AIRLINE TICKET
PRICE PREDICTION
SYSTEM

a DSCI Project

Adit Ghorpade - 612210054 Srushti Deshmukh - 642302007



### Summary





## Introduction







- Airline prices vary due to factors like flight duration, no. of stops, airline, destination and date of travel.
- This project- A machine learning-based system, analyzes previous flight data and builds a predictive model to estimate airline ticket prices based on various flight parameters

# Key Steps



#### **Data Pre-processing**

Handling missing values, encoding categorical data, and detecting outliers.

#### **Feature Engineering**

Extracting and analyzing important factors affecting price.

#### **Exploratory Data Analysis**

Handling missing values, encoding categorical data, and detecting outliers.

#### **Evaluation & Prediction**

Testing on unseen data and measuring accuracy with R<sup>2</sup> score.

#### **Model Training**

Using RandomForestRegressor to train on flight data.

# Data Set Description



• Total Records: 10,683

• Total Columns: 11

**Airline** 

**Date of Journey** 

**Source** 

**Destination** 

Route

**Dep\_Time** 

**Arrival\_Time** 

**Duration** 

Total\_Stops

Additional\_info



### Data Set Features



### Date / Time

- Date\_of\_Journey
- Dep\_Time
- Arrival\_Time

### Categorical

- Airline
- Source
- Destination
- Total\_Stops
- Additional\_Info
- Routes

### Numerical

- Duration
- Price (Target Variable)

# Pre-processing





## Handling missing values

Remove or fill missing data using techniques like median



## **Extracting Useful Features**

Transform raw data into meaningful insights



## **Encoding Methods**

One-Hot Encoding
Target Mean Encoding
Label Encoding



## Outlier Detection

Identifying and handling extreme values using IQR

## Exploratory Data Analysis



Scatter Plots- Used to analyze the relationship between two numerical variables.



**Duration vs Price** 



Duration vs Price vs Total\_Stops

## Exploratory Data Analysis



Box Plot (Whisker Plot) - Shows the distribution of data and detects outliers.



Airline vs Price



**Outliers in Price** 

### Model Used



#### RandomForestRegressor Model-

- A powerful ensemble learning algorithm based on multiple decision trees.
- Reduces overfitting by averaging predictions from multiple trees.
- Handles non-linear relationships between features and the target variable.
- Works well with large datasets and high-dimensional data.

#### How It Works?

- 1. Creates multiple decision trees on different subsets of data.
- 2. Averages the predictions from all trees to improve accuracy.

### Performance Evaluation



- R<sup>2</sup> Score- Measures how well the model explains variance in the target variable.
- Mean Absolute Error (MAE)- Average of absolute differences between actual and predicted values.
- Mean Squared Error (MSE)- Penalizes larger errors more than smaller ones.
- Root Mean Squared Error (RMSE)- Square root of MSE, making it more interpretable.
- Mean Absolute Percentage Error (MAPE)- Expresses error as a percentage of actual values.

#### Visualization

Residual Plot (sns.distplot) helps check error distribution.

### Conclusion

- System accurately estimates ticket prices using machine learning.
- Project involved data preprocessing, feature extraction, EDA, model training, and evaluation.
- RandomForestRegressor was used to learn from previous flight data and predict prices.
- Performance validated using R<sup>2</sup> score, MAE, RMSE, ensuring reliable predictions.
- Key factors affecting prices: Number of stops, airline, destination.
- Therefore, helps travelers plan trips efficiently & assists airlines in optimizing pricing.