Transformation physique

Réaction Chimique

Équation bilan

$$\overbrace{r_1 \mathbf{R}_1 + r_2 \mathbf{R}_2 + \dots}^{\text{coefficients stoechiométriques}} \overbrace{p_1 \mathbf{P}_1 + p_2 \mathbf{P}_2 + \dots}^{\text{coefficients stoechiométriques}}$$

$$\sum_{i} \nu_{i} B_{i} = 0$$
 coefficients stoechiométriques algébriques, positifs pour les produits, négatifs pour les réactifs

$${ _{1}} \mathop{\rm CO}_{2} + { _{2}} \mathop{\rm H}_{2} \mathop{\rm O}_{ -1 } \mathop{\rm CH}_{4} - { _{2}} \mathop{\rm O}_{2} = 0 \\ { _{v_{1}}} { _{B_{1}}} { _{v_{2}}} { _{B_{2}}} { _{2}} { _{B_{3}}} { _{B_{3}}} { _{v_{4}}} { _{B_{4}}}$$

Avancement

Tableau d'avancement

permet de suivre l'évolution de la composition du système

Système physico-chimique

Lorsqu'il n'y a qu'une espèce chimique, le système est un corps pur. Sinon c'est un mélange.

Quantité de matière 1 mol = 6,02 10²³ molécules

Transformation chimique

Équilibre chimique

Un solvant (l'eau) se comporte comme un corps pur

Espèce diluée concentration $a_i = rac{c_i}{c_{0=1 ext{ mol/l}}}$

pression partielle $a_i=rac{p_i}{p_0}$ po = 1 bar $p_iV=n_iRT$ Pa m^3 mol K 8.31 J/mol/k

Gaz parfait

Équilibre

Quotient réactionnel

$$Q = \frac{a_{P_1}^{p_1} \times a_{P_2}^{p_2} \times \dots}{a_{R_1}^{r_1} \times a_{R_2}^{r_2} \times \dots} = \prod_i a_{B_i}^{\nu_i}$$

Équilibre = La réaction n'évolue plus.

Constante d'équilibre $K = Q_{eq}$

valeur du quotient réactionnel à l'équilibre

Évolution

