

Méthodes & algorithmes

Dynamic Sampling and Rendering of Algebraic Point Set Surfaces

William Caisson

Xavier Chalut

Christophe Claustre

Thibault Lejemble

Client : Nicolas Mellado

CONTEXTE

Acquisition de nuages de points 3D (numérisation par scanner...)

Visualisation complexe : bruit + grand nombre de données

CONTEXTE

Problématique:

Visualiser en temps réel une surface lisse qui approche le nuage de points

Dynamic Sampling and Rendering of Algebraic Point Set Surfaces

Gaël Guennebaud

Marcel Germann

Markus Gross

SOMMAIRE

ALGORITHME PRINCIPAL

Visualisation du nuage de points

Sélection dynamique des points à traiter

Ré-échantillonnage

Sélection du voisinage

Projection sur la surface

ORGANISATION

Communication

Rédaction & gestion des versions

VISUALISATION DU NUAGE DE POINTS

Utilisation de Radium pour charger les points

Chaque point possède une position, une normale et un rayon

Visualisation difficile de la surface

SÉLECTION DYNAMIQUE DES POINTS À TRAITER

Visualisation de la surface en temps réel → Alléger le plus possible les calculs

- Traiter uniquement les points visibles
- Et ayant leur normale pointée vers la caméra

RÉ-ÉCHANTILLONNAGE

But : Adapter le niveau d'échantillonnage suivant l'angle de vue

RÉ-ÉCHANTILLONNAGE

1) Calcul du cercle tangent au point à échantillonner :

 λ = courbure principale

n = normale

p = point

$$\lambda_i = \max_j \frac{\|n_i - n_j\|}{\|p_i - p_j\|}$$

RÉ-ÉCHANTILLONNAGE

2) Calcul de m en introduisant l'erreur e :

 $m \times m = nombre d'échantillons$

v = vecteur caméra vers p

η = facteur d'échelle entre le point p et sa surface représentative sur l'écran

ts = la taille en pixel souhaité par échantillon

e = distance maximale entre les échantillons et

le cercle selon la direction v

$$m=\eta \frac{r_i}{t_s}$$

$$m = \sqrt{\eta \frac{\min(e, r_i)}{t_s}}$$

SÉLECTION DU VOISINAGE

Chaque point du nuage a une région d'influence

Pour tout échantillon qu'on veut visualiser :

trouver les points du nuage qui l'influencent

Partitionnement de l'espace en Octree :

- point référencé dans une seule cellule

Construction possible sur GPU

PROJECTION SUR LA SURFACE

Approximation locale par surface implicite (0-isosurface d'un champ scalaire) :

⇒ "Algebraic Point Set Surface" (APSS)

Ajustement du champ scalaire avec le nuage :

- positions / isosurface
- normales / gradient

Minimisation par méthode des moindres carrés :

"Moving Least Square" (MLS)

PROJECTION SUR LA SURFACE

Projections itératives d'un échantillon sur l'APSS

A chaque itération : évaluation du voisinage + MLS + projection

Communication

Au sein de l'équipe

Avec le client

Rédaction & gestion des versions

Documents

Code

Conclusion

Visualisation du nuage de points

Sélection dynamique des points à traiter

Ré-échantillonnage

Sélection du voisinage

Projection sur la surface

Merci de votre attention

Avez-vous des questions?