Esercizi di Fondamenti di Automatica - 7 Corso di Laurea in Ingegneria Elettronica A.A. 2020/2021

Esercizio 1. Dato il sistema di funzione di trasferimento

$$G(s) = \frac{10}{s(s+1)}$$

- i) se ne tracci i diagrammi di Nyquist e di Bode evidenziando in entrambi, se esistono, pulsazione di attraversamento e margine di fase. Di tali parametri si calcoli il valore numerico.
- ii) Si consideri il sistema di funzione di trasferimento W(s), ottenuto per retroazione unitaria negativa da G(s). Si tracci il diagramma di Bode di $W(j\omega)$ e se ne calcolino banda passante e, se esistono, pulsazione di risonanza e massimo di risonanza.

Esercizio 2. Con riferimento al processo di funzione di trasferimento

$$G(s) = 10 \frac{1+s}{s^2 + 5s + 100},$$

si progetti un controllo in retroazione in modo tale che

- 1) il risultante sistema retroazionato sia di tipo 1 con errore di regime permanente (al gradino unitario) pari a $e_{rp}^* = 0.1$;
- 2) la funzione di trasferimento in catena aperta C(s)G(s) abbia pulsazione di attraversamento all'incirca $\omega_A^*=1000$ rad/sec e
- 3) abbia margine di fase pari almeno a 80° .

Esercizio 3. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{1}{1 + 10s}.$$

Si progetti un controllore C(s) in modo tale che il risultante sistema retroazionato

- i) sia di tipo 1, con errore di regime permanente (alla rampa lineare), $e_{rp}^{(2)}$, non superiore a 0.1;
- e la funzione di trasferimento in catena aperta, C(s)G(s),
 - ii) abbia pulsazione di attraversamento all'incirca $\omega_A^*=10$ rad/sec;
 - ii) abbia margine di fase pari almeno a 45°.

Esercizio 4. Si consideri il sistema lineare, tempo-invariante, a tempo continuo di funzione di trasferimento

$$G(s) = \frac{1}{s+10}.$$

Supponendo di controllare il sistema attraverso un sistema di controllo a retroazione unitaria del tipo

si progetti, se possibile, un controllore PI

$$C_{PI}(s) = K_p + \frac{K_i}{s} \in \mathbb{R}(s)$$

in modo tale che il risultante sistema retroazionato, di funzione di trasferimento W(s), soddisfi ai seguenti requisiti:

- 1) sia BIBO stabile;
- la risposta impulsiva del sistema sia combinazione lineare di due modi sinusoidali smorzati;
- 3) la W(s) presenti uno zero instabile.

Esercizio 5. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{100}{(1+s)(1+0.1s)}.$$

Si progetti un controllore C(s) di tipo PD, e quindi con la seguente struttura

$$C(s) = K_p + K_d s$$
,

in modo tale che il risultante sistema retroazionato

- i) sia di tipo zero con errore di regime permanente (al gradino) pari a 0.001;
- ii) abbia banda passante all'incirca $B_p = 10^4$ rad/sec.

Esercizio 6. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{25}{s(s+5)(s+10)}.$$

Si progetti un controllore C(s) in modo tale che il risultante sistema retroazionato

- i) sia di tipo 1;
- e la funzione di trasferimento in catena aperta, C(s)G(s),
 - ii) abbia pulsazione di attraversamento all'incirca $\omega_A^* = 8 \text{ rad/sec};$
 - iii) abbia margine di fase pari almeno a 45° .

Esercizio 7. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{(1-s)}{5s(1+0.5s)}.$$

Si progetti un controllore C(s)

i) di tipo P, ovvero

$$C(s) = K_p,$$

in modo tale che il risultante sistema retroazionato sia BIBO stabile con poli complessi coniugati e fattore di smorzamento $\xi = 1/2$.

ii) di tipo PI, ovvero

$$C(s) = K_p + \frac{K_i}{s},$$

in modo tale che il risultante sistema retroazionato sia BIBO stabile e la funzione di trasferimento in catena aperta, C(s)G(s), abbia pulsazione di attraversamento $\omega_A^* = 0.1 \text{ rad/sec}$ e margine di fase almeno pari a 45^0 .

