USTHB 14/01/2017

Faculté de Chimie SNV

EXAMEN FINAL DU PREMIER SEMESTRE

Exercice 1:(3pts)

1- Donner la constitution du noyau et indiquer le nombre d'électrons des atomes et ions suivants

$$^{40}_{18}Ar$$
 , $^{48}_{22}Ti$, $^{56}_{26}Fe^{3+}$ et $^{31}_{15}P^{3-}$

 $^{40}_{18}Ar$: Noyau : Protons = 18, Neutrons = 22 / Eléctros = 18

 ^{48}Ti : Noyau : Protons = 22, Neutrons = 26 / Eléctros = 22

 $_{26}^{56}Fe^{3+}$: Noyau: Protons = 26, Neutrons = 30 / Eléctros = 23

 $^{31}_{15}P^{3-}$: Noyau: Protons = 15, Neutrons = 16 / Eléctros = 18

2- Les nucléides ⁴⁰Ar et ³⁸Ar sont des isotopes de l'argon naturel (Ar). L'abondance relative x₁ de ⁴⁰Ar est de 99,600% et x₂ celle de ³⁸Ar est de 0,063%. Existe-t-il un troisième isotope? <u>Justifier.</u>

La somme des abondances relatives est donnée par la relation :

$$\sum_{i=1}^{n} x_i = 100 \%$$

$$x_1 + x_2 = 99,6\% + 0,063\% = 99,663\% < 100\%$$

Il existe un troisième isotope

3- Si oui, donner son abondance relative \mathbf{x}_3 et calculer sa masse atomique \mathbf{m}_3 . On donne les masses atomiques en uma : $\mathbf{m} (Ar_{naturel}) = 39,947$, $\mathbf{m}_1 (^{40}Ar) = 39,962$ et $\mathbf{m}_2 (^{38}Ar) = 37,963$.

$$x_3 = 100 - (x_1 + x_2) = 100 - 99,663 = 0,337\%$$

$$M = \sum_{i=1}^n m_i x_i / 100$$

$$\mathbf{M} = (\mathbf{m}_1 \mathbf{x}_1 + \mathbf{m}_2 \mathbf{x}_2 + \mathbf{m}_3 \mathbf{x}_3) / 100$$

$$m_3 = (100.M - m_1x_1 - m_2x_2) / x_3$$

$$m_3 = (100x39,947-39,962x99,6-37,963x0,063) / 0,337$$

$$m_3 = 35,885$$
 una

Exercice 2: (6,75 pts)

Soient les éléments du tableau périodique suivants : A, D, E et H, tel que :

- A⁺³ a la structure électronique du deuxième gaz rare.
- D appartient à la même période que 3Li et possède 7 électrons sur sa couche de valence.
- E est le deuxième alcalino-terreux.
- H comporte dans sa représentation de Lewis 3 électrons célibataires et un doublet libre d'électrons. Le nombre quantique principal de sa couche de valence est égal à 2.

1- Donner pour chacun des éléments A, D, E et H: la configuration électronique, le numéro atomique Z, le groupe ainsi que la période.

Elément	Configuration électronique	Z	Groupe	Période
A	$1s^22s^22p^6/3s^23p^1$	13	III _A	3
D	$1s^2/2s^22p^5$	9	VII _A	2
E	$1s^22s^22p^6/3s^2$	12	$\mathbf{II}_{\mathbf{A}}$	3
Н	$1s^2/2s^22p^3$	7	$\mathbf{V}_{\!\mathbf{A}}$	2

2- Quel est l'ion le plus stable que peut former chacun des éléments D, E et H? Justifier.

Elément	Ion stable		
D	$D + 1e - D - (1s^22s^22p^6)$		
E	$\mathbf{E} \longrightarrow \mathbf{E}^{2+} + 2\mathbf{e} - (1s^2 2s^2 2p^6)$		
Н	$H + 3e - H^{3-} (1s^22s^22p^6)$		

3- Donner les quatre nombres quantiques de l'électron de plus haute énergie de l'élément A.

 $A: 1s^2 2s^2 2p^6 / 3s^2 3p^1$

$$3p^1 \Rightarrow n = 3, l = 1, m = -1, s = 1/2$$

4- Attribuer, à chacun des éléments A, D, E et H, son électronégativité (eV) parmi les valeurs suivantes : 3,04 ; 3,98 ; 1,61 et 1,31. **Justifier**.

	II _A	$III_{\mathbf{A}}$	V _A	VII _A
2			H	D
3	E	A	->	

$$E.N(E) < E.N(A) < E.N(H) < E.N(D)$$

1,31

1,61

3,04

3,98

5- Quelle est la nature des liaisons A-D et D-E ? Justifier votre réponse.

Liaison	Nature de la liaison			
A-D	Liaison covalente (Ils appartiennent au même bloc)			
D-E	Liaison ionique (Grande ≠ d'électronégativité)			

Exercice 3 (6,75 pts)

Les éléments ₆Cet ₁₇Cl se combinent avec l'oxygène (₈0) pour former les composés suivants : COCl₂, CO₂ et Cl₂O.

1- Représenter les électrons de valence dans les cases quantiques.

 $_{6}C: 1s^{2}/2s^{2}2p^{2}$

 $_{17}Cl: 1s^22s^22p^6/3s^23p^5$

 $_{6}O: 1s^{2}/2s^{2}2p^{4}$

1

1

2- Compléter le tableau ci-dessous:

Composé	Structure de Lewis	AX _m E _n	Hybridation (atome central)	Géométrie
COCl ₂	(CI)	AX ₃	sp ²	Plan triangulaire
CO ₂	(o=c=o)	$\mathbf{AX_2}$	sp	Linéaire
Cl ₂ O	(Cl, (Cl)	$\mathbf{AX}_2\mathbf{E}_2$	sp ³	Angulaire

3- Représenter les moments dipolaires des molécules COCl₂ et CO₂. Déduire laquelle des deux molécules est apolaire ?

$$\overrightarrow{\mu'}_{C-Cl} = \overrightarrow{\mu}_{C-Cl} + \overrightarrow{\mu}_{C-Cl}$$

$$\overrightarrow{\mu}_{R} = \overrightarrow{\mu'}_{C-Cl} + \overrightarrow{\mu}_{C-O} \neq 0$$

Molécule polaire

Molécule apolaire

Molécule polaire