Orbitronics: from transport to topology

Speaker: Tarik P. Cysne (UFF-RJ)

Part I: Introduction

Brief History

Intense activity in SHE:

- Intrinsic x extrinsic
- Quantum SHE
- Topological Insulators

• • •

Direct experimental observation of OHE!

Poor interest in OHE

(1879)

Hall effect Mott

(1965)

Mott Scattering

(1999/2000)

Theory/Experiment:
Spin Hall Effect
(Mott mechanism)

Extrinsic mechanism (impurity dependent)

(2005/06)

Theory:
Orbital Hall effect
(analog to SHE)

Intrinsic mechanism (Band structure)

(2016) (2021/22)

Renewed interest in the OHE pushed by theoretical works.

Motivation

Motivation

Changing the paradigm of information technology

Spintronics: Use the spin of e^- (\hat{S}) to store and process information

Fundamentals of spintronics:

1 -spin-injection

2 -spin-manipulation

3 -spin-detection

Preferable by electrical means (\vec{E})

Problem: \vec{E} does not couple directly with \hat{S} ... $\stackrel{\textstyle \ \ \ \ \ \ \ \ \ }{\textstyle \ \ \ }$

The use of materials with strong spin-orbit coupling (SOC).

Some Important effects in spintronics

Spin Hall effect

[J. Sinova, et. al. RPM. 87, 1213 (2015)]

Spin Edelstein effect

Spin-orbit torque

[A. Manchon, et. al. RPM. 91, 035004 (2019)]

Can we overcome the need for strong spin-orbit coupling?

From Beginning

Nucleous P

An atom:

Charge:

 e^- -Spin:

 e^- -Orbital angular momentum:

Hall Effects

"Charge" Hall Effect

Time Reversal Symmetry Breaking

(E.g. External Magnetic Field)

Spin Hall Effect (SHE)

High SOC systems

(E.g. material with a high atomic number Z 😊)

Orbital Hall Effect (OHE)

Solids with multi-orbital texture and strong inter-orbital hybridization

(Occurs even in the absence of SOC ©)

Intrinsic mechanism of OHE (3D Metals)

Multi-orbital solid with sp Hybridization

Intrinsic OHE is a consequence of orbital texture:

- (i)- OHE precedes the SHE
- (ii)- The OHE is converted in SHE

by SOC: $\vec{L} \cdot \vec{S}$

(iii)- The OHE occurs even in absence of SOC! © © ©

[D. Go, et. al. PRL. 121, 086602 (2018)]

Orbital Textures

OAM texture: $\langle L_{x,y,z} \rangle = \langle u_{nk} | \hat{L}_{x,y,z} | u_{nk} \rangle$

Experiment

Can be measured by TRDPAD (time-reversal dichroism in photoelectron angular distributions):

[S. Beaulieu, et.al. PRL 125, 216404 (2020)]

Valence band of 1L-MoS2 (Theory)

[L. Canonico, et.al. PRB 101, 161409(R)(2020)]

Borophene monolayer (Theory)

[F. Crasto de Lima, et.al., *Nano Lett.* 19 (9) 6564(2019)]

Important groups are studying orbitronics

nature communications

Article

https://doi.org/10.1038/s41467-024-46405-6

Orbitronics: light-induced orbital currents in Ni studied by terahertz emission experiments

Received: 15 July 2023

Accepted: 26 February 2024

Yong Xu^{1,2,3,5}, Fan Zhang^{3,5}, Albert Fert^{2,4,5} ⋈, Henri-Yves Jaffres **©** ^{4,5}, Yongshan Liu^{2,3}, Renyou Xu^{2,3}, Yuhao Jiang², Houyi Cheng^{2,3} & Weisheng Zhao **©** ^{1,2,3} ⋈

Published online: 06 March 2024

nature

Observation of the orbital Hall effect in a light metal Ti

Young-Gwan Choi, Daegeun Jo, Kyung-Hun Ko, Dongwook Go, Kyung-Han Kim, Hee Gyum Park,

Changyoung Kim, Byoung-Chul Min, Gyung-Min Choi

& Hyun-Woo Lee

Nature **619**, 52–56 (2023) | Cite this article

Albert Fert!

