

Sherlock Rules

Proof Positive and Negative in Data Cleaning

Matteo Interlandi Nan Tang

Member of Qatar Foundation خره فی مختونی

Outline

Motivation

Sherlock Rules

Fundamental problems

Algorithms

Roadblocks to Get Value from Data?

Data Mining

Machine Learning

Rule Discovery

Roadblocks to Get Value from Data?

\$3 Trillion Problem: Three Best Proday's Dirty Data Pandemic

Maybe your software is healthy, but is your data terminally ill?

quantum computing has solved every other problem that

humanity faces.

According to Gartner, "by 2017, 33 percent of Fortune 100 organizations will experience an information crisis, due to their inability to effectively value, govern and trust their enterprise information." These large organizations need to manage extensive amounts of data across numerous business units, often leading to unavoidable data quality issues. How do you get key stakeholders to really understand the impacts data quality has on the business?

New Canadian research raises concerns over number, types of transfusion errors

In all, a total of 15,134 errors were reported over 72 months. For every error that harmed a patient the were 657 errors that were detected and intercepted before the blood could reach the patient. "Wrong blood in tube" — blood drawn from the wrong patient for matching — occurred once in every 10,250 samples collected.

Roadblocks to Get Value from Data? High Quality Data

quantum computing has solved every other problem that

humanity faces.

According to Gartner, "by 2017, 33 percent of Fortune 100 organizations will experience an information crisis, due to their inability to effectively value, govern and trust their enterprise information." These large organizations need to manage extensive amounts of data across numerous business units, often leading to unavoidable data quality issues. How do you get key stakeholders to really understand the impacts data quality has on the business?

rors that were detected and intercepted before the blood could reach the patient, "Wrong blood drawn from the wrong patient for matching — occurred once in every 10,250

D

name	nation	capital	
Si	China	Beijing	
Yan	China	Shanghai	
lan	China	Tokyo	

consistent D' nation -> capital

name	nation	capital
Si	China	Beijing
Yan	China	Beijing
lan	China	Beijing

data repairing

consistent D' nation -> capital

name natior		capital
Si	China	Beijing
Yan	China	Beijing
lan	China	Beijing

proof positive and negative

name	nation	capital	
Si	China	Beijing	
Yan	China	Shanghai	
lan	China	Tokyo	

data repairing

annotated D"

name	nation	capital	
Si	China	Beijing	
Yan	China	Shanghai	
lan	China	Tokyo	

consistent D' nation -> capital

name	nation	capital
Si	China Beijing	
Yan	China	Beijing
lan	China	Beijing

proof positive and negative

name nation capital
Si China Beijing
Yan China Shanghai
Ian China Tokyo

data repairing

annotated D"

name	nation	capital	
Si	China	Beijing	
Yan	China	Shanghai	
lan	China	Tokyo	

consistent D' nation -> capital

name	nation	capital
Si	China	Beijing
Yan	China	Beijing
lan	China	Beijing

help

proof positive and negative

name	nation	capital	
Si	China	Beijing	
Yan	China	Shanghai	
lan	China	Tokyo	

data repairing

annotated D"

name	nation	capital	
Si	China	Beijing	
Yan	China	Shanghai	
lan	China	Tokyo	

consistent D' nation -> capital

name	nation	capital
Si China		Beijing
Yan China		Beijing
lan	China	Beijing

Sherlock Rules

help

Outline

Motivation

Sherlock Rules

Fundamental problems

Algorithms

	name	dep	nation	capital	bornat	officePhn
1	Si	DA	China	Beijing	ChenYang	28098001
2	Yan	DA	China	Shanghai	Chengdu	24038698
3	lan	ALT	China	Beijing	Hangzhou	33668323

	name	officePhn	mobile
<i>r</i> 1	Si	28098001	66700541
<i>r</i> 2	Yan	24038698	66706563
<i>r</i> 3	lan	27364928	33668323

	name	dep	nation	capital	bornat	officePhn
t1	Si	DA	China	Beijing	ChenYang	28098001
<i>t</i> 2	Yan	DA	China	Shanghai	Chengdu	24038698
t3	lan	ALT	China	Beijing	Hangzhou	33668323

	nar	ne	officePhn	mobile
r1	S	<u> </u>	28098001	66700541
r2	Ya	n	24038698	66706563
r3	la	n	27364928	33668323

	name	dep	nation	capital	bornat	officePhn
t1	Si	DA	China	Beijing	ChenYang	28098001
<i>t</i> 2	Yan	DA	China	Shanghai	Chengdu	24038698
t3	lan	ALT	China	Beijing	Hangzhou	33668323

	nar	ne	officePhn	mobile
r1	S	İ	28098001	66700541
<i>r</i> 2	Ya	n	24038698	66706563
r3	lan		27364928	33668323

