FIT3139 Final Project

Daniel Nguyen 32471033

Base Model: Tennis Game with Markov Chains

Extension: How are the transition probabilities calculated?

- Model a point with markov chains
- Run a monte carlo simulation

Questions

- Is my model accurate?
- What makes a good tennis player?

Model Creation: Data Collection

https://www.tennisabstract.com/charting/Alexander Zverev.html

SERVE BASICS	Pts	Won%	Aces%	Unret%	FcdE%	<=3W%	Wide%	Body%	T%
All Serves	12490	8166 (65%)	1220 (10%)	337 (3%)	2197 (18%)	4671 (37%)	4871 (39%)	2390 (19%)	5226 (42%)
First Serves	8279	6059 (73%)	1193 (14%)	312 (4%)	1746 (21%)	3893 (47%)	3765 (45%)	643 (8%)	3869 (47%)
Second Serves	4211	2107 (50%)	27 (1%)	25 (1%)	451 (11%)	778 (18%)	1106 (26%)	1747 (41%)	1357 (32%)

DF 263 (4%) 251 (4%)

RETURN OUTCOMES	Pts	PtsW%	Return	nable	RtbleW%	inPlay%	inPlayW-%	Wnr%	AvgRally
Total	12951	4904 (38%	9251 (71%)	4478 <mark>(48%</mark>)	9095 (98%)	4478 (49%)	134 (1%)	4.5
SHOT TYPES	Total	PtEnd%	Winner%	IndFcd	% UnfErr	% SvReturn	inPtsW%	inF	tsL%
Total	45642	8392 (18%)	2685 (6%)	1955 (49	%) 3751 (89	6) 9147 (20%)	23169 (51%)	2247	3 (49%)

Model Creation: A point in tennis and monte carlo


```
while currentState not in [6, 7]:
    transitionProb = self.pointMatrix[currentState]
    nextState = np.random.choice(numStates, p = transitionProb)
    currentState = nextState
```

Model Creation: Games -> Sets -> Matches -> Tournaments

```
p1gameMatrix = np.array([
  [0, 0, p, 0, 0, 0, 0, 1-p, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # 15 - 0
  [0, 0, 0, p, 0, 0, 0, 0, 1-p, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], #30 - 0
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 1-p, 0, 0, 0, 0, 0, 0, 0, 0, p, 0], # 40 - 0
  [0, 0, 0, 0, 0, 1-p, 0, p, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # 0 - 15
  [0, 0, 0, 0, 0, 0, 1-p, 0, p, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], # 0 - 30
  [0, 0, 0, 0, 0, 0, 0, 0, 0, p, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1-p], # 0 - 40
  [0, 0, 0, 0, 0, 0, 0, 0, p, 0, 1-p, 0, 0, 0, 0, 0, 0, 0, 0, 0], # 15 - 15
  [0, 0, 0, 0, 0, 0, 0, 0, 0, p, 0, 0, 1-p, 0, 0, 0, 0, 0, 0, 0], # 30 - 15
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1-p, 0, 0, 0, 0, p, 0], # 40 - 15
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, p, 0, 1-p, 0, 0, 0, 0, 0], # 15 - 30
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, p, 0, 0, 0, 0, 1-p], # 15 - 40
  [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, p, 1-p, 0, 0, 0, 0, 0], # 30 - 30
  1)
```

Model Creation: Problems

Problem: Doesn't model everything

Solution: Tough Luck

Problem: Performing point monte carlo for 2000 French Opens is slow

Solution: Dynamic Programming (kind of) and python dictionaries

Results: French Open Final

1
$1+10^{elo\ difference\ /\ 400}$

	Alexander Zverev	Carlos Alcaraz		
ELO rating	2074.5	2197.4		

French Open Final: Head to Head

https://www.atptour.com/en/players/atp-head-2-head/carlos-al caraz-vs-alexander-zverev/a0e2/z355

French Open: Which of the Quarter Finalists Will Win?

French Open: Comparison with betting odds

Likelihood to Win Ranking	Our Model	bet365
1	Carlos Alcaraz	Carlos Alcaraz
2	Casper Ruud	Jannik Sinner
3	Alexander Zverev	Novak Djokovic
4	Jannik Sinner	Alexander Zverev
5	Stefanos Tsitsipas	Stefanos Tsitsipas
6	Novak Djokovic	Casper Ruud
7	Grigor Dimitrov	Alex De Minaur
8	Alex De Minaur	Stefanos Tsitsipas

French Open: Another Perspective

Recap on our Model: Parts of Tennis

- Serving
- Receiving
- Rally

Mr Serve:

- Ace proportion is 5% higher
- Double fault proportion is 5% lower

Mr Return:

- All returnable serves are in play (adding 5% goes over 100% so I capped it at 100%)
- Return winner is 5% higher

Mr Rally:

- Rally winner proportion is 5% higher
- Rally unforced error rate is 5% lower

Results: Serve, Receive and Rally

Results: Why?

- The serve impacts more than just the receive
- A good receive is needed for a competitive rally
- Players as an average have similar rally statistics
- Model Downfalls:
 - All rally shots are treated the same