A brief tour of Grothendieck-Teichmüller theory

Daniel Miller

September 2, 2014

Everything in this brief note is inspired by Grothendieck's revolutionary letter [Gro97].

1 Motivation from topology

Let's start with a slightly unorthodox take on the (standard) fundamental group of a topological space. Let X be a "nice" space (e.g. a manifold) and let $x \in X$ be a chosen basepoint. Let $p: C \to X$ be a cover. If $\gamma \in \pi_1(X,x)$ is a path, it induces a permutation of the set $p^{-1}(x)$ in the usual way [draw picture]. We get in this way the monodromy representation $\rho_C: \pi_1(X,x) \to \operatorname{Aut}(p^{-1}(x))$.

Introduce a bit of notation and write $F_x(C) = p^{-1}(x)$ if $C \xrightarrow{p} X$ is a cover. The monodromy representation is functorial in the sense that it gives us a representation $\rho: \pi_1(X,x) \to \operatorname{Aut}(F_x)$. In fact, this "universal" monodromy representation is an isomorphism, i.e. $\pi_1(X,x) \xrightarrow{\sim} \operatorname{Aut}(F_x)$. Our general heuristic towards fundamental groups will be that there is a category $\mathcal C$ of "covers" and a functor $F: \mathcal C \to \operatorname{set}$. One puts $\pi_1(\mathcal C) = \operatorname{Aut}(F)$. This is naturally a topological group, and if everything is sufficiently nice, induces an equivalence $\mathcal C \xrightarrow{\sim} \operatorname{set}(\pi)$.

Finally, recall a bit of group theory. If $1 \to \pi \to H \to G \to 1$ is a short exact sequence of groups, then there is a natural representation $\rho: G \to \operatorname{Out}(\pi)$. For $g \in G$, put $\rho(g)(x) = \widetilde{g}x\widetilde{g}^{-1}$. It is essentially trivial that the class of $\rho(g)$ in $\operatorname{Out}(\pi)$ does not depend on the choice of a lift \widetilde{g} of g to H.

2 Some Galois theory

Let $q=p^f$ be a prime power, and let \mathbf{F}_q be the finite field with q elements. Let $\overline{\mathbf{F}_q}$ be an algebraic closure of \mathbf{F}_q . Let's compute $G_{\mathbf{F}_q} = \operatorname{Gal}(\overline{\mathbf{F}_q}/\mathbf{F}_q)$. Let $\operatorname{fr}_q(x) = x^q$; this gives an element $\operatorname{fr}_q \in G_{\mathbf{F}_q}$. So then $\operatorname{fr}_q^{\mathbf{Z}} \subset G_{\mathbf{F}_q}$. But we haven't exhausted $G_{\mathbf{F}_q}$. Choose a sequence of numbers $a_n \in \mathbf{Z}/n!$ such that $a_{n+1} \equiv a_n \pmod{n!}$. Then fr_q^a makes sense as an element of $G_{\mathbf{F}_q}$. For $x \in \overline{\mathbf{F}_q}$, choose n such that $x \in \mathbf{F}_{q^n}$ and put $\operatorname{fr}_q^a(x) = \operatorname{fr}_q^{a_n}(x)$; it is easy to see that this is a well-defined element of $G_{\mathbf{F}_q}$. Let $\widehat{\mathbf{Z}}$ be the group of sequences $a = (a_n) \in \prod_n \mathbf{Z}/n!$ such that $a_{n+1} \equiv a_n \pmod{n!}$. This is naturally a compact topological group, and $a \mapsto \operatorname{fr}_q^a$ is an isomorphism $\widehat{\mathbf{Z}} \xrightarrow{\sim} G_{\mathbf{F}_q}$.

It seems that Galois groups are naturally topological groups. Let $G_{\mathbf{Q}} = \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q})$. For $x \in \overline{\mathbf{Q}}$, put $G_{\mathbf{Q}}(x) = \operatorname{Stab}_{G_{\mathbf{Q}}}(x)$. The $G_{\mathbf{Q}}(x)$ form the basis for a topology (the *Krull topology*), with which $G_{\mathbf{Q}}$ is a compact, totally disconnected topological group with a basis of open normal subgroups of finite index. Such groups are called *profinite*. Understanding $G_{\mathbf{Q}}$ is the central object of algebraic number theory. Unfortunately, studying $G_{\mathbf{Q}}$ directly has not been very fruitful. The best approach up till now has been to study $G_{\mathbf{Q}}$ via its representations. A good source of these representations are the fundamental groups of varieties over \mathbf{Q} .

