

# QCM DE MATHÉMATIQUES - LILLE

Répondre en cochant la ou les cases correspondant à des assertions vraies (et seulement celles-ci).

Ces questions ont été écrites par Arnaud Bodin, Barnabé Croizat et Christine Sacré de l'université de Lille. Relecture de Guillemette Chapuisat.

Ce travail a été effectué en 2021-2022 dans le cadre d'un projet Hilisit porté par Unisciel.





Ce document est diffusé sous la licence *Creative Commons – BY-NC-SA – 4.0 FR*. Sur le site Exo7 vous pouvez récupérer les fichiers sources.

# Arithmétique

## Arnaud Bodin, Barnabé Croizat, Christine Sacré

# 1 Arithmétique

# 1.1 pgcd | Facile

## Question 1

On considère a = 28 et b = 42. Quelles sont les affirmations vraies?

- $\square$  Les diviseurs communs à a et à b sont : 1, 2, 7.
- $\square$  14 est un diviseur de *a* mais pas de *b*.
- $\square$  6 est un diviseur de *b* mais pas de *a*.
- $\square$  84 est un multiple de a et de b.

## Question 2

Quelles sont les valeurs qui correspondent à la division euclidienne a = bq + r de a par b?

- $\Box$  *a* = 48, *b* = 7, *q* = 6, *r* = 6
- $\Box$  a = 101, b = 11, q = 9, r = 2
- $\Box$  *a* = 56, *b* = 9, *q* = 5, *r* = 11
- $\Box$  *a* = 123, *b* = 10, *q* = 13, *r* = -7

#### Question 3

Quelles sont les affirmations vraies?

- $\square$  456 est divisible par 3.
- □ 754 est divisible par 4.
- $\square$  5552 est divisible par 5.
- □ 987 est divisible par 9.

## Question 4

Quel est le reste r dans la division euclidienne de 145 par 13?

- $\Box r = 0$
- $\Box$  r=2
- $\Box$  r=7
- $\Box$  r = -11

## 1.2 pgcd | Moyen

| Question | 5 |
|----------|---|
| Question | J |

Soit a = bq + r la division euclidienne de a par b. Quelle condition définit le reste r?

- $\square$   $0 \le r < a$
- $\square$   $0 \le r < b$
- $\square$   $0 \le r \le q$
- $\square$   $0 \le r < q$

## Question 6

Pour a = 220 et b = 60, quelles sont les affirmations vraies?

- $\square$  ppcm(a, b) = 440.
- $\square$  440 est un multiple commun à a et b.
- $\square$  10 est un diviseur commun à a et b.
- $\square$  pgcd(a, b) = 20.

#### Question 7

Grâce à l'application de l'algorithme d'Euclide, on obtient pour a = 630 et b = 165:

- $\square$  pgcd(a, b) = pgcd(135, 30)
- $\square$  pgcd(a, b) = pgcd(30, 0)
- $\square$  pgcd(a, b) = 15

## Question 8

Soit a > 0 un entier strictement positif dont le reste dans la division euclidienne par 8 est r = 5. Quelles sont les affirmations vraies?

- $\Box$  a est pair.
- $\Box$  a est impair.
- $\square$  a est nécessairement divisible par 13.
- $\Box$  (*a* 5) est un multiple de 8.

## Question 9

Pour a = 24 et b = 8, on a :

- $\square$  ppcm(a, b) = 8.
- $\square$  ppcm(a, b) = 24.
- $\square$  a est un multiple de b.
- $\square$  *a* est dans la liste des diviseurs de *b*.

## 1.3 pgcd | Difficile

| Δ  | estion  | 11 | า |
|----|---------|----|---|
| Ou | iesiion | 10 | , |

On considère a, b et d des entiers tels que d|a et d|b. Quelles sont les affirmations vraies?

- $\Box d|a+b$
- $\Box d|a-b$
- $\Box d|a \times b$
- $\Box d|\frac{a}{b}$

## Question 11

On considère a, b et n des entiers tels que a|n et b|n. Quelles sont les affirmations vraies?

- $\Box a + b|n$
- $\Box a \times b | n$
- $\Box a + b|n^2$
- $\Box a \times b | n^2$

## Question 12

Soit  $a_1$  un entier dont le reste dans la division euclidienne par 5 est  $r_1 = 2$ . Soit  $a_2$  un entier dont le reste dans la division euclidienne par 5 est  $r_2 = 3$ . Quelles sont alors les affirmations vraies?

