

PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2000068493 A

(43) Date of publication of application: 03.03.00

(51) Int. CI H01L 29/06

(21) Application number: 10237437

(71) Applicant: SONY CORP

(22) Date of filing: 24.08.98

(72) Inventor: WESTWATER JONATHAN GOSAINDARAM PAL HIRANO HIDETAKA USUI SETSUO

(54) SEMICONDUCTOR ELEMENT HAVING QUANTUM STRUCTURE AND MANUFACTURE THEREOF

(57) Abstract:

PROBLEM TO BE SOLVED: To surely manufacture a semiconductor element and uniformly manufacture a quantum structure with high reproducibility by forming a protrusion on the side of a semiconductor island in a semiconductor part and by constituting the side of the protrusion of a face, whose oxidation speed is faster than that of the side of a semiconductor island.

SOLUTION: A semiconductor layer 12 is etched to oxidize a periphery of a pillar-like semiconductor at the center, and a protrusion 4 of the pillar-like semiconductor is isolated by an oxide film insulator 15, to form a semiconductor island 16 isolated from a semiconductor part of the protrusion 4 at a part of the center of the pillar-like semiconductor. At this time, due to the oxidation rate from the side of the protrusion 4 being fast, the oxidation on a small diameter part on the upper part of the protrusion 4 is caused to advance so as to go across the pillar-like semiconductor. The upper end

of the protrusion 4 of the pillar-like semiconductor is pinched off by the oxide film insulator 15 to form a pinched-off part 15p. Thus a quantum structure can be manufactured with high reproducibly and uniformity.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出職公開發号 特開2000-68493

(P2000-68493A)

(43)公隣日 平成12年3月3日(2000.9.3)

(51) Int.CL'

識別配号

FI

テーマンード(参考)

H01L 29/06

HO1L 29/06

審査請求 京請求 請求項の数9 OL (全 12 頁)

(21)出顯路号	特職平10−237437	(71) 出願人 000002185
		ソニー株式会社
(22)出顧日	平成10年8月24日(1998.8.24)	東京都品川区北品川6丁目7番35号
		(72) 発明者 ウエストウォーター ジョナサン
		東京都品川区北品川6丁目7番35号 ソニ
		一株式会社内
		(72)発明者 ゴサインダラム パル
		東京都島川区北島川6丁目7番35号 ソニ
		一株式会社内
		(74)代理人 100080883
		弁理士 松限 秀盛
		最終頁に統へ

(54) 【発明の名称】 量子構造体を有する半導体案子とその製造方法

(57)【要約】

【課題】 例えば単一電子トランジスタメモリ素子における薄膜によるトンネル絶縁膜を介して置子細線、置子ドット等の半導体島部が形成された量子構造体を育する半導体素子を確実に構成することができるようにする。 【解決手段】 半導体島部16と、この半導体島部16を覆う敵化膜絶縁体15と、この半導体島部16の一端に、この酸化膜絶縁体15のピンチオフ部15pによる潭いトンネル絶縁膜が彩成された構成とする。

Ł.

【特許請求の範囲】

【請求項1】 半導体島部と、該半導体島部を覆う絶縁体と、該半導体島部の一端に近接する半導体部からなる 骨子構造体を有し、

1

上記半導体部は、上記半導体島部側に凸部を有し、 該凸部は、その側面が、上記半導体島部の側面に比し、 酸化速度が速い面を含むことを特徴とする置子構造体を 有する半導体素子。

【請求項2】 上記半導体島部と、上記凸部との間に介在する上記絶機体がトンネル絶縁膜とされ、上記半導体 10島部が微小島部とされて量子構造体が形成されたことを特徴とする請求項1に記載の置子構造体を有する半導体表示

【請求項3】 上記半導体島部と、上記凸部との間に介在する上記絶縁体をトンネル絶縁膜とし、上記凸部の形成部の両側にソースおよびドレイン領域が形成され、上記半導体島部に、少なくとも上記絶縁体を介してゲート電極が形成されて成ることを特徴とする請求項1に記載の量子構造体を育する半導体素子。

【請求項4】 墓板上に、銈状半導体を形成する工程 と

上記柱状半導体の周囲を酸化して、酸化膜絶縁体によって覆われた、柱状半導体の一部からなる半導体島部を形成する酸化処理工程とを有し、

上記柱状半導体の形成工程によって形成される柱状半導体は、上記基板側に、該基板側に向かって幅広となる凸部を有する半導体部を有し、該凸部の側面が、上記柱状部の側面に比し、酸化速度が速い面を含む面によって形成されたことを特徴とする量子構造体を有する半導体素子の製造方法。

