ASN.1 Requirements Wireless Environments (WAVE) -Test Control Interface ASN1 Specification

Document Mnemonics:	WAVE-TCIS-ASN1-V3
Revision:	[V3.0.0]
Revision Date:	01/03/2021

Document Submission	Aaron Moore
Company	OmniAir Consortium
Contact Information	O: 1-202-815-6138
	amoore@omniair.org

All members of the OmniAir Consortium® must comply with the Intellectual Property Policy ("IP Policy") that governs all activities of the OmniAir Consortium, Inc. ("OmniAir"), including its Members, Board of Directors, Technical and Working Committees and management and staff. OmniAir® intends to acknowledge and respect the rights of IP owners and encourage their participation in OmniAir activities. Equally, OmniAir is committed to developing and protecting its IP rights in its certification programs, procedures, and other endeavors. This IP Policy covers all types of intellectual property, copyrights, trademarks, and patents. The full IP Policy is located on the OmniAir website: www.omniair.org

Table of Contents

1 Revision History	5
2 Scope	5
3 References	5
3.1 Normative References	5
3.2 Informative References	6
4 Abbreviations	6
5 Test System	7
5.1 Architecture	7
5.2 Hardware equipment	7
5.2.1 Test System	8
5.3 DSRC radio	8
5.4 C-V2X radio	8
5.5 Interface Requirements	9
5.5.1 Test System Interface (TS ←→ SUT)	9
5.5.2 Interface to Radio (TS ←→ Radio)	9
5.5.3 Constraints	9
6 TCI Message Protocol	9
6.1 General	9
6.1.1 TS sends a request to SUT and receives a Response	10
6.1.2 SUT sends an unsolicited <i>Indication</i> to the TS	10
6.1.3 TS sends a request and receives information from the SUT	11
6.1.4 SUT sends an unsolicited Exception to the SUT	11
6.2 Transport Protocol	11
7 Test Control Interface Messages	12
7.1 Shared message structure	12
7.2 Test Control Interface Modules	13
8 Common TCI modules	13
8.1 TCI-wsm module	13
8.1.1 Request messages	14
8.1.2 Content Type	20
8.1.3 Signer Identifier Type	20
8.2 TCI-ip module	21
8.2.1 Base Classes	21
8.2.2 Request messages	21
8.3 Response, ResponseInfo, Indication and Exception messages	25
8.3.1 Response messages	25

8.3.2 Indication messages	25
8.3.3 ResponseInfo messages	26
8.3.4 Exception messages	27
TCI frames	27
9.1 TCI80211 frame	27
9.1.1 Supported use cases	27
9.1.2 Request Messages	28
9.1.3 Response messages	29
9.1.4 Indication messages	29
9.1.5 Exception messages	29
9.2 TCI16094 frame	30
9.2.1 Supported use cases	30
9.2.2 Request Messages	31
9.2.3 Response messages	33
9.2.4 Indication messages	33
9.2.5 ResponseInfo messages	33
9.2.6 Exception messages	33
9.3 TCI16093DSRC frame	33
9.3.1 Supported use cases	33
9.3.2 Request messages	35
9.3.3 Response messages	37
9.3.4 Indication messages	37
9.3.5 ResponseInfo messages	38
9.3.6 Exception messages	38
9.4 TCI16093PC5 frame	38
9.4.1 Supported use cases	38
9.4.2 Request messages	40
9.3.3 Response messages	43
9.3.4 Indication messages	43
9.3.5 ResponseInfo messages	44
9.3.6 Exception messages	44
9.4 TCI29451 frame	45
9.4.1 Request messages	45
9.4.2 Response messages	49
9.4.3 Indication messages	49
9.4.4 ResponseInfo messages	50
9.4.5 Exception messages	50
9.5 TCI31611 frame	50
9.5.1 Supported use cases	50

9.5.2 Request messages	51
9.4.2 Response messages	54
9.4.3 Indication messages	54
9.4.4 ResponseInfo messages	54
9.4.5 Exception messages	55
9.6 TCISutControl frame	55
9.6.1 Supported use cases	55
9.6.2 Request messages	56
9.6.3 Response messages	58
9.6.4 ResponseInfo messages	58
9.6.5 Exception messages	59
Appendix A: TCI protocol ASN.1 definition	59
Appendix B: TCIProxyCv2X	63
General:	63
Proxy Setup:	63
Supported use cases	63
Request messages	64
Open Issues	65

1 Revision History

V2.0.0	February 24, 2020	Initial Draft of Version 2 – Aaron Moore
V3.0.0		Initial Draft of Version 3 – Aaron Moore

2 Scope

This document provides the message interface and protocol to be used between a Test System (TS) and a System Under Test (SUT). The protocol is defined using ASN.1 and referenced in Appendix A.

The intent of this document is to provide an overview of the protocol. It explains the architecture of the protocol, main use cases and how the messages are structured. Details of the type definitions are not described in this document. Instead, the reader is required to review the ASN.1 definition.

3 References

3.1 Normative References

The following referenced documents are necessary for the application of the present document.

[1]	WAVE802.11-TSS&TP (V1.2.0): "Conformance test specifications for Wireless Access in Vehicular Environments (WAVE) — 802.11 Test Suite Structure and Test Purposes (TSS & TP)". Revision date: 10/09/2017
[2]	WAVEMCO-TSS&TP (V1.3.0): "Conformance test specifications for Wireless Access in Vehicular Environments (WAVE) — Multi-channel Operation Test Suite Structure and Test Purposes (TSS & TP)". Revision date: 10/08/2017
[3]	WAVENS-TSS&TP (V1.3.3): "Conformance test specifications for Wireless Access in Vehicular Environments (WAVE) — Networking Services Test Suite Structure and Test Purposes (TSS & TP)". Revision date: 10/08/2017
[4]	WAVE-16092-TSS&TP (V0.6.0): "Conformance test specifications for Wireless Access in Vehicular Environments (WAVE) — Security Services Test Suite Structure and Test Purposes (TSS & TP)". Revision date: 10/08/2017
[5]	J2945/1-TSS&TP (V0.5.5): "Conformance test specifications for SAE J2945/1 - On-board System Requirements for V2V Safety Communications Test Suite Structure and Test Purposes (TSS & TP)". Revision date: 10/08/2017
[6]	"DSRC Proxy", (V0.5.0), Revision date: 11/6/2015.
[7]	IEEE Std. 802.11 TM -2012: "Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications".
[8]	IEEE Std 1609.3-2016 "IEEE Standard for Wireless Access in Vehicular Environments (WAVE) — Network Services".
[9]	SAE J2945/1 (J2945/1_201603): "On-Board System Requirements for V2V Safety Communications".
[10]	SAE J2735 (2016-01): "Dedicated Short Range Communication (DSRC) Message Set Dictionary".

[11]	IEEE Std 1609.2-2016 "IEEE Standard for Wireless Access in Vehicular Environments (WAVE) — Security Services".
[12]	IEEE Std. 1609.4-2016 "IEEE Standard for Wireless Access in Vehicular Environments (WAVE) Multi-Channel Operation".
[13]	3GPP 36.521-1-2019 (E-UTRA) UE Conformance Specification; Radio transmission and reception; Part 1: Conformance testing.
[14]	3GPP 36.521-3-2019 (E-UTRA) UE Conformance Specification; Radio transmission and reception; Part 3: Radio Resource Management (RRM) Conformance Testing
[15]	3GPP 36.523-1-2019 (E-UTRA) and (OPC); UE conformance specification; Part 1: Protocol conformance specification
[16]	SAE J3161/1-2020 "On-Board System requirements for LTE V2X V2V Safety Communications

3.2 Informative References

The following referenced documents are not necessary for the application of the present document, but they assist the user regarding a particular subject area.

[i.1]	ETSI EG 202 798 (V1.1.1): "Intelligent Transport Systems (ITS); Testing; Framework for
	conformance and interoperability testing".

[i.2]	ETSI ETS 300 406 (1995): "Methods for testing and Specification (MTS); Protocol and
	profile conformance testing specifications; Standardization methodology".

4 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ABS	Anti-lock Braking System	
ASN	Abstract Syntax Notation	
BSM	Basic Safety Message	
CH	Channel	
CPU	Central Processing Unit	
DSRC	Dedicated Short Range Communications	
GPS	Global Positioning System	
ICMP	Internet Control Message Protocol	
IEEE	Institute of Electrical and Electronics Engineers	
IP	Internet Protocol	
ISO	International Organization for Standardization	

ISO International Organization for Standardization ITS **Intelligent Transport Systems** IUT Implementation Under Test NTP Network Time Protocol Octet Encoding Rules OER PC Personal Computer PDU Protocol Data Unit **PSID** Provider Service Identifier

RCPI Received Channel Power Indicator

RX Receive

SAE Society of Automotive Engineers

SUT System Under Test
TCI Test Control Interface

TCIA Test Control Interface Application

TCP Transport Control Protocol

TP Test Purposes

TRI Tester Radio Interface

TS Test System
TX Transmit
UC Use Case

UDP User Datagram Protocol

UPER Unaligned Packed Encoding Rules

WAVE Wireless Access in Vehicular Environments

WME WAVE Management Entity
WSA WAVE Service Advertisement

WSM WAVE Short Message

5 Test System

5.1 Architecture

The Test System used to support tests listed in [1], [2], [3], [4], and [5] is described in Figure 1. The test system is designed to simulate valid and invalid protocol behaviors and analyze the reaction of the IUT.

Figure 1: General Architecture

5.2 Hardware equipment

The system is implemented according to Figure 2. The test system is comprised of Test Management Software running on a PC (or laptop). The PC is physically connected to the SUT via an Ethernet cable supporting an IPbased connection to transfer control and test data to and from the SUT. This connection corresponds to the Test Control Interface as depicted on Figure 1. The Wired Ethernet connection may be substituted by a wired USB cable if the device supports IPv4-based data exchanges (e.g., support of RNDIS protocol) or a wireless Ethernet connection if the SUT does not support a wired connection.

The Test System connects to an external radio using a separate wired Ethernet link. Theradio is used to transfer wireless data messages between the Test System and the SUT. This interface is depicted as the Test Radio Interface on Figure 1.

Figure 2: Test System Implementation

5.2.1 Test System

The main hardware component of the Test System is a standard PC. Its role is to host the execution of the Test Management Software, manage the test flow and generate test reports. To construct a Test System, the following points must be considered:

- No firewall interference with traffic generated by the Test System and/or SUT.
- Use of a synchronized time reference for the SUT and the test system. The Test System may be synchronized to UTC via a Network Time Protocol (NTP), whereas the SUT may use GPS for time synchronization and be adjusted to UTC via data post processing.
- The Test System processes must be granted unrestricted control to the telecommunication hardware.

Time synchronization between the Test System and the SUT must be checked before starting any test session, as it can be the source of unpredictable SUT behavior and generate incoherent results. For example, most protocol messages feature a time tag used by the receiver to determine if the information it carries is still valid; if the test system is not synchronized, all messages it sends will be considered either as coming from the future or past and be discarded.

The Test System must be equipped with at least one network interface supporting IPv4 protocol link independent of DSRC protocol link to exchange control and test data messages with the SUT.

TCI message exchanges are established using UPD over IPv4-based protocols. Any references to the IPv6 protocol are used regarding the wireless exchanges since the IPv4 protocol is not supported for over-the-air transmissions.

5.3 DSRC radio

To monitor and test DSRC message exchanges, a DSRC radio that fully supports the IEEE 802.11 standard [7] is included in the Test System. The DSRC radio acts as a bridge and passes all messages to and from the Test System which performs message encoding/decoding and verification. The interface between Test System and DSRC radio is covered in a separate document [6].

5.4 C-V2X radio

To monitor and test C-V2X message exchanges, a C-V2X radio that fully supports the 3GPP 36.521-1 [13], 36.521-3 [14], and 36.523-1 [15] standards. The C-V2X radio acts as a bridge and passes all messages to and from the Test System which performs message encoding/decoding and verification. The interface between Test System and DSRC radio is covered in Appendix B of this document.

5.5 Interface Requirements

5.5.1 Test System Interface (TS $\leftarrow \rightarrow$ SUT)

This clause lists requirements for the Test System Interface between the Test System and the Test Control Interface Application (TCIA) running on the SUT:

- The Test System shall communicate with the SUT using the commands described in this document.
- All commands shall be issued using UDP messages. Commands can be used to change the SUT state, operating mode, configure data on the SUT, stimulate the SUT, and observe how the SUT responds to external stimulations.
- The Test System shall send UDP messages to the SUT using IPv4 protocol. The SUT will run the TCIA. This application will decode commands received via UDP messages and use the appropriate software interface to execute the command.
- The TCIA shall listen for the command coming from the Test System using the UDP port (13001).
- The TCIA shall send the responses to the Test System UDP port from which the initial SetInitialState request came from.

5.5.2 Interface to Radio (TS $\leftarrow \rightarrow$ Radio)

This clause lists requirements for the interface between the TS and the radio.

- The SUT communicates to the specific radio using wireless protocol for that specific radio medium.
- The radio translates the received WSM messages and sends them to the TS using UDP protocol.
- The radio receives UDP packets from the TS and transmits them as WSM over the medium specific protocol.
- The conversion between the WSM and UDP protocol is performed as described in Appendix [X] of this document.

5.5.3 Constraints

This document only describes the interface between the Test System and the TCI Application. Implementation details of the TCI Application or the SUT is outside the scope of this document.

6 TCI Message Protocol

6.1 General

This document primarily focuses on the Test Control Interface as depicted on Figure 1. The communication between the Test System and the SUT is achieved using messages flowing using a UDP protocol.

The message exchange format is laid out as follows

- Request: This message is initiated from the Test System to the SUT to stimulate the SUT to trigger requested functionality.
- **Response**: This message is sent from the SUT to the Test System indicating an acceptance of the *Request* by the SUT. Acceptance means ability of the SUT to decode and interpret the message to initiate a sequence of changes at the SUT.
- **ResponseInfo**: This message is sent from SUT to the Test System and contains parameter information requested by SUT, for example retrieval of SUT default settings.
- **Indication**: An event message is sent from the SUT to the Test System indicating the SUT has received a DSRC message or an SUT event occurred.

• Exception: This message is sent from the SUT to the Test System. This message is used to report all exception conditions (i.e., INFO/WARNING/ERROR) generated in the SUT to the Test System. Depending on the exception severity, the TS may initiate recovery (i.e., reset to the initial state), or continue its operation.

The TS expects to receive *Response* or *Exception* messages within **50ms** after the SUT received a *Request* message. If no *Response* or *Exception* is received, the TS will attempt to re-initialize the SUT or may require user assistance.

The typical message exchanges are described below:

6.1.1 TS sends a request to SUT and receives a Response

Figure 3

The communication exchange is initiated by the TS. The TS sends a *Request*. The SUT responds with a *Response* containing a result code indicating success of an operation or an exception. In the latter case, the *Response* message includes information about the exception.

The response is an acknowledgement that the SUT received the test system's request and will be acting on it. It then executes the request. It is the TS that determines if the test passes or fails based on the result of the test.

