Deep Learning

Ian Goodfellow Yoshua Bengio Aaron Courville

Contents

Website			viii	
A	cknow	ledgments	ix	
N	otatio	n	xii	
1	Intro 1.1 1.2	Oduction Who Should Read This Book?		
Ι	Appl	ied Math and Machine Learning Basics	27	
2	Linear Algebra			
	2.1	Scalars, Vectors, Matrices and Tensors	29	
	2.2	Multiplying Matrices and Vectors		
	2.3	Identity and Inverse Matrices		
	2.4	Linear Dependence and Span		
	2.5	Norms		
	2.6	Special Kinds of Matrices and Vectors	38	
	2.7	Eigendecomposition		
	2.8	Singular Value Decomposition		
	2.9	The Moore-Penrose Pseudoinverse		
	2.10	The Trace Operator	44	
	2.11	The Determinant		
	2.12	Example: Principal Components Analysis		
3	Probability and Information Theory 5			
	3.1	Why Probability?	52	

	3.2	Random Variables	. 54
	3.3	Probability Distributions	. 54
	3.4	Marginal Probability	. 56
	3.5	Conditional Probability	. 57
	3.6	The Chain Rule of Conditional Probabilities	. 57
	3.7	Independence and Conditional Independence	. 58
	3.8	Expectation, Variance and Covariance	. 58
	3.9	Common Probability Distributions	. 60
	3.10	Useful Properties of Common Functions	. 65
	3.11	Bayes' Rule	. 68
	3.12	Technical Details of Continuous Variables	. 69
	3.13	Information Theory	. 71
	3.14	Structured Probabilistic Models	. 73
4	Num	nerical Computation	78
	4.1	Overflow and Underflow	. 78
	4.2	Poor Conditioning	. 80
	4.3	Gradient-Based Optimization	
	4.4	Constrained Optimization	
	4.5	Example: Linear Least Squares	
5	Mac	hine Learning Basics	96
	5.1	Learning Algorithms	. 97
	5.2	Capacity, Overfitting and Underfitting	
	5.3	Hyperparameters and Validation Sets	
	5.4	Estimators, Bias and Variance	
	5.5	Maximum Likelihood Estimation	
	5.6	Bayesian Statistics	. 133
	5.7	Supervised Learning Algorithms	. 137
	5.8	Unsupervised Learning Algorithms	. 142
	5.9	Stochastic Gradient Descent	. 149
	5.10	Building a Machine Learning Algorithm	
	5.11	Challenges Motivating Deep Learning	
ΙΙ	Dee	p Networks: Modern Practices	162
6		p Feedforward Networks	164
	6.1	Example: Learning XOR	
	69	Gradient-Based Learning	179

	6.3	Hidden Units
	6.4	Architecture Design
	6.5	Back-Propagation and Other Differentiation
		Algorithms
	6.6	Historical Notes
7	Regi	ularization for Deep Learning 224
	7.1	Parameter Norm Penalties
	7.2	Norm Penalties as Constrained Optimization
	7.3	Regularization and Under-Constrained Problems
	7.4	Dataset Augmentation
	7.5	Noise Robustness
	7.6	Semi-Supervised Learning
	7.7	Multitask Learning
	7.8	Early Stopping
	7.9	Parameter Tying and Parameter Sharing
	7.10	Sparse Representations
	7.11	Bagging and Other Ensemble Methods
	7.12	<u>Dropout</u>
	7.13	Adversarial Training
	7.14	Tangent Distance, Tangent Prop and Manifold
		Tangent Classifier
8	Opti	mization for Training Deep Models 271
	8.1	How Learning Differs from Pure Optimization
	8.2	Challenges in Neural Network Optimization
	8.3	Basic Algorithms
	8.4	Parameter Initialization Strategies
	8.5	Algorithms with Adaptive Learning Rates
	8.6	Approximate Second-Order Methods
	8.7	Optimization Strategies and Meta-Algorithms
9	Con	volutional Networks 326
	9.1	The Convolution Operation
	9.2	Motivation
	9.3	Pooling
	9.4	Convolution and Pooling as an Infinitely Strong Prior
	9.5	Variants of the Basic Convolution Function
	9.6	Structured Outputs
	0.7	Data Types 354

