

Japan Patent Office (JP) (19)

(11)Patent Application Laid Open No.

> Hei 10-330412 (330,412/1998)

(43) Laid Open Date: 15 December 1998

(12) Kokai [Laid Open] Patent Gazette (A)

(51) Int. Cl. ⁶	Identification symbols	Internal filing codes	F	I		Art description section
C 0 8 F 4/6 10/0			С	08 F	4/642 10/00	
number of claims: 2 examination request: (the [Japanese] docur	O L not yet requested nent totals 36 pages	s)			•	_
(21) Application N	umber:		(71)	Patent	Applicant: 000005887	,
Hei 9-137250	(137,250/1997)			Mitsui Kagaku Kabushiki Kaisha (Mitsui Chemicals, Inc.) 2-5, Kasumigaseki 3-chome, Chiyoda-ku Tokyo, Japan		
(22) Application D	ate: 27 May 1997		·			
			(72)	Invente second	ors: (The surname is giv — Translator)	en .
				Kenji S Junji S	UGIMURA AITO	
					ri FUJITA	
					Petrochemical Industries iki 6-chome, Waki-cho	, Ltd.
					un, Yamaguchi Prefectur	e, Japan
			(74)	Agent:	Shunichiro SUZUKI Patent Attorney	

(54) Title of the Invention:

Olefin polymerization catalyst and method for the polymerization of olefins

(57) Abstract

(Problem) To provide an olefin polymerization catalyst and method that exhibit a high polymerization activity and that yield an olefin (co)polymer that has a broad molecular weight distribution and hence an excellent moldability.

(Solution) An olefin polymerization catalyst that comprises

- (A) transition metal compound from Group 4 of the Periodic Table that contains a ligand that has the cyclopentadienyl skeleton;
- (B) transition metal amide compound represented by $(R_2N)_k MX_{j-k} \qquad \text{[see Translator's Note below]}$ wherein

M is a transition metal from Groups 3-6 of the Periodic Table,

j is the valence of M,

k is an integer from 1 to **j**,

R is, for example, hydrocarbyl, and

X is, for example, halogen; and

(C) at least one compound selected from

organometal compounds,

organoaluminumoxy compounds, and

compounds that react with the aforesaid (A) or (B) to form an ion pair.

Translator's Note. The formula $(R_2N)_k M X_{j-k}$ does not directly match either (I) or (I-1) in component (B) in claim 1 (see page 4 of this translation), and it does not seem possible to reasonably subsume either (I) or (I-1) under $(R_2N)_k M X_{j-k}$. In addition, the graphic in this Abstract (see page 3 of this translation) does not entirely agree with the contents of the present invention. For example, the graphic identifies component (B) as an organometal component and component (C) as a microparticulate carrier, while the present invention actually identifies (B) as a transition metal amide compound and (C) as the organometal component. It would appear that this Abstract and associated graphic have been lifted from another filing by Mitsui Chemicals without having been entirely adapted to the contents of the present invention. Figure 1 is identical to the graphic in the Abstract and thus is heir to the same infelicities.

Claims

(Claim 1) Olefin polymerization catalyst that characteristically comprises

- (A) a transition metal compound from Group 4 of the Periodic Table that contains a ligand that has the cyclopentadienyl skeleton;
- (B) a transition metal amide compound represented by general formula (I) or (I-1)

$$[(R3Si)2N]kMXj-k (1)$$

wherein

M is a transition metal atom from Groups 3-6 of the Periodic Table,

j is the valence of the transition metal atom M.

k is an integer from 1 to j,

each R is independently selected from hydrocarbyl and halogenated hydrocarbyl wherein two of the groups R may be connected to each other to form a ring, and

X represents the hydrogen atom, halogen atoms, C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, an oxygen-containing group, a sulfur-containing group, or a silicon-containing group, wherein when $\mathbf{j} - \mathbf{k} \ge 2$ the X's may be the same as each other or may differ from one another,

wherein

M represents a transition metal atom from Groups 3-6 of the Periodic Table,

R' and R" are each independently selected from the hydrogen atom, hydrocarbyl, halogenated hydrocarbyl, organosilyl groups, and substituents that contain at least 1 element selected from nitrogen, oxygen, phosphorus, sulfur, and silicon,

m is an integer from 0 to 2,

n is an integer from 1 to 5,

- A is an atom from Groups 13-16 of the Periodic Table, wherein when $n \ge 2$ the plurality of said A's may be the same as each other or may differ from one another, and
- E is a substituent that contains at least 1 element selected from carbon, hydrogen, oxygen, halogen, nitrogen, sulfur, phosphorus, boron, and silicon, wherein when a plurality of groups represented by E are present said plurality of groups represented by E may be the same as each other or may differ from one another and two or more groups represented by E may be connected to each other to form a ring; and
- (C) at least one compound selected from
 - (C-1) organometal compounds,
 - (C-2) organoaluminumoxy compounds, and
 - (C-3) compounds that react with the aforesaid transition metal compound (A) or transition metal amide compound (B) to form an ion pair.
- (Claim 2) Method for the polymerization of olefins, characterized by effecting the polymerization or copolymerization of olefin in the presence of an olefin polymerization catalyst as described in claim 1.

<u>Detailed Description of the Invention</u>

(0001)

Field of the Invention

The present invention relates to an olefin polymerization catalyst and to a method for the polymerization of olefins using this catalyst. More particularly, this invention relates to a novel olefin polymerization catalyst that exhibits a high polymerization activity and that produces an olefin (co)polymer that has a broad molecular weight distribution. This invention also relates to a method for the polymerization of olefins that uses this novel catalyst.

(0002)

Technical Background of the Invention

Titanium catalysts comprising a titanium compound and an organoaluminum compound and vanadium catalysts comprising a vanadium compound and an organoaluminum compound are already known as catalysts for the production of olefin polymers such as ethylene polymers and ethylene α -olefin copolymers.

(0003)

Ziegler catalysts comprising a metallocene compound (e.g., a zirconocene) and an organoaluminumoxy compound (aluminoxane) are known as catalysts capable of producing olefin polymers at high polymerization activities.

(0004)

With regard to the very newest olefin polymerization catalysts, for example, olefin polymerization catalysts comprising an aluminoxane and a titanium amide compound containing the titanium—nitrogen bond have been described in Japanese Laid Open (Unexamined or Kokai or A) Patent Application Number Hei 8-245713 (245,713/1996).

(0005)

In addition, a Group 4 organometal complex that contains the bis(borylamido) ligand [Mes₂BNCH₂CH₂NBMes₂]⁻² is described in <u>Organometallics</u>, 1996, 15, 562-569, which also reports that this complex exhibits a weak ethylene polymerization activity.

(0006)

Polyolefins such as ethylene polymers exhibit an excellent mechanical strength and chemical resistance and for this reason are used as a variety of molding materials. Catalysts comprising aluminoxane and a transition metal amide compound such as the aforementioned titanium amide compound exhibit high polymerization activities, but they give olefin polymers with a narrow molecular weight distribution that as a consequence do not always have a good moldability. As a result, there has been desire for the appearance of an improved transition metal amide compound-containing catalyst that would have the ability to produce olefin polymer with a broad molecular weight distribution and hence an excellent moldability, and that would achieve this outcome without sacrificing the high polymerization activity.

(0007)

Objects of the Invention -

The present invention was developed in view of the prior art described above and has as an object the introduction of an olefin polymerization catalyst that exhibits a high polymerization activity and that provides olefin (co)polymer that has a broad molecular weight distribution and an excellent moldability.

(8000)

Another object of this invention is to provide a method for the polymerization of olefins that uses the aforesaid catalyst with its excellent properties.

(0009)

Disclosure of the Invention

The olefin polymerization catalyst according to the present invention characteristically comprises

- (A) a transition metal compound from Group 4 of the Periodic Table that contains a ligand that has the cyclopentadienyl skeleton;
- (B) a transition metal amide compound represented by general formula (I) or (I-1)

$$[(R3Si)2N]kMXj-k (1)$$

wherein

M is a transition metal atom from Groups 3-6 of the Periodic Table,

j is the valence of the transition metal atom M,

k is an integer from 1 to j,

each R is independently selected from hydrocarbyl and halogenated hydrocarbyl wherein two of the groups R may be connected to each other to form a ring, and

X represents the hydrogen atom, halogen atoms, C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, an oxygen-containing group, a sulfur-containing group, or a silicon-containing group, wherein when $\mathbf{j} - \mathbf{k} \ge 2$ the X's may be the same as each other or may differ from one another,

(0010)

(0011)

wherein

M represents a transition metal atom from Groups 3-6 of the Periodic Table,

R' and R" are each independently selected from the hydrogen atom, hydrocarbyl, halogenated hydrocarbyl, organosilyl groups, and substituents that contain at least 1 element selected from nitrogen, oxygen, phosphorus, sulfur, and silicon,

m is an integer from 0 to 2,

n is an integer from 1 to 5,

A is an atom from Groups 13-16 of the Periodic Table, wherein when $n \ge 2$ the plurality of said A's may be the same as each other or may differ from one another, and

E is a substituent that contains at least 1 element selected from carbon, hydrogen, oxygen, halogen, nitrogen, sulfur, phosphorus, boron, and silicon, wherein when a plurality of groups represented by E are present said plurality of groups represented by E may be the same as each other or may differ from one another and two or more groups represented by E may be connected to each other to form a ring; and

- (C) at least one compound selected from
 - (C-1) organometal compounds,
 - (C-2) organoaluminumoxy compounds, and
 - (C-3) compounds that react with the aforesaid transition metal compound (A) or transition metal amide compound (B) to form an ion pair.

(0012)

The inventive olefin polymerization catalyst exhibits a high polymerization activity and affords olefin (co)polymer that exhibits a broad molecular weight distribution and that, when two or more olefins are polymerized, exhibits a narrow composition distribution.

(0013)

The method according to the present invention for the polymerization of olefins is characterized by effecting the polymerization or copolymerization of olefin in the presence of the above-described catalyst.

(0014)

Detailed Description of the Invention

The inventive olefin polymerization catalyst and the inventive olefin polymerization method using said catalyst are described hereinbelow in detail.

(0015)

As used herein, the term "polymerization" encompasses both homopolymerization and copolymerization and the term "polymer" encompasses both homopolymers and copolymers.

(0016)

The inventive olefin polymerization catalyst is formed from

- (A) a transition metal compound from Group 4 of the Periodic Table that contains a ligand that has the cyclopentadienyl skeleton;
- (B) a transition metal amide compound; and
- (C) at least one compound selected from
 - (C-1) organometal compounds,
 - (C-2) organoaluminumoxy compounds, and
 - (C-3) compounds that react with the aforesaid transition metal compound (A) or transition metal amide compound (B) to form an ion pair.

(0017)

Each of the catalyst components that form the inventive olefin polymerization catalyst will be described first.

(A) The transition metal compound from Group 4 of the Periodic Table that contains a liquid that has the cyclopentadienyl skeleton

The component (A) used in this invention, defined as a transition metal compound from Group 4 of the Periodic Table that contains a ligand that has the cyclopentadienyl skeleton, is a transition metal compound described by the following general formula (II-1).

(0018)
$$M^1 L_x$$
 (II-1)

M¹ in this formula represents a transition metal atom selected from Group 4 of the Periodic Table and specifically is zirconium, titanium, or hafnium wherein zirconium is preferred.

The subscript ${\bf x}$ is the atomic valence of the transition metal atom ${\bf M}^1$ and represents the number of ligands L coordinated to the transition metal atom ${\bf M}^1$. L denotes the ligands coordinated to the transition metal atom, and at least one of the ligands L is a ligand having the cyclopentadienyl skeleton (hereinafter referred to as cyclopentadienyl-based ligand). Ligands L other than the cyclopentadienyl-based ligand comprise C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, oxygen-containing groups, sulfur-containing groups, siliconcontaining groups, halogen atoms, and the hydrogen atom.

(0020)

The cyclopentadienyl-based ligand can be exemplified by the cyclopentadienyl group; alkyl-substituted cyclopentadienyl groups such as methylcyclopentadienyl, dimethylcyclopentadienyl, trimethylcyclopentadienyl, tetramethylcyclopentadienyl, pentamethylcyclopentadienyl, ethylcyclopentadienyl, methylcyclopentadienyl, propylcyclopentadienyl, methylpropylcyclopentadienyl, butylcyclopentadienyl, methylbutylcyclopentadienyl, and hexylcyclopentadienyl; and also by indenyl, 4,5,6,7-tetrahydroindenyl, and fluorenyl. These groups can be substituted by, for example, C₁ to C₂₀ (halogenated) hydrocarbyl, oxygen-containing groups, sulfur-containing groups, silicon-containing groups, and halogen atoms.

(0021)

When the compound (II-1) contains two or more cyclopentadienyl-based ligands, two of these cyclopentadienyl-based ligands can be connected to each other through a divalent bridging group such as a (substituted) alkylene group or a (substituted) silylene group. Such transition metal compounds in which two cyclopentadienyl-based ligands are interconnected through a divalent bridging group can be exemplified by transition metal compounds with general formula (II-3), vide infra.

(0022)

The ligands L other than the cyclopentadienyl-based ligand can be specifically exemplified as follows. The C₁ to C₂₀ hydrocarbyl can be exemplified by alkyl, cycloalkyl, alkenyl, arylalkyl, and aryl. Each of these categories can be more specifically exemplified as follows: methyl, ethyl, propyl, butyl, hexyl, octyl, nonyl, dodecyl, and eicosył for alkyl; cyclopentyl, cyclohexyl, norbornyl, and adamantyl for cycloalkyl; vinyl, propenyl, and cyclohexenyl for alkenyl; benzyl, phenylethyl, and phenylpropyl for arylalkyl; and phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, naphthyl, methylnaphthyl, anthryl, and phenanthryl for aryl.

(0023)

The C_1 to C_{20} halogenated hydrocarbyl can be exemplified by groups as afforded by halogen substitution into the aforementioned C_1 to C_{20} hydrocarbyl. The oxygen-containing groups can be exemplified by the hydroxyl group; alkoxy groups such as methoxy, ethoxy, propoxy, and butoxy; aryloxy groups such as phenoxy, methylphenoxy, dimethylphenoxy, and naphthoxy; and arylalkoxy groups such as phenylmethoxy and phenylethoxy.

(0024)

The sulfur-containing groups can be exemplified by substituents as afforded by substituting sulfur for the oxygen in the foregoing oxygen-containing groups, and also by sulfonate groups such as methylsulfonate, trifluoromethanesulfonate, phenylsulfonate, benzylsulfonate, p-toluenesulfonate, trimethylbenzenesulfonate, triisobutylbenzenesulfonate, p-chlorobenzenesulfonate, and pentafluorobenzenesulfonate; and by sulfinate groups such as methylsulfinate, phenylsulfinate, benzylsulfinate, p-toluenesulfinate, trimethylbenzenesulfinate, and pentafluorobenzenesulfinate.

(0025)

The silicon-containing groups can be exemplified by monohydrocarbyl-substituted silyl such as

methylsilyl and phenylsilyl; dihydrocarbyl-substituted silyl such as dimethylsilyl and diphenylsilyl; trihydrocarbyl-substituted silyl such as trimethylsilyl, triethylsilyl, tripropylsilyl, tricyclohexylsilyl, triphenylsilyl, dimethylphenylsilyl, methyldiphenylsilyl, tritolylsilyl, and trinaphthylsilyl; the silyl ethers of hydrocarbyl-substituted silyl, such as trimethylsilyl ether; Sisubstituted alkyl groups such as trimethylsilylmethyl; and Si-substituted aryl groups such as trimethylsilylphenyl.

(0026)

The halogen atoms can be exemplified by fluorine, chlorine, bromine, and iodine. When, for example, the atomic valence of the transition metal is 4, the transition metal compound under consideration is more specifically represented by the following general formula (II-2).

$$(0027) R31R32R33R34M1 (II-2)$$

As above, M¹ in this formula represents a transition metal atom selected from Group 4 of the Periodic Table and is preferably the zirconium atom.

(0028)

 R^{31} represents a cyclopentadienyl-based group (ligand), while R^{32} , R^{33} , and R^{34} are each independently selected from cyclopentadienyl-based groups (ligands), C_1 to C_{20} (halogenated) hydrocarbyl, the oxygen-containing groups, the sulfur-containing groups, halogen atoms, and the hydrogen atom.

(0029)

Among transition metal compounds (II-2), compounds in which at least one of R^{32} , R^{33} , and R^{34} is a cyclopentadienyl-based group (ligand), for example, compounds in which R^{31} and R^{32} are cyclopentadienyl-based groups (ligands), are preferably used by the present invention. In addition, when R^{31} and R^{32} are both cyclopentadienyl-based groups (ligands), R^{33} and R^{34} are preferably cyclopentadienyl-based groups, alkyl, cycloalkyl, alkenyl, arylalkyl, aryl, alkoxy, aryloxy, trialkylsilyl, sulfonate groups, halogen, or the hydrogen atom.

(0030)

Transition metal compounds (II-1) in which M^1 = zirconium can be exemplified by the following specific compounds:

bis(indenyl)zirconium dichloride,

bis(indenyl)zirconium dibromide.

bis(indenyl)zirconium bis(p-toluenesulfonate),

bis(4,5,6,7-tetrahydroindenyl)zirconium dichloride,

bis(fluorenyl)zirconium dichloride,

bis(cyclopentadienyl)zirconium dichloride,

bis(cyclopentadienyl)zirconium dibromide,

bis(cyclopentadienyl)methylzirconium monochloride,

bis(cyclopentadienyl)ethylzirconium monochloride,

bis(cyclopentadienyl)cyclohexylzirconium monochloride,

bis(cyclopentadienyl)phenylzirconium monochloride,

bis(cyclopentadienyl)benzylzirconium monochloride,

bis(cyclopentadienyl)zirconium monochloride monohydride,

bis(cyclopentadienyl)methylzirconium monohydride,

bis(cyclopentadienyl)dimethylzirconium,

bis(cyclopentadienyl)diphenylzirconium,

bis(cyclopentadienyl)dibenzylzirconium,

bis(cyclopentadienyl)zirconium methoxychloride,

bis(cyclopentadienyl)zirconium ethoxychloride,

bis(cyclopentadienyl)zirconium bis(methanesulfonate),

bis(cyclopentadienyl)zirconium bis(p-toluenesulfonate),

bis(cyclopentadienyl)zirconium bis(trifluoromethanesulfonate),

bis(methylcyclopentadienyl)zirconium dichloride,

bis(dimethylcyclopentadienyl)zirconium dichloride,

bis(dimethylcyclopentadienyl)zirconium ethoxychloride,

bis(dimethylcyclopentadienyl)zirconium bis(trifluoromethanesulfonate),

bis(ethylcyclopentadienyl)zirconium dichloride,

bis(methylethylcyclopentadienyl)zirconium dichloride,

bis(propylcyclopentadienyl)zirconium dichloride,

bis(methylpropylcyclopentadienyl)zirconium dichloride,

bis(butylcyclopentadienyl)zirconium dichloride,

bis(methylbutylcyclopentadienyl)zirconium dichloride,

bis(methylbutylcyclopentadienyl)zirconium bis(methanesulfonate),

bis(trimethylcyclopentadienyl)zirconium dichloride,

bis(tetramethylcyclopentadienyl)zirconium dichloride,

bis(pentamethylcyclopentadienyl)zirconium dichloride,

bis(hexylcyclopentadienyl)zirconium dichloride, and

bis(trimethylsilylcyclopentadienyl)zirconium dichloride.

(0031)

In the preceding examples, the substitution pattern for the disubstituted cyclopentadienyl ring includes the 1,2- and 1,3-substitution patterns, while the trisubstitution pattern includes the 1,2,3- and 1,2,4-substitution patterns. In addition, alkyl groups such as propyl and butyl include the n-, i-, sec-, and tert-isomers.

(0032)

Other examples include the compounds afforded by replacing the zirconium in the preceding zirconium compounds with titanium or hafnium. Compounds with formula (II-3) can be provided as examples of the transition metal compounds in which two cyclopentadienyl-based ligands are connected to each other through a divalent bridging group.

(0034)

 M^1 in this formula represents a transition metal atom from Group 4 of the Periodic Table and specifically is zirconium, titanium, or hafnium and is preferably zirconium. The groups R^{35} , R^{36} , R^{37} , and R^{38} are each independently selected from C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, oxygen-containing groups, sulfur-containing groups, siliconcontaining groups, nitrogen-containing groups, phosphorus-containing groups, halogen atoms, and the hydrogen atom. Among these groups R^{35} , R^{36} , R^{37} , and R^{38} , some of the groups adjacent to each other may be interconnected to form a ring together with the carbon atoms to which said groups are bonded. Each of the groups R^{35} , R^{36} , R^{37} , and R^{38} is specified at two locations, and in each case the two groups, for example, R^{35} and R^{35} , may be the same as each other or may differ from one another. Among the groups designated by R, those with the same superscript represent a preferred combination for ring formation through their interconnection.

(0035)

The C_1 to C_{20} hydrocarbyl can be exemplified by the same alkyl, cycloalkyl, alkenyl, arylalkyl, and aryl as provided above in the discussion of L.

(0036)

The rings formed by the interconnection of these hydrocarbyl groups can be exemplified by condensed ring groups such as the benzene ring, naphthalene ring, acenaphthene ring, and indene ring and by groups as afforded by replacing hydrogen in these condensed ring groups with an alkyl group such as methyl, ethyl, propyl, and butyl.

(0037)

The C_1 to C_{20} halogenated hydrocarbyl can be exemplified by groups as afforded by substituting halogen into the aforementioned C_1 to C_{20} hydrocarbyl. The oxygen-containing groups can be exemplified by the hydroxyl group and the same alkoxy, aryloxy, and arylalkoxy groups as provided above in the discussion of L.

(0038)

The sulfur-containing groups can be exemplified by groups as afforded by replacing the oxygen in the aforementioned oxygen-containing groups with sulfur. The silicon-containing groups can be exemplified by the same monohydrocarbyl-substituted silyl, dihydrocarbyl-substituted silyl, trihydrocarbyl-substituted silyl, silyl ethers of hydrocarbyl-substituted silyl, Sisubstituted alkyl groups, and Si-substituted aryl groups as provided above in the discussion of L.

(0039)

The nitrogen-containing groups can be exemplified by the amino group; alkylamino groups such as methylamino, dimethylamino, diethylamino, dipropylamino, dibutylamino, and dicyclohexylamino; and by arylamino and alkylarylamino groups such as phenylamino, diphenylamino, ditolylamino, dinaphthylamino, and methylphenylamino.

(0040)

The phosphorus-containing groups can be exemplified by phosphino groups such as dimethylphosphino and diphenylphosphino. The halogen atoms can be exemplified as in the discussion of L, supra.

(0041)

Among these possibilities, the hydrogen atom and C_1 to C_{20} hydrocarbyl are preferred. The following are particularly preferred: C_1 to C_4 hydrocarbyl such as methyl, ethyl, propyl, and butyl; a benzene ring as formed by the interconnection of hydrocarbyl groups; and groups as afforded by substituting alkyl (e.g., methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tertbutyl) for the hydrogen on the benzene ring generated by the interconnection of hydrocarbyl groups.

(0042)

 X^3 and X^4 are each independently selected from C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, oxygen-containing groups, sulfur-containing groups, silicon-containing groups, the hydrogen atom, and halogen atoms.

(0043)

The C_1 to C_{20} hydrocarbyl can be exemplified by the same alkyl, cycloalkyl, alkenyl, arylalkyl, and aryl as provided above in the discussion of L.

(0044)

The C_1 to C_{20} halogenated hydrocarbyl can be exemplified by groups as afforded by substituting halogen into the aforementioned C_1 to C_{20} hydrocarbyl. The oxygen-containing groups can be exemplified by the hydroxyl group and the same alkoxy, aryloxy, and arylalkoxy groups as provided above in the discussion of L.

(0045)

The sulfur-containing groups can be exemplified by groups as afforded by replacing the oxygen in the aforementioned oxygen-containing groups with sulfur and by the same sulfonate and sulfinate groups as provided above in the discussion of L. The silicon-containing groups can be exemplified by the same silicon-substituted alkyl groups and silicon-substituted aryl groups as provided above in the discussion of L.

(0046)

The halogen atoms can be exemplified by the same groups and atoms as in the discussion of L, supra. Among the various possibilities, halogen atoms, C_1 to C_{20} hydrocarbyl, and sulfonate groups are preferred.

(0047)

 Y^1 represents C_1 to C_{20} divalent hydrocarbyl, C_1 to C_{20} divalent halogenated hydrocarbyl, divalent silicon-containing groups, divalent germanium-containing groups, divalent tincontaining groups, $-O_-$, $-CO_-$, $-S_-$, $-SO_-$, $-SO_2$ -, $-Ge_-$, $-S_-$, $-NR^{39}$ -, $-P(R^{39})$ -, $-P(O)(R^{39})$ -, $-BR^{39}$ -, or $-AIR^{39}$ - (each R^{39} is independently selected from C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, the hydrogen atom, and halogen atoms).

(0048)

The C_1 to C_{20} divalent hydrocarbyl is specifically exemplified by alkylene groups such as methylene, dimethylene, 1,2-ethylene, dimethyl-1,2-ethylene, 1,3-trimethylene, 1,4-tetramethylene, 1,2-cyclohexylene, and 1,4-cyclohexylene, and by arylalkylene groups such as diphenylmethylene and diphenyl-1,2-ethylene.

(0049)

The C_1 to C_{20} divalent halogenated hydrocarbyl can be specifically exemplified by groups as afforded by halogenation of the above-described C_1 to C_{20} divalent hydrocarbyl, for example, chloromethylene.

(0050)

The divalent silicon-containing groups can be exemplified by silylene; alkylsilylene, alkylarylsilylene, and arylsilylene groups such as methylsilylene, dimethylsilylene, diethylsilylene, di(n-propyl)silylene, di(i-propyl)silylene, di(cyclohexyl)silylene, methylphenylsilylene, diphenylsilylene, di(p-tolyl)silylene, and di(p-chlorophenyl)silylene; and alkyldisilylene, alkylaryldisilylene, and aryldisilylene groups such as tetramethyl-1,2-disilylene and tetraphenyl-1,2-disilylene.

(0051)

The divalent germanium-containing groups can be exemplified by groups as afforded by replacing the silicon in the above-described divalent silicon-containing groups with germanium. The divalent tin-containing groups can be exemplified by groups as afforded by replacing the silicon in the above-described divalent silicon-containing groups with tin.

(0052)

R³⁹ represents the same C₁ to C₂₀ hydrocarbyl, C₁ to C₂₀ halogenated hydrocarbyl, and halogen atoms as discussed above for L. Particularly preferred among these are substituted silylene groups [sic] such as dimethylsilylene, diphenylsilylene, and methylphenylsilylene.¹

(0053)

Transition metal compounds (II-3) can be exemplified by the following specific compounds:

ethylenebis(indenyl)dimethylzirconium, ethylenebis(indenyl)zirconium dichloride, ethylenebis(indenyl)zirconium bis(trifluoromethanesulfonate). ethylenebis(indenyl)zirconium bis(methanesulfonate), ethylenebis(indenyl)zirconium bis(p-toluenesulfonate), ethylenebis(indenyl)zirconium bis(p-chlorobenzenesulfonate), ethylenebis(4,5,6,7-tetrahydroindenyl)zirconium dichloride, isopropylidenebis(cyclopentadienyl)(fluorenyl)zirconium dichloride, isopropylidenebis(cyclopentadienyl)(methylcyclopentadienyl)zirconium dichloride, dimethylsilylenebis(cyclopentadienyl)zirconium dichloride, dimethylsilylenebis(methylcyclopentadienyl)zirconium dichloride, dimethylsilylenebis(dimethylcyclopentadienyl)zirconium dichloride. dimethylsilylenebis(trimethylcyclopentadienyl)zirconium dichloride, dimethylsilylenebis(indenyl)zirconium dichloride, dimethylsilylenebis(indenyl)zirconium bis(trifluoromethanesulfonate), dimethylsilylenebis(4,5,6,7-tetrahydroindenyl)zirconium dichloride, dimethylsilylenebis(cyclopentadienyl)(fluorenyl)zirconium dichloride, diphenylsilylenebis(indenyl)zirconium dichloride, methylphenylsilylenebis(indenyl)zirconium dichloride, rac-dimethylsilylenebis(2,3,5-trimethylcyclopentadienyl)zirconium dichloride. rac-dimethylsilylenebis(2,4,7-trimethylcyclopentadienyl)zirconium dichloride, rac-dimethylsilylenebis(2-methyl-4-tert-butylcyclopentadienyl)zirconium dichloride, isopropylidene(cyclopentadienyl)(fluorenyl)zirconium dichloride, dimethylsilylene(3-tert-butylcyclopentadienyl)(indenyl)zirconium dichloride, isopropylidene(4-methylcyclopentadienyl)(3-methylindenyl)zirconium dichloride,

Translator's Note. I can confirm that the Japanese source document does contain this list of substituted silylene groups as examples of R³⁹, although substituted silylene does not seem to fit with the classes of groups specified for R³⁹ in section (0052).

isopropylidene(4-tert-butylcyclopentadienyl)(3-methylindenyl)zirconium dichloride, isopropylidene(4-tert-butylcyclopentadienyl)(3-tert-butylindenyl)zirconium dichloride, dimethylsilylene(4-methylcyclopentadienyl)(3-methylindenyl)zirconium dichloride, dimethylsilylene(4-tert-butylcyclopentadienyl)(3-methylindenyl)zirconium dichloride, dimethylsilylene(4-tert-butylcyclopentadienyl)(3-tert-butylindenyl)zirconium dichloride, dimethylsilylene(3-tert-butylcyclopentadienyl)(fluorenyl)zirconium dichloride, and isopropylidene(3-tert-butylcyclopentadienyl)(fluorenyl)zirconium dichloride.

