Resumo & Apêndice (Mesclado)

23 de setembro de 2025

Sumário

1 Parte Original (do arquivo analise-funcional-resumo.tex)

Nota: O conteúdo original completo foi incorporado abaixo como comentário para evitar conflitos de preâmbulo. Para compilar em conjunto, copie as seções internas do arquivo original para dentro deste documento (após remover o preâmbulo duplicado).

Cópia literal do conteúdo original (comentado para não quebrar a compilação):

% % [12pt]article % [T1]fontenc % [utf8]inputenc % [portuguese]babel % amsmath % amssymb % amsthm % geometry % a4paper, margin=1in, landscape % multicol % enumitem % % % % Remove os números de página % % % % — Definições de ambiente para Teoremas, etc. — % Teorema[section] % [theorem]Proposição % [theorem]Lema % % % % Sumário de Teoremas, Proposições e Lemas Fundamentais em Análise Funcional % % % %

2 Desigualdades Fundamentais para Espaços Normados

%3 % Essas desigualdades são ferramentas essenciais para provar a desigualdade triangular para as p-normas, garantindo a validade dessas normas. % %

Lema 1 [Desigualdade de Young]. % Se $p \in (1, \infty)$, $q \in (1, \infty)$ é tal que $\frac{1}{p} + \frac{1}{q} = 1$ e $a, b \in [0, \infty)$, então $a^{1/p}b^{1/q} \leq \frac{a}{p} + \frac{b}{q}$. % %

Lema 2 [Desigualdade de Hölder]. % Se $p \in (1, \infty)$ e $q \in (1, \infty)$ é tal que $\frac{1}{p} + \frac{1}{q} = 1$, então %

$$\% \sum_{i=1}^{N} |x_i y_i| \le \left[\sum_{i=1}^{N} |x_i|^p \right]^{1/p} \left[\sum_{i=1}^{N} |y_i|^q \right]^{1/q} \%$$

% para todo $x = (x_1, ..., x_N), y = (y_1, ..., y_N) \in \mathbb{R}^N$. % %

Lema 3 [Desigualdade de Minkowski] . % Se $p \in [1, \infty]$, então %

$$\% \left[\sum_{i=1}^{N} |x_i + y_i|^p \right]^{1/p} \le \left[\sum_{i=1}^{N} |x_i|^p \right]^{1/p} + \left[\sum_{i=1}^{N} |y_i|^p \right]^{1/p} \%$$

% ou, em outras palavras, $||x+y||_p \le ||x||_p + ||y||_p$ para todo $x = (x_1, \ldots, x_N), y = (y_1, \ldots, y_N) \in \mathbb{R}^N$.

% Essas desigualdades ajudam a estabelecer as propriedades fundamentais dos espaços normados, o que leva naturalmente ao estudo de sua completude e do comportamento das transformações entre eles. % % %

3 Completude e Transformações Lineares

% 3 %

Teorema 1 [Uma Condição para a Completude] . % Um espaço vetorial normado é completo se, e somente se, toda série absolutamente convergente é convergente. % %

Proposição 1 [Equivalências para Transformações Lineares Contínuas]. % Se X,Y são espaços vetoriais normados e $T:X\to Y$ é linear, as seguintes afirmações são equivalentes: %

%

- (a) T é contínua; %
- (b) T é contínua em 0; %
- (c) T é limitada. %

%

% %

Proposição 2 [Completude de L(X,Y)]. % Se Y é completo, então L(X,Y) é completo.

9 Apêndice: Quaternions, Matrizes e Conceitos Relacionados

9.1Definição: Quaternions via matrizes 2×2

Identificamos $\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$ com o subconjunto de $M_2(\mathbb{C})$ dado por

$$a+bi+cj+dk \longmapsto \begin{bmatrix} a+bi & c+di \\ -c+di & a-bi \end{bmatrix}.$$

Com essa identificação, a adição e a multiplicação dos quaternions coincidem com as operações de matrizes.

