063강 Curves(3)

Curves를 통하여 깃털을 만들기

Feather

깃털은 커브에 또다른 커브가 붙어있는 형태입니다. Instance on Points를 통하여 만들 수 있습니다.

Instance

Points

Instance on Points

Instance on points

베지에 커브로 깃털 한 올을 만들어 커브에 붙입니다. Curve to Points를 이용하면 점들의 간격과 깃털의 회전값을 쉽게 얻을 수 있습니다. 다만 Spline Parameter가 전달되지 않으므로 Factor 등의 정보를 이전에 저장해 두어야 합니다.

※Curves는 인스턴스를 제대로 표현하지 못하므로 나중에 Realize해 줍니다.

Curve to Points를 사용하지 않는 경우(Optional)

Curve to Points를 사용하지 않는 경우 Rotation을 직접 만들어야 합니다.

깃털은 커브의 두개의 축, Tangent와 Normal에 모두 정렬되어야 합니다. Align Euler to Vector를 두 번 사용하여 회전값을 얻을 수 있습니다.

깃털 크기

원본 커브의 길이에 따라 크기를 조절합니다. 이 때, 너무 커지지 않게 Clamp로 크기 상한을 정할 수 있습니다.

Spline Length 는 Curve to Points 이전에 저장해둡니다.

깃털 모양

원본 커브의 Factor를 따라 스케일을 추가로 조절하여 최종적인 깃털 모양을 만듭니다.

디테일 표현

깃털의 갈라진 부분을 표현해봅시다.

Curve의 index는 항상 정렬되어 있으므로, 노이즈의 좌표로 활용하면 원본 커브를 따라 노이즈를 생성할 수 있습니다. 이 상태에서 Snap으로 비슷한 값을 묶으면, 깃털의 덩어리짐과 갈라짐을 표현할 수 있습니다.

디테일 표현(2)

Rotate Instances를 한번 더 사용하여, 깃털의 헝클어짐을 표현합니다. 이 때는 붙어있는 깃털 한올한올 사이의 관계가 없으므로, 노이즈가 아니라 그냥 랜덤을 사용합니다.

두께 표현

Realize 후, 원본 커브와 합친 뒤 두께를 조절해줍니다. *Eevee와 Cycles의 두께가 미묘하게 다르므로 유의하세요.

변형을 따라가기 위해

움직이지 않는 모델이라면 상관없지만, Armature deform 등 변형이 일어났을 때 커브가 따라가기 위해서는 surface_uv_coordinate가 제대로 입력되어 있어야 합니다.

Instance가 원본 커브의 surface_uv_coordinate를 받아오지만, 도메인이 control point로 잘못되어 이동합니다. 이 문제는 도메인을 Spline으로 교체하는 것으로 간단히 해결됩니다.

이후에 deform curves on surface를 사용하면 변형을 따라가게 됩니다.

