Análisis Matemático II

Continuidad

DFN 1 (Continuidad puntual). *Una función f es continua en a \in D(f) \subseteq X si para toda* $\varepsilon > 0$ *existe* $\delta > 0$ *tal que*

$$x \in D(f) \cap B_{\delta}(a) \implies f(x) \in B_{\varepsilon}(f(a))$$

o alternativamente, f es continua en a si para toda $\varepsilon>0$ existe $\delta>0$ tal que

$$f^{-1}(B_{\varepsilon}(f(a))) \supseteq D(f) \cap B_{\delta}(a).$$

Teorema 1 (Teorema de Continuidad Global): Para $f: \mathbb{R}^p \to \mathbb{R}^q$ son equivalentes las siguientes condiciones:

- f es continua en \mathbb{R}^p ;
- · Si $G \subseteq \mathbb{R}^q$ es abierto entonces $f^{-1}(G)$ es abierto en \mathbb{R}^p :
- · Si $H \subseteq \mathbb{R}^q$ es cerrado entonces $f^{-1}(H)$ es cerrado en \mathbb{R}^p :

Teorema 2 (Preservación de la conexidad): Sean $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ y $H \subseteq D(f)$ conexo en \mathbb{R}^p . Si f es continua en H, entonces f(H) es conexo en \mathbb{R}^q .

DFN 2 (Continuidad uniforme). Dada $f: D(f) \subseteq \mathbb{R}^p \to \mathbb{R}^q$ y $A \subseteq D(f)$, se dice que f es uniformemente continua en A si para toda $\varepsilon > 0$ existe $\delta > 0$ tal que para todo $x, u \in A$ que cumpla $\|x - u\| < \delta$ se tendrá $\|f(x) - f(u)\| < \varepsilon$.

Obs: Continuidad uniforme ⇒ continuidad.

Lema 1:

Para verificar que $f:D(f)\subseteq\mathbb{R}^p\to\mathbb{R}^q$ **NO** es uniformemente continua en $A\subseteq D(f)$ basta exhibir una $\varepsilon_0>0$ y dos sucesiones (x_n) y (y_n) en A tales que, aunque $\|x_n-y_n\|<1/n$, se cumplirá $\|f(x_n)-f(y_n)\|\geq \varepsilon_0$.

Teorema 3: Sea $f:D(f)\subseteq\mathbb{R}^p\to\mathbb{R}^q$ continua en su dominio. Si $K\subseteq D(f)$ es compacto entonces f es uniformemente continua en K

Continuidad

DFN 3 (Condición de Lipschitz). Decimos que $f:D(f)\subseteq \mathbb{R}\to \mathbb{R}$ cumple la condición se Lipschitz si para cualesquiera $x,y\in D(f)$ se cumple

$$||f(x) - f(y)|| \le M ||x - y||$$

DFN 4 (Contracción). Decimos que f que cumple la condición de Lipschitz con $M \in (0,1)$ es una contracción.

Lema 2: Toda función f que cumple la condición de Lipschitz es uniformemente contínua. Sin embargo, no todas las funciones uniformemente contínuas son Lipschitz.

Teorema 4 (Teorema del punto fijo): Sean (X;d) un espacio métrico completo y $f:X\to X$ una contracción. Entonces existe $u\in X$ que es punto fijo de f.

DFN 5 (Espacios de funciones). *Definimos*

$$C_{pq}(D) := \{ f : D \to \mathbb{R}^q \mid fes \ contínua \ en \ D \}$$

como el espacio de funciones contínuas en D, y a

$$BC_{pq}(D) := \{ f : D \to \mathbb{R}^q \mid fes \text{ contínua y acotada en } D \}$$

como el espacio de funciones contínuas \underline{y} acotadas en D.

Sucesiones de funciones

DFN 6 (Norma infinito). *Definimos una nueva norma sobre* $C_{pq}(D)$:

$$||f||_{\infty,D} := \sup \{||f(x)|| : x \in D\}$$

DFN 7 (Sucesión de funciones).

DFN 8 (Convergencia puntual). Decimos que la sucesión (f_n) converge puntualmente en D a cierta función $f: D \to \mathbb{R}^q$ si $\forall x \in D$ la sucesión $(f_n(x))$, en \mathbb{R}^q , converge a f(x). Como notación, usamos $f = \lim_{n \to \infty} f_n$ o bien $f_n \to f$ para decir que f_n converge puntualmente.

Sucesiones de funciones

Lema 3: Sea (x_n) una sucesión. Si se tiene que $|x_n-L|\leq C\cdot a_n$ con $a_n\to 0$, y C>0 constante, entonces x_n converge a L.

DFN 9 (Convergencia uniforme). Decimos que la sucesión (f_n) con $f_n: D \subseteq \mathbb{R}^p \to \mathbb{R}^q$, converge **uniformemente** a $f: D \subseteq \mathbb{R}^p \to \mathbb{R}^q$ si, $\forall \varepsilon > 0$, existe $k = k(\varepsilon) \in \mathbb{N}$ tal que $n \geq k \implies \|f_n(x) - f(x)\| > \varepsilon$, $\forall x \in D$.

Lema 4: La sucesión de funciones (f_n) , con $f_n: D \subseteq \mathbb{R}^p \to \mathbb{R}^q$, no converge uniformemente a la función $f: D \subseteq \mathbb{R}^p \to \mathbb{R}^q$ en D si existe $\varepsilon_0 > 0$, una sucesión $(x_k) \in D$ tal que la subsucesión (f_{n_k}) cumple $\|f_{n_k}(x_k) - f(x_k)\| \ge \epsilon_0$

Teorema 5: Una sucesión en $B_{p,q}(D)$ es uniformemente convergente en D a cierta $f:D\to \mathbb{R}^q\iff \|f_n-f\|_{\infty,D}\to 0$ si $n\to\infty$.

Teorema 6 (Criterio de Cauchy): Sea (f_n) una sucesión de funciones en $B_{p,q}(D)$. Entonces existe $f \in B_{p,q}(D)$ tal que $f_n \to f$ uniformemente en $D \iff \operatorname{dada} \varepsilon > 0$ existe $M \in \mathbb{N}$ tal que

$$m, n \ge M \implies ||f_n - f_m||_{\infty, D} < \varepsilon$$

Teorema 7 (Preservación de la continuidad): Sea (f_n) una sucesión de funciones continuas definidas en $D \subset \mathbb{R}^p$, tomando valores en \mathbb{R}^q . Si $f_n \to f$ uniformemente en D entonces f es continua en D.

Equivalentemente, si (f_n) es una sucesión en $BC_{p,q}(D)$ tal que $||f_n - f||_{\infty,D} \to 0$ entonces $f \in BC_{p,q}(D)$.

Teorema 8 (Dini): Sea (f_n) una sucesión de funciones continuas definidas en un espacio métrico compacto K. Supóngase además que para cualquier $x \in K$ ocurre que $f_n(x)$ converge a f(x) puntualmente como una sucesión decreciente, para cierta $f \in C(K)$. Entonces $f_n \to f$ uniformemente

Teoría de Aproximación

DFN 10 (Aproximación uniforme). Dadas $f,g:D\subseteq\mathbb{R}^p\to\mathbb{R}^q$, se dice que g aproxima uniformemente a f con error $\varepsilon>0$ si $\|f-g\|_{\infty,D}<\varepsilon$.

Dada \mathcal{F} una familia de funciones de $D \subseteq \mathbb{R}^p$ en \mathbb{R}^q y $f: D \to \mathbb{R}^q$, se dice que f es aproximada uniformemente en D por elementos de \mathcal{F} si para toda $\varepsilon > 0$ existe $g_{\varepsilon} \in \mathcal{F}$ tal que $\|f - g_{\varepsilon}\|_{\infty, D} < \varepsilon$

DFN 11 (Función escalera). Una función $g: \mathbb{R}^p \to \mathbb{R}$ es una función escalera sobre $D \subseteq \mathbb{R}^p$ si toma un número finito de valores diferentes, y los valores distintos de cero los toma en celdas acotadas de \mathbb{R}^p .

Denotamos por $\Sigma(D)$ a la familia de funciones escalera sobre D.

Teorema 9: Sea $f:J\subset\mathbb{R}^p\to\mathbb{R}^q$ una función continua en J, que suponemos una celda cerrada y acotada. Entonces f puede aproximarse uniformemente en J por elementos de $\Sigma(J)$.

DFN 12 (Función lineal por pedazos). Decimos que $g: J = [a,b] \to \mathbb{R}$ es lineal por pedazos si existen (n+1) puntos $c_k \in J$ cumpliendo $a = c_0 < c_1 < \cdots < c_n = b$, y para cada k dos números $A_k, B_k \in \mathbb{R}$ tales que para $x \in [c_{k-1}, c_k]$ se tiene $g(x) = A_k x + B_k$.

Teorema 10: Si $f:J=[a,b]\to\mathbb{R}$ es continua en el intervalo compacto J entonces puede aproximarse uniformemente en J por funciones lineales por pedazos continuas.

Teorema 11 (Weierstrass): Si $f:[0,1] \to \mathbb{R}$ es continua en el intervalo compacto [0,1] entonces existe una sucesión de polinomios (p_n) tales que $p_n \to f$ uniformemente en [0,1].

Corolario 11.1: Para todo intervalo de la forma [-a,a] (con a>0) existe una sucesión de polinomios (p_n) tales que $p_n(0)=0$ para toda n, y tal que

$$\lim_{n\to\infty}p_n(x)=|x|\qquad \text{uniformemente en } [-a,a].$$

DFN 13 (Polinomios de Bernstein). *Dada una función* $f: \mathbb{I} \to \mathbb{R}$, definimos el n-ésimo polinomio de Bernstein asociado a f como:

$$B_n(x) \equiv B_n f(x) := \sum_{k=0}^n f\left(\frac{k}{n}\right) \binom{n}{k} x^k (1-x)^{n-k}, \ x \in \mathbb{I}.$$

Teoría de Aproximación

Teorema 12 (Bernstein): Sea $f: \mathbb{I} \to \mathbb{R}$ continua en \mathbb{I} . Entonces la sucesión $(B_n f)$ de polinomios de Bernstein asociados a f converge uniformemente a f en \mathbb{I} .

Teorema 13 (Teo. de extensión de Tietze): Sea $f:D\subset\mathbb{R}^p\to\mathbb{R}$ continua y acotada, con $D\subset\mathbb{R}^p$ cerrado. Entonces existe $g:\mathbb{R}^p\to\mathbb{R}$ tal que g(x)=f(x) para $x\in D$, y tal que $\|g\|_{\infty}=\|f\|_{\infty,D}$, es decir

$$\sup \left\{ |g(x)| : x \in \mathbb{R}^p \right\} = \sup \left\{ |f(x)| : x \in D \right\}$$

Teorema 14: Si $f: \mathbb{I} \to \mathbb{R}$ es continua y lineal por pedazos, entonces f es combinación lineal de funciones abs_a para ciertas $a \in \mathbb{I}$.

DFN 14 (Propiedad de Lindelöf). *Un espacio métrico* X *tiene la propiedad de Lindelöf si de cualquier cubierta abierta de* X *se puede obtener una subcubierta contable.*

Teorema 15 (Teo. de Lindelöf): El espacio \mathbb{R}^p cumple la propiedad de Lindelöf

Lema 5: Dado $A\subseteq \mathbb{R}^p$, existe $X\subseteq A$ contable tal que $\forall x\in A$ y $\varepsilon>0$ se puede hallar $z\in C$ tal que $\|x-z\|<\varepsilon$. Es decir, A contiene un denso numerable C.

Densidad de espacios de funciones

DFN 15 (ε -red). Dados $A \subseteq X, \varepsilon > 0$, una ε -red de A es una colección de puntos $\{x_{\alpha} \mid \alpha \in \mathcal{A}\}$ tal que $\{B_{\varepsilon}(x_{\alpha}) \mid \alpha \in \mathcal{A}\}$ forma una cubierta de A Se dice que la ε -red es finita si \mathcal{A} es finito.

DFN 16 (Totalmente Acotado). Un $A \subseteq X$ es totalmente acotado si $\forall \varepsilon > 0$, A tiene una ε -red finita.

Lema 6: Totalmente acotado \Longrightarrow acotado, pero no al revés.

Teorema 16: Para un espacio métrico (X,d) son equivalentes:

- $\cdot \ X$ es compacto,
- $\cdot X$ es compacto por sucesiones,
- $\cdot \, \, X$ completo y totalmente acotado.

Densidad de espacios de funciones

Lema 7 (Separabilidad de conjuntos secuencialmente compactos): Sea (X,d) un espacio métrico y $A\subseteq X$ secuencialmente compacto. Entonces A contiene a un conjunto denso numerable.

DFN 17 (Cota uniforme). Una familia $\mathcal{F}\subseteq C_{pq}(K)$ es uniformemente acotada en K si $\exists M>0$ tal que

$$||f||_{\infty} \leq M \quad \forall f \in \mathcal{F}$$

DFN 18 (Equicontinuidad). Una familia $\mathcal{F}\subseteq C_{pq}(K)$ es uniformemente equicontínua en K si para cada $\varepsilon>0,\exists \delta=\delta(\varepsilon)$ tal que

$$||x - y|| < \delta \implies ||f(x) - f(y)|| < \varepsilon$$

con la misma δ para toda $f \in \mathcal{F}$

Teorema 17 (Àrzela-Ascoli en \mathbb{R}^p): Sea $K \in \mathbb{R}^p$ compacto, y $\mathcal{F} \subseteq C_{pq}(K)$. Entonces, son equivalentes

- 1. La familia \mathcal{F} es uniformemente acotada y equicontínua en K
- 2. Toda sucesión $(f_n) \subseteq \mathcal{F}$ tiene una subsucesión uniformemente convergente en $C_{pg}(K)$.

Una presentación para espacios métricos generales:

Teorema 18 (Àrzela-Ascoli): Sea (X,d) un espacio métrico y $K\subseteq X$ compacto. Para $\mathcal{F}\subseteq C(K)$ son equivalentes:

- 1. ${\mathcal F}$ es uniformemente acotada y equicontínua en K
- 2. Toda sucesión $(f_n) \subseteq \mathcal{F}$ tiene una subsucesión uniformemente convergente en K.

Otra versión

Teorema 19: Sea (X,d) un espacio métrico y $K\subseteq X$ compacto. Entonces un conjunto en C(K) es compacto \iff es cerrado bajo la norma uniforme, uniformemente acotado & uniformemente equicontínuo en K.

Densidad de espacios de funciones

Teorema 20 (Teo. de Stone): Sea $\overline{K} \subseteq \mathbb{R}^p$ compacto y $\mathcal{F} \subseteq C(K)$ una familia de funciones que cumple

- · Si $f, g \in \mathcal{F} \implies \min f, g \vee \max f, g \in \mathcal{F}$.
- · Para $\alpha, \beta \in \mathbb{R}, x, y \in K$ tal que $x \neq y, \exists f \in \mathcal{F}$ tal que $f(x) = \alpha$ y $f(y) = \beta$

Entonces, \mathcal{F} es denso en C(K)

Teorema 21 (Teo. de Stone-Weierstrass): Sea $K\subseteq \mathbb{R}^p$ compacto y $\mathcal{A}\subseteq C(K)$ una familia de funciones cumpliendo:

- · La función constante $\varphi_0(x) = 1 \in \mathcal{A}$
- · Si $f, g \in \mathcal{A} \implies \alpha f + \beta g \in \mathcal{A}, \quad \forall \alpha, \beta \in \mathbb{R}$
- · Si $f, g \in \mathcal{A} \implies f \cdot g \in \mathcal{A}$
- · Para $x \neq y \in K, \exists f \in \mathcal{A} \text{ tal que } f(x) \neq f(y)$

Entonces, \mathcal{A} es densa en $C_p(K)$

Teorema 22 (Weierstrass extendido): Sean $K\subseteq \mathbb{R}^p$ compacto y $F:K\to \mathbb{R}^q$ contínua en K. Entonces, dada $\varepsilon>0$, existe $P:\mathbb{R}^p\to \mathbb{R}^q$ una función polinomial tal que

$$||f - P||_{\infty} < \varepsilon$$

DFN 19 (Operador Lineal). *Una transformación lineal en el espacio de funciones*

Lema 8: Los operadores lineales son monótonos

Teorema 23 (Teo. de Korovkin): Sea $J \in \mathbb{R}$ compacto. Suponga que (L_n) es una sucesión de operadores lineales positivos tal que $L_n(\varphi_k) \to \varphi_k$ uniformemente si $n \to \infty$ para k=0,1,2. Entonces, para cualquier $f \in C(J)$

$$L_n(f) \to f$$

uniformemente en J.

Lema 9: Si $L:C(X)\to C(X)$ es operador lineal positivo, entonces para $f,g\in C(X)$ tal que |f(x)|< g(x) para $x\in X$, entonces

$$|L(f)(x)| \le L(g)(x)$$

Densidad de espacios de funciones

DFN 20 (Diagonal y Kernel de una función). Sea $f \in C(X)$. Definimos la diagonal de f como

$$\Delta(f) := \{(x, t) \in X \times X \mid f(x) = f(t)\}\$$

Definimos el kernel de f como

$$\mathcal{Z}(f) := \{ z \in X \mid f(z) < 0 \}$$

Lema 10 (Lema auxiliar): Sea (X,d) un espacio métrico y $K\subseteq X$ compacto, $f\in C(K), G\in C(K\times K)$ positiva y (L_n) una sucesión de operadores lineales positivos tal que

- $\cdot \ \mathcal{Z}(G) \subseteq \Delta(f)$
- · $L_n(\varphi_0) \to \varphi_o$ uniformemente en K
- · Para cada $t \in K$ se tiene que $L_n(G_t)(t) \to 0$ independientemente de t.

Entonces.

$$L_n(f) \to f$$
 uniformemente en K

Teoría de aproximación

Teorema 24: Sea X un espacio normado y $Y\subseteq X$ un subespacio de dimensión finita. Entonces para $x_0\in X$, existe $y^*\in Y$ tal que $\|x_0-y^*\|_X \leq \|x_0-y\|_X$ para toda $y\in Y$.

El problema clásico: Dado J=[-1,1] y $f\in C(J)$ dada $f(t)=t^n$ p.a $n\in\mathbb{N}$ fijo. Hallar la mejor aproximación a f en $P_{n-1}[t]$ (el espacio de polinomios mónicos de grado menor o igual a n-1 en la variable t).

DFN 21 (Conjunto alternante). Dada $f \in C(J)$ un conjunto $\{t_0, \ldots, t_k\} \subseteq J$ es alternante si $t_0 < \cdots < t_k$ y $f(t_j)$ toma alternadamente los valores $\pm \|g\|_{\infty}$.

Lema 11 (Lema de aproximación óptima): Sea $Y \leq C(I)$ (subespacio vectorial de C(I)) de dimensión n que cumple la condición de Haar. Dada $f \in C(I)$, sea $\varphi \in Y$ t.q $f - \varphi$ tiene conjunto alternante de n+1 puntos. Entonces φ es la major aproximación a f dentro de Y.

Integral Riemann-Stieltjes

DFN 22 (Suma de Riemann-Stieltjes). Sea $P = \{x_1, \ldots, x_n\}$ una partición de [a, b] y $t_k \in [x_{k-1}, \cdots, x_k]$. La suma de Riemann-Stieltjes de f con respecto a α en [a, b] es

$$S(P, f, \alpha) = \sum_{k=1}^{n} f(tk) \Delta x_k$$

Decimos que f es Riemann-Stieltjes integrable con respecto a α en [a,b] ($f\in\mathcal{R}_{\alpha}[a,b]$) si $\exists I\in\mathbb{R}$ tal que $\forall \varepsilon>0$, existe P_{ε} una partición de [a,b] tal que si $\|P\|<\|P_{\varepsilon}\|$ y cualesquiera $t_k\in[x_{k-1},x_k]$ \Longrightarrow $|S(p,f,\alpha)-I|<\varepsilon$.

Teorema 25 (Linealidad sobre el integrando e integrador): $f,g \in \mathbb{R}_{\alpha}[a,b] \implies c_1f + c_2g \in \mathbb{R}_{\alpha}[a,b]$ y además

$$\int_{a}^{b} (c_1 f + c_2 g) d\alpha = \int_{a}^{b} = c_1 \int_{a}^{b} f d\alpha + c_2 \int_{a}^{b} g d\alpha$$
$$\int_{a}^{b} f d(c_1 \alpha + c_2 \beta) = c_1 \int_{a}^{b} f d\alpha + c_2 \int_{a}^{b} f d\beta$$

Teorema 26: Sup $c \in (a,b)$. Si 2 de las sig. integrales existen todas existen

$$\int_{a}^{c} f \, d\alpha + \int_{c}^{b} f \, d\alpha = \int_{a}^{b} f \, d\alpha$$

Obs: Si $\alpha \equiv c \implies$ para toda f se cumple $f \in \mathcal{R}_{\alpha}[a,b]$ y ademas $\int_a^b f \ \mathrm{d}\alpha = 0$

Teorema 27 (Equivalencia con integal de Riemann): Sup. $f \in \mathcal{R}_{\alpha}[a,b]$ y sup. $\alpha \in C^1[a,b]$. Entonces, $\int_a^b f \ \mathrm{d}\alpha = \int_a^b f(x)\alpha(x) \ \mathrm{d}x$

Teorema 28 (Integración por partes): Si $f \in \mathcal{R}_{\alpha}[a,b] \implies \alpha \in \mathcal{R}_{\alpha}[a,b]$ y

$$\int_{a}^{b} f \, d\alpha + \int_{a}^{b} \alpha \, df = f(b)\alpha(b) - f(a)\alpha(a)$$

Teorema 29 (Cambio de variable): Sea $f \in \mathcal{R}_{\alpha}[a,b]$ y $g \nearrow [a,b]$ y contínua, cumpliendo g(c)=a,g(d)=b. Definimos $h(x)=f(g(x)),\beta(x)=\alpha(g(x))$ con $x\in [c,d]$. Entonces, $h\in \mathcal{R}_{\alpha}[a,b]$ y además:

$$\int_{a}^{b} f \, d\alpha = \int_{c}^{d} h \, d\beta = \int_{a(c)}^{g(a)} f(t) \, d\alpha(t)$$

Integral de Riemann-Stieltjes

Teorema 30: Dados a < c < b, definimos $\alpha : [a,b] \to \mathbb{R}$ con $\alpha(a), \alpha(c), \alpha(b)$ arbitrarios tal que,

$$\alpha = \begin{cases} \alpha(x) = \alpha(a) & a \le x \le c \\ \alpha(x) = \alpha(b) & c < x \le b \end{cases}$$

y $f:[a,b]\to\mathbb{R}$ tal que al menos una de α,f sea contínua por la izq en c, y al menos una sea contínua en c por la derecha. Entonces, $f\in\mathcal{R}_{\alpha}[a,b]$ y

$$\int_{a}^{b} f \, d\alpha = f(c)[\alpha(c+) - \alpha(c-)]$$

Teorema 31 (Reducción a una suma finita): Sea $\alpha:[a,b]\to\mathbb{R}$ una función escalón con saltos de altura α_k en x_k con x_1,\ldots,x_n partición de [a,b] de tal forma que no suceda que ambas f,α sean discontínuas en x_k simultáneamente. Entonces $f\in\mathcal{R}_\alpha[a,b]$ y

$$\int_{a}^{b} f(x) \, d\alpha(x) = \sum_{K=1}^{n} f(x_{k})\alpha_{k}$$

Teorema 32 (Correspondencia de suma finita a integral R-S): Dada una suma $\sum_{k=1}^n \alpha_k$, se define $f:[0,n]\to\mathbb{R}$ como $f(x)=\alpha_k$ si $x\in (k-1,k]$. Entonces

$$\sum_{k=1}^{n} \alpha_k = \sum_{k=1}^{n} f(k) = \int_0^n f(x) \, \mathrm{d} \lfloor x \rfloor$$

Teorema 33 (Fórmula de la suma Euler-Maclaurin): Si $f \in C^1[a,b]$, entonces

$$\sum_{n=a}^{b} f(n) = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} f'(x) \left(x - \lfloor x \rfloor - \frac{1}{2} \right) \, dx + \frac{f(a) + f(b)}{2}$$

Integral R-S con integrador creciente

Como definiciones preeliminares definimos:

$$M_k(f) := \sup\{f(x)|x \in [x_{k-1}, x_k]\}\$$

 $m_k(f) := \inf\{f(x)|x \in [x_{k-1}, x_k]\}\$

DFN 23 (Suma superior).
$$U(P,f,\alpha) = \sum_{k=1}^{n} M_k(f) \Delta_k \alpha$$

Integral R-S con integrador creciente

DFN 24 (Suma inferior). $L(p,f,\alpha) = \sum_{k=1}^{n} m_k(f) \Delta_k \alpha$

Obs: $L(P, f, \alpha) \leq S(P, f, \alpha) \leq U(P, f, \alpha)$

DFN 25 (Integral superior). Se define la integral superior de f en [a,b] $\overline{I}(f,\alpha) = \inf\{U(P,f,\alpha)|P\in\mathcal{P}[a,b]\}$

DFN 26 (Integral inferior). *Se define la integral inferior* $de \ f \ en \ [a,b] \ \underline{I} = \sup\{L(P,f,\alpha)|P \in \mathcal{P}[a,b]\}$

Obs: $\underline{I}(f,\alpha) \leq \overline{I}(f,\alpha)$. Es más, dada $\varepsilon > 0, \exists P \in \mathcal{P}[a,b]$ tal que $U(P,f,\alpha) < \overline{I}(f,\alpha) + \varepsilon$

Teorema 34 (Criterio de Riemann): Sup. $\alpha:[a,b]\to\mathbb{R}$ tal que $\alpha\nearrow[a,b]$. Entonces, son equivalentes:

- $f \in \mathcal{R}_{\alpha}[a,b]$
- (Condición de Riemann) Dada $\varepsilon>0, \exists P_{\varepsilon}\in\mathcal{P}[a,b]$ tal que si $P\supseteq P_{\varepsilon}\implies 0\le U(P,f,\alpha)-L(P,f,\alpha)<\varepsilon$
- $\cdot \underline{I}(f,\alpha) = \overline{I}(f,\alpha)$

Teorema 35 (Teorema de comparación): Sup. $\alpha \nearrow [a,b]$ y que $f,g \in \mathcal{R}_{\alpha}[a,b]$ tal que $f(x) \leq g(x) \ \forall \in [a,b]$, entonces:

$$\int_{a}^{b} f \, \mathrm{d}\alpha \le \int_{a}^{b} g \, \mathrm{d}\alpha$$

Teorema 36 (Otras propiedades): Sup $\alpha \nearrow [a,b]$. Si $f \in \mathcal{R}_{\alpha}[a,b]$, entonces:

• $|f| \in \mathcal{R}_{\alpha}[a,b]$ y además:

$$\left| \int_{a}^{b} f \, \mathrm{d}\alpha \right| \leq \int_{a}^{b} |f| \, \mathrm{d}\alpha$$

- $f^2 \in \mathcal{R}_{\alpha}[a,b]$
- · Si $g \in \mathcal{R}_{\alpha[a,b]} \implies f \cdot g \in \mathcal{R}_{\alpha}[a,b]$

