DCC638 - Introdução à Lógica Computacional 2023.2

Estruturas Básicas: Conjuntos

Área de Teoria DCC/UFMG

Introdução

Estruturas Básicas: Introdução

- Aqui vamos estudar algumas estruturas básicas da matemática discreta:
 - conjuntos,
 - funções,
 - sequências.

Conjuntos

Conjuntos: Introdução

- **Conjuntos** são as estruturas discretas fundamentais sobre as quais todas as demais estruturas discretas podem ser construídas.
- A Teoria dos Conjuntos é capaz de representar toda a Matemática.

Conceitos básicos como conjunto, pertinência de elementos a um conjunto, o conjunto vazio, operações sobre conjuntos (união, interseção, complemento, ...) podem capturar conceitos como aritmética, lógica, etc.

- Os conceitos que estudaremos aqui são essenciais para diversas áreas, incluindo algumas que estudaremos neste curso:
 - funções,
 - sequências,

- análise combinatória,
- relações.

Conjuntos

 Um conjunto é uma coleção não-ordenada de objetos bem definidos, denominados elementos ou membros do conjunto.

Escrevemos

$$a \in A$$

para denotar que o elemento a pertence ao conjunto A.

Escrevemos

$$a \notin A$$

para denotar que o elemento a não pertence ao conjunto A.

 Usamos normalmente letras maiúsculas para denotar conjuntos, e minúsculas para denotar elementos destes conjuntos.

Formas de se definir um conjunto

Listar seus elementos entre chaves:

$$\bullet$$
 $A = \{Ana, Bia, Carlos\}$

$$C = \{ \text{Júpiter}, 2, \pi, \text{Ana} \}$$

2
$$B = \{a, e, i, o, u\}$$

$$D = \{1, 2, 3, \dots, 100\}$$

• Especificar uma propriedade que define um conjunto:

$$S = \{x \mid P(x)\}$$

significa que o conjunto S consiste em todos os elementos x que tornem o predicado P(x) verdadeiro.

1
$$E = \{x \in \mathbb{R} \mid -2 \le x \le 5\}$$

2
$$F = \{x \in \mathbb{N} \mid x \text{ \'e primo e } x > 431\}$$

Formas de se definir um conjunto

- Usar uma definição indutiva:
 - O conjunto

$$H = \begin{cases} 1 \in H, \\ \text{se } x \in H \text{ e } x + 2 \leq 10, \text{ então } x + 2 \in H. \end{cases}$$

é o conjunto

$$H = \{1, 3, 5, 7, 9\}$$

(Vamos estudar definições indutivas com muito mais cuidado mais à frente neste curso.)

Formas de se definir um conjunto

- Especificar uma função característica, que retorna 1 para todo elemento que pertence ao conjunto e 0 em caso contrário:
 - A função característica

$$\mu_I(x) = \begin{cases} 1, & \text{se } x \in \mathbb{N} \text{ \'e primo,} \\ 0, & \text{caso contr\'ario.} \end{cases}$$

define o conjunto dos números naturais primos.

- Nem sempre é possível utilizar todos os tipos de definição:
 - Não é possível definir o conjunto

$$J = \{x \in \mathbb{R} \mid 0 \le x \le 1\}$$

listando todos os seus elementos.

Alguns conjuntos importantes

- Alguns conjuntos importantes são:
 - \P $\mathbb{N} = \{0, 1, 2, 3, 4, 5, \ldots\}$ é o conjunto dos **números naturais**.
 - $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ é o conjunto dos **números inteiros**.
 - $\ \ \ \mathbb{Z}^+=\{1,2,3,4,5\ldots\}$ é o conjunto dos números inteiros positivos.
 - **3** $\mathbb{Q} = \{p/q \mid p \in \mathbb{Z}, q \in \mathbb{Z}, \text{ e } q \neq 0\}$ é o conjunto dos **números racionais**.
 - **5** \mathbb{R} é o conjunto dos **números reais**.
 - **1** \mathbb{R}^+ é o conjunto dos **números reais positivos**.
 - \bigcirc \mathbb{C} é o conjunto dos **números complexos**.

