

MATEMÁTICA DISCRETA 2

Aula 17 Aplicações – Congruência Criptografia RSA

Cristiane Loesch

ISBN (International Standard Book Number)

- → padrão internacional de numeração de livro
- → ISBN-10 (até 2007) e ISBN-13 (atualmente)

Os componentes de um ISBN De de 10 dígitos e do equivalente em 13 dígitos e o respetivo código de barras, onde é possível observar o dígito de verificação diferente de cada um.

FONTE: Wikipédia

ISBN (International Standard Book Number)

ISBN-10 e a Congruência Modular:

- → utilizada no cálculo do BIT de verificação;
- → BIT de verificação:
 - → 11 dígitos possíveis

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X (representando o no. 10)

- → Cálculo:
 - → os 9 primeiros digitos do ISBN são multiplicados por 10, 9, 8, 7, 6, 5, 4, 3 e 2 respectivamente;
 - → seus produtos são, então, adicionados obtendo-se um número y;
 - → o dígito verificador é então obtido fazendo-se:

$$d + y \equiv 0 \mod 11$$

EXEMPLO 1: ISBN 0 - 673 - 38582 - D

EXEMPLO 1: ISBN 0 - 673 - 38582 - D

$$y = 10.0 + 9.6 + 8.7 + 7.3 + 6.3 + 5.8 + 4.5 + 3.8 + 2.2$$

EXEMPLO 1: ISBN 0 - 673 - 38582 - D

$$y = 10.0 + 9.6 + 8.7 + 7.3 + 6.3 + 5.8 + 4.5 + 3.8 + 2.2$$

 $y = 237$

$$y = 10.0 + 9.6 + 8.7 + 7.3 + 6.3 + 5.8 + 4.5 + 3.8 + 2.2$$

$$y = 237$$

$$D + 237 \equiv 0 \mod 11$$

$$y = 10.0 + 9.6 + 8.7 + 7.3 + 6.3 + 5.8 + 4.5 + 3.8 + 2.2$$

$$y = 237$$

$$D + 237 \equiv 0 \mod 11$$

$$5 + 237 \equiv 0 \mod 11$$

$$242 \equiv 0 \mod 11$$

logo, ISBN 0 - 673 - 38582 - 5

$$y = 10.0 + 9.6 + 8.7 + 7.3 + 6.3 + 5.8 + 4.5 + 3.8 + 2.2$$

$$y = 237$$

$$D + 237 \equiv 0 \mod 11$$

$$5 + 237 \equiv 0 \mod 11$$

$$242 \equiv 0 \mod 11$$

logo, ISBN 0 - 673 - 38582 - 5

EXEMPLO 2: ISBN 0 - 321 - 30515 - D

$$y = 10.0 + 9.6 + 8.7 + 7.3 + 6.3 + 5.8 + 4.5 + 3.8 + 2.2$$

$$y = 237$$

$$D + 237 \equiv 0 \mod 11$$

$$5 + 237 \equiv 0 \mod 11$$

$$242 \equiv 0 \mod 11$$

$$\log 0, ISBN 0 - 673 - 38582 - 5$$

EXEMPLO 2: ISBN
$$0 - 321 - 30515 - D$$

 $Y = 10 \cdot 0 + 9 \cdot 3 + 8 \cdot 2 + 7 \cdot 1 + 6 \cdot 3 + 5 \cdot 0 + 4 \cdot 5 + 3 \cdot 1 + 2 \cdot 5 = 101$
 $D+101 \equiv 0 \mod 11 \rightarrow D=9$

CPF (Cadastro de Pessoa Física)

→Por meio da Lei 4.862 de 29 de novembro de 1965, foi instituído o Registro das Pessoas Físicas para que a administração tributária nacional pudesse coletar as informações das Pessoas Físicas que eram obrigadas a apresentar a declaração de rendimentos e bens. Em 1968, pelo Decreto-Lei 401, de 30 de dezembro de 1968, esse Registro das Pessoas Físicas foi transformado no cadastro de pessoas físicas.

CPF (Cadastro de Pessoa Física)

- → possui 11 dígitos
 - → 8 primeiros dígitos aleatórios*
 - → 9º dígito é referente à região de fiscal

```
1: Distrito Federal (DF), Goiás (GO), Mato Grosso do Sul (MS), Mato Grosso (MT) e Tocantins (TO);
```

- 2: Acre (AC), Amazonas (AM), Amapá (AP), Pará (PA), Rondônia (RO) e Roraima (RR);
- 3: Ceará (CE), Maranhão (MA) e Piauí (PI);
- 4: Alagoas (AL), Paraíba (PB), Pernambuco (PE) e Rio Grande do Norte (RN);
- 5: Bahia (BA) e Sergipe (SE);
- 6: Minas Gerais (MG);
- 7: Espírito Santo (ES) e Rio de Janeiro (RJ);
- 8: São Paulo (SP);
- 9: Paraná (PR) e Santa Catarina (SC);
- 0: Rio Grande do Sul (RS).
- → 10° e 11° dígitos são verificadores

FONTE: Wikipédia

CPF (Cadastro de Pessoa Física)

CPF e a Congruência Modular:

→ utilizada no cálculo dos dígitos de verificação ;

