18.102 Assignment 6

Octavio Vega

April 26, 2023

Problem 1

(a)

Proof. Let $\epsilon > 0$, and define $c_1 := a$ and $c_{n+1} := b$.

Since ψ is a step function on [a,b], $\exists c_1 \leq c_2 \leq \cdots \leq c_n \leq c_{n+1} \in [a,b]$ such that $\forall i = 1, \cdots, n$,

$$\psi^{-1}(\{a_i\}) = (c_i, c_{i+1}], \tag{1}$$

where each a_i is one of the finitely many values that ψ takes on.

Choose $\delta > 0$ such that $\delta < \frac{\epsilon}{2n}$. Define $g: [a, b] \to \mathbb{R}$ via

$$g(x) := \begin{cases} \frac{a_i + a_{i-1}}{2} + \left(\frac{a_i - a_{i-1}}{2\delta}\right)(x - c_i), & x \in (c_i - \delta, c_i + \delta) \\ a_i, & x \in [c_i + \delta, c_{i+1} - \delta] \\ -\frac{a_n}{2\delta}(x - b), & x \in (c_{n-1} - \delta, b], \end{cases}$$
(2)

where $a_0 := -a_1$. Then

$$g(a) = \frac{a_1 + a_0}{2} + \left(\frac{a_1 - a_0}{2\delta}\right)(c_1 - c_1) = \frac{a_1 - a_1}{2} = 0,$$
 (3)

and

$$g(b) = -\frac{a_n}{2\delta}(b-b) = 0, \tag{4}$$

as desired. We also see that since g is piecewise linear, it is continuous.

Now consider the difference $|\psi(x) - g(x)|$.

Case 1: $x \in [c_i + \delta, c_{i+1} - \delta]$. Then by (1), we have

$$|\psi(x) - g(x)| = |\psi((c_i, c_{i+1} - \delta)) - a_i| = |a_i - a_i| = 0.$$
 (5)

Case 2: $x \in (c_i - \delta, c_i + \delta)$. Then

$$|\psi(x) - g(x)| = \left| \frac{a_i + a_{i-1}}{2} + \left(\frac{a_i - a_{i-1}}{2\delta} \right) (x - c_i) - \psi(x) \right|$$
 (6)

$$<\left|\frac{a_i+a_{i-1}}{2}+\left(\frac{a_i-a_{i-1}}{2\delta}\right)\delta-\psi(x)\right|$$
 (7)

$$= \left| \frac{a_i + a_{i-1}}{2} + \frac{a_i + a_{i-1}}{2} - \psi(x) \right| \tag{8}$$

$$=|a_i - \psi(x)|\tag{9}$$

$$= 0 \text{ or } |a_{i+1} - a_i|. \tag{10}$$

Case 3: $x \in (c_n - \delta, b)$. Then

$$|\psi(x) - g(x)| = \left| -\frac{a_n}{2\delta}(x - b) - \psi(x) \right| \tag{11}$$

$$<\left|-\frac{a_n}{2\delta}\delta - \psi(x)\right|$$
 (12)

$$= \left| -\frac{a_n}{2} - \psi(x) \right| \tag{13}$$

$$=\frac{3a_n}{2}. (14)$$

So in all three cases, we have that either $|g(x)-\psi(x)|=0$, or $|g(x)-\psi(x)|<\frac{3a}{2}$, or $|g(x)-\psi(x)|<|a_{i+1}-a_i|$.

Define the set E to be the collection of points in [a,b] for which $|\psi(x)-g(x)|\neq 0$. Then

$$E := \bigcup_{k=1}^{n} (c_k - \delta, c_k + \delta). \tag{15}$$

By definition, $\forall x \in E^c$,

$$|\psi(x) - g(x)| = 0 < \epsilon. \tag{16}$$

Since E is a countable union of intervals, we have

$$m(E) = m \left[\bigcup_{k=1}^{n} (c_k - \delta, c_k + \delta) \right]$$
(17)

$$\leq \sum_{k=1}^{n} m \left[\left(c_k - \delta, c_k + \delta \right) \right] \tag{18}$$

$$=\sum_{k=1}^{n}\ell(c_k-\delta,c_k+\delta)$$
(19)

$$=\sum_{k=1}^{n} 2\delta \tag{20}$$

$$=2n\delta\tag{21}$$

$$<2n\frac{\epsilon}{2n}\tag{22}$$

$$=\epsilon,$$
 (23)

as desired. \Box

(b)

