# QUANTUM COMPUTING

JORNADA DE DIVULGACIÓN DE APLICACIONES CIENTÍFICAS SOBRE PROCESADORES GRÁFICOS Y QUANTUM COMPUTING

### **JGPUQC 2024 - UNIVERSIDAD DE ALICANTE**

Manuel Benavent-Lledó <mbenavent@dtic.ua.es>
David Mulero-Pérez <dmulero@dtic.ua.es>
José García-Rodríguez <jgarcia@dtic.ua.es>

# **Quantum Computing Reality**

#### Before we start...

#### Quantum Computing HYPE

- wild claims and promises
- talk of revolutions and paradigms shifts
- huge venture capital investment
   (9/10 are expected to fail)

#### Quantum Computing **REALITY**

- noisy/imperfect devices with ~100 qubits
- running particular tasks
- exascale classical HPC for verification
- potential is real, even for early hardware

08-04-2023

# Quantum computer built by Google can instantly execute a task that would normally take 47 years



#### NEW TECHNOLOGIES-INNOVATION

Quantum computing the new milestone that will shake up the course of human history

# Why?

#### Before we start...

Everyday computers – The ones we see

- Phones, Laptops
  - Batteries are helpful to reduce load BUT still need repair, recycle,...
- Desktop computers
  - Fancy graphics, Computer games,...
  - We can afford to "waste" power
    - Dual RTX 4090 requires 2kW
    - Gaming PC 1 kW on average
    - "Normal" computers 400-800W





# Why?

#### Before we start...

### Everyday computers – The ones we **DON'T** see

- Networks and data centers are on 24/7
- Provider services such as TV and Internet
  - In 2020, 4% of global electricity was used by networked devices
    - 6% including TV and other devices
- HPC uses MW of power (equivalent to a small town)



- MareNostrum4 (2017)
- 48 computing racks with a peak use of 33,7kW
- Network (6 switches 9,4kW)

# Why?

#### Before we start...





#### Besides...

- Public Key Cryptography
- Banks and Governments interests



- Silicon chips can't be cooled any faster
- Quantum Computers?
- Hybrid computers?

When does a physical system compute?

Horsman Dominic, Stepney Susan,
Wagner Rob C. and Kendon Viv 2014

Proc. R. Soc. A.



### CONTENTS

### **Quantum Computing**

Classical vs Quantum

Quantum Acceleration?

Evolution: a bit of history

Quantum Applications

### **Mathematical Foundations**

Bits & Qubits

Quantum Gates

Quantum Circuits

Quantum Algorithms

"Quantum Programming"

### What is it?

### **Quantum Computing**

QC Physics



### What is it?

### **Quantum Computing**



# Classic vs. Quantum

### **Quantum Computing**



Complex physics experiment?



|                       | Classic                              | Quantum                                |
|-----------------------|--------------------------------------|----------------------------------------|
| Information           | Binary                               | Binary                                 |
| Registry              | Single value                         | Multiple value                         |
| Operations            | Sequential (except multicore or GPU) | Per value Unlimited paralellism?       |
| Error rates           | Low                                  | High                                   |
| Operating Temperature | Room                                 | Extremely low                          |
| Ideal use             | Everyone, daily                      | Optimization, analysis and simulations |

# Quantum SpeedUp

### **Quantum Computing**

Deception of linear vs exponential







### **Evolution**

### **Quantum Computing**



"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

**Richard P. Feynman**, *Simulating physics with computers* (1981)



11

### **Evolution**

### **Quantum Computing**

John Preskill defines quantum supremacy (arxiv:1203.5813)



Experimental demonstration with 50 qubits



2012

2016

"Public" quantum computers
Over 100 qubits

2020-21



Technology under development Reduced operations

Actualidad



Google & Quantum Supremacy

2018-19

"This dramatic increase in speed compared to all known classical algorithms is an experimental realization of quantum supremacy for this specific computational task, heralding a much-anticipated computing paradigm."

