TRIGONOMETRY Chapter 21

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL III

BRAZO ROBÓTICO

Para poder programar el movimiento de un brazo robótico, se necesita usar conceptos matemáticos; por ejemplo: sistemas de posición y referencia para trabajar en el plano cartesiano, usar ángulos en posición normal para el movimiento de las articulaciones, razones trigonométricas para calcular distancias que alcanzará el brazo, sistema radial, etc.

ÁNGULO EN POSICIÓN NORMAL

DEFINICIÓN:

Es aquel ángulo trigonométrico ubicado sobre el plano cartesiano, posee :

- · Vértice : Origen de coordenadas.
- Lado inicial : Semieje X positivo.
- Lado final : Se ubica en cualquier cuadrante o semieje del plano.

OBSERVACIÓN:

Representación gráfica:

La posición del lado final de un ángulo en posición normal, determina el cuadrante o semieje al cual pertenece dicho ángulo.

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO EN POSICIÓN NORMAL II

α: ángulo en posición normal.

x: abscisa del punto P.

y: ordenada del punto P.

r: radio vector del punto P.

$$r = \sqrt{x^2 + y^2}$$
 (r > 0)

DEFINICIONES:

senα	cosα	tanα	cotα	secα	cscα
y	X	y	X	r	r
r	r	X	y	X	<u>y</u>

Según la figura, complete la tabla de razones trigonométricas :

10senθ	8
6secθ	10
4cotθ	3

$$r = \sqrt{x^2 + y^2}$$

senθ		
y		
r		

RESOLUCIÓN

Según gráfico: x = 6; y = 8

Luego:
$$r = \sqrt{(6)^2 + (8)^2} = \sqrt{36 + 64}$$

$$r = \sqrt{100} \implies r = 10$$

10 sen
$$\theta = 10 \left(\frac{8}{10} \right) = 8$$

$$6 \sec \theta = 6 \left(\frac{10}{6} \right) = 10$$

$$4 \cot \theta = 4 \left(\frac{6}{8}\right) = 3$$

RESOLUCIÓN

Del gráfico, efectúe

Según gráfico : x = 3

Efectuamos E:

E = 15 tanθ + 1 =
$$15\left(\frac{5}{3}\right)$$
 + 1 = 25 + 1

Del gráfico, efectúe $L = \sec \alpha + \tan \alpha$

RECORDAR:

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

secα	tanα	
r	y	
X	X	

RESOLUCIÓN

Según gráfico: x = -7; y = 24

Luego:

$$\mathbf{r} = \sqrt{(-7)^2 + (24)^2} = \sqrt{49 + 576}$$
 $\mathbf{r} = \sqrt{625} \implies \mathbf{r} = 25$

Efectuamos $L = \sec \alpha + \tan \alpha$:

$$L = \frac{25}{-7} + \frac{24}{-7} = \frac{49}{-7}$$

$$\therefore L = -7$$

Del gráfico, efectúe lo siguiente : !

$$K = 17 (sen \phi + cos \phi)$$

$$\mathbf{r} = \sqrt{\mathbf{x}^2 + \mathbf{y}^2}$$

sen 	cosφ
y	X
r	r

RESOLUCIÓN

Según gráfico: x = 15; y = -8

Luego:

$$\mathbf{r} = \sqrt{(15)^2 + (-8)^2} = \sqrt{225 + 64}$$
 $\mathbf{r} = \sqrt{289} \implies \mathbf{r} = \mathbf{17}$

Efectuamos K:

$$K = 17 \left(\frac{-8}{17} + \frac{15}{17} \right) = 17 \left(\frac{7}{17} \right)$$

Si el punto Q(-3 ; -1) pertenece al lado final de un ángulo β en posición normal; efectúe $E = \sqrt{10}$ sec β . cot β RESOLUCIÓN

Según datos : x = -3 ; y = -1

Luego calculamos r:

$$\mathbf{r} = \sqrt{x^2 + y^2} = \sqrt{(-3)^2 + (-1)^2}$$
 $\mathbf{r} = \sqrt{9 + 1} \implies \mathbf{r} = \sqrt{10}$

Finalmente efectuamos E:

$$\mathbf{E} = \sqrt{10} \left(\frac{\mathbf{r}}{\mathbf{x}}\right) \left(\frac{\mathbf{x}}{\mathbf{y}}\right)$$

$$\mathbf{E} = \sqrt{10} \left(\frac{\sqrt{10}}{-3}\right) \left(\frac{-3}{-1}\right)$$

$$\mathbf{E} = -10$$

En un juego interactivo organizado por el clan Uchiha, para el último acertijo se tienen las siguientes indicaciones:

- a) Dirigirse al centro del aula (origen de coordenadas).
- b) Desde el centro dirigirse 2 pasos a la izquierda y luego 3 pasos hacia arriba.

Si se sabe que ϕ es el ángulo en posición normal cuyo lado final pasa por las coordenadas antes mencionadas; determine el valor de A si $A = \sqrt{13} \operatorname{sen} \phi + 6 \cot \phi$.

Determinamos A:

$$A = \sqrt{13} \left(\frac{3}{\sqrt{13}} \right) + 6 \left(\frac{-2}{3} \right)$$

$$A = 3 + (-4)$$

$$\therefore A = -1$$

Tres estudiantes salen simultáneamente del colegio Saco Oliveros con dirección a sus respectivas casas.

Si Juan toma la siguiente ruta :

5 cuadras a la derecha y luego 2 cuadras hacia abajo.

Mientras que Álvaro toma la siguiente ruta : primero 1 cuadra a la derecha y luego 8 cuadras hacia abajo.

Se sabe que la casa del tercer estudiante se encuentra en el punto medio entre las casas de Juan y Álvaro.

Si ϕ es el ángulo en posición normal cuyo lado final pasa por la casa del tercer estudiante, determine :

$$E = \sqrt{34}$$
 ($sen \phi + cos \phi$).

M es punto medio:

$$\mathbf{x} = \frac{1+5}{2} = 3$$

$$y = \frac{-8-2}{2} = -5$$

Calculamos r:

$$\mathbf{r} = \sqrt{(3)^2 + (-5)^2}$$

$$r = \sqrt{9 + 25}$$

$$r = \sqrt{34}$$

Tres estudiantes salen simultáneamente del colegio Saco Oliveros con dirección a sus respectivas casas.

Si Juan toma la siguiente ruta :

5 cuadras a la derecha y luego 2 cuadras hacia abajo.

Mientras que Álvaro toma la siguiente ruta : primero 1 cuadra a la derecha y luego 8 cuadras hacia abajo.

Se sabe que la casa del tercer estudiante se encuentra en el punto medio entre las casas de Juan y Álvaro.

Si ϕ es el ángulo en posición normal cuyo lado final pasa por la casa del tercer estudiante, determine :

$$E = \sqrt{34}$$
 ($sen \phi + cos \phi$).

RESOLUCIÓN

Determinamos $E = \sqrt{34}$ ($sen\phi + cos\phi$):

$$E = \sqrt{34} \left(\frac{-5}{\sqrt{34}} + \frac{3}{\sqrt{34}} \right) = \sqrt{34} \left(\frac{-2}{\sqrt{34}} \right)$$

$$\cdot \cdot \mathbf{E} = -2$$

RECORDAR:

sen ø	$\cos\phi$
_ y	X
r	r

