K Nearest Neighbors - Projeto

In [1]: # Importando as bibliotecas import pandas as pd import seaborn as sns import numpy as np import matplotlib.pyplot as plt

from matplotlib.colors import ListedColormap

TRAT

820.518697 2025.854469 525.562292

2565.995189 358.347163

Criando um pairplot com a tonalidade indicada pela coluna TARGET CLASS.

sns.set_context("paper", rc={"axes.labelsize":32})

577.587332 2644.141273 280.428203 1161.873391

TLLZ

IGGA

550.417491

922.206261

419.467495

IGGA

scaler.transform(df.drop('TARGET CLASS', axis=1))

IGGA

-1.128481

0.640009

-0.053171

-1.507223

-0.282065

In [12]: X train, X test, y train, y test = train test split(df transf, df['TARGET CLASS'],

• Tentarei encontrar o melhor valor de 'n_neighbors' para o modelo de KNN afim de obter o melhor f1_score • Em seguida treinarei um modelo, com o melhor 'n_neighbors' encontrado para este conjunto de treino-teste.

HYKR

0.138336

1.081552

2.030872

-1.753632

-0.365099

Experimentando 40 valores diferentes para 'k' (1 - 40) e salvando o f1 score resultante

n_neighbors

Mais explicitamente, os valores de k ordenados por seu f1_score resultante no modelo. Podemos ver que o valor de k que obtém

plt.plot(range(1,41), scores_f1, color='blue', linestyle='dashed', marker='o', markerfacecolor='red', mark

EDFS

0.980493

-1.182663

-1.240707

-1.183561

-1.095644

• Repetirei o processo realizando um Grid Search, para encontrar o melhor valor de 'n_neighbors' e comparar os resultados dos dois

GUUB

-0.932794

-0.461864

1.149298

-0.888557

0.391419

MGJM

1.008313

0.258321

2.184784

0.162310

-1.365603

test_size=0.30, random_state = 42)

JHZC

-1.069627

-1.041546

0.342811

-0.002793

0.787762

Salvando os dados transformados em um novo Data Frame, menos os labels

TLLZ

-0.958255

-1.504220

0.213394

-0.100053

1.609015

HYKR

EDFS

GUUB

843.065903 1370.554164

HYKR

1618.870897

2084.107872

2552.355407

685.666983

GUUB

330.727893

447.157619

818.676686 845.491492 1968.367513

852.867810 341.664784 1154.391368

905.469453 658.118202

MGJM

1494.878631

1193.032521

539.459350

EDFS

2147.641254

853.404981

JHZC

845.136088

861.081809

1647.186291

1450.935357

1899.850792

JHZC

MGJM

df = pd.read csv('KNN Project Data')

df.head()

%matplotlib inline

In [2]:

In [3]:

Out[3]:

In [4]:

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

In [10]:

Out[10]:

In [11]:

In [13]:

In [15]:

Obtendo os dados

XVPM GWYH 1636.670614 817.988525

1 1013.402760

1300.035501

1059.347542 1066.866418 612.000041 480.827789 950.622661 724.742174 1018.340526 1313.679056 Análise exploratória de dados

sns.pairplot(df, hue = "TARGET CLASS", palette='coolwarm', height=2.5) Out[4]: <seaborn.axisgrid.PairGrid at 0x23d93f59a48>

TLLZ **XVPM GWYH TRAT** Padronizando as variáveis

scaler = StandardScaler()

from sklearn.preprocessing import StandardScaler

scaler.fit(df.drop('TARGET CLASS', axis=1));

df_transf = pd.DataFrame(df_transf, columns = df.columns[:-1]) df_transf.head()

TRAT

1.619808

1.741918

0.775793

-1.433473

-0.904346

from sklearn.model_selection import train test split

from sklearn.neighbors import KNeighborsClassifier

GWYH

-0.443435

-1.056574

-0.436981

0.191324

0.820815

Primeiro dividirei os dados em treino-teste.

Divisão treino-teste

X = df transf

y = df['TARGET CLASS']

Usando o KNN

Treinando o modelo

 $scores_f1 = []$

em 'scores f1'

In [16]: plt.figure(figsize=(10,6))

Out[16]: Text(0, 0.5, 'f1_score')

0.78

0.70

ersize=10)

kas = []

processos.

XVPM

1.568522

-0.112376

0.660647

0.011533

-0.099059

Etapas:

In [14]: knn = KNeighborsClassifier();

from sklearn.metrics import f1_score

for i in range (1, 41): knn = KNeighborsClassifier(n neighbors=i) knn.fit(X_train, y_train) pred i = knn.predict(X test) kas.append((f1_score(pred_i, y_test), 'k ==' + str(i)))

scores_f1.append((f1_score(pred_i, y_test)))

Visualizando a relação entre 'k' e f1_score no conjunto de teste.

