Group Members

AAMIR ALI (DS-016) / MUHAMMAD ZEESHAN (DS-027) / MUHAMMAD TALAL HUSSAIN (CCEE)

TTDS: Machine Learning project

```
In [129]: import pandas as pd
   import numpy as np
   import seaborn as sns
   import matplotlib as plt
   from matplotlib import pyplot
   import matplotlib.pyplot as plt

In [130]: data=pd.read_csv("D:/DataSets/diabetes.csv")

In [131]: data
```

Out[131]:

	preg	glucose	bp_diastolic	skin_triceps	insulin	bmi	pedigree	age	label
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

Dataset Extension

In [132]: # Generate synthetic data by doubling the 'label' values
data_synthetic = data.copy()

Concatenate the original and synthetic DataFrames
df = pd.concat([data, data_synthetic], ignore_index=True)

Display the extended DataFrame
df

Out[132]:

	preg	glucose	bp_diastolic	skin_triceps	insulin	bmi	pedigree	age	label
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
1531	10	101	76	48	180	32.9	0.171	63	0
1532	2	122	70	27	0	36.8	0.340	27	0
1533	5	121	72	23	112	26.2	0.245	30	0
1534	1	126	60	0	0	30.1	0.349	47	1
1535	1	93	70	31	0	30.4	0.315	23	0

1536 rows × 9 columns

In [133]: df.head(10)

Out[133]:

	preg	glucose	bp_diastolic	skin_triceps	insulin	bmi	pedigree	age	label
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
5	5	116	74	0	0	25.6	0.201	30	0
6	3	78	50	32	88	31.0	0.248	26	1
7	10	115	0	0	0	35.3	0.134	29	0
8	2	197	70	45	543	30.5	0.158	53	1
9	8	125	96	0	0	0.0	0.232	54	1

In [134]: df.tail()

Out[134]:

	preg	glucose	bp_diastolic	skin_triceps	insulin	bmi	pedigree	age	label
1531	10	101	76	48	180	32.9	0.171	63	0
1532	2	122	70	27	0	36.8	0.340	27	0
1533	5	121	72	23	112	26.2	0.245	30	0
1534	1	126	60	0	0	30.1	0.349	47	1
1535	1	93	70	31	0	30.4	0.315	23	0

Missing Values:

```
In [137]: df.isnull().sum()
Out[137]: preg
                           0
          glucose
                           0
          bp_diastolic
                           0
          skin_triceps
                           0
          insulin
                           0
          bmi
                           0
          pedigree
          age
                           0
          label
          dtype: int64
```

```
In [138]: |#check missing Values in the Dataset
          missing_data=df.isnull()
          for column in missing_data.columns.values.tolist():
              print(column)
              print(missing_data[column].value_counts())
              print("")
          preg
          False
                   1536
          Name: preg, dtype: int64
          glucose
                   1536
          False
          Name: glucose, dtype: int64
          bp_diastolic
          False
                   1536
          Name: bp_diastolic, dtype: int64
          skin triceps
          False
                   1536
          Name: skin_triceps, dtype: int64
          insulin
          False
                   1536
          Name: insulin, dtype: int64
          False
                   1536
          Name: bmi, dtype: int64
          pedigree
          False
                   1536
          Name: pedigree, dtype: int64
          age
          False
                   1536
          Name: age, dtype: int64
          label
          False
                   1536
          Name: label, dtype: int64
```

No missing values found in the dataset, therefore data doesn't need to be drop or replace.

Outliers Analysis

```
In [139]: def show_boxplot(df):
    plt.rcParams['figure.figsize'] = [14,6]
    sns.boxplot(data = df, orient="v")
    plt.title("Outliers Distribution", fontsize = 16)
    plt.ylabel("Range", fontweight = 'bold')
    plt.xlabel("Attributes", fontweight = 'bold')
    show_boxplot(df)
```


NOTE: Outliers completely removed, after function has been run two to three times.

```
In [145]: df=without_outliers
In [146]: # Data Formating
In [147]: df.dtypes
Out[147]: preg
                             int64
                             int64
          glucose
          bp diastolic
                             int64
          skin_triceps
                             int64
          insulin
                             int64
          bmi
                           float64
          pedigree
                           float64
          age
                             int64
          label
                             int64
          dtype: object
```

