# BEST AVAILABLE COPY

#### PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-016892

(43)Date of publication of application: 19.01.2001

(51)Int.CI.

H02P 7/00 H02K 33/06 H02K 33/10

(21)Application number: 11-180911

(71)Applicant:

MATSUSHITA ELECTRIC WORKS LTD

(22)Date of filing:

25.06.1999

(72)Inventor:

**IBUKI YASUO** 

AMAYA HIDETOSHI

**OKAMOTO TOYOKATSU** 

## (54) METHOD OF CONTROL FOR DRIVING LINEAR VIBRATING MOTOR

(57)Abstract:

PROBLEM TO BE SOLVED: To make sure control of driving at a low cost. SOLUTION: A method for controlling driving of a linear vibrating motor, which consists of a stator 1 constituted of an electromagnet or a permanent magnet, a vibrator 2 having a permanent magnet or an electromagnet, and a control section for controlling a drive current to a winding 11 of the electromagnet, causing the vibrator 2 to vibrate reciprocatively with respect to the stator 1. For a detection means for detecting the displacement, velocity, or acceleration of the vibrator 2, the winding 11 is used wherein electromotive force is generated with the vibration of the vibrator 2. The electromotive force generated in the winding 11 is detected during an off-period during which there is no drive current nor exciting current in the winding 11.



#### **LEGAL STATUS**

[Date of request for examination]

22.09.2003

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

#### (19)日本国特許庁 (JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-16892 (P2001-16892A)

(43)公開日 平成13年1月19日(2001.1.19)

| (51) Int.Cl.7 |       | 識別記号 | FΙ      |       | ž    | ·-マコード( <del>参考</del> ) |
|---------------|-------|------|---------|-------|------|-------------------------|
| H 0 2 P       | 7/00  | 101  | H 0 2 P | 7/00  | 101E | 5 H 5 4 0               |
| H02K          | 33/06 |      | H02K    | 33/06 |      | 5 H 6 3 3               |
|               | 33/10 |      |         | 33/10 |      |                         |

#### 審査請求 未請求 請求項の数20 〇L (全 12 頁)

|              |                                  | 番金蘭求    | 未請求 請求項の数20 UL (全 12 貝)                |
|--------------|----------------------------------|---------|----------------------------------------|
| (21)出願番号     | 特願平11-180911                     | (71)出願人 | 000005832                              |
| (22)出願日      | 平成11年6月25日(1999, 6, 25)          |         | 松下電工株式会社<br>大阪府門真市大字門真1048番地           |
| (22) LIBR LI | + Mai 1 + 0 /120   (1000, 0, 20/ | (72)発明者 | 伊吹 康夫<br>大阪府門真市大字門真1048番地松下電工株         |
|              |                                  | i.      | 式会社内                                   |
|              |                                  | (72)発明者 | 天谷 英俊<br>大阪府門真市大字門真1048番地松下電工株<br>式会社内 |
|              |                                  | (74)代理人 | 100087767                              |
|              |                                  |         | <b>护理士 西川 惠消 (外1名)</b>                 |
|              |                                  |         |                                        |
|              |                                  |         | 最終頁に続く                                 |

### (54) 【発明の名称】 リニア振動モータの駆動制御方法

#### (57)【要約】

【課題】 低コストで確実な駆動制御を行う。

【解決手段】 電磁石または永久磁石からなる固定子1と、永久磁石または電磁石を備えた振動子2と、電磁石の巻線11への駆動電流を制御する制御部とを備えて、固定子1に対して振動子2を往復振動させるリニア振動モータの駆動制御方法である。振動子2の変位または速度または加速度の検出のための検出手段として、振動子2の振動に伴って起電圧が発生する上記巻線1を用いるとともに、該巻線1で生じる起電圧の検出を巻線1に駆動電流及び励磁電流が流れていないオフ期間に行う。



#### 【特許請求の範囲】

【請求項1】 電磁石または永久磁石からなる固定子 と、永久磁石または電磁石を備えた振動子と、電磁石の 巻線への駆動電流を制御する制御部とを備えて、固定子 に対して振動子を往復振動させるリニア振動モータの駆 動制御方法であって、振動子の変位または速度または加 速度の検出のための検出手段として、振動子の振動に伴 って起電圧が発生する上記巻線を用いるとともに、該巻 線で生じる起電圧の検出を巻線に駆動電流及び励磁電流 が流れていないオフ期間に行うことを特徴とするリニア 振動モータの駆動制御方法。

