自觉遵守考试规则"诚信考试"绝不作装 订 线 內 不 娶 答 题

南京邮电大学 2013/2014 学年第二学期

《 数字信号处理 》 期末试卷

本试卷共_4页; 考述时间_100_分钟;

专业_		班	级		学号		<u>姓名</u>			
題号	 	· =	四	五	六	七	八	九	+	总分
得分			-							

得分

一、填空题(20分)

1、要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率

的 _____ 倍。

2、已知 $DTFT[x(n)] = X(e^{j\omega})$, $x(n \pm n_0)$ 的 DTFT 是 $e^{\pm j n_0 \omega}$ $\chi(e^{j\omega})$

4、两序列长度分别为 L_1 和 L_2 ,用循环卷积 (circular convolution) 正确计算两个序列 L_1+L_2-1

5、LTI系统 $H(z) = \frac{a}{1-bz^{-1}}$ 为因果稳定系统的必要条件为 b < 1 自 b < 1 方

6、IIR DF设计时,模拟低通原型到数字低通原型的映射即 S 平面到 Z 平面的映射常用的方法是 脉:中心 P.不变光、和 23 线性 A. 变光、,其中 脉:中心 P. A. 变光、不会产生畸变。

7/线/步 1、某系统差分方程为 y(n)=5x(n+3)+5,该系统是线性时不变系统。	./
1、某系统差分方程为 y(n)=5x(n+3)+5, 该系统是线性时不变系统。	(X)
(人) () 大海中村 () () 大海中村 () 大海中州 () 大海中州 ()	$(\sqrt{)}$
LP系统 HE)小阳沿角 f、JiR 滤波器校员全部伍原则(水丛稳定),尤品定住时起。 是区场上有极点、某系统的差分方程为 y(n)=10.4x(n)-2.7y(n-1),该系统是非递归系统。	(%)
及 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(√)
LP、3.	皮器和带
或为新统内部 型滤波器 粉集的反馈	(A)
WANTA L'IS DIOV.	*

得分

三、简答题(共20分)

1、(10分) 试写出 DTFT 与 ZT、 DFT 与 DTFT 及 DFT 与 ZT 之间的关

答:DTFT-ZT:在解系列中企图上列Z或换轨等广敦采料序列如DTFT DFT-DTFT:DFT就是对DTFT的条件给提,其系解调陶为Ww=岩

PPJNK)= XIejkwn)

W/= 3

OFT-ZT: 如此是Z交换在单位国上加等距离各样值

2、(10分)线性时不变系统的单位脉冲响应为 h(n)长度为 M, 输入信号 x(n)长度为 N, 写出用快速卷积的方法求输出序列 y(n)的过程。

Of HUK) = OFT[how], AHN-1 X

DA 8(K)=DFT[Kin], M+N+A

③计算化的=H的-到的

西美yon = IDFT [YOK). MINT点

得分

四、分析题(共10分)

1、(10分)以下是系统的单位脉冲响应表达式。试分析写出这些系统的因 果性,稳定性。

(1)
$$\delta(n-1)$$
: (2) $2^n u(-n)$

(1)当NO胜 U(-n)=1. A. hun="2" to 小小四朵

求: (1) 求线性卷积 a(n)*b(n)值;

- (2) 分别求3点、5点的循环卷积 $a(n) \otimes b(n)$;
- (3) 比较并解释 (2) 的结果。

解:

any *bun= 6, 13, 20, 11, 4

e) 3 km: aun 8 bun = {17, 17, 20} 5点: ang b(1) = {6, 13, 20, 11.4?

(3) 当周期从从从一步时,那么如此自己的发起的引 同期延知必然为一部合非原序到恒男友在起来 从而出现混叠现象,只有多上沙仙地上走,才没 有混查现象。

(所从要使循环危战等于线性危战,而不平上混 叠的必要各件是 L>NHM+)

其3dB 截止频率是 $f_c = 500$ Hz。(1)双线性法设计一个数字低通; 截止频率 同上,采样频率是 3000Hz;(2)用直接 II型结构实现之。

$$H(B) = \frac{1}{1600} \left|_{S = \frac{2}{1} + \frac{12^{2}}{142^{2}}}\right|^{2} + \frac{9}{1600} - \frac{1422^{2} + 2^{2}}{312^{2}}$$

$$= \frac{9}{(1600 + \frac{12^{2}}{142^{2}})^{2} + \frac{1}{1600} \cdot (1600 - \frac{12^{2}}{142^{2}}) + 3} - \frac{312^{2}}{312^{2}}$$

$$= \frac{\frac{1}{3} + \frac{2}{3}2^{2} + \frac{1}{3}2^{2}}{\frac{1}{3}2^{2}}$$

南京邮电大学 2012/2013 学年第 二 学期

《数字信号处理》期末试卷

院(系)	班级_			学号_			姓名	٠		•
題号 一二	= .129	35.]				· .			7	
				-		<i>7</i> L.	T	8分	-	
符分 1										,
得分 へ7. 得分 へ 填空 1、抽样 実际位置 全	题(每空1) 學为了,的教育 理为了,例在 對學不可 對學不可 對學不可 與數學不可 與數學不可 與數學不可 與數學不可 與數學不可 與數學不可 與數學不可 與數學不可 與數學不可 與數學不可 與數學不可 是 一個 一個 一個 一個 一個 一個 一個 一個 一個 一個	系统、人、传文、高级的 等 军 解析 印	, x(n) = 方文 · 和 · 和 · 和 · 和 · 和 · 和 · 和 · 和 · 和 · 和	数 7 2 法 3 间 元 6 变 按 3 为 5 年 点 二 一 加 系 , 映 花 提 即 6	DFT XX 种 安	(k)中, 通滤波。 本面 2	字号 引一种 2 一	代表的中人的一个数 1 交 的 1 交 的 2 英 5 子。 数 2 英 5 子。		2(t-11) 2(t-11) 2 (t-11)
6、III、系统的级联型 准确地实现滤波器					之教	这	种结构	便于		,
•			•		· * ~ ½					
7、H (z) 收敛域 z <	,						边序	列.		
8、窗口函数的_大/			•							
9、利用 DFT 对连续信										
10、IIR 数字滤波器的零	物入极限环振	荡是由-	丁	服者	松丛	上分	上六人	三的。		
	(数字信号处理)试卷	第1	页共6	頁	3	八州	(the	المرانة	Ť Ť

将	分	٠	

二、判断题 (对的写"√", 错的写"×", 每小题 2 分, 共 i0 分)

I、具有递归结构的系统一定是 IIR 系统。

2、可以采用对有限长序列补零的方法提高 DFT 的频率分辨率。

3、某系统的 h(n)={3,6,6,3},0≤n≤3,该系统不能用夹设计低通和带通滤波器。(X)

4、矩形窗截断产生的肩峰,增加了通带内的波动并减少了阻带内的衰减。

5、理论上,数字滤波器的极点位置与滤波器结构无关,因此极点位置灵敏度 也与滤波器结构无关。

三、简答题 (10 分)

1、利用模拟滤波器设计数完滤波器。5平面虚轴和3左半平面分别映射到

z 平面的什么位置? (4 分)

쏨:

2、在实际的数字信号处理系统中,抽样器前和D/A 变换器后都有 器,请分别说明这两个滤波器有何作用?截止频率各为多少? (6分)

쏨.

大阪 7样的好好

《数字信号处理 1试卷 第2页共6页

得分

四、计算分析题(10分)

已知某线性时不变系统的单位脉冲响应为 $h(n) = a^n u(n)$,0 < |a| < 1,输

入序列为 $x(n) = \delta^n u(n)$, 0 < |b| < 1,

- (1) 请用z域关系式计算该系统的输出序列y(n);
- (2) 请分析该系统的因果稳定性。

解

$$= \frac{1}{1-62^{-1}} \cdot \frac{1}{1-a2^{-1}} = \frac{A}{1-62^{-1}} + \frac{B}{1-a2^{-1}}$$
 |21 > max (6, a)

$$A = \frac{-b}{a-b}$$
, $8 = \frac{a}{a-b}$

$$\frac{3 + y(n) - \frac{-b}{a-b} b^{\alpha} u(n) + \frac{a}{a-b} a^{\alpha} u(n)}{a-b}$$

$$=\frac{a^{1+1}-b^{n+1}}{a-b}$$
 un)

(2) DP(K

《数字信号处理)试卷 第 3 页 共 6 页

滤波器,采样频率为6000~Hz,3dB截止频率为1000Hz。试求数字低通滤波器的系统函数H(z),并用直接 II 型结构实现之。

解: f=foodyz, f=lovoHz

(1)
$$W_c = z 2 \frac{f_c}{f_s} = \frac{\lambda}{3}$$

$$= \frac{1}{(s/\frac{2}{61})^2 + \sqrt{5}(s/\frac{2}{51}) + 3}$$

$$|S = \frac{1}{1 + 2^{-1}}$$

$$= \frac{1}{1 + 2^{-1}}$$

$$= \frac{1}{1 + 2^{-1}} + 3x(\frac{1 - 2^{-1}}{1 + 2^{-1}}) + 3$$

$$= \frac{1}{1 + \frac{1}{2}} \frac{1 + 2^{-1} + 2^{-1}}{1 + \frac{1}{2}} + \frac{1}{2}$$

一六、证明题 (10分)

若某有限长序列構足关系x(n)=x(N-n), 试证明其 DFT

$$X(k) = X(N-k)$$
. Part 95.

ïĽ.

用窗口法设计一个线性相位的低通FIR滤波器,截止频率为fa,采样频

提示:
$$h_c(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega \alpha} e^{j\omega n} d\omega = \frac{\sin(\omega_c(n-\alpha))}{\pi(n-\alpha)}$$

#:
$$d = \frac{N-1}{2} = 4$$
, $w_c = \frac{1}{4}$
 $d_c = \frac{N-1}{2} = 4$, $w_c = \frac{1}{4}$
 $d_c = \frac{1}{4}$
 $d_c = \frac{N-1}{2} = 4$, $w_c = \frac{1}{4}$
 $d_c = \frac{1}{4}$
 $d_c = \frac{1}{4}$
 $d_c = \frac{1}{4}$

$$h_{4(3)} = \frac{-5h\frac{2}{4}}{-2} = \frac{1}{22} = -f_{4(5)}.$$

$$h_{4(2)} = \frac{-5ih\frac{2}{2}}{-22} = \frac{1}{22} = -h_{4(6)}$$

$$hd(2) = \frac{-570\frac{1}{2}}{-22} = \frac{1}{22} = hd(6)$$

$$f(L_1) = \frac{-\sin\frac{1}{4}}{-3\lambda} = \frac{F}{2\lambda}$$
 = $f_{d_1}(7)$ = $f_{d_2}(7)$ = $f_{d_3}(7)$ = f_{d_3

得分

八、计算题(10分)

一个二阶IIR滤波器,其传递函数为 $H(z) = \frac{0.45}{1 - 0.7z^{-1}} + \frac{-0.36}{1 - 0.85z^{-1}}$,试

求用并联型结构实现时定点 舍入运算的有限字长效应造成的输出噪声方差。

$$e_{1}(n) = e_{1}(n) \times e_{2}(n) \times e_{3}(n) \times e_{4}(n) \times e_{4}(n$$

Н 觉 遊 装 ÷ ij. iń. 颏 Ŋŧ, 诚 (iri Ä, 72 绝 4 題 fr

南京邮电大学 2012/2013 学年第一学期

数字信号处理 期末试卷

院(系)								
題号 —	= =	£.	六	七	八	九	+	总分
得分							-	
1、数字 類率是。 2、W ^{N/2} = 3、基2FFT利用レ 点数DFT运算。 4、从循环卷积与 周期延拓,然	P 因子的 <u>包</u> 斯 周期卷积的关系 后 <u>名</u> 名。	来看。循	7 2 2 7 7 7 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	·////////////////////////////////////	性将D! 长度相	T 运算 目同的有	尽量分	解为小
5、脉冲响应不变				•	•	1,0	• •	
式为_人二字他写 圆上的数字角频率 z 平面单位圆上的 6、用矩形窗设计	数字角频率 π。							
频响出现正肩峰	(设矩形窗长为	N. 理想(、透 截止	频率为	$(\omega_c)_i$	矩形質	3长增加	1不会改

7、IIR 系统的并联型结构其系统函数为各子系统系统函数之<u>术</u>。 这种结构便于相 (数字信号处理)试卷 第 1 页 共 4 页

变肩峰的相对值,这种现象称为

据做资料	是滤波器的	-4-7	6	
WIND X V	GUE NO SERVI	411	17	
	(V HH H)	70/17		
	***		·	 4

- 9、实现数字信号处理系统时共有三种因量化引起的误差因素:在以信义是从是为人,从从信义是和数字运算过程中的有限字长效应。

得分

二、判断题(对的写"√",错的写"×",每不题2分,共16.分)

1、FFT 是 DTFT 的快速算法。

(X)

2、采样频率也就是折叠频率。

3、正弦序列不一定是周期序列。

4. 用窗口法设计 FIR 滤波器, 若窗的形状不变, 窗长 N 增加, 则减小了设计所得滤波器的过渡带宽。

5、提高 PFT 分辨率的一个方法是在原序列的末端填补一些零值。 2 水 化 20 长花 4 3

得分

三、简答题 (10分)

1、两线性时不变系统,单位脉冲响应分别为从(n),从(n),系统函数分别

为 $H_1(z)$, $H_2(z)$,试用 $h_1(n)$, $h_2(n)$ 及 $H_1(z)$, $H_2(z)$ 分别写出以下等效系

统的h(n)和H(z) (4分)

(1) 两系统级联 (2) 两系统并联

10 H(Z) -13 -4(Z) +4(Z)

hile) * hogo hile) + hile)

明它适合设计低通、高通、带通、带通波接触中的哪种被按照(64)

佛州村 中(w)=-かーニージの「以為前力了型下水、所におきるです。 寺州村 中(w)=-かーニージーンジの一型、カ西と下水、東におきるです。

(数字信号处理) 试卷 第 2 页 共 4 页

得 分

设计题 (10分)

-个线性相位的低通FIR滤波器,

为 8 fc, 采用窗口大小为9的矩形窗, 求设计出的滤波器的h(n), 写出其所有样值。提

$$\frac{\pi}{m}: h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega \alpha} e^{j\omega n} d\omega = \frac{\sin(\omega_c(n-\alpha))}{\pi(n-\alpha)}$$

$$h(n) = \sqrt{\frac{\sin(\log(n-\alpha))}{\pi(n-\alpha)}} \quad 0 \le n \in \mathcal{G}$$

$$0 \qquad n \in \mathcal{G} \quad n \in \mathcal{G}$$

$$h(p) = \frac{1}{p}$$

觉 遵 製 浅 不 题 作

(数字信号处理) 试卷 第4页共4页

南京邮电大学 2011/2012 学年第二学期

《数字信号处理》期末试卷。

院(系			•	班级_	·		学号		***	姓名_		
.題号		 .	Ξ	់គា	Ĺ	六	Ł	人	九	+.	总分	
得分.	~		- X		-						_	

1. 填空题(每空 1 分, 共 20 分)

