موضوع العلوم الفيزيائية لشعبتي رياضيات و تقني رياضي بكالوريا 2011

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات دورة: جوان 2011

الشكل-1

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعب: رياضيات ، تقنى رياضى

المدة: 04 ساعات ونصف

0,2

اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (03 نقاط)

t=0~s لغرض متابعة ومراقبة تطور جملة كيميائية مكونة من حمض الإيثانويك والإيثانول، نمزج في اللحظة وفي درجة حرارة ثابتة، 1,0 mol من حمض الإيثانويك و 1,0 mol من الإيثانول. يتطور التحول الكيميائي (mol) الحمض مباشرة بعد لحظة المزج، ينتج عنه الماء ومركب عضوي E.

1- أ- ما اسم هذا التحول؟ اذكر خصائصه.

ب- اكتب معادلة التفاعل المنمذج للتحول الحادث.

ج- أعط اسم المركب العضوي E.

2- لمتابعة تطور المزيج التفاعلي نأخذ منه عينة حجمها V من الحجم الكلى، نبرد العينة المأخوذة آنيا، ثم نعاير حمض الإيثانويك المتبقى في العينة بمحلول لهيدروكسيد الصوديوم تركيزه المولي معلوم.

نكرر العملية في لحظات زمنية محددة، البيان (الشكل-1)

يلخص مختلف النتائج التجريبية المتحصل عليها.

t = 25 h أ- اوجد السرعة اللحظية للتفاعل في اللحظة

ب- احسب مردود التفاعل عند التوازن.

3- لزيادة مردود التفاعل، هل نقوم بـ:

- زيادة حرارة المزيج التفاعلي ؟
- استخدام مزیج ابتدائی غیر متساوی المولات ؟
 - إضافة قطرات من حمض الكبريت المركز ؟

-K أ- احسب كسر التفاعل، للجملة الكيميائية السابقة، عند التوازن $Q_{r,eq}$ ، ثم استنتج ثابت التوازن -4ب- عند التوازن نضيف إلى المزيج التفاعلي 0,2 mol من حمض الإيثانويك، حدّد جهة تطور الجملة. علّل.

التمرين الثاني: (03 نقاط)

في لعبة رمي الجلة، يقنف اللاعب في اللحظة t=0 s الجلة من ارتفاع $oz_0=h=2,0$ m عن سطح في لعبة رمي الجلة، يقنف اللاعب في اللحظة $\alpha=(\overrightarrow{ox},\overrightarrow{v_0})=35^\circ$ عن سطح الأرض، بسرعة ابتدائية $v_0=13,7$ $m\cdot s^{-1}$ عن سطح الأرض، بسرعة ابتدائية $v_0=13,7$ $m\cdot s^{-1}$

. $g=9,80~m\cdot s^{-2}$ نهمل تأثير الهواء (مقاومة الهواء ودافعة أرخميدس)، ونأخذ

الشكل-2

- 1- بتطبيق القانون الثاني لنيوتن على القذيفة في المعلم المبين على (الشكل-2)، استخرج:
 - أ- المعادلات التفاضلية للحركة.
 - ب- المعادلات الزمنية للحركة.
 - z = f(x) اكتب معادلة المسار –2
- -3 اوجد إحداثيات M نقطة سقوط القذيفة. وما هي سرعتها عندئذ ؟

التمرين الثالث: (03 نقاط)

1- من بين الأسباب المحتملة لعدم استقرار النواة ما يلي:

- عدد كبير من النيوكلونات.
- عدد كبير من الإلكترونات بالنسبة للبروتونات.
 - عدد كبير من البروتونات بالنسبة للنترونات.
 - عدد ضئيل من النيوكلونات.

اختر العبارات المناسبة.

- -2 المخطط المرفق يضم الأنوية المستقرة للعناصر التي رقمها الذري محصور في المجال: $7 \ge Z \ge 1$. كيف تتوضع هذه الأنوية في المخطط (N,Z) (الشكل-2) ?
- $^{11}_{6}$ C , $^{14}_{6}$ C و $^{8}_{5}$ B , $^{12}_{5}$ B , $^{14}_{5}$ B : $^{14}_{5}$ B و $^{12}_{5}$ C , $^{14}_{6}$ C و كذلك $^{16}_{7}$ N , $^{16}_{7}$ N , $^{16}_{7}$ N , $^{16}_{7}$ N , $^{16}_{7}$ N .
 - eta^- أ- مجموعة الأنوية المشعة ذات نمط التفكك
 - eta^+ ب- مجموعة الأنوية المشعة ذات نمط التفكك
 - ج- ما الذي يميز كل مجموعة ؟
 - د- اكتب معادلة تفكك الكربون 14.

التمرين الرابع: (03,5 نقطة)

يجر جسم صلب (S_2) كتلته $m_2=600$ ، بواسطة خيط مهمل الكتلة وعديم الإمتطاط يمر على محز بكرة مهملة الكتلة ، عربة (S_1) كتلتها . $\alpha=30$ $m_1=800$ $m_1=800$

في وجود قوى احتكاك \overrightarrow{f} شدتها ثابتة و لا تتعلق بسرعة العربة.

في اللحظة t = 0s تنطلق العربة من النقطة A دون سرعة ابتدائية،

4-الشكل A الشكل A

 (S_2) و (S_1) عليه القوى الخارجية المؤثرة على كل من (S_1) و (S_2)

 (S_2) و (S_1) و بتطبیق القانون الثانی لنیوتن علی و القانون الثانی الثانی

$$rac{d^2x}{dt^2} = rac{(m_2-m_1\sinlpha)}{m_1+m_2}\,g - rac{f}{m_1+m_2}$$
: أ- بيّن أن المعادلة التفاضلية للفاصلة x تعطى بالعلاقة التالية :

 \cdot (S_1) استنتج طبيعة حركة الجسم

ج- باستغلال الشروط الابتدائية أوجد حلا للمعادلة التفاضلية السابقة .

x من أجل قيم مختلفة لx كررنا التجربة السابقة عدة مرات فتحصلنا على منحنى بياني يلخص طبيعة حركة الجسم x

أ- من بين البيانات الثلاثة (1)، (2) و (3) ما هو البيان الذي يتفق مع الدراسة النظرية السابقة ؟ علل.

ب- احسب من البيان قيمة التسارع a.

