GSERM - St. Gallen 2025 Analyzing Panel Data

June 17, 2025

Two-Way Variation

Two-way variation:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \gamma V_i + \delta W_t + u_{it}$$

where V_i are predictors which don't vary over time (within a unit), and W_i are predictors which don't vary across units (for a given time point).

Note that we can write:

$$\alpha_i = \sum_{t=1}^{T_i} (\gamma V_i)$$

and

$$\eta_t = \sum_{i=1}^{N_t} (\delta W_t).$$

So:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \gamma V_i + \delta W_t + u_{it}$$
$$= \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

"One-Way" and "Two-Way" Effects

"Two-way" effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

"One-way" effects:

• Assuming $\alpha_i = 0$:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$
 ("time effects")

• Assuming $\eta_t = 0$:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$
 ("unit effects")

Intuition: One-Way Unit Effects

(One-Way) "Fixed" Effects

"Brute force" model fits:

$$Y_{it} = \mathbf{X}_{it}\beta_{FE} + \alpha_i + u_{it}$$

=
$$\mathbf{X}_{it}\beta_{FE} + \alpha_1 I(i=1)_i + \alpha_2 I(i=2)_i + ... + u_{it}$$

In other words:

- Specify **X**_{it},
- Fit a model that includes both $\mathbf{X}_{it}\boldsymbol{\beta}$ and N (or N-1) indicator variables (with parameters α_i), one for each unit i
 - · If the model includes an intercept (β_0) , then one unit is omitted and becomes the "reference" category
 - · If the model omits an intercept, then all N $\hat{\alpha}$ s can be estimated; $\hat{\alpha}_i$ is then the expected value of Y for unit i when all values of X_{it} are zero

"Fixed" Effects (continued)

Alternatively, decompose:

$$\bar{\mathbf{X}}_i = \frac{\sum_{N_i} \mathbf{X}_{it}}{N_i}$$

and

$$\tilde{\mathbf{X}}_{it} = \mathbf{X}_{it} - \bar{\mathbf{X}}_{i}$$
.

Yields:

$$Y_{it} = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + \tilde{\mathbf{X}}_{it} \boldsymbol{\beta}_W + \alpha_i + u_{it}$$

But!

$$corr(\bar{\mathbf{X}}_i\boldsymbol{\beta}_B,\alpha_i)=1.0$$

"Fixed" Effects = "Within" Effects

This means that:

$$Y_{it}^* = Y_{it} - \bar{Y}_i$$

 $\mathbf{X}_{it}^* = \mathbf{X}_{it} - \bar{\mathbf{X}}_i$

gives:

$$Y_{it}^* = \mathbf{X}_{it}^* \boldsymbol{\beta}_{FE} + u_{it}.$$

- ightarrow A "fixed effects" model is actually a "within-effects" model.
 - \cdot "Fixed effects" models only use the within-unit variation in Y and X
 - \cdot \hat{eta} s for variables that do not vary within units <u>cannot be estimated</u>

"Fixed" Effects: Test(s)

The one-way FE model implies that $\alpha_i \neq \alpha_j$ for at least some $i \neq j$. We can test this assumption using a standard F-test of the hypothesis:

$$H_0: \alpha_i = \alpha_i \ \forall \ i \neq j$$

versus

$$H_A$$
: $\alpha_i \neq \alpha_j$ for some $i \neq j$

Specifically, the test statistic

$$F = \frac{\left(SSE_{OLS} - SSE_{FE}\right)/N - 1}{SSE_{FE}/[NT - (N-1)]}$$

is
$$\sim F_{N-1,NT-(N-1)}$$
.

Example Redux: WDI, 1960-2024

The World Development Indicators

- Cross-national country-level time series data
- N = 215 countries, T = 65 years (1960-2025) + missingness
- Variables:
 - · Geography: land area, arable land
 - · Population indicators
 - · Demographics: Birth rates, life expectancy, etc.
 - · Economics: GDP, inflation, trade, FDI, etc.
 - · Governments: expenditures, policies, etc.
- Full descriptions are listed in the Github repo here.

Data Summary

> de	cribe(wdi,fast=TRUE,ranges=FALSE,check	=TRUE)
------	--	--------

> describe(wdi,fast=TRUE,ranges=FALSE,check=TRUE)									
	vars	n	mean	sd	skew	kurtosis	se		
IS03	1	13975	NaN	NA	NA	NA	NA		
Year	2	13975	1992.00	1.9e+01	0.00	-1.20	0.16		
Region	3	13975	NaN	NA	NA	NA	NA		
country	4	13975	NaN	NA	NA	NA	NA		
iso3c	5	13975	NaN	NA	NA	NA	NA		
LandArea	6	12068	596744.44	1.6e+06	5.45	34.69	14960.16		
ArablePercent	7	11662	13.40	1.4e+01	1.47	1.97	0.13		
Population	8	13730	25346115.55	1.1e+08	9.73	105.72	899764.29		
PopGrowth	9	13513	1.75	1.8e+00	0.73	21.38	0.02		
RuralPopulation	10	13696	48.11	2.6e+01	-0.11	-1.00	0.22		
UrbanPopulation	11	13696	51.89	2.6e+01	0.11	-1.00	0.22		
BirthRatePer1K	12	13730	27.67	1.3e+01	0.24	-1.24	0.11		
FertilityRate	13	13728	3.82	2.0e+00	0.43	-1.18	0.02		
PrimarySchoolAge	14	11120	6.13	6.1e-01	-0.04	0.11	0.01		
LifeExpectancy	15	13726	65.17	1.1e+01	-0.76	0.18	0.10		
AgeDepRatio01d	16	13730	10.76	7.2e+00	1.79	5.00	0.06		
C02Emissions	17	10962	5.05	1.1e+01	8.70	102.13	0.11		
GDP	18	11040	240200887836.82	1.1e+12	11.48	160.11	10755237244.82		
GDPPerCapita	19	11040	12313.79	1.9e+04	3.11	14.14	183.36		
GDPPerCapGrowth	20	10970	1.89	6.5e+00	1.68	41.63	0.06		
Inflation	21	8882	22.90	3.2e+02	54.09	3625.88	3.40		
TotalTrade	22	8777	77.93	5.3e+01	3.03	18.39	0.57		
Exports	23	8777	36.19	2.9e+01	2.99	16.80	0.30		
Imports	24	8786	41.75	2.7e+01	2.54	13.97	0.29		
FDIIn	25	8969	5.53	4.5e+01	15.13	541.91	0.48		
AgriEmployment	26	6134		2.4e+01	0.66	-0.67	0.30		
NetAidReceived	27	9043	506951242.00	1.0e+09	8.32	157.34	10484966.48		
MobileCellSubscriptions	28	10212	36.32	5.2e+01	1.29	1.14	0.51		
NaturalResourceRents	29	9211	6.85	1.1e+01	2.60	8.04	0.12		
MilitaryExpenditures	30	7733	2.71	3.2e+00	9.43	239.85	0.04		
GovtExpenditures	31	8421	16.34	8.3e+00	3.63	32.81	0.09		
PublicEdExpend	32	5177	4.35	2.1e+00	6.89	166.21	0.03		
PublicHealthExpend	33	4346	3.29	2.4e+00	1.33	3.08	0.04		
HIVDeaths	34	4656	6473.06	1.9e+04	5.78	45.97	277.31		
WomenBusLawIndex		10152		1.9e+01	0.02	-0.58	0.19		
PaidParentalLeave		10152		3.1e-01	2.50	4.27	0.00		
PostColdWar	37	13975	0.54	5.0e-01	-0.15	-1.98	0.00		

WDI's Women, Business and the Law Index (WBLI)

The basis for a 2021 World Bank report...

