Data Analytics in Python and SQL: Final Project

Guillermo Casillas, Valeria Chavez, Benjamin Catton

Background Information

•

Two Major
Datasets: IPO
and Funding
Rounds

2

Impact of Investor Behavior and

Market Trends Compare the path from startup to IPO

,

VC Firms, startup founder, PE, and analysts

Set-Up

```
[5]: fr df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 52928 entries, 0 to 52927
     Data columns (total 23 columns):
          Column
                                   Non-Null Count Dtype
          id
                                   52928 non-null int64
         funding_round_id
                                   52928 non-null int64
                                   52928 non-null object
         object_id
         funded_at
                                   52680 non-null object
          funding round type
                                   52928 non-null object
         funding round code
                                   52928 non-null object
         raised_amount_usd
                                   52928 non-null float64
         raised amount
                                   52928 non-null float64
         raised currency code
                                   49862 non-null object
          pre_money_valuation_usd
                                   52928 non-null float64
      10 pre money valuation
                                   52928 non-null float64
      11 pre_money_currency_code
                                   26883 non-null object
      12 post_money_valuation_usd
                                   52928 non-null float64
         post_money_valuation
                                   52928 non-null float64
      14 post money currency code 30448 non-null object
      15 participants
                                   52928 non-null int64
      16 is first round
                                   52928 non-null int64
      17 is_last_round
                                   52928 non-null int64
      18 source url
                                   40382 non-null object
      19 source description
                                   43439 non-null object
      20 created by
                                   48291 non-null object
      21 created at
                                   52928 non-null object
      22 updated_at
                                   52928 non-null object
     dtypes: float64(6), int64(5), object(12)
     memory usage: 9.3+ MB
```

- Set-Up pandas and imported our CSV files
- After we ran a quick
 .info() to see the
 variables we were
 working with and their
 types

Data Cleansing

```
# First, create the IPO label column
         ipo_df['went_ipo'] = 1 # Mark IPO companies
         # Merge: left join from funding to IPO to label companies
         merged_df = fr_df.merge(
              ipo_df[['object_id', 'went_ipo']],
              on='object id',
              how='left'
         # Fill NaN with 0 → companies that didn't IPO
         merged_df['went_ipo'] = merged_df['went_ipo'].fillna(0).astype(int)
# Grouping and aggregating per startup (object_id)
company_agg = merged_df.groupby('object_id').agg({
    'funding round id' 'count'.
                                                   # total funding rounds
    'raised_amount_usd': ['sum', 'mean', 'max'],
                                                   # investment stats
    'participants': ['sum', 'mean', 'max'],
                                                   # participant stats
    'is first round': 'sum',
                                                   # how often it was the first round
    'is_last_round': 'sum',
                                                   # how often it was the last round
    'went ipo': 'max'
                                                   # target variable (still per company)
})
# Flatten multi-level columns
company_agg.columns = ['_'.join(col).strip() for col in company_agg.columns.values]
# Reset index so object_id becomes a column again
company_agg = company_agg.reset_index()
# Preview result
company_agg.head()
```

- Adds a binary IPO label to the IPO dataset and merges IPO info into the funding dataset by company ID.
- Marks missing IPOs as 0 (did not IPO).
- Converts the label to integer (0 or 1).

- Groups data by company.
- Aggregates funding stats (count, sum, mean, max).
- Counts first/last rounds.
- Flags IPO outcome.

Data Cleansing

```
# Checking for missing values
missing_values = company_agg.isnull().sum().sort_values(ascending=False)
missing_percentage = (missing_values / len(company_agg)) * 100
missing_df = pd.DataFrame({'Missing Count': missing_values, 'Missing %': missing_percentage})
print(missing_df)
```

Summary Statistics of Key Company Metrics								
	count	mean	std	min	25%	50%	75%	max
raised_amount_usd_sum	31,939.00	13,170,984.84	67,305,586.21	0.00	200,000.00	1,700,000.00	9,100,000.00	5,700,000,000.00
participants_sum	31,939.00	2.53	4.00	0.00	0.00	1.00	3.00	58.00
funding_round_id_count	31,939.00	1.66	1.20	1.00	1.00	1.00	2.00	15.00

- Checks for missing values in the dataset.
- Calculates count and percentage of missing values per column.
- Stores results in a summary table.
- Selects key company metrics for summary.
- Generates descriptive statistics (count, mean, std, etc.).
- Formats and styles the summary table for better presentation.

```
# Top 10 Companies by Total Raised
top_raised = company_agg[['object_id', 'raised_amount_usd_sum']].sort_values(
    by='raised_amount_usd_sum', ascending=False).head(10)

top_raised.style.format({"raised_amount_usd_sum": "${:,.0f}"}).set_caption("Top 10 Companies by Total Raised")
```

- Groups companies by IPO outcome (IPO vs. non-IPO).
- Calculates average funding and participant count for each group.
- Renames the outcome labels for clarity.

