Zadania końcowe

- 1. Protony rozpraszane są na tarczy wodorowej, wskutek czego produkowane są piony. Naładowany pion rozpada się następnie w procesie: $\pi^+ \to \mu^+ + \nu_\mu$. Średni czas życia (własny) naładowanego pionu wynosi $\tau_\pi = 2.6 \cdot 10^{-8}$ s. Jeśli prędkość pionu wynosi $2.8 \cdot 10^{8}$ m/s, to jaki jest jego czas życia w detektorze? Jaką średnio drogę przebędą te piony?
- 2. Prawdopodobieństwo przejścia ze stanu początkowego do końcowego opisywane jest przez pewien element macierzowy.
 - a) Zapisz stan cząstki w postaci fali płaskiej.
 - b) Wykonaj obliczenia przekroju czynnego dla rozpraszania bezspinowej cząstki na potencjale Yukawy: $V(r) = \frac{g}{4\pi} \frac{e^{-mr}}{r}$.
 - c) W uzyskanym wyniku zapisz $m \to 0$ i zinterpretuj wynik.
- 3. Narysować diagramy kwarkowe dla poniższych rozpadów słabych. Co można powiedzieć o częstości występowania różnych rozpadów tych samych cząstek?

$D^+ o K^-\pi^+\pi^+$ $D^+ o \overline K{}^0\pi^+\pi^0$	$\Xi^0 o \Lambda \pi^0$	$\Lambda o n \pi^0$
	$\Xi^- o \Lambda \ \pi^-$	$\Lambda o p\pi^-$
$D^+ o K^+ \pi^- \pi^+$	$\Xi^- ightarrow \pi^- n$	$\Lambda ightarrow p e \overline{ u}_{e}$