(0054)

Other examples include the compounds afforded by replacing the zirconium in the preceding compounds with titanium or hafnium. The transition metal compounds (II-3) encompassed by the present invention can be more specifically exemplified by transition metal compounds with the following general formulas (II-4) and (II-5).

(0056)

 M^1 in this formula represents a transition metal atom from Group 4 of the Periodic Table and specifically is titanium, zirconium, or hafnium and is preferably zirconium. Each R^{41} is independently selected from C_1 to C_6 hydrocarbyl and can be specifically exemplified by alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, and cyclohexyl, and by alkenyl such as vinyl and propenyl.

(0057)

Preferred among the preceding are alkyl in which the carbon atom bonded to the indenyl group is a primary carbon, more preferably C₁ to C₄ alkyl and particularly preferably methyl and ethyl.

Mitsui Chemicals, Inc.

(0058)

The groups R^{42} , R^{44} , R^{45} , and R^{46} are each independently selected from the hydrogen atom, halogen atoms, and the same C_1 to C_6 hydrocarbyl as described above for R^{41} . Each R^{43} is independently selected from the hydrogen atom and C_6 to C_{16} aryl and can be specifically exemplified by phenyl, α -naphthyl, β -naphthyl, anthryl, phenanthryl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, and biphenylyl. Preferred among the preceding are phenyl, naphthyl, anthryl, and phenanthryl.

(0059)

These aryl groups can be substituted by halogen atoms such as fluorine, chlorine, bromine, and iodine; C_1 to C_{20} hydrocarbyl, for example, alkyl (e.g., methyl, ethyl, propyl, butyl, hexyl, cyclohexyl, octyl, nonyl, dodecyl, eicosyl, norbornyl, and adamantyl), alkenyl (e.g., vinyl, propenyl, and cyclohexenyl), arylalkyl (e.g., benzyl, phenylethyl, and phenylpropyl), and aryl (e.g., phenyl, tolyl, dimethylphenyl, trimethylphenyl, ethylphenyl, propylphenyl, biphenyl, α - and β -naphthyl, methylnaphthyl, anthryl, phenanthryl, benzylphenyl, pyrenyl, acenaphthyl, phenalenyl, aceanthrylenyl, tetrahydronaphthyl, indanyl, and biphenylyl); and organosilyl such as trimethylsilyl, triethylsilyl, and triphenylsilyl.

(0060)

 $\overset{\checkmark}{X}^3$ and $\overset{\checkmark}{X}^4$ are defined as for $\overset{\checkmark}{X}^3$ and $\overset{\checkmark}{X}^4$ in general formula (II-3) and may be the same as each other or may differ from one another. Among the various possibilities, halogen atoms and C_1 to C_{20} hydrocarbyl are preferred.

(0061)

Y¹ is defined as for Y¹ in general formula (II-3). Among the various possibilities, divalent silicon-containing groups and divalent germanium-containing groups are preferred. Divalent silicon-containing groups are more preferred and alkylsilylene, alkylarylsilylene, and arylsilylene are even more preferred.

(0062)

The following are specific examples of transition metal compounds with general formula (II-4):

rac-dimethylsilylenebis $\{1-(2-methyl-4-phenylindenyl)\}$ zirconium dichloride, rac-dimethylsilylenebis $\{1-(2-methyl-4-(\alpha-naphthyl))\}$ zirconium dichloride, rac-dimethylsilylenebis $\{1-(2-methyl-4-(\beta-naphthyl))\}$ zirconium dichloride,

```
rac-dimethylsilylenebis{1-(2-methyl-4-(1-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(2-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-fluorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(pentafluorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(m-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(o-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(o,p-dichlorophenyl)phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-bromophenyl)indenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2-methyl-4-(p-tolyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(m-tolyl)indenyl)}zirconfum dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(o-tolyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(0,o'-dimethylphenyl)-1-indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-ethylphenyl))indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-isopropylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-benzylphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-biphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(m-biphenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(p-trimethylsilylenephenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-(m-trimethylsilylenephenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-phenyl-4-phenylindenyl)}zirconium dichloride,
rac-diethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(i-propyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(n-butyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dicyclohexylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(p-tolyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-di(p-chlorophenyl)silylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-methylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-ethylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylgermylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylstannylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium dibromide,
```

```
rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}dimethylzirconium,
 rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}methylzirconium chloride,
 rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium chloride SO<sub>2</sub>Me,
 rac-dimethylsilylenebis{1-(2-methyl-4-phenylindenyl)}zirconium chloride OSO<sub>2</sub>Me,
 rac-dimethylsilylenebis{1-(2-ethyl-4-phenylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis\{1-(2-ethyl-4-(\alpha-naphthyl))\}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2-ethyl-4-(9-anthryl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(o-methylphenyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(m-methylphenyl))indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(p-methylphenyl)indenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2-ethyl-4-(2,3-dimethylphenyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(2,4-dimethylphenyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(2,5-dimethylphenyl))indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-ethyl-4-(2,4,6-trimethylphenyl)indenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2-ethyl-4-(o-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(m-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(p-chlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,3-dichlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2,6-dichlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(3,5-dichlorophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(2-bromophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(3-bromophenyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(4-bromophenyl)indenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2-ethyl-4-(4-biphenylyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-ethyl-4-(4-trimethylsilylphenyl))}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-propyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
```

Mitsui Chemicals, Inc. Kokai 10-330412

```
rac-dimethylsilylenebis{1-(2-i-propyl-4-phenylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-i-propyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-i-propyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-i-propyl-4-(8-methyl-9-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-i-propyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-i-propyl-4-(9-anthryl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-i-propyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-s-butyl-4-phenylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis\{1-(2-s-butyl-4-(\alpha-naphthyl))\}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-s-butyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-s-butyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-s-butyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-s-butyl-4-(9-anthryl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-s-butyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-n-pentyl-4-phenylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2-n-pentyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-n-butyl-4-phenylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis\{1-(2-n-butyl-4-(\alpha-naphthyl))\}zirconium dichloride.
rac-dimethylsilylenebis{1-(2-n-butyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2-n-butyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-butyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(β-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(2-methyl-1-naphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(5-acenaphthyl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(9-anthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-i-butyl-4-(9-phenanthryl)indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-neopentyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-neopentyl-4-($\alpha$-naphthyl))indenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-n-hexyl-4-phenylindenyl)}zirconium dichloride,
rac-dimethyl silylene bis \{1-(2-n-hexyl-4-(\alpha-naphthyl)indenyl)\} zirconium\ dichloride,
rac-methylphenylsilylenebis{1-(2-ethyl-4-phenylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride,
```

rac-methylphenylsilylenebis{1-(2-ethyl-4-(9-anthryl)indenyl)}zirconium dichloride, rac-methylphenylsilylenebis{1-(2-ethyl-4-(9-phenanthryl)indenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2-ethyl-4-(9-anthryl)indenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2-ethyl-4-(9-phenanthryl)indenyl)}zirconium dichloride, rac-diphenylsilylenebis{1-(2-ethyl-4-(4-biphenylyl)indenyl)}zirconium dichloride, rac-methylenebis{1-(2-ethyl-4-phenylindenyl)}zirconium dichloride, rac-methylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-ethylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-ethylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-ethylenebis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-dimethylgermylbis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, rac-dimethylgermylbis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride, and rac-dimethylgermylbis{1-(2-ethyl-4-(α-naphthyl)indenyl)}zirconium dichloride.

(0063)

Other examples are the compounds generated by replacing the zirconium in the preceding compounds with titanium or hafnium. While the racemic form of the transition metal compound (II-4) will generally be used as the catalyst component by this invention, the R-form or S-form can also be used.

(0064)

The transition metal compound (II-4) can be synthesized according to <u>Journal of Organometallic Chem.</u>, 288 (1985) pp. 63-67 and the examples and description of EP 320,762 A.

(0065)

The transition metal compound with general formula (II-5) will now be considered.

$$X^3$$
 X^4 X^4 X^5 X^4 X^5 X^5

(0067)

 M^1 in the preceding formula is a transition metal atom from Group 4 of the Periodic Table and specifically is titanium, zirconium, or hafnium with zirconium being preferred. R^{51} and R^{52} are each independently selected from C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, oxygen-containing groups, sulfur-containing groups, silicon-containing groups, nitrogen-containing groups, phosphorus-containing groups, halogen atoms, and the hydrogen atom. R^{51} and R^{52} can be specifically exemplified by the same atoms and groups as provided above for R^{35} to R^{38} .

(0068)

Among the preceding possibilities, R^{51} is preferably C_1 to C_{20} hydrocarbyl and particularly preferably is C_1 to C_3 hydrocarbyl, i.e., methyl, ethyl, or propyl.

(0069)

 R^{52} is preferably the hydrogen atom or C_1 to C_{20} hydrocarbyl and particularly preferably is the hydrogen atom or C_1 to C_3 hydrocarbyl, i.e., methyl, ethyl, or propyl.

(0070)

 R^{53} and R^{54} are each independently selected from C_1 to C_{20} alkyl and are specifically exemplified by cycloalkyl such as norbornyl and adamantyl and by alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, neopentyl, n-hexyl, cyclohexyl, octyl, nonyl, dodecyl, and eicosyl.

(0071)

Among the preceding possibilities, R^{53} is preferably secondary or tertiary alkyl. X^3 and X^4

may be the same as each other or may differ from one another and are defined as for X^3 and X^4 in general formula (II-3).

(0072)

Y¹ is defined as for Y¹ in general formula (II-3). Specific examples of the transition metal compound (II-5) are as follows:

```
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-ethylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-propylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-butylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2,7-dimethyl-4-sec-butylindenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-t-butylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-pentylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-n-hexylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-cyclohexylindenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-methylcyclohexylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-phenylethylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-phenyldichloromethylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-chloromethylindenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-trimethylsilylmethylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2,7-dimethyl-4-trimethylsiloxymethylindenyl)}zirconium dichloride,
rac-diethylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-di(i-propyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-di(n-butyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride.
rac-di(cyclohexyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2,7-dimethyl-4-t-butylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2,7-dimethyl-4-t-butylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride.
rac-diphenylsilylenebis{1-(2,7-dimethyl-4-ethylindenyl)}zirconium dichloride.
rac-di(p-tolyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride.
rac-di(p-chlorophenyl)silylenebis{1-(2,7-dimethyl-4-i-propylindenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-ethylindenyl)}zirconium dibromide,
rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-ethylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-propylindenyl)}zirconium dichloride,
```

```
rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-butylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-sec-butylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-t-butylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-pentylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-n-hexylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-cyclohexylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-methylcyclohexylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-trimethylsilylmethylindenyl)}zirconium dichloride.
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-trimethylsiloxymethylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-phenylethylindenyl)}zirconium dichloride,
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-phenyldichloromethylindeny!)}zirconium dichloride, ....
 rac-dimethylsilylenebis{1-(2,3,7-trimethyl-4-chloromethylindenyl)}zirconium dichloride,
 rac-diethylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
 rac-di(i-propyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride.
rac-di(n-butyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-di(cyclohexyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-methylphenylsilylenebis{1-(2,3,7-trimethyl-4-t-butylindenyl)}zirconium dichloride.
rac-diphenylsilylenebis{1-(2,3,7-trimethyl-4-t-butylindenyl)}zirconium dichloride.
rac-diphenylsilylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-diphenylsilylenebis{1-(2,3,7-trimethyl-4-ethylindenyl)}zirconium dichloride,
rac-di(p-tolyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride.
rac-di(p-chlorophenyl)silylenebis{1-(2,3,7-trimethyl-4-i-propylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}dimethylzirconium,
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}methylzirconium chloride,
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}zirconium
     bis(methanesulfonate),
rac-dimethylsilylenebis{1-(2-methyl-4-i-propyl-7-methylindenyl)}zirconium bis(p-
     phenylsulfinate),
rac-dimethylsilylenebis{1-(2-methyl-3-methyl-4-i-propyl-7-methylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methyl-4,6-di-i-propylindenyl)}zirconium dichloride.
rac-dimethylsilylenebis{1-(2-ethyl-4-i-propyl-7-methylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-phenyl-4-i-propyl-7-methylindenyl)}zirconium dichloride,
rac-dimethylsilylenebis{1-(2-methylindenyl)}zirconium dichloride.
rac-ethylenebis{1-(2,4,7-trimethylindenyl)}zirconium dichloride, and
```

Mitsui Chemicals, Inc. Kokai 10-330412

rac-isopropylidenebis{1-(2,4,7-trimethylindenyl)}zirconium dichloride.

(0073)

Other examples include compounds generated by replacing the zirconium in the preceding compounds with titanium or hafnium. Among the various possibilities, compounds having a branched alkyl, e.g., i-propyl, sec-butyl, or tert-butyl, at position 4 are particularly preferred.

(0074)

While the racemic form of the transition metal compound (II-5) will generally be used as the catalyst component in this invention, the R-form or S-form can also be used. These transition metal compounds (II-5) can be synthesized by known methods from indene derivatives, for example, by the method described in Japanese Laid Open (Unexamined or Kokai or A) Patent. Application Number Hei 4-268307 (268,307/1992).

(0075)

Compounds with the following formula (III-1) can also be used as the Group 4 transition metal compound (A)

$$L^2M^1X^5_2 \qquad (III-1)$$

wherein M¹ is a transition metal atom from Group 4 of the Periodic Table.

(0076)

Here, L^2 is the derivative of a delocalized π -bonding group and imparts a constrained geometric shape to the M^1 metal active site. The groups X^5 may be the same as each other or may differ from one another and represent the hydrogen atom, a halogen atom, or a hydrocarbyl, silyl, or germyl group containing no more than 20 carbon atoms, silicon atoms, or germanium atoms.

(0077)

Compounds with the following formula (III-2) are preferred among compounds with general formula (III-1).

$$Cp \xrightarrow{Z^1 \longrightarrow Y^2} (III-2)$$

(0079)

 M^1 in this formula is a transition metal atom from Group 4 of the Periodic Table and specifically is zirconium, titanium, or hafnium with zirconium being preferred. Cp is π -bonded to M^1 and represents a substituted cyclopentadienyl group bearing a substitutent Z or a derivative of such a substituted cyclopentadienyl group.

(0800)

Z¹ is a ligand containing the oxygen atom, sulfur atom, boron atom, or an element from Group 14 of the Periodic Table and can be exemplified by $-Si(R^{55}_2)-$, $-C(R^{55}_2)-$, $-C(R^{55}_2)C(R^{55}_2)-$, $-C(R^{55}_2)C(R^{55}_2)-$, $-C(R^{55}_2)C(R^{55}_2)-$, $-C(R^{55}_2)C(R^{55}_2)-$, $-C(R^{55}_2)C(R^{55}_2)-$, and $-Ge(R^{55}_2)-$.

(0081)

 Y^2 represents a ligand containing the nitrogen atom, phosphorus atom, oxygen atom, or sulfur atom and can be exemplified by $-N(R^{52})-$, -O-, -S-, and $-P(R^{52})-$. A condensed ring can also be formed by Z^1 and Y^2 .

(0082)

 R^{55} is the hydrogen atom or a group that contains up to 20 non-hydrogen atoms and is selected from alkyl, aryl, silyl, halogenated alkyl, halogenated aryl, and their combinations. R^{52} is C_1 to C_{10} alkyl, C_6 to C_{10} aryl, or C_7 to C_{10} aralkyl or together with one or more of the R^{55} substituents can form a condensed ring system having up to 30 non-hydrogen atoms.

(0083)

Specific examples of the transition metal compound (III-2) are as follows:

 $(tert-butylamido)(tetramethyl-\eta^{5}-cyclopentadienyl)-1,2-ethanediylzirconium dichloride,\\ (tert-butylamido)(tetramethyl-\eta^{5}-cyclopentadienyl)-1,2-ethanediyltitanium dichloride,\\ (methylamido)(tetramethyl-\eta^{5}-cyclopentadienyl)-1,2-ethanediylzirconium dichloride,\\ (methylamido)(tetramethyl-\eta^{5}-cyclopentadienyl)-1,2-ethanediyltitanium dichloride,\\ (methylamido)(tetramethyl-\eta^{5}-cyclopentadienyl)-1,2-et$

 $(ethylamido)(tetramethyl-\eta^5-cyclopentadienyl) methylenetitanium dichloride,\\ (tert-butylamido) dimethyl (tetramethyl-\eta^5-cyclopentadienyl) silanetitanium dichloride,\\ (tert-butylamido) dimethyl (tetramethyl-\eta^5-cyclopentadienyl) silanezirconium dichloride,\\ (benzylamido) dimethyl (tetramethyl-\eta^5-cyclopentadienyl) silanetitanium dichloride,\\ and\\ (phenylphosphido) dimethyl (tetramethyl-\eta^5-cyclopentadienyl) silanedibenzylzirconium.$

(0084)

(B) The transition metal amide compound

The transition metal amide compound (B) used by this invention is a transition metal amide compound with the following general formula (I) or (I-1).

(0085)
$$[(R_3Si)_2N]_kMX_{j-k}$$
 (1)

M in the preceding formula represents a transition metal atom from Groups 3-6 of the Periodic Table and preferably is a Group 4 transition metal atom such as titanium, zirconium, or hafnium.

(0086)

j represents the valence of the transition metal atom M, while \mathbf{k} is an integer from 1 to j. Each R is independently selected from hydrocarbyl and halogenated hydrocarbyl.

(0087)

The hydrocarbyl can be specifically exemplified by C_1 to C_{20} straight-chain and branched alkyl such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, pentyl, hexyl, octyl, decyl, and octadecyl; C_6 to C_{20} aryl such as phenyl and naphthyl; substituted aryl as afforded by placing 1-5 substituents, e.g., C_1 to C_{20} alkyl, on the aforementioned aryl groups; cycloalkyl such as cyclopentyl, cyclohexyl, norbornyl, and adamantyl; alkenyl such as vinyl, propenyl, and cyclohexenyl; and arylalkyl such as benzyl, phenylethyl, and phenylpropyl.

(8800)

The halogenated hydrocarbyl can be exemplified by groups afforded by substituting halogen into the aforementioned hydrocarbyl. The R groups can be connected to each other to form a ring, for example, an aliphatic ring. The R groups bonded to different nitrogen atoms can be the same as each other or may differ from one another.

(0089)

X represents the hydrogen atom, halogen atoms, C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, oxygen-containing groups, sulfur-containing groups, and silicon-containing groups and can be specifically exemplified by the same atoms and groups provided above in the discussion of L in general formula (II-2). When j-k is ≥ 2 , the X's can be the same as each other or may differ from one another.

(0090)

Among the preceding, halogen atoms, C_1 to C_{20} hydrocarbyl, and sulfonate groups are preferred. Specific examples of the transition metal amide compound (I) are provided hereinbelow, but the transition metal amide compound (I) is not limited to the following.

[bis(trimethylsilyl)amido]titanium trichloride bis[bis(triethylsilyl)amido]titanium dichloride bis[bis(trimethylsilyl)amido]titanium dichloride tris[bis(trimethylsilyl)amido]titanium chloride tetrakis[bis(trimethylsilyl)amido]titanium [bis(trimethylsilyl)amido]zirconium trichloride bis[bis(triethylsilyl)amido]zirconium dichloride bis[bis(trimethylsilyl)amido]zirconium dichloride tris[bis(trimethylsilyl)amido]zirconium chloride tetrakis[bis(trimethylsilyl)amido]zirconium [bis(trimethylsilyl)amido]hafnium trichloride bis[bis(triethylsilyl)amido]hafnium dichloride bis[bis(trimethylsilyl)amido]hafnium dichloride tris[bis(trimethylsilyl)amido]hafnium chloride tetrakis[bis(trimethylsilyl)amido]hafnium chloride tetrakis[bis(trimethylsilyl)amido]hafnium

(0091)

The transition metal amide compound with general formula (I-1) is described in the following.

(0093)

M in the preceding formula is the same as M described above for general formula (I) and is preferably a Group 4 transition metal atom such as titanium, zirconium, or hafnium with titanium being particularly preferred.

(0094)

R' and R" are each independently selected from the hydrogen atom, hydrocarbyl, halogenated hydrocarbyl, organosilyl groups, and hydrocarbyl substituted by a substituent that contains at least one element selected from nitrogen, oxygen, phosphorus, sulfur, and silicon.

(0095)

The hydrocarbyl and halogenated hydrocarbyl can be specifically exemplified by the same hydrocarbyl and halogenated hydrocarbyl as given for R in the preceding discussion of general formula (I). The organosilyl groups can be specifically exemplified by methylsilyl, dimethylsilyl, trimethylsilyl, ethylsilyl, diethylsilyl, triethylsilyl, and triphenylsilyl.

(0096)

The hydrocarbyl substituted by a substituent that contains at least one element selected from nitrogen, oxygen, phosphorus, sulfur, and silicon can be exemplified by groups afforded by substituting $-COOCH_3$, $-N(CH_3)C(O)CH_3$, $-OC(O)CH_3$, -CN, $-N(C_2H_5)_2$, $-N(CH_3)S(O_2)CH_3$, or $-P(C_6H_5)_2$ into the aforementioned hydrocarbyl.

(0097)

m is an integer from 0 to 2 while n is an integer from 1 to 5. A represents an atom from Groups 13 to 16 of the Periodic Table and can be specifically exemplified by boron, carbon, nitrogen, oxygen, silicon, phosphorus, sulfur, germanium, selenium, and tin wherein carbon and silicon are preferred. The plurality of A's present when n is greater than or equal to 2 may

be the same as each other or may differ from one another.

(0098)

The group E is a substituent that contains at least one element selected from carbon, hydrogen, oxygen, halogen, nitrogen, sulfur, phosphorus, boron, and silicon. When a plurality of groups represented by E are present, said plurality of groups represented by E may be the same as each other or may differ from one another and two or more groups represented by E may be connected to each other to form a ring.

(0099)

The bridging group $-((E_m)A)_n$ — that is bonded to the two nitrogen atoms can be specifically exemplified by the following groups.

exemplified by the following gloups.	
-CH ₂ -	-C(Me) ₂ -
-C(Ph) ₂	-Si(Me) ₂ -
-Si(Ph) ₂ -	-Si(Me)(Ph)-
-CH ₂ CH ₂ -	-CH ₂ Si(Me) ₂ -
-CH ₂ CH ₂ CH ₂ -	-CH ₂ C(Me) ₂ CH ₂ -
-CH ₂ C(Et) ₂ CH ₂ -	-CH ₂ C(nPr) ₂ CH ₂ -
-CH ₂ C(iPr) ₂ CH ₂ -	-CH ₂ C(nBu) ₂ CH ₂ -
-CH ₂ C(iBu) ₂ CH ₂ -	-CH ₂ C(sBu) ₂ CH ₂ -
-CH ₂ C(cPen) ₂ CH ₂ -	-CH ₂ C(cHex) ₂ CH ₂ -
-CH ₂ C(Ph) ₂ CH ₂ -	-CH ₂ C(Me)(Et)CH ₂ -
-CH ₂ C(Me)(iPr)CH ₂ -	-CH ₂ C(Me)(iBu)CH ₂ -
-CH ₂ C(Me)(tBu)CH ₂ -	-CH ₂ C(Me)(iPen)CH ₂ -
-CH ₂ C(Me)(Ph)CH ₂ -	-CH ₂ C(Et)(iPr)CH ₂ -
-CH ₂ C(Et)(iBu)CH ₂ -	-CH ₂ C(Et)(iPen)CH ₂ -
-CH ₂ C(iPr)(iBu)CH ₂ -	-CH ₂ C(iPr)(iPen)CH ₂ -
-CH ₂ Si(Me) ₂ CH ₂ -	-CH ₂ Si(Et) ₂ CH ₂ -
-CH ₂ Si(n-Bu) ₂ CH ₂ -	-CH ₂ Si(Ph) ₂ CH ₂ -
-CH(Me)CH ₂ CH(Me)-	-CH(Ph)CH2CH(Ph)-
-Si(Me) ₂ OSi(Me) ₂ -	-CH ₂ CH ₂ CH ₂ CH ₂ -
-Si(Me) ₂ CH ₂ CH ₂ Si(Me) ₂ -	•

(0105)

The following abbreviations are used in the preceding examples: Me for methyl, Et for ethyl, nPr for n-propyl, iPr for isopropyl, nBu for n-butyl, iBu for isobutyl, sBu for sec-butyl, t-Bu for tert-butyl, iPen for isopentyl, cPen for cyclopentyl, cHex for cyclohexyl, and Ph for phenyl.

(0106)

p is an integer from 0 to 4. X represents the hydrogen atom, halogen atoms, C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, an oxygen-containing group, a sulfur-containing group, or a silicon-containing group and is specifically exemplified as for L in the aforementioned general formula (II-1). When $p \ge 2$, the plurality of groups represented by X may be the same as each other or may differ from one another.

(0107)

Among the various possibilities, halogen atoms, C_1 to C_{20} hydrocarbyl, and sulfonate groups are preferred. The transition metal amide compound (I-1) is specifically exemplified as follows, but is not limited to the following specific examples.

(0113)

The following abbreviations are used in the preceding examples: Me for methyl, Et for ethyl, iPr for isopropyl, and tBu for tert-butyl. This invention can also use transition metal amide compounds generated by replacing the titanium in the preceding compounds with zirconium or hafnium.

(0114)

Among transition metal amide compounds with general formula (I-1), the use is preferred in the present invention of transition metal amide compounds with general formula (I-2) in which R' and R" are substituted aryl bearing from 1-5 substituents such as alkyl.

(0115)

$$R^{2}$$
 R^{3}
 R^{4}
 R^{5}

$$((E_{m})A)_{n}$$
 MX_{p}

$$R^{6}$$
 R^{10}

$$R^{7}$$
 R^{19}
 R^{8}

$$R^{19}$$

(0116)

M in the preceding formula is the same as M in general formula (I) and is preferably a Group 4 transition metal atom such as titanium, zirconium, or hafnium and particularly preferably is titanium.

(0117)

Each of R^1 to R^{10} is independently selected from the hydrogen atom, halogen atoms, hydrocarbyl, halogenated hydrocarbyl, organosilyl groups, alkoxy groups, aryloxy groups, $-COOR^{11}$, $-N(R^{12})C(O)R^{13}$, $-OC(O)R^{14}$, -CN, $-NR^{15}_{2}$, and $-N(R^{16})S(O_2)R^{17}$ wherein R^{11} to R^{17} represent C_1 to C_5 alkyl, with the provisos that at least one of R^{1} to R^{10} is not hydrogen and at least one of R^{10} is not hydrogen.

(0118)

The halogen atoms are the same as for X in general formula (I), while the hydrocarbyl, halogenated hydrocarbyl, and organosilyl groups are the same as for R' and R'' in general formula (I-1).

(0119)

The alkoxy can be specifically exemplified by methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, and tert-butoxy. The aryloxy can be specifically exemplified by phenoxy,

2,6-dimethylphenoxy, and 2,4,6-trimethylphenoxy.

(0120)

The groups represented by $-COOR^{11}$, $-N(R^{12})C(O)R^{13}$, $-OC(O)R^{14}$, -CN, $-NR^{15}_{2}$, and $-N(R^{16})S(O_2)R^{17}$ (wherein R^{11} to R^{17} represent C_1 to C_5 alkyl) can be exemplified by $-COOCH_3$, $-N(CH_3)C(O)CH_3$, $-OC(O)CH_3$, -CN, $-N(C_2H_5)_2$, and $-N(CH_3)S(O_2)CH_3$.

(0121)

Two or more — preferably adjacent — groups among the groups R¹ to R⁵ may be interconnected to form a ring (e.g., an aromatic ring, aliphatic ring) together with the carbon atoms to which they are respectively bonded. Two or more — preferably adjacent — groups among the groups R⁶ to R¹⁰ may be interconnected to form a ring (e.g., an aromatic ring, aliphatic ring) together with the carbon atoms to which they are respectively bonded.

(0122)

m is an integer from 0 to 2, while n is an integer from 1 to 5. The substituent A is the same as A in the preceding general formula (I-1) and is preferably a carbon atom or silicon atom. When $n \ge 2$, the plurality of A's may be the same as each other or may differ from one another.

