Harmadik feladat: Mercator útvonal tervező

Szirmay-Kalos László

BME IIT

2025

BME IIT Oldal 1 (5)

Revíziók

Dátum	Változások	Verzió
2024. szeptember	Első változat	1.0
2025	Napszakok	1.1

Tartalom

1. FELADATKIÍRÁS	3
2. ELŐFELTÉTELEK	4
3. ALAPOK	
4. PROGRAMOZÁS	5
4.1. OBJECT OSZTÁLY ÉS GEOMETRIÁK	5
4.2. KOORDINÁTARENDSZER VÁLTÁS	5
4.3. Színtér	5
4.4. Csúcspont árnyaló	5
4.5. Pixel árnyaló	5
4.6. ONMOUSEPRESSED ESEMÉNYKEZELŐ	5

1. Feladatkiírás

A feladat célja Mercator térképen a kijelölt pontok között a gömb alakú, 40 ezer km kerületű Földön a legrövidebb utak felrajzolása, és a megtett távolságok konzolra írása. A térkép a -85 és +85 fok szélességek és a -180 és +180 fok hosszúságok közötti tartományt mutatja. Az út állomásait az egér bal gombjának lenyomásával lehet elhelyezni a kurzor pozíciójában. A térképhez egy 64×64 felbontású, GL_NEAREST szűréssel megjelenített textúra tartozik, amelyet egy indexelt szín módú, futáshossz tömörítésű kép definiál. Ebben a kódolásban egy-egy bájt felső 6 bitjét H-val, az alsó két bitjét I-vel jelölve, H+1 darab I indexű pixelt kell egymás mellé pakolni. Az I index jelentése:

I=0: maximális intenzitású fehér

I=1: maximális intenzitású kék

I=2: maximális intenzitású zöld

I = 3: fekete

A kép a következő előjel nélküli bájtokból áll:

A térkép megjelenítésénél minden pixelben el kell dönteni, hogy ott nappal vagy éjszaka van, és éjszaka esetén a színeket 50 %-sra kell állítani. A program indulásakor az aktuális idő a nyári napforduló, 0 óra GMT, az n billentyű lenyomásával az időt a nap változatlan hagyása mellett óránként lehet léptetni. A föld tengelyének ferdeségét vegyük közelítőleg 23 foknak.

Két állomás között a gömbi kör Mercator vetületét 100 pontból álló törött vonallal kell felrajzolni. A vonalvastagság 3, a szín maximáis intenzitású sárga.

Az állomások 10 pixeles pontok, színük maximális intenzitású piros. Az állomások prioritása nagyobb, mint az utaké. Az utak és állomások színét a napszak nem befolyásolja.

BME IIT Oldal 3 (5)

Distance: 8133 km Distance: 9281 km Distance: 15080 km Distance: 6325 km

2. Előfeltételek

Előfeltétel a "Geometriák és algebrák", "2D képszintézis" és "Textúrázás" előadások feldolgozása.

3. Alapok

- 1. Döntse el, hogy az utakat és állomásokat melyik világkoordinátarendszerben fogja nyilvántartani. A világkoordinátarendszer megválasztása az ön saját döntése.
- 2. Írja fel a transzformációkat, amelyek a pixel koordinátákat világkoordinátákba, a világkoordinátákat textúratérbe, a világkoordinátákat a gömb felületére viszik, és gömb felületét világkoordinátákra képezik le.
- 3. Elevenítse fel a gömbi geometriában két pont távolságát és két pontra illeszkedő szakasz egyenletét.

BME IIT Oldal 4 (5)

4. Programozás

4.1. Object osztály és geometriák

Implementálja a Térkép, Út és Állomás osztályokat. A térkép textúrázott, teljes viewportot lefedő négyzet. A térkép konstruktorában érdemes elvégezni a kódolt kép dekódolását és a textúra feltöltését a GPU-ra (ekkor viszont a térképet new-val kell létrehozni). Az út töröttvonal, amit a végpontokból a gömbi geometria szerint számolunk. Az állomás pont.

4.2. Koordinátarendszer váltás

Globális függvényekként implementálja a különböző koordinátarendszerek közötti átlépést.

4.3. Színtér

A színtér egy térképből, utakból és állomásokból áll, és ezeket ebben a sorrendben rajzolja fel.

4.4. Csúcspont árnyaló

A csúcspont árnyaló az általunk választott világkoordinátarendszerben kapja meg egyenként a pontokat, és ebből textúra koordinátát és normalizált eszköz koordinátát számol.

4.5. Pixel árnyaló

Egy pixelárnyalóval elintézhető a textúrázás és a rajzolás egyszerre ha annak egy uniform változója van, amely megmondja, hogy most texúrázni kell-e, vagy a célszerűen uniform változóként átadott színnel kell közvetlenül színezni. A napszakok kezelése ugyancsak ide tartozik, az óra uniform változóként érkezik. Ott van nappal, ahol a nap irányát a föld maga nem takarja (felületi normális és nap irány 90 foknál kisebb szöget zár be).

4.6. onMousePressed eseménykezelő

Az onMousePressed függvényt implementálja úgy, hogy az operációs rendszerbeli pixelkoordinátákban kapott kurzor pozíciót alakítsa át világkoordinátákká, és a bal egérgomb lenyomásának hatására vegyen fel az aktuális görbének egy újabb állomást ezen a helyen, végül pedig érvénytelenítse az ablakot (refreshScreen).

BME IIT Oldal 5 (5)