Exploratory Data Analysis (EDA)

Descriptive Satistics:

In [148]: df.describe().T

Out[148]:

	count	mean	std	min	25%	50%	75%	max
preg	1154.0	3.714038	3.220655	0.000	1.000	3.000	6.00	13.000
glucose	1154.0	115.873484	26.601090	44.000	97.000	112.000	130.00	187.000
bp_diastolic	1154.0	71.512998	10.927511	44.000	64.000	72.000	78.00	104.000
skin_triceps	1154.0	20.554593	15.202166	0.000	0.000	23.000	32.00	60.000
insulin	1154.0	63.875217	74.846904	0.000	0.000	42.000	115.00	285.000
bmi	1154.0	31.771577	6.290296	18.200	27.200	31.900	35.80	48.300
pedigree	1154.0	0.412315	0.226911	0.078	0.238	0.349	0.56	1.034
age	1154.0	31.386482	9.661649	21.000	24.000	28.000	38.00	59.000
label	1154.0	0.287695	0.452884	0.000	0.000	0.000	1.00	1.000

In [149]: df.info()

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1154 entries, 0 to 1535
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	preg	1154 non-null	int64
1	glucose	1154 non-null	int64
2	<pre>bp_diastolic</pre>	1154 non-null	int64
3	skin_triceps	1154 non-null	int64
4	insulin	1154 non-null	int64
5	bmi	1154 non-null	float64
6	pedigree	1154 non-null	float64
7	age	1154 non-null	int64
8	label	1154 non-null	int64
44	aa. £1aa+C4/2\	in+64(7)	

dtypes: float64(2), int64(7)

memory usage: 90.2 KB

In [150]: df.corr()

Out[150]:

	preg	glucose	bp_diastolic	skin_triceps	insulin	bmi	pedigree	age	label
preg	1.000000	0.138795	0.189098	-0.100705	-0.122938	0.032606	0.020097	0.631633	0.243163
glucose	0.138795	1.000000	0.226439	0.006170	0.245943	0.182561	0.053757	0.228683	0.471691
bp_diastolic	0.189098	0.226439	1.000000	0.021498	-0.047203	0.273685	0.008331	0.347694	0.155218
skin_triceps	-0.100705	0.006170	0.021498	1.000000	0.490409	0.370966	0.153382	-0.120126	0.028706
insulin	-0.122938	0.245943	-0.047203	0.490409	1.000000	0.184621	0.240362	-0.089042	0.093990
bmi	0.032606	0.182561	0.273685	0.370966	0.184621	1.000000	0.127087	0.100759	0.260131
pedigree	0.020097	0.053757	0.008331	0.153382	0.240362	0.127087	1.000000	0.025637	0.169632
age	0.631633	0.228683	0.347694	-0.120126	-0.089042	0.100759	0.025637	1.000000	0.304393
label	0.243163	0.471691	0.155218	0.028706	0.093990	0.260131	0.169632	0.304393	1.000000

```
In [151]: #Total size of the Rows of dataset:
    print("Total Rows of the dataset:", df.shape[0])

    #Total size of the Columns of dataset:
    print("Total Columns of the dataset:", df.shape[1])

    Total Rows of the dataset: 1154
    Total Columns of the dataset: 9

In [152]: #check label value count
    df.label.value_counts()

Out[152]: 0 822
    1 332
    Name: label, dtype: int64
```

Graphical Analysis

Boxplot

```
In [153]: # Box plots for numerical features
plt.figure(figsize=(15, 10))
    df.boxplot()
    plt.title('Box Plots for Numerical Features')
plt.show()
```


Featues Distribution

In [154]: # Distribution of numerical features
 df.hist(bins=20, figsize=(15, 10))
 plt.suptitle('Distribution of Numerical Features')
 plt.show()

