

Universidade de São Paulo

Escola de Artes, Ciências e Humanidades Graduação em Sistemas de Informação

Fernanda Moraes Bernardo

Estimação da quantidade de carboidratos de alimentos a partir de imagens bidimensionais

São Paulo 2015

Fernanda Moraes Bernardo

Estimação da quantidade de carboidratos de alimentos a partir de imagens bidimensionais

Plano de atividades apresentado como parte dos requisitos necessários para cumprimento da disciplina ACH2017 – Projeto Supervisionado ou de Graduação I.

Orientador: Prof. Dr. Clodoaldo Aparecido de Moraes Lima

São Paulo 2015

Resumo

Atualmente, grande parte da população tem uma certa preocupação com a sua alimentação, principalmente com quantidades e valores nutricionais. Estimação da quantidade e valores nutricionais de uma porção de alimento é uma tarefa extremamente difícil, pois muitos alimentos tem variação na forma e aparência devido as condições de preparação da comida ou alimento. Tendo isto como objetivo, nesse trabalho será desenvolvido um estimador de carboidratos a partir de imagens bidimensionais visando ajudar diabéticos no seu dia a dia a cuidar da sua alimentação. Técnicas de segmentação, classificação de imagens e reconstrução 3D serão investigadas para que seja possível calcular a quantidade de cada alimento a partir de imagem. Com base nesta estimativa, será possível estimar a quantidade de carboidratos presente nesses alimentos.

Palavras Chave

- Segmentação de imagem
- Classificação de imagem
- Técnicas de reconstrução 3D

Modalidade:

- () Trabalho de Graduação Curto 1 semestre individual
- (X) Trabalho de Graduação Longo 1 ano individual
- () Trabalho de Graduação Curto 1 semestre grupo
- () Trabalho de Graduação Longo 1 ano grupo

1- Apresentação do problema

Atualmente, existe uma grande preocupação das pessoas relacionada a dieta, principalmente daquelas com doenças crônicas e outros problemas de saúde, como hipertensão, obesidade, diabetes, doenças cardíacas e câncer. A necessidade de

métodos e ferramentas exatas para medir a quantidade de alimentos e nutrientes consumidos torna-se imperativo para a investigação epidemiológica e clínica, ligando dieta e doença. A avaliação da quantidade de alimentos que alguém ingere ao longo do dia fornece informações valiosas para o diagnóstico e tratamento destes problemas de saúde. Estimação da quantidade de alimentos em uma porção é uma tarefa extremamente difícil, pois muitos alimentos tem variação na forma e aparência devido as condições de preparação da comida ou alimento.

Alinhado a essa preocupação, existe um crescente avanço da tecnologia, principalmente no que diz respeito a smartphones. Com isso, muitas soluções foram criadas para estimação da quantidade de alimentos visando auxiliar as pessoas, tendo como foco a facilidade e a economia de tempo. Entre essas soluções, algumas são voltadas para ajudar no planejamento dos nutrientes consumidos durante o dia ou consultar a quantidade desses nutrientes em determinados alimentos.

Ferramentas capazes de estimar a quantidade de carboidratos a partir de imagens de alimentos são de grande importância para pessoas diabéticas. Isto evitaria com que as pessoas precisassem carregar tabelas contendo a quantidade de carboidratos para cada alimento. Além destas tabelas, as pessoas precisam estimar a quantidade de alimentos presente em cada porção para calcular a quantidade exata de carboidratos que irão ingerir. Há duas abordagens principais para estimar o valor nutricional a partir de imagens de alimentos. Uma é estimar a categoria dos alimentos e fornecer informação associado a categoria. A outra é estimar o valor nutricional a partir das características da imagem usando análise de regressão (SUDO et al., 2014; XU et al., 2013; POULADZADEH et al., 2014; KAGAYA et al., 2014; HE et al., 2013; KAWANO et al., 2013).

Visando auxiliar pessoas com diabetes, este trabalho irá desenvolver uma ferramenta capaz de estimar a quantidade de carboidratos a partir de imagens de alimentos. De forma a atingir este objetivo será investigado técnicas de segmentação e classificação de imagens de forma a identificar alimentos em uma dada imagem. Após a identificação destes alimentos, técnicas de reconstrução 3D serão investigadas para a

reconstrução dos alimentos no espaço tridimensional. Neste espaço, o volume ocupado por cada alimento será estimado e com base na densidade deste, será possível estimar a quantidade de carboidratos.

