Mobile Communication: Telecommunications

Dominic Duggan
Based on materials by Jochen Schiller

1

INTRODUCTION TO GSM

Market Data Summary (Q2 2009)

Connections by Bearer Technology

Total	4,310,295,611
cdmaOne	2,449,937
CDMA2000 1X	309,907,068
CDMA2000 1xEV-DO	118,688,849
CDMA2000 1xEV-DO Rev. A	12,644,062
GSM	3,450,410,548
WCDMA	255,630,141
WCDMA HSPA	133,286,097
TD-SCDMA	825,044
TDMA	1,480,766
PDC	2,740,320
IDEN	22,172,858
Analog	9,593

Connections by World Region

World	4,310,295,611
Africa	416,303,821
Americas	475,193,998
Asia Pacific	1,906,764,743
Europe: Eastern	462,040,510
Europe: Western	506,982,364
Middle East	243,953,091
USA/Canada	299,057,084

5

How does it work?

- How can the system locate a user?
- Why don't all phones ring at the same time?
- What happens if two users talk simultaneously?
- Why don't I get the bill from my neighbor?
- Why can an Australian use her phone in Berlin?
- Why can't I simply overhear the neighbor's communication?
- How secure is the mobile phone system?

.

GSM Performance wrt analog system

- Communication
 - mobile, wireless communication; support for voice and data services
- Total mobility
 - international access, chip-card enables use of access points of different providers
- Worldwide connectivity
 - one number, the network handles localization
- High capacity
 - better frequency efficiency, smaller cells, more customers per cell
- High transmission quality
 - high audio quality and reliability for wireless, uninterrupted phone calls at higher speeds (e.g., from cars, trains)
- Security functions
 - access control, authentication via chip-card and PIN

7

Disadvantages of GSM

- There is no perfect system!!
 - no end-to-end encryption of user data
 - no full ISDN bandwidth of 64 kbit/s to the user, no transparent Bchannel
- · reduced concentration while driving
- electromagnetic radiation
- abuse of private data possible
- roaming profiles accessible
- high complexity of the system
- several incompatibilities within the GSM standards

GSM SERVICES

9

GSM mobile services

TE=terminal
MS=mobile station
MT=mobile terminal

- GSM offers
 - several types of connections
 - voice connections, data connections, short message service
 - multi-service options (combination of basic services)
- Three service domains
 - Bearer Services
 - Telematic Services
 - Supplementary Services

$$\begin{split} S &= \text{interface for data transmission} \\ \text{between TE and MT} \\ R &= \text{interface for ISDN} \end{split}$$

GSM mobile services

TE=terminal MS=mobile station MT=mobile terminal

PLMN=public land

mobile network

- GSM offers
 - several types of connections
 - voice connections, data connections, short message service
 - multi-service options (combination of basic services)
- Three service domains
 - Bearer Services
 - Telematic Services
 - Supplementary Services

U = radio interface with mobile phone network

11

GSM mobile services

- GSM offers
 - several types of connections
 - voice connections, data connections, short message service
 - multi-service options (combination of basic services)
- Three service domains
 - Bearer Services
 - Telematic Services
 - Supplementary Services

MS=mobile station MT=mobile terminal PLMN=public land mobile network PSTN=public switched

TE=terminal

telephone network ISDN=integrated services data network

GSM mobile services

- GSM offers
 - several types of connections
 - voice connections, data connections, short message service
 - multi-service options (combination of basic services)
- Three service domains
 - Bearer Services
 - Telematic Services
 - Supplementary Services

MT=mobile terminal
PLMN=public land
mobile network

TE=terminal MS=mobile station

mobile network
PSTN=public switched
telephone network
ISDN=integrated
services data network

GSM mobile services

- GSM offers
 - several types of connections
 - voice connections, data connections, short message service
 - multi-service options (combination of basic services)
- Three service domains
 - Bearer Services
 - Telematic Services
 - Supplementary Services

TE=terminal MS=mobile station MT=mobile terminal

PLMN=public land mobile network PSTN=public switched telephone network ISDN=integrated services data network

Services

- Bearer Services
 - transfer data between access points
 - different data rates for voice and data
- Tele Services
 - enable voice communication via mobile phones
 - mobile telephony
 - emergency number multinumbering
 - group 3 fax
 - voice mailbox (implemented in the fixed network)
 - electronic mail (implemented in the fixed network)
 - ..
 - Short Message Service (SMS)

15

Supplementary Services

- May differ between different service providers, countries and protocol versions
- Important services
 - identification: forwarding of caller number
 - suppression of number forwarding
 - automatic call-back
 - conferencing with up to 7 participants
 - locking of the mobile terminal (incoming or outgoing calls)
 - **–** ...

