

QHACK | HACKATHON

Self-driving car based on hybrid quantum-classical neural networks

Team: DK02

Denis Katic

denis.katic@ait.ac.at

INTRODUCTION

INTRODUCTION | USE CASE

- Goal:
 - We want a self-driving car that can drive without human interaction
 - It should master the track without a car accident
- Track

INTRODUCTION | ENVIRONMENT

- The game is based on:
 - Unreal Engine
 - AirSim
 - Nvidia's <u>end-to-end learning for</u>
 - self-driving cars paper
 - Siemens / Austrian Institute of Technology
 - artificial intelligence workflow demo
 - including explainability
- Code:
 - Pennylane
 - TensorFlow / Keras

APPROACH

APPROACH | CLASSICAL NEURAL NETWORKS

• Output: steering angle

APPROACH | CLASSICAL NEURAL NETWORKS

- train model based on 5624 images
- Fix convolutional neural network (CNN) layer weights after training for transfer learning
- Used as a benchmark model for comparison
- Evaluation:

- · grey: user steering angle
- blue: (AI) predicted steering angle

- 6 different variational quantum circuits
 - different amount of qubits
- Training
 - 100 training epochs
 - Keras Adam optimizer
 - Keras loss function: mean squared error
 - each model architecture was created four times and trained on two different hardware
 - tested against 27 test images and compared with the classical model

quantum circuit type 1

quantum circuit type 3

Input: Pennylane AngleEmbedding function

26.02.2021 Different to type 3 11

TEST RESULTS

quantum circuit type 3

Epoch 100 Epoch 75

Model comparison based on epochs, as the simulation results are very different compared to the test results.

26.02.2021 • grey: user steering angle

• blue: (AI) predicted steering angle

Classic steering

quantum circuit type 4

Hybrid steering Classic steering

Hybrid steering

• blue: (AI) predicted steering angle

Classic steering

quantum circuit type 5

Classic steering

Hardware 1

Hybrid steering

Hardware 2

Model comparison based on different hardware, as the training data were randomly mixed and the simulation results are the same.

Hybrid steering

• grey: user steering angle

• blue: (AI) predicted steering angle

quantum circuit type 6

Hybrid steering Classic steering

Hybrid steering Classic steering

- grey: user steering angle
- blue: (AI) predicted steering angle

AUSTRIAN INSTITUTE OF TECHNOLOGY

RESULT | HYBRID QUANTUM-CLASSICAL NEURAL NETWORKS

- Test results
 - All 6 quantum circuit types show similar results
- Open questions:
 - How much influence does a quantum circuit and it's configuration have in a hybrid approach?
 - How big is the influence of the previously trained weights?
 - Would the models differ more if they had to be completely retrained without transfer learning?

SIMULATION RESULTS

- The best hybrid models were used to compete against each other on a track
- If the car has an accident, the simulation will stop

This view is used for the prediction

Shadow issue

- Hybrid models
 - Type 1: epoch 86 validation loss 0.0009381
 - Type 2: epoch 79 validation loss 0.0010381
 - Type 3:
 - Epoch 75 validation loss 0.0015353
 - Epoch 100 validation loss 0.0011060
 - Type 4: epoch 94 validation loss 0.0012984
 - Type 5:
 - Epoch 85 validation loss 0.0006215
 - Epoch 94 validation loss 0.0004812
 - Type 6: epoch 97 validation loss 0.0006447

- The best hybrid model:
 - Type 5 (epoch 94) model: <u>https://github.com/DenisKatic/SelfDrivingQuantumHybrid/blob/main/documents/Quantum_hybrid_type_5_simulation.mp4</u>

- Results & Questions
 - Although the models had similar test results, the simulation results are different
 - A performance difference between type 1 and 2, although they have a similar circuit
 - Would further training epochs for complex quantum circuit models improve the results to such an extent that they would be comparable to type 5 models?
 - Do the complex models already have problems with the barren plateaus and can this be determined?

THANK YOU