3 Algebraic fundamental groups

Now let X be a variety over \mathbf{Q} . I won't define this precisely, but you should think of subsets of \mathbf{A}^n or \mathbf{P}^n cut out by polynomials with coefficients in \mathbf{Q} . It makes sense to ask for complex solutions to these polynomial

equations, and $X(\mathbf{C})$ is naturally a topological space. If X is smooth, then $X(\mathbf{C})$ is a complex manifold.

We want a good category of covers of X. We will say that a morphism $p: C \to X$ of varieties over \mathbb{Q} (that means that the polynomials defining p have coefficients in \mathbb{Q}) is a cover if the induced map $f: X(\mathbb{C}) \to Y(\mathbb{C})$ is a cover in the sense of differential geometry (a local analytic diffeomorphism). Choose a point $x \in X(\mathbb{Q})$ and let $F_x(C) = p^{-1}(x)$. Since everything is algebraic, $F_x(C)$ is a finite set. Put $\pi_1(X) = \operatorname{Aut}(F_x)$; this is naturally a profinite group. Indeed,

$$\pi_1(X) = \left\{ (\sigma_C) \in \prod_{p:C \to X} F_x(C) : f \circ \sigma_C = \sigma_D \circ f \text{ for all } f:C \to D \text{ between covers} \right\}.$$

The group $\prod_C F_x(C)$ is a product of finite (hence compact) groups, so it is compact.

If X is a variety over \mathbf{Q} , let $X_{\overline{\mathbf{Q}}}$ be X, except now that we allow maps $f:Y\to X$ where the equations defining Y and the polynomials defining f have coefficients in $\overline{\mathbf{Q}}$. We can define a category of covers of $X_{\overline{\mathbf{Q}}}$ in the same way, and get a fundamental group $\pi_1(X_{\overline{\mathbf{Q}}})$. There is a canonical short exact sequence

$$1 \to \pi_1(X_{\overline{\mathbf{Q}}}) \to \pi_1(X) \to G_{\mathbf{Q}} \to 1.$$

Basically, if $\gamma \in \pi_1(X)$, we need to define how γ acts on finite Galois extensions F/\mathbb{Q} . The variety $X \times F$ is a cover of X, so γ acts on $X \times F$. This action must come from one of γ on F itself.

There is a nice comparison theorem. If X is a variety over \mathbf{Q} , then $\pi_1(X_{\overline{\mathbf{Q}}})$ is the profinite completion of the topological fundamental group $\pi_1(X(\mathbf{C}))$. Thus:

$$\pi_1(\mathbf{P}_{\overline{\mathbf{Q}}}^1 \setminus \{0, \infty\}) = \widehat{\mathbf{Z}}$$

$$\pi_1(\mathbf{P}_{\overline{\mathbf{Q}}}^1 \setminus \{0, 1, \infty\}) = \widehat{F_2}$$

$$\cdots$$

$$\pi_1(\mathbf{P}_{\overline{\mathbf{Q}}}^1 \setminus \{x_0, \dots, x_n\}) = \widehat{F_n}.$$

Note that if we choose $x \in X(\mathbf{Q})$, then the surjection $\pi_1(X) \to G_{\mathbf{Q}}$ has a section. This gives a representation $G_{\mathbf{Q}} \to \operatorname{Aut}(\pi_1(X_{\overline{\mathbf{Q}}}))$. We will be interested in a clever choice of X, to be described in the next section.

4 Teichmüller tower

Let $\mathbf{P}^1(\mathbf{C}) = \mathbf{C} \cup \{\infty\}$ be the Riemann sphere. Recall that if $\{x_1, x_2, x_3\}$ are three distinct points in \mathbf{P}^1 , then there is a unique fractional linear transformation $\mu(z) = \frac{az+b}{cz+d}$ such that $\mu(x_1) = 0$, $\mu(x_2) = 1$ and $\mu(x_3) = \infty$. Let $\mathrm{PGL}_2(\mathbf{C})$ be the group of fractional linear transformations. We can rephrase this by saying that $\mathrm{PGL}_2(\mathbf{C})$ acts simply transitively on $\mathbf{P}^1(\mathbf{C})$.

