# **Historic, Archive Document**

Do not assume content reflects current scientific knowledge, policies, or practices.





Soil Conservation Service



# Washington Basin Outlook Report March 1, 1993



# Basin Outlook Reports and Federal - State - Private Cooperative Snow Surveys

For more water supply and resource management information, contact:

LOCAL SOIL CONSERVATION SERVICE FIELD OFFICE or William Weller

Water Supply Specialist Soil Conservation Service W. 316 Boone Ave.; Suite 450 Spokane, WA 99201-2348 (509) 353-2341

#### How forecasts are made

Most of the annual streamflow in the Western United States originates as snowfall that has accumulated high In the mountains during winter and early spring. As the snowpack accumulates, hydrologists estimate the runoff that will occur when it melts. Predictions are based on careful measurements of snow water equivalent at selected index points. Precipitation, temperature, soil moisture and antecedent streamflow data are combined with snowpack data to prepare runoff forecasts. Streamflow forecasts are coordinated by Soll Conservation Service and National Weather Service hydrologists. This report presents a comprehensive picture of water supply conditions for areas dependent upon surface runoff. It includes selected streamflow forecasts, summarized snowpack and precipitation data, reservoir storage data, and narratives describing current conditions.

Snowpack data are obtained by using a combination of manual and automated SNOTEL measurement methods. Manual readings of snow depth and water equivalent are taken at locations called snow courses on a monthly or semi-monthly schedule during the winter. In addition, snow water equivalent, precipitation and temperature are monitored on a daily basis and transmitted via meteor burst telemetry to central data collection facilities. Both monthly and daily data are used to project snowmelt runoff.

Forecast uncertainty originates from two sources: (1) uncertainty of future hydrologic and climatic conditions, and (2) error in the forecasting procedure. To express the uncertainty in the most probable forecast, four additional forecasts are provided. The actual streamflow can be expected to exceed the most probable forecast 50% of the time. Similarly, the actual streamflow volume can be expected to exceed the 90% forecast volume 90% of the time. The same is true for the 70%, 30%, and 10% forecasts. Generally, the 90% and 70% forecasts reflect drier than normal hydrologic and climatic conditions; the 30% and 10% forecasts reflect wetter than normal conditions. As the forecast season progresses, a greater portion of the future hydrologic and climatic uncertainty will become known and the additional forecasts will move closer to the most probable forecast.

# Washington Water Supply Outlook

# **March 1993**

#### **General Outlook**

MARCH 1, 1993: Major changes in the weather have occurred since the first of January, with cold and dry being the norm. February precipitation was 20% of normal state wide, and varied from 56% of average in the Walla Walla Basin to 5% in the North Puget Basin. Year-to-date precipitation varies from 88% in the Walla Walla to 61% in the North Puget Basin. Forecasts for 1993 runoff vary from 106% of average for the Grande Ronde River to 59% for the Similkameen River. The snowpack varies from 57% in the Olympic Basin to 122% in the Walla Walla Basin. Washington SNOTEL sites averaged 86% of normal snowpack on March 1, Down from 105% on February 1 (By March 8, the statewide average was 87%). February temperatures were below normal and varied from one degree below in the White-Green Basin to 11 degrees below in the Walla Walla Basin. With the below normal temperatures in February, streamflows varied from 91% of normal on the Kettle River to 21% on the Walla Walla River. March 1 reservoir storage is generally poor throughout the state, with reservoirs in the Yakima Basin at 38% of average and 25% of capacity.

#### Snowpack

The March 1 SNOTEL reading showed the snowpack to be 86% of average. Snowpack continues to vary over the state. The Colville River Basin had 108% of average, and the Walla Walla Basin had the highest with 122% of normal. The North Puget River Basins had 62% of average. The Olympic Peninsula rivers were the lowest with 57% of normal. Snowpack along the east slopes of the Cascade Mountains includes the Yakima with 76% down from 95% last month, and the Wenatchee 73%, down from 89%. Snowpack in the Okanogan is at 85%, down from 98%, and the Spokane Basin at 90%, down from 108%. Maximum snow cover is at Paradise on Mount Rainier, with a water content of 45.2 inches. This site would normally have 47.9 inches of water content on March 1.

# **Precipitation**

February precipitation reported from National Weather Service stations was 20% of average statewide. The year-to-date precipitation statewide is 72% and varied from 88% of normal in the Walla Walla Basin, to 61% in the North Puget Basin. February precipitation varied from 5% of average in the North Puget Basin, to 88% in the Walla Walla Basin. SNOTEL sites in Washington showed high elevation year-to-date precipitation values to be 72%. Maximum year-to-date precipitation was at the June Lake SNOTEL site near Mt. St. Helens, with 75.1 inches since October 1, 1992; normal for this site is 99.4 inches.

#### Reservoir

Reservoir storage in Washington is much below average for March 1. Cold weather has reduced the streamflow entering the reservoirs. Reservoir storage in the Yakima Basin was 261,500 acre feet, 38% of normal. Storage at other reservoirs include Roosevelt at 94% of average, and the Okanogan reservoirs at 92% of normal for March 1. The power generation reservoirs contain the following: Coeur d'Alene Lake, 39,600 acre feet, or 27% of normal; Chelan Lake, 160,500 acre feet, 95% of average and 24% of capacity, and Ross Lake at 197% of average, and 43% of capacity.

#### Streamflow

February streamflows were below average in Washington. The Kettle River at 91% was the highest and the South Fork Walla Walla River with 21%, was the lowest in the state. Other streamflows were the following percentage of normal: the Lewis River, 28%; the Okanogan River, 61%; the Spokane River, 36%; the Columbia at the Canadian border, 64%, and the Yakima River at Kiona, 47%. Forecasts for summer streamflow are for much below-to-near average and vary from 106% of average for the Grande Ronde River to 59% of normal for the Similkameen River. March forecasts for some west side streams include: Cedar River, 83%; Green River, 81%; and the Dungeness River, 75%. Some east side streams include the Yakima River at Parker, 67%; the Stemilt, 83%; the Chelan River, 70% and the Colville River, 81%.

#### Other

Some water saving hints have been enclosed near the end of the bulletin for irrigators and ranchers



