Basics

- i) Sample space: set of all possible outcomes Ex: M-ary PAM with M=4 symbols, $S = \{-3\alpha, -\alpha, \alpha, 3\alpha\}$
- ii) Event: Is any subset of SEx: Event $A = \{-3\alpha, \alpha\}$ Event complement $\bar{A} = \{-\alpha, 3\alpha\}$
- iii) Set theory: Union and Intersection $A \cup B$ and $A \cap B$
- iv) NULL Event: $\phi = \{\}$
- v) Mutually Exclusive events: If $A \cap \bar{A} = \{\}$ Contain no common sample points

Conditional Probability

- i) $P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}$ $\implies P(A \cap B) = P(A|B)P(B)$
- ii) $P(B|A) \triangleq \frac{P(B \cap A)}{P(A)}$ $\implies P(B \cap A) = P(B|A)P(A)$
- iii) Bayes Rule: P(A|B)P(B) = P(B|A)P(A)
- Note $P(A|B) \neq P(B|A)$

Probability

Axioms of Probability

- Ax.1: $P(A) \ge 0$
- Ax.2: P(S) = 1
- Ax.3: $P(A \cup B) = P(A) + P(B)$ Iff $A \cap B = \phi$

Properties

- i) $P(A) \leq 1$
- ii) $P(\phi) = 0$
- iii) P(A) < P(B) if $A \subset B$
- iv) $P(A \cup B) = P(A) + P(B) P(A \cap B)$

Example

- i) In 4-PAM, let $A = \{-3\alpha, \alpha\}$ and $B = \{\alpha\}$
- ii) $P(B|A) = \frac{P(B \cap A)}{P(A)} = \frac{1}{4} / \frac{3}{8} = \frac{2}{3}$ iii) $P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{1}{4} / \frac{1}{4} = 1$
- iv) Note $P(A|B) \neq P(B|A)$

Statistically Independent Events

- i) P(A|B) = P(A)
- i.e., Occurence of ${\cal B}$ has no-effect on ${\cal A}$ $\implies \frac{P(A \cap B)}{P(B)} = P(A)$
- $\implies P(A \cap B) = P(A)P(B)$
- ii) $\Longrightarrow \frac{P(A \cap B)}{P(A)} = P(B)$ P(B|A) = P(B)
 - Similarly, A has no-effect on B
- iii) Note: If $P(A \cap B) = P(A)P(B)$ then $P(A \cap \bar{B}) = P(A)P(\bar{B})$

Example:

- i) For 4-PAM, let $P = \{\frac{1}{8}, \frac{1}{8}, \frac{1}{4}, \frac{1}{2}\}$ then
- ii) For $A = \{-3\alpha, \alpha\}, P(A) = \frac{3}{8}$ and $B = \{\alpha, 3\alpha\}$, $P(B) = \frac{3}{4}$
- iii) We have $P(A \cup B) = P(\{-3\alpha, \alpha, 3\alpha\}) = \frac{7}{8}$ $= P(A) + P(B) - P(A \cap B) = \frac{7}{8}$

Example: Block Transmission

Symbols generated at different time instances are independent

- i) $[x_1 \ x_2 \ \cdots x_i]$ where $x_i \in S$ and is IID Each x_i is generated at different time instance
- ii) IID Independent Identically
- Distributed from 4-PAM constellation Siii) $P(x_1 = 3\alpha, x_2 = \alpha)$ $= P(x_1 = 3\alpha)P(x_2 = \alpha) = \frac{1}{4}\frac{1}{2} = \frac{1}{8}$

Example: Wireless Systems (Deep Fade)

- SIMO: Single Input (Tx) Multiple Output (Rx) System
- ii) E_i denotes the event that link i is in deep-fade We have, $P(E_i) = \frac{1}{SNR} = \frac{1}{P/\sigma^2}$
 - where P is Tx Power and σ^2 is Noise Power
- iii) System is in deep-fade when all links are in deep-fade $P(Deep-fade) = P(E_1 \cap E_2 \cap \cdots \cap E_L)$ $P_{DF} = P(E_1)P(E_2)\cdots P(E_L) = \frac{1}{SNR^L}$
 - This **Diversity** leads to significant decrease in BER

Example: MAP Receiver (Maximum Aposteriori Probability)

