

Лабораторная работа — реализация VLAN и транков

Топология

Таблица адресации

Устройство	Интерфейс	IP-адрес	Маска подсети
S1	VLAN 10	192.168.10.11	255.255.255.0
	VLAN 20	192.168.20.11	255.255.255.0
	VLAN 30	192.168.30.11	255.255.255.0
S2	VLAN 10	192.168.10.12	255.255.255.0
PC-A	NIC	192.168.20.13	255.255.255.0
РС-В	NIC	192.168.30.13	255.255.255.0

Таблица VLAN

VLAN	Имя	Назначенный интерфейс
10	Управление	S1: VLAN 10 S2: VLAN 10
20	Продажи	S1: VLAN 20 и F0/6
30	Рабочие процессы	S1: VLAN 30 S2: F0/18
999	ParkingLot	S1: F0/2-5, F0/7-24, G0/1-2 S2: F0/2-17, F0/19-24, G0/1-2
1000	Собственная	_

Задачи

- Часть 1. Создание сети и настройка основных параметров устройства
- Часть 2. Создание сетей VLAN и назначение портов коммутатора
- Часть 3. Настройка транка 802.1Q между коммутаторами.

Общие сведения/сценарий

В целях повышения производительности сети большие широковещательные домены 2-го уровня делят на домены меньшего размера. Для этого современные коммутаторы используют виртуальные локальные сети (VLAN). VLAN решают проблемы масштабируемости, безопасности и управления сетью. Сети VLAN облегчают процесс проектирования сети, обеспечивающей помощь в достижении целей организации. Для связи между VLAN требуется устройство, работающее на уровне 3 модели OSI.

Транковые каналы сети VLAN используются для распространения сетей VLAN по различным устройствам. Транковые каналы разрешают передачу трафика из множества сетей VLAN через один канал, не нанося вред идентификации и сегментации сети VLAN.

В этой лабораторной работе вы создадите VLAN на обоих коммутаторах в топологии, назначите VLAN для коммутации портов доступа, убедитесь, что VLAN работают должным образом, и создадите соединительные линии VLAN между двумя коммутаторами.

Примечание. В практических лабораторных работах CCNA используются коммутаторы Cisco Catalyst 2960s с операционной системой Cisco IOS 15.0(2) (образ lanbasek9). Допускается использование других моделей коммутаторов и других версий Cisco IOS. В зависимости от модели устройства и версии Cisco IOS доступные команды и результаты их выполнения могут отличаться от тех, которые показаны в лабораторных работах. Правильные идентификаторы интерфейса см. в сводной таблице по интерфейсам маршрутизаторов в конце лабораторной работы.

Примечание. Убедитесь, что информация из коммутаторов удалена, и они не содержат конфигураций загрузки. Если вы не уверены в этом, обратитесь к инструктору.

Необходимые ресурсы

- 2 коммутатора (Cisco 2960 с операционной системой Cisco IOS 15.2(2) (образ lanbasek9) или аналогичная модель)
- 2 ПК (ОС Windows с программой эмуляции терминалов, такой как Tera Term)
- Консольные кабели для настройки устройств Cisco IOS через консольные порты.
- Кабели Ethernet, расположенные в соответствии с топологией

Инструкции

Часть 1. Создание сети и настройка основных параметров устройства

В первой части лабораторной работы вам предстоит создать топологию сети и настроить базовые параметры для узлов ПК и коммутаторов.

Шаг 1. Создайте сеть согласно топологии.

Подключите устройства, как показано в топологии, и подсоедините необходимые кабели.

Шаг 2. Настройте базовые параметры каждого коммутатора.

- а. Подключитесь к коммутатору с помощью консольного подключения и активируйте привилегированный режим EXEC.
- b. Присвойте коммутатору имя устройства.
- с. Отключите поиск DNS.
- d. Назначьте class в качестве зашифрованного пароля привилегированного режима EXEC.
- е. Назначьте cisco в качестве пароля консоли и включите вход в систему по паролю.
- f. Назначьте **cisco** в качестве пароля VTY и включите вход в систему по паролю.

- g. Зашифруйте открытые пароли.
- h. Создайте баннер с предупреждением о запрете несанкционированного доступа к устройству.
- і. Скопируйте текущую конфигурацию в файл загрузочной конфигурации.

Шаг 3. Настройте узлы ПК.

Адреса ПК можно посмотреть в таблице адресации.

Часть 2. Создание сетей VLAN и назначение портов коммутатора

В части 2 на обоих коммутаторах будут созданы VLAN, как указано в таблице выше. Затем вам нужно назначить сети VLAN соответствующему интерфейсу. Для проверки параметров конфигурации используйте команду **show vlan**. Выполните следующие задачи на каждом коммутаторе.

Шаг 1. Создайте сети VLAN на коммутаторах.

- а. Создайте необходимые VLAN и назовите их на каждом коммутаторе из приведенной выше таблицы.
- b. Настройте интерфейс управления на каждом коммутаторе, используя информацию об IP-адресе в таблице адресации.
- с. Назначьте все неиспользуемые порты коммутатора VLAN ParkingLot, настройте их для статического режима доступа и деактивируйте их административно.

Шаг 2. Назначьте сети VLAN соответствующим интерфейсам коммутатора.

- а. Назначьте используемые порты соответствующей VLAN (указанной в таблице VLAN выше) и настройте их для режима доступа.
- b. Убедитесь, что VLAN назначены на правильные интерфейсы.

Часть 3. Конфигурация магистрального канала стандарта 802.1Q между коммутаторами

В части 3 вручную настраивается интерфейс F0/1 в качестве магистрального канала.

Шаг 1. Вручную настройте магистральный интерфейс F0/1.

- а. Измените режим порта коммутатора на интерфейсе F0/1, чтобы принудительно создать магистральную связь. Не забудьте сделать это на обоих коммутаторах.
- b. Установите для native VLAN значение 1000 на обоих коммутаторах.
- с. В качестве другой части конфигурации магистрали укажите, что только VLAN 10, 20, 30 и 1000 могут пересекать магистраль.
- d. Выполните команду **show interfaces trunk** для проверки портов магистрали, native VLAN и разрешенных VLAN через магистраль.

Шаг 2. Проверьте подключение.

Проверка подключения во VLAN. Например, PC-A должен успешно выполнить пинг S1 во VLAN 20.

Были ли эхо-запросы от PC-B к S2 успешными? Дайте пояснение.