

Claims

WHAT IS CLAIMED IS:

- Sub A1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1. A computing system having a mass storage device and a system timer for obtaining benchmark timing for a portion of an application program execution, the computing system comprising:
 - 4 a mass storage system;
 - 5 an init module for determining if the timestamp data is to be collected during the operation of the application program;
 - 7 a performance marker module for obtaining and storing the timestamp data for later retrieval;
 - 9 an uninit module for formatting and storing the obtained timestamp data into a data file within the mass storage device that permits retrieval after the termination of the application program; and
 - 12 a performance benchmark data post processing module for determining the benchmark timing from two or more timestamp data entries;
 - 14 wherein the performance marker module is executed at predefined points within a plurality of processing modules within the application program.

- Sub B2
1 2 3 4 5 6
1. 2. The system according to claim 1, wherein:
 - 2 the init module is executed before any timestamp data is collected;
 - 3 the performance marker module is executed each time benchmark timestamp data and overhead timestamp data is to be collected;
 - 5 the uninit module is executed after all timestamp data desired has been collected to store the timestamp data within records of a Raw Data Table; and

7 the performance benchmark data post processing module determines the
8 benchmark timing from the records stored within the Raw Data Table.

1 3. The computing system according to claim 2, wherein the init module determines if
2 timestamp data is to be collected.

1 4. The computing system according to claim 3, wherein init module makes the
2 determination that timestamp data is to be collected by checking for the existence of an
3 identification key within a system registry;

4 the identification key uniquely identifies the processing modules to be used to collect,
5 format, and store the run-time internal state data to be collected.

1 5. The computing system according to claim 4, wherein the performance marker
2 module collects timestamp data only if the init module has determined that the timestamp data is
3 to be collected.

1 6. The computing system according to claim 5, wherein the performance marker
2 module generates a data record within the Raw Data Table each time the performance marker
3 module is executed.

1 7. The computing system according to claim 6, wherein the benchmark data record
2 further containing an overhead timestamp data value each time the performance marker module is
3 executed.

1 8. The computing system according to claim 7, wherein the performance marker
2 module stores the benchmark data records within a data memory block within the processing
3 modules identified by an identification key within a system registry.

b2
cmx
PCT/US2016/036699

1 9. The computing system according to claim 8, wherein the ununit module retrieves
2 the data records from the data memory block for transfer to the Raw Data Table on the mass
3 storage device.

1 10. The computing system according to claim 9, wherein the performance benchmark
2 data post processing module determines the benchmark timing from difference between two
3 benchmark timestamp data entries stored within the Raw Data Table to generate a second data
4 Record within a Processed Data Table.

1 11. The computing system according to claim 10, wherein the data record within the
2 Raw Data Table comprises a ResultID field, an AppID field, a MarkerID field, a Marker Cycles
3 Field, and an Overhead Cycles field.

1 12. The computing system according to claim 11, wherein the second data record of
2 the Processed Data Field comprises a ResultID field, a Reboot Iteration field, a Launch Iteration
3 field, a Marker Iteration field, a Marker Pair ID field, and a Seconds Field.

1 13. The computing system according to claim 12, wherein the ResultID field of the
2 Raw Data Table corresponds to the ResultID field in the Processed Data Table.

3 14. The computing system according to claim 12, wherein the Marker Pair ID field
4 corresponds to a second Marker Pair ID field in a Marker Pair Table.

5 15. The computing system according to claim 14, wherein the Marker Pair Table
6 comprises the second Marker Pair ID field, a start App ID field, a start Marker ID field, an End
7 App ID field, an End Marker ID field, and a MarkerPair Name field.

1 16. A method for obtaining benchmark timing for a portion of an application program
2 execution, the method comprising:

3 inserting one or more code markers into the application program at predefined locations
4 within the application program corresponding to the point at which benchmark timing data is
5 desired;

6 determining if benchmark timing data is to be collected at each code marker by checking
7 for the existence of processing modules identified by an identification key within a system
8 registry;

9 if benchmark timing data is to be collected at each code marker:

10 generating a benchmark data record containing the collected benchmark timing
11 data each time the code markers are reached;

12 storing the benchmark data records within a data memory block within the
13 processing modules identified by the identification key within the system registry;

14 retrieving the benchmark data records from the data memory block for transfer to
15 first data record in a Raw Data Table device once all of the run-time internal state data has
16 been collected; and

17 processing the first data records stored within the Raw Data Table to generate
18 second data records in a Processed Data Table that estimate the benchmark timing defined
19 between two benchmark data records.

1 17. The method according to claim 16, wherein the benchmark timing generated and
2 stored within the processed data table is determined from difference between two benchmark
3 timestamp data entries stored within the raw data table.

