Исследование методов парсинга в многосторонних диалогах.

Аннотация.

Создание структуры многостороннего диалога может быть полезно при решении многих задач машинного обучения: понимание диалога, создание авторефератов ветвей дискуссии, анализ настроений, визуализация различных ветвей многостороннего диалога в пользовательском интерфейсе и пр. В данной работе проводится исследование о возможности применения наработок для разбора дискурса на английском языке для русскоязычных диалогов. В качестве основной модели используется глубокая последовательная модель для разбора многосторонних диалогов. Данная модель строит дерево зависимостей диалога прогнозированием отношений зависимостей между отдельными репликами. Выполняется поиск элементарных модулей дискурса (EDU), после чего модель определяет, с каким из предыдущих EDU есть взаимосвязь и её тип. Эксперименты с переводом данной модели на работу с русским языком показали сохранение качества работы алгоритма при сравнении с моделью, обучавшейся на англискийх диалогах.

Постановка задачи.

Вопрос разбора многостороннего диалога с практической точки зрения возникво время разговора с аспирантом медицинского вуза, которая очень огорчилась, когда обнаружила 1000+ новых сообщений в аспиратской группе. Высока вероятность среди всего информационного шума пропустить важные сообщения по учёбе.

Рис. 1. Пример многостороннего диалога с его структурой дискурса из корпуса STAC (Asher и др., 2016), где «Q-Elab» - это сокращение от «Вопрос-разработка», «QAP» для «пара вопрос-ответ». И« АСК. » для «Подтверждение».

Сложность выявления взаимосвязей между отдельными фразами (EDU) в многостороннем диалоге состоит в непроективности связей между отдельными фразами: между отдельными фразами персон 1 и 2 может быть фраза персоны 3, которая не имеет отношения к теме беседы персон 1 и 2. (связи между отдельными ветвями нельзя нарисовать с одной стороны от записанного диалога без пересечений). Так же, можно

заметить, что каждая фраза (EDU) сама по себе (вне контекста) может не нести никакой информации.

В качестве возможного решения задачи разбора многостороннего диалога была выдвинута гипотеза: автоматический синтез взаимосвязей между отдельными фразами (EDU) может сильно облегчить анализ многостороннего дискурса. В качестве класса для данной задачи будет выступать номер предыдущего сообщения (EDU), к которому относится текущая фраза. Следовательно количество классов будет соответствовать количеству сообщений в разбираемом диалоге минус 1 (на последнее сообщение никто ссылаться не может). Так как вероятен дисбаланс классов (с одним и тем же сообщением может быть построено несколько связей, например в случае нескольких ответов на однин вопрос), качестве метрики качества предложена micro-averaged F1 метрика. В данном варианте подсчета F1 метрики каждый образец имеет одинаковую важность. Micro-averaged F1 метрика выполняется путем первого вычисления суммы всех истинных положительных (TP), ложно-положительных (FP) и ложно-отрицательных (FN) результатов по всем меткам. Затем мы вычисляем micro-precision (формула 1) и micro-recall (формула 2) из сумм. И, наконец, мы вычисляем среднее гармоническое, чтобы получить оценку Micro-averaged F1.

$$MicroPrecision = \frac{TP_{summ}}{TP_{summ} + FP_{summ}}$$
 (1)

$$MicroRecall = \frac{TP_{summ}}{TP_{summ} + FN_{summ}}$$
 (2)

$$MicroF \ 1 \ score = \frac{2 * MicroPrecision * MicroRecall}{MicroPrecision + MicroRecall}$$
(3)

Анализ.

Исследование предыдущих решений.

Последние работы на тему парсинга многосторонних диалогов – это работы коллектива Баден С. ,Томпсон К.,Лорре Ж. П.,Ашер Н. и др.:

- Discourse Structure and Dialogue Acts in Multiparty Dialogue: the STAC Corpus.,) ,
- Discourse parsing for multi-party chat dialogues. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 928–937,Lisbon, Portugal, 17-21 September 2015.c©2015 Association for Computational Linguistics.
- LEARNING MULTI-PARTY DISCOURSE STRUCTURE USING WEAK SUPERVISION (2019)

а так же Zhouxing Shi и Minlie Huang:

• Dialogue Discourse Parsing. Code to Zhouxing Shi and Minlie Huang. A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues. In AAAI, 2019.

В работах коллектива Баден С. ,Томпсон К.,Лорре Ж. П.,Ашер Н. и др. связи в многостороннем диалоге рассматриваются в виде **направленного ациклического графа (DAG)**. Направленный ациклический граф – это граф, рёбрам которого присвоено направление, но отсутствуют направленные циклы. При этом в нём могут быть

«параллельные» пути, выходящие из одного узла и разными путями приходящие в конечный узел.

