TUTORIAL 05

7CCMCS04 A. ANNIBALE AND G. SICURO

Problem 5.1 from Exam 2019 Consider an N-state stochastic system. Let $N_t \in \Omega := \{1, 2, ..., N\}$ describe its state at time t. We define $P_i(t)$ as the probability that the system's state N_t at time t is i and denote with W_{ij} the rate at which the system moves from state j to state i. The state probabilities evolve according to the set of master equations

$$\frac{\mathrm{d} P_i}{\mathrm{d} t} = \sum_{j(\neq i)} (W_{ij} P_j - W_{ji} P_i) \qquad \forall \ i \in \Omega.$$

a. Show that, using the convention $\sum_{j} W_{ji} = 0$, the above set of equations can be cast in the vector equation

$$\frac{\mathrm{d}|\boldsymbol{P}(t)\rangle}{\mathrm{d}t} = \boldsymbol{W}|\boldsymbol{P}(t)\rangle,$$

where \boldsymbol{W} is the matrix of transition rates and $|\boldsymbol{P}(t)\rangle := (P_1(t), \dots, P_N(t))^{\top}$ is the column vector of state probabilities. Show that \boldsymbol{W} has always a zero eigenvalue, hence determine the corresponding right and left eigenvectors.

b. Show that $|P(t)\rangle = K(t)|P(0)\rangle$, where the propagator K(t) should be expressed in terms of W, and explain in words the meaning of the elements $K_{ij}(t)$ of the propagator matrix. Show that if W satisfies detailed balance with the stationary state $|\Pi\rangle := \lim_{t\to\infty} |P(t)\rangle$, it must allow a complete set of orthonormal eigenvectors, $\{\langle \phi^a|, |\psi^a\rangle\}$, such that

$$W|\psi^a\rangle = \mu_a|\psi^a\rangle$$
 and $\langle \phi^a|W = \mu_a\langle \phi^a|$,

where μ_a with $a=1,\ldots,N$ are the eigenvalues of \boldsymbol{W} . Finally, express $P_i(t)$ in terms of the eigenvalues and eigenvectors of \boldsymbol{W} .

Hint: Any $N \times N$ symmetric matrix \mathbf{A} has a complete set of orthonormal eigenvectors $\{|\boldsymbol{\chi}^a\rangle\}_{a=1}^N$ such that $\mathbf{A}|\boldsymbol{\chi}^a\rangle = \mu_a|\boldsymbol{\chi}^a\rangle$, and, denoting $\langle \boldsymbol{\chi}^a|$ the row vector obtained trasposing $|\boldsymbol{\chi}^a\rangle$, $\langle \boldsymbol{\chi}^a|\mathbf{A} = \mu_a\langle \boldsymbol{\chi}^a|$ and $\langle \boldsymbol{\chi}^a|\boldsymbol{\chi}^b\rangle = \delta_{ab}$. The eigenvalues μ_a are invariant under similarity transformations of the form $\mathbf{B}^{-1}\mathbf{A}\mathbf{B}$.

c. We define $\theta_i(t)$ a state occupation variable, which takes value 1 when the state of the system at time t, N_t , is equal to i, and zero otherwise. Express the correlation function (with t' < t)

$$C_{ij}(t,t') = \langle \langle \theta_i(t)\theta_j(t') \rangle \rangle = \mathbb{E}[\theta_i(t)\theta_j(t')] - \mathbb{E}[\theta_i(t)]\mathbb{E}[\theta_j(t')]$$

in terms of the propagator, and show that at stationarity it is only a function of the time difference $\tau=t-t'$. Show that in this case the correlation function is given by a superposition of N-1 exponential

Date: February 13, 2025.

7CCMCS04

functions of τ , that should be specified. For which range of values of τ , will the system lose memory of its state at the earlier time t'?

Problem 5.2 from Exam 2016 Consider a Markov process with two states, 1 and 2. Let $P_1(t)$ be the probability that the system is in the state 1 at time t and $P_2(t) = 1 - P_1(t)$. If the system is in state 1 at time t it will randomly move to state 2 with rate α ; conversely, if it is in state 2 it will randomly move to state 1 with rate β .

a. Write down the combined Master equations for $P_1(t)$ and $P_2(t)$. Show that these can be cast in a vector equation

$$\frac{\mathrm{d} |\boldsymbol{P}(t)\rangle}{\mathrm{d} t} = \boldsymbol{W} |\boldsymbol{P}(t)\rangle$$

with $|\boldsymbol{P}(t)\rangle = \binom{P_1(t)}{P_2(t)}$ and the matrix \boldsymbol{W} enclosing the transition rates. Summarize the salient features of matrix \boldsymbol{W} .

- **b.** Find the steady state probability vector $|\Pi\rangle$ and show that it is the right eigenstate associated to eigenvalue $\lambda=0$ of W. Find the left eigenstate associated with $\lambda=0$.
- c. Show that the steady state probability vector satisfies detailed balance with the transition rates of the process. Explain why this is always the case with a two-state process. Show that the Kullback-Leibler distance

$$\mathrm{KL}(\boldsymbol{P}(t)\|\boldsymbol{\Pi}) = \sum_{i=1}^{2} P_i(t) \ln \frac{P_i(t)}{\Pi_i}$$

between the time-dependent distribution $|\mathbf{P}(t)\rangle$ and the steady state distribution $|\mathbf{\Pi}\rangle$ is a non-increasing function of time, hence is a Lyapunov function for the dynamics considered (you may use that $\mathrm{KL}(\mathbf{P}(t)\|\mathbf{\Pi}) \geq 0$ without proof). Hence deduce that the dynamics converges to the steady state $|\mathbf{\Pi}\rangle$, i.e. $|\mathbf{\Pi}\rangle = \lim_{t\to\infty} |\mathbf{P}(t)\rangle$.