(0123)

The group E is the same as E in the preceding general formula (I-1) and is preferably a substituent that contains at least one element selected from carbon, hydrogen, nitrogen, and silicon. When a plurality of groups represented by E are present said plurality of groups represented by E may be the same as each other or may differ from one another and two or more groups represented by E may be connected to each other to form a ring.

(0124)

The bridging group $-((E_m)A)_n$ — that is bonded to the two nitrogen atoms can be specifically exemplified by the same groups as provided above. **p** is an integer from 0 to 4.

(0125)

X represents the hydrogen atom, a halogen atom, C_1 to C_{20} hydrocarbyl, C_1 to C_{20} halogenated hydrocarbyl, an oxygen-containing group, or a sulfur-containing group and is specifically exemplified as for L in general formula (II-1).

(0126)

Preferred among these are halogen atoms, C_1 to C_{20} hydrocarbyl, and sulfonate groups. When $p \ge 2$, the plurality of groups represented by X may be the same as each other or may differ from one another.

(0127)

The transition metal amide compound (I-2) is specifically exemplified as follows, but is not limited to the following specific examples.

(0129)

(0130)

(0131)

(0132)

(0133)

(0134)

(0135)

(0136)

(0137)

(0138)

(0141)

The following abbreviations are used in the preceding examples: Me for methyl, Et for ethyl, iPr for isopropyl, nPr for n-propyl, nBu for n-butyl, sBu for sec-butyl, t-Bu for tert-butyl, and nOct for n-octyl.

(0142)

This invention can also use transition metal amide compounds as afforded by replacing the titanium in the preceding compounds with zirconium or hafnium. Among the transition metal amide compounds under consideration, in preferred transition metal amide compounds M = titanium, A in the group bonded to the two nitrogen atoms is carbon or silicon, and n = titanium.

(0143)

Among the transition metal amide compounds under consideration, in preferred transition metal amide compounds M = titanium, A in the group bonded to the two nitrogen atoms is carbon or silicon, and n is 2 or 3.2

(0144)

Among transition metal amide compounds with general formulas (I) and (I-1), transition metal amide compounds with general formula (I-1) are preferably used, and among these the use of transition metal amide compounds with general formula (I-2) is particularly preferred.

(0145)

The preceding compounds can be used singly or in combinations of two or more.

(C-1) The organometal compounds

Organometal compounds from Groups 1 and 2 and 12 and 13 as specifically defined below can be used as the organometal compound (C-1) employed in the present invention.

(0146)

Organoaluminum compounds with the general formula

$$R^a_{mAI(OR^b)_nH_pX_q}$$
 (C-1a)

Translator's Note. This sentence comprising section (0143) is in fact identical to the second sentence in section (0142) in the Japanese source document.

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl; X is a halogen atom; and $0 < m \le 3$, $0 \le n < 3$, $0 \le p < 3$, $0 \le q < 3$, and m + n + p + q = 3.

(0147)

The complex alkylates of aluminum and a Group 1 metal with the general formula

$$M^2AIR^a_4$$
 (C-1b)

in which M^2 is Li, Na, or K and R^a is C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl.

(0148)

The dialkylates of a Group 2 or Group 12 metal with the general formula

$$R^a R^b M^3$$
 (C-1c)

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl and M^3 is Mg, Zn, or Cd.

(0149)

The organoaluminum compounds encompassed by (C-1a) can be exemplified by the following compounds:

organoaluminum compounds with the general formula

$$R^a_{mAI}(OR^b)_{3-m}$$

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl and m is preferably a number satisfying $1.5 \le m \le 3$;

organoaluminum compounds with the general formula

in which R^a is C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl, X is halogen, and m preferably satisfies 0 < m < 3;

organoaluminum compounds with the general formula

in which R^a is C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl and m preferably satisfies $2 \le m < 3$; and

organoaluminum compounds with the general formula $R^a_{mAl}(OR^b)_nX_q$

in which R^a and R^b are independently selected from C_1 to C_{15} and preferably C_1 to C_4 hydrocarbyl, X is a halogen atom, and $0 < m \le 3$, $0 \le n < 3$, $0 \le q < 3$, and m + n + q = 3.

(0150)

The aluminum compounds encompassed by (C-1a) can be more specifically exemplified by tri-n-alkylaluminums such as triethylaluminum and tri-n-butylaluminum;

tri-branched chain-alkylaluminums such as triisopropylaluminum, triisobutylaluminum, tri-sec-butylaluminum, tri-tert-butylaluminum, tri-2-methylbutylaluminum, tri-3-methylpentylaluminum, tri-4-methylpentylaluminum, tri-4-methylpentylaluminum, tri-4-methylpentylaluminum, tri-2-methylhexylaluminum, tri-3-methylhexylaluminum, and tri-2-ethylhexylaluminum;

tricycloalkylaluminums such as tricyclohexylaluminum;

triarylaluminums such as triphenylaluminum and tritolylaluminum;

dialkylaluminum hydrides such as diisobutylaluminum hydride;

trialkenylaluminums such as triisoprenylaluminum;

alkylaluminum alkoxides such as isobutylaluminum methoxide, isobutylaluminum ethoxide, and isobutylaluminum isopropoxide;

dialkylaluminum alkoxides such as diethylaluminum ethoxide and dibutylaluminum butoxide;

alkylaluminum sesquialkoxides such as ethylaluminum sesquiethoxide and butylaluminum sesquibutoxide;

partially alkoxylated alkylaluminums with the average compositional formula R^a_{2.5}Al(OR^b)_{0.5};

alkylaluminum aryloxides such as diethylaluminum (2,6-di-t-butyl-4-methylphenoxide), ethylaluminum bis(2,6-di-t-butyl-4-methylphenoxide), diisobutylaluminum (2,6-di-t-butyl-4-methylphenoxide);

dialkylaluminum halides such as diethylaluminum chloride, dibutylaluminum chloride, and diethylaluminum bromide;

alkylaluminum sesquihalides such as ethylaluminum sesquichloride, butylaluminum sesquibromide;

partially halogenated alkylaluminums such as alkylaluminum dihalides such as ethylaluminum dichloride, propylaluminum dichloride, and butylaluminum dibromide;

dialkylaluminum hydrides such as diethylaluminum hydride and dibutylaluminum hydride;

other partial hydrogenated alkylaluminums such as alkylaluminum dihydrides such as ethylaluminum dihydride and propylaluminum dihydride; and

partially alkoxylated and halogenated alkylaluminums such as ethylaluminum ethoxychloride, butylaluminum butoxychloride, and ethylaluminum ethoxybromide.

(0151)

Also usable are compounds that resemble (C-1a), for example, organoaluminum compounds as afforded by bonding two or more aluminum compounds to each other through the nitrogen atom. Compounds of this type can be specifically exemplified by

$$(C_2H_5)_2AIN(C_2H_5)AI(C_2H_5)_2.$$

(0152)

Compounds encompassed by (C-1b) can be exemplified by LiAI(C₂H₅)₄ and LiAI(C₇H₁₅)₄.

(0153)

In addition to the preceding, isoprenylaluminums with the following general formula can also be used as the organometal compound (C-1)

$$(i-C_4H_9)_xAI_y(C_5H_{10})_z$$

wherein x, y, and z are positive numbers and $z \ge 2x$.

(0154)

In addition to the preceding, the following can also be used as the organometal compound (C-1): methyllithium, ethyllithium, propyllithium, butyllithium, methylmagnesium bromide, methylmagnesium chloride, ethylmagnesium bromide, ethylmagnesium chloride, propylmagnesium bromide, butylmagnesium bromide, butylmagnesium chloride, dimethylmagnesium, diethylmagnesium, dibutylmagnesium, and butylethylmagnesium.

(0155)

Compounds that will form the above-described organoaluminum compounds in the polymerization system can also be used, for example, the combination of aluminum halide and alkyllithium and the combination of aluminum halide and alkylmagnesium.

(0156)

Organoaluminum compounds are preferred among the preceding. The above-described organometal compound (C-1) may be a single compound or a combination of two or more compounds.

(0157)

(C-2) The organoaluminumoxy compounds

The organoaluminumoxy compound (C-2) used by the present invention may be an aluminoxane as known in the art or a benzene-insoluble organoaluminumoxy compound as exemplified in Japanese Laid Open (Unexamined or Kokai or A) Patent Application Number Hei 2-78687 (78,687/1990).

(0158)

The above-referenced aluminoxanes as known in the art can be synthesized, for example, by the following methods and will generally be obtained as a solution in hydrocarbon solvent.

- (1) Reaction of an organoaluminum compound with water of adsorption or crystallization by the addition of an organoaluminum compound, e.g., trialkylaluminum, to a suspension in hydrocarbon medium of a compound containing water of adsorption or a salt containing water of crystallization, for example, magnesium chloride hydrate, copper sulfate hydrate, aluminum sulfate hydrate, nickel sulfate hydrate, and cerous chloride hydrate.
- (2) The direct action of water, ice, or water vapor on an organoaluminum compound, e.g., trialkylaluminum, in a medium such as benzene, toluene, ethyl ether, or tetrahydrofuran.
- (3) The reaction of an organotin oxide, e.g., dimethyltin oxide or dibutyltin oxide, with an organoaluminum compound, e.g., trialkylaluminum, in a medium such as decane, benzene, or toluene.

(0159)

This aluminoxane may contain small amounts of organometal component. In addition, after the solvent or unreacted organoaluminum compound has been distilled from the above-described aluminoxane solutions, the aluminoxane may be redissolved in solvent or suspended in a poor solvent for the aluminoxane.

(0160)

The organoaluminum compounds used in aluminoxane synthesis can be specifically exemplified by the same organoaluminum compounds provided above as examples of the

organoaluminum compounds encompassed by (C-1).

(0161)

Trialkylaluminums and tricycloalkylaluminums are preferred among the preceding, with trimethylaluminum being particularly preferred. The subject organoaluminum compound may be a single compound or a combination of two or more compounds.

(0162)

The solvent used in aluminoxane synthesis can be exemplified by hydrocarbon solvents, for example, aromatic hydrocarbons such as benzene, toluene, xylene, cumene, and cymene; aliphatic hydrocarbons such as pentane, hexane, heptane, octane, decane, dodecane, hexadecane, and octadecane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, cyclooctane, and methylcyclopentane; petroleum distillates such as gasoline, kerosene, and light oil; and the halogenated derivatives, and particularly the chlorinated derivatives and brominated derivatives, of the above-listed aromatic hydrocarbons, aliphatic hydrocarbons, and alicyclic hydrocarbons. Ethers such as ethyl ether and tetrahydrofuran can also be used. Aromatic hydrocarbons and aliphatic hydrocarbons are particularly preferred among the solvents listed above.

(0163)

The benzene-insoluble organoaluminumoxy compounds used in the present invention should be either insoluble or sparingly soluble in benzene, i.e., the Al component dissolving in 60° C benzene should generally be $\leq 10\%$ and is preferably $\leq 5\%$ and particularly preferably is $\leq 2\%$, in each case as Al atoms.

(0164)

The organoaluminumoxy compound used by the present invention can also be a boron-containing organoaluminumoxy compound as defined by general formula (IV)

(0166)

wherein:

R²¹ represents C₁ to C₁₀ hydrocarbyl and

each R²² is independently selected from the hydrogen atom, halogen atoms, and C₁ to C₁₀ hydrocarbyl.

(0167)

This boron-containing organoaluminumoxy compound (IV) can be synthesized by reacting an organoaluminum compound and an alkylboronic acid with general formula (V)

$$R^{21} - B - (OH)_2$$
 (V)
(R^{21} is defined as above)

for 1 minute to 24 hours at -80°C to room temperature in an inert solvent under an inert gas blanket.

(0168)

The alkylboronic acid (V) can be specifically exemplified by methylboronic acid, ethylboronic acid, isopropylboronic acid, n-propylboronic acid, n-butylboronic acid, isobutylboronic acid, n-hexylboronic acid, cyclohexylboronic acid, phenylboronic acid, 3,5-difluoro[phenyl]boronic acid, pentafluorophenylboronic acid, and 3,5-bis(trifluoromethyl)phenylboronic acid. Preferred among the foregoing are methylboronic acid, n-butylboronic acid, isobutylboronic acid, 3,5-difluorophenylboronic acid, and pentafluorophenylboronic acid. These can be used singly or in combinations of two or more selections.

(0169)

The organoaluminum compound reacted with the alkylboronic acid can be specifically exemplified by the same organoaluminum compounds provided above as examples of the organoaluminum compounds encompassed by (C-1).

(0170)

Preferred among the foregoing organoaluminum compounds are trialkylaluminums and tricycloalkylaluminums with trimethylaluminum, triethylaluminum, and triisobutylaluminum being particularly preferred. These can be used singly or in combinations of two or more selections.

(0171)

The organoaluminumoxy compound (C-2) under consideration can itself be used singly or in combinations of two or more selections.

(C-3) Compounds capable of reacting with the transition metal compound or transition metal amide compound to form an ion pair

The compound (C-3) used in this invention that is capable of reacting with the transition metal compound (A) or transition metal amide compound (B) to form an ion pair (compound (C-3) is referred to below as an ionizing ionic compound) can be exemplified by the Lewis acids, ionic compounds, borane compounds, and carborane compounds that are disclosed, for example, in Japanese Patent Application (PCT) Numbers Hei 1-501950 (501,950/1989) and Hei 1-502036 (502,036/1989); Japanese Laid Open (Unexamined or Kokal or A) Patent Application Numbers Hei 3-179005 (179,005/1991), Hei 3-179006 (179,006/1991), Hei 3-207703 (207,703/1991), and Hei 3-207704 (207,704/1991); and United States Patent 5,321,106.

(0172)

The Lewis acids can be specifically exemplified by BR_3 compounds in which R = fluorine or the phenyl group wherein the latter may be substituted by the fluorine atom, methyl group, or trifluoromethyl group. These BR_3 compounds can be specifically exemplified by trifluoroboron, triphenylboron, tris(4-fluorophenyl)boron, tris(3,5-difluorophenyl)boron, tris(4-fluoromethylphenyl)boron, tris(pentafluorophenyl)boron, tris(p-tolyl)boron, tris(o-tolyl)boron, and tris(3,5-dimethylphenyl)boron.

(0173)

The ionic compounds can be exemplified by compounds with the following general formula (VI).

(0174)

(0175)

R²³ in the preceding formula can be, for example, H⁺, carbonium cations, oxonium cations, ammonium cations, phosphonium cations, the cycloheptyltrienyl cation, and transition metal-containing ferrocenium cations.

(0176)

R²⁴ to R²⁷ can be independently selected from organic groups and are preferably selected from aryl and substituted aryl groups. The aforementioned carbonium cations can be specifically exemplified by trisubstituted carbonium cations such as the triphenylcarbonium cation, the tri(methylphenyl)carbonium cation, and the tri(dimethylphenyl)carbonium cation.

(0177).

The aforementioned ammonium cations can be specifically exemplified by trialkylammonium cations such as the trimethylammonium cation, the triethylammonium cation, the tripropylammonium cation, the tributylammonium cation, and the tri(n-butyl)ammonium cation; by N,N-dialkylanilinium cations such as the N,N-dimethylanilinium cation, the N,N-diethylanilinium cation, and the N,N-2,4,6-pentamethylanilinium cation; and by dialkylammonium cations such as the di(isopropyl)ammonium cation and the dicyclohexylammonium cation.

(0178)

The aforementioned phosphonium cations can be specifically exemplified by triarylphosphonium cations such as the triphenylphosphonium cation, the tri(methylphenyl)phosphonium cation, and the tri(dimethylphenyl)phosphonium cation.

(0179)

Carbonium cations and ammonium cations are preferred for R²³, while the triphenylcarbonium cation, N,N-dimethylanilinium cation, and N,N-diethylanilinium cation are specifically preferred.

(0180)

Also usable as the ionic compound are trialkyl-substituted ammonium salts, N,N-dialkylanilinium salts, dialkylammonium salts, and triarylphosphonium salts.

(0181)

The trialkyl-substituted ammonium salts can be specifically exemplified by triethylammonium tetra(phenyl)boron, tripropylammonium tetra(phenyl)boron,

tri(n-butyl)ammonium tetra(phenyl)boron,
trimethylammonium tetra(p-tolyl)boron,
trimethylammonium tetra(o-tolyl)boron,
tri(n-butyl)butylammonium tetra(pentafluorophenyl)boron,
tripropylammonium tetra(o,p-dimethylphenyl)boron,
tri(n-butyl)ammonium tetra(m,m-dimethylphenyl)boron,
tri(n-butyl)ammonium tetra(p-trifluoromethylphenyl)boron,
tri(n-butyl)ammonium tetra(3,5-ditrifluoromethylphenyl)boron, and
tri(n-butyl)ammonium tetra(o-tolyl)boron.

(0182)

The N,N-dialkylanilinium salts can be specifically exemplified by N,N-dimethylanilinium tetra(phenyl)boron, N,N-diethylanilinium tetra(phenyl)boron, and N,N-2,4,6-pentamethylanilinium tetra(phenyl)boron.

(0183)

The dialkylammonium salts can be specifically exemplified by di(1-propyl)ammonium tetra(pentafluorophenyl)boron and dicyclohexylammonium tetra(phenyl)boron.

(0184)

The ionic compounds can also be exemplified by triphenylcarbenium tetrakis(pentafluorophenyl)borate, N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate, ferrocenium tetra(pentafluorophenyl)borate, triphenylcarbenium pentaphenylcyclopentadienyl complex, N,N-diethylanilinium pentaphenylcyclopentadienyl complex, and boron compounds with the following formulas (VII) and (VIII).

(0185)

(0186)

(Et = ethyl in the preceding formula)

(0188)

The borane compounds can be specifically exemplified by decaborane (14);

anion salts such as

bis[tri(n-butyl)ammonium] nonaborate,

bis[tri(n-butyl)ammonium] decaborate,

bis[tri(n-butyl)ammonium] undecaborate,

bis[tri(n-butyl)ammonium] dodecaborate,

bis[tri(n-butyl)ammonium] decachlorodecaborate, and

bis[tri(n-butyl)ammonium] dodecachlorododecaborate; and

salts of metal borane anions such as

tri(n-butyl)ammonium bis(dodecahydridododecaborate)cobaltate (III) and bis[tri(n-butyl)ammonium] bis(dodecahydridododecaborate)nickelate (III). (0189)

The carborane compounds can be specifically exemplified by

4-carbanonaborane (14),

1,3-dicarbanonaborane (13),

6,9-dicarbadecaborane (14),

dodecahydrido-1-phenyl-1,3-dicarbanonaborane,

dodecahydrido-1-methyl-1,3-dicarbanonaborane,

undecahydrido-1,3-dimethyl-1,3-dicarbanonaborane,

7,8-dicarbaundecaborane (13),

2,7-dicarbaundecaborane (13),

undecahydrido-7,8-dimethyl-7,8-dicarbaundecaborane, and

dodecahydrido-11-methyl-2,7-dicarbaundecaborane;

anion salts such as

tri(n-butyl)ammonium 1-carbadecaborate,

tri(n-butyl)ammonium 1-carbaundecaborate,

```
tri(n-butyl)ammonium 1-carbadodecaborate,
      tri(n-butyl)ammonium 1-trimethylsilyl-1-carbadecaborate,
      tri(n-butyl)ammonium bromo-1-carbadodecaborate,
      tri(n-butyl)ammonium 6-carbadecaborate (14),
      tri(n-butyl)ammonium 6-carbadecaborate (12),
      tri(n-butyl)ammonium 7-carbaundecaborate (13),
      tri(n-butyl)ammonium 7,8-dicarbaundecaborate (12).
      tri(n-butyl)ammonium 2,9-dicarbaundecaborate (12),
      tri(n-butyl)ammonium dodecahydrido-8-methyl-7,9-dicarbaundecaborate.
      tri(n-butyl)ammonium undecahydrido-8-ethyl-7,9-dicarbaundecaborate,
      tri(n-butyl)ammonium undecahydrido-8-butyl-7,9-dicarbaundecaborate,
      tri(n-butyl)ammonium undecahydrido-8-allyl-7,9-dicarbaundecaborate,
      tri(n-butyl)ammonium undecahydrido-9-trimethylsilyl-7;8-dicarbaundecaborate, and
      tri(n-butyl)ammonium undecahydrido-4,6-dibromo-7-carbaundecaborate; and
the salts of metal carborane anions such as
      tri(n-butyl)ammonium bis(nonahydrido-1,3-dicarbanona-
         borate)cobaltate (III),
      tri(n-butyl)ammonium bis(undecahydrido-7,8-dicarbaundeca-
         borate)ferrate (III),
      tri(n-butyl)ammonium bis(undecahydrido-7,8-dicarbaundeca-
         borate)cobaltate (III),
      tri(n-butyl)ammonium bis(undecahydrido-7,8-dicarbaundeca-
         borate)nickelate (III),
      tri(n-butyl)ammonium bis(undecahydrido-7,8-dicarbaundeca-
         borate)cuprate (III),
      tri(n-butyl)ammonium bis(undecahydrido-7,8-dicarbaundeca-
         borate)aurate (III),
      tri(n-butyl)ammonium bis(nonahydrido-7,8-dimethyl-7,8-dicarbaundeca-
         borate)ferrate (III),
      tri(n-butyl)ammonium bis(nonahydrido-7,8-dimethyl-7,8-dicarbaundeca-
         borate)chromate (III),
      tri(n-butyl)ammonium bis(tribromooctahydrido-7,8-dicarbaundeca-
         borate)cobaltate (III),
      tris[tri(n-butyl)ammonium] bis(undecahydrido-7-carbaundecaborate)chromate (III),
      bis[tri(n-butyl)ammonium] bis(undecahydrido-7-carbaundeca-
         borate)manganate (IV),
```

bis[tri(n-butyl)ammonium] bis(undecahydrido-7-carbaundecaborate)cobaltate (III), and bis[tri(n-butyl)ammonium] bis(undecahydrido-7-carbaundecaborate)nickelate (IV).

(0190)

These ionizing ionic compounds (C-3) may be used singly or in combinations of two or more. The olefin polymerization catalyst according to the present invention may also employ a microparticulate carrier (D) as described below on an optional basis in addition to the above-described (A) Group 4 transition metal compound, (B) transition metal amide compound, and (C) at least 1 compound selected from (C-1) organometal compounds, (C-2) organoaluminumoxy compounds, and (C-3) ionizing ionic compounds.

(0191)

(D) Microparticulate carriers

The microparticulate carrier (D) used on an optional basis by the present invention may be an inorganic or organic compound. Granular or microparticulate solids with a size of 10 to 300 µm and preferably 20 to 200 µm can be used for component (D). Porous oxides are preferred for the inorganic compounds and may be specifically exemplified by SiO₂, Al₂O₃, MgO, ZrO, TiO₂, B₂O₃, CaO, ZnO, BaO, and ThO₂ and by mixtures of the preceding such as SiO₂-MgO, SiO₂-Al₂O₃, SiO₂-TiO₂, SiO₂-V₂O₅, SiO₂-Cr₂O₃, and SiO₂-TiO₂-MgO. Preferred among the preceding are microparticulate carriers whose main component is at least 1 component selected from the group consisting of SiO₂ and Al₂O₃.

(0192)

The subject inorganic compound may also contain small amounts of a carbonate, sulfate, nitrate, or oxide component such as Na₂CO₃, K₂CO₃, CaCO₃, MgCO₃, Na₂SO₄, Al₂(SO₄)₃, BaSO₄, KNO₃, Mg(NO₃)₂, Al(NO₃)₃, Na₂O, K₂O, or Li₂O.

(0193)

While the properties of the microparticulate carrier (D) will vary as a function of its constituents and method of production, carriers preferred for use in the present invention desirably have a specific surface area of 50 to $1,000 \, \mathrm{m}^2/\mathrm{g}$ and preferably 100 to 700 m^2/g and desirably have a pore volume of 0.3 to 2.5 cm $^3/\mathrm{g}$. As necessary, the subject carrier can be used after calcining at 100 to $1,000^{\circ}\mathrm{C}$ and preferably 150 to 700°C.

(0194)

Granular and microparticulate solid organic compounds with a particle size of 10 to 300 μ m can also be used for the microparticulate carrier (D) employed by the present invention. These organic compounds can be exemplified by polymers and copolymers synthesized mainly from C₂ to C₁₄ α -olefin, e.g., ethylene, propylene, 1-butene, and 4-methylpent-1-ene, and by polymers and copolymers synthesized mainly from vinylcyclohexane or styrene.

(0195)

In sum, then, the olefin polymerization catalyst according to the present invention comprises the above-described (A) Group 4 transition metal compound; (B) transition metal amide compound; (C) at least 1 compound selected from (C-1) organometal compounds, (C-2) organoaluminumoxy compounds, and (C-3) ionized ionic compounds; and optionally a microparticulate carrier (D).

(0196)

There are no restrictions on the method for using each component or on their order of addition in the execution of polymerization, but the following procedures can be provided as examples:

- (1) addition to the polymerization reactor in any sequence of components (A), (B), and (C);
- (2) addition to the polymerization reactor in any sequence of components (B) and (C) and a catalyst component comprising component (A) carried on support (D);
- (3) addition to the polymerization reactor in any sequence of components (A) and (C) and a catalyst component comprising component (B) carried on support (D);
- (4) addition to the polymerization reactor in any sequence of components (A) and (B) and a catalyst component comprising component (C) carried on support (D);
- (5) addition to the polymerization reactor in any sequence of component (C) and a catalyst component comprising components (A) and (B) carried on support (D);
- (6) addition to the polymerization reactor in any sequence of component (C), a catalyst component comprising component (A) carried on support (D), and a catalyst component comprising component (B) carried on support (D);

- (7) addition to the polymerization reactor in any sequence of component (B) and a catalyst component comprising components (A) and (C) carried on support (D);
- (8) addition to the polymerization reactor in any sequence of component (A) and a catalyst component comprising components (B) and (C) carried on support (D); and
- (9) addition to the polymerization reactor of a catalyst component comprising components (A), (B), and (C) carried on support (D).

(0197)

It is also possible in each of the above-listed methods (1)-(8) to carry out preliminary contact between or among two or more of the individual catalyst components. In each of methods (4), (7), (8), and (9) which use a supported component (C), unsupported component (C) — which may be the same as or different from the supported component (C) — may be added on an optional basis in any sequence.

(0198)

The aforementioned solid catalyst component comprising components (A) and (C) supported on component (D), solid catalyst component comprising components (B) and (C) supported on component (D), and solid catalyst component comprising components (A), (B), and (C) supported on component (D) can be prepolymerized with olefin. Catalyst component(s) can also be supported on a prepolymerized solid catalyst component.

(0199)

The olefin polymerization method according to the present invention produces olefin polymer by the polymerization or copolymerization of olefin in the presence of the olefin polymerization catalyst described hereinabove.

(0200)

Polymerization can be executed according to the present invention by a gas-phase polymerization method or by a liquid-phase polymerization method such as solution polymerization or suspension polymerization. The inert hydrocarbon medium used in liquid-phase polymerization methods can be specifically exemplified by aliphatic hydrocarbons such as propane, butane, pentane, hexane, heptane, octane, decane, dodecane, and kerosene; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclopentane; aromatic hydrocarbons such as benzene, toluene, and xylene; halogenated hydrocarbons such as

ethylene chloride, chlorobenzene, and dichloromethane; and mixtures of the preceding. The olefin itself can also be used as the solvent. Preferred among the aforementioned inert hydrocarbon media are aliphatic hydrocarbons and alicyclic hydrocarbons. Also preferred for use as the solvent are the α -olefin, alicyclic vinyl compound, and cyclic olefin actually used for polymerization.

(0201)

Olefin polymerization using the above-described olefin polymerization catalyst will in general use from 10⁻⁸ to 10⁻³ mol and preferably will use from 10⁻⁷ to 10⁻⁴ mol component (A) per 1 liter of reaction volume and will in general use from 10⁻⁸ to 10⁻² mol and preferably will use from 10⁻⁷ to 10⁻³ mol component (B) per 1 liter of reaction volume. In addition, component (B) will be used in an amount that provides a molar ratio [(B)/(A)] between component (B) and component (A) in general from 0.02 to 100 and preferably from 0.05 to 50.

(0202)

Component (C-1) is used in an amount that provides a molar ratio [(C-1)/M] between component (C-1) and the total amount of transition metal atoms (M) in components (A) and (B) in general from 0.01 to 5,000 and preferably from 0.05 to 2,000.

(0203)

Component (C-2) is used in an amount that provides a molar ratio [(C-2)/M] between the aluminum atoms in component (C-2) and the total amount of transition metal atoms (M) in components (A) and (B) in general from 10 to 5,000 and preferably from 20 to 2,000.

(0204)

Component (C-3) is used in an amount that provides a molar ratio [(C-3)/M] between component (C-3) and the total amount of transition metal atoms (M) in components (A) and (B) in general from 1 to 10 and preferably from 1 to 5.

(0205)

The olefin polymerization temperature using the above-described olefin polymerization catalyst can generally be -50 to 200° C and preferably is 0 to 170° C. The polymerization pressure will generally be from atmospheric pressure to 100 kg/cm^2 and is preferably from atmospheric pressure to 50 kg/cm^2 . The polymerization reaction can be run by batch, semicontinuous, or continuous methods. The polymerization can also be divided into 2 or more stages with different reaction conditions.