CPF:

$$1a + 2b + 3c + 4d + 5e + 6f + 7g + 8h + 9i = X$$

$$D_1 \equiv X \mod 11$$

$$0a + 1b + 2c + 3d + 4e + 5f + 6g + 7h + 8i + 9D_1 = Y$$

$$D_2 \equiv Y \mod 11$$

CPF (Cadastro de Pessoa Física)

EXEMPLO:

$$012.345.678 - D_1D_2$$

$$1.0 + 2.1 + 3.2 + 4.3 + 5.4 + 6.5 + 7.6 + 8.7 + 9.8 = 240$$

$$D_1 \equiv 240 \mod 11$$

9 = 240 mod 11

$$0.0 + 1.1 + 2.2 + 3.3 + 4.4 + 5.5 + 6.6 + 7.7 + 8.8 + 9.9 = 285$$

$$D_2 \equiv 285 \mod 11$$

 $10 \equiv 285 \mod 11$
 $D_2 = 0$

por convenção quando o cálculo tem resto 10, este deverá ser substituido por zero

012.345.678 - 90

Cryptos = secreto, oculto (grego)

FONTE:http://clickeaprenda.uol.com.br/portal/mostrarConteudo.php?idPagina=3890

Pêvo pêcê pêco pênhe pêce pea pêlín pêgua pêdo pêpê ?

- Utiliza a teoria dos números para codificar e decodificar mensagens
- Processo de transformação, através de uma chave secreta, de informação legível (mensagem) em informação ilegível (criptograma) possibilitando a reversão do processo.
- Exigências:
 - Reversibilidade
 - → ao codificar uma mensagem tem que ser possível decodificá-la
 Codificar uma mensagem
 - Receptor tenha a chave
 - → para decodificar

Codificar uma mensagem é pegar sua versão original e transformar num outro conjunto de informações que não possa ser identificado por qualquer pessoa apenas pelo receptor

Obs: Garantir que não há ambiguidade

- Principal aplicação
 - → sistemas de segurança
 - → confidenciabilidade
 - → integridade
 - → autenticidade
- Criptografar

CLASSIFICAÇÃO:

- 1) Quanto ao tipo de operações
- a) Substituição
 - → cada elemento do texto original (bit, letra, etc) é mapeado em em um elemento no texto cifrado
- b) Transposição
 - → quando os elementos do texto original tem sua posição alterada no texto cifrado

CLASSIFICAÇÃO:

- 1) Quanto ao tipo de operações
- a) Substituição
 - → cada elemento do texto original (bit, letra, etc) é mapeado em em um elemento no texto cifrado
- b) Transposição
 - → quando os elementos do texto original tem sua posição alterada no texto cifrado

EXEMPLO: separa em duas colunas, lê a primeira e em seguida a segunda

Mensagem: TROQUEASCAIXAS

<u>CLASSIFICAÇÃO:</u>

- 1) Quanto ao tipo de operações
- a) Substituição
 - → cada elemento do texto original (bit, letra, etc) é mapeado em em um elemento no texto cifrado
- b) Transposição
 - → quando os elementos do texto original tem sua posição alterada no texto cifrado
 - **EXEMPLO:** separa em duas colunas, lê a primeira e em seguida a segunda
 - Mensagem: TROQUEASCAIXAS

TOUACIA RQESAXS

CLASSIFICAÇÃO:

- 1) Quanto ao tipo de operações
- a) Substituição
 - → cada elemento do texto original (bit, letra, etc) é mapeado em em um elemento no texto cifrado
- b) Transposição
 - → quando os elementos do texto original tem sua posição alterada no texto cifrado

EXEMPLO: separa em duas colunas, lê a primeira e em seguida a segunda

Mensagem: TROQUEASCAIXAS Criptograma:

TOUACIA RQESAXS → TOUACIARQESAXS

- 2 - trmomee - 3 - aaoaahr

cifra rail fence em Python

FONTE:https://siriarah.wordpress.com/2013/07/03/criptografia-cifra-rail-fence-em-python/

mensagem: atacaremos ao amanhecer.

CLASSIFICAÇÃO:

2) Quanto ao número de chaves

- a) Simétrica
 - → convencional ou de chave privada
 - Rementente e destinatário utilizam uma única chave
 - → chave compartilhada

- b) Assimétrica
 - → de chave pública ou dupla
 - Remetente e destinatário utilizam chaves diferentes
 - → chave privada → conhecida só pelo dono
 - → chave pública → supôem-se que todos possam conhecê-la
 - Mais lento, porém mais seguro que o simétrico

A chave privada fica com o proprietário da mensagem! Ele é o único capaz de decodificá-la

A chave pública esta a disposição de qualquer pessoa e é utilizada para codificar uma mensagem

CLASSIFICAÇÃO:

- 3) Quanto à forma de processamento
- a) por bloco
 - → processa um bloco de cada vez produzindo assim um bloco de saída de cada vez

- b) por stream (fluxo)
 - → processa os elementos de entradade forma contínua (bit por bit , byte por byte)

CONVENCIONAL

$$C = E \cdot k(M)$$

$$M = D \cdot k(C)$$

CONVENCIONAL

Importante:

Manter a chave secreta!!

Um canal seguro para distribuir a chave.