2- Objetivos

Objetivo Geral:

O objetivo geral desse trabalho é construir um estimador de carboidratos, que consiste inicialmente na segmentação e classificação de uma imagem contendo um ou mais alimentos. Posteriormente, será feita a reconstrução 3D desse alimento, para cálculo do volume. Dessa forma, será possível estimar a quantidade de carboidratos presente nos alimentos da imagem.

Objetivos Específicos:

No contexto deste trabalho, os objetivos específicos são:

- Levantamento de uma base de dados de imagens contendo alimentos;
- Revisão Bibliográfica sobre técnicas de segmentação, classificação de imagens e reconstrução 3D;
- Familiarização com técnicas de segmentação, classificação de imagens e
 reconstrução 3D;
- Implementação de técnicas de segmentação, classificação de imagens e reconstrução 3D;
- Analisar o desempenho dos algoritmos propostos

3- Materiais e Métodos

Inicialmente, será realizado uma busca por bases de dados de imagens públicas de alimentos e de "não alimentos", sendo que uma base já foi encontrada e está disponível no link (http://www.foodlog.jp/en). Posteriormente, será realizado o levantamento do material bibliográfico referente às técnicas de segmentação, classificação de imagens e reconstrução 3D. Com o levantamento, um subconjunto

destas técnicas serão implementadas. A seleção deste subconjunto será baseada no desempenho alcançado na literatura. Em seguida, esses algoritmos serão implementados e avaliados. As implementações serão desenvolvidas usando o ambiente MATLAB devido ao seu pacote de ferramentas de desenvolvimento gráfico e também será utilizado a linguagem de programação Java, quando julgar necessário. Resultados obtidos serão descritos e submetidos a congressos nacionais ou internacionais.

4- Resultados Esperados

Espera-se obter um estimador de carboidratos eficiente e eficaz, que consiga classificar os alimentos e estimar a quantidade de carboidratos em uma porção.

5- Cronograma

Atividade / Mês	Março	Abril	Maio	Junho	Julho	Agosto	Setembro	Outubro	Novembro
Revisão bibliográfica sobre técnicas de segmentação									
Implementação de algoritmos de segmentação									
Revisão bibliográfica sobre									
técnicas de classificação									
Implementação de algoritmos									
de classificação									
Resultados Parciais									
Elaboração do relatório parcial									
Revisão bibliográfica sobre									
técnicas de reconstrução 3D									
Implementação de algoritmos									
de reconstrução									
Analise dos resultados obtidos									
Escrita do artigo/monografia									

Referências Bibliográficas

[1] K. Sudo, K. Murasaki, J. Shimamura, and Y. Taniguchi, "Estimating nutritional value from food images based on semantic segmentation," in *Proceedings of the 2014 ACM International Joint Conferenceon Pervasive and Ubiquitous Computing: Adjunct Publication*, ser. UbiComp '14 Adjunct. New York, NY, USA: ACM, 2014, pp. 571-576. [Online]. Available: http://doi.acm.org/10.1145/2638728.2641336

[2] C. Xu, Y. He, N. Khannan, A. Parra, C. Boushey, and E. Delp, "Image-based food volume estimation," in *Proceedings of the 5th International Workshop on Multimedia for Cooking & Eating Activities*, ser. CEA '13. New York, NY, USA: ACM, 2013, pp. 75-80. [Online]. Available: http://doi.acm.org/10.1145/2506023.2506037

- [3] P. Pouladzadeh, S. Shirmohammadi, and A. Yassine, "Using graph cut segmentation for food calorie measurement," in *Medical Measurements and Applications (MeMeA)*, 2014 IEEE International Symposium on, June 2014, p. 1-6.
- **[4]** H. Kagaya, K. Aizawa, and M. Ogawa, "Food detection and recognition using convolutional neural network," in *Proceedings of the ACM International Conference on Multimedia*, ser. MM '14. New York, NY, USA: ACM, 2014, pp. 1085-1088. [Online]. Available: http://doi.acm.org/10.1145/2647868.2654970
- **[5]** Y. He, C. Xu, N. Khanna, C. Boushey, and E. Delp, "Food image analysis: Segmentation, identication and weight estimation," in *Multimedia and Expo (ICME)*, 2013 IEEE International Conference on, July 2013, pp. 1-6.
- **[6]** Y. Kawano and K. Yanai, "Real-time mobile food recognition system," in *Computer Vision and Pattern Recognition Workshops (CVPRW)*, 2013 IEEE Conference on, June 2013, pp. 1-7.