 $g=9,80~m\cdot s^{-2}$: استنتج قيمة كل من قوة الاحتكاك f وتوتر الخيط T علما أن

التمرين الخامس: (04 نقاط)

نحقق الدارة (الشكل-5)، والتي تتكون من مولد لتوتر ثابت E=9,0V، ومكثفة سعتها $C=250~\mu$ وناقلين أوميين متماثلين مقاومة كل منهما $C=250~\mu$ وبادلة K.

أولا: نضع البادلة على الوضع 1.

1- أ- أعد رسم الدارة (الشكل-5) مبينا عليها جهة انتقال حاملات الشحنة

وما طبيعتها ؟ حدّد شحنة كل لبوس وجهة النيار.

 $u_{c}\left(t
ight)$ و $i\left(t
ight)$ بين $i\left(t
ight)$ و $u_{c}\left(t
ight)$ و $u_{c}\left(t
ight)$ بين $i\left(t
ight)$ و $i\left(t
ight)$ و خگر بالعلاقة بين $i\left(t
ight)$ و العلاقة بين $u_{c}\left(t
ight)$

ي من الشكل: $u_{c}\left(t\right)$ و بين أن المعادلة التفاضلية التي يحققها $u_{c}\left(t\right)$ هي من الشكل: -2

$$\tau_1 \cdot \frac{du_C(t)}{dt} + u_C(t) = A$$

 $\cdot A$ و جد القيمة العددية لكل من au_1 و

ج- أوجد من المعادلة التفاضلية وحدة ٢٠ عَرَفه .

-3 اقرأ على المنحنى البياني (الشكل-6) قيمة ثابت الزمن -7، وقارنها بالقيمة المحسوبة سابقا.

- حدّد بيانيا المدة الزمنية Δt الصغرى اللازمة V_{1} لاعتبار المكثفة عمليا مشحونة. قارنها مع V_{1} .

ثانيا: نضع البادلة على الوضع 2.

أ- ما هي الظاهرة الفيزيائية التي تحدث ؟ اكتب المعادلة التفاضلية أ $u_{c}(t)$ الموافقة.

 \cdot ب- احسب \cdot ، قارنها بـ \cdot ، ماذا تستنج

ج- مثل بشكل تقريبي المنحنى البياني لتغير $u_{c}\left(t\right)$ مستعينا بالقيم المميزة.

لائحة الأدوات والمواد

 $(Zn^{2+}(aq) + SO_4^{2-}(aq))$: \circ

 $(Cu^{2+}(aq) + SO_4^{2-}(aq))$: محلول

Zn(s) عفيحة زنك:

• صفيحة نحاس: (Cu(s

• 2 بيشر سعته 100 mL .

• أسلاك توصيل ومشابك.

• جسر ملحى.

• جهاز فولطمتر.

التمرين التجريبي: (03,5 نقطة)

من أجل الإجابة على السؤالين التاليين: من أين تأتي الطاقة التي تعطيها الأعمدة ؟ وكيف تشتغل ؟

قام فوج من التلاميذ بدر اسة تجريبية لمبدأ اشتغال عمود دانيال، انطلاقا من الوسائل والمواد المبينة في اللائحة المقابلة.

1- ارسم شكلا تخطيطيا لعمود دانيال، مدعما بالبيانات.

-2 استخدم التلاميذ جهاز فولطمتر من أجل تحديد أقطاب العمود فتبيّن أن $U_{\text{Cu}} > U_{\text{Zn}}$.

أ- بين على المخطط السابق طريقة ربط جهاز الفولطمتر،
 مع توضيح القطبين الموجب والسالب للعمود.

ب- اكتب المخطط الاصطلاحي للعمود (رمز العمود).

: ox/red التفاعل أكسدة - إرجاع المنمذجة للتحول الحادث، مستعينا بالثنائيتين -3

 $Zn^{2+}(aq)/Zn(s)$, $Cu^{2+}(aq)/Cu(s)$

4- أنجز الحصيلة الطاقوية للعمود.

5- أ- احسب قيمة كسر التفاعل $Q_{r,i}$ في الحالة الابتدائية، وبيّن جهة التطور التلقائي للجملة، علما أن للمحلولين نفس الحجم و التركيز المولي: $C=1,0\ mol\cdot L^{-1}$ ، وأن ثابت التوازن $K=4,6\times 10^{36}$. فس الحجم و التركيز المولي: $\Delta t=0,76$ مشدة تيار ثابتة $\Delta t=0,76$ ، احسب التقدم $\Delta t=0,76$

6- بيّن مبدأ اشتغال العمود الكهربائي موضحا مصدر الطاقة التي ينتجها.

صفحة 4 من 8

التمرين الأول: (03,5 نقطة)

الشكل-1

، (الشكل-1) المميزين لوشيعة، نحقق الدارة الكهربائية (الشكل-1) ، $R = 45\Omega$, E = 9V حيث:

في اللحظة t = 0 عنظق القاطعة K

1- باستخدام قانون جمع التوترات، بيّن أن المعادلة التفاضلية لشدة التيار

$$\frac{di(t)}{dt} + \frac{i(t)}{\tau} = \frac{E}{L}$$
 الكهربائي هي:

العبارة (i(t)=A ($1-e^{-\frac{t}{\tau}}$) العبارة (i(t)=A ($1-e^{-\frac{t}{\tau}}$) العبارة (i(t)=A

اوجد الثابت A. ماذا يمثل ؟

R وبين r ، L وبين الزمن r بدلالة r ، r وبين rبالتحليل البعدي أنه متجانس مع الزمن.

4- بواسطة لاقط أمبيرمتر موصول بالدارة ومرتبط بواجهة دخول لجهاز إعلام آلي مزود ببرمجية مناسبة، نحصل على التطور الزمني للتيار الكهربائي i(t) (الشكل-2).

أ- اوجد بيانيا قيمة ثابت الزمن T، مع شرح الطريقة

- اوجد قيمة المقاومة r، ثم احسب قيمة ذاتية الوشيعة L.

5- احسب الطاقة الأعظمية المخزنة في الوشيعة.