# BASIN SUMMARY OF SNOW COURSE DATA

MARCH 1993

| SNOW COURSE                                  | ELEVATION      | DATE               | SNOW<br>DEPTH | WATER<br>CONTENT | LAST<br>YEAR | AVERAGE<br>1961-90 | SNOW COURSE E                               | LEVATION       | DATE               | SNOW<br>DEPTH | WATER<br>CONTENT | LAST<br>YEAR | AVERAGE      |
|----------------------------------------------|----------------|--------------------|---------------|------------------|--------------|--------------------|---------------------------------------------|----------------|--------------------|---------------|------------------|--------------|--------------|
| PEND OREILLE RIVER                           |                |                    |               |                  |              |                    | YAKIMA RIVER                                |                |                    |               |                  |              |              |
| BENTON MEADOW<br>BENTON SPRING               | 2370<br>4920   | 2/25/93<br>2/25/93 | 28<br>46      | 8.1<br>14.2      | .0<br>12.8   | 5.9<br>16.7        | AHTANUM R.S.<br>BLEWETT PASS#2PILLOW        | 3100           | 3/01/93            | 34            | 11.2             | 2.4          | 6.8          |
| BOYER MOUNTAIN                               | 5250           | 2/25/93            | 56            | 17.2             | 17.7         | 21.6               | BUMPING LAKE                                | 3450           | 3/01/93<br>2/24/93 | 31            | 11.2S<br>10.1    | 10.4<br>6.8  | 17.0         |
| BUNCHGRASS MEADOWS<br>BUNCHGRASS MDWPILLO    |                | 2/25/93<br>3/01/93 | 64            | 16.8<br>16.9     | 22.5         | 26.6<br>22.7       | BUMPING LAKE (NEW)<br>BUMPING RIDGE PILLOW  | 3400<br>4600   | 2/24/93<br>3/01/93 | 36            | 12.4             | 8.6          | 17.6         |
| CHEWALAH                                     | 4930           | 2/25/93            | 50            | 13.4             | 13.0         | 13.5               | CAYUSE PASS                                 | 5300           | 3/01/93            |               | 17.2E<br>53.8E   | 17.9<br>49.7 | 18.4<br>65.3 |
| HOODOO BASIN<br>HOODOO CREEK                 | 6050<br>5900   | 3/01/93<br>3/01/93 |               | 28.8E<br>25.0E   | 35.5<br>31.5 | 42.7<br>39.2       | CORRAL PASS PILLOW<br>FISH LAKE             | 6000<br>3370   | 3/01/93<br>2/24/93 | 56            | 21.3S<br>20.7    | 27.5<br>23.4 | 27.6<br>29.3 |
| NELSON CAN                                   |                | 2/24/93            | 43            | 12.3             | 12.2         | 14.3               | FISH LAKE PILLOW                            | 3370           | 3/01/93            |               | 18.65            | 21.0         | 28.4         |
| KETTLE RIVER BARNES CREEK CAN                | . 5300         | 2/25/93            | 54            | 17.3             | 18.2         | 17.2               | GREEN LAKE GREEN LAKE PILLOW                | 6000<br>6000   | 3/01/93<br>3/01/93 | 63            | 23.7<br>16.85    | 19.3<br>14.4 | 29.1<br>17.5 |
| BIG WHITE MIN CAN                            | . 5510         | 2/26/93            | 50            | 14.6             | 14.9         | 16.3               | GROUSE CAMP PILLOW<br>DOMMERIE FLATS        | 5380           | 3/01/93            |               | 12.58            | 17.9         | 17.1         |
| CARMI CAN<br>FARRON CAN                      |                | 2/26/93<br>2/26/93 | 28<br>40      | 6.8<br>10.3      | 3.9<br>9.6   | 6.1<br>12.4        | MORSE LAKE PILLOW                           | 2200<br>5400   | 2/23/93<br>3/01/93 | 15            | 5.6<br>31.78     | .0<br>44.5   | 7.7<br>38.5  |
| GOAT CREEK<br>MONASHEE PASS CAN              | 3600<br>. 4500 | 2/24/93<br>2/25/93 | 30<br>40      | 6.6<br>12.4      | 4.6<br>12.2  | 6.4<br>12.2        | OLALLIE MDWS PILLOW<br>OLALLIE MEADOWS      | 3960<br>3630   | 3/01/93<br>3/01/93 | 34            | 31.4S<br>16.9    | 29.3<br>12.1 | 44.6<br>38.7 |
| SUMMIT G.S.                                  | 4600           | 2/24/93            | 39            | 8.8              | 7.3          | 7.1                | SASSE RIDGE PILLOW                          | 4200           | 3/01/93            |               | 24.05            | 26.0         | 27.4         |
| TRAPPING CK LOW CAN<br>COLVILLE RIVER        | . 3050         | 2/28/93            | 20            | 5.3              | 2.8          | 5.1                | STAMPEDE PASS PILLOW<br>TUNNEL AVENUE       | 3860<br>2450   | 3/01/93<br>2/23/93 | 40            | 29.28<br>13.9    | 30.0<br>5.0  | 38.2<br>19.2 |
| CHEWALAH                                     | 4930           | 2/25/93            | 50            | 13.4             | 13.0         | 13.5               | WHITE PASS ES PILLOW                        | 4500           | 3/01/93            |               | 17.5E            | 14.4         | 20.7         |
| TOGO<br>OMAK LAKE, TWIN LAKES                | 3370           | 2/26/93            | 41            | 11.2             | 6.8          | 9.3                | AHTANUM CREEK AHTANUM R.S.                  | 3100           | 3/01/93            | 34            | 11.2             | 2.4          | 6.8          |
| SPOKANE RIVER                                | 3200           | 2/22/02            | 42            | 11.6             | .0           | 8.4                | GREEN LAKE                                  | 6000           | 3/01/93            | 63            | 23.7             | 19.3         | 29.1         |
| FOURTH OF JULY SUM<br>LOST LAKE (d           |                | 2/23/93<br>3/01/93 |               | 34.8E            | 43.5         | 47.2               | GREEN LAKE PILLOW<br>MILL CREEK             | 6000           | 3/01/93            |               | 16.85            | 14.4         | 17.5         |
| MOSQUITO RDG PILLO<br>SUNSET                 | ₩ 5200<br>5540 | 3/01/93<br>2/25/93 | 58            | 22.5<br>18.6     | 30.9<br>22.9 | 32.2<br>30.8       | HIGH RIDGE PILLOW<br>TOUCHET \$2 PILLOW     | 4980<br>5530   | 3/01/93<br>3/01/93 |               | 25.08<br>27.6    | 13.3<br>21.9 | 21.6<br>27.8 |
| SUNSET PILLO                                 |                | 3/01/93            |               | 21.0             | 28.5         | 32.0               | LEWIS - COWLITE RIVERS                      |                |                    |               |                  |              |              |
| NEWMAN LAKE QUARTZ PEAK PILLO                | W 4700         | 3/01/93            |               | 17.4             | 13.3         | 18.6               | CAYUSE PASS<br>JUNE LAKE PILLOW             | 5300<br>3200   | 3/01/93<br>3/01/93 |               | 53.8E<br>43.1S   | 49.7<br>1.9  | 65.3<br>33.6 |
| RAGGED RIDGE                                 | 3330           | 2/26/93            | 39            | 12.0             | 13.3         | 7.4                | LONE PINE PILLOW                            | 3800           | 3/01/93            |               | 25.58            | 14.1         | 28.1         |
| OKANOGAN RIVER ABERDEEN LAKE CAN             | . 4300         | 2/26/93            | 27            | 6.0              | 3.9          | 5.9                | PARADISE PARK PILLOW<br>PIGTAIL PEAK PILLOW | 5500<br>5900   | 3/01/93<br>3/01/93 |               | 45.2S<br>28.1B   | 54.1<br>38.6 | 47.9<br>41.0 |
| BLACKWALL PEAK CAN                           | . 6370         | 3/01/93            |               | 17.7             | 26.4         | 29.6               | POTATO HILL PILLOW                          | 4500           | 3/01/93            |               | 21.05            | 15.8         | 21.9         |
| BRENDA MINE CAN<br>BROOKMERE CAN             |                | 2/25/93<br>2/26/93 | 39<br>20      | 10.3             | 8.5<br>4.6   | 11.9<br>8.0        | SHEEP CANYON PILLOW<br>SPENCER MDW PILLOW   | 4050<br>3400   | 3/01/93<br>3/01/93 |               | 35.8S<br>28.0S   | 9.4<br>8.4   | 30.1<br>27.2 |
| ENDERBY CAN<br>ESPERON CK. UP CAN            |                | 2/27/93<br>2/28/93 | 78            | 25.6<br>14.4     | 28.7<br>13.1 | 32.6<br>15.7       | SPIRIT LAKE PILLOW<br>SURPRISE LKS PILLOW   | 3100<br>4250   | 3/01/93<br>3/01/93 |               | 11.25            | .0<br>27.4   | 6.6<br>37.5  |
| FREEZEOUT CK. TRAIL                          |                | 2/26/93            | 46<br>23      | 7.2              | 7.3          | 11.1               | WHITE PASS ES PILLOW                        | 4500           | 3/01/93            |               | 35.8S<br>17.5E   | 14.4         | 20.7         |
| GREYBACK RES CAN<br>HAMILTON HILL CAN        |                | 2/25/93<br>2/28/93 | 34<br>37      | 8.3<br>10.7      | 6.4<br>10.2  | 7.8<br>13.7        | WHITE RIVER<br>CAYUSE PASS                  | 5300           | 3/01/93            |               | 53.8E            | 49.7         | 65.3         |
| HARTS PASS                                   | 6500           | 2/25/93            | 69            | 23.4             | 35.1         | 36.2               | CORRAL PASS                                 | 6000           | 3/01/93            |               | 26.2E            |              | 33.9         |
| HARTS PASS PILLO<br>ISINTOK LAKE CAN         |                | 3/01/93<br>2/25/93 | 31            | 23.5E<br>7.4     | 40.2         | 34.6<br>6.8        | CORRAL PASS PILLOW MORSE LAKE PILLOW        | . 6000<br>5400 | 3/01/93<br>3/01/93 |               | 21.3S<br>31.7S   | 27.5<br>44.5 | 27.6<br>38.5 |
| LIGHTNING LAKE CAN                           | . 4000         | 2/27/93            | 24            | 6.8              | 9.1          | 11.9               | GREEN RIVER                                 |                |                    |               |                  |              |              |
| LOST HORSE MTN CAN<br>MCCULLOCH CAN          |                | 3/01/93<br>2/23/93 | 29<br>32      | 6.7<br>8.2       | 6.5<br>4.3   | 8.1<br>6.4         | COUGAR MTN. PILLOW<br>GRASS MOUNTAIN \$2    | 3200<br>2900   | 3/01/93<br>3/02/93 | 16            | 15.8S<br>7.2     | .0           | 18.6         |
