In [1]:

```
import pandas as pd
from scipy import stats
```

In [3]:

```
buyer=pd.read_csv('BuyerRatio.csv')
buyer
```

Out[3]:

	Observed Values	East	West	North	South
0	Males	50	142	131	70
1	Females	435	1523	1356	750

Formulation of Hypothesis

Ho : All proportions are equal (male-female buyer rations are similar across regions)

Ha: not all proportions are equal (male-female buyer rations are not similar across regions)

Test

We use Chi-Square test because we want proportions that are qualitative

```
In [4]:
```

```
buyer.drop(["Observed Values"], axis = 1, inplace = True)
```

In [5]:

buyer

Out[5]:

	East	West	North	South
0	50	142	131	70
1	435	1523	1356	750

In [8]:			
p=stats.chi2_contingend	cy(buyer)		
In [9]:			
p[1]			
Out[9]:			
0.6603094907091882			

Here significance value is 0.05 and we got p-value as 0.660

Takeaway

As we have greater value for p we don't reject Ho that is there is similar proportion across regions

In []:	