조사 자료의 분석과 해석 방법 : 비교 분석을 중심으로

독립집단 T-검정

- 의미: 두 집단의 평균 차이를 검정하는 방법
- 연구설계 : 자료수집

집단 1 (실험군) n명

_ 가정

- 1) 두 집단은 서로 독립 : 두 집단은 관계가 없다는 의미
- 2) 연구 관심변수(Y)는 수치자료로 측정
- 3) 측정 자료는 정규분포로 가정 : 실제 연구에서는 분석을 통해 확인해야 함

SPSS에서의 정규성 검정

정규성 검정

		Kolmogorov-Smirnov ^a			Shapiro-Wilk			
	Gr	통계량	자유도	유의확률	통계량	자유도	유의확률	
Y	1,00	,135	7	,200*	,976	7	,936	
1	2,00	,163	7	,200*	,948	7	.715	
	3,00	,128	7	,200*	,988	7	,989	

- *. 이것은 참인 유의확률의 하한값입니다.
- a. Lilliefors 유의확률 수정
- 정규성 검정의 가설
 - 1) 귀무가설 : (각 집단별) 측정 자료는 정규분포를 따른다
 - 2) 유의확률이 0.05보다 크면 유의수준 5%수준에서 정규분포를 따른다고 해석

2) 등분산 검정

- 두 집단의 평균 차이를 비교하기 위해 두 집단의 분산이 동일한지를 검정
- 귀무가설: 두 집단의 모분산은 동일하다 (양측검정으로 수행)
- SPSS

독립표본 검정

		Levene의 등	등분산 검정	평균의 동일성에 대한 t-검정						
		F	유의확률	t	자유도	유의확률 (양쪽)	평균차	차이의 표 준오차	차이의 95% 하한	상한
V	등분산이 가정됨 등분산이 가정되지 않음	,001	, 980	1,522 1,522	12 11,996	, 154 , 154	,95714 ,95714	,62879 ,62879	-, 41287 -, 41292	2,32715 2,32721

- 등분산 검정 방법

- Levene의 등분산 검정 결과를 해석
- 유의확률이 0.05보다 크면 유의수준 5%수준에서 귀무가설을 기각할 수 없으므로(채택하므로) 두 집단의 모분산은 동일하다는 귀무가설을 채택
- 따라서 두 집단의 모분산은 동일하다고 결론

3) T-검정

- 정규성 및 등분산 가정 만족 여부를 고려하여 t-검정 수행
- 귀무가설 : 두 집단의 평균은 동일하다/두 집단의 평균의 차이는 없다
- SPSS
 - 등분산 검정과 동일하게 수행

독립표본 검정

Levene의 등분산 검정					평균의 -	동일성에 대힌	t-검정			
		F	유의확률	t	자유도	유의확률 (양쪽)	평균차	차이의 표 준오차	차이의 95% 하한	5 신뢰구간 상한
Y	등분산이 가정됨	001	980	1 522	12	154	95714	,62879	-, 41287	2,32715
	등분산이 가정되지 않음			1,522	11,996	.154	,95714	,62879	-,41292	2,32721

- 등분산 가정을 만족하면, 등분산 가정됨 칸을 이용하여 분석
- 등분산 가정을 만족하지 않으면, 등분산 가정되지 않음 칸을 해석
- 단측검정이면 유의확률/2로 판단
- 분석/해석 방법
 - 양측 : 집단1과 집단2의 평균 차이는 0.96이며, 두 집단의 평균 차이가 유의한지를 독립 t-검정으로 분석해 보면, 유의확률(p-값)이 0.154로 나타나 유의수준 5%에서 두 집단의 평균 차이가 없다는 귀무가설을 기각할 수 없으므로 두 집단의 평균 차이가 유의하지 않은 것으로 나 타났다(유의하다면 집단1과 집단2의 평균 차이는 유의하다고 해석, 어 느 집단이 높다는 결론은 내리지 않는 것으로 설명).
 - 단측 : 집단1과 집단2의 평균 차이는 0.96이며, 두 집단의 평균 차이가 유의한지를 독립 t-검정으로 분석해 보면, 유의확률(p-값)이 0.0777로 나타나 유의수준 5%에서 두 집단의 평균 차이가 없다는 귀무가설을 기각할 수 없으므로 두 집단의 평균 차이가 유의하지 않은 것으로 나 타났다(만약 유의하다면 집단 1이 집단2보다 평균이 더 높은 것으로 나타났다고 설명 가능).