【請求項5】 上記酸化処理工程において、上記凸部の 酸化速度の速い面から進行して生じた酸化膜絶縁体によって上記凸部と上記半導体島部とを分解することを特徴 とする請求項4に記載の量子構造体を有する半導体素子 の製造方法。

【請求項6】 上記柱状半導体を形成する工程は、 基板上に、シリコンと溶融合金滴を形成する金属を蒸着 する工程と、

シリコンと上記金属による溶融合金滴を形成する加熱工 程と。

シリコン原料ガスを熱分解して上記溶融合金滴シリコン の形成部に、上記柱状体半導体部を成長させる工程とに よることを特徴とする請求項4 に記載の置子構造体を有 する半導体素子の製造方法。

【請求項7】 上記シリコンの原料ガスが、モノシラン、ジシラン、トリシランのいずれか1種以上のガスによることを特徴とする請求項6に記載の置子構造体を有する半導体素子の製造方法。

【請求項8】 上記基板は絶縁層もしくは絶縁基板上に、半導体層を有する基板よりなり。

該基板の上記半導体圏上に、上記基板側に上記凸部を有する上記柱状半導体を形成して後、該柱状半導体の斜め上方の一方向から、方向性をもって、リフトオフ用マスク村を飛翔堆積し、上記柱状半導体の一部側面から基板上の一方向に沿って上記柱状半導体の除となる部分に上記第1のリフトオフ用マスク層を形成する工程と、

少なくとも上記欠除領域を覆って上記墓板上に、該基板 の上記半導体層に対するエッチングのマスクとなる第1 のエッチングマスク層を形成する工程と、

上記リフトオフ用マスク層をリフトオフして、上記欠除 領域に上記第1のエッチングマスク層を選択的に残す工 程と

上記往状半導体を挟んで、上記のリフトオフ用マスク材の飛翔方向と対称の方向から、方向性をもって、リフトオフ用マスク村を飛翔堆積し、上記往状半導体の上記第1のエッチングマスク層が形成された側とは反対側の一部側面から基板上の一方向に沿って上記柱状半導体の陰となる部分に上記リフトオフ用マスク村の欠除領域が形20 成された第2のリフトオフ用マスク層を形成する工程

該リフトオフ用マスク層の少なくとも上記欠除領域を確って上記基板上に、該基板の上記半導体層に対するエッチングのマスクとなる第2のエッチングマスク層を形成する工程と、

上記第2のリプトオフ用マスク層をリプトオフして、上記欠除領域に上記算2のエッチングマスク層を選択的に 残す工程と、

上記第1および第2のエッチングマスク層をマスクとし 30 て上記半導体層をエッチングする工程と、

その後、上記骸化処理を行って上記墓板側に凸部が形成された上記柱状半導体の周囲を酸化して酸化膜絶縁体によって窺われた。柱状半導体の一部からなる半導体島部を形成したことを特徴とする請求項4に記載の量子構造体を有する半導体素子の製造方法。

【請求項9】 上記基板が半導体基板もしくは半導体層を有する基板であって、

該芸板上に形成した上記柱状半導体の周囲を酸化し、酸 化漿絶縁体によって覆われた、柱状半導体の一部からな る半導体島部を形成しての後、

上記柱状半導体の斜め上方の相反する2方向から、方向 性をもって、導電層を飛翔端積して、上記柱状半導体を 挟んでその両側に互いに分離した上記導電層による対の 電極を形成する工程と、

該電極を窺って全面的に絶縁層を形成する工程と、

該絶繰層上の上記半導体島部の上方にゲート電極を形成 する工程とを有することを特徴とする語求項4に記載の 置于構造体を有する半導体素子の製造方法。

【発明の詳細な説明】

50 [0001]

http://www4.ipdl.ncipi.go.jp/tjcontenttrns.ipdl?N0000=21&N0400=image/gif&N0401=/...

