3.9 — Logarithmic Regression

ECON 480 • Econometrics • Fall 2020

Ryan Safner

Assistant Professor of Economics

- safner@hood.edu
- ryansafner/metricsF20
- metricsF20.classes.ryansafner.com

Outline

Natural Logarithms

Linear-Log Model

Log-Linear Model

Log-Log Model

Comparing Across Units

Joint Hypothesis Testing

• Consider the gapminder example

• Consider the gapminder example

\$\$\color{red}{\widehat{\text{Life}}
Expectancy}_i}=\hat{\beta_0}+\hat{\beta_1}\text{GDP per capita}_i}\$\$

• Consider the gapminder example

\$\$\color{red}{\widehat{\text{Life}}
Expectancy}_i}=\hat{\beta_0}+\hat{\beta_1}\text{GDP per capita}_i}\$\$

\$\$\color{green}{\widehat{\text{Life}}
Expectancy}_i}=\hat{\beta_0}+\hat{\beta_1}\text{GDP per capita}_i^2}\$\$

• Consider the gapminder example

\$\$\color{red}{\widehat{\text{Life}}
Expectancy}_i}=\hat{\beta_0}+\hat{\beta_1}\text{GDP per capita}_i}\$\$

\$\$\color{green}{\widehat{\text{Life}}
Expectancy}_i}=\hat{\beta_0}+\hat{\beta_1}\text{GDP per capita}_i+\hat{\beta_2}\text{GDP per capita}_i^2}\$\$

\$\$\color{orange}{\widehat{\text{Life}}
Expectancy}_i}=\hat{\beta_0}+\hat{\beta_1}\ln \text{GDP per capita}_i}\$\$

Natural Logarithms

Logarithmic Models

- Another useful model for nonlinear data is the logarithmic model[†]
 - We transform either \(X\), \(Y\), or both by taking the (natural) logarithm
- Logarithmic model has two additional advantages
 - 1. We can easily interpret coefficients as **percentage changes** or **elasticities**
 - 2. Useful economic shape: diminishing returns (production functions, utility functions, etc)

[†] Don't confuse this with a logistic (logit) model for dependent dummy variables.

The Natural Logarithm

- The exponential function, \(Y=e^X\) or \
 (Y=exp(X)\), where base \(e=2.71828...\)
- Natural logarithm is the inverse, \
 (Y=ln(X)\)

The Natural Logarithm: Review I

- Exponents are defined as \$\$\color{#6A5ACD}{b}^{\color{#e64173}{n}}=\underbrace{\color{#6A5ACD}{b} \times \color{#6A5ACD}{b} \times \color{#6A5ACD}{b}}_{\color{#e64173}{n} \text{ times}}\$\$
 where base \(\color{#6A5ACD}{b}\) is multiplied by itself \(\color{#e64173}{n}\) times
- Example: \(\color{#6A5ACD}{2}^{\color{#e64173}{3}}=\underbrace{\color{#6A5ACD}{2} \times \color{#6A5ACD}{2} \times \color{#6A5ACD}{2}}_{\color{#e64173}{n=3}}=\color{#314f4f}{8}\)
- **Logarithms** are the inverse, defined as the exponents in the expressions above \$\$\text{If } \color{#6A5ACD} {b}^{\color{#e64173}{n}}=\color{#314f4f}{y}\text{, then }\log_{\color{#6A5ACD}{b}}(\color{#314f4f} {y})=\color{#e64173}{n}\$\$
 - \(\color{#e64173}{n}\) is the number you must raise \(\color{#6A5ACD}{b}\) to in order to get \(\color{#314f4f}{y}\)
- **Example**: \(log_{\color{#6A5ACD}{2}}(\color{#314f4f}{8})=\color{#e64173}{3}\)

The Natural Logarithm: Review II

• Logarithms can have any base, but common to use the **natural logarithm \((ln)\)** with base \ (\mathbf{e=2.71828...}\) \$\$\text{If } e^n=y\text{, then } \ln(y)=n\$\$

The Natural Logarithm: Properties

• Natural logs have a lot of useful properties:

