10-701: Introduction to Machine Learning

Lecture 3 – KNNs

Hoda Heidari

9/3/2025

* Slides adopted from F24 offering of 10701 by Henry Chai.

Decision Tree Learning: ID3 Algorithm

- 1. Start with the entire training dataset, \mathcal{D} .
- 2. For each attribute, x_d , calculate the information gain if the dataset were split using that attribute.
- 3. Select the attribute with the highest information gain as the splitting attribute for the current node.
- 4. Create a new node in the decision tree with this attribute.
- 5. For each possible value of the chosen attribute, create a new branch and a corresponding subset of the data.
- 6. Recursively apply steps 2-6 to each subset until a stopping criteria is met:
 - All examples in the subset have the same label. → predict that label
 - There are no more attributes to split on. → predict majority label
 - There are no more examples in the subset. → predict randomly.

•

Correction Mutual Information

• Mutual information between two random variables X and Y describes how much clarity about the value of one variable is gained by observing the other

$$I(Y;X) = H(Y) - H(Y|X)$$

Where
$$H(Y|X) = \sum_{x} p(x) H(Y|X = x)$$

$$= -\sum_{x} p(x) \sum_{y} \frac{p(x,y)}{p(x)} \log_{2} \left(\frac{p(x,y)}{p(x)}\right)$$

$$= -\sum_{x,y} p(x,y) \log_2 \left(\frac{p(x,y)}{p(x)}\right)$$

Correction: I(Y;X) = H(Y) - H(Y|X) = H(X) - H(X|Y)

Mutual Information Symmetry

Proof by showing that

$$H(Y) - H(Y|X) = \sum_{x,y} p(x,y) \log_2 \left(\frac{p(x,y)}{p(x)p(y)} \right) = H(X) - H(X|Y)$$

$$- \sum_{y} p(y) \log (p(y)) + \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)} \log_2 \frac{p(x,y)}{p(x)}$$

$$= - \sum_{y} \sum_{x} p(x,y) \log_2 (p(y)) + \sum_{x,y} p(x,y) \log_2 \frac{p(x,y)}{p(x)}$$

$$= - \sum_{x,y} p(x,y) \left[\log_2 p(y) - \log_2 \frac{p(x,y)}{p(x)} \right]$$

$$= - \sum_{x,y} p(x,y) \left[\log_2 p(y) - \log_2 \frac{p(x,y)}{p(x)} \right]$$

$$= - \sum_{x,y} p(x,y) \log_2 \frac{p(y)}{p(x)} p(x)$$

$$= - \sum_{x,y} p(x,y) \log_2 \frac{p(y)}{p(x)} p(x)$$

How is Hoda Getting to Work?

x_1	x_2	x_3	x_4	y
Rain	Before	Both	Tired	Drive
Rain	During	Both	Not Tired	Bus
Rain	During	Both	Tired	Drive
Rain	After	Backpack	Not Tired	Bus
Rain	After	Backpack	Tired	Bus
Rain	After	Lunchbox	Tired	Drive
No Rain	Before	Backpack	Tired	Bike
No Rain	Before	Lunchbox	Not Tired	Bus
No Rain	Before	Lunchbox	Tired	Drive
No Rain	During	Backpack	Not Tired	Bus
No Rain	During	Both	Tired	Drive
No Rain	After	Backpack	Not Tired	Bike
No Rain	After	Backpack	Tired	Bike
No Rain	After	Both	Not Tired	Bus
No Rain	After	Both	Tired	Drive
No Rain	After	Lunchbox	Not Tired	Bus

Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm i.e., decision tree learning with mutual information maximization as the splitting criterion?
 - Try to find the Smallest tree that achieves

 Lowest roung error with

 Righest mutual information features at the top

Decision Trees: Inductive Bias

- The **inductive bias** of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm i.e., decision tree learning with mutual information maximization as the splitting criterion?
 - Try to find the <u>shortest</u> tree that achieves
 <u>zero training error</u> with
 <u>high mutual information</u> features at the top
- Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset

Decision Trees: Pros & Cons

- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons

Real-Valued Features: Example x = OutsideTemperature (°F)

Real-Valued Features: Example x = Outside Temperature (°F)

Real-Valued Features: Example x = OutsideTemperature (°F)

Real-Valued
Features:
Example -x = OutsideTemperature (°F)

Decision Trees: Pros & Cons

- Pros
 - Interpretable
 - Efficient (computational cost and storage)
 - Can be used for classification and regression tasks
 - Compatible with categorical and real-valued features
- Cons
 - Learned greedily: each split only considers the immediate impact on the splitting criterion
 - Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
 - Liable to overfit!

