

AU6350

USB2.0 Hub-Reader Controller

Technical Reference Manual

AU6350

USB2.0 Hub-Reader Controller

www.DataSheet4U.com

Copyright

Copyright © 1997 – 2008. Alcor Micro, Corp. All Rights Reserved. No part of this data sheet may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language or computer language, in any form or by any means, electronic, mechanical, magnetic, optical, chemical, manual or otherwise, without prior written permission from Alcor Micro, Corp.

Trademark Acknowledgements

The company and product names mentioned in this document may be the trademarks or registered trademarks of their manufacturers.

Disclaimer

Alcor Micro, Corp. reserves the right to change this product without prior notice. Alcor Micro, Corp. makes no warranty for the use of its products and bears no responsibility for any error that appear in this document. Specifications are subject to change without prior notice.

Revision History

Date	Revision	Description						
Sep 2007	0.9	Preliminary Release.						
Oct 2007	0.91	Modify 3.0 Pin Assignment						
Jan 2008	0.92	Modify "1.2 Features " and "4.0 Block Diagram"						
Feb 2008	0.93	Update pin assignment						
Apr 2008	1.00	Official release						
Apr 2008	1.01	Modify "3.0 Pin Assignment – Pin14 & Pin17 information.						

Contact Information:

Web site: http://www.alcormicro.com/

Taiwan

Alcor Micro, Corp. 4F, No 200 Kang Chien Rd., Nei Hu,

Taipei, Taiwan, R.O.C. Phone: 886-2-8751-1984 Fax: 886-2-2659-7723

San Jose Office

2025 Gateway Place, Suite 335 www.DataShe San Jose, CA 95110

USA

Phone: (408) 453-9530 Fax: (408) 453-9523

China ShenZhen Office

Rm.2407-08, Industrial Bank Building

No.4013, Shennan Road, ShenZhen, China. 518026 Phone: (0755) 8366-9039 Fax: (0755) 8366-9101

Los Angeles Office

9070 Rancho Park Court Rancho Cucamonga, CA 91730

USA

Phone: (909) 483-8821 Fax: (909) 944-0464

<Memo>

DataShoot4II com

Table of Contents

1.	Introduction	. 1
	1.1 Description	1
	1.2 Features	
2.	Application Block Diagram	. 2
3.	Pin Assignment	. 3
4.	System Architecture and Reference Design	. 7
	4.1 AU6350 Block Diagram	7
5.	Electrical Characteristics	. 8
	5.1 Absolute Maximum Ratings	8
	5.2 Recommended Operating Conditions	8
	5.3 General DC Characteristics	8
	5.4 DC Electrical Characteristics of 3.3V I/O Cells	9
	5.5 USB Transceiver Characteristics	9
	5.6 Crystal Oscillator Circuit Setup for Characterization	12
	5.7 Bus Timing/Electrical Characteristics	
6.	Mechanical Information	. 17
7	Abbreviations	18

List of Figures

Figure 2.1 Block Diagram	2
Figure 3.1 Pin Assignment Diagram	3
Figure 4.1 AU6350 Block Diagram	7
Figure 5.1 Crystal Oscillator Circuit Setup for Characterization	on12
Figure 6.1 Mechanical Information Diagram	17
ist of Tables	
Table 3.1 Pin Descriptions	4
Table 5.1 Absolute Maximum Ratings	8
Table 5.2 Recommended Operating Conditions	8
Table 5.3 General DC Characteristics	8
Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells	
Table 5.5 Electrical characteristics	9
Table 5.6 Static characteristic : Digital pin	10
Table 5.7 Static characteristic : Analog I/O pins (DP/DM)	
Table 5.8 Dynamic characteristic : Analog I/O pins (DP/DM)	
Table 5.9 DC Electrical Characteristics	13
Table 5.10 High-speed Source Electrical Characteristics	
Table 5.11 Full-speed Source Electrical Characteristics	
Table 5.12 Low-speed Source Electrical Characteristics	15

1. Introduction

1.1 Description

AU6350 is a single chip integrated USB2.0 hub and multimedia card reader controller.

