任意の時系列 X_t を定常値 $ar{X}$ とそこからの%乖離 \hat{X}_t に分離する .

$$X_t = \bar{X}e^{\hat{X}_t} \tag{1}$$

$$\iff \ln X_t = \ln \bar{X} + \hat{X}_t \tag{2}$$

$$\iff \ln X_t - \ln \bar{X} = \hat{X}_t \tag{3}$$

$$\iff \ln \frac{X_t}{\bar{X}} = \hat{X}_t \tag{4}$$

以上より, \hat{X}_t は X_t の \bar{X} からの% 乖離であることがわかった.また, 定常条件は,

$$\bar{X} = \bar{X}e^{\hat{X}_{SS}} \tag{5}$$

$$\iff$$
 $e^{\hat{X}_{SS}} = 1$ (6)

$$\iff \hat{X}_{SS} = 0 \tag{7}$$

となる.すなわち定常状態では定常値からの乖離が 0%であることを意味する.ここで,微分可能な任意の $f(x_t)$ を考える. x_t を \bar{x} 周りで Taylor 展開すると,

$$f(x_t) = f(\bar{x}) + f'(\bar{x})(x_t - \bar{x}) + \frac{f''(\bar{x})}{2!}(x_t - \bar{x})^2 + \cdots$$
(8)

であるが,1次のオーダーで $f(x_t)$ を \bar{x} 周りで近似すると,

$$f(x_t) \simeq f(\bar{x}) + f'(\bar{x})(x_t - \bar{x}) \tag{9}$$

ここで, $f(x_t)=e^{\hat{X}_t}$ とする.このとき $\bar{x}=\hat{X}_{SS}=0$ である.また, $f'(\hat{X}_{SS})=e^0=1$ である.よって,

$$e^{\hat{X}_t} \simeq e^0 + e^0(\hat{X}_t - 0) = 1 + \hat{X}_t \tag{10}$$

ゆえに, X_t は,

$$X_t = \bar{X}e^{\hat{X}_t} \simeq \bar{X}(1 + \hat{X}_t) \tag{11}$$

と近似できる.