4

4.23

A recently discovered semiconductor has $N_c=10^{19}~cm^{-3}$, $N_v=5\times 10^{18}~cm^{-3}$, and $E_g=2~eV$. If it is doped with 10^{17} donors (fully ionized), calculate the electron, hole, and intrinsic carrier concentrations at $627^{\circ}C$. Sketch the simplified If band diagram, and specify the value of E_F and E_i with respect to the band edges. If we apply 5~V across a piece of this semiconductor $8~\mu m$ long, what is the current? The piece is $2~\mu m$ wide and $1.5~\mu m$ thick. The diffusion coefficient of holes and electrons is $25~cm^2/s$ and $75~cm^2/s$, respectively.

```
\checkmark Answer \checkmark n_i = \sqrt{N_c N_v} e^{-E_g/2kT} \ n_i = 1.784 	imes 10^{13} \ cm^{-3}
```

$$n_0pprox 10^{17} \ n_0p_0=n_i^2 \ p=rac{n_i^2}{n} \ p=3.18 imes 10^9$$

$$n_0 = n_i e^{(E_F - E_i)/kT} \ E_F - E_i = 0.6696 \ eV$$

Where E_i is the center of the edges of the band

$$egin{aligned} J &= q(p\mu_p + n\mu_n)arepsilon \ J &= rac{q}{kT}(pD_p + nD_n)rac{E}{L} \ J &= 96674 rac{A}{cm^2} \ I &= JA = 2.9 \ mA \end{aligned}$$

5.9

An abrupt Si junction (area = $0.0001 \ cm^2$) has the following parameters:

n-side:
$$N_d=5 imes 10^{17}~cm^{-3}$$
 p-side: $N_a=10^{17}~cm^{-3}$

Draw and label the band diagram, and calculate the difference between the Fermi level and the intrinsic Fermi level on both sides. Calculate the built-in potential at the junction in equilibrium and the depletion width. What is the total number of exposed acceptors in the depletion region?

\checkmark Answer $n_i = 1.5 \times 10^{10}~cm^{-3}$

On the n-side

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$E_F - E_i = 0.4486 \ eV$$

On the p-side

$$p_0=n_i e^{(E_i-E_F)/kT}$$

$$E_i-E_F=0.4070\ eV$$

$$V_0 = rac{kT}{q} \mathrm{ln} \left(rac{N_a N_d}{n_i^2}
ight)$$

 $V_0 = 0.8556~V$

$$V_0 = 0.8556 \ V$$

$$W=\sqrt{rac{2\epsilon V_0}{q}\left(rac{N_a+N_d}{N_aN_d}
ight)}$$

$$W = 1.1577 \times 10^{-5} \ cm$$

$$x_{p0} = W rac{N_d}{N_a + N_d}$$

$$x_{p0} = 9.65 imes 10^{-6}$$

5.15

Boron is implanted into an n-type Si sample ($N_d=10^{16}~cm^{-3}$), forming an abrupt junction of square cross section with area $=2\times 10^{-3}~cm^2$. Assume that the acceptor concentration in the p-type region is $N_a=4\times 10^{18}~cm^{-3}$. Calculate $V_0,\,x_{n0},\,x_{p0},\,Q_+$, and E_0 for this junction at equilibrium (300 K). Sketch ε and the charge density to scale, as in Fig. 5–12.

✓ Answer

$$A=2 imes 10^{-3}~cm^2$$

$$N_d = 10^{16} \ cm^{-3}$$

$$N_a = 4 imes 10^{18} \ cm^{-3}$$

$$V_0 = rac{kT}{q} \mathrm{ln} \left(rac{N_a N_d}{n_i^2}
ight) \ V_0 = 0.8498 \ V$$

$$W=\sqrt{rac{2\epsilon V_0}{q}\Big(rac{N_a+N_d}{N_aN_d}\Big)} \ W=3.335 imes 10^{-5}~cm$$

$$x_{n0} = W rac{N_a}{N_a + N_d} \ x_{n0} = 3.327 imes 10^{-5}$$

$$x_{p0} = W rac{N_d}{N_a + N_d} \ x_{p0} = 8.316 imes 10^{-8}$$

$$egin{aligned} Q_{+} &= q A x_{n0} N_d = q A x_{p0} N_a \ Q_{+} &= 1.06 imes 10^{-10} \end{aligned}$$

$$arepsilon_0 = -rac{q}{arepsilon} x_{n0} N_d \ arepsilon_0 = -50966 rac{V}{cm}$$