2018 年全国硕士研究生入学统一考试

计算机科学与技术学科联考计算机学科专业基础综合试题

		章迦: 弟 1~40 小; 符合试题要求。	型,母小型 2 分	,共 80 分。	下列母题给出1	孙四个选项中,
		保存整数,栈 S_2 中依次弹出两个操作		数 F()依次抄	1.行下述各步操作	E:
		弹出一个运算符 op	p;			
		应的运算 b op a;				
	(4) 将运算组	结果压人 S ₁ 中。				
	假定 S_1 中的护	操作数依次是 5, 8, 3	3,2 (2 在栈顶),	S_2 中的运算	符依次是*,-,+	(+在栈顶)。调
用 3	次 F()后, S ₁ 相	浅顶保存的值是	o			
	A15	B. 15	C20		D. 20	
	2. 现有队列(Q 与栈 S, 初始时 C) 中的元素依次是	是 1, 2, 3, 4, 5,	6 (1 在队头),	S 为空。若仅允
许下	列 3 种操作:	①出队并输出出队	元素;②出队并	将出队元素力	人栈; ③出栈并统	渝出出栈元素,
则不	能得到的输出	序列是。				
	A. 1, 2, 5, 6, 4	, 3	B. 2, 3, 4, 5, 6,	1		
	C. 3, 4, 5, 6, 1,	, 2	D. 6, 5, 4, 3, 2,	1		
		2×12 的对称矩阵 N			$_{i, j}$ (1 $\leq i \leq j \leq 12$)	按行优先存人 C
语言	的一维数组 N	「中,元素 m _{6,6} 在]	N 中的下标是	o		
	A. 50	B. 51	C. 55		D. 66	
	4. 设一棵非空	空完全二叉树 T 的原	所有叶结点均位于	下同一层,且	每个非叶结点都	有2个子结点。
若 T	有k个叶结点	F,则T的结点总数	文是。			
	A. 2k-1	B. 2k	$C. k^2$	D. 2 ^k -1		
	5. 已知字符集	$ \xi \{a, b, c, d, e, f\}, $	若各字符出现的	欠数分别为6	, 3, 8, 2, 10, 4,	则对应字符集中
各字	符的哈夫曼编	码可能是。				
	A. 00, 1011, 0	1, 1010, 11, 100	B. 00, 100), 110, 000, 00	10, 01	

C. 10, 1011, 11, 0011, 00, 010 D. 0011, 10, 11, 0010, 01, 000 6. 已知二叉排序树如下图所示,元素之间应满足的大小关系是____。

A. $x_1 < x_2 < x_5$

B. $x_1 < x_4 < x_5$

C. $x_3 < x_5 < x_4$

D. $x_4 < x_3 < x_5$

7. 下列选项中,不是如下有向图的拓扑序列的是

A. 1, 5, 2, 3, 6, 4 C. 5, 1, 2, 3, 6, 4

B. 5, 1, 2, 6, 3, 4

D. 5, 2, 1, 6, 3, 4

8. 高度为 5 的 3 阶 B 树含有的关键字个数至少是

B. 31

C. 62

D. 242

9. 现有长度为 7、初始为空的散列表 HT, 散列函数 H(k) = k % 7, 用线性探测再散列法解决 冲突。将关键字 22,43,15 依次插人到 HT 后,查找成功的平均查找长度是。

A. 1.5

B. 1.6

C. 2

D. 3

10. 对初始数据序列(8,3,9,11,2,1,4,7,5,10,6)进行希尔排序。若第一趟排序结果为(1, 3, 7, 5, 2, 6, 4, 9, 11, 10, 8), 第二趟排序结果为(1, 2, 6, 4, 3, 7, 5, 8, 11, 10, 9), 则两趟排序采用的 增量(间隔)依次是。

A. 3, 1

B. 3.2

C. 5.2

D. 5.3

11. 在将数据序列(6, 1, 5, 9, 8, 4, 7)建成大根堆时,正确的序列变化过程是。

A. $6.1.7.9.8.4.5 \rightarrow 6.9.7.1.8.4.5 \rightarrow 9.6.7.1.8.4.5 \rightarrow 9.8.7.1.6.4.5$

B. $6,9,5,1,8,4,7 \rightarrow 6,9,7,1,8,4,5 \rightarrow 9,6,7,1,8,4,5 \rightarrow 9,8,7,1,6,4,5$

C. $6.9.5.1.8.4.7 \rightarrow 9.6.5.1.8.4.7 \rightarrow 9.6.7.1.8.4.5 \rightarrow 9.8.7.1.6.4.5$

D. $6.1.7.9.8.4.5 \rightarrow 7.1.6.9.8.4.5 \rightarrow 7.9.6.1.8.4.5 \rightarrow 9.7.6.1.8.4.5 \rightarrow 9.8.6.1.7.4.5$