- (1)在数字系统中共有三种因量化引起的误差因素,一种是输入信号的量化效应,另两种分别是<u>系数量化效应</u>和<u>运算中的有限字长效应</u>。
- (2)用 24kHz 的采样频率对一段 6kHz 的正弦信号采样 64 点。岩用 64 点离散傅里叶变换 (DFT)对其作频谱分析,则第 16 根和第 48 根谱线上会看到峰值。
- (2)线性时不变因果系统的差分方程为 y(n)=3x(n)-2x(n-1)+4x(n-3),则该系统的单位脉冲响应为 h(u)=38(n)-28(n-1)+48(n-3)。
- (4)如果 H(z)是一个数字低通滤波器的传递函数,那么 H(-z)代表的滤波器类型是 <u>数字高通滤波器</u>, H(z²)代表的滤波器类型是 <u>带阻</u>。
- (5) 双线性变换法在频域的变换是非线性的,它把模拟频率∞变为数字频率 _ π 。
- (6) 谱估计中,谱分辨率是指 区分紧邻频率谱密度峰谷的能力 。
- (7)实现 IIR 数字滤波器时,如果想方便地对系统频响的零点进行控制和调节,那么常用的 IIR 滤波器结构中,首选 级联 型结构来实现该 IIR 系统。
- (8)如果平稳随机过程是各态遍历的,则可以用___集合平均_代替__时间平均__。
- (9)一个长度为 N 的有限长序列 x(n),通过单位脉冲响应 h(n)的长度为 M 的 FIR 滤波器,其输出序列 y(n)的长度为 N+M-1 。 若用 FFT 计算 x(n)*h(n),那么进行 FFT 运算的长度 L 应满足 $\ge N+M-1$
- (10) 离散傅里叶变换表示式中的 W_N 因子等于 $e^{-j\frac{2\pi}{N}}$, 且 $W_N^{N2} = -1$.
- (11)有限长序列在<u>有限 z 平面</u>上一定收敛,该区域可以表示为<u>0<|z|<∞</u>
- (12)为避免因系数量化引起的系统不稳定,在采用频率采样型结构实现 FIR 数字滤波器时,通常将所有谐振器的频率采样点取在 r=0.9 的圆周。
- (13)对于一个低频信号,如果给它在某一时刻增加一个冲微,那么它的频谱会发生怎样的变化 展宽。
 - 2. 判断题(每题 2 分, 共 10 分)

(错的请指出错误之处,并解释原因或给出正确结果)

- (1)用 DTFT 对 $x(nT) = \cos(2\pi f_1 nT) + \cos(2\pi f_2 nT)$ 作频谱分析时,如果时域分析窗不够长,将无法分辨频率 f_1 和 f_2 。 对。P104
- (2)无限长非能量序列的 Z 变换不存在。

错。无限长非能量序列的 DTFT 不存在, Z 变换未必不存在。

(3)离散时间系统的输出等于输入序列与系统单位脉冲响应的线性卷积。 错。仅适用于线性时不变系统。

(4)用两种方法对随机序列 x(n)的某数字特征进行估计,用第一种估计方法得到的是无偏估 计,用第二种估计方法得到的是有偏估计。这说明第一种估计的一致性好。

错。估计偏差与一致性是两个不同的概念。

- (5)若 x(n)=0.5"u(n), y(n)=0.5"u(-n), 则 Z[x(n)y(n)]在整个 z 平面上都收敛。 对。 $x(n)y(n)=\delta(n)$, 在整个 z 平面上都收敛。
 - 3. 问答题(共 20 分) (给出必要的说明或推导过程)
- (1) (8 分)若离散时间系统的输入和输出分别为 x(n)和 y(n)。 且 y(n)=x(n-1)-x(1-n). 那么该 系统是否为线性的、时不变的、因果的和稳定的?

n=0 时,y(0)=x(-1)-x(!), 所以y(n)是非因果的。

输入后迭加: $a_1[x_1(n-1)-x_1(1-n)]+a_2[x_2(n-1)-x_2(1-n)]=a_1x_1(n-1)-a_1x_1(1-n)+a_2x_2(n-1)-a_2x_2(1-n)$ 选加后输入: [a₁x₁(n-1)+ a₂x₂(n-1)] - [a₁x₁(1-n) + a₂x₂(1-n)]

$$= a_1 x_1(n-1) + a_2 x_2(n-1) - a_1 x_1(1-n) - a_2 x_2(1-n)$$

所以系统是线性的。常系数、时不变的。有界、稳定的。

- (2) (6 分)请说明如何用输入输出互相关定理测定系统的单位脉冲响应 h(n)。(p99)
- 解:输入输出互相关定理为 R_{xy}(m)= R_x(m)*h(n)

将方差为 1 的白噪声η(n)输入系统,求系统响应 y(n)与白噪 /En(n)的互相关 R_{yn}(m)。

因为 $\eta(n)$ 的自相关 $P_{\eta}(m) = \sigma_{\eta}^{-1} \cdot \delta(m) = 1 \times \delta(m) (p97),$

因此 $R_{yn}(m) = \delta(m) * h(m) = h(m)$, $R_{yn}(m)$ 就是测定系统的单位脉冲响应 h(n)

(3) (6 分)序列 x(n)的 Z 变换为 X(z), 其零极点分布如下图。

①若已知序列的傅氏变换是收敛的。何 X(z)的收敛域是 什么?序列 x(n)是左边序列、右边序列还是双边序列?

②若已知序列是双边序列,且其 z 变换存在,问对应的 序列可能有几种(不需求出序列的表达式)? 并分别指出它 们对应的收敛域。

- 解:①宁列傅氏变换收敛说明在单位圆上收载。收敛域内不能有极 是双边序列
 - ②序列是双边序列,说明收敛域是环。收敛域内不能有极点。对应序列可能有两种, ROC: 0.5<|z|<2 或者 ROC:2<|z|<3
- 二. 证明题(每题 6 分, 共 12 分)
- 己知 x(n)是长度为 N 的有限长序列。证明:如果 x(n)是纯实序列,则其 DFT X(k)具有 共轭偶对称性, 即 X(k)= X*(N-k)

证明思路: 纯实满足 x(n)= x*(n), 纯虚满足 x(n)= -x*(n).

由定义,
$$X(k) = \sum_{n=0}^{N-1} x(n) W_N^{nk}$$
,

$$X^{*}(N-k) = \left(\sum_{n=0}^{N-1} x(n)W_{N}^{u(N-k)}\right)^{*} = \left(\sum_{n=0}^{N-1} x(n)W_{N}^{-nk}\right)^{*} = \sum_{n=0}^{N-1} x^{*}(n)W_{N}^{nk} = \sum_{n=0}^{N-1} x(n)W_{N}^{nk} = X(k)$$

- 2. 有一单位脉冲响应为 h(n)的线性时不变离散时间系统, 其输入 x(n)是周期为 N 的周期序列, 试证系统的输出 y(n)也是周期为 N 的周期序列。
 - 解: 目标是要证明 y(n+rN)=y(n) , r=0,1,2…
- 证明:设 $x_c(n)$ 是x(n)的一个周期, $y_c(n)$ 是输入 $x_c(n)$ 时的输出,

$$y_c(n) = T[x_c(n)], y_c(n-m) = T[x_c(n-m)],$$

$$x(n) = \sum_{x} x_{c}(n+rN).$$

$$y(n)=T[x(n)]=T[\sum_{r=-\infty}^{\infty}x_{\epsilon}(n+rN)]=\sum_{r=-\infty}^{\infty}T[x_{\epsilon}(n+rN)]=\sum_{r=-\infty}^{\infty}y_{\epsilon}(n+rN)$$
 周期延拓后仍是周期的

或:
$$y(n+pN)=T[x(n+pN)]=T[\sum_{r=-\infty}^{\infty}x_c(n+pN+rN)]=T[\sum_{q=-\infty}^{\infty}x_c(n+qN)=T[x(n)]=y(n)$$

- 三. 画图题(每题7分,共14分)
- 1. 已知线性时不变离散时间系统的阶跃响应(系统在单位阶跃序列激励下的响应)为 s(n)=n(0.5)"u(n), 画出该系统的正准型实现结构。
- 解: 面系统结构需知 H(z), 或单位脉冲响应 h(n),因此要从阶跃响应求单位脉冲响应

$$\delta(n)$$
上 i $u(n)$ 的关系 $u(n) = \sum_{m=0}^{\infty} \delta(n-m)$, $s(n) = T[u(n)]$. $h(n) = T[\delta(n)]$, $h(n-m) = T[\delta(n-m)]$,

阶跃响应和单位脉冲响应的关系:

$$T[u(n)] = T[\sum_{n=0}^{\infty} \delta(n-m)] = \sum_{n=0}^{\infty} T[\delta(n-m)] = \sum_{n=0}^{\infty} h(n-m) = h(n) + h(n-1) + h(n-2) + \dots = n(0.5)^{n} u(n)$$

H(z)
$$\frac{1}{1-z^{-1}} = -z \cdot -\frac{0.5z^{-2}}{(1-0.5z^{-1})^2} = \frac{0.5z^{-1}}{1-z^{-1}+0.25z^{-2}}$$

$$H(z) = \frac{0.5z^{-1} - 0.5z^{-2}}{1 - z^{-1} + 0.25z^{-2}}$$

	V	
	0.5	
-0.25	-0.5	

2. 系统结构如图所示,请画出零、极点分布图,并粗略画出其幅频曲线。

H(z)=
$$\frac{1}{1+0.99z^{-1}} = \frac{z}{z+0.99}$$
, $z_0=0$, $z_2=0.99$,

- 四. 设计题(共32分)
- 1. (10 分)设计一长度为 N=4 的 FIR 数字滤波器,要求其频响在 ω =0 时为 1,在 ω = π /2 和 ω = π 时为 0,求其单位脉冲响应 h(n)={h(0) h(1) h(2) h(3)}.
- 解: 长度为 N=4, 是 3 阶 FIR DF, 根据零点位置,

$$H(z) = \sum_{n=0}^{N-1} h(n)z^{-n} = a(z+1)(z+j)(z-j)/z^{3} = a(z+1)(z^{2}+1)/z^{3}$$

$$X H(z)|_{z=1} = 1 = a(z+1)(z^2+1)/z^3|_{z=1} = 2 \times 2a = 1, \quad \therefore a = 1/4$$

$$H(z) = 1/4 \cdot (z+1) \cdot (z^2+1)/z^3 = 0.25 + 0.25z^{-1} + 0.25z^{-2} + 0.25z^{-3}$$

$$\therefore h(n) = \{0.25 \ 0.25 \ 0.25 \ 0.25\}$$

- 2. (10 分)己知某线性相位 FIR 数字滤波器具有下列符征: (1)单位脉冲响应 h(n)偶对称;

 - (2)h(n)的长度为奇数:
 - (3)系统函数 H(z)的零点中,有一个是 z=0.5+0.5j;
 - (4)在w=0 时,系统频响为 0.5。

要求:设计满足上述条件且 h(n)的长度最短的数字滤波器, 写出其 h(n), 画出 线性相位型实现结构。

解:根据 4 零点组性质,另外三个零点分别是 0.5-0.5j、1+j、1-j $H(z)=a(z-0.5-0.5j)(z-0.5+0.5j)(z-1+j)(z-1-j)/z^4$

$$= a(z^2-z+0.5) (z^2-2z+2)/z^4 = a(z^2-z+0.5) (z^2-2z+2)/z^4$$

$$= a(z^4-3z^3+4.5z^2-3z+1)/z^4 = a(z^4-3z^3+4.5z^2-3z+1)/z^4 = a(z^4-3z^3+4.5z^2-3z+1)/z^4 = a(z^4-3z^3+4.5z^2-3z+1)/z^4 = a(z^4-3z^3+4.5z^2-3z+1)/z^4 = a(z^4-3z^3+3z+1)/z^4 = a(z^4-3z^4-3z+1)/z^4 = a(z^4-3z^4-3z+1)/z^4 = a(z^4-3z^4-3z+1)/z^4 = a(z^4-3z^4-3z+1)/z^4 = a(z^4-3z^4-3z+1)/z^4 = a(z^4-3z^4-3z+1)/z^4 = a(z^4-3z+1)/z^4 = a(z^4-3z+1)/z$$

$$= a(z^4-3z^3+4.5z^2-3z+1)/z^4 = a(z^2-z+0.5)(z^2-2z+2)/z^4$$

$$H(z)|_{z=1}=0.5=a(1-3+4.5-3+1)=0.5$$

$$H(z)|_{z=1} = 0.5 = a(1-3+4.5-3+1) = 0.5a$$

 $H(z) = (-3z^{-1}+4.5z^{-2}-3z^{-3}+z^{-4},h(z)) = (1-3z^{-1}+3.5z^{-2}-3z^{-3}+z^{-4},h(z)) = (1-3z^{-1}+3.5z^{-2}-3z^{-3}-3z^{-3}+z^{-4},h(z)) = (1-3z^{-1}+3.5z^{-2}-3z^{-3}-3z^{-3}+z^{-4},h(z)) = (1-3z^{-1}+3.5z^{-2}-3z^{-3}-3z^{-3}+z^{-4},h(z)) = (1-3z^{-1}+3z^{-2}-3z^{-3$

$$H(z)=1-3z^{-1}+4.5z^{-2}-3z^{-3}+z^{-4}, h(n)=\{1-3,4.5-3,1\}$$

- 3. (12 分)用脉冲响应不变法设计一个低通数字滤波器,已知模拟低通滤波器的传递函数为 $H_a(s) = \frac{2}{s^2 + 3s + 2}$,模拟截止频率为 $f_c = 1kHz$,采样频率为 $f_c = 4kHz$ 。 (1)设计该低通数字滤波器的系统函数 H(z):

 - (2)该数字滤波器的数字截止频率为多少?
- (3)一个以 2 kHz 频率采样的输入信号通过该数字滤波器后,输出信号的最大频

解: (1)T=1/4000,
$$H_a(s) = \frac{2}{(s+1)(s+2)} = \frac{2}{S+1} - \frac{2}{S+2}$$

$$H(z)=\sum_{i=1}^{2}\frac{A_{i}}{1-e^{-iT}z^{-1}}=\frac{2T}{1-e^{-iT}z^{-1}}-\frac{2T}{1-e^{-2T}z^{-1}}=(\frac{1}{1-e^{-1/4000}z^{-1}}-\frac{1}{1-e^{-1/2000}z^{-1}})/2000$$
(2) 數字截止频率是 $\omega_{c}=2\pi\cdot1000/4000=\pi/2$

- (2) 数字截止频率是ω_c=2π·1000/4000=π/2
- (3) 采拌频率 4kHz 时的模拟截止频率为 &=1kHz, 采样频率 2kHz 时的模拟截止频率为 fe=0.5kHz
- 五. 分析计算题(共 42分)
- (8分)一连续时间信号 (())的持续时间为 2.048 秒, 信号在 256 个等距点处抽样, 或抽样 所得序列的频谱的周期为多少赫兹?如要求不产生频谱混叠,则对 f(t)的频谱有何限制? 解: T= 2.048÷256=0.008 秒, fs=1/T=125Hz,

抽样所得序列的频谱的周期为 2π,对应 fs = 125Hz。

如不产生频谐混叠,要求 f(t)的频谱不大于 fs/2 即 62.5Hz。

(8 分)一个未知的线性时不变因果滤波器,在输入 x(n)=0.7 u(n)时的输出

- (i)求出使输出为 y(n)=0.5" u(n)的因果输入 $x_1(n)$ 是什么?
- (2)求系统的系统函数 H(z)和单位脉冲响应 h(n)

