Lecture 2 - Monte Carlo Methods

Dahua Lin

The Chinese University of Hong Kong

Monte Carlo Methods

Monte Carlo methods are a large family of computational algorithms that rely on random sampling. These methods are mainly used for

- Numerical integration
- Stochastic optimization
- Characterizing distributions

Motivation: Expectations in Statistical Analysis

Computing *expectation* is perhaps the most common operation in statistical analysis.

• Computing the *normalization factor* in posterior distribution:

$$p(x|y) = \frac{p(y|x)p(x)}{\int_{X} p(y|x')p(x')dx'} = \frac{p(x,y)}{E_{X}[p(X,y)]}.$$

Computing marginalization:

$$p(x) = \int_{Z} p(x, z) dz = E_{Z}[p(x, Z)].$$

Computing expectation of functions:

$$E_X(f(X)) = \int_X f(x)p(x)dx.$$

Computing Expectation

• Generally, expectation can be written as.

$$E[f(x)] = \int f \mu(dx).$$

- This formula can be expanded to different forms depending on the base measure dx:
 - For discrete space:

$$E[f(x)] = \sum_{k \in \Omega} f(k)P(x = k).$$

• For continuous space and *Riemann-integrable* function *f*:

$$E[f(x)] = \int_{\Omega} f(x) dx.$$

ullet Complexity grow exponentially as dimension of Ω increases

Monte Carlo Integration

• (Strong) Law of Large Numbers (LLN): Let $X, X_1, X_2, ...$ be i.i.d random variables and f be a measurable function. Let $I_n(f) \triangleq \frac{1}{n} \sum_{i=1}^n f(X_i)$, then

$$I_n(f) \xrightarrow{a.s.} E[f(X)], \text{ as } n \to \infty.$$

• We can use sample mean to approximate expectation:

$$E[f(X)] \simeq \frac{1}{n} \sum_{i=1}^{n} f(x_i)$$

• How many samples are enough?

Variance of Sample Mean

• By the Central Limit Theorem (CLT):

$$\sqrt{n}(I_n(f) - E[(f(X))]) \xrightarrow{d} \mathcal{N}(0, \sigma_f^2), \text{ as } n \to \infty.$$

Here, σ_f^2 is the variance of f(X).

- The variance of f(X) is σ_f^2/n . The number of samples required to attain a certain variance σ_ϵ^2 is at least $\sigma_f^2/\sigma_\epsilon^2$.
- The variance σ_f^2 is usually a polynomial of the dimension of X, and even a constant in some cases.

Random Number Generation

- All sampling methods rely on a stream of *random numbers* to construct random samples.
- "True" random numbers are difficult to obtain. A more widely used approach is to use computational algorithms to produce long sequences of apparently random numbers, called pseudorandom numbers.
- The sequence of pseudorandom numbers is determined by a seed.
 - If a randomized simulation is based on a single *random stream*, it can be *exactly* reproduced by fixing the *seed* initially.

Pseudorandom Number Generators

- Linear Congruential Generator (LCG): $m = 2^{32}$ or 2^{64} .
 - C and Java's builtin.
 - Useful for simple randomized program.
 - Not good enough for serious Monte Carlo simulation.
- Mersenne Twister (MT): $m = 2^{19937} 1$
 - Passes Die-hard tests, good enough for most Monte Carlo experiments
 - Provided by C++'11 or Boost
 - Default RNG for MATLAB, Numpy, Julia, and many other numerical softwares
 - Not amenable to parallel use
- Xorshift1024: $m = 2^{1024}$
 - Proposed in year 2014
 - Passes BigCrush
 - Incredibly simple (5 6 lines of C code)

Sampling from a Discrete Distribution

Let p be the probability mass function over $\{1, \ldots, K\}$. Please design an algorithm to sample from this distribution and analyze its complexity.

Sampling from a Discrete Distribution

Let p be the probability mass function over $\{1, \ldots, K\}$. Please design an algorithm to sample from this distribution and analyze its complexity.

- Linear search: O(K)
- Sorted search: O(K), but much faster when prob. mass concentrates on a few values
- Binary search: $O(\log_2 K)$, but each step is a bit more expensive
- Can we do better?

Sampling from a Discrete Distribution

Let p be the probability mass function over $\{1, \ldots, K\}$. Please design an algorithm to sample from this distribution and analyze its complexity.

- Linear search: O(K)
- Sorted search: O(K), but much faster when prob. mass concentrates on a few values
- Binary search: $O(\log_2 K)$, but each step is a bit more expensive
- Can we do better?
- Huffman coding: O(K) preprocessing + O(Entropy) per sample
- Alias methods (by A. J. Walker): O(K) preprocessing + O(1) per sample

• Let F be the cumulative distribution function (cdf) of a distribution D. Let $U \sim \mathrm{Uniform}([0,1])$, then $F^{-1}(U) \sim D$.

- Let F be the cumulative distribution function (cdf) of a distribution D. Let $U \sim \mathrm{Uniform}([0,1])$, then $F^{-1}(U) \sim D$.
- **(Proof):** Let $X = F^{-1}(U)$:

$$P(X \le t) = P(F^{-1}(U) \le t) = P(U \le F(t)) = F(t).$$

• How to generate a exponentially distributed sample ?

- Let F be the cumulative distribution function (cdf) of a distribution D. Let $U \sim \mathrm{Uniform}([0,1])$, then $F^{-1}(U) \sim D$.
- **(Proof):** Let $X = F^{-1}(U)$:

$$P(X \le t) = P(F^{-1}(U) \le t) = P(U \le F(t)) = F(t).$$

- How to generate a exponentially distributed sample?
- How to draw a sample from a multivariate normal distribution $\mathcal{N}(\mu, \mathbf{\Sigma})$?

- Let F be the cumulative distribution function (cdf) of a distribution D. Let $U \sim \mathrm{Uniform}([0,1])$, then $F^{-1}(U) \sim D$.
- (Proof): Let $X = F^{-1}(U)$:

$$P(X \le t) = P(F^{-1}(U) \le t) = P(U \le F(t)) = F(t).$$

- How to generate a exponentially distributed sample?
- How to draw a sample from a multivariate normal distribution $\mathcal{N}(\mu, \mathbf{\Sigma})$?
- (Algorithm):
 - Perform Cholesky decomposition to get **L** s.t. $\mathbf{L}\mathbf{L}^T = \mathbf{\Sigma}$.
 - Generate a vector **z** comprised of iid values from $\mathcal{N}(0,1)$
 - lacksquare Let $\mathbf{x} = \mathbf{L}\mathbf{z}$.

