# Diagrama do Sistema IoT

## Identificação do Projeto

• Nome do Projeto: Irrigação Automatizada para Viveiro de Mudas

• Nome do Aluno: Leandro Fraiha Paiva

• Data: 25/03/2025

## Descrição do Sistema IoT

Objetivo do Sistema

Desenvolver um sistema de irrigação automatizada para viveiros de mudas florestais, utilizando IoT para:

- Reduzir em 30% o desperdício de água
- Aumentar em 20% a taxa de sobrevivência das mudas
- Permitir monitoramento remoto das condições do solo e clima
  - Componentes Utilizados (Sensores, Atuadores, Controladores, etc.)

| Categoria     | Componentes                    | Especificações                 |
|---------------|--------------------------------|--------------------------------|
| Sensores      | FC-28 (Umidade do Solo)        | Saída analógica (0-1023)       |
|               | DHT22 (Temperatura/Umidade Ar) | Digital (GPIO)                 |
| Controlador   | ESP32                          | Wi-Fi integrado, 12 pinos GPIO |
| Atuadores     | Válvula Solenoide              | 12V, controle via relé         |
|               | Bomba de Água                  | 12V, vazão ajustável           |
| Conectividade | Módulo Wi-Fi (ESP32)           | Protocolo MQTT                 |
| Energia       | Fonte 12V                      | Alimentação para atuadores     |
|               | Regulador 5V/3.3V              | Para ESP32 e sensores          |
|               |                                |                                |

#### • Plataforma de Armazenamento e Análise de Dados

| Plataforma                    | Função                                                                                                                     | Tecnologias<br>Integradas     |
|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| AWS IoT Core                  | <ul> <li>- Armazenamento em tempo real</li> <li>- Processamento de regras (ex.: alertas de<br/>umidade crítica)</li> </ul> | MQTT, Lambda,<br>DynamoDB     |
| Firebase Realtime<br>Database | - Backup de dados<br>- Visualização simplificada para usuários                                                             | HTTP/HTTPS, API REST          |
| MySQL Local                   | - Armazenamento redundante<br>- Acesso offline em áreas rurais sem internet                                                | Conexão via<br>ESP32/Ethernet |

## Arquitetura do Sistema IoT (Diagrama)





Imagem ilustrativa do diagrama criada por inteligência artificial.

#### Fluxo de Funcionamento

- Captação de Dados: sensores coletam umidade do solo (FC-28) e temperatura/umidade relativa (DHT22) a cada 5 minutos.
- 2. Processamento: ESP32 compara os dados com limites pré-definidos (ex.: umidade < 50%).
- 3. Atuação: se necessário, aciona válvula/bomba via relé (GPIO23/GPIO22).
- 4. Armazenamento: dados são enviados para AWS IoT Core e MySQL local via Wi-Fi.
- 5. Monitoramento: dashboard (Node-RED) exibe gráficos em tempo real e histórico.

#### Integração com Plataformas de Dados

| Plataforma   | Função                           | Tecnologia Utilizada   |
|--------------|----------------------------------|------------------------|
| AWS IoT Core | Armazenamento e análise de dados | HTTP/HTTPS, MQTT       |
| MySQL Local  | Backup offline                   | Conexão Wi-Fi/Ethernet |
| Node-RED     | Dashboard interativo             | API REST               |

### Exemplo de Integração:

DHT22 → ESP32 → MQTT → AWS IoT (Análise de tendências climáticas).

#### Conclusão

O sistema proposto demonstra ser viável técnica e economicamente, com:

- Redução de custos: Menor desperdício de água e energia.
- Escalabilidade: Pode ser expandido para mais sensores/cultivos.
- Sustentabilidade: Alinhado com práticas agrícolas eficientes.

## **Melhorias Futuras**:

- Adicionar painel solar para autonomia energética.
- Integrar IA para previsão de demanda hídrica.