Rank-65695 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_2^3 + X_3^3 + X_0^2 X_1 + X_0 X_1^2 + X_0 X_1 X_2 = 0$$

(0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(8) is 1229235341

General information

Number of lines	3
Number of points	73
Number of singular points	1
Number of Eckardt points	0
Number of double points	3
Number of single points	21
Number of points off lines	49
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{3}
Type of lines on points	$2^3, 1^{21}, 0^{49}$

Singular Points

The surface has 1 singular points:

$$0: P_{20} = \mathbf{P}(1, 1, 1, 0) = \mathbf{P}(1, 1, 1, 0)$$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{65} = \mathbf{Pl}(0, 0, 1, 0, 1, 0)_{96}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{4673} = \mathbf{Pl}(0, 0, 0, 1, 0, 1)_{769}$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{666} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{666} = \mathbf{Pl}(1, 0, 1, 1, 1, 1)_{1323}$$

Rank of lines: (65, 4673, 666)

Rank of points on Klein quadric: (96, 769, 1323)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{138} = (0, 0, 1, 1) = \ell_0 \cap \ell_1$$

$$P_{139} = (1, 0, 1, 1) = \ell_0 \cap \ell_2$$

 $P_{146} = (0, 1, 1, 1) = \ell_1 \cap \ell_2$

Single Points

The surface has 21 single points: The single points on the surface are:

$0: P_0 = (1, 0, 0, 0)$ lies on line ℓ_0
1: $P_1 = (0, 1, 0, 0)$ lies on line ℓ_1
2: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_2
$3: P_{140} = (2,0,1,1)$ lies on line ℓ_0
4: $P_{141} = (3,0,1,1)$ lies on line ℓ_0
5: $P_{142} = (4,0,1,1)$ lies on line ℓ_0
6: $P_{143} = (5,0,1,1)$ lies on line ℓ_0
7: $P_{144} = (6,0,1,1)$ lies on line ℓ_0
8: $P_{145} = (7,0,1,1)$ lies on line ℓ_0
9: $P_{153} = (0, 2, 1, 1)$ lies on line ℓ_1
10: $P_{156} = (3, 2, 1, 1)$ lies on line ℓ_2

11: $P_{161} = (0, 3, 1, 1)$ lies on line ℓ_1

12: $P_{163} = (2, 3, 1, 1)$ lies on line ℓ_2

13: $P_{169} = (0, 4, 1, 1)$ lies on line ℓ_1 14: $P_{174} = (5, 4, 1, 1)$ lies on line ℓ_2

 $15: P_{177} = (0, 5, 1, 1)$ lies on line ℓ_1

16: $P_{181} = (4, 5, 1, 1)$ lies on line ℓ_2

17: $P_{185} = (0, 6, 1, 1)$ lies on line ℓ_1 18: $P_{192} = (7, 6, 1, 1)$ lies on line ℓ_2

 $19: P_{193} = (7, 0, 1, 1)$ lies on line ℓ_1

20: $P_{199} = (6,7,1,1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 49 points not on any line: The points on the surface but not on lines are:

$$0: P_{20} = (1, 1, 1, 0) 1: P_{31} = (4, 2, 1, 0) 2: P_{31} = (7, 2, 1, 0)$$

$$2: P_{34} = (7, 2, 1, 0)$$

 $3: P_{45} = (2, 4, 1, 0)$

$$4: P_{50} = (7, 4, 1, 0)$$

$$5: P_{69} = (2, 7, 1, 0)$$

$$6: P_{71} = (4, 7, 1, 0)$$

7:
$$P_{103} = (5, 3, 0, 1)$$

$$8: P_{104} = (6, 3, 0, 1)$$

9:
$$P_{117} = (3, 5, 0, 1)$$

10: $P_{120} = (6, 5, 0, 1)$ $30: P_{359} = (6, 3, 4, 1)$ 11: $P_{125} = (3, 6, 0, 1)$ $31: P_{363} = (2,4,4,1)$ $12: P_{127} = (5, 6, 0, 1)$ $32: P_{378} = (1, 6, 4, 1)$ 13: $P_{214} = (5, 1, 2, 1)$ $33: P_{380} = (3, 6, 4, 1)$ 14: $P_{215} = (6, 1, 2, 1)$ $34: P_{402} = (1, 1, 5, 1)$ 15: $P_{224} = (7, 2, 2, 1)$ $35: P_{406} = (5, 1, 5, 1)$ 16: $P_{242} = (1, 5, 2, 1)$ $36: P_{434} = (1, 5, 5, 1)$ 17: $P_{247} = (6, 5, 2, 1)$ $37: P_{466} = (1, 1, 6, 1)$ 18: $P_{250} = (1, 6, 2, 1)$ $38: P_{471} = (6, 1, 6, 1)$ 19: $P_{254} = (5, 6, 2, 1)$ $39: P_{506} = (1, 6, 6, 1)$ $20: P_{259} = (2,7,2,1)$ $40: P_{532} = (3, 1, 7, 1)$ $21: P_{264} = (7,7,2,1)$ $41: P_{534} = (5, 1, 7, 1)$ $22: P_{274} = (1, 1, 3, 1)$ $42: P_{546} = (1, 3, 7, 1)$ $23: P_{276} = (3, 1, 3, 1)$ $43: P_{550} = (5, 3, 7, 1)$ $24: P_{290} = (1, 3, 3, 1)$ $44: P_{557} = (4, 4, 7, 1)$ $25: P_{340} = (3, 1, 4, 1)$ $45: P_{560} = (7, 4, 7, 1)$ $26: P_{343} = (6, 1, 4, 1)$ 46: $P_{562} = (1, 5, 7, 1)$ $27: P_{347} = (2, 2, 4, 1)$ $47: P_{564} = (3, 5, 7, 1)$ $48: P_{581} = (4,7,7,1)$ 28: $P_{349} = (4, 2, 4, 1)$ 29: $P_{354} = (1, 3, 4, 1)$

Line Intersection Graph

 $\begin{array}{c|c}
0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{138}	P_{139}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{138}	P_{146}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{139}	P_{146}

The surface has 73 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$12: P_{117} = (3, 5, 0, 1)$	$24: P_{146} = (0, 1, 1, 1)$
$1: P_1 = (0, 1, 0, 0)$	13: $P_{120} = (6, 5, 0, 1)$	$25: P_{153} = (0, 2, 1, 1)$
$2: P_5 = (1, 1, 0, 0)$	$14: P_{125} = (3, 6, 0, 1)$	$26: P_{156} = (3, 2, 1, 1)$
$3: P_{20} = (1, 1, 1, 0)$	$15: P_{127} = (5, 6, 0, 1)$	$27: P_{161} = (0, 3, 1, 1)$
$4: P_{31} = (4, 2, 1, 0)$	$16: P_{138} = (0, 0, 1, 1)$	$28: P_{163} = (2, 3, 1, 1)$
$5: P_{34} = (7, 2, 1, 0)$	17: $P_{139} = (1, 0, 1, 1)$	$29: P_{169} = (0, 4, 1, 1)$
$6: P_{45} = (2,4,1,0)$	$18: P_{140} = (2, 0, 1, 1)$	$30: P_{174} = (5,4,1,1)$
$7: P_{50} = (7, 4, 1, 0)$	$19: P_{141} = (3, 0, 1, 1)$	$31: P_{177} = (0, 5, 1, 1)$
$8: P_{69} = (2,7,1,0)$	$20: P_{142} = (4, 0, 1, 1)$	$32: P_{181} = (4, 5, 1, 1)$
$9: P_{71} = (4,7,1,0)$	$21: P_{143} = (5, 0, 1, 1)$	$33: P_{185} = (0, 6, 1, 1)$
$10: P_{103} = (5, 3, 0, 1)$	$22: P_{144} = (6,0,1,1)$	$34: P_{192} = (7, 6, 1, 1)$
$11: P_{104} = (6, 3, 0, 1)$	$23: P_{145} = (7, 0, 1, 1)$	$35: P_{193} = (0,7,1,1)$

$36: P_{199} = (6,7,1,1)$	$49: P_{340} = (3, 1, 4, 1)$	$62: P_{471} = (6, 1, 6, 1)$
$37: P_{214} = (5, 1, 2, 1)$	$50: P_{343} = (6, 1, 4, 1)$	$63: P_{506} = (1, 6, 6, 1)$
$38: P_{215} = (6, 1, 2, 1)$	$51: P_{347} = (2, 2, 4, 1)$	$64: P_{532} = (3, 1, 7, 1)$
$39: P_{224} = (7, 2, 2, 1)$	$52: P_{349} = (4, 2, 4, 1)$	$65: P_{534} = (5, 1, 7, 1)$
$40: P_{242} = (1, 5, 2, 1)$	$53: P_{354} = (1, 3, 4, 1)$	$66: P_{546} = (1, 3, 7, 1)$
$41: P_{247} = (6, 5, 2, 1)$	$54: P_{359} = (6, 3, 4, 1)$	$67: P_{550} = (5, 3, 7, 1)$
$42: P_{250} = (1, 6, 2, 1)$	$55: P_{363} = (2, 4, 4, 1)$	$68: P_{557} = (4, 4, 7, 1)$
$43: P_{254} = (5, 6, 2, 1)$	$56: P_{378} = (1, 6, 4, 1)$	$69: P_{560} = (7, 4, 7, 1)$
$44: P_{259} = (2,7,2,1)$	$57: P_{380} = (3, 6, 4, 1)$	$70: P_{562} = (1, 5, 7, 1)$
$45: P_{264} = (7,7,2,1)$	$58: P_{402} = (1, 1, 5, 1)$	71: $P_{564} = (3, 5, 7, 1)$
$46: P_{274} = (1, 1, 3, 1)$	$59: P_{406} = (5, 1, 5, 1)$	$72: P_{581} = (4,7,7,1)$
$47: P_{276} = (3, 1, 3, 1)$	$60: P_{434} = (1, 5, 5, 1)$	
$48: P_{290} = (1, 3, 3, 1)$	$61: P_{466} = (1, 1, 6, 1)$	