

Региональный конкурс научно-технологических проектов «Большие вызовы»

Свердловская область 2022-2023 учебный год

Устройство слежения за состоянием водителя «NSControl»

Направление: Умный город и безопасность

Тип: Прикладной

Автор: Андреев Алексей Сергеевич

Город, школа, класс: г.Каменск-Уральский, Лицей №9, 10 класс

Научный руководитель проекта: Киселева Ирина Анелидовна, педагог дополнительного образования МБУ ДО «Центр

дополнительного образования»

Актуальность

- **Транспортный поток:** увеличение численности и разновидностей.
- **Водители:** возраст, стаж, опыт.
- Ежегодно попадают в ДТП в мире 350 тысяч людей (24%), в РФ около 45 тысяч людей(27%).
- Устройство для отслеживания:
 патентов немного, функционал не оптимален.

Цель

Создание прототипа устройства слежения за состоянием водителя, который можно использовать в любом транспортном средстве

Задачи

- 1. Изучение литературы и интернет-источников.
- 2. Выбор аппаратного обеспечения.
- 3. Разработка и конструирование устройства.
- 4. Выбор программного обеспечения.
- 5. Создание программного кода.
- 6. Тестирование устройства.
- 7. Анализ результатов и корректировка.

Предмет, объект исследования

Объект: устройство обнаружения засыпания человека за рулем и оповещение.

Предмет: аппаратное и программное обеспечение (микрокомпьютер Nvidia Jetson Nano, Visual Studio Code, библиотеки распознавания лиц и объектов.)

Методы исследования

Наблюдение, сравнение, анализ, моделирование, прототипирование, конструирование, программирование, тестирование.

Гипотеза

Созданное устройство не позволит водителю уснуть или отвлечься за рулём, что должно уменьшить количество ДТП.

Новизна

- **Возможность** установки в любое транспортное средство.
- ▶ Логирование скорости движения и местоположения с помощью GPS модуля.
- > Организация **обратной** связи на базе GSM модуля
- **Возможность** выноса камеры в зону, определяемую по желанию водителя.
- У Использование сенсорных кнопок в качестве элемента управления.
- Угол обзора 220⁰.

Практическая значимость

- ➤ Способность отслеживания момента засыпания или несосредоточенности водителя за рулём и оповещения звуковым сигналом.
- ➤ Возможность применения в **большинстве** транспортных средств: железнодорожном, водном, автомобильном, воздушном.
- Способность отслеживания местоположения и скорости транспортного средства.
- ▶ Возможность автоматически оповещать экстренную службу, если водитель не реагирует на звуковой сигнал и продолжает движение.

Аналоги устройств

Dunobil Insomnia

Attention Assist

Аналоги устройств

Sleep Alert

Driver Workload Estimator

Подведение итогов

Сравнительный анализ аналогов (критерии: точность определения засыпания, возможность работы от аккумулятора, логирование данных GPS, оповещение, работа в ночное время, цена и т.д.)

Выводы: устройства имеют возможность определять момент засыпания и оповещения об этом водителя, работают в достаточно большом диапазоне температур и освещённости, имеют удобный способ установки и эксплуатации.

Личный опыт: работа с Lego Mindstorms EV3, Arduino; изучение схемотехники, программирования на языках Python и C++, моделирования и прототипирования.

Этапы работы

- 1. Изучение интернет источников по проблеме.
- 2. Выбор оборудования для реализации устройства.
- 3. Создание набросков и чертежей.
- 4. Установка OS и драйверов.
- 5. Загрузка и настройка зависимостей и библиотек.
- 6. Создание программного кода для инициализации камеры, обработки изображения, обнаружения и распознавания лиц, работы GPS модуля, динамиков, кнопок.
- 7. Моделирование корпуса и частей крепления устройства.
- 8. Печать готовых моделей на 3Д принтере.
- 9. Тестирование устройства. Анализ и корректировка.

Требования к устройству

- Не наносить вред человеку.
- > Точно определять засыпание.
- Должно иметь возможность установки в любом транспортном средстве.
- > Работать в ночное время.
- > Должно быть удобным в эксплуатации.

