

Exam – ET061G – 22 Augusti 2019

Digitalteknik med VHDL

Time | 5 hours
Support material | none
No. of questions | 6
No. of pages | 7
No. of points | 50 (25 for passed)

- Please hand in one task per page.
- Rationale may not be so scarce that they become difficult to follow.
- Reasoning behind equations should be explained.
- Calculations shall be sufficiently complete to show how the result was obtained.
- Each task must be concluded with a clearly written answer.

David Krapohl, tel: 010-142 8755, e-post: david.krapohl@miun.se

Tasks

Exercise 1.

a) Convert the following decimal number to hexadecimal, octal and binary notation:

3 P.

$$15.25_{10}$$

b) Use the left-shift operation to calculate the binary result using 8-bit registers:

2 P.

$$111011_2 \times 8_{10}$$

c) Calculate two's complement of -39 using 8 bit registers.

2 P.

Solution 1.

a)

binary:
$$001111.01_2$$

$$001111.01_2$$

$$17 2$$

$$1111.0100$$

$$F 4$$

octal: 17.2₈ hex: *F*.4₁₆

b) vänsterskift 3x

$$111011 << 3$$

 $\Rightarrow [1]11011000_2$

c) -39 in two's complement with 8 bit registers.

0010 0111

 \Rightarrow 1101 1000

+ 0000 0001

= 11011001

Exercise 2.

a) Determine if the following equality is true:

4 P.

$$(a + \bar{b})c = (a\bar{b}c) + \overline{(\bar{a}b)}c$$

b) Minimise the following Boolean equation:

4 P.

$$\bar{a}\cdot\bar{c}\cdot\bar{d}+\overline{(a\cdot d)}$$

c) Minimise the function $f(abcd) = \sum (0,5,6,7,8,9,13,14,15) + d(2,4,10,12)$ with the help of a Karnaugh-map. Draw a gate level diagram for the minimised expression.

5 P.

Solution 2.

a) yes, they are the same.

$$= a\bar{b}c + (\bar{a} + \bar{b})c$$

$$= a\bar{b}c + ac + \bar{b}c$$

$$= (a\bar{b} + a + \bar{b})c$$

$$= (a(\bar{b} + 1) + b)c$$

$$= (a + \bar{b})c$$

b) Fastest solution:

$$= \bar{a} \cdot \bar{c} \cdot \bar{d} + \overline{a \cdot d}$$

$$= \bar{a} \cdot \bar{c} \cdot \bar{d} + \bar{a} + \bar{d}$$

$$= \bar{a} (\bar{c} \cdot \bar{d} + 1) + \bar{d}$$

$$= \bar{a} + \bar{d}$$

c)

$$f = \bar{d} + b + a\bar{c}$$

Exercise 3.

Develop Boolean expressions that model the behaviour of the state machine below. 6 P. Use binary coding and D-flipflops.

Solution 3.

State	e tak 0	ole 1		Tra	nsitic 0	n tal 1	ole		Exita	ation 0	tabl 1	e
A	A	В	1	00	00	01	1	-	00	00	01	1
В	A	C	1	01	00	10	1		01	00	10	1
C	В	D	0	10	01	11	0		10	01	11	0
D	В	A	0	11	01	00	0		11	01	00	0
				$q_{1}q_{0}$								

		00	01	11	10
Ε	0	0	0	0	0
	1	0	1	0	1

$$d_0 = E\overline{q_1}q_0 + Eq_1\overline{q_0}$$

		$q_{1}q_{0}$			
		00	01	11	10
Ε	0	0	0	1	1
	1	1	0	0	1

$$d_1 = \overline{E}q_1 + q_1\overline{q_0} + E\overline{q_0}$$

 $z = \overline{q_1}$

Exercise 4.

Draw a gate level diagram for the equation below and complete the waveform output for X.

$$X = AB + \overline{A}B + C\overline{D} + D\overline{E} + \overline{B}C \tag{1}$$

4 P.

4 P.

Solution 4.

Exercise 5.

Write the truth table and draw the gate level diagram for a full adder. Complete the 9 P. VHDL code below to achieve the same functionality. XOR can be used.

```
1
            library IEEE;
2
            use IEEE.STD_LOGIC_1164.all;
3
4
            entity full_adder is
5
                Port ( a : in STD_LOGIC;
6
                b : in STD_LOGIC;
7
                Cin : in STD_LOGIC;
8
                sum : out STD_LOGIC;
9
                Cout : out STD_LOGIC);
10
            end full_adder;
11
            architecture behaviour of full_adder is
12
13
            begin
14
15
                -- <<<wri>te your code here>>>
16
17
            end behaviour;
```

Solution 5.

Different solutions possible

Exercise 6.

a) Draw or describe the signal behaviour for A, B and C with respect to delta delay when the input signal switches from 1 to 0.

b) Calculate the maximum gate delay path for the following gate level circuit with the given delays.

Gates	Delay
inverter	0.1ns
nand	0.4ns
and	0.9ns
or	0.3ns

4 P.

3 P.

Solution 6.

- a) T T+ Δ T+ 2Δ T+ 3Δ T+ 4Δ
- b) Gate delays:

$$0.3ns + 0.4ns + 0.4ns = \underline{1.1ns}$$