MATEMATIKA

EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

OKTATÁSI MINISZTÉRIUM

Fontos tudnivalók

Formai előírások:

- A dolgozatot a vizsgázó által használt színűtől **eltérő színű tollal** kell javítani, és a tanári gyakorlatnak megfelelően jelölni a hibákat, hiányokat stb.
- A feladatok mellett található szürke téglalapok közül az elsőben a feladatra adható maximális pontszám van, a javító által adott **pontszám a** mellette levő **téglalapba** kerül.
- **Kifogástalan megoldás** esetén elég a maximális pontszám beírása a megfelelő téglalapokba.
- Hiányos/hibás megoldás esetén kérjük, hogy az egyes **részpontszámokat** is írja rá a dolgozatra.

Tartalmi kérések:

- Egyes feladatoknál több megoldás pontozását is megadtuk. Amennyiben azoktól **eltérő megoldás** születik, keresse meg ezen megoldásoknak az útmutató egyes részleteivel egyenértékű részeit, és ennek alapján pontozzon.
- A pontozási útmutató pontjai tovább **bonthatók**. Az adható pontszámok azonban csak egész pontok lehetnek.
- Nyilvánvalóan helyes gondolatmenet és végeredmény esetén maximális pontszám adható akkor is, ha a leírás az útmutatóban szereplőnél **kevésbé részletezett**.
- Ha a megoldásban **számolási hiba**, pontatlanság van, akkor csak arra a részre nem jár pont, ahol a tanuló a hibát elkövette. Ha a hibás részeredménnyel helyes gondolatmenet alapján tovább dolgozik, és a megoldandó probléma lényegében nem változik meg, akkor a következő részpontszámokat meg kell adni.
- Elvi hibát követően egy gondolati egységen belül (ezeket az útmutatóban kettős vonal jelzi) a formálisan helyes matematikai lépésekre sem jár pont. Ha azonban a tanuló az elvi hibával kapott rossz eredménnyel mint kiinduló adattal helyesen számol tovább a következő gondolati egységben vagy részkérdésben, akkor erre a részre kapja meg a maximális pontot, ha a megoldandó probléma lényegében nem változik meg.
- Ha a megoldási útmutatóban zárójelben szerepel egy **mértékegység**, akkor ennek hiánya esetén is teljes értékű a megoldás.
- Egy feladatra adott többféle megoldási próbálkozás közül **csak egy** (a magasabb pontszámú) **értékelhető**.
- A megoldásokért **jutalompont** (az adott feladatra vagy feladatrészre előírt maximális pontszámot meghaladó pont) **nem adható**.
- Az olyan részszámításokért, részlépésekért **nem jár pontlevonás**, melyek hibásak, de amelyeket a feladat megoldásához a vizsgázó ténylegesen nem használ fel.
- A vizsgafeladatsor II. részében kitűzött 5 feladat közül csak 4 feladat megoldása értékelhető. A vizsgázó az erre a célra szolgáló négyzetben feltehetőleg megjelölte annak a feladatnak a sorszámát, amelynek értékelése nem fog beszámítani az összpontszámába. Ennek megfelelően a megjelölt feladatra esetlegesen adott megoldást nem is kell javítani. Ha mégsem derül ki egyértelműen, hogy a vizsgázó melyik feladat értékelését nem kéri, akkor automatikusan a kitűzött sorrend szerinti legutolsó feladat lesz az, amelyet nem kell értékelni.

I.

1.		
$\cos 2x = 1 - 2\sin^2 x \text{ felhasználásával}$	2 pont	
a megoldandó egyenlet: $2\sin^2 x - 5\sin x - 3 = 0$.	1 pont	
A sin x -re másodfokú egyenlet megoldásai:		
$-\frac{1}{2}$ és 3.	2 pont	
A $\sin x = 3$ egyenletnek nincs megoldása, hiszen a $\sin x$ maximális értéke 1.	2 pont	
A $\sin x = -\frac{1}{2}$ egyenlet megoldásai: $x = -\frac{\pi}{6} + 2k\pi \text{ , ahol } k \in \mathbb{Z},$	2 pont	Ha fokokban adja meg a helyes eredményt, erre a részre összesen 3 pontot kap.
vagy $x = \frac{7\pi}{6} + 2n\pi \text{ , ahol } n \in \mathbf{Z}.$	2 pont	Ha a periódus hiányzik, vagy hibás periódussal adja meg, vagy keveri a fokot és a radiánt stb., akkor legfeljebb 1-1 pont adható.
A kapott számok megoldásai az eredeti egyenletnek is.	1 pont	
Összesen:	12 pont	

