Cheatsheet WuS

Nicolas Wehrli

June 2023

1 Grundbegriffe

1.1 Wahrscheinlichkeitsraum

Axiome von Kolmogorov

Das Tuple $(\Omega, \mathcal{A}, \mathbb{P})$ ist ein **Wahrscheinlichkeitsraum** mit

- I. Grundraum Ω mit $\Omega \neq \emptyset$, wobei $\omega \in \Omega$ ein Elementarereignis ist.
- II. σ -Algebra $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ wobei gilt:
 - 1. $\Omega \in \mathcal{A}$
 - 2. $A \in \mathcal{A} \implies A^{\complement} \in \mathcal{A}$
 - 3. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcup_i A_i \in \mathcal{A}$
- III. Wahrscheinlichkeitsmass \mathbb{P} auf (Ω, \mathcal{A}) ist eine Abbildung $\mathbb{P} : \mathcal{A} \mapsto [0, 1]$, wobei gilt:
 - 1. $\mathbb{P}(\Omega) = 1$
 - 2. $A_1, A_2, \dots \in \mathcal{A}, \forall i \neq j : A_i \cap A_j = \emptyset$ $\Longrightarrow \mathbb{P}(\bigcup_i A_i) = \sum_{i=1}^{\infty} \mathbb{P}(A_i)$

De-Morgan

Sei $(A_i)_{i\geq 1}$ eine Folge von beliebigen Mengen. Dann gilt

$$\left(\bigcup_{i=1}^{\infty} A_i\right)^{\complement} = \bigcap_{i=1}^{\infty} (A_i)^{\complement}$$

Daraus folgt

- 1. $A_1, A_2, \dots \in \mathcal{A} \implies \bigcap_{i=1}^{\infty} A_i \in \mathcal{A}$
- $2. \ A,B \in \mathcal{A} \implies (A \cup B), (A \cap B) \in \mathcal{A}$

und für $A, B \in \mathcal{A}$

- 1. $\mathbb{P}(A^{\complement}) = 1 \mathbb{P}(A)$
- $2. \ A \subseteq B \implies \mathbb{P}(A) \le \mathbb{P}(B)$
- 3. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$

Sei $A_1, A_2, \dots \in \mathcal{A}$, dann gilt:

Union Bound

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_i\right) \le \sum_{i=1}^{\infty} \mathbb{P}(A_i)$$

Siebformel

$$\mathbb{P}\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{k=1}^{n} \sum_{1 \leq i_{1} < \dots < i_{k} \leq n} \mathbb{P}(A_{i_{1}} \cap \dots \cap A_{i_{k}})$$

Atome

Sei Ω nicht leer und diskret. Sei \mathcal{F} eine beliebige σ -Algebra über Ω .

Eine nichtleere Menge $A \in \mathcal{F}$ heisst **atomare** Mengee von \mathcal{F} falls für alle $B \in \mathcal{F}$ gilt:

$$B \subseteq A \implies B = \emptyset \lor B = A$$

(Intuitiv: A ist die kleinste nichtleere Menge bezüglich der Inklusion in \mathcal{F})

Die Menge der atomaren Mengen von $\mathcal F$ bezeichnen wir mit $\operatorname{Atom}(\mathcal F).$

Jedes Element von \mathcal{F} lässt sich als abzählbare Vereinigung von Elementen aus $Atom(\mathcal{F})$ schreiben.

1.2 Bedingte Wahrscheinlichkeiten

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein Wahrscheinlichkeitsraum.

Bedingte Wahrscheinlichkeit

Sei $A, B \in \mathcal{A}$ und $\mathbb{P}(B) > 0$, dann ist die bedingte Wahrscheinlichkeit von A gegeben B

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Satz der totalen Wahrscheinlichkeit

Sei $(B_i)_{i\in I}$ eine Partition von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A}$

$$\mathbb{P}(A) = \sum_{i: \ \mathbb{P}(B_i) > 0} \mathbb{P}(A|B_i)\mathbb{P}(B_i)$$

Satz von Bayes

Aus der Definition der bedingten W'keit folgt sofort die Bayessche Formel, welche den Zusammenhang zwischen $\mathbb{P}(A|B)$ und $\mathbb{P}(B|A)$ beschreibt:

$$\mathbb{P}(B|A) = \frac{\mathbb{P}(A|B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