대응자료 t-검정

- 의미 : 동일 집단 대상으로 두 관심 변수의 평균 차이를 검정 하는 방법
- 연구설계: 자료수집

- _ 가정
 - 1) 동일 집단 대상으로 두 관심 변수의 자료를 측정
 - 2) 연구 관심변수(Y)는 수치자료로 측정
 - 3) 측정 자료는 정규분포로 가정 : 실제 연구에서는 분석을 통해 확인해야 함

• 정규성 검정

- 검정 기준: 택일 가능, 대체로 2)번으로 주로 확인
 - 1) 개별 자료(Y1, Y2)에 대해 확인 가능
 - 2) 차이 자료 d=Y2-Y1에 대해 확인 가능
 - ✓ 정규성 검정 과정 : 독립집단 t-검정과 동일

• 등분산 가정

두 자료에 대한 차이 자료를 이용하면 두 자료가 한 개의 관심변수 자료(d)로 축소되므로 등분산 검정은 필요하지 않음

• 결과 해석

대응표본 통계량

		평균	N	표준편차	평균의 표 준오차
대용	Y1	222, 1250	8	25,91986	9, 16406
1	Y2	224,5000	8	27,90801	9,86697

대응표본 상관계수

	N	상관계수	유의확률
대용 1 Y1 & Y2	8	.987	,000

대응표본 검정

			대용차					
	평균	표준편차	평균의 표	차이의 95% 하한	6 신뢰구간 상한		자유도	유의확률 (양쪽)
대용1 Y1-Y2	-2,37500	4,83846	1,71065	-6, 42006	1,67006	-1,388	7	,208

- 유의확률(p값)은 양측 검정이므로 단측검정이면 유의확률/2로 판단
- 양측: 사전과 사후의 차이는 -2.375로 사후가 높지만 사전과 사후 차이가 유의하다는 연구가설(대립가설 관점)에 대한 대응자료 t-검정 결과는 p값이 0.208로 유의수준 5%보다 크므로 사전과 사후의 평균은 동일하다는 귀무가설을 기각할 수 없으므로 사전과 사후의 차이는 유의하지 않다고 해석
- 단측: 사전과 사후의 차이는 -2.375로 사후가 높지만 사후가 사전보다 더 높다는 연구가설(대립가설 관점)에 대한 대응자료 t-검정 결과는 p값 이 0.104로 유의수준 5%보다 크므로 사전과 사후의 평균은 동일하다는 귀무가설을 기각할 수 없으므로 사전과 사후의 차이는 유의하지 않다고 해석

분산분석

- 의미 : 세 집단의 평균 차이를 검정하는 방법
- 연구설계 : 자료수집

_ 가정

- 1) 세 집단은 서로 독립
- 2) 연구 관심변수(Y)는 수치자료로 측정
- 3) 측정 자료는 정규분포로 가정 : 실제 연구에서는 분석을 통해 확인해야 함

- 추가 가정의 검토
 - 정규성 검정
 - 각 집단별 측정 자료가 정규분포를 따르는지 확인
 - 독립진단 t-검정의 내용과 동일
 - 각 집단의 사례 수가 동일하다면 정규성 검정은 생략 가능
 - 등분산 가정
 - 세 집단의 모분산이 동일한지 확인/검정이 필요
 - SPSS에서 검정 가능: "일반선형모형"을 이용하면 가능
 - 참고: 집단내 대상간 독립성 가정의 검토도 가능