12. 冯•诺依曼结构计算机中数据采用二进制编码表示,其主要原因是。

1.二进制的运算规则简单

Ⅱ.制造两个稳态的物理器件较容易

Ⅲ.便于用逻辑门电路实现算术运算

A. 仅I、II B. 仅I、III C. 仅II、III D. I、II和III

13. 假定带符号整数采用补码表示,若 int 型变量 x 和 y 的机器数分别是 FFFF FFDFH 和 0000 0041H,则 x、y 的值以及 x - y 的机器数分别是。

A. x = -65, y = 41, x - y 的机器数溢出

B. x = -33, y = 65, x-y 的机器数为 FFFF FF9DH

C. x = -33, y = 65, x-y 的机器数为 FFFF FF9EH

D. x = -65, y = 41, x-y 的机器数为 FFFF FF96H
14. IEEE 754 单精度浮点格式表示的数中,最小的规格化正数是。
A. 1.0×2^{-126} B. 1.0×2^{-127} C. 1.0×2^{-128} D. 1.0×2^{-149}
15. 某 32 位计算机按字节编址,采用小端(Little Endian)方式。若语令"int i = 0;"对应指令的
机器代码为"C7 45 FC 00 00 00 00",则语句"int i = - 64;"对应指令的机器代码是。
A. C7 45 FC C0 FF FF FF B. C7 45 FC 0C FF FF FF
C. C7 45 FC FF FF FC 0 D. C7 45 FC FF FF FF 0C
16. 整数 x 的机器数为 1101 1000, 分别对 x 进行逻辑右移 1 位和算术右移 1 位操作, 得到的
机器数各是。
A. 1110 1100、1110 1100 B. 0110 1100、1110 1100
C. 1110 1100、0110 1100 D. 0110 1100、0110 1100
17. 假定 DRAM 芯片中存储阵列的行数为 r 、列数为 c ,对于一个 $2K \times 1$ 位的 DRAM 芯片,
为保证其地址引脚数最少,并尽量减少刷新开销,则 r、c 的取值分别是。
A. 2048 \(1 \) B. 64 \(32 \) C. 32 \(64 \) D. 1 \(2048 \)
18. 按字节编址的计算机中,某 double 型数组 A 的首地址为 2000H,使用变址寻址和循环结
构访问数组 A, 保存数组下标的变址寄存器初值为 0, 每次循环取一个数组元素, 其偏移地址为
变址值乘以sizeof(double),取完后变址寄存器内容自动加1。若某次循环所取元素的地址为2100H,
则进入该次循环时变址寄存器的内容是。
A. 25 B. 32 C. 64 D. 100
19. 减法指令"sub R1, R2, R3"的功能为"(R1) - (R2) → R3",该指令执行后将生成进位/借
位标志 CF 和溢出标志 OF。若(R1)= FFFF FFFFH,(R2) = FFFF FFF0H,则该减法指令执行
后,CF 与 OF 分别为。
A. CF=0, OF=0 B. CF=1, OF=0
C. CF=0, 0F=1 D. CF=1, OF=1
20. 若某计算机最复杂指令的执行需要完成 5 个子功能,分别由功能部件 A~E 实现,各功能或优质需用证公别为 80~~ 50~~ 50~~ 70~~ 和 50~~ 双用流水线式 对 经收入 流水 积累存限
部件所需时间分别为 80ps、50ps、50ps、70ps 和 50ps,采用流水线方式执行指令,流水段寄存器 在时 为 20ps,则(CDLI 时 使用期至小为
延时为 20ps,则 CPU 时钟周期至少为。 A. 60 ps B. 70 ps C. 80 ps D. 100 ps
A. 60 ps B. 70 ps C. 80 ps D. 100 ps 21. 下列选项中,可提高同步总线数据传输率的是。
I.增加总线宽度 II.提高总线工作频率
III.支持突发传输 IV.采用地址/数据线复用
A. 仅I、II B. 仅I、II、III
C. 仅III、IV D. I、II、III和IV
22. 下列关于外部 I/O 中断的叙述中,正确的是。
A. 中断控制器按所接收中断请求的先后次序进行中断优先级排队
B. CPU 响应中断时,通过执行中断隐指令完成通用寄存器的保护
C. CPU 只有在处于中断允许状态时,才能响应外部设备的中断请求
D. 有中断请求时,CPU 立即暂停当前指令执行,转去执行中断服务程序
23. 下列关于多任务操作系统的叙述中,正确的是。
I. 具有并发和并行的特点