Mit dem Satz der totalen W'keit können wir $\mathbb{P}(A)$ umschreiben und kommen auf folgende Form:

Sei $(B_i)_{i\in I}$ eine **Partition** von Ω . Dann gilt für jedes beliebige $A\in\mathcal{A}, \mathbb{P}(A)>0$

$$\mathbb{P}(B_i|A) = \frac{\mathbb{P}(A|B_i) \cdot \mathbb{P}(B_i)}{\sum_{j: \ \mathbb{P}(B_j) > 0} \mathbb{P}(A|B_j) \cdot \mathbb{P}(B_j)}$$

Intuition Bayessche Statistik

In dieser Form würde man A als das **eingetretene Ereignis** und die B_i als die verschiedene **Hypothesen** verstehen.

In der Bayesschen Statistik versucht man die Hypothese zu finden, so dass $\mathbb{P}(B;|A)$ maximiert wird.

(Wurde in der Vorlesung nicht weiter behandelt)

11

1.3 Unabhängigkeit

Unabhängigkeit von zwei Ereignissen

Zwei Ereignisse $A, B \in \mathcal{A}$ heissen **unabhängig**, wenn

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

- $\mathbb{P}(A) \in \{0,1\} \implies A$ zu jedem Ereignis unabhängig
- A zu sich selbst unabhängig $\Longrightarrow \mathbb{P}(A) \in \{0,1\}$
- A, B unabhängig $\implies A, B^{\complement}$ unabhängig

Wenn $\mathbb{P}(A) > 0, \mathbb{P}(B) > 0$ gilt:

$$A, B$$
 unabhängig $\iff \mathbb{P}(A|B) = \mathbb{P}(A) \iff \mathbb{P}(B|A) = \mathbb{P}(B)$

Wir können die Definition der Unabhängigkeit auf beliebige Mengen von Ereignissen erweitern.

Allgemeine Unabhängigkeit

Eine Kollektion von Ereignissen $(A_i; i \in I)$ heisst (stochastisch) unabhängig, wenn

$$J\subseteq I$$
 endlich $\implies \mathbb{P}\left(\bigcap_{i\in J}A_i\right)=\prod_{i\in J}\mathbb{P}(A_i)$

2 Zufallsvariablen

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein diskreter Wahrscheinlichkeitsraum.

Zufallsvariable

Eine (reellwertige) **Zufallsvariable** auf Ω ist eine messbare Funktion $X: \Omega \to \mathbb{R}$.

$$X: \Omega \to \mathbb{R} \text{ messbar} \iff \forall x \in \mathbb{R}: X^{-1}(\{x\}) \in \mathcal{A}$$

Die Eigenschaft **messbar** ist bezüglich dem Wahrscheinlichkeitsmass \mathbb{P} relevant (i.e. dann ist $\mathbb{P}(X=x):=\mathbb{P}(\{\omega\in\Omega\mid X(\omega)=x\})$ wohldefiniert).

Diese Definition von **messbar** ist für diskrete Ω äquivalent zu derjenigen der Vorlesung, die die rechte Seite vom ' \iff ' für alle abgeschlossenen Teilmengen $B \subset \mathbb{R}$ fordert.

Für die Messbarkeit von X ist nur $X(\Omega)\subseteq\mathbb{R}$ entscheidend und jede Teilmenge $A\subseteq X(\Omega)$ ist abzählbar (da Ω abzählbar). Somit kann $X^{-1}(A)$ als abzählbare Vereinigung von $\bigcup_{x\in A}X^{-1}(\{x\})$ geschrieben werden

($\implies X^{-1}(A) \in \mathcal{A}$ per Def. σ -Algebra)

2.1 Verteilungsfunktion

Die Verteilungsfunktion ist die Abbildung $F_X : \mathbb{R} \to [0,1]$ definiert durch:

$$F_X(t) := \mathbb{P}(X \le t), \forall t \in \mathbb{R}$$

Die Funktion erfüllt folgende Eigenschaften:

- 1. F_X ist monoton wachsend
- 2. F_X ist rechtsstetig, i.e. $\lim_{h\downarrow 0} F_X(x+h) = F_X(x)$
- 3. $\lim_{x\to-\infty} F_X(x) = 0$ und $\lim_{x\to\infty} F_X(x) = 1$
- 4. $\forall a, b \in \mathbb{R}, a < b : \mathbb{P}(a < X \le b) = F_X(b) F_X(a)$

