

HOMEWORK 6

INSTRUCTIONS

- Every learner should submit his/her own homework solutions. However, you <u>are</u> allowed to discuss the homework with each other (in fact, I encourage you to form groups and/or use the forums) but everyone must submit his/her own solution; you may <u>not</u> copy someone else's solution.
- The homework will be peer-graded. In analytics modeling, there are often lots of different approaches that work well, and I want you to see not just your own, but also others.
- The homework grading scale reflects the fact that the primary purpose of homework is learning:

Rating	Meaning	Point value (out of 100)
4	All correct (perhaps except a	100
	few details) with a deeper	
	solution than expected	
3	Most or all correct	90
2	Not correct, but a reasonable	75
	attempt	
1	Not correct, insufficient effort	50
0	Not submitted	0

Question 9.1

Using the same crime data set uscrime.txt as in Question 8.2, apply Principal Component Analysis and then create a regression model using the first few principal components. Specify your new model in terms of the original variables (not the principal components), and compare its quality to that of your solution to Question 8.2. You can use the R function prcomp for PCA. (Note that to first scale the data, you can include scale. = TRUE to scale as part of the PCA function. Don't forget that, to make a prediction for the new city, you'll need to unscale the coefficients (i.e., do the scaling calculation in reverse)!)