Now... let's talk about some of our work works:

Orbitronics in 2D materials

Part II: Orbital Hall effect

Orbital Hall Conductivity

$$\frac{\Omega_{n,\vec{k}}^{X_z}}{2\hbar} = \sum_{m \neq n} \operatorname{Im} \left[\frac{\langle u_{n,\vec{k}} | \hat{v}_x(\vec{k}) | u_{m,\vec{k}} \rangle \langle u_{m,\vec{k}} | \hat{J}_y^{X_z}(\vec{k}) | u_{n,\vec{k}} \rangle}{(E_{n,\vec{k}} - E_{m,\vec{k}})^2} \right]$$

$$\underline{\sigma_{\text{OH}}^{X_z}} = e \sum_{n} \int \frac{d^2k}{(2\pi)^2} f_{n,\vec{k}} \Omega_{n,\vec{k}}^{X_z}$$

[T. P. Cysne, et. al., PRB 105, 195421 (2022)]

Orbital current operator:

$$\hat{J}_{y}^{\mathbf{L}_{\mathbf{Z}}}(\vec{k}) = \frac{1}{2} \left[\mathbf{L}_{\mathbf{Z}} \hat{v}_{y}(\vec{k}) + \hat{v}_{y}(\vec{k}) \mathbf{L}_{\mathbf{Z}} \right]$$

Intra-atomic approximation (Localized electronic orbits)

$$\langle J_{\mathcal{Y}}^{\mathbf{L}_{\mathbf{Z}}} \rangle = \sigma_{OH}^{\mathbf{L}_{\mathbf{Z}}} \mathcal{E}_{\mathcal{X}}$$

Talking about spin again (Quantum Spin Hall insulators Paradigm)

$$\langle J_{y}^{S_{z}}\rangle = \sigma_{SH}^{S_{z}}\mathcal{E}_{x}$$

Spin Chern number

Talking about spin again (Quantum Spin Hall insulators Paradigm)

$$\langle J_{y}^{S_{z}}\rangle = \sigma_{SH}^{S_{z}}\mathcal{E}_{x}$$

$$\sigma_{SH}^{S_z} = \frac{e}{2\pi} C_S$$

[L.F. Lima and C. Lewenkopf PRB 106, 245408 (2022)]

Multi-Orbital Two-dimentional materials

Monolayer of 2H-MoS₂

Conduction band: $\{d_{z^2}\}$

Valence band: $\{d_{\chi^2-y^2} \pm id_{\chi y}\}$

OHE in Two-Dimensional Materials

OH insulator $\sigma_{OH} \neq 0$ For $E_F \in \text{Band-gap}$

[see. L. M. Canonico et. al., PRB 101, 075429 (2020) and PRB 101, 161409(R) (2020)]:

Orbital Chern number

Zigzag Nanoribbons of 2H-TMDs has Lz-polarized edge-states. The **orbital Hall insulating phase** can be indexed by **Orbital Chern Number** [T. P. Cysne, et. al., PRL 126, 056601 (2021) and PRB 105, 195421 (2022)]:

Orbital Chern number:

$$C_L = +1$$

Zigzag Nanoribbons:

Orbital Chern number

Orbital Chern numbers can undergo topological phase transitions:

[Shilei Ji, et. al., Phys. Rev. B 108, 224422 (2023)]

[Y.-T. Yao, et. al., arXiv:2503.08138 (2025)]

Orbital Hall insulators and high Order topological insulators

M. Costa, et. al., Phys. Rev. Lett. 130, 116204 (2023)

$$Q_c^{(3)} = \frac{e}{3} [K_2^{(3)}] \mod e$$

- -2H-TMDs are higher-order topological insulators with protected corner states
- -This HOTI phase appears to be related to the orbital Hall insulator phase

Part III: OHE in other 2D materials

We found other two-dimensional orbital Hall insulators ...