**Arute et al.** *Nature* (Octubre 2019)

### **Applications**

### **Quantum Computing**

- Cryptography
  - Simulation: modeling and simulating complex systems
  - Modeling complex systems
- Simulating physical systems (CERN -> HEP)
- Artificial Intelligence: Machine Learning and BigData
  - More efficiency and speed
- Optimization



Quantum Variational Encoder arxiv:2208.08748

Stock price prediction with Quantum Machine Learning compared to Keras (with code)

### **Bits and Qubits**

#### **Mathematical Foundations**

- Basic unit of information
- Bit (classic): 0 or 1
- Quantum:
  - Dirac Notation (Bra-Ket): ⟨·| | ·⟩
  - Basis states:  $|0\rangle$  o  $|1\rangle$
  - State in superposition:  $\alpha_0|0\rangle + \alpha_1|1\rangle$

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \qquad |1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$

$$\alpha_0|0\rangle + \alpha_1|1\rangle = \alpha_0 \begin{pmatrix} 1\\0 \end{pmatrix} + \alpha_1 \begin{pmatrix} 0\\1 \end{pmatrix}$$

- Complex number in  $\mathbb{C}^2$
- $\alpha_x \in \mathbb{C}$  (Amplitude)
- $|\alpha_x|^2$  = probability of collapsing to the state upon observation (measurement)

### **Notation extension**

#### **Mathematical Foundations**

#### For n qubits

- Vectors with base  $\mathbb{C}^{2^n}$
- Dirac:  $|0...0\rangle$ ,  $|0...1\rangle$ , ...,  $|1...1\rangle$
- Tensor products of qubits
- n = 2

$$|00\rangle = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} |01\rangle = \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix} |10\rangle = \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} |11\rangle = \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix}$$

# **Entanglement**

#### **Mathematical Foundations**

Product state, can be represented as individual states

$$\frac{1}{2}|00\rangle - \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle - \frac{1}{2}|11\rangle = \left(\frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle\right) \otimes \left(\frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle\right)$$

Otherwise, entangled state:

$$\frac{1}{\sqrt{2}}|00\rangle + \frac{1}{\sqrt{2}}|11\rangle$$

### Relevant states

#### **Mathematical Foundations**

Balanced superposition:

$$|+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
$$|-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$$

Bell state (maximum entanglement):

$$\frac{|00\rangle+|11\rangle}{\sqrt{2}}$$

### Classical VS. Quantum

#### **Mathematical Foundations**

- **Bits**: Logic Gates
- NOT (Unitary)
- AND (Binary)
- OR (Binary)
- Etc.

**Qubits**: Quantum Gates

#### Properties:

- Basis state: define effect
- Superposition state: linearly
- Unitary
  - Previous properties
  - Reversible

## **Quantum Gates**

#### **Mathematical Foundations**

Identity: most basic representation

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

$$|0\rangle = I \otimes |0\rangle = I |0\rangle = |0\rangle$$

$$|1\rangle = I \otimes |1\rangle = I |1\rangle = |1\rangle$$

Pauli-X = NOT

$$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$X|0\rangle = |1\rangle$$

$$X|1\rangle = |0\rangle$$

### Quantum Gates

#### **Mathematical Foundations**

Other gates (not relevant for today)

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad S = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix}$$

Hadamard: creates a superposition

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

$$H|0\rangle = |+\rangle = \frac{1}{\sqrt{2}}|0\rangle + \frac{1}{\sqrt{2}}|1\rangle$$
  $H|1\rangle = |-\rangle = \frac{1}{\sqrt{2}}|0\rangle - \frac{1}{\sqrt{2}}|1\rangle$ 

