0.0.1 Marginal and Conditional Residuals

A marginal residual is the difference between the observed data and the estimated (marginal) mean, $r_{mi} = y_i - x'_0 \hat{b}$ A conditional residual is the difference between the observed data and the predicted value of the observation, $r_{ci} = y_i - x'_i \hat{b} - z'_i \hat{\gamma}$

In linear mixed effects models, diagnostic techniques may consider 'conditional' residuals. A conditional residual is the difference between an observed value y_i and the conditional predicted value \hat{y}_i .

$$epsilon_i = y_i - \hat{y}_i = y_i - (X_i \hat{bet}a + Z_i \hat{b}_i)$$

However, using conditional residuals for diagnostics presents difficulties, as they tend to be correlated and their variances may be different for different subgroups, which can lead to erroneous conclusions.

$$r_{mi} = x_i^T \hat{\beta} \tag{1}$$

0.0.2 Marginal Residuals

$$\hat{\beta} = (X^T R^{-1} X)^{-1} X^T R^{-1} Y$$
$$= BY$$

0.0.3 Marginal and Conditional Residuals

A marginal residual is the difference between the observed data and the estimated (marginal) mean, $r_{mi} = y_i - x'_0 \hat{b}$ A conditional residual is the difference between the observed data and the predicted value of the observation, $r_{ci} = y_i - x'_i \hat{b} - z'_i \hat{\gamma}$

In linear mixed effects models, diagnostic techniques may consider 'conditional' residuals. A conditional residual is the difference between an observed value y_i and the conditional predicted value \hat{y}_i .

$$epsilon_i = y_i - \hat{y}_i = y_i - (X_i \hat{beta} + Z_i \hat{b}_i)$$

However, using conditional residuals for diagnostics presents difficulties, as they tend to be correlated and their variances may be different for different subgroups, which can lead to erroneous conclusions.

$$r_{mi} = x_i^T \hat{\beta} \tag{2}$$

0.0.4 Marginal Residuals

$$\hat{\beta} = (X^T R^{-1} X)^{-1} X^T R^{-1} Y$$
$$= BY$$

Residuals

Residuals are used to examine model assumptions and to detect outliers and potentially influential data point. The raw residuals r_{mi} and r_{ci} are usually not well suited for these purposes.

- Conditional Residuals r_{ci}
- Marginal Residuals r_{mi}

•

Conditional Residuals

Marginal Residuals

Distinction From Linear Models

- The differences between perturbation and residual analysis in the linear model and the linear mixed model are connected to the important facts that b and b depend on the estimates of the covariance parameters, that b has the form of an (estimated) generalized least squares (GLS) estimator, and that is a random vector.
- In a mixed model, you can consider the data in a conditional and an unconditional sense. If you imagine a particular realization of the random effects, then you are considering the conditional distribution Y—
- If you are interested in quantities averaged over all possible values of the random effects, then you are interested in Y; this is called the marginal formulation. In a clinical trial, for example, you may be interested in drug efficacy for a particular patient. If random effects vary by patient, that is a conditional problem. If you are interested in the drug efficacy in the population of all patients, you are using a marginal formulation. Correspondingly, there will be conditional and marginal residuals, for example.

• The estimates of the fixed effects

- depend on the estimates of the covariance parameters. If you are interested in determining the influence of an observation on the analysis, you must determine whether this is influence on the fixed effects for a given value of the covariance parameters, influence on the covariance parameters, or influence on both.
- Mixed models are often used to analyze repeated measures and longitudinal data.
 The natural experimental or sampling unit in those studies is the entity that is repeatedly observed, rather than each individual repeated observation. For example, you may be analyzing monthly purchase records by customer.

