

树莓派下位机源码解析

一. 树莓派下位机源码流程图

二. 树莓派所需要使用的库

import os 导入系统命令模块

例: print 'hello'

from socket import * 导入 socket 模块

例: tcpSerSock=socket(AF_INET,SOCK_STREAM)

from time import ctime 导入字符串日期模块

例: print ctime()

Thu Dec 15 15:00:40 2016

import binascii 导入二进制编码转换模块

例: s = 'hello'

 $b = b2a_hex(s)$

print b

68656c6c6f

import RPi.GPIO as GPIO 导入树莓派 python 的 GPIO 库

例: GPIO.setup(LED0,GPIO.OUT,initial=GPIO.HIGH)

import time 导入时间库

例: time.sleep(1)

import threading 导入线程模块

例: threads = []

t1 = threading.Thread(target=Cruising_Mod,args=(u'模式切换',))

threads.append(t1)

from smbus import SMBus 导入舵机驱动模块

例: XRservo.XiaoRGEEK SetServo(0x01,90)

import cv2 导入 OpenCV-Python 库

例: cap = cv2.VideoCapture(0) 使用 opencv 打开摄像头

import numpy as np 引入数组结构

from subprocess import call 导入子进程模块

例: call("sh start mjpg streamer.sh &",shell=True)

注: python 引入模块时 import 与 from ... import 的区别

import datetime 是引入整个 datetime 包,如果使用 datetime 包中的 datetime 类,需要加上模块名的限定。

import datetime

print datetime.datetime.now()

如果不加模块名限定会出现错误: TypeError: 'module' object is not callable \ AttributeError: 'module' object has no attribute 'now'

from datetime import datetime 是只引入 datetime 包里的 datetime 类,在使用时无需添加模块名的限定。

from datetime import datetime

print datetime.now()

总结: Python 导入模块的方法有两种: import module 和 from module import, 区别是前者所有导入的东西使用时需加上模块名的限定, 而后者不需要。

三. 树莓派 python GPIO

也可以用 putty 登入树莓派系统后,输入 gpio readall 命令查看对应的 GPIO 对照表

BCM	W	Pi	Name												Name			
	Ī		3.3v							2			i		5v	Ī		
2		8	SDA.1	ALTO	13	L	1	3	11	4	1				5v	1	1	
3		9	SCL.1	ALTO	1 3	L	1	5	11	6	1				0v	1	1	
4		7	GPIO. 7	IN	1 0)	1	7	11	8	1	1		ALT5	TxD	1	15	14
			0 v	1	1		1	9	11	10	1	1		ALT5	RxD	1	16	15
17		0	GPIO. 0	OUT	1 0		1	11	11	12	1	1		IN	GPIO. 1	1	1	18
27		2	GPIO. 2	IN	1 3	L	ı.	13	11	14	1				0v	1	1	
22		3	GPIO. 3	IN	1 3	L	ı.	15	11	16	1	1		IN	GPIO. 4	1	4	23
			3.3v	1	1		1	17	11	18	1	1		IN	GPIO. 5	1	5	24
10		12	MOSI	OUT	13	L	1	19	11	20	1				0v	1	1	
9		13	MISO	OUT	1 3	L	1	21	11	22	1	1		OUT	GPIO. 6	1	6	25
11		14	SCLK	ALTO	1 ()	1	23	11	24	1	0	1	OUT	CE0	1	10	8
			0 v	1	1		L	25	11	26	1	1		OUT	CE1	1	11	7
0		30	SDA.0	IN	13	L	1	27	11	28	1	1		IN	SCL.0	1	31	1
5		21	GPIO.21	IN	1 3	L	L	29	11	30	1				0.0	1		
6		22	GPIO.22	IN	1 3	L	П	31	11	32	1	0		IN	GPIO.26	1	26	12
13		23	GPIO.23	OUT	1 3	L	П	33	11	34	1				0v	1		
19		24	GPIO.24	OUT	1 0		П	35	11	36	1	0		OUT	GPIO.27	1	27	16
26		25	GPIO.25	OUT	1 0)	П	37	11	38	1	1		OUT	GPIO.28	1	28	20
] 0v												GPI0.29			21
BCM	W	Pi	 Name															BCM

引脚定义和相关参数定义

```
XRservo = SMBus(1)
     print '...WIFIROBOTS START!!!...'
global Path_Dect_px
23
24
     Path_Dect_px = 320
global Path_Dect_on
25
26
     Path_Dect_on = 0
28
29
     30
31
     GPIO.setmode (GPIO.BCM)
33
34
     LED0 = 10
LED1 = 9
36
37
     LED2 = 25
38
     #######电机驱动接口定义###############
39
40
     ENA = 13 → #//L298 使能A
ENB = 20 → #//L298 使能B
IN1 = 19 → #//电机接口1
42
     IN2 = 16 → #//电机接口2
     IN3 = 21 \longrightarrow \#//电机接口3
IN4 = 26 \longrightarrow \#//电机接口4
44
45
46
47
48
     49
50
51
52
53
54
     55
56
58
59
60
61
62
63
64
     global RevStatus
     RevStatus = 0
66
67
     global TurnAngle
     TurnAngle=0;
     global Golength
69
     Golength=0
     buffer = ['00','00','00','00','00','00']
     global motor_flag
     motor_flag=1
```