Rejection Sampling

- (Rejection sampling algorithm): To sample from a distribution p(x), which has $p(x) \le Mq(x)$ for some $M < +\infty$:
 - Sample $x \sim q(x)$
 - Accept x with probability $\frac{p(x)}{Mq(x)}$.

Rejection Sampling

- (Rejection sampling algorithm): To sample from a distribution p(x), which has $p(x) \le Mq(x)$ for some $M < +\infty$:
 - Sample $x \sim q(x)$
 - Accept x with probability $\frac{p(x)}{Mq(x)}$.
- Expected acceptance rate:

$$P(\mathsf{accept}) = \int rac{p(x)}{Mq(x)} q(x) \mu(dx) = rac{1}{M}.$$

• What are the problems of this method?

Importance Sampling

- Basic idea: generate samples from an easier distribution q(x), which is often referred to as the proposal distribution, and then reweight the samples.
- Let p(x) be the target distribution and q(x) be the proposal distribution, which have $p \prec q$ (meaning p is alsolutely continuous w.r.t. q), and let the importance weight be w(x) = p(x)/q(x). Then

$$E_p[f(x)] = E_q[w(x) \cdot f(x)].$$

• We can approximate $E_p[f(x)]$ with:

$$E_p[f(x)] \simeq I_{q,n}(f) \triangleq \frac{1}{n} \sum_{i=1}^n w(x_i) f(x_i), \text{ with } x_1, \dots, x_n \sim q$$

By the strong law of large numbers, we have $I_{q,n}(f) \xrightarrow{a.s.} E_p[f]$, as $n \to \infty$.

Variance of Importance Sampling

• How to choose a good proposal distribution q?

Variance of Importance Sampling

- How to choose a good proposal distribution q?
- The variance of w(x)f(x) is

$$\operatorname{var}_{q}(w(x)f(x)) = E_{q}[w^{2}(x)f^{2}(x)] - (E_{p}[f])^{2}$$

The 2nd term does not depend on q, while the 1st term has

$$E_q[w^2(x)f^2(x)] \ge (E_q[w(x)|f(x)|])^2 = (E_p[|f(x)|])^2.$$

The lower bound is attached when w(x)|f(x)| is a constant:

$$\hat{q}(x) = \frac{|f(x)| p(x)}{\int |f(x)| p(x) \mu(dx)}.$$

Variance of Importance Sampling

- How to choose a good proposal distribution q?
- The variance of w(x)f(x) is

$$\operatorname{var}_{q}(w(x)f(x)) = E_{q}[w^{2}(x)f^{2}(x)] - (E_{p}[f])^{2}$$

The 2nd term does not depend on q, while the 1st term has

$$E_q[w^2(x)f^2(x)] \ge (E_q[w(x)|f(x)|])^2 = (E_p[|f(x)|])^2.$$

The lower bound is attached when w(x)|f(x)| is a constant:

$$\hat{q}(x) = \frac{|f(x)| p(x)}{\int |f(x)| p(x) \mu(dx)}.$$

• The optimal proposal distribution is generally difficult to sample from. However, this analysis leads us to an insight: we can achieve high sampling efficiency by emphasizing regions where the value of p(x) | f(x) | is high.

Adaptive Importance Sampling

- Basic idea Learn to do sampling
 - choose the proposal from a tractable family: $q(x; \theta)$.

Adaptive Importance Sampling

- Basic idea Learn to do sampling
 - choose the proposal from a tractable family: $q(x; \theta)$.
- Objective: minimize the sample mean of $f^2(x)w^2(x;\theta)$. Update the parameter θ as:

$$\theta_{t+1} \leftarrow \theta_t - \alpha \frac{1}{N} \sum_{i=1}^{N} f^2(x_i) w(x_i; \theta_t) \nabla_{\theta} w(x_i, \theta_t)$$

with $x_1, \ldots, x_N \sim q(x; \theta_t)$.

Self-Normalized Weights

• In many practical cases, $w(x) \propto p(x)/q(x)$ is known only upto a normalizing constant. For such case, we can write:

$$E_p[f] = \frac{\int f(x)w(x)q(x)\mu(dx)}{\int w(x)q(x)\mu(dx)}.$$

• Hence, we may approximate $E_p[f]$ with

$$\tilde{l}_{q,n}(f) = \frac{1}{n} \sum_{i=1}^{n} \tilde{w}_i f(x_i)$$

Here, \tilde{w}_i is called the *self-normalized weight\$, given by $\tilde{w}_i = \frac{w(x_i)}{\sum_{i=1}^n w(x_i)}$.

• By strong law of large numbers, we have $\tilde{l}_{q,n}(f) \xrightarrow{a.s.} E_p[f]$ as $n \to \infty$.

MCMC: Motivation and Overview

- Simple strategies like transform sampling, rejection sampling, and importance sampling all rely on drawing independent samples from p or a proposal distribution q over the sample space.
 - This can become very difficult (if not impossible) for complex distributions.

MCMC: Motivation and Overview

- Simple strategies like transform sampling, rejection sampling, and importance sampling all rely on drawing independent samples from p or a proposal distribution q over the sample space.
 - This can become very difficult (if not impossible) for complex distributions.
- Markov Chain Monte Carlo (MCMC) explores the sample space through an *ergodic* Markov chain, whose equilibrium distribution is the target distribution p.
- Many sampling methods used in practice belong to MCMC:
 - Gibbs sampling
 - Metropolis-Hastings algorithm
 - Slice sampling
 - Reversible Jump
 - ...

Markov Processes

- Intuitively, a *Markov process* is a stochastic process for which the future depends only on the present and not on the past.
- A sequence of random variables $X_0, X_1, X_2, ...$ defined on a measurable space Ω is called a *(discrete-time) Markov process* if it satisfies the *Markov property*:

$$P(X_{t+1} \in A | X_0 = x_0, \dots, X_t = x_t) = P(X_{t+1} \in A | X_t = x_t)$$

Here, A is an arbitrary measurable subset of Ω .