Igualdade de conjuntos

Dois conjuntos são iguais sse eles possuem os mesmos elementos.
 Formalmente, para todos os conjuntos A e B,

$$A = B \equiv \forall x. (x \in A \leftrightarrow x \in B).$$

- A definição de igualdade de conjuntos implica que:
 - A ordem na qual os elementos são listados é irrelevante:

• Elementos podem aparecer mais de uma vez no conjunto:

Subconjuntos

 Um conjunto A é chamado subconjunto de um conjunto B sse cada elemento de A também é um elemento de B.

Usamos $A \subseteq B$ para denotar que A é subconjunto de B.

Formalmente:

$$A \subseteq B \equiv \forall x. (x \in A \rightarrow x \in B).$$

- As frases "A está contido em B" e "B contém A" são formas alternativas de dizer que A é um subconjunto de B.
 - O conjunto dos naturais é um subconjunto dos inteiros.
 - O conjunto de brasileiros é um subconjunto do conjunto de brasileiros. (Nada impede que um conjunto seja um subconjunto de si próprio!)
 - O conjunto dos números complexos não é um subconjunto dos números reais.

Subconjuntos próprios

 Um conjunto A é subconjunto próprio de um conjunto B sse cada elemento de A está em B e existe pelo menos um elemento de B que não está em A.
 Formalmente:

$$A \subset B \equiv \forall x. (x \in A \rightarrow x \in B) \land \exists x. (x \in B \land x \notin A)$$

$$\equiv A \subset B \land A \neq B.$$

- O conjunto dos naturais é um subconjunto próprio do conjunto dos inteiros.
- O conjunto dos brasileiros não é um subconjunto próprio dos brasileiros.

Diagramas de Venn

- Se os conjuntos A e B forem representados por regiões no plano, relações entre A e B podem ser representadas por desenhos chamados de **Diagramas de Venn**.
- Exemplo 1 $A \subseteq B$.

• Exemplo 2 $A \nsubseteq B$.

O conjunto vazio

• O conjunto vazio ou conjunto nulo não contém elementos.

Denotamos o conjunto vazio por $\{\}$ ou \emptyset .

- Note que $\{\emptyset\}$ <u>não denota</u> o conjunto vazio, mas o conjunto cujo único elemento é o conjunto vazio.
- Teorema: O conjunto vazio é subconjunto de qualquer conjunto.

Demonstração. Seja A um conjunto qualquer. Queremos mostrar que $\emptyset \subseteq A$, o que equivale a mostrar que

$$\forall x. (x \in \emptyset \rightarrow x \in A)$$
.

Mas a condicional universal acima é verdade por vacuidade, já que a premissa da implicação é sempre falsa.

Logo
$$\emptyset \subseteq A$$
.

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a,b,c\}:$

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - **1** $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - **1** $\emptyset \in \{a, b, c\}$:

• Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.

 $\emptyset \quad \emptyset \subseteq \{a,b,c\}: \quad \underline{\mathsf{Verdadeiro:}} \ \emptyset \ \mathsf{\acute{e}} \ \mathsf{subconjunto} \ \mathsf{de} \ \mathsf{qualquer} \ \mathsf{conjunto}.$

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - $\emptyset \quad \emptyset \in \{a, b, c\}: \quad \underline{\mathsf{Falso}} : \quad \emptyset \text{ não \'e um elemento do conjunto } \{a, b, c\}.$
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}:$

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.

 - $\emptyset \quad \emptyset \in \{a, b, c\}: \quad \underline{\mathsf{Falso}} : \quad \emptyset \text{ não \'e um elemento do conjunto } \{a, b, c\}.$
 - **1** $\emptyset \in \{\emptyset, a, b, c\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset, a, b, c\}$.

