

Adapting Foundation Models: From Reinforcement Learning to Multivariate Time Series Forecasting

Abdelhakim Benechehab¹²

¹Huawei Paris Noah's Ark Lab

²Department of Data Science, EURECOM

abdelhakim.benechehab@gmail.com

_

February 23, 2025

Outline

- 1 Adapting LLMs for Model-based Reinforcement Learning
 - Preliminaries
 - Problem setup
 - Approach
 - Results
- 2 Adapting Multivariate Time Series Foundation models
 - Problem setup
 - Approach
 - Results
- 3 Conclusion

Preliminaries

Reinforcement Learning

Reinforcement Learning environments are Markov decision processes $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, P, r, \mu_0, \gamma \rangle$, where:

- S state space, A action space.
- Transition fn $P_t: (s, a, s') \mapsto \mathbf{Pr}(s_{t+1} = s' | s_t = s, a_t = a).$
- Reward function $r : (s, a) \mapsto r(s, a)$.
- lacksquare μ_0 initial state distribution, $\gamma \in [0,1]$ discount factor.

Reinforcement Learning

The goal of RL is to find a policy $\pi: \mathcal{S} \to \Delta(\mathcal{A})$ that maximizes the return:

$$\eta(\pi) := \mathbb{E}_{s_0 \sim \mu_0, a_t \sim \pi, s_{t>0} \sim P_t} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$

Model-based Reinforcement Learning

Model-based RL (MBRL) learns the transition \hat{P} from interaction data. The model maximizes the log-likelihood:

$$\mathcal{L}(\mathcal{D}; \hat{P}) = \frac{1}{N} \sum_{i=1}^{N} \log \hat{P}(s_{t+1}^{i} | s_{t}^{i}, a_{t}^{i})$$

The learned model is used for policy search under the *learned* MDP $\widehat{\mathcal{M}} = \langle \mathcal{S}, \mathcal{A}, \hat{P}, r, \mu_0, \gamma \rangle$.

Motivation

MBRL is particularly useful under **budget** and **safety** constraints.

Large Language Models (LLMs)

Large Language Models (LLMs) are **transformer**-based, **decoder-only** models trained using **autoregressive** next token prediction.

Numerical data tokenization

LLaMA 3 Tokenizer

- Digits: ['0', '1', ... '999']
- Token lds: [15, 16, 17, ... 5500]

"151,167,...,267"

Time series processing

- Time series: [0.2513, 5.2387, 9.7889]
- Rescale+Encode: [150, 516, 850]
- Input str: '150,516,850,'
- Input str token list: ['150', ',', '516', ',', '850', ',']
- Input str token Id list: [3965, 11, 20571, 11, 16217, 11]

Sampling: Softmax over the digits tokens

In-context Learning (ICL)

In-context learning	Input prompt	Desired Output
Natural language	berry, baya, apple, manzana, banana	plátano
processing	Japan, mochi, France, croissant, Greece	baklava
Supervised learning $y_i = f(x_i) + \text{noise}$	$x_1, y_1, x_2, \dots, x_{i-1}, y_{i-1}, x_i$	$f(x_i)$
Dynamical systems $x_{i+1} = f(x_i) + \text{noise}$	$x_1, x_2, x_3, \dots, x_{i-2}, x_{i-1}, x_i$	$f(x_i)$

Problem setup

Dynamics learning using LLMs

- State space \mathbb{R}^{d_s} , Action space \mathbb{R}^{d_a} , Reward \mathbb{R}
- Given a trajectory

$$\tau^{\pi} = (s_0, a_0, s_1, a_1, s_2, \dots, s_{T-1})$$

We want to learn the distribution of the next state using ICL and a pre-trained LLM with parameters θ :

$$\{\hat{P}_{\theta}^{\pi,j}(s_t^j|\tau^{\pi})\}_{t\leq T,j\leq d_s} = \mathsf{ICL}_{\theta}(\tau^{\pi})$$

Challenges:

- **1** Multivariate states: $d_s > 1$
- 2 Including actions in-context: $P(s_t^j|s_0, \mathbf{a_0}, s_1, \mathbf{a_1}, s_2, \dots, s_{T-1})$

Approach

DICL: Disentangled In-Context Learning [1]

In practice, we project states and actions (s,a) into the space of PCA components.