Markov Processes

- Intuitively, a *Markov process* is a stochastic process for which the future depends only on the present and not on the past.
- A sequence of random variables $X_0, X_1, X_2, ...$ defined on a measurable space Ω is called a *(discrete-time) Markov process* if it satisfies the *Markov property*:

$$P(X_{t+1} \in A | X_0 = x_0, \dots, X_t = x_t) = P(X_{t+1} \in A | X_t = x_t)$$

Here, A is an arbitrary measurable subset of Ω .

• We first review the formulation and properties of Markov chains under a simple setting, where Ω is a countable space. We will later extend the analysis to more general spaces.

Homogeneous Markov Chains

- A homogeneous Markov chain on a countable state space Ω , denoted by $Markov(\pi_0, P)$ is characterized by an initial distribution π_0 and a transition probability matrix (TPM), denoted by P, such that
 - $\Pr(X_0 = x) = \pi_0(x)$, and
 - $\Pr(X_{t+1} = y | X_t = x) = P(x, y).$
- The TPM P is non-negative and has $\sum_{y\in\Omega}P(x,y)=1, \forall x\in\Omega. \text{ Such a matrix is called a } stochastic matrix.}$

Homogeneous Markov Chains

- A homogeneous Markov chain on a countable state space Ω , denoted by $Markov(\pi_0, P)$ is characterized by an initial distribution π_0 and a transition probability matrix (TPM), denoted by P, such that
 - $\Pr(X_0 = x) = \pi_0(x)$, and
 - $\Pr(X_{t+1} = y | X_t = x) = P(x, y).$
- The TPM P is non-negative and has $\sum_{y\in\Omega}P(x,y)=1, \forall x\in\Omega.$ Such a matrix is called a stochastic matrix.
- Let π_t be the distribution of X_t , then:

$$\pi_{t+1}(y) = \sum_{x \in \Omega} \pi_t(x) P(x, y),$$

or simply $\pi_{t+1} = \pi_t P$.

Multi-step Transition Probabilities

Consider two transition steps:

$$\Pr(X_2 = y | X_0 = x) = \sum_{z \in \Omega} P(x, z) P(z, y) = P^2(x, y)$$

Multi-step Transition Probabilities

Consider two transition steps:

$$\Pr(X_2 = y | X_0 = x) = \sum_{z \in \Omega} P(x, z) P(z, y) = P^2(x, y)$$

- More generally, $\Pr(X_{t+m} = y | X_t = x) = P^m(x, y)$.
- Let π_t be the distribution of X_t , then $\pi_{t+m} = \pi_t P^m$.

Classes of States

- A state y is said to be accessible from state x, or x leads to y, denoted by $x \to y$, if $P^n(x, y) > 0$ for some n.
- States x and y are said to communicate with each other, denoted by $x \leftrightarrow y$, if $x \rightarrow y$ and $y \rightarrow x$.
- $x \leftrightarrow y$ is an equivalence relation on Ω , which partitions Ω into communicating classes, where states within the same class communicate with each other.

Classes of States

- A state y is said to be accessible from state x, or x leads to y, denoted by $x \to y$, if $P^n(x, y) > 0$ for some n.
- States x and y are said to *communicate* with each other, denoted by $x \leftrightarrow y$, if $x \to y$ and $y \to x$.
- $x \leftrightarrow y$ is an equivalence relation on Ω , which partitions Ω into communicating classes, where states within the same class communicate with each other.
- The Markov chain is said to be *irreducible* if it forms a single communicating class, or in other words, all states communicate with any other states.

Periodicity of Markov Chains

The period of a state x is defined as

$$\operatorname{period}(x) \triangleq \gcd \{ n : P^m(x, x) > 0 \}.$$

- A state x is said to be aperiodic if period(x) = 1.
- Period is a class property: if $x \leftrightarrow y$, then $\operatorname{period}(x) = \operatorname{period}(y)$.
- A Markov chain is called aperiodic, if all states are aperiodic.
- An *irreducible Markov chain* is *aperiodic*, if there exists an *aperiodic* state.
- Lazyness breaks periodicity: $\alpha I + (1 \alpha)P$.

Recurrence of Markov Chains

 Suppose the chain is initially at state x, the first return time to state x is defined to be

$$\tau_X = \inf \{ t \geq 1 : X_t = x | X_0 = x \}.$$

Note that τ_x is a random variable.

- We also define $f_{xx}^{(n)} = \Pr(\tau_x = n)$, the probability that the chain returns to x for the first time after n steps.
- A state x is said to be recurrent if it is guaranteed to have a finite hitting time, as

$$\Pr(\tau_{\mathsf{x}}<\infty)=\sum_{n=1}^{\infty}f_{\mathsf{x}\mathsf{x}}^{(n)}=1.$$

Otherwise, x is said to be transient.

Recurrence of Markov Chains (cont'd)

 A state x is recurrent if and only if the chain returns to x infinitely often:

$$\sum_{n=1}^{\infty} P^n(x,x) = \infty.$$

- Recurrence is a class property: if $x \leftrightarrow y$ and x is recurrent, then y is also recurrent.
- Every finite communicating class is recurrent.
 - An irreducible finite Markov chain is recurrent.

Invariant Distributions

Consider a Markov chain with TPM P on Ω :

- A distribution π over Ω is called an *invariant distribution* (or stationary distribution) if $\pi P = \pi$.
- Invariant distribution is NOT necessarily existent and unique.
- Under certain condition (ergodicity), there exists a unique invariant distribution π . In such cases, π is often called an equilibrium distribution.

Positive Recurrence

- The expected return time of a state x is defined to be $m_x \triangleq E[T_x]$.
- When x is transient, $m_x = \infty$. If x is recurrent, m_x is NOT necessarily finite.
- A recurrent state x is called positive recurrent if $m_x < \infty$. Otherwise, it is called *null recurrent*.

