

Al Workshop - oneAPI DevSummit 2023

Intel® Optimizations for TensorFlow

Anish Kumar Vishnu Madhu

Agenda

- Workshop pre-requisites
- Intel®Al Optimizations
- Al Handson Workshop

Workshop Pre-requisites

- Register for accessing Intel® Developer Cloud (5 mins) visit → <u>cloud.intel.com</u>
 Sign up --> Create Account
- Setup SSH access to Intel® Developer Cloud (5 mins)
 Login to Intel® Developer Cloud
- Clone the workshop repository on Developer cloud <u>https://tinyurl.com/oneapi-ai-workshop</u>
- Laptop with open internet access (preferred)

Intel® Developer Cloud

Intel® Developer Cloud

- Landing page :
 - https://cloud.intel.com
- Instructions to get started:
 - http://tinyurl.com/ReadmeIDC

Intel® AI Optimizations

oneAPI DevSummit Southeast

Diverse Compute Requirements

Diverse accelerators needed to meet today's performance requirements:

48% of developers target heterogeneous systems that use more than one kind of processor or core¹

Developer Challenges: Multiple Architectures, Vendors, and Programming Models

Open, Standards-based, Multiarchitecture Programming

oneAPI Industry Initiative

Break the Chains of Proprietary Lock-in

Freedom to Make Your Best Choice

- C++ programming model for multiple architectures and vendors
- Cross-architecture code reuse for freedom from vendor lock-in

Realize all the Hardware Value

- Performance across CPU, GPUs, FPGAs, and other accelerators
- Expose and exploit cutting-edge features of the latest hardware

Develop & Deploy Software with Peace of Mind

- Open industry standards provide a safe, clear path to the future
- Interoperable with familiar languages and programming models including Fortran, Python, OpenMP, and MPI
- Powerful libraries for acceleration of domain-specific functions

oneAPI Industry Momentum

kt

SAMSUNG

MEDISON

KATANA GRAPH

National Labs

CINECA

SANKHYA

ecclerated Radiology

Verizon

allegro.ai

ILLUMINATION MACGUFF

Red Hat

WeBank

CGG

TANGENTANIMATION

VIBLE

CHVOSGROUP

OEMs & SIs

Bitt'vvare

AI SINGAPORE

Ssas

CSPs & Frameworks

Google Cloud

Hewlett Packard

Enterprise

OpenShift Data Science

COMPLUTENSE

ZIB

UNIVERSIDAD DE MÁLAGA

London

ILLINOIS

UNIVERSITY

OF MATHEMATICS AND PHYSICS

Charles University

PURDUE

Elmore Family School of Electrica

Alibaba Cloud

OLD DOMINION

Microsoft

Azure

URZ)

OREGON

Indian Institute of Science Education & Research Pune

Intel® one API Base Toolkit

A core set of high-performance libraries and tools for building C++, SYCL and Python applications

Add-on **Domain-specific**Toolkits

Intel® oneAPI Tools for HPC

Deliver fast Fortran, OpenMP & MPI applications that scale

Intel® oneAPI Tools for IoT

Build efficient, reliable solutions that run at network's edge

Intel® oneAPI Rendering Toolkit

Create performant, high-fidelity visualization applications

Toolkits powered by oneAPI

Intel® Al Analytics Toolkit

Accelerate machine learning & data science pipelines end-to-end with optimized DL frameworks & high-performing Python libraries

Intel® Distribution of OpenVINO™ Toolkit

Deploy high performance inference & applications from edge to cloud

Latest version available 2023.1

Intel® Al Analytics **Toolkit**

Accelerate end-to-end Al and data analytics pipelines with libraries optimized for Intel® architectures

Who needs this product?

Data scientists, Al researchers, ML and DL developers, Al application developers

Top Features/Benefits

Deep learning performance for training and inference with Intel® Optimized DL frameworks and tools

intel

Drop-in acceleration for data analytics and machine learning workflows with computeintensive Python packages

Intel® Tensorflow Optimizations

Intel® Optimization for Tensorflow

What's New for TensorFlow Optimization?

- oneDNN is in official TensorFlow release!
- The platforms use the Intel® oneAPI Deep Neural Network Library (oneDNN), an open-source, cross-platform performance library for Deep-Learning applications
- Enable those Intel® oneDNN CPU optimizations by setting the environment variable TF_ENABLE_ONEDNN_OPTS=1 for the official x86-64 TensorFlow after v2.5.
- Since TensorFlow v2.9 and above, the oneAPI Deep Neural Network Library (oneDNN) optimizations are enabled by default

Features

- Operator optimizations: Replace default (Eigen) kernels by highly-optimized kernels (using Intel® oneDNN)
- Graph optimizations: Fusion, Layout Propagation
- System optimizations: Threading model

oneAPI Deep Neural Network Library (oneDNN)

Intel® Optimization for Tensorflow

Features

- Supports FP32, FP16, Bfloat16, and int8.
- Leverages Intel® DL Boost, AVX512 instructions and processor capabilities
- Fused operations for optimized performance

Support Matrix

- Compilers: Intel® oneAPI DPC++ / C++ Compilers
- OS: Linux, Windows, macOS
- CPU: Intel® Atom, Intel® Core™, Intel® Xeon®, Intel® Xeon® Scalable processors
- GPU: Intel® Processor Graphics Gen9, Intel® Processor Graphics Gen 12

