Hierarchical Approaches

Referenced Papers:

Meletis and Dubbelman: https://arxiv.org/pdf/1803.05675.pdf

- Datasets:
 - Training:
 - Cityscapes
 - GTSDB (traffic signs) non-pixel annotation
 - Mapillary Vistas

Meletis and Dubbelman: https://arxiv.org/pdf/1803.05675.pdf

- Backbone: ResNet-50
- Same adaptation subnetworks
- Hybrid upsampling
- (2x2 learnable fractional strides convolutional layer, bilinear upsampling)
- Batch: 4 Cityscapes:Vistas:GTSDB = 1:2:1
- Input: 512x706
- Inference Time: 58 ms per frame
- Loss: Hierarchical loss

Meletis and Dubbelman: https://arxiv.org/pdf/1803.05675.pdf

Fig. 2. Three-level semantic label hierarchy combining 108 classes from Cityscapes, Mapillary Vistas and GTSDB dataset. Classes marked in black correspond to the L1, L2, and L3 classifiers of Fig. [1].

Meletis and Dubbelman: https://arxiv.org/pdf/1803.05675.pdf

Both losses are accumulated per classifier to the so called hierarchical loss:

$$L^{j} = -\frac{1}{\left|P_{1}^{j}\right|} \sum_{p \in P_{1}^{j}} \log \sigma_{y^{j,p}}^{j,p} - \frac{1}{\left|P_{2}^{j}\right|} \sum_{p \in P_{2}^{j}} \log \sigma_{y^{j,p}}^{j,p} , \quad (1)$$

$$L^{total} = \sum_{j} \lambda^{j} \cdot L^{j} + regularizer$$
.

Fig. 3. Online procedure during training for generating per-pixel ground truth from bounding box labels.

Meletis and Dubbelman: https://arxiv.org/pdf/1803.05675.pdf

TABLE II

FLAT CLASSIFICATION PERFORMANCE BASELINES ON PER-PIXEL
 ANNOTATED DATASETS.

	Same dataset			Cross-dataset		
Tested on	Cityscapes	Vistas	GTSDB	Cityscapes Extended traffic sign classes		
mPA (%)	53.6	36.5	25.4	19.1		
mIoU (%)	46.2	29.6	17.2	3.0		
Trained on	Cityscapes	Vistas	GTSDB	Cityscapes + GTSDB		

TABLE III

PERFORMANCE OF OUR COMPLETE HIERARCHICAL CLASSIFICATION

APPROACH ON 4 DATASETS.

	Sar	ne datase	Cross-dataset		
Tested on	Cityscapes classes	Vistas classes	GTSDB classes	Cityscapes Extended traffic sign classes	
mPA (%)	66.6	38.9	57.7	29.7	
mIoU (%)	57.3	31.9	41.5	8.3	
Trained on		Cityscap	es + Vistas	+ GTSDB	

2. MSeg: A composite Dataset for Multi-domain Semantic Segmentation

Lambert and Liu: https://arxiv.org/pdf/2112.13762.pdf

Fig. 2: Procedure for determining the set of categories in the MSeg taxonomy.

TABLE 1: Component datasets in MSeg.

Dataset name	Origin domain	# Images			
Training & Validation					
COCO [10] + COCO STUFF [50]	Everyday objects	123,287			
ADE20K [11]	Everyday objects	22,210			
Mapillary [9]	Driving (Worldwide)	20,000			
IDD [13]	Driving (India)	7,974			
BDD [14]	Driving (United States)	8,000			
CITYSCAPES [8]	Driving (Germany)	3,475			
SUN RGBD [15]	Indoor	5,285			
Test					
PASCAL VOC [51]	Everyday objects	1,449			
PASCAL CONTEXT [52]	Everyday objects	5,105			
CAMVID [53]	Driving (U.K.)	101			
WILDDASH-V1 [21]	Driving (Worldwide)	70			
KITTI [54]	Driving (Germany)	200			
SCANNET-20 [55]	Indoor	5,436			

2. MSeg: A composite Dataset for Multi-domain Semantic Segmentation

Lambert and Liu: https://arxiv.org/pdf/2112.13762.pdf

3. Autonomous driving datasets

- Cityscapes
- nulmages
- CamVid
- Mapillary
- IDD
- A2D2
- GTA-5

3. Autonomous driving datasets: CityScape+CamVid+GTA5+nuScene+Mapillary+IDD+A2D2

Multi Domain Heterogeneous Dataset Hierarchical Semantic Segmentation Methods

Flat Network with hierarchical loss

- Loss function:
 - Loss of superclass (level 1)
 - Loss of level 2 classes
 - Loss of level 3 classes
 - Total loss = loss_level_1 + loss_level2 + loss_level3