التمرين الثاني: (03,5 نقطة)

 $c_0 = 1.0 \times 10^{-2} \, mol \cdot L^{-1}$ محلول مائي S_0 وتركيزه المولي V_0 محمد دمول مائي محمد الإيثانويك محمد الإيثانويك محمد الإيثانويك محمد الإيثانويك المحمد الإيثانويك محمد الإيثانويك المحمد ا

[- اكتب معادلة النفاعل المنمذجة لانحلال حمض الإيثانويك في الماء.

 x_{eq} نشئ جدو لا لتقدم التفاعل. نرمز ب x_{eq} إلى تقدم التفاعل عند التوازن.

3- اكتب عبارة كل من:

. $\left[H_3O^+(aq)\right]_f$ و c_0 بدلالة c_0 بدلالة التقدم النهائي T_f بدلالة التقدم النهائي

 $Q_{r,eq} = \frac{\left[H_3 O^+(aq)\right]_{eq}^2}{c_0 - \left[H_3 O^+(aq)\right]_{eq}}$: کسر النفاعل عند التوازن، وبیّن أنه یمکن کتابته علی الشکل

4- أ- باستخدام العلاقات المستنتجة سابقا، أكمل الجدول الموالي:

$Q_{r,\acute{e}q}$	τ_f (%)	$\left[H_3O^+(aq)\right]_{\acute{e}q}(mol\cdot L^{-1})$	$\sigma_{\acute{e}q}(S\cdot m^{-1})$	$c (mol \cdot L^{-1})$	المحلول
		10.00	0,016	$1,0 \times 10^{-2}$	S_0
			0,036	$5,0\times10^{-2}$	S_1

علما أن: $\lambda_{CH_2COO^-} = 3,6mS \cdot m^2 \cdot mol^{-1}$ و $\lambda_{H_2O^+} = 35,0mS \cdot m^2 \cdot mol^{-1}$ علما أن:

ب- استنتج تأثير التركيز المولي للمحلول على كل من:

- نسبة التقدم النهائي -

- كسر التفاعل عند التوازن Qréa.

التمرين الثالث: (03,5 نقطة)

تنشطر نواة اليورانيوم 235، عند قذفها بنترون بطيء، وفق التفاعل ذي المعادلة:

$$^{235}_{92}U + {}^{1}_{0}n \rightarrow {}^{94}_{38}Sr + {}^{140}_{2}Xe + x {}^{1}_{0}n$$

1- تستخدم النترونات عادة في قذف أنوية اليورانيوم. لماذا ؟

2- أكمل معادلة النفاعل النووي المبينة أعلاه.

3- فسر الطابع التسلسلي لهذا التفاعل، مستعينا بمخطط توضيحي.

-4 أ- احسب النقص في الكتلة Δm خلال هذا التحول.

. 235 المحررة من انشطار نواة واحدة من اليورانيوم E_{lib} المحررة من انشطار نواة واحدة من اليورانيوم

-235 من اليورانيوم m=2,5 g من الشطار ج- استنتج الطاقة المحررة من انشطار

د- على أي شكل تظهر هذه الطاقة ؟

5- ما هي كتلة غاز المدينة (غاز الميثان 4 CH) اللازمة للحصول على طاقة تعادل الطاقة المتصررة من انشطار

m=2,5 g من اليورانيوم 235 ؟ علما أن احتراق $1\,mol$ من غاز الميثان يحرر طاقة مقدارها m=2,5 g

$$m(^{140}Xe) = 139,89194u$$
 , $m(^{94}Sr) = 93,89446u$, $m(^{235}U) = 234,99332u$

$$c = 3 \times 10^8 \text{ m} \cdot \text{s}^{-1}$$
 , $1u = 1,66 \times 10^{-27} \text{ kg}$, $m(^1n) = 1,00866 u$

$$M(CH_4) = 16 g \cdot mol^{-1}$$
 , $N_A = 6,02 \times 10^{23} mol^{-1}$

يدور كوكب القمر حول الأرض وفق مسار نعتبره دائريا مركزه هو مركز الأرض، ونصف قطره $384 \times 10^3 \, km$ ودوره $T_r = 25,5 \, jour$.

1- أ- ما هو المرجع الذي تنسب إليه حركة كوكب القمر ؟

ب- احسب قيمة السرعة ν لحركة مركز عطالة القمر.

-2 المركبة الفضائية أبولو (Apollo) التي حملت رواد الفضاء إلى سطح القمر سنة 1968، حلقت في مدار دائري حول القمر على ارتفاع ثابت $h_A=110\,km$.

أ- ذكّر بنص القانون الثالث لكبلر.

. M_L وكتلته M_L وكتلته M_L ونصف قطر القمر R_L وكتلته M_L وثابت الجنب العام M_L احسب قيمته العددية.

 $r_{\rm S}$ استنتج مما تقدم نصف القطر $r_{\rm S}$ للمدار الجيومستقر لقمر اصطناعي أزضى.

، $M_L = 7,34 \times 10^{22} kg$ ، كتلة القمر : $G = 6,67 \times 10^{-11} N \cdot m^2 \cdot kg^{-2}$

نصف قطر القمر : $M_T = 1.74 \times 10^3 \, km$ حيث $M_T = 1.74 \times 10^3 \, km$ كتلة الأرض.

4- يوجد تشابه واضح بين النظامين الكوكبي والذري، إلا أنه لا يمكن تطبيق قوانين نيوتن على النظام الذري. بين محدودية قوانين نيوتن.

التمرين الخامس: (03,5 نقطة)

عامل في أحد المخازن، يدفع صندوقا كتلته $m = 20 \, kg$ ، على مستوي أفقي إلى أن تبلغ سرعته حدا معينا، ثم يتركه لحاله، في لحظة نعتبرها مبدأ لقياس الأزمنة.

اعتبارا من هذه اللحظة، يتحرك G مركز عطالة الصندوق على مسار مستقيم حتى اللحظة t_1 ، وفق المحور (\tilde{i},\tilde{o}) . التطور الزمني لكل من الفاصلة x(t) والسرعة v(t) لمركز العطالة v(t) المبينين بالمنحنيين (الشكلv(t)). نستخدم وحدات النظام الدولى v(t)

x(t) أ- تعرف على المنحنى البياني الممثل للفاصلة x(t) والمنحنى البياني الممثل للسرعة v(t).

- حدّد بيانيا قيمة اللحظة t_1 . ماذا يحدث للصندوق عندئذ ؟

G ارسم مخطط التسارع $a_G(t)$ للنقطة -2

3- أ- مثل القوى الخارجية المؤثرة على الصندوق أثناء الحركة.
 ب- بتطبيق القانون الثاني لنيوتن على مركز عطالة الصندوق،
 أوجد شدة قوة الاحتكاك المؤثرة عليه.

