Análisis Exploratorio de los Datos RECURSOS SANITARIOS: Facilities

Alicia Perdices Guerra

19 de mayo, 2021

Contents

- 1.ANÁLISIS EXPLORATORIO POR PAISES.
 - 1.1 EN RELACIÓN CON LOS RECURSOS SANITARIOS
 - $\ast\,$ 1.1.1 Análisis Descriptivo
 - * 1.1.2 Visualización y Distribución de la variable "Value"
 - · Facilities
 - $\ast\,$ 1.1.3 Normalidad de la variable "Value"
 - · Facilities

1.ANÁLISIS EXPLORATORIO POR PAISES Se procede en primer lugar a cargar todos los archivos para poder realizar el análisis.

```
recursos_tec<-read.csv("C:/temp/RecursosTecnicos_hospitalarios_clean.csv",sep= ",")
tecnologia<-read.csv("C:/temp/TecnologiaMedica_clean.csv",sep= ",")
camas_t<-read.csv("C:/temp/TiposCamasHospitalarias_clean.csv",sep= ",")</pre>
```

1.1.- EN RELACIÓN CON LOS RECURSOS SANITARIOS

• 1.1.1 Análisis Descriptivo

Se procede a realizar el análisis descriptivo:

summary(recursos_tec)

```
GEO
                                       FACILITY
                                                           UNIT
##
        TIME
##
          :2010
                  Length: 1860
                                     Length: 1860
                                                       Length: 1860
  Min.
   1st Qu.:2012
                  Class :character
                                     Class :character
                                                        Class : character
  Median:2014
                  Mode :character
                                     Mode :character
                                                       Mode :character
  Mean
          :2014
  3rd Qu.:2017
##
##
          :2019
##
       Value
                   Value_imp
## Min. :
                   Mode :logical
  1st Qu.: 313
                   FALSE:830
```

```
## Median : 1133 TRUE :1030
## Mean : 2700
## 3rd Qu.: 2341
```

:77297

summary(tecnologia)

##

Max.

```
TIME
                        GEO
                                            UNIT
                                                               FACILITY
##
##
    Min.
           :2010
                    Length: 15750
                                        Length: 15750
                                                            Length: 15750
    1st Qu.:2012
                                                            Class :character
##
                    Class : character
                                        Class : character
    Median:2014
                                                            Mode :character
                    Mode :character
                                        Mode :character
##
    Mean
           :2014
    3rd Qu.:2017
##
##
   Max.
           :2019
##
      ICHA_HP
                            Value
                                            Value_imp
##
    Length: 15750
                        Min.
                                        0
                                            Mode :logical
##
    Class :character
                        1st Qu.:
                                        1
                                            FALSE: 8745
                                            TRUE: 7005
##
    Mode :character
                        Median:
                                       24
##
                        Mean
                                   205383
                               :
##
                        3rd Qu.:
                                    85973
##
                        Max.
                                :46773054
```

summary(camas_t)

```
##
         TIME
                        GEO
                                            UNIT
                                                              FACILITY
##
   Min.
           :2010
                    Length:5850
                                        Length:5850
                                                            Length:5850
##
    1st Qu.:2012
                    Class : character
                                        Class : character
                                                            Class : character
    Median:2014
                    Mode :character
                                        Mode :character
##
                                                            Mode :character
           :2014
##
   Mean
    3rd Qu.:2017
##
           :2019
    Max.
##
##
        Value
                         Value_imp
##
   Min.
          :
                   0.0
                         Mode :logical
                         FALSE: 4246
##
   1st Qu.:
                127.8
                460.3
                         TRUE :1604
##
   Median:
##
   Mean
              31582.1
##
    3rd Qu.:
               5023.0
           :2711756.0
##
   Max.
```

Se filta el dataframe para que la variable GEO aparezcan solo los paises objeto de estudio. (Para cada archivo relacionado con los Recursos Sanitarios (Facilities) y unificamos la información en una variable, recursos). Además se selecciona la información relevante de las variables FACILITY, ICHA_HP(Lugar de uso del recurso tecnológico) y UNIT (Se selecciona "Number" y no ratio ya que no todos los archivos tienen la información de número de recursos tecnológicos por 100000 habitantes)

```
+(GEO!="European Union - 27 countries (2007-2013)")&
                            +(GEO!="European Union - 15 countries (1995-2004)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)")&
                            +(GEO!="Euro area - 19 countries (from 2015)")&
                            +(GEO!="Euro area - 18 countries (2014)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)"))
#Se selecciona todo lo relacionado con el tipo
#de recurso tecnológico de la variable FACILITY.
recursos_tec_paises_ot<-
  filter(recursos_tec_paises,FACILITY=="Operation theatres in hospital")
recursos_tec_paises_s<-
  filter(recursos_tec_paises, FACILITY == "Surgical day care places")
recursos_tec_paises_p<-
  filter(recursos_tec_paises,FACILITY=="Psychiatric day care place")
recursos_tec_paises_o<-
  filter(recursos_tec_paises,FACILITY=="Oncological day care place")
recursos_tec_paises_g<-
  filter(recursos_tec_paises,FACILITY=="Geriatric day care places")
#Tecnología Médica
#===========
tecnologia_paises<-filter(tecnologia,(GEO!="European Union - 27 countries (from 2020)")&
                            +(GEO!="European Union - 28 countries (2013-2020)")&
                            +(GEO!="European Union - 27 countries (2007-2013)")&
                            +(GEO!="European Union - 15 countries (1995-2004)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)")&
                            +(GEO!="Euro area - 19 countries (from 2015)")&
                            +(GEO!="Euro area - 18 countries (2014)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)"))
#Se selecciona todo lo relacionado con el tipo
#de tecnología médica de la variable FACILITY.
tecnologia paises cts<-
  filter(tecnologia_paises,FACILITY=="Computed Tomography Scanners")
tecnologia_paises_gc<-
  filter(tecnologia_paises,FACILITY=="Gamma cameras")
tecnologia_paises_1<-
  filter(tecnologia_paises,FACILITY=="Lithotriptors")
```

```
tecnologia_paises_mr<-
  filter(tecnologia_paises,FACILITY=="Magnetic Resonance Imaging Units")
tecnologia_paises_a <-
  filter(tecnologia_paises,FACILITY=="Angiography units")
tecnologia_paises_cts<-filter(tecnologia_paises_cts,UNIT=="Number")
tecnologia_paises_gc<-filter(tecnologia_paises_gc,UNIT=="Number")
tecnologia_paises_l<-filter(tecnologia_paises_l,UNIT=="Number")</pre>
tecnologia_paises_mr<-filter(tecnologia_paises_mr,UNIT=="Number")</pre>
tecnologia_paises_a<-filter(tecnologia_paises_a,UNIT=="Number")</pre>
#Camas Disponibles
#-----
camas_t_paises<-filter(camas_t,(GEO!="European Union - 27 countries (from 2020)")&
                            +(GEO!="European Union - 28 countries (2013-2020)")&
                            +(GEO!="European Union - 27 countries (2007-2013)")&
                            +(GEO!="European Union - 15 countries (1995-2004)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)")&
                            +(GEO!="Euro area - 19 countries (from 2015)")&
                            +(GEO!="Euro area - 18 countries (2014)")&
                            +(GEO!="Euro area - 12 countries (2001-2006)"))
#Se selecciona todo lo relacionado con el tipo
#de camas en hospitales de la variable FACILITY.
camas_t_paises_ca<-
  filter(camas_t_paises, FACILITY == "Available beds in hospitals (HP.1)")
# Se selecciona la unidad: "Number"
camas_t_paises_ca<-filter(camas_t_paises_ca,UNIT=="Number")</pre>
nrow(camas_t_paises_ca)
```

[1] 370

Tenemos 3 Dataframes (No se unifican debido a la estructura de cada uno (Diferentes filas):

```
"Oncological_day_care_place"=
                        recursos_tec_paises_o$Value,
                      "Geriatric day care places"=
                        recursos_tec_paises_g$Value)
head(recursos_tec_df)
##
     TIME
                                                        Pais
## 1 2010
                                                     Belgium
## 2 2010
                                                    Bulgaria
## 3 2010
                                                      Czechia
## 4 2010
                                                      Denmark
## 5 2010 Germany (until 1990 former territory of the FRG)
                                                      Estonia
     Operation_theatres_in_hospital Surgical_day_care_places
## 1
                                1220
                                                           2039
## 2
                                1220
                                                           2039
## 3
                                 996
                                                            996
## 4
                                1220
                                                           2039
## 5
                                1220
                                                             47
## 6
                                                            349
                                 132
##
     Psychiatric_day_care_place Oncological_day_care_place
## 1
                            2279
                                                         1362
## 2
                             917
                                                         1362
## 3
                            2279
                                                          996
## 4
                            3068
                                                         1362
## 5
                           15496
                                                         910
## 6
                            2279
                                                          910
##
     Geriatric_day_care_places
## 1
                            568
## 2
                           1839
## 3
                            996
## 4
                           1839
## 5
                           1839
## 6
                            568
#Tecnología Médica
year<-(tecnologia_paises_cts$TIME)#Columna Year</pre>
GEO<-(tecnologia_paises_cts$GEO) #Columna Paises
tecnologia_medica_df=data.frame("TIME"=year,"Pais"=GEO,
                      "Computed_Tomography_Scanners"=
                        tecnologia_paises_cts$Value,
                      "Gamma cameras"=
                        tecnologia_paises_gc$Value,
                      "Lithotriptors"=
                        tecnologia_paises_1$Value,
                      "Magnetic_Resonance_Imaging_Units"=
                        tecnologia_paises_mr$Value,
                      "Angiography_units"=
                       tecnologia_paises_a$Value)
head(tecnologia_medica_df)
```

