Software en Tiempo Real

Msc. Ing. Carlos Centeno Ingeniería Electrónica UTN FRC

Año 2023

Condiciones de la Materia

REGULARIDAD

- Asistencia del 75% sumadas clases teóricas y clases prácticas.
- o Presentación de Trabajos Prácticos desarrollados sobre un sistema embebido a elección.

APROBACION DIRECTA

- Ser Regular.
- Aprobar Parcial o Recuperatorio con nota Mayor o igual a 7.

FINAL

 Presentación de Trabajo Integrador en turno de exámen.

- Fases de DISEÑO
 - Especificación del producto
 - Definición del Hardware mínimo
 - Evaluación de dispositivos conocidos disponibles
 - o Diseño del software acorde al hardware seleccionado.
 - o Uso de compilador específico a la plataforma.
 - Conocer las consideraciones particulares de la herramienta elegida.
 - Empleo de emulador y/o simulador.
 - o Implementación del Hardware y sus circuitos asociados.
 - o Desarrollo y fabricación de prototipo.

- Fases de DISEÑO
 - Integración del SOFT en el HARD
 - o Testeo del sistema embebido en Laboratorio.
 - o Generación de Manuales.
 - Test de campo.
 - o Generación de Preserie.
 - o Generación de Serie.
 - Implementación y/o distribución de Actualizaciones.

- Especificación del Producto/Sistema
 - Se puede partir desde la definición del sistema hacia sus componentes específicos.
 - Se pueden definir las partes específicas para luego realizar la correspondiente integración.
 - Debe ser precisa y aceptada por el cliente.
 - Deben participar la mayor cantidad de actores involucrados en la posterior implementación.
 - Se deben determinar
 - o Requerimientos → Punto de Vista Usuario
 - Especificaciones → Punto de Vista Desarrollador.

- Definición del HARDWARE
 - Siempre se deben tener en cuenta al momento de iniciar los puntos a futuro que desea potenciar el cliente.
 - o Posibilidad de actualización del SOFT.
 - Incremento de capacidades del HARD.
 - Compatibilidad con otras familias.
 - El lenguaje y sus particularidades según la plataforma empleada.
 - Herramientas de desarrollo disponibles.
 - RTOS disponible.

- Definición del HARDWARE
 - La definición de la plataforma a utilizar nos indica la forma en que se emplearán los recursos disponibles.
 - La definición de la plataforma indicará que periféricos y/o interfaces integradas estarán disponibles.
 - Para el empleo de un recurso es necesaria la programación del mismo, asignado a sus registros particulares de configuración valores determinados. (Uso de RS232 → Velocidad: 9600 bps → Trama: 8N1)

o Definición del HARDWARE

TABLE 18-3: BAUD RATES FOR ASYNCHRONOUS MODES

IADEL		DAOD		OII AO		011000	MODEO					
BAUD RATE (K)	SYNC = 0, BRGH = 0, BRG16 = 0											
	Fosc = 40.000 MHz			Fosc = 20.000 MHz		Fosc = 10.000 MHz			Fosc = 8.000 MHz			
	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)	Actual Rate (K)	% Error	SPBRG value (decimal)
0.3	_	_	_	_	_	_		_	_	_	_	
1.2	-	_	_	1.221	1.73	255	1.202	0.16	129	1201	-0.16	103
2.4	2.4	4 70	055	0.404	0.40	100	0.404	0.40	0.4	0400	0.40	E4
9.6	9.6				Do DI	001/ 014		(a DIT				

FIGURE 11-1:

19.2

57.6

115.2

19.

56.

125.

TIMERO BLOCK DIAGRAM (8-BIT MODE)

Note: Upon Reset, Timer0 is enabled in 8-bit mode with clock input from ToCKI max. prescale.