6.1.2 SUT sends an unsolicited Indication to the TS

Figure 4

This communication exchange is initiated by the SUT. The SUT may send an unsolicited indication to the TS each time a packet is received and processed by the SUT or an event occurred on the SUT. Normally, the SUT will start (or stop) sending *Indications* after it is triggered by the TS. The TS never replies to such messages.

6.1.3 TS sends a request and receives information from the SUT

Figure 5

The TS needs to obtain information from the SUT, e.g., the IPv6 address of the wireless interface. The TS sends a request message. The SUT does not sends a *Response*, but instead replies with a *ResponseInfo* containing the requested information.

6.1.4 SUT sends an unsolicited Exception to the SUT

The SUT needs to inform the TS about an exception. The SUT sends an *Exception* message to the TS. TS does not reply to the SUT. This *Exception* message may be generated at any time and does not require a *Request* from the TS.

Message specification is defined using ASN.1. It is provided in the Appendix A. The default encoding for all TCI messages is using **OER** encoding. Additional TCI message encodings, e.g., UPER, may also be supported. Note, that some TCI messages may contain a parameter containing a message payload. The content of the payload must be encoded to be directly transferrable to the target message payload without re-encoding.

A log of all the message exchanges with the system defined timestamps are maintained in a log file on the Test System; this helps in correlating if the test result is not as expected.

6.2 Transport Protocol

The communication between the TS and SUT uses UDP protocol messages flowing via IPv4-based link. The IP addresses for TS and SUT can be selected from the following ranges:

Testing System: 192.168.23.1 ... 192.168.23.127, subnet 255.255.255.0

SUT: 192.168.23.128 ... 192.168.23.254, subnet 255.255.255.0

To initiate the connection, the TS sends the initial *Request* message to a pre-defined UDP destination port (*defaultTCIAPort* = 13001), which the SUT opens to listen for incoming messages. When the SUT receives the first *Request* message from the TS, it saves the UDP source port of this request as *defaultTSPort*. The SUT uses the *defaultTSPort* UDP port to send *Response*, *ResponseInfo* messages as well as unsolicited *Indication* and *Exception* messages.

The TS must keep the *defaultTSPort* unchanged during continuous testing sequence until the TS and/or the SUT is reset, test sequence is interrupted, or another similar event takes place. When the testing is resumed, the previously described process is repeated: the SUT waits for the initial *Request* message on the *defaultTCIAPort*, stores the source port as the *defaultTSPort* and sends the response back to the *defaultTCIAPort*.

The SUT can receive the initial *Request* message of type *SetInitialState*, or *RequestSutAvailability*. The latter case will apply when the SUT is recovering from the previously received requests for *Shutdown* or *Restart*. The TS may also start the test execution with the *SetTestId*. Regardless which message is SUT receives first from the TS, the SUT will use the UDP source port from the first *Request* message from the TS and use it as the destination UDP port when the SUT sends messages to the TS.

Table 1 TS and SUT default UDP ports configuration

Parameter	Description	Value
	UDP port used by the TCIA to receive request from TS.	13001
	indications and responses.	The source UDP port used by the TS for sending the SetInitialState or RequestSutAvailability request messages.

7 Test Control Interface Messages

7.1 Shared message structure

All messages defined in this specification are grouped under the common root type called *TCIMsg*, which contains the following parameters:

Parameters	Definition	Description
version	Integer (0255)	For this revision of specification, version shall be set to 2.
timestamp	Time64	Timestamp provided by the message sender.
		Timestamp measures the the difference in milliseconds, between the current time and midnight, January 1, 1970 UTC
frame	CHOICE{	Current TCI frames defined in this specification.

Messages for all frames have the same defined structure. The following examples describes TCI16093Event for communications.

```
TCI16093DSRC ::= CHOICE{
request
response
indication
responseInfo
exception
...
}
```

```
TCI16093PC5 ::= CHOICE{
request
response
indication
responseInfo
exception
...
}
```

The following sections provide the top-level definition of the TCI frame. Appendix A: provides message and type definitions in ASN.1 format.

7.2 Test Control Interface Modules

TCI protocol is defined in the modules listed in the Table 2.

Table 2 TCI	protoco	l modules
-------------	---------	-----------

rable 2 1 of protocol mediates		
ASN.1 Module	Description	
TCI-16093DSRC	Frame and message definition used for testing 1609.3 DSRC	
TCI-16093PC5	Frame and message definition used for testing 1609.3 PC5	
TCI-16094	Frame and message definition used for testing 1609.4	
TCI-29451	Frame and message definition used for testing 2945/1	
TCI-31611	Frame and message definition used for testing 3161/1	
TCI-80211	Frame and message definition used for testing 802.11	
TCI-CommonTypes	Common types shared across TCI modules	
TCI-Dispatcher	Root module aggregating all other frame specific messages	
TCI-EventHandling	Common event-handling types shared by other modules	
TCI-SutControl	Device-level commands for controlling SUT	
TCI-indication	Common indication messages shared by other modules	
TCI-ip	Request messages for sending and receiving IPv6 packets	
TCI-responseInfo	Returns Version Information from IUT	
TCI-wsm	Request messages for sending and receiving WSM packets	
TCIproxyCv2x	Optional for implementation, frame, and definition for use of proxy	

For example, several TCI frames trigger transmission of WSM. Those requests are defined in the *TCI-wsm* module and included into the corresponding modules *TCI-16093DSRC*, *TCI-16093PC5*, *TCI-80211*, etc. by reference. Similarly, requests to transmit IPv6 packets are defined in the *TCI-ip* module and imported into the modules *TCI-16093DSRC*, *TCI-16093PC5*, *TCI-16094*, etc. by reference.

8 Common TCI modules

This section describes common messages shared by TCI frames.

8.1 TCI-wsm module

The *TCI-wsm* module defines request messages from the TS to the SUT to trigger transmission and/or reception of WSMs. It also includes messages for management of the corresponding parameters and service tables on the SUT.

Many WSM parameters including *PSID*, *MACaddress*, *RadioInterface*, *RepeatRate*, etc., are defined by reusing the corresponding types from IEEE 1609.3 [8]. This specification adopts definitions of these parameters from the standard [8]. For the ASN.1, TCI imports these data types from the corresponding definitions of the standard.

Copyright © 2021 OmniAir Consortium, Inc. All rights reserved. May not be reproduced without permission. The latest version of this document is available upon request to OmniAir. Comments on this document should be provided to $\underline{info@omniair.org}$.

Conventions for time and geo-location data representation are adopted from the SAE J2735 [10].

IEEE 1609.3 uses *UPER* encoding while TCI specification uses, by default, OER encoding. Due to encoding difference, the same parameters values may have different representation once encoded for transmission as WSM compared to TCI messages.

8.1.1 Request messages

8.1.1.1 SetInitialState

This request is used to set the SUT in initial condition. The initial condition defines the initial state in which the SUT must be to carry out each test case. This message also must clear information from the following MIB tables *ProviderServiceRequestTable*, *UserServiceRequestTable*, as defined in IEEE1609.3 [8].

8.1.1.2 SetWsmTxInfo

}

This request is used to configure device parameters before transmitting WSMs.

SetWsmTxInfo ::= SEQUENCE{

psid Psid,

radio RadioInterface,
security SecurityContext,
transmitPowerLevel TXpower80211 OPTIONAL

userPriority UserPriority OPTIONAL, channelIdentifier ChannelNumber80211 OPTIONAL,

dataRate DataRate OPITONAL,
timeslot TimeSlot OPTIONAL,
repeatRate RepeatRate OPTIONAL,
destinationMACAddr MACaddress OPTIONAL,
channelLoad Opaque OPTIONAL,
expiryTime Time64 OPTIONAL,
Payload Opaque OPTIONAL,

...,
txPoolId TxPoolId OPTIONAL
flowID FlowIdentifier OPTIONAL

Table 3 SetWsmTxInfo parameters

Parameters	Explanation
psid	Provider Service identifier as defined in 1609.3 [8].
radio	The structure contains radio device (radio0, radio1, etc.) and antenna port for transmission of WSMs
security	The structure security context including content type of payload (i.e. BSM, WSA) for selecting appropriate security profile; security type (i.e. unsecure, signed, etc.); optional reference to a certificate hashID.
transmitPowerLevel	Transmit power level as defined in 1609.3 [8].
infoElementsIncluded	A bit flag indicating which optional WAVE Info Elements included in the WSM-N-Header
userPriority	User priority as defined in 1609.3 [8].
channelldentifier	Channel number as defined in 1609.3 [8].
dataRate	Data rate as defined in 1609.3 [8].
timeslot	Time slot or continuous channel usage as defined in 1609.3 [8].
repeatRate	Repeat rate for messages as defined in 1609.3 [8] as number of messages per 5 sec intervals. Additionally, it can be set to 0 for transmitting a single message.
destinationMACAddr	Destination MAC address for the destination as defined in 1609.3 [8]. Default value set for broadcast transmissions.

channelLoad	Channel load as defined in 1609.3 [8].
expiryTime	Expiry time as defined in 1609.3 [8]. This is an optional parameter.
Payload	WSM message payload excluding message length field.
txPoolId	Transmit Pool Identifier
flowID	Defines flow parameters via SetFlowConfig

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.1.1.3 StartWsmTx

This request is used to initiate transmission of WSMs by the SUT. Information from this request can be used to invoke WSM-WaveShortMessage.request from 1609.3 [8] and must be preceded by StartWsmTxInfo to set up the transmitter parameters.

Table 4 StartWsmTx parameters

Parameters	Explanation
psid	Provider Service identifier as defined in 1609.3 [8].
radio	The structure contains radio device (radio0, radio1, etc.) and antenna port for transmission of WSMs.
repeatRate	Repeat rate for messages as defined in 1609.3 [8] as number of messages per 5 sec intervals. Additionally, it can be set to 0 for transmitting a single message or "one shot" transmissions in PC5 instance.
payload	WSM message payload excluding message length field.

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.1.1.4 **StopWsmT**x

This request is used to stop transmission of WSMs by the SUT. The WSM stream is identified by the RadioInterface and PSID.

Table 5 StopWsmTx parameters

Parameters	Explanation
psid	Provider Service identifier as defined in 1609.3 [8].
radio	The structure contains radio device (radio0, radio1, etc) and antenna port
	for transmission of WSMs.

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.1.1.5 StartWsmRx

This request is used to configure the SUT to receive messages and forward corresponding event indications to the TS. Information provided in this request can be used to invoke *WME-WSMService.request* and *WMEChannelService* from 1609.3[8].

```
StartWsmRx ::= SEQUENCE{
psid
                           Psid OPTIONAL,
radio
                           RadioInterface,
channelIdentifier
                           ChannelNumber80211 OPTIONAL,
timeSlot
                           TimeSlot OPTIONAL,
eventHandling
                           EventHandling,
destinationMACAddr
                           MACaddress OPTIONAL,
pduFilter
                           OCTET STRING(SIZE(0..4)) OPTIONAL,
ssp
                           SecurityPermission OPTIONAL
}
```

Table 8 StartWsmRx parameters

Parameters	Explanation
psid	Provider Service identifier as defined in 1609.3 [8].
radio	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of WSMs.
channelldentifier	Channel number as defined in 1609.3 [8].
timeslot	Time slot or continuous channel usage as defined in 1609.3 [8].
eventHandling	Types of events which TS request to receive indications about. The types of events supported includes reception of a message, completion of message security verification, and etc.
DestinationMACAddr	L2 Destination address to be subscribed to or use wildcard for LTE V2X comms
pduFilter	Unique octets to be included at the beginning of the payload to be used for packet filtering
ssp	Secure Service Permission

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

The SUT will send an *indication* message when it receives a WSM. Using *eventHandling* parameter, the TS can request to receive all WSMs or only those with matching PSID parameters. In the latter case, the PSID parameter is omitted.

The TS will expect to receive the *Indication* message within **50ms** after the corresponding WSM is received by the SUT.

8.1.1.6 **StopWsmRx**

This request is used to stop SUT reception of messages and generation of *indication* messages.

```
StopWsmRx ::= SEQUENCE{
  psid    Psid OPTIONAL,
    radio    RadioInterface,
    ...
}
```

Table 9 StopWsmRx parameters

Parameters	Explanation
psid	Provider Service Identifier as defined in 1609.3 [8].
radio	The structure contains radio device (radio0, radio1, etc.) and antenna port for receiving of WSMs.

If the preceding StartWsmRx omitted psid parameter, psid is omitted for the StopWsmRx.

Specific details for each type definition are listed in the ASN.1 specification referenced in the Appendix A.

8.1.1.7 StartWsaTxPerdiodic

This request is used to initiate transmission of WSA by the SUT. Information provided in this request can be used to invoke *WME-ProviderService.request* from 1609.3 [8]. WSAs will be sent as WSMs using the default PSID defined in 1609.3 [8].

```
StartWsaTxPerdiodic ::= SEQUENCE{
 radio
                           RadioInterface,
 destinationMACAddr
                           MACaddress OPTIONAL,
 wsaChannelIdentifier
                           ChannelNumber80211 OPTIONAL,
 channelAccess
                           TimeSlot OPTIONAL,
                           RepeatRate OPTIONAL,
 repeatRate
 ipService
                           BOOLEAN,
 security
 SecurityContext (WITH COMPONENTS {
       contentType (mWSA)
   }),
 signatureLifetime
                           INTEGER(10...30000),
                           infoElementIncluded
                           AdvertiserIdentifier OPTIONAL,
 advertiserId
 serviceInfos
                           ServiceInfos OPTIONAL,
 channelinfos
                           ChannelInfos OPTIONAL,
                           RoutingAdvertisement OPTIONAL,
 wra
dataRate
                           DataRate80211 OPTIONAL,
userPriority
                           UserPriority OPTIONAL,
transmitPowerLevel
                           TXpower80211 OPTIONAL,
}
```

Table 6 StartWsaTxPerdiodic parameters

Parameters	Explanation
radio	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of WSAs.
destinationMACAddr	Destination MAC address for the destination as defined in 1609.3 [8]. Default value set for broadcast transmissions.
wsaChannelldentifier	Channel number to transmit WSAs as defined in 1609.3 [8].
channelAccess	Time slot or continuous channel usage as defined in 1609.3 [8].
repeatRate	Repeat rate for messages as defined in 1609.3 [8] as number of messages per 5 sec intervals. Additionally, it can be set to 0 for transmitting a single message.
ipService	Indicates if the WSA contains WRA for configuration of IP-based services
security	The structure security context including content type of payload (i.e., BSM, WSA, etc.) for selecting appropriate security profile; security type (i.e., unsecure, signed, etc.); optional reference to a certificate hashID.
signatureLifetime	Signature Lifetime as defined in 1609.3 [8].
infoElementsIncluded	A bit flag indicating which optional WAVE Info Elements included in the WSM-N-Header and into WSA message structure.
advertiserId	Advertiser Identifier as defined in 1609.3 [8].

serviceInfos	The structure containing sequence of service information elements as defined in 1609.3 [8].
channelinfos	The structure containing sequence of Channel Information elements as defined in 1609.3 [8].
wra	A structure containing WRA information. This field is required if ipService is set TRUE. Otherwise, it's omitted.
dataRate	Data Rate used for transmission of WSMs containing WSA. If omitted, use default value from the MIB
userPriority	User Priority used for transmission of WSMs containing WSA. If omitted, use default value from the MIB
transmitPowerLevel	Transmit Power setting used for transmission of WSMs containing WSA. If omitted, use default value from the MIB

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.1.1.8 StopWsaTxPeriodic

This request is used to stop the current WSA transmissions by the SUT and delete associated provider services from the *ProviderServiceRequestTable*.

