Unidade Central de Processamento (CPU). Memória Principal

Eduardo Furlan Miranda 2024-08-01

Baseado em: Tangon, LG; Santos RC. Arquitetura e Organização de Computadores. EDE, 2016. ISBN 978-85-8482-382-6...

- Os microcomputadores surgiram na década de 70 e trouxeram em sua tecnologia novos componentes
- Em um primeiro momento, as CPUs foram desenvolvidas em circuitos integrados,
 - que eram um único chip de silício, contendo milhares de transistores e que traziam as instruções observadas pela arquitetura de Von Neumann,
 - e após isso, com a chegada dos microprocessadores, a prioridade passou a ampliar sua capacidade de processamento

 O componente básico do processador é o transístor funcionando como uma chave (níveis lógicos 0 e 1)

- Mais transistores permitem que o processador processe mais instruções por vez, enquanto a frequência de operação determina quantos ciclos de processamento são executados por segundo
- O principal componente do computador é o processador
 - organiza as informações na memória principal
 - permite as condições necessárias para o processamento dos dados e seu retorno
 - controla todos os demais componentes
 - a placa-mãe do computador
 - os dispositivos que nela estiverem conectados
 - independente se exercem funções de entrada ou saída de dado

- O processador traz em seu interior a Unidade Central de Processamento – CPU
- Esta CPU é formada de algumas unidades que têm suas funções definidas para proporcionar o processamento de informações no computador.
- A CPU possui uma ULA Unidade Lógica e Aritmética e uma unidade de controle.
- Cada uma destas unidades tem sua função no processamento e controle das demais unidades do computador

- A Unidade Lógica e Aritmética (ULA) é responsável por executar os cálculos matemáticos utilizados para processar os dados dentro do computador.
- Os dados usados para estes cálculos são armazenados na memória do computador, e que serão estudadas mais à frente nesta unidade e o caminho para que esta informação seja conduzida entre a ULA da CPU e a memória é chamado de barramento

Figura 2.1 | CPU, memórias, E/S e barramentos

- A unidade de controle de um processador tem a função de coordenar e direcionar as principais funções de um computador, visto que o processador enviará e receberá os dados para as memórias
- É a responsável por toda a ordenação de dados de um computador e até pelo funcionamento do próprio computador, pois coordena a ULA, os registradores que controlam as memórias, os barramentos internos que se comunicam com elas e todo o funcionamento da placamãe, além de interligar os dispositivos

- Os barramentos são as vias por onde passam os dados e permitem a transmissão de informações entre a CPU, os dispositivos de entrada e saída de dados e as unidades de memória
- Além desta função, eles exercem um papel importante na capacidade e velocidade do processamento em um computador
- A quantidade de bits de um processador representa a quantidade de informação que pode ser processada de cada vez,
 - Enquanto a quantidade de bits de um barramento define quanto de dados pode ser mandado ou recebido entre o processador e a memória no momento de seu processamento

- Os primeiros microcomputadores foram lançados na década de 70, tinham processadores com tecnologia de 8 bits e seu barramento com 8 bits, que era o caso do então processador 8080
- Após estes primeiros modelos foram lançados processadores com 16 bits de processamento interno e barramento e, na sequência, os processadores de 32 bits, os de 64 bits e,
 - Ainda mais recentemente, os processadores passaram a contar também com a possibilidade de terem mais que um núcleo de processamento, como é o exemplo dos processadores Multicore, dos quais fazem parte os modernos i3, i5, i7, entre outros

- Processador ações comuns
 - execução de operações aritméticas simples
 - somar, subtrair, multiplicar e dividir
 - operações lógicas
 - operações de movimentação de dados entre a CPU e a memória
- Os componentes do processador são interligados pelos barramentos que permitem esta movimentação entre os dados
 - Barramento de dados
 - Barramento de endereços
 - Barramento de controle

Barramento de dados

- interliga a CPU à memória, e vice-versa, para a transferência das informações que serão processadas
- Ele determina diretamente o desempenho do sistema, pois quanto maior o número de vias de comunicação, maior o número de bits transferidos e, consequentemente, maior a rapidez com que estes dados serão processados
- Os primeiros PCs possuíam barramento de 8 vias
 - Atualmente, dependendo do processador, este número de vias pode ser de 32, 64 e até de 128 vias

