Supporting Information

Characteristics of pharmaceutically active compounds in surface water in Beijing,

China: occurrence, spatial distribution and biennial variation from 2013 to 2017

Lei Duan^{1,2}, Yizhe Zhang^{1,2}, Bin Wang^{1,2}*, Giovanni Cagnetta¹, Shubo Deng¹, Jun Huang¹, Yujue Wang¹, Gang Yu^{1,2}

¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Key Laboratory of Emerging Organic Contaminants Control, School of Environment, Tsinghua University, Beijing, 100084, China.

Email: thuwb@tsinghua.edu.cn

² Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou 215163, China

^{*}Corresponding author, <u>Tel:+86-10-62795315</u>, Fax: +86-10-62794006;

Table of Contents

- 1. Material and methods
 - 1.1 Target compounds
 - 1.2 Beiyun River
 - 1.3 Sampling sites information
 - 1.4 Analysis method
 - 1.5 Quality assurance and quality control (QA & QC)
- 2. Results and discussion
 - 2.1 Detection frequencies and concentrations
 - 2.2 Clustering analysis based on PhAC compositions
 - 2.3 Urban wastewater treatment plants (WWTPs) and their receiving rivers
 - 2.4 Principal component analysis (PCA) on source apportionment
- 3. Reference

1. Material and methods

1.1 Target compounds

Table S1 Information of target compounds

1st Class	2nd Class	Compound	Abbreviation	CAS number	pKa*
		Sulfadiazine	SD	68-35-9	6.81±0.10
		Sulfathiazole	ST	72-14-0	7.24±0.10
		Sulfamerazine	SMR	127-79-7	7.35±0.10
		Sulfisoxazole	SIX	127-69-5	4.83±0.05
		Sulfisomidine	SIM	515-64-0	3.63±0.10
		Sulfamethoxypyridazine	SMP	80-35-3	7.19±0.30
	Sulfonamides	Sulfaquinoxaline	SQX	59-40-5	5.65±0.10
		Sulfamethazine	SMT	57-68-1	7.89±0.10
		Sulfadimethoxine	SDM	122-11-1	6.21±0.50
		Sulfamethoxazole	SMX	723-46-6	5.81±0.50
Antibiotics		Sulfamethizole	SMZ	144-82-1	5.51±0.50
		Sulfamonomethoxine	SM	1220-83-3	6.67±0.30
		Trimethoprim	TP	738-70-5	7.04±0.10
		Erythromycin	EM	114-07-8	13.09±0.7
	Macrolides	Clarithromycin	CAM	81103-11-9	13.08±0.7
		Roxithromycin	RXM	80214-83-1	13.00±0.7
		Tylosin tartrate	TS	74610-55-2	-
		Clindamycin	CDM	18323-44-9	12.87±0.7
	Lincoamides	Lincomycin	LCM	154-21-2	12.91±0.7
	Chloramphenicol	Chloramphenicol	СР	56-75-7	11.03±0.4
	Quinolones	Nalidixic acid	NA	389-08-2	3.45±0.2
		Diclofenac acid	DF	15307-86-5	4.18±0.1
		Indomethacin	IM	53-86-1	3.96±0.30
	Anti-inflammatory	Mefenamic acid	MA	61-68-7	3.73±0.3
		Ketoprofen	KP	22071-15-4	4.23±0.1
Non-antibiotics		Acetaminophen	ATP	103-90-2	9.86±0.1
		Bezafibrate	BF	41859-67-0	3.29±0.10
	Lipid regulators	Clofibric acid	CA	882-09-7	3.18±0.10
		Gemfibrozil	GF	25812-30-0	4.75±0.4
	Beta-blockers	Metoprolol	MTP	51384-51-1	13.89±0.2

	Propranolol	РНО	525-66-6	13.84±0.20
Davahiatria druga	Carbamazepine	CBZ	298-46-4	13.94±0.20
Psychiatric drugs	Sulpiride	SP	15676-16-1	9.98 ± 0.60
Stimulant	Caffeine	CF	58-08-2	0.52±0.70
Repellent	N,N-diethyl-meta-toluamide	DEET	134-62-3	-1.37±0.70

