```
In [1]:
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        import missingno
        from sklearn.preprocessing import MinMaxScaler, StandardScaler
        from sklearn.preprocessing import LabelEncoder
        from sklearn import preprocessing
        from sklearn.model selection import train test split
        import warnings
        from sklearn.linear model import LassoCV
        from sklearn.metrics import mean squared error
        warnings.filterwarnings(action="ignore")
        #%matplotlib qt # displays a pop-up of the plot
        %matplotlib inline # keeps it within the notebook
```

UsageError: unrecognized arguments: # keeps it within the notebook

```
In [3]: pd.set_option('display.max_columns', None)
    pd.set_option('display.max_rows', None)
```

```
In [4]:
         df=pd.read_csv('C:/application/interview_prep/bank-additional/bank-additional/
         bank-additional-full.csv', sep=";")
         print(df.shape)
         df.info()
         (41188, 21)
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 41188 entries, 0 to 41187
         Data columns (total 21 columns):
         age
                            41188 non-null int64
         job
                            41188 non-null object
         marital
                            41188 non-null object
                            41188 non-null object
         education
         default
                            41188 non-null object
                            41188 non-null object
         housing
                            41188 non-null object
         loan
         contact
                            41188 non-null object
         month
                            41188 non-null object
                            41188 non-null object
         day of week
         duration
                            41188 non-null int64
                            41188 non-null int64
         campaign
         pdays
                            41188 non-null int64
         previous
                            41188 non-null int64
         poutcome
                            41188 non-null object
         emp.var.rate
                            41188 non-null float64
                            41188 non-null float64
         cons.price.idx
         cons.conf.idx
                            41188 non-null float64
         euribor3m
                            41188 non-null float64
         nr.employed
                            41188 non-null float64
                            41188 non-null object
         dtypes: float64(5), int64(5), object(11)
         memory usage: 6.6+ MB
In [51]: df.month.unique()
```

Out[51]: array([6, 4, 3, 1, 8, 7, 2, 5, 0, 9], dtype=int64)

```
In [5]:
        df.head()
```

Out[5]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_week
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon
1	57	services	married	high.school	unknown	no	no	telephone	may	mon
2	37	services	married	high.school	no	yes	no	telephone	may	mon
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon
4	56	services	married	high.school	no	no	yes	telephone	may	mon

```
df copy = df
In [6]:
```

```
In [7]: df_copy = df_copy.replace('unknown', np.nan)
df_copy = df_copy.replace(999,np.nan)
```

In [8]: df_copy.isna().sum()

Out[8]: age 0 job 330 marital 80 education 1731 8597 default housing 990 990 loan contact 0 month 0 day_of_week 0 duration 2 campaign 0 39673 pdays previous 0 0 poutcome emp.var.rate 0 0 cons.price.idx cons.conf.idx 0 0 euribor3m 0 nr.employed dtype: int64

```
In [9]: # How many missing values are there in our dataset?
missingno.matrix(df_copy, figsize = (30,10))
```

Out[9]: <matplotlib.axes._subplots.AxesSubplot at 0x2569b91ff60>


```
In [10]: missingno.bar(df_copy, sort='ascending', figsize = (30,5))
Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x2569be6b5f8>

### Property of the copy of the co
```

- The purpose of creating a new dataset that contains all the values that are unknown and replace them with nan values give us the real picture of where data is missing.
- One way to clean dataset is to delete it, but it gives a bad image of the data and it is unrealistic.
- Another way is to find some correlation between the data and fill it in(Imputation).
- From the above analysis we can analyse that variables that has missing value are:
 - pdays(39673)
 - default(8597)
 - education(1731)
 - housing(990)
 - loan(990)
 - job(330)
 - marital(80)
- Out of this 7 columns the values 'marital' missing are very low and missing values in 'default' are actually not
 missing. It might be a case that customer is not willing to disclose this information to the banking
 representative . so 'unknown' is a specific value in default and we need to consider it as is.
- So, the missing values in columns 'pdays', 'education', 'housing', 'loan', 'job' need to be taken care of.