- Prior prob.: $P(A_0) = 0.1$ and $P(A_1) = 0.9$
- ii) Likelihood: $P(B|A_1) = P(\bar{B}|A_0) = 0.2$ $P(B|A_0) = P(\bar{B}|A_1) = 0.8$

iii) Compute Aposteriori probs.
$$P(A_0|B) = \frac{0.8 \times 0.1}{0.8 \times 0.1 + 0.2 \times 0.9} = \frac{8}{26}$$

$$P(A_1|B) = \frac{0.2 \times 0.9}{0.8 \times 0.1 + 0.2 \times 0.9} = \frac{18}{26}$$

- iv) : Given B, MAP receiver decides A_1 was transmitted
- v) Whereas the ML receiver decides A_0 was transmitted
- vi) MAP is optimal and minimizes the prob. of error

Bayes Theorem

- i) Let $A_0 \cup A_1 = S$ and $A_0 \cap A_1 = \phi$ Mutually exclusive and exhaustive
- ii) Note, for any event B, $(B \cap A_0)$ and $(B \cap A_1)$ are mutually exclusive and $(B \cap A_0) \cup (B \cap A_1) = B$
- $\implies P(B) = P(B \cap A_0) + P(B \cap A_1)$ $= P(B|A_0) P(A_0) + P(B|A_1) P(A_1)$
- iv) Using Bayes rule we get Bayes Theorem as,
 - $P(A_0|B) = \frac{P(B|A_0)P(A_0)}{P(B)}$ $= \frac{P(B|A_0)P(A_0)}{P(B|A_0)P(A_0)}$ $= \frac{P(B|A_0)P(A_0)}{P(B|A_0)P(A_0) + P(B|A_1)P(A_1)}$ $P(A_1|B) = \frac{P(B|A_1)P(A_1)}{P(B|A_0)P(A_0) + P(B|A_1)P(A_1)}$

Key Terms

- i) $P(A_0|B)$ and $P(A_1|B)$ are called **Aposteriori** probabilities
- ii) $P(A_0)$ and $P(A_1)$ are called **Prior** probabilities
- iii) $P(B|A_0)$ and $P(B|A_1)$ are called **Likelihoods**

Generalized Bayes Theorem

For N mutually exclusive and exhaustive events $P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=0}^{N-1}P(B|A_j)P(A_j)}$ Also note, $\sum_{i=0}^{N-1}P(A_i|B) = 1$

Characteristics

- Characterized by PDF $F_X(x)$
- Quantity $F_X(x)dx$ represents the probability that X takes value in the infinitesimal interval [x, x + dx]
- iii) $F_X(x) \ge 0$ for all values of x
- iv) $P(X \in [a, b]) = \int_a^b F_X(x) dx$
- v) Naturally, $\int_{-\infty}^{\infty} F_X(x) dx = 1$

Application: Wireless Channel

- Multipath propagation leads to 'Fading' Signal
- ii) Power of Fading channel g, is random

Example: PDF

iii) $F_X(x) = ae^{-ax}$, is known as the

Consider $F_x(x) = Ke^{-ax}$

ii) $\Longrightarrow \int_{-\infty}^{\infty} Ke^{-ax} = 1$

Exponential PDF

 $-\frac{K}{a}e^{-ax}|_{0}^{\infty}=1$

 $\implies K = a$

iii) $F_G(g) \triangleq e^{-g}$ where g > 0

Application:

 $F(\tau)$

iv) This is known as **Rayleigh** Fading channel where power g is distributed as Exponential and the amplitude of the channel coefficient h is distributed as Rayleigh

(Power Profile of wireless channel)

Exponetial in nature

Example:

Probability that the attenuation of the channel is worse than 20dB.

- $\implies 10 \log_{10} g \le -20 dB$ $\implies P(g \in [0, 0.01]) = \int_0^{0.01} e^{-g} dg$ $= 1 - e^{-0.01}, \text{ where } e^{-0.01} \approxeq (1 - 0.01)$
- $\implies P(g \in [0, 0.01]) = 0.01$

Average Delay (μ_{τ})

