Training Workshop

Kinship Dynamics: Concept, Modelling, and Applications

Diego Alburez-Gutiérrez†

[†]Kinship Inequalities Research Group, Max Planck Institute for Demographic Research

National University of Singapore Singapore, February 5, 2025

MAX PLANCK INSTITUTE
FOR DEMOGRAPHIC
RESEARCH
FORSCHUNG

Introductions

Find someone you don't know and ask:

- 1 Their name
- Where they study/work
- 3 Favorite food
- 4 What is the demography of kinship?

Our plan for today

```
09:00 - 09:20 Introductions
09:20 - 10:00 Kinship demographic theory
10:00 - 10:30 Technical setup
10:30 - 11:00 Coffee break
11:00 - 12:00 The simple kinship model
12:00 - 13:30 Lunch
13:30 - 14:30 Two-sex time-variant kinship models
14:30 - 15:00 Coffee break
15:00 - 15:30 Projections of kin by education for Singapore
15:30 - 16:00 Conclusions and closing
```

This presentation

1. Introduction to kinship demography

2. Demographic models of kinship

3. Example: projections of kinship

Introduction to kinship demography

Consider a baby born in Singapore in 2020...

- How old were her grandparents when she was born, on average?
- 2 How many living children will she have on her 70th birthday?
- 3 How many grandchildren?

Kinship structure is a questions of societal interest¹

The Economist

^{1&#}x27;The age of the grandparent has arrived.' (Jan 2023). The Economist. https://www.economist.com/international/2023/01/12/the-age-of-the-grandparent-has-arrived

Definitions $(1)^2$

Kinship

Social relationships that bind individuals together through culturally shared definitions of relatedness on biological, legal, or normative grounds, ultimately constituting family systems.

Family

More narrow group of kin given special privilege which, among other things, organize the provision of support, socialization, and social placement of its members.

²Alburez-Gutierrez, D., Barban, N., Caswell, H., Kolk, M., Margolis, R., Smith-Greenaway, E., Song, X., Verdery, A., & Zagheni, E. (2022).Kinship, Demography, and Inequality: Review and Key Areas for Future Development. *SocArXiv.* https://doi.org/10.31235/osf.io/fk7x9

Definitions $(2)^3$

Kinship demography

The study of family networks, their structures and dynamics from a demographic perspective and using demographic methods.

³Alburez-Gutierrez, D., Barban, N., Caswell, H., Kolk, M., Margolis, R., Smith-Greenaway, E., Song, X., Verdery, A., & Zagheni, E. (2022).Kinship, Demography, and Inequality: Review and Key Areas for Future Development. *SocArXiv.* https://doi.org/10.31235/osf.io/fk7x9

Kinship as a demographic human universal

- 1 All humans are born
- All humans die
- 3 All humans are embedded in kinship structures⁴
- 4 No particular family configuration is universal or stable

 $^{^4}$ Caswell, H. (2019).The formal demography of kinship: A matrix formulation. Demographic Research, 41, 679–712 $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$ $_{\odot}$

Demographic models of kinship

What are kinship models?

- 1 Kinship is an emergent property of demographic systems
- Simplified representation of interaction between reproduction, survival (and more)
- 3 Can be formal (mathematical) or simulation-based (computational)

Formal models of kinship

Given a set of:

- age-specific fertility rates
- survival probabilities
- simplifying assumptions

The models produce:

- 1 Number of (living/dead) kin
- 2 Age distribution of relatives
- 3 From the point of view of an average member of the population ('Focal')

Focal: an average member of the population

Matrix kinship models

- 1 The relatives of Focal constitute a population
- 2 They can be modelled using traditional projection methods
- Matrix operations provide an efficient implementation

Kinship structure

Implementation: time-invariant, one-sex models⁵

The models are of the general form:

$$\underbrace{\mathbf{k}(x+1)}_{\text{age structure of kin at Focal's age } x+1} = \underbrace{\mathbf{U} \mathbf{k}(x)}_{\text{ageing and survival of existing kin}} + \underbrace{\left\{ \begin{array}{c} \mathbf{0} \\ \mathbf{F} \mathbf{k}^*(x) \end{array} \right.}_{\text{new kin members added to the population}}.$$

where:

- ▶ **U** a matrix with survival probabilities in the subdiagonal
- ▶ **F** a matrix with fertility rates in the first row

⁵Caswell, H. (2019).The formal demography of kinship: A matrix formulation. *Demographic Research*, 41, 679–712

Kinship structure

Age distributions of kin

Expected number of kin

Daughters

Daughters (a) are the result of the reproduction of Focal:

$$\underbrace{\mathbf{a}(x+1)}_{\text{age structure of daughters at Focal's age }x+1} = \underbrace{\mathbf{U}\,\mathbf{a}(x)}_{\text{ageing and survival of existing daughters}} + \underbrace{\mathbf{F}\,\mathbf{e}_x}_{\text{new daughters (subsidy)}} \tag{1}$$
$$a(0) = \mathbf{0}.$$

where:

- ▶ **U** is a matrix with survival probabilities in the subdiagonal
- F is a matrix with fertility rates in the first row
- ightharpoonup **F** \mathbf{e}_x is the subsidy vector
- e_x is the unit vector for age x
- ightharpoonup a(0) is the distribution of daughters at Focal's birth

Mothers

The population of mothers (d) of Focal consists of at most a single individual:

$$\underbrace{\mathbf{d}(x+1)}_{\text{age structure of mothers at Focal's age } x+1} = \underbrace{\mathbf{U} \, \mathbf{d}(x)}_{\text{ageing and survival of existing mothers}} + \underbrace{\mathbf{0}.}_{\text{new mothers (subsidy)}}$$
(2)

$$d(0) = \pi$$
.

where:

- \triangleright b(0) is the distribution of mothers at Focal's birth
- \blacktriangleright π is the distribution of ages of mothers in the population

Typology of formal kinship models

No	time	sex	state	reference
1	invariant	female	age	6
2	variant	female	age	7
3	invariant	two	age	8
4	invariant	female	multiple	9
5	variant	two	multiple	10

⁶Caswell, H. (2019).The formal demography of kinship: A matrix formulation. *Demographic Research*, *41*, 679–712

⁷Caswell, H., & Song, X. (2021). The formal demography of kinship. III. kinship dynamics with time-varying demographic rates. *Demographic Research*, 45, 517–546

⁸Caswell, H. (2022). The formal demography of kinship IV: Two-sex models and their approximations. *Demographic Research*, 47, 359–396

⁹Caswell, H. (2020). The formal demography of kinship II: Multistate models, parity, and sibship. *Demographic Research*, 42, 1097–1146

¹⁰Williams, I., Alburez-Gutierrez, D., Caswell, H., & Song, X. (2023).

Consider a baby born in Singapore in 2020...

- How old were her grandparents when she was born, on average?
- 2 How many living children will she have on her 70th birthday?
- 3 How many grandchildren?

DemoKin: matrix kinship models in R¹¹

- ► Time-(in)variant models
- One/two-sex models
- Multistate models
- Kin loss by cause of death
- ▶ More in the lab session...

¹¹Williams, I., Alburez-Gutierrez, D., Caswell, H., & Song, X. (2023).

Example: projections of kinship

Total number of kin (all kin combined) for a 5yo woman¹²

¹²Alburez-Gutierrez, D., Williams, I., & Caswell, H. (2023).Projections of human kinship for all countries. *Proceedings of the National Academy of Communication of the National Academy of Communication and C*

Number of living kin in China

Note: Kinship structure also can be studied empirically¹³

Our plan for today

```
09:00 - 09:20 Introductions
09:20 - 10:00 Kinship demographic theory
10:00 - 10:30 Technical setup
10:30 - 11:00 Coffee break
11:00 - 12:00 The simple kinship model
12:00 - 13:30 Lunch
13:30 - 14:30 Two-sex time-variant kinship models
14:30 - 15:00 Coffee break
15:00 - 15:30 Projections of kin by education for Singapore
15:30 - 16:00 Conclusions and closing
```