Constraint Satisfaction Problems

- CSP examples
- General search applied to CSP
- Backtracking
- Forward Checking
- Heuristics for CSPs

Constraint Satisfaction Problems (CSPs)

- Standard Search Problem:
 - State is a 'black box' any data structure that supports goal test, evaluation, and successor
- CSP
 - State and goal test conform to a simple representation (problem specific)

CSP

- Definition:
 - Variables: X₁, X₂, ..., Xₙ
 - Constraints: C_1 , C_2 , ..., C_m
 - Each domain D_i for a variable X_i has a set of possible values D_i={v_i¹, v_i², ..., v_i^k}
 - Each C_i specifies a subset of variables, and limits the combinations of values for that subset.
 - A state is then an assignment of values to some or all of the variables {X_i=v_i¹, X_i=v_i³,...}
 - A solution is a complete assignment that satisfies all constraints
 - Sometimes an objective function must be maximized/minimized as well

Example: 4-Queens

- Assume one queen in each column
- Which row does each go in?
 - Variables: Q₁, Q₂, Q₃, Q₄
 - Domains: $D_i = \{1,2,3,4\}$
 - Constraints:
 - $Q_i \neq Q_i$ (cannot be in same row)
 - $|Q_i Q_j| \neq |i-j|$ (or the same diagonal)

E.g., values for (Q₁, Q₂) are:
 (1,3) (1,4) (2,4) (3,1) (4,1) (4,2)

Constraint Graph

- Binary CSP each constraint relates at most two variables, a binary constraint (Q₂ ≠ Q₄)
- Higher order constraints can all be reduced to binary constraints with the introduction of auxiliary variables
- Constraint Graph nodes are variables, arcs show constraints

Example: Map Coloring

- Color a map so that no adjacent territories have the same color
 - Variables: territories C_i
 - Domains: {Red, Green, Blue}
 - Constraints: $C_1 \neq C_2, C_2 \neq C_5,...$

Other Examples

- Assignment Problems
 - Who teaches which class
- Timetable Problems
 - Which class is offered when and where
- Hardware Configuration
- Spreadsheets
- Transportation Scheduling
- Factory Scheduling
- Floor Planning
- Note: Real world problems involve real-valued or continuous variables and sometimes preferences (represented as cost)

Applying Standard Search

- Start with straight-forward (dumb) approach
 - States are defined by the values assigned so far
 - Initial State: all variables unassigned
 - Operators: assign a value to an unassigned variable
 - Goal Test: all variables assigned, no constraints violated

Implementation

- CSP state keeps track of which variables have values
- Each variable has a domain and a current value
- Constraints may be represented
 - Explicitly as a set of allowable values, or
 - Implicitly by a function that tests for satisfaction
- Datatype CSP-State
 - Components: Unassigned, set of variables not assigned Assigned, set of variables that have values
- Datatype CSP-Var
 - Components: Name, for I/O purposes
 Domain, a list of possible values
 Value, a current value (if any)

Searching for Map Coloring

Initial State:

Unassigned WA, NT, SA, Q, NSW, V, T Assigned

What are the next states?

Complexity of Simple Search

- Search algorithm to use?
 - Any uninformed search algorithm
- Maximum depth of space (m)
 - m = n = |X|
- Depth of solution space (d)
 - d = n
- Branching factor (b)

n!dn leaves in the tree

```
b_0 = nd

b_1 = (n-1)d leaves = n(n-1)d^2

b_2 = (n-2)d leaves = n(n-1)(n-2)d^3

...
```

Making Improvements

- Search for this type of problem can be improved significantly by noting
 - The order of the assignment variable assignment doesn't matter (commutative)
 - The same states appear many times in the tree
- If we want to improve this, we should enforce an ordering constraint to limit the repeated work.

Backtracking Search

- A modified depth-first search
 - Fixed order of assignment
 - Always make assignments in the same order
 - Reduces branching factor from $\sum_{i=1,n} |D_i|$ to $|D_i|$
 - Check for violated constraints
 - Don't create successors that violate a constraint
 - Don't expand a state that violates a constraint

Problems with Backtracking Search

If we select the wrong branch, we can explore all possible paths even if there is no way to succeed.

