Feasibility of Standalone TDoA-based Localization Using LoRaWAN

Studenți: Muraru Maria-Magdalena Niță Constantin Cosmin FIESC, SC, 31211b

Probleme actuale ale GPS

GPS este o metodă cunoscută folosită în scopul localizării, însă, această tehnologie vine și cu dezavantaje, precum un consum ridicat de energie și funcționare defectuoasă în zonele aglomerate.

Alte tehnologii, precum **WiFi** sau **UWB** au o rază de acțiune mai mică în acest context.

Soluții propuse

Fig. 1. A schematic representation of the proposed system. The synchronization node is placed at a known location (x_0, y_0) .

Soluțiile propuse se referă la renunțarea tehnologiilor **GNSS** și a sateliților și trecerea la o soluție mai ieftină, bazată pe tehnologii deja existente (**LoRaWAN**) și adăugarea unui singur nod adițional.

Fig. 2. An illustration of the signals received at each gateway. The blue signals are transmissions from the synchronization node, while orange represents transmissions from the target device.

Modul de funcționare

- Nodul de **sincronizare** trimite semnale de timp.
- Gateway-urile îşi resetează ceasurile simultan.
- Dispozitivul țintă emite un semnal; diferențele de timp (**TDoA**) îi stabilesc poziția.

Tehnologie	Precizie (m)	Consum energetic	Acoperire	Cost	Avantaje	Dezavantaje
GPS (GNSS)	1 – 10	Ridicat	Global	Mediu – ridicat	Precizie excelentă, acoperire globală	Consum mare, calitate scăzută în interior/mediu urban
Wi-Fi	3 – 10	Moderat	<100m (interior)	Scăzut	Infrastructură existent, util în interior	Precizie variabilă, rază de acțiune mica
Sigfox	1.5 - 3 km (estimarea poziției pe bază de rețea)	Foarte scăzut	10 – 50 km	Scăzut	Acoperire mare, consum redus	Precizie scăzută, dependent de operator
LoRaWAN RSSI	200 – 400	Foarte scăzut	Până la 15 km (mediu rural)	Scăzut	Acoperire mare, ideal pentru IoT low- power	Precizie scăzută, afectat de medi
LoRaWAN TDoA	23 – 100	Scăzut	~8.6 km	Mediu	Mai precis decât RSSI	Necesită sincronizare GNSS la gateway

-

Precizie și performanță

Fig. 5. Distribution of maximum localization error within the triangle for T=40 ns, and n=32.

Aplicații pe piață

- Logistică: Urmărire colete/paleţi, maşini în depozite;
- **Orașe inteligente**: Monitorizare containere de gunoi/autobuze;
- **Industrie**: Localizare utilaje în fabrici/mine.

Model de afacere

Direcții viitoare

În privința direcțiilor viitoare putem menționa testările prototipurilor în mediile urbane, optimizarea consumului, dar și parteneriate cu furnizori de telecomunicații.

Vă mulţumim!