Pais Computed_Tomography_Scanners Gamma_cameras Lithotriptors

##

TIME

```
## 1 2010 Belgium
                                            152
                                                          152
                                                                         116
## 2 2010 Belgium
                                            144
                                                          322
                                                                          49
## 3 2010 Belgium
                                              8
                                                            8
                                                                          8
## 4 2010 Bulgaria
                                            224
                                                           20
                                                                         66
## 5 2010 Bulgaria
                                            149
                                                           19
                                                                          47
## 6 2010 Bulgaria
                                             75
                                                                          24
                                                            1
    Magnetic_Resonance_Imaging_Units Angiography_units
## 1
                                  116
## 2
                                  116
                                                    133
## 3
                                    0
                                                      8
## 4
                                   31
                                                     73
## 5
                                   15
                                                     59
## 6
                                   16
                                                     14
#Camas Disponibles
#-----
camas_disponibles_df=camas_t_paises_ca
head(camas disponibles df)
    TIME
                                                       GEO
                                                             UNIT
##
## 1 2010
                                                   Belgium Number
## 2 2010
                                                  Bulgaria Number
                                                   Czechia Number
## 3 2010
## 4 2010
                                                   Denmark Number
## 5 2010 Germany (until 1990 former territory of the FRG) Number
## 6 2010
                                                   Estonia Number
                               FACILITY Value Value_imp
## 1 Available beds in hospitals (HP.1)
                                         66645
                                                   FALSE
## 2 Available beds in hospitals (HP.1) 48934
                                                   FALSE
## 3 Available beds in hospitals (HP.1) 76413
                                                   FALSE
## 4 Available beds in hospitals (HP.1) 19405
                                                   FALSE
## 5 Available beds in hospitals (HP.1) 674473
                                                   FALSE
## 6 Available beds in hospitals (HP.1)
                                                   FALSE
#Generamos los ficheros filtrados para utilizarlos en el siguiente análisis.
write.csv(recursos_tec_df, file="Recursos_Tecnologicos_Analisis.csv", row.names = FALSE)
write.csv(tecnologia_medica_df,
          file="Tecnologia_Medica_Analisis.csv", row.names = FALSE)
write.csv(camas_disponibles_df,
```

Se reescalan los datos:

file="Camas_Disponibles_Analisis.csv", row.names = FALSE)

```
recursos_tec_df["Geriatric_day_care_places_norm"]<-</pre>
  rescale(recursos_tec_paises_g$Value, to=c(0,1))
#Tecnología Médica
#========
tecnologia_medica_df["Computed_Tomography_Scanners_norm"] <-
  rescale(tecnologia_paises_cts$Value, to=c(0,1))
tecnologia medica df["Gamma cameras norm"] <-
  rescale(tecnologia_paises_gc$Value, to=c(0,1))
tecnologia_medica_df["Lithotriptors_norm"] <-</pre>
  rescale(tecnologia_paises_1$Value, to=c(0,1))
tecnologia_medica_df["Magnetic_Resonance_Imaging_Units_norm"] <-
  rescale(tecnologia paises mr$Value, to=c(0,1))
tecnologia_medica_df["Angiography_units_norm"] <-</pre>
  rescale(tecnologia_paises_a$Value, to=c(0,1))
#Camas Disponibles
camas_disponibles_df["Value_norm"]<-</pre>
    rescale(camas_disponibles_df$Value, to=c(0,1))
```

• 1.1.2 Visualización y Distribución de la variable "Value"

Se visualiza la variable "Value" en función de TIME, y los distintos tipos de Facilities Sanitarias.

```
#Recursos Sanitarios (Facilities)_ Recursos Sanitarios
#GRÁFICAS DE BARRAS
#=========
#Gráfica de barras del número de Quirófanos."
plot1=ggplot(data=recursos_tec_df)+
  geom_col(aes(x=TIME,y=Operation_theatres_in_hospital))+
  theme(axis.text.x = element_text(angle = 45))+
  scale y continuous(limit=c(0,100000))+
  ggtitle("Quirófanos")+
  theme (plot.title = element_text(size=rel(0.5), hjust = 0.5))
#Gráfica de barras del número de salas de Cirugía hospitalaria diaria
#por Años"
plot2=ggplot(data=recursos_tec_df)+
  geom_col(aes(x=TIME,y=Surgical_day_care_places))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Cirugía \n Hospitalaria diaria")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Consultas de Psiquiatría por Años"
plot3=ggplot(data=recursos_tec_df)+
  geom_col(aes(x=TIME,y=Psychiatric_day_care_place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,200000))+
  ggtitle("S.Consultas \n Psiquiatría")+
```

```
theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Salas de consultas Oncológicas
#por Años.
plot4=ggplot(data=recursos_tec_df)+
  geom_col(aes(x=TIME,y=Oncological_day_care_place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,300000))+
  ggtitle("S. Consultas \n Oncología")+
  theme (plot.title = element text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Salas de Cuidados Geriátricos
#por Años
plot5=ggplot(data=recursos_tec_df)+
  geom_col(aes(x=TIME,y=Geriatric_day_care_places))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("S.Cuidados \n Geriátricos")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Escáners (Tomógrafos)
plot6=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Computed_Tomography_Scanners))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,100000))+
  ggtitle("Escáners \n Tomógrafos")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Cámaras Gamma
plot7=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Gamma_cameras))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Cámaras\n Gamma")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número Litotriptores
plot8=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Lithotriptors))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Litotriptores")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Unidades de Resonancia Magnética
plot9=ggplot(data=tecnologia_medica_df)+
  geom_col(aes(x=TIME,y=Magnetic_Resonance_Imaging_Units))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,100000))+
  ggtitle("Resonancia \n Magnética")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de barras del número de Unidades de Angiógrafía
```

```
plot10=ggplot(data=tecnologia_medica_df)+
    geom_col(aes(x=TIME,y=Angiography_units))+
    theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
    scale_y_continuous(limit=c(0,100000))+
    ggtitle("Unidades \n Angiógrafía")+
    theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))

#Gráfica de barras del número de Camas Hospitalarias Disponibles.

plot11=ggplot(data=camas_disponibles_df)+
    geom_col(aes(x=TIME,y=Value))+
    theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
    scale_y_continuous(limit=c(0,4000000))+
    ggtitle("Camas \n Disponibles")+
    theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
```

```
#GRÁFICAS DE PUNTOS
#=======
##Gráfica de puntos del número de Quirófanos por Países.""
plot12=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Operation_theatres_in_hospital))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Quirofanos")+
  theme (plot.title = element_text(size=rel(0.5),hjust=0.5))
#Gráfica de puntos del número del número de salas de Ciruqía hospitalaria diaria
#por Países" "
plot13=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Surgical_day_care_places))+
  theme(axis.text.x = element text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,20000))+
  ggtitle("S.Cirugía \n Hospitalaria Diaria")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número Consultas de Psiquiatría por Países"
plot14=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Psychiatric_day_care_place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,30000))+
  ggtitle("S.Consulta \n Psiquiatría")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Salas de consultas Oncológicas
#por Países.
plot15=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Oncological_day_care_place))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,20000))+
  ggtitle("S.Consultas \n Oncológicas")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Salas de Cuidados Geriátricos
#por Paises.
```

```
plot16=ggplot(data=recursos_tec_df)+
  geom_point(aes(x=Pais,y=Geriatric_day_care_places))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("S.Cuidados \n Geriátricos")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Escáners (Tomógrafos) por Países.
plot17=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Computed_Tomography_Scanners))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Escáners")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Cámaras Gamma por Países.
plot18=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Gamma_cameras))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Cámaras Gamma")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número Litotriptores y Países
plot19=ggplot(data=tecnologia medica df)+
  geom_point(aes(x=Pais,y=Lithotriptors))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Litotriptores")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Unidades de Resonancia Magnética
plot20=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Magnetic_Resonance_Imaging_Units))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,20000))+
  ggtitle("Unidades\n R.Magnética")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Unidades de Angiógrafía y Países
plot21=ggplot(data=tecnologia_medica_df)+
  geom_point(aes(x=Pais,y=Angiography_units))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale y continuous(limit=c(0,20000))+
  ggtitle("Unidades\n Angiografía")+
  theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
#Gráfica de puntos del número de Camas Hospitalarias Disponibles y Países
plot22=ggplot(data=camas_disponibles_df)+
  geom_point(aes(x=GEO,y=Value))+
  theme(axis.text.x = element_text(size= 5,angle = 30,vjust=1,hjust = 1))+
  scale_y_continuous(limit=c(0,1000000))+
  ggtitle("Camas\n Disponibles")+
```

```
theme (plot.title = element_text(size=rel(0.5),hjust = 0.5))
grid.arrange(plot1,plot12,widths=c(1,3), ncol=2)
```


grid.arrange(plot2,plot13,widths=c(1,3), ncol=2)

grid.arrange(plot3,plot14,widths=c(1,3), ncol=2)

grid.arrange(plot4,plot15,widths=c(1,3), ncol=2)

grid.arrange(plot5,plot16,widths=c(1,3), ncol=2)

grid.arrange(plot6,plot17,widths=c(1,3), ncol=2)

grid.arrange(plot7,plot18,widths=c(1,3), ncol=2)

grid.arrange(plot8,plot19,widths=c(1,3), ncol=2)

grid.arrange(plot9,plot20,widths=c(1,3), ncol=2)

grid.arrange(plot10,plot21,widths=c(1,3), ncol=2)

grid.arrange(plot11,plot22,widths=c(1,3), ncol=2)

