Diffusion-based Generative Speech Source Separation

Robin Scheibler (LINE) Youna Ji, Soo-Whan Chung, Jaeuk Byun, Soyeon Choe, Min-Seok Choi (NAVER Cloud) ICASSP 2023

LINE

Speech Separation: Discriminative vs Generative

Discriminative

Generative (proposed)

e.g. GAN, Flow, **Diffusion**...

Proposed Method

Generative separation of sources with the same distribution, i.e., speech

Frameworks for Score-based Generative Modelling

Stochastic Differential Equations [Song2021]

- Continuous-time
- Reverse-time SDE [Anderson1982]
- Model score function

$$\nabla \log p_t(\boldsymbol{x})$$

New: Diffusion-Mixing Process from Sources \rightarrow Mixture

- 2 channels SDE
- removes difference of sources

$$d\mathbf{x}_t = -\gamma (\mathbf{I} - \mathbf{P})\mathbf{x}_t + g(t)d\mathbf{w}, \quad \mathbf{P} = \frac{1}{2}\mathbb{1}\mathbb{1}^\top, \quad \mathbf{x}_0 = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 \end{bmatrix}^\top$$

Marginal is Gaussian $\mathbf{x}_{t} \sim \mathcal{N}(\boldsymbol{\mu}_{t}, \boldsymbol{\Sigma}_{t})$

$$\mu_t = (1 - e^{-\gamma t})\bar{\mathbf{s}} + e^{-\gamma t}\mathbf{x}_0, \qquad \mathbf{\Sigma}_t = \lambda_1(t)\mathbf{P} + \lambda_2(t)(\mathbf{I} - \mathbf{P})$$

New: Diffusion-Mixing Process from Sources \rightarrow Mixture

- 2 channels SDE
- removes difference of sources

$$d\mathbf{x}_t = -\gamma (\mathbf{I} - \mathbf{P})\mathbf{x}_t + g(t)d\mathbf{w}, \quad \mathbf{P} = \frac{1}{2}\mathbb{1}\mathbb{1}^\top, \quad \mathbf{x}_0 = \begin{bmatrix} \mathbf{s}_1 & \mathbf{s}_2 \end{bmatrix}^\top$$

Marginal is Gaussian $\mathbf{x}_{\mathsf{t}} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathsf{t}}, \boldsymbol{\Sigma}_{\mathsf{t}})$

$$\mu_t = (1 - e^{-\gamma t})\bar{\mathbf{s}} + e^{-\gamma t}\mathbf{x}_0, \qquad \mathbf{\Sigma}_t = \lambda_1(t)\mathbf{P} + \lambda_2(t)(\mathbf{I} - \mathbf{P})$$

New: Diffusion-Mixing Process from Sources \rightarrow Mixture

- 2 channels SDE
- removes difference of sources

$$d\textbf{x}_t = -\gamma (\textbf{I} - \textbf{P})\textbf{x}_t + \textbf{g}(t)d\textbf{w}, \quad \textbf{P} = \frac{1}{2}\mathbb{1}\mathbb{1}^\top, \quad \textbf{x}_0 = \begin{bmatrix} \textbf{s}_1 & \textbf{s}_2 \end{bmatrix}^\top$$

Marginal is Gaussian $\mathbf{x}_{\mathsf{t}} \sim \mathcal{N}(\boldsymbol{\mu}_{\mathsf{t}}, \boldsymbol{\Sigma}_{\mathsf{t}})$

$$\boldsymbol{\mu}_t = (1 - e^{-\gamma t}) \bar{\boldsymbol{s}} + e^{-\gamma t} \boldsymbol{x}_0, \qquad \boldsymbol{\Sigma}_t = \lambda_1(t) \boldsymbol{P} + \lambda_2(t) (\boldsymbol{I} - \boldsymbol{P})$$

Illustration of Process

Training Procedure and Objective

Score-based Generative Modelling Idea

Replace score $\nabla \log p_t(\mathbf{x})$ by neural network $\mathbf{q}_{\theta}(\mathbf{x}, \mathbf{y})$

Training

The marginal distribution is **Normal**, i.e., $p_t(\mathbf{x}) \sim \mathcal{N}(\mathbf{\Pi}\mu_t, \mathbf{\Sigma}_t)$, for permutation of source $\mathbf{\Pi}$, the score has a **closed-form** expression

$$\nabla \log p_{t,\Pi}(\mathbf{x}) = -\mathbf{\Sigma}_t^{-1}(\mathbf{x}_t - \mathbf{\Pi}\boldsymbol{\mu}_t)$$
 (1)

- 1. Sample time $t \sim \mathcal{U}[t_{\epsilon}, t_{\text{max}}]$, permutation of sources Π
- 2. Sample $\mathbf{x}_{t} \sim \mathcal{N}(\mathbf{\Pi}\boldsymbol{\mu}_{t}, \mathbf{\Sigma}_{t})$
- 3. Gradient step wrt loss

$$\mathcal{L}(\theta) = \min_{\boldsymbol{\Pi}'} \mathbb{E} \left\| \boldsymbol{\Sigma}_t^{1/2} \boldsymbol{q}_{\theta}(\boldsymbol{x}_t, t, \boldsymbol{y}) - \nabla \log p_{t, \boldsymbol{\Pi}'}(\boldsymbol{x}_t) \right\|^2$$

Examples

É

Results: Separation

- Dataset: WSJ0_2mix (train/test)
- Model: Noise Conditional Score Network [Song2021]
- OVRL: DNSMOS P.835 non-intrusive metric

Dataset	Model	SI-SDR	PESQ	ESTOI	OVRL
_	Conv-TasNet [Luo2019]	16.0	3.29 3.14	0.91	3.21
(matched)	DiffSep (proposed)	14.3	3.14	0.90	3.29

Results: Enhancement

Method is applicable to **enhancement** by letting $\mathbf{s}_2 = \mathbf{n}$.

Dataset: VCTK-DEMAND

Model	SI-SDR	PESQ	ESTOI	OVRL
Discriminative Conv-TasNet [Luo2019]	18.3	2.88	0.86	3.20
Generative CDiffuse [†] [Lu2022] SGMSE+ [†] [Richter2022] DiffSep (proposed)	12.6 17.3 17.5	2.46 2.93 2.56	0.79 0.87 0.84	3.09

[†] results reported in [Richter2022].

Conclusion

- New speech source separation method using diffusion process
- Formulation based on stochastic differential equation

Future Work

- Improve performance
- Speech specific models

Code/Contact

- G fakufaku/diffusion-separation
- 🔰 fakufakurevenge