Marriage and Divorce Dynamics in Denmark

Thomas H. Jørgensen

2025

Plan for today

• Bruze, Svarer and Weiss (2015): "The Dynamics of Marriage and Divorce"

Estimation

Full commitment! Danish data for cohorts 1960 (men), 1962 (women).

Plan for today

- Bruze, Svarer and Weiss (2015): "The Dynamics of Marriage and Divorce"
 - Full commitment! Danish data for cohorts 1960 (men), 1962 (women).

Reading guide:

1. What are the main research questions?

2. What is the *(empirical)* motivation?

3. What are the central mechanisms in the model?

4. What is the *simplest model* in which we could capture these?

Plan for today

- Bruze, Svarer and Weiss (2015): "The Dynamics of Marriage and Divorce"
 - Full commitment! Danish data for cohorts 1960 (men), 1962 (women).

Reading guide:

- 1. What are the main research questions?
 - How does marriage and divorce behavior vary across age and educational groups?
 - How does educational differences influence intra-household inequality?
- 2. What is the *(empirical)* motivation?

3. What are the central mechanisms in the model?

4. What is the *simplest model* in which we could capture these?

Empirical Motivation: I

Marriage and divorce

Age of female cohort = age of male cohort-2

Fig. 1.—Fraction married or in partnerships (marriage plus cohabitation) by age. A color version of this figure is available online.

Fig. 3.—Divorce hazard for first marriage or partnership (marriage plus cohabitation). A color version of this figure is available online.

Empirical Motivation: II

 Highly educated people partner later but more "stable". Especially if both highly educated

Fig. 4.—A, Fraction married men and women by age and education; B, fraction cohabiting men and women by age and education; C, fraction men and women in partnerships by age and education. A color version of this figure is available online.

Fig. 6.—Divorce hazards for first marriages by education of the husband and wife. A color version of this figure is available online.

Empirical Motivation: III

 Highly educated people re-marry faster. And stay in second marriage longer.

Fig. 7.—Hazard rate into second marriage for men and women by education. A color version of this figure is available online.

Fig. 8.—Divorce hazards when at least one spouse is in second marriage, by education of the husband and wife. A color version of this figure is available online.

Empirical Motivation: IV

• Assortative matching:

people more likely to marry one with same education

Fig. 9.—Distribution of marriages for men with low (top), medium (middle), or high (bottom) education. A color version of this figure is available online.

Fig. 10.—Distribution of marriages for women with low (top), medium (middle), or high (bottom) education. A color version of this figure is available online.

(b)
$$P(educ_m|educ_w = high)$$

Empirical Motivation: V

• What is the point of the model?

Empirical Motivation: V

- What is the point of the model?
 - "Explain" the data
 - ullet Structure o identify bargaining power o intra-household inequality Fundamentally unobserved Important for understanding gender-inequality

• What is the point of the model?

- "Explain" the data
- ullet Structure o identify bargaining power o intra-household inequality Fundamentally unobserved Important for understanding gender-inequality

From Abstract:

Education raises the share of the marital surplus for men but not for women. As men and women get older, husbands receive a larger share of the marital surplus

Outline

Model and Mechanisms

Model Overview

• Full commitment:

Transferable utility Perfect foresight wrt bargaining power. Particular timing/expectation assumptions (get back)

Choices:

Marriage: which type IJ Divorce

States:

```
d_t: duration of marriage
"TYPFS"
e \in E = \{I, m, h\}: Educational type of both members
p_t \in P = \{nm, pm\}: never/previously married
u \in U = \{1, 2\} (unobserved type)
\rightarrow I \in E \times P \times U (men) and J \in E \times P \times U (women)
(love-shock, \theta_t \sim iid\mathcal{N}(0,1))
```