- An influential data point is then not necessarily a single purchase. You are probably more interested in determining the influential customer. This requires that you can measure the influence of sets of observations on the analysis, not just influence of individual observations.
- The computation of case deletion diagnostics in the classical model is made simple by the fact that model. Such update formulas are available in the mixed model only if you assume that the covariance parameters are not affected by the removal of the observation in question. This is rarely a reasonable assumption.
- The application of well-known concepts in model-data diagnostics to the mixed model can produce results that are at first counter-intuitive, since our understanding is steeped in the ordinary least squares (OLS) framework. As a consequence, we need to revisit these important concepts, ask whether they are portable to the mixed model, and gain new appreciation for their changed properties. An important example is the ostensibly simple concept of leverage.
- The definition of leverage adopted by the MIXED procedure can, in some instances, produce negative values, which are mathematically impossible in OLS. Other measures that have been proposed may be non-negative, but trade other advantages. Another example are properties of residuals. While OLS residuals necessarily sum to zero in any model (with intercept), this not true of the residuals in many mixed models.

0.1 Residual diagnostics

For classical linear models, residual diagnostics are typically implemented as a plot of the observed residuals and the predicted values. A visual inspection for the presence of trends inform the analyst on the validity of distributional assumptions, and to detect outliers and influential observations.

0.1.1 Residuals diagnostics in mixed models

The marginal and conditional means in the linear mixed model are $E[Y] = X\beta$ and $E[Y|u] = X\beta + Zu$, respectively.

A residual is the difference between an observed quantity and its estimated or predicted value. In the mixed model you can distinguish marginal residuals r_m and conditional residuals r_c .

0.1.2 Marginal and Conditional Residuals

A marginal residual is the difference between the observed data and the estimated (marginal) mean, $r_{mi} = y_i - x_0'\hat{b}$ A conditional residual is the difference between the observed data and the predicted value of the observation, $r_{ci} = y_i - x_i'\hat{b} - z_i'\hat{\gamma}$

In linear mixed effects models, diagnostic techniques may consider 'conditional' residuals. A conditional residual is the difference between an observed value y_i and the conditional predicted value \hat{y}_i .

$$eps\hat{i}lon_i = y_i - \hat{y}_i = y_i - (X_ib\hat{e}ta + Z_i\hat{b}_i)$$

However, using conditional residuals for diagnostics presents difficulties, as they tend to be correlated and their variances may be different for different subgroups, which can lead to erroneous conclusions.

$$r_{mi} = x_i^T \hat{\beta} \tag{3}$$

0.1.3 Marginal Residuals

$$\hat{\beta} = (X^T R^{-1} X)^{-1} X^T R^{-1} Y$$
$$= BY$$

0.2 Conditional and Marginal Residuals

Conditional residuals include contributions from both fixed and random effects, whereas marginal residuals include contribution from only fixed effects.

Suppose the linear mixed-effects model line has an $n \times p$ fixed-effects design matrix \boldsymbol{X} and an $n \times q$ random-effects design matrix \boldsymbol{Z} .

Also, suppose the p-by-1 estimated fixed-effects vector is $\hat{\beta}$, and the q-by-1 estimated best linear unbiased predictor (BLUP) vector of random effects is \hat{b} . The fitted conditional response is

$$\hat{y}_{Cond} = X\hat{\beta} + Z\hat{b}$$

and the fitted marginal response is

$$\hat{y}_{Mar} = X\hat{\beta}$$

residuals can return three types of residuals:

- raw,
- Pearson, and
- standardized.

For any type, you can compute the conditional or the marginal residuals. For example, the conditional raw residual is

$$r_{Cond} = y - X\hat{\beta} - Z\hat{b}$$

and the marginal raw residual is

$$r_{Mar} = y - X\hat{\beta}$$

Cox and Snell (1968, JRSS-B): general definition of residuals for models with single source of variability Hilden-Minton (1995, PhD thesis UCLA), Verbeke and Lesaffre (1997, CSDA) or Pinheiro and Bates (2000, Springer): extension to define three types of residuals that accommodate the extra source of variability present in linear mixed models, namely:

- i) Marginal residuals,predictors of marginal errors,
- ii) Conditional residuals,

$$be = yX\hat{\beta}Zbb = \hat{\sigma}Q\hat{y}$$

, predictors of conditional errors

$$e = yE[y|b] = yX\beta Zb$$

iii) BLUP, Zbb, predictors of random effects,

$$Zb = E[y|b]E[y]$$

Marginal residuals

$$y - X\beta = Z\eta + \epsilon$$

- Should be mean 0, but may show grouping structure
- May not be homoskedastic.
- Good for checking fixed effects, just like linear regr.