Positive Recurrence

- The expected return time of a state x is defined to be $m_x \triangleq E[T_x]$.
- When x is transient, $m_x = \infty$. If x is recurrent, m_x is NOT necessarily finite.
- A recurrent state x is called positive recurrent if $m_x < \infty$. Otherwise, it is called *null recurrent*.
- (Existence of Invariant distributions) For an irreducible Markov chain, if some state is positive recurrent, then all states are positive recurrent and the chain has an invariance distribution π given by $\pi(x) = 1/m_x$.

Ergodic Markov Chains

- An *irreducible*, *aperiodic*, and *positive recurrent* Markov chain is called an *ergodic Markov chain*, or simply *ergodic chain*.
- A finite Markov chain is *ergodic* if and only if it is irreducible and aperiodic.
- A Markov chain is ergodic if it is aperiodic and there exist N such that any state can be reached from any other state within N steps with positive probability.

Ergodic Markov Chains

- An *irreducible*, *aperiodic*, and *positive recurrent* Markov chain is called an *ergodic Markov chain*, or simply *ergodic chain*.
- A finite Markov chain is *ergodic* if and only if it is irreducible and aperiodic.
- A Markov chain is ergodic if it is aperiodic and there exist N such that any state can be reached from any other state within N steps with positive probability.
- (Convergence to equilibrium) Let P be the transition probability matrix of an ergodic Markov chain, then there exists a unique invariant distribution π . Then with any initial distribution, $\Pr(X_n = x) \to \pi(x)$ as $n \to \infty$ for all $x \in \Omega$. Particularly, $P^n(x', x) \to \pi(x)$ as $n \to \infty$ for all $x, y \in \Omega$.

Ergodic Theorem

- The ergodic theorem relates time mean to space mean:
- Let $Markov(\pi_0, P)$ be an ergodic Markov chain over Ω with equilibrium distribution π , and f be a measurable function on Ω , then

$$\frac{1}{n}\sum_{t=0}^{n}f(X_{t})\xrightarrow{a.s.}E_{\pi}[f], \text{ as } n\to\infty.$$

More generally, we have for any positive integer m:

$$\frac{1}{n}\sum_{t=0}^{n}f(X_{\tau+tm})\xrightarrow{a.s.}E_{\pi}[f], \text{ as } n\to\infty.$$

• The ergodic theorem is the theoretical foundation for MCMC.

Mixing

• Let μ and ν be probability measures over a measurable space (Ω, \mathcal{S}) , then the *total variation distance* between them is defined as

$$\|\mu - \nu\|_{TV} = \sup_{A \in \mathcal{S}} |\mu(S) - \nu(S)|.$$

If Ω is *countable*, we have

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

• The total variation distance is a metric.

Mixing

• Let μ and ν be probability measures over a measurable space (Ω, \mathcal{S}) , then the *total variation distance* between them is defined as

$$\|\mu - \nu\|_{TV} = \sup_{A \in \mathcal{S}} |\mu(S) - \nu(S)|.$$

If Ω is *countable*, we have

$$\|\mu - \nu\|_{TV} = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)|.$$

- The total variation distance is a metric.
- The time required by a Markov chain to get close to the equilibrium distribution is measured by the *mixing time*, defined as $t_{mix}(\epsilon) = \inf\{t : d(t) \le \epsilon\}$, and in particular $t_{mix} \triangleq t_{mix}(1/4)$.

Bounds of Mixing Time

There are various ways to bound the mixing time, taking into account different factors:

- Counting Bound
- Diameter Bound
- Spectral Analysis
- Conductance

Simple Bounds on Mixing Time

• (Counting Bound): if the chain can only transit to a limited number of states from each state, it may take quite a long time to cover the explore the entire space. Consider an ergodic finite Markov chain over Ω whose equilibrium distribution is uniform, then

$$t_{mix}(\epsilon) \geq rac{\log\left(|\Omega|(1-\epsilon)
ight)}{\log \Delta}.$$

Here, Δ is the maximum outgoing degree of each state.

Simple Bounds on Mixing Time

• (Counting Bound): if the chain can only transit to a limited number of states from each state, it may take quite a long time to cover the explore the entire space. Consider an ergodic finite Markov chain over Ω whose equilibrium distribution is uniform, then

$$t_{mix}(\epsilon) \geq rac{\log\left(|\Omega|(1-\epsilon)
ight)}{\log \Delta}.$$

Here, Δ is the maximum outgoing degree of each state.

• (Diameter Bound): For an ergodic finite Markov chain, we have $t_{mix}(\epsilon) \ge L/2$ for any $\epsilon < 1/2$, where L is the diameter of the state graph.

Spectral Representation

Let P be a stochastic matrix over a finite space Ω with $|\Omega| = N$:

• The spectral radius of P, namely the maximum absolute value of all eigenvalues, is $\rho(P) = 1$.

Spectral Representation

Let P be a *stochastic matrix* over a finite space Ω with $|\Omega| = N$:

• The spectral radius of P, namely the maximum absolute value of all eigenvalues, is $\rho(P) = 1$.

Furthermore, if P is *ergodic* and *reversible* with equilibrium distribution π :

ullet Consider an inner product space $\left(\mathbb{R}^\Omega,\langle\cdot,\cdot
angle_\pi
ight)$ with

$$\langle f, g \rangle_{\pi} \triangleq E_{\pi}[f(x)g(x)] = \sum_{x \in \Omega} \pi(x)f(x)g(x).$$

• All eigenvalues of P are real values, given by $1 = \lambda_1 > \lambda_2 \geq \cdots \geq \lambda_N > -1$. Let f_i be the right eigenvector associated with λ_i . Then the left eigenvector is $\pi_i \circ f_i$ *(element-wise product), and P^t can be represented as

$$\frac{P^{t}(x,y)}{\pi(y)} = \sum_{i=1}^{N} f_{i}(x)f_{i}(y)\lambda_{i}^{t} = 1 + \sum_{i=2}^{N} f_{i}(x)f_{i}(y)\lambda_{i}^{t}.$$

Spectral Gap and Relaxation Time

• Let $\lambda_* \triangleq \sup \{|\lambda_i| : 2 \le i \le |\Omega|\}$. Then the spectral gap is defined to be $\gamma \triangleq 1 - \lambda_2$ and the absolute spectral gap is defined to be $\gamma_* \triangleq 1 - \lambda_*$. Then:

$$\left|\frac{P^t(x,y)}{\pi(y)}-1\right| \leq \frac{\lambda_*^t}{\sqrt{\pi(x)\pi(y)}} \leq \frac{\lambda_*^t}{\pi_{min}} \leq \frac{e^{-\gamma_*t}}{\pi_{min}}.$$

Here, $\pi_{min} = \min_{x \in \Omega} \pi(x)$.