【請求項2】 巻線の起電圧の零電圧検出を振動子の折 り返しタイミングとすることを特徴とする請求項1記載 のリニア振動モータの駆動制御方法。

【請求項3】 所定の検出時間における巻線の起電圧の 電圧値から振動子の変位または速度または加速度を検出 することを特徴とする請求項1記載のリニア振動モータ の駆動制御方法。

【請求項4】 起電圧が2つの以上の所定の検出電圧に 達する時間の時間差から振動子の変位または速度または 20 加速度を検出することを特徴とする請求項1記載のリニ ア振動モータの駆動制御方法。

【請求項5】 オフ期間を振幅の1サイクル中の一定期 間または振幅の複数サイクル中の1サイクルの中の一定 期間とすることを特徴とする請求項1記載のリニア振動 モータの駆動制御方法。

【請求項6】 巻線への駆動電流供給を半サイクルと し、残る半サイクルをオフ期間とするとともに、出力の 半サイクルと検出の半サイクルとを1サイクル中で漸次 入れ変えることを特徴とする請求項1記載のリニア振動 30 モータの駆動制御方法。

【請求項7】 巻線への駆動電流出力をPWMで行うと ともに、最大出力幅を制限することでオフ期間を設ける ことを特徴とする請求項1記載のリニア振動モータの駆 動制御方法。

【請求項8】 巻線への駆動電流出力を、振動子の片方 向駆動についてはPWMで行い。他方向駆動については 固定出力で行うとともに、固定出力幅をオフ期間を備え たものとすることを特徴とする請求項1記載のリニア振 動モータの駆動制御方法。

【請求項9】 振幅の著しい低下に伴ってオフ期間を設 けることを停止することを特徴とする請求項1記載のリ ニア振動モータの駆動制御方法。

【請求項10】 電源電圧を検出してその電圧値に応じ て巻線への駆動出力を2段階以上に変化させることを特 徴とする請求項4記載のリニア振動モータの駆動制御方 法。

【請求項 1 1 】 電源電池の残容量を検出してこの残容 量に応じて巻線への駆動出力を2段階以上に変化させる。 ことを特徴とする請求項4記載のリニア振動モータの駆 50 【0003】

動制御方法。

【請求項12】 駆動出力を変化させるタイミングは、 モータ駆動の一旦停止後としていることを特徴とする請 求項10または11記載のリニア振動モータの駆動制御

【請求項13】 駆動停止中の電圧の回復や電池残容量 の上昇は無視することを特徴とする請求項12記載のリ ニア振動モータの駆動制御方法。

【請求項14】 駆動出力の変化を多段階として駆動出 力の変化ステップを小さくするとともにモータ駆動中に 巻線への駆動出力を変化させることを特徴とする請求項 10または11記載のリニア振動モータの駆動制御方 法。

【請求項15】 巻線の起電圧の3点以上の電圧値の検 出から異常動作による折り返し時点の変動時間を検出す ることを特徴とする請求項1記載のリニア振動モータの 駆動制御方法。

【請求項16】 振動周波数を検出して記憶する手段を 設けて、逐次検出する周波数と記憶した周波数とを比較 し、その差から異常動作による折り返し時点の変動時間 を検出することを特徴とする請求項1記載のリニア振動 モータの駆動制御方法。

【請求項17】 異常動作による変動に対して駆動出力 電流が変動しないように補正することを特徴とする請求 項1記載のリニア振動モータの駆動制御方法。

【請求項18】 異常動作による変動に対して駆動出力 電流を低下させることを特徴とする請求項1記載のリニ ア振動モータの駆動制御方法。

【請求項19】 異常動作による変動に対して検出した 振動周波数に補正して駆動制御することを特徴とする請 求項1記載のリニア振動モータの駆動制御方法。

【請求項20】 異常動作による変動に対して異常動作 を表示手段で報知することを特徴とする請求項1記載の リニア振動モータの駆動制御方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は電磁石または永久磁 石からなる固定子と、永久磁石または電磁石を備えた振 動子と、電磁石の巻線への駆動電流を制御する制御部と 40 を備えて、固定子に対して振動子を往復振動させるリニ ア振動モータの駆動制御方法に関するものである。