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - $\emptyset \quad \emptyset \in \{a, b, c\}: \quad \underline{\mathsf{Falso}} : \quad \emptyset \text{ não \'e um elemento do conjunto } \{a, b, c\}.$
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\} \colon \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e um elemento do conjunto} \ \{\emptyset, a, b, c\}.$

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\} \colon \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e um elemento do conjunto} \ \{\emptyset, a, b, c\}.$
 - $\emptyset \quad \emptyset \in \{\emptyset\} \colon \quad \underline{\mathsf{Verdadeiro}} \ \emptyset \ \mathsf{\acute{e}} \ \mathsf{um} \ \mathsf{elemento} \ \mathsf{do} \ \mathsf{conjunto} \ \{\emptyset\}.$

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - $\emptyset \quad \emptyset \in \{a, b, c\}: \quad \underline{\mathsf{Falso}} : \quad \emptyset \text{ não \'e um elemento do conjunto } \{a, b, c\}.$
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\} \colon \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e um elemento do conjunto} \ \{\emptyset, a, b, c\}.$

 - $\emptyset \subseteq \{\emptyset\}:$

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e um elemento do conjunto} \ \{\emptyset, a, b, c\}.$

 - **1** $\emptyset \subseteq \{\emptyset\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \quad \emptyset \text{ \'e um elemento do conjunto } \{\emptyset, a, b, c\}.$
 - **①** $\emptyset \in \{\emptyset\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset\}$.
 - **1** $\emptyset \subseteq \{\emptyset\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - **4**2 ∈ N:

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \quad \emptyset \text{ \'e um elemento do conjunto } \{\emptyset, a, b, c\}.$
 - **1** $\emptyset \in \{\emptyset\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset\}$.
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \mbox{Verdadeiro: }} \emptyset \ \mbox{\'e subconjunto de qualquer conjunto.}$
 - **1** $42 \in \mathbb{N}$: Verdadeiro: 42 é um elemento de \mathbb{N} .

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - $\emptyset \quad \emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \quad \emptyset \text{ \'e um elemento do conjunto } \{\emptyset, a, b, c\}.$
 - **1** $\emptyset \in \{\emptyset\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset\}$.
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \mbox{Verdadeiro: }} \emptyset \ \mbox{\'e subconjunto de qualquer conjunto.}$
 - **1** 42 $\in \mathbb{N}$: Verdadeiro: 42 é um elemento de \mathbb{N} .
 - **3** $42 \in \{\mathbb{N}\}:$

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e} \ \text{um elemento do conjunto} \ \{\emptyset, a, b, c\}.$
 - $\emptyset \quad \emptyset \in \{\emptyset\}: \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e um elemento do conjunto} \ \{\emptyset\}.$
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \text{Verdadeiro:}} \ \emptyset \ \text{\'e subconjunto de qualquer conjunto}.$
 - **42** $\in \mathbb{N}$: <u>Verdadeiro</u>: 42 é um elemento de \mathbb{N} .

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \quad \emptyset \text{ \'e um elemento do conjunto } \{\emptyset, a, b, c\}.$
 - $\emptyset \quad \emptyset \in \{\emptyset\}: \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e um elemento do conjunto} \ \{\emptyset\}.$
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \text{Verdadeiro:}} \ \emptyset \ \text{\'e subconjunto de qualquer conjunto}.$
 - **42** $\in \mathbb{N}$: <u>Verdadeiro</u>: 42 é um elemento de \mathbb{N} .

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - $\emptyset \quad \emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - **1** $\emptyset \in \{\emptyset, a, b, c\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset, a, b, c\}$.
 - **①** $\emptyset \in \{\emptyset\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset\}$.
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \text{Verdadeiro:}} \ \emptyset \ \text{\'e subconjunto de qualquer conjunto}.$
 - **42** $\in \mathbb{N}$: <u>Verdadeiro</u>: 42 é um elemento de \mathbb{N} .

 - $\mathbb{N} \in \{\mathbb{N}\}$: Verdadeiro: o conjunto \mathbb{N} é um elemento de $\{\mathbb{N}\}$.

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - $\emptyset \quad \emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \quad \emptyset \text{ \'e um elemento do conjunto } \{\emptyset, a, b, c\}.$
 - **1** $\emptyset \in \{\emptyset\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset\}$.
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \text{Verdadeiro:}} \ \emptyset \ \text{\'e subconjunto de qualquer conjunto}.$
 - **42** $\in \mathbb{N}$: <u>Verdadeiro</u>: 42 é um elemento de \mathbb{N} .

 - \emptyset $\mathbb{N} \in {\mathbb{N}}$: Verdadeiro: o conjunto \mathbb{N} é um elemento de ${\mathbb{N}}$.

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - $\emptyset \quad \emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \quad \emptyset \text{ \'e um elemento do conjunto } \{\emptyset, a, b, c\}.$
 - **1** $\emptyset \in \{\emptyset\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset\}$.
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \text{Verdadeiro:}} \ \emptyset \ \text{\'e subconjunto de qualquer conjunto}.$
 - **1** 42 $\in \mathbb{N}$: Verdadeiro: 42 é um elemento de \mathbb{N} .

 - \emptyset $\mathbb{N} \in {\mathbb{N}}$: Verdadeiro: o conjunto \mathbb{N} é um elemento de ${\mathbb{N}}$.

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e} \ \text{um elemento do conjunto} \ \{\emptyset, a, b, c\}.$
 - $\emptyset \quad \emptyset \in \{\emptyset\}: \quad \underline{\text{Verdadeiro:}} \ \emptyset \ \text{\'e um elemento do conjunto} \ \{\emptyset\}.$
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \text{Verdadeiro:}} \ \emptyset \ \text{\'e subconjunto de qualquer conjunto}.$
 - **42** $\in \mathbb{N}$: <u>Verdadeiro</u>: 42 é um elemento de \mathbb{N} .

 - $\mathbb{N} \subseteq \mathbb{Z}$:

- Exemplo 3 Diga se cada afirmativa abaixo é verdadeira ou falsa.
 - $\emptyset \subseteq \{a, b, c\}$: Verdadeiro: \emptyset é subconjunto de qualquer conjunto.
 - \emptyset $\emptyset \in \{a, b, c\}$: Falso: \emptyset não é um elemento do conjunto $\{a, b, c\}$.
 - $\emptyset \quad \emptyset \in \{\emptyset, a, b, c\}: \quad \underline{\text{Verdadeiro:}} \quad \emptyset \text{ \'e um elemento do conjunto } \{\emptyset, a, b, c\}.$
 - **1** $\emptyset \in \{\emptyset\}$: Verdadeiro: \emptyset é um elemento do conjunto $\{\emptyset\}$.
 - $\emptyset \quad \emptyset \subseteq \{\emptyset\} \colon \quad \underline{ \text{Verdadeiro:}} \ \emptyset \ \text{\'e subconjunto de qualquer conjunto}.$
 - **1** 42 $\in \mathbb{N}$: Verdadeiro: 42 é um elemento de \mathbb{N} .

 - $\mathbb{N} \subseteq \mathbb{Z}$: Verdadeiro: o conjunto \mathbb{N} é um suconjunto de \mathbb{Z} .

Conjunto potência

• Dado um conjunto *A*, o **conjunto potência de** *A* é o conjunto de todos os subconjuntos de *A*.

Denotamos por $\mathcal{P}(A)$ o conjunto potência de A.

- Exemplos:
 - lacksquare Dado o conjunto $S=\{x,y,z\}$, seu conjunto potência é

$$\mathcal{P}(S) = \{\emptyset, \{x\}, \{y\}, \{z\}, \{x, y\}, \{x, z\}, \{y, z\}, \{x, y, z\}\}.$$

2 Dado o conjunto vazio Ø, seu conjunto potência é

$$\mathcal{P}(\emptyset) = \{\emptyset\}.$$

3 Dado o conjunto {∅}, seu conjunto potência é

$$\mathcal{P}(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}.$$

Conjunto potência

• **Teorema:** Se um conjunto finito A tem n elementos, então $\mathcal{P}(A)$ tem 2^n elementos

Demonstração. Para formar um subconjunto S qualquer de A, podemos percorrer cada elemento $a_i \in A$ $(1 \le i \le n)$, decidindo se $a_i \in S$ ou se $a_i \notin S$.

Como para cada elemento há duas opções (pertence ou não pertence), e há um total de n elementos em A, há 2^n maneiras de se formar um subconjunto S de A.

Logo,
$$|\mathcal{P}(A)| = 2^n$$
.

Estruturas Básicas: Conjuntos 18 / 37

Tuplas ordenadas

- Uma n-tupla ordenada (a_1, a_2, \ldots, a_n) é uma coleção ordenada de n elementos, em que a_1 é o primeiro elemento, a_2 é o segundo elemento, \ldots , e a_n é o n-ésimo elemento.
- Algumas *n*-tuplas ordenadas recebem nomes especiais:
 - Uma 2-tupla ordenada é chamada de par ordenado.
 - Uma 3-tupla ordenada é chamada de tripla ordenada.
 - Uma 4-tupla ordenada é chamada de quádrupla ordenada.
 - ...
- Duas *n*-tuplas ordenadas $(x_1, x_2, ..., x_n)$ e $(y_1, y_2, ..., y_n)$ são **iguais** sse

$$x_i = y_i$$
, para $i = 1, \dots n$.

Estruturas Básicas: Conjuntos 19 / 37

Produto Cartesiano

• Sejam A e B conjuntos. O **produto cartesiano** de A e B, denotado $A \times B$, é o conjunto de todos os pares ordenados (a, b), onde $a \in A$ e $b \in B$.

Formalmente:

$$A \times B = \{(a, b) \mid a \in A \in b \in B\}.$$

• Exemplo 4 Sejam $A = \{1, 2\}$ e $B = \{a, b, c\}$.

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

$$B \times A = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}$$

$$A \times A = A^2 = \{(1,1), (1,2), (2,1), (2,2)\}$$

Note, em geral, que $A \times B \neq B \times A$.

Estruturas Básicas: Conjuntos 20 / 37

Produto Cartesiano

- Produtos cartesianos podem ser generalizados para mais de dois conjuntos.
- Sejam A_1, A_2, \ldots, A_n conjuntos.

O **produto cartesiano** de A_1, A_2, \ldots, A_n , denotado

$$A_1 \times A_2 \times \ldots \times A_n$$

é o conjunto de todas n-tuplas ordenadas (a_1, a_2, \ldots, a_n) , onde $a_i \in A_i$ para $i = 1 \ldots n$.

Formalmente:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, a_2, \ldots, a_n) \mid a_i \in A_i \text{ para } i = 1 \ldots n\}$$

• Exemplo 5 Sejam $A = \{0,1\}$, $B = \{a,b\}$, $C = \{\gamma,\delta\}$.

$$A \times B \times C = \{(0, a, \gamma), (0, a, \delta), (0, b, \gamma), (0, b, \delta), (1, a, \gamma), (1, a, \delta), (1, b, \gamma), (1, b, \delta)\}$$

Estruturas Básicas: Conjuntos 21 / 3

O tamanho de conjuntos finitos

- Seja A um conjunto finito contendo exatamente n elementos distintos.
 Dizemos que a cardinalidade (ou tamanho) de A é n.
 A notação |A| = n indica que o tamanho de A é n elementos.
- Estudaremos a cardinalidade de conjuntos infinitos mais adiante.

Estruturas Básicas: Conjuntos 22 / 37

Estruturas Básicas: Conjuntos 23 / 37

Operações em conjuntos: Introdução

• Dois ou mais conjuntos podem ser combinados de diferentes maneiras.

Por exemplo, dados o conjunto de estudantes de Lógica Computacional e o conjunto de pessoas nascidas em Minas Gerais, podemos definir:

- o conjunto de mineiros que estudam Lógica Computacional,
- 2 o conjunto de pessoas que são mineiras ou estudam Lógica Computacional,
- 3 o conjunto de estudantes de Lógica Computacional que não são mineiros,
- 4 ...

 Aqui estudaremos operações em conjuntos que permitem a criação de conjuntos mais complexos a partir de conjuntos mais simples.