Рис. 2: Пример направленного ациклического графа (DAG). Собеседники в сегментах 235, 236 и 238 все отвечают на вопрос, заданный на 234 (связаны ребрами, обозначенными как QAP(пара вопрос-ответ)), а собеседник в сегменте 239 отвечает на каждый ответ (связью типа ACK (подтверждение))

В их работе оценка **F1** для структур без указания типа связи составила **0,671**, а для структур с указанием типа связи - **0,516**.

В работе Zhouxing Shi и Minlie Huang предпочли воспользоваться частным случаем DAG – деревом зависимостей. Этот выбор был сделан в связи с тем, что только 5% из всех фраз диалога требуют использования направленного ациклического графа (по наблюдениям авторов). Так же следует отметить, что их модель предсказывает родителя каждого EDU в дереве зависимостей путем сравнения вероятностей связи с каждым из предшествующих EDU, она может предсказать непроективные структуры, которые необходимы для многосторонних диалогов. Для вычисления векторного представления фраз дискурса используются иерархические кодеры Gated Recurrent Unit (GRU). Качество работы модели было основано на micro-averaged F_1 . Оценка **F1** для структур **без указания типа связи** составила 0,732, а для структур с указанием типа связи **- 0,557**.

Анализ данных

Как и в приведенных выше работах предлагается использовать корпус STAC. Он был собран из онлайн-версии игры The Settlers of Catan. Settlers - многопользовательская беспроигрышная игра, в которой игроки используют такие ресурсы, как древесина и овцы, для строительства дорог и поселений. В онлайн-версии игроков просили обсуждать и согласовывать свои сделки через интерфейс чата, прежде чем завершать их через игровой интерфейс. В результате игроки часто болтали не только для переговоров, но и для обсуждения множества тем, некоторые из которых не имели отношения к поставленной задаче. Данный корпус очень близок к реальному поведению людей в текстовом многопользовательском чате: множество фрагментов предложений, нестандартная орфография и иногда отсутствие синтаксиса. Так же есть феномены, характерные для многопользовательского диалога, такие как множественные потоки диалога и недревовидные структуры. Корпус состоит из 59 игр, из которых 36 игр на данный момент аннотированы для структуры дискурса в стиле SDRT¹. Каждая игра состоит из нескольких диалогов, представляющих один ход игры. Каждый диалог рассматривается как отдельный документ. Около 10% корпуса было отведено для целей оценки, а остальное - для обучения. Подробную статистику по количеству диалогов, EDU и отношений, содержащихся в каждом субкорпусе, можно найти в таблице 1.

¹ Segmented Discourse Representation Theory https://homepages.inf.ed.ac.uk/alex/papers/iwcs4.pdf

	Всего	Тренировочная выборка	Тестовая выборка
Диалогов	1091	968	123
Кол-во EDU	10677	9545	1132
Кол-во связей	11348	1058	1190

Таблица 1. Обзор корпуса STAC

Два недостатка данного корпуса для решения заявленной в данной работе задачи:

- основной язык корпуса английский
- корпус содержит много избыточной для решения поставленной задачи информации о состоянии игры.

Для решения проблемы основного языка был использован **машинный перевод** с помощью библиотеки googletrans. Так же была проведена фильтрация корпуса: оставлена информация о содержании фраз диалога и разметка о связях между ними с указанием типов взаимосвязей².

На выходе алгоритма получается список диалогов с указанием разметки отношений между фразами с указанием типа отношений. Структура отдельного диалога после фильтрации от избыточных данных и перевода приведена ниже

здесь "edus" — словарь текущего диалога "speaker" — никнейм спикера; "text"- текстовое сообщение; "relations" - словарь отношений текущего диалога; "type"- тип связи; "x"- адрес сообщения головного сообщения (индексация начинается с 0); "y" — адрес связуемого сообщения (индексация начинается с 1 для второго сообщения)

Была проведена проверка: **относятся ли тестовая и тренировочная выборки к одному распределению**.³ Проверки проходили с помощью следующих тестов:

• Т-тест для двух независимых выборок для распределений 'Количеству фраз в диалоге' в логарифмическом масштабе ⁴. В данном случае **Pvalue=0.5**, что гораздо больше

² Код алгоритма машинного перевода приведен в /code/eng_translation.ipynb

³ Код EDA и проверок датасета можно найти в /code/eng_translation_EDA.ipynb

⁴ Строго распределения на нормальность не проверялись, так как строгие критерии требуют очень сильного соответсвия 'нормальности'. Был проведен визуальный анализ гистограмм на существенные отклонения: выбросы, сильное отклонение от колоколообразной формы, явная ассиметрия.

