1 Keywords

Theorem 1.1. Any two distinct keywords w and x s.t. $w = 0w_2...w_n$, $x = 1x_2...x_n$ in a binary word list must be of the form $w_i = x_i$; $i \in \{2, 3, ..., n\}$.

Proof. Let A be a word list with distinct keywords w, x, s.t. $w = w_1 w_2 ... w_n$, and $x = x_1 x_2 ... x_n$ where $w_i, x_i, y_i \in \{0, 1\}$.

By definition of keyword, $\forall a \in A, \ \forall a' \subset a, \ \forall w' \subset we \ s.t. \ e \in \{0,1\}$, if a' and w' are the same length, then $\left||a'| - |w'|\right| \leq 1$. This property is the same for x. Therefore, the following words are all contained in A.

$$w_2w_3...w_n0$$

 $w_2w_3...w_n1$
 $x_2x_3...x_n0$
 $x_2x_3...x_n1$

Note that if $w_n \neq x_n$ then we get either case

$$w_2w_3...w_{n-1}00$$
 $w_2w_3...w_{n-1}10$ $w_2w_3...w_{n-1}11$ $x_2x_3...x_{n-1}10$ or $x_2x_3...x_{n-1}00$ $x_2x_3...x_{n-1}01$

In either case, w and x would violate the definition of balanced because |11| - |00| = 2 > 1. Therefore $w_n = x_n$.

The following inductively shows $w_i = x_i$; $i \in \{2, 3, ..., n\}$. Assume that

$$w_n = x_n$$

$$w_{n-1} = x_{n-1}$$

$$\vdots$$

$$w_{n-k} = x_{n-k}$$

For convenience, let $e_i = w_{n-i}$; $i \in \{2, ..., k\}$. Note that if $w_{n-k-1} \neq x_{n-k-1}$ then we get either case

$$\begin{array}{lllll} & w_2w_3...w_{n-k-2}0e_i0 & w_2w_3...w_{n-k-2}1e_i0 \\ & w_2w_3...w_{n-k-2}0e_i1 & w_2w_3...w_{n-k-2}1e_i1 \\ & x_2x_3...x_{n-k-2}1e_i0 & or & x_2x_3...x_{n-k-2}0e_i0 \\ & x_2x_3...x_{n-k-2}1e_i1 & x_2x_3...x_{n-k-2}0e_i1 \end{array}$$

In either case, w and x would violate the definition of balanced because $|1e_i1| - |0e_i0| = 2 > 1$. Therefore $w_{n-k} = x_{n-k}$, and by induction

$$w_i = x_i; i \in \{2, 3, ..., n\}$$

Lemma 1.2. Any word list has at most two keywords

Proof. Let A be a word list of keywords w, x and y s.t. $w = w_1 w_2 ... w_n$, $x = x_1 x_2 ... x_n$ and $y = y_1 y_2 ... y_n$. Then by theorem 1.1

$$x_i = w_i = y_i; i \in \{2, 3, ..., n\}$$

Since this is a binary language, there are only two possible values for the first letter. Hence, it is impossible for w_1 , x_1 , and y_1 to all be distinct. At least two of the letters must be the same.

Therefore w = x or x = y or y = w. Therefore A must have at most two keywords.

Lemma 1.3. Given two distinct keywords x and w of a word list A, the largest balanced subsets of $\{w0, w1, x0, x1\}$ are $\{w0, w1, x0\}$ and $\{w1, x0, x1\}$ where $w = 0w_2w_3...w_n$ and $x = 1w_2w_3...w_n$.

Proof. Let A be a word list with two distinct keywords w, and x s.t. $w = w_1 w_2 ... w_n$,

 $x = x_1 x_2 ... x_n$. By theorem 1.1

$$x_i = w_i = y_i; i \in \{2, 3, ..., n\}$$

Therefore, to maintain distinctness, $w_1 \neq x_1$. Because this is a binary language, either $w_1 = 0, x_1 = 1$ or $w_1 = 1, x_1 = 0$.

This result will be used later to show that whenever there are two keywords, that C(A) will produce a set that can be split into two distinct word lists.

Theorem 1.4. If a word list has two keywords 0w and 1w then w is a palindrome.

Proof. Let 0w and 1w be two keywords of a word list, A. Then by theorem 1.1, the following words are in A.

0w

1w

w0

w1

Let's represent the characters of w as $w = w_1...w_n$. For sake of contradiction, assume that $w_1 \neq w_n$.

When $w_1 \neq w_n$ then either $w_1 = 0$, $w_n = 1$ or $w_1 = 1$, $w_n = 0$. If $w_1 = 0$, $w_n = 1$ then the following words are in A:

$$00w_2...w_{n-1}1$$

 $10w_2...w_{n-1}1$
 $0w_1...w_{n-2}10$
 $0w_1...w_{n-2}11$

Otherwise, it would be the case that $w_1 = 1, w_n = 0$, meaning that the following words are in A:

$$01w_2...w_{n-1}0$$

$$11w_2...w_{n-1}1$$

$$1w_1...w_{n-2}00$$

$$1w_1...w_{n-2}01$$

In either case, there exist subwords 00 and 11 which would result in an unbalanced word list. Therefore $w_1 = w_n$.

Assume for some k that $w_i = w_{n-i+1}$; $1 \le i \le k$. For sake of contradiction, also assume that $w_{k+1} \ne w_{n-(k+1)+1}$. Then either $w_{k+1} = 1, w_{n-k} = 0$ or $w_{k+1} = 0, w_{n-k} = 1$.

When $w_{k+1} = 1, w_{n-k} = 0$ the following words would exist in A:

$$0w_1...w_k0...1w_{n-k+1}..w_n$$

$$1w_1...w_k0...1w_{n-k+1}..w_n$$

$$w_1...w_k0...1w_{n-k+1}..w_n0$$

$$w_1...w_k0...1w_{n-k+1}..w_n1$$

When $w_{k+1} = 0$, $w_{n-k} = 1$ the following words would exist in A:

$$\begin{aligned} 0w_1...w_k 1...0w_{n-k+1}..w_n \\ 1w_1...w_k 1...0w_{n-k+1}..w_n \\ w_1...w_k 1...0w_{n-k+1}..w_n 0 \\ w_1...w_k 1...0w_{n-k+1}..w_n 1 \end{aligned}$$

In the case $w_{k+1}=1, w_{n-k}=0$, the subwords $0w_1...w_k0$ and $1w_{n-k+1}..w_n1$ would exist in A, making A unbalanced. In the case $w_{k+1}=1, w_{n-k}=0$, the subwords $1w_1...w_k1$ and $0w_{n-k+1}..w_n0$ would exist in A, making A unbalanced. Hence, $w_{n-k-1}=w_{k+1}$. Therefore, through induction, $w=\bar{w}$.

Lemma 1.5. Any word list can have at most two children, implicating the tree of word lists is binary.

Proof. Let A be a word list of n words, two of which are keywords, and $\forall a \in A$ the length of a is n-1. Then $\left|\bar{C}(A)\right| = n+2$, with $\forall a \in \bar{C}(A)$ the length of a is n. Hence $\bar{C}(A)$ can only produce two distinct lists with complexity n+1. If A instead has only one keyword. Then $\left|\bar{C}(A)\right| = n+1$. Hence $\bar{C}(A)$ can only produce one distinct list of complexity n+1.