Deep Reasoning

2016-03-16

Taehoon Kim

carpedm20@gmail.com

References

- **1.** [Sukhbaatar, 2015] Sukhbaatar, Szlam, Weston, Fergus. "End-To-End Memory Networks" Advances in Neural Information Processing Systems. 2015.
- **2. [Hill, 2015]** Hill, Bordes, Chopra, Weston. "The Goldilocks Principle: Reading Children's Books with Explicit Memory Representations" arXiv preprint arXiv:1511.02301 (2015).
- **3. [Kumar, 2015]** Kumar, Irsoy, Ondruska, Iyyer, Bradbury, Gulrajani, Zhong, Paulus, Socher. "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing" arXiv preprint arXiv:1511.06038 (2015).
- **4.** [Xiong, 2016] Xiong, Merity, Socher. "Dynamic Memory Networks for Visual and Textual Question Answering" arXiv preprint arXiv:1603.01417 (2016).
- **5.** [Hermann, 2015] Hermann, Kočiský, Grefenstette, Espeholt, Will Kay, Suleyman, Blunsom. "Teaching Machines to Read and Comprehend" arXiv preprint arXiv:arXiv:1506.03340 (2015).
- **6.** [Miao, 2015] Miao, Lei Yu, Blunsom. "Neural Variational Inference for Text Processing" arXiv preprint arXiv:1511.06038 (2015).
- 7. [Kingma, 2013] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes" arXiv preprint arXiv:1312.6114 (2013).
- **8. [Sohn, 2015]** Sohn, Kihyuk, Honglak Lee, and Xinchen Yan. "Learning Structured Output Representation using Deep Conditional Generative Models." Advances in Neural Information Processing Systems. 2015.

Models

Considered transitive inference (bAbI)
E2E MN
DMN

End-to-End Memory Network [Sukhbaatar, 2015]

End-to-End Memory Network [Sukhbaatar, 2015]

End-to-End Memory Network [Sukhbaatar, 2015]

Training details

Linear Start (LS) help avoid local minima

- First train with softmax in each memory layer removed, making the model entirely linear except for the final softmax
- When the validation loss stopped decreasing, the softmax layers were re-inserted and training recommenced

RNN-style layer-wise weight tying

- The input and output embeddings are the same across different layers

Learning time invariance by injecting random noise

- Jittering the time index with random empty memories
- Add "dummy" memories to regularize $T_A(i)$

Example of bAbl tasks

Story (1: 1 supporting fact)	Support	Hop 1	Hop 2	Hop 3
Daniel went to the bathroom.		0.00	0.00	0.03
Mary travelled to the hallway.		0.00	0.00	0.00
John went to the bedroom.		0.37	0.02	0.00
John travelled to the bathroom.	yes	0.60	0.98	0.96
Mary went to the office.		0.01	0.00	0.00
Where is John? Answer: bathroom	Prediction: bathroom			

Story (16: basic induction)	Support	Hop 1	Hop 2	Hop 3
Brian is a frog.	yes	0.00	0.98	0.00
Lily is gray.		0.07	0.00	0.00
Brian is yellow.	yes	0.07	0.00	1.00
Julius is green.		0.06	0.00	0.00
Greg is a frog.	yes	0.76	0.02	0.00
What color is Greg? Answer: yellow	Prediction: yellow			

Story (2: 2 supporting facts)	Support	Hop 1	Hop 2	Hop 3
John dropped the milk.		0.06	0.00	0.00
John took the milk there.	yes	0.88	1.00	0.00
Sandra went back to the bathroom.		0.00	0.00	0.00
John moved to the hallway.	yes	0.00	0.00	1.00
Mary went back to the bedroom.		0.00	0.00	0.00
Where is the milk? Answer: hallway	Prediction: hallway			