HeatMap

```
In [155]:
             #get correlations of each features in dataset
             corrmat = df.corr()
             top_corr_features = corrmat.index
             plt.figure(figsize=(6,6))
             #plot heat map
             sns.heatmap(df[top_corr_features].corr(),annot=True,cmap="RdYlBu", annot_kws={"fontsize": 8});
                                              0.19
                                                            -0.12
                                                                                 0.63
                                                                                        0.24
                       preg
                                                      -0.1
                                              0.23
                                                            0.25
                                                                   0.18
                    glucose
                                                                                 0.23
                                                                                        0.47
                                                                                                       0.8
               bp_diastolic
                                0.19
                                       0.23
                                                           -0.047
                                                                   0.27
                                                                                 0.35
                                                                                                      - 0.6
               skin triceps
                                                            0.49
                                                                   0.37
                                                                                 -0.12
                     insulin
                                -0.12
                                       0.25
                                                     0.49
                                                                   0.18
                                                                          0.24
                                                                                -0.089
                                                                                                     - 0.4
                        bmi
                                       0.18
                                                     0.37
                                                            0.18
                                                                                        0.26
                                              0.27
                                                                                                      - 0.2
                  pedigree
                                       0.054 0.0083
                                                                                        0.17
                                                            0.24
                        age
                                0.63
                                       0.23
                                                     -0.12
                                                           -0.089
                                                                                        0.3
                                                                                                       0.0
                       label
                                0.24
                                       0.47
                                                                   0.26
                                                                          0.17
                                                                                 0.3
                                       glucose
                                                            insulin
                                                                   bmi
                                              bp_diastolic
                                                                          pedigree
                                                                                        abe
                                                     skin_triceps
```

Pair Plot

```
In [192]: import seaborn as sns
import matplotlib.pyplot as plt

# Assuming you have a DataFrame named df with a 'label' column

# Set the Seaborn dark theme
sns.set_theme(style="darkgrid")

# Create the pairplot with a dark color palette
sns.pairplot(df, hue='label', diag_kind='kde', palette='dark', plot_kws={'alpha': 0.5})

# Set the title
plt.suptitle('Pairplot of Features with Categorical Hue', y=1.02)

# Show the plot
plt.show()
```


Age vs Label Distribution

plt.show()

```
In [156]: # Distribution of categorical features
sns.countplot(x='age', data=df)
plt.title('Distribution of Age')
```



```
In [157]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          # Create separate DataFrames for Label 0 and Label 1
          label_0_data = df[df['label'] == 0]
          label_1_data = df[df['label'] == 1]
          # Plot histograms for age
          plt.figure(figsize=(10, 6))
          sns.histplot(label_0_data['age'], bins=30, kde=True, label='Label 0', color='blue')
          sns.histplot(label_1_data['age'], bins=30, kde=True, label='Label 1', color='orange')
          # Set plot labels and title
          plt.xlabel('Age')
          plt.ylabel('Frequency')
          plt.title('Histogram of Age for Label 0 and Label 1')
          # Show the Legend
          plt.legend()
          # Show the plot
          plt.show()
```


Data Train-Test split

```
In [160]: #Library Call for data split in two portion Train and Test:
          from sklearn.model selection import train test split
In [161]: #dataframe
          x=df[feature_cols] #feature
          #series
          y=df.label
          x_train, x_test, y_train, y_test = train_test_split(x, y, test_size =0.2, random_state=30)
In [162]: #Total size of the Training dataset:
          print("[XY Train] dataset Shape:", x train.shape)
          #Total size of the Testing dataset:
          print("[XY_Test] dataset Shape:", x_test.shape)
          [XY Train] dataset Shape: (923, 8)
          [XY_Test] dataset Shape: (231, 8)
In [163]: #Checking the number of 0's in Training portion of the Dataset:
          print("[Y Train] Total number of [0] in dataset :", len(y train[y train==0]))
          #Checking the number of 1's in Training portion of the Dataset:
          print("[Y_Train] Total number of [1] in dataset :", len(y_train[y_train==1]))
          [Y_Train] Total number of [0] in dataset : 651
          [Y Train] Total number of [1] in dataset : 272
In [164]: #Checking the number of 0's in Testing portion of the Dataset:
          print("[Y Test] Total number of [0] in dataset :", len(y test[y test==0]))
          #Checking the number of 1's in Testing portion of the Dataset:
          print("[Y_Test] Total number of [1] in dataset :", len(y_test[y_test==1]))
          [Y Test] Total number of [0] in dataset : 171
          [Y_Test] Total number of [1] in dataset : 60
```

