Online Bilevel Optimization: Regret Analysis of Online Alternating Gradient Methods

Davoud Ataee Tarzanagh¹ Parvin Nazari² Bojian Hou¹ Li Shen ¹ Laura Balzano ³

University of Pennsylvania¹, Amirkabir University of Technology², University of Michigan³

Online Bilevel Optimization (OBO)

OBO is a Stackelberg leader-follower game with

- Leader's decision $\mathbf{x}_t \in \mathcal{X} \subset \mathbb{R}^{d_1}$ and cost $f_t : \mathcal{X} \times \mathbb{R}^{d_2} \to \mathbb{R}$; and
- Follower's decision $\mathbf{y}_t \in \mathbb{R}^{d_2}$ and cost $g_t : \mathcal{X} \times \mathbb{R}^{d_2} \to \mathbb{R}$.

Goal of the Leader: Select $\mathbf{x}_t \in \mathcal{X}$ to minimize *bilevel regret*.

• Bilevel dynamic regret:

$$\mathsf{BD ext{-}Reg}_T := \sum_{t=1}^T ig(f_t(\mathbf{x}_t, \mathbf{y}_t^*(\mathbf{x}_t)) - f_t(\mathbf{x}_t^*, \mathbf{y}_t^*(\mathbf{x}_t^*))ig), \quad \mathsf{where}$$

 $\mathbf{y}_t^*(\mathbf{x}) \in \arg\min_{\mathbf{v} \in \mathbb{R}^{d_2}} g_t(\mathbf{x}, \mathbf{y}) \text{ and } \mathbf{x}_t^* \in \arg\min_{\mathbf{x} \in \mathcal{X}} f_t(\mathbf{x}, \mathbf{y}_t^*(\mathbf{x})).$

• Bilevel local regret: For $F_{t,\mathbf{u}}(\mathbf{x},\mathbf{y})$ defined in (TAF):

$$\mathsf{BL} ext{-}\mathsf{Reg}_T := \sum_{t=1}^T \left\|
abla F_{t,\mathbf{u}}(\mathbf{x}_t,\mathbf{y}_t^*(\mathbf{x}_t))
ight\|^2.$$

Theory

Time-Averaged Function and its Hypergradient

$$F_{t,\mathbf{u}}(\mathbf{x},\mathbf{y}) := (1/W) \sum_{i=0}^{w-1} u_i f_{t-i}(\mathbf{x},\mathbf{y}). \tag{TAF}$$

Here, $W = \sum_{i=0}^{w-1} u_i$, $f_t \equiv 0$ for $t \leq 0$, $\{u_i\}_{i=0}^{w-1}$ is a positive decreasing sequence with $u_0 = 1$ and $\mathbf{M}_t(\mathbf{x}, \mathbf{y})$ satisfies

$$\nabla_{\mathbf{x}\mathbf{v}}^{2}g_{t}\left(\mathbf{x},\mathbf{y}\right) + \mathbf{M}_{t}(\mathbf{x},\mathbf{y})\nabla_{\mathbf{v}}^{2}g_{t}\left(\mathbf{x},\mathbf{y}\right) = 0.$$

Time-Averaged Hypergradient:

$$\tilde{\nabla} F_{t,\mathbf{u}}(\mathbf{x},\mathbf{y}) := (1/W) \sum_{i=0}^{w-1} u_i \tilde{\nabla} f_{t-i}(\mathbf{x},\mathbf{y}),$$

where $\widetilde{\nabla} f_t(\mathbf{x}, \mathbf{y}) := \nabla_{\mathbf{x}} f_t(\mathbf{x}, \mathbf{y}) + \mathbf{M}_t(\mathbf{x}, \mathbf{y}) \nabla_{\mathbf{y}} f_t(\mathbf{x}, \mathbf{y}).$

OAGD Algorithm for Bilevel Regret Minimization —

ullet **REQUIRE:** Initial values $(\mathbf{x}_1,\mathbf{y}_1)\in\mathcal{X} imes\mathbb{R}^{d_2}$; parameters $w,T,K_1,K_2,\ldots,K_T\in\mathbb{N};$ stepsizes $\{(\alpha_t,\beta_t)\in\mathbb{R}_{++}^2\}_{t=1}^T;$ and weights $\{u_i\}_{i=0}^{w-1}$ with $1 = u_0 \ge u_1 \ge \ldots \ge u_{w-1} > 0$.