- $\square$  Le reste de la division euclidienne de  $a_1 + a_2$  par 5 est 0.
- $\square$  Le reste de la division euclidienne de  $a_1 + a_2$  par 5 est 5.
- $\square$  Le reste de la division euclidienne de  $2a_1 + 2a_2$  par 5 est 0.
- $\hfill \square$  L'écriture décimale de  $2a_1+2a_2$  finit par le chiffre 0.

## Question 13

Soit a > 0 un entier impair qui est un multiple de 3. Quelles sont alors les affirmations vraies?

- $\square$  *a* est un multiple de 6.
- ☐ L'écriture décimale de *a* finit nécessairement soit par 7 soit par 9.
- $\square$  pgcd(a, 3) = 3.
- $\square$  ppcm(a,3) = a.

## Question 14

Soient a et b deux entiers positifs tels que pgcd(a, b) = 10 et ppcm(a, b) = 140. Quelles sont les affirmations vraies?

- $\square$  pgcd(2a, 2b) = 20
- $\Box$  ppcm(2*a*, 2*b*) = 70
- $\square$  pgcd(2a, 2b) = 10
- $\Box$  ppcm(2*a*, 2*b*) = 280

| 1.4 Théorème de Bézout   Facile                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 15                                                                                                                                                                                                                                                                                                                                                                  |
| Soient deux entiers $a, b$ tels que $pgcd(a, b) = 1$ . Quelles sont les affirmations vraies?                                                                                                                                                                                                                                                                                 |
| $\Box$ a et b sont des nombres premiers.                                                                                                                                                                                                                                                                                                                                     |
| $\Box$ a et b sont des nombres premiers entre eux.                                                                                                                                                                                                                                                                                                                           |
| □ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 1$ .                                                                                                                                                                                                                                                                                                                   |
| $\square$ Il existe $u, v \in \mathbb{Z}$ tels que $au + bv = 2$ .                                                                                                                                                                                                                                                                                                           |
| Question 16                                                                                                                                                                                                                                                                                                                                                                  |
| Soient $a, b, c$ des entiers tels que $a bc$ . Dans le lemme de Gauss, quelle est la condition pour pouvoir conclure que $a c$ ?                                                                                                                                                                                                                                             |
| $\square$ pgcd $(a,b)=1$                                                                                                                                                                                                                                                                                                                                                     |
| $\square$ pgcd $(a,c)=1$                                                                                                                                                                                                                                                                                                                                                     |
| $\square$ pgcd $(b,c)=1$                                                                                                                                                                                                                                                                                                                                                     |
| $\Box$ a, b et c sont des nombres premiers.                                                                                                                                                                                                                                                                                                                                  |
| <b>Question 17</b> Soit $a$ et $b$ deux entiers tels que $pgcd(a,b) = 4$ . Alors on peut trouver deux entiers $u$ et $v$ tels que : $au - bv = 2$ $au + bv = 2$ $au - bv = 4$ $au + bv = 12$                                                                                                                                                                                 |
| 1.5 Théorème de Bézout   Moyen                                                                                                                                                                                                                                                                                                                                               |
| Question 18         Soient deux entiers positifs $a$ , $b$ , on calcule le pgcd de $a$ et $b$ par l'algorithme d'Euclide. La première étape est d'écrire la division euclidienne de $a$ par $b$ : $a = bq + r$ . Quelle est la second étape?         □ La division de $a$ par $r$ .         □ La division de $q$ par $r$ .         □ Cela dépend des valeurs de $a$ et $b$ . |
| Question 19                                                                                                                                                                                                                                                                                                                                                                  |
| Soient deux entiers positifs $a, b$ et $d = pgcd(a, b)$ . Quelles sont les affirmations vraies?                                                                                                                                                                                                                                                                              |
| □ Il existe $u, v \in \mathbb{Z}$ uniques tels que $au + bv = d$ .                                                                                                                                                                                                                                                                                                           |

 $\square$  Il existe  $u, v \in \mathbb{Z}$  tels que au + bv = d.