	9.8	Efficient Convolution Algorithms	6	
	9.9	Random or Unsupervised Features		
	9.10	The Neuroscientific Basis for Convolutional		
		Networks	8	
	9.11	Convolutional Networks and the History of Deep Learning 36	5	
10	Sequ	ence Modeling: Recurrent and Recursive Nets 36	7	
	10.1	Unfolding Computational Graphs	9	
	10.2	Recurrent Neural Networks	2	
	10.3	Bidirectional RNNs	8	
	10.4	Encoder-Decoder Sequence-to-Sequence		
		Architectures	0	
	10.5	Deep Recurrent Networks	2	
	10.6	Recursive Neural Networks	4	
	10.7	The Challenge of Long-Term Dependencies	6	
	10.8	Echo State Networks		
	10.9	Leaky Units and Other Strategies for Multiple		
		Time Scales	2	
	10.10	The Long Short-Term Memory and Other Gated RNNs 40		
		Optimization for Long-Term Dependencies		
		Explicit Memory		
11	Practical Methodology 416			
	11.1	Performance Metrics	7	
	11.2	Default Baseline Models		
	11.3	Determining Whether to Gather More Data		
	11.4	Selecting Hyperparameters		
	11.5	Debugging Strategies		
	11.6	Example: Multi-Digit Number Recognition		
12	Applications 43			
	12.1	Large-Scale Deep Learning	8	
	12.2	Computer Vision		
	12.3	Speech Recognition		
		Natural Language Processing		
		Other Applications 47		

III	\mathbf{De}	ep Learning Research	482
13	Line	ar Factor Models	485
	13.1	Probabilistic PCA and Factor Analysis	486
	13.2	Independent Component Analysis (ICA)	487
	13.3	Slow Feature Analysis	489
	13.4	Sparse Coding	492
	13.5	Manifold Interpretation of PCA	496
14	Auto	pencoders	499
	14.1	Undercomplete Autoencoders	500
	14.2	Regularized Autoencoders	501
	14.3	Representational Power, Layer Size and Depth	505
	14.4	Stochastic Encoders and Decoders	506
	14.5	Denoising Autoencoders	507
	14.6	Learning Manifolds with Autoencoders	513
	14.7	Contractive Autoencoders	518
	14.8	Predictive Sparse Decomposition	521
	14.9	Applications of Autoencoders	522
15	Repi	resentation Learning	524
	15.1	Greedy Layer-Wise Unsupervised Pretraining	526
	15.2	Transfer Learning and Domain Adaptation	534
	15.3	Semi-Supervised Disentangling of Causal Factors	539
	15.4	Distributed Representation	544
	15.5	Exponential Gains from Depth	550
	15.6	Providing Clues to Discover Underlying Causes	552
16	Stru	ctured Probabilistic Models for Deep Learning	555
	16.1	The Challenge of Unstructured Modeling	556
	16.2	Using Graphs to Describe Model Structure	560
	16.3	Sampling from Graphical Models	577
	16.4	Advantages of Structured Modeling	579
	16.5	Learning about Dependencies	579
	16.6	Inference and Approximate Inference	580
	16.7	The Deep Learning Approach to Structured	
		Probabilistic Models	581
17	Mon	te Carlo Methods	587
	17.1	Sampling and Monte Carlo Methods	587

	17.2 17.3 17.4 17.5	Importance Sampling	592 596
18	Confi	ronting the Partition Function	603
	18.1	The Log-Likelihood Gradient	604
	18.2	Stochastic Maximum Likelihood and Contrastive Divergence	605
	18.3	Pseudolikelihood	613
	18.4	Score Matching and Ratio Matching	615
	18.5	Denoising Score Matching	617
	18.6	Noise-Contrastive Estimation	618
	18.7	Estimating the Partition Function	621
19	Appr	roximate Inference	629
	19.1	Inference as Optimization	631
	19.2	Expectation Maximization	632
	19.3	MAP Inference and Sparse Coding	633
	19.4	Variational Inference and Learning	636
	19.5	Learned Approximate Inference	648
20	Deep	Generative Models	651
	20.1	Boltzmann Machines	651
	20.2	Restricted Boltzmann Machines	653
	20.3	Deep Belief Networks	657
	20.4	Deep Boltzmann Machines	660
	20.5	Boltzmann Machines for Real-Valued Data	673
	20.6	Convolutional Boltzmann Machines	679
	20.7	Boltzmann Machines for Structured or Sequential Outputs	681
	20.8	Other Boltzmann Machines	
	20.9	Back-Propagation through Random Operations	684
	20.10	Directed Generative Nets	688
	20.11	Drawing Samples from Autoencoders	707
		Generative Stochastic Networks	
		Other Generation Schemes	
		Evaluating Generative Models	
	20.15	Conclusion	716
Bil	oliogra	aphy	717

Index 773

Website

www. deep learning book. org

This book is accompanied by the above website. The website provides a variety of supplementary material, including exercises, lecture slides, corrections of mistakes, and other resources that should be useful to both readers and instructors.