1. Для каждого набора функций выясните и докажите их попарную асимптотическую связь.

1.
$$n^{\log_2 7}$$
, $n^2 \log n$, $(\log_2 7)^n$

2.
$$n\cos \pi n$$
, $3^{\sqrt{n}}$, $10n + 5$

3.
$$2^{\log_3 n}$$
, $2^{n/50}$, $\log_3 50 \cdot n$

4.
$$(\log n)^{2.5}$$
, $n/\log n + 2$, $\sqrt{n} \cdot (n \mod 11)$

5.
$$n^3$$
, $n \log n + (\log n)^2$, $(\log_2 n)^n$

6.
$$2^{n/3}$$
, $(n/2)^{n/7}$, $2^{3\log_7 n}$

7.
$$4^{n/2}$$
, $4^{n/3} \log n$, $n4^{n/6}$

8.
$$2^{n^2+2n+1}$$
, 3^{n-7} , $\min(n^3, 8n \log n + 5)$

2. Докажите или опровергните:

1. Если
$$f(n) = \Theta(h(n))$$
 и $g(n) = \Theta(h(n))$, то $f(n) + g(n) = \Theta(h(n))$

2.
$$f(n+1) = O(f(n))$$

3. Если
$$f(n) > 0$$
, $g(n) > 0$ и $f(n) - g(n) \to +\infty$, то $g(n) = o(f(n))$

4. Если
$$f(n) = O(g(n))$$
, то $\sum_{i=0}^n f(i) = O(\sum_{i=0}^n g(i))$