La correspondance de Green dans les mathématiques équivariantes

Ivo Dell'Ambrogio Université de Lille

Séminaire Laboratoire de mathématiques de Reims 6 avril 2021

References:

- Paul Balmer and Ivo Dell'Ambrogio. *Green equivalences in equivariant mathematics*. Math. Ann. (2021) (arXiv:2001.10646).
- Paul Balmer and Ivo Dell'Ambrogio. Mackey 2-functors and Mackey 2-motives. EMS Monographs in Mathematics. European Mathematical Society, Zürich (2020), viii+227. (arXiv:1808.04902).

1. La correspondance de Green classique

Un résultat fondamental en théorie des représentations modulaires :

- k : un corps de caractéristique p > 0
- G: un groupe fini
- Pour M un kG-module indécomposable, le **vertex** de M est : le plus petit sous-groupe $Q \leq G$ tel que $M \leq \operatorname{Ind}_Q^G(N)$ pour un kQ-module $N \pmod Q$ est un p-groupe, unique à conjugaison près).

La correspondance de Green (J. A. Green 1958, 1964)

Pour tous $Q \leq H \leq G$ tels que $N_G(Q) \subseteq H$, on a une bijection

$$kH$$
-modules indéc. de vertex Q "Ind" kG -modules indéc. de vertex Q

où $_HN$ et $_GM$ se correspondent ssi $M \leq \operatorname{Ind}_H^G(N)$ ssi $N \leq \operatorname{Res}_H^G(M)$.

2. L'équivalence de Green classique

Notations:

- $\mathcal{M}(G) := kG$ -mod, la catégorie des kG-modules de dimension finie.
- $\mathcal{M}(G; S) := \{M \mid M \leq \operatorname{Ind}(N) \text{ pour un } N \in \mathcal{M}(S)\} \subset^{\operatorname{pleine}} \mathcal{M}(G)$ la sous-catégorie pleine des **S-objets**, pour $S \leq G$ un sous-groupe.
- $\mathcal{M}(G; \mathbb{S})$ de façon similaire pour un ensemble \mathbb{S} de sous-groupes de G.

L'équivalence de Green (J. A. Green 1974)

 $Q \leq H \leq G$ comme avant. On a une équivalence de "quotients additifs"

$$\frac{\mathcal{M}(H;Q)}{\mathcal{M}(H;\mathbb{X})} \xrightarrow{\stackrel{\mathsf{Ind}}{\sim}} \frac{\mathcal{M}(G;Q)}{\mathcal{M}(G;\mathbb{X})}$$

où
$$\mathbb{X} = \mathbb{X}(G, H, Q) := \{Q \cap gQg^{-1} \mid g \in G \setminus H\}.$$

3. Explications

Rappel sur les quotients additifs :

- Si ${\mathcal A}$ est une catégorie additive, ${\mathcal B}\subset {\mathcal A}$ une sous-catégorie pleine,
- \mathcal{A}/\mathcal{B} ou $\frac{\mathcal{A}}{\mathcal{B}}$ est la catégorie avec les mêmes objets que \mathcal{A} et Homs:

$$\mathcal{A}/\mathcal{B}(X,Y) = \frac{\mathcal{A}(X,Y)}{\left\{\varphi \colon X \to Y \mid \exists X \xrightarrow{\varphi} Y \text{ pour un } Z \in \mathcal{B}\right\}}$$

- Example: kG-mod := kG-mod/kG-proj, the catégorie stable de kG. Non abélienne, mais triangulée!
- On retrouve la cohomologie de Tate: kG- $\underline{\mathsf{mod}}^*(k,k) \simeq \hat{H}^*(G;k)$.
- Pour des raisons similaires, les "catégories stables relatives" dans l'équivalence de Green sont triangulalées.

4. Équiv de Green + Krull-Schmidt ⇒ Corr de Green

• kG-mod est une catégorie de Krull-Schmidt, en particulier :

 \forall objet M, \exists décomposition $M \simeq M_1 \oplus \cdots \oplus M_n$, telle que les M_1, \ldots, M_n sont indécomposables et uniques à une perm. près.

