Practice Quiz: n-step RL and MCTS (not assessed)

Due No due date Points 12
Allowed Attempts Unlimited

Questions 7

Time Limit None

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	less than 1 minute	0 out of 12

Submitted Jun 6 at 12:58

Unanswered

Question 1

0 / 3 pts

Consider the sample example from the notes:

Assuming Q(s,a)=0 for all s and a, if we (finally) traverse the episode the labelled episode, what will our Q-function look like for a 2-step update with $\alpha=0.5$ and $\gamma=0.9$ if we want to update the action 4?

fou Answered

Correct Answers

0.405 (with margin: 0.005)

The discounted reward is $\gamma^2 = 0.9^2 = 0.81$

This update is then:

$$Q((2,1),N) \leftarrow \$Q((1,2),N) + \alpha[G - Q((2,1),N)] = 0 + 0.5[0.81 - 0] = 0.405$$

Unanswered	Question 2	0 / 1 pts		
	Interleaved action selection (planning) and action execution is known as what?			
Correct Answer	Online planning			
	Offline planning			
	Internet planning			
	○ MCTS			

Unanswered Question 3 0 / 2 pts

The four steps in each iteration of MCTS are:

1.

2.

3.

4.

Use all lower case in your answers

Answer 1:

fou Answered

(You left this blank)

1			
Correct Answer	Selection		
Correct Answer	selection		
Correct Answer	select		
Correct Answer	selecting		
	Answer 2:		
fou Answered	(You left this blank)		
Correct Answer	Expansion		
orrect Answer	expansion		
Correct Answer	expand		
Correct Answer	expanding		
	Answer 3:		
fou Answered	(You left this blank)		
Correct Answer	Simulation		
Correct Answer	simulation		
Correct Answer	simulating		
Correct Answer	simulate		
	Answer 4:		
fou Answered	(You left this blank)		
correct Answer	Backpropagation		
correct Answer	backpropagation		
correct Answer	backpropagate		
Correct Answer	backpropagating		

Unanswered	Question 4	0 / 3 pts		
	Match the following definitions of to names of multi-armed bandit algorithms			
fou Answered	Exploit best action with probability 1-epsilon and random from all other actions with epsilon probability	•		
	Correct Answer	epsilon-greedy		
fou Answered	Exploit actions proportionally based on their Q-value	•		
	Correct Answer	softmax		
fou Answered	Exploit Q-value and exploit based on number of times an option has been chosen	•		
	Correct Answer	UCB		
	Other Incorrect Match Options: • epsilon-decreasing			

The following three questions refer to the expectimax tree below:

Assume an MCTS algorithm that has just completed the steps of selection (the red path), expansion of node "t", generating with the action "g", and simulated from the new node, resulting in a value of 40 for the new node.

Perform the backpropagation step to calculate the new values for V(t) and (Vs).

Unanswered

Question 5

0 / 1 pts

Assuming $\gamma = 0.9$, what is the new value of V(t)?

fou Answered

correct Answers

36 (with margin: 0)

$$V(t) = \max_{a \in \{c,g\}} \sum_{t' \in children(t)} P_a(t'|t) \left[r(t',a,t') + \gamma \ V(t') \right]$$

$$= \max(0.9(0+0.9 \times 12) + 0.1(0+0.9 \times 12), \quad \text{(action c)}$$

$$1.0(0+0.9 \times 40)) \quad \text{(action g)}$$

$$= \max(10.8,36)$$

$$= 36$$

Question 6

0 / 1 pts

Assuming $\gamma = 0.9$, what is the new value of V(s) (to one decimal place)?

fou Answered

Correct Answers

30.6 (with margin: 0.1)

$$\begin{array}{lcl} V(s) & = & \max_{a \in \{a,b\}} \sum_{s' \in children(s)} P_a(s'|s) \; [r(s,a,s') + \gamma \; V(s')] \\ & = & \max(0.8(0+0.9 \times 36) + 0.2(7+0.9 \times 18), \quad \text{(action a)} \\ & & 0.5(0+0.9 \times 40) + 0.5(0+0.9 \times 20) \quad \text{(action b)} \\ & = & \max(25.92 + 4.64, \; 18 + 9) \\ & = & 30.56 \; \text{rounded to } 30.6 \end{array}$$

Unanswered

Question 7

0 / 1 pts

Which action should you select?

Correct Answer

a

b

We know from V(s) that the maximum action is "a", so this is the one that we would select.