Variance Delay (σ_{τ}^2)

ii) **Root Mean square** delay spread

i) $\mu_{ au} = \int_0^\infty au e^{-eta au} d au$

i) $\sigma_{\tau}^{2} = E\{(\tau - \mu_{\tau})^{2}\}$

 $\sigma_{\tau} = \frac{1}{\beta}$

 $= E\{\tau^2\} - \mu_\tau^2$

Statistical Parameters

- i) Mean $\mu \triangleq$ Average value of X
- ii) $\mu = E\{X\}$, the expected value of X
- iii) $\mu = \int_{-\infty}^{\infty} x F_X(x) dx$
- i.e., integration of the values that X takes weighed with the corresponding probability
- i) Variance $\sigma_X^2 \triangleq$ Average square deviation of X about mean μ
- ii) $\sigma_X^2 = E\{(X \mu)^2\}$
 - $= \int_{-\infty}^{\infty} (x \mu)^2 F_X(x) dx$ $= \int_{-\infty}^{\infty} x^2 F_X(x) dx - \mu^2$
 - $= E\{X^2\} E\{X\}^2$

Random Variables

i) RV X, takes values randomly from $\mathbb R$ or a subset of ${\mathbb R}$

(Mean μ and Variance σ^2)

Transformation of RVs (Function of RV)

- i) Consider RV $Y=\Psi(X)$ where $\Psi(\cdot)$ is 1-to-1 $\implies \Psi(\cdot)$ is invertible and $x = \Psi^{-1}(y)$
- ii) If $X \in [x, x + dx] \implies Y \in [y, y + dy]$ $\therefore P(X \in [x, x + dx]) = P(Y \in [y, x + dy])$ $F_X(x)dx = F_Y(y)dy$

Gaussian Random Variable X, (Normal RV)

 $\dot{x} = \mu$

 $E\{(X-\mu)^2\} = \sigma^2$ is the Variance

 $E\{X\} = \mu$ is the Mean

ii) Notation $X \sim \mathcal{N}(\mu, \sigma^2)$

 $F_Y(y) = \frac{F_X(x)|_{x=\Psi^{-1}(y)}}{f}$

Example:

i) At receiver, multiple signal copies

Power arriving with different delays

Hence **power profile** of the channel

iii) Typical power profile is $F(\tau) = \beta e^{-\beta \tau}$

Used to compute **Average delay** (μ_{τ}) and

with different delays

variance delay (σ_{τ}^2)

- i) For a Rayleigh fading channel, we have
- $F_X(x) = e^{-x}$, where X denotes the power
- ii) Amplitude Y is then given by $Y = \sqrt{X}$ $y = \Psi(x) = \sqrt{x}$, where $x \ge 0$ and $y \ge 0$ $\therefore \Psi(\cdot)$ is 1-to-1 and an invertible fn we have, $x=\Psi^{-1}(y)=y^2$

$$\implies F_Y(y) = \frac{e^{-x}|_{x=y^2}}{\left|\frac{1}{2\sqrt{x}}\right|_{x=y^2}} = \frac{e^{-y^2}}{\frac{1}{2\sqrt{y^2}}}$$
$$= 2ye^{-y^2}$$

which is known as the **Rayleigh** Fading channel.

Applications:

- Noise at an instant in time in comm. system
- is modeled as Gaussian RV
- ii) Wireless fading channel coefficient is modeled as complex Gaussian RV which leads to Rayleigh channel (i.e., amplitude is Rayleigh)

Property of Gaussian RV:

- i) Linear combination of Gaussian RV results in another Gaussian RV
- ii) Consider X_1, X_2, \cdots, X_L Gaussian RVs $E\{X_i\} = \mu_i \text{ and } E\{(X_i - \mu_i)^2\} = \sigma_i, \text{ for } i \in \mathbb{N}_1^L$
- Covariance of X_i, X_j is $E\{(X_i \mu_i)(X_j \mu_j)\} = \sigma_{ij}$ ii) Let linear combination of Gaussian RVs be

$$X \triangleq a_1 X_1 + a_2 X_2 + \dots + a_L X_L$$

$$\implies X = \begin{bmatrix} a_1 & a_2 & \dots & a_L \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_L \end{bmatrix} = \mathbf{a}^T \mathbf{X}$$

X is another Gaussian RV

Mean and Variance of X

i)
$$\mu = E\{X\} = E\{\sum_i a_i X_i\}$$

$$= \sum_{i} a_{i} E\{X_{i}\} = \sum_{i} a_{i} \mu_{i} = \mathbf{a}^{T} \boldsymbol{\mu}$$

ii)
$$\sigma^2 = E\left\{(X-\mu)^2\right\}$$

$$= E\left\{ \left(\sum_{i} a_{i} X_{i} - \mu \right)^{2} \right\} = E\left\{ \left(\sum_{i} a_{i} X_{i} - \sum_{i} a_{i} \mu_{i} \right)^{2} \right\}$$

