

Figure 1a (Prior Art)

Figure 1b (Prior Art)

alpha beta gamma delta epsilon mu nu rho sigma iota rho' mu' nu' rho'' sigma' iota' rho''' mu''' nu''' rho''''

Figure 2
(Prior Art)

Figure 3a

Figure 3b

Diagram illustrating the geometric parameters of a lens system. The diagram shows a lens with focal length f_1 and a distance D between the lens and a shaded rectangular object. The angle ϕ is shown between the optical axis and a ray from the lens center to the top edge of the object. The angle α is shown between the optical axis and a ray from the lens center to the bottom edge of the object. The angle β is shown between the optical axis and a ray from the lens center to the right edge of the object. The angle γ is shown between the optical axis and a ray from the lens center to the left edge of the object. The angle θ is shown between the optical axis and a ray from the lens center to the top-right corner of the object. The angle $\delta\theta$ is shown between the optical axis and a ray from the lens center to the top-left corner of the object. The angle ϵ is shown between the optical axis and a ray from the lens center to the bottom-right corner of the object. The angle ζ is shown between the optical axis and a ray from the lens center to the bottom-left corner of the object. The angle η is shown between the optical axis and a ray from the lens center to the right edge of the object. The angle κ is shown between the optical axis and a ray from the lens center to the left edge of the object. The angle λ is shown between the optical axis and a ray from the lens center to the top edge of the object. The angle μ is shown between the optical axis and a ray from the lens center to the bottom edge of the object. The angle ν is shown between the optical axis and a ray from the lens center to the right edge of the object. The angle ω is shown between the optical axis and a ray from the lens center to the left edge of the object. The angle ρ is shown between the optical axis and a ray from the lens center to the top-right corner of the object. The angle σ is shown between the optical axis and a ray from the lens center to the top-left corner of the object. The angle τ is shown between the optical axis and a ray from the lens center to the bottom-right corner of the object. The angle ψ is shown between the optical axis and a ray from the lens center to the bottom-left corner of the object.

Figure 4a

Figure 4b

Figure 5a

310
300
10
50
100b
200a
230
240
250
270d
270c
270b
270a

Figure 5b

source 3dB f_1/f_2
misaligned ~ 3 dB loss

Figure 6

Figure 7a

Figure 7b

Figure 8

Figure 9