II. 需要实现对共享资源的保护

Ⅲ. 需要运行在多 C	PU 的硬件平台上					
A. 仅 I	B. 仅 II	、II D.	I. I. II			
24. 某系统采用基于	优先权的非抢占式进程调度	夏策略,完成一次 运	进程调度和进	程切换的系统		
时间开销为 1μs。在 T 时	刻就绪队列中有 3 个进程 F	P_1 、 P_2 和 P_3 ,其在	就绪队列中的]等待时间、需		
要的 CPU 时间和优先权好	41下表所示。					
进程	等待时间	需要的 CPU	J时间	优先权		
\mathbf{P}_1	30µs	12µs		10		
P_2	15µs	24μs		30		
P_3	18µs	36µs		20		
若优先权值大的进程	l优先获得 CPU,从 T 时刻	起系统开始进程调	度,则系统的	J平均周转时间		
为。						
Α. 54μs Β. 73	ıs C. 74μs	D. 75µs				
25. 属于同一进程的	两个线程 thread1 和 thread2	并发执行,共享初位	直为0的全局	变量 x。thread1		
和 thread2 实现对全局变	量 x 加 1 的机器级代码描述	如下。				
tl	nread1		thread2			
mov R1, x //	$(\mathbf{x}) \rightarrow \mathbf{R}1$	mov R2, x	$//(x) \rightarrow F$	₹2		
inc R1 // 0	$(R1) +1 \rightarrow R1$	inc R2	// (R2) +1	\rightarrow R2		
mov x, R1 //	$(R1) \rightarrow x$	mov x, R2	$//$ (R2) \rightarrow	· X		
在所有可能的指令执	、行序列中, 使 x 的值为 2 的	的序列个数是				
A. 1 B. 2	C. 3 D.	4				
26. 假设系统中有 4	个同类资源,进程 P_1 、 P_2	和 P ₃ 需要的资源数	放分别为 4、3	3 和 1, P ₁ 、P ₂		
和 P3 已申请到的资源数分	分别为 2、1 和 0,则执行安	全性检测算法的结	F果是	0		
A. 不存在安全序列。	系统处于不安全状态					
B. 存在多个安全序	列,系统处于安全状态					
C. 存在唯一安全序	列 P_3 、 P_1 、 P_2 ,系统处于安	全状态				
D. 存在唯一安全序	列 P_3 、 P_2 、 P_1 ,系统处于安	全状态				
27. 下列选项中,可能导致当前进程 P 阻塞的事件是。						
I. 进程 P 申请临界资源						
II. 进程 P 从磁盘读						
III. 系统将 CPU 分酉						
	B. 仅 II					
28. 若 x 是管程内的条件变量,则当进程执行 x.wait()时所做的工作是。						
A. 实现对变量 x 的互斥访问						
B. 唤醒一个在 x 上	– .					
C. 根据 x 的值判断该进程是否进人阻塞状态						
D. 阻塞该进程,并将之插入 x 的阻塞队列中						
29. 当定时器产生时	钟中断后,由时钟中断服务	β程序更新的部分 ≠	內容是	0		