(0206)

The molecular weight of the olefin polymer product can be controlled by the addition of hydrogen to the polymerization system or by varying the polymerization temperature. Olefin that can be polymerized using the olefin polymerization catalyst as described above can be exemplified by C_2 to C_{20} α -olefin such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 3-methyl-1-butene, 3-methyl-1-pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-hexene, 4-ethyl-1-hexene, 3-ethyl-1-hexene, 1-octane, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, and 1-eicosene; aromatic vinyl compounds such as styrene, the dimethylstyrenes, allylbenzene, the allyltoluenes, the vinylnaphthalenes, and the allylnaphthalenes; alicyclic vinyl compounds such as vinylcyclohexane, vinylcycloheptane, and allylnorbornane; cyclic olefins such as cyclopentene, cycloheptene, norbornene, 5-methyl-2-norbornene, tetracyclododecene, and 2-methyl-1,4,5,8-dimethano-1,2,3,4,4a,5,8,8a-octahydronaphthalene; C_4 to C_{20} chain polyenes such as 1,4-pentadiene, 1,5-hexadiene, 1,4-hexadiene, and 1,5,9-decatriene; and cyclic polyenes such as 5-ethylidenenorbornene and dicyclopentadiene.

(0207)

These olefins can be used singly or in combinations of two or more.

(0208)

Advantageous Effects of the Invention

The olefin polymerization catalyst according to the present invention exhibits a high polymerization activity and can produce olefin (co)polymer that has a broad molecular weight distribution and that, in the event of the copolymerization of two or more olefins, has a narrow composition distribution.

(0209)

The inventive olefin polymerization method can produce olefin polymer that has a broad molecular weight distribution and that, in the event of the copolymerization of two or more olefins, has a narrow composition distribution and achieves these results while exhibiting a high polymerization activity. The olefin (co)polymer produced by the inventive method exhibits an excellent moldability due to its broad molecular weight distribution.

(0210)

Examples

This invention is more specifically described hereinbelow through illustrative examples, but is not limited to these examples.

(0211)

The limiting viscosity ($[\eta]$) was measured in the illustrative examples in decalin at 135°C. The molecular weight distribution (Mw/Mn) was measured by gel permeation chromatography (GPC) at 140°C using o-dichlorobenzene as solvent.

(0212)

Example 1

5 mL toluene was introduced into a 20-mL glass container that had been thoroughly purged with nitrogen followed by the addition thereinto of 0.1 mmol (as aluminum atoms) methylaluminoxane, 0.1 micromol bis(1,3-dimethylcyclopentadienyl)zirconium dichloride, and 0.1 micromol titanium compound (B-1) with formula (a) given below. Stirring for 5 minutes gave a pre-contact catalyst (P-1).

(0213)

Separately from the above, 350 mL cyclohexane and then 150 mL 1-octene were introduced into a 1-liter stainless steel autoclave that had been thoroughly purged with nitrogen. 0.5 mmol triisobutylaluminum was then added and the temperature of the system was raised to 60°C. Polymerization was thereafter begun by injecting the entire quantity of the aforementioned precontact catalyst (P-1) using pressurized ethylene. Polymerization was carried out for 15 minutes at 70°C and a total pressure of 8 kg/cm²-G while continuously introducing ethylene. Polymerization was then stopped by the pressure injection of a small amount of methanol. The polymerization reaction solution was added to a large excess of methanol—hydrochloric acid solution to obtain a polymer, which was dried for 12 hours under reduced pressure at 130°C. This resulted in the recovery of 7.6 g of a polymer that gave the following values: $[\eta] = 3.97 \text{ dL/g}$ and Mw/Mn = 5.2.

(0215)

Comparative Example 1

Polymerization was carried out as in Example 1, but in this case without the use of the bis(1,3-dimethylcyclopentadienyl)zirconium dichloride. This resulted in the recovery of 3.6 g of a polymer that gave the following values: $[\eta] = 0.95$ dL/g and Mw/Mn = 2.0.

(0216)

Comparative Example 2

Polymerization was carried out as in Example 1, but in this case without using the titanium compound (B-1) and with the introduction of 50 mL hydrogen. This resulted in the recovery of 4.2 g of a polymer that gave the following values: $[\eta] = 2.93$ dL/g and Mw/Mn = 2.9.

(0217)

Example 2

Polymerization was carried out as in Example 1, but in this case using 0.1 micromol titanium compound (B-2) with formula (b) given below in place of the titanium compound (B-1). This resulted in the recovery of 7.5 g of a polymer that gave the following values: $[\eta] = 3.90 \text{ dL/g}$ and Mw/Mn = 5.3.

(0219)

Comparative Example 3

Polymerization was carried out as in Example 1, but in this case omitting the bis(1,3-dimethylcyclopentadienyl)zirconium dichloride and using 0.1 micromol of the titanium compound (B-2) with the aforementioned formula (b) in place of the titanium compound (B-1). This resulted in the recovery of 3.4 g of a polymer that gave the following values: $[\eta] = 0.84$ dL/g and Mw/Mn = 2.0.

(0220)

Example 3

5 mL toluene was introduced into a 20-mL glass container that had been thoroughly purged with nitrogen followed by the addition thereinto of 0.5 mmol (as aluminum atoms) methylaluminoxane, 0.4 micromol bis(1,3-dimethylcyclopentadienyl)hafnium dichloride, and 2 micromol bis[bis(trimethylsilyl)amido]zirconium dichloride ([(Me₃Si)₂N]₂ZrCl₂). Stirring for 5 minutes gave a pre-contact catalyst (P-3).

(0221)

Separately from the above, 350 mL cyclohexane and then 150 mL 1-octene were introduced into a 1-liter stainless steel autoclave that had been thoroughly purged with nitrogen. 0.5 mmol

triisobutylaluminum was then added and the temperature of the system was raised to 60° C. Polymerization was thereafter begun by injecting the entire quantity of the aforementioned precontact catalyst (P-3) using pressurized ethylene. Polymerization was carried out for 15 minutes at 70° C and a total pressure of 8 kg/cm²-G while continuously introducing ethylene. Polymerization was then stopped by the pressure injection of a small amount of methanol. The polymerization reaction solution was added to a large excess of methanol—hydrochloric acid solution to obtain a polymer, which was dried for 12 hours under reduced pressure at 130°C. This resulted in the recovery of 6.7 g of a polymer that gave the following values: $[\eta] = 4.71 \text{ dL/g}$ and Mw/Mn = 4.9.

(0222)

Comparative Example 4

Polymerization was carried out as in Example 3, but in this case without the use of the bis(1,3-dimethylcyclopentadienyl)hafnium dichloride. This resulted in the recovery of 3.6 g of a polymer that gave the following values: $[\eta] = 2.37$ dL/g and Mw/Mn = 1.9.

(0223)

Comparative Example 5

Polymerization was carried out as in Example 3, but in this case without using the bis[bis(trimethylsilyI)amido]zirconium dichloride and with the introduction of 80 mL hydrogen. This resulted in the recovery of 3.3 g of a polymer that gave the following values: $[\eta] = 2.88$ dL/g and Mw/Mn = 3.0.

(0224)

Example 4

5 mL toluene was introduced into a 20-mL glass container that had been thoroughly purged with nitrogen followed by the addition thereinto of 0.5 micromol triisobutylaluminum, 0.4 micromol bis(1,3-dimethylcyclopentadienyl)hafnium dichloride, 0.1 micromol of the titanium compound (B-2) with the aforementioned formula (b), and 1 micromol triphenylcarbenium tetrakis(pentafluorophenyl)borate in the given sequence. Stirring for 5 minutes gave a precontact catalyst (P-4).

(0225)

Separately from the above, 350 mL cyclohexane and then 150 mL 1-octene were introduced into a 1-liter stainless steel autoclave that had been thoroughly purged with nitrogen. 0.5 mmol triisobutylaluminum was then added and the temperature of the system was raised to 60° C. Polymerization was thereafter begun by injecting the entire quantity of the aforementioned precontact catalyst (P-4) using pressurized ethylene. Polymerization was carried out for 15 minutes at 70° C and a total pressure of 8 kg/cm²-G while continuously introducing ethylene. Polymerization was then stopped by the pressure injection of a small amount of methanol. The polymerization reaction solution was added to a large excess of methanol—hydrochloric acid solution to obtain a polymer, which was dried for 12 hours under reduced pressure at 130° C. This resulted in the recovery of 7.3 g of a polymer that gave the following values: $[\eta] = 4.62 \text{ dL/q}$ and Mw/Mn = 5.4.

(0226)

Comparative Example 6

Polymerization was carried out as in Example 4, but in this case without the use of the bis(1,3-dimethylcyclopentadienyl)hafnium dichloride. This resulted in the recovery of 3.7 g of a polymer that gave the following values: $[\eta] = 1.29 \text{ dL/g}$ and Mw/Mn = 2.1.

(0227)

Comparative Example 7

Polymerization was carried out as in Example 4, but in this case without using the titanium compound (B-2) and with the introduction of 80 mL hydrogen. This resulted in the recovery of 3.6 g of a polymer that gave the following values: $[\eta] = 3.04 \text{ dL/g}$ and Mw/Mn = 3.1.

Brief Description of the Drawings

Figure 1 is a descriptive drawing that illustrates the process for preparing the olefin polymerization catalyst of the present invention.

Figure 1.

WES'

Generate Collection

Print

Search Results - Record(s) 1 through 2 of 2 returned.

☐ 1. Document ID: JP 10330412 A

L1: Entry 1 of 2

File: JPAB

Dec 15, 1998

PUB-NO: JP410330412A

DOCUMENT-IDENTIFIER: JP 10330412 A

TITLE: CATALYST FOR OLEFIN POLYMERIZATION AND POLYMERIZATION OF THE SAME

PUBN-DATE: December 15, 1998

INVENTOR-INFORMATION:

NAME

COUNTRY

SUGIMURA, KENJI SAITO, JUNJI

FUJITA, TERUNORI

ASSIGNEE-INFORMATION:

NAME

COUNTRY

MITSUI CHEM INC

APPL-NO: JP09137250 APPL-DATE: May 27, 1997

INT-CL (IPC): $\frac{\text{CO8 F 4}}{642}$; $\frac{\text{CO8 F 10}}{00}$

ABSTRACT:

PROBLEM TO BE SOLVED: To obtain a catalyst having excellent polymerization activity and useful for producing an olefin polymer having wide molecular weight distribution and excellent moldability by making the catalyst contain a specific transition metal compound, a transition metal amide compound and an organic metal compound, etc.

SOLUTION: This catalyst contains (A) a group IV transition metal compound containing a ligand having cyclopentadienyl skeleton, (B) a transition metal amide compound of the formula: [(R3Si)2N]kMKj-k {M is a group III to VI transition metal; (j) is a valence number of M; (k) is an integer of 1 to (j); R is a hydrocarbon, etc.; X is a halogen, etc.} or formula I {R' and R" are each a hydrocarbon, etc.; A is a group 13 to group 16 atom in the periodic table; E is a group containing C, H, etc.; (m) is 0-2; (n) is 1-5; (p) is 0-4} and (C) at least one kind selected from (C1) an organic metal compound, (C2) an organic aluminumoxy compound and (C3) a compound forming an ion pair with the component A or the component B, in an amount of 10-7 to 10-4 mol of the component A per 1 L of the reaction volume and a molar ratio of (the component B/the component A) of 0.05-50.

COPYRIGHT: (C) 1998, JPO

Full Title Citation Front Review Classification Date Reference Sequences Attachments Claims KMC Draw Desc Image

2. Document ID: JP 10330412 A

L1: Entry 2 of 2 File: DWPI Dec 15, 1998

DERWENT-ACC-NO: 1999-101085

DERWENT-WEEK: 199914

COPYRIGHT 2002 DERWENT INFORMATION LTD

TITLE: Catalyst for olefin polymerisation - comprises a cyclopentadienyl complex, transition metal amide and at least one organic metal compound, aluminium-oxy compound or reactive compound

PATENT-ASSIGNEE:

ASSIGNEE CODE
MITSUI PETROCHEM IND CO LTD MITC

PRIORITY-DATA: 1997JP-0137250 (May 27, 1997)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE PAGES MAIN-IPC
JP 10330412 A December 15, 1998 036 C08F004/642

APPLICATION-DATA:

PUB-NO APPL-DATE APPL-NO DESCRIPTOR

JP10330412A May 27, 1997 1997JP-0137250

INT-CL (IPC): $\underline{\text{CO8}} \ \underline{\text{F}} \ 4/642$; $\underline{\text{CO8}} \ \underline{\text{F}} \ 10/\underline{\text{O0}}$

ABSTRACTED-PUB-NO: JP10330412A

BASIC-ABSTRACT:

A catalyst for olefin polymerisation comprises: (A) a periodic table Gp.4 transition metal cpd. having a cyclopentadienyl nucleus-containing ligand; (B) a transition metal amide compound of formula (B1) or (B2); (C) at least one of (C1) an organic metal compound; (C2) an organic aluminoxy compound; and (C3) a compound reactive with (A) or (B) to form an ion pair.

[(R3Si)2N]kMXj-k (B1)

In (B1): M= a periodic table Gp.3 transition metal atom; j= valence of M; k=1 to j; R= (halo)hydrocarbyl, or two Rs may connect to form a ring; X= H, halogen, 1-20C (halo)hydrocarbyl,O-, S- or Si-containin g group;

In (B2): M= a Gp. 3-6 transition metal atom; R',R''=H, (halo)hydrocarbyl, organic silyl, or a substituent containing at least one of N, O, S and Si; m= 0-2 integer; n= 1-5 integer; A= Gp.13-16 atom; E= a substituent containing at least one of C, H, O, halogen, N, S, P, B, and Si, or 2 E groups may form a ring.

USE - The catalyst is useful for olefin (co)polymerisation.

ADVANTAGE - This is a new olefin polymerisation catalyst, having a high activity and giving a (co)polymer having a wide molecular weight distribution.

CHOSEN-DRAWING: Dwg.0/1

TITLE-TERMS: CATALYST OLEFIN POLYMERISE COMPRISE CYCLOPENTADIENYL COMPLEX TRANSITION METAL AMIDE ONE ORGANIC METAL COMPOUND ALUMINIUM OXY COMPOUND REACT COMPOUND

ADDL-INDEXING-TERMS: POLYOLEFIN METALLOCENE

DERWENT-CLASS: A17 E11 E12

CPI-CODES: A02-A06C; A02-A06E1; A04-G01A; E05-B02; E05-E; E05-G; E05-L; E05-M;

```
E05-N;
CHEMICAL-CODES:
Chemical Indexing M3 *01*
    Fragmentation Code
    A422 A540 A672 A923 A940 C000 C017 C100 C720 C801
    C803 C804 C805 C806 C807 G030 G031 G032 G033 G034
    G036 G037 G039 G211 G299 G310 G399 G551 G640 G699
         M126 M144 M210 M211 M212 M213 M214 M215 M216
    M220 M221 M222 M223 M224 M225 M226 M231 M232 M233
    M240 M250 M280 M281 M282 M283 M320 M411 M520 M530
    M531 M532 M540 M541 M542 M640 M782 M903 M904 Q121
    R023 R024
    Ring Index
    01391
    Markush Compounds
    199909-COX01-K 199909-COX01-M
Chemical Indexing M3 *02*
    Fragmentation Code
    A422 A540 A672 A922 A923 A940 B614 B720 B744 B831
    B840 C000 C017 C100 C720 C801 C803 C804 C805 C806
    C807 D011 D013 D016 D021 D022 D023 D024 D029 F012
    F014 F015 F018 F022 G000 G030 G031 G032 G033 G034
    G036 G037 G039 G041 G052 G211 G299 G310 G399 G400
    G460 G480 G543 G551 G553 G640 G699 G710 G810 G820
   M210 M211 M212 M213 M214 M215 M216 M220 M221 M222
   M223 M224 M225 M226 M231 M232 M233 M240 M250 M280
   M281 M282 M283 M320 M411 M511 M520 M521 M530 M531
   M532 M540 M541 M542 M640 M782 M903 M904 Q121 R023
   R024
   Ring Index
   01391
   Markush Compounds
   199909-COX02-K 199909-COX02-M
Chemical Indexing M3 *03*
   Fragmentation Code
    A422 A540 A672 A910 A923 A960 B414 B514 B720 B732
    B744 B798 B832 C000 C017 C100 C710 C720 C801 C803
   C804 C805 C806 C807 G001 G002 G010 G011 G012 G013
   G019 G020 G021 G022 G029 G030 G039 G040 G050 G100
   G111 G112 G113 G221 G299 G553 G563 G599 H713 H716
   H721 H722 H723 M121 M122 M123 M124 M125 M126 M129
   M144 M148 M149 M210 M211 M212 M213 M214 M215 M216
   M220 M221 M222 M223 M224 M225 M226 M231 M232 M233
   M240 M250 M280 M281 M282 M283 M311 M312 M313 M314
   M315 M316 M320 M321 M322 M323 M331 M332 M333 M340
   M342 M351 M391 M392 M393 M411 M510 M520 M530 M531
   M532 M533 M540 M541 M542 M543 M620 M630 M640 M650
   M782 M903 M904 Q121 R023 R024
   Markush Compounds
   199909-COX03-K 199909-COX03-M
Chemical Indexing M3 *04*
   Fragmentation Code
```

Fragmentation Code

A422 A540 A672 A910 A923 A960 B414 B514 B720 B732

B744 B798 B832 C710 G001 G002 G010 G011 G012 G013

G019 G020 G021 G022 G029 G030 G039 G040 G050 G100

G111 G112 G113 G221 G299 G553 G563 G599 H713 H716

H721 H722 H723 M121 M122 M123 M124 M125 M126 M129

M144 M148 M149 M210 M211 M212 M213 M214 M215 M216

M220 M221 M222 M223 M224 M225 M226 M231 M232 M233

M240 M250 M280 M281 M282 M283 M311 M312 M313 M314

```
M315 M316 M320 M321 M322 M323 M331 M332 M333 M340
   M342 M351 M391 M392 M393 M411 M510 M520 M530 M531
   M532 M533 M540 M541 M542 M543 M620 M630 M650 M782
   M903 M904 Q121 R023 R024
   Markush Compounds
   199909-COX04-K 199909-COX04-M
Chemical Indexing M3 *05*
    Fragmentation Cod:
    A422 A540 A672 A910 A940 A960 B414 B514 B712 B720
   B731 B732 B742 B743 B744 B798 B831 B832 B833 C000
   C017 C035 C100 C710 C720 C801 C803 C804 C805 C806
   C807 G001 G002 G003 G010 G011 G012 G013 G014 G015
    G016 G017 G019 G020 G021 G022 G029 G033 G040 G050
    G100 G111 G112 G113 G221 G299 G331 G399 G553 G563
    H100 H102 H103 H141 H142 H143 H161 H162 H181 H182
    H541 H542 H543 H594 H601 H602 H608 H609 H641 H642
    H643 H681 H682 H683 H685 J011 J012 J231 J232 J341
    J342 K431 L640 M111 M114 M119 M121 M122 M123 M124
   M125 M129 M132 M141 M142 M143 M148 M149 M150 M210
   M211 M212 M213 M214 M215 M216 M220 M221 M222 M223
   M224 M225 M226 M231 M232 M233 M240 M250 M262 M272
   M273 M280 M281 M282 M283 M311 M312 M313 M314 M315
    M316 M320 M321 M322 M331 M332 M333 M334 M340 M342
    M343 M344 M361 M362 M383 M391 M392 M411 M510 M520
    M530 M531 M532 M533 M540 M541 M620 M630 M640 M650
    M782 M903 M904 Q121 R023 R024
    Markush Compounds
    199909-COX05-K 199909-COX05-M
Chemical Indexing M3 *06*
    Fragmentation Code
    A422 A540 A672 A923 A960 B414 B514 B712 B720 B731
    B732 B742 B743 B744 B798 B831 B832 B833 G001 G002
    G003 G010 G011 G012 G013 G014 G015 G016 G017 G019
    G020 G021 G022 G029 G033 G040 G050 G100 G111 G112
    G113 G221 G299 G331 G399 G553 G563 H100 H102 H103
    H141 H142 H143 H161 H162 H181 H182 H541 H542 H543
    H594 H601 H602 H608 H609 H641 H642 H643 H681 H682
    H683 J011 J012 J231 J232 J341 J342 L640 M111 M114
    M119 M121 M122 M123 M124 M125 M129 M132 M141 M142
    M143 M148 M149 M150 M210 M211 M212 M213 M214 M215
    M216 M220 M221 M222 M223 M224 M225 M226 M231 M232
    M233 M240 M250 M262 M272 M273 M280 M281 M282 M283
    M311 M312 M313 M314 M315 M316 M320 M321 M322 M331
    M332 M333 M334 M340 M342 M343 M344 M361 M383 M391
    M392 M411 M510 M520 M530 M531 M532 M533 M540 M541
    M620 M630 M650 M782 M903 M904 Q121 R023 R024
    Markush Compounds
    199909-COX06-K 199909-COX06-M
Chemical Indexing M3 *07*
    Fragmentation Code
    A313 A923 M210 M211 M212 M213 M214 M215 M216 M220
    M221 M222 M223 M224 M225 M226 M231 M232 M233 M250
    M283 M320 M411 M510 M520 M530 M540 M620 M782 M903
    M904 0121 R023 R024
    Markush Compounds
    199909-COX07-K 199909-COX07-M
Chemical Indexing M3 *08*
    Fragmentation Code
    A212 A430 A923 M210 M211 M212 M213 M214 M215 M216
    M220 M221 M222 M223 M224 M225 M226 M231 M232 M233
    M250 M282 M320 M411 M510 M520 M530 M540 M620 M782
```

M903 M904 Q121 R023 R024 Markush Compounds 199909-COX08-K 199909-COX08-M

Chemical Indexing M3 *09*

Fragmentation Code

A313 A910 A923 A940 M210 M211 M212 M213 M214 M215

M216 M220 M221 M222 M223 M224 M225 M226 M231 M232

M233 M250 M281 M282 M320 M411 M510 M520 M530 M540 M620 M640 M782 M903 M904 Q121 R023 R024

Markush Compounds

199909-СОХОЭ-К 199909-СОХО9-М

Chemical Indexing M3 *10*

Fragmentation Code

A313 A910 A940 M210 M211 M212 M213 M214 M215 M216

M220 M221 M222 M223 M224 M225 M226 M231 M232 M233

M250 M281 M320 M411 M510 M520 M530 M540 M620 M640

M782 M903 M904 Q121 R023 R024

Markush Compounds

199909-COX10-K 199909-COX10-M

ENHANCED-POLYMER-INDEXING:

Polymer Index [1.1] 018; G0033*R G0022 D01 D02 D51 D53; H0000; H0011*R; L9999 L2573 L2506; L9999 L2528 L2506; P1150 Polymer Index [1.2] 018; R00326 G0044 G0033 G0022 D01 D02 D12 D10 D51 D53 D58 D82; R00936 G0044 G0033 G0022 D01 D02 D12 D10 D51 D53 D58 D88; H0022 H0011; P1252; L9999 L2528 L2506; L9999 L2664 L2506; K9392; P1150 Polymer Index [1.3] 018; ND02; B9999 B5107*R B4977 B4740; B9999 B3678 B3554 Polymer Index [1.4] 018; D01 D15 D13 D75 D54 D51 D55 D56 D57 D59 D62 D61 D68 4B*R Tr; C999 C033 C000; C999 C340; C999 C293 Polymer Index [1.5] 018; D01 D23 D22 D36 D37 D70 D71 D69 F86 Si 4A O* 6A S* 7A*R 3B*R Tr; C999 C033 C000; C999 C340; C999 C293 Polymer Index [1.6] 018; D01 D69 D70 D71 B* 3A Si 4A N* 5A O* 6A S* 7A*R 3B*R Tr 4B*R 5B*R 6B*R 3A*R 4A*R 5A*R 6A*R; C999 C033 C000; C999 C340; C999 C293 Polymer Index [1.7] 018; D01 D11 D10 D15 D13 D32 D75 D55 D51 D56 D57 D59 D62 D61 D68 D70 D93 C1 7A Zr 4B Tr; C999 C033 C000; C999 C340 C999 C293 Polymer Index [1.8] 018; D01 D11 D10 D19 D18 D33 D76 D23 D22 D45 D50 D70 D95 Cl 7A Ti 4B Tr N* 5A D48; C999 C033 C000; C999 C340; C999 C293 Polymer Index [1.9] 018; D01 Gm: R00728 D01 D11 D10 D50 D68 D92 Al 3A; C999 C124 C113; C999 C340; C999 C293 Polymer Index [1.10] 018; D01 Al 3A O* 6A; C999 C124 C113; C999 C340; C999 C293 Polymer Index [1.11] 018; R00913 D01 D02 D14 D13 D31 D50 D76 D86; A999 A475 Polymer Index [2.1] 018 ; P1923 P1912 D01 D10 D11 D50 D68 D81 Al 3A O* 6A; C999 C124 C113; C999 C293 Polymer Index [2.2] 018; Q9999 Q6917

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1999-030194

tion Print
Documents
2
= i

(19)日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平10-330412

(43)公開日 平成10年(1998)12月15日

(51) Int.Cl.*

識別記号

FΙ

C 0 8 F 4/642

C 0 8 F 4/642 10/00

審査請求 未請求 請求項の数2 OL (全 36 頁)

(21)出願番号

特願平9-137250

(22)出願日

平成9年(1997)5月27日

(71)出額人 000005887

三井化学株式会社

東京都千代田区度が関三丁目2番5号

(72) 発明者 杉 村 健 司

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(72) 発明者 斎 藤 純 治

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(72)発明者 藤田 照典

山口県玖珂郡和木町和木六丁目1番2号

三井石油化学工業株式会社内

(74)代理人 弁理士 鈴木 俊一郎

(54) 【発明の名称】 オレフィン重合用触媒およびオレフィンの重合方法

(57)【要約】

【課題】高い重合活性を有し、分子量分布が広く成形性 に優れたオレフィン (共) 重合体が得られるようなオレフィン重合用触媒およびオレフィンの重合方法を提供すること。

【解決手段】オレフィン重合用触媒は、(A)シクロペンタジエニル骨格を有する配位子を含む周期表第4族の遷移金属化合物と、(B)(R2 N)k MXj-k (Mは周期表第3~6族の遷移金属、jはMの価数、kは1~jの整数、Rは炭化水素基等、Xはハロゲン等)で表される遷移金属アミド化合物と、(C)有機金属化合物、有機アルミニウムオキシ化合物および前記(A)または(B)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とからなる。

(人) 温梦全異成分

【特許請求の範囲】

【請求項1】(A)シクロペンタジエニル骨格を有する配位子を含む周期表第4族の遷移金属化合物と、(B)下記一般式(I)または(I-1)で表される遷移金属アミド化合物と、

$[(R_3Si)_2N]_kMX_{j-k}$... (I)

(式中、Mは、周期表第3~6族の遷移金属原子を示し、」は遷移金属原子Mの価数であり、kは1~」の整数であり、Rは、互いに同一でも異なっていてもよく、炭化水素基またはハロゲン化炭化水素基を示し、2個の 10 Rが互いに連結して原を形成していてもよく、Xは、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基またはケイ素含有基を示し、」-kが2以上の場合には、互いに同一でも異なっていてもよい。)

(式中、Mは、周期表第3~6族の遷移金属原子を示し、R'およびR'は、互いに同一でも異なっていてもよく、水素原子、炭化水素基、ハロゲン化炭化水素基、有機シリル基または、窒素、酸素、リン、硫黄およびケイ素から選ばれる少なくとも1種の元素を有する置換基を示し、mは、0~2の整数であり、nは、1~5の整数であり、Aは、周期表第13~16族の原子を示し、nが2以上の場合には、複数のAは、互いに同一でも異なっていてもよく、Eは、炭素、水素、酸素、ハロゲン、窒素、硫黄、リン、ホウ素およびケイ素から選ばれる少なくとも1種の元素を有する置換基であり、Eで示される基が複数存在する場合は、Eで示される複数の基は、互いに同一でも異なっていてもよく、またEで示される2個以上の基が互いに連結して環を形成していてもよい。)

- (C)(C-1)有機金属化合物、
- (C-2) 有機アルミニウムオキシ化合物、および
- (C-3) 遷移金属化合物(A)または遷移金属アミド化合物(B)と反応してイオン対を形成する化合物から選ばれる少なくとも1種の化合物とからなることを特徴とするオレフィン重合用触媒。

【請求項2】 請求項1に記載のオレフィン重合用触媒の存在下に、オレフィンを重合または共重合させることを特徴とするオレフィンの重合方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、オレフィン重合用 触媒およびこの触媒を用いたオレフィンの重合方法に関 し、さらに詳しくは高い重合活性を有し、分子量分布が 広いオレフィン(共)重合体が得られるような新規なオ レフィン重合用触媒およびこの触媒を用いたオレフィン の重合方法に関する。

2

[0002]

