Plan du cours

Chapitre I:

Thermodynamique chimique

Chapitre II:

Oxydoréduction

Chapitre III:

Oxydoréduction – Aspects thermodynamiques (cinétiques)

Quelques rappels de la Thermodynamique chimique

Chapitre 9

Thermodynamique chimique

Le premier principe: grandeurs du système ou de réaction

Objectif

- La thermodynamique chimique s'intéresse aux échanges énergétiques d'un système contenant une (ou plusieurs) réaction(s) chimique(s).
- Le but de la thermodynamique chimique est de décrire des transformations de la matière et des bilans énergétiques.

Plan du chapitre

- 1. Le système physico-chimique et ses transformations
- 2. L'état standard
- 3. Le premier principe Fonctions d'état U et H
- 4. Grandeurs du système
- 5. Grandeurs de réaction

Caractéristiques du système

Paramètres du système :

- ✓ Paramètres extensifs: paramètres additifs liés à la quantité de matière (exemple: masse, nombre de moles, volume...);
- ✓ Paramètres intensifs: paramètres non additifs, indépendants de la quantité de matière (exemple: température, pression, masse volumique, fractions molaires...).
- ✓ **Paramètres de contrainte** (contrôlés par l'opérateur): température *T*, pression *P* (volume *V*);
- ✓ Paramètres de composition: quantités de matière n_i , fractions molaires x_i .

Caractéristiques du système

• Exemples de systèmes :

- > Système homogène: comprend une seule phase uniforme ($\phi = 1$).
 - ✓ **Mélange gazeux**: loi du gaz parfait (PV = nRT)
 - ✓ Solution aqueuse: le solvant dissout diverses espèces (solutés) et conduit à une phase liquide uniforme.
- ➤ Système hétérogène: possède plusieurs phases (φ ≥ 2).

Transformation du système

➤ Une transformation correspond au passage du système d'un état défini initial (E.I.) à un état défini final (E.F.).

➤ Il existe deux types de transformation: transformation irréversible et réversible.

Transformation du système

Equation-bilan :

➤ La réaction chimique traduit l'évolution du système de l'E.I. à l'E.F..

$$\alpha_{1}A_{1} + \alpha_{2}A_{2} + \dots \Leftrightarrow \alpha_{1}A_{1} + \alpha_{2}A_{2} + \dots$$

✓ \Leftrightarrow : l'évolution irréversible peut se faire selon les conditions dans le sens $\xrightarrow{1}$ ou dans le sens $\xleftarrow{2}$.

✓ Conservation de la matière: $0 = \sum_{i} v_i A_i$

Exemple:
$$- N_2 + 3 H_2 \leftrightarrow 2 NH_3$$
;
 $- 0 = 2 NH_3 - N_2 - 3 H_2$.

Transformation du système

Avancement de réaction :

Cinétique: A t = 0, la quantité de A_i est n_i(0).
 A t, la quantité de A_i est n_i(t) = n_i(0) + v_iξ,
 ξ est l'avancement de la réaction:

$$\xi(t) = \frac{n_i(t) - n_i(0)}{v_i}$$

- \succ Thermodynamique: ξ est variable de De Donder.
 - ξ > 0, évolution dans le sens $\xrightarrow{1}$,
 - ξ < 0, évolution dans le sens $\frac{2}{\xi}$.

L'état standard

Pression standard :

➤ Pression standard: correspond à une pression $P^0 = 1$ bar = 10^5 Pa.

Température :

- > Pas de température standard.
- Pour un constituant, il y a des états standard à chaque température.

Etat physique standard

Constituant gazeux :

- ➤ L'état standard d'un gaz pur (P) ou dans un mélange (P_i), à la température T, correspond à ce gaz pur sous $P^0 = 1$ bar, à la même température T, et se comportant comme un gaz parfait (absence d'interactions).
- L'état physique standard peut être réel ou hypothétique:
 - \underline{Ex} : Etat réel: $H_2O_{(g)}$ à 25 °C, 10^{-3} bar;
 - Etat standard : $H_2O_{(g)}$ (\equiv gaz parfait) à 25 °C, sous $P^0 = 1$ bar.

