Physical Computing

Final Presentation

Design Concept / Overall

스마트 유아용 침대

빛의 세기에 따른 차광효과

울음소리 들려오면 잔잔한 음악과 무드등

울음소리 들리면 프로세싱 알림과 모빌 원격 제어

User

어린 아이가 있는 가정

아이가 오랫동안 울게 내버려두면 나타나는 결과

부정적인 결과

불안

아이가 울 때 반응이 없으면 아이는 버려진 느낌과 불안한 느낌을 갖게 된다.

질병

우는 아이를 달래주지 않으면 아이의 자율신경계는 시간이 흐를수록 과민해져 자율신경계가 과민한 아이는 천식 등의 호흡기질환,소화기 장애, 근육 긴장, 두통, 만성피로 등의 질병에 걸리기 쉽다.

아이가 울 때 잘 달래준 결과

긍정적인 결과

스트레스 해소

부모가 아이의 울음에 관심을 기울여 주면 아이의 뇌에 효율적인 스트레스 반응시스템이 형성되어, 성장후에도 스트레스를 잘 견딜 수 있다.

안정감

부모가 우는 아이를 달래면 아이의 옥시토신의 분비를 자극하여 안정감을 느끼고 스트레스 호르몬이 낮아진다.

다른 가사일

직장인들의 재택근무

아이에게 온전히 집중할 수 없는 상황 발생

어린아이가 있는 청각장애를 가진 부모 아이의 울음에 즉각적인 반응이 어려움

UNIVERSAL DESIGN

Function

잔잔한 음악 재생

무드등 ON

아이 상태 알림

모빌 원격 제어

*프로세싱 화면을 통해 아이의 상태 알림

Function

Day

◎ 햇빛의 양에 따라 캡의 각도 조절

② 아이의 울음소리가 들리면 잔잔한 노래 재생

() 아이의 물음소리에 즉각적인 반응이 없을 시에는 프로세싱으로 아이 상태 알림

💮 보호자의 스마트폰으로 모빌 원격제어 가능

캡의 각도 조절 기능 OFF 아이의 울음소리가 들리면 무드등 ON 아이의 울음소리에 즉각적인 반응이 없을 시에는 프로세싱으로 아이 상태 알림

보호자의 스마트폰으로 모빌 원격제어

Night

Input & Output

Input

Output

조도 값

햇빛의 양에 따른 캡의 각도

일정 조도값 이상, 아이울음소리

잔잔한 노래소리

일정 조도값 이하, 아이울음소리

무드등 ON

아이 울음소리, 초음파센서 일정거리 이상

프로세싱 알림

스마트폰 어플 속 버튼

모빌 작동

Interaction Flow Chart

Prototype

Left

Perspective

Rear

빛의 세기에 따른 차광효과

조도 센서를 통해 빛의 세기 값을 받고, 서보모터 2개를 이용하여 캡의 각도 조절

```
void loop(){
#include <Servo.h>
                                int light_default=analogRead(lightsensor);
Servo myservo;
Servo myservo1;
                                int ledlight=map(light_default,400,850,0,255);
                                cap_move();
int lightsensor = A0;
                                void cap move(){
                                 int light = analogRead(lightsensor);
void setup() {
                                  int a = map (light, 400, 850, 90, 140);
 Serial.begin(9600);
                                  myservo.write(a);
 myservo.attach(7); //캡1
                                  delay(15);
 myservo1.attach(10); //캡2
                                  myservo1.write(200-a);
                                  delay(15);
```

빛의 세기에 따른 차광효과

✓ 최대 밝기: 850

> 서보모터 각도: 90 도

✓ 최소 밝기 : 400

> 서보모터 각도: 140 도

* 400 이하 값 > 밤

무드등 ON

조도센서를 통해 빛의 세기가 일정 값 이하 소리감지 센서를 통해 아이 울음소리를 인식 LED 불 들어옴

```
int soundSensor = A1;
                                                     if(sound > threshold) {
int lightsensor = A0;
                                                        check_ultra(distance);
int threshold = 400;
                                                        if(ledlight>100){
                                                          lightOn(0, 0, 0);
int r = 6;
int q = 5;
                                                        else{
int b = 3:
                                                          lightOn(255, 153, 0);
int sound = 0;
void setup() {
 Serial.begin(9600);
                                                     void lightOn(int red, int green, int blue){
 pinMode(soundSensor, INPUT);}
                                                       analogWrite(r, red);
void loop() {
                                                       analogWrite(g, green);
 int light_default=analogRead(lightsensor);
                                                       analogWrite(b, blue); }
 int ledlight=map(light_default,400,850,0,255);
 sound = analogRead(soundSensor);
```

아이의 상태 알림

소리감지 센서를 통해 아이 울음소리를 인식 초음파센서에 일정거리 안에 물체가 인식 안됨 Processing을 통해 알림 구현

Arduino

```
const int pingPin1 = 8; //trig
const int pingPin2 = 9;
const unsigned int BAUD RATE=9600;
long duration;
unsigned long distance=0;
int soundSensor = A1:
int lightsensor = A0;
int threshold = 400;
int sound = 0:
void setup() {
 Serial.begin(9600);
 pinMode(soundSensor, INPUT);
 pinMode(pingPin2, INPUT);
 pinMode(pingPin1, OUTPUT); }
```

```
unsigned long
microseconds to cm(const
unsigned long microseconds){
 return microseconds/29/2;
void loop() {
sound = analogRead(soundSensor);
 digitalWrite(pingPin1,LOW);
 delayMicroseconds(2);
 digitalWrite(pingPin1,HIGH);
 delayMicroseconds(5);
 digitalWrite(pingPin1,LOW);
 duration = pulseIn(pingPin2, HIGH);
 distance=microseconds to cm(duration);}
void check ultra(int distance){
 Serial.println(distance);
```