Proof. Suppose E is Lebesgue measurable and $m(E) < \infty$. Then by Littlewood's first principle, $\forall \delta > 0 \; \exists$ a finite collection of open intervals $\{U_i\}_{i=1}^n$ such that

$$m\left(E\Delta\bigcup_{i=1}^{n}U_{i}\right)<\delta.$$
(24)

Let $\epsilon > 0$. Since φ is a simple function, then we can express it as

$$\varphi = \sum_{i=1}^{n} a_i \chi_{E_i},\tag{25}$$

where we take U_i such that the symmetric difference

$$m(U_i \backslash E_i) + m(E_i \backslash U_i) < \frac{\epsilon}{n}$$
 (26)

for each $i \in \{1, ..., n\}$.

Let $\psi = \sum_{i=1}^{n} a_i \chi_{U_i}$. Then $\forall x \in U \cap E = (U \Delta E)^c$,

$$|\varphi(x) - \psi(x)| = 0 < \epsilon. \tag{27}$$

We have

$$m(U\Delta E) = \sum_{i=1}^{n} m(U_i \backslash E_i) + \sum_{i=1}^{n} m(E_i \backslash U_i)$$
(28)

$$< n \frac{\epsilon}{n} = \epsilon,$$
 (29)

as desired. \Box

Problem 2

Proof. Let $c_0 = a$, $c_n = b$, and partition [a, b] into disjoint intervals as follows:

$$[a,b] = [c_0, c_1) \cup [c_1, c_2) \cup \dots \cup [c_{n-1}, c_n) \cup \{b\}.$$
(30)

Letting $U_k = [c_{k-1}, c_k)$ for each $k \in \{1, ...n\}$, we have

$$\bigcup_{k=1}^{n} U_k = [a, b). \tag{31}$$

On each interval U_k , extract a closed set F_k such that f is continuous on F_k and such that

$$m\left(\bigcup_{k=1}^{n} F_k^c\right) < \epsilon. \tag{32}$$

Then for each $k \in \{1,...,n\}$, $\exists F_k \subseteq U_k$ closed such that $m(E \backslash F_k) < \frac{\epsilon}{2^n}$ and such that $f|_{F_k}$ is continuous.

Since F_k is closed, then F_k^c is open, so the union $\bigcup_{k=1}^n F_k^c$ is open as well. Then $E = \bigcup_{k=1}^n F_k^c$ can be expressed as a union of disjoint intervals:

$$E = \bigcup_{k=1}^{n} (a_k, b_k).$$
 (33)

Define $g:[a,b]\to\mathbb{R}$ via

$$g(x) := \begin{cases} \frac{x - a_k}{b_k - a_k} f(b_k) + f(a_k), & x \in E \\ f(x), & x \in E^c. \end{cases}$$
(34)

Then

$$\sup_{x \in [a,b]} |g(x)| \le \sup_{x \in E} |g(x)| \le |f(a_k)| + |f(b_k)|, \tag{35}$$

and

$$\sup_{x \in [a,b]} |g(x)| \le \sup_{x \in E^c} |g(x)| \le \sup_{x \in E^c} |f(x)| \le B.$$
 (36)

Also,

$$m(E) = \sum_{k=1}^{n} m(F_k^c) < \sum_{k=1}^{n} \frac{\epsilon}{2^n} = \epsilon.$$
 (37)

Finally, $\forall x \in E^c$, g(x) = f(x), so $|f(x) - g(x)| = 0 < \epsilon$.

Therefore, the function g meets the desired requirements.