1.2 Features

- HUB
 - Fully compliant with USB Hub Specification version 2.0 and is also backward compatible with USB Hub specification 1.1.
 - Supports three bus-powered/self-powered downstream ports.
 - Supports automatic switching between bus-power and self-power modes.
 - Cost effective design using one transaction translator for all downstream ports.
 - Extra low power consumption.
 - On chip internal pull-up and meets USB bus power regain emend pull down resistors for all data line.
 - Built-in USB 2.0 transceiver.
 - Supports individual and gang modes of power management.
 - Built-in power switch control for over current sensing control.
 - Built-in 1.8V regulator for core logic.
 - Built-in 3.3V regulator
 - Embedded in PLL circuit for 12MHz operation precision.
 - Supports external EEPROM interface for customized PID and VID.
- Card Reader
 - USB Device Class Definition for Mass Storage, Bulk-Transport V1.0
 - Support SD spec up to ver. 2.0 (SDHC).
 - Support MMC spec up to ver. 4.2.
 - Support CF spec up to 4.1 with PIO mode 6.
 - Support xD spec up to ver. 1.2.
 - Support SMC spec up to ver. 1.4.
 - Support MS spec up to ver. 1.43.
 - Support MSPRO spec up to ver. 1.03.
 - Compatible to MSPRO-HG spec up to ver. 1.01 with 4-bit data bus.
 - Hardware DMA engine integrated for performance enhancement.
 - Work with default driver from Windows ME/2000/XP and Mac OS X; Windows 98/2000(SP1/SP2) and Mac OS 9 are supported by vendor driver from Alcor.
 - Ping-pong FIFO implementation for concurrent bus operation
 - Support multiple sectors transfer optimize performance
 - Support slot-to-slot read/write operation
 - Support Dynamic Icon Utility
 - Support LED for bus operating indication
 - Power switch integrated to reduce production BOM cost

2. Application Block Diagram

AU6350 is a single chip 3-port USB Hub-Reader controller. Its upstream port is connected to a USB Host system. The downstream ports can be used for a mouse, joystick, scanner, printer or other devices.

USB HOST SYSTEM

ALCOR MICRO
AUG350

USB DOWNSTREAM
PORTS

Keyboard

Figure 2.1 Block Diagram

www.DataSheet4U.com

Mouse

3. Pin Assignment

AU6350 is available in 80-pin LQFP package. Below diagram shows signal name of each pin and table in the following page describes each pin in detail.

CARDDATA11 CARDDATA10 CARDDATA13 CARDDATA12 CARDDATA9 **HSSA** UP_RREF CARDDATA8 **PVDD** CARDDATA7 XSCO 58 CARDDATA6 CARDDATA5 XSCI 57 **PVSS** CARDDATA4 56 **AVSS** CARDDATA3 55 DP2_DM 54 CARDDATA2 DP2_DP CARDDATA1 53 AVDD 52 **CARDDATA0 Alcor Micro AVSS** 51 VSS AU6350 VDD DP3_DM 50 80-PIN LQFP DP3_DP 49 GPON6 **AVDD** 48 CONTROLOUTO V33 47 CONTROLOUT1 AGND5V CONTROLOUT2 46 AVDD5V 45 CONTROLOUT3 CF_V33 44 CONTROLOUT4 CONTROLOUT5 V18 43 PLL_VDD **XDCDN** 42 SDCDN PLL_VSS VDDH TESTN SNISM EEPENABLE E2PCLK E2PDAT SMCDN **HSSA** BUS_PWREDN SSA GANGBUS_PWRED VDD DP1_LEDGR SUSPEND ChipResetN DP1_PWRUP DP1_OVRCUR DP1_LEDAM