4- أ- اكتب المعادلة التفاضلية للسرعة على المحور $(O, \vec{i}\,)$ ، واستتتج المعادلة الزمنية $(x\,(t)\,)$

الشكل-3

التمرين التجريبي: (03 نقاط)

. d=1,3 و 27% لمحلول هيدروكسيد الصوديوم تحمل المعلومات التالية: S_0 و و

 $\cdot c_0 = 8,8 \ mol \cdot L^{-1}$ بيّن بالحساب أن التركيز المولي للمحلول يقارب -1

ب- ما هو حجم محلول حمض كلور الهيدروجين الذي تركيزه المولي $c_a=0.10\,mol\cdot L^{-1}$ اللازم المعايرة $V_0=10\,mL$

ج- هل يمكن تحقيق هذه المعايرة بسهولة ؟ علل.

 $500 \, mL$ بتمديد العينة المخبرية 50 مرة. صف البروتوكول التجريبي الذي يسمح بتحضير $500 \, mL$ من المحلول $500 \, mL$

PH-متر و البيشر و نضيف إليه كمية مناسبة من الماء المقطر تجعل المسبار مغمور ا بشكل ملائم. نقيس قيمة الPH-متر في البيشر و نضيف إليه كمية مناسبة من الماء المقطر تجعل المسبار مغمور ا بشكل ملائم. نقيس قيمة الPH ، بعدها نسكب بو اسطة سحاحة حجما من المحلول الحمضي ثم نعيد قياس البPH .

نكرر العملية، مما يسمح لنا برسم المنحنى البياني (الشكل-4).

أ- كيف نضع مسبار الـ pH -متر حتى يكون مغمورا بشكل ملائم في البيشر؟ لماذا ؟

ب- اكتب المعادلة المنمذجة للتحول الحادث أثناء المعايرة.

ج – عين الإحداثيين (V_{aE}, pH_E) لنقطة التكافؤ E مع ذكر الطريقة المتبعة.

د- احسب التركيز المولي للمحلول S ثم استنتج التركيز المولى للعينة المخبرية.

الشكل-4

 $M(Na) = 23 g \cdot mol^{-1}$, $M(O) = 16 g \cdot mol^{-1}$, $M(H) = 1 g \cdot mol^{-1}$

الإجابة النموذجية وسلم التنقيط

امتحان شهادة البكالوريا دورة: 2011 المادة: العلوم الفيزيائية الشعبة: رياضيات + تقني رياضي

	Lak Lak	(140 - 1 - 1 - 1 - 1	1.50
المجموع	مجزاة	عناصر الإجابة (الموضوع الأول)	محاور لموضوع
		التمرين الأول: (03 نقاط)	23.3
- 9	0.25	1. 1) اسم التحول: أسترة	
- 1	0.25	خصائصه: محدود، بطيء، لا حراري،	8
- 1		ب) المعادلة المنمذجة للتحول:	
- 1	0.25	$CH_1COOH + C_2H_3 - OH = CH_1COOC_2H_3 + H_2O$	
	0.25	جــ) اسم المركب العضوي E: ايثانوات الإوثيل	
i	0.50	$v = 8 \times 10^{-3} mol \cdot h^{-1}$: $t = 25 h$ this like the last $t = 8 \times 10^{-3} mol \cdot h^{-1}$	
03	0.25	ب) مردود التفاعل عند التوازن: % 67 ⇒ 67,0 = 7	
	0.25	3. ازیادة مردود التفاعل نستخدم مزیجا تفاعلیا غیر متساوی المولات	
1	0.25	O [CH,COOC,H,][H,O]	
	Section 1	$Q_{r,q_i} = \frac{[CH_jCOOC_2H_5][H_2O]}{[CH_jCOOH][C_2H_2OH]} = 4,12$ (1.4)	
- 1	0.25	$K = Q_{r, dq} = 4,12$ ومنه ثابت التو ازن:	
	0.25	ب) جهة التطور التلقائي: تتطور الجملة في جهة تشكيل الأستر	
	0.25	ب) جهه العمور المتعالى: عمور عبد على المعالى: 2,56 < 4,12	
		التمرين الثاني: (03 نقاط)	
	0.25	Σ F = w = -	
- 1		$\Sigma \overline{F_{\alpha i}} = m \overline{a} \Rightarrow -g = a$ المعدلات التفاضلية للحركة: المعدلات التفاضلية الحركة: (1.1)	
	0.25	$\left \frac{dv_x(t)}{dt} = 0 \right \Leftrightarrow \frac{d^2x(t)}{dt^2} = 0$	
- 1	0.26	3	
	0.25	$\frac{dv_{x}(t)}{dt} = -g \iff \frac{d^{2}z(t)}{dt} = -g$	
	- 1		
	0.25	ب) المعادلات الزمنية للحركة: (معادلات الزمنية للحركة:	
		$v_x = \frac{1}{dt} = v_0 \cos \alpha \Leftrightarrow x(t) = v_0 \cos \alpha \cdot t$	
03	0.25	$\begin{cases} v_x = \frac{dx(t)}{dt} \approx v_0 \cos \alpha \iff x(t) = v_0 \cos \alpha \cdot t \\ v_z = \frac{dz(t)}{dt} = -gt + v_0 \sin \alpha \iff z(t) = -\frac{1}{2}gt^2 + v_0 \sin \alpha \cdot t + z_0 \end{cases}$	
1	0.25	$\int v_x = 11,22 m \cdot s^{-1} \iff x(t) = 11,22 \cdot t$	
- 1	0.25	$v_t = -9.8t + 7.86 \Leftrightarrow z(t) = -4.9t^2 + 7.86 \cdot t + 2$	
_	0.25	$z = -\frac{g}{2v_0^2\cos^2\alpha}x^2 + x\tan\alpha + z_0$ 2.	
		2. معادلة المسار: " 2ν ₀ cos α	
1	0.25	$z = -0,04x^2 + 0,7x + 2$	
	0.25	$\begin{cases} z_M = 0 m \\ x_M = 20 m \end{cases} \begin{cases} z_M = 0 m \\ 0 = -0,04x^2 + 0,7x + 2 \end{cases} : M \text{ i.i.d.} .3$	
	0.23	$(x_M = 20 \text{ m})$ $[0 = -0.04x^2 + 0.7x + 2]$	
100	0.50	$v_M = \sqrt{v_{M_T}^2 + v_{M_T}^2} = 14,77 \text{ m} \cdot \text{s}^{-1} : M$ where $M_T = 14,77 \text{ m} \cdot \text{s}^{-1}$	
1			