*pKa is predicted protonation constant acquired from Scifinder database. (https://scifinder.cas.org/scifinder/view/scifinder/scifinderExplore.jsf)

1.2 Beiyun River

Table S2 Information of each river basin in Beiyun River

Sub-riv	Sub-river basin		Inhabitant (10 ⁴ Capita)	Population density (Inhabitants/km²)*
	Sha River	1084	134.5	1241
	Lingou River	377	13.9	369
	Qing River	210	264.1	12576
Tributaries	Ba River	158	142.6	9025
	Tonghui River	258	382	14806
	Liangshui River	815	319.1	3915
	Feng River	489	79	1616
Main atomas	Wenyu River	407	72.3	1776
Main streams	Beiyun River	251	19.3	769

^{*}Population density is calculated with dividing the number of inhabitant by watershed area.

1.3 Sampling sites information

Table S3 Information of sampling sites

Samuling site	Coor	dinate	Compling data	Catchment	
Sampling site	Latitude (° N)	sude (° N) Longitude (° E)		Catchment	
S-1	40.0773	116.1094	2017/11/30		
S-2	40.0931983	116.1743983	2017/11/30		
S-3	40.1098067	116.2038783	2017/11/30		
S-4	40.0998617	116.2066667	2017/11/30	Sha River	
S-5	40.107605	116.2336267	2017/11/30		
S-6	40.1524433	116.1863883	2017/11/30		
S-7	40.1438783	116.1992883	2017/11/30		

	2017/11/30	116.2111017	40.1416567	S-8
	2017/11/30	116.2370317	40.143635	S-9
	2017/11/30	116.2573483	40.141075	S-10
	2017/11/30	116.3572222	40.17194444	LG-11
T. D.	2017/11/30	116.4579267	40.1668067	LG-12
Lingou River	2017/11/30	116.431465	40.161835	LG-13
	2017/11/30	116.4312583	40.1561217	LG-14
	2017/11/30	116.4040183	40.1506617	WY-15
	2017/11/30	116.3328267	40.1313567	WY-16
	2017/12/01	116.4850867	40.093665	WY-38
Wenyu River	2017/12/01	116.5391867	40.0558533	WY-39
	2017/12/01	116.5648083	40.0308067	WY-40
	2017/12/01	116.636235	39.9858117	WY-41
	2017/12/01	116.6417867	39.9294433	WY-42
	2017/11/31	116.4568967	39.72579	F-17
	2017/11/31	116.51734	39.698945	F-18
	2017/11/31	116.5542133	39.6911083	F-19
Feng River	2017/11/31	116.551675	39.713755	F-20
	2017/11/31	116.7755883	39.767085	F-25
	2017/11/31	116.77823	39.757	F-26
	2017/11/31	116.5384517	39.7619017	LS-21
	2017/11/31	116.63001	39.7770133	LS-22
Liangshui Rive	2017/11/31	116.699519	39.842645	LS-23
	2017/11/31	116.7625283	39.80405834	LS-24
	2017/11/31	116.8364033	39.7636	BY-27
n : n:	2017/11/31	116.7862233	39.7926583	BY-28
Beiyun River	2017/11/31	116.753565	39.8564217	BY-29
	2017/11/31	116.6750583	39.9099	BY-30
	2017/12/01	116.656445	39.9148717	TH-31
Tonghui River	2017/12/01	116.614265	39.90699	TH-32
	2017/12/01	116.50262	39.90511	TH-33
	2017/12/01	116.3114817	40.0177067	Q-34
O. D.	2017/12/01	116.3665583	40.0287583	Q-35
Qing River	2017/12/01	116.4620817	40.0808617	Q-36
	2017/12/01	116.476565	40.0801117	Q-37
	2017/12/01	116.6348483	39.9471	B-43
D D:	2017/12/01	116.5932067	39.9701917	B-44
Ba River	2017/12/01	116.551885	39.9683967	B-45