- Backtracking Search is basically uninformed search for CSPs
- Can solve up to 15-Queens in a reasonable time

- An additional improvement is to consider the variable constraints for selection as far in advance as possible.
 - Whenever a variable X is assigned, delete from variable Y's domain any value inconsistent with the value chosen for X.
- Can solve up to 30-Queens in a reasonable time

Forward Checking

Choose a color for Western Australia

	Red	Grn	Blue
Western Australia			
Northern Territory			
South Australia			
Queensland			
New South Wales			
Victoria			
Tasmania			

Choose a color for Western Australia

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х		
South Australia	Х		
Queensland			
New South Wales			
Victoria			
Tasmania			

Forward Checking

Choose a color for the Northern Territory

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	
Queensland		Х	
New South Wales			
Victoria			
Tasmania			

Choose a color for Queensland

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	X	Χ	X
Queensland		Х	√
New South Wales			Х
Victoria			
Tasmania			

Forward Checking

 Because South Australia is overconstrained, we must back up as in Backtracking Search

	Red	Grn	Blue
Western Australia	V	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	Х
Queensland		Х	√
New South Wales			Х
Victoria			
Tasmania			

Choose a color for the South Australia

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	√
Queensland		Х	Х
New South Wales			Х
Victoria			
Tasmania			

Help!

- Forward checking can help out some.
 - Went from solving 15-Queens to 30-Queens
- In the real-world, problems are much more complex
- The answer is?

Heuristics for CSPs

- We can make more intelligent decisions on
 - Which value to choose for each variable
 - Which variable to assign next
- Given WA = Red, NT = Green choose Q?

- Given WA = Red, NT = Green, choose what?
- Can solve n-Queens for n = 1000

Heuristics for CSPs

- We can make more intelligent decisions on
 - Which value to choose for each variable
 - Which variable to assign next

- Given WA = Red, NT = Green choose Q?
 - Q = Red: the least constraining value
- Given WA = Red, NT = Green, what next?
 - Select for SA: the most constrained state
- Can solve n-Queens for n = 1000

 Select most constrained state first, Western Australia

	Red	Grn	Blue
Western Australia			
Northern Territory			
South Australia			
Queensland			
New South Wales			
Victoria			
Tasmania			

Heuristic Forward Checking

Choose a color for Western Australia

	Red	Grn	Blue
Western Australia	V	Х	Х
Northern Territory	Х		
South Australia	Х		
Queensland			
New South Wales			
Victoria			
Tasmania			

 Choose a color for the 'most' constrained state, Northern Territory

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	
Queensland		Х	
New South Wales			
Victoria			
Tasmania			

Heuristic Forward Checking

 Choose a color for the 'most' constrained state, South Australia

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	√
Queensland		Х	Х
New South Wales			Х
Victoria			Х
Tasmania			

 Choose a color for the 'most' constrained state, Queensland

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	√
Queensland	√	Х	Х
New South Wales	Х		Х
Victoria			Х
Tasmania			

Heuristic Forward Checking

 Choose a color for the 'most' constrained state, New South Wales

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	√
Queensland	√	Х	Х
New South Wales	Х	V	Х
Victoria		Х	Х
Tasmania			

 Choose a color for the 'most' constrained state, Victoria

	Red	Grn	Blue
Western Australia	√	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	√
Queensland	√	Х	Х
New South Wales	Х	√	Х
Victoria	√	Х	Х
Tasmania	Х		

Heuristic Forward Checking

 Choose a color for the 'most' constrained state, Victoria

	Red	Grn	Blue
Western Australia	V	Х	Х
Northern Territory	Х	V	Х
South Australia	Х	Х	V
Queensland	V	Х	Х
New South Wales	Х	V	Х
Victoria	V	Х	Х
Tasmania	Х	V	Х

Search Based CSP

- Dumb search can solve CSPs but does not take advantage of knowledge of states
- Backtracking search fixes the order of expansion to prune the search
- Forward checking search attempts to prune paths that can never reach a goal state
- Heuristics such as most constrained variable or least constrained value yield dramatic improvements

Iterative Algorithms for CSPs

- Hill-climbing and Simulated annealing typically work with "complete" states, i.e., all variables assigned
- To apply to CSPs
 - Allow state with unsatisfied constraints
 - Operators reassign variable values
- Variable selection
 - Randomly select any conflicted variable

min-conflict Heuristic

- Choose value that violates the fewest constraints, i.e., hill-climb with
- h(n) = # violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: h(n) = number of attacks

min-conflicts Performance

- Given a random initial state, can solve n-queens in almost constant time for arbitrary n with high probability
- The same appears to be true for any randomly generated CSP except in a narrow range of the ratio

CSP Summary

- CSPs are defined by
 - A set of variables V_i with values from domain D_i
 - Set of constraints specifying allowable combinations of values for subsets of variables
- Traditional search is not efficient
 - Order of assignment is irrelevant
 - Adding assignments cannot correct a violated constraint

CSP Summary

- Backtracking search is depth-first search with a fixed order of assignment that checks for violated constraints
- Forward checking tracks legal values for unassigned variables and ends when a variable has no legal values
- Heuristics make a huge improvement in speed
- Iterative algorithms can work with minconflict heuristic

Next Time

- Game Playing
 - Can we use what we have learned about search to develop computer programs that beat the worlds best human players at their own game?