

Mathematik - Vorkurs (Aufgaben & Lösungen)

Angewandte Informatik / Prozessautomatisierung

Inhaltsverzeichnis

Fachiliteratur zur Mathematik	3
Lehrinhalte Mathematik	4
Aufgaben zu "Lineare und quadratische Gleichungen"	5
Aufgaben zu "Wurzeln, Logarithmen und Funktionen"	6
Aufgaben zu "Trigonometrische Funktionen"	8
Aufgaben zu "Integral- und Differentialrechnung"	9
Aufgaben zur "Vektorrechnung"	10
Lösungen	11
"Lineare und quadratische Gleichungen"	
"Wurzeln, Logarithmen und Funktionen"	13
"Wurzeln, Logarithmen und Funktionen"	14
"Trigonometrische Funktionen"	15
"Integral- und Differentialrechnung"	16
"Vektorrechnung"	18
Fachstudienberatung "Angewandte Informatik"	19
Übersicht über den Standort Emden	20

Stand: 02/2002

Fachliteratur zur Mathematik

- (1) Papula, Lothar Mathematik für Ingenieure, Band 1, 2 und 3. Vieweg-Verlag, 1994.
- (2) Papula, Lothar Übungen zur Mathematik für Ingenieure. Vieweg-Verlag, 1992.
- (3) Papula, Lothar Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler. Vieweg-Verlag, 1994
- (4) Smirnow, W. S. Lehrgang der höheren Mathematik, Band 1 - 5. Deutscher Verlag der Wissenschaften, 1960.
- (5) Bronstein, I. N. und Semendjajew, K. A. Taschenbuch der Mathematik. Teubner-Verlagsgesellschaft, 1960.
- (6) Mangoldt, Hans / Knopp, Konrad Eine Einführung für studierende und zum Selbststudium, Band 1- 4. S. Hirzel , 1990.

Lehrinhalte Mathematik

Dozenten: Prof. Dr. Kleemann

Prof. Dr. Bartning Prof. Dr. Boisch

Inhalt:

Teil I:

- 1. Funktionen mit einer Variable
 - Eigenschaften von Funktionen
 - Darstellung von Funktionen in verschiedenen Koordinatensystemen
- 2. Differentialrechnung für Funktionen mit einer Variable
 - Regeln zum Differenzieren von Funktionen
 - Kurven Untersuchungen
- 3. Integralrechnung für Funktionen mit einer Variable
 - Integrationsmethoden
 - Anwendung der Integralrechnung
- 4. Vektoralgebra
 - Multiplikation eines Vektors mit einem Skalar
 - Skalarprodukt von Vektoren
 - Vektorprodukt von Vektoren

Teil II

- 1. Komplexe Zahlen und Funktionen
- Lineare Algebra, Matrizen, Determinanten, Lösung linearer Gleichungssysteme
 - Matrizen
 - Determinanten
 - Lösung linearer Gleichungssysteme
- 3. Differentiation von Funktionen mit mehreren Variablen
- 4. Integration von Funktionen mit mehreren Variablen

Teil III

- 1. Vektoranalysis
- Fourier-Transformation
- 3. Laplace-Transformation
- 4. Differentialgleichungen

Lehrmethoden: Vorlesungen und Übungen

Prüfung: Klausuren

Aufgaben zu "Lineare und quadratische Gleichungen"

1. Vereinfachen Sie die folgenden Ausdrücke:

a)
$$\frac{3}{5} + \frac{1}{4} - \frac{2}{9}$$

c)
$$\frac{14m}{9K^2}$$
 : $\frac{7mn}{6K}$

d)
$$\frac{18s - 18t}{u}$$
 : $(12s^2 - 12t^2)$

e)
$$\frac{\frac{1}{m^2} + \frac{2}{mn} + \frac{1}{n^2}}{\frac{3}{m} + \frac{3}{n}}$$

2. Lösen Sie folgende lineare Gleichungen und überprüfen Sie die Ergebnisse. Geben Sie die Wertebereiche von a, b usw. an, für die die Gleichungen genau eine oder keine Lösung bzw. unendlich viele Lösungen haben!

a)
$$2 [x (2x + a) - a^2] = (2x - 1) (2x - a)$$

b)
$$\frac{bx}{a} - \frac{a}{b}(a - bx) - \frac{b}{a}(bx - a) = 1$$

- c) Von drei parallelgeschalteten elektrischen Leitern, an denen eine Spannung von 25 V anliegt, hat jeder einen elektrischen Widerstand, der doppelt so groß ist wie der vorhergehende. Der Gesamtwiderstand betrage 100 Ω . Wie groß sind bei unveränderten Bedingungen die
 - 1.) Einzelwiderstände
- 2.) Zweigstromstärken?

