Exercices d'Algorithmique : Structures de Contrôle

Exercice 1

Il s'agit d'un algorithme pour déterminer si l'année A est bissextile.

Si A n'est pas divisible par 4, l'année n'est pas bissextile.

Si A est divisible par 4, l'année est bissextile sauf si A est divisible par 100 et pas par 400.

Exercice 2

Ecrire un programme qui lit N nombres entiers au clavier et qui affiche leur somme, leur produit et leur moyenne. Choisissez un type approprié pour les valeurs à afficher. Le nombre N est à entrer au clavier. Résolvez ce problème en utilisant les 3 types de boucles vues en cours. Laquelle des trois variantes est la plus naturelle pour ce problème ?

Exercice 3

Ecrire un programme qui détermine si un entier entré au clavier est premier.

En déduire un algorithme pour calculer tous les nombres premiers inférieurs ou égaux à un entier N entré au clavier.

Exercice 4

Soit l'algorithme suivant pour déterminer le jour de la semaine correspondant à une date (j/m/a). L'algorithme est valable pour les dates postérieures à 1900.

Mémoriser dans A les 2 derniers chiffres de l'année

Mémoriser dans B le résultat de la division entière de A par 4

Mémoriser dans C la valeur associée au mois dans la table ci-dessous

Mémoriser dans D la valeur du jour de la date

Mémoriser dans E le reste de la division entière de A + B + C + D par 7

Déterminer le jour de la semaine correspondant à E grâce à la table des jours

Table des mois		Table des jours
		Dimanche=1
Janvier=1 (0 si bissextile)	Juillet=0	Lundi=2
Février=4 (3 si bissextile)	Août=3	Mardi=3
Mars=4	Septembre=6	Merc redi=4
Avril=0	Octobre=1	Jeudi=5
Mai=2	Novembre=4	Ve ndredi=6
Juin=5	Décembre=6	Samedi=0

Exercice 5

Un nombre N est dit triangulaire s'il existe k > 0 tel que N = $\sum_{i=1}^{k} i$. Ecrire un algorithme qui saisit un nombre et décide s'il est triangulaire.

Exercice 6

Calculer par des soustractions successives le quotient entier et le reste de la division euclidienne de deux entiers entrés au clavier.

Exercice 7

Calculez pour une valeur X donnée de type réel la valeur numérique d'un polynôme de degré n : $P(X) = A_n X_n + A_{n-1} X_{n-1} + ... + A_1 X + A_0$

Les valeurs de n, des coefficients A_n , ..., A_0 et de X seront entrées au clavier.

Utilisez le schéma de Horner qui évite les opérations d'exponentiation lors du calcul :

Exercice 8

Calculer le pgdc de deux entiers naturels entrés au clavier en utilisant l'algorithme d'Euclide : pgdc(a, b) = pgdc(b, r) avec r = a mod b

Exercice 9

Calculez le N-ième terme U_N de la suite de FIBONACCI qui est donnée par la relation de récurrence: $U_1 = 1$ $U_2 = 1$ $U_N = U_{N-1} + U_{N-2}$ (pour N > 2)

Exercice 10

a) Calculez la racine carrée X d'un nombre réel positif A par approximations successives en utilisant la relation de récurrence suivante:

$$X_{J+1} = (X_J + A / X_J) / 2$$
, avec $X_1 = A$

La précision du calcul J est à entrer par l'utilisateur.

- b) Assurez-vous lors de l'introduction des données que la valeur pour A est un réel positif et que J est un entier naturel positif, plus petit que 50.
- c) Affichez lors du calcul toutes les approximations calculées :

L'approximation 1 de la racine carrée de ... est ...

L'approximation 2 de la racine carrée de ... est ...

L'approximation 3 de la racine carrée de ... est ...

. . .

Exercice 11

Affichez un triangle isocèle formé d'étoiles de N lignes (N est fourni au clavier) : Nombre de lignes : 8

```
***

****

*****

******
```

Exercice 12

Un nombre est parfait s'il est égal à la somme de ses diviseurs autres que lui-même.

Exemple: 6 = 1 + 2 + 3 est un nombre parfait.

Ecrire un algorithme qui détermine si un entier entré au clavier est parfait.

En déduire le code pour calculer tous les nombres parfaits inférieurs ou égaux à un entier N entré au clavier.

Exercice 13

Voici la fameuse suite de Syracuse, elle consiste à obtenir une suite convergeant vers 1 à partir de n'importe quel nombre entier N en utilisant l'algorithme suivant :

Si N est pair, le diviser par 2

Sinon, le multiplier par 3 et ajouter 1.

Proposer un algorithme pour afficher la suite de Syracuse d'un entier N entré au clavier.

Exemple : Entrée : N = 26

Affichage: 13, 40, 20, 10, 5, 16, 8, 4, 2, 1

Exercice 14

Ecrire un programme qui affiche les triplets d'entiers i, j et k avec j < i < N (N entré au clavier) tels que : $i^2 + j^2 = k^2$

Exercice 15

Etant donné la suite définie par :

 $egin{array}{ll} V_0 &= 2 \\ V_n &= V_{n-1} + 2 \\ V_n &= V_{n-1} + 4 \end{array}$ sin pair

Ecrire un algorithme qui permet de calculer la somme des N premiers termes.