Conditional residuals

$$y - X\beta - Z\eta = \epsilon$$

- Should be mean zero with no grouping structure
- Should be homoscedastic.
- Good for checking normality of outliers

Random effects

$$y - X\beta - \epsilon = Z\eta$$

- Should be mean zero with no grouping structure
- May not be be homoscedastic.

0.3 Residual diagnostics

For classical linear models, residual diagnostics are typically implemented as a plot of the observed residuals and the predicted values. A visual inspection for the presence of trends inform the analyst on the validity of distributional assumptions, and to detect outliers and influential observations.

0.3.1 Residuals diagnostics in mixed models

The marginal and conditional means in the linear mixed model are $E[Y] = X\beta$ and $E[Y|u] = X\beta + Zu$, respectively.

A residual is the difference between an observed quantity and its estimated or predicted value. In the mixed model you can distinguish marginal residuals r_m and conditional residuals r_c .

0.3.2 Marginal and Conditional Residuals

A marginal residual is the difference between the observed data and the estimated (marginal) mean, $r_{mi} = y_i - x_0'\hat{b}$ A conditional residual is the difference between the observed data and the predicted value of the observation, $r_{ci} = y_i - x_i'\hat{b} - z_i'\hat{\gamma}$

In linear mixed effects models, diagnostic techniques may consider 'conditional' residuals. A conditional residual is the difference between an observed value y_i and the conditional predicted value \hat{y}_i .

$$epsilon_i = y_i - \hat{y}_i = y_i - (X_i beta + Z_i \hat{b}_i)$$

However, using conditional residuals for diagnostics presents difficulties, as they tend to be correlated and their variances may be different for different subgroups, which can lead to erroneous conclusions.

$$r_{mi} = x_i^T \hat{\beta} \tag{4}$$

0.3.3 Marginal Residuals

$$\hat{\beta} = (X^T R^{-1} X)^{-1} X^T R^{-1} Y$$
$$= BY$$

0.4 Standardized and studentized residuals

To alleviate the problem caused by inconstant variance, the residuals are scaled (i.e. divided) by their standard deviations. This results in a 'standardized residual'. Because true standard deviations are frequently unknown, one can instead divide a residual by the estimated standard deviation to obtain the 'studentized residual.

0.4.1 Standardization

A random variable is said to be standardized if the difference from its mean is scaled by its standard deviation. The residuals above have mean zero but their variance is unknown, it depends on the true values of θ . Standardization is thus not possible in practice.

0.4.2 Studentization

Instead, you can compute studentized residuals by dividing a residual by an estimate of its standard deviation.

0.4.3 Internal and External Studentization

If that estimate is independent of the i-th observation, the process is termed 'external studentization'. This is usually accomplished by excluding the i-th observation when computing the estimate of its standard error. If the observation contributes to the standard error computation, the residual is said to be internally studentized.

Externally studentized residual require iterative influence analysis or a profiled residuals variance.

0.4.4 Computation

The computation of internally studentized residuals relies on the diagonal entries of $V(\hat{\theta})$ - $Q(\hat{\theta})$, where $Q(\hat{\theta})$ is computed as

$$\boldsymbol{Q}(\hat{\theta}) = \boldsymbol{X}(\boldsymbol{X}'\boldsymbol{Q}(\hat{\theta})^{-1}\boldsymbol{X})\boldsymbol{X}^{-1}$$

0.5 Covariance Parameters

The unknown variance elements are referred to as the covariance parameters and collected in the vector θ .

0.5.1 Confounded Residuals

Hilden-Minton (1995, PhD thesis, UCLA): residual is pure for a specific type of error if it depends only on the fixed components and on the error that it is supposed to predict Residuals that depend on other types of errors are called *confounded residuals*