

## UNIVERSITÄT BAYREUTH Physik

# Theoretische Physik

Physikalisches Rechnen Stoffsammlung

> von Moritz Schramm

# Inhaltsverzeichnis

| 1 | Gru                                              | ındlegendes                               |  |
|---|--------------------------------------------------|-------------------------------------------|--|
|   | 1.1                                              | Skalare, Vektoren und Matrizen            |  |
|   | 1.2                                              | Determinante                              |  |
|   | 1.3                                              | Eigenwerte und Eigenvektoren              |  |
|   | 1.4                                              | Totale Ableitung                          |  |
|   | 1.5                                              | Taylorreihe                               |  |
|   | 1.6                                              | Fourier Reihen                            |  |
|   | 1.7                                              | Dirac-Delta-Funktion                      |  |
|   | 1.8                                              | Fourier Transformation                    |  |
| 2 | Mehrdimensionale Integration und Differentiation |                                           |  |
|   | 2.1                                              | Differentiation                           |  |
|   | 2.2                                              | Krummlinige Bewegung                      |  |
|   | 2.3                                              | Nabla Kalkül                              |  |
|   | 2.4                                              | Krummlinige Koordinaten                   |  |
|   | 2.5                                              | Kurvenintegrale                           |  |
| 3 | Diff                                             | erentialgleichungen                       |  |
|   | 3.1                                              | Gewöhnliche Differentialgleichunge (ODEs) |  |
|   | 3.2                                              | Partielle Differentialgleichungen (PDEs)  |  |

## Kapitel 1

# Grundlegendes

## 1.1 Skalare, Vektoren und Matrizen

Ein Skalar a ist eine gewöhnliche Zahl aus einem beliebigen Körper (z.B.  $\mathbb{R}$  oder  $\mathbb{C}$ ). Ein Vektor  $\mathbf{a}$  ist ein Element eines Vektorraums (z.B.  $\mathbb{R}^3$ ). Eine Matrix  $\mathbf{A}$  besteht aus n Spalten und m Reihen (also  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ). Im Folgenden wird nur der dreidimensionale Vektorraum  $\mathbb{R}^3$  betrachtet.

Für den Betrag gilt  $a=|\mathbf{a}|=\sqrt{a_1^2+a_2^2+a_3^2}$ . Der nomierte Vektor  $\hat{\mathbf{a}}=\frac{1}{|\mathbf{a}|}\mathbf{a}$  hat immer die Länge 1.

## Definition 1. Skalarprodukt

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$$

Es gilt:

- $\mathbf{a} \cdot \mathbf{b} = a b \cos \alpha$ , wenn  $\alpha$  der Winkel zwischen  $\mathbf{a}$  und  $\mathbf{b}$  ist.
- $\bullet \ a \cdot b = b \cdot a$
- $(\lambda \mathbf{a}) \cdot \mathbf{b} = \lambda (\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (\lambda \mathbf{b})$
- $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$
- $\mathbf{a} \cdot \mathbf{b} = 0 \iff \mathbf{a} \perp \mathbf{b}$

### Definition 2. Kreuzprodukt

$$\mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

### Definition 3. Spatprodukt

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$

Gibt das Volumen, das durch die drei Vektoren aufgespannt wird an.

### Definition 4. Matrix $(3 \times 3)$

$$\mathbf{A} = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

### Definition 5. Matrixmultiplikation

$$\mathbf{A} \cdot \mathbf{B} = \mathbf{C} = (c_{ik}) = \sum_{j=1}^{3} a_{ij} b_{jk}$$

Der Eintrag in der i-ten Reihe und k-ten Spalte in  $\mathbf{C}$  ist das Skalarprodukt der i-ten Reihe der Matrix  $\mathbf{A}$  und der k-ten Spalte der Matrix  $\mathbf{B}$ .

**Hinweis:** A muss von der Form  $m \times n$  und B von der Form  $n \times p$  sein. C hat dann die Form  $m \times p$ .

#### Definition 6. Dyadisches Produkt

$$\mathbf{ab} = \mathbf{a} \cdot \mathbf{b}^t = \begin{pmatrix} x_1 y_1 & x_1 y_2 & x_1 y_3 \\ x_2 y_1 & x_2 y_2 & x_2 y_3 \\ x_3 y_1 & x_3 y_2 & x_3 y_3 \end{pmatrix}$$

#### Definition 7. Inverse einer Matrix

Eine Matrix  $\mathbf{A}^{-1}$  heißt Inverse einer quadratischen Matrix  $\mathbf{A}$ , wenn  $\mathbf{A} \cdot \mathbf{A}^{-1} = \mathbb{I}$ 

Es gilt:

$$\bullet \ \mathbf{A} + \mathbf{B} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} & a_{13} + b_{13} \\ a_{21} + b_{21} & a_{22} + b_{22} & a_{23} + b_{23} \\ a_{31} + b_{31} & a_{32} + b_{32} & a_{33} + b_{33} \end{pmatrix}$$

$$\bullet \ \alpha \mathbf{A} = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \alpha a_{13} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} \\ \alpha a_{31} & \alpha a_{32} & \alpha a_{33} \end{pmatrix}$$

• Transposition: 
$$\mathbf{A}^t = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}^t = \begin{pmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{pmatrix}$$

- $\bullet \ \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C}) = (\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}$
- $\bullet \ \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$
- im Allgemeinen:  $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$
- $\bullet \ (\mathbf{A} \cdot \mathbf{B})^{-1} = \mathbf{B}^{-1} \cdot \mathbf{A}^{-1}$

### 1.2 Determinante

### Definition 8. Entwicklung nach erster Zeile

Sei  $\mathbf{A} = (a_{ij}) \in \mathbb{C}^{n \times n}$ .

$$\det(\mathbf{A}) = \sum_{k=1}^{n} (-1)^{1+k} a_{1k} \det(\mathbf{A}_{1k})$$

wobei  $\mathbf{A}_{jk}$  die Matrix  $\mathbf{A}$  ist, bei der die j-te Zeile und k-te Spalte entfernt wurden (also  $\mathbf{A}_{jk} \in \mathbb{C}^{(n-1)\times (n-1)}$ ).