Hint: You may use, without proof, the inequality $(e^x - e^y)(x - y) \ge 0$, with equality holding only if x = y.

d. Show that the matrix M with elements

$$M_{ij} = \sqrt{\frac{\Pi_j}{\Pi_i}} W_{ij}$$

is symmetric and that the dynamics of the system can be rewritten as

$$\frac{\mathrm{d} \left| \boldsymbol{q}(t) \right\rangle}{\mathrm{d} t} = \boldsymbol{M} | \boldsymbol{q}(t) \rangle$$

for a suitable vector $|q(t)\rangle$. Explain why it is always possible to diagonalize matrix M for a system that satisfies detailed balance.

- e. Explain why, for a two-state ergodic Markov process, \boldsymbol{W} itself must be diagonalizable. Hence, find the time-dependent distribution $|\boldsymbol{P}(t)\rangle$ for the initial conditions $P_1(0) = p_{01}$, $P_2(0) = p_{02}$, by diagonalizing \boldsymbol{W} . What is the relaxation time to the equilibrium steady state?
- f. Define a three-state Markov process that does not satisfy detailed balance.

Problem 5.3 Equilibrium correlations normally decay with a characteristic decay time τ_C , as $C(\tau) = e^{-\frac{|\tau|}{\tau_C}}$. Show that the power spectrum i.e. the Fourier transform of the correlation function) is

$$S(\omega) \sim \frac{1}{\omega^2 \tau_C^2 + 1}.$$

Hint: You can either calculate the Fourier transform of $C(\tau)$ and show that it is equal to $S(\omega)$ or calculate the Inverse Fourier Transform of $S(\omega)$ and show that it equates $C(\tau)$. The inverse Fourier Transform can be calculated with the help of Cauchy's integral theorem.

Problem 5.4 from Exam 2017 Consider a closed system of N molecules, each of which can be found in one of two isomerization states, A and B. We denote with k_1 and k_2 the rate at which a molecule transitions from state A to B and from B to A, respectively.

- **a.** Write down the master equation for the probability mass $P_n(t)$ to have $N_t = n$ particles in state A at time t and motivate your answer.
- **b** Derive the equation of motion for the average number of particles $\mathbb{E}[\mathsf{N}_t]$ in state A at time t. Hence, show that the ratio between the equilibrium average numbers of molecules in state A and B, $n_A = \mathbb{E}[\mathsf{N}_{\infty}]$ and $n_B = N \mathbb{E}[\mathsf{N}_{\infty}]$, respectively, is related to the reaction rates via

$$\frac{n_B}{n_A} = \frac{k_1}{k_2}.$$

c By solving the equation of motion for $\mathbb{E}[N_t] = \sum_{n=1}^{\infty} n P_n(t)$, show that

$$\mathbb{E}[\mathsf{N}_t] = n_A + (\mathbb{E}[\mathsf{N}_0] - n_A) e^{-\frac{t}{\tau}}$$

where the inverse relaxation time is

$$\tau^{-1} = k_1 + k_2.$$

d. We introduce a state variable $\sigma_i \in \{1, -1\}$ for each molecule i = 1, ..., N, denoting whether molecule i is in state A (1), or in state B (-1), so that the number of molecules in state A, in configuration $\boldsymbol{\sigma} = (\sigma_1, ..., \sigma_N)$, is $n(\boldsymbol{\sigma}) = \frac{1}{2} \sum_{i=1}^{N} (1 + \sigma_i)$. We assume that initially, the system is in equilibrium, described by

$$P_0(\boldsymbol{\sigma}) = \frac{1}{Z_0} e^{-\beta H_0(\boldsymbol{\sigma})},$$

where β is an inverse noise level, H_0 is the equilibrium Hamiltonian and Z_0 is a normalization constant. At time t=0, we apply a perturbation h that changes the number of molecules in state A from its equilibrium value n_A in the absence of perturbation, to their non-equilibrium value $\mathbb{E}[\mathsf{N}_t]$, for all t>0. The Hamiltonian in the presence of the perturbation reads

$$H(\boldsymbol{\sigma}) = H_0(\boldsymbol{\sigma}) - hn(\boldsymbol{\sigma}).$$

4 7CCMCS04

Show that, for small h, the equilibrium distribution $P_h(\sigma)$ in the presence of the perturbation is given, to linear orders in h, by

$$P_h(\boldsymbol{\sigma}) = P_0(\boldsymbol{\sigma}) (1 + \beta h(n(\boldsymbol{\sigma}) - n_A)).$$

Hence, show that the deviation of the average number of particles $\mathbb{E}[\mathsf{N}_t]$ in state A at time t>0, from its equilibrium value n_{A} in the absence of perturbation, is given by

$$\mathbb{E}[\mathsf{N}_t] - n_{\mathsf{A}} = \beta h C_h(t)$$

where $C_h(t) = \mathbb{E}_h[(N_t - n_A)(N_0 - n_A)]$ is the correlation function obtained averaging via Π_{σ}^h . Finally, show that,

$$\frac{\tilde{C}_h(s)}{C_h(0)} = \frac{1}{s + \tau^{-1}}$$

where $\tilde{C}_h(s)$ is the Laplace transform of the correlation function

$$\tilde{C}_h(s) = \int_{0}^{\infty} dt \, e^{-st} C_h(t),$$

and the relaxation time τ is given by

$$\tau = \int_{0}^{\infty} \frac{C_h(t)}{C_h(0)} \, \mathrm{d} \, t.$$