

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Concepts In Discrete-Event Simulation

- A collection of entities (people and machines...) that interact together over time for one or more goals
- Model
 - An abstract representation of a system, usually containing structural, logical or mathematical relationship that describe a system in term of state, entities and their attributes, sets, processes,...
- System state
 - ☐ A collection of variables in any time that describe the system
- Entity
 - Any object or component in system that require explicit representation (server, customer,...)
- Attributes
 - □ The properties of a given customer
- List
 - A collection of associated entities, ordered in some logical fashion (FIFO, priority,...)

Concepts In Discrete-Event Simulation (cont.)

- Event
 - □ An instantaneous occurrence that changes the state of a system
- Event Notice
 - ☐ A record of a event to occur at the current or future time (type and time)
- Event List
 - □ FEL (future event list)
- Activity (unconditional wait)
 - □ A duration time of specified length (service time or interarrival time,...)
 - □ Deterministic, Statistical and functional
- Delay (conditional wait)
 - □ A duration of time of unspecified indefinite length, which is not known until it ends (customer delay in waiting line)
- Clock
 - □ A variable representing simulated time

٣

Able-Baker Call center

- System state
 - □ LQ(t): the number of callers waiting to serve
 - □ LA(t):0 or 1 indicate Able is idle or busy
 - □ LB(t):0 or 1 indicate Baker is idle or busy
- Entities
 - □ Caller
- Events
 - ☐ Arrival event, service completion by Able or Baker
- Activities
 - ☐ Service time by Able/Baker and Inter-arrival time
- Delay
 - ☐ A caller wait in queue until Able or Baker becomes free

Event scheduling

- How does each event affect system state, attributes?
- How activities are defined (deterministic, probabilistic,...)?
- Which events trigger the beginning of each delay?
- What is system state at time 0?

Event scheduling (cont.)

T1<t2<...T<n

FEL is ordered by event time

The stop time of simulation

- AT time 0 the simulation stop time is specified,T_E
- Run length TE is determined by the simulation itself.
 - ☐ The time of occurrence of some specified events

٩

World views of Model for simulation (Three Types) Polling And Interrupt

- Event-scheduling world view
 - □ We concentrate on events and their effects on system
- Process-interaction world view (like processes in OS)
 - □ We define the model in terms of entities or objects and their life cycle of an entity
 - It has intuitive appeal and allow to describe the process flow in terms of high level block or network constructs
 - Event scheduling is hidden
 - ☐ Both use a variable time advance (clock is advanced to next imminent event)
- Activity scanning world view
 - Use fixed time increment and rule based approach to decide which activity can begin
 - At each clock advance the conditions for each activity are checked and if they are true then corresponding activity begins
 - It is suitable for small system
 - It is very fast

Event Scheduling example (Grocery Center)

- System State
 - \square LQ(t),LS(t)
 - Entities
 - ☐ The server and customer are not explicitly modeled
 - Events
 - ☐ Arrival (A), Departure (D), Stopping event (E=60)
 - Event notices
 - □ (A,t), (D,t), (E,60)
 - Activities
 - □ Inter-arrival time, service time
 - Delay
 - ☐ Customer time spent in waiting time

clock	System state		Future Event List	Comment	Cumulativ	
•	LQ(t)	LS(t)			e Statistics	
					В	MQ
0	0	1	(A,1)(D,4)(E,60)	First A occures (a*=1) schedule next A (s*=4) schedule first D	0	0
1	1	1	(A,2)(D,4)(E,60)	Second A occures:(A,1) (a*=1) schedule next A (Customer delayed)	1	1
2	2	1	(D,4) (A,8)(E,60)	Third A occures:(A,2) (a*=6) schedule next A (Two customer delayed)	2	2
4	1	1	(D,6) (A,8)(E,60)	First D occures:(D,4) (s*=2) schedule next D (Customer delayed)	4	2
6	0	1			6	2

Computing Mean Response Time (cont.)

- - Entities
 - ☐ (Ci,t), representing customer Ci who arrive at time t
 - Event notices
 - ☐ (A,t,Ci), the arrival of customer Ci at future time t
 - □ (D,t,Cj), the departure of customer Cj at future time t
 - Set
 - □ "CHECKOUT LINE" the set of all customers currently at the checkout counter, ordered by time of arrival
 - Response time
 - □ CLOCK TIME-attribute "time of arrival"
 - S:sum of customer response time
 - N_D: all number of customers that currently are departure
 - F:Total number of customers that spend more than 5 minutes in system

٠,

Simulation Table

J	clock	System state		CHECKOUT LINE	Future Event List	Cumulative Statistics		
		LQ(t)	LS(t)			S	N _D	F
	0	0	1	(C1,0)	(A,1,C2)(D,4,C1)(E,60)	0	0	0
	1	1	1	(C1,0)(C2,1)	(A,2,C3)(D,4,C1)(E,60)	0	0	0
	2	2	1	(C1,0)(C2,1) (C3,2)	(D,4,C1) (A,8,C4)(E,60)	0	0	0
	4	1	1	(C2,1) (C3,2)	(D,6,C2) (A,8,C4)(E,60)	4	1	0
	6	0	1	:		9	2	1