Se obtienen los 5 países con mayor número de Recursos Sanitarios (Facilities), por años y en cómputo global.

$\bullet \ \ Operation_theatres_in_hospital$

```
#Para "Operation_theatres_in_hospital"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Operation_theatres_in_hospital"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Operation_theatres_in_hospital)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Operation_theatres_in_hospital)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Operation_theatres_in_hospital)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Operation_theatres_in_hospital)),]
```

Table 1: Países con mayor Número de Quirofanos en 2010

	País	Quirofanos
10	France	11337
12	Italy	6088
31	Turkey	5206
9	Spain	4120
28	United Kingdom	3739

Table 2: Países con mayor Número de Quirofanos en 2011

	País	Quirofanos
10	France	11337
12	Italy	6092
31	Turkey	5206
9	Spain	4202
28	United Kingdom	3636

Table 3: Países con mayor Número de Quirofanos en 2012

País	Quirofanos
10 France	11337
12 Italy	6118
31 Turkey	5697
9 Spain	4267
28 United Kingdom	3684

Table 4: Países con mayor Número de Quirofanos en 2013

	País	Quirofanos
10	France	11505
12	Italy	6078
31	Turkey	5526
9	Spain	4307
28	United Kingdom	3776

Table 5: Países con mayor Número de Quirofanos en 2014

	País	Quirofanos
10	France	11337
12	Italy	6095
31	Turkey	5682
9	Spain	4352
28	United Kingdom	3800

Table 6: Países con mayor Número de Quirofanos en 2015

	País	Quirofanos
10	France	10991
12	Italy	6173
31	Turkey	5809
9	Spain	4421
28	United Kingdom	3824

Table 7: Países con mayor Número de Quirofanos en 2016

	País	Quirofanos
10	France	10788
12	Italy	6139
31	Turkey	6126
9	Spain	4448

	País	Quirofanos
28	United Kingdom	3826

Table 8: Países con mayor Número de Quirofanos en 2017

	País	Quirofanos
10	France	10774
31	Turkey	6403
12	Italy	6191
9	Spain	4533
28	United Kingdom	3824

Table 9: Países con mayor Número de Quirofanos en 2018

	País	Quirofanos
10	France	10777
31	Turkey	6658
12	Italy	6164
9	Spain	4573
28	United Kingdom	3824

Table 10: Países con mayor Número de Quirofanos en 2019

	País	Quirofanos
10	France	10777
31	Turkey	6403
12	Italy	6164
9	Spain	4533
28	United Kingdom	3824

A continuación, se aprupa toda la información (Quirófanos) por paises en una tabla:

```
a1<-group_by(recursos_tec_df,Pais) #Se agrupa por paises

#Se selectiona las variables Pais y Operation_theatres_in_hospital

a2<-select(a1,Pais:Operation_theatres_in_hospital)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.
```

Table 11: Países con la mayor media Quirófanos en 2010-2019

País	Quirofanos
9 France	11096.0
14 Italy	6130.2
30 Turkey	5871.6
28 Spain	4375.6
31 United Kingdom	3775.7

• Surgical_day_care_places

```
#Para "Surgical day care places"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Surgical_day_care_places"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Surgical_day_care_places)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Surgical_day_care_places)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Surgical_day_care_places)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Surgical_day_care_places)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Surgical_day_care_places)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Surgical_day_care_places)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Surgical_day_care_places)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Surgical_day_care_places)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Surgical_day_care_places)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Surgical_day_care_places)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
```

Table 12: Países con mayor Número de Salas Quirúrgicas en 2010

	País	S Cirugía
10	France	13346
12	Italy	7841
9	Spain	2562
1	Belgium	2039
2	Bulgaria	2039

Table 13: Países con mayor Número de Salas Quirúrgicas en 2011

	País	S Cirugía
10	France	14110
12	Italy	8013
9	Spain	2838
1	Belgium	2177
2	Bulgaria	2177

Table 14: Países con mayor Número de Salas Quirúrgicas en 2012

	País	S Cirugía
10	France	15272
12	Italy	8139
9	Spain	3008
1	Belgium	2247
2	Bulgaria	2247

Table 15: Países con mayor Número de Salas Quirúrgicas en 2013

	País	S Cirugía
10	France	15856
12	Italy	8102

	País	S Cirugía
9	Spain	2892
1	Belgium	2788
2	Bulgaria	2788

Table 16: Países con mayor Número de Salas Quirúrgicas en 2014

	País	S Cirugía
10	France	16334
12	Italy	7877
1	Belgium	3118
2	Bulgaria	2855
4	Denmark	2855

Table 17: Países con mayor Número de Salas Quirúrgicas en 2015

	País	S Cirugía
10	France	17147
12	Italy	8197
1	Belgium	3243
2	Bulgaria	3225
4	Denmark	3225

Table 18: Países con mayor Número de Salas Quirúrgicas en 2016

	País	S Cirugía
10	France	17953
12	Italy	8234
1	Belgium	3291
9	Spain	3154
25	Slovakia	2775

Table 19: Países con mayor Número de Salas Quirúrgicas en 2017

	País	S Cirugía
10	France	18353
12	Italy	8172
1	Belgium	3479
9	Spain	3207
25	Slovakia	2815

Table 20: Países con mayor Número de Salas Quirúrgicas en 2018

	País	S Cirugía
10	France	18837
12	Italy	8353
1	Belgium	3587
4	Denmark	3309
9	Spain	3309

Table 21: Países con mayor Número de Salas Quirúrgicas en 2019

	País	S Cirugía
10	France	18353
12	Italy	8234
1	Belgium	3479
9	Spain	3207
25	Slovakia	2815

A continuación, se aprupa toda la información (Salas Quirúrgicas) por paises en una tabla:

Table 22: Países con la mayor media en Salas Quirúrgicas en 2010-2019

9 France 16556.1 14 Italy 8116.2 28 Spain 3025.7 2 Belgium 2944.8			
14 Italy 8116.2 28 Spain 3025.7 2 Belgium 2944.8		País	S Cirugía
28 Spain 3025.7 2 Belgium 2944.8	9	France	16556.1
2 Belgium 2944.8	14	Italy	8116.2
0	28	Spain	3025.7
26 Slovakia 2462.8	2	Belgium	2944.8
	26	Slovakia	2462.8

• Psychiatric_day_care_place

```
#Para "Psychiatric day care place"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y 2017<-filter(recursos tec df, TIME==2017)
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Psychiatric_day_care_place"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Psychiatric_day_care_place)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Psychiatric_day_care_place)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Psychiatric_day_care_place)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Psychiatric_day_care_place)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Psychiatric_day_care_place)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Psychiatric_day_care_place)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Psychiatric_day_care_place)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Psychiatric_day_care_place)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Psychiatric_day_care_place)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Psychiatric_day_care_place)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:S.Psiquiatría) de los 5 Paises con un mayor número de ellas.
kable(recursos_tec_5paises_2010[0:5,c(2,5)], col.names = c("País", "S.Psiquiatría"),
     caption = "Países con mayor Número de Salas de Psiquiatría en 2010")
```

Table 23: Países con mayor Número de Salas de Psiquiatría en 2010

	País	S.Psiquiatría
10	France	28285
5	Germany (until 1990 former territory of the FRG)	15496
4	Denmark	3068
9	Spain	3068
15	Lithuania	3068

Table 24: Países con mayor Número de Salas de Psiquiatría en 2011

	País	S.Psiquiatría
10	France	28424
5	Germany (until 1990 former territory of the FRG)	15457
4	Denmark	3366
9	Spain	3366
15	Lithuania	3366