2. a)		
$5 \cdot 4 \cdot 3 \cdot 2 \cdot 1 = 120$, ezért 120 db ötjegyű számot kapunk.	2 pont	
Összesen:	2 pont	
b)		
Egy egész szám 12-vel pontosan akkor osztható, ha osztható 3-mal és 4-gyel.	1 pont	
Az ötjegyű számok mindegyike osztható 3-mal, mert a számjegyeinek összege mindegyiknél 21, ami osztható 3-mal.	1 pont	
4-gyel ezen ötjegyű számok közül azok és csak azok oszthatóak, amelyek utolsó két számjegye a következő: 12, 52, 92, 24.	1 pont	Ha a vizsgázó nem adja meg mindegyiket, az l pont nem adható.
Az ötjegyű számban az első három számjegyből álló szám hatféle lehet, ha a két utolsó számjegyet rögzítettük,	2 pont	
így az ötjegyű számok között $4 \cdot 6 = 24$ db 12-vel osztható szám lesz.	1 pont	
Összesen:	6 pont	

c)		
Az ötjegyű számok mindegyikében a számjegyek összege 21.	1 pont	
Tehát a számok oszthatók 3-mal.	1 pont	
9-cel viszont nem oszthatók, így egyik szám sem lehet négyzetszám.	2 pont	
Összesen:	4 pont	

3. a)						
	Pénzt vis	sszaadja		Pénzt e	lnyeli	
	Italt is ad	Italt nem ad	Italt	nem ad	Italt ad	
	30	90	160 · 0,	1875 = 30		
	% kiszámítása.		ļ	1 pont		ı
10 esetbe	en működik jól, a pé	enzt elnyeli, és ad i	talt.	1 pont		
	z esélye, hogy jól m $ = 0,0625. $	űködik:		2 pont		
		Öss	zesen:	4 pont		
b)				•		
160 esetl	160 esetből 30-ban az ital mellé visszakapjuk a pénzt is, tehát $\frac{30}{160} = 0,1875$ valószínűséggel ingyen jutha-		2 pont	Kedvező esetek		
Ráfizetür kapunk.	nk, ha nem kapjuk v alószínűsége: $\frac{30}{160}$ =		sem	2 pont	összehasonlítása indokolhat.	ával is
Tehát a k	kérdéses valószínűsé	égek egyenlők.		1 pont		
		Öss	zesen:	5 pont		
c)				•		
	setből 120 esetben v	isszaadia a pénzt.		2 pont		
Mivel po	ontosan 40 esetben k s" 0 Ft, azaz nincs r	apok italt, így a		2 pont		
		••	zesen:	4 pont		

(4. a)		
A csoportokban lévő számok számát megadó		
sorozat: 1; 2; 3; 4;; <i>n</i> ;	2 mont	
A 99-edik csoportban lévő utolsó szám:	2 pont	
1+2+3++99,		
amely $\frac{1+99}{2} \cdot 99 = 4950$.	2 pont	
Tehát a 100-adik csoport első eleme 4951.	1 pont	
Összesen:	5 pont	
b)		
Ha az 1851 az $n + 1$ -edik csoportban van, akkor		
$\frac{1+n}{2} \cdot n < 1851 \le \frac{1+(n+1)}{2}(n+1)$, ahol <i>n</i> pozitív	3 pont	Teljes megoldásnak fo-
egész számot jelöl.		gadható el, és maximális
Tehát azt a pozitív egész <i>n</i> -et keressük, amelyre		pontszám adható, ha a
$n^2 + n - 3702 < 0 \text{ \'es}$	1 pont	vizsgázó csak az egyik
$n^2 + 3n - 3700 \ge 0.$		egyenlőtlenséget írja fel, majd oldja meg, ezzel
Az első egyenlőtlenség pozitív egész megoldásai: a 60-nál nem nagyobb pozitív egész számok.	1 pont	kideríti például azt, hogy az n kisebb vagy egyenlő
A második egyenlőtlenség pozitív egész megoldásai: a 60-nál nem kisebb egész számok.	1 pont	60-nál. Mivel a legna- gyobb lehetséges n ebből
Az egyenlőtlenségrendszernek egyetlen egész megoldása van, a 60.	1 pont	a 60, és a 60. blokk utol- só eleme 1830, továbbá a 61. blokkban 61 elem van, ezért a keresett
A 60-adik csoport utolsó eleme: $\frac{1+60}{2} \cdot 60 = 1830$.	1 pont	
A 61-edik csoport első eleme 1831.		1851-es szám a 61.
Mivel ennek a csoportnak 61 eleme van, így ennek	1 pont	blokknak a 21. eleme.
eleme az 1851 is, mégpedig 21-edik eleme.		
Tehát az 1851 a 61-edik csoport 21-edik eleme.		
Összesen:	9 pont	