Etat physique standard

Constituant en phase condensée :

- ➤ Etat standard d'un corps pur liquide ou solide: correspond à ce constituant pur sous P⁰ = 1 bar, à la même température T, et dans le même état physique liquide (ou solide).
- Cet état physique est en général réel, car la pression a une très faible influence sur les phases condensées.

Etat physique standard

- Constituant en solution aqueuse :
- ➤ Solution = solvant + soluté:
 - Pour un solvant, l'état standard correspond au corps pur à l'état liquide sous $P^0 = 1$ bar, à la même température T.
 - Pour un soluté, l'état standard correspond à l'état hypothétique de ce soluté à la concentration $C^0 = 1$ mol.L⁻¹, sous $P^0 = 1$ bar. Les interactions entre les particules de soluté sont nulles, comme la solution est infiniment diluée.

Etat standard de référence d'un élément

Définition :

▶ L'état standard de référence d'un élément à T est l'état standard correspondant à la phase thermodynamiquement stable à T.

Exemples:

Elément Etat standard de référence

- chlore à 25 °C \rightarrow Cl_{2(g)} à 25 °C sous P^0 = 1 bar,
- brome à 25 °C \rightarrow Br_{2(I)} à 25 °C sous P^0 = 1 bar,
- iode à 25 °C \rightarrow $I_{2(s)}$ à 25 °C sous P^0 = 1 bar,
- fer à 25 °C \rightarrow Fe_{α} variété cristalline stable à 25 °C sous $P^0 = 1$ bar,
- fer à 1000 °C \rightarrow Fe_y variété cristalline stable à 1000 °C sous $P^0 = 1$ bar.

15

Le premier principe

Premier principe de la thermodynamique :

Dans un système fermé et macroscopiquement au repos, la variation de son énergie interne est égale à la quantité d'énergie échangée avec le milieu extérieur, sous forme de travail *W* ou d'énergie thermique *Q*.

$$\Delta U_I^F = U_F - U_I = (W + Q)_I^F$$

- Fonctions d'état U et H :
- ➤ Energie interne *U* caractérise une énergie propre à un système d'origine microscopique (énergie cinétique et énergie potentielle).
- ➤ Enthalpie *H*, sa variation mesure la quantité d'énergie thermique transférée pendant une transformation monobare.

$$H = U + PV$$

Expression du travail

- Travail W: la somme des travaux transférés du système au milieu extérieur ou réciproquement (si W > 0, travail reçu par le système).
 - > Dans ce cours, on s'intéresse seulement au travail mécanique (forces de pression):

$$W = -\int_{I}^{F} P_{e} dV$$

Pour une transformation réversible, $P_e = P$.

Expression du travail

Deux possibilités :

> Réacteur isochore: pas de variation de volume.

$$W_{[V]} = 0$$

Réacteur monotherme monobare: la pression extérieure est constante.

$$W_{[P]} = -P_e \Delta V_I^F = -P_e (V_F - V_I)$$

Expression du travail

> Système homogène gazeux: l'E.I. et l'E.F. sont des états d'équilibre du système avec l'extérieur.

$$P_{l} = P_{F} = P_{e}$$
 (monobare) et $T_{l} = T_{F} = T_{e}$ (monotherme)

$$W = -RT_{\rm e} (n_{\rm F} - n_{\rm I})$$

> Système hétérogène: variation de volume est essentiellement due aux espèces gazeuses.

$$W \approx -RT_{\rm e}\Delta n_{\rm gaz}$$

Pas de phase gazeuse, $\Delta V \approx 0 \rightarrow W \approx 0$.

