N-MIXTURE MODEL WITH TEMPORAL TREND AND RANDOM EFFECT ON DETECTION PROBABILITY

Brian M. Brost

30 APR 2015

Model implementation

The file N.mixture.trend.random.p.sim.R simulates data according to the model statement presented below, and N.mixture.trend.random.p.mcmc.R contains the MCMC algorithm for model fitting.

Model statement

Let y_{it} be the i^{th} count of individuals during time period t, for i = 1, ..., m and t = 1, ..., T, and N_t be the true number of individuals at time t. Assuming the population is closed to mortality, recruitment, immigration, and emigration over the course of the m surveys conducted during any given time period,

$$y_{it} \sim \operatorname{Binom}(N_t, p_{it})$$

$$N_t \sim \operatorname{Pois}(\lambda_t)$$

$$\lambda_t = \theta N_{t-1}, t = 2, \dots, T$$

$$\operatorname{logit}(p_{it}) \sim \mathbf{W}_{it} \boldsymbol{\alpha} + \epsilon_{it}$$

$$\epsilon_{it} \sim \operatorname{N}(0, \zeta^2)$$

$$\lambda_1 \sim \operatorname{Gamma}(r, q)$$

$$\theta \sim \operatorname{N}(\boldsymbol{\mu}_{\theta}, \sigma^2)$$

$$\boldsymbol{\alpha} \sim \operatorname{N}(\boldsymbol{\mu}_{\alpha}, \tau^2 \mathbf{I})$$

$$\boldsymbol{\zeta} \sim \operatorname{Unif}(a, b).$$

Note that an identity link for the model on N_t could also be used, i.e., $N_t \sim \text{Pois}(\theta N_{t-1})$. The algorithm in N.mixture.trend.random.p.mcmc.R will also estimate the posterior predictive distribution for time periods in which no observations are available, i.e., $N_{\tilde{t}}$, $\tilde{t} = 2, \ldots, T-1$.

Posterior distribution

$$[N_1, N_{\{t>2\}}, \boldsymbol{\alpha}, \lambda_1, \boldsymbol{\lambda}, \boldsymbol{\epsilon}, \zeta, \boldsymbol{\theta} | \mathbf{Y}, \mathbf{W}] \propto \prod_{t=1}^T \prod_{i=1}^m [y_{it} | N_t, p_{it}] [N_1 | \lambda_1] [N_{\{t>2\}} | \boldsymbol{\theta}] [\epsilon_{it}] [\boldsymbol{\theta}] [\lambda_1] [\boldsymbol{\alpha}] [\zeta]$$

Full conditional distributions

Coefficients describing the effect of covariates on detection probability (α) :

$$[\boldsymbol{\alpha}|\cdot] \propto \prod_{t=1}^T \prod_{i=1}^m [y_{it}|N_t, p_{it}][\boldsymbol{\alpha}].$$

This full-conditional distribution does not have a known analytical form; therefore, sample \mathbf{p} using Metropolis-Hastings.

The true number of individuals during t = 1 (N_1) :

$$[N_1|\cdot] \propto \prod_{i=1}^{m} [y_{i1}|N_1, p_{i1}][N_1|\lambda_1]$$

$$\propto \prod_{i=1}^{m} \frac{(\lambda_1(1-p_{i1}))^{N_1-y_{i1}}}{(N_1-y_{i1})!} e^{-\lambda_1(1-p_{i1})}.$$

This full-conditional is a little strange because $[N_1 - y_{i1}|\cdot] \propto \operatorname{Pois}(\lambda_1(1-p_{i1}))$, which suggests there is one true abundance per replicate count during t=1. This is in contrast to the case in which only one observation exists per site, i.e., $[N_i - y_i|\cdot] \propto \operatorname{Pois}(\lambda_i(1-p_i))$. Given that $[N_1|\cdot]$ lacks a clear analytical solution, sample N_1 using Metropolis-Hastings.

Rate of the process model for N_1 (λ_1):

$$\begin{split} [\lambda_1|\cdot] & \propto & [N_1|\lambda_1][\lambda_1] \\ & \propto & \frac{\lambda_1^{N_1}e^{-\lambda_1}}{N_1!}\lambda_1^{r-1}e^{-\lambda_1 q} \\ & \propto & \lambda_1^{N_1}e^{-\lambda_1}\lambda_1^{r-1}e^{-\lambda_1 q} \\ & \propto & \lambda_1^{N_1+r-1}e^{-\lambda_1(1+q)} \\ & = & \operatorname{Gamma}\left(N_1+r,1+q\right). \end{split}$$

The true number of individuals during t = 2, ..., T-1 (N_t) :

$$[N_t|\cdot] \propto \prod_{i=1}^m [y_{it}|N_t, p_{it}][N_t|\theta, N_{t-1}][N_{t+1}|\theta, N_t]$$

This full-conditional lacks an analytical solution; therefore, sample N_t using Metropolis-Hastings. Note, for time periods \tilde{t} in which observations are missing, the posterior predictive distribution for true abundance is:

$$[N_{\tilde{t}}|\cdot] \propto \prod_{i=1}^{m} [N_{\tilde{t}}|\theta, N_{\tilde{t}-1}][N_{\tilde{t}+1}|\theta, N_{\tilde{t}}].$$

The true number of individuals during t = T (N_T) :

$$[N_T|\cdot] \propto \prod_{i=1}^m [y_{iT}|N_T, p_{iT}][N_T|\theta, N_{T-1}]$$

This full-conditional lacks an analytical solution; therefore, sample N_T using Metropolis-Hastings.

Population growth rate (θ) :

$$[\theta|\cdot] \propto [N_t|\theta, N_{t-1}][\theta]$$

This full-conditional lacks an analytical solution; therefore, sample θ using Metropolis-Hastings.

Random effect on detection probability (ϵ_{it}) :

$$[\epsilon_{it}|\cdot] \propto [y_{it}|N_t, p_{it}][\epsilon_{it}]$$

This full-conditional lacks an analytical solution; therefore, sample ϵ_{it} using Metropolis-Hastings.

Standard deviation of random effect (ζ) :

$$[\zeta|\cdot] \propto \prod_{t=1}^{T} \prod_{i=1}^{m} [\epsilon_{it}|\zeta][\zeta].$$

This full-conditional lacks an analytical solution; therefore, sample ζ using Metropolis-Hastings.