

Introdução à Engenharia Química e Bioquímica

Aula 3
MIEQB
ano lectivo de 2020/2021

Sumário da aula

Introdução aos cálculos de Engenharia

- Cálculo numérico e estimativa
- Homogeneidade dimensional

NOTAÇÃO CIENTÍFICA

Forma conveniente de representar números muito grandes ou muito pequenos

Em potências de 10!

Exemplos: $123,000,000 = 1.23 \times 10^{8}$ $0.000028 = 2.8 \times 10^{-5}$

CONCEITO DE ALGARISMO SIGNIFICATIVO!

ALGARISMOS SIGNIFICATIVOS (a.s.) de um número

- Caso não haja vírgula (ou ponto) decimal: são os dígitos, diferentes de zero, contados da esquerda para a direita até o último dígito diferente de zero
- Caso haja vírgula (ou ponto) decimal: até ao último dígito (zero ou não)

Exemplos:

2300 ou 2.3 x 10³ (2 a.s.)

2300.0 ou 2.3000 x 10³ (5 a.s.)

0.035 ou 3.5 x 10⁻² (2 a.s.)

23040 ou 2.304 x 10⁴ (4 a.s.)

23040.20 ou 2.304020 x 10^4 (7 a.s.) 0.03500 ou 3.500 x 10^{-2} (4 a.s.)

INCERTEZA Algarismo significativo

O número de algarismos significativos de uma grandeza é uma medida da sua incerteza

maior o nº de algarismos significativos

=> **menor** a incerteza no valor

Exemplos:

0.035 g (2 a.s.) => a medição foi feita com precisão de miligrama...

0.03500 g (4 a.s.) => a medição foi feita com precisão nas centésimas de miligrama...

Temperatura = 32 °C (2 a.s) => valor real está entre 31.5 e 32.5 °C

Temperatura = 32.0 °C (3 a.s) => valor real está entre 31.95 e 32.05 °C.

Incerteza associada ao valor: metade da menor divisão da escala

8.300 g (4 a.s.) => o verdadeiro valor estará entre 8.2995 e 8.3005 g

Números inteiros que são parte de uma expressão física possuem precisão infinita

Exemplo:

o "2" na equação do perímetro do círculo $2\pi R$, possui uma precisão infinita uma vez que por definição o diâmetro é 2 vezes o raio.

Operações com Algarismos Significativos

- Divisão/multiplicação

Quando duas ou mais quantidades são multiplicadas ou divididas, o número de algarismos significativos resultante deve ser igual ao menor número de algarismos significativos de qualquer um dos multiplicadores ou divisores.

Exemplos:

$$(3.57) \times (4.286) = 15.30102 => 15.3$$
 [3] [4] [7] [3]

$$(5.2 \times 10^{-4}) \times (0.1635 \times 10^{7})/(2.67) = 318.426966... => 3.2 \times 10^{2} = 320$$
[2] [4] [3] [9] [2]

Adição/subtracção

Quando dois ou mais números são adicionados ou subtraídos, as posições do último algarismo significativo em cada número, relativa à virgula decimal, devem ser comparadas.

Destas posições o resultado mantêm a posição do valor com o significativo mais à esquerda.

Exemplos:

$$1.0000 + 0.036 + 0.22 = 1.2560 => 1.26$$

$$2.75 \times 10^6 + 3.400 \times 10^4 = (2.75 + 0.03400) \times 10^6 = 2.784000 \times 10^6$$

$$=> 2.78 \times 10^6$$

Regra geral ("rule of thumb") no arredondamento de números no qual o digito a descartar é um "5": deixar sempre o último dígito do número arredondado par

$$1.35 \Rightarrow 1.4$$

$$1.25 \Rightarrow 1.2$$

Atenção com o arredondamento do excel!...

1.6. Represente as seguintes quantidades na notação cientifica e indique o respectivo número de algarismos significativos

(a) 12,200

(b) 12,200.0 (c) 0.003040

1.7. Exprima as seguintes quantidades na forma decimal e indique o respectivo número de algarismos significativos

(a) 1.34×10^5 (b) 1.340×10^{-2}

1.8. Indique o número de algarismo significativos dos resultados dos seguintes cálculos

(a) (5.74)(38.27)/(0.001250) (b) $(1.76 \times 10^4)(0.12 \times 10^{-6})$

1.6. Represente as seguintes quantidades na notação cientifica e indique o respectivo número de algarismos significativos

(a) 12,200

(b) 12,200.0

(c) 0.003040

(a) 12,200 \Leftrightarrow 1.22×10⁴ (3 a.s.)

(b) 12,200.0

 \Leftrightarrow 1.22000×10⁴ (6 a.s.)

(c) 0.003040

 \Leftrightarrow 3.040×10⁻³ (4 a.s.)

1.7. Exprima as seguintes quantidades na forma decimal e indique o respectivo número de algarismos significativos

(a) 1.34×10^5 (b) 1.340×10^{-2}

(a) 1.34×10^5 \Leftrightarrow 134,000 (3 a.s.)

(b) 1.340×10^{-2} \Leftrightarrow 0.01340 (4 a.s.)

1.8. Indique o número de algarismo significativos dos resultados dos seguintes cálculos

(a)
$$(5.74)(38.27)/(0.001250)$$
 (b) $(1.76 \times 10^4)(0.12 \times 10^{-6})$

(b)
$$(1.76 \times 10^4)(0.12 \times 10^{-6})$$

(a) 3 a.s. (resultado =
$$1.76 \times 10^5$$
)

(b) 2 a.s. (resultado =
$$2.1 \times 10^{-3}$$
)

Qualquer problema que se resolva coloca sempre duas questões essenciais:

- a) como é que o resolvemos?
- b) uma vez resolviido, como é que sabemos que está certo?

Cálculo numérico (conceito de estimativa)

- 1. Substituir o valor da solução na equação de projecto e verificar se está correcto!
- 2. Obter um valor aproximado da resposta usando o método da ordem de magnitude; verificar se a solução inicial se encontra perto do valor anterior!

$$\frac{(36720) \times (0.0624)}{(0.000478)} \approx \frac{(4 \times 10^4) \times (5 \times 10^{-2})}{(5 \times 10^{-4})} = 4 \times 10^6$$
 O valor correcto é 4.78 × 10⁶!

$$\frac{1}{4.13 + 0.04762} \approx \frac{1}{4} = 0.25$$
 O valor correcto é 0.239!

3. Aplicar a regra do "bom senso"... se a altura calculada para a coluna de destilação der 2500m qualquer coisa deve estar mal nos cálculos...

Homogeneidade dimensional

Toda e qualquer equação válida deve ser dimensionalmente homogénea. Isto é, todos os termos aditivos em ambos os lados da equação devem ter as mesmas dimensões.

Exemplos:

$$u \text{ (m/s)} = u_0 \text{ (m/s)} + g \text{ (m/s}^2) \times t \text{ (s)}$$

$$u \text{ (m/s)} = u_0 \text{ (m/s)} + g \text{ (m/s}^2)$$

O reverso não é necessariamente verdade! Uma equação pode ser dimensionalmente homogénea mas ser inválida...

$$M = 2 M$$

Grupo adimensional

Um **grupo adimensional** é uma combinação de várias variáveis, cuja resultante não tem dimensões

Exemplos:

$$\frac{M(g)}{M_0(g)}$$

$$\frac{D\ (cm) \times u\left(\frac{cm}{s}\right) \times \rho\ (\frac{g}{cm^3})}{\mu\ (\frac{g}{cm.\ s})}$$

D: diâmetro

u: velocidade

 ρ : densidade

 $\boldsymbol{\mu}: \text{viscosidade}$

Expoentes (X²), funções transcendentais e seus argumentos (log, exp, sen, cos...) são <u>adimensionais</u>!

Número adimensional

Úteis para representar sucintamente um dado fenómeno físico

Exemplo:

o **número de Reynolds** (N_{Re}) é usado em mecânica de fluidos (por exemplo, para descrever o movimento de fluidos em condutas)

$$N_{Re} = \frac{d u \rho}{\mu}$$

d: diâmetro da conduta [m]

u: velocidade do fluido [m·s⁻¹]

ρ: densidade do fluido [kg·m⁻³]

 μ : viscosidade do fluido [Pa·s = kg·m⁻¹·s⁻¹]

- 1.9. Considere a seguinte equação: D(m) = 3t(s) + 4
- a)Sendo a equação válida, quais são as dimensões das constantes 3 e 4?
- b) Sendo a equação consistente nas suas unidades, quais são as unidades de 3 e 4?

Resposta:

- 1. 3 [=] comprimento/tempo; 4 [=] comprimento
- 2. 3 m/s; 4 m

1.10. O **número de Prandtl**, N_{Pr} , é um grupo adimensional muito importante em cálculos de transporte de calor. É definido pela expressão $C_p.\mu/k$ em que C_p é o calor especifico de um fluido, μ é a viscosidade do fluido e k a sua condutividade térmica.

Considere que para um dado fluido, $C_p = 583 \text{ J/(kg.}^{\circ}\text{C})$, $k = 0.286 \text{ W/(m.}^{\circ}\text{C})$ e $\mu = 0.802 \text{ kg/(m.s)}$. Estime o valor de N_{Pr} sem usar máquina de calcular. Compare com o valor que obtém com a máquina.

$$N_{Pr} = \frac{C_p \mu}{k}$$

$$N_{Pr} = \frac{(583) \times (0.802)}{(0.286)} \approx \frac{(6 \times 10^2) \times (8 \times 10^{-1})}{(3 \times 10^{-1})} = \frac{48}{3} \times 10^2 \approx 15 \times 10^2 \approx 1.5 \times 10^3$$

Solução pela máquina: $1634 = 1.63 \times 10^3$

A variável k depende da temperatura da seguinte forma:

$$k$$
(mol.cm⁻³.s⁻¹)=1.2×10⁵ exp($\frac{-20000}{1.987T}$)

em que o valor 20000 tem as unidades de cal.mol $^{-1}$ e T está em K (Kelvin). Calcule as unidades das quantidades 1.2×10^5 e 1.987.

$$k$$
(molcm⁻³s⁻¹)=1.2×10⁵ exp($\frac{-20000}{1.987T}$)

 $20000cal.mol^{-1}$

$$T = K$$

$$k = A. \exp\left(\frac{-E_a}{RT}\right)$$
 Lei de Arrhenius

Relaciona a constante cinética de uma reacção com a T e a energia de activação

$$y = cal.mol^{-1}.K^{-1}$$

$$y = cal.mol^{-1}.K^{-1}$$
 $mol.cm^{-3}.s^{-1} = x.\exp\left(\frac{cal.mol^{-1}}{y.K}\right)$

Problema 1.12

A densidade de um fluido é representada pela seguinte equação empírica:

$$\rho = 70.5 \exp(8.27 \times 10^{-7} P)$$

em que ρ é a densidade (lbm ft⁻³) e *P* a pressão (lbf/in²).

- a) Quais são as unidades de 70.5 e 8.27×10^{-7} ?
- b) Calcule a densidade do fluido, em g/cm 3 , a uma pressão de 9.00 $\times 10^6$ N/m 2
- c) Deduza a expressão de ρ (g/cm³) em função de P (N/m²).
- d) Estamos a falar de um fluido líquido ou gasoso?

 $1 \text{ N/m}^2 = 1.4504 \times 10^{-4} \text{ lbf/in}^2$

1 lbm ft⁻³ = 0.016018 g/cm³

$$\rho = 70.5 \exp(8.27 \times 10^{-7} P)$$

ρ é a densidade (lbm ft⁻³)
 P a pressão (lbf/in²)

As mesmas unidades da densidade

As unidades inversas da P para ficar adimensional

b) Calcule a densidade do fluido, em g/cm 3 , a uma pressão de $9.00 \times 10^6 \text{ N/m}^2$

(b)
$$\rho = (70.5 \text{ lb}_{\text{m}}/\text{ft}^3) \exp \left[\frac{8.27 \times 10^{-7} \text{ in}^2}{\text{lb}_{\text{f}}} \frac{9 \times 10^6 \text{ N}}{\text{m}^2} \frac{14.696 \text{ lb}_{\text{f}}/\text{in}^2}{1.01325 \times 10^5 \text{ N/m}^2} \right]$$

$$= \frac{70.57 \text{ lb}_{\text{m}}}{\text{ft}^3} \frac{35.3145 \text{ ft}^3}{\text{m}^3} \frac{1}{10^6 \text{ cm}^3} \frac{1000 \text{ g}}{2.20462 \text{ lb}_{\text{m}}} = \frac{1.13 \text{ g/cm}^3}{1.000 \text{ g}}$$

Ou....

