Calculating the Training Speed of an LLM Transformer Model in FLOPs

Estimating the number of floating-point operations (FLOPs) required to train a Transformer-based Large Language Model (LLM) is crucial for understanding the computational resources needed. This guide provides a detailed walkthrough on how to calculate the FLOPs for training the example model previously discussed.

Table of Contents

- Calculating the Training Speed of an LLM Transformer Model in FLOPs
 - Table of Contents
 - Introduction
 - Why FLOPs Matter
 - Components Contributing to FLOPs
 - FLOPs Calculation per Component
 - Notation
 - Embedding Layer
 - Multi-Head Attention
 - Steps:
 - Calculations:
 - Feed-Forward Network
 - Layer Normalization
 - Activation Functions
 - Total FLOPs per Forward and Backward Pass
 - Forward Pass
 - Backward Pass
 - Total FLOPs per Training Step
 - Example Calculation
 - Given
 - Calculating FLOPs for One Layer
 - Embedding Layer FLOPs
 - Multi-Head Attention FLOPs
 - Feed-Forward Network FLOPs
 - Layer Normalization FLOPs
 - Total FLOPs per Layer
 - Total FLOPs for All Layers
 - Total FLOPs for Forward and Backward Pass
 - Additional Considerations
 - Conclusion
 - References

Introduction

When training a neural network, especially large models like Transformers, it's important to estimate the computational cost. The number of floating-point operations (FLOPs) gives a hardware-agnostic measure of computational complexity.

Why FLOPs Matter

- **Resource Planning**: Helps in selecting appropriate hardware.
- Performance Benchmarking: Allows comparison between different models.
- Energy Consumption Estimation: Higher FLOPs often mean more energy usage.
- Optimization: Identifying bottlenecks to improve efficiency.

Components Contributing to FLOPs

The FLOPs count comes from:

- 1. Embedding Layer
- 2. Multi-Head Attention (MHA)
- 3. Feed-Forward Network (FFN)
- 4. Layer Normalization
- 5. Activation Functions

FLOPs Calculation per Component

Notation

- Batch Size: (B)
- Sequence Length: (L)
- Model Dimension: (d_{\text{model}})
- Feed-Forward Dimension: (d_{\text{ff}})
- Number of Heads: (h)
- Number of Layers: (N)

Embedding Layer

- Operation: Lookup + Addition
- FLOPs per Token:
 - Token Embedding: None (lookup operation)
 - Positional Embedding: None (lookup operation)
 - Addition of embeddings: (d_{\text{model}}) FLOPs per token
- Total FLOPs:
 - (\text{Embedding Addition FLOPs} = B \times L \times d_{\text{model}})

Multi-Head Attention

Steps:

1. Linear Projections: Query ((Q)), Key ((K)), Value ((V))

2. Scaled Dot-Product Attention

- Compute attention scores
- Apply softmax
- Compute attention output

3. Output Projection

Calculations:

- 1. Linear Projections (Q, K, V)
 - FLOPs per Projection:
 - (2\times B\times L\times d_{\text{model}}\times d_{\text{model}})
 - Factor of 2 accounts for multiply and add operations in matrix multiplication.
 - Total for Q, K, V:
 - (3\times 2\times B\times L\times d_{\text{model}}^2)

2. Attention Scores

- Compute Scores:
 - (B\times h\times L\times L\times \frac{d_{\text{k}}}{h})
 - Since (d_{\text{k}} = \frac{d_{\text{model}}}{h}), this simplifies.
 - FLOPs:
 - (2\times B\times h\times L^2\times \frac{d_{\text{model}}}{h} = 2\times B \times L^2 \times d_{\text{model}})

3. **Softmax**

- FLOPs:
 - **Exponentials and Divisions**: Approximately (5) FLOPs per element.
 - Total FLOPs:
 - (5 \times B \times h \times L^2)

4. Weighted Sum

- FLOPs:
 - (2\times B\times L^2\times L^2\times L^2\times B\times L^2\times d_{\text{model}})

5. Output Projection

- FLOPs:
 - (2\times B\times L\times d {\text{model}}^2)

Feed-Forward Network

Consists of two linear transformations with an activation function in between.

1. First Linear Layer

- FLOPs:
 - (2\times B\times L\times d_{\text{model}}\times d_{\text{ff}})

2. Activation Function

- Assuming GELU Activation:
 - Approximately (8) FLOPs per element.
 - Total FLOPs:
 - (8\times B\times L\times d_{\text{ff}})

3. Second Linear Layer

- FLOPs:
 - (2\times B\times L\times d_{\text{ff}}\times d_{\text{model}})

Layer Normalization

- FLOPs per Layer Norm:
 - Mean Calculation: (B \times L \times d_{\text{model}}) (sum and division)
 - Variance Calculation: (B\times L\times d_{\text{model}}) (subtract mean, square, sum, divide)
 - **Normalization**: (B\times L\times d_{\text{model}}) (subtract mean, divide by std)
 - Total per Layer Norm:
 - Approximately (5 \times B \times L \times d_{\text{model}})

Activation Functions

- **ReLU**: 1 FLOP per element
- GELU: Approximately 8 FLOPs per element

Total FLOPs per Forward and Backward Pass

Forward Pass

• Sum the FLOPs from all components for the forward pass.

Backward Pass

- The backward pass requires computing gradients, which often involves similar computations to the forward pass.
- Rule of Thumb: The backward pass takes approximately 2 to 3 times the FLOPs of the forward pass.
- For estimation, we'll assume the backward pass is **2 times** the forward pass FLOPs.

