LGESQL: Line Graph Enhanced Text-to-SQL Model with Mixed Local and Non-Local Relations

—— ACL 2021

Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu and Kai Yu

X-LANCE Lab, Department of Computer Science and Engineering
MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University
Shanghai Jiao Tong University, Shanghai, China
State Key Lab of Media Convergence Production Technology and Systems, Beijing, China
AISpeech Co., Ltd., Suzhou, China

Thursday 24th June, 2021

Outline

- Introduction and Motivation
- LGESQL Model
- Experimental Results
- Conclusion

What is Text-to-SQL?

Heterogeneous Graph Encoding Problem

Ruisheng Cao (X-LANCE)

Thursday 24th June, 2021

4 / 28

1. Ignore multi-hop relations

some empirically useful meta-paths

- 4 ロ b 4 個 b 4 重 b 4 重 b 9 Q @

1. Ignore multi-hop relations

- Semantics embedded in the structure of edges
 - Meta-path captures multi-hop connections
 - Path length ↑ ⇒ # of meta-paths exponentially ↑

- question node
- table node
- olumn node

--> relation

2. Oversmoothing problem

RATSQL (Wang et al., 2020a)

Ruisheng Cao (X-LANCE) Thursday 24th June, 2021 7 / 28

2. Oversmoothing problem

- Distinguish local and non-local relations
 - Local means 1-hop relations
 - Non-local means composite relations with meta-path length > 1
 - Complete graph leads to the over-smoothing problem

Outline

- Introduction and Motivation
- LGESQL Model
- Experimental Results
- Conclusion

Overall model architecture

Graph Input Module

Question nodes: X_q^0

Which semester has most students registered?

Initial edge embeddings:

Z⁰: local

Z_{nlc}: non-local

Graph Input Module

Graph Hidden Module (w/o line graph)

RGAT: relational graph attention network

$$\mathbf{X}^{l+1} = \mathrm{RGAT^n}(\mathbf{X}^l, \mathbf{Z}^l, G^n)$$
 node features edge features graph structure

Iteration in one RGAT layer

$$e_{ij}^{(h)} = \frac{\mathbf{x}_i \mathbf{W}_{\mathbf{Q}}^{(h)} (\mathbf{x}_j \mathbf{W}_{\mathbf{K}}^{(h)} + \mathbf{z}_{ij})^{\mathrm{T}}}{\sqrt{d_x/H}}$$
$$\alpha_{ij}^{(h)} = \operatorname{softmax}\{e_{ij}^{(h)}\}_i$$

$$\alpha_{ij}^{(s)} = \operatorname{softmax}\{e_{ij}^{(s)}\}_{j}$$

$$\widehat{\boldsymbol{x}}_{i}^{(h)} = \sum_{j \in \mathcal{N}(i)} \alpha_{ij}^{(h)} (\boldsymbol{x}_{i} \mathbf{W}_{V}^{(h)} + \mathbf{z}_{ij})$$

 z_{ij} : relation-aware edge features

(B) (B) (E) (E) (E) (O)

Ruisheng Cao (X-LANCE) Thursday 24th June, 2021 13 / 28

Line Graph Construction

- If $v_1 \stackrel{e_1}{\to} v_2 \stackrel{e_2}{\to} v_3$ in the original graph, edge $e_1 \stackrel{v_2}{\to} e_2$ exists in the line graph
- No back-tracking: if $v_1 = v_3$, remove edge $e_1 \xrightarrow{v_2} e_2$ in the line graph
- Only the upper right figure has an edge in the line graph (Chen et.al, 2019b)

Ruisheng Cao (X-LANCE)

Thursday 24th June, 2021

Line Graph Construction

- An illustration of constructing the line graph from the original graph
 - Only local relations are used to construct the line graph

Graph Hidden Module (w/ line graph)

- Node/edge update in one hidden layer
 - Take node 4 and edge 4-5 as example

- question node
- table node
- olumn node
- edge" node

X^l: node embeddings

$$\mathbf{X}^{l+1} = \mathrm{RGAT}^{\mathrm{n}}(\mathbf{X}^{l}, \mathbf{Z}^{l}, G^{n})$$

Z^l: edge embeddings

$$\mathbf{Z}^{l+1} = RGAT^{e}(\mathbf{Z}^{l}, \mathbf{X}^{l}, G^{e})$$

Graph Hidden Module

- Integrate both local and non-local relations in the node-centric graph
 - Mixed static and dynamic embeddings

Graph Hidden Module

- Integrate both local and non-local relations in the node-centric graph
 - Multi-head multi-view concatenation