Esercizio 8. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{(1+s)}{(1+0.1s)(1+0.01s)}.$$

Si progetti un controllore C(s) di tipo PI, e quindi con la seguente struttura

$$C(s) = K_p + \frac{K_i}{s},$$

in modo tale che il sistema retroazionato

- i) sia di tipo 1 con errore di regime permanente alla rampa lineare non superiore a 0.1; e la funzione di trasferimento in catena aperta, C(s)G(s),
 - ii) abbia pulsazione di attraversamento all'incirca $\omega_A^*=1000~\mathrm{rad/sec};$
 - iii) abbia margine di fase pari almeno a 80°.

Esercizio 9. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{1}{(s+1)^2}.$$

Si progetti un controllore C(s) in modo tale che il risultante sistema retroazionato

- i) sia di tipo 1 con errore di regime permanente (alla rampa lineare) al più 0.01; e la funzione di trasferimento in catena aperta, C(s)G(s),
 - ii) abbia pulsazione di attraversamento all'incirca $\omega_A^*=10~\mathrm{rad/sec};$
 - iii) abbia margine di fase pari almeno a 45°.

Esercizio 10. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{s+1}{s}.$$

Si progetti un controllore C(s) in modo tale che il risultante sistema retroazionato

- i) sia di tipo 2 con errore di regime permanente (alla rampa parabolica) al più 0.01; e la funzione di trasferimento in catena aperta, C(s)G(s),
 - ii) abbia pulsazione di attraversamento all'incirca $\omega_A^* = 10^{5/2} \text{ rad/sec};$
 - iii) abbia margine di fase pari almeno a 60°.

Esercizio 11. Si consideri un processo di funzione di trasferimento

$$G(s) = \frac{10}{1+s}.$$

1. Si progetti un controllore $C(s) \in \mathbb{R}(s)$ proprio in modo tale che il risultante sistema retroazionato di funzione di trasferimento

$$W(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

- i) sia di tipo 1 con errore di regime permanente (alla rampa lineare unitaria) al più pari ad 0.01;
- e la funzione di trasferimento in catena aperta, C(s)G(s),
 - ii) abbia pulsazione di attraversamento all'incirca $\omega_A^* = 10^3 \text{ rad/sec}$ e
- iii) margine di fase pari almeno a 90°
- iv) Si dimostri che il problema della reiezione di un disturbo costante agente sovrapposto all'ingresso u(t) è automaticamente risolto. Come cambierebbe la risposta se il processo avesse funzione di trasferimento

$$G'(s) = \frac{10}{s(1+s)}?$$

2. Sempre con riferimento a G(s), si progetti un controllore $C(s) \in \mathbb{R}(s)$ proprio in modo tale che il risultante sistema retroazionato di funzione di trasferimento

$$W(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

- i) sia BIBO stabile;
- ii) sia di tipo 0 con errore di regime permanente (al gradino unitario) al più pari ad 0.1, e
- ii) insegua senza errore a regime il segnale $r(t) = 3\sin t\delta_{-1}(t)$.

Esercizio 12. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{1}{1 + s/10^4}.$$

Si progetti un controllore C(s) in modo tale che il risultante sistema retroazionato

- i) sia di tipo 1, con errore di regime permanente (alla rampa lineare), $e_{rp}^{(2)}$, non superiore a 0.01;
- ii) insegua senza errore a il segnale $r(t) = \sin(10t)\delta_{-1}(t)$.

e la funzione di trasferimento in catena aperta, C(s)G(s),

- ii) abbia pulsazione di attraversamento all'incirca $\omega_A^* = 100 \text{ rad/sec};$
- ii) abbia margine di fase pari almeno a 60° .

Si dica se il risultante sistema è in grado di annullare a regime l'effetto di eventuali disturbi costanti agenti tra controllore e processo.

Esercizio 13. Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{10}{1 + 0.1s + s^2}.$$

- 1. Si progetti una rete a sella stabilizzante, in modo che l'errore a regime al gradino sia $e_{rp}^{(1)} \simeq 10^{-3}$, la pulsazione di attraversamento $\omega_A \simeq 10$ rad/s ed il margine di fase $m_{\psi} \simeq 90^{\circ}$.
- 2. Si progetti un PID stabilizzante, in modo che l'errore a regime alla rampa lineare sia $e_{rp}^{(2)} \simeq 0.1$, la pulsazione di attraversamento $\omega_A \simeq 10$ rad/s ed il margine di fase $m_{\psi} \simeq 90^{\circ}$.