Table 7 StopWsaTxPeriodic parameters

Parameters	Explanation
radio	The structure contains radio device (radio0, radio1, etc.) and antenna port
	for transmission of WSAs.

Specific details for each type definition are listed in the ASN.1 specification referenced in the Appendix A.

8.1.1.9 AddWsaProviderService

This request is used to add a provider service and update WSA. The WSA must be started prior to this request using *StartWsaTxPerdiodic*.

Table 10 AddWsaProviderService

Parameters	Explanation
radio	The structure contains radio device (radio0, radio1, etc.) and antenna port for transmission of WSMs.
serviceInfos	The structure containing sequence of service information elements as defined in 1609.3 [8].

This request can add one or more service entries into an existing WSA. The new services must refer to already existing information in WSA such as Channel Info elements and WRA (if included).

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

Copyright © 2021 OmniAir Consortium, Inc. All rights reserved. May not be reproduced without permission. The latest version of this document is available upon request to OmniAir. Comments on this document should be provided to info@omniair.org.

8.1.1.10 ChangeWsaProviderService

This request is used to change a provider service and updates WSA.

```
ChangeWsaProviderService ::= SEQUENCE{
     radio
                          RadioInterface
     serviceInfos
                          ServiceInfos
}
```

8.1.1.11 DelWsaProviderService

This request is used to remove a provider service and updates WSA. This request must only remove provider services previously added using AddWsaProviderService.

```
DelWsaProviderService ::=SEQUENCE{
radio
                              RadioInterface,
 serviceInfos
                              ServiceInfos,
}
```

Table 11

Table 11	Delwsar i Ovidei Sei vice
Explanation	
The structure cont	ains radio device (radio0_radio1_etc) ar

DolWeaProvidorSorvico

Parameters	Explanation
	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of WSMs.
	The structure containing sequence of service information elements as
	defined in 1609.3 [8].

The serviceInfo structure must contain at least psid information for each service that will be removed.

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.1.1.12 AddUserService

This request is used to add a user service to the SUT. Information provided in this request can be used to invoke WME-UserService.request and WME-ChannelService from 1609.3 [8].

```
AddUserService ::= SEQUENCE{ -- register user service via
 psid
                              Psid,
 radio
                              RadioInterface,
 userRequestType
                              UserRequestType,
 wsaType
                              WsaType,
 providerServiceContext
                              ProviderServiceContext OPTIONAL,
 channelIdentifier
                              ChannelNumber80211 OPTIONAL,
 sourceMACAddr
                              MACaddress OPTIONAL,
                              AdvertiserIdentifier OPTIONAL,
 advertiserId
 linkQuality
                              INTEGER OPTIONAL,
                              INTEGER(0..255) OPTIONAL,
 immediateAccess
 wsaChannelIdentifier
                              ChannelNumber80211 OPTIONAL,
 channelAccess
                              TimeSlot OPTIONAL,
 evenHandling
                              EventHandling,
reqPsidInSignCert
                              BOOLEAN OPTIONAL,
                              SecurityPermission OPTIONAL
Ssp
}
```

Table 12 AddUserService parameters

Parameters	Explanation
psid	Provider Service identifier as defined in 1609.3 [8].

radio	The structure contains radio device (radio0, radio1, etc) and antenna
	port for transmission of WSMs.
userRequestType	User Request Type as defined in 1609.3 [8]. (options include autojoin on
	match, no service channel).
wsaType	WSA Type as defined in 1609.3 [8] (options include secure, unsecure).
providerServiceContext	Provider Service Context as defined in 1609.3 [8].
channelldentifier	Channel number as defined in 1609.3 [8].
sourceMACAddr	Source MAC address as defined in 1609.3 [8].
advertiserId	Advertiser ID as defined in 1609.3 [8].
linkQuality	Link Quality as defined in 1609.3 [8].
immediateAccess	Channel Load as defined in 1609.3 [8].
wsaChannelldentifier	Channel number to transmit WSAs as defined in 1609.3 [8].
channelAccess	Channel to listen for WSA
eventHandling	Event Handling when service is joined
reqPsidInSignCert	Support for Require PSID in Signing Certificate
Ssp	Security Specific Permissions to be checked when messages /service is
	received

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.1.1.13 DelUserService

This request is used to delete a user service on the SUT previously requested by the AddUserService request.

Table 13 DelUserRequestService parameters

Parameters	Explanation
psid	Provider Service identifier as defined in 1609.3 [8].
radio	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of WSMs.

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.1.2 Content Type

The TCI-wsm module specifies content types. There are 7 content types in the TCI-wsm

8.1.3 Signer Identifier Type

The TCI-wsm module specifies signer identifier types. There are 4 signer identifier types in the TCI-wsm.

```
SignerIdentifierType ::= ENUMERATED {
unsecure (0),
```

Copyright © 2021 OmniAir Consortium, Inc. All rights reserved. May not be reproduced without permission. The latest version of this document is available upon request to OmniAir. Comments on this document should be provided to info@omniair.org.

```
useSecProfilePerContentType (1),
signIncludeCertificate
                             (2),
signInlcudeDigest
                             (3),
```

8.2 TCI-ip module

The TCI-ip module defines request messages from the TS to the SUT to trigger transmission and/or reception of messages using IPv6-based protocols. It also includes messages for retrieving IPv6 address information from the SUT.

8.2.1 Base Classes

8.2.1.1 IPv6TxRecord

```
This base class specifies ......
```

```
Ipv6TxRecord ::= SEQUENCE{
   Radio
                      radioInterface
   interfaceName
                      UTF8STRING(SIZE(1..255)),
                      IPv6Address,
   destIpAddress
   destPort
                      ServicePort OPTIONAL
   protocol
                      ENUMERATED {tcp, udp, icmp},
   repeatRate
                      RepeatRate OPTIONAL,
                      EventHandling (WITH COMPONENTS {..., eventFlag}) OPTIONAL
   eventHandling
                      Opaque(SIZE(0..ipMtu)) OPTIONAL,
   payload
}
8.2.1.2 IPv6RxRecord
```

This base class specifies

```
IPv6RxRecord ::= SEQUENCE{
   radio
                      RadioInterface,
   interfaceName
                      UTF8String(SIZE(1...255))
   listenPort
                      ServicePort
   Protocol
                      ENUMERATED {tcp (0), udp (1)},
   eventHandling
                      EventHandling (WITH COMPONENTS {..., eventFlag({eIpv6PktRx})}) OPTIONAL,
}
```

8.2.2 Request messages

8.2.2.1 GetIpv6InterfaceInfo

This request is used to retrieve IPv6 configuration from the SUT. This message uses a service provided by the IP domain.

```
GetIPv6InterfaceInfo ::= SEQUENCE{
       radio
                      RadioInterface (WITH COMPONENTS {..., antenna ABSENT }),
}
```

Table 14 getiPv6InterfaceInfo Message Parameters

Parameters	Explanation
radio	The structure contains radio device (radio0, radio1, etc) and antenna port
	for transmission of IPv6 packets.

The requested IPv6 configuration is returned in the *ResponseInfo* message found in the *TCI-responseInfo* module and contains:

```
Ipv6InterfaceInfo ::= SEQUENCE OF SEQUENCE {
    interfaceName UTF8String(SIZE(1..255)), ,
    ipAddress SEQUENCE OF IPv6Address,
    macAddress MACaddress,
    defaultGateway IPv6Address OPTIONAL,
    primaryDns IPv6Address OPTIONAL,
    gatewayMacAddress MACaddress OPTIONAL,
    ...
}
```

8.2.2.2 SetIpv6Address

This request is used to change SUT IPv6 configuration.

Table 15 setIPv6Address Message Parameters

Parameters	Explanation
radio	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of IPv6 packets.
interfaceName	Interface Name is an identifier of the interface provided by the SUT in response to the Getlpv6InterfaceInfo.
ipAddress	IPv6 address specified in canonical format (e.g. 2001:ff::1) to be assigned to the interface. If omitted, the SUT must assign a randomly chosen IPv6 address.

8.2.2.3 StartIPv6Tx

This request is used to initiate transmission of IPv6 packets by the SUT.

```
StartIPv6Tx ::= IPv6TxRecord(WITH COMPONENTS{
Radio ( WITH COMPONENTS {..., antenna ABSENT})
interfaceName
destIpAddress
destPort
protocol
repeatRate OPTIONAL
eventHandling OPTIONAL
payload PRESENT
})
```

Table 16 startlPv6Tx Message Parameters

Parameters	Explanation

radio	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of IPv6 packets.
interfaceName	Interface Name is an identifier of the interface provided by the SUT in response to the Getlpv6InterfaceInfo.
destipAddresses	Destination host IPv6 address specified in canonical format (e.g. 2001:ff::1).
destPort	Destination host port used for the reception of IPv6 packets.
Protocol	IP protocol: tcp, udp or icmp.
repeatRate	Repeat rate for messages as defined in 1609.3. Additionally, can be set to 0 for transmitting a single message.
eventHandling	This parameter is omitted any protocol except icmp – see Sendlpv6Ping.
payload	The contents of the message.

8.2.2.4 StopIPv6Tx

This request is used to cease transmission of IPv6 packets by the SUT.

```
StopIPv6Tx ::= StartIPv6Tx (WITH COMPONENTS {
    radio (WITH COMPONENTS {..., antenna ABSENT}),
    interfaceName
    destIpAddress,
    destPort
    protocol,
    repeatRate ABSENT,
    eventHandling ABSENT
    Payload ABSENT
})
```

See Table 16 for an explanation.

8.2.2.5 StartIpv6Ping

This request is used to transmit a single ping message, or a multiple ping messages from the SUT over IPv6 and receive ping echo from the remote host.

```
StartIPv6Ping ::= IPv6TxRecord (WITH COMPONENTS{
    radio,
    interfaceName,
    destIpAddress,
    destPort ABSENT
    protocol (icmp),
    repeatRate OPTIONAL,
    eventHandling (WITH COMPONENTS {..., eventFlag ({eIcmp6PktRx})}),
    Payload ABSENT
})
```

Table 17 sendIPv6Ping Message Parameters

Parameters	Explanation
radio	The structure contains radio device (radio0, radio1, etc) and antenna port
	for transmission of ping v6 messages.
interfaceName	Interface Name is an identifier of the interface provided by the SUT in
	response to the Getlpv6InterfaceInfo.
destipAddresses	Destination host IPv6 address specified in canonical format (e.g.
·	2001:ff::1).
destPort	Omitted
protocol (icmp),	The protocol used for the ping (ICMP in this case).

	Repeat rate for messages as defined in 1609.3 as number of messages per 5 sec intervals. Additionally, it can be set to 0 for transmitting a single message.
eventHandling	A parameter is used to request SUT to send an <i>indication</i> to the TS when
	ping echo is received.
payload	No payload is required for this message.

8.2.2.6 StopIPv6Ping

```
StopIPv6Ping ::= IPv6TxRecord (WITH COMPONENTS{
   Radio (WITH COMPONENTS {..., antenna ABSENT}),
   interfaceName,
   destIpAddress,
   destPort ABSENT
   protocol (icmp),
   repeatRate ABSENT,
   eventHandling ABSENT
   Payload ABSENT
})
See Table 17 for an explanation.
```

8.2.2.7 StartIPv6Rx

This request is used to initiate reception of IPv6 packets by the SUT.

```
StartIPv6Rx ::= IPv6RxRecord(WITH COMPONENTS{
  Radio
  interfaceName
  listenPort
  protocol
  eventHandling ABSENT
})
```

Table 18 startlPv6Rx Message Parameters

Parameters Explanation		
radio	The structure contains radio device (radio0, radio1, etc) and antenna port	
ladio	for reception of IPv6 packets.	
interfaceName	Interface Name is an identifier of the interface provided by the SUT in	
	response to the Getlpv6InterfaceInfo.	
listenPort	The port number the SUT should use to listen to IPv6 packets.	
protocol	The protocol used for the reception (TCP or UDP).	
eventHandling A parameter is used to request SUT to send an indication to		
	an IPv6 packet is received.	

8.2.2.8 StopIPv6Rx

This request is used to cease reception of IPv6 packets by the SUT.

```
StopIPv6Rx ::= IPv6RxRecord(WITH COMPONENTS{
  Radio ( WITH COMPONENTS {..., antenna ABSENT})
  interfaceName
  listenPort
  protocol
  eventHandling ABSENT
})
```

Table 19 stopIPv6Rx Message Parameters

Parameters	Explanation

radio	The structure contains radio device (radio0, radio1, etc.) and antenna port	
	for reception of IPv6 packets.	
interfaceName	Interface Name is an identifier of the interface provided by the SUT in	
	response to the Getlpv6InterfaceInfo.	
listenPort	The port number the SUT should use to listen to IPv6 packets.	
protocol	The protocol used for the reception (TCP or UDP).	
eventHandling	Not required.	

8.3 Response, ResponseInfo, Indication and Exception messages

8.3.1 Response messages

The *Response* message is sent in response to the *Request*. It is defined in the *TCI-CommonType* module. A *Response* message must be triggered within **50ms** after an SUT received a *Request* message. If no *Response* is received, the TS will attempt to re-initialize the SUT or may request user assistance.

Table 20 Response message

Parameters	Explanation	
msgID	Use the same MsgID from the corresponding Request message. msgIDs are listed in the Table 31.	
resultCode	Success or Failure enumerated as 0 or 1 respectively.	
exception	This parameter contains additional information if exception must be reported to the TS (i.e. failure, warning, etc.). See details in 7.3.4.	

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.3.2 Indication messages

The Indication message is sent from the SUT to TS. It is defined in the TCI-indication module.

Table 21 Indication message

Parameters	Explanation	
radio	The structure contains radio device (radio0, radio1, etc.) and antenna port	
	for transmission of WSAs.	
event	Enumerated list of events that when occur, will generate an Indication	
	messages.	

eventParams	Event parameters contain some data related to message reception but not	
	included in the message payload (e.g. message RCPI).	
pdu	Optional element containing payload of the message identified by the	
	event.	
xception Optional element which is used to report exception. It is omitted if r		
	exception is reported.	

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

Table 22 lists event types that may trigger transmission of an *Indication* message. Those event types are defined in the *TCI-Indication* module.

Table 22 Events which can thuder indication message	Table 22	Events which can trigger Indication messages
---	----------	--

Parameters	Enumerated	Explanation	
e80211PktRx	1	SUT received an inbound 802.11 frame	
e16093PktRx	2	SUT received an inbound 1609.3 packet	
eWsmPktRx	3	SUT received an inbound WSM (with matching PSID)	
elpv6PktRx	4	SUT received an inbound IPv6 frame over DSRC	
elcmp6PktRx	5	SUT received an inbound ping (ICMP) IPv6 echo message	
elpv6ConfigChanged	6	SUT IPv6 address change on one of the DSRC radio	
		interfaces	
eDot3ChannelAssigned	7	SUT assigned a channel as per WME-Notification.indication	
eDot3RequestMatchedAvail	8	request matched with available application-service as per	
AppService		WMENotification.indication	
eDot2VerificationComplete	9	Inbound WSM or WSA message signature verification is	
WithResult		complete	
exception	15	SUT generated an exception.	