Process of handling missing values - Imputation

- · Considering 2 columns 'education' and 'job'
- · Initally we will make a cross-tabulation between 'education' and 'job'
- Hypothesis here is that 'job' of a person is infuenced by 'education' of person.
- · So inferring 'job' based on education make sense.
- Also, one more hypothesis is that if the age > 60 then the job is retired as most of the take a retirement at the age of 60

```
In [11]: def cross_tab(df,f1,f2):
    feature1=list(df[f1].unique())
    feature2=list(df[f2].unique())
    dataframes=[]
    for f in feature2:
        df_f2=df[df[f2]==f]
        df_f1=df_f2.groupby(f1).count()[f2]
        dataframes.append(df_f1)
    df_ct=pd.concat(dataframes,axis=1)
    df_ct.columns=feature2
    df_ct=df_ct.fillna(0)
    return df_ct
```

In [12]: cross_tab(df,'job','education')

Out[12]:

	basic.4y	high.school	basic.6y	basic.9y	professional.course	unknown	university.
admin.	77	3329	151	499	363	249	
blue-collar	2318	878	1426	3623	453	454	
entrepreneur	137	234	71	210	135	57	
housemaid	474	174	77	94	59	42	
management	100	298	85	166	89	123	
retired	597	276	75	145	241	98	
self- employed	93	118	25	220	168	29	
services	132	2682	226	388	218	150	
student	26	357	13	99	43	167	
technician	58	873	87	384	3320	212	
unemployed	112	259	34	186	142	19	
unknown	52	37	22	31	12	131	

```
In [13]: | df['job'][df['age']>60].value_counts()
Out[13]: retired
                            678
         housemaid
                             54
                             47
          admin.
                             34
          technician
         management
                             30
                             21
          unknown
                             20
         blue-collar
          self-employed
                             9
                              8
          entrepreneur
          unemployed
                              7
          services
          Name: job, dtype: int64
```

• Inferring education from jobs :

- From the cross-tabulation, it can be seen that people with management jobs usually have a university degree.
- Hence wherever 'job' = management and 'education' = unknown, we can replace 'education' with 'university.degree'.
- Similarly, 'job' = 'services' then 'education' = 'high.school' and 'job' = 'housemaid' then 'education' = 'basic.4v'.

Inferring jobs from education :

- If 'education' = 'basic.4y' or 'basic.6y' or 'basic.9y' then the 'job' is usually 'blue-collar'.
- If 'education' = 'professional.course', then the 'job' = 'technician'.

· Inferring jobs from age:

As we see, if 'age' > 60, then the 'job' is 'retired,' which makes sense.

```
In [14]:
         df.loc[(df['age']>60) & (df['job']=='unknown'), 'job'] = 'retired'
         df.loc[(df['education']=='unknown') & (df['job']=='management'), 'education']
         = 'university.degree'
         df.loc[(df['education']=='unknown') & (df['job']=='services'), 'education'] =
         'high.school'
         df.loc[(df['education']=='unknown') & (df['job']=='housemaid'), 'education'] =
         'basic.4v'
         df.loc[(df['job'] == 'unknown') & (df['education']=='basic.4y'), 'job'] = 'blu
         e-collar'
         df.loc[(df['job'] == 'unknown') & (df['education']=='basic.6y'), 'job'] = 'blu
         e-collar'
         df.loc[(df['job'] == 'unknown') & (df['education']=='basic.9y'), 'job'] = 'blu
         e-collar'
         df.loc[(df['job']=='unknown') & (df['education']=='professional.course'), 'jo
         b'] = 'technician'
```

In [15]: cross_tab(df,'job','education')

Out[15]:

	basic.4y	high.school	basic.6y	basic.9y	professional.course	unknown	university.
admin.	77.0	3329	151.0	499.0	363.0	249.0	
blue-collar	2366.0	878	1448.0	3654.0	453.0	454.0	
entrepreneur	137.0	234	71.0	210.0	135.0	57.0	
housemaid	516.0	174	77.0	94.0	59.0	0.0	
management	100.0	298	85.0	166.0	89.0	0.0	
retired	601.0	276	75.0	145.0	243.0	112.0	
self- employed	93.0	118	25.0	220.0	168.0	29.0	
services	132.0	2832	226.0	388.0	218.0	0.0	
student	26.0	357	13.0	99.0	43.0	167.0	
technician	58.0	873	87.0	384.0	3330.0	212.0	
unemployed	112.0	259	34.0	186.0	142.0	19.0	
unknown	0.0	37	0.0	0.0	0.0	117.0	

- **Imputations for house and loan**: Using cross-tabulation between 'house' and 'job' and between 'loan' and 'job.'
 - Hypothesis is that housing loan status (Yes or No) should be in the proportion of each job category.
 - Hence using the known distribution of the housing loan for each job category, the house loan for unknown people will be predicted such that the prior distribution (% House = Yes's and No's for each job category remains the same).
 - Similarly, we have filled the missing values in the 'loan' variable.

yes unknown

Out[16]:

		-	
job			
admin.	4636	5559	227
blue-collar	4362	4752	241
entrepreneur	641	779	36
housemaid	491	540	29
management	1363	1490	71
retired	789	908	44
self-employed	641	740	40
services	1818	2050	101
student	381	471	23
technician	2985	3621	147
unemployed	430	557	27
unknown	85	109	4

```
In [17]: jobloan=cross_tab(df,'job','loan')
cross_tab(df,'job','loan')
```

Out[17]:

	no	yes	unknown
job			
admin.	8485	1710	227
blue-collar	7730	1384	241
entrepreneur	1214	206	36
housemaid	877	154	29
management	2414	439	71
retired	1452	245	44
self-employed	1186	195	40
services	3267	601	101
student	710	142	23
technician	5615	991	147
unemployed	838	149	27
unknown	162	32	4

```
In [18]:
         def fillhousing(df,jobhousing):
              """Function for imputation via cross-tabulation to fill missing values for
         the 'housing' categorical feature"""
             jobs=['housemaid','services','admin.','blue-collar','technician','retired'
          ,'management','unemployed','self-employed','entrepreneur','student']
             house=["no","yes"]
             for j in jobs:
                  ind=df[np.logical and(np.array(df['housing']=='unknown'),np.array(df[
          'job']==j))].index
                 mask=np.random.rand(len(ind))<((jobhousing.loc[j]['no'])/(jobhousing.l</pre>
         oc[j]['no']+jobhousing.loc[j]['yes']))
                  ind1=ind[mask]
                  ind2=ind[~mask]
                  df.loc[ind1, "housing"]='no'
                  df.loc[ind2, "housing"]='yes'
             return df
         def fillloan(df, jobloan):
              """Function for imputation via cross-tabulation to fill missing values for
         the 'loan' categorical feature"""
             jobs=['housemaid','services','admin.','blue-collar','technician','retired'
          ,'management','unemployed','self-employed','entrepreneur','student']
             loan=["no","yes"]
             for j in jobs:
                  ind=df[np.logical and(np.array(df['loan']=='unknown'),np.array(df['jo
         b']==j))].index
                  mask=np.random.rand(len(ind))<((jobloan.loc[j]['no'])/(jobloan.loc[j][</pre>
          'no']+jobloan.loc[j]['yes']))
                  ind1=ind[mask]
                  ind2=ind[~mask]
                  df.loc[ind1,"loan"]='no'
                  df.loc[ind2,"loan"]='yes'
             return df
```

```
In [19]: df=fillhousing(df,jobhousing)
    df=fillloan(df,jobloan)
```

In [20]: cross_tab(df,'job','housing')

Out[20]:

	no	yes	unknown
admin.	4726	5696	0.0
blue-collar	4485	4870	0.0
entrepreneur	659	797	0.0
housemaid	502	558	0.0
management	1407	1517	0.0
retired	815	926	0.0
self-employed	664	757	0.0
services	1871	2098	0.0
student	392	483	0.0
technician	3060	3693	0.0
unemployed	442	572	0.0
unknown	85	109	4.0

In [21]: cross_tab(df,'job','loan')

Out[21]:

	no	yes	unknown
admin.	8678	1744	0.0
blue-collar	7939	1416	0.0
entrepreneur	1245	211	0.0
housemaid	900	160	0.0
management	2477	447	0.0
retired	1489	252	0.0
self-employed	1217	204	0.0
services	3350	619	0.0
student	728	147	0.0
technician	5742	1011	0.0
unemployed	860	154	0.0
unknown	162	32	4.0

• Handing missing values for pdays

• Below Graph shows distribution of 'pdays'

```
In [22]: plt.hist(df['pdays'])
plt.show()

40000

35000

25000

15000

10000

5000
```

• Below Distribution shows value of 'pdays' without 999

200

600

800

1000

400

In [24]: pd.crosstab(df['pdays'],df['poutcome'], values=df['age'], aggfunc='count', nor
malize=True)

Out[24]:

poutcome	failure	nonexistent	success
pdays			
0	0.000000	0.000000	0.000364
1	0.000000	0.000000	0.000631
2	0.000000	0.000000	0.001481
3	0.000097	0.000000	0.010561
4	0.000049	0.000000	0.002816
5	0.000097	0.000000	0.001020
6	0.000607	0.000000	0.009396
7	0.000364	0.000000	0.001093
8	0.000146	0.000000	0.000291
9	0.000583	0.000000	0.000971
10	0.000170	0.000000	0.001093
11	0.000073	0.000000	0.000607
12	0.000316	0.000000	0.001093
13	0.000194	0.000000	0.000680
14	0.000121	0.000000	0.000364
15	0.000219	0.000000	0.000364
16	0.000049	0.000000	0.000219
17	0.000121	0.000000	0.000073
18	0.000121	0.000000	0.000049
19	0.000024	0.000000	0.000049
20	0.000024	0.000000	0.000000
21	0.000049	0.000000	0.000000
22	0.000000	0.000000	0.000073
25	0.000024	0.000000	0.000000
26	0.000000	0.000000	0.000024
27	0.000000	0.000000	0.000024
999	0.099786	0.863431	0.000000

- As seen from the above table the majority of pdays missing value occur when the 'poutcome' is 'non-existent'.
- Which means when pdays value is missing because the customer was never contacted.
- To deal with this situation the best possible way is to convert the numeric variable of pdays to categorical with introducting new categories like:
 - pdays_missing : where value is not present
 - pdays_less_5 : pdays is less than 5
 - pdays_bet_5_15 : pdays between 5 to 15
 - pdays_greater_15 : pdays are greater than 15
- Buckets are created according to the distribution plotted above to make sense

```
In [25]: #Add new categorical variables to our dataframe.
    df['pdays_missing'] = 0
    df['pdays_less_5'] = 0
    df['pdays_greater_15'] = 0
    df['pdays_bet_5_15'] = 0
    df['pdays_missing'][df['pdays']==999] = 1
    df['pdays_less_5'][df['pdays']<5] = 1
    df['pdays_greater_15'][(df['pdays']>15) & (df['pdays']<999)] = 1
    df['pdays_bet_5_15'][(df['pdays']>=5)&(df['pdays']<=15)]= 1
    df = df.drop('pdays', axis=1)</pre>
```

In [26]: df.head()

Out[26]:

	age	job	marital	education	default	housing	loan	contact	month	day_of_week
0	56	housemaid	married	basic.4y	no	no	no	telephone	may	mon
1	57	services	married	high.school	unknown	no	no	telephone	may	mon
2	37	services	married	high.school	no	yes	no	telephone	may	mon
3	40	admin.	married	basic.6y	no	no	no	telephone	may	mon
4	56	services	married	high.school	no	no	yes	telephone	may	mon

Conclusion on Handling missing value

- Used Imputation technique to fill missing value for column 'job', 'education', 'housing', 'loan'
- Imputed values were relation between variable made sense and kept the rest as 'unknow' to handle real world situation were a client/customer might not give all the required values
- Convered 'pdays' to categorical variable making buckets which made sense w.r.t to data distribution

Standardizing the Data

Standardizing the data is required as all the numerical variables distribution is having different scale and if
the model is trained on such data there is a possibility that it will create a Bias

```
In [27]:
          numeric_columns = ['age','duration','campaign','previous','emp.var.rate','con
           s.price.idx','cons.conf.idx','euribor3m','nr.employed','pdays_missing','pdays_
           less 5', 'pdays greater 15', 'pdays bet 5 15']
In [28]:
          scaler = MinMaxScaler()
           df[numeric_columns] = scaler.fit_transform(df[numeric_columns])
          df.head()
In [29]:
Out[29]:
                                  marital
                                          education
                                                      default housing loan
                             job
                                                                              contact month day_of_v
           0 0.481481
                       housemaid
                                  married
                                             basic.4y
                                                                            telephone
                                                          nο
                                                                   no
                                                                                        may
                                                                        no
             0.493827
                          services
                                  married
                                          high.school
                                                     unknown
                                                                   no
                                                                            telephone
              0.246914
                          services
                                  married
                                          high.school
                                                          no
                                                                  yes
                                                                        no
                                                                            telephone
                                                                                        may
              0.283951
                                             basic.6y
                           admin. married
                                                                            telephone
                                                          no
                                                                   no
                                                                        no
                                                                                        may
             0.481481
                          services married high.school
                                                                            telephone
                                                                                        may
                                                          no
                                                                   no
In [30]: | df le = df
```

Converting Categorical variables to numeric (using One Hot Encoding)

- Ordinal Variables ('poutcome', 'default', 'housing' and 'loan' are ordinal ordinal variables)
- Nominal Variables ('job', 'maritial', 'education', 'contact', 'month', 'day of week' are Nominal Variables)

Handling Ordinal Variables

1

telephone

may

n

```
In [32]:
            df.head()
Out[32]:
                                 job
                                      marital
                                               education default housing
                                                                            loan
                                                                                     contact month day_of_we
                     age
               0.481481
                                                                1
                         housemaid
                                      married
                                                 basic.4y
                                                                                1
                                                                                   telephone
                                                                                                may
               0.493827
                            services
                                      married
                                              high.school
                                                                          1
                                                                                   telephone
                                                                                                may
                                                                                                              n
               0.246914
                            services
                                      married
                                              high.school
                                                                1
                                                                         -1
                                                                                   telephone
                                                                                                may
                                                                                                              n
               0.283951
                              admin.
                                      married
                                                 basic.6y
                                                                          1
                                                                                   telephone
                                                                                                may
                                                                                                              n
```

high.school

Handling Nominal Variables (One Hot Encoding)

married

```
In [33]: # One hot encoding of nominal varibles
    nominal = ['job', 'marital', 'education', 'contact', 'month', 'day_of_week']
    df_processed = pd.get_dummies(df,columns=nominal)

In [34]: df_processed.head()
Out[34]:
    age default housing loan duration campaign previous poutcome emp.var.rate con
```

	age	default	housing	loan	duration	campaign	previous	poutcome	emp.var.rate	con
0	0.481481	1	1	1	0.053070	0.0	0.0	0	0.9375	
1	0.493827	0	1	1	0.030297	0.0	0.0	0	0.9375	
2	0.246914	1	-1	1	0.045954	0.0	0.0	0	0.9375	
3	0.283951	1	1	1	0.030704	0.0	0.0	0	0.9375	
4	0.481481	1	1	-1	0.062424	0.0	0.0	0	0.9375	

```
In [35]: len(df_processed.columns)
Out[35]: 59
```

 Dropping 1 features from all the dummy variable as we have n categories only n-1 dummy variables are needed to reperesent that variable

0.481481

services

Out[36]:

	age	default	housing	loan	duration	campaign	previous	poutcome	emp.var.rate	con
0	0.481481	1	1	1	0.053070	0.0	0.0	0	0.9375	
1	0.493827	0	1	1	0.030297	0.0	0.0	0	0.9375	
2	0.246914	1	-1	1	0.045954	0.0	0.0	0	0.9375	
3	0.283951	1	1	1	0.030704	0.0	0.0	0	0.9375	
4	0.481481	1	1	-1	0.062424	0.0	0.0	0	0.9375	

Using Label Encoding

```
In [37]: le = preprocessing.LabelEncoder()
    df_le.job = le.fit_transform(df_le.job)
    df_le.marital = le.fit_transform(df_le.marital)
    df_le.education = le.fit_transform(df_le.education)
    df_le.default = le.fit_transform(df_le.default)
    df_le.housing = le.fit_transform(df_le.housing)
    df_le.loan = le.fit_transform(df_le.loan)
    df_le.contact = le.fit_transform(df_le.contact)
    df_le.month = le.fit_transform(df_le.month)
    df_le.day_of_week = le.fit_transform(df_le.day_of_week)
    df_le.poutcome = le.fit_transform(df_le.poutcome)
    df_le.y = le.fit_transform(df_le.y)
    df_le.head()
```

Out[37]:

	age	job	marital	education	default	housing	Ioan	contact	month	day_of_week	dura
0	0.481481	3	1	0	2	2	2	1	6	1	0.050
1	0.493827	7	1	3	1	2	2	1	6	1	0.030
2	0.246914	7	1	3	2	0	2	1	6	1	0.04
3	0.283951	0	1	1	2	2	2	1	6	1	0.030
4	0.481481	7	1	3	2	2	0	1	6	1	0.062

Feature Importance

· Will try to find the features which are important to create our base model using Correlation and Lassocv

Feature Importance of One Hot Encoded Data

Using Correlation

```
In [38]: f, ax = plt.subplots(figsize=(15, 15))
sns.heatmap(df_processed.corr(method='spearman'), annot=False, cmap='coolwarm')
```

Out[38]: <matplotlib.axes._subplots.AxesSubplot at 0x2569bd42be0>


```
In [39]: #Correlation with output variable
         cor = df processed.corr()
         cor target = abs(cor["y"])
         #Selecting highly correlated features
         relevant_features = cor_target[cor_target>0.1]
         relevant_features
Out[39]: duration
                             0.405274
                             0.230181
         previous
                             0.129789
         poutcome
         emp.var.rate
                             0.298334
         cons.price.idx
                             0.136211
         euribor3m
                             0.307771
                             0.354678
         nr.employed
                             1.000000
         pdays_missing
                             0.324877
         pdays_less_5
                             0.209159
         pdays_bet_5_15
                             0.241540
         contact cellular
                             0.144773
         month mar
                             0.144014
         month_may
                             0.108271
         month_oct
                             0.137366
                             0.126067
         month_sep
         Name: y, dtype: float64
```

• Important Features according to Correlation w.r.t "y" are :-

```
["duration", "previous", "poutcome", "emp.var.rate", "cons.price.idx", "euribor3m", "nr.employed", "pdays_missing","pdays_less_5", "pdays_bet_5_15", "contact_cellular", "month_mar", "month_may", "month_oct", "month_sep"]
```

Using Lassocv

```
In [40]: X = df processed.drop('y', axis=1)
         y = df_processed['y']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, strat
         ify=y, random state=1)
         #perform lassocv for variable selection
         modellasso = LassoCV(alphas = [1, 0.1, 0.001, 0.0001, 10, 1000]).fit(X_train,
         y train)
         lassopred = modellasso.predict(X test)
         print("RMSE of Lasso: ", np.sqrt(mean_squared_error(lassopred, y_test)))
         coeff = modellasso.coef_
         x = list(X train)
         x_pos = [i for i, _ in enumerate(x)]
         plt.figure(figsize = (8,20))
         plt.barh(x pos, coeff, color='green')
         plt.ylabel("Features -->")
         plt.xlabel("Coefficents -->")
         plt.title("Coefficents from Lasso")
         plt.yticks(x_pos, x)
         plt.show()
```

RMSE of Lasso: 0.253221081059976

• Important Features according to lassocv w.r.t "y" are :-

["duration", "cons.price.idx", "cons.conf.idx", "euribor3m", "poutcome", "month_mar", "pdays_less_5", "job_retired", "job_student", "campaign", "default"]

Feature Importance of Label Encoded Data

Using Correlation

```
In [41]: f, ax = plt.subplots(figsize=(15, 15))
sns.heatmap(df_le.corr(method='spearman'), annot=False, cmap='coolwarm')
```

Out[41]: <matplotlib.axes._subplots.AxesSubplot at 0x2569d1e2e48>


```
In [42]: #Correlation with output variable
         cor = df_le.corr()
         cor_target = abs(cor["y"])
         #Selecting highly correlated features
         relevant_features = cor_target[cor_target>0.1]
         relevant_features
Out[42]: contact
                           0.144773
         duration
                           0.405274
                           0.230181
         previous
         poutcome
                           0.129789
         emp.var.rate 0.298334
         cons.price.idx
                           0.136211
         euribor3m
                           0.307771
         nr.employed
                           0.354678
                           1.000000
         pdays_missing pdays_less_5
                           0.324877
                           0.209159
         pdays bet 5 15
                           0.241540
         Name: y, dtype: float64
```

