COMP527 Final Project - On Paper Part

1 Formalization

Typing Rules :
$$\frac{}{\Gamma, x : \tau \vdash x : \tau}$$

$$\overline{\Gamma \vdash z : \mathsf{nat}}$$

$$\frac{\Gamma \vdash e : \mathsf{nat}}{\Gamma \vdash \mathsf{succ}(e) : \mathsf{nat}}$$

$$\frac{\Gamma \vdash e : \mathsf{nat} \qquad \Gamma \vdash e_0 : \tau \qquad \Gamma, x : \mathsf{nat}, y : \tau \vdash e_1 : \tau}{\Gamma \vdash \mathsf{rec}(e; e_0; x.y.e_1) : \tau}$$

$$\frac{\Gamma, x : \tau_1 \vdash e : \tau_2}{\Gamma \vdash \lambda(x : \tau_1). \ e : \tau_1 \to \tau_2}$$

$$\frac{\Gamma \vdash e_1 : \tau_1 \to \tau_2 \qquad \Gamma \vdash e_2 : \tau_1}{\Gamma \vdash \mathsf{app}(e_1, e_2) : \tau_2}$$

Reduction Rules:

$$\lambda(x:\tau.t).u \xrightarrow{\beta} t[x:=u]$$

$$rec(z; t_0; x.y.t_s) \rightarrow t_0$$

$$\mathrm{rec}(\mathrm{succ}(n);\ t_0;\ x.y.\ t_s) \to\ t_s[x:=n,\ y:=\mathrm{rec}(n;\ t_0;\ x.y.\ t_s)]$$

$$\frac{e \ \rightarrow \ e'}{C[e] \ \rightarrow \ C[e']} \quad \text{ where:}$$

$$C ::= [] \mid z \mid \mathsf{succ}(C) \mid C e \mid e \mid C \mid \mathsf{rec}(C; e_0; x.y.e_s)$$

Examples

```
\begin{split} &\operatorname{succ} = \lambda(n:\operatorname{nat}).\operatorname{succ}(n) \\ &\operatorname{pred} = \lambda(n:\operatorname{nat}).\operatorname{rec}(n;\,z;\,x.y.\,x) \\ &\operatorname{add} = \lambda(m:\operatorname{nat}).\;\lambda(n:\operatorname{nat}).\operatorname{rec}(m;\,n;\,x.y.\operatorname{succ}(y)) \\ &\operatorname{subtract} = \lambda(m:\operatorname{nat}).\;\lambda(n:\operatorname{nat})\operatorname{rec}(n;\,m;\,x.y.\operatorname{pred}(y)) \\ &\operatorname{multiply} = \lambda(m:\operatorname{nat}).\;\lambda(n:\operatorname{nat}).\operatorname{rec}(m;\,z;\,x.y.\operatorname{add}(n,y)) \\ &\operatorname{exp} = \lambda(m:\operatorname{nat}).\;\lambda(n:\operatorname{nat}).\operatorname{rec}(n;\operatorname{succ}(z);\;x.y.\operatorname{multiply}(m,y)) \end{split}
```

Proofs of Examples

1. Successor:

$$\begin{aligned} \operatorname{succ}\left(\operatorname{succ}(\operatorname{succ}(z))\right) &= \left(\lambda(x:\operatorname{nat}).\operatorname{succ}(x)\right)\left(\operatorname{succ}(\operatorname{succ}(z))\right) \\ &\xrightarrow{\beta} \operatorname{succ}\left(\operatorname{succ}(\operatorname{succ}(z))\right) \end{aligned}$$

2. Predecessor:

$$\begin{split} \operatorname{pred}\left(\operatorname{succ}(\operatorname{succ}(z))\right) &= (\lambda(x:\operatorname{nat}).\operatorname{rec}(x;\,z;\,x.y.\,x)) \left(\operatorname{succ}(\operatorname{succ}(z))\right) \\ &\xrightarrow{\beta} \operatorname{rec}\left(\operatorname{succ}(\operatorname{succ}(z));\,z;\,x.y.\,x\right) \\ &\xrightarrow{\operatorname{red-s}} \operatorname{rec}\left(\operatorname{succ}(z);\,z;\,x.y.\,x\right) \\ &\xrightarrow{\operatorname{red-s}} z \end{split}$$