Phosphorene monolayer: anisotropic orbital Hall insulating plateau

[T. P. Cysne, et. al., PRB 108, 165415 (2023)]

Experimental signature of OHE

[J. Salvador-Sánchez, et. al., Phys. Rev. Research 6, 0232 (2024)]

Interaction of materials with light

[T. P. Cysne, W. J. M. Kort-Kamp, and T. G. Rappoport, Phys. Rev. Research 6, 023271 (2024)]

Final: Perspective for the future

- 1- Treatment of Disorder: How Disorder can impact the orbital response in materials?
- 2- Real space calculations: Numerical methods to compute the orbital accumulations in real space.
- 3- Going beyond intra-atomic approximation: Rigorous treatment of orbital angular momentum operator on the modern theory of orbital magnetization. For what condition intra-atomic approximation is good or bad?

Review on 2D-materials orbitronics

npj | spintronics Review

ම

https://doi.org/10.1038/s44306-025-00103-1

Orbitronics in two-dimensional materials

Check for updates

Tarik P. Cysne¹ ⊠, Luis M. Canonico², Marcio Costa¹, R. B. Muniz¹ & Tatiana G. Rappoport^{3,4,5} ⊠

People involved

Prof. R. B. Muniz (UFF/BR)

Profa. T. G. Rappoport (UFRJ/BR)

Prof. M. Costa (UFF/BR)

Dr. L. M. Canonico (ICN-2/spain)

Dr. T. P. Cysne (UFF/BR)

Collaborators:

- Filipe Guimarães (Peter Grunberg Institute/Germany)
- M. Buongiorno Nardelli (University of North Texas/USA)

Part IV: Other research topics

Nanofotônica em materiais 2D

PHYSICAL REVIEW B 111, 205422 (2025)

Anisotropic resonance energy transfer with strained phosphorene

J. Oliveira-Cony, 1,* C. Farina, 1 P. P. Abrantes, 1,2 and Tarik P. Cysne, 1 Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-617, Brazil 2 Instituto de Física, Universidade Federal Fluminense, Niterói, Rio de Janeiro 24220-900, Brazil

Local markers for topological phases

PHYSICAL REVIEW B 111, 035411 (2025)

Topological characterization of modified Kane-Mele-Rashba models via local spin Chern marker

Sebastião dos Anjos Sousa-Júnior , ^{1,*} Marcus V. de S. Ferraz , ² José P. de Lima , ² and Tarik P. Cysne , ³ Instituto de Física, Universidade Federal do Piauí, 64049-550 Teresina, Piauí, Brazil

3 Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói RJ, Brazil

Local markers for topological phases

PHYSICAL REVIEW B 111, 245418 (2025)

Topological phases in fractals: Local spin Chern marker in the Kane-Mele-Rashba model on the Sierpinski carpet

L. L. Lage, ^{1,*} A. B. Félix, ¹ S. dos A. Sousa-Júnior ⁰, ² A. Latgé ⁰, ¹ and Tarik P. Cysne ¹ Instituto de Física, Universidade Federal Fluminense, Niterói, Avenida Litorânea sn 24210-340, Rio de Janeiro, Brazil ² Department of Physics, University of Houston, Houston, Texas 77204, USA

Instituto de Física da UFF – Niterói/RJ

Thanks for your attention!

