#### 修士論文

土井 隆暢



# 目次

| 第1章                 | Introduction                | 3           |
|---------------------|-----------------------------|-------------|
| 第 2 章<br>2.1<br>2.2 | Experimental setup OKTAVIAN | 5<br>5<br>5 |
| 第 3 章               | Analysis                    | 7           |
| 第 4 章               | Conclusion and discussion   | 9           |
| 第 5 章               | Acknowledge                 | 11          |
| 参考文献                |                             | 13          |

# 図目次

| 2.1 | simbol |  |  | <br> |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ŗ |
|-----|--------|--|--|------|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|---|

# 第1章

# Introduction

機械学習は Keras [1] を使ってやるでー。

hoge

### 第2章

# Experimental setup

2.1 OKTAVIAN

2.1

- 2.2 検出器セットアップ
- 2.2.1 検出ガスの決定

 $\alpha$ 粒子のレンジで決めた。efficiency が一番大きくなるように。



 $\boxtimes 2.1$ : simbol

#### 2.2.2 ドリフトスピード

ドリフト速度の決定方法は 30 degree 方向に  $\alpha$  線源から  $\alpha$  を出して、その飛跡がデータ上でどう見えるかで決定する。ドリフト速度の時間依存性も見た。

### 第3章

# Analysis

#### 3.0.1 機械学習

これまでは Hough 変換を使って解析を行ってきたが、高速に処理をするためにニューラルネットワークを 用いた解析方法を開発した。

#### 3.0.2 解析

### 第4章

# Conclusion and discussion

# 第5章

# Acknowledge

# 参考文献

 $\left[1\right]$  François Chollet, et al. Keras, 2015.