→ Performing K-Means clustering method on Airline Data set

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
from sklearn.cluster import KMeans

data = pd.read_excel('/content/EastWestAirlines.xlsx', sheet_name='data')
data.head()
```

₽		ID#	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_trai
	0	1	28143	0	1	1	1	174	
	1	2	19244	0	1	1	1	215	
	2	3	41354	0	1	1	1	4123	
	3	4	14776	0	1	1	1	500	
	4	5	97752	0	4	1	1	43300	4

```
ID# 0
Balance 0
Qual_miles 0
cc1_miles 0
cc2_miles 0
cc3_miles 0
Bonus_miles 0
Bonus_trans 0
Flight miles 12mo 0
```

Flight_trans_12

Days since enroll

data.isna().sum()

0

0

```
-3.62167870e-01, 1.37995704e+00, -7.66919299e-01],
[-3.20031232e-01, -1.86298687e-01, -7.69578406e-01, ...,
-3.62167870e-01, 1.41192021e+00, -7.66919299e-01],
...,
[-4.29480975e-05, -1.86298687e-01, 6.83121167e-01, ...,
-3.62167870e-01, -1.31560393e+00, 1.30391816e+00],
[-1.85606976e-01, -1.86298687e-01, -7.69578406e-01, ...,
-9.85033311e-02, -1.31608822e+00, -7.66919299e-01],
[-7.00507951e-01, -1.86298687e-01, -7.69578406e-01, ...,
-3.62167870e-01, -1.31754109e+00, -7.66919299e-01]])
```

#How to find optimum number of cluster
The K-Means algorithm aims to choose centroids that minimise the inertia, of (WCSS) with

```
wcss = []
for i in range(1,10):
    kmeans = KMeans(n_clusters=i, random_state=0)
    kmeans.fit(scaled_data_df)
    wcss.append(kmeans.inertia_)

plt.plot(range(1,10), wcss)
plt.plot('Elbow Method')
plt.xlabel('Number of clusters')
plt.ylabel('WCSS')
plt.show()
```


K = 5 is the good value to be considered

array([1, 1, 1, ..., 2, 1, 1], dtype=int32)

#Assign clusters to the data set
data['Clusterid_new'] = cluster_new.labels_

data.head()

	ID#	Balance	Qual_miles	cc1_miles	cc2_miles	cc3_miles	Bonus_miles	Bonus_t
0	1	28143	0	1	1	1	174	
1	2	19244	0	1	1	1	215	
2	3	41354	0	1	1	1	4123	
3	4	14776	0	1	1	1	500	
4	5	97752	0	4	1	1	43300	

data.groupby('Clusterid_new').agg(['mean']).reset_index()

	Clusterid_new	ID#	Balance	Qual_miles	cc1_miles	cc2_miles	cc
		mean	mean	mean	mean	mean	me
C	0	2057.295082	119660.491803	5351.065574	2.000000	1.000000	
1	1	2237.521395	43543.198098	42.349049	1.225436	1.019414	
2	2	1598.158147	117485.166933	59.420128	3.707668	1.002396	
3	3	1757.802721	190251.952381	458.734694	2.224490	1.040816	
4	4	1664.866667	138061.400000	78.800000	3.466667	1.000000	4

✓ 1s completed at 2:28 AM

×