- стандартной альфа ошибки 0.05. **Нельзя отклонить нулевую гипотезу** и говорить о статистической значимости различий выборок.
- Критерий Манна Уитни для распределений 'Количество слов в фразе диалога' (ни нормальное, ни распределение в логарифмическом масштабе визуально не похожи на нормальное распределение). В данном случае **Pvalue=0.26**, что гораздо больше стандартной альфа ошибки 0.05. **Нельзя отклонить нулевую гипотезу** и говорить о статистической значимости различий выборок.
- Проверка на ковариативный сдвиг между взаимосвязями в тренировочной и тестовой выборке. Был создан классификатор на основе RandomForestClassifier с целью отличать экземпляры из тестовой выборки от экземпляров в тренировочной выборке. Значение метрики ROC AUC для обученного классификатора составило 0.56, это значит, что наш классификатор по качеству такой же, как случайный предсказатель меток. Нет свидетельств наличия ковариантного сдвига в данных.

Так же было обнаружены следующие свйства данного датасета: заметны следующие корреляции появлений связей в диалогах (более 0,5):

'Acknowledgement' - 'Explanation'	'Continuation' - 'Elaboration'
'Acknowledgement' - 'Elaboration'	'Continuation' - 'Explanation'
'Acknowledgement' - 'Contrast'	'Continuation' - 'Contrast'
'Acknowledgement' - 'Comment'	'Continuation' - 'Comment'
'Acknowledgement' - 'Clarification_question'	'Continuation' - 'Clarification_question'
'Acknowledgement' - 'Continuation'	'Q-Elab' - 'Question-answer_pair'
'Conditional'- 'Explanation'	'Clarification_question' - 'Elaboration'
'Conditional'- 'Contrast'	'Contrast' - 'Explanation'
'Conditional'- 'Continuation'	'Contrast' - 'Elaboration'

Также хотелось бы привести краткие заметки авторов корпуса: 'Графики дискурса в нашем корпусе разработки демонстрируют несколько интересных свойств. Прежде всего, это группы DAG с уникальным корнем, одним элементом, не имеющим входящих ребер. Вовторых, графы почти во всех случаях слабо связаны: т. е. каждая дискурсивная единица в них связана с какой-то другой дискурсивной единицей. В-третьих, наши графики являются реактивными в том смысле, что выступления являются реакциями и анафорически связаны с предыдущими выступлениями других участников диалога. Это означает, что рёбра между фразами разных участников всегда ориентированы в одном направлении.'

⁵ Ана́фора (от греч. ἀναφέρειν — относить назад, возводить к чему-либо, возвращать) — лингвистическое явление, зависимость интерпретации некоторого выражения от другого выражения, обычно ранее встречавшегося в тексте. Это определяющее выражение называется антецедент (если оно появляется до анафорического выражения) или постцедент (если появляется после).

^{6 &}lt;a href="https://www.aclweb.org/anthology/D15-1109.pdf">https://www.aclweb.org/anthology/D15-1109.pdf
Более подробно о корпусе и его создании можно прочитать в статье
https://www.cs.brandeis.edu/~cs140b/CS140b docs/AnnotationPapers/STAC corpus Dialog.pdf

Обзор модели

В данной работе предлагается воспользоваться подходом, изложенным в работе A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues. In AAAI, 2019 (Zhouxing Shi and Minlie Huang). Ниже приведено краткое описание модели из авторской статьи⁷.

Проблему синтаксического анализа зависимостей фраз для многостороннего диалога сформулирована следующим образом:

для диалога, который был сегментирован на последовательность EDU $u_1, u_2, ..., u_n$, вместе с дополнительным фиктивным корнем u_0^8 , цель состоит в том, чтобы предсказать связи зависимостей и соответствующие типы отношений $\{(u_j, u_i, r_{ji}) \mid j \neq i\}$ между EDU, где (u_j, u_i, r_{ji}) обозначает связь тип отношений r_{ji} от u_i к u_i .

Структура дискурса, предсказываемая моделью, представляет собой дерево зависимостей, которое является частным случаем DAG. Слудет отметить, что не должно быть никакого отношения, связанного с u_0 . Модель выполняет последовательное сканирование EDU u_1 , u_2 , ..., u_n . Для текущего EDU u_i модель предсказывает связь зависимостей, оценивая распределение вероятностей следующим образом:

$$\mathcal{P}(u_i|u_i, \mathcal{T}_i, 0 \le j \le i-1) \tag{4}$$

де $\mathcal{T}_i = \{(u_l, u_k, r_{lk}) \mid 0 \le l \le k \le i-1\}$ - это набор отношений зависимостей, которые уже предсказаны перед текущим шагом i. В данной модели это так называемое *предсказание ссылки*. Аналогичным образом модель предсказывает тип отношения для предсказанной ссылки $u_i \to u_i$ (j < i) со следующим распределением:

$$\mathcal{P}(r_{ji}|u_j \to u_i, \mathcal{T}_i) \tag{5}$$

где $r_{ji} \in \{r_1, r_2, \cdots, r_K\}$, $r_k (1 \le k \le K)$ - тип отношения, а K - количество типов отношений. Это так называемая классификация отношений.