Table 25: Países con mayor Número de Salas de Psiquiatría en 2012

	País	S.Psiquiatría
10	France	28871
5	Germany (until 1990 former territory of the FRG)	16773
4	Denmark	3848
9	Spain	3848
15	Lithuania	3848

Table 26: Países con mayor Número de Salas de Psiquiatría en 2013

	País	S.Psiquiatría
10	France	29065
5	Germany (until 1990 former territory of the FRG)	17686
4	Denmark	3942
9	Spain	3942
15	Lithuania	3942

Table 27: Países con mayor Número de Salas de Psiquiatría en 2014

	País	S.Psiquiatría
10	France	29245
5	Germany (until 1990 former territory of the FRG)	18753
9	Spain	4018
1	Belgium	1174
3	Czechia	1174

Table 28: Países con mayor Número de Salas de Psiquiatría en 2015

	País	S.Psiquiatría
10	France	29357
5	Germany (until 1990 former territory of the FRG)	19464
9	Spain	4171
1	Belgium	2473
3	Czechia	2473

Table 29: Países con mayor Número de Salas de Psiquiatría en 2016

	País	S.Psiquiatría
10	France	29657
5	Germany (until 1990 former territory of the FRG)	19909
9	Spain	4366
1	Belgium	2550
4	Denmark	2550

Table 30: Países con mayor Número de Salas de Psiquiatría en 2017

	País	S.Psiquiatría
10	France	29512
5	Germany (until 1990 former territory of the FRG)	21044
9	Spain	4381
1	Belgium	2656

	País	S.Psiquiatría
4	Denmark	2656

Table 31: Países con mayor Número de Salas de Psiquiatría en 2018

	País	S.Psiquiatría
10	France	29610
5	Germany (until 1990 former territory of the FRG)	19909
9	Spain	4592
1	Belgium	2653
11	Croatia	1308

Table 32: Países con mayor Número de Salas de Psiquiatría en 2019

	País	S.Psiquiatría
10	France	29610
5	Germany (until 1990 former territory of the FRG)	19909
9	Spain	4381
1	Belgium	2653
11	Croatia	1308

A continuación, se aprupa toda la información (Salas de Psiquiatría) por paises en una tabla:

Table 33: Países con la mayor media en Salas de Psiquiatría en 2010-2019

	País	S Psiquiatría
9	France	29163.6
10	Germany (until 1990 former territory of the FRG)	18440.0
28	Spain	4013.3
1	Austria	2534.3
7	Denmark	2534.3

• Oncological_day_care_place

```
#Para "Oncological day care place"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y 2018<-filter(recursos tec df, TIME==2018)
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Oncological_day_care_place"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$0ncological_day_care_place)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$0ncological_day_care_place)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$0ncological_day_care_place)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$0ncological_day_care_place)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$0ncological_day_care_place)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$0ncological_day_care_place)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$0ncological_day_care_place)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$0ncological_day_care_place)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Oncological_day_care_place)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$0ncological_day_care_place)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:S.Oncología) de los 5 Paises con un mayor número de ellas.
kable(recursos_tec_5paises_2010[0:5,c(2,6)], col.names = c("Pais", "S.Oncologia"),
      caption = "Países con mayor Número de Salas de Oncología en 2010")
```

Table 34: Países con mayor Número de Salas de Oncología en 2010

	País	S.Oncología
9	Spain	6410
10	France	6052
12	Italy	3097
1	Belgium	1362
2	Bulgaria	1362

Table 35: Países con mayor Número de Salas de Oncología en 2011

S.Oncología
6957
6052
3056
m 1460
ria 1460

Table 36: Países con mayor Número de Salas de Oncología en 2012

	País	S.Oncología
9	Spain	7352
10	France	6052
12	Italy	2818
1	Belgium	1501
2	Bulgaria	1501

Table 37: Países con mayor Número de Salas de Oncología en 2013

	País	S.Oncología
9	Spain	7644
10	France	5710
12	Italy	2768
1	Belgium	1319
2	Bulgaria	1319

Table 38: Países con mayor Número de Salas de Oncología en 2014

	País	S.Oncología
9	Spain	7951
10	France	6052
12	Italy	2715
1	Belgium	1448
3	Czechia	976

Table 39: Países con mayor Número de Salas de Oncología en 2015

	País	S.Oncología
9	Spain	8323
10	France	6273
12	Italy	2666
1	Belgium	1527
2	Bulgaria	962

Table 40: Países con mayor Número de Salas de Oncología en 2016

	País	S.Oncología
9	Spain	8520
10	France	6560
12	Italy	2552
1	Belgium	1493
2	Bulgaria	1493

Table 41: Países con mayor Número de Salas de Oncología en 2017

	País	S.Oncología
9	Spain	8701
10	France	6672
12	Italy	2286
1	Belgium	1514

	País	S.Oncología
2	Bulgaria	1514

Table 42: Países con mayor Número de Salas de Oncología en 2018

	País	S.Oncología
9	Spain	9257
10	France	6977
12	Italy	2211
1	Belgium	1611
2	Bulgaria	1611

Table 43: Países con mayor Número de Salas de Oncología en 2019

	País	S.Oncología
9	Spain	8701
10	France	6672
12	Italy	2286
2	Bulgaria	1611
1	Belgium	1514

A continuación, se aprupa toda la información (Salas de Oncología) por paises en una tabla:

Table 44: Países con la mayor media en Salas de Oncología en 2010-2019

	País	S Oncología
28	Spain	7981.6
9	France	6307.2
14	Italy	2645.5
2	Belgium	1474.9
3	Bulgaria	1376.1

• Geriatric_day_care_places

```
#Para "Geriatric day care places"
#Se filtra por Año
y_2010<-filter(recursos_tec_df, TIME==2010)</pre>
y_2011<-filter(recursos_tec_df, TIME==2011)</pre>
y_2012<-filter(recursos_tec_df, TIME==2012)</pre>
y_2013<-filter(recursos_tec_df, TIME==2013)</pre>
y_2014<-filter(recursos_tec_df, TIME==2014)</pre>
y_2015<-filter(recursos_tec_df, TIME==2015)</pre>
y_2016<-filter(recursos_tec_df, TIME==2016)</pre>
y_2017<-filter(recursos_tec_df, TIME==2017)</pre>
y_2018<-filter(recursos_tec_df, TIME==2018)</pre>
y_2019<-filter(recursos_tec_df, TIME==2019)</pre>
#Se ordena por "Geriatric_day_care_places"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Geriatric_day_care_places)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Geriatric_day_care_places)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Geriatric_day_care_places)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Geriatric_day_care_places)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Geriatric_day_care_places)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Geriatric_day_care_places)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Geriatric_day_care_places)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Geriatric_day_care_places)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Geriatric_day_care_places)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Geriatric_day_care_places)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:S.Geriátricas) de los 5 Paises con un mayor número de ellas.
kable(recursos_tec_5paises_2010[0:5,c(2,7)], col.names = c("País", "S.Geriatría"),
      caption = "Países con mayor Número de Salas de Geriatría en 2010")
```

Table 45: Países con mayor Número de Salas de Geriatría en 2010

	País	S.Geriatría
9	Spain	2280
2	Bulgaria	1839
4	Denmark	1839
5	Germany (until 1990 former territory of the FRG)	1839
7	Ireland	1839

Table 46: Países con mayor Número de Salas de Geriatría en 2011

	País	S.Geriatría
9	Spain	2297
2	Bulgaria	1949
4	Denmark	1949
5	Germany (until 1990 former territory of the FRG)	1949
8	Greece	1949

Table 47: Países con mayor Número de Salas de Geriatría en 2012

	País	S.Geriatría
9	Spain	2329
2	Bulgaria	2013
4	Denmark	2013
5	Germany (until 1990 former territory of the FRG)	2013
8	Greece	2013

Table 48: Países con mayor Número de Salas de Geriatría en 2013

	País	S.Geriatría
9	Spain	2363
2	Bulgaria	2097
4	Denmark	2097
5	Germany (until 1990 former territory of the FRG)	2097
8	Greece	2097

Table 49: Países con mayor Número de Salas de Geriatría en 2014

	País	S.Geriatría
9	Spain	2335
2	Bulgaria	2195
4	Denmark	2195
5	Germany (until 1990 former territory of the FRG)	2195
14	Latvia	2195

Table 50: Países con mayor Número de Salas de Geriatría en 2015

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2368
2	Bulgaria	2330
4	Denmark	2330
9	Spain	2330
14	Latvia	2330

Table 51: Países con mayor Número de Salas de Geriatría en 2016

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2397
4	Denmark	2341
9	Spain	2341
14	Latvia	2341
15	Lithuania	2341

Table 52: Países con mayor Número de Salas de Geriatría en 2017

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2495
4	Denmark	2331
9	Spain	2331
14	Latvia	2331

	País	S.Geriatría
15	Lithuania	2331

Table 53: Países con mayor Número de Salas de Geriatría en 2018

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2397
9	Spain	2325
8	Greece	1334
2	Bulgaria	1133
3	Czechia	866

