- 1. State the difference between
 a) Avalanche and Zener breakdawn
 b) Drift and Siffusion Current
- a) Avalonche and Zener breakdown

-			
Sido	Avolonene beakdown	Zener breakdown	
3.	The process of applying high voltage and ancreasing the free electrons or electric current in semiconductors and insulating materials is called on avalanche breakdown.	The process in which the electron move across the barrier from the volume band of prtype material to the conduction band of notype material is known as zener breakdown.	
	The Increase in temperature increases the breakdown voltage.	The forcease in temperature decreoses the breakdown voltage.	
3.	The VI Characteristics curve of the avalonche breakdown is not as shorp of the Zener breakdown.	The VI characteristics of a Zener brandown has a sharp known.	
ц.	It occurs in diedes that one highly doper.	It occurs in diades that are lightly dopose.	
5	The potential bartier is destroyed	The potential bartier is not destroyed on this case.	

b) Drift and diffusion Current

S.al	Drift current	Diffusion Current
1.	71 is due to the movement of courters in response to an implemented electric field.	the motion of charge carters from higher concentration to bower concentration products diffusion current.
2.	Positive anters or holes their the came direction as the electric field, while negative carriers or electrons flow in the reverse direction.	there is a non-uniform concentration of contints or a concentration gradient.
3.	The drift velocity rises with on increasing electric field and mailing the mobility of the transmitters.	The repulcive fores will drive carriers diffusion, leading to a variation in Concentrations and eventually a uniterm arrangement.
4.	It requires electrical energy for the process of drift current.	
5,	The direction of this current moidy deponds on the polarity of the applied electric field.	The direction of this current moinly depends on the charge within the concentrations of course.

- The severce soluration ament at 300% of a Ge digle is 5 microamp. Find the voltage to be applied across the Junction to obtain a forward current of somA.
- The corrent I for an applied voltage V Ps given for a Ge p-n dide by

Hee,

so, the required voltage is 0238 V.

- 3) A centre top full wave reltifier uses two diodes with an equivalent forward resistance 5052. If the imput aic voltage 95 to sin(200Pit) and the load resistance of 950se calculate.
 - P) Peak, average and rimis value of current
 - P9) Efficiency
- 177) Ripple Factor.

$$I_{av} = I_{dc} = \frac{21_m}{\pi}$$

= $\frac{2 \times 0.01}{\pi} = 6.366 \times 10^{-3} \text{ A}$

$$f_{ems} = \frac{I_m}{\sqrt{2}} = \frac{0.01}{\sqrt{2}} = 7.07 \times 10^{-3} A$$

$$Q = 81.3 \times \frac{RL}{R_{f} + R_{L}}$$
=81.3 \times \frac{950}{50 + 950}

$$\frac{\int I^2 Ac}{I^2 pc} - 1$$

$$= \sqrt{\frac{(7.07 \times 10^{-3})^2}{(6.366 \times 10^{-3})^2}} - 1$$

4.

Explain the characteristics of a zener diade and discuss how it can be used as voltage regulator.

=>

A zener diode Ps a special type of diode designed to operate in the severse breakdown region of the voltage -current characteristic curve. It is designed to mountain a constant voltage across the ferminals over a wide range of currents.

The characteristics of a Zener diode are as follow: -

- 1. Break down voltage! The Zenor diode as designed to operate in the brackdown region, which is called the Zenor breakdown region. At a certain voltage, the diode starts to conduct heavily in the leverse direction, allowing current to flow through it.
- 2. Voltage regulation: The zenes diade con mountain a constant voltage across its terminals over a wide range of current variations. This mouses it on ideal device for voltage regulation.
- 3. Low zener impedance: The zener diode has a low zener impedance, which means it can pass a large current for a small change in voltage.
- 4. High stability: The zener dide has high stability in terms of its voltage regulation characteristics. This mean that it can maintain a contact uplage across the terminals over a wide range of temperature and local variations.

Zener diode can be used as voltage regulator in two different ways: as a strint regulator or as a series regulator. In a shunt regulator, the Zener diode is connected in parallel with the load, while in a series regulator, the zener diode is connected in series with the load.