Find solutions for your homework

Search

home / study / engineering / electrical engineering / electrical engineering questions and answers / consider an lti system given by the following ...

Question: Consider an LTI system given by the following block diagram: ...

Consider an LTI system given by the following block diagram:

where D is the unit-delay operator.

- (a) Find the difference equation which represents this system.
- (b) Find the frequency response of this system.
- (c) Find the impulse response of this system from its frequency response.
- (d) Find the output y[n] for the input $x[n] = (\frac{1}{4})^n u[n]$ using the frequency response.

Show transcribed image text

Expert Answer

Vasumathi answered this 3,354 answers

Was this answer helpful?

Post a question

Answers from our experts for your tough homework questions

Enter question

Continue to post

20 questions remaining

Snap a photo from your phone to post a question

We'll send you a one-time download

888-888-8888

Text me

By providing your phone number, you agree to receive a one-time automated text message with a link to get the app. Standard messaging rates may apply.

My Textbook Solutions

Signals, Systems, &... 5th Edition Signals and Systems 2nd Edition

Fundamental s of Signals... Oth Edition

View all solutions

$$x(e^{\int_{-1}^{2}}) = \frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}}, \quad y(e^{\int_{-1}^{2}}) = x(e^{\int_{-1}^{2}}) \text{ Her}^{\frac{1}{2}}$$
Apply parital traction expansion,
$$y(e^{\int_{-1}^{2}}) = \frac{A}{(1 - \frac{1}{4}e^{\int_{-1}^{2}})} + \frac{Bo}{(1 - \frac{1}{4}e^{\int_{-1}^{2}})} + \frac{BI}{(1 - \frac{1}{4}e^{\int_{-1}^{2}})^{2}}$$

$$BI = y(e^{\int_{-1}^{2}}) \left(1 - \frac{1}{4}e^{\int_{-1}^{2}} \right)^{\frac{1}{2}} \right) \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} \right)$$

$$= \frac{\lambda}{1 - \frac{1}{2}e^{\int_{-1}^{2}}} \left(\frac{y(e^{\int_{-1}^{2}}) - \frac{1}{4}e^{\int_{-1}^{2}}} \right) \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right) \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} \right) \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right) \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} \right)$$

$$= \frac{\lambda}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right) \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} = \frac{\lambda}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right) \left(\frac{1}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} \right)^{\frac{1}{2}} = \frac{\lambda}{1 - \frac{1}{4}e^{\int_{-1}^{2}}}$$

$$= \frac{\lambda}{1 - \frac{1}{4}e^{\int_{-1}^{2}}} + \frac{\lambda$$

Comment >

Questions viewed by other students

- Q: 1. (20 pts) Consider an LTI system given by the following block diagram: y(t) r(t) (a) (5 pts) Find the differential equation which represents this system. (b) (15 pts) Find the output y(t), when the input x(t) = (e-4e-2t)a(t). Assume that the system is initially at rest.
- A: See answer 100% (1 rating)
- Q: I need help with this signals and systems analysis problem. Thanks!
- A: See answer 100% (1 rating)

Show more 🗸

COMPANY

About Chegg
Chegg For Good
College Marketing
Corporate Development
Investor Relations
Jobs
Join Our Affiliate Program
Media Center

LEGAL & POLICIES

Advertising Choices
Cookie Notice
General Policies
Intellectual Property Rights
Terms of Use
Global Privacy Policy
DO NOT SELL MY INFO
Honor Code
Honor Shield

CHEGG PRODUCTS AND SERVICES

Mobile Apps Cheap Textbooks Chegg Coupon Sell Textbooks Chegg Play Solutions Manual Chegg Study Help Study 101 Textbook Rental College Textbooks **Used Textbooks** eTextbooks Flashcards Digital Access Codes Chegg Money Chegg Math Solver

CHEGG NETWORK

EasyBib Internships.com Thinkful

CUSTOMER SERVICE

Customer Service
Give Us Feedback
Help with eTextbooks
Help to use EasyBib Plus
Manage Chegg Study
Subscription
Return Your Books
Textbook Return Policy

Site Map

