jawa Perak 330cc 20	20 202	2000	Km first own	er bangalo	re \n	ı\n 30 bhj	197500
	7852	Yamaha YZF-R15 150cc 20	11 201	1 7000	Km first owr	ner ag	ra \n\n 42 km	npl 16 bh	55000
	7853	Bajaj Discover 100cc 20	15 201	5 Mileage 80 K	mpl first owr	ner del	hi \n\n 80 Km	npl 7.	7 28000
	7854	Bajaj Pulsar 180cc 20	16 201	6 6407	Km first own	ier bangalo	re \n\n 65 km	npl 17 bh	61740
	7855	Bajaj V15 150cc 20	16 201	6 7524	Km first own	er bangalo	re \n\n 57 km	npl 11.80 bh	49000
	7856	Bajaj Pulsar 220cc 20	16 201	6 15000	Km first own	ner chenn	ai \n\n 38 km	npl 21 bh	65000
7	7857 r	ows × 8 columns							
[6]:	bikes	s.info()							
d m [7]: [ata c # C 0 m 1 m 2 k 3 c 4 l 5 m 6 p 7 p ttypes mode kms_c owne loca milea powe price dtype	tion object age object r object	nt Dtype object int64 object object object object object object object						
	DINCS	.,							
[8]:	0	model_name		kms_driven	owner	location	mileage	power 10 bbp /	price
		Bajaj Avenger Cruise 220 2017	2017		first owner	-	\n\n 35 kmpl	•	63500
		byal Enfield Classic 350cc 2016	2016		first owner		·		15000
	2	Hyosung GT250R 2012	2012		first owner	•	∖n\n 30 kmpl	•	00000
	3	Bajaj Dominar 400 ABS 2017		Mileage 28 Kms		•	\n\n 28 Kms 3		00000
	4	Jawa Perak 330cc 2020	2020	2000 Km	first owner	bangalore	\n\n	30 bhp 19	97500
[9]:	bikes	s.shape							

Out[9]: (7857, 8)

Out[10]: (7857, 8)

bikes.shape

In [11]: ##Continuous variables :

In [10]: ###Dropping Duplicates
bikes.drop_duplicates(inplace=True)

bikes.select_dtypes(['int64','float64']).apply(conti_var_summary)

Out[11]:		model_year	price
	dtype	int64	int64
	cardinality	36	1627
	n_tot	7857	7857
	n	7857	7857
	nmiss	0	0
	perc_miss	0.0	0.0
	sum	15834744	839059534
	mean	2015.367698	106791.336897
	std	4.001443	138926.124628
	var	16.011548	19300468104.087734
	lc_iqr	2008.0	-82500.0
	uc_iqr	2024.0	249500.0
	min	1950	0
	р1	2003.0	10500.0
	р5	2009.0	18500.0
	p10	2011.0	25000.0
	p25	2014.0	42000.0
	p50	2016.0	75000.0
	p75	2018.0	125000.0
	p90	2019.0	180000.0
	p95	2020.0	270000.0
	p99	2021.0	778950.0
	max	2021	3000000

```
In [14]: ##Categorical variables :
bikes.select_dtypes(['object']).apply(cat_var_summary)
```

