

6 Упаковка коробок

1 Стандартный

1 000 Mc

Условие задачи

У вас есть n машин, каждая грузоподъемностью k килограмм. Вам дали заказ доставить m коробок в другой город. Известно, что вес каждой коробки является степенью двойки, отсюда i-я коробка весит $2^{a[i]}$ килограмм. Для транспортировки вы используете все имеющиеся n машин, в которые стараетесь погрузить максимальное количество груза. Определите, за какое минимальное число транспортировок вы сможете доставить все mкоробок.

Набор тестов

Скачать

Входные данные

Каждый тест состоит из нескольких наборов входных данных.

Первая строка содержит целое число t (1 $\leq t \leq$ 100) — количество наборов входных данных.

Далее следует описание наборов входных данных.

Первая строка каждого набора входных данных содержит два числа n и k (1 $\leq n \leq$ 10⁴, $1 \le k \le 10^9$) — количество машин и их грузоподъемность.

Вторая строка каждого набора входных данных содержит число m (1 $\leq m \leq$ 10⁴) количество коробок.

В третьей строке каждого набора входных данных даются m чисел — a[i] (0 $\leq a[i] \leq$ 29), где вес i-й коробки равен $2^{a[i]}$ (1 $\leq 2^{a[i]} \leq k$).

Разделить коробку нельзя.

Для одной транспортировки можно использовать до n машин.

Гарантируется, что за какое-то количество поездок все коробки могут быть доставлены.

Выходные данные

Выведите число — минимальное количество транспортировок, чтобы доставить все m коробок

Группа	Ограничения					Баллы
	t	n	k	m	a[i]	Dailibi
1	$t \leqslant 5$	$n \leqslant 10$	$k \leqslant 100$	$m \leqslant 6$	$a[i] \leqslant 6$	10
2	$t \leqslant 50$	$n \leqslant 100$	$k \leqslant 10^6$	$m \leqslant 200$	$a[i] \leqslant 19$	20
3	$t \leqslant 100$	$n \leqslant 10^4$	$k \leqslant 10^9$	$m \leqslant 10^4$	$a[i] \leqslant 29$	30

В первом тесте имеется 2 машины, вес коробок, соответственно: [1, 8, 2, 16, 8, 8].

В первой транспортировке на первую машину можно положить коробку [16], на вторую: [1, 8, 8].

Во второй транспортировке на первую машину можно положить коробку [2], на вторую: [8].

Можно доказать, что минимальное количество транспортировок равно 2, чтобы доставить все коробки.

Пример теста 1

Входные данные

ходные данные

2 17

0 3 1 4 3 3

Выходные данные

2