Colles semaine 16 - Couples de variables aléatoires

1 Lois d'un couple aléatoire discret

- ightharpoonup Couple de variables aléatoires Notation (X,Y): avec X,Y variables marginales
- ▶ Loi conjointe écriture en tableau à double entrée, et exploitation (calcul de probas)

$X\downarrow$	$Y \rightarrow$	y_1		y_m	Loi de X
x_1		p_{11}		p_{1m}	$p_{1.}$
:		÷		:	:
x_n		p_{n1}		p_{nm}	p_{n} .
Loi de Y	7	$p_{.1}$	$p_{.2}$	$p_{.m}$	1

- ightharpoonup Lois marginales de X, Y une par une « dans l'absolu ». Lien à la loi conjointe.
- ▶ Cas de variables indépendantes (+ reconnaître et montrer la non-indépendance)

2 Problèmes de transfert

- Formule de transfert $\mathbb{E}[\varphi(X)] = \sum_{i \in I} \varphi(x_i) \cdot p_i$ et $\mathbb{E}[\psi(X)] = \sum_{\substack{i \in I \ j \in J}} \psi(x_i, x_j) \cdot p_{i,j}$.
- ▶ Exemples simples de transfert de loi Z = f(X, Y). (notamment S = X + Y) Calcul des probas des valeurs de Z grâce à la loi conjointe.
- Cas du max $M = \max(X, Y)$
 - Égalité des événements $[M \leqslant m] = [X \leqslant m, Y \leqslant m]$
 - $\qquad \text{D'où } \underbrace{\mathbb{P}(M \leqslant m)}_{F_M(m)} = \mathbb{P}(X \leqslant m, Y \leqslant m) \quad \rightsquigarrow \quad \mathbb{P}(M = m) = F_M(m) F_M(m-1).$
 - ▶ Cas où X, Y sont indépendantes. Alors $\forall m: \mathbb{P}(M \leqslant m) = \mathbb{P}(X \leqslant m) \cdot \mathbb{P}(Y \leqslant m)$

3 Covariance d'un couple de variables aléatoires

(toutes propriétés sous réserve de convergence absolue des séries)

- ▶ Linéarité de l'espérance $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y]$ (a, b ∈ \mathbb{R} cst. déterministes)
- ▶ Produit indépendant Si X, Y sont indépendantes, alors : $\mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[X]$.
- ▶ Notion de variance ▶ Par définition : $Var(X) = \mathbb{E}[(X \mathbb{E}[X])^2]$
 - ► Kænig-Huygens : $Var(X) = \mathbb{E}[X^2] (\mathbb{E}[X])^2$.
 - Écart-type : $\sigma(X) = \sqrt{\operatorname{Var}(X)}$
 - ► Homogénéité : $\operatorname{Var}(\lambda X) = \lambda^2 \operatorname{Var}(X), \quad (où \lambda \in \mathbb{R})$
- ▶ Notion de covariance ▶ Par définition : $Cov(X,Y) = \mathbb{E}[(X \mathbb{E}[X]) \cdot (Y \mathbb{E}[Y])]$
 - ► Keenig-Huygens : $Cov(X, Y) = \mathbb{E}[X \cdot Y] \mathbb{E}[X] \cdot \mathbb{E}[Y]$
 - Lien à la variance : Cov(X, X) = Var(X)
 - \blacktriangleright Bilinéarité-symétrie « règles de calcul pour $\mathrm{Cov}(X,Y)$ »
- Formule de polarisation $Cov(X,Y) = \frac{1}{2} \cdot \left[Var(X+Y) Var(X) Var(Y) \right].$

Deux variables indépendantes sont décorrélées : Cov(X, Y) = 0.

- Corrélation linéaire, principe de la régression linéaire

Coefficient de corrélation linéaire $\rho(X,Y) = \frac{\text{Cov}(X,Y)}{\sigma_X \cdot \sigma_Y}$ Cauchy-Schwarz $-1 \leqslant \rho(X,Y) \leqslant 1.$

Corrélation totale : pour $\rho(X,Y)=\pm 1$, alors on peut écrire Y=aX+b, où $a,b\in\mathbb{R}$.

Principe de la régression linéaire Droite qui suit le nuage de point.

Interprétation du signe de $\rho(X,Y)$ X,Y varient plutôt « ensemble » ou « en sens opposé »

4 Questions de cours

1. Définition de la covariance et formule de Kœnig-Huygens pour Cov(X,Y).

2. Formule de transfert pour l'espérance à une et à deux variables.

3. Définition de « X et Y sont des variables aléatoires indépendantes ».

4. Principe de l'étude du maximum $M = \max(X, Y)$.

5. Expression de Var(X + Y) et formule de polarisation.