GSM ARCHITECTURE

17

Ingredients I: Mobile phones, PDAs, etc

The visible but smallest part of the network!

Ingredients 2: Antennas

Still visible – cause many discussions...

10

Ingredients 3: Infrastructure 1

Cabling

Microwave links

GSM: cellular network

segmentation of the area into cells

- use of several carrier frequencies
- not the same frequency in adjoining cells
- cell sizes vary from some 100 m up to 35 km depending on user density, geography, transceiver power etc.
- hexagonal shape of cells is idealized (cells overlap, shapes depend on geography)
- if a mobile user changes cells handover of the connection to the neighbor cell

20

Example coverage of GSM networks

Mobile Station

- A mobile station (MS) comprises several functional groups
 - MT (Mobile Terminal):
 - offers common functions used by all services the MS offers
 - corresponds to the network termination (NT) of an ISDN access
 - end-point of the radio interface (Um)
 - TA (Terminal Adapter):
 - terminal adaptation, hides radio specific characteristics
 - TE (Terminal Equipment):
 - peripheral device of the MS, offers services to a user
 - does not contain GSM specific functions
 - SIM (Subscriber Identity Module):
 - personalization of the mobile terminal, stores user parameters

3

Mobile Services Switching Center

- The MSC (mobile switching center) plays a central role in GSM
 - switching functions
 - additional functions for mobility support
 - management of network resources
 - interworking functions via Gateway MSC (GMSC)
 - integration of several databases
- Functions of a MSC
 - specific functions for paging and call forwarding
 - termination of SS7 (signaling system no. 7)
 - mobility specific signaling
 - location registration and forwarding of location information
 - provision of new services (fax, data calls)
 - support of short message service (SMS)
 - generation and forwarding of accounting and billing information

Mobile Terminated Call 1: calling a GSM subscriber 2: forwarding call to GMSC 3: signal call setup to HLR 4, 5: request MSRN from VLR 6: forward responsible MSC to GMSC calling GMSC MSC 7: forward call to current MSC 10/13 8, 9: get current status of MS 10, 11: paging of MS BSS BSS BSS

Mobile Originated Call

MSC=mobile switching center

MSRN=mobile station request number

GMSC=gateway MSC

- 1, 2: connection request
- 3, 4: security check

12, 13: MS answers 14, 15: security checks 16, 17: set up connection

- 5-8: check resources (free circuit)
- 9-10: set up call

MS

Handover decision

45

Security in GSM

- Security services
 - access control/authentication
 - user ⇔ SIM (Subscriber Identity Module): secret PIN
 - SIM ⇔ network: challenge response
 - confidentiality
 - voice and signaling encrypted on the wireless link (after successful authentication)
 - anonymity
 - temporary identity TMSI (Temporary Mobile Subscriber Identity)
 - newly assigned at each new location update (LUP)
 - encrypted transmission
- 3 algorithms specified in GSM
 - A3 for authentication ("secret", open interface)
 - A5 for encryption (standardized)
 - A8 for key generation ("secret", open interface)

"secret":
• A3 and A8
available via the
Internet
• network providers

 network providers can use stronger mechanisms

GPRS: GENERAL PACKET RADIO SERVICE

53

General Packet Radio Service (GPRS)

- GSM Data transmission standardized with only 9.6 kb/s
 - Circuit-switched
 - not enough for Internet and multimedia applications
 - High-speed circuit-switched data (HSCSD): combine time slots
- GPRS supports rate up to ~170kb/s
 - packet switching
 - using free slots only if data packets ready to send (e.g., 50 kbit/s using 4 slots temporarily)
 - Transition to UMTS

UMTS: UNIVERSAL MOBILE TELECOMM SYSTEM

61

Universal Mobile Telecomm System (UMTS)

- Proposals for IMT-2000 (International Mobile Telecommunications)
 - UWC-136, cdma2000, WP-CDMA
 - UMTS from ETSI
- UMTS
 - UTRA: UMTS/Universal Terrestrial Radio Access
 - enhancements of GSM
 - EDGE (Enhanced Data rates for GSM Evolution): GSM up to 384 kbit/s
 - CAMEL (Customized Application for Mobile Enhanced Logic)
 - VHE (virtual Home Environment)
 - requirements
 - min. 144 kbit/s rural (goal: 384 kbit/s)
 - min. 384 kbit/s suburban (goal: 512 kbit/s)
 - up to 2 Mbit/s urban

UMTS Architecture

- UTRAN (UTRA Network)
 - Cell level mobility
 - Radio Network Subsystem (RNS)
 - Encapsulation of all radio specific tasks
- UE (User Equipment)
- CN (Core Network)
 - Inter system handover
 - Location management if there is no dedicated connection between UE and UTRAN

UMTS Domains and Interfaces I

Universal Subscriber Identity Module (USIM)

• Functions for encryption and authentication of users

Mobile Equipment Domain

- Functions for radio transmission
- User interface for establishing/maintaining end-to-end connections
- User Equipment Domain
 - Assigned to a single user in order to access UMTS services

65

UMTS Domains and Interfaces II

Access Network Domain
• Access network
dependent functions

- Infrastructure Domain
 - Shared among all users
 - Offers UMTS services to all accepted users

UMTS Domains and Interfaces III

- Access Network Domain
 - Access network dependent functions
- · Core Network Domain
 - Access network independent functions

6

Spreading and scrambling of user data I

- Constant chipping rate of 3.84 Mchip/s
- Different user data rates supported via different spreading factors
 - higher data rate: less chips per bit and vice versa

Spreading and scrambling of user data II

- User separation via unique, quasi orthogonal scrambling codes
 - users are not separated via orthogonal spreading codes
 - much simpler management of codes: each station can use the same orthogonal spreading codes

UMTS FDD frame structure W-CDMA Radio frame • 1920-1980 MHz uplink 0 12 13 14 • 2110-2170 MHz downlink 10 ms · chipping rate: 3.840 Mchip/s soft handover Pilot TFCI FBI TPC uplink DPCCH 666.7 µs QPSK complex power control 2560 chips, 10 bits (1500 power control 666.7 µs Data uplink DPDCH cycles/s) spreading: UL: 4-256; 2560 chips, 10*2k bits (k = 0...6) DL:4-512 TP(TFCI Data₂ 666.7 µs Data₁ Pilot downlink DPCH FBI: Feedback Information **TPC: Transmit Power Control** DPDCH DPCCH DPDCHDPCCH TFCI: Transport Format Combination Indicator 2560 chips, 10*2k bits (k = 0...7) DPCCH: Dedicated Physical Control Channel DPDCH: Dedicated Physical Data Channel DPCH: Dedicated Physical Channel Slot structure NOT for user separation but synchronization for periodic functions!

UMTS TDD frame structure (burst type 2)

TD-CDMA

RNS

Layer 3: IP Layer 2: ATM Layer 1: PDH, SDH, SONET

UTRAN

- 2560 chips per slot
- spreading: 1-16
- symmetric or asymmetric slot assignment to UL/DL (min. 1 per direction)
- tight synchronization needed
- simpler power control (100-800 power control cycles/s)

Core network: protocols RNS = radio network subsystem UTRAN = universal/UMTS terrestrial radio access network CN = core network

CN

Support of mobility: macro diversity

- Multicasting of data via several physical channels
 - Enables soft handover
 - FDD mode only
- Uplink
 - simultaneous reception of UE data at several Node Bs
 - Reconstruction of data at Node B, SRNC or DRNC
- Downlink
 - Simultaneous transmission of data via different cells
 - Different spreading codes in different cells

Breathing Cells

• GSM

- Mobile device gets exclusive signal from the base station
- Number of devices in a cell does not influence cell size

UMTS

- Cell size is closely correlated to the cell capacity
- Signal-to-nose ratio determines cell capacity
- Noise is generated by interference from
 - other cells
 - other users of the same cell
- Interference increases noise level

8

UMTS Services (originally)