• Important Features according to Correlation w.r.t "y" are :-

```
["duration", "contact", "previous", "poutcome", "emp.var.rate", "cons.price.idx", "euribor3m", "nr.employed", "pdays_missing", "pdays_less_5", "pdays_bet_5_15"]
```

Using Lassocv

```
In [43]: X = df le.drop('y', axis=1)
         y = df_le['y']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, strat
         ify=y, random state=1)
         #perform lassocv for variable selection
         modellasso = LassoCV(alphas = [1, 0.1, 0.001, 0.0001, 10, 1000]).fit(X_train,
         y train)
         lassopred = modellasso.predict(X test)
         print("RMSE of Lasso: ", np.sqrt(mean_squared_error(lassopred, y_test)))
         coeff = modellasso.coef_
         x = list(X train)
         x_pos = [i for i, _ in enumerate(x)]
         plt.figure(figsize = (8,10))
         plt.barh(x pos, coeff, color='green')
         plt.ylabel("Features -->")
         plt.xlabel("Coefficents -->")
         plt.title("Coefficents from Lasso")
         plt.yticks(x_pos, x)
         plt.show()
```

RMSE of Lasso: 0.2551378130386552

• Important Features according to lassocv w.r.t "y" are :-

["duration", "cons.price.idx", "cons.conf.idx", "euribor3m", "campaign", "poutcome"]

Conclusion on Feature Importance

- The Features which are selected by Correlation and Lassocv for one hot and Label Encoding are:-
 - Correlation with One hot Encoding

```
["duration", "previous", "poutcome", "emp.var.rate", "cons.price.idx", "euribor3m", "nr.employed", "pdays_missing", "pdays_less_5", "pdays_bet_5_15", "contact_cellular", "month_mar", "month_may", "month_oct", "month_sep"]
```

Lassocv with one hot Encoding

["duration", "cons.price.idx", "cons.conf.idx", "euribor3m", "poutcome", "month_mar", "pdays_less_5", "job_retired", "job_student", "campaign", "default"]

Correlation with Label Encoding

["duration", "contact", "previous", "poutcome", "emp.var.rate", "cons.price.idx", "euribor3m", "nr.employed", "pdays_missing", "pdays_less_5", "pdays_bet_5_15"]

Lassocv with Label Encoding

["duration", "cons.price.idx", "cons.conf.idx", "euribor3m", "campaign", "poutcome"]

- It is clear from both the feature selection techniques that "duration" is highly related to the output and it will
 create a Bias if we include "duration" feature in our model building phase, so dropping "duration" is the
 right option
- Additionally duration of call is known after the call is ended which is the case with knowing whether the
 person will sign up for a "term deposite" or not

Saving the Data for Model building

```
In [44]: df_processed = df_processed.drop('duration',axis=1)
    df_processed.head()
```

Out[44]:

	age	default	housing	loan	campaign	previous	poutcome	emp.var.rate	cons.price.idx
0	0.481481	1	1	1	0.0	0.0	0	0.9375	0.698753
1	0.493827	0	1	1	0.0	0.0	0	0.9375	0.698753
2	0.246914	1	-1	1	0.0	0.0	0	0.9375	0.698753
3	0.283951	1	1	1	0.0	0.0	0	0.9375	0.698753
4	0.481481	1	1	-1	0.0	0.0	0	0.9375	0.698753

	age	job	marital	education	default	housing	loan	contact	month	day_of_week	cam
0	0.481481	3	1	0	2	2	2	1	6	1	
1	0.493827	7	1	3	1	2	2	1	6	1	
2	0.246914	7	1	3	2	0	2	1	6	1	
3	0.283951	0	1	1	2	2	2	1	6	1	
4	0.481481	7	1	3	2	2	0	1	6	1	

```
In [48]: len(df_le.columns)
Out[48]: 23
In [49]: df_le.to_csv("C:/application/interview_prep/bank-additional/bank-additional/bank_full_processed_le.csv", index = False)
```

Conclusion

- Found missing values and tried imputating it with cross-functional relations
- · Standardized the Data to bring it to the same scale
- · Converted Categorical variables to numeric which is required for many ML Modeling algorithms
- · Tried finding feature importance using Correlation and Lassocv
- Dropped feature "duration" as it would have created Bias in model building phase

please refer Model Building & Evaluation for next steps