Single Qubit states and their visualization Introduction to Quantum Computing

Jothishwaran C.A.

Department of Electronics and Communication Engineering Indian Institute of Technology Roorkee

May 10, 2025

Outline

Recap

Complex Vectors and Qubits

Qubit states in \mathbb{C}^2 Basis vectors and State representation Projections and Photons

Visualising the Qubit state

Polar Coordinates
The global phase
States in Polar Coordinates
Visualising the Qubit state

What we know so far

- ▶ In quantum computing, the fundamental unit of information is a quantum bit (qubit).
- ▶ A qubit can be used to represent the state of many physical objects.
- ▶ We considered photons, where the qubit was used to represent the polarization state of the photon.
- Vertical ($|0\rangle$) and horizontal ($|1\rangle$) polarization states were considered as the basis for these qubits.

What we know so far

- ▶ A real superposition (linear combination) of $|0\rangle$ and $|1\rangle$ formed oblique polarization states.
- Complex superposition also accounts for circular and elliptical polarization states.
- A vertically aligned polarizer can be used to "measure" the polarization state of these photons.
- ▶ If a photon passes through this polarizer its polarization is measured to be vertically aligned. If a photon is blocked (absorbed) by this polarizer , its polarization is measured to be horizontally aligned.

What we know so far

- Measuring a qubit state with respect to a basis will change the quantum state of the photon.
- After measurement, the state of the photon changes to one of the basis states.
- ► The outcome of a quantum measurement is in general represented by a real number.
- ▶ In the case of a qubit, the measurement outcome is represented by a single classical bit.

The vector space \mathbb{C}^2

▶ A vector in the space \mathbb{C}^2 is represented as follows:

$$|\psi
angle \,=\, egin{pmatrix} \mathsf{a} \ \mathsf{b} \end{pmatrix} \,;\,\, \mathsf{a},\mathsf{b} \in \mathbb{C}$$

▶ If $|\phi\rangle = \begin{pmatrix} c \\ d \end{pmatrix}$, the inner products $\langle \phi | \psi \rangle$ and $\langle \psi | \phi \rangle$ are defined as:

$$\langle \phi | \psi \rangle = \begin{pmatrix} \bar{c} & \bar{d} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a\bar{c} + b\bar{d}$$

and

$$\langle \psi | \phi \rangle = \left\{ egin{pmatrix} (ar{c} & ar{d}) igg(ar{a} igg) \\ b \end{pmatrix}
ight\}^\dagger = ar{a}c + ar{b}d = \overline{\langle \phi | \psi \rangle}$$

Normalization and the Qubit state

lackbox Consider the quantity $\langle \psi | \psi \rangle$ which has a value

$$\langle \psi | \psi \rangle = |a|^2 + |b|^2$$

- ▶ Therefore a vector $|\psi\rangle$ is a qubit state if $\langle\psi|\psi\rangle=1$.
- \blacktriangleright A general vector $|\phi\rangle$ can be converted to a qubit state $|\tilde{\phi}\rangle$ as follows:

$$|\tilde{\phi}
angle = rac{1}{\langle \phi | \phi
angle^{rac{1}{2}}} | \phi
angle$$

- The above process is referred to as normalization and the quantity $\langle \phi | \phi \rangle^{\frac{1}{2}}$ is called the norm of the vector $| \phi \rangle$.
- ▶ Qubit states can now be formally defined as vectors in \mathbb{C}^2 with a unit norm.

Basis States

▶ Defining the vectors $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, the vector $|\psi\rangle$ is now expressed as:

$$|\psi\rangle\,=\,a\,|0\rangle+b\,|1\rangle$$

It is possible to represent any vector in \mathbb{C}^2 is the above manner.

- ▶ The set $\{|0\rangle, |1\rangle\}$ is called the standard or the computational basis and is said to span \mathbb{C}^2 .
- ▶ The inner products have the values; $\langle 0|0\rangle=\langle 1|1\rangle=1$ and $\langle 0|1\rangle=\langle 1|0\rangle=0$.
- ▶ A basis satisfying the above property is known as an orthonormal basis. It is worth noting that orthonormal basis vectors are valid qubit states.

Coordinates and Projections

▶ Considering the vector $|\psi\rangle$ and the computational basis $\{|0\rangle\,, |1\rangle\}$, the following is true

$$\langle 0|\psi\rangle = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = a; \langle 1|\psi \rangle = \begin{pmatrix} 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = b$$

- ▶ The coordinates of the vector $|\psi\rangle$ can be defined in terms of the inner product with the basis vectors.
- ▶ The inner product of $|\psi\rangle$ with a basis vector is known as the projection of $|\psi\rangle$ along that basis vector.
- ▶ The vector $|\psi\rangle$ can now be represented in terms of the projections as follows:

$$|\psi\rangle = \langle 0|\psi\rangle |0\rangle + \langle 1|\psi\rangle |1\rangle$$

"Non-standard" Basis

- The idea of coordinates and projections is true for any orthonormal basis.
- Consider the basis orthonormal basis $\{|+\rangle\,, |-\rangle\}$, where $|+\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $|-\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
- ▶ In this basis, the vector $|\psi\rangle$ is represented as:

$$|\psi\rangle = \langle +|\psi\rangle |+\rangle + \langle -|\psi\rangle |-\rangle$$

evaluating the inner products give the result

$$|\psi
angle \,=\, rac{a+b}{\sqrt{2}}\,|+
angle + rac{a-b}{\sqrt{2}}\,|-
angle$$

Projections and Photons

► The state of an obliquely polarized photon $|\chi\rangle = \begin{pmatrix} \cos\theta \\ \sin\theta \end{pmatrix}$, this state can be represented in the standard basis as:

$$|\chi\rangle = \cos\theta \, |0\rangle + \sin\theta \, |1\rangle$$

where the basis vectors $|0\rangle$, $|1\rangle$ represent the vertical and horizontal polarization states.

