Vectors in \mathbb{R}^m

Definition For any positive integer $m \geq 2$, we use \mathbb{R}^m , also called an *m*-space, to denote the set of all ordered *m*-tuples $\vec{v} = (v_1, v_2, \dots, v_m)$, where each value v_i can be any real number (i.e. for all $v_i \in \mathbb{R}$).

$$\mathbb{R}^{m} = \{ \vec{v} = (v_1, v_2, \dots, v_m) \mid v_i \in R \}$$

Definition For any positive integer $m \geq 2$, we use \mathbb{R}^m , also called an *m*-space, to denote the set of all ordered *m*-tuples $\vec{v} = (v_1, v_2, \dots, v_m)$, where each value v_i can be any real number (i.e. for all $v_i \in \mathbb{R}$).

$$\mathbb{R}^{m} = \{ \vec{v} = (v_1, v_2, \dots, v_m) \mid v_i \in R \}$$

For any $\vec{v} \in \mathbb{R}^m$, we refer to \vec{v} as a *vector*, or an *m-vector*.

The numbers v_1, v_2, \ldots, v_m are called the *components* of the *m*-vector \vec{v} .

Example $\vec{u} = (1, 2, 3, 4)$ is a vector in \mathbb{R}^4 $\vec{v} = (\sqrt{2}, 0.11111, 0, 6, \frac{1}{7}, -9, 0)$ is a vector in \mathbb{R}^7 .

Definition The vector $\vec{0} = (0, \dots, 0) \in \mathbb{R}^m$ is the *zero vector* of \mathbb{R}^m . (Namely, a vector whose components are all 0 is a zero vector.)

Definition The vector $\vec{0} = (0, \dots, 0) \in \mathbb{R}^m$ is the *zero vector* of \mathbb{R}^m . (Namely, a vector whose components are all 0 is a zero vector.)

Two *m*-vectors are *equal* if and only if their corresponding components are identical. That is, for any \vec{u} , $\vec{v} \in \mathbb{R}^m$, $\vec{u} = \vec{v}$ if and only if $u_1 = v_1, u_2 = v_2, \ldots$, and $u_m = v_m$.

Definition The vector $\vec{0} = (0, ..., 0) \in \mathbb{R}^m$ is the *zero vector* of \mathbb{R}^m . (Namely, a vector whose components are all 0 is a zero vector.)

Two *m*-vectors are *equal* if and only if their corresponding components are identical. That is, for any \vec{u} , $\vec{v} \in \mathbb{R}^m$, $\vec{u} = \vec{v}$ if and only if $u_1 = v_1, u_2 = v_2, \ldots$, and $u_m = v_m$.

Example $\vec{0} = (0, 0, 0, 0)$ is a zero vector in \mathbb{R}^4 .

 $\vec{0}=(0,0,0,0,0)$ is a zero vector in $\mathbb{R}^5.$

 $(a,b,c,1,8,\frac{1}{4})$ and $(-2,3,4,d,f,g)\in\mathbb{R}^6$ are equal if and only if

$$\begin{cases} a = -2 \\ b = 3 \\ c = 4 \\ d = 1 \\ f = 8 \\ g = \frac{1}{4}. \end{cases}$$

Definitions

Definition The *distance* between $\vec{u} = (u_1, u_2, \dots, u_m)$ and $\vec{v} = (v_1, v_2, \dots, v_m) \in \mathbb{R}^m$ is defined by

$$d(\vec{u}, \vec{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \ldots + (u_m - v_m)^2}$$

Example Let
$$\vec{u} = (1, -2, 0, 3)$$
 and $\vec{v} = (2, 0, -1, 4) \in \mathbb{R}^4$, then

$$d(\vec{u}, \vec{v}) = \sqrt{(1-2)^2 + (-2-0)^2 + (0-(-1))^2 + (3-4)^2} = \sqrt{7}.$$

Definitions

Definition The *distance* between $\vec{u} = (u_1, u_2, \dots, u_m)$ and $\vec{v} = (v_1, v_2, \dots, v_m) \in \mathbb{R}^m$ is defined by

$$d(\vec{u}, \vec{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \ldots + (u_m - v_m)^2}$$

Example Let $\vec{u} = (1, -2, 0, 3)$ and $\vec{v} = (2, 0, -1, 4) \in \mathbb{R}^4$, then

$$d(\vec{u}, \vec{v}) = \sqrt{(1-2)^2 + (-2-0)^2 + (0-(-1))^2 + (3-4)^2} = \sqrt{7}.$$

Definition The *length (or norm, magnitude)* of $\vec{v} = (v_1, v_2, \dots, v_m) \in \mathbb{R}^m$ is defined by

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_m^2}$$

Remark \vec{v} is the zero vector $\vec{0}$ if and only if $||\vec{v}|| = 0$.

Definition The *distance* between $\vec{u} = (u_1, u_2, \dots, u_m)$ and $\vec{v} = (v_1, v_2, \dots, v_m) \in \mathbb{R}^m$ is defined by

$$d(\vec{u}, \vec{v}) = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \ldots + (u_m - v_m)^2}$$

Example Let $\vec{u} = (1, -2, 0, 3)$ and $\vec{v} = (2, 0, -1, 4) \in \mathbb{R}^4$, then

$$d(\vec{u}, \vec{v}) = \sqrt{(1-2)^2 + (-2-0)^2 + (0-(-1))^2 + (3-4)^2} = \sqrt{7}.$$

Definition The *length* (or norm, magnitude) of $\vec{v} = (v_1, v_2, \dots, v_m) \in \mathbb{R}^m$ is defined by

$$\|\vec{v}\| = \sqrt{v_1^2 + v_2^2 + \ldots + v_m^2}$$

Remark \vec{v} is the zero vector $\vec{0}$ if and only if $||\vec{v}|| = 0$.

Definition The vector \vec{v} is a *unit vector* if and only if $||\vec{v}|| = 1$. **Example** Show that there are no real numbers a and b for which $\vec{v} = (1, -1, a, b)$ is a unit vector.

Definition Let c be a scalar and let \vec{v} be a vector in \mathbb{R}^m . The *scalar multiple* $c\vec{v}$ of \vec{v} by c is the vector

$$c\vec{v}=(cv_1,cv_2,\ldots,cv_m).$$

Definition Let c be a scalar and let \vec{v} be a vector in \mathbb{R}^m . The scalar multiple $c\vec{v}$ of \vec{v} by c is the vector

$$c\vec{v}=(cv_1,cv_2,\ldots,cv_m).$$

For the scalar -1, the scalar multiple of any \vec{v} by -1 is called the *negative* of \vec{v} , denoted $-\vec{v}$, so that $-\vec{v} = (-v_1, -v_2, \dots, -v_m)$.

Definition Let c be a scalar and let \vec{v} be a vector in \mathbb{R}^m . The scalar multiple $c\vec{v}$ of \vec{v} by c is the vector

$$c\vec{v}=(cv_1,cv_2,\ldots,cv_m).$$

For the scalar -1, the scalar multiple of any \vec{v} by -1 is called the *negative* of \vec{v} , denoted $-\vec{v}$, so that $-\vec{v} = (-v_1, -v_2, \dots, -v_m)$.

If *m*-vectors $\vec{u} = c\vec{v}$ for some scalar $c \in \mathbb{R}$, then we call \vec{u} and \vec{v} parallel or collinear.

Definition Let c be a scalar and let \vec{v} be a vector in \mathbb{R}^m . The scalar multiple $c\vec{v}$ of \vec{v} by c is the vector

$$c\vec{v}=(cv_1,cv_2,\ldots,cv_m).$$

For the scalar -1, the scalar multiple of any \vec{v} by -1 is called the *negative* of \vec{v} , denoted $-\vec{v}$, so that $-\vec{v} = (-v_1, -v_2, \dots, -v_m)$.

If *m*-vectors $\vec{u} = c\vec{v}$ for some scalar $c \in \mathbb{R}$, then we call \vec{u} and \vec{v} parallel or collinear.

If two **non-zero** *m*-vectors \vec{u} and are collinear, so that $\vec{u}=c\vec{v}$, then they are said to have the *same* direction if c>0 and are said to have *opposite* directions if c<0.

Theorem For any *m*-vector \vec{v} and any scalar c,

$$\|c\vec{v}\| = |c| \|\vec{v}\|$$

That is, the magnitude of the scalar multiple $c\vec{v}$ is the magnitude of \vec{v} times the absolute value of the scalar multiplier.

Theorem For any *m*-vector \vec{v} and any scalar c,

$$\|c\vec{v}\| = |c| \|\vec{v}\|$$

That is, the magnitude of the scalar multiple $c\vec{v}$ is the magnitude of \vec{v} times the absolute value of the scalar multiplier.

