Pseudo-Marginal Markov Chain Monte Carlo for Bayesian Inference

Angus Lewis

An approach for Bayesian inference

- We want to fit the model to the data
 - ightharpoonup i.e. find parameters θ^* that explain the data
- ► Find the posterior distribution,

$$P(\theta|\mathbf{x}) = \frac{L(\theta)P(\theta)}{P(\mathbf{x})} \propto L(\theta)P(\theta).$$

Where,

- $P(x) = \int_{\Theta} L(\theta)P(\theta)d\theta$, which often cannot be computed,
- $L(\theta) = P(\mathbf{x}|\theta)$ is the likelihood,
- ▶ and $P(\theta)$ is the prior distribution.

Markov Chain Monte Carlo (MCMC)

How to deal with $P(\theta|\mathbf{x}) \propto L(\theta)P(\theta)$.

 Construct a Markov Chain that has the same stationary distribution as the posterior

$$\pi(\theta) = P(\theta|\mathbf{x})$$

Makov Chain Monte Carlo (MCMC)

Metropolis Hasting Algorithm

- 1. Initialise, n = 0 and θ_0 .
- 2. Given the current state of the chain θ_n sample a candidate θ' from predetermined proposal $R(\theta'|\theta_n)$.
- 3. With probability

$$\alpha(\theta_n, \theta') = \min \left\{ \frac{\frac{L(\theta')P(\theta')}{P(\mathbf{x})}R(\theta'|\theta_n)}{\frac{L(\theta_n)P(\theta_n)}{P(\mathbf{x})}R(\theta_n|\theta')}, 1 \right\}$$
$$= \min \left\{ \frac{L(\theta')P(\theta')R(\theta'|\theta_n)}{L(\theta_n)P(\theta_n)R(\theta_n|\theta')}, 1 \right\}$$

set
$$\theta_{n+1} = \theta'$$

else set $\theta_{n+1} = \theta_n$

4. Set n = n + 1 and return to 2

Transition density is

$$\begin{split} \kappa(\theta',\theta_n) &= \alpha(\theta_n,\theta') R(\theta'|\theta_n) + (1-\alpha^*(\theta_n)) \delta_{\theta_n}(\theta'), \end{split}$$
 where $\alpha(\theta_n)^* = \int \alpha(\theta_n,\theta) R(\theta|\theta_n)) d\theta$

Transition density is

$$\kappa(\theta',\theta_n) = \alpha(\theta_n,\theta')R(\theta'|\theta_n) + (1-\alpha^*(\theta_n))\delta_{\theta_n}(\theta'),$$

where
$$\alpha(\theta_n)^* = \int \alpha(\theta_n, \theta) R(\theta|\theta_n) d\theta$$

▶ The transition density, κ , satisfies the Global Balance Equations,

$$P(\theta_n|\mathbf{x})\kappa(\theta',\theta_n) = P(\theta'|\mathbf{x})\kappa(\theta_n,\theta').$$

Transition density is

$$\kappa(\theta', \theta_n) = \alpha(\theta_n, \theta') R(\theta'|\theta_n) + (1 - \alpha^*(\theta_n)) \delta_{\theta_n}(\theta'),$$

where
$$\alpha(\theta_n)^* = \int \alpha(\theta_n, \theta) R(\theta|\theta_n) d\theta$$

▶ The transition density, κ , satisfies the Global Balance Equations,

$$P(\theta_n|\mathbf{x})\kappa(\theta',\theta_n) = P(\theta'|\mathbf{x})\kappa(\theta_n,\theta').$$

▶ In addition, if

$$P(\alpha(\theta_n, \theta') < 1 | \theta_n) > 0$$
 and $R(\theta' | \theta_n) > 0 \ \forall \ \theta', \theta_n$

Transition density is

$$\kappa(\theta', \theta_n) = \alpha(\theta_n, \theta') R(\theta'|\theta_n) + (1 - \alpha^*(\theta_n)) \delta_{\theta_n}(\theta'),$$

where
$$\alpha(\theta_n)^* = \int \alpha(\theta_n, \theta) R(\theta|\theta_n) d\theta$$

▶ The transition density, κ , satisfies the Global Balance Equations,

$$P(\theta_n|\mathbf{x})\kappa(\theta',\theta_n) = P(\theta'|\mathbf{x})\kappa(\theta_n,\theta').$$

In addition, if

$$P(\alpha(\theta_n, \theta') < 1 | \theta_n) > 0$$
 and $R(\theta' | \theta_n) > 0 \ \forall \ \theta', \theta_n$

▶ Then $P(\theta|\mathbf{x})$ is the stationary distribution of the chain.