Bellman Equation: Married

• **Bellman equation** for type IJ (remaining) couple is

$$\underbrace{W_t^{IJ}(d_t) + \theta_t}_{V_t^{m \to m}} = \underbrace{\zeta^{IJ} + \theta_t}_{U^{IJ}} + R\mathbb{E}_t \big[\underbrace{M_{t+1}^{IJ}(d_{t+1}) + \theta_{t+1}}_{V_{t+1}^{m \to m}}, \underbrace{V_{t+1}^{I} + V_{t+1}^{J} - s(d_{t+1})}_{V_{t+1}^{m \to s}} \big]$$

```
where
```

```
\zeta^{IJ}: type-specific utility
R: discount factor
s(d_{t+1}): divorce cost
V_{t+1}^{I} + V_{t+1}^{J}: sum of value of singlehood (TU)
(I would think that d_{t+1} = d_t + 1, but they never write)
\mathbb{E}_{t}[] is wrt. \theta_{t+1}
```

Bellman Equation: Married

• Bellman equation for type IJ (remaining) couple is

$$\underbrace{ \underbrace{ W_t^{IJ}(d_t) + \theta_t}_{V_t^{m \to m}} = \underbrace{ \zeta^{IJ} + \theta_t}_{U^{IJ}} + R\mathbb{E}_t \big[\max \big\{ \underbrace{ \underbrace{ W_{t+1}^{IJ}(d_{t+1}) + \theta_{t+1}}_{V_{t+1}^{m \to m}}, \underbrace{ \underbrace{ V_{t+1}^{J} + V_{t+1}^{J} - s(d_{t+1})}_{V_{t+1}^{m}} \big\} \big]}_{V_{t+1}^{m}} \big]$$

where

$$\zeta^{IJ}$$
: type-specific utility

R: discount factor

$$s(d_{t+1})$$
: divorce cost $V_{t+1}^{J} + V_{t+1}^{J}$: sum of value of singlehood (TU)

(I would think that $d_{t+1} = d_t + 1$, but they never write)

$$\mathbb{E}_t[]$$
 is wrt. θ_{t+1}

• **Probability** of observing divorce, $P_D(I, J, t, d_t)$:

$$\Pr(W_t^{IJ}(d_t) + \theta_t < V_t^I + V_t^J - s(d_t)) = \Phi(V_t^I + V_t^J - s(d_t) - W_t^{IJ}(d_t))$$

Bellman Equation: Single

• **Bellman equation** for type I man being single is

$$V_t^I = \varphi^I + R\mathbb{E}_t[V_{t+1}^I + \max_{J \in E \times P \times U} \{\varepsilon_{t+1}^0, \gamma_{t+1}^{IJ}[W_{t+1}(\underbrace{1}_{d_{t+1}}) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J\}]$$

where

 ε_{t+1}^0 : EV taste-shock wrt value of singlehood ε_{t+1}^{J} : EV taste-shock wrt value of marriage with type J γ_{t+1}^{IJ} : share of (new) marital surplus to man. Focus in a bit. $\mathbb{E}_t[]$ is wrt. Extreme Value taste shocks over type of female match, J. (See discussion on following slides.)

- Value of marriage next period is thus the value of being single + the share of the marital surplus he gets.
- Symmetric for women with share $1 \gamma_{+\perp 1}^{IJ}$.

• **Bellman equation** for type *I* man being single is

$$V_t^I = \varphi_t^I + R\mathbb{E}_t \left[\underbrace{V_{t+1}^I + \max_{J \in E \times P \times U} \{ \varepsilon_{t+1}^0, \gamma_{t+1}^{IJ} [W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J }_{V_{t+1}^s \text{ (but might re-partner)}} \right]$$