Аппаратное обеспечение

- ➤ JetPack SDK (пакет драйверов L4T, OS Linux, библиотеки CUDA-X и API) для общей работы устройства.
- ➤ Библиотеки OpenCV, Numpy, Matplotlib служат для обработки исходного изображения с камеры.
- У Библиотека Dlib для отслеживания точек лица, направления взгляда.

> Visual Studio Code для разработки программного кода на языке Python.

Пример программного кода

```
def get blinking ratio(eye points, facial landmarks):
         left point = (facial landmarks.part(eye points[0]).x, facial landmarks.part(eye points[0]).y)
         right point = (facial landmarks.part(eye points[3]).x, facial landmarks.part(eye points[3]).y)
41
         center point = midpoint(facial landmarks.part(eye points[1]), facial landmarks.part(eye points[2]))
42
         center bottom = midpoint(facial landmarks.part(eye points[5]), facial landmarks.part(eye points[4]))
43
44
         #eyes line = cv2.line(frame, left point, right point, (255, 0, 0), 2)
45
         #vert line = cv2.line(frame, center point, center bottom, (255, 0, 0), 2)
47
         eyes line lenght = hypot((left point[0] - right point[0]), (left point[1] - right point[1]))
         vert line lenght = hypot((center point[0] - center bottom[0]), (center point[1] - center bottom[1]))
         ratio = eyes line lenght / vert line lenght
51
         return ratio
```

- > Библиотека GPSD для функционирования GPS модуля.
- ➤ Библиотека SIM800L для работы GSM модуля.

- ➤ Программы КОМПАС-3D и Autodesk Inventor для создания чертежей и моделей.
- Программа EasyEDA для составления схем.

Принцип работы

Тестирование

NSControl

19:44

Внимание, транспортное средство А000АА 196, водитель не реагирует на предупреждения. (Скорость 75 км/ ч, координаты GPS 56.41814187892487, 61.930322530619826)

Внимание, транспортное средство А000АА 196, водитель не реагирует на предупреждения. (Скорость 65 км/ч, координаты GPS 56.414590949350114, 61.930296797783406)

Сейчас

Заключение

Сравнительный анализ

Таблица 2. Сравнительный анализ Dunobil Insomnia, Антисон, STEER, Sleep Alert, NSControl

radinal 2. Opasiarensia analia gonodi instituta, arracon, order, aceg mete mocentor					
Критерий/Название аналога	Dunobil Insomnia	"Антисон"	STEER	Sleep Alert	NSControl
Точность определения засыпания.	Точно	Неточно	Неточно	Точно	Точно
Работа от аккумулятора	Нет	Да	Да	Да	В перспективе
Время работы от аккумулятора	-	3 – 4 недели.	1 – 2 недели	6 – 7 часов	Не проверено
Возможность использования в любом ТС	Да	Да	Да	Да	Да
Логирование данных GPS, отправка диспетчеру	Нет	Нет	Нет	Нет	В перспективе
Оповещение	Звуковой сигнал	Звуковой сигнал	Электрически й разряд	Вибросигнал	Звуковой сигнал
Работа в ночное время	Да	Да	Да	Да	Да

Заключение

Перспектива — уменьшение размеров устройства, реализация процесса автоматического обучения на базе сверточной нейронной сети, оптимизация программного кода.

Заключение

```
t os
nviron["TF CPP MIN LOG LEVEL"] = "2"
t tensorflow as tf
tensorflow import keras
tensorflow.keras import layers
tensorflow.keras.preprocessing.image import ImageDataGenerator
tensorflow.keras.layers import Dense, Flatten, Dropout, Conv2D, MaxPooling2D
neight = 24
width = 24
n size = 2
l = keras.Sequential([
Conv2D(18, (3,3), padding='same', activation='relu', input shape=(24, 24, 1)),
faxPooling2D((2, 2), strides=2),
Conv2D(36, (3,3), padding='same', activation='relu'),
faxPooling2D((2, 2), strides=2),
Flatten(),
Dense(128, activation='relu'),
Dense(10, activation='softmax')
```


Спасибо за внимание!