Figure 3.1 Pin Assignment Diagram

Table 3.1 Pin Descriptions

Pin #	Pin Name	1/0	Description
1	UP_RREF	UTMI	1K 1% current reference resistor
2	PVDD	Power	3.3V power input
3	XSCO	0	12MHz crystal output
4	XSCI	1	12MHz crystal input
5	PVSS	Power	Ground
6	AVSS	Power	Ground
7	DP2_DM	I/O	Port2 USB bus
8	DP2_DP	I/O	Port2 USB bus
9	AVDD	Power	3.3V power input
10	AVSS	Power	Ground
11	DP3_DM	I/O	Port3 USB bus
12	DP3_DP	I/O	Port3 USB bus
13	AVDD	Power	3.3V power input
14	V33	Power	Voltage regulator output 3.3V
15	AGND5V	Power	Ground
16	AVDD5V	Power	5V power input
17	CF_V33	Power	Card power 3.3V output
18	V18	Power	1.8V power output
19	PLL_VDD	Power	1.8V power input
20	PLL_VSS	Power	Ground
21	VDDH	Power	3.3V power input
22	SSC_EN	1	SSC enable
23	VSSH	Power	Ground
24	BUS_PWREDN	ı	'1' = Self Powered '0' = Bus Powered '1' = Use EEP contents
25	EEPENABLE E2PCLK	I/O	'0' = Use internal ROM EEP Clock; with internal pull up resistor; open
Dat i Sheet4U.co 27	E2PDAT	I/O	drain output EEP Data; with internal pull up resistor; open drain output

	Pin #	Pin Name	1/0	Description			
	28	VSS	Power	Ground			
	29	GANGBUS_PWRED	I	'1' = Individual Power '0' = GangBus Power open collector output			
	30	VDD	Power	1.8V power	r input		
	31	DP1_PWRUP	0	Gang Power '0' = power '1' = power	on		
	32	DP1_OVRCUR	I	Gang Over '0' = overcu '1' = not over	irrent ercurrent		
	33	DP1_LEDAM	0	'0' = LED o '1' = LED o		dition)	
	34	DP1_LEDGR	0	'0' = LED o '1' = LED o			
	35	SUSPEND	0	0' = Not Su '1' = Suspe	•		
	36	ChipResetN	I	0' = Reset '1' = Run			
	37	TESTN	I	1' = Norma '0' = Test m			
	38	MSINS	I	MS card detect, pull down when suspending otherwise pull up			en suspend
	39	SMCDN	I		detect, pull	down whe	en suspend
	40	CFCDN	I	CF card of otherwise p	detect, pull oull up		en suspend
	41	SDCDN	I	SD card of otherwise p	detect, pull oull up	down whe	en suspend
	42	XDCDN	I	XD card de otherwise	tect, pull do pull up	wn when s	suspend
	43	CONTROLOUT5	0		CFRESETN	XDWRN	
	44	CONTROLOUT4	0		CFWRN	XDRDN	
	45	CONTROLOUT3	0			XDCEN	
	46	CONTROLOUT2	0		CFADR2	XDALE	
	47	CONTROLOUT1	0		CFADR1	XDCLE	MSCLK
	48	CONTROLOUT0	0	SDCLK	CFAD0		MSBS
www.Data	49 Sheet4U.co	GPON6	0	Reader Ca	rd access LE	D	
	50	VDD	Power	1.8V power	· input		
	51	VSS	Power	Ground			

	Pin #	Pin Name	1/0	Description				
	52	CARDDATA0	Ю	SDCMD	SDCMD CFDAT0 M			
	53	CARDDATA1	Ю		CFDAT1	XDWPN	MSDAT1	
	54	CARDDATA2	Ю	SDWP	CFDAT2		MSDAT2	
	55	CARDDATA3	Ю		CFDAT3		MSDAT3	
	56	CARDDATA4	Ю	SDDAT0	CFDAT4		MSDAT4	
	57	CARDDATA5	Ю	SDDAT1	CFDAT5		MSDAT5	
	58	CARDDATA6	Ю	SDDAT2	CFDAT6		MSDAT6	
	59	CARDDATA7	Ю	SDDAT3	CFDAT7		MSDAT7	
	60	CARDDATA8	Ю	SDDAT4	CFDAT8	XDDAT0		
	61	CARDDATA9	Ю	SDDAT5	CFDAT9	XDDAT1		
	62	CARDDATA10	Ю	SDDAT6	CFDAT10	XDDAT2		
	63	CARDDATA11	Ю	SDDAT7	CFDAT11	XDDAT3		
	64	CARDDATA12	Ю		CFDAT12	XDDAT4		
	65	CARDDATA13	Ю		CFDAT13	XDDAT5		
	66	CARDDATA14	Ю		CFDAT14	XDDAT6		
	67	CARDDATA15	Ю		CFDAT15	XDDAT7		
	68	CFWTN	I		CFWTN			
	69	EEPCLK_R	0	EEP Clock				
	70	EEPDAT_R	Ю	EEP Data				
	71	VDDH	Power	3.3V power	r input			
	72	VSSH	Power	Ground				
	73	AVSS	Power	Ground				
	74	USB_DM	I/O	Upstream p	oort USB bus	3		
	75	USB_DP	I/O	Upstream port USB bus				
	76	AVDD	Power	3.3V power input				
	77	AVSS	Power	Ground				
	78	USB1_DM	I/O	Port1 USB	bus			
www.DataS	79 Sheet¥U.com	uSB1_DP	I/O	Port1 USB	bus			
	80	AVDD	Power	3.3V power	r input			

