Universidade Federal da Bahia Departamento de Ciência da Computação

Árvore

Ricardo Araújo Rios

Introdução

- A utilização de estruturas de dados organizadas através de encadeamento fornece uma flexibilidade maior do que vetores.
- Entretanto, Listas, Pilhas e Filas são estruturas lineares.
- Como representar elementos de maneira hierárquica?
- Uma forma não-linear de organizar elementos de maneira hierárquica é utilizando "árvore".

TAD Árvore

Introdução

Introdução

- Estrutura de dados árvore é composta por nós e arcos.
- Ao contrário das árvores naturais, essa estrutura é representada de maneira invertida.
- A raiz está localizada no topo, enquanto que as folhas na parte mais baixa dessa representação.

- O que é a raiz em um TAD Árvore?
 - É um nó que não possui pais. Esse nó possui apenas filhos.
- E o que são folhas?
 - Nós que não possuem filhos.

Estrutura UFBA

Mathematics Genealogy Tree

Unidades Universitárias

- Vantagens:
 - Representatividade no relacionamento entre os dados;
 - Facilidade na manipulação computacional dos dados;
 - Exemplo:
 - Qual a quantidade de professores no DCC?
 - Qual o total de alunos do IC?

TAD Árvore

Representação

Introdução

- Observe que para recuperar informações de uma árvore, não é necessário percorrer todos os elementos:
 - Consulta seletiva em regiões específicas da árvore;
 - Para chegar a um nó, deve-se encontrar um caminho percorrendo os relacionamentos entre os elementos;

Representação

- Uma árvore *T* é um conjunto finito de elementos, chamados de nós ou vértices, tal que:
 - $T = \emptyset$, árvore vazia;
 - $T = \{r\} \cup \{T_a\} \cup$
 - {r} é um nó especial da árvore chamado raiz;
 - $\{T_1\}$, $\{T_2\}$, $\{T_3\}$, $\{T_4\}$, ..., $\{T_n\}$ são subárvores de $\{r\}$;

Representação

- Logo, uma árvore pode ser recursivamente representada por:
 - $T = \{r, T_1, T_2, T_3, T_4, ..., T_n\};$
- Uma sequência de chaves pode ser utilizada para representar o relacionamento entre os nós de uma árvore.
- Exemplo:

Representação

•
$$T = \{A\}$$

•
$$T = \{A, \{B\}\}\$$

Representação

• T = {A, {B, {C}}, {D, {E, {F}}, {G, {H},{I}}, {J}}}

Representação

- Exercício: Represente graficamente as seguintes árvores:
 - $T = \{2, \{1\}, \{3\}\}\$
 - $T = \{4, \{2, \{1\}, \{3\}\}, \{6, \{5\}, \{7\}\}\}\}$
 - Considerando a árvore genealógica apresentada no exemplo anterior, qual seria a representação para os nós: Cotes, Whiston, Newton, Barrow, Vincenzo e Galileo?

Representação

- Grau de um nó
 - Representa o número de subárvores de um nó.

Nó	Grau
А	2
В	1
D	3
G	2
Н	0

Representação

- Um caminho de uma árvore é uma sequência não vazia de nós.
 - Exemplo:

•
$$P(A,F) = \{A, D, E, F\}$$

Representação

- O grau de uma árvore é o maior grau dentre todos os nós da árvore.
 - Qual o grau da árvore anterior?
 - Resposta: 3
- Subárvores de grau 0 são chamadas de folhas.
- Para representar a hierarquia em árvores, nós podem ser chamados de:
 - Pai
 - Filho
 - Irmão

Representação

- O comprimento de um caminho é o número de arcos entre o nó inicial e final do caminho, ou seja, o número de nós -1.
 - Exemplo:

•
$$L(P) = 3$$

Representação

- A altura de um nó é o comprimento do maior caminho entre o nó e uma folha.
- A altura de uma árvore é a altura de sua raiz.
 - Exemplo:
 - altura(A) = altura(T) = 3

