Programação Dinâmica Cid C. de Souza – IC-UNICAMP 12 de julho de 2005

Programação Dinâmica: conceitos básicos

- - Problemas de Otimização.
 - Solução = Seqüência de Decisões.
 - Existência de subestrutura ótima (*Princípio da otima-lidade de Bellman*): as soluções ótimas do problema contêm soluções ótimas de subproblemas.
 - **Fórmula de Recorrência**: descreve relação entre as soluções ótimas dos subproblemas.

Programação Dinâmica: conceitos básicos (cont.)

- Sobreposição de Subproblemas (*Overlaping subproblems*): a solução ótima de um mesmo subproblema é usada várias vezes mas calculada uma única vez!
- Soluções de subproblemas são armazenadas em **tabelas**, logo é preciso que o número total de subproblemas que precisam ser resolvidos é pequeno (polinomial no tamanho da entrada).
- Programação Dinâmica é uma estratégia "bottom-up"!

Multiplicação de cadeias de matrizes

ightharpoonup O problema: calcular o número mínimo de operações de multiplicação (escalar) para encontrar a matriz M dada por:

$$M = M_1 \times M_2 \times \dots M_i \dots \times M_n$$

onde M_i é uma matriz de b_{i-1} linhas e b_i colunas, para todo $i \in \{1, \ldots, n\}$.

- ▷ Observação 1: as matrizes são multiplicadas aos pares.
- \triangleright **Observação 2:** para calcular a matriz M' dada por $M_i \times M_{i+1}$ são necessárias $b_{i-1} * b_i * b_{i+1}$ multiplicações entre os elementos de M_i e M_{i+1} .

- $\triangleright Exemplo: M = M_1 \times M_2 \times M_3 \times M_4 \text{ com } b = \{200, 2, 30, 20, 5\}.$
- ▶ A ordem das multiplicações faz muita diferença!

$$M = (((M_1 \times M_2) \times M_3) \times M_4) \rightarrow 152.000 \text{ operações}$$

$$M = (M_1 \times ((M_2 \times M_3) \times M_4)) \rightarrow 3400 \text{ operações}$$

 \triangleright Algoritmo "força bruta" é impraticável: existem $\approx 4^n/n^{\frac{3}{2}}$ possíveis parentizações !

- ▷ Observação 3: solução = parentização (associação) de produtos entre matrizes. Seqüência de decisões: onde colocar os parênteses.
- ightharpoonup Observação 4: dada uma solução ótima, existem dois pares de parênteses que identificam o último par de matrizes que serão multiplicadas. Ou seja, existe k tal que $M = A \times B$ onde $A = M_1 \times \ldots M_k$ e $B = M_{k+1} \times \ldots M_n$.
- \triangleright Subestrutra ótima: A e B precisam ser computados de maneira ótima!

 \triangleright **Observação 5:** se m[i,j] é a solução ótima para realizar o produto $M_i \times M_{i+1} \times \ldots \times M_j$ então m[i,j] é dado por:

$$m[i,j] := \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + b_{i-1} * b_k * b_j \}.$$

 \triangleright **Observação 6:** O cálculo do mesmo m[i,j] pode ser requerido em vários subproblemas mas o número de total de m[i,j]'s é $O(n^2) \Longrightarrow \text{tabelar } m[i,j]$!

Multiplicação de Matrizes (cont.)

```
▷ O algoritmo:
```

```
{\tt Multiplica\_matrizes}(b);
```

Para i = 1 até n faça $m[i, i] \leftarrow 0$;

(* calcula o valor ótimo de todas sub-cadeias de tamanho u+1*)

Para u = 1 até n - 1 faça

Para i = 1 até n - u faça

 $j \leftarrow i + u;$

 $m[i,j] \leftarrow \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + b_{i-1} * b_k * b_j \}.$

 $s[i,j] \leftarrow \arg\min_{i \le k < j} \{m[i,k] + m[k+1,j] + b_{i-1} * b_k * b_j\}.$

fim-para

fim-para.

Retorne(m,s).

 \triangleright Complexidade: $O(n^3)$.