Barramento de endereços

- Interliga a CPU à memória fazendo seu endereçamento e tem o número de vias correspondente à tecnologia de bits do processador, ou seja,
 - Nos computadores mais modernos, 32 bits ou 64 bits, permitindo endereçar até
 - 4 GB (Gigabytes) de memória em processadores 32 bits
 - cerca de 16 PB (Petabytes), no caso de processadores de 64 bits

Barramento de controle

- Interliga na CPU à Unidade de Controle aos componentes e dispositivos de um computador, componentes de entrada e saída, memórias auxiliares e de armazenamento, entre outros
- Por trabalhar com componetes externos ao processador, pode ser chamado também de barramento externo

- CPU de um computador é composta por vários elementos e pode ser dividida em duas categorias funcionais, a Unidade Funcional de Controle e Unidade Funcional de Processamento
- Na Figura 2.2 pode-se observar o diagrama funcional básico da CPU, no qual a Unidade Funcional de Processamento é composta pelos registradores, ACC e ULA,
- e a Unidade Funcional de Controle é composta pelos elementos: RDM, REM, CI, RI, Decodificador de Instruções, UC e Clock

- Um ponto importante que merece ser destacado é a velocidade com que a CPU trabalha, medida por ciclos de clock.
- Ciclo de clock é o tempo gasto pelo processador para executar uma operação ou para transferir um dado entre ele e a memória e que define sua velocidade
- Este tempo é medido em Hertz, ou seja, quantos ciclos são processados por segundo
- Os processadores atuais trabalham com velocidades na casa dos Gigahertz

- O que define um projeto de um processador é a quantidade de instruções de máquina que se deseja que ele, processador, execute, quanto menor este conjunto de instruções, mais rápido se torna um processador
- Partindo deste princípio, os processadores têm dois tipos de arquiteturas empregadas pelos seus fabricantes:
 - CISC (Complex Instruction Set Computers) conjunto de instruções complexo, atualmente utilizado pelos processadores de computadores pessoais
 - RISC (Reduced Instuction Set Computes) conjunto de instruções reduzido, que é empregado, p.ex, nos processadores ARM utilizados pelos smartphones e tablets atuais

Processadores CISC

- Complex Instruction Set Computers
- Grande quantidade de instruções complexas
- Instruções simples executando várias operações
- Instruções com vários passos ou modos de endereçamento
- Instruções geralmente ocupam vários bytes ou palavras
- Instruções operam diretamente na memória
- Poucos registradores no processador

Processadores RISC

- Reduced Instuction Set Computes
- Instruções individuais são mais simples
 - Executam uma única operação
- A ideia é que usando instruções simples o processador consiga processar com maior desempenho
- Maior quantidade de registradores no processador
- Arquitetura load-store
 - Aritmética e outras instruções usam registradores
 - Instruções específicas para memória e registradores

- · No início dos computadores a memória era pequena e lenta
- CISC: instruções que ajudavam os compiladores a criarem programas compactos e com poucos acessos à memória
- Os compiladores não eram tão desenvolvidos e existia muita programação feita em Assembly
 - Assembly com nível maior ajudava os programadores
- Ainda hoje existe benefício neste tipo de instrução:
 - Aproveitamento do desempenho da memória cache
 - Instruções vetoriais

- A ideia do RISC começou com o mercado de circuitos eletrônicos mais simples para aplicações simples com conjunto de instruções simples
 - Ex.: controladores para a área de telefonia
- Circuitos mais simples permitiriam otimizar o processador, inclusive com relação ao consumo de energia
 - Dispositivos móveis (celulares, etc)
- Ao longo do tempo o conceito acabou influenciando CISC
 - Algumas instruções CISC são executadas como RISC
 - Simplicidade e eficiência

- Com o aumento da complexidade dos processadores, a dissipação de calor, tamanho do chip, quantidade de transístores, dentre outros, passaram a ser limitantes
- Circuitos mais simples, com ideias RISC, ajudam a contornar estes limites
- A partir de 1990 a Intel usa o "microcódigo" onde as instruções CISC x86 são convertidas internamente pelo processador, em operações mais simples RISC

Memória Principal

Memória principal

Arquitetura Von Neumann

- As memórias têm velocidades diferentes
- Cada uma para um propósito
- Memória onde o programa é executado pela CPU
- Memória de armazenamento
- Volátil ou não
- Varia tecnologia, capacidade, velocidade, custo
- Interligações e acessos