Out[14]: model_name kms_driven owner location mileage power Ν 7857 7857 7857 7838 7846 7826 **CARDINALITY** 117 1724 1801 561 272 **NMISS** 0 0 0 19 11 31 MODE Royal Enfield Classic 350cc 2017 Mileage 65 Kmpl first owner delhi \n\n 35 kmpl 19.80 bhp **FREQ** 78 436 6817 1438 1071 922 **PERCENT** 0.99 5.55 86.76 18.35 13.65 11.78

```
import pandas as pd
import numpy as np

# Example cleaning process
bikes['price'] = pd.to_numeric(bikes['price'], errors='coerce')
bikes['mileage'] = bikes['mileage'].str.extract('(\d+\.?\d*)').astype(float)

# Remove rows with price <= 0
bikes.drop(bikes[bikes['price'] <= 0].index, inplace=True)

# Replace 0 mileage with NaN
bikes['mileage'].replace(0, np.nan, inplace=True)

# Impute missing mileage by median within grouped features
bikes['mileage'] = bikes.groupby(['model_name', 'price', 'power'])['mileage'].transform(lambda x: x.fillna(x.mediate))

print(bikes.shape)

(7826, 8)</pre>
```

```
In [22]: ##Skipping the outlier treatment for now. It will be done in EDA section if required for the Analysis.
#Missing Values
In [24]: pd.DataFrame([bikes.isnull().sum(), bikes.isnull().sum() / bikes.shape[0] * 100], index=['count', '%']).T
```

```
Out[24]:
                     count
                                 %
                        0.0000000
         model name
          model year
                        0.0 0.000000
          kms_driven
                        0.0 0.000000
               owner
                        0.0 0.000000
                       19.0 0.242780
             location
             mileage
                      776.0 9.915666
                       31.0 0.396116
               power
                        0.0 0.000000
                price
In [25]: ####Treating the NaNs as :
         #Filling values
         #drive - mode()
         #endV - median() based on car, body, engType and drive
         #Dropping Rows
         #mileage, engV - Whatever left as NaNs
In [27]: print(bikes.columns)
        Index(['model_name', 'model_year', 'kms_driven', 'owner', 'location',
                'mileage', 'power', 'price'],
              dtype='object')
In [28]: import numpy as np
         # Clean numeric columns first
         bikes['mileage'] = bikes['mileage'].astype(str).str.extract(r'(\d+\.?\d*)').astype(float)
         bikes['power'] = bikes['power'].astype(str).str.extract(r'(\d+\).?\d^*)').astype(float)
         bikes['price'] = pd.to_numeric(bikes['price'], errors='coerce')
         # Replace 0 or invalid mileage with NaN
         bikes['mileage'].replace(0, np.nan, inplace=True)
         # Fill missing mileage using group-wise median
         bikes['mileage'] = bikes.groupby(['model name', 'model year', 'power'])['mileage'].transform(lambda x: x.fillna
In [29]: # Dropping Rows
         bikes.dropna(inplace=True)
         bikes.shape
Out[29]: (7054, 8)
         pd.DataFrame([bikes.isnull().sum(), bikes.isnull().sum() / bikes.shape[0] * 100], index=['count', '%']).T
In [30]:
Out[30]:
                      count %
         model_name
                        0.0 0.0
          model_year
                        0.0 0.0
          kms_driven
                        0.0 0.0
               owner
                        0.0 0.0
             location
                        0.0 0.0
                        0.0 0.0
             mileage
                        0.0 0.0
               power
                        0.0 0.0
                price
In [31]: plt.figure(figsize=(7,7))
         sns.set(font_scale=1.2)
         # Only select numeric columns for correlation
         numeric_df = bikes.select_dtypes(include='number')
         sns.heatmap(numeric df.corr(), square=True, annot=True)
         plt.show()
```



```
In [35]: plt.figure(figsize=(12,6))
    sns.set(style='ticks', font_scale=1.2)
    sns.countplot(data=bikes, y='model_name', order=bikes['model_name'].value_counts().index[:10])
    plt.title('Top 10 Most Sold Bike Models')
    plt.xlabel('Count')
    sns.despine()
    plt.show()
```



```
# Suppose we want to analyze distribution of price by model_year and owner
import seaborn as sns
import matplotlib.pyplot as plt

sns.set(style='ticks', font_scale=1.2)
g = sns.FacetGrid(bikes, row="owner", col="model_year", margin_titles=True, despine=False)
g.map_dataframe(sns.histplot, x="price", bins=20)
g.figure.subplots_adjust(wspace=0.2, hspace=0.4)
g.add_legend()

# Rotate x-tick labels for clarity
for axes in g.axes.flat:
    _ = axes.set_xticklabels(axes.get_xticklabels(), rotation=45)

plt.show()
```

```
In [37]:
          # Make sure mileage is numeric
          bikes['mileage'] = bikes['mileage'].astype(str).str.extract(r'(\d+\.?\d^*)').astype(float)
          bikes['price'] = pd.to_numeric(bikes['price'], errors='coerce')
          # Drop NaNs for plotting
          plot_data = bikes[['price', 'mileage', 'owner']].dropna()
          sns.set(style='ticks', font_scale=1.2)
          sns.pairplot(plot_data, diag kind='hist', hue='owner', height=5, aspect=1)
          plt.show()
                 1e6
           1.75
           1.50
           1.25
           1.00
           0.75
           0.50
           0.25
                                                                                                                      owner
           0.00
                                                                                                                   first owner
                                                                                                                   third owner
            100
                                                                                                                   second owner
                                                                                                                   fourth owner or more
             80
         mileage
             60
             40
             20
                 0.0
                            0.5
                                      1.0
                                                 1.5
                                                                      20
                                                                              40
                                                                                      60
                                                                                               80
                                                                                                      100
                                    price
                                                          1e6
                                                                                 mileage
In [38]: bikes.loc[:,['price','mileage']].corr().iloc[1,0].round(2)
Out[38]: np.float64(-0.47)
In [44]: # Violin plot to show the distribution of bikes across model years
          plt.figure(figsize=(12, 6))
          sns.set(style='ticks', font_scale=1.2)
          plots = sns.violinplot(x='model_year', data=bikes, inner="quart", scale='area')
plots.set_title('Violin Plot of Bike Model Years')
          # Rotate labels for better readability
          plt.xticks(rotation=45)
          sns.despine()
          plt.show()
```