Overfitting Underfitting

- Overfitting occurs when the classifier (or model)...
 - is too complex
 - fits noise or "outliers" in the training dataset as opposed to the actual pattern of interest
 - doesn't have enough inductive bias pushing it to generalize (e.g., memorizer)
- Underfitting occurs when the classifier (or model)...
 - is too simple
 - can't capture the actual pattern of interest in the training dataset
 - has too much inductive bias (e.g., majority vote)

Different Kinds of Error

- Training error rate = $err(h, \mathcal{D}_{train})$
- Test error rate = $err(h, \mathcal{D}_{test})$
- True error rate = $eqrec{e}{pr}(h)$
 - = the error rate of h on all possible examples
 - In machine learning, this is the quantity that we care about but, in most cases, it is unknowable.
- Overfitting occurs when $err(h) > err(h, \mathcal{D}_{train})$
 - $err(h) err(h, \mathcal{D}_{train})$ can be thought of as the measure of overfitting,
 - often estimated by $err_{test}(h) err(h, \mathcal{D}_{train})$

This tree only misclassifies one training data point!

Overfitting in Decision Trees

Henry Chai - 1/24/24 Figure courtesy of Tom Mitchell

Combatting Overfitting in Decision Trees

 Intuition: deeper trees are "more complicated" and thus more liable to overfit

- Heuristics:
 - Do not split leaves past a fixed depth, δ
 - Do not split leaves with fewer than c data points
 - Do not split leaves where the maximal information gain is less than au

Take a majority vote in impure leaves

Combatting Overfitting in Decision Trees

- Reduced Error Pruning:
 - 1. Learn a decision tree
 - Evaluate each split using a "validation" dataset by comparing the validation error rate with and without that split
 - 3. Greedily remove the split that most decreases the validation error rate
 - Break ties in favor of smaller trees
 - 4. Stop if no split is removed

Bus

 x_1

$$\mathcal{D}_{val} =$$

Backpack Tired Rain During Both $Not\, Tired$ Rain After Backpack No Rain Before Not Tired No Rain During Lunchbox Tired No Rain Lunchbox After Tired

 x_2

 x_3

 x_4

 $err(h-s_1, \mathcal{D}_{val})$

Henry Chai - 1/24/24

y

Bus

Bus

Bus

Drive

Drive

 S_1

Bus

$$\mathcal{D}_{val} =$$

x_1	x_2	x_3	x_4	у
Rain	During	Backpack	Tired	Bus
Rain	After	Both	Not Tired	Bus
No Rain	Before	Backpack	Not Tired	Bus
No Rain	During	Lunchbox	Tired	Drive
No Rain	After	Lunchbox	Tired	Drive

err(h-s)	s_1, \mathcal{D}_v	al	=	0.4
decirio				
minns	split	af	S,	

	1			_
err	h	\mathbf{q}	1	Γ
e_{II}	II.	D_{22}	$\sim 1 l$	U
• • •	()	$-\nu$	ul	_

Pruning Decision Trees

Henry Chai - 1/24/24 Figure courtesy of Tom Mitchell

Key Takeaways

- Decision tree prediction algorithm
- Decision tree learning algorithm via recursion
- Inductive bias of decision trees
- Overfitting vs. Underfitting
- How to combat overfitting in decision trees

Class Activity

Main page
Contents
Featured content
Current events
Random article

Article

Talk

Duck test

From Wikipedia, the free encyclopedia

For the use of "the duck test" within the Wikipedia community, see Wikipedia:DUCK.

The **duck test** is a form of abductive reasoning. This is its usual expression:

If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck.

