Bike sharing demand forecasting

(a) Station-free bike sharing

(b) Bike sharing system with docking station

Tianning Gao Siva Saket Sripada

Motivation

Massive imbalance in demand and availability of rental bikes, especially during "peak" hours

Demand forecasting

Challenges

Imbalance between demand and supply

Predicting dynamic bike demand based on current and previous time

Time series data - Auto Regression

Null values in "windspeed" feature affect prediction

Consume a lot of computing resources

Register, casual features skewed initial predictions - just like categorical features

Auto Regression

$$y_pred(t) = f(X(t), y(t-1), y(t-2))$$

	_		•	
		• /		
y(t	-2) y	/(t-1) y(t)	

Time	X(t)	у	y(t-1)	y(t-2)
0	3	16	Nan	Nan
1	76	5	16	Nan
2	78	0	5	16
3	15	9	0	5
4	386	20	9	0
5	48	24	20	9
6	66	38	24	20
7	49	25	38	24

Dataset (originally from Capital Bikeshare, maintained by UCI ML repository)

datetime - hourly date + timestamp

season - 1 = spring, 2 = summer, 3 = fall, 4 = winter

holiday - whether the day is considered a holiday

workingday - whether the day is neither a weekend nor holiday

weather -

1: Clear, Few clouds, Partly cloudy, Partly cloudy

2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist

3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds

4: Heavy Rain + Ice Pellets + Thunderstorm + Mist, Snow + Fog

temp - temperature in Celsius

atemp - "feels like" temperature in Celsius

humidity - relative humidity

windspeed - wind speed

casual - number of non-registered user rentals initiated

registered - number of registered user rentals initiated

count - number of total rentals

												-1.00	
season	1												
holiday	0.029	1											
workingday	-0.0081	-0.25	1									- 0.75	
weather	0.0089	-0.0071	0.034	1									
temp	0.26	0.00029	0.03	-0.055	1							- 0.50	
atemp	0.26	-0.0052	0.025	-0.055	0.98	1							
humidity	0.19	0.0019	-0.011	0.41	-0.065	-0.044	1					- 0.25	
windspeed	-0.15	0.0084	0.013	0.0073	-0.018	-0.057	-0.32	1					
casual	0.097	0.044	-0.32	-0.14	0.47	0.46	-0.35	0.092	1			- 0.00	
registered	0.16	-0.021	0.12	-0.11	0.32	0.31	-0.27	0.091	0.5	1			
count	0.16	-0.0054	0.012	-0.13	0.39	0.39	-0.32	0.1		0.97	1	- -0.25	
	season	holiday v	vorkingday	weather	temp	atemp	humidity	windspeed	casual	registered	count		

Methods deployed

Support Vector Machine (Regression)

Ridge Regression

Bagging Regression (Base: Decision Tree Regressor)

Random Forest Regressor (Base: Decision Tree Regressor)

Adaboost Regressor (Base: Decision Tree Regressor)

Auto-Regression applied to every algorithm

Evaluation

Evaluated by RMSLE (The Smaller the better):

$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (\log(y_pred_i + 1) - \log(y_true_i + 1))^2}$$

"Under estimation costs more than over estimation"

Linear models

SVR=SVR(C=100.0, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.025118864315095794, kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
Ridge=Ridge(alpha=11.313708498984761, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001)

- Support Vector Regressor (SVR with rbf kernel) without Auto-regression (AR)
 Root-mean-squared-log-error 0.6098589475763458
- 2. SVR with AR using 1 hr of time-delay

 Root-mean-squared-log-error 0.5837179267091405
- 3. Ridge Regressor without AR
 Root-mean-squared-log-error 1.2028770646253422
- 4. Ridge Regressor with AR using 2 hr of time-delay Root-mean-squared-log-error **0.7235342542289207**

Ensemble models

Bag = BaggingRegressor(base_estimator=DecisionTreeRegressor(), bootstrap=True, bootstrap_features=False, max_features=1.0, max_samples=1.0, n_estimators=100, n_jobs=None, oob_score=False, random_state=None, verbose=0, warm_start=False)

Bagging Regressor without Auto-regression (AR)

Root-mean-squared-log-error - **0.534895803604716**

2. Bagging Regressor with AR using 1 hr of time-delay

Root-mean-squared-log-error - **0.3334065624791147**

Ensemble models

RFR = GridSearchCV(RandomForestRegressor(random_state=0,n_estimators=500),RFRparam_grid, cv=5,scoring='neg_mean_squared_log_error')

1. Random Forest Regressor (RFR) without Auto-regression (AR)

Root-mean-squared-log-error - 0.535

2. RFR with AR using 1 hr of time-delay

Root-mean-squared-log-error - 0.335

3. RFR with AR using 2 hr of time-delay

Root-mean-squared-log-error - 0.333

Results

	SVR	Ridge Regressor	Random Forest Regressor	Bagging Regressor	AdaBoost Regressor
RMSLE (no AR)	0.60	1.20	0.53	0.53	0.89
RMSLE (best with AR)	0.58	0.72	0.33	0.33	0.59

Future work

LSTMs

Fast Recurrent Neural networks

Graphical Weight Correlated Network

Graph convolutional neural network

Thank You

Questions?