【発明の技術的背景】従来からエチレン重合体、エチレン・αーオレフィン共重合体などのオレフィン重合体を 製造するための触媒として、チタン化合物と有機アルミニウム化合物とからなるチタン系触媒、およびパナジウム化合物と有機アルミニウム化合物とからなるバナジウム系触媒が知られている。

【0003】また、高い重合活性でオレフィン重合体を製造することのできる触媒としてジルコノセンなどのメタロセン化合物と有機アルミニウムオキシ化合物(アルミノオキサン)とからなるチーグラー型触媒が知られている。

【0004】さらに最近新しいオレフィン重合用触媒と 20 してたとえば特開平8-245713号公報には、チタンー窒素結合を有するチタンアミド化合物とアルミノキサンからなるオレフィン重合用触媒が提案されている。 【0005】また、Organometallics 1996,15,562-569 には、[MeszBNCHzCHzNBMesz]-2で示されるビス(ボリルアミド)配位子を有する周期表4族の有機金属錯体が記載され、この錯体はエチレン重合活性を僅かに示すことが記載されている。

【0006】ところでエチレン重合体などのボリオレフィンは、機械的強度、耐薬品性などに優れているため、 種々の成形用材料として用いられている。しかしながら上記のようなチタンアミド化合物などの遷移金属アミド化合物と、アルミノキサンとからなる触媒は、高い重合活性を有しているが、これを用いて得られるオレフィン重合体は、分子量分布が狭く成形性が必ずしも良好ではない。このため、高い重合活性を損なうことなく、分子量分布が広く成形性に優れたオレフィン重合体が得られるような、遷移金属アミド化合物を含む触媒の改良が望まれていた。

[0007]

40 【発明の目的】本発明は、上記のような従来技術に鑑みてなされたものであって、高い重合活性を有し、分子量分布が広く成形性に優れたオレフィン(共)重合体が得られるようなオレフィン重合用触媒を提供することを目的としている。

【0008】また本発明は、このような良好な性質の触媒を用いたオレフィンの重合方法を提供することを目的としている。

[0009]

【発明の概要】本発明に係るオレフィン重合用触媒は、 50 (A)シクロペンタジエニル骨格を有する配位子を含む

周期表第4族の遷移金属化合物と、(B)下記一**股式** (I)または(I-1)で表される遷移金属アミド化合物 と、

 $[(R_3Si)_2N]_k MX_{j-k} \cdots (I)$

(式中、Mは、周期表第3~6族の遷移金属原子を示し、jは遷移金属原子Mの価数であり、kは1~jの整数であり、Rは、互いに同一でも異なっていてもよく、炭化水素基またはハロゲン化炭化水素基を示し、2個のRが互いに連結して環を形成していてもよく、Xは、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含有基またはケイ素含有基を示し、j-kが2以上の場合には、互いに同一でも異なっていてもよい。)

[0010]

【化2】

【0011】(式中、Mは、周期表第3~6族の遷移金 属原子を示し、R'およびR''は、互いに同一でも異な っていてもよく、水素原子、炭化水素基、ハロゲン化炭 化水素基、有機シリル基または、窒素、酸素、リン、硫 黄およびケイ素から選ばれる少なくとも1種の元素を有 する置換基を示し、mは、O~2の整数であり、nは、 1~5の整数であり、Aは、周期表第13~16族の原 30 子を示し、nが2以上の場合には、複数のAは、互いに 同一でも異なっていてもよく、Eは、炭素、水素、酸 素、ハロゲン、窒素、硫黄、リン、ホウ素およびケイ素 から選ばれる少なくとも1種の元素を有する置換基であ り、Eで示される基が複数存在する場合は、Eで示され る複数の基は、互いに同一でも異なっていてもよく、ま たEで示される2個以上の基が互いに連結して環を形成 していてもよい。) (C)(C-1) 有機金属化合物、(C-2) 有機アルミニウムオキシ化合物、および(C-3) 遷移 金属化合物(A)または遷移金属アミド化合物(B)と 反応してイオン対を形成する化合物から選ばれる少なく とも1種の化合物とからなることを特徴としている。

【0012】本発明のオレフィン重合用触媒は、高い重合活性を有し、分子量分布か広く、かつ2種以上のオレフィンを重合したときに組成分布が狭いオレフィン (共)重合体が得られる。

【0013】本発明に係るオレフィンの重合方法は、前 記のような触媒の存在下に、オレフィンを重合または共 重合させることを特徴としている。

[0014]

【発明の具体的な説明】以下、本発明におけるオレフィン重合用触媒およびこの触媒を用いたオレフィンの重合 方法について具体的に説明する。

4

【0015】なお、本明細書において「重合」という語は、単独重合だけでなく、共重合をも包含した意味で用いられることがあり、「重合体」という語は、単独重合体だけでなく、共重合体をも包含した意味で用いられることがある。

【0016】本発明に係るオレフィン重合用触媒は、

(A)シクロペンタジエニル骨格を有する配位子を含む 周期表第4族の遷移金属化合物と、(B)遷移金属アミ ド化合物と、(C)(C-1)有機金属化合物、(C-2)有機 アルミニウムオキシ化合物、および(C-3)遷移金属化合 物(A)または遷移金属アミド化合物(B)と反応して イオン対を形成する化合物から選ばれる少なくとも1種 の化合物とから形成されている。

【0017】まず、本発明のオレフィン重合用触媒を形成する各触媒成分について説明する。

(A)シクロペンタジエニル骨格を有する配位子を含む 20 周期表第4族の遷移金属化合物 本発明で用いられる(A)シクロペンタジエニル骨格を

有する配位子を含む周期表第4族の遷移金属化合物は、 下記一般式 (II-1) で表される遷移金属化合物である。

 $[0018]M^1L_1$... (II-1)

式中、M¹ は周期表第4族から選ばれる遷移金属原子を示し、具体的には、ジルコニウム、チタンまたはハフニウムであり、好ましくはジルコニウムである。

【0019】×は遷移金属原子M¹ の原子値であり、遷 移金属原子M¹ に配位する配位子Lの個数を示す。Lは 遷移金属原子に配位する配位子を示し、少なくとも1個 のLはシクロペンタジエニル骨格を有する配位子であり、シクロペンタジエニル骨格を有する配位子以外のLは、炭素原子数が1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有基、イオウ含 有基、ケイ素含有基、ハロゲン原子または水素原子である。

【0020】シクロペンタジエニル骨格を有する配位子としては、たとえばシクロペンタジエニル基、メチルシクロペンタジエニル基、デトラメチルシクロペンタジエニル基、テトラメチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基、メチルエチルシクロペンタジエニル基、メチルエチルシクロペンタジエニル基、ブロビルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ブチルシクロペンタジエニル基、ベキシルシクロペンタジエニル基などのアルキル置換シクロペンタジエニル基またはインデニル基、4.5.6.7-テトラヒドロインデニル基、フルオレニル基などを例示することができる。これらの基は、炭素原50子数が1~20の(ハロゲン化)炭化水素基、酸素含有

基、イオウ含有基、ケイ素含有基、ハロゲン原子などで 置換されていてもよい。

【0021】上記一般式(II-1)で表される化合物がシクロペンタジエニル骨格を有する配位子を2個以上含む場合には、そのうち2個のシクロペンタジエニル骨格を有する配位子同士は、(置換)アルキレン基、(置換)シリレン基などの2個の結合基を介して結合されていてもよい。このような2個のシクロペンタジエニル骨格を有する配位子が2価の結合基を介して結合されている選移金属化合物としては後述するような一般式(II-3)で 10表される遷移金属化合物が挙げられる。

【0022】シクロペンタジエニル骨格を有する配位子以外の配位子しとしては、具体的に下記のようなものが挙げられる。炭素原子数が1~20の炭化水素基としては、アルキル基、シクロアルキル基、アルケニル基、アリールアルキル基、アリール基などが挙げられ、より具体的には、メチル、エチル、プロピル、ブチル、ヘキシル、オクチル、ノニル、ドデシル、アイコシルなどのアルキル基;シクロペンチル、シクロヘキシル、ノルボルニル、アダマンチルなどのシクロアルキル基;ビニル、アロペニル、シクロヘキセニルなどのアルケニル基;ベンジル、フェニルエチル、フェニルプロピルなどのアリールアルキル基;フェニル、トリル、ジメチルフェニル、ドリメチルフェニル、エチルフェニル、プロピルフェニル、ビフェニル、ナフチル、メチルナフチル、アントリル、フェナントリルなどのアリール基が挙げられる

【0023】炭素原子数が1~20のハロゲン化炭化水 素基としては、前記炭素原子数が1~20の炭化水素基 にハロゲンが置換した基が挙げられる。酸素含有基とし 30 てはヒドロキシ基;メトキシ、エトキシ、プロボキシ、 ブトキシなどのアルコキシ基;フェノキシ、メチルフェ ノキシ、ジメチルフェノキシ、ナフトキシなどのアリー ロキシ基;フェニルメトキシ、フェニルエトキシなどの アリールアルコキシ基などが挙げられる。

【0024】イオウ含有基としては前記酸素含有基の酸素がイオウに置換した置換基、ならびにメチルスルフォネート、トリフルオロメタンスルフォネート、アートルエンスルフォネート、トリメチルベンゼンスルフォネート、トリイソブチルベンゼンスルフォネート、アクロルベンゼンスルフォネート、ペンタフルオロベンゼンスルフォネート、フェニルスルフィネート、ベンジルスルフィネート、フェニルスルフィネート、ベンジルスルフィネート、アートルエンスルフィネート、トリメチルベンゼンスルフィネート、ペンタフルオロベンゼンスルフィネートなどのスルフィネートをどのスルフィネートをどのスルフィネートをどのスルフィネートをどのスルフィネートを必要である。

【0025】ケイ素含有基としてはメチルシリル、フェニル)ジルコニウムジブロミド、ビス(シクロペンタンニルシリルなどのモノ炭化水素置換シリル;ジメチルシニル)メチルジルコニウムモノクロリド、ビス(シクリル、ジフェニルシリルなどのジ炭化水素置換シリル;50 ロペンタジエニル)エチルジルコニウムモノクロリド、

トリメチルシリル、トリエチルシリル、トリアロピルシリル、トリシクロヘキシルシリル、トリフェニルシリル、ジメチルフェニルシリル、メチルジフェニルシリル、トリトリルシリル、トリナフチルシリルなどのトリ炭化水素置換シリル。トリメチルシリルエーテルまどの大小スチルなどのケイ素置換アリール基などが挙げられる

【0026】ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子などが挙げられる。このような遷移金属化合物は、たとえば遷移金属の原子価が4である場合、より具体的には下記一般式(II-2)で示される

【0027】R³¹R³²R³³R³⁴M¹ … (II-2) 式中、M¹ は、前記と同様の周期律第4族から選ばれる 遷移金属原子を示し、好ましくはジルコニウム原子であ る。

【0028】R³¹は、シクロペンタジエニル骨格を有する基(配位子)を示し、R³²、R³³およびR³⁴は、互いに同一でも異なっていてもよく、シクロペンタジエニル骨格を有する基(配位子)、炭素原子数が1~20の(ハロゲン化)炭化水素基、酸素含有基、イオウ含有基、ケイ素含有基、ハロゲン原子または水素原子を示す。

【0029】本発明では上記一般式 (II-2) で示される 選移金属化合物において、R³²、R³³ およびR³⁴のうち 少なくとも1個がシクロペンタジエニル骨格を有する基 (配位子) である化合物、たとえばR³¹ およびR³² がシ クロペンタジエニル骨格を有する基 (配位子) である化 合物が好ましく用いられる。また、R³¹ およびR³² がシ クロペンタジエニル骨格を有する基 (配位子) である場合、R³³ およびR³⁴ はシクロペンタジエニル骨格を有する基、アルキル基、シクロアルキル基、アルケニル基、アリールアルキル基、シクロアルキル基、アルケニル基、アリールアルキル基、アリールアルキル基、アリール基、アルコキシ基、トリアルキルシリル基、スルフォネート 基、ハロゲン原子または水素原子であることが好ましい

【0030】以下に、前記一般式(II-1)で表され、M 1 がジルコニウムである遷移金属化合物について具体的な化合物を例示する。ビス(インデニル)ジルコニウムジクロリド、ビス(インデニル)ジルコニウムビス(トトルエンスルフォネート)、ビス(4,5,6,7-テトラヒドロインデニル)ジルコニウムジクロリド、ビス(フルオレニル)ジルコニウムジクロリド、ビス(シクロペンタジエニル)ジルコニウムジブロミド、ビス(シクロペンタジエニル)ジルコニウムジブロミド、ビス(シクロペンタジエニル)メチルジルコニウムモノクロリド、ビス(シク

ビス (シクロペンタジエニル) シクロヘキシルジルコニ ウムモノクロリド、ピス (シクロペンタジエニル) フェ ニルジルコニウムモノクロリド、ビス(シクロペンタジ エニル) ベンジルジルコニウムモノクロリド、ビス(シ クロペンタジエニル) ジルコニウムモノクロリドモノハ イドライド、ビス (シクロペンタジエニル) メチルジル コニウムモノハイドライド、ビス (シクロペンタジエニ ル) ジメチルジルコニウム、ビス (シクロペンタジエニ ル) ジフェニルジルコニウム、ビス (シクロペンタジエ ニル) ジベンジルジルコニウム、ビス (シクロペンタジ 10 キシルシクロペンタジエニル) ジルコニウムジクロリ エニル) ジルコニウムメトキシクロリド、ビス (シクロ ペンタジエニル) ジルコニウムエトキシクロリド、ビス (シクロペンタジエニル) ジルコニウムビス (メタンス ルフォネート)、ビス(シクロペンタジエニル)ジルコ ニウムビス (p-トルエンスルフォネート)、ビス(シク ロペンタジエニル) ジルコニウムビス (トリフルオロメ タンスルフォネート)、ビス(メチルシクロペンタジエ ニル) ジルコニウムジクロリド、ビス (ジメチルシクロ ペンタジエニル) ジルコニウムジクロリド、ビス (ジメ チルシクロペンタジエニル)ジルコニウムエトキシクロ 20 リド、ビス (ジメチルシクロペンタジエニル) ジルコニ ウムビス (トリフルオロメタンスルフォネート)、ビス (エチルシクロペンタジエニル) ジルコニウムジクロリ ド、ビス (メチルエチルシクロペンタジエニル) ジルコ ニウムジクロリド、ビス (プロピルシクロペンタジエニ ル) ジルコニウムジクロリド、ビス (メチルプロピルシ*

7

* クロペンタジエニル) ジルコニウムジクロリド、ビス (ブチルシクロペンタジエニル) ジルコニウムジクロリ ド、ビス (メチルブチルシクロペンタジエニル) ジルコ ニウムジクロリド、ピス(メチルブチルシクロペンタジ エニル) ジルコニウムビス (メタンスルフォネート) 、 ビス (トリメチルシクロペンタジエニル) ジルコニウム ジクロリド、ピス (テトラメチルシクロペンタジエニ ル) ジルコニウムジクロリド、ピス (ペンタメチルシク ロペンタジエニル) ジルコニウムジクロリド、ピス (ヘー ド、ビス (トリメチルシリルシクロペンタジエニル) ジ ルコニウムジクロリドなど。

【0031】なお上記例示において、シクロペンタジエ ニル環の二置換体は、1,2-および1,3-置換体を含み、三 置換体は、1,2,3-および1,2,4-置換体を含む。またプロ ビル、ブチルなどのアルキル基は、n-、i-、sec-、tert -などの異性体を含む。

【0032】また上記のようなジルコニウム化合物にお いて、ジルコニウムを、チタンまたはハフニウムに置換 えた化合物を挙げることもできる。2個のシクロペンタ ジエニル骨格を有する配位子が2個の結合基を介して結 合されている遷移金属化合物化合物としては、たとえば 下記式(11-3)で表される化合物が挙げられる。

[0033] 【化3】

$$R^{3}$$
 R^{3}
 R^{3}

【0034】式中、M1は、周期表第4族の遷移金属原 子を示し、具体的には、ジルコニウム、チタニウムまた はハフニウムであり、好ましくはジルコニウムである。 R35、R36、R37およびR38は、互いに同一でも異なっ ていてもよく、炭素原子数が1~20の炭化水素基、炭 素原子数が1~20のハロゲン化炭化水素基、酸素含有 40 基、イオウ含有基、ケイ素含有基、窒素含有基、リン含 有基、ハロゲン原子または水素原子を示す。R35、 R36、R37およびR38で示される基のうち、互いに隣接 する基の一部が結合してそれらの基が結合する炭素原子 とともに環を形成していてもよい。なお、R35、R36、 R37およびR38が各々2ヶ所に表示されているが、それ ぞれたとえばR35とR35などは、同一の基でもよくまた 相異なる基でもよい。Rで示される基のうち同一のサフ ィックスのものは、それらを雄いで、環を形成する場合 **※50** の好ましい組み合せを示している。

※【0035】炭素原子数が1~20の炭化水素基として は、前記しと同様のアルキル基、シクロアルキル基、ア ルケニル基、アリールアルキル基、アリール基などが挙 げられる。

【0036】これらの炭化水素基が結合して形成する環 としてはベンゼン環、ナフタレン環、アセナフテン環、 インデン環などの縮環基、および前記縮環基上の水素原 子がメチル、エチル、プロピル、ブチルなどのアルキル 基で置換された基が挙げられる。

【0037】炭素原子数が1~20のハロゲン化炭化水 素基としては、前記炭素原子数が1~20の炭化水素基 にハロゲンが置換した基が挙げられる。酸素含有基とし てはヒドロキシ基および前記しと同様のアルコキシ基、 アリーロキシ基、アリールアルコキシ基などが挙げられ る.

【0038】イオウ含有基としては前記酸素含有基の酸

素がイオウに置換した置換基などが挙げられる。ケイ素 含有基としては、前記しと同様のモノ炭化水素置換シリ ル、ジ炭化水素置換シリル、トリ炭化水素置換シリル、 炭化水素置換シリルのシリルエーテル、ケイ素置換アル キル基、ケイ素置換アリール基などが挙げられる。

9

【0039】窒素含有基としてはアミノ基:メチルアミ ノ、ジメチルアミノ、ジエチルアミノ、ジプロピルアミ ノ、ジブチルアミノ、ジシクロヘキシルアミノなどのア ルキルアミノ基: フェニルアミノ、ジフェニルアミノ、 ジトリルアミノ、ジナフチルアミノ、メチルフェニルア 10 ミノなどのアリールアミノ基またはアルキルアリールア ミノ基などが挙げられる。

【0040】リン含有基としてはジメチルフォスフィ ノ、ジフェニルフォスフィノなどのフォスフィノ基など が挙げられる。ハロゲン原子としては、前記しと同様の ものが挙げられる。

【0041】これらのうち炭素原子数が1~20の炭化 水素基または水素原子であることが好ましく、特にメチ ル、エチル、プロピル、ブチルの炭素原子数が1~4の 炭化水素基、炭化水素基が結合して形成されたベンゼン 20 環、炭化水素基が結合して形成されたベンゼン環上の水 素原子がメチル、エチル、n-プロピル、iso-プロピル、 n-ブチル、iso-ブチル、tert-ブチルなどのアルキル基 で置換された基であることが好ましい。

【0042】X3 およびX4 は、互いに同一でも異なっ ていてもよく、炭素原子数1~20の炭化水素基、炭素 原子数1~20のハロゲン化炭化水素基、酸素含有基、 イオウ含有基、ケイ素含有基、水素原子またはハロゲン 原子を示す.

【0043】炭素原子数1~20の炭化水素基として は、前記しと同様のアルキル基、シクロアルキル基、ア ルケニル基、アリールアルキル基、アリール基などが挙 げられる。

【0044】炭素原子数1~20のハロゲン化炭化水素 基としては、前記炭素原子数が1~20の炭化水素基に ハロゲンが置換した基が挙げられる。酸素含有基として はヒドロキシ基および前記しと同様のアルコキシ基、ア リーロキシ基、アリールアルコキシ基などが挙げられ る.

【0045】イオウ含有基としては、前記酸素含有基の 40 酸素がイオウに置換した置換基、および前記しと同様の スルフォネート基、スルフィネート基などが挙げられ る。ケイ素含有基としては、前記し同様のケイ素置換ア ルキル基、ケイ素置換アリール基が挙げられる。

【0046】ハロゲン原子としては、前記し同様の基お よび原子を挙げることができる。これらのうち、ハロゲ ン原子、炭素原子数1~20の炭化水素基またはスルフ ォネート基であることが好ましい。

【0047】Y1は、炭素原子数が1~20の2個の炭

化水素基、2価のケイ素含有基、2価のゲルマニウム含 有基、2価のスズ含有基、-O-、-CO-、-S-、 -SO-, -SO2-, -Ge-, -Sn-, -NR39 $- \cdot - P(R^{39}) - \cdot - P(O)(R^{39}) - \cdot - BR^{39}$ -または-AIR39-〔ただし、R39は、互いに同一で も異なっていてもよく、炭素原子数が1~20の炭化水 素基、炭素原子数が1~20のハロゲン化炭化水素基、 水素原子またはハロゲン原子である〕を示す。

【0048】炭素原子数が1~20の2価の炭化水素基 として具体的には、メチレン、ジメチルメチレン、1.2-エチレン、ジメチル-1,2-エチレン、1,3-トリメチレ ン、1,4-テトラメチレン、1,2-シクロヘキシレン、1,4-シクロヘキシレンなどのアルキレン基;ジフェニルメチ レン、ジフェニル-1,2-エチレンなどのアリールアルキ レン基などが挙げられる。

【0049】炭素原子数が1~20の2個のハロゲン化 炭化水素基として具体的には、クロロメチレンなどの上 記炭素原子数が1~20の2価の炭化水素基をハロゲン 化した基などが挙げられる。

【0050】2個のケイ素含有基としては、シリレン、 メチルシリレン、ジメチルシリレン、ジエチルシリレ ン、ジ (n-プロピル) シリレン、ジ (i-プロピル) シリ レン、ジ (シクロヘキシル) シリレン、メチルフェニル シリレン、ジフェニルシリレン、ジ (p-トリル) シリレ ン、ジ (p-クロロフェニル) シリレンなどのアルキルシ リレン基:アルキルアリールシリレン基:アリールシリ レン基: テトラメチル-1.2-ジシリレン、テトラフェニ ル-1,2-ジシリレンなどのアルキルジシリレン基;アル キルアリールジシリレン基;アリールジシリレン基など 30 が挙げられる。

【0051】2個のゲルマニウム含有基としては、上記 2個のケイ素含有基のケイ素をゲルマニウムに置換した 基などが挙げられる。2個のスズ含有基としては、上記 2個のケイ素含有基のケイ素をスズに置換した基などが 挙げられる。

【0052】また、R39は、前記しと同様の炭素原子数 が1~20の炭化水素基、炭素原子数が1~20のハロ ゲン化炭化水素基またはハロゲン原子である。これらの うち、ジメチルシリレン、ジフェニルシリレン、メチル フェニルシリレンなどの置換シリレン基が特に好まし 11

【0053】以下に、前記式 (11-3) で表される遷移金 属化合物について具体的な化合物を例示する。 エチレン -ビス (インデニル) ジメチルジルコニウム、エチレン-ビス (インデニル) ジルコニウムジクロリド、エチレン -ビス (インデニル) ジルコニウムビス (トリフルオロ メタンスルフォネート)、エチレン-ビス(インデニ ル) ジルコニウムビス (メタンスルフォネート)、エチ レン-ピス (インデニル) ジルコニウムビス (アトルエ 化水素基、炭素原子数が1~20の2価のハロゲン化炭 50 ンスルフォネート)、エチレン・ビス(インデニル)ジ

ルコニウムビス (p-クロルベンゼンスルフォネート). エチレン-ビス (4.5.6.7-テトラヒドロインデニル) ジ ルコニウムジクロリド、イソプロピリデン-ビス(シク ロペンタジエニル) (フルオレニル) ジルコニウムジク ロリド、イソプロピリデン-ピス(シクロペンタジエニ ル) (メチルシクロペンタジエニル) ジルコニウムジク ロリド、ジメチルシリレン-ビス(シクロペンタジエニ ル) ジルコニウムジクロリド、ジメチルシリレン-ビス (メチルシクロペンタジエニル) ジルコニウムジクロリ ド、ジメチルシリレン-ビス (ジメチルシクロペンタジ エニル) ジルコニウムジクロリド、ジメチルシリレン-ビス (トリメチルシクロペンタジエニル) ジルコニウム ジクロリド、ジメチルシリレン-ピス (インデニル) ジ ルコニウムジクロリド、ジメチルシリレン-ビス(イン デニル) ジルコニウムビス (トリフルオロメタンスルフ ォネート)、ジメチルシリレン-ビス(4.5.6.7-テトラ ヒドロインデニル) ジルコニウムジクロリド、ジメチル シリレン-ピス (シクロペンタジエニル) (フルオレニ ル) ジルコニウムジクロリド、ジフェニルシリレン-ビ ス (インデニル) ジルコニウムジクロリド、メチルフェ 20 ニルシリレン-ビス (インデニル) ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス(2,3,5-トリメチル シクロペンタジエニル) ジルコニウムジクロリド、rac-ジメチルシリレン-ビス (2,4,7-トリメチルシクロペン タジエニル) ジルコニウムジクロリド、rac-ジメチルシ リレン-ビス (2-メチル-4-tert-ブチルシクロペンタジ エニル) ジルコニウムジクロリド、イソプロピリデン-(シクロペンタジエニル) (フルオレニル) ジルコニウ*

*ムジクロリド、ジメチルシリレン-(3-tert-ブチルシク ロペンタジエニル)(インデニル)ジルコニウムジクロ リド、イソプロピリデン- (4-メチルシクロペンタジエ ニル) (3-メチルインデニル) ジルコニウムジクロリ ド、イソプロピリデン- (4-tert-ブチルシクロペンタジ エニル)(3-メチルインデニル)ジルコニウムジクロリ ド、イソプロピリデン-(4-tert-ブチルシクロペンタジ エニル) (3-tert-ブチルインデニル) ジルコニウムジ クロリド、ジメチルシリレン-(4-メチルシクロペンタ ジエニル) (3-メチルインデニル) ジルコニウムジクロ リド、ジメチルシリレン-(4-tert-ブチルシクロペンタ ジエニル) (3-メチルインデニル) ジルコニウムジクロ リド、ジメチルシリレン-(4-tert-ブチルシクロペンタ ジエニル) (3-tert-ブチルインデニル) ジルコニウム ジクロリド、ジメチルシリレン- (3-tert-ブチルシクロ ペンタジエニル)(フルオレニル)ジルコニウムジクロ リド、イソプロピリデン- (3-tert-ブチルシクロペンタ ジエニル) (フルオレニル) ジルコニウムジクロリドな ど。

12

【0054】また上記のような化合物中のジルコニウム を、チタニウムまたはハフニウムに代えた化合物を挙げ ることもできる。本発明では、前記式(11-3)で表され る遷移金属化合物としてより具体的には下記一般式(II -4) または (II-5) で表される遷移金属化合物が挙げら ns.