解:
$$(1)X(z)=Z[x(n)]=\frac{1}{1-0.7z^{-1}}, Y(z)=Z[y(n)]=\frac{1}{1-0.7z^{-1}}+\frac{1}{1-0.5z^{-1}}=\frac{2-1.2z^{-1}}{(1-0.7z^{-1})(1-0.5z^{-1})}$$

$$H(z)=Y(z)/X(z)=\frac{2-1.2z^{-1}}{(1-0.7z^{-1})(1-0.5z^{-1})}(1-0.7z^{-1})=\frac{2-1.2z^{-1}}{1-0.5z^{-1}}$$
若 $Y_1(z)=\frac{1}{1-0.5z^{-1}}$, $X_1(z)=Y_1(z)/H(z)=\frac{1}{1-0.5z^{-1}}=\frac{2-1.2z^{-1}}{1-0.5z^{-1}}=0.5$

若
$$Y_1(z) = \frac{1}{1 - 0.5z^{-1}}$$
, $X_1(z) = Y_1(z) / H(z) = \frac{1}{1 - 0.5z^{-1}} = \frac{2 - 1.2z^{-1}}{1 - 0.5z^{-1}} = \frac{0.5}{1 - 0.6z^{-1}}$

..
$$x_1(n) = Z^{-1}[X_1(z)] = 0.5 \times 0.6^n u(n)$$

(2)
$$H(z) = \frac{2-1.2z^{-1}}{1-0.5z^{-1}}$$
,

$$h(n) = Z^{-1}[H(z)] = Z^{-1}[\frac{2}{1 - 0.5z^{-1}}] - Z^{-1}[\frac{1.2z^{-1}}{1 - 0.5z^{-1}}] = 2 \times 0.5^{n} u(n) - 1.2 \times 0.5^{n-1} u(n-1)$$

3. (8 分)某 4 点序列 x(n),已知其偶数点的两点 DFT 为: F(0)=4,F(1)=-2,其奇数点的 2 点 DFT 为: G(0)=6,G(1)=-2,请利用时域抽取 FFT 计算 x(n)的 4 点 DFT $X(k)=\{X(0)\,X(1)\,X(2)\,X(3)\}$,写出具体结果。

可进一步算出

$$x(n)=\{1,2,3,4\}$$

- 4. (12分)线性时不变离散时间系统如图, 耍求:
- (1)确定系统的系统函数 H(z);
- (2)确定系统的单位脉冲响应 h(n);
- (3)确定系统的频响: H(e^{jω})=H(ω)e^{jφ(ω)}:
- (4)根据幅度函数 Η(ω)和相位函数φ(ω)的表达式, 画出系统的幅频特性曲线和相频特性曲线:
- (5)确定系统的 3dB 带宽 water.
- 解: (1) H(z)=1+z-1
- (2) $h(n)=\delta(n)+\delta(n-1)$;

(3)
$$H(e^{j\omega})=1+e^{-j\omega}=2e^{-j\frac{\omega}{2}}\cdot\frac{e^{j\frac{\omega}{2}}+e^{-j\frac{\omega}{2}}}{2}=2e^{-j\frac{\omega}{2}}\cos(\omega/2)$$

相位函数 $\varphi(\omega)=-\omega/2$ (或 FIR $-\omega \frac{N-1}{2}=-\frac{\omega}{2}$)

$$H(\omega_{3db}) = 2\cos(\omega_{3db}/2) = \frac{\sqrt{2}}{2}H(0) = \sqrt{2}$$
 (此处 $H(0)=2$),得 $\omega_{3db}/2 = \pi/4$, ...3dB 带宽 $\omega_{3db} = \pi/2$

5. (6 分) 己知
$$f(n) = a^n u(n)$$
. $|a| < 1$. 求 $g(n) = \sum_{k=0}^n f(k)$ 的终值 $\lim_{n \to \infty} g(n)$ 解:

$$g(n)=1+a+a^2+\cdots a^n$$
是有限长等比级数和, $\lim_{n\to\infty}g(n)$ 是无限长等比级数和,就是 $\frac{1}{1-\alpha}$

若用终值定理:
$$\lim_{n\to\infty} g(n) = \lim_{z\to 1} [(1-z^{-1})G(z)]$$

$$g(n) = 1 + a + a^{2} + \cdots + a^{n} = \frac{1 - a^{n+1}}{1 - a} = \frac{1}{1 - a} \left[u(n) - a^{n+1} u(n) \right] = \frac{1}{1 - a} \left[u(n) - a - a^{n} u(n) \right],$$

G(z)=Z[g(n)]=
$$\frac{1}{1-a}(\frac{1}{1-z^{-1}},\frac{a}{1-az^{-1}})$$

$$\lim_{z \to 1} [(1-z^{-1})G(z)] = \lim_{z \to 1} \left(\frac{1}{1-a} (1-\frac{a(1-z^{-1})}{1-az^{-1}}) \right) = \frac{1}{1-a}$$

$$\therefore$$
g(n)的终值 $\lim_{n\to\infty}$ g(n) = $\frac{1}{1-a}$

南京邮电大学 2009/2010 学年第一学期

、数字信号处理 (期末试卷

. :	院(系)	·	学号		姓名		
:		- I :	, t /	· ·九	+. 3	各分	
	题号 一	三 三 四 五 7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.0			
fi F	得分。"						
Œ.		、填空题(每空1分,共2	0分)				
班 教 。	M / -	、			-		
1000 次 ³ 1人投				Ð			
192 194	ι , α"u(n),*	$\delta(n+2) = \underline{(1)} \cdot \Omega^{n+2} M \ln n$	t2)₹		,		
	n (z ≠∞) 所对应的序列为 <u>(2</u>) 8(n+2)	F & CATE	$\vec{\xi_t}$		
一次 要	2, 2 + 1 <	1210-00 / (17)	o-jnw				
卷 .	$\delta(n-n_e)$)的频率响应 X(e'*) 为= <u>(3)</u>			}oH≥	ld one w	•
**		高频率为 120Hz. 采样频率为			() XE XI	10	
DIX-NIATZ	5、 根据单位	脉冲响应 h(n)判断线性时不变	系统是否为稳定	主族统的领	6 6 -	(5) ZQI	日刊子
1 h (n) < 10	6、已知8点	i长实序列 x(n)的序列和为 5. 3	t. OFT 的后四个	· 值为 (0,	1 - j.2,3 - 2.	+ 月,试 / 4:	· •
(101= 2 xn.	_ 7共出官	ら E儿个DFT値: X(0) = <u>(6)</u> ,	$X(1) = \frac{3}{(1)}, X(1) = \frac{3}{(1)}$	$\zeta(2) = \underline{\zeta}$	(8), $X(3)$) = (9).	
16) = X(N-K).	7. WH FII	数字滤波器时,为实现线性相	位,需要-h(n)	萧足。 <u>(</u>	101hm	/封縣	奇特
	。 8、由于脉冲	响应不变法存在频谐混叠的特	点, 在设计 111	、 数字说	波路时	不适于设	11
	计以下两种	频率特性的地波器,包括一和	(12)][]			北(水土)	•
The state of the s	9、赖亳采标	¥法设计 FIR 数字滤镀器时产	的逼近误差可	以通过过	波帶插值	改幹,其	:
) 7-11-	化点是	等最最 <u>(14</u> 指加过表	1				
	10、已知一	一个线性相位 FIR 滤波器有一个	零点 [4],那么	此线性相	位FIR就	被器必有	ĺ
***************************************	零点 (1)	5-51. 2721					
. 75	r 1960	(数字信号处理)	武衛, 第1页共	4 页			•
	R. 1241	1 1					
		H. 1-1 11			:		•
	•		•	•			

旅信器化器、表波黑线量化、 11、有限字长效应会引起的误差有: <u>(14)</u>、(19)、<u>(20)</u>。 柳跨设置

4、用矩形取设计的 FIR 数字滤波器过渡作战牵。
 5、矩形频率特性的数字带通滤波器有非因果的 h(n)。

15 5}

三、简答及画图题(共25分)

THE (LINT)

Po [+1-N.

月~1件的4种

 $\bigcap_{i \in S} (S \mathcal{H})$ 设作列 $y(n) = x_i(n) \cdot x_i(n)$, 且 y(n) 长 L. $x_i(n)$ 长 N. 试写出用快速卷

 45(K)=[(1)

.

KRY1分: 至19年

y(n) - - - ...

2、(5分) 请说明窗口法设计 FIR 数字滤波器的基本思想、鼓数字滤波器给出的常用

 $\lambda_{X|k} = \frac{\chi_{X|k}}{\chi_{X|k}}$

✓指标。说明如何选择窗函数。

3) . Y(n) = 10FT[Y(H)/

FIR表被发展解决的,用解决的AmediaLite以及Litem,即截取是建筑一段。

3、(5分) 画出下列数字系统的正准型结构

共工型→特

 $y(n) = 8x(n) - 4x(n-1) + 11x(n-2) - 2x(n-3) + \frac{5}{4}y(n-1) - \frac{3}{4}y(n-2) + \frac{1}{8}y(n-3)$

4、(10 分) 语画出 8 点长按时间抽取基-2FFT 蝶形图 (要求输出顺序)。并利用蝶形

图按步骤详细计算序列 x(n) = {1,2,3,4,5,6,7,8}的 FFT. 个

h=nat. Whi= 2 " 4

27

五、设计题(共10分)

-#1. 取读大于或等于40dB: (4) 采样频率 [, = 200 Hz. 求: 系统函数 H(z)。

表了 低阶巴特沃思被波腾用(s)的分母(归一化)

── 阶数 N	H(s)的分甲
1	s s y s s +1
2	$s^2 + \sqrt{2}s + 1$

独的WC=元子=元子=元 几色=产作的(型)=元子

Dath. 福奇

11. Wc =
$$2\lambda \frac{f_c}{f_s} = 2\lambda \times \frac{50}{200} = \frac{\lambda}{2}$$

双特性。

$$H(z) = H(s) \int_{S} = \frac{2}{1} \cdot \frac{|-z|^4}{|+z|^4} = \frac{1}{1+|z|^4} \int_{S^2(\frac{|-z|^4}{1+|z|^4})}^{1} + 2AA \int_{S^2(\frac{|-z|^4}{1+|z|^4})}^{1} + 1$$

(数字信号处理) 试卷 年 4 页 共 4 页

南京邮电大学 2009/2010 学年第二学期

《数字信号处理》期末试卷(塔穿附后)

院(系	.)	 	班级_			学号_		<u> </u>	姓名二		
題号	<u>-</u> -	 	67 3	Б.	六	七	ハ	九	+	总分	
得分	/.7.·	ŋ ·							: 		

考试题 (二)

4 • .	如果 $x(n)$ 是实因果序列, $X(e^{i\theta}) = \operatorname{FT}[x(n)]$,则可由 $R_{\epsilon}[X(e^{i\theta})]$ 求出 $x(n)$ 和 $X(e^{i\theta})$	()
2.	$x(n) = a^n u(n)$, $M[X(z) = Z\Pi[x(n)] = \frac{1}{1 - az^{-1}}$.)
	在用频率采样法设计 FIR 数字滤波器时,可以通过加过渡带采样点来改善通	带波	纹
特性和阻	3带最小衰减。	()
4.	若 $oldsymbol{z}(\mathbf{n})$ 是以 \mathbf{N} 为周期的周期序列,则 $oldsymbol{ar{x}}(\mathbf{k})$ 也是一个以 \mathbf{N} 为周期的周期序列。	()
	时间离散、辐度连续的信号称为数字信号。	()
6.	用双线性变换法设计 IIR 数字滤波器时存在频率混叠失真。	()
	令 $x(n) = a^n$, $0 < a < 1$, $-\infty \le n \le \infty$, 则 $X(z)$ 的收敛域为 $0 \le z \le a^{-1}$.	()
	因果系统其单位脉冲响应 $h(n)$ = 定满足当 $n < 0$ 时, $h(n) = 0$ 。	()

二、填空题

- 1. 设 $X(e^{j\omega}) = FT[x(n)]$, 與FT[nx(n)] = (
- 2. 已知序列 $x(n) = \delta(n-1)$:

则 $X(z) = Z\Pi[x(n)] = ($

)、收敛域为(

),

3、已知线性非时变因果系统用下面差分方程描述:

y(n) = y(n-1) + y(n-2) + x(n-1), y

H(z) = Y(z)/X(z) = 0

H(z)的极点为(

H(z)的零点为(

- 4. 如果截止频率为 $\pi/8$ 的低通数字滤波器,采样频率为 $F_c=1/T=10~\mathrm{kHz}$,那么等效的 模拟滤波器的截止频率为(
- 75. 若 $h(n) = R_a(n)$, $x(n) = R_a(n)$, 则 y(n) = h(n) * x(n) = (
 - 6. 采用脉冲响应不变法, 边界须率的转换关系为(
 - 三、综合计算题
 - 1. FIR 滤波器的系统函数为

$$H(z) = 1 + 2z^{-1} + 3z^{-2} + 2z^{-3} + 2z^{-4} + z^{-5}$$

- 求: (1) 写出滤波器的单位脉冲响应 h(n)的表达式:
 - (2) 该滤波器是否具有线性相位? 为什么?
 - (3) 试画出该滤波器的结构流图(要求用最少的乘法器)。
 - 2. 已知归一化的二阶巴特沃思低通滤波器的传输函数为

$$H_a(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

用双线性变换法设计 3db 截止频率 $\omega_c=2\pi/3$ rad 数字低通滤波器, 采样间隔 T=2 s. 要求:

- (1) 求出该数字低通滤波器的系统函数 H(z):
- (2) 画出该数字低通滤波器的直接型结构图。
- 3. 已知 $x_{i}(t) = 2\cos(2\pi \cdot 100t)$,以采样频率 $F_{i} = 400$ Hz 进行采样。得到采样信号 $\hat{x}_{i}(t)$ 和 时域离散信号 x(n), 试完成下面各题:
 - (1) 写出 $x_{\epsilon}(t) = 2\cos(2\pi \cdot 100t)$ 的傅里叶变换表达式 $X_{\epsilon}(j\Omega)$:
 - (2) 写出 £ (1) 和 x(n)的表达式;
 - (3) 分别写出 £ (1) 和 x(n)的傅里叶变换表达式:
- 4. 试写出用窗函数法设计 FIR 数字滤波器的设计步骤,并说明选择窗函数类型和窗函 数长度的依据。

考试题 (三)

已知数字网络用下面差分方程描述

$$y(n) = 0.64y(n-2) + x(n)$$

- (1) 设输入信号 $x(n) = \delta(n)$, y(-1) = 0, y(-2) = 1, 当 $n \le -3$ 时 y(n) = 0, 求输出信号 y(n)
- (2) 求该网络的单位脉冲响应 h(n)。
- (1) 设 $x(n) = R_1(n)$, 求X(z) = ZT[x(n)], 以及收敛域:
- (2) $x(n) = R_2(n)$, 求 $X(e^{j\omega}) = FT[x(n)]$, 并定性画出幅频特性曲线;
- (3) $x(n) = R_2(n)$,将 x(n)以 5 为周期进行周期性延拓,形成周期序列 $\tilde{x}(n)$,画出 $\tilde{x}(n)$ 的 波形, 并求出 $\bar{x}(n)$ 的离散傅里叶级数 $\bar{x}(k)$:
 - (4) $x(n) = R_2(n)$, 求 x(n)的 5 点 DFT, 得到 X(k), 画出 $|X(k)| \sim k$ 曲线:
 - (5) 求出(3)中式(n)的傅里叶变换表示式,并画出相应的幅频特性。

(5) 求出(3)中式(n) 的傳里可及这位。
$$1-a^2$$
 0< a < 三、已知网络系统函数如式 $H(z) = \frac{1-a^2}{(1-az)(1-az^{-1})}$ 0< br/>
在 记址(3)中式(n) 的傳里可及这位。 $0 < a < a < a$

如果限定网络是因果的,选定 H(z)的收敛域,求出其单位脉冲响应 h(n),这种情况下! 络是否稳定, 为什么?