Let $n \ge 1$ be an integer. Let $\Delta \subset (\mathbf{P}^1)^n$ be the "weak diagonal" consisting of all tuples (x_1, \ldots, x_n) with some $x_i = x_j$. Put

$$\mathcal{M}_{0,n} = \left((\mathbf{P}^1(\mathbf{C}))^n \setminus \Delta \right) / \operatorname{PGL}_2(\mathbf{C}).$$

A priori, this is just a topological space. However, we could have repeated the definition with varieties:

$$\mathcal{M}_{0,n} = ((\mathbf{P}^1)^n \setminus \Delta) / \operatorname{PGL}(2),$$

and gotten a variety over \mathbf{Q} . As a set, $\mathcal{M}_{0,n}$ is the space of isomorphism classes of n marked points on $\mathbf{P}^1(\mathbf{C})$. Thus

$$\mathcal{M}_{0,4} = \mathbf{P}^1 \setminus \{0, 1, \infty\}$$
$$\mathcal{M}_{0,5} = (\mathcal{M}_{0,4})^2 \setminus \Delta.$$

There are obvious maps $\mathcal{M}_{0,n+1} \to \mathcal{M}_{0,n}$ given by "forget a point." Denote by $\mathcal{M}_{0,\bullet}$ the whole collection of the $\mathcal{M}_{0,n}$ with these maps. Note that $\dim(\mathcal{M}_{0,n}) = \max\{0, n-3\}$.

More generally, if $3g-3+n\geqslant 0$, let $\mathcal{M}_{g,n}$ be the "moduli space of genus g curves with n marked points. As a topological space, this has an easy description. Let $S_{g,n}$ be a genus g surface with n marked points, let $\mathcal{T}_{g,n}$ be the space of triples $(X, \boldsymbol{x}, \phi)$ where X is a genus g curve, $\boldsymbol{x}=(x_1,\ldots,x_n)$ is a tuple of n distinct points in X, and $\phi:S_{g,n}\stackrel{\sim}{\to} X$ is a diffeomorphism. The space $\mathcal{T}_{g,n}$ is simply connected. Let $\Gamma_{g,n}=\pi_0\left(\operatorname{Diff}^+(S_{g,n})\right)$, the space of connected components in the group of orientation-preserving, boundary fixing diffeomorphisms of $S_{g,n}$. This is the mapping class group of $S_{g,n}$. The group $\Gamma_{g,n}$ acts freely on $\mathcal{T}_{g,n}$ and (topologically) we have $\mathcal{M}_{g,n}=\mathcal{T}_{g,n}/\Gamma_{g,n}$. The space $\mathcal{M}_{g,n}$ exists as a variety of dimension 3g-3+n over \mathbb{Q} . We will only need $\mathcal{M}_{0,n}$. Note that the geometric fundamental group $\pi_1((\mathcal{M}_{g,n})_{\overline{\mathbb{Q}}})=\Gamma_{g,n}$, where we write $\Gamma_{g,n}$ for the profinite completion of $\Gamma_{g,n}$. Since $\mathcal{M}_{0,4}=\mathbf{P}^1\smallsetminus\{0,1,\infty\}$, we have $\Gamma_{0,4}=\widehat{F_2}$.

By [Loc97], there is a coherent way of choosing basepoints for the $\mathcal{M}_{g,n}$ in such a way that the actions of $G_{\mathbf{Q}}$ on $\Gamma_{g,n}$ are compatible with the degeneracy maps $\Gamma_{g,n+1} \to \Gamma_{g,n}$. We write $\mathcal{M}_{\bullet,\bullet}$ for the whole collection of the $\mathcal{M}_{g,n}$ -s, and $\rho: G_{\mathbf{Q}} \to \operatorname{Aut}(\Gamma_{\bullet,\bullet})$ for the induced action.

5 The Grothendieck-Teichmüller group $\widehat{\operatorname{GT}}$

Define $\widehat{\mathrm{GT}}=\mathrm{Aut}(\Gamma_{\bullet,\bullet})$. By the theory of "base points at infinity" we have a representation $\rho:G_{\mathbf{Q}}\to\widehat{\mathrm{GT}}$. A fundamental theorem of Belyĭ is that ρ is an injection. The *Grothendieck-Teichmüller conjecture* states that $G_{\mathbf{Q}}\stackrel{\sim}{\to}\widehat{\mathrm{GT}}$. Even if this were proved, it wouldn't a priori be especially helpful if we couldn't determine $\widehat{\mathrm{GT}}$. Fortunately, it is possible to pin down $\widehat{\mathrm{GT}}$ as a subgroup of $\mathrm{Aut}(\widehat{F_2})$. First, it is known that $\mathrm{Aut}(\Gamma_{\bullet,\bullet})=\mathrm{Aut}(\Gamma_{0,\leqslant 5})$, i.e. an automorphism of the Teichmüller tower is determined by its restriction to $\Gamma_{0,4}$ and $\Gamma_{0,5}$. Moreover, it is shown in [Sch97] that this restriction has an explicit description.