Proof Positive/Negative, Correction

t3[lan] is correct, t3[officePhn] = 27364928

	name	dep	nation	capital	bornat	officePhn
t1	Si	DA	China	Beijing	ChenYang	28098001
t2	? Yan	DA	China	Shanghai	Chengdu	24038698
t3	lan	ALT	China	Beijing	Hangzhou	33668323
r1 r2	name Si Yan		667	obile 00541 06563		
<i>r</i> 3	lan		336	668323		

Proof Positive/Negative, Correction

t3[lan] is correct, t3[officePhn] = 27364928

	name	dep	nation	capital	bornat	officePhn
t1	Si	DA	China	Beijing	ChenYang	28098001
<i>t2</i>	Yan	DA	China	Shanghai	Chengdu	24038698
t3	lan	ALT	China	Beijing	Hangzhou	33668323
name			m	obile		

Proof Positive/Negative, Correction

t3[lan] is correct, t3[officePhn] = 27364928

Proof Positive/Negative

t3[lan] is correct, t3[officePhn] is wrong

name	dep	nation	capital	bornat	officePhn
Si	DA	China	Beijing	ChenYang	28098001
Yan	DA	China	Shanghai	Chengdu	24038698
lan	AIT	China	Beiiina	Hangzhou	33668323

	country	capital
s1	China	Beijing
s2	Japan	Tokyo
s3	Chile	Santiago

Proof Positive/Negative, Correction

t1

t2

t3[lan] is correct, t3[officePhn] = 27364928 **Proof Positive/Negative**

t3[lan] is correct, t3[officePhn] is wrong

	name	dep	nation	capital	bornat	officePhn
	Si	DA	China	Beijing	ChenYang	28098001
)	Yan	DA	China	Shanghai	Chengdu	24038698
)	lan	ALT	China	Beijing	Hangzhou	33668323

	country	capital
s1	China	Beijing
s2	Japan	Tokyo
s3	Chile	Santiago

Proof Positive/Negative, Correction

t1

t2

t3

t3[lan] is correct, t3[officePhn] = 27364928

Proof Positive/Negative

t3[lan] is correct, t3[officePhn] is wrong

Proof Positive

t1[nation, capital] is correct t3[nation, capital] is correct

Sherlock Rules

officePhn dep nation capital bornat name Si China *t1* DA Beijing ChenYang 28098001 *t2* Yan DA China Shanghai Chengdu 24038698 China Beijing Hangzhou 33668323 *t3* **ALT** lan

	name	officePhn	mobile
<i>r</i> 1	Si	28098001	66700541
<i>r</i> 2	Yan	24038698	66706563
<i>r</i> 3	lan	27364928	33668323

	country	capital
s1	China	Beijing
s2	Japan	Tokyo
s3	Chile	Santiago

Sherlock Rules

t1 t2

officePhn nation capital bornat dep name Si DA China ChenYang 28098001 Beijing DA China Shanghai Chengdu 24038698 Yan China Beijing 33668323 **ALT** Hangzhou *t3* lan

s 1

 D_{m}

	name	officePhn	mobile
r1	Si	28098001	66700541
<i>r</i> 2	Yan	24038698	66706563
r3	lan	27364928	33668323

evidence positive
$$\varphi:((X,X_m),(B,B_m^-,B_m^+),\stackrel{
ightharpoonum }{pprox})$$
 negative

 φ_1 : ((name, name), (officePhn, mobile, officePhn), (=,=,=)) φ_2 : ((name, name), (officePhn, mobile, \perp), $(=,=,\approx)$) φ_3 : ((nation, country), (capital, \perp , capital), $(=, \approx, =)$)

Integrity Constraints

```
There does not exist t1[X1] = t2[X2] but t1[B1] = t2[B2]
```


Sherlock Rules

t1[X1] = t2[X2] and $t1[B] = t2[B^-]$, then $t1[B] := t2[B^+]$

(China, Shanghai)

(China, Beijing, Shanghai)

Sherlock Rules

```
t1[X1] = t2[X2] and

t1[B] = t2[B^-], then

t1[B] := t2[B^+]
```

(China, Shanghai) (China, Beijing, Shanghai)

Sherlock Rules

```
t1[X1] = t2[X2] and

t1[B] = t2[B^-], then

t1[B] := t2[B^+]
```

(China, Shanghai) (China, Beijing, Shanghai)

Applying Multiple Rules

Sherlock Rules in Action

```
t1 (Si, DA, China, Beijing, ChenYang, 28098001)

t1 (Si+, DA, China, Beijing, ChenYang-, 28098001+)

t1 (Si+, DA, China, Beijing, ShenYang+, 28098001+)
```

