998

Definition 29.4. Given a bilinear map $\varphi \colon E \times F \to K$, for every $u \in E$, let $l_{\varphi}(u)$ be the linear form in F^* given by

$$l_{\varphi}(u)(y) = \varphi(u, y)$$
 for all $y \in F$,

and for every $v \in F$, let $r_{\varphi}(v)$ be the linear form in E^* given by

$$r_{\varphi}(v)(x) = \varphi(x, v)$$
 for all $x \in E$.

Because φ is bilinear, the maps $l_{\varphi} \colon E \to F^*$ and $r_{\varphi} \colon F \to E^*$ are linear.

Definition 29.5. A bilinear map $\varphi \colon E \times F \to K$ is said to be *nondegenerate* iff the following conditions hold:

- (1) For every $u \in E$, if $\varphi(u, v) = 0$ for all $v \in F$, then u = 0, and
- (2) For every $v \in F$, if $\varphi(u, v) = 0$ for all $u \in E$, then v = 0.

The following proposition shows the importance of l_{φ} and r_{φ} .

Proposition 29.1. Given a bilinear map $\varphi \colon E \times F \to K$, the following properties hold:

- (a) The map l_{φ} is injective iff Property (1) of Definition 29.5 holds.
- (b) The map r_{φ} is injective iff Property (2) of Definition 29.5 holds.
- (c) The bilinear form φ is nondegenerate and iff l_{φ} and r_{φ} are injective.
- (d) If the bilinear form φ is nondegenerate and if E and F have finite dimensions, then $\dim(E) = \dim(F)$, and $l_{\varphi} \colon E \to F^*$ and $r_{\varphi} \colon F \to E^*$ are linear isomorphisms.

Proof. (a) Assume that (1) of Definition 29.5 holds. If $l_{\varphi}(u) = 0$, then $l_{\varphi}(u)$ is the linear form whose value is 0 for all y; that is,

$$l_{\varphi}(u)(y) = \varphi(u, y) = 0$$
 for all $y \in F$,

and by (1) of Definition 29.5, we must have u = 0. Therefore, l_{φ} is injective. Conversely, if l_{φ} is injective, and if

$$l_{\varphi}(u)(y) = \varphi(u, y) = 0$$
 for all $y \in F$,

then $l_{\varphi}(u)$ is the zero form, and by injectivity of l_{φ} , we get u=0; that is, (1) of Definition 29.5 holds.

- (b) The proof is obtained by swapping the arguments of φ .
- (c) This follows from (a) and (b).
- (d) If E and F are finite dimensional, then $\dim(E) = \dim(E^*)$ and $\dim(F) = \dim(F^*)$. Since φ is nondegenerate, $l_{\varphi} \colon E \to F^*$ and $r_{\varphi} \colon F \to E^*$ are injective, so $\dim(E) \leq \dim(F^*) = \dim(F)$ and $\dim(F) \leq \dim(E^*) = \dim(E)$, which implies that

$$\dim(E) = \dim(F),$$

and thus, $l_{\varphi} \colon E \to F^*$ and $r_{\varphi} \colon F \to E^*$ are bijective.