血液病融合

刘红星, 陈雪, 王芳, 等. 转录组测序在血液肿瘤中的应用进展[J]. 白血病. 淋巴瘤, 2019, 28(12): 705-708.

命名规则

- >病程和细胞停留阶段:急性(Acute)和慢性(Chronic)
- >细胞类型: 髓系 (Myeloid) 和淋系 (lymph)
- >病程"+"细胞类型"+疾病名称
 - ▶ AML: 急性+髓系+白血病, 简称急髓
 - ▶ CLL: 慢性+淋系+白血病, 简称慢淋

命名规则

• 特定类型:

• ① MDS: 骨髓增生异常综合征

• ② MPN: 骨髓增殖性肿瘤

• ③ MM:多发性骨髓瘤

血液肿瘤简要分类

NGS在血液肿瘤诊疗中的应用价值

设计理念:

- ◆ 诊疗指南、专家共识中要求检测基因
- ◆ 国际权威文献推荐检测基因
- ◆ 依据临床大样本自建数据库

临床指导意义

例: JAK2、MPL、CARL (MPN诊断)

- KRAS、NRAS、BRAF (MM)
- *SF3B1* (MDS)
- MYD88、CXCR4 (LPL)
- BRAF (HCL)

诊断分型

风险预后评估

- 例: NPM1、FLT3、CEBPA、RUNX1、 TP53 (AML)
- IKZF1 (ALL)
- BIRC3 (CLL)
- DNMT3A、ASXL1 (MDS)
- U2AF1、SRSF2 (PMF)
- ASXL1/SRSF2/IDH1/2 (PV)
- 等等

例: JAK2 (芦可替尼)

- ABL1 (TKI 类)
- IDH1/2 (IDH1/2 抑制剂)
- BCL2 (BCL2 抑制剂)
- FLT3 (FLT3 抑制剂)
- 淋巴瘤 ABC 亚型 (伊布替尼)

用药指导

动态监测

- NOTCH1 (NOTCH1 突变的 CLL 患者具有更高的 Richter's 转化倾向)
- *U2AF1* (与 MDS 疾病进展、白血病转化及较差预后相关)
- *JAK2* (与血栓形成、进展为骨髓 纤维化或白血病以及死亡相关)

全面了解血液肿瘤基因突变现状及动态 精细诊断分型、评估预后、制定个体化治疗方案

NGS在血液肿瘤诊疗中的应用价值(一) 诊断分型

- M 形态学诊断
 - 细胞学:外周血、骨髓涂片、淋巴结穿刺
 - 组织学: 骨髓、淋巴结活检
- I 免疫学检查
 - 免疫组化(IHC)
 - 流式细胞(FCM)
- · C 细胞遗产学检查
 - 核型分析
 - 荧光原位杂交(FISH)
- M 分子生物学检查
 - PCR
 - DNA测序

检测项目	检测内容	样本要求	
病理学检查 (M) 淋巴结活检 病灶处活检 (手术切)		病灶处活检 (手术切除/细针/空心针穿刺)	
免疫表型检查(1)		免疫组化需用组织样本 (大多数淋巴瘤类型) 流式细胞术需用外周血 (CLL/SLL) 或骨髓样本 (骨髓侵犯)	
细胞遗传学(C) FISH		既可用组织样本 (大多数淋巴瘤类型) 也可用外周血/骨髓样本 (CLL/SLL) 或骨髓样本 (骨髓侵犯)	
分子生物学 (M)		既可用组织样本 (大多数淋巴瘤类型) 也可用外周血/骨髓样本 (CLL/SLL) 或骨髓样本 (骨髓侵犯)	

分辨率

- 二代测序(1bp)>FISH (10Kb)>核型分析(5Mb)
- 形态学能检测到 10-2 水平的白血病细胞;
- MFC 可达 10⁻⁴ 检测水平;
- PCR 检测过表达基因(GE-PCR),如 WT1 可检测到 10⁻⁴ 水平白血病细胞的存在,检测融合基因(如核心结合因子)和特殊突变(NPM1 突变)可达到 10⁻⁶ 检验水平
- NGS 可达到 10-6 检验水平

NGS在血液病中的临床应用: (二) 预后分层(针对AML)