Модель сначала вычисляет неструктурированные представления EDU с помощью иерархических кодировщиков Gated Recurrent Unit $(GRU)^9$. Эти неструктурированные представления используются для прогнозирования отношений зависимости и кодирования структурированных представлений. Затем модель выполняет последовательное сканирование EDU и выполняет следующие три шага, как показано на рисунке 3, когда она обрабатывает EDU u_i :

1.**Прогнозирование связи**: прогнозирование родительского узла p_i для EDU u_i с помощью предиктора связи, который использует неструктурированные (Non-structured) и структурированные (Structured) представления, которые кодируют предсказанную структуру до u_i . В частности, вычисляется оценка между текущим EDU u_i и каждым кандидатом u_j (j < i) с помощью **MLP** (**Multi-layer Perceptron**)¹⁰. Zhouxing Shi и Minlie Huang обнаружили, что доля EDU с несколькими входящими связями довольно ограничена (менее 6,4%) в используемом наборе данных. Оценки затем нормализуются до распределения по предыдущим EDU { u_0 , u_1 , ..., u_{i-1} } с функцией активации softmax выбирается кандидат EDU u_i с наибольшей вероятностью связанности.

Dialogue Discourse Parsing. Code to Zhouxing Shi and Minlie Huang. A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues. In AAAI, 2019. https://arxiv.org/pdf/1812.00176.pdf

⁸ Фиктивный корень используется для удобства последующего определения проблемы.

^{9 &}lt;u>https://towardsdatascience.com/understanding-gru-networks-2ef37df6c9be</u> <u>https://www.coursera.org/lecture/nlp-sequence-models/gated-recurrent-unit-gru-agZiL</u>

¹⁰ https://ru.wikipedia.org/wiki/Многослойный перцептрон Румельхарта

Рисунок 3: Иллюстрация модели, которая состоит из модулей для прогнозирования связей, классификации отношений и кодирования структурированного представления. Для текущего EDU u_i прогнозирование связи оценивает распределение по предыдущим EDU, классификация отношений оценивает распределение по типам связей, а структурированный кодер обновляет структурированное (Structured) представление u_i , используя представления u_i и p_i и эмбеддинг прогнозируемого отношения r_{ji} . Кодирование неструктурированного (Nonstructured) представления выполняется перед процессом прогнозирования и на иллюстрации не показано.

- 2. **Классификация отношений**: прогнозирование типа связи между p_i (предположим, что $p_i = u_j$) и u_i с помощью классификатора отношений. Подобно предсказанию связи, классификатор отношений использует как неструктурированные, так и структурированные представления. Представления фраз u_i и u_i подаются в MLP для получения распределения по типам отношений. Как тип отношений r_{ji} берется тот тип, который обладает наибольшей вероятностью.
- 3. **Кодирование структурированного представления**: вычисление структурированного представления u_i с помощью кодера структурированного представления, который кодирует предсказанную структуру дискурса. В частности, эмбеддинг отношения r_{ji} , неструктурированное представление u_i и структурированное представление $p_i = u_j$ подаются в кодировщик для получения структурированного представления u_i . После этого модель переходит к следующему EDU u_{i+1} и повторяет три вышеуказанных шага до конца диалога. Таким образом, прогнозирование зависимостей и построение структуры распределения выполняются совместно и поочередно, а структура дискурса строится постепенно.

Методика решения.

Преобразование данных.

Как говорилось выше, для обучения модели принято решение использовать STAC корпус. Для его использования требуется преодолеть два недостатка :

- основной язык корпуса английский
- корпус содержит много избыточной для решения поставленной задачи информации о состоянии игры.

Расчистка и разметка лингвистами данных с разделением на тестовую и тренировочную выборки были произведены при создании корпуса. Размеченная информация по каждой игре содержится в в файлах *.aa и *.ac. *.aa — xml файлы хранящие метаинформацию о говорящем игроке (идентификатор, никнейм, текст, игровые ресурсы, время написания

сообщения). *.аа — текстовый файл содержащий только индекс сообщения, никнейм и текст сообщения.

