

Exercice 1 Déterminer les limites des suites suivantes :

$$a_n = 3n^2 - 9n + 5$$

$$b_n = \frac{4n - 5}{-2n^2 - 3n + 7}$$

$$c_n = \frac{1 - 4^n}{3^n + 5^n}$$

$$d_n = \frac{\sqrt{n} + (-1)^n}{n}$$

$$e_n = \frac{\cos(n) - n}{\sqrt{n}}$$

1.

$$\lim_{n \to +\infty} 3n^2 = +\infty$$

$$\lim_{n \to +\infty} -9n = -\infty$$

$$\lim_{n \to +\infty} +5 = 5$$

On en déduit que la limite de a_n est du type $+\infty -\infty$: c'est une forme indéterminée. On doit alors factoriser :

$$3n^{2} - 9n + 5 = n^{2} \left(\frac{3n^{2}}{n^{2}} - \frac{9n}{n^{2}} + \frac{5}{n^{2}} \right) = n^{2} \left(3 - \frac{9}{n} - \frac{5}{n^{2}} \right)$$

$$\lim_{n \to +\infty} n^{2} = +\infty$$

$$\lim_{n \to +\infty} 3 - \frac{9}{n} - \frac{5}{n^{2}} = 3$$

donc par produit de limites $\lim_{n \to +\infty} a_n = +\infty$

2.

$$\lim_{n \to +\infty} 4n - 5 = +\infty$$

$$\lim_{n \to +\infty} -2n^2 - 3n + 7 = -\infty \text{ par somme de limites}$$

On en déduit que la limite de b_n est du type $\frac{+\infty}{-\infty}$: c'est une forme indéterminée. On doit alors factoriser :

$$b_n = \frac{4n-5}{-2n^2 - 3n + 7} = \frac{n\left(\frac{4n}{n} - \frac{5}{n}\right)}{n^2\left(\frac{-2n^2}{n^2} - \frac{3n}{n^2} + \frac{7}{n^2}\right)} = \frac{1}{n} \times \frac{4 - \frac{5}{n}}{-2 - \frac{3}{n} + \frac{7}{n^2}}$$

On sait que:

$$\lim_{n \to +\infty} \frac{1}{n} = 0$$

$$\lim_{n \to +\infty} 4 - \frac{5}{n} = 4$$

$$\lim_{n \to +\infty} -2 - \frac{3}{n} + \frac{7}{n^2} = -2$$

Par produit de limites, on en déduit que la limite de c_n est $0 \times \frac{4}{-2} = 0$.

 $\lim_{n \to +\infty} 1 - 4^n = -\infty \ car \ la \ suite \ 4^n \ est \ g\'eom\'etrique \ de \ raison \ q > 1$ $\lim_{n \to +\infty} 3^n + 5^n = +\infty \ par \ somme \ de \ limites \ et \ car \ les \ suites \ 3^n \ et \ 5^n \ sont \ g\'eom\'etriques \ de \ raison \ q > 1$

On en déduit que la limite de c_n est du type $\frac{+\infty}{+\infty}$: c'est une forme indéterminée. On doit alors factoriser, par 4^n et au dénominateur par 5^n :

$$c_n = \frac{1 - 4^n}{3^n + 5^n} = \frac{4^n \left(\frac{1}{4^n} - \frac{4^n}{4^n}\right)}{5^n \left(\frac{3^n}{5^n} + \frac{5^n}{5^n}\right)}$$
$$= \frac{4^n}{5^n} \times \frac{\frac{1}{4^n} - 1}{\frac{3^n}{5^n} + 1} = \left(\frac{4}{5}\right)^n \times \frac{\left(\frac{1}{4}\right)^n - 1}{\left(\frac{3}{5}\right)^n + 1}$$

Or:

$$\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0$$

$$\lim_{n \to +\infty} \left(\frac{3}{5}\right)^n = 0$$

$$\lim_{n \to +\infty} \left(\frac{4}{5}\right)^n = 0$$

car ce sont les termes généraux de suites géométrique de raison $0 \le q \le 1$. Donc par produits de limites, on en déduit que la limite de c_n est 0.