• **Bellman equation** for type I man being single is

$$V_t^I = \varphi_t^I + R \mathbb{E}_t \big[\underbrace{V_{t+1}^I + \max_{J \in E \times P \times U} \{ \varepsilon_{t+1}^0, \gamma_{t+1}^{IJ} [\textbf{\textit{W}}_{t+1}(1) - \textbf{\textit{V}}_{t+1}^I - \textbf{\textit{V}}_{t+1}^J] + \varepsilon_{t+1}^J \}}_{V_{t+1}^s} \big] \underbrace{V_{t+1}^s \big(\text{but might re-partner} \big)}$$

where

$$\begin{split} V_{t+1}^s &= V_{t+1}^I + \max_{J \in E \times P \times U} \{ \varepsilon_{t+1}^0, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J \} \\ &= \max_{J \in E \times P \times U} \{ V_{t+1}^I + \varepsilon_{t+1}^0, V_{t+1}^I + \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J \} \end{split}$$

such that value of marriage is "value of singlehood + his share of marital surplus"

Bellman equation for type I man being single is

$$V_t^I = \varphi_t^I + R\mathbb{E}_t [\underbrace{V_{t+1}^I + \max_{J \in E \times P \times U} \{\varepsilon_{t+1}^0, \gamma_{t+1}^{IJ} [\textbf{\textit{W}}_{t+1}(1) - \textbf{\textit{V}}_{t+1}^I - \textbf{\textit{V}}_{t+1}^J] + \varepsilon_{t+1}^J \}}_{V_{t+1}^s \text{ (but might re-partner)}}]$$

where

$$\begin{split} V_{t+1}^s &= V_{t+1}^I + \max_{J \in E \times P \times U} \{ \varepsilon_{t+1}^0, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J \} \\ &= \max_{J \in E \times P \times U} \{ V_{t+1}^I + \varepsilon_{t+1}^0, V_{t+1}^I + \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J \} \end{split}$$

such that value of marriage is "value of singlehood + his share of marital surplus"

Marital surplus is "special" since future love-shock does not enter...:

$$\begin{aligned} & \textit{W}_{t+1}(1) - \textit{V}_{t+1}^{\textit{I}} - \textit{V}_{t+1}^{\textit{J}} = \mathbb{E}_t [\textit{W}_{t+1}(1) + \theta_{t+1} - \textit{V}_{t+1}^{\textit{I}} - \textit{V}_{t+1}^{\textit{J}}] \\ \text{since } \mathbb{E}_t [\theta_{t+1}] = 0. \end{aligned}$$

- They interpret this as a timing-thing (p. 140):
 - "The quality of match ... is revealed to the partners only at the end of each period. ...

Estimation

In particular, single agents who marry at time t do not know the quality of their math θ_{t} and expect it to equal the mean, which is set to zero."

- They interpret this as a timing-thing (p. 140):
 - "The quality of match ... is revealed to the partners only at the end of each period. ...
 - In particular, single agents who marry at time t do not know the quality of their math θ_t and expect it to equal the mean, which is set to zero."
- "Wrong": This means that the expected value is inserted in the max, rather than taking the expected value of the max...:

$$\max_{J \in E \times P \times U} \{ \varepsilon_{t+1}^0, \gamma_{t+1}^{IJ} \mathbb{E}_t [W_{t+1}(1) + \theta_{t+1} - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J \}$$

vs "correct"

$$\mathbb{E}_{t}[\max_{J \in E \times P \times U} \{\varepsilon_{t+1}^{0}, \gamma_{t+1}^{IJ}[W_{t+1}(1) + \theta_{t+1} - V_{t+1}^{I} - V_{t+1}^{J}] + \varepsilon_{t+1}^{J}\}]$$

- Their formulation removes a numerical integral wrt. θ_{t+1}
 - \rightarrow Speeds up the solution...

The expectation in

$$V_t^I = \varphi_t^I + R\mathbb{E}_t[V_{t+1}^I + \max_{J \in E \times P \times U} \{\varepsilon_{t+1}^0, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J\}]$$

Estimation

is thus only over EV-shocks (and not θ_{t+1})!

