Lacunary Eta-quotients Modulo Powers of Primes

Tessa Cotron, Anya Michaelsen, Emily Stamm, Weitao Zhu

Emory University REU

March 27, 2020

Partitions

Definition

A **partition** of n is a nonincreasing sequence of positive integers $\lambda:=(\lambda_1,\lambda_2,\cdots,\lambda_m)$ that sum to n, and

$$p(n) := \#\{\text{partitions of } n\}.$$

Example

The partitions of 4 are given by the following set of size p(4) = 5,

$$\{4, 3+1, 2+2, 2+1+1, 1+1+1+1\}.$$

Divisibility of p(n)

Theorem (Ramanujan)

For all $n \ge 0$ the partition function has the following congruences:

$$p(5n+4) \equiv 0 \pmod{5}$$
$$p(7n+5) \equiv 0 \pmod{7}$$
$$p(11n+6) \equiv 0 \pmod{11}.$$

Conjecture (Parkin-Shanks)

For p(n), $\frac{1}{2}$ of the values are even and $\frac{1}{3}$ are divisible by 3.

Divisibility of p(n)

Definition

For $F(q) = \sum a(n)q^n$ with integer coefficients, define

$$\delta(F,M;X) := \frac{\#\{n \leq X \ : \ a(n) \equiv 0 \pmod M\}\}}{X}.$$

Divisibilty of p(n)

Example (Evidence For Parkin-Shanks)

Consider
$$P(q) := \sum p(n)q^n$$
.

X	$\delta(P,2;X)$	$\delta(P,3;X)$
100,000	0.4980	0.3334
200,000	0.5012	0.3332
300,000	0.5008	0.3335
400,000	0.5000	0.3339
500,000	0.5000	0.3343
:	:	:
∞	1/2	1/3

Lacunarity of Power Series

Definition

For
$$F(q)=\sum a(n)q^n\in\mathbb{Z}[[q]],$$
 F is lacunary modulo M if
$$\lim_{X\to\infty}\delta(F,M;X)=1.$$

Example

Consider

$$F(q) = \prod_{n=1}^{\infty} (1 - q^n) = \sum_{k=0}^{\infty} (-1)^k q^{\frac{3k^2 + k}{2}}.$$

F(q) is lacunary modulo any positive integer M.

t-regular Partitions

Definition

A t-regular partition is a partition with no parts divisible by t,

$$b_t(n) = \#\{t\text{-regular partitions of } n\}.$$

Lemma

The generating function for $b_t(n)$ is

$$G_t(q) := \sum_{n=0}^{\infty} b_t(n)q^n = \prod_{n=1}^{\infty} \frac{(1-q^{tn})}{(1-q^n)}.$$

Lacunarity of *t*-regular Partitions

Theorem (Gordon-Ono)

Let p be a prime such that $p^a \mid t$. If $p^a \geq \sqrt{t}$, then $G_t(q)$ is lacunary modulo p^j for any positive integer j.

Example (10-regular partition)

X	$\delta(G_{10},2;X)$	$\delta(G_{10},5;X)$
2,000	0.47950	0.58300
4,000	0.48650	0.60300
6,000	0.48900	0.61583
8,000	0.49188	0.62075
10,000	0.49180	0.62560
:	:	:
∞	1/2	1

Extending Theorem of Gordon and Ono

Question

Can we extend this theorem to other generating functions?

Answer

Yes ... We give two theorems extending their results.

Dedekind's Eta-function

Definition

The **Dedekind's eta-function** is

$$\eta(\tau) := q^{1/24} \prod_{n=1}^{\infty} (1 - q^n),$$

where $q:=e^{2\pi i \tau}$ and τ is in the upper half plane $\mathcal{H}.$

Remark

The eta-function $\eta(\tau)$ is a weight $k=\frac{1}{2}$ modular form.

Eta-quotients

Definition

An **eta-quotient** is a function, $f(\tau)$, of the form

$$f(\tau) := \prod_{\delta \mid N} \eta(\delta \tau)^{r_{\delta}},$$

where $N \geq 1$ and $r_{\delta} \in \mathbb{Z}$.

Remark

The generating functions of p(n) and $b_t(n)$ are eta-quotients.

