Table 1: Number of instances with compiler errors in unconstrained (Standard), idealized syntax-only (Syntax), and our proposed type-aware (Types) constraining. Type-aware constraining reduces compiler errors by 75.3% and 52.1% in the synthesis of HumanEval and MBPP problems respectively, compared to only 9.0% and 4.9% ideal improvement through syntax-only constraining on the two datasets respectively.

		Synthesis			Translation			
	Model	Standard	Syntax	Types	Standard	Syntax	Types	
HumanEval	Gemma 2 2B	103	$92_{\downarrow 10.7\%}$	$44_{\downarrow 57.3\%}$	177	$149_{\downarrow 15.8\%}$	$80_{\downarrow 54.8\%}$	
	Gemma 2 9B	45	$41_{18.9\%}$	$13_{\downarrow71.1\%}$	75	$63_{\downarrow 16.0\%}$	$16_{\downarrow78.7\%}$	
	${\rm Gemma}~2~27{\rm B}$	15	$13_{\downarrow 13.3\%}$	$2_{\downarrow 86.7\%}$	20	$20_{\downarrow 0.0\%}$	$3_{\downarrow 85.0\%}$	
	DeepSeek Coder 33E	3 26	$25_{\downarrow 3.8\%}$	$5_{\downarrow 80.8\%}$	18	$17_{\downarrow 5.6\%}$	$7_{\downarrow 61.1\%}$	
	CodeLlama 34B	86	$71_{\downarrow17.4\%}$	$28_{\downarrow 67.4\%}$	158	$124_{\downarrow 21.5\%}$	$59_{\downarrow 62.7\%}$	
	Qwen2.5 32B	17	$17_{\downarrow 0.0\%}$	$2_{\downarrow 88.2\%}$	24	$21_{\downarrow 12.5\%}$	$5_{\downarrow79.2\%}$	
MBPP	Gemma 2 2B	67	$64_{\downarrow 4.5\%}$	$27_{\downarrow 59.7\%}$	126	111 _{↓11.9%}	$\overline{\textbf{79}_{\downarrow 37.3\%}}$	
	Gemma 2 9B	30	$29_{\downarrow 3.3\%}$	$10_{\downarrow 66.7\%}$	67	$61_{\downarrow 9.0\%}$	$33_{\downarrow 50.7\%}$	
	Gemma 2 27B	20	$19_{\downarrow 5.0\%}$	$7_{\downarrow 65.0\%}$	37	$36_{\downarrow 2.7\%}$	$22_{\downarrow 40.5\%}$	
	DeepSeek Coder 33E	32	$32_{\downarrow 0.0\%}$	$19_{\downarrow 40.6\%}$	29	$27_{\downarrow 6.9\%}$	$13_{\downarrow 55.2\%}$	
	CodeLlama 34B	80	$71_{\downarrow11.2\%}$	$41_{\downarrow 48.8\%}$	126	$114_{\downarrow 9.5\%}$	$54_{\downarrow 57.1\%}$	
	Qwen2.5 32B	19	$18_{\downarrow 5.3\%}$	$13_{\downarrow 31.6\%}$	22	$22_{\downarrow 0.0\%}$	$16_{\downarrow 27.3\%}$	

Table 2: Trying to repair non-compiling instances generated with unconstrained synthesis using unconstrained decoding (Standard) and type-aware constraining (Types). The results are the number of non-repaired instances. Constrained generation boosts repair by on average 50.1%.

(a) Repair of HumanEval

(b) Repair of MBPP

Model	Standard	Types	Model	Standard	Тур
Gemma 2 2B	194,133.6%	103 _{164.7%}	Gemma 2 2B	$215_{\downarrow 20.7\%}$	125 ₁₅₃
Gemma 2 9B	$113_{\downarrow 61.3\%}$	$52_{\downarrow 82.2\%}^{\cdot}$	Gemma 2 9B	$151_{\downarrow 44.3\%}$	$82_{\downarrow 69}$
Gemma 2 27B	$45_{\downarrow 84.6\%}$	$22_{\downarrow 92.5\%}$	Gemma 2 27B	$91_{\downarrow 66.4\%}$	$50_{\downarrow 8}$
DeepSeek Coder 33B	$36_{187.7\%}$	$15_{\downarrow 94.9\%}$	DeepSeek Coder 33B	$107_{\downarrow 60.5\%}$	$59_{\downarrow7}$
CodeLlama 34B	$153_{\downarrow 47.6\%}$	$48_{\downarrow 83.6\%}$	CodeLlama 34B	$178_{\downarrow 34.3\%}$	$95_{\downarrow 64}$
Qwen 2.5 32B	$36_{187.7\%}$	$13_{\downarrow 95.5\%}^{\cdot}$	Qwen 2.5 32B	$72_{\downarrow 73.4\%}$	${f 45}_{\downarrow 8}$

Table 3: Pass@1 (in %) of unconstrained (Standard) and type-aware constrained (Types) generated code for the tasks of Synthesis, Repair, and Translation.

		Synthesis		Translation		Repair	
	Model	Standard	Types	Standard	Types	Standard	Types
HumanEval	Gemma 2 2B	29.1	30.2	50.2	53.9	11.6	20.9
	Gemma 2 9B	56.6	58.3	73.7	78.3	24.0	34.9
	$\operatorname{Gemma}\ 2\ 27B$	69.5	71.2	86.6	87.7	38.4	41.1
	DS Coder 33B	68.9	71.1	88.7	90.1	47.6	50.7
	CodeLlama 34B	41.0	43.4	58.6	63.5	17.5	27.4
	$\mathrm{Qwen}2.5~32\mathrm{B}$	79.6	81.8	92.1	$\boldsymbol{93.9}$	65.4	71.2
	Gemma 2 2B	40.4	42.4	52.3	56.0	11.1	20.7
	Gemma 2 9B	65.4	67.4	71.4	75.8	22.1	29.2
MBPP	$\operatorname{Gemma}\ 2\ 27B$	70.6	72.1	83.1	84.4	35.8	41.3
	DS Coder 33B	65.4	67.2	85.9	89.1	32.1	39.5
	CodeLlama 34B	42.2	45.6	55.7	63.3	14.8	24.7
	$\mathrm{Qwen}2.5~32\mathrm{B}$	76.3	76.6	89.6	$\boldsymbol{90.4}$	44.6	50.2

Model	${\bf Human Eval}$	MBPP
Gemma 2 2B Gemma 2 9B Gemma 2 27B	$\begin{array}{c} 6.7_{\uparrow38.3\%} \\ 8.3_{\uparrow29.2\%} \\ 11.7_{\uparrow19.9\%} \end{array}$	$6.3_{\uparrow 35.4\%} \\ 9.5_{\uparrow 46.8\%} \\ 11.7_{\uparrow 32.8\%}$
DeepSeek Coder 33B CodeLlama 34B Qwen2.5 32B	$11.5_{\uparrow 36.2\%} \\ 7.6_{\uparrow 40.8\%} \\ 7.3_{\uparrow 39.6\%}$	$\begin{array}{c} 9.4_{\uparrow 59.5\%} \\ 7.0_{\uparrow 37.6\%} \\ 4.9_{\uparrow 54.8\%} \end{array}$

Table 4: Median time taken per instance in seconds.