

AD-787 403

INVESTIGATION OF THE EFFECT OF WATER
SATURATION ON THE VELOCITY OF ULTRA-
SONICS IN CERTAIN ROCKS AT HIGH PRESSURES

T. S. Lebedev, et al

Foreign Technology Division
Wright-Patterson Air Force Base, Ohio

18 September 1974

DISTRIBUTED BY:

UNCLASSIFIED
Security Classification

AD-787 403

DOCUMENT CONTROL DATA - R & D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author) Foreign Technology Division Air Force Systems Command U. S. Air Force		2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
3. REPORT TITLE INVESTIGATION OF THE EFFECT OF WATER SATURATION ON THE VELOCITY OF ULTRASONICS IN CERTAIN ROCKS AT HIGH PRESSURES		2b. GROUP
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Translation		
5. AUTHOR(S) (First name, middle initial, last name) T. S. Lebedev and D. V. Korniyets		
6. REPORT DATE 11-16 October 1971	7a. TOTAL NO. OF PAGES 9	7b. NO. OF REFS 0
8. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S REPORT NUMBER(S) FTD-HC-23-1608-74	
d. PROJECT NO. c. d.	9b. OTHER REPORT NO(S) (Any other numbers that may be assigned to this report)	
10. DISTRIBUTION STATEMENT Approved for public release; distribution unlimited.		
11. SUPPLEMENTARY NOTES	12. SPONSORING MILITARY ACTIVITY Foreign Technology Division Wright-Patterson AFB, Ohio	
13. ABSTRACT 08		

Reproduced by
**NATIONAL TECHNICAL
INFORMATION SERVICE**
U. S. Department of Commerce
Springfield, VA 22161

DD FORM 1 NOV 68 1473

UNCLASSIFIED
Security Classification

U. S. BOARD ON GEOGRAPHIC NAMES TRANSLITERATION SYSTEM

Block	Italic	Transliteration	Block	Italic	Transliteration
А а	А а	A, a	Р р	Р р	R, r
Б б	Б б	B, b	С с	С с	S, s
В в	В в	V, v	Т т	Т т	T, t
Г г	Г г	G, g	Ү ү	Ү ү	U, u
Д д	Д д	D, d	Ф ф	Ф ф	F, f
Е е	Е е	Ye, ye; E, e*	Х х	Х х	Kh, kh
Ж ж	Ж ж	Zh, zh	Ц ц	Ц ц	Ts, ts
З з	З з	Z, z	Ч ч	Ч ч	Ch, ch
И и	И и	I, i	Ш ш	Ш ш	Sh, sh
Й й	Й й	Y, y	Щ щ	Щ щ	Shch, shch
К к	К к	K, k	Ь ъ	Ь ъ	"
Л л	Л л	L, l	Ы ы	Ы ы	Y, y
М м	М м	M, m	Ь ь	Ь ь	'
Н н	Н н	N, n	Э э	Э э	E, e
О о	О о	O, o	Ю ю	Ю ю	Yu, yu
П п	П п	P, p	Я я	Я я	Ya, ya

*ye initially, after vowels, and after ъ, ъ; е elsewhere.
When written as ё in Russian, transliterate as ye or ё.
The use of diacritical marks is preferred, but such marks
may be omitted when expediency dictates.

* * * * *

GRAPHICS DISCLAIMER

All figures, graphics, tables, equations, etc.
merged into this translation were extracted
from the best quality copy available.

RUSSIAN AND ENGLISH TRIGONOMETRIC FUNCTIONS

Russian	English
sin	sin
cos	cos
tg	tan
ctg	cot
sec	sec
cosec	csc
sh	sinh
ch	cosh
th	tanh
cth	coth
sch	sech
csch	csch
arc sin	\sin^{-1}
arc cos	\cos^{-1}
arc tg	\tan^{-1}
arc ctg	\cot^{-1}
arc sec	\sec^{-1}
arc cosec	\csc^{-1}
arc sh	\sinh^{-1}
arc ch	\cosh^{-1}
arc th	\tanh^{-1}
arc cth	\coth^{-1}
arc sch	sech^{-1}
arc csch	csch^{-1}

rot	curl
lg	log

1.4

FTD-HC-23-1608-74

EDITED TRANSLATION

FTD-HC-23-1608-74

18 September 1974

**INVESTIGATION OF THE EFFECT OF WATER SATURATION
ON THE VELOCITY OF ULTRASONICS IN CERTAIN ROCKS
AT HIGH PRESSURES**

By: T. S. Lebedev and D. V. Korniyets

English pages: 4

**Source: Fizicheskiye Svoystva Gornykh Porod Pri
Vysokikh Termodinamicheskikh Parametrah.
11-16 October 1971, pp. 23-26**

Country of Origin: USSR

Translated under: F33657-72-D-0854-0004

Requester: FTD/PDTN

**Approved for public release;
distribution unlimited.**

D D C
REF ID: A65112
OCT 31 1974
D

THIS TRANSLATION IS A RENDITION OF THE ORIGINAL FOREIGN TEXT WITHOUT ANY ANALYTICAL OR EDITORIAL COMMENT. STATEMENTS OR THEORIES ADVOCATED OR IMPLIED ARE THOSE OF THE SOURCE AND DO NOT NECESSARILY REFLECT THE POSITION OR OPINION OF THE FOREIGN TECHNOLOGY DIVISION.