Expression de l'énergie thermique

- Energie thermique Q: correspond à la chaleur qui est la forme d'énergie transférée au système par suite des interactions à l'échelle microscopique.
 - ✓ un échauffement ou refroidissement du système;
 - ✓ un changement d'état du système;
 - ✓ une réaction chimique dans le système.
 - > A partir du premier principe:

$$Q = \Delta U - W = \Delta U + \int_{I}^{F} P_{e} dV$$

Expression de l'énergie thermique

Deux possibilités :

 \succ <u>Réacteur isochore</u>: Energie interne ($W_{\text{IVI}} = 0$).

$$Q_V = \Delta U_I^F = U_F - U_I$$

L'expression de Q_V ne dépend plus du chemin suivi.

ightharpoonup: Enthalpie ($W_{[P]} = -P_{\rho}\Delta V_{I}^{F}$).

$$Q_P = \Delta U_I^F + P_e \Delta V_I^F = \Delta (U + P_e V)_I^F$$
$$= \Delta (U + PV)_I^F = \Delta H_I^F = H_F - H_I$$

 Q_P ne dépend plus du chemin suivi.

Grandeurs molaires: corps pur

➢ Pour un corps pur monophasé, Z est une grandeur extensive, son extensivité peut être traduit en variables de Gibbs (T, P, n):

$$Z_{(T,P,n)} = nZ_{m(T,P)}^*$$

 $\geq Z_m^*$ peut être calculée à partir de la fonction $Z_{(T, P, n)}$:

$$Z_m^* = \left(\frac{\partial Z}{\partial n}\right)_{T,P}$$

 \underline{Ex} : - n mol de gaz parfait occupe $V = \frac{nRT}{P}$, à T ou P fixées.

- le volume molaire:
$$V_m^* = (\frac{\partial V}{\partial n})_{T,P} = \frac{RT}{P}$$
.

Grandeurs molaires standard: corps pur

- $\gt Z_{m(T)}^0$: Grandeurs molaires du constituant pur à l'état standard, sous P standard, elles ne dépendent que de T.
- > Exemple: volume molaire standard
 - ✓ Gaz parfait: $V_{m(T)}^0$ varie avec T.

$$V_{m(273K)}^{0} = 22,7L$$
 $V_{m(298K)}^{0} = 24,8L$ $V_{0} = 22,4L$

✓ Etat condensé: le volume est souvent constant, il varie très peu avec la pression.

$$V_{m(T,P)}^* \approx V_{m(T)}^0 = \frac{M}{\rho}$$
 23

Grandeurs molaires partielles: mélange

Définition – Identité d'Euler :

- > Dans un système quelconque, chaque sous-système est constitué par un mélange $(A_1, ..., A_i, ..., A_N)$ en équilibre de T et de P.
- $\geq Z(T, P, n_1, ..., n_i, ..., n_N)$ est une grandeur extensive du sous-système, la grandeur molaire partielle relative au constituant *A*_i est:

$$Z_{m,i} = \left(\frac{\partial Z}{\partial n_i}\right)_{T,P,n_{i \neq i}}$$

 $\gt Z_{mi}$ est le quotient de deux grandeurs extensives, donc une grandeur intensive.

24

Grandeurs molaires partielles: mélange

Définition – Identité d'Euler :

➤ <u>L'identité d'Euler</u> traduit l'extensivité de grandeur Z :

$$Z_{(T,P,n_i)} = \sum_{i} n_i Z_{m,i(T,P,x_i)}$$

- Attention: il ne faut pas confondre les grandeurs molaires et les grandeurs molaires partielles.
 - $\checkmark A_i$ seul: $Z_{m,i}^*$ (seules interactions $A_i A_i$),
 - ✓ A_i dans un mélange: $Z_{m,i}$ (interactions $A_i A_i$ et $A_i A_j$).
 - $Z_{m,i}$ dépend de la composition du mélange, car un changement de composition peut conduire à une modification des interactions entre constituants.

Grandeurs de réaction

Description d'un système réactif :

Nous considérons un système monophasé de N constituants (A₁, ..., Aᵢ, ..., AŊ) qui évolue selon la réaction d'équation bilan:

$$\sum_{i} v_i A_i = 0$$

 $\checkmark v_i > 0$ pour un produit,

✓ v_i < 0 pour un réactif.