Representação

- A profundidade de um nó r_n é o comprimento do caminho entre o nó raíz e r_n
 - Exemplo:
 - altura(E) = 1
 - profundidade(E) = 2

Representação

- O conjunto de nós de mesma profundidade é chamado de nível.
 - Exemplo:

Exercício

- Considere a seguinte árvore:
 - $T = \{A, \{B, \{C, \{D\}\}, \{E, \{F\}, \{G\}\}\}, \{H, \{I\}\}\}\}$
- Responda:
 - Qual a representação gráfica dessa árvore?
 - Encontre o grau, altura e profundidade de cada nó.
 - Separe os nós dessa árvore por níveis.
 - Existe um caminho entre os nós B e D? Qual o seu comprimento?
 - Existe um caminho entre os nós B e I? Qual o seu comprimento?

Exercício

- Considerando um TAD Árvore, responda:
 - Como você implementaria uma estrutura árvore?
 - Suponha que você deseja implementar uma função para transformar uma lista em uma árvore. De acordo com sua implementação e considerando que cada nó pode ter no máximo 3 filhos, qual seria a estrutura de árvore para a seguinte lista?
 - $L = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Árvore Binária

Introdução

Árvore Binária

- Introdução
- Implementação
- Percorrendo Árvore Binária

Introdução

- Árvore Genérica (n-árias)
 - Exemplo: Estrutura de Arquivos em Sistemas Operacionais
- Uma Árvore Binária T é um conjunto finito de elementos (nós ou vértices) tal que:
 - Se T = 0, a árvore é vazia;
 - T contém um nó especial r chamado raiz e todos os demais nós podem ser subdivididos em duas subárvores:
 - T_F: Subárvore esquerda
 - T_D: Subárvore direita

Introdução

- Árvore Binária Completa:
 - Se a profundidade da árvore é d, então todos os nós folhas estão no nível d-1 ou d;
 - O nível **d-1** está completamente preenchido;
 - Os nós folhas do nível d estão mais à esquerda;

Introdução

- Árvore Estritamente Binária:
 - Os nós possuem 0 (nenhum) ou 2 filhos;
 - Os nós não-folhas possuem obrigatoriamente 2 filhos;

Introdução

- Árvore Binária Cheia:
 - Toda árvore cheia é completa e estritamente binária;
 - Todos os nós folhas estão no mesmo nível;

- Árvore Binária Cheia:
 - Relação Nós x Profundidade:
 - $d = 0 \rightarrow 1 \text{ n\'o}$
 - $d = 1 \rightarrow 3 \text{ nós}$
 - $d = 2 \rightarrow 7 \text{ nós}$
 - ...
 - A quantidade de nós pode ser calculada pela profundidade da árvore utilizando a seguinte fórmula:
 2^(d+1) – 1
 - De maneira semelhante temos:

$$-d = \log_2(n+1) - 1$$

Introdução

- Árvore Binária Perfeitamente Balanceada:
 - Para cada nó, o número de nós de suas subárvores esquerda e direita diferem em, no máximo, 1;
 - Toda Árvore Binária Perfeitamente Balanceada é Balanceada, mas o inverso não é necessariamente verdade;

Introdução

- Árvore Binária Balanceada:
 - Para cada nó, as alturas de suas subárvores diferem em, no máximo, 1;

Árvore Binária

Implementação

Implementação

- Árvore Binária Estática:
 - Armazena os nós por níveis em um array:

Implementação

- Árvore Binária Dinâmica:
 - Ver código

Implementação

- Árvore Binária Estática:
 - Para um vetor indexado a partir da posição 0, se um nó está na posição i, então seus filhos estão nas posições:
 - 2i + 1 → filho da esquerda
 - 2i + 2 → filho da direita
 - Vantagem:
 - Não é necessário armazenar os ponteiros para os filhos;
 - Desvantagem:
 - Possibilidade de espaços vazios no vetor

Árvore Binária

Percorrendo Árvore Binária

Percurso

- Árvore Binária:
 - Percorrer uma árvore binária significa visitar seus nós apenas uma vez para, por exemplo, imprimir ou modificar seu valor.
 - Um percurso gera uma sequência linear de nós visitados;
 - Exemplo de métodos para percorrer uma árvore:
 - Pré-ordem (pre-order)
 - Em-ordem (in-order)
 - Pós-ordem (post-order)