Cid C. de Souza

1 2 3 4

 $1 \quad 2 \quad 3 \quad 4$

1 0 2

3 0

3

4

4 ____

m

0

S

1 2 3 4

1 2 3

 1
 0
 12000

 2
 0
 1200

 3
 0
 3000

 4
 0

 1
 _
 1

 2
 _
 2

 3
 _
 3

 4
 _
 _

m

S

{ 200, 2, 30, 20, 5 }

1 2 3 4

 1
 0
 12000
 9200

 2
 0
 1200

 3
 0
 3000

 4
 0
 0

1 2 3 4

 1
 _
 1
 1

 2
 _
 2

 3
 _
 3

 4
 _
 _

m

{ 200, 2, 30, 20, 5 }

 \mathbf{S}

b0*b1*b3=200*2*20=8000

b0*b2*b3=200*30*20=120000

1 2 3 4

 1
 0
 12000
 9200

 2
 0
 1200
 1400

 3
 0
 3000

 4
 0

1 2 3 4

 1
 _
 1
 1

 2
 _
 2
 3

 3
 _
 3

 4
 _
 _

m

S

{ 200, 2, 30, 20, 5 }

b1*b2*b4=2*30*5=300

b1*b3*b4=2*20*5=200

1 2 3 4

 1
 0
 12000
 9200
 3400

 2
 0
 1200
 1400

 3
 0
 3400

 4
 0

1 2 3 4

 1
 _
 1
 1
 1

 2
 _
 2
 3

 3
 _
 3

 4
 _
 _

m

b0*b1*b4=200*2*5=2000

{ 200, 2, 30, 20, 5 }

 \mathbf{S}

b0*b2*b4=200*30*5=30000

b0*b3*b4=200*20*5=20000

1 2 3 4

1 2 3

 1
 0
 12000
 9200
 3400

 2
 0
 1200
 1400

 3
 0
 3000

 1
 _
 1
 1
 1

 2
 _
 2
 3

4 0 3000

3 _ 3

m

S

M1 ((M2 . M3) . M4)

 \triangleright Se n=4, ocorrerão 5 chamadas para computar m[3,3]!

- ▷ Programação dinâmica "top-down": a técnica de memorização.
- ▷ Interromper a recursão sempre que ela já tiver sido computada para o conjunto de parâmetros de entrada. Esta situação será identificada quando o valor correspondente à saída daquela chamada recursiva já estiver preenchido na tabela.

```
Matrizes\_Memo(b,n);
    Para i \leftarrow 1 até n faça
         Para j \leftarrow 1 até n faça
             m[i,j] \leftarrow \infty;
    Retornar Aux(b, 1, n);
Aux(b, i, j);
    Se m[i,j] < \infty então Retornar m[i,j];
    Se i = j então m[i, j] \leftarrow 0;
    se não
         Para k \leftarrow i até j-1 faça
             q \leftarrow \text{Aux}(b, i, k) + \text{Aux}(b, k + 1, j) + b[i] \times b[k] \times b[j];
             Se m[i,j] > q então m[i,j] \leftarrow q; s[i,j] \leftarrow k;
    fim-se
Retornar m[i,j].
```

> Dados:

- um conjunto de n itens;
- w_i : o peso do item i, para todo $i = 1, \ldots, n$.
- c_i : o valor do item i, para todo $i = 1, \ldots, n$.
- W: o limite de peso que a mochila comporta.
- *⊳ Hipóteses:*
 - $\bullet \ \sum_{i=1}^n w_i > W$
 - $w_i \leq W$ para todo $i = 1, \ldots, n$.
- > Pergunta-se: quais os itens que eu devo colocar na mochila de modo a maximizar o valor total transportado?

- > Formulação do problema:
 - $Variáveis: x_i = 1$ se o item i estiver na solução ótima e $x_i = 0$ caso contrário.
 - Modelo:

$$\max \sum_{i=1}^{n} c_i x_i \tag{1}$$

$$\sum_{i=1}^{n} w_i x_i \le W \tag{2}$$

- ▷ Programação dinâmica ?
 - problema de otimização;
 - solução \equiv seqüência de decisões;
 - tem subestrutura ótima?

- *⊳* Encontrando a subestrutura ótima:
 - Se o item n estiver na solução ótima, o valor desta solução será c_n mais o valor da melhor solução do problema da mochila com capacidade $W-w_n$ considerando-se só os n-1 primeiros itens.
 - Se o item n não estiver na solução ótima, o valor ótimo será dado pelo valor da melhor solução do problema da mochila com capacidade W considerando-se só os n-1 primeiros itens.

 \triangleright Generalizando:

Definição: seja z[k,d] o valor ótimo do problema da mochila considerando-se uma capacidade d para a mochila e os k primeiros itens da instância original.