四、已知 FIR 滤波器的网络结构如图 10.3.1 所示。

- (1) 写出滤波器的系统函数 H(z),以及单位脉冲响应 h(n);
- (2) 该滤波器是否具有线性相位特性? 为什么?
- (3) 设 $x(n) = \sum_{k=0}^{\infty} \delta(n-6k)$,试画出y(n)的波形。

五、已知模拟网络如图 10.3.2 所示,现用数字信号处理技术完成其处理作用。求:

- (1) 画出模拟信号数字处理的总方块图,输入输出仍为 x,(t)和y,(t),并说明各分方框 的作用:
 - (2) 求出数字滤波网络的系统函数 (采用双线性变换法), 并画出其结构图。

判断额

1. 如果 x(n)是实因果序列,则可由 R _e [X(e ^{la})] 求出 x(n)和 X(e ^{la})。		
$X(t) = a_{-1}(t)$, $X(t) = Z \prod_{x \in \mathcal{X}(t)} x = 1$		(0)
· ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	•	(0)
4. $\tilde{X}(k)$ 也是一个以 N 为周期的周期序列。	• •	(O).
5. 时间离散、幅度连续的信号称为数字信号		(0)
- * * (*** * * * * * * * * * * * * * * *		(x)
7. $\Leftrightarrow x(n) = a^n$, $0 < a < 1$, 则 $X(z)$ 的收敛域为 $0 \le z \le a^{-1}$.		(x)
8. 因果系统其单位脉冲响应 h(n)—定满足当 n < 0 时, h(n) = 0. 9. y(n) = IDF∏Y₁(k)]。		(x) .
9. $y(n) = IDF\Pi[Y_1(k)]$.		(0)
二、填空题		(x)

- 1. 设 $X(e^{j\omega}) = FT[x(n)]$. 则 $FT[nx(n)] = (j\frac{dX(e^{j\omega})}{d\omega})$ 。
- 2. $X(z) = Z\Pi(x(n)) = (z^{-1})$. 收敛域为 $(0 < |z| \leq \infty)$.
- 3. $H(z) = Y(z)/X(z) = (\frac{z^{-1}}{1-z^{-1}-z^{-2}})$. H(z)的极点为($\frac{1}{2}(1\pm\sqrt{5})$),H(z)等点点:(
- 4. 等效的模拟滤波器的截止频率为 (0.625 kHz)。
- 5. $y(n) = h(n) * x(n) = \{1,2,3,4,4,4,3,2,1; n = 0,1,2,3,4,5,6,7,8\}$
- 6. 采用脉冲响应不变法,边界频率的转换关系为(ω=ΩT)。

三、综合计算题

- 1. 解: FIR 滤波器的系统函数为 H(z)=1+2z-1+3z-2+2z-3+2z-4+z-5.
- (1) $h(n) = \delta(n) + 2\delta(n-1) + 3\delta(n-2) + 2\delta(n-3) + 2\delta(n-4) + \delta(n-5)$.
- (2) 该滤波器不具有线性和位性质。因为 h(n)不满足对 N/2 对称的条件。
- (3) 该滤波器的结构流图(要求用最少的乘法器)如图 S10.2.1 所示。

2. 解: (1) 模拟滤波器的 3 dB 截止頻率为 $\Omega_c = \omega_c / T = \pi/3$ rad

$$H_a(s) = \frac{\Omega_c^2}{s^2 + \sqrt{2}s\Omega_c + \Omega_c^2}$$

(4)
$$X(k) = DFT[x(n)] = \sum_{n=0}^{1} e^{-j\frac{2\pi}{3}kn} = 1 + e^{-j\frac{2\pi}{3}k}, k = 0,1,2,3,4$$

因为 DFT 是单位圆上 N 等间隔的采样,所以可以按照图 S10.3.1 定性画出 $|X(k)| \sim k$ 曲线如图 S10.3.3 所示。

(5)
$$X(e^{i\omega}) = DFT[\tilde{x}(n)] = \frac{2\pi}{5} \sum_{k=-\infty}^{\infty} \tilde{X}(k) \delta\left(\omega - \frac{2\pi}{5} k'\right)$$

$$= \frac{2\pi}{5} \sum_{k=-\infty}^{\infty} (1 + e^{-i\frac{2\pi}{5}k}) \delta\left(\omega - \frac{2\pi}{5} k'\right)$$

定性地面出相应的幅频特性,如图 \$10.3.4 所示。

三、解:

$$H(z) = \frac{1 - a^2}{(1 - az)(1 - az^{-1})}, \quad 0 < a < 1$$

限定网络是因果的。选收敛版为a"一国运》。

$$x(n) = \frac{1}{2\pi i} \oint_{c} H(z) z^{n-1} dz , \quad F(z) = \frac{(1-a^{2})z^{n}}{-a(z-a^{-1})(z-a)}$$

 $n \ge 0$, $h(n) = \text{Res}[F(z), a^{-1}] + \text{Res}[F(z), a] = -a^{-n} + a^{n}$

因为是因果系统,所以当n<0时,y(n)=0。

因此, $h(n) = [-a^{-n} + a^n]u(n)$.

系统不稳定, 因为当 $n \to \infty$ 时, $h(n) \to \infty$.

四、解:

(1)
$$H(z) = 0.4(1+z^{-6}) + 0.3(z^{-1}+z^{-5}) + 0.2(z^{-2}+z^{-4}) + 0.1z^{-3}$$

 $= 0.4 + 0.3z^{-1} + 0.2z^{-2} + 0.1z^{-3} + 0.2z^{-4} + 0.3z^{-5} + 0.4z^{-6}$
 $h(n) = \{0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, n = 0.1, 2, 3, 4, 5, 6\}$

- (2) 滤波器具有线性相位特性,因为单位脉冲响应 h(n)服从公式 h(n) = h(N-1-n), N 是序列的长度。
 - (3) y(n) = x(n) * h(n), 面出 y(n)的波形的波形, 如图 SIG.3.5 所示。

28

考试题 (二) 解答

一、判断题

1. 如果 x(n)是实因果序列,则可由 $R_e[X(e^{j\omega})]$ 求出 x(n)和 $X(e^{j\omega})$. 2. $x(n) = a^n u(n)$, $\text{MJ } X(z) = ZT[x(n)] = \frac{1}{1 - az^{-1}}$. (0)3. 可以通过加过渡带采样点来改善通带波纹特性和阻带最小衰减。 (0) 4. $\bar{X}(k)$ 也是一个以 N 为周期的周期序列。 (O) 5. 时间离散、幅度连续的信号称为数字信号 6. 用双线性变换法设计 IIR 数字滤波器时存在频率混叠失真。 (O) (x) 8. 因果系统其单位脉冲响应 h(n)一定满足当 n < 0 时,h(n) = 0。 (x)(x)9. $y(n) = \text{IDF}[Y_i(k)]$. (0)

(x)

二、填空题

- 1. 设 $X(e^{j\omega}) = FT[x(n)]$. 则 $FT[nx(n)] = (j\frac{dX(e^{j\omega})}{d\omega})$ 。
- 2. $X(z) = Z\Pi(x(n)) = (z^{-1})$. 收敛域为 $(0 < |z| \le \infty)$.
- 3. $H(z) = Y(z)/X(z) = (\frac{z^{-1}}{1-z^{-1}-z^{-2}})$. H(z)的极点为($\frac{1}{2}(0\pm\sqrt{5})$),H(z)完整的文字(4. 等效的模拟滤波器的截止频率为 (0.625 kHz)。
- 5. $y(n) = h(n) * x(n) = \{1,2,3,4,4,4,3,2,1; n = 0,1,2,3,4,5,6,7,8\}$
- 6. 采用脉冲响应不变法,边界频率的转换关系为(ω=ΩT)。

三、综合计算题

- 1. 解: FIR 滤波器的系统函数为 $H(z)=1+2z^{-1}+3z^{-2}+2z^{-3}+2z^{-4}+z^{-5}$.
- (1) $h(n) = \delta(n) + 2\delta(n-1) + 3\delta(n-2) + 2\delta(n-3) + 2\delta(n-4) + \delta(n-5)$.
- (2) 该滤波器不具有线性相位性质。因为 h(n)不满足对 N/2 对称的条件。
- (3) 该滤波器的结构流图(要求用最少的乘法器)如图 S10.2.1 所示。

2. 解: (1) 模拟滤波器的 3 dB 截止频率为 $\Omega_c = \omega_c/T = \pi/3$ rad

$$H_a(s) = \frac{\Omega_c^2}{s^2 + \sqrt{2}s\Omega_c + \Omega_c^2}$$

五、解:

(1) 画出模拟信号数字处理的总方块图, 如图 S10.3.6 所示。

预滤的作用是防止频率混叠现象。A/D 的作用是将模拟信号转换成数字信号。数字信号 处理部分完成对信号的处理。D/A 完成将数字信号转换成模拟信号。平滑滤波部分完成对信 号的平滑作用。

(2) 按照图 10.3.2,模拟信号网络的传输函数为 $H_{s}(s)=\frac{\alpha}{\alpha+s}$, $\alpha=\frac{1}{RC}$ 采用双线性变换法将其转换成数字滤波器的系统函数为

问 N 至少应取多少? 为什么? 按照最少采样点数画出采祥结构, 不考虑稳定性, 也可以用复数乘法,

- 五、设 $x(t) = x_1(t) + x_2(t) + x_3(t)$, 文中 $x_1(t) = \cos(8\pi t)$, $x_2(t) = \cos(16\pi t)$, $x_3(t) = \cos(20\pi t)$.
- (1) 如果用 FFT 对 x(t)进行频谱分析,问采样频率 F_t 和采样点数 N 应如何选择,才能精确地求出 x(t)、 $x_0(t)$ 、 $x_0(t)$ 的频率:
- (2) 按照你选择的 F_{k} 、N 对 x(t)采样,然后得到x(n),进行 FFT,得到X(k),画出 $|X(k)|\sim k$ 的曲线,并分别注明 $x_{k}(t)$ 、 $x_{k}(t)$ 、 $x_{k}(t)$ 的频率。

(4)
$$X(k) = DFT[x(n)] = \sum_{n=0}^{k} e^{-j\frac{2\pi}{5}kn} = 1 + e^{-j\frac{2\pi}{5}k}$$
, $k = 0,1,2,3,4$

因为 DFT 是单位圆上 N 等间隔的采样,所以可以按照图 S10.3.1 定性画出 $|X(k)| \sim k$ 曲线如图 S10.3.3 所示。

(5)
$$X(e^{j\omega}) = DFT[\tilde{x}(n)] = \frac{2\pi}{5} \sum_{k=-\infty}^{\infty} \tilde{X}(k) \delta\left(\omega - \frac{2\pi}{5}k'\right)$$

$$= \frac{2\pi}{5} \sum_{k=-\infty}^{\infty} (1 + e^{-i\frac{2\pi}{5}k}) \delta\left(\omega - \frac{2\pi}{5}k\right)$$

定性地画出相应的幅频特性,如图 \$10.3.4 所示。

(1 1 2 3 4 图 \$10.3.4

三、解:

$$H(z) = \frac{1 - a^{2}}{(1 - az)(1 - az^{-1})}, \quad 0 \le a \le 1$$

限定网络是因果的。选收敛赋为4"。同二。。

$$x(n) = \frac{1}{2\pi i} \oint_{c} H(z) z^{n-1} dz . \quad F(z) = \frac{(1-a^{2})z^{n}}{-a(z-a^{-1})(z-a)}$$

 $n \ge 0$, $h(n) = \text{Res}[F(z), a^{-1}] + \text{Res}[F(z), a] = -a^{-n} + a^{n}$

因为是因果系统,所以当n < 0时,y(n) = 0。

因此, $h(n) = [-a^{-n} + a^n]u(n)$.

系统不稳定, 因为当 $n \to \infty$ 时, $h(n) \to \infty$.

四、解:

- (1) $H(z) = 0.4(1+z^{-6}) + 0.3(z^{-1}+z^{-5}) + 0.2(z^{-2}+z^{-4}) + 0.1z^{-3}$ = $0.4 + 0.3z^{-1} + 0.2z^{-2} + 0.1z^{-3} + 0.2z^{-4} + 0.3z^{-5} + 0.4z^{-6}$ $h(n) = \{0.4, 0.3, 0.2, 0.1, 0.2, 0.3, 0.4, n = 0, 1, 2, 3, 4, 5, 6\}$
- (2) 滤波器具有线性相位特性,因为单位脉冲响应 h(n)服从公式 h(n) = h(N-1-n), N 是序列的长度。
 - (3) y(n) = x(n) * h(n), 面出 y(n)的波形的波形, 如图 S10.3.5 所示。

28

考试题 (三) 解答

一、解:

(1) 此题用递推法求解。

$$n=0$$
 $y(0) = 0.64y(-2) + x(0) = 1.64$
 $n=1$ $y(1) = 0.64y(-1) = 0$
 $n=2$ $y(2) = 0.64y(0) = 0.64 \times 1.64 = 0.8^2 \times 1.64$
 $n=3$ $y(3) = 0.64y(1) = 0$
 $n=4$ $y(4) = 0.64y(2) = 0.64^2 \times 1.64 = 0.8^4 \times 1.64$
 $y(n) = \begin{cases} 1.64 \times 0.8^n, & n \text{ N m m m m} \\ 0, & n \text{ N m m m} \end{cases}$

(2) $\Rightarrow x(n) = \delta(n)$, y(-1) = 0, y(-2) = 0, $a \le -3$ b y(n) = 0

$$n = 0$$
 $y(0) = x(0) = 1$
 $n = 1$ $y(1) = 0.64y(-1) = 0$ $n = 3$ $y(3) = 0.64y(1) = 0$
 $n = 2$ $y(2) = 0.64y(0) = 0.8^2$ $n = 4$ $y(4) = 0.64y(2) = 0.8^4$

$$h(n) = \begin{cases} 0.8^{\circ}, & n \text{ 収偶数} \\ 0, & n \text{ 収奇数} \end{cases}$$