Table 54: Países con mayor Número de Salas de Geriatría en 2019

	País	S.Geriatría
5	Germany (until 1990 former territory of the FRG)	2397
9	Spain	2331
10	France	633
2	Bulgaria	578
3	Czechia	578

A continuación, se aprupa toda la información (Salas de Geriatría) por paises en una tabla:

Table 55: Países con la mayor media en Salas de Geriatría en 2010-2019

	País	S Geriatría
28	Spain	2326.2
10	Germany (until 1990 former territory of the FRG)	2214.7
1	Austria	1832.5
7	Denmark	1832.5
12	Hungary	1832.5

• Computed_Tomography_Scanners

```
#Para "Computed Tomography Scanners"
#Se filtra por Año
y_2010<-filter(tecnologia_medica_df, TIME==2010)</pre>
y_2011<-filter(tecnologia_medica_df, TIME==2011)</pre>
y_2012<-filter(tecnologia_medica_df, TIME==2012)</pre>
y_2013<-filter(tecnologia_medica_df, TIME==2013)</pre>
y_2014<-filter(tecnologia_medica_df, TIME==2014)</pre>
y_2015<-filter(tecnologia_medica_df, TIME==2015)</pre>
y_2016<-filter(tecnologia_medica_df, TIME==2016)</pre>
y_2017<-filter(tecnologia_medica_df, TIME==2017)</pre>
y 2018<-filter(tecnologia medica df, TIME==2018)
y_2019<-filter(tecnologia_medica_df, TIME==2019)</pre>
#Se ordena por "Computed_Tomography_Scanners"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Computed_Tomography_Scanners)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Computed_Tomography_Scanners)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:Escáners) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,3)], col.names = c("País","Escáners"),
     caption = "Países con mayor Número de Escáners en 2010")
```

Table 56: Países con mayor Número de Escáners en 2010

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2643
34	Italy	1907
35	Italy	1475
14	Germany (until 1990 former territory of the FRG)	1450
15	Germany (until 1990 former territory of the FRG)	1193

Table 57: Países con mayor Número de Escáners en 2011

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2688
34	Italy	1937
14	Germany (until 1990 former territory of the FRG)	1489
35	Italy	1487
15	Germany (until 1990 former territory of the FRG)	1199

Table 58: Países con mayor Número de Escáners en 2012

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2735
34	Italy	1982
35	Italy	1513
14	Germany (until 1990 former territory of the FRG)	1497
15	Germany (until 1990 former territory of the FRG)	1238

Table 59: Países con mayor Número de Escáners en 2013

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2719
34	Italy	1994
35	Italy	1526
14	Germany (until 1990 former territory of the FRG)	1510
15	Germany (until 1990 former territory of the FRG)	1209

Table 60: Países con mayor Número de Escáners en 2014

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2862
34	Italy	2000
14	Germany (until 1990 former territory of the FRG)	1521
35	Italy	1503
15	Germany (until 1990 former territory of the FRG)	1341

Table 61: Países con mayor Número de Escáners en 2015

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2866
34	Italy	2023
14	Germany (until 1990 former territory of the FRG)	1541
35	Italy	1521
15	Germany (until 1990 former territory of the FRG)	1325

Table 62: Países con mayor Número de Escáners en 2016

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2896
34	Italy	2079
14	Germany (until 1990 former territory of the FRG)	1572
35	Italy	1523
15	Germany (until 1990 former territory of the FRG)	1324

Table 63: Países con mayor Número de Escáners en 2017

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2904
34	Italy	2093
14	Germany (until 1990 former territory of the FRG)	1584
35	Italy	1525

	País	Escáners
15	Germany (until 1990 former territory of the FRG)	1320

Table 64: Países con mayor Número de Escáners en 2018

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2896
34	Italy	2122
14	Germany (until 1990 former territory of the FRG)	1572
35	Italy	1539
15	Germany (until 1990 former territory of the FRG)	1324

Table 65: Países con mayor Número de Escáners en 2019

	País	Escáners
13	Germany (until 1990 former territory of the FRG)	2896
34	Italy	2093
14	Germany (until 1990 former territory of the FRG)	1572
35	Italy	1525
15	Germany (until 1990 former territory of the FRG)	1324

A continuación, se aprupa toda la información (Escáners) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Computed_Tomography_Scanners

a2<-select(a1,Pais:Computed_Tomography_Scanners)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Computed_Tomography_Scanners)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "Escáners"),

caption = "Países con la mayor media en Escáners en 2010-2019")
```

Table 66: Países con la mayor media en Escáners en 2010-2019

	País	Escáners
12	Germany (until 1990 former territory of the FRG)	5621.0
17	Italy	4046.0
11	France	2047.0
31	Spain	1656.8
34	Turkey	1281.2

• Gamma_cameras

```
#Para "Gamma_cameras"
#Se filtra por Año
y_2010<-filter(tecnologia_medica_df, TIME==2010)</pre>
y_2011<-filter(tecnologia_medica_df, TIME==2011)</pre>
y_2012<-filter(tecnologia_medica_df, TIME==2012)</pre>
y_2013<-filter(tecnologia_medica_df, TIME==2013)</pre>
y_2014<-filter(tecnologia_medica_df, TIME==2014)</pre>
y_2015<-filter(tecnologia_medica_df, TIME==2015)</pre>
y_2016<-filter(tecnologia_medica_df, TIME==2016)</pre>
y_2017<-filter(tecnologia_medica_df, TIME==2017)</pre>
y_2018<-filter(tecnologia_medica_df, TIME==2018)</pre>
y_2019<-filter(tecnologia_medica_df, TIME==2019)
#Se ordena por "Gamma_cameras"
recursos\_tec\_5paises\_2010 <-y\_2010[with(y\_2010, order(-y\_2010\$Gamma\_cameras)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Gamma_cameras)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Gamma_cameras)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Gamma_cameras)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Gamma_cameras)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Gamma_cameras)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Gamma_cameras)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Gamma_cameras)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Gamma_cameras)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Gamma_cameras)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:Cámaras Gamma) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,4)], col.names = c("País","C. Gamma"),
      caption = "Países con mayor Número de C. Gamma en 2010")
```

Table 67: Países con mayor Número de C. Gamma en 2010

	País	C. Gamma
15	Germany (until 1990 former territory of the FRG)	1193
34	Italy	688

	País	C. Gamma
14	Germany (until 1990 former territory of the FRG)	580
35	Italy	473
28	France	334

Table 68: Países con mayor Número de C. Gamma en 2011

	País	C. Gamma
34	Italy	680
14	Germany (until 1990 former territory of the FRG)	573
35	Italy	486
28	France	345
2	Belgium	315

Table 69: Países con mayor Número de C. Gamma en 2012

	País	C. Gamma
34	Italy	635
14	Germany (until 1990 former territory of the FRG)	543
35	Italy	477
28	France	379
2	Belgium	320

Table 70: Países con mayor Número de C. Gamma en 2013

	País	C. Gamma
34	Italy	583
14	Germany (until 1990 former territory of the FRG)	542
35	Italy	439
28	France	382
29	France	318

Table 71: Países con mayor Número de C. Gamma en 2014

	País	C. Gamma
34	Italy	555
14	Germany (until 1990 former territory of the FRG)	551
35	Italy	418
28	France	381
29	France	312

Table 72: Países con mayor Número de C. Gamma en 2015

	País	C. Gamma
14	Germany (until 1990 former territory of the FRG)	550
34	Italy	508
28	France	456
35	Italy	384
29	France	361

Table 73: Países con mayor Número de C. Gamma en 2016

	País	C. Gamma
14	Germany (until 1990 former territory of the FRG)	535
34	Italy	479
28	France	462
35	Italy	360
29	France	359

Table 74: Países con mayor Número de C. Gamma en 2017

	País	C. Gamma
14	Germany (until 1990 former territory of the FRG)	518
34	Italy	492
28	France	469
35	Italy	371
29	France	342

Table 75: Países con mayor Número de C. Gamma en 2018

	País	C. Gamma
14	Germany (until 1990 former territory of the FRG)	535
28	France	466
34	Italy	465
35	Italy	349
29	France	333

Table 76: Países con mayor Número de C. Gamma en 2019

	País	C. Gamma
14	Germany (until 1990 former territory of the FRG)	535
34	Italy	479
28	France	462
35	Italy	360
25	Spain	304

A continuación, se aprupa toda la información (C. Gamma) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Gamma_cameras

a2<-select(a1,Pais:Gamma_cameras)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Gamma_cameras)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "C. Gamma"),

caption = "Países con la mayor media en C. Gamma en 2010-2019")
```

Table 77: Países con la mayor media en C. Gamma en 2010-2019

	País	C. Gamma
17	Italy	1112.8
11	France	827.2
12	Germany (until 1990 former territory of the FRG)	768.8
31	Spain	594.6

