Uvodne napomene:

U nastavku je dan jedan primjer postupaka rješenja zadataka završnog ispita iz 2018/2019 (inačica A). Treba naglasiti da su moguća i druga rješenja koja na kraju vode do istih rezultata. Dokument je neslužben, a preporučujemo da sve zadatke prvo pokušate samostalno riješiti.

1. (3 boda) U mreži prema slici struja I = 2 A. Odredite tu struju kad se prebaci sklopka u položaj 2.

39% točno 23% krivo 38% bez

prvoa slučaia tražimo doprinos strujnog izvora (nepoznato):

Superpozicija – doprinos naponskog izvora (strujni odspojen):

prvom slučaju samo naponski izvor 24 V daje struju kroz označeni otpornik od 1A smjera prema dolje. Ukupna struja (zbroi doprinosa naponskog izvora i strujnog izvora) kroz taj označeni otpornik je smjera prema dolje.

Dakle, doprinos strujnog izvora je isto <u>1 A prema dolje</u>.

Ovdje nije potrebno tražiti iznos strujnog izvora I_g . Možete ga za vježbu pronaći → iznosi 3 A.

Doprinos strujnog izvora se nije mijenjao, opet je 1A

prema dolie.

Prema superpoziciji zbrojimo doprinose naponskog strujnog izvora. Pazimo na predznake

$$I' = -0.5 + 1 = 0.5 A$$

doprinos strujnog izvora je pozitivan (smjer jednak zadanom), doprinos naponskog izvora je sada negativan (smjer suprotan od zadanoq):

$$I' = -0.5 + 1 = 0.5 A$$

Ukupna struja kroz označeni otpornik je 0,5 A zadanog smjera (prema dolje)!

Drugi slučaj:

Superpozicija - doprinos naponskog izvora (strujni odspojen):

2. (3 boda) Odredite konturne struje \dot{l}_1 i \dot{l}_2 . Zadano: $R = X_{L1} = X_{L2} = 10 \ \Omega, \ k = 1, \ X_C = 20 \ \Omega.$

 $\dot{U}_1 = 20 \text{ V}$ 24% krivo 32% bez

1) Početna shema:

 $X_{\rm M} = k \sqrt{X_{\rm L1} \cdot X_{\rm L2}} = 10 \,\Omega$

2) Priprema za transformaciju točka je na kraju L₁ bliže zajedničkom čvoru, a kod L_2 je na suprotnom kraju.

3) Transformacija:

4) Unos vrijednosti:

5) Sređivanje:

6) Primjena metode konturnih struja:

1:
$$\dot{l}_1(j20) - \dot{l}_2(j20) = +20$$

2: $-\dot{l}_1(j20) + \dot{l}_2(j20 - j10 + 10) = 0$
1: $\dot{l}_1(j20) - \dot{l}_2(j20) = 20$
2: $-\dot{l}_1(j20) + \dot{l}_2(10 + j10) = 0$

$$\dot{l}_2 = \frac{20}{10 - j10} = \frac{2}{1 - j} = \frac{2}{1 - j} \frac{1 + j}{1 + j} = \frac{1 + j}{1 + j} \mathbf{A}$$

Iz 1:
$$\dot{I}_1(j20) - (1+j)(j20) = 20 \rightarrow \dot{I}_1 = 1$$

3. (3 boda) Odredite struju \dot{I} . Zadano: $\dot{U}=110~\text{V},~\underline{Z}=j5~\Omega$.