Total FLOPs per Training Step

- Total FLOPs:
 - (\text{FLOPs}{\text{total}} = \text{FLOPs}{\text{forward}} + \text{FLOPs}_{\text{backward}})
 - (\text{FLOPs}{\text{backward}} = 2 \times \text{FLOPs}{\text{forward}})
 - Therefore, (\text{FLOPs}{\text{total}} = 3 \times \text{FLOPs}{\text{forward}})

Example Calculation

Given

- Batch Size ((B)): Let's assume (B = 1) for simplicity.
- Sequence Length ((L)): 1,024
- Model Dimension ((d_{\text{model}})): 1,024
- Feed-Forward Dimension ((d_{\text{ff}})): 4,096
- Number of Heads ((h)): 16
- Number of Layers ((N)): 24

Calculating FLOPs for One Layer

Embedding Layer FLOPs

- Total FLOPs:
 - (B\times L\times d_{\text{model}} = 1\times 1,024\times 1,024 = 1,048,576) FLOPs

Multi-Head Attention FLOPs

- 1. Linear Projections (Q, K, V)
 - (3\times 2\times B\times L\times d_{\text{model}}^2)
 - (6\times 1\times 1,024\times (1,024)^2 = 6\times 1,024\times 1,048,576)
 - **Result**: (6,442,450,944) FLOPs
- 2. Attention Scores
 - (2\times B\times L^2\times d_{\text{model}})
 - (2\times 1\times (1,024)^2\times 1,024 = 2\times 1,048,576\times 1,024)
 - **Result**: (2,147,483,648) FLOPs
- 3. Softmax
 - (5\times B\times h\times L^2)
 - (5\times 1\times 16\times (1,024)^2 = 5\times 16\times 1,048,576)
 - Result: (83,886,080) FLOPs
- 4. Weighted Sum
 - Same as Attention Scores: (2,147,483,648) FLOPs
- 5. Output Projection
 - (2\times B\times L\times d {\text{model}}^2)
 - (2\times 1\times 1,024\times (1,024)^2 = 2,147,483,648) FLOPs

Total MHA FLOPs per Layer:

- Sum of the above: (6,442,450,944 + 2,147,483,648 + 83,886,080 + 2,147,483,648 + 2,147,483,648)
- **Result**: (12,968,788,968) FLOPs

Feed-Forward Network FLOPs

1. First Linear Layer

- (2\times B\times L\times d_{\text{model}}\times d_{\text{ff}})
- (2\times 1\times 1,024\times 1,024\times 4,096 = 8,589,934,592) FLOPs

2. **GELU Activation**

- (8\times B\times L\times d_{\text{ff}})
- (8\times 1\times 1,024\times 4,096 = 33,554,432) FLOPs

3. Second Linear Layer

- (2\times B\times L\times d_{\text{model}})
- Same as the first linear layer: (8,589,934,592) FLOPs

Total FFN FLOPs per Layer:

- Sum of the above: (8,589,934,592 + 33,554,432 + 8,589,934,592)
- **Result**: (17,213,423,616) FLOPs

Layer Normalization FLOPs

- Assuming two Layer Norms per layer:
 - (2\times 5\times B\times L\times d_{\text{model}})
 - (10\times 1\times 1,024\times 1,024 = 10,485,760) FLOPs

Total FLOPs per Layer

- Sum:
 - Embedding Layer: (1,048,576) (only once)
 - MHA: (12,968,788,968)
 - FFN: (17,213,423,616)
 - Layer Norms: (10,485,760)
 - Total per Layer: (30,192,698,344) FLOPs

Total FLOPs for All Layers

- Total for All Layers:
 - (N\times\text{Total per Layer})
 - (24\times 30,192,698,344 = 724,624,760,256) FLOPs
- Add Embedding Layer FLOPs (only once):
 - Total Forward FLOPs: (724,624,760,256 + 1,048,576 \approx 724,625,808,832) FLOPs

Total FLOPs for Forward and Backward Pass

- Forward Pass FLOPs: (\approx 724,625,808,832)
- Backward Pass FLOPs: (2 \times 724,625,808,832 = 1,449,251,617,664)
- Total FLOPs per Training Step:

• (724,625,808,832 + 1,449,251,617,664 = 2,173,877,426,496) FLOPs

Additional Considerations

1. Batch Size Impact:

- FLOPs scale linearly with batch size.
- For (B = 16), total FLOPs would be (16 \times) the calculated value.

2. Sequence Length Impact:

• FLOPs scale quadratically with sequence length in the attention mechanism.

3. Optimizations:

- **Sparse Attention**: Reduces FLOPs by focusing on local interactions.
- **Efficient Transformers**: Models designed to reduce computational complexity.

4. Hardware Efficiency:

- Throughput: Actual training speed depends on hardware (GPUs, TPUs) and their efficiency.
- Parallelism: Utilizing data and model parallelism can affect training speed.

Conclusion

Calculating the FLOPs required to train a Transformer-based LLM involves summing the operations from embeddings, multi-head attention, feed-forward networks, and other components. For the example model with (B = 1) and (L = 1,024):

• Total FLOPs per Training Step: Approximately 2.17 trillion FLOPs.

Understanding the computational requirements helps in selecting appropriate hardware and optimizing the training process.

References

- Vaswani, A., et al. (2017). "Attention is All You Need".
- Kaplan, J., et al. (2020). "Scaling Laws for Neural Language Models".
- Patterson, D., et al. (2021). "Carbon Emissions and Large Neural Network Training".
- Narang, S., et al. (2021). "Do Transformer Modifications Transfer Across Implementations and Applications?".

Note: These calculations provide estimates. Actual FLOPs may vary based on implementation details, optimizations, and hardware-specific operations.