Так как в данной работе используется модель Zhouxing Shi и Minlie Huang, то разумно использовать конвертационный скрипт, созданный этими авторами¹¹. Алгоритм работы данного скрипта следующий:

- Создание списка размеченных файлов.Идет поиск всех директорий "discourse/GOLD" по папке датасета, создание списка всех файлов в этих директориях формата *.aa и подачи каждого файла из этого списка на конвертацию)
- Извлечение требуемой информации. Для работы алгоритма требуется id игры, диалог (каждая строка состоит из никнейма автора и текста сообщения) и разметка связей фраз в диалоге (каждая строка состоит из типа связи, id фразы от которой идёт связь и id фразы к которой идёт связь)
- и конвертации в json формат как показано ниже:

```
{"id": "s2-league4-game2",

"edus": [{"speaker": "ztime", "text": "drum roll"},

{"speaker": "ztime", "text": "8.."},

{"speaker": "ztime", "text": "nice"}

],

"relations": [{"type": "Continuation", "x": 0, "y": 1},

{"type": "Comment", "x": 1, "y": 2}

]
}
```

Функция clean_dialogues производит шаги 1 и 3 алгоритма. Внутренняя же обработка файла производится функцией process_file.

Для перевода фраз диалога на русский язык было решено воспользоваться возможностями машинного перевода: библиотекой googletrans. В частности, была создана функция ru_translate, которая извлекает тест фраз из размеченного с помощью функции process_file списка передаёт текст фразы экземпляру класса Translator() для перевода. На практике было замечено, что перевод не всегда происходит с первого раза и после проведения перевода происходит проверка переведенного текста. Если текст экземпляром класса Translator() определяется как не русский — текст подвергается повторному переводу. Эта проверка продолжается после каждой попытки перевода и прекращается только если переведенный текст не определяется как русский (либо количество попыток не превысит порогового значения). Также при возникновении ошибок которые чаще всего возникали из-за обрыва связи (данная библиотека обращается к google api), происходит установка времени задержки выполнения повторной попытки перевода (5 с., далее 60 и 120 с). По окончании времени задержки происходит повторная попытка перевода. В случае неудач (обрывов связи) более трёх раз — принимается решение о записи оригинальной фразы на английском языке в русский датасет. Структура диалога с указанием связи полностью соответствует оригинальной структуре, требуемой для работы модели Zhouxing Shi и Minlie Huang.

¹¹ Данный скрипт можно приведен в code/eng_translation.ipynb и основан на коде из code/data/china/data_pre.py

Итоговая модель.

Ниже приведено описание работы модели Zhouxing Shi и Minlie Huang. 12 Данная модель используется в работе без изменений 13 .

Дискурсивные представления

В данной модели используются две категории представления дискурса: локальные и глобальные. Локальные представления индивидуально кодируют локальную информацию EDU. А глобальные представления соответственно кодируют глобальную информацию о последовательности EDU или предсказанной структуре диалога. Эти представления принимаются в качестве входных данных для прогнозирования ссылок и классификации отношений. В свою очередь, предсказанные связи и типы отношений используются для постепенного построения структурированных глобальных представлений.

Локальные представления. Для каждого EDU u_i двунаправленный енкодер GRU (bi-GRU) применяется к последовательности слов, и последние скрытые состояния в двух направлениях конкатенируют (соединяют) в **локальное представление** u_i , обозначаемое как h_i .

Неструктурированные глобальные представления кодируют последовательность EDU в диалоге. Эти локальные представления EDU h_0 , h_1 , ..., h_n подаются на вход кодировщика GRU, и скрытые состояния отображаются как *неструктурированные глобальные представления* EDU, обозначаемые как q^{NS}_0 , q^{NS}_1 , ..., q^{NS}_N .

Структурированные представления кодируют связи зависимостей и соответствующие типы отношений для полного использования глобальной информации предсказанной структуры. Следует обратить внимание, что существует ровно один путь от корня к каждому EDU в предсказанном дереве зависимостей, и этот путь представляет собой развитие диалога. В данной модели применяется структурированный енкодер к этим путям, чтобы получить *структурированные глобальные представления* (или вкратце *структурированные представления* вычисляются постепенно. В данной модели вычисляется структурированное представление u_i после того, как определены его родительский элемент и соответствующий тип отношения.

Кроме того, при прогнозировании отношения зависимости, связывающего u_j с u_i , полезно выделять предыдущие высказывания автора высказывания u_i . Потому что это помогает модели лучше понять развитие диалога с участием этого говорящего, что может улучшить предсказание зависимости, связанной с u_i . В данной работе используется механизм выделения выступающих (SHM), с помощью которого мы вычисляем |A| различных структурированных представлений для каждого EDU, так что каждый выделяет конкретного говорящего, где A - это набор всех говорящих в диалоге. Это особенно эффективно для многосторонних диалогов.