Enthalpie de réaction

L'application de l'opérateur de Lewis à la fonction H du système:

$$\Delta_r H = \left(\frac{\partial H}{\partial \xi}\right)_{T,P} = \sum_i \nu_i H_{m,i}$$

 $\triangleright \Delta_{r}H$ est une grandeur intensive, en J/mol.

Ex: La synthèse de l'eau réalisée à 25 °C, sous P bar.

$$2 H_{2(g)} + O_{2(g)} \rightarrow 2 H_2O_{(I)}$$

Quelles que soient les quantités de matière du système réel, l'enthalpie de réaction correspond à:

$$\Delta_r H = 2H_{m, H_2 O_{(l)}} - 2H_{m, H_{2(g)}} - H_{m, O_{2(g)}}$$

 $\searrow \Delta_r H$ doit s'accompagner de l'écriture de l'équation.

Enthalpie standard de réaction

- Pour un système standard $(A_1^0 ... A_i^0 ... A_N^0)$, chaque constituant est pris pur, sous $P^0 = 1$ bar, dans l'état physique standard, et la réaction standard se produit dans les proportions stœchiométriques.
- > Pour un mélange réel en réaction:

$$H = \sum_{i} n_{i} H_{m,i} = \sum_{i} (n_{i}(0) + v_{i} \xi) H_{m,i(T)}^{0}$$

ightharpoonup Pour un avancement d ξ : $dH = \sum_{i} v_i H_{m,i(T)}^0 d\xi$

$$\Delta_r H = \left(\frac{\partial H}{\partial \xi}\right)_{T,P} = \Delta_r H^0_{(T)} = \sum_i \nu_i H^0_{m,i(T)}$$

Enthalpie standard de réaction

> Pour un réacteur monotherme et monobare:

$$P_{\rm I} = P_{\rm F} = P_{\rm e} \text{ et } T_{\rm I} = T_{\rm F} = T_{\rm e}.$$

$$Q_P = \Delta H = \int_I^F dH = \int_I^F \Delta_r H \, d\xi$$

> Avec une approximation:

$$\Delta_r H \approx \Delta_r H_{(T)}^0$$

 \triangleright A l'état initial, ξ = 0:

$$Q_P = \Delta H = \xi_f \Delta_r H_{(T)}^0$$

Enthalpie standard de réaction

Trois possibilités :

$$Q_p = \Delta H > 0$$

énergie reçue pente constante

$$\Delta_r H^0 = \left(\frac{\partial H}{\partial \xi}\right)_{P,T} > 0$$

Réaction endothermique

$$Q_p = \Delta H < 0$$

énergie cédée pente constante

$$\Delta_r H^0 = \left(\frac{\partial H}{\partial \xi}\right)_{P,T} < 0$$

Réaction exothermique

$$Q_p = \Delta H = 0$$

pas de transfert thermique pente nulle

$$\Delta_r H^0 = 0$$

Réaction athermique

Exercice d'application

Synthèse de l'eau

Quelle est l'énergie thermique transférée lors de la formation d'un kg d'eau liquide à 25 °C, sous pression atmosphérique, selon la réaction:

2
$$H_{2(g)}$$
 + $O_{2(g)}$ \rightarrow 2 $H_2O_{(l)}$ $\Delta_r H_{298}^0 = -570,4kJ \cdot mol^{-1}$.

Données:
$$M_{H,O} = 18g \cdot mol^{-1}$$
.

Chapitre 10

Thermodynamique chimique

Tabulation des grandeurs de réactions standard

Objectif

• Etudier la méthode pour calculer l'enthalpie standard de tous les types de réactions, à partir de la tabulation d'un certain nombre de données.

Plan du chapitre

- 1. Conventions relatives aux enthalpies molaires standard de formation
- 2. Conventions relatives aux changements de phase
- 3. Calculs des enthalpies standard de réactions quelconques
- 4. Energies ou enthalpies de liaison
- 5. Cas d'une évolution adiabatique
- 6. Calorimétrie

Définition de $\Delta_f H^0_{(T)}$

Enthalpie molaire standard de formation :

 $\Delta_{\rm f} H^0_{({\rm T})}$ d'un composé à une température T correspond à l'enthalpie standard de réaction $\Delta_{\rm r} H^0_{({\rm T})}$, associée à la réaction pour former une mole de ce composé à partir des éléments constitutifs. Ces éléments sont pris dans leur état standard de référence à la température considérée.

