CSL003P1M: Probability and Statistics Lecture 34 (Joint Distribution Of A Function Of Continuous Random Variables)

Sumit Kumar Pandey

November 30, 2021

Let X be uniformly distributed over (0,1). Find the density of the random variable Y, defined by $Y=X^n$.

Solution: For $0 \le y \le 1$,

$$F_Y(y) = P\{Y \le y\}$$

$$= P\{X^n \le y\}$$

$$= P\{X \le y^{1/n}\}$$

$$= F_X(y^{1/n})$$

$$= y^{1/n}$$

So,

$$f_Y(y) = \begin{cases} \frac{1}{n} y^{1/n-1} & 0 \le y \le 1\\ 0 & \text{otherwise} \end{cases}$$

If X is a continuous random variable with probability density f_X , then find the distribution of $Y = X^2$.

Solution: For $y \ge 0$,

$$F_Y(y) = P\{Y \le y\}$$

$$= P\{X^2 \le y\}$$

$$= P\{-\sqrt{y} \le X \le \sqrt{y}\}$$

$$= F_X(\sqrt{y}) - F_X(-\sqrt{y})$$

Differentiation yields

$$f_Y(y) = \frac{1}{2\sqrt{y}}[f_X(\sqrt{y}) + f_X(-\sqrt{y})] \quad y \ge 0$$

If X has a probability density f_X , then has a density function of Y = |X|.

Solution: For y > 0,

$$F_Y(y) = P\{Y \le y\}$$

= $P\{|X| \le y\}$
= $P\{-y \le X \le y\}$
= $F_X(y) - F_X(-y)$

Differentiation yields

$$f_Y(y) = f_X(y) + f_X(-y)$$
 $y \ge 0$

Joint Probability Distribution of Functions of Random Variables

- Let X_1 and X_2 be jointly continuous random variable with joint probability density function f_{X_1,X_2} .
- It is sometimes necessary to obtain the joint distribution of the random variables Y_1 and Y_2 , which arise as functions of X_1 and X_2 .
- Specifically, suppose that $Y_1 = g_1(X_1, X_2)$ and $Y_2 = g_2(X_1, X_2)$ for some functions g_1 and g_2 .

Joint Probability Distribution of Functions of Random Variables

Assumptions:

- The equations $y_1 = g_1(x_1, x_2)$ and $y_2 = g_2(x_1, x_2)$ can be uniquely solved for x_1 and x_2 in terms of y_1 and y_2 , with solutions given by, say, $x_1 = h_1(y_1, y_2)$, $x_2 = h_2(y_1, y_2)$.
- ② The functions g_1 and g_2 have continuous partial derivatives at all points (x_1, x_2) and are such that the 2×2 determinant

$$J(x_1, x_2) = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \frac{\partial g_1}{\partial x_2} \\ \frac{\partial g_2}{\partial x_1} & \frac{\partial g_2}{\partial x_2} \end{vmatrix} = \frac{\partial g_1}{\partial x_1} \frac{\partial g_2}{\partial x_2} - \frac{\partial g_1}{\partial x_2} \frac{\partial g_2}{\partial x_1} \neq 0$$

at all points (x_1, x_2) .

Joint Probability Distribution of Functions of Random Variables

Under the previous two assumptions, it can be shown that the random variables Y_1 and Y_2 are jointly continuous with joint density function given by

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(x_1,x_2)|J(x_1,x_2)|^{-1}$$

where $x_1 = h_1(y_1, y_2)$, $x_2 = h_2(y_1, y_2)$.

Let X_1 and X_2 be jointly continuous random variables with probability density function f_{X_1,X_2} . Let $Y_1=X_1+X_2$, $Y_2=X_1-X_2$. Find the joint density function of Y_1 and Y_2 in terms of f_{X_1,X_2} .

Let
$$g_1(x_1, x_2) = x_1 + x_2$$
 and $g_2(x_1, x_2) = x_1 - x_2$. Then

$$J(x_1,x_2) = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2$$

Now, since the equations $y_1 = x_1 + x_2$ and $y_2 = x_1 - x_2$ have $x_1 = (y_1 + y_2)/2$, $x_2 = (y_1 - y_2)/2$ as their solution, it follows that the desired density is

$$f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{2} f_{X_1,X_2}\left(\frac{y_1+y_2}{2},\frac{y_1-y_2}{2}\right)$$

If X and Y are independent gamma random variables with parameters (α, λ) and (β, λ) , respectively, compute the joint density of U = X + Y and V = X/(X + Y).

Solution: The joint density of X and Y is given by

$$f_{X,Y}(x,y) = \frac{\lambda e^{-\lambda x} (\lambda x)^{\alpha-1}}{\Gamma(\alpha)} \frac{\lambda e^{-\lambda y} (\lambda y)^{\beta-1}}{\Gamma(\beta)}$$
$$= \frac{\lambda^{\alpha+\beta}}{\Gamma(\alpha)\Gamma(\beta)} e^{-\lambda(x+y)} x^{\alpha-1} y^{\beta-1}$$

Now, if $g_1(x, y) = x + y$, $g_2(x, y) = x/(x + y)$, then

$$\frac{\partial g_1}{\partial x} = \frac{\partial g_1}{\partial y} = 1 \quad \frac{\partial g_2}{\partial x} = \frac{y}{(x+y)^2} \quad \frac{\partial g_2}{\partial y} = -\frac{x}{(x+y)^2}$$

So,

$$J(x,y) = \begin{vmatrix} \frac{1}{y} & \frac{1}{-x} \\ \frac{1}{(x+y)^2} & \frac{1}{(x+y)^2} \end{vmatrix} = -\frac{1}{x+y}$$

Finally, as u = x + y, v = x/(x + y), so x = uv, y = u(1 - v).

Therefore,

$$f_{U,V}(u,v) = f_{X,Y}[uv, u(1-v)]u$$

$$= \left(\frac{\lambda e^{-\lambda u}(\lambda u)^{\alpha+\beta-1}}{\Gamma(\alpha+\beta)}\right) \left(\frac{v^{\alpha-1}(1-v)^{\beta-1}\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\right)$$

Hence X+Y and X/(X+Y) are independent, with X+Y having a gamma distribution with parameters $(\alpha+\beta,\lambda)$ and X/(X+Y) having a beta distribution with parameters (α,β) .

Thank You