

Mathématiques 1

MP, MPI

2023

CONCOURS CENTRALE•SUPÉLEC

4 heures

Calculatrice autorisée

Sur le calcul ombral

Objectifs

Ce problème introduit le calcul ombral et propose d'en démontrer certains résultats.

Historiquement, ce « calcul » reposait sur un ensemble de manipulations heuristiques sur les indices qui étaient traités comme des puissances. Pour justifier ces règles, une solution consiste à utiliser des endomorphismes agissant sur des polynômes. Ce problème a pour objectif de présenter ces règles et d'en déduire des identités polynomiales non triviales.

Notations

- \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .
- $\mathbb{K}[X]$ désigne l'ensemble des polynômes à coefficients dans \mathbb{K} . Dans ce problème, on identifie polynômes formels et fonctions polynomiales de \mathbb{K} dans \mathbb{K} associées. On identifie de plus les éléments de \mathbb{K} aux polynômes constants.
- Tout polynôme $p \in \mathbb{K}[X]$ s'écrit de manière unique

$$p = \sum_{k=0}^{+\infty} a_k X^k$$

où (a_k) est une suite à valeurs dans \mathbb{K} nulle à partir d'un certain rang. Si p n'est pas le polynôme nul, son degré $\deg(p)$ est le plus grand entier k tel que $a_k \neq 0$. Par convention, le degré du polynôme nul est -1 (cette convention est inhabituelle).

- Si n est un entier naturel, $\mathbb{K}_n[X]$ désigne le sous-espace vectoriel de $\mathbb{K}[X]$ des polynômes de degré inférieur ou égal à n.
- On note $\mathcal{L}(\mathbb{K}[X])$ l'algèbre des endomorphismes de l'espace vectoriel $\mathbb{K}[X]$.
- On note I l'endomorphisme identité de $\mathbb{K}[X]$.
- Les éléments inversibles de l'algèbre $\mathcal{L}(\mathbb{K}[X])$ sont les endomorphismes bijectifs (automorphismes) de l'espace vectoriel $\mathbb{K}[X]$.
- Pour $T \in \mathcal{L}(\mathbb{K}[X])$ et $p \in \mathbb{K}[X]$, on note Tp = T(p).
- D désigne l'endomorphisme de dérivation sur $\mathbb{K}[X]$: $\forall p \in \mathbb{K}[X]$, D(p) = Dp = p'.
- Si T est un endomorphisme de $\mathbb{K}[X]$, on définit la suite d'endomorphismes (T^k) par récurrence : $T^0 = I$ et, pour tout $k \in \mathbb{N}$, $T^{k+1} = T \circ T^k = T^k \circ T$.

I Étude d'endomorphismes de $\mathbb{K}[X]$

- I.A Soit $a \in \mathbb{K}$. Pour tout $p \in \mathbb{K}[X]$, on pose $E_a(p) = E_a p = p(X + a)$.
- **Q 1.** Montrer que E_a est un automorphisme de $\mathbb{K}[X]$.
- $\pmb{I.B}$ À tout $p \in \mathbb{R}[X]$, on associe la fonction J(p) = Jp de \mathbb{R} dans \mathbb{R} définie par

$$\forall x \in \mathbb{R}, \quad J(p)(x) = Jp(x) = \int\limits_{-\infty}^{x+1} p(t) \, \mathrm{d}t.$$

- **Q 2.** Montrer que J est un endomorphisme de $\mathbb{R}[X]$.
- \mathbf{Q} 3. Montrer que J conserve le degré et que J est inversible.
- I.C À tout $p \in \mathbb{K}[X]$, on associe la fonction L(p) = Lp de \mathbb{K} dans \mathbb{K} définie par

$$\forall x \in \mathbb{K}, \quad L(p)(x) = Lp(x) = -\int\limits_0^{+\infty} \mathrm{e}^{-t} p'(x+t) \,\mathrm{d}t.$$

- **Q 4.** Montrer que $\int_{0}^{+\infty} e^{-t}t^k dt$ existe pour tout $k \in \mathbb{N}$ et calculer sa valeur.
- **Q 5.** Montrer que L est un endomorphisme de $\mathbb{K}[X]$. Est-il inversible?

II Formule de Taylor pour les endomorphismes shift-invariants de $\mathbb{K}[X]$

Soit T un endomorphisme de $\mathbb{K}[X]$. On dit que :

- T est shift-invariant si, pour tout $a \in \mathbb{K}$, $E_a \circ T = T \circ E_a$;
- T est un endomorphisme delta si T est shift-invariant et si l'image du polynôme X par T est une constante non nulle : $TX \in \mathbb{K}^*$.

II.A -

Q 6. Soit $a \in \mathbb{K}$. Vérifier que les endomorphismes I et D sont shift-invariants, ainsi que les endomorphismes E_a , J et L définis dans la partie I. Sont-ils des endomorphismes delta?

