WOJSKOWA AKADEMIA TECHNICZNA IM. JAROSŁAWA DĄBROWSKIEGO W WARSZAWIE

Projekt z przedmiotu "Metody uczenia maszynowego II"

Autor: Jakub Kapusta

Grupa: *1982S4*

Prowadzący: dr Jarosław Olejniczak

Wybrany język: R

Spis treści:

1.	Opis wybranego zbioru danych	3
	Analiza wstępna (wizualna) zbioru	
	Liniowy model regresji	
	Sieci neuronowe	
5.	Drzewa klasyfikacyjne	11
6.	Bagging	13
7.	Random Forest	15
8.	SVM	17
9.	Podsumowanie utworzonych modeli	18
10.	Wnioski końcowe	19

1. Opis wybranego zbioru danych

Jako zbiór danych wybrałem **Somerville Happiness Survey Data Set** pobrany ze strony https://archive.ics.uci.edu/ml/datasets/Somerville+Happiness+Survey. Zbiór ten przedstawia wyniki ankiety przeprowadzonej w 2015 roku wśród losowych mieszkańców Somerville. Pytania dotyczyły oceny mieszkańców ich szczęścia i satysfakcji ze służb miejskich.

Opis atrybutów podsumowujących wyniki ankiety przedstawia Tabela 1.

Tabela 1 Opis atrybutów opisujących zbiór danych

Oznaczenie atrybutu w pliku	Oznaczenie atrybutu w tworzonych modelach	Znaczenie atrybutu	Możliwe wartości
D	rate	Ocena mieszkańca (czy jest szczęśliwy, czy nie)	0 (nieszczęśliwy) 1(szczęśliwy)
X1	cityServiceInfoAvailability	Dostępność informacji o służbach miejskich	
X2	housingCost	Koszty zakwaterowania	1
Х3	schoolQuality	Jakość szkół publicznych	2 3
X4	policeTrust	Zaufanie do lokalnej policji	4 5
X5	infrastructureMaintance	Utrzymanie ulic i chodników	
Х6	eventsAvailability	Dostępność wydarzeń społecznościowych	

2. Analiza wstępna (wizualna) zbioru

Rysunek 1 Wykres zależności rate od policeTrust. Z wykresu wynika, że wraz ze wzrostem policeTrust wzrasta również rate.

Rysunek 2 Wykres zależności rate od schoolQuality. Z wykresu wynika, że wraz ze wzrostem schoolQuality wzrasta również rate.

Rysunek 3 Wykres zależności rate od cityServiceInfoAvailability. Z wykresu wynika, że wraz ze wzrostem cityServiceInfoAvailability wzrasta również rate.

Rysunek 4 Wykres zależności rate od housingCost. Z wykresu wynika, że housingCost nie wpływa na rate.

Rysunek 5 Korelacja zmiennych. Z rysunku wynika, że zmienne nie są ze sobą silnie skorelowane. Najsilniej skorelowane ze zmienną objaśnianą jest cityServiceInfoAvailibility.

3. Liniowy model regresji

```
Deviance Residuals:
    Min
              1Q
                  Median
                                3Q
                                        Max
-1.6954
        -1.1092
                  0.7165
                            0.9789
                                     1.7038
Coefficients:
                            Estimate Std. Error z value Pr(>|z|)
                                        1.41992 -3.376 0.000736 ***
(Intercept)
                            -4.79321
cityServiceInfoAvailability 0.66259
                                        0.27168
                                                  2.439 0.014731 *
housingCost
                            -0.02677
                                        0.16608 -0.161 0.871923
schoolQuality
                             0.11069
                                        0.20565
                                                 0.538 0.590420
policeTrust
                             0.11645
                                        0.21696
                                                 0.537 0.591459
infrastructureMaintance
                                                 0.685 0.493285
                             0.12469
                                        0.18200
eventsAvailability
                             0.21676
                                        0.23956
                                                 0.905 0.365571
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 197.39
                          on 142
                                   degrees of freedom
Residual deviance: 179.70 on 136
                                  degrees of freedom
AIC: 193.7
```

