Using Acid Red 94 to Detect and Quantify Pb²⁺ Ion Concentration in Water

Using Acid Red 94 to Pb²⁺ Ion Concen

Detect & Quantify tration in Water

Researchable Question

How can changes in the fluorescence emission intensity of acid red 94 (AR94) be used to detect and quantify Pb²⁺ (aq) ion concentration?

Hypothesis

As Pb²⁺ (aq) concentration increases, the fluorescence emission intensity of an aqueous solution of AR94 decreases possibly because the fluorescent dye AR94 associates with Pb²⁺ (aq) ions to form a complex that is not fluorescent.

Purpose

The overall aim of this project is to use the fluorescence emission intensity of AR94 dye in aqueous solution to detect and quantify $Pb^{2+}_{(aq)}$ ion concentration.

Background

- Drinking water contaminant detection
- Water-soluble fluorescent dyes

Figure 1: Chemical structure of AR94 (Chemical Book, 2016)

• Stern-Volmer plots

Figure 2: Absorption and fluorescence energy transitions. (Fulghum, L., 2018)

Methods and Materials

- Part 1: AR94 Aqueous Concentration ([AR94])
 - o Determine [AR94] that yields the greatest difference in maximum fluorescence intensity.
- Part 2: Lead Concentration vs. Fluorescence
 - Measure the fluorescence intensity for constant [AR94] and increasing lead concentration.
- Part 3: Selectivity and Sensitivity
 - o Compare AR94 soaked filter paper strips dipped in
 - dI water
 - same concentration of different metals
 - different concentrations of lead
 - Take several fluorescence intensity measurements for [AR94] from part 1.
- Part 4: Complex Structure
 - Vary mole fractions of AR94 and lead in aqueous solution. Measure the fluorescence intensity of each solution.

Variables and Constants

Variables

- Pb²⁺ (aq) concentration
- Metal nitrates

Constants

- AR94 Concentration
- Temperature
- Same solventdeionized (dI) water
- Excitation wavelength (530 nm)

Results

Figure 3: Data used to select [AR94]

Figure 4: Changes in the fluorescence spectrum of AR94 upon adding various concentrations of Pb²⁺

Figure 5: Modified Stern-Volmer Plot

Table 1: Detection Limit Calculation (EPA Action Level ≈ 7.24E-08 M)

	Lab Day 2	Lab Day 3
Trials	$I_0/(I_0*)$	$I_0/(I_0^*)$
1	1.040	0.983
2	1.048	0.987
3	1.046	0.981
4	1.045	0.981
5	1.036	0.979
6	1.035	0.981
7	1.021	0.986
8	1.019	0.977
9	1.018	0.981
10	1.021	0.976
Average Ratio	1.033	0.981
Standard Deviation (σ)	0.012	0.003
Average Stern-Volmer Plot Slope (s)	4438	5181
Limit of Detection (M)	8.12E-06	2.02E-06

Figure 6: AR94 to Pb²⁺ Complexation Molar Ratio Determination

AR94 and Pb²⁺ Complex Proposed Structure

3D Molecular Structure of the Complex (front view)

3D Molecular Structure of the Complex (back view)

Figure 7: Chemical structure of AR94-Pb²⁺ complex

Data Analysis

Figure 8: Analysis of residuals

Data Analysis

- Linearized Exponential Model
 - $\circ R^2 = 0.962$
- Linear Regression t-Test for Slope
 - \circ Parameter β = true regression line slope
 - Null Hypothesis H_0 : $\beta = 0$
 - o Alternative Hypothesis H_a : $\beta > 0$

Table 2: Linear Regression t-Test Data and Results

Linear Regression t-Test					
Average [Pb ²⁺], M	Sample Slope	Standard Error	t Statistic	p-value	
1.18E-04	5181	190	27.30	0.00	

- Linear Regression Slope 95% Confidence Interval
 - (Sample slope) ± (critical t value) × (standard error)
 - \circ 5181 ± (2.05) (190) \approx 5181 ± 390
 - o (4791, 5571)

Possible Sources of Error

- Chemical Impurities
- Imprecise volume measurements
- Power of light used for excitation

Conclusions and Discussion

• Part 1:

 \circ 1.4 × 10⁻⁴ M [AR94] and 2.6 × 10⁻⁵ M [Pb²⁺] (vial 4) resulted in the greatest maximum fluorescence intensity difference.

• Part 2:

- The data supports the hypothesis.
- o Increasing [Pb²⁺] increases fluorescence intensity ratio in aqueous AR94 solution, and therefore decreases fluorescence.

• Part 3:

- O High [AR94] is necessary for visible color change in response to [Pb²⁺].
- Higher [Pb²⁺] results in a more pronounced color change.

• Part 4:

○ AR94 to Pb²⁺ form a complex in a 1 to 2 molar ratio.

Future Work

- AR94 and Pb²⁺ complex crystals
 - o X-ray crystallography
 - o Fourier-transform infrared spectroscopy (FTIR)
- Paper strips
 - o Color scale
 - Increase precision

References

- Chemical Book. (2016). Acid Dye. Retrieved December 8, 2019, from https://www.chemicalbook.com/ProductCatalog_EN/161119.htm
- Fulghum, L. (2018, May 3). Ca²⁺ Detection in Muscle Tissue using Fluorescence Spectroscopy. Retrieved from https://www.wpiinc.com/blog/post/ca-sup-2-sup-detection-in-muscle-tissue-using-fluorescence-spectroscopy

METHODS AND MATERIALS

PART 1: AR94 AQUEOUS CONCENTRATION ([AR94])

• Determine [AR94] that yields the greatest difference in maximum fluorescence intensity.

- Measure the fluorescence intensity for
 - o Constant [AR94]
 - o Increasing lead concentration

PART 3: SELECTIVITY AND SENSITIVITY

- Compare AR94 soaked filter paper strips dipped in
 - o dI water
 - same concentration of different metals
 - different concentrations of lead
- Take several fluorescence intensity measurements for [AR94] from part 1.

PART 4: COMPLEX STRUCTURE

- Vary mole fractions of AR94 and lead in aqueous solution.
- Measure the fluorescence intensity of each solution.