[0002]

【従来の技術】リニア振動モータにおいては往復振動を 行う振動子の動作方向と振動子の駆動方向と同調させて 駆動することが必要となるが、この時、振動子の振幅の 変位や速度乃至加速度を検出するにあたっては、従来、 特開平7-134441号公報に示されているように、 モータに振動子の動きを検出する磁気的もしくは光学的 なセンサーを別途取り付けていた。

【発明が解決しようとする課題】この場合、別途センサ --が必要であってコストを低減することが困難であり、 またモータにもセンサーの取り付けスペースを設けなく てはならず、小型化への対応も困難である。

【0004】リニア振動モータ以外のモータでは、特開 昭62-285655号公報に示されたもののように、 2つ以上設けた駆動巻線のうちの1つを利用してモータ 速度を検出することが開示されており、特開昭49-7 711号公報のボイスコイルモータでは巻線の逆起電圧 と静止時に等価な回路の電圧を求め、その2つの電圧差 10 から速度を検出することが示されており、この電圧検出 にあたってはモータと直列に接続した抵抗に流れる電流 によって発生する電圧を検出している。

【0005】これらにおいても、2つ以上の巻線を必要 としたり、電圧検出のために別の回路を必要としてお り、コストを低減する点で問題を有している上に、抵抗 を挿入して電圧検出を行う場合、抵抗によってモータに 供給される電力が低下し、モータの効率が低下すること にもなる。

【0006】本発明はこのような点に鑑みなされたもの であって、その目的とするところは低コストで確実に駆 動制御を行うことができるリニア振動モータの駆動制御 方法を提供するにある。

#### [0007]

【課題を解決するための手段】しかして本発明は、電磁 石または永久磁石からなる固定子と、永久磁石または電 磁石を備えた振動子と、電磁石の巻線への駆動電流を制 御する制御部とを備えて、固定子に対して振動子を往復 振動させるリニア振動モータの駆動制御方法であって、 振動子の変位または速度または加速度の検出のための検 出手段として、振動子の振動に伴って起電圧が発生する 上記巻線を用いるとともに、該巻線で生じる起電圧の検 出を巻線に駆動電流及び励磁電流が流れていないオフ期 間に行うことに特徴を有している。

【0008】リニア振動モータの駆動部の巻線には振動 子の往復動に応じて図2に示すように、正弦波状の起電 圧が生じる。この波形はリニア振動モータの振動周波数 と同一周波数であり、リニア振動モータの速度が大きく なるにしたがって起電圧も大きくなるために、リニア振 る。たとえば正弦波状の起電圧がゼロ点と交差する点で は、リニア振動モータの速度がゼロであることを意味す るために、振動方向が切り替る折り返し点であることが わかる。

【0009】また、起電圧から振幅を求めることができ る。つまり、リニア振動モータは一定周波数で振動し、 その振動子の位置及び速度はsinカーブにのっとって変 化することから、周波数及びsinカーブの特定のタイミ ングにおける速度を確定させればsinカーブを特定する ことができる。従って、巻線からの起電圧を測定すると 50 0を備えた振動子2、振動子2を保持するフレーム3、

その時点での速度が分かるため、折り返しのタイミング から一定時間 t 後の起電圧を測定することでリニア振動 モータの駆動状態は唯一に規定することができる。これ により振幅に応じたリニア振動モータの駆動制御を行う ことができる。

【0010】また、図4の様に折り返しの時点から所定 の電圧に達するまでの時間 t<sub>1</sub>、t<sub>2</sub>を測定する事によ り、振幅を求めることもできる。リニア振動モータは一 定周波数で振動し、その振動子の位置及び速度はsinカ ーブで変化するため、所定の速度に達するのに要する時 間 t<sub>1</sub>、 t<sub>2</sub>でもってsinカーブを特定することができる。 ものであり、これにより振幅に応じたリニア振動モータ の制御を行うことができる。

