Pure Classification Algorithm

Logistic **A**gorithm

K-Nearest Neighbour

K-Nearest Neighbour

Naïve Bayes is a probabilistic machine learning algorithm based on the **Bayes Theorem**.

Conditional probability is a measure of the probability of an event occurring given that another event has (by assumption, presumption, assertion, or evidence) occurred.

In simpler terms, Bayes' Theorem is a way of finding a probability when we know certain other probabilities.

Assumptions

Independent → Each variable should not have any connection

Equal \rightarrow All the variables are equally important

Color	Туре	Origin	Stolen
Red	suv	Domestic	?

$$P(y|X) = \frac{P(X|y)P(y)}{P(X)}$$

The variable \mathbf{y} is the class variable(stolen?), which represents if the car is stolen or not given the conditions. Variable \mathbf{X} represents the parameters/features.

$$P(y|x_1,...,x_n) = \frac{P(x_1|y)P(x_2|y)...P(x_n|y)P(y)}{P(x_1)P(x_2)...P(x_n)}$$

		Stolen?	
	1	Yes	No
T	Sports	4	2
Type	suv	1	3

Likelihood Table

		Stolen?	
		P(Yes)	P(No)
_	Sports	4/5	2/5
Туре	SUV	1/5	3/5

Frequency Table

Likeliho	od Table

		Stoten?	
		P(yes)	P(no)
Color	Red	3/5	2/5
	Yellow	2/5	3/5

		Stolen?	
		Yes	No
Octobe	Domestic	2	3
Origin	Imported	3	2

		Stoler	1?
		P(Yes)	P(No)
	Domestic	2/5	3/5
Origin	Imported	3/5	2/5

		Stoten?	
		P(yes)	P(no)
Color	Red	3/5	2/5
	Yellow	2/5	3/5

Since 0.144 > 0.048, Which means given the features RED SUV and Domestic, our example gets classified as 'NO' the car is not stolen.

The zero-frequency problem

	Spam = ves	Spam = no
TimeZone = US	(fo ')	5
TimeZone = EU)	Add 1 for avoid zero frequence
		•

	Spam = yes	Spam = no
TimeZone = US	11	6
TimeZone = EU	1	1

- 3. Types of Regression
 - 1. 1. Linear Regression
 - 2. 2. Polynomial Regression
 - 3. 3. Logistic Regression
 - 4. 4. Quantile Regression
 - 5. <u>5. Ridge Regression</u>
 - 6. <u>6. Lasso Regression</u>
 - 7. 7. Elastic Net Regression
 - 8. 8. Principal Components Regression (PCR)
 - 9. 9. Partial Least Squares (PLS) Regression
 - 10. 10. Support Vector Regression
 - 11. 11. Ordinal Regression
 - 12. 12. Poisson Regression

1. Supervised learning

1.1. Linear Models

- 1.1.1. Ordinary Least Squares
- 1.1.2. Ridge regression and classification
- 1.1.3. Lass
- 1.1.4. Multi-task Lasso
- 1.1.5. Elastic-Net
- 1.1.6. Multi-task Elastic-Net
- 1.1.7. Least Angle Regression
- 1.1.8. LARS Lasso
- 1.1.9. Orthogonal Matching Pursuit (OMP)
- 1.1.10. Bayesian Regression
- 1.1.11. Logistic regression
- 1.1.12. Generalized Linear Regression
- 1.1.13. Stochastic Gradient Descent SGD
- 1.1.14. Perceptron
- 1.1.15. Passive Aggressive Algorithms
- 1.1.16. Robustness regression: outliers and modeling errors
- 1.1.17. Quantile Regression
- 1.1.18. Polynomial regression: extending linear models with basis functions