预后分层	遗传学异常	
预后良好	t(8;21)(q22;q22.1); RUNX1-RUNX1T1 inv(16)(p13.1q22) 或 t(16;16)(p13.1;q22); CBFB-MYH11 NPM1突变 <mark>不伴或低水平FLT3-ITD</mark> CEBPA双突变	NO
预后中等	NPM1 突变伴 <mark>高水平FLT3-ITD</mark> 野生型NPM1 不伴或低水平 FLT3-ITD t(9;11)(p21.3;q23.3); MLLT3-KMT2A 无良好或不良的细胞遗传学异常	
预后不良	t(6;9)(p23;q34.1); DEK-NUP214 t(v;11q23.3); KMT2A 重排 t(9;22)(q34.1;q11.2); BCR-ABL1 inv(3)(q21.3q26.2) 或 t(3;3)(q21.3;q26.2); GATA2,MECO -5 或del(5q); -7; -17/abn(17p) 复杂核型或单倍体核型	
	野生型NPM1 伴高水平FLT3-ITD RUNX1突变 ASXL1突变 TP53突变	

NCCN Guidelines Version 3.2020 Acute Myeloid Leukemia (Age ≥18 years) CCN Guidelines Index Table of Contents Discussion

RISK STRATIFICATION BY GENETICS IN NON-APL AML^{1,2}

Risk Category*	Genetic Abnormality		
Favorable	t(8;21)(q22;q22.1); RUNX1-RUNX1T1 inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11 Biallelic mutated CEBPA Mutated NPM1 without FLT3-ITD or with FLT3-ITD ^{low} †		
Intermediate	Mutated <i>NPM1</i> and <i>FLT3</i> -ITD ^{high} † Wild-type <i>NPM1</i> without <i>FLT3</i> -ITD or with <i>FLT3</i> -ITD ^{low} † (without adverse-risk genetic lesions) t(9;11)(p21.3;q23.3); <i>MLLT3-KMT2A</i> ‡ Cytogenetic abnormalities not classified as favorable or adverse		
Poor/Adverse	t(6;9)(p23;q34.1); <i>DEK-NUP214</i> t(v;11q23.3); <i>KMT2A</i> rearranged t(9;22)(q34.1;q11.2); <i>BCR-ABL1</i> inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2); <i>GATA2,MECOM(EVI1)</i> -5 or del(5q); -7; -17/abn(17p) Complex karyotype,§ monosomal karyotype Wild-type <i>NPM1</i> and <i>FLT3</i> -ITD ^{high} † Mutated <i>RUNX1</i> ¶ Mutated <i>ASXL1</i> ¶ Mutated <i>TP53</i> #		

NGS在血液肿瘤诊疗中的应用价值

指导治疗—靶向用药

- TP53 突变的 CLL/SLL 患者对常规化疗反应 差;
- MYD88 和 CXCR4 基因突变可影响伊布替 尼在LPL/WM 中的治疗效果;
- ABL1 激酶区突变是慢性髓性白血病 (CML) 和 Ph+ ALL 酪氨酸激酶抑制剂 (TKI) 耐受的主要机制之一。

血液肿瘤相关的靶向药

表3:中美淋巴瘤/白血病上市药物对照,红色为国内未上市药物

适应症	靶点/疗法	中国已上市	美国已上市		
CHL	PD-1) Opdivo , Keytruda , <mark>Libtayo</mark> (L药尚未获得CHL适应症)		
B细胞非霍 奇金淋巴 瘤(包括 多发性骨 髓瘤)及 ALL、CLL	CD20	利妥昔单抗	利妥昔单抗,替伊莫单抗,奥法木单抗,阿托珠单抗等		
	BTK	伊鲁替尼	伊鲁替尼, Acalabrutinib		
	PI3K	无	Idelalisib , Copanlisib , Duvelisib		
	免疫调节剂	沙利度胺,来那度胺	沙利度胺,来那度胺,泊马度胺		
	蛋白酶体抑制剂	硼替佐米,伊沙佐米	硼替佐米,伊沙佐米,卡非佐米		
	CAR-T疗法	无	KYMRIAH , YESCARTA		
	双抗	无	Blinatumomab		
	BCL-2	无	Venetoclax		
T/NK细胞 淋巴瘤	HDAC	西达苯胺	贝利司他,罗米地辛		
	CD30	无	本妥昔		
髓系白血 病(CML , AML)	ABL	伊马替尼,达沙替尼,尼洛替尼	伊马替尼,达沙替尼,尼洛替尼,博舒替尼,泊那替尼		
	FLT3	舒尼替尼,索拉非尼(但这疗效均不理想)	舒尼替尼,索拉非尼,米哚妥林		
	IDH1/2	无	Ivosidenib , Enasidenib		

资料来源:NMPA,申万宏源研究

依据突变信息,提供临床用药指导

NGS在血液肿瘤诊疗中的应用价值 微小残留病(MRD)监测

- 主流方法:多参数流式细胞术、RQ-PCR
- NGS检测优势:
 - 多基因同时检测;
 - 突变比例定量;
 - 提高测序深度可以提高灵敏度;