Story (18: size reasoning)	Support	Hop 1	Hop 2	Hop 3
The suitcase is bigger than the chest.	yes	0.00	0.88	0.00
The box is bigger than the chocolate.		0.04	0.05	0.10
The chest is bigger than the chocolate.	yes	0.17	0.07	0.90
The chest fits inside the container.		0.00	0.00	0.00
The chest fits inside the box.		0.00	0.00	0.00
Does the suitcase fit in the chocolate? Answer: no Prediction: no				

```
S: 1 Mr. Cropper was opposed to our hiring you .
   2 Not , of course , that he had any personal objection to you , but he is set
   against female teachers , and when a Cropper is set there is nothing on earth can
   change him .
   3 He says female teachers ca n't keep order .
   4 He 's started in with a spite at you on general principles , and the boys know
   5 They know he 'll back them up in secret , no matter what they do , just to prove
   his opinions .
   6 Cropper is sly and slippery , and it is hard to corner him . ''
   7 `` Are the boys big ? ''
   8 queried Esther anxiously .
   9 `` Yes .
   10 Thirteen and fourteen and big for their age .
   11 You ca n't whip 'em -- that is the trouble .
   12 A man might , but they 'd twist you around their fingers .
   13 You 'll have your hands full , I 'm afraid .
   14 But maybe they 'll behave all right after all . ''
   15 Mr. Baxter privately had no hope that they would , but Esther hoped for the
   16 She could not believe that Mr. Cropper would carry his prejudices into a
   personal application .
   17 This conviction was strengthened when he overtook her walking from school the
   next day and drove her home .
   18 He was a big , handsome man with a very suave , polite manner .
   19 He asked interestedly about her school and her work , hoped she was getting on
   well , and said he had two young rascals of his own to send soon .
   20 Esther felt relieved .
Q: She thought that Mr. had exaggerated matters a little .
C: Baxter, Cropper, Esther, course, fingers, manner, objection, opinion, right, spite.
a: Baxter
```

- Context sentences : $S = \{s_1, s_2, ..., s_n\}, s_i : BoW word representation$
- Encoded memory : $m_i = \phi(s) \ \forall s \in S$
- Lexical memory
 - Each word occupies a separate slot in the memory
 - s is a single word and $\phi(s)$ has only one non-zero feature
 - Multiple hop only beneficial in this memory model
- Window memory (best)
 - s corresponds to a window of text from the context s centered on an individual mention of a candidate s in s $m_i = \{w_{i-(b-1)/2} \dots w_i \dots w_{i+(b-1)/2}\}$
 - Where $w_i \in C$ which is an instance of one of the candidate words
- Sentential memory
 - Same as original implementation of Memory Network

Self-supervision for window memories

- Memory supervision (knowing which memories to attend to) is not provided at training time
- Making gradient steps using SGD to **force** the model to give a **higher score to the supporting** memory \tilde{m} relative to any other memory from any other candidate using:

Hard attention (training and testing) :
$$m_{o1} = \underset{i=1,...,n}{\operatorname{argmax}} c_i^T q$$

Soft attention (testing) :
$$m_{o1} = \sum_{i=1...n} \alpha_i m_i$$
, with $\alpha_i = \frac{e^{c_i^T q}}{\sum_i e^{c_i^T q}}$

