Path Integral Quantum Annealing (PIQA)

Lara Tatli

Level 3 Computing Project

Durham University

Overview

- Introduction
- Encoding Optimisation Problems
- Simulated Annealing
 - Preliminary Results
- Path Integral Quantum Annealing
- Conclusions & Future Work

Introduction

- Real-world optimisation problems are often too complex for brute-force approach
- Quantum annealing (QA) is a heuristic search¹ approach to solving such problems, resembling classical simulated annealing (SA)
- Objective: to compare speed-up of QA (specifically, PIQA) over SA

Heuristic search – a problem-generic solution strategy for solving NP-hard optimisation problems when exact solutions are impractical

Encoding Optimisation Problems

 A method of encoding combinatorial optimisation (CO) problems is required prior to solving

Classical Spin-glass Ising Hamiltonian²

$$\mathcal{H}_{Ising} = -\sum_{\langle i,j\rangle} J_{ij} s_i s_j - \sum_i h_i s_i$$

[2] Nishimori, Statistical Physics of Spin Glasses and Information Processing. Oxford University Press, 2001.

Simulated Annealing

- Start with random spin configuration
- Prepare new state with random spin flipped
- Accept or reject new state based on the Metropolis criterion
- Gradually lower temperature³

Metropolis Criterion

$$\mathcal{P}(accept) = e^{\frac{-\Delta E}{T_t}}$$

Preliminary Results

• SA performed and verified for a small 9-spin instance⁴

Path Integral Quantum Annealing

- QA leverages quantum tunnelling to escape local minima
- PIQA approximates QA using Trotter decomposition, effectively discretising the quantum system⁵

Trotter decomposition – Approximates the d-dimensional quantum system onto a (d+1)-dimensional classical system with multiple "Trotter slices" evolving in imaginary time

Path Integral Quantum Annealing (ctd.)

Effective PIQA Hamiltonian and Coupling Term⁶

$$\mathcal{H}_{PIQA} = -\sum_{k}^{P} \left(\sum_{i,j} J_{ij} s_i^k s_j^k + J_{\perp} \sum_{i} s_i^k s_i^{k+1} \right) \qquad \qquad J_{\perp} = -\frac{PT}{2} \ln \tanh \left(\frac{\Gamma}{PT} \right)$$

[6] Martoňák et al., Phys. Rev. B, 2002. Figure: Heim et al., Science, 2014.

Conclusions & Future Work

- SA and QA both aim to solve optimisation problems encoded into spin-glass Ising Hamiltonians
- SA may struggle to converge to a solution due to local minima
- QA can perform quantum tunnelling, but requires fine tuning of parameters
- PIQA implements QA numerically using a Monte Carlo approach
- Future Directions: Investigate larger-scale problems, parameter selection