아이의 상태 알림

소리감지 센서를 통해 아이 울음소리를 인식 초음파센서에 일정거리 안에 물체가 인식 안됨 Processing을 통해 알림 구현

Processing

```
import processing.serial.*;
                                                     if(a > 50){
Serial myPort;
                                                       image(img1,0,0);
Plmage img1;
Plmage img2;
                                                      else{
float a;
                                                       image(img2,0,0);
void setup(){
 size(400, 400);
 img1 = loadImage("pic.png");
                                                     void serialEvent(Serial myPort){
 img2 = loadImage("white.png");
                                                      String inString =
 myPort = new Serial(this, Serial.list()[3], 9600);
                                                     myPort.readStringUntil('\n');
 myPort.bufferUntil('₩n');
                                                      if(inString != null){
                                                      inString = trim(inString);
void draw(){
 background(255);
                                                      float inByte = float(inString);
 /*image(img2,0,0);
                                                      a = map(inByte, 0, 50, 0, 255);
 tint(255,a);
 image(img1,0,0);*/
```

모빌 원격 제어

WiFi보드를 이용해 스마트폰 어플과 모빌 연결

스마트폰 어플 속 버튼을

이용해 모빌(서보모터) 원격제어

```
#define BLYNK_PRINT Serial
#include <Blynk.h>
#include <ESP8266WiFi.h>
#include <BlynkSimpleEsp8266.h>
#include <Servo.h>

char ssid[] = "HY-DORM5";
char pass[] = "residence";

char auth[]
="_qwGSqDQeEwQ-
TCVUxL1P5QpF0qwPD0Q";
Servo servo;
int minAngle=0;
int maxAngle=180;
```

```
BLYNK_WRITE(V1)
  int pinData=param.asInt();
  if(pinData==HIGH)
   servo.write(maxAngle);
   delay(30);
  else if(pinData==LOW)
   servo.write(minAngle);
   delay(30); }
void setup()
  // Debug console Serial.begin(115200);
  Serial.begin(115200);
  servo.attach(D6);
  Blynk.begin(auth, ssid, pass);
  servo.write(minAngle);
void loop()
{ Blynk.run(); }
```

- ✓ 아이 상태 알림
- ✓ 무드등
- ✓ 모빌 원격 제어

잔잔한 음악 재생

조도센서를 통해 빛의 세기가 일정 값 이상 소리감지 센서를 통해 아이 울음소리를 인식 Mp3 shield를 이용하여 잔잔한 음악 재생


```
#include <SPI.h>
#include <SdFat.h>
#include "SdFatUtil.h"
#include <SFEMP3Shield.h>
SdFat sd;
SFEMP3Shield MP3player;
union twobyte mp3_vol;
int soundSensor = A1:
                                                                    left and right.
int lightsensor = A0;
int threshold = 10;
int sound = 400;
void setup(){
 Serial.begin(9600);
 pinMode(soundSensor, INPUT);
                                                                         } else {
 sd.begin(SD SEL, SPI HALF SPEED);
 MP3player.begin();
                                                                       } else {
                                                                         } else {
()qool biov
// Serial.println(analogRead(soundSensor));
 int light_default=analogRead(lightsensor);
// Serial.print("led : ");
// Serial.println(light_default);
 int ledlight=map(light default,400,850,0,255);
 sound = analogRead(soundSensor);
 mp3 vol.word = MP3player.getVolume();
 mp3 vol.byte[1] = 2;
 MP3player.setVolume(mp3_vol.byte[1], mp3_vol.byte[1]);
 if(sound > threshold) {
   if(ledlight>100){
     MP3player.playTrack(1);
   else{
    MP3player.stopTrack();
                                                                       } else {
 else{
   MP3player.stopTrack();
 parse menu(Serial.read()); }
```

```
void parse menu(byte key command) { // 시리얼 창에서 키를 입력하면 조정되는 부분들 (볼륨, 일시정지 등)
 if(key command == 's') {
   Serial.println(F("Stopping"));
   MP3player.stopTrack();
 else if((key command == '-') || (key command == '+')) {
// union twobyte mp3 vol; // create key command existing variable that can be both word and double byte of
// mp3_vol.word = MP3player.getVolume(); // returns a double uint8_t of Left and Right packed into int16_t
   if(key command == '-') { // note dB is negative
    // assume equal balance and use byte[1] for math
    if(mp3\_vol.byte[1] >= 254) { // range check}
     mp3_vol.byte[1] = 254;
     mp3_vol.byte[1] += 2; // keep it simpler with whole dB's
    if(mp3\_vol.byte[1] \le 2) { // range check}
     mp3 vol.byte[1] = 2;
       mp3_vol.byte[1] -= 38;
   // push byte[1] into both left and right assuming equal balance.
   MP3player.setVolume(mp3_vol.byte[1], mp3_vol.byte[1]); // commit new volume
   Serial.print(F("Volume changed to -"));
   Serial.print(mp3_vol.byte[1]>>1, 1);
   Serial.println(F("[dB]"));
 else if(key_command == 'p') {
   if( MP3player.getState() == playback) {
    MP3player.pauseMusic();
    Serial.println(F("Pausing"));
   } else if( MP3player.getState() == paused_playback) {
    MP3player.resumeMusic();
    Serial.println(F("Resuming"));
    Serial.println(F("Not Playing!"));
```

잔잔한 음악 재생

✓ 아기 울음소리 감지

-조도센서 빛 0 > 노래 0

-조도센서 및 X > 노래 X

THANK YOU