3. Addition:

$$\begin{split} \operatorname{add} \big(\operatorname{succ} (\operatorname{succ} (z)), \, \operatorname{succ} (\operatorname{succ} (\operatorname{succ} (z))) \big) &= (\lambda m \, n. \, \operatorname{rec} (m; \, n; \, x.y. \, \operatorname{succ} (y))) \, \left(\operatorname{succ} (\operatorname{succ} (\operatorname{succ} (z))) \right) \\ &\stackrel{\beta}{\to} \operatorname{rec} \big(2; \, 3; \, x.y. \, \operatorname{succ} (y) \big) \\ &\stackrel{\operatorname{red} - s}{\to} s \big(\operatorname{rec} (1; \, 3; \, x.y. \, \operatorname{succ} (y)) \big) \\ &\stackrel{\operatorname{red} - s}{\to} s \big(\operatorname{succ} (\operatorname{rec} (0; \, 3; \, x.y. \, \operatorname{succ} (y))) \big) \\ &\stackrel{\operatorname{red} - 0}{\to} \operatorname{succ} \big(\operatorname{succ} (3) \big) \, \to \, \operatorname{succ} (4) \, \to \, 5 \end{split}$$

4. Subtraction:

$$\begin{split} \mathsf{subtract} \big(\mathsf{succ}(\mathsf{succ}(\mathsf{succ}(z))), \, \mathsf{succ}(\mathsf{succ}(z)) \big) &= (\lambda m \, n. \, \mathsf{rec}(n; \, m; \, x.y. \, \mathsf{pred}(y))) \, \big(\mathsf{succ}(\mathsf{succ}(\mathsf{succ}(z))) \big) \\ &\stackrel{\beta}{\to} \mathsf{rec} \big(2; \, 3; \, x.y. \, \mathsf{pred}(y) \big) \\ &\stackrel{\mathsf{red} \cdot s}{\longrightarrow} \mathsf{pred} \big(\mathsf{rec}(1; \, 3; \, x.y. \, \mathsf{pred}(y)) \big) \\ &\stackrel{\mathsf{red} \cdot s}{\longrightarrow} \mathsf{pred} \big(\mathsf{pred}(\mathsf{rec}(0; \, 3; \, x.y. \, \mathsf{pred}(y))) \big) \\ &\stackrel{\mathsf{red} \cdot 0}{\longrightarrow} \mathsf{pred} \big(\mathsf{pred}(3) \big) \, \to \, \mathsf{pred}(3) = 2 \, \to \, \mathsf{pred}(2) = 1 \end{split}$$

5. Multiplication:

$$\begin{split} \mathsf{multiply} \big(\mathsf{succ}(\mathsf{succ}(z)), \, \mathsf{succ}(\mathsf{succ}(\mathsf{succ}(z))) \big) &= (\lambda m \, n. \, \mathsf{rec}(m; \, z; \, x.y. \, \mathsf{add}(n,y))) \, \big(\mathsf{succ}(\mathsf{succ}(\mathsf{succ}(z))) \big) \\ &\stackrel{\beta}{\to} \mathsf{rec} \big(2; \, 0; \, x.y. \, \mathsf{add}(3,y) \big) \\ &\stackrel{\mathsf{red} - s}{\to} \, \mathsf{add} \big(3, \, \mathsf{rec}(1; \, 0; \, x.y. \, \mathsf{add}(3,y)) \big) \\ &\stackrel{\mathsf{red} - s}{\to} \, \mathsf{add} \big(3, \, \, \mathsf{add}(3, \, \mathsf{rec}(0; \, 0; \dots)) \big) \\ &\stackrel{\mathsf{red} - 0}{\to} \, \mathsf{add}(3, \, \, \mathsf{add}(3,0)) \, = \, \mathsf{add}(3,3) = 6 \end{split}$$

6. Exponentiation:

$$\begin{split} \exp \big(\operatorname{succ}(\operatorname{succ}(z)), \ \operatorname{succ}(\operatorname{succ}(\operatorname{succ}(z))) \big) &= (\lambda m \, n. \, \operatorname{rec}(n; \, \operatorname{succ}(z); \, x.y. \, \operatorname{multiply}(m,y))) \, \big(\operatorname{succ}(\operatorname{succ}(\operatorname{succ}(z))) \big) \\ &\stackrel{\beta}{\to} \operatorname{rec} \big(3; \, 1; \, x.y. \, \operatorname{multiply}(2,y) \big) \\ &\stackrel{\operatorname{red-}s}{\longrightarrow} \operatorname{multiply} \big(2, \, \operatorname{rec}(2; \, 1; \, x.y. \, \operatorname{multiply}(2,y)) \big) \\ &\stackrel{\operatorname{red-}s}{\longrightarrow} \operatorname{multiply} \big(2, \, \operatorname{multiply}(2, \, \operatorname{rec}(1; \, 1; \ldots)) \big) \\ &\stackrel{\operatorname{red-}s}{\longrightarrow} \operatorname{multiply} \big(2, \, \operatorname{multiply}(2, \, \operatorname{multiply}(2, \, \operatorname{rec}(0; \, 1; \ldots))) \big) \\ &\stackrel{\operatorname{red-}0}{\longrightarrow} \operatorname{multiply}(2, \, \operatorname{multiply}(2, \, \operatorname{multiply}(2,1))) = 8 \end{split}$$

2 Definitions and Theorems

Definition 1 (Normal Form). A term e is in normal form if there is no term e' such that

$$e \rightarrow e'$$
.

