IoT-enabled Grid Monitoring and Management System for EV Chargers in Residential Applications

Project Group 08

Mohamed Haneen: TVE21EE088 Muhammed Shehin S: TVE21EE092 Neha V K: TVE21EE096 Sriram M: TVF21EF123

Under the Guidance of Prof. Sohan Placid John, Assistant Professor

Dept. of Electrical and Electronics Engineering College of Engineering Trivandrum

Outline

- Introduction
- Objectives
- 3 Literature Review
- 4 Methodology
- 6 Components
- 6 Work Plan
- Outcome
- References

Introduction

- The number of electric vehicle (EV) users in India is rapidly increasing.
- This surge in EV users can significantly impact the power distribution grid, leading to increased load, grid congestion, voltage drops, and reduced power quality.
- For our project, we plan to focus on developing an Enhanced System for addressing this potential issue.

Objectives

- Develop a system for real time data collection and analysis.
- Upgrade existing digital meters with an additional module.
- Create a backend server for data management.

Literature Review

SI. No	Title	Details of publication	Year	Remarks
1	I. Varadarajan, T. Babu,	2022 1st Interna-	2022	Proposes a system for real-Time data mon-
	P. M and P. Nivedhitha,	tional Conference on		itoring for energy meters
	"IoT-Based Energy Me-	Computational Sci-		
	ter Analysis Using Real-	ence and Technology		
	Time Data Monitoring,"	(ICCST), CHENNAI,		
		India, 2022, pp.		
		138-141,		
2	Srivatchan NS, Rangara-	Concurrency Com-	2018	The operating principle of the transformer-
	jan P. A novel low-	putat Pract Exper.		less seven-level inverter is analyzed and de-
	cost smart energy meter	2018;e5042		tailed
	based on IoT for develop-			
	ing countries' microgrids.			
3	N. A. Hidayatullah, A.	IOP Conf. Ser.,	2018	Introduces fundamental Internet of Things
	C. Kurniawan, and A.	Mater. Sci. Eng., vol.		architecture for power transmission and dis-
	Kalam, "Power trans-	384, no. 1, 2018, Art.		tribution monitoring system.
	mission and distribution	no. 012039,		
	monitoring using Internet	·		
	of Things (IoT) for smart			
	grid,"			

Methodology

Figure: Proposed Model

Components

SI.	Component	Cost
No		
1	STM32F103C Microcontroller	₹649.00
2	SX1278 LoRa Module x2	₹800.00
3	Infrared Sensor	₹200.00
4	3.7V Li-ion Battery	₹500.00
5	Raspberry Pi Zero	₹1,649.00
	Total Cost	₹3798.00

Table: Component List

Work Plan

SI.	Task	Period	Status
No			
1	Literature review	Aug-Sept	Ongoing
2	Hardware Procurement	Sept	To be done
3	Design and implement a	Oct	To be done
	prototype to collect en-		
	ergy meter data		
4	Design and implement a	Oct-Nov	To be done
	LoRaWAN gateway		
5	Create a backend server	Jan-Feb	To be done
	for data collection and		
	analysis		

Table: Project Work Plan

Outcome

- An IoT Based module for real time data acquisition from existing energy meters.
- A data analysis and management system for monitoring EV charging usage.

References

- [1] G. A. Abiassaf and A. A. Arkadan, "Impact of EV Charging, Charging Speed, and Strategy on the Distribution Grid: A Case Study," in IEEE Journal of Emerging and Selected Topics in Industrial Electronics, vol. 5, no. 2, pp. 531-542, April 2024, doi: 10.1109/JESTIE.2024.3352505.
- [2] I. Varadarajan, T. Babu, P. M and P. Nivedhitha, "IoT-Based Energy Meter Analysis Using Real-Time Data Monitoring," 2022 1st International Conference on Computational Science and Technology (ICCST), CHENNAI, India, 2022, pp. 138-141, doi: 10.1109/ICCST55948.2022.10040444.
- [3] Srivatchan NS, Rangarajan P. A novel low-cost smart energy meter based on IoT for developing countries' micro grids. Concurrency Computat Pract Exper. 2018;e5042. https://doi.org/10.1002/cpe.5042

THANK YOU