机器学习大作业报告

沈冠霖 段凡 杨天煜 符景洲

1.题目选择

原链接: https://tianchi.aliyun.com/competition/entrance/531825/introduction

本次一见钟情学习赛,是用机器学习算法,分析一个线下约会实验的问卷结果数据集。

数据集的内容包括实验志愿者的性别、年龄、人种、专业、地区、收入等特征,以及志愿者对配偶是否来自同一地区、同一信仰等观点的预期。

选手需要训练一个机器学习模型,去预测实验人身上一个或多个特性对其相亲成功与否的影响。也就是利用其它特征信息,预测数据集中的"match"字段的结果,1=成功,0=不成功。

总结一下,这是一个二分类问题。

2.算法选择

对于二分类问题, 我们能选择若干有效的算法。

一是基于线性模型的逻辑回归,它适合处理连续数据,对于数据集里大量存在的"约会双方互相认可度"这个0-10之间的整数也处理的较为不错。

二是决策树,它适合处理分类问题,可解释性很强。决策树还可以进行bagging变成随机森林,也可以使用Adaboost算法进行boosting。

因此我们分工如下:

• 段凡:逻辑回归

• 符景洲: 决策树 (C4.5/CART)

杨天煜: 随机森林沈冠霖: AdaBoost

3.模型调优

3.1 特征选择

首先,我们考虑,约会对象的编号、组号等数据显然对解决问题毫无帮助,就把这些数据去除。

其次,为了防止过拟合,我们将缺失率较高的特征(缺失率大于0.7的)剔除

之后,我们计算了所有特征和结果的相关性,把相关性的绝对值大于等于0.1的特征留了下来。相关性可视化结果如下:

这样做能只保留17组特征,特征简化的很多了,而且在AdaBoost算法下达到了88.61%的训练准确率和86.14%的测试准确率,初步说明这样做有道理。

最终,我们分析特征的语义,以及根据上面的相关性结果,选择合适的特征组合。根据上方的相关性分析,我们发现,attr_o/attr等特征和结果相关性较高,而且这些特征反映的是第一次约会后双方对对方的评价,能够反映双方的互相喜欢程度,我们称这些特征为组1。我们发现,这个数据集里还有其他能够反映双方对对方评价的特征:约会后一天填写的问卷;约会后3-4周填写的问卷,我们记这些特征为组2,组3。将特征组1、2、3进行组合,就能得到7种特征组合。

3.2 数据处理

我们没有进行归一化处理。因为我们有三个算法是决策树类型的,无需进行归一化。事实上我们之前的特征选择的也都是约会双方的相互评价指标,都是0-10之间的整数,归一化也没用。

因为我们选择的特征都是0-10之间的整数,无论逻辑回归还是决策树类算法都能有效处理这种数据,不用担心离散/连续值的问题。

很多特征有缺失,为了防止过拟合我们剔除了缺失度较高的特征,并且用众数填补了缺失数据。

3.3 参数调优

首先,对于每个算法,我们都使用了grid search进行调优,找到了最优的超参数和特征组合。

比如,对于决策树算法,我们对比了C4.5和CART两种算法、是否向量化、以及树的最大深度,得到了不同结果:

C4.5:

	向量化	无向量化
特征选择	85.30%	84.69%
无特征选择	84.78%	84.45%

CART:

	向量化	无向量化
特征选择	85.23%	84.57%
无特征选择	84.48%	83.70%

树的最大深度:

树最大深度	5	6	7	8	9
CART	84.46%	84.43%	85.23%	84.10%	84.01%
C4.5	84.81%	85.47%	85.30%	84.34%	84.53%

我们得到,选用两种算法效果大体相当,其中C4.5算法和最大深度7效果最优。

之后,我们在最优网络超参数下,对于特征组合进行了一些分析:

逻辑回归:

	1	2	3	1+2	1+3	2+3	1+2+3
训练准确 率	85.66%	83.63%	83.63%	86.11%	86.17%	83.63%	86.20%
测试准确 率	85.15%	75.25%	75.25%	87.13%	88.12%	75.25%	88.12%

AdaBoost:

	1	2	3	1+2	1+3	2+3	1+2+3
训练准确 率	86.88%	83.64%	83.63%	87.47%	87.4%	83.63%	87.51%
测试准确 率	89.11%	75.25%	75.25%	85.15%	93.07%	75.25%	87.13%

可以看出,特征1是最基础的特征,必须含有特征1模型才能很好运行。而特征1加上特征3能够更好改进模型效果。因此,我们选择使用特征1+特征3的组合作为最终特征。

4.总结分析

4.1 结果比较

算法/指标	训练准确率	测试准确率	训练时间	测试时间
逻辑回归	86.15%	89.11%	0.091s	0.002s
决策树	85.23%	85.14%	0.007s	0.001s
随机森林	91.16%	82.18%	1.503s	0.009s

AdaBoost	87.40%	93.07%	2.082s	0.036s
算法/指标	训练准确率	测试准确率	训练时间	测试时间

整体效果来看,AdaBoost是最好的,达到了93.07%的准确率,而且没有出现过拟合。随机森林出现了过拟合现象;逻辑回归和决策树都有一定欠拟合现象;

速度上,四个算法训练测试都很快,其中决策树和逻辑回归尤其快。

对于这个问题,选择AdaBoost效果最好。

4.2 比赛结果

1 <	鲸洛南北迪人	宁波上程	1.0000	2020-10-26
1	小杰想喝奶茶	宁波工程	1.0000	2020-10-09
1	txkcpomwhczfe	郑州轻工	1.0000	2020-10-30
1	醉、青楼	湖南文理	1.0000	2020-10-10
1	猫猫丸	山东大学	1.0000	2020-10-13
1	lvlouhss	西北工业大学	1.0000	2020-11-21
51	Gui_Yingbin	同济大学	0.9901	2020-11-29
52	天池壮壮	家里蹲	0.9703 5	2020-09-22
53	Minionsyh	华北电力大学(保定)	0.8515	2020-10-02
54	HeRaNO	电子科技大学	0.8020	2020-11-05
55	小白飞飞郑	中央财经大学	0.7921	2020-10-20
56	酥糖不加糖yy	西南民族大学	0.7822	2020-10-22
57	东来乡沙马特	四川大学	0.7723	2020-10-06
57	SisconCCCC	郑州轻工	0.7723	2020-10-27

截至2020年12月5日,我们以**93.07%**的准确率在排行榜上**排名第3**(这个竞赛的测试数据集有失误,结果match这一列可以直接用dec和dec_o做且运算做出来。。。所以排名靠前的准确率都是1,这显然是不合理的,我们没有用这两个特征,第3是刨除准确率为1的队伍后的结果)。

4.3 总结

这次作业是很好的用机器学习进行实战的机会。因为机器学习框架(sklearn、还有深度学习的pytorch等)的成熟,实现算法并不是一件很重要的事情,重要的是如下的事情:

- 根据实际问题选择正确的算法:分类还是回归问题?数据性质如何?大数据还是小数据?
- 对数据进行有效的处理: 归一化、连续/离散值、缺失值、特征选择
- 超参数调优:统计学习的grid search,对于深度学习可能需要一些调参技巧