[0055] 【化4】

【0056】式中、M1 は周期表第4族の遷移金属原子 を示し、具体的には、チタニウム、ジルコニウムまたは ハフニウムであり、好ましくはジルコニウムである。R **1は、互いに同一でも異なっていてもよく、炭素原子数 が1~6の炭化水素基を示し、具体的には、メチル、エ チル、n-プロピル、イソプロピル、n-ブチル、イソブチ ル、sec-ブチル、tert-ブチル、n-ペンチル、ネオペン チル、n-ヘキシル、シクロヘキシルなどのアルキル基; ビニル、プロペニルなどのアルケニル基などが挙げられ

【0057】 これらのうちインデニル基に結合した炭素 原子が1級のアルキル基が好ましく、さらに炭素原子数 が1~4のアルキル基が好ましく、特にメチル基および エチル基が好ましい。

※一でも異なっていてもよく、水素原子、ハロゲン原子ま たはR11と同様の炭素原子数が1~6の炭化水素基を示 す。R43は、互いに同一でも異なっていてもよく、水素 原子または炭素原子数が6~16のアリール基を示し、 具体的には、フェニル、α-ナフチル、β-ナフチル、ア ントリル、フェナントリル、ピレニル、アセナフチル、 フェナレニル、アセアントリレニル、テトラヒドロナフ チル、インダニル、ビフェニリルなどが挙げられる。こ れらのうちフェニル、ナフチル、アントリル、フェナン トリルであることが好ましい。

【0059】これらのアリール基は、フッ素、塩素、臭 紫、ヨウ紫などのハロゲン原子: メチル、エチル、プロ ピル、ブチル、ヘキシル、シクロヘキシル、オクチル、 ノニル、ドデシル、アイコシル、ノルボルニル、アダマ 【0058】R¹²、R¹¹、R¹⁵およびR¹⁶は、互いに同※50 ンチルなどのアルキル基;ビニル、プロペニル、シクロ

ヘキセニルなどのアルケニル基;ベンジル、フェニルエ チル、フェニルプロピルなどのアリールアルキル基;フ ェニル、トリル、ジメチルフェニル、トリメチルフェニ ル、エチルフェニル、プロピルフェニル、ピフェニル、 ル、フェナントリル、ベンジルフェニル、ピレニル、ア セナフチル、フェナレニル、アセアントリレニル、テト ラヒドロナフチル、インダニル、ピフェニリルなどのア リール基などの炭素原子数が1~20の炭化水素基;ト リメチルシリル、トリエチルシリル、トリフェニルシリ(10)エチルフェニル)インデニル)〉 ジルコニウムジクロリ ルなどの有機シリル基で置換されていてもよい。

【0060】X3 およびX1 は、互いに同一でも異なっ ていてもよく、前記一般式 (II-3) 中の X3 および X1 と同様である。これらのうち、ハロゲン原子または炭素 原子数が1~20の炭化水素基であることが好ましい。 【0061】Y¹ は、前記一般式 (II-3) 中のY¹ と同 様である。これらのうち、2個のケイ素含有基、2個の ゲルマニウム含有基であることが好ましく、2個のケイ 素含有基であることがより好ましく、アルキルシリレ ン、アルキルアリールシリレンまたはアリールシリレン 20 であることがより好ましい。

【0062】以下に上記一般式 (11-4) で表される遷移 金属化合物の具体的な例を示す。rac-ジメチルシリレン -ビス {1-(2-メチル-4-フェニルインデニル)}ジルコ ニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2 -メチル-4-(α-ナフチル)インデニル) / ジルコニウ ムジクロリド、rac-ジメチルシリレン-ビス (1-(2-メ チル-4-(B-ナフチル)インデニル) > ジルコニウムジ クロリド、rac-ジメチルシリレン-ピス (1-(2-メチル-4-(1-アントリル) インデニル) / ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(2 -アントリル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(9-アントリル) インデニル) / ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-メチル-4-(9-フェ ナントリル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-フル オロフェニル) インデニル)) ジルコニウムジクロリ ド、rac-ジメチルシリレン-ピス (1-(2-メチル-4-(ペ ンタフルオロフェニル) インデニル) \ ジルコニウムジ 40 クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-クロロフェニル) インデニル) | ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(■クロロフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス (1-(2-メチル-4-(0-クロロフェニル) インデニル) トジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(o, p-ジクロロフェニル)フェニルインデニル) } ジ ルコニウムジクロリド、rac-ジメチルシリレン-ビス (1 - (2-メチル-4-(p-プロモフェニル) インデニル) \ ジ

14

ルコニウムジクロリド、rac-ジメチルシリレン-ビス {1 - (2-メチル-4-(p-トリル) インデニル) \ ジルコニウ ムジクロリド、rac-ジメチルシリレン-ビス {1-(2-メ チルー4-(■トリル) インデニル) 〉 ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(o -トリル) インデニル) \ ジルコニウムジクロリド、rac -ジメチルシリレン-ビス {1-(2-メチル-4-(o,o'-ジメ チルフェニル)-1-インデニル) ジルコニウムジクロリ ド、rac-ジメチルシリレン-ピス {1-(2-メチル-4-(p-ド、rac-ジメチルシリレン-ビス (1-(2-メチル-4-(p-i -プロピルフェニル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-ベンジルフェニル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-ピフェニル) インデニル)) ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(1) -ビフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-(p-トリメチルシリレンフェニル) インデニル) \ ジルコニ ウムジクロリド、rac-ジメチルシリレン-ビス(1-(2-メチル-4-(エトリメチルシリレンフェニル) インデニ ル) {ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2-フェニル-4-フェニルインデニル)}ジル コニウムジクロリド、rac-ジエチルシリレン-ビス (1-(2-メチル-4-フェニルインデニル) } ジルコニウムジ クロリド、rac-ジ-(i-プロピル) シリレン-ビス {1-(2 -メチル-4-フェニルインデニル) } ジルコニウムジクロ リド、rac-ジー(n-ブチル)シリレン-ピス {1-(2-メチ 30 ルー4-フェニルインデニル) } ジルコニウムジクロリ ド、rac-ジシクロヘキシルシリレン-ビス {1-(2-メチ ルー4-フェニルインデニル) } ジルコニウムジクロリ ド、rac-メチルフェニルシリレン-ピス {1-(2-メチル-4-フェニルインデニル)) ジルコニウムジクロリド、ra c-ジフェニルシリレン-ビス {1-(2-メチル-4-フェニル インデニル) } ジルコニウムジクロリド、rac-ジ(p-ト リル) シリレン-ビス {1-(2-メチル-4-フェニルインデ ニル) } ジルコニウムジクロリド、rac-ジ(p-クロロフ ェニル) シリレン-ビス (1-(2-メチル-4-フェニルイン デニル) | ジルコニウムジクロリド、rac-メチレン-ビ ス {1-(2-メチル-4-フェニルインデニル)}ジルコニ ウムジクロリド、rac-エチレン-ビス {1-(2-メチル-4-フェニルインデニル) | ジルコニウムジクロリド、rac-ジメチルゲルミレン-ピス {1-(2-メチル-4-フェニルイ ンデニル) } ジルコニウムジクロリド、rac-ジメチルス タニレン-ビス (1-(2-メチル-4-フェニルインデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2-メチル-4-フェニルインデニル)}ジルコ ニウムジブロミド、rac-ジメチルシリレン-ピス {1-(2 50 -メチル-4-フェニルインデニル) } ジルコニウムジメチ

15 ル、rac-ジメチルシリレン-ビス {1-(2-メチル-4-フェ ニルインデニル) } ジルコニウムメチルクロリド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-フェニルイン デニル) } ジルコニウムクロリドSOzMe、rac-ジメ チルシリレン-ピス {1-(2-メチル-4-フェニルインデニ ル) } ジルコニウムクロリドOSO2Me、rac-ジメチ ルシリレン-ビス (1-(2-エチル-4-フェニルインデニ ル) Y ジルコニウムジクロリド、rac-ジメチルシリレン -ビス (1-(2-エチル-4-(α-ナフチル)インデニ -ビス {1- (2-エチル-4- (β-ナフチル) インデニ ル) / ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1- (2-エチル-4- (2-メチル-1-ナフチル) イン デニル) | ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2-エチル-4-(5-アセナフチル)インデ ニル) } ジルコニウムジクロリド、rac-ジメチルシリレ ン-ビス (1-(2-エチル-4-(9-アントリル)インデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1- (2-エチル-4- (9-フェナントリル) インデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン 20 プロピル-4-(9-フェナントリル) インデニル) } ジル -ビス (1-(2-エチル-4-(0-メチルフェニル)インデニ ル) / ジルコニウムジクロリド、rac-ジメチルシリレン -ビス (1-(2-エチル-4-(1-メチルフェニル)インデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2-エチル-4-(p-メチルフェニル)インデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1- (2-エチル-4- (2.3-ジメチルフェニル) イン デニル) } ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2-エチル-4-(2,4-ジメチルフェニル) インデニル) } ジルコニウムジクロリド、rac-ジメチル 30 シリレン-ビス {1-(2-エチル-4-(2,5-ジメチルフェニ ル) インデニル) } ジルコニウムジクロリド、rac-ジメ チルシリレン-ピス {1-(2-エチル-4-(2,4,6-トリメチ ルフェニル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-エチル-4-(o-クロ ロフェニル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-エチル-4-(1-クロ ロフェニル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-エチル-4-(p-クロ ロフェニル) インデニル) } ジルコニウムジクロリド、 rac-ジメチルシリレン-ビス {1-(2-エチル-4-(2,3-ジ クロロフェニル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(2,6 -ジクロロフェニル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-エチル-4-(3.5-ジクロロフェニル) インデニル) 〉 ジルコニウム ジクロリド、rac-ジメチルシリレン-ピス {1-(2-エチル -4-(2-ブロモフェニル)インデニル) > ジルコニウム ジクロリド、rac-ジメチルシリレン-ピス {1-(2-エチル -4- (3-ブロモフェニル) インデニル) } ジルコニウム

ジクロリド、rac-ジメチルシリレン-ビス {1-(2-エチル -4- (4-ブロモフェニル) インデニル) } ジルコニウム ジクロリド、rac-ジメチルシリレン-ビス {1-(2-エチル -4-(4-ビフェニリル)インデニル) > ジルコニウムジ クロリド、rac-ジメチルシリレン-ピス {1-(2-エチル-4 - (4-トリメチルシリルフェニル) インデニル) 〉 ジル コニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-n-プロピル-4-フェニルインデニル) } ジルコニウム ジクロリド、rac-ジメチルシリレン-ビス {1-(2-n-プロー ル) } ジルコニウムジクロリド、rac-ジメチルシリレン 10 ピル-4-(α-ナフチル) インデニル) } ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス (1-(2-n-プロピ ル-4-(B-ナフチル)インデニル) > ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-n-プロピル -4-(2-メチル-1-ナフチル)インデニル) > ジルコニウ ムジクロリド、rac-ジメチルシリレン-ピス {1-(2-n-プ ロビルー4- (5-アセナフチル) インデニル)) ジルコニ ウムジクロリド、rac-ジメチルシリレン-ピス {1-(2-n-プロピル-4- (9-アントリル) インデニル) } ジルコニ ウムジクロリド、rac-ジメチルシリレン-ピス {1-(2-n-コニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-i-プロピル-4-フェニルインデニル) } ジルコニウム ジクロリド、rac-ジメチルシリレン-ビス {1-(2-i-プロ ピル-4-(α-ナフチル)インデニル)〉ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-i-プロピ ル-4-(β-ナフチル)インデニル)トジルコニウムジク ロリド、rac-ジメチルシリレン-ビス (1-(2-i-プロピル -4-(8-メチル-9-ナフチル)インデニル)〉ジルコニウ ムジクロリド、rac-ジメチルシリレン-ビス {1-(2-i-プ ロピルー4-(5-アセナフチル)インデニル)〉ジルコニ ウムジクロリド、rac-ジメチルシリレン-ピス {1-(2-i-プロピル-4- (9-アントリル) インデニル)) ジルコニ ウムジクロリド、rac-ジメチルシリレン-ピス {1-(2-i-プロビル-4-(9-フェナントリル)インデニル) 〉シル コニウムジクロリド、rac-ジメチルシリレン-ピス {1-(2-s-ブチル-4-フェニルインデニル) \ ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル -4-(α-ナフチル)インデニル) / ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル-4-(β-ナフチル) インデニル) | ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル-4-(2 -メチル-1-ナフチル) インデニル) \ ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル-4 - (5-アセナフチル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル-4 - (9-アントリル) インデニル) } ジルコニウムジクロ リド、rac-ジメチルシリレン-ビス {1-(2-s-ブチル-4-(9-フェナントリル) インデニル) } ジルコニウムジク ロリド、rac-ジメチルシリレン-ピス {1-(2-n-ペンチル 50 -4-フェニルインデニル) } ジルコニウムジクロリド、r

ac-ジメチルシリレン-ビス(1-(2-n-ペンチル-4-(α-ナフチル) インデニル) / ジルコニウムジクロリド、ra c-ジメチルシリレン-ビス {1-(2-n-ブチル-4-フェニル インデニル) / ジルコニウムジクロリド、rac-ジメチル シリレン-ビス {1-(2-n-ブチル-4-(α-ナフチル)イン デニル) } ジルコニウムジクロリド、rac-ジメチルシリ レン-ピス {1-(2-n-ブチル-4-(β-ナフチル)インデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ピス {1-(2-n-ブチル-4-(2-メチル-1-ナフチル)イン レンーピス {1-(2-n-ブチル-4-(5-アセナフチル) イン デニル) } ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2-n-ブチル-4-(9-アントリル) インデ ニル) \ ジルコニウムジクロリド、rac-ジメチルシリレ ン-ピス(1-(2-n-ブチル-4-(9-フェナントリル)イン デニル) | ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2-i-ブチル-4-フェニルインデニル) } ジルコニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-i-ブチル-4-(α-ナフチル)インデニル)}ジ -(2-i-ブチル-4-(β-ナフチル)インデニル) \ ジルコ ニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2i-ブチル-4- (2-メチル-1-ナフチル) インデニル) }ジ ルコニウムジクロリド、rac-ジメチルシリレン-ピス (1 -(2-i-ブチル-4-(5-アセナフチル)インデニル) } ジ ルコニウムジクロリド、rac-ジメチルシリレン-ビス {1 -(2-i-ブチル-4- (9-アントリル) インデニル) } ジル コニウムジクロリド、rac-ジメチルシリレン-ピス {1-(2-i-ブチル-4-(9-フェナントリル)インデニル) } ジ -(2-ネオペンチル-4-フェニルインデニル) } ジルコニ ウムジクロリド、rac-ジメチルシリレン-ビス {1-(2-ネ オペンチル-4-(α-ナフチル)インデニル) > ジルコニ ウムジクロリド、rac-ジメチルシリレン-ピス {1-(2-n-ヘキシル-4-フェニルインデニル) 〉 ジルコニウムジク ロリド、rac-ジメチルシリレン-ビス {1-(2-n-ヘキシル -4-(α-ナフチル)インデニル) / ジルコニウムジクロ リド、rac-メチルフェニルシリレン-ビス {1-(2-エチル -4-フェニルインデニル) / ジルコニウムジクロリド、r ac-x+v-1-ナフチル) インデニル) | ジルコニウムジクロリド、r ac-メチルフェニルシリレン-ピス {1-(2-エチル-4-(9-*

*アントリル) インデニル) } ジルコニウムジクロリド、 rac-メチルフェニルシリレン-ピス {1-(2-エチル-4-(9 -フェナントリル) インデニル)) ジルコニウムジクロ リド、rac-ジフェニルシリレン-ビス {1-(2-エチル-4-フェニルインデニル) \ ジルコニウムジクロリド、rac-ジフェニルシリレン-ビス {1-(2-エチル-4-(α-ナフチ ル) インデニル) / ジルコニウムジクロリド、rac-ジフ ェニルシリレン-ビス {1-(2-エチル-4-(9-アントリ ル) インデニル) / ジルコニウムジクロリド、rac-ジフ デニル) } ジルコニウムジクロリド、rac-ジメチルシリ 10 ェニルシリレン-ビス {1-(2-エチル-4-(9-フェナント リル) インデニル) - ジルコニウムジクロリド、rac-ジ フェニルシリレン-ビス {1-(2-エチル-4-(4-ビフェニ リル) インデニル) \ ジルコニウムジクロリド、rac-メ チレン-ビス {1-(2-エチル-4-フェニルインデニル) } ジルコニウムジクロリド、rac-メチレン-ピス {1-(2-エ チル-4-(α-ナフチル)インデニル) > ジルコニウムジ クロリド、rac-エチレン-ピス {1-(2-エチル-4-フェニ ルインデニル) } ジルコニウムジクロリド、rac-エチレ ン-ビス (1-(2-エチル-4-(α-ナフチル)インデニ ルコニウムジクロリド、rac-ジメチルシリレン-ビス (1 20 ル) | ジルコニウムジクロリド、rac-エチレン-ビス (1 -(2-n-プロピル-4-(α-ナフチル)インデニル) \ ジル コニウムジクロリド、rac-ジメチルゲルミルービス {1-(2-エチル-4-フェニルインデニル) } ジルコニウムジク ロリド、rac-ジメチルゲルミル-ビス {1-(2-エチル-4-(α-ナフチル) インデニル) } ジルコニウムジクロリ ド、rac-ジメチルゲルミルービス {1-(2-n-プロピル-4-フェニルインデニル) } ジルコニウムジクロリドなど。 【0063】また上記のような化合物中のジルコニウム をチタニウムまたはハフニウムに代えた化合物を挙げる ルコニウムジクロリド、rac-ジメチルシリレン-ビス (1 30 こともできる。本発明では、通常前記一般式 (II-4) で 表される遷移金属化合物のラセミ体が触媒成分として用 いられるが、R型またはS型を用いることもできる。 【0064】このような一般式 (II-4) で表される遷移 金属化合物は、Journal of Organometallic Chem. 288(1 985)、第63~67頁、ヨーロッパ特許出願公開第0,320.76 2 号明細書および実施例に準じて製造することができ

> 【0065】次に、一般式 (II-5) で表される遷移金属 化合物について説明する。

[0066] 【化5】

【0067】式中、M1 は周期表第4族の遷移金属原子※50※を示し、具体的には、チタニウム、ジルコニウムまたは

ハフニウムであり、好ましくはジルコニウムである。R 51およびR52は、互いに同一でも異なっていてもよく、 炭素原子数が1~20の炭化水素基、炭素原子数が1~ 20のハロゲン化炭化水素基、酸素含有基、イオウ含有 基、ケイ素含有基、窒素含有基、リン含有基、ハロゲン 原子または水素原子を示し、具体的には、前記R35~R 38と同様の原子または基が挙げられる.

【0068】これらのうちR51は、炭素原子数が1~2 0の炭化水素基であることが好ましく、特にメチル、エ チル、プロピルの炭素原子数が1~3の炭化水素基であ 10 c-ジエチルシリレン-ビス (1-(2,7-ジメチルー4-i-プロ ることが好ましい。

【0069】R52は、水素原子または炭素原子数が1~ 20の炭化水素基であることが好ましく、特に水素原子 または、メチル、エチル、プロピルの炭素原子数が1~ 3の炭化水素基であることが好ましい。

【0070】R53およびR51は、互いに同一でも異なっ ていてもよく、炭素原子数が1~20のアルキル基を示 し、具体的にはメチル、エチル、n-プロピル、イソプロ ピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチ ル、n-ペンチル、ネオペンチル、n-ヘキシル、シクロへ 20 キシル、オクチル、ノニル、ドデシル、アイコシルなど のアルキル基; ノルボルニル、アダマンチルなどのシク ロアルキル基などが挙げられる.

【0071】これらのうちR53は、2級または3級アル キル基であることが好ましい。X3 およびX1 は、互い に同一でも異なっていてもよく、前記一般式(II-3)中 のX³ およびX¹ と同様である。

【0072】Y¹ は、前記一般式 (II-3) 中のY¹ と同 様である.以下に上記一般式(11-5)で表される遷移金 属化合物の具体的な例を示す。rac-ジメチルシリレン-ビス {1-(2,7-ジメチル-4-エチルインデニル)}ジル コニウムジクロリド、rac-ジメチルシリレン-ビス (1-(2,7-ジメチル-4-n-プロピルインデニル) } ジルコニ ウムジクロリド、rac-ジメチルシリレン-ピス (1-(2,7) -ジメチル-4-i-プロピルインデニル) \ ジルコニウムジ クロリド、rac-ジメチルシリレン-ビス(1-(2,7-ジメ チル-4-n-ブチルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,7-ジメチル-4sec-ブチルインデニル) | ジルコニウムジクロリド、ra c-ジメチルシリレン-ビス {1-(2,7-ジメチル-4-t-ブチ 40 ルインデニル) 〉 ジルコニウムジクロリド、rac-ジメチ ルシリレン-ビス {1-(2,7-ジメチル-4-n-ペンチルイン デニル) | ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1- (2.7-ジメチル-4-n-ヘキシルインデニ ル) } ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2.7-ジメチル-4-シクロヘキシルインデニ ル) - ジルコニウムジクロリド、rac-ジメチルシリレン -ビス {1-(2,7-ジメチル-4-メチルシクロヘキシルイン デニル)) ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2,7-ジメチル-4-フェニルエチルインデ 50 ン-ビス {1-(2,3,7-トリメチル-4-シクロヘキシルイン

ニル) ~ジルコニウムジクロリド、rac-ジメチルシリレ ン-ピス {1-(2,7-ジメチル-4-フェニルジクロロメチル インデニル) } ジルコニウムジクロリド、rac-ジメチル

20

シリレン-ビス {1-(2,7-ジメチル-4-クロロメチルイン デニル) } ジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2,7-ジメチル-4-トリメチルシリルメチ ルインデニル) トジルコニウムジクロリド、rac-ジメチ ルシリレン-ビス (1-(2,7-ジメチル-4-トリメチルシロ キシメチルインデニル) | ジルコニウムジクロリド、ra . ピルインデニル) } ジルコニウムジクロリド、rac-ジ

(i-プロピル) シリレン-ビス {1-(2,7-ジメチル-4-i-プロピルインデニル) \ ジルコニウムジクロリド、rac-ジ (n-ブチル) シリレン-ビス {1- (2,7-ジメチル-4-i-プロピルインデニル) | ジルコニウムジクロリド、rac-ジ (シクロヘキシル) シリレン-ビス (1-(2,7-ジメチ ル-4-i-プロピルインデニル) } ジルコニウムジクロリ ド、rac-メチルフェニルシリレン-ビス(1-(2,7-ジメ

チル-4-i-プロピルインデニル) } ジルコニウムジクロ リド、rac-メチルフェニルシリレン-ビス {1-(2,7-ジ メチル-4-t-ブチルインデニル) \ ジルコニウムジクロ リド、rac-ジフェニルシリレン-ビス {1-(2,7-ジメチ ル-4-t-ブチルインデニル) } ジルコニウムジクロリ

4-i-プロピルインデニル) } ジルコニウムジクロリド、 rac-ジフェニルシリレン-ビス {1-(2,7-ジメチル-4-エ チルインデニル) } ジルコニウムジクロリド、rac-ジ (p-トリル) シリレン-ビス {1-(2,7-ジメチル-4-i-プ ロピルインデニル) } ジルコニウムジクロリド、rac-ジ (p-クロロフェニル) シリレン-ピス (1-(2,7-ジメチ

ド、rac-ジフェニルシリレン-ビス {1-(2,7-ジメチル-

ル-4-i-プロピルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2-メチル-4-i-プ ロビル-7-エチルインデニル)) ジルコニウムジブロミ ド、rac-ジメチルシリレン-ピス {1-(2,3,7-トリメチ ル-4-エチルインデニル) } ジルコニウムジクロリド、r ac-ジメチルシリレン-ビス (1-(2,3,7-トリメチル-4-n -プロピルインデニル) | ジルコニウムジクロリド、rac -ジメチルシリレン-ピス {1-(2,3,7-トリメチル-4-i-プロピルインデニル) \ ジルコニウムジクロリド、rac-

ジメチルシリレン-ビス {1-(2,3,7-トリメチル-4-n-ブ チルインデニル) {ジルコニウムジクロリド、rac-ジメ チルシリレン-ビス {1-(2,3,7-トリメチル-4-sec-ブチ ルインデニル) } ジルコニウムジクロリド、rac-ジメチ ルシリレン-ビス {1-(2,3,7-トリメチル-4-t-ブチルイ ンデニル) } ジルコニウムジクロリド、rac-ジメチルシ リレン-ビス {1-(2,3,7-トリメチル-4-n-ペンチルイン デニル) } ジルコニウムジクロリド、rac-ジメチルシリ レン-ピス {1-(2,3,7-トリメチル-4-n-ヘキシルインデ ニル) / ジルコニウムジクロリド、rac-ジメチルシリレ

デニル)) ジルコニウムジクロリド、rac-ジメチルシリ レン-ピス {1-(2,3,7-トリメチル-4-メチルシクロヘキ シルインデニル) / ジルコニウムジクロリド、rac-ジメ チルシリレン-ピス (1-(2,3,7-トリメチル-4-トリメチ ルシリルメチルインデニル) } ジルコニウムジクロリ ド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチ ルー4-トリメチルシロキシメチルインデニル) とジルコ ニウムジクロリド、rac-ジメチルシリレン-ビス(1-(2.3.7-トリメチル-4-フェニルエチルインデニル) } ジルコニウムジクロリド、rac-ジメチルシリレン-ビス {1-(2,3,7-トリメチル-4-フェニルジクロロメチルイ ンデニル) | ジルコニウムジクロリド、rac-ジメチルシ リレン-ビス {1-(2,3,7-トリメチル-4-クロロメチルイ ンデニル) | ジルコニウムジクロリド、rac-ジエチルシ リレン-ピス(1-(2,3,7-トリメチル-4-i-プロピルイン デニル) } ジルコニウムジクロリド、rac-ジ (i-プロピ ル) シリレン-ビス {1-(2,3,7-トリメチル-4-i-プロピ ルインデニル) / ジルコニウムジクロリド、rac-ジ (n-ブチル)シリレン-ピス {1-(2.3.7-トリメチル-4-i-プ (シクロヘキシル)シリレン-ピス (1-(2,3,7-トリメ チル-4-i-プロピルインデニル) / ジルコニウムジクロ リド、rac-メチルフェニルシリレン-ビス {1-(2,3,7-トリメチル-4-i-プロピルインデニル) } ジルコニウム ジクロリド、rac-メチルフェニルシリレン-ピス(1-(2,3,7-トリメチル-4-t-ブチルインデニル) } ジルコ ニウムジクロリド、rac-ジフェニルシリレン-ピス {1-(2,3,7-トリメチル-4-t-ブチルインデニル) \ ジルコ ニウムジクロリド、rac-ジフェニルシリレン-ビス {1-(2,3,7-トリメチル-4-i-プロピルインデニル) \ ジル コニウムジクロリド、rac-ジフェニルシリレン-ピス(1 - (2,3,7-トリメチル-4-エチルインデニル) } ジルコニ ウムジクロリド、rac-ジ (p-トリル) シリレン-ビス (1 - (2,3,7-トリメチル-4-i-プロピルインデニル) } ジル コニウムジクロリド、rac-ジ (p-クロロフェニル) シリ レン-ビス (1-(2,3,7-トリメチル-4-i-プロピルインデ ニル) | ジルコニウムジクロリド、rac-ジメチルシリレ ン-ビス {1- (2-メチル-4-i-プロピル-7-メチルインデ ニル) | ジルコニウムジメチル、rac-ジメチルシリレン -ビス {1-(2-メチル-4-i-プロピル-7-メチルインデニ ル) \ ジルコニウムメチルクロリド、rac-ジメチルシリ レン-ビス {1-(2-メチル-4-i-プロピル-7-メチルイン デニル) } ジルコニウム-ビス (メタンスルフォネー ト)、rac-ジメチルシリレン-ビス (1-(2-メチル-4-i-プロビル-7-メチルインデニル) 〉 ジルコニウム-ビス (p-フェニルスルフィナト)、rac-ジメチルシリレン-ピス {1-(2-メチル-3-メチル-4-i-プロピル-7-メチル インデニル) } ジルコニウムジクロリド、rac-ジメチル シリレン-ビス {1- (2-メチル-4,6-ジ-i-プロピルイン

レン-ビス (1-(2-エチル-4-i-プロピル-7-メチルイン デニル) トジルコニウムジクロリド、rac-ジメチルシリ レン-ビス {1-(2-フェニル-4-i-プロピル-7-メチルイ ンデニル))ジルコニウムジクロリド、rac-ジメチルシ リレン-ビス{1-(2-メチルインデニル)}ジルコニウ ムジクロリド、rac-エチレン-ピス {1-(2,4,7-トリメ チルインデニル) / ジルコニウムジクロリド、rac-イソ プロピリデン-ビス (1-(2,4,7-トリメチルインデニ ル) } ジルコニウムジクロリドなど。

22

10 【0073】また上記のような化合物中のジルコニウム をチタニウムまたはハフニウムに代えた化合物を挙げる こともできる。これらの中で、4位にi-プロピル、sec-ブチル, tert-ブチル基などの分岐アルキル基を有する ものが、特に好ましい。

【0074】本発明では、通常前記一般式(II-5)で表 される遷移金属化合物のラセミ体が触媒成分として用い られるが、R型またはS型を用いることもできる。上記 のような一般式 (11-5) で表される遷移金属化合物は、 インデン誘導体から既知の方法たとえば特開平4-26 ロピルインデニル)) ジルコニウムジクロリド、rac-ジ 20 8307号公報に記載されている方法により合成するこ とができる。

> 【0075】また、本発明では、(A)周期表第4族の 遷移金属化合物として下記式 (111-1) で表される化合 物を用いることもできる。

L² M¹ X⁵₂ ... (111-1)

式中、M1 は周期表第4族の遷移金属原子を示す。

【0076】L2は、非局在化π結合基の誘導体であ り、金属M¹ 活性サイトに拘束幾何形状を付与してお り、X5 は、互いに同一でも異なっていてもよく、水素 30 原子、ハロゲン原子または20個以下の炭素原子、ケイ 素原子もしくはゲルマニウム原子を含有する炭化水素 基、シリル基もしくはゲルミル基である。

【0077】このような一般式(III-1)で表される化 合物のうちでは、下記式 (111-2) で表される化合物が 好ましい。

[0078] 【化6】 Z1 -(111-2)

【0079】式中、M1 は周期表第4族の遷移金属原子 を示し、具体的にはジルコニウム、チタンまたはハフニ ウムであり、好ましくはジルコニウムである。Cpは、 M¹ にπ結合しており、かつ置換基Zを有する置換シク ロペンタジエニル基またはその誘導体を示す。

【0080】Z1は、酸素原子、イオウ原子、ホウ素原 子または周期表第14族の元素を含む配位子を示し、た デニル) } ジルコニウムジクロリド、rac-ジメチルシリ 50 とえば-Si(R552)-、-C(R552)-、-Si

 (R^{55}_2) S i (R^{55}_2) - 、 - C (R^{55}_2) C (R^{55}_2) - 、 - C (R^{55}_2) C (R^{55}_2) C (R^{55}_2) - 、 - C (R^{55}) = C (R^{55}) - 、 - C (R^{55}_2) S i (R^{55}_2) - 、 - Ge (R^{55}_2) - などである。