Esercizio 14. Dato il sistema di funzione di trasferimento

$$G(s) = \frac{10}{(s+1)^2}$$

è richiesto di progettare

- i) una rete a sella stabilizzante $C_1(s)$ che garantisca $e_{rp}^{(1)} \simeq 10^{-4}$ al gradino, $\omega_A \simeq 10$ rad/s e $m_{\psi} \simeq 90^{\circ}$;
- ii) un PID stabilizzante $C_2(s)$ che garantisca $e_{rp}^{(2)} \simeq 0.1$ alla rampa lineare, $\omega_A \simeq 10$ rad/s e $m_\psi \simeq 90^\circ$.

Esercizio 15. i) Dato il sistema di funzione di trasferimento

$$G(s) = \frac{1 + \frac{s}{0.1}}{(1 + 0.2s + s^2)(1 + \frac{s}{10})}$$

progettare un controllore stabilizzante $C_1(s)$ di tipo P, PI, PD o PID, che attribuisca al risultante sistema retroazionato W(s) tipo 1, $e_{rp}^{(2)} \simeq 0.1$ (alla rampa lineare), e alla funzione di trasferimento in catena aperta $C_1(s)G(s)$ $\omega_A \simeq 100$ rad/s, $m_\psi \simeq m_\psi^* = 90^\circ$. ii) Dato il sistema di funzione di trasferimento

$$G(s) = \frac{1 + \frac{s}{0.1}}{1 + 0.2s + s^2}$$

progettare un controllore proprio e stabilizzante $C_2(s)$ che attribuisca al risultante sistema retroazionato W(s) tipo 0, $e_{rp}^{(1)} \simeq 0.1$ (al gradino), la capacità di inseguire senza errori a regime il segnale sinusoidale $r(t) = \sin t \delta_{-1}(t)$ e alla funzione di trasferimento in catena aperta $C_2(s)G(s)$ $\omega_A \simeq 100$ rad/s, $m_{\psi} \simeq m_{\psi}^* = 90^{\circ}$.

Soluzioni numeriche di alcuni esercizi

Esercizio 2. Il requisito sul tipo richiede l'introduzione di un polo nell'origine. Il vincolo sull'errore di regime permanente impone

$$e_{rp} = \frac{1}{K_B(C)0.1} \approx 0.1$$

da cui segue $K_B(C) \approx 100$. Prendiamo $K_B(C) = 100$ a cui corrisponde $C'(s) = \frac{100}{s}$. I diagrammi di Bode di G(s) = C'(s)G(s) sono i seguenti:

Si trova $10^{3/2}$ rad/s $\approx \omega_A < \omega_A^* = 1000$ rad/s e $m_\psi(\omega_A^*) := 180^\circ + \arg(C'(j\omega_A^*)G(j\omega_A^*))$ soddisfa $0^\circ \approx m_\psi(\omega_A^*) < m_\psi^* = 65^\circ$. Possiamo quindi applicare un'azione anticipatrice in modo da sollevare il diagramma delle ampiezze di M=60 dB fino a far sì che la pulsazione di attraversamento diventi $\omega_A^* = 1000$ rad/s e di sollevare la fase di almeno 65°. Va sottolineato che il vincolo sull'errore di regime permanente mi impedisce di modificare il guadagno di Bode del controllore e pertanto potrò agire solo introducendo zeri e poli.

Una soluzione può essere ottenuta introducendo opportunamente uno zero 3 decadi prima della pulsazione di attraversamento in modo tale da soddisfare entrambi i requisiti su pulsazione di attraversamento e fase. Tenuto conto del fatto che comunque il controllore ha già un polo nell'origine, il risultante controllore C(s) sarà comunque proprio e quindi non è necessario introdurre ulteriori poli. Introducendo semplicemente uno zero in -1, ovvero un fattore (1+s), osservo che i diagrammi di Bode di

$$C(s)G(s) = 100\frac{1+s}{s} \cdot 0.1\frac{1+s}{1+2 \cdot 0.25\frac{s}{10} + \frac{s^2}{10^2}}$$

diventano

e pertanto tutte le specifiche sono soddisfatte. Pertanto un controllore che consegue l'obiettivo desiderato è

