Evapotranspiração de referência pelo Modelo Penman-Monteith – ETo (PM-FAO56) - mm dia ⁻¹ - Boletim FAO-56 de Allen <i>et al</i> . (1998)		
1) Evapotranspiração de referência - ETo (mm dia-1): Condições: superfície de referência do tipo hipotética com altura suposta de 0,12m que tem resistência de superfície 70 s m-1; albedo de 0,23; fluxo de calor no solo (G) podendo ser medido (Fluxímetro) ou considerado 0 (zero); próxima a uma superfície de grama verde, U2 = velocidade do vento a 2 metros.	$ETo(PM-FAO) = \frac{0,40}{}$	$8 \Delta (R_n - G) + \gamma \frac{900}{(T_{med} + 273)} U_2 (e_s - e_a)$ $\Delta + \gamma (1 + 0.34 U_2)$
2) γ (gama) = constante psicrométrica - (kPa °C ⁻¹): P(stm) = Pressão atmosférica (kPa) e z = altitude local (m). Quando o ar está com pouco movimento, a depressão psicrométrica (Ts e Tu) é mínima; mas, à medida que aumenta a movimentação do ar, (Ts e Tu) aumentam, atingindo valor constante quando a velocidade do ar atinge cerca de 2 m s ⁻¹ .	$\gamma = 0,665x10^{-3} P_{(atm)}$	$P_{(atm)} = 101, 3 \left(\frac{293 - 0,0065z}{293} \right)^{5,26}$
3) \(\Delta \) (delta)=declividade da curva de pressão de vapor na saturação (kPa °C ⁻¹): T _{med} = temperatura do ar média diária (°C); T _{min} = temperatura do ar mínima diária (°C); T _{max} = temperatura do ar máxima diária (°C). As temperaturas são medidas por sensores instalados em estações meteorológicas. Refere-se a tangente com base na curva de saturação do vapor de água (em relação a uma superfície plana de água) e à temperatura do ar média diária.	$\Delta = \frac{4098e_{s}}{(T_{med} + 237, 3)^{2}}$	
4) e _s = pressão de vapor na saturação (kPa): e _s (T _{min}) = pressão de saturação de vapor à temperatura do ar máxima (kPa) e e _s (T _{min}) = pressão de saturação de vapor à temperatura do ar mínima (kPa).	$e_{z} = \frac{e_{z}(T_{max}) + e_{z}(T_{min})}{2}$	$e_{s}(T_{m\acute{a}x}) = 0,6108 \exp^{\frac{17,27T \max}{T \max + 237,3}}$ $e_{s}(T_{m\acute{i}n}) = 0,6108 \exp^{\frac{17,27T \min}{T \min + 237,3}}$
5) ea = pressão de vapor atual (kPa): UR _{mix} = umidade relativa do ar máxima (%) e UR _{min} = umidade relativa do ar mínima (%). As umidades relativas são medidas por sensores instalados em estações meteorológicas.	$e_{a} = \frac{e_{s}(T_{min})\frac{UR_{max}}{100} + e_{s}(T_{max})\frac{UR_{min}}{100}}{2}$	
6) R _n = saldo da radiação ou radiação líquida (MJ m ⁻² dia ⁻¹): R _{nS} =saldo de radiação de ondas curtas (MJ m ⁻² dia ⁻¹) e R _{nL} = saldo de radiação de ondas longas (MJ m ⁻² dia ⁻¹). O saldo de radiação pode ser medido em estações meteorológicas ou calculado.	$R_{n} = R_{nS} - R_{nL}$	
 7) R_{nS} = saldo de radiação de ondas curtas (MJ m⁻² dia⁻¹) e velocidade do vento a 2,00 m (U₂): α (alfa) = albedo (considerado igual a 0,23); Uz = velocidade do vento na altura medida (m s⁻¹); Zm = altura onde é medida a velocidade do vento (m). 	$R_{nS} = (1 - \alpha)R_{z}$	$U_2 = U_z \cdot \frac{4,87}{\ln(67,8.z_m - 5,42)}$
8) R _s = radiação solar incidente (MJ m ⁻² d ⁻¹): n= número de horas de brilho solar (insolação em horas, ou seja, sem ocultação por nuvens ou fenômenos atmosféricos de qualquer natureza); N = Fotoperíodo (insolação máxima teoricamente possível em horas); R _a = radiação solar no topo da atmosfera (MJ m ⁻² dia ⁻¹). A radiação solar incidente pode ser medida por sensor (piranômetro) instalado em estações meteorológicas ou calculado.	$R_{s} = (0, 25 + 0, 50 \frac{n}{N}) R_{a}$	
 9) N = fotoperíodo (h): φ (phi) = valor da latitude (radianos); δ (delta) = declividade solar (radianos); J = dia Juliano (dia do mês no ano); ωs (ômega) = ângulo horário do pôr-do-sol (rad). 	$N = \frac{24\omega_{s}}{\pi} \qquad \omega_{s} = s$	$arccos [-tan(\varphi) tan(\delta)]$ $\delta = 0,409 sen\left(\frac{2\pi}{365}J - 1,39\right)$
10) R _a = radiação solar no topo da atmosfera (MJ m ⁻² dia ⁻¹): G _{sc} = constante solar (0,0820 MJ m ⁻² min ⁻¹); d _r = distância relativa Terra-Sol (radianos) e J = dia Juliano (dia do mês no ano).	$R_a = \frac{24(60)}{\pi} G_{zc} d_r \left[\omega_z sen(\varphi) sen(\delta) + \cos(\varphi) \cos(\delta) sen(\omega_z) \right] d_r = 1 + 0,033 \cos\left(\frac{2\pi}{365}J\right)$	
11) R _{nL} = saldo de radiação de ondas longas (MJ m ⁻² dia ⁻¹): σ (sigma) = constante de Stefan-Boltzman igual a 4,903x10 ⁻⁹ (MJ K ⁻⁴ m ⁻² dia ⁻¹); T _{max,K} = temp. do ar máxima diária em kelvin (K); T _{min,K} = temp. do ar mínima diária em kelvin (K); R _{so} = radiação solar em dias de céu claro (MJ m ⁻² dia ⁻¹) e e _a = pressão de vapor atual (kPa).	$R_{nL} = \sigma \left(\frac{(T_{\text{max},Kehin})^4 + (T_{\text{min},Kehin})^4}{2} \right) (0,34 - 0.14 \sqrt{e_a}) \left(1,35 \frac{R_s}{R_{sO}} - 0.35 \right)$	
12) R_{50} = radiação solar em dias de céu claro (MJ m ⁻² dia ⁻¹): R_{50} = $(a_5 + b_5)Ra$, sendo a_5 e b_5 = fração da radiação solar no topo da atmosfera em dias claros (n=N), não conhecendo a_5 e b_5 , considera-se: $a_5 + b_5 = 0.75 + 2x10^{-5}z$, com: $z =$ altitude local (m).	$R_{so} = (0.75 + 2 \times 10^{-5} \times z) R_{a}$	