írásbeli vizsga 0611 $$5\,/\,13$$ 2006. február 21.

II.

5.		
D T 2m	C	B
Jelöljük a CDK háromszög CD oldalához tartozó magasságát m -mel. Ekkor az ABK háromszög AB oldalához tartozó magassága $2m$. $T_{ABD} = T_{ABC}$, mert a két háromszög közös AB oldalához tartozó magasságuk egyenlő hosszú.	1 pont	Jó ábrába beírt helyes összefüggések esetén a szöveges indoklástól eltekinthetünk.
Az ABC és az ABD háromszöglapoknak közös része az ABK háromszöglap, így $T_{ADK} = T_{BKC}$, azaz mindkettő T területű.	1 pont 1 pont	
A <i>CDK</i> háromszög hasonló az <i>ABK</i> háromszöghöz, (mivel szögeik páronként egyenlők),	1 pont	
és a hasonlóság aránya $\frac{m}{2m} = \frac{1}{2}$.	1 pont	
Mivel a hasonló síkidomok területének aránya a hasonlóság arányának négyzetével egyezik meg, ezért t_{CDK} : $t_{ABK} = 1:4$.	2 pont	
A CDK háromszög területét t -vel jelölve: $t_{ACD} = t + T$,	1 pont	
$ és t_{ABC} = 4t + T. $	1 pont	
Mivel az ABC és a ACD háromszög AB illetve CD oldalához tartozó magassága megegyezik, és $AB = 2 \cdot CD$, ezért $t_{ABC} = 2 \cdot t_{ACD}$.	2 pont	
Így $4t + T = 2(t+T)$.	1 pont	
Ebből $t = \frac{T}{2}$ adódik.	1 pont	

Ezért $t_{ACD} = t + T = \frac{3}{2}T$, és $t_{ABC} = 4t + T = 3T$.	2 pont	
Mivel $t_{ABCD} = t_{ABC} + t_{ACD}$, ezért az ABCD trapéz területe 4,5-szerese T-nek.	1 pont	
Összesen:	16 pont	

6. a)		
A tyúkok számát 4%-kal csökkentve: 10000 · 0,96,	1 pont	
az 1 tojóra jutó tojástermelés $\frac{2,20\cdot10^6}{10000}\cdot1,08$ lett.	2 pont	
Tehát az évi termelés: $10000 \cdot 0,96 \cdot \frac{2,20 \cdot 10^6}{10000} \cdot 1,08$.	1 pont	
Kiszámítva: 2280960 ≈ 2,28 · 10 ⁶ Tehát az évi termelés kb. 2,28 millió darab tojás.	1 pont	Ha a megoldás során számolási hibát ejt, ez
, ,	5 nont	az egy pont nem jár.
Összesen:	5 pont	
b)		
A keresett százalékot p -vel jelölve ($p < 30$), a tyúkok számát p %-kal csökkentve adódik, hogy számuk $10000 \cdot \left(1 - \frac{p}{100}\right)$.	1 pont	
Az 1 tojóra jutó tojástermelés $\frac{2,20 \cdot 10^6}{10000} \cdot \left(1 + \frac{2p}{100}\right)$ lett.	2 pont	
A szöveg szerint $10000 \cdot \left(1 - \frac{p}{100}\right) \cdot \frac{2,20 \cdot 10^6}{10000} \cdot \left(1 + \frac{2p}{100}\right) =$ $= 2,20 \cdot 10^6 \cdot 1,08.$	1 pont	
Azaz $ \left(1 - \frac{p}{100}\right) \left(1 + \frac{2p}{100}\right) = 1,08. $	1 pont	Ha a szöveg alapján azonnal ezt az egyen- letet írja fel, akkor is megkapja az előző pontokat.
Az egyenlet mindkét oldalát 10 000-rel szorozva: $(100-p)(100+2p) = 10800$.	1 pont	
A kijelölt szorzás elvégzése után: $10000 + 100 p - 2 p^2 = 10800$.	1 pont	
Az egyenlet rendezése után a $p^2 - 50p + 400 = 0$ másodfokú egyenlethez jutunk.	1 pont	
Ennek megoldásai: 40 és 10.	1 pont	

