THE AI REVOLUTION

Satya Mallick, CEO, OpenCV.org

Vikas Gupta Director (Courses), OpenCV.org

PRIVATE INVESTMENT IN AI

PRIVATE INVESTMENT in AI, 2013-21

https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-Al-Index-Report_Master.pdf

AI EDUCATION

https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-Al-Index-Report_Master.pdf

AI EDUCATION

NEW CS PHDS (% of TOTAL) in the UNITED STATES by SPECIALITY, 2020

15%

% of New CS PhDs

20%

https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-Al-Index-Report_Master.pdf

5%

AI SKILL PENETRATION

RELATIVE AI SKILL PENETRATION RATE by GEOGRAPHIC AREA, 2015-21

Source: LinkedIn, 2021 | Chart: 2022 Al Index Report

https://aiindex.stanford.edu/wp-content/uploads/2022/03/2022-Al-Index-Report_Master.pdf

AI PAYGRADES

https://aipaygrad.es/

A TALE OF 3 LIBRARIES

COMPUTER VISION COURSES

OpenCV for Beginners

A short, fun, and affordable course for beginners.

Computer
Vision I:
Introduction

An introductory course for beginners in computer vision and machine learning.

Available in C++ and Python

Computer
Vision II:
Applications

A computer vision course focussed on building real world

https://opencv.org/courses Email us at <u>courses@opencv.org</u> for discount code

DEEP LEARNING COURSES

4

Deep Learning with PyTorch

An introductory hands-on course for beginners in deep learning for computer vision.

Deep Learning with Tensorflow & Keras

An introductory hands-on course for beginners in deep learning for computer vision

https://opencv.org/courses Email us at <u>courses@opencv.org</u> for discount code

DEEP LEARNING

2001

Viola and Jones

2001

Viola and Jones

HAAR cascade based realtime face detector was a big leap in object detection

2001

Viola and Jones

HAAR cascade based realtime face detector was a big leap in object detection 2005

Dalal and Triggs

2001

Viola and Jones

HAAR cascade based realtime face detector was a big leap in object detection

HOG features were invented. HOG + SVM quickly became the popular tool for image classification and object detection

2005

Dalal and Triggs

2001

Viola and Jones

HAAR cascade based realtime face detector was a big leap in object detection

HOG features were invented. HOG + SVM quickly became the popular tool for image classification and object

detection

2012

Krizhevsky, Sutskever, Hinton

2005

Dalal and Triggs

2001

Viola and Jones

HAAR cascade based realtime face detector was a big leap in object detection HOG features were invented. HOG + SVM quickly became the popular tool for image classification and object detection

2005

Dalal and Triggs

2012

Krizhevsky, Sutskever, Hinton

Deep Learning based AlexNet won ILSVRC 2012 by a huge margin.

LARGE DATASETS

ILSVRC proved large datasets will keep improving performance

ILSVRC proved large datasets will keep improving performance

LARGE DATASETS

ILSVRC proved large datasets will keep improving performance

PARALLEL COMPUTING

We figured out how to use GPUs for scientific computing

LARGE DATASETS

ILSVRC proved large datasets will keep improving performance

PARALLEL COMPUTING

We figured out how to use GPUs for scientific computing

LARGE DATASETS

ILSVRC proved large datasets will keep improving performance

PARALLEL COMPUTING

We figured out how to use GPUs for scientific computing

BETTER ALGORITHMS

Deeper networks could be trained

DEEP LEARNING vs TRADITIONAL LEARNING

IMAGE CLASSIFICATION PIPELINE

DEEP LEARNING

CONVOLUTIONAL NEURAL NETWORK

TRAINING A NETWORK

TRAINING REQUIREMENTS

- 1. Training data
 - Thousands of images.

TRAINING REQUIREMENTS

1. Training data

• Thousands of images with class labels.

FORWARD PASS

FORWARD PASS

FORWARD PASS

CHANGE WEIGHTS

TRAINING REQUIREMENTS

- 1. Training data
 - Thousands of images with class labels.
- 2. Loss function / Cost function
 - Returns high value when the network is inaccurate.

TRAINING REQUIREMENTS

1. Training data

- Thousands of images with class labels.
- 2. Loss function / Cost function
 - Returns high value when the network is inaccurate.
 - Returns low value when the network is accurate on training data.

SSE LOSS

GRADIENT DESCENT

GRADIENT DESCENT

BACKPROPAGATION

The algorithm used for estimating the gradient of the loss function is called **Backpropagation**.

Backpropagation is essentially chain rule applied repeatedly.

1. Deep Neural Networks are simply neural networks with more than one hidden layer.

- 1. Deep Neural Networks are simply neural networks with more than one hidden layer.
- 2. A DNN can be thought as a black box with many parameters.