(1)
$$X(z) = 1 + z^{-1}$$
, 收敛域为 $0 < |z| \le \infty$,

(2)
$$X(e^{j\omega}) = FT[x(n)]$$

$$X(e^{j\omega}) = 1 + e^{-j\omega}$$

根据零极点分布定性画出幅频特性曲线,如图 S10.3.1 所示。

(3) 画出 x(n) 的波形如图 \$10.3.2 所示。

$$\bar{X}(k) = DFT[\bar{x}(n)] = \sum_{n=0}^{1} e^{-j\frac{2\pi}{5}kn} = 1 + e^{-j\frac{2\pi}{5}k}$$
 $-\infty < k < \infty$

图 81031

图 S10.3.2

$$H(z) = H_{4}(s) \bigg|_{1 = \frac{1 - z^{-1}}{1 + z^{-1}}} = \frac{\Omega_{c}^{2} (1 + 2z^{-1} + z^{-2})}{(1 + \sqrt{2}\Omega_{c} + \Omega_{c}^{2}) + 2(\Omega_{c}^{2} - 1)z^{-1} + (1 - \sqrt{2}\Omega_{c} + \Omega_{c}^{2})z^{-2}}$$

$$k_{1} = \frac{\Omega_{c}^{2} - 1}{1 + \sqrt{2}\Omega_{c}^{-1} + \Omega_{c}^{2}} \qquad k_{4} = \frac{1 - \sqrt{2}\Omega_{c} + \Omega_{c}^{2}}{1 + \sqrt{2}\Omega_{c} + \Omega_{c}^{2}}$$

型 S10.2.2

 $H(z) = \frac{k_1(1+2z^{-1}+z^{-2})}{1+2k_1z^{-1}+k_2z^{-1}}$

(2) 画出该数字低通滤波器的直接型结构图如图 \$10.2. 所示。

3. 解

(1) $X_{\alpha}(i\Omega) = FT[X_{\alpha}(t)] = 2\pi[\delta(\Omega - 200\pi) + \delta(\Omega + 200\pi)]$

(2)
$$\hat{x}_{i}(t) = \sum_{n=-\infty}^{\infty} 2\cos(200\pi n/F_{i})\delta(t-n/F_{i}) = \sum_{n=-\infty}^{\infty} 2\cos(0.5\pi n)\delta(t-n/F_{i})$$

$$x(n) = 2\cos(200\pi n/F_s) = 2\cos(0.5\pi n)$$

(3) 分别写出 £(r) 和 x(n)的傅里叶变换表达式。

$$\hat{X}_{s}(j\Omega) = FT[\hat{x}_{s}(t)] = F_{s} \sum_{m=-\infty}^{\infty} X_{s}(j\Omega - jm \cdot 2\pi F_{s})$$

$$= 2F_{s} \sum_{m=-\infty}^{\infty} [\delta(\Omega - 200\pi - jm \cdot 2\pi F_{s}) + \delta(\Omega + 200\pi - jm \cdot 2\pi F_{s})]$$

$$X(e^{j\omega}) = FT[x(n)] = 2\pi \sum_{n=1}^{\infty} \{\delta(\omega - \omega_n - 2\pi r) + \delta(\omega + \omega_n - 2\pi r)\}.$$
 $\omega_n = 200\pi/F_n = 0.5\pi$

- 4. 解: 用窗函数法设计 FIR 数字滤波器的设计步骤有:
- (1) 构造希望逼近的频率响应函数 $H_a(e^{i\omega})$. 一般用理想滤波器作为逼近滤波器。
- (2) 求出逼近滤波器的单位脉冲响应 h_a(n)。
- (3) 加爾得到 FIRDF 的单位脉冲响应 h(n), $h(n) = h_a(n)w(n)$.

选择窗函数类型的依据是阻带的最小衰减。选择窗函数长度的依据是过渡带的宽度。

南京邮电大学 2008/2009 学年第一一学期

《数字信号处理 B》期末试卷

一、填空题

- 1、单位脉冲响应分别为 $h_1(n)$ 和 $h_2(n)$ 的两线性系统相串联,其等效系统函数 时域表达式 $h(n) = h_1(n) * h_2(n)$,系统频响 $H(e^{jn}) = H_1(e^{jn}) H_2(e^{jn})$ 。
- 2、要使实信号采样后能够不失真还原,采样频率必须大于信号最高频率的 两倍。
- 3、FFT算法之所以能减少运算量是利用了 $W_N = e^{-\frac{J_N}{N}}$ 的<u>周期</u>和<u>对称</u>的特性。
- 4、用矩形窗设计线性相位的FIR低通滤波器,矩形窗长度增加不会改变肩峰的相对值,这种现象称为<u>吉布斯</u>效应。
- 5、两序列长度分别为 L_1 和 L_2 ,用循环卷积(circular convolution)正确计算两个序列卷积结果,循环卷积的点数N至少为 $\frac{L_1+L_2-1}{L_1}$
- 6、LTI系统 $H(z) = \frac{a}{1-bz^{-1}}$ 为因果稳定系统的必要条件为_____|b|<1__。
- 7、IIR DF 设计时,模拟低通原型到数字低通原型的映射即S平面到Z平面的映射常用的方法是 双线性变换法 和 冲激响应不变法 其中 冲激响应不变法 变法 不会产生畸变。
- 8、设计线性相位FIR数字滤波器, h(n) 需满足 偶 对称或者 奇 对称。
- 9、在用定点数做乘法运算不会造成溢出,但是字长要增加一倍,在定点乘法运算后需要对于尾数做<u>截尾或舍入操作,以保证字长的不变。</u>
- 10、在做基2的快速傅里叶算法时,有_按时间抽取法、_按频率抽取法_两种
- 11、己知 $DTFT[x(n)] = X(e^{f^*})$, $x(n \pm n_0)$ 的 DIFT 是 $e^{\pm f n_0 *} X(e^{f^*})$ __.
- 12、Parseval定理 $\sum_{n=-\infty}^{\infty} |x(n)|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |X(e^{j\pi})|^2 d\omega$ 的物理含义是 <u>时域中对序列求能量与</u>

频域中求能量是一致的

- 13、IIR DF可以用直接型、级联型和并联型三种网络结构实现,相同条件下<u>级联型</u>结构可同时调整零点和极点位置,<u>并联型</u>结构只容易调整极点,<u>并联型</u>结构运算速度最快。
- 14. 线性时不变系统的单位采样响应为h(n),输入x(n),则输出y(n)=x(n)*h(n).

15. 线性时不变系统是因果的充要条件是,单位采样响应 $h(n)$ 满足 $h(n) = 0, n < 0$.
16. 设因果性序列 $x(n)$ 的 Z 变换为 $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$,则 $x(0) = \underline{1}$; $x(\infty) = \underline{2}$
$\Re \Im \chi(n) = \delta(n-3)$,则 $\chi(n)$ 的傅里叶变换为 $e^{-j3\omega}$
18. 设 $x(n) = R_1(n)$. 则 $x(n)$ 的 8 点 DFT 为 $e^{-\sqrt{1-k}} \sin \frac{\pi}{2} k / \sin \frac{\pi}{8} k$
19、线性移不变系统是因果系统的充分必要条件是_h(n)=0,n<0。
20. x(n) = a"u(n) 的 DTFT 绝对可加条件 a < 1 二、判断题
1、当输入不同序列时,线性时不变系统的单位抽样响应也不同。(×) 2、FIR 滤波器极点全部在原点(永远稳定),无稳定性问题。 (√) 3、任何离散系统的输出序列都等于输入序列和系统单位抽样响应的线性卷积。(×) 4、IIR 滤波器可以用快速傅里叶变换(FFT)算法减少计算量(×) 5、IIR 滤波器结构对于有限字长效应噪声累积效应的比较。直接性>级联型>并联型(√) 6、某系统的差分方程为 μ(n) = 10.4x(n) - 2.7μ(n-1),该系统是非递归系统。 (×) 7、因果系统的 z 变换收敛域区间为 z 平面单位圆内。 (×) 8、一个数字滤波器如果其幅度谱在π处为零,那么该滤波器不能是高遍滤波器和带阻滤波器(√)
9. 抽样信号的频率不会超过抽样频率的一半 。 (/) 10. 信号在领域中压缩等效于在时域中扩展。

三、简答题

- 1、请写出数字信号处理系统相对于模拟信号处理系统的优点 课本 P2 相隔,对社位,可会则提出对了相对这时间指标和特性一定被创作信号还是
- 2、DTFT 与 ZT、 DFT 与 DTFT 及 DFT 与 ZT 之间的关系。

答: DTFT 与 2T 关系:
$$X(e^{i\pi}) = X(z)_{|z=e^{i\pi}}$$

DFT 与 DTFT 关系:
$$X(k) = X(e^{pr})$$
 $w = \frac{2\pi k}{N}$

DFT 与 ZT 关系:
$$X(k) = X(z)$$

3、线性时不变系统的单位脉冲响应为 h(n)长度为 M, 输入信号 x(n)长度为 N, 写出用快速卷积的方法求输出序列 y(n)的过程。 答: x(n)、h(n)补零到 L≥N+M-I

- (1) 求 H(K) = DFT[h(n)], L点
- (2) 求 X(K) = DFT[x(n)], L点
- (3) \(\delta \pi Y(k) = H(K) \pi X(K)
- (4) 求 y(n) = IDFT[Y(k)], L点
- 4、某线性时不变系统的单位脉冲响应为 $\frac{1}{n}U(n)$,判断该系统的因果性和稳定性。

(1),
$$\delta(n-1)$$
 (2), $2^n u(-n)$

解: 1、因果稳定

2、非因果稳定

- 6、简述设计一个数字滤波器的一般步骤 课本 P141
- FIR 于 IIR 滤波器各有什么优缺点(如何选择) 课本 P227
- 党 简述 FIR 滤波器各实现结构的类型及如何选择 课本 P232
- 简述 IIR 滤波器各实现结构的类型及如何选择 课本 P240

四、计算题

- 1、课本习题 3.10
- 2、已知序列 a(n) 为 { 2,3,4 } ,序列 b(n) 为 { 3,2,1 },
 - 求 (1) 求线性卷积 a(n)*b(n) 值;
 - (2) 分别求3点、5点的循环卷积 $a(n) \otimes b(n)$:
 - (3) 比较并解释 (2) 的结果。

解 (1) 线性卷积:

线性卷积结果为 $\{6, 13, 20, 11, 4\}, 0 \le n \le 4$

(2) 3点循环卷积: 法一

M	0	1	w (n)
	2		5-
x (m)	2	3	
	.4		
y (m)	3	2	
	I		
y (-m)	3	1	w (0) = 1
	2	-	7
y (1-m	· 2	3	w(1)=1
) :-	1	· ·	7
y (2~m	1	2	w(2)=2
)	3		0

法二:

•••

6 13 20:11 4

6 13 20:11 4

6 13 20:11 4

... :17 17 20:17 17 20: ...

(2) 5 点圆周卷积: 法一:

전 /리 7	医树: 法一:	:					
	m		0	1	2	3	w (n)
L			4	:			1
	x (m)		2	3	4	0.	
	•		0				
	y (m)		3	2	1	. 0	
			0			-	
	y (-m)		3	0	0	1	w(0)=6
			2				
	y (1-m		2	3	0	0	w(1)=1
)		1				3
	y (2-m		i	2	3.	0	w(2)=2
)		0 .			ļ	0
	y (3-m		0	1	2	3	w(3)=1
Ŀ			0 -				1
	y (4-m		0	0	1	2	w(4)=1
)		·3				" " "]

法二:

6 13 20 11 4

6 13 20 11 4

6 13 20 11 4

- (3) 3点圆周卷积和线性卷积的结果不一样,这是因为对线性卷积结果进行周期延拓而产生了叠加失真所引起的,5点圆周卷积没有叠加失真,和线性卷积的结果一样。
- 3、画出一个完整的 N=8 按频率抽取 FFT 法的分解图。 课本 P109
- 4 课本习题 6.1
- 5. 设一因果的线性时不变系统的系统函数为:

$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})} = \frac{\frac{10}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{-\frac{7}{3}}{1 - \frac{1}{4}z^{-1}}$$

分别画出系统的直接型,级联型和并联型结构

解: (1)
$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{(1 - \frac{1}{2}z^{-1})(1 - \frac{1}{4}z^{-1})} = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{3}{4}z^{-1} + \frac{1}{8}z^{-2}}$$

直接型为:

(2)
$$H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \frac{1}{1 - \frac{1}{4}z^{-1}} = \frac{1}{1 - \frac{1}{2}z^{-1}} \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{4}z^{-1}}$$

级联型为:

(3)
$$H(z) = \frac{\frac{10}{3}}{1 - \frac{1}{2}z^{-1}} + \frac{-\frac{7}{3}}{1 - \frac{1}{2}z^{-1}}$$

并联型为:

五、设计题

人、课本习题 4.7

飞、课本习题 5...

3、某二阶模拟低通原型滤波器的传递函数是

$$H_{\sigma}(s) = \frac{9}{\left(\frac{s}{\Omega_{c}}\right)^{2} + \sqrt{3}\left(\frac{s}{\Omega_{c}}\right) + 3}$$

其 3dB 截止频率是 $f_c = 500 Hz$. (1) 双线性法设计一个数字低通: 截止频率

同上, 采样频率是 3000Hz; (2) 用直接 II 型结构实现之。

$$\text{AF} \quad (1) \quad \Omega_c = \frac{2}{T} t g(\frac{2\pi f_c T}{2}) = \frac{2}{T} t g(\frac{2\pi \times 500}{2 \times 300}) = \frac{2}{T} \cdot \frac{1}{\sqrt{3}}$$

$$H(z) = H_a(s) \Big|_{s = \frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}} = \frac{9}{3\left(\frac{1-z^{-1}}{1+z^{-1}}\right)^2 + 3\left(\frac{1-z^{-1}}{1+z^{-1}}\right) + 3}$$

$$= \frac{9 \cdot 1 \left((-2z^{-1} + z^{-2})\right)}{9 + 3z^{-2}} = \frac{1 + 2z^{-1} + z^{-2}}{1 + \frac{1}{3}z^{-2}}$$

(2)

自觉进守考试规则,诚信考试,绝不作转 订 线 内 不 要 答 题

- 4、用窗口法设计一个线性相位的低通FIR滤波器,截止频率为 f., 采样频率为 8f., 采用窗口大小N为 7 的矩形窗。
- 求(1)确定 α 与该FIR DF阶数N的关系,(2)设计出滤波器的h(n)。

提示:
$$h_d(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_d\left(e^{j\omega}\right) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{-j\omega \alpha} e^{j\omega n} d\omega = \frac{\sin(\omega_c(n-\alpha))}{\pi(n-\alpha)}$$

解 (1) $\alpha = \frac{N-1}{2} = \frac{7-1}{2} = 3$

(2) $\omega_c = f_c \times \frac{2\pi}{f_s} = f_c \times \frac{2\pi}{8f_c} = \frac{\pi}{4}$

理想冲激响应为:

$$h_{d}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} H_{d}(e^{j\omega}) e^{j\omega n} d\omega = \frac{1}{2\pi} \int_{-\omega_{c}}^{\omega_{c}} e^{-j\omega \sigma} e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \times 2 \times \int_{0}^{\omega_{c}} \cos \omega (n - \alpha) d\omega$$

$$= \frac{\sin \omega_{c} (n - \alpha)}{\pi (n - \alpha)} = \frac{\sin[(n - 3) \times \pi / 4]}{\pi (n - 3)}$$

加矩形窗:
$$h(n) = h_d(n)R_N(n) = \left\{ \frac{\sqrt{2}}{6\pi}, \frac{1}{2\pi}, \frac{\sqrt{2}}{2\pi}, \frac{1}{4}, \frac{\sqrt{2}}{2\pi}, \frac{1}{2\pi}, \frac{\sqrt{2}}{6\pi} \right\}$$

.

姓谊

ijţ 规

> ist 不

乍 책 ij

雯

《数字信号处理》期末试

院()	系)	*		班级_			学号_	······································	············	姓名_	·		
题号	T Ì	<u>-</u>	• =	129	五	六	七	٨	九	+.	总	汆	· .
得分.					-								
得3	}	、填空 ·	型题(*	每空1	分, 男		-		-				•
- 1. š	数字信号	与模拟	信号的	区别是、	悲		中国	自有於	连续	· · ·			٠.
2. i	1、数字信号与模拟信号的区别是(1)。 2、设毕联系统的单位脉冲响应分别为为(n)、为(n),其等效系统函数时域和频域表												
ì	达式分别为: $h(n) = (2)$, $H(e^{ja}) = (3)$.												
	已知信号	-x(n)u(22) 65	2 变数	为 <i>X</i> (z)。则作	言号 x(r	1-m)u	(n-m)	(的 Z	变换为	ភ់	
- -	<u>(4)</u> 。 根据单位	绿冲响	应h(n)	判断线	性时不	变系统是	是否为因	1果系统	的条件)	140
· 5. }	数字信号	处理系	统中,	一般在	采祥前	h:—Ki	西波波是	8. 其作	用是:	(6.)	*		
	已知 7 点 写出其它						_	•		7.0			
	<u>(10)</u> 。 计算 8 点		4	技 尼	性人	の上 X 复乗。) * ,		糯用	(12)	火复 乘		h(n-1-

设计 FIR 数字滤波器时,为实现线性相位,需要 h(n)需定:

9、第二类 FIR 数字滤波器的幅度函数 H(o) 对数字频率 π 点奇对称,则此类滤波器

(数字信号处理) 试卷 . 第 1 页 共

10. 設計 Fin 数字被读器,从时域出发,可以采用(16) 法、从额域出发,可以采用(17) 法,从的域出发,可以采用(16) 法,从数域出发,可以采用(16) 法,从数域出发,可以采用(18) (18) (18) (18) (18) (18) (18) (18)	TO STATE OF THE PARTY OF THE PA	中的灰塔区
11. 有限字长效应会引起的误差有。	パパステがルトルではらか。	<u>6)</u> 法、从额域出发、可以采
11、有限学长效应会引起的误差有: (18) 、(19) 、(20) (19) 、(20) (19) 、(20) (19) 、(20) (19) 、(20) (19) 、(20) (19) 、(20) (19) (20) (20) (20) (20) (20) (20) (20) (20	$m_{\underline{(17)}}$ $K_{\underline{1}}$	17764(5() FB 50×
1. 设 x(n) 为系统遗励,y(n) 表示响应,且y(n) = 2x(n) + 3,则该系统为线性时不变系统。?? 2. 差分方程不能唯一确定一个系统。	11、有限字长效应会引起的误差有: (18)、(19)	
1. 设 x(n) 为系统遗励,y(n) 表示响应,且y(n) = 2x(n) + 3,则该系统为线性时不变系统。?? 2. 差分方程不能唯一确定一个系统。		•
1. 设 x(n) 为系统遗励,y(n) 表示响应,且y(n) = 2x(n) + 3,则该系统为线性时不变系统。?? 2. 差分方程不能唯一确定一个系统。		
变系统。?? 2. 差分方程不能唯一确定一个系统。 3. x(n) = e ^{1/C-n} 是周期序列。 4. 若信号最高级军为120Hz、采样频率为150Hz、则频谱从50Hz处开始想差。 5. 心 DFT 分析连续信号频谱时,通过补口可以读高19FT 的频率分辨率——	□ 19分 二、判断题 (对的打"✓",错的打">	〈". 每题 2 分. 共 10 分)
变系统。?? 2. 差分方程不能唯一确定一个系统。 3. x(n) = e ^{1/C-n} 是周期序列。 4. 若信号最高级军为120Hz、采样频率为150Hz、则频谱从50Hz处开始想差。 5. 心 DFT 分析连续信号频谱时,通过补口可以读高19FT 的频率分辨率——		
2. 差分方程不能唯一确定一个系统。 3. x(n) = e ^{1/2 n} 是周期序列。 4. 若信号最高频率为120Hz、果样频率为150Hz、则频谱从50Hz处开始填差。 4. 若信号最高频率为120Hz、果样频率为150Hz、则频谱从50Hz处开始填差。 2. 简答及画图题(共25分) 1. (5分)写出用脉冲响应不变法设计 III 数字滤波器的基本思想,优、缺点。 1. (5分)写出用脉冲响应不变法设计 III 数字滤波器的基本思想,优、缺点。 1. (5分)设两序列x(n)和k(n)的长度分别为M和N、且长度相近,可以采用快速 2. (5分)设两序列x(n)和k(n)的长度分别为M和N、且长度相近,可以采用快速 ※	人1、设 $x(n)$ 为系统激励、 $y(n)$ 表示响应、且 $y(n)=2x(n)$	n)(+3,)则该系统为线性时不
3、 x(n) = e ^{1/2} 是周期序列。 4、若信号最高领军为120Hz、采样频率为150Hz、则频谱从50Hz处开始和爱。 2)	变系统·??	AEA40-
3、 x(n) = e ^{1/6} 是周期序列。 4、 若信号最高领军为120H2、采样频率为150H2、则频谱从50H2处开始图室。 5. 心 DFT分析连续信号频谱时,通过特别可以提高DFT的频率分辨率 中的文字经验 中的文字是 中	2. 差分方程不能唯一确定一个系统。	
4、若信号最高领军为120Hz、采样频率为150Hz、则频谱从50Hz处开始忽毫。 15. 以 DFT 分析连续信号频谱时,通过特可可以提高 DFT 的频率分析率。	(150 240
1. (5分) 写出用版冲响应不变法设计 III 数字池波器的基本思想,优、 数点。 (大) 一(水) 一(水		? / \$>>>m
お分 三、 荷客及画图题(共 25 分)	~ "V~	\sim
1. (5分) 写出用脉冲响应不变法设计 [IR 数字: iz x x x x x x x x x x x x x x x x x x	X3、100 DFT分析连续信号频谱时,通过补收可以提高:17 Pan信息 K	T的频率分辨率了 (N)的节形式多人
1. (5分) 写出用脉冲响应不变法设计 [IR 数字: iz x x x x x x x x x x x x x x x x x x) - (15
(A): (W=JCT、金) 性子質(方)性の	三、简答及画图题(共 25 分)	Hals) - natt) -
(A): (W=JCT、金) 性子質(方)性の		Ail 16 Lavia
(ス) で (内 (ア) 和 h(n) 的 长度分别为 M 和 N. 且 长度相近、可以采用快速	1、(5分)写出用脉冲响应不变法设计 in 数字滤波器的部分。(V)=JCT、全的生才变仿外生分	E本思想,优、敏点。
登記け算 y(n) = x(n) * h(n), 请利用本庭所給符号, 简单写明快速卷积的步骤。 (D. H(k)= FFT I h(n)] (上京,)	压夫: 回能出现沉着	开他道、带值. 建度相近,可以采用的这
() Y(k)= H(k) X(k) (k=0~L-1)		
 	(T) はたした。TETTには、「自利用本級所給符号、簡単	
3) Y(k)= H(k) X(k) (k=0~L-1)	6 VALTETIMINI()E)	
	3 Y(k)= H(k) X(k) (k=	o~L-1)
② ')(N)= IFFT LY(k) (N= O~L-1). (数字信号处理) 试卷 第 2 页共 4 页		

3、(5分) 画出下列数字系统的正准型结构

$$y(n) = 8x(n) - 4x(n-1) + 11x(n-2) - 2x(n-3) + \frac{5}{4}y(n-1) - \frac{3}{4}y(n-2) + \frac{1}{8}y(n-3)$$

4、(10分) FFT 是求 DFT 的快速算法, 用蝶形图也可以求 IDFT, 即由 X(k)求得 x(n)。

THETTYPHY S

己知序列 x(n)的 DFT 的值为 $X(k)=\{1,0,1,1\}$,利用共轭特性及 FFT 求其 IDFT.要求(1)

大·〈FFTTX(L)*【〉 括写明其中的采系数

1、(5分) 已知 $X(z) = z^2 + \frac{5Z^{-1}}{1 + Z^{-1} - 6Z^{-2}}$,写出X(z)的零、极点,并求2 < |z| < 3

时对应的序列 x(n)。

(32-47)(-12+4)

2、(4分) 用基 2FFT 算法估计某一三角脉冲的频谱。要求频率分辨率 F=100Hc,最高频率范围限于 $f_h=25KHz$,试确定:

- (1) 最小记录长度7;
- (2) 采样点间的最大时间间隔 Ti
- (3) 在一个记录中的最少采样点数N

3、(8分) 求 $x(n) = \{1,2,1,1\}$ 和 $y(n) = \{2,1,3,2\}$ 的线性卷积和圆周卷积,并以文字简

单说明如何用圆周卷积求线性卷积

$$\frac{1}{1422}$$

(数字信号处理) 试卷 第 3 页共 4 页

11.5.7, 11.8.5.3}

45

化:ON3 4、(8分) 试求序列(1、1、1、1)的频谱和 DFT,并说明两者间的关系。(注意为3个问题,其2、2)

度,其中频谱写出表达式即可,不必写的最后计算结果,DFT要给出最终结果的 $H(e^{j\omega}) = \lim_{n \to \infty} e^{-j\omega} + e^{-j\omega} - e^{-j\omega}$ $k = \lim_{n \to \infty} \chi(n) = \lim_{n \to \infty} \chi($

 $= (\chi(n) + (\chi(n) + \chi(n) + \chi(n) - \chi(n) + (\chi(n) + \chi(n) + \chi(n) + \chi(n) + (\chi(n) + \chi(n) +$

(1) 画出系统的结构图。

- (2) 求系统的单位脉冲响应 h(n),系统函数 H(z),并判断系统的稳定性。
- (3) 若系统的零状态响应为 y(n) = u(n-1), 求激励信号 x(n).

得分

五、设计题(共10分)

已知:某一低通滤波器的各种指标和参量要求为。(1)巴特沃思频率响应。采用双线性变换设计法,考虑预畸。(2)当 $0 \le f \le 2.5 Hz$ 时,衰减小于3 dB。(3)当 $f \ge 50 Hz$

时,交减大于或等于 40dB; (4) 采样频率 $f_c = 200Hz$ 。求:系统函数 H(z)。

表 1 低阶巴特沃思滤波器 H(s)的分母 (归一化)

阶数N	H(s)的分母	
.1	s+1	-
2 .	$s^2 + \sqrt{2}s + 1$	

(数字信号处理) 试卷 第 4 页共 4 页

南京邮电大学 2007/2008 学年第一学期

《 数字信号处理 》 期末试卷

	院(系)	*		班级_			学号	-		姓名_		, - -
,	.题号	_	=	- = [E	<u> </u>	六	七		·/t	†: ₋ ;	总会	
	得分.			ر رو								<u></u> .	

- 1. 填空题(每题2分, 共20分)
- (1)离散时间信号与数字信号的区别是_幅度是否经过量化_
- (2)正弦类正交变换中最常用的是_DFT_变换,统计性能最佳的实数域正交变换是_KLT_变换。
- (3)用一个数字低通从0~10000Hz的信号中滤取0~4000Hz的频率成分,该滤波器的抽样频率至少为_14000Hz。
- (4)某长度为N的有限长序列x(n),已知N=p×q,p和q皆为整数。现用p组每组q点的DFT组合得到x(n)的DFT,如果乘1和-1等都考虑在内。

则所需的复乘次数是 $pg^2+gp^2=pg(p+g)=N(p+g)$ 。

- (7)已知某线性相位FIR数字滤波器的一个零点为1+j,则可判断该滤波器 必有零点1-i,(1+i)/2,-(1-i)/2。
- (8)设序列x(n)和y(n)的Z变换分别为X(z)和Y(z),且

y(2n)=y(2n+1)=x(n),则X(z)和Y(z)的关系为 $Y(z)=(1+z^{-1})X(z^2)$

令
$$y_1(n) = \begin{cases} x(n/2), n \text{ 为偶数} \\ 0, n \text{ 为奇数} \end{cases}$$
 则 $Y_1(z) = X(z^2)$ (p16),

$$y_2(n) = \begin{cases} x((n-1)/2), n 为 奇数 \\ 0, n 为 偶数 \end{cases} = y_1(n-1), 则 Y_2(z) = z^{-1}X(z^2),$$

 $y(n) = y_1(n) + y_2(n)$, $\therefore Y(z) = Y_1(z) + Y_2(z) = (1 + z^{-1})X(z^2)$

或:
$$Y(z) = \sum_{\substack{n=-\infty \\ n \in \mathbb{N}}}^{\infty} x(\frac{n}{2}) z^{-n} + \sum_{\substack{n=-\infty \\ n \in \mathbb{N}}}^{\infty} x(\frac{n-1}{2}) z^{-n} = \sum_{\substack{m=-\infty \\ n \in \mathbb{N}}}^{\infty} x(m) z^{-2m} + \sum_{\substack{m=-\infty \\ n \in \mathbb{N}}}^{\infty} x(m) z^{-(2m+1)} = (1+z^{-1}) X(z^2)$$

(9)对长度N=4的实序列x(n)求4点DFT,已知X(0)=10,X(1)=-2+2j,X(2)=-2,根据DFT的性质可知X(3)=-2-2i。

偶对称 (时域)→偶对称 (频域), 奇对称 (时域)→奇对称 (频域) 纯实(时域)→共轭偶对称(频域), 纯虚(时域)→共轭奇对称(频域)

(10)滤波器系数量化使零极点位置的取值范围由一个连续域变为一个离散的z平面点阵,从而造成零极点漂移,导致系统特性的改变。如果在z平面上量化位置的分布密度是在实轴附近分布得稀,在虚轴附近分布得密,那么对低通、高通、带通滤波器中哪种滤波器量化误差较大<u>低通、高通</u>。

2. 判断题(每题3分, 共15分)

(错的请指出错误之处,并解释原因或给出正确结果)

(1)根据DFT的虚实、奇偶特性,如果随机信号序列的功率谱是实偶的,说明该信号序列是实偶的。

错。功率谱是实偶只能说明随机信号的自相关函数是实偶的。

(2)己知 $x(n)=a^n u(n)$, 其Z变换为 $X=\frac{1}{1-az^{-1}}$, 令y(n)=x(Nn), 则根据序列抽

取性质可得
$$Y(z) = X(z^{\frac{1}{N}}) = \frac{1}{1-az^{\frac{1}{N}}}$$
。错。 $Y(z) = \frac{1}{N} \sum_{k=0}^{N-1} X(e^{j\frac{2z}{N}k} z^{\frac{1}{N}})$

(3)用窗口法设计FIR数字滤波器,由于加了窗口函数使滤波器的理想特性受到影响,主要表现在形成过渡带和在过渡带两旁产生肩峰和余振。通过改变窗口的大小可以减小过渡带以及在过渡带两旁产生的肩峰和余振,达到改善滤波器性能的目的。

