# Estimación de la calidad de imágenes médicas 3D por medio de aprendizaje automático

Curso: Ingeniería Informática 2022-2023.

Autor: Brian Sena Simons.

Tutor: Dr. Pablo Mesejo Santiago.

Co-Tutor: Dr. Enrique Bermejo Nievas.

Granada, 1 de septiembre de 2023



#### Índice

- Introducción
  - Contexto
  - Subproblemas
  - Motivación
  - Objetivos
- Estado del arte
  - Búsquedas Scopus
  - Estado del arte IQA
  - Estado del arte PCQA
  - Estado del arte en imágenes médicas

- Materiales y métodos
  - Materiales
  - Métodos
  - Entorno
- Experimentación
  - Protocolo de validación
  - Modelo NR3DQA
  - Modelo VQA-PC
- Conclusiones y trabajos futuros
  - Conclusiones



2/33

Contexto

#### **Contexto**

- La información visual es cada vez más importante.
  - Tanto para el entretenimiento como para el ámbito biomédico.
- tarea de medir y cuantificar la calidad perceptual humana de una imagen (IQA).
  - Factores importantes: contenido, contraste, distorsiones y la percepción humana



Figura: Imágenes distorsionadas equidistantes<sup>1</sup>

<sup>&</sup>lt;sup>1</sup>Kalpana Seshadrinathan, Thrasyvoulos Pappas, Robert Safranek, Junqing Chen, Zhou Wang, Hamid Sheikh y Alan Bovik. "Image Quality Assessment". En: The Essential Guide to Image Processing (2009), págs. 553-595.



3/33

**Subproblemas** 

#### Estimación con referencia



Figura: Problema con referencia (FR).



Figura: Problema con referencia reducida (RR).



4 / 33

**Brian Sena Simons** 

#### Estimación sin referencia



Figura: Problema sin referencia (NR).

- El subproblema más difícil.
- Debemos disponer de conocimientos sobre:
  - Naturaleza de las imágenes.
  - Efecto de las distorsiones.
- Este TFG aborda la estimación, sin referencia, de calidad de imágenes médicas 3D.



**Brian Sena Simons** 1 de septiembre de 2023 UGR 5 / 33

# **Aplicaciones**

- Comparativa entre algoritmos de compresión.
- Recuperación de la información.
- **Fyaluar** errores de transmisión.



Figura: Eliminación de reflejos en imágenes<sup>2</sup> con medida de calidad BRISOUE<sup>3</sup>.



<sup>&</sup>lt;sup>2</sup>Maimoona Rafig, Usama Bajwa, Ghulam Gilanie y Wagas Anwar. "Reconstruction of scene using corneal reflection". En: Multimedia Tools and Applications 80 (iun. de 2021), págs, 1-17

<sup>&</sup>lt;sup>3</sup>Anish Mittal, Anush Krishna Moorthy v Alan Conrad Boyik, "No-reference image quality assessment in the spatial domain". En: IEEE Transactions on Image Processing (TIP) 21.12 (2012), págs. 4695-4708

Motivación

#### Motivación

- Cada vez más frecuentemente se emplean volúmenes tridimensionales.
- No obstante, las distorsiones afectan al volumen 3D generado.
- Las contribuciones relativas al IQA en la medicina resulta en:
  - Reducción de costes.
  - Reducción de tiempo de consulta.
  - Mejora de calidad del diagnóstico.



Figura: Ejemplo de visualización 3D (Slicer<sup>4</sup>).



<sup>&</sup>lt;sup>4</sup>Andriy Fedorov et al. "3D Slicer as an image computing platform for the Quantitative Imaging Network". En: Magnetic Resonance Imaging 30.9 (2012), ágs. 1323-1341.

Introducción

- El número de métodos propuestos para 3D decrece sustancialmente.
- La naturaleza de las imagenes médicas reduce la precisión de modelos IQA estándares.
- No hay ningún método aplicado directamente a imágenes médicas 3D.



Figura: Ejemplo de distorsiones médicas<sup>5</sup>.

<sup>&</sup>lt;sup>5</sup>Igor Stepien y Mariusz Oszust. "A Brief Survey on No-Reference Image Quality Assessment Methods for Magnetic Resonance Images". En: Journal of Imaging 8.6 2022).



8 / 33

# **Objetivos**

- Estudio exhaustivo del estado del arte.
- Generación de datos sintéticos.
- Validar métodos más prometedores.