• The *relaxation time* of a *Markov chain* is defined to be $t_{rel} = 1/\gamma_*$, then

$$\log\left(rac{1}{2\epsilon}
ight)(t_{\mathit{rel}}-1) \leq t_{\mathit{mix}}(\epsilon) \leq \log\left(rac{1}{\epsilon\pi_{\mathit{min}}}
ight)t_{\mathit{rel}}.$$

• Generally, the goal to design a rapidly mixing reversible Markov chain is to minimize λ_* , or in other words, maximize the γ_* .

Conductance

Consider an ergodic Markov chain on a finite space Ω with transition probability matrix P and equilibrium distribution π :

 The ergodic flow from a subset A to another subset B is defined as

$$Q(A,B) \triangleq \sum_{x \in A, y \in B} \pi(x) P(x,y).$$

The conductance of a Markov chain is defined as

$$\Phi_* = \inf_{S:\pi(S) \leq rac{1}{2}} rac{Q(S,S^c)}{\pi(S)}.$$

Conductance

Consider an ergodic Markov chain on a finite space Ω with transition probability matrix P and equilibrium distribution π :

 The ergodic flow from a subset A to another subset B is defined as

$$Q(A,B) \triangleq \sum_{x \in A, y \in B} \pi(x) P(x,y).$$

• The conductance of a Markov chain is defined as

$$\Phi_* = \inf_{S:\pi(\mathcal{S}) \leq rac{1}{2}} rac{Q(\mathcal{S}, \mathcal{S}^c)}{\pi(\mathcal{S})}.$$

• (Jerrum and Sinclair (1989)) The spectral gap is bounded by

$$\frac{1}{2}\Phi_*^2 \le \gamma \le 2\Phi_*.$$

Consider an ergodic finite chain P with $\gamma_* < \gamma$. To improve the mixing time, one can add a little bit lazyness as $P' = (1 - \alpha)P + \alpha I$. Please solve the optimal value of α that maximizes the absolute spectral gap γ_* .

Consider a 2×2 stochastic matrix P, given by P(x, y) = 1 - p when $x \neq y$.

- Please specify the condition under which *P* is ergodic.
- What is the equilibrium distribution when *P* is ergodic?

Consider a 2 \times 2 stochastic matrix P, given by P(x,y) = 1 - p when $x \neq y$.

- Please specify the condition under which P is ergodic.
- What is the equilibrium distribution when *P* is ergodic?
- Solve the optimal value of p that maximizes the absolute spectral gap.

- Consider a random walk on a circle of length n, where n is even. At each state x, it walks to either of its neighbor with probability p, and stays at x with probability 1-2p.
- Please specify the condition under which *P* is ergodic.
- What is the equilibrium distribution when P is ergodic?

- Consider a random walk on a circle of length n, where n is even. At each state x, it walks to either of its neighbor with probability p, and stays at x with probability 1-2p.
- Please specify the condition under which P is ergodic.
- What is the equilibrium distribution when P is ergodic?
- Solve the optimal value of *p* that maximizes the *conductance*.

- Consider a random walk on a circle of length n, where n is even. At each state x, it walks to either of its neighbor with probability p, and stays at x with probability 1-2p.
- Please specify the condition under which P is ergodic.
- What is the equilibrium distribution when P is ergodic?
- Solve the optimal value of p that maximizes the conductance.
- If we allow the chain to jump from x to its *opposite* state with probability q and thus the probability of staying at x is 1-2p-q. What's the conductance now?
- Solve the optimal setting of p and q.

General Markov Chains

Next, we extend the formulation of *Markov chain* from *countable* space to general *measurable* space.

• First, the *Markov property* remains.

General Markov Chains

Next, we extend the formulation of *Markov chain* from *countable* space to general *measurable* space.

- First, the Markov property remains.
- Generally, a homogeneous Markov chain over a measurable space (Ω, \mathcal{S}) is characterized by an initial measure π_0 and a transition probability kernel $P: \Omega \times \mathcal{S} \to [0,1]$, denoted by $Markov(\pi_0, P)$. Here, Ω is called the state space; and:

$$\Pr(X_{t+1} \in A | X_t = x) = P(x, A).$$

- P must be a stochastic kernel:
 - Given $x \in \Omega$, $P_x : A \mapsto P(x, A)$ is a probability measure over (Ω, \mathcal{S}) .
 - Given a measurable subset $A \in \mathcal{S}$, $P(\cdot, A) : x \mapsto P(x, A)$ is a measurable function.
- When Ω is a countable space, P reduces to a *stochastic* matrix.

General Markov Chains (cont'd)

• Suppose the distribution of X_t is π_t , then

$$\pi_{t+1}(A) = \int_{\Omega} P(x, A) \pi_t(dx)$$

Again, we can simply write this as $\pi_{t+1} = \pi_t P$.

• Composition of stochastic kernels P and Q remains a stochastic kernel, denoted by $Q \circ P$, which is given by:

$$(Q \circ P)(x,A) = \int_{\Omega} P(x,dy)Q(y,A).$$

• Recursive composition of P for m times results in a stochastic kernel denoted by P^m , and we have $P^{n+m} = P^n \circ P^m$ and $\mu_{t+m} = \mu_t P^m$.

Example: Random Walk in \mathbb{R}^n

$$X_{t+1} = X_t + B_t$$
, with $B_t \sim \mathcal{N}(0, \sigma^2 I)$.

• For this case, the stochastic kernel is given by $P_x = P_{\mathcal{N}(x,\sigma^2I)}$.