Mivel $p < 30$, így csak 10 lehet a megoldás.	1 pont	
Valóban, ha a 9000-re csökkentett létszám esetén 20%-		
kal nő az egy tyúkra jutó tojásmennyiség, azaz		
$\frac{2,20\cdot10^6}{10000}\cdot1,2 \text{ lesz,}$	1 ,	
$\frac{10000}{10000}$ ·1,2 lesz,	1 pont	
akkor az évi termés 2,20 · 10 ⁶ · 1,08.		
Tehát 10%-kal kell csökkenteni a tyúkok számát.		
Összesen:	11 pont	

7. a)		
Nyolc olyan dominó van, amelynek mind a két térfelén ugyanannyi a pöttyök száma.	2 pont	
Az olyan dominók száma, amelyeknek a két térfelén különböző számú pötty áll, annyi van, ahányféleképpen kiválasztható két szám a 0, 1, 2,,7 számok közül, a sorrendet nem véve figyelembe, tehát $\frac{8\cdot7}{2}$, azaz 28-féleképpen.	2 pont	
Tehát összesen 28 + 8 = 36 kőből áll a dominókészlet.	1 pont	
Összesen:	5 pont	

b)		
Egy kő két "térfelén" lévő pöttyök számának összege 8 a következőképpen lehet: (1; 7), (2; 6), (3; 5) és (4; 4),	1 pont	
tehát négyféleképpen.	1 pont	
A keresett valószínűség: $p = \frac{4}{36} = \frac{1}{9}$.	1 pont	
Összesen:	3 pont	

c) I. megoldás		
Két eset különböztethető meg:		
1. eset: Ugyanannyi pötty van az első kő mindkét		
térfelén.		
Ekkor a második kő pontosan akkor illeszthető hozzá,		
ha ennek a kőnek az egyik térfelén ugyanannyi pötty	1 pont	
van, mint az elsőén.	_	
Annak a valószínűsége, hogy (n; n) típusú követ húzunk		
ki $p_1 = \frac{8}{36} = \frac{2}{9}$, hiszen <i>n</i> értéke 8-féle lehet.		
A második kő egyik térfelén <i>n</i> pötty van, a másikon		
hétféle lehet a pöttyök száma, így $p_2 = \frac{7}{35} = \frac{1}{5}$.	1 pont	
A két kő kihúzásának valószínűsége:		
2 1 2	1 pont	
$p = p_1 \cdot p_2 = \frac{2}{9} \cdot \frac{1}{5} = \frac{2}{45}.$	•	

2. eset: A kihúzott első kő két térfelén különböző a pöttyök száma $(n; k)$, ahol $n \neq k$. A 36 kőből 28 ilyen típusú van, így egy ilyen kő kihúzásának valószínűsége: $q_1 = \frac{28}{36} = \frac{7}{9}$.	1 pont	
Hozzáilleszthető a második kő, ha annak egyik térfelén n vagy k pötty van. Mindkét fajtából hét-hét darab van a készletben, ezért ezen eset bekövetkezésének valószínűsége: $q_2 = \frac{14}{35} = \frac{2}{5}$.	1 pont	
Tehát a 2. esetben annak valószínűsége, hogy a két kő egymáshoz illeszthető: $q = q_1 \cdot q_2 = \frac{7}{9} \cdot \frac{2}{5} = \frac{14}{45}$.	1 pont	
Az egymáshoz illeszthető két kő kihúzása az 1. vagy a 2. módon következhet be, így a keresett valószínűség: $P = p + q = \frac{2}{45} + \frac{14}{45} = \frac{16}{45} \approx 0,36.$	2 pont	
Összesen:	8 pont	

c) II. megoldás		
8 olyan dominó van, amelynek egyik térfelén nincs		
pötty. Ezek közül 2 db $\binom{8}{2}$ -féleképpen választható ki.	2 pont	
A 8 olyan dominó közül, amelyiknek az egyik térfelén		
1 pötty van $\binom{8}{2}$ -féleképpen választható ki 2 db.		
Ezt a gondolatmenetet folytatva, $\binom{8}{2}$ -féleképpen	2 pont	
választható ki 2 db azon 8 dominó közül, amelyiknek az egyik térfelén 7 pötty van.		
A kedvező esetek száma tehát $8 \cdot {8 \choose 2}$.	1 pont	
Az összes esetek száma: $\binom{36}{2}$.	1 pont	
A keresett valószínűség: $\frac{8 \cdot \binom{8}{2}}{\binom{36}{2}} = \frac{16}{45}.$	2 pont	Az eredmény elfogadható akkor is, ha a binomiális együtthatókat nem számolja ki.
Összesen:	8 pont	