Bibliografia

- V. Ashok and D. Vinod, "Automatic quality evaluation of fruits using probabilistic neural network approach," in *Contemporary Computing and Informatics (IC3I)*, 2014 International Conference on, Nov 2014, pp. 308-311.
- H. V. H. Ayala, F. M. dos Santos, V. C. Mariani, and L. dos Santos Coelho, "Image thresholding segmentation based on a novel beta dierential evolution approach," in *Expert Systems with Applications*, vol. 42, no. 4, pp. 2136 2142, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S095741741400596X
- B. Cabral, N. Cam, and J. Foran, "Accelerated volume rendering and tomographic reconstruction using texture mapping hardware," in *Proceedings of the 1994 Symposium on Volume Visualization*, ser. VVS '94. New York, NY, USA: ACM, 1994, pp. 91{98. [Online]. Available: http://doi.acm.org/10.1145/197938.197972
- M.-Y. Chen, Y.-H. Yang, C.-J. Ho, S.-H. Wang, S.-M. Liu, E. Chang, C.-H. Yeh, and M. Ouhyoung, "Automatic chinese food identication and quantity estimation," in *SIGGRAPH Asia 2012 Technical Briefs*, ser. SA '12. New York, NY, USA: ACM, 2012, pp. 29:1-29:4. [Online]. Available: http://doi.acm.org/10.1145/2407746.2407775
- Z. Chen and D.-B. Perng, "Automatic reconstruction of 3d solid objects from 2d orthographic views," *Pattern Recognition*, vol. 21, no. 5, pp. 439 449, 1988. [Online]. Available: http://www.sciencedirect.com/science/article/pii/0031320388900039

C.-J. Du and D.-W. Sun, "Recent developments in the applications of image processing techniques for food quality evaluation," *Trends in Food Science & Technology*, vol. 15, no. 5, pp. 230 - 249, 2004. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0924224403002711

S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon, "Kinectfusion: Real-time 3d reconstruction and interaction using a moving depth camera," in *Proceedings of the 24th Annual ACM Symposium on User Interface Software and Technology*, ser. UIST '11. New York, NY, USA: ACM, 2011, pp. 559-568. [Online]. Available: http://doi.acm.org/10.1145/2047196.2047270

- S. Matej and R. Lewitt, "Ecient 3d grids for image reconstruction using spherically-symmetric volume elements," *Nuclear Science, IEEE Transactions on*, vol. 42, no. 4, pp. 1361-1370, Aug 1995.
- D. Mery and F. Pedreschi, "Segmentation of colour food images using a robust algorithm," *Journal of Food Engineering*, vol. 66, no. 3, pp. 353 -360, 2005. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0260877404001591
- R. Peng and P. K. Varshney, "A human visual system-driven image segmentation algorithm," *Journal of Visual Communication and Image Representation*, vol. 26, no. 0, pp. 66 79, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1047320314001837
- ||, "On performance limits of image segmentation algorithms," *Computer Vision and Image Understanding*, vol. 132, no. 0, pp. 24-38, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1077314214002240
- J. Phattaralerphong and H. Sinoquet, "A method for 3d reconstruction of tree crown volume from photographs: assessment with 3d-digitized plants," *Tree Physiology*, vol. 25, no. 10, pp. 1229-1242, 2005. [Online]. Available: http://treephys.oxfordjournals.org/content/25/10/1229.abstract
- M. Puri, Z. Zhu, Q. Yu, A. Divakaran, and H. Sawhney, "Recognition and volume estimation of food intake using a mobile device," in *Applications of Computer Vision (WACV)*, 2009 Workshop on, Dec 2009, pp. 1-8.
- J. Shang, M. Duong, E. Pepin, X. Zhang, K. Sandara-Rajan, A. Mamishev, and A. Kristal, "A mobile structured light system for food volume estimation," in *Computer Vision Workshops (ICCV Workshops)*, 2011 IEEE International Conference on, Nov 2011, pp. 100-101.

X. Tian, L. Jiao, L. Yi, K. Guo, and X. Zhang, "The image segmentation based on optimized spatial feature of super-pixel," *Journal of Visual Communication and Image Representation*, vol. 26, no. 0, pp. 146 - 160, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1047320314001862

H. Zhang, J. E. Fritts, and S. A. Goldman, "Image segmentation evaluation: A survey of unsupervised methods," *Computer Vision and Image Understanding*, vol. 110, no. 2, pp. 260 - 280, 2008. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1077314207001294

Viola, Paul, e Michael J. Jones. "Robust Real-Time Face Detection". *International Journal of Computer Vision* 57, n° 2 (1 de maio de 2004): 137–54. [Online]. Available: http://dx.doi.org/10.1023/B%3AVISI.0000013087.49260.fb