# Hospidata

For all of your healthcare-related, data needs.

Director of Analytics: Paul Tluczek



# **Summary**

The Problem's History

The Problem's Cost

**Initial Solution** 

Data

**Data Science** 

**Our Solution** 

Conclusion



#### **Hospital Readmissions**

Concerns readmission upon initial discharge from hospital.

20% Readmitted after 30 Days.

34 % Readmitted after 90 Days.

Costs 17.4 Billion Annually.

Potential Quality Problems

Lack of coordination in follow up care after discharge.

Misaligned Financial Incentives.





# Readmission Penalties

#### 2010 Affordable Care Act

- Establishes hospital readmission reduction program.
- Financial incentives to reduce readmissions

Hospitals with a 3-Year Rolling Readmission rate that exceed their risk adjusted target, penalized on a portion of their Medicare reimbursements

For 2012, As much as 1% of total reimbursements penalized

By 2014, As much as 3% of total reimbursements penalized



## **Tahoe Healthcare Systems**

18% of revenues were Medicare reimbursements

Over 750,000 in fines for 2012

Under 2014 regulations, loss in reimbursements rises to \$8000 per readmitted patient within 30 days



# CareTracker program

Tahoe healthcare systems think they have come up with a solution

Involves personnel education on patients, during/post hospitalization monitoring, periodic home monitoring after discharge

Early data shows a reduced readmission rate by 40% compared to a control group

Cost of program equates to \$1200 per patient



# THE BIG QUESTION.

18% of total revenues are from Medicare reimbursement for the three HRRP conditions

The cost of CareTracker per patient is \$1200

Only 40% success rate, 60% still ends up fined

### Should CareTracker be deployed



# If CareTracker is rolled out for no one..... If CareTracker is rolled out for everyone....

|   | N |      | Cost - \$  |
|---|---|------|------------|
| 0 |   | None | 7984000.0  |
| 1 |   | All  | 10048800.0 |

# Our Initial Data Analysis

The following features were provided:

Sex

Age

**ED Admit** 

Flu Season

**Severity Score** 

**Comorbidity Score** 

Readmitted in 30 Days



# CLASS IMBALANCE





#### **Patient Segments**



- The highest two correlations with what we are trying to predict are severity and comorbidity
- Age is a close third, however the relationship between age and comorbidity is very similar to the relationship between severity and comorbidity
- These clustering methods show us there exists a fine line somewhere in our dataset that was once invisible
- This line becomes a new feature in our dataset to help with predictions





# Result Prediction Methods

Random Forest

Logistic Regression

#### Evaluation strategy for the prediction system

#### Confusion Matrix:

A quick reference guide to actual and predicted values

 A table that is often used to describe the performance of a classification model on a set of data for which the actual outcomes are known

# Logistic Regression

(Essentially, this is defined by drawing a curved line that relates an individual patient's attributes to outcomes.)





# Random Forest





# CareTracker and Machine Learning



| 37 | Model based Care                                  | Cost - \$  |
|----|---------------------------------------------------|------------|
| 0  | None                                              | 7984000.0  |
| 1  | All                                               | 10048800.0 |
| 2  | Predict Log Regression-Class imbalanced           | 7546400.0  |
| 3  | Predict Log Regression-Class balance(undersample) | 6934800.0  |
| 4  | Predict Random Forest-Class imbalanced            | 7654000.0  |
| 5  | Predict Random Forest-Class balance(undersample)  | 7613200.0  |
| 6  | Predict Log Regression-Cluster                    | 7699200.0  |

# **Savings Strategies**

| <u>Strategy</u>                           | <u>Savings</u> |
|-------------------------------------------|----------------|
| NONE                                      | 0              |
| ALL                                       | - \$2,064,800  |
| LOGISTIC REGRESSION (IMBAL)               | \$437,600      |
| LOGISTIC REGRESSION (BAL)                 | \$1,049,200    |
|                                           | ¥ 1,0 10,±00   |
| RANDOM FOREST (IMBAL)                     | \$330,000      |
| RANDOM FOREST (IMBAL) RANDOM FOREST (BAL) |                |

# RISK PATIENT CARE VS INCREASED CARETRACKER COVERAGE



# Conclusion

Using logistic regression will save money.

Roll out revised Beta CareTracker system to a control group at selected hospitals (A/B)

Production version of CareTracker will require more data, and **soon**.