- Examines "the laws and regulations that affect women's economic opportunity in 190 economies" from 1970-2023.
- An index comprising eight indicators "structured around women's interactions with the law as they move through their careers: Mobility, Workplace, Pay, Marriage, Parenthood, Entrepreneurship, Assets, and Pension."
- The WBL Index:
 - · Theoretically ranges from 0 100
 - · In practice: lowest values \approx 18
 - Higher values correspond to higher levels of women's empowerment and greater opportunities and support for women, particularly in business
- "Better performance in the areas measured by the *Women, Business and the Law Index* is associated with a more narrow gender gap in development outcomes, higher female labor force participation, lower vulnerable employment, and greater representation of women in national parliaments."

Trend Line Visualization (using panelView)

Map! WBLI (2023)

Categorical Variable Visualization (using panelView)

Bivariate Visualization (using panelView)

plm and Panel Data

plm (panel linear models) is the workhorse R package for fitting linear regression models to panel data. To do so, you must first declare the data as panel data and indicate the variables containing the unit (i) and period (t) indices:

```
> WDI<-pdata.frame(wdi,index=c("ISO3","Year"))
> class(WDI)
[1] "pdata.frame" "data.frame"
> WBLI<-WDI$WomenBusLawIndex
> class(WBLI)
[1] "pseries" "numeric"
```

WBLI: Total Variation

> describe(WBLI,na.rm=TRUE) # all variation
 vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 10152 59.85 18.74 59.38 59.86 19.46 17.5 100 82.5 0.02 -0.58 0.19

WBLI: "Between" Variation

> describe(plm::between(WBLI,effect="individual",na.rm=TRUE)) # "between" variation
 vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 188 59.85 14.48 61.04 60.73 13.08 23.67 89.94 66.27 -0.5 -0.12 1.06

WBLI: "Within" Variation

> describe(Within(WBLI,na.rm=TRUE)) # "within" variation
 vars n mean sd median trimmed mad min max range skew kurtosis se
X1 1 10152 0 11.94 -1.25 -0.32 11.14 -46.06 55.88 101.9 0.26 0.35 0.12

A Regression Model

Regression model:

WBLI_{it} =
$$\beta_0 + \beta_1$$
Population Growth_{it} + β_2 Urban Population_{it} + β_3 Fertility Rate_{it} + β_4 In(GDP Per Capita)_{it} + β_5 Natural Resource Rents_{it} + β_6 Post Cold War_t + u_{it}

Expectations:
$$\beta_1 < 0$$
 $\beta_3 < 0$ $\beta_5 < 0$ $\beta_2 > 0$ $\beta_4 > 0$ $\beta_6 > 0$

Descriptive Statistics:

	vars	n	mean	sd	median	min	max	range	skew	kurtosis	se
WomenBusLawIndex	1	8318	60.44	19.03	60.62	17.50	100.00	82.50	-0.03	-0.69	0.21
PopGrowth	2	8318	1.67	1.67	1.64	-27.47	21.70	49.17	-0.06	30.06	0.02
UrbanPopulation	3	8318	52.09	24.06	51.93	2.85	100.00	97.16	0.06	-1.04	0.26
FertilityRate	4	8318	3.61	1.90	3.09	0.77	8.61	7.83	0.51	-1.04	0.02
NaturalResourceRents	5	8318	7.19	11.14	2.42	0.00	88.59	88.59	2.53	7.58	0.12
PostColdWar	6	8318	0.69	0.46	1.00	0.00	1.00	1.00	-0.83	-1.31	0.01
lnGDPPerCap	7	8318	8.33	1.46	8.24	4.93	11.68	6.75	0.12	-0.90	0.02

Where is the Variation in our Data?

Variable	Dimension	Mean	SD	Min	Max	Observations
Women Bus. Law Index	overall	60.435	19.028	17.5	100	NT = 8318
	between		15.363	23.329	89.555	N = 187
	within		11.346	15.147	117.722	T = 44.481
Pop. Growth	overall	1.673	1.673	-27.471	21.7	NT = 8318
	between		1.271	-1.077	6.328	N = 187
	within		1.145	-29.218	17.301	T = 44.481
Urban Population	overall	52.087	24.057	2.845	100	NT = 8318
	between		22.914	7.649	100	N = 187
	within		6.853	13.796	80.713	T = 44.481
Fertility Rate	overall	3.614	1.9	0.772	8.606	NT = 8318
	between		1.668	1.292	7.586	N = 187
	within		0.934	0.846	7.384	T = 44.481
Natural Resource Rents	overall	7.194	11.142	0	88.592	NT = 8318
	between		10.02	0	43.459	N = 187
	within		5.285	-24.03	61.301	T = 44.481
Post Cold War	overall	0.691	0.462	0	1	NT = 8318
	between		0.159	0.333	1	N = 187
	within		0.441	-0.278	1.358	T = 44.481
In(GDP Per Cap)	overall	8.332	1.457	4.926	11.678	NT = 8318
	between		1.393	5.728	11.199	N = 187
	within		0.354	6.52	10.277	T = 44.481

Regression: Pooled OLS

```
> OLS<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+
                 NaturalResourceRents+PostColdWar, data=WDI,model="pooling")
> summary(OLS)
Pooling Model
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   PostColdWar, data = WDI, model = "pooling")
Unbalanced Panel: n = 187, T = 8-52, N = 8318
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                               Max
 -78 61 -8 48
                 1 05
                        9 24 45 58
Coefficients:
                   Estimate Std. Error t-value
                                                Pr(>|t|)
                              1.7972 29.25
(Intercept)
                   52.5590
                                               < 2e-16 ***
                   -1.7755 0.1165 -15.24
PopGrowth
                                                < 2e-16 ***
UrbanPopulation
                   FertilityRate
                   -2.9836 0.1540 -19.38
                                                < 2e-16 ***
                   2.4691 0.1910 12.93
log(GDPPerCapita)
                                                < 2e-16 ***
NaturalResourceRents -0.3633 0.0150 -24.17
                                               < 2e-16 ***
                   10.2751 0.3652 28.14
PostColdWar
                                               < 2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Total Sum of Squares:
                      3010000
Residual Sum of Squares: 1500000
R-Squared:
              0.5
Adi. R-Squared: 0.5
F-statistic: 1387.87 on 6 and 8311 DF, p-value: <2e-16
```

"Fixed" (Within) Effects

```
> FE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+
         NaturalResourceRents+PostColdWar.data=WDI.effect="individual".model="within")
> summarv(FE)
Oneway (individual) effect Within Model
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   PostColdWar, data = WDI, effect = "individual", model = "within")
Unbalanced Panel: n = 187, T = 8-52, N = 8318
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                                 Max.
-33.806 -5.109 -0.504 4.980 52.899
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
PopGrowth
                    -0.1890
                                0.0807 -2.34 0.019 *
                   0.3101 0.0196 15.83 < 2e-16 ***
UrbanPopulation
FertilityRate
                  -1.7632 0.1542 -11.43 < 2e-16 ***
log(GDPPerCapita)
                    8.7789 0.2935 29.91 < 2e-16 ***
Natural Resource Rents 0.0718
                                0.0166 4.32 0.000016 ***
                      6.9444
PostColdWar
                                0.2882 24.09 < 2e-16 ***
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
Total Sum of Squares:
                        1070000
Residual Sum of Squares: 505000
R-Squared:
               0.528
Adi. R-Squared: 0.517
```

F-statistic: 1514.57 on 6 and 8125 DF, p-value: <2e-16

A Nicer Table

	OLS	FE
Population Growth	-1.776***	-0.189**
•	(0.117)	(0.081)
Urban Population	-0.066***	0.310***
	(0.010)	(0.020)
Fertility Rate	-2.984***	-1.763***
	(0.154)	(0.154)
n(GDP Per Capita)	2.469***	8.779***
	(0.191)	(0.294)
Natural Resource Rents	-0.363***	0.072***
	(0.015)	(0.017)
Post-Cold War	10.280***	6.944***
	(0.365)	(0.288)
Constant	52.560***	
	(1.797)	
Observations	8,318	8,318
R^2	0.500	0.528
Adjusted R ²	0.500	0.517
F Statistic	1,388.000*** (df = 6; 8311)	1,515.000*** (df = 6; 8125
		*p<0.1; **p<0.05; ***p<0.03