Results

Results: Prediction Error

PCA-based DICL achieves smaller multi-step error in less computational time. We compare $\mathsf{DICL}\text{-}(s)$ and $\mathsf{DICL}\text{-}(s,a)$ using a number of components equal to half the number of features, with the vanilla approach vICL and an MLP baseline.

Results: DICL-SAC

SAC: Soft Actor-Critic (an off-shelf RL algorithm)

+DICL

DICL-SAC

SAC $SAC - ICL(\alpha = 5\%)$ $SAC - ICL(\alpha = 10\%)$ $SAC - ICL(\alpha = 25\%)$

Step

1e5

0.0

0.25 0.50 0.75 1.00

for $t = 1, ..., N_{-interactions}$ do New transition (s_t, a_t, r_t, s_{t+1}) from π_{θ} Add (s_t, a_t, r_t, s_{t+1}) to \mathcal{R}

if Generate LLM data then

end if

end if

Store auxiliary action $\tilde{a}_t \sim \pi_{\theta}(.|s_t)$

Sample trajectory $\mathcal{T} = (s_0, \dots, s_{T_{\max}})$ from \mathcal{R}

Results: DICL-SAC (Theoretical guarantee)

Under mild assumptions on the LLM prediction error ε_{Ilm} , we have:

Theorem (Multi-branch return bound)

- T the context length
- $\mathbf{p} \in [0,1]$ probability of branching
- lacksquare the branch length
- lacksquare $\varepsilon_{\it llm}$ the LLM in-context learning prediction error

$$|\eta(\pi) - \eta_{p,k,T}^{\textit{llm}}(\pi)| \leq 2 \frac{\gamma^T}{1 - \gamma} r_{\max} k^2 \frac{p}{p} \varepsilon_{\textit{llm}}(T)$$

where $r_{\max} = \max_{s \in \mathcal{S}, a \in \mathcal{A}} r(s, a)$.

Results: Calibration

Quantile calibration: For probabilistic regression, a perfectly calibrated forecaster means that p% of groundtruth values fall within the p%-confidence interval of the predicted CDF.

LLMs are well-calibrated in-context forecasters.

Outline

- 1 Adapting LLMs for Model-based Reinforcement Learning
 - Preliminaries
 - Problem setup
 - Approach
 - Results
- 2 Adapting Multivariate Time Series Foundation models
 - Problem setup
 - Approach
 - Results
- 3 Conclusion

Problem setup

Problem setup

Consider a multivariate time series forecasting task:

- $\mathbf{X} \in \mathbb{R}^{L \times D}$ data matrix
- $\mathbf{Y} \in \mathbb{R}^{H imes D}$ target
 - L lookback window (context length)
 - ullet H forecasting horizon
 - D dimension (number of covariates)

We want to find the best adapter φ^* such that:

Definition (adapter)

Feature-space transformation $\varphi: \mathbb{R}^D \to \mathbb{R}^{D'}$ such that:

$$\hat{\mathbf{Y}}(\mathbf{X};\varphi) = \varphi^{-1}\big(\mathrm{FM}(\varphi(\mathbf{X}))\big), \text{ and } \varphi^* = \mathrm{argmin}_{\varphi}\|\mathbf{Y} - \hat{\mathbf{Y}}(\mathbf{X};\varphi)\|_{\mathrm{F}}^2,$$

where FM is a fixed time series foundation model.