model_year

In [45]: # Boxplot to show the distribution of model_year
plt.figure(figsize=(12, 6))
sns.set(style='ticks', font_scale=1.2)
plots = sns.boxplot(x='model_year', data=bikes)
plots.set_title('Boxplot of Bike Model Years')

Rotate labels for better readability
plt.xticks(rotation=45)
sns.despine()
plt.show()


```
In [49]: bikes.dtypes
Out[49]: model name
                           object
          model year
                         category
          kms driven
                           object
          owner
                           object
          location
                           object
          mileage
                          float64
          power
                          float64
                            int64
          price
          dtype: object
In [50]:
         import matplotlib.pyplot as plt
          import seaborn as sns
          from matplotlib import patheffects
          # Creating a UDF to add median labels
          def add_median_labels(ax, fmt='.1f'):
              This function adds median labels at any orientation
              lines = ax.get lines()
              boxes = [c for c in ax.get_children() if type(c).__name__ == 'PathPatch']
              lines_per_box = int(len(lines) / len(boxes))
              for median in lines[4:len(lines):lines_per_box]:
                  x, y = (data.mean() for data in median.get data())
                  # choosing value depending on horizontal or vertical plot orientation
                  value = x if (median.get_xdata()[1] - median.get_xdata()[0]) == 0 else y
text = ax.text(x, y, f'{value:{fmt}}', ha='center', va='center',
                                  fontweight='bold', color='white')
                  # creating median-colored border around white text for contrast
                  text.set path effects([
                      patheffects.Stroke(linewidth=3, foreground=median.get_color()),
                      patheffects.Normal(),
                  ])
          # Clean data: Remove NaNs in 'price' and 'owner' columns
          bikes = bikes.dropna(subset=['price', 'owner'])
          # Plotting the boxplot for 'price' vs 'owner'
          plt.figure(figsize=(16,5))
          sns.set(style='ticks', font scale=1.2)
```

```
# Boxplot for 'price' vs 'owner'
ax = sns.boxplot(x='price', y='owner', saturation=1, data=bikes, showfliers=False)
ax.set_title('Price Distribution Between Owners (without Outliers)')
# Add median labels
add_median_labels(ax)
plt.show()
```



```
import matplotlib.pyplot as plt
import seaborn as sns

# Plotting Price vs Engine Power (based on the 'power' column in the bikes dataset)
plt.figure(figsize=(8, 8))
sns.set(style='ticks', font_scale=1.2)

# Using 'power' column for engine value and plotting price
sns.regplot(x='power', y='price', data=bikes, x_jitter=0, y_jitter=0).set_title('Price vs Engine Power')
plt.show()
```



```
# Display the correlation
                            print(f"The correlation between price and engine power is: {correlation}")
                         The correlation between price and engine power is: 0.85
In [53]: # Apply the clipping operation to the 'price' and 'power' columns based on the 1st and 99th percentiles
                            bikes1 = bikes.loc[:, ['price', 'power']].apply(
                                        lambda x: x.clip(lower=x.quantile(0.01), upper=x.quantile(0.99))
                            # Display the transformed bikes1 dataset
                            print(bikes1.head())
                                    price power
                                    63500
                                                            19.8
                                 115000
                                 300000
                                                            28.0
                                100000
                                                            34.5
                                    63400
                                                            25.0
In [54]: import matplotlib.pyplot as plt
                            import seaborn as sns
                            # Plotting Price vs Engine Power (using 'power' instead of 'engV')
                            plt.figure(figsize=(8, 8))
                            sns.set(style='ticks', font_scale=1.2)
                            sns.regplot(x='power', y='price', data=bikes, x\_jitter=0, y\_jitter=0).set\_title('Price vs Engine Power [without]) and the property of the pr
                            plt.show()
                            # Calculate the correlation between 'price' and 'power' (engine power)
                            correlation = bikes.loc[:, ['price', 'power']].corr().iloc[1, 0].round(2)
```


print('Updated Corr Value between Price and Engine Power:', correlation)

