```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from sklearn.model_selection import train_test_split
   from sklearn.linear_model import LinearRegression
   from sklearn.linear_model import Ridge,Lasso
   from sklearn.linear_model import ElasticNet
   from sklearn.linear_model import LogisticRegression
   from sklearn.linear_model import StandardScaler
   from sklearn.ensemble import RandomForestClassifier
   from sklearn.model_selection import GridSearchCV
   from sklearn.tree import plot_tree
```

Out[2]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
0	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN	28
1	2012- 09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4	28
2	2012- 09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5	28
3	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN	28
4	2012- 09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN	28
210715	2012- 03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN	28
210716	2012- 03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN	28
210717	2012- 03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN	28
210718	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN	28
210719	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN	28

210720 rows × 14 columns

localhost:8888/notebooks/F12.ipynb

In [3]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210720 entries, 0 to 210719
Data columns (total 14 columns):
```

#	Column	Non-Null Count	Dtype
0	date	210720 non-null	object
1	BEN	51511 non-null	float64
2	CO	87097 non-null	float64
3	EBE	51482 non-null	float64
4	NMHC	30736 non-null	float64
5	NO	209871 non-null	float64
6	NO_2	209872 non-null	float64
7	0_3	122339 non-null	float64
8	PM10	104838 non-null	float64
9	PM25	52164 non-null	float64
10	S0_2	87333 non-null	float64
11	TCH	30736 non-null	float64
12	TOL	51373 non-null	float64
13	station	210720 non-null	int64
		()	

dtypes: float64(12), int64(1), object(1)

memory usage: 22.5+ MB

In [4]: df=df.dropna()
df

Out[4]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	
6	2012- 09-01 01:00:00	0.4	0.2	0.8	0.24	1.0	7.0	57.0	11.0	7.0	2.0	1.33	0.6	280
30	2012- 09-01 02:00:00	0.4	0.2	0.7	0.24	1.0	5.0	55.0	5.0	5.0	2.0	1.33	0.5	280
54	2012- 09-01 03:00:00	0.4	0.2	0.7	0.24	1.0	4.0	56.0	6.0	4.0	2.0	1.33	0.5	280
78	2012- 09-01 04:00:00	0.3	0.2	0.7	0.25	1.0	5.0	54.0	6.0	5.0	2.0	1.34	0.4	280
102	2012- 09-01 05:00:00	0.4	0.2	0.7	0.24	1.0	3.0	53.0	8.0	5.0	2.0	1.33	0.5	280
210654	2012- 02-29 22:00:00	0.6	0.3	0.5	0.09	1.0	35.0	57.0	25.0	21.0	3.0	1.12	2.3	280
210673	2012- 02-29 23:00:00	2.0	0.4	2.4	0.21	16.0	79.0	20.0	37.0	25.0	12.0	1.33	6.2	280
210678	2012- 02-29 23:00:00	0.7	0.3	0.6	0.09	1.0	27.0	63.0	22.0	18.0	3.0	1.11	1.9	280
210697	2012- 03-01 00:00:00	1.5	0.4	1.7	0.21	16.0	79.0	17.0	28.0	21.0	11.0	1.34	4.9	280
210702	2012- 03-01 00:00:00	0.6	0.3	0.5	0.09	1.0	23.0	61.0	18.0	16.0	3.0	1.11	1.2	280

10916 rows × 14 columns

```
In [5]: df.isnull().sum()
Out[5]: date
                     0
         BEN
                     0
         CO
                     0
         EBE
                     0
         NMHC
                     0
         NO
                     0
         NO 2
                     0
         0_3
                     0
         PM10
                     0
         PM25
                     0
         SO_2
                     0
         TCH
                     0
         TOL
                     0
                     0
         station
         dtype: int64
In [6]: df.describe()
```

Out[6]:

```
BEN
                               CO
                                            EBE
                                                         NMHC
                                                                          NO
                                                                                      NO_2
count 10916.000000
                     10916.000000
                                   10916.000000
                                                 10916.000000
                                                               10916.000000
                                                                               10916.000000
                                                                                             109
           0.784014
mean
                         0.279333
                                        0.992213
                                                      0.215755
                                                                    18.795529
                                                                                  31.262642
                                        0.804554
           0.632755
                         0.167922
                                                      0.075169
                                                                    40.038872
                                                                                  27.234732
  std
 min
           0.100000
                         0.100000
                                        0.100000
                                                      0.050000
                                                                     0.000000
                                                                                   1.000000
 25%
           0.400000
                         0.200000
                                        0.500000
                                                      0.160000
                                                                     1.000000
                                                                                   9.000000
 50%
           0.600000
                         0.200000
                                        0.800000
                                                      0.220000
                                                                     3.000000
                                                                                  24.000000
 75%
           0.900000
                         0.300000
                                        1.200000
                                                      0.250000
                                                                    18.000000
                                                                                  47.000000
           7.000000
                         2.500000
                                        9.700000
                                                      0.670000
                                                                   525.000000
                                                                                 225.000000
                                                                                               1
 max
```