The Duck Test

Real-valued Features

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width	Petal Length	Petal Width
0	4.3	3.0	1.1	0.1
0	4.9	3.6	1.4	0.1
0	5.3	3.7	1.5	0.2
1	4.9	2.4	3.3	1.0
1	5.7	2.8	4.1	1.3
1	6.3	3.3	4.7	1.6
1	6.7	3.0	5.0	1.7

Fisher Iris Dataset

Fisher (1936) used 150 measurements of flowers from 3 different species: Iris setosa (0), Iris virginica (1), Iris versicolor (2) collected by Anderson (1936)

Species	Sepal Length	Sepal Width
0	4.3	3.0
0	4.9	3.6
0	5.3	3.7
1	4.9	2.4
1	5.7	2.8
1	6.3	3.3
1	6.7	3.0

Fisher Iris Dataset

Henry Chai - 1/24/24 Figure courtesy of Matt Gormley

The Duck Test for Machine Learning

- Classify a point as the label of the "most similar" training point
- Idea: given real-valued features, we can use a distance metric to determine how similar two data points are
- A common choice is Euclidean distance:

$$d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_2 = \sqrt{\sum_{d=1}^{D} (x_d - x_d')^2}$$

An alternative is the Manhattan distance:

$$d(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_1 = \sum_{d=1}^{D} |x_d - x_d'|$$

Nearest Neighbor Model

- Classify a point as the label of the "most similar" training point
- Given a training dataset $\mathcal{D}_{train} = \left\{ \left(\boldsymbol{x}^{(n)}, y^{(n)} \right) \right\}_{n=1}^{N}$

Let
$$\hat{l}(x') = \underset{i \in \{1,...,N\}}{\operatorname{argmin}} d(x^{(i)}, x')$$

Then the nearest neighbor classifier can be written as

$$h(\mathbf{x}') = y^{\left(\hat{\imath}(\mathbf{x}')\right)}$$

Nearest Neighbor: Example

Nearest Neighbor: Example

Nearest Neighbor: Example

The Nearest Neighbor Model

- Requires no training!
- Always has zero training error!
 - · A data point is always its own nearest neighbor

•

Always has zero training error...

Bayes Optimal Classifier

- Assume a binary classification problem: $\mathcal{Y} = \{1, 0\}$
- Assume data points are drawn *independently* from some probability distribution P defined over $X \times Y$ P(x, y)
- Assume labels are stochastic: let $\pi(x) = P\{y = 1 | x\}$.
- What is the optimal prediction for x knowing $\pi(x)$?

$$\pi(x) = 0.65 \rightarrow \hat{y} = 1$$

 $\pi(x) = 0.2 \rightarrow \hat{y} = 0$

• Assume $\pi(x)$ is continuous.

• As
$$N \to \infty$$
, $x^{(\hat{\imath}(x'))} \to x' \Longrightarrow \pi(x^{(\hat{\imath}(x'))}) \to \pi(x')$

Generalization of Nearest Neighbor (Cover and Hart, 1967)

• Claim: under certain conditions, as $n \to \infty$, with high probability, the true error rate of the nearest neighbor k model ≤ 2 * the Bayes error rate (the optimal classifier)

Generalization of Nearest Neighbor (Cover and Hart, 1967)

- Claim: under certain conditions, as $n \to \infty$, with high probability, the true error rate of the nearest neighbor model ≤ 2 * the Bayes error rate (the optimal classifier)
- Proof (cont.):

•
$$err(h) = \mathbb{E}_{x'}[\mathbb{1}(h(x') \neq y')] = P\{h(x') \neq y'\}$$

 $= P\{h(x') = 1, y' = 0\} + P\{h(x') = 0, y' = 1\}$
 $= \pi(x^{(i(x'))})(1 - \pi(x')) + (1 - \pi(x^{(i(x'))}))\pi(x')$
 $\to \pi(x')(1 - \pi(x')) + (1 - \pi(x'))\pi(x')$
 $= 2\pi(x')(1 - \pi(x'))$
 $\leq 2 \min(\pi(x'), (1 - \pi(x'))) = 2err(h^*)$

k-NearestNeighbors(kNN)

- Why limit ourselves to just one neighbor?
- Classify a point as the most common label among the labels of the k nearest training points
- Tie-breaking (in case of even k and/or more than 2 classes)
 - Weight votes by distance
 - Remove furthest neighbor
 - Add next closest neighbor
 - Use a different distance metric

55

58

64

kNN: Inductive Bias

- What is the inductive bias of a *k*NN model that uses the Euclidean distance metric?
- Similar points should have similar labels and *all features* are equivalently important for determining similarity

Feature scale can dramatically influence results!

Setting *k*

- When k=1:
 - many, complicated decision boundaries
 - may overfit
- When k = N:
 - no decision boundaries; always predicts the most common label in the training data
 - may underfit
- k controls the complexity of the hypothesis set $\Longrightarrow k$ affects how well the learned hypothesis will generalize