- [참고] 등분산 검정 : SPSS
 - 귀무가설: 각 집단의 모분산은 동일하다
 - 분석 과정 : 분산분석 과정에서 검정 가능(예 ; 일반선형모형)

오차 분산의 동일성에 대한 Levene의 검정로

종속변수: Y

F	자유도1	자유도2	유의확률
.016	2	18	.984

여러 집단에서 종속변수의 오차 분산이 동일한 영 가설을 검정합니다.

a. 계획: Intercept+Gr

SPSS: 일원배치 분산분석

- 방법 1 : 일원배치 분산분석
 - 하나의 요인(하나의 집단/그룹 기준 변수)에 대한 분산분석만 가능
 - 귀무가설 : 그룹별 평균은 동일하다/그룹별 효과의 차이는 없다
 - 대립가설 : 최소한 하나의 집단은 평균이 다르다는 의미로 표현

高用品質	그자리 에페	- SPSS GIO	티 펴지기		
	편집(E) 보기(분석(A) 그래프(G)	유틸리티(U) 창(W) 도움말(H)
				보고서(P)	▶
] 🖳 🗠 🖯	<u> </u>			.
1:				H (<u>T</u>)	•
	id	Gr	Υ	평균 비교(<u>M</u>)	▶ 집단별 평균분석(<u>M</u>)
1	1.00	1.00	18.2	일반선형모형(<u>G</u>)	▶ 일표본 T 검정(<u>S</u>)
2	2.00	1.00	20.1	혼합 모형(<u>X</u>)	▶ 독립표본 T 검정(<u>T</u>)
3	3.00	1.00	17.6	상관분석(<u>C</u>)	▶ 대응표본 T 검정(<u>P</u>)
4	4.00	1.00	16.8	회귀분석(<u>R</u>)	▶ 일원배치 분산분석(<u>0</u>)
5	5.00	1.00	18.8	로그선형분석(<u>0</u>)	•
6	6.00	1.00	19.7	분류분석(<u>Y</u>)	•
7	7.00	1.00	19.1	데이터 축소(<u>D</u>)	•
- 8	8.00	2.00	17.4	척도화분석(<u>A</u>)	•
9	9.00	2.00	18.7	비모수 검정(<u>N</u>)	•
10	10.00	2.00	19.1	시계열 분석(<u>l</u>)	·
11	11.00	2.00	16.4	생존분석(<u>S</u>)	•
12	12.00	2.00	15.9	다중응답(<u>U</u>)	• <u> </u>
13	13.00	2.00	18.4	결측값 분석(<u>∀</u>)	
14	14.00	2.00	17.70		_
15	15.00	3.00	15.20		
16	16.00	3.00	18.80		
17	17.00	3.00	17.70		
18	18.00	3.00	16.50		
19	19.00	3.00	15.90		
20	20.00	3.00	17.10		
21	21.00	3.00	16.70		

• 일원배치 분산분석 결과

분석/설명 :

- 1) 세 집단의 평균이 동일하다는 귀무가설에 대한 분산분석 결과를 보면, p값이 0.037로 유의수준 5%보다 작으므로 귀무가설은 기각됨. 따라서 유의수준 5%에서 세 집단의 평균은 최소한 한 집단에서 다름을 보여주므로 유의수준 5%에서 집단간 평균의 차이가 유의하다고 설명.
- 2) 최소한 한 집단의 평균이 다르므로 구체적으로 어떤 집단의 평균이 다름을 살펴보기 위해 SNK 방법으로 사후분석(다중비교)을 실시함. 그 결과, 집단 3과 집단2는 평균이 같은 동일그룹으로 나타났으며, 집단2와 집단 1도 동일그룹으로 나타남(집단 2는 두 그룹과 동일하나 집단1과 3은 평균이 다른 집단으로 보임.).