8. a)		
Az ABC szabályos háromszög oldalhossza: $a=\sqrt{3}$. Az ABC súlypontja 0,5 dm távolságra van a háromszög oldalegyeneseitől, s mivel $x<0,5$, így ez a súlypont az $A_1B_1C_1$ háromszög az ABC háromszög belsejében van.	2 pont	A pontszám a szöveg helyes értelmezéséért jár, amit vagy egy ábra vagy a leírt gondolat- menet és a számítás tanúsít.
Az A_1, B_1, C_1 pontok rendre az ABC háromszög A -ból, B -ből és C -ből induló belső szögfelezőjének egy-egy pontja. Jelöljük b -vel az $A_1B_1C_1$ háromszög oldalának hosszát. Az ábra szerinti C C_1T derékszögű háromszögben legyen $x = C_1T$ és $y = TC$. Ekkor ctg $30^\circ = \frac{y}{x}$, így $y = x\sqrt{3}$. A tengelyes szimmetria figyelembe vételével: $b = \sqrt{3} - 2x\sqrt{3}$.	2 pont 1 pont	Az A ₁ B ₁ C ₁ háromszög oldalhosszának meg- állapításáért összesen 3 pont adható.
$T_{A_1B_1C_1} = \frac{b^2 \cdot \sqrt{3}}{4} = \frac{3\sqrt{3}(1-2x)^2}{4} \text{ (dm}^2)$	1 pont	A számszorzó közelítő értékkel való megadása is elfogadható.
Összesen:	6 pont	

b)		
A hasáb alaplapja $A_1B_1C_1$ háromszög, magassága x .		
$V(x) = T \cdot x = \frac{3\sqrt{3}(1-2x)^2}{4} \cdot x = \frac{3\sqrt{3}}{4}(4x^3 - 4x^2 + x),$	1 pont	
ahol $0 < x < \frac{1}{2}$.	1 pont	
A V függvény differenciálható az értelmezési tartományán és $V'(x) = \frac{3\sqrt{3}}{4}(12x^2 - 8x + 1).$	2 pont	
$\frac{3\sqrt{3}}{4}(12x^2 - 8x + 1) = 0.$	1 pont	
Megoldásai: $\frac{1}{2}$ illetve $\frac{1}{6}$.	1 pont	
$\begin{array}{ c c c c c }\hline & 0 < x < \frac{1}{6} & x = \frac{1}{6} & \frac{1}{6} < x < \frac{1}{2} \\\hline V'(x) & \text{pozitiv} & = 0 & \text{negativ} \\\hline V & \text{n\"{o}v\~{o}} & \text{max.} & \text{cs\"{o}kken\~{o}} \\\hline \end{array}$	3 pont*	Oszloponként 1-1 pont adható.
A hasáb térfogata maximális, ha az x távolságot $\frac{1}{6}$ dm hosszúnak választjuk.	1 pont	Az l pont jár a mérték- egységgel megadott végeredményért, köze- lítő értékkel való meg- adás esetén is.

*Megjegyzés: A 3 pont az alábbi módokon is bontható:

A V' függvény az $\frac{1}{6}$ helyen előjelet vált, (1 pont)

mégpedig pozitívból negatívba (1 pont).

