

WHAT IS CLAIMED IS:

- 1 1. A resin-encapsulated semiconductor apparatus comprising a
2 semiconductor device having a ferroelectric film and a surface-protective film,
3 and a encapsulant member comprising a resin;
4 said surface-protective film being formed of a polyimide.
- 1 2. The resin-encapsulated semiconductor apparatus according to
2 claim 1, wherein said polyimide has a glass transition temperature of from
3 240°C to 400°C and a Young's modulus of from 2,600 MPa to 6 GPa.
- 1 3. The resin-encapsulated semiconductor apparatus according to
2 claim 1, wherein said ferroelectric film is a capacity insulation film of a
3 capacitor.
- 1 4. The resin-encapsulated semiconductor apparatus according to
2 claim 1, wherein said polyimide is obtained by heating a polyimide precursor
3 composition at a temperature of 230°C or above and 300°C or below.
- 1 5. The resin-encapsulated semiconductor apparatus according to
2 claim 1, wherein said polyimide;
3 is obtained by heating a polyimide precursor composition at a
4 temperature of higher than 300°C and 350°C or below for a time shorter than 4
5 minutes; and
6 has a Young's modulus of 3,500 MPa or above and a glass transition

7 temperature of 260°C or above.

1 6. A process for fabricating a resin-encapsulated semiconductor
2 apparatus, comprising the steps of;
3 forming a film of a polyimide precursor composition on the surface
4 of a semiconductor device having a ferroelectric film;
5 heat-curing the polyimide precursor composition film to form a
6 surface-protective film formed of a polyimide; and
7 encapsulating, with an encapsulant resin, the semiconductor device
8 on which the surface-protective film has been formed.

1 7. The process for fabricating a resin-encapsulated semiconductor
2 apparatus according to claim 6, wherein the polyimide has a glass transition
3 temperature of from 240°C to 400°C and a Young's modulus of from 2,600
4 MPa to 6 GPa.

1 8. The process for fabricating a resin-encapsulated semiconductor
2 apparatus according to claim 6, wherein the step of heat-curing comprises a
3 step of curing said polyimide precursor composition film by heating at a
4 temperature of 230°C or above and 300°C or below.

1 9. The process for fabricating a resin-encapsulated semiconductor
2 apparatus according to claim 6, wherein;
3 the step of heat-curing comprises a step of heating at a temperature
4 of 300°C or above and 350°C or below; and
5 said polyimide has a Young's modulus of 3,500 MPa or above and a

6 glass transition temperature of 260°C or above.

1 10. The process for fabricating a resin-encapsulated
2 semiconductor apparatus according to claim 6, wherein said polyimide
3 precursor composition contains as a polyimide precursor a polyamic acid
4 comprised of a repeating unit represented by the following general formula
5 (I) :

11 wherein R¹ is at least one of tetravalent aromatic organic groups shown in
12 the following chemical formula group (II), and R² is at least one of divalent
13 aromatic organic groups shown in the following chemical formula groups (III)
14 and (IV):

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

... (IV)

101

102

1 11. The process for fabricating a resin-encapsulated
2 semiconductor apparatus according to claim 6, wherein said polyimide
3 precursor composition contains as a polyimide precursor a polyamide acid
4 comprised of a first repeating unit represented by the following general
5 formula (I) and a second repeating unit represented by the following general
6 formula (V): the proportion of the number of said second repeating unit to the
7 total number of said first repeating unit and second repeating unit being 10%
8 or less;

9

14

19 wherein R^1 is at least one of tetravalent aromatic organic groups shown in
20 the following chemical formula group (II):

21

22

23

24

25

26

27

28

and

... (11)

49

50

51 R² is a

51 R² is at least one of divalent aromatic organic groups shown in the following
52 chemical formula groups (III) and (IV):

53

54

55

57

59

61

63

65

67

69

71

73

75

77

... (III)

78

105 R³ is at least one of divalent silicon-containing organic group shown in the
106 following chemical formula group (VI):

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

... (VI)

1 12. The process for fabricating a resin-encapsulated
2 semiconductor apparatus according to claim 6, wherein the heating in the
3 step of heat-curing is carried out using a hot plate.

1 13. A process for fabricating a resin-encapsulated laminated
2 device, comprising the steps of;
3 forming a film of a polyimide precursor composition on the surface
4 of a laminate having a ferroelectric film;
5 heat-curing the polyimide precursor composition film to form a film
6 of a polyimide having a glass transition temperature of from 240°C to 400°C
7 and a Young's modulus of from 2,600 MPa to 6 GPa; and
8 encapsulating, with an encapsulant resin, the laminate on which
9 the polyimide film has been formed.