BOUNDARY INTEGRALS

Area gradient

vector mean curvature

$$D \subset S$$
 $\gamma = \partial D$ another normal $\int_D \mathbf{H} \, dA = \oint_{\gamma} N imes df(X) d\ell$

discrete version

only makes sense as an integral, NEVER pointwise

$$\mathbf{H}_e = e \times N_1 - e \times N_2$$

22

BOUNDARY INTEGRALS

Area gradient

vector mean curvature

$$D \subset S$$
 $\gamma = \partial D$ another normal $\int_D \mathbf{H} \, dA = \oint_{\gamma} N imes df(X) d\ell$

discrete version

only makes sense as an integral, NEVER pointwise

$$2\mathbf{H}_{i} = \sum_{j} \mathbf{H}_{e_{ij}} = 2\nabla_{i}A$$

$$= \sum_{j} (\cot \alpha_{ij} + \cot \alpha_{ji})(p_{i} - p_{j})$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

DISCRETE VERSIONS

Just plug in

- vector area (∇ Vol)
 - gradient w.r.t. vertex
 - cone neighborhood
- mean curvature

$$2H_eN = \int_{t_1,t_2} 2HN \, dA = e \wedge N_1 - e \wedge N_2$$

$$|H_e| = |e| \sin \theta/2$$

$$4H_pNA = \nabla_p A$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

LAPLACE-(BELTRAMI)

Surface over tangent plane

• in eigen basis
$$H_p = \Delta_f f = (\frac{d^2}{du^2} + \frac{d^2}{dv^2})f$$

principal curvature directions

> Laplace-Beltrami $\mathbf{H} = \Delta_f f$

> > the surface

surface

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

STEINER POLYNOMIAL

And now for a totally different view

- consider convex polyhedron
- Steiner: $Vol(N_t(P)) = Vol(P)$

vertices?

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

27

MINIMAL SURFACE

Minimum area energy

■ minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

33

MINIMAL SURFACE

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

35

MINIMAL SURFACE

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

37

MINIMAL SURFACE

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

30

MINIMAL SURFACE

Minimum area energy

minimal surface

$$E_A = \int_S 1 \, dA$$

$$2\partial_i A_{t_{ijk}} = R^{\pi/2} (p_k - p_j)$$

$$\sum_{e_{ij}} (\cot \alpha_{ij} + \cot \alpha_{ji}) (p_i - p_j) = 0$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

MEAN CURVATURE FLOW

Laplace-Beltrami

Dirichlet energy

$$\min \int (\nabla u)^2 \rightsquigarrow \frac{\Delta u = 0}{u|_{\partial \Omega} = u_0}$$

on surface

$$\partial_t p_i = -\mathbf{H}_i/2A_i$$

= -1/4A_i\sum_{e_{ij}}(\cot\alpha_{ij} + \cot\alpha_{ji})(p_i - p_j)

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

41

MEAN CURVATURE FLOW

Laplace-Beltrami

Dirichlet energy

$$\min \int (\nabla u)^2 \rightsquigarrow \begin{array}{l} \Delta u = 0 \\ u|_{\partial\Omega} = u_0 \end{array}$$

• on surface
$$\mathbf{H} = \Delta_S S = \frac{\nabla A}{2A}$$

$$\partial_t p_i = -\mathbf{H}_i/2A_i$$

= $-1/4A_i \Sigma_{\sigma}$..(cot α_i

 $= -1/4A_i\sum_{e_{ij}}(\cot\alpha_{ij}+\cot\alpha_{ji})(p_i-p_j)$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

MEAN CURVATURE FLOW

Laplace-Beltrami

Dirichlet energy

$$\min \int (\nabla u)^2 \rightsquigarrow \Delta u = 0$$

$$u|_{\partial\Omega} = u_0$$

on surface $\mathbf{H} = \Delta_S S = \frac{\nabla A}{2A}$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

44

MEAN CURVATURE FLOW

Laplace-Beltrami

Dirichlet energy

$$\min \int (\nabla u)^2 \rightsquigarrow \Delta u = 0$$

$$u|_{\partial\Omega} = u_0$$

• on surface $\mathbf{H} = \Delta_S S = \frac{\nabla A}{2A}$

$$\partial_t p_i = -\mathbf{H}_i/2A_i$$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

MEAN CURVATURE FLOW

Laplace-Beltrami

Dirichlet energy

$$\min \int (\nabla u)^2 \rightsquigarrow \Delta u = 0$$

$$u|_{\partial\Omega} = u_0$$

• on surface $\mathbf{H} = \Delta_S S = \frac{\nabla A}{2A}$

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY

CONVERGENCE?

Can be tricky...

- see Cohen-Steiner paper
- think about chinese lanterns...
 - Schwarz's example a good one to keep in mind

CS177 (2012) - DISCRETE DIFFERENTIAL GEOMETRY