

Our Team

Luu Chan Hung

Dang Cao Cuong

Nguyen Thanh Chuong

Nguyen Thanh Hung

Phan Tuan Khai

MANDATORY ACCESS CONTROL

MANDATORY ACCESS CONTROL

DEFINITION

The security mechanism of a DBMS must include provisions for restricting access to the database system

TECHNOLOGY

Discretionary Access Control Mandatory Access Control Role-Based Access Control

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

DAC

An all-or-nothing method : A user either has or does not have a certain privilege

WHY DO WE NEED ?

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

DAC

Risk

WHY DO WE NEED

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

DAC

Risk

Need an additional security policy to classifies data and users based on security classes

WHY DO WE NEED ?

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

An access control mechanism based on label relationships

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ect

User Relation

Account Tuple

Program Column

View

Operation

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Mechanism

Clearance

Classify our subject/object into different security level

Typical security classes

- Top Secret (TS)
- Secret (S)
- Confidential (C)
- Unclassified (U)

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Bell-LaPadula model

Classify each subject and object into one of the security classifications TS, S, C, or U

 \Rightarrow The clearance (classification) of a subject S as class(S) and to the classification of an object O as class(O)

MANDATORY ACCESS CONTROL

ED SECURITY & ROW-LEVEL ACCESS CONTROL

Restrictions rule

Simple security property

Class(S) < class(O)

Subject S

No read access

Object S

Star property (or *-property) Mechanism

Class(S) > class(O)

Subject S

No write access

Object S

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Demonstration of MAC rules

Read down? Yes!

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Purpose

Classification attribute C

To incorporate multilevel security notions into the relational database model

**Consider attribute values and tuples as data objects

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Purpose

Classification attribute C

Tuple classification attribute TC

Schema:

Each attribute A --- associated --- a classification attribute C Value:

Each attribute value in a tuple is associated with a corresponding security classification.

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Classification attribute C

Tuple classification attribute TC

Multilevel model

Each tuple --- provided --- a tuple classification

TC = max (all classification attributes C in a tuple)

02 N

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Tuple classification attribute TC

Multilevel model

Apparent key

The model that allows classifications at multiple security levels

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Tuple classification attribute TC

Classifications at multiple security levels

Multilevel model

Apparent key

Schema R with n attributes

 $R(A_1,C_1,A_2,C_2,...,A_n,C_n,TC)$

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Tuple classification attribute TC

Multilevel model

Apparent key

Classifications at multiple security levels

Schema R with n attributes

$$R(A_1,C_1,A_2,C_2,...,A_n,C_n,TC)$$

 C_i = classification attribute associated with attribute A_i

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Tuple classification attribute TC

Multilevel model

Apparent key

Classifications at multiple security levels

Schema R with n attributes

$$R(A_1,C_1,A_2,C_2,...,A_n,C_n,TC)$$

 C_i = classification attribute associated with attribute A_i

TC = the tuple classification attribute

-> provides a general classification for the tuple

ACCESS CONTROL MANDA

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Multilevel model

Apparent key

Filtering

The <u>apparent key</u> of a multilevel relation is the set of attributes that would have formed the <u>primary key</u> in a regular (single-level) relation

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Apparent key

Filtering

Polyinstantiation

- Store a single tuple in the relation at a higher classification level -> produce the corresponding tuples at a lower-level classification
- Null values for attribute values whose security classification > the user's security clearance

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Filtering

Polyinstantiation

Example 1

Store two or more tuples at different classification levels with the same value for the apparent key

⇒ Several tuples can have the same apparent key value but have different attribute values for users at different clearance levels.

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Polyinstantiation

Example 1

Enter

Integrity Rules

Example 1

Name	Salary	Job Performance	TC
Smith U	40000 C	Fair S	S
Brown C	80000 S	Good C	S

Classification attribute values next to each attribute's value

001

• Assume that the Name attribute is the apparent key, and consider the query SELECT * FROM EMPLOYEE

Example 1

001

Name Salary		Salary	Job Performance	тс
Smith	U	40000 C	Fair S	S
Brown	С	80000 S	Good C	S

Name Salary		Salary	Job Performance	тс
Smith	U	40000 C	Fair S	S
Brown	С	80000 S	Good C	S

Same with the original table

001

Example 1

001

Name Salary		Job Performance		тс		
Smith	U	40000	С	Fair	S	S
Brown	С	80000	S	Good	С	S

