Consistency of Hierarchical Parameter Learning Empirical Bayes and Kernel Flow Approaches

Yifan Chen (Caltech)

Joint work with Andrew M. Stuart and Houman Owhadi, Caltech

September 19, 2020

One page's overview

- Context: Supervised learning / nonparametric regression
- **Approach**: Gaussian process regression / kernel methods
- **Question of focus**: How to select kernels based on data
 - Hierarchical parameters in the kernels
- Algorithms in use:
 - Bayesian: Empirical Bayes
 - Approximation theoretic: Kernel Flow
- Contribution:
 - Theory: Consistency and selection bias for a Matérn class model
 - Experiments: beyond Matérn model, and include model misspecification

Gaussian process regression (GPR)

■ Supervised learning / nonparameteric regression / interpolation

Recover $\mathbf{u}^{\dagger}: D \subset \mathbb{R}^d \to \mathbb{R}$ from

$$y_i = \mathbf{u}^{\dagger}(x_i), 1 \le i \le N$$

(Noise-free data)

■ GPR solution / Kernel method:

$$u(\cdot, \theta, \mathcal{X}) = K_{\theta}(\cdot, \mathcal{X})[K_{\theta}(\mathcal{X}, \mathcal{X})]^{-1}u^{\dagger}(\mathcal{X})$$
(Depend on kernel K_{θ} , data set \mathcal{X} , and truth u^{\dagger})

Notation: $(\theta \in \Theta \text{ is a hierarchical parameter})$

$$K_{\theta}: D \times D \to \mathbb{R}$$

 $\mathcal{X} = \{x_1, ..., x_N\}, \text{ and } \mathbf{u}^{\dagger}(\mathcal{X}) \in \mathbb{R}^N, K_{\theta}(\mathcal{X}, \mathcal{X}) \in \mathbb{R}^{N \times N}$
 $K_{\theta}(\cdot, \mathcal{X}): D \to \mathbb{R}^N, \text{ and } \mathbf{u}(\cdot, \theta, \mathcal{X}): D \to \mathbb{R}$

Gaussian process regression (GPR)

■ Supervised learning / nonparameteric regression / interpolation

Recover
$$u^{\dagger}:D\subset\mathbb{R}^d\to\mathbb{R}$$
 from
$$y_i=u^{\dagger}(x_i), 1\leq i\leq N$$
 (Noise-free data)

■ GPR solution / Kernel method:

$$u(\cdot, \theta, \mathcal{X}) = K_{\theta}(\cdot, \mathcal{X})[K_{\theta}(\mathcal{X}, \mathcal{X})]^{-1} \mathbf{u}^{\dagger}(\mathcal{X})$$
(Depend on kernel K_{θ} , data set \mathcal{X} , and truth \mathbf{u}^{\dagger})

Notation: $(\theta \in \Theta \text{ is a hierarchical parameter})$

$$K_{\theta}: D \times D \to \mathbb{R}$$

 $\mathcal{X} = \{x_1, ..., x_N\}, \text{ and } \mathbf{u}^{\dagger}(\mathcal{X}) \in \mathbb{R}^N, K_{\theta}(\mathcal{X}, \mathcal{X}) \in \mathbb{R}^{N \times N}$
 $K_{\theta}(\cdot, \mathcal{X}): D \to \mathbb{R}^N, \text{ and } u(\cdot, \theta, \mathcal{X}): D \to \mathbb{R}$

What's the problem?

■ Any $\theta \in \Theta$, gets an interpolated solution on \mathcal{X} :

$$u^{\dagger}(x_i) = u(x_i, \theta, \mathcal{X}), 1 \le i \le N$$

Zero training error is not hard to get

But, for out-of-sample / generalization errors, how to pick a good θ ?

lacktriangle A model selection problem – learn the hierarchical parameter heta

Roadmap of this talk

- 1 Bayes' approach
 - Empirical Bayes estimator
- 2 Approximation-theoretic approach
 - Kernel Flow estimator
- 3 Comparison of their consistency as # of data $\to \infty$, and beyond
 - Rigorous theories for the consistency for Matérn class models
 - Experiments beyond Matérn models, and include model misspecification

Roadmap of this talk

- 1 Bayes' approach
 - Empirical Bayes estimator
- 2 Approximation-theoretic approach
 - Kernel Flow estimator
- 3 Comparison of their consistency as # of data $\rightarrow \infty$, and beyond
 - Rigorous theories for the consistency for Matérn class models
 - Experiments beyond Matérn models, and include model misspecification

Bayes' solution

- Put a prior on θ , and $\mathbf{u}^{\dagger}|\theta \sim \mathcal{N}(0, K_{\theta})$ then calculate the posterior
- Empirical Bayes (EB) with uninformative prior:

$$\begin{split} \boldsymbol{\theta}^{\mathrm{EB}}(\mathcal{X}, \boldsymbol{u}^{\dagger}) &= \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) \\ \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) &= \boldsymbol{u}^{\dagger}(\mathcal{X})^{\mathsf{T}} [K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X})]^{-1} \boldsymbol{u}^{\dagger}(\mathcal{X}) + \log \det K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X}) \end{split}$$

Maximum Likelihood Estimate!