- La propriété KS est préservée par les sous-catégories et les quotients.
- L' équivalence de Green preserve les vertex
 la correspondance découle de l'équivalence:

$$\mathcal{M}(H) \xrightarrow{\operatorname{Ind}} \mathcal{M}(G) \qquad \operatorname{d\'{e}composer}:$$

$$\bigwedge^{N} \qquad \mathcal{M}(H;Q) \xrightarrow{\longrightarrow} \mathcal{M}(G;Q) \qquad \operatorname{Ind}(N) \geq M$$

$$\bigvee^{\operatorname{vert}=Q} \qquad \downarrow \qquad \qquad \bigvee^{\exists ! M \text{ vert}=Q}$$

$$N \qquad \mathcal{M}(H;Q)/\mathcal{M}(H;\mathbb{X}) \xrightarrow{\sim} \mathcal{M}(G;Q)/\mathcal{M}(G;\mathbb{X}) \qquad M$$

5. Généralisations

Remarques:

- L'énoncé le l'équivalence de Green fait sens dès qu'on dispose de : catégories additives $\mathcal{M}(S)$ (pour $S \leq G$) foncteurs additifs Ind, Res entre elles $\longrightarrow \mathcal{M}(G;Q)$ etc.
- ullet Dès que les $\mathcal{M}(S)$ sont de KS : éq. de Green \Rightarrow corr. de Green.
- ullet Est-ce qu'on peut démontrer l'éq. de Green pour d'autres $\mathcal{M}(S)=??$

Résultats précédents:

- **1** Benson-Wheeler 2001: $\mathcal{M}(G) = kG$ -Mod, repr. de dim ∞ .
- ② Carlson-Wang-Zhang 2020: $\mathcal{M}(G) = \text{la catégorie homotopique ou}$ dérivée des complexes (bornés ou pas etc.) de kG-modules. Remarque: $\mathcal{M}(G) = D^b(kG\text{-mod})$ est de Krull-Schmidt
 - ⇒ une corr. de Green pour les complexes indécomposables.

6. Le bon contexte

Notre contribution : la théorie des 2-foncteurs de Mackey.

- Idée: les démonstrations n'utilisent que les catégories $\mathcal{M}(S)$ ($S \leq G$), les foncteurs adjoints Ind et Res, et la formule de Mackey!
- Plus précisément :

Definition (Balmer-Dell'Ambrogio 2020)

Un 2-foncteur de Mackey pour G est un 2-functeur de groupoïdes finis

$$\mathcal{M}: (\underbrace{gpd^f/G})^{op} \to ADD$$

soumis aux axiomes:

- $\textbf{0} \ \, \textbf{Additivit\'e} \colon \, \mathcal{M}(\textit{G}_1 \sqcup \textit{G}_2) \simeq \mathcal{M}(\textit{G}_1) \times \mathcal{M}(\textit{G}_2)$
- **2 Induction:** pour $K \stackrel{'}{\hookrightarrow} L \leq G$ fidèle (e.g. l'inclusion d'un sous-groupe), le foncteur $\operatorname{Res}_K^L := \mathcal{M}(i) \colon \mathcal{M}(L) \to \mathcal{M}(K)$ a un adjoint des deux côtés, Ind_K^L .
- **§** Formule de Mackey: les adjonctions de gauche et droite satisfont la formule de Beck-Chevalley pour les pseudo-pullback dans gpd^f/G .

7. Le bon résultat

L'équivalence de Green générale (Balmer-D. 2021)

Soit \mathcal{M} un 2-foncteur de Mackey pour G, et $Q \leq H \leq G$ quelconque. Alors le foncteur d'induction induit une équivalence de catégories

$$\left(\frac{\mathcal{M}(H;Q)}{\mathcal{M}(H;\mathbb{X})}\right)^{\natural} \xrightarrow{\quad \text{Ind} \quad } \left(\frac{\mathcal{M}(G;Q)}{\mathcal{M}(G;\mathbb{X})}\right)^{\natural}$$

où $\mathbb{X} = \{Q \cap {}^{g}Q \mid g \in G \setminus H\}$ et où $(-)^{\natural}$ est la complétion idempotente.

