

Tujuan

Untuk memampatkan text/ string

Dampak

Mempersingkat pengirimanan data di jaringan Membuat text/ string tidak dapat dimengerti (mirip cryptography)

Cara Kerja

Memanfaatkan karakter yang muncul berulang-ulang

Metode Huffman

Cara Kerja Metode Huffman

Membentuk Huffman Tree

- 1. Hitung jumlah pemunculan dari setiap karakter
- 2. Buat simpul untuk setiap karakter.
- 3. Simpul diurutkan berdasarkan jumlah pemunculan dari kiri ke kanan secara descending
- 4. 2 simpul yang terkecil (2 simpul paling kanan) digabungkan, sehingga membentuk simpul baru
- 5. Simpul baru ini diposisikan sejajar dengan simpul-simpul sebelumnya yang tidak ikut digabungkan
- 6. Lakukan proses 3-5 terus menerus sampai didapat hanya sebuah simpul saja (root)
- 7. Akan terbentuk Pohon Huffman (Huffman Tree)

Cara Kerja Metode Huffman

Path pada Huffman Tree diberi label. Yang ke kiri diberi label 0 dan yang ke kanan diberi label 1

Hasil kompresi didapat dengan menelusuri path dari root sampai ke simpul daun (simpul yang tidak punya anak)

Contoh

String yang mau dikompres adalah

AKUSUKASASA

1. Hitung jumlah pengunaan dari setiap karakter, didapat:

A muncul 4 buah

K muncul 2 buah

U muncul 2 buah

S muncul 3 buah

Contoh (AKUSUKASASA)

- 2. Buat simpul untuk setiap karakter.
- 3. Simpul diurutkan berdasarkan jumlah penggunaan dari kiri ke kanan secara descending

Contoh (AKUSUKASASA)

- 4. 2 simpul yang terkecil (2 simpul paling kanan) digabungkan, sehingga membentuk simpul baru
- 5. Simpul baru ini diposisikan sejajar dengan simpul-simpul sebelumnya yang tidak ikut digabungkan

Contoh (AKUSUKASASA)

3. Simpul diurutkan berdasarkan jumlah penggunaan dari kiri ke kanan secara descending

Contoh (AKUSUKASASA)

4.2 simpul yang terkecil (2 simpul paling kanan) digabungkan, sehingga membentuk simpul baru

5.Simpul baru ini diposisikan sejajar dengan simpul-simpul sebelumnya yang tidak ikut digabungkan

Contoh (AKUSUKASASA)

3. Simpul diurutkan berdasarkan jumlah penggunaan dari kiri ke kanan secara descending

Contoh (AKUSUKASASA)

4.2 simpul yang terkecil (2 simpul paling kanan) digabungkan, sehingga membentuk simpul baru

5.Simpul baru ini diposisikan sejajar dengan simpul-simpul sebelumnya

yang tidak ikut digabungkan

Contoh (AKUSUKASASA)

A-1

S - 01

K - 000

U - 001

AKUSUKASASA = 100000101001011011

THANK YOU

Computer Security