【0011】もっとも、リニア駆動部の巻線は駆動電流 が供給されるものであり、このために実際には巻線に発 生する電圧はモータから発生する起電圧だけではなく、 モータへの電流による電圧も発生する。従って巻線に電 流が流れているときに起電圧の検出を行うと誤った情報 を検出してしまうことになる。たとえば折り返し点の検 出をする際に、起電圧がゼロ点とクロスするタイミング を測定しようとしても、図5に示すように電流が流れて いる期間を検知時間の中に含めると、電流による影響で 測定電圧が変化し、折り返し点以外のタイミングで起電 圧がゼロ点とクロスする場合が生じ、このために誤った 情報が検出されてしまう。そこで電流の流れていない時 間に限って巻線からの情報を検出することにより、誤情 報の検出を防ぐことができる。

【0012】とこにおいて、巻線に電流が流れていない 時間に巻線からの情報を検出するためには、巻線に電流 が流れていない時間を設ける必要がある。従来のリニア 振動モータにおけるPWM出力の場合では、確実に電流 が流れていない時間というものが存在していないため、 電流が流れていない時間に巻線からの情報を検出するこ とは困難である。そとで図6の様にPWM出力のMax 値を規定することにより電流の流れる時間を絞り込み、 電流の流れない時間 tacを設けることによって巻線に電 流の流れていない時間に限って巻線からの情報を検出す ることが可能となる。

【0013】このほか、リニア振動モータの振動の1往 動モータの駆動状態を検出するのに十分な検知手段とな 40 復の中において出力が2回あるうちの片側の出力は従来 通りのPWM出力とし、もう片方の出力は一定出力の固 定出力(図7中のイ)として、固定出力の後の残り時間 t。の間に巻線の起電圧を測定してもよい。この場合、 両方向の出力のMax値を制限しなくても良い分だけ出 力を大きくすることができる。

#### [0014]

【発明の実施の形態】以下本発明を実施の形態の一例に 基づいて詳述すると、図1はリニア振動モータの一例を 示しており、巻線11を備えた固定子1と、永久磁石2

振動子2とフレーム3との間に懸架されたばね4、巻線11に駆動電流を供給する制御出力部5、巻線1に生じる起電圧から振動子2の振幅を検出する振幅検出部50とからなり、制御出力部5は振幅検出部50の出力をもとに巻線11への駆動電流をPWM制御する。

【0015】振幅検出部50は、図8に示すように、巻線11の両端電圧を増幅回路51で増幅し、比較回路52で零電圧の基準電圧V0と比較して同電圧となった時間T0を振幅の折り返し点として判断する。比較回路53では基準電圧V0より所定電圧低い基準電圧V1と比10較して同電圧となった時間T1を検出し、T1~T0までの時間差Tsを検出して、この時間差Tsを元に振幅換算回路54が振幅を求める。

【0016】さらに詳しく説明すれば、図9に示すように、リニア振動モータの振幅が左右の両端位置となり、速度が零となる点では起電圧も零となり、振幅動作の折り返し点として判断することができ、時間T0を振幅の折り返し点として検出する。また起電圧は、電磁力と振幅と周波数により決定され、ここでの変動は振幅のみにて、振幅が大きくなれば起電圧も大きくなる関係にある。振幅が大きくなると検出した時間差Tsは短くなり、振幅が小さくなれば長くなる。この関係を用い、振幅換算部54で時間差を振幅として判断する。

【0017】検出した折り返し点にあわせて出力電流の出カタイミングを制御し、振幅の位相にあわせた出力と共振周波数に同期した駆動が可能となる。図示例では折り換えし点から時間Tc後にスイッチング素子Q1、Q4を時間Taの間オンし、反対方向の振幅は時間Td後にスイッチング素子Q2、Q3を時間Tbの間オンして出力電流を流している。振幅を一定に制御するために時30間差Tsに応じて時間Ta,Tbの間、PWM制御する

【0018】振幅を時間差Tsで換算して検出したが、電圧差で検出することも可能である。出力Tb後の巻線 11の励磁電流が零に達した後の所定時間T3の起電圧V3所定時間T4での起電圧V4を検出し、起電圧V3,V4の電圧差Vsで振幅を判断するのである。これは図8に示した比較回路52,53をA/D回路に変更することで対応することができる。