Linksstetigkeit

Die Verteilungsfunktion ist nicht immer linksstetig. Sei $F_X(a-):=\lim_{h\downarrow 0}F_X(a-h)$ für $a\in\mathbb{R}$ beliebig. Dann gilt:

$$\mathbb{P}(X = a) = F_X(a) - F_X(a-)$$

Intuitiv folgt daraus

- Wenn F_X in einem Punkt $a \in \mathbb{R}$ nicht stetig ist, dann ist die "Sprunghöhe" $F_X(a) F_X(a-)$ gleich der Wahrscheinlichkeit $\mathbb{P}(X=a)$.
- Falls F_X stetig in einem Punkt $a \in \mathbb{R}$, dann gilt $\mathbb{P}(X=a) = 0$.

Unabhängigkeit von Zufallsvariablen

Seien $X_1,...,X_n$ Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$. Dann heissen $X_1,...,X_n$ unabhängig, falls

$$\forall x_1,...,x_n \in \mathbb{R}$$
:

$$\mathbb{P}(X_1 \le x_1, ..., X_n \le x_n) = \mathbb{P}(X_1 \le x_1) \cdot ... \cdot \mathbb{P}(X_n \le x_n).$$

Unendlich viele Bernoulli-Experimente

TBD

2.2 Diskrete Zufallsvariablen

Sei $A \in \mathcal{F}$ ein Ereignis.

Wir sagen A tritt fast sicher (f.s.) ein, falls $\mathbb{P}(A) = 1$.

Seien $X, Y : \Omega \to \mathbb{R}$ Zufallsvariablen:

$$X \leq Y$$
 f.s. $\iff \mathbb{P}(X \leq Y) = 1$

Diskrete Zufallsvariable

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst **diskret**, falls eine endliche oder abzählbare Menge $W\subset\mathbb{R}$ existiert, sodass

$$\mathbb{P}(X \in W) = 1$$

Falls Ω endlich oder abzählbar ist, dann ist X immer diskret.

Die **Verteilungsfunktion** einer diskreten ZV X:

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{y \in W} p(y) \cdot \mathbb{1}_{y \le x}$$

Die **Gewichtsfunktion** einer diskreten ZV X:

$$\forall x \in X(\Omega): p(x) = \mathbb{P}(X=x)$$
wobei $\sum_{x \in X(\Omega)} p(x) = 1$

2.3 Diskrete Verteilungen

Bernoulli-Verteilung $(X \sim Ber(p))$:

 $X(\Omega) = \{0,1\}$ und die Gewichtsfunktion ist definiert durch

$$p(1) := \mathbb{P}(X = 1) = p \text{ und } p(0) := \mathbb{P}(X = 0) = 1 - p.$$

Binomialverteilung $(X \sim Bin(n, p))$:

Wiederholung von n unabhängigen Bernoulli-Experimenten mit gleichem Parameter p.

$$p(k) := \mathbb{P}(X = k) = \binom{n}{k} \cdot p^k \cdot (1 - p)^{n - k} \quad \forall k \in \{0, 1, \dots, n\}$$

Geometrische Verteilung $(X \sim \text{Geo}(p))$:

Warten auf den 1-ten Erfolg.

$$p(k) := \mathbb{P}(X = k) = (1 - p)^{k - 1} \cdot p \quad \forall k \in \mathbb{N} \setminus \{0\}$$

Poisson-Verteilung ($X \sim \text{Poisson}(\lambda)$):

Grenzwert der Binomialverteilung für grosse n und kleine p.

$$p(k) := \mathbb{P}(X = k) = \frac{\lambda^k}{k!} \cdot e^{-\lambda} \quad \forall k \in \mathbb{N}_0, \lambda > 0$$

- 1. Für $X_n \sim \text{Bin}(n, \frac{\lambda}{n})$ gilt $\lim_{n \to \infty} \mathbb{P}(X_n = k) = \mathbb{P}(Y = k)$ wobei $Y \sim \text{Poisson}(\lambda)$.
- 2. Seien $X_1 \sim \text{Poisson}(\lambda_1)$ und $X_2 \sim \text{Poisson}(\lambda_2)$ unabhängig. Dann gilt $(X_1 + X_2) \sim \text{Poisson}(\lambda_1 + \lambda_2)$.

