

<u>Distributed Computing - 83453 - Homework 1</u>

Due: 2/12/2024

- 1) Assume we are given a network G and a Tree T with a root. The root begins with k items $\{I_1, ..., I_k\}$ of size $O(\log n)$ each, that it needs to deliver to the parties. Each item is designated to a single party, $I_i = (\text{party}_i, \text{value}_i)$ (each party might get zero or more items). Show a synchronous CONGEST algorithm that delivers all items in time O(k + depth(T))
- 2) A 2-approximation of a function $f: G \to \mathbb{R}$, is an algorithm that computes a value $g \in \mathbb{R}$ such that for any graph G we get that $\frac{1}{2}f(G) \le g \le 2f(G)$.
 - Show a synchronous CONGEST algorithm for computing a 2-approximation of the diameter D of the network G in time O(D).
 - (You can assume the existence of a designated node r that begins the computation and needs to give the output)
- 3) Suppose G is a **directed** graph, so that the directed edge $(v \rightarrow u)$ only allows the node v to send messages to u (but not in the other direction).
 - Reminder: a strongly connected directed graph G is such any vertex is reachable from any other vertex by a directed path in G.
 - a. Prove that if G is not strongly connected, then broadcast is impossible in general.
 - b. Prove an existential lower bound of $\Omega(n)$ rounds for broadcast on a directed G.
 - c. Is $\Omega(n)$ also a global lower bound for broadcast on directed G? Prove or give a counterexample.

4) Here is the pseudocode for α -Synchronizer, which executes the synchronous algorithm A over an asynchronous network

- a. Prove that the above algorithm executes any synchronous algorithm
 A, over a LOCAL asynchronous network.
 Specifically, assume A takes L rounds and show that when some node sets i = L+1, it output the correct output of A.
 Argue that all nodes reach i= L+1.
- b. Prove that at any given time, the difference between the value of i for any two neighboring nodes is at most +-1.
- c. Analyze the message complexity of the above Synchronizer α on A. Assume again that A takes L rounds.