Nonlinear System Theory Final

6/6/2023

1. (40%)Consider the following system

$$\dot{x}_1 = -2x_1 + h(x_2) - u
\dot{x}_2 = -x_2 - h(x_2) + u$$

where h is a continuously differentiable function, h(0) = 0, and $x_2h(x_2) > 0$, $\forall x_2 \neq 0$.

- (a) (8%)Let $u \equiv 0$. Show that $(x_1, x_2) = (0, 0)$ is an asymptotically stable equilibrium point.
 - Hint: Notice the sign of h'(0), where h' is the derivative of h with respect to x_2 .
- (b) (8%)Define $y = -x_1 + h(x_2)$ as the output of the system. Show that the system is strictly passive from input u to output y.
- (c) (8%)Continued from part (b). Show that the system is finite-gain \mathcal{L}_2 stable from input u to output y. Furthermore, the \mathcal{L}_2 gain is less than or equal to 2.
- (d) (8%)Redefine the output as $\tilde{y} = x_1$. Let $V(x_1, x_2) = \frac{\alpha}{2}x_1^2 + \beta \int_0^{x_2} h(\tau)d\tau$, where α and β can be any arbitrary positive constants. Use $V(x_1, x_2)$ and the Hamilton-Jacobi inequality to show that the system is finite-gain \mathcal{L}_2 stable from input u to output \tilde{y} . Furthermore, the \mathcal{L}_2 gain is less than or equal to $\frac{1}{2}$.
- (c) (8%)Continued from part (d). Consider the feedback control law u = r w, where r is an external reference input, and $W(s) = C(s)\tilde{Y}(s)$. W(s) and $\tilde{Y}(s)$ are the Laplace transforms of w(t) and $\tilde{y}(t)$, respectively. C(s) is a lead controller of the form $C(s) = k \frac{1+aTs}{1+Ts}$, where a > 1, k > 0, and T > 0. Show that if ka < 2, then the feedback system from r to \tilde{y} is finite-gain \mathcal{L}_2 stable.
- 2. (14%)Consider the feedback connected system in Figure 1(a), where

$$G(s) = \frac{10(s^2 - 6s + 10)}{(s - 0.5)(s + 4)(s + 8)}$$

- (a) (8%)The Nyquist plot of G(s) is shown in Figure 1(b). Suppose that ψ belongs to the sector (α, β) , where $\beta > \alpha$. Find the maximum possible α and β such that the feedback system is absolutely stable.
 - Note: Roughly estimating the values of α and β from the Nyquist plot will be fine.
- (b) (6%)Let $\psi(y) = ky$, where $k = \frac{\alpha + \beta}{2}$ for α and β in part (a). Denote the feedback connected system in Figure 1(a) as $\tilde{G}(s)$. Suppose that $\tilde{G}(s)$ and a nonlinear static function ϕ are connected in a feedback loop as shown in Figure 1(c). Find the sector to which ϕ belongs (in terms of α and β) such that the feedback system in Figure 1(c) is absolutely stable.

Figure 1: (a) Feedback connected system in Problem 2(a) (b) Nyquist plot of G(s) (c) Feedback connected system in Problem 2(b)

(16%)Consider the following system

$$\dot{\mathbf{e}}(t) = \mathbf{A}\mathbf{e}(t) + \mathbf{b}\phi^T(t)\theta(t)$$

 $\dot{\theta}(t) = -\Gamma\phi(t)\mathbf{b}^T\mathbf{P}\mathbf{e}(t)$

where $\mathbf{e}(t) \in \mathbb{R}^n$ and $\theta(t) \in \mathbb{R}^m$ are states of the system. $\phi(t) \in \mathbb{R}^m$ is a known vector of bounded functions. $\mathbf{A}, \mathbf{P} \in \mathbb{R}^{n \times n}, \ \Gamma \in \mathbb{R}^{m \times m}, \ \text{and} \ \mathbf{b} \in \mathbb{R}^{n \times 1}$ are constant matrices and vectors, where \mathbf{A} is Hurwitz, \mathbf{P}, Γ are symmetric positive definite and \mathbf{P} satisfies the Lyapunov equation: $\mathbf{A}^T \mathbf{P} + \mathbf{P} \mathbf{A} = -\mathbf{Q}$ for some positive definite matrix \mathbf{Q} .

- (a) (8%)Show that $(\mathbf{e}, \theta) = (\mathbf{0}, \mathbf{0})$ is a stable equilibrium point.
- (b) (8%)Show that $e \to 0$ as $t \to \infty$.
- 4. (30%)Consider the following system

$$\begin{aligned}
 \dot{x}_1 &= x_2 + u \\
 \dot{x}_2 &= -x_2 - \sin x_1 + x_3 \\
 \dot{x}_3 &= x_2^2 - x_3 - 2u \\
 y &= x_2
 \end{aligned}$$

Let $x = [x_1, x_2, x_3]^T$. The above state equation can be expressed as $\dot{x} = f(x) + g(x)u$ for some vector-valued functions f(x) and g(x).

- (a) (8%) What is the relative degree of this system?
- (b) (8%)Is the system minimum phase?
- (c) (6%)Find state variables of the normal form in terms of x. Note: expression of the normal form is NOT required.
- (d) (8%) Is span $\{g, ad_f g(x)\}$ involutive for all $0 < |x_1| < \pi$?