The expectation in

$$V_t^I = \varphi_t^I + R\mathbb{E}_t[V_{t+1}^I + \max_{J \in E \times P \times U} \{ \epsilon_{t+1}^0, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \epsilon_{t+1}^J \}]$$

Estimation

is thus only over EV-shocks (and not θ_{t+1})!

Known in closed-form: The log-sum!

$$= \\ \log \left[\exp(V_{t+1}^I) + \sum_{J \in E \times P \times U} \exp(V_{t+1}^I + \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J]) \right]$$

 $\mathbb{E}_{t}[V_{t+1}^{I} + \max_{I \in F \times P \times I} \{\varepsilon_{t+1}^{0}, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^{I} - V_{t+1}^{J}] + \varepsilon_{t+1}^{J}\}]$

The expectation in

$$V_t' = \varphi_t' + R\mathbb{E}_t[V_{t+1}' + \max_{J \in E \times P \times U} \{\varepsilon_{t+1}^0, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}' - V_{t+1}^J] + \varepsilon_{t+1}^J\}]$$

is thus only over EV-shocks (and not θ_{t+1})!

Known in closed-form: The log-sum!

$$= \\ \log \left[\exp(V_{t+1}^{I}) + \sum_{I \in F \times P \times U} \exp(V_{t+1}^{I} + \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^{I} - V_{t+1}^{J}]) \right]$$

• **Probability** (logit) of entering marriage with type
$$i$$
, ($i = 0 \rightarrow \text{single}$)

 $\mathbb{E}_{t}[V_{t+1}^{I} + \max_{J \in E \times P \times U} \{\varepsilon_{t+1}^{0}, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^{I} - V_{t+1}^{J}] + \varepsilon_{t+1}^{J}\}]$

• **Probability** (logit) of entering marriage with type j, ($j = 0 \rightarrow \text{single}$)

$$P_{M}^{I}(j,t) = \frac{\exp(V_{t}^{I} + \gamma_{t}^{Ij}[W_{t}(1) - V_{t}^{I} - V_{t}^{j}])}{\exp(V_{t}^{I}) + \sum_{J \in E \times P \times U} \exp(V_{t}^{I} + \gamma_{t}^{IJ}[W_{t}(1) - V_{t}^{I} - V_{t}^{J}])}$$

Commitment

• Full commitment:

$$\gamma_t^{IJ}$$

is known throughout.

Commitment

• Full commitment:

$$\gamma_t^{IJ}$$

Estimation

is known throughout.

Assume the functional form

$$\gamma_t^{IJ} = \frac{\exp\{\rho^{IJ} + \kappa^{IJ}t + \lambda^{IJ}t^2\}}{1 + \exp\{\rho^{IJ} + \kappa^{IJ}t + \lambda^{IJ}t^2\}}$$

which has 108 estimated parameters. (not reported)

•000000000000

Outline

Remaining Parameters

• Cost of divorce "non-parametric" (10)

$$s(d_t) = \sum_{k=1}^{9} \beta_k \mathbf{1}(d_t = k) + \beta_{10} \mathbf{1}(d_t \ge 10)$$

Remaining Parameters

• Cost of divorce "non-parametric" (10)

$$s(d_t) = \sum_{k=1}^{9} \beta_k \mathbf{1}(d_t = k) + \beta_{10} \mathbf{1}(d_t \ge 10)$$

Estimation

• **Utility** for singles are $u \in \{1, 2\}$

$$\varphi_t^I = \mu_t^I + \eta_u^I$$
$$\varphi_t^J = \mu_t^J + \eta_u^J$$

and estimated parameters are

$$\zeta^{IJ}$$
:13 (education mix (9) or marital order mix (4)) μ_t^I, μ_t^J :2 × 18 (gender, age, educ)

Remaining Parameters

• Cost of divorce "non-parametric" (10)

$$s(d_t) = \sum_{k=1}^{9} \beta_k \mathbf{1}(d_t = k) + \beta_{10} \mathbf{1}(d_t \ge 10)$$

Estimation

• **Utility** for singles are $u \in \{1, 2\}$

$$\begin{aligned} \varphi_t^I &= \mu_t^I + \eta_u^I \\ \varphi_t^J &= \mu_t^J + \eta_u^J \end{aligned}$$

and estimated parameters are

$$\zeta^{IJ}$$
:13 (education mix (9) or marital order mix (4)) μ_t^I, μ_t^J :2 × 18 (gender, age, educ)

• Unobserved types (4): estimate u_2^I , u_2^J (relative to type 1) and the share of type 2.

