NOIp 2020 模拟赛

Day 1

一、题目概况

中文题目名称	犭 苗	狐突猛进	羊肉串
英文题目与子目录名	a	b	С
可执行文件名	a	b	С
输入文件名	a.in	b.in	c.in
输出文件名	a.out	b.out	c.out
每个测试点时限	1 秒	2 秒	1 秒
测试点数目	20	10	20
每个测试点分值	5	10	5
附加样例文件	无	无	无
结果比较方式	全文比较 (过滤行末空格及行末回车)		
题目类型	传统	传统	传统
运行内存上限	1024MB	1024MB	2048MB

二、提交源程序文件名

对于 C++ 语言	a.cpp	b.cpp	c.cpp

三、编译命令

对于 C++ 语言 g++ -o a a.cpp -lm -0	g++ -o b b.cpp -lm -O2	g++ -o c c.cpp -lm -O2
---------------------------------	------------------------	------------------------

注意事项:

- 1. 文件名 (程序名和输入输出文件名) 必须使用英文小写。
- 2. C/C++ 中 main() 的返回值类型必须是 int, 程序正常结束时的返回值必须是 0。
- 3. 全国统一评测时采用的机器配置为: Intel(R) Core(TM) i7-8700K CPU @ 3.70GhHz, 内存 32GB。上述时限以此配置为准。
- 4. 特别提醒:评测在最新公布的 NOI Linux 下进行,各语言的编译器版本以其为准,开启 O2 优化。

る 苗

(a.cpp)

问题描述

M 氏是 16 岁的女高中生, 众所周知女高中生都喜欢可爱的小猫, M 氏也不例外。

一天, M 氏路过 H 氏宠物店, 她发现里面一共有 n 只可爱的小猫。这 n 只猫被排成「一」字形, 好让顾客挑选, 也就是说, 第 i 只猫左边是第 i-1 只猫, 其右边是第 i+1 只猫。

第 i 只猫定价为 a_i 元,但是它和相邻的猫搭配在一起时,会使得相邻的猫产生价值 b_i 元 的魅力值。也就是说第 i 只猫的总价是 $b_{i-1}+a_i+b_{i+1}$,特别的, $b_0=b_{n+1}=0$ 。如果第 i 只猫被买走了,售货员 A 氏会将 $i+1\cdots n$ 这些猫的位置向前调整一位,使得原本的第 i-1 只猫和原本第 i+1 只猫相邻。

M 氏越看越喜欢这些小猫,她想要把它们全部买走,她知道,不同的购买顺序会产生不同的总价格。毕竟 M 氏还是学生,她想求出买走所有小猫需要的最少花费。可爱的小猫就在眼前,夏色 M 氏很快就想到了最优的购买方案,把这个过程看在眼里的张 R 氏觉得这个是个不错的问题,并打算将其出成题目来考考大家。

输入格式

输入文件名为 a.in。

输入数据工 3t+1 行。

第一行一个正整数数 t, 表示数据组数。

对于每一组数据,第一行一个整数 n,表示店内猫的个数。

第二行 n 个整数, 组成 a_{1} n, 表示猫的定价。

第三行 n 个整数,组成 b_1 n,表示猫对其周围猫会产生的魅力值。

输出格式

输出文件名为 a.out。

对于每一组数据,输出 M 氏需要购买所有 n 只猫所需要的最少花费。

格式为: Case#t: r

其中 t 表示数据的组数 (从 1 开始), r 表示答案。

输入输出样例 1

a.in	a.out
2	Case #1: 17
3	Case #2: 74
3 5 7	
8 2 0	
10	
1 3 5 7 9 2 4 6 8 10	
9 4 1 2 1 2 1 4 5 1	

第一组数据中,一开始每只猫的总价是 $\{3+2,8+5+0,2+7\}$,M 氏先花费 5 元购买第一只小猫。剩余的猫的序列为 $\{2,3\}$,每只猫的价格变为 $\{5+0,2+7\}$,M 氏再花 5 元购买第二只小猫。剩余的猫的序列为 $\{3\}$,每只猫的价格变为 $\{7\}$,最终 M 氏花 5+5+7=17 元购买了所有的小猫。可以证明,这样购买的总花费最少。

数据范围与约定

子任务编号	n	特殊性质	分值
1	$1 \le n \le 10$	无	20
2	$1 \le n \le 200$	对于 $1 \le i \le n$, a_i 都相同	20
3	$1 \le n \le 200$	无	60

对于 100% 的数据, $1 \le n \le 200, 0 \le a_i \le 10^5, 0 \le b_i \le 5 \times 10^4$ 。

后记

夏色 M 氏跑来向你炫耀她买到的小猫,你也觉得很可爱,但是你建议他没必要把 H 氏宠物店买空。张 R 氏提出这是一个很好的问题,并且他告诉你他打算另找两道题出成比赛,你十分支持他,于是拿起键盘,敲下了这行字。

狐突猛进

(b.cpp)

问题描述

F 氏自从上次听从你的建议后开始热爱运动,便逐渐增大运动量。你和 F 氏所居住的省份有n个城市,以及m条单向的路径连接起这些城市,由于城市规划的十分有条理,所有路径的长度都是1。