Problem 3

(a)

Proof. Since f is Lebesgue integrable, then f is measurable. For each $n \in \mathbb{N}$, let $E_n = f^{-1}([-n,n])$. Then $[-n,n] = [-\infty,n] \cap [-n,\infty]$ and since f is measurable, then $f^{-1}([-\infty,n])$ and $f^{-1}([-n,\infty])$ are measurable. Thus $f^{-1}([-\infty,n] \cap [-n,\infty])$ is measurable. Hence $f^{-1}([-n,n])$ is measurable $\iff E_n$ is measurable.

Define $h_n = f\chi_{E_n}$. Then

$$0 \le \int_a^b |f(x) - h_n(x)| \mathrm{d}x \tag{38}$$

$$= \int_{a}^{b} |f(x) - f(x)\chi_{E_n}(x)| \mathrm{d}x$$
(39)

$$= \int_{a}^{b} |f(x)| |1 - \chi_{E_n}(x)| dx$$
 (40)

$$= \int_{a}^{b} |f(x)| \chi_{E_n^c}(x) \mathrm{d}x \tag{41}$$

$$= \int_{[a,b]\cap E_n^c} |f(x)| \mathrm{d}x,\tag{42}$$

where we have used the simple fact that for a measurable set E, the characteristic function over the set's complement takes the form $\chi_{E^c} = 1 - \chi_E$.

We have
$$[a,b] \cap E_n^c = [a,b] \cap f^{-1}([-n,n])^c$$
. But as $n \to \infty$, $f^{-1}([-n,n]) \to [a,b]$, so $f^{-1}([-n,n])^c \to [a,b]^c$. Hence, $[a,b] \cap E_n^c \to \varnothing$.

Sending $n \to \infty$, we get

$$0 \le \lim_{n \to \infty} \int_{a}^{b} |f(x) - h_n(x)| \mathrm{d}x \tag{43}$$

$$= \lim_{n \to \infty} \int_{[a,b] \cap E_a^c} |f(x)| \mathrm{d}x \tag{44}$$

$$= \int_{\mathcal{C}} |f(x)| \mathrm{d}x \tag{45}$$

$$=0. (46)$$

Thus, $\lim_{n\to\infty} \int_a^b |f(x) - h_n(x)| dx = 0.$

Let $h = \lim_{n \to \infty} h_n = f\chi_{[a,b]}$. Then h is a product of two measurable functions, so h is measurable. Also, h is the limit of a sequence of simple functions $\{h_n\}_n$ with $|h| \le |h_n| \ \forall n \in \mathbb{N}$. So h is bounded.

Therefore
$$\int_a^b |f(x) - h(x)| dx < \epsilon$$
, as desired.

(b)

Proof. By (a), we know that \exists a bounded measurable function $h:[a,b]\to\mathbb{R}$ such that

$$\int_{a}^{b} |f(x) - h(x)| \mathrm{d}x < \frac{\epsilon}{3}.$$
(47)

Next, we approximate h by a simple function $\varphi:[a,b]\to\mathbb{R}$ such that

$$\int_{a}^{b} |h(x) - \phi(x)| \mathrm{d}x < \frac{\epsilon}{3}.$$
 (48)

Finally, by problem (1b), we can approximate φ by a step function ψ such that

$$|\varphi(x) - \psi(x)| < \frac{\epsilon}{3(b-a)}. (49)$$

Integrating (49) over [a, b], this is equivalent to

$$\int_{a}^{b} |\varphi(x) - \psi(x)| \mathrm{d}x < \frac{\epsilon}{3(b-a)} m([a,b]) = \frac{\epsilon}{3}.$$
 (50)

So, by the triangle inequality we have

$$\int_{a}^{b} |f(x) - \psi(x)| dx = \int_{a}^{b} |f(x) - h(x)| + h(x) - \varphi(x) + \varphi(x) - \psi(x) dx \quad (51)$$

$$\leq \int_{a}^{b} |f(x) - h(x)| \mathrm{d}x + \int_{a}^{b} |h(x) - \varphi(x)| \mathrm{d}x + \int_{a}^{b} |\varphi(x) - \psi(x)| \mathrm{d}x \quad (52)$$

$$<\frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3}$$
 (53)

$$=\epsilon$$
. (54)

Thus, ψ suffices.