Occupation Time, Return Time, and Hitting Time

For general space, talking about the probability of *hitting a point* makes no sense. Instead, we should talk about sets:

Occupation Time, Return Time, and Hitting Time

For general space, talking about the probability of *hitting a point* makes no sense. Instead, we should talk about sets: Given a Markov train (X_t) over (Ω, \mathcal{S}) , and $A \in \mathcal{S}$:

- The *occupation time* of A is defined to be $\eta_A \triangleq \sum_{t=1}^{\infty} 1(X_t \in A)$.
- The *return time* of *A* is defined to be $\tau_A \triangleq \inf \{t \geq 1 : X_t \in A\}.$
- The *hitting time* of *A* is defined to be $\sigma_A \triangleq \inf \{t \geq 0 : X_t \in A\}.$
- η_A , τ_A and σ_A are all random variables.

φ -irreducibility

- Define $L(x, A) \triangleq P_x(\tau_A < \infty) = P_x(X \text{ ever enters } A)$.
- L(x, A) has

$$L(x,A) = P(x,A) + \int_{A^c} P(x,dy)L(y,A).$$

- Given a positive measure φ over (Ω, S) , a markov chain is called φ -irreducible if $L(x, A) > 0 \ \forall x \in \Omega$ whenever A is φ -positive, i.e. $\varphi(A) > 0$.
- Intuitively, it means that for any φ -positive set A, there is positive chance that the chain enters A within finite time, no matter where it begins.

• A Markov chain over Ω is φ -irreducible if and only if either of the following statement holds:

•
$$\varphi(A) > 0 \Rightarrow \forall x \in \Omega, E_x(\eta_A) > 0$$

•
$$\varphi(A) > 0 \Rightarrow \forall x \in \Omega, \ \exists t \in \mathbb{N}^+, \ P^t(x, A) > 0$$

• A Markov chain over Ω is φ -irreducible if and only if either of the following statement holds:

•
$$\varphi(A) > 0 \Rightarrow \forall x \in \Omega, E_x(\eta_A) > 0$$

•
$$\varphi(A) > 0 \Rightarrow \forall x \in \Omega, \exists t \in \mathbb{N}^+, P^t(x, A) > 0$$

- Typical spaces usually come with *natural measure* φ :
 - The natural measure for countable space is the counting measure. In this case, the notion of varphi-irreducibility coincides with the one introduced earlier.
 - The *natural measure* for \mathbb{R} , \mathbb{R}^n , or a finite-dimensional manifold is the *Lebesgue measure*
 - When φ is implicitly indicated, we simple call the chain irreducible.

The following theorem provides an easier way to verify *irreducibility* for separable space.

- A set S is called φ -communicating if for every $x \in S$ and every φ -positive subset $A \subset S$ (i.e. A is measurable and $\varphi(A) > 0$), $x \to A$.
 - The space Ω is φ -irreducible if and only if Ω is φ -communicating.

The following theorem provides an easier way to verify *irreducibility* for separable space.

- A set S is called φ -communicating if for every $x \in S$ and every φ -positive subset $A \subset S$ (i.e. A is measurable and $\varphi(A) > 0$), $x \to A$.
 - The space Ω is φ -irreducible if and only if Ω is φ -communicating.
- (Irreducibility Theorem) Let P be a stochastic kernel over a measurable state space (Ω, \mathcal{S}) , then P is μ -irreducible if the following conditions are satisfied:
 - Ω is separable (meaning Ω has a countable dense set) and connected:
 - Every non-empty open subset A is φ -positive;
 - Every $x \in \Omega$ has a φ -communicating neighborhood.

The following theorem provides an easier way to verify *irreducibility* for separable space.

- A set S is called φ -communicating if for every $x \in S$ and every φ -positive subset $A \subset S$ (i.e. A is measurable and $\varphi(A) > 0$), $x \to A$.
 - The space Ω is φ -irreducible if and only if Ω is φ -communicating.
- (Irreducibility Theorem) Let P be a stochastic kernel over a measurable state space (Ω, \mathcal{S}) , then P is μ -irreducible if the following conditions are satisfied:
 - Ω is separable (meaning Ω has a countable dense set) and connected:
 - Every non-empty open subset A is φ -positive;
 - Every $x \in \Omega$ has a φ -communicating neighborhood.
- **Note:** This irreducibility theorem does *NOT* apply to countable space. Why?

Transience and Recurrence

Given a Markov chain (X_t) over (Ω, S) , and $A \in S$:

- A is called *transient* if $E_x[\eta_A] < \infty$ for every $x \in A$.
- A is called *uniformly transient* if there exists M > 0 such that U(x, A) < M for every $x \in A$.
- A is called *recurrent* if $E_x[\eta_A] = \infty$ for every $x \in A$.

Transience and Recurrence

Given a Markov chain (X_t) over (Ω, S) , and $A \in S$:

- A is called *transient* if $E_x[\eta_A] < \infty$ for every $x \in A$.
- A is called *uniformly transient* if there exists M > 0 such that U(x, A) < M for every $x \in A$.
- A is called recurrent if $E_x[\eta_A] = \infty$ for every $x \in A$.
- Consider an φ -irreducible chain, then either:
 - Every φ-positive subset is recurrent, then we call the chain recurrent
 - Ω is covered by countably many uniformly transient sets, then we call the chain *transient*.

Harris Recurrence

A set A is called Harris recurrent if

$$P_x(\eta_A = \infty) = 1, \ \forall x \in A,$$

which means any chain starts within A visits A infinitely often.

- A Markov chain is called *Harris recurrent* if it is φ -irreducible (with maximal irreducibility measure) and every φ -positive subset is Harris recurrent.
- Most MCMC samplers are Harris recurrent.

Harris Recurrence

• A set A is called Harris recurrent if

$$P_x(\eta_A = \infty) = 1, \ \forall x \in A,$$

which means any chain starts within A visits A infinitely often.

- A Markov chain is called *Harris recurrent* if it is φ -irreducible (with maximal irreducibility measure) and every φ -positive subset is Harris recurrent.
- Most MCMC samplers are Harris recurrent.
- Harris recurrence implies recurrence.
 - Note: $P_x(\eta_A = \infty) = 1 \Rightarrow E_x[\eta_A] = \infty$, but the converse is generally not true.