> Fórmula de recorrência:

$$z[0,d] = 0$$

$$z[k,d] = -\infty, \quad \text{se } d < 0$$

$$z[k,d] = \begin{cases} z[k-1,d], & \text{se } w_k > d \\ \max\{z[k-1,d], z[k-1,d-w_k] + c_k\}, & \text{se } w_k \le d \end{cases}$$

```
\triangleright O algoritmo
   Mochila(c, w, W, n);
   Para d \leftarrow 0 até W faça z[0,d] \leftarrow 0;
   Para k \leftarrow 1 até n faça
       Para d \leftarrow 1 até W faça
            Se w_k > d então z[k,d] \leftarrow z[k-1,d];
            se não
                z[k,d] \leftarrow z[k-1,d];
                Se c_k + z[k-1, d-w_k] > z[k, d] então
                    z[k,d] \leftarrow c_k + z[k-1,d-w_k];
   Retornar z[n, W].
```

Complexidade: O(nW) (pseudo-polinomial!)

```
Mochila_sol(x,z,n,W);
      Para i \leftarrow 1 até n faça x[i] \leftarrow 0;
      Mochila_sol_aux(x,z,n,W);
      Retornar x;
  fim.
  Mochila_sol_aux(x,z,k,d);
  Se k \neq 0 então
      Se z[k,d] = z[k-1,d] então
         x[k] \leftarrow 0; Mochila_sol_aux(x,z,k-1,d);
      se não
         x[k] \leftarrow 1; Mochila_sol_aux(x, z, k-1, d-w_k);
  fim-procedimento
  \triangleright Complexidade: O(n).
```


Cid C. de Souza

> Exemplo:

$$\max 10x_1 + 7x_2 + 25x_3 + 24x_4$$
$$2x_1 + x_2 + 6x_3 + 5x_4 \le 7$$
$$x_i \in \{0, 1\}, i = 1, 2, 3, 4$$

d k	0	1	2	3	4	5	6	7
0	0	0	0	0	0	0	0	0
1	0							
2	0							
3	0							
4	0							

$$+ c[1] = 10$$

 $w[1]=2$

$$+ c[2] = 7$$

 $w[2]=1$

$$+ c[3] = 25$$

$$w[3]=6$$

$$+ c[4] = 24$$
 $w[4]=5$

d	0	1	2	3	4	5	6	7	c[k], w[k]
0	0	0	0	0	0	0	0	0	
1	0	0	10	10	10	10	10	10	10, 2
2	0	7	10	17	17	17	17	17	7, 1
3	0	7	10	17	17	17	25	32	25, 6
4	0	7	10	17	17	24	31	34	24, 5

d	0	1	2	3	4	5	6	7	c[k], w[k]
0	0	0	0	0	0	0	0	0	
1	0	0	10	10	10	10	10	10	10, 2
2	0	7	10	17	17	17	17	17	7, 1
3	0	7	10	17	17	17	25	32	25, 6
4	0	7	10	17	17	24	31	34	24, 5

d	0	1	2	3	4	5	6	7	c[k], w[k]
0	0	0	0	0	0	0	0	0	
1	0	0	10	10	10	10	10	10	10, 2
2	0	7	10	17	17	17	17	17	7, 1
3	0	7	10	17	17	17	25	32	25, 6
4	0	7	10	17	17	24	31	34	24, 5

d	0	1	2	3	4	5	6	7	c[k], w[k]
0	0	0	0	0	0	0	0	0	
1	0	0	10	10	10	10	10	10	10, 2
2	0	7	10	17	17	17	17	17	7, 1
3	0	7	10	17	17	17	25	32	25, 6
4	0	7	10	17	17	24	31	34	24, 5

d k	0	1	2	3	4	5	6	7	c[k], w[k]
0	0	0	0	0	0	0	0	0	
1	0	0	10	10	10	10	10	10	10, 2
2	0	7	10	17	17	17	17	17	7, 1
3	0	7	10	17	17	17	25	32	25, 6
4	0	7	10	17	17	24	31	34	24, 5

O Problema Binário da Mochila

d	0	1	2	3	4	5	6	7	c[k], w[k]
0	0	0	0	0	0	0	0	0	
1	0	0	10	10	10	10	10	10	10, 2
2	0	7	10	17	17	17	17	17	7, 1
3	0	7	10	17	17	17	25	32	25, 6
4	0	7	10	17	17	24	31	34	24, 5

$$x[1] = x[4] = 1$$
, $x[2] = x[3] = 0$

- > Dados:
 - um grafo orientado G = (V, E);
 - c_{ij} : o custo do arco (i, j) de E.
- ➢ Hipótese: os custos podem ser negativos mas não existem <u>ciclos</u>
 <u>negativos</u> embora possam existir arcos com custos negativos (não aceitos pelo Dijkstra!)
- > Pergunta-se: qual o comprimento do caminho mais curto entre todos pares de vértices ?