```
In [7]: | df.columns
```

```
Out[7]: Index(['date', 'BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM2
        5',
                'SO_2', 'TCH', 'TOL', 'station'],
              dtype='object')
```

In [8]: | sns.pairplot(df)

Out[8]: <seaborn.axisgrid.PairGrid at 0x18b87c084f0>

In [9]: sns.distplot(df['PM10'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[9]: <AxesSubplot:xlabel='PM10', ylabel='Density'>

In [10]: sns.heatmap(df.corr())

Out[10]: <AxesSubplot:>

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self. setitem single column(loc, value, pi)

C:\ProgramData\Anaconda3\lib\site-packages\pandas\core\indexing.py:1720: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self._setitem_single_column(loc, value, pi)
<ipython-input-12-dc2e98cdf216>:3: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/s table/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

df['CO']=df['CO'].astype(int)

Out[12]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL	٤
6	2012- 09-01 01:00:00	0.4	0	0.8	0.24	1.0	7.0	57.0	11.0	7.0	2.0	1.33	0.6	280
30	2012- 09-01 02:00:00	0.4	0	0.7	0.24	1.0	5.0	55.0	5.0	5.0	2.0	1.33	0.5	280
54	2012- 09-01 03:00:00	0.4	0	0.7	0.24	1.0	4.0	56.0	6.0	4.0	2.0	1.33	0.5	280
78	2012- 09-01 04:00:00	0.3	0	0.7	0.25	1.0	5.0	54.0	6.0	5.0	2.0	1.34	0.4	280
102	2012- 09-01 05:00:00	0.4	0	0.7	0.24	1.0	3.0	53.0	8.0	5.0	2.0	1.33	0.5	280
210654	2012- 02-29 22:00:00	0.6	0	0.5	0.09	1.0	35.0	57.0	25.0	21.0	3.0	1.12	2.3	280
210673	2012- 02-29 23:00:00	2.0	0	2.4	0.21	16.0	79.0	20.0	37.0	25.0	12.0	1.33	6.2	280
210678	2012- 02-29 23:00:00	0.7	0	0.6	0.09	1.0	27.0	63.0	22.0	18.0	3.0	1.11	1.9	280
210697	2012- 03-01 00:00:00	1.5	0	1.7	0.21	16.0	79.0	17.0	28.0	21.0	11.0	1.34	4.9	280
210702	2012- 03-01 00:00:00	0.6	0	0.5	0.09	1.0	23.0	61.0	18.0	16.0	3.0	1.11	1.2	280
10916 rd	ows × 14 (columi	าร											

10916 rows × 14 columns

LogisticRegression

Out[13]: LogisticRegression()

```
In [14]: |lgr.predict(x_test)
Out[14]: array([0, 0, 0, ..., 0, 0, 0])
In [15]: |lgr.score(x_test,y_test)
Out[15]: 0.9905343511450382
In [16]: | fs=StandardScaler().fit_transform(x)
         logr=LogisticRegression()
         logr.fit(fs,y)
Out[16]: LogisticRegression()
In [19]: o=[[1,2,3,4,5,6,7,8,9,10,11,12,13]]
         prediction=logr.predict(o)
         print(prediction)
         [0]
In [20]: logr.classes_
Out[20]: array([0, 1])
In [21]: logr.predict_proba(0)[0][0]
Out[21]: 0.8372786799394607
In [22]: logr.predict_proba(o)[0][1]
Out[22]: 0.1627213200605393
```

LinearRegression

```
In [25]: coeff = pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[25]:

Co-emcient
3.203140e-14
1.000000e+00
-2.695760e-15
2.361685e - 14
-1.110223e-16
-1.665335e-16
5.551115e-17
2.775558e-17
-8.326673e-17
-8.326673e-17
3.642919e-16
-3.816392e-16
1.665335e-16

Co-efficient

```
In [26]: prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[26]: <matplotlib.collections.PathCollection at 0x18b931cef70>


```
In [27]: print(lr.score(x_test,y_test))
```

Ridge,Lasso

1.0

```
In [28]: | rr=Ridge(alpha=10)
         rr.fit(x_train,y_train)
Out[28]: Ridge(alpha=10)
In [29]: |rr.score(x_test,y_test)
Out[29]: 0.980929845032987
In [30]: la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[30]: Lasso(alpha=10)
In [31]: la.score(x_test,y_test)
Out[31]: -0.0003415119011236367
         ElasticNet
         en=ElasticNet()
```

```
In [32]:
         en.fit(x_train,y_train)
Out[32]: ElasticNet()
In [33]: |print(en.coef_)
          [ 0.
                        0.
                                    0.
                                                0.
                                                             0.00133254 -0.
                        0.
                                    0.
                                                0.
                                                             0.
                                                                         0.
           0.
                      1
           0.
In [34]: print(en.intercept )
          -0.014341719307344859
In [35]: |print(en.predict(x_train))
          [ 0.00697894 -0.01300918 -0.00501393 ... -0.01300918  0.01763927
           0.07493855]
         print(en.score(x_train,y_train))
In [36]:
         0.3857680979696393
In [37]: print("Mean Absolytre Error:",metrics.mean_absolute_error(y_test,prediction))
         Mean Absolytre Error: 7.630040014222296e-15
In [38]: print("Mean Square Error:",metrics.mean_squared_error(y_test,prediction))
         Mean Square Error: 1.2524196977447458e-28
```