Invariant Measures

• A measure π is called an *invariant measure w.r.t.* the stochastic kernel P if $\pi = \pi P$, i.e.

$$\pi(A) = \int_{\Omega} \pi(dx) P(x, A), \ \forall A \in \mathcal{S}.$$

- A recurrent Markov chain admits a unique invariant measure π (up to a scale constant).
 - **Note:** This measure π can be finite or infinite.

Positive Chains

- A Markov chain is called *positive* if it is irreducible and admits an *invariant probability measure* π .
- If a Markov chain is positive then it is recurrent, and thus it admits a unique invariant probability measure.
- If a Markov chain is *Harris positive* and *recurrent*, then it is called a *positive Harris chain*.

Positive Chains

- A Markov chain is called *positive* if it is irreducible and admits an *invariant probability measure* π .
- If a Markov chain is *positive* then it is *recurrent*, and thus it admits a *unique* invariant probability measure.
- If a Markov chain is *Harris positive* and *recurrent*, then it is called a *positive Harris chain*.
- The study of the existence of π requires more sophisticated analysis that involves petite sets, sub-invariance, and atoms.
 - We are not going into these details, as in MCMC practice, existence of π is usually not an issue.

Subsampled Chains

Suppose P is a stochastic kernel and q is a probability vector over \mathbb{N} .

• Then P_q defined as below is also a stochastic kernel:

$$P_q(x,A) = \sum_{k=0}^{\infty} q_k P^k(x,A)$$

The chain with kernel P_q is called a *subsampled chain* with q.

- When $q_n = 1(n = m)$, $P_q = P^m$.
- If π is invariant w.r.t. P, then π is also invariant w.r.t. P_q .

Birkhoff Ergodic Theorem

• A stochastic process (X_t) is called a stationary process if

$$P(X_{t_1+\tau},\ldots,X_{t_k+\tau})=P(X_{t_1},\ldots,X_{t_k})$$

- A Markov chain is *stationary* if it has an invariant probability measure and that is also its initial distribution.
- (Birkhoff Ergodic Theorem) Every irreducible stationary Markov chain (X_t) is ergodic, that is, for any real-valued measurable function f:

$$\frac{1}{n}\sum_{i=1}^n f(X_i) \xrightarrow{a.s.} E_{\pi}[f(X)], \text{ as } n \to \infty.$$

where π is the invariant probability measure.

• If $Markov(\pi, P)$ is a stationary Markov chain, then $Markov(\pi, P_q)$ is also a stationary Markov chain.

Convergence of Measures

• For a positive Harris chain $Markov(\pi_0, P)$ with invariant probability measure π_* , and $\pi_t = \pi_0 P^t$, we have

$$\|\pi_t - \pi_*\|_{TV} \to 0$$
, as $t \to \infty$.

As an immediate corollary, we have

$$\|P^t(x,\cdot)-\pi_*\|_{TV} \to 0$$
, as $t\to\infty$.

Convergence of Measures

• For a positive Harris chain $Markov(\pi_0, P)$ with invariant probability measure π_* , and $\pi_t = \pi_0 P^t$, we have

$$\|\pi_t - \pi_*\|_{TV} \to 0$$
, as $t \to \infty$.

As an immediate corollary, we have

$$\|P^t(x,\cdot)-\pi_*\|_{TV} \to 0$$
, as $t\to\infty$.

• The chain is called *geometric ergodic* if there exist a nonnegative function M and $\rho \in (0,1)$ such that

$$||P^{t}(x,\cdot)-\pi_{*}|| \leq M(x)\rho^{t}, \ \forall x \in \Omega.$$

Markov Chain Monte Carlo

(Markov Chain Monte Carlo): To sample from a target distribution π :

- We first construct a Markov chain with *transition probability* kernel P such that $\pi P = \pi$.
- Then we simulate the chain, usually in two stages:
 - (Burning stage) simulate the chain and ignore all samples, until it gets close enough to the equilibrium distribution
 - (Sampling stage) collect samples $x_1, ..., x_n$ from a subsampled chain P^m or P_q .
- Approximate the expectation of the function f of interest using the sample mean, as

$$E_{\pi}[f] \simeq \frac{1}{n} f(x_i).$$

Detailed Balance and Reversible Chains

Most Markov chains in MCMC practice falls in a special family: reversible chains

- A distribution π over a countable space is said to be in detailed balance with P if $\pi(x)P(x,y)=\pi(y)P(y,x)$.
 - Detailed balance implies invariance.
 - The converse is not true.

Detailed Balance and Reversible Chains

Most Markov chains in MCMC practice falls in a special family: reversible chains

- A distribution π over a countable space is said to be in detailed balance with P if $\pi(x)P(x,y)=\pi(y)P(y,x)$.
 - Detailed balance implies invariance.
 - The converse is not true.
- An irreducible Markov chain with TPM P and an invariant distribution π is called *reversible* if π is in *detailed balance* with P.
- Consider an irreducible Markov chain (X_t) Markov (π, P) where π is in detailed balance with P, its reversal (\hat{X}_t) is given by (π, \hat{P}) with $\hat{P}(x, y) \triangleq \pi(y) P(y, x) / \pi(x)$. Then

$$\Pr(X_0 = x_0, \dots, X_n = x_n) = \Pr(\hat{X}_0 = x_n, \dots, \hat{X}_n = x_0).$$

Reversible Chains on General Spaces

Over a general measurable space (Ω, \mathcal{S}) :

• A stochastic kernel P is called *reversible w.r.t.* a probability measure π if

$$\int \int f(x,y)\pi(dx)P(x,dy) = \int \int f(y,x)\pi(dx)P(x,dy)$$

for any bounded measurable function $f: \Omega \times \Omega \to \mathbb{R}$.

• Suppose both π and P_x are absolutely continuous w.r.t. a base measure μ , that is, $\pi(dx) = \pi(x)\mu(dx)$ and $P(x, dy) = P_x(dy) = p_x(y)\mu(dy)$, then the chain is reversible if and only if

$$\pi(x)p_{x}(y) = \pi(y)p_{y}(x), \text{ a.e.}$$

which is called the detailed balance.

• If P is reversible w.r.t. π , then π is an invariant to P.

