Statistical Computing with R Masters in Data Science 503 (S2) Second Batch, SMS, TU, 2023

Shital Bhandary

Associate Professor

Statistics/Bio-statistics, Demography and Medical Education

Patan Academy of Health Sciences, Lalitpur, Nepal

Faculty, Data Analysis and Decision Modeling, MBA, Pokhara University, Nepal

Faculty, FAIMER Fellowship in Health Professions Education, India/USA

Review Preview

• R installation

R Studio installation

• R console

R objects

• R functions

• R plots

Summary statistics

Frequencies

Multiple Response Frequencies

R console in Windows OS

R Console in Mac OS:

Basic Mathematical Operations in R console: https://rstudio-education.github.io/hopr/basics.html

```
R Console
STOP
     unexpected input in "3 % 6"
```


Files	Plots Packages	Help Viewer				
Install ① Update		Q				
	Name	Description		Version		
Syst	em Library					
	abind	Combine Multidimensional Arrays		1.4-5	● ⊗	
	ade4	Analysis of Ecological Data: Exploratory and Euclidean Methods in Environmental Science		1.7-16	● ⊗	
	aplpack	Another Plot Package: 'Bagplots', 'Iconplots', 'Summaryplots', Slider Functions and Others	Another Plot Package: 'Bagplots', 'Iconplots', 'Summaryplots', Slider Functions and Others			
	arm	Data Analysis Using Regression and Multilevel/Hierarchical Models	1.11-2	₩ ⊗		
	askpass Safe Password Entry for R, Git, and SSI			1.1	● ❷	
	assertthat	Easy Pre and Post Assertions	0.2.1	● ❷		
	aweek	Convert Dates to Arbitrary Week Definitions		1.0.2	● ❷	
	backports	Reimplementations of Functions Introduced Since R-3.0.0		1.2.1	● ⊗	
✓	base	The R Base Package		4.0.2		
	base64enc	Tools for base64 encoding		0.1-3	● ❷	
	ВН	Boost C++ Header Files		1.72.0-3	● 🛇	
	bit	Classes and Methods for Fast Memory–Effici Boolean Selections	ent	4.0.4	● ❷	
	bit64	A S3 Class for Vectors of 64bit Integers		4.0.5	₩ 😵	

Mathematical operator in R Studio:

The comments are added using #

It is a good practice to use comments before any code

This will help us to understand our codes better when we re-visit them after a long time

R objects:

- Arrays: x and y defined in session 1, can be of any dimension
- Matrices: cbind of x and y (try it on your own and get class)
- Lists: Array with Strings, Integers, Numbers, Matrices, Boolean etc.)
- Data frame (data.frame to work with up to 1-2 gb data)
- Data table (data.table to work with more than 2 gb data)

Get the summary of x and y variables:

• summary(x)

summary(y)

Think and decide:

- Which measure of central tendency must be used? Why?
- Which measure of dispersion must be used? Why?
- How to define the outliers using the central tendency and dispersion values?

hist(x) and hist(y) How the class interval was formed here?

Quick Think!

What is a five number summary?

How is it different from the Tukey's five number summary

How to represent five number summary using visualization?

How to represent Tukey's five number summary using graph?

Boxplot of x and y variables: How to interpret these plots?

boxplot(x)

boxplot(y)

Bi-variate analysis

• When we use two variables to find relationship or association then it is known as bi-variate analysis

 The x and y variables created earlier are numerical variables and they need to be assessed with "Scatterplot" before correlation coefficient

- We can find relationship between these variables using:
 - Pearson correlation coefficient if they show linear relationship
 - Spearman's correlation coefficient if they show non-linear relationship

- $> df <- data.frame(x<-c(1:30), y<-x^3)$ > plot(df\$x, df\$y) > View(df) > print(df) We need x....c.1.30. y....x.3 to change the variable 27 name as "x" and 64 125
- > colnames(df) <- c('x', 'y')
 > View(df)
 >

Can we "transform" to make it "linear"?

- Yes, we can!
- We can log transform the y and x variables and check it again
- Let us define z as log(y) in r as follows:
- df\$z <- log(df\$y)
- Let us plot the scatterplot again as:
- plot(df\$x, df\$z)
- How does the graph look now?