1.
$$\left(\ln\left(\frac{1}{x}\right)=-\ln(x)\right)$$

2.
$$\ln(ab)=\ln(a)+\ln(b)$$

3.
$$(\ln(\frac{x}{a})=\ln(x)-\ln(a))$$

4.
$$\ln(x^a)=a \ln(x)$$

5.
$$(\frac{d \, \ln \, x}{d \, x} = \frac{1}{x})$$

The Natural Logarithm: Example

Most useful property: for small change in \(x\), \(\Delta x\):

\$\$\underbrace{\ln(x+\Delta x) - \ln(x)}_{\text{Difference in logs}} \approx \underbrace{\frac{\Delta x} {x}}_{\text{Relative change}}\$\$

Example: Let (x=100) and $(\Delta x = 1)$, relative change is:

 $\$ \frac{\Delta x}{x} = \frac{(101-100)}{100} = 0.01 \text{ or }1\%\$\$

• The logged difference: \$\$ln(101)-ln(100) = 0.00995 \approx 1\%\$\$

• This allows us to very easily interpret coefficients as **percent changes** or **elasticities**

Elasticity

• An elasticity between any two variables, \(\epsilon_{Y,X}\) describes the responsiveness (in %) of one variable \((Y)\) to a change in another \((X)\)

\$\$\epsilon_{Y,X}=\frac{\% \Delta Y}{\% \Delta X} =\cfrac{\left(\frac{\Delta Y}{Y}\right)}{\left(\frac{\Delta X}{X}\right)}\$\$

- Numerator is relative change in \(Y\), Denominator is relative change in \(X\)
- Interpretation: a 1% change in \(X\) will cause a \(\epsilon_{Y,X}\)% chang in \(Y\)

Math FYI: Cobb Douglas Functions and Logs

- One of the (many) reasons why economists love Cobb-Douglas functions: \$\$Y=AL^{\alpha}K^{\beta}\$\$
- Taking logs, relationship becomes linear:

```
\ \ln(Y)=\ln(A)+\alpha \ln(L)+ \beta \ln(K)\$
```

- With data on \((Y, L, K)\) and linear regression, can estimate \(\alpha\) and \(\beta\)
 - \(\alpha\): elasticity of \(Y\) with respect to \(L\)
 - A 1% change in \(L\) will lead to an \(\alpha\)% change in \(Y\)
 - \(\beta\): elasticity of \(Y\) with respect to \(K\)
 - A 1% change in \(K\) will lead to a \(\beta\)% change in \(Y\)

Math FYI: Cobb Douglas Functions and Logs

Example: Cobb-Douglas production function: \$\$Y=2L^{0.75}K^{0.25}\$\$

• Taking logs:

\$\$\ln Y=\ln 2+0.75 \ln L + 0.25 \ln K\$\$

- A 1% change in \(L\) will yield a 0.75% change in output \(Y\)
- A 1% change in \(K\) will yield a 0.25% change in output \(Y\)

Logarithms in R I

• The log() function can easily take the logarithm

```
gapminder <- gapminder %>%
  mutate(loggdp = log(gdpPercap)) # log GDP per capita
gapminder %>% head() # look at it
```

country	continent	year	lifeExp	pop	gdpPercap	loggdp
<fctr></fctr>		<int></int>		<int></int>		<dpl></dpl>
Afghanistan	Asia	1952	28.801	8425333	779.4453	6.658583
Afghanistan	Asia	1957	30.332	9240934	820.8530	6.710344
Afghanistan	Asia	1962	31.997	10267083	853.1007	6.748878
Afghanistan	Asia	1967	34.020	11537966	836.1971	6.728864
Afghanistan	Asia	1972	36.088	13079460	739.9811	6.606625
Afghanistan	Asia	1977	38.438	14880372	786.1134	6.667101

6 rows

Logarithms in R II

- Note, log() by default is the **natural logarithm \((ln()\))**, i.e. base e
 - \circ Can change base with e.g. log(x, base = 5)
 - Some common built-in logs: log10, log2

```
log10(100)
## [1] 2
log2(16)
## [1] 4
log(19683, base=3)
## [1] 9
```

Logarithms in R III

Note when running a regression, you can pre-transform the data into logs (as I did above),
 or just add log() around a variable in the regression

```
lm(lifeExp ~ loggdp,
  data = gapminder) %>%
  tidy()
```

term	estimate	std.error	statistic	p.value
<chr></chr>				
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

term	estimate	std.error	statistic	p.value
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
log(gdpPercap)	8.405085	0.148762	56.500206	0.000000e+00