SPSS: 이원배치 분산분석

- 방법2 : 일반선형모형
 - 일반적인 상황(하나이상의 요인들로 이루어지는 실험)에 대한 분산분석 수행
 - 둘 이상의 요인에 대한 실험에서 상호작용(교호작용)효과 분석이 가능

가설

- 귀무가설: 그룹간 평균은 동일하다/그룹간 평균의 차이는 없다
 - 그룹간 효과는 동일하다/효과의 차이는 없다
 - 상호작용효과의 검정 : 상호작용효과는 존재하지 않는다
- 대립가설 : 최소한 하나의 집단 평균은 다를 것이다
 - 상호작용효과의 검정 : 상호작용효과는 존재할 것이다

- 분석 과정 : 이원배치 분산분석
 - 집단별 평균

1, Gr1

종속변수: Y

			95% 신	뢰구간
Gr1	평균	표준오차	하한값	상한값
1	18,711	, 452	17,727	19,696
2	17,739	, 452	16,754	18,723
3	16,961	, 452	15,977	17,946

2. GR2

종속변수: Y

0				
			95% 신	뢰구간
GR2	평균	표준오차	하한값	상한값
1	18,044	, 452	17,060	19,029
2	18,006	, 452	17,021	18,990
3	17,361	, 452	16,377	18,346

- 설명 : 변수1(GR1) 기준의 세 집단 평균은 집단1이 가장 높고, 집단 3이 가장 작음
- 변수2(그룹 구분 변수/요인) 기준에서는 집단 1이 가장 높고, 집단 3이 가장 낮으나 그 차이가 크지 않음
- 분산동일성 검정

오차 분산의 동일성에 대한 Levene의 검정로

종속변수: Y

F	자유도1	자유도2	유의확률
4,613	8	12	,009

여러 집단에서 종속변수의 오차 분산이 동일한 영 가설을 검정합니다.

a. 계획: Intercept+Gr1+GR2+Gr1 * GR2

- 분산분석 결과

개체-간 효과 검정

_				
-	-00	ж	수:	- 1/
=	=			Y

07271					
소스	제 III 유형 제곱합	자유도	평균제곱	F	유의확률
수정 모형	19,430ª	8	2,429	1,762	.181
절편	6418,680	1	6418,680	4656,842	.000
Gr1	10,378	2	5, 189	3,765	.054
GR2	1,988	2	,994	.721	,506
Gr1 ≠ GR2	6,741	4	1,685	1,223	,352
오자	16,540	12	1,378		
합계	6618,600	21			
수정 합계	35,970	20			

a. R 제곱 = .540 (수정된 R 제곱 = .234)

- 분산분석결과 해석 및 설명
 - 변수1(GR1)과 변수2(GR2)를 고려한 관심변수 Y에 대한 실험자료를 2원배 지 분산분석한 결과를 보면,
 - 변수1과 변수2의 상호작용에 대한 효과의 분석 결과를 보면, 효과가 존재하지 않는다는 귀무가설에 대한 검정 결과는 p-값이 0.352로 유의수준 5%에서 유의하지 않은 것으로 나타났다(귀무가설을 채택한 결과에 대한 설명).
 - 변수1에 대한 주효과에 대해서는 세 집단의 평균이 동일하다는 귀무가설에 대한 p-값이 0.054로 유의수준 5%에서 유의하지 않으며,
 - 변수 2에 대한 주효과에 대해서는 세 집단의 평균이 동일하다는 귀무가설에 대한 p-값이 0.506로 유의수준 5%에서 유의하지 않았다.