8.3.3 ResponseInfo messages

This message is used to retrieve configuration information from the SUT. It is defined in the *TCI-responseInfo* module. A *ResponseInfo* message must be triggered within **50ms** after an SUT received a *Request* message. If no *ResponseInfo* is received, the TS will attempt to re-initialize the SUT or may request user assistance.

Table 23 ResponseInfo message

	rable 20 Responseline incessage		
Parameters	Explanation		
MsgID	Use the same MsgID from the corresponding Request message.		
resultCode	Success or Failure enumerated as 0 or 1 respectively.		
info	This parameter contains information requested from the SUT. If SUT detects an error which prevents it to report the requested information, then info parameter is omitted and instead exception parameter is included.		
exception	This optional parameter is included SUT must report exception explaining the possible details of the failure result code. See details in 7.3.4.		

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

8.3.4 Exception messages

Exception is a message sent from the SUT to the TS. It is used to report certain conditions to the TS. There are no exception messages from the TS to the SUT. Upon reception of an Exception message, the TS does not need to send a response back to the SUT.

The SUT sends each exception only once and does not need to repeat it. The SUT does not send an exception cancellation if the condition causing exception stops. If repeated exceptions occur due to repeatable events, e.g. reception of invalid message from the TS, then one Exception message is sent for every event which generates an exception.

An Exception message must be triggered within 50ms after the corresponding event occurred on the SUT.

Exception information can also be reported in the *Response, Indication* and *ResponseInfo*. Then, the TS does not need to send a standalone exception message. It is defined in the *TCI-CommonTypes* module.

Table 24 Exception message

Parameters	Explanation	
type	Can be info, warning or error.	
id	Integer identifier assigned for the exception.	
module	A text string providing the name of a module where exception is detected.	
description		

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

Table 25 Defined exceptions

id	Туре	Description	
1	error	Critical error	
2	error	Incorrect parameter value	
3	error	Missing parameter	
4	error	Radio interface is unavailable	

9 TCI frames

9.1 TCI80211 frame

9.1.1 Supported use cases

Use cases (UC) supported by TCI80211 are listed in the Table 26.

Note, in the Message Sequence column, the common prefix *TCIMsg.frame* is omitted. For example, the full name for *request.SetInitialState* is *TCIMsg.frame.request.SetInitialState*.

Table 26 Use cases supported by TCI802.11

UC#	Use case objective	Flow Direction	Message Sequence
1	Reset the SUT to the Initial state	TS → SUT	request.SetInitialState response
		SUT → TS	
2	Set the WSM Transmission Info	ts → sut	request.setWsmTxInfo
		SUT → TS	
3	The SUT transmits a single or periodic	ts → sut	request. StartWsmTx response
	WSMs	SUT → TS	
4	The SUT stops transmitting periodic	ts → sut	request. StopWsmTx response
	WSMs	SUT → TS	
5	The SUT receives WSMs and sends	ts → sut	request. StartWsmRx response
	event indications to the TS	SUT → TS	
6	The SUT stops receiving WSMs	TS → SUT	request. StopWsmRx response
		SUT → TS	

9.1.2 Request Messages

Table 27 lists all supported *Request* messages supported in the *TCI16093* frame. When SUT sends a *Response* message, it must include the *MsgID* and Type corresponding to the *Request* message.

Most of these messages are imported from the common TCI-wsm module.

Table 27 Listing of Request messages

Request Messages Type	MsgID	Explanation
SetInitialState	1	Request to configure SUT to the Initial state
Dot11SetWsmTxInfo	2	Request to configure the WSM transmission
		information
Dot11StartWsmTx	3	Request to start transmission of WSMs
StopWsmTx	4	Request to stop transmission of WSMs
StartWsmRx	5	Request to start reception of WSMs
StopWsmRx	6	Request to stop reception of WSMs

9.1.2.1 SetInitialState

This request is used to set the SUT in initial condition. This request is defined in the TCI-wsm module.

9.1.2.2 Dot11SetWsmTxInfo

This request is used to configure device parameters before transmitting WSMs per 80211. This request correlates to the pre-defined *setWsmTxInfo* request in the *TCI-wsm* module.

```
Dot11SetWsmTxInfo ::= SetWsmTxInfo (WITH COMPONENTS {
    psid,
    radio,
    security,
    transmitPowerLevel,
    infoElementsIncluded,
    userPriority,
    channelIdentifier,
    dataRate,
    timeslot,
```

```
repeatRate,
destinationMACAddr ('FFFFFFFFFFF'H),
channelLoad ABSENT,
expiryTime ABSENT,
payload ABSENT
})
```

9.1.2.3 Dot11StartWsmTx

This request is used to initiate transmission of WSMs by the SUT. This request correlates to the pre-defined *StartWsmTx* request in the *TCI-wsm module*.

9.1.2.4 StopWsmTx

This request is used to cease transmission of WSMs by the SUT. This request is defined in the *TCI-wsm* module.

9.1.2.5 **StartWsmRx**

This request is used to configure the SUT to receive messages and forward corresponding event indications to the TS. This request is defined in the *TCI-wsm* module.

9.1.2.6 **StopWsmRx**

This request is used to stop the SUT reception of messages and generation of *Indication* messages. This request is defined in the *TCI-wsm* module.

9.1.3 *Response* messages

The *Response* message is sent in response to the *Request. Response* is defined in the *TCI-CommonTypes* module.

9.1.4 Indication messages

The *Indication* message is sent from the SUT to the TS indicating an occurrence of a predefined event. *TCI-80211* defines *Dot11Indication* as follows:

```
Dot11Indication ::= Indication (WITH COMPONENTS {
  radio,
  event (e80211PktRx),
  eventParams (WITH COMPONENTS {d80211frame} ) OPTIONAL,
  pdu OPTIONAL,
  exception OPTIONAL
})
```

where Indication is defined in the TCI-indication module.

9.1.5 Exception messages

Exception is a message sent from the SUT to the TS. It is used to report exception conditions to the TS. *Exception* is defined in the *TCI-CommonTypes* module.

Copyright © 2021 OmniAir Consortium, Inc. All rights reserved. May not be reproduced without permission. The latest version of this document is available upon request to OmniAir. Comments on this document should be provided to info@omniair.org.

9.2 TCI16094 frame

9.2.1 Supported use cases

Use cases supported by **TCI16094** are listed in Table 28.

Table 28 Use cases supported by TCI16094

UC#	Use case objective	Flow	Message Sequence
00 #	Ose case objective	Direction	wessage sequence
1	Reset the SUT to the Initial state	TS → SUT	request.SetInitialState
		SUT → TS	
2	To configure the SUT WSM transmit	TS → SUT	request. SetWsmTxInfo
	parameters such as psid, radio, channel,	$SUT \rightarrow TS$	response
	timeslot, data rate etc.		
3	The SUT transmits a single or periodic		request. StartWsmTx
	WSMs	SUT → TS	-
4	The SUT stops transmitting periodic	TS \rightarrow SUT	request. StopWsmTx
		SUT → TS	•
5	The SUT receives WSMs and sends event	TS → SUT	request. StartWsmRx
	indications to the TS	SUT → TS	
6	The SUT stops receiving WSMs	TS → SUT	request. StopWsmRx
		SUT → TS	•
7	Add Transmit Profile of SUT		request.AddTxProfile response
		SUT → TS	
8	Delete Transmit Profile of SUT		request.DelTxProfile response
		SUT → TS	
9	The TS requests information from the		request.GetIpv6InterfaceInfo
		SUT → TS	response
	Communication		
10	The SUT transmits single or periodic IPv6		request. StartIPv6Tx response
	packets	SUT → TS	
11	The SUT stops transmitting periodic IPv6	TC - > CLIT	request Staniby6Ty response
11		SUT \rightarrow TS	request. Stopievorx response
	packets	301 7 13	
12	The SUT receives IPv6 packets and sends	TS → SUT	request. StartIPv6Rx response
	-	SUT → TS	·
13	The SUT stops receiving IPv6 packets	TS → SUT	request. StopIPv6Rx response
		SUT → TS	
14	The SUT to configure its radio, interface		request.SetIpv6 Ipv6Address
		$SUT \rightarrow TS$	response
	and receive IPv6 packets		

15	The SUT to ping another IPv6 device	TS → SUT	request.
	specifying the radio, the interface,	SUT → TS	StartIpv6Pingresponse
	destination IPv6 address and port to use		
	for the transmission and reception.		
	Received ping echo is forwarded to the TS		
16	The SUT stops transmission of ping to	TS → SUT	Request StopIPv6Ping
	another IPv6 device	SUT → TS	response

9.2.2 Request Messages

Table 29 lists all supported Request messages supported in the TCI-16094 frame. When the SUT sends a Response message, it must include the MsgID corresponding to the Request message.

Table 29 Listing of Request messages

Request Messages	MsgID	Explanation
SetInitialState	1	Request to configure SUT to the Initial state
SetWsmTxInfo	2	Request to configure WSM transmit parameters
StartWsmTx	3	Request to start transmission of WSMs
StopWsmTx	4	Request to stop transmission of WSMs
StartWsmRx	5	Request to start reception of WSMs
StopWsmTx	6	Request to stop reception of WSMs
Getlpv6InterfaceInfo	7	The TS requests IPv6 configuration from the SUT
SetIpv6Address	8	The TS requests the SUT to change its IPv6
		configuration
StartIPv6Tx	9	Request to start transmission of IPv6 packets
StopIPv6Tx	10	Request to stop transmission of IPv6 packets
StartIPv6Rx	11	Request to start reception of IPv6 packets
StopIPv6Rx	12	Request to stop reception of IPv6 packets
StartIpv6Ping	13	Transmit ping messages over IPv6 and receive
		ping echo from the remote host
Stoplpv6Ping	14	Stop transmission of ping messages over IPv6
AddTxProfile	15	Add transmission profile for IPv6 testing without
		WSA
DelTxProfile	16	Delete transmission profile for Ipv6 testing
		without WSA

9.2.2.1 SetInitialState

This request is used to set the SUT in initial condition. This request is defined in the TCI-wsm module.

9.2.2.2 Dot4SetWsmTxInfo

This request is used to configure the SUT's WSM transmission parameters. This request correlates to the predefined *setWsmTxInfo* request in the *TCI-wsm* module.

9.2.2.3 Dot4StartWsmTX

This request is used to initiate transmission of WSMs by the SUT. This request correlates to the pre-defined *startWsmTx* request in the *TCI-wsm* module.

9.2.2.4 **StopWsmTx**

This request is used to cease transmission of WSMs by the SUT. This request is defined in the *TCI-wsm* module.

9.2.2.5 StartWsmRX

This request is used to configure the SUT to receive messages and forward corresponding event indications to the TS. This request is defined in the *TCI-wsm* module.

9.2.2.6 StopWsmRX

This request is used to stop SUT reception of messages and generation of *indication* messages. This request is defined in the *TCI-wsm* module.

9.2.2.7 GetIpv6InterfaceInfo

This request is used to requests IPv6 configuration from the SUT. This request is defined in the TCI-ip module.

9.2.2.8 SetIpv6Address

This request is used to change SUT IPv6 configuration. This request is defined in the TCI-ip module.

9.2.2.9 **StartIPv6T**x

This request is used to initiate transmission of IPv6 packets by the SUT. This message uses a service provided by the IP domain. Please refer to section 7.2.1.3 for additional information.

9.2.2.10 StopIPv6Tx

This request is used to cease transmission of IPv6 packets by the SUT. This request is defined in the *TCI-ip* module.

9.2.2.11 StartIPv6Rx

This request is used to initiate reception of IPv6 packets by the SUT. This request is defined in the *TCI-ip* module.

9.2.2.12 StopIPv6Rx

This request is used to cease reception of IPv6 packets by the SUT. This request is defined in the *TCI-ip* module.

9.2.2.13 StartIpv6Ping

This request is used to transmit a single ping message from the SUT over IPv6 and receive a ping echo from the remote host. This request is defined in the *TCI-ip* module.

9.2.2.14 StopIpv6Ping

This request stops transmission of ping messages from the SUT over IPv6. This request is defined in the *TCI-ip* module.

9.2.2.15 AddTxProfile

This request adds transmissions profile of the SUT for IPV6 Testing without WSAs. This request is defined in the *TCI-ip* module.

9.2.2.16 DelTxProfile

This request deletes the transmission profile of the SUT for IPV6 Testing without WSAs. This request is defined in the *TCI-ip* module.

9.2.3 Response messages

The *Response* message is sent in response to the *Request. Response* is defined in the *TCI-CommonTypes* module.

9.2.4 Indication messages

The *Indication* message is sent from the SUT to the TS indicating an occurrence of a predefined event. *TCI-16094* defines *Dot4Indication* as follows:

```
Dot4Indication ::= Indication (WITH COMPONENTS{
radio,
event (e16093PktRx|
        eWsmPktRx |
       eIpv6PktRx |
       eIcmp6PktRx |
       eIpv6ConfigChanged
        eDot3ChannelAssigned |
        eDot3RequestMatchedAvailAppService |
       exception),
eventParams (WITH COMPONENTS {service} |
             WITH COMPONENTS {wsm} |
             WITH COMPONENTS {ip}
              ) OPTIONAL
pdu OPTIONAL
exception OPTIONAL
})
```

where Indication is defined in TCI-indication module.

9.2.5 ResponseInfo messages

This message is used to retrieve configuration information from SUT.

```
Dot4ResponseInfo ::= ResponseInfo (WITH COMPONENTS{
msgId,
resultCode
info (WITH COMPONENTS {ipv6InterfaceInfo} ) OPTIONAL,
exception OPTIONAL
})
```

9.2.6 Exception messages

Exception is a message sent from the SUT to the TS. It is used to report exception conditions to the TS. *Exception* is defined in the *TCI-CommonTypes* module.

9.3 TCI16093DSRC frame

9.3.1 Supported use cases

Use cases (UC) supported by TCI16093DSRC are listed in Table 30.

Note, in the Message Sequence column, the common prefix *TCIMsg.frame* is omitted. For example, the full name for *request.SetInitialState* is *TCIMsg.frame.request.SetInitialState*.

Copyright © 2021 OmniAir Consortium, Inc. All rights reserved. May not be reproduced without permission. The latest version of this document is available upon request to OmniAir. Comments on this document should be provided to info@omniair.org.