Types of Logarithmic Models

- Three types of log regression models, depending on which variables we log
- 1. Linear-log model: \(Y_i=\beta_0+\beta_1 \color{#e64173}{\ln X_i}\)
- 2. Log-linear model: \(\color{#e64173}{\ln Y_i}=\beta_0+\beta_1X_i\)
- 3. Log-log model: \(\color{#e64173}{\ln Y_i}=\beta_0+\beta_1 \color{#e64173}{\ln X_i}\)

Linear-Log Model

Linear-Log Model

• Linear-log model has an independent variable \((X)\) that is logged

Marginal effect of \(\mathbf{X \rightarrow Y}\\): a 1% change in \(X \rightarrow\) a \(\frac{\beta_1}{100}\) unit change in \(Y\)

lin_log_reg <- lm(lifeExp ~ loggdp, data = gapm
library(broom)</pre>

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

\$\widehat{\text{Life Expectancy}}_i=-9.10+9.41 \,
\text{In GDP}_i\$\$

lin_log_reg <- lm(lifeExp ~ loggdp, data = gapm
library(broom)</pre>

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>				
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

\$\widehat{\text{Life Expectancy}}_i=-9.10+9.41 \,
\text{In GDP}_i\$\$

• A 1% change in GDP \(\rightarrow\) a \
(\frac{9.41}{100}=\) 0.0941 year increase in Life
Expectancy

lin_log_reg <- lm(lifeExp ~ loggdp, data = gapm
library(broom)</pre>

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

\$\$\widehat{\text{Life Expectancy}}_i=-9.10+9.41 \,
\text{ln GDP}_i\$\$

- A **1% change in GDP** \(\rightarrow\) a \ (\frac{9.41}{100}=\) **0.0941 year increase** in Life Expectancy
- A 25% fall in GDP \(\rightarrow\) a \((-25 \times 0.0941)=\) 2.353 year decrease in Life
 Expectancy

lin_log_reg <- lm(lifeExp ~ loggdp, data = gapm
library(broom)</pre>

lin_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
(Intercept)	-9.100889	1.227674	-7.413117	1.934812e-13
loggdp	8.405085	0.148762	56.500206	0.000000e+00

\$\$\widehat{\text{Life Expectancy}}_i=-9.10+9.41 \,
\text{ln GDP}_i\$\$

- A 1% change in GDP \(\rightarrow\) a \
 (\frac{9.41}{100}=\) 0.0941 year increase in Life
 Expectancy
- A 25% fall in GDP \(\rightarrow\) a \((-25 \times 0.0941)=\) 2.353 year decrease in Life
 Expectancy
- A 100% rise in GDP \(\rightarrow\) a \((100 \times 0.0941)=\) 9.041 year increase in Life Expectancy

Linear-Log Model Graph I

Linear-Log Model Graph II

Log-Linear Model

Log-Linear Model

• Log-linear model has the dependent variable \((Y)\) logged

```
$$\begin{align*} \color{#e64173}{\ln Y_i}&=\beta_0+\beta_1 X\\ \beta_1&=\cfrac{\big(\frac{\Delta Y}{Y}\big)}{\Delta X}\\ \end{align*}$$
```

Marginal effect of \(\mathbf{X \rightarrow Y}\): a 1 unit change in \(X \rightarrow\) a \(\beta_1 \times 100\) % change in \(Y\)

Log-Linear Model in R (Preliminaries)

- We will again have very large/small coefficients if we deal with GDP directly, again let's transform gdpPercap into \$1,000s, call it gdp_t
- Then log LifeExp

country	continent	year	lifeExp	pop	gdpPercap	loggdp	gdp_t	loglife
<fctr></fctr>	<fctr></fctr>	<int></int>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dpl></dpl>
Afghanistan	Asia	1952	28.801	8425333	779.4453	6.658583	0.7794453	3.360410
Afghanistan	Asia	1957	30.332	9240934	820.8530	6.710344	0.8208530	3.412203
Afghanistan	Asia	1962	31.997	10267083	853.1007	6.748878	0.8531007	3.465642
Afghanistan	Asia	1967	34.020	11537966	836.1971	6.728864	0.8361971	3.526949
Afghanistan	Asia	1972	36.088	13079460	739.9811	6.606625	0.7399811	3.585960
Afghanistan	Asia	1977	38.438	14880372	786.1134	6.667101	0.7861134	3.649047

log_lin_reg<-lm(loglife~gdp_t, data = gapminder
tidy(log_lin_reg)</pre>

term	estimate	std.error	statistic	p.value
(Intercept)	3.966639	0.0058345501	679.85339	0.000000e+00
gdp_t	0.012917	0.0004777072	27.03958	2.920378e-134