- The EB solution: just pick $\theta^{EB}(\mathcal{X}, u^{\dagger})$
 - depend on data set \mathcal{X} , truth u^{\dagger} (and the prior)

Bayes' solution

- Put a prior on θ , and $\mathbf{u}^{\dagger}|\theta \sim \mathcal{N}(0, K_{\theta})$ then calculate the posterior
- Empirical Bayes (EB) with uninformative prior:

$$\begin{split} \boldsymbol{\theta}^{\mathrm{EB}}(\mathcal{X}, \boldsymbol{u}^{\dagger}) &= \operatorname*{argmin}_{\boldsymbol{\theta} \in \Theta} \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) \\ \mathsf{L}^{\mathrm{EB}}(\boldsymbol{\theta}, \mathcal{X}, \boldsymbol{u}^{\dagger}) &= \boldsymbol{u}^{\dagger}(\mathcal{X})^{\mathsf{T}} [K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X})]^{-1} \boldsymbol{u}^{\dagger}(\mathcal{X}) + \log \det K_{\boldsymbol{\theta}}(\mathcal{X}, \mathcal{X}) \end{split}$$

Maximum Likelihood Estimate!

- The EB solution: just pick $\theta^{EB}(\mathcal{X}, \mathbf{u}^{\dagger})$
 - depend on data set \mathcal{X} , truth u^{\dagger} (and the prior)

Roadmap of this talk

- 1 Bayes' approach
 - Empirical Bayes estimator
- 2 Approximation-theoretic approach
 - Kernel Flow estimator
- 3 Comparison of their consistency as # of data $\to \infty$, and beyond
 - Rigorous theories for the consistency for Matérn class models
 - Experiments beyond Matérn models, and include model misspecification

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a target cost d, and optimize_{θ} d(u^{\dagger} , $u(\cdot, \theta, \mathcal{X})$)
- Problem: u^{\dagger} not available solution: approximation

$$\min_{\theta} d(u(\cdot, \theta, \mathcal{X}), u(\cdot, \theta, \pi \mathcal{X}))$$
 (One example

September 19, 2020

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a target cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- Problem: u^{\dagger} not available solution: approximation

$$\min_{\theta} d(u(\cdot, \theta, \mathcal{X}), u(\cdot, \theta, \pi \mathcal{X}))$$
 (One example)

 π : subsampling operator (similar to cross-validation)

Approximation-theoretic approach

- Why θ , u^{\dagger} have a prior distribution? may be brittle to misspecification
- Go straightforward: set a target cost d, and optimize_θ $d(u^{\dagger}, u(\cdot, \theta, \mathcal{X}))$
- Problem: u^{\dagger} not available solution: approximation

$$\min_{\theta} \mathsf{d}(u(\cdot,\theta,\mathcal{X}),u(\cdot,\theta,\pi\mathcal{X})) \tag{One example}$$

 π : subsampling operator (similar to cross-validation)

Kernel Flow

A specific choice of d: [Owhadi, Yoo 2018 & 2020], [Hamzi, Owhadi 2020]

$$\begin{split} & \boldsymbol{\theta}^{\mathrm{KF}}(\mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) = \underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} \, \mathsf{L}^{\mathrm{KF}}(\boldsymbol{\theta}, \mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) \\ & \mathsf{L}^{\mathrm{KF}}(\boldsymbol{\theta}, \mathcal{X}, \pi \mathcal{X}, \boldsymbol{u}^{\dagger}) = \frac{\|\boldsymbol{u}(\cdot, \boldsymbol{\theta}, \mathcal{X}) - \boldsymbol{u}(\cdot, \boldsymbol{\theta}, \pi \mathcal{X})\|_{K_{\boldsymbol{\theta}}}^{2}}{\|\boldsymbol{u}(\cdot, \boldsymbol{\theta}, \mathcal{X})\|_{K_{\boldsymbol{\theta}}}^{2}} \end{split}$$

where

- $\blacksquare \pi$: a subsampling operator, so $\pi \mathcal{X} \subset \mathcal{X}$
- $\|\cdot\|_{K_{\theta}}$: RKHS norm determined by K_{θ}

A kernel is good, if subsampling data does not influence solution much

Roadmap of this talk

- 1 Bayes' approach
 - Empirical Bayes estimator
- 2 Approximation-theoretic approach
 - Kernel Flow estimator
- 3 Comparison of their consistency as # of data $\to \infty$, and beyond
 - Rigorous theories for the consistency for Matérn class models
 - Experiments beyond Matérn models, and include model misspecification

Consistency

Question: How do θ^{EB} and θ^{KF} behave, as # of data $\to \infty$?