Table S4 Meteorological information at the time of sampling

Date	Temperature	Weather
2017/11/30, Wednesday	-6 ~ 1 °C	Cloudy
2017/11/31, Thursday	-5 ~ 4 °C	Sunny
2107/12/01, Friday	-5 ~ 5°C	Sunny

1.4 Analysis method

The analysis method was based on our previous study (Ma et al., 2017) with minor modifications. All the pretreated samples were filtered through 0.22 μ m PTFE filters (Whatman, Puradisc, 13mm) before analysis. Agilent Eclipse XDB-C18 3.5 μ m, 2.1×150 mm column was used to separate different PhACs and three analytical modes (POS, NEG and IT) were applied to identify the target compounds (Zhang et al., 2018). The injection volume was 10 μ L and other information of each mode was showed in Table S4.

Table S5 Column temperature and mobile phase of each mode

Mode	POS ^a	NEGb	ITc	
	Electronic Spray Ion (ESI)			
Acquisition	mode, positive ionization;	ESI, negative ionization, MRM	ESI, positive ionization,	
parameters	multiple reaction	ESI, negative ionization, MKM	MRM	
	monitoring (MRM)			
Column temperature		40 °C		
	A= 0.01% Formic acid	A= 10 mM Ammonium acetate	A= 0.01% Formic acid	
Mobile phase	B= 100% Methanol	B= 100% Methanol	B= 100% Acetonitrile	

^a POS: positive analytical mode

1.5 Quality assurance and quality control (QA & QC)

Table S6 Recovery rate and instrument detection limits (IDL), instrument quantification

^b NEG: negative analytical mode

^c IT: another positive analytical mode with different mobile phase

limits (IQL), method detection limits (MDL) and method quantification limits (MQL)