\$\widehat{\In\text{Life Expectancy}}_i=3.967+0.013
\, \text{GDP}_i\$\$

log_lin_reg <- lm(loglife ~ gdp_t, data = gapmi
log_lin_reg %>% tidy()

		<dbl></dbl>
6639 0.00583455	679.85339	0.000000e+00
2917 0.00047770	27.03958	2.920378e-134
	0.00583455	6639 0.0058345501 679.85339

\$\widehat{\ln\text{Life Expectancy}}_i=3.967+0.013
\, \text{GDP}_i\$\$

• A \$1 (thousand) change in GDP \(\rightarrow\) a \(0.013 \times 100\%=\) 1.3% increase in Life Expectancy

log_lin_reg <- lm(loglife ~ gdp_t, data = gapmi
log_lin_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>				<dpl></dpl>
(Intercept)	3.966639	0.0058345501	679.85339	0.000000e+00
gdp_t	0.012917	0.0004777072	27.03958	2.920378e-134

\$\widehat{In(\text{Life Expectancy})}_i=3.967+0.013
\, \text{GDP}_i\$\$

- A \$1 (thousand) change in GDP \(\rightarrow\) a \((0.013 \times 100\%=\) 1.3% increase in Life Expectancy
- A \$25 (thousand) fall in GDP \(\rightarrow\) a \((-25 \times 1.3\%)=\) 32.5% decrease in Life Expectancy

log_lin_reg <- lm(loglife ~ gdp_t, data = gapmi
log_lin_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>				<dpl></dpl>
(Intercept)	3.966639	0.0058345501	679.85339	0.000000e+00
gdp_t	0.012917	0.0004777072	27.03958	2.920378e-134

\$\$\widehat{In(\text{Life Expectancy})}_i=3.967+0.013
\, \text{GDP}_i\$\$

- A \$1 (thousand) change in GDP \(\rightarrow\) a \((0.013 \times 100\%=\) 1.3% increase in Life Expectancy
- A \$25 (thousand) fall in GDP \(\rightarrow\) a \((-25 \times 1.3\%)=\) 32.5% decrease in Life Expectancy
- A \$100 (thousand) rise in GDP \(\rightarrow\) a \((100 \times 1.3\%)=\) 130% increase in Life Expectancy

Linear-Log Model Graph I

Log-Log Model

Log-Log Model

Log-log model has both variables \((X \text{ and } Y)\) logged

```
 $\ \phi^* \ \color{\#e64173}{\ln Y_i} = \det_0+\beta_1 \ \color{\#e64173}{\ln X_i} \ \beta_1&=\cfrac{\left\phi(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173}{\hig(\frac{\Phi4173
```

- Marginal effect of \(\mathbf{X \rightarrow Y}\): a 1% change in \(X \rightarrow\) a \(\beta_1\) % change in \(Y\)
- \(\beta_1\) is the **elasticity** of \(Y\) with respect to \(X\)!

log_log_reg <- lm(loglife ~ loggdp, data = gapm
log_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

\$\widehat{\text{In Life Expectancy}}_i=2.864+0.147
\, \text{In GDP}_i\$\$

log_log_reg <- lm(loglife ~ loggdp, data = gapm
log_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>				
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

\$\$\widehat{\text{In Life Expectancy}}_i=2.864+0.147
\, \text{In GDP}_i\$\$

A 1% change in GDP \(\rightarrow\) a 0.147%
 increase in Life Expectancy

log_log_reg <- lm(loglife ~ loggdp, data = gapm
log_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>				
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