CONVENCIONAL

EXEMPLOS:

- → TRANSPOSIÇÃO DE COLUNAS
- → CIFRA DE CÉSAR
- → CIFRA MONOALFABÉTICA
- → CIFRA POLIALFABÉTICA (tipo batalha naval)
- → ETC

CONVENCIONAL CIFRA DE CÉSAR

O texto original é cifrado a partir da troca de cada uma das letras por outra letra do alfabeto.

$$C = E(p) = (P+k) \mod 26$$

$$P=D(p)=(C-k) \mod 26$$

CONVENCIONAL CIFRA DE CÉSAR

EXEMPLO:

```
Original: A \quad B \quad C \quad D \quad E \quad F \quad G \quad \dots \quad Z
Cifrado: D \quad E \quad F \quad G \quad H \quad I \quad J \quad \dots \quad C
Regra: 3 posições à frente
```

FESTA CONFIRMADA NO PROXIMO SABADO A NOITE

CONVENCIONAL CIFRA DE CÉSAR

EXEMPLO:

```
Original: A B C D E F G ... Z Cifrado: D E F G H I J ... C
```

Regra: 3 posições à frente

FESTA CONFIRMADA NO PROXIMO SABADO A NOITE IHVWD FRQILUPDGD QR SURALPR VDEDGR D QRLWH

CONVENCIONAL CIFRA DE CÉSAR

EXEMPLO:

Original: A B C D E F G ... Z Cifrado: D E F G H I J ... C

Regra: 3 posições à frente

SUA VEZ!

CESAR

CONVENCIONAL CIFRA DE CÉSAR

EXEMPLO:

Original: A B C D E F G ... Z Cifrado: D E F G H I J ... C

Regra: 3 posições à frente

SUA VEZ!

CESAR

https://www.geogebra.org/m/kF6WJReU

Cifra de César em Python

- → 1978 Ron Rivest , Adi Shamir , Leonard Adleman
- → assimétrico
- → { + popular+ fácil de entender+ fácil de implementar
 - → utilizado para garantir confidenciabilidade e assinatura digital
 - → segurança baseada na fatoração de números grandes

MÉTODO

ex.: cada um com 1024 bits

Qto maior melhor (300 – 600 digitos)

→ algoritmo mais seguro

MÉTODO

- 1) Definir 2 números primos entre si *p* e *q*
- 2) Criar uma chave pública \longrightarrow $n = p \cdot q$

Obs:

Mesmo que n seja público e conhecido, não é possível decodificá-lo sem p e q.

MÉTODO

- 1) Definir 2 números primos entre si p e q
- 2) Criar uma chave pública \longrightarrow $n = p \cdot q$
- 3) Calcular z \longrightarrow z=(p-1)(q-1) (função totiente ou de Euler)
- 4) Definir o número $E \longrightarrow E < n \\ E < z$ e mdc(E,z) = 1
- 5) Definir o número $D \longrightarrow (E \cdot D) \mod z = 1$ 1 = DE + kz

MÉTODO

6) Definir as chaves

$$\rightarrow$$
 para encriptar \rightarrow utiliza-se E e n (chave pública)

 \rightarrow para desencriptar \rightarrow utiliza-se D e n (chave privada)

sendo:

$$texto = \left(texto \atop criptografado\right)^{E} mod n$$

$$\frac{texto}{original} = \left(\frac{texto}{criptografado}\right)^{D} mod n$$

OBS: **Pré-codificar**

- → Definir valores numéricos que representam as letras do alfabeto.
- → Usual é redefinir o alfabeto de :

	10	a	35
ou	11	а	36

Para evitar ambiguidade!

OBS: **Pré-codificar**

- → Definir valores numéricos que representam as letras do alfabeto.
- → Usual é redefinir o alfabeto de :

10 *a* 35 ou

11 a 36

Para evitar ambiguidade!

EXEMPLO:

AMOR

1131518

11 , 1 e 13??

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Tabela de pré-codificação

	_								
\boldsymbol{A}	10	G	16	M	22	S	28 29 30 31 32	Y	34
B	11	H	17	N	23	T	29	\boldsymbol{Z}	35
C	12	I	18	O	24	U	30		
D	13	J	19	\boldsymbol{P}	25	V	31		
\boldsymbol{E}	14	K	20	Q	26	W	32		
F	15	L	21	R	27	\boldsymbol{X}	33		

EXEMPLO: Codificar e depois decodificar a mensagem:

AMOR

Utilizando:

p=5

q=3

e=3

m = 132418289914992527182224

m = 132418289914992527182224

Separando em blocos, temos

$$1324 - 182 - 899 - 1499 - 252 - 718 - 222 - 4$$

$$m = 132418289914992527182224$$

Separando em blocos, temos

$$1324 - 182 - 899 - 1499 - 252 - 718 - 222 - 4$$

Sejam
$$p = 17$$
 e $q = 101$, então $n = 1717$ (por que não é uma boa escolha?) e $\phi(n) = 16 \times 100 = 1600$. Escolhemos ainda $e = 13$, pois $mdc(13, 1600) = 1$. Para codificar a mensagem, fazemos $C(b_i) \equiv b_i^e \pmod{n}$ para cada bloco b_i .

$$m = 132418289914992527182224$$

Separando em blocos, temos

$$1324 - 182 - 899 - 1499 - 252 - 718 - 222 - 4$$

Sejam p = 17 e q = 101, então n = 1717 (por que não é uma boa escolha?) e $\phi(n) = 16 \times 100 = 1600$. Escolhemos ainda e = 13, pois mdc(13, 1600) = 1. Para codificar a mensagem, fazemos $C(b_i) \equiv b_i^e \pmod{n}$ para cada bloco b_i .

