Lagrangian density $ \frac{1}{3}t_1 \omega_{\kappa \alpha}^{\ \alpha'} \omega_{\kappa \alpha'}^{\ \kappa'} \omega_{\kappa \lambda'}^{\ \kappa'} + \frac{1}{3}t_2 \omega_{\kappa \lambda'}^{\ \kappa'} \omega_{\kappa \lambda'}^{\ \kappa'} + \frac{1}{3}t_1 \omega_{\kappa \lambda'}^{\ \kappa'} + \frac{1}{3}t_1 \omega_{\kappa \lambda'}^{\ \kappa'} + \frac{1}{3}t_1 \omega_{\kappa \lambda'}^{\ \kappa'} + \frac{1}{3}t_2 \omega_{\kappa \lambda'}^{\ \kappa'} + t_3 \omega_{\kappa \lambda'}^{\ \kappa'} + t$	$\frac{1}{6}t_{2}\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\theta} - \frac{1}{3}t_{1}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\alpha\lambda} + \frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\alpha\lambda} +$ $\frac{1}{6}t_{1}\omega_{\kappa\alpha}^{\alpha}\partial^{\kappa}f'_{1} + \frac{1}{3}t_{1}\omega_{\kappa\lambda}^{\lambda}\partial^{\kappa}f'_{1} + \frac{2}{3}t_{1}\partial^{\alpha}f_{\kappa\alpha}\partial^{\kappa}f'_{1} - \frac{1}{3}t_{1}\partial_{\kappa}f^{\lambda}\partial^{\kappa}f'_{1} +$ $\frac{1}{3}t_{1}\omega_{\beta\kappa}^{\alpha}\partial^{\kappa}f'_{1} + \frac{1}{3}t_{2}\omega_{\beta\kappa}^{\beta}\partial^{\kappa}f'_{1} + \frac{4}{3}t_{1}\omega_{\beta\kappa}^{\beta}\partial^{\kappa}f'_{1} - \frac{1}{3}t_{2}\omega_{\kappa}g^{\lambda}f'_{1} +$ $\frac{1}{3}t_{1}\omega_{\beta\kappa}^{\alpha}\partial^{\kappa}f'_{1} - \frac{1}{3}t_{2}\omega_{\beta\kappa}^{\beta}\partial^{\kappa}f'_{1} + \frac{2}{3}t_{1}\omega_{\kappa}^{\beta}\partial^{\kappa}f'_{1} + \frac{2}{3}t_{2}\omega_{\beta\kappa}^{\beta}\partial^{\kappa}f'_{1} -$ $\frac{1}{3}t_{1}\omega_{\beta}^{\alpha}\partial^{\kappa}f'_{1} - \frac{1}{3}t_{2}\omega_{\beta}^{\beta}\partial^{\kappa}f'_{1} + \frac{1}{3}t_{1}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} - \frac{1}{3}t_{2}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} +$ $\frac{1}{3}t_{1}\omega_{\beta}^{\alpha}\partial^{\kappa}f'_{1} - \frac{1}{3}t_{1}\omega_{\beta}^{\lambda}\partial^{\kappa}f'_{1} + \frac{1}{3}t_{1}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} - \frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} +$ $\frac{1}{3}t_{1}\omega_{\beta}^{\alpha}\partial^{\kappa}f'_{1} - \frac{1}{3}t_{1}\omega_{\beta}^{\lambda}\partial^{\kappa}f'_{1} + \frac{1}{3}t_{1}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} - \frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} +$ $\frac{1}{3}t_{1}\omega_{\beta}^{\alpha}\partial^{\kappa}f'_{1} - \frac{1}{3}t_{2}\omega_{\beta}^{\lambda}f'_{1} + \frac{1}{3}t_{1}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} - \frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}\partial^{\kappa}f_{\lambda} +$	$\frac{1}{3}t_{1}\partial_{k}f_{\theta}^{\lambda}\partial^{k}f_{\lambda}^{\lambda} - \frac{1}{6}t_{2}\partial_{k}f_{\theta}^{\lambda}\partial^{k}f_{\lambda}^{\lambda} + \frac{2}{3}t_{1}\partial_{k}f^{\lambda}\partial^{k}f_{\lambda}^{\lambda} + \frac{1}{3}t_{2}\partial_{k}\omega^{\alpha\beta\theta}\partial^{k}\omega_{\alpha\beta\theta} + \frac{1}{6}t_{2}\partial_{k}f_{\lambda}^{\lambda} + \frac{1}{3}r_{2}\partial_{k}\omega^{\alpha\beta\theta}\partial^{k}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{2}\partial_{k}\omega^{\alpha\beta\theta}\partial^{k}\omega_{\alpha\beta\theta} + \frac{2}{3}r_{2}\partial_{k}\omega^{\alpha\beta\theta}\partial^{k}\omega_{\alpha\beta\theta} - \frac{2}{3}r_{2}\partial^{\beta}\omega^{\lambda}\partial^{\lambda}\omega_{\alpha\beta}^{\lambda} + \frac{2}{3}r_{2}\partial^{\beta}\omega^{\lambda}\partial^{\lambda}\omega_{\alpha\beta}^{\lambda} - 4r_{3}\partial_{\alpha}\omega^{\lambda}\partial^{\lambda}\omega_{\alpha\beta}^{\lambda} + 4r_{3}\partial_{\theta}\omega^{\lambda}\partial^{\lambda}\omega_{\alpha\beta}^{\lambda} - 4r_{3}\partial_{\alpha}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\beta}^{\mu} + 4r_{3}\partial_{\theta}\omega_{\lambda}^{\alpha}\partial^{\lambda}\omega_{\beta}^{\mu} + 4r_{3}\partial_{\theta}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\beta}^{\mu} + 4r_{3}\partial_{\phi}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\beta}^{\mu} + 4r_{3}\partial_{\phi}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\beta}^{\mu} + 4r_{3}\partial_{\phi}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\beta}^{\mu} + 4r_{3}\partial_{\phi}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\lambda}^{\mu} + 4r_{3}\partial_{\phi}\omega_{\lambda}^{\mu}\partial^{\lambda}\omega_{\lambda}^{\mu}\partial^{\omega$	V.J.,
? $J^{P} = 0$? ? ? ? ?	Massive particle Pole residue: $-\frac{1}{r_2} > 0$ Polarisations: 1 Square mass: $-\frac{t_2}{r_2} > 0$ Spin: 0 Parity: Odd	(No massless particles) Unitarity conditions $r_2 < 0 \&\& t_2 > 0$	

