Binary Choice Analysis

Robert Hickman

```
Data shown for:

dates

## [1] "13-Feb-2018"

monkey

## [1] "Vicer"

precise_dates

## [1] "13-Feb-2018 " "13-Feb-2018 "

#plot p1
p1
```


Graph of choices for each block. Circles indicate bid selecting the bundle, squares are bid selecting the budget. A fractal bid position of 1 means that the bundle is on the left hand side of the screen. Bids range from -1 (all the way to the left) to 1 (all the way to the right)

#plot p2
p2 +facet_wrap(~block)

Graph showing all choices and how far away they are from the edge of the screen on the bundle side. 0 indicates full movement to the bundle side of the screen and 1 represent full movement away. Count is over all blocks for all values of the fractal (in ml of juice).

Vicer; 2 blocks bundle_position bundle_water_perc 0.75 0.75 0.50 0.50 0.25 0.25 Block value 0.2 0.4 0.6 0.8 0.4 0.6 0.2 8.0 block 1 offer_value trial block 2 3.0 75 2.5 50 2.0 1.5 25

Graphs of various factors against the distance from the bundle side of the screen the monkey bids.

bundle_distance

A bundle position of 1 indicates that the bundle is on the left hand side of the screen. A bundle water percentage of 1 indicates that the bundle contains no water [CHECK THIS- PRETTY SURE ITS CORRECT], whereas zero means it contains the full 1.2ml. Offer values of 1, 2, and 3 represent 0.15ml, 0.45ml, and 0.75mls of apple and mango juice (150ml in 950ml of water).

0.2

0.6

0.8

0.4

Fit lines use LOESS method.

0.2

0.4

0.6

1.0

```
#generate a model of likelihood to bid for the fractal dependent on it's position,
#value and associated water
model <- glm(data = task_data,</pre>
             fractal_bid ~ bundle_position + bundle_water_perc + offer_value + trial,
             family = "binomial")
#summarise the parameters
summary(model)
##
## Call:
## glm(formula = fractal_bid ~ bundle_position + bundle_water_perc +
      offer_value + trial, family = "binomial", data = task_data)
##
## Deviance Residuals:
       Min
##
                         Median
                   1Q
                                       3Q
                                                Max
                        0.07522
## -2.92545 -0.24506
                                  0.37401
                                            1.96844
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                     -2.27185
                                 0.94405 - 2.406
                                                   0.0161 *
## bundle position
                      2.80344
                                           4.310 1.63e-05 ***
                                 0.65044
## bundle_water_perc -9.12093
                                 1.54163 -5.916 3.29e-09 ***
## offer value
                      2.76443
                                 0.53319
                                           5.185 2.16e-07 ***
## trial
                      0.01155
                                 0.01160
                                           0.995
                                                   0.3197
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
       Null deviance: 216.381 on 160 degrees of freedom
##
## Residual deviance: 88.521 on 156 degrees of freedom
     (15 observations deleted due to missingness)
## AIC: 98.521
##
```

Number of Fisher Scoring iterations: 6

Graph showing the number of trials the monkey carried out for each bundle combination. Does not include failed trials.

Monkey Proportion of Bundle Bids on Binary Choice Task

Graph showing the proportion of bids for the bundle that a monkey makes, separated by the values of the juice offered in the bundles. Fits using a binomial glm model.

0.5

1.0

1.5

water offered (ml)

р6

0.5

1.0

Same graph as above but with 95% confidence intervals. Uses the default method of calculating this for the tidyverse libraries in R which I'm not convinced are the best way. Looking into calculating and plotting it myself.