| MISSEZULA MTN CAN                            |                | 2/27/93            | 27            | 6.8              | 6.7          | 9.0                | LESTER CREEK                                | 3100           | 3/02/93            | 51            | 17.2             | 8.8          | 17.7         |
| MISSION CREEK CAN<br>MONASHEE PASS CAN       |                | 3/02/93<br>2/25/93 | 48<br>40      | 14.7<br>12.4     | 15.0<br>12.2 | 17.2<br>12.2       | LYNN LAKE<br>SAWMILL RIDGE                  | 4000<br>4700   | 3/02/93<br>3/02/93 | 45<br>57      | 18.7<br>21.8     | 6.5<br>16.8  | 16.0<br>29.7 |
| MT. KOBAU CAN<br>MUTTON CREEK #1             | . 5900<br>5700 | 2/27/93<br>3/03/93 | 39<br>41      | 10.9<br>11.0     | 9.3<br>10.9  | 10.7<br>11.4       | STAMPEDE PASS PILLOW<br>TWIN CAMP           | 3860<br>4100   | 3/01/93<br>3/02/93 | 58            | 29.2S<br>22.0    | 30.0<br>16.3 | 38.2<br>21.8 |
| OYAHA LAKE CAN                               | . 4400         | 2/27/93            | 30            | 7.4              | 4.2          | 6.1                | CEDAR RIVER                                 |                |                    |               |                  |              |              |
| POSTILL LAKE CAN<br>RUSTY CREEK              | . 4500<br>4000 | 2/26/93<br>3/03/93 | 33<br>23      | 7.2<br>6.1       | 6.1<br>4.5   | 7.4<br>6.2         | CITY CABIN<br>MT. GARDNER                   | 2390<br>3300   | 2/26/93<br>2/26/93 | 27<br>33      | 10.9<br>13.3     | .0           | 12.3<br>14.2 |
| SALMON MDWS PILLO                            | W 4500         | 3/01/93            |               | 8.05             | 9.4          | 8.3                | SNOQUALMIE RIVER                            |                |                    |               |                  |              |              |
| SILVER STAR MTN CAN<br>SUMMERLAND RES CAN    |                | 2/28/93<br>2/24/93 | 68<br>33      | 24.8<br>8.4      | 21.4<br>6.5  | 24.3<br>8.7        | ALPINE MEADOWS<br>OLALLIE MDWS PILLOW       | 3500<br>3960   | 2/26/93<br>3/01/93 | 82            | 36.9E<br>31.4S   | 13.4<br>29.3 | 33.8<br>44.6 |
| SUNDAY SUMMIT CAN                            | . 4300         | 2/27/93            | 21            | 4.8              | 3.5          | 5.5                | OLALLIE MEADOWS                             | 3630           | 3/01/93            | 34            | 16.9             | 12.1         | 38.7         |
| TROUT CREEK CAN<br>VASEUX CREEK CAN          |                | 2/26/93<br>2/26/93 | 28<br>24      | 6.9<br>5.7       | 4.3<br>5.0   | 6.7<br>5.9         | SKYKOMISH RIVER<br>STAMPEDE PASS PILLOW     | 3860           | 3/01/93            |               | 29.25            | 30.0         | 38.2         |
| WHITE ROCKS MTN CAN                          | . 6000         | 3/01/93            | 49            | 15.4             | 18.4         | 20.0               | STEVENS PASS PILLOW<br>STEVENS PASS SAND SD | 4070           | 3/01/93<br>2/26/93 | 57            | 26.6S            | 32.6         | 34.7         |
| METHOW RIVER<br>HARTS PASS                   | 6500           | 2/25/93            | 69            | 23.4             | 35.1         | 36.2               | SKAGIT RIVER                                | 3700           | 2/20/93            | 37            | 20.3             | 22.0         | 31.1         |
| HARTS PASS PILLON<br>MUTTON CREEK \$1        | 7 6500<br>5700 | 3/01/93            |               | 23.5E<br>11.0    | 40.2<br>10.9 | 34.6<br>11.4       | BEAVER CREEK TRAIL<br>BEAVER PASS           | 2200<br>3680   | 2/27/93<br>2/26/93 | 37<br>43      | 12.5<br>15.8     | 1.7<br>18.2  | 12.6<br>25.1 |
| RUSTY CREEK                                  | 4000           | 3/03/93<br>3/03/93 | 41<br>23      | 6.1              | 4.5          | 6.2                | BROWN TOP AM                                | 6000           | 2/26/93            | 87            | 31.0             | 47.0         | 51.9         |
| SALMON MDWS PILLON<br>CHELAN LAKE BASIN      | 4500           | 3/01/93            |               | 8.05             | 9.4          | 8.3                | DEVILS PARK<br>FREEZEOUT CK. TRAIL          | 5900<br>3500   | 2/25/93<br>2/26/93 | 62<br>23      | 21.2<br>7.2      | 36.2<br>7.3  | 36.9         |
| LYMAN LAKE PILLO                             |                | 3/01/93            |               | 29.5E            | 56.7         | 48.4               | HARTS PASS                                  | 6500           | 2/25/93            | 69            | 23.4             | 35.1         | 36.2         |
| MINERS RIDGE PILLOW<br>PARK CK RIDGE PILLOW  | 6200<br>7 4600 | 3/01/93<br>3/01/93 |               | 28.3S<br>26.1E   | 47.9         | 40.6               | HARTS PASS PILLOW<br>KLESILKWA CAN.         | 6500<br>3710   | 3/01/93<br>2/23/93 | 21            | 23.5E<br>6.9     | 40.2<br>2.8  | 34.6<br>11.4 |
| RAINY PASS                                   | 4780           | 2/25/93            | 56            | 19.2             | 35.8         | 33.4               | LIGHTNING LAKE CAN.                         | 4000           | 2/27/93            | 24            | 6.8              | 9.1          | 11.9         |
| RAINY PASS PILLOS<br>ENTIAT RIVER            | 4 4780         | 3/01/93            |               | 20.85            | 39.6         | 32.7               | LYMAN LAKE PILLOW<br>MEADOWS CABIN          | 5900<br>1900   | 3/01/93<br>2/27/93 | 16            | 29.5E<br>5.0     | 56.7<br>.0   | 48.4<br>6.2  |
| BRIEF                                        | 1600           | 2/22/93            | 23            | 6.9              | .0           | 6.9                | NEW HOZOMEEN LAKE                           | 2800           | 2/26/93            | 26            | 7.2              | 4.3          | 10.9         |
| POPE RIDGE PILLON<br>WENATCHEE RIVER         | 3540           | 3/01/93            |               | 11.45            | 16.7         | 16.7               | RAINY PASS RAINY PASS PILLOW                | 4780<br>4780   | 2/25/93<br>3/01/93 | 56            | 19.2<br>20.85    | 35.8<br>39.6 | 33.4         |
| BERNE-MILL CREEK (d)<br>BLEWETT PASS 2PILLOW | 3170           | 2/26/93<br>3/01/93 | 53            | 19.0             | 16.8         | 24.7<br>17.0       | THUNDER BASIN<br>BAKER RIVER                | 4200           | 2/27/93            | 39            | 12.6             | 17.8         | 18.5         |
| CHIWAUKUM G.S.                               | 2500           | 2/26/93            | 25            | 11.2S<br>7.5     | 10.4<br>5.1  | 10.7               | DOCK BUTTE AM                               | 3800           | 2/24/93            | 74            | 30.0             | 43.0         | 56.1         |
| FISH LAKE PILLOW                             | 3370           | 3/01/93<br>3/01/93 |               | 18.65<br>29.5E   | 21.0<br>56.7 | 28.4<br>48.4       | EASY PASS AM<br>JASPER PASS AM              | 5200<br>5400   | 2/24/93<br>2/24/93 | 68<br>102     | 29.0<br>40.0     | 69.0<br>79.0 | 64.5<br>75.0 |
| MERRITT                                      | 2140           | 2/26/93            | 29            | 10.4             | 4.1          | 14.4               | MARTEN LAKE AM                              | 3600           | 2/24/93            | 82            | 31.0             | 57.0         | 63.6         |
| MISSION RIDGE<br>STEVENS PASS PILLOV         | 5000<br>₹ 4070 | 2/23/93<br>3/01/93 | 51            | 14.1<br>26.6S    | 11.6<br>32.6 | 14.0<br>34.7       | MT. BLUM AM ROCKY CREEK AM                  | 5800<br>2100   | 2/24/93<br>2/24/93 | 82<br>80      | 28.0<br>29.0     | 56.0<br>9.0  | 55.9<br>25.2 |
| STEVENS PASS SAND SI                         | 3700           | 2/26/93            | 57            | 20.3             | 22.0         | 31.1               | SCHREIBERS MDW AM                           | 3400           | 2/24/93            | 66            | 26.0             | 39.0         | 47.9         |
| TROUGH #2 PILLOW<br>UPPER WHEELER            | 7 5310<br>4400 | 3/01/93<br>2/22/93 | 43            | 9.0S<br>10.9     | 7.4          | 9.0<br>9.4         | SF THUNDER CK AM WATSON LAKES AM            | 2200<br>4500   | 2/24/93<br>2/24/93 | 18<br>86      | 6.5<br>33.0      | 39.0         | 7.9<br>53.3  |
| UPPER WHEELER PILLOV                         |                | 3/01/93            |               | 11.35            | 9.8          | 12.1               | BLWHA RIVER                                 |                |                    |               |                  |              |              |
| SQUILCHUCK CREEK<br>STEMILT CREEK            |                |                    |               |                  |              |                    | HURRICANE<br>MORSE CREEK                    | 4500           | 2/26/93            | 24            | 8.6              | 4.6          | 17.4         |
| STEMILT SLIDE                                | 5000           | 2/22/93            | 47            | 12.1             | 8.0          | 12.7               | COX VALLEY                                  | 4500           | 2/27/93            | 50            | 19.2             | 26.1         | 32.4         |
| UPPER WHEELER<br>UPPER WHEELER PILLOW        | 4400<br>7 4400 | 2/22/93<br>3/01/93 | 43            | 10.9<br>11.35    | 9.8          | 9.4<br>12.1        | DUNGENESS RIVER DEER PARK                   | 5200           | 2/24/93            | 30            | 10.5             | 11.1         | 17.3         |
| COLOCKUM CREEK TROUGH #2 PILLOW              |                | 3/01/93            |               | 9.05             | 7.4          | 9.0                | QUILCENE RIVER MOUNT CRAG PILLOW            | 4050           | 3/01/93            |               | 17.95            | 16.4         |              |
| INCOME 92 PILLOW                             | . 3310         | 3/01/33            |               | 7.00             | 7.4          | 7.0                | WYNOOCHEE RIVER                             |                | 5, 52, 53          |               | -1.75            |              |              |
|                                              |                |                    |               |                  |              |                    | (d) Denotes discontinued                    | site.          |                    |               |                  |              |              |