Name Salary		y	Job Performance		TC		
Smith	U	40000	С	NULL	С	S	
Brown	С	NULL	С	Good	С	S	

Cannot see the
value:
Salary of 'Brown'
&
JobPerformance
of 'Smith'

Example 1

001

Name	Salary	Job Performance	TC
Smith U	40000 C	Fair S	S
Brown C	80000 S	Good C	S

Name Salary		Salary	Job Performance	тс
Smith	U	NULL U	NULL U	U

olool Only the Name attribute of 'Smith' to appear

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Polyinstantiation

Example 1

Integrity Rules

End of Example 1

Multilevel Relation

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Example 1

Integrity Rules

Example 2

Entity integrity

Apparent key

- must not be null
- must have the same security classification within each individual tuple.

Other attribute values

➤ must have a security classification ≥ that of the apparent key

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Example 1

Integrity Rules

Example 2

Null integrity and interinstance integrity

Ensure that if a tuple value at some security level can be filtered (derived) from a higher-classified tuple, then it is sufficient to store the higherclassified tuple in the multilevel relation.

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Integrity Rules

Example 2

Enter

Example 2

Name		Salary	/	Job Perforn	_	тс
Smith	U	40000	С	Fair	S	S
Brown	С	80000	S	Good	С	S

- Lower security clearance could write to higher security clearance
- Override is not allowed
- Create an additional tuple at the lower classification level C
- The basic update operations of the relational model (INSERT, DELETE, UPDATE) must be modified to handle this and similar situations

ACCESS CONTROL

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Integrity Rules

Example 2

End of Example 2

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

Advantage

Mandatory policies ensure a high degree of protection

Suitable for military and highsecurity types of applications

Disadvantage

Too rigid

Applicable to few environments

Additional burden of labeling every object with its security classification.

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

Row-level access control

Label security policy

Considering the data row by row.

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

Row-level access control

Label security policy

MANDATORY ACCESS CONTROL

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

Row-level access control

Label security policy

The user: write the label

Value = the user's minimum level to the user's current session label

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

DEMONSTRATION

- Restricting access to entire tables or isolating sensitive data into separate databases is a costly operation to administer
- ⇒ Oracle Label Security function of Oracle Database overcomes the need for such measures by enabling row-level access control
- Built on Virtual Private Database (VPD) Technology

Add predicates to user statements to limit their access in a transparent manner to the user and the application

These VPD policies enforce object level access control or row-level security

Add predicates to user statements to limit their access in a transparent manner to the user and the application

These VPD policies enforce object level access control or row-level security

VPD provides an application programming interface (API) that allows security policies to be attached to database tables or views using PL/SQL

These VPD policies enforce object level access control or row-level security

VPD provides an application programming interface (API) that allows security policies to be attached to database tables or views using PL/SQL

The policy function returns a predicate (a WHERE clause) that is then appended to the user's SQL statement, thus transparently and dynamically modifying the user's data access.

VPD provides an application programming interface (API) that allows security policies to be attached to database tables or views using PL/SQL

The policy function returns a predicate (a WHERE clause) that is then appended to the user's SQL statement, thus transparently and dynamically modifying the user's data access.

ORACLE LABEL SECURITY

DEMONSTRATION

I II II IV V VI

Mechanism of Oracle Label

Security

Users Authorize users Confidential Labels

ORACLE LABEL SECURITY Mechanism of Oracle Label DEMONSTRATION Security **Users** Confidential **Automatic Mediation** Authorize No procedures to write users Confidential **Data** Labels Label data Sensitive

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

DEMONSTRATION

I II III V V VI Architecture

1. An application user in an Oracle Database session sends a SQL request to query a table.

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

DEMONSTRATION

I II III <mark>V</mark> V VI

Architecture

- 1. An application user in an Oracle Database session sends a SQL request to query a table.
- 2. Oracle Database checks the user's data access control (DAC) privileges for performing a SELECT statement on the table.

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

DEMONSTRATION

I II III <mark>V</mark> V VI

Architecture

- 2. Oracle Database checks the user's data access control (DAC) privileges for performing a SELECT statement on the table.
- 3. User have the appropriate privileges?
 -> Oracle Database checks if there are any
 Oracle Virtual Private Database (VPD) policies
 attached to the table.