定义 $\delta(u,v)$ 为城市 u 到城市 v 的最短路径, 特别的, 如果城市 u 达到不了城市 v, $\delta(u,v) = n$ 。如果 F 氏沿着城市 u 到城市 v 的最短路骑行, 需要消耗 $\delta(u,v)^2$ 的体力值。她想知道如果她骑行经过所有的城市对 (u,v) 的最短路需要花费多少体力值。具体来说, 她想知道:

$$\sum_{u=1}^{n} \sum_{v=1}^{n} \delta(u, v)^2$$

白上 F 氏通过自己的实践算出了该体力值之和。而住在省会的张 R 氏看着地图也算出了该体力值之和,他也想让其他人也算算。

输入格式

输入文件名为 b.in。

输入数据共 n+1 行。

第一行一个整数 n,表示你和 F 氏所居住的省份的城市数量。

接下来 n 行,每行 n 个 0/1 变量,组成 $g_{1...n,1...n}$ 。如果 $g_{u,v}=1$ 说明存在一个城市 u 到城市 v 的长度为 1 的路径,否则不存在。

输出格式

输出文件名为 b.out。

输出共一行。

第一行一个整数, 表示 F 氏骑行经过所有城市对的最短路所需要的体力值的总和。

输入输出样例 1

b.in	b.out
5	60
11000	
01101	
11110	
01011	
10011	

数据范围与约定

令 m 为 $g_{1...n,1...n}$ 中 1 的个数。

子任务编号	n	m	分值
1	$1 \le n \le 500$	$1 \le m \le n^2$	20
2	$1 \le n \le 2000$	$1 \le m \le 2n$	30
3	$1 \le n \le 2000$	$1 \le m \le n^2$	50

对于 100% 的数据, $1 \le n \le 2000$, $g_{i,j} \in \{0,1\}$ 。

后记

气喘吁吁的白上 F 氏向你展示她的战果,你自愧不如,认为应该向她学习。张 R 氏拍醒了睡着在屏幕前的你,并告诉你他又想到一个不错的题,你听了过后觉得他可能有什么高妙的解法,但是又听了正解后,想让他开大时间限制,奈何你只是一个写题面的。

羊肉串

(c.cpp)

题目描述

W 氏虽然只是一只小羊,但是她对字符串很感兴趣。一天她在研究 Trie,后缀数组,后缀树和后缀自动机的关系。你告诉他后缀树和后缀自动机是两种用不同方法压缩 Trie 的到的产物,而通过它们都可以直接建出后缀数组,她听了之后直呼神奇。

一天 W 氏写下她羊生中了第一棵 Trie 树,她发现 Trie 树上有很多同构的地方,于是产生了很多疑问。W 氏写下的 Trie 树包含 n+1 个节点,每条边有一个字符 (理解 W 氏写下的这些字符对人类来说为时尚早,所以这里用数字代替),定义 s_u 为根节点到节点 u 这条路径上所有字符按照顺序拼出的字符串。令第 0 个节点为根,那么 s_0 是空字符串。对于节点 u,如果存在一个节点 v 且存在另一个任意非空字符串 t 使得 $s_u = t + s_v$,那么称 v 为 u 的后缀节点。显然根节点是所有非根节点的后缀节点。

W 氏想要对每个节点 u, 求出其**最长后缀节点** f_u 。节点 v 是 u 的最长后缀节点当且仅当, v 是 u 的所有后缀节点中,所代表的字符串 (s_v) 最长的那个,可以证明,这样的节点最多只有一个。角卷 W 氏通过自己的努力求出了所有非根节点 u 的最长后缀节点 f_u 。张 R 氏觉得这个能作为一个很好的字符串算法科普题,就打算将这个问题出到比赛中。

输入格式

输入文件名为 c.in。

输入共三行。

第一行一个整数 n,表示 W 氏建立的 Trie 树中非根节点的数量。

第二行 n 个整数, 组成 p_1 n, 其中 p_i 表示第 i 个非根节点在 Trie 树上的父亲。

第三行 n 个整数,组成 $c_{1...n}$,其中 c_i 表示第 i 个非根节点与在 Trie 树上的父亲向连的 边上的字符。

保证不存在两个节点 u 和 v 使得 $p_u = p_v$ 且 $c_u = c_{v^o}$

输出格式

输出文件名为 c.out。

输出共一行。

第一行 n 个整数, 组成 f_{1n} , 其中 f_i 表示第 i 个非根节点的最长后缀节点。

输入输出样例 1

c.in	c.out
2	0 0
0 0	
1 2	

输入输出样例 2

c.in	c.out
7	0 0 0 1 0 0 0
0 0 1 2 3 3 1	
1 5 3 1 2 3 4	

数据范围与约定

子任务编号	n	特殊性质	分值
1	$1 \le n \le 2000$	无	20
2	$2 \le n \le 2 \times 10^5$	Trie 树退化为一条链	20
3	$1 \le n \le 2 \times 10^5$	所有的 c_i 都满足 $1 \le c_i \le 26$	20
4	$1 \le n \le 2 \times 10^5$	无	40

对于 100% 的数据, $1 \le n \le 2 \times 10^5, \ 0 \le p_i < i, \ 1 \le c_i \le n$,保证不存在两个节点 u 和 v 使得 $p_u=p_v$ 且 $c_u=c_v$ 。

后记

角卷 W 氏跑来问你更多关于字符串的问题, 你热心地解答了她。张 R 氏说写完题面一起去吃羊肉串, 你和角卷 F 氏吓得一哆嗦, 也不知道有没有打错字。你庆幸这次出题的不是自己, 这样要参加比赛的大家不至于没有分。