Mode compounds internal standard isotopically labelled internal standard Average recovery rate (%)* (μg/L) (μg/L) (ng/L) (ng/L) <th< th=""><th></th><th></th><th>Quantitative</th><th></th><th>IDI</th><th>101</th><th>MDI</th><th>MOI</th></th<>			Quantitative		IDI	101	MDI	MOI
CBZ	Mode	Compounds	isotopically labelled	Average recovery rate (%)*				MQL
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			internal standard		(µg/L)	(μg/L)	(ng/L)	(ng/L)
POS MTP 13C-Phenacetine 1112 0.22 0.72 0.22 0.72 1.42 4.72 1.42 4.72 1.42 4.73 1.44 1.45 1.44 1.47 1.47 1.47 1.47 1.47 1.47 1.47		CBZ		106	0.05	0.18	0.05	0.18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		CF		92	0.18	0.60	0.18	0.60
POS NA 13C-Phenacetine 118 1.42 4.72 1.42 4.72 PHO 104 0.08 0.26 0.08 0.26 SP 81 0.08 0.26 0.08 0.26 TP 100 0.52 1.72 0.52 1.72 BF 79 0.19 0.65 0.19 0.65 CA D ₅ -Chloramphenicol 78 0.10 0.32 0.10 0.33		DEET		104	0.08	0.28	0.08	0.28
NA 118 1.42 4.72 1.42 4.72 PHO 104 0.08 0.26 0.08 0.26 SP 81 0.08 0.26 0.08 0.26 TP 100 0.52 1.72 0.52 1.72 BF 79 0.19 0.65 0.19 0.65 CA D ₅ -Chloramphenicol 78 0.10 0.32 0.10 0.33	DOG	MTP	13C Phanastina	112	0.22	0.72	0.22	0.72
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	POS	NA	C-Phenacetine	118	1.42	4.72	1.42	4.72
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		РНО		104	0.08	0.26	0.08	0.26
BF 79 0.19 0.65 0.19 0.65 CA D ₅ -Chloramphenicol 78 0.10 0.32 0.10 0.33		SP		81	0.08	0.26	0.08	0.26
CA D ₅ -Chloramphenicol 78 0.10 0.32 0.10 0.33		TP		100	0.52	1.72	0.52	1.72
		BF		79	0.19	0.65	0.19	0.65
CD 90 0.17 0.57 0.17 0.50		CA	D ₅ -Chloramphenicol	78	0.10	0.32	0.10	0.32
OF 00 0.1/ 0.3/ 0.1/ 0.3		CP		80	0.17	0.57	0.17	0.57
DF 81 0.52 1.72 0.52 1.72 NEG	NEC	DF		81	0.52	1.72	0.52	1.72
GF D ₆ -Gemfibrozil 86 0.08 0.26 0.08 0.26	NEG	GF	D ₆ -Gemfibrozil	86	0.08	0.26	0.08	0.26
IM 102 0.33 1.11 0.33 1.1		IM		102	0.33	1.11	0.33	1.11
KP D ₅ -Chloramphenicol 77 0.35 1.16 0.35 1.10		KP	D ₅ -Chloramphenicol	77	0.35	1.16	0.35	1.16
MA D ₆ -Gemfibrozil 83 0.31 1.03 0.31 1.0		MA	D ₆ -Gemfibrozil	83	0.31	1.03	0.31	1.03
ATP 86 0.46 1.52 0.46 1.52		ATP		86	0.46	1.52	0.46	1.52
CAM 101 0.35 1.16 0.35 1.16		CAM		101	0.35	1.16	0.35	1.16
CDM 77 0.08 0.27 0.08 0.27		CDM	13C E	77	0.08	0.27	0.08	0.27
EM 103 0.65 2.17 0.65 2.17		EM	C ₂ -Erythromychi	103	0.65	2.17	0.65	2.17
LCM 85 0.08 0.27 0.08 0.27		LCM		85	0.08	0.27	0.08	0.27
RXM 82 1.00 3.33 1.00 3.33		RXM		82	1.00	3.33	1.00	3.33
SD 89 0.26 0.88 0.26 0.88		SD		89	0.26	0.88	0.26	0.88
SDM 76 0.09 0.30 0.09 0.30		SDM		76	0.09	0.30	0.09	0.30
SIM 78 0.05 0.18 0.05 0.18	IТ	SIM		78	0.05	0.18	0.05	0.18
IT SIX 79 0.30 1.00 0.30 1.00	11	SIX		79	0.30	1.00	0.30	1.00
SM 79 0.18 0.60 0.18 0.60		SM		79	0.18	0.60	0.18	0.60
SMP 94 0.14 0.46 0.14 0.46		SMP	130 8-16	94	0.14	0.46	0.14	0.46
SMR 96 0.17 0.57 0.17 0.56		¹³ C ₆ -Sulfmethazine	96	0.17	0.57	0.17	0.57	
SMT 83 0.15 0.50 0.15 0.50		SMT		83	0.15	0.50	0.15	0.50
SMX 79 0.29 0.98 0.29 0.98		SMX		79	0.29	0.98	0.29	0.98
SMZ 80 0.42 1.40 0.42 1.40		SMZ		80	0.42	1.40	0.42	1.40
SQX 88 0.15 0.49 0.15 0.49		SQX		88	0.15	0.49	0.15	0.49
ST 86 0.69 2.31 0.69 2.3		ST		86	0.69	2.31	0.69	2.31

*Recovery rate formula:

Recovery rate (%) =
$$\frac{\text{C (spiked)} - \text{C (non - spiked)}}{\text{The known spiked concentration (100 $\mu g/L$)}} \times 100\%$$

C (spiked): Detected concentrations of the PhAC in spiked sample (µg/L)

C (non-spiked): Detected concentrations of the PhAC in non-spiked sample (µg/L)

All concentrations in the formula specify the concentration after volume.

2. Results and discussions

2.1 Detection frequencies and concentrations

Fig. S1 Concentrations of (a) antibiotics and (b) non-antibiotics in each sampling site

Fig. S2 Average concentrations and detection frequencies of non-antibiotics. The height of bubble is detection frequency and the size of bubble is average concentration.

