Teorema de Cantor

Clase 19

IIC 1253

Prof. Cristian Riveros

Recordatorio: Cardinalidad

Sea A y B dos conjuntos.

Definición

A y B son equinumerosos si existe una biyección $f: A \rightarrow B$.

Si A es equinumeroso con B lo anotaremos como |A| = |B|.

Recordatorio: Cardinalidad

Proposición

La relación $|\cdot| = |\cdot|$ es una **relación de equivalencia**, esto es:

- 1. refleja.
- 2. simétrica.
- 3. transitiva.

Por lo tanto, podemos tomar las clases de equivalencia de $|\cdot| = |\cdot|$.

Definición

Para un conjunto A, denotaremos por |A| su **clase de equivalencia** según la relación $|\cdot| = |\cdot|$.

Recordatorio: Conjuntos numerables

Definición

A es numerable si tiene la misma cardinalidad que un subconjunto de \mathbb{N} .

$$\exists S \subseteq \mathbb{N}. |A| = |S|.$$

Proposición

A es numerable si, y solo si, existe una secuencia (finita o infinita) en A:

$$a_0, a_1, a_2, a_3, \dots$$

- 1. $a_i \neq a_j$ para todo $i \neq j$, y
- 2. para todo $a \in A$, existe un $i \in \mathbb{N}$ tal que $a = a_i$.

A es numerable si, y solo si, todos sus elementos se pueden poner en una **lista**.

Outline

Teorema de Cantor

Aplicación: Algoritmos

Outline

Teorema de Cantor

Aplicación: Algoritmos

Teorema

 \mathbb{R} **NO** es numerable.

Demostración

- Demostraremos que el intervalo (0,1) de \mathbb{R} NO es numerable.
- Por contradicción, suponemos que (0,1) es numerable.
- Entonces existe una lista infinita del los reales en (0,1), donde cada elemento aparece una vez, y solo una vez.

Demostración que $\mathbb R$ NO es numerable											
	Reales	Rep	Representación decimal								
•	<i>r</i> ₀	0.	d ₀₀		d ₀₂		d ₀₄	d ₀₅			
	r_1	0.	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			
	<i>r</i> ₂	0.	d_{20}	d_{21}	d_{22}	d_{23}	d_{24}	d_{25}			
	<i>r</i> ₃	0.	d_{30}	d_{31}	d_{32}	d ₃₃	d_{34}	d_{35}			
	<i>r</i> ₄	0.	d_{40}	d_{41}	<i>d</i> ₄₂	d ₄₃	d ₄₄	d_{45}	•••		
	<i>r</i> ₅	0.	d_{50}	d_{51}	d_{52}	d_{53}	d_{54}	d_{55}	•••		
	;					;			٠.		

Demostración que $\mathbb R$ NO es numerable

Reales	Representación decimal									
<i>r</i> ₀	0.	d ₀₀	d ₀₁	d ₀₂	d ₀₃	d ₀₄	d_{05}			
r_1	0.	d_{10}	d_{11}	d_{12}	d_{13}	d_{14}	d_{15}			
<i>r</i> ₂	0.	d_{20}	d_{21}	d ₂₂	d_{23}	d_{24}	d_{25}			
<i>r</i> ₃	0.	d_{30}	d_{31}	d ₃₂	d ₃₃	d_{34}	d_{35}			
<i>r</i> ₄	0.	d_{40}	d_{41}	d 42	d ₄₃	d ₄₄	d_{45}			
<i>r</i> ₅	0.	d_{50}	d_{51}	d_{52}	d_{53}	d ₅₄	d ₅₅			
:					:			٠.		

- Para cada $i \ge 0$, definamos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$
- Defina el número real: $r = 0.d_0d_1d_2d_3d_4d_5d_6...$

¿aparece r en la lista?

Demostración que R NO es numerable

- Para cada $i \ge 0$, definamos: $d_i = \begin{cases} d_{ii} + 1 & d_{ii} < 9 \\ 0 & d_{ii} = 9 \end{cases}$
- Defina el número real: $r = 0.d_0d_1d_2d_3d_4d_5d_6...$

¿aparece r en la lista?

Veamos:

$$r = r_0?$$

$$r = r_1?$$
 X

-
- $r = r_n$? NO, porque el *n*-esimo digito de *r* es distinto al de r_n :

$$d_n \neq d_{nn}$$

Argumento de diagonalización de Cantor

Georg Cantor (1845 - 1918)

"I see it, but I don't believe it!"

Carta de Cantor a Dedekind.

Argumento de diagonalización de Cantor

Georg Cantor (1845 - 1918)

Técnica inventada por **Georg Cantor** para demostrar que no existe una biyección entre *A* y su conjunto potencia:

$$2^A = \{S \mid S \subseteq A\}$$

Argumento de diagonalización de Cantor

Sea A un conjunto no vacío.