Eta-quotients

Theorem 1 (C-M-S-Z)

Suppose $G(\tau)$ is an integer weight eta-quotient

$$G(\tau) = \frac{\eta(\delta_1 \tau)^{r_1} \eta(\delta_2 \tau)^{r_2} \cdots \eta(\delta_u \tau)^{r_u}}{\eta(\gamma_1 \tau)^{s_1} \eta(\gamma_2 \tau)^{s_2} \cdots \eta(\gamma_t \tau)^{s_t}}.$$

If p is a prime such that p^a divides $gcd(\delta_1, \ldots, \delta_u)$, and

$$p^{a} \ge \sqrt{\frac{\sum_{i=1}^{t} \gamma_{i} s_{i}}{\sum_{i=1}^{u} \frac{r_{i}}{\delta_{i}}}},$$

then $G(\tau)$ is lacunary modulo p^j for any positive integer j.

Ferrers Diagrams

Definition

The **Ferrers diagram** of a partition $\lambda = \{\lambda_1, \dots, \lambda_m\}$ is a series of m rows with λ_i boxes in the ith row.

Definition

The **hook length** of a box is the number of boxes to the right or below a given box plus one.

Hook Lengths

Example

The Ferrers diagram of $\lambda = (4,2,1)$, a partition of 7, is

6	4	2	1
3	1		
1			

Definition

Let $\mathcal{H}(\lambda)$ be the multi-set of hook lengths of λ and

$$\mathcal{H}_t(\lambda) := \{ h \in \mathcal{H}(\lambda) : h \equiv 0 \pmod{t} \}.$$

Nekrasov-Okounkov and Han

Theorem (Nekrasov-Okounkov)

$$\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} \prod_{h \in \mathcal{H}(\lambda)} \left(1 - \frac{z}{h^2}\right) = \prod_{n \geq 1} (1 - q^n)^{z - 1}$$

Theorem (Han)

$$\sum_{\lambda \in \mathcal{P}} q^{|\lambda|} \prod_{h \in \mathcal{H}_t(\lambda)} \left(y - \frac{tyz}{h^2} \right) = \prod_{n \ge 1} \frac{(1 - q^{tn})^t}{(1 - (yq^t)^n)^{t-z}(1 - q^n)}$$

Han's Equation as Eta-quotients

Definition

Han's (t,y)-extension for y=1 and y=-1:

$$G_{1,t,z}(\tau) = q^{\frac{1-tz}{24}} \frac{\eta(t\tau)^z}{\eta(\tau)},$$

$$G_{-1,t,z}(\tau) = q^{\frac{1-tz}{24}} \frac{\eta(t\tau)^{2t-z} \eta(4t\tau)^{t-z}}{\eta(\tau)\eta(2t\tau)^{3(t-z)}}.$$

Han's Equation as Eta-quotients

Corollary (C-M-S-Z)

Suppose z odd, 0 < z < t, and p prime such that $p^a \mid t$.

1) If

$$p^a \ge \sqrt{\frac{t}{z}}$$

then $G_{1,t,z}(\tau)$ is lacunary modulo p^j for any positive integer j.

2) If

$$p^a \ge 2\sqrt{\frac{t + 6t^3 - 6t^2z}{9t - 5z}},$$

then $G_{-1,t,z}(\tau)$ is lacunary modulo p^j for any positive integer j.

Remark

If z=1, then we recover the result of Gordon and Ono.

Han's Equation as Eta-quotients

Example

Define

$$G(\tau) := G_{1,18,3}(\tau) = \frac{\eta(18\tau)^3}{\eta(\tau)},$$

then we have:

X	$\delta(G,2;X)$	$\delta(G,3;X)$	$\delta(G,5;X)$
200,000	0.498880	0.687250	0.199315
400,000	0.498670	0.693443	0.199788
600,000	0.499515	0.696803	0.200428
800,000	0.500148	0.699180	0.200126
1,000,000	0.500073	0.701041	0.200324
:	:	:	:
∞	1/2	1	1/5

Generalized Eta-Function

Definition

The generalized eta-function is

$$\eta_{\delta,g}(\tau) := e^{\pi i P_2(\frac{g}{\delta})\delta\tau} \prod_{\substack{\ell > 0 \\ \ell \equiv g \pmod{\delta}}} (1 - q^{\ell}) \prod_{\substack{\ell > 0 \\ \ell \equiv -g \pmod{\delta}}} (1 - q^{\ell})$$

where P_2 is the second Bernoulli polynomial:

$$P_2(n) := (n - \lfloor n \rfloor)^2 - (n - \lfloor n \rfloor) + \frac{1}{6}.$$

Remark

When g=0 or $g=\frac{\delta}{2}$, $\eta_{\delta,0}(\tau)=\eta(\delta\tau)^2$ and $\eta_{\delta,\frac{\delta}{2}}(\tau)=\frac{\eta(\frac{\delta}{2}\tau)^2}{\eta(\delta\tau)^2}$. Otherwise $\eta_{\delta,a}(\tau)$ is a meromorphic modular form of weight k=0.

Rogers-Ramanujan Identities

Theorem (Rogers-Ramanujan)

$$\sum_{n=1}^{\infty} \frac{q^{n^2}}{(1-q)\cdots(1-q^n)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+1})(1-q^{5n+4})}$$

$$\sum_{n=1}^{\infty} \frac{q^{n^2+n}}{(1-q)\cdots(1-q^n)} = \prod_{n=0}^{\infty} \frac{1}{(1-q^{5n+2})(1-q^{5n+3})}$$

Remark

Combining these expressions we obtain

$$\frac{\eta_{5,1}(\tau)}{\eta_{5,2}(\tau)} = q^{\frac{1}{5}} \prod_{n=0}^{\infty} \frac{(1-q^{5n+1})(1-q^{5n+4})}{(1-q^{5n+2})(1-q^{5n+3})}.$$

Generalized Eta-quotients

Definition

Let $H(\tau)$ be a generalized eta-quotient of the form

$$H(\tau) := \frac{\prod\limits_{i=1}^{u} \eta_{\delta_{i},g_{i}}^{r_{i}}(\tau)}{\prod\limits_{i=1}^{t} \eta_{\gamma_{i},h_{i}}^{s_{i}}(\tau)} \cdot \frac{\prod\limits_{i=1}^{v} \eta_{\delta_{i}',\frac{\delta_{i}'}{2}}^{r_{i}'}(\tau)}{\prod\limits_{i=1}^{x} \eta_{\gamma_{i}',\frac{\gamma_{i}'}{2}}^{s_{i}'}(\tau)} \cdot \frac{\prod\limits_{i=1}^{w} \eta_{\delta_{i}'',0}^{r_{i}''}(\tau)}{\prod\limits_{i=1}^{y} \eta_{\gamma_{i}'',0}^{s_{i}'}(\tau)},$$

where we assume $H(\tau)$ is modular on $\Gamma_1(N)$. Define

$$\mathcal{D}_H := \gcd\{\delta_i, \delta_i', \delta_i'', \frac{\gamma_i'}{2}\}.$$

Generalized Eta-quotients

Theorem 2 (C-M-S-Z)

Given $H(\tau)$, if p is a prime such that $p^a \mid \mathcal{D}_H$, and

$$p^{a} \geq \sqrt{\frac{\sum_{i=1}^{t} \gamma_{i} s_{i} + \frac{1}{2} \sum_{i=1}^{x} \gamma_{i}' s_{i}' + \sum_{i=1}^{y} \gamma_{i}'' s_{i}'' + \sum_{i=1}^{v} \delta_{i}' r_{i}'}{-\frac{1}{2} \sum_{i=1}^{u} \delta_{i} r_{i} + \frac{1}{2} \sum_{i=1}^{v} \frac{r_{i}'}{\delta_{i}'} + \sum_{i=1}^{w} \frac{r_{i}''}{\delta_{i}''} - \frac{1}{2} \sum_{i=1}^{x} \gamma_{i}' s_{i}'},}$$

then $H(\tau)$ is lacunary modulo p^j for any positive integer j.