9 / 33

**Búsquedas Scopus** 

#### **Tendencia Scopus**



Figura: Aprendizaje automático en medicina (azul) y nubes de puntos (naranja). Ambos superan los 6000 documentos



Figura: Estimación de calidad en imágenes médicas (azul), nubes de puntos (naranja) y en imágenes médicas 3D (verde). Esta última, tan solo llega a 60 publicaciones



# Estado del arte FR-IQA

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.
  - 2 La sensibilidad al contraste.
  - Hipótesis de percepción a través de: brillo, contraste y estructuras.
  - La saliencia visual.
  - Empleo de modelos DL.

| Métrica | LIVE  |       |        |  |  |
|---------|-------|-------|--------|--|--|
| Metrica | SRCC  | RMSE  |        |  |  |
| PSNRHVS | 0.919 | 0.903 | 12.540 |  |  |
| UQI     | 0.894 | 0.899 | 11.982 |  |  |
| SSIM    | 0.948 | 0.845 | 8.946  |  |  |
| VSI     | 0.952 | 0.948 | 8.682  |  |  |
| DSS     | 0.962 | 0.931 | 9.961  |  |  |
| CD-MMF  | 0.981 | 0.980 | 5.413  |  |  |
| WaDIQaM | 0.970 | 0.980 | -      |  |  |

**Tabla:** Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML y DL<sup>6</sup>.

<sup>&</sup>lt;sup>6</sup>Yuzhen Niu, Yini Zhong, Wenzhong Guo, Yiqing Shi y Peikun Chen. "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges". En: IEEE Access 7 (2019), págs. 782-801.



# Estado del arte FR-IQA

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.

Estado del arte

- 2 La sensibilidad al contraste.
- Hipótesis de percepción a través de: brillo, contraste y estructuras.
- La saliencia visual.
- Empleo de modelos DL.

| Métrica | LIVE  |       |        |  |  |
|---------|-------|-------|--------|--|--|
| Metrica | SRCC  | PLCC  | RMSE   |  |  |
| PSNRHVS | 0.919 | 0.903 | 12.540 |  |  |
| UQI     | 0.894 | 0.899 | 11.982 |  |  |
| SSIM    | 0.948 | 0.845 | 8.946  |  |  |
| VSI     | 0.952 | 0.948 | 8.682  |  |  |
| DSS     | 0.962 | 0.931 | 9.961  |  |  |
| CD-MMF  | 0.981 | 0.980 | 5.413  |  |  |
| WaDIQaM | 0.970 | 0.980 | -      |  |  |

**Tabla:** Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML y DL<sup>6</sup>.



 $<sup>^6</sup>$ Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

# Estado del arte FR-IOA

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.
  - La sensibilidad al contraste.
  - Hipótesis de percepción a través de: brillo, contraste y estructuras.
  - La saliencia visual.
  - Empleo de modelos DL.

| Métrica |       |       |        |
|---------|-------|-------|--------|
| Metrica | SRCC  | PLCC  | RMSE   |
| PSNRHVS | 0.919 | 0.903 | 12.540 |
| UQI     | 0.894 | 0.899 | 11.982 |
| SSIM    | 0.948 | 0.845 | 8.946  |
| VSI     | 0.952 | 0.948 | 8.682  |
| DSS     | 0.962 | 0.931 | 9.961  |
| CD-MMF  | 0.981 | 0.980 | 5.413  |
| WaDIQaM | 0.970 | 0.980 | -      |

**Tabla:** Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML v DL<sup>6</sup>.



<sup>&</sup>lt;sup>6</sup>Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

# Estado del arte FR-IOA

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.

Estado del arte

- La sensibilidad al contraste.
- Hipótesis de percepción a través de: brillo, contraste y estructuras.
- La saliencia visual.
- Empleo de modelos DL.

| Métrica |       | LIVE  |        |
|---------|-------|-------|--------|
| Metrica | SRCC  | PLCC  | RMSE   |
| PSNRHVS | 0.919 | 0.903 | 12.540 |
| UQI     | 0.894 | 0.899 | 11.982 |
| SSIM    | 0.948 | 0.845 | 8.946  |
| VSI     | 0.952 | 0.948 | 8.682  |
| DSS     | 0.962 | 0.931 | 9.961  |
| CD-MMF  | 0.981 | 0.980 | 5.413  |
| WaDIQaM | 0.970 | 0.980 | -      |

**Tabla:** Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML v DL<sup>6</sup>.



<sup>&</sup>lt;sup>6</sup>Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

# Estado del arte FR-IOA

- Están basados en los avances del conocimiento sobre el sistema visual humano (HVS):
  - Cuantificación de la señal.