Teorema de Cantor

NO existe una biyección entre A y el conjunto potencia 2^A .

Demostración

■ Si A es finito, el teorema se cumple.

¿por qué?

Supongamos que A es infinito.

Para hacer mas pedagógica la demostración:

- 1. Demostraremos primero que NO existe una biyección de $\mathbb N$ a $2^{\mathbb N}$.
- 2. Demostraremos después que NO existe una biyección de A a 2^A.

Diagonalización entre \mathbb{N} y $2^{\mathbb{N}}$

Suponga (por contradicción) una biyección f entre \mathbb{N} y $2^{\mathbb{N}}$.

Considere la siguiente la matriz:

	0	1	2	3	4	5	6	7	•••
f(0)	1	1	0	1	0	0	1	1	
f(1)	0	0	1	1	1	0	0	1	
f(2)	1	1	1	1	0	0	0	0	
f(3)	1	0	1	0	0	1	0	1	
f(4)	0	0	1	1	0	0	1	0	•••
f(5)	1	1	0	1	0	1	1	1	
f(6)	1	0	0	0	0	0	1	0	
f(7)	1	0	0	1	0	1	1	1	
÷					:				٠.

La coordenada (i,j) es igual a 1 ssi $j \in f(i)$.

Cada conjunto $S \in 2^{\mathbb{N}}$ es una fila en la matriz

Diagonalización entre \mathbb{N} y $2^{\mathbb{N}}$

Ahora considere la diagonal de la matriz:

	0	1	2	3	4	5	6	7	•••
f(0)	1	1	0	1	0	0	1	1	
f(1)	0	0	1	1	1	0	0	1	
f(2)	1	1	1	1	0	0	0	0	
f(3)	1	0	1	0	0	1	0	1	
f(4)	0	0	1	1	0	0	1	0	•••
f(5)	1	1	0	1	0	1	1	1	
f(6)	1	0	0	0	0	0	1	0	
f(7)	1	0	0	1	0	1	1	1	
÷					:				٠.

- El conjunto de la diagonal es igual a $D = \{i \in \mathbb{N} \mid i \in f(i)\} \in 2^{\mathbb{N}}$.
- El complemento de la diagonal es $\bar{D} = \{i \in \mathbb{N} \mid i \notin f(i)\} \in 2^{\mathbb{N}}$.

¿aparece \bar{D} en alguna fila de la matriz?

Diagonalización entre \mathbb{N} y $2^{\mathbb{N}}$

Definición (complemento de la diagonal)

$$\bar{D} = \{ i \in \mathbb{N} \mid i \notin f(i) \} \in \mathbb{N}$$

¿aparece \bar{D} en alguna fila de la matriz?

NO, debido a que $\bar{D} \neq f(x)$ para todo $x \in \mathbb{N}$, ya que:

$$x \in f(x)$$
 ssi $x \notin \bar{D}$

Por lo tanto, no existe una biyección entre $\mathbb N$ y $2^{\mathbb N}$.

¿podemos ocupar el mismo argumento de la "diagonal" para cualquier conjunto *A*?

Diagonalización entre A v 2^A

Por contradicción, suponga que existe una biyección f entre A y 2^A .

Definición (complemento de la diagonal)

$$\bar{D} = \{a \in A \mid a \notin f(a)\}$$

Suponga que existe $x^* \in A$, tal que $f(x^*) = \overline{D}$.

- $\blacksquare \operatorname{Si} x^* \in f(x^*) \Rightarrow x^* \in \overline{D} \Rightarrow x^* \notin f(x^*)$
- Si $x^* \notin f(x^*) \Rightarrow x^* \notin \bar{D} \Rightarrow x^* \in f(x^*)$

Por lo tanto, NO existe una bivección entre $A \vee 2^A$.

¿cuántos infinitos hay?

$$|\mathbb{N}| < |2^{\mathbb{N}}| = |\mathbb{R}| < |2^{2^{\mathbb{N}}}| < |2^{2^{2^{\mathbb{N}}}}| < \cdots$$

Notación: \aleph_0 < \aleph_1 < \aleph_2 < \aleph_3 < ...

Hay una cantidad infinita de distintos infinitos!!

¿hay algún conjunto que tenga una cardinalida (infinitud) intermedia?

¿hay algún infinito entremedio?

Hipótesis del continuo

No existe ningún conjunto A tal que: $|\mathbb{N}| < |A| < |\mathbb{R}|$.

David Hilbert (1862 - 1943)

Uno de los 23 problemas de Hilbert propuestos en 1900

¿hay algún infinito entremedio?