사후분석Gr1

다중 비교

종속변수: Y Dunnett T3

Daillier 13							
					95% 신뢰구간		
(I) Gr1	(J) Gr1	평균차(I-J)	표준오차	유의확률	하한값	상한값	
1	2	.9571	,62879	,377	-,7704	2,6847	
	3	1,7714*	,62689	.043	,0492	3,4937	
2	1	-, 9571	,62879	,377	-2,6847	,7704	
	3	,8143	,63272	.510	-,9240	2,5525	
3	1	-1,7714*	, 62689	.043	-3,4937	-, 0492	
	2	-,8143	,63272	.510	-2,5525	,9240	

관측된 평균에 기초합니다.

- *. .05 수준에서 평균차는 유의합니다.
- 분산분석 검정에서 유의한 변수에 대해서는 사후분석을 실시하여 구체적으로 어느 집 단의 평균이 다른지 확인하는 추가 검정을 실시하게 됨.
- 예 : 집단변수 1(Gr1)이 유의하다고 가정할 때,
 - 모분산이 동일하지 않으므로 동일하지 않을 때 사후분석하는 방법을 선택해 수행
 - Dunnett 방법으로 사후분석한 결과를 보면, 집단 1과 2는 동일한 평균을 가지며, 집단 3은 집단2와 동일한 평균을 가지는 것으로 나타나 집단 1과 2는 동일 집단, 집단2와 3이 동일집단으로 나타남.

상관분석

- 수치 자료의 (선형적) 관계를 분석하는 방법
 - 선형 관계를 제외한 관계분석은 불가능

- 가설
 - 귀무가설 : (선형적) 관계는 존재하지 않는다
 - 대립가설: 관계(양의 관계, 음의 관계)는 존재한다
- 기본 검정 방법 : t-검정방법 이용
- 결과 해석
 - p값이 유의수준보다 작으면 귀무가설을 기각한다고 판단
 - 귀무가설을 기각하면 선형관계가 존재한다고 설명하고, 구체적인 관계는 대립가설을 보고 관계(양의 관계, 음의 관계)가 존재한다고 설명

SPSS: 상관관계분석

• 분석 메뉴

• 분석 결과

상관계 수

		VAR00002	VAR00005	VAR00006	VAR00009	VAR00011
VAR00002	Pearson 상관계수	1	−, 685*+	−, 383 * +	.873*+	-, 855 * *
	유의확률(양쪽)		,000	,000	,000	,000
	N	90	90	90	90	90
VAR00005	Pearson 상관계수	-, 685**	1	.093	-, 466++	.505**
	유의확률(양쪽)	,000		,382	,000	,000
	N	90	90	90	90	90
VAR00006	Pearson 상관계수	-, 383 * +	.093	1	-,379**	,378**
	유의확률(양쪽)	,000	,382		,000	,000
	N	90	90	90	90	90
VAR00009	Pearson 상관계수	.873*∗	-, 466++	-,379**	1	-, 925**
	유의확률(양쪽)	,000	,000	,000		,000
	N	90	90	90	90	90
VAR00011	Pearson 상관계수	-, 855**	,505**	,378**	-, 925**	1
	유의확률(양쪽)	,000	.000	,000	,000	
	N	90	90	90	90	90

^{**.} 상관계수는 0.01 수준(양쪽)에서 유익합니다.

• 해석/설명

- 상금순위(var00002)와 참가대회수(var00005)의 상관계수는 -0.685(단측검정 p-값 0.000)로 유의수준 5%에서 귀무가설이 기각되어 유의하므로 상금순위가 높 아지면 참가대회수가 적어짐을 알 수 있음.
- 상금순위(var00002)와 60타수획득순위(var00009)의 상관계수는 0.873(단측검정 p-값 0.000)로 유의수준 5%에서 귀무가설이 기각되어 유의하므로 상금순위가 높아지면 60타수 획득순위가 높아짐을 알 수 있음.