T 4	المادة : العلوم الفيزيائية الشعبة رياضيات أ تقني رياضي		العلامة	
باور ضوع	عناصر الإجابة (الموضوع الأول) "	مجزاة	لىجىرع	
1	التمرين الثالث: (03 نقاط)	-	105-3	
	1. الأسياب المحتملة لعدم استقرار النواة هي:	0.25	12.15	
	• عدد كبير من النيوكلونات	0.25		
	 عدد كبير من البزوتونات بالنسبة للنترونات 	0.25		
	 كيفية توضع الأنوية على المخطط: الأنوية المستقرة تتوضع بجوار الخط البياني الذي معادلته: N = Z. 	0.50		
	$\{{}^{12}_{5}B, {}^{16}_{6}C, {}^{16}_{7}N\}: \beta^{-}$ and in the state of $\{{}^{12}_{5}B, {}^{16}_{6}C, {}^{16}_{7}N\}$	0.50	03	
	 (ب) الأنوية المشعة من نمط β: β(1, 1, N, 1, N) 	0.50	- 1	
	ج) الروية المتنف من تعدد مرا و ١٠٠٠ و ١٠٠٠ المجموعة الأولى تتميز ب: عدد بروتونات أقل من عدد النتزونات	0.26		
	جـ) - المجموعة الأولى تثمير بـ: عد بروتونات أكبر من عند النترونات - المجموعة الثانية تتميز بــ: عدد بروتونات أكبر من عند النترونات	0.25		
	د) معادلة تفكك الكربون 14: $^{\circ}_{1}N + ^{\circ}_{2}e$ الكربون 14: $^{\circ}_{1}N + ^{\circ}_{2}e$	0.50		
		0.50		
	التمرين الرابع: (03.5 نقطة)	0.25		
	$\overline{T_1},\overline{P_2}$: (S_2) الجسم القوى الخارجية: الجسم الجسم الجسم الخارجية: الجسم الخارجية: الجسم			
	$\overline{T}_i, \overline{P}_i, \overline{R}_i, \overline{f}$: (S ₁) الجسم	0.25		
	تمثيل الشكل	0.25		
	$\sum \vec{F}_{cc} = m\vec{a}_{cc}$: $-1-2$			
	$P_2 - T_2 = m_2 a_G \dots (1) : (S_2)$ الجسم	0.25	1	
		0.25		
	$T_1 - f - m_1 g \sin \alpha = m_1 a_0$ (2) : (S ₁) الجمع		03.5	
	$dx^1 = (m, -m \sin \alpha)g = f$		31 3	
	$\frac{dx^{1}}{dt^{2}} = a_{0} = \frac{(m_{1} - m_{1} \sin \alpha)g}{m_{1} + m_{2}} - \frac{f}{m_{1} + m_{3}}$ نجد (2) نجد			
	طبيعة الحركة: "ع م المسار مستقيم ومنه الحركة مستقيمة متغيرة بانتظام	0.25	10	
	- 회에	2000	72	
	$x = \frac{1}{2}a_{0}t^{2}$: $x = \frac{1}{2}a_{0}t^{2}$	0.25		
	3 - أ- المنحنى الموافق هو الشكل (1)	0.25		
	التعليل: البيان خط مستقيم يمر بالمبدأ	0.25	100	
	معادلته من الشكل $x = kr^2$ وهذا يوافق حل المعادلة التفاضلية.	0.25	- 1	
	$k = 0,5m \cdot s^2$ نجد: $k = \tan \alpha = \frac{\Delta x}{\Delta t^2}$ -		. 11	
		0.25		
	$a = 2k = 1 m \cdot s^2 :$	0.25		
	$T_2 = m_2(g-a) \Rightarrow T_2 = T_1 = 5,28 N : (1)$	0.25	- 1	
		0.25	35 6	
	$f = m_1(a - g \sin \alpha) + T_1 \Rightarrow f = 2,16 N : (2)$	0.25	20 0	
			1	
1 2	34 _ 34			
	v "	1 a 1	-	

+ تقنى رياضى	ر باضيات	الشعبة:	م الفرز بائية	المادة : العلم
5 2 6			Company bearing to	description of the second

العلامة		عناصر الإجابة (الموضوع الأولى)			
المجموع	مجزأة	عاصر الإجبه (الموضوع ادون)	محاور لموضوع		
	0.50	التمرين الخامس: (40 نقاط) اولا: اراد الله الخاصة الشعنة في الدنواة الكهريائية هي الكائرونات. الكائرونات. العلاقة بين (ع) أو (ع):			
	0.50	$i(t) = \frac{dq(t)}{dt}$ $q(t) = C \cdot u_c(t) : q(t) \cdot u_c(t) \text{with } i(t) = c$ $i(t) = C \frac{du_c(t)}{dt} : a$	10		
	0.50	$u_g(t)+u_C(t)=E$:ا للعلاقة بين $u_g(t)$ و $u_C(t)$ من قانون جمع التوثرات:			
04	3	$ au_{c}(t) + u_{c}(t) = A$ و الذي تو الذي تو الذي الشكل: $RC \frac{du_{c}(t)}{dt} + u_{c}(t) = E$ ومنه: $A = E = 6V$			
	0.25	$\tau_1 = RC = 200 \times 250 \times 10^{-6} = 0,05 s$	-		
	0.25	$ au_{c}=(A-u_{c})rac{dt}{du_{c}}$: من المعادلة التفاضلية: $ au_{c}=(T_{1})=T_{2}$ من المعادلة التفاضلية: $ au_{c}=[T_{1}]=T_{2}=T_{3}$			
or Sur	0.25	التعريف: ٢٠ هو ثابت الزمن (الزين العميز)، ويوافق العدة الزمنية اللازمة للتوثر الكبرباتي بين طرفي العكمة لبلوغ % 67 من قيمته الأعظمية.			
	0.25 0.25	3. أ) بيانيا $0,05s = 7$ وهو متطابق مع القيمة المحسوبة في السوال 2. ب). $\Delta t = 0,25s$ بيانيا $\Delta t = 0,25s$ وهي توافق $\Delta t = 0,25s$ دانيا:			
	0.25	اً) عند وضع البادلة في الوضع 2 فإن الظاهرة الفيزيائية المادثة هي: ظاهرة تقريغ المكافقة في ناقل أومي.			
	0.25	$\Delta u_{c}(V)$ $2u_{g}(t)+u_{c}(t)=0$ (V)			
	0.25 0.25	$2RC \frac{dt}{dt} + u_{c}(t) = 0 : 2u_{s}$ $\tau_{2} = 2RC = 0.1s (\ \omega$			
		المقارنة: $r_2 = 2r_1$ الاستثناج: مدة تقريغ المكافمة هي ضعف مدة شعنها.	- 1		
	0.25	جــ) المُعَامِلُ البِيتِي	22		

