Homework Assignment 3

Matthew Tiger

September 21, 2016

Problem 1.5.1. Find the fixed points of the following maps and use the appropriate theorems to determine whether they are asymptotically stable, semi-stable, or unstable:

i.
$$f(x) = \frac{x^3}{2} + \frac{x}{2}$$
,

ii.
$$f(x) = \arctan(x)$$
,

iii.
$$f(x) = x^3 + x^2 + x$$
,

iv.
$$f(x) = x^3 - x^2 + x$$
,

v.
$$f(x) = \begin{cases} 3x/4 & x \le 1/2 \\ 3(1-x)/4 & x > 1/2 \end{cases}$$
.

Solution. Note that a point x = c is a fixed point of f if c is a solution to the equation g(x) = f(x) - x = 0. If x = c is a fixed point, then the behavior of the derivatives of f at the point x = c will allow us to classify the stability of the fixed point.

i. The solutions to the equation

$$g(x) = f(x) - x$$

$$= \frac{x^3}{2} + \frac{x}{2} - x$$

$$= \frac{x^3}{2} - \frac{x}{2} - x = 0$$

are given by x = -1, x = 0, and x = 1. Note that $f'(x) = 3x^2/2 + 1/2$.

For the fixed point x = -1, we see that |f'(-1)| = 2 > 1 so that x = -1 is a hyperbolic fixed point and by theorem 1.4.4, this fixed point is unstable.

For the fixed point x = 0, we see that |f'(0)| = 1/2 < 1 so that x = 0 is a hyperbolic fixed point and by theorem 1.4.4, this fixed point is stable.

For the fixed point x = 1, we see that |f'(1)| = 2 > 1 so that x = 1 is a hyperbolic fixed point and by theorem 1.4.4, this fixed point is unstable.

1

ii. Note that for any $x \in \mathbb{R}$, we have that $-\pi/2 < \arctan(x) < \pi/2$. Thus, if $|x| > \pi/2$, then $|\arctan(x)| < \pi/2 < |x|$ so that for any such x we have that $\arctan(x) \neq x$, i.e. $f(x) = \arctan(x)$ has no fixed points.

Since f(x) is continuous on the interval $[-\pi/2, \pi/2]$, we know that f(x) must have a fixed point on this interval. Note that if x > 0, we can show that $0 < x/(x^2 + 1) < f(x) = \arctan(x) < x$. From this identity, we can show that

$$0 < f^{n+1}(x) < f^n(x) < \dots < x,$$

i.e. the iterates of f are monotonically decreasing and bounded below. Thus, the limit converges to the infimum, i.e. $\lim f^n(x) = 0$. Therefore, we must have x = 0 is a fixed point.

Using a similar inequality, we can show that the iterates of f form a monotonically increasing sequence that is bounded above. Thus, the limit converges to the supremum, i.e. $\lim f^n(x) = 0$ and x = 0 is a fixed point. Therefore, x = 0 is the only fixed point of $f(x) = \arctan(x)$.

Note that

$$f'(x) = 1/(x^2 + 1), \quad f''(x) = -2x/(1 + x^2)^2, \quad f'''(x) = 8x^2/(1 + x^2)^3 - 2/(1 + x^2)^2.$$

Thus, for the fixed point x = 0, we see that f'(0) = 1, f''(0) = 0, and f'''(0) = -2. Therefore, according to theorem 1.5.3 (iii), this fixed point is non-hyperbolic and stable.

iii. The solutions to the equation

$$g(x) = f(x) - x$$

= $x^3 + x^2 + x - x$
= $x^2(x+1) = 0$

are given by x = -1 and x = 0. Note that $f'(x) = 3x^2 + 2x + 1$, f''(x) = 6x + 2, and f'''(x) = 6.

For the fixed point x = -1, we see that |f'(-1)| = 2 > 1 so that x = -1 is a hyperbolic fixed point and by theorem 1.4.4, this fixed point is unstable.

For the fixed point x = 0, we see that f'(0) = 1 so that x = 0 is a non-hyperbolic fixed point. Since f''(0) = 2 > 0, we have by theorem 1.5.3 (i)(a) that this fixed point is one-sided stable to the left of x = 0.

iv. The solutions to the equation

$$g(x) = f(x) - x$$

= $x^3 - x^2 + x - x$
= $x^2(x - 1) = 0$

are given by x = 1 and x = 0. Note that $f'(x) = 3x^2 - 2x + 1$, f''(x) = 6x - 2, and f'''(x) = 6.