Maximum likelihood

Dynamic logit due to EV taste-shocks wrt discrete types.

Estimation

0000000000000

- Maximum likelihood
 - Dynamic logit due to EV taste-shocks wrt discrete types.
- Let $O_i = (O_{i,1}, \ldots, O_{i,T})$ and $O_i = (O_{i,1}, \ldots, O_{i,T})$ be observed choices of men and women

Estimation 0000000000000

• Let $S_{i,0}$ and $S_{i,0}$ be initial states. These states are taken as given.

- Maximum likelihood
 - Dynamic logit due to EV taste-shocks wrt discrete types.
- Let $O_i = (O_{i,1}, \ldots, O_{i,T})$ and $O_i = (O_{i,1}, \ldots, O_{i,T})$ be observed choices of men and women
- Let $S_{i,0}$ and $S_{i,0}$ be initial states. These states are taken as given.
- The (conditional) likelihood function of the observed data is

$$L = \prod_{i=1}^{N^m} \Pr(O_i|S_{i,0}) imes \prod_{j=1}^{N^f} \Pr(O_j|S_{j,0})$$

Estimation 0000000000000

assuming independence.

- Maximum likelihood Dynamic logit due to EV taste-shocks wrt discrete types.
- Let $O_i = (O_{i,1}, \ldots, O_{i,T})$ and $O_i = (O_{i,1}, \ldots, O_{i,T})$ be observed choices of men and women
- Let $S_{i,0}$ and $S_{i,0}$ be initial states. These states are taken as given.
- The (conditional) likelihood function of the observed data is

$$L = \prod_{i=1}^{N^m} \mathsf{Pr}(\mathit{O}_i|\mathit{S}_{i,0}) imes \prod_{j=1}^{N^f} \mathsf{Pr}(\mathit{O}_j|\mathit{S}_{j,0})$$

Estimation 0000000000000

assuming independence.

 The EV assumption makes Pr(●) conditional multinomial logit (MNL) Can be found in closed form.

• **Likelihood of** sequence of choices given $S_{i,0}$, u_i

$$\Pr(O_i|S_{i,0}, \mathbf{u}_i) = \prod_{t=2}^{T} \Pr(O_{i,t}|O_{i,t-1}, \mathbf{u}_i) \Pr(O_{i,1}|S_{i,0}, \mathbf{u}_i)$$

• **Likelihood of** sequence of choices given $S_{i,0}$, u_i

$$\Pr(O_i|S_{i,0}, \mathbf{u}_i) = \prod_{t=2}^{T} \Pr(O_{i,t}|O_{i,t-1}, \mathbf{u}_i) \Pr(O_{i,1}|S_{i,0}, \mathbf{u}_i)$$

Estimation 00000000000000

• **Do not observe** *u*; we "integrate that out":

$$Pr(O_i|S_{i,0}) = \mathbb{E}[Pr(O_i|S_{i,0}, u_i)]$$

= $q^m Pr(O_i|S_{i,0}, u_i = 1) + (1 - q^m) Pr(O_i|S_{i,0}, u_i = 2)$

where q^m and q^f are the shares of type 1 (u=1)

Estimation

• **Likelihood of** sequence of choices given $S_{i,0}$, u_i

$$\Pr(O_i|S_{i,0}, \mathbf{u}_i) = \prod_{t=2}^{T} \Pr(O_{i,t}|O_{i,t-1}, \mathbf{u}_i) \Pr(O_{i,1}|S_{i,0}, \mathbf{u}_i)$$