\$\$\widehat{\text{In Life Expectancy}}_i=2.864+0.147
\, \text{In GDP}_i\$\$

- A 1% change in GDP \(\rightarrow\) a 0.147%
 increase in Life Expectancy
- A **25% fall in GDP** \(\rightarrow\) a \((-25 \times 0.147\%)=\) **3.675% decrease** in Life Expectancy

log_log_reg <- lm(loglife ~ loggdp, data = gapm
log_log_reg %>% tidy()

term	estimate	std.error	statistic	p.value
<chr></chr>				<qpf></qpf>
(Intercept)	2.864177	0.02328274	123.01718	0
loggdp	0.146549	0.00282126	51.94452	0

\$\$\widehat{\text{In Life Expectancy}}_i=2.864+0.147
\, \text{In GDP}_i\$\$

- A 1% change in GDP \(\rightarrow\) a 0.147%
 increase in Life Expectancy
- A **25% fall in GDP** \(\rightarrow\) a \((-25 \times 0.147\%)=\) **3.675% decrease** in Life Expectancy
- A 100% rise in GDP \(\rightarrow\) a \((100 \times 0.147\%)=\) 14.7% increase in Life Expectancy

Log-Log Model Graph I

Comparing Models I

Model	Equation	Interpretation
Linear- Log	\(Y=\beta_0+\beta_1 \color{#e64173} {\ln X}\)	1% change in \(X \rightarrow \frac{\hat{\beta_1}}{100}\) unit change in \(Y\)
Log - Linear	\(\color{#e64173}{\ln Y}=\beta_0+\beta_1X\)	<pre>1 unit change in \(X \rightarrow \hat{\beta_1}\times 100\)% change in \(Y\)</pre>
Log-Log	\(\color{#e64173}{\ln Y}=\beta_0+\beta_1\color{#e64173} {\ln X}\)	1% change in \(X \rightarrow \hat{\beta_1}\)% change in \(Y\)

• Hint: the variable that gets **logged** changes in **percent** terms, the variable not logged changes in **unit** terms

Comparing Models II

- Models are very different units, how to choose?
 - Compare \(R^2\)'s
 - Compare graphs
 - Compare intution

	Life Exp.	Log Life Exp.	Log Life Exp.
Constant	-9.10 ***	3.97 ***	2.86 ***
	(1.23)	(0.01)	(0.02)
GDP (\$1000s)		0.01 ***	
		(0.00)	
Log GDP	8.41 ***		0.15 ***
	(0.15)		(0.00)
N	1704	1704	1704
R-Squared	0.65	0.30	0.61
SER	7.62	0.19	0.14
*** n < 0 001. *	* n < 0 01. *	n < 0.0E	

^{***} p < 0.001; ** p < 0.01; * p < 0.05.

Comparing Models III

When to Log?

- In practice, the following types of variables are logged:
 - Variables that must always be positive (prices, sales, market values)
 - Very large numbers (population, GDP)
 - Variables we want to talk about as percentage changes or growth rates (money supply, population, GDP)
 - Variables that have diminishing returns (output, utility)
 - Variables that have nonlinear scatterplots
- Avoid logs for:
 - Variables that are less than one, decimals, 0, or negative
 - Categorical variables (season, gender, political party)
 - Time variables (year, week, day)

Comparing Across Units

Comparing Coefficients of Different Units I


```
$$\hat{Y_i}=\beta_0+\beta_1 X_1+\beta_2 X_2 $$
```

- We often want to compare coefficients to see which variable \(X_1\) or \(X_2\) has a bigger effect on \(Y\)
- What if \(X_1\) and \(X_2\) are different units?

Example: \$\$\begin{align*} \widehat{\text{Salary}_i}&=\beta_0+\beta_1\, \text{Batting average}_i+\beta_2\, \text{Home runs}_i\\ \widehat{\text{Salary}_i}&=-\text{2,869,439.40}+\text{12,417,629.72} \, \text{Batting average}_i+\text{129,627.36}\, \text{Home runs}_i\\ \end{align*}\$\$

Comparing Coefficients of Different Units II

An easy way is to standardize[†] the variables (i.e. take the \(Z\)-score)

 $$X^{std}=\frac{X}{sd(X)}$

[†] Also called "centering" or "scaling."