4. La limite de $\sqrt{n} + (-1)^n$ n'existe pas car la limite de $(-1)^n$ n'existe pas. Pour déterminer la limite de d_n , on doit alors distribuer la division par n et ensuite utiliser un théorème d'encadrement. On sait que :

$$d_n = \frac{\sqrt{n} + (-1)^n}{n} = \frac{\sqrt{n}}{n} + \frac{(-1)^n}{n}$$

$$or \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

$$de \ plus - 1 \le (-1)^n \le 1 \ donc \frac{-1}{n} \le \frac{(-1)^n}{n} \le \frac{1}{n}$$

$$ensuite \lim_{n \to +\infty} \frac{-1}{n} = \lim_{n \to +\infty} \frac{1}{n} = 0$$

on en déduit, en appliquant le théorème d'encadrement, que $\lim_{n \to +\infty} d_n = 0$

5. On sait que:

$$e_n = \frac{\cos(n) - n}{\sqrt{n}} = \frac{\cos(n)}{\sqrt{n}} - \sqrt{n}$$

On va encadrer la fonction cos:

$$-1 \le \cos(n) \le 1 \Rightarrow -\frac{1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n}$$

Exercice 2 Soit u_n la suite définie pour tout entier naturel n par :

$$\frac{2n+5}{3n+6}$$

Montrer que $\forall n \in \mathbb{N}, u_n > \frac{2}{3}$.

On pensera à mettre au même dénominateur et ne pas faire de récurrence

Montrer ce résultat est équivalent à montrer le résultat suivant :

$$\frac{2n+5}{3n+6} - \frac{2}{3} > 0$$

Et pour le démontrer, il va falloir mettre les deux fractions au même dénominateur :

$$\frac{2n+5}{3n+6} - \frac{2}{3} = \frac{3(2n+5)}{3(3n+6)} - \frac{2(3n+6)}{3(3n+6)} = \frac{3(2n+5) - 2(3n+6)}{3(3n+6)} = \frac{6n+15-6n-12}{3(3n+6)} = \frac{3}{3(3n+6)} = \frac{3}{3(3n+6)$$

Or le numérateur est positif, le dénominateur est positif (car $\in \mathbb{N}$) donc le quotient est positif par la règle des signes. Finalement, $\forall n \in \mathbb{N}$, $u_n > \frac{2}{3}$.

Exercice 3 Soit v_n la suite définie pour tout entier naturel n par :

$$v_n = -2n^2 + 14n - 17$$

Montrer que $\forall n \in \mathbb{N}$, $v_n \leq 7$.

On pensera à faire une étude de signes et ne pas faire de récurrence

Montrer ce résultat est équivalent à montrer le résultat suivant :

$$-2n^2 + 14n - 17 - 7 \le 0 \Leftrightarrow -2n^2 + 14n - 14 \le 0$$

On va donc faire un tableau de signes et on commence par calculer le discriminant :

$$\Delta = b^2 - 4ac = 14^2 - 4 \times (-2) \times (-24) = 196 - 192 = 4 > 0$$

Comme le discriminant est strictement positif, il y a deux racines réelles distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-14 + 2}{-4} = 3$$
$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-14 - 2}{-4} = 4$$

On en déduit le tableau de signes suivants :

x	$-\infty$		3		4		+∞
f(x)		-	0	+	0	_	

D'après ce tableau, pour $n \le 3$, $v_n \le 7$ et pour $n \ge 3$, $v_n \le 7$ mais comme il n'y a pas d'entier entre 3 et 4, on en déduit que :

$$\forall n \in \mathbb{N} \ v_n \leq 7$$

Exercice 4 (Valentin et Lohann) *Soit* (u_n) *la suite définie par :*

$$\begin{cases} u_0 = 1 \\ u_1 = 1 \\ u_{n+2} = -\frac{1}{2}u_{n+1} + \frac{1}{2}u_n \end{cases}$$

On cherche deux réels α et β tels que les suites (v_n) et (w_n) , définies par :

$$v_n = u_{n+1} - \alpha u_n$$
$$w_n = u_{n+1} - \beta u_n$$

soient des suites géométriques de raisons respectives β et α .