Class Hierarchy

Г				
	Small vehicles	Car	Pickup truck	
		Van		
		ego_vehicles		
Vehicles	Large Vehicles	Truck	Train	
		Bus		
	two_wheelers	Motorcycle	Bicycle	
	other_vehicels	Caravan	trailer	Boat
		wheeled_slow	other_vehicles	Plane
	normal_road	road	parking	rail_track
Flat		sidewalk	curb	Pedestrian area
		Dirt track	runway	Crosswalk plain
		Bikelane	Service lane	Path
		Curb cut		
	road_marking	General marking	Zebra marking	manhole
		catch+basin	Pothole	all_road_marking
	building_infra	Building	Grandstand	Stairs
Construction		house	step_stair	stage
Construction		stairway	Skyscraper	Column
		Wall	Bridge	tunnel
		fence	guard_rail	
	other_infra	Pier-dock	Canopy	Fountain
		Bannister	Barrier	awning-sunshade
		Hovel-hut		
	pole_all	Pole	Utility pole	tower
Treffic abiasts				
Traffic_objects				
	Sign	traffic_sign	Billboard	banner
		traffic_sign_frame	traffic_sign back	trade-brand
		picture	Poster	
	glowing_obj	street_light	Traffic light	Light-source
Level 1		Fine	grained c	lasses
		1 1110	grainica c	140000
super				

classes

unction_box fyre_hydrant mailbox bikerack Nature Objects sky_ Vegetation olant Vegetation terrain Mountain earth-ground ground Field soil-ground Rock other_entities Water Snow sand Lake sea river Water-fall Swimming-pool Bird Vulnerable_road_user VRU ground_animal Bicyclist other_rider Human Motorcyclist Person Indoor_obj furniture cabinet Table Chair sofa Shelf Armchair desk drawers Counter Ward robe Coffee table Ottoman stool other_furniture Book-case box Swivel-chair cradle Case-showcase Bench Window Seat Pillow Cushion Bedroom obj lamp Mirror curtain Blind Blanket-cover Fireplace Apparel Ceiling Floor Sconce toilet Towel Bathtub Bathroom obj shower_curtain Shower other_obj Escalator Level 1 Fine grained classes

trashcan

phone_booth

cctv_camera

Other_obj

		\neg				
		Radiator	Glass-drinking	plate		
		Fan	tray	Vase		
		pot	Bag	Tent		
		Basket	barrel	Playing-toy		
		Conveyerbelt	Chandelier	Book		
		pool-billlard	ball	Tank		
		Sculpture	base			
	Electronic	Monitor	CRT-screen	screen-projector		
		Television	Arcade machine	computer		
		Screen				
	Kitchen_obj	hood_exhaust	Dishwasher			
		microwave	Food	Oven		
		Washer	Buffet	Bottle		
		Bar	Kitchen-island	Stove		
Level 1		counter-top	Refrigerator	Sink		
super						
classes		Fine grained classes				

super classes

Multi Heads Architecture: example

Hierarchical Network

Overview

Example for level 1

vehicle class

Hierarchical N/W

- Loss function: total loss
 - c1 * L1_loss + c2 * L2_loss + c3 * L3loss
- Discussion:
 - Everything relies on L1_head
 - solution: to improve mIOU -> class weights at L1 head
 - Loss function: other possibilites to connect all heads through loss function!!!
 - If L1 predicted negative: output is negative

•

•

Hierarchical N/w v2

Backbone

Inverse Hierarchy

Earlier

New ->

- Advantage:
 - Dependency over L1 head is reduced

Hierarchical N/w v3

• Inverse Hierarchy

Earlier

Level 1 head

Vehicle head

Small Vehicle head

Level 1 head

Level 1 head

Level 1 head

Level 1 head

- Advantage:
 - Level 1 is enriched with features!!

Results:

ООПРАНЗОП

	RVC2018_Best	RVC2020_1st	RVC2020_2nd	SingleDataset- mloU	FlatMultiDataset- mloU-1	FlatMultiDataset -mloU-2	HierarchicalMultiData set- mloU	ImprovedHMDataset- mloU
Evaluated on:		Test data	Test data	Validation data	Validation data			
Cityscapes	80.2	74.7	80.7	0.7399	0.7263		0	
Vistas		40.4	34.2	0.382	0.367		0	
Viper		62.5	40.7	0.496	0.655		0	
Wilddash	59.1	45.4	35.2	0.452	0.554*		0	
Ade		31.1	33.2	0.386	0.304		0	
Scannet	48.0	54.6	48.5	-	0.596		0	
KiTTI	69.6	63.9	62.6					