¹² A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues https://arxiv.org/pdf/1812.00176.pdf

¹³ Код модели можно найти в директории code/data/china/. Главный исполняемый файл: main.py

Пусть $g^{S}_{i, a}$ обозначает структурированное представление u_i при выделении говорящего а, $p_i = u_j$ - предсказанный родительский элемент u_i , а a_i — автор EDU u_i . Структурированные представления вычиляется следующим образом:

$$\boldsymbol{g}_{i,a}^{S} = \begin{cases} \mathbf{0} & i = 0\\ \mathbf{GRU}_{hl}(\boldsymbol{g}_{j,a}^{S}, \boldsymbol{h}_{i} \oplus \boldsymbol{r}_{ji}) & a_{i} = a, i > 0\\ \mathbf{GRU}_{gen}(\boldsymbol{g}_{j,a}^{S}, \boldsymbol{h}_{i} \oplus \boldsymbol{r}_{ji}) & a_{i} \neq a, i > 0 \end{cases}$$
(6)

где Φ обозначает конкатенацию векторов, GRU обозначает функции ячейки GRU, а r_{ji} обозначает вектор эмбеддинга типа отношения r_{ji} , а hl и gen являются сокращениями от highlighted (выделенных) и general (общих) соответственно.

Рисунок 4: Пример дерева зависимостей (слева) и структурированного кодировщика (справа), где

 h_i - локальное представление EDU u_i ,

 $g^{S}_{i} u g^{S}_{i}$ - структурированные представления,

 r_{ii} - вложение связи,

 $u_i = p_i$ - родительский элемент u_i .

В уравнении. (6), $g^{S}_{0,a}$ устанавливается в нулевой вектор, поскольку фиктивный корень u_0 не содержит реальной информации. $g^{S}_{i,a}$ (i> 0) вычисляется на основе структурированного представления его родительского $s_{j,a}$, которое также выделяет говорящего a, и мы используем две разные ячейки GRU: GRU_{hl} и GRU_{gen}, чтобы учитывать, выделен ли текущий говорящий a_i или нет. Для выбранной ячейки GRU, как показано на рисунке 4, $g^{S}_{j,a}$ - это предыдущее скрытое состояние, $h_i \Phi r_{ji}$ - вход на текущем шаге, а новое скрытое состояние - $g^{S}_{i,a}$ (i> 0).

Прогнозирование ссылок и классификация отношений

Для каждого EDU u_i предсказатель связи предсказывает его родительский узел p_i , а классификатор отношений классифицирует соответствующий тип отношения r_{ji} , если $p_i = u_j$. Для каждого EDU u_j (j < i), который предшествует u_i в диалоге, модель объединяет представления h_i , g^{NS}_i , g^{S}_j , a_i , чтобы получить входной вектор $H_{i,j}$ для предсказания связи и классификации отношений:

$$H_{i,j} = h_i \oplus g_i^{NS} \oplus g_j^{NS} \oplus g_{j,ai}^S$$
 (7)

И для u_i , и для u_j их неструктурированные глобальные представления g_i^{NS} и g_j^{NS} включены во входные данные. Также модель добавляет $g_{i,ai}^{S}$, которое является

структурированным представлением u_i при выделении говорящего u_i , а именно a_i . А поскольку на текущем шаге структурированное представление u_i недоступно, модель добавляет вместо него локальное представление u_i , названное h_i .

Взяв $H_{i, < i}$ ($H_{i, < i} = H_{i, 0}, ..., H_{i, i-1}$) в качестве входных данных предсказатель ссылки оценивает вероятность того, что каждый u_j (j < i) является родительским элементом u_i в дереве зависимостей. Затем классификатор отношений предсказывает тип отношения между u_i и u_i , если u_i является предсказанным родителем u_i .

Предсказание связи. Предиктор связи сначала проецирует входные векторы $H_{i,j}$ (j < i) в скрытое представление:

$$L^{link}_{i,j} = tanh(W_{link} \cdot H_{i,j} + b_{link})$$
 (8)

где $W_{link} \in R^{d_l \times d}_h$, а $b_{link} \in R^{d_h}$ - параметры, d_l и d_h размерности $L^{link}_{i,j}$ и $H_{i,j}$ соответственно. Затем предсказатель вычисляет вероятность того, что u_j является родительским элементом u_i в предсказанном дереве зависимостей, как показано ниже:

$$o^{link}_{i,j} = U_{link} \cdot L^{link}_{i,j} + b^{\dagger}_{link} \tag{9}$$

$$P\left(p_{i} = u_{j} \mid H_{i, < i}\right) = \frac{\exp\left(o_{i, j}^{link}\right)}{\sum_{k < i} \exp\left(o_{i, k}^{link}\right)}$$
(10)

где $U^{link} \in R^{1 \times d}$ and $b`_{link} \in R$ также параметры.

