Lezione 9

BIROL ATTIVI

EPOPS GEN. IDEALE INDIP. DI TENSIONS i=?

GEN IDEALE INST. DI CORRENTE V = ? $\tilde{l} = J_g$

DEALE DAL PUNTO si vide delle potence:

OSSENVA TIONE 1.

GEN. COMENTS E EQUIVALENTE A UN BIRGO CIRCATO APERDO SE In = 0

OSSENVAZIONE 2:

NELVA PLEALTÁ LA REALIZZAZIONE DI UN GEN DI CONNENTR F. TECNOLOGICATIENTE POCOS PÍU GIPLESIA DI QUELLA DI UN GEN TO TENSIONS

OSHENNAZioNE

VOLENDO POSSO SITULANE UN MESISTORE AMPAVERSO UN CENEMATORE CONTRUATO

PARTIATO DA B CON il 2º P.dk. (Senso GRADIO

$$+ U - S_1 - S_2 - S_3 = \emptyset$$

$$J = S_2 + S_2 + S_3$$

$$J_2 = R_2 \cdot \lambda$$

$$J_3 = R_3 \cdot \lambda$$

$$J = R_3 \cdot \lambda$$

$$J = R_4 \cdot \lambda$$

$$J = R_5 \cdot \lambda$$

$$J = R_5 \cdot \lambda$$

LA RESISTENZA EQUIVALENTE SERIE SI OTTIENE GOTE SOTTOA DELLE M RESISTENZE IN SERI

IL CLACUITO NON SÍ ACGAGE DELL'EQUIVALENZA

PARAMEL DI RESSORI

13 = G35

$$i = 6, \sigma + 6_2 \sigma + 6_3 \sigma = (6, + 6_2 + 6_3) \sigma$$

$$i = 6, \sigma + 6_2 \sigma + 6_3 \sigma = (6, + 6_2 + 6_3) \sigma$$

$$i = 6, \sigma + 6_2 \sigma + 6_3 \sigma = (6, + 6_2 + 6_3) \sigma$$

LA CONDUTTANZA EQUIVALENTE PANALLELO SI OTTIENE COTE SOTTA DELLE SINGOLE CNOUTIANZE IN PANALLELO

OSSENVA ZIONE

NELLA GNFIG SENIE SI SOMAND LE RESIGNERE

$$R_p = \frac{1}{G_p}$$

NEL GASO PARTICIANE DI DE RESISTENZE IN PARALLELO SI AA!

$$R_{p} = \frac{1}{G_{p}} = \frac{1}{G_{1} + G_{2}} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{2}}} = \frac{1}{\frac{R_{1} + R_{2}}{R_{1} + R_{2}}}$$

$$R_{p} = R_{1} / / R_{2} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$$

$$R_{p} = R_{1} / / R_{2} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$$

$$R_{p} = R_{1} / / R_{3} = \frac{R_{1} R_{2}}{R_{1} + R_{2}}$$

$$R_{p} = \frac{R_{1} / R_{2} / R_{3}}{G_{1} + G_{2} + G_{3}} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{3}}} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{3}}} = \frac{1}{\frac{1}{R_{1}} + \frac{1}{R_{3}} + \frac{1}{R_{1}} + \frac{1}{R_{3}}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3} + R_{1} R_{3} + R_{1} R_{3}} = \frac{1}{\frac{1}{R_{2}} R_{3}} = \frac{1}{\frac{1}{R_{2$$

OSSER WA ZIONE

IN PARTICION SE ho
$$R_1 = R_2 = R$$

$$R_p = R_1 H R_2 = \frac{R \cdot R}{R + R} = \frac{R^2}{2R} = \frac{R}{2}$$

UGUAGE ALLA TERA DI R.

OSSERVATIONE