- Selects company ID and total funding raised.
- Sorts by funding amount in descending order.
- Displays the top 10 highest-funded companies.

```
# Log distribution of raised amount

plt.figure(figsize=(10,6))
# Add 1 to avoid log(0)
sns.histplot(np.log1p(company_agg['raised_amount_usd_sum']), bins=50, kde=True, color='skyblue')
plt.title('Log-Transformed Distribution of Total Raised Amount')
plt.xlabel('Log(Total Raised Amount + 1)')
plt.ylabel('Frequency')
plt.show()
```


- Creates a histogram of total funding raised (log-transformed).
- Applies log(raised amount + 1) to handle skew and zero values.
- Uses 50 bins and overlays a KDE (density) curve.

```
# Boxplot of Participants vs IPO Status
plt.figure(figsize=(8,5))
sns.boxplot(x='went_ipo_max', y='participants_sum', data=company_agg)
plt.title('Total Participants vs IPO Outcome')
plt.xlabel('Went IPO (0 = No, 1 = Yes)')
plt.ylabel('Total Participants')
plt.show()
                            Total Participants vs IPO Outcome
   60
                         0
   50
10
    0
                                  Went IPO (0 = No, 1 = Yes)
```

- Creates a boxplot comparing participant counts by IPO status.
- Groups companies based on whether they went public or not.
- Shows distribution and outliers of total participants per group.

```
# Funding Raised Bin vs IPO Rate
# Define bins for raised amount (you can adjust bin edges)
bins = [0, 1e6, 1e7, 5e7, 1e8, 5e8, 1e9, company_agg['raised_amount_usd_sum'].max()]
   '<1M', '1M-10M', '10M-50M', '50M-100M',
   '100M-500M', '500M-1B', '>1B'
company_agg['raised_amount_bin'] = pd.cut(company_agg['raised_amount_usd_sum'], bins=bins, labels=labels)
# Calculate IPO rate per bin
ipo_by_bin = (
   company_agg.groupby('raised_amount_bin')
   .agg(ipo_rate=('went_ipo_max', 'mean'))
   .reset_index()
   .rename(columns={'ipo_rate': 'IPO Rate'})
plt.figure(figsize=(10, 5))
sns.barplot(data=ipo_by_bin, x='raised_amount_bin', y='IPO Rate', palette='crest')
plt.title('IPO Rate by Total Funding Amount')
plt.xlabel('Total Raised Amount (USD)')
plt.vlabel('IPO Rate')
plt.xticks(rotation=45)
plt.tight lavout()
plt.show()
```


- Categorizes companies into bins based on total funding raised.
- Assigns each company to its appropriate funding range.
- Computes the average IPO rate for each funding bin.

```
# Linear regression model
# 1. Preparing the data
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
# Features and target
X = company_agg[[
     'raised amount usd sum'
y = company agg['went_ipo_max']
# Split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42, stratify=y)
# Standardize features
                                                        # 3. Evaluate the model
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
                                                        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report
X_test_scaled = scaler.transform(X_test)
                                                        # Predictions
# 2. Train the logistic regresion model
                                                        y_pred = logreg.predict(X_test_scaled)
from sklearn.linear_model import LogisticRegression
                                                        print("Accuracy:", accuracy_score(y_test, y_pred))
# Initialize and train
                                                        print("Precision:", precision_score(y_test, y_pred))
logreg = LogisticRegression()
                                                        print("Recall:", recall_score(y_test, y_pred))
logreq.fit(X_train_scaled, y_train)
                                                        print("F1 Score:", f1 score(y test, y pred))
                                                        print("\nClassification Report:\n", classification_report(y_test, y_pred))
                                                        Accuracy: 0.9838760175328741
                                                        Precision: 0.75
                                                        Recall: 0.02857142857142857
                                                        F1 Score: 0.05504587155963303
                                                        Classification Report:
                                                                                   recall f1-score
                                                                       precision
                                                                                                    support
                                                                          0.98
                                                                                    1.00
                                                                                             0.99
                                                                                                       6283
                                                                          0.75
                                                                                    0.03
                                                                                             0.06
                                                                                                        105
                                                                                                       6388
                                                            accuracy
                                                                                    0.51
                                                                                             0.52
                                                                                                       6388
                                                           macro avq
                                                                                                       6388
                                                         weighted avg
                                                                                    0.98
```

Summary

- Defines input features and IPO outcome.
- Scales features for better model performance.

Splits data into training and testing sets.

Trains a logistic regression model to predict IPO likelihood.

Generates predictions and prediction probabilities.

```
# Predicted probability of IPO (class 1)
prob_prediction = logreg.predict_proba(X_test_scaled)[:, 1]
# Mask for actual IPO vs not
ipo_mask = y_test.values == 1
non_ipo_mask = ~ipo_mask
# Plot
plt.figure(figsize=(10,6))
plt.scatter(X_test_scaled[ipo_mask], prob_prediction[ipo_mask], color='red', label='Went IPO', alpha=0.5)
plt.scatter(X_test_scaled[non_ipo_mask], prob_prediction[non_ipo_mask], color='blue', label='Did Not IPO', alpha=0.5)
plt.xlabel('Standardized Raised Amount (USD)')
plt.vlabel('Predicted Probability of IPO')
plt.title('Logistic Regression: Predicted IPO Probability by Raised Amount')
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()
```


- Calculates and displays the ROC AUC score.
- Plots the ROC curve to evaluate model performance.

SQL Analysis

```
# SOL Ouery 4: Group by - Average raise by funding round type
query4 = """
SELECT funding_round_type, AVG(raised_amount_usd) AS avg_raised
FROM funding_rounds
GROUP BY funding round type;
                                                                                   pel='Went IPO', alpha=0.5)
                                                                                  plue', label='Did Not IPO', alpha=0.5)
q4_result = pd.read_sql(query4, connection)
q4_result
   funding_round_type
                             avg_raised
                                                 SELECT
                   angel 3.056193e+05
                                                     object_id,
                                                     funding_round_id,
           crowdfunding
                         1.638457e+06
1
                                                     raised_amount_usd,
                                                     RANK() OVER (PARTITION BY object id ORDER BY raised amount usd DESC) AS raise rank
2
                   other
                           1.123907e+07
                                                 FROM funding_rounds;
3
                post-ipo 1.694044e+08
                                                 q5_result = pd.read_sql(query5, connection)
                                                 q5_result
           private-equity 2.502106e+07
                                                        object_id funding_round_id raised_amount_usd raise_rank
5
                series-a 5.914058e+06
                                                                          2312
                                                                                     25000000.0
                                                            c:1
                                                            c:1
                                                                          889
                                                                                      9500000.0
                          1.134449e+07
                                                            c:1
                                                                          888
                                                                                      5250000.0
                                                                                                      3
7
               series-c+ 2.116659e+07
                                                          c:1001
                                                                          1644
                                                                                      5000000.0
                 venture 8.159983e+06
                                                         c:10014
                                                                          6682
                                                                                           0.0
                                                         c:9989
                                                                          5765
                                                                                       500000.0
                                                 52923
                                                 52924
                                                         c:9994
                                                                          3253
                                                                                       250000.0
                                                 52925
                                                         c:9994
                                                                          6112
                                                                                       250000.0
                                                 52926
                                                          c:9995
                                                                          3264
                                                                                       750000.0
                                                 52927
                                                         c:9998
                                                                          3254
                                                                                       475000.0
```

Summary

Group by type of funding raised

 Ranking of funding round size within each company

SQL Analysis

```
SELECT object_id
FROM funding rounds
GROUP BY object_id
HAVING COUNT(*) >3;
.....
                                                                      ent IPO', alpha=0.5)
q9 result = pd.read sql(query9, connection)
                                                                       label='Did Not IPO', alpha=0.5)
a9 result
      object_id
                           WITH avg_funding AS (
        c:10015
                               SELECT object_id, AVG(raised_amount_usd) AS avg_raised
                               FROM funding rounds
        c:10054
                               GROUP BY object id
   2 c:100844
                           SELECT *
                           FROM avg_funding
   3
         c:1010
                           WHERE avg_raised > 10000000;
         c:10161
   4
                           q11_result = pd.read_sql(query11, connection)
                           q11 result
   •••
                                  object_id
                                              avg_raised
2371
          c:980
                               0
                                        c:1 1.325000e+07
2372
         c:9836
                                   c:10015
                                           1.361384e+07
2373
         c:9840
                                   c:10018
                                           1.100000e+07
                                    c:1005 2.000000e+07
2374
         c:9949
                               4
                                   c:10054 1.735714e+07
2375
         c:9972
                          4606
                                    c:9891 1.080000e+08
                           4607
                                   c:98929 2.537820e+07
```

- Subquery to find companies with more than 3 funding rounds
- The outer query filters based on subquery aggregation

- Use a CTE to calculate average funding per company
- Then select only those companies whose average raise exceeds \$10M

Thanks for participating

Conclusion

1

Challenges

Data Merging Complexity:

Matching records across datasets required careful alignment on unique identifiers which can be inconsistent or missing in real-world

2

Challenges

Skewed Distributions

Variables like total funding raised were highly skewed, requiring log transformation to support meaningful visualizations and modeling.

Suggestions

Add market conditions at time of funding IPO

Timing of funding rounds (years between) to capture growth

4

Suggestions

Interactive dashboards using Tableau to explore IPO trends and company features

Crunchbase API and Pitchbook

