

Programming Project: Secondary Structure Assignment

by Hélène Kabbech, bioinformatics master student

1951 1971 1983

α-helices and pleated β-sheets predicted by L. Pauling and R. Corey

Protein Data Bank (PDB) DSSP program by W. Kabsch and C. Sander

Context

Secondary structure recognition algorithm mainly on H-bonding patterns

H-bond between the CO of residue i and NH of residue j

Cutoff: E [Hbond(res i, res j)] < 0.5 kcal/mol

W. Kabsch and C. Sander *Biopolymers* 22.12 (1983): 2577-2637.

www.chembio.uoguelph.ca

Secondary structure recognition algorithm mainly on H-bonding patterns

H-bond between the CO of residue i and NH of residue j

Cutoff: E [Hbond(res i, res j)] < 0.5 kcal/mol

n-turn: Residue i and i+n (with n = [3,4,5])

bridge: H-bonds between residues not near

each other in sequence

www.chembio.uoguelph.ca

W. Kabsch and C. Sander *Biopolymers* 22.12 (1983): 2577-2637.

Repetitive n-turns : n-helix (G, H, I) Single n-turn (T)

Repetitive β -bridges : β -structures (**E**) Isolated β -bridge (**B**)

Curvature of at least 70°: Bend (S)

W. Kabsch and C. Sander *Biopolymers* 22.12 (1983): 2577-2637.

www.chembio.uoguelph.ca

W. Kabsch and C. Sander *Biopolymers* 22.12 (1983): 2577-2637.

www.chembio.uoguelph.ca

Implementation the Secondary Structure Recognition Algorithm described by Kabsch and Sander using the Python programming language

Python 3.6 and Biopython library 1.72

Version control Git/GitHub https://github.com/kabhel/DSSP_implt

Reduce 3.23 software in order to add H atoms into PDB file

ATOM	1	N	LYS	A	1	-8.655	5.770	8.371	1.00	1.40	N
ATOM	2	CA	LYS	A	1	-7.542	5.187	9.163	1.00	0.52	C
MOTA	3	C	LYS	Α	1	-6.210	5.619	8.561	1.00	0.39	C
MOTA	4	0	LYS	A	1	-6.156	6.468	7.693	1.00	0.33	0
MOTA	5	CB	LYS	Α	1	-7.641	3.666	9.159	1.00	1.53	C
MOTA	6	CG	LYS	A	1	-7.750	3.179	10.602	1.00	2.38	C
ATOM	7	CD	LYS	A	1	-9.158	3.466	11.126	1.00	3.11	C
MOTA	8	CE	LYS	Α	1	-9.145	4.744	11.965	1.00	3.58	C
MOTA	9	NZ	LYS /	A	1	-9.497	4.416	13.375	1.00	4.21	N
MOTA	10	H1	LYS	A	1	-8.409	6.745	8.105	1.00	1.94	Н
MOTA	11	H2	LYS /	Α	1	-8.809	5.202	7.514	1.00	2.04	Н
MOTA	12	H3	LYS /	A	1	-9.523	5.775	8.942	1.00	1.89	Н
MOTA	13	HA	LYS	Α	1	-7.604	5.545	10.180	1.00	1.19	Н
MOTA	14	HB ₂	LYS	A	1	-8.516	3.361	8.603	1.00	1.84	Н
ATOM	15	HB3	LYS	Α	1	-6.756	3.246	8.705	1.00	2.02	Н
ATOM	16	HG2	LYS	A	1	-7.558	2.117	10.640	1.00	2.57	Н
MOTA	17	HG3	LYS /	A	1	-7.025	3.703	11.212	1.00	2.64	Н
MOTA	18	HD2	LYS	A	1	-9.833	3.592	10.290	1.00	3.38	Н
MOTA	19	HD3	LYS	Α	1	-9.491	2.640	11.735	1.00	3.41	Н
ATOM	20	HE2	LYS	A	1	-8.160	5.186	11.934	1.00	3.84	Н
MOTA	21	HE3	LYS	Α	1	-9.866	5.442	11.568	1.00	3.71	Н
MOTA	22	HZ1	LYS	A	1	-9.394	3.393	13.530	1.00	4.40	Н
ATOM	23	HZ2	LYS	A	1	-8.864	4.932	14.019	1.00	4.64	Н
MOTA	24	HZ3	LYS	A	1	-10.481	4.694	13.559	1.00	4.45	Н
MOTA	25	N	LYS	A	2	-5.128	5.066	9.028	1.00	0.51	N
MOTA	26	CA	LYS	A	2	-3.813	5.485	8.490	1.00	0.44	C
MOTA	27	C	LYS	Α	2	-2.931	4.277	8.172	1.00	0.41	C
ATOM	28	0	LYS	A	2	-3.040	3.218	8.757	1.00	0.58	0
ATOM	29	CB	LYS	Α	2	-3.138	6.383	9,534	1.00	0.63	C

