2.3 TYPES OF FUNCTIONS

TYPES OF FUNCTIONS

- Injective or ONE-TO-ONE Function
- Surjective or ON-TO Function
- Bijective Function
- Identity Function
- Constant Function

ONE-TO-ONE FUNCTION / INJECTIVE FUNCTION

- Let $f: X \to Y$ be a function. f is injective or one-to-one if, and only if, $\forall x_1, x_2 \in X$, if $x_1 \neq x_2$ then $f(x_1) \neq f(x_2)$.
- That is, f is one-to-one if it maps distinct points of the domain into the distinct points of the co-domain.

FUNCTION NOT ONE-TO-ONE

- A function $f: X \to Y$ is not one-to-one iff there exist elements x_1 and x_2 such that $x_1 \neq x_2$ but $f(x_1) = f(x_2)$.
- That is, if distinct elements x_1 and x_2 can found in domain of f then they have the same function value.

Which of the arrow diagrams define one-to-one functions?

f islumgeoob(b)function

f is NOT one-to-one function

- Find all **one-to-one** functions from $X = \{a, b\}$ to $Y = \{u, v\}$
- **SOLUTION:**
- There are two one-to-one functions from X to Y defined by the arrow diagrams.

We have only two one-to-one functions.

▶ How many **one-to-one** functions are there from a **set** with **three elements** to a **set** with **four elements**.

SOLUTION

Let
$$X = \{x_1, x_2, x_3\}$$
 and $Y = \{y_1, y_2, y_3, y_4\}$

 x_1 may be mapped to any of the 4 elements of Y. Then x_2 may be mapped to any of the remaining 3 elements of Y & finally x_3 may be mapped to any of the remaining 2 elements of Y.

Hence, total no. of one-to-one functions from X to Y are

$$4 \times 3 \times 2 = 24$$

▶ How many one-to-one functions are there from a set with three elements to a set with two elements.

SOLUTION

- ▶ Let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2\}$
- ▶ Two elements in X could be mapped to the two elements in Y separately. But there is no new element in Y to which the third element in X could be mapped. Accordingly there is no one-to-one function from a set with three elements to a set with two elements.

How many one-to-one functions are there from a set with three elements to a set with two elements.

SOLUTION:

Let
$$X = \{x_1, x_2, x_3\}$$
 and $Y = \{y_1, y_2\}$

$$x_1.$$

$$x_2.$$

$$x_3.$$

$$x_3.$$

Two elements in X could be mapped to the two elements in Y separately. But there is no new element in Y to which the third element in X could be mapped. Accordingly there is no one-to-one function from a set with three elements to a set with two elements.

GRAPH OF ONE-TO-ONE FUNCTION

A graph of a function f is one-to-one iff every horizontal line intersects the graph in at most one point.

ONE-TO-ONE FUNCTION from R⁺ to R

NOT ONE-TO-ONE FUNCTION From R to R⁺

ALTERNATIVE DEFINITION OF ONE-TO-ONE FUNCTION

- Let $f: X \to Y$ be a function. f is injective or one-to-one if, and only if, $\forall x_1, x_2 \in X$, IF $x_1 \neq x_2$ THEN $f(x_1) \neq f(x_2)$.
- ▶ The contra-positive of definition is:

If
$$f(x_1) = f(x_2)$$
 then $x_1 = x_2$

If the contrapositive of the definition is also satisfied then the function is also one-to-one.

SURJECTIVE FUNCTION / ONTO FUNCTION

Let f: X→Y be a function. f is surjective or onto if, and only if,

$$\forall$$
 y \in Y, \exists x \in X such that $f(x) = y$.

That is, f is onto if every element of Y is the image of some element of X.

That is, f is onto if every element of its co-domain is the image of some element(s) of its domain.

i.e., co-domain of f = range of f

X=domain of f

Y=co-domain of f

FUNCTION NOT ONTO

- ▶ A function $f:X \rightarrow Y$ is not onto iff there exists $y \in Y$ such that $\forall x \in X$, $f(x) \neq y$.
- That is, there is some element in Y that is not the image of any element in X.

X=domain of f

Y=co-domain of f

Which of the arrow diagrams define onto functions?