4. System Architecture and Reference Design

4.1 AU6350 Block Diagram

Figure 4.1 AU6350 Block Diagram

5. Electrical Characteristics

5.1 Absolute Maximum Ratings

Table 5.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	RATING	UNITS
V_{DDH}	Power Supply	-0.3 to V _{DDH} +0.3	V
V _{IN}	Input Signal Voltage	-0.3 to 3.6	V
V _{OUT}	Output Signal Voltage	-0.3 to V _{DDH} +0.3	V
T _{STG}	Storage Temperature	-40 to 150	°C

5.2 Recommended Operating Conditions

Table 5.2 Recommended Operating Conditions

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS
V_{DDH}	Power Supply	3.0	3.3	3.6	V
V_{DD}	Digital Supply	1.62	1.8	1.98	V
V _{IN}	Input Signal Voltage	0	3.3	3.6	V
T _{OPR}	Operating Temperature	0		85	°C

5.3 General DC Characteristics

Table 5.3 General DC Characteristics

•,	SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
	I _{IN}	Input current	No pull-up or pull-down	-10	±1	10	μА
	I_{OZ}	Tri-state leakage current		-10	±1	10	μΑ
	C_{IN}	Input capacitance	Pad Limit		2.8		ρF
	C_OUT	Output capacitance	Pad Limit		2.8		ρF
eet	4U.com C _{BID}	Bi-directional buffer capacitance	Pad Limit		2.8		ρF

www.DataSh

5.4 DC Electrical Characteristics of 3.3V I/O Cells

Table 5.4 DC Electrical Characteristics of 3.3V I/O Cells

SYMBOL	PARAMETER	CONDITIONS		UNIT		
STIVIBUL	PARAIVIETER	CONDITIONS	MIN	TYP	MAX	OINTI
V_{DDH}	Power supply	3.3V I/O	3.0	3.3	3.6	V
V _{il}	Input low voltage	LVTTL			0.8	V
V_{ih}	Input high voltage	LVIIL	2.0			V
V _{ol}	Output low voltage	I _{ol} =2~16mA			0.4	V
V_{oh}	Output high voltage	\mid I _{oh} \mid =2~16mA	2.4			V
R _{pu}	Input pull-up resistance	PU=high, PD=low	55	75	110	ΚΩ
R_{pd}	Input pull-down resistance	PU=low, PD=high	40	75	150	ΚΩ
l _{in}	Input leakage current	$V_{in} = V_{DDH}$ or 0	-10	±1	10	μ A
l _{oz}	Tri-state output leakage current		-10	±1	10	μ A

5.5 USB Transceiver Characteristics

Table 5.5 Electrical characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
VD33	Analog supply Voltage		3.0	3.3	3.6	V
VDDU VDDA	Digital supply Voltage		1.62	1.8	1.98	V
I _{cc}	Operating supply current	High speed operating at 480 MHz			55	mA

Table 5.6 Static characteristic : Digital pin

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit			
	Input levels								
V _{IL}	Low-level input voltage				0.8	V			
V _{IH}	High-level input voltage		2.0			V			
	Output levels								
V _{OL}	Low-level output voltage				0.2	V			
V _{OH}	High-level output voltage		VDDH-0.2			V			