Training-Testing Value Counts:

```
In [165]: # get total number of 0 in the training dataset
Trcount0 = y_train[y_train==0].count()

# get total number of 1 in the training dataset
Trcount1 = y_train[y_train==1].count()

# Plotting the bar chart
label = ['0', '1']
counts = [Trcount0, Trcount1]

plt.figure(figsize=(4,4))
plt.title('Counts of 0 and 1 in Training Dataset')
plt.bar(label, counts)

# Add annotations to the bars
for i, count in enumerate(counts):
    plt.text(i, count, str(count), ha='center', va='bottom')

plt.show()
```



```
In [166]: # get total number of 0 in the testing dataset
Trcount0 = y_test[y_test==0].count()

# get total number of 1 in the testing dataset
Trcount1 = y_test[y_test==1].count()

# Plotting the bar chart
label = ['0', '1']
counts = [Trcount0, Trcount1]

plt.figure(figsize=(4,4))
plt.title('Counts of 0 and 1 in Testing Dataset')
plt.bar(label, counts)

# Add annotations to the bars
for i, count in enumerate(counts):
    plt.text(i, count, str(count), ha='center', va='bottom')

plt.show()
```


PART 01:

KNeighbour Library call

```
In [167]: from sklearn.neighbors import KNeighborsClassifier
    clf_K= KNeighborsClassifier(n_neighbors=3)
# Train Classifer
    model_K = clf_K.fit(x_train, y_train)
#Predict the response for test dataset
    y_pred_K = clf_K.predict(x_test)
    y=pd.DataFrame({"Origional": y_test, "Predicted_K": y_pred_K})
    y.head()
```

Out[167]:

	Origional	Predicted_K
575	0	0
0	1	1
572	0	0
1284	1	1
611	1	1

Confusion Matrics of KNN

```
In [168]: # calculate accuracy
from sklearn import metrics

result_K = metrics.confusion_matrix(y_test, y_pred_K)
print("Confusion Matrix:")
print(result_K)

def plt1():
    import seaborn as sns; sns.set()
    plt.figure(figsize=(4,4))
    c_mtrx_K = pd.crosstab(y_test, y_pred_K, rownames=['Actual'], colnames=['Predicted'])
    sns.heatmap(c_mtrx_K, annot=True, fmt = '.3g')

plt1()
```

Confusion Matrix: [[140 31]

Accuracy Calculation of KNN

```
In [169]: #[row, column]
          #(Actual, Predict)
          TP = result_K[1, 1]
          TN = result_K[0, 0]
          FP = result K[0, 1]
          FN = result_K[1, 0]
          def EvClsMdl(res):
             print('Metrics computed from a confusion matrix')
             print("Accuracy:\t", metrics.accuracy_score(y_test, y_pred_K))
             print("Sensitivity:\t", metrics.recall_score(y_test, y_pred_K))
             print("Specificity:\t",TN / (TN + FP))
             print("Precision:\t", metrics.precision_score(y_test, y_pred_K))
             print("Classification Eerror:", 1 - metrics.accuracy_score(y_test, y_pred_K))
             print("False_Positive_Rate:", 1 - TN / (TN + FP))
              print('#############"")
          EvClsMdl(result_K)
```

PART 02:

Naive Bayes Lib Call

Out[170]:

	Origional	Predicted_N
575	0	0
0	1	1
572	0	0
1284	1	1
611	1	1

Confusion Matrics of Naive Bayes

```
In [171]: # calculate accuracy
          from sklearn import metrics
          result_N = metrics.confusion_matrix(y_test, y_pred_N)
          print("Confusion Matrix:")
          print(result_N)
          def plt1():
              import seaborn as sns; sns.set()
              plt.figure(figsize=(4,4))
              c_mtrx_N = pd.crosstab(y_test, y_pred_N, rownames=['Actual'], colnames=['Predicted'])
              sns.heatmap(c_mtrx_N, annot=True, fmt = '.3g')
          plt1()
          Confusion Matrix:
           [[143 28]
            [ 21 39]]
                                                        - 140
                                                        - 120
                         143
                                          28
              0
                                                        - 100
           Actual
                                                        - 80
                                                        - 60
                         21
                                          39
                          0
                                           1
                              Predicted
```