Rysunek 6 Podsumowanie liniowego modelu regresji.

```
Coefficients:
                           Estimate Std. Error z value Pr(>|z|)
                                        1.0547 -3.372 0.000747 ***
(Intercept)
                             -3.5561
cityServiceInfoAvailability 0.8593
                                        0.2397
                                                 3.584 0.000338 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 197.39
                          on 142
                                   degrees of freedom
Residual deviance: 182.81
                          on 141
                                  degrees of freedom
AIC: 186.81
Number of Fisher Scoring iterations: 4
 1 - (GLM.STEP$deviance/GLM.STEP$null.deviance) # McFadden R^2
[1] 0.07385457
```

Rysunek 7 Linowy model regresji po redukcji zmiennych nieistotnych.

```
Reference
Prediction 0 1
0 44 27
1 22 50

Accuracy: 0.6573
95% CI: (0.5734, 0.7346)
No Information Rate: 0.5385
P-Value [Acc > NIR]: 0.002605

Kappa: 0.3143
```

Rysunek 8 Macierz pomyłek dla modelu regresji liniowej (po redukcji zmiennych nieistotnych).

4. Sieci neuronowe

Error: 14.970771 Steps: 64870

Rysunek 10 Macierz pomylek dla sieci o strukturze 6-5-2 (dla pakietu neuralnet)

Rysunek 11 Sieć o 10-elementowej warstwie ukrytej dla pakietu neuralnet

```
Confusion Matrix and Statistics
          Reference
Prediction
              1
           0
         1
                  5
            0 15
         2
           1 11 11
Overall Statistics
               Accuracy: 0.6047
                 95% CI: (0.4441, 0.7502)
    No Information Rate: 0.6047
    P-Value [Acc > NIR] : 0.5661
                  Kappa: 0.2393
```

Rysunek 12 Macierz pomylek dla sieci o strukturze 6-10-2 (dla pakietu neuralnet)

5. Drzewa klasyfikacyjne

Rysunek 13 Drzewo klasyfikacyjne utworzone za pomocą pakietu tree

```
Confusion Matrix and Statistics

Reference
Prediction 0 1
0 29 5
1 37 72

Accuracy: 0.7063
95% CI: (0.6244, 0.7794)
No Information Rate: 0.5385
P-Value [Acc > NIR]: 3.025e-05

Kappa: 0.3879
```

Rysunek 14 Macierz pomylek dla drzewa utworzonego za pomocą pakietu tree

Rysunek 15 Drzewo klasyfikacyjne utworzone za pomocą pakietu tree (przycięte o jeden poziom)

Rysunek 16 Macierz pomyłek dla drzewa utworzonego za pomocą pakietu tree (przyciętego o jeden poziom)

6. Bagging

```
Reference
Prediction 1 2
1 33 13
2 13 41

Accuracy: 0.74
95% CI: (0.6427, 0.8226)
No Information Rate: 0.54
P-Value [Acc > NIR]: 3.1e-05

Kappa: 0.4767
```

Rysunek 17 Macierz pomylek dla metody Bagging (nbagg = 150, zbiór uczący)

Rysunek 18 Macierz pomyłek dla metody Bagging (nbagg = 150, zbiór walidacyjny)

```
Confusion Matrix and Statistics

Reference
Prediction 1 2
1 35 13
2 11 41

Accuracy: 0.76
95% CI: (0.6643, 0.8398)
No Information Rate: 0.54
P-Value [Acc > NIR]: 4.579e-06

Kappa: 0.5185
```

Rysunek 19 Macierz pomylek dla metody Bagging (nbagg = 50, zbiór uczący)

```
Reference
Prediction 1 2
1 11 9
2 9 14

Accuracy: 0.5814
95% CI: (0.4213, 0.7299)
No Information Rate: 0.5349
P-Value [Acc > NIR]: 0.3245

Kappa: 0.1587
```

Rysunek 20 Macierz pomylek dla metody Bagging (nbagg = 50, zbiór walidacyjny)

7. Random Forest

```
Reference
Prediction 1 2
1 38 4
2 8 50

Accuracy: 0.88
95% CI: (0.7998, 0.9364)
No Information Rate: 0.54
P-Value [Acc > NIR]: 3.152e-13

Kappa: 0.7569
```