(3)

【発明の属する技術分野】本発明は、例えば単一電子ト ランジスタにおけるような量子構造体を有する半導体素 子とその製造方法に係わる。

[0002]

【従来の技術】単一電子トランジスタ、すなわちシング ル・エレクトロン・トランジスタは、ソース・ドレイン 間のチャネルからトンネル酸化膜を介して分離形成され た微細なS ! (シリコン) 半導体島部による、量子化さ れたレベルの量子構造体を有して成り、この島部に単一 せる例えばトランジスタメモリ素子として機能する(例 えばGuo et al によるApplied Physics Letters 70(7), 850(1997) 麥縣。)。

【0003】量子細線の製造方法としては、例えばSi 基板を電子ビームリングラフィ方法を用いて量子細線等 の量子構造体を形成することの提案がなされている。し かしながら、この方法による場合、確実に、充分微細で 均一な置子細線を再現性良く製造することに問題があ

【0004】また、他の量子細線の製造方法としては、 例えばVLS (Vapor Liquid Solid) 法が提案されてい る (E.I.Givargizov.J.Vac.Techno.B11(2),p.449参 照)。これは、SI基板に金(Au)を蒸音してSI基 板の表面にSiとAuとの溶融合金滴を形成した後、S !原料ガスを供給してSi量子細線を成長させる方法で ある.

【0005】とのVLS法において用いられるSi原料 ガスとして、塩化珪素ガスを用いることが提案されてい & (Wagner et al., Applied Physics Letters 4,no.5,8 歷。)。

[0006]

【発明が解決しようとする課題】本発明は、上述した例 えば単一電子トランジスタメモリ素子における薄膜によ るトンネル絶縁膜を介して量子細線、量子ドット等の半 導体島部が形成された置子構造体を有する半導体素子を 確実に、再現性良く均一に製造することができるように した。置子構造体を有する半導体素子とその製造方法を 提供するものである。

LS法を一部の工程に適用し、特殊な構造を有する、量 子構造体を有する半導体素子と、これを確実に、再現性 良く均一に製造することができる製造方法を提供するも のである。

[0008]

【課題を解決するための手段】本発明による置子構造体 を育する半導体素子は、半導体島部と、この半導体島部 を覆う絶縁体と、この半導体島部の一端に近接する半導 体部からなる量子構造体を有する。半導体部は、半導体 島部側に凸部を有し、この凸部は、その側面が、半導体 50 モノシラン,ジシラン,トリシランの1種以上を供給

島部の側面に比し、酸化速度が速い面を含む面からなる 模成とする。

【0009】また、本発明による貴子構造体を有する半 導体素子の製造方法は、蟇板上に、柱状半導体を形成す る工程と、柱状半導体の周囲を酸化して、酸化膜絶縁体 によって窺われた、柱状半導体の一部からなる半導体島 部を形成する酸化処理工程とを有する。柱状半導体の形 成工程によって形成される柱状半導体は、基板側に、こ の墓板側に向かって幅広となる凸部を有する半導体部を の電子をトラップさせることによって電位変化を発生さ 10 有し、この凸部の側面が、往状部の側面に比し、酸化速 度が遠い面を含む面によって形成された構成とされる。 【0010】上途したように、本発明では、半導体上に 酸化速度の速い側面を有する凸部が形成された構成と、 この凸部における酸化速度の速い側面による酸化の進行 によって半導体島部と、凸部を有する半導体部とを薄膜 状の酸化絶縁体によって分離するという間深な方法で、 トンネル組縁膜を有する量子構造体を有する半導体素子 を構成することができるようにするものである。 [0011]

> 【発明の実施の形態】本発明による量子構造体を有する 半導体素子は、半導体島部と、この半導体島部を覆う絶 緑体と、この半導体島部の一端に近接する半導体部から なる量子構造体を有してなるものであり、その半導体部 は、半導体島部側に凸部を有し、この凸部は、その側面 が、半導体島部の側面に比し、酸化速度が速い面を含む

面からなる構成とする。

【0012】本発明製造方法においては、VLS法を適 用し得るものであり、更にこのVLS法は、本出願人に よる出類、特願平8-325555号出類、および特願 9(1954), Givargizov, J. Crystal Growth, 31, 29(1975) 巻 30 平9-256045号出願等で提案した方法によって形 成することができる。

