

DATA SCIENCE & MACHINE LEARNING COURSE

https://www.facebook.com/diceanalytics/ https://pk.linkedin.com/company/diceanalytics

Unsupervised Learning

Types of Unsupervised Learning

Clustering

- Finding hidden groups in data.
- Algorithms: K-Means, DBSCAN, Hierarchical etc.
- Examples:
 - 1. Market Segmentation
 - 2. Social Network Analysis
 - 3. Organize Computing
 - 4. Astronomical Data Analysis

Clustering Movies Example

KMeans Steps

- 1) Assign
- 2) Optimize

KMeans Steps

- 1) Assign
- 2) Optimize
- 3) Re-Assign

KMeans Steps

- 1) Assign
- 2) Optimize
- 3) Re-Assign

$$J = \sum_{n=1}^{N} \sum_{k=1}^{K} \|x_n - \mu_k\|^2$$

KMeans Steps

- 1) Assign
- 2) Optimize
- 3) Re-Assign
- 4) Re-Optimize

Continued Till Minimum Cost Function

K-Means Playground

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

K-Means in scikit-learn

class sklearn.cluster. KMeans (n_clusters=8, init='k-means++', n_init=10, max_iter=300, tol=0.0001, precompute_distances='auto', verbose=0, random_state=None, copy_x=True, n_jobs=None, algorithm='auto')

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

How much K? (Elbow)

Elbow method:

How much K? (Elbow)

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

Cluster Validation — Internal Indices

Measure the fit between data and the structure using only the data

Metric	Range	Available in sklearn
Silhouette Index	[-1,1]	Yes
Calinski-Harabasz		No
BIC		No
Dunn Index		No

Cluster Validation — Internal Indices

Silhouette Coefficient Between -1 and 1

Clustering Result

$$S_{i} = \frac{b_{i} - a_{i}}{\max(b_{i}, a_{i})}$$

- a = average distance to other samples in same cluster
- **b** = average distance to other samples in closest neighboring cluster

$$S = Average(S_1, S_2, S_3, S_n)$$

Cluster Validation — Internal Indices

Silhouette Coefficient – Finding K