Table 30 Use cases supported by TCl16093

	Table 30 Use cases supported by TCl16093			
UC #	Use case objective	Flow Direction	Message Sequence	
1	Reset the SUT to the Initial state	TS \rightarrow SUT SUT \rightarrow TS	request.SetInitialState response	
2	The SUT transmits a single or periodic		request.SetWsmTxInfo	
_	WSMs		response request.StartWsmTx	
	VV 31V13	$TS \rightarrow SUT$		
		SUT → TS		
3	The SUT stops transmitting periodic		request.StopWsmTx response	
	WSMs	SUT → TS		
4	The SUT receives WSMs and sends	TS → SUT	request.StartRx	
	event indications to the TS		response indication	
		SUT → TS	·	
5	The SUT stops receiving WSMs	TS → SUT	request.StopRx response	
	·	SUT → TS		
6	The SUT starts transmitting WSAs	ts → sut	request.StartWsaTxPeriodic response	
		sut → ts		
7	The SUT stops transmitting WSAs	TS → SUT	request.StopWsaTxPeriodic response	
		SUT → TS		
8	The SUT adds a provider service to	TS → SUT	request.AddWsaProviderService response	
	WSA	SUT → TS		
9	The SUT deletes a provider service from	TS → SUT	request.DelWsaProviderService response	
	WSA	SUT → TS		
10	The SUT registers a user service and	ts → sut	request.AddUserService	
	notifies the TS when it is activated	SUT → TS	response indication	
		SUT → TS		
11	The SUT removes a registered user	ts → sut	request.DelUserService response	
	service	SUT → TS		
12	The TS requests IPv6 configuration	ts → sut	request. GetIpv6InterfaceInfo responseInfo	
	from the SUT	SUT → TS		
13	The TS requests the SUT to change its		request.SetIpv6Address response	
	IPv6 configuration	SUT → TS		
14	Transmit a single ping message over		Start with Use Case 10, then	
	IPv6 and receive ping echo from the		request.SendIpv6Ping	
	remote host		response indication	
		SUT → TS		
15	An exception occurred on SUT and	SUT → TS	exception	
	reported to the TS			
16	SUT joins a WSA and transmits WSMs		Run Use Case 10	
	on a Service channel		Wait for the indication message and do Use	
			Case 2	

17	SUT joins a WSA and receives WSMs on	Run Use Case 10
	a Service channel	Wait for the indication message and do Use
		Case 4

The following dependencies are established among use cases:

- UC1 must precede UC 2, UC4, UC6, UC10, UC12, UC13, UC14
- UC3 must follow UC2 ☐ UC5 must follow UC4 ☐ UC7 must follow UC6 ☐ UC8 must follow UC6
- UC9 must follow UC8
- UC11 must follow UC10
- UC12, UC13, UC14 may follow in any order
- UC15 may occur at any time, including during execution of any other UC.

9.3.2 Request messages

Table 31 lists all supported Request messages supported in the TCI16093 frame. When the SUT sends a Response message, it must include the MsgID corresponding to the Request message.

Table 31 Listing of Request messages Request Messages MsgID **Explanation** SetInitialState Request to configure SUT to the Initial state SetWsmTxInfo 2 Request to set parameters used for transmissions of WSMs 3 StartWsmTx Request to start transmission of WSMs 4 StopWsmTx Request to stop transmission of WSMs StartWsaTxPerdiodic 5 Request to start transmission of WSAs StopWsaTxPeriodic 6 Request to stop transmission of WSAs 7 StartWsmRx Request to start receiving WSMs 8 StopWsmRx Request to stop receiving WSMs AddWsaProviderService 9 Request to add a service provider to an existing WSA broadcast ChangeWsaProviderService 10 Request to change a service provider to an existing WSA broadcast 11 Request to delete a service provider from an DelWsaProviderService existing WSA broadcast 12 AddUserService Request to add a user service 13 DelUserService Request to delete a user service Getlpv6InterfaceInfo 14 Request to SUT to report its IPv6 configuration 15 SetIpv6Address Request to SUT to set its IPv6 address Startlpv6Ping 16 Request to SUT to send a ping (ICMP over IPv6) Stoplpv6Ping 17 Request to SUT to stop sending ping (ICMP over IPv6)

9.3.2.1 SetInitialState

This request is used to set the SUT in initial condition. This request is defined in the TCI-wsm module.

9.3.2.2 Dot3SetWsmTxInfo

This request is used to configure the SUT's WSM transmission parameters. This request correlates to the predefined *SetWsmTxInfo* request in the *TCI-wsm* module.

9.3.2.3 Dot3StartWsmTx

This request is used to initiate transmission of WSMs by the SUT. Information about the expected content of the WSM needs to be set via the <u>8.3.2.2 Dot3SetWsmTxInfo</u> request before. This request correlates to the predefined *StartWsmTx* request in the *TCI-wsm* module.

9.3.2.4 **StopWsmTx**

This request is used to cease transmission of WSMs by the SUT. This request is defined in the *TCI-wsm* module.

9.3.2.5 StartWsaTxPerdiodic

This request is used to initiate transmission of WSA by the SUT. This request is defined in the *TCI-wsm* module.

9.3.2.6 StopWsaTxPeriodic

This request is used to stop the current WSA transmissions by the SUT and delete associated provider services from the *ProviderServiceRequestTable*. This request is defined in the *TCI-wsm* module.

9.3.2.7 **StartWsmRx**

This request is used to configure the SUT to receive messages and forward corresponding event indications to the TS. This request is defined in the *TCI-wsm* module.

9.3.2.8 StopWsmRx

This request is used to stop the SUT's reception of messages and generation of *indication* messages. This request is defined in the *TCI-wsm* module.

9.3.2.9 AddWsaProviderService

This request is used to add a provider service and update WSA. This request is defined in the *TCI-wsm* module.

9.3.2.10 changeWsaProviderService

This request is used to change a provider service and update WSA. This request is defined in the TCI-wsm module.

9.3.2.11 DelWsaProviderService

This request is used to removes a provider service and updates WSA. This request is defined in the *TCI-wsm* module.

9.3.2.12 AddUserService

This request is used to add a user service to the SUT. This request is defined in the TCI-wsm module.

9.3.2.13 DelUserService

This request is used to delete a user service on the SUT previously requested by the *AddUserService* request. This request is defined in the *TCI-wsm* module.

9.3.2.14 Getlpv6InterfaceInfo

This request is used to retrieve IPv6 configuration from the SUT. This request is defined in the TCI-ip module.

9.3.2.15 SetIpv6Address

This request is used to set IPv6 address on the SUT. This request is defined in the TCI-ip module.

9.3.2.16 **StartIpv6Ping**

This request is used to request the SUT to transmit a single ping message over IPv6 and receive a ping echo from the remote host. This request is defined in the *TCI-ip* module.

9.3.2.17 StopIpv6Ping

This request is used to stop requesting the SUT to transmit ping messages. This request is defined in the TCI-ip module.

9.3.3 Response messages

The *Response* message is sent in response to the *Request. Response* is defined in the *TCI-CommonTypes* module.

9.3.4 *Indication* messages

The *Indication* message is sent from the SUT to the TS indicating an occurrence of a predefined event. *TCI-16093* defines *Dot3Indication* as follows:

```
Dot3Indication ::= Indication (WITH COMPONENTS{
Event ( e16093PktRx |
         eWsmPktRx |
                  eIpv6PktRx |
                  eIcmp6PktRx |
                  eIpv6ConfigChanged |
                  eDot3ChannelAssigned
                  eDot3RequestMatchedAvailAppService |
                  eDot2VertificationCompleteWithResult |
                  exception),
eventParams (WITH COMPONENTS {service} |
              WITH COMPONENTS {wsm} |
              WITH COMPONENTS {ip}
             WITH COMPONENTS {security} |
              )OPTIONAL,
pdu OPTIONAL,
exception OPTIONAL
})
```

where *Indication* is defined in the *TCI-indication* module.

Table 32	Indication message	٠.

Parameters	Explanation
radio	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of WSAs.
event	Enumerated list of events that when occur, will generate an Indication messages. See 7.3.2 for the list of pre-defined events.
eventParams	Event parameters contain some data related to message reception but not included in the message payload.
pdu	Optional element containing payload of the message identified by the event.
exception	Optional element which is used to report exception. It is included if an exception is reported.

The SUT does not need to send both an *Indication* message with an *exception* parameter and a separate *Exception* message. If the SUT detects an exception, which doesn't not prevent it to receive and process subsequent messages, the SUT must report the exception in the *Indication* message. The SUT must use the *Exception* message if the exception condition causes the SUT to abort generation of *Indication* messages.

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

9.3.5 ResponseInfo messages

This message is used to retrieve configuration information from the SUT. *TCI-16093* defines *Dot3ResponseInfo* as follows:

```
Dot3ResponseInfo ::= ResponseInfo (WITH COMPONENTS{
  msgID,
  resultCode,
  info (WITH COMPONENTS {ipv6InterfaceInfo} |
      WITH COMPONENTS {sutInfo} |
      WITH COMPONENTS {pktCount}) OPTIONAL,
  exception OPTIONAL
})
```

Table 33	ResponseInfo	message

	rable of Respondente medage
Parameters	Explanation
msgID	Use the same MsgID from the corresponding <i>Request</i> message. MsgIDs are listed in the Table 31.
resultCode	Success or Failure enumerated as 0 or 1 respectively.
info	This parameter contains information requested from the SUT. If SUT detects an error which prevents it to report the requested information, then info parameter is omitted and instead exception parameter is included.
exception	This optional parameter is included if SUT must report exception explaining the possible details of the Failure result code. See details in 8.3.6

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

9.3.6 Exception messages

Exception is a message sent from the SUT to the TS. It is used to report exception conditions to the TS. *Exception* and defined in the *TCI-CommonTypes* module.

9.4 TCI16093PC5 frame

9.4.1 Supported use cases

Use cases (UC) supported by TCI16093PC5 are listed in Table 40.

Note, in the Message Sequence column, the common prefix *TCIMsg.frame* is omitted. For example, the full name for *request.SetInitialState* is *TCIMsg.frame.request.SetInitialState*.

Table 40 Use cases supported by TCI16093

UC #	Use case objective	Flow Direction	Message Sequence
1	Reset the SUT to the Initial state	TS → SUT	request.SetInitialState

	T	CUT > TC	
		SUT → TS	response
2	The SUT sets up to send WSM	TS → SUT	request. Set WsmTxInfo
	transmissions	SUT -> TS	response
3	The SUT transmits a single or periodic	SUT → TS	response request.StartWsmTx
	WSMs	TS → SUT	response
4	The SUT stops transmitting periodic	TS → SUT	request.StopWsmTx
	WSMs	SUT → TS	-
5	The SUT starts transmitting WSAs		request.StartWsaTxPeriodic
	periodically	SUT → TS	•
6	The SUT stops transmitting WSAs		request.StopWsaTxPeriodic
	periodically	SUT → TS	•
7	The SUT sets up to receive WSM	SUT -> TS	request.StartWsmRx
	transmissions via PC5 medium		response indication
		TS -> SUT	
8	The SUT stops receiving WSMs		request.StopRx
		SUT → TS	'
9	The SUT adds a provider service to		request. Add Wsa Provider Service
	WSA	SUT → TS	-
10	The SUT changes a provider service to		request.changeWsaProviderService
	WSA	SUT → TS	
11	The SUT deletes a provider service from		
	WSA	SUT → TS	
12	The SUT registers a user service and		·
	notifies the TS when it is activated		response indication
42	The CUT consequence of the consequence	SUT → TS	Della Control
13	The SUT removes a registered user		request.DelUserService
4.4	service	SUT → TS	-
14	The TS requests IPv6 configuration		request. Getlpv6InterfaceInfo
1 -	from the SUT		responseInfo
15	The TS requests the SUT to change its IPv6 configuration		request.SetIpv6Address
16	The TS starts IPV6 Ping with SUT	SUT → TS	
16	The 13 starts IPV6 Ping with 301	$SUT \rightarrow TS$	request.startlpv6Ping
17	The TS stops IPv6 Ping with SUT		request.stoplpv6Ping
17	The 13 stops ievo eing with 301	$SUT \rightarrow TS$	
18	The TS Requests the SUT to send		Request.sendUeConfigXML
10	Configuration XML	$SUT \rightarrow TS$	
19	The TS sets configuration of SUT		request.setUeConfig
	10 sets comigaration of sor		response indication
20	The TS sets flow configuration of SUT		request.setFlowConfig
	13 3cts now configuration of 301		response indication
21	The TS sends AT command to SUT		request.sendATcommand
		SUT → TS	•
			1

22	The TS requests the status of the SUT	ts → sut	Request.requestSUTStatus
		SUT → TS	response
23	The TS requests Wsm Transmissions	TS → SUT	request.requestWsmTxCount
	Count	SUT → TS	response
24	The TS requests WSM Reception Count	TS → SUT	Request.requestWsmRxCount
		sut → ts	response
25	The TS requests the SUT to reset the	TS → SUT	Request.requestWsmTxCountReset
	Transmission Count	SUT → TS	response
26	The TS requests the SUT to reset the	TS → SUT	Request.requestWsmRxCountReset
	Reception Count	SUT → TS	

The following dependencies are established among use cases:

- UC1 must precede UC 2, UC4, UC6, UC10, UC12, UC13, UC14
- UC3 must follow UC2 □ UC5 must follow UC4 □ UC7 must follow UC6 □ UC8 must follow UC6
- UC9 must follow UC8
- UC11 must follow UC10
- UC12, UC13, UC14 may follow in any order
- UC15 may occur at any time, including during execution of any other UC.

9.4.2 Request messages

Table 31 lists all supported Request messages supported in the TCI16093 frame. When the SUT sends a Response message, it must include the MsgID corresponding to the Request message.

Table 31 Listing of Request messages

Request Messages	MsgID	Explanation
SetInitialState	1	Request to configure SUT to the Initial state
SetWsmTxInfo	2	Request to set parameters used for transmissions
		of WSMs
StartWsmTx	3	Request to start transmission of WSMs
StopWsmTx	4	Request to stop transmission of WSMs
StartWsaTxPerdiodic	5	Request to start transmission of WSAs
StopWsaTxPeriodic	6	Request to stop transmission of WSAs
StartWsmRx	7	Request to start receiving WSMs
StopWsmRx	8	Request to stop receiving WSMs
AddWsaProviderService	9	Request to add a service provider to an existing
		WSA broadcast
ChangeWsaProviderService	10	Request to change a service provider to an
		existing WSA broadcast
DelWsaProviderService	11	Request to delete a service provider from an
		existing WSA broadcast
AddUserService	12	Request to add a user service
DelUserService	13	Request to delete a user service
GetIpv6InterfaceInfo	14	Request to SUT to report its IPv6 configuration
SetIpv6Address	15	Request to SUT to set its IPv6 address

StartIpv6Ping	16	Request to SUT to send a ping (ICMP over IPv6)
Stoplpv6Ping	17	Request to SUT to stop sending ping (ICMP over IPv6)
sendUeConfigXML	21	Request to SUT to send its own Configuration to the TS
setUeConfig	22	Request to configure specific SUT parameters
setFlowConfig	23	Request to configure the Flow Configuration of
		the SUT
sendATcommand	24	Request to change AT command parameters of
		the SUT
requestSutStatus	25	Request to SUT for status
requestWsmTxCount	26	Request to SUT for WSM transmit count
requestWsmRxCount	27	Request to SUT for WSM reception count
requestWsmTxCountReset	28	Request to SUT to reset transmission count
requestWsmRxCountReset	29	Request to SUT to reset reception count

9.3.2.1 SetInitialState

This request is used to set the SUT in initial condition. This request is defined in the TCI-wsm module.