> 【0013】図面を参照して本発明による置子構造体を 有する半導体素子の例を、本発明による製造方法の例と 共に説明するが、本発明はこれら例に限られるものでは

【①①14】先ず、図1を参照して、墓板1上に柱状半 導体2を形成する工程について説明する。基板1は、例 えば比抵抗 ρ =0.4Q・cmを有し、その一主面1a が、(111)結晶面とされたS | 半導体基板が用いち 【0007】すなわち、本発明においては、上述したV 40 れる。この基板1の一主面1aは研磨され、更に例えば アセトンによって洗浄され、硝酸と完酸の混合液によっ てエッチングされ、表面酸化膜が除去される。このよう にして、基板1に対する前処理がなされる。

> 【0015】図1Aに示すように、この基板1の主面1 aに、後述するSiと溶融合金滴を形成し、柱状半導体 の成長の触媒となる金属の例えばAuを蒸着して厚さ 0.6 n m程度の金属層5を被者形成する。その後、基 板温度を300℃~700℃の例えば520℃の加熱下 で、Sェの原料ガス、特にシラン (Si。Hょ。」)の、

し、原料ガスの熱分解を行う。この場合、Sェの原料ガ スの供給は、その分圧が、()、5 m Torr以上の例えば1 ① mmTorrとする。このようにすると、図1Bに示すよ うに、溶融合金滴3が形成され、続いて図1Cに示すよ うに、溶融合金滴3の形成部に、基板1側に、凸部4が 形成された柱状半導体2が成長する。この柱状半導体2 は、その軸方向が、<1112方向に形成される。そし て、その基部側に形成される凸部4は、基板1側に向か って幅広の形状に形成され、その周囲の側面4gは、

5

{111}と直交することのない傾斜側面の、酸化速度 16 の遠い結晶面例えば (110)、(100) を含む面に よって形成される。

【0016】図2は、このようにして形成した往状半導 体2のSEM(Scanning ElectronMicroscope: 定査型 電子顕微鏡)の写真図で、これによりこの柱状半導体2 がく111>方向に形成されることが確認された。ま た. 図3は、TEM (Transmission Electron Microsco pe:透過型電子顕微鏡》)写真図を示し、これにより、 柱状半導体2は、その直径が殆ど均一な柱状部2でとそ の凸部4が生じていることが観察される。

【0017】往状半導体2は、その成長時間を1時間と するとき、長さ(高さ)hを、1ヵmとすることがで き、その直径は10nm~100nmに形成することが できる。そして、この方法によって形成した柱状半導体 2は、その寸法、形状が均一にかつ再現性良く形成され る.

【0018】尚、本発明方法で用いられる基板1は、目 的とする量子構造体を有する半導体素子の構成に応じて 上述したように、例えば半導体基板によって構成すると か、あるいは絶縁基体上に半導体層が形成されたSOI 基板、あるい半導体基板の所定の深さに酸素を打ち込ん で形成したいわゆるSiMOX(Separate by Implante d Oxygen)によるSO!芸板によって構成するととがで

【0019】図4~図9を参照して、本発明による量子 機造体を有する単一電子トランジスタメモリ素子の一例 を、本発明による製造方法の一例と共に説明する。図4 ~図9において、各A、およびA、はそれぞれ各工程に おける要部の概略平面図を示し、各B、およびB、はそ 49 Auを全面的に蒸着する。 れぞれ各A、およびA、における機略断面図を示す。 【0020】との例においては、基板1が、上述のSi

MOX標準による、すなわち標準的には、SI幕体10 上にSIO、絶緯層11を介してSi半導体層12が形 成さ構成とした場合である。この半導体層12上に、図 4A、およびB、に示すように、図1で説明した方法に よって柱状半導体2を形成した。したがって、この柱状 半導体2は、前途したように、その墓板1側に向かって 幅広をなす凸部4による半導体部が形成され、この凸部 の外層の側面4 s は、柱状半導体2の柱状部における側 50 半導体2の相対向する周面の一部とこれよりそれぞれ間

面に比し、酸化速度が速い結晶面を含む面によって形成

【0021】次に、図4A。およびB。に示すように、 この柱状半導体2の斜め上方から一方向(図4B, 中矢 印をもって示す) に沿ってリフトオフマスク材。例えば Alを飛翔堆積、例えば蒸着してリフトオフ用マスク層 13を形成する。このようにして形成されたリフトオフ 用マスク層13には、柱状半導体2によって一部が進ら れた、すなわち、上述の斜め蒸着における柱状半導体2 の除となる柱状半導体2の側面の一部に、柱状半導体2 の軸方向に沿い、かつこれより、半導体層12上に、一 方向に沿って延びるリフトオフマスク村の被着されない 欠除領域13Wが形成される。