For the fixed point x = 1, we see that |f'(1)| = 2 > 1 so that x = 1 is a hyperbolic fixed point and by theorem 1.4.4, this fixed point is unstable.

For the fixed point x = 0, we see that f'(0) = 1 so that x = 0 is a non-hyperbolic fixed point. Since f''(0) = -2 < 0, we have by theorem 1.5.3 (i)(b) that this fixed point is one-sided stable to the right of x = 0.

v. If $x \leq 1/2$, then

$$f(x) - x = \frac{3x}{4} - x = -\frac{x}{4} = 0$$

if x = 0. Since $x = 0 \le 1/2$, we have that x = 0 is a fixed point of f(x).

If x > 1/2, then

$$f(x) - x = \frac{3(1-x)}{4} - x = \frac{3-7x}{4} = 0$$

if x = 3/7. Since 3/7 < 1/2, we have that x = 3/7 is not a fixed point of f(x).

If $x \le 1/2$, then f'(x) = 3/4. Thus, for the fixed point x = 0, we see that |f'(0)| < 1 and x = 0 is a non-hyperbolic stable fixed point by theorem 1.4.4.

Problem 1.5.2. Consider the family of quadratic maps $f_c(x) = x^2 + c$ where $x \in \mathbb{R}$.

- i. Use the theorems of section 1.5 to determine the stability of the hyperbolic fixed points of the family of maps for all possible values of c.
- ii. Find any values of c such that f_c has a non-hyperbolic fixed point and determine the stability of these fixed points.

Solution. As was shown in problem 1.2.1, we know that $f_c : \mathbb{R} \to \mathbb{R}$ with $f_c(x) = x^2 + c$ has two fixed points given by

$$x_1 = \frac{1 - \sqrt{1 - 4c}}{2}, \qquad x_2 = \frac{1 + \sqrt{1 - 4c}}{2}$$
 (1)

provided that $c \leq 1/4$.

i. Suppose that $c \leq 1/4$. Then the fixed points of f_c are provided by (1). Recall that a fixed point x = a is a hyperbolic fixed point of a function g if $|g(a)| \neq 1$. In particular, x = a will be asymptotically stable if |g(a)| < 1 and unstable if |g(a)| > 1.

We begin by assuming the fixed point of the function f_c has the form x_1 . Then x_1 will be stable if

$$|f_c'(x_1)| = |1 - \sqrt{1 - 4c}| < 1. \tag{2}$$

However, this is only true if -3/4 < c < 1/4. Thus, x_1 will be asymptotically stable if -3/4 < c < 1/4. Similarly, by reversing the inequality in (2), we can easily see that the fixed point x_1 will be unstable if c < -3/4.

Now, assuming that the fixed point of f_c has the form x_2 , then the fixed point x_2 will be stable if

$$|f'_c(x_2)| = |1 + \sqrt{1 - 4c}| < 1.$$

However, this has no real solutions if $c \leq 1/4$. On the other hand, we can see that

$$|f_c'(x_2)| = |1 + \sqrt{1 - 4c}| > 1$$

if c < 1/4. Therefore, every hyperbolic fixed point of f_c of the form x_2 is unstable.

ii. A fixed point x = a is a non-hyperbolic fixed point of a function g if |g(a)| = 1.

We first investigate fixed points of the form x_1 . Assuming the fixed point of f_c is of the form x_1 , then x_1 is non-hyperbolic if

$$|f'_c(x_1)| = |1 - \sqrt{1 - 4c}| = 1$$

from which we see that $1 - \sqrt{1 - 4c} = 1$ if c = 1/4 and that $1 - \sqrt{1 - 4c} = -1$ if c = -3/4. Thus, x_1 is a non-hyperbolic fixed point if c = 1/4 or c = -3/4.