Figura 2.4 | Quadro das características básicas dos tipos de memória

Características básicas dos tipos de memória					
MEMÓRIA	Localização/ É volátil?		VELOCIDADE	CAPACIDADE DE ARMAZENAMENTO	CUSTO
Registrador	Processador	Sim	Muito alta (opera na velocidade do operador)	Muito baixa (bytes)	Muito alto
Cache	Processador	Sim	Alta (opera na velocidade do operador)	Baixa (KB)	Alto
Principal	Placa-mãe	RAM - sim ROM - não	Depende do tipo de memória instalada	Média (GB)	Médio (tem caído muito)
Secundária	HD, CDs, etc.	Não	Baixa (lenta)	Alta (GB)	Baixo (tem caído muito)

Registrador

Figura 2.5 | Registradores em destaque dentro da estrutura de um processador

Registrador

- Um tipo de memória interna do processador
- Rápida, pequena, volátil
- Armazena dados a serem processados
- Uso geral, específico
- Escrita-leitura, somente leitura
- Topo da hierarquia
- Diretamente codificado como parte da instrução

Memória cache

- Faz parte do processador
- Programador deve observar para obter desempenho

Cache

- Reduz o custo médio (tempo ou energia) para a CPU acessar dados da memória principal
- Funciona de forma automática
- Armazena cópias de dados frequentemente usados
- Existem outros tipos de cache, como o TLB (translation lookaside buffer) que faz parte da MMU (memory management unit)
 - Armazena as traduções recentes da memória virtual para a memória física
 - É usado para reduzir o tempo necessário para acessar um local de memória do usuário

Memória principal

Freescale MMM7200 Baseband Processor

Micron Technology MT28F1284W18BQ-705BET Flash - NOR, 8M x 16

RF Micro Devices RF9287 PAM - WCDMA

MMC Card Socket Freescale ASIC – Applications Processor Micron Technology MT48H8M16LFB4-10 SDRAM - 128Mb x 16

RAM - Random Access Memory

- Armazena programas e dados
- Acesso randômico
- Velocidade de leitura/gravação independe da posição
- SRAM (6 transístores = 1 bit), DRAM (capacitor + transístor)
- Volátil (temporário), depende de energia
- Os programas para serem executados, são transferidos do HD, SDD, Pendrive, etc., para a RAM
- Quando a RAM "enche" uma parte é transferida para o HD/SSD (memória secundária), e depois retorna

DDR SDRAM

- Memória de acesso aleatório dinâmica síncrona de taxa de dados dupla
- Transfere dados nas bordas ascendente e descendente do sinal de clock
- 64 bits por vez (entre memória e processador)

Gerações

- Pré-busca: dados de "x" bits são transferidos da matriz de memória para o buffer interno de entrada/saída
- DDR (1998): pré-busca 2-bits, 266-400 Mb/s
- DDR2 (2003): 4-bit, 533-800 Mb/s
- DDR3 (2007): 8-bit, 1066-1600 Mb/s
- DDR4 (2014): grupos de 8-bit, 2133-5100 Mb/s
- DDR5 (2020): 16-bit, 3200-6400 Mb/s

ROM - Ready Only Memory

- Não volátil
- Usado em BIOS, firmware, cartuchos de videogame
- PROM, EPROM, EEPROM, EAROM, Flash-ROM
- Geralmente se grava uma vez
- O processo de gravação geralmente é lento
- Limite de vezes que pode ser regravado

- PROM (Programmable Read-Only Memory)
 - A gravação de dados neste tipo é feita uma única vez e os dados gravados na memória PROM não podem ser apagados ou alterados
- EPROM (Erasable Programmable Read-Only Memory)
 - Permitem a regravação de dados
 - Isso é feito através de emissão de luz ultravioleta que apaga por completo os dados que já estão gravados e após isso permite uma nova gravação.

EEPROM

- Electrically-Erasable Programmable Read-Only Memory
- Permite a regravação de dados, feitos eletricamente, não sendo necessário mover o dispositivo para que a regravação ocorra

EAROM

- Electrically-Alterable Programmable Read-Only Memory
- Os dados gravados podem ser alterados aos poucos, razão pela qual esse tipo é geralmente utilizado em aplicações que exigem apenas reescrita parcial de informações

Flash-ROM

- Um tipo de EEPROM mais rápida
- Não permite a gravação parcial de dados.