SOLUTION:

- f is not onto because $3 \neq f(x)$ for any x in X. (3 an element which is not image of any element of set X)
- g is clearly onto because each element of Y equals g(x) for some x in X. (co-domain all elements are images of some elements of domain)

as

▶ Define $f: R \rightarrow R$ by the rule

$$f(x) = 4x-1$$
 for all $x \in R$

Is f onto?

Prove or give a counter example.

SOLUTION

Let $y \in R$. We search for an $x \in R$ such that

$$f(x) = y$$

or $4x-1 = y$ (by definition of f)

Solving it for x, we find

$$4x=y+1$$

$$x = \frac{y+1}{4} \in R$$

Cont...

▶ Hence for every $y \in \mathbb{R}$, there exists

$$x = \frac{y+1}{4} \in R$$
 such that

$$f(x) = f\left(\frac{y+1}{4}\right)$$

$$=4.\left(\frac{y+1}{4}\right)-1=(y+1)-1=y$$

Hence f is onto

▶ Define $h: Z \rightarrow Z$ by the rule

$$h(n) = 4n - I$$
 for all $n \in Z$

Is h onto?

Prove or give a counter example.

SOLUTION

Let $m \in \mathbb{Z}$. We search for an $n \in \mathbb{Z}$ such that h(n) = m.

or 4n - I = m (by definition of h)

Solving it for **n**, we find $n = \frac{m+1}{4}$

But $n = \frac{m+1}{4}$ is not always an integer for all $m \in \mathbb{Z}$.

Cont...

 \blacktriangleright Let m = 3 then

$$\frac{m+1}{4} = \frac{4}{4} = 1$$
 integer

 \blacktriangleright Let m = 5 then

$$\frac{m+1}{4} = \frac{6}{4}$$
 not an integer

As a counter example, let $m = 0 \in \mathbb{Z}$, then

$$h(n) = 0$$

$$\Rightarrow 4n-1 = 0$$

$$\Rightarrow 4n = 1$$

$$\Rightarrow n = \frac{1}{4} \notin Z$$

Hence there is no integer n for which h(n) = 0. Accordingly, h is not onto.

GRAPH OF ONTO FUNCTION

A graph of a function f is onto iff every horizontal line intersects the graph in at least one point within the codomain.

Let $X = \{1, 5, 9\}$ and $Y = \{3, 4, 7\}$.

Define $g: X \rightarrow Y$ by specifying that

$$g(1) = 7$$
, $g(5) = 3$, $g(9) = 4$

Is g one-to-one? Is g onto?

SOLUTION

$$X = \{1, 5, 9\}$$
 and $Y = \{3, 4, 7\}$.

$$g(1) = 7$$
, $g(5) = 3$, $g(9) = 4$

g is one-to-one because each of the three elements of X are mapped to a different elements of Y by g.

g is onto as well, because each of the three elements of co-domain Y of g is the image of some element of the domain of g.

$$3 = g(5), 4 = g(9), 7 = g(1)$$

BIJECTIVE FUNCTION

A function f: X→Y that is both one-to-one (injective) and onto (surjective) is called a bijective function or a one-toone correspondence.

▶ The function $f: X \rightarrow Y$ defined by the arrow diagram is both one-to-one and onto; hence a bijective function.

GRAPH OF BIJECTIVE FUNCTION

A graph of a function f is bijective iff every horizontal line intersects the graph at exactly one point.

FOR R to R

BIJECTIVE FUNCTION from R to R

IDENTITY FUNCTION ON A SET

- Figure 3 Given a set X, define a function i_x from X to X by $i_x(x) = x$ from all $x \in X$.
- ▶ The function i_x is called the identity function on X because it sends each element of X mapped to itself.

Let $X = \{1, 2, 3, 4\}$. The identity function i_x on X is represented by the arrow diagram.

CONSTANT FUNCTION ON A SET

A function f:X→Y is constant function if it maps (sends) all elements of X to one element of Y i.e.

$$x \in X$$
, $f(x) = c$ for some $c \in Y$.

- ▶ The constant function is one-to-one iff its domain is a singleton.
- A constant function is onto iff its co-domain is a singleton.