PREPARED BY:

**TRANSLATION DIVISION
FOREIGN TECHNOLOGY DIVISION
WP-AFB, OHIO.**

FTD-HC-23-1608-74

Date 18 Sep 19 74

1-C

Investigation of the Effect of Water Saturation on the Velocity of Ultrasonics in Certain Rocks at High Pressures

T.S. Lebedev, D.V. Korniyets

(Institute of Geophysics, Ukrainian SSR Academy of Sciences, Kiev)

Studying the influence of water saturation in magmatic rock on changes in elastic properties under conditions of high thermodynamic parameters is quite timely, since it is connected with explaining the factors affecting changes in the speed of elastic waves in the plutonic zones of the earth's crust. Only isolated works on this question are known.

We conducted investigations to clarify the features of the changes in the velocity of ultrasound (v_p) at atmosphere pressure and over the whole range of confined pressures (to $5 \cdot 10^3$ kgf/cm²) in samples of several types of magmatic rock of the Ukrainian layer with the natural moisture content (air-dry), water saturated and dry*. For this two identical cylindrical samples were prepared from each of four ore specimens of diorite, granodiorite-sorbite, quartz monzonite and porphyritic granite. After measuring the initial speed (v_{p0}) at natural moisture content the experimental samples underwent water saturation under vacuum conditions. Then the velocity (v_{p1}) was again determined in them, after which all samples (experimental-water saturated and air-dry control) were covered with a water

* T.S. Lebedev, D.V. Korniyets, Geofiz. sb. AN USSR (Geophysical Collection, Ukrainian SSR Academy of Sciences), 1971, 38, pp. 3-11.

impermeable oil film and subjected to the first experimental cycle at confined pressure. Further, after removal of the protective covering the experimental samples were dried at 100° C and saturated with water again. Each such process ended with a measurement of the speed (v_{p2} and v_{p3} , respectively). Then these samples were again covered with protective film and subjected to a second trial under high P with simultaneous registration of the change in $v_p = f(p)$. Finally the experimental samples were dried again and for the last time subjected to test under high P. Aside from the data obtained in the above sequence, the total porosity and volume moisture content of the samples were determined.

Analysis of the experimental results allows one to establish that forced water saturation of air-dry magmatic rock samples with a porosity $n < 1\%$ changes v_{p0} very little. In rocks with $n = 1.3 - 2.4\%$ an increase in v_{p0} is observed, but only by 0.1-0.15 km/sec. The most considerable change in v_p (by 8-24%) is only characteristic of samples which were dried. However even after water saturation their speed (v_{p3}) still remained lower than the initial by 2-5%. Therefore water saturation does not fully compensate for the disturbance of acoustical contact between rock grains.

Reproduced from
best available copy.

FTD-HC-23-1608-74

The results of experiments at high pressures (P), partially presented in the figure as graphs of $v_p = f(p)$, show that an intense increase in v_p in the rock samples studied occurs independent of their water saturation on increasing P from atmospheric to $0.6-1 \cdot 10^3 \text{ kgf/cm}^2$. Then monotonic changes in rate are observed. Even in the initially air-dried and then water-saturated sample the value of v_p was $0.25-0.55 \text{ km/sec}$ lower than that at $1 \cdot 10^3 \text{ kgf/cm}^2$. The presence of liquid in the intergranular spaces of the samples enhances the disturbed acoustical contact and increases the initial speed which leads only to a less clearly expressed increase in v_p in the range up to $1 \cdot 10^3 \text{ kgf/cm}^2$. At higher pressures a further elevation in v_p occurs in water saturated and dry samples with the same gradually decreasing gradient. Therefore the water saturation does not prevent the gradual compression of the rocks. The correlation of the v_p value in rock samples at high pressures also does not reveal any effect connected with moisture content, since the nearly linear portions of the graphs (respectively curve pairs 1,2 and 3,4) coincide or are located within the confidence limits of the values. Thus one may conclude that the degree of water saturation does not exert a significant effect on the rate of propagation of elastic waves in magmatic rocks of the deep layers of the earth's crust.