

Fundamentos de IA y Machine Learning

Lección 5: Aprendizaje no supervisado - Clustering

Aprendizaje no supervisado - Clustering

CASO PRÁCTICO

Vamos a dividir el caso práctico en tres problemas similares a los vistos en clase.

Problema I

Se pide agrupar un total de 8 patrones bidimensionales en tres *clusters* (k = 3). Los patrones son los siguientes: A1 (2,10), A2(2,5), A3(8,4), A4(5,8), A5(7,5), A6(6,4), A7(1,2) y A8(4,9). Los centroides iniciales son los puntos A1, A3 y A4. La métrica de distancia utilizada será la distancia euclídea.

Se pide:

- **1.** Representar los *clusters* creados y la posición de los centroides después de cada iteración.
- **2.** El valor de la métrica SSE.
- **3.** Comparar los resultados con los obtenidos en el ejemplo de la sección 2.3. del manual de la lección 5.
- **4.** ¿Á que se debe la diferencia de resultados?

Problema II

Dada la siguiente matriz de distancias entre cinco patrones:

	Α	В	С	D	E
Α	0	1	2	9	10
В		0	3	7	5
С			0	4	6
D				0	8
E					0

Se pide:

- 1. Aplicar un clustering jerárquico con el método de enlace simple.
- 2. Aplicar un clustering jerárquico con el método de enlace completo.
- **3.** ¿Se podría usar el método de enlace medio con estos datos? Justifica la respuesta.

Problema III

Dados los mismos puntos del Problema I.

Se pide:

- **1.** Aplicar DBSCAN considerando M=3 y $\epsilon=\sqrt{2}$.
- **2.** Aplicar DBSCAN considerando M=3 y $\epsilon=\sqrt{10}$.
- **3.** ¿En qué afecta el cambio del parámetro ϵ ?