▶ L'état standard de référence d'un élément (ou un composé) est l'état le plus stable en quantité importante à la température considérée, sous P⁰ = 1 bar.

Définition de $\Delta_f H^0_{(T)}$

Exemples :

$$\begin{split} \Delta_f H^0 \, \text{de CO}_{2(g)} \; \grave{\text{a}} \; 25 \; °\text{C} \; ? \\ C_{\text{graphite(s)}} + O_{2(g)} &\rightarrow \text{CO}_{2(g)} \qquad \Delta_r H^0 = \Delta_f H^0(\text{CO}_2). \\ \Delta_f H^0 \, \text{de HBr}_{(g)} \; \grave{\text{a}} \; 25 \; °\text{C} \; ? \\ 1/2 \; H_{2(g)} + 1/2 \; \text{Br}_{2(l)} &\rightarrow \text{HBr}_{(g)} \quad \Delta_r H^0 = \Delta_f H^0(\text{HBr}). \end{split}$$

➤ Les éléments constitutifs sont choisis dans leur état standard de référence, et le coefficient stœchiométrique du composé formé est toujours égal à 1.

Convention relative aux corps simples

- Pour un corps simple dans son état standard de référence, à toute température: $\Delta_f H^0_{(T)} = 0$.
- ➤ Si le corps simple n'est pas dans son état standard de référence à $T: \Delta_f H^0_{(T)} \neq 0$.

 \underline{Ex} : $\Delta_f H^0$ de C diamant à 25 °C ?

$$\mathbf{C}_{\text{graphite}} \to \mathbf{C}_{\text{diamant}} \qquad \Delta_r H^0 = \Delta_f H^0_{(C_d)} = H^0_{m(C_d)} - H^0_{m(C_g)} \neq 0.$$

Cas des ions en solution aqueuse

 Enthalpie de formation d'ions : On peut former des ions en solution aqueuse à partir des corps simples dans leur état standard de référence.

$$\underline{Ex}: \qquad H_{2(g)} + Cl_{2(g)} \to (2H_{aq}^+ + 2Cl_{aq}^-)$$

$$\text{avec} \quad \Delta_r H^0 = 2 \left[\Delta_f H^0_{(H_{aq}^+)} + \Delta_f H^0_{(Cl_{aq}^-)} \right].$$

 \triangleright Une solution est électriquement neutre, donc une réaction met toujours en jeu deux enthalpies de formation d'ions. On considère l'ion H_{aq}^+ comme l'ion de référence.

$$\Delta_f H^0_{(H^+_{aq})} = 0$$
 à toute température.

Changements d'état d'un corps pur

- La fusion : c'est la transformation physique qui fait passer le corps pur de l'état solide (S) à l'état liquide (L).
 - ➤ Si P = 1 atm, t est la température normale de fusion, notée t_{fus}^0 . Cette température de l'équilibre dépend seulement de la pression.

Changements d'état d'un corps pur

- L'ébullition ou la vaporisation : c'est la transformation physique qui fait passer le corps pur de l'état liquide (L) à l'état vapeur (V).
 - > Si P = 1 atm, t est la température normale d'ébullition ou de vaporisation, notée t_{eb}^0 ou t_{vap}^0 .

Changements d'état d'un corps pur

- La sublimation: c'est la transformation physique qui fait passer le corps pur de l'état solide (S) à l'état vapeur (V).
 - > Si P = 1 atm, t_{sub}^0 est la température normale de sublimation d'un corps pur.

