Assignment4

CS20Btech11035 -NYALAPOGULA MANASWINI

Download python code from

https://github.com/N-Manaswini23/assignment4/ tree/main/python%20codes

Download latex code from

https://github.com/N-Manaswini23/assignment4/ blob/main/assignment4.tex

GATE 2021 XE-A QUESTION 7(PG:9)

A person who speaks truth 3 out of 4 times, throws a fair dice with six faces and informs the outcome is 5. The probability that the outcome is really 5 is

SOLUTION

Let $X \in \{0, 1\}$ represent the random variable, where 0 represents person speaking false,1 represents person speaking truth.

Let $Y \in \{1, 2, 3, 4, 5, 6\}$ represent random variable, where 1, 2, 3, 4, 5, 6 represents person informs outcome of dice is 1, 2, 3, 4, 5, 6, respectively.

_		_
Event	definition	value
Pr(X=1)	Probability of person	$\frac{3}{4}$
	speaking truth	
Pr(X=0)	Probability of person	$\frac{1}{4}$
	speaking false	·
$\Pr\left(Y = 5 X = 1\right)$	Probability of person	
	informing outcome is 5	$\frac{1}{6}$
	if person speaks truth	
$\Pr\left(Y = 5 X = 0\right)$	Probability of person	
	informing outcome is 5	<u>5</u>
	if person speaks false	

TABLE 0: Table 1

From Baye's theorem

$$Pr(Y = 5) = Pr(Y = 5|X = 1) \times Pr(X = 1) + Pr(Y = 5|X = 0) \times Pr(X = 0) \quad (0.0.1)$$

Substiting values from table (0) in (0.0.1)

$$\Pr(Y=5) = \frac{8}{24} \tag{0.0.2}$$

$$Pr((X = 1)(Y = 5)) = Pr(Y = 5|X = 1)$$

$$\times \Pr\left(X = 1\right) \tag{0.0.3}$$

$$=\frac{3}{24}\tag{0.0.4}$$

We need to find Pr(X = 1|Y = 5)

$$Pr(X = 1|Y = 5) = \frac{Pr((X = 1)(Y = 5))}{Pr(Y = 5)}$$
 (0.0.5)
= $\frac{3}{8}$ (0.0.6)

$$=\frac{3}{8}$$
 (0.0.6)

... The desired probability that outcome is really 5 $=\frac{3}{8}=0.375$

