1) a)
$$P(x, y) \approx ye^{-\frac{xy}{10000}} (x, y) = (100, 50)$$

First order
$$(x_0, y_0) = (103, 48) (x_1, y_1) = (100, 50)$$

 $P(x_0, y_0) = P(x_1, y_1) + P_x(x_1, y_1)(x_0 - x_1) + P_y(x_1, y_1)(y_0 - y_1)$

$$P(100,50) = 50e^{-\frac{(100.50)}{10000}} = 30.327$$

$$P_{x}(100,50) = \frac{\partial}{\partial x}(ye^{-\frac{xy}{10000}}) = -\frac{y^{2}}{10000}e^{\frac{xy}{10000}} = -0.152$$

$$P_{y}(100,50) = \frac{\partial}{\partial y}(ye^{-\frac{xy}{10000}}) = (e^{-\frac{xy}{10000}}) + (-\frac{xy}{10000}e^{-\frac{xy}{10000}})$$

$$= (0.607) + (-0.303) = 0.303$$

Second Order
$$(x_0, y_0) = (103, 48)$$
 $(x_1, y_1) = (100, 50)$
 $P(x_0, y_0) = P(x_1, y_1) + P_x(x_1, y_1)(x_0 - x_1) + P_y(x_1, y_1)(y_0 - y_1)$
 $+ \frac{1}{2} (P_{xx}(x_1, y_1)(x_0 - x_1)^2 + 2P_{xy}(x_1, y_1)(x_0 - x_1)(y_0 - y_1) + P_{yy}(y_0 - y_1)^2)$

$$P_{XX} = \frac{1}{14}(P_X) = \frac{1}{14}(-\frac{1}{14000}e^{\frac{XY}{10000}}) = \frac{1}{(10000)^2}e^{\frac{XY}{10000}} = 7.58 \cdot 10^{-4}$$

$$P_{XY} = \frac{1}{14}(P_X) = \frac{1}{14}(-\frac{1}{14000}e^{\frac{XY}{10000}}) = -\frac{1}{10000}(-\frac{1}{10000}e^{\frac{XY}{10000}} + 21e^{\frac{XY}{10000}}) = -\frac{1}{10000}(-\frac{1}{10000}e^{\frac{XY}{10000}} + 21e^{\frac{XY}{10000}}) = -\frac{1}{10000}(-\frac{1}{10000}e^{\frac{XY}{10000}} + 21e^{\frac{XY}{10000}}) = -\frac{1}{10000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{10000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{10000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{10000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{100000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{100000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{100000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{100000}(-\frac{1}{10000}e^{\frac{XY}{10000}}) = -\frac{1}{100000}(-\frac{1}{10000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{1000000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{1000000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{1000000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{100000}}) = -\frac{1}{100000}(-\frac{1}{100000}e^{\frac{XY}{$$

$$29.265 + \frac{1}{2}((7.58.10^{-4})(3)^{2} - 2(0.00455)(-6) - 0.00910(-2)^{2}$$

= 29.278

The first order approximation was off by 0.012, while the second order approximation was off by 0.001.

3.673 is less than 3.9, there is an arbitrage opportunity

4) a) i)
$$PV = \|e^{-(0.12)(\frac{1}{12})} = 0.99$$

ii)
$$PV = 2e^{-(0.12)(\frac{4}{12})} = 1.92$$

b) Yes. Quoted forward price is overvalued compared to spot price
1) Borrow 87.09 for repayment in 6 months
Borrow 1.92 For repryment in 4 ments
Barrier O. 99 for repayment in I month
2) After I menth, receise \$1 to reply lown for I month
3) After 4 months, receive \$2 to repay loan for 4 months
4) After 6 months, receive \$190 to repay Iran for 6 months
5) a) r= + [Inf-Ins]
$\Gamma = \frac{1}{\binom{2}{10}} \left[\ln(90) - \ln(84) \right]$
= 0.276
b) Yes. The borrow rate is lower than the reporate.