Accuracy Calculation of Naive Bayes

Metrics computed from a confusion matrix Accuracy: 0.787878787878788 Sensitivity: 0.65 Specificity: 0.8362573099415205 Precision: 0.582089552238806

PART 03:

Decision Tree Lib Call

```
In [173]: from sklearn.tree import DecisionTreeClassifier
    # Create Decision Tree classifer object
    dpth=4
    clf_D = DecisionTreeClassifier(criterion="entropy", max_depth=dpth)
    # Train Classifer
    model_D = clf_D.fit(x_train, y_train)
    y_pred_D = clf_D.predict(x_test)
    y=pd.DataFrame({"Origional": y_test, "Predicted_D": y_pred_D})
    y.head()
```

Out[173]:

	Origional	Predicted_D
575	0	0
0	1	1
572	0	0
1284	1	1
611	1	1

Confusion Matrics of Decision Tree

```
In [174]: # calculate accuracy
          from sklearn import metrics
          result_D = metrics.confusion_matrix(y_test, y_pred_D)
          print("Confusion Matrix:")
          print(result_D)
          def plt1():
              import seaborn as sns; sns.set()
              plt.figure(figsize=(4,4))
              c_mtrx_D = pd.crosstab(y_test, y_pred_D, rownames=['Actual'], colnames=['Predicted'])
              sns.heatmap(c_mtrx_D, annot=True, fmt = '.3g')
          plt1()
          Confusion Matrix:
          [[167
                 4]
           [ 40 20]]
                                                        - 160
                                                         140
                         167
              0
                                                        - 120
                                                       - 100
                                                        - 80
                                                        60
                         40
                                          20
                          0
                                          1
```

Accuracy Calculation of Decision Tree

Predicted

PART 04:

Random Forest Lib Call

```
In [176]: from sklearn.ensemble import RandomForestClassifier
    clf_R=RandomForestClassifier(n_estimators=3)
# Train Classifer
    model_R = clf_R.fit(x_train, y_train)
    y_pred_R = clf_R.predict(x_test)
    y=pd.DataFrame({"Origional": y_test, "Predicted_R": y_pred_R})
    y.head()
```

Out[176]:

	Origional	Predicted_R
575	0	0
0	1	1
572	0	0
1284	1	1
611	1	1

Confusion Matrics of Random Forest

```
In [177]: # calculate accuracy
          from sklearn import metrics
          result_R = metrics.confusion_matrix(y_test, y_pred_R)
          print("Confusion Matrix:")
          print(result_R)
          def plt1():
              import seaborn as sns; sns.set()
              plt.figure(figsize=(4,4))
              c_mtrx_R = pd.crosstab(y_test, y_pred_R, rownames=['Actual'], colnames=['Predicted'])
              sns.heatmap(c_mtrx_R, annot=True, fmt = '.3g')
          plt1()
          Confusion Matrix:
           [[165
                 6]
           [ 12 48]]
                                                        - 160
                                                         140
                         165
                                          6
              0
                                                        120
                                                        - 100
           Actual
                                                        - 80
                                                        - 60
                         12
                                          48
                          0
                                          1
                              Predicted
```

Accuracy Calculation of Random Forest

Accuracy: 0.922077922077922
Sensitivity: 0.8
Specificity: 0.9649122807017544
Precision: 0.888888888888888
Classification Eerror: 0.07792207792207795
False_Positive_Rate: 0.03508771929824561