Estado del arte

- La sensibilidad al contraste.
- Hipótesis de percepción a través de: brillo, contraste y estructuras.
- La saliencia visual.
- Empleo de modelos DL.

| Métrica |       | LIVE  |        |
|---------|-------|-------|--------|
| Metrica | SRCC  | PLCC  | RMSE   |
| PSNRHVS | 0.919 | 0.903 | 12.540 |
| UQI     | 0.894 | 0.899 | 11.982 |
| SSIM    | 0.948 | 0.845 | 8.946  |
| VSI     | 0.952 | 0.948 | 8.682  |
| DSS     | 0.962 | 0.931 | 9.961  |
| CD-MMF  | 0.981 | 0.980 | 5.413  |
| WaDIQaM | 0.970 | 0.980 | -      |

**Tabla:** Progreso de las métricas FR conforme avanza los conocimientos del HVS, ML v DL<sup>6</sup>.



<sup>&</sup>lt;sup>6</sup>Niu, Zhong, Guo, Shi y Chen, "2D and 3D Image Quality Assessment: A Survey of Metrics and Challenges".

#### Estado del arte PCQA

- Métodos para casos específicos.
- Extracción de características del vecindario del punto.
  - Características geométricas.
  - Características lumínicas.
- Métodos genéricos por ML.
- Métodos genéricos por DL.
  - Proyecciones 2D.
  - Interpretación 3D directa.
  - Mixto.

| MODELO  | STJU-I | PCQA  | WPC   |       |
|---------|--------|-------|-------|-------|
| MODELO  | PLCC   | SRCC  | PLCC  | SRCC  |
| IT-PCQA | 0.58   | 0.63  | 0.55  | 0.54  |
| NR3DQA  | 0.738  | 0.714 | 0.651 | 0.647 |
| GPA-Net | 0.806  | 0.78  | -     | -     |
| ResSCNN | 0.86   | 0.81  | 0.72  | 0.75  |
| VQA-PC  | 0.863  | 0.85  | 0.797 | 0.796 |
| MM-PCQA | 0.92   | 0.91  | 0.83  | 0.83  |

Tabla: Resumen del estado del arte de modelos NR-PCQA en dos datasets SJTU y WPC.



#### Estado del arte PCQA

- Métodos para casos específicos.
- Extracción de características del vecindario del punto.
  - Características geométricas.
  - Características lumínicas.
- Métodos genéricos por ML.
- Métodos genéricos por DL.
  - Proyecciones 2D.
  - Interpretación 3D directa.
  - Mixto.

| MODELO  | STJU-I | PCQA  | WPC   |       |
|---------|--------|-------|-------|-------|
| MODELO  | PLCC   | SRCC  | PLCC  | SRCC  |
| IT-PCQA | 0.58   | 0.63  | 0.55  | 0.54  |
| NR3DQA  | 0.738  | 0.714 | 0.651 | 0.647 |
| GPA-Net | 0.806  | 0.78  | -     | -     |
| ResSCNN | 0.86   | 0.81  | 0.72  | 0.75  |
| VQA-PC  | 0.863  | 0.85  | 0.797 | 0.796 |
| MM-PCQA | 0.92   | 0.91  | 0.83  | 0.83  |

Tabla: Resumen del estado del arte de modelos NR-PCQA en dos datasets SJTU y WPC.



#### Estado del arte PCQA

- Métodos para casos específicos.
- Extracción de características del vecindario del punto.
  - Características geométricas.
  - Características lumínicas.
- Métodos genéricos por ML.
- Métodos genéricos por DL.
  - Proyecciones 2D.
  - Interpretación 3D directa.
  - Mixto.

| MODELO  | STJU-I | PCQA  | WPC   |       |
|---------|--------|-------|-------|-------|
| MODELO  | PLCC   | SRCC  | PLCC  | SRCC  |
| IT-PCQA | 0.58   | 0.63  | 0.55  | 0.54  |
| NR3DQA  | 0.738  | 0.714 | 0.651 | 0.647 |
| GPA-Net | 0.806  | 0.78  | -     | -     |
| ResSCNN | 0.86   | 0.81  | 0.72  | 0.75  |
| VQA-PC  | 0.863  | 0.85  | 0.797 | 0.796 |
| MM-PCQA | 0.92   | 0.91  | 0.83  | 0.83  |

Tabla: Resumen del estado del arte de modelos NR-PCQA en dos datasets SJTU y WPC.



