

BIAS

The beast

Klinkenberg 24 Sep 2015

Wat is BIAS

Things that lead us to the wrong conclusions (Field)

$$outcome_i = model_i + error_i$$

$$model_i = b_1 X_{1i} + b_2 X_{2i} + \dots + b_n X_{ni}$$

- X = predictor variables
- b = parameters

BIAS

Verkeerde conclussies over:

- Parameters b_i
- · Standaard error en betrouwbaarheidsintervallen
- · Toetsingsgrootheden en *p-waarden*

means \rightarrow SE \rightarrow CI

 $SE \rightarrow toetsingsgrootheid \rightarrow p-waarden$

The beasts:

- Uitbijters (Outliers)
- Assumpties

Eigen IQ schatting van mannen en vrouwen. Wat we willen is een uitspraak doen over het verschil in de populatie. Niet enkel deze sample. We willen een inferentie maken (Vandaar de term inferentiële statistiek).

```
data = read.csv("IQ.csv")
data[12:17,]
```

##			Time	estamp	<pre>IQ.van.je.buur</pre>	Eigen.IQ	sekse
	##	12	20/09/13	11:06	145	120	0
	##	13	20/09/13	11:06	125	125	0
	##	14	20/09/13	11:06	120	110	0
	##	15	20/09/13	11:06	123	125	1
	##	16	20/09/13	11:06	145	125	1
	##	17	20/09/13	11:06	120	120	0

We zien dat de vrouwen als 0 gecodeerd zijn en mannen als 1. We kunnen dan het regressie model invullen voor dit onderzoek.

Schatting eigen
$$IQ_i = b_0 + b_1 Sekse_i + error_i$$

We kunnen nu de b's berekenen: $b_0 = 120.7130435$ en $b_1 = 1.0918346$

Schatting eigen
$$IQ_i = b_0 + b_1 Sekse_i + error_i$$

Als we dan het regressie model invullen, krijgen we:

##		Eigen.IQ	b.0	b.1	sekse	error
##	12	120	120.713	1.091835	0	-0.7130435
##	13	125	120.713	1.091835	0	4.2869565
##	14	110	120.713	1.091835	0	-10.7130435
##	15	125	120.713	1.091835	1	3.1951220
##	16	125	120.713	1.091835	1	3.1951220
##	17	120	120.713	1.091835	0	-0.7130435

De gemiddelden vormen dus indirect de parameters b's in dit regressie model. Deze b's zijn de schatters van de populatie β 's.

En wat nou als deze gemiddelden niet zo goed zijn?

Bijvoorbeeld omdat er extreme uitbijters tussen zitten.

Zonder deze outliers ziet het er net wat anders uit.

```
##
    factor(sekse) Eigen.IQ
## 1
               0 120.2718
## 2
               1 121.4211
##
     Eigen.IQ
             b.0 b.1 sekse
                                        error
## 16
          125 120.2718 1.149208
                                 1 3.5789474
## 17
          120 120.2718 1.149208 0 -0.2718447
## 18
          115 120.2718 1.149208
                                 0 -5.2718447
## 19
         125 120,2718 1,149208 1 3,5789474
## 20
         120 120.2718 1.149208
                             0 - 0.2718447
## 21
          115 120.2718 1.149208 0 -5.2718447
```

Uitbijters

Uitbijters kunnen grote invloed hebben op de gemiddelden.

- · Verwijderen op basis van boxplot.
- · Verwijderen op basis van 3 standaard deviaties.
- · Trimmed mean
- Winsorizing

Assumpties

- · Additiviteit en lineairiteit
- Normaliteit
- Homoscedasticiteit/homogeniteit van variantie
- · Onafhankelijkheid

Additiviteit en lineairiteit

De afhankelijke variabele is in werkelijkheid lineair gerelateerd aan de predictoren.

$$MODEL_i = b_1 X_{1i} + b_2 X_{2i} + ... + b_n X_{ni}$$

Additiviteit en lineairiteit

Dit is te controleren door een plot te maken van de gestandaardiseerde error/residu en de gestandaardiseerde verwachte uitkomst/model.

Additiviteit en lineairiteit

Normaliteit

- Parameter schattingen *b*'s
- Betrouwbaarheidsintervallen (SE * 1.196)
- Nul hypothese toetsing
- Error

Het gaat niet om de normaliteit van de data maar van de populatie verdeling. Deze willen we testen aan de hand van de data.

Geen zorgen bij grote samples (Centrale limietstelling).

Centrale limietstelling

Normaliteit

Te bekijken met:

· Skewness en Kurtosis

Te toetsen met:

- Kolmogorov-Smirnof test
- Shapiro-Wilk test

Maar hoe groter de sample hoe kleiner de *p-waarde* bij gelijke toetsingsgrootheden. Dus dat bijt elkaar een beetje.

· transformatie van de outcome variable.

Homoscedasticiteit/homogeniteit van variantie

Van invloed op:

- · Parameters b's
- · NHT

De assumptie van de nul hypothese is dat de nul verdeling waar is. Dus bij verschillende samples uit die verdeling, laten we zeggen mannen en vrouwen op IQ, verwachten we dat de variantie van beide groepen identiek is. Anders zou onze assumptie niet gelden.

In algemene termen kunnen we dus zeggen dat op elk niveau van de predictorvariabele de varianties gelijk moeten zijn.

Homoscedasticiteit/homogeniteit

Onafhankelijkheid

De observaties die gedaan zijn, lees: de rijen in SPSS of de proefpersonen in je onderzoek moeten onafhankelijk van alkaar een reactie gegeven hebben op de outcome variable. Het antwoord van persoon B moet niet afhangen van die van pesoon A.

Vragen?