Updated Corr Value between Price and Engine Power: 0.85

Display the updated correlation

```
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
```

```
# Create engine types based on 'power' values (for example: small, medium, large)
def categorize_engine(power):
   if power < 50:</pre>
        return 'Small'
    elif 50 <= power < 100:
        return 'Medium'
    else:
        return 'Large'
# Apply the categorization function to the 'power' column
bikes['engine_type'] = bikes['power'].apply(categorize_engine)
# Plotting the count of different engine types
plt.figure(figsize=(8, 6))
sns.set(style='ticks', font_scale=1.2)
plots = sns.countplot(x='engine_type', data=bikes, order=bikes['engine_type'].value_counts().index)
plots.set title('Count of Bikes with Different Engine Types')
# Annotate the bars with the count values
for bar in plots.patches:
    plots.annotate(str(format(bar.get_height(), '.0f')),
                   (bar.get_x() + bar.get_width() / 2, bar.get_height()),
                   ha='center', va='center', size=15, xytext=(0, 8), textcoords='offset points')
sns.despine()
plt.show()
```

Count of Bikes with Different Engine Types 6847 7000 -6000 5000 4000 3000 2000 1000 153 54 0 Small Medium Large engine_type

```
import seaborn as sns
import matplotlib.pyplot as plt

# Select only numeric columns for correlation
numeric_bikes = bikes.select_dtypes(include='number')

plt.figure(figsize=(8,8))
sns.set(font_scale=1.2)
sns.heatmap(numeric_bikes.corr(), square=True, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap of Numeric Features')
plt.show()
```



```
In [58]: params = {'figure.figsize': (15.5, 8), 'axes.labelsize': 14}
         plt.rcParams.update(params)
         sns.set(style='ticks', font_scale=1.2)
         gs = gridspec.GridSpec(2, 2, wspace=0.08)
         f = pl.figure()
         # Boxplot
         ax = pl.subplot(gs[0, 0]) # row 0, col 0
         sns.boxplot(x='price', saturation=1, data=bikes, showfliers=True, ax=ax, fliersize=2) \setminus
             .set_title('Distribution of bikes Prices [Raw Data]')
         ax = pl.subplot(gs[0, 1]) # row 0, col 1
         ax.axis('off')
         # Distplot
         ax = pl.subplot(gs[1, 0]) # row 1, col 0
         ax = sns.distplot(bikes['price'],color ='m')
         plt.ylabel('density')
         # Logarithmic Distribution
         ax = pl.subplot(gs[1, 1]) # row 1, col 1
         ax = sns.distplot(np.log(bikes['price']),color ='r') \
             .set title('Distribution of bikes Prices [Log-Transformed Data]')
         plt.show()
```

```
In [59]: bikes.price.skew()
Out[59]: np.float64(5.671613309891151)
In [60]: #After Outlier Treatment
        params = {'figure.figsize': (15.5, 8), 'axes.labelsize': 14}
        plt.rcParams.update(params)
        sns.set(style='ticks', font_scale=1.2)
        gs = gridspec.GridSpec(2, 2, wspace=0.08)
        f = pl.figure()
        # Boxplot without Outliers (p99)
        ax = pl.subplot(gs[0, 0]) # row 0, col 0
        .set_title('Distribution of bikes Prices [Outliers clipped at p99]')
        ax = pl.subplot(gs[0, 1]) # row 0, col 1
        ax.axis('off')
        # Distplot without Outliers (p99)
        ax = pl.subplot(gs[1, 0]) # row 1, col 0
        ax = sns.distplot(bikes1['price'],color ='m')
        plt.ylabel('density')
        # Logarithmic Distribution without Outliers
        ax = pl.subplot(gs[1, 1]) # row 1, col 1
        ax = sns.distplot(np.log(bikes1['price']),color ='r') \
            .set_title('Distribution of Car Prices [Log-Transformed Data]')
        plt.show()
```


In [61]: print(bikes.describe())

	mileage	power	price
count	7054.000000	7054.000000	7.054000e+03
mean	44.790615	20.772818	1.028602e+05
std	16.970718	15.135571	1.332381e+05
min	5.000000	6.100000	2.000000e+03
25%	35.000000	13.800000	4.000000e+04
50%	40.000000	19.000000	7.000000e+04
75%	57.000000	24.160000	1.200000e+05
max	104.000000	197.300000	1.900000e+06

In []: