18.445 Introduction to Stochastic Processes Lecture 20: Poisson process

Hao Wu

MIT

29 April 2015

Hao Wu (MIT) 18.445 29 April 2015 1 / 7

Random point process

A random point process is a countable random set of points of the real line which corresponds to the sequence of the times of occurrence of some event. For instance, the arrival times of customers.

Definition

A random point process on \mathbb{R}_+ is a sequence of random variables $(T_n)_{n\geq 0}$ such that

- \bullet 0 = $T_0 < T_1 < T_2 < \cdots$
- $\lim_n T_n = \infty$

Definition

The interevent sequence : $S_n = T_n - T_{n-1}$ for $n \ge 1$.

The counting process : For $(a, b] \subset \mathbb{R}_+$, define

$$N(a,b] = \sum_{n>1} 1_{(a,b]}(T_n)$$

Counting process

Definition

The counting process : For $(a,b]\subset \mathbb{R}_+$, define

$$N(a,b] = \sum_{n \geq 1} 1_{(a,b]}(T_n).$$

In particular, set $N_t = N(0, t]$. Then

- $N_0 = 0$
- $\bullet \ N(a,b] = N_b N_a$
- $t \mapsto N_t$ is right-continuous

3/7

Hao Wu (MIT) 18.445 29 April 2015

Poisson process

Definition

A point process N on \mathbb{R}_+ is called a Poisson process with intensity $\lambda>0$ if

- For any $k \ge 1$, any $0 \le t_1 \le t_2 \le \cdots \le t_k$, the random variables $N(t_i, t_{i+1}], i = 1, ..., k-1$ are independent.
- For any interval $(a, b] \subset \mathbb{R}_+$, the variable N(a, b] is a Poisson random variable with mean $\lambda(b a)$, i.e.

$$\mathbb{P}[N(a,b]=k]=e^{-\lambda(b-a)}\frac{(\lambda(b-a))^k}{k!}.$$

Theorem

The interevent sequence $(S_n)_{n\geq 1}$ of a Poisson process with intensity λ is i.i.d. with exponential distribution of parameter λ .

Poisson process — Markov property

Theorem (Markov property)

Let $(N_t)_{t\geq 0}$ be a Poisson process. Then, $\forall s\geq 0$,

- the process $(N_{t+s} N_s)_{t>0}$ is also a Poisson process
- and it is independent of $(N_u)_{u \le s}$

Theorem (Strong Markov property)

Let $(N_t)_{t\geq 0}$ be a Poisson process. Suppose that T is a stopping time, then conditional on $[T<\infty]$,

- the process $(N_{t+T} N_T)_{t \ge 0}$ is also a Poisson process
- and it is independent of $(N_u)_{u \le T}$

Hao Wu (MIT) 18.445 29 April 2015

Poisson process — Superposition

Theorem

Let $(N^i)_{i\geq 1}$ be a family of independent Poisson processes with respective positive intensities $(\lambda_i)_{i\geq 1}$. Then

- two distinct Poisson processes in this family have no points in common
- if $\sum_{i\geq 1} \lambda_i = \lambda < \infty$, then $N_t = \sum_{i\geq 1} N_t^i$ defines the counting process of a Poisson process with intensity λ .

Theorem

In this situation of the above theorem with $\sum \lambda_i = \lambda < \infty$. Denote by Z the first event time of $N = \sum N^i$ and by J the index of the Poisson process responsible for it. Then

$$\mathbb{P}[J=i,Z\geq a]=\mathbb{P}[J=i]\times\mathbb{P}[Z\geq a]=\frac{\lambda_i}{\lambda}e^{-\lambda a}.$$

Poisson process — Characterization

Theorem

Let $(X_t)_{t\geq 0}$ be an increasing right-continuous process taking values in $\{0,1,2,...\}$ with $X_0=0$. Let $\lambda>0$. Then the following statements are equivalent.

- $(X_t)_{t>0}$ is a Poisson process with intensity λ .
- X has independent increments, and as $\epsilon \downarrow 0$, uniformly in t, we have

$$\mathbb{P}[X_{t+\epsilon} - X_t = 0] = 1 - \lambda \epsilon + o(\epsilon);$$

$$\mathbb{P}[X_{t+\epsilon} - X_t = 1] = \lambda \epsilon + o(\epsilon).$$

• *X* has independent and stationary increments, and for all $t \ge 0$ we have $X_t \sim Poisson(\lambda t)$.

Hao Wu (MIT) 18.445 29 April 2015 7 / 7