Examples 1. Find the unit vector which has the opposite direction with $\vec{v} = (-1, 1, 0, -2)$.

- 2. Find a, b and k such that $\vec{u} = (1, a, b, 5)$ and $\vec{v} = (-2, 1, 4, k)$ are collinear.
- 3. Find the magnitude of (4, 8, -20, 12).

Vector addition and subtraction, Dot product

Definition Let \vec{u} and \vec{v} be two *m*-vectors.

Then the *sum* of \vec{u} and \vec{v} is the vector

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_m + v_m).$$

The *difference* of \vec{u} and \vec{v} is the vector

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, \dots, u_m - v_m)$$

Vector addition and subtraction, Dot product

Definition Let \vec{u} and \vec{v} be two *m*-vectors.

Then the *sum* of \vec{u} and \vec{v} is the vector

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, \dots, u_m + v_m).$$

The *difference* of \vec{u} and \vec{v} is the vector

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, \dots, u_m - v_m)$$

The *dot product* of \vec{u} and \vec{v} is denoted by $\vec{u} \cdot \vec{v}$ and is defined by

$$\vec{u}\cdot\vec{v}=u_1v_1+u_2v_2+\ldots+u_mv_m.$$

Vectors \vec{u} and \vec{v} are *orthogonal* if and only if $\vec{u} \cdot \vec{v} = 0$.

Lines in \mathbb{R}^m

Let $P(p_1, p_2, \ldots, p_m)$ and $Q(q_1, q_2, \ldots, q_m)$ be two distinct points (i.e., m-tuples) in \mathbb{R}^m and let $\vec{p} = (p_1, p_2, \ldots, p_m)$ and $\vec{q} = (q_1, q_2, \ldots, q_m)$ be the vectors in \mathbb{R}^m corresponding to them.

Lines in \mathbb{R}^m

Let $P(p_1, p_2, \dots, p_m)$ and $Q(q_1, q_2, \dots, q_m)$ be two distinct points (i.e., mtuples) in \mathbb{R}^m and let $\vec{p} = (p_1, p_2, \dots, p_m)$ and $\vec{q} = (q_1, q_2, \dots, q_m)$ be the vectors in \mathbb{R}^m corresponding to them.

Then the line L in \mathbb{R}^m passing through P and Q is defined by

Two-point form equation
$$\vec{x}(t) = (1-t)\vec{p} + t\vec{q}$$

Point-parallel form
$$\vec{x}(t) = \vec{p} + t\vec{v}$$
 equation where \vec{v} is a n

rm
$$ec{x}(t) = ec{p} + t ec{v}$$
 where $ec{v}$ is a non-zero vector parallel to $ec{q} - ec{p}$

Parametric form equation
$$x_1 = p_1 + tv_1$$

 $x_2 = p_2 + tv_2$
 \vdots
 $x_m = p_m + tv_m$

Examples

- 1. Write equations of the line in \mathbb{R}^4 containing P(1,2,3,4) and Q(2,0,-1,1) in the following forms: two-point form, point-parallel form, parametric equations.
- 2. Write parametric equations of the line through P(1,2,-2,1,3,2) which is parallel to $\vec{v}=(-1,1,2,-1,1,3)$.

Hyperplanes

Recall that a point-normal form for a plane in $\ensuremath{\mathbb{R}}^3$ is

$$(n_1, n_2, n_3) \cdot (\vec{x} - (p_1, p_2, p_3)) = 0.$$

Hyperplanes

Recall that a point-normal form for a plane in $\ensuremath{\mathbb{R}}^3$ is

$$(n_1, n_2, n_3) \cdot (\vec{x} - (p_1, p_2, p_3)) = 0.$$

Definition In \mathbb{R}^m , $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ is a point-normal form equation of the *hyperplane* through a point P with normal vector \vec{n} .

The standard form equation of this hyperplane is

$$n_1x_1+n_2x_2+\ldots+n_mx_m=c$$

where the coefficients n_i are the corresponding components of \vec{n} and c is a constant whose value is given by $c = \vec{n} \cdot \vec{p}$.

Examples

- 1. Find the hyperplane in \mathbb{R}^5 through P(1,0,-2,-1,3) with normal (2,1,-3,4,0) in a point-normal form and the standard form.
- 2. A hyperplane in \mathbb{R}^6 has a standard form

$$x_1 + 2x_2 - 4x_3 - x_4 + 6x_5 - 2x_6 = 2$$
.

What is the normal of it? Find any point on this hyperplane.