	País	C. Gamma
3	Belgium	507.3

• Lithotriptors

```
#Para "Lithotriptors"
#Se filtra por Año
y 2010<-filter(tecnologia medica df, TIME==2010)
y_2011<-filter(tecnologia_medica_df, TIME==2011)</pre>
y_2012<-filter(tecnologia_medica_df, TIME==2012)</pre>
y_2013<-filter(tecnologia_medica_df, TIME==2013)</pre>
y_2014<-filter(tecnologia_medica_df, TIME==2014)</pre>
y_2015<-filter(tecnologia_medica_df, TIME==2015)</pre>
y_2016<-filter(tecnologia_medica_df, TIME==2016)
y_2017<-filter(tecnologia_medica_df, TIME==2017)</pre>
y_2018<-filter(tecnologia_medica_df, TIME==2018)</pre>
y_2019<-filter(tecnologia_medica_df, TIME==2019)</pre>
#Se ordena por "Lithotriptors"
recursos tec 5paises 2010<-y 2010[with(y 2010, order(-y 2010$Lithotriptors)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Lithotriptors)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Lithotriptors)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Lithotriptors)),]
recursos tec 5paises 2014<-y 2014[with(y 2014, order(-y 2014$Lithotriptors)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Lithotriptors)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Lithotriptors)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Lithotriptors)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Lithotriptors)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Lithotriptors)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:Litotriptores) de los 5 Paises con un mayor número de ellos.
kable(recursos tec 5 paises 2010[0:5,c(2,5)],
     col.names = c("País", "Lithotriptors"),
     caption = "Países con mayor Número de Lithotriptors en 2010")
```

Table 78: Países con mayor Número de Lithotriptors en 2010

	País	Lithotriptors
13	Germany (until 1990 former territory of the FRG)	2211
15	Germany (until 1990 former territory of the FRG)	1193
14	Germany (until 1990 former territory of the FRG)	324
103	Turkey	208
61	Poland	169

Table 79: Países con mayor Número de Lithotriptors en 2011

	País	Lithotriptors
14	Germany (until 1990 former territory of the FRG)	323
103	Turkey	249
29	France	169
61	Poland	169
62	Poland	142

Table 80: Países con mayor Número de Lithotriptors en 2012

	País	Lithotriptors
14	Germany (until 1990 former territory of the FRG)	334
103	Turkey	267
61	Poland	191
29	France	179
62	Poland	165

Table 81: Países con mayor Número de Lithotriptors en 2013

	País	Lithotriptors
14	Germany (until 1990 former territory of the FRG)	324
103	Turkey	279
61	Poland	189
62	Poland	162
29	France	122

Table 82: Países con mayor Número de Lithotriptors en 2014

	País	Lithotriptors
14	Germany (until 1990 former territory of the FRG)	337
103	Turkey	307
61	Poland	189
62	Poland	182
1	Belgium	132

Table 83: Países con mayor Número de Lithotriptors en 2015

	País	Lithotriptors
103	Turkey	350
14	Germany (until 1990 former territory of the FRG)	326
61	Poland	192
62	Poland	181
1	Belgium	132

Table 84: Países con mayor Número de Lithotriptors en 2016

	País	Lithotriptors
13	Germany (until 1990 former territory of the FRG)	2840
34	Italy	1722
15	Germany (until 1990 former territory of the FRG)	1324
35	Italy	1022
28	France	904

Table 85: Países con mayor Número de Lithotriptors en 2017

	País	Lithotriptors
13	Germany (until 1990 former territory of the FRG)	2896
34	Italy	1735
15	Germany (until 1990 former territory of the FRG)	1324
35	Italy	1015
28	France	950

Table 86: Países con mayor Número de Lithotriptors en 2018

	País	Lithotriptors
13	Germany (until 1990 former territory of the FRG)	2896
34	Italy	1736
15	Germany (until 1990 former territory of the FRG)	1324
35	Italy	1009
28	France	989

Table 87: Países con mayor Número de Lithotriptors en 2019

	País	Lithotriptors
13	Germany (until 1990 former territory of the FRG)	2896
34	Italy	1736
15	Germany (until 1990 former territory of the FRG)	1324
28	France	1034
35	Italy	1009

A continuación, se aprupa toda la información (Lithotriptors) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selectiona las variables Pais y Lithotriptors

a2<-select(a1,Pais:Lithotriptors)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Lithotriptors)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País","Lithotriptors"),

caption = "Países con la mayor media en Lithotriptors en 2010-2019")
```

Table 88: Países con la mayor media en Lithotriptors en 2010-2019

	País	Lithotriptors
12	Germany (until 1990 former territory of the FRG)	2394.2
17	Italy	1374.9

	País	Lithotriptors
11	France	693.9
25	Poland	374.2
34	Turkey	318.1

• Magnetic_Resonance_Imaging_Units

```
#Para "Magnetic Resonance Imaging Units"#
#Se filtra por Año
y_2010<-filter(tecnologia_medica_df, TIME==2010)</pre>
y_2011<-filter(tecnologia_medica_df, TIME==2011)</pre>
y_2012<-filter(tecnologia_medica_df, TIME==2012)</pre>
y_2013<-filter(tecnologia_medica_df, TIME==2013)</pre>
y_2014<-filter(tecnologia_medica_df, TIME==2014)</pre>
y_2015<-filter(tecnologia_medica_df, TIME==2015)</pre>
y_2016<-filter(tecnologia_medica_df, TIME==2016)</pre>
y_2017<-filter(tecnologia_medica_df, TIME==2017)</pre>
y_2018<-filter(tecnologia_medica_df, TIME==2018)
y 2019<-filter(tecnologia medica df, TIME==2019)
#Se ordena por "Magnetic Resonance Imaging Units"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Magnetic_Resonance_Imaging_Units)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Magnetic_Resonance_Imaging_Units)),]
recursos tec 5paises 2012<-y 2012[with(y 2012, order(-y 2012$Magnetic Resonance Imaging Units)),]
recursos_tec_5paises_2013<-y_2013[with(y_2013, order(-y_2013$Magnetic_Resonance_Imaging_Units)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Magnetic_Resonance_Imaging_Units)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Magnetic_Resonance_Imaging_Units)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Magnetic_Resonance_Imaging_Units)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Magnetic_Resonance_Imaging_Units)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Magnetic_Resonance_Imaging_Units)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Magnetic_Resonance_Imaging_Units)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:R.Magnética) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,6)],
      col.names = c("País", "R.Magnética"),
     caption = "Países con mayor Número de unidades en R. Magnética en 2010")
```

Table 89: Países con mayor Número de unidades en R. Magnética en 2010

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2211
15	Germany (until 1990 former territory of the FRG)	1369
34	Italy	1332
35	Italy	856

	País	R.Magnética
14	Germany (until 1990 former territory of the FRG)	842

Table 90: Países con mayor Número de unidades en R. Magnética en 2011

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2317
15	Germany (until 1990 former territory of the FRG)	1441
34	Italy	1435
35	Italy	923
14	Germany (until 1990 former territory of the FRG)	876

Table 91: Países con mayor Número de unidades en R. Magnética en $2012\,$

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2305
34	Italy	1466
15	Germany (until 1990 former territory of the FRG)	1397
35	Italy	935
14	Germany (until 1990 former territory of the FRG)	908

Table 92: Países con mayor Número de unidades en R. Magnética en $2013\,$

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2332
34	Italy	1518
15	Germany (until 1990 former territory of the FRG)	1397
35	Italy	966
14	Germany (until 1990 former territory of the FRG)	935

Table 93: Países con mayor Número de unidades en R. Magnética en $2014\,$

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2470
34	Italy	1592
15	Germany (until 1990 former territory of the FRG)	1530
35	Italy	987
14	Germany (until 1990 former territory of the FRG)	940

Table 94: Países con mayor Número de unidades en R. Magnética en 2015

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2747
15	Germany (until 1990 former territory of the FRG)	1782
34	Italy	1715
35	Italy	1053
14	Germany (until 1990 former territory of the FRG)	965

Table 95: Países con mayor Número de unidades en R. Magnética en $2016\,$

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2840
15	Germany (until 1990 former territory of the FRG)	1841
34	Italy	1722
35	Italy	1022
14	Germany (until 1990 former territory of the FRG)	999

Table 96: Países con mayor Número de unidades en R. Magnética en
 $2017\,$

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2869
15	Germany (until 1990 former territory of the FRG)	1845
34	Italy	1735
14	Germany (until 1990 former territory of the FRG)	1024
35	Italy	1015

Table 97: Países con mayor Número de unidades en R. Magnética en 2018

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2840
15	Germany (until 1990 former territory of the FRG)	1841
34	Italy	1736
35	Italy	1009
14	Germany (until 1990 former territory of the FRG)	999

Table 98: Países con mayor Número de unidades en R. Magnética en
 $2019\,$

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2840
15	Germany (until 1990 former territory of the FRG)	1841
34	Italy	1735
28	France	1034
35	Italy	1015

A continuación, se aprupa toda la información (R.Magnética) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selectiona las variables Pais y Magnetic_Resonance_Imaging_Units

a2<-select(a1,Pais:Magnetic_Resonance_Imaging_Units)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Magnetic_Resonance_Imaging_Units)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]
```