• We answer the question for some specific model of u^{\dagger} , θ and \mathcal{X}

Theory: Set-up and theorem

A specific Matérn regularity model:

- \blacksquare Domain: $D=\mathbb{T}^d=[0,1]_{\mathrm{per}}^d$
- Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d, \#$ of data: 2^{qd}
- Kernel $K_{\theta} = (-\Delta)^{-t}$, and $\theta = t$
- Subsampling operator in KF: $\pi \mathcal{X}_q = \mathcal{X}_{q-1}$

Theorem (Chen, Owhadi, Stuart, 2020)

Informal: if $\mathbf{u}^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s})$ for some s, then as $q \to \infty$,

$$\theta^{\mathrm{EB}} o s$$
 and $\theta^{\mathrm{KF}} o rac{s-d/2}{2}$ in probability

 Analysis based on multiresolution decomposition and uniform convergence of random series

Theory: Set-up and theorem

A specific Matérn regularity model:

- Domain: $D = \mathbb{T}^d = [0,1]_{per}^d$
- Lattice data $\mathcal{X}_q = \{j \cdot 2^{-q}, j \in J_q\}$ where $J_q = \{0, 1, ..., 2^q - 1\}^d$, # of data: 2^{qd}
- Kernel $K_{\theta} = (-\Delta)^{-t}$, and $\theta = t$
- Subsampling operator in KF: $\pi \mathcal{X}_q = \mathcal{X}_{q-1}$

Theorem (Chen, Owhadi, Stuart, 2020)

Informal: if $\mathbf{u}^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s})$ for some s, then as $q \to \infty$,

$$\theta^{\rm EB} \to s$$
 and $\theta^{\rm KF} \to \frac{s-d/2}{2}$ in probability

■ Analysis based on multiresolution decomposition and uniform convergence of random series

Experiments

How it works in practice?

 $d = 1, s = 2.5, \# \text{ of data } N = 2^9, \text{ mesh size } 2^{-10}$

Figure: Left: EB loss; right: KF loss

- Patterns in the loss function (our theory can predict!)
 - EB: first linear, then blow up quickly
 - KF: more symmetric

Experiments

How it works in practice?

 $d = 1, s = 2.5, \# \text{ of data } N = 2^9, \text{ mesh size } 2^{-10}$

Figure: Left: EB loss; right: KF loss

- Patterns in the loss function (our theory can predict!)
 - EB: first linear, then blow up quickly
 - KF: more symmetric

Selection Bias

Next Question: How are the limits s (= 2.5) and $\frac{s-d/2}{2}$ (= 1) special?

- What is the *implicit bias* of EB and KF algorithms?
- Our strategy: look at their L^2 population errors

Experiment 1

 \blacksquare # of data: 2^q ; compute $\mathbb{E}_{\mathbf{u}^{\dagger}} \| \mathbf{u}^{\dagger}(\cdot) - u(\cdot, t, \mathcal{X}_q) \|_{L^2}^2$ for varied t, q

Figure: L^2 error: averaged over the GP

 \blacksquare $\frac{s-d/2}{2}$ (= 1) is the minimal t that suffices for the fastest rate of L^2 error

Experiment 2

• # of data: $2^q, q = 9$; compute $\mathbb{E}_{u^{\dagger}} \| u^{\dagger}(\cdot) - u(\cdot, t, \mathcal{X}_q) \|_{L^2}^2$ for varied t

Figure: L^2 error: averaged over the GP, for q=9

• s = (2.5) is the t that achieves the minimal L^2 error in expectation

Summary of Our Theory

For Matérn-like model, EB and KF have different selection bias

- \blacksquare EB selects the t that achieves the minimal L^2 error in expectation
- KF selects the minimal t that suffices for the fastest rate of L^2 error

Beyond Matérn class model?

Summary of Our Theory

For Matérn-like model, EB and KF have different selection bias

- \blacksquare EB selects the t that achieves the minimal L^2 error in expectation
- KF selects the minimal t that suffices for the fastest rate of L^2 error

Beyond Matérn class model?