Fig. S3 Average concentrations and detection frequencies of antibiotics. The height of bubble is detection frequency and the size of bubble is average concentration.

Table S7 Concentrations of target compounds and comparison with other studies

			Concentration range (ng/L)								
		This study		Other studies in Beijing area ^a					Other studies in other area b		
Sampling	Study Area	Beiyun River Basin	Beiyun River Basin	Liangshui, Yongding & Chaobai River	Beiyun River Basin	Qing & Tonghui River (Densely populated area)	Urban area river	Qinzhou Bay, South China	Xianjiang River, China	China (Review)	
information	Sampling Time	2017 NovDec.	2015 Jul. & Nov.	2015 Jul. & Dec.	2013 Mar., Jun. & Sep.	2012 Oct. & Dec.	2008 MayJul.	2017 Aug. & Dec.*	2017 Jan. & Aug.	2005-2016	
Compounds	Abb.	Min-Max (Median)	Min-Max	Min-Max* (Median)	Min-Max (Median)	Mean (Median)- Max	Min-Max	Min-Max *	Min-Max **	Min-Max (Median)***	
Sulfadiazine	SD	0.59-168 (23.9)	2.2-157.4	-	-	-	-	-	0.93-68	n.d870 (46.4)	
Sulfathiazole	ST	n.d1.13 (0.77)	n.d2.1	-	-	-	-	-	-	n.d30.4 (0.4)	
Sulfamerazine	SMR	n.d2.56 (0.82)	n.d5.3	-	-	<u>-</u>	-	-	-	n.d10.8 (n.d.)	
Sulfisoxazole	SIX	0.15-1.38 (0.15)	n.d3.4	_	_	<u>-</u>	_	_	_	<u>-</u>	
Sulfisomidine	SIM	n.d1.13 (0.19)	n.d1.3	_	_	<u>-</u>	_	-	<u>-</u>	<u>-</u>	
Sulfamethoxypyri dazine	SMP	n.d1.26 (0.41)	-	-	-	<u>.</u>	-	-	-	n.d630 (1.7)	
Sulfaquinoxaline	SQX	n.d2.38 (0.26)	<u>-</u>	-	-	-	-	-	<u>-</u>	n.d14 (2.2)	
Sulfamethazine	SMT	0.59-261 (3.28)	-	-	-	-	-	-	<mql-60< td=""><td>n.d3900 (13)</td></mql-60<>	n.d3900 (13)	

Sulfadimethoxine	SDM	n.d0.31 (0.15)	n.d2.0	-		n.d.		-	-	n.d31.8 (n.d.)
Sulfamethoxazole	SMX	20.7-196 (77)	n.d276.2	-	-	39.6-78.9	-	-	<mql- 100</mql- 	n.d145290 (56.4)
Sulfamethizole	SMZ	n.d1.29 (0.6)		-	-	I		-	-	n.d3.47 (n.d.)
Sulfamonomethoxi ne	SM	0.24-97.9 (2.47)		-	-	ŀ		-	-	
Trimethoprim	TP	1.69-137 (27.1)	n.d140.6	91.7-528 (302)	n.d538.5 (54.2)	n.d.	<loq-48< td=""><td>-</td><td>1.35-93</td><td>n.d1515970 (46)</td></loq-48<>	-	1.35-93	n.d1515970 (46)
Erythromycin	EM	n.d364 (64)	n.d1320	-	-	16.9-22.3	269-1153	-	<mql-43< td=""><td>n.d4200 (14.8)</td></mql-43<>	n.d4200 (14.8)
Clarithromycin	CAM	n.d347 (33.2)	n.d96.9	-		28.4-59.7		-	0.55-100	0.02-59.7 (4.16)
Roxithromycin	RXM	n.d327 (37)	-	-	-	53.2-109		-	1.4-190	n.d3700 (47.5)
Tylosin tartrate	TS	n.d1.89 (1.15)	n.d4.1	-	-	ŀ		-	-	n.d570 (n.d.)
Clindamycin	CDM	0.16-65.8 (15.6)	-	-	-	<u> </u>	-	-	_	-
Lincomycin	LCM	0.13-152 (11.3)		-		50.4-180		-	-	n.d919530 (30.5)
Chloramphenicol	CP	0.3-25.9 (3.26)	1.1-22.5	100-249 (158.5)	n.d32.3 (8.2)	1		-	n.d6.1	n.d1700 (3.8)
Nalidixic acid	NA	30.9-323 (135)	n.d34.2	14.1-83.5 (45.7)	n.d116.0 (36.7)		•	-	-	n.d231 (1.3)
Diclofenac acid	DF	0.69-128 (16.7)	1.8-121.6	213-1300 (810)	4.3-150.6 (65.3)	ŀ	55-636	n.d7.17	n.d32	-