$ au_1^{\#2}$	0	0	0	$\frac{12ik}{(3+4k^2)^2t_1}$	$\frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$	0	$\frac{24 k^2}{(3+4 k^2)^2 t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0 0 0 0		0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0 0		$\frac{6\sqrt{2}}{(3+4k^2)^2t_1}$	$\frac{12}{(3+4k^2)^2t_1}$	0	$\frac{12ik}{(3+4k^2)^2t_1} - \frac{12i\sqrt{2}k}{(3+4k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	$ \begin{array}{c} 0\\ 6\\ (3+4k^2)^2 t_1\\ 6\sqrt{2}\\ (3+4k^2)^2 t_1 \end{array} $		0	$-\frac{12ik}{(3+4k^2)^2t_1}$	
$\tau_{1}^{\#1}_{\alpha\beta}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	$\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$-\frac{ik(t_1+4t_2)}{3(1+k^2)^2t_1t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$		$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$-\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
	$\sigma_1^{\#1} + ^{\alpha \beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1+}^{\#1} + ^{\alpha\beta}$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_{1}^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$ au_1^{\#2} +^{lpha}$

$f_{1}^{\#2}$	0	0	0	<i>ikt</i> 1 3	$\frac{1}{3}\bar{l}\sqrt{2}kt_1$	0	$\frac{2k^2t_1}{3}$	
$f_{1^{ ext{-}}}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0	
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{3\sqrt{2}}$	<u>f1</u> 3	0	$-\frac{1}{3}\bar{l}kt_1-\frac{1}{3}\bar{l}\sqrt{2}kt_1$	
$\omega_{1^{^{-}}\alpha}^{\#1}$	0	0	0	6 6	$\frac{t_1}{3\sqrt{2}}$	0	$-\frac{1}{3}\bar{l}kt_1$	
${f}_{1}^{\#1}_{+}\alpha_{\beta}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	$\frac{1}{3}$ i k (t ₁ + t ₂)	$\frac{1}{3}k^{2}(t_{1}+t_{2})$	0	0	0	0	
$\omega_1^{\#_2}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{t_1+t_2}{3}$	$-\frac{1}{3}ik(t_1+t_2)\left \frac{1}{3}k^2(t_1+t_2)\right $	0	0	0	0	
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0	
	$\omega_{1}^{\#1} + \alpha \beta^{-\frac{1}{6}}$	$\omega_1^{\#2} + ^{\alpha \beta}$	$f_{1}^{\#1} \dagger^{\alpha \beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_{1}^{\#2} +^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} +^{\alpha}$	

 $\omega_{2}^{\#1}$ $\omega_{2}^{\#1}$ $\alpha_{2}^{\#1}$ $\alpha_{2}^{\#1}$ α_{2}

*t*₁ 2

0

0

 $k^2 t_1$

	7. 7	1kt ₁	- h	0						
	+ + +	$\int_{2}^{\pi} + \alpha \beta$		$+ \frac{\alpha \beta \chi}{1}$			$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
7	$\omega_{2}^{*_1}$	$f_2^{\#}$		$\omega_{2}^{\#1}$		$\omega_{0^+}^{\sharp 1}$ †	$6 k^2 r_3$	0	0	0
	#1	ı -	<i>+</i> 1	#2	# 2	$f_{0}^{#1}\dagger$	0	0	0	0
Ī	$\sigma_{0}^{#1}$	τ ₀	<u></u>	$\tau_{0}^{\#2}$	$\sigma_0^{\#1}$	$f_{0}^{#2}$ †	0	0	0	0
†	$\frac{1}{6k^2r}$	- ()	0	0	$\omega_0^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$
†	0	()	0	0					

$\sigma_{2^{-}}^{\#1}$	0	0	2 t1	
$\tau_2^{\#1}_+\alpha\beta$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{\#1}{}_+\alpha\beta$	1 —	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_{2}^{\#1} + \alpha \beta$	$a_{2}^{*1} + \alpha \beta \chi$	

			•)	O K 13
	0 0 $k^2 r_2 + t_2$		0	0	0
			0	0	0
			0	0	0
t_1	2	0	0	$\sigma_{2^{-}}^{\#1} \alpha eta \chi$	
	1) ² t ₁	$\frac{\overline{2}k}{)^2t_1}$	ιβ	