- 1. Deep Neural Networks are simply neural networks with more than one hidden layer.
- 2. A DNN can be thought as a black box with many parameters.
- 3. When the parameter settings are right, the neural network produces the right results more often.

- 1. Deep Neural Networks are simply neural networks with more than one hidden layer.
- 2. A DNN can be thought as a black box with many parameters.
- 3. When the parameter settings are right, the neural network produces the right results more often.
- 4. Training a neural network means finding the right parameters for the network.

- 1. Deep Neural Networks are simply neural networks with more than one hidden layer.
- 2. A DNN can be thought as a black box with many parameters.
- 3. When the parameter settings are right, the neural network produces the right results more often.
- 4. Training a neural network means finding the right parameters for the network.
- 5. Training is done by showing the network data with known answers.

- 1. Deep Neural Networks are simply neural networks with more than one hidden layer.
- 2. A DNN can be thought as a black box with many parameters.
- 3. When the parameter settings are right, the neural network produces the right results more often.
- 4. Training a neural network means finding the right parameters for the network.
- 5. Training is done by showing the network data with known answers.
- 6. Backpropagation is used to estimate the gradient of the loss function with respect to parameters.

- 1. Deep Neural Networks are simply neural networks with more than one hidden layer.
- 2. A DNN can be thought as a black box with many parameters.
- 3. When the parameter settings are right, the neural network produces the right results more often.
- 4. Training a neural network means finding the right parameters for the network.
- 5. Training is done by showing the network data with known answers.
- 6. Backpropagation is used to estimate the gradient of the loss function with respect to parameters.
- 7. An optimizer like Gradient Descent is used to find the minimum for the loss function.

INFERENCE

Trained Network

• • • • • • • •

TRAINING

TensorFlow

O PyTorch

Caffe

PROS

- Simply import models in your OpenCV C++ or Python applications.
- 2. OpenCV DNN module is much faster than other frameworks

PROS

- Simply import models in your OpenCV C++ or Python applications.
- 2. OpenCV DNN module is much faster than other frameworks

CONS

1. New layers may not be supported

OPENCY MODEL ZOO

CLASSIFICATION

AlexNet

GoogleNet

CaffeNet

RCNN_ILSVRC13

ZFNet512

VGG16, VGG16_bn

ResNet-18v1, ResNet-50v1

CNN Mnist

MobileNetv2

LResNet100E-IR

Emotion FERPlus

Squeezenet

DenseNet121

Inception v1, v2

Shufflenet

OBJECT DETECTION

YOLOv3

SSD VGG

MobileNet-SSD

Faster-RCNN

R-FCN

OpenCV face detector

TinyYolov2

SEGMENTATION

FCN

ENet

ResNet101_DUC_HDC

Mask R-CNN

OTHER

OpenPose

EAST Text Detection

Style Transfer

Colorization

• • • • • • • • •

• • • • • • • •

READ NET

Read the network using **readNet**

- 1. Config File
- 2. Weights file

.

READ NET

READ IMAGE

Read the network using **readNet**

- 1. Config File
- 2. Weights file

• • • • • • • • •

READ NET

Read the network using **readNet**

- 1. Config File
- 2. Weights file

READ IMAGE

- Read input image (imread)
- 2. Convert it to a blob (blobFromImage)

• • • • • • • •

READ NET

Read the network using **readNet**

- 1. Config File
- 2. Weights file

READ IMAGE

- 1. Read input image (imread)
- 2. Convert it to a blob (blobFromImage)

FORWARD

• • • • • • • • •

READ NET

Read the network using **readNet**

- 1. Config File
- 2. Weights file

READ IMAGE

- 1. Read input image (imread)
- 2. Convert it to a blob (blobFromImage)

FORWARD

Perform a forward pass on the network with blob as input

(net.forward)

• • • • • • • • •

READ NET

Read the network using **readNet**

- 1. Config File
- 2. Weights file

READ IMAGE

- . Read input image (imread)
- 2. Convert it to a blob (blobFromImage)

FORWARD

on the network with blob as input

(net.forward)

POST PROCESS

• • • • • • • • •

READ NET

Read the network using **readNet**

- 1. Config File
- 2. Weights file

READ IMAGE

- 1. Read input image (imread)
- 2. Convert it to a blob (blobFromImage)

FORWARD

Perform a forward pass on the network with blob as input (net.forward)

POST PROCESS

Convert the output to usable format using post processing

TOPICS COVERED

- Ol Image Classification
 DenseNet
- Object Detection
- O3 Face Recognition

 YuNet Face Detection

 SFace Recognition

THANK YOU