(c)

Proof. Let $E = \{x \in [a,b] \mid |f(x) - g(x)| \ge \frac{\epsilon}{b-a}\}.$

By what we showed in problem 2, we know \exists such a continuous function $g:[a,b]\to\mathbb{R}$ such that g(a)=g(b)=0 and

$$m\left(E\right) =0. \tag{55}$$

Then we have

$$\int_{a}^{b} |f(x) - g(x)| dx = \int_{E \cup E^{c}} |f(x) - g(x)| dx$$
 (56)

$$= \int_{E} |f(x) - g(x)| dx + \int_{E^{c}} |f(x) - g(x)| dx.$$
 (57)

But m(E) = 0, so $m(E^c) = b - a$. Then

$$\int_{a}^{b} |f(x) - g(x)| dx = \int_{E^{c}} |f(x) - g(x)| dx$$
 (58)

$$< \int_{E^c} \frac{\epsilon}{b-a} \mathrm{d}x \tag{59}$$

$$= (b-a)\frac{\epsilon}{b-a} \tag{60}$$

$$=\epsilon. \tag{61}$$

Hence, g satisfies the desired constraints.

Problem 4

Proof. First, we prove the Riemann-Lebesgue Lemma for step functions.

Let $\psi : [-\pi, \pi] \to \mathbb{C}$ be a step function. Then given a partition $-\pi = x_0 < x_1 < \dots < x_m = \pi$, we may write

$$\psi = \sum_{k=1}^{m} c_k \chi_{[x_{k-1}, x_k)}.$$
 (62)

Consider each of the integrals

$$I_1 = \int_{-\pi}^{\pi} \psi \cos(nx) dx \tag{63}$$

and

$$I_2 = \int_{-\pi}^{\pi} \psi \sin(nx) dx. \tag{64}$$

Computing, we get

$$I_1 = \sum_{k=1}^{m} c_k \int_{-\pi}^{\pi} \chi_{[x_{k-1}, x_k)} \cos(nx) dx$$
 (65)

$$= \sum_{k=1}^{m} c_k \int_{x_{k-1}}^{x_k} \cos(nx) dx$$
 (66)

$$= \sum_{k=1}^{m} c_k \frac{1}{n} \left[\sin(x_k) - \sin(x_{k-1}) \right]. \tag{67}$$

Similarly, we find

$$I_2 = -\sum_{k=1}^{m} c_k \frac{1}{n} \left[\cos(x_k) - \cos(x_{k-1}) \right]. \tag{68}$$

Combining these results, we have

$$\hat{\psi}(n) = \frac{1}{2\pi} (I_1 - iI_2) \tag{69}$$

$$= \frac{1}{2\pi n} \sum_{k=1}^{m} c_k \left[\sin(x_k) - \sin(x_{k-1}) + i \left(\cos(x_k) - \cos(x_{k-1}) \right) \right]. \tag{70}$$

Taking the magnitude, we are left with

$$|\hat{\psi}(n)| \le \sum_{k=1}^{m} \frac{|c_k|}{n} |\sin(x_k) - \sin(x_{k-1}) + i(\cos(x_k) - \cos(x_{k-1}))|$$
 (71)

$$\leq 4\sum_{k=1}^{m} \frac{|c_k|}{n} \xrightarrow{n \to \infty} 0.$$
(72)

Thus, $\lim_{|n|\to\infty} |\hat{\psi}(n)| = 0$.

By problem **3a**, this step function ψ exists for a Lebesgue integrable function $f: [-\pi, \pi] \to \mathbb{C}$, i.e. for $\epsilon > 0$, $\exists \psi$ such that

$$\int_{-\pi}^{\pi} (f(x) - \psi(x)) e^{-inx} dx < \epsilon.$$
 (73)

So we have

$$0 \le \left| \int_{-\pi}^{\pi} f(x)e^{-inx} dx - \int_{-\pi}^{\pi} \psi(x)e^{-inx} dx \right|$$
 (74)

$$\leq \int_{-\pi}^{\pi} \left| (f(x) - \psi(x))e^{-inx} \right| dx \tag{75}$$

$$<\epsilon$$
. (76)

Therefore,
$$\lim_{|n|\to\infty} |\hat{f}(n)| = 0.$$