MSCI 261 Midterm Review (Chpt. 2-5)

Cash Flow Diagrams

- Cash inflows and outflows are represented by arrows
- Each "year" point represents the beginning of that year

Interest

- Compound interest: $F = P(1+i)^N$
 - F = future value (value at the end of year N)
 - $P = \text{present value (value at the } \underline{\text{beginning of year } 0})$
 - \bullet i = interest rate (per period)
 - ightharpoonup N =number of compounding periods
- Simple interest: F = PN(1+i)
- Nominal interest rate: i_s
 - "Normal" way of stating interest rate
 - \blacksquare If annual nominal rate = 12%/year, then monthly nominal rate = 1%/month
- Effective interest rate: i_e
 - "Actual" interest rate
- Converting from smaller period to large period:
 - \blacksquare Suppose i_s is stated over a small period

■ Then i_e over a large period, which consists of m small periods, is

$$i_e = (1 + i_s)^m - 1$$

- i.e. effective interest is the rate such that $P(1+i_s)^m = P(1+i_e)$
- Converting from large period to small period:
 - If i_s is given over a large period = m small periods, then interest for small period is simply

$$i = i_s/m$$

- Converting nominal annual to effective annual rate:
 - i.e. converting i_s to i_e for the same large period, which consists of m small compounding periods

$$i_e = (1 + \frac{i_s}{m})^m - 1$$
 where $m = \#$ compounding periods in a year

• Continuous compounding – compounding period is infinitesimally small

$$i_e = \lim_{m \to \infty} \left(1 + \frac{i_s}{m} \right)^m - 1$$
$$= e^{i_s} - 1$$

Compound Interest Factors

- Compound interest factors are just notations to represent formulas used to calculate F (future value), P (present value), or A (annuity).
- e.g. $(F/P, i, N) \to \text{returns } F$, given P, i, and N
- Compound amount factor = $(F/P, i, N) = (1+i)^N$
 - \blacksquare Given how much a payment is worth now, how much is it worth in N years?

$$F = P(F/P, i, N)$$

- Present worth factor = $(P/F, i, N) = \frac{1}{(1+i)^N}$
 - \blacksquare Given how much a payment will be worth in N years, how much is it worth now?

$$P = F(P/F, i, N)$$

- Sinking fund factor = $(A/F, i, N) = \frac{i}{(1+i)^N 1}$
 - Given how much an amount should be worth in N years, how much should I deposit/pay each year (i.e. annuity)?

$$A = F(A/F, i, N)$$

- Uniform series compound amount factor $=(F/A,i,N)=\frac{(1+i)^N-1}{i}$
 - If I deposit/pay A each year, how much will it be worth in N years?

$$F = A(F/A, i, N)$$

- Capital recovery factor = $(A/P, i, N) = \frac{i(1+i)^N}{(1+i)^N 1}$
 - Given how much a payment is worth now, how much should I deposit/pay each year in order to recover this payment in N years?

$$A = P(A/P, i, N)$$

- Series present worth factor = $(P/A, i, N) = \frac{(1+i)^N 1}{i(1+i)^N}$
 - \blacksquare If I despoit/pay A each year for N years, how much is it all worth today?

$$P = A(P/A, i, N)$$

Conversion Factors

• Arithmetic gradient to annuity conversion factor = $(A/G, i, N) = \frac{1}{i} - \frac{N}{(1+i)^N - 1}$

- Returns an annuity value, **not** the present worth
- \blacksquare Annuity increases/decreases by an amount G each year
 - \circ Year 1: A = A'
 - \circ Year 2: A = A' + G
 - \circ Year 3: A = A' + 2G
 - $\circ \quad \text{Year } N \colon A = A' + (N-1)G$
- First find $A_{total} = A' + G(A/G, i, N)$, then $P = A_{total}(P/A, i, N)$

- Geometric gradient to present worth conversion factor = $(P/A, g, i, N) = \frac{(P/A, i^o, N)}{1+g}$
 - \blacksquare Annuity grows by a rate g each year
 - \circ Year 1: A = A'
 - Year 2: A = A'(1+g)
 - Year 3: $A = A'(1+g)^2$
 - Year $N: A = A'(1+g)^{N-1}$
 - Growth-adjusted interest rate = $i^o = \frac{1+i}{1+g} 1$
 - If g = i > 0, the growth rate cancels the interest rate so $i^o = 0$, and $P = \frac{NA}{1+g}$

Compound Interest Factor	Excel Function
P = A(P/A, i, N)	P = PV(i, N, -A)
P = F(P/F, i, N)	P = PV(i, N, 0, -F)
F = A(F/A, i, N)	F = FV(i, N, -A)
F = P(F/P, i, N)	F = FV(i, N, 0, -P)
A = P(A/P, i, N)	A = PMT(i, N, -P)
A = F(A/F, i, N)	A = PMT(i, N, 0, -F)

Calculating Present and Future Worth

• Present worth can also be calculated as = sum of revenue – cost in each year, divided by the discount in that year $(1+i)^k$

$$PW = -C_{initial} + \frac{R_1 - C_1}{(1+i)^1} + \frac{R_2 - C_2}{(1+i)^2} + \dots + \frac{R_N - C_N}{(1+i)^N}$$

- Capital recovery formula:
 - \blacksquare Given initial purchase cost P (year 0) and final salvage value S (year N), what's the annual saving A required to justify this purchase?

$$A = P(A/P, i, N) - S(A/F, i, N) = (P - S)(A/P, i, N) + S \cdot i$$

- If payment period \neq compound period for annuities:
 - Method 1: calculate PV or FV of each annuity individually and sum
 - \circ PV of each year = A(P/F, i, N)
 - \circ FV of each year = A(F/P, i, N current year)
 - Method 2: convert compounding period \rightarrow payment period (i.e. find effective interest)
 - \circ $i_e = (1+i)^m 1$, where m =the # of compounding periods in a payment period
 - Method 3: convert annuity → equivalent annual annuity (can't use this for annuities with gradients)
 - \circ i.e. an annuity payment at the end of m years is the FV of m years of equivalent annual annuities
 - \circ $A_{annual} = A(A/F, i, m)$, then find PV or FV over total # of compounding years
- If $N \to \infty$:
 - Present worth of a project that continues indefinitely, with <u>infinite series of uniform cash flows</u> is called the **capitalized value**

$$P = \lim_{N \to \infty} A(P/A, i, N) = \frac{A}{i}$$

Comparison Methods

•