Table 99: Países con la mayor media en unidades en R. Magnética en 2010-2019

	País	R.Magnética
12	Germany (until 1990 former territory of the FRG)	5154.2
17	Italy	3197.2
11	France	1511.4
31	Spain	1428.6
34	Turkey	881.6

• Angiography_units

```
#Para "Angiography_units"
#Se filtra por Año
y 2010<-filter(tecnologia medica df, TIME==2010)
y_2011<-filter(tecnologia_medica_df, TIME==2011)</pre>
y_2012<-filter(tecnologia_medica_df, TIME==2012)</pre>
y_2013<-filter(tecnologia_medica_df, TIME==2013)</pre>
y 2014<-filter(tecnologia medica df, TIME==2014)
y_2015<-filter(tecnologia_medica_df, TIME==2015)</pre>
y 2016<-filter(tecnologia medica df, TIME==2016)
y_2017<-filter(tecnologia_medica_df, TIME==2017)
y_2018<-filter(tecnologia_medica_df, TIME==2018)</pre>
y_2019<-filter(tecnologia_medica_df, TIME==2019)</pre>
#Se ordena por "Angiography_units"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Angiography_units)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Angiography_units)),]
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Angiography_units)),]
recursos tec 5paises 2013<-y 2013[with(y 2013, order(-y 2013$Angiography units)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Angiography_units)),]
recursos_tec_5paises_2015<-y_2015[with(y_2015, order(-y_2015$Angiography_units)),]
recursos_tec_5paises_2016<-y_2016[with(y_2016, order(-y_2016$Angiography_units)),]
recursos_tec_5paises_2017<-y_2017[with(y_2017, order(-y_2017$Angiography_units)),]
recursos_tec_5paises_2018<-y_2018[with(y_2018, order(-y_2018$Angiography_units)),]
recursos_tec_5paises_2019<-y_2019[with(y_2019, order(-y_2019$Angiography_units)),]
#Se crea una tabla para cada año sobre los Recursos Sanitarios
#(Facilities:U.Angiografía) de los 5 Paises con un mayor número de ellos.
kable(recursos_tec_5paises_2010[0:5,c(2,7)],
```

```
col.names = c("País","U.Angiografía"),
caption = "Países con mayor Número de unidades en Angiografía en 2010")
```

Table 100: Países con mayor Número de unidades en Angiografía en $2010\,$

	País	U.Angiografía
13	Germany (until 1990 former territory of the FRG)	2211
15	Germany (until 1990 former territory of the FRG)	1193
14	Germany (until 1990 former territory of the FRG)	786
34	Italy	723
35	Italy	704

Table 101: Países con mayor Número de unidades en Angiografía en 2011

	País	U.Angiografía
14	Germany (until 1990 former territory of the FRG)	796
34	Italy	759
35	Italy	739
29	France	538
61	Poland	394

Table 102: Países con mayor Número de unidades en Angiografía en $2012\,$

	País	U.Angiografía
14	Germany (until 1990 former territory of the FRG)	812
34	Italy	797
35	Italy	778
29	France	530
61	Poland	429

Table 103: Países con mayor Número de unidades en Angiografía en 2013

	País	U.Angiografía
14	Germany (until 1990 former territory of the FRG)	844
34	Italy	807
35	Italy	789
29	France	419
61	Poland	404

Table 104: Países con mayor Número de unidades en Angiografía en $2014\,$

	País	U.Angiometría
14	Germany (until 1990 former territory of the FRG)	855
34	Italy	838
35	Italy	817
29	France	444
61	Poland	427

Table 105: Países con mayor Número de unidades en Angiografía en $2015\,$

	País	U.Angiografía
14	Germany (until 1990 former territory of the FRG)	876
34	Italy	834
35	Italy	811
61	Poland	468
29	France	463

Table 106: Países con mayor Número de unidades en Angiografía en 2016

	País	R.Magnética
13	Germany (until 1990 former territory of the FRG)	2840
15	Germany (until 1990 former territory of the FRG)	1324

	País	R.Magnética
28	France	904
14	Germany (until 1990 former territory of the FRG)	855
34	Italy	834

Table 107: Países con mayor Número de unidades en Angiografía en $2017\,$

	País	U.Angiografía
13	Germany (until 1990 former territory of the FRG)	2896
15	Germany (until 1990 former territory of the FRG)	1324
28	France	950
14	Germany (until 1990 former territory of the FRG)	855
34	Italy	834

Table 108: Países con mayor Número de unidades en Angiografía en $2018\,$

	País	U.Angiografía
13	Germany (until 1990 former territory of the FRG)	2896
15	Germany (until 1990 former territory of the FRG)	1324
28	France	989
14	Germany (until 1990 former territory of the FRG)	855
34	Italy	834

Table 109: Países con mayor Número de unidades en Angiografía en 2019

	País	U.Angiografía
13	Germany (until 1990 former territory of the FRG)	2896
15	Germany (until 1990 former territory of the FRG)	1324
28	France	1034
14	Germany (until 1990 former territory of the FRG)	855
34	Italy	834

A continuación, se aprupa toda la información (R.Magnética) por paises en una tabla:

```
a1<-group_by(tecnologia_medica_df,Pais) #Se agrupa por paises

#Se selecciona las variables Pais y Angiography_units

a2<-select(a1,Pais:Angiography_units)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Angiography_units)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la informacion

kable(a5[0:5,c(1,2)],

col.names = c("País","U. Angiografía"),

caption = "Países con la mayor media en unidades en Angiografía en 2010-2019")
```

Table 110: Países con la mayor media en unidades en Angiografía en 2010-2019

	País	U. Angiografía
12	Germany (until 1990 former territory of the FRG)	2911.0
17	Italy	1618.0
11	France	1050.8
25	Poland	844.8
31	Spain	517.2

• Camas Disponibles_ Value

```
#Para "Camas Disponibles_ Value"
#Se filtra por Año
y 2010<-filter(camas disponibles df, TIME==2010)
y 2011<-filter(camas disponibles df, TIME==2011)
y_2012<-filter(camas_disponibles_df, TIME==2012)</pre>
y_2013<-filter(camas_disponibles_df, TIME==2013)</pre>
y_2014<-filter(camas_disponibles_df, TIME==2014)</pre>
y 2015<-filter(camas disponibles df, TIME==2015)
y_2016<-filter(camas_disponibles_df, TIME==2016)</pre>
y_2017<-filter(camas_disponibles_df, TIME==2017)</pre>
y_2018<-filter(camas_disponibles_df, TIME==2018)</pre>
y_2019<-filter(camas_disponibles_df, TIME==2019)</pre>
#Se ordena por "Camas Disponibles_Value"
recursos_tec_5paises_2010<-y_2010[with(y_2010, order(-y_2010$Value)),]
recursos_tec_5paises_2011<-y_2011[with(y_2011, order(-y_2011$Value)),]</pre>
recursos_tec_5paises_2012<-y_2012[with(y_2012, order(-y_2012$Value)),]</pre>
recursos tec 5paises 2013<-y 2013[with(y 2013, order(-y 2013$Value)),]
recursos_tec_5paises_2014<-y_2014[with(y_2014, order(-y_2014$Value)),]
```

Table 111: Países con mayor Número de Camas Disponibles en $2010\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	674473
10	France	416710
21	Poland	251456
12	Italy	215980
37	Turkey	200239

Table 112: Países con mayor Número de Camas Disponibles en $2011\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	672573
10	France	414204
21	Poland	252281
12	Italy	208854
37	Turkey	194504

Table 113: Países con mayor Número de Camas Disponibles en $2012\,$

	País	Camas
5 10	Germany (until 1990 former territory of the FRG) France	670443 414840
21	Poland	252352

	País	Camas
12	Italy	203723
37	Turkey	200072

Table 114: Países con mayor Número de Camas Disponibles en $2013\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	667560
10	France	413206
21	Poland	251383
37	Turkey	202031
12	Italy	199474

Table 115: Países con mayor Número de Camas Disponibles en $2014\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	666337
10	France	410921
21	Poland	251904
37	Turkey	206836
12	Italy	195189

Table 116: Países con mayor Número de Camas Disponibles en $2015\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	664364
10	France	408245
21	Poland	252029
37	Turkey	209648
12	Italy	194065

Table 117: Países con mayor Número de Camas Disponibles en $2016\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	663941
10	France	404248
21	Poland	252136
37	Turkey	217771
12	Italy	192315

Table 118: Países con mayor Número de Camas Disponibles en $2017\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	661448
10	France	399865
21	Poland	251537
37	Turkey	225863
12	Italy	192548

Table 119: Países con mayor Número de Camas Disponibles en 2018

	País	Camas
5	Germany (until 1990 former territory of the FRG)	663941
10	France	395670
21	Poland	248239
37	Turkey	231913
12	Italy	189753

Table 120: Países con mayor Número de Camas Disponibles en $2019\,$

	País	Camas
5	Germany (until 1990 former territory of the FRG)	663941
10	France	399865
21	Poland	251537
37	Turkey	225863
12	Italy	192315

A continuación, se aprupa toda la información (Camas Disponibles) por paises en una tabla:

```
a1<-group_by(camas_disponibles_df,GEO) #Se agrupa por paises

#Se selecciona las variables Pais y Camas Disponibles

a2<-select(a1,GEO:Value)

#Se muestra la información por cada país, con Value=suma de

#los valores de cada país en los 10 años.

a3<-(summarize(a2,suma=sum(Value)/10))

a4<-data.frame(a3) #Se convierte la información en un dataframe.

#Se ordena el DataFrame por la variable Suma de forma descendente.

a5<-a4[with(a4,order(-a4$suma)),]

#Se crea una tabla con toda la información

kable(a5[0:5,c(1,2)],

col.names = c("País", "Camas Disponibles"),

caption = "Países con la mayor media en Camas Disponibles en 2010-2019")
```

Table 121: Países con la mayor media en Camas Disponibles en 2010-2019

	País	Camas Disponibles
12	Germany (until 1990 former territory of the FRG)	666902.1
11	France	407777.4
27	Poland	251485.4
36	Turkey	211474.0
17	Italy	198421.6

• 1.1.3 Normalidad de la variable "Value"

Se comprueba con métodos visuales si la variable tiene una distribución normal.

