For y = 0, we get

$$f(x) = -z^{\top}d,$$

so if $d \neq 0$, the function f has no minimum. Therefore, if f has a minimum, then d = 0. However, d = 0 means that

$$Ub = \begin{pmatrix} c \\ 0 \end{pmatrix},$$

and we know from Proposition 23.5 that b is in the range of A (here, U is V^{\top}), which is equivalent to $(I - AA^+)b = 0$. If d = 0, then

$$f(x) = \frac{1}{2} y^{\top} \Sigma_r y - y^{\top} c.$$

Consider the function $g: \mathbb{R}^r \to \mathbb{R}$ given by

$$g(y) = \frac{1}{2} y^{\top} \Sigma_r y - y^{\top} c, \quad y \in \mathbb{R}^r.$$

Since

$$\begin{pmatrix} y \\ z \end{pmatrix} = U^{\top} x$$

and U^{\top} is invertible (with inverse U), when x ranges over \mathbb{R}^n , y ranges over the whole of \mathbb{R}^r , and since f(x) = g(y), the function f has a minimum iff g has a minimum. Since Σ_r is invertible, by Proposition 42.4, the function g has a minimum iff $\Sigma_r \succeq 0$, which is equivalent to $A \succeq 0$.

Therefore, we have proven that if f has a minimum, then $(I - AA^+)b = 0$ and $A \succeq 0$. Conversely, if $(I - AA^+)b = 0$, then

$$\begin{pmatrix}
\begin{pmatrix} I_r & 0 \\ 0 & I_{n-r} \end{pmatrix} - U^{\top} \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0 \end{pmatrix} U U^{\top} \begin{pmatrix} \Sigma_r^{-1} & 0 \\ 0 & 0 \end{pmatrix} U \end{pmatrix} b = \begin{pmatrix} \begin{pmatrix} I_r & 0 \\ 0 & I_{n-r} \end{pmatrix} - U^{\top} \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} U \end{pmatrix} b$$

$$= U^{\top} \begin{pmatrix} 0 & 0 \\ 0 & I_{n-r} \end{pmatrix} U b = 0,$$

which implies that if

$$Ub = \begin{pmatrix} c \\ d \end{pmatrix},$$

then d = 0, so as above

$$f(x) = g(y) = \frac{1}{2} y^{\mathsf{T}} \Sigma_r y - y^{\mathsf{T}} c,$$

and because $A \succeq 0$, we also have $\Sigma_r \succeq 0$, so g and f have a minimum.

When the above conditions hold, since

$$A = U^{\top} \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0 \end{pmatrix} U$$