Roadmap of this talk

- 1 Bayes' approach
 - Empirical Bayes estimator
- 2 Approximation-theoretic approach
 - Kernel Flow estimator
- 3 Comparison of their consistency as # of data $\to \infty$, and beyond
 - Rigorous theories for the consistency for Matérn class models
 - Experiments beyond Matérn models, and include model misspecification

Recovery of other parameters in Matérn-like model

- Matérn-like model: $\mathbf{u}^{\dagger} \sim \mathcal{N}(0, \sigma^2(-\Delta + \tau^2 I)^{-s})$
 - lacksquare σ : amplitude; τ : lengthscale; τ : regularity s
- Experiments: $D = \mathbb{T}^d, d = 1$
 - \blacksquare EB can recover s and σ (respectively & simultaneously), not τ
 - KF can only recover $\frac{s-d/2}{2}$, not σ and τ

Variance of regularity estimation

- Earlier model: $\mathbf{u}^{\dagger} \sim \mathcal{N}(0, (-\Delta)^{-s}), s = 2.5, d = 1$
- Variance (# of data 2^9):

$$\frac{\text{Var}(s^{\text{EB}})}{s^2} \approx 7.8 \times 10^{-5}$$
 and $\frac{\text{Var}(s^{\text{KF}})}{((s - d/2)/2)^2} \approx 4 \times 10^{-3}$

For well-specification model: variance of EB better than KF

Other well-specified models: 1st

■ Model: $u^{\dagger} \sim \mathcal{N}(0, (-\nabla \cdot (a\nabla \cdot))^{-s})$ on one-dim torus $K_{\theta} = (-\nabla \cdot (a\nabla \cdot))^{-\theta}), \mathcal{X}$ uniform lattice (# of data: 2⁹)

$$a(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 2 & x \in (1/2, 1] \end{cases}$$

■ Variance:

$$\frac{{
m Var}(s^{
m EB})}{s^2} \approx 7.8 \times 10^{-5}$$
 and $\frac{{
m Var}(s^{
m KF})}{\left((s-d/2)/2\right)^2} \approx 4 \times 10^{-3}$

Other well-specified models: 2nd

■ Model: $-\nabla \cdot (a_{1/2}\nabla \mathbf{u}^{\dagger}) = \xi \sim \mathcal{N}(0, (-\Delta)^{-1})$

$$a_{\theta}(x) = \begin{cases} 1 & x \in [0, \theta] \\ 2 & x \in (\theta, 1] \end{cases}$$

$$K_{\theta} = (-\nabla \cdot (a_{\theta} \nabla \cdot))^{-1} (-\Delta)^{-s} (-\nabla \cdot (a_{\theta} \nabla \cdot))^{-1}$$
 for $s = 1$ \mathcal{X} uniform lattice (# of data: 29)

■ Experimental Result: Both EB and KF recover $\theta = 1/2$

Model Misspecification: 1st

■ Model: $\mathbf{u}^{\dagger} \sim \mathcal{N}(0, (-\nabla \cdot (a\nabla \cdot))^{-s})$

$$a(x) = \begin{cases} 1 & x \in [0, 1/2] \\ 2 & x \in (1/2, 1] \end{cases}$$

 $K_{\theta} = (-\Delta)^{-\theta}$, \mathcal{X} uniform lattice (# of data: 2⁹)

■ Variance:

$$\frac{\text{Var}(s^{\text{EB}})}{s^2} \approx 5.9 \times 10^{-4}$$
 and $\frac{\text{Var}(s^{\text{KF}})}{((s - d/2)/2)^2} \approx 6.8 \times 10^{-4}$

Model Misspecification: 2nd

■ Model: $-\nabla \cdot (a_{1/2}\nabla u^{\dagger}) = \xi \sim \mathcal{N}(0, (-\Delta)^{-1})$

$$a_{\theta}(x) = \begin{cases} 1 & x \in [0, \theta] \\ 2 & x \in (\theta, 1] \end{cases}$$

$$K_{\theta} = (-\nabla \cdot (a_{\theta} \nabla \cdot))^{-1} (-\Delta)^{-s} (-\nabla \cdot (a_{\theta} \nabla \cdot))^{-1}$$
 for $s = 5$ \mathcal{X} uniform lattice (# of data: 2^9)

■ Experimental Result: KF recovers $\theta = 1/2$, EB fails

Model Misspecification: 3nd

- Model: $(-\Delta)^s u^{\dagger}(\cdot) = \delta(\cdot 1/2)$ deterministic $K_{\theta} = (-\Delta)^{-\theta}$, \mathcal{X} uniform lattice (# of data: 2⁹)
- \blacksquare Experimental Result: EB recovers 2s, while KF recovers s

Takeaway messages

- For Matérn-like kernel model, EB and KF have different selection bias
 - EB selects the t that achieves the minimal L^2 error in expectation
 - KF selects the minimal t that suffices for the fastest rate of L^2 error
- Comparisons between EB and KF
 - Estimate amplitude and lengthscale in $\mathcal{N}(0, \sigma^2(-\Delta + \tau^2 I)^{-s})$
 - Variance of estimators
 - Robustness to model misspecification (important!)
 - Computational cost

Hierarchical parameter learning: via Bayes or approximation-theoretic?

Thank you!