Table 5.7 Static characteristic : Analog I/O pins (DP/DM)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
	USB	2.0 Transceiver (HS)				
	Input Lev	vels (differential receiv	er)			
V _{HSDIFF}	High speed differential input sensitivity	V _{I (DP)} -V _{I (DM)} measured at the connection as application circuit	300			mV
V_{HSCM}	High speed data signaling common mode voltage range		-50		500	mV
V_{HSSQ}	High speed squelch	Squelch detected			100	mV
VHSSQ	detection threshold	No squelch detected	150			mV
V_{HSDSC}	High speed disconnection	Disconnection detected	625			mV
V HSDSC	detection threshold	Disconnection not detected			525	mV
		Output Levels				
V_{HSOI}	High speed idle level output voltage(differential)		-10		10	mV
V_{HSOL}	High speed low level output voltage(differential)		-10		10	mV
V_{HSOH}	High speed high level output voltage(differential)		-360		400	mV
V_{CHIRPJ}	Chirp-J output voltage (differential)		700		1100	mV
V _{CHIRPK} Sheet4U.cor	Chirp-K output voltage (differential)		-900		-500	mV
		Resistance				
R_{DRV}	Driver output impedance	Equivalent resistance used as internal chip only	3	6	9	Ω

		Overall resistance							
		including external	40.5	45	49.5				
		resistor							
		Termination							
	Termination voltage for								
V_{TERM}	pull-up resistor on pin		3.0		3.6	V			
	RPU								
	USB1.1 Transceiver (FS/LS)								
	Input Levels (differential receiver)								
V_{DI}	Differential input	$ V_{I(DP)}-V_{I(DM)} $	0.2			V			
v DI	sensitivity	v (DP) - v (DM)	0.2			V			
V_{CM}	Differential common		0.8		2.5	V			
v CM	mode voltage		0.0		2.5	V			
	Input Leve	ls (single-ended recei	vers)						
V_{SE}	Single ended receiver		0.8		2.0	V			
V SE	threshold		0.6		2.0	V			
		Output levels							
V_{OL}	Low-level output voltage		0		0.3	V			
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LE ele la collection de la collection de		0.0		0.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
V_{OH}	High-level output voltage		2.8		3.6	V			

Table 5.8 Dynamic characteristic : Analog I/O pins (DP/DM)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit		
	Driver Characteristics							
		High-Speed Mode						
t _{HSR}	High-speed differential rise time		500			ps		
t _{HSF}	High-speed differential fall time		500			ps		
		Full-Speed Mode						
t _{FR}	Rise time	CL=50pF; 10 to 90% of V _{OH} -V _{OL} ;	4		20	ns		
t _{FF}	Fall time	CL=50pF; 90 to 10% of V _{OH} -V _{OL} ;	4		20	ns		
t _{FRMA}	Differential rise/fall time matching (t _{FR} / t _{FF})	Excluding the first transition from idle mode	90		110	%		
V _{CRS}	Output signal crossover voltage	Excluding the first transition from idle mode	1.3		2.0	V		
	Low-Speed Mode							
Sheet4U.com t _{LR}	Rise time	CL=200pF-600pF; 10 to 90% of V _{OH} -V _{OL} ;	75		300	ns		

t _{LF}	Fall time	CL=200pF-600pF; 90 to 10% of V _{OH} -V _{OL} ;	75	300	ns
t _{LRMA}	Differential rise/fall time matching (t _{LR} / t _{LF})	Excluding the first transition from idle mode	80	125	%
V _{CRS}	Output signal crossover voltage	Excluding the first transition from idle mode	1.3	2.0	V
V _{OH}	High-level output voltage		2.8	3.6	V

5.6 Crystal Oscillator Circuit Setup for Characterization

The following setup was used to measure the open loop voltage gain for crystal oscillator circuits. The feedback resistor serves to bias the circuit at its quiescent operating point and the AC coupling capacitor, Cs, is much larger than C1 and C2.