【0081】 Y^2 は、窒素原子、リン原子、酸素原子またはイオウ原子を含む配位子を示し、たとえば-N (R^{52}) -、-O-、-S-、-P (R^{52}) - などである。また Z^1 と Y^2 とで縮合環を形成してもよい。

【0082】上記R55は水索原子または20個までの非水素原子をもつアルキル、デリール、シリル、ハロゲン 10 化アルキル、ハロゲン化アリール基またびそれらの組合せから選ばれた基であり、R52は炭素原子数1~10のアルキル、炭素原子数6~10のアリール基若しくは炭素原子数7~10のアラルキル基であるか、または1個若しくはそれ以上のR55と30個までの非水素原子の縮合環系を形成してもよい。

【0083】以下に上記一般式 (111-2) で表される遷 移金属化合物の具体的な例を示す。 (tert-ブチルアミ ド) (テトラメチルーカ5-シクロペンタジエニル) -1,2-エタンジイルジルコニウムジクロリド、(tert-ブチル アミド) (テトラメチルーカ5-シクロペンタジエニル) -1.2-エタンジイルチタンジクロリド、(メチルアミド) (テトラメチルーカ5-シクロペンタジエニル) -1,2-エタ ンジイルジルコニウムジクロリド、(メチルアミド) (テトラメチル- 75-シクロペンタジエニル) -1,2-エタ ンジイルチタンジクロリド、(エチルアミド)(テトラ メチルーカ5-シクロペンタジエニル)-メチレンチタンジ クロリド、(tert-ブチルアミド) ジメチル (テトラメ チルーカ5-シクロペンタジエニル) シランチタンジクロ リド、(tert-ブチルアミド) ジメチル (テトラメチル- 30 n5-シクロペンタジエニル) シランジルコニウムジクロ リド、(ベンジルアミド)ジメチルー(テトラメチルーカ 5-シクロペンタジエニル)シランチタンジクロリド、 (フェニルホスフィド)ジメチル(テトラメチル- ヵ5-

など。 【0084】(B) 遷移金属アミド化合物 本発明で用いられる(B) 遷移金属アミド化合物は、下 記一般式(I)または(I-1)で表される遷移金属アミ ド化合物である。

シクロペンタジエニル) シランジルコニウムジベンジル

【0085】[(R₃Si)₂N]_k MX_{j-k} …(I) 式中、Mは、周期表第3~6族の遷移金属原子を示し、 チタン、ジルコニウム、ハフニウムなどの周期表第4族 の遷移金属原子であることが好ましい。

【0086】jは遷移金属原子Mの価数を表す。kは1~jの整数を表す。Rは、互いに同一でも異なっていてもよく、炭化水素基、ハロゲン化炭化水素基を示す。 【0087】炭化水素基として具体的には、メチル、エチル、n-プロビル、イソプロビル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、ペンチル、ヘキシル、 オクチル、デシル、オクタデシルなどの炭素原子数が1~20の直鎖または分岐状のアルキル基:フェニル、ナフチルなどの炭素原子数が6~20のアリール基:これらのアリール基に前記炭素原子数が1~20のアルキル基などの置換基が1~5個置換した置換アリール基;シクロペンチル、シクロペキシル、ノルボルニル、アダマンチルなどのシクロアルキル基;ビニル、プロペニル、シクロペキセニルなどのアルケニル基;ベンジル、フェニルエチル、フェニルプロピルなどのアリールアルキル基などが挙げられる。

【0088】ハロゲン化炭化水素基としては、前記炭化水素基にハロゲンが置換した基が挙げられる。Rで示される基は、互いに連結して脂肪族環などの環を形成していてもよい。また、異なる窒素原子に結合するRで示される基は、互いに同一でも異なっていてもよい。

【0089】Xは、水素原子、ハロゲン原子、炭素原子 数1~20の炭化水素基、炭素原子数1~20のハロゲ ン化炭化水素基、酸素含有基、イオウ含有基、ケイ素含 有基を示し、具体的には前記一般式 (II-1) におけるし と同様の原子または基が挙げられる。なお、j-kが2 以上の場合には、互いに同一でも異なっていてもよい。 【0090】これらのうち、ハロゲン原子、炭素原子数 が1~20の炭化水素基またはスルフォネート基である ことが好ましい。以下に、前記一般式(I)で表される 遷移金属アミド化合物の具体的な例を示すが、これらに 限定されるものではない。[ビス(トリメチルシリル) アミド] チタニウムトリクロリド、ビス [ビス (トリエ チルシリル) アミド] チタニウムジクロリド、ビス [ビ ス (トリメチルシリル) アミド] チタニウムジクロリ ド、トリス「ピス(トリメチルシリル)アミドーチタニ ウムクロリド、テトラキス [ピス (トリメチルシリル) アミド] チタニウム、[ピス (トリメチルシリル) アミ

ス(トリメチルシリル)アミド]ジルコニウムジクロリド、トリス[ビス(トリメチルシリル)アミド]ジルコニウムクロリド、テトラキス[ビス(トリメチルシリル)アミド]ジルコニウム、[ビス(トリメチルシリル)アミド]ハフニウムトリクロリド、ビス[ビス(トリエチルシリル)アミド]ハフニウムジクロリド、ビス[ビス(トリメチルシリル)アミド]ハフニウムジクロリド、トリス[ビス(トリメチルシリル)アミド]ハフニウムクロリド、テトラキス[ビス(トリメチルシリル)アミド]ハフニウムなど。

ド] ジルコニウムトリクロリド、ビス [ビス (トリエチ

ルシリル) アミド] ジルコニウムジクロリド、ビス [ビ

【0091】次に、一般式 (I-1)で表される遷移金属 アミド化合物について説明する。

[0092]

【化7】

【0093】式中、Mは、前記一般式(I)におけるM と同じであり、チタン、ジルコニウム、ハフニウムなど の周期表第4族の遷移金属原子であることが好ましく、 特にチタンが好ましい。

【0094】R' およびR" は、互いに同一でも異なっ ていてもよく、水素原子、炭化水素基、ハロゲン化炭化 水素基、有機シリル基または、窒素、酸素、リン、イオ ウ、ケイ素から選ばれる少なくとも1種の元素を含む置 換基で置換された炭化水素基を示す。

【0095】炭化水素基、ハロゲン化炭化水素基として 具体的には、前記一般式(I)におけるRと同じであ る。有機シリル基として具体的には、メチルシリル、ジ チルシリル、トリエチルシリル、トリフェニルシリルな どが挙げられる。

【0096】窒素、酸素、リン、イオウおよびケイ素か ら選ばれる少なくとも1種の元素を含む置換基で置換さ れた炭化水素基としては、前記炭化水素基に一COOC H_3 -N (CH_3) C (O) CH_3 C $H_3 \ -CN \ -N \ (C_2H_5)_2 \ -N \ (CH_3)_S$ (O₂) C H₃ 、−P (C₆ H₅)₂ などが置換した基が 挙げられる。

【0097】mは、0~2の整数である。nは、1~5 の整数である。Aは、周期表第13~16族の原子を示 し、具体的には、ホウ素原子、炭素原子、窒素原子、酸 素原子、ケイ素原子、リン原子、硫黄原子、ゲルマニウ ム原子、セレン原子、スズ原子などが挙げられ、炭素原 子またはケイ素原子であることが好ましい。nが2以上 の場合には、複数のAは、互いに同一でも異なっていて

【0098】Eは、炭素、水素、酸素、ハロゲン、窒 *

*素、硫黄、リン、ホウ素およびケイ素から選ばれる少な くとも1種の元素を有する置換基である。Eで示される 基が複数存在する場合は、Eで示される複数の基は、互 いに同一でも異なっていてもよく、またEで示される2 個以上の基が互いに連結して環を形成していてもよい。 【0099】このような- ((E_n) A)_n -で示され る2個の窒素原子を結合する結合基として具体的には以 下のような基などが挙げられる。- C H2 - 、- C (M $e)_2 - C(Ph)_2 - Si(Me)_2 - C$ 10 Si $(Ph)_2$ -, -Si (Me) (Ph) -, -CH 2 CH2 - - CH2 Si (Me) 2 - CH2 CH 2 CH2 - CH2 C (Me) 2 CH2 - CH2 C(Et) 2 CH2 - . - CH2 C(n Pr) 2 CH2 - - CH2 C (i Pr) 2 CH2 - CH2 C (n Bu) 2 CH2 - , - CH2 C (i Bu) 2 CH2 - , -CH₂ C (s Bu) 2 CH₂ -, -CH₂ C (c Pe n) 2 CH2 - CH2 C (c Hex) 2 CH2 --CH2 C (Ph) 2 CH2 - CH2 C (Me)(E t) CH2 -, -CH2 C (Me)(i Pr) CH2 -, メチルシリル、トリメチルシリル、エチルシリル、ジエ 20 ーCH₂ C(Me)(i Bu)CH₂ ー、ーCH₂ C(M e)(t Bu) CH2 - , - CH2 C (Me)(i Pen) $CH_2 - CH_2 C (Me)(Ph) CH_2 - CH$ 2 C (Et)(i Pr) CH2 -, -CH2 C (Et)(i Bu) CH2 - , - CH2C (Et)(i Pen) CH 2- - CH2C(iPr)(i Bu) CH2- , - CH2 C (i Pr)(i Pen) CH2 - , -CH2 Si (Me)2 CH2 - CH2 Si (Et) 2 CH2 - CH2 Si (n-Bu) 2 CH2 - CH2 Si (Ph) 2 C $H_2 - CH (Me) CH_2 CH (Me) - CH$ (Ph) CH₂ CH (Ph) - , -Si (Me)₂OSi (Me) 2 - CH2 CH2 CH2 CH2 - Si (Me)2CH2 CH2 Si (Me)2-.

[0100]

【化8】

[0101]

【化9】

※ ※ (化10)

[0103]

[0104]

【0105】なお、上記例示中、Meはメチル基を示し、Etはエチル基を示し、nPrはn-プロピル基を示し、iPrはイソプロピル基を示し、nBuはn-ブチル基を示し、iBuはイソブチル基を示し、sBuはsec-ブチル基を示し、t-Buはtert-ブチル基を示し、iPenはイソペンチル基を示し、cPenはシクロペンチル基を示し、cHexはシクロヘキシル基を示し、Phはフェニル基を示す。

【0106】pは、0~4の整数である。Xは、水素原子、ハロゲン原子、炭素原子数1~20の炭化水素基、炭素原子数1~20のハロゲン化炭化水素基、酸素含有★

★基、イオウ含有基、ケイ素含有基を示し、具体的には、 前記一般式 (II-1) におけるしと同じである。なお、p が2以上の場合には、Xで示される複数の基は、互いに 同一でも異なっていてもよい。

【0107】これらのうち、ハロゲン原子、炭素原子数が1~20の炭化水素基またはスルフォネート基であることが好ましい。前記一般 以下に、上記一般式(I-40 1)で表される遷移金属アミド化合物の具体的な例を示すが、これらに限定されるものではない。

[0108]

【化13】

【0111】 ★ ★ 【化16】

【0113】なお、上記例示中、Meはメチル基を示し、Etはエチル基を示し、iPrはイソプロピル基を示し、tBuは tert-ブチル基を示す。本発明では、上記のような化合物において、チタンをジルコニウム、ハフニウムに置き換えた遷移金属アミド化合物を用いるこ 40ともできる。

【0114】本発明では、前記一般式 (1-1)で表される遷移金属アミド化合物としては、R'とR'が、アルキル基などの置換基が1~5個置換した置換アリール基である、下記一般式 (1-2)で表される遷移金属アミド化合物を用いることが望ましい。

[0115]

【化18】

【0116】式中、Mは、前記一般式(I)におけるMと同じであり、チタン、ジルコニウム、ハフニウムなどの周期表第4族の遷移金属原子であることが好ましく、特にチタンが好ましい。

50 【0117】R1 ~R10は、互いに同一でも異なってい

てもよく、水紫原子、ハロゲン原子、炭化水素基、ハロ ゲン化炭化水素基、有機シリル基、アルコキシ基、アリ ーロキシ基、-COOR¹¹、-N(R¹²)C(O) R13、-OC (O) R14、-CN、-NR152 または-N (R¹⁶) S (O₂) R¹⁷ (ただし、R¹¹~R¹⁷は炭素 原子数が1~5のアルキル基を示す。)を示す。ただ し、R1~R5 のうち少なくとも1つは水素以外の基で あり、かつR6~R10のうち少なくとも1つは水素以外 の基である。

におけるXと同じであり、炭化水素基、ハロゲン化炭化 水素基および有機シリル基としては、前記一般式(1-1) における R' および R''と同じである。

【0119】アルコキシ基として具体的には、メトキ シ、エトキシ、n-プロポキシ、イソプロポキシ、n-ブト キシ、イソブトキシ、tert-ブトキシなどが挙げられ る。アリーロキシ基として具体的には、フェノキシ、2、 6-ジメチルフェノキシ、2,4,6-トリメチルフェノキシな どが挙げられる。

 $[0120]-COOR^{11}, -N(R^{12})C(O)$ R¹³、-OC(O)R¹⁴、-CN、-NR¹⁵2 または-N (R¹⁶) S (O₂) R¹⁷ (ただし、R¹¹~R¹⁷は炭素 原子数が1~5のアルキル基を示す。)で示される基と LTは、-COOCH3、-N(CH3)C(O)CH $_3$ $_{-}$ OC (O) CH $_3$ $_{-}$ CN $_{-}$ N (C 2 H₅) 2 、-N (CH₃) S (O₂) CH₃ などが挙

【0121】またR1~R5で示される基のうちの2個 以上の基、好ましくは隣接する基が互いに連結してそれ ぞれが結合する炭素原子とともに芳香族環、脂肪族環な 30 定されるものではない。 どの環を形成していてもよく、R6 ~R10で示される基 のうちの2個以上の基、好ましくは隣接する基が互いに

げられる。

連結してそれぞれが結合する炭素原子とともに芳香族 環、脂肪族環などの環を形成していてもよい。

【0122】mは、0~2の整数である。nは、1~5 の整数である。Aは、前記一般式 (I-1) におけるAと 同じであり、炭素原子またはケイ素原子であることが好 ましい。nが2以上の場合には、複数のAは、互いに同 ーでも異なっていてもよい。

【0123】Eは、前記一般式 (I-1) におけるEと同 じであり、好ましくは炭素、水素、窒素およびケイ素か 【0118】ハロゲン原子としては、前記一般式(1) 10 ら選ばれる少なくとも1種の元素を含有する置換基であ る。Eで示される基が複数存在する場合は、Eで示され る複数の基は、互いに同一でも異なっていてもよく、ま たEで示される2個以上の基が互いに連結して環を形成 していてもよい。

> 【0124】このような- ((E.)A)。 - で示され る2個の窒素原子を結合する結合基として具体的には前 記と同様の基などが挙げられる。pは、0~4の整数で ある。

【0125】Xは、水素原子、ハロゲン原子、炭素原子 20 数が1~20の炭化水素基、炭素原子数が1~20のハ ロゲン化炭化水素基、酸素含有基、イオウ含有基または ケイ素含有基を示し、具体的には、前記一般式(II-1) におけるしと同じである。

・・【0126】これらのうち、ハロゲン原子、炭素原子数 が1~20の炭化水素基またはスルフォネート基である ことが好ましい。pが2以上の場合にはXで示される複 数の基は、互いに同一でも異なっていてもよい。

【0127】以下に、上記一般式 (I-2) で表される遷 移金属アミド化合物の具体的な例を示すが、これらに限

[0128]

【化19】

[0129]

 $\bigcirc \bigcap_{iPr} \bigcap$

38

[0131]

※ ※【化22】

*【化23】

[0132]

41

$$C = \frac{1}{C}$$
 $C = \frac{1}{C}$
 $C = \frac{1}{C}$

[0133]

[0134]

44

[0135]

A 5

A 6

A 71

A 71

A 6

A 6

A 71

A 71

A 6

A 6

A 6

A 71

A 71

A 6

A 71

A 71

A 6

A 71

##

30【化27】

[0136]

*【化28】

[0137]

[0138]

[0139]

【0141】なお、上記例示中、Meはメチル基を示 し、Etはエチル基を示し、iPrはiso-プロビル基を 示し、nPrはn-プロビル基を示し、nBuはn-ブチル 基、s B u はsec-ブチル基、t B u は tert-ブチル基、 n Octはn-オクチル基を示す。

★【0142】本発明では、上記のような化合物におい て、チタンをジルコニウム、ハフニウムに置き換えた遷 移金属アミド化合物を用いることもできる。これらの遷 移金属アミド化合物の中で、Mがチタンであり、2個の ★50 窒素原子を結合する基のAが炭素またはケイ素であり、

nが2または3である選移金属アミド化合物が好まし

【0143】これらの遷移金属アミド化合物の中で、M がチタンであり、2個の窒素原子を結合する基のAが炭 素またはケイ素であり、nが2または3である遷移金属 アミド化合物が好ましい。

【0144】前記一般式(1)または(1-1)で表され る遷移金属アミド化合物の中では、一般式 (I-1)で表 される遷移金属アミド化合物が好ましく用いられ、中で も、一般式 (1-2) で表される遷移金属アミド化合物が 10 特に好ましく用いられる.

【0145】これらの化合物は単独で用いてもよいし、 2種以上を組み合わせて用いてもよい。

(C-1) 有機金属化合物

本発明で用いられる(C-1) 有機金属化合物として、具体 的には下記のような周期表第1、2族および第12、1 3族の有機金属化合物が用いられる。

[0146]

(C-1a) 一般式 Ra Al (ORb) n Hp Xq てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、Xはハロゲン原子を示し、mは0く $m \le 3$, $n \ne 0 \le n < 3$, $p \ne 0 \le p < 3$, $q \ne 0 \le q$ <3の数であり、かつm+n+p+q=3である。)で 表される有機アルミニウム化合物。

【0147】(C-1b) 一般式 M2 A1 Ra4

(式中、M² はLi、Na、Kを示し、R^a は炭素原子 数が1~15、好ましくは1~4の炭化水素基を示 す。)で表される1族金属とアルミニウムとの錯アルキ

【0148】(C-1c) 一般式 Ra Rb M3

(式中、Ra およびRb は、互いに同一でも異なってい てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、M3 はMg、ZnまたはCdであ る。) で表される 2族または 12族金属のジアルキル化 合物。

【0149】前記(C-1a)に属する有機アルミニウム化合 物としては、次のような化合物などを例示できる。

一般式 Ram Al (ORb) 3-m

てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、mは好ましくは1.5≤m≤3の数 である。) で表される有機アルミニウム化合物、

一般式 Ran AlX3-m

(式中、Ra は炭素原子数が1~15、好ましくは1~ 4の炭化水素基を示し、Xはハロゲン原子を示し、mは 好ましくは0<m<3である。) で表される有機アルミ ニウム化合物、

一般式 Roa AlH3-a

(式中、Re は炭素原子数が1~15、好ましくは1~ 50 ミニウムジハライドなどの部分的にハロゲン化されたア

54 4の炭化水素基を示し、mは好ましくは2≤m<3であ

一般式 Ra AI (ORb) nXq

る。) で表される有機アルミニウム化合物、

(式中、Rª およびRb は、互いに同一でも異なってい てもよく、炭素原子数が1~15、好ましくは1~4の 炭化水素基を示し、Xはハロゲン原子を示し、mはOく m≤3、nは0≤n<3、qは0≤q<3の数であり、 かつm+n+q=3である。) で表される有機アルミニ

ウム化合物。 【0150】(C-1a)に属するアルミニウム化合物として より具体的にはトリエチルアルミニウム、トリーブチル アルミニウムなどのトリーアルキルアルミニウム:トリ イソプロピルアルミニウム、トリイソブチルアルミニウ ム、トリsec-ブチルアルミニウム、トリ tert-ブチルア ルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルブチルアルミニウム、トリ2-メチルペンチルアル ミニウム、トリ3-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキシルア ルミニウム、トリ3-メチルヘキシルアルミニウム、トリ (式中、Ra およびRb は、互いに同一でも異なってい 20 2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキ ルアルミニウム: トリシクロヘキシルアルミニウムなど のトリシクロアルキルアルミニウム; トリフェニルアル ミニウム、トリトリルアルミニウムなどのトリアリール ・アルミニウム ; ジイソブチルアルミニウムハイドライド などのジアルキルアルミニウムハイドライド; トリイソ プレニルアルミニウムなどのトリアルケニルアルミニウ ム:イソブチルアルミニウムメトキシド、イソブチルア ルミニウムエトキシド、イソブチルアルミニウムイソプ ロポキシドなどのアルキルアルミニウムアルコキシド; 30 ジエチルアルミニウムエトキシド、ジブチルアルミニウ ムブトキシドなどのジアルキルアルミニウムアルコキシ ド;エチルアルミニウムセスキエトキシド、ブチルアル ミニウムセスキブトキシドなどのアルキルアルミニウム セスキアルコキシド; Ra2.5 Al (ORb) 0.5 など で表される平均組成を有する部分的にアルコキシ化され たアルキルアルミニウム;ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、エチルアルミニ

ウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)、 ジイソブチルアルミニウム (2,6-ジ-t-ブチル-4-メチル (式中、Rº およびRb は、互いに同一でも異なってい 40 フェノキシド)、イソブチルアルミニウムビス (2,6-ジ -t-ブチル-4-メチルフェノキシド) などのアルキルアル ミニウムアリーロキシド:ジエチルアルミニウムクロリ ド、ジブチルアルミニウムクロリド、ジエチルアルミニ ウムブロミドなどのジアルキルアルミニウムハライド: エチルアルミニウムセスキクロリド、ブチルアルミニウ ムセスキクロリド、エチルアルミニウムセスキブロミド などのアルキルアルミニウムセスキハライド:エチルア ルミニウムジクロリド、プロピルアルミニウムジクロリ ド、ブチルアルミニウムジブロミドなどのアルキルアル ルキルアルミニウム:ジエチルアルミニウムヒドリド、 ジブチルアルミニウムヒドリドなどのジアルキルアルミ ニウムヒドリド:エチルアルミニウムジヒドリド、プロ ピルアルミニウムジヒドリドなどのアルキルアルミニウ ムジヒドリドなどその他の部分的に水素化されたアルキ ルアルミニウム;エチルアルミニウムエトキシクロリ ド、ブチルアルミニウムブトキシクロリド、エチルアル ミニウムエトキシブロミドなどの部分的にアルコキシ化 およびハロゲン化されたアルキルアルミニウムなどを挙 げることができる。

55

【0151】また(C-1a)に類似する化合物も使用するこ とができ、たとえば窒素原子を介して2以上のアルミニ ウム化合物が結合した有機アルミニウム化合物を挙げる ことができる。このような化合物として具体的には、

(C₂ H₅)₂ AlN (C₂ H₅) Al (C₂ H₅)₂ などを挙げることができる。

【0152】前記(C-1b)に属する化合物としては、

LiAl (C₂ H₅)₄

LiAl(C₇ H₁₅)₄ などを挙げることができる。

は、一般式

 $(i-C_4 H_9)_z Al_y (C_5 H_{10})_z$

(式中、x、yおよびzは正の数であり、z≥2xであ る。)で表されるイソプレニルアルミニウムを使用する こともできる。

【0154】さらにその他にも、(C-1) 有機金属化合物 としては、メチルリチウム、エチルリチウム、プロビル リチウム、ブチルリチウム、メチルマグネシウムブロミ ド、メチルマグネシウムクロリド、エチルマグネシウム ブロミド、エチルマグネシウムクロリド、プロピルマグ 30 ネシウムブロミド、プロピルマグネシウムクロリド、ブ チルマグネシウムブロミド、ブチルマグネシウムクロリ ド、ジメチルマグネシウム、ジエチルマグネシウム、ジ ブチルマグネシウム、ブチルエチルマグネシウムなどを 使用することもできる。

【0155】また重合系内で上記有機アルミニウム化合 物が形成されるような化合物、たとえばハロゲン化アル ミニウムとアルキルリチウムとの組合せ、またはハロゲ ン化アルミニウムとアルキルマグネシウムとの組合せな どを使用することもできる。

【0156】これらのうち、有機アルミニウム化合物が 好ましい。上記のような(C-1) 有機金属化合物は、1種 単独でまたは2種以上組み合わせて用いられる。

【0157】(C-2) 有機アルミニウムオキシ化合物 本発明で用いられる(C-2) 有機アルミニウムオキシ化合 物は、従来公知のアルミノキサンであってもよく、また 特開平2-78687号公報に例示されているようなべ ンゼン不溶性の有機アルミニウムオキシ化合物であって もよい.

【0158】従来公知のアルミノキサンは、たとえば下 50 ンゼンに対して不溶性または難溶性である。

56 記のような方法によって製造することができ、通常、炭 化水素溶媒の溶液として得られる.

(1)吸着水を含有する化合物または結晶水を含有する 塩類、たとえば塩化マグネシウム水和物、硫酸銅水和 物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩 化第1セリウム水和物などの炭化水素媒体懸濁液に、ト リアルキルアルミニウムなどの有機アルミニウム化合物 を添加して、吸着水または結晶水と有機アルミニウム化 合物とを反応させる方法。

10 (2)ベンゼン、トルエン、エチルエーテル、テトラヒ ドロフランなどの媒体中で、トリアルキルアルミニウム などの有機アルミニウム化合物に直接水、氷または水蒸 気を作用させる方法。

(3) デカン、ベンゼン、トルエンなどの媒体中でトリ アルキルアルミニウムなどの有機アルミニウム化合物 に、ジメチルスズオキシド、ジブチルスズオキシドなど の有機スズ酸化物を反応させる方法。

【0159】なお該アルミノキサンは、少量の有機金属 成分を含有してもよい。また回収された上記のアルミノ 【0153】その他にも、(C-1) 有機金属化合物として 20 キサンの溶液から溶媒または未反応有機アルミニウム化 合物を蒸留して除去した後、溶媒に再溶解またはアルミ ノキサンの貧溶媒に懸濁させてもよい。

> 【0160】アルミノキサンを調製する際に用いられる 有機アルミニウム化合物として具体的には、上述した(C -1) に属する有機アルミニウム化合物として例示したも のと同様の有機アルミニウム化合物を挙げることができ

> 【0161】これらのうち、トリアルキルアルミニウ ム、トリシクロアルキルアルミニウムが好ましく、トリ メチルアルミニウムが特に好ましい。上記のような有機 アルミニウム化合物は、1種単独でまたは2種以上組み 合せて用いられる。

【0162】アルミノキサンの調製に用いられる溶媒と しては、ベンゼン、トルエン、キシレン、クメン、シメ ンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタ ン、オクタン、デカン、ドデカン、ヘキサデカン、オク タデカンなどの脂肪族炭化水素、シクロペンタン、シク ロヘキサン、シクロオクタン、メチルシクロペンタンな どの脂環族炭化水素、ガソリン、灯油、軽油などの石油 40 留分または上記芳香族炭化水素、脂肪族炭化水素、脂環 族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化 物などの炭化水素溶媒が挙げられる。さらにエチルエー テル、テトラヒドロフランなどのエーテル類を用いるこ ともできる。これらの溶媒のうち特に芳香族炭化水素ま たは脂肪族炭化水素が好ましい。

【0163】また本発明で用いられるベンゼン不溶性の 有機アルミニウムオキシ化合物は、60℃のベンゼンに 溶解するA1成分がA1原子換算で通常10%以下、好 ましくは5%以下、特に好ましくは2%以下であり、べ

【0164】本発明で用いられる有機アルミニウムオキ シ化合物としては、下記一般式 (IV) で表されるボロン を含んだ有機アルミニウムオキシ化合物を挙げることも できる.

【0166】式中、R21は炭素原子数が1~10の炭化 水素基を示す。R22は、互いに同一でも異なっていても よく、水素原子、ハロゲン原子または炭素原子数が1~ 10の炭化水素基を示す。

【0167】前記一般式 (IV) で表されるボロンを含ん だ有機アルミニウムオキシ化合物は、下記一般式(V) で表されるアルキルボロン酸と

$$R^{21}-B-(OH)_{2}$$
 ... (V)

(式中、R21は前記と同じ基を示す。)

有機アルミニウム化合物とを、不活性ガス雰囲気下に不 20 活性溶媒中で、-80℃~室温の温度で1分~24時間 反応させることにより製造できる。

【0168】前記一般式(V)で表されるアルキルボロ ン酸の具体的なものとしては、メチルボロン酸、エチル ボロン酸、イソプロピルボロン酸、n-プロピルボロン 酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシ ルボロン酸、シクロヘキシルボロン酸、フェニルボロン 酸、3,5-ジフルオロボロン酸、ペンタフルオロフェニル ボロン酸、3,5-ピス (トリフルオロメチル) フェニルボ ロン酸などが挙げられる。これらの中では、メチルボロ 30 ン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジ フルオロフェニルボロン酸、ペンタフルオロフェニルボ ロン酸が好ましい。これらは1種単独でまたは2種以上 組み合わせて用いられる.