- ► The probability that this photon is transmitted by a polarized aligned along the $|0\rangle$ is given by $|\cos\theta|^2$.
- ▶ The transmission probability can now be correctly reinterpreted as $|\langle 0|\chi\rangle|^2$ and this result maybe used to calculate the transmission probabilities for circularly polarized light as well.
- The above result can be generalised to transmission probabilities for a polarizer oriented along any direction using the same method as described before.

Polar Coordinates

A complex number, $z = x + \mathbf{i}y$ can be represented in the polar form as, $z = re^{\mathbf{i}\phi}$ where

$$r = \sqrt{x^2 + y^2}$$
; $\phi = \arctan\left(\frac{y}{x}\right)$

Figure 1: Figure showing the representations of a complex number. Source: $Wikipedia^2$

https://creativecommons.org/licenses/by-sa/3.0/legalcode + 4 = + 4 = + 2 + 4 = + 2 + 4 = + 2 + 4 = + 4

²Complex_number_illustration.svg: The original uploader was Wolfkeeper at English Wikipedia. derivative work: Kan8eDie (talk) https://commons.wikimedia.org/wiki/File: Complex_number_illustration_modarg.svg, "Complex number illustration modarg",

The global phase

- lacktriangle The unit complex number $e^{{f i}\phi}$ is also referred to as a phase factor.
- Multiplying a photon state $|\psi\rangle$ with a phase factor gives a state $e^{\mathrm{i}\phi}\,|\psi\rangle$. The phase factor is now referred to as a global phase factor.
- ▶ The projection of this new vector with respect to a basis state (say $|0\rangle$) is given by $e^{\mathbf{i}\phi} \langle 0|\psi\rangle$.
- Mhile this is different from $\langle 0|\psi\rangle$, it should be noted that this new state will have the same transmission probabilities as that of $|\psi\rangle$.
- It is therefore not possible to distinguish $e^{\mathbf{i}\phi} |\psi\rangle$ from $|\psi\rangle$ by performing polarization measurements.
- ► Therefore, states that differ from each other by only a global phase are considered to be equivalent.

Qubit state in polar coordinates

- Consider the state $|\psi\rangle$ in the standard basis with the coordinates represented in polar coordinates. $a=\mathsf{r}_0e^{\mathsf{i}\phi_0}$ and $b=\mathsf{r}_1e^{\mathsf{i}\phi_1}$
- ▶ The state may now be expressed as follows:

$$\begin{aligned} |\psi\rangle &= r_0 e^{\mathbf{i}\phi_0} |0\rangle + r_1 e^{\mathbf{i}\phi_1} |1\rangle \\ &= e^{\mathbf{i}\phi_0} \left(r_0 |0\rangle + r_1 e^{\mathbf{i}(\phi_1 - \phi_0)} |1\rangle \right) \\ &\equiv r_0 |0\rangle + r_1 e^{\mathbf{i}(\phi_1 - \phi_0)} |1\rangle \end{aligned}$$

setting $\phi_1 - \phi_0 = \phi$,

$$|\psi
angle \,=\, \mathsf{r}_0\,|0
angle + \mathsf{r}_1 e^{\mathbf{i}\phi}\,|1
angle$$

additionally,

$$\langle \psi | \psi \rangle = 1 \Rightarrow \mathbf{r}_0^2 + \mathbf{r}_1^2 = 1$$

Parameter Selection

- Since, $0 \le r_0, r_1 \le 1$ and $r_0^2 + r_1^2 = 1$ it is possible to represent $r_0 = \cos(\theta/2)$ and $r_1 = \sin(\theta/2)$ where, $\theta \in [0, \pi]$
- ▶ Since, $e^{\mathbf{i}\phi} = \cos \phi + \mathbf{i} \sin \phi \Rightarrow \phi \in [0, 2\pi)$. This angle is known as the relative phase.
- ▶ These parameters are identical to the angle variable in spherical polar coordinates. Therefore, each qubit state defined using these parameters corresponds to a point on a unit sphere.
- ▶ The qubit state in terms of this parameter is represented as

$$|\psi\rangle = \cos(\theta/2)|0\rangle + e^{\mathbf{i}\phi}\sin(\theta/2)|1\rangle$$

► The sphere on which the point corresponding to the state is present is known as the *Bloch Sphere*.

Figure 2: Figure showing a point on the Bloch Sphere. Source: Wikipedia³

³Smite-Meister (https://commons.wikimedia.org/wiki/File:Bloch_sphere.svg), "Bloch sphere", (https://creativecommons.org/licenses/by-sa/3.0/legalcode)

Figure 3: Figure showing the the point corresponding to $|0\rangle$

Figure 4: Figure showing the point corresponding to $|1\rangle$

Figure 5: Figure showing the point corresponding to $|+\rangle$