weights
$$\{u_i\}_{i=0}^{w-1}$$
 with $1=u_0\geq u_1\geq\ldots\geq u_{w-1}>0$.
FOR $t=1$ to T
Set $\mathbf{z}_t^1\leftarrow\mathbf{y}_t$
FOR $k=1$ to K_t
Update $\mathbf{z}_t^{k+1}\leftarrow\mathbf{z}_t^k-\beta_t\nabla_{\mathbf{z}}g_t(\mathbf{x}_t,\mathbf{z}_t^k)$
ENDFOR
Update $\mathbf{y}_{t+1}\leftarrow\mathbf{z}_t^{K_t+1}$
Update $\mathbf{x}_{t+1}\leftarrow\Pi_{\mathcal{X}}\big[\mathbf{x}_t-\alpha_t\tilde{\nabla}F_{t,\mathbf{u}}(\mathbf{x}_t,\mathbf{y}_{t+1})\big]$
ENDFOR

Assumptions:

A1) f_t is $\ell_{f,0}$ -Lipschitz continuous; $g_t(\mathbf{x}, \mathbf{y})$ is μ_q -strongly convex in \mathbf{y} for any $\mathbf{x} \in \mathcal{X}$; and $\nabla f_t, \nabla g_t$, and $\nabla^2 g_t$ are respectively $\ell_{f,1}, \ell_{g,1}$, and $\ell_{g,2}$ -Lipschitz continuous.

A2) For any $\mathbf{x}, \mathbf{x}' \in \mathcal{X}$, $\|\mathbf{x} - \mathbf{x}'\| \le D$, for some D > 0, and $\|\mathbf{y}_1 - \mathbf{y}_1^*(\mathbf{x}_1)\| \le D'$, for some D' > 0.

A3) For all $t \in [T]$, $|f_t(\mathbf{x}, \mathbf{y})| \leq M$ for some finite constant M > 0.

Regret Bounds

• (Strongly-Convex) Under Assumptions A1 and A2, and $\{f_t\}_{t=1}^T$ being strongly convex:

$$BD-Reg_T \leq \mathcal{O}\Big(1 + \min\{S_{1,T}, S_{2,T}\}\Big),\,$$

where $S_{p,T} := P_{p,T} + Y_{p,T}$ with

$$P_{p,T} := \sum_{t=2}^{T} \|\mathbf{x}_{t-1}^* - \mathbf{x}_t^*\|^p, \quad \text{and} \quad Y_{p,T} := \sum_{t=2}^{T} \|\mathbf{y}_{t-1}^*(\mathbf{x}_{t-1}^*) - \mathbf{y}_t^*(\mathbf{x}_t^*)\|^p.$$

• (Convex) Under Assumptions A1 and A2, and the convexity of $\{f_t\}_{t=1}^T$:

$$BD-Reg_T \leq \mathcal{O}\Big(1 + S_{1,T} + Y_{2,T}\Big).$$

• (Nonconvex) Under Assumptions A1 and A3, and $\mathcal{X} \equiv \mathbb{R}^{d_1}$:

$$BL-Reg_T \le \mathcal{O}\left(\frac{T}{W} + H_{1,T} + H_{2,T}\right),\,$$

where $H_{p,T} := \sum_{t=2}^{T} \sup_{\mathbf{x} \in \mathbb{R}^{d_1}} \|\mathbf{y}_{t-1}^*(\mathbf{x}) - \mathbf{y}_t^*(\mathbf{x})\|^p$.

- OAGD achieves a problem-dependent dynamic regret bound.
- OAGD can achieve a sublinear local regret bound given $H_{p,T} = o(T)$ and W = o(T).

Experiments

• Online Parametric Loss Tuning for Imbalanced Data: OAGD trains on MNIST with class sampling at 0.6^i (i=0 to 9). Uses 128-sample batches; for w>1, merges with w-1 previous batches. Define training and validation losses, respectively, as

$$g(\mathbf{x}_{t-1}, \mathbf{y}_t; \mathcal{D}_t^{\mathsf{tr}}) = -\log \frac{e^{\gamma_{b_t}[\mathbf{y}_t(\mathbf{a}_t)]_{b_t} + \Delta_{b_t}}}{\sum_{j=1}^{J} e^{\gamma_j[\mathbf{y}_t(\mathbf{a}_t)]_j + \Delta_j}}, \qquad f(\mathbf{y}_t(\mathbf{x}_t); \mathcal{D}_t^{\mathsf{val}}) = -u_{b_t} \log \frac{e^{[\mathbf{y}_t(\mathbf{a}_t)]_{b_t}}}{\sum_{j=1}^{J} e^{[\mathbf{y}_t(\mathbf{a}_t)]_j}}.$$

Figure: Performance comparison (mean \pm std) on loss tuning for imbalanced MNIST data across five runs.

• Online Meta Learning: Uses FC100 for a 5-way 5-shot classification. Each timestep features 25 train/test samples. If w > 1, OAGD includes data from w - 1 previous tasks.

Figure: Performance comparison (mean \pm std) on meta-learning for FC100 data across five runs.