Indomethacin	IM	0.48-68.7 (2.54)	n.d74.9	28.2-160 (58.6)	5.8-63.6 (32.6)	56.9-200		n.d1.04	n.d2.7	
Mefenamic acid	MA	n.d4.15 (0.55)	2.0-7.3	1.4-31.3 (24.7)	n.d9.9 (4.2)	1		-	n.d3.9	
Ketoprofen	KP	3.52-219 (51.6)	n.d65.0	-	n.d509.0 (67.6)	ŀ	43-249			
Acetaminophen	ATP	6.2-2110 (156)	n.d3577	_	-	-	-	-	-	_
Bezafibrate	BF	n.d43.3 (4.04)	1.4-42.9	23.4-169 (83.9)	n.d72.7 (22.6)	n.d.	-	-	-	
Clofibric acid	CA	n.d13.2 (0.84)	2.3-11.8	34.5-187 (87.1)	-	-	33-187	n.d0.281	-	-
Gemfibrozil	GF	n.d11.1 (0.74)	n.d8.1	2.6-57.4 (20.1)	n.d63.4 (9.1)	1	-	n.d0.303	-	
Metoprolol	MTP	8.15-1940 (524)	55.3-495.2	91.9-772 (452)	-	66.5-134	<loq-65< td=""><td>-</td><td>-</td><td>-</td></loq-65<>	-	-	-
Propranolol	PHO	0.34-12.5 (3.93)	n.d4.5	n.d3.5 (2.7)	n.d37 (n.d.)	1		n.d0.142		
Carbamazepine	CBZ	1.77-718 (58.7)	10.1-199.5	58.1-183.0 (93.1)	n.d189.0 (56.4)	12-21.3	64-665	n.d0.588	-	
Sulpiride	SP	0.09-288 (50.6)	4.4-127.3	129-450 (355)	-	141.6-200	73-719	-	-	-
Caffeine	CF	12.5-1660 (390)	31.3-2714.1	689-4690 (3020)	33.3-9785 (169.5)	ŀ	902-7051	0.703-26.8	-	-
N,N-diethyl-meta- toluamide	DEET	4.65-924 (107)	2.5-1356.1	19.2-50.7 (36.3)	30.3-546.5 (169.5)	2.3-5.8	712-2514	0.14-2.01	-	

a Reference (Dai et al., 2015; Ma et al., 2017; Wang et al., 2015; Yang et al., 2017; Zhou et al., 2010)

b Reference(Cui et al., 2019; Li et al., 2018; Lin et al., 2018; Yang et al., 2019)

^{*}According to the paper published, concentrations of December are showed.

^{**} According to the paper published, concentrations of January are showed.

^{***} According to the paper published, concentrations of Haihe River are showed.

n.d. No detection in research.

- Not available

Fig. S4 Sum concentrations of main streams (Wenyu and Beiyun River) and tributaries (Qing, Sha, Tonghui, Ba, Lingou, Liangshui and Feng River)

2.2 Clustering analysis based on PhAC compositions

Heat map-hierarchical clustering was often used to reflect the regulation pattern of a large amount of data, for example, to observe the time variation (Zhang et al., 2018) and identify source with specific micropollutants (Carpenter and Helbling, 2018).