Porque é um número com poucos algarismos, isso compromete a segurança da encriptação

$$m = 132418289914992527182224$$

Separando em blocos, temos

$$1324 - 182 - 899 - 1499 - 252 - 718 - 222 - 4$$

Sejam p = 17 e q = 101, então n = 1717 (por que não é uma boa escolha?) e $\phi(n) = 16 \times 100 = 1600$. Escolhemos ainda e = 13, pois mdc(13, 1600) = 1. Para codificar a mensagem, fazemos $C(b_i) \equiv b_i^e \pmod{n}$ para cada bloco b_i . Assim

$$C(1324) \equiv 1324^{13} \equiv 104 \pmod{1717}$$

$$m = 132418289914992527182224$$

Separando em blocos, temos

$$1324 - 182 - 899 - 1499 - 252 - 718 - 222 - 4$$

Sejam p = 17 e q = 101, então n = 1717 (por que não é uma boa escolha?) e $\phi(n) = 16 \times 100 = 1600$. Escolhemos ainda e = 13, pois mdc(13, 1600) = 1. Para codificar a mensagem, fazemos $C(b_i) \equiv b_i^e \pmod{n}$ para cada bloco b_i . Assim

$$C(1324) \equiv 1324^{13} \equiv 104 \pmod{1717}$$
 $C(182) \equiv 182^{13} \equiv 1102 \pmod{1717}$
 $C(899) \equiv 899^{13} \equiv 495 \pmod{1717}$
 $C(1499) \equiv 1499^{13} \equiv 104 \pmod{1717}$
 $C(252) \equiv 252^{13} \equiv 1671 \pmod{1717}$

$$C(718) \equiv 718^{13} \equiv 1619 \pmod{1717}$$

 $C(222) \equiv 222^{13} \equiv 817 \pmod{1717}$
 $C(4) \equiv 4^{13} \equiv 1636 \pmod{1717}$

E a mensagem codificada é

$$104 - 1102 - 495 - 913 - 1671 - 1619 - 817 - 1636$$

Para decodificar, precisamos primeiro encontrar d tal que $de \equiv 1 \pmod{\phi(n)}$, isto \acute{e} , $13d \equiv 1 \pmod{1600}$. Note que isso \acute{e} equivalente a encontrar d, k tais que 13d+1600k=1. Como $1599=13\times123$, temos que $13\times(-123)+1600\times1=1$, assim $d\equiv-123\pmod{1600}$, isto \acute{e} , d=1477.

E a mensagem codificada é

$$104 - 1102 - 495 - 913 - 1671 - 1619 - 817 - 1636$$

Para decodificar, precisamos primeiro encontrar d tal que de $\equiv 1 \pmod{\phi(n)}$, isto \acute{e} , $13d \equiv 1$ (mod 1600). Note que isso é equivalente a encontrar d, k tais que 13d+1600k=1. Como $1599=13\times123$, temos que $13 \times (-123) + 1600 \times 1 = 1$, assim $d \equiv -123 \pmod{1600}$, isto é, d = 1477.

Fazemos então
$$D(C(b_i)) = C(b_i)^d \pmod{n}$$
 para cada $C(b_i)$ recebido. Por exemplo para $i = 1$:

Fazemos, então,
$$D(C(b_i)) \equiv C(b_i)^d \pmod{n}$$
 para cada $C(b_i)$ recebido. Por exemplo, para $i = 1$:

 $D(104) \equiv 104^{1477} \equiv 1324 \pmod{1717}$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

PeQ: p=5 q=7 ——para criar a chave pública

Pré- codificação:	R	S	\boldsymbol{A}
	27	28	10

PeQ:
$$p=5$$
 $q=7$ ——para criar a chave pública

n e z:
$$n=p\cdot q=35 \longrightarrow \text{ chave de codificação} \\ z=(p-1)(q-1)=24 \longrightarrow \text{ usado na decodificação}$$

Pré- codificação:	R	S	\boldsymbol{A}
3	27	28	10

PeQ:
$$p=5$$
 $q=7$ ——para criar a chave pública

n e z:
$$n=p\cdot q=35 \longrightarrow \text{ chave de codificação} \\ z=(p-1)(q-1)=24 \longrightarrow \text{ usado na decodificação}$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

PeQ: p=5 q=7 ——para criar a chave pública

n e z: $n = p \cdot q = 35 \longrightarrow \text{chave de codificação}$ $z = (p-1)(q-1) = 24 \longrightarrow \text{usado na decodificação}$

blocos: 27 - 28 - 10 — tamanho do bloco < n

→ número de algarismos pode variar *** - ** - **

e: e=7 $\longrightarrow mdc(e,z)=1$ $e\in \mathbb{N}$, e< n

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Pré- codificação: 27 28 10

PeQ:

n e z:

blocos:

e: Codificar

(bloco a bloco)

p=5 q=7 — para criar a chave pública

 $n=p\cdot q=35$ — chave de codificação z=(p-1)(q-1)=24 — usado na decodificação

27 - 28 - 10 — tamanho do bloco < n

→ número de algarismos pode variar *** - ** - * $\longrightarrow mdc(e,z)=1 \quad e \in \mathbb{N} , e < n$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)

$$b^e \equiv a \pmod{n}$$

$$27^7 \equiv a \mod 35$$

$$28^7 \equiv a \mod 35$$

$$10^7 \equiv a \mod 35$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)

$$b^e \equiv a \pmod{n}$$

$$27^7 \equiv a \mod 35 \longrightarrow a=?$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)

$$b^e \equiv a \pmod{n}$$

$$27^7 \equiv a \mod 35 \longrightarrow a=?$$

$$27^7 \equiv (-8)^7 \mod 35$$

$$b^e \equiv a \pmod{n}$$

$$27^7 \equiv a \mod 35 \longrightarrow a=?$$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$b^e \equiv a \pmod{n}$$

$$27^7 \equiv a \mod 35 \longrightarrow a=?$$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$b^e \equiv a \pmod{n}$$

$$27^7 \equiv a \mod 35 \longrightarrow a=?$$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35$$