 $\ \, \square \ \, \text{Il existe} \,\, u,v \in \mathbb{N} \,\, \text{tels que} \,\, au+bv=d.$ 

 $\square$  Il existe  $u, v \in \mathbb{N}$  uniques tels que au + bv = d.

Pour a = 453 et b = 201, l'algorithme d'Euclide (étendu) fournit des coefficients de Bézout u et v tels que au + bv = pgcd(a, b) avec :

 $\Box u = 4, v = -9, pgcd(a, b) = 1.$ 

u = -12, v = 27, pgcd(a, b) = 51.

u = 1, v = -2, pgcd(a, b) = 51

u = 4, v = -9, pgcd(a, b) = 3.

## Question 21

Pour les entiers a, b suivants, les u, v donnés sont-ils des coefficients de Bézout, c'est-à-dire tels que au + bv = pgcd(a, b)?

 $\Box$  a = 7, b = 11, u = 2, v = -3

 $\Box$  a = 20, b = 55, u = 6, v = -2

 $\Box$  a = 28, b = 12, u = 1, v = -2

 $\Box$  *a* = 36, *b* = 15, *u* = -2, *v* = 5

## Question 22

Pour a = 41 et b = 7, on a notamment l'égalité  $a \times (-3) + b \times 18 = 3$ . Que peut-on en conclure?

 $\square$  pgcd(a, b) = 3.

 $\square$  pgcd(a, b) est un diviseur de 3.

 $\square$  Comme 3 ne divise pas 7 alors a et b sont premiers entre eux.

 $\Box$  -3 et 18 sont premiers entre eux.

#### Question 23

Soit deux nombres entiers a et b tels que  $5a^2 - 4b^2 = 1$ . Quelles sont les affirmations vraies?

 $\square$  pgcd( $a^2, b^2$ ) = 1.

 $\square$  pgcd(5a, 4b) = 1.

 $\square$  5 divise  $4b^2$ .

 $\square$  4 divise  $5a^2 - 1$ .

#### 1.6 Théorème de Bézout | Difficile

## Question 24

Quelles sont les affirmations vraies concernant l'algorithme d'Euclide?

☐ Il se peut que le processus n'aboutisse pas à cause d'un nombre infini de divisions à effectuer.

☐ Il se peut que le processus ne fournisse pas le pgcd correct.

☐ Le pgcd est le dernier reste non nul.

☐ L'algorithme étendu permet en plus de calculer des coefficients de Bézout.

#### Question 25

Soit *n* un entier tel que 5*n* soit un multiple de 7. Quelles sont alors les affirmations vraies?

| $\square$ <i>n</i> est un multiple de 7.                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Box$ 5 divise $7n$ .                                                                                                                                                                                                                                                                                                       |
| $\Box$ 7 divise $n$ .                                                                                                                                                                                                                                                                                                        |
| $\square$ 35 divise $n$ .                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                              |
| Question 26 Soient 5 entiers relatifs $a, b, c, u, v$ tels que $au + bv = 1$ et $a bc$ . Quelles sont alors les affirmations vraies?                                                                                                                                                                                         |
| 1.7 Nombres premiers   Facile                                                                                                                                                                                                                                                                                                |
| Question 27 Les entiers suivants sont-ils des nombres premiers?                                                                                                                                                                                                                                                              |
| □ 107                                                                                                                                                                                                                                                                                                                        |
| □ 113                                                                                                                                                                                                                                                                                                                        |
| □ 145                                                                                                                                                                                                                                                                                                                        |
| □ 153                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>Question 28</li> <li>Quelles sont les affirmations vraies?</li> <li>☐ Tout nombre impair supérieur à 3 est premier.</li> <li>☐ Tout nombre premier supérieur à 3 est impair.</li> <li>☐ Il existe une infinité de nombres premiers impairs.</li> <li>☐ Il existe une infinité de nombres premiers pairs.</li> </ul> |
| Question 29 Les entiers suivants sont-ils des nombres premiers?  □ 161                                                                                                                                                                                                                                                       |
| □ 169                                                                                                                                                                                                                                                                                                                        |
| □ 171                                                                                                                                                                                                                                                                                                                        |
| □ 179                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                              |