Fig. S5 Ratio of sum of concentrations of 5 easy-removal PhACs (CF, ATP, GF, CP and BF) to sum of difficult-removal groups (PHO, CBZ, TP, MTP, NA and SP) in urban rivers.

2.3 Urban wastewater treatment plants (WWTPs) and their receiving rivers

Table S8 Information of urban WWTPs and their receiving rivers

WWTP	Receiving River	Capacity (10 ⁴ m ³ /d)	Bio-treatment	Clarification	Disinfection	
A	Tonghui	100	A/A/O	Sedimentation	Sodium hypochlorite	
В	Qing	60	A/A/O	MBR	Ozone; Sodium hypochlorite	
C	Liangshui	60	A/A/O	Sedimentation	Sodium hypochlorite	
D	Ba	20	Oxidation ditch	Cloth-media	O-ana Cadina hamadalarita	
<u>и</u>	ъа	20	+A/O	filter	Ozone; Sodium hypochlorite	

The information refers to Zhang et al. (Zhang et al., 2018).

Table S9 Concentrations of influent and effluent (Zhang et al., 2018) (ng/L)

Compounds	WWTP A		WWTP B		WWTP C		WWTP D	
	Influent	Effluent	Influent	Effluent	Influent	Effluent	Influent	Effluent
DF	163.1	146.8	128.6	146.8	202.8	156.4	1027.1	115.4
IM	64.6	18.2	42.1	4.9	51.3	31.3	67.2	6.2
MA	10.4	4.5	5.8	1	4.8	3.1	56.7	12.7
KP	184	68.3	100.6	37.7	161.2	205.5	7881	1712.7

BF	191	35.2	106.6	16.1	212.5	81.5	433.7	63.7
CA	19.8	15.6	20.4	4.5	24.4	19.3	28.7	10
GF	13.7	3.8	4.7	0.3	13.7	6.9	220.3	3.6
MTP	662.4	838.9	626.1	48.6	1175	1372.8	794.4	321.2
PHO	0.97	0.97	8.7	1.9	11.8	17.2	6.6	2.4
ATP	6733.7	3.8	4496.1	3.5	6626.7	58.4	8983.9	4.9
CBZ	139.2	180.5	118.6	80.8	164.5	195.4	148.8	43.4
SP	245.7	376.7	343.9	18.6	547.2	426.4	279	71.5
CF	32638.9	93	14454.1	35.6	33039.7	1790.9	32193.8	45.2
DEET	844.5	321.2	983.1	186.5	774.9	250.2	985.1	409.7
SD	64.57	21.49	39.14	1.74	78.94	41.03	33.61	1.22
ST	3.4	0.46	5.3	0.46	3	0.46	15.9	1.4
SMR	3.4	0.79	4.7	0.8	3.6	0.79	2.7	0.79
SIX	2.9	0.76	2.3	0.76	1.8	0.76	13.4	0.8
SIM	1.7	0.66	1.6	0.66	1.3	0.66	0.7	0.66
SMP	0.69	0.69	1.2	0.69	0.69	0.69	2.1	0.69
SQX	1.7	0.87	1.1	0.87	1.2	0.87	0.9	0.87
SMT	9.7	6.3	4.3	0.16	6.8	0.16	9.7	1
SDM	1.01	1.01	1.01	1.01	1.01	1.01	1.01	1.01
SMX	365	121	601	150	982	366	254	41
SMZ	3.6	1.35	2.8	1.35	3.1	1.35	3.9	1.35
SM	3.9	1.37	2	1.37	3.5	1.37	4	1.37
TP	11.2	18	192.9	4.3	423.2	427.8	252.8	10.8
EM	342.7	271.3	299.9	5.6	408.8	189	309.4	23.9
CAM	509.8	319.6	374.4	3.7	639.3	342.6	661.4	22.4
RXM	317	217.3	373.5	5	457.7	269	375.8	25.1
TS	2.04	2.04	2.04	2.04	2.04	2.04	2.04	2.04
CDM	7.8	71.2	76.7	1.5	87.7	353.6	131.3	3.3
LCM	173	197.5	264.3	1.1	814.2	507.9	332.6	3.3
CP	31.9	7.6	29.3	18.4	47.3	18.4	45.6	6
NA	143.8	199.7	135.1	4.7	212.9	131.7	166.2	6

Fig. S6 The removal rates of antibiotics and non-antibiotics in the four urban WWTPs.