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco) $27^7 \equiv a \mod 35 \longrightarrow a = ?$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco) $27^7 \equiv a \mod 35 \longrightarrow a = ?$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^7 \equiv [-6]^3 (-8) \mod 35$$

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco)
$$27^7 \equiv a \mod 35 \longrightarrow a = ?$$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^7 \equiv [-6]^3 (-8) \mod 35$$

$$27^7 \equiv [-6]^2(-6)(-8) \mod 35$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco) $27^7 \equiv a \mod 35 \longrightarrow a = ?$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

 $27^7 \equiv [(-8)^2]^3 (-8) \mod 35$

 $27^7 \equiv [-6]^3 (-8) \mod 35$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^7 {\equiv} [-6]^2 (-6) (-8) \textit{mod} \, 35$$

$$27^7 \equiv (36)(-6)(-8) \mod 35$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco)
$$27^7 \equiv a \mod 35 \longrightarrow a = ?$$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^7 \equiv [-6]^2(-6)(-8) \mod 35$$

 $27^7 \equiv [-6]^3 (-8) \mod 35$

$$27^7 \equiv (36)(-6)(-8) \mod 35 \longrightarrow 36 = 35 q + 1$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco) $27^7 \equiv a \mod 35 \longrightarrow a = ?$

$$27^7 \equiv (-8)^7 \mod 35 \longrightarrow falta - 8 \quad para \quad 35$$

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^7 \equiv [-6]^2(-6)(-8) \mod 35$$

 $27^7 \equiv [-6]^3 (-8) \mod 35$

$$27^7 \equiv (36)(-6)(-8) \mod 35 \longrightarrow 36 = 35 q + 1$$

$$27^7 \equiv 1(-6)(-8) \, mod \, 35$$

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco) $27^7 \equiv a \mod 35 \longrightarrow a = ?$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^{7} \equiv [-6]^{3}(-8) \mod 35$$
$$27^{7} \equiv [-6]^{2}(-6)(-8) \mod 35$$

$$27^7 \equiv (36)(-6)(-8) \mod 35 \longrightarrow 36 = 35 q + 1$$

$$27^7 \equiv 1(-6)(-8) \mod 35$$

 $27^7 \equiv 48 \mod 35$

$$b^e \equiv a \pmod{n}$$

$$27^7 \equiv a \mod 35 \longrightarrow a=?$$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^7 \equiv [-6]^3 (-8) \mod 35$$

$$27^7 \equiv [-6]^2(-6)(-8) \mod 35$$

$$27^7 \equiv (36)(-6)(-8) \mod 35 \longrightarrow 36 = 35 q + 1$$

$$27^7 \equiv 1(-6)(-8) \, mod \, 35$$

$$27^7 \equiv 48 \mod 35$$

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco)
$$27^7 \equiv a \mod 35 \longrightarrow a = ?$$

$$27^7 \equiv (-8)^7 \mod 35$$
 \longrightarrow falta -8 para 35

$$27^7 \equiv [(-8)^2]^3 (-8) \mod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35 \longrightarrow 70 = 2 \cdot 35 \longrightarrow 64 \ para \ 70 \rightarrow 6$$

$$27^7 \equiv [-6]^3 (-8) \bmod 35$$

$$27^{7} \equiv [-6]^{3}(-8) \mod 35$$

$$27^{7} = [-6]^{2}(-6)(-8) \mod 3$$

$$27^{7} \equiv [-6]^{2}(-6)(-8) \mod 35$$

$$27^{7} \equiv (36)(-6)(-8) \mod 35 \longrightarrow 36 = 35 q + 1$$

$$27^7 \equiv 1(-6)(-8) \mod 35$$

 $27^7 \equiv 48 \mod 35$ \longrightarrow $48 = 35 q + 13$

Codificar
$$b^e \equiv a \pmod{n}$$
 (bloco a bloco)
$$27^7 \equiv a \mod 35 \longrightarrow a = ?$$

$$27^7 \equiv (-8)^7 \mod 35 \longrightarrow falta -8 \quad para \quad 35$$

$$27^7 \equiv [(-8)^2]^3 (-8) \bmod 35$$

$$27^7 \equiv [64]^3 (-8) \mod 35$$
 $\longrightarrow 70 = 2.35 \longrightarrow 64 \ para \ 70 \rightarrow 6$

$$27^7 \equiv [-6]^3 (-8) \bmod 35$$

$$27^7 \equiv [-6]^3 (-8) \mod 35$$

$$27^{7} \equiv [-6]^{2}(-6)(-8) \mod 35$$

$$27^{7} \equiv (36)(-6)(-8) \mod 35 \longrightarrow 36 = 35 q + 1$$

$$27^7 \equiv 1(-6)(-8) \mod 35$$

 $27^7 \equiv 48 \mod 35$ \longrightarrow $48 = 35 q + 13$

$$27^7 \equiv 13 \mod 35$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco) $27^7 \equiv a \mod 35$ $28^7 \equiv a \mod 35$ $10^7 \equiv a \mod 35$ $b^e \equiv a \pmod n$ $27^7 \equiv 13 \mod 35$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