#	RE	SIDU	E	AA	51	TRUCTURE	BP1	BP2	TCO	KAPPA	ALPHA	PHI	PSI	X-CA	Y-CA	Z-CA
	1	1 .	A	K			Θ	Θ	0.000	360.0	360.0	360.0	-171.7	-7.5	5.2	9.2
	2	2	A	K	E	-a	50	0	-0.957	360.0	169.5	-133.8	153.7	-3.8	5.5	8.5
	3	3	A	A	E	-a	51	0	-0.933	5.4	159.9	-134.7	157.3	-1.1	3.4	6.8
	4	4	A	٧	E	-a	52	Θ	-0.926	5.9	160.1	-144.5	118.6	2.7	3.8	6.8
	5	5	A	Ι	E	-a	53	0	-0.740	11.7	170.1	100.1	93.0	5.1	2.2	4.2
	6	6	A	N	E	>> -a	54	0	-0.684	4.7	172.9	-83.5	104.2	8.5	2.2	5.9
	7	7	A	G	В	34 S+B	9	0	0.931	79.7	70.5	-64.8	-43.3	11.0	1.3	3.1
	8	8	A	E	T	34 S+	Θ	Θ	0.812	111.2	36.3	-44.5	-25.9	13.9	1.0	5.5
	9	9	A	Q	В	<4 S+B	7	Θ	0.868	92.5	99.6	-94.9	-47.2	12.1	-2.1	6.7
1	Θ	10	A	I		< +	0	0	-0.075	41.7	176.6	-41.3	133.7	10.6	-3.4	3.4
1	1	11 .	A	R		-	0	0	0.480	64.2	-14.5	-119.2	-11.8	12.8	-6.3	2.2
1	2	12	A	S	S	> S-	Θ	Θ	-0.982	82.9	-77.3	174.2	175.9	10.7	-7.3	-0.9
1	3	13 .	A	Ι	Н	> 5+	0	0	0.951	127.9	57.2	-56.6	-45.7	7.3	-6.8	-2.5
1	4	14	A	5	H	> S+	0	0	0.940	105.2	51.7	-50.8	-45.4	5.9	-9.3	-0.0
1	5	15	A	D	Н	> 5+	0	0	0.933	106.8	54.1	-57.9	-43.3	7.1	-7.0	2.7
1	6	16	A	L	Н	X S+	0	0	0.978	112.3	41.4	-55.2	-56.5	5.3	-4.1	1.0
1	7	17	A	Н	Н	X S+	Θ	Θ	0.740	110.3	64.2	-64.5	-18.6	2.0	-5.9	0.9
1	8	18	A	Q	Н	X S+	0	0	0.979	107.7	36.0	-70.2	-55.2	2.9	-7.0	4.5
1	9	19	A	T	Н	X S+	0	0	0.935	117.5	53.5	-65.2	-41.3	2.9	-3.6	6.0
2	Θ	20	A	L	Н	X S+	Θ	Θ	0.903	108.1	52.9	-59.0	-35.8	-0.0	-2.6	3.8
2	1	21	A	K	Н	X>S+	0	Θ	0.915	111.4	44.2	-66.9	-42.1	-1.8	-5.7	5.1
2	2	22	A	K	H	<5S+	0	0	0.993	120.2	39.8	-67.3	-57.4	-1.2	-4.6	8.7
2	3	23	A	E	Н	<55+	0	0	0.986	124.9	37.7	-52.3	-66.1	-2.2	-1.0	8.2
2	4	24	A	L	Н	<5S-	Θ	Θ	0.680	104.4	138.4	-61.2	-14.8	-5.1	-1.9	5.9
2	5	25	A	A	T	<5 -	Θ	Θ	0.947	32.7	172.8	55.0	47.6	-5.7	-4.9	8.2

Cosine of angle **tco**Bend angle **kappa** (\rightarrow bend)
Dihedral angle α (\rightarrow chirality)
Dihedral angles Φ , Ψ

Dimeric form of the haemoplexin domain of MMP9 Cha Hyunju et al. *Journal of molecular biology* 320.5 (2002): 1065-1079.

Main SSE in chain A:

G: 3-5

E: 11-15, 18-23, 26-30, 42-43

H: 44-47

E: 57-60, 67-71, 74-79, 82-84, 87-88

G: 90-92

E: 111-116, 119-124, 129-130

G: 132-134

H: 138-141

E: 151-155, 158-163, 166-171, 178-184

```
Secondary Structure Assignment using DSSP method ====
REFERENCE W. KABSCH AND C.SANDER, BIOPOLYMERS 22 (1983) 2577-2637
         MOL ID: 1; MOLECULE: MMP9; CHAIN: A, B; FRAGMENT: HAEMOPEXIN-LIKE DOMAIN; SYNONYM: 92
KDA TYPE IV COLLAGENASE; EC NUMBER: 3.4.24.35; EC: 3.4.24.35; ENGINEERED: YES;
         MOL ID: 1; ORGANISM SCIENTIFIC: HOMO SAPIENS; ORGANISM COMMON: HUMAN; ORGANISM TAXID:
     EXPRESSION SYSTEM: ESCHERICHIA COLI; EXPRESSION SYSTEM TAXID: 562;
                                                                                -11.2
                                          20.0 157.9-138.9 138.5
                                          61.1 -39.9-121.6 119.2
                                          125.7 75.4-110.3 32.2
        28 A W
                                                                                  6.7
                                         124.4 -4.0 -90.3 86.3
                                          89.0 145.7 114.4 -1.4 -41.2
```


Successful assignment of all the secondary structures described by the dictionary protein of secondary structures.

Some differences between the output of dssp 3.0.0.

Thank you for your attention!