【0019】もっとも、時間差Vsで検出する場合、折 40 り返し点の検出と同回路で構成することができるために、構成がより簡単となる。電圧差Vsで検出する場合は検出領域内で必ず検出できる点において有利である。時間差Tsは振幅が著しく低下すると検出困難となる。【0020】上記検出は片方向のみとしたが、両方向で行ってもよい。ただし片方向のほうが最大出力が大きく、振幅及び推進力を稼ぐことができる。振幅及び推進力をさらに稼ぐために、出力オフt。期間を設けることによる振幅の検出動作を、図10に示すように振幅の何サイクルかに1度行うようにしてもよい。 50

【0021】また、片方向のみ出力をカットすると、左右方向出力アンバランス発生で出力電流にロスが生じるが、図11に示すように、1サイクルごとに左右出力と検出領域 tacの左右反転を行うと、ロスの発生を防ぐことができる。

【0022】上記左右反転と何サイクルかに1サイクル 検出することとを組み合わせてもよい。図12はこの場 台を示している。

【0023】大電流を必要とする起動時(図13)や過 負荷時の振幅低下時(図14)は最大出力幅を所定時間 出力するものとして、少しでも多くの推進力を確保し、 この間、振幅検出動作は行わないことが望ましい。

【0024】以上のように、巻線に電流を流して磁界を発生させることで永久磁石を備えた振動子を駆動し、適時電流の流れる方向を変化させることにより振動子に振動させるとともに、振動子の動きを巻線に生じる起電圧をもとに検出して駆動制御部にその信号を伝達してフィードバックを行うことにより電流の流れる方向や電流量を制御する。図15はこのためのブロック回路図を示している。

【0025】ここにおいて、モータの駆動時に電源電圧が変化した場合、モータの振幅を検出してフィードバックを行っている駆動制御部において巻線に流れる電流の時間幅を同じにしたとしても、電源からモータへの電力供給量が変化することから振幅が変化してしまうことになる。

【0026】この場合、モータへの出力を変化させる手段として、振幅を検出して出力を変化させるフィードバック制御電圧変化による出力のフィードバックを行うとよい。図16はこの場合の一例を示しており、電源電圧と基準電圧の比較を電源電圧検出部で行い、基準電圧以上であるか以下であるかの結果を駆動制御ブロックに伝達し、駆動制御ブロックで電圧に応じてモータ駆動出力を変化させている。

【0027】図17に示すように、電源が電池であり且つ駆動制御ブロックに電池残容量カウンターを設けているものにおいては、電源電圧の直接検出値に代えて電池残容量カウンタの値を代用し、電池残容量が低下してくると電圧が低下していると見なして出力の変更を行うようにしてもよい。

【0028】図18は、図16に示したものと同様に、電源電圧検出部で電源電圧と基準電圧の比較を行い、その結果を駆動制御プロックに伝達しているが、駆動制御プロックではこの比較結果を一旦バッファに蓄積し、駆動開始時にバッファ内容を確認することによって出力の変更を行うようにしたものを示している。駆動出力を変化させるタイミングをモータ駆動の一旦停止後としているのは、モータ駆動中の振幅変化は使用者に違和感を抱かせるからである。

50 【0029】また、図19に示すように、上記バッファ

の内容に対して、電圧低下を検出した場合には内容を記 憶させておいて、停止中に電圧が回復しても電圧低下を 検出した状態で駆動を行うようにしてもよい。つまり、 駆動停止中の電圧の回復や電池残容量の上昇は無視する

【0030】図20に示すように、電源電圧と比較する 基準電圧を多数用意して、これらの比較結果をもって出 力を変化させれば、わずかな電圧変動に対する出力の変 化を行うことになるため、出力の変化幅を小さくするこ とができる。そして、出力の変化幅を小さくすることに 10 より、駆動中に変化させた場合における振幅の変化を小 さくすることができる。例えば電気かみそりに用いた場 合、駆動中に大きく振幅が変化すると使用者に違和感を 与えることになるが、振幅の変化が小さい場合には違和 感が少ないため、極めて細かく出力を変化させることに より駆動中に出力変化をさせても全く違和感のないもの とすることができる。また、このように制御すればリア ルタイムに電圧変化による振幅の変動に対応させること ができる。

