환자 정보를 이용한 자동 Colposcopy 정확도 향상 방법

정리본

DSLAB 이수아

Colposcopy

- 자궁 경부를 확대하여 이상 부위를 관찰하는 검사
- 자궁 경부암(cervical cencer) 진단
- 생리식염수(saline)¹, 아세트산(acetic)², 필터(green filter)³,아이오딘(iodine)⁴
- 자궁 경부암 진단에 추가적인 정보 사용
 - HPV Status, Transformation Type 등..

Colposcopy Problem

Colposcopy

Computer Aided Diagnosis

Prior Work

Paper	Data	Model
Application of deep learning to the classification of images from colposcopy ^[1]	Images Only - acetic, green filter	CNN
Classification of cervical neoplasms on colposcopic photography using deep learning [2]	Images Only - saline, acetic	Inception-resnet-v2

• 다양한 용액이나 부가적인 정보를 충분히 반영 X

Topic

auxiliary information

[HPV Status, TZ Type, Age]

Dataset

- https://screening.iarc.fr/atlascolpo.php
- image, Category, Case, Age, PHV Status, TZ type, Solution, Diagnosis
- 총 198명 환자 데이터 약 870개 이미지 데이터

Dataset

pre-processing

- **Age** (min:25, max:60) : 3가지 Group 25~34 / 35~44 / 45~60
- **TZ Type** (Transformation Zone): 자궁경부 내외부의 접합부 근처에서 세포의 형태 변화가 나타나는 곳
 Type 1, Type 2, Type 3
- HPV Status : HPV 보균자 여부
 - 0 : 음성 1 : 양성

Dataset

pre-processing

• Solution : 용액&필터 사용 정보 acetic

```
acetic green = acetic & green filter saline saline green = saline & green filter iodine
```

• Label (0/1) : 진단 결과

```
0 = normal
1 = abnormal
```

Model architecture

• 모델은 크게 Image encoder, Auxiliary encoder, 그리고 Prediction Method로 나뉘어 있다.

이미지 단위 진단

Model

Model

architecture

이미지 단위 진단

Image encoder

• 환자의 image를 사전학습된 resnet50을 사용하여 vector space \mathbf{s} 로 치환 $\mathbf{s}=resnet50(img)$

Auxiliary encoder

• 3개의 부가정보(Age, HPV Status, TZ Type)를 **concatenation**한 후 vector space \mathbf{z}_2 로 치환 $\mathbf{x}_i = \mathbf{Concat}(x_{i1}, x_{i2}, x_{i3})$

$$\mathbf{z}_1 = \mathbf{ReLU}(W_1\mathbf{x}_i + b_1)$$

$$\mathbf{z}_2 = W_2 \mathbf{z}_1 + b_2$$

Prediction Method

• s와 \mathbf{z}_2 를 concatenation한 후 최종 확률 P_i 예측 $\mathbf{z}_3 = \mathbf{ReLU}(\mathbf{Concat}(\mathbf{z}_2, \mathbf{s}))$ $P_i = W_3\mathbf{z}_3 + b_3$

Model

architecture

환자 단위 진단

- 한 환자의 여러 이미지가 각각 모델을 통해 생성된 확률값을 비교
- 확률값 중 최대값을 구해 그 값이 threshold(0.5)를 넘는지 비교 후 최종 진단 결과 도출 $\mathbf{P}_i = max(P_1, \dots, P_N) > TH$

Experiment Evaluation

- 기존 연구와 성능 비교

	Precision	Recall	Accuracy	F1-Score
	(%)	(%)	(%)	(%)
CNN	44	100	44	61.11
Inception-resnet-v2	50	4.54	56	8.32
Proposed Model	76	86.36	82	80.85

Precision : 모델이 Positive라 분류한 것 중 실제 값이 Positive인 비율

Recall : 실제 값이 Positive인 것 중 모델이 Positive라고 분류한 비율

F1 Score : Precision과 Recall의 조화평균 $F1-Score = rac{2*Presicion*Recall}{Precision+Recall}$

Experiment Evaluation

Base Model: 사전학습된 모델을 사용하지 않았을 때 결과

+Pre-trained: 사전학습된 resnet50 모델을 사용했을 때 결과

+auxiliary information : 사전학습된 모델과 부가정보를 이용했을 때 결과

단순히 이미지를 사용하는 것 보다 부가정보를 사용했을 때 결과가 훨씬 좋은 것을 보여줌

- 컴포넌트 별 효과 분석

	Precision (%)	Recall (%)	Accuracy (%)	F1 Score (%)
Base Model	0	0	56	0
+ Pre-trained	92.31	57.14	75	70.59
+ auxiliary information	85.71	85.71	85	85.71

Precision : 모델이 Positive라 분류한 것 중 실제 값이 Positive인 비율

Recall : 실제 값이 Positive인 것 중 모델이 Positive라고 분류한 비율

F1 Score : Precision과 Recall의 조화평균 $F1-Score = rac{2*Presicion*Recall}{Precision+Recall}$

부가정보가 정확도에 미치는 영향

부가정보와 결과의 상관관계

- 1 또는 -1에 가까울 수록 높은 상관관계를, 0에 가까울수록 낮은 상관관계를 나타냄
- 부가정보(HPV Status, TZ Type, AgeGroup)가 결과(label)와 높은 상관관계를 보여주고 있음
- 따라서 이미지 외에도 부가정보를 함께 사용 하여 자궁경부암 진단을 하는 것이 훨씬 좋은 결과를 예측할 수 있음을 나타낸다.

부가정보가 정확도에 미치는 영향

각 부가정보를 사용했을 때 정확도

HPV Status만 사용

Accuracy : 0.82 Recall : 0.696

Precision: 0.889

F1 : 0.78

TZ Type만 사용

Accuracy: 0.72

Recall : 0.522

Precision: 0.8

F1 : 0.632

Age만 사용

Accuracy : 0.6
Recall : 0.391

Precision: 0.6

F1 : 0.474

- 모든 부가정보를 사용하는 것이 각 부가정보를 사용하는 것보다 높은 성능을 보여줌
- 부가정보를 따로 적용했을 때 HPV Status가 결과와 가장 높은 연관성을 보여줌

Conclusion

- 환자의 이미지만을 사용해 진단하던 기존 Colposcopy 검사에 추가적인 **부가정보**를 이용하여 더 안정성과 정확도가 높은 진단 방법 고안
- 모델 구조를 크게 Image encoder, Auxiliary encoder, Prediction Method로 나누어 제안
- Colposcopy 검사와 상관관계가 높은 세가지 부가정보(HPV Status, TZ Type, Age)를 추가 적으로 사용
- 각 부가정보를 사용했을 때의 정확도를 비교하여 HPV Status, TZ Type, Age 순으로 연관성이 높음을 확인