【0022】図5A、およびB、に示すように、少なく とも欠除領域13型を覆って、半導体層12に対するエ ッチングのマスクとなる第1のエッチングマスク層1 4. 例えばAu層を全面蒸着によって形成する。

【0023】図5A、およびB、に示すように、上述し た例えばA!によるリフトオフ用マスク層13を、その の基板1側、すなわち根元に、基板1側に向かって幅広 29 エッチング液によって溶解することによってリフトオフ する。このようにすると、第1のリフトオフ用マスク層 13上に形成されていたエッチングマスク層14が除去 され、リフトオフ用マスク層13の欠除領域13型を通 じて直接半導体層12に接着されていた第1のエッチン グマスク層14が選択的に残される。

> 【0024】図6A、およびB、に示すように、図4A 、および B、で説明した斜め蒸着における蒸着方向と は、柱状半導体2を挟んで反対側の対称的方向の斜め上 方から方向性をもって、前述したA1等の同様にリフト オフ用マスク村を飛翔堆積、例えば蒸着する。このよう にして、柱状半導体2の、第1のエッチングマスク層1 4が形成された側とは反対側の一部側面から基板上の一 方向に沿って柱状半導体2の陰となる部分に、リフトオ フ用マスク材の欠除領域23Wが形成された第2のリフ トオフ用マスク層23を形成する。

【0025】図6ム、およびB、に示すように、この第 2のリフトオフ用マスク層23の少なくとも欠除領域2 3型を覆って、同様に半導体層12に対するエッチング のマスクとなる第2のエッチングマスク層24を倒えば

【0026】その後、図7A、およびB、に示すよう に、第2のリフトオフ用マスク層23を、そのエッチン グ液によってリフトオフする。このようにすると、欠除 領域23 Wを通じて直接的に半導体層12上に接着形成 されている第2のエッチングマスク層24のみが残さ れ、他の第2のエッチングマスク層24は、第2のリフ トオフ用マスク層23と共に除去される。

【0027】 このようにして、図7A。 に示されるよう に、柱状半導体2の径に対応する小なる幅を有し、柱状 一直線上に延びる第1 および第2のエッチングマスク層 14および24によるエッチングマスクが形成される。 【0028】次に、図7A、およびB、に示すように、 第1および第2のエッチングマスク14および24をマ スクとして、半導体層12に対するエッチングを行って 例えば中央に往伏半導体2が植立され、その直径に相当 する帽をもって両側に直線的延びる線状パターンを有す る半導体層12を形成する。

【0029】図8A、およびB、に示すように、第1お よび第2のエッチングマスク14および24を、例えば 10 王水によってエッチング除去する。

【0030】さらに、図8A、およびB、に示すよう に、例えば且C1と目NO。が3:1のエッチング液に よって、溶融合金滴3を除去する。

【0031】次に、図9A、およびB、に示すよろに、 酸化処理を行って柱状半導体2の周囲を酸化すると共 に、柱状半導体2の凸部4を酸化膜絶縁体15によって 分離して、凸部4の半導体部と分離された半導体島部1 6を柱状半導体2の中心部の一部に形成する。この酸化 時間の熱処理によって行う。この場合、凸部4の側面4 sからの酸化速度が速いことによって、この凸部4の上 部の小径部においてその酸化が柱状半導体2を横切るよ うに進行し、この柱状半導体2の凸部4の上端部が、酸 化絶縁体15によってピンチオフする。しかも往状半導 体2の柱状部においても、その周面に酸化絶縁体15が 形成されることから、柱状半導体2の柱状部に酸化絶縁 体15によって覆われた半導体島部16が形成される。 【0032】図10は、との酸化処理後の、柱状半導体 2のTEM写真に基いて描いた図で、これより明らかな。 ように、柱状半導体2の層面に沿って酸化絶縁体15が 形成されるが、凸部4の上端部において、酸化絶縁体1 5が結状半導体2を構切って形成されたピンチオフ部1 5 pが生じる。このピンチオフ部15 pの厚さdは、7 nm~13nm程度に薄くすることができることから、 ピンチオフ部 15 p における酸化絶縁体をトンネル絶縁 膜として機能することができる。そして、このビンチオ フ部15pによって分離された上方には、その周面の破 化絶縁体15とピンチオフ部15pによって覆われた微 細な半導体島部16が形成される。この半導体島部16 の直径は、5 n m羽~12 n mとすることができ、これ によって置子構造体を構成することができる。