も、残容量を細かくカウントしていれば、そのカウント の上位の何桁かを用いることにより容易に多段階の状態 分けを行うことができ、状態に応じて出力を変化させる ことで電圧検出と同様に、リアルタイムに電圧変化によ る振幅変化に対応させることができる。

【0032】そして、リニア振動モータの振動子に負荷 が異常にかかると振幅運動が一定の周期で行われなくな り、特に図22に示すように振幅の折り返し時点で振幅 運動に遅れが生じ、巻線に発生する起電圧に歪みが生じ る。この場合、起電圧の検出を3点以上で行い、起電圧 30 の電圧値が一定の変動値で変化していない(直線性の低 下)場合、起電圧に歪みが発生したものと判断すること ができるとともに歪み量により異常負荷を検出すること ができる。起電圧の検出を零電圧のA点と一定電圧差の 検出点B, Cの3点の時間差により起電圧の直線性(歪 み)を検出することができ、振幅をA、C点間の時間差 により振幅速度として検出して振幅速度が一定となるよ うに出力を制御することができる。ただし、起電圧に歪 みが生じると振幅速度に誤差が生じ、正確な振幅速度が 測定できず、振幅を一定に保てない。従って起電圧の歪 40 みを検出した場合、その検出した歪み量に応じて出力を 補正して、振幅を一定に保つ。 B. C点の検出をA点 から一定時間差の検出B、C点の3点の起電圧の電圧差 により、起電圧の直線性(歪み)を検出してもよい。

【0033】また、A点の1サイクル間の測定で動作周 波数を測定し、初期周波数を記憶部に記憶して、逐次測 定する周波数と比較し、比較した差から出力を補正して 振幅を一定に保ってもよい。図23はこの場合の一例を 示している。

にかかったと判断し、安全のために検出して歪みに応じ て出力を補正して振幅を低下させても良い。

【0035】逐次測定する周波数が、記憶部に記憶した 初期周波数のモータ固有周波数と異なる場合には、出力 をモータ固有周波数にあわせて行えるように、出カタイ ミンクを補正する。

【0036】また、起電圧の直線性(歪み)を検出した場 合、表示部に異常負荷がかかったことを表示して使用者 に注意を促すことができるようにすることも好ましい。 [0037]

【発明の効果】以上のように本発明においては、駆動の ための駆動電流が供給される巻線を用いて振動子の変位 を検出するために、別途センサーを設ける必要がなく、 また巻線を2つ以上設けたりする必要もなく、低コスト で且つ駆動制御を行うことができる上に、センサーを設 けるスペースが不用であるために、小型化にも有利なも のである。

【0038】この場合、巻線の起電圧の零電圧検出を振 動子の折り返しタイミングとすればよく、また、所定の 【0031】電池残容量カウンタを備えたものにおいて 20 検出時間における巻線の起電圧の電圧値から振動子の変 位または速度または加速度を検出したり、起電圧が2つ の以上の所定の検出電圧に達する時間の時間差から振動 子の変位または速度または加速度を検出したりすること ができる。

> 【0039】そして、オフ期間は振幅の1サイクル中の 一定期間とすればよいが、振幅の複数サイクル中の1サ イクルの中の一定期間とすることでオフ期間を設けるこ とによる振幅や推進力の低下を防ぐことができる。

> 【0040】 巻線への駆動電流供給を半サイクルとし、 残る半サイクルをオフ期間とするとともに、出力の半サ イクルと検出の半サイクルとを1サイクル中で漸次入れ 変えると、左右方向出力のアンバランスによるロスを無 くすことができる。

> 【0041】オフ期間を設けることについては、巻線へ の駆動電流出力をPWMで行うとともに、最大出力幅を 制限することでオフ期間を設けることができるほか、巻 線への駆動電流出力を、振動子の片方向駆動については PWMで行い、他方向駆動については固定出力で行うと ともに、固定出力幅をオフ期間を備えたものとすること で行うことができる。