 $28^7 \equiv (-7)^7 \mod 35$

 $28^7 \equiv [(-7)^2]^3 (-7) \mod 35$

 $28^7 \equiv (14)^3 (-7) \mod 35$

 $28^7 \equiv (49)^3 (-7) \mod 35 \longrightarrow 49 = 35 q + 14$

 $28^7 \equiv 196(14)(-7) \mod 35 \longrightarrow 196 = 35 Q + 21$

$$b^e \equiv a \pmod{n}$$

 $28^7 \equiv 7 \mod 35$

 $28^{7} \equiv 21(14)(-7) \mod 35$ $28^{7} \equiv 294(-7) \mod 35$

 $28^7 \equiv a \mod 35 \longrightarrow a=?$

 $28^7 \equiv 14(-7) \mod 35$ $28^7 \equiv -98 \mod 35$

 $28^7 \equiv (14)^2 (14)(-7) \mod 35$

Codificar (bloco a bloco)
$$27^{7} \equiv a \mod 35 \qquad \longrightarrow 27^{7} \equiv 13 \mod 35$$

$$28^{7} \equiv a \mod 35 \qquad \longrightarrow 28^{7} \equiv 7 \mod 35$$

$$10^{7} \equiv a \mod 35$$

$$b^e \equiv a \pmod{n}$$

$$10^7 \equiv a \mod 35 \longrightarrow a=?$$

$$a = ?$$

$$10^7 \equiv (10)^7 \bmod 35$$

$$10^7 \equiv [(10)^2]^3 (10) mod \, 35$$

$$10^7 \equiv (100)^3 (10) \mod 35$$

$$10^7 \equiv (-5)^3 (10) \mod 35$$

$$10^{7} \equiv (100)^{3} (10) \mod 35 \longrightarrow 100 = 35q - 5$$

$$10^{7} = (100)^{3} (10) \mod 35$$

$$10^{7} \equiv (-5)^{3} (10) \mod 35$$
$$10^{7} \equiv -125 (10) \mod 35$$

$$10^7 \equiv 15 (10) \, mod \, 35$$
$$10^7 \equiv 150 \, mod \, 35$$

$$10^7 \equiv 10 \, mod \, 35$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)
$$27^7 \equiv a \mod 35$$

$$28^7 \equiv a \mod 35$$

$$10^7 \equiv a \mod 35$$

$$10^7 \equiv 10 \mod 35$$

Mensagem codificada: 13 - 7 - 10

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)
$$27^{7} \equiv a \mod 35 \qquad \longrightarrow 27^{7} \equiv 13 \mod 35$$

$$28^{7} \equiv a \mod 35 \qquad \longrightarrow 28^{7} \equiv 7 \mod 35$$

$$10^{7} \equiv a \mod 35 \qquad \longrightarrow 10^{7} \equiv 10 \mod 35$$

Mensagem codificada: 13 - 7 - 10

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)
$$27^{7} \equiv a \mod 35 \qquad \longrightarrow 27^{7} \equiv 13 \mod 35$$

$$28^{7} \equiv a \mod 35 \qquad \longrightarrow 28^{7} \equiv 7 \mod 35$$

$$10^{7} \equiv a \mod 35 \qquad \longrightarrow 10^{7} \equiv 10 \mod 35$$

Mensagem codificada: 13 - 7 - 10

d: $e \cdot d \equiv 1 \mod z$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)
$$27^{7} \equiv a \mod 35 \qquad \longrightarrow 27^{7} \equiv 13 \mod 35$$

$$28^{7} \equiv a \mod 35 \qquad \longrightarrow 28^{7} \equiv 7 \mod 35$$

$$10^{7} \equiv a \mod 35 \qquad \longrightarrow 10^{7} \equiv 10 \mod 35$$

Mensagem codificada: 13 - 7 - 10

d: $e \cdot d \equiv 1 \mod z$ $7 d \equiv 1 \mod 24$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)
$$27^7 \equiv a \mod 35 \qquad \qquad 27^7 \equiv 13 \mod 35 \\ 28^7 \equiv a \mod 35 \qquad \qquad 28^7 \equiv 7 \mod 35 \\ 10^7 \equiv a \mod 35 \qquad \qquad 10^7 \equiv 10 \mod 35$$
 Mensagem codificada:
$$13 - 7 - 10$$
 d:
$$e \cdot d \equiv 1 \mod 2$$
 d
$$7 d \equiv 1 \mod 24$$