لمة المجموع	مجزأة	المادة : العلوم الفيزيائية الشعبة: رياضيات + تقنى رياضي عناصر الإجابة (الموضوع الأول)	محاور
-	-	عصر المها (حودي المها	معور
		التمرين التجريبي: (3.5 نقطة)	23-3-
		ا. الشكل التخطيطي للعمود:	÷
	0.50	Cu(s) $Zn(s)$	
	0.50	Cu2. (aq) - Zn2. (aq)	
ĺ		2. 1) طريقة ربط جهاز الغولطمئر:	
1	0.25	$Cu(s) \xrightarrow{\bigoplus} Zn(s)$	
- 1		,	
2	- 1	Cu2+ (aq) - Zn2+ (aq)	
03.5	0.25	ب) المنطط الاصطلاحي للعمود:	
		$\Theta Zn(s) Zn^{2+}(aq) Cu^{2+}(aq) Cu(s) \oplus$	
- 1	1	3. معادلة الأكسدة-إرجاع:	
	0.75	$Cu(s) = Cu^{2+}(\alpha q) + 2e^{-\frac{1}{2}}$	
- 1	0.75		
2	0.25	E. 11 E. 10 E. 10	
	- 1	 الحصيلة الطاقوية: الحصيلة الطاقوية: 	
	0.25	$Q_{r,r} = \frac{[Cu^{2+}(aq)]_{r}}{[Zn^{2+}(aq)]_{r}} = 1 \text{ detail } park (1.5)$	
	0.25	جهة التطور التلفائي للجمله: الجهه المباشرة فان ٨٨٠ يكاما.	
- 0	0.50	$x = \frac{I \cdot \Delta t}{2F} = 4.7 \times 10^{-4} \ mol = 0.47 \ mmol$: فيمة التقدم:	
		 ٥ بناخم، مبدأ اشتغال العمود في حدوث انتقال تلقائي للإلكترونات بين تثاثيتين 	W
	رل 0.50	ox / red موصولة في دارة كهربائية، والطاقة الكهربائية التي ينتجها، ناني من نح	
	1	الطاقة الكيميائية إلى طَاقة كهربائية.	
10		20 20 20 20 20 20 20 20 20 20 20 20 20 2	
	.		
	.		- a 3
	32		