Estruturas Básicas: Conjuntos 24 / 37

• Sejam A e B subconjuntos do conjunto universo U:

União:	$A \cup B = \{x \in U \mid x \in A \lor x \in B\}$
Alternativamente:	$x \in A \cup B \leftrightarrow x \in A \ \lor \ x \in B$
Notação:	$\bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \ldots \cup A_n$
Interseção:	$A \cap B = \{x \in U \mid x \in A \land x \in B\}$
Alternativamente:	$x \in A \cap B \leftrightarrow x \in A \land x \in B$
Notação:	$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \ldots \cap A_n$
Diferença:	$A - B = \{x \in U \mid x \in A \land x \notin B\}$
Alternativamente:	$x \in A - B \leftrightarrow x \in A \ \land \ x \not\in B$
Complemento:	$\overline{A} = \{x \in U \mid x \notin A\}$
Alternativamente:	$x \in \overline{A} \leftrightarrow x \not\in A$

Estruturas Básicas: Conjuntos 25 / 3

• Exemplo 6 Sejam os conjuntos $A = \{1, 3, 4, 5\}$ e $B = \{1, 2, 5, 6\}$. Considere como conjunto universo $U = \{0, 1, 2, 3, 4, 5, 6, 7\}$.

•
$$A \cup B = \{1, 2, 3, 4, 5, 6\}$$

•
$$A \cap B = \{1, 5\}$$

•
$$A - B = \{3, 4\}$$

•
$$B - A = \{2, 6\}$$

•
$$\overline{A} = \{0, 2, 6, 7\}$$

•
$$\overline{B} = \{0, 3, 4, 7\}$$

Estruturas Básicas: Conjuntos

• Exemplo 7 Considere uma família de conjuntos definida como

$$A_i = \{0, 1, 2, \ldots, i\}$$

para $i = 0, 1, 2, 3, \dots$

Determine:

a)
$$\bigcup_{i=0}^{\infty} A_i$$
.

b)
$$\bigcap_{i=0}^{\infty} A_i$$
.

• Exemplo 7 Considere uma família de conjuntos definida como

$$A_i = \{0, 1, 2, \ldots, i\}$$

para $i = 0, 1, 2, 3, \dots$

Determine:

a)
$$\bigcup_{i=0}^{\infty} A_i$$
.

b)
$$\bigcap_{i=0}^{\infty} A_i$$
.

Solução.

Primeiro, vamos entender quem é cada conjunto A_i com alguns exemplos.

$$\begin{aligned} A_0 &= \{0\} \\ A_1 &= \{0,1\} \\ A_2 &= \{0,1,2\} \\ A_3 &= \{0,1,2,3\} \\ \dots &= \dots \\ A_{10} &= \{0,1,2,3,4,5,6,7,8,9,10\} \end{aligned}$$

• Exemplo 7 (Continuação)

Agora podemos verificar o seguinte.

a)
$$\bigcup_{i=0}^{\infty} A_i = \mathbb{N}$$

Para ver o porquê, note que $0 \in A_i$ para todo $i = 0, 1, 2, 3, \ldots$, logo o número 0 deve estar na união desejada. Além disso, para qualquer inteiro positivo n temos que $n \in A_n$, logo n também deve estar na união desejada.

Assim temos que a união deseja inclui 0 e todos os inteiros positivos, logo esta união é o próprio conjunto $\mathbb N$ dos naturais.

b)
$$\bigcap_{i=0}^{\infty} A_i = \{0\}$$

Para ver o porquê, note que $0 \in A_i$ para todo $i = 0, 1, 2, 3, \ldots$, logo o número 0 deve estar na interseção desejada. Além disso, para qualquer inteiro positivo n temos que $n \notin A_{n-1}$, logo n não pode estar na interseção desejada.

Assim temos que a interseção desejada inclui 0, mas não inclui nenhum inteiro positivo, logo esta interseção é o conjunto $\{0\}$.