1. Montrer que α et β sont solutions de l'équation :

$$X^2 = -\frac{1}{2}X + \frac{1}{2}$$

On sait que (v_n) est une suite géométrique de raison β et (w_n) une suite géométrique de raison α :

$$\begin{cases} v_{n+1} = \beta v_n \\ w_{n+1} = \alpha w_n \end{cases}$$

$$\begin{cases} u_{n+2} - \alpha u_{n+1} = \beta (u_{n+1} - \alpha u_n) \\ u_{n+2} - \beta u_{n+1} = \alpha (u_{n+1} - \beta u_n) \end{cases}$$

$$\begin{cases} -\frac{1}{2} u_{n+1} + \frac{1}{2} u_n - \alpha u_{n+1} = \beta (u_{n+1} - \alpha u_n) \\ -\frac{1}{2} u_{n+1} + \frac{1}{2} u_n - \beta u_{n+1} = \alpha (u_{n+1} - \beta u_n) \end{cases}$$

$$\begin{cases} (-\frac{1}{2} - \alpha - \beta) u_{n+1} + (\frac{1}{2} + \alpha \beta) u_n = 0 \\ (-\frac{1}{2} - \alpha - \beta) u_{n+1} + (\frac{1}{2} + \alpha \beta) u_n = 0 \end{cases}$$

Après une justification que l'on ne fera pas et qui ne serait pas triviale, on peut montrer que cela signifie :

$$-\frac{1}{2} - \alpha - \beta = 0$$
$$\frac{1}{2} - \alpha\beta = 0$$

Cela s'appelle faire une identification puisque à droite, on peut écrire 0 comme $0u_{n+1} + 0u_n$. Finalement, on peut écrire :

$$\alpha + \beta = -\frac{1}{2}$$
$$\alpha \times \beta = -\frac{1}{2}$$

En utilisant le cours de première sur les fonctions du second degré, cela revient à dire que α et β sont solutions de l'équation :

$$X^{2} - (\alpha + \beta)X + \alpha\beta = 0 \Leftrightarrow X^{2} + \frac{1}{2}X - \frac{1}{2} = 0 \Leftrightarrow X^{2} = -\frac{1}{2}X + \frac{1}{2}$$

2. En déduire les valeurs de α et de β ; on prendra $\alpha < \beta$. On va calculer le discriminant de $X^2 + \frac{1}{2}X - \frac{1}{2} = 0$:

$$\Delta = b^2 - 4ac = \frac{1}{4} + 4 \times \frac{1}{2} = \frac{1}{4} + 2 = \frac{9}{4} > 0$$

Comme le discriminant est strictement positif, alors il y a deux racines distinctes :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{-\frac{1}{2} - \sqrt{\frac{9}{4}}}{2} = \frac{-\frac{1}{2} - \frac{3}{2}}{2} = -1$$
$$x_2 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{-\frac{1}{2} + \sqrt{\frac{9}{4}}}{2} = \frac{-\frac{1}{2} + \frac{3}{2}}{2} = \frac{1}{2}$$

On en déduit que $\alpha = -1$ et $\beta = \frac{1}{2}$.

3. Démontrer que $v_n = 2 \times \left(\frac{1}{2}\right)^n \ \forall n \in \mathbb{N}$. Comme la suite (v_n) est une suite géométrique de raison $\beta = \frac{1}{2}$ alors :

$$\forall n \in \mathbb{N}, \ v_n = v_0 \times \left(\frac{1}{2}\right)^n = (u_1 - (-1)u_0) \times \left(\frac{1}{2}\right)^n = 2 \times \left(\frac{1}{2}\right)^n$$

4. Déterminer l'expression du terme général de la suite (w_n) . Comme la suite (w_n) est une suite géométrique de raison $\alpha = -1$ alors :

$$\forall n \in \mathbb{N}, \ w_n = w_0 \times (-1)^n = (u_1 - \frac{1}{2}u_0) \times (-1)^n = \frac{1}{2} \times (-1)^n$$