9.3.2.2 PC5SetWsmTxInfo

This request is used to configure the SUT's WSM transmission parameters. This request correlates to the predefined *SetWsmTxInfo* request in the *TCI-wsm* module.

9.3.2.3 StartWsmTx

This request is used to initiate transmission of WSMs by the SUT. Information about the expected content of the WSM needs to be set via the <u>8.3.2.2 Dot3SetWsmTxInfo</u> request before. This request correlates to the predefined *StartWsmTx* request in the *TCI-wsm* module.

9.3.2.4 **StopWsmT**x

This request is used to cease transmission of WSMs by the SUT. This request is defined in the *TCI-wsm* module.

9.3.2.5 StartWsaTxPerdiodic

This request is used to initiate transmission of WSA by the SUT. This request is defined in the *TCI-wsm* module.

9.3.2.6 StopWsaTxPeriodic

This request is used to stop the current WSA transmissions by the SUT and delete associated provider services from the *ProviderServiceRequestTable*. This request is defined in the *TCI-wsm* module.

9.3.2.7 PC5StartWsmRx

This request is used to configure the SUT to receive messages and forward corresponding event indications to the TS. This request is defined in the *TCI-wsm* module.

9.3.2.8 **StopWsmRx**

This request is used to stop the SUT's reception of messages and generation of *indication* messages. This request is defined in the *TCI-wsm* module.

9.3.2.9 AddWsaProviderService

This request is used to add a provider service and update WSA. This request is defined in the TCI-wsm module.

Copyright @ 2021 OmniAir Consortium, Inc. All rights reserved. May not be reproduced without permission. The latest version of this document is available upon request to OmniAir. Comments on this document

9.3.2.10 changeWsaProviderService

This request is used to change a provider service and update WSA. This request is defined in the TCI-wsm module.

9.3.2.11 DelWsaProviderService

This request is used to removes a provider service and updates WSA. This request is defined in the *TCI-wsm* module.

9.3.2.12 AddUserService

This request is used to add a user service to the SUT. This request is defined in the TCI-wsm module.

9.3.2.13 DelUserService

This request is used to delete a user service on the SUT previously requested by the *AddUserService* request. This request is defined in the *TCI-wsm* module.

9.3.2.14 GetIpv6InterfaceInfo

This request is used to retrieve IPv6 configuration from the SUT. This request is defined in the TCI-ip module.

9.3.2.15 SetIpv6Address

This request is used to set IPv6 address on the SUT. This request is defined in the TCI-ip module.

9.3.2.16 StartIpv6Ping

This request is used to request the SUT to transmit a single ping message over IPv6 and receive a ping echo from the remote host. This request is defined in the *TCI-ip* module.

9.3.2.17 StopIpv6Ping

This request is used to stop requesting the SUT to transmit ping messages. This request is defined in the TCI-ip module.

9.3.2.18 SendATcommand

This request is used to send AT commands to the SUT for configuration purposes. This request is defined below:

```
SendATcommand ::= ATcmdInfo (AT+CATM, AT+CCUTLE, etc.)
```

9.3.2.19 SetFlowConfig

This request is used to set the flow configuration of the SUT. This request is defined below:

```
SetFlowConfig ::= SEQUENCE(SIZE(0..32)) OF SEQUENCE {
 flowID
                       FlowIdentifier
flowType
                       ENUMERATED {sps (1), event (2)},
Pppp
                       PPPP,
Pppp serviceId INTEGER OPTIONAL, spsReservationSize SpsReservationSize OPTIONAL,
periodicity
                       TrafficPeriodicity-r14 OPTIONAL,
txPower
                       P-Max OPTIONAL,
                       BOOLEAN OPTIONAL
Harq
txPoolId
                       INTEGER OPTIONAL,
}
```

9.3.2.20 SetUeConfig

This request is used to set the UE configuration of the SUT. This request is defined below:

```
pMax P-Max OPTIIONAL,
bw SL-Bandwidth-r12 OPTIONAL,
minMcs MCS OPTIONAL,
maxMcs MCS OPTIONAL,
numSubCh NumSubCh OPTIONAL,
subChSize SubChSize OPTIONAL,
Pdb PDB OPTIONAL
...
}
```

9.3.2.21 SendUeConfigXML

This request is used to receive the configuration XML from the SUT. This request is defined below:

```
      SendUeConfigXML ::= SEQUENCE {

      counter
      INTEGER (1..127),

      Total
      INTEGER (1..127),

      Crc
      Opaque(SIZE(4)) OPTIONAL,

      Pdu
      Opaque(SIZE(0..tciMtu)),

      ...
      }
```

9.3.3 Response messages

The *Response* message is sent in response to the *Request. Response* is defined in the *TCI-CommonTypes* module.

9.3.4 Indication messages

The *Indication* message is sent from the SUT to the TS indicating an occurrence of a predefined event. *TCI-16093* defines *Dot3Indication* as follows:

```
Dot3Indication ::= Indication (WITH COMPONENTS{
radio,
Event ( e16093PktRx |
         eWsmPktRx |
                  eIpv6PktRx |
                  eIcmp6PktRx |
                  eIpv6ConfigChanged |
                  eDot3ChannelAssigned |
                  eDot3RequestMatchedAvailAppService |
                  eDot2VertificationCompleteWithResult |
                  exception),
eventParams (WITH COMPONENTS {service} |
              WITH COMPONENTS {wsm} |
              WITH COMPONENTS {ip}
              WITH COMPONENTS {security} |
              )OPTIONAL,
pdu OPTIONAL,
exception OPTIONAL
})
```

where *Indication* is defined in the *TCI-indication* module.

	Table 32	Indication message
Parameters	Explanation	

radio	The structure contains radio device (radio0, radio1, etc) and antenna port for transmission of WSAs.
event	Enumerated list of events that when occur, will generate an Indication messages. See 7.3.2 for the list of pre-defined events.
eventParams	Event parameters contain some data related to message reception but not included in the message payload.
pdu	Optional element containing payload of the message identified by the event.
exception	Optional element which is used to report exception. It is included if an exception is reported.

The SUT does not need to send both an *Indication* message with an *exception* parameter and a separate *Exception* message. If the SUT detects an exception, which doesn't not prevent it to receive and process subsequent messages, the SUT must report the exception in the *Indication* message. The SUT must use the *Exception* message if the exception condition causes the SUT to abort generation of *Indication* messages.

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

9.3.5 ResponseInfo messages

This message is used to retrieve configuration information from the SUT. *TCI-16093* defines *Dot3ResponseInfo* as follows:

```
Dot3ResponseInfo ::= ResponseInfo (WITH COMPONENTS{
  msgID,
  resultCode,
  info (WITH COMPONENTS {ipv6InterfaceInfo} |
      WITH COMPONENTS {sutInfo} |
      WITH COMPONENTS {pktCount}) OPTIONAL,
  exception OPTIONAL
})
```

rable 33 Responsenilo inessag	Table 33	Responselnfo message
-------------------------------	----------	----------------------

	rable 33 Responsenilo message
Parameters	Explanation
msgID	Use the same MsgID from the corresponding <i>Request</i> message. MsgIDs are listed in the Table 31.
resultCode	Success or Failure enumerated as 0 or 1 respectively.
info	This parameter contains information requested from the SUT. If SUT detects an error which prevents it to report the requested information, then info parameter is omitted and instead exception parameter is included.
exception	This optional parameter is included if SUT must report exception explaining the possible details of the Failure result code. See details in 8.3.6

Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

9.3.6 *Exception* messages

Exception is a message sent from the SUT to the TS. It is used to report exception conditions to the TS. *Exception* and defined in the *TCI-CommonTypes* module.

9.4 TCI29451 frame

Use cases supported by TCI29451 are listed in Table 41.

Table 41 Use cases supported by TCI29451

UC#	Request/Response Messages		Message Sequence
00 #	Trequestricsponse messages	Direction	message ocquerioe
1	Set the SUT to the Initial state	TS → SUT	request.SetInitialState response
_		SUT → TS	
2	The SUT transmits periodic		request.StartBsmTx response
_	BSMs	SUT → TS	
	55.11.5	TS → SUT	
		SUT → TS	
3	The SUT stops transmitting	TS → SUT	request.StopBsmTx response
	periodic BSMs	SUT → TS	•
4	Turn congestion mitigation of	TS → SUT	request.EnableCongestionMitigation
	the SUT on or off	sut → ts	
5	Set the Temporary ID of the	TS → SUT	request.SetTemporaryId response
	SUT	sut → ts	
6	Set the transmission of the SUT	TS → SUT	request.SetTransmissionState
		sut → ts	response
7	Set the SteeringWheelAngle of	TS → SUT	request.setSteeringWheelAngle
	the SUT	sut → ts	response
8	Set the Brake System Status of	TS → SUT	request.setBrakeSystemStatus
	the SUT	sut → ts	response
9	Set the vehicle size of the SUT	TS → SUT	request.setVehicleSize
		sut → ts	response
10	Set the exterior lights status of	ts → sut	request.SetExteriorLightsStatus
	the SUT	sut → ts	response
11	Set the vehicle event flags of	ts → sut	Request.SetVehicleEventFlags
	the SUT	SUT → TS	response
12	The SUT starts receiving BSMs	TS → SUT	request.StartBsmRx response
		SUT → TS	
13	The SUT stops receiving BSMs	TS → SUT	request.StopBsmRX response
		sut → ts	

9.4.1 Request messages

Table 41 lists all supported *request* messages. When the SUT sends a *response* message, it must include the *MsgID* corresponding to the *request* message.

Table 41 Request supported in TCI29451 frame

Request Messages M		Explanation
SetInitialState	1	Set the SUT to the Initial state
StartBsmTx	2	Begin transmission of BSMs

StopBsmTx	3	Stop transmission of BSMs
StartBsmRx	4	Begin reception of BSMs
StopBsmRx	5	Stop reception of BSMs
EnableCongestionMitigation	6	Enable or disable the congestion mitigation on the SUT
SetTemporaryId	10	Set the temporary ID of the SUT, overwriting the current ID
SetTransmissionState	11	Set the transmission state of the SUT, overwriting its current transmission
SetSteeringWheelAngle	12	Set the steering wheel angle of the SUT, overwriting the current steering wheel angle
SetBrakeSystemStatus	13	Enable or disable the brake pedal status of the SUT
SetVehicleSize	14	Set the Vehicle Size in the SUT
SetExteriorLights	15	Set the exterior lights status of the SUT, overwriting its current light status
SetVehicleEventFlags	16	Set the vehicle flags of the SUT, overwriting its current flags

9.4.1.1 SetInitialState

This request is used to set the SUT in initial condition. The initial condition defines the initial state in which the SUT must be to carry out each test case.

9.4.1.2 EnableGpsInput (Deprecated)

This request was moved to the TCI-SutControl module. Refer to 8.5.2.6 enableGpsInputEnableGpsInput.

9.4.1.3 **StartBsmT**x

This request is used to start BSM transmission on the SUT. The *StartWSMTx* request is predefined in *TCI-wsm* module.

```
StartBsmTx ::= StartWsmTx (WITH COMPONENTS {
   psid (WITH COMPONENTS {content (32)}),
   radio,
   repeatRate ABSENT,
   payload ABSENT
})
```

9.4.1.4 **StopBsmTx**

This request is used to stop BSM transmission on the SUT. The *StopWSMTx* request is predefined in *TCI-wsm* module.

```
StopBsmTx ::= StopWsmTx (WITH COMPONENTS {
    psid (WITH COMPONENTS {content (32)})
})
```

9.4.1.5 EnableCongestionMitigation

This request sets the congestion mitigation of the SUT.

EnableCongestionMitigation ::= BOOLEAN

9.4.1.6 SetTemporaryId

This request sets the temporary ID of the SUT. The definition of data units is adopted from [10].

```
SetTemporaryId ::= OCTET STRING (SIZE(4))
```

9.4.1.7 SetLatitude (Deprecated)

This request was moved to the TCI-SutControl module. Refer to 8.5.2.7 setLatitudeSetLatitude.

9.4.1.8 SetLongitude (Deprecated)

This request was moved to the TCI-SutControl module. Refer to 8.5.2.8 setLongitudeSetLongitude.

9.4.1.9 SetElevation (Deprecated)

This request was moved to the TCI-SutControl module. Refer to 8.5.2.9 setElevationSetElevation.

9.4.1.10 SetPositionalAccuracy (Deprecated)

This request was moved to the *TCI-SutControl* module. Refer to <u>8.5.2.10</u> setPositionalAccuracySetPositionalAccuracy

9.4.1.11 SetTransmissionState

This request is used to set the vehicle transmission state of the SUT.

```
SetTransmissionState ::= ENUMERATED {
   neutral
                    (0),
   park
                    (1),
   forwardGears
                    (2),
    reverseGears
                    (3),
   reserved1
                    (4),
   reserved2
                    (5),
   reserved3
                    (6),
   unavailable
                    (7)
}
```

Parameters	Explanation	
neutral	The vehicle is set to neutral gear	
park	The vehicle is set to park	
forwardGears	The vehicle is set to forward gear	
reverseGears	The vehicle is set to reverse gear	
reserved1	Reserved for additional gears	
reserved2	Reserved for additional gears	
reserved3	Reserved for additional gears	
unavailable	Vehicle transmission is set to unavailable	

9.4.1.12 SetSpeed (Deprecated)

This request was moved to the TCI-SutControl module. Refer to 8.5.2.11 setSpeedSetSpeed.

9.4.1.13 SetHeading (Deprecated)

This request was moved to the TCI-SutControl module. Refer to 8.5.2.12 setHeadingSetHeading.

9.4.1.14 SetSteeringWheelAngle

The request is used to set the steering wheel angle of the SUT.

```
SetSteeringWheelAngle ::= INTEGER (-126... 127)
```

9.4.1.15 SetAccelerationSet4Way (Deprecated)

This request was moved to the *TCI-SutControl* module. Refer to <u>8.5.2.13</u> setAccelerationset4WaySetAccelerationSet4Way.