【①①33】そして、このピンチオフ部15gの厚さす や、半導体島部16の直径は、柱状半導体2の直径すな わち前述の溶融合金織3の直径、酸化処理条件、例えば 酸化時間の選定によって選定することができる。

【0034】図9A、およびB、に示すように、半導体 島部16が形成された柱状半導体2を覆って例えばSェ O. 等の絶縁層17を全面的に形成し、例えばイオン注 領域を形成する。さらに全面を絶縁層で覆い、ソース・ ドレイン領域が露出するようにフォトリングラフィー等 によって柱状半導体部を覆うようにパターニングする。 ソース・ドレイン領域上と、絶縁層17上に、例えば高 不純物濃度、すなわち低比低抗の多結晶S
・半導体層に よるソースおよびドレイン電極18gおよび18dとゲ ート電径18gとを形成する。このようして、半導体島 部16が形成された量子構造体を有する目的とする単一 電子トランジスタメモリ素子19が構成される。

【10035】尚、図4~図9においては、1つの柱状半 導体のみを示しているが、共通の基板1に、複数の柱状 半導体を形成して、複数の量子構造体を有する半導体素 子を同時に形成して、集積回路構成とすることができ る.

【0036】また、図4で説明した例では、基板1に全 面的に、溶融合金満3を形成する金属層5を蒸着した場 台であるが、この場合、発生する溶融合金縮3 したが って、柱状半導体2が、目的とする位置に必ずしも形成 されない。このような不都合を回避するには、金属層5 は、その例えば500TorrのQ。雰囲気で700°C、1 26 の形成位置を規制し、目的とする位置に溶融合金滴3、 したがって、柱状半導体2を形成する方法を採ることが できる。この場合の一例を図11を参照して説明する。 【0037】との場合、図11Aに示すように、 蟇板1 上に、位置規制購31を形成する。この位置規制購31 は、例えばSi〇、膜を100mm程度の厚さに形成 し、倒えばフォトリングラフィによるパターンエッチン グを行って、最終的に柱状半導体2を形成する部分に透 孔31aを形成し、これら週孔31aを通じて、霊板1 の表面の限定された一部を外部に舞皇する。この開口 は、例えば直径1μm~()、8μmとする。

> 【0038】位置規制膜31に対する透孔31aの形成 の後、基板1を洗浄し、乾燥し、例えば700℃に加熱 して溶融合金滴を形成し、柱状半導体の成長の触媒とな る金属の例えばAuを蒸着して例えば厚さり、6nmの 金属層5を形成する。このとき、Au金属層5は、Si O。による位置規制膜31上には形成されず、遠孔31 8を通じて基板1の表面。すなわち半導体が延呈した部 分にのみ選択的に金属層5が形成される。

【0039】次に、前述したS1の原料ガス、例えばS 1 H。を供給し、図1で説明したと同様の熱処理を行 う。このようにすると、図11日に示すように、位置規 制膜31の透孔31a内に、SiとAuの溶融合金縮3 が形成される。このようにして、溶融合金縮3の形成位 置を規定することができる。したがって、その後、前述 した柱状半導体2の成長を行えば、この柱状半導体2の 形成位置もこの位置に規定される。そして、位置規制順 31は、適当な工程で、エッチングによって排除するこ とができる。

【0040】更に、図12および図13を参照して、本 入によって高濃度の例えばn型のソースおよびドレイン 59 発明による他の量子構造体を有する半導体素子と本発明

による製造方法の一例を説明する。この例では、複数、 図においては3つの単一電子トランジスタメモリ素子を 共通の例えば単一S : 基板 1 上に同時に形成した集積回 路装置に適用した場合である。この場合においても、S 1 墓板 1 は、その主面 1 a が、 {111} に選定され、 前途した例と同様の前処理を行う。

【0041】また、この例においては、図11で説明し た方法によって、基板1上の、目的とするメモリ素子を 形成する位置に、透孔31aを開口した位置規制膜31 金滴3を形成した。この溶融合金滴3の形成ピッチは、 例えば1. 0μmに選定し得る。そして、夏に、S1の 原料ガスを供給することによって、図12Aに示すよう に、溶融台金滴3の触媒作用によって、柱状半導体2を 育成する。この場合においても、柱状半導体2には、そ の墓板1側に、墓板1側に向かって帽広に広がり、外園 に傾斜側面4 s が形成された半導体部すなわち凸部4 が 形成される。

