

Vorlesung Fertigungstechnik

Prof. Dr.-Ing. Klaus Dröder, Dr.-Ing. Anke Müller, 19. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Kapitel 7 Stoffeigenschaften ändern

Dr.-Ing. Anke Müller, 19. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik

Einheiten der Vorlesung Fertigungstechnik

Einteilung der Fertigungsverfahren nach DIN 8580

Einteilung der Fertigungsverfahren nach DIN 8580

Schaffen der Form	Ändern der Form			Stoffeigen- sch. ändern			
Zusammenhalt schaffen	Zusammenhalt beibehalten	Zusammenhalt vermindern	Zusammenhalt vermehren		Zusatzmodule und Schwerpunkte		
	₽	*	1 4	(4)	•		
Urformen 2	Umformen 3	Trennen 4.1 Grundlagen der Zerspannung 4.2 Spanen mit geom. best. Schneide 4.3 Spanen mit geom. unbest. Schne 4.4. Abtragen 4.1 4.2 4.3 4.4		Stoffeigen- schaften ändern	Generative Fertigung	Hybrider Leichtbau Prozest überwa ung	s-

Bildquellen: Pexels

Technische

Universität Braunschweig

Einheiten der Vorlesung Fertigungstechnik Beschichten

Einteilung der Fertigungsverfahren nach DIN 8580 Zusatzmodule und Zusammenhalt Zusammenhalt Zusammenhalt Zusammenhalt schaffen beibehalten vermindern Schwerpunkte vermehren Stoffeigenschaften ändern

Bildquellen: Pexels

Ziele der heutigen Vorlesung

Verfestigen durch Umformen (Kaltumformung)

Verfestigung durch Walzen oder Ziehen:

Ziehen

Walzen

Prozess:

Beim Kaltwalzen/-ziehen wandern die Versetzungen im Material durch das Kristallgitter und auch neue Versetzungen entstehen:

→ Die Zugfestigkeit des Stahls wird gesteigert

Anwendung:

Stahlplatten, Stahlstäbe

Verfestigungsstrahlen:

Prozess:

Kugelförmige Partikel werden durch Pressluft oder Fliehkraft auf die Bauteiloberfläche geschossen:

- → Plastische und elastische Verformungen in der Bauteilrandschicht
- → Erhöhte Beständigkeit und Lebensdauer

Anwendung:

 Bei Federn, Antriebswellen, Kurbelwellen, Zahnrädern, Turbinenschaufeln, usw.

Wärmebehandlung

Behandlung durch "Wärme" erfolgt üblicherweise in drei Schritten:

1. Erwärmen

Temperatur der Randschicht eilt vor, nach Anwärmzeit t_{an} ist die Halttemperatur ϑ_h erreicht, der Kern braucht dazu noch die Durchwärmzeit t_d , bis dahin ist die Erwärmzeit t_e verstrichen

2. Halten

Wärmzeit t_h mit konstanter Temperatur. Dabei können sich Spannungen und Gefügeunterschiede ausgleichen

3. Abkühlen

Abkühlzeit t_{ab}, je nach Verfahren kürzer (Härten) oder länger (Glühen)

Ziele der Wärmebehandlung

Verringern oder Erhöhen der Festigkeit (z.B. Härten, Normalisieren, Weichglühen)

Verbesserung der spangebenden Bearbeitbarkeit (z.B. Weichglühen, Grobkornglühen)

Beseitigen oder Verringern von Seigerungen (z.B. Diffusionsglühen)

Einstellen bestimmter Eigenschaften

Beseitigen der Auswirkung der Kaltverformung (Rekristallisationsglühen, Normalisieren)

Erzeugen bestimmter Gefügezustände (z.B. Normalisieren, Weichglühen, Härten)

Beseitigen von Eigenspannungen (z.B. Spannungsarmglühen)

Ändern der Korngröße (z.B. Normalisieren, Rekristallisationsglühen, Grobkornglühen)

Wärmebehandlung

Glühverfahren

Quelle: Europa Lehrmittel

Wärmebehandlung

Glühverfahren

Wärmebehandlung

Härten und Vergüten

Härten und Vergüten: Werkstoff erhält die Eigenschaftskombination Härte-Zähigkeit

Quelle: Weißbach

Randschichthärten

Randschichthärten

Flammhärten

Induktionshärten

Laserhärten

Umschmelzhärten durch Lichtbogen Tauchhärten in Salz / Metallbad

Induktionshärten

Laserhärten

Thermomechanische Verfahren

Verfahren der Umformung werden unmittelbar mit der Wärmebehandlung verknüpft.

Verfahren	Ablauf	Ziel
Austenitformhärten	Sofortige Umformung unterhalb der Rekristallisationstemperatur	Äußerst feinkörniges Martensitgefüge, höhere Festigkeit und Zähigkeit
Formhärten(Presshärten)	Nach Austenitisierung unter Schutzgas bei >950 °C wird im wassergekühlten Werkzeug umgeformt und auf 100 °C bis 200 °C abgekühlt	Sehr hohe Festigkeit, besonders für dünnwandige Verstärkerteile für Karosserien

hart (Widerstandsfähigkeit im Crash-Fall)

weich (Energieaufnahmefähig im Crash-Fall)

Video

Formhärten

Sonstige

Vorlesung Fertigungstechnik

Technische

Universität

Prof. Dr.-Ing. Klaus Dröder, Dr.-Ing. Anke Müller, 16. Juni 2018 Institut für Werkzeugmaschinen und Fertigungstechnik