I.内核中时钟变量的值

II.当前进程占用 CPU 的时间

III.当前进程在时间片内的剩余执行时间

A. 仅I、II B. 仅II、III C. 仅I、III D. I、II、III

	30. 系统总是访问磁盘的某个磁道而不	「响应对其他码	兹道的访问请求	,这种现象称为磁臂黏着。			
下列	磁盘调度算法中,不会导致磁臂粘着的	勺是。					
	A. 先来先服务(FCFS)	B. 最短寻道	时间优先(SS)	TF)			
	C. 扫描算法(SCAN)	D. 循环扫描算法(CSCAN)					
	31. 下列优化方法中,可以提高文件订	可速度的是_					
	I. 提前读	II. 为了	文件分配连续的	簇			
	III. 延迟写	IV.采用	磁盘高速缓存				
	A. 仅I、II	B. 仅II	, III				
	C. 仅I、III、IV	D. I、	II、III、IV				
	32. 在下列同步机制中,可以实现让权等待的是。						
	A. Peterson 方法	B. swap	指令				
	C. 信号量方法	D. Test	AndSet 指令				
	33. 下列 TCP/IP 应用层协议中,可以	使用传输层无	连接服务的是_	•			
	A. FTP B. DNS	C.	SMTP	D. HTTP			
	34. 下列选项中,不属于物理层接口规	R范定义范畴的	内是。				
	A. 接口形状 B. 引脚功能	C. 物理地址	D. 信号	电平			
	35. IEEE 802.11 无线局域网的 MAC 协	议 CSMA/CA	进行信道预约	的方法是。			
	A. 发送确认帧	B. 采用]二进制指数退运	哈			
	C. 使用多个 MAC 地址	D. 交扬	ERTS 与 CTS 帧	ţ			
	36. 主机甲采用停-等协议向主机乙发:	送数据,数据	传输速率是3 k	bps,单向传播延时是 200			
ms,	忽略确认帧的传输延时。当信道利用	率等于 40%时	,数据帧的长周	夏为。			
	A. 240 比特 B. 400 比特	C. 480 比特	D. 800 b	比特			
	37. 路由器 R 通过以太网交换机 S1 和	S2 连接两个	网络,R的接口	1、主机 H1 和 H2 的 IP 地			
址与	MAC 地址如下图所示。若 H1 向 H2	发送 1 个 IP 分	↑组 P,则 H1 发	出的封装P的以太网帧的			
目的	MAC 地址、H2 收到的封装 P 的以太	网帧的源 MA	C 地址分别是_	o			
81							
	192.168. 00-1a-2b-3c	-4d-51 0	0-a1-b2-c3-d4-61	32			

- A. 00-a1-b2-c3-d4-62、00-1a-2b-3c-4d-52
- B. 00-a1-b2-c3-d4-62 \, 00-a1-b2-c3-d4-61
- C. 00-1a-2b-3c-4d-51、00-1a-2b-3c-4d-52
- D. 00-1a-2b-3c-4d-51, 00-a1-b2-c3-d4-61

- 38. 某路由表中有转发接口相同的 4 条路由表项, 其目的网络地址分别为 35.230.32.0/21、 35.230.40.0/21、35.230.48.0/21 和 35.230.56.0/21,将该 4 条路由聚合后的目的网络地址为
 - A. 35.230.0.0/19

B. 35.230.0.0/20

C. 35.230.32.0/19

- D. 35.230.32.0/20
- 39. UDP 协议实现分用(demultiplexing)时所依据的头部字段是。
- A. 源端口号
- B. 目的端口号
- C. 长度
- D. 校验和
- 40. 无需转换即可由 SMTP 协议直接传输的内容是 。
- A. JPEG 图像
- B. MPEG 视频
- C. EXE 文件 D. ASCII 文本
- 二、综合应用题: 第41~47 小题, 共70 分。
- 41.(13分)给定一个含 n(n>1)个整数的数组,请设计一个在时间上尽可能高效的算法,找出数 组中未出现的最小正整数。例如,数组{-5,3,2,3}中未出现的最小正整数是1;数组{1,2,3}中未出 现的最小正整数是 4。要求:
 - (1)给出算法的基本设计思想。
 - (2) 根据设计思想, 采用 C 或 C++语言描述算法, 关键之处给出注释。
 - (3) 说明你所设计算法的时间复杂度和空间复杂度。
- 42. (12 分)拟建设一个光通信骨干网络连通 BJ、CS、XA、OD、JN、NJ、TL 和 WH 等 8 个 城市, 题 42 图中无向边上的权值表示两个城市间备选光缆的铺设费用。

请回答下列问题。

- (1) 仅从铺设费用角度出发,给出所有可能的最经济的光缆铺设方案(用带权图表示),并 计算相应方案的总费用。
 - (2) 题 42 图可采用图的哪一种存储结构?给出求解问题(1)所使用的算法名称。
- (3) 假设每个城市采用一个路由器按(1) 中得到的最经济方案组网, 主机 H1 直接连接在 TL的路由器上, 主机 H2直接连接在BJ的路由器上。若H1向H2发送一个TTL=5的IP分组, 则 H2 是否可以收到该 IP 分组?