5. En déduire l'expression du terme général de la suite (u_n) .

On sait que:

$$\begin{cases} v_n = u_{n+1} + u_n \\ w_n = u_{n+1} - \frac{1}{2}u_n \end{cases}$$

Donc $\forall n \in \mathbb{N}$, $v_n - w_n = \frac{3}{2}u_n$. Finalement:

$$u_n = \frac{2}{3} \left(2 \times \left(\frac{1}{2} \right)^n - \frac{1}{2} \times (-1)^n \right)$$

Exercice 5 (Pas Valentin et Lohann) *Soit u_n la suite définie par :*

$$\begin{cases} u_0 = 12 \\ u_{n+1} = 0.8u_n + 2 \end{cases}$$

1. Montrer par récurrence que $u_n > 10 \ \forall n \in \mathbb{N}$.

Initialisation:

On va montrer la propriété au rang n = 0: $u_0 = 12 > 10$, l'initialisation est donc établie.

Hérédité:

On suppose que la propriété est vraie au rang n :

 $u_n > 10$: c'est l'hypothèse de récurrence

On va regarder si elle est vraie au rang n + 1:

$$u_n > 10$$
: hypothèse de récurrence donc $0.8u_n > 0.8 \times 10$
$$0.8u_n + 2 > 0.8 \times 10 + 2 = 10$$
 c'est à dire $u_{n+1} > 10$

L'hérédité est donc établie.

 $Donc \ \forall n \in \mathbb{N}, \ u_n > 10.$

2. Montrer par récurrence que la suite (u_n) est décroissante.

On va montrer la propriété suivante $\forall n \in \mathbb{N}, \ u_n \geq u_{n+1}$.

Commençons au rang n = 0 : $u_0 = 12$ *et* $u_1 = 0.8u_0 + 2 = 10$.

Par conséquent, $u_1 < u_0$, la propriété **Hérédité**:

On suppose que la propriété est vraie au rang n :

 $u_n \ge u_{n+1}$: c'est l'hypothèse de récurrence

On va regarder si elle est vraie au rang n + 1:

$$u_n \ge u_{n+1}$$
: hypothèse de récurrence
$$donc\ 0.8u_n \ge 0.8u_{n+1}$$

$$0.8u_n + 2 \ge 0.8 \times u_{n+1} + 2$$
 c'est à dire $u_{n+1} > u_{n+2}$

L'hérédité est donc établie. Donc $\forall n \in \mathbb{N}, u_n > u_{n+1}$.

- 3. En déduire que la convergence de la suite u_n.
 La suite est décroissante et minorée par 10, donc, d'après le théorème de convergence monotone, la suite converge vers une valeur réelle
- **4.** On définit la suite (v_n) pour tout entier naturel n par :

$$v_n = u_n - 10$$

Montrer que cette suite est géométrique de raison 0.8.

Pour tout entier naturel n:

$$v_{n+1} = u_{n+1} - 10$$

$$= 0.8u_n + 2 - 10$$

$$= 0.8u_n - 8$$

$$= 0.8(u_n - 10)$$

$$= 0.8v_n$$

La suite (v_n) *est donc géométrique de raison* 0.8 *et de premier terme* $v_0 = u_0 - 10 = 2$.

5. Donner l'expression de v_n en fonction de n pour tout entier naturel n. Pour tout entier naturel n:

$$v_n = v_0 \times q^n = 2 \times 0.8^n$$

6. En déduire l'expression de u_n pour tout entier naturel n. Pour tout entier naturel n:

$$v_n = u_n - 10 \Leftrightarrow u_n = v_n + 10 \Leftrightarrow u_n = 10 + 0.8^n$$

7. En déduire la limite de la suite (u_n) .

La limite de la suite constante 10 est 10 et celle de la suite géométrique 0.8^n est 0 car sa raison est strictement comprise netre -1 et 1.

Par conséquent, la limite de la suite (u_n) est 10.