#### CONSERVE YOUR IRRIGATION WATER

Can irrigators use less water and get good yields? We think so. With energy costs on an upward spiral and water shortages likely, we offer these water saving ideas to irrigators.

Consider ditch lining or gated pipe. This will reduce the 10-90% loss which occurs in earth ditches.

Keep ditches clean and free from weeds, sediment or other debris, which can slow water velocity, affect delivery rate, and increase evaporation.

Make sure head gates, drop structures, and pipe inlets are operational. A washed out structure is water lost.

Inspect ditch banks for rodent damage. Rodent holes cause leakage or failures.

Make sure sprinkler nozzles are not worn or leaky. Check pipe connections and valves to prevent leaks.

Operate sprinklers at recommended pressure to effectively use available water.

Maintain your pump at peak efficiency to save energy.

BETTER WATER MANAGEMENT

Better water management may require more labor. It may require changing a head of water in the middle of the night. But it will be worth it. You should:

Measure your water to determine how much is applied.

Consider alternate row irrigation for crops planted in furrows.

Plan short runs. Match stream size and velocity to soil intake rate and capacity.

Catch and reuse tail water where

Under irrigate the lower end of the field to stretch your water.

When water is short, consider eliminating that last irrigation.

Soil Conservation Service personnel can:

Help plan and design new irrigation systems or evaluate existing ones. Provide technical assistance for land leveling, pipeline installation, and other practices.

#### KNOW YOUR SOILS

Soil absorbs irrigation water at a given rate. This varies with each soil type. Some crops require more water than others. Check soil moisture by spade, probe, or moisture meter. Or use the "feel" method.

# WHEN IRRIGATION IS NEEDED SOIL WILL FEEL AND ACT THIS WAY

| Soil Texture | A handful of soil will                                    |
|--------------|-----------------------------------------------------------|
| Coarse       | Tend to stick together slightly, but will not form a ball |
| Medium       | Be crumbly, but will form a ball                          |
| Fine         | be pliable, and will form a ball.                         |

If you have a conservation plan on your farm, or if the soil is your area has been mapped, the Soil Conservation Service can crosscheck soil type and irrigation data and provide you with the water holding capacity of your soil for a given crop.

# RANCHING TIPS FOR WATER-SHORT YEARS

Forage production on range and dry pasture depends entirely on natural While overgrazing does moisture. damage to perennial plants during a season of normal moisture, it is more severe during a drought year. It reduces plant vigor, stops root and leaf growth, reduces ground and invites accelerated cover. erosion. Once erosion begins, it worse each year, further reducing plant vigor and forage This production. process is difficult to reverse.

Rather than risk permanent damage to grazing resources start planning a strategy early. For example:

reduce livestock numbers to balance with forage supply

- cull herds more than normal

- sell calves and lambs early determine forage needs and buy

needed supplements early

- grow small grains or sorghums for hay or pasture (these use less than conventional water forage crops)

- defer planting perennial pasture, hay or range seedings until a year with more favorable water outlook
- keep spring developments, stock tanks, float valves and pipeline in good working order so water is not wasted
- use evaporation retardant on ponds and tanks

- prepare for hauling stock water

 give spring development high priority (even mediocre springs will be helpful)

- check with local SCS and ASCS offices to learn if cost-share programs are available to help with spring developments or other water conservation practices

- don't overgraze or otherwise disturb streambank vegetation (it will help prevent erosion, reduce sediment, and provide food and cover for wildlife)

Remember, if a unit must be abused. well-established seedings can tolerate overgrazing better than native range.

Wildlife will suffer during drought as much or more than domestic livestock. The wildlife that share your land is a valuable natural resource.

To help wildlife:

- include features at stock water developments which will allow small animals and birds safe access to water (these are usually not expensive and are easily installed)

- fence ponds and springs and install collector pipes to deliver water to a tank or trough. This will improve water quality and quantity for livestock, as well as provide lush vegetation for small animals and birds.

Other places for information or assistance:

- check with local ASCS office for possible special practices or cost-sharing that might assist with irrigation on your farm or ranch this year.
- maintain contact with Farmers Home Administration for special local programs available.
- maintain contact with the local Cooperative Extension Service office for agricultural and marketing conditions.

If you belong to an irrigation district, contact irrigation officials throughout the season to learn about current water availability and water supply forecasts.

For more information concerning your crop, and soil and water conditions. contact the local Conservation District Office.

# Spokane River Basin



\*Based on selected stations

Precipitation for February was 38% of average. The March 1 forecasts for summer runoff within the Spokane River Basin are 71%, down from 82% of normal. The forecast is based on a snowpack that is 90% of average and a water year-to-date precipitation value of 70% of normal. Temperatures in the basin were seven degrees below normal during February. Streamflow on the Spokane River was 36% of average for February. March 1 storage in Coeur d'Alene Lake was 36,600 acre feet, 27% of normal, and 17% of capacity.

#### SPOKANE RIVER BASIN

#### Streamflow Forecasts - March 1, 1993

| 52252525555555555555555555555555555555         |                      | streamil                     | ow Forec        | asts       | - March                             | 1, 1993               |                        |                   |                        |
|------------------------------------------------|----------------------|------------------------------|-----------------|------------|-------------------------------------|-----------------------|------------------------|-------------------|------------------------|
| Forecast Point                                 | Period               | <br> <br>  90%<br>  (1000AF) | 70%<br>(1000AF) | c          | hance Of E<br>50% (Most<br>(1000AF) | Exceeding * Probable) | 30%<br>(1000AF)        | 10%  <br>(1000AF) | 30-Yr Avg.<br>(1000AF) |
| SPOKANE nr Post Falls (1,2)                    | APR-SEP              | 910                          | 1540            | <br>       | 1940                                | 71                    | 2350                   | 2980              | 2720                   |
|                                                | APR-JUL              | 875                          | 1480            | 1          | 1870                                | 71                    | 2270                   | 2870              | 2627                   |
| SPOKANE at Long Lake (2)                       | APR-JUL              | 975                          | 1650            | i          | 2090                                | 71  <br>              | 2530                   | 3210              | 2937                   |
| SPOKANE RIVER BASIN<br>Reservoir Storage (1000 | AF) - End            | of Februar                   | у               |            | <br> <br>                           | SPOKANE RI            |                        | is - March        | 1, 1993                |
| Reservoir                                      | Usable  <br>Capacity | *** Usabl<br>This<br>Year    | Last            | ***<br>Avg | <br>  Water                         | rshed                 | Numbe<br>of<br>Data Si |                   | Year as % of           |
|                                                |                      |                              |                 |            | Spoka                               | ane River             | 12                     | 116               | 90                     |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>.</sup>The average is computed for the 1961-1990 base period.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

# Colville - Pend Oreille River Basins



\*Based on selected stations

The forecast for the Kettle River streamflow is 84% of normal, the Pend Oreille, 72%, and the Colville River, 81% of normal for the summer runoff period. February streamflow was 40% of normal on the Pend Oreille River, 64% on the Columbia at the International Boundary, and 91% on the Kettle River. March 1 snow cover is 77% of normal, down from 85% of average on the Pend Oreille, 108% of average on the Colville River, and 99% on the Kettle River. Snowpack at Bunchgrass Meadow SNOTEL site was 16.9 inches of water, the average March 1 reading is 21.5. Precipitation during February was 43% of average, bringing the water year-to-date to 81% of normal. Temperatures were four degrees below normal for February.

#### COLVILLE - PEND OREILLE RIVER BASINS

#### Streamflow Forecasts - March 1, 1993

|                                       |              | <<=====    | Drier -  |        | Future Co | onditions     | Wetter        | >>          |              |
|---------------------------------------|--------------|------------|----------|--------|-----------|---------------|---------------|-------------|--------------|
| Forecast Point                        | Forecast     | <br>       |          | Ch     | ance Of E | Exceeding * = |               | ·<br>       |              |
|                                       | Period       | '<br>  90% | 70%      |        |           | Probable)     |               | 10%         | 30-Yr Avg    |
|                                       |              | (1000AF)   | (1000AF  | ·      |           | (% AVG.)      |               | (1000AF)    | (1000AF      |
|                                       |              |            |          |        |           |               |               |             |              |
| PEND OREILLE bl Box Canyon (1,2)      | APR-SEP      | 7540       | 9570     | 1      | 10500     | 71            | 11400         | 13500       | 14590        |
|                                       | APR-JUL      | 6910       | 8780     | - 1    | 9630      | 71            | 10500         | 12300       | 13380        |
|                                       | APR-JUN      | 5990       | 7600     | 1      | 8330      | 71            | 9060          | 10700       | 11570        |
| CHAMOKANE CK nr Long Lake             | MAY-AUG      | 1.7        | 5.3      |        | 7.7       | 81            | 10.1          | 13.7        | 9.4          |
| COLVILLE at Kettle Falls              | APR-SEP      | 67         | 91       |        | 107       | 81            | 124           | 149         | 131          |
|                                       | APR-JUL      | 61         | 83       | i      | 98        | 81 -          | 113           | 136         | 120          |
|                                       | APR-JUN      | 59         | 79       | i      | 92        | 82 <b> </b>   | 107           | 128         | 111          |
| KETTLE nr Laurier                     | APR-SEP      | 950        | 1320     | 1      | 1560      | 84 I          | 1800          | 2170        | 1853         |
|                                       | APR-JUL      | 900        | 1250     | i      | 1480      | 84            | 1710          | 2050        | 1760         |
|                                       | APR-JUN      | 825        | 1120     | i      | 1330      | 83            | 1540          | 1850        | 1585         |
| COLUMBIA at Birchbank (1,2)           | APR-SEP      | 27300      | 31600    | 1      | 33600     | 76 I          | 35600         | 39900       | 43810        |
| · · · · · · · · · · · · · · · · · · · | APR-JUL      | 22000      | 25400    | i      | 27000     | 76            | 28600         | 32000       | 35140        |
|                                       | APR-JUN      | 16100      | 18600    | i      | 19700     | 76            | 20800         | 23300       | 25670        |
|                                       |              |            |          | i      |           |               |               |             |              |
| COLUMBIA at Grand Coulee Dm (1,2)     | APR-SEP      | 39200      | 46300    | i      | 49500     | 76            | 52700         | 59800       | 64780        |
|                                       | APR-JUL      | 33200      | 39100    | 1      | 41800     | 76            | 44500         | 50400       | 54500        |
|                                       | APR-JUN      | 26200      | 30800    | 1      | 32900     | 76            | 35000         | 39600       | 42730        |
|                                       |              |            |          | <br>   |           |               |               |             |              |
| COLVILLE - PEND ORE                   | ILLE RIVER I | BASINS     |          |        | I         | COLVILLE      | - PEND OREILL | E RIVER BAS | Ins          |
| Reservoir Storage (100                | 0 AF) - End  | of Februar | у        |        |           |               | owpack Analys |             |              |
|                                       | Usable       | *** Usabl  | e Storag | e ***  | l         |               | Numbe         | r This      | Year as % of |
| Reservoir                             | Capacity     | This       | Last     |        | Water     | shed          | of            |             |              |
|                                       |              | Year       | Year     | Avg    | l         |               | Data Si       |             | Yr Average   |
| OOSEVELT                              | 5232.0       |            | 973.7    | 2763.0 | •         | lle River     | 2             | 124         | 108          |
| anks                                  |              | NO REPORT  |          |        | Pend      | Oreille Rive  | r 8           | 94          | 77           |
|                                       |              |            |          |        | I         | e River       | 9             | 116         | 99           |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

# Okanogan - Methow River Basins



\*Based on selected stations

Summer runoff forecast for the Okanogan River is 67% of normal; the Similkameen River, 59%, and the Methow River, 66% of normal. March 1 snow cover on the Okanogan was 89% of normal, down from 98% of average, 80% on the Methow, and 68% on the Similkameen River. February precipitation in the Okanogan-Methow was 41% of normal, with water year-to-date at 68% of average. February streamflow on the Methow River was 63% of normal, 61% on the Okanogan River, and 55% on the Similkameen. Snow water content at the Harts Pass SNOTEL, elevation 6500 feet, was 23.5 inches; normal for this site is 34.6 inches. Temperatures were four degrees below normal for the month. Storage in the Conconully Reservoir is 12,900 acre feet, which is 55% of capacity and 92% of March 1 average.

#### OKANOGAN - METHOW RIVER BASINS

#### Streamflow Forecasts - March 1, 1993

| 000====00000======00===0000000000000000 | ======================================= |            |           |           |          |               |              |            |              |
|-----------------------------------------|-----------------------------------------|------------|-----------|-----------|----------|---------------|--------------|------------|--------------|
|                                         | 1                                       | <<<br>     | Drier     | I         | uture Co | onditions     | Wetter       | ·>>        |              |
| Forecast Point                          | Forecast                                |            |           | Cha       | nce Of E | xceeding * == |              |            |              |
|                                         | Period                                  | 90%        | 70%       | 50        | % (Most  | Probable)     | 30%          | 10%        | 30-Yr Avg.   |
|                                         |                                         | (1000AF)   |           | •         |          | (% AVG.)      |              | (1000AF)   | •            |
| SIMILKAMEEN nr Nighthawk (1)            | APR-SEP                                 | 435        | 870       |           | 830      | 59            | 1080         | 1230       | 1399         |
|                                         | APR-JUL                                 | 620        | 815       | 1         | 770      | 59            | 1010         | 1210       | 1304         |
|                                         | APR-JUN                                 | 585        | 750       | !         | 670      | 60            | 905          | 1060       | 1113         |
| OKANOGAN RIVER nr Tonasket (1)          | APR-SEP                                 | 485        | 1330      |           | 1100     | 67            | 1730         | 1710       | 1624         |
|                                         | APR-JUL                                 | 820        | 1220      | 1         | 1010     | 68            | 1580         | 1990       | 1467         |
|                                         | APR-JUN                                 | 825        | 1120      | !         | 850      | 68            | 1380         | 1670       | 1234         |
| METHOW RIVER nr Pateros (1)             | APR-SEP                                 | 365        | 545       |           | 630      | 66            | 715          | 890        | 942          |
|                                         | APR-JUL                                 | 340        | 505       | i         | 585      | 67            | 660          | 830        | 873          |
|                                         | APR-JUN                                 | 295        | 435       | 1         | 510      | 68            | 570          | 710        | 746          |
|                                         |                                         |            |           | 1         |          | 1             |              |            |              |
| OKANOGAN - METHOW                       | RIVER BASINS                            |            |           | ا         |          | OKANOGAN -    | METHOW RIVE  | R BASINS   |              |
| Reservoir Storage (10                   | 00 AF) - End                            | of Februar | У         | ı         |          | Watershed Sno | wpack Analys | is - March | 1, 1993      |
|                                         | Usable                                  | *** Usabl  | o Storago | ***       |          |               | Numbe        | - Thia     | Year as % of |
| Reservoir                               | Capacity                                |            | Last      |           | Water    | ahad          | of           |            |              |
| WESET AOTT                              | capacity                                | Year       |           | Avg       | water    | sneu          |              |            | Yr Average   |
| CONCONULLY LAKE (SALMON)                | 10.5                                    | 7.2        | 8.2       | <br>  8.0 |          | gan River     | 29           | 99         | 85           |
| CONCONULLY RESERVOIR                    | 13.0                                    | 5.7        | 7.9       | 6.0       | Metho    | w River       | 4            | 75         | 80           |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

# Wenatchee - Chelan River Basins



\*Based on selected stations

Precipitation during February was 15% of normal in the basin and 65% for the year to date. Runoff for the Entiat River is forecast to be 74% of normal for the summer. The summer forecast for the Chelan River is for 70%, for the Wenatchee River it is 67%, and 81% on the Squilchuck-Stemilt. March 1 snowpack in the Wenatchee Basin is 73% of average down from 89% and the Chelan Basin is 63%. Snowpack along Colockum Ridge continues to be near normal for the first time in five years, with Stemilt Creek at 94% but down from 107% last month. Snowpack on the Entiat River is at 78% of average. Reservoir storage in Lake Chelan is 160,500 acre feet or 95% of March 1 average and 24% Lyman Lake SNOTEL had the most snow water with 29.5 of capacity. inches of water, this site would normally have 48.4 inches. Streamflow for February on the Chelan River was 58% of average and on the Wenatchee River it was 59% of normal.

#### WENATCHEE - CHELAN RIVER BASINS

#### Streamflow Forecasts - March 1, 1993

|                                                 |          | <<       | Drier    | Future Co     | nditions ==               | Wetter       |          |            |
|-------------------------------------------------|----------|----------|----------|---------------|---------------------------|--------------|----------|------------|
| Forecast Point                                  | Forecast |          |          | - Chance Of E | xceeding * =              |              |          |            |
|                                                 | Period   | 90%      | 70%      | 50% (Most     | Probable)                 | 30%          | 10%      | 30-Yr Avg. |
|                                                 |          | (1000AF) | (1000AF) | (1000AF)      | (% AVG.)                  | (1000AF)     | (1000AF) | (1000AF)   |
| CHELAN RIVER at Chelan (1)                      | APR-SEP  | 590      | 730      | 820           | 70                        | 910          | 1060     | 1160       |
|                                                 | APR-JUL  | 475      | 650      | 730           | 71                        | 810          | 985      | 1024       |
|                                                 | APR-JUN  | 385      | 525      | 585           | 72                        | 645          | 785      | 812        |
| STEHEKIN R. at Stehekin                         | APR-SEP  | 490      | 555      | <br>  600     | 72                        | 635          | 705      | 827        |
|                                                 | APR-JUL  | 420      | 475      | 510           | 72                        | 545          | 600      | 701        |
|                                                 | APR-JUN  | 330      | 370      | 400           | 74                        | 430          | 470      | 538        |
| ENTIAT RIVER nr Ardenvoir                       | APR-SEP  | 124      | 151      | l<br>  170    | 74                        | 189          | 215      | 227        |
|                                                 | APR-JUL  | 111      | 137      | 155           | 75                        | 173          | 199      | 206        |
|                                                 | APR-JUN  | 96       | 116      | 130           | 76                        | 144          | 164      | 169        |
| WENATCHEE R. at Peshastin                       | APR-SEP  | 540      | 875      | l<br>  1090   | 66                        | 1310         | 1640     | 1636       |
|                                                 | APR-JUL  | 510      | 795      | 990           | 66                        | 1190         | 1470     | 1485       |
|                                                 | APR-JUN  | 425      | 655      | 810           | 67                        | 965          | 1200     | 1204       |
| TEMILT nr Wenatchee (miners in)                 | MAY-SEP  | 71       | 97       | 115           | 83                        | 133          | 159      | 138        |
| CICLE CREEK nr Leavenworth                      | APR-SEP  | 173      | 245      | <br>  290     | 78                        | 340          | 410      | 370        |
|                                                 | APR-JUL  | 157      | 220      | 265           | 77                        | 310          | 375      | 340        |
|                                                 | APR-JUN  | 124      | 175      | 210           | 77                        | 245          | 295      | 270        |
| OLUMBIA R. bl Rock Island Dam (2)               | APR-SEP  | 42100    | 49000    | 53600         | 76                        | 58200        | 65100    | 70410      |
|                                                 | APR-JUL  | 35900    | 41700    | 45600         | 76                        | 49500        | 55300    | 59690      |
|                                                 | APR-JUN  | 28100    | 32600    | 35700<br>     | . 75                      | 38800        | 43300    | 46980      |
| WENATCHEE - CHELAN R<br>Reservoir Storage (1000 |          |          |          |               | WENATCHEE<br>Watershed Sn | - CHELAN RIV |          |            |

| WENATCHEE - CH<br>Reservoir Storage | ELAN RIVER BASINS<br>(1000 AF) - End |                         | ary                       | <br>                   | WENATCHEE -<br>Watershed Snow | 1993                       |     |                      |
|-------------------------------------|--------------------------------------|-------------------------|---------------------------|------------------------|-------------------------------|----------------------------|-----|----------------------|
| Reservoir                           | Usable  <br>Capacity <br>            | *** Usa<br>This<br>Year | ble Stora<br>Last<br>Year | ge ***  <br> <br>  Avg | Watershed                     | Number<br>of<br>Data Sites |     | r as % of<br>Average |
| CHELAN LAKE                         | 676.1                                | 160.5                   | 178.6                     | 168.1                  | Chelan Lake Basin             | 3                          | 53  | 63                   |
|                                     |                                      |                         |                           | ļ                      | Entiat River                  | 2                          | 110 | 78                   |
|                                     |                                      |                         |                           | ļ                      | Wenatchee River               | 11                         | 90  | 73                   |
|                                     |                                      |                         |                           |                        | Squilchuck Creek              | 0                          | 0   | 0                    |
|                                     |                                      |                         |                           | ļ                      | Stemilt Creek                 | 2                          | 131 | 94                   |
|                                     |                                      |                         |                           |                        | Colockum Creek                | 1                          | 122 | 100                  |
|                                     |                                      |                         |                           |                        |                               |                            |     |                      |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

