

浙江大学爱丁堡大学联合学院 ZJU-UoE Institute

Lecture 15 - Using Keras to build a CNN

Nicola Romanò - nicola.romano@ed.ac.uk

Learning objectives

- Describe tools commonly used to build a CNN.
- Use Keras for building and training a "LeNet-5 style" CNN.
- Use Keras for transfer learning.

The tools

Python tools for deep learning

TensorFlow

- "An end-to-end open source platform for machine learning"
- Developed by Google

PyTorch

- "An open source machine learning framework"
- Developed by Facebook

Keras

- "A deep learning framework"
- Developed by François Chollet (package keras).
- The keras package also supports other "backends" (like JAX or Pythorch).

For this course we will use Keras version 3, but feel free to explore PyTorch as well!

A very brief overview of Keras

Layers

Keras makes it easy to define layers.

Several classes are available, such as Conv2D, MaxPooling2D, Dense, etc.

Layers

Keras makes it easy to define layers.

Several classes are available, such as Conv2D, MaxPooling2D, Dense, etc.

Convolutional layer

- 32 filters
- Size of 3x3, stride of 1, valid padding
- ReLU activation

```
layer = keras.layers.Conv2D(
  filters=32,
  kernel_size=3, strides=(1,1),
  padding='valid',
  activation='relu')
```

Layers

Keras makes it easy to define layers.

Several classes are available, such as Conv2D, MaxPooling2D, Dense, etc.

Convolutional layer

- 32 filters
- Size of 3x3, stride of 1, valid padding
- ReLU activation

```
layer = keras.layers.Conv2D(
  filters=32,
  kernel_size=3, strides=(1,1),
  padding='valid',
  activation='relu')
```

Dense layer

- 128 units
- Sigmoid activation

```
layer = keras.layers.Dense(
  units=128, activation='sigmoid')
```

Keras models

Two ways to build a model.

Sequential API

- A sequential model is a linear stack of layers.
- You can add layers one at a time using the add method.

```
model = keras.models.Sequential()
model.add(layer)
model.add(layer2)
```

Functional API

- For non-linear, more complex models
- Allows multiple inputs and outputs

```
input_img = keras.Input(shape=(28, 28, 3))
FC = keras.layers.Dense(units=50)(input_img)
out = keras.layers.Dense(units=5)(FC)
model = keras.Model(inputs = input_img,
    outputs = out)
```

Compiling the model

Once the model has been created it needs to be *compiled*. This allows us to choose the optimizer, the loss function and the metrics to monitor during training.

For example, for a classification problem, we might decide to use stochastic gradient descent* as the optimizer, cross entropy as the loss function and accuracy as the metric.

* Note: Adam (ADAptive Movement estimation algorithm, Diederik et al, 2014), is an implementation of the stochastic gradient descent algorithm often used in deep learning.

```
model.compile(optimizer='adam',
    loss='categorical_crossentropy',
    metrics=['accuracy'])
```

Great! We're all set for training!

At training time, we need to feed the model with data. We will have defined some **training** and **validation** set.

Now we need to set:

• **Epochs**. How many times to go through all the training data.

At training time, we need to feed the model with data. We will have defined some **training** and **validation** set.

- **Epochs**. How many times to go through all the training data.
- Batch size. Training with all the data at once (batch training) is computationally expensive. Using mini-batches is faster, but might need more epochs.

At training time, we need to feed the model with data. We will have defined some **training** and **validation** set.

- **Epochs**. How many times to go through all the training data.
- Batch size. Training with all the data at once (batch training) is computationally expensive. Using mini-batches is faster, but might need more epochs.
- Example: 1000 training samples, batch_size = 100. It will take 10 iterations to complete one epoch.

At training time, we need to feed the model with data. We will have defined some **training** and **validation** set.

- **Epochs**. How many times to go through all the training data.
- **Batch size**. Training with all the data at once (*batch training*) is computationally expensive. Using **mini-batches** is faster, but might need more epochs.
- Example: 1000 training samples, batch_size = 100. It will take 10 iterations to complete one epoch.
- The special case of batch_size=1 is stochastic gradient descent (SGD).

At training time, we need to feed the model with data. We will have defined some **training** and **validation** set.

- **Epochs**. How many times to go through all the training data.
- **Batch size**. Training with all the data at once (*batch training*) is computationally expensive. Using **mini-batches** is faster, but might need more epochs.
- Example: 1000 training samples, batch_size = 100. It will take 10 iterations to complete one epoch.
- The special case of batch_size=1 is stochastic gradient descent (SGD).
- A forward and a backward pass are run for each iteration.

Training - code

```
history = model.fit(x_train, y_train,
  batch_size=32,
  epochs=10,
  validation_data=(x_val, y_val))
```

Note:

- The fit method takes as input the training data, the labels and the number of epochs to train for.
- The fit method returns a history object, which contains the loss and accuracy values for each epoch.

And now... predict!

Prediction is as simple as calling the ${\tt predict}$ method on the model.

predictions = model.predict(x_test)

Example 1 - A "LeNet-5 style" CNN

Example 1 - A simple CNN

Remember the LeNet-5 CNN architecture

We are going to build a similar version, to train on the MNIST dataset. We are "remodernising" it by using ReLU activations, max pooling and a softmax output layer.

Example 2 - Transfer learning

Transfer learning

Transfer learning - VGG16 on CIFAR-10

We are going to use the pretrained VGG16 weights to classify the CIFAR-10 dataset.

The CIFAR-10 dataset consists of 60000 32x32 color images in 10 classes, with 6000 images per class.