Figure 5.1 Crystal Oscillator Circuit Setup for Characterization

5.7 Bus Timing/Electrical Characteristics

Table 5.9 DC Electrical Characteristics

Input Levels for Low-/Full -speed:

SYMBOL	PARAMETER	LIM	LINIT	
		MIN	MAX	UNIT
V _{IH}	High (Driven)	2.0		V
V_{IHZ}	High (floating)	2.7	3.6	V
V _{IL}	Low		0.8	V
V _{DI}	Differential Input Sensitivity	0.2		V
V _{CM}	Differential Common Mode Range	0.8	2.5	V

Input Levels for High -speed:

SYMBOL	PARAMETER	LIN	IITS	UNIT
STIVIDUL	PARAIVIETER	MIN	MAX	OIVII
	High-speed squelch detection threshold (differential signal amplitude)	100	150	mV
1	High speed disconnect detection threshold (differential signal amplitude)	525	625	mV

Output Levels for Low-/Full-speed:

SYMBOL	PARAMETER	LIM	UNIT	
STIVIBUL		MIN	MAX	ONT
V_{OL}	Low	0.0	0.3	V
V _{OH}	High (driven)	2.8	3.6	V
V _{OSE1}	SE1	0.8		V
V_{CRS}	Output Signal Crossover Voltage	1.3	2.0	V

Output Levels for High -speed:

SYMBOL	PARAMETER	LIM	UNIT	
STIVIDUL	PARAIVIETER	MIN	MAX	OIVII
V _{HSOI}	High-speed idle level	-10	10	mV
V_{HSOH}	High-speed data signaling high	360	440	mV
V _{HSOL}	High-speed data signaling low	-10	10	mV
V _{CHIRPJ}	Chirp J level (differential voltage)	700	1100	mV
et4U.c Vc HIRPK	Chirp K level (differential voltage)	-900	-500	mV

Terminations:

SYMBOL	PARAMETER	LIMITS		UNIT
STIVIBUL	PARAIVIETER	MIN	MAX	UNII
R _{PU}	Bus Pull-up Resistor on Upstream Facing Port	1.425	1.575	$\mathbf{k}\Omega$
R _{PD}	Bus Pull-down Resistor on Upstream Facing Port	14.25	15.75	$\mathbf{k}\Omega$
Z _{INP}	Input impedance exclusive of pull-up/pull-down (for low-/full-speed)	300		kΩ
V_{TERM}	Termination voltage for upstream facing port pull-up (R _{PU})	3.0	3.6	V

Terminations in High-speed:

CVMDOL	DADAMETED	LIM	LINIT	
SYMBOL	PARAMETER	MIN	MAX	UNIT
V _{HSTERM}	Termination voltage in high-speed	-10	10	mV

Table 5.10 High-speed Source Electrical Characteristics

Driver Characteristics:

CVMDOL	PARAMETER	LIMITS		UNIT	
SYMBOL	PARAIVIETER	MIN	MAX	UNII	
T _{HSR}	Rise Time (10%-90%)	500		ps	
T _{HSF}	Fall Time (10%-90%)	500		ps	
Z _{HSDRV}	Driver Output Resistance (which also serves as high-speed termination)	40.5	49.5	Ω	

Clock Timings:

SYMBOL	PARAMETER	LIM	LIMITS		
STIVIBUL	PARAIVIETER	MIN	MAX	UNIT	
T _{HSDRAT}	High-speed Data Rate	479.76	480.24	Mb/s	
T _{HSFRAM}	Micorframe Interval	124.9375	125.0625	μ s	
_	Consecutive Microframe Interva	al	4		
T _{HSRFI}	Difference		high-speed bit times		

Table 5.11 Full-speed Source Electrical Characteristics

Driver Characteristics:

SYMBOL	PARAMETER	LIMITS		UNIT
STIVIBUL		MIN	MAX	CIVII
T_{FR}	Rise Time	4	20	ns
T_{FF}	Fall Time	4	20	ns
et4U.comFRFM	Differential Rise and Fall Time Matching	90	111.11	%
Z _{ZRV}	Driver Output Resistance for driver which is not high-speed capable	28	44	Ω

www.DataShee

Clock Timings:

SYMBOL	PARAMETER	LIMITS		UNIT
STIVIDUL		MIN	MAX	OIVII
T _{FDRATHS}	Full-speed Data Rate for hubs and devices which are high-speed capable		12.006	Mb/s
T _{FDRATE}	Full-speed Data Rate for devices which are not high-speed capable	11.970	12.030	Mb/s
T _{FRAME}	Frame interval	0.9995	1.0005	Ms
T_{RFI}	Consecutive Frame Interval Jitter		42	ns

Full-speed Data Timings:

SYMBOL	PARAMETER	LIMITS		UNIT
STIVIBUL	PARAIVIETER	MIN	MAX	CIVIT
	Source Jitter Total(including			
	frequency tolerance):			
T_{DJ1}	To Next Transition	-3.5	-3.5	ns
T_{DJ2}	For Paired Transitions	-4	-4	ns
Т	Source Jitter for Differential	-2	5	ns
T_{FDEOP}	Transition to SE0 Transition	-2	5	113
	Receiver Jitter:			
T_{JR1}	To Next Transition	-18.5	-18.5	ns
T_{JR2}	For Paired Transitions	-9	-9	ns
T_{FEPPT}	Source SE0 interval of EOP	160	175	ns
T_{FEOPR}	Receiver SE0 interval of EOP	82		ns
T _{FST}	Width of SE0 interval during differential transition		14	ns

Table 5.12 Low-speed Source Electrical Characteristics

Driver Characteristics:

SYMBOL	PARAMETER	LIMITS		LINIT
STIVIBUL		MIN	MAX	UNIT
T_LR	Rise Time	75	300	ns
T_{LF}	Fall Time	75	300	ns
T _{LRFM}	Differential Rise and Fall Time Matching	80	125	%
C _{LINUA}	Upstream Facing Port (w/cable, low-speed only)	200	450	pF

Clock Timings:

	SYMBOL	PARAMETER	LIM	ITS	UNIT
	STIVIDUL	PARAIVIETER	MIN	MAX	OIVII
www.DataShe	LITO.COIII	Low-speed Data Rate for hubs and devices which are high-speed capable		1.50075	Mb/s
		Low-speed Data Rate for devices which are not high-speed capable	1.4775	1.5225	Mb/s

Low-speed Data Timings:

SYMBOL	PARAMETER	LIMITS		LINIT
STIVIBUL		MIN	MAX	UNIT
	Upstream facing port source Jitter			
	Total(including frequency tolerance):			
T_{UDJ1}	To Next Transition	-95	95	ns
T_{UDJ2}	For Paired Transitions	-150	150	ns
	Upstream facing port source Jitter			
T_{LDEOP}	for Differential Transition to SE0	-40	100	ns
	Transition			
	Upstream facing port differential			
	Receiver Jitter:			
T_{DJR1}	To Next Transition	-75	75	ns
T_{DJR2}	For Paired Transitions	-45	45	ns
	Upstream facing port differential			
	Receiver Jitter:			
T_{DDJ1}	To Next Transition	-25	25	ns
T_{DDJ2}	For Paired Transitions	-14	14	ns
	Downstream facing port Differential			
	Receiver Jitter:			
T_{UJR1}	To Next Transition	-152	152	ns
T_{UJR2}	For Paired Transitions	-200	200	ns
T_{LEOPT}	Source SE0 interval of EOP	1.25	1.50	μ s
T_{LEOPR}	Receiver SE0 interval of EOP	670		ns
T_{LST}	Width of SE0 interval during differential transition		210	ns

6. Mechanical Information

Figure 6.1 Mechanical Information Diagram

www.DataSheet

7. Abbreviations

In this chapter some of the terms and abbreviations used throughout the technical reference manual are listed as follows.

SIE Serial Interface Engine

UTMI USB Transceiver Macrocell Interface

CF Compact Flash
MD Micro Drive
SMC SmartMedia Card
MS Memory Stick
SD Secure Digital

MMC

Multimedia Card

About Alcor Micro, Corp.

Alcor Micro, Corp. designs, develops and markets highly integrated and advanced peripheral semiconductor, and software driver solutions for the personal computer and consumer electronics markets worldwide. We specialize in USB solutions and focus on emerging technology such as USB and IEEE 1394. The company offers a range of semiconductors including controllers for USB hub, integrated keyboard/USB hub and USB Flash memory card reader...etc. Alcor Micro, Corp. is based in Taipei, Taiwan, with sales offices in Taipei, Japan, Korea and California. Alcor Micro is distinguished by its ability to provide innovative solutions for spec-driven products. Innovations like single chip solutions for traditional multiple chip products and on-board voltage regulators enable the company to provide cost-efficiency solutions for the computer peripheral device OEM customers worldwide.