【0042】この柱状半導体2は、その軸方向が、<1 11>方向に形成される。そして、その基部側に形成さ 26 れる凸部4は、その側面4sは、{111}と直交する ことのない傾斜側面の、酸化速度の速い結晶面を含む面 によって形成される。

【0043】往状半導体2の形成の後、図12Bに示す ように、位置規制膜31を、エッチング除去する。

【0044】その後、酸化処理を行う。このようにする と、図120に示すように、柱状半導体2の周囲が酸化 5によって分離して、凸部4の半導体部と分離された半 導体島部16を柱状半導体2の中心部の一部に形成す る。この酸化は、その例えば500 TorrのO、雰囲気で 700℃、1時間の熱処理によって行う。この場合、凸 部4の側面4mにおける酸化速度が遠いことによって、 その酸化が柱状半導体2を横切るように進行してこの柱 状半導体2の凸部4の上端部が、酸化絶縁体15によっ てピンチオフし、そのピンチオフ部15pが生じる。し かも柱状半導体2の柱状部においても、その国面に酸化 絶雑体15が形成されることから、柱状半導体2の柱状 部に酸化絶縁体15によって覆われた半導体島部16が 2の直径、酸化処理条件の選定によって、半導体島部1 6の大きさを量子レベルを形成できる程度に充分小にし て、、またピンチオフ部15の厚さを、トンネル膜とし て機能できる程度に薄く適定することができる。

【0045】次に、図12Dに示すように、矢印aおよ びりに示すように、半導体島部16を挟んで互いに対称 的2方向から斜めに、飛翔維備、例えば蒸君によって例 えば金層層による電極導電層32を接着する。とのよう にすると、酸化能縁体15によって覆われた半導体島部 16を挟んでその相対向する側面において、電極導電圏 50 32が内厚に形成され、平坦部や、半導体島部16を有 する柱状部の上端に形成された電極導電層32は肉薄に 形成される。

【0046】したがって、その後、図13Aに示すよう に、導電圏32に対して全面的にエッチングを行い平坦 部に形成された内障部の電極導電32を除去すると、柱 状部の上端および平坦部の導電層32が排除され、図1 4にその平面図を示すように、柱状部を挟んでその両側 に、導電層32が選択的に残り、柱状部によって分離さ を形成し、例えばAuによる金属層5を蒸着し、溶融台 10 れた対のソースおよびドレイン電極18sおよび18d が形成される.

> 【0047】次に、図13Bに示すように、全面的に例 えばS:O,による絶縁層33をCVD(Chemical Vapo r Deposition) 法によって形成し、その後、図13Cに 示すように、その表面を例えば化学的機械的研磨(CM P) 法等によって絶縁層33を平坦化する。

【0048】この平坦化された面上に、図13Dに示す ように、各半導体島部16上にゲート電極18gを形成 する。このようにすると、共通の基板1に、各微小半導 体島部16が形成され、凸部4の上端に形成された酸化 絶縁体15、すなわちピンチオフ部15 pにおける肉薄 部をトンネル酸化膜とする単一電子トランジスタ構成に よる複数のメモリ素子が形成される。

【0049】この構成においても、半導体島部16を充 分小に、また、ピンチオフ部15pをトンネル絶縁膜と して機能することができる程度に薄くすることができる ことから、置子構造体を有する半導体素子、この例では 単一電子トランジスタ構成によるメモリ素子を形成する ことができる。

【0050】上述したように、本発明によれば、藤膜に よるトンネル絶縁膜を介して置子細線、置子ドット等の 半導体島部が形成された量子構造体を育する単一電子ト ランジスタメモリ素子を構成することがで、また本発明 製造方法によれば、VLS話と、酸化との工程を組み合 わせたことによって、確実に、再現性良く均一に目的と する量子標準体を有する半導体素子を製造方法できたも のである。

【0051】また、本発明製造方法において、柱状半導 体の成長において用いるSiの原料ガスをシラン系とす 形成される。そして、この場合においても、柱状半導体 40 るときは、従前におけるような塩化珪素ガスを用いる場 台に比し、熱処理温度を低めることができ、また。小径 の柱状半導体を容易に作製できるものである。

