

IPP05N03L IPB05N03L

OptiMOS^â Buck converter series

Feature

- N-Channel
- Logic Level
- Very low on-resistance R_{DS(on)}
- Excellent Gate Charge x R_{DS(on)} product (FOM)
- Superior thermal resistance
- 175°C operating temperature
- Avalanche rated
- dv/dt rated
- Ideal for fast switching buck converters

Product Summary

V_{DS}	30	V
R _{DS(on)} max. SMD version	4.9	mΩ
I _D	80	Α

P- TO263 -3-2

P- TO220 -3-1

Maximum Ratings, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Continuous drain current1)	I _D		Α
$T_{\rm C} = 25 {\rm ^{\circ}C^{-1}}$		80	
		80	
Pulsed drain current	I _{D puls}	320	
<i>T</i> _C =25°C			
Avalanche energy, single pulse	E _{AS}	60	mJ
$I_{\rm D}$ =55A, $V_{\rm DD}$ =25V, $R_{\rm GS}$ =25 Ω			
Repetitive avalanche energy, limited by T_{imax}^{2}	E _{AR}	16	
Reverse diode dv/dt	d <i>v</i> /d <i>t</i>	6	kV/µs
I_{S} =80A, V_{DS} =24V, d <i>i</i> /d <i>t</i> =200A/µs, T_{jmax} =175°C			
Gate source voltage	V_{GS}	±20	V
Power dissipation	P _{tot}	167	W
<i>T</i> _C =25°C			
Operating and storage temperature	T_{i} , T_{stg}	-55 +175	°C
IEC climatic category; DIN IEC 68-1		55/175/56	

Thermal Characteristics

Parameter	Symbol		Values		Unit
		min.	typ.	max.	
Characteristics	•	•			•
Thermal resistance, junction - case	R_{thJC}	-	0.6	0.9	K/W
SMD version, device on PCB:	R_{thJA}				
@ min. footprint		-	-	62	
@ 6 cm ² cooling area ³⁾		-	-	40	

Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol		Values	Unit	
		min.	typ.	max.	
Static Characteristics			•		
Drain-source breakdown voltage	V _{(BR)DSS}	30	-	-	V
V_{GS} =0V, I_D =1mA					
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}	1.2	1.6	2	
<i>I</i> _D =100μA					
Zero gate voltage drain current	I _{DSS}				μΑ
V_{DS} =30V, V_{GS} =0V, T_{j} =25°C		-	0.01	1	
V_{DS} =30V, V_{GS} =0V, T_j =125°C		-	10	100	
Gate-source leakage current	I_{GSS}	-	1	100	nA
V_{GS} =20V, V_{DS} =0V					
Drain-source on-state resistance	R _{DS(on)}				mΩ
V _{GS} =4.5V, I _D =55A		-	5.6	7.5	
$V_{\rm GS}$ =4.5V, $I_{\rm D}$ =55A, SMD version		-	5.2	7.2	
Drain-source on-state resistance ⁴⁾	R _{DS(on)}				
V_{GS} =10V, I_{D} =55A		-	4	5.2	
$V_{\rm GS}$ =10V, $I_{\rm D}$ =55A, SMD version		-	3.7	4.9	

¹Current limited by bondwire; with an $R_{\rm thJC}$ = 0.9K/W the chip is able to carry $I_{\rm D}$ = 145A at 25°C, for detailed information see app.-note ANPS071E available at *www.infineon.com/optimos*

²Defined by design. Not subject to production test.

 $^{^3}$ Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70 μ m thick) copper area for drain connection. PCB is vertical without blown air.