Отсюда, прогнозируемый параметр выбирается следующим образом:

$$p_i = argmax_{u_i: i < i} P(p_i = u_i | H_{i, < i})$$
 (11)

В отличие от локальных классификаторов, предсказание связи по $P(p_i = u_j | H_{i, < i})$ зависит от всех родителей-кандидатов из-за коэффициента нормализации softmax в уравнении. (10). Во время обучения градиент каждого родителя-кандидата также зависит от всех родителей-кандидатов, от которых он может использовать больше информации для обучения, в то время как другие методы рассматривают каждого из кандидатов-родителей индивидуально.

Классификация отношений. Подобно предсказанию связи, классификатор отношений сначала проецирует входной вектор $H_{i,j}$ в скрытое представление следующим образом:

$$L^{rel}_{i,j} = tanh(W_{rel} \cdot H_{i,j} + b_{rel}) \tag{12}$$

где $W_{rel} \in R^{d_l \times d}{}_h$, а $b_{link} \in R^{|d|}{}_l$ - параметры, d_l и $|d_h|$ размерности $L^{rel}{}_{i,j}$.

Затем классификатор предсказывает тип отношения r_{ji} по распределению вероятностей по всем типам, вычисляемому следующим образом:

$$P(r|H_{i,j}) = softmax(U_{rel} \cdot L_{i,j}^{rel} + b_{rel})$$
(13)

где $U_{rel} \in R^{K \times d}_h$ and $b_{rel} \in R^K$ также параметры.

Функция потерь. Мы принимаем отрицательную логарифмическую вероятность обучающих данных как функцию потерь:

$$L_{link}(\Theta) = -\sum_{d \in D} \sum_{i=1}^{n} \log P(p_i = p^*_i | H_{i, < i})$$
 (14)

$$L_{rel}(\Theta) = -\sum_{d \in D} \sum_{i=1}^{n} \log P \ (r_{ij} = r^*_{ij} \ | H_{i,i}, \ u_j = p^*_{i})$$
 (12)

$$L_{all}(\Theta) = L_{link}(\Theta) + L_{rel}(\Theta)$$
 (15)

где Θ - набор параметров, которые необходимо оптимизировать, D - данные обучения, d - диалог в D, p^*_i и r^*_{ji} - золотой родительский и соответствующий золотому тип отношения соответственно.

Поскольку золотая структура дискурса является графом зависимостей, а модель предсказывает дерево зависимостей, для определения золотого родителя p^*_i каждого EDU u_i для обучения мы берем самый ранний EDU с отношением, связанным с u_i . И если u_i не связан ни с одной предыдущей единицей, полагатся $p^*_{i} = u_0$. В $L_{rel}(\Theta)$ используется логарифмическая вероятность типа отношения между u_i и золотым родителем p^*_i , а не прогнозируемое число p_i , потому что предсказатель связи может предсказать неверно p_i , такой что золотой тип отношения между p_i и u_i может быть недоступен.

Детали реализации

Выбор параметров происодил на основе работ Zhouxing Shi и Minlie Huang. Для русского языка векторы слов инициализируются 300-мерными GloVe векторами и настраиваются во время обучения. Размеры эмбеддингов отношений и представлений дискурса установлены на 300 и 256 соответственно. И размеры скрытых представлений в прогнозировании ссылок и классификации отношений установлены на 512. Dropout принимается перед вводом каждой ячейки GRU с вероятностью 0,5. Используется Stochastic GradientDescent (SGD) для обучения модели с размером mini-batch= 4. Начальная скорость обучения (learning rate) установлена на 0,1, и она затухает с постоянной скоростью 0,98 после каждой эпохи.

Результаты.

Как указывалось выше — в качестве показателя оценки выступает micro-averaged F_1 . Проводились эксперименты с использованием 300-мерных GloVe векторов и 300-мерных fasttext векторов Также проводилось сравнение с простой моделью — дающей предсказание связи к ближайшему соседу. Дополнительно проводилось сравнение с работой оригинальной модели по датасету на английском языке.

¹⁴ Код с исследованием результатов /code/en_test_EDA.ipnb

¹⁵ GloVe word embedding models https://www.kaggle.com/tunguz/russian-glove

¹⁶ Используемая модель code/data/glove_ru/ . Главный исполняемый файл : main.py . N.B. python v2.7, tensorflow v 1.13

¹⁷ Библиотека со сжатыми fastText word embedding models https://github.com/avidale/compress-fasttext

¹⁸ Используемая модель code/data/fasttext_ru/ . Главный исполняемый файл : main.py . N.B. python v3.6, tensorflow v 1.13

Модель	F1, %
Deep Sequential , en, GloVe	69.7
Deep Sequential , ru, GloVe	70.4
Deep Sequential , ru, FastText	69
Dummy	54

Таблица 2. Сравнение результатов работы различных моделей.