12% točno 37% krivo 51% bez [22% 0 A → krivo jer ovo nije most u ravnoteži zbog srednje grane 3-0]

Označimo sve čvorove – nije ništa zadano pa sami odabiremo referentni (uzemljeni = 0 V) čvor 0 (npr. donji čvor). Potom direktno iz sheme očitamo potencijale čvora 1: $\dot{\varphi}_1 = -\ddot{U}$ te čvora 4: $\dot{\varphi}_4 = 2\ddot{U}$. Zadan je smjer struje od čvora 2 prema čvoru 3. Dakle, referentan plus napona na impedanciji \underline{Z} u toj grani je kod čvora 2. Napon na toj impedanciji je onda $\dot{U}_{23} = \dot{\varphi}_2 - \dot{\varphi}_3$. Struja kroz tu impedanciju je po Ohmovom zakonu:

$$\dot{I} = \frac{\dot{U}_{23}}{Z} = \frac{\dot{\varphi}_2 - \dot{\varphi}_3}{Z}$$

Moramo odrediti potencijale čvorova 2 i 3, npr. preko metode potencijala čvorova.

Primijenimo metodu potencijala čvorova na nepoznate potencijale čvorova 2 i 3:

$$-\dot{\varphi}_{1}\left(\frac{1}{\underline{Z}}\right) + \dot{\varphi}_{2}\left(\frac{1}{\underline{Z}} + \frac{1}{\underline{Z}} + \frac{1}{\underline{Z}}\right) - \dot{\varphi}_{3}\left(\frac{1}{\underline{Z}}\right) - \dot{\varphi}_{4}\left(\frac{1}{\underline{Z}}\right) = 0$$

$$-\dot{\varphi}_{1}\left(\frac{1}{\underline{Z}}\right) - \dot{\varphi}_{2}\left(\frac{1}{\underline{Z}}\right) + \dot{\varphi}_{3}\left(\frac{1}{\underline{Z}} + \frac{1}{\underline{Z}} + \frac{1}{\underline{Z}} + \frac{1}{\underline{Z}}\right) - \dot{\varphi}_{4}\left(\frac{1}{\underline{Z}}\right) = \frac{\dot{U}}{\underline{Z}}$$

$$\frac{\dot{U}}{\underline{Z}} + \frac{3\dot{\varphi}_{2}}{\underline{Z}} - \frac{\dot{\varphi}_{3}}{\underline{Z}} - \frac{2\dot{U}}{\underline{Z}} = 0 \quad / \cdot \underline{Z}$$

$$\frac{\dot{U}}{\underline{Z}} - \frac{\dot{\varphi}_{2}}{\underline{Z}} + \frac{4\dot{\varphi}_{3}}{\underline{Z}} - \frac{2\dot{U}}{\underline{Z}} = \frac{\dot{U}}{\underline{Z}} \quad / \cdot \underline{Z}$$

$$3\dot{\varphi}_{2} - \dot{\varphi}_{3} = \dot{U}$$

$$-\dot{\varphi}_{2} + 4\dot{\varphi}_{3} = 2\dot{U}$$

$$3\dot{\varphi}_{2} - \dot{\varphi}_{3} = 110 \quad / \cdot 4$$

$$-\dot{\varphi}_{2} + 4\dot{\varphi}_{3} = 220$$

zbrojimo jednadžbe i dobijemo:

$$11\dot{\varphi}_2 = 660$$
$$\dot{\varphi}_2 = 60 \text{ V}$$

vratimo se u npr. u prvu jednadžbu:

$$3 \cdot 60 - \dot{\varphi}_3 = 110$$
$$\dot{\varphi}_3 = 70 \text{ V}$$

 $\dot{\phi}_3 = 70~\mathrm{V}$ i na kraju računamo struju \dot{I} :

$$\dot{I} = \frac{\dot{U}_{23}}{Z} = \frac{\dot{\varphi}_2 - \dot{\varphi}_3}{Z} = \frac{-10}{\text{j}5} = \text{j2 A}$$

4. (3 boda) Odredite parametre Nortonovog nadomjesnog spoja obzirom na stezaljke A i B u mreži prema slici. Zadano: $R = X_L = X_C$.