 $C(s) = 100 \frac{1+s}{s}.$

Esercizio 3. Per soddisfare i vincoli su tipo ed errore di regime permanente scegliamo $C'(s) = \frac{K_B(C)}{s}$, con guadagno di Bode $K_B(C)$ che soddisfa

$$\frac{1}{K_B(C)} \le 0.1,$$

da cui segue $K_B(C) \ge 10$ Assumiamo nel seguito $C'(s) = \frac{10}{s}$. I diagrammi di Bode di $C'(s)G(s) = \frac{10}{s(1+10s)}$ sono illustrati di seguito:

La pulsazione di attraversamento desiderata è $\omega_A^*=10$ rad/s, mentre il margine di fase alla pulsazione desiderata è $m_\psi(\omega_A^*)\approx 0^\circ$. La pulsazione di attraversamento di C'(s)G(s) è $\omega_A=1$ rad/s. Per alzare sia modulo che fase alla frequenza di attraversamento desiderata, e specificatamente il modulo di M=40 dB e la fase di almeno $\Phi=45^\circ$, è necessario ricorrere ad una rete anticipatrice

$$C_{ant}(s) = \frac{1+sT}{1+s\alpha T}, \qquad T>0, \quad 0<\alpha<1.$$

Una soluzione è la seguente:

$$C''(s) = \frac{1 + 10s}{1 + 10^{-3}s},$$

ottenuta mettendo lo zero 2 decadi prima della pulsazione ω_A^* e il polo 2 decadi dopo ω_A^* , così da non interferire. Ne verifichiamo la correttezza:

Esercizio 4. Con semplici calcoli si verifica che la funzione di trasferimento W(s) del sistema retroazionato è data da

$$W(s) = \frac{C_{PI}(s)G(s)}{1 + C_{PI}(s)G(s)} = \frac{K_i \left(\frac{sK_p}{K_i} + 1\right)}{s^2 + (10 + K_p)s + K_i}.$$

Tale funzione di trasferimento presenta poli "stabili" (ovvero a parte reale negativa) se e solo se

$$\begin{cases} 10 + K_p > 0, \\ K_i > 0. \end{cases}$$

Inoltre, tale funzione presenta uno zero instabile se e solo se $K_p/K_i < 0$ e, tenuto conto del fatto che K_i deve essere positivo, quest'ultimo vincolo si riscrive come $K_p < 0$. Infine, affinchè i poli della W(s) siano complessi coniugati occorre e basta che il discriminante del polinomio al denominatore sia negativo, ovvero

$$(10 + K_p)^2 - 4K_i < 0.$$

Riassumendo, le condizioni che i parametri K_p e K_i del controllore devono soddisfare sono le seguenti:

$$\begin{cases} -10 < K_p < 0 \\ (10 + K_p)^2 < 4K_i. \end{cases}$$

Tra le possibili soluzioni una è, ad esempio,

$$K_p = -9, \qquad K_i = 1.$$

Esercizio 7. i) La funzione di trasferimento del sistema retroazionato è:

$$W(s) = \frac{K_pG(s)}{1 + K_pG(s)} = \frac{K_p(1-s)}{5s(1+0.5s) + K_p(1-s)} = \frac{K_p(1-s)}{2.5s^2 + (5-K_p)s + K_p}.$$

Trattandosi di una rappresentazione irriducibile, per valutare la BIBO stabilità è sufficiente verificare che il polinomio al denominatore

$$d(s) = 2.5s^2 + (5 - K_p)s + K_p$$

sia Hurwitz. In base alla regola dei segni di Cartesio ciò succede se e solo se $0 < K_p < 5$. La condizione che i poli siano complessi coniugati impone che il discriminante di d(s) sia negativo, ovvero

$$\Delta = (5 - K_p)^2 - 10K_p < 0. (1)$$

Mentre

$$d(s) = 2.5s^{2} + (5 - K_{p})s + K_{p} = 2.5\left[s^{2} + \frac{(5 - K_{p})}{2.5}s + \frac{K_{p}}{2.5}\right] \equiv 2.5[s^{2} + 2\xi\omega_{n}s + \omega_{n}^{2}],$$

impone

$$\xi = \frac{5 - K_p}{5} \sqrt{\frac{2.5}{K_p}} = 0.5,$$

la cui soluzione è $K_p = 2.5$. Chiaramente $K_p = 2.5$ appartiene all'intervallo (0,5). Verifico ora che per esso valga la diseguaglianza (1). Si vede che

$$(2.5)^2 - 25 < 0$$

e quindi la (1) è soddisfatta.