In other words, no reduction rule applies to e.

Definition 2 (Weak Normalization). A (closed) term e is weakly normalizing, written WN(e), if there exists a finite reduction sequence

$$e \rightarrow e_1 \rightarrow \cdots \rightarrow e_n$$

such that e_n is in normal form.

Definition 3 (Reducibility Relation). For each type τ we define the predicate $R_{\tau}(e)$ on closed terms e by induction on τ :

$$R_{\mathsf{nat}}(e) \ := \ \left(\vdash e : \mathsf{nat} \right) \ \land \ \mathsf{WN}(e), \tag{1}$$

$$R_{\sigma \to \tau}(e) := \left(\vdash e : \sigma \to \tau \right) \land \left(\forall v. R_{\sigma}(v) \to R_{\tau}(e(v)) \right).$$
 (2)

We often write

$$\mathcal{R}(\tau) = \{ e \mid R_{\tau}(e) \}.$$

Theorem 1 (Confluence).

$$\frac{e \rightarrow^* e_1}{\exists e_3. \ e_1 \rightarrow^* e_3 \land e_2 \rightarrow^* e_3}$$

3 Proof of Weak Normalization

Lemma 1.

$$e \to e' \land \mathsf{WN}(e) \Rightarrow \mathsf{WN}(e').$$

Proof. Suppose $e \to e'$ and $\mathsf{WN}(e)$, so there is n with $e \to^* n$ and n in normal form. By confluence, there exists m such that

$$e' \to^* m$$
 and $n \to^* m$.

But n is normal, so m = n. Therefore $e' \to^* n$, i.e. $\mathsf{WN}(e')$.

Lemma 2.

$$e \to e' \land \mathsf{WN}(e') \Rightarrow \mathsf{WN}(e).$$

Proof. By definition of WN, from $e \to e'$ and $e' \to^* n$ (with n normal) we get

$$e \rightarrow e' \rightarrow^* n$$

i.e. $e \to^* n$, so WN(e).

Lemma 3.

If $R_{\tau}(e)$ and $e \to e'$, then $R_{\tau}(e')$.

Proof. By induction on the definition of $R_{\tau}(e)$.

• $\tau = \text{nat. Then}$

$$R_{\mathsf{nat}}(e) = (\Gamma \vdash e : \mathsf{nat}) \land \mathsf{WN}(e).$$

By lemma 1, if $e \to e'$ and WN(e) then also WN(e'). Thus $R_{\mathsf{nat}}(e')$.

• $\tau = \sigma \to \rho$. We have

$$R_{\sigma \to \rho}(e) = \Gamma \vdash e : \sigma \to \rho \land \mathsf{WN}(e) \land \forall v (R_{\sigma}(v) \Longrightarrow R_{\rho}(e \, v)).$$

Since if $e \to e'$, then for any $v \in R_{\sigma}$, $e v \to e' v$ (by reduction rule), thus for type ρ we get $R_{\rho}(e'v)$. Hence $R_{\sigma \to \rho}(e')$.

Lemma 4.

If $e \to e'$ and $R_{\tau}(e')$, then $R_{\tau}(e)$.

Proof. Similarly, by induction on the definition of $R_{\tau}(e)$.

• $\tau = \text{nat. Then}$

$$R_{\mathsf{nat}}(e') = (\Gamma \vdash e' : \mathsf{nat}) \land \mathsf{WN}(e').$$

By lemma 2, if $e \to e'$ and WN(e') then also WN(e). Thus $R_{nat}(e)$.

• $\tau = \sigma \to \rho$. We have

$$R_{\sigma \to \rho}(e') = \Gamma \vdash e : \sigma \to \rho \land \mathsf{WN}(e') \land \forall v (R_{\sigma}(v) \Longrightarrow R_{\rho}(e'v)).$$

Since if $e \to e'$, then for any $v \in R_{\sigma}$, $e v \to e' v$ (by reduction rule), thus for type ρ we get $R_{\rho}(e v)$. Hence $R_{\sigma \to \rho}(e)$.

Lemma 5 (Fundamental Lemma). If $\Gamma = x_1 : \tau_1, \ldots, x_n : \tau_n \vdash e : \tau$ and each v_i is a closed term with $R_{\tau_i}(v_i)$, then

$$R_{\tau}(e[x_1 := v_1, \dots, x_n := v_n]).$$

Proof. Prove by induction.