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

DEMONSTRATION

I II III <mark>V</mark>V VI

Architecture

- 3. User have the appropriate privileges?
 -> Oracle Database checks if there are any Oracle Virtual Private
 Database (VPD) policies attached to the table.
- 4. Oracle Database then checks if there are any Oracle Label Security policies that are assigned to the table.

LABEL-BASED SECURITY & ROW-LEVEL ACCESS CONTROL

ORACLE LABEL SECURITY

DEMONSTRATION

I II III <mark>V</mark> V VI

Architecture

- 4. Oracle Database then checks if there are any Oracle Label Security policies that are assigned to the table.
 - 5. OLS compares the labels assigned to individual rows with the users' label authorizations
 - -> Allow or deny access.

The session label is based on label authorizations that are assigned to the user.

DEMONSTRATION

II III IV V

Components of Oracle Label Security

Level

Highly Sensitive

Sensitive

Confidential

Public

Compartment

Project A

Project D

Project B

Project E

Project C

Components of Oracle Label Security

Component	Description	Example
Level	A single specification of the sensitivity of labeled data within the ordered ranks established	CONFIDENTIAL(1), SENSITIVE(2), HIGHLY_SENSITVE(3)
Compartments	Zero or more categories associated with the labeled data	FINANCIAL, STRATEGIC, NUCLEAR
Groups	Zero or more identifiers for organizations owning or accessing the data	EASTERN_REGION WESTERN_REGION

DEMONSTRATION

II III IV V

V

EXAMPLE 3

EXAMPLE 3

SQL> select Name, Budget, Status, Announce from projects

		•	: *	
		Project data		
Name	Budget	Status	Announce	Label
Drug A	\$1.5 M	Green	2/1/2019	HS:A:
Drug B	\$4 M	Red	2/15/2019	HS:B:
Drug C	\$5 M	Red	4/1/2019	HS:C:
Drug D	\$1.7 M	Yellow	11/1/2019	HS:D:
Drug E	\$4 M	Yellow	8/1/2019	HS:E

EXAMPLE 3

SQL> select Name, Budget, Status, Announce from projects

		•	: *	
		Project data		
Name	Budget	Status	Announce	Label
Drug A	\$1.5 M	Green	2/1/2019	HS:A:
Drug B	\$4 M	Red	2/15/2019	HS:B:
Drug C	\$5 M	Red	4/1/2019	HS:C:
Drug D	\$1.7 M	Yellow	11/1/2019	HS:D:
Drug E	ÇAM	Yellow	0/1/2010	HS:E:

User label:

HS: A,B,D:

EXAMPLE 3

SQL> select Name, Budget, Status, Announce from projects

		Project data		
Name	Budget	Status	Announce	Label
Drug A	\$1.5 M	Green	2/1/2019	HS:A:
Drug B	\$4 M	Red	2/15/2019	HS:B:
Drug D	\$1.7 M	Yellow	11/1/2019	HS:D:

OLS retrieves authorized data records only

ORACLE LABEL SECURITY

DEMONSTRATION

V

EXAMPLE 3

Completed

06 SUMMARY

Mandatory Access Control

Multilevel Relation

Row-Level Access Control

06 SUMMARY

Mandatory Access Control

Multilevel Relation

Row-Level Access Control

Mandatory Access Control

Multilevel Relation

Row-Level Access Control

06 SUMMARY

Mandatory Access Control

Multilevel Relation

Row-Level Access Control

REFERENCE

https://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_4003.htm

https://www.youtube.com/watch?v=h4kKQApaP1Y

https://www.youtube.com/watch?v=ESz4ts7g_zw

https://docs.oracle.com/en/database/oracle/oracle-database/21/olsag/introduction-to-oracle-label-

security.html#GUID-47E86F58-4659-4B36-966A-69EF55E1E11D

https://docs.oracle.com/en/database/oracle/oracle-database/21/olsag/understanding-data-labels-and-user-

labels.html#GUID-F29D48CE-EE9A-495E-A35B-55B38BAB1FDB

https://docs.oracle.com/en/database/oracle/oracle-database/21/olsag/access-controls-and-privileges.html#GUID

A222EB99-83C4-4BCC-84F6-D20087101E9D

https://www.tranvanbinh.vn/2020/01/huong-dan-su-dung-cong-cu-oracle-sql.html

https://www.oracle.com/ocom/groups/public/@otn/documents/webcontent/279315.htm

https://www.youtube.com/watch?v=o4-XpUQWfaM