错。减小肩峰必须改变窗函数形状。

(4)按时间抽取(DIT)的FFT运算,是按输入序列x(n)在时域的奇、偶次序进行分组,所以只要输入是码位倒置、输出是自然顺序的,则可判断为是按时间抽取(DIT)的FFT运算。

错。主要应看蝶形结构造。

(5)以非递归结构实现的数字滤波器肯定是FIR数字滤波器,下图所示的结构为递归结构,故所对应的滤波器是IIR数字滤波器。

错。本题 $H(z)=\frac{1-4z^{-1}}{1-2z^{-1}}=1+2z^{-1}$,由于零极点抵消,虽是递归结构,但从响应效果看属FIR数字滤波器。

3.简答题(每题5分,共15分)

(1)x(n)=cos($\frac{2}{7}m-\frac{\pi}{4}$)和x(n)= $e^{\left(\frac{1}{6}n-\pi\right)}$ 是否周期序列?若是,周期为多少?

$$\frac{\pi}{2}\cos(\frac{2}{7}\pi n - \frac{\pi}{4}) = \cos[\frac{2}{7}\pi(n+rN) - \frac{\pi}{4}] = \cos[\frac{2}{7}\pi n + \frac{2}{7}\pi N - \frac{\pi}{4}]$$

只要 $\frac{2}{7}mN=2k\pi$ 或r=7k/N,即找一个k使7k/N 是正整数即可。这可以

做到,所以 $\cos(\frac{2}{7}m-\frac{\pi}{4})$ 是周期序列。

若令 $e^{\left(\frac{1}{6}n-\pi\right)}=e^{\left(\frac{1}{6}n+N/\pi\right)}$,应有 $rN/8=2k\pi$,有理数rN/8不可能等于无理数,所以 $e^{\left(\frac{1}{6}n-\pi\right)}$ 不是周期序列。

(2)已知x(n)和y(n)都是N点实序列,X(k)和Y(k)分别是它们的N点DFT, 今需要从X(k)、Y(k)求x(n)、y(n)的值。为了提高运算效率,怎样用 一次N点IFFT运算完成上述要求? (P42)

	时域	7万列;	$\mathbb{E}X(k)$, $X_1(k)$, $X_2(k)$
FFT			频 域
* * *	$\mathbf{x}(\mathbf{n}) = \mathbf{x}_1(\mathbf{n}) + i\mathbf{x}_2(\mathbf{n})$	+	$X(k)=X_1(k)+iX_2(k)$
	$x_1(n)$	+	$X_1(k) = \frac{1}{2}[X(k) + X*(N-k)]$
	$ix_i(n)$	*	$X_2(k) = \frac{1}{2} [X(k) - X^*(N-k)]$
IFFT x($\mathbf{a}) = \mathbf{x}_1(\mathbf{a}) + \mathbf{i}\mathbf{x}_2(\mathbf{a})$		$\frac{2}{X(k)=X_1(k)+iX_2(k)}$

x(n)、y(n)对应上表的 $x_1(n)$ 、 $x_2(n)$,则X(k)、Y(k)对应上表的 $X_1(k)$ 、 $X_2(k)$, 问题成为已知 $X_1(k)$ $X_2(k)$ 求 $x_1(n)$ 、 $x_2(n)$ 。 具体计算步骤是

- 1. 计算X(k)+iY(k)=X(k)
- 2. 作一次N点IFFT,所得结果的实部和虚部分别是x(n)和 y(n)。
- (3)下图所示是信号1和信号2的功率谱密度,试问信号1和信号2中哪个信号的相关性强? 为什么?

答: 信号1的相关性强。在傅氏变换对中, 正态分布的功率谱密度函数越窄则其相关函数越 宽,即相关性越强。

二. 证明题(每题6分,共12分)

1. 如果 x(n)是周期为N的周期序列,那么 x(n)也是周期为2N的周期序 列。 先将 $\tilde{x}(n)$ 视为周期为N的周期序列,其离散傅里叶级数的系数用 $\tilde{X}_1(k)$ 表示: 再将 $\widehat{x}(n)$ 视为周期为2N的周期序列,其离散傅里叶级数的系数用 $\widehat{X}_2(k)$ 表示。 $\tilde{X}_1(k)$ 和 $\tilde{X}_2(k)$ 分别是周期为N和2N的周期序列。试证:

证明:
$$\widetilde{X}_{2}(k) = \begin{cases} 2 \, \widetilde{\chi}_{1}\left(\frac{k}{2}\right), & k$$
 偶数
$$\widetilde{X}_{2}(k) = \begin{cases} 0, & k$$
 为奇数
$$\widetilde{X}_{2}(k) = \sum_{n=0}^{2N} \widetilde{\chi}(n) W_{2N}^{nk} = \sum_{n=0}^{N-1} \widetilde{\chi}(n) W_{2N}^{nk} + \sum_{n=0}^{N-1} \widetilde{\chi}(n) W_{2N}^{nk} = 0$$
 注: 与97年老 顯光初

注: 与97年考题类似

2. 一个具有零均值和方差为 σ_x^2 的平稳白噪声实序列x(n),作为具有单位脉冲响应为h(n)的系统输入,输出为y(n),试证: $E[x(n)y(n)]=h(0)\sigma_x^2$

证明: 利用输入输出互相关定理

$$E[x(n)y(n+m)] = R_{xy}(m) = R_x(m) *h(m) = \sigma_x^2 \delta(m) *h(m) = \sigma_x^2 h(m)$$

$$E[x(n)y(n)] = R_{xy}(m)|_{m=0} = \sigma_x^2 h(m)|_{m=0} = h(0) \sigma_x^2$$

三. 简单计算题(共16分)

1.(5分)以10kHz的速率对模拟数据进行采样以分析其频谱。现计算了2048个取样的离散 傅里叶变换,问频谱取样之间的频率间隔为多少赫兹?

答: 频谱取样之间的频率间隔为 10000/2048=4.88 赫兹

2.(5分)已知一模拟原型滤波器的系统函数为 $H_s(s) = \frac{3s+2}{2s^2+3s+1}$, 采样周期为T, 请用 脉冲响应不变法将其转换成相应的数字滤波器。

答:
$$H_o(s) = \frac{3s+2}{2s^2+3s+1} = \frac{1}{2s+1} + \frac{1}{s+1} = \frac{1/2}{s+1/2} + \frac{1}{s+1}$$
 极点是-1/2和-1. 相应的数字滤波器 $H(z) = \frac{T/2}{1-e^{-\frac{T}{2}}z^{-1}} + \frac{T}{1-e^{-T}z^{-1}}$

- 3. (6分)一个采样数字处理低通滤波器如下图所示, H(z)的截止频率为ωc=0.2π。整个 系统相当于一个模拟低通滤波器。今采样频率fs=200Hz,问等效的模拟低通滤波器的 截止频率fc为多少赫兹?若fs=1000Hz,而H(z)不变,这时 等效的模拟低通滤波器的截止频率fc又为多少?
- 解: 数字频率2π对应采样频率200Hz, 因此截止频率 ω_c=0.2π对应等效的模拟低通滤波器截止频率fc=20Hz。 若fs=1000Hz, 对应的模拟截止频率fc=100Hz。

四. 分析计算题(共40分)

1. (10分)已知序列x(n)的z变换为X(z) (1)如果x(n)在n<0时等于零,试证 lim X(z)=x(0)。

证明:
$$X(z) = \sum_{s=0}^{\infty} x(n)z^{-s} = x(0) + x(1)z^{-1} + x(2)z^{-2} + \cdots$$

当 $z \to \infty$ 时, z^{-1} 、 z^{-2} 、 z^{-3} ……均趋于0,上式只留下 $x(0)$ 一项,因此 $\lim_{z \to \infty} X(z) = x(0)$
(2)如果 $x(n)$ 在 $n > 0$ 时等于零,那么 $x(n)$ 是什么关系?

答: X(z)的两极点分别是z=1/2和z=2。若X(z)的收敛域包括单位圆,收敛域一定是环状,

即
$$x(n)$$
是双边序列。 $x(n)=\frac{1}{3}\cdot(\frac{1}{2})^nu(n)+\frac{1}{4}\cdot-2^nu(-n-i)$, $x(0)=1/3$

- 2. (10分)下图所示是一个一阶因果稳定系统的结构,要求:
- (1)列出系统的差分方程和系统函数:
- (2)求出 b_1 =0.5, a_0 =0.5和 a_1 =1情况下的单位脉冲响应b(n);
- (3)用几何法确定系统的大致频响H(e^{ia})= |H(e^{ia})|e^{ik(a)}(画出幅频特性曲线 和相频特性曲线)。

$$x(n) \xrightarrow{b_1} w(n) \xrightarrow{z^1} w(n-1) \xrightarrow{a_0} y(n)$$

解: (1)设两个参照点为
$$w(n)$$
, $w(n-1)$, 可列两方程 $\begin{cases} w(n) = b_1 w(n-1) + x(n) \\ y(n) = a_n w(n) + a_n w(n-1) \end{cases}$

取z变换,得
$$\{ \begin{array}{l} W(z) = b_1 W(z) z^{-1} + X(z) \\ Y(z) = a_0 W(z) + a_1 W(z) z^{-1} \end{array}, \quad \bigoplus \begin{cases} W(z) = \frac{X(z)}{1 - b_1 z^{-1}} \\ W(z) = \frac{Y(z)}{a_2 + a_2 z^{-1}} \end{array}$$

两式合并,得系统函数为
$$H(z) = \frac{Y(z)}{X(z)} = \frac{a_0 + a_1 z^{-1}}{1 - b_1 z^{-1}}$$

取反z变换: $y(n)-b_1y(n-1)=a_0x(n)+a_1x(n-1)$ 差分方程: $y(n)=a_0x(n)+a_1x(n-1)+b_1y(n-1)$

(2)
$$H(z) = \frac{-0.5 + z^{-1}}{1 - 0.5z^{-1}} = \frac{-0.5}{1 - 0.5z^{-1}} + \frac{z^{-1}}{1 - 0.5z^{-1}}$$

$$h(n) = -0.5(0.5)^n u(n) + (0.5)^{n-1} u(n-1)$$

at $a_{m,n}$

- (3) 极点z。=0.5, 零点zo=2, 零极点呈共轭倒数, 所以这是全通函数, 辐频特性曲线是常数 1。
- 3.(10分)己知线性移不变离散时间系统, 其差分方程为

$$y(n)=2.5y(n-1)-y(n-2)+x(n-1)$$

- (1)求系统函数H(z)=Y(z)/X(z),画出H(z) 的零、极点分布图:
- (2)如果系统是因果的,求系统的单位脉冲响应h(n),指出系统的稳定性:
- (3)如果系统是稳定的。求系统的单位脉冲响应h(n),指出系统的因果性。

解: (1) 系统函数
$$H(z) = \frac{z^{-1}}{1 - 2.5z^{-1} + z^{-2}} = \frac{z}{z^2 - 2.5z + 1} = \frac{z}{(z - 2)(z - 0.5)}$$

$$= \frac{2}{3} \left(\frac{1}{1 - 2z^{-1}} - \frac{1}{1 - 0.5z^{-1}} \right)$$
 极点 $z_{c1} = 2$, $z_{c2} = 1/2$: 零点 $z_{c1} = 0$. $z_{c1} = \infty$

- $=\frac{2}{3}(\frac{1}{1-2z^{-1}}-\frac{1}{1-0.5z^{-1}})$ 极点 $z_{c1}=2$, $z_{c2}=1/2$; 零点 $z_{01}=0$, $z_{01}=\infty$ (2) 如果系统是因果的,ROC: |z|>2, 系统不稳定。 $h(a)=\frac{2}{3}[2^nu(n)-0.5^nu(n)]$
- (3) 如果系统是稳定的,ROC: 1/2 < 1/2, 系统非因果: $h(n) = \frac{2}{3} [-2^n u(-n-1) 0.5^n u(n)]$
- 4. (10分)己知某系统的差分方程为少y(n)= x(n) -x(n-4)
 - (1)求系统函数H(z)及其零点;
 - (2)求系统的单位脉冲响应h(n), 画出系统的幅频特性曲线和相频特性曲线:
 - (3)如果想用该系统阻止直流、50Hz工频及其2、3、4等高次谐波的通行,则系统的采样频率应是多少?
- 解: (1) 系统函数 $H(z) = 1 z^{-4}$, 零点 $z_0 = e^{j\frac{2\pi k}{4}}$, k=0,1,2,3
 - (2) 系统单位脉冲响应h(n)=δ(n)-δ(n-4).

輻频特性为梳状滤波, $h(n)=\{1,0,0,0,-1\}$, $\phi(\omega)=\frac{\pi-5-1}{2}\omega=\frac{\pi}{2}-2\omega$

- (3)想阻止直流、50Hz工频及其2、3、4等高次谐波的通行,频率应是200Hz。
- 注: 与97年题类似

五. 设计题(共32分)

- 1. (6分)已知h_a(t)、s_a(t)分别是一个时域连续的线性时不变滤波器的冲激响应和阶跃响应,令h(n)和s(n)分别表示一个时域离散的线性时不变数字滤波器的单位脉冲响应和阶跃响应。问
 - (1)如果 $h(n) = h_a(nT)$,是否 $s(n) = \sum_{k=1}^{n} h_a(kT)$?
 - (2)如果s(n)= s_a(nT), 是否h(n)= h_a(nT)?

答: (1)是。
$$u(n) = \sum_{m=0}^{\infty} \delta(n-m)$$
, $s(n) = u(n) * h(n) = \sum_{m=0}^{\infty} h(n-m)u(m) = \sum_{m=0}^{\infty} h[(n-m)T]) \underbrace{k=n-m}_{k=\infty} \sum_{k=0}^{n} h_{\sigma}(kT)$
(2)否。若干数的和相等未必这些数分别相等。

2. (8分)用频率采样法设计一线性相位FIR数字滤波器。在[0, 2π]区间上对H₄(e^{lo})进行15点均匀采样,其采样为H(k)=H_ke^{jok},已知幅度采样值为

$$H_{k} = \begin{cases} 1, & k=0 \\ 0.5, & k=1,14 \\ 0, & k=2,3,\dots,13 \end{cases}$$

- (1)设计采样值的相位 θ_k ,指出该滤波器属第几类线性相位FIR数字滤波器;
- (2)求该滤波器的单位脉冲响应h(n)

答: (1)
$$\left. \left\langle \Theta_k \right| = -\frac{N-1}{2} \omega \right|_{\alpha = \frac{2\pi}{N} k} = \frac{\pi k (N-1)}{N}, N=15$$
, 这是第一类滤波器

(2)
$$R(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k) W_N^{-nk} = \frac{1}{N} \sum_{k=0}^{N-1} H_k e^{j\theta_k} e^{j\frac{2\pi}{N}nk}$$

$$= \frac{1}{N} \left[1 \cdot e^{j\theta_k} e^{j\theta_k} + 0.5e^{j\frac{\pi \cdot 1 \cdot (N-1)}{N}} e^{j\frac{2\pi}{N}n \cdot 1} + 0.5e^{j\frac{\pi \cdot (N-1)(N-1)}{N}} e^{j\frac{2\pi}{N}n(N-1)} \right]$$

$$\therefore e^{j\frac{\pi \cdot (N-k)(N-1)}{N}} = e^{j\frac{\pi \cdot (N-1)}{N}} e^{j\frac{\pi \cdot (N-1)}{N}} e^{j\frac{\pi \cdot (N-1)}{N}} = e^{j\frac{\pi \cdot (N-1)}{N}} e^{j\frac{\pi \cdot (N-1)}{N}}$$

$$\therefore \frac{1}{N} \left[1 + 0.5e^{j\frac{\pi \cdot (N-1)}{N}} e^{j\frac{2\pi}{N}n} + 0.5e^{-j\frac{\pi \cdot (N-1)}{N}} e^{-j\frac{2\pi}{N}n} \right] = \frac{1}{15} \left[1 + 0.5e^{j\frac{14\pi}{15} + \frac{2\pi n}{15}} + 0.5e^{-j\frac{14\pi}{15} + \frac{2\pi n}{15}} \right]$$

$$= \frac{1}{15} \left[1 + \cos(\frac{14\pi + 2\pi n}{15}) \right]$$

3. (10分)用双线性变换法设计一个二阶巴特沃兹(Butterworth)高通数字滤波器,采样频率为%=9kHz, 3dB截止频率为3kHz, 己知二阶巴特沃兹滤波器的归—化低通原型为

$$H(s) = \frac{1}{s^2 + \sqrt{2s+1}}$$
, 要求

- (1)设汁该高通滤波器的系统函数H(z):
- (2)画出该滤波器的直接II型(正准型)实现结构。

解: (预畸?)

高通DF的数字截止频率为 $2\pi\cdot3/9=2\pi/3$,可由低通DF移项 π 而来,见图,所以只要设计一个3dB截止频率为 $\pi/3$ 即1500Hz的低通,然后令z等于-z即可。令 $\Omega_c=2\pi\cdot1500=3000\pi$

$$H(z) = \frac{1}{\left(\frac{s}{\Omega_c}\right)^2 + \sqrt{2}\left(\frac{s}{\Omega_c}\right) + 1} \Big|_{z = \frac{2}{T} \frac{1+z^{-1}}{1-z^{-1}}}$$

4. (8分)通常定点制都把数限制在±1之间,在定点制运算中为了使输出不发生溢出,往往必须在网络的输出加一比例因子A,即网络的输出为

$$y(n) = A \sum_{m=0}^{\infty} h(m)x(n-m)$$

若输入x(n)的动态范围为土xmax,则比例因子A可以这样来确定

$$|y(n)| \leq A \sum_{m=0}^{\infty} |h(m)| |x(n-m)|$$

因此
$$y_{\max} \leq Ax_{\max} \sum_{m=0}^{\infty} |h(m)|$$

故只要
$$A < \frac{1}{x_{\text{teax}} \sum_{n=1}^{\infty} |h(m)|}$$

则可使ymax<1成立,从而保证不发生溢出。今有二阶网络用定点制运算

$$H(z) = \frac{1}{(1 - 0.9z^{-1})(1 - 0.8z^{-1})}$$

输入动态范围为x_{max}≤1,为使运算过程中任何地方都不出现溢出,试问当用下图所示的直接型结构实现时,比例因子A应在什么范围? 信号的最大输出y_{max} 为多少

(注: 在定点制运算中,加法运算会造成溢出,乘法运算不会造成溢出,除非是滤波器系数的绝对值大于1的情况)

答: 因为
$$H(z)|_{z=1} = H(e^{j\omega})|_{\omega=0} = \sum_{n=0}^{\infty} h(n)e^{-j\alpha n}|_{\omega=0} = \sum_{n=0}^{\infty} h(n)$$

$$\sum_{n=0}^{\infty} |h(n)| \ge |\sum_{n=0}^{\infty} h(n)| = |H(z)|_{z=1}| = \frac{1}{(1-0.9)(1-0.8)} = 500$$
若 $A < \frac{1}{x_{\max} \sum_{m=0}^{\infty} |h(m)|}$, 必有 $A < \frac{1}{x_{\max} |H(z)|_{z=1}|}$

本题
$$y_{\text{snax}} < 1/1.7 = 0.58$$
, 须满足 $A < \frac{0.58}{x_{\text{max}} |H(z)|_{z=1}} = \frac{0.58}{1 \times 500} = 0.00116$

信号的最大输出[y_{max}]为0.58

o

南京邮电大学 2007/2008 学年第一学期

《数字信号处理:》期末试卷(答案的标后)

院(系)			Ŧ	- -		XI.ID_			
题号 一二二	<u>=</u> 129	五	六	セーハ	九	1	总分		
得分 (-7.	7.	·							
一、填空题				*	· · · · · · · · · · · · · · · · · · ·				
•	$x(n) = \sin\left(\frac{\pi}{8}n\right)$							•).
系统函数。	H(z)的收敛域包 H(z)的收敛域包	含∞时	H(z)	是 (٠	· · ·) 系统。 系统。
3. 75 X (e'):	= FT[x(n)],则	FT[x(n)])e ^{1ω}] (的结果为	j (),	
4. UMIX (e)	FT[x(n)], $= x(n) * h(n).$	$H(e^{j\omega})$	$= F \Pi h$	(n)]		<u>;</u>			
则. $Y(e^{i\omega}) = F([y])$	- x(n) = n(n)	v(n) = x	(n) - h(n)					
$W(e^{j\omega}) = FT(i)$),				-
					77.				-
5. x(n)的 N。) 的结果、	EL DEL TEX(K)	表示。	X(x)是	在单位图	N1: (. • •		-	, ·
	Git E labele oor sacke	ι (-61): 111 -	SACIO II	ia.					
性质。	设序列的实部的	i ie) 러드마다.	突拱县	·14 (1
	= x(n) * h(n) = x	inj#l ho	加的长	度分別	为州和	N xu	n)和 h(n)	的立て	M. L
11.1.1 智利(特. C. 6.1)	H w(tt)没为。 w	(n) = y(n)	$y_{\lambda} = \chi(y)$	i) * h(n)	的条件。	提(一) a
8. 对信号进行	了频谱分析时、	截斯信·	号引起	的酸糖	改应表现	し为西グ	方面:	-	
•)_和	(,),		
9. 线性相位1	FIR 滤波器的单	位脉冲	响应力	(n)应满。	足条件(,),	
10. 将模拟滤	波器的传输函数	$H_{\kappa}(s)$ \$	专换为	数字滤池	器的系统	先再数	11(:)f935	ガカナディ カカナディ	7期种。
ζ		ノ和					(4)),	<1 ****
								- v	

二、完成下面各题

- 1. 己知周期序列 $\bar{x}(n) = \sum_{k=-\infty}^{\infty} \delta(n-8k)$, 求 $X(e^{i\omega}) = \text{FT}[\bar{x}(n)]$ 。
- 2. 已知系统的输入序列 $x(n) = R_4(n)$. 系统单位脉冲响应 $h(n) = a^n u(n)$. $0 < \alpha < 1$. 求系

统的输出序列 y(n)。

- 3. 已知 $x(n) = a^{|n|}$,求X(z) = ZT[x(n)]。
- 4. 试叙述用双线性变换法和脉冲响应不变法设计数字低通滤波器的基本形骤。
- . 5. 试画出 N=8 点的基 2DIT-FFT 运算流图。
 - 6. 试叙述 IIR 滤波器级联型结构和并联型结构相对比的优缺点。

三、计算题

求原序列 x(n).

- 2. 已知 $H_s(s) = \frac{2}{s^2 + 3s + 2}$,试用脉冲响应不变法将 $H_s(s)$ 转换成 H(z),并画出直接型结构。
 - 3. 设采样率转换系统输入为x(a,T₁),输出为y(a,T₂),
 - (1) 试画出信号整数倍内插系统原理框图, 并解释其中各功能框的作用。
- (2) 假设内插因子 1 5、请面出镜像频谱滤波器的幅频特性和系统中各点信号的频谱示意图。

考试题 (一) 解答

一、填空题

- 1. 序列 $x(n) = \sin\left(\frac{\pi}{8}n\right)$ 的周期是(16)。
- 系统函数 H(z)的收敛域包含单位圆时, H(z)是(稳定)系统。
 系统函数 H(z)的收敛域包含∞时, H(z)是(因果)系统。
- 3. FT[x(n)e^{jω_nn}]的结果为 (X(e^{j(ω-ω_i)}))。
- 4. $Y(e^{j\omega}) = FT[y(n)] = (X(e^{j\omega}) \cdot H(e^{j\omega}))$ $W(e^{j\omega}) = FT[w(n)] = (\frac{1}{2\pi}X(e^{j\omega}) * H(e^{j\omega})).$
- 5. X(k)是在单位圆上(N点等间隔采样)的结果。
- 6. 有限长复数序列的实部的傅里叶变换具有(共轭对称)性质。
- 7. w(n) = y(n) = x(n) * h(n)的条件是($L \ge N + M 1$)。
- 8. 截断信号引起的截断效应表现为两方面:(通带内有波动)和(阻带衰减不够大)。
- 9. 线性相位 FIR 滤波器的单位脉冲响应 h(n)应满足条件为 (h(n) $= \pm h(N-1-n)$)。
- 10. 将模拟滤波器的传输函数 $H_{\bullet}(s)$ 转换为数字滤波器的系统函数 H(z) 的常用方法有两种: (脉冲响应不变法) 和(双线性变换法)。

二、完成下面各題

I. 解: prel 求周期信号的 FT 用到的基本公式为

$$X(e^{j\omega}) = \text{FT}[\bar{x}(n)] = \frac{2\pi}{N} \sum_{k=-\infty}^{\infty} \tilde{X}(k) \delta\left(\omega - \frac{2\pi}{N}k\right)$$
式中... $\bar{X}(k) = \text{DFS}[\tilde{x}(n)] = \sum_{n=0}^{N-1} \tilde{x}(n) e^{-j\frac{2\pi}{N}kn}$
该题中 $N = 8$, $\bar{X}(k) = \sum_{n=0}^{N-1} \bar{x}(n) e^{-j\frac{2\pi}{N}kn} = \sum_{n=0}^{7} \delta(n) e^{-j\frac{2\pi}{N}kn} = 1$

$$X(e^{j\omega}) = \frac{\pi}{4} \sum_{k=-\infty}^{\infty} \delta\left(\omega - \frac{\pi}{4}k\right)$$

2. 解:
$$y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} R_4(m) a^{n-m} u(n-m), m \le n, 0 \le m \le 3$$

 $n < 0, y(n) = 0$
 $0 \le n \le 3, y(n) = \sum_{m=0}^{n} a^{n-m} = a^m \frac{1-a^{-n-1}}{1-a^{-1}}$
 $4 \le n, y(n) = \sum_{m=0}^{3} a^{n-m} = a^m \frac{1-a^{-4}}{1-a^{-1}}$
写成统一表达式为

$$y(n) = \begin{cases} 0, & n < 0 \\ a^n \frac{1 - a^{-n-1}}{1 - a^{-1}}, & 0 \le n \le 3 \\ a^n \frac{1 - a^{-1}}{1 - a^{-1}}, & n \ge 4 \end{cases}$$

第一部分是一个因果序列的 Z 变换,要求 $|az^{-1}| < 1$,得到收敛域为 $|a| < |z| \le \infty$,第二部分要求 |az| < 1,得到收敛域为 $|z| < |a|^{-1}$ 。取它们收敛域公共部分,最后得到收敛域为 $|a| < |z| < |a|^{-1}$ 。在该环状域中,Z 变换为

$$X(z) = \frac{1}{1-az^{-1}} + \frac{az}{1-az} = \frac{1-a^2}{(1-az)(1-az^{-1})}$$
, 收敛域为 $|a| < |z| < |a|^{-1}$

- 4. 辉: (1) 确定数字低通滤波器的指标;
 - (2) 将数字低通滤波器的指标要求转换成模拟低通滤波器的指标要求:
 - (3) 设计模拟低通滤波器;
 - (4) 将模拟低通滤波器按照双线性变换法或者脉冲响应不变法转换成数字低通滤波器。
- 5. 解: 画出 8 点基 2DITFIT 运算流图如图 \$10.1.1 所示。
- 6. 解: IIR 滤波器级联型结构: 能独立地调节零极点位置,运算速度较慢。 IIR 滤波器并联型结构: 能独立地调节极点位置,运算速度快。零点位置较难调整。

PS 10.1.1

三、计算题

1. 已知
$$X(z) = \frac{-3z^{-1}}{2-5z^{-1}+2z^{-2}}$$
, 0.5< $|z|$ < 2, 求原序列 $x(n)$.

$$\cancel{R7}: \quad X(z) = \frac{-3z^{-1}}{2 - 5z^{-1} + 2z^{-2}} = \frac{-3z^{-1}}{(2 - z^{-1})(1 - 2z^{-1})} = \frac{-1.5z}{(z - 0.5)(z - 2)}$$

$$x(n) = \frac{1}{2\pi i} \oint_{c} X(z) z^{n-1} dz \qquad F(z) = X(z) z^{n-1} = \frac{-3 \cdot z^{n}}{2(z - 0.5)(z - 2)}$$

 $n \ge 0$ c 内有极点 0.5,

$$x(n) = \text{Re } s[F(z), 0.5] = 0.5^n = 2^{-n}$$

n<0。c内有极点 0.5、0、但 0 是一个 n 阶极点, 改求 c 外极点窜数, c 外极点只有 2.

$$x(n) = -\operatorname{Re} s[F(z), 2] = 2^n$$

... 最后得到... $x(n) = 2^{-n}u(n) + 2^nu(-n-1) = 2^{-|n|}, \infty < n < -\infty$...

2. 己知 $H_{a}(s) = \frac{2}{s^2 + 3s + 2}$,试用脉冲响应不变法将 $H_{a}(s)$ 转换成 H(z). 并画出直接纠结构。

解:
$$H_s(s) = \frac{2}{s^2 + 3s + 2} = \frac{2}{(s+1)(s+2)} = \frac{2}{s+1} - \frac{2}{s+2}$$

$$H(z) = \frac{2T}{1 - e^{-T}z^{-1}} - \frac{2T}{1 - e^{-2T}z^{-1}} = \frac{2T(e^{-T} - e^{-2T})z^{-1}}{1 - (e^{-T} + e^{-2T})z^{-1} + e^{-3T}z^{-2}}$$

画出直接型结构如图 SIO.1.1 所示。

3. 解: (1) 信号整数倍内插系统原理框图如图 S10.1.2 所示。

按照整数因子 I 内插的过程是: 首先在 x(n) 的两个相邻样值之间插入 I —1 个零样值,称为"零值内插",用符号 I I 表示。然后再进行滤波,则得到按整数因子 I 内插的序 $y(m)=x_*(mT_*)$ 。

(2) 理想情况下,镜像滤波器 $h_i(n)$ 的频率响应特性为 $H_i(e^{j\omega_i}) = \begin{cases} C, & 0 \leq |\omega_i| < \pi/I \\ 0, & \pi/I \leq |\omega_j| \leq \pi \end{cases}$ 各点信号的频谱如图 S10.1.3 所示。

图 \$10.1.3 按照整数因子7内插过程中的额域示载图 (1-5)