2.4 Stetige Zufallsvariablen

Stetige Zufallsvariablen, Dichte

Eine Zufallsvariable $X:\Omega\to\mathbb{R}$ heisst **stetig**, wenn ihre Verteilungsfunktion F_X wie folgt geschrieben werden kann

$$F_X(a) = \int_{-\infty}^a f(x) dx = \text{ für alle } a \in \mathbb{R}.$$

wobei $f: \mathbb{R} \to \mathbb{R}^+$ eine nicht-negative Funktion ist. f wird dann als **Dichte** von X benannt.

Wenn $f:(\mathbb{R},\mathcal{B})\to(\mathbb{R},\mathcal{B})$ messbar ist, ist die Zufallsvariable X absolut stetig.

Intuition: f(x) dx ist die Wahrscheinlichkeit, dass $X \in [x, x + dx]$.

Von F_X zu f:

Sei X eine Zufallsvariable mit stetiger Verteilungsfunktion F_X und F_X stückweise \mathcal{C}^1 , d.h. es gibt $x_0 = -\infty < \ldots < x_{n-1} < x_n = +\infty$, sodass F_X auf jedem Intervall (x_i, x_{i+1}) Element von \mathcal{C}^1 ist. Dann ist X eine stetige Zufallsvariable und die Dichte f kann wie folgt konstruiert werden:

$$\forall x \in (x_i, x_{i+1}) \quad f(x) = F_X'(x).$$

Beispielrechnung -Dichte finden

2.5 Stetige Verteilungen

Gleichverteilung $(X \sim \mathcal{U}([a,b]))$:

Die Dichte ist auf dem Intervall [a, b] gleich.

$$f_{a,b}(x) = \begin{cases} 0 & x \notin [a,b] \\ \frac{1}{b-a} & x \in [a,b] \end{cases}$$

Exponential verteilung $(T \sim \text{Exp}(\lambda))$:

Lebensdauer oder Wartezeit eines allg. Ereignisses (Stetiges Äquivalent zur Geometrischen Verteilung).

$$f_{\lambda}(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0, \\ 0 & x < 0. \end{cases}$$

Normalverteilung $(X \sim \mathcal{N}(m, \sigma^2))$:

Häufig verwendete Verteilung. Undefiniert für $\sigma = 0$

$$f_{m,\sigma}(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-m)^2}{2\sigma^2}}$$

1. Seien X_1, \ldots, X_n unabhängige normalverteilte ZV mit Parametern $(m_1, \sigma_1^2), \ldots, (m_n, \sigma_n^2)$, dann ist

$$Z = m_0 + \lambda_1 X_1 + \ldots + \lambda_n X_n$$

eine normalverteilte ZV mit Parametern $m = m_0 + \lambda_1 m_1 + \dots + \lambda_n m_n$ und $\sigma^2 = \lambda_1^2 \sigma_1^2 + \dots + \lambda_n^2 \sigma_n^2$.

2. Sei $Z \sim \mathcal{N}(0,1)$ eine **standardnormalverteilte** Zufallsvariable. Dann gilt für $X \sim \mathcal{N}(m,\sigma^2)$

$$X = m + \sigma \cdot Z$$

2.6 Erwartungswert

Erwartungswert - Diskrete ZV

Sei $X: \Omega \to \mathbb{R}$ eine diskrete Zufallsvariable, $W_X := X(\Omega)$ und $\phi: \mathbb{R} \to \mathbb{R}$ eine Abbildung. Falls die Summe wohldefiniert ist, gilt:

$$\mathbb{E}(\phi(X)) := \sum_{x \in W_X} \phi(x) \cdot \mathbb{P}(X = x)$$

Wenn $X: \Omega \to \mathbb{N}_0$, kann man auch den Erwartungswert als

$$\mathbb{E}(X) = \sum_{n=0}^{\infty} \mathbb{P}(X > n)$$

schreiben.

Erwartungswert - Stetige ZV

Sei $X:\Omega\to\mathbb{R}$ eine stetige Zufallsvariable mit Dichte f. Sei $\phi:\mathbb{R}\to\mathbb{R}$ eine Abbildung, sodass $\phi(X)$ eine Zufallsvariable ist. Dann gilt

$$\mathbb{E}(\phi(X)) = \int_{-\infty}^{\infty} \phi(x) f(x) \, dx,$$

solange das Integral wohldefiniert ist.