【0042】振幅の著しい低下がある場合はオフ期間を 設けることを停止し、最大出力幅を所定時間出力するこ とができるようにしておくのが好ましい。

【0043】電源電圧を検出してその電圧値に応じて巻 線への駆動出力を2段階以上に変化させると、電圧によ る振幅の変動を抑えることができる。

【0044】電源電池の残容量を検出してこの残容量に 応じて巻線への駆動出力を2段階以上に変化させてもよ く、この場合、改めて電圧を検出する必要がなくなる。

【0034】起電圧の歪みを検出した場合、負荷が異常 50 【0045】駆動出力を変化させるタイミングは、モー

(6)

10

タ駆動の一旦停止後としておくと、使用者に振幅の変化 による違和感を感じさせることがなくなる。

【0046】この時、駆動停止中の電圧の回復や電池残容量の上昇は無視するようにしておくことで、電池の一時的回復を無視することができる。

【0047】駆動出力の変化を多段階として駆動出力の変化ステップを小さくすることで、モータ駆動中に巻線への駆動出力を変化させる際の使用者が感ずる違和感を低減することができる。

【図面の簡単な説明】

【図1】本発明の実施の形態の一例のブロック図である。

【図2】振動子の変位と起電圧とのタイムチャートであ ス

【図3】振動子の変位と起電圧とのタイムチャートであ ス

【図4】振動子の変位と起電圧とのタイムチャートである。

【図5】振動子の変位と起電圧とのタイムチャートであ ス

【図6】振動子の変位と起電圧とのタイムチャートである。

【図7】振動子の変位と起電圧とのタイムチャートである。

【図8】同上の回路図である。

\*【図9】動作を説明するタイムチャートである。

【図10】オフ期間の設定に関するタイムチャートであ る。

【図11】オフ期間の設定に関するタイムチャートであ み

【図12】オフ期間の設定に関するタイムチャートである。

【図13】オフ期間の設定に関するタイムチャートである。

10 【図14】オフ期間の設定に関するタイムチャートである。

【図15】一例のブロック回路図である。

【図16】他例のブロック回路図である。

【図17】さらに他例のブロック回路図である。

【図18】別の例のブロック回路図である。

【図19】さらに別の例のブロック回路図である。

【図20】異なる例のプロック回路図である。

【図21】他例のブロック回路図である。

【図22】別の例の動作を示すタイムチャートである。

20 【図23】他の例の動作説明図である。

【符号の説明】

1 固定子

2 振動子

11 巻線

\*

【図1】



[図2]













[図12]



【図13】



[図14]





[図22]



【図23】



#### 【手続補正書】

【提出日】平成11年9月6日(1999.9.6)

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0017

【補正方法】変更

#### 【補正内容】

【0017】検出した折り返し点にあわせて出力電流の出カタイミングを制御し、振幅の位相にあわせた出力と共振周波数に同期した駆動が可能となる。図示例では折り返し点から時間Tc後にスイッチング素子Q1、Q4を時間Taの間オンし、反対方向の振幅は時間Td後にスイッチング素子Q2、Q3を時間Tbの間オンして出力電流を流している。振幅を一定に制御するために時間差Tsに応じて時間Ta、Tbの間、PWM制御する。

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0024

\*【補正方法】変更

#### 【補正内容】

【0024】以上のように、巻線に電流を流して磁界を発生させることで永久磁石を備えた振動子を駆動し、適時電流の流れる方向を変化させることにより振動子に振動させるとともに、振動子の動きを巻線に生じる起電圧をもとに検出して駆動制御部にその信号を伝達してフィードバックを行うことにより電流の流れる方向や電流量を制御する。図15はこのためのブロック回路図を示している。

【手続補正3】

【補正対象書類名】図面

【補正対象項目名】図14

【補正方法】変更

【補正内容】

【図14】



フロントページの続き

(72)発明者 岡本 豊勝

大阪府門真市大字門真1048番地松下電工株式会社内

Fターム(参考) 5H540 BAO3 BB06 BB08 BB09 EE08

FA06 FA16 FB05 FC03 FC10

GG07

5H633 BB02 BB03 BB07 BB08 BB09

GG02 GG03 GG04 GG23 GG24

HH02 HH03 JA02

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT

## IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY