Лабораторная работа №3: Вычислительный эксперимент

Тема работы

Движение тела под углом к горизонту.

Постановка задачи

Провести вычислительный эксперимент по исследованию движения тела, брошенного под углом к горизонту.

Оборудование

- ПК (Использовался ноутбук с установленной ОС GNU/Linux)
- Табличный процессор (в ходе работы использовался LibreOffice Calc 7.0)

Задание 1: Движение тела под углом к горизонту

Математическая модель

Формула дальности полета снаряда

$$S = \frac{v_0^2 Sin\alpha * Cos\alpha + v_0 Cos\alpha \sqrt{v_0^2 Sin^2 \alpha + 2gh}}{g}$$

Формула длительности полета снаряда

$$t_1 = \frac{v_0 Sin\alpha + \sqrt{v_0^2 Sin\alpha + 2gh}}{a}$$

Формула высоты полета снаряда в произвольный момент времени

$$y = tg\alpha * x - \frac{g}{2v_0^2 Cos^2 \alpha} * x^2$$

Описание переменных и постоянных

Переменная	Суть	Значение
V_0	Начальная скорость снаряда	200 м/с
α	Угол наклона пушки	58 град.
g	Гравитационная постоянная	10 м/c ²
h	Высота горы	70 м
S	Дальность полета снаряда	-
t ₁	Длительность полета снаряда	-
X	X координата снаряда в произвольный момент времени	-
Y	Y координата снаряда в произвольный момент времени	-

Ход эксперимента: таблица и график траектории

Результаты эксперимента

α (град)	S (м)	t ₁ (c)
0	748,331477354788	3,74165738677394
15	2233,89104586249	16,0173964467772
30	3581,37500845957	24,6287388383278
45	4068,81608655772	31,3712595850535
58	3638,39743349988	35,7550896885389
75	2018,58376530375	39,3277726467777

Вывод

Из графика и результатов вычислений можно сделать вывод, что расстояние, преодолеваемое снарядом, выпущенным из пушки с горы, высотой в 70 метров максимально при угле наклона пушки относительно горизонта $\alpha = 45$ градусов и составляет приблизительно 3640 метров.

Расстояние, преодолеваемое снарядом, выпущенным из пушки с горы, высотой в 70 метров при угле наклона пушки относительно горизонта α = **58 градусов** составляет приблизительно **4070 метров**.

Задание 2: Предложите вычислительный эксперимент по изученным материалам

Постановка задачи

Имеется машина, подающая теннисные мячи игроку на тренировке. Пользуясь формулой дальности полета мяча, опытным путем подобрать диапазон скоростей V_0 мячика для тенниса для попадания его в цель, находящуюся на расстоянии от 12 до 15 метров от машины при угле бросания в 25 градусов. Высоту цели Y принять равной 0 м, высоту машины на штативе — 1,2 м, значение гравитационной постоянной g — 9,8 м/ c^2 .

План проведения эксперимента

- 1. Рассчитать минимальную и максимальную скорости $V_{0\,\text{min}}$ и $V_{0\,\text{max}}$ использовав для этого табличный процессор.
- 2. Исследовать зависимость начальной скорости мячика и дальности полета и отразить в отчете.

Задание 3: Отчет о выполнении работы

Ход выполнения работы

Формула дальности полета мячика

$$S = \frac{v_0^2 Sin\alpha * Cos\alpha + v_0 Cos\alpha \sqrt{v_0^2 Sin^2\alpha + 2gh}}{g}$$

Подбор параметра $V_{0 \min}$ для S = 12 m:

Подбор параметра $V_{0 \text{ max}}$ для S = 15 м:

Результаты вычислений

	S (M) = 12	S(M) = 15
V ₀ (м/с)	11,243117106938	12,7982123761879

Анализ результатов

Из результатов эксперимента очевидна зависимость дальности полета от начальной скорости мяча. Вместе с увеличением скорости растет и дальность полета.

Вывод

В ходе эксперимента была установлена четкая зависимость между начальной скоростью мяча и дальностью его полета.

Для попадания в цель, машине требуется стрелять мячами со скоростью примерно от **11,24 м/с до 12,8 м/с**. Именно такой диапазон скоростей будет оптимален для достижения поставленной задачи.

Задание 4: Подготовить стендовый доклад

См. файл «ЛР 3.4 Величко Арсений ИВТ 1 курс 2 группа 3 подгруппа»