Fig. S7 The distribution profile in influents, effluents of four urban WWTPs and their receiving rivers. The yellow line means the effluent from WWTP; the gray line means the influent and the blue line means the river.

2.4 Principal component analysis (PCA) on source apportionment

Principal component analysis is useful for source apportionment. Dai et al. identified three sources of PhACs in Beiyun River: freshly discharging untreated domestic sewage, bioconversion source from wastewater treatment processes or unknown source and treated sewage or naturally attenuated untreated sewage (Dai et al., 2015). Lin et al. also did source analysis with PCA and identified four sources of PhACs in Xiangjiang River (Lin et al., 2018).

3. Reference

- Carpenter, C.M.G., Helbling, D.E., 2018. Widespread Micropollutant Monitoring in the Hudson River Estuary Reveals Spatiotemporal Micropollutant Clusters and Their Sources. Environmental Science & Technology 52, 6187-6196.
- Cui, Y., Wang, Y., Pan, C., Li, R., Xue, R., Guo, J., Zhang, R., 2019. Spatiotemporal distributions, source apportionment and potential risks of 15 pharmaceuticals and personal care products (PPCPs) in Qinzhou Bay, South China. Mar Pollut Bull 141, 104-111.
- Dai, G., Wang, B., Huang, J., Dong, R., Deng, S., Yu, G., 2015. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere 119, 1033-1039.
- Li, S., Shi, W., Liu, W., Li, H., Zhang, W., Hu, J., Ke, Y., Sun, W., Ni, J., 2018. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016). Sci Total Environ 615, 906-917.
- Lin, H., Chen, L., Li, H., Luo, Z., Lu, J., Yang, Z., 2018. Pharmaceutically active compounds in the Xiangjiang River, China: Distribution pattern, source apportionment, and risk assessment. Science of The Total Environment 636, 975-984.
- Ma, R., Wang, B., Yin, L., Zhang, Y., Deng, S., Huang, J., Wang, Y., Yu, G., 2017. Characterization of pharmaceutically active compounds in Beijing, China: Occurrence pattern, spatiotemporal distribution and its environmental implication. Journal of Hazardous Materials 323, 147-155.
- Wang, Z., Zhang, X.H., Huang, Y., Wang, H., 2015. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China. Environ Pollut 204, 223-232.
- Yang, H., Lu, G., Yan, Z., Liu, J., Dong, H., Jiang, R., Zhou, R., Zhang, P., Sun, Y., Nkoom, M., 2019. Occurrence, spatial-temporal distribution and ecological risks of pharmaceuticals and personal care products response to water diversion across the rivers in Nanjing, China. Environ Pollut 255, 113132.
- Yang, L., He, J.T., Su, S.H., Cui, Y.F., Huang, D.L., Wang, G.C., 2017. Occurrence, distribution, and attenuation of pharmaceuticals and personal care products in the riverside groundwater of the Beiyun River of Beijing, China. Environ Sci Pollut Res Int 24, 15838-15851.
- Zhang, Y., Wang, B., Cagnetta, G., Duan, L., Yang, J., Deng, S., Huang, J., Wang, Y., Yu, G., 2018. Typical pharmaceuticals in major WWTPs in Beijing, China: Occurrence, load pattern and calculation reliability. Water Research 140, 291-300.
- Zhou, H., Wu, C., Huang, X., Gao, M., Wen, X., Tsuno, H., Tanaka, H., 2010. Occurrence of selected pharmaceuticals and caffeine in sewage treatment plants and receiving rivers in Beijing, China. Water Environ Res 82, 2239-2248.