Q 7. Montrer que l'ensemble des endomorphismes shift-invariants de $\mathbb{K}[X]$ est une sous-algèbre de $\mathcal{L}(\mathbb{K}[X])$. L'ensemble des endomorphismes delta de $\mathbb{K}[X]$ est-il stable par addition ? par composition ?

II.B –

Q 8. Soit $(a_k)_{k\in\mathbb{N}}$ une suite d'éléments de \mathbb{K} . Pour tout polynôme $p\in\mathbb{K}[X]$, montrer que l'expression

$$\sum_{k=0}^{+\infty} a_k D^k p$$

a un sens et définit un polynôme de $\mathbb{K}[X]$.

On note alors $\sum_{k=0}^{+\infty} a_k D^k$ l'application de $\mathbb{K}[X]$ qui, à un polynôme $p \in \mathbb{K}[X]$, associe le polynôme $\sum_{k=0}^{+\infty} a_k D^k p$.

Q 9. Montrer que, pour toute suite $(a_k)_{k\in\mathbb{N}}$ d'éléments de \mathbb{K} , $\sum_{k=0}^{+\infty}a_kD^k$ est un endomorphisme shift-invariant.

 $\mathbf{Q} \ \mathbf{10.} \quad \text{Soit } (a_k)_{k \in \mathbb{N}} \text{ et } (b_k)_{k \in \mathbb{N}} \text{ des suites d'éléments de } \mathbb{K} \text{ telles que } \sum_{k=0}^{+\infty} a_k D^k = \sum_{k=0}^{+\infty} b_k D^k.$

Montrer que, pour tout $k \in \mathbb{N}$, $a_k = b_k$.

Pour tout $n \in \mathbb{N}$, on définit le polynôme $q_n = \frac{X^n}{n!}$. On se donne T un endomorphisme de $\mathbb{K}[X]$.

 ${f Q}$ 11. Montrer que T est un endomorphisme shift-invariant si, et seulement si,

$$T=\sum_{k=0}^{+\infty}(Tq_k)(0)D^k.$$

Q 12. Montrer que deux endomorphismes shift-invariants de $\mathbb{K}[X]$ commutent.

II.C – Dans cette sous-partie, on applique le résultat de la question 11 aux endomorphismes de la partie I.

Q 13. Pour tout $p \in \mathbb{K}[X]$ non nul et $a \in \mathbb{K}$, montrer, à l'aide de la question 11, que

$$p(X+a) = \sum_{k=0}^{\deg(p)} \frac{a^k}{k!} p^{(k)}$$

où $p^{(k)}$ désigne la dérivée k-ième du polynôme p. Reconnaitre cette formule.

Q 14. Pour $p \in \mathbb{K}[X]$, exprimer Jp en fonction des dérivées $p^{(k)}$ $(k \in \mathbb{N})$ de p.

Q 15. Démontrer que l'endomophisme D-I est inversible et exprimer L en fonction de $(D-I)^{-1}$.

II.D – Dans cette sous-partie, T est un endomorphisme non nul shift-invariant de $\mathbb{K}[X]$.

On rappelle que le degré du polynôme nul est par convention égal à -1.

Q 16. Montrer qu'il existe un entier naturel n(T) tel que, pour tout polynôme $p \in \mathbb{K}[X]$,

$$\deg(Tp) = \max\{-1, \deg(p) - n(T)\}.$$

Q 17. En déduire ker(T) en fonction de n(T).

- Q 18. Montrer que les trois assertions suivantes sont équivalentes :
 - (1) T est inversible;
 - (2) $T1 \neq 0$;
 - (3) $\forall p \in \mathbb{K}[X], \deg(Tp) = \deg(p).$
- **Q 19.** Si ces conditions sont vérifiées, montrer que T^{-1} est encore un endomorphisme shift-invariant.
- II.E Dans cette sous-partie, T est un endomorphisme delta de $\mathbb{K}[X]$.
- **Q 20.** Montrer qu'il existe une suite de scalaires $(\alpha_k)_{k\in\mathbb{N}}$ vérifiant $\alpha_0=0,\ \alpha_1\neq 0$ et $T=\sum_{k=1}^{+\infty}\alpha_kD^k$.
- **Q 21.** Montrer qu'il existe un unique endomorphisme U shift-invariant et inversible tel que $T=D\circ U$. Préciser U dans le cas T=D, puis dans le cas T=L.
- **Q 22.** Pour tout polynôme $p \in \mathbb{K}[X]$ non nul, vérifier que $\deg(Tp) = \deg(p) 1$. En déduire $\ker(T)$ et le spectre de T.
- **Q 23.** Pour $n \in \mathbb{N}$, on note T_n la restriction de T à $\mathbb{K}_n[X]$. Montrer que T_n est un endomorphisme de $\mathbb{K}_n[X]$. Est-il diagonalisable ?
- **Q 24.** Déterminer $\text{Im}(T_n)$ en fonction de $n \in \mathbb{N}$ et en déduire que T est surjectif.

