





# Unsupervised Multi-View Gaze Representation Learning

John Gideon, Shan Su, Simon Stent June 2022

## Unsupervised gaze representation learning

- Increasing interest to learn gaze estimators with less annotation
- Recently proposed Cross-Encoder uses two pairs of eye images to disentangle gaze and appearance:

Temporal pair
Different gaze
Same appearance





Left-right pair
Same gaze
Different appearance





#### **Cross-Encoder for Unsupervised Gaze Representation Learning** Yunjia Sun<sup>1,2</sup>, Jiabei Zeng<sup>1</sup>, Shiguang Shan<sup>1,2</sup>, Xilin Chen<sup>1,2</sup> <sup>1</sup>Key Laboratory of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing 100190, China <sup>2</sup>University of Chinese Academy of Sciences, Beijing 100049, China {sunyunjial8z, jiabei.zeng, sgshan, xlchen}@ict.ac.cn Abstract In order to train 3D gaze estimators without too many annotations, we propose an unsupervised learning framework, Cross-Encoder, to leverage the unlabeled data to learn suitable representation for gaze estimation. To address the issue that the feature of gaze is always intertwined with the appearance of the eye, Cross-Encoder disentangles the features using a latent-code-swapping mechanism on eye-consistent image pairs and gaze-similar ones. Specifically, each image is encoded as a gaze feature and an eye feature. Cross-Encoder is trained to reconstruct each image in the eye-consistent pair according to its gaze feature and the other's eve feature, but to reconstruct each

Sun et al., ICCV 2021

image in the gaze-similar pair according to its eye feature and the other's gaze feature. Experimental results show

#### Cross-Encoder Model



# Building on the Cross-Encoder

|               | Feature Structure                                                  | Model Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Confidence |
|---------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Cross-Encoder | Temporal pair Different gaze Same Appearance  Different Appearance | E Prot spo  In In In Indiana  In In Indiana  In Indiana  In Indiana  In Indiana  In Indiana  In In Indiana  In In Indiana  In In Indiana  In Indiana  In Indiana |            |
| Our Method    |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |



- Multi-view
  - (camera-relative) head pose varies depending on the camera position



- Multi-view
  - (camera-relative) head pose varies depending on the camera position
- Left-right
  - Left eyes share one appearance feature, right eyes another



- Multi-view
  - (camera-relative) head pose varies depending on the camera position
- Left-right
  - Left eyes share one appearance feature, right eyes another
- Head-eye dynamics
  - Over short intervals of time, the relative gaze (eye motion) changes more than head motion



#### Multi-view

 (camera-relative) head pose varies depending on the camera position

#### Left-right

 Left eyes share one appearance feature, right eyes another

#### Head-eye dynamics

 Over short intervals of time, the relative gaze (eye motion) changes more than head motion

#### Common factors

 Features related to the subject or overall lighting are consistent over all views



#### Cross-Encoder with new features



# Building on the Cross-Encoder



Disentangles head rotation from relative gaze









#### **Benefits**

- Flexible to missing data extra data during train and test
- Efficient takes half the time to train versus Cross-Encoder

## Summary



Disentangles head rotation from relative gaze

Flexible and efficient

# Mean summary function



# Mean summary function



# Weighting by confidence



#### Confidence Results



(a) High confidence appearance features.



(c) High confidence relative gaze features.



(e) High confidence head features.



(b) Low confidence appearance features.



(d) Low confidence relative gaze features.



(f) Low confidence head features.

#### Results



Our method yields consistent 2-5° angular improvement vs. the cross-encoder for few-shot gaze estimation on the EVE dataset

|                         | Without Common | With Common |
|-------------------------|----------------|-------------|
| Mean Baseline           | 22.7           | 22.7        |
| Cross Encoder (CE)      | 9.6 (0.5)      | 12.3 (1.0)  |
| CE with Head Feature    | 7.6 (0.3)      | 7.8 (0.3)   |
| Basis Loss (mean)       | 7.9 (0.5)      | 7.5 (0.4)   |
| Basis Loss (confidence) | 7.6 (0.5)      | 7.3 (0.4)   |

For more results, please see our paper

## Summary



Disentangles head rotation from relative gaze

Flexible, efficient, and performant

Interpretable, even without annotation





#### Code available!

https://github.com/ ToyotaResearchInstitute/ UnsupervisedGaze