51% točno 31% krivo

1) Početna shema:

3) Prvo kratko spojimo čvorove A i B i tražimo 4) Potom tražimo Nortonovu impedanciju (na isti Nortonovu struju, npr. preko superpozicije: način kao i Theveninovu impedanciju). Naponski

Samo naponski izvor (strujni izvor odspojen, grane -jR i R kratko spojene):

Samo strujni izvor (naponski zamijenjen s kratkim spojem → sve grane kratko spojene):

Potom nalazimo Nortonovu struju zbrajanjem doprinosa svakog izvora (pazite na smjerove struja: pozitivna ako ima pretpostavljeni smjer A→B, inače negativna):

$$\dot{I}_{N} = \frac{\dot{U}}{iR} + \left(-\dot{I}\right) = -j\frac{\dot{U}}{R} - \dot{I}$$

2) Nakon sređivanja shema je jednostavnija:

4) Potom tražimo Nortonovu impedanciju (na isti način kao i Theveninovu impedanciju). Naponski izvor zamijenimo s kratkim spojem, strujni izvor odspajamo:

Dvije lijeve grane zajedno daju beskonačan otpor $(-jR||jR = \infty)$ pa ostaje samo:

I samo očitamo Nortonovu impedanciju:

$$\underline{Z}_{N} = \mathbf{R}$$

Ukupna prividna snaga trofaznog trošila je $S_{\rm uk} = \sqrt{{P_{\rm uk}}^2 + {Q_{\rm uk}}^2}$. Ukupna jalova snaga trofaznog trošila je onda $Q_{\rm uk} = \sqrt{{S_{\rm uk}}^2 - {P_{\rm uk}}^2} = 2.7 \, \rm kVAr$ (induktivno).

Fazna struja simetričnog trofaznog trošila u trokutu je za $\sqrt{3}$ puta manja od linijske struje:

$$I_{\rm f} = \frac{I_{\rm L}}{\sqrt{3}} = 10\sqrt{3} \,{\rm A}$$

Radna snaga svake faze simetričnog trošila je $I_f^2 \cdot \text{Re}\{\underline{Z}\}$, a jalova snaga svake faze $I_f^2 \cdot \text{Im}\{\underline{Z}\}$:

$$P_{\rm uk} = P_1 + P_2 + P_3 = 3 \cdot I_{\rm f}^2 \cdot \text{Re}\{\underline{Z}\} \rightarrow \text{Re}\{\underline{Z}\} = \frac{P_{\rm uk}}{3 \cdot I_{\rm f}^2} = \frac{3600}{900} = \frac{4 \Omega}{2}$$

$$Q_{\rm uk} = Q_1 + Q_2 + Q_3 = 3 \cdot I_{\rm f}^2 \cdot \text{Im}\{\underline{Z}\} \rightarrow \text{Im}\{\underline{Z}\} = \frac{Q_{\rm uk}}{3 \cdot I_{\rm f}^2} = \frac{2700}{900} = \frac{3 \Omega}{2}$$

$$\underline{Z} = \text{Re}\{\underline{Z}\} + \text{j Im}\{\underline{Z}\} = \frac{4 + \text{j3 }\Omega}{2}$$

6. (2 boda) Odredite napon na nelinearnom otporniku čija je U-Ikarakteristika zadana kao: $I = 0.5U^2$ [A].

Početna shema:

Izvadimo nelinearni otpornik i ostatak mreže nadomjestimo po Theveninu. Na kraju vratimo nelinearni otpornik na Theveninov realni naponski izvor i izračunamo traženi napon.