Approach

AdaPTS

AdaPTS: Adapters for Probabilistic multivariate \underline{T} ime Series forcasting [2]

Properties:

- Mixing features
- Probabilistic predictions

Results

Results: Forecasting error (MSE)

Families of adapters:

- 1 deterministic
 - Linear AutoEncoder
 - Deep non-linear AutoEncoder
 - Normalizing Flow
- probabilistic
 - + Variational Inference
 - + MC Dropout

Dataset	Н	No adpt	with adapter				
		Moment	PCA	LinAE	dropLAE	LinVAE	VAE
ETTh1	96 192	$0.411_{ \pm .012} \\ 0.431_{ \pm .001}$	$^{0.433}_{\pm.001}_{0.440}_{\pm.000}$	$\substack{0.402_{\pm .002}\\0.452_{\pm .002}}$	$0.395_{\pm.003} \\ 0.446_{\pm.001}$	$^{0.400}_{ \pm .001}_{ 0.448 \pm .002}$	$0.404_{ \pm .001} \\ 0.431_{ \pm .001}$
III	24 60	$\substack{2.902 \pm .023 \\ 3.000 \pm .004}$	$\substack{2.98_{\pm .001}\\3.079_{\pm .000}}$	$\substack{2.624_{\pm .035}\\3.110_{\pm .127}}$	$\substack{2.76 \pm .061 \\ 2.794 \pm .015}$	$\substack{2.542 \pm .036 \\ 2.752 \pm .040}$	$\substack{\textbf{2.461}_{\pm .008} \\ 2.960_{\pm .092}}$
Wth	96 192	$^{0.177_{\pm.010}}_{0.202_{\pm.000}}$	$^{0.176_{\pm.000}}_{0.208_{\pm.001}}$	$0.169_{ \pm .000} \\ 0.198_{ \pm .001}$	$0.156_{\pm .001} \\ 0.200_{\pm .001}$	$^{0.161}_{0.204}{}^{\pm.001}_{0.204}$	$0.187_{\pm .001} \\ 0.226_{\pm .000}$
ExR		$0.130_{\pm .011} \\ 0.210_{\pm .002}$		$\substack{0.167_{\pm.013}\\0.304_{\pm.005}}$	$0.130_{\pm.011} \\ 0.305_{\pm.013}$	$\substack{0.243_{\pm .039}\\0.457_{\pm .020}}$	$\substack{0.455 \pm .010 \\ 0.607 \pm .021}$

Results: Interpretable latent representations

Desirable representation learning properties:

Figure: Visualization of the latent representation obtained by different adapters on Illness (H=24). Shaded colors indicate the time dimension, with lighter colors representing earlier timesteps.

Results: Dimensionality reduction

Better forecasting accuracy even with lower dimensions

Outline

- 1 Adapting LLMs for Model-based Reinforcement Learning
 - Preliminaries
 - Problem setup
 - Approach
 - Results
- 2 Adapting Multivariate Time Series Foundation models
 - Problem setup
 - Approach
 - Results
- 3 Conclusion

Conclusion

- We presented DICL, a methodology to adapt LLMs for the task of dynamics learning in MBRL
- We then presented AdaPTS a learning-based and probabilistic extension of adapters to multivariate time series forecasting

Take Home Message

Foundation Models are powerful predictors trained on vast amounts of data

 \rightarrow Adapters are an effective way to adapt FMs to custom problems

References

A. Benechehab, Y. A. E. Hili, A. Odonnat, O. Zekri, A. Thomas, G. Paolo, M. Filippone, I. Redko, and B. Kégl, "Zero-shot model-based reinforcement learning using large language models," in *The Thirteenth International Conference on Learning Representations (ICLR)*, 2025.

A. Benechehab, V. Feofanov, G. Paolo, A. Thomas, M. Filippone, and B. Kégl, "Adapts: Adapting univariate foundation models to probabilistic multivariate time series forecasting," 2025.

Thank You!

Want to know more?

Contact:

https://abenechehab.github.io/

■ abdelhakim.benechehab@gmail.com

n @abenechehab

Slides available at:

https://abenechehab.github.io/assets/pdf/adapters.pdf