Metrics computed from a confusion matrix

Model Evalution

```
In [179]: import pandas as pd
          from prettytable import PrettyTable
          from sklearn import metrics
          # Assuming you have stored predicted labels in y_pred_K, y_pred_N, y_pred_D, and y_pred_R
          # Create a list of model names
          model names = ['KNN', 'Naive Bayes', 'Decision Tree', 'Random Forest']
          # Initialize PrettyTable
          table = PrettyTable()
          table.field_names = ["Model", "Accuracy", "Sensitivity", "Specificity", "Precision", "Classifi
          # Function to add rows to the table
          def add_row(model_name, y_pred):
              accuracy = metrics.accuracy_score(y_test, y_pred)
              sensitivity = metrics.recall_score(y_test, y_pred)
              confusion_matrix = metrics.confusion_matrix(y_test, y_pred)
              specificity = confusion_matrix[0, 0] / (confusion_matrix[0, 0] + confusion_matrix[0, 1])
              precision = metrics.precision_score(y_test, y_pred)
              classification error = 1 - accuracy
              false positive rate = 1 - specificity
              table.add_row([model_name, round(accuracy, 3), round(sensitivity, 3), round(specificity, 3
                             round(precision, 3), round(classification_error, 3), round(false_positive_r
          # Add rows for each model
          add_row("KNN", y_pred_K)
          add_row("Naive Bayes", y_pred_N)
          add_row("Decision Tree", y_pred_D)
          add_row("Random Forest", y_pred_R)
          # Print the table
          table
```

Out[179]:

Model	Accuracy	Sensitivity	Specificity	Precision	Classification Error	False Positive Rate
KNN	0.753	0.567	0.819	0.523	0.247	0.181
Naive Bayes	0.788	0.65	0.836	0.582	0.212	0.164
Decision Tree	0.81	0.333	0.977	0.833	0.19	0.023
Random Forest	0.922	0.8	0.965	0.889	0.078	0.035

Confusion Matrixs:

```
In [180]: import matplotlib.pyplot as plt
             import seaborn as sns
             import pandas as pd
             from sklearn import metrics
             # Assuming you have stored confusion matrices in result K, result N, result D, and result R
             # Create DataFrames for confusion matrices
             confusion_df_K = pd.DataFrame(result_K, index=['Actual 0', 'Actual 1'], columns=['Predicted 0'
confusion_df_N = pd.DataFrame(result_N, index=['Actual 0', 'Actual 1'], columns=['Predicted 0'
confusion_df_D = pd.DataFrame(result_D, index=['Actual 0', 'Actual 1'], columns=['Predicted 0'
confusion_df_R = pd.DataFrame(result_R, index=['Actual 0', 'Actual 1'], columns=['Predicted 0'
             # Plot confusion matrices
             plt.figure(figsize=(15, 8))
             plt.subplot(2, 2, 1)
             sns.heatmap(confusion_df_K, annot=True, fmt='.0f', cmap='Reds', cbar=False)
             plt.title('Confusion Matrix - KNN')
             plt.subplot(2, 2, 2)
             sns.heatmap(confusion_df_N, annot=True, fmt='.0f', cmap='Greens', cbar=False)
             plt.title('Confusion Matrix - Naive Bayes')
             plt.subplot(2, 2, 3)
             sns.heatmap(confusion_df_D, annot=True, fmt='.0f', cmap='Blues', cbar=False)
             plt.title('Confusion Matrix - Decision Tree')
             plt.subplot(2, 2, 4)
             sns.heatmap(confusion_df_R, annot=True, fmt='.0f', cmap='Oranges', cbar=False)
             plt.title('Confusion Matrix - Random Forest')
             plt.tight_layout()
             plt.show()
```


Accuracies:

```
In [181]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          import pandas as pd
          # Assuming you have stored accuracy scores in a list
          accuracies = [
              metrics.accuracy_score(y_test, y_pred_K),
              metrics.accuracy_score(y_test, y_pred_N),
              metrics.accuracy_score(y_test, y_pred_D),
              metrics.accuracy_score(y_test, y_pred_R)
          ]
          # Create a DataFrame for better visualization
          model_names = ['KNN', 'Naive Bayes', 'Decision Tree', 'Random Forest']
          accuracy_df = pd.DataFrame({'Model': model_names, 'Accuracy': accuracies})
          # Plot the accuracies
          plt.figure(figsize=(8, 5))
          sns.barplot(x='Model', y='Accuracy', data=accuracy_df, palette='viridis')
          plt.title('Comparison of Model Accuracies')
          plt.ylim(0, 1) # Set the y-axis limit to ensure proper scale
          plt.show()
```