Kroz otpornik od 1 Ω ne teče struja – nema pada napona (odspojen krug) pa Theveninov napon $U_{\rm Th} = U_{\rm ab}$ možemo naći preko Millmanovog teorema:

Za Theveninov otpor naponske izvore zamijenimo s kratkim spojem:

Na nelinearnom otporniku je zadano da vrijedi $\frac{I = 0.5U^2}{I}$. Uvrstimo izraz za struju nelinearnog otpornika u jednadžbu realnog naponskog izvora i dobijemo struju I i napon U nelinearnog otpornika:

$$U = 6 - 2(0.5U^{2}) = 6 - U^{2} \rightarrow U^{2} + U - 6 = 0 \rightarrow U_{1,2} = \frac{-1 \pm \sqrt{1 + 24}}{2} = \frac{-1 \pm 5}{2}$$

Napon na nelinearnom otporniku je onda U = 2V(uzimamo pozitivno rješenje kvadratne jednadžbe), a struja je $I = 0.5U^2 = 2 \text{ A}.$

Do riešenia možemo doći grafičkim putem tražimo **sjecište** dvije zadane jednadžbe (izvora i trošila):

$$U = 6 - 2I$$

$$I = 0.5U^2 \rightarrow U = \sqrt{2I}$$

Sjecište je radna točka trošila te iz njenih koordinata izravno očitamo struju (2 A) i napon (2 V) trošila!

Theveninov izvor opisujemo s jednadžbom realnog naponskog izvora:

$$U = U_{\rm Th} - IR_{\rm Th}$$

$$U = 6 - 2I$$

Napon praznog hoda je ovdje Theveninov napon $U_{\rm Th}=6\,{\rm V}$, a struja kratkog spoja je Nortonova struja $I_N = \frac{U_{Th}}{R_{Th}} = 3 \text{ A}.$

Iz početnog kruga izvadimo promjenjivu impedanciju i ostatak kruga nadomjestimo po Theveninu.

Tražimo Theveninov napon. Zadamo referentni čvor 0 (0 V). Vidimo da kondenzator možemo zanemariti – kroz njega ne teče struja pa na njemu nema pada napona:

Desni i lijevi dio kruga su odvojeni pa izravno računamo:

$$\dot{\varphi}_{1} = \dot{U}_{10} = \dot{U} \frac{10}{10 + 10} = 25 \text{ V} \qquad \qquad \dot{\varphi}_{2} = \dot{U}_{20} = \dot{I} \cdot j5 = j25 \text{ V}$$

$$\dot{U}_{Th} = \dot{U}_{12} = \dot{\varphi}_{1} - \dot{\varphi}_{2} = \frac{25 - j25 \text{ V}}{25 - j25 \text{ V}}$$

Tražimo Theveninovu impedanciju. Naponski izvor zamijenimo s kratkim spojem, a strujni odspojimo:

 $\dot{U}_{\mathrm{Th}} = \dot{U}_{12} = \dot{\varphi}_1 - \dot{\varphi}_2 = \frac{25 - \mathrm{j}25 \, \mathrm{V}}{\mathrm{Vratimo promjenjivu impedanciju na Theveninov izvor. Najveća snaga}$ na promjenjivoj impedanciji će se razvijati kada je namjestimo na: $\underline{Z} = \underline{Z}_{\mathrm{Th}}^* = \frac{\mathbf{5} + \mathbf{j3} \ \Omega}{\mathbf{0}}$

$$Z = Z_{\text{Th}}^* = 5 + j3 \Omega$$

Tada dolazi do rezonancije (imaginarni dijelovi obiju impedanciju se ponište) i struja je u ovom serijskom krugu maksimalna. Radnu snagu na promjenjivoj impedanciji Z računamo kao $P = I^2 \cdot \text{Re}\{Z\}$:

$$P_{\text{maks}} = \left| \frac{\dot{U}_{\text{Th}}}{Z_{\text{Th}} + Z} \right|^{2} \cdot \text{Re}\{\underline{Z}\} = \left| \frac{25 - j25}{10} \right|^{2} \cdot 5 = (2,5\sqrt{2})^{2} \cdot 5 = 62,5 \text{ W}$$

8. (3 boda) Ampermetar u nul vodiču mjeri struju od 60,1 A. Koliku će struju mjeriti ampermetar ako L i C zamijene svoja mjesta u trošilu? Vrijedi: $R = X_L = X_C$.