A state space model

- ▶ We have a model, M
 - \blacktriangleright The model has some unknown parameters, θ
 - ► And also some unkown data **R** which is a Markov chain

E.g.

Bayesian inference for state space models

Find the posterior distribution,

$$P(\theta|\mathbf{x}) = \frac{L(\theta)P(\theta)}{P(\mathbf{x})} \propto L(\theta)P(\theta).$$

Where,

- $P(\mathbf{x}) = \int_{\Theta} L(\theta)P(\theta)d\theta$, which often cannot be computed,
- ▶ $L(\theta) = P(\mathbf{x}|\theta) = \sum_{\mathbf{R}} P(\mathbf{x}|\mathbf{R}, \theta) P(\mathbf{R}|\theta)$ is the likelihood and is also hard to compute,
- and $P(\theta)$ is the prior distribution.

Bayesian inference for state space models

Find the posterior distribution,

$$P(\theta, \mathbf{R}|\mathbf{x}) = \frac{L(\theta, \mathbf{R})P(\theta, \mathbf{R})}{P(\mathbf{x})} \propto L(\theta, \mathbf{R})P(\theta, \mathbf{R}).$$

Where,

- $P(\mathbf{x}) = \int_{\Theta} L(\theta) P(\theta) d\theta$, which often cannot be computed,
- ▶ $L(\theta, \mathbf{R}) = P(\mathbf{x}|\theta, \mathbf{R})$ is the likelihood,
- and $P(\theta)$ is the prior distribution.

Makov Chain Monte Carlo (MCMC)

Metropolis Hasting Algorithm agian

- 1. Initialise, n = 0 and $(\theta_0, \mathbf{R_0})$.
- 2. Given the current state of the chain $(\theta_n, \mathbf{R_n})$ sample a candidate (θ', \mathbf{R}') from predetermined proposal $R(\theta', \mathbf{R}'|\theta_n, \mathbf{R_n})$.
- 3. With probability

$$\alpha = \min \left\{ \frac{L(\theta', \mathbf{R}')P(\theta', \mathbf{R}')R(\theta', \mathbf{R}'|\theta_n, \mathbf{R_n})}{L(\theta_n, \mathbf{R_n})P(\theta_n, \mathbf{R_n})R(\theta_n, \mathbf{R_n}|\theta', \mathbf{R}')}, 1 \right\}$$

set
$$\theta_{n+1} = \theta'$$

else set $\theta_{n+1} = \theta_n$

4. Set n = n + 1 and return to 2

This mixes slowly unless a good proposal is chosen

Mixing

Bayesian inference for state space models

Find the posterior distribution,

$$P(\theta|\mathbf{x}) = \frac{L(\theta)P(\theta)}{P(\mathbf{x})} \propto L(\theta)P(\theta).$$

Where,

- ▶ $P(\mathbf{x}) = \int_{\Theta} L(\theta)P(\theta)d\theta$, which often cannot be computed,
- ▶ $L(\theta) = P(\mathbf{x}|\theta) = \sum_{\mathbf{R}} P(\mathbf{x}|\mathbf{R}, \theta) P(\mathbf{R}|\theta)$ is the likelihood and is also hard to compute,
- and $P(\theta)$ is the prior distribution.

The Pseudo Marginal Part

The likelihood:

$$L(\theta) = P(\mathbf{x}|\theta) = \sum_{\mathbf{R}} P(\mathbf{x}|\mathbf{R}, \theta) P(\mathbf{R}|\theta),$$

is hard to compute.

- What if we could sum over some of the R's instead.
 - ▶ Randomly sample \mathbf{R}_j , j = 1, 2, ..., m.
 - Calculate

$$\hat{L}(\theta) = \frac{1}{m} \sum_{j=1}^{m} P(\mathbf{x}|\mathbf{R}_{j}, \theta) P(\mathbf{R}_{j}|\theta)$$

A Pseudo Marginal MCMC Algoritm

- 1. Initialise, n = 0 and θ_0 .
- 2. Given the current state of the chain θ_n sample a candidate θ' from predetermined proposal $R(\theta'|\theta_n)$.
- 3. Sample some \mathbf{R}_{j} 's and calculate

$$\hat{L}(\theta') = \frac{1}{m} \sum_{j=1}^{m} P(\mathbf{x}|\mathbf{R}_{j}, \theta') P(\mathbf{R}_{j}|\theta')$$