Precision

```
In [182]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          import pandas as pd
          # Assuming you have stored precision scores in a list
          precisions = [
              metrics.precision_score(y_test, y_pred_K),
              metrics.precision_score(y_test, y_pred_N),
              metrics.precision_score(y_test, y_pred_D),
              metrics.precision_score(y_test, y_pred_R)
          ]
          # Create a DataFrame for better visualization
          model_names = ['KNN', 'Naive Bayes', 'Decision Tree', 'Random Forest']
          precision_df = pd.DataFrame({'Model': model_names, 'Precision': precisions})
          # Plot the precision scores
          plt.figure(figsize=(8, 5))
          sns.barplot(x='Model', y='Precision', data=precision_df, palette='muted')
          plt.title('Comparison of Model Precisions')
          plt.ylim(0, 1) # Set the y-axis limit to ensure proper scale
          plt.show()
```


Sensetivity(Recall):

```
In [191]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          import pandas as pd
          from sklearn import metrics
          # Assuming you have stored sensitivity scores in a list
          sensitivities = [
              metrics.recall_score(y_test, y_pred_K),
              metrics.recall_score(y_test, y_pred_N),
              metrics.recall_score(y_test, y_pred_D),
              metrics.recall_score(y_test, y_pred_R)
          ]
          # Create a DataFrame for better visualization
          model_names = ['KNN', 'Naive Bayes', 'Decision Tree', 'Random Forest']
          sensitivity_df = pd.DataFrame({'Model': model_names, 'Sensitivity': sensitivities})
          # Set a dark color palette
          sns.set_palette('dark')
          # Plot the sensitivity scores
          plt.figure(figsize=(8, 5))
          sns.barplot(x='Model', y='Sensitivity', data=sensitivity_df)
          plt.title('Comparison of Sensitivity (Recall) for Each Model')
          plt.ylim(0, 1) # Set the y-axis limit to ensure proper scale
          plt.show()
```


F1-Measure

```
In [190]:
          import matplotlib.pyplot as plt
          import seaborn as sns
          import pandas as pd
          from sklearn import metrics
          # Assuming you have stored F1 scores in a list
          f1_scores = [
              metrics.f1_score(y_test, y_pred_K),
              metrics.f1_score(y_test, y_pred_N),
              metrics.f1_score(y_test, y_pred_D),
              metrics.f1_score(y_test, y_pred_R)
          ]
          # Create a DataFrame for better visualization
          model_names = ['KNN', 'Naive Bayes', 'Decision Tree', 'Random Forest']
          f1_df = pd.DataFrame({'Model': model_names, 'F1 Score': f1_scores})
          # Set a dark color palette
          sns.set_palette('dark')
          # Plot the F1 scores
          plt.figure(figsize=(8, 5))
          sns.barplot(x='Model', y='F1 Score', data=f1_df)
          plt.title('Comparison of F1 Scores for Each Model')
          plt.ylim(0, 1) # Set the y-axis limit to ensure proper scale
          plt.show()
```


Support:

```
In [189]:
          import seaborn as sns
          import matplotlib.pyplot as plt
          # Assuming you have support values for each class from your models
          support_0 = [result_K[0, :].sum(), result_N[0, :].sum(), result_D[0, :].sum(), result_R[:, 0].
          support_1 = [result_K[1, :].sum(), result_N[1, :].sum(), result_D[1, :].sum(), result_R[:, 1].
          # Create a DataFrame for better visualization
          model_names = ['KNN', 'Naive Bayes', 'Decision Tree', 'Random Forest']
          support_df = pd.DataFrame({'Model': model_names, 'Class 0 Support': support_0, 'Class 1 Support
          # Plot the grouped bar chart
          sns.set_theme(style="whitegrid")
          plt.figure(figsize=(10, 6))
          barWidth = 0.35
          # Set position of bar on X axis
          r1 = range(len(model_names))
          r2 = [x + barWidth for x in r1]
          # Plot bars
          plt.bar(r1, support_df['Class 0 Support'], color='blue', width=barWidth, edgecolor='grey', lab
          plt.bar(r2, support_df['Class 1 Support'], color='orange', width=barWidth, edgecolor='grey', 1
          # Add Labels and title
          plt.xlabel('Model', fontweight='bold')
          plt.xticks([r + barWidth / 2 for r in range(len(model names))], model names)
          plt.ylabel('Support (Occurrences)')
          plt.title('Support for Each Class Across Models')
          plt.legend()
          # Show the plot
          plt.show()
```


In []: