

RUST-AB: REFACTORING & OPTIMIZATIONS

By Francesco Foglia & Pasquale Caramante

ARCHITETTURA: PRIMA

ARCHITETTURA: CAMBIAMENTI

BACK-END

Transizione da Amethyst a Bevy engine

RENDER TRAIT

Separazione della struttura implementativa di Render

SUPPORTO MULTI-AGENT

Refactor totale di Rust-AB per permettere lo sviluppo di simulazioni multi-agente

BEVY ENGINE

Cambiamento del motore grafico

BEVY ENGINE: COS'È?

"Un game engine data-driven e piacevolmente semplice".

- Semplicità senza pagare in prestazioni (anzi!).
- Basato su una struttura solida (wgpu, bevy_ecs, winit, rodio...).
- Focus sull'ergonomia e sulla semplice programmazione.

PERCHÈ CAMBIARE BACK-END?

TEMPI DI COMPILAZIONE

Amethyst ha tempi di compilazione eccessivamente lunghi. Bevy engine mira a tenere questi tempi bassi.

SUPPORTO A LUNGO TERMINE

Amethyst è inattivo, probabilmente a causa di problemi architetturali del progetto. Bevy ha uno sviluppatore full-time e altri 250 contributors.

WASM - WebGL

Bevy supporta il target di compilazione WebAssembly, wgpu supporta WebGl, ciò permette di incorporare applicazioni grafiche nel browser.

CARATTERISTICHE PRINCIPALI

SITO STATICO (ZOLA)

Sito statico generato tramite il generatore di siti statici Zola, scritto in Rust.

AUTO-UPDATE

Tramite una GitHub Action, i binari wasm e le fonti di dati dei grafici vengono tenuti sempre sincronizzati con la repository delle simulazioni di Rust-AB.

Pannello di controllo per interagire con la simulazione.

INTERAGIRE CON LE SIMULAZIONI: BEVY EGUI

Attualmente in sviluppo, sui branch bevy_egui e ui_visualization.

Funzionalità di pausa, stop e start già implementate.

Codice UI isolato in un unico sistema.

REFACTOR MULTI-AGENT

Supporto per simulazioni con diversi tipi di agenti

MULTI-AGENT: PROBLEMA

Lato engine: la struttura Schedule è generica sul (singolo) tipo dell'agente, per sapere quanto spazio di memoria allocare per il vettore di agenti rappresentante la coda a priorità interna.

 Soluzione: Rimuovere il tipo generico, modificando la coda a priorità in modo che contenga riferimenti ad implementatori dell'aspetto "Agent" (struttura Box di Rust).

Lato visualizzazione: l'implementatore degli aspetti Agent e AgentRender coincidono, causando un alto accoppiamento tra simulazione e visualizzazione.

• Soluzione: due strutture, una che descrive l'agente e una che descrive la sua visualizzazione. (Come accedere alla struttura dell'agente per visualizzarlo?)

• Boilerplate aggiuntivo: per poter accedere alla struttura di un agente dalla sua struttura visualizzativa, bisogna eseguire un downcast dell'implementatore dell'aspetto "Agent" nel tipo effettivo.

 Perdita di prestazioni: Non conoscendo più i tipi concreti degli agenti nei metodi del framework, molte ottimizzazioni eseguite da Rust vengono perse (es. static dispatching, no inlining...).

SVILUPPI FUTURI

PRESTÁZIONI MULTI-AGENT

Valutare l'impatto sulle prestazioni causato dal dynamic dispatching.

CONFIGÜRAZIONE INIZIALE

Permettere di variare i parametri della configurazione iniziale di una simulazione dal pannello laterale della visualizzazione.

PARAMETRI AGENTI

Abilitare la modifica dei parametri di singoli agenti nella visualizzazione a run-time.

TABLE OF CONTENTS

Modello di Schelling (Segregation)

- Realizzato da Thomas Schelling negli anni '70;
- Simula il fenomeno sociale della segregazione residenziale;
- Due gruppi di agenti occupano gli spazi di una scacchiera;
- Ad ogni step di simulazione gli agenti scelgono se spostarsi in una nuova locazione o meno in base alla percentuale di vicini "simili"

Implementazione su Rust-AB - SchellingState

Lo stato di simulazione è rappresentato dalla struct **SchellingState**, che contiene l'ambiente di simulazione (una griglia bidimensionale) e una lista di locazioni vuote a disposizione degli agenti che devono spostarsi durante gli step di simulazione.

- get_num_happy()
- get_nearby_turtles(Turtle)
- set_turtle_location(turtle, loc)
- update() (trait State)

```
pub struct SchellingState{
    pub patches: Grid2D<Turtle>,
    pub size: i64,
    pub free_patches: ArrayQueue<Int2D>,
    pub step: usize,
}
```


Implementazione su Rust-AB - Turtle

Ogni agente è caratterizzato da un id, una posizione, e un colore, che contraddistingue il gruppo di appartenenza (Blue o Orange).

Il valore booleano happy esprime se l'agente è soddisfatto nella locazione in cui si trova o meno.

```
pub struct Turtle {
   pub id: u128,
   pub happy: bool,
   pub color: TurtleType,
   pub loc: Int2D,
}
```

Implementazione in Rust-AB - Turtle (Trait Agent)

```
fn step(&mut self, state: &SchellingState) {
   let neighbors = state.get nearby turtles (&self);
   let mut similar = 0;
   for neighbor in neighbors {
       if neighbor.color == self.color{
            similar+=1;
   if similar as f64/8.0 < PERCENT SIMILAR WANTED{
       self.happy = false;
       let old loc = self.loc;
       let new loc = state.free patches.pop().unwrap();
       self.loc = new loc;
        state.free patches.push(old loc).unwrap();
       self.happy = true;
   state.set turtle location (*self, self.loc);
```


Modello disponibile nella repository rust-ab-examples:

https://github.com/rust-ab/rust-ab-examples/ tree/schelling

Visualizzazione (da sistemare) disponibile in un branch separato:

https://github.com/rust-ab/rust-ab-examples/tree/ ui_visualization

O5 Scaling Benchmark

Boids & Wolf Sheep Grass

Boids

N. Agenti	1.000.000
Dimensioni	10606*10606
N. Step	100

N. Thread	Speedup
1	1,00
2	1,50
4	2,23
8	3,18
16	4,14
32	4,69
64	4,63

Wolf Sheep Grass

N. Agenti	1.000.000
Dimensioni	5000*5000
N. Step	50

N. Thread	Speedup
1	1,00
2	1,27
4	1,50
8	1,67
16	1,77
32	1,86
64	1,92

Boids (High Density)

N. Agenti	1.000.000
Dimensioni	500*500
N. Step	100

N. Thread	Speedup
1	1.00
2	1.89
4	3.51
8	5.71
16	9.16
32	16.73
64	25.41

Wolf Sheep Grass (High Density)

N. Agenti	1.000.000
Dimensioni	500*500
N. Step	50

N. Thread	Speedup
1	1.00
2	1.51
4	2.28
8	3.49
16	4.75
32	5.83
64	6.32

Work in Progress

Il tempo di update dei buffer domina sul tempo di esecuzione dello step

THANKS

- Main repository : https://github.com/rust-ab/rust-ab/rust-ab
- Esempi: https://github.com/rust-ab/rust-ab-examples
- Talks: https://github.com/rust-ab/talks
- Sito: https://rust-ab.github.io/

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, infographics & images by <u>Freepik</u>.