#### Satz 1. Regel von Sarrus für $3 \times 3$ Matrizen

$$\det(\mathbf{A}) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{13}a_{22}a_{31} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33}$$

## Formel 2. Entwicklung nach beliebiger Zeile oder Spalte

Entwicklung nach k-ter Zeile:

$$\det(\mathbf{A}) = \sum_{j=1}^{n} (-1)^{k-j} a_{kj} \det(\mathbf{A}_{kj})$$

Entwicklung nach k-ter Spalte:

$$\det(\mathbf{A}) = \sum_{i=1}^{n} (-1)^{i-k} a_{ik} \det(\mathbf{A}_{ik})$$

**Hinweis:** Wenn k ungerade wird mit einem positiven Vorzeichen angefangen, welches dann alterniert wird. Wenn k gerade wird mit einem negativen Vorzeichen angefangen und dann alterniert.

#### Satz 3. Multiplikationstheorem

Sei 
$$C = A \cdot B$$
. Dann gilt:  $det(C) = det(A \cdot B) = det(A) det(B)$ .

Eigenschaften von Determi-

## 1.3 Eigenwerte und Eigenvektoren

## Definition 9. Eigenwerte und Eigenvektoren

 $\lambda$  heißt Eigenwert zu einem Eigenvektor  $\mathbf{x}$ , wenn  $\mathbf{x} \neq 0$  und  $\mathbf{A} \cdot \mathbf{x} = \lambda \mathbf{x}$ .

## Formel 4. Charakteristisches Polynom

$$\chi_n(\lambda) = \det(\mathbf{A} - \lambda \mathbb{I})$$

Die Eigenwerte  $\lambda_i$  sind die Nullstellen des charakteristischen Polynoms. Es gibt n Eigenwerte, die jedoch auch komplex und entartet  $(\lambda_i = \lambda_j \text{ für } i \neq j)$  sein können. Zu jedem Eigenwert gibt es einen Eigenvektor  $\mathbf{x}_i$ .

## 1.4 Totale Ableitung

### Formel 5. Totale Ableitung einer Funktion

$$\frac{\mathrm{d}f(x_1(t),\dots,x_n(t),t)}{\mathrm{d}t} = \frac{\partial f}{\partial x_1} \frac{\mathrm{d}x_1}{\mathrm{d}t} + \dots + \frac{\partial f}{\partial x_n} \frac{\mathrm{d}x_n}{\mathrm{d}t} + \frac{\partial f}{\partial t}$$

## 1.5 Taylorreihe

#### Formel 6. Taylorreihe

$$T_{N,f}(x;x_0) = \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

#### Formel 7. Taylorentwicklung in mehreren Variablen

$$T_{f(x,y)} = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{\partial^n}{\partial x^n} \frac{\partial^m}{\partial y^m} f \bigg|_{(x_0,y_0)} \frac{1}{n!m!} (x - x_0)^n (y - y_0)^m$$

## 1.6 Fourier Reihen

#### Formel 8. Fourier Reihe

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} dx \, f(x) \, e^{-inx}$$

4

## 1.7 Dirac-Delta-Funktion

Definition 10. Als Ableitung der Stufenfunktion

Definition 11. Als Limes einer geeigneten Funktionenschar

Definition 12. Durch integrale Eigenschaft

Rechenregeln:

## 1.8 Fourier Transformation

## Formel 9. Fourier Transformation

Transformation in reziproken Raum (Fourier Raum):

$$\tilde{f}(k) = \int_{-\infty}^{\infty} dx \, f(x) \, e^{-ikx} =: \mathcal{F} f(x)$$

Rücktransformation:

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, \tilde{f}(k) \, e^{+ikx} =: \mathcal{F}^{-1} \, \tilde{f}(k)$$

Eigenschaften:

Formel 10. Mehrdimensionale Fourier-Transformation

# Kapitel 2

# Mehrdimensionale Integration und Differentiation

## 2.1 Differentiation

### Formel 11. Differentiation mit Vektoren und Differentialen

- (i)  $\frac{d}{dt}(\mathbf{a} + \mathbf{b}) = \frac{d}{dt}\mathbf{a} + \frac{d}{dt}\mathbf{b}$
- (ii)  $\frac{d}{dt}(\mathbf{a} \cdot \mathbf{b}) = \frac{d}{dt}\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \frac{d}{dt}\mathbf{b}$
- (iii)  $\frac{d}{dt}(\mathbf{a} \times \mathbf{b}) = \frac{d}{dt}\mathbf{a} \times \mathbf{b} + \mathbf{a} \times \frac{d}{dt}\mathbf{b}$
- (iv)  $\frac{\mathrm{d}}{\mathrm{d}t}(f\mathbf{b}) = \frac{\mathrm{d}}{\mathrm{d}t}f \mathbf{a} + f \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{a}$

Alle Regeln gelten auch für Differentiale, z.B.  $d(\mathbf{a} \cdot \mathbf{b}) = d\mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot d\mathbf{b}$ 

- 2.2 Krummlinige Bewegung
- 2.3 Nabla Kalkül
- 2.4 Krummlinige Koordinaten
- 2.5 Kurvenintegrale

# Kapitel 3

# Differentialgleichungen

- 3.1 Gewöhnliche Differentialgleichunge (ODEs)
- 3.2 Partielle Differentialgleichungen (PDEs)