2. Lösen Sie folgende quadratische Gleichungen:

a)
$$\frac{10x-1}{9} + \frac{6x-1}{5} = \frac{1}{x} + 2x - 1$$

b)
$$x^2 + (a^2 - x)^2 = (a^2 - 2x)^2$$

Aufgaben zu "Wurzeln, Logarithmen und Funktionen"

1. Vereinfachen Sie folgende Wurzelausdrücke:

a)
$$\sqrt{\frac{9(a^2 - 2ab + b^2)}{25(a^2 + 2ab + b^2)}}$$

b)
$$\sqrt{a - \sqrt{a^2 - b^2}} * \sqrt{a + \sqrt{a^2 - b^2}}$$

d)
$$3\sqrt{2x-1} - \sqrt{8x+17} = \frac{2(x-3)}{\sqrt{2x-1}}$$

e)
$$\sqrt[5]{a^{(n+5)}}$$

f)
$$\sqrt[3]{\frac{u}{v} * \sqrt{\frac{v^2}{u}} * \sqrt{\frac{1}{u}}}$$

2. Logarithmen:

a)
$$64^{x} = 64$$

b)
$$5^{x} = 0.008$$

c)
$$\frac{1}{2} \lg(a^2 - ab + b^2) + \frac{1}{2} \lg(a + b)$$

d)
$$2 \log x = 3 \log 4$$

3. Funktionen:

a) Ermitteln Sie die Nullstellen der folgenden Funktionen:

1.)
$$y = \pm \sqrt{3x + 1}$$

$$mit \quad x \geq -\frac{1}{3}$$

2.)
$$y = 2x^2 - 3$$

- b) Zeichnen Sie die Funktionen und ermitteln Sie grafisch die Schnittpunkte.
- c) Ermitteln Sie die Schnittpunkte rechnerisch.

Aufgaben zu "Trigonometrische Funktionen"

Darstellung im Bogenmaß bzw. Gradmaß:

a) 435° b)
$$\frac{3\pi}{4}$$
 rad

2. Berechnen Sie jeweils die drei anderen Winkelfunktionen, wenn sin α , $\cos \alpha$, $\tan \alpha$, and $\cot \alpha$ gegeben sind.

a)
$$\sin \alpha = \frac{24}{25}$$

b)
$$\cot \alpha = \frac{5}{12}$$

3. Für welche Werte gilt die Gleichnung:

$$2\sin x = \sqrt{2} * \tan x$$

- 4. Anwendungen:
 - a) Um die Breite eines Flusses zu bestimmen, wird auf einem der beiden parallel verlaufenden Ufer eine Strecke von 38,35 m abgemessen und von deren Endpunkten aus, ein an dem gegenüberliegenden Ufer befindlichen Pfeiler unter einem Winkel von 22° 50′ bzw. 31° 10′ angepeilt. Berechnen Sie die Breite des Flusses.
 - b) Ein auf eine Glasplatte fallender Lichtstrahl wird z.T. durch diese gebrochen und dadurch von seiner ursprünglichen Richtung um $\delta = 15^{\circ}$ abgelenkt. Wie groß ist der Einfallswinkel α , wenn der Brechungsindex des Glases 1.52 ist?

Aufgaben zu "Integral- und Differentialrechnung"

1. Differenzieren Sie:

a)
$$y = 3x^7 + 4x^2 + 7x^{-1} + 8$$

b)
$$y = ax^n + b(x^m + x^2) + c \frac{1}{x^3}$$

c)
$$y = 4e^x$$

d)
$$y = 7e^{2x} + \ln x$$

e)
$$y = 5\sin(3x)$$

f)
$$y = a \sin(bx) + c \cos(dx)$$

- 2. Berechnen Sie von der Funktion $y = \sin(2x)$ die erste Ableitung $\frac{dy}{dx} = y'$ und die zweite Ableitung $\frac{d}{dx} \left[\frac{dy}{dx} \right] = \frac{dy'}{dx} = y''$. Zeichnen Sie y, y', y''.
- 3. Berechnen Sie Extremwerte und Wendepunkte der Funktion: $y = x^3 3x^2 x + 3$.

- a) direkt aus der geometrischen Form der Fläche.
- b) unter der Benutzung der Integralrechnung

Aufgaben zur "Vektorrechnung"

1. Berechnnen Sie:

a)
$$\vec{x} = 2\vec{x_1} + 3\vec{x_2} - 4\vec{x_3}$$

b)
$$\vec{x} = 5\vec{x_1} - (\vec{x_2} - 2\vec{x_3})$$

$$\text{mit} \qquad \vec{x_1} = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix} \qquad \vec{x_2} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} \qquad \vec{x_3} = \begin{pmatrix} -1 \\ -2 \\ -3 \end{pmatrix}$$

- 2. Die drei Vektoren \vec{a} , \vec{b} , \vec{c} mit $|\vec{a}| = |\vec{b}| = |\vec{c}|$ haben als Summe den Nullvektor. Geben Sie für die drei Seitenhalbierenden des erhaltenen Dreiecks Vektorgleichungen an (Angriffspunkt in A,B bzw. C)!
- 3. Berechnen Sie den Vektor \vec{a} der zu \vec{x} parallel ist und die Länge 1 hat.

$$\vec{x} = \begin{pmatrix} 12 \\ -3 \\ 2 \end{pmatrix}$$

- 4. Gegeben sind die beiden Vektoren \vec{g} und \vec{f} , welche die Diagonalen eines Parallelogramms bilden. Bestimmen Sie die Seitenvektoren des Parallelogramms!
- 5. Gegeben seien die beiden Vektoren

$$\vec{a} = \begin{pmatrix} 13 \\ 7 \\ 5 \end{pmatrix}$$
 sowie $\vec{a_1} = \begin{pmatrix} 3 \\ 4 \\ 1 \end{pmatrix}$ $\vec{a_2} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$ $\vec{a_3} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Stellen Sie \vec{a} als Summe der drei Vektoren $\vec{x_1}$, $\vec{x_2}$, $\vec{x_3}$ dar, für die gilt: $\vec{x_1} \parallel \vec{a_1}$, $\vec{x_2} \parallel \vec{a_2}$ und $\vec{x_3} \parallel \vec{a_3}$.

Lösungen

"Lineare und quadratische Gleichungen"

Übung 1:

a)
$$\frac{113}{180}$$

b) 5m + 6n c)
$$\frac{4}{3k * n}$$

d)
$$\frac{3}{2\mu(s+t)}$$

d)
$$\frac{3}{2\mu(s + t)}$$
 e) $\frac{1}{3m} + \frac{1}{3n}$

Übung 2:

a)
$$x = \frac{a}{2}$$

b)
$$x = \frac{a}{b}$$

c)
$$R_1 = 175 \Omega$$
 $I_1 = \frac{1}{7} A$

$$I_1 = \frac{1}{7} A$$

$$R_2 = 350 \Omega$$
 $I_2 = \frac{1}{14} A$

$$I_2 = \frac{1}{14} A$$

$$R_2 = 700 \Omega$$

$$R_3 = 700 \Omega$$
 $I_3 = \frac{1}{28} A$

Übung 3:

a)
$$x_1 = 1$$

$$x_2 = -\frac{45}{14}$$

b)
$$x_1 = 0$$

$$x_2 = a^2$$

"Wurzeln, Logarithmen und Funktionen"

Übung 1:

- a) $\frac{3}{5} * \frac{a b}{a + b}$ b) b c) $\sqrt[8]{a^2}$ d) x = 13

e) a^2

e) 1

Übung 2:

- a) x = 1
- b) x = -3 c) $\log \sqrt{a^3 + b^3}$
- d) $X_1 = 8$ $X_2 = -8$

x₂ = keine Lösung (Einsetzen)

Übung 3:

Nullstellen von $y = 2x^2 - 3$:

$$x_1 = \sqrt{\frac{3}{2}}$$

$$x_1 = \sqrt{\frac{3}{2}}$$
 $x_2 = -\sqrt{\frac{3}{2}}$

Nullstellen von $y = \pm \sqrt{3x + 1}$:

$$x = -\frac{1}{3}$$

Schnittpunkte:

$$x_{.} = 0.77$$

$$x_1 = 0.77$$
 $y_1 = -1.82$

$$x_0 = 1,65$$

$$x_2 = 1,65$$
 $y_2 = 2,44$

"Wurzeln, Logarithmen und Funktionen"

Übung 3 (grafisch):

"Trigonometrische Funktionen"

Übung 1:

- a) 7,592 rad b) 135° c) 0,0095 rad d) 1,1459°

Übung 2:

a)
$$\cos \alpha = \pm \frac{7}{25}$$
 $\tan \alpha = \pm \frac{24}{7}$ $\cot \alpha = \pm \frac{7}{24}$

$$\tan\alpha = \pm \frac{24}{7}$$

$$\cot \alpha = \pm \frac{7}{24}$$

b)
$$\cos \alpha = \pm \frac{5}{13}$$
 $\tan \alpha = \frac{12}{5}$

$$\tan\alpha = \frac{12}{5}$$

$$\sin \alpha = \pm \frac{12}{13}$$

Übung 3:

$$2\sin x = \sqrt{2}$$
 $\tan x = \sqrt{2} \frac{\sin x}{\cos x}$

a)
$$\sin x = 0$$
 \rightarrow $x = 0$ $x = 180^{\circ}$ $x = 360^{\circ}$

$$x = 0$$

$$x = 180^{\circ}$$

$$x = 360^{\circ}$$

b)
$$\cos x = \frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\rightarrow$$
 $x = 45^{\circ}$ $x = 360^{\circ}$

Übung 4:

- a) Die Breite des Flusses beträgt 9,5 m.
- b) $\alpha = 45^{\circ}$

"Integral- und Differentialrechnung"

Übung 1:

a)
$$y' = 26x^6 + 8x + (-1) 7 x^{-2}$$

b)
$$y' = a n x^{n-1} + b m x^{m-1} + 2bx - (3c / x^4)$$

c)
$$y' = 4 e^x$$

d)
$$y' = 14 e^{2x} + (1/x)$$

e)
$$y' = 15 \cos 3x$$

f)
$$y' = a b \cos bx - c d \sin dx$$

Übung 2:

$$y = \sin 2x$$

$$y' = 2 \cos 2x$$

$$y'' = -4 \sin 2x$$

Übung 3:

Übung 4:

a) grafisch:

b) rechnerisch:

1.)
$$F = F_{1} + F_{2}$$

$$F_{1} = (aA + b) (x - A)$$

$$F_{2} = [(aA + b) - (aA + b)] \frac{(x - A)}{2}$$

$$F = \frac{a x^{2}}{2} + bx - \frac{a A^{2}}{2} - bA$$
2.)
$$\int_{A}^{x} (ax + b) dx = \int_{A}^{x} x dx + b \int_{A}^{x} dx$$

$$F = a \left[\frac{x^{2}}{2}\right] + b[x]$$

$$F = a \frac{x^{2}}{2} - a \frac{A^{2}}{2} + bx - bA$$

"Vektorrechnung"

Übung 1:

a)
$$\vec{x} = \begin{pmatrix} 11 \\ 12 \\ 15 \end{pmatrix}$$
 b) $\vec{x} = \begin{pmatrix} 7 \\ -11 \\ 10 \end{pmatrix}$

Übung 2:

$$\vec{s_a} = \vec{c} + \frac{1}{2}\vec{a}$$
 $\vec{s_b} = \vec{a} + \frac{1}{2}\vec{b}$ $\vec{s_c} = \vec{b} + \frac{1}{2}\vec{c}$

Übung 3:

$$a = \frac{x}{\sqrt{157}}$$

Übung 4:

$$\vec{g}, \ \vec{f} \qquad |g| \ |f|$$

Übung 5:

$$x_1 = 2$$
 $x_2 = -4$ $x_3 = 7$

Fachstudienberatung "Angewandte Informatik"

Prof. Dr.-Ing. Dr. h.c. Engelmann

Fachhochschule Oldenburg/Ostfriesland/Wilhelmshaven Fachbereich Technik Constantiaplatz 4 26723 Emden

Tel: 0180 567 807 - 1511 bzw. -1515

Fax: 0180 567 807 - 1593

Email: hans.engelmann@fho-emden.de

Büro: Gebäude N, Erdgeschoß, Raum T 1012

Prof. Dr.-Ing. G. Kleemann

Tel.: 0180 567 807 - 1519 **Fax:** 0180 567 807 - 1593

Email: kleemann@nwt.fho-emden.de

Büro: Gebäude N, Erdgeschoß, Raum T 1018

Prof. Dr. K. H. Weiler

Tel.: 0180 567 807 - 1521 **Fax:** 0180 567 807 - 1593

Email: weiler@nwt.fho-emden.de

Büro: Gebäude N, Erdgeschoß, Raum T 1019

Übersicht über den Standort Emden

A: Abteilung Naturwissenschaftliche Technik

Fachstudienberatung, Erdgeschoß, Raum T1012/T1014 .. В

Fachschaftsrat, Raum T103 O O

Bafög-Beauftragter, 1. Etage, Raum T1104

Studentenwerk, 1. Etage, Raum G108 .. п .. п .. п

Mensa

Bibliothek Cafeteria .. I

Dekanat, 1. Etage, Raum T1120

T-Foyer, Raum T 002 K: Räume T 76 - T 80

> = Eingänge