Graph Hidden Module

Graph Output Module

Outline

- Introduction and Motivation
- LGESQL Model
- Experimental Results
- Conclusion

Dataset

Spider: cross-domain zero-shot text-to-SQL benchmark (Yu et al., 2018b)

	Train	Dev
# of samples	8659	1034
# of databases	146	20
Avg # of question nodes	13.4	13.8
Avg # of table nodes	6.6	4.5
Avg # of column nodes	33.1	25.8
Avg # of nodes	53.1	44.1
Avg # of actions	16.3	15.4

- Text-to-SQL decoder is a structured grammar-based transition system (Yin and Neubig, 2017)
- Exact set match accuracy on dev and test set

 $Acc_{em} = \frac{\sum_{i=1}^{N} Equal(SQL_{i}^{p}, SQL_{i}^{g})}{N}$

- compare SQL queries directly
- Equal(pred, gold) ignores order, e.g. SELECT A, B = SELECT B, A

Ruisheng Cao (X-LANCE)

Main results

Model	Dev	Test	
Without PLM			
GNN (Bogin et al., 2019a)	40.7	39.4	
Global-GNN (Bogin et al., 2019b)	52.7	47.4	
EditSQL (Zhang et al., 2019b)	36.4	32.9	
IRNet (Guo et al., 2019)	53.2	46.7	
RATSQL (Wang et al., 2020a)	62.7	57.2	
LGESQL	67.6	62.8	
With PLM: BERT			
IRNet (Guo et al., 2019)	53.2	46.7	
GAZP (Zhong et al., 2020)	59.1	53.3	
EditSQL (Zhang et al., 2019b)	57.6	53.4	
BRIDGE (Lin et al., 2020)	70.0	65.0	
BRIDGE + Ensemble	71.1	67.5	
RATSQL (Wang et al., 2020a)	69.7	65.6	
LGESQL	74.1	68.3	
With Task Adaptive PLM			
SnadowGNN (Chen et al., 2021)	12.5	00.1	
RATSQL+STRUG (Deng et al., 2021)	72.6	68.4	
RATSQL+GRAPPA (Yu et al., 2020)	73.4	69.6	
SmBoP (Rubin and Berant, 2021)	74.7	69.5	
RATSQL+GAP (Shi et al., 2020)	71.8	69.7	
DT-Fixup SQL-SP (Xu et al., 2021)	75.0	70.9	
LGESQL+ELECTRA	75.1	72.0	

5.6 With GloVe

2.7 With BERT

1 2.3 With ELECTRA

Ablation study

Case studies

➤ LGESQL performs better in predicting **multi-table JOINs** by focusing on local DB connections

HARD: Count the number of United Airlines flights that arrive in Aberdeen.

RGATSQL: SELECT COUNT(*) FROM airlines JOIN airports WHERE airlines.airline = "val" AND airlines.airline = "val"

LGESQL: SELECT COUNT(*) FROM airlines JOIN flights JOIN airports WHERE airlines.airline = "val" AND airports.city = "val"

EXTRA: Which template type code is used by most number of documents?

RGATSQL: SELECT template.template_type_code FROM template GROUP BY template.template_type_code ORDER BY COUNT(*) DESC LIMIT 1

LGESQL: SELECT template.template_type_code FROM template
JOIN documents GROUP BY template.template_type_code ORDER
BY COUNT(*) DESC LIMIT 1

select max(c0) from t0 join t1 on c1=c2 where c3>"value"

Outline

- Introduction and Motivation
- LGESQL Model
- Experimental Results
- Conclusion

Conclusion

Main contributions

- Utilize a line graph to explicitly learn edge features
 - Extend node-centric RGAT into Dual RGAT
 - Local and non-local relations are treated differently
 - Graph pruning improves the discriminative capability of the encoder
- LGESQL achieves state-of-the-art results on the leaderboard of Spider,
 with GLOVE, BERT and task-adaptive PLM, in the exact set match partition

Thanks & QA

References

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov and Matthew Richardson. 2020a.

RAT-SQL: Relation-aware schema encoding and linking for text-to-SQL parsers.

In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7567–7578, Online. Association for Computational Linguistics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang and Dragomir Radev. 2018b.

Spider: A large-scale human-labeled dataset for complex and cross-domain semantic parsing and text-to-SQL task.

In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3911–3921, Brussels, Belgium. Association for Computational Linguistics.

Pengcheng Yin and Graham Neubig. 2017.

A syntactic neural model for general-purpose code generation.

In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 440–450, Vancouver, Canada. Association for Computational Linguistics.

Supervised community detection with line graph neural networks.

In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.