## Yakima River Basin



\*Based on selected stations

February precipitation was 12% of normal and 65% for the water year to date. March 1 reservoir storage for the five major reservoirs at 261,800 acre feet, was 38% of average. Temperatures were eight degrees below average for February. March 1 summer streamflow forecasts for the Yakima Basin vary throughout the basin as follows: The Yakima River at Cle Elum, 70%; Naches River, 72%; the Yakima River at Parker, 67%, Ahtanum Creek, 71%, and the Tieton River 71%. February streamflows were very low, with the Yakima River at Parker 47% of normal, 48% for the Yakima near Cle Elum, and 29% for the Naches River. March 1 snowpack is 76% of average, down from 95% last month. The snowpack is based upon 18 snow courses and SNOTEL readings. Volume forecasts for the Yakima Basin are for natural flow. As such, they may differ from the U. S. Bureau of Reclamation's forecast for the total water supply available which includes irrigation return flow.

#### YAKIMA RIVER BASIN

Streamflow Forecasts - March 1, 1993

|                                           |          | <<=====  | Drier ====                                                     | Future Co     | onditions == | Wetter   | ====>>   |           |
|-------------------------------------------|----------|----------|----------------------------------------------------------------|---------------|--------------|----------|----------|-----------|
| Forecast Point                            | Forecast |          |                                                                | - Chance Of E | xceeding * = |          |          |           |
|                                           | Period   | 90%      | 70%                                                            | 50% (Most     | Probable)    | 30%      | 10%      | 30-Yr Avg |
|                                           |          | (1000AF) | (1000AF)                                                       | (1000AF)      | (% AVG.)     | (1000AF) | (1000AF) | (1000AF   |
| LAKE KEECHELUS INFLOW                     | APR-JUL  | 69       | 80                                                             | <br>  88      | 70           | 96       | 107      | 124       |
|                                           | APR-SEP  | 73       | 87                                                             | J 96          | 71 j         | 105      | 119      | 135       |
|                                           | APR-JUN  | 63       | 72                                                             | 78            | 71           | 84       | 93       | 109       |
| KACHESS LAKE INFLOW                       | APR-JUL  | 62       | 71                                                             | <br>  78      | 70           | 85       | 94       | 111       |
|                                           | APR-SEP  | 64       | 75                                                             | 83            | 70           | 91       | 102      | 118       |
|                                           | APR-JUN  | 57       | 65                                                             | 70            | 70           | 75       | 83       | 99        |
| CLE ELUM LAKE INFLOW                      | APR-JUL  | 260      | 285                                                            | <br>  300     | 73           | 315      | 340      | 409       |
|                                           | APR-SEP  | 260      | 295                                                            | 315           | 70           | 335      | 370      | 448       |
|                                           | APR-JUN  | 215      | 235                                                            | 250           | 72           | 265      | 285      | 345       |
| YAKIMA RIVER at Cle Elum                  | APR-JUN  | 440      | 480                                                            | 510           | 70           | 540      | 580      | 721       |
|                                           | APR-JUL  | 490      | 545                                                            | 580           | 69           | 615      | 670      | 832       |
|                                           | APR-SEP  | 535      | 595                                                            | 640           | 69           | 685      | 745      | 915       |
| UMPING LAKE INFLOW                        | APR-SEP  | 69       | 91                                                             | 100           | 73           | 109      | 131      | 136       |
|                                           | APR-JUL  | 71       | 84                                                             | 92            | 74           | 101      | 113      | 124       |
|                                           | APR-JUN  | 58       | 70                                                             | 78<br>I       | 75           | 86       | 98       | 104       |
| MERICAN RIVER nr Nile                     | APR-SEP  | 74       | 83                                                             | 89            | 75           | 95       | 104      | 118       |
|                                           | APR-JUL  | 68       | 76                                                             | 82            | 75           | 88       | 96       | 109       |
|                                           | APR-JUN  | 55       | 64                                                             | 69            | 75           | 75       | 83       | 92        |
| IMROCK LAKE INFLOW                        | APR-SEP  | 119      | 158                                                            | 170           | 71           | 182      | 220      | 238       |
|                                           | APR-JUL  | 121      | 135                                                            | 145           | 72           | 155      | 169      | 200       |
|                                           | APR-JUN  | 96       | 109                                                            | 118           | 72           | 127      | 141      | 162       |
| ACHES RIVER nr Naches (2)                 | APR-SEP  | 410      | 550                                                            | 600           | 72           | 650      | 800      | 832       |
|                                           | APR-JUL  | 445      | 505                                                            | 545           | 72           | 585      | 645      | 755       |
|                                           | APR-JUN  | 390      | 440                                                            | 475           | 72           | 510      | 560      | 651       |
| HTANUM CREEK nr Tampico (2)               | APR-SEP  | 15.0     | 26                                                             | 33            | 71           | . 40     | 51       | 46        |
|                                           | APR-JUL  | 14.0     | 24                                                             | 30            | 71           | 37       | 46       | 42        |
|                                           | APR-JUN  | 12.0     | 20                                                             | 26            | 72           | 32       | 40       | 36        |
| AKIMA near Parker                         | APR-SEP  | 935      | 1240                                                           | 1350          | 67           | 1460     | 1810     | 1994      |
|                                           | APR-JUL  | 1010     | 1140                                                           | 1230          | 68           | 1320     | 1450     | 1805      |
|                                           | APR-JUN  | 925      | 1030                                                           | 1100          | 68  <br>     | 1170     | 1280     | 1597      |
| WAYNA DIWA DAGA                           |          |          |                                                                |               |              |          | *======= |           |
| YAKIMA RIVER BASI<br>Reservoir Storage (1 |          |          | YAKIMA RIVER BASIN Watershed Snowpack Analysis - March 1, 1993 |               |              |          |          |           |

| YAKIMA RIVER BASI<br>Reservoir Storage (1 |                      | of Febru | arv                        | l               | YAKIMA RIVI<br>Watershed Snow | ER BASIN<br>Vpack Analysis - | March 1. | 1993      |
|-------------------------------------------|----------------------|----------|----------------------------|-----------------|-------------------------------|------------------------------|----------|-----------|
| Reservoir                                 | Usable  <br>Capacity |          | able Stora<br>Last<br>Year | ge ***  <br>Avg | Watershed                     | Number<br>of<br>Data Sites   |          | r as % of |
| KEECHELUS                                 | 157.8                | 48.5     | 112.6                      | 105.0           | Yakima River                  | 18                           | 105      | 76        |
| KACHESS                                   | 239.0                | 64.1     | 165.0                      | 179.0           | Ahtanum Creek                 | 2                            | 167      | 115       |
| CLE ELUM                                  | 436.9                | 83.8     | 294.0                      | 273.0           |                               |                              |          |           |
| BUMPING LAKE                              | 33.7                 | 5.1      | 7.4                        | 10.0            |                               |                              |          |           |
| RIMROCK                                   | 198.0                | 60.0     | 98.8                       | 130.0           |                               |                              |          |           |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

### Walla Walla River Basin



\*Based on selected stations

The forecast is for 98% of average streamflow in the Walla Walla River for the coming summer, the Grande Ronde, 106%; Snake River, 78%, and 87% for Mill Creek. February streamflow was 21% of normal on the Walla Walla River, 44% for the Snake River, and 32% on the Grande Ronde River near Troy. March 1 snowpack is at 122% of normal. The Touchet SNOTEL site has 27.6 inches of water, the normal March 1 reading for this site is 27.8 inches. February precipitation was 56% of average, bringing the year-to-date precipitation to 88% of normal. Temperatures were 11 degrees below average for February.