Rysunek 21 Macierz pomylek dla metody Random Forest (ntrees = 150, zbiór uczący)

```
Reference
Prediction 1 2
1 9 7
2 11 16

Accuracy: 0.5814
95% CI: (0.4213, 0.7299)
No Information Rate: 0.5349
P-Value [Acc > NIR]: 0.3245

Kappa: 0.1476
```

Rysunek 22 Macierz pomylek dla metody Random Forest (ntrees = 150, zbiór walidacyjny)

Rysunek 23 Macierz pomylek dla metody Random Forest (ntrees = 10, zbiór uczący)

```
Reference
Prediction 1 2
1 9 7
2 11 16

Accuracy: 0.5814
95% CI: (0.4213, 0.7299)
No Information Rate: 0.5349
P-Value [Acc > NIR]: 0.3245

Kappa: 0.1476
```

Rysunek 24 Macierz pomylek dla metody Random Forest (ntrees = 10, zbiór walidacyjny)

8. SVM

```
Reference
Prediction 1 2
1 33 10
2 13 44

Accuracy: 0.77
95% CI: (0.6751, 0.8483)
No Information Rate: 0.54
P-Value [Acc > NIR]: 1.628e-06

Kappa: 0.5348
```

Rysunek 25 Macierz pomylek dla metody SVM (zbiór uczący)

```
Confusion Matrix and Statistics

Reference
Prediction 1 2
1 10 9
2 10 14

Accuracy: 0.5581
95% CI: (0.3988, 0.7092)
No Information Rate: 0.5349
P-Value [Acc > NIR]: 0.4408

Kappa: 0.1091
```

Rysunek 26 Macierz pomylek dla metody SVM (zbiór walidacyjny)

9. Podsumowanie utworzonych modeli

Tabela 2 Podsumowanie utworzonych modeli

Metoda	Pakiet	Współczynnik	Uwagi
		Accuracy	
Regresja liniowa	-	0.6573	Model po redukcji
			zmiennych
			nieistotnych przy
			użyciu algorytmu SVS
Sieci neuronowe	neuralnet	0.6744	Struktura sieci 6-5-2
		0.6047	Struktura sieci 6-10-2
Drzewa	tree	0.7063	-
klasyfikacyjne		0.6783	Drzewo zostało
			przycięte o jeden
			poziom
Bagging	ipred	0.74 (zbiór uczący),	nbagg = 150
		0.5581 (zbiór	
		walidacyjny)	
		0.76 (zbiór uczący),	nbagg = 50
		0.5814 (zbiór	
		walidacyjny)	
Random Forest	randomForest	0.88 (zbiór uczący),	ntrees = 150
		0.5814 (zbiór	
		walidacyjny)	
		0.89 (zbiór uczący),	ntrees = 10
		0.5814 (zbiór	
		walidacyjny)	
SVM	e1071	0.77 (zbiór uczący),	-

	0.5581 (zbiór	
	walidacyjny)	

10. Wnioski końcowe

Na podstawie Tabela 2 można stwierdzić, że zgodnie z oczekiwaniami najlepsze wyniki uzyskano dla metody Random Forest. Metoda ta utworzyła model, dla którego Accuracy = 0.89 (dla zbioru uczącego) dla ntrees = 10.

Drugą z najlepszych metod była metoda SVM dla której Accuracy = 0.77, zaś trzecią Bagging (Accuracy = 0.76 dla zbioru uczącego).

Kolejną metodami są drzewa klasyfikacyjne oraz sieci neuronowe. Drzewo pozwoliło na uzyskanie Accuracy = 0.7063, zaś sieć 0.6744.

Na ostatnim miejscu znalazła się regresja liniowa (Accuracy = 0.6573 po redukcji zmiennych nieistotnych przy użyciu algorytmu SVS). Regresja jednak potwierdziła obserwację, którą można było wywnioskować z dwóch postaci drzewa klasyfikacyjnego (Rysunek 13 oraz Rysunek 15) – najbardziej istotną zmienną jest zmienna cityServiceInfoAvailability. Obserwację potwierdza również macierz korelacji (Rysunek 5) – najsilniej skorelowaną zmienną objaśniającą ze zmienną objaśnianą jest również cityServiceInfoAvailability.