- 43. (8分)假定计算机的主频为 500MHz, CPI 为 4。现有设备 A 和 B, 其数据传输率分别为 2MB/s 和 40MB/s, 对应 I/O 接口中各有一个 32 位数据缓冲寄存器。请回答下列问题,要求给出计算过程。
- (1) 若设备 A 采用定时查询 I/O 方式,每次输入/输出都至少执行 10 条指令。设备 A 最多间隔多长时间查询一次才能不丢失数据? CPU 用于设备 A 输入/输出的时间占 CPU 总时间的百分比至少是多少?
- (2) 在中断 I/O 方式下, 若每次中断响应和中断处理的总时钟周期数至少为 400, 则设备 B 能否采用中断 I/O 方式? 为什么?
- (3) 若设备 B 采用 DMA 方式,每次 DMA 传送的数据块大小 1000B, CPU 用于 DMA 预处理和后处理的总时钟周期数为 500,则 CPU 用于设备 B 输人/输出的时间占 CPU 总时间的百分比最多是多少?
- 44. (15 分)某计算机采用页式虚拟存储管理方式,按字节编址。CPU 进行存储访问的过程如 题 44 图所示。

题 44 图

根据题 44 图回答下列问题。

- (1) 主存物理地址占多少位?
- (2) TLB 采用什么映射方式? TLB 用 SRAM 还是 DRAM 实现?
- (3) Cache 采用什么映射方式?若 Cache 采用 LRU 替换算法和回写(Write Back)策略,则 Cache 每行中除数据(Data)、Tag 和有效位外,还应有哪些附加位? Cache 总容量是多少? Cache 中有效位的作用是什么?

- (4) 若 CPU 给出的虚拟地址为 0008 C040H,则对应的物理地址是多少?是否在 Cache 中命中?说明理由,若 CPU 给出的虚拟地址为 0007 C260H,则该地址所在主存块映射到的 Cache 组号是多少?
 - 45. (8分)请根据题 44 图给出的虚拟储管理方式,回答下列问题。
- (1) 某虚拟地址对应的页目录号为 6,在相应的页表中对应的页号为 6,页内偏移量为 8,该虚拟地址的十六进制表示是什么?
- (2)寄存器 PDBR 用于保存当前进程的页目录起始地址,该地址是物理地址还是虚拟地址? 进程切换时,PDBR 的内容是否会变化?说明理由。同一进程的线程切换时,PDBR 的内容是否会变化?说明理由。
 - (3) 为了支持改进型 CLOCK 置换算法,需要在页表项中设置哪些字段?
- 46. (7分)某文件系统采用索引节点存放文件的属性和地址信息,簇大小为 4KB。每个文件索引节点占 64B,有 11 个地址项,其中直接地址项 8 个,一级、二级和三级间接地址项各 1 个,每个地址项长度为 4B。请回答下列问题。
 - (1) 该文件系统能支持的最大文件长度是多少? (给出计算表达式即可)
- (2) 文件系统用 1M (1M=2²⁰) 个簇存放文件索引节点,用 512M 个簇存放文件数据。若一个图像文件的大小为 5600B,则该文件系统最多能存放多少个这样的图像文件?
- (3) 若文件 F1 的大小为 6KB, 文件 F2 的大小为 40KB, 则该文系统获取 F1 和 F2 最后一个簇的簇号需要的时间是否相同?为什么?
- 47. (7分)某公司网络如题 47 图所示。IP 地址空间 192.168.1.0/24 被均分给销售部和技术部两个子网,并已分别为部分主机和路由器接口分配了 IP 地址,销售部子网的 MTU=1500B,技术部子网的 MTU=800B。

请回答下列问题。

- (1)销售部子网的广播地址是什么?技术部子网的子网地址是什么?若每个主机仅分配一个IP地址,则技术部子网还可以连接多少台主机?
- (2) 假设主机 192.168.1.1 向主机 192.168.1.208 发送一个总长度为 1500B 的 IP 分组,IP 分组的头部长度为 20B,路由器在通过接口 F1 转发该 IP 分组时进行了分片。若分片时尽可能分为最大片,则一个最大 IP 分片封装数据的字节数是多少?至少需要分为几个分片?每个分片的片偏移量是多少?