 $\left[70.5\frac{1lbm}{1ft^3}\frac{453.6g}{1lbm}\frac{1ft^3}{30.48^3cm^3}\right]exp\left[8.27\times10^{-7}\frac{1in^2}{1lbf}\frac{1m^2}{1550in^2}\frac{0.2248lbf}{1N}9.00\times10^6\frac{N}{m^2}\right]$

pressão

$$= 1.13 \text{ g/cm}^3$$

adimensional

$$1 \text{ N/m}^2 = 1.4504 \times 10^{-4} \text{ lbf/in}^2$$

1 lbm ft⁻³ =
$$0.016018$$
 g/cm³

1 ft = 30.48 cm

1 lbm = 453.6 g

$$\rho = 70.5 \exp(8.27 \times 10^{-7} P)$$

 ρ é a densidade (lbm ft⁻³)

P a pressão (lbf/in²)

$$\rho = 70.5 \exp(8.27 \times 10^{-7} P)$$

ρ é a densidade (lbm ft⁻³)
 P a pressão (lbf/in²)

c) Deduza a expressão de ρ (g/cm³) em função de P (N/m²).

$$\rho\left(\frac{1b_{m}}{ft^{3}}\right) = \rho' \frac{g}{cm^{3}} \frac{1 lb_{m}}{453.593 g} \frac{28,317 cm^{3}}{1 ft^{3}} = 62.43 \rho'$$

$$P\left(\frac{lb_{f}}{in^{2}}\right) = P' \frac{N}{m^{2}} \frac{0.2248 lb_{f}}{1 N} \frac{1^{2} m^{2}}{39.37^{2} in^{2}} = 1.45 \times 10^{-4} P'$$

$$\Rightarrow 62.43 \rho' = 70.5 \exp \left[\left(8.27 \times 10^{-7} \right) \left(1.45 \times 10^{-4} P' \right) \right] \Rightarrow \underline{\rho' = 1.13 \exp \left(1.20 \times 10^{-10} P' \right)}$$

$$P' = 9.00 \times 10^6 \text{ N / m}^2 \Rightarrow \rho' = 1.13 \exp[(1.20 \times 10^{-10})(9.00 \times 10^6)] = \underline{1.13 \text{ g / cm}^3} \quad \text{substituir o valor da}$$

Para confirmar, substituir o valor da P da alinea b)

Ou de outra maneira, desde que não se enganem!

$$70.5 \frac{1 lbm}{1 f t^3} \frac{453.6g}{1 lbm} \frac{1 f t^3}{30.48^3 cm^3} = 1.13 \text{ g/cm}^3$$

$$8.27 \times 10^{-7} \frac{1 in^2}{1 lbf} \frac{1 m^2}{1550 in^2} \frac{0.2248 lbf}{1N} = 1.2 \times 10^{-10} \text{m}^2/\text{N}$$

$$ho = 1.13 \exp(1.2 \times 10^{-10} \text{ P})$$

O argumento da função exp fica adimensional. Para isso as unidades de 8.27X10⁻⁷ são inversas às da pressão)

$$1 \text{ N/m}^2 = 1.4504 \times 10^{-4} \text{ lbf/in}^2$$

$$1 \text{ ft} = 30.48 \text{ cm}$$

$$1 \text{ lbm} = 453.6 \text{ g}$$

1 lbm ft⁻³ =
$$0.016018$$
 g/cm³

1 N=0.2248 lbf

d) Estamos a falar de um fluido líquido ou gasoso?

$$\rho = 1.13 \exp(1.2 \times 10^{-10} P)$$

1 atm =
$$1.0133 \times 10^5$$
 Pa (N/m²)

	Р	ρ
atm	Pa	g/cm3
1	1.01E+05	1.1300
10	1.01E+06	1.1301
100	1.01E+07	1.1314
1000	1.01E+08	1.1438
10000	1.01E+09	1.2761

Fluido Líquido