One-Way Period Fixed Effects

The model is:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \eta_t + u_{it}$$

which is estimated via "demeaning" data at each time point:

$$Y_{it}^{**} = Y_{it} - \bar{Y}_t$$

 $\mathbf{X}_{it}^{**} = \mathbf{X}_{it} - \bar{\mathbf{X}}_t$

then fitting the OLS model:

$$Y_{it}^{**} = \beta_{FE} \mathbf{X}_{it}^{**} + u_{it}.$$

Comparison: Unit vs. Time Fixed Effects

	OLS	FE.Units	FE.Time
Population Growth	-1.776*** (0.117)	-0.189** (0.081)	-1.939*** (0.110)
Urban Population	-0.066*** (0.010)	0.310*** (0.020)	-0.067*** (0.010)
Fertility Rate	-2.984*** (0.154)	-1.763*** (0.154)	-2.064*** (0.149)
In(GDP Per Capita)	2.469*** (0.191)	8.779*** (0.294)	2.871*** (0.181)
Natural Resource Rents	-0.363*** (0.015)	0.072*** (0.017)	-0.398*** (0.014)
Post-Cold War	10.280*** (0.365)	6.944*** (0.288)	
Constant	52.560*** (1.797)		
Observations	8,318	8,318	8,318
R ²	0.500	0.528	0.402
Adjusted R ²	0.500	0.517	0.398
F Statistic	1,388.000*** (df = 6; 8311)	1,515.000*** (df = 6; 8125)	1,112.000*** (df = 5; 8261)

*p<0.1; **p<0.05; ***p<0.01

Fixed Effects: Testing

As we noted previously, the specification:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$

...suggests that we can use an F-test to examine the hypothesis:

$$H_0: \alpha_i = \alpha \ \forall \ i$$

(and a similar test for $\eta_t = 0$ in the time-centered case).

Arguably better are Lagrange multiplier-based tests:

- Breusch-Pagan (1980)
- King and Wu (1997)
- See (e.g.) Croissant and Millo (2018, §4.1) for details

FE (by Unit) Model Tests

```
> pFtest(FE,OLS)
 F test for individual effects
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
F = 86, df1 = 186, df2 = 8125, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.effect=c("individual").tvpe=c("bp"))
 Lagrange Multiplier Test - (Breusch-Pagan)
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
chisq = 56650, df = 1, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.effect=c("individual").tvpe=c("kw"))
 Lagrange Multiplier Test - (King and Wu)
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
normal = 238, p-value <2e-16
alternative hypothesis: significant effects
```

FE (by Period) Model Tests

```
> pFtest(FE.Time,OLS)
 F test for time effects
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
F = 22, df1 = 50, df2 = 8261, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.Time.effect=c("time").tvpe=c("bp"))
 Lagrange Multiplier Test - time effects (Breusch-Pagan)
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
chisq = 8402, df = 1, p-value <2e-16
alternative hypothesis: significant effects
> plmtest(FE.Time.effect=c("time").tvpe=c("kw"))
 Lagrange Multiplier Test - time effects (King and Wu)
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
normal = 92, p-value <2e-16
alternative hypothesis: significant effects
```

Fixed Effects: Interpretation

FE models are *subject-specific* models, that rely entirely on *within-unit* variability to estimate variable effects.

• This means that:

$$\hat{\beta}_k = \frac{\partial E(Y|\hat{\alpha})}{\partial X_k}$$

- That is, $\hat{\beta}_k$ is the expected change in E(Y) associated with a one-unit increase in observation i's value of X_k
- Key: within-unit changes in **X** are associated with within-unit expected changes in *Y*.
- In a linear model, the value of $\hat{\alpha}$ doesn't affect the value of that partial derivative...

Fixed Effects: Interpretation

Mummolo and Peterson (2018) note that:

"...because the within-unit variation is always smaller (or at least, no larger) than the overall variation in the independent variable, researchers should use within-unit variation to motivate counterfactuals when discussing the substantive impact of a treatment" (2018, 829).

Significance:

- Predictors X in FE models typically have both cross-sectional and temporal variation
- FE models only consider within-unit variation in **X** and Y
- As a result, the degree of actual/observed (within-unit) variation in predictors is almost always less – and sometimes significantly less – than if cross-sectional variation were also considered

Interpretation Example: Urban Population

Q: How much is a "one standard deviation change in Urban Population"?

Recall its variation:

Variable	Dimension	Mean	SD	Min	Max	Observations
Urban Population	overall between within	52.087	24.057 22.914 6.853	2.845 7.649 13.796	100 100 80.713	NT = 8318 N = 187 T = 44.481

"While the overall variation in the independent variable may be large, the within-unit variation used to estimate β may be much smaller" (M & P 2018, p. 830).

Whither "Fixed" Effects"?

Ø ...

Real footage of an applied economist adding fixed effects in his regressions

Pros and Cons of "Fixed" Effects

Pros:

- Mitigates (Some) Specification Bias
- Simple + Intuitive
- Widely Used/Understood

Cons (see e.g. Collischon and Eberl 2020):

- Can't Estimate β_B
- Slowly-Changing Xs
- (In)Efficiency / Inconsistency (Incidental Parameters)
- Cannot Control for (e.g.) Time-Varying Heterogeneity
- Sensitivity to Measurement Error

From the equation above:

$$Y_{it} = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + \tilde{\mathbf{X}}_{it} \boldsymbol{\beta}_W + \alpha_i + u_{it}$$

...we can derive a "Between Effects" model:

$$\bar{Y}_i = \bar{\mathbf{X}}_i \boldsymbol{\beta}_B + u_{it}$$

This model:

- is essentially cross-sectional,
- is based on *N* observations.
- considers only between-unit (average) differences
- Interpretation:

 $\hat{\beta}_B$ is the expected difference in Y between two units whose values on \bar{X} differ by a value of 1.0.

"Between" Effects

```
> BE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+
  NaturalResourceRents+PostColdWar,data=WDI,effect="individual",model="between")
> summary(BE)
Oneway (individual) effect Between Model
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   PostColdWar, data = WDI, effect = "individual", model = "between")
Unbalanced Panel: n = 187, T = 8-52, N = 8318
Observations used in estimation: 187
Residuals:
  Min. 1st Qu. Median 3rd Qu.
                                 May
-29 640 -6 886 0 809 8 117 21 124
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
(Intercept)
                    57 6089
                               12.8651 4.48 0.000013 ***
PopGrowth
                    -4.9920 1.1283 -4.42 0.000017 ***
UrbanPopulation
                    -0.0508
                                0.0550 -0.92 0.35657
FertilityRate
                   -1.5067 1.1726 -1.28 0.20048
                     1.9512 1.1458 1.70 0.09032 .
log(GDPPerCapita)
NaturalResourceRents =0 3131
                                0.0920 -3.41 0.00082 ***
PostColdWar
                     7 7174
                                5.3256 1.45 0.14904
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                       43900
Residual Sum of Squares: 18400
R-Squared:
               0.58
Adj. R-Squared: 0.566
F-statistic: 41.4088 on 6 and 180 DF, p-value: <2e-16
```

A Nicer Table (Again)

	OLS	FE	BE
Population Growth	-1.776***	-0.189**	-4.992***
.,	(0.117)	(0.081)	(1.128)
Urban Population	-0.066***	0.310***	-0.051
	(0.010)	(0.020)	(0.055)
Fertility Rate	-2.984***	-1.763***	-1.507
	(0.154)	(0.154)	(1.173)
In(GDP Per Capita)	2.469***	8.779***	1.951*
. ,	(0.191)	(0.294)	(1.146)
Natural Resource Rents	-0.363***	0.072***	-0.313***
	(0.015)	(0.017)	(0.092)
Post-Cold War	10.280***	6.944***	7.717
	(0.365)	(0.288)	(5.326)
Constant	52.560***		57.610***
	(1.797)		(12.870)
Observations	8,318	8,318	187
R^2	0.500	0.528	0.580
Adjusted R ²	0.500	0.517	0.566
F Statistic	1,388.000*** (df = 6; 8311)	1,515.000**** (df = 6; 8125)	41.410*** (df = 6; 180)