- $= E\{(\sum_{i} a_{i}(X_{i} \mu_{i}))^{2}\}$
- $= E\left\{\sum_{i}\sum_{j}a_{i}a_{j}(X_{i}-\mu_{i}))(X_{j}-\mu_{j})\right\}$
- $= \sum_{i} a_i^2 \sigma_i^2 + \sum_{i} \sum_{j,j\neq i} a_i a_j \sigma_{ij}$ iii) $X \sim \mathcal{N}\left(\sum_{i} a_i \mu_i, \sum_{i} a_i^2 \sigma_i^2 + \sum_{i} \sum_{j,j\neq i} a_i a_j \sigma_{ij}\right)$

Special Case:

Consider X_i , $\forall i$ are **zero-mean**, **equal variance** and **uncorrelated** $=\mu_i=0$

- i) Zero Mean : $E\{X_i\}$
- ii) Same Variance: $E\{(X_i \mu_i)^2\}$ $= \sigma_i^2 = \sigma^2$ iii) Uncorrelated: $E\{(X_i - \mu_i)(X_j - \mu_j)\} = \sigma_{ij} = 0$
- iv) Note that **uncorrelated** Gaussian RVs are **independent** as well v) \implies Considered group of X_i 's are **Idependent** and **Identically Distributed** (IID) RVs
- vi) $X = \mathbf{a}^T \mathbf{X}$ is Guassian
- $Vii) \quad E\{X\} = \mathbf{a}^T \boldsymbol{\mu} = 0$
- viii) $E\{(X-\mu)^2\} = E\{X^2\} = \sum_i a_i^2 \sigma^2 = \sigma^2 \|\mathbf{a}\|^2$
- ix) $X \sim \mathcal{N}(0, \sigma^2 \|\mathbf{a}\|^2)$

Application: (continuation ...

- iii) Assuming the Gaussian noise samples to be zero-mean IID, i.e., $E\{w_i\} = 0, \ E\{|w_i|^2\} = \sigma^2 \text{ and } E\{w_iw_i^*\} = 0 \text{ (uncorrelated)}$
- iv) Considering beamforming vector $\mathbf{a}^T = \left[\begin{smallmatrix} a_1 & a_2 & \cdots & a_L \end{smallmatrix} \right]$
- $\widetilde{y} = a_1^* y_1 + a_2^* y_2 + \dots + a_L^* y_L = \begin{bmatrix} a_1^* & a_2^* & \dots & a_L^* \end{bmatrix} \begin{bmatrix} \frac{y_1}{y_2} \\ \vdots \\ \frac{y_L}{y_L} \end{bmatrix} = \mathbf{a}^H \mathbf{y}$ This combining process is called **beam forming**.
- We have, $\widetilde{y} = \mathbf{a}^H \mathbf{y} = \mathbf{a}^H \mathbf{h}(\phi) x + \mathbf{a}^H \mathbf{w}$ and considering trasmitted signal power $E\{|x|^2\} = P$
- We have, $\mathsf{SNR} = \frac{\mathsf{Signal\ Power}}{\mathsf{Noise\ Power}} = \frac{|\mathbf{a}^H \mathbf{h}(\phi)|^2 E\{|x|^2\}}{E\{|\mathbf{a}^H \mathbf{w}|^2\}} = \frac{|\mathbf{a}^H \mathbf{h}(\phi)|^2 P}{\sigma^2 \, \|\mathbf{a}\|^2}$ vi) To find the maximum SNR possible, we use
- the Cauchy-schwartz Inequality $|\mathbf{a}^H\mathbf{h}(\phi)|^2 \leq \|\mathbf{a}\|^2\|\mathbf{h}(\phi)\|^2$, $\implies \mathsf{SNR} \leq \frac{\|\mathbf{a}\|^2 \|\mathbf{h}(\phi)\|^2 P}{\sigma^2 \|\mathbf{a}\|^2} = \frac{\|\mathbf{h}(\phi)\|^2 P}{\sigma^2} = \mathsf{SNR}_{\mathsf{max}}$
- Note $\|\mathbf{h}(\phi)\|^2 = 1 + \|e^{-j\phi}\|^2 + \dots + |e^{-j(L-1)\phi}|^2 = 1 + 1 + \dots + 1 = L$ vii) $\therefore \mathsf{SNR}_{\mathsf{max}} = \frac{LP}{\sigma^2}$, i.e., L times the initial SNR. (i.e., Array gain = L)
- viii) To obtain $SNR = SNR_{max}$, spatially matched filter
- (matched beam former) is used, i.e., $\mathbf{a} = \mathbf{h}(\phi)$ (also called as Maximum Ratio Combining and coherent combining)

Application: Uniform Linear Antenna Array

- i) $y_i = x e^{-j(i-1)\phi} + w_i$, $\forall i$, where x is the transmitted signal, y_i is the received signal at i^{th} receiver antenna and w_i is the Gaussian noise. $\implies \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_L \end{bmatrix} = \begin{bmatrix} 1 \\ e^{-j\phi} \\ \vdots \\ e^{-j(L-1)\phi_x} \end{bmatrix} + \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_L \end{bmatrix}, \ \mathbf{y} = \mathbf{h}(\phi)x + \mathbf{w}$
- where $\mathbf{h}(\phi)$ is known as Array Steering Vector. ii) Received signal at each successive antenna is delayed by an additional phase of ϕ , hence named Linear Phased array where $\phi = 2\pi f_c \frac{d\cos(\theta)}{C} = \frac{2\pi d}{\lambda}\cos(\theta)$

Characteristics and Statistical Parameters

Random Waveform

or random noise process

each instance of time

instances t_1 and t_2 , is

Special Class of Random Process

Can be used to model random signal

Is characterized by $F_X(x,t)$, a PDF at

iii) Statistical parameters are also function of time

iv) Auto-Correlation (or self-correlation) at time

 $R_{XX}(t_1, t_2) \triangleq E\{X(t_1) | X(t_2)\}$

Mean: $\mu_X(t) = E\{X(t)\} = \int_{-\infty}^{\infty} x F_X(x,t) dx$

 $=\int_{-\infty}^{\infty} x_1 x_2 F(x_1, x_2, t_1, t_2) dx_1 dx_2$

where $F(x_1, x_2, t_1, t_2)$ is the joint PDF for t_1 and t_2

Example: In Wireless Comm. System

- i) Consider a signal $X(t) = \alpha \cos(2\pi f_c t + \theta)$, where Phase θ , is RANDOM and uniformly distributed in $[-\pi, \pi)$ i.e., $F_{\Theta}(\theta) = \frac{1}{2\pi}$, for $-\pi \leq \theta < \theta$ and the parameters
- α, f_c are constant with time. ii) To examine if X(t) is WSS
 - a) $E\{X(t)\} = E\{\alpha \cos(2\pi f_c t + \theta)\} = \int_{-\pi}^{\pi} \alpha \cos(2\pi f_c t + \theta) F_{\Theta}(\theta) d\theta$ $=\frac{\alpha}{2\pi}\int_{-\pi}^{\pi}\cos(2\pi f_c t + \theta)d\theta = 0$
 - $\mu_X(t) = 0 = \mu_x$ is a constant and is **stationary** in the **mean**. b) $E\{X(t)X(t+\tau)\} = E\{\alpha\cos(2\pi f_c t + \theta) \times \alpha\cos(2\pi f_c (t+\tau) + \theta)\}$
 - $= \frac{\alpha^2}{2\pi} \int_{-\pi}^{\pi} \cos(2\pi f_c t + \theta) \times \alpha \cos(2\pi f_c (t + \tau) + \theta) d\theta$ $=\frac{\alpha^2}{2}\cos(2\pi f_c au)=R_{XX}(au)$, does NOT depend on t::stationary in the autocorrelation
 - \implies Random process X(t) is **WSS** with avg. power $R_{XX}(0) = \frac{\alpha^2}{2}$

Power Spectral Density (PSD)

- i) PSD $S_{XX}(f)$, of a WSS random process \triangleq Fourier Transform of $R_{XX}(\tau)$
 - $\implies S_{XX}(f) \triangleq \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j2\pi f \tau} d\tau$
 - $\implies R_{XX}(\tau) = \int_{-\infty}^{\infty} S_{XX}(f) e^{j2\pi f \tau} df$ (Inverse Fourier Transform)