Congruence Subgroups

Definition

For N a positive integer, the level N congruence subgroups are

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\},$$

$$\Gamma_1(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbb{Z}) : c \equiv 0, \ a \equiv d \equiv 1 \pmod{N} \right\}.$$

Modular Forms

Definition

A function f is a **modular form** of weight k for $\Gamma \subseteq \mathrm{SL}_2(\mathbb{Z})$ if:

- ullet f is analytic on the upper half-plane ${\mathcal H}$,
- ullet for any $A\in\Gamma$, f satisfies the equation

$$f(A\tau) = f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^k f(\tau),$$

ullet the Fourier expansion of f has the form

$$f(\tau) = \sum_{n=0}^{\infty} c(n)q^n,$$

where $q := e^{2\pi i \tau}$.

Modularity of Eta-quotients

Proposition

Let
$$f(au)=\prod_{\delta|N}\eta(\delta au)^{r_\delta}$$
 with $k=rac{1}{2}\sum_{\delta|N}r_\delta\in\mathbb{Z}$. If

$$\sum_{\delta|N} \delta r_{\delta} \equiv 0 \pmod{24},$$

$$\sum_{\delta|N} \frac{N}{\delta} r_{\delta} \equiv 0 \pmod{24},$$

then $f(\tau)$ is modular with weight k on $\Gamma_0(N)$.

Cusps on $\Gamma_0(N)$

Definition

A **cusp** of Γ is an equivalence class of $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$ under the action of Γ .

Proposition

The set of representatives of the cusps of $\Gamma_0(N)$ is

$$C_0(N) := \left\{ \frac{c}{d} : d \mid N, (c, N) = 1 \right\},\,$$

where c runs through a complete residue system modulo N.

Order of Vanishing of Eta-quotients

Theorem

Let c, d, and N be positive integers with $d \mid N$ and (c,d) = 1. Then the order of vanishing of $f(\tau)$ at the cusp $\frac{c}{d}$ is given by

$$\frac{N}{24d\left(d,\frac{N}{d}\right)} \sum_{\delta \mid N} \frac{(d,\delta)^2 r_{\delta}}{\delta}.$$

Remark

Since eta-quotients are holomorphic on \mathcal{H} , we can check the order of vanishing at every cusp to determine if an eta-quotient is holomorphic.

Modularity of Generalized Eta-quotients

Theorem

If
$$f(au) = \prod_{\delta \mid N} \eta_{\delta,g}^{r_{\delta,g}}(au)$$
 is such that

$$\sum_{\substack{\delta \mid N \\ g}} \delta P_2\left(\frac{g}{\delta}\right) r_{\delta,g} \equiv 0 \pmod{2},$$

$$\sum_{\substack{\delta \mid N \\ a}} \frac{N}{6\delta} r_{\delta,g} \equiv 0 \pmod{2},$$

then $f(\tau)$ is modular on $\Gamma_1(N)$.

Order of Vanishing of Generalized Eta-quotients

Proposition

The set of representatives of the cusps of $\Gamma_1(N)$ is

$$C_1(N) := \left\{ \frac{\lambda}{\mu \epsilon} : \epsilon \mid N, \ 1 \le \lambda, \mu \le N, \right\},$$

where
$$(\mu, \lambda) = (\lambda, N) = (\mu, N) = 1$$
.

Theorem

Given $H(\tau)$, and a cusp, $\frac{\lambda}{\mu\epsilon}$ of $\Gamma_1(N)$, the order of vanishing of $H(\tau)$ at the cusp is

$$\frac{N}{2} \sum_{\substack{\delta \mid N \\ a}} \frac{(\delta, \epsilon)^2}{\delta \epsilon} P_2 \left(\frac{\lambda g}{(\delta, \epsilon)} \right) r_{\delta, g}.$$

Serre's Theorem

Theorem (Serre)

If $f(\tau)$ is a holomorphic modular form of integer weight with integer coefficients, then $f(\tau)$ is lacunary modulo any positive integer M.