 $^*p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

Model:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

with:

$$u_{it} = \alpha_i + \lambda_t + \eta_{it}$$

and

$$\begin{split} E(\alpha_i) &= E(\lambda_t) = E(\eta_{it}) &= 0, \\ E(\alpha_i \lambda_t) &= E(\alpha_i \eta_{it}) = E(\lambda_t \eta_{it}) &= 0, \\ E(\alpha_i \alpha_j) &= \sigma_\alpha^2 \text{ if } i = j, \ 0 \text{ otherwise}, \\ E(\lambda_t \lambda_s) &= \sigma_\lambda^2 \text{ if } t = s, \ 0 \text{ otherwise}, \\ E(\eta_{it} \eta_{js}) &= \sigma_\eta^2 \text{ if } i = j, \ t = s, \ 0 \text{ otherwise}, \\ E(\alpha_i \mathbf{X}_{it}) &= E(\lambda_t \mathbf{X}_{it}) = E(\eta_{it} \mathbf{X}_{it}) &= 0. \end{split}$$

"Random" Effects

If those assumptions are met, we can consider the "two-way variance components" model where:

$$Var(u_{it}) = Var(Y_{it}|\mathbf{X}_{it})$$
$$= \sigma_{\alpha}^{2} + \sigma_{\lambda}^{2} + \sigma_{\eta}^{2}$$

If we assume $\lambda_t = 0$, then we get a model like:

$$Y_{it} = \mathbf{X}_{it}\beta + \alpha_i + \eta_{it}$$

with total error variance:

$$\sigma_u^2 = \sigma_\alpha^2 + \sigma_\eta^2.$$

a.k.a. the "one-way error components model."

"Random" Effects: Estimation

The model above will violate the standard OLS assumptions of uncorrelated errors, because the (compound) "errors" u_{it} within each unit share a common component α_i . Consider the <u>within-i</u> variance-covariance matrix of the errors \mathbf{u} :

$$E(\mathbf{u}_{i}\mathbf{u}_{i}') \equiv \mathbf{\Sigma}_{i} = \sigma_{\eta}^{2}\mathbf{I}_{T} + \sigma_{\alpha}^{2}\mathbf{i}\mathbf{i}'$$

$$= \begin{pmatrix} \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \sigma_{\alpha}^{2} & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} & \cdots & \sigma_{\alpha}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{\alpha}^{2} & \sigma_{\alpha}^{2} & \cdots & \sigma_{\eta}^{2} + \sigma_{\alpha}^{2} \end{pmatrix}$$

Assuming conditional independence across units, we then have:

$$\mathsf{Var}(\mathbf{u}) \equiv \mathbf{\Omega} = egin{pmatrix} \mathbf{\Sigma}_1 & 0 & \cdots & 0 \ 0 & \mathbf{\Sigma}_2 & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & \mathbf{\Sigma}_N \end{pmatrix}$$

"Random" Effects: Estimation

Under our assumptions, we can show that:

$$\mathbf{\Sigma}^{-1/2} = rac{1}{\sigma_{\eta}} \left[\mathbf{I}_{T} - \left(rac{ heta}{T} \mathbf{i} \mathbf{i}'
ight)
ight]$$

where

$$heta=1-\sqrt{rac{\sigma_{\eta}^2}{T\sigma_{lpha}^2+\sigma_{\eta}^2}}$$

is an unknown quantity to be estimated.

Estimation: Starting with an estimate of $\hat{\theta}$, calculate:

$$Y_{it}^* = Y_{it} - \hat{\theta} \bar{Y}_i$$

$$X_{it}^* = X_{it} - \hat{\theta} \bar{X}_i$$

then estimate:

$$Y_{it}^* = (1 - \hat{ heta}) lpha + X_{it}^* eta_{RE} + [(1 - \hat{ heta}) lpha_i + (\eta_{it} - \hat{ heta} ar{\eta}_i)]$$

and iterate between the two processes until convergence (a la FGLS).

"Random" Effects: An Alternative View

Random Effects

```
> RE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+
           PostColdWar,data=WDI,effect="individual",model="random")
> summary(RE)
Oneway (individual) effect Random Effect Model
   (Swamy-Arora's transformation)
Call:
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   PostColdWar, data = WDI, effect = "individual", model = "random")
Unbalanced Panel: n = 187, T = 8-52, N = 8318
Effects:
               var std dev share
idiosyncratic 62.20
                    7.89 0.39
individual
             96.27
                    9.81 0.61
theta.
  Min. 1st Qu. Median
                         Mean 3rd Qu.
                                         Max.
 0.727 0.877 0.889 0.881 0.889
                                       0.889
Residuals:
   Min. 1st Qu. Median
                             Mean 3rd Qu.
-34.0055 -5.3346 -0.5703 -0.0314 5.5855 44.0815
Coefficients:
                    Estimate Std. Error z-value Pr(>|z|)
(Intercept)
                    -7 3135
                                2.4992 -2.93 0.0034 **
PopGrowth
                    -0.2321
                                0.0824 -2.82 0.0048 **
UrbanPopulation
                   0.1928
                                0.0184 10.46 <2e-16 ***
FertilityRate
                    -2.1064
                                0.1539 -13.68
                                               <20-16 ***
log(GDPPerCapita)
                    7.2254
                                0.2785 25.95 <2e-16 ***
NaturalResourceRents 0.0450
                                0.0167
                                       2.70 0.0069 **
PostColdWar
                     8.1810
                                0.2830 28.91 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
Residual Sum of Squares: 543000
R-Squared:
              0.511
Adj. R-Squared: 0.511
Chisq: 8493.57 on 6 DF, p-value: <2e-16
```

A Nicer Table (Yet Again)

	OLS	FE	BE	RE
Population Growth	-1.776***	-0.189**	-4.992***	-0.232***
•	(0.117)	(0.081)	(1.128)	(0.082)
Urban Population	-0.066***	0.310***	-0.051	0.193***
	(0.010)	(0.020)	(0.055)	(0.018)
Fertility Rate	-2.984***	-1.763***	-1.507	-2.106***
	(0.154)	(0.154)	(1.173)	(0.154)
In(GDP Per Capita)	2.469***	8.779***	1.951*	7.225***
	(0.191)	(0.294)	(1.146)	(0.278)
Natural Resource Rents	-0.363***	0.072***	-0.313***	0.045***
	(0.015)	(0.017)	(0.092)	(0.017)
Post-Cold War	10.280***	6.944***	7.717	8.181***
	(0.365)	(0.288)	(5.326)	(0.283)
Constant	52.560***		57.610***	-7.314***
	(1.797)		(12.870)	(2.499)
Observations	8,318	8,318	187	8,318
R ²	0.500	0.528	0.580	0.511
Adjusted R ²	0.500	0.517	0.566	0.511
F Statistic	1,388.000*** (df = 6; 8311)	1,515.000*** (df = 6; 8125)	41.410*** (df = 6; 180)	8,494.000***

^{*}p<0.1; **p<0.05; ***p<0.01

"Random" Effects: Testing

Intuition:

- RE models require that $Cov(X_{it}, \alpha_i) = 0$.
- FE models do not.

