

$$P = \int_{R_1}^{+} \int_{R_2}^{+} \int_{S_0}^{+} \frac{1}{36} \int_{S_0}^{-} \frac{1}{26} \int_{S_0}^{-} \frac{1}{26}$$

- 2. Let X,Y, and Z be independent random variables, each of which is uniformly distributed on the interval [0,1].
 - (a) (15 points) Find the joint density function of XY and Z^2 , and compute $\Pr[XY < Z^2]$.
 - (b) (15 points) Compute Var(XY + Z).

Since
$$U = Z^2$$
 want

$$f_{u,v}(y_1 v) = f_{u}(y_1) f_{v}(v_2)$$

$$Since $U = I \cdot V$

$$f_{u,v}(x_1,y_2) dydx$$

$$= \int f_{x,v}(x_1,y_2) dydx$$

$$= \int f_{x,v}(x_1,y_2) dydx = \int f_{x,v}(x_1,y_2) dydx$$

$$= \int f_{x,v}(x_1,$$$$

$$\Rightarrow f_{U,V}(u,v) = \frac{1}{2\sqrt{v}} \log(\frac{1}{2\sqrt{v}})$$

$$= \frac{1}{\sqrt{u}} \log(\frac{1}{2\sqrt{v}})$$

$$= \frac{1}{\sqrt{u}} \log(\frac{1}{2\sqrt{u}})$$

$$= \frac{1}{\sqrt{u}} \log(\frac{1}{u})$$

$$= \frac{1}{\sqrt{u}} \log(\frac{u})$$

$$= \frac{1}{\sqrt{u}} \log(\frac{1}{u})$$

$$= \frac$$

3.	(30 points) Let K_n be the <i>complete graph</i> on n vertices; that is, its edge-set consists of all $\binom{n}{2}$
	possible unordered pairs of vertices. Suppose that some coloring of the edge-set of K_n is given.
	A triangle is called <i>rainbow</i> if it has at most one edge from each color. Show that there exists
	a coloring of the edges of K_n using three colors with at least $\binom{n}{3} \frac{2}{9}$ rainbow triangles.

het her we

When each triangle T, let X- be the indicater X-7-2) of Trainbow

$$X = \sum_{T \text{ triangle}} X_T \Rightarrow \text{IE}[X_T] = \sum_{T \text{ trianbew}} \text{IE}[X_T]$$