Estruturas Básicas: Conjuntos 28 / 37

- Dois conjuntos A e B s\u00e3o iguais se, e somente se, cada elemento de A est\u00e1 em B, e cada elemento de B est\u00e1 em A.
- Uma maneira conveniente de se mostrar que dois conjuntos são iguais é mostrando que cada conjunto é subconjunto do outro.

Formalmente:

$$A = B \equiv \forall x. (x \in A \leftrightarrow x \in B).$$

Teorema: A = B sse $A \subseteq B$ e $B \subseteq A$.

Demonstração. Escrevendo $A \subseteq B$ e $B \subseteq A$ formalmente:

$$A = B$$

$$\equiv \forall x. (x \in A \leftrightarrow x \in B) \qquad \text{(definição de igualdade)}$$

$$\equiv \forall x. ((x \in A \rightarrow x \in B) \land (x \in B \rightarrow x \in A)) \qquad \text{(definição de } \leftrightarrow)$$

$$\equiv (\forall x. (x \in A \rightarrow x \in B)) \land (\forall x. (x \in B \rightarrow x \in A)) \qquad \text{(distributividade de } \forall \text{ sobre } \land)$$

$$\equiv A \subset B \land B \subset A \qquad \text{(definição de } \subseteq)$$

Estruturas Básicas: Conjuntos 29 / 37

• Exemplo 8 Mostre que $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$.

Solução.

• Método 1: Manipulando a definição dos operadores em conjuntos.

Vamos mostrar que $x \in \overline{(A \cap B)}$ sse $x \in (\overline{A} \cup \overline{B})$:

$$x \in \overline{(A \cap B)} \quad \leftrightarrow \quad x \not\in (A \cap B) \qquad \text{(definição de complemento)}$$

$$\leftrightarrow \quad \neg (x \in (A \cap B)) \qquad \text{(definição de } \not\in)$$

$$\leftrightarrow \quad \neg ((x \in A) \land (x \in B)) \qquad \text{(definição de interseção)}$$

$$\leftrightarrow \quad \neg (x \in A) \lor \neg (x \in B) \qquad \text{(de Morgan)}$$

$$\leftrightarrow \quad (x \not\in A) \lor (x \not\in B) \qquad \text{(definição de } \not\in)$$

$$\leftrightarrow \quad (x \in \overline{A}) \lor (x \in \overline{B}) \qquad \text{(definição de complemento)}$$

$$\leftrightarrow \quad x \in (\overline{A} \cup \overline{B}) \qquad \text{(definição de união)}$$

Estruturas Básicas: Conjuntos 30 / 37

- Exemplo 8 (Continuação)
 - <u>Método 2</u>: Usando uma tabela de pertinência, em que usamos o símbolo 1 para indicar que um elemento pertence a um conjunto, e o símbolo 0 para indicar que ele não pertence.

A tabela abaixo demonstra que um elemento pertence a $(A \cap B)$ (quarta coluna) sse ele pertence a $\overline{A} \cup \overline{B}$ (sexta coluna):

Α	В	$A \cap B$	$\overline{(A\cap B)}$	Ā	\overline{B}	$\overline{A} \cup \overline{B}$
1	1	1	0	0	0	0
1	0	0	1	0	1	1
0	1	0	1	1	0	1
0	0	0	1	1	1	1

Estruturas Básicas: Conjuntos 31 / 37

ullet Sejam todos os conjuntos abaixo subconjuntos do conjunto universo U.

Comutatividade	$A \cap B = B \cap A$	$A \cup B = B \cup A$	
Associatividade	$(A \cap B) \cap C = A \cap (B \cap C)$	$(A \cup B) \cup C = A \cup (B \cup C)$	
Distributividade	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	
União e interseção com ${\it U}$	$A \cap U = A$	$A \cup U = U$	
Complemento duplo	$\overline{\overline{A}} = A$		
Idempotência	$A \cap A = A$	$A \cup A = A$	
De Morgan	$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$	$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$	
Absorção	$A\cap (A\cup B) = A$	$A \cup (A \cap B) = A$	
Diferença de conjuntos	$A-B = A \cap \overline{B}$		
União e interseção com ∅	$A \cup \emptyset = A$	$A \cap \emptyset = \emptyset$	
União e interseção com o complemento	$A \cap A = II$		
Complementos de <i>U</i> e ∅	$\overline{U} = \emptyset$	$\overline{\emptyset} = U$	

Estruturas Básicas: Conjuntos 32 / 3

Conjuntos disjuntos

 Dois conjuntos são chamados disjuntos sse eles não têm nenhum elemento em comum.