QUIRÓFANOS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Operation_theatres_in_hospital_norm) ,main="Density")
qqnorm(recursos_tec_df$Operation_theatres_in_hospital_norm)
qqline(recursos_tec_df$Operation_theatres_in_hospital_norm)
```


Para estudiar si una muestra proviene de una población con distribución normal, se disponen de tres herramientas:

- Histograma o Densidad
- Gráficos cuantil cuantil (QQplot)
- Pruebas de hipótesis.

Si en la prueba de Densidad se observa sesgo hacia uno de los lados de la gráfica, sería indicio de que la muestra no proviene de una población normal. Si por otra parte, sí se observa simetría, **NO** se garantiza que la muestra provenga de una población normal. En estos casos sería necesario utilizar otras herramientas como **QQplot y pruebas de hipótesis**.

En la gráfica Densidad de la variable "Operation_theatres_in_hospital_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico. Si se tuviese una muestra distribuída normalmente, se esperaría que los puntos del gráfico quantil quantil estuviesen perfectamente alineados con la línea de referencia, y observamos que para este caso, "Operation_theatres_in_hospital_norm" no se alinea. Confirmaría los resultados del gráfico de densidad.

Por otro lado, se realizan las pruebas de hipótesis:

- \$h 0: La muestra proviene de una población normal.
- \$h_1: La muestra NO proviene de una población normal.

Se aplica la prueba Shapiro-Wilk:

```
shapiro.test(recursos_tec_df$Operation_theatres_in_hospital_norm)
```

```
##
## Shapiro-Wilk normality test
##
## data: recursos_tec_df$Operation_theatres_in_hospital_norm
## W = 0.65768, p-value < 2.2e-16</pre>
```

SALAS DE CIRUGÍA

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Surgical_day_care_places_norm) ,main="Density")
qqnorm(recursos_tec_df$Surgical_day_care_places_norm)
qqline(recursos_tec_df$Surgical_day_care_places_norm)
```


En la gráfica Densidad de la variable "Surgical_day_care_places_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Surgical_day_care_places_norm".

```
shapiro.test(recursos_tec_df$Surgical_day_care_places_norm)
```

```
##
## Shapiro-Wilk normality test
##
## data: recursos_tec_df$Surgical_day_care_places_norm
## W = 0.58393, p-value < 2.2e-16</pre>
```

SALAS PSIQUIÁTRICAS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Psychiatric_day_care_place_norm) ,main="Density")
qqnorm(recursos_tec_df$Psychiatric_day_care_place_norm)
qqline(recursos_tec_df$Psychiatric_day_care_place_norm)
```


En la gráfica Densidad de la variable "Psychiatric_day_care_place_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Psychiatric_day_care_place_norm".

shapiro.test(recursos_tec_df\$Psychiatric_day_care_place_norm)

```
##
## Shapiro-Wilk normality test
##
## data: recursos_tec_df$Psychiatric_day_care_place_norm
## W = 0.45965, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

CONSULTAS ONCOLÓGICAS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Oncological_day_care_place_norm) ,main="Density")
qqnorm(recursos_tec_df$Oncological_day_care_place_norm)
qqline(recursos_tec_df$Oncological_day_care_place_norm)
```


En la gráfica Densidad de la variable "Oncological_day_care_place_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Oncological_day_care_place_norm".

```
shapiro.test(recursos_tec_df$Oncological_day_care_place_norm)
```

```
##
## Shapiro-Wilk normality test
##
## data: recursos_tec_df$Oncological_day_care_place_norm
## W = 0.60077, p-value < 2.2e-16</pre>
```

CONSULTAS GERIÁTRICAS

```
par(mfrow=c(1,2))
plot(density(recursos_tec_df$Geriatric_day_care_places_norm) ,main="Density")
qqnorm(recursos_tec_df$Geriatric_day_care_places_norm)
qqline(recursos_tec_df$Geriatric_day_care_places_norm)
```


En la gráfica Densidad de la variable "Geriatric_day_care_places_norm" , se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Geriatric_day_care_places_norm".

```
shapiro.test(recursos_tec_df$Geriatric_day_care_places_norm)
```

```
##
## Shapiro-Wilk normality test
##
## data: recursos_tec_df$Geriatric_day_care_places_norm
## W = 0.81538, p-value < 2.2e-16</pre>
```

ESCÁNERS

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Computed_Tomography_Scanners_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Computed_Tomography_Scanners_norm)
qqline(tecnologia_medica_df$Computed_Tomography_Scanners_norm)
```


En la gráfica Densidad de la variable "Computed_Tomography_Scanners_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Computed_Tomography_Scanners_norm".

shapiro.test(tecnologia_medica_df\$Computed_Tomography_Scanners_norm)

```
##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Computed_Tomography_Scanners_norm
## W = 0.53725, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

CÁMARAS GAMMA

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Gamma_cameras_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Gamma_cameras_norm)
qqline(tecnologia_medica_df$Gamma_cameras_norm)
```


En la gráfica Densidad de la variable "Gamma_cameras_norm" , se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Gamma_cameras_norm".

```
shapiro.test(tecnologia_medica_df$Gamma_cameras_norm)
```

```
##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Gamma_cameras_norm
## W = 0.62182, p-value < 2.2e-16</pre>
```

LITOTRIPTORES

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Lithotriptors_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Lithotriptors_norm)
qqline(tecnologia_medica_df$Lithotriptors_norm)
```


En la gráfica Densidad de la variable "Lithotriptors_norm", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Lithotriptors_norm".

shapiro.test(tecnologia_medica_df\$Lithotriptors_norm)

```
##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Lithotriptors_norm
## W = 0.25072, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

UNIDADES DE RESONANCIA MAGNÉTICA

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm)
qqline(tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm)
```


En la gráfica Densidad de la variable "Magnetic_Resonance_Imaging_Units", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Magnetic_Resonance_Imaging_Units".

shapiro.test(tecnologia_medica_df\$Magnetic_Resonance_Imaging_Units_norm)

```
##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Magnetic_Resonance_Imaging_Units_norm
## W = 0.4613, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

UNIDADES DE ANGIOGRAFÍA

```
par(mfrow=c(1,2))
plot(density(tecnologia_medica_df$Angiography_units_norm) ,main="Density")
qqnorm(tecnologia_medica_df$Angiography_units_norm)
qqline(tecnologia_medica_df$Angiography_units_norm)
```


En la gráfica Densidad de la variable "Angiography_units", se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Angiography_units".

shapiro.test(tecnologia_medica_df\$Angiography_units_norm)

```
##
## Shapiro-Wilk normality test
##
## data: tecnologia_medica_df$Angiography_units_norm
## W = 0.39485, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.

CAMAS DISPONIBLES

```
par(mfrow=c(1,2))
plot(density(camas_disponibles_df$Value_norm) ,main="Density")
qqnorm(camas_disponibles_df$Value_norm)
qqline(camas_disponibles_df$Value_norm)
```


En la gráfica Densidad de la variable "Value_norm" , se observa claramente sesgo hacia la izquierda, por lo que no se considera normalidad. Se puede confirmar observando la gráfica QQplot en la que la línea que grafica qqline sirve de referencia para interpretar el gráfico, no se alinea con los puntos de los valores de la variable "Value_norm".

shapiro.test(camas_disponibles_df\$Value_norm)

```
##
## Shapiro-Wilk normality test
##
## data: camas_disponibles_df$Value_norm
## W = 0.59891, p-value < 2.2e-16</pre>
```

Se observa un p-value muy pequeño, mucho más pequeño que cualquier nivel de significación (alpha=0.5) por lo que se rechaza la hipótesis nula y asumimos **No normalidad** en la muestra.