初始化引脚

```
****<del>*</del>
       #######*管脚类型设置及初始化########
       *****************************
 83
 84
       GPIO.setwarnings(False)
 85
       ########led初始化为000#########
 86
       GPIO.setup(LEDO,GPIO.OUT,initial=GPIO.HIGH)
 88
       GPIO.setup(LED1,GPIO.OUT,initial=GPIO.HIGH)
 89
       GPIO.setup(LED2,GPIO.OUT,initial=GPIO.HIGH)
 90
      ########电机初始化为LOW#########
 91
      GPIO.setup(ENA,GPIO.OUT,initial=GPIO.LOW)
 92
      ENA_pwm=GPIO.PWM(ENA,1000)
 93
       ENA_pwm.start(0)
 94
      ENA pwm.ChangeDutyCycle(100)
 95
       GPIO.setup(IN1,GPIO.OUT,initial=GPIO.LOW)
 96
      GPIO.setup(IN2,GPIO.OUT,initial=GPIO.LOW)
 97
 98
       GPIO.setup(ENB,GPIO.OUT,initial=GPIO.LOW)
 99
      ENB_pwm=GPIO.PWM(ENB,1000)
       ENB_pwm.start(0)
       ENB_pwm.ChangeDutyCycle(100)
       GPIO.setup(IN3,GPIO.OUT,initial=GPIO.LOW)
103
       GPIO.setup(IN4,GPIO.OUT,initial=GPIO.LOW)
104
106
       ########红外初始化为输入,并内部拉高#######
       GPIO.setup(IR_R,GPIO.IN,pull_up_down=GPIO.PUD_UP)
       GPIO.setup(IR L,GPIO.IN,pull_up_down=GPIO.PUD_UP)
GPIO.setup(IR_M,GPIO.IN,pull_up_down=GPIO.PUD_UP)
       GPIO.setup(IRF_R,GPIO.IN,pull_up_down=GPIO.PUD_UP)
       GPIO.setup(IRF_L,GPIO.IN,pull_up_down=GPIO.PUD_UP)
114
115
       ########超声波模块管脚类型设置########
116
       GPIO.setup(TRIG,GPIO.OUT,initial=GPIO.LOW) #超声波模块发射端管脚设置trig
GPIO.setup(ECHO,GPIO.IN,pull_up_down=GPIO.PUD_UP) #超声波模块接收端管脚设置echo
118
```

四. 树莓派运行函数

Open_Light() 开灯

Close Light() 关灯

init light() 流水灯

Motor Forward() 电机前进

Motor Backward() 电机后退

Motor_TurnLeft() 电机左转

Motor_TurnRight() 电机右转

Motor_Stop() 电机停止

forward() 校准后的前进方向

back() 校准后的后退方向

left() 校准后的左转方向

right() 校准后的右转方向

ENA_Speed(EA_num) ENA 速度控制

ENB Speed(EB num) ENB 速度控制

Angle_cal(angle_from_protocol) 将字符型角度转换成 int 型角度并返回

SetServoAngle(ServoNum,angle_from_protocol) 设置舵机角度,例: SetServoAngle(1,'90') 设置舵机 1 号的角度为 90 度

Avoiding() 红外避障函数

TrackLine() 巡线函数

Follow() 红外跟随函数

Get Distence() 超声波测距函数

Avoid_wave() 超声波避障函数

Route() 路径规划函数

Send_Distance() 向上位机发送超声波数据

Cruising_Mod(func) 模式切换函数

Path Dect() 摄像头巡线函数

Path_Dect_img_processing() 摄像头获取地图信息

Communication_Decode() 数据包解码

while True: 主进程函数

```
-while True:
 print 'waitting for connection ... '
 tcpCliSock,addr=tcpSerSock.accept()
 print '...connected from: ',addr
while True:
try:
 data=tcpCliSock.recv(BUFSIZ)
 data=binascii.b2a_hex(data)
except:
 print "Error receiving:"
    break
if not data:
 break
if rec flag=0:
if data=='ff':
 buffer[:]=[]
 rec_flag=<mark>1</mark>
else:
if data=='ff':
 rec_flag=0
☐ if i=3:
 print 'Got data', str(buffer) [1:len(str(buffer)) - 1], "\r"
    Communication Decode();
    ----i=0
else:
 buffer.append(data)
    <u>i+=1</u>
 #print(binascii.b2a_hex(data))
 tcpCliSock.close()
 Motor_Stop()
 tcpSerSock.close()
```


官网: www.xiao-r.com

论坛: www.wifi-robots.com

官方商城: wifi-robots.taobao.com

微信公众号:

