Universidad Nacional Mayor de San Marcos Facultad de Ingeniería de Sistemas e Informática E.A.P. Ingeniería de Sistemas

REPRESENTACION Y MODELADO

COMPUTACION GRAFICA

Docente: Lic. John Ledgard Trujillo Trejo

jueves, 13 de febrero de 2014

- Representación por caras: B-rep (o de delimitación de superficies)
 - O La superficie del sólido está formada por un conjunto bien ordenado de caras cada una de las cuales es parte de una superficie (parche).
 - O En este modelo los sólidos quedan determinados por los puntos que pertenecen a la frontera, ya que éstos separan los puntos interiores de los puntos exteriores del sólido.
 - O Cada cara está acotada por un perímetro anular de aristas que se intersectan en vértices. Si la cara tiene agujeros, queda acotada, a su vez, por uno o más anillos internos de aristas.

- > Hay dos tipos de información:
 - O Topológica: relaciones entre vértices, aristas y caras, orientación de las aristas y las caras.
 - O Geométrica: conjunto de ecuaciones de las aristas y las caras.
- > Importante: ORIENTACION de todas las caras.
 - O Si miramos los vectores normales, podemos establecer si estamos trabajando dentro/fuera del sólido.
 - O No todos los sólidos son orientables

Elementos básicos:

- O Primitivas: caras, aristas y vértices.
- O Objetos que se pueden construir:
 - Caras planas (poliedros).
 - Caras curvas (objetos curvos).

Tipos de objetos poliédricos:

- O Simples (sin agujeros)
- O Caras con varias fronteras.
- O Con agujeros que no atraviesan el objeto por completo.
- O Con agujeros que atraviesan el objeto por completo

(a) Simple polyhedra

(b) Polyhedra with faces of inner loops

(c) Polyhedra with not through holes

(d) Polyhedra with handles (through holes)

- Primitivas B-Rep y elementos topológicos:
 - O Vértice (Vertex): punto único en el espacio
 - O Arista (Edge): curva finita, orientada, delimitada por dos vértices (pueden ser el mismo), que no se autointersecta.
 - Loop: secuencia ordenada alternante de vértices y aristas. No autointersectante y cerrado
 - O Cara (Face): región finita, no autointersectante de una superficie orientable, limitada por uno o más loops.
 - Agujero que no atraviesa (Not through hole): depresión en un objeto
 - O Agujero que atraviesa (Through hole o handle): el nº de agujeros de este tipo se llama genus.
 - O Cuerpo (Body o Shell): conjunto de caras que delimitan un volumen cerrado continuo.

- > Fórmula de Euler
 - O Primera aproximación a la validación de objetos
 - O Objetos topológicamente muy simples, sin huecos o agujeros y con un sólo bucle por cara
- La formula de Euler es condición necesaria, pero no suficiente para un sólido: podríamos tener caras sueltas que cumplieran Euler

Fórmula de EULER

V-E+F-2=0

V=Vértices, E= Aristas, F=Caras

Fórmula de Euler-Poincaré

- O Aproximación a sólidos con agujeros
- O Sólidos que permanecen limitados por una superficie conectada simple, homeomórficos a la esfera con una o más "asas" o agujeros

Fórmula de EULER-POINCARÉ

 $V-E+F-2\cdot(1-G)=0$

V=Vértices, E= Aristas, F=Caras, G=Género (#"asas")

superficie de género 2 (esfera con 2 asas)

objeto con dos agujeros

- > Fórmula de Euler-Poincaré extendida
 - O sólidos con huecos internos (burbujas) limitados por superficies múltiples cerradas (conchas)

Fórmula de EULER-POINCARÉ extendida

$$V-E+F-(L-F)-2\cdot(S-G)=0$$

V=Vértices, E=Aristas, F=Caras, G=Género (#"asas"), S=Conchas, L=Lazos

> Topología Euler-Poincaré extendido

sólido con 24 vértices, 36 aristas, 16 caras, 18 bucles, 2 conchas y género 1

superficie con 8 vértices, 12 aristas, 6 caras, 6 bucles, 1 conchas y género 0

Facultad de Ingeniería de Sistemas e Informática

E.A.P. de Ingeniería de Sistemas

Boundary model of solid S.

Faces F_9 to F_{16} for hole are not shown

18: Creación del modelo B-Rep del sólido S

Características:

- O Representación por caras: B-rep (o de delimitación de superficies)
- O Los objetos se definen en función de la superficie que los encierra: vértices, aristas y caras.
- O Las superficies curvas y las formas libres se poligonalizan → Perdida de resolución y aumento de las necesidades de memoria para el almacenamiento de la estructura de datos.
- O Comprueba la frontera que define un sólido mediante la fórmula de Euler (relación invariante entre el número de vértices, caras y aristas de un poliedro).
- O Estructuras de datos complejas para el manejo de B-rep → Basadas en grafos dirigidos que describen las relaciones topológicas del poliedro.
- O Posibilidad de implementación de operaciones booleanas sobre B-rep.

Inconvenientes

- O Su representación en pantalla es difícil.
- O No son intuitivos para el usuario.
- O Bastante complejos de implementar.

Adicionalmente

- O cada arista debe conectar 2 vértices
- O debe estar compartida por dos caras
- O al menos 3 aristas deben concurrir en cada vértice
- O las caras no se deben interpenetrar

➤ La forma de trabajar de los B-rep es realmente simple, una tabla de caras y otra de vértices, y una serie de punteros desde la primera a la segunda.

- > Estrutura de Datos Basada en Vértices
- La estructura de datos para almasenar la información de los sólidos es muy importante, pues permite com mas rapidez y consistencia las operaciones geométricas y topológicas (como subdivisión, agrupamiento de caras, aristas y e vértices)

Vértices	Coordenadas	
Α	(0,0,0)	
В	(1,0,0)	
С	(1,1,0)	
D	(0,1,0)	
E	(0,0,1)	
F	(1,0,1)	
G	(1,1,1)	
Н	(0,1,1)	

Faces	Vértices	
F1	EFBA	
F2	GFEH	
F3	CBFG	
F4	DABC	
F5	HEAD	
F6	DCGH	

> Estrutura de Datos Basada en aristas

Vértices	Coordenadas	
Α	(0,0,0)	
В	(1,0,0)	
С	(1,1,0)	
D	(0,1,0)	
Е	(0,0,1)	
F	(1,0,1)	
G	(1,1,1)	
Н	(0,1,1)	

Faces	Arestas	
F1	A1 A2 A3 A4	
F2	A9 A6 A1 A5	
F3	A6 A10 A7 A2	
F4	A7 A11 A8 A3	
F5	A12 A5 A4 A8	
F6	A9 A12 A11 A10	

Aresta	Vértices	Aresta	Vértices
A1	EF	A7	BC
A2	FB	A8	AD
A3	ВА	A9	HG
A4	AE	A10	GC
A5	EH	A11	CD
A6	FG	A12	DH

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería de Sistemas e Informática E.A.P. Ingeniería de Sistemas

BIBLIOGRAFIA

BIBLIOGRAFIA

- Gomis Martí, José María. Curvas y Superficies en Diseño de Ingeniería. Editorial: Universidad Politécnica de Valencia. Valencia, España. Febrero – 1996. 1ª ed.
- > Eduardo Azevedo y Aura Conci. Computação Gráfica
- ➤ Foley J., Van Dame A., Feiner S., Hughes J., Phillips R. Computer Graphics: Principles and Practice. Addison Wesley Publishing Company, Massachusetts. 1996
- ➤ Hoschek J., Lasser D. A.K. Peters Ltd. Fundamentals of Computer Aided Geometric Design. Wellesley Massachusetts. 1993
- ➤ Hearn D., Baker M.P. Gráficas por computadora. Prentice Hall Hispanoamericana. 1998

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería de Sistemas e Informática E.A.P. Ingeniería de Sistemas

PREGUNTAS?