ii) Un modo possibile di procedere è il seguente: consideriamo il controllore PI come espresso nella forma

$$C(s) = \frac{1}{s} \cdot C''(s),$$

con

$$C''(s) = K_i \left(1 + \frac{K_p}{K_i} s \right).$$

Tracciamo allora i diagrammi di Bode di

$$C'(s)G(s) = \frac{1}{s} \cdot G(s) = \frac{(1-s)}{5s^2(1+0.5s)},$$

e cerchiamo di scegliere il valore del guadagno di Bode del controllore, K_i , e la collocazione dello zero del controllore, in modo da soddisfare le specifiche. Dall'esame dei diagrammi di Bode

si deduce che una possibilità è quella di inserire lo zero in $-0.01 = -10^{-2}$ rad/s. In questo modo la fase passerebbe da -180° a -90° , in un intorno di 10^{-2} rad/s, e in corrispondenza a 10^{-1} rad/s la fase sarebbe approssimativamente -90° , garantendo un margine di fase maggiore di 45°. A questo punto per imporre $\omega_A^* = 10^{-1}$ rad/s è sufficiente abbassare il diagramma di Bode delle ampiezze scegliendo

$$K_i = 1/200.$$

Si trova quindi

$$C(s) = \frac{1}{200} \frac{1}{s} (1 + 100s),$$

(che corrisponde a $K_i=1/200$ e $K_p=1/2)$ e i diagrammi di Bode di C(s)G(s) sono i seguenti:

Il criterio di Bode assicura che il risultante sistema retroazionato sia BIBO stabile.

Esercizio 11. 1) Si consideri il processo di funzione di trasferimento

$$G(s) = \frac{10}{1+s}.$$

Per sistemare le specifiche su tipo ed errore a regime prendiamo come precompensatore

$$C'(s) = \frac{10}{s}.$$

I diagrammi di Bode di $C^\prime(s)G(s)$ risultano allora

Si osserva che $10=\omega_A<\omega_A^*=10^3$ e $0^\circ\approx m_{\psi(\omega_A^*)}< m_\psi^*=90^\circ$. Pertanto serve una rete anticipatrice che, in corrispondenza a ω_A^* incrementi la fase di almeno $\Phi=m_\psi^*-m_{\psi(\omega_A^*)}=90^\circ$ e il modulo di esattamente $M=-|C'(j\omega_A^*)G(j\omega_A^*)|_{dB}=80dB$. A ciò si perviene posizionando lo zero 4 decadi prima di ω_A^* , e quindi in -10^{-1} , e il polo alle alte frequenze o anche omettendo il polo alle alte frequenze visto che C(s)=10 $\frac{1+10s}{s}$ è comunque proprio. Si ottiene in tal modo:

Avendo scelto un controllore con un polo in 0 che rende BIBO stabile il sistema retroazionato, automaticamente garantisco la reiezione di disturbi costanti agenti all'ingresso del processo. Infatti la funzione di trasferimento da disturbo a uscita risulta

$$W_d(s) = \frac{G(s)}{1 + C(s)G(s)}$$

ed è a sua volta BIBO stabile in quanto

$$W(s) = \frac{C(s)G(s)}{1 + C(s)G(s)}$$

lo è. D'altra parte $G(0) \neq 0$ e $|C(0)| = +\infty$, pertanto la risposta a regime a ogni disturbo costante $d(s) = d_0 \delta_{-1}(t)$ è

$$y_{d,rp}(t) = W_d(0)d_0 = \frac{G(0)}{1 + C(0)G(0)}d_0 = 0.$$

Nell'eventualità in cui la funzione di trasferimento del processo fosse stata

$$G(s) = \frac{10}{s(1+s)},$$

al fine di garantire tipo 1 al sistema retroazionato non avrei inserito poli nel compensatore stabilizzante, di conseguenza $C(0) = cost. \neq 0$ e $|G(0)| = +\infty$ e quindi

$$y_{d,rp}(t) = W_d(0)d_0 = \frac{G(0)}{1 + C(0)G(0)}d_0 = \frac{1}{C(0)}d_0 \neq 0.$$