This means that:

	Reality				
Model	$Cov(X_{it}, \alpha_i) = 0$	$Cov(X_{it}, lpha_i) eq 0$			
Fixed Effects	Consistent, Inefficient	Consistent, Efficient			
Random Effects	Consistent, Efficient	Inconsistent			

The Hausman Test

Hausman test (FE vs. RE):

$$\widehat{\mathcal{W}} = (\boldsymbol{\hat{\beta}_{\mathsf{FE}}} - \boldsymbol{\hat{\beta}_{\mathsf{RE}}})'(\boldsymbol{\hat{V}_{\mathsf{FE}}} - \boldsymbol{\hat{V}_{\mathsf{RE}}})^{-1}(\boldsymbol{\hat{\beta}_{\mathsf{FE}}} - \boldsymbol{\hat{\beta}_{\mathsf{RE}}})$$

$$W \sim \chi_k^2$$

Null: The RE model is consistent ($Cov(X_{it}, \alpha_i) = 0$).

Issues / Concerns:

- Asymptotic...
- ullet No guarantee $(\hat{f V}_{\sf FE} \hat{f V}_{\sf RE})^{-1}$ is positive definite
- This is a general specification test...

Hausman Test Results

```
Hausman test (FE vs. RE):
> phtest(FE, RE) # ugh...
Hausman Test
data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
chisq = 5341, df = 6, p-value <2e-16
alternative hypothesis: one model is inconsistent</pre>
```

Things to think about:

- Are we in asymptopia?
- Do we believe our model specification?...

Practical "Fixed" vs. "Random" Effects

Factors to consider:

- "Panel" vs. "TSCS" Data
- Nature of the Data-Generating Processes
- Importance of Non-Time-Varying Covariate Effects
- Dimension/Location of the Variance in the Data (N vs. T)

Connections: Hierarchical Linear Models

HLM Starting Points

Begin by considering a two-level "nested" data structure, with:

$$i \in \{1, 2, ...N\}$$
 indexing first-level units, and $j \in \{1, 2, ...J\}$ indexing second-level groups.

A general two-level HLM is an equation of the form:

$$Y_{ij} = \beta_{0j} + \mathbf{X}_{ij}\beta_j + u_{ij} \tag{1}$$

where β_{0j} is a "constant" term, \mathbf{X}_{ij} is a $NJ \times K$ matrix of K covariates, β_j is a $K \times 1$ vector of parameters, and $u_{ij} \sim \text{i.i.d.} \ N(0, \sigma_u^2)$ is the usual random-disturbance assumption.

Each of the K+1 "level-one" parameters is then allowed to vary across Q "level-two" variables \mathbf{Z}_j , so that:

$$\beta_{0j} = \gamma_{00} + \mathbf{Z}_j \gamma_0 + \varepsilon_{0j} \tag{2}$$

for the "intercept" and

$$\beta_{kj} = \gamma_{k0} + \mathbf{Z}_j \gamma_k + \varepsilon_{kj} \tag{3}$$

for the "slopes" of X. The ε s are typically assumed to be distributed multivariate Normal, with parameters for the variances and covariances selected by the analyst. Substitution of (2) and (3) into (1) yields:

$$Y_{ij} = \gamma_{00} + \mathbf{Z}_j \gamma_0 + \mathbf{X}_{ij} \gamma_{k0} + \mathbf{X}_{ij} \mathbf{Z}_j \gamma_k + \mathbf{X}_{ij} \varepsilon_{kj} + \varepsilon_{0j} + u_{ij}$$
 (4)

The form is essentially a model with "saturated" interaction effects across the various levels, as well as "errors" which are multivariate Normal.

HLM Details

Model Assumptions

- Linearity / Additivity
- Normality of us
- Homoscedasticity
- Residual Independence:
 - · $Cov(\varepsilon_{\cdot j}, u_{ij}) = 0$
 - · $Cov(u_{ij}, u_{i\ell}) = 0$

Model Fitting

- MLE
- "Restricted" MLE ("RMLE")
- Choosing:
 - · MLE is biased in small samples, especially for estimating variances
 - RMLE is not, but prevents use of LR tests when the models do not have identical fixed effects
 - In general: RMLE is better with small sample sizes, but MLE is fine in larger ones

HLMs: Attributes

Note that if we specify:

$$\beta_{0i} = \gamma_{00} + \varepsilon_{0i}$$

and

$$\beta_{kj} = \gamma_{k0}$$

we get:

$$Y_{ij} = \gamma_{00} + \mathbf{X}_{ij}\gamma_{k0} + \varepsilon_{0j} + u_{ij}$$

which is the RE model above (formally, a "one-level random-intercept" HLM).

In addition:

- HLMs can be expanded to 3- and 4- and higher-level models
- One can include cross-level interactions...

HLMs are widely used in education, psychology, ecology, etc. (less so in economics, political science). Also, there are many, many excellent books, websites, etc. that address HLMs

Random Effects Remix (using 1mer)

```
> AltRE<-lmer(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+
+ PostColdWar+(1|ISO3).data=WDI)
> summary(AltRE)
Linear mixed model fit by REML ['lmerMod']
Formula: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
    log(GDPPerCapita) + NaturalResourceRents + PostColdWar +
                                                                (1 | ISO3)
   Data: WDI
REML criterion at convergence: 59006
Scaled residuals:
  Min
          10 Median
-4.289 -0.649 -0.074 0.636 6.599
Random effects:
Groups Name
                     Variance Std.Dev.
IS03
         (Intercept) 341.1
                              18.47
                      62.3
                              7 89
Regidual
Number of obs: 8318, groups: ISO3, 187
Fixed effects:
                    Estimate Std. Error t value
                    -19.9879
                                2.8298 -7.06
(Intercept)
                     -0.2012
                                0.0806 -2.49
PopGrowth
UrbanPopulation
                     0.2688
                                0.0191 14.09
FertilityRate
                     -1.8775 0.1531 -12.27
log(GDPPerCapita)
                     8.2262 0.2865 28.71
NaturalResourceRents 0.0639 0.0165 3.87
PostColdWar
                     7 3931
                                0.2842 26.01
Correlation of Fixed Effects:
           (Intr) PpGrwt UrbnPp FrtltR 1(GDPP NtrlRR
PopGrowth
            0.051
UrbanPopltn -0.179 0.007
FertilityRt -0.441 -0.238 0.434
lg(GDPPrCp) -0.748 -0.057 -0.283 0.096
NtrlRsrcRnt 0.005 -0.096 -0.023 -0.110 -0.012
PostColdWar 0.027 -0.025 -0.218 0.427 -0.121 -0.055
```

Q: Are They The Same? [A: More Or Less]

	RE	AltRE
Population Growth	-0.232***	-0.201**
	(0.082)	(0.081)
Urban Population	0.193***	0.269***
	(0.018)	(0.019)
Fertility Rate	-2.106***	-1.878***
	(0.154)	(0.153)
In(GDP Per Capita)	7.225***	8.226***
, , ,	(0.278)	(0.286)
Natural Resource Rents	0.045***	0.064***
	(0.017)	(0.017)
Post-Cold War	8.181***	7.393***
	(0.283)	(0.284)
Constant	-7.314***	-19.990***
	(2.499)	(2.830)
Observations	8,318	8,318
R ²	0.511	
Adjusted R ²	0.511	
Log Likelihood		-29,503.000
Akaike Inf. Crit.		59,023.000
Bayesian Inf. Crit.		59,087.000
F Statistic	8,494.000***	

p < 0.1; p < 0.05; p < 0.01

For more, see here.

Why HLMs?

Some reasons:

- Flexibility / verisimilitude
- Maximizing information (via pooling/shrinkage)
- Modeling / conceptual consistency

See especially Gelman and Hill (2007, Chapter 11).

Example: What if we think that the end of the Cold War had (slightly) different effects on WBLI in each country?...

