PURE MATHEMATICS 319 L02 WINTER 2016 QUIZ 1 SOLUTIONS.

- **1**. Give the *definition* of each of the following.
- (a) A tranformation of \mathbb{R}^2 .

Solution: A tranformation of \mathbb{R}^2 is a one-to-one and onto function from \mathbb{R}^2 to \mathbb{R}^2 .

(b) A collineation of \mathbb{R}^2 .

Solution: A collineation of \mathbb{R}^2 is a transformation of \mathbb{R}^2 that maps every line to a line.

(c) A translation.

Solution: A translation is a function $\tau: \mathbb{R}^2 \to \mathbb{R}^2$ so that for every $(x, y) \in \mathbb{R}^2$, $\tau(x, y) = (x + r, y + s)$ for some $r, s \in \mathbb{R}$.

(d) A halfturn.

Solution: A halfturn centred at P = (a, b) is the function $\sigma_P : \mathbb{R}^2 \to \mathbb{R}^2$ so that for every $(x, y) \in \mathbb{R}^2$, $\sigma_P(x, y) = (-x + 2a, -y + 2b)$.

2. Let $\tau: \mathbb{R}^2 \to \mathbb{R}^2$ be the translation defined by $\tau(x,y) = (x-1,y-2)$. Let P = (1,1). Find the point $Q \in \mathbb{R}^2$ so that $\sigma_Q \sigma_P = \tau$. Make sure that you prove that $\sigma_Q \sigma_P = \tau$. Solution: Let $Q = \left(\frac{1}{2},0\right)$. We prove that $\sigma_Q \sigma_P = \tau$. We note that $\sigma_P(x,y) = (-x+2,-y+2)$ and $\sigma_Q(x,y) = (-x+1,-y)$ for each $(x,y) \in \mathbb{R}^2$. Now, for any $(x,y) \in \mathbb{R}^2$,

$$\sigma_{Q}\sigma_{P}(x,y) = \sigma_{Q}(\sigma_{P}(x,y))
= \sigma_{Q}(-x+2,-y+2)
= (-(-x+2)+1,-(-y+2))
= (x-1,y-2)
= \tau(x,y).$$

Thus, $\sigma_Q \sigma_P = \tau$.

- **3**. Let $\alpha : \mathbb{R}^2 \to \mathbb{R}^2$ be the function defined by $\alpha(x,y) = (x+2y,x+y)$ for each $(x,y) \in \mathbb{R}^2$.
- (a) Prove that α is a transformation.

Solution: First, we prove that α is one-to-one. Suppose that (a,b), (c,d) are points in \mathbb{R}^2 so that $\alpha(a,b) = \alpha(c,d)$, that is (a+2b,a+b) = (c+2d,c+d). Then

$$a = 2(a+b) - (a+2b) = 2(c+d) - (c+2d) = c$$
 and $b = (a+2b) - (a+b) = (c+2d) - (c+d) = d$. Thus, $(a,b) = (c,d)$.

Thus, α is one-to-one.

Next, we prove that α is onto. Suppose that P=(a,b) is a point in \mathbb{R}^2 . Let Q=(2b-a,a-b). Then $\alpha(Q)=((2b-a)+2(a-b),(2b-a)+(a-b))=(a,b)=P$. Thus, α is onto.

(b) Let l is the line with equation 2x + y = 1. Prove that $\alpha(l)$ is a line.

Solution: In fact, we prove that $\alpha(l) = m$ where m is the line with equation x - 3y = -1. First, we prove that $\alpha(l) \subseteq m$. Let $P \in \alpha(l)$, that is, $P = \alpha(Q)$ for some point $Q = (a,b) \in l$. Since $(a,b) \in l$, we know that 2a + b = 1, and from $P = \alpha(Q)$, we know P = (a + 2b, a + b). Now, (a + 2b) - 3(a + b) = -2a - b = -(2a + b) = -1. This means the coordinates of P satisfy the equation of m, so $P \in m$. Next, we prove that $m \subseteq \alpha(l)$. Let $R = (s,t) \in m$, that is, s - 3t = -1. Let S = (2t - s, s - t). We prove that $S \in l$ and $\alpha(S) = R$.

Now, 2(2t-s)+(s-t)=-s+3t=-(s-3t)=-1, which says that the coordinates of S satisfy the equation of l, so $S \in l$.

Next, $\alpha(S) = R$ as shown in (a). Since $S \in l$ and $\alpha(S) = R$, we get $R \in \alpha(l)$. Thus, $\alpha(l) = m$.