

Akademia Górniczo-Hutnicza im. Stanisława Staszica

Sprawozdanie

Sterowanie Układów Liniowych

Laboratorium 4,5

Badanie i analiza elementu oscylacyjnego - charakterystyki częstotliwościowe

Borsuk Piotr Suskyi Bohdan Drobny Jan Technologie Przemysłu 4.0 Rok 2, Semestr 4, Grupa nr. 1 Rok akademicki 2023/2024

1. Cel ćwiczenia.

Wykonanie pomiarów dla różnych częstotliwości sinusoidalnego sygnału wejściowego do obiektu II rzędu (oscylacyjnego). Wykorzystując oscyloskop zmierzono częstotliwość sygnału wejściowego i jego okres, amplitudy obu sygnałów (V_{PP}) oraz czas (Δt) przesunięcia pomiędzy sygnałem wejściowym i wyjściowym.

2. Schemat pomiarowy.

Rys. 1. Schemat układu pomiarowego

Rys. 2. Schemat badanego obiektu II rzędu.

3. Tabela pomiarowa

Lp.		Częstotliwość sygnału f[Hz] oraz okres T[s]		ygnału [V] –	Czas Δt [ms]
	Ustawienie generatora	Pomiar oscyloskopem f [Hz]/ T[s]	Sygnał wejściowy	Sygnał wyjściowy	Δt – opóźniene między sygnałem wejściowym, a wyjściowym
1	2,5	2,513	4,75	3,438	8
2	4,5	4,505	4,75	3,594	7,2
3	6,5	6,536	4,75	3,906	8,8
4	8,5	8,475	4,75	4,406	10,4
5	10	10	4,75	4,875	11,6
6	11	10,87	4,75	5,125	12,4
7	12	12,11	4,75	5,438	14,8
8	13	13,05	4,75	5,500	16
9	15	15,15	4,75	4,875	18,8
10	20	20	4,75	2,562	19,2
11	25	25	4,75	1,5	17,4
12	30	29,93	4,75	0,937	15
13	50	50	4,75	0,343	9,8
14	100	100	4,75	0,0787	5,4
15	150	149,3	4,75	0,0337	3,3

4. Wartości teoretyczne układu

Transmitancja została wyliczona ze wrozu poniżej:

$$G(s) = \frac{\frac{1}{R_1 \cdot C_1 \cdot R_2 \cdot C_2} * \frac{R_4}{R_3 + R_4}}{s^2 + \left(\frac{1}{R_2 \cdot C_1} + \frac{1}{R_1 \cdot C_1}\right) \cdot s + \frac{1}{R_1 \cdot C_1 \cdot R_2 \cdot C_2}}$$
(1)

Gdzie:

R_1 [k Ω]	$R_2 \ [\mathrm{k}\Omega]$	R_3 [k Ω]	$R_4 \ [\mathrm{k}\Omega]$	<i>C</i> ₁ [μF]	<i>C</i> ₂ [μF]
240	75	16	39	0,3	0,022

Transmitancja układu teoretycznego wynosi:

$$G(s) = \frac{8417.5 * \frac{39}{55}}{s^2 + 58.2 \cdot s + 8417.5}$$

Teoretyczna pulsacja drgań własnych nietłumionych została wyliczona ze wzoru:

$$\omega_0 = \frac{1}{\sqrt{R_1 \cdot R_2} \cdot \sqrt{C_1 \cdot C_2}} \tag{2}$$

Teoretyczna pulsacja drgań własnych nietłumionych wynosi:

$$\omega_0 = 91,75 \left[\frac{rad}{s} \right]$$

Względny współczynnik tłumienia został obliczony ze wzoru:

$$\xi = \frac{R_1 + R_2}{2 \cdot \sqrt{R_1 \cdot R_2}} \cdot \sqrt{\frac{C_2}{C_1}} \tag{3}$$

Względny współczynnik tłumienia:

 $\xi = 0{,}3179$ Model idealny zasymulowany w programie matlab

Rys 3 Charakterystyka bode dla modelu idealnego

Rys 4 Charakterystyka skokowa dla modelu idealnego

Rys 5 Charakterystyka nyquista dla modelu idealnego

Kod użyty do sporządzenia wykresów:

```
clc clear close all  r1 = 240000; \\ r2 = 75000; \\ c1 = 0.00000003; \\ c2 = 0.0000000022; \\ num = 1; \\ den = [r1*c1*r2*c2, (1/(r2*c1) + 1/(r1*c1)), 1]; \\ figure;
```

```
subplot(3,1,1);
step(tf(num, den));
title('Step Response');
grid on;
subplot(3,1,2);
bode(tf(num, den));
title('Bode Plot');
grid on;
subplot(3,1,3);
nyquist(tf(num, den));
title('Nyquist Plot');
grid on;
```


Rys 6 Odpowiedź skokowa elementu zmierzona za pomocą oscyloskopu

$$A1 = 0.391$$

$$A2 = 0.141$$

$$A3 = 0.063$$

Względny współczynnik tłumienia dla układu rzeczywistego wynosi:

$$\xi = \frac{\ln\frac{A_1}{A_2}}{\sqrt{\pi^2 + \left(\ln\frac{A_1}{A_2}\right)^2}} = \frac{\ln\frac{0.391}{0.141}}{\sqrt{\pi^2 + \left(\ln\frac{0.391}{0.141}\right)^2}} = 0.308$$

Pulsacja układu rzeczywistego drgań własnych nietłumionych wynosi:

$$\omega_0 = \frac{\pi}{t_1 \cdot \sqrt{1 - \xi^2}} = \frac{\pi}{0.041 \cdot \sqrt{1 - 0.308^2}} = 80,53 \left[\frac{rad}{s} \right]$$

Wzmocnienia K wynosi:

$$K = \frac{y_1}{y_2} = \frac{1.453}{0.921} = 1.577$$

Transmitancja układu teoretycznego wynosi:

$$G(s) = \frac{1,577 * 80,53}{s^2 + 0.0495 \cdot s + 0.00648}$$

Rys 7 Odpowiedź skokowa elementu rzeczywistego

Rys 8 Odpowiedź bode elementu rzeczywistego

Rys 9 Odpowiedź nyquist elementu rzeczywistego

Kod użyty do sporządzenia wykresów:

clc

clear

close all

% Parametry układu

r1 = 240000;

r2 = 75000;

c1 = 0.0000003;

c2 = 0.000000022;

% Wzmocnienia

y0 = 1.37;

u0 = 1;

k1 = y0 / u0;

k2 = 1.4181818;

```
% Wartości amplitud
a1 = 0.391;
a2 = 0.141;
a3 = 0.063;
% Obliczenie parametrów układu dynamicznego
tp = 0.095 - 0.022;
epsilon = log(a1 / a2) / sqrt(pi^2 + log(a1 / a2)^2);
w0 = 2 * pi / (tp * sqrt(1 - epsilon^2));
% Tworzenie obiektów funkcji transferowych
tf_sys1 = tf(k1 * w0^2, [1, 2 * epsilon * w0, w0^2]);
tf_{sys2} = tf(k2 / (r1 * c1 * r2 * c2), [1, 1 / (r2 * c1) + 1 / (r1 * c1), 1 / (r1 * c1 * r2 * c2)]);
% Wykresy
figure(1);
step(tf_sys1);
hold on
step(tf_sys2);
hold off
figure(2);
bode(tf_sys1);
hold on
bode(tf_sys2);
hold off
grid on
figure(3);
nyquist(tf_sys1);
hold on
nyquist(tf_sys2);
hold off
grid on
```

Wnioski

Na podstawie wyników można zauważyć, że transmitancja dla układu rzeczywistego oraz teoretycznego się różni. Wyniki przeprowadzonych obliczeń zestawiono w tabeli poniżej:

	Układ teoretyczny	Układ rzeczywisty	
ξ	0.3031	0,308	
ω_0	91,75	80,539	

Można zauważyć, że wartości pulsacji znacznie się różni dla układu teoretycznego z układem rzeczywistym. Pulsacja może się różnić dlatego, że w przypadku układu rzeczywistego są czynniki, które wpływają na pulsację. W przypadku układu teoretycznego nie są one brane pod uwagę.