Clustering

Clustering/Class Discovery

• Aim: Partition data (e.g. genes or samples) into sub-groups (clusters), such that points of the same cluster are "more similar".

Example: How many clusters?

- One has to choose:
 - Clustering method
 - Similarity/distance measure
 - Evaluate clusters

Clustering in GenePattern

Representative based:

Find representatives/centroids of the dataset

- K-means
- Self Organizing Maps (SOM)
- Bottom-up (Agglomerative)
 Create an ordering of the data by closeness
 - Hierarchical clustering

• Clustering-like:

Reduce the data to a smaller number of dimensions containing the majority of the information content

- NMF (Non-Negative Matrix Factorization)
- PCA (Principal Components Analysis)

Hierarchical Clustering

Principal Components Analysis

K-means Clustering

- Initialize centroids at random positions
- Iterate:
 - Assign each data point to its closest centroid
 - Move centroids to center of assigned points
- Stop when converged
- Guaranteed to reach a local minimum

K = 3

Iteration = 2

Hierarchical Clustering

Distance between joined clusters

Hierarchical Clustering

Distance between joined clusters

Linkage is the method for linking clusters based on the distance between them.

Average Linkage: average distance between all pairs

Complete Linkage: farthest distance between all pairs

Single Linkage: closest distance between all pairs

Distance metrics: Pearson and Euclidean

Pearson correlation

- Measures linear dependence between genes
- "General purpose" distance metric
- Invariant to scaling
- Invariant to addition by a constant

Euclidean distance

- Measures standard distance between two points
- Sensitive to scaling
- Appropriate for row-normalized data

Reasonable Distance Measure

Euclidean distance on samples and genes on row-centered and normalized data.

Genes: Close -> Correlated

Samples: Similar profile giving Gene 1 and 2 a similar contribution to the distance between sample 1 and 5

Sample 1 Sample 5

Different Distance Measures

Different distance measures can reveal different structures

Normal/Tumor

Center and normalize rows
Close samples have similar profiles

Tissue type

Center and normalize rows
Center and normalize columns
Close samples have correlated profiles

Average Linkage

Leukemia samples and genes

Single and Complete Linkage

Leukemia samples and genes

Similarity/Distance Measures

Decide: which samples/genes should be clustered together

- Euclidean: the "ordinary" distance between two points that one would measure with a ruler, and is given by the Pythagorean formula
- Pearson correlation a parametric measure of the strength of linear dependence between two variables.
- Absolute Pearson correlation the absolute value of the Pearson correlation
- Spearman rank correlation a non-parametric measure of independence between two variables
- Uncentered correlation same as Pearson but assumes the mean is 0
- Absolute uncentered correlation the absolute value of the uncentered correlation
- Kendall's tau a non-parametric similarity measure used to measure the degree of correspondence between two rankings
- City-block/Manhattan the distance that would be traveled to get from one point to the other if a grid-like path is followed

Pitfalls in Clustering

Elongated clusters

Filament

Clusters of different sizes

Compact Separated Clusters

All methods work

Elongated Clusters

- Single linkage succeeds to partition
- Average linkage fails

Filament

Single linkage not robust

Filament with Point Removed

Single linkage not robust

Data Preparation

- Row Normalization
 - Makes genes expressed at different levels comparable to each other
- Filtering
 - Removes lowly-expressed (noisy) and invariant genes
- Log transform
 - Removes outliers by scaling distribution

Two-way Clustering

 Two independent cluster analyses on genes and samples used to reorder the data (two-way clustering):

2018-01-23-15_08_CCMI_Hierarchical Clustering – RNASeq