회귀분석

- 종속변수에 선형적인 영향을 미치는 독립변수들을 이용하여 회귀모형으로 1) 영향력의 크기, 2) 상대 영향력의 비교, 3) 종속변수의 결과 예측 등을 분석하는 통계적 기법
- 변수의 자료 형태
 - 종속변수 : 수치 자료
 - 독립변수: 기본적으로 수치자료, 단, 비수치자료는 더미변수로 처리하여 사용
 - 더미변수(dummy variable) : (범주의 수-1)개의 더미변수(가변수) 생성

성별	d1
남자	1
여자	0

계절	d1	d2	d3
봄	1	0	0
여름	0	1	0
가을	0	0	1
겨울	0	0	0

• 모형 : 선형모형으로 가정

• 기본가정

- 종속변수 혹은 오차항에 대한 가정이 요구
 - 정규성
 - 독립성
 - 등분산성
- 선형성 : 독립변수와 종속변수의 관계에 대한 가정
- 회귀분석을 이용하는 기본 연구가설
 - 성별(독립변수)는 몸무게(종속변수)에 영향을 미칠 것이다
 - 계절은 운동량에 영향을 미칠 것이다
 - 퍼팅순위는 상금순위에 양의 영향을 미칠 것이다(순위가 일치한다는 의미)
 - 드라이빙 거리는 상금순위에 음의 영향을 미칠 것이다(거리가 멀면 순위가 감소 함을 의미)

SPSS: 회귀분석

• 분석 과정

- 회귀모형의 유의성 검정: 독립변수들이 종속변수를 회귀모형으로 설명하는지를 판단하는 검정(귀무가설: 회귀모형은 유의하지 않다/독립변수들은 종속변수를 회귀모형으로 설명으로 설명할 수 없다)
 - 분산분석의 결과가 유의(귀무가설이 기각되는 상황)하게 나타나야 함

분산분석b

모형	제곱합	자유도	평균제곱	F	유의확률
1 선형회귀분석	67121,106	6	11186,851	208, 406	,000ª
잔차	4455, 294	83	53,678		
합계	71576,400	89			

a. 예측값: (상수), VAR00012, VAR00006, VAR00005, VAR00011, VAR00009, VAR00007

b. 종속변수: VAR00002

- 회귀모형의 설명력 설명
 - 결정계수(R제곱)를 이용하여 설명
 - 예 : 종속변수(var00002)에 대한 설명력을 보면, 독립변수들이 회귀모형을 통해 종속변수를 93.8% 설명하고 있음 명형 요약

모형	R	R 제곱	수정된 R 제곱	추정값의 표준오차
1	,968ª	,938	,933	7,32654

a. 예측값: (상수), VAR00012, VAR00006, VAR00005, VAR00011, VAR00009, VAR00007

- 회귀계수의 유의성 검정: 개별적으로 독립변수가 종속변수에 미치는 영향력을 검정하는 과정
 - 귀무가설 : 독립변수는 종속변수에 영향을 주지 않는다
 - 대립가설 : 독립변수는 종속변수에 영향(양의 영향, 음의 영향)을 미친다

	<u> </u>									
Γ		비표준회	화 계수	표준화 계 수						
<u> </u>	고형	В	표준오차	베타	t	유의확률				
П	(상수)	-178,977	304,424		-,588	.558	L			
1	VAR00005	-2,345	.432	-, 196	-5.431	.000	П			
ı	VAR00006	, 101	,145	,103	, 698	,487	ı			
ı	VAR00007	3, 950	5,132	,115	.770	.444	ı			
ı	VAR00009	, 151	,091	.141	1,659	,101	ı			
ı	VAR00011	-, 298	,472	-,048	-, 632	,529	L			
L	VAR00012	.666	.071	.661	9, 339	.000				

a. 종속변수: VAR00002

• 유의확률(p값)을 이용하여 유의성을 검정(단측 검정은 p값을 ½하여 검정)