III Suite de polynômes associée à un endomorphisme delta

On souhaite montrer que, pour tout endomorphisme delta Q, il existe une unique suite de polynômes $(q_n)_{n\in\mathbb{N}}$ de $\mathbb{K}[X]$ telle que

- $-q_0 = 1$;
- $\ \, \forall n \in \mathbb{N}, \, \deg(q_n) = n \; ;$
- $\quad \quad \forall n \in \mathbb{N}^*, \, q_n(0) = 0 \ ;$
- $-- \ \forall n \in \mathbb{N}^*, \ Qq_n = q_{n-1}.$

Cette suite sera appelée suite de polynômes associée à l'endomorphisme delta Q.

- III.A Soit Q un endomorphisme delta.
- **Q 25.** Montrer l'existence et l'unicité de la suite $(q_n)_{n\in\mathbb{N}}$ de polynômes associée à Q.
- **Q 26.** Montrer que, pour tout entier naturel n,

$$\forall (x,y) \in \mathbb{K}^2, \qquad q_n(x+y) = \sum_{k=0}^n q_k(x) q_{n-k}(y).$$

III.B – Réciproquement, soit $(q_n)_{n\in\mathbb{N}}$ une suite de polynômes de $\mathbb{K}[X]$ telle que $\forall n\in\mathbb{N}, \deg(q_n)=n$ et

$$\forall (x,y) \in \mathbb{K}^2, \qquad q_n(x+y) = \sum_{k=0}^n q_k(x) q_{n-k}(y).$$

- **Q 27.** Montrer qu'il existe un unique endomorphisme delta Q dont $(q_n)_{n\in\mathbb{N}}$ est la suite de polynômes associée.
- III.C Soit Q un endomorphisme delta, soit $(q_n)_{n\in\mathbb{N}}$ la suite de polynômes associée à Q et soit n un entier naturel.
- **Q 28.** Montrer que la famille $(q_0, q_1, ..., q_n)$ est une base de $\mathbb{K}_n[X]$.
- **Q 29.** D'après la question 23, Q induit un endomorphisme de $\mathbb{K}_n[X]$ noté Q_n . Donner sa matrice dans la base précédente. En déduire sa trace, son déterminant et son polynôme caractéristique.
- III.D Dans cette sous-partie, on détermine la suite $(q_n)_{n\in\mathbb{N}}$ de polynômes associée à certains endomorphismes.
- **Q 30.** Pour Q = D, vérifier que

$$\forall n \in \mathbb{N}, \qquad q_n = \frac{X^n}{n!}.$$

Q 31. Pour $Q = E_1 - I$, vérifier que

$$\forall n \in \mathbb{N}^*, \qquad q_n = \frac{X(X-1)\cdots(X-n+1)}{n!}.$$

III.E – Cette sous-partie propose de généraliser la formule de Taylor démontrée dans la partie II. On se donne Q un endomorphisme delta et on note $(q_n)_{n\in\mathbb{N}}$ la suite de polynômes associée à Q.

Q 32. Démontrer que, pour tout $p \in \mathbb{K}[X]$, l'expression $\sum_{k=0}^{+\infty} (Q^k p)(0) q_k$ a un sens et définit un polynôme de $\mathbb{K}[X]$, puis que

$$p = \sum_{k=0}^{+\infty} (Q^k p)(0) q_k.$$

 ${\bf Q}$ 33. En déduire que, pour tout endomorphisme shift-invariant T, on a

$$T = \sum_{k=0}^{+\infty} (Tq_k)(0)Q^k.$$

III.F –

 ${\bf Q}$ 34. En choisissant $Q=E_1-I,$ démontrer que, si p est un polynôme non constant, alors

$$p'(X) = \sum_{k=1}^{\deg(p)} \frac{1}{k} \left(\sum_{j=0}^k (-1)^{j+1} \binom{k}{j} p(X+j) \right).$$

C'est la formule de dérivation numérique des polynômes.

IV Un peu de calcul ombral

Si T est un endomorphisme de $\mathbb{K}[X]$ on définit sa dérivée de Pincherle, notée T', comme l'endomorphisme de $\mathbb{K}[X]$ tel que,

$$\forall p \in \mathbb{K}[X], \qquad T'(p) = T(Xp) - XT(p).$$

IV.A – Soient S et T deux endomorphismes de $\mathbb{K}[X]$.