Sei X eine stetige ZV mit $X \ge 0$ f.s., dann gilt:

$$\mathbb{E}(X) = \int_0^\infty \mathbb{P}(X > x) \, dx$$

2.7 Rechnen mit Erwartungswerten

Linearität des Erwartungswertes:

Seien $X,Y:\Omega\to\mathbb{R}$ ZV mit $\lambda\in\mathbb{R}$, Falls die Erwartungswerte wohldefiniert sind, gilt:

$$\mathbb{E}(\lambda \cdot X + Y) = \lambda \cdot \mathbb{E}(X) + \mathbb{E}(Y)$$

Falls X, Y unabhängig, dann gilt auch:

$$\mathbb{E}(X \cdot Y) = \mathbb{E}(X) \cdot \mathbb{E}(Y)$$

Eine generellere Form wäre folgende Äquivalenz:

 $X_1, X_2, ..., X_n$ unabhängig

 \iff

Für jede $\phi_1:\mathbb{R}\to\mathbb{R},\dots,\phi_n:\mathbb{R}\to\mathbb{R}$ stückweise stetig, beschränkt gilt

$$\mathbb{E}(\phi_1(X_1)\cdots\phi_n(X_n))=\mathbb{E}(\phi_1(X_1))\cdots\mathbb{E}(\phi_n(X_n))$$

2.8 Ungleichungen

Monotonie

Seien X, Y ZV mit $X \leq Y$ f.s., dann gilt:

$$\mathbb{E}(X) < \mathbb{E}(Y)$$

Markov Ungleichung

Sei X eine ZV und ferner $g:X(\Omega)\to [0,+\infty)$ eine wachsende Funktion. Für jedes $c\in\mathbb{R}$ mit g(c)>0 gilt dann

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}(g(X))}{g(c)}$$

Einfache Version:

Sei X eine ZV mit $X \ge 0$ f.s., dann gilt für jedes t > 0:

$$\mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}$$

Chebyshev Ungleichung

Sei Y eine ZV mit endlicher Varianz. Für jedes b > 0 gilt dann

$$\mathbb{P}(|Y - \mathbb{E}(Y)| \ge b) \le \frac{\operatorname{Var}(Y)}{b^2}$$

Jensen Ungleichung

Sei X eine ZV und $\phi : \mathbb{R} \to \mathbb{R}$ eine konvexe Funktion, dann gilt:

$$\phi(\mathbb{E}(X)) \le \mathbb{E}(\phi(X))$$

2.9 Varianz

Varianz

Sei X eine ZV, sodass $\mathbb{E}(X^2) < \infty$. Die **Varianz** von X ist definiert durch

$$Var(X) = \sigma_X^2 = \mathbb{E}((X - m)^2) = \mathbb{E}(X^2) - \mathbb{E}(X)^2$$

wobei $m = \mathbb{E}(X)$. Dabei wird σ_X als **Standardabweichung** von X bezeichnet und beschreibt den Erwartungswert für die Distanz von X zu $\mathbb{E}(X)$.

1. Sei X ein ZV, sodass $\mathbb{E}(X^2) < \infty$ und $\lambda \in \mathbb{R}$:

$$Var(a \cdot X + b) = a^2 \cdot Var(X)$$

2. Seien $X_1, ..., X_n$ paarweise unabhängig. Dann gilt

$$Var(X_1 + \ldots + X_n) = Var(X_1) + \ldots + Var(X_n)$$

Kovarianz

Seien X, Y ZV mit $\mathbb{E}(X^2) < \infty$, $\mathbb{E}(Y^2) < \infty$. Wir definieren die **Kovarianz** zwischen X und Y durch

$$Cov(X, Y) := \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

- 1. Cov(X, X) = Var(X)
- 2. X, Y unabhängig \implies Cov(X, Y) = 0 (Die Umkehrung ist falsch!)
- 3. Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)

2.10 Bedingter Erwartungswert

Sei $(\Omega, \mathcal{A}, \mathbb{P})$ ein diskreter Wahrscheinlichkeitsraum und $X: \Omega \to \mathbb{R}$ eine Zufallsvariable.

Für ein beliebiges $B \in A$, $\mathbb{P}(B) > 0$ definieren wir den **bedingten Erwartungswert** X bedingt durch B als

$$\mathbb{E}(X \mid B) = \frac{\mathbb{E}(\mathbb{1}_B X)}{\mathbb{P}(B)} = \sum_{x \in X(\Omega)} x \mathbb{P}(X = x \mid B)$$
$$= \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\{\omega\} \mid B)$$

Beispielrechnung

Bedingter Erwartungswert als Zufallsvariable

Wir betrachten eine Partition $\mathcal{B} = (B_i)_{i \in I}$ von Ω (B_i sind disjunkt und nichtleer, I abzählbar).