Comparing Coefficients of Different Units: Example

Variable	Mean	Std. Dev.
Salary	\$2,024,616	\$2,764,512
Batting Average	0.267	0.031
Home Runs	12.11	10.31

- Marginal effects on \(Y\) (in standard deviations of \(Y\)) from 1 standard deviation change in \(X\):
- \(\hat{\beta_1}\): a 1 standard deviation increase in Batting Average increases Salary by 0.14 standard deviations

\$\$0.14 \times \\$2,764,512=\\$387,032\$\$

• \(\hat{\beta_2}\): a 1 standard deviation increase in Home Runs increases Salary by 0.48 standard deviations

\$\$0.48 \times \\$2,764,512=\\$1,326,966\$\$

Standardizing in R

• Use the scale() command inside mutate() function to standardize a variable

term	estimate	std.error	statistic	p.value
(Intercept)	1.1e-16	0.0197	5.57e-15	1
std_gdp	0.584	0.0197	29.7	3.57e-156

Joint Hypothesis Testing

Joint Hypothesis Testing I

Example: Return again to:

\$\$\widehat{Wage_i}=\hat{\beta_0}+\hat{\beta_1}Male_i+\hat{\beta_2}Northeast_i+\hat{\beta_3}N

- Maybe region doesn't affect wages at all?
- \(H_0: \beta_2=0, \, \beta_3=0, \, \beta_4=0\)
- This is a **joint hypothesis** to test

Joint Hypothesis Testing II

- A **joint hypothesis** tests against the null hypothesis of a value for *multiple* parameters: \$\$\mathbf{H_0: \beta_1= \beta_2=0}\$\$ the hypotheses that multiple regressors are equal to zero (have no causal effect on the outcome)
- Our alternative hypothesis is that: \$\$H_1: \text{ either } \beta_1\neq0\text{ or } \beta_2\neq0\text{ or both}\$\$\$ or simply, that \(H_0\) is not true

Types of Joint Hypothesis Tests

• Three main cases of joint hypothesis tests:

```
1) \(H_0\): \(\beta_1=\beta_2=0\)
```

- Testing against the claim that multiple variables don't matter
- Useful under high multicollinearity between variables
- \(H_a\): at least one parameter \(\neq\) 0

```
2) \(H_0\): \(\beta_1=\beta_2\)
```

- Testing whether two variables matter the same
- Variables must be the same units
- \(H_a: \beta_1 (\neq, <, \text{ or }>) \beta_2\)

- The "Overall F-test"
- Testing against claim that regression model explains NO variation in \(Y\)

Joint Hypothesis Tests: F-statistic

- The F-statistic is the test-statistic used to test joint hypotheses about regression coefficients with an F-test
- This involves comparing two models:
 - 1. Unrestricted model: regression with all coefficients
 - 2. **Restricted model**: regression under null hypothesis (coefficients equal hypothesized values)
- \(F\) is an analysis of variance (ANOVA)
 - \circ essentially tests whether \(R^2\) increases statistically significantly as we go from the restricted model\$\rightarrow\$unrestricted model
- \(F\) has its own distribution, with *two* sets of degrees of freedom

Joint Hypothesis F-test: Example I

Example: Return again to:

\$\$\widehat{Wage_i}=\hat{\beta_0}+\hat{\beta_1}Male_i+\hat{\beta_2}Northeast_i+\hat{\beta_3}N

- \(H_0: \beta_2=\beta_3=\beta_4=0\)
- \(H_a\): \(H_0\) is not true (at least one \(\beta_i \neq 0\))

Joint Hypothesis F-test: Example II

Example: Return again to:

 $\$ \widehat{Wage_i}=\hat{\beta_0}+\hat{\beta_1}Male_i+\hat{\beta_2}Northeast_i+\hat{\beta_3}Midwest_i+\hat{\k}}

Unrestricted model:

 $\$ \widehat{Wage_i}=\hat{\beta_0}+\hat{\beta_1}Male_i+\hat{\beta_2}Northeast_i+\hat{\beta_3}Midwest_i+\hat{\beta_1}Male_i+\hat{\beta_2}Northeast_i+\hat{\beta_3}Midwest_i+\hat{\beta_1}Male_i+\hat{\beta_1}Male_i+\hat{\beta_2}Northeast_i+\hat{\beta_1}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_2}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_2}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_2}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_2}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_2}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_2}Midwest_i+\hat{\beta_1}Midwest_i+\hat{\beta_2}Mi