```
In [39]: print("Root Mean Square Error:",np.sqrt(metrics.mean_absolute_error(y_test,pregreen))
Root Mean Square Error: 8.735010025307525e-08
```

RandomForest

```
rfc=RandomForestClassifier()
In [40]:
         rfc.fit(x_train,y_train)
Out[40]: RandomForestClassifier()
In [41]: parameters={'max_depth':[1,2,3,4,5],
                      'min_samples_leaf':[5,10,15,20,25],
                      'n estimators':[10,20,30,40,50]}
In [42]: grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="acc
         grid_search.fit(x_train,y_train)
Out[42]: GridSearchCV(cv=2, estimator=RandomForestClassifier(),
                      param_grid={'max_depth': [1, 2, 3, 4, 5],
                                   'min samples leaf': [5, 10, 15, 20, 25],
                                   'n estimators': [10, 20, 30, 40, 50]},
                      scoring='accuracy')
In [43]: grid search.best score
Out[43]: 1.0
In [44]: rfc_best=grid_search.best_estimator_
```

```
plt.figure(figsize=(80,40))
In [45]:
                                                                 plot_tree(rfc_best.estimators_[5],class_names=['Yes','No','Yes','No'],filled=T
Out[45]: [Text(2232.0, 1956.96, 'X[4] <= 183.5\ngini = 0.022\nsamples = 4783\nvalue =
                                                                 [7557, 84]\nclass = Yes'),
                                                                        Text(1116.0, 1522.0800000000002, X[9] \le 17.5 \le 0.002 \le 4713
                                                                   \nvalue = [7524, 7]\nclass = Yes'),
                                                                        Text(558.0, 1087.2, 'X[4] <= 179.0\ngini = 0.0\nsamples = 4496\nvalue = [719
                                                                  4, 1 \leq s = Yes'
                                                                       Text(279.0, 652.3200000000002, 'gini = 0.0\nsamples = 4491\nvalue = [7189,
                                                                 0]\nclass = Yes'),
                                                                        Text(837.0, 652.320000000002, 'gini = 0.278\nsamples = 5\nvalue = [5, 1]\nc
                                                                  lass = Yes'),
                                                                        Text(1674.0, 1087.2, X[3] < 0.305 = 0.035 = 0.035 = 217 = [3]
                                                                  30, 6]\nclass = Yes'),
                                                                        Text(1395.0, 652.320000000000, 'gini = 0.0\nsamples = 191\nvalue = [292, 0]
                                                                   \nclass = Yes'),
                                                                        Text(1953.0, 652.32000000000000, 'X[0] <= 3.15 \setminus ini = 0.236 \setminus ini = 26 \setminus
                                                                 alue = [38, 6] \setminus ass = Yes'),
                                                                        Text(1674.0, 217.44000000000005, 'gini = 0.0\nsamples = 14\nvalue = [23, 0]
                                                                  \nclass = Yes'),
                                                                        Text(2232.0, 217.4400000000000, 'gini = 0.408\nsamples = 12\nvalue = [15,
                                                                 6]\nclass = Yes'),
                                                                       Text(3348.0, 1522.0800000000002, X[0] <= 3.25 \cdot i = 0.42 \cdot i = 70 \cdot i = 0.42 \cdot i = 70 \cdot i =
                                                                 alue = [33, 77]\nclass = No'),
                                                                        Text(2790.0, 1087.2, X[1] \le 0.5  ngini = 0.469 \ nsamples = 25 \ nvalue = [25,
                                                                  15]\nclass = Yes'),
                                                                        Text(2511.0, 652.320000000000, 'gini = 0.0\nsamples = 16\nvalue = [25, 0]\n
                                                                  class = Yes'),
                                                                        Text(3069.0, 652.3200000000002, 'gini = 0.0\nsamples = 9\nvalue = [0, 15]\nc
                                                                  lass = No'),
                                                                        Text(3906.0, 1087.2, X[2] <= 5.6 = 0.202 = 45 = 45 = [8, 6]
                                                                  2]\nclass = No'),
                                                                      Text(3627.0, 652.3200000000000, 'X[7] <= 72.0 \setminus i = 0.292 \setminus i = 27 \setminus i = 0.292 \setminus i = 27 \setminus i = 0.292 
                                                                  alue = [8, 37]\nclass = No'),
                                                                        Text(3348.0, 217.44000000000005, 'gini = 0.229\nsamples = 22\nvalue = [5, 3]
                                                                 31\nclass = No'),
                                                                       Text(3906.0, 217.4400000000005, 'gini = 0.49 \nsamples = 5 \nvalue = [3, 4] \nsamples = 5 \nsamples 
                                                                  class = No'),
                                                                        Text(4185.0, 652.3200000000002, 'gini = 0.0\nsamples = 18\nvalue = [0, 25]\n
                                                                 class = No')]
```


In []: best model:RandomForest