Postoji nul-vodič → i izvor i trošilo su u zvijezda spoju. Trošilo je ovdje nesimetrično, a uobičajeno uzimamo da je izvor simetričan – napon svake faze izvora je $U_{\rm f}$ te da je redoslijed faza $1\rightarrow 2\rightarrow 3$:

$$\dot{U}_{10} = U_{\rm f} \angle 0^{\circ} = U_{\rm f} \qquad \qquad \dot{U}_{20} = U_{\rm f} \angle -120^{\circ} = U_{\rm f} \left(-\frac{1}{2} - \mathrm{j}\frac{\sqrt{3}}{2}\right) \qquad \qquad \dot{U}_{30} = U_{\rm f} \angle -240^{\circ} = U_{\rm f} \left(-\frac{1}{2} + \mathrm{j}\frac{\sqrt{3}}{2}\right)$$

Zbog nul-vodiča (žica bez otpora) napon na svakoj fazi trošila jednak je naponu na odgovarajućoj fazi izvora!

Prema KZS računamo pokazivanje ampermetra, odnosno struju kroz nul-vodič u oba slučaja (ovdje nije nula jer je trošilo nesimetrično $R \neq -jR \neq jR$).

$$I_{0} = \begin{vmatrix} \dot{U}_{10} \\ R \end{vmatrix} + \frac{\dot{U}_{20}}{jR} + \frac{\dot{U}_{30}}{jR} \begin{vmatrix} \frac{U_{f}}{R} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ R \end{vmatrix} + \frac{1}{\sqrt{3}} \begin{vmatrix} \frac{U_{f}}{R} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ R \end{vmatrix} + \frac{1}{\sqrt{3}} \begin{vmatrix} \frac{U_{f}}{R} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ R \end{vmatrix} + \frac{1}{\sqrt{3}} \begin{vmatrix} \frac{U_{f}}{R} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ R \end{vmatrix} + \frac{1}{\sqrt{3}} \begin{vmatrix} \frac{U_{f}}{R} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3} \end{vmatrix} = \frac{G_{0}}{R} \begin{vmatrix} 1 + \sqrt{3} \\ 1 + \sqrt{3}$$

Drugi slučaj – zamjena mjesta L i C:

Dodatno - rješenje preko skice topografskog dijagrama:

Prvi slučaj:

- spoj simetričnog trošila u zvijezdi fazorski zbrojimo sve tri struje s nul-vodičem
- zvjezdište izvora 0 i zvjezdište trošila 0' na istom potencijalu
- naponi na fazama trošila jednaki naponima na fazama izvora
- redoslijed faza $1 \rightarrow 2 \rightarrow 3$
- struja kroz prvu fazu trošila u fazi s naponom (R)
- struja kroz drugu fazu trošila prethodi za 90° ispred napona (C)
- struja kroz treću fazu trošila kasni za 90° iza napona (L)

moduli sve tri struje su $\frac{U_{\mathrm{f}}}{R}$ modul zbroja \dot{I}_{23} je $\sqrt{3}\frac{U_{\mathrm{f}}}{R}$ (provjerite po kosinusovom poučku)

modul zbroja sve tri struje je
$$\frac{U_{\rm f}}{R} + \sqrt{3} \frac{U_{\rm f}}{R} = 60.1 \,\text{A} \rightarrow \frac{U_{\rm f}}{R} = \frac{60.1}{1 + \sqrt{3}}$$

Drugi slučaj:

- zamijenjena mjesta L i C sve fazorski zbrojimo sve tri struje ostalo isto kao u prvom slučaju
- struja kroz prvu fazu trošila opet u fazi s naponom (R)
- sada struja kroz drugu fazu trošila kasni za 90° iza napona (L)
- a struja kroz treću fazu trošila prethodi za 90° ispred napona (C)

moduli sve tri struje su $\frac{U_{\rm f}}{R}$ modul zbroja \dot{I}_{23} je opet $\sqrt{3} \frac{U_{\rm f}}{p}$

modul zbroja sve tri struje je
$$\sqrt{3} \frac{U_{\rm f}}{R} - \frac{U_{\rm f}}{R} = \frac{U_{\rm f}}{R} (\sqrt{3} - 1) = \frac{60,1}{1+\sqrt{3}} (\sqrt{3} - 1) \approx \frac{16,1 \,\text{A}}{1+\sqrt{3}}$$

9. (3 boda) Sklopka se u krugu zatvara u trenutku t=0. Odredite napon na kondenzatoru $u_c(t)$ u trenutku $t = 0.078 \,\mathrm{s}$ od zatvaranja sklopke. Napomena: prije zatvaranja sklopke kondenzator je bio prazan.

19% bez

Prvo izvadimo kondenzator (i sklopku) i ostatak kruga nadomjestimo po Theveninu. Kada računamo Theveninov napon vidimo da kroz otpornik 1Ω ne teče struja (prekinuta grana) pa na njemu nema pada napona te je zato Theveninov napon jednak padu napona na otporniku $9\,\Omega$. Lako ga odredimo, npr. preko naponskog djelila:

$$U_{\rm Th} = 18 \frac{9}{3+9} = 13.5 \,\rm V$$

Za Theveninov otpor naponski izvor zamijenimo s kratkim spojem:

$$\tau = R_{\rm Th} \cdot C = 0,065 \,\mathrm{s}$$

Nakon zatvaranja sklopke kroz krug poteče struja (teče sve dok se kondenzator ne *napuni* do napona izvora U_{Th}). Napon na kondenzatoru raste po eksponencijalnom zakonu:

$$u_{\rm C}(t) = U_{\rm Th} \left(1 - e^{-\frac{t}{\tau}} \right)$$

$$u_{\rm C}(0,078) = 13.5 \left(1 - e^{-\frac{0,078}{0,065}} \right) \approx 9,43 \text{ V}$$

10. (2 boda) U primarnom krugu idealnog transformatora nalazi se izvor $\dot{U} = 100 | \underline{0}^{\circ} \text{ V. Ako je struja primara 1 A, odredite kružnu frekvenciju izvora.}$

Iz sheme očitamo omjer $\frac{N_1}{N_2} = n = 10$. Izračunamo

ulaznu impedanciju:
$$\underline{Z}_{1\mathrm{u}} = n^2 \cdot \underline{Z}_2 = 100 \cdot \mathrm{j}\omega L = \mathrm{j}\omega \underbrace{100L}_{L_{1\mathrm{u}}} = \underline{\mathrm{j}\omega}$$
 Vidimo da je onda taj induktivitet: $L_{1\mathrm{u}} = 1\mathrm{H}$.

Postavimo nadomjesnu shemu primarnog kruga – serija RLC:

$$\underline{Z} = 100 + j \left(L_{1u} \omega - \frac{1}{\omega C} \right)$$

Ako je napon izvora 100 V efektivno, a struja primara je 1 A efektivno onda je i napon na otporniku 100 V. Znači da je u ovome serijskom RLC krugu nastupila rezonancija (napon na otporniku je najveći, jednak naponu izvora). Dakle, tražimo rezonantnu kružnu frekvenciju! Sjetite se da je kod rezonancije imaginarni dio impedancije jednak **nuli**:

$$L_{1u}\omega - \frac{1}{\omega C} = 0 \rightarrow L_{1u}\omega = \frac{1}{\omega C} \rightarrow \omega^{2} = \frac{1}{L_{1u}C} \rightarrow \omega = \frac{1}{\sqrt{L_{1u}C}} = \frac{1}{\sqrt{\frac{1}{1000000}}} = \frac{1000 \text{ s}^{-1}}{1000000}$$