Etude enthalpique

Pour un corps pur, $φ_1$ et $φ_2$ sont les deux phases en équilibre à T et P données, la phase $φ_2$ est plus désordonnée que la phase $φ_1$. Pour 1 mole de ce corps pur, la transformation fait passer de l'état 1 (phase $φ_1$) à l'état 2 (phase $φ_2$), <u>le premier principe</u> donne:

$$U_{m2} - U_{m1} = W + Q$$
, avec $W = -\int_{1}^{2} P \, dV = -P(V_{m2} - V_{m1})$.

> Le changement d'état est une transformation isobare:

$$Q = Q_P = U_{m2} - U_{m1} - W = U_{m2} - U_{m1} + P(V_{m2} - V_{m1})$$

$$Q_P = (U_{m2} + PV_{m2}) - (U_{m1} + PV_{m1}) = H_{m2} - H_{m1}$$

Si les phases φ_1 et φ_2 sont dans leur état standard, l'enthalpie standard de changement d'état = $H_{m2}^0 - H_{m1}^0$.

Différentes enthalpies standard

Enthalpie standard de fusion :

➤ Pour le changement d'état S → L:

$$\Delta_{fus}H^0 = H_{mL}^0 - H_{mS}^0$$

- Enthalpie standard de vaporisation :
 - ➤ Pour le changement d'état L → V:

$$\Delta_{vap}H^0 = H_{mV}^0 - H_{mL}^0$$

- Enthalpie standard de sublimation :
 - ➤ Pour le changement d'état S → V:

$$\Delta_{sub}H^0 = H_{mV}^0 - H_{mS}^0$$

Calcul de $\Delta_r H^0_{(T)}$

<u>1^{er} loi de Hess</u>: pour calculer Δ_rH⁰ à T, on peut dissocier les réactifs en leurs corps simples dans leur état standard de référence à T, ensuite les réassocier sous forme de produits.

$$\Delta_{r}H_{(T)}^{0} = -\sum_{j}\alpha_{j}\Delta_{f}H_{j(T)}^{0} + \sum_{k}\alpha_{k}\Delta_{f}H_{k(T)}^{0}$$

$$\text{réactifs} \qquad \text{produits}$$

$$\text{dissociés} \qquad \text{formés}$$

$$\Delta_r H^0_{(T)} = \sum_i v_i \Delta_f H^0_{i(T)}$$

 \succ Le calcul de $\Delta_r H^0_{(T)}$ ne dépend pas du chemin suivi.

Calcul de $\Delta_r H^0_{(T)}$

Exemple :

La réaction réalisée à 25 °C, sous 1 bar.

Variation de $\Delta_r H^0_{(T)}$ avec T

Loi de Kirchhoff :

- \triangleright L'enthalpie molaire standard H_m^0 dépend seulement de T: $dH_m^0 = C_{pm}^0 dT$
- > Pour une réaction quelconque, pas de changement d'état physique entre T_1 et T_2 :

$$\frac{d\Delta_r H_{(T)}^0}{dT} = \frac{d(\sum_i v_i H_{m_i(T)}^0)}{dT} = (\sum_i v_i C_{Pm_i}^0).$$

 \triangleright On pose: $\Delta_r C_P^0 = \sum_i v_i C_{Pm_i}^0$

Loi de Kirchhoff:
$$\frac{d\Delta_r H_{(T)}^0}{dT} = \Delta_r C_P^0.$$

Variation de $\Delta_r H^0_{(T)}$ avec T

Applications :

➤ Dans les tables, on connaît l'enthalpie de réaction à T_1 = 298 K, on peut la calculer à T_2 quelconque :

$$\Delta_r H^0_{(T_2)} - \Delta_r H^0_{(T_1)} = \int_{T_1}^{T_2} \Delta_r C_P^0 dT.$$

- ✓ Modèle dit d'Ellingham: $\Delta_r C_P^0 \approx 0$, $\Delta_r H^0$ est indépendante de T.
- ✓ Modèle affine: $\Delta_r C_P^0 \approx cte$, $\Delta_r H_{(T)}^0 = A + BT$
- Approximation d'Ellingham: dans un petit intervalle de température, on néglige la variation de $\Delta_r H^0_{(T)}$.