Lemma

If
$$f(x) = 1 + \sum_{n=1}^{\infty} a(n)x^n \in \mathbb{Z}$$
 such that $a(n) \equiv 0 \pmod{p}$ for all $n \geq 1$, then
$$f^{p^j}(x) \equiv 1 \pmod{p^{j+1}}.$$

Definition

Given an arbitrary eta-quotient, $G(\tau)$, prime p, and $a \in \mathbb{Z}^+$, let

$$f_{G,p^a}(\tau) := \prod_{i=1}^t \left(\frac{\eta^{p^a}(24\gamma_i \tau)}{\eta(24p^a \gamma_i \tau)} \right)^{s_i}.$$

Remark

By the previous lemma $f_{G,p^a}^{p^j}(\tau) \equiv 1 \pmod{p^{j+1}}$.

Definition

Given $G(\tau)$, p^a , and any $j \in \mathbb{Z}^+$, let

$$F_{G,p^{a},j}(\tau) := G(24\tau) f_{G,p^{a}}^{p^{j}}(\tau)$$

$$= \frac{\prod_{i=1}^{u} \eta^{r_{i}}(24\delta_{i}\tau)}{\prod_{i=1}^{t} \eta^{s_{i}}(24\gamma_{i}\tau)} \prod_{i=1}^{t} \left(\frac{\left(\eta^{p^{a}}(24\gamma_{i}\tau)\right)}{(\eta(24p^{a}\gamma_{i}\tau))} \right)^{s_{i}p^{j}}.$$

Remark

Since $f_{G,p^a}^{p^j}(\tau) \equiv 1 \pmod{p^{j+1}}$, $F_{G,p^a,j}(\tau) \equiv G(24\tau) \pmod{p^{j+1}}$. Thus if $F_{G,p^a,j}$ is lacunary modulo p^j then $G(\tau)$ is as well.

Proof.

• Using the equation for order of vanishing at a cusp $\frac{c}{d}$, if

$$p^a | \gcd(\delta_i)$$

and

$$p^{a} \ge \sqrt{\frac{\sum_{i=1}^{t} s_{i} \gamma_{i}}{\sum_{i=1}^{u} \frac{r_{i}}{\delta_{i}}}},$$

then $F_{G,p^a,j}(\tau)$ is holomorphic.

- By Serre's Theorem, $F_{G,p^a,j}(\tau)$ is lacunary modulo any positive integer.
- $G(\tau)$ is lacunary modulo p^j .

Recall that an arbitrary generalized eta-quotient $H(\tau)$ is of the following form,

$$H(\tau) := \frac{\prod\limits_{i=1}^{u} \eta_{\delta_{i},g_{i}}^{r_{i}}(\tau)}{\prod\limits_{i=1}^{t} \eta_{\gamma_{i},h_{i}}^{s_{i}}(\tau)} \cdot \frac{\prod\limits_{i=1}^{v} \eta_{\delta_{i}',\frac{\delta_{i}'}{2}}^{r_{i}'}(\tau)}{\prod\limits_{i=1}^{u} \eta_{\gamma_{i}',\frac{\gamma_{i}'}{2}}^{s_{i}'}(\tau)} \cdot \frac{\prod\limits_{i=1}^{w} \eta_{\delta_{i}'',0}^{r_{i}'}(\tau)}{\prod\limits_{i=1}^{y} \eta_{\gamma_{i}'',0}^{s_{i}'}(\tau)}.$$

Definition

Given $H(\tau)$, prime p, and $a \in \mathbb{Z}^+$, define $\widetilde{N} = 24L$ where $L = \operatorname{lcm}\{\delta_i, \delta_i', \delta_i'', \gamma_i, \gamma_i', \gamma_i''\}$. Let

$$f_{H,p^{a}}(\tau) := \prod_{i=1}^{t} \left(\frac{\eta_{\gamma_{i},0}^{p^{a}}(N\tau)}{\eta_{\gamma_{i}p^{a},0}(\widetilde{N}\tau)} \right)^{s_{i}} \prod_{i=1}^{v} \left(\frac{\eta_{\delta'_{i},0}^{p_{i}}(N\tau)}{\eta_{\delta'_{i}p^{a},0}(\widetilde{N}\tau)} \right)^{s_{i}} \prod_{i=1}^{v} \left(\frac{\eta_{\delta'_{i},0}^{p^{a}}(\widetilde{N}\tau)}{\eta_{\gamma''_{i}p^{a},0}(\widetilde{N}\tau)} \right)^{s'_{i}} \prod_{i=1}^{y} \left(\frac{\eