

Pré-processamento de Dados

Terminologia Limpeza de Dados

Huei Diana Lee

Inteligência Artificial CECE/UNIOESTE-FOZ

Terminologia

Terminologia

Conceitos

Tipos de "coisas" que se pode aprender

Exemplos:

- Objetos
- Casos
- Ocorrências específicas do conceito

Atributos:

- Características
- Campos
- Variáveis

Valores de atributos

Podem ser definidos por:

– Tipo

Grau de quantização nos dados

Escala

Significância relativa dos valores

Conhecer o tipo/escala dos atributos auxilia a identificar o modo adequado de preparar os dados e posteriormente modelá-los

Quantitativo (numérico)

- Representa <u>quantidades</u>
- Valores podem ser ordenados e usados em operações aritméticas
- Podem ser contínuos ou discretos
- Possuem unidade associada

Qualitativo (simbólico ou categórico)

- Representa <u>qualidades</u>
- Valores podem ser associados a categorias
- Alguns podem ser ordenados, mas operações aritméticas não são aplicáveis
- Ex. {pequeno, médio, grande}

Atributos Quantitativos

Contínuos

- Podem assumir um número infinito de valores
- Geralmente resultados de medidas
- Frequentemente representados por números reais
- Ex. peso, distância

Discretos

- Número finito ou infinito contável de valores
- Caso especial: atributos binários (booleanos)
- Ex. {12, 23, 45}, {0, 1}

Ex. Conjunto de dados hospital

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	M	79	Grandes	38,0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	M	92	Grandes	38,0	2	RS	Saudável
1920	José	18	M	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	M	67	Médias	38,4	2	GO	Saudável

Qualitativo

Quantitativo discreto

Quantitativo contínuo

Ex. Conjunto de dados hospital

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	M	79	Grandes	38,0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	M	92	Grandes	38,0	2	RS	Saudável
1920	José	18	M	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	M	67	Médias	38,4	2	GO	Saudável

Qualitativo

tativo discreto

Quantitativo contínuo

Observar atributo Peso

Ex. Conjunto de dados hospital

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	M	79	Grandes	38,0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	M	92	Grandes	38,0	2	RS	Saudável
1920	José	18	M	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	M	67	Médias	38,4	2	GO	Saudável

Alguns atributos qualitativos são representados por números, mas não faz sentido a utilização de operadores aritméticos sobre seus valores

Define operações que podem ser realizadas sobre os valores dos atributos:

- Nominais
- Ordinais
- Intervalares
- Racionais

 Define operações que podem ser realizadas sobre os valores dos atributos

```
NominaisQualitativosOrdinais
```

- Intervalares
- Racionais

- Define operações que podem ser realizadas sobre os valores dos atributos
 - Nominais
 - Ordinais

Intervalares

Racionais

Quantitativos

Escala nominal

- Valores são nomes diferentes e carregam a menor quantidade de informação possível
- Não existe relação de ordem entre os valores
- Operações aplicáveis: =, ≠
- Ex.: número de conta em banco, cores, sexo

Escala ordinal

- Valores refletem ordem das categorias representadas
- Operações aplicáveis: =, ≠,
 <, >, ≥, ≤
- Ex.: hierarquia militar, avaliações qualitativas de temperatura

Escala intervalar

- Números que variam em um intervalo
- É possível definir ordem e diferença em magnitude entre dois valores
- Origem da escala definida de maneira arbitrária
- Operações aplicáveis: =, ≠, <, >,
 ≤, ≥, +, -
- Ex.: temperatura em °C ou °F, datas

Escala racional

- Carregam mais informações
- Têm significado absoluto (existe 0 absoluto)
- Razão tem significado
- Operações aplicáveis: =, ≠,
 <, >, ≤, ≥, +, −, *, /
- Ex.: tamanho, distância, salário, saldo em conta

Ex. conjunto de dados hospital

ld.	Nome	ldade	Sexo	Peso	Manchas	Temp.	# Int.	Est.	Diagnóstico
4201	João	28	M	79	Grandes	38,0	2	SP	Doente
3217	Maria	18	F	67	Pequenas	39,5	4	MG	Doente
4039	Luiz	49	M	92	Grandes	38,0	2	RS	Saudável
1920	José	18	M	43	Grandes	38,5	20	MG	Doente
4340	Cláudia	21	F	52	Médias	37,6	1	PE	Saudável
2301	Ana	22	F	72	Pequenas	38,0	3	RJ	Doente
1322	Marta	19	F	87	Grandes	39,0	6	AM	Doente
3027	Paulo	34	M	67	Médias	38,4	2	GO	Saudável

Nominal Ordinal Intervalar Racional

- Por que especificar os tipos de atributos?
 - Para que comparações e aprendizado de conceitos sejam feitos corretamente
 - Tempo > "ensolarado" não faz sentido, enquanto que Humidade > 70 faz sentido
- Usos adicionais para tipos de atributos:
 - Verificar validade de valores
 - Tratar valores faltantes
 - Entre outros

Limpeza de Dados

Aquisição de dados

Valores faltantes

Formato unificado de datas

Conversão de nominais para numéricos

Detecção de duplicados

Limpeza de Dados Aquisição

- Dados podem estar em SGBD
- Dados em arquivos texto (flat file)
 - Formato delimitado: tab, vírgula e outros
 - Por exemplo: C4.5 (.data) e Weka (.arff) usam dados delimitados por vírgulas

Limpeza de Dados Reformatação

- Converter os dados para o formato padrão (ex. arff. data ou csv)
- Tratar valores faltantes (VF) (Missing values)
- Tratar outliers
- Converter valores nominais ordenados para valores numéricos

Limpeza de Dados Significados para o Termo VF

- Faltantes de modo randômico:
 - Em geral é o melhor caso
 - Usualmente não são verdadeiros
- Faltantes de modo não randômico
- Presupostos como valores normais e portanto não mensurados
- Faltante por casualidade:
 - Por causa de valores de outros atributos ou por causa do valor do atributo meta

Limpeza de Dados

Por que VF existem?

Defeito de equipamentos

Mensurações incorretas

Dados de censos ou dados anônimos

Falta de preenchimento manual de dados

- Bastante frequente em questionários para cenários médicos
- Muito baixa frequência de valores faltantes pode ser suspeito

Limpeza de Dados

Por que VF são Importantes?

Perda de eficiência:

Menos padrões são extraídos ou conclusões são estatisticamente menos fortes

Complicações na manipulação e análise de dados:

Em geral, os métodos não estão preparados para tratar valores faltantes

Bias resultante da diferença entre valores faltantes e completos:

Métodos de Mineração de Dados geram modelos diferentes

Limpeza de Dados Estratégias para Tratar VF

Descartar exemplos com valores faltantes:

- Estratégia mais simples
- Permite o uso de métodos sem modificá-los
- Funciona se há poucos exemplos com valores faltantes, caso contrário pode-se introduzir bias

Limpeza de Dados Estratégias para Tratar VF

Converter os valores faltantes em novos valores:

- Usar um valor especial para isso
- Adicionar um atributo que identifica se o valor é faltante ou não
- Aumenta bastante a dificuldade de se realizar o processo de Mineração de Dados

Limpeza de Dados Estratégias para Tratar VF

Métodos de imputação:

- Atribui um valor para o faltante baseado no restante do conjunto de dados
- Permite o uso de métodos sem modificá-los

Limpeza de Dados

Imputação de Dados

Adequado para valores faltantes de modo randômico

Não adequado para valores faltantes de modo não randômico

Limpeza de Dados Do Not Impute (DNI)

- Simplesmente use a estratégia de VF do algoritmo
- Adequado somente se tal estratégia existe
- Exemplo para aprendizado de regras:
 Atributos com VF seriam considerados irrelevantes

Limpeza de Dados Random Imputation

- Predizer VF e adicionar componente de erro escolhido de modo randômico
- Repetir diversas vezes para melhorar a estimativa do erro

Limpeza de Dados Most Common (MC) value

- Se os VF são:
 - Contínuos, substituir pela média
 - Discretos, substituir pela moda
- Simples e rápido de ser computado
- Assume que cada variável apresenta

distribuição normal

Limpeza de Dados

Concept Most Common (CMC) value

- Refinamento da estratégia
 MC
- O VF é substituído pela média/moda computada a partir dos exemplos pertencentes à mesma classe
- Assume que a distribuição de um atributo para todos os exemplos da mesma classe é normal

Limpeza de Dados

Imputação com *k-Nearest Neighbour* (KNNI)

- Selecionar os k vizinhos mais próximos
- Substituir os VF com a média/moda desses k exemplos

Conversão de Dados

Alguns algoritmos tratam internamente valores nominais

Outros métodos requerem apenas valores numéricos como entrada (RNA, kNN, Regressão)

Conversão Binário para Numérico

- Campos Binários como gênero M e F
- Converter para valores 0 e 1
 - Gender = M \rightarrow Gender $0_1 = 0$
 - Gender = F \rightarrow Gender 0 1 = 1

Conversão Ordenado para Numérico

 Atributos ordenados, como Nota, podem ser convertidos para números preservando a ordem natural

- $-A \rightarrow 4.0$
- $-A-\rightarrow 3.7$
- $-B+\rightarrow 3.3$
- $-B \rightarrow 3.0$
- Porque é importante preservar a ordem natural?

Conversão Ordenado para Numérico

Ordem natural permite comparações com significado, por exemplo, Nota > 3.5

Conversão Nominal com Poucos Valores

Atributos multivalorados desordenados com poucos valores podem ser transformados para binários (*rule of thumb < 20*)

- Exemplo, Color=Red, Orange, Yellow, ..., Violet
- Para cada valor, criar uma "flag" binária em que 1 está presente e 0 caso contrário

ID	Color	
371	red	
433	yellow	

ID	C_red	C_orange	C_yellow	
371	1	0	0	
433	0	0	1	

Conversão Nominal com Muitos Valores

• Exemplos:

- US State Code (50 valores)
- Profession Code (7,000 valores, mas apenas poucos frequentes)
- Como tratar:
 - Ignorar os Id-like cujos valores são únicos para cada registro
 - Para os outros campos, agrupar naturalmente os valores:
 - 50 *US States* → 3 ou 5 regiões
 - Profession Code → selecionar as mais frequentes e agrupar o restante
- Criar flags binárias para valores selecionados

Transformando Ordinal para Booleano

- Codificar n valores em n-1 atributos booleanos
- Exemplo: atributo "temperatura"

Original data

	Transform	ed data
Tomporatura	Id	Tompore

Temperature				
Cold				
Medium				
Hot				

Temperature > cold	Temperature > medium
False	False
True	False
True	True

Alguns slides foram baseados em apresentações de:

- Profa. Huei Diana Lee
- Profa, Maria Carolina Monard
- Prof. Ronaldo Cristiano Prati.
- Prof. Walter Nagai
- Prof. E. Keogh
- Prof. Nitin Patel
- Prof. José Augusto Baranauskas
- Prof. Gustavo E.A.P.A. Batista
- Prof. Patrick H. Winston
- Profa. Ana Carolina Lorena
- Prof. André C. P. L. F. Carvalho
- Prof .Ricardo Campello
- Profa. Solange O. Rezende
- Prof. Marcilio C. P. Souto
- Prof .Carlos Soares
- Prof. Paulo Horst
- Profa, Aurora Trinidad Ramirez Pozo