| 1.8 Nombres premiers   Moyen                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Question 30 Quelles sont les affirmations vraies?                                                                                                                                                                                                                    |
| $\square$ La somme de deux nombres premiers $\geqslant 3$ n'est jamais un nombre premier.                                                                                                                                                                            |
| $\square$ Le produit de deux nombres premiers $\geqslant 3$ n'est jamais un nombre premier.                                                                                                                                                                          |
| $\square$ Il existe un nombre premier $p \ge 3$ tel que $p+1$ soit aussi premier.                                                                                                                                                                                    |
| □ Il existe un nombre premier $p \ge 3$ tel que $p + 2$ soit aussi premier.                                                                                                                                                                                          |
| <b>Question 31</b> Soient $p$ un nombre premier et $a$ , $b$ des entiers avec $p ab$ . Par application du lemme d'Euclide, quelles sont les affirmations vraies?                                                                                                     |
| $\Box$ p divise a et p divise b.                                                                                                                                                                                                                                     |
| $\Box$ p divise a ou p divise b.                                                                                                                                                                                                                                     |
| $\Box$ <i>p</i> divise <i>a</i> ou <i>p</i> divise <i>b</i> , mais pas les deux en même temps.                                                                                                                                                                       |
| $\Box$ p ne divise ni a, ni b.                                                                                                                                                                                                                                       |
| <i>Question 32</i> Soit $n$ un entier tel que $n^2 - 1$ est un multiple de 11. Quelles sont les affirmations vraies?  □ 11 divise $n - 1$ .  □ 11 divise $n + 1$ .  □ (11 divise $n - 1$ ) ou (11 divise $n + 1$ ).  □ (11 divise $n - 1$ ) et (11 divise $n + 1$ ). |
| <b>Question 33</b> À l'aide d'une calculatrice, quelle est l'écriture de la décomposition en produit de facteurs premiers de $N=111111$ ?                                                                                                                            |

 $\square \ N = 11 \times 10101.$ 

 $\square \ N = 3 \times 11 \times 3367.$ 

 $\square \ N = 7 \times 33 \times 481.$ 

 $\square \ N = 3 \times 7 \times 11 \times 13 \times 3713.$ 

## Question 34

Soit  $p \ge 3$  un nombre premier et p = 4q + r le résultat de sa division euclidienne par 4. On peut alors avoir:

 $\Box r = 0$ 

 $\Box$  r=1

 $\Box$  r=2

 $\Box$  r=3

Soit p un nombre premier tel que 10 . On note <math>A le chiffre des dizaines et B le chiffre des unités de l'écriture décimale de p. Quelles sont les affirmations vraies?

 $\square$  *A* peut être pair.

 $\square$  *B* peut être pair.

 $\square$  On peut avoir A = B.

 $\square$  On peut avoir B = 9 - A.

## 1.9 Nombres premiers | Difficile

#### Question 36

Les entiers suivants ont été factorisés correctement. Quelles sont les écritures qui sont des décompositions en facteurs premiers?

 $\square 3025 = 1^3 \times 5^2 \times 11^2$ 

 $\Box 1836 = 2^2 \times 3 \times 3^2 \times 17$ 

 $\Box$  1444716 =  $2^2 \times 7^3 \times 9^2 \times 13$ 

 $\Box$  13 915 = 5 × 11<sup>2</sup> × 23

## Question 37

Soient  $a = 5^3 \times 11^2 \times 13^5 \times 19$  et  $b = 5^5 \times 7^4 \times 11 \times 19$  Quelles sont les affirmations vraies?

 $\Box$  pgcd(a, b) =  $5^3 \times 7^4 \times 11 \times 13^5 \times 19$ 

 $\square$  pgcd $(a, b) = 5 \times 11 \times 19$ 

 $\Box$  ppcm $(a, b) = 5^5 \times 7^4 \times 11^2 \times 13^5 \times 19$ 

 $\square \ \operatorname{ppcm}(a, b) = 5^5 \times 11^2 \times 19$ 

#### **Ouestion 38**

Soit  $a = 79475 = 5^2 \times 11 \times 17^2$ . Quelles sont les affirmations vraies?

 $\square$  pgcd(a, 75) =  $3 \times 5^2$ 

 $\square \operatorname{pgcd}(a,75) = 5^2$ 

 $ppcm(a,75) = 3 \times 11 \times 17^2$ 

□ 75|*a* 

#### Question 39

Soit  $p \ge 5$  un nombre premier et  $N = (p+3)^2 - p^2$ . Quelles sont les affirmations vraies?