 $7.7 \equiv 1 \mod 24 \longrightarrow d=7$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)
$$27^{7} \equiv a \mod 35 \qquad \longrightarrow 27^{7} \equiv 13 \mod 35$$

$$28^{7} \equiv a \mod 35 \qquad \longrightarrow 28^{7} \equiv 7 \mod 35$$

$$10^{7} \equiv a \mod 35 \qquad \longrightarrow 10^{7} \equiv 10 \mod 35$$

Mensagem codificada: 13 - 7 - 10

d: d=7 — Chave de decodificação

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Codificar (bloco a bloco)
$$27^{7} \equiv a \mod 35 \qquad \longrightarrow 27^{7} \equiv 13 \mod 35$$

$$28^{7} \equiv a \mod 35 \qquad \longrightarrow 28^{7} \equiv 7 \mod 35$$

$$10^{7} \equiv a \mod 35 \qquad \longrightarrow 10^{7} \equiv 10 \mod 35$$

Mensagem codificada:

d:

(bloco a bloco)

Chave de decodificação

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar (bloco a bloco)

$$a^d \equiv b \pmod{n}$$

$$13^7 \equiv b \mod 35$$

$$7^7 \equiv b \mod 35$$

$$10^7 \equiv b \mod 35$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar (bloco a bloco)

$$a^d \equiv b \pmod{n}$$

$$13^7 \equiv b \mod 35 \longrightarrow b = ?$$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar (bloco a bloco)

$$a^d \equiv b \pmod{n}$$

$$13^7 \equiv b \mod 35$$
 $\longrightarrow b = ?$

$$13^7 \equiv [(13)^2]^3 13 \mod 35$$

 $13^7 \equiv 169^3 \cdot 13 \mod 35$

 $13^7 \equiv (-6)^3 \cdot 13 \mod 35$

 $13^7 \equiv -216 \cdot 13 \mod 35$

 $13^7 \equiv -6.13 \mod 35$

 $13^7 \equiv -78 \mod 35$

 $13^7 \equiv 27 \mod 35$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar (bloco a bloco)

$$a^d \equiv b \pmod{n}$$

$$13^7 \equiv b \mod 35$$
 \longrightarrow $13^7 \equiv 27 \mod 35$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar $a^d \equiv b \pmod{n}$ $13^7 \equiv b \mod 35 \longrightarrow b = ?$ $a^d \equiv b \pmod{n}$ $13^7 \equiv b \mod 35 \longrightarrow b = ?$

 $7^7 \equiv 28 \mod 35$

Decodificar
$$a^d \equiv b \pmod{n}$$

$$13^7 \equiv b \mod 35 \longrightarrow 13^7 \equiv 27 \mod 35$$

$$7^7 \equiv b \mod 35 \longrightarrow b = ?$$

$$7 \equiv [(7)^2]^3 (7) \mod 35 \longrightarrow 49-35=14$$

$$7' \equiv b \mod 35$$
 $7^7 \equiv [(7)^2]^3(7) \mod 35$
 $7^7 \equiv 49^3(7) \mod 35$
 $7^7 \equiv 14^3(7) \mod 35$
 $7^7 \equiv 14^2 \cdot 14(7) \mod 35$
 $7^7 \equiv 196 \cdot 14(7) \mod 35$
 $7^7 \equiv -14 \cdot 14(7) \mod 35$
 $7^7 \equiv -196(7) \mod 35$
 $7^7 \equiv 14(7) \mod 35$
 $7^7 \equiv 14(7) \mod 35$
 $7^7 \equiv 98 \mod 35$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar $a^d \equiv b \pmod{n}$ $13^7 \equiv b \mod 35$ \longrightarrow $13^7 \equiv 27 \mod 35$ $7^7 \equiv b \mod 35$ \longrightarrow $7^7 \equiv 28 \mod 35$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar $a^d \equiv b \pmod{n}$ $13^7 \equiv b \mod 35 \longrightarrow 13^7 \equiv 27 \mod 35$ $7^7 \equiv b \mod 35 \longrightarrow 7^7 \equiv 28 \mod 35$ $10^7 \equiv b \mod 35 \longrightarrow b = ?$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar $a^d \equiv b \pmod{n}$ $13^7 \equiv b \mod 35 \longrightarrow 13^7 \equiv 27 \mod 35$ $7^7 \equiv b \mod 35 \longrightarrow 7^7 \equiv 28 \mod 35$ $10^7 \equiv b \mod 35 \longrightarrow 10^7 \equiv 10 \mod 35$

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar
$$a^d \equiv b \pmod{n}$$

 $13^7 \equiv b \mod 35 \longrightarrow 13^7 \equiv 27 \mod 35$
 $7^7 \equiv b \mod 35 \longrightarrow 7^7 \equiv 28 \mod 35$
 $10^7 \equiv b \mod 35 \longrightarrow 10^7 \equiv 10 \mod 35$

Mensagem decodificada: 27 - 28 - 10

EXEMPLO: Codificar e depois decodificar a mensagem: RSA

Decodificar
$$a^d \equiv b \pmod{n}$$

 $13^7 \equiv b \mod 35 \longrightarrow 13^7 \equiv 27 \mod 35$
 $7^7 \equiv b \mod 35 \longrightarrow 7^7 \equiv 28 \mod 35$
 $10^7 \equiv b \mod 35 \longrightarrow 10^7 \equiv 10 \mod 35$

R S A

POR QUE O MÉTODO RSA FUNCIONA??

Veja video OBMEP: https://www.youtube.com/watch?v=arYNdvC4XtQ

E POR QUE É SEGURO?