0.84

plt.xlabel('n_neighbors') plt.ylabel('f1_score')

0.82 0.80

plt.title('f1 score vs. n neighbors')

0.72

0.68

Out[17]: [(0.6823529411764706, 'k ==2'),(0.7205387205387205, 'k ==1'),(0.7463768115942029, 'k ==4'),(0.7788778877887789, 'k ==3'),

(0.7814569536423841, 'k ==5'),

(0.8239202657807309, 'k == 38'),

o maior f1_score é 21

sorted(kas)

In [17]:

(0.7887323943661972, 'k ==6'),(0.8013937282229966, 'k ==10'),(0.8028169014084509, k == 8!),(0.8067796610169492, 'k ==7'),(0.8083623693379791, 'k ==12'),(0.8160535117056856, 'k ==11'),(0.8215488215488216, 'k ==9'),

(0.825938566552901, 'k ==18'),(0.8282828282828283, 'k ==25'),(0.8294314381270904, 'k ==35'),(0.8299319727891157, 'k ==20'),(0.8305647840531561, 'k == 23'),(0.8305647840531561, 'k ==40'),(0.8310810810810811, 'k ==14'),(0.8310810810810811, 'k ==16'),

(0.8310810810810811, 'k ==24'),(0.8310810810810811, 'k == 36'),(0.8316831683168316, 'k ==13'),(0.8316831683168316, 'k == 37'),(0.8322147651006712, 'k ==17'),(0.8338983050847457, 'k ==22'),(0.8338983050847457, 'k ==26'),(0.835016835016835, 'k == 34'),(0.8355263157894737, 'k ==39'),

(0.8361204013377926, 'k ==19'),(0.8389261744966443, 'k ==28'),(0.8389261744966443, 'k == 30'),(0.8389261744966443, 'k == 32'),(0.8400000000000001, 'k == 33'),(0.8410596026490066, 'k ==27'),(0.8410596026490066, 'k ==29'),(0.8428093645484949, 'k == 31'),(0.844884488448845, 'k ==21')]

Criando um modelo com n_neighbors = 21

In [18]:

from sklearn.metrics import classification report knn = KNeighborsClassifier(n_neighbors=21) knn.fit(X_train, y_train) preds = knn.predict(X_test)

Imprimindo um classificantion report para os resultados da previsão. 0 1

In [19]: print(classification_report(y_test, preds, digits = 4)) precision recall f1-score 0.8278 0.8591 accuracy 0.8434 macro avg weighted avg 0.8439

In [21]: ## criando uma lista com valores entre 1-40

parameters = {'n neighbors': neigh}

Os parametros que vão para o Grid Search

neigh = []

In [23]:

In [24]:

for i in range (1,41): neigh.append(i)

clf.fit(X_train, y_train);

preds = clf.predict(X_test)

0

1

Considerações

Questionamento

0.8038 0.8699 0.8355

0.8662 0.7987 0.8311

encontrar os melhores hiperparametros para o modelo, porque train test split performa melhor?

macro avg 0.8350 0.8343 0.8333 weighted avg 0.8358 0.8333 0.8332

clf.best_params_

Out[23]: {'n_neighbors': 16}

0.8562 0.8312 0.8437 0.8433 Criando um modelo com Grid Search In [20]: from sklearn.model_selection import GridSearchCV

0.8418 0.8449 0.8433 0.8433 0.8434

In [22]: ## O modelo testará 40 valores de n_neighbors com cross validation de 20 k-folds clf = GridSearchCV(knn, parameters, scoring = 'f1', cv = 20) Diferentemente do caso anterior, o melhor valor para n_neighbors encontrado é de 16. Usando o modelo para prever e imprimindo o classification report print(classification_report(y_test, preds, digits = 4)) precision recall f1-score support

146

154

300 300 300

O f1_score obtido com train_test_split é ligeiramente superior ao obtido com o GridSearch. Sendo GridSearch um algorítimo que almeja

Explicação

Neste exemplo, o GridSearch executa um cross validation com 20 k-folds. O score que obtemos é do estimador que melhor performou em média dentre todos os folds quando avaliando os dados de teste, e ele pode não ser o estimador com melhor score no caso de train_test_split. É possível que um diferente estimador tenha um score maior, porém como oferecemos splits diferentes e calculamos o score em cada um dos conjuntos de testes utilizados, no final obtemos o melhor estimador **em média**.

A idéia é que com o cross validation possamos escolher um estimador que é mais resiliente às mudanças nos dados, não necessariamente representados em um simples train_test_split. Portanto, quanto mais splits fizermos, melhor o modelo performará com dados novos.

conforme novos dados sejam incluidos no seu treinamento.

No caso apresentado aqui, 'melhor' não sifnifica que produza um f1_score 'maior', e sim que dada a variação nos dados presentes no modelo com GridSearch, o modelo fará um trabalho melhor englobando essas variações, e em média produzirá resultados melhores