In the case that c = 1/4, then $f'_c(x_1) = 1$ and $f''_c(x_1) = 2$. Thus, since $f''_c(x_2) > 0$, applying theorem 1.5.3 (i) (a), we see that this fixed point is one-sided stable to the

left of x_1 . On the other hand, if c = -3/4, then $f'_c(x_1) = -1$ with $f''_c(x_1) = 2$ and $f'''_c(x_1) = 0$. Since $f'_c(x_1) = -1$, the Schwarzian derivative of f_c is given by

$$Sf_c(x) = -f_c'''(x) - \frac{3(f_c''(x))^2}{2} = -6.$$

Note that $Sf_c(x_1) < 0$, so applying theorem 1.5.7 (i) we find that the fixed point x_1 is asymptotically stable if c = -3/4.

We now investigate fixed points of the form x_2 . Assuming the fixed point of f_c is of the form x_2 , then

$$|f_c'(x_2)| = |1 + \sqrt{1 - 4c}| = 1$$

only if c = 1/4. Thus, x_2 is a non-hyperbolic fixed point if c = 1/4.

In this case, we see that $f'_c(x_2) = 1$ and $f''_c(x_2) = 2$. Thus, since $f''_c(x_2) > 0$, applying theorem 1.5.3 (i) (a), we see that this fixed point is one-sided stable to the left of x_2 if c = 1/4.

Problem 1.5.3. i. Show that $f(x) = -2x^3 + 2x^2 + x$ has two non-hyperbolic fixed points and determine their stability.

- ii. If x=0 and x=1 are non-hyperbolic fixed points for $f:\mathbb{R}\to\mathbb{R}$ for $f(x)=ax^3+bx^2+cx+d$, find all possible values of a,b,c, and d.
- iii. Write down the function f(x) in each case of (ii) above and determine the stability of the fixed points.

Solution. \Box

Problem 1.5.6. Find the Schwarzian derivative of both $f(x) = e^x$ and $g(x) = \sin(x)$ and show that they are always negative.

Solution. Recall that the Schwarzian derivative of a function h(x) is given by

$$Sh(x) = \frac{h'''(x)}{h'(x)} - \frac{3}{2} \left[\frac{h''(x)}{h'(x)} \right]^2$$

and this derivative exists if h'''(x) exists and $h'(x) \neq 0$.

Suppose that $f(x) = e^x$. Then we know that $f^{(n)}(x) = e^x = f(x)$ for any positive integer n. Therefore,

$$Sf(x) = \frac{e^x}{e^x} - \frac{3}{2} \left[\frac{e^x}{e^x} \right]^2 = 1 - \frac{3}{2} = -\frac{1}{2} < 0$$

and we are done.

Now suppose that $g(x) = \sin(x)$. The successive derivatives of g are given by

$$g'(x) = \cos(x)$$

$$g''(x) = -\sin(x)$$

$$g'''(x) = -\cos(x)$$

Computing the Schwarzian derivative of g(x), we see that

$$Sg(x) = -\frac{\cos(x)}{\cos(x)} - \frac{3}{2} \left[-\frac{\sin(x)}{\cos(x)} \right]^2$$
$$= -1 - \frac{3\tan^2(x)}{2}.$$

Since $\tan^2(x) \ge 0$ for any $x \in \mathbb{R}$, we have that $1 + (3/2)\tan^2(x) \ge 1$ so that

$$Sg(x) = -1 - \frac{3\tan^2(x)}{2} \le -1 < 0$$

and we are done.

Problem 1.5.9. Let f(x) be a polynomial such that f(c) = c. (Recall that a polynomial p(x) has $(x-c)^2$ as a factor if and only if both p(c) = 0 and p'(c) = 0.)

- i. If f'(c) = 1, show that $(x c)^2$ is a factor of g(x) = f(x) x.
- ii. If |f'(c)| = 1, show that $(x c)^2$ is a factor of $h(x) = f^2(x) x$.
- iii. Show in the case that f'(c) = -1, we actually have that $(x c)^3$ is a factor of $h(x) = f^2(x) x$.
- iv. Check that (iii) holds for the non-hyperbolic fixed point x = 2/3 of the logistic map $L_3(x) = 3x(1-x)$.
- v. Check that (i), (ii), (iii) hold for the non-hyperbolic fixed points of the polynomial $f(x) = -2x^3 + 2x^2 + x$.

Solution. \Box