Estado del arte en imágenes médicas

#### Estado del arte en imágenes médicas

Estado del arte

- No existe una imagen o representación "sin distorsión" en la medicina.
- Los métodos actuales utilizan adaptaciones IQA para exámenes médicos específicos como MRI.
- No se ha encontrado nada específico en la literatura sobre métodos aplicados directamente a reconstrucciones 3D.



#### **Datos públicos SJTU**

- 10 nubes de puntos de referencia.
- 7 tipos de distorsiones: compresión, ruido al color, ruido geométrico, ruido gaussiano y combinación entre ellas.
- **o** 6 niveles de intensidad.
- Total de 420 nubes de puntos.



Figura: Ejemplo de conjuntos de datos SJTU<sup>7</sup>

<sup>&</sup>lt;sup>7</sup>Qian Yang, Haichuan Chen, Zhihua Ma, Yue Xu, Rui Tang y Jian Sun. "Predicting the Perceptual Quality of Point Cloud: A 3D-to-2D Projection-Based Exploration". En: IEEE Transactions on Multimedia (2020).

#### **Datos públicos WPC**

- **25 nubes de puntos** de referencia.
- 5 tipos de distorsiones: sumuestreo, ruido gaussiano, trisoup, V-PCC y octree.
- Longitud de intensidades variantes.
- Total de 741 nubes de puntos.



Figura: Ejemplo de conjuntos de datos WPC<sup>8</sup>



<sup>&</sup>lt;sup>8</sup>Qi Liu, Honglei Su, Zhengfang Duanmu, Wentao Liu y Zhou Wang. "Perceptual Quality Assessment of Colored 3D Point Clouds". En: IEEE Transactions on Visualization and Computer Graphics (TVCG) (2022), págs. 1-1.

Materiales

#### **Datos públicos LS-PCQA**

- **104 nubes de puntos** de referencia.
- 31 tipos de distorsiones.
- **o** 7 niveles de intensidad.
- Total de 22000 nubes de puntos.



Figura: Ejemplo de conjuntos de datos LS-PCQA9



<sup>&</sup>lt;sup>9</sup>Yipeng Liu, Qi Yang, Yiling Xu y Le Yang. "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric". En: (2022). arXiv: 2012.11895.

Materiales

#### Datos médicos



Figura: Ejemplo de distorsiones generadas sobre clavículas, donde (a) es la imagen original, (b) la distorsionada por submuestreo y (c) por movimiento local.

- 11 nubes de puntos de referencia.
- 5 tipos de distorsiones: submuestreo, compresión, ruido, rotación y movimiento local.
- 7 niveles de intensidad para un total de 385 nubes de puntos.



# Generación de etiquetas

| Distortion       | М-р2ро | M-p2pl | Н-р2ро | H-p2pl | PCQM  | GraphSIM | MPED  |
|------------------|--------|--------|--------|--------|-------|----------|-------|
| DownSample       | 0.881  | 0.626  | 0.841  | 0.811  | 0.524 | 0.842    | 0.857 |
| GaussianShifting | 0.741  | 0.718  | 0.829  | 0.834  | 0.816 | 0.742    | 0.598 |
| LocalOffset      | 0.937  | 0.934  | 0.770  | 0.770  | 0.851 | 0.906    | 0.897 |
| LocalRotation    | 0.819  | 0.712  | 0.831  | 0.734  | 0.657 | 0.723    | 0.742 |
| Octree           | 0.779  | 0.788  | 0.819  | 0.752  | 0.676 | 0.757    | 0.710 |

**Tabla:** Tabla de correlación de métricas para generación de etiquetas.<sup>10</sup>.

|       | Parte I | Parte II |
|-------|---------|----------|
| SROCC | 0.903   | 0.879    |
| PLCC  | 0.911   | 0.872    |

Tabla: Correlación de métricas sintéticas. 10.



<sup>&</sup>lt;sup>9</sup>Liu, Yang, Xu y Yang, "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric".

