AE 4361 – Assignment 3

1) a)

$$P = 2\pi \sqrt{\frac{a^3}{\mu}}$$

$$\sqrt[3]{\left(\frac{P}{2\pi}\right)^2 \times \mu} = a$$

$$a = \sqrt[3]{\left(\frac{12 \times 3600}{2\pi}\right)^2 \times 3.986 \times 10^5} = 26610km$$

b)

$$r_p = a(1 - e)$$

$$e = -\frac{r_p}{a} + 1 = 0.549$$

Using the provided 'Kepler_solver' code with t = 9*3600 = 32400s, e=0.549, M0 = 0, a=26610km

E = 4.2269 rad

$$r = a(1 - e\cos E) = 26610(1 - 0.549\cos 4.2269) = 33427km$$

c)

$$V = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a}\right)} = \sqrt{3.986 \times 10^5 \times \left(\frac{2}{33427} - \frac{1}{26610}\right)} = 2.978 km/s$$

d)

$$\tan\frac{v}{2} = \sqrt{\frac{1+e}{1-e}} \tan\frac{E}{2} = \sqrt{\frac{1+0.549}{1-0.549}} \tan\frac{4.2269}{2} = -3.073$$

$$v = 2 \arctan -3.073 = -2.51 rad$$

$$h = \sqrt{\mu a (1 - e^2)} = 86080.6$$

$$\gamma = asin\left(\frac{\mu}{hv}(1 + ecos(v))\right) = 1.047rad$$

$$V_r = V \times \cos \gamma = 2.978 \times \sin 2.51 = \mathbf{1.49km/s}$$

2)

Semi-major axis (a) km	6877.3
Eccentricity (e)	$0.1582 \text{ or } [0.0379, -0.1444, -0.0524]^{\mathrm{T}}$
Inclination (i) deg	20.000
Right ascension of ascending node (Ω) deg	30.000
Argument of perigee (ω) deg	255.581
True Anomaly (v) deg	104.419

See "AE4361 HW3" starting at Q2 comment at the end of document for code.

Workspace variables for Q2:

⊞ a_2	6.8773e+03
<u></u> e_2	[0.0379;-0.1444;-0.0524;0.1582]
⊞ i_2	19.9987
<u>⊞</u> mu	398600
<u>₩</u> nu_2	104.4190
e omega	255.5810
r_vec	[6045;3490;0]
RAAN_2	60.0006
v_vec	[-2.4570;6.6180;2.5330]

3)

a)
$$\vec{r}_{\text{Vanguard}-1} = \begin{bmatrix} 6.7758 \\ 0.3813 \\ 2.0544 \end{bmatrix} \times 10^6 \text{m}$$

b)
$$\vec{r}_{\text{Hubble}} = \begin{bmatrix} -5.5368 \\ -3.8525 \\ -1.4916 \end{bmatrix} \times 10^6 \text{m}$$

c)
$$\vec{r}_{\text{Molniya comms sat}} = \begin{bmatrix} 0.6497 \\ 1.3425 \\ 3.0208 \end{bmatrix} \times 10^7 \text{m}$$

d)
$$\vec{r}_{\text{Starlink }3327} = \begin{bmatrix} -3.7498 \\ 2.3053 \\ 5.0795 \end{bmatrix} \times 10^6 \text{m}$$

See code and function on next pages.