This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

At page 1, after the title, please insert: This application is a division of Application No.

09/325,243, filed June 3, 1999, which is incorporated herein by reference.--

In the claims:

Please add new claims 46-75.

Please cancel claims 1-45 without prejudice.

-- 46. A labelled nucleic acid compound having the formula:

NUC-L-D

wherein

NUC is a nucleic acid compound selected from a nucleoside, a nucleotide, a polynucleotide and analogs thereof;

L is a linkage; wherein if NUC comprises a purine base, the linkage is attached to the 8-position of the purine, if NUC comprises a 7-deazapurine base, the linkage is attached to the 7-position of the 7-deazapurine, and if NUC comprises a pyrimidine base, the linkage is attached to the 5-position of the pyrimidine; and

D is an extended rhodamine dye comprising the structures:

$$R_{11}$$
 R_{10}
 R_{10}
 R_{11}
 R_{12}
 R_{13}
 R_{13}
 R_{14}
 R_{15}
 R

wherein

 R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_7 , R_9 , R_{10} , R_{11} , and R_{13} when taken alone are selected from -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z₁, aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, heteroarylalkyl independently substituted with one or more Z₁, halogen, -OS(O)₂OR, - $S(O)_2OR, -S(O)_2R, -S(O)_2NR, -S(O)R, -OP(O)O_2RR, -P(O)O_2RR, -C(O)OR, -NR_2, -P(O)O_2RR, -C(O)O_2RR, -C(O)O_2RR,$ NR_3 , -NC(O)R, $-C(O)NR_2$, -CN, and -OR, wherein R is independently selected from -H, alkyl, heteroalkyl, aryl, heteroaryl, arylalkyl, heteroarylalkyl and linking group; or

 R_1 taken together with R_2 , Y_1 , or Y_2 ; or R₄ taken/together with R₃, Y₃, or Y₄; or R₅ taken together with R₆, Y₃, or Y₄; or R_6 taken together with R_7 , Y_3 , or Y_4 ; or R₁₀ taken together with R₉ or R₁₁; or R_{11} taken together with Y_1 , or Y_2 ; or

R₁₃ taken together with Y₃ or Y₄

are selected from alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ;

 R_8 is selected from -H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl, heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 ;

 Y_1 , Y_2 , Y_3 , Y_4 when taken alone are selected from –H, alkyl, alkyl independently substituted with one or more Z_1 , heteroalkyl, heteroalkyl independently substituted with one or more Z_1 , aryl, aryl independently substituted with one or more Z_1 , heteroaryl independently substituted with one or more Z_1 , arylalkyl, arylalkyl independently substituted with one or more Z_1 , heteroarylalkyl, and heteroarylalkyl independently substituted with one or more Z_1 , or

 Y_1 taken together with R_1 , R_{11} or Y_2 ; or

 Y_2 taken together with R_1 , R_1 or Y_1 ; or

Y₃ taken together with R₄, R₅, R₆, R₁₃ or Y₄; or

 Y_4 taken together with R_4 , R_5 , R_6 , R_{13} or Y_3

are selected from alkyleno, alkyleno independently substituted with one or more Z_1 , heteroalkyleno, heteroalkyleno independently substituted with one or more Z_1 , aryleno, aryleno independently substituted with one or more Z_1 , heteroaryleno, and heteroaryleno independently substituted with one or more Z_1 ; and

 Z_1 is selected from A, halogen, $-OS(O)_2OR$, $-SO_2OR$, $-SO_2R$, $-SO_2NR$, -SO

47. The labelled nucleic acid compound of claim 46 wherein

25008-2

 Y_1 is taken together with R_1 or R_{11} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 ; or

 Y_2 is taken together with R_1 or R_{11} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 ; or

 Y_3 is taken together with R_4 or R_5 or R_6 or R_{13} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 ; or

 Y_4 is taken together with R_4 or R_5 or R_6 or R_{13} and is C_2 or C_3 alkyleno or alkyleno independently substituted with one or more Z_1 .

- 48. The labelled nucleic acid compound of claim 47 wherein the C_2 or C_3 substituted alkyleno is gem disubstituted with C_1 – C_3 alkyl.
- 49. The labelled nucleic acid compound of claim 47 wherein the C_2 or C_3 substituted alkyleno is gem disubstituted with methyl.
- 50. The labelled nucleic acid compound of claim 46 wherein R₈ is alkyl independently substituted with one or more substituents selected from halogen, C(O)R, and –S(O)₂R wherein R is independently selected from–OH, O-alkyl, -NH₂, N-alkyl and a linkage
 - 51. The labelled nucleic acid compound of claim 46 wherein R_8 is $-CF_3$.
- 52. The labelled nucleic acid compound of claim 46 wherein R_8 is aryl or aryl independently substituted with one or more Z_1 .
- 53. The labelled nucleic acid compound of claim 46 wherein R_8 is selected from the structures:

OH OH OH O=
$$S=O$$

O= C O= C
 CH_2 — CH_2 — CH_2
 CH_2 — CH_2 —

wherein L is a linkage.