Estimation 00000000000000

• **Do not observe** *u*; we "integrate that out":

$$Pr(O_i|S_{i,0}) = \mathbb{E}[Pr(O_i|S_{i,0}, \mathbf{u}_i)]$$

= $q^m Pr(O_i|S_{i,0}, \mathbf{u}_i = 1) + (1 - q^m) Pr(O_i|S_{i,0}, \mathbf{u}_i = 2)$

where q^m and q^f are the shares of type 1 (u=1)

The likelihood of observing the outcomes is then

$$L = \prod_{i=1}^{N^m} [q^m \Pr(O_i | S_{i,0}, u_i = 1) + (1 - q^m) \Pr(O_i | S_{i,0}, u = 2)]$$

$$\times \prod_{j=1}^{N^f} [q^f \Pr(O_j | S_{j,0}, u_j = 1) + (1 - q^f) \Pr(O_j | S_{j,0}, u_j = 1)]$$

Estimation 0000000000000

Identification (idea)

• Identification arguments in paper Only without unobserved types

Talk about some here

To give idea of arguments Ignores unobserved types, $u \in \{1, 2\}$ \rightarrow I, $J \in E \times P$ (educ and pre-marital status)

Identification: Weights

• From probability of marriage of I with J, relative to remaining single

$$\log\left(\frac{P_M^I(J,t)}{P_M^I(0,t)}\right) = \gamma_t^{IJ}[W_t^{IJ}(1) - V_t^I - V_t^J]$$

Identification: Weights

• From probability of marriage of I with J, relative to remaining single

$$\log\left(\frac{P_M^I(J,t)}{P_M^I(0,t)}\right) = \gamma_t^{IJ}[W_t^{IJ}(1) - V_t^I - V_t^J]$$

Estimation 0000000000000

• similarly for women marrying type *I*:

$$\log \left(\frac{P_M^J(I,t)}{P_M^J(0,t)}\right) = (1-\gamma_t^{IJ})[W_t^{IJ}(1)-V_t^I-V_t^J]$$

Identification: Weights

• From probability of marriage of I with J, relative to remaining single

$$\log\left(\frac{P_M^I(J,t)}{P_M^I(0,t)}\right) = \gamma_t^{IJ}[W_t^{IJ}(1) - V_t^I - V_t^J]$$

Estimation 0000000000000

• similarly for women marrying type *I*:

$$\log \left(\frac{P_{M}^{J}(I,t)}{P_{M}^{J}(0,t)} \right) = (1 - \gamma_{t}^{IJ})[W_{t}^{IJ}(1) - V_{t}^{I} - V_{t}^{J}]$$

• such that taking ratios identifies weights, γ_t^{IJ} :

$$\frac{\gamma_t^{IJ}}{1-\gamma_t^{IJ}} = \underbrace{\log\left(\frac{P_M^I(J,t)}{P_M^I(0,t)}\right)/\log\left(\frac{P_M^J(I,t)}{P_M^J(0,t)}\right)}_{\text{data}}$$

Identification: Divorce costs

• From probability of divorce:

$$V_t^I + V_t^J - s(d_t) - W_t^{IJ}(d_t) = \underbrace{\Phi^{-1}(P_D(I,J,t,d_t))}_{ ext{data}}$$

Identification: Divorce costs

• From probability of divorce:

$$V_t^I + V_t^J - s(d_t) - W_t^{IJ}(d_t) = \underbrace{\Phi^{-1}(P_D(I, J, t, d_t))}_{ ext{data}}$$