- If m_{o1} happens to be different from \widetilde{m} (memory contain true answer), then model is updated
- Can be understood as **a way of achieving** *hard attention* **over memories** (no need any new label information beyond the training data)

```
S: 1 (He thought that Old)Mr. Toad was trying to fool him .
S: 1 So they had to fall (a long way .
   2 So they got their tails fast (in their mouths .
                                                                                2 Presently Peter Rabbit came along
   3 So they could n't get them out again .
                                                                                3 He found Jimmy Skunk sitting in a brown study .
                                                                                4 He had guite forgotten to look for fat beetles , and when he (forgets to do
   4 That 's all . '
      Thank you , (' said Alice , ` it )'s very interesting .
                                                                               (that you) may make up your mind that Jimmy is doing some hard thinking .
                                                                                    Hello , old Striped-coat , what have you got on your mind this fine
   6 I never knew so much about a whiting before .
                                                                                morning ? ''
   7 I can tell you more than that , if you like
                                                   ' said the Gryphon .
       Do you know why it 's called a whiting ? ''
                                                                                6 cried Peter Rabbit .
   9 I never thought about it (, ' said Alice .
                                                                                     Him (, '' said Jimmy simply), pointing down the Lone Little Path .
        Why ? '
                                                                                8 Peter looked .
   11 TODES THE BOOTS AND SHOES
                                                                                  (Do you mean) Old Mr.) Toad ! ''
   12 the Gryphon replied very solemnly .
                                                                                10 he asked .
   13(Alice was thoroughly)puzzled .
                                                                                11 Jimmy nodded .
      Does the boots and shoes ! '
                                                                                  ``(Do you see)anything)queer about him ? ''
                                                                                13 he asked in his turn .
   15 she repeated in a wondering tone
        Why , what are YOUR shoes done with)?
                                                                                14( Do you see) anything gueer about him? "
   17 said the Gryphon . '
                                                                                15 he asked .
   18 I mean , what makes them so shiny ? '
                                                                                16 Peter stared down the Lone Little Path .
                                                                                     No , ('' he replied , ``) except that he seems in a great hurry . ''
   19 (Alice looked down) at them , and considered a little before she (gave)
                                                                                     That 's just it ,('' Jimmy returned promptly .
   her answer .
       They 're done with blacking , I believe .
                                                                                     Did you ever see him hurry unless (he was frightened ? ''
                                                                                20 Peter confessed that he never had
q: Boots and shoes under the sea , ' the
                                                                            Q: `` Well , he is n't
                                                                                                           now , yet just look at him go '' retorted Jimmy .
                                                   went on in a deep
voice , are done with a whiting
C: Alice, BOOTS, Gryphon, SHOES, answer, fall, mouths, tone, way, whiting.
                                                                            C: Do, came, confessed, frightened, mean, replied, returned, said, see, thought.
MemNNs (window + self-sup.):
                                                                            MemNNs (window +self-sup.): frightened
                                           Gryphon
```

Gated Recurrent Network (GRU)

$$G(c,m,q)=$$

$$\sigma \left(W^{(2)} \tanh \left(W^{(1)} z(c, m, q) + b^{(1)} \right) + b^{(2)} \right)$$

$$\left[c,m,q,c\circ q,c\circ m,|c-q|,|c-m|,c^TW^{(b)}q,c^TW^{(b)}m
ight]$$

feature vector: captures a similarities between c, m, q

$$\mathbf{Gate} \quad g_t^i = \mathbf{G}(c_t, m^{i-1}, q)$$

$$h_t^i = g_t^i \boxed{GRU(c_t, h_{t-1}^i) + (1 - g_t^i) h_{t-1}^i}$$

$$e^i = h_{T_C}^i$$
Gate

Episodic memory update

Episodic Memory Module

- **Iterates** over **input** representations, while updating episodic memory $oldsymbol{e^i}$
- Attention mechanism + Recurrent network ightarrow Update memory $m{m^i}$

Max	task 3 three-facts	task 7	task 8 lists/sets	sentiment (fine grain)
passes	unree-racts	count	nsts/sets	(IIIIe graiii)
0 pass	0	48.8	33.6	50.0
1 pass	0	48.8	54.0	51.5
2 pass	16.7	49.1	55.6	52.1
3 pass	64.7	83.4	83.4	50.1
5 pass	95.2	96.9	96.5	N/A

Table 4. Effectiveness of episodic memory module across tasks. Each row shows the final accuracy in term of percentages with a different maximum limit for the number of passes the episodic memory module can take. Note that for the 0-pass DMN, the network essential reduces to the output of the attention module.

Criteria for Stopping

- Append a special end-of-passes representation to the input $oldsymbol{c}$
- Stop if this representation is chosen by the gate function
- Set a maximum number of iterations
- This is why called **Dynamic** MM

Multiple Episodes

- Allows to attend to different inputs during each pass
- Allows for a type of transitive inference, since the first pass may uncover the need to retrieve additional facts.

Q: Where is the football?

C1: John put down the football.

Only once the model sees C1, John is relevant, can reason that the second iteration should retrieve where John was.