#### WALLA WALLA RIVER BASIN

#### Streamflow Forecasts - March 1, 1993

|                                   |          | <<=====<br> | · Drier      | = Future Co | onditions ==  | Wetter        | : ==:==>> |              |
|-----------------------------------|----------|-------------|--------------|-------------|---------------|---------------|-----------|--------------|
| Forecast Point                    | Forecast | '<br>       |              | Chance Of 1 | Exceeding * = |               |           |              |
|                                   | Period   | 90%         | 70%          |             | Probable)     | 30%           | 10%       | 30-Yr Avg    |
|                                   |          | (1000AF)    | (1000AF)     |             | (% AVG.)      | (1000AF)      | (1000AF)  | (1000AF)     |
| RANDE RONDE at Troy (1)           | MAR-JUL  | 1090        | 1390         | 1530        | 104           | 1670          | 1970      | 1471         |
|                                   | APR-SEP  | 980         | 1260         | 1380        | 105           | 1500          | 1780      | 1312         |
| NAKE bl Lower Granite Dam (1,2)   | APR-JUL  | 9830        | 14800        | 17100       | 78            | 19400         | 24400     | 21650        |
|                                   | APR-SEP  | 10900       | 16500        | 19100       | 78            | 21700         | 27300     | 24360        |
| IILL CREEK at Walla Walla         | APR-SEP  | 7.6         | 12.0         | 15.0        | 87            | 18.0          | 22        | 17.1         |
|                                   | APR-JUL  | 7.5         | 11.9         | 14.9        | 88            | 17.9          | 22        | 16.9         |
|                                   | APR-JUN  | 7.4         | 11.8         | 14.7        | 88            | 17.6          | 22        | 16.7         |
| F WALLA WALLA nr Milton Freewater | APR-JUL  | 42          | 48           | 52          | 98            | 56            | 62        | 53           |
| OLUMBIA R. at The Dalles (2)      | APR-SEP  | 57400       | 66300        | 74500       | 75            | 83100         | 92000     | 98910        |
|                                   | APR-JUL  | 48900       | 58200        | 64500       | 76            | 70800         | 80100     | 84710        |
|                                   | APR-JUN  | 39800       | 47300        | 52400       | 76  <br>4     | 57500         | 65000     | 68890        |
|                                   |          |             |              |             | 1             |               |           |              |
| WALLA WALLA RIVER BA              |          |             |              | 1           |               | LA RIVER BASI |           |              |
| Reservoir Storage (100            | •        |             | -            | •           | Watershed Sno | -             |           | •            |
|                                   | Usable   |             | e Storage ** |             |               | Numbe         |           | Year as % of |
| eservoir                          | Capacity | This        | Last         | Water       | shed          | of            |           |              |
|                                   | 1        | Year        | Year Av      | • •         |               | Data Si       |           | Yr Average   |
|                                   |          |             |              | •           | Creek         | 2             | 149       | 106          |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

# **Cowlitz - Lewis River Basins**



\*Based on selected stations

February precipitation was 11% of normal, bringing the water year-to-date precipitation to 65% of average. March 1 snow cover for the Cowlitz River is 91%, and for the Lewis River it is 105%. The forecast for summer runoff in the Lewis River is 83% of normal and the Cowlitz River, 80%. February streamflow on the Cowlitz River was 39% of average, and 28% on the Lewis River. The Paradise Park SNOTEL contained the maximum water content for the basin with 45.2 inches of water. Normal March 1 water content is 47.9 inches. Temperatures were three degrees below normal for February.

#### COWLITZ - LEWIS RIVER BASINS

#### Streamflow Forecasts - Narch 1, 1993

|                                             |                      |                | Drier                | - Future Co    | nditions   | Wetter      | >>       |             |
|---------------------------------------------|----------------------|----------------|----------------------|----------------|------------|-------------|----------|-------------|
| Forecast Point                              | Forecast             | <br>  <b>-</b> |                      | Chance Of E    | xceeding * |             |          |             |
|                                             | Period               | 90%            | 70%                  | 50% (Most      | Probable)  | 30%         | 10%      | 30-Yr Avg   |
|                                             |                      | (1000AF)       |                      | •              | (% AVG.)   | (1000AF)    | (1000AF) | (1000AF     |
| EWIS RIVER at Ariel (2)                     | APR-SEP              | 495            | 860                  | 1010           | 83         | 1160        | 1520     | 1204        |
|                                             | APR-JUL              | 560            | 750                  | 880            | 83         | 1010        | 1200     | 1051        |
|                                             | APR-JUN              | 495            | 665                  | 780            | 83         | 895         | 1070     | 933         |
| OWLITZ R. bl Mayfield Dam (2)               | APR-SEP              | 610            | 1290                 | 1580           | 80         | 1870        | 2540     | 1970        |
|                                             | APR-JUL              | 770            | 1140                 | 1390           | 80         | 1640        | 2010     | 1731        |
|                                             | APR-JUN              | 660            | 975                  | 1190           | 80         | 1400        | 1720     | 1477        |
| WLITZ R. at Castle Rock (2)                 | APR-SEP              | 880            | 1860                 | 2240           | 83         | 2620        | 3600     | 2667        |
|                                             | APR-JUL              | 1140           | 1620                 | 1950           | 83         | 2280        | 2760     | 2325        |
|                                             | APR-JUN              | 975            | 1390                 | 1675           | 83         | 1960        | 2370     | 1995        |
| COWLITZ - LEWIS RI<br>Reservoir Storage (10 |                      | of Februar     | у                    | <br> <br>      | COWLITZ -  | LEWIS RIVER |          | l, 1993     |
|                                             |                      |                |                      |                |            |             |          |             |
| servoir                                     | Usable  <br>Capacity |                | e Storage **<br>Last | "  <br>  Water | ,<br>ahad  | Numbe<br>of | _        | (ear as % o |
| Servoir                                     | capacity             | Year           | Year Av              |                | Sileu      |             | tes Last |             |
|                                             |                      |                |                      | Cowli          | tz River   | 7           | 117      | 91          |
|                                             |                      |                |                      |                |            |             |          |             |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

# White - Green River Basins



\*Based on selected stations

February precipitation was 6% of normal, bringing the water year to date to 66% of average. Temperatures were one degrees below average for February. Summer runoff is forecasted to be 81% on the Green River and 83% on the Cedar River, the Rex River at 85%, the South Fork of the Tolt River at 78% and the Cedar River at Cedar, 81%. March 1 snowpack was 81% of normal in the White River Basin and 85% in the Green River Basin. Water content on March 1 at the Stampede Pass SNOTEL, at an elevation of 3860 feet, was 29.2 inches. This site has a March 1 average of 38.2 inches.

#### WHITE - GREEN RIVER BASINS

#### Streamflow Forecasts - March 1, 1993

|                                    |          | <<=====<br>  | - Drier         | - Future Co | onditions == | Wetter           | >>       |             |
|------------------------------------|----------|--------------|-----------------|-------------|--------------|------------------|----------|-------------|
| Forecast Point                     | Forecast |              |                 | Chance Of E | xceeding * • |                  |          |             |
|                                    | Period   | 90%          | 70%             | 50% (Most   | Probable)    | 30%              | 10%      | 30-Yr Avg   |
|                                    |          |              | (1000AF)        |             | (% AVG.)     |                  | (1000AF) | (1000AF     |
| GREEN RIVER below Howard Hanson Da |          | 177          | 197             | 210         | 81           | <b></b><br>  225 | 245      | 257         |
|                                    | APR-SEP  | 191          | 215             | 230         | 80           | 245              | 270      | 285         |
|                                    | APR-JUN  | 161          | 178             | 190         | 81           | 200              | 220      | 234         |
| EDAR RIVER near Cedar Falls        | APR-JUL  | 53           | 60              | 64          | 83           | 69               | 75       | 77          |
|                                    | APR-SEP  | 58           | 65              | 70          | 82           | 75               | 82       | 85          |
|                                    | APR-JUN  | 47           | 53              | 57          | 83           | ^ 61             | 67       | 68          |
| EX RIVER nr Cedar Falls            | APR-JUL  | 17.0         | 21              | 23          | 85           | 25               | 29       | 27          |
|                                    | APR-SEP  | 20           | 23              | 26          | 85           | 28               | 31       | 30          |
| NEX RIVER near Cedar Falls         | APR-JUN  | 16.0         | 19.0            | 21          | 85           | 23               | 26       | 25          |
| EDAR RIVER at Cedar Falls          | APR-JUL  | 45           | 58              | 67          | 81           | 76               | 89       | 82          |
|                                    | APR-SEP  | 46           | 59              | 68          | 81           | 77               | 90       | 83          |
|                                    | APR-JUN  | 45           | 58              | 67          | 83           | 76               | 89       | 80          |
| OUTH FORK TOLT RIVER near Index    | APR-JUL  | 9.5          | 11.0            | 12.0        | 78           | 13.0             | 14.5     | 15.2        |
|                                    | APR-SEP  | 11.3         | 13.2            | 14.6        | 82           | 16.0             | 17.9     | 17.8        |
|                                    | APR-JUN  | 8.4          | 9.8             | 10.8        | 82           | 11.8             | 13.2     | 13.1        |
|                                    |          |              | <br>            |             |              |                  |          |             |
| WHITE - GREEN RIVER                |          |              |                 | !           |              | REEN RIVER BAS   |          |             |
| Reservoir Storage (100             | •        |              | -               | •           |              | owpack Analysi   |          | •           |
|                                    | •        |              | le Storage **   | •           |              | Number           |          | Year as % o |
| eservoir                           | Capacity | This<br>Year | Last<br>Year Av | Water       | shed         | of<br>Data Sit   |          | Yr Average  |
| 8208688888888¥+4×8#88888888888888  |          |              | .========       |             |              |                  |          |             |
|                                    |          |              |                 | White       | River        | 3                | 88       | 81          |
|                                    |          |              |                 | Green       | River        | 7                | 168      | 85          |
|                                    |          |              |                 |             |              |                  |          | 0.1         |
|                                    |          |              |                 | Cedar       | River        | 2                | 0        | 91          |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

# **North Puget Sound River Basins**



\*Based on selected stations

Precipitation for February was 5% of average with a water year to date at 61% of normal. March 1 snow cover in the Skagit River was 64% of normal, and on the Baker River it was 56%. February streamflow in the Skagit River was 62% of average. Forecast for the Skagit River streamflow is 74% of normal for the spring and summer period. Other forecast points include the Baker River at 76% and Thunder Creek at 80%. Rainy Pass SNOTEL at elevation 4780 feet, had 20.8 inches of water content; normal March 1 water content is 32.7 inches. March 1 reservoir storage was above average, with Ross Lake reservoir at 195% of normal and 43% of capacity. February temperatures were two degrees below normal.