Properties of PSD

- a) $S_{XX}(f)$ is a real quantity and $S_{XX}(f) \ge 0$, as it related to power
- b) $S_{XX}(f) = S_{XX}(-f)$ is symmetric
- c) Setting $\tau = 0$, $R_{XX}(0) = \int_{-\infty}^{\infty} S_{XX}(f) df$
 - \implies Power of WSS RP $P_X =$ Integral of PSD over entire freq.
- d) Power in WSS RP in the band $[f_1, f_2]$ is $P_X[f_1, f_2] = \int_{-f_1}^{-f_2} S_{XX}(f) df + \int_{f_1}^{f_2} S_{XX}(f) df = 2 \int_{f_1}^{f_2} S_{XX}(f) df$

Example: Wireless context

- Consider Wireless signal X(t) with $R_{XX}(\tau) = \frac{1}{2a}e^{-a|\tau|}$, and a = 5KHz
- Then, power in X(t) is $E\{X^2(t)\}=R_{XX}(0)=\frac{1}{2a}$
- iii) Power spectral density, PSD is

$$S_{XX}(f) = \int_{-\infty}^{\infty} \frac{1}{2a} e^{-a|\tau|} e^{-j2\pi f \tau} d\tau$$

$$= \frac{1}{2a} \left\{ \int_{0}^{\infty} e^{-a\tau} e^{-j2\pi f \tau} d\tau + \int_{-\infty}^{0} \frac{1}{2a} e^{a\tau} e^{-j2\pi f \tau} d\tau \right\} = \frac{1}{a^2 + 4\pi^2 f^2}$$

- iv) Band [-w, w] with 90% of the energy can be obtained as $\frac{0.9}{2a} = \int_{-w}^{w} \frac{1}{a^2 + 4\pi^2 f^2} df = \frac{1}{4\pi^2} \int_{-w}^{w} \frac{1}{f^2 + \frac{a^2}{4\pi^2}} df$

 - Further solving we get, w = 1.005a

LTI System

 $\mu_Y(t) = E\{Y(t)\} = E\{\int_{-\infty}^{\infty} X(t-\alpha)h(\alpha)d\alpha\}$

 $\therefore Y(t)$ is **stationary** in the mean

 \implies depends only on au

iv) Further $R_{YY}(\tau) = R_{XX}(\tau) * h(\tau) * h(-\tau)$ (in τ domain)

v) And $S_{YY}(f) = S_{XX}(f) |H(f)|^2$, where $H(f) \leftrightarrow h(t)$

Gaussian

Y(t) is a random process

iii) We have Auto-correlation of Y(t)

 $\implies Y(t)$ is also **WSS**

 $R_{YY}(t) = E\{Y(t)Y(t+\tau)\}$

ii) We have Mean of Y(t) as

 \implies Required bandwidth = [-1.005a, 1.005a],

Transmission of Random Process through LTI

i) Consider X(t) is input to LTI system with impulse response h(t), then

 $Y(t) = X(t) * h(t) = \int_{-\infty}^{\infty} X(t - \alpha) h(\alpha) d\alpha$, where Y(t) is the output

 $= \int_{-\infty}^{\infty} E\{X(t-\alpha)\}h(\alpha)d\alpha = \mu_X \int_{-\infty}^{\infty} h(\alpha)d\alpha = \mu_Y$

 $= E\{\int_{-\infty}^{\infty} X(t-\alpha)h(\alpha)d\alpha \times \int_{-\infty}^{\infty} X(t+\tau-\beta)h(\beta)d\beta\}$

 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E\{X(t-\alpha)X(t+\tau-\beta)\}h(\alpha)h(\beta)d\alpha d\beta$

 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{XX}(\tau - \beta + \alpha) h(\alpha) h(\beta) d\alpha d\beta$

 $\implies Y(t)$ is **stationary** in the auto-correlation

 $S_{YY}(f) = |H(f)|^2 S_{XX}(f)$

i.e., [-5 KHz, 5 KHz] and passband BW is 10 KHz.

