CS2040S Data Structures and Algorithms

(e-learning edition)

Graphs! (Part 3)

Representing a Graph

- Nodes
- Edges

Representing a Graph

- Nodes: stored in an array
- Edges

Adjacency List

- Nodes: stored in an array
- Edges: linked list per node

Adjacency List in Java

```
class NeighborList extends LinkedList<Integer> {
class Node {
 int key;
 NeighborList nbrs;
                            a
                            b
class Graph {
 Node[] nodeList;
                            d
                            e
```

Adjacency List in Java

```
class Graph{
    List<List<Integer>> nodes;
}
```

More concise code is not *always* better...

- Harder to read
- Harder to debug
- Harder to extend

Representing a Graph

- Nodes
- Edges = pairs of nodes

- Nodes
- Edges = pairs of nodes

	a	b	C	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
e	1	1	0	0	0	0
f	1	0	0	0	0	0

Graph represented as:

$$A[v][w] = 1 \text{ iff } (v,w) \in E$$

Neat property:

• A^2 = length 2 paths

	a	b	С	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	1	1	0	0	0	0
f	1	0	0	0	0	0

To find out if c and d are 2-hop neighbors:

- Let $B = A^2$.
- $B[c, d] = A[c, .] \cdot A[., d]$

B[c, d] = 1 iff
 A[c, x] == A[x, d]
 for some x.

	a	b	С	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	1	1	0	0	0	0
f	1	0	0	0	0	0

Graph represented as:

$$A[v][w] = 1 \text{ iff } (v,w) \in E$$

Neat properties:

- A^2 = length 2 paths
- A^4 = length 4 paths

	a	b	С	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
е	1	1	0	0	0	0
f	1	0	0	0	0	0

Graph represented as:

$$A[v][w] = 1 \text{ iff } (v,w) \in E$$

Neat properties:

- A^2 = length 2 paths
- A^4 = length 4 paths
- A^{∞} = Google pagerank

	a	b	C	d	е	f
3	0	0	0	0	1	1
)	0	0	1	1	1	0
C	0	1	0	0	0	0
t	0	1	0	0	0	0
9	1	1	0	0	0	0
f	1	0	0	0	0	0

Adjacency Matrix in Java

Graph represented as:

```
A[v][w] = 1 \text{ iff } (v,w) \in E
```

```
class Graph {
  boolean[][] m_adjMatrix;
```

	a	b	C	d	
a	0	0	0	0	
b	0	0	1	1	
C	0	1	0	0	
d	0	1	0	0	
е	1	1	0	0	
f	1	0	0	0	

Adjacency Matrix in Java

Graph represented as:

```
A[v][w] = 1 \text{ iff } (v,w) \in E
```

```
class Graph {
  Node[][] m_adjMatrix;
```

	a	b	C	d	
a	0	0	0	0	
b	0	0	1	1	
C	0	1	0	0	
d	0	1	0	0	
e	1	1	0	0	
f	1	0	0	0	

Trade-offs

Adjacency Matrix vs. Array?

For a cycle, which representation is better?

- ✓ 1. Adjacency list
 - 2. Adjacency matrix
 - 3. Equivalent

Adjacency List

Memory usage for graph G = (V, E):

- array of size |V|
- linked lists of size |E|

Total: O(V + E)

For a cycle: O(V)

Memory usage for graph G = (V, E):

array of size |V|*|V|

Total: $O(V^2)$

For a cycle: $O(V^2)$

	a	b	С	d	е	f
a	0	0	0	0	1	1
b	0	0	1	1	1	0
С	0	1	0	0	0	0
d	0	1	0	0	0	0
e	1	1	0	0	0	0
f	1	0	0	0	0	0

For a clique, which representation is better?

- 1. Adjacency matrix
- 2. Adjacency list
- 3. Equivalent

Adjacency List vs. Matrix

Memory usage for graph G = (V, E):

- Adjacency List: O(V + E)
- Adjacency Matrix: O(V²)

For a cycle: O(V) vs. $O(V^2)$

For a clique: $O(V + E) = O(V^2)$ vs. $O(V^2)$

Adjacency List vs. Matrix

Memory usage for graph G = (V, E):

- Adjacency List: O(V + E)
- Adjacency Matrix: O(V²)

For a cycle: O(V) vs. $O(V^2)$

For a clique: $O(V + E) = O(V^2)$ vs. $O(V^2)$

Base rule: if graph is dense then use an adjacency matrix; else use an adjacency list.

dense: $|E| = \theta(V^2)$

Which representation for Facebook Graph? Query: Are Bob and Joe friends?

- 1. Adjacency List
- ✓2. Adjacency Matrix
 - 3. Equivalent

List: (much) better space.

Matrix: somewhat faster

Which representation for Facebook Graph? Query: List all my friends?

- ✓1. Adjacency List
 - 2. Adjacency Matrix
 - 3. Equivalent

Trade-offs

Adjacency Matrix:

- Fast query: are v and w neighbors?
- Slow query: find me any neighbor of v.
- Slow query: enumerate all neighbors.

Adjacency List:

- Fast query: find me any neighbor.
- Fast query: enumerate all neighbors.
- Slower query: are v and w neighbors?

Graph Representations

Key questions to ask:

- Space usage: is graph dense or sparse?
- Queries: what type of queries do I need?
 - Enumerate neighbors?
 - Query relationship?

Roadmap

Today: Graph Basics

- What is a graph?
- Modeling problems as graphs.
- Graph representations (list vs. matrix)
- Searching graphs (DFS / BFS)