Percurso

- Em-ordem (in-order):
 - Percorrer a árvore da esquerda em in-order;
 - Visita a raiz;
 - Percorrer a árvore da direita em in-order;

Resultado: DGBAHEICF

Percurso

- Pré-ordem (pré-order):
 - Visita a raiz;
 - Percorre a árvore da esquerda em pré-ordem;
 - Percorre a árvore da direita em pré-ordem;

• Resultado: ABDGCEHIF

Percurso

- pós-ordem (post-order):
 - Percorrer a árvore da esquerda em pós-ordem;
 - Percorrer a árvore da direita em pós-ordem;
 - Visita a raiz;

• Resultado: GDBHIEFCA

Insere

• Algoritmo • Algoritmo

Inserir: 5

Insere

• Algoritmo

Inserir: 10

Insere

Insere

Raiz

• Algoritmo

Insere

Insere

Algoritmo

Insere

Insere

• Algoritmo

• Algoritmo

Remove

- Algoritmo: remover um nó z
 - Casos:
 - 1. Se z não tem filhos, pai substitui z por NULL
 - 2. Se z tem apenas um filho, o filho ocupa o lugar de z
 - 3. Se z tem dois filhos, a partir da subárvore à esquerda, procure o antecessor de z e o utilize no lugar de z. Se z tiver um filho y à esquerda, a subárvore à direita do pai de z deve apontar para y.

Remove

- ullet Algoritmo: remover um nó z
 - Casos:
 - 1. Se z não tem filhos, pai substitui z por NULL
 - Exemplo: remover 90

Remove

- ullet Algoritmo: remover um nó z
 - Casos:
 - 1. Se z não tem filhos, pai substitui z por NULL
 - Exemplo: remover 90

Remove

- Algoritmo: remover um nó z
 - Casos:
 - 2. Se z tem apenas um filho, o filho ocupa o lugar de z
 - Exemplo: remover 80

Remove

- Algoritmo: remover um nó z
 - Casos:
 - 2. Se z tem apenas um filho, o filho ocupa o lugar de z
 - Exemplo: remover 80

Remove

- Algoritmo: remover um nó z
 - Casos:
 - 3. Se z tem dois filhos, a partir da subárvore à esquerda, procure o antecessor w de z e o utilize no lugar de z. Se w tiver um filho y à esquerda, a subárvore à direita do pai de w deve apontar para y.
 - Exemplo: remover 50

Remove

- Algoritmo: remover um nó z
 - Casos:
 - 3. Se z tem dois filhos, a partir da subárvore à esquerda, procure o antecessor w de z e o utilize no lugar de z. Se w tiver um filho y à esquerda, a subárvore à direita do pai de w deve apontar para y.
 - Exemplo: remover 50

Remove

- Algoritmo: remover um nó z
 - Casos:
 - 3. Se z tem dois filhos, a partir da subárvore à esquerda, procure o antecessor w de z e o utilize no lugar de z. Se w tiver um filho y à esquerda, a subárvore à direita do pai de w deve apontar para y.
 - Exemplo: remover 50

Remove

- Algoritmo: remover um nó z
 - Casos:
 - 3. Se z tem dois filhos, a partir da subárvore à esquerda, procure o antecessor w de z e o utilize no lugar de z. Se w tiver um filho y à esquerda, a subárvore à direita do pai de w deve apontar para y.
 - Exemplo: remover 50

Referências

- [1] Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., Algoritmos Teoria e Prática, 2ª Edição, Elsevier, 2002;
- [2] Kleinberg, J., Tardos, E., Algorithm Design, Pearson, 2006;
- [3] Goodrich, M. T., Tamassia, R., Estrutura de Dados e Algoritmos em Java, 4ª Edição, Bookman, 2007;
- [4] Ziviani, N., Projeto de algoritmos com implementações em Java e C++, Thomson, 2007