Mathematik für die Informatik B

Serie 2

Abgabe der Hausaufgaben: Fr, 28.04.2023, 23:59 Uhr im OLAT

Präsenzaufgabe 1: Folgenkomponenten ausschreiben

Schreiben Sie jeweils die ersten 7 Komponenten als auf 4 signifikante Stellen gerundete Dezimalzahlen aus:

$$\left(1 + \frac{n}{n^2 + 1}\right)_{n \ge 0} \qquad \left(\sqrt[n]{2}\right)_{n \ge 1} \qquad \left(\sqrt[n]{n}\right)_{n \ge 1}$$

$$\left(\left(1 + \frac{1}{n}\right)^n\right)_{n \ge 1} \qquad \left(\left(1 + \frac{1}{n}\right)^{n+1}\right)_{n \ge 1} \qquad \left(\frac{n}{2^n}\right)_{n \ge 0}$$

Präsenzaufgabe 2: Nullfolge

Zeigen Sie direkt mit der Definition der Konvergenz:

$$\lim_{n} \frac{n}{2^n} = 0$$

Tipp: Binomischer Lehrsatz.

Präsenzaufgabe 3: Spezialfall vom Sandwichsatz

Führen Sie den offenen Fall $p=+\infty$ aus dem Beweis vom Sandwichsatz aus Kapitel 2 aus, und zwar ohne die Folge $(b_n)_n$.

Hausaufgabe 1: Anwendung des Sandwichsatzes (10 Punkte)

Zeigen Sie mit dem Sandwichsatz:

$$\lim_{n} \frac{\sqrt{n}}{2^n} = 0$$

Hausaufgabe 2: Mittelwertfolge (15 Punkte)

Zeigen oder widerlegen Sie:

Es sei $(x_k)_{k\geq 1}\in \mathcal{S}(\mathbb{R})$ konvergent. Dann konvergiert $(\frac{1}{n}\sum_{k=1}^n x_k)_{n\geq 1}$.

Lösung zu Präsenzaufgabe 1

- 1.000, 1.500, 1.400, 1.300, 1.235, 1.192, 1.162
- 2.000, 1.414, 1.260, 1.189, 1.149, 1.122, 1.104
- 1.000, 1.414, 1.442, 1.414, 1.380, 1.348, 1.320
- 2.000, 2.250, 2.370, 2.441, 2.488, 2.522, 2.546
- 4.000, 3.375, 3.160, 3.052, 2.986, 2.942, 2.910
- 0, 0.5000, 0.5000, 0.3750, 0.2500, 0.1562, 0.09375

Lösung zu Präsenzaufgabe 2

Es gilt:

$$\lim_{n} \frac{n}{2^n} = 0$$

Beweis. Für alle $n \ge 2$ gilt:

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} \ge {n \choose 2} = \frac{n(n-1)}{2}$$

Es sei $\varepsilon > 0$. Definiere $n_0 := 2\lceil \frac{1}{\varepsilon} \rceil + 2$. Es sei $n \ge n_0$. Dann ist $n \ge 2$, und es gilt:

$$\left| \frac{n}{2^n} - 0 \right| = \frac{n}{2^n} \le \frac{n}{\frac{n(n-1)}{2}} = \frac{2}{n-1} \le \frac{2}{n_0 - 1} < \frac{2}{2\frac{1}{\varepsilon}} = \varepsilon$$

Lösung zu Präsenzaufgabe 3

Es seien $(a_n)_n$, $(x_n)_n \in \mathcal{S}(\mathbb{R})$ so, dass $a_n \leq x_n$ für alle n gilt und $\lim_n a_n = +\infty$. Dann gilt $\lim_n x_n = +\infty$.

Beweis. Es sei $r \in \mathbb{R}$. Es sei $n \ge n_0(]r, +\infty[, a)$. Dann gilt $x_n \ge a_n > r$, also $x_n \in]r, +\infty[$. \square