- e = z. Then $(e[x_1 := v_1, \dots, x_n := v_n]) = z$, and z is normal by definition. Thus $R_{\tau}(e[x_1 := v_1, \dots, x_n := v_n])$.
- $e = x_i$. Then $(e[x_1 := v_1, \dots, x_n := v_n]) = v_i$, and $R_{\tau_i}(v_i)$ holds by assumption. Thus $R_{\tau}(e[x_1 := v_1, \dots, x_n := v_n])$ holds.
- $e = \mathsf{succ}(e')$. $R_{\mathsf{nat}}(e')$ by induction hypothesis, and thus $e'[x_1 := v_1, \ldots, x_n := v_n]$ can be reduced to some numeral n. $e[x_1 := v_1, \ldots, x_n := v_n] \to \mathsf{succ}(e'[x_1 := v_1, \ldots, x_n := v_n]) \to^* \mathsf{succ}(n)$. $\mathsf{succ}(n)$ is a numeral, and so $R_{\mathsf{nat}}(\mathsf{succ}(e'[x_1 := v_1, \ldots, x_n := v_n]))$, which means $R_{\mathsf{nat}}(e[x_1 := v_1, \ldots, x_n := v_n])$ holds.
- $e = \text{rec}(n; e_0; x.y.e_1)$. From our typing rules, we have $\Gamma \vdash n : \text{nat}$, $\Gamma \vdash e_0 : \tau$, $\Gamma, x : \text{nat}$, $y : \tau \vdash e_1 : \tau$. From our induction hypothesis, we have $R_{\tau}(e_0[x_1 := v_1, \ldots, x_n := v_n])$ and $R_{\tau}(e_1[x_1 := v_1, \ldots, x_n := v_n])$. We will prove by an inner induction on n:
 - Base case: $(e = rec(z; e_0; x.y.e_1)) \rightarrow e_0$. Hold by our induction hypothesis.
 - Inductive case: We have induction hypothesis $R_{\tau}(\operatorname{rec}(n;e_0;x.y.e_1))$, and we want to show that $R_{\tau}(\operatorname{rec}(\operatorname{succ}(n);e_0;x.y.e_1))$. Let $\operatorname{rec}(n;e_0;x.y.e_1))$ reduces to some normal term r, then by our reduction rules we have $\operatorname{rec}(\operatorname{succ}(n);e_0;x.y.e_1)\to e_1[x:=n,\ y:=\operatorname{rec}(n;e_0;x.y.e_1)]\to^*e_1[x:=n,\ y:=r],$ which can be reduced to a normal term by our main induction hypothesis as n and r are both normal. Then we have $R_{\tau}(e_1[x:=n,\ y:=r]))$, and thus $R_{\tau}(\operatorname{rec}(\operatorname{succ}(n);e_0;x.y.e_1))$.
- $e = \lambda(x:\tau).e'$. As typing rules we have Γ , $x:\tau \vdash e':\tau'$ and $\Gamma \vdash \lambda x.e':\tau \to \tau'$, and we want to prove that $R_{\tau \to \tau'}(\lambda x.e'[x_1:=v_1,\ldots,x_n:=v_n])$. In order to do so, we need to show that $\forall v (R_{\tau}(v) \Longrightarrow R_{\tau'}(\lambda x.e'[x_1:=v_1,\ldots,x_n:=v_n]v))$. From our reduction rules, we can get that $\lambda x.e'[x_1:=v_1,\ldots,x_n:=v_n].v \to e'[x_1:=v_1,\ldots,x_n:=v_n,x:=v]$. As v_i and v are all closed terms, by induction hypothesis we can have $R_{\tau'}(e'[x_1:=v_1,\ldots,x_n:=v_n,x:=v])$.
- $e = \mathsf{app}(e_1, e_2) = e_1(e_2)$. As $\Gamma \vdash e_2 : \tau'$, $\Gamma \vdash e_1 : \tau' \to \tau$, and our IH that $R_{\tau'}(e_2[x_1 := v_1, \ldots, x_n := v_n])$ and $R_{\tau' \to \tau}(e_1[x_1 := v_1, \ldots, x_n := v_n])$, and thus by definition we have $R_{\tau}(e_1[x_1 := v_1, \ldots, x_n := v_n]) = R_{\tau}((e_1e_2)[x_1 := v_1, \ldots, x_n := v_n])$.

Theorem 2 (Weak Normalization). *If* $\vdash e : \tau$ *and* e *is closed, then* $\mathsf{WN}(e)$.

Proof. By the Fundamental Lemma in the empty context, $R_{\tau}(e)$ holds. In particular, if $\tau = \mathsf{nat}$ then $\mathsf{WN}(e)$ by definition of R_{nat} . If τ is a function type, we have checked that e itself cannot be an infinite reducible head, so e must reach a normal form in finitely many steps. Therefore, weak normalization holds.