- > Encontrando a subestrutura ótima:
 - supor vértices rotulados de 1 a n;
 - definir um k-caminho entre dois vértices i e j como sendo um caminho de i para j que só passa por vértices de rótulo $\leq k$;
 - supor que se sabe calcular o k-caminho mais curto;
- > Fórmula de recorrência:
 - $d[i, j, 0] = \infty$ se $(i, j) \notin E$ e $d[i, j, 0] = c_{ij}$ caso contrário;
 - $d[i, j, k] = \min\{d[i, j, k-1], d[i, k, k-1] + d[k, j, k-1]\}.$

> Algoritmo:

```
Para i \leftarrow 1 até n faça

Para j \leftarrow 1 até n faça

d[i,j] \leftarrow c[i,j];
```

Para
$$k \leftarrow 1$$
 até n faça

Para $i \leftarrow 1$ até n faça

Para $j \leftarrow 1$ até n faça

Se $d[i,k] + d[k,j] < d[i,j]$ então
 $d[i,j] \leftarrow d[i,k] + d[k,j];$

Retorne (d);

 $W = \min \{ Z, X + Y \}$

D[0]

1	0	3	8	M	-4
2	M	0	M	1	7
3	M	4	0	M	M
4	2	M	-5	0	M
5	M	M	M	6	0
	1	2	3	4	5

D[1]

1	0	3	8	M	-4
2	M	0	M	1	7
3	M	4	0	M	M
1	2	5	-5	0	-2
5	M	M	M	6	0
	1	2	2	4	5

D[2]

D[3]

1	0	3	8	4	-4
2	M	0	M	1	7
3	M	4	0	5	11
4	2	-1	-5	0	-2
5	M	M	M	6	0
	1	2.	3	4	5

D[5]

Máxima subcadeia comum

- \triangleright Definição: dada uma cadeia $S = \{a_1, \ldots, a_n\}, S' = \{b_1, \ldots, b_p\}$ é uma subcadeia de S se existem p índices i(j) satisfazendo:
 - (a) $i(j) \in \{1, ..., n\}$ para todo $j \in \{1, ..., n\}$;
 - (b) i(j) < i(j+1) para todo $j \in \{1, ..., n-1\}$;
 - (c) $b_j = a_{i(j)}$ para todo $j \in \{1, ..., n\}$.
- \triangleright Exemplo: $S = \{ABCDEFG\}$ e $S' = \{ADFG\}$.
- $\triangleright Dados$: duas cadeias de caracteres X e Y de um alfabeto Σ .
- \triangleright Pergunta-se: qual a maior subcadeia comum de X e Y?

- ⊳ Programação dinâmica ?
 - problema de otimização;
 - solução ≡ seqüência de decisões ?
 - tem subestrutura ótima?
- ightharpoonup Notação: seja S uma cadeia de tamanho n. Para todo $i=1,\ldots,n,$ o prefixo de tamanho i de S será denotado por S_i . Exemplo: para $S=\{ABCDEFG\}, S_2=\{AB\}\ e\ S_4=\{ABCD\}.$
- ightharpoonup Definição: c[i,j] é o tamanho da maior subcadeia comum entre os prefixos X_i e Y_j . Logo, se |X|=m e |Y|=n, c[m,n] é o valor ótimo.

- ightharpoonup Teorema (subestrutura ótima): seja $Z = \{z_1, \ldots, z_k\}$ a maior subcadeia comum de $X = \{x_1, \ldots, x_m\}$ e $Y = \{y_1, \ldots, y_n\}$, denotado por Z = MSC(X, Y).
 - 1. Se $x_m = y_n$ então $z_k = x_m = y_n$ e $Z_{k-1} = MSC(X_{m-1}, Y_{n-1})$.
 - 2. Se $x_m \neq y_n$ então $z_k \neq x_m$ implica que $Z = MSC(X_{m-1}, Y)$.
 - 3. Se $x_m \neq y_n$ então $z_k \neq y_n$ implica que $Z = MSC(X, Y_{n-1})$.
- > Fórmula de Recorrência:

$$c[i,j] = \begin{cases} 0 & \text{se } i = 0 \text{ ou } j = 0 \\ c[i-1,j-1] + 1 & \text{se } i,j > 0 \text{ e } x_i = y_j \\ \max\{c[i-1,j],c[i,j-1]\} & \text{se } i,j > 0 \text{ e } x_i \neq y_j \end{cases}$$

```
MSC(X, m, Y, n, c, b);
Para i = 1 até m faça c[i, 0] \leftarrow 0; (* Inicializações *)
Para j=1 até n faça c[0,j] \leftarrow 0;
Para i = 1 até m faça (* Cálculo da matriz c *)
    Para j = 1 até n faça
         Se x_i = y_i então
              c[i,j] \leftarrow c[i-1,j-1] + 1; \quad b[i,j] \leftarrow "";
         se não
              Se c[i, j-1] > c[i-1, j] então
                  c[i,j] \leftarrow c[i,j-1]; \quad b[i,j] \leftarrow \text{``}\leftarrow\text{''};
              se não
                  c[i,j] \leftarrow c[i-1,j]; \quad b[i,j] \leftarrow \text{``↑"};
Retorne(c[m, n], b).
\triangleright Complexidade: O(mn).
```

```
Recuperando a solução:
  Recupera_MSC(b, X, m, n);
      Recupera_MSC_aux(b, X, m, n)
  fim.
  Recupera_MSC_aux(b, X, i, j);
      Se i = 0 e j = 0 então retornar
      Se b[i,j] = "\times" ent\tilde{a}o
          Recupera_MSC_aux(b, X, i - 1, j - 1);
                                                   imprima x_i;
      se não se b[i,j] = "\uparrow" então
          Recupera_MSC_aux(b, X, i-1, j);
          Recupera_MSC_aux(b, X, i, j - 1);
  fim.
```

 \triangleright Complexidade: O(m+n).

\triangleright Exemplo:

- *⊳* Economizando memória ...
- ⊳ Solução "top-down" ...

Planejamento da Produção em lotes (Lot Sizing)

> Dados:

- n: horizonte de planejamento.
- d_i : demanda no período i.
- c_i : custo unitário de produção no período i.
- h_i : custo unitário de estocagem entre os períodos i-1 e i.
- ▷ Pergunta-se: quanto e quando deve ser produzido em cada período
 para atender a demanda de modo a minimizar o custo total de
 produção e estocagem ?
- ▷ Hipóteses: os estoques no início e no fim do horizonte são nulos.

Lot Sizing: Formulação do problema

- > Variáveis:
 - x_i : quantidade de itens produzidos no período i.
 - y_i : quantidade de itens em estoque no início do período i.
- *> Modelo gráfico:*

Lot Sizing: Formulação do problema (cont.)

▷ Modelo algébrico;

$$\min \sum_{i=1}^{n} \{c_i x_i + h_i y_i\} \tag{3}$$

$$y_i + x_i = d_i + y_{i+1}, \quad i = 1, \dots, n$$
 (4)

$$y_1 = y_{n+1} = 0, (5)$$

$$x_i \ge 0, \ y_i \ge 0, \quad i = 1, \dots, n$$
 (6)

- ightharpoonup Teorema 1: Existe uma solução ótima tal que, para todo período $i=1,\ldots,n$, a demanda d_i é totalmente satisfeita pela produção em i (x_i) ou apenas pelo estoque proveniente do período i-1 (y_i) .
- ▷ Representação gráfica de uma solução ótima: ...

- ⊳ Programação dinâmica ?
 - problema de otimização;
 - solução ≡ seqüência de decisões;
 - tem subestrutura ótima?

- ightharpoonup Definição 1: E[j] é o custo mínimo de produção satisfazendo as demandas dos períodos 1 até j-1 sem que haja estoque entre os períodos j-1 e j (i.e., $y_j=0$), para todo $j=1,\ldots,n+1$. Observação: E[1]=0 e, por hipótese, E[n+1] é o valor ótimo!
- $\triangleright \ Definição \ 2$: a demanda acumulada entre os períodos $i \in j-1$ é dada por:

$$da[i,j] = \sum_{\ell=i}^{j-1} d_{\ell}.$$

ightharpoonup Definição 3: o custo acumulado de estocagem entre os períodos i e j é dado por:

$$ha[i,j] = \sum_{\ell=i+1}^{j-1} h_{\ell} da[\ell,j].$$

> Fórmula de recorrência (subestrutura ótima):

$$E[j] = \min_{1 \le i \le j-1} \{ E[i] + c_i da[i,j] + ha[i,j] \}.$$

```
Lotsizing(c,d,h,n);
Pre\_processamento(d,h,n,da[1,.],ha[1,.]);
E[1] \leftarrow 0;
Para i=2 até n faça E[i] \leftarrow \infty;
Para j=2 até n+1 faça
    Para i = 1 até j - 1 faça
        w \leftarrow E[i] + c_i * Calc\_da(i, j) + Calc\_ha(i, j);
        Se E[j] > w então
            E[j] \leftarrow w; \quad b[j] \leftarrow i;;
    Retornar (E[n+1],b);
fim
```