Remarques:

- Pas de conditions sur les coéfficients, ni sur $N_G(Q)$!
- Dans les exemples la complétion idempotente n'est pas nécessaire, pour différentes raisons (e.g. si les $\mathcal{M}(S)$ sont KS ou triangulées).
- Dans le cas Krull-Schmidt, on obtient la correspondence de Green.

8. Les 2-foncteurs de Mackey sont omniprésents!

Il existe un 2-foncteur de Mackey \mathcal{M} pour G pour chacune des familles suivantes de catégories abélienne ou triangulées $\mathcal{M}(S)$ (pour $S \leq G$):

- En théorie des représentations (linéaires): $\mathcal{M}(S) = kS\text{-mod}, kS\text{-Mod}, D^b(kS\text{-mod}), D(kS\text{-Mod}), kS\text{-mod} \dots$
- **2** En **homotopie stable**: $\mathcal{M}(S) = Ho(Sp^S)$, la catégorie homotopique des *S*-spectres.
- En topologie noncommutative / algèbres d'opérateurs : M(S) = KK^S or E^S, la théorie de Kasparov ou E-théorie de Higson-Connes équivariante.
- En **géometrie**: Pour X un espace localement annelé (e.g. un schéme) avec G-action: $\mathcal{M}(S) = Sh(X/\!\!/S)$ or $D(Sh(X/\!\!/S))$, les faisceaux S-équivariants.

9. Exemple : application en géométrie algébrique

- X un schéma
- Supposons que G agit sur X (donc sur tout $S \leq G$)
- Soit \mathcal{M} le 2-foncteur de Mackey tel que $\mathcal{M}(S) = \operatorname{Coh}(X/\!\!/S)$, la catégorie des **faisceaux cohérents S-équivariants de \mathcal{O}_X-modules** : $M = (M, \{\gamma_g \colon M \overset{\sim}{\to} g^*(M)\}_{g \in S})$ avec $\left\{ \begin{array}{c} M \in \operatorname{Coh}(X) \\ \operatorname{cond.} \text{ de cocycle sur } \gamma_g. \end{array} \right.$
- Exemple: $X = \operatorname{Spec}(k)$ avec action triviale $\rightsquigarrow \operatorname{Coh}(X/\!\!/S) = kS$ -mod.
- On obtient l'équivalence de Green suivante

$$\frac{\mathsf{Coh}(X /\!\!/ H; Q)}{\mathsf{Coh}(X /\!\!/ H; \mathbb{X})} \xrightarrow{\qquad \sim} \frac{\mathsf{Coh}(X /\!\!/ G; Q)}{\mathsf{Coh}(X /\!\!/ G; \mathbb{X})}$$

et aussi pour Qcoh(X//S), ou D(Qcoh(X//S)), etc.

10. La correspondance de Green globale

Pour X assez joli, les catégories $Coh(X/\!\!/S)$, et donc aussi $D^b(Coh(X/\!\!/S))$, sont de Krull-Schmidt \rightsquigarrow on obtient la correspondance d'indécomposables :

Theorem (La correspondance de Green 'globale')

G groupe fini agissant sur une variété propre et régulière (e.g. projective et lisse) X, sur un corps k de characteristique p > 0 divisant l'ordre de G.

Alors pour tout p-sous-groupe $Q \leq G$ et tout $H \leq G$ contenant $N_G(Q)$:

$$\mathcal{O}_X$$
-modules coh. H -equiv. indec. et de vertex Q "Res" \mathcal{O}_X -modules coh. G -equiv. indec. et de vertex Q

- Le même résultat vaut pour les complexes dans $D^b(Coh(X/\!\!/S))$.
- Pour X = Spec(k) avec G-action triviale, on récupère tous les résultats déjà connus ☺

Merci de votre attention! Ivo Dell'Ambrogio Mathes équivariantes 13/13