2^e loi de Hess

- Calcul d'une enthalpie standard de réaction:
- ≥ 2e loi de Hess: pour calculer Δ_rH⁰, on peut dissocier les réactifs en leurs atomes gazeux, ensuite reconstituer les produits.

$$\underline{Ex}: \quad \text{CH}_{4(g)} + 2 \underset{2D_{O=O}}{O_{2(g)}} \xrightarrow{A_r H^0} = ? \text{CO}_{2(g)} + 2 \underset{2D_{O-H}}{H_2O_{(g)}}$$

$$\downarrow 4D_{C-H} \qquad \downarrow 2D_{O-O} \qquad \uparrow -2D_{C-O} \qquad \uparrow -4D_{O-H}$$

$$C_{(g)} + 4 \underset{1}{H_{(g)}} \qquad 4 \underset{0}{O_{(g)}} \qquad C_{(g)} + 2 \underset{0}{O_{(g)}} \qquad 4 \underset{1}{H_{(g)}} + 2 \underset{0}{O_{(g)}} \qquad 0$$

$$\Rightarrow \Delta_r H^0 = 4D_{C-H} + 2D_{O-O} - 2D_{C-O} - 4D_{O-H}$$

$$\Rightarrow \Delta_r H^0 = -\sum_{i} k_i D_i$$

Evolution adiabatique

Transformation adiabatique: la rapidité de la réaction empêche les transferts de chaleur vers le milieu extérieur, c'est le système qui absorbe cette chaleur, donc la température du système varie.

Ex: inflammation et explosion.

- La température maximale atteinte est dite température de réaction adiabatique.
- ➤ Le système peut évoluer de deux façons:
- ✓ Réacteur isochore (bombe calorimétrique 炸弹量热计): $Q_V = \Delta U_{\text{syst}} = 0$ température d'explosion
- ✓ Réacteur isobare (réacteur ouvert à P_{atm}): $Q_P = \Delta H_{syst} = 0 \implies \text{température flamme adiabatique}$

Réacteur monobare

Température de flamme :

- ✓ 1: réaction chimique isotherme à T_i → produit final;
- ✓ 2: échauffement de tous les constituants (réactifs en excès, produits et composés inertes) du système de T_i à T_f, sous P fixée.

50

Réacteur monobare

Température de flamme :

> Inflammation: la réaction est isobare.

Exercice d'application

Calcul d'une énergie de liaison C-C

Calculer l'énergie de la liaison C-C d'après les données à 298 K:

- ✓ $C_2H_{6(g)} + 7/2 O_{2(g)} \rightarrow 2 CO_{2(g)} + 3 H_2O_{(l)}$ $\Delta_r H^0 = -1561 \text{ kJ.mol}^{-1};$
- ✓ Enthalpie de formation standard: $\Delta_f H^0(CO_{2(g)}) = -394 \text{ kJ.mol}^{-1}, \Delta_f H^0(H_2O_{(l)}) = -285 \text{ kJ.mol}^{-1};$
- \checkmark C_{graphite} \rightarrow C_{gaz} $\Delta_{sub}H^0 = 717 \text{ kJ.mol}^{-1}$;
- ✓ Energie de liaison: $D_{H-H} = 432 \text{ kJ.mol}^{-1}$, $D_{C-H} = 411 \text{ kJ.mol}^{-1}$.

Le second principe

Second principe de la thermodynamique :

Toute transformation d'un système isolé s'effectue avec augmentation de l'entropie globale incluant l'entropie du système et du milieu extérieur. On dit alors qu'il y a création d'entropie S.

- Fonctions d'état S et G :
- ➤ Entropie S peut être interprétée comme la mesure du degré de désordre d'un système au niveau microscopique. Dans le cas d'une transformation réversible, l'entropie reste constante.
- ➤ Enthalpie libre G se comporte comme une fonction potentielle et intègre le comportement du milieu extérieur. Elle est une fonction appropriée pour étudier les réactions chimiques réalisées à la température T et à pression constante P.