Define $m : (a,b) \rightarrow \mathbb{R}$ by

$$m(x) = \begin{cases} 0 & \text{if } x \in K \\ 1/q_n'(x) & \text{if } x \in (a_n, b_n) \end{cases}$$

Then m is continuous and admissible and the flow ψ coincides with the flow constructe from m in Theorem 3.17. Hence δ_m is the generator of the group $\left(S(t)\right)_{t\in\mathbb{R}}$ given by $S(t)\,f=f\circ\psi_t=f\circ\beta^{-1}\circ\phi_t\circ\beta=VT(t)\,V^{-1}f$, where V is the isomorphism on $C_o(a,b)$ given by Vf = $f\circ\beta$. Consequently, $\delta=V^{-1}\delta_mV$.

Now we are able to describe arbitrary generators of positive groups on $\mathbf{C}_{_{\mathbf{O}}}(\mathbf{a},\mathbf{b})$.

Theorem 3.25. Let $-\infty \le a < b \le \infty$. An operator A generates a positive group on $C_0(a,b)$ if and only if there exist

- a lattice isomorphism V on C_o(a,b),
- an admissible function m on (a,b),
- a bounded continuous function $h : (a,b) \to \mathbb{R}$ such that

(3.24)
$$A = V^{-1} \delta_m V + h .$$

<u>Proof.</u> Let A be the generator of a positive group on $C_O(a,b)$. By Theorem 3.14 there exist a continuous bounded function $p:(a,b) \to \mathbb{R}$ such that $\inf_{x \in (a,b)} p(x) > 0$ and $h \in C^b(a,b)$ and the generator δ of an automorphism group such that $A = M\delta M^{-1} + h$ where $M \in L(C_O(a,b))$ is given by $Mf = p \cdot f$. By Theorem 3.24 there exist an admissible continuous function $m:(a,b) \to \mathbb{R}$ and a lattice isomorphism $U \in L(C_O(a,b))$ such that $\delta = U\delta_m U^{-1}$. Setting V = MU we obtain $A = V\delta_m V^{-1} + h$.

Finally we consider compact intervals. Let $-\infty \le a < b \le \infty$ and ϕ be a continuous flow on [a,b]. Then it is easy to see that $\phi(a,t)=a$ and $\phi(b,t)=b$ for all $t\in\mathbb{R}$. So the restriction ϕ_O of ϕ to (a,b) is a continuous flow on (a,b). Conversely, if ϕ_O is a continuous flow on (a,b) the extension ϕ_O to $\phi:\mathbb{R}\times[a,b]+[a,b]$ by setting $\phi(t,a)=a$; $\phi(t,b)=b$ for all $t\in\mathbb{R}$ defines a continuous flow on [a,b]. This consideration allows us to extend easily the preceding results to the space C[a,b]. Let $m:(a,b)\to\mathbb{R}$ be a continuous function. We define the operator δ_m on C[a,b] by $\delta_m f=g$ such that