Estimation 00000000000000

We can then insert into last slide to get s(1) (first-yr divorce cost):

$$\begin{split} \log \left(\frac{P_M^I(J,t)}{P_M^I(0,t)} \right) &= \gamma_t^{IJ} [W_t^{IJ}(1) - V_t^I - V_t^J] \\ &= \gamma_t^{IJ} [s(1) - \Phi^{-1}(P_D(I,J,t,1))] \\ &\updownarrow \\ s(1) &= \underbrace{\log \left(\frac{P_M^I(J,t)}{P_M^I(0,t)} \right)}_{\text{data}} / \underbrace{\gamma_t^{IJ}}_{\text{"known"}} + \underbrace{\Phi^{-1}(P_D(I,J,t,1))}_{\text{data}} \end{split}$$

Identification: Divorce costs

• From probability of divorce:

$$V_t^I + V_t^J - s(d_t) - W_t^{IJ}(d_t) = \underbrace{\Phi^{-1}(P_D(I, J, t, d_t))}_{\text{data}}$$

We can then insert into last slide to get s(1) (first-yr divorce cost):

$$\begin{split} \log \left(\frac{P_M^I(J,t)}{P_M^I(0,t)} \right) &= \gamma_t^{IJ} [W_t^{IJ}(1) - V_t^I - V_t^J] \\ &= \gamma_t^{IJ} [s(1) - \Phi^{-1}(P_D(I,J,t,1))] \\ &\updownarrow \\ s(1) &= \underbrace{\log \left(\frac{P_M^I(J,t)}{P_M^I(0,t)} \right)}_{\text{data}} / \underbrace{\gamma_t^{IJ}}_{\text{"known"}} + \underbrace{\Phi^{-1}(P_D(I,J,t,1))}_{\text{data}} \end{split}$$

• Remaining s(d): Noting that $W_t^{IJ}(d_t)$ depends on d_t through s(d) and $\Phi^{-1}(P_D(I,J,t,d_t)) - \Phi^{-1}(P_D(I,J,t,d_t')) = s(d_t') - s(d_t) + W_t^{IJ}(d_t') - W_t^{IJ}(d_t)$

Identification: Utility Flow

- Assume that flow-utility in couple are constant
- "Normalize" value of singlehood for men over age 40 to zero (but more than normalization since several periods, T=71?)
- "Normalize" value of singlehood for women over age 38 to zero (but more than normalization since several periods, T = 71?)

Identification: Utility Flow

- Assume that flow-utility in couple are constant
- "Normalize" value of singlehood for men over age 40 to zero (but more than normalization since several periods, T = 71?)
- "Normalize" value of singlehood for women over age 38 to zero (but more than normalization since several periods, T = 71?)
- Couples: For t > 39:

$$V_t^I + V_t^J - s(d_t) - W_t^{IJ}(d_t) - \theta_t = s(d_t) - W_t^{IJ}(d_t) - \theta_t$$

Estimation 000000000000000

and thus gets ζ^{IJ} from

$$\begin{split} P_D(I,J,t,d_t) &= \Pr(\theta_t \leq W_t^{IJ}(d_t) - s(d_t)) = \Phi(s(d_t) - W_t^{IJ}(d_t)) \\ & \qquad \qquad \\ W_t^{IJ}(d_t) &= \underbrace{s(d_t)}_{\text{"known"}} - \underbrace{\Phi^{-1}(P_D(I,J,t,d_t))}_{\text{data}} \end{split}$$

Identification: Utility Flow

- Assume that flow-utility in couple are constant
- "Normalize" value of singlehood for men over age 40 to zero (but more than normalization since several periods, T = 71?)
- "Normalize" value of singlehood for women over age 38 to zero (but more than normalization since several periods, T = 71?)
- Couples: For t > 39:

$$V_t^I + V_t^J - s(d_t) - W_t^{IJ}(d_t) - \theta_t = s(d_t) - W_t^{IJ}(d_t) - \theta_t$$

Estimation 000000000000000

and thus gets ζ^{IJ} from

$$P_D(I, J, t, d_t) = \Pr(\theta_t \leq W_t^{IJ}(d_t) - s(d_t)) = \Phi(s(d_t) - W_t^{IJ}(d_t))$$

$$\downarrow \qquad \qquad \downarrow \qquad$$

• **Singles:** time-differences in likelihood gives φ_t^I and φ_t^J .