acknowledgements

Contribution from spin sector to magnetoelectric effect in ZZ-NR

Electric polarization x OME in ZZ-NR

Heisenberg's Equation of motion

$$\hat{V}(t) = -\mathbf{e} \; \mathbf{E}(t) \cdot \hat{\mathbf{r}}$$

$$\frac{\mathrm{d}\hat{\mathbf{L}}^{\mathrm{ind}}}{\mathrm{d}t} = -\frac{\mathrm{i}}{\hbar} \left[\hat{\mathbf{L}}^{\mathrm{ind}}, \hat{V}(t) \right] = \hat{\mathbf{r}} \times \mathbf{e} \,\, \mathbf{E}(t)$$

$$\overrightarrow{M}_{orb} = \overrightarrow{P}_e \times \overrightarrow{E}$$

Topology

Low energy theory near valleys

$$ilde{H}(ec{q}_{ au}) = egin{bmatrix} \Delta & \gamma_{+} & 0 & 0 \ \gamma_{-} & - au s_{z}\lambda & 0 & t_{\perp} \ 0 & 0 & \Delta & \gamma_{-} \ 0 & t_{\perp} & \gamma_{+} & au s_{z}\lambda \end{bmatrix}_{---- \left(|d_{x^{2}-y^{2}}^{1}
angle - i au |d_{xy}^{1}
angle
ight) /\sqrt{2}}_{---- \left(|d_{x^{2}-y^{2}}^{2}
angle - i au |d_{xy}^{2}
angle
ight) /\sqrt{2}}$$

$ \Delta $		Energy Gap
λ		SOC (not considered in this talk)
$ t_{\perp} $		Interlayer hopping
γ_{\pm}	$= at(\tau q_x \pm iq_y)$	

Orbital Angular momentum operator:

$$L_z = \operatorname{diag}(0, -2\hbar\tau, 0, 2\hbar\tau)$$

Topology

$$\mathbb{L}^{\mathbf{v}}(\vec{k}) = P(\vec{k})L_z P(\vec{k})$$

Eigenstates of this matrix

$$\left|\Phi_{n,\tau}^{\pm}(\vec{q})\right\rangle$$

$$P(\vec{k})$$

Valence Band Projector

$$C_L^{\pm} = \frac{1}{2\pi} \int d^2q \sum_{n,\tau} F_{n,\tau}^{\pm}(q)$$

$$\mathcal{C}_{L}^{\pm} = \frac{1}{2\pi} \int d^{2}q \sum_{n,\tau} F_{n,\tau}^{\pm}(q) \left[F_{n,\tau}^{\pm}(q) \middle| \partial_{q_{y}} \Phi_{n,\tau}^{\pm}(\vec{q}) \middle| \partial_{q_{y}} \Phi_{n,\tau}^{\pm}(\vec{q}) \middle\rangle \right]$$

Orbital Chern number!

$$\mathcal{C}_L = (\mathcal{C}_L^+ - \mathcal{C}_L^-)/2$$

Topology

$$C_L = 2$$
 for 2L-TMD.

$$C_L = 1$$
 for 1L-TMD.

Experiments

PHYSICAL REVIEW RESEARCH 2, 013127 (2020)

Magnetization switching driven by current-induced torque from weakly spin-orbit coupled Zr

Z. C. Zheng,^{1,*} Q. X. Guo,^{1,2,*} D. Jo,³ D. Go,^{3,†} L. H. Wang,⁴ H. C. Chen,⁵ W. Yin,⁵ X. M. Wang,⁶ G. H. Yu,¹ W. He,² H.-W. Lee,³ J. Teng,^{1,‡} and T. Zhu^{2,5,7,§}

Low SOC on Zr. The phenomena should be related to OHE.

Intrinsic mechanism of OHE (3D Metals)

-Intrinsic Mechanism: OHE is a consequence of orbital texture [Figs From "Phys. Rev. Lett. 121, 086602 (2018)"]:

- Even for solids with quenched OAM, the electric field shifts band structure which causes recombination of its orbital texture and produces a transverse flux of OAM.
- Mechanism analogous to spin texture in SHE, but it is robust against dilute disorder (vertex corrections) in centrosymmetric systems.

- OHE precedes the SHE.
- The OHE is converted in SHE by SOC: \vec{L} . \vec{S}
- The OHE occurs even in absence of SOC.

