NEURAL DATA ANALYSIS

ALEXANDER ECKER, PHILIPP BERENS, MATTHIAS BETHGE

COMPUTATIONAL VISION AND NEUROSCIENCE GROUP

Week	Date	Topic
1	14.04.15	Introduction, Spike detection, Feature extraction
2	21.04.15	Spike sorting with Mixture of Gaussians
3	28.04.15	Identifying single neurons (Cross-correlograms, LDA)
4	05.05.15	Spike inference from calcium data (Deconvolution)
5	12.05.15	Current problems (presentations 1)
6	19.05.15	Visualizing and analyzing spike trains 1 (Raster plot, PSTH, Latency)
7	02.06.15	Visualizing and analyzing spike trains 2 (Tuning curves, Correlations)
8	09.06.15	Single cell receptive field estimation (STA, STC, LNP-model)
9	16.06.15	Analyzing neural populations 1 (Generalized linear models, Ising models)
10	23.06.15	Analyzing neural populations 2 (Population dynamics, GPFA)
11	30.06.15	Current problems (presentations 2)
12	07.07.15	Analyzing neural populations 3 (Decoding)
13	14.07.15	Backup (tba)
14	21.07.15	Wrap-up, Discussion

TASK 1A: SPIKE DETECTION

ISSUES

- Dealing with four channels
- Alignment
- Double triggering

TASK 1B: FEATURE EXTRACTION

ISSUES

Why not perform PCA on all 4 channels at same time?

Relative amplitudes are important In simultaneous PCA, they get lost since they are not the largest source of variance

TASK 2: SPIKE SORTING

SPIKE SORTING

MANUAL CLUSTER CUTTING

PROBLEMS

Subjective
High error rates
Suboptimal boundaries
Time consuming
Not reproducible
Not model based

AUTOMATIC CLUSTERING

- Objective
- Model-based
- Reproducible
- Quantifiable

- K-Means
- Mixture of Gaussian
- Others?

WHICH ALGORITHM?

Fit a Gaussian mixture model

LOG LIKELIHOOD

$$\ln p(x|\mu, \Sigma, \pi) = \sum_{n} \ln \sum_{k} \pi_{k} \mathcal{N}(x_{n}|\mu_{k}, \Sigma_{k})$$

 π_k Mixing coefficient of cluster k

 μ_k Mean of cluster k

 Σ_k Covariance of cluster k

EXPECTATION MAXIMIZATION

Finds ML estimate of latent variable model

Parameters: θ

Latent variables: Z

Data: X

Alternate until convergence:

- 1. E step: estimate latent variables Z given the current set of parameters $\boldsymbol{\theta}$
- 2. M step: update parameters θ to maximize the likelihood given current estimate of the latent variables Z

E-STEP

Evaluate ,responsibilities' with current parameter values: (posterior probability of a data point to belong to cluster k)

$$\gamma_{k,n}^{new} = \frac{\pi_k \mathcal{N}(x_n | \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(x_n | \mu_j, \Sigma_j)}$$

M-STEP

Update means:

$$\mu_k^{new} = \frac{1}{N_k} \sum_n \gamma_{k,n} x_n$$

Update covariances:

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_n \gamma_{k,n} (x_n - \mu_k^{new}) (x_n - \mu_k^{new})'$$

Update mixing coefficients:

$$\pi_k^{new} = \frac{N_k}{N}$$

$$N_k = \sum_n \gamma_{k,n}$$

M-STEP

HOW DO WE DETERMINE THE CLUSTER NUMBER?

DEALING WITH MODEL COMPLEXITY

Penalize number of parameters!

Use information criteria like BIC (or modified versions)

BIC =
$$-2 \ln p(x | \mu_{opt}, \Sigma_{opt}, \pi_{opt}) + P \ln N$$

DEALING WITH LOCAL MAXIMA

EM can get stuck in local maxima. What do we do?

- Restart the algorithm multiple times and pick the result with the best likelihood.
- 2. Split-and-merge

RESTARTING TO AVOID LOCAL MAXIMA

SPLIT AND MERGE

After EM has converged, try alternately

Splitting a cluster

For a candidate, run ,partial EM' with two components instead of one, keeping all other components fixed Evaluate whether BIC decreased

Merging two clusters

Compute new model with 2 clusters combined into one and evaluate BIC

GRADING

1 person responsible for report, 1 for presentation 30% - 10% for grade

PRESENTATIONS

Calabrese & Paninski: Spike sorting of non-stationary data with Kalman filter

Pillow et al: A model based spike sorting algorithm

Diego & Hamprecht: Sparse space-time deconvolution for Calcium image analysis

Theis et al: Supervised spike inference from calcium signals

Archer et al: Bayesian entropy estimation

PRESENTATIONS

Macke et al: Empirical models of population activity

Park & Pillow: Bayesian estimation of low rank RFs

Cunningham et al: Gaussian processes rate estimation

Okun et al: Diverse coupling to neural populations

Semedo et al: Extracting latent structure from multiple

populations

Fletcher and Randan: Neuronal connectivity from calcium imaging