Вариация модели для русского языка даёт схожие показатели. Вариант с использованием

Рисунок5. Интерполяция зависимости качества работы моделей от длины диалога

Также проводилось исследование на зависимость качества работы модели от длины анализируемого диалога. Зависимость качества работы модели от количества эпох показывает, что модель склонна к переобучению. Для борьбы с этим требуется тренировочный датасет большего размера.

FastText показал худшее качество. Вероятнее всего это связано меньшей оринетированностью на контекст данной модели (по сравнению с GloVe). Сравнение с 'dummy' моделью говорит о то, что применяемые на данном этапе модели ещё далеки от абсолютных значений (так для варианта представления диалога в виде деревьев предельный показатель качестве по мере F1 составляет 91% 19

Заметно, что удовлетворительное качество (более 0.7) модели показывают на коротких (менее 12 фраз) диалогах.

Рисунок 6. Зависимость качества работы модели от количества эпох обучения

Рисунок 7. Пример диалога из тестовой выборки (слева) и предсказания алгоритма (справа) . Цветами указаны различные игроки . Типы связей: Elaboration - проработка, QAP – пара-вопрос-ответ, ACK- подтверждение, Comment – комментарий, Explanation - объяснение

Выводы и заключение.

В данной работе проведено исследование одного из передовых методов парсинга многосторонниих диалогов. Модель прогнозирует отношения зависимости и поочередно строит структуру дискурса. Она последовательно определяет связи зависимости между EDU и соответствующими типами отношений, используя структурированное представление каждого EDU, закодированного с помощью структурированного кодировщика, и, в свою очередь, предсказанные отношения зависимости используются для постепенного построения структуры дискурса. Эксперименты показывают, что перенос модели на датасет диалогами на русском языке дает схожие результаты. Заметно, что качество работы модели на длинных диалогах заметно падает. Хорошее качество работы наблюдается для коротких (менее 12 фраз) диалогов. Главной проблемой на данном этапе представляет собой отсутствие большого размеченного датасета на русском языке. Как развитие работы в данном направлении рассматривается следующая последовательность:

- Провести разметку существующих датасетов²⁰ с помощью данного алгоритма.
- Ручная корректировка разметки.
- Перевод модели на TF 2.
- Использование направленного ациклического графа взамен деревьев зависимостей.
- Обучение модели на большом датасете.
- Исследование возможности использования Multilingual Universal Sentence Encoderfor Semantic Retrieva²¹

^{20 &}lt;a href="https://www.kaggle.com/dolfik/russian-telegram-chats-history">https://www.kaggle.com/dolfik/russian-telegram-chats-history

^{21 &}lt;u>https://arxiv.org/pdf/1907.04307.pdf</u>

Список источников.

- 1. Semantics, Pragmatics and Discourse https://depts.washington.edu/hpsg2011/s/Asher.pdf
- 2. Evaluating Discourse-based Answer Extraction for
- 3. Why-Question Answering https://liacs.leidenuniv.nl/~verbernes/papers/Verberne 2007 Evaluating%20discourse-based %20answer%20extraction%20for%20why-QA.pdf
- 4. Discourse Structure and Dialogue Acts in Multiparty Dialogue:the STAC Corpus. https://www.cs.brandeis.edu/~cs140b/CS140b docs/AnnotationPapers/STAC corpus Dialog.pdf
- 5. STAC dataset. https://www.irit.fr/STAC/corpus.html
- 6. Discourse parsing for multi-party chat dialogues. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 928–937,Lisbon, Portugal, 17-21 September 2015.c©2015 Association for Computational Linguistics. https://www.aclweb.org/anthology/D15-1109.pdf
- 7. LEARNING MULTI-PARTY DISCOURSE STRUCTURE USING WEAK SUPERVISION http://www.dialog-21.ru/media/4584/badenesplusetal-112.pdf
- 8. A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues https://arxiv.org/pdf/1812.00176.pdf
- 9. Dialogue Discourse Parsing. Code to Zhouxing Shi and Minlie Huang. A Deep Sequential Model for Discourse Parsing on Multi-Party Dialogues. In AAAI, 2019. https://github.com/shizhouxing/DialogueDiscourseParsing

Содержание

Аннотация	1
Постановка задачи	1
Анализ	
Исследование предыдущих решений	
Анализ данных	
Обзор модели	
Методика решения	
Преобразование данных	
Итоговая модель	
Дискурсивные представления	
Прогнозирование ссылок и классификация отношений	
Детали реализации	
Результаты	
Выводы и заключение	
Список источников	