To be precise, for $(\lambda, f) \in \widehat{\mathbf{Z}}^{\times} \times [\widehat{F_2}, \widehat{F_2}]$, consider the map $\phi_{\lambda, f} : \widehat{F_2} \to \widehat{F_2}$ given by

$$\phi_{\lambda,f}(x) = x^{\lambda}$$

$$\phi_{\lambda,f}(y) = f^{-1} \cdot y^{\lambda} \cdot f.$$

Here we have chosen generators $F_2 = \langle x, y \rangle$. Let

$$P_5 = \langle \sigma_1, \dots, \sigma_4 : \sigma_i \sigma_{i+1} \sigma_i = \sigma_{i+1} \sigma_i \sigma_{i+1}$$

$$\sigma_i \sigma_j = \sigma_j \sigma_i$$

$$\sigma_4 \sigma_3 \sigma_2 \sigma_1^2 \sigma_2 \sigma_3 \sigma_4 = 1$$

$$(\sigma_1 \sigma_2 \sigma_3 \sigma_4)^5 = 1 \rangle$$

and, for $i \in \mathbf{Z}/5$, let $x_{i,i+1} = \sigma_{i-1} \cdots \sigma_{i+2} \sigma_{i+1}^2 \sigma_{i+3}^{-1} \cdots \sigma_{i-1}$ (check that this is independent of the class of i). A good reference here is [Iha91].

Let $\theta \in \operatorname{Aut}(\widehat{\mathbf{F}_2})$ be $\theta(x) = y$, $\theta(y) = x$, and $\omega(x) = y$, $\omega(y) = (xy)^{-1}$. Suppose $\phi_{\lambda,f}$ is invertible. Then $\phi_{\lambda,f}$ extends to an automorphism of $\Gamma_{0,5}$ if and only if

$$f(x,y)f(y,x) = 1 (I)$$

$$f(z,x)z^{m}f(y,z)y^{m}f(x,y)x^{m} = 1 \text{ if } xyz = 1 \text{ and } m = \frac{1}{2}(\lambda - 1)$$
 (II)

$$f(x_{1,2}, x_{2,3})f(x_{3,4}, x_{4,0})f(x_{0,1}, x_{1,2})f(x_{2,3}, x_{3,4})f(x_{4,0}, x_{0,1}) = 1$$
(III)

The last relation takes place in P_5 , where we interpret f(a,b) (for a,b elements of any group) in the obvious way. So conjecturally $G_{\mathbf{Q}}$ is isomorphic to the subgroup of $\operatorname{Aut}(\widehat{F}_2)$ consisting of $\phi_{\lambda,f}$ satisfying (I), (II), and (III).

Finally. If $p: C \to \mathbf{P}^{1}_{\mathbf{Q}} \setminus \{0, 1, \infty\}$ is a Belyĭ cover, let $\Gamma = p^{-1}[0, 1]$; this is a graph in C with edges marked black and white for lying over 0 and 1. It is an example of a dessin d'enfant: a connected graph

with a two-coloring of the vertices, for which each edge has endpoints of different colors. See the AMS article What is a Dessin d'Enfant by Leonardo Zapponi for examples.

References

- [Gro97] Alexandre Grothendieck. Esquisse d'un programme. In *Geometric Galois actions*, 1, volume 242 of London Math. Soc. Lecture Note Ser., pages 5–48. Cambridge Univ. Press, 1997. With an English translation on pp. 243–283.
- [Iha91] Yasutaka Ihara. Braids, Galois groups, and some arithmetic functions. In *Proceedings of the International Congress of Mathematicians*, Vol. I, I (Kyoto, 1990), pages 99–120, Tokyo, 1991. Math. Soc. Japan.
- [Loc97] Pierre Lochak. The fundamental groups at infinity of the moduli spaces of curves. In *Geometric Galois actions*, 1, volume 242 of *London Math. Soc. Lecture Note Ser.*, pages 139–158. Cambridge Univ. Press, 1997.
- [Sch97] Leila Schneps. The Grothendieck-Teichmüller group $\widehat{\text{GT}}$: a survey. In Geometric Galois actions, 1, volume 242 of London Math. Soc. Lecture Note Ser., pages 183–203. Cambridge Univ. Press, 1997.