BE1431

Total No. of Printed Pages: 2

B.E. - (Computer) (Sem - VIII) (Revised Course 2019-2020) EXAMINATION DECEMBER 2023

Cryptography Techniques for Network Security

[Time: 3:00 Hours] [Max. Marks: 100]

- Instructions: 1. Answer any two full questions from PART A, Answer any two full questions from PART B, and any one full question from Part C
 - 2. Draw neat diagram wherever necessary
 - 3. Assume Suitable data if required

PART A

- **a.** Explain the different types of attacks that can be performed on Encrypted (10)Messages **b.** Prove asymmetric key encryption can be achieved using two prime numbers 7 & (5) 11 Explain in brief different types of Steganography Techniques **(5) a.** If the Cipher text obtained is **oeochemmormworwot** in round 2, with a key of \mathbf{Q}^2 (10)order 4,6,1,2,5,3 apply simple columnar transposition to get the plain text back. **b.** With an appropriate diagram explain AES (10)Illustrate man in the middle attack if Alice and Bob are using Diffie Hellman (10)
- **Q3 a.** Illustrate man in the middle attack if Alice and Bob are using Diffie Hellman
 Key exchange algorithm & prefers to use value of n=11 & g=7 and Tom is a
 attacker using values x=8 & y=6, Alice using x=3 & Bob using y=9
 - **b.** Encrypt using Hill cipher the plain text message "retreat now" using the key phrase "backup" and a 3*3 matrix (10)

			BE1431
		PART B	33
Q4	a.	Explain in detail SHA 512	(10)
	b.	Explain the verification and the signing process of a Digital Signature	(10)
Q 5	a.	Justify the use of Hash function in a Digital Signature	(5)
	b.	Explain the process of exchange of public key certificates	(5)
	c.	Write a note on the functions and Cryptographic algorithms supported by S/MIME	(10)
Q6	a.	With a neat diagram explain MAC based on Hash function (HMAC)	(10)
	b.	Explain X.509 certificate format	(5)
	C.	State the applications of Cryptographic hash functions	(5)
25/100		PART C.	35
Q 7	a.	Explain the Encryption and decryption process of DES	(10)
	b.	Explain different types of Block cipher modes	(10)
Q8	a.	Explain the following with respect to Kerberos version 4	(10)
		i. Authentication service Exchange to obtain ticket-granting ticket	
		ii. Ticket granting service exchange to obtain service granting ticket	
	£ \\	iii. Client/Server Authentication exchange to obtain service	
	9 b.	Explain the process of PGP Message Generation and Reception	(10)