#### Métricas

#### Correlación lineal de Pearson

$$PLCC(x, y) = \frac{\sum_{i=1}^{m} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{m} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{m} (y_i - \bar{y})^2}}$$

Evalúa si existe una **relación lineal** entre conjuntos.

#### Correlación de orden de rango de Kendall

$$KROCC(x, y) = \frac{C-D}{\frac{1}{2}m(m-1)}$$

Evalúa la **concordancia y discordancia** de relación entre pares.

#### Correlación de rangos de Spearman

SROCC(x, y) = 
$$\frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i}(x_{i} - \bar{x})^{2}}\sqrt{\sum_{i}(y_{i} - \bar{y})^{2}}}$$

Evalúa la relación lineal entre los *rankings*.

#### Raíz del error cuadrático medio

RMSE(x, y) = 
$$\sqrt{\frac{1}{m} \sum_{i=1}^{m} (x_i - y_i)^2}$$

Evalúa la **diferencia media** de los pares de valores.



Métodos

#### Modelo NR3DQA<sup>10</sup>

- Extracción independiente del modelo.
  - Anisotropía
  - Planaridad
  - Esfericidad
  - Curvatura
  - Linealidad
- Descartamos las características lumínicas.
- Usamos: media, desviación y entropía.



**Figura:** Extracción de características del vecindario.

<sup>&</sup>lt;sup>10</sup>Zicheng Zhang, Wei Sun, Xiongkuo Min, Tao Wang, Wei Lu y Guangtao Zhai. "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models". En: IEEE Transactions on Circuits and Systems for Video Technology 32.11 (2022), págs. 7618-7631



Métodos

#### Modelo VQA-PC<sup>11</sup>

- Extracción automática de características.
- Extracción espacial y temporal de las reconstrucciones.
  - Espacial por fotogramas estáticos de distintas perspectivas.
  - Temporal por tratar la nube como video.
- Es como un meta-modelo de aprendizaje profundo.



Figura: Estructura del modelo VQA-PC

<sup>&</sup>lt;sup>11</sup>Zicheng Zhang, Wei Sun, Yucheng Zhu, Xiongkuo Min, Wei Wu, Ying Chen y Guangtao Zhai. "Treating Point Cloud as Moving Camera Videos: A No-Reference Quality Assessment Metric". En: (2022). arXiv: 2208.14085



Entorno

#### Tecnologías utilizadas





















#### Protocolo de validación





#### Modelo NR3DQA<sup>11</sup>

| Dataset | PLCC     | SROCC    | KROCC    |
|---------|----------|----------|----------|
| SJTU    | 0.810325 | 0.777403 | 0.608302 |
| WPC     | 0.637953 | 0.634853 | 0.463578 |

**Tabla:** Replicando experimentos de Zhang et al<sup>11</sup>.

| Etiqueta Sintética  | Modelo       | Escalado       | PLCC     | SROCC    |
|---------------------|--------------|----------------|----------|----------|
| Valor de la métrica | SVM          | RobustScaler   | 0.2017   | 0.1776   |
| Valor normalizado   | KNNRegressor | RobustScaler   | 0.2671   | 0.1882   |
| Valor en escala 0-5 | DecisionTree | StandardScaler | 0.309176 | 0.196713 |

Tabla: Resultados de prueba preliminar con NR3DQA<sup>11</sup>.



<sup>&</sup>lt;sup>11</sup>Zhang, Sun, Min, Wang, Lu y Zhai, "No-Reference Quality Assessment for 3D Colored Point Cloud and Mesh Models"

#### Modelo NR3DQA

#### **Modificaciones**

- Weinmann et al<sup>12</sup> estudiaron los procesos de:
  - Segmentación.
  - Detección.
  - Clasificación.
- Justifican la importancia de:
  - Omnivarianza.
  - Entropía de los valores singulares.
  - Verticalidad del vecindario.

| Dataset | PLCC     | SROCC    | KROCC    |
|---------|----------|----------|----------|
| SJTU    | 0.853709 | 0.820057 | 0.649406 |
| WPC     | 0.642356 | 0.62917  | 0.455562 |
| Nuestro | 0.344601 | 0.170793 | -        |

