一、多道批处理

(共6分,不能清晰表达酌情扣分)

(共2分,错一个扣1分)

(1) JOB1: 110ms JOB2: 90ms JOB3: 110ms

(共2分,错一个扣1分)

(2) CPU 利用率: (20+10+10+10+10+10)/110

I1 利用率: (20+30+20+10) / 110 I2 利用率: (30+40+20) / 110

二、进程生命周期

(共5分,少一个状态扣1分,少一个箭头及原因扣1分)

(每小题1分,共5分。每个要点1分)

- (1)新建:进程正在创建中(作业调度,即程序或作业从外存调入内存)的状态。此时系统需要分配和建立 PCB 表项;建立资源表格并分配资源;加载程序并建立地址空间表。
- (2) 就绪: 进程已获得了除 CPU 以外的所有资源,等待分配 CPU 执行时进入的状态,通常由一个就绪队列进行管理。在下列情况下进程进入就绪态: 一是新进程被接纳时; 二是因 CPU 时间片到或被抢占时; 三是陷入阻塞状态的进程因事件发生而等待 CPU 调度时。
- (3) 执行: 当一个进程**获得必要的资源并正在处理机上执行**的状态。通常 CPU 空闲时会从就绪队列队首调度一个进程,将其转入执行状态。
- (4) 阻塞:由于发生某事件而暂时无法执行下去时进程所处的状态,通常由一个阻塞队列进行管理。当等待事件发生时,进程将进入就绪状态。
- (5)结束:进程**执行完毕,释放所占资源**的状态。导致进程结束的原因包括但不限于:正常完成、父进程终止、无可用内存等。

三、银行家算法

(5分,要求通过银行家算法矩阵,给出至少一个安全序列)

(1) 如下表所示(推导过程略),存在安全序列<P0,P3,P1,P2,P4>、<P0,

P3, P4, P1, P2>, <P0, P3, P1, P4, P2>因此, 该状态是安全的。

PROC	MAX		NEED			ALLOCATION=MAX-NEED			AVAILABLE=WORK			WORK+ALLOCATION				N A					
2#14日	总需求			待分配			已分配			可提供			回收后			次序					
进程	A	В	С	D	A	В	С	D	A	В	С	D	A	В	С	D	A	В	С	D	力
P0	0	0	4	4	0	0	1	2	0	0	3	2	1	6	2	2	1	6	5	4	1
P1	2	7	5	0	1	7	5	0	1	0	0	0	1	9	9	10	2	9	9	10	4
P2	3	6	10	10	2	3	5	6	1	3	5	4	2	9	9	10	3	12	14	14	5
Р3	0	9	8	4	0	6	5	2	0	3	3	2	1	6	5	4	1	9	8	6	2
P4	0	6	6	10	0	6	5	6	0	0	1	4	1	9	8	6	1	9	9	10	3

(3分,结论正确1分,说明原因2分)

(2)根据银行家算法检查,若给进程 P3 分配资源(1,2,2,2),系统剩余资源数为 (0,4,0,0),则无法满足其他进程的需求,系统将进入不安全状态,因此,不能将资源分配给 P3。

(2分,结论正确1分,说明原因1分)

(3) 不会立即死锁。不安全不等于立即死锁(危险区≠死锁区)。

四、处理机调度算法

(2分)

(1) 进程执行次序为:

先来先服务法	非抢占式的优先数法				
P ₁ 、P2、P3、P4	P1、P2、P4、P3				

(2)

(共4分。过程正确2分,结论正确2分)

等待时间即开始时刻。

先来先服务法:

执行次序	提交时刻	运行时间	开始时刻	完成时刻	周转时间	带权周转时间			
1	1 0		0	20	20	1.00			
2	2 0		20	35	35	2. 33			
3	0	10	35	45	45	4. 50			
4	0	12	45	57	57	4. 75			
进利	呈平均等待印	寸间	(0+20+35+45) / 4 = 25						
进利	呈平均周转时	寸间	(20+35+45+57) / 4 = 39.25						
进程3	P均带权周轴	专时间	(1+2. 33+4. 5+4. 75) / 4 = 3. 15						

(共4分。过程正确2分,结论正确2分)

非抢占式的优先数法:

执行次序	提交时刻	运行时间	开始时刻	完成时刻	周转时间	带权周转时间			
1	0	20	0	20	20	1.00			
2	0	15	20	35	35	2. 33			
4	0	12	35	47	47	3. 92			
3	0	10	47	57	57	5. 70			
进利	星平均等待时	寸间	(0+20+35+47) / 4 = 25.5						
进利	呈平均周转时	寸间	(20+35+45+57) / 4 = 39.75						
进程》	P均带权周车	专时间	(1+2	. 33+4. 5+4.	75) / 4 =	3. 24			

五、信号量与进程同步

(共4分,同步、互斥各2分)

(1) 分析: 本题可以归类为生产-消费问题。

座位类似于产品缓冲区; logout 进程被调度时, 释放出一个空座位; 当存 在空座位时, login 进程可以被调度, 并减少一个空座位; login 和 logout 进程 存在同步关系;

但多个进程不能同时修改空座位的数量(临界资源);故此刻存在互斥关系。

(2) 代码如下:

```
(2分)
const int N=100;
int seats=N, readers=0, mutex=1;
int buff[]=new int[N]; //array
int in=0, out=0;
                      //pointer of buff
(2分, 要求 P/V 成对出现且顺序正确)
void logout(){
    while(1){
       P(readers);
       P(mutex);
       next=buff[out]; //delete info;
       out=(out+1)%n;
```

V(mutex);

```
V(seats);
}
(2分, 要求 P/V 成对出现且顺序正确)
void login(){
  while(seats>0){ //leave if no seat
    r=getreaderInfo(); //come in
    P(seats);
    P(mutex);
    buff[in]=r; //write down info
    in=(in+1)%n;
    V(mutex);
    V(readers);
}
```

}