Scatterplot of x and log(y)

Can we "transform" to make it "linear"?

Let us define w as log(x) in r as follows:

df\$w <- log(df\$x)

• Let us plot the scatterplot again as:

plot(df\$w, df\$z)

How does the graph look now?

Scatterplot of log(x) and log(y) This is called log-log transformation!

Questions/queries?

Work/Assignment 1:

Show the histogram of z variable and interpret it carefully.

Get summary of this variable and decide which measure of central tendency and measure of dispersion must be used for this variable?

Get the five number summary of this variable and interpret them carefully.

Create boxplot of this variable and interpret it carefully.

Do you get outlier for this variable in the boxplot? Why?

Work2: Import "covnep_252days.csv" data in R Studio: I recommend the "readr" package

Then get this chart in R Studio:

Cumulative COVID-19 cases in Nepal: First 252 days since onset at 23/01/2021

Then get summary of "totalCases" variable:

> summary(covnep_252days\$totalCases)

•	Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
•	0	2	963	13376	19340	77816

What is the problem with this result?

- Fix the problem and get the summary again.
- Interpret the revised summary carefully.

Then get this chart of 'newCases' in R Studio:

Histogram of covnep_252days\$newCases

Then get summary of "newCases" variable and interpret the result carefully:

> summary(covnep_252days\$newCases)

Work 3: Import "SAQ8.sav" data and replicate these tables in R Studio with your own code

Statistics makes me cry						
		Frequen		Valid	Cumulative	
		су	Percent	Percent	Percent	
Valid	Strongly agree	270	10.5	10.5	10.5	
	Agree	1338	52.0	52.0	62.5	
	Neither	735	28.6	28.6	91.1	
	Disagree	187	7.3	7.3	98.4	
	Strongly disagree	41	1.6	1.6	100.0	
	Total	2571	100.0	100.0		

Standard deviations excite me						
				Valid	Cumulative	
		су	Percent	Percent	Percent	
Valid	Strongly agree	497	19.3	19.3	19.3	
	Agree	672	26.1	26.1	45.5	
	Neither	878	34.2	34.2	79.6	
	Disagree	448	17.4	17.4	97.0	
	Strongly disagree	76	3.0	3.0	100.0	
	Total	2571	100.0	100.0		

I have little experience of computers					
		Frequen		Valid	Cumulative
		су	Percent	Percent	Percent
Valid	Strongly agree	702	27.3	27.3	27.3
	Agree	1127	43.8	43.8	71.1
	Neither	344	13.4	13.4	84.5
	Disagree	252	9.8	9.8	94.3
	Strongly disagree	146	5.7	5.7	100.0
	Total	2571	100.0	100.0	

I have never been good at mathematics						
		Frequen		Valid	Cumulative	
		су	Percent	Percent	Percent	
Valid	Strongly agree	383	14.9	14.9	14.9	
	Agree	1487	57.8	57.8	72.7	
	Neither	482	18.7	18.7	91.5	
	Disagree	147	5.7	5.7	97.2	
	Strongly disagree	72	2.8	2.8	100.0	
	Total	2571	100.0	100.0		

.sav is a SPSS data file

Work 4: Import "MR_drugs.xls" file and replicate the following table in R Studio with you own code

\$Income Frequencies								
		Re						
		N	Percent	Percent of Cases				
Income - Multiple Response ^a	inco1	226	12.8%	23.5%				
	inco2	607	34.5%	63.0%				
	inco3	293	16.6%	30.4%				
	inco4	50	2.8%	5.2%				
	inco5	82	4.7%	8.5%				
	inco6	151	8.6%	15.7%				
	inco7	352	20.0%	36.6%				
Total		1761	100.0%	182.9%				
a. Dichotomy group tabulated at value 1.								

Submit these works/assignments here:

- We will use Google Classroom for now as MS Team will take time
- Please send a black email to me so that I can add you in the Google Classroom:
- shitalbhandary@gmail.com

 Our next class will be on Wednesday 29 March 2023 from 6:30 am till 9:30 am

Question/queries?

Thank you!

@shitalbhandary