1 Moments and Deviations

Theorem 1.1 (Markov's Inequlity) Let X be a random variable with only nonnegative values. Then, for all a > 0,

$$\mathbf{P}(X \ge a) \le \frac{\mathbf{E}[X]}{a}$$

Proof. For a > 0, let I = 1 (if $X \ge a$) or 0 (otherwise), and note that $I \le X/a$. Taking expectaions on both sides, thus yields $\mathbf{P}(X \ge a) = \mathbf{E}[I] = \le \mathbf{E}[X/a] = \mathbf{E}[X]/a$.

The k-th moment of a random variable X is $\mathbf{E}[X^k]$. The variance of random variable X is defined as $\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2] - \mathbf{E}[X]^2$, and the **standard deviation** of a random variable X is $\sigma[X] = \sqrt{\mathbf{Var}[X]}$. The **convariance** of two random variables X and Y is $\mathbf{Cov}(X, y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])]$, and we have

Lemma 1.2 For any two random variables X and Y, $Var[X + Y] = Var[X] + Var[Y] + 2 \cdot Cov(X, Y)$.

Lemma 1.3 For any two independent random variables X and Y, $\mathbf{E}[X \cdot Y] = \mathbf{E}[X] \cdot \mathbf{E}[Y]$. (the opposite does not hold)

Corollary 1.4 If X and Y are independent random variables, then Cov(X,Y) = 0.

Theorem 1.5 (Linearity of variance) Let X_1, X_2, \dots, X_n be mutually independent random variables. Then

$$\mathbf{Var}\bigg[\sum_{i=1}^n X_i\bigg] = \sum_{i=1}^n \mathbf{Var}[X_i]$$

For example, a Bernoulli trial with success probability p has variable p(1-p), therefore the variance of a binomial random variable X with parameters n and p is np(1-p).

Theorem 1.6 (Chebyshev's inequality) Let X be a random variable. Then, for any a > 0,

$$\mathbf{P}\left(|X - \mathbf{E}[X]| \ge a\right) \le \frac{\mathbf{Var}[X]}{a^2}$$

Proof. We can apply Markov's inequality to prove:

$$\mathbf{P}(|X - \mathbf{E}[X]| \ge a) = \mathbf{P}((X - \mathbf{E}[X])^2 \ge a^2) \le \frac{\mathbf{E}[(X - \mathbf{E}[X])^2]}{a^2} = \frac{\mathbf{Var}[X]}{a^2}$$

A useful variant of Chebyshev's inequality is to substitute a with $t \cdot \sigma[X]$ $(t \ge 1)$.

The **median** of random variable X is defined to be any value m such that $P(X \le m) \ge 1/2$ and $P(X \ge m) \ge 1/2$.

Theorem 1.7 For any random variable X with finite expectation $\mathbf{E}[X]$ and finite median m,

- the expectaion $\mathbf{E}[X]$ is the value of c that minimizes the expression $\mathbf{E}[(X-c)^2]$.
- the median m is the value of c that minimizes the expression $\mathbf{E}[|X-c|]$.

Corollary 1.8 $|\mu - m| = |\mathbf{E}[X] - m| = |\mathbf{E}[X - m]| \le \mathbf{E}[|X - m|] \le \mathbf{E}[|X - \mu|] \le \sqrt{\mathbf{E}[(X - \mu)^2]} = \sigma$.