Контрольная работа №1.

21 октября 2024 г.

Фамилия		
Имя		
Группа		

Задача 1. (50 баллов) В вашем распоряжении имеются следующие данные о 500 работниках: Earnings — текущий часовой заработок в долларах США, Educ — продолжительность обучения (число полных лет обучения), Exp — логарифм общего стажа работы после окончания учебы, Female — пол респондента (0 для мужчин, 1 для женщин). Ваша цель состоит в том, чтобы выявить влияние опыта работы и образования на доход индивида. Ниже представлены результаты оценивания одной из моделей:

$$Earnings_i = \beta_1 + \beta_2 Exp_i + \beta_3 Educ_i + \beta_4 Educ_i * Female_i + \varepsilon_i, i = 1,...,500.$$

Ниже представлены результаты оценивания модели:

Source	SS	df			Number of ol		
Residual	1491.7022 <mark>A</mark>	<mark>B</mark> 496			F(3, 496) Prob > F R-squared	=	0.0000 0.1587
 Total 7	2432.2959	499			Adj R-square Std. err.		0.1536 11.084
earnings	Coef.	Std. Err.	_	P> t	=	nterv	al]
exp educ educfemale	D 2.064043	.2020606 .2176461 <u>E</u> 3.926005	3.19 9.48 F -3.46	0.002 0.000 0.000 0.001	.2468566 1.0 1.636421 4284154158	408! <mark>G</mark> 3792 3582	7

 Π римечание: Model SS — ESS, Residual SS — RSS, Total SS — TSS, df — степени свободы. Матрица $(X'X)^{-1}$ имеет следующий вид:

	_const	exp	educ	educfem~e
_const	.1254518	0047231	0064464	.000251
exp	0047231	.0003323	.0001698	5.87e-07
educ	0064464	.0001698	.0003855	0000375
educfemale Ì	.000251	5.87e-07	0000375	.0000383

- (а) (21 балл) Заполните пропуски (А-G) в таблице. Заполнять можно в любом порядке. Обоснуйте ответ. При расчетах используйте значения из таблицы, округленные до тысячных.
- (б) (3 балла) Дайте содержательную интерпретацию коэффициента при переменной Exp.
- (в) (3 балла) Дайте содержательную интерпретацию коэффициента при переменной Educ*Female.
- (г) (10 баллов) На уровне значимости 1% проверьте гипотезу $H_0: 3\beta_2 \beta_3 = 1$. Запишите основную и альтернативную гипотезы, статистику и ее распределение при справедливости основной гипотезы.
- (д) (10 баллов) Постройте 95% доверительный интервал для $3\beta_2 \beta_3$.
- (е) (3 балла) По оцененной модели постройте точечный прогноз для часового заработка для мужчины с общим стажем равным 10 годам и продолжительностью обучения 12 лет.

Задание 2. (20 баллов) На ежеквартальных данных со второго квартала 1990 г. по третий квартал 2001 г. были оценены две регрессии. Они имеют следующий вид:

$$\hat{Y}_i = 40 + 0.3X_{i2} + 0.8X_{i3} - 1.8X_{i4}, \quad R_1^2 = 0.82 \quad (1)$$

 $\hat{Y}_i = 60 + 0.5X_{i2} + 0.6X_{i3}, \qquad R_2^2 = 0.75 \quad (2)$

$$\hat{Y}_i = 60 + 0.5X_{i2} + 0.6X_{i3},$$
 $R_2^2 = 0.75$ (2)

Здесь X_2, X_3, X_4 — некоторые объясняющие показатели.

- (a) (15 баллов) Для модели (1) проверьте на 5%-ом уровне значимости гипотезу $H_0: \beta_4 = -1$ (здесь β_4 — коэффициент при факторе X_4).
- (б) (5 баллов) Опишите, как бы вы проверяли наличие структурного сдвига (изменение в коэффициентах модели) в модели (1) после 1 квартала 2000 года. Запишите модель, основную и альтернативную гипотезы, статистику теста и ее распределение при справедливости основной гипотезы.

Задание 3. (30 баллов) Рассмотрим модель множественной регресии:

$$y = X\beta + \varepsilon. \tag{1}$$

Предполагается, что все предпосылки теоремы Гаусса-Маркова выполнены.

(a) Пусть регрессоры X разбиты на 2 группы: $X = \left[\begin{array}{cc} X_1 & X_2 \end{array} \right]$. Обозначим через P_1, P_2 и Pматрицы операторов ортогонального проектирования на подпространства, порожденные регрессорами X_1, X_2 и X, соответственно. Через M_1, M_2 и M обозначим матрицы операторов ортогонального проектирования на ортогональные дополнения к подпространствам,

Лекции: Вакуленко Е.С. Семинары: Погорелова П.В.

порожденным регрессорами X_1, X_2 и X, соответственно. Докажите следующую теорему:

В регрессиях

$$y = X_1\beta_1 + X_2\beta_2 + u$$
 и $M_1y = M_1X_2\beta_2 + v$

совпадают:

- 1) (15 баллов) МНК-оценки вектора β_2 ;
- 2) (5 баллов) остатки регрессий.

Здесь u и $v-n\times 1$ векторы случайных ошибок, удовлетворяющие предпосылкам теоремы Гаусса–Маркова.

(б) (10 баллов) Обозначим через z вектор размерности $n \times 1$, у которого компонента номер t равна 1, а все остальные компоненты равны 0. Пусть P_X, P_z и P — матрицы операторов ортогонального проектирования на подпространства, порожденные регрессорами X, z и $\{X, z\}$, соответственно, а матрицы M_X, M_z и M есть операторы проектирования на соответствующие ортогональные дополнения.

Покажите, что оценка $\tilde{\beta}$ вектора β в модели (1), полученная по n-1 наблюдениям (наблюдение номер t удалено из исходных данных), совпадает с оценкой вектора β в модели (2), полученной по всему набору из n наблюдений:

$$y = X\beta + \alpha z + \eta, \tag{2}$$

где $\eta - n \times 1$ вектор случайных ошибок модели, удовлетворяющий предпосылкам теоремы Гаусса–Маркова.