Surname	Centre Number	Candidate Number
Other Names		2

GCE AS

B500U10-1

COMPUTER SCIENCE – AS component 1 Fundamentals of Computer Science

MONDAY, 4 JUNE 2018 – MORNING

2 hours

For Exa	aminer's us	e only
Question	Maximum Mark	Mark Awarded
1.	9	
2.	8	
3.	10	
4.	5	
5.	6	
6.	13	
7.	4	
8.	7	
9.	4	
10.	8	
11.	10	
12.	6	
13.	10	
Total	100	

ADDITIONAL MATERIALS

A calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball point pen.

Write your name, centre number and candidate number in the space at the top of this page.

Answer all questions.

Write your answers in the spaces provided in this booklet.

If you run out of space, use the continuation page at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the need for good English and orderly, clear presentation in your answers.

The total number of marks available is 100.

Answer all questions.

(b) Describe the difference between the SMTP and IMAP protocols.	[2

01	
1	
500	
m	03

(c)	Examiner only
•••••	
	00101
	00

(I	Compare the functional characteristics of a Solid State Drive (SSD) and Blu-ray Optical Dr BD).
G	Give a typical use and storage capacity for each.
•••	
•••	
•••	
• • •	
•••	
•••	
•••	
•••	

[4]

3. (a) Complete the following truth table.

Α	В	A AND B	A or B	(A OR B) XOR (A AND B)	Not ((A or B) XOR (A and B))
0	0				
0	1				
1	0				
1	1				

(b) The following data is stored in an 8 bit register.

0	0	1	1	1	0	0	1

[3]	bit in the register.
[3]	Demonstrate how this register can be cleared using a logical operator.
[3]	Demonstrate how this register can be cleared using a logical operator.
[3]	Demonstrate how this register can be cleared using a logical operator.
[3]	Demonstrate how this register can be cleared using a logical operator.

© WJEC CBAC Ltd. (B500U10-1) Turn over.

101000

a II.	xed len	gurne	iu.											
•••••				 		 	•••••	 		 			 •••••	
•••••				 	•••••	 	•••••	 		 		• • • • • • • • • • • • • • • • • • • •	 	
•••••			•••••	 		 •••••	•••••	 	• • • • • • • • • • • • • • • • • • • •	 	•••••		 •••••	
•••••				 	•••••	 	•••••	 •••••		 			 	
•••••				 		 		 		 			 	
•••••				 		 	•••••	 		 			 	
• • • • • • • • • • • • • • • • • • • •				 		 	•••••	 		 			 	
•••••				 		 		 		 			 	

File A

File B

Compare the difference in disk access speeds when loading File A and File B into main memory. Explain why there is a difference and how this can be overcome. [6]

© WJEC CBAC Ltd. (B500U10-1) Turn over.

ха	mi	ne
_	را م	

	addit	vert 6F ₁₆ ation.	and Ab		Diriar y				loge			y
•••••	•••••											
•••••												
(b)	(i)	In a ceri two's co	tain cor	mputer entatio	syster n, an 8	m, real 3 bit ma	number ntissa a	s are s and a 4	tored ir bit exp	n floatir onent.	ng point	form u
		Convert	the nu	mber 1	5.875 ₁	₀ into th	nis floati	ng poir	nt form.			
	(ii)	In the sa		mpute	r syste	m, the	followin	g is a f	floating	point r	eprese	ntation
	(ii)		nber:	ompute tissa	r syste	m, the	followin	g is a f	floating		represe	ntation
0	(ii)		nber:		r syste	em, the	followin	g is a f	floating 0			ntation 1
0		real nun	Man 0 te the d	tissa 1 enary v	0 value o	0 of the m	0 nantissa		0	Exp	onent 0	1
0		real num	Man 0 te the d	tissa 1 enary v	0 value o	0 of the m	0 nantissa		0	Exp	onent 0	1
0		real num	Man 0 te the d	tissa 1 enary v	0 value o	0 of the m	0 nantissa		0	Exp	onent 0	1
0		real num	Man 0 te the d	tissa 1 enary v	0 value o	0 of the m	0 nantissa		0	Exp	onent 0	1

of [Give two advantages of representing numbers in integer form and two advantages of representing numbers in floating point form. [4]	(c)

3500U101

[4]

7. State the minimum storage requirements in bits for each of the following data types.

Boolean

ASCII Character

ASCII String

Short Integer (Signed range: -32,768₁₀ to +32,767₁₀)

8.	Betty's Bakery wants to convert imperial measurements for weight (lb) into metric measurements
	(kg).

The conversion from pounds into kilograms is:

1 lb = 0.453592 kg

Write an algorithm, using pseudo-code, which will allow a user to input a series of imperial measurements and output the equivalent metric measurements.

As the number of measurements to be input is unknown, your algorithm should terminate when a user inputs a rogue value (less than 0.0).

Your algorithm should output a suitable error message for any data entered that is not a real data type, e.g. a, B, z, @.

Your algorithm should be written using self-documenting identifiers.	[7]
	······································

Describe the main feature for this mode of operation	res of batch pro	cessing and	l give an ap _l	olication that	would be suita	able
or this mode of operatio	n.	-				[4]

© WJEC CBAC Ltd.

(B500U10-1)

10.	Clearly showing each step, simplify the following Boolean expression:	3]
	$P.(\overline{Q} + R) + Q.(P + \overline{Q}) + R.(P + R) + \overline{S}.S$	

11. The following insertion sort algorithm attempts to sort data stored in myArray, but contains an error.

```
Declare Subroutine InsertionSort (myArray)
2
3
  i is integer
4
  j is integer
  n is integer
  currentItem is integer
7
  inserted is boolean
9 set inserted = FALSE
10
11 set n = ubound[myArray] {number of items in array}
12
13 for i = 1 to n - 1
14
     currentItem = myArray[i]
15
     inserted = FALSE
     j = i - 1
16
17
18
     do
19
           if (currentItem < myArray[j]) then</pre>
20
               myArray[j + 1] = myArray[j]
21
               j = j - 1
22
               myArray[j + 1] = currentItem
23
           else
24
               inserted = TRUE
25
           end if
26
     while (j \ge 0 \text{ AND inserted} = TRUE)
27
28 next i
29
30 End Subroutine
```

(a)	Describe the term sequence in algorithms.	[2]
		· · · · · · · · ·

(b)	Describe how insertion sort algorithms operate.	[2] Examine only
(c)	Explain why the insertion sort algorithm in this question will fail.	 [2]
(d)	Suggest a suitable change that could be made to the algorithm to overcome the problem.	nis [1]

(e) Name and describe a different sort algorithm. [3]	Or

Examiner only

Examiner only

12.	Name and describe three different file attributes.	[6]
		, .

13.	A systems analyst has been commissioned to produce a new computer based system.		
	Discuss the ways in which the systems analyst could carry out an investigation and analysis, to ascertain the needs of the client and describe the possible effects of increasing the use of computers in the workplace in terms of the nature of employment and wider society. [10]		

Examiner only

END OF PAPER

For continuation only.	Examiner only