**Tabla:** Resultado de mejoras sobre el método SVM.





#### **Experimentos preliminares VQA-PC**

| Kfold    | MSE         | SROCC  |
|----------|-------------|--------|
| О        | 13.9222     | 0.8995 |
| 1        | 418120.5625 | 0.8547 |
| 2        | 10.9271     | 0.9081 |
| 3        | 19.8226     | 0.9295 |
| 4        | 443.6077    | 0.8700 |
| 5        | 28.3165     | 0.9544 |
| 6        | 292.239     | 0.7675 |
| 7        | 329.0685    | 0.8833 |
| 8        | 357.0455    | 0.8647 |
| Promedio | 46623.94    | 0.8813 |

**Tabla:** Resultados de experimento preliminar.



Experimentación 00000000

Modelo VQA-PC

#### Curvas de aprendizaje VQA-PC



Figura: Curvas de aprendizaje del test preliminar.



#### **Modificaciones**

- Abouelaziz et al<sup>13</sup> experimentaron distintos métodos de fusión de características.
  - Fusión por concatenación (Fo).
  - Fusión por multiplicación (F1).
  - Fusión por convolución 1x1 (F2).
  - Fusión por compact multi-linear pooling (F3).
- Experimentamos con todas ellas.
- Experimentamos con etiquetas normalizadas o no.
- En vez de recortar una selección local, reescalar la imagen entera.

<sup>&</sup>lt;sup>13</sup> Ilyass Abouelaziz, Aladine Chetouani, Mohammed El Hassouni, Longin Jan Latecki y Hocine Cherifi. "No-reference mesh visual quality assessment via ensemble of convolutional neural networks and compact multi-linear pooling". En: Pattern Recognition 100 (2020), pág. 107174.



#### **Experimentos finales VQA-PC**

|               | Valor medio SROCC |             |            |        |
|---------------|-------------------|-------------|------------|--------|
| Modelo        | Estándar          | Normalizado | Reescalado | Ambos  |
| VQA-PC (SJTU) | 0.7094            | 0.6235      | 0.8425     | 0.7126 |
| VQA-PC F1     | 0.7305            | 0.6140      | 0.8164     | 0.7291 |
| VQA-PC F2     | 0.6816            | 0.5770      | 0.8057     | 0.7324 |
| VQA-PC F3     | 0.7080            | 0.5671      | 0.7482     | 0.7006 |

**Tabla:** Tabla de resultados iniciales sobre imágenes médicas.



#### **Resultados Finales**

|           | SROCC  |            |         |
|-----------|--------|------------|---------|
| Modelo    | Media  | Desviación | Mediana |
| VQA-PC Fo | 0.8325 | 0.2017     | 0.9140  |
| VQA-PC F1 | 0.8242 | 0.2025     | 0.9095  |
| VQA-PC F2 | 0.8757 | 0.1468     | 0.9347  |
| VQA-PC F3 | 0.8071 | 0.1811     | 0.8692  |

**Tabla:** Resultados en imágenes médicas reescaladas con modelos pre-entrenados sobre el conjunto de datos LS-PCQA<sup>10</sup>.



<sup>&</sup>lt;sup>10</sup>Liu, Yang, Xu y Yang, "Point Cloud Quality Assessment: Dataset Construction and Learning-based No-Reference Metric"

#### **Conclusiones**

- Primer método que estima la calidad de reconstrucciones biomédicas 3D.
- Se logra generar un conjunto de datos médicos sintéticos para estimación de calidad.
- **Se justifica** el uso de modelos de **aprendizaje profundo** experimentalmente.
- Pese a ser un estudio preliminar, obtenemos una alta correlación (88 %). Indicador de lo prometedora que es esta línea de investigación.



#### Conclusiones

#### **Conclusiones**



**Figura:** Ejemplo de correspondencia de pendiente entre valores inferidos (sin normalizar) y los valores reales de las etiquetas.

- Se han completado satisfactoriamente los objetivos planteados.
- Se han abierto puertas a futuras investigaciones.
- https://github.com/CodeBoy-source/TFG\_NRPCQA



Conclusiones y trabajos futuros

**Conclusiones** 

# **Trabajos futuros**

- Rehacer el experimento con etiquetas generadas manualmente.
- Para mejorar el meta-modelo, se podria permitir la adaptación del modelo de extracción de características temporales.
- Simular distorsiones sobre imágenes 2D para obtener datos más realistas.
- Explorar otros métodos de la literatura.



#### **Agradecimientos**

# Gracias por su atención.

¿Dudas, preguntas o comentarios?