- 54. The labelled nucleic acid compound of claim 46 wherein NUC comprises a nucleobase selected from uracil, cytosine, deazaadenine, and deazaguanosine.
 - 55. The labelled nucleic acid compound of claim 46 having the structure:

$$W_3$$
 O $B-L-D$ W_2 W_1

wherein B is a nucleobase; W₁ and W₂ taken separately are selected from –H, –OH, and –F; and W₃ is selected from –OH, monophosphate, diphosphate, triphosphate and phosphate analog

56. The labelled nucleic acid compound of claim 46 having the structure:

wherein B is a nucleobase.

57. The labelled nucleic acid compound of claim 46 having the structure:

wherein B is a nucleobase.

58. The labelled nucleic acid compound of claim 46 having the structure:

wherein B is a nucleobase.

59. The labelled nucleic acid compound of claim 46 wherein L is attached to a nucleobase of NUC and to D in the structure:

NUC-C
$$\equiv$$
C-CH₂-NH-C-D

60. The labelled nucleic acid compound of claim 46 wherein L is attached to a nucleobase of NUC and to D in the structure:

$$MUC-C \equiv C-CH_2OCH_2CH_2NR_3X-D$$

25008-2

wherein R_3 is selected from -H and (C_1-C_6) alkyl; and X is selected from the structures:

where n ranges from 1 to 5, ϕ is aryldiyl; and R_1 is selected from -H, (C_1-C_6) alkyl and protecting group.

- The labelled nucleic acid compound of claim 46 wherein L is attached at R₈ 61. of D.
- 62. The labelled nucleic acid compound of claim 46 wherein NUC is a nucleotide and D is a donor dye and an acceptor dye wherein fluorescence energy transfer occurs between the donor dye and acceptor dye and at least one of the donor dye and acceptor dye is an extended hodamine dye.
- The labelled nucleic acid compound of claim 46 wherein NUC is a 63. polynucleotide and L is attached to the polynucleotide at a position selected from the 5' terminus, the phosphodiester backbone, a nucleobase, and the 3' terminus.
- The labelled nucleic acid compound of claim 63 wherein L is an aminohexyl 64. nkage attached to the polynucle of ide at the 5' terminus.
- The labelled nucleic acid compound of claim 46 wherem NUC is a 65. polynucleotide labelled with a donor dye and an acceptor dye wherein fluorescence energy transfer occurs between the donor dye and acceptor dye and at least one of the donor dye and acceptor dye is an extended rhodamine dyg
- A method of PCR enzymatic synthesis comprising amplifying a template 66. DNA with nucleotide triphosphates, polymerase, and two or more primers wherein the primers are complementary to the template DNA sequence and at least one of the primers is a labelled polynucleotide of claim 63.
 - A method of fragment analysis comprising the steps of: 67.

forming one or more labeled polynucleotide fragments, the fragments being labeled with the labelled nucleic acid compound of claim 46;

resolving the one or more labeled polynucleotide fragments; and detecting the resolved labeled polynucleotide fragments.

- 68. The method of claim 67 wherein the resolving step is an electrophoretic size-dependent separation process and the one or more labeled polynucleotide fragments are detected by fluorescence.
- 69. A kit for PCR enzymatic synthesis comprising one or more nucleotide triphosphates, polymerase, and two or more primers wherein one or more of the nucleotide triphosphates is a labelled nucleic acid compound according to claim 58.
- 70. A kit for PCR enzymatic synthesis comprising one or more nucleotide triphosphates, polymerase, and two or more primers wherein at least one of the primers is a labelled polynucleotide of claim 63.
- 71. A kit for fragment analysis comprising one or more nucleotide triphosphates, a chain-terminating nucleotide analog and a primer, wherein one or more of the nucleotide triphosphates is a labelled nucleic acid compound according to claim 55.
- 72. A kit for fragment analysis comprising one or more nucleotide triphosphates, a chain-terminating nucleotide analog and a primer, wherein one or more of the nucleotide triphosphates is a labelled nucleic acid compound according to claim 58.
- 73. A kit for fragment analysis comprising one or more nucleotide triphosphates, a chain-terminating nucleotide analog and a primer, wherein said chain-terminating nucleotide analog is a labelled nucleic acid compound according to claim 56.
- 74. A kit for fragment analysis comprising one or more nucleotide triphosphates, a chain-terminating nucleotide analog and a primer, wherein said chain-terminating nucleotide analog is a labelled nucleic acid compound according to claim 57.