NGS在血液肿瘤诊疗中的应用价值 克隆演变

多次打击学说-多基因突变累积

· 及时监测基因改变,有助于了解疾病进展并调整治疗方案。

二代测序技术在血液肿瘤中的应用中国专家共识

		松芒松测甘田			
血液肿瘤	诊断及鉴别诊断	预后判定	指导治疗	推荐检测基因	
AML	NPM1、CEBPA、RUNX1	KIT, FLT3, NPM1, CEBPA, IDH1/2, TP53, RUNX1, ASXL1, DNMT3A, SF3B1, U2AF1, SRSF2, ZRSR2, EZH2, BCOR, STAG2	FLT3、IDH1/2、NPM1、KIT	NRAS, KRAS, PHF6, WT1, CSF3R, PTPN11, ZBTB7A, KDM6A, DHX15, TET2, ASXL2, DDX41, ANKRD26, ETV6, GATA1, GATA2, SRP72, KMT2A, RAD21, SMC1A, SMC3	
ALL		IKZF1、TP53、NOTCH1、FBXW7	ABL1、JAK3、JAK1	NRAS, KRAS, FLT3, IL7R, SH2B3, BRAF, GATA3, ETV6, RUNX1, EP300, PAX5, RB1, JAK2, CDKN2A/B	
MPN	JAK2、CALR、MPL、CSF3R、ASXL1、 EZH2、TET2、IDH1/2、SRSF2、SF3B1	JAK2、CALR、MPL、ASXL1、 EZH2、IDH1/2、SRSF2、TP53、 SH2B3、SF3B1、U2AF1、ABL1	JAK2、CSF3R、ABL1	DNMT3A、CBL	
MDS	SF3B1、TET2、ASXL1、DNMT3A、SRSF2、RUNX1、TP53、U2AF1、EZH2、ZRSR2、STAG2、CBL、NRAS、JAK2、SETBP1、IDH1/2、ETV6	ASXL1, EZH2, SF3B1, SRSF2, U2AF1, ZRSR2, RUNX1, TP53, STAG2, NRAS, ETV6, SETBP1, BCOR, FLT3, WT1, STAT3	TET2、STAT3、TP53	KRAS、PPM1D、GATA2、DDX41、PHF6	
MDS/MPN	TET2, SRSF2, ASXL1, RUNX1, NRAS, CBL, SETBP1, ETNK1, PTPN11, NF1, KRAS, JAK2, JAK3, SF3B1, MPL, CALR	ASXL1, EZH2, SRSF2, SETBP1, BCOR, JAK3	JAK2	U2AF1、ZRSR2、TP53、ETV6	
B细胞淋瘤	TP53、MYD88、BRAF、MAPK1、CXCR4、TCF3、ID3、BCL6、MAP2K1、NOTCH2、KMT2D、KLF2、SPEN	TP53、SF3B1、ATM、BIRC3、 NOTCH1/2、KLF2、BCL6	TP53、BTK、PLCG2、NOTCH1、SF3B1、BIRC3、MYD88、CXCR4、BCL6、BCL2	TNFAIP3、CD79A/B、EZH2、ARID1A、MEF2B、PTEN、GNA13、B2M、CD58、CREBBP、EP300、FOXO1、KMT2C、CCND1、CARD11、PTPRD	
T/NK细胞淋巴瘤	STAT3、STAT5B、ATM、 JAK1	STAT5B		BRAF、KMT2D、KDM6A、ARID1B、DNMT3A、CREBBP、KMT2A、ARID2、TNFAIP3、APC、CHD8、ZAP70、NF1、TNFRSF14、TRAF3、TP53、FOXO1、BCORL1、TET2、IDH2、RHOA、CD28	
胚系基因突伴髓系 肿易感	CEBPA、DDX41、ATG2B、GSKIP、 ANKRD26、ETV6、GATA2、RUNX1、 SAMD9、SAMD9L、SRP72			EPCAM、MLH1、MSH2、MSH6、PMS2、BRCA1、BRCA2、TP53、CBL、KRAS、NF1、PTPN11、BLM	

Comprehensive Genomic Profiling: DNA+RNA

Identify mutations in hematologic malignancies

样本制备 上机测序 数据分析

SNV Single Nucleotide Variant

多种变异检测类型

重点突破血液病检测难点:

结合多种算法提高检测准确度

Dragen fusioncatcher pizzly arriba STAR-Fusion

FLT3-ITD mutations

Dragen
ScanITD
FLT3_ITD_ext
Pindel

Haas B J, Dobin A, Li B, et al. Accuracy assessment of fusion transcript detection via read-mapping and de novo fusion transcript assembly-based methods[J]. Genome biology, 2019, 20(1): 213.

Yuan D , He X , Han X , et al. Comprehensive review and evaluation of computational methods for identifying FLT3-internal tandem duplication in acute myeloid leukaemia[J]. Briefings in Bioinformatics, 2021