Results: Marriage Order

• Estimates suggest that second marriages are less "costly" for men

Table 3 Effects of Marriage Order on the Marital Output Flow

	Wife's First Marriage	Wife's Second Marriage
Husband's first marriage	.5166	.3891
Husband's second marriage	.4709	.5364

25 / 30

Results: Divorce Costs

• **Estimates** suggest that divorce costs are U-shaped Authors are surprised, but this could still be due to children.

Table 4 Costs of Divorce by Duration of Marriage

Marital Duration	Cost of Divorce	
1 year	14.3	
2 years	14.1	
3 years	12.4	
4 years	11.5	
5 years	11.6	
6 years	11.6	
7 years	11.5	
8 years	12.7	
9 years	12.7	

• Do not want to look at γ_t^{IJ} due to selection.

- Do not want to look at γ_t^{IJ} due to selection.
- Adjusted shares: Want to add the Extreme Value taste shock and states

$$\mathbb{E}_t[V_{t+1}^I + \varepsilon_{t+1}^0] = V_{t+1}^I$$

is the expected value of being forced to remain single.

- Do not want to look at γ_t^{IJ} due to selection.
- Adjusted shares: Want to add the Extreme Value taste shock and states

$$\mathbb{E}_t[V_{t+1}^I + \varepsilon_{t+1}^0] = V_{t+1}^I$$

Estimation 0000000000000000

is the expected value of being forced to remain single.

• If allowed on the marriage market, the expected value is (log-sum):

$$C_{t+1}^I = \mathbb{E}_t[V_{t+1}^I + \max_{J \in E \times P \times U} \{\varepsilon_{t+1}^0, \gamma_{t+1}^{IJ}[W_{t+1}(1) - V_{t+1}^I - V_{t+1}^J] + \varepsilon_{t+1}^J\}$$

Expected gains from entering the marriage market:

$$S_t^I = C_{t+1}^I - \mathbb{E}_t[V_{t+1}^I + \varepsilon_{t+1}^0]$$

and similarly for women.

They define the total share of surplus of the husband be

$$\Gamma_t^{IJ} = \frac{S_t^I}{S_t^I + S_t^J}$$

Table 9 Estimated Average Total Surplus Share Γ for Husband by Education of Husband and Wife

	Wife's Education		
Husband's Education	Low	Medium	High
Low	.417	.387	.402
Medium	.496	.463	.490
High	.530	.493	.498

Table 11 Estimated Average Total Surplus Share Γ for Husband by Marital History of Husband and Wife

	Wife's First Marriage	Wife's Second Marriage
Husband's first marriage	.464	.353
Husband's second marriage	.563	.455

Table 12 Estimated Average Total Surplus Share Γ for Husband by Age of Husband

Age of Husband	Share of Gains to Marriage
25	.425
30	.465
35	.486
40	.505
45	.541

Next Time

Next time:

Fertility and Labor Supply.

Literature:

Jakobsen, Jørgensen and Low (2022): "Fertility and Family Labor Supply" [unitary]

Estimation 000000000000000

- Read before lecture
- Reading guide:

Section 1: Introduction – Read.

Section 2: Data, Skim.

Section 3: Empirical motivation. Get idea.

Section 4: Model. Key. Get the idea.

Section 5: Estimation results. skim/read.

Section 6: Simulation results. Key - read.

Section 7: Sensitivity/robustness. Can drop.

References I

- Bruze, G., M. Svarer and Y. Weiss (2015): "The Dynamics of Marriage and Divorce," Journal of Labor Economics, 33(1), 123–170.
- JAKOBSEN, K., T. H. JØRGENSEN AND H. LOW (2022): "Fertility and Family Labor Supply," Working paper, Centre for Economic Behavior and Inequality.