Exam 22 October 2021

Discrete Mathematics

DSAI

Question 1:

ρ	9,		$ q\rangle = r$	$p=>(q, \Rightarrow)$	paq,	$(p \wedge q_{i}) = > r$	() = ()
11	++	TН	1	, ++	- -	, - -	77
T	(T, LT	T	T	T	FU	7	T
F		T	1	 	F	T	T
FF	ĻΨ	F	FT	T	H H	T+	T
F			十	Ť	F	十	

(Mence, the two statements are equivalent).

Question 2

Base case:
$$\sum_{i=1}^{1} (-1)^{i} i^{2} = (-1)^{1} \cdot 1^{2} = -1 = -1 \cdot 2 = (-1)^{1} \cdot 1 \cdot (1+1)$$

Inductive step: Let nEN.

Assume
$$\sum_{i=1}^{n} (-1)^{i} i^{2} = (-1)^{n} n (n+1)$$

Now,
$$\sum_{i=1}^{n+1} (-1)^i i^2 = \sum_{i=1}^{n} (-1)^i i^2 + (-1)^{n+1} (n+1)^2 = (-1)^n n (n+1) + (-1)^{n+1} (n+1)^2$$

$$= \frac{(-1)^{n} n (n+1)}{2} + \frac{2 \cdot (-1)^{n} \cdot (-1) \cdot (n+1) (n+1)}{2} = \frac{(-1)^{n} (n+1)}{2} (n+2 \cdot (-1) \cdot (n+1))$$

$$= \frac{(-1)^{n}(n+1)}{2} (n-2n-2) = \frac{(-1)^{n}(n+1)}{2} (-n-2) = \frac{(-1)^{n}(n+1)(-1)(n+2)}{2}$$

$$= (-1)^{n+1} (n+1)(n+2) = (-1)^{n+1} (n+1)((n+1)+1)$$

Question 3:

- ① False, consider $A = \{1, 2, 3, 4\}$, $B = \{2, 4\}$ and $C = \{3, 4\}$. Then $B \land C = \{4\} \leq \{1, 2, 3, 4\} = A$ and $(A \land B) \land (A \land C) = \{1, 3\} \land \{1, 2\} = \{1\} \neq \emptyset$.
- 6 True. Proof. Proof: Let $(x,y) \in (A \times B) \cup (x D)$. Then $(x,y) \in A \times B$ or $(x,y) \in C \times D$. So, $(x \in A)$ and $y \in B$ or $(x \in C)$ and $y \in D$. Distinguish between those two cases. Case 1: $x \in A$ and $y \in B$. Then, $x \in A \cup C$ and $y \in B \cup D$. As a result, $(x,y) \in (A \cup C) \times (B \cup D)$. Case 2: $x \in C$ and $y \in D$. Then, also $x \in A \cup C$ and $y \in B \cup D$. As a result, $(x,y) \in (A \cup C) \times (B \cup D)$.

Question 4:

(the subsets with cardinality o) * (1,2,1,1,3,1,2,3) (the subsets with cardinality 1) * (1,2,3) (the subsets with cardinality 2) (the subsets with cardinality 3)

Questions:

- $\begin{array}{c}
 \text{n=3} \\
 \text{k=6} \\
 \text{repetition is allowed} \\
 \text{order is important}
 \end{array}$
- 5 Since there are 6 elements in the domain and only 3 elements in the co-domain, it's not possible to have an invertible function.
- Since every grandchild gets at least 1 chardate bar, we can already give every grandchild a charalate bar. As a result, there are only 10 charalate bars left. To any of these charalate bars, we will assign a grandchild. n=10 (# grandchildren) k=10 (# charalate bars) repetition is allowed (a grandchild can get more than 1 chocolate bar) order is not important all charalate bars are identical) (n-1)+k=(19)=g2.370

Question 6:

- True.

 Proof: let xeIR.

 Distinguish between two cases: x +0 and x=0.

 * Case 1: If x +0, then take y=-1/x. (Note that y exists because x+0. Also note that yEIR because xEIR).

 As a result, x²y+2x = x².-1 + 2x = -x+2x = x /

 * Case 2: If x=0, then take (for example) y=1.

 Mence, x²y+2x=0².1+2.0=0=x./
- Then we read an ZEIN stach that $2^2 3 4^2 + 4^2 = 10 + 10 = 32$ Z<5. So, we need Z>6 and Z<5, because ZEIN)

 (because ZEIN)

Question 7:

- (a) Injective: let $x \in \mathbb{R} \setminus \mathbb{R}$
 - =) xy = 3x +2y -6 = xy -3y +2x -6 => sy = sx =) x = y

Surjective: let $y \in |R| / 1$.
Take x = 2+3y. Since $y \in |R| / 1$, we know $x \in R$. We also need $x \neq 3$.

Son use néed 2+3y + 3. Is that true? 2+3y + 3(y-1)? 2+3q + 3(y-3)?

Son we need
$$2+3y \neq 3$$
. Is that true? $2+3y \neq 3(y-1)$? $2+3y + 2 = 2+3y + 2(y-1) = 2+3$

6 fog is well-defined, because range $(g) \le co-domain(g) = \mathbb{R} = domain(f)$ go f is not well-defined, because (for example) $f(0) = -1 + 0^2 = -1 + 0 = -1 \approx 1 \text{N}$.

Question d:

- @ A\B = {1} $B_{\Lambda} = \{3,4\}$ $S_{0} = \{(1,3), (1,4)\}$ $A_{1} = \{(1,3), (1,4)\}$ $A_{1} = \{(1,3), (1,4)\}$.