

planetmath.org

Math for the people, by the people.

semilattice decomposition of a semigroup

Canonical name SemilatticeDecompositionOfASemigroup

Date of creation 2013-03-22 13:07:09 Last modified on 2013-03-22 13:07:09

Owner mclase (549) Last modified by mclase (549)

Numerical id 6

Author mclase (549) Entry type Definition Classification msc 20M10

Defines semilattice congruence

A semigroup S has a *semilattice decomposition* if we can write $S = \bigcup_{\gamma \in \Gamma} S_{\gamma}$ as a disjoint union of subsemigroups, indexed by elements of a semilattice Γ , with the additional condition that $x \in S_{\alpha}$ and $y \in S_{\beta}$ implies $xy \in S_{\alpha\beta}$.

Semilattice decompositions arise from homomorphism of semigroups onto semilattices. If $\phi \colon S \to \Gamma$ is a surjective homomorphism, then it is easy to see that we get a semilattice decomposition by putting $S_{\gamma} = \phi^{-1}(\gamma)$ for each $\gamma \in \Gamma$. Conversely, every semilattice decomposition defines a map from S to the indexing set Γ which is easily seen to be a homomorphism.

A third way to look at semilattice decompositions is to consider the congruence ρ defined by the homomorphism $\phi \colon S \to \Gamma$. Because Γ is a semilattice, $\phi(x^2) = \phi(x)$ for all x, and so ρ satisfies the constraint that $x \rho x^2$ for all $x \in S$. Also, $\phi(xy) = \phi(yx)$ so that $xy \rho yx$ for all $x, y \in S$. A congruence ρ which satisfies these two conditions is called a *semilattice congruence*.

Conversely, a semilattice congruence ρ on S gives rise to a homomorphism from S to a semilattice S/ρ . The ρ -classes are the components of the decomposition.