Restricted model:

\$\$\widehat{Wage_i}=\hat{\beta_0}+\hat{\beta_1}Male_i\$\$

• \(F\): does going from restricted to unrestricted model statistically significantly improve \(R^2\)?


```
 \$F_{q,(n-k-1)}=\cfrac{\left(\color{\#e64173}\right)} {R^2_u}-R^2_r)_{q}\right) \\  \{R^2_u\}-R^2_r)_{q}\right) \\  \{\left(\cdot{\#e64173}\right) \\  \{R^2_u\}\right)_{(n-k-1)}\right) \\  \{R^2_u\})_{(n-k-1)}\right) \\  \{R^2_u\}
```

\(\color{#e64173}{R^2_u}\): the \(R^2\)
from the unrestricted model (all variables)


```
 \$F_{q,(n-k-1)}=\cfrac{\left(\color{\#e64173}\right)} = \cfrac{\left(\color{\#e64173}\right)} {R^2_u}-\color{\#6A5ACD}{R^2_r})}{q}\right)   \{\color{\#e64173}\}   \{\color{\#e64173}\}   \{R^2_u\})\}{(n-k-1)}\right)
```

- \(\color{#e64173}{R^2_u}\): the \(R^2\)
 from the unrestricted model (all variables)
- \(\color{#6A5ACD}{R^2_r}\): the \(R^2\)
 from the restricted model (null
 hypothesis)


```
 \$F_{q,(n-k-1)}=\cfrac{\left(\color{\#e64173}\right)} = \cfrac{\left(\color{\#e64173}\right)} {R^2_u}-\color{\#6A5ACD}{R^2_r})}{q}\right)   \{\color{\#e64173}\}   \{\color{\#e64173}\}   \{R^2_u\}\}(n-k-1)\}\right)
```

- \(\color{#e64173}{R^2_u}\): the \(R^2\)
 from the unrestricted model (all variables)
- \(\color{#6A5ACD}{R^2_r}\): the \(R^2\)
 from the restricted model (null
 hypothesis)
- \(q\): number of restrictions (number of \(\beta's=0\) under null hypothesis)


```
$$F_{q,(n-k-
1)}=\cfrac{\left(\displaystyle\frac{(\color{#e64173}}
{R^2_u}-\color{#6A5ACD}{R^2_r})}{q}\right)}
{\left(\displaystyle\frac{(1-\color{#e64173}}
{R^2_u})}{(n-k-1)}\right)}$$
```

- \(\color{#e64173}{R^2_u}\): the \(R^2\)
 from the unrestricted model (all variables)
- \(\color{#6A5ACD}{R^2_r}\): the \(R^2\)
 from the restricted model (null
 hypothesis)
- \(q\): number of restrictions (number of \(\beta's=0\) under null hypothesis)
- \(k\): number of \(X\) variables in unrestricted model (all variables)


```
 \$F_{q,(n-k-1)}=\cfrac{\left(\color{\#e64173}\right)} = \cfrac{\left(\color{\#e64173}\right)} {R^2_u}-\color{\#6A5ACD}{R^2_r})}{q}\right)   \{\color{\#e64173}\}   \{\color{\#e64173}\}   \{R^2_u\})\}{(n-k-1)}\right)
```

- \(\color{#e64173}{R^2_u}\): the \(R^2\)
 from the unrestricted model (all variables)
- \(\color{#6A5ACD}{R^2_r}\): the \(R^2\)
 from the restricted model (null
 hypothesis)
- \(q\): number of restrictions (number of \(\beta's=0\) under null hypothesis)
- \(k\): number of \(X\) variables in unrestricted model (all variables)

- Key takeaway: The bigger the difference between \((R^2_u-R^2_r)\), the greater the improvement in fit by adding variables, the larger the \(F\)!
- This formula is (believe it or not) actually a simplified version (assuming homoskedasticity)
 - I give you this formula to build your intuition of what F is measuring

F-test Example I

• We'll use the wooldridge package's wage1 data again

```
# load in data from wooldridge package
library(wooldridge)
wages<-wooldridge::wage1

# run regressions
unrestricted_reg<-lm(wage~female+northcen+west+south, data=wages)
restricted_reg<-lm(wage~female, data=wages)</pre>
```