Q 35. Montrer que, s'il existe $(a_n)_{n\in\mathbb{N}}$ suite de scalaires telle que $T=\sum_{k=0}^{+\infty}a_kD^k$, alors $T'=\sum_{k=1}^{+\infty}ka_kD^{k-1}$.

Q 36. Si T est un endomorphisme shift-invariant, montrer que T' est encore un endomorphisme shift-invariant.

 \mathbf{Q} 37. Si T est un endomorphisme delta, montrer que T' est un endomorphisme shift-invariant et inversible.

Q 38. Vérifier que $(S \circ T)' = S' \circ T + S \circ T'$.

IV.B — Soit Q un endomorphisme delta. On rappelle que d'après la partie II, il existe un unique endomorphisme U shift-invariant et inversible tel que $Q = D \circ U$. On note $(q_n)_{n \in \mathbb{N}}$ la suite de polynômes associée à Q au sens de la partie III.

Q 39. Démontrer que, pour tout $n \in \mathbb{N}^*$, on a

$$(Q' \circ U^{-n-1})(X^n) = X U^{-n}(X^{n-1}).$$

Q 40. En déduire que, pour tout $n \in \mathbb{N}^*$,

$$n!q_n(X) = X U^{-n}(X^{n-1})$$

puis que

$$nq_n(X) = X(Q')^{-1}(q_{n-1}).$$

IV.C — Dans cette sous-partie, on applique les résultats de la question 40 à l'endomorphisme L étudié dans les parties I et II. On note $(\ell_n)_{n\in\mathbb{N}}$ sa suite de polynômes associée au sens de la partie III.

Q 41. Vérifier que, pour $n \in \mathbb{N}^*$,

$$\ell'_{n} = \ell'_{n-1} - \ell_{n-1}$$

et

$$X\ell_n'' - X\ell_n' + n\ell_n = 0$$

 et

$$\ell_n(X) = \sum_{k=1}^n (-1)^k \binom{n-1}{k-1} \frac{X^k}{k!}.$$

IV.D – Soient Q un endomorphisme delta de suite de polynômes associée notée $(q_n)_{n\in\mathbb{N}}$.

 \mathbf{Q} 42. Montrer qu'il existe un unique endomorphisme inversible T tel que

$$\forall n \in \mathbb{N}, \qquad Tq_n = \frac{X^n}{n!}.$$

Q 43. Montrer aussi que $D = T \circ Q \circ T^{-1}$.

IV.E – On fixe $\alpha > 0$ et on définit la fonction W de $\mathbb{K}[X]$ par

$$W: \left| \begin{array}{ccc} \mathbb{K}[X] & \to & \mathbb{K}[X] \\ p & \mapsto & p(\alpha X) \end{array} \right|$$

Q 44. Montrer que W est un automorphisme de $\mathbb{K}[X]$.

On pose $P = W \circ L \circ W^{-1}$ où L est l'endomorphisme étudié dans les parties I et II.

Q 45. Montrer que

$$P = \frac{1}{\alpha} D \circ \left(\frac{1}{\alpha} D - I\right)^{-1}.$$

 ${f Q}$ 46. Montrer ensuite que P est un endomorphisme delta dont la suite de polynômes associée $(p_n)_{n\in\mathbb{N}}$ vérifie

$$\forall n \in \mathbb{N}, \qquad p_n = \ell_n(\alpha X).$$

 $\mathbf{Q} \ \mathbf{47.} \quad \text{ Vérifier que } D = L \circ (L-I)^{-1} \text{ puis que } P = L \circ \left(\alpha I + (1-\alpha)L\right)^{-1}.$

On note T l'unique automorphisme vérifiant, pour tout $n \in \mathbb{N}, T\ell_n = \frac{X^n}{n!}$ et on pose $Q = T \circ P \circ T^{-1}$.

Q 48. Montrer que $Q = D \circ (\alpha I + (1 - \alpha)D)^{-1}$. En déduire que Q est un endomorphisme delta dont la suite de polynômes associée $(r_n)_{n \in \mathbb{N}}$ vérifie

$$\forall n \in \mathbb{N}^*, \qquad r_n = \sum_{k=1}^n \binom{n-1}{k-1} \alpha^k (1-\alpha)^{n-k} \frac{X^k}{k!}.$$

Q 49. Conclure que

$$\forall n \in \mathbb{N}^*, \qquad \ell_n(\alpha X) = \sum_{k=1}^n \binom{n-1}{k-1} \alpha^k (1-\alpha)^{n-k} \ell_k(X).$$

Les endomorphismes W et T étudiés dans la sous-partie IV. E sont appelés opérateurs ombraux. Les polynômes (ℓ_n) associés à l'endomorphisme L sont connus sous le nom de polynômes de Laguerre (de paramètre -1). La dernière formule démontrée grâce aux opérateurs ombraux est leur formule de duplication.