Tipos de Variables

- Con Signo
- Sin Signo UNSIGNED
- o CHAR (1byte)
 - o 0 a 255
 - o -128 a 127
- o INT (2 byte)
 - o 0 a 65535
 - -32768 a 32767
- FLOAT (4bytes)
 - o 1x10 exp 37
 - 1x10 exp -37
- DOUBLE (8bytes)
 - 1x10 exp 308
 - 1 x10 exp -308
- LONG (4 byte)
- SHORT (2 byte)
 - 32767
 - -32768

- Vectores
 - int vector [dimension]
- Matrices
 - o int nombre [fila] [columna]
- Estructuras
 - Conjunto de distintos datos struct { int dato1; char dato2; }nombre;
 - Forma de uso nombre.dato1 = 10:

Estructuras de Control

```
SWITCH
FOR
                                        switch(variable)
for(inicio; condicion; incremento)
                                           case valor1:
  operaciones
                                                     break;
                                           case valor2:
                                                     break;
WHILE
                                           Default:
while (condicion)
  operaciones
                                       IF-ELSE
                                        if(condición)
```

operación

operación

else

Funciones

- TIPOS
 - Sin recepción de parámetros void funcion(void)
 - Con recepción de parámetros void funcion(int a, char b)
 - Sin devolución de parámetros void funcion(void) void funcion(int a, char b)
 - Con devolución de parámetros int funcion(int a, char b)

```
void delay(int tiempo)
   int i=0;
   for(i=0; i <= tiempo * 123; i++)
    #asm
    nop
    nop
    nop
     #endasm
int suma(int A, int B)
   int valor;
   valor = A + B;
   return valor;
```

Punteros a Función

```
int (*funcion)(int, int);
int (*funcion1)(int, int);
int suma (int, int);
int resta(int, int);
void main(void)
 funcion = suma;
 funcion1 = resta;
 printf("La suma es \%d" y la resta es \%d", funcion(3,5), funcion1(32,12));
int suma(int a, int b){
 return a+b;
int resta(int a, int b){
 return a-b;
```

Operaciones a Nivel de BITS

AND

Α	В	Salida
0	0	0
0	1	0
1	0	0
1	1	1

OR

Α	В	Salida
0	0	0
0	1	1
1	0	1
1	1	1

1	0	0	1	1	0	0	1
&							
0	0	0	1	0	0	0	0
0	0	0	1	0	0	0	0
1	0	0	1	1	0	0	1
&							
1	1	1	0	1	1	1	1
1	1 0	0	0	1	1 0	0	1
1	0	0	0	1	0	0	1
1	0	0	0	1	0	0	1

Directivas del Preprocesador

- Son sentencias del compilador que permiten entre otras cosas:
 - Una mayor facilidad al momento de desarrollar código y/o programas
 - o Poder leer con facilidad un código
 - Poder modificar con facilidad
 - Una mayor transparencia del código entre diversas arquitecturas de máquinas.

Directivas del Preprocesador

#include "stdio.h"

 Incluye un archivo fuente, en este caso la librería stdio.h para luego poder compilar ambos.

#define MAXIMO 125

 Se usa para definir constantes o macros. Este "rótulo" será reemplazado cada vez que se mencione en el código.

```
#define FALSO 0
#define VERDADERO !FALSO
#define MIN(a,b) (a < b) ? a : b
```

Directivas del Preprocesador

```
#define MEX 0
#define EUA 1
#define FRAN 2
#define PAIS ACTIVO MEX
#if PAIS_ACTIVO == MEX
  char moneda[]="pesos";
#elif PAIS_ACTIVO == EUA
  char moneda[]="dolar";
#else
  char moneda[]="franco";
#endif
```

Consideraciones Especiales

- Cuando usar RTOS
 - Es conveniente
 - Que recursos necesito
 - Cual es la definición concreta de RTOS
- Cuales son las opciones en el mercado

Super Bucle

- Resolvamos un ejemplo
 - Implementar un Sistema Embebido que controle secuencias temporales en salidas digitales.
 - Usar topología Super Loop.
 - El control de tiempo se realiza con espera pasiva.

Secuencia

- Salida 1:
 - Alto: 1mS
 - Bajo: 1mS
- Salida 2:
 - Alto: 2mS
 - Bajo: 2mS
- Salida 3:
 - Alto: 3mS
 - BAjo: 4mS