> 【0052】尚、上述した例では、溶融合金縮3の形成 をSi原料ガスの供給の下に行った場合であるが、この SiとAuの溶融合金滴3の形成を、墓板1側のSiと によって形成することもできる。

【0053】また、本発明は、上述した例に限られるも のではなく、種々の変形変更が可能である。

[0054]

【発明の効果】上述したように、本発明によれば、薄膜

によるトンネル絶縁膜を介して置子細線、置子ドット等 の半導体島部が形成された量子構造体を有する単一電子 トランジスタメモリ素子を構成することがで、また本発 明製造方法によれば、VLS法と、酸化との工程を組み 台わせたことによって、確実に、再現性良く均一に目的 とする置子構造体を有する半導体素子を製造方法できた ものである。

<u>11</u>

【10055】また、本発明製造方法において、往状半導 体の成長において用いるSiの原料ガスをシラン系とす るときは、従前におけるような塩化珪素ガスを用いる場 10 合に比し、熱処理温度を低めることができ、また。小径 の往状半導体を容易に作製できるものである。

【図面の簡単な説明】

【図1】A~Cは、それぞれ本発明の説明に供する柱状 半導体の形成方法の一例の各工程における機略断面図で ある.

【図2】柱状半導体の定査電子顕微鏡写真に基いて描い た図である。

【図3】柱状半導体の透過型電子顕微鏡写真に基いて描 いた図である。

【図4】A、およびA、は、本発明素子の一例の一製造 方法の各一工程の概略平面図である。B、およびB、 は、A、およびA、の鉄略断面図である。

【図5】A、およびA、は、本発明素子の一例の一製造 方法の各一工程の機略平面図である。B、およびB、 は、A、およびA、の鉄略断面図である。

【図6】A、およびA、は、本発明素子の一例の一製造 方法の各一工程の概略平面図である。B、およびB、 は、A、およびA、の鉄略断面図である。

方法の各一工程の概略平面図である。B、およびB。 *

*は、A、およびA、の鉄略断面図である。

【図8】A、およびA、は、本発明素子の一例の一製造 方法の各一工程の機略平面図である。B、およびB。 は、A、およびA、の機略断面図である。

12

【図9】A、およびA、は、本発明素子の一例の一製造 方法の各一工程の概略平面図である。B、およびB。 は、A、およびA、の概略断面図である。

【図10】柱状半導体の酸化処理後の透過型電子顕微鏡 写真に基いて描いた図である。

【図11】AおよびBは、それぞれ本発明の説明に供す る註状半導体の形成方法の他の例の各工程における概略 断面図である。

【図12】A~Dは、本発明素子の一例の一製造方法の 各一工程の概略断面図である。

【図13】A~Dは、本発明素子の一例の一製造方法の 各一工程の機略断面図である。

【図14】本発明素子の一例の一製造方法の一工程の概 略平面図である。

【符号の説明】

20 1・・・基板 1a・・・主面、2・・・柱状半導体、 3・・・溶融合金満、4・・・側面、5・・・金属層、 10・・・基体、11・・・絶縁層、12・・・半導体 厘、13・・・第1のリフトオフ用マスク層、13♥・ ・・欠除領域 14・・・第1のエッチングマスク層、 15・・・酸化漿絶縁体。15p・・・ピンチオフ部、 16・・・半導体島部、17・・・絶縁層、18s・・ ・ソース電極、18 d・・・ドレイン電極、18g・・ ・ゲート電極、23・・・第2のリフトオフ用マスク 層、23♥・・・欠除領域、24・・・第2のエッチン 【図7】A、およびA」は、本発明素子の一例の一製造 30 グマスク層、31・・・位置規制膜、31a・・・透 孔. 32・・・電極導電層.

【図2】

[図3]

(8)

特闘2000-68493

[24]

(9) 特開2000-68493 【図5】 [2] 14] A2

(10)特闘2000-68493 [図7]

(11) 特闘2000-68493

(12)

特闘2000-68493

[図13]

フロントページの続き

(72)発明者 平野 英孝 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内 (72)発明者 碓井 節夫 東京都品川区北品川6丁目7番35号 ソニ 一株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
☐ GRAY SCALE DOCUMENTS		
☐ LINES OR MARKS ON ORIGINAL DOCUMENT		
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		
OTHER:		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.