Formalmente:

$$A \in B$$
 são disjuntos $\equiv A \cap B = \emptyset$.

• **Proposição:** Dados dois conjuntos A e B, (A - B) e B são disjuntos.

Demonstração. Por contradição. Suponha que a afirmação seja falsa, ou seja, que existem conjuntos A e B tais que $(A-B) \cap B \neq \emptyset$. Neste caso existe um elemento x tal que $x \in (A-B) \land x \in B$. Note que, em particular, isso significa que $x \in B$.

Por outro lado, também teremos $x \in (A - B)$, o que, pela definição de diferença, significa que $x \in A \land x \notin B$. Em particular, isso implica que $x \notin B$.

Logo chegamos a uma contradição, uma vez que $x \in B$ e $x \notin B$. Portanto, a proposição deve ser verdadeira.

Estruturas Básicas: Conjuntos 33 / 37

Partições de um conjunto

- Os conjuntos A_1, A_2, \ldots, A_n são chamados **mutuamente disjuntos** (ou **disjuntos par-a-par**, ou **sem sobreposição**) sse $A_i \cap A_j = \emptyset$ para todos $i, j = 1, 2, \ldots, n$ e $i \neq j$.
- Uma coleção de conjuntos não vazios $\{A_1, A_2, ..., A_n\}$ é uma **partição** do conjunto A sse

 - \bigcirc A_1, A_2, \ldots, A_n são mutuamente disjuntos.
- ullet Exemplo 9 Dado o conjunto $\{1,2,3,4,5\}$, algumas partições possíveis são:
 - $\{\{2,3,5\},\{1,4\}\},$

 $\{\{1\}, \{2\}, \{3\}, \{4\}, \{5\}\}, e$

1 {{1}, {2, 4, 5}, {3}},

• Exemplo 10 \mathbb{Z} pode ser particionado entre o conjunto dos números pares e o conjunto dos números ímpares.

O Paradoxo de Russell e a Teoria de Conjuntos "Ingênua"

O Paradoxo do Barbeiro

• Vimos que um conjunto pode ser especificado através de uma propriedade que define um conjunto, como em $S = \{x \mid P(x)\}$:

①
$$\{x \in \mathbb{R} \mid -2 \le x \le 5\}$$

- Entretanto, a propriedade P(x) não pode ser uma propriedade qualquer.
- Paradoxo do Barbeiro: "O barbeiro é alguém que barbeia todos aqueles, e apenas aqueles, homens que não se barbeiam sozinhos."

A pergunta é: o barbeiro barbeia a si mesmo?

Equivalentemente, seja b o barbeiro e seja B o conjunto de todas as pessoas que o barbeiro b barbeia. Então:

Paradoxo: $b \in B \leftrightarrow b \notin B!$

Estruturas Básicas: Conjuntos 36 / 37

O Paradoxo de Russell e a Teoria de Conjuntos "Ingênua"

 O Paradoxo do Barbeiro é um caso especial do problema identificado por Bertrand Russell:

Paradoxo de Russell: Se definirmos *S* como "o conjunto de todos os conjuntos que não têm a si mesmo como elemento", ou seja,

$$S = \{A \mid A \text{ \'e um conjunto e } A \notin A\},$$

como decidir se $S \in S$?

Paradoxo: $S \in S \leftrightarrow S \notin S!$

- Lições:
 - Teoria de Conjuntos "Ingênua" ("Naïve set theory") não pode ser usada sem cuidado.
 - Para isso existem abordagens axiomáticas, como a de Zermelo-Fraenkel ("ZF Set Theory").

Estruturas Básicas: Conjuntos 37 / 37