Dann definieren wir die Zufallsvariable

$$\mathbb{E}(X \mid \mathcal{B})(\omega) = \sum_{i \in I, \mathbb{P}(B_i > 0)} \mathbb{E}(X \mid B_i) \mathbb{1}_{B_i}(\omega)$$

1. **Intuition:** Die Information, die durch die Partition gegeben ist, ist dass eines der B_i eintreten wird. Bei der Realisierung durch das Eintreten des Elementarereignisses ω wird $\mathbb{E}(X \mid \mathcal{B})$ zu dem $\mathbb{E}(X \mid B_i)$ realisiert, bei welchem $\omega \in B_i$.

3

 Bemerkung: Das β hat in der Vorlesung 2 verschiedene Bedeutungen. Es wird als Variable für sowohl die Borelsche σ-Algebra als auch die Partition von Ω verwendet.

Beispielrechnung

2.11 Mehrere Zufallsvariablen

Die gemeinsame Verteilungsfunktion von n Zufallsvariablen X_1, \ldots, X_n (stetig oder diskret) ist die Abbildung $F : \mathbb{R}^n \to [0, 1]$,

$$(x_1,\ldots,x_n)\mapsto F(x_1,\ldots,x_n):=\mathbb{P}(X_1\leq x_1,\ldots,X_n\leq x_n)$$

Diskreter Fall - Gewichtsfunktion

Für n diskrete ZV X_1, \ldots, X_n definieren wir ihre **gemeinsame Gewichtsfunktion** $p : \mathbb{R}^n \to [0, 1]$ durch

$$p(x_1,...,x_n) := \mathbb{P}(X_1 = x_1,...,X_n = x_n)$$

Aus der gemeinsamen Gewichtsfunktion p bekommt man die gemeinsame Verteilungsfunktion mit

$$F(x_1, \dots, x_n) = \mathbb{P}(X_1 \le x_1, \dots, X_n \le x_n)$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} \mathbb{P}(X_1 = y_1, \dots, X_n = y_n)$$

$$= \sum_{y_1 \le x_1, \dots, y_n \le x_n} p(y_1, \dots, y_n)$$

Konstruktion einer ZV

Seien X_1, \ldots, X_n diskrete Zufallsvariablen in $(\Omega, \mathcal{F}, \mathbb{P})$, sodass $X_1 \in W_1, \ldots, X_n \in W_n$ f.s. für $W_1, \ldots, W_n \subset \mathbb{R}$ endlich oder abzählbar.

Für $\phi: \mathbb{R}^n \to \mathbb{R}$ beliebig, ist $Z = \phi(X_1, \dots, X_n)$ eine diskrete Zufallsvariable mit $Z \in W = \phi(W_1 \times \dots \times W_n)$ f.s. .

Die Gewichtsfunktion von Z ist gegeben durch $p_Z:W\to [0,1]$:

$$p_Z(t) := \mathbb{P}(Z=t) = \sum_{\substack{x_1 \in W_1, \dots, x_n \in W_n \\ \phi(x_1, \dots, x_n) = t}} p(x_1, \dots, x_n)$$

 Mit dem vorherigen Satz können wir aus der gemeinsamen Verteilung die Randverteilung einer Zufallsvariablen extrahieren (wegsummieren). Wir verwenden dafür einfach die Funktion

$$\phi(x_1,\ldots,x_n)=x_i$$

2. Der Erwartungswert des Bildes der Funktion $\phi: \mathbb{R}^n \to \mathbb{R}$ ist

$$\mathbb{E}(\phi(X_1,\ldots,X_n)) = \sum_{x_1,\ldots,x_n} \phi(x_1,\ldots,x_n) p(x_1,\ldots,x_n)$$

3. Wir haben eine Äquvalenz:

$$X_1, \ldots, X_n$$
unabhängig

 $\forall x_1 \in W_1, \dots, x_n \in W_n$ $p(x_1, \dots, x_n) = \mathbb{P}(X_1 = x_1) \cdot \dots \cdot \mathbb{P}(X_n = x_n)$