9.4.1.16 SetBrakeSystemStatus

The request is used to set the status of the brake system of the SUT.

```
SetBrakeSystemStatus ::= SEQUENCE {
    brakeAppliedStatus
                               BIT STRING {
        unavailable (0),
                     (1),
        leftFront
                     (2),
        leftRear
        rightFront (3),
        rightRear
                     (4)
    },
    tractionControlStatus
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
        on
                     (2),
        engaged
                     (3)
    },
    antiLockBrakeStatus
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
                     (2),
        on
                     (3)
        engaged
    stabilityControlStatus
                               ENUMERATED {
        unavailable (0),
                     (1),
        off
                     (2),
        on
                     (3)
        engaged
    },
    brakeBoostApplied
                               ENUMERATED {
        unavailable (0),
                     (1),
        off
                     (2)
        on
    },
    auxiliaryBrakeStatus
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
                     (2),
        reserved
                     (3)
    }
9.4.1.17 SetVehicleSize
The request sets the vehicle size in the SUT.
SetVehicleSize ::= SEQUENCE{
                      INTEGER(0 .. 1023),
    vehicleWidth
    {\tt vehicleLength}
                      INTEGER(0 .. 4095)
9.4.1.18 SetExteriorLights
The request sets the exterior lights in the SUT.
SetExteriorLights ::= BIT STRING
{
   lowBeamHeadlightsOn
                               (0),
   highBeamHeadlightsOn
                               (1),
   leftTurnSignalOn
                               (2),
   rightTurnSignalOn
                               (3),
   hazardSignalOn
                               (4),
   automaticLightControlOn
                               (5),
   daytimeRunningLightsOn
                               (6),
   fogLightOn
                               (7),
   parkingLightsOn
```

}

9.4.1.19 SetVehicleEventFlags

```
SetVehicleEventFlags ::= BIT STRING {
                                     (0),
   eventHazardLights
   eventStopLineViolation
                                     (1),
   eventABSactivated
                                     (2),
   eventTractionControlLoss
                                     (3),
   eventStabilityControlActivated
                                     (4),
    eventHazardousMaterials
                                     (5),
   eventReserved1
                                     (6),
   eventHardBraking
                                     (7),
   eventLightsChanged
                                     (8),
    eventWipersChanged
                                     (9),
    eventFlatTire
                                     (10),
   eventDisabledVehicle
                                     (11),
   eventAirBagDeployment
                                     (12)
}
```

9.4.1.20 StartBsmRx

This request starts BSM reception on the SUT. The StartWsmRx request is predefined in TCI-wsm module

```
StartBsmRx ::= StartWsmRx (WITH COMPONENTS {
   psid (WITH COMPONENTS {content (32)}),
   radio ( WITH COMPONENTS { ..., antenna ABSENT }),
   channelIdentifier (172),
   timeSlot (continuous),
   eventHandling
   })
```

9.4.1.21 StopBsmRx

This request starts BSM reception on the SUT. The StopWsmRx request is predefined in TCI-wsm module

```
StopBsmRx ::= StopWsmRx (WITH COMPONENTS {
        psid (WITH COMPONENTS {content (32)})
})
```

9.4.1.22 setGpsTime (Deprecated)

This request was moved to the TCI-SutControl module. Refer to 8.5.2.14 setGpsTimeSetGpsTime.

9.4.2 Response messages

The *Response* message is sent in response to the *Request. Response* is defined in the *TCI-CommonTypes* module.

9.4.3 Indication messages

The *Indication* message is sent from the SUT to the TS indicating an occurrence of a predefined event. *TCI-29451* defines *D2945Indication* as follows:

where *Indication* is defined in the *TCI-indication* module.

9.4.4 ResponseInfo messages

TCI-29451 does not use ResponseInfo messages.

9.4.5 Exception messages

Exception is a message sent from the SUT to TS. It is used to report exception conditions to the TS. *Exception* is defined in the *TCI-CommonTypes* module.

9.5 TCI31611 frame

9.5.1 Supported use cases

Use cases (UC) supported by TCI16093PC5 are listed in Table 40.

Note, the use cases correlate to the previous Supported Use Cases section J2945/1.

Table 40 Use cases supported by TCI31611

Set the SUT to the Initial state		request.SetInitialState response
	SUT → TS	
The SUT transmits periodic	TS → SUT	request.StartBsmTx response
BSMs	SUT → TS	
	ts → sut	
	SUT → TS	
The SUT stops transmitting	TS → SUT	request.StopBsmTx response
periodic BSMs	SUT → TS	
Turn congestion mitigation of	TS → SUT	request.EnableCongestionMitigation
the SUT on or off	SUT → TS	response
Set the Temporary ID of the	TS → SUT	request.SetTemporaryId response
SUT	sut → ts	
Set the transmission of the SUT	TS → SUT	request.SetTransmissionState
	sut → ts	response
Set the SteeringWheelAngle of	TS → SUT	request.setSteeringWheelAngle
the SUT	SUT → TS	response
Set the Brake System Status of	TS → SUT	request.setBrakeSystemStatus
the SUT	SUT → TS	response
Set the vehicle size of the SUT	TS → SUT	request.setVehicleSize
	sut → ts	response
Set the exterior lights status of	TS → SUT	request.SetExteriorLightsStatus
the SUT	sut → ts	response
Set the vehicle event flags of	TS → SUT	Request.SetVehicleEventFlags
the SUT	sut → ts	response
The SUT starts receiving BSMs	TS → SUT	request.StartBsmRx response
	SUT → TS	
	The SUT transmits periodic BSMs The SUT stops transmitting periodic BSMs Turn congestion mitigation of the SUT on or off Set the Temporary ID of the SUT Set the transmission of the SUT Set the SteeringWheelAngle of the SUT Set the Brake System Status of the SUT Set the vehicle size of the SUT Set the exterior lights status of the SUT Set the vehicle event flags of the SUT	The SUT transmits periodic BSMs SUT \rightarrow TS TS \rightarrow SUT SUT \rightarrow TS TS \rightarrow SUT SUT \rightarrow TS The SUT stops transmitting periodic BSMs Turn congestion mitigation of the SUT on or off SUT \rightarrow TS Set the Temporary ID of the SUT Set the transmission of the SUT Set the SteeringWheelAngle of the SUT Set the Brake System Status of the SUT Set the vehicle size of the SUT Set the exterior lights status of the SUT Set the vehicle event flags of the SUT SUT \rightarrow TS Set the vehicle event flags of the SUT SUT \rightarrow TS The SUT starts receiving BSMs TS \rightarrow SUT SUT \rightarrow TS TS TS TS TS TS TS TS TS TS

13	The SUT stops receiving BSMs	TS → SUT request.StopBsmRX response
		SUT → TS

The following dependencies are established among use cases:

- UC1 must precede UC 2, UC4, UC6, UC10, UC12, UC13, UC14
- UC3 must follow UC2 □ UC5 must follow UC4 □ UC7 must follow UC6 □ UC8 must follow UC6
- UC9 must follow UC8
- UC11 must follow UC10
- UC12, UC13, UC14 may follow in any order
- UC15 may occur at any time, including during execution of any other UC.

9.5.2 Request messages

Table 31 lists all supported Request messages supported in the TCI16093 frame. When the SUT sends a Response message, it must include the MsgID corresponding to the Request message.

Table 31 Listing of Request messages

Request Messages	MsgID	Explanation
SetInitialState	1	Set the SUT to the Initial state
StartBsmTx	2	Begin transmission of BSMs
StopBsmTx	3	Stop transmission of BSMs
StartBsmRx	4	Begin reception of BSMs
StopBsmRx	5	Stop reception of BSMs
EnableCongestionMitigation	6	Enable or disable the congestion mitigation on the SUT
SetTemporaryId	10	Set the temporary ID of the SUT, overwriting the current ID
SetTransmissionState	11	Set the transmission state of the SUT, overwriting its current transmission
SetSteeringWheelAngle	12	Set the steering wheel angle of the SUT, overwriting the current steering wheel angle
SetBrakeSystemStatus	13	Enable or disable the brake pedal status of the SUT
SetVehicleSize	14	Set the Vehicle Size in the SUT
SetExteriorLights	15	Set the exterior lights status of the SUT,
		overwriting its current light status
SetVehicleEventFlags	16	Set the vehicle flags of the SUT, overwriting its current flags

9.5.2.1 SetInitialState

This request is used to set the SUT in initial condition. The initial condition defines the initial state in which the SUT must be to carry out each test case.

9.5.2.2 **StartBsmT**x

This request is used to start BSM transmission on the SUT. The *StartWSMTx* request is predefined in *TCI-wsm* module.

```
StartBsmTx ::= StartWsmTx (WITH COMPONENTS {
    psid (WITH COMPONENTS {content (32)}),
    radio,
    repeatRate ABSENT,
    payload ABSENT
})
```

9.5.2.3 **StopBsmTx**

This request is used to stop BSM transmission on the SUT. The *StopWSMTx* request is predefined in *TCI-wsm* module.

```
StopBsmTx ::= StopWsmTx (WITH COMPONENTS {
    psid (WITH COMPONENTS {content (32)})
})
```

9.5.2.4 EnableCongestionMitigation

This request sets the congestion mitigation of the SUT.

EnableCongestionMitigation ::= BOOLEAN

9.5.2.5 SetTemporaryId

This request sets the temporary ID of the SUT. The definition of data units is adopted from [10].

```
SetTemporaryId ::= OCTET STRING (SIZE(4))
```

9.5.2.6 SetTransmissionState

This request is used to set the vehicle transmission state of the SUT.

```
SetTransmissionState ::= ENUMERATED {
   neutral
                    (0),
   park
                    (1),
   forwardGears
                    (2),
   reverseGears
                    (3),
    reserved1
                     (4),
                    (5),
    reserved2
   reserved3
                    (6),
   unavailable
                    (7)
}
```

Parameters	Explanation	
neutral	The vehicle is set to neutral gear	
park	The vehicle is set to park	
forwardGears	The vehicle is set to forward gear	
reverseGears	The vehicle is set to reverse gear	
reserved1	Reserved for additional gears	
reserved2	Reserved for additional gears	
reserved3	Reserved for additional gears	
unavailable	Vehicle transmission is set to unavailable	

9.5.2.7 SetSteeringWheelAngle

The request is used to set the steering wheel angle of the SUT.

```
SetSteeringWheelAngle ::= INTEGER (-126... 127)
```

9.5.2.8 SetBrakeSystemStatus

The request is used to set the status of the brake system of the SUT.

```
leftFront
                     (1),
        leftRear
                     (2),
        rightFront
                     (3),
        rightRear
                     (4)
    tractionControlStatus
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
        on
                     (2),
        engaged
                     (3)
    },
    antiLockBrakeStatus
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
                     (2),
        on
        engaged
                     (3)
    stabilityControlStatus
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
                     (2),
        on
                     (3)
        engaged
    brakeBoostApplied
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
        on
                     (2)
    },
    auxiliaryBrakeStatus
                               ENUMERATED {
        unavailable (0),
        off
                     (1),
                     (2),
        on
        reserved
                     (3)
    }
9.5.2.9 SetVehicleSize
The request sets the vehicle size in the SUT.
SetVehicleSize ::= SEQUENCE{
    vehicleWidth
                      INTEGER(0 .. 1023),
    vehicleLength
                      INTEGER(0 .. 4095)
9.5.2.10 SetExteriorLights
The request sets the exterior lights in the SUT.
SetExteriorLights ::= BIT STRING
{
   lowBeamHeadlightsOn
   highBeamHeadlightsOn
                               (1),
   leftTurnSignalOn
                               (2),
   rightTurnSignalOn
                               (3),
   hazardSignalOn
                               (4),
   automaticLightControlOn
                               (5),
   daytimeRunningLightsOn
                               (6),
   fogLightOn
                               (7),
   parkingLightsOn
                               (8)
}
9.5.2.11 SetVehicleEventFlags
SetVehicleEventFlags ::= BIT STRING {
    eventHazardLights
                                      (0),
    eventStopLineViolation
                                      (1),
```

Copyright © 2021 OmniAir Consortium, Inc. All rights reserved. May not be reproduced without permission. The latest version of this document is available upon request to OmniAir. Comments on this document

```
eventABSactivated
                                     (2),
    eventTractionControlLoss
                                     (3),
   eventStabilityControlActivated
                                     (4),
   eventHazardousMaterials
                                     (5),
   eventReserved1
                                     (6),
    eventHardBraking
                                     (7),
   eventLightsChanged
                                     (8),
   eventWipersChanged
                                     (9),
    eventFlatTire
                                     (10),
    eventDisabledVehicle
                                     (11),
   eventAirBagDeployment
                                     (12)
}
```

9.5.2.12 StartBsmRx

This request starts BSM reception on the SUT. The StartWsmRx request is predefined in TCI-wsm module

```
StartBsmRx ::= StartWsmRx (WITH COMPONENTS {
   psid (WITH COMPONENTS { content (32)}),
   radio ( WITH COMPONENTS { ..., antenna ABSENT }),
   channelIdentifier ABSENT,
   timeSlot ABSENT,
   eventHandling
   })
```

9.5.2.13 StopBsmRx

This request starts BSM reception on the SUT. The StopWsmRx request is predefined in TCI-wsm module

```
StopBsmRx ::= StopWsmRx (WITH COMPONENTS {
         psid (WITH COMPONENTS {content (32)})
})
```

9.4.2 Response messages

The *Response* message is sent in response to the *Request. Response* is defined in the *TCI-CommonTypes* module.

9.4.3 Indication messages

The *Indication* message is sent from the SUT to the TS indicating an occurrence of a predefined event. *TCI-29451* defines *D2945Indication* as follows:

where Indication is defined in the TCI-indication module.

9.4.4 ResponseInfo messages

TCI-29451 does not use ResponseInfo messages.

9.4.5 Exception messages

Exception is a message sent from the SUT to TS. It is used to report exception conditions to the TS. *Exception* is defined in the *TCI-CommonTypes* module.

9.6 TCISutControl frame

9.6.1 Supported use cases

Use cases (UC) supported by TCI-SutControl are listed in Table 34.

Table 34 Use cases supported by TCI16093

110 #	Table 34 Use cases		
UC#	Use case objective	Flow Direction	Message Sequence
1	Request the SUT to shut down.	TS -> SUT	request.Shutdown
		SUT -> TS	response
2	Request the SUT to restart.	TS -> SUT	request.Restart
		SUT -> TS	response
3	Request SUT status to accept new	TS -> SUT	request.RequestSutAvailability
	commands.	SUT -> TS	response
4	Request SUT version information	TS → SUT	request.RequestSutInfo
		SUT → TS	responseInfo
5	Provide information about Test ID to the	TS → SUT	request.SutStatus
	SUT	SUT → TS	response
6	TS Sets Test ID	TS → SUT	request.setTestId
7	Request enable/disable GPS input of the	TS → SUT	request.enableGpsInput
	SUT	SUT → TS	response
8	Set the latitude of the SUT	TS → SUT	request.setLatitude
		SUT → TS	response
9	Set the longitude of the SUT	TS → SUT	request.setLongitude
		SUT → TS	response
10	Set the elevation of the SUT	TS → SUT	request.setElevation
		SUT → TS	response
11	Set the positional accuracy of the SUT	TS → SUT	request.setPositionalAccuracy
		SUT → TS	response
12	Set the speed of the SUT	TS → SUT	request.setSpeed
		SUT → TS	response
13	Set the heading of the SUT	TS → SUT	request.setHeading
		SUT → TS	response
14	Set the 4-way acceleration of the SUT	TS → SUT	request.setAccelerationSet4Way
		SUT → TS	response
	<u>.</u>		

15	Set the GPS time of the SUT	TS → SUT	request.setGpsTime
		sut → ts	response

9.6.2 Request messages

Table 35 lists all supported Request messages in the TCI-SutControl module.

