Math 240A: Real Analysis, Fall 2019 Homework Assignment 8 Due Friday, December 6, 2019

- 1. Let $f \in L^1(\mathbb{R}^n)$ and $f \neq 0$. Prove that there exist C, R > 0 such that $(Hf)(x) \geq C|x|^{-n}$ for |x| > R and that there exists C' > 0 such that $m(\{Hf > \alpha\}) \geq C'/\alpha$ if $\alpha > 0$ is small enough.
- 2. Let $f \in L^1_{loc}(\mathbb{R}^n)$ be continuous at $x \in \mathbb{R}^n$. Prove that x in the Lebesgue set of f.
- 3. Let $f \in L^1_{loc}(\mathbb{R}^n)$. Prove that $|f(x)| \leq (Hf)(x)$ at every Lebesgue point x of f.
- 4. Let E be a Borel set in \mathbb{R}^n . For any $x \in \mathbb{R}^n$, define $D_E(x) = \lim_{r \to 0} \frac{m(E \cap B(x,r))}{m(B(x,r))}$ if it exists.
 - (1) Show that $D_E(x) = 1$ for a.e. $x \in E$ and $D_E(x) = 0$ for a.e. $x \in E^c$.
 - (2) Find examples of E and x such that $D_E(x)$ is a given number $\alpha \in (0,1)$, or such that $D_E(x)$ does not exist.
- 5. Let $F(x) = x^2 \sin(x^{-1})$ and $G(x) = x^2 \sin(x^{-2})$ for $x \neq 0$ and F(0) = G(0) = 0. Prove that F and G are differentiable everywhere (including x = 0), $F \in BV([-1, 1])$, and $G \notin BV([-1, 1])$.
- 6. Prove or disprove: If $f_n \in BV([0,1])$ (n=1,2,...) and $f_n \to f$ uniformly on [0,1], then $f \in BV([0,1])$.
- 7. Let $F: \mathbb{R} \to \mathbb{R}$ be increasing and $-\infty < a < b < \infty$. Prove that $F(b) F(a) \ge \int_a^b F'(t) dt$.
- 8. Let $F, G : [a, b] \to \mathbb{R}$ be absolutely continuous. Prove that $FG : [a, b] \to \mathbb{R}$ is also absolutely continuous and that $\int_a^b (FG' + GF')(x) dx = F(b)G(b) F(a)G(a)$.
- 9. Prove that a function $F: \mathbb{R} \to \mathbb{R}$ is Lipschitz-continuous with a Lipschitz constant $L \geq 0$ (i.e., $|F(x) F(y)| \leq L|x y|$ for any $x, y \in \mathbb{R}$) if and only if F is absolutely continuous and $|F'| \leq L$ a.e. \mathbb{R} .
- 10. Let $a, b \in \mathbb{R}$ with a < b. A function $F : (a, b) \to \mathbb{R}$ is convex if $F(\lambda s + (1 \lambda t) \le \lambda F(s) + (1 \lambda)F(t)$ for any $s, t \in (a, b)$ and any $\lambda \in [0, 1]$. Prove the following:
 - (1) A function $F:(a,b) \to \mathbb{R}$ is convex if and only if $\frac{F(t) F(s)}{t-s} \le \frac{F(t') F(s')}{t'-s'}$ for all $s,t,s',t' \in (a,b)$ such that s < s' < t' and s < t < t';
 - (2) A function $F:(a,b)\to\mathbb{R}$ is convex if and only if F is absolutely continuous on every compact subinterval of (a,b) and F' is increasing on the set where it is defined;
 - (3) If $F:(a,b)\to\mathbb{R}$ is convex and $t_0\in(a,b)$, then there exists $\beta\in\mathbb{R}$ such that $F(t)-F(t_0)\geq\beta(t-t_0)$ for all $t\in(a,b)$;
 - (4) (Jensen's Inequality) If (X, \mathcal{M}, μ) is a measure space with $\mu(X) = 1$, $g: X \to (a, b)$ is in $L^1(\mu)$, and F is a convex function on (a, b), then $F\left(\int_X g \, d\mu\right) \leq \int_X F \circ g \, d\mu$.