Hipótesis del continuo

No existe ningún conjunto A tal que: $|\mathbb{N}| < |A| < |\mathbb{R}|$.

Kurt Gödel (1906 - 1978)

Paul Cohen (1934 - 2007)

Con los axiomas de teoría de conjuntos (Zermelo-Fraenkel)

1940: **NO** se puede demostrar que la hipótesis es **falsa**.

1963: NO se puede demostrar que la hipótesis es verdadera.

Outline

Teorema de Cantor

Aplicación: Algoritmos

Problemas de decisión

Definición

Un problema de decisión esta compuesto por:

- 1. Un conjunto de inputs (llamados instancias).
 - Números, grafos, palabras, funciones, etc ...
- 2. Una pregunta sobre los inputs que se responde con SI o NO

Problemas de decisión

Ejemplo

Números Primos

Input: Un número N

Pregunta: ¿es N primo?

Busqueda en texto

Input: Una documento de texto D y una palabra w

Pregunta: ¿Aparece w mencionada en D?

Problemas de decisión (definición formal)

Sea \mathcal{I} un conjunto de inputs (instancias).

Definición

Un problema de decisión es una función:

$$P: \mathcal{I} \rightarrow \{0,1\}$$

Ejemplo

Sea PRIMO: $\mathbb{N} \to \{0,1\}$ tal que para todo $n \in \mathbb{N}$:

PRIMO(n) = 1 si, y solo si, n es un número primo.

Por ejemplo:

- PRIMO(49) = 0
- PRIMO(29) = 1
- PRIMO(997) = ?

Solución a los problemas de decisión

Considere su lenguaje de programación favorita (python?).

Definición

Sea \mathcal{I} un conjunto de inputs y $P:\mathcal{I}\to\{0,1\}$ un problema de decisión.

- Una solución Program es un programa en python que recibe inputs en \mathcal{I} y retorna 0 o 1.
- Una solución Program es un solución para el problema de decisión P si para todo input $X \in \mathcal{I}$ se cumple:
 - P(X) = 1 si, y solo si, al ejecutar Program con X retorna 1.

Solución a los problemas de decisión

Ejemplo

```
Sea PRIMO : \mathbb{N} \to \{0,1\} tal que para todo n \in \mathbb{N}:
```

```
PRIMO(n) = 1 si, y solo si, n es un número primo.
```

Una solución para el problema de decisión PRIMO es el siguiente:

```
import math
def is_prime(n):
    if n % 2 == 0 and n > 2:
        return 0
    for i in range(3, n):
        if n % i == 0:
            return 0
    return 1
```

¿cuántas soluciones/programas en python existen?

Simplificación

Todo programa en python

lo podemos representar como una palabra de ceros y unos. (¿por qué?)

Teorema

El conjunto de todas las palabras $\{0,1\}^*$ es numerable.

Demostración (ejercicio)

Considere la siguiente lista infinita de $\{0,1\}^*$:

```
\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111, \dots
```

Corolario

La cantidad de programas en python es numerable.

¿cuántos problemas de decisión existen?

Simplificación

Todo input como números, matrices, conjuntos, relaciónes, etc, lo podemos representar con palabras de ceros y unos. (¿por qué?)

Definición

Un problema de decisión P es una función: $P: \{0,1\}^* \rightarrow \{0,1\}$.

Ejemplo

Sea PRIMO: $\{0,1\}^* \to \{0,1\}$ tal que para todo $n \in \mathbb{N}$:

PRIMO(bin(n)) = 1 si, y solo si, n es un número primo.

- Arr Primo(00110001) = 0
- PRIMO(00011101) = 1
- Primo(0000001111100101) = 1

¿cuántos problemas de decisión existen?

Simplificación

Todo input como números, matrices, conjuntos, relaciónes, etc, lo podemos representar con palabras de ceros y unos. (¿por qué?)

Definición

Un problema de decisión P es una función: $P: \{0,1\}^* \rightarrow \{0,1\}$.

Se define ${\mathcal P}$ como el conjunto de todos los problemas de decisión:

$$\mathcal{P} = \left\{ P : \{0,1\}^* \to \{0,1\} \right\}$$

Teorema

Los conjuntos \mathcal{P} y $2^{\{0,1\}^*}$ son **equinumerosos**.

Demostración: ejercicio.

¿cuántos problemas de decisión existen?

Teorema

- 1. La cantidad de programas en python es numerable.
- 2. La cantidad de problemas de decisión es NO numerable.

(por el Teorema de Cantor)

Conclusión

Hay problemas de decisión que

NO tienen una solución computacional, esto es, no tiene algoritmo.

¿cuál es un problema sin solución en computación?