Category	Functions
Compute intensive operations	(De-)ConvolutionInner ProductRNN (Vanilla, LSTM, GRU)GEMM
Memory bandwidth limited operations	 Pooling Batch Normalization Local Response Normalization Layer Normalization Elementwise Binary elementwise Softmax Sum Concat Shuffle
Data manipulation	Reorder

oneDNN Integration with TensorFlow

Features

- Replaces compute-intensive standard TF ops with highly optimized custom one DNN ops
- Aggressive op fusions to improve performance of Convolutions and Matrix Multiplications
- Primitive caching to reduce overhead of calling one DNN Graphics Gen 12

https://www.intel.com/content/www/us/en/docs/onednn/developer-guide-reference/2023-1/gelu.html

BFloat16 Data Type

Bfloat16 Optimization

- Bfloat16 16-bit data type with the same dynamic range as FP32
- Benefits
 - Reduced bandwidth
 - Improved performance with hardware support
- Easy to use
 - No special handling for loss scaling
 - No hyperparameter tuning for training, can reuse FP32 hyperparameters
- Up to 2x improvement on training and inference with negligible accuracy loss (< 0.20%)
- AMP (Automatic Mixed Precision) in tensorflow automatically converts model to use bfloat16 data type.
- Supports both Keras and arbitrary graph based models.

Mixed precision training with Bfloat16

■ Perf. improvement over FP32

■ Perf. improvement over FP32

How to Install Intel® optimization for Tensorflow

- Intel®optimization for Tensorflow is included in AI kit. If you have AI Analytics toolkit Intel-Tensorflow conda environment can be activated.
- Install via Pip: pip install intel-tensorflow==2.11.0
- For Stock-tensorflow: pip install tensorflow==2.11.0
 Since TensorFlow v2.9, the oneAPI Deep Neural Network Library (oneDNN) optimizations are enabled by default.
- With Conda: conda install tensorflow -c intel

Handson Workshop

Github Repo

https://tinyurl.com/oneapi-ai-workshop

IDC Access Architecture

- SLURM based
- Access valid for 20 days
- Expires if unused for last 7 days
- 20 GB NFS storage

	Max 1550 GPU (600W OAM)	Max 1350 GPU (450W OAM)	Max 1100 GPU (300W PCIe)
Architecture	X° HPC		
X [°] Cores	128	112	56
Memory	HBM2E 128 GB	HBM2E 96 GB	HBM2E 48 GB
Cache	L1 64 MB L2 408 MB	L1 48 MB L2 216 MB	L1 28 MB L2 108 MB
Max TDP	600W	450W	300W
Form Factor	OAM		PCIe AIC
Host Interconnect	PCIe Gen5		
Physical Ports	X ^e Link 53 GB/s 16 ports		X° Link 53 GB/s 6 ports

One Generation -> 30x Al Performance Gain

Intel® Neural Compressor

Baseline

1.5x

3.9x

13.06 images/s

(FP32) Official TensorFlow on 3rd Gen Intel® Xeon® Scalable Processor

20.54 images/s

(FP32) TensorFlow with oneDNN enabled 81.66 images/s

(INT8) Model quantization with Intel® Neural compressor

3rd Gen Intel® Xeon™ Scalable Processors

4th Gen Intel® Xeon® Scalable Processor

4.8x

394 images/s

(INT8) Intel® AMX optimization on Sapphire Rapids

4th Gen Intel® Xeon® Scalable processors

Results may vary. See www.intel.com/InnovationEventClaims for workloads and configurations.

SSD-ResNet-34 Inference Throughput (Batch Size =1) For workloads and configurations visit www.intel.com/InnovationEventClaims. Results may vary.

Slurm Commands

- sinfo Lists available partitions and node allocations
- squeue lists the queued jobs
- srun Sends a job to the queue for execution
- scancel Deletes a queued job

Intel® Extension for TensorFlow*

- Intel® Extension for TensorFlow* is a heterogeneous, high performance deep learning extension plugin based on TensorFlow <u>PluggableDevice</u> interface to bring Intel XPU(GPU, CPU, etc) devices into <u>TensorFlow</u>.
- Good performance using default ITEX setting with no code change
- More performance optimizations with minor code change using simple frontend Python API
- GitHub: https://github.com/intel/intel-extension-for-tensorflow

Intel® Extension for TensorFlow* - Features

Features:

Auto Mixed Precision (AMP)
support of AMP with BFloat16 and Float16 operations

Channels Last

support of channels_last (NHWC) memory format

DPC++ Extension

mechanism to create operators with custom DPC++ kernels running on the XPU device

Optimized Fusion

support of SGD/AdamW fusion for both FP32 and BF16 precision a set of fusion patterns for inference

Stable Diffusion

- Latent(space) Diffusion Models
 - like DALL-E, Midjourney etc.
- Various tasks text2image, inpainiting, image2image etc.
- 3 main components:
 - Text Encoder CLIPText
 - Diffusion Model Unet
 - Image Decoder VAE
- ~ 1B parameters

https://huggingface.co/blog/stable_diffusion

Performance Estimates SPR vs PVC

Thank you!!

oneAPI DevSummit Southeast

FAQ!!

oneAPI DevSummit Southeast