Table 35 Listing of Request messages

Request Messages	MsgID	Explanation
Shutdown	1	Request to shut the SUT down.
Restart	2	Request to restart the SUT.
RequestSutAvailability	3	Request SUT availability status.
RequestSutInfo	4	Request information about SUT version
SetTestId	5	Send Test ID information to the SUT
EnableGpsInput	6	Enable/Disable GPS on the SUT
SetLatitude	7	Set the latitude of the SUT
SetLongitude	8	Set the longitude of the SUT
SetElevation	9	Set the elevation of the SUT
SetPositionalAccuracy	10	Set the positional accuracy of the SUT
SetSpeed	11	Set the speed of the SUT
SetHeading	12	Set the heading of the SUT
SetAccelerationSet4Way	13	Set the 4-way acceleration of the SUT
SetGpsTime	14	Set the GPS time of the SUT
RequestSutStatus	15	Request the Status of the SUT

9.6.2.1 Shutdown

This request is used to command the SUT to shut down and power off. If complete power off is not supported, the device must enter a state where the CPU is halted, and power draw is minimized.

9.6.2.2 Restart

This request is used to command the SUT to restart. The "restart" is meant to be interpreted as it is used in defining certain requirements in SAE J2945/1 [9]. Therefore, this request must trigger the device to perform certain activities which must occur upon the device restart, i.e., change security certificates, change MAC address to a new random value, etc.

9.6.2.3 RequestSutAvailability

This request is used to poll the availability of the SUT after a preceding restart. If the SUT is ready to receive commands from the TS, it responds back to the TS with a Response message and ResultCode = rcSuccess. The SUT is not ready if it does not respond within the response timeout of **50ms** or includes the ResultCode = rcFailure.

9.6.2.4 RequestSutInfo

This request is used to obtain version information from the SUT. This request must be answered with the <u>SutResponseInfo</u> message. The version information can be referenced in test reports and other test documentation.

9.6.2.5 SetTestId

This request is used to send a Test identifier to the SUT. The Test ID is a text string e.g., "TP-16093-WSMMST-BV-01" which the SUT can reference in its own log file. This message could be used for identifying tests in all TCI frames, i.e., TCI16093, TCI80211, TCI16094, etc.

There is no time restriction when the TS can send this message. Though, it is recommended that the *SetTestId* message is sent at the beginning of each individual test, after the *request.SetInitialState --> response* sequence is completed.

9.6.2.6 EnableGpsInput

This request sets GPS Input to true or false. If it is set to *True*, the SUT will use its own GPS data input to retrieve positioning data. If it is set to *False*, the SUT will retrieve all positioning related data via TCI messages SetLatitude, SetLongitude, SetElevation, SetPositionalAccuracy, SetSpeed, SetHeading, SetAccelerationSet4Way, and SetGpsTime.

Note that in case not all data were provided via TCI, the SUT should use previously stored values or initial values.

EnableGpsInput ::= BOOLEAN

9.6.2.7 SetLatitude

This request sets the latitude of the position of the SUT.

Note that this command can only be processed if the GPS data input was set to *False* via the *EnableGpsInput* request.

SetLatitude ::= Latitude

9.6.2.8 SetLongitude

This request sets the longitude of the position of the SUT.

Note that this command can only be processed if the GPS data input was set to False via the EnableGpsInput request.

SetLongitude ::= Longitude

9.6.2.9 SetElevation

This request sets the elevation of the position of the SUT.

Note that this command can only be processed if the GPS data input was set to *False* via the *EnableGpsInput* request.

SetElevation ::= Elevation

9.6.2.10 SetPositionalAccuracy

This request sets the positional accuracy of the position of the SUT.

Note that this command can only be processed if the GPS data input was set to False via the EnableGpsInput request.

```
SetPositionalAccuracy ::= SEQUENCE{
   semiMajorAxisAccuracy INTEGER (0 .. 255),
   semiMinorAxisAccuracy INTEGER (0 .. 255),
   semiMajorAxisOrientation INTEGER (0 .. 65535)
}
```

9.6.2.11 SetSpeed

This request sets the current speed of the SUT.

Note that this command can only be processed if the GPS data input was set to *False* via the *EnableGpsInput* request.

```
SetSpeed ::= INTEGER (0 .. 8191)
```

9.6.2.12 **SetHeading**

This request sets the heading of the SUT.

Note that this command can only be processed if the GPS data input was set to *False* via the *EnableGpsInput* request.

```
SetHeading ::= INTEGER (0 .. 28800)
```

9.6.2.13 SetAccelerationSet4Way

This request sets the 4-way acceleration of the SUT.

Note that this command can only be processed if the GPS data input was set to *False* via the *EnableGpsInput* request.

```
SetAccelerationSet4Way ::= SEQUENCE {
   longAcceleration INTEGER (-2000 .. 2001),
   latAcceleration INTEGER (-2000 .. 2001),
   verticalAcceleration INTEGER (-127 .. 127),
   yawRate INTEGER (-32767 .. 32767)
}
```

9.6.2.14 **SetGpsTime**

This request sets the GPS time of the SUT.

Note that this command can only be processed if the GPS data input was set to *False* via the *EnableGpsInput* request.

```
SetGpsTime ::= Time64
```

9.6.3 Response messages

The *Response* message is sent in response to the *Request. Response* is defined in the *TCI-CommonTypes* module.

9.6.4 ResponseInfo messages

This message is used to retrieve version information from the SUT.

TCI-SutControl defines SutResponseInfo as follows:

```
SutResponseInfo ::= ResponseInfo (WITH COMPONENTS {
   msgID,
   resultCode,
   info (WITH COMPONENTS {sutInfo}) OPTIONAL,
   exception OPTIONAL
  })
```

	Table 36	Responselnfo message
Parameters	Explanation	

msgID	Use the same MsgID from the corresponding <i>Request</i> message. MsgIDs are listed in the Table 35Table 31.	
resultCode	Success or Failure enumerated as 0 or 1, respectively.	
info	This parameter contains information requested from the SUT. If SUT detects an error which prevents it to report the requested information, then info parameter is omitted and instead the exception parameter is included.	
exception	This optional parameter is included if SUT must report exception explaining the possible details of the Failure result code. See details in 8.5.5	

The *SutResponseInfo* is derived from the *ResponseInfo* definition in the *TCI-responseInfo* module. Specific details for each type definition are listed in the ASN.1 specification referenced in Appendix A.

9.6.5 Exception messages

Exception is a message sent from the SUT to the TS. It is used to report exception conditions to the TS. *Exception* is defined in the *TCI-CommonTypes* module.

Appendix A: TCI protocol ASN.1 definition

This appendix contains listing of all data types defined in the ASN.1 for the TCI protocol. Data types are listed under the corresponding module name where they are defined.

The current TCI protocol ASN.1 definition file is posted in github at the following location:

https://github.com/OmniAirConsortium/TCIV3/tree/TCIv3/ASN1

TCIdispatch.asn

TCIMsg Frame

TCI16093DSRC.asn

TCI16093DSRC
Request
MESSAGE-ID-AND-TYPE
Dot3SetWsmTxInfo
Dot3StartWsmTx
Dot3StartWsmRx
Dot3StartWsaTxPerdiodic
Dot3Indication
Dot3ResponseInfo

TCI16093PC5.asn

TCI16093PC5
Request
MESSAGE-ID-AND-TYPE
SendATcommand
PC5SetWsmTxInfo
PC5StartWsaTxPerdiodic
SetFlowConfig
SetUeConfig
SendUeConfigXML

StartWsmTx StartWsmRx Pc5AddUserService Pc5Indication Pc5ResponseInfo

TCI16094.asn

TCI16094
Request
MESSAGE-ID-AND-TYPE
Dot4SetWsmTxInfo
Dot4StartWsmTx
Dot4Indication
Dot4ResponseInfo

TCI29451.asn TCI29451

Request
MESSAGE-ID-AND-TYPE
StartBsmTx
StopBsmTx
StartBsmRx
StopBsmRx
EnableCongestionMitigation
SetTemporaryID
SetTransmissionState
SetSteeringWheelAngle
SetBrakeSystemStatus
SetVehicleSize
SetVehcileEventFlags
SetExteriorLights

TCI31611.asn

D2945Indication

TCI31611 Request MESSAGE-ID-AND-TYPE StartBsmTx StopBsmTxStartBsmRx StopBsmRx EnableCongestionMitigation SetTemporaryID SetTransmissionState SetSteeringWheelAngle SetBrakeSystemStatus SetVehicleSize SetVehcileEventFlags SetExteriorLights D31611Indication

TCI80211.asn

TCI80211
Request
MESSAGE-ID-AND-TYPE
Dot11SetWsmTxInfo
Dot11StartWsmTx
Dot11Indication

TCIEventHandling.asn

EventHandling

RxFlag

EventFlag

SecurityFlag

EventParamsChoice

TCIindication.asn

Indication

Event

EventParams

Pdu

ServiceParameters

WsmParameters

IpParameters

RadioParameters

SecResultParams

TCIip.asn

AddTxProfile

DelTxProfile

GetIPv6InterfaceInfo

SetIPv6Address

IPv6TxRecord

StartIPv6Tx

StopIPv6Tx

StartIPv6Ping

StopIPv6Ping

IPv6RxRecord

StartIPv6Rx

StopIPv6Rx

TCIresponseInfo.asn

ResponseInfo

InfoContent

Ipv6InterfaceInfo

SutInfo

 ${\sf SutStatus}$

VersionInfoBlock

ATcmdInfo

PacketCount

TCISutControl.asn

TCISutControl

MESSAGE-ID-AND-TYPE

Request

MessageTypes

SetTestId

Shutdown

Restart

RequestSuutAvailability

 ${\tt RequestSutInfo}$

RequestSutStatus

SutResponseInfo

EnableGpsInput

SetGpsTime

SetLatitude

SetLongitude
SetElevation
SetPositionalAccuracy
SetSpeed
SetHeading
SetAccelerationSet4Way

TCIwsm.asn

setInitialState
SetWsmTxInfo
StartWsmTx

Star twomin

 ${\tt StopWsmTx}$

StartWsmRx

StopWsmRx

StartWsmTxPerdiodic

StopWsaTxPeriodic

AddWsaProviderService

ChangeWsaProviderService

delWsaProviderService

AddUserService

DelUserService

 ${\tt RequestWsmTxCount}$

RequestWsmTxCountReset

RequestWsmRxCount

RequestWsmRxCountReset

ContentType

SignerIdentifierType

SecurityPermission

SecurityContext

WaveElementsIncluded

UserRequestType

WsaType

ServiceInfo

ChannelOptions

TCICommonTypes.asn

PduData

PduType

dsrcMtu

ltev2xMtu

ipMtu

tciMtu

Opaque

HashedId8

Response

 ${\tt ResultCode}$

Exception

ExceptionType

Module

ExceptionId

ExceptionText

RadioInterface

Radio

Antenna

Timeslot

RCPI

UserPriority

Time64

Psid RepeatRate MsgID

WEE.ASN and WSA.ASN are imported from ASN.1 for IEEE 1609.3V3D6
wee.asn
EXT-TYPE
Extension
IPv6Address
MACaddress
TXpower80211
ChannelNumber80211
WSA.asn is modified to import
VarLengthNumber from TCI-CommonTypes
wsa.asn
AdvertiserIdentifier
ProviderServiceContext
ServiceInfoExts

Appendix B: TCIProxyCv2X

Appendix B of this document consist of guidance on how to implement the new TCI proxy for LTE V2X devices.

General:

ChannelInfos

RoutingAdvertisement

TCIProxyCv2X is a software running on a device with a Cv2X radio. It will handle all conversion of messages between two interfaces. (UDP message exchange on the ethernet interface and the wireless CV2X frames). The new TCI Proxy Code is present on the OmniAir Consortium github at the link below:

https://github.com/OmniAirConsortium/TCIV3/blob/TCIv3/ASN1/TCIproxyCv2x.asn

Proxy Setup:

There are two use cases for the Proxy device. Both are presented in table B-1.

Table B-1

Proxy Setup	Setup objectives	Flow Direction
1	Receive message from the TS	TS → SUT
2	Receive frames containing WSM/WSA messages from a SUT	SUT → TS

Supported use cases

Use cases (UC) supported by TCI-SutControl are listed in Table 34.

Table B-2 Use cases

UC#	Use case objective	Flow	Message Sequence		
		Direction			

1	Set Initial State.	TS -> PXY	Request.setInitialState
		PXY -> TS	response
2	SendUeConfigXML	TS -> PXY	request.sendUeConfigXML
		PXY -> SUT	response
		SUT -> PXY	response
3	SetFlowConfig	TS -> SUT	request.setFlowConfig
		SUT -> TS	response
4	SetUeConfig	TS → SUT	request.SetUeConfig
		SUT → TS	responseInfo
5	Send AT Command	TS → SUT	request.sendATcommand
		SUT → TS	response
6	StartUDPProxyTx	TS → SUT	Request.startUdpProxyTx
7	StartUdpProxyRx	TS → SUT	request.startUdpProxyRx
		SUT → TS	response
8	StopUdpProxy	TS → SUT	request.stopUdpProxy
		SUT → TS	response

Request messages

Table 35 lists all supported Request messages in the TCI-SutControl module.

Table B-3 Listing of Request messages

Table B-3 Listing of Nequest messages		
Request Messages	MsgID	
SetInitialState	1	
sendUeConfigXML	2	
setFlowConfig	3	
setUeConfig	4	
SendATcommand	5	
startUdpProxyTx	6	
StartUdpProxyRx	7	
StopUdpProxy	8	

StartUdpProxyTx

This request is used to start proxy transmission of packets. It is shown below:

StartUdpProxyRx

This request is used to start proxy reception of packets. It is shown below:

```
StartUdpProxyRx ::= SEQUENCE {
```

```
IpAddress,
destAddress
destPort
                        IpPort,
Radio
                        RadioInterface,
                        FlowIdentifier OPTIONAL
flowID
Pc5Mtu
                        INTEGER(0..65535) DEFAULT ltev2xMtu,
                        ENUMERATED {
proto
                           pacp (0) },
options
                        BIT STRING {
                             radiotap (0)} OPTIONAL,
}
```

StopUdpProxy

This request is used to stop proxy transmission/reception of packets. It is shown below:

PC5ProxyResponseInfo

This message is used to retrieve configuration information from the SUT. It is defined in the *TCI-responseInfo* module. A *ResponseInfo* message must be triggered within **50ms** after an SUT received a *Request* message. If no *ResponseInfo* is received, the TS will attempt to re-initialize the SUT or may request user assistance.

```
PC5ProxyResponseInfo ::= ResponseInfo (WITH COMPONENTS {
   msgID,
   resultCode,
   info (
     WITH COMPONENTS {atCmdInfo} |
     WITH COMPONENTS {pktCount} |
     WITH COMPONENTS {sutStatus} ) OPTIONAL,
   Exception OPTIONAL
}
```

IpAddress

This request sets the IPAddress of the proxy

```
IpAddress ::= UTF8String(SIZE(2..255))
```

IpPort

This request sets the IpPort of the Proxy

```
IpPort ::= INTEGER(0..65535)
```

Open Issues

TCIwsm.asn → ServiceInfos commented out

MessageType section in separate modules need to be more consistent

Test System	Interface	Specification	V3.0.0 (01/07/2021)
-------------	-----------	---------------	---------------------

■ End of Document ■