HLM with Country-Level Random β s for ColdWar

(PostColdWar | ISO3)

 $> \texttt{HLMi} \leftarrow \texttt{lmer}(\texttt{WomenBusLawIndex}^{-} \texttt{PopGrowth} + \texttt{UrbanPopulation} + \texttt{FertilityRate} + \texttt{log}(\texttt{GDFPerCapita}) + \texttt{NaturalResourceRents} + \texttt{PostColdWar} + (\texttt{PostColdWar} | \texttt{ISO3}) \\ \\ \texttt{,data=MDI}, \texttt{control} = \texttt{lmerControl}(\texttt{optimizer} = \texttt{"bobyqa"})) \\ \\ \texttt{normal} = \texttt{normal} + \texttt{normal} = \texttt{normal} + \texttt{normal} = \texttt{normal} + \texttt{normal} = \texttt{norm$

```
> summary(HLM1)
Linear mixed model fit by REML ['lmerMod']
Formula: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
    log(GDPPerCapita) + NaturalResourceRents + PostColdWar +
   Data: WDT
Control: lmerControl(optimizer = "bobyga")
REML criterion at convergence: 55471
Scaled residuals:
   Min
          10 Median
-4.346 -0.537 0.008 0.534 7.987
Random effects:
Groups
                     Variance Std.Dev. Corr
TS03
         (Intercept) 605.2
                              24.60
         PostColdWar 141.2
                              11.88
                                      -0.29
Regidual
                      37 3
                              6 11
Number of obs: 8318, groups: ISO3, 187
Fixed effects:
                    Estimate Std. Error t value
(Intercept)
                    -31.4227
                                 3.3116 -9.49
PopGrowth
                     -0.3185
                                 0.0647 -4.93
UrbanPopulation
                     0.3400
                                 0.0222 15.33
FertilityRate
                     -3.8570
                               0.1652 -23.35
log(GDPPerCapita)
                     10.5059
                                0.3173 33.11
NaturalResourceRents 0.0114
                               0.0143 0.80
PostColdWar
                      2 5196
                                1 0030
                                         2.51
Correlation of Fixed Effects:
           (Intr) PpGrwt UrbnPp FrtltR 1(GDPP NtrlRR
PopGrowth
            0.049
UrbanPopltn -0.133 -0.012
FertilitvRt -0.501 -0.168 0.488
```

lg(GDPPrCp) -0.693 -0.057 -0.368 0.170
NtrlRsrcRnt 0.021 -0.078 0.060 -0.043 -0.077
PostColdWar -0.210 0.004 -0.051 0.112 -0.001 -0.009

Testing

```
> anova(AltRE, HLM1)
refitting model(s) with ML (instead of REML)
Data: WDT
Models:
AltRE: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
  log(GDPPerCapita) + NaturalResourceRents + PostColdWar + (1 | ISO3)
HLM1: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
  log(GDPPerCapita) + NaturalResourceRents + PostColdWar + (PostColdWar | ISO3)
     npar AIC BIC logLik -2*log(L) Chisq Df Pr(>Chisq)
A1 t.R.E.
        9 59006 59069 -29494
                                58988
HLM1 11 55479 55556 -27728 55457 3531 2
                                               <2e-16 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. '0.1 ' 1
> VarCorr(HLM1)
                     Std. Dev. Corr
Groups Name
ISO3 (Intercept) 24.60
         PostColdWar 11.88
                            -0.29
Residual
                      6.11
```

Random Coefficients

```
> Bs<-data.frame(coef(HLM1)[1])
> head(Bs)
    ISO3..Intercept. ISO3.PopGrowth ISO3.UrbanPopulation ISO3.FertilityRate
                           -0.3185
AFG
              -21.06
                                                     0.34
                                                                      -3.857
AGO
              -25.58
                            -0.3185
                                                     0.34
                                                                      -3.857
ALB
              -18.36
                            -0.3185
                                                     0.34
                                                                      -3.857
ARE
             -105.35
                            -0.3185
                                                     0.34
                                                                      -3.857
ARG
              -72.93
                            -0.3185
                                                     0.34
                                                                      -3.857
ARM
              -26.76
                            -0.3185
                                                     0.34
                                                                      -3.857
    ISO3.log.GDPPerCapita. ISO3.NaturalResourceRents ISO3.PostColdWar
                     10.51
AFG
                                              0.01144
                                                                 3.618
AGD
                     10.51
                                              0.01144
                                                                13.978
ALB
                     10.51
                                              0.01144
                                                                 6.373
ARE
                     10.51
                                              0.01144
                                                                 2.628
ARG
                     10.51
                                                                22.861
                                             0.01144
ARM
                     10.51
                                              0.01144
                                                                 3.014
> mean(Bs$ISO3..Intercept.)
[1] -31.42
> mean(Bs$TSO3.PostColdWar)
[1] 2.52
```

Random Intercepts (Plotted)

Random Slopes for Post-ColdWar (Plotted)

Scatterplot: Random Intercepts and Slopes

Separating Within and Between Effects

Recall that we can decompose the variance of our regression model as:

$$Y_{it} = \bar{\mathbf{X}}_i \beta_B + (\mathbf{X}_{it} - \bar{\mathbf{X}}_i) \beta_W + u_{it}$$
 (5)

This raises the possibility of fitting the model in (5) directly...

- Simple to estimate (via OLS or other)
- Relatively easy interpretation
- ullet Easy to test $\hat{oldsymbol{eta}}_B=\hat{oldsymbol{eta}}_W$

Example: Separate effects for within- and between-country *Natural Resource Rents*

- Theory: Countries with large natural resource endowments will have lower WBLI on average, but
- When natural resource rents increase within a country, that will be associated with higher expected WBLI...

Combining Within- and Between-Effects

	WEBE.OLS
Population Growth	-1.638***
·	(0.114)
Urban Population	-0.047***
	(0.010)
Fertility Rate	-2.633***
•	(0.151)
In(GDP Per Capita)	2.460***
. ,	(0.186)
Within-Country Nat. Resource Rents	0.109***
•	(0.027)
Between-Country Nat. Resource Rents	-0.540***
	(0.017)
Post-Cold War	10.930***
	(0.358)
Constant	50.960***
	(1.755)
Observations	8,318
R ²	0.524
Adjusted R ²	0.524
Residual Std. Error	13.130 (df = 8310)
F Statistic	1,309.000*** (df = 7; 8310
	*p<0.1; **p<0.05; ***p<0.05

Interpretation

Two important things to remember:

1. Recall the variation in Natural Resource Rents:

Variable	Dimension	Mean	SD	Min	Max	Observations
Natural Resource Rents	overall	7.194	11.142	0	88.592	NT = 8318
	between		10.02	0	43.459	N = 187
	within		5.285	-24.03	61.301	T = 44.481

It is important to keep this in mind when discussing the relative sizes of effects:

- \cdot A one-s.d. increase in NaturalResourceRents within a country yields an expected change in Y of 5.3 \times 0.11 = 0.58
- · A one-s.d. difference in NaturalResourceRents between two countries yields an expected change in Y of $10.0 \times -0.55 = -5.5$

Interpretation (continued)

```
2. We can formally test whether \hat{\beta}_B = \hat{\beta}_W for the Natural Resource Rents variable:
> library(car)
> linearHypothesis(WEBE.OLS.c("NRR.Within=NRR.Between"))
Linear hypothesis test:
NRR.Within - NRR.Between = 0
Model 1: restricted model
Model 2: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
    log(GDPPerCapita) + NRR.Within + NRR.Between + PostColdWar
             RSS Df Sum of Sq F Pr(>F)
  Res.Df
1 8311 1504209
2 8310 1431987 1 72222 419 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Extension: The "Mundlak Device"

Mundlak $(1978)^1$ notes that in:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + u_{it}$$

the only portion of α_i that can be correlated with u_{it} must also be correlated with *only* the means of **X** for each individual. Thus, a model that includes / "controls for" the unit-level means of \mathbf{X}_{it} :

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \bar{\mathbf{X}}_{i}\gamma + u_{it}$$

...will ensure that the remaining variation in X_{it} is uncorrelated with u_{it} .

Moreover, a test for $\hat{\gamma}=0$ is similar (and, as it turns out, superior) to the Hausman test for FE vs. RE.

¹Mundlak, Yair. 1978. "On the Pooling of Time Series and Cross Section Data." *Econometrica* 46:69-85.

"Mundlak Device" (continued)