【0169】このようなアルキルボロン酸と反応させる 有機アルミニウム化合物として具体的には、上述した(C -1) に属する有機アルミニウム化合物として例示したも のと同様の有機アルミニウム化合物を挙げることができ

【0170】これらのうち、トリアルキルアルミニウ ム、トリシクロアルキルアルミニウムが好ましく、特に トリメチルアルミニウム、トリエチルアルミニウム、ト リイソブチルアルミニウムが好ましい。これらは1種単 独でまたは2種以上組み合わせて用いられる。

【0171】上記のような(C-2) 有機アルミニウムオキ シ化合物は、1種単独でまたは2種以上組み合せて用い られる.

(C-3) 遷移金属化合物または遷移金属アミド化合物と反 応してイオン対を形成する化合物

属アミド化合物(B)と反応してイオン対を形成する化 合物(C-3) (以下、「イオン化イオン性化合物」とい う。) としては、特開平1-501950号公報、特開 平1-502036号公報、特開平3-179005号 公報、特開平3-179006号公報、特開平3-20 7703号公報、特開平3-207704号公報、US P-5321106号などに記載されたルイス酸、イオ ン性化合物、ボラン化合物およびカルボラン化合物など を挙げることができる。

58

10 【0172】具体的には、ルイス酸としては、BR 3 (Rは、フッ素、メチル基、トリフルオロメチル基な どの置換基を有していてもよいフェニル基またはフッ素 である。)で示される化合物が挙げられ、たとえばトリ フルオロボロン、トリフェニルボロン、トリス(4-フル オロフェニル) ボロン、トリス (3,5-ジフルオロフェニ ル) ボロン、トリス (4-フルオロメチルフェニル) ボロ ン、トリス (ペンタフルオロフェニル) ポロン、トリス (p-トリル) ボロン、トリス (o-トリル) ボロン、トリ ス (3,5-ジメチルフェニル) ボロンなどが挙げられる。 【0173】イオン性化合物としては、たとえば下記一 股式(VI)で表される化合物が挙げられる。

[0174]

【0175】式中、R23としては、H⁺、カルボニウム カチオン、オキソニウムカチオン、アンモニウムカチオ ン、ホスホニウムカチオン、シクロヘプチルトリエニル カチオン、遷移金属を有するフェロセニウムカチオンな どが挙げられる。

【0176】R24~R27は、互いに同一でも異なってい てもよく、有機基、好ましくはアリール基または置換ア リール基である。前記カルボニウムカチオンとして具体 的には、トリフェニルカルボニウムカチオン、トリ(メ チルフェニル) カルボニウムカチオン、トリ (ジメチル フェニル)カルボニウムカチオンなどの三置換カルボニ 40 ウムカチオンなどが挙げられる。

【0177】前記アンモニウムカチオンとして具体的に は、トリメチルアンモニウムカチオン、トリエチルアン モニウムカチオン、トリプロピルアンモニウムカチオ ン、トリブチルアンモニウムカチオン、トリ(ローブチ ル) アンモニウムカチオンなどのトリアルキルアンモニ ウムカチオン: N,N-ジメチルアニリニウムカチオン、N, N-ジエチルアニリニウムカチオン、N.N-2,4.6-ペンタメ チルアニリニウムカチオンなどのN,N-ジアルキルアニリ ニウムカチオン : ジ (イソプロピル) アンモニウムカチ 本発明で用いられる遷移金属化合物(A)または遷移金 50 オン、ジシクロヘキシルアンモニウムカチオンなどのジ アルキルアンモニウムカチオンなどが挙げられる。

【0178】前記ホスホニウムカチオンとして具体的に は、トリフェニルホスホニウムカチオン、トリ(メチル フェニル) ホスホニウムカチオン、トリ (ジメチルフェ ニル) ホスホニウムカチオンなどのトリアリールホスホ ニウムカチオンなどが挙げられる。

【0179】R23としては、カルボニウムカチオン、ア ンモニウムカチオンなどが好ましく、特にトリフェニル カルボニウムカチオン、N,N-ジメチルアニリニウムカチ オン、N,N-ジエチルアニリニウムカチオンが好ましい。 【0180】またイオン性化合物として、トリアルキル 置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、 ジアルキルアンモニウム塩、トリアリールホスフォニウ ム塩などを挙げることもできる。

【0181】トリアルキル置換アンモニウム塩として具 体的には、たとえばトリエチルアンモニウムテトラ(フ ェニル) ホウ素、トリプロピルアンモニウムテトラ(フ ェニル) ホウ素、トリ (n-ブチル) アンモニウムテトラ (フェニル) ホウ素、トリメチルアンモニウムテトラ (p-トリル) ホウ素、トリメチルアンモニウムテトラ (o-トリル) ホウ素、トリ (n-ブチル) アンモニウムテ トラ (ペンタフルオロフェニル) ホウ素、トリプロピル アンモニウムテトラ (o,p-ジメチルフェニル) ホウ素、 トリ (n-ブチル) アンモニウムテトラ (m, m-ジメチルフ ェニル) ホウ素、トリ (n-ブチル) アンモニウムテトラ* 60

* (p-トリフルオロメチルフェニル) ホウ素、トリ (n-ブ チル) アンモニウムテトラ (3.5-ジトリフルオロメチル フェニル) ホウ素、トリ (n-ブチル) アンモニウムテト ラ (o-トリル) ホウ素などが挙げられる。

【0182】N,N-ジアルキルアニリニウム塩として具体 的には、たとえばN,N-ジメチルアニリニウムテトラ (フ ェニル) ホウ素、N,N-ジエチルアニリニウムテトラ(フ ェニル) ホウ素、N.N-2,4.6-ペンタメチルアニリニウム テトラ (フェニル) ホウ素などが挙げられる。

【0183】ジアルキルアンモニウム塩として具体的に は、たとえばジ (1-プロピル) アンモニウムテトラ (ペ ンタフルオロフェニル) ホウ素、ジシクロヘキシルアン モニウムテトラ (フェニル) ホウ素などが挙げられる。 【0184】さらにイオン性化合物として、トリフェニ ルカルベニウムテトラキス(ペンタフルオロフェニル) ボレート、N,N-ジメチルアニリニウムテトラキス (ペン タフルオロフェニル) ボレート、フェロセニウムテトラ (ペンタフルオロフェニル) ボレート、トリフェニルカ ルベニウムペンタフェニルシクロペンタジエニル錯体、

20 N,N-ジエチルアニリニウムペンタフェニルシクロペンタ ジエニル錯体、下記式(VII)(VIII)で表されるホウ 素化合物などを挙げることもできる。

[0185] '【化34】

$$H^{\oplus}$$
 (O Et₂)₂ $B \xrightarrow{\Theta}$ CF_3 ... (VII)

【0186】(式中、Etはエチル基を示す。) [0187]

【化35】

【0188】ボラン化合物として具体的には、たとえば ウム] ノナボレート、ビス (トリ (n-ブチル) アンモニ ウム] デカボレート、ビス [トリ (n-ブチル) アンモニ ウム] ウンデカボレート、ビス [トリ (n-ブチル) アン モニウム)ドテカボレート、ビス(トリ(ルブチル)ア ンモニウム〕デカクロロデカボレート、ビス〔トリ(r-ブチル) アンモニウム] ドデカクロロドデカボレートな どのアニオンの塩; トリ (n-ブチル) アンモニウムビス (ドデカハイドライドドデカボレート) コバルト酸塩 (III)、ビス[トリ(n-ブチル)アンモニウム]ビス (ドデカハイドライドドデカボレート)ニッケル酸塩 ※50

※ (III)などの金属ボランアニオンの塩などが挙げられ

【0189】カルボラン化合物として具体的には、たと えば4-カルバノナボラン(14)、1,3-ジカルバノナボ ラン(13)、6,9-ジカルバデカボラン(14)、ドデ カハイドライド-1-フェニル-1,3-ジカルバノナボラン、 ドデカハイドライド-1-メチル-1,3-ジカルバノナボラ ン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバ ノナボラン、7,8-ジカルバウンデカボラン(13)、2, デカボラン(14); ビス〔トリ (n-ブチル) アンモニ 40 7-ジカルバウンデカボラン(13)、ウンデカハイドラ イド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデ カハイドライド-11-メチル-2,7-ジカルバウンデカボラ ン、トリ (n-ブチル) アンモニウム1-カルバデカボレー ト、トリ (n-ブチル) アンモニウム1-カルバウンデカボ レート、トリ (n-ブチル) アンモニウム1-カルバドデカ ボレート、トリ (n-ブチル) アンモニウム1-トリメチル シリル-1-カルバデカボレート、トリ (n-ブチル) アン モニウムブロモ-1-カルバドデカボレート、トリ(Iーブ チル) アンモニウム6-カルバデカボレート(14)、ト リ (n-ブチル) アンモニウム6-カルバデカボレート(1

2)、トリ (n-ブチル) アンモニウム7-カルバウンデカ ボレート (13)、トリ (n-ブチル) アンモニウム7.8-ジカルバウンデカボレート(12)、トリ(n-ブチル) アンモニウム2,9-ジカルバウンデカボレート(12)、 トリ (n-ブチル) アンモニウムドデカハイドライド-8-メチル-7.9-ジカルパウンデカボレート、トリ (n-ブチ ル) アンモニウムウンデカハイドライド-8-エチル-7.9-ジカルバウンデカボレート、トリ (n-ブチル) アンモニ ウムウンデカハイドライド-8-ブチル-7,9-ジカルバウン デカボレート、トリ (n-ブチル) アンモニウムウンデカ 10 ハイドライド-8-アリル-7,9-ジカルバウンデカボレー ト、トリ (n-ブチル) アンモニウムウンデカハイドライ ド-9-トリメチルシリル-7.8-ジカルバウンデカボレー ト、トリ (n-ブチル) アンモニウムウンデカハイドライ ド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニ オンの塩: トリ (n-ブチル) アンモニウムビス (ノナハ イドライド-1,3-ジカルバノナボレート) コバルト酸塩 (III)、トリ (n-ブチル) アンモニウムビス (ウンデカ ハイドライド-7,8-ジカルバウンデカボレート) 鉄酸塩 (III)、トリ (n-ブチル) アンモニウムビス (ウンデカ 20 4、A 12(SO4)3、BaSO4、KNO3、Mg ハイドライド-7,8-ジカルバウンデカボレート) コバル ト酸塩 (III)、トリ (n-ブチル) アンモニウムビス (ウ ンデカハイドライド-7,8-ジカルバウンデカボレート) ニッケル酸塩 (III)、トリ (n-ブチル) アンモニウムビ ス (ウンデカハイドライド-7,8-ジカルバウンデカボレ ート) 銅酸塩 (111)、トリ (n-ブチル) アンモニウムビ ス (ウンデカハイドライド-7,8-ジカルバウンデカボレ ート) 金酸塩 (III)、トリ (n-ブチル) アンモニウムビ ス (ノナハイドライド-7,8-ジメチル-7,8-ジカルバウン デカボレート) 鉄酸塩 (III)、トリ (n-ブチル) アンモ 30 ニウムビス (ノナハイドライド-7,8-ジメチル-7,8-ジカ ルバウンデカボレート)クロム酸塩(III)、トリ(n-ブ チル) アンモニウムビス (トリブロモオクタハイドライ ド-7,8-ジカルバウンデカボレート) コバルト酸塩(II 1)、トリス (トリ (n-ブチル) アンモニウム] ビス (ウ ンデカハイドライド-7-カルパウンデカボレート) クロ ム酸塩 (III)、ビス [トリ (n-ブチル) アンモニウム] ビス (ウンテカハイドライド-7-カルバウンデカボレー ト) マンガン酸塩 (IV)、ビス (トリ (n-ブチル) アン モニウム〕ビス(ウンデカハイドライド-7-カルバウン デカボレート) コバルト酸塩 (III)、ビス〔トリ(n-ブ チル) アンモニウム) ビス (ウンデカハイドライド-7-カルバウンデカボレート) ニッケル酸塩(IV) などの金 属カルボランアニオンの塩などが挙げられる。

61

【0190】上記のような(C-3) イオン化イオン性化合 物は、1種単独でまたは2種以上組み合せて用いられ る。また、本発明に係るオレフィン重合用触媒は、上記 周期表第4族の遷移金属化合物(A)、遷移金属アミド 化合物(B)、(C-1)有機金属化合物、(C-2)有機アル ミニウムオキシ化合物および(C-3) イオン化イオン性化 50 順序で重合器に添加する方法。

合物から選ばれる少なくとも1種の化合物(C)ととも に、必要に応じて後述するような做粒子状担体(D)を 用いることもできる。

62

【0191】(D) 微粒子状担体

本発明で必要に応じて用いられる(D) 微粒子状担体 は、無機または有機の化合物であって、粒径が10~3 00 mm、好ましくは20~200 mmの顆粒状ないし は微粒子状の固体が使用される。このうち無機化合物と しては多孔質酸化物が好ましく、具体的にはSiO2、

Al₂O₃ MgO, ZrO, TiO₂ B₂O₃ Ca O、ZnO、BaO、ThO2 など、またはこれらを含 む混合物、たとえばSiO2-MgO、SiO2-Al2 O 3 SiO2-TiO2 SiO2-V2 O5 SiO2-C r2O3 、SiO2-TiO2-MgOなどを例示すること ができる。これらの中でSiO2 およびAl2O3 から なる群から選ばれた少なくとも1種の成分を主成分とす るものが好ましい。

【0192】なお、上記無機酸化物には少量のNa2C O3 K2CO3 CaCO3 MgCO3 Na2SO (NO₃)₂ 、Al (NO₃)₃ 、Na₂O、K₂O、Li₂ Oなどの炭酸塩、硫酸塩、硝酸塩、酸化物成分を含有し ていても差しつかえない。

【0193】このような(D) 微粒子状担体は種類およ び製法によりその性状は異なるが、本発明に好ましく用 いられる担体は、比表面積が50~1000m2 /g、 好ましくは100~700m²/gの範囲にあり、細孔 容積が0.3~2.5cm3/gの範囲にあることが望 ましい。該担体は、必要に応じて100~1000℃、

好ましくは150~700℃で焼成して用いられる。 【0194】さらに、本発明に用いることのできる飲粒 子状担体(D)としては、粒径が10~300μmの範 囲にある有機化合物の顆粒状ないしは微粒子状固体を挙 げることができる。これら有機化合物としては、エチレ ン、プロピレン、1-ブテン、4-メチル-1-ペンテンなど の炭素原子数が2~14のα-オレフィンを主成分とし て生成される (共) 重合体またはビニルシクロヘキサ ン、スチレンを主成分として生成される重合体もしくは 共重合体を例示することができる.

【0195】本発明に係るオレフィン重合用触媒は、上 記のような周期表第4族の遷移金属化合物(A)と、遷 移金属アミド化合物 (B) と、(C-1) 有機金属化合物、 (C-2) 有機アルミニウムオキシ化合物および(C-3) イオ ン化イオン性化合物から選ばれる少なくとも1種の化合 物(C)と、必要に応じて微粒子状担体(D)とからな

【0196】重合の際には、各成分の使用法、添加順序 は任意に選ばれるが、以下のような方法が例示される。 (1) 成分(A)、成分(B) および成分(C) を任意の

- (2) 成分(A)を担体(D)に担持した触媒成分、成分 (B) および成分(C) を任意の順序で重合器に添加す る方法。
- (3) 成分(B)を担体(D)に担持した触媒成分、成分 (A) および成分(C) を任意の順序で重合器に添加す る方法。
- (4) 成分(C)を担体(D)に担持した触媒成分、成分 (A) および成分 (B) を任意の順序で重合器に添加す る方法。
- (5) 成分(A)と成分(B)とを担体(D)に担持した 10 れ、成分(B)は通常10-8~10-2モル、好ましくは 触媒成分、および成分 (C) を任意の順序で重合器に添 加する方法。
- (6) 成分(A)を担体(D)に担持した触媒成分、成分
- (B) を担体(D) に担持した触媒成分および成分
- (C)を任意の順序で重合器に添加する方法。
- (7) 成分(A)と成分(C)とを担体(D)に担持した 触媒成分、成分(B)を任意の順序で重合器に添加する 方法。
- (8) 成分(B)と(C)とを担体(D)に担持した触媒 成分、および成分(A)を任意の順序で重合器に添加す 20 る方法。
- (9) 成分(A)と成分(B)と成分(C)とを担体
- (D) に担持した触媒成分を重合器に添加する方法。
- 【0197】上記(1)~(8)の各方法においては、各触 媒成分の少なくとも2つ以上は予め接触されていてもよ い。成分(C)が担持されている上記(4)(7)(8)(9)の各 方法においては、必要に応じて担持されていない成分
- (C) を、任意の順序で添加してもよい。この場合成分 (C)は、同一でも異なっていてもよい。
- 【0198】また、上記の成分(D)に成分(A)およ 30 び成分(C)が担持された固体触媒成分、成分(D)に 成分(B)および成分(C)が担持された固体触媒成 分、成分(D)に成分(A)、成分(B)および成分
- (C) が担持された固体触媒成分は、オレフィンが予備 重合されていてもよく、予備重合された固体触媒成分上 に、さらに、触媒成分が担持されていてもよい。
- 【0199】本発明に係るオレフィンの重合方法では、 上記のようなオレフィン重合触媒の存在下に、オレフィ ンを重合または共重合することによりオレフィン重合体

【0200】本発明では、重合は溶解重合、懸濁重合な どの液相重合法または気相重合法いずれにおいても実施 できる。液相重合法において用いられる不活性炭化水素 媒体として具体的には、プロパン、ブタン、ペンタン、 ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯 油などの脂肪族炭化水素;シクロペンタン、シクロヘキ サン、メチルシクロペンタンなどの脂環族炭化水素:ベ ンゼン、トルエン、キシレンなどの芳香族炭化水素;エ チレンクロリド、クロルベンゼン、ジクロロメタンなど のハロゲン化炭化水素またはこれらの混合物などを挙げ 50 類などの芳香族ビニル化合物:ビニルシクロヘキサン、

64

ることができ、オレフィン自身を溶媒として用いること もできる。これらの不活性炭化水素媒体のうちで脂肪族 炭化水素、脂環族炭化水素が好ましい。また、重合に用 いるα-オレフィン、脂環族ビニル化合物、環状オレフ ィン自身を溶媒として用いることも好ましい。

【0201】上記のようなオレフィン重合用触媒を用い て、オレフィンの重合を行うに際して、成分(A)は、 反応容積1リットル当り、通常10-8~10-3モル、好 ましくは10-7~10-4モルとなるような量で用いら

- 10-7~10-3モルとなるような量で用いられる。また 成分(B)は、成分(B)と成分(A)とのモル比 [(B)/(A)]が、通常0.02~100、好まし
- くは0.05~50となるような量で用いられる。

【0202】成分(C-1) は、成分(C-1) と、成分(A) および成分(B)中の全遷移金属原子(M)とのモル比 【(C-1) /M)が、通常O.01~5000、好ましく は0.05~2000となるような量で用いられる。

【0203】成分(C-2) は、成分(C-2) 中のアルミニウ ム原子と、成分(A)および成分(B)中の全遷移金属 原子(M)とのモル比〔(C-2) /M〕が、通常10~5 000、好ましくは20~2000となるような量で用 いられる。

【0204】成分(C-3) は、成分(C-3) と、成分(A) および成分(B)中の全遷移金属原子(M)とのモル比 ((C-3) /M)が、通常1~10、好ましくは1~5と なるような量で用いられる。

【0205】また、このようなオレフィン重合触媒を用 いたオレフィンの重合温度は、通常-50~200℃、

好ましくは0~170℃の範囲である。重合圧力は、通 常常圧~100kg/cm2、好ましくは常圧~50k g/cm²の条件下であり、重合反応は、回分式、半連 続式、連続式のいずれの方法においても行うことができ る。さらに重合を反応条件の異なる2段以上に分けて行 うことも可能である。

【0206】得られるオレフィン重合体の分子量は、重 合系に水素を存在させるか、または重合温度を変化させ ることによって調節することができる。このようなオレ フィン重合触媒により重合することができるオレフィン としては、エチレン、プロピレン、1-ブテン、1-ペンテ ン、1-ヘキセン、3-メチル-1-ブテン、3-メチル-1-ペン テン、3-エチル-1-ペンテン、4-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4-ジメチル-1-ヘキセン、4,4-ジ メチル-1-ペンテン、4-エチル-1-ヘキセン、3-エチル-1 -ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テ トラデセン、1-ヘキサデセン、1-オクタデセン、1-エイ コセンなどの炭素原子数が2~20のα-オレフィン; スチレン、ジメチルスチレン類、アリルベンゼン、アリ ルトルエン類、ピニルナフタレン類、アリルナフタレン

65

ビニルシクロペンタン、ビニルシクロヘプタン、アリル ノルボルナンなどの脂環族ビニル化合物:シクロペンテ ン、シクロヘプテン、ノルボルネン、5-メチル-2-ノル ボルネン、テトラシクロドデセン、2-メチル-1,4,5,8-ジメタノ-1,2,3,4,4a,5,8,8a-オクタヒドロナフタレン ンなどの環状オレフィン;1,4-ペンタジエン、1,5-ヘキ サジエン、1,4-ヘキサジエン、1,5,9-デカトリエンなど の炭素原子数が4~20の鎖状ポリエン:5-エチリデン ノルボルネン、ジシクロペンタジエンなどの環状ポリエ ンなどを挙げることができる。

【0207】これらのオレフィンは、単独であるいは2 種以上組み合わせて用いることができる。

[0208]

【発明の効果】本発明に係るオレフィン重合触媒は、高 い重合活性を有し、分子量分布が広く、かつ2種以上の オレフィンを共重合したときに組成分布が狭いオレフィ ン(共)重合体を得ることができる。

【0209】本発明に係るオレフィンの重合方法は、高 い重合活性で、分子量分布が広く、かつ2種以上のオレ 合体を得ることができる。本発明の方法で得られたオレ フィン (共) 重合体は、分子量分布が広いので成形性に 優れている。

[0210]

【実施例】以下、実施例に基づいて本発明をさらに具体 的に説明するが、本発明はこれら実施例に限定されるも のではない。

【0211】なお、本実施例において、極限粘度

([η])は、135℃、デカリン中で測定した。分子 量分布 (Mw/Mn) は、0-ジクロルベンゼンを溶媒と 30 して、140℃においてゲルパーミエーションクロマト グラフィー (GPC) により測定して求めた。

[0212]

【実施例1】充分に窒素置換した20m1のガラス製容 器にトルエン5m1を装入し、これにメチルアルミノキ サンをアルミニウム原子換算で0.1ミリモル、ビス (1,3-ジメチルシクロペンタジエニル) ジルコニウムジ クロリドを0. 1マイクロモルおよび下記式(a) で示さ れるチタン化合物(B-1)を0.1マイクロモル加えて5 分間攪拌し予備接触触媒(P-1) を調製した。

【0213】上記とは別に、充分に窒素置換した内容積 1リットルのステンレス製オートクレーブにシクロヘキ サン350m1、次いで1-オクテンを150m1装入し た。これに、トリイソブチルアルミニウムを0.5ミリ モル加え、系内を60℃に昇温した。その後、上記予備 接触触媒(P-1) を全量エチレンで圧入することにより重 合を開始した。連続的にエチレンを供給しながら全圧8 kg/cm²-G、70℃で15分間重合を行った後、少 量のメタノールを圧入により添加し重合を停止した。重 合反応液を大過剰のメタノールー塩酸溶液に加え、得ら 50 (1,3-ジメチルシクロペンタジエニル)ハフニウムジク

66

れたポリマーを、130℃で12時間減圧下に乾燥させ た。その結果、[n]が3.97dl/g、Mw/Mn が5.2のポリマー7.6gが得られた。

[0214]

【化36】

[0215]

【比較例1】実施例1において、ビス(1,3-ジメチルシ クロペンタジエニル)ジルコニウムジクロリドを用いな かったこと以外は同様にして重合を行った。その結果、 [n] \dot{m} 0. 95 d l/g, Mw/Mn \dot{m} 2. 00 \dot{m} 1 マー3.6gが得られた。

[0216]

【比較例2】実施例1において、チタン化合物(B-1) を フィンを共重合したときに組成分布が狭いオレフィン重 20 用いず、水素を50m1導入したこと以外は同様にして 重合を行った。その結果、[n]が2.93d1/g、 Mw/Mnが2.9のポリマー4.2gが得られた。 [0217]

> 【実施例2】実施例1において、チタン化合物(B-1)の 代わりに下記式(b) で示されるチタン化合物(B-2) を 0.1マイクロモル用いたこと以外は同様にして重合を 行った。その結果、[n]が3.90dl/g、Mw/ Mnが5.3のポリマー7.5gが得られた。

[0218]

【化37】

[0219]

【比較例3】実施例1において、ビス(1.3-ジメチルシ 40 クロペンタジエニル) ジルコニウムジクロリドを用い ず、チタン化合物(B-1) の代わりに前記式(b) で示され るチタン化合物(B-2) を 0.1 マイクロモル用いたこと 以外は同様にして重合を行った。その結果、[n]が 0.84d1/g、Mw/Mnが2.0のポリマー3. 4gが得られた。

[0220]

【実施例3】充分に窒素直換した20m1のガラス製容 器にトルエン5mlを装入し、これにメチルアルミノキ サンをアルミニウム原子換算で0. 5ミリモル、ビス

ロリドを0.4マイクロモルおよびビス「ビス(トリメ チルシリル) アミド] ジルコニウムジクロリド ([(Mes Si)2N)2ZrCl2)を2マイクロモル加えて5分間攪 拌し予備接触触媒(P-3)を調製した。

【0221】上記とは別に、充分に窒素置換した内容積 1リットルのステンレス製オートクレーブにシクロへキ サン350ml、次いで1-オクテンを150ml装入し た。これに、トリイソブチルアルミニウムを0.5ミリ モル加え、系内を60℃に昇温した。その後、上記予備 合を開始した。連続的にエチレンを供給しながら全圧8 kg/cm²-G、70℃で15分間重合を行った後、少 量のメタノールを圧入により添加し重合を停止した。重 合反応液を大過剰のメタノール-塩酸溶液に加え、得ら れたポリマーを、130℃で12時間減圧下に乾燥させ た。その結果、[ŋ]が4.71dl/g、Mw/Mn が4.9のポリマー6.7gが得られた。

[0222]

【比較例4】実施例3において、ビス(1,3-ジメチルシ クロペンタジエニル) ハフニウムジクロリドを用いなか 20 ったこと以外は同様にして重合を行った。その結果、 [n] \dot{m} 2. 37d 1/g, $Mw/Mn\dot{m}$ 1. 90 πJ マー3.6gが得られた。

[0223]

【比較例5】実施例3において、ビス[ビス(トリメチ ルシリル) アミド] ジルコニウムジクロリドを用いず、 水素を80ml導入したこと以外は同様にして重合を行 った。その結果、[n]が2.88d1/g、Mw/M nが3.0のポリマー3.3gが得られた。

[0224]

【実施例4】充分に窒素置換した20m1のガラス製容 器にトルエン5mlを装入し、これにトリイソブチルア ルミニウムを5マイクロモル、ビス(1,3-ジメチルシク 6.8

ロペンタジエニル) ハフニウムジクロリドを 0.4マイ クロモル、前記式(b) で示されるチタン化合物(B-2) を 0.1マイクロモル、トリフェニルカルベニウムテトラ キス (ペンタフルオロフェニル) ボレートを1マイクロ モル、この順序で加えて5分間撹拌し予備接触触媒(P-4) を調製した。

【0225】上記とは別に、充分に窒素置換した内容稽 1リットルのステンレス製オートクレーブにシクロヘキ サン350ml、次いで1-オクテンを150ml装入し 接触触媒(P-3) を全量エチレンで圧入することにより重 10 た。これに、トリイソブチルアルミニウムを 0.5ミリ モル加え、系内を60℃に昇温した。その後、上記予備 接触触媒(P-4) を全量エチレンで圧入することにより重 合を開始した。連続的にエチレンを供給しながら全圧8 kg/cm²-G、70℃で15分間重合を行った後、少 量のメタノールを圧入により添加し重合を停止した。重 合反応液を大過剰のメタノールー塩酸溶液に加え、得ら れたポリマーを、130℃で12時間減圧下に乾燥させ た。その結果、[n]が4.62dl/g、Mw/Mn が5.4のポリマー7.3gが得られた。

[0226]

【比較例6】実施例4において、ビス(1.3-ジメチルシ クロペンタジエニル) ハフニウムジクロリドを用いなか ったこと以外は同様にして重合を行った。その結果、

・ ` [ヵ]が1.29dl/g、Mw/Mnが2.1のポリ マー3.7gが得られた。

[0227]

【比較例7】実施例4において、チタン化合物(B-2)を 用いず、水素を80ml導入したこと以外は同様にして 重合を行った。その結果、[n]が3.04d1/g、

30 Mw/Mnが3.1のポリマー3.6gが得られた。 【図面の簡単な説明】

【図1】本発明に係るオレフィン重合用触媒の調製工程 を示す説明図である。

【図1】

(A) 遷移会異成分

. .