Introduction to Quantum Mechanics by David J. Griffiths Notes

Chris Doble

 $March\ 2024$

Contents

Ι	Theory	-		
_	Theory	-		
1	The Wave Function			
	1.1 The Schrödinger Equation			
Part I				
	mi			
L	Theory			
1	The Wave Function			
1.	1 The Schrödinger Equation			
	• The Schrödinger equation			
	$2\pi c$ ± 2 $22\pi c$			

 $i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V \Psi$ vanics, what Newton's second law

is to quantum mechanics what Newton's second law is to classical mechanics. Given suitable initial conditions — typically $\Psi(x,0)$ — the Schrödinger equation determines $\Psi(x,t)$ for all future time.