```
smol$PGBetween<-plm::Between(smol$PopGrowth,effect="individual")
smol$UPBetween<-plm::Between(smol$UrbanPopulation,effect="individual")
smol$FRBetween<-plm::Between(smol$FertilityRate,effect="individual")
smol$GDPBetween<-plm::Between(smol$InGDPPerCap,effect="individual")
smol$NRRBetween<-plm::Between(smol$NaturalResourceRents,effect="individual")
smol$PCWBetween<-plm::Between(smol$PostColdWar,effect="individual")
# Regress Y on both using plain-old OLS:</pre>
MD<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+InGDPPerCap+
NaturalResourceRents+PostColdWar+PGRetween+IPRBetween+FRRetween+CDPRetween+</pre>
```

NRRBetween+PCWBetween,data=smol,effect="individual",model="pooling")

Create unit-level means of *all* the (time-varying) predictors:

FE and Mundlak Models

FE2	Mundlak
-0.189** (0.081)	-0.189 (0.127)
0.310*** (0.020)	0.310*** (0.031)
-1.763*** (0.154)	-1.763*** (0.243)
8.779*** (0.294)	8.779*** (0.463)
0.072*** (0.017)	0.072*** (0.026)
6.944*** (0.288)	6.944*** (0.455)
	-5.275*** (0.247)
	-0.340*** (0.033)
	1.189*** (0.326)
	-6.179*** (0.510)
	-0.466*** (0.032)
	0.712 (1.211)
	49.070*** (2.412)
8,318	8,318
0.528	0.572
0.517	0.572 926.800*** (df = 12; 8305)
	(0.081) 0.310*** (0.020) -1.763*** (0.154) 8.779*** (0.294) 0.072*** (0.017) 6.944*** (0.288)

 $^{^*}p{<}0.1;\ ^{**}p{<}0.05;\ ^{***}p{<}0.01$

"Mundlak Device": Testing

```
> # Testing:
> linearHypothesis(MD. "PGBetween+UPBetween+FRBetween+
                  GDPBetween+NRRBetween+PCWBetween")
Linear hypothesis test:
PGBetween + UPBetween + FRBetween + GDPBetween + NRRBetween + PCWBetween = 0
Model 1: restricted model
Model 2: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate +
   lnGDPPerCap + NaturalResourceRents + PostColdWar + PGBetween +
   UPBetween + FRBetween + GDPBetween + NRRBetween + PCWBetween
 Res.Df Df Chisq Pr(>Chisq)
1
   8306
2 8305 1 49.5 0.0000000000019 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

Two-Way Unit Effects

Our original decomposition considered "two-way" effects:

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + \alpha_i + \eta_t + u_{it}$$

This "controls for" both non-time-varying unit-level differences and non-cross-sectionally-varying differences between periods. It also implies that we can use (e.g.) an F-test to examine the hypothesis:

$$H_0: \alpha_i = \eta_t = 0 \ \forall i, t$$

...that is, whether adding the (two-way) effects improves the model's fit. We can also consider the partial hypotheses:

$$H_0: \alpha_i = 0 \ \forall i$$

and

$$H_0: \eta_t = 0 \ \forall \ t$$

separately.

Two-Way Effects: Good & Bad

The Good:

- Addresses both time-invariant, unit-level heterogeneity and cross-sectionally-invariant, time-point-specific heterogeneity
- May be "fixed" or "random" ...
- Two-way FE is equivalent to differences-in-differences when $X \in \{0,1\}$ and T=2 (more on that later)

The (Potentially) Bad:

- Ability to control for unobserved heterogeneity depends on (probably invalid) functional form assumptions (Imai and Kim 2020)
- FE requires predictors that vary both within and between both units and time points
- RE requires the (additional) assumption that Cov(X_{it}, η_t) = Cov(α_i, η_t) = 0
- Two-way effects models ask a *lot* of your data (effectively fits N + T + k parameters using NT observations)

Example: Two-Way Fixed Effects

> TwoWayFE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+ PostColdWar.data=WDI.effect="twoway".model="within") > summary(TwoWavFE) Twoways effects Within Model Call: plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + log(GDPPerCapita) + NaturalResourceRents + PostColdWar, data = WDI, effect = "twoway", model = "within") Unbalanced Panel: n = 187, T = 8-52, N = 8318 Residuals: Min. 1st Qu. Median 3rd Qu. -32.072 -4.062 0.233 4.131 43.464 Coefficients: Estimate Std. Error t-value Pr(>|t|) PopGrowth -0.2801 0.0677 -4.14 3.5e-05 *** UrbanPopulation 0.0314 0.0172 1.82 0.069 . FertilityRate 1.3204 0.1411 9.36 < 2e-16 *** log(GDPPerCapita) 7.73 1.2e-14 *** 2.0950 0.2710 NaturalResourceRents 0.0363 0.0145 2.51 0.012 * Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Total Sum of Squares: 358000
Residual Sum of Squares: 350000
R-Squared: 0.0209
Adj. R-Squared: -0.0084

F-statistic: 34.5476 on 5 and 8075 DF, p-value: <2e-16

Two-Way Effects: Testing

> # Two-way effects: > pFtest(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+ PostColdWar,data=WDI,effect="twoway",model="within") F test for twoways effects data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... F = 113, df1 = 236, df2 = 8075, p-value <2e-16 alternative hypothesis: significant effects > plmtest(TwoWayFE,c("twoways"),type=("kw")) Lagrange Multiplier Test - two-ways effects (King and Wu) data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... normal = 192, p-value <2e-16 alternative hypothesis: significant effects > # One-way effects in the two-way model: > plmtest(TwoWavFE.c("individual").tvpe=("kw")) Lagrange Multiplier Test - (King and Wu) data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... normal = 238, p-value <2e-16 alternative hypothesis: significant effects > plmtest(TwoWayFE,c("time"),type=("kw")) Lagrange Multiplier Test - time effects (King and Wu) data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ... normal = 92, p-value <2e-16

alternative hypothesis: significant effects

Two-Way Fixed Effects via 1m

```
> TwoWayFE.BF<-lm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+
                 factor(ISO3)+factor(Year)-1,data=WDI)
> summary(TwoWayFE.BF)
Call:
lm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   factor(ISO3) + factor(Year) - 1, data = WDI)
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
PopGrowth
                                0.0677 -4.14 3.5e-05 ***
                    -0.2801
UrbanPopulation
                   0.0314
                               0.0172 1.82 0.06889 .
FertilityRate
                    1.3204
                               0.1411 9.36 < 2e-16 ***
log(GDPPerCapita)
                               0.2710 7.73 1.2e-14 ***
                     2.0950
Natural ResourceRents
                     0.0363
                               0.0145 2.51 0.01224 *
factor(ISO3)AFG
                   -17.0383
                               2.4282 -7.02 2.5e-12 ***
                               2.6218 4.39 1.1e-05 ***
factor(ISO3)AGO
                   11.5212
factor(ISO3)ALB
                   34.8172
                                2.4144 14.42 < 2e-16 ***
factor(ISO3)ARE
                 -21.5963
                                3.2954 -6.55 6.0e-11 ***
factor(Year)1977
                     4.2474
                                0.8758
                                         4 85 1 3e-06 ***
factor(Year)1978
                     5.1409
                                0.8764
                                         5.87 4.6e-09 ***
[ reached 'max' / getOption("max.print") -- omitted 43 rows ]
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.59 on 8075 degrees of freedom
  (5657 observations deleted due to missingness)
Multiple R-squared: 0.99, Adjusted R-squared: 0.989
F-statistic: 3.14e+03 on 243 and 8075 DF, p-value: <2e-16
```