#### NORTH PUGET SOUND RIVER BASINS

Streamflow Forecasts - March 1, 1993

|                              | I              | <<=====    | Drier       | Future C    | onditions      | Wetter        | >>          |              |
|------------------------------|----------------|------------|-------------|-------------|----------------|---------------|-------------|--------------|
| Forecast Point               | <br>  Forecast |            |             | = Chance Of | Exceeding * == |               |             |              |
| 10200000 10200               | Period         | 90%        | 70%         |             | Probable)      | 30%           | 10%         | 30-Yr Avg.   |
|                              |                | (1000AF)   | (1000AF)    | (1000AF)    | (% AVG.)       |               | (1000AF)    | (1000AF)     |
| THUNDER CREEK near Newhalem  | APR-JUL        | 159        | 174         | 184         | 80             | 194           | 210         | 230          |
|                              | APR-SEP        | 235        | 250         | 260         | 79             | 270           | 285         | 328          |
|                              | APR-JUN        | 92         | 109         | 120         | 80             | 132           | 148         | 149          |
| SKAGIT RIVER at Newhalem (2) | APR-SEP        | 1160       | 1440        | <br>  1630  | 74             | 1820          | 2100        | 2185         |
| ` ,                          | APR-JUL        | 995        | 1230        | 1390        | 75             | 1550          | 1780        | 1830         |
|                              | APR-JUN        | 730        | 910         | 1030        | 73             | 1150          | 1330        | 1410         |
| BAKER RIVER near Concrete    | APR-JUL        | 515        | 590         | <br>  640   | 76             | 690           | 765         | 836          |
|                              | APR-SEP        | 675        | 760         | 820         | 77             | 880           | 965         | 1064         |
|                              | APR-JUN        | 380        | 435         | 475         | 77             | 515           | 570         | 611          |
|                              |                |            |             | ĺ           | Ĺ              |               |             |              |
| NORTH PUGET SOUND            | RIVER BASINS   |            |             | <br>        | NORTH PUGE     | T SOUND RIVER | BASINS      | ,            |
| Reservoir Storage (1         | 000 AF) - End  | of Februar | Y           | Ì           | Watershed Sno  | wpack Analysi | s - March 1 | 1, 1993      |
|                              | Usable         | *** Usabl  | e Storage * | **          |                | Number        | This >      | Year as % of |
| Reservoir                    | Capacity       | This       | Last        | Wate        | rshed .        | of            |             |              |
|                              | I              | Year       | Year A      | vg          |                | Data Sit      | es Last Y   | r Average    |
| Ross                         | 1404.1         |            |             |             | omish River    | 6             | 116         | 73           |
| DIABLO RESERVOIR             | 90.6           | 87.1       | 87.5        | <br>  Skag  | it River       | 13            | 71          | 64           |
| GORGE RESERVOIR              |                | NO REPORT  |             | <br>  Bake  | r River        | 9             | 65          | 56           |
|                              |                |            |             | 1           |                |               |             |              |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

# Olympic Peninsula River Basins



\*Based on selected stations

February precipitation was 7% of average, with water year-to-date precipitation accumulation at 66% of normal. February precipitation at Quillayute was .87 inches, normal for the month is 12.01 inches. March 1 snow cover in the Olympic Basin is below normal, with the Elwah at 49% of average and the Dungeness at 61%. March forecasts of runoff for streamflow in the basin are for 75% of average on the Dungeness River and the Elwha River. The Big Quilcene can expect below normal runoff this summer. The Mount Crag SNOTEL near Quilcene had 19.9 inches on March 1, last year it had 16.4 inches. Temperatures were one degree below normal for February.

#### OLYMPIC PENINSULA RIVER BASINS

#### Streamflow Forecasts - March 1, 1993

|                                         | ļ                         | <<         | Drier       | Puture Co                            | enditions        | Wetter                           | >>                       |                                  |
|-----------------------------------------|---------------------------|------------|-------------|--------------------------------------|------------------|----------------------------------|--------------------------|----------------------------------|
| Forecast Point                          | Forecast                  |            |             | - Chance Of E                        | xceeding * ==    |                                  |                          |                                  |
|                                         | Period                    | 90%        | 70%         | 50% (Most                            | Probable)        | 30%                              | 10%                      | 30-Yr Avg.                       |
|                                         | ı                         | (1000AF)   | (1000AF)    | (1000AF)                             | (% AVG.)         | (1000AF)                         | (1000AF)                 | (100CAF)                         |
| DUNGENESS RIVER nr Sequim               | APR-SEP                   | 92         | 109         | 120                                  | 75               | 132                              | 148                      | 160                              |
| DONGENESS RIVER HE SEQUEN               | APR-JUL                   | 75         | 89          | 98                                   | 74               | 107                              | 121                      | 131                              |
|                                         | APR-JUN                   | 57         | 67          | 1 74                                 | 75               | 81                               | 91                       | 98                               |
|                                         | ian con                   | ٠.         | 0,          | i                                    | , ,              | 01                               | 71                       | 30                               |
| ELWHA RIVER nr Port Angeles             | APR-SEP                   | 280        | 340         | 380                                  | 75               | 420                              | 480                      | 502                              |
|                                         | APR-JUL                   | 235        | 285         | 318                                  | 76               | 350                              | 400                      | 417                              |
|                                         |                           |            |             |                                      |                  |                                  |                          |                                  |
|                                         |                           |            |             | ·<br>                                |                  |                                  |                          |                                  |
| OLYMPIC PENINSUI                        | LA RIVER BASINS           |            |             |                                      | OLYMPIC PE       | NINSULA RIVE                     | R BASINS                 |                                  |
| OLYMPIC PENINSUI<br>Reservoir Storage ( |                           | of Februar | •           | •                                    | Watershed Sno    | wpack Analys                     | is - March               | 1, 1993                          |
|                                         |                           |            | •           |                                      |                  | wpack Analys                     | is - March               | 1, 1993<br>Year as % of          |
|                                         | (1000 AF) - End           | *** Usabl  | -           |                                      | Watershed Sno    | wpack Analys                     | is - March               |                                  |
| Reservoir Storage (                     | (1000 AF) - End<br>Usable | *** Usabl  | e Storage * | **  <br>  Water                      | Watershed Sno    | wpack Analys  Numbe  of  Data Si | is - March This          | Year as % of                     |
| Reservoir Storage (                     | (1000 AF) - End<br>Usable | *** Usabl  | e Storage * | **  <br>  Water<br>vg                | Watershed Sno    | wpack Analys Numbe               | is - March This          | Year as % of                     |
| Reservoir Storage (                     | (1000 AF) - End<br>Usable | *** Usabl  | e Storage * | **  <br>  Water<br> vg  <br>         | watershed Sno    | Numbe<br>of<br>Data Si           | r This                   | Year as % of<br>Yr Average       |
| Reservoir Storage (                     | (1000 AF) - End<br>Usable | *** Usabl  | e Storage * | **   Water    Water    Elwha   Morse | watershed Sno    | Numbe<br>of<br>Data Si           | is - March This tes Last | Year as % of                     |
| Reservoir Storage (                     | (1000 AF) - End<br>Usable | *** Usabl  | e Storage * | **   Water .vg                       | shed River Creek | Numbe<br>of<br>Data Si           | is - March This tes Last | Year as % of<br>Yr Average<br>49 |

<sup>\* 90%, 70%, 30%,</sup> and 10% chances of exceeding are the probabilities that the actual flow will exceed the volumes in the table.

<sup>(1) -</sup> The values listed under the 10% and 90% Chance of Exceeding are actually 5% and 95% exceedance levels.

<sup>(2) -</sup> The value is natural flow - actual flow may be affected by upstream water management.

In addition to basin outlook reports, a Water Supply Forecast for the Western United States is published by the Soil Conservation Service and National Weather Service monthly, January through May. Reports may be obtained from the Soil Conservation Service, West National Technical Center, 511 Northwest Broadway, Room 248, Portland, OR 97209-3489.

Issued by

Released by

William (Bill) Richards
Chief
Soil Conservation Service
U.S. Department of Agriculture

Lynn A. Brown
State Conservationist
Soil Conservation Service
Spokane, Washington

# The Following Organizations Cooperate With The Soil Conservation Service In Snow Survey Work

Canada:

Ministry of the Environment, Water

Investigations Branch, Victoria, British Columbia

States:

Washington State Department of Ecology

Washington State Department of Natural Resources

Federal:

Department of the Army Corps of Engineers

U.S. Department of Agriculture

Forest Service

U.S. Department of Commerce
NOAA, National Weather Service
U.S. Department of the Interior
Bonney of Posternation

Bureau of Reclamation Geological Survey National Park Service Bureau of Indian Affairs

Local:

City of Tacoma City of Seattle

Chelan County P.U.D.

Pacific Power and Light Company
Puget Sound Power and Light Company
Washington Water Power Company
Spokemish County P.I.D.

Snohomish County P.U.D. Colville Confederated Tribes

Spokane County Yakima Indian Nation

Private:

Okanogan Irrigation District

Wenatchee Heights Irrigation District Newman Lake Homeowners Association

Other organizations and individuals furnish valuable information for snow survey reports. Their cooperation is gratefully acknowledged.



Rock Pointe Tower II, Suite 450 W. 316 Boone Avenue Spokane, WA 99201-2349 MAR-9'93 SENALTY U.S. POSTA SE 3300 E O 75 MASH S251215

A
U. S. DEPT. OF AGRICULTURE
NATIONAL AGRICUL. LIBRARY
CURRENT SERIAL RECORDS
BELTSVILLE MD 20705



# Washington Basin Outlook Report

Soil Conservation Service Spokane, WA