Answer Module

- Triggered once at the end of the episodic memory or at each time step
- Concatenate the last generated word and the question vector as the input at each time step
- Cross-entropy error

Training Details

- Adam optimization
- L_2 regularization, dropout on the word embedding (GloVe)

bAbl dataset

- Objective function : $J = \alpha E_{CE}(Gates) + \beta E_{CE}(Answers)$
- Gate supervision aims to select one sentence per pass
 - Without supervision : GRU of c_{t} , h_t^i and $e^i = h_{T_C}^i$
 - With supervision (simpler): $e^i = \sum_{t=1}^T softmax(g_t^i)c_t$, where $softmax(g_t^i) = \frac{\exp(g_t^i)}{\sum_{j=1}^T \exp(g_j^i)}$ and g_t^i is the value before sigmoid
 - Better results, because softmax encourages sparsity & suited to picking one sentence

Training Details

Stanford Sentiment Treebank (Sentiment Analysis)

- Use all full sentences, subsample 50% of phrase-level labels every epoch
- Only evaluated on the full sentences
- Binary classification, neutral phrases are removed from the dataset
- Trained with GRU sequence models

Task	Binary	Fine-grained
MV-RNN	82.9	44.4
RNTN	85.4	45.7
DCNN	86.8	48.5
PVec	87.8	48.7
CNN-MC	88.1	47.4
DRNN	86.6	49.8
CT-LSTM	88.0	51.0
DMN	88.6	52.1

Training Details

Question: Where was Mary before the Bedroom?

Answer: Cinema.

Facts	Episode 1	Episode 2	Episode 3
Yesterday Julie traveled to the school.			
Yesterday Marie went to the cinema.			
This morning Julie traveled to the kitchen.			
Bill went back to the cinema yesterday.			
Mary went to the bedroom this morning.			
Julie went back to the bedroom this afternoon.		•	
[done reading]			

Dynamic Memory Networks for Visual and Textual Question Answering [Xiong 2016]

Several design choices are motivated by intuition and accuracy improvements

Input Module for DMN

- A single GRU for embedding story and store the hidden states
- GRU provides temporal component by allowing a sentence to know the content of the sentences that came before them
- Cons:
 - GRU only allows sentences to have context from sentences before them, but not after them
 - **Supporting sentences** may be too **far** away from each other
- Here comes Input fusion layer

Input Module for DMN+

Replacing a single GRU with two different components

- 1. Sentence reader: responsible only for encoding the words into a sentence embedding
- Serience Serience Trode Til

- Use positional encoder (used in E2E) : $f_i = \sum_j l_j \cdot Ax_{ij}$
- Considered GRUs LSTMs, but required more computational resources, prone to overfitting
- 2. Input fusion layer: interactions between sentences, allows content interaction between sentences
 - bi-directional GRU to allow information from both past and future sentences
 - gradients do not need to propagate through the words between sentences
 - distant supporting sentences can have a more direct interaction

$$\overrightarrow{f_i} = GRU_{fwd}(f_i, \overrightarrow{f_{i-1}})$$
 $\overleftarrow{f_i} = GRU_{bwd}(f_i, \overleftarrow{f_{i+1}})$
 $\overleftarrow{f_i} = \overleftarrow{f_i} + \overrightarrow{f_i}$

Input Module for DMN+

Figure 2: Hierarchical Sequence to Sequence Model.

Referenced paper: A Hierarchical Neural Autoencoder for Paragraphs and Documents [Li, 2015]

Episodic Memory Module for DMN+

- $\overrightarrow{F} = [\overrightarrow{f_1}, \overrightarrow{f_2}, ..., \overrightarrow{f_N}]$: output of the input module
- interactions between the fact $\overrightarrow{f_i}$ and both the question q and episode memory state m^t

$$\begin{aligned} z_i^t &= [\overrightarrow{f_i} \circ q; \overrightarrow{f_i} \circ m^{t-1}; |\overrightarrow{f_i} - q|; |\overrightarrow{f_i} - m^{t-1}|] \\ Z_i^t &= W^{(2)} \tanh\left(W^{(1)} z_i^t + b^{(1)}\right) + b^{(2)} \\ g_i^t &= \frac{\exp(Z_i^t)}{\sum_{k=1}^{M_i} \exp(Z_k^t)} \end{aligned}$$

Teaching Machines to Read and Comprehend [Hermann 2015]

(c) A two layer Deep LSTM Reader with the question encoded before the document.

Neural Variational Inference for Text Processing [Miao, 2015]

Figure 1: NVDM for document modelling. Figure 2: NASM for question answer selection.

