Today in Cryptography (5830)

Review of modes of operation & active attacks Message authentication

CBC-MAC

Attacks against bad CBC-MAC implementations Variable-length secure CBC-MAC

Review

- Goal: secure (length-extending) encryption
- What we have so far:
 - Block cipher modes of operation (CBC, CTR)
 - Insecurity against active attacks
 - Bit flip "mauling" attacks against CTR
 - Padding oracle attacks against CBC

 We need another tool: authenticity mechanisms

Malleability example: Encrypted cookies

abc35h013490... = CTR-Mode(K, "admin=0")

Malicious client can simply flip a few bits to change admin=1

More generally:

Attacker has read/write access to communications channel

The strategy:

Arrange so that that all bits received can be validated as having come from sender (the person with key K)

The tool: Message authentication

Two algorithms:

- (1) Tag(K, Msg) outputs a tag T
- (2) Verify(K,Msg,T) outputs 0/1 (invalid / valid)

Correctness: Verify(K,Msg,Tag(K,Msg)) = 1 always

Security: No computationally efficient attacker can forge tags for a new message even when attacker gets

 $(Msg_1, T_1), (Msg_2, T_2), ..., (Msg_q, T_q)$

for messages of his choosing and reasonably large q.

Composing encryption and authentication

Encrypt(K,M):

Use secret keys K_1 and K_2 . These can be derived from K if needed $K_1 = AES(K, O^n)$ $K_2 = AES(K, 1^n)$

 $C = CTR-Mode(K_1, M)$

 $T = Tag(K_2,C)$

Output C||T

Decrypt(K,C||T)

If Tag(K_2 ,C,T) \neq 1 then Return error Return CTR-Mode(K_1 ,C)

Message authentication using pseudorandom functions (PRFs)

Tag(K,M) = F(K,Msg)

If F behaves like random function (to those w/o K, this will be secure.

What was example of a good PRF?

Message authentication using pseudorandom functions (PRFs)

Tag(K,M) = F(K,Msg)

If F behaves like random function (to those w/o K, this will be secure.

Deterministic message authentication scheme is often called message authentication code (MAC) and tag called MAC

What was example of a good PRF?

Recall CBC mode

Ciphertext block chaining (CBC)

Pad message M to M1,M2,M3,... where each block Mi is n bits Choose random n-bit string IV

Can we convert this into variable-message-length PRF?

CBC-MAC

Message authentication code (MAC)

Turns out this is (provably) a good PRF if only K used only on same-length messages

CBC-MAC

Message authentication code (MAC)

Turns out this is (provably) a good PRF if K used only on same-length messages

Variable-message-length CBC-MAC

Prepend message length

Encrypted CBC-MAC

Discussion exercise

 We used hazmat interface for CBC mode in HW1 to implement Feistel round function.

 Does this realize a secure implementation of CBC-MAC?