1 18. The method according to claim 17, wherein
2 the benchmark timing is determined by subtracting an estimate for the total overhead
3 processing from the difference between two benchmark timestamp data entries stored within the
4 raw data table;

5 the estimate for the total overhead processing is determined by totaling the difference
6 between an overhead timestamp value and a benchmark timestamp value for all code markers
7 between the two benchmark timestamp entries used to determine the benchmark timing;
8 the benchmark timestamp value is obtained from a system timer immediately after a code
9 marker is reached; and
10 the overhead timestamp value is obtained from the system timer immediately before the
11 processing returns to the application program from performance marker processing.

*Sub
By
end*

1 19. The method according to claim 18, wherein the first data record within the Raw
2 Data Table comprises a ResultID field, an AppID field, a MarkerID field, a Marker Cycles Field,
3 and an Overhead Cycles field.

1 20. The method system according to claim 19, wherein the second data record of the
2 Processed Data Field comprises a ResultID field, a Reboot Iteration field, a Launch Iteration
3 field, a Marker Iteration field, a Marker Pair ID field, and a Seconds Field.

*Sub
A4*

1 21. The method according to claim 22, wherein the ResultID field of the Raw Data
2 Table corresponds to the ResultID field in the Processed Data Table.

*Sub
B4*

3 22. The method according to claim 21, wherein the Marker Pair ID field corresponds
4 to a second Marker Pair ID field in a Marker Pair Table.

5 23. The method according to claim 22, wherein the Marker Pair Table comprises the
6 second Marker Pair ID field, a start App ID field, a start Marker ID field, an End App ID field, an
7 End Marker ID field, and a MarkerPair Name field.

Sub A1

1 24. A computer data product readable by a computing system and encoding a
2 computer program of instructions for executing a computer process for obtaining run-time
3 internal state data within an application program, said computer process comprising:
4 inserting one or more code markers into the application program at predefined locations
5 within the application program corresponding to the point at which benchmark timing data is
6 desired;
7 determining if benchmark timing data is to be collected at each code marker by checking
8 for a processing modules identified by an identification key within a system registry;
9 if benchmark timing data is to be collected at each code marker:
10 generating a benchmark data record containing the collected benchmark timing
11 data each time the code markers are reached;
12 storing the benchmark data records within a data memory block within the
13 processing modules identified by the identification key within the system registry;
14 retrieving the benchmark data records from the data memory block for transfer to
15 first data record in a Raw Data Table device once all of the run-time internal state data has
16 been collected; and
17 processing the first data records stored within the Raw Data Table to generate second data
18 records in a Processed Data Table that estimate the benchmark timing defined between two
19 benchmark data records;
20 wherein the benchmark timing generated and stored within the processed data table is
21 determined from difference between two data entries stored within the raw data table.

Sub B8

1 25. The computer data product according to claim 24, wherein the benchmark timing
2 is determined by subtracting an estimate for the total overhead processing from the difference
3 between two benchmark timestamp data entries stored within the raw data table;

4 the estimate for the total overhead processing is determined by totaling the difference
5 between an overhead timestamp value and a benchmark timestamp value for all code markers
6 between the two benchmark timestamp entries used to determine the benchmark timing;
7 the benchmark timestamp value is obtained from a system timer immediately after a code
8 marker is reached; and
9 the overhead timestamp value is obtained from the system timer immediately before the
10 processing returns to the application program from performance marker processing.

Sub
B8
Cin

1 26. The computer data product according to claim 25, wherein the first data record
2 within the Raw Data Table comprises a ResultID field, an AppID field, a MarkerID field, a
3 Marker Cycles Field, and an Overhead Cycles field.

1 27. The computer data product system according to claim 26, wherein the second data
2 record of the Processed Data Field comprises a ResultID field, a Reboot Iteration field, a Launch
3 Iteration field, a Marker Iteration field, a Marker Pair ID field, and a Seconds Field.

1 28. The computer data product according to claim 27, wherein the ResultID field of
2 the Raw Data Table corresponds to the ResultID field in the Processed Data Table.

1 29. The computer data product according to claim 28, wherein the Marker Pair ID
2 field corresponds to a second Marker Pair ID field in a Marker Pair Table.

1 30. The computer data product according to claim 29, wherein the Marker Pair Table
2 comprises the second Marker Pair ID field, a start App ID field, a start Marker ID field, an End
3 App ID field, an End Marker ID field, and a MarkerPair Name field.

1 31. The comp[...] data product according to claim 23, wherein the computer data
2 product comprises a computer readable storage medium readable by a computer upon which
3 encoded instructions used to implement the computer process are stored.

*Sub
B8
ord*

00000000000000000000000000000000