CNIDAIRES

Organismes diploblastiques

→ 1 seule ouverture : bouche

→ 1 cavité interne : gastrovasculaire = coelenteron

→ 2 feuillets : ectoderme & endoderme

→ mésoglée : couche gélatineuse anhiste (sans cellule)

→ eau + prot fibreuses (collagène)

→ apport de volume aux méduses

→ élasticité permettant la nage à réaction

Coraux

- → Du primaire (488 à 252 Ma) ⇒ tétracorolliaires + tabulés ⇒ n'existent plus
- → Du secondaire (à partir de 242 Ma) ⇒ hexacorolliaires
- → Du tertiaire (à partir de 34 Ma)

Cnidaires

- → environ 13500 espèces
- → animaux aquatiques
- → 99% d'espèces marines (1% eau douce)

Organismes avec une symétrie radiaire

- → éléments corporels arrangés de manière égale autour d'un axe central
- → tous les plans passant par cet axe central coupent l'animal en parts égales

Organismes avec un dimorphisme	
Forme fixée (polype)	Forme libre (méduse)
Sur un substrat	Mobile dans la colonne d'eau
Pôle oral et bras vers le haut	Pôle oral et bras vers le bas
Asexuée	Sexuée
Benthique	Pélagique
Alternance nature méduce nes précente chez tous les tayons (cortaines espèces cent uniquement natures)	

Alternance polype-méduse pas présente chez tous les taxons (certaines espèces sont uniquement polypes)

Spécificités de la méduse

Ombrelle = face opposée à la bouche fortement élargie ⇒ zone de fixation chez le polype

Manubrium = face orale s'ouvre sur une structure en forme de trompe

vélum = chez certaines espèces face orale réduite par ce diaphragme ⇒ repli d'ectoderme avec de la

vélum = chez certaines espèces face orale réduite par ce diaphragme ⇒ repli d'ectoderme avec de la mésoglée

Canaux radiaires, tentaculaires et circulaires ⇒ cavité gastrovasculaire réduite à un système de canaux

Respiration

- favorisée par les mouvements des tentacules renouvelant l'eau autour de l'animal
- à travers l'épiderme et le gastroderme sans structure spécialisée

- Pas d'appareil circulatoire ⇒ diffusion
- Les nutriments et le dioxygène passent d'une cellule à l'autre grâce à la cavité

Excrétion

- Pas d'appareil excréteur
- Déchets métaboliques émis dans l'eau directement
- Déchets azotés sous forme d'ammoniaque

Locomotion

- Contractions des myofribilles des cellules myoépithéliales
- Polypes peuvent se déplacer grâce à leurs tentacules avant de se refixer

Perception et coodination

- Système nerveux diffus et formé d'un réseau superficiel de neurones
- Récepteurs sensoriels ⇒ ocelles (œil) et statocystes (équilibration)
- concentration d'organes récepteurs = rhopalie

- Filtreurs carnivores
- Apportée par les courants et par le mouvement des tentacules
- Immobilisée grâce aux tentacules riches en cnidocytes puis amenée à la bouche
- Digestion dans la cavité digestive

Capture des proies

Présence de cnidocyte

Reproduction et cycle de vie Dioique (soit mâle, soit femelle) : pas de dimorphisme A maturité, les ovules et les - MÉDUSE nent (polype larves éphyrules

Rôles écologiques et relations avec l'activité humaine

- → brûlures de méduses urticantes (tuent 50 personnes / an)
- → importants car habitat pour 33ù des espèces de poissons connues + nursery pour 25% des espèces marines + protège 20% des côtes de l'érosion

ique (soit mâle, soit femelle) A maturité, les ovules et les

Reproduction et cycle de vie

spermatozoïdes produits par les gonades traversent la mésoglée acués par la bouche

- Par bourgeonnement de polypes hydrantes et reproducteurs constituant une colonie Par bourgeonnement, sur le polype reproducteur, de petites
- méduses (gonophores) expulsées à maturité

Méduses

- → prédateurs disparaissent du fait de la pêche
- → réchauffement des eaux ⇒ boom planctonique ⇒ bénéfique pour les méduses
- → usages futurs de la méduse
 - ⇒ marqueur de tumeur
 - ⇒ soin des brûlures
 - ⇒ lutte contre les moustiques

Menaces pour les systèmes coraliens

- \rightarrow surpopulation humaine \Rightarrow pollution, eutrophication, exploitation du corail
- \rightarrow réchauffement climatique $\Rightarrow \uparrow T^{\circ} \rightarrow$ blanchiment du corail
 - ⇒ espèces invasives
 - ⇒ changement de salinité
- ⇒ acidification des océans ⇒ perturbation de la calcification récifale

l'endoderme en intracellulaire)

Azote, Phosphore Protection Emplacement nécessaire pour avoir de la lumière CO2

- Coraux « mous »
- Forme polype
- Symétrie d'ordre 8 : 8 tentacules + 8 cloisons dans la cavité gastrique
- Tentacules avec des ramifications latérales : les pinnules
- Polypes gastrozoïdes (nourrissage) + polypes siphonozoïdes (respiration)
 - Forme polype
 - Nématocystes spéciaux :
 - ptychocystes (colle)
 - Tentacules de 2 tailles : courtes au niveau de la bouche, longues à la périphérie
 - Protégé par un tube mou
 - · Stade méduse réduit
 - Polymorphisme des polypes :

 - Nourricier : Gastiozoïde
 - Reproducteur : Gonozoïde
 - Défense : Dactylozoïde
- · La plupart des méduses de nos côtes
- 4 bras péribuccaux et de nombreuses

• Prédominance de la phase méduse

Rhopalus ⇒ concentration d'organes

 Alternance polype-méduse typique