回归分析作业

蹇傲霖 2018010919

1.13 名少年儿童参加了一项睡眠时间与年龄关系的调查,下表中的(每天)睡眠时间(min)是根据连续3天记录的平均时间得到的。

序号	睡眠时间(min)	年龄(岁)	序号	睡眠时间(min)	年龄(岁)
1	586	4. 4	8	515	8. 9
2	462	14. 0	9	493	11. 1
3	491	10. 1	10	528	7. 8
4	565	6. 7	11	576	5. 5
5	462	11. 5	12	533	8. 6
6	532	9. 6	13	531	7. 2
7	478	12. 4			

(1) 画出散点图,建立回归模型并检验模型的有效性,解释所得结果。

设年龄为自变量 x, 睡眠分钟数为因变量 y。 根据所给数据, 绘出散点图和线性回归直线。

y = 646.6229 - 14.0416x

线性回归的各项统计量如下表:

R-sqr	F	p(badF)	S ² error
0.9054	105.3213	0.0000	172.7721

可见 R 方=0.9054, 线性回归不显著的 p 值=0, 因此可以认为线性回归是显著的。

画出残差分析图如下,所有样本点的残差 95%置信区间均包含 0 点,但样本点-5 的残差置信区间上界=0.1835,逼近 0,下面尝试去除样本点-5 之后再做分析。

去除样本点-5之后:

统计量:

R-sqr	F	p(badF)	S ² error
0.9228	119.4791	0.0000	127.6628

可见 R 方有所提升, 残差方差有所减小。另一角度来说, 线性回归对于数据的拟合效果变好, 但是可能因此损失有效信息, 需要做一定权衡。

(2) 给出 10 岁孩子的平均睡眠时间及预测区间。

利用模型-1预测:

点预测——506.2071

t 分布 95%置信区间预测——[476.0520 536.3623]

正态分布 95%区间预测——[480.4448 531.9695]

利用模型-2 预测:

点预测——508.9490

t 分布 95%置信区间预测——[482.5627 535.3352]

正态分布 95%区间预测——[486.8037 531.0942]

注解:

- 1. 模型-2 比模型-1 预测区间更小,需要对于"异常"数据特征和预测精度进行权衡;
- 2. 正态分布是对于 t 分布的近似,适用于 n 较大且 x_0 接近于 x 均值的情况。本例题 n=12/13,不够大,且 x_0 与 x 均值有一定距离,因而正态近似不适用。
- 2. 社会学家认为犯罪与收入低、失业及人口规模有关,对 20 个城市的犯罪率 y (每 10 万人中犯罪的人数) 与年收入低于 5000 美元家庭的百分比 x_1 、失业率 x_2 和人口总数 x_3 (千人) 进行了调查,结果如下表。

序号	У	X 1	X 2	X 3	序号	У	X 1	X 2	X 3
1	11. 2	16. 5	6. 2	587	11	14. 5	18. 1	6. 0	7895
2	13. 4	20. 5	6. 4	643	12	26. 9	23. 1	7. 4	762
3	40. 7	26. 3	9. 3	635	13	15. 7	19. 1	5. 8	2793
4	5. 3	16. 5	5. 3	692	14	36. 2	24. 7	8. 6	741
5	24. 8	19. 2	7. 3	1248	15	18. 1	18. 6	6. 5	625
6	12. 7	16. 5	5. 9	643	16	28. 9	24. 9	8. 3	854
7	20. 9	20. 2	6. 4	1964	17	14. 9	17. 9	6. 7	716
8	35. 7	21.3	7. 6	1531	18	25. 8	22. 4	8. 6	921
9	8. 7	17. 2	4. 9	713	19	21.7	20. 2	8. 4	595
10	9. 6	14. 3	6. 4	749	20	25. 7	16. 9	6. 7	3353

(1) 若 x₁, x₂, x₃ 中至多只许选择 2 个变量, 最好的模型是什么?

根据所给数据,进行双变量线性回归,得到统计量如下表所示:

	R-sqr	F	p(badF)	S ² error
x2&x3	0.7672	28.0054	0.0000	25.4100
x1&x3	0.7103	20.8433	0.0000	31.6120

x1&x2	0.8020	34 4278	0.0000	21 6084
NI CAZ	0.0020	07.7210	0.0000	21.0004

经过比较,从 R 方和残差方差的角度认为让 y 和 x1、x2 进行线性回归效果最显著。

(2) 包含3个自变量的模型比上面的模型好吗?确定最终模型。

	R-sqr	F	p(badF)	S ² error
x2&x3	0.7672	28.0054	0.0000	25.4100
x1&x3	0.7103	20.8433	0.0000	31.6120
x1&x2	0.8020	34.4278	0.0000	21.6084
x1&x2&x3	0.8183	24.0220	0.0000	21.0661

从 R 方和残差方差的角度,3 自变量线性回归结果好于 2 自变量的情况。虽然 F 值比 x1&x2 的情况有所下降,但是 p=0,仍然可以说明回归模型是显著的。

$$f(x1, x2, x3) = -36.7649 + 1.1922x_1 + 4.7198x_2 + 0.0008x_3$$

从线性回归系数也可以看出,相比于 x1 和 x2, 因变量与 x3 的相关度较弱 (仍然显著相关)。

(3) 对最终模型观察残差,有无异常点,若有,剔除后如何。

根据(2)确定的三自变量回归模型,对于拟合残差进行分析:

发现样本点-8、11、20属于异常点, 拟合残差的置信区间不包含 0。因此尝试剔除这三个样本点, 再做线性回归。

	R-sqr	F	p(badF)	S ² error
x2&x3	0.7672	28.0054	0.0000	25.4100

x1&x3	0.7103	20.8433	0.0000	31.6120
x1&x2	0.8020	34.4278	0.0000	21.6084
x1&x2&x3	0.8183	24.0220	0.0000	21.0661
3-去除异常	0.9199	49.7697	0.0000	9.5576

可以发现去除异常样本点后R方升高、残差方差下降,拟合效果变好。

$$f(x1, x2, x3) = -37.8675 + 1.4575x_1 + 3.8905x_2 + 0.0016x_3$$