• 해석/설명

- 종속변수에 대한 회귀분석 결과를 보면, 유의수준 5%에서 var00005와 var00012 만이 유의한 것으로 나타나 독립변수 중 var00005(참가대회수)와 var00012(타수 순위)만이 종속변수에 미치는 영향이 유의한 것으로 나타남(종속변수에 유의하 게 영향을 주는 것으로 나타남).
- var00005는 종속변수에 음의 영향을 미치므로 참가대회수가 적을수록 상금순위 가 높아짐을 의미하고, var00012는 종속변수에 양의 영향을 미치므로 평균타수 순위가 높을수록 상금순위도 높아짐을 의미함
- 영향을 미치는 두 변수의 상대적인 중요도를 비교하면, var00012의 표준화 회귀계수가 더 크므로 평균타수순위가 참가대회수보다 종속변수에 영향을 더 많이 미치고 있음

- 영향력의 크기 분석
 - 비표준화 회귀계수(B)를 이용하여 설명
- 상대적인 영향력의 크기 비교를 위한 방법
 - 표준화 회귀계수의 크기를 이용하여 비교
 - 부호는 방향성만을 의미하므로 절대값의 크기가 큰 변수가 영향력이 큼을 의미
- 예측을 위한 최종 모형의 선택
 - 유의한 독립변수만을 이용하여 최종 모형 선정
 - 변수 선택 방법으로 결정하는 방법
 - 전진선택법
 - 후진제거법
 - 단계별 선택법

- 단계별 회귀분석(stepwise regression)
 - 전진선택 + 후진제거를 단계적으로 수행하여 유의한 독립변수들로 표현되는 최종 회귀모형의 결과를 제공하는 방법

a. 예측값:(상수), VAR00012

b. 예측값: (상수), VAR00012, VAR00005

이 예측값: (상수), VAR00012, VAR00005, VAR00009

• 단계별 회귀분석 결과

부	사	부	석	1
_	_	ᄑ	_	

모형		제곱합	자유도	평균제곱	F	유의확률
1	선형회귀분석	65100,850	1	65100,850	884,693	,000ª
	잔차	6475,550	88	73,586		
	합계	71576,400	89			
2	선형회귀분석	66593, 499	2	33296, 749	581,352	,000Ъ
	잔차	4982,901	87	57,275		
	합계	71576,400	89			
3	선형회귀분석	67068, 481	3	22356, 160	426,500	,000c
	잔차	4507,919	86	52,418		
	합계	71576,400	89			

a. 예측값:(상수), VAR00012

b. 예측값: (상수), VAR00012, VAR00005

이 예측값: (상수), VAR00012, VAR00005, VAR00009

d. 종속변수: VAR00002

계수리

		비표준화 계수		표준화 계 수		
모형		В	표준오차	베타	t	유의확률
1	(상수)	2,029	1,766		1,149	.254
	VAR00012	,960	.032	.954	29,744	.000
2	(상수)	47,944	9, 128		5, 252	.000
	VAR00012	,852	.036	.846	23, 999	.000
	VAR00005	-2,154	,422	-, 180	-5, 105	,000
3	(상수)	51,329	8,805		5,830	.000
	VAR00012	,679	.067	.675	10, 188	.000
	VAR00005	-2,372	.410	-, 198	-5, 784	.000
	VAR00009	,194	,064	, 181	3,010	,003

a. 종속변수: VAR00002

- 상금순위(var00002)에 영향을 미치는 독립변수를 탐색하기 위해 단계별 회귀분 석으로 분석한 결과, var00012(평균타수순위), var00005(참가대회수), var00009(60타획득순위) 가 유의하게 영향을 미치는 것으로 나타남
- 유의하게 영향을 미치는 독립변수 중 평균타수순위가 상금순위에 영향을 가장 많이 미치고 있으며, 그리고 참가대회수, 60타 획득순위의 순으로 영향을 미침
- 최종 모형의 설명력은 결정계수가 93.8%로 설명력이 높게 나타남(설명력을 비교할 때는 수정결정계수를 사용하여 비교)