- *⊳* Exemplo: ...
- ightharpoonup Complexidade: Se o procedimento Pre_processamento tiver complexidade O(n) e as funções Calc_da e Calc_fa forem computadas em O(1), então o algoritmo Lotsizing terá complexidade $O(n^2)$.
- \triangleright Pergunta: como fazer um cálculo eficiente de da[] e ha[]?

Lot Sizing: Pré-processamento

 \triangleright *Idéia*: calcular $d_a[1,.]$ iterativamente já que $d_a[1,i] = d_a[1,i-1] + d[i-1]$. Em seguida, note que $h_a[1,1] = h_a[1,2] = 0$ e que:

$$h[1,3] = \sum_{\ell=2}^{2} h[\ell]d_{a}[\ell,3]$$

$$= h[2]d_{a}[2,3] = h[2]d_{a}[1,3] - h[2]d_{a}[1,2]$$

$$h[1,4] = \sum_{\ell=2}^{3} h[\ell]d_{a}[\ell,4]$$

$$= h[2]d_{a}[2,4] + h[3]d_{a}[3,4] =$$

$$= h[2](d_{a}[1,4] - d_{a}[1,2]) + h[3](d_{a}[1,4] - d_{a}[1,3])$$

$$= (h[2] + h[3])d_{a}[1,4] - h[2]d_{a}[1,2] - h[3]d_{a}[1,3]$$

$$\dots = \dots$$

$$j-1 \qquad j-1$$

$$h[1,j] = (\sum_{\ell=2}^{j-1} h[\ell]) d_a[1,j] - \sum_{\ell=2}^{j-1} h[\ell] d_a[1,\ell].$$

Lot Sizing: Pré-processamento

- \triangleright Logo, $h_a[1,.]$ é facilmente computável (O(n)) se $d_a[1,.]$ estiver caculado.
- ⊳ Seja

$$\alpha(j) = \sum_{\ell=2}^{j-1} h[\ell]$$
 e $\beta(j) = \sum_{\ell=2}^{j-1} h[\ell] d_a[1,\ell].$

 \triangleright O algoritmo a seguir tem complexidade O(n) e calcula $d_a[1,.]$ e $h_a[1,.]$ corretamente. Nele, os valores das variáveis α e β na j a iteração do segundo laço **Para** corresponde aos valores $\alpha(j)$ e $\beta(j)$ respectivamente.

Lot Sizing: Pré-processamento (cont.)

```
Pre\_processamento(d,h,n,d_a[1,.],h_a[1,.]);
d_a[1,1] \leftarrow 0; \quad h_a[1,1] \leftarrow 0; \quad h_a[1,2] \leftarrow 0;
Para i \leftarrow 2 até n faça
     d_a[1,i] \leftarrow d_a[1,i-1] + d[i-1];
fim-para
\alpha \leftarrow 0; \quad \beta \leftarrow 0;
Para j \leftarrow 3 até n+1 faça
     \alpha \leftarrow \alpha + h[j-1]; \quad \beta \leftarrow \beta + h[j-1]d_a[1,j-1];
     h_a[1,j] \leftarrow \alpha * d_a[1,j] - \beta;
fim-para
fim.
```

Lot Sizing: Recuperação da solução

```
Lotsizing_sol(x,b,n,d_a[1,.]);
   Para i \leftarrow 1 até n faça x[i] \leftarrow 0;
   Lotsizing_sol_Recursivo(x,b,n,d_a[1,.],n+1);
   Retornar x;
fim.
Lotsizing_sol_Recursivo(x,b,n,d_a[1,.],j);
   Se j > 1 então
       x[b[j]] \leftarrow d_a[1,j] - d_a[1,b[j]];
       Lotsizing_sol_Recursivo(x,b,n,d_a[1,.],b[j]);
   fim-se
fim-procedimento
\triangleright Complexidade: O(n).
```