Funciones de variación acotada

DFN 27 (Función de variación acotada). Dada $f:[a,b] \to \mathbb{R}$ decimos que f es de variación acotada si $\exists > 0$ tal que $\sum_{k=1}^n |\Delta_k f| \le M$ para cualquier partición $P = \{x_0, \dots, x_n\} \in \mathcal{P}[a,b]$

 $Donde \, \Delta_k f \coloneqq f(x_k) - (f(x_{k-1}))$

Denotamos BV[a,b] al conjunto de todas la funciones de variación acotada

Obs: $f \in BV[a,b] \implies f$ acotada en [a,b]

Notación: Para $P \in \mathcal{P}[a,b]$, $\sum (P,f,[a,b]) \equiv \sum (P) \coloneqq \sum_{k=1}^n |\Delta_k f|$

DFN 28 (Variación total). Para f en [a, b], se define

$$V_f[a,b] = \sup \left\{ \sum (P) | P \in \mathcal{P}[a,b] \right\}$$

Podemos ver que $0 \le V_f[a,b] < \infty$ y se da la igualdad con cero syss f es constante en el intervalo.

Teorema 37: BV[a,b] es un espacio vectorial con la suma de funciones y la multiplicación por escalares. Además, dados $f,g \in BV[a,b], c \in (a,b)$ se cumple:

- · Si $f \in BV[c,b]\&f \in BV[a,a]$ entonces $f \in BV[a,b]$ y $V_f[a,b] = V_f[a,c] + V_f[c,b]$
- $V_{f+g}[a,b] \le V_f[a,b] + V_g[a,b]$
- $V_{\lambda f}[a,b] = |\lambda| + V_f[a,b]$
- Si definimos $g(x)=f(x)+\alpha\cos\alpha\in\mathbb{R}$, entonces $V_f[a,b]=V_g[a,b]$
- La norma sobre BV[a,b] es $\|f\|_{BV} = |f(a)| + V_f[a,b]$

DFN 29 (Función Variación). Dada $f \in BV[a,b]$ se define $V:[a,b] \to \mathbb{R}$ la función variación como:

$$V(x) \equiv V_f(x) = \begin{cases} V_f[a, x] & a < x \le b \\ 0 & x = 0 \end{cases}$$

Variación Acotada

Teorema 38: Dada $f \in BV[a, b], V(x)$ cumple:

- · $V(x) \nearrow [a,b]$
- $V f \nearrow [a, b]$

Teorema 39 (Caracterización de funciones de var. acotada): $f \in BV[a,b]$ si y solamente si, se puede escribir como diferencia de funciones crecientes.

Integral Riemann-Stieltjes con integrador en BV[a,b]

Empezamos notando que si $\alpha \in BV[a,b]$, se puede escribir $\alpha = \alpha_1 - \alpha_1$ con $\alpha_1, \alpha_2 \nearrow [a,b]$. Por aditividad $f \in \mathcal{R}_{\alpha_1}[a,b], f \in \mathcal{R}_{\alpha_2}[a,b]$, y entonces $f \in \mathcal{R}_{\alpha}[a,b]$. Pero, el recíproco no necesariamente es cierto.

Teorema 40 (Reducción de la interal con integrador de variación acotada): Sup $f:[a,b]\to\mathbb{R}$ es acotada, que $\alpha\in BV[a,b]$ y sea V(x) la función de variación. Si $f\in\mathcal{R}_{\alpha}[a,b]$, entonces:

$$f \in \mathcal{R}_V[a,b]$$

Obsérvese que es una especie de recíproco a la afiramción anterior

Teorema 41 (Condiciones suficientes para la integrabilidad): Si $f \in C[a,b]$ y $\alpha \in BV[a,b] \implies f \in \mathcal{R}_{\alpha}[a,b]$

Corolario 41.1: Las siguientes implican la existencia de la integral de Riemann (a secas)

- $\cdot f \in C[a,b]$
- $f \in BV[a,b]$