Cache-aware Sparse Matrix Formats for Kepler GPU

Yusuke Nagasaka, Akira Nukada, Satoshi Matsuoka Tokyo Institute of Technology

Sparse Matrix

- Generated by FEM, being as the graph data
 - Often require solving sparse linear equation fast
- Iterative method: CG method, BiCG method
 - Level-1 BLAS (Dot product + AXPY)
 - Sequential memory access
 - Sparse matrix vector multiplication (SpMV)
 - Using sparse matrix format
 - Random memory access
 Performance depends on cache hit rate

SpMV computation on GPU

 High memory bandwidth and parallelism enable high performance

- Latency is hidden with SMT
- Available cache per thread is small
 - Controlling the cache is difficult
 - => Lower cache hit rate compared to CPU

	Intel Xeon Processor E5-2620 v2	NVIDIA Tesla K20X
Cache size	L1 cache: 192KB (instruction / data) L2 cache: 1.5MB L3 cache: 15MB	Read-only cache: 12KB * 4 / SMX L2 cache: 1.5MB
Max threads	12 threads	28672 threads

Contribution

- We propose a family of cache-aware formats for GPU
 - Segmentation along the column
 - Segmented formats, Non-Uniformly Segmented formats
 - SpMV computation consists in 2 phases
 - Achieve speedups of up to
 - x2.0 for real datasets in SpMV
 - x3.0 for the random matrices in SpMV
 - x1.2 for real datasets in CG
 - x1.68 for multi-node CG

Sparse Format

- Compressing the needless zero elements
 - Reduce memory usage
 - Eg.) COO, CSR
- Efficient memory access to matrix data depends on architecture
 - Vector machine, GPU : column major format
 - JDS, ELLPACK, SELL-C-σ

(Existing Sparse Format) JDS

- Reordering the rows by the number of non-zero elements per row
 - Generate column major format
 - Favorable for vector machine and many core architectures

(Existing Sparse Format) ELLPACK

- Stored in column major ordering
- Number of elements is same for all rows
 - For smaller rows, zeros are filled in
 - Large variance of the number of elements per row
 - => Waste memory usage and increase additional computations

(Existing Sparse Format) SELL-C-σ [Kreutzer, 2013]

- Converting ELLPACK each row block (Sliced ELLPACK)
 - Reduce the zero filling
 - C is block size
 - C = WARP size
- Sorting each σ rows
 - Tradeoff between the zero fill and the cost of sorting

Cache Hit Rates of Existing Sparse Formats

- NVIDIA Tesla K20X
- The dataset is taken from the University of Florida Sparse Matrix Collection
- JDS (Reordering) format
 - Read-only cache is assigned to input vector cache
 - Coalesced access to matrix data

Matrix	Size	L2 Cache Hit Rate [%]	Read-only Cache Hit Rate [%]
Audikw_1	943,695	82.864	51.420
Crankseg_2	63,838	98.338	66.540
mouse_gene	45,101	99.912	8.298

PROPOSAL FORMATS

Column size and cache hit rate

Column size where the cache hit rate drops corresponds to each cache size

- Read-only cache: 12KB

- L2 cache : 1.5MB

⇒ Segmenting the matrix and the input vector enable to achieve high cache hit rate

- Single precision
- Using JDS format

Segmented Formats

- Column-wise segmentation
 - Each segment is converted to JDS or SELL-C-σ
- SpMV computation consists of 2 phases
 - 1st phase : Computing SpMV for each sub-matrix and subvector, and storing the result into the memory
 - 2nd phase: Accumulation of the intermediate vectors

Segmented Formats disadvantages

- Increase memory accesses
 - Sequential memory write in 1st phase
 - Random memory read in 2nd phase
- Generate the segments having few non-zero elements
 - Improvement of reusability < Overhead of segmenting

Non-Uniformly Segmented Formats (NUS Formats)

- Mixing the multi level segmentation size
 - Large segmentation width for the low density area
 - => Reduce the number of segments
- Sorting by the number of non-zero elements of column
 - Set the high density column to left side and high reusability vector elements to the top

Converting NUS Format

Matrix index : column index Vector index : original row index

PERFORMANCE EVALUATION

Experiment Environment

- TSUBAME-KFC
 - CPU: Intel Xeon E5-2620 v2 2.10GHz x 2
 - GPU: NVIDIA Tesla K20X x 4
 - Single precision peak performance: 3.95 [TFLOPS]
 - Bandwidth: 250 [GB / sec]
 - Memory size : 6 [GB]
 - L2 cache: 1.5 [MB]
 - Read-only cache: 12 * 4 [KB / SMX]
 - OpenMPI 1.7.2
 - FDR InfiniBand network
- CUDA 5.5
- cuSPARSE : provided by NVIDIA
 - CSR format, HYBRID format

Performance Evaluation SpMV (Florida data sets)

- CSR and (NUS-)SELL-C-σ show good performance
- Our formats show
 - speedup of x0.83 ~ x2.01 compared to non-segmented format
 - Stable performance

Performance Evaluation Cache Hit Rate of SpMV

- Segment size suits to read-only cache
 - Improvement of cache hit rate from non-segmented formats

Performance Evaluation SpMV (Randomly generated matrix)

- Investigating larger matrices
 - Number of rows: 1 M ~ 3 M
 - Non-zero density: 0.0001%, 0.0002%, 0.0005%
- Speedup of up to x3.0
 - Our formats become better choice in denser matrix

Performance Evaluation Conjugate Gradient method

- CG computation for positive definite matrices
 - Similar performance improvement to SpMV
 - Speedup of x1.2

Performance Evaluation Multi-node CG method

- Strong scaling
 - Assign row block to each node
 - Each row block has fewer non-zero elements
 - => Cause performance degradation
- Generate larger random matrices
 - Row size: 8 M
 - Non-zero density: 0.0001%, 0.0002%, 0.0005%

Performance Evaluation Multi-node CG method

- NUS-SELL-C-σ shows superiority to CSR and SELL-C-σ
 - Speedup of up to x1.68
 - In lower density matrix, data transfer time between nodes takes relatively longer
 - Performance difference between formats is not noticeable

Related Works

- 2D cache blocking for SpMV
 - For CPU
 - Eun-Jin Im et al. (International Journal of High Performance Computing Applications, 2004)
 - Improving the locality of input and output vector
 - Controlling the cache is easier compared to GPU
 - for GPU : BCSR format
 - Weizhi Xu et al. (SNPD 2012)
 - Synchronization for each column block
 - Large overhead of synchronization
 - SJDS show better performance

Related Works (cont'd)

- Blocked format focusing on load balancing
 - ELLPACK sparse block format
 - Liu et al. (ICS'13)
 - Target architecture : Intel MIC
 - No matrix reordering
 - Blocked format for GPU : BRC format
 - Ashari et al. (ICS'14)
 - Set the block size without considering the cache size

Conclusion

- Segmented formats and Non-Uniformly Segmented formats using column-wise segmentation improve the cache hit rate and SpMV performance
- NUS formats achieved speedups of up to
 - x2.0 for real data set in SpMV
 - X3.0 for randomly generated matrix in SpMV
 - X1.2 for real data set in CG
 - x1.68 for multi-node CG

Future Work

- Future work
 - Applying the format to other devices
 - Intel MIC, AMD Radeon GPU, Multi-core CPU
 - Performance modeling
 - Enable to select best format, segment size and the number of segments
 - Evaluation of the cost of format converting