

Normal mean of, variance 62, 6
known and the estimator is the sample
average and you're testing Ha! A is not equal $\frac{\hat{\theta}-\theta_0}{\sqrt{5}} \sim N(0,1) \Longrightarrow \frac{(\hat{\theta}-\theta_0)^2}{\sqrt{5}} \sim \chi^2$ DAP is lied Bem(A), and some as above, ~ N(0,1) DGP 10 cod normal with both of and of unknown Let's say you want to prove a coin is beighted unfairly. So you assume have the pair wid frem (A), and 1.96,1,963 a

	Korl Pearson (1900) and it's named the "chi- squard goodness of fit test". In general, if there are K categories (e.g. here K=b), then the following: $ \hat{\phi} = \underbrace{\sum_{k=1}^{K} (O_{K} - E_{K})^{2}}_{K=1} d_{x} \chi^{2}$
	Let's run our die unfair lest for the dota above at $x=5$? ; F_2 (11.07) = 95? $\hat{\Phi} = (H-25)^{\frac{1}{2}} + \dots + (H-2.5)^{\frac{1}{2}}$
-0-	2.5 25. (RET) Retail Ho
N. Carlotte	New situation. Let's look at data for n = 279 men and record their hair color and eye color. Here's the raw data as a "contingency table" or "cross tabulation": # 10005, 1=4 Brown (EB) Blue (EL) Hozel (E2) Graffed Total
	Black (HB) 30 11 10 3 n=56=n1.
Hair	Brown (H0) 53 50 85 15 $n = 143 = n$. Red (HR) 10 10 7 7 $n_{10} = 34 = n_3$. Blonde (HL) 3 30 5 8 $n_{11} = 146 = n_4$. $q8 = n_{10} = n_4$ $101 = n_{10} = n_2$ $111 = n_3 = n_4$ $111 = n_4$ 1
(Ha: hair color and eye color are dependent events Ho! hair color and eye color are independent events

0								
	Let θ denote a true population probability e.g. θ . HB, I=B= θ 1, 1=P(black hair and brown eyes θ -HB= θ 1, =P(black hair)							
	Ho! $\theta = \theta$, θ ,							
	We ne From Ho previous we ex	ed a Let's exemp ped if		c to go he reason first loo	oning fi	rom the d	ata.	
(Fye	color.				
	1	E=n0.0	1= nq. 0		H	Tot.		
Hair	Ω							
Color	3			E,=n0,0,3				
	H				etc			
	Tot							
	D= (OH-EH)2+ - + (OHH-EHH)2 EHH							
	$= \frac{(O_{11} - n \theta_{1}, \theta_{1})^{2}}{n \theta_{1}, \theta_{1}} + \dots + \frac{(O_{hh} - n \theta_{h}, \theta_{1}, h)^{2}}{n \theta_{h}, \theta_{1}, h}$							

Can we compute phihathat? No. You do not know any of the fi's or any of the fi's.

How about we [Richardity and] replace the fi's & fi's with fi's and fi's Yes.