A V függvénynek az $\frac{1}{6}$ helyen lokális maximuma van. (1 pont)

vagy

$$V''(x) = \frac{3\sqrt{3}}{4} (24x - 8) \text{ (1 pont)}$$

$$V''\left(\frac{1}{6}\right) < 0 \ (1 \ pont)$$

A V függvénynek az $\frac{1}{6}$ helyen lokális maximuma van. (1 pont)

Összesen: 10 pont

F2 :		
9. a)		
Mivel $\lg ab = \lg a + \lg b$, és $\lg \frac{b}{a} = \lg b - \lg a$,	1 pont	
így $B(\lg a + \lg b; \lg b - \lg a)$.	1 point	
Bizonyítandó tehát, hogy	1 pont	
$\lg a < \lg a + \lg b \text{ \'es } \lg b < \lg b - \lg a.$	1 pont	
rendezés után kapjuk, hogy $\lg b > 0$ és $\lg a < 0$.		Nem adható az
A feltételek szerint $0 < a < 1$, illetve $1 < b$, és a tízes	1	1 pont, ha nem utal a
alapú logaritmus függvény szigorúan növő a pozitív számok halmazán valamint lg1 = 0, tehát mindkét	1 pont	függvény
egyenlőtlenség igaz.		monotonitására.
Összesen:	3 pont	
b)	•	
$(\overrightarrow{OA} - \overrightarrow{OB}) = \overrightarrow{BA}(-\lg b; \lg a)$	1 pont	
Mivel az \overrightarrow{OA} és az $\overrightarrow{OA} - \overrightarrow{OB}$ vektorok skaláris szorzata a megfelelő koordináták szorzatának összege, vagyis $\overrightarrow{OA} \cdot (\overrightarrow{OA} - \overrightarrow{OB}) = -\lg a \cdot \lg b + \lg b \cdot \lg a = 0$,	2 pont	
tehát a két vektor merőleges egymásra.	2 1	
Összesen:	3 pont	
c) (1. megoldás)		
OA, OB és $OA - OB$ egyike sem nullvektor. Mivel $ \overrightarrow{OA} = \sqrt{\lg^2 a + \lg^2 b} = \overrightarrow{OA} - \overrightarrow{OB} $,	2 pont	
tehát az OAB háromszög egyenlő szárú és derékszögű $(OAB \angle = 90^{\circ})$,	1 pont	
$(\overrightarrow{OA}, \overrightarrow{OB}) \angle = 45^{\circ}.$	1 pont	
Összesen:	4 pont	
c) (2. megoldás)		
$ \overrightarrow{OA} = \sqrt{\lg^2 a + \lg^2 b}$ és	•	
$\left \overrightarrow{OB} \right = \sqrt{(\lg a + \lg b)^2 + (\lg b - \lg a)^2} = \sqrt{2 \cdot (\lg^2 a + \lg^2 b)}$	2 pont	
Mivel $\overrightarrow{OA} \cdot \overrightarrow{OB} = \lg^2 a + \lg^2 b$ és		
$ \overrightarrow{OA} \cdot \overrightarrow{OB} = \overrightarrow{OA} \cdot \overrightarrow{OB} \cdot \cos \alpha = \sqrt{2} \cdot (\lg^2 a + \lg^2 b) \cdot \cos \alpha,$	1 pont	
ahol $AOB \angle = \alpha$.		
Innen $\cos \alpha = \frac{1}{\sqrt{2}}$, és α hegyesszög, így	1 pont	
$(\overrightarrow{OA}, \overrightarrow{OB}) \angle = 45^{\circ}.$		
Összesen:	4 pont	

d)		
$A(-1; \lg b)$.	1 pont	
A tízes alapú logaritmus függvény szigorúan növő, folytonos, felülről nem korlátos függvény, így lgb tetszőleges pozitív értéket vehet fel. Ezért az A pontok halmaza azon nyílt kezdőpontú félegyenes, amelynek (x; y) koordinátái kielégítik az x = -1 egyenletet és az 0 < y egyenlőtlenséget.	1 pont	A pont akkor is jár, ha csak ábrán rajzolja meg helyesen a keresett ponthalmazt.
$B(\lg b - 1; \lg b + 1)$	1 pont	
A B pont második koordinátája 2-vel nagyobb az első koordinátájánál ($\lg b + 1 = (\lg b - 1) + 2$).	1 pont	
$\lg b - 1$ tetszőleges, (-1) -nél nagyobb szám lehet, így $\lg b + 1$ tetszőleges 1-nél nagyobb értéket vesz föl.	1 pont	
Így a B pontok halmaza azon nyílt kezdőpontú félegyenes, amelynek $(x; y)$ koordinátái kielégítik az $y = x + 2$ egyenletet és az $-1 < x$ egyenlőtlenséget.	1 pont	A pontok akkor is járnak, ha csak ábrán rajzolja meg helyesen a keresett ponthalmazt. A karika hiánya, vagy nem egyértelmű koordináta-rendszer esetén 1-1 pont levonás.