Stochastic Latent Variable

Generative Model

$$p(x) = \sum_{z} p(x,z) = \sum_{z} p(x|z)p(z)$$

$$p(x) = \int_{z} p(x,z) = \int_{z} p(x|z)p(z)$$

Conditional Generative Model

$$p(y|x) = \sum_{z} p(y|z, x)p(z|x)$$

$$p(y|x) = \int_{z} p(y|z,x)p(z|x)$$

Variational Inference Framework

$$p(x,z) = p(x|z)p(z) = \sum_{h} p(x|h)p(h|z)p(z)$$

$$\log p_{\theta}(x,z) = \log \int_{h} \frac{q(h)}{q(h)} p(x|h) p(h|z) p(z) dh \ge \int_{h} q(h) \log \frac{p(x|h) p(h|z) p(z)}{q(h)} dh$$

$$= \int_{h} q(h) \log \frac{p(x|h)p(h|z)}{q(h)} dh + \int_{h} q(h) \log \frac{p(z)}{q(h)} dh$$

$$= E_{q(h)}[\log p(x|h)p(h|z) - \log q(h)] - D_{KL}(q(h)||p(z))$$

$$= E_{q(h)}[\log p(x|h)p(h|z)p(z) - \log q(h)]$$

Variational Inference Framework

$$p_{\theta}(x,z) = p_{\theta}(x|z)p(z) = \sum_h p_{\theta}(x|h)p_{\theta}(h|z)p(z)$$
 Jensen's Inequality

$$\log p_{\theta}(x,z) = \log \int_{h} \frac{q(h)}{q(h)} p_{\theta}(x|h) p_{\theta}(h|z) p(z) dh \ge \int_{h} q(h) \log \frac{p_{\theta}(x|h) p_{\theta}(h|z) p(z)}{q(h)} dh$$

$$= \int_{h} q(h) \log \frac{p_{\theta}(x|h)p_{\theta}(h|z)}{q(h)} dh + \int_{h} q(h) \log \frac{p(z)}{q(h)} dh$$

$$= E_{q(h)}[\log p_{\theta}(x|h)p_{\theta}(h|z) - \log q(h)] - D_{KL}(q(h)||p(z))$$

$$=E_{q(h)}[\log p_{\theta}(x|h)p_{\theta}(h|z)-\log q(h)]$$
 a tight lower bound if $q(h)=p(h|x,z)$

Conditional Variational Inference Framework

$$p_{\theta}(y|x) = \sum_{z} p_{\theta}(y,z|x) = \sum_{z} p_{\theta}(y|x,z) p_{\pi}(z|x)$$

$$\text{Jensen's Inequality}$$

$$\log p(y|x) = \log \int_{z} \frac{q(z)}{q(z)} p(y|z,x) p(z|x) dz \geq \int_{z} q(z) \log \frac{p(y|z,x) p(z|x)}{q(z)} dz$$

$$= \int_{z} q(z) \log \frac{p(y|z,x)}{q(z)} dz + \int_{h} q(z) \log \frac{p(z|x)}{q(z)} dz$$

$$= \int_{z} q(z) \log p(y|z,x) dz - \int_{z} q(z) \log q(z) dz + \int_{h} q(z) \log \frac{p(z|x)}{q(z)} dz$$

$$= E_{q(z)}[\log p(y|z,x) - \log q(z)] - D_{KL}(q(z) \parallel p(z|x))$$

$$= E_{q(z)}[\log p(y|z,x) - \log q(z)] \quad \text{a tight lower bound if } q(z) = p(z|x)$$

Neural Variational Inference Framework

$$\log p_{\theta}(x, z) \ge E_{q(z)}[\log p(y|z, x) - \log q(z)] - D_{KL}(q(z) || p(z|x)) = \mathcal{L}$$

1. Vector representations of the observed variables

$$u = f_{\mathcal{Z}}(z), v = f_{\mathcal{X}}(x)$$

2. Joint representation (concatenation)

$$\pi = g(u, v)$$

3. Parameterize the variational distribution

$$\mu = l_1(\pi), \sigma = l_2(\pi)$$

Neural Variational Document Model

Figure 1: NVDM for document modelling.