المادة : العلوم الفيزيائية الشعبة: رياضيات + تقني رياضي

محاور موضوع		L 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	لامة المجموع					
200	التمرين الأول: (5	.3 نقطة)						
	1. كتابة المعادلة	التفاضلية: (t(t)	$i(t) + L \frac{di}{dt} + R$	$g(t) \Leftrightarrow E = t$	$E = u_b(t) + u$	0.50		
			$\frac{dt}{L}i(t) = \frac{E}{L}$			0.25		
	1		***	تعويض في المعاد		0.25		
	$A = \frac{E}{r+R}$ ونتج:		عظمية لو الشدة ا	ي النظام الدائم.		0.25		
	3. عبارهٔ ۲: - ت		(1/1)			0.25	03.5	
	التطيل البعدي:	$\frac{[U] \times [T]}{[A] \times \frac{[U]}{[A]}} = [T]$	$[\tau] = \frac{(E_T)}{(R_T)} =$		(1) WE	0.25		
	1	ر 1م) مم المماس للمنحد		= 1، أو طريقة ال	63 %	0.50		
			ا على النظا	ر الدائم: Ω5=2	$r = \frac{E - RI}{I}$	0.50		
		$r = \frac{E - RI_0}{I_0} = 5 \Omega$: ومن النظام الدائم: $I_0 = 180 mA = 0.18 A$ بيانيا نجد: $L = \tau(r + R) = 0.01 H$. $L = \tau(r + R) = 0.01 H$						
				$=\frac{1}{2}LI_0^2=1,62$	E(L)	0.50		
		(115: 2 E)		3=2-19.4			A e	
		محمض الإيثانويا *0 (aq) + H ₃ O		COOH (aq)+H	СН	0.25		
	1. معادلة الحلام (aq) 2. جدول التقدم:	محمض الإيثانويا *0 (aq) + H ₃ O	$O(\ell) = CH_3CO$			0.25	5.7	
	1. معادلة الحلام (aq) 2. جدول التقدم:	محض الأيثانويا $O^{-}(aq) + H_{3}O^{+}$	$O(\ell) = CH_3CO$	CH ₃ COOH (c	ح. نېتدائية	0.25		
	1. معادلة الحلال (aq) 2. جدول التقدم: (H ₃ O ⁺ (aq) 0	ر حمض الإيثانويا 0 (aq) + H ₃ O ° CH ₃ COO "(aq) 0	$O(\ell) = CH_3CO$	$CH_{s}COOH(c$ $c_{0}V_{0}$ $c_{0}V_{0}-x$	ح. لبندائية ح. لنتقالية			
	1. معادلة الحلا (aq) 2. جدول النقدم: (H ₂ O ⁺ (aq) 0 x	الإيثانويا 0 (aq) + H ₃ O - CH ₃ COO - (aq) 0 x	$O(\ell) = CH_3CO$ $aq) + H_3O(\ell) =$ μ μ	$CH_{i}COOH(c$ $c_{0}V_{0}$ $c_{0}V_{0}-x$ $c_{0}V_{0}-x$	ح. لبندائية ح. لنتقالية			
	1. معادلة الحلا (aq) 2. جدول النقدم: (H ₂ O ⁺ (aq) 0 x	ر حمض الإيثانويا 0 (aq) + H ₃ O ° CH ₃ COO "(aq) 0	$O(\ell) = CH_3CO$ $aq) + H_3O(\ell) =$ μ μ	$CH_{i}COOH(c$ $c_{0}V_{0}$ $c_{0}V_{0}-x$ $c_{0}V_{0}-x$	ح. لبندائية ح. لنتقالية		03.5	
	1. معادلة الحلام (معادلة الحلام (بين	ر حمض الإيثانويا O (aq) + H ₃ O * CH ₃ COO * (aq) 0 x x y التقدم النهائي:	$O(\ell) = CH_3CO$ $aq) + H_3O(\ell) =$ $ploon = H_3O^*(aq)]_f$ c_0 $ploon = O^*(aq)]_{aq}$ c_0 c_0	$CH_{i}COOH(c$ $c_{0}V_{0}$ $c_{0}V_{0}-x$ $c_{0}V_{0}-x$	ح. لبكائية ح. لنقالية ح. التوازن	0.50	03.5	
	1. معادلة الحلام (pa) 2. جدول النقدم: (H ₃ O*(aq) 0 × × × ب) عبارة نمب (ب) عبارة كسر	محمض الإرثانويا $O^{-}(aq) + H_{3}O^{-}$ $O^{-}(aq) + H_{3}O^{-}$ O \times	$O(\ell) = CH_1CO$ $Q(\ell) = CH_2CO$ $Q(\ell) = H_1O(\ell) = 0$ $Q(\ell) = CH_2CO$ $Q(\ell) =$	$CH_{j}COOH(a)$ $c_{0}V_{0}$ $c_{0}V_{0}-x$ $c_{0}V_{0}-x_{4q}$ $\tau_{f} = \frac{x_{f}}{x_{max}}$ $COO^{-}(aq)]_{dq}[H$ $[CH_{j}COOH(aq)]_{dq}$	ح. لبكائية ح. لنقالية ح. التوازن	0.50	03.5	
	1. معادلة الحلام (pa) 2. جدول النقدم: (H ₃ O*(aq) 0 × × × ب) عبارة نمب (ب) عبارة كسر	ر حمض الإيثانويا O (aq) + H ₃ O * CH ₃ COO * (aq) 0 x x y التقدم النهائي:	$O(\ell) = CH_1CO$ $Q(\ell) = CH_2CO$ $Q(\ell) = H_1O(\ell) = 0$ $Q(\ell) = CH_2CO$ $Q(\ell) =$	$CH_{j}COOH(a)$ $c_{0}V_{0}$ $c_{0}V_{0}-x$ $c_{0}V_{0}-x_{4q}$ $\tau_{f} = \frac{x_{f}}{x_{max}}$ $COO^{-}(aq)]_{dq}[H$ $[CH_{j}COOH(aq)]_{dq}$	ح. لبكائية ح. لنقالية ح. التوازن	0.50 0.50 0.25	03.5	
	1. معادلة الحلام (pa) 2. جدول النقدم: (H ₃ O*(aq) 0 × × × ب) عبارة نمب (ب) عبارة كسر	محمض الإرثانويا $O^{-}(aq) + H_{3}O^{-}$ $O^{-}(aq) + H_{3}O^{-}$ O \times	$O(\ell) = CH_1CO$ $Q(\ell) = CH_2CO$ $Q(\ell) = H_1O(\ell) = 0$ $Q(\ell) = CH_2CO$ $Q(\ell) =$	$CH_{j}COOH(a)$ $c_{0}V_{0}$ $c_{0}V_{0}-x$ $c_{0}V_{0}-x_{4q}$ $\tau_{f} = \frac{x_{f}}{x_{max}}$ $COO^{-}(aq)]_{dq}[H$ $[CH_{j}COOH(aq)]_{dq}$	ح. لبكائية ح. لنقالية ح. التوازن	0.50 0.50 0.25	03.5	

المادة : العلوم الفيزيائية الشعبة: رياضيات + تقني رياضي

محاور بوضوع	عناصر الإجابة (الموضوع الثاني)					مجزأة	العلامة مجزأة المجموع				
-	(1.4										
-	24	c (mol · L-1)	σ _{ey} (S·m ⁻¹)	[H,O*(aq)], (mol·L*)	τ(%)	Q.,iq	Π	67.5			
	S _o	1,0×10 ⁻²	0,016	4,150×10 ⁻⁴	4,15	1,8×10 ⁻⁵	0.75				
	S,	5,0×10 ⁻²	0,036	9,326×10 ⁻⁴	1,86	1,8×10 ⁻⁵	0.70				
		اد التركيز المول		ست نصبة التقدم النهائم متعاد / التركية الما			0.25 0.25				
		ثلث: (3.5 نقط	The state of the s	يتعلق) بالتركيز المولم	المحتون. الاحتوال:		0.23	×			
	 أ. تستخد معانلة 	م النترونات لأنها التفاعل النووي:	متعادلة كهربائر 140Xe +2أn	$\frac{1}{92}U + \frac{1}{9}n \rightarrow \frac{94}{38}Sr - \frac{1}{92}U + \frac{1}{9}n \rightarrow \frac{94}{38}Sr - \frac{1}{92}U + $.•3; *•3;	.→• <u>3</u> °°	0.25 0.50				
	نترونات ن	الطابع التسلسلي ؤدي يدور ها إلى س في الكتلة:	لتفاعل الانشطار انشطار لنوية .	: انشطار النواة الأولم بديدة، وهكذا يتسلسل ن	لليور انيوم ناعل الانشط	يعطي لمار .	0.50	,A			
			m)] $-[m(Sr)+i$	$\Delta m = [m(U) + m(t)]$		100	0.25				
		$=3,29\times10^{-28}k_2$					0.25	03825			
	جــ) الطا	لة المحررة من ا	نشطار g 2,5=	$r^2 = 2,96 \times 10^{-11} J$: $r_0 \cdot N(U)$: الدينا: $r_0 \cdot N(U)$	$E'_{tb} = E$	E	0.25	03.5			
	$N(U) = \frac{m}{A(U)}N_A = \frac{2.5}{235} \times 6.02 \times 10^{23} = 6.4 \times 10^{21} \text{ noyau}$										
		$E'_{Hb} = 1.97 \times 10^{1}$		El ESSEX		DOS PORTANTOS	0.25				
	الحركية له	الذي تظهر عليه ختلف الجسيمات از الميثان:	هذه الطاقة: طاة ، وإشعاعات.	ة حرارية بشكل أساس	ي، ترافقها ا	لطاقة	0.25				
	=3,94 <i>T</i>	$=3,94\times10^6$ g	1,97×10 ¹¹ ×16 8×10 ³	$I_{\bullet}) = \frac{E' \cdot M \left(CH_{\bullet}\right)}{8 \times 10^3} =$	m (CI		0.50				
	1. أ) المر		إيه حركة الجملة	ة: المرجع الجيومركز: 270	- 1		0.25				
				$v = \frac{2\pi r}{T_L} = 1,1 \times 10^3 \text{ m}$			0.50				
	2. أ) نص المئوسط لا	القانون الثالث ا كوكب عن الشمم	کبلر: (إن مربع $\frac{T^2}{c_h} = k$	الدور لمدار كوكب يئد $T^2 = k \cdot a^3$	سب مع مک	عب البعد	0.25				
	ب) عيارة	آ دور العركبة: _	$2\pi\sqrt{\frac{(h_A + R_L)}{GM_L}}$	$= \frac{4\pi^2}{GM_L} \implies T_A =$	$\frac{T_A}{r_A}$		0.50	03			
		$T_A = 1,98h$: $4=^2$ T_c^2		(3	\1		0.25				
	GM _L	GM, 1	ر 10 ³ ومله (10 ³ ×(0	$3 \times \left(\frac{24}{1,98}\right)^3 \times \left((110+1746)\right)^3$	$\left(\frac{T_1}{T_A}\right) \cdot r_A^3 = 81$	$r_3^3 = \frac{M_z}{M_A} \left(\frac{1}{2} \right)$	0.50				
		$r_s = 42,28 \times 10^3$				1	0.50				
	4. محدوديا لمستوى الذ	۰ فواتين ليوتن: ، ري، حيث تكون	ميكانيك نيوتن لا التبادلات الطاقو	يسمح بوصف الطواه زية مكممة.	ر الفيزيائية	على	0.25				