 $\square$  2|N.

 $\square$  3|N.

 $\Box$  6|N.

 $\square$  p ne divise pas N.

## 1.10 Congruences | Facile

## Question 40

Quelles sont les affirmations vraies?

- $\square$  31  $\equiv$  6 [12]
- $\Box$  42  $\equiv$  16 [13]
- $\Box$  25  $\equiv$  -11 [14]
- $\square$  158  $\equiv$  8 [15]

## Question 41

Quelles sont les affirmations vraies?

- $\Box$  456789  $\equiv$  0 [2]
- $\Box$  43210  $\equiv$  0 [5]
- $\square$  23769  $\equiv$  3 [9]
- $\Box$  10326  $\equiv$  8 [10]

## Question 42

Si  $x \equiv 2$  [5], alors on a:

- $\square x^2 \equiv 2x [5]$
- $\Box$  3 $x \equiv -1[5]$
- $\square x+1\equiv 3[5]$
- $\Box$  10 $x \equiv 2[5]$

## Question 43

Parmi les nombres n ci-dessous, lequel vérifie à la fois  $n \equiv 5$  [14] et  $n \equiv 1$  [8]?

- $\square$  n=47
- $\square$  n = 57
- $\Box$  *n* = 89
- $\Box$  *n* = 103

## 1.11 Congruences | Moyen

#### Question 44

Soient  $a \equiv 2$  [13] et  $b \equiv 7$  [13]. Quelles sont les affirmations vraies?

- $\Box \ a+b \equiv 9 [13]$
- $\Box$   $ab \equiv 1 [13]$
- $\Box a^2 \equiv -9 [13]$
- $\Box b^3 \equiv 5 [13]$

## Question 45

Soient  $a \equiv b$  [n] et  $c \equiv d$  [n]. Quelles sont les affirmations vraies?

- $\Box \ a+b \equiv c+d [n]$
- $\Box a + c \equiv b + d \lceil n \rceil$
- $\Box \ a^2 \equiv b^2 [n]$
- $\Box c^2 \equiv d^2 [n]$

Soit n un entier premier avec 3. On peut alors affirmer :

- $\square$  2 $n \equiv 1 [3]$
- $\square$   $2n \equiv -1[3]$
- $\square$   $n^2 \equiv 1 [3]$
- $\square \ n^2 \equiv -1 [3]$

## Question 47

Soit *k* un entier et  $N = 5k^2 - 10k + 4$ . On peut affirmer :

- $\square$   $N \equiv 4[5]$
- $\square$   $N \equiv 5 [5]$
- $\square$   $N \equiv 5k^2 [2]$
- $\square$   $N \equiv 1[2]$

## 1.12 Congruences | Difficile

#### Question 48

Soit p un nombre premier et x un entier. Quel(s) énoncé(s) du petit théorème de Fermat sont corrects?

- $\Box x^p \equiv p[x]$
- $\Box x^p \equiv x[p]$
- $\square$  Si *p* ne divise pas *x*, alors  $x^{p-1} \equiv 0 \lceil x \rceil$
- $\square$  Si p ne divise pas x, alors  $x^{p-1} \equiv 0$  [p]

## Question 49

Quelles sont les affirmations vraies?

- $\square \ 2^8 \equiv 2 [8]$
- $3^{12} \equiv 3 \lceil 13 \rceil$
- $\Box 18^7 \equiv 1 [19]$
- $\Box 4^{16} \equiv 1 [17]$

#### Question 50

Soit un entier k tel que  $k \equiv 2$  [7]. Quelles sont les affirmations vraies?

- $\Box 2k^2 + k \equiv k^3 [7]$
- $\Box 3(k^4-k) \equiv 0[7]$

- $\Box 14k 2 \equiv 5 [7]$
- $\Box k^{18} + k^{12} + k^6 \equiv k [7]$

Pour quel(s) entier(s) n a-t-on  $10^{10} \equiv 7^{18} [n]$ ?

- $\square$  n=3
- $\square$  n=5
- $\square$  n=7
- $\square$  n=9

# Question 52

Quel est le chiffre des unités de 7<sup>100</sup>?

- $\Box$  1
- □ 3
- □ 5
- □ 9