Leia:

https://dcc.ufrj.br/~collier/CursosGrad/cripto/notas_de_aula.pdf

EXEMPLO DE PROGRAMAÇÃO DE CRIPTOGRAFIA RSA

Veja a dissertação:

https://teses.usp.br/teses/disponiveis/55/55136/tde-06042017-164507/publico/DanieleHelenaBonfim_revisada.pdf

EXERCÍCIOS

1) Palavra à criptografar usando o método RSA: OMEG

Considere:
$$p=5$$
 $q=7$

 $n = p \cdot q$ z = (p-1)(q-1) e = 5 $b^{e} \equiv a \pmod{n}$

1) Palavra à criptografar usando o método RSA: OMEG

Substituindo as letras do alfabeto por números usando a seguinte regra (4.1.8)

temos que a palavra OMEG pode ser escrita da seguinte forma: 24 22 14 16.

Tomando e=5 e os números primos p=5 e q=7, determinamos o valor de n=p.q=5.7=35. Para criptografar usaremos a fórmula ja definida: $b^e\equiv a\pmod n$.

1)
$$b_1^e \equiv a_1 \pmod{n}$$

$$24^5 \equiv a_1 \pmod{35}$$

$$24 \equiv -11 \pmod{35}$$

$$24^2 \equiv 121 \pmod{35}$$

$$24^2 \equiv 16 \pmod{35}$$

$$24^2 \equiv 16 \pmod{35}$$

$$22^2 \equiv 169 \pmod{35}$$

$$22^2 \equiv -6 \pmod{35}$$

$$22^4 \equiv 1 \pmod{35}$$

$$22^4 \equiv 1 \pmod{35}$$

$$22^5 \equiv 22 \pmod{35}$$

$$22^5 \equiv 22 \pmod{35}$$

$$22^5 \equiv 22 \pmod{35}$$

$$22^5 \equiv 22 \pmod{35}$$

	4)
$b_4^e \equiv a_4 \pmod{n}$	$b_3^e \equiv a_3 \pmod{n}$
$16^5 \equiv a_4 \pmod{35}$	$14^5 \equiv a_3 \pmod{35}$
$16 \equiv -19 \pmod{35}$	$14 \equiv -21 \pmod{35}$
$16^2 \equiv 361 \pmod{35}$	$14^2 \equiv 441 \pmod{35}$
$16^2 \equiv 11 \pmod{35}$	$14^2 \equiv 21 \pmod{35}$
$(16^2)^2 \equiv 11^2 \pmod{35}$	$(14^2)^2 \equiv 21^2 \pmod{35}$
$16^4 \equiv 121 \pmod{35}$	$14^4 \equiv 441 \pmod{35}$
$16^4 \equiv -19 \pmod{35}$	$14^4 \equiv -14 \pmod{35}$
$16^4 \equiv -19.(-19) \pmod{35}$	$14^4.14 \equiv -14.(-21) \pmod{35}$
$16^5 \equiv 361 \pmod{35}$	$14^5 \equiv 294 \pmod{35}$
$16^5 \equiv 11 \pmod{35}$	$14^5 \equiv 14 \pmod{35}$
$a_4 = 1$	$a_3 = 14$

https://repositorio.bc.ufg.br/tede/bitstream/tede/8579/5/Disserta%C3%A7%C3%A3o%20-%20Rodolfo%20Cavalcante%20Pinheiro%20-%202018.pdf

Portanto a mensagem criptografada é representada pelos números: 19 22 14 11. Para o processo de decodificação da mensagem, já em posse da chave pública n, seguimos a regra: $a^d \equiv b \pmod{n}$. Sendo d o inverso de $e \pmod{(p-1)(q-1)}$, que significa dizer: $e.d \equiv 1 \pmod{(p-1)(q-1)}$ e b a mensagem original. Para nosso exemplo vamos decifrar o termo 19 e deixaremos os outros a cargo do leitor. Usando o processo descrito temos que: e=5, p=5, q=7, n=35 e (p-1).(q-1)=4.6=24. Resolvendo a congruência $5.d \equiv 1 \pmod{24}$ temos que d=5. Assim:

1)
$$a_1^d \equiv b_1 \pmod{n}$$

 $19^5 \equiv b_1 \pmod{35}, Mas$:
 $19 \equiv -16 \pmod{35}$
 $19^2 \equiv 256 \pmod{35}$
 $19^2 \equiv 11 \pmod{35}$
 $(19^2)^2 \equiv 11^2 \pmod{35}$
 $(19^2)^2 \equiv 11^2 \pmod{35}$
 $19^4 \equiv 121 \pmod{35}$
 $19^4 \equiv -19 \pmod{35}$
 $19^4.19 \equiv -19.(-16) \pmod{35}$
 $19^5 \equiv 304 \pmod{35}$
 $19^5 \equiv 24 \pmod{35}$

Fonte:

1)

Portanto o 19 na mensagem criptografada refere-se ao 24 na mensagem original, voltando a simbologia letra/número chegamos a letra O da palavra OMEG. Como vimos determinar os números primos que geraram a chave pública n=35 é fundamental para decifrar a mensagem criptografada, no exemplo que usamos esse processo não é complicado, então buscamos encerrar o curso discutindo com os alunos o porque do método RSA ser tão eficiente pedindo a eles que determinassem os números primos que gerariam uma nova chave pública n = 14.558.801. Após breve discussão concluímos que seria inviável determinar tais números em pouco tempo, assim mostramos a solução: $p_1 = 4093 \text{ e } p_2 = 3557.$