للمة	الع	المادة : العلوم الفيزيائية الشعبة: رياضيات + تقني رياضي	
المجموع	مجزاة	عناصر الإجابة (الموضوع الثاني)	محاور لموضوع
1		التمرين الخامس: (3.5 نقطة)	
- 1	0.25	x (t) - المنحني (1) يمثل (1) مثل (1)	
9	0.25	· المنعنى (2) يمثل (v (t)	
	0.25	ري - بيانيا t ₁ = 2,25 s	
- 1	0.25		
		- يتوقف الصندوق اعتبارا من اللحظة ال. (m·s ⁻²) و م	
- 1		2. مخطط التسارع: (ع) 1 1 2 0	
- 9	0.50		
1		-2,2	
		 ث ثمثيل القوى الخارجية المؤثرة على الصندوق.	
03.5	0.25	ارد ۱) علین طوی تصریب شوتره شی شمسوی،	
- 1		· · · · · · · · · · · · · · · · · · ·	
	0.00	$\sum \overrightarrow{F}_{ext} = m \cdot \overrightarrow{a}_G \iff \overrightarrow{f} = m \cdot \overrightarrow{a}_G \iff$	
1	0.25		
	0.25	$f = -m \cdot a_0 = -20 \times (-2, 2) = 44 N$	
- 1	0.25	. أ) لدينا المعادلة التفاضلية للسرعة: $a: a=-\frac{f}{dv}$	
	0.25	ta m	
	0.23	$v(t) = a \cdot t + c \iff v(t) = -2, 2t + 5$	
1	0.50	$\Rightarrow x(t) = \frac{1}{2}a \cdot t^2 + 5t + c' \Leftrightarrow x(t) = -1, 1t^2 + 5t$	
	0.25	2	
	0.23	$\Delta x = 5.6 m : v(t)$ لمساقة من المخطط $x(t)$ ثم من المخطط با	
	Till Common or I	التمرين التجريبي: (03 نقاط)	
* 1	0.25	$c = \frac{10 \cdot d \cdot P}{M} = \frac{10 \times 1,3 \times 27}{40} = 8,8 mol \cdot L^{-1} \text{(i.1)}$	
- 1		M 40	
	0.25	$c_a V_a = c_b V_0 \implies V_a = \frac{c_0 V_0}{0.10} = \frac{8.8 \times 10}{0.10} = 880 mL$!! (+)	
		c. 0,10	
	0.25	 ج) لا يمكن تحقيق هذه المعايرة بسهولة. التمال معالى المعايرة بسهولة. 	
9	0.25	النعايل: هجم المحلول الحمضي اللازم المعايرة كبير جدا. 2. البرونوكول التجريبي:	
03		الأمان مام في المجريبي:	
03	0.25	الأدوات: ماصة 10mL، حوجلة عيارية 500mL، ماء مقطر	
Î	0.25	الطريقة: ناخذ بواسطة الماصة 10mL من العينة المخبرية، تضعها في الحوجلة	
00		العيارية ثم نكمل الحجم بالماء المقطر إلى الخط العياري، يرج المحلول ليتجانس.	
	0.25	1.3) نضع المسبار عمودي (شاقوليا) لتجنب إتلاقه من طرف المخلاط (المرج) المغناطيسي.	
	5.02005		
	0.50	$H_3O^+(aq) + HO^-(aq) = 2H_2O(\ell)$ المعادلة المنفذجة للتقاعل: $PH_g = 7$ و $PH_g = 7$ و $PH_g = 7$ ($PH_g = 7$) المعادلة التكافق:	1
	0.25	$pH_g = 7$ $V_{gg} = 17,6 mL$ includes the management of $V_{gg} = $	8 8
		العروب، المعالين عبورين.	
	0.25	$c_{o}V_{oE} = c_{o}V_{o} \implies c_{o} = \frac{0.10 \times 17.6}{10} = 0.176 mol \cdot L^{-1}$ د) من شرط التكافو:	
	0.25	$c_0 = 50c_b = 50 \times 0.176 = 8.8 mol \cdot L^{-1}$ ومنه ترکیز العینة المخبریة:	
	0.25	رص حرير عبد معبرية. co = 50x 0,1/6 = 8,8 mor . L	