 $2)\,$ Il precompensatore che assicura il soddisfacimento delle specifiche ii) e iii) deve essere semplicemente

$$C'(s) = \frac{1}{1 + s^2}.$$

La fuzione di trasferimento in catena aperta diventa allora

$$C'(s)G(s) = \frac{10}{(1+s)(1+s^2)},$$

a cui corrisponde il diagramma di Bode (con picco infinito)

Se introduco uno zero doppio stabile in -1, così da garantire che la funzione di trasferimento in catena aperta abbia margine di fase positivo, il criterio di Bode mi assicura automaticamente che la specifica i) sia soddisfatta. Prendendo $C''(s) = (1+s)^2$ che corrisponde al controllore proprio finale

$$C(s) = \frac{(1+s)^2}{1+s^2},$$

otteniamo

$$C(s)G(s) = 10 \frac{1+s}{1+s^2},$$

che ha i seguenti diagrammi di Bode:

Esercizio 15. i) Per sistemare la specifica su tipo ed errore a regime dobbiamo introdurre un polo in 0 e attribuire al controllore un guadagno di Bode pari a 10, ovvero il precompensatore deve essere

 $C_1'(s) = \frac{10}{s}.$

Questo ci dice che dobbiamo necessariamente utilizzare o un controllore PI o un PID. La funzione di trasferimento di $C_1'(s)G(s)$ è

$$C_1'(s)G(s) = \frac{10(1 + \frac{s}{0.1})}{s(1 + 0.2s + s^2)(1 + \frac{s}{10})}$$

e i suoi diagrammi di Bode sono:

Notiamo che la pulsazione di attraversamento è circa 10 rad/sec, mentre il margine di fase alla pulsazione desiderata, $m_{\psi}(\omega_A^*)$ è pari a -90° . Dobbiamo quindi utilizzare due zeri stabili che alzino in corrispondenza a $\omega_A^*=100$ rad/sec il modulo di esattamente M=60 dB e la fase di circa $\Phi=180^\circ$. Prendiamo quindi uno zero una decade prima di $\omega_A^*=100$ rad/sec e uno zero due decadi prima di $\omega_A^*=100$ rad/sec:

$$C_2''(s) = (1+s)\left(1+\frac{s}{10}\right).$$

Ciò corrisponde al controllore PID

$$C_1(s) = C_{PID}(s) = \frac{10}{s}(1+s)\left(1+\frac{s}{10}\right) = 11 + \frac{10}{s} + s.$$

Il diagramma di Bode della risultante funzione di trasferimento in catena aperta è:

Il risultante sistema è BIBO stabile per il criterio di Bode.

ii) Per sistemare la specifica su tipo ed errore a regime dobbiamo attribuire al controllore un guadagno di Bode pari a 10. Per garantire l'inseguimento a regime di un segnale sinusoidale di pulsazione $\omega=1$ rad/sec dobbiamo introdurre il fattore s^2+1 al denominatore del compensatore, e quindi il precompensatore deve essere

$$C_2'(s) = \frac{10}{s^2 + 1}.$$

La funzione di trasferimento di $C_2'(s)G(s)$ è

$$C_2'(s)G(s) = \frac{10(1 + \frac{s}{0.1})}{s(1 + 0.2s + s^2)(1 + s^2)}$$

e i suoi diagrammi di Bode sono:

Notiamo che la pulsazione di attraversamento è circa $10^{2/3}$ rad/sec, mentre il margine di fase alla pulsazione desiderata, $m_{\psi}(\omega_A^*)$ è pari a -90° . Dobbiamo quindi utilizzare due zeri stabili che alzino in corrispondenza a $\omega_A^*=100$ rad/sec il modulo di esattamente M=80 dB e la fase di circa $\Phi=180^\circ$. Prendiamo quindi due zeri due decadi prima di $\omega_A^*=100$ rad/sec:

$$C_2''(s) = (1+s)^2.$$

Ciò corrisponde al controllore proprio complessivo

$$C_2(s) = \frac{10(1+s)^2}{s^2+1}.$$

Il diagramma di Bode della risultante funzione di trasferimento in catena aperta è:

Si noti che il picco nel diagramma di Bode dei moduli è in realtà infinito. Il risultante sistema è BIBO stabile per il criterio di Bode.