Metropolis-Hastings: An Overview

• In MCMC practice, the target distribution π is usually known up to an unnormalized density h, such that $\pi(x) = h(x)/c$, and the normalizing constant c is often intractable to compute.

Metropolis-Hastings: An Overview

- In MCMC practice, the target distribution π is usually known up to an unnormalized density h, such that $\pi(x) = h(x)/c$, and the normalizing constant c is often intractable to compute.
- The Metropolis-Hastings algorithm (M-H algorithm) is a classical and popular approach to MCMC sampling. It works as follows:
 - It is associated with a proposal kernel Q.
 - At each iteration, a *candidate* is generated from Q_x given the current state x.
 - With a certain acceptance ratio, which depends on both Q and h, the candidate is accepted.
- The acceptance ratio is determined in a way that maintains detailed balance, so the resultant chain is reversible w.r.t. π .

Metropolis-Hastings: An Overview

- In MCMC practice, the target distribution π is usually known up to an unnormalized density h, such that $\pi(x) = h(x)/c$, and the normalizing constant c is often intractable to compute.
- The Metropolis-Hastings algorithm (M-H algorithm) is a classical and popular approach to MCMC sampling. It works as follows:
 - It is associated with a proposal kernel Q.
 - At each iteration, a *candidate* is generated from Q_x given the current state x.
 - With a certain acceptance ratio, which depends on both Q and h, the candidate is accepted.
- The acceptance ratio is determined in a way that maintains detailed balance, so the resultant chain is reversible w.r.t. π .
- Many sampling algorithms, notably *Gibbs sampling* and *Slice sampling*, are special cases of the M-H algorithm.

Metropolis Algorithm

- The Metropolis algorithm is a precursor (and a special case) of the M-H algorithm, which requires the designer to provide a symmetric kernel Q, i.e. $q_x(y) = q_y(x)$, where q_x is the density of Q_x .
 - **Note:** π is not necessarily invariant to Q
 - Gaussian random walk is a symmetric kernel.

Metropolis Algorithm

- The Metropolis algorithm is a precursor (and a special case) of the M-H algorithm, which requires the designer to provide a symmetric kernel Q, i.e. $q_x(y) = q_y(x)$, where q_x is the density of Q_x .
 - **Note:** π is not necessarily invariant to Q
 - Gaussian random walk is a symmetric kernel.
- At each iteration, with current state x:
 - Generate a candidate y from Q_x
 - Accept the candidate with acceptance ratio $a(x, y) = \min\{h(y)/h(x), 1\}.$

Metropolis Algorithm

- The Metropolis algorithm is a precursor (and a special case) of the M-H algorithm, which requires the designer to provide a symmetric kernel Q, i.e. $q_x(y) = q_y(x)$, where q_x is the density of Q_x .
 - **Note:** π is not necessarily invariant to Q
 - Gaussian random walk is a symmetric kernel.
- At each iteration, with current state x:
 - Generate a candidate y from Q_x
 - Accept the candidate with acceptance ratio $a(x, y) = \min\{h(y)/h(x), 1\}.$
- The Metropolis update satisfies detailed balance. Why?

Metropolis-Hastings Algorithm

- The Metropolis-Hastings algorithm requires a proposal kernel Q,
 - Q is NOT necessarily *symmetric* and does NOT necessarily admit π as an invariant measure.

Metropolis-Hastings Algorithm

- The Metropolis-Hastings algorithm requires a proposal kernel Q,
 - Q is NOT necessarily *symmetric* and does NOT necessarily admit π as an invariant measure.
- At each iteration, with current status x:
 - Generate a candidate y from Q_x
 - Accept the candidate with acceptance ratio $a(x, y) = \min\{r(x, y), 1\}$, with

$$r(x,y) = \frac{h(y)q_y(x)}{h(x)q_x(y)}.$$

Metropolis-Hastings Algorithm

- The Metropolis-Hastings algorithm requires a proposal kernel Q,
 - Q is NOT necessarily *symmetric* and does NOT necessarily admit π as an invariant measure.
- At each iteration, with current status x:
 - Generate a candidate y from Q_x
 - Accept the candidate with acceptance ratio $a(x, y) = \min\{r(x, y), 1\}$, with

$$r(x,y) = \frac{h(y)q_y(x)}{h(x)q_x(y)}.$$

The Metropolis-Hastings update satisfies detailed balance.
 Why?

Gibbs Sampling

- The Gibbs sampler was introduced by Geman and Geman (1984) from sampling from a Markov random field over images, and popularized by Gelfand and Smith (1990).
- Each state x is comprised of multiple components $(x^{(1)}, \dots, x^{(n)})$.
- At each iteration, following a permutation σ over $(1, \ldots, n)$:
 - For i = 1, ..., n, let $j = \sigma(i)$, update x by re-drawing $x^{(j)}$ conditioned on all other components:

$$x^{(j)} \sim \pi_{/j} \left(\cdot | x^{(1)}, \dots, x^{(j-1)}, x^{(j+1)}, \dots, x^{(n)} \right).$$

- At each iteration, one can use either a random scan or a fixed scan.
- Different schedules can be used at different iterations to scan the components.
- The Gibbs update is a special case of M-H update, and thus satisfies detailed-balance. Why?

Combination of MCMC Kernels

Let K_1, \ldots, K_m be stochastic kernels with the same invariant probability measure π :

- (Mixture of kernels): Let q be a probability vector, then $K := \sum_{i=1}^{m} q_k K_k$ remains a stochastic kernel with invariant probability measure π .
 - Furthermore, if K_1, \ldots, K_m are all reversible, then K is reversible.

Combination of MCMC Kernels

Let K_1, \ldots, K_m be stochastic kernels with the same invariant probability measure π :

- (Mixture of kernels): Let q be a probability vector, then $K := \sum_{i=1}^{m} q_k K_k$ remains a stochastic kernel with invariant probability measure π .
 - Furthermore, if K_1, \ldots, K_m are all reversible, then K is reversible.
- (Composition of kernels): $K = K_m \circ \cdots \circ K_1$ is also a stochastic kernel with invariant probability measure π .
 - Note: K is generally not *reversible* even when K_1, \ldots, K_m are all reversible, except when $K_1 = \cdots = K_m$.