⁴Diagrams are related to straight lead versions

Electrical Characteristics

Parameter	Symbol Conditions		Values			Unit
			min.	typ.	max.	1
Dynamic Characteristics	-			•		
Transconductance	g_{fs}	$V_{\text{DS}} \ge 2^* I_{\text{D}}^* R_{\text{DS(on)max}}$, $I_{\text{D}} = 80 \text{A}$	55	110	-	S
Input capacitance	C _{iss}	V _{GS} =0V, V _{DS} =25V,	ı	2500	3320	pF
Output capacitance	C _{oss}	<i>f</i> =1MHz	ı	975	1300	
Reverse transfer capacitance	C _{rss}		ı	215	325	
Gate resistance	R_{G}		ı	1.75	-	Ω
Turn-on delay time	t _{d(on)}	$V_{\rm DD}$ =15V, $V_{\rm GS}$ =10V,	-	10	15	ns
Rise time	t_{r}	I _D =20A,	-	18	27	
Turn-off delay time	t _{d(off)}	R_{G} =2.7 Ω	-	44	66	
Fall time	t_{f}		-	20	30	
Gate Charge Characteristics						
Gate to source charge	Q _{qs}	V _{DD} =15V, I _D =40A	-	7.9	10.5	nC
Gate to drain charge	Q _{ad}		ı	18.5	23.1	
Gate charge total	Qg	$V_{\rm DD}$ =15V, $I_{\rm D}$ =40A, $V_{\rm GS}$ =0 to 5V	-	36	45	
Output charge	Q _{oss}	$V_{\rm DS}$ =15V, $I_{\rm D}$ =40A, $V_{\rm GS}$ =0V	-	34.8	43.5	nC
Gate plateau voltage	V _(plateau)	V _{DD} =15V, I _D =40A	-	3.2	-	V
Reverse Diode	•				•	•
Inverse diode continuous	Is	<i>T</i> _C =25°C	-	-	80	Α
forward current						
Inv. diode direct current, pulsed	I _{SM}		-	-	320	
Inverse diode forward voltage	V _{SD}	V _{GS} =0V, I _F =80A	-	0.95	1.26	V
Reverse recovery time	$t_{\rm rr}$	V_{R} =15V, I_{F} = I_{S} ,	-	46.5	58.1	ns
	1	d <i>i</i> ⊏/d <i>t</i> =100A/µs		55.5	69.4	nC

1 Power dissipation

$$P_{\text{tot}} = f(T_{\text{C}})$$

3 Safe operating area

$$I_{\rm D} = f(V_{\rm DS})$$

parameter :
$$D = 0$$
 , $T_C = 25$ °C

2 Drain current

$$I_{\rm D} = f(T_{\rm C})$$

parameter: V_{GS}≥ 10 V

4 Max. transient thermal impedance

$$Z_{\text{thJC}} = f(t_{\text{p}})$$

parameter : $D = t_0/T$

5 Typ. output characteristic

 $I_{D} = f(V_{DS}); T_{j}=25$ °C parameter: $t_{p} = 80 \mu s$

7 Typ. transfer characteristics

 $I_{\rm D} = f(V_{\rm GS}); V_{\rm DS} \ge 2 \times I_{\rm D} \times R_{\rm DS(on)max}$ parameter: $t_{\rm p} = 80 \ \mu \rm s$

6 Typ. drain-source on resistance

 $R_{DS(on)} = f(I_D)$ parameter: V_{GS}

8 Typ. forward transconductance

 $g_{fs} = f(I_D); T_j = 25$ °C parameter: g_{fs}

9 Drain-source on-state resistance

$$R_{DS(on)} = f(T_j)$$

parameter :
$$I_D = 55 \text{ A}$$
, $V_{GS} = 10 \text{ V}$

11 Typ. capacitances

$$C = f(V_{DS})$$

parameter:
$$V_{GS}$$
=0V, f =1 MHz

10 Typ. gate threshold voltage

$$V_{GS(th)} = f(T_j)$$

parameter:
$$V_{GS} = V_{DS}$$

12 Forward character. of reverse diode

$$I_{\mathsf{F}} = f(\mathsf{V}_{\mathsf{SD}})$$

parameter:
$$T_j$$
, $tp = 80 \mu s$

13 Typ. avalanche energy

$$E_{AS} = f(T_i)$$

par.:
$$I_{\rm D}$$
 = 55 A, $V_{\rm DD}$ = 25 V, $R_{\rm GS}$ = 25 Ω

15 Drain-source breakdown voltage

$$V_{(\mathsf{BR})\mathsf{DSS}} = f(T_{\mathsf{j}})$$

14 Typ. gate charge

$$V_{GS} = f (Q_{Gate})$$

parameter:
$$I_D = 40 \text{ A pulsed}$$

Published by Infineon Technologies AG, Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Reprensatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.