F-test Example II

Unrestricted model:

\$\$\widehat{Wage_i}=\hat{\beta_0}+\hat{\beta_1}Female_i+\hat{\beta_2}Northeast_i+\hat{\beta_3}N

Restricted model:

\$\$\widehat{Wage_i}=\hat{\beta_0}+\hat{\beta_1}Female_i\$\$

- \(H_0: \beta_2 = \beta_3 = \beta_4 = 0\)
- \(q = 3\) restrictions (F numerator df)
- \(n-k-1 = 526-4-1=521\) (F denominator df)

F-test Example III

- We can use the car package's linearHypothesis() command to run an \(F\)-test:
 - first argument: name of the (unrestricted) regression
 - second argument: vector of variable names (in quotes) you are testing

```
# load car package for additional regression tools
library("car")

# F-test
linearHypothesis(unrestricted_reg, c("northcen", "west", "south"))
```

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
524	6.33e+03				
521	6.17e+03	3	157	4.43	0.00438

Second F-test Example: Are Two Coefficients Equal?

The second type of test is whether two coefficients equal one another

Example:

\$\$\widehat{wage_i}=\beta_0+\beta_1 \text{Adolescent height}_i + \beta_2 \text{Adult height}_i + \beta_3 \text{Male}_i\$\$

• Does height as an adolescent have the same effect on wages as height as an adult?

\$\$H_0: \beta_1=\beta_2\$\$

What is the restricted regression?

\$\$\widehat{wage_i}=\beta_0+\beta_1(\text{Adolescent height}_i + \text{Adult height}_i)+ \beta_3 \text{Male}_i\$\$

Second F-test Example: Data


```
# load in data
heightwages<-read_csv("../data/heightwages.csv")

# make a "heights" variable as the sum of adolescent (height81) and adult (height85) height
heightwages <- heightwages %>%
    mutate(heights=height81+height85)

height_reg<-lm(wage96~height81+height85+male, data=heightwages)
height_restricted_reg<-lm(wage96~heights+male, data=heightwages)</pre>
```

Second F-test Example: Data

• For second argument, set two variables equal, in quotes

linearHypothesis(height_reg, "height81=height85") # F-test

Res.Df	RSS	Df	Sum of Sq	F	Pr(>F)
6.59e+03	5.13e+06				
6.59e+03	5.13e+06	1	959	1.23	0.267

- Insufficient evidence to reject \(H_0\)!
- The effect of adolescent and adult height on wages is the same

All F-test I


```
summary(unrestricted reg)
##
## Call:
## lm(formula = wage ~ female + northcen + west + south, data = wages)
## Residuals:
      Min
               10 Median
                               30
                                     Max
## -6.3269 -2.0105 -0.7871 1.1898 17.4146
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.5654
                           0.3466 21.827 <2e-16 ***
## female
            -2.5652
                           0.3011 -8.520 <2e-16 ***
## northcen
               -0.5918
                           0.4362 - 1.357
                                           0.1755
                0.4315
                           0.4838
                                  0.892
                                           0.3729
## west
## south
               -1.0262
                           0.4048 - 2.535 0.0115 *
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 3.443 on 521 degrees of freedom
## Multiple R-squared: 0.1376, Adjusted R-squared: 0.131
## F-statistic: 20.79 on 4 and 521 DF, p-value: 6.501e-16
```

 Last line of regression output from summary() is an All F-test

- \(H_0:\) all \(\beta's=0\)
- the regression explains no variation in \(Y\)
- Calculates an F-statistic that, if high enough, is significant (p-value \(<0.05)\) enough to reject \(H_0\)

All F-test II

- Alternatively, if you use broom instead of summary():
 - glance() command makes table of regression summary statistics
 - tidy() only shows coefficients

```
library(broom)
glance(unrestricted_reg)
```

r.squared	adj.r.squared	sigma	statistic	p.value	df	logLik	AIC	BIC	deviance	df.residual	nobs
0.138	0.131	3.44	20.8	6.5e-16	4	-1.39e+03	2.8e+03	2.83e+03	6.17e+03	521	526

• "statistic" is the All F-test, "p.value" next to it is the p value from the F test