Sherlock Rules in Action

Transformation Rules

$$\frac{(X_m \neq \bot) \land (B_m^- \neq \bot) \land (B_m^+ \neq \bot) \land (B \notin \operatorname{POS}(t)) \land (X \cap \operatorname{NEG}(t) = \bot) \land (t[X] \approx t_m[X_m]) \land (t[B] \approx t_m[B_m^-])}{(t[X,B] := t_m[X_m,B_m^+]) \land (\operatorname{POS}(t) := \operatorname{POS}(t) \cup X \cup \{B\}) \land (\operatorname{NEG}(t) := \operatorname{NEG}(t) \setminus \{B\})} (1)$$

$$\frac{(X_m \neq \bot) \land (B_m^- \neq \bot) \land (B_m^+ = \bot) \land (B \notin \operatorname{POS}(t)) \land (X \cap \operatorname{NEG}(t) = \bot) \land (t[X] \approx t_m[X_m]) \land (t[B] \approx t_m[B_m^-])}{(t[X] := t_m[X_m]) \land (\operatorname{POS}(t) := \operatorname{POS}(t) \cup X) \land (\operatorname{NEG}(t) := \operatorname{NEG}(t) \cup \{B\})} (2)$$

$$\frac{(X_m \neq \bot) \land (B_m^+ \neq \bot) \land (B_m^- = \bot) \land (B \notin \operatorname{POS}(t)) \land (B \notin \operatorname{NEG}(t)) \land (X \cap \operatorname{NEG}(t) = \bot) \land (t[X] \approx t_m[X_m]) \land (t[B] \approx t_m[B_m^+])}{(t[X,B] := t_m[X_m,B_m^+]) \land (\operatorname{POS}(t) := \operatorname{POS}(t) \cup X \cup \{B\})} (3)$$

$$\frac{(X_m \neq \bot) \land (B_m^+ \neq \bot) \land (B_m^- = \bot) \land (B \notin \operatorname{POS}(t)) \land (X \subseteq \operatorname{POS}(t)) \land (t[X] \approx t_m[X_m]) \land (t[B] \approx t_m[B_m^+])}{(t[B] := t_m[B_m^+]) \land (\operatorname{POS}(t) := \operatorname{POS}(t)) \land (t[B] \approx t_m[B_m^-])} (5)$$

Outline

Motivation

Sherlock Rules

Fundamental problems

Algorithms

Fundamental Problems

Termination

Consistency

(coNP-complete)

Determinism

Implication

(coNP-complete)

Motivation

Sherlock Rules

Fundamental problems

Algorithms

Naive Repairing

chase-based

O(|R|x|Sigma|x|M|)

Naive Repairing

chase-based

O(|R|x|Sigma|x|M|)

Fast Repairing

Similarity indices

to reduce |M|

(BK-tree, FastSS, n-gram)

Inverted index
to reduce |Sigma|
(hash map)

 $O(|R| \times |Sigma| \times com(S))$

Naive Repairing

chase-based

O(|R|x|Sigma|x|M|)

Fast Repairing

Similarity indices

to reduce |M|

(BK-tree, FastSS, n-gram)

Inverted index
to reduce |Sigma|
(hash map)

Caching similarity index accesses
Rule pruning based on dependency

```
R1: ((name, name), (officePhn, mobile, officePhn), (=, =, =))
R2: ((name, name), (bornat, \bot, borncity), (=, \not\approx, =))
R3: ((nation, country), (capital, \bot, capital), (=, \not\approx, =))
t3(lan, ALT, Chine, Beijing, Hangzhou, 33668323)
```



```
R1: ((name, name), (officePhn, mobile, officePhn), (=, =, =))
R2: ((name, name), (bornat, \bot, borncity), (=, \not\approx, =))
R3: ((nation, country), (capital, \bot, capital), (=, \not\approx, =))
t3(lan, ALT, Chine, Beijing, Hangzhou, 33668323)
```


iteration 1: {(R1, Yes), (R2, Yes), (R3, No)}


```
R1: ((name, name), (officePhn, mobile, officePhn), (=, =, =))
```

R2: ((name, name), (bornat, \perp , borncity), $(=, \not\approx, =)$)

R3: ((nation, country), (capital, \perp , capital), $(=, \not\approx, =)$)

t3(Ian, ALT, Chine, Beijing, Hangzhou, 33668323)

iteration 1: {(R1, Yes), (R2, Yes), (R3, No)}

iteration 2: {(R1, Yes), (R2, No), (R3, No)}


```
R1: ((name, name), (officePhn, mobile, officePhn), (=, =, =))
```

R2: ((name, name), (bornat, \perp , borncity), $(=, \not\approx, =)$)

R3: ((nation, country), (capital, \perp , capital), $(=, \not\approx, =)$)

t3(Ian, ALT, Chine, Beijing, Hangzhou, 33668323)

iteration 1: {(R1, Yes), (R2, Yes), (R3, No)}

iteration 2: {(R1, Yes), (R2, No), (R3, No)}

iteration 3: {(R1, Yes), (R2, No), (R3, No)}

Conclusion

- Sherlock rules for accurately annotating and repairing data
- Fundamental problems
- Efficient algorithms

Conclusion

- Sherlock rules for accurately annotating and repairing data
- Fundamental problems
- Efficient algorithms

Future Work

- Let SQL drive the Sherlock workhorse
- Extend Sherlock rules to more data such as RDF (knowledge bases)