### Quantum Gates

#### **Mathematical Foundations**

**CNOT**: Controlled NOT or CX

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \rightarrow |a \ b\rangle = |a \ a \oplus b\rangle$$

$$CX|00\rangle = |00\rangle$$
  
 $CX|01\rangle = |01\rangle$   
 $CX|10\rangle = |11\rangle$   
 $CX|11\rangle = |10\rangle$ 

CCNOT: Toffoli gate

Universality property as classical NAND gate

## **Quantum Circuits**

#### **Mathematical Foundations**

- Link quantum gates
- Representation
  - Qubits: single cable
  - Bits: double cable
  - Gates: letters (sometimes symbols)



- Relevant gates in circuiits:
  - Controlled-U: controlled gate for operation (gate) U
     (generalization of CNOT)
  - Measurement: Observe qubit in a state  $|\psi\rangle$ , then it collapses into a bit according to its probability amplitudes

# **Quantum Teleportation**

### **Quantum Algorithms**

- Problem: send 1 qubit using a classic channel
- Considerations:
  - Loss of information
  - Can't send complex number
  - No-cloning theorem
- Solution: Quantum teleportation
  - A 3rd person provides an entangled pair to A ar
     B
  - A operates its qubits
  - B "knows" how to get the original qubit thanks the bits send over the classical channel and the entangledqubit



# **Quantum Teleportation**

### **Quantum Algorithms**



# Deutsch-Jozsa Algorithm

### **Quantum Algorithms**

Deutsch Problem: an unknown function  $f(x) = x \rightarrow \{0,1\}$  is:

- Balanced = same number of 0s and 1s.
- Constant = always 0 or always 1.

How do we determine the type of function with the minimum number of queries?



Classical computing needs N/2 + 1 queries Quantum, one query will do:



### **Shor's Algorithm**

### **Quantum Algorithms**

- Factoring numbers is hard, classically (RSA cryptography)
- The Fourier transforms are very useful but slow
- QFT offers an exponential improvement over FT





## **Summary of Relevant Algorithms**

### **Quantum Algorithms**

- Deutsch-Josza: first improvemnt over classical algorithms
  - Bernstein-Vazirani's Algorithm
- Simon's algorithm: exponential improvement over classical computers
  - Quantum Fourier Transform
- Shor's algorithm: factoring numbers (RSA)
- **Grover's** algorithm: unordered search with complexity  $O(\log N)$
- **BB84** (Bennett-Brassard, 1984): basic quantum cybersecurity algorithm

## "QUANTUM PROGRAMMING"

### How do we program quantum computers?

### Programming languages

- Python
  - Qiskit (IBM)
- Q# (Microsoft)
- Cirq (Google)



#### Differences with classic and conclusions:

- Under development
- Noisy systems
- Is it necessary a shift from the current paradigm?

# Any question?

### Some references:

- Curso Computación cuántica (YouTube), Eduardo
   Sáenz de Cabezón (Derivando): Parte 1 y Parte 2
- Quantum Computation and Quantum Information.
   Michael A. Nielsen & Isaac L. Chuang (Oxford 2010)
- Quantum Computing Lecture Notes. Ronald de Wolf, arXiv/1907.09415 (last update January 2023)
- An Introduction to Quantum Computing. Kaye, Phillip;
   Laflamme, Raymond and Mosca, Michele (Cambridge 2010)
- Quantum Computing: A Gentle Introduction. Rieffel, Eleanor and Polak, Wolfgang (MIT 2014)
- QuantumQ, Game available in Playstore

# QUANTUM COMPUTING

JORNADA DE DIVULGACIÓN DE APLICACIONES CIENTÍFICAS SOBRE PROCESADORES GRÁFICOS Y QUANTUM COMPUTING

### **JGPUQC 2024 - UNIVERSIDAD DE ALICANTE**

Manuel Benavent-Lledó <mbenavent@dtic.ua.es>
David Mulero-Pérez <dmulero@dtic.ua.es>
José García-Rodríguez <jgarcia@dtic.ua.es>



