Conversions: (50 pts)

1. (2 pts) Convert the following decimal numbers to hexadecimal. Assume 8-bits.

a. -75

b. 208

2. (4 pts) Convert the following hexadecimal value to decimal. Assume 8-bits and show the signed and unsigned values.

a. 0xB4 Signed: ____ Unsigned: ____

3. (4 pts) Convert the binary number to hex and the hex number to binary.

a. 100101111101001₂

b. 0x4ACE

4. (8 pts) For the numbers below, perform the operations as dictated byte the table.

Operations:	<u>ADD</u>	<u>OR</u>	AND	<u>XOR</u>
	0xB3	0xA9	0xA7	0x5E
	0x4D	0xB6	0xF0	0xB5
Results:				

5. (8 pts) For the ADD instruction, what is the value of the following flags after the operation: (Assume 8 bits.) < *** NOTE: -1 for a wrong answer so don't guess. ***>

a. CF: ____

SF: ____

OF: ____

ZF: ____

6.	(2 pts) What hex number would you add to 0xA4 to set the ZERO flag?		
7.	(2 pts) What hex number would you add to 0x72 to set the OVERFLOW flag?		
8.	(8 pts) Perform an arithmetic right shift on #a. and a logical right shift on #b. below. Show the result hex and decimal after the shift.		
	a. 0x97 (-105) SAR:: hex: decimal: * Doing Arithmetic Shift Right, so signed		
	b. 0x97 (+151) SHR:: hex: decimal: * Doing Logical Shift Right, so unsigned!		
9.	(6 pts) Given 12 bits:		
	a. How many possible values can be represented?		
	b. What is the unsigned range of values?		
	c. What is the signed range of values if it represented a two's complement number?		
10	. (6 pts) Show the three logical operations and values needed to effect the following changes on a 16 bit number: Clear bits 7 and 12, set bits 2, 4, and 6, and invert bits 1 and 14. All other bits to remain unchanged.		