4. With probability

$$\alpha(\theta_n, \theta') = \min \left\{ \frac{\hat{L}(\theta')P(\theta')R(\theta'|\theta_n)}{\hat{L}(\theta_n)P(\theta_n)R(\theta_n|\theta')}, 1 \right\}$$

set $\theta_{n+1} = \theta'$, else set $\theta_{n+1} = \theta_n$. Save $\hat{L}(\theta_{n+1})$. It is important that $\hat{L}(\theta_{n+1})$ is saved.

5. Set n = n + 1 and return to 2

▶ Define $W = \frac{\hat{L}(\theta)}{L(\theta)}$, the noise in the estimate of the likelihood, with density p(w)

- ▶ Define $W = \frac{\hat{L}(\theta)}{L(\theta)}$, the noise in the estimate of the likelihood, with density p(w)
- Assume $\mathbb{E}[W|\theta] = c$ where c > 0, so that $\mathbb{E}[\hat{L}(\theta)] = cL(\theta)$

- ▶ Define $W = \frac{\hat{L}(\theta)}{L(\theta)}$, the noise in the estimate of the likelihood, with density p(w)
- Assume $\mathbb{E}[W|\theta] = c$ where c > 0, so that $\mathbb{E}[\hat{L}(\theta)] = cL(\theta)$
- ► Consider each iteration as a joint update of (θ', w') , with proposal density $P((\theta', w')|(\theta_n, w_n)) = R(\theta'|\theta_n)p(w')$

- ▶ Define $W = \frac{\hat{L}(\theta)}{L(\theta)}$, the noise in the estimate of the likelihood, with density p(w)
- Assume $\mathbb{E}[W|\theta] = c$ where c > 0, so that $\mathbb{E}[\hat{L}(\theta)] = cL(\theta)$
- ► Consider each iteration as a joint update of (θ', w') , with proposal density $P((\theta', w')|(\theta_n, w_n)) = R(\theta'|\theta_n)p(w')$
- Then the acceptance ratio is

$$\begin{split} \alpha &= \min \left\{ \frac{\hat{L}(\theta')p(\theta')P((\theta_n, w_n)|(\theta', w'))}{\hat{L}(\theta_n)p(\theta_n)P((\theta', w')|(\theta_n, w_n))}, 1 \right\} \\ &= \min \left\{ \frac{L(\theta')w'p(w'|\theta')}{L(\theta_n)w_np(w_n|\theta_n)} \frac{p(\theta')P((\theta_n, w_n)|(\theta', w'))}{p(\theta_n)P((\theta', w')|(\theta_n, w_n))}, 1 \right\} \end{split}$$

Transition density is

$$\kappa(\theta', \mathbf{w}', \theta_n, \mathbf{w}_n) = \alpha R(\theta'|\theta_n) p(\mathbf{w}') + (1 - \alpha^*) \delta_{\theta_n, \mathbf{w}_n}(\theta', \mathbf{w}'),$$

 By the same arguments as before the global balance equations are satisfied

$$L(\theta_n)w_np(w_n|\theta_n)\kappa(\theta',w',\theta_n,w_n) = L(\theta')w'p(w'|\theta')\kappa(\theta_n,w_n,\theta',w')$$

- ▶ The target distribution is proportional to $L(\theta)p(\theta)wp(w|\theta)$.
- ▶ Integrating over w leaves a distribution proportional to $P(\theta|\mathbf{x})$.

Notes

- ▶ For an estimate of $L(\theta)$ with $\mathbb{E}[W|\theta] = c$ where c > 0 so that $\mathbb{E}[\hat{L}|\theta] = cL(\theta)$ this still works! (But it may mix poorly)
- ▶ We can use a bad estimate of $L(\theta)$ i.e. with just a single sample of \mathbf{R} . (But it may mix poorly)
- ▶ We *must* use the estimate $\hat{L}(\theta_n)$ from the previous iteration.
- ▶ This idea was first introduced by Mark Beaumont in Beaumont (2003), where he was using an approximate likelihood in the context of a statistical genetics example. This was later picked up by Christophe Andrieu and Gareth Roberts, who studied the technical properties of the approach in Andrieu and Roberts (2009).