Two-Way Random Effects

```
> TwoWayRE<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+log(GDPPerCapita)+NaturalResourceRents+
 PostColdWar.data=WDI.effect="twoway".model="random")
> summary(TwoWayRE)
Twoways effects Random Effect Model
   (Swamv-Arora's transformation)
plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
   FertilityRate + log(GDPPerCapita) + NaturalResourceRents +
   PostColdWar, data = WDI, effect = "twoway", model = "random")
Unbalanced Panel: n = 187, T = 8-52, N = 8318
Effects:
                war otd daw chare
idiosyncratic 43.365 6.585 0.31
individual
             96.697 9.833 0.69
time
              0.306 0.553 0.00
thata.
       Min. 1st Du. Median Mean 3rd Du. Max.
   0.7696 0.8972 0.9075 0.9010 0.9075 0.9075
time 0.2497 0.2957 0.3342 0.3179 0.3404 0.3424
total 0.2490 0.2953 0.3336 0.3173 0.3393 0.3419
Residuals:
  Min. 1st Qu. Median
                         Mean 3rd Qu.
-65.454 -7.400 1.976 -0.223 10.725 34.264
Coefficients:
                    Estimate Std. Error z-value Pr(>|z|)
                    2.50627 0.32839 7.63 2.3e-14 ***
(Intercept)
PopGrowth
                    -0.25242
                             0.01023 -24.68 < 2e-16 ***
UrbanPopulation
                    0.14627
                              0.00236 61.86 < 2e-16 ***
FertilityRate
                    -0.83970
                              0.01989 -42.22 < 2e-16 ***
log(GDPPerCapita)
                     5.51216
                              0.03618 152.33 < 2e-16 ***
NaturalResourceRents 0 04082
                               0.00212 19.26 < 2e-16 ***
PostColdWar
                    11.24183
                              0.04494 250.16 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Total Sum of Squares:
                       3010000
Residual Sum of Squares: 2250000
R-Squared:
Adj. R-Squared: 0.292
Chisq: 267472 on 6 DF, p-value: <2e-16
```

A Prettier Table

	OLS	FE	BE	RE	TwoWayFE	TwoWayRE
Population Growth	-1.776*** (0.117)	-0.189** (0.081)	-4.992*** (1.128)	-0.232*** (0.082)	-0.280*** (0.068)	-0.252*** (0.010)
Urban Population	-0.066*** (0.010)	0.310*** (0.020)	-0.051 (0.055)	0.193*** (0.018)	0.031* (0.017)	0.146*** (0.002)
Fertility Rate	-2.984*** (0.154)	-1.763*** (0.154)	-1.507 (1.173)	-2.106*** (0.154)	1.320*** (0.141)	-0.840*** (0.020)
In(GDP Per Capita)	2.469*** (0.191)	8.779*** (0.294)	1.951* (1.146)	7.225*** (0.278)	2.095*** (0.271)	5.512*** (0.036)
Natural Resource Rents	-0.363*** (0.015)	0.072*** (0.017)	-0.313*** (0.092)	0.045*** (0.017)	0.036** (0.015)	0.041*** (0.002)
Post-Cold War	10.280*** (0.365)	6.944*** (0.288)	7.717 (5.326)	8.181*** (0.283)		11.240*** (0.045)
Constant	52.560*** (1.797)		57.610*** (12.870)	-7.314*** (2.499)		2.506*** (0.328)
Observations	8,318	8,318	187	8,318	8,318	8,318
R ²	0.500	0.528	0.580	0.511	0.021	0.293
Adjusted R ²	0.500	0.517	0.566	0.511	-0.008	0.292

p<0.1; p<0.05; p<0.05; p<0.01

Interpretation: modelsummary and marginal effects

Two broadly useful packages by Vincent Arel-Bundock:

1. modelsummary

- "modelsummary creates tables and plots to present descriptive statistics and to summarize statistical models in R."
- In short, it... summarizes models (and data)

2. marginaleffects

- An "R package to compute and plot predictions, slopes, marginal means, and comparisons (contrasts, risk ratios, odds ratios, etc.) for over 70 classes of statistical models in R."
- Focus is on individual covariates / predictors
- Especially handy for nonlinear models (GLMs, etc.)

Both are highly flexible and customizable, and **both play well with the models fit by** plm.

Using modelsummary

The most basic version of the code is:

> modelsummary(list(OLS,FE,RE))

...from which we get this (in the Viewer window):

	(1)	(2)	(3)
(Intercept)	52.559		-7.314
	(1.797)		(2.499)
PopGrowth	-1.776	-0.189	-0.232
	(0.117)	(0.081)	(0.082)
UrbanPopulation	-0.066	0.310	0.193
	(0.010)	(0.020)	(0.018)
FertilityRate	-2.984	-1.763	-2.106
	(0.154)	(0.154)	(0.154)
log(GDPPerCapita)	2.469	8.779	7.225
	(0.191)	(0.294)	(0.278)
NaturalResourceRents	-0.363	0.072	0.045
	(0.015)	(0.017)	(0.017)
PostColdWar	10.275	6.944	8.181
	(0.365)	(0.288)	(0.283)
Num.Obs.	8318	8318	8318
R2	0.500	0.528	0.511
R2 Adj.	0.500	0.517	0.511
AIC	66855.1	57781.0	58384.9
BIC	66911.3	57830.2	58441.1
RMSE	13.45	7.79	8.08

Using modelsummary (continued)

A better-looking table:

> modelsummary(models,output="MS-Table-25.tex",title="Models of WDBI",stars=TRUE,fmt=2,

+ gof_map=c("nobs", "r.squared", "adj.r.squared"), coef_rename=c("PopGrowth"="Population Growth",

"UrbanPopulation"="Urban Population", "FertilityRate"="Fertility Rate", "log(GDPPerCapita)"="ln(GDP Per Capita)",
"NaturalResourceRents"="Natural Resource Rents", "PostColdWar"="Post-Cold War"))

Table 1: Models of WDRI

	OLS	Within	Random
(Intercept)	52.56***		-7.31**
	(1.80)		(2.50)
Population Growth	-1.78***	-0.19*	-0.23**
	(0.12)	(0.08)	(0.08)
Urban Population	-0.07***	0.31***	0.19***
	(0.01)	(0.02)	(0.02)
Fertility Rate	-2.98***	-1.76***	-2.11***
	(0.15)	(0.15)	(0.15)
In(GDP Per Capita)	2.47***	8.78***	7.23***
	(0.19)	(0.29)	(0.28)
Natural Resource Rents	-0.36***	0.07***	0.05**
	(0.02)	(0.02)	(0.02)
Post-Cold War	10.28***	6.94***	8.18***
	(0.37)	(0.29)	(0.28)
Num.Obs.	8318	8318	8318
R2	0.500	0.528	0.511
R2 Adj.	0.500	0.517	0.511

 $^{+\;}p\;<\!0.1,\;^*p\;<\!0.05,\;^{**}p\;<\!0.01,\;^{***}p\;<\!0.001$

modelsummary: Coefficient Plots

Example code:

```
> modelplot(models,conf_level=0.99,coef_omit="(Intercept)",coef_rename=c("PopGrowth"="Population Growth",
+ "UrbanPopulation"="Urban Population","FertilityRate"="Fertility Rate",
+ "log(GDPPerCapita)"="In(GDP Per Capita)","NaturalResourceRents"="Natural Resource Rents",
+ "PostColdWar"="Post-ColdWar"))
```

...from which we get:

Unit Effects Models: Software

R:

- the plm package; plm command
 - · Fits one- and two-way FE, BE, RE models
 - · Also fits first difference (FD) and instrumental variable (IV) models
- the fixest package; fast/scalable FE estimation for OLS and GLMs
- the panelr package (various commands)
- the lme4 package; command is lmer
- the nlme package; command lme
- the Paneldata package

Stata: xtreg

- option re (the default) = random effects
- option fe = fixed (within) effects
- option be = between-effects
- Stata package fect = two-way models