Observação 1. A subtração é fechada porque a forma da matriz é preservada sob diferenças e porque o conjugado complexo satisfaz $\overline{z_1 - z_2} = \overline{z_1} - \overline{z_2}$.

Definição: Conjugado (adjoint) em Álgebra Linear 9.2

Dado $A \in M_n(\mathbb{C})$ com produto interno padrão, o adjoint (ou adjunta) é $A^* = \overline{A}^T$, isto é, $\langle Av, w \rangle = \langle v, A^*w \rangle$ para todos v, w.

9.3 Definição: Field (Corpo)

Um field (corpo) F é um conjunto com duas operações + e \cdot tal que (F,+) é grupo abeliano, $(F \setminus \{0\}, \cdot)$ é grupo abeliano, e a distributividade vale. Exemplos: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$ com p primo.

Teorema 26 [Teorema da Correspondência (Quocientes)]. Seja G um grupo e $N \subseteq G$. Há uma bijeção entre subgrupos H de G com $N \subseteq H \subseteq G$ e subgrupos de G/N, dada por $H\mapsto H/N$. Análogo para anéis: ideais $J\supseteq I$ correspondem a ideais de R/I via $J\mapsto J/I$.

Isomorfismo de Q_8 com um subgrupo de $GL_2(\mathbb{C})$

Considere as matrizes $I_i = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix}$, $I_j = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$, $I_k = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$. Elas satisfazem as relações $I_i^2 = I_j^2 = I_k^2 = -I$, $I_iI_j = I_k$, $I_jI_i = -I_k$, etc. A aplicação $Q_8 \to \langle I_i, I_j, I_k \rangle$ enviando $i \mapsto I_i$, $j \mapsto I_j$, $k \mapsto I_k$ é um isomorfismo.

Teorema 27 [Centro de \mathbb{H}]. O centro de \mathbb{H} é \mathbb{R} . Na realização matricial acima, a condição de comutar com I_i e I_j força c = d = 0 e depois b = 0, de modo que $\begin{vmatrix} a+bi & c+di \\ -c+di & a-bi \end{vmatrix}$ reduz a $aI \ com \ a \in \mathbb{R}.$

Teorema 28 [Centro de $M_n(F)$]. Para $n \geq 2$, o centro de $M_n(F)$ é $\{\lambda I : \lambda \in F\}$. Em particular, matrizes "constantes" (todas as entradas iguais) não são centrais em geral.

Comutatividade e autovalores distintos 9.5

Se A tem autovalores distintos, então o seu centralizador é $\{p(A): p \in F[x]\}$. Em dimensão 2, toda matriz que comuta com A é da forma $\alpha I + \beta A$. Contraexemplo simples com A = diag(1,2) $e B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} dá AB \neq BA.$

9.6 Definição: Matriz inversível 2×2

Uma matriz $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ é inversível sse $\det(A) = ad - bc \neq 0$. Exemplo negativo: $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ tem determinante 0 e não é inversível.

9.7 Definição: Embutimento de $\mathbb{C} \subset \mathbb{H}$

Os elementos a+bi de $\mathbb C$ correspondem a matrizes diagonais diag(a+bi,a-bi). Os reais puros $a\in\mathbb R$ correspondem às escalares aI.

9.8 Definição: Conjugado complexo e propriedades

Para $z_1, z_2 \in \mathbb{C}$, $\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}$ e $\overline{z_1} \overline{z_2} = \overline{z_1} \overline{z_2}$. Usado ao verificar a estabilidade da forma matricial dos quaternions sob operações.

Referências rápidas (sugestivas)

- Qualquer texto de Álgebra Linear (adjunta/conjugate transpose).
- Teoria de Grupos: Teorema da Correspondência; apresentação de Q_8 .
- Álgebra: centros de anéis, $M_n(F)$.