담색적 데이터 분석: 그래프에 의한 기술통계

Key Words

#바차트 #파이차트 #히트맵 #스택트컬럼차트 #히스토그램 #박스플롯 #QQ플롯 #산점도

데이터 시각화 개요

Ⅰ그래프를 이용한 자료의 정리

자료의 유형에 맞는 그래프를 이용하여 한눈에 알아볼 수 있게 자료를 시각화할 수 있음.

▶ 질적 자료인 경우

- 1개 변수 : 바차트(막대그림), 파이차트
- 2개 변수 : 히트맵, 스택드컬럼차트

┗양적 자료인 경우

- 1개 변수 : 히스토그램, 박스플롯(상자그림), 라인차트, QQ플롯
- 2개 변수 : 산점도

바차트와 파이차트

I Frequency and Relative Frequency Distributions

Area	Frequency	Relative Frequency
Accounting	73	28.9%
Finance	52	20.6%
General management	36	14.2%
Marketing/Sales	64	25.3%
Other	28	11.1%
Total	253	100%

스택트컬럼차트

Contingency Table of Frequencies

Newspaper	Occupation
2	2
3	1
1	2
2	3
3	1
3	2
	2 3 1 2 3

히트맵

Contingency Table of Frequencies

Reader	Newspaper	Occupation
1	2	2
2	3	1
3	1	2
352	2	3
353	3	1
354	3	2

히스토그램

Subscribers	Bills
1	42.19
2	38.45
3	29.23
4	89.35
5	118.04

박스플롯

정규 QQ 플롯

Histogram of x1

Normal Q-Q Plot

정규 QQ 플롯

Histogram of x2

Normal Q-Q Plot

정규 QQ 플롯

Histogram of x3

Normal Q-Q Plot

산점도

Size(100ft²)	Price(\$1,000)
23.54	315
18.07	229
26.37	355
20.54	261
22.41	234
14.89	216
33.77	308
28.25	306
23.02	289
20.68	204
27.15	265
18.33	195

남색적 데이터 분석: 수치적 기술통계 ① 위치, 변이, 모양통계량

Key Words

#평균 #중앙값 #중위수 #최빈값 #사분위수 #범위 #사분위간 범위(IQR) #분산 #표준편차 #왜도 #첨도

▋평균(Mean)

• 표본자료 $x_1, ..., x_n$ 이 주어졌을 때,

- ▮중위수, 중앙값 (Median)
- 표본 자료 $x_1, ..., x_n$ 을 오름차순 정렬하였을 때,

$$x_{med} = \begin{cases} \left(\frac{n+1}{2}\right)$$
번째 자료 , n 이 홀수
$$\left(\frac{n}{2}\right)$$
번째와 $\left(\frac{n}{2}+1\right)$ 번째 자료의 평균 , n 이 짝수

- ▮최빈값 (Mode)
- 가장 빈도가 높은 값 또는 구간

▶ 분포의 치우침 유형 별 중심위치 척도들 간의 관계

상대적 위치 척도

- L사분위수 (Quartile): Q1, Q2, Q3
- Q1(= $x_{((n+1)/4)}$): 25th percentile, 1사분위수
- Q2(= $x_{((n+1)/2)}$): median, 50^{th} percentile, 2사분위수
- Q3(= $x_{(3(n+1)/4)}$): 75th percentile, 3사분위수

I범위 (Range)

• 표본자료 $x_1, ..., x_n$ 이 주어졌을 때, $max(x_i) - min(x_i)$

- L 사분위간 범위 (IQR, Inter Quartile Range)
 - Q3 Q1

- 표본 분산 (Sample Variance)
- 표본자료 $x_1, ..., x_n$ 이 주어졌을 때,

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

L 표본 표준편차 (Sample Standard Deviation)

$$s = \sqrt{s^2}$$

- 변동계수 (Coefficient of Variation)
 - $cv = s/\bar{x}$

형태척도

▮분포의 형태에 관한 척도

- 왜도: 분포의 비대칭 정도를 나타내는 척도.
- 첨도: 분포의 중심에서 뾰족함 정도를 나타내는 척도.

담색적 데이터 분석: 수치적 기술통계 ② 연관성

Key words

#공분산 #피어슨 상관계수 #스피어만 상관계수 #켄달의 상관계수

선형적 연관성

두 숫자형 변수의 선형적 연관성

■ 선형적 연관성의 방향

선형적 연관성

두 숫자형 변수의 선형적 연관성

■ 선형적 연관성의 강도

- L 표본 공분산 (Sample Covariance)
 - n쌍의 표본 자료 $(x_1, y_1), ..., (x_n, y_n)$ 이 주어졌을 때,

$$S_{xy} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{n-1}$$

- 선형관계의 방향
 - 1) $s_{xy} > 0$: 양의 선형 관계, 비례관계
 - 2) $s_{xy} < 0$: 음의 선형 관계, 반비례관계

- ▮ 표본 공분산 (Sample Covariance)
 - 선형관계의 강도 $-s_x s_y \le s_{xy} \le s_x s_y$ by Cauchy-Schwarz 부등식
 - 표본 공분산은 x와 y의 측정 단위에 의존하는 지표임. x' = ax + b이고 y' = cy + d인 경우에, $s_{xy} = ac \cdot s_{xy}$

표본 상관계수 (Sample Correlation, 피어슨의 상관계수)

$$r_{xy} = \frac{S_{xy}}{S_x S_y}$$

• $-1 \le r_{xy} \le 1$, by Cauchy-Schwarz 부등식

- 표본 상관계수 (Sample Correlation, 피어슨의 상관계수)
 - 선형관계의 방향
 - 1) $r_{xv} > 0$: 양의 선형관계
 - 2) $r_{xv} < 0$: 음의 선형관계
 - 선형관계의 강도
 - 1) $|r_{xv}| \approx 0$: 강도가 약함.
 - $|r_{xv}| \approx 1$: 강도가 강함.
 - 표본 상관계수는 x와 y 의 측정 단위에 의존하지 않음.
 - -x' = ax + b, y' = cy + d이고, ac > 0 인 경우에, $r_{x'y'} = r_{xy}$

표본 상관계수 (Sample Correlation, 피어슨의 상관계수)

- ▶ 순위를 이용한 상관계수
 - 서열 척도이거나, 정규분포를 심하게 벗어나는 두 숫자형 변수의 연관성 파악.
 - 스피어만 상관계수 (Spearman's correlation coefficient)
 - 원 자료값의 순위를 구한 뒤, 순위에 대하여 피어슨의 상관계수를 구한 것.
 - -1에서 1 사이의 값을 가지며, 절대값이 클수록 강한 상관관계를 나타냄.

▶ 순위를 이용한 상관계수

- 켄달 상관계수(Kendall rank correlation coefficient)
 - 두 변수 순위의 일치 정도를 측정.
 - 한 변수의 순위가 증가할 때 다른 변수의 순위도 함께 증가하는 경우가 그렇지 않은 경우에 비해 얼마나 큰지를 측정하는 방식.