• Data transmission service profiles

Service Profile	Bandwidth	Transport mode	
High Interactive MM	128 kbit/s	Circuit switched	Bidirectional, video telephone
High MM	2 Mbit/s	Packet switched	Low coverage, max. 6 km/h
Medium MM	384 kbit/s	Circuit switched	asymmetrical, MM, downloads
Switched Data	14.4 kbit/s	Circuit switched	
Simple Messaging	14.4 kbit/s	Packet switched	SMS successor, E-Mail
Voice	16 kbit/s	Circuit switched	

Virtual Home Environment (VHE)

 Enables access to personalized data independent of location, access network, and device

Other enhancements

- GSM
 - MMS: transmission of images, video clips, audio (WAP 2.0)
 - EDGE (Enhanced Data Rates for Global Evolution)
 - 8-PSK instead of GMSK, up to 384 kbit/s
 - new modulation and coding schemes for GPRS → EGPRS
- UMTS
 - HSDPA (High-Speed Downlink Packet Access)
 - initially up to 10 Mbit/s for the downlink, later > 20 Mbit/s using MIMO-(Multiple Input Multiple Output-) antennas
 - user rates e.g. 3.6 or 7.2 Mbit/s
 - HSUPA (High-Speed Uplink Packet Access)
 - initially up to 5 Mbit/s for the uplink
 - user rates e.g. 1.45 Mbit/s

8

US Cell Phones

- IS-54: TDMA system
 - Based on analog AMPS
 - Incorporated ideas from GSM
- IS-136: NA-TDMA, D-AMPS
 - Digital control channels, more efficient
- IS-95: cdmaOne
 - Originally a 2G improvement over TDMA
 - Ideas of CDMA integrated into all 3G systems
 - Cdma2000 EV-DO competing with W-CDMA/UMTS

Evolutionary Paths

- Europe:
 - $GSM \Rightarrow GPRS \Rightarrow UMTS$
- USA
 - $TDMA \Rightarrow EDGE \Rightarrow UMTS$
 - CMDA2000 EVDO
- Japan
 - W-CDMA (UMTS, FOMA), CDMA2000
- China
 - W-CDMA, CDMA2000, TD-CDMA/SCDMA

8

LTE: LONG TERM EVOLUTION (AND BEYOND)

Key features of future mobile and wireless networks

- Improved radio technology and antennas
 - smart antennas, beam forming, multiple-input multiple-output (MIMO)
 - space division multiplex to increase capacity, benefit from multipath
 - software defined radios (SDR)
 - use of different air interfaces, download new modulation/coding/...
 - requires a lot of processing power (UMTS RF 10000 GIPS)
 - dynamic spectrum allocation
 - spectrum on demand results in higher overall capacity
- Core network convergence
 - IP-based, quality of service, mobile IP
- Ad-hoc technologies
 - spontaneous communication, power saving, redundancy
- Simple and open service platform
 - intelligence at the edge, not in the network (as with IN)
 - more service providers, not network operators only

Long Term Evolution (LTE)

- Initiated in 2004, focus on enhancing the Universal Terrestrial Radio Access (UTRA) and optimizing 3GPP's radio access architecture.
- Targets: Downlink 100 Mbit/s, uplink 50 Mbit/s
- Downlink: OFDM, QPSK, 16QAM, and 64QAM
- Uplink: SC-FDMA, BPSK, QPSK, 8PSK and 16QAM
- Channel bandwidths between 1.25 and 20 MHz

- FDD and TDD supported, co-existence with earlier 3GPP standards incl. handover
- Core network: System Architecture Evolution (SAE), optimizing it for packet mode and in particular for the IP-Multimedia Subsystem (IMS)

93

LTE advanced

- GSM UMTS LTE
 - LTE advanced as candidate for IMT-advanced
- Worldwide functionality & roaming
- Compatibility of services
- Interworking with other radio access systems
- Enhanced peak data rates to support advanced services and applications (100 Mbit/s for high and 1 Gbit/s for low mobility)
- 3GPP will be contributing to the ITU-R towards the development of IMT-Advanced via its proposal for LTE-Advanced.

Potential problems

- Quality of service
 - Today's Internet is best-effort
 - Integrated services did not work out
 - Differentiated services have to prove scalability and manageability
 - What about the simplicity of the Internet? DoS attacks on QoS?
- Security of the network
- Reliability, maintenance
 - Is Internet technology really cheaper as soon as high reliability (99.9999%) is required plus all features are integrated
- Missing charging models
 - Charging by technical parameters (volume, time) is not reasonable
 - Pay-per-application may make much more sense