White Noise (White Random Process)

with $\tau=0$ we have $E\{X(t)^2\}=R_{XX}(0)$ and $\sigma^2=R_{XX}(0)-\mu_X^2$ $\Longrightarrow F_{X(t)}(x)=\frac{1}{\sqrt{2\pi(R_{XX}(0)-\mu_X^2)}}e^{\frac{-(x-\mu)^2}{2(R_{XX}(0)-\mu_X^2)}}$

I) A Random Process is white if it is

Special Random Process:

Satisfies two properties:

I) $E\{X(t)\} = \mu_X = \mathsf{Constant}$

II) Let $t_1=t$ and $t_2=t+ au$

a) Note, when $\tau = 0$

is Guassian $\forall n$ and $\forall t_1, t_2, \dots t_n$

(Wide Sense Stationary, WSS)

i.e., mean does **NOT depend** on time (is stationary)

 $E\{X(t)X(t+\tau)\} = R_{XX}(t, t+\tau) = R_{XX}(\tau)$

 $E\{X(t)X(t)\} = E\{X(t)^2\} = R_{XX}(0)$

iii) Considering a WSS Guassian Process, we have

i.e., $R_{XX}(0) = Avg.$ power in the process X(t)

Random Process X(t) is a **Gaussian** random process,

i.e., Multivariate Density $F_{X(t_1)X(t_2)\cdots X(T_n)}(x_1,x_2,\cdots,x_n)$

Gaussian Random Process

if $X(t_1), X(t_2), \cdots, X(t_n)$ are **jointly Gaussian** at any time instance

ii) Considering n=1, the PDF of X(t) at any time instance must be Gaussian

 $\implies F_{X(t)}(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$ where μ and σ^2 are function of time

 $E\{X(t)\}=\mu_X$ and $E\{X(t)X(t+\tau)\}=R_{XX}(\tau)$ are stationary. Further

and NOT on the specific time instance t.

i.e., Auto-correlation **depends only** on the **shift** au

- a) WSS
- b) and its autocorrelation $R_{XX}(\tau) = \frac{\eta}{2}\delta(\tau)$, i.e., $R_{XX}(\tau) = 0$ if $\tau \neq 0$. For any non-zero shift τ , the correlation
- $E\{X(t)X(t+\tau)\}=0$, i.e., X(t) and $X(t+\tau)$ are un-correlated.
- II) **PSD** of White Noise is obtained by Fourier Transform of $R_{XX}(\tau)$, i.e., $S_{XX}(f) = \frac{\eta}{2}$ for $-\infty < f < \infty$ i.e., constant over entire freq. range. Uniform power distribution over the entire freq. range similar to white light

Example: Additive White Gaussian Noise

- Random process n(t), is both **Gaussian** and **White**, i.e., $S_{nn}(f) = \frac{\eta}{2}$
- ii) Ex: Additive White Gaussian Noise (AWGN) adds to the transmitted signal

Y(t) = X(t) + n(t)

Such a comm. channel that adds WGN to transmit signal is termed as AWGN channel and is a typical model for wireline channel. (Note that there is no fading coefficient h as in wireless channel)

White Gaussian Noise when passed through RC (low-pass) filter

@Copyright 2019

- I) Consider X(t) is zero-mean White Gaussian noise, i.e., $\mu_X=0$, $R_{XX}(au)=rac{\eta}{2}\delta(au)$ and $S_{XX}(f)=rac{\eta}{2}$ for entire freq. range
- II) Characteristics of RP Y(t) at the ouput of RC filter (LTI system)
 - a) Y(t) is also zero-mean **Gaussian** as the filter is LTI system
- b) We have, $H(f) = \frac{1}{1 + j2\pi fRC}$; $\implies S_{YY}(f) = \frac{\eta}{2} \frac{1}{(1 + 4\pi^2 f^2 R^2 C^2)}$ (no longer White)

 c) Power $E\{|Y(t)|^2\} = \frac{\eta}{2} \int_{-\infty}^{\infty} \frac{1}{(1 + 4\pi^2 f^2 R^2 C^2)} df = \frac{\eta}{4RC} = R_{YY}(0) = \sigma_Y^2$ d) \implies PDF $F_{Y(t)}(y) = \sqrt{\frac{2RC}{\pi\eta}} e^{-\frac{2RCy^2}{\eta}}$

References:

[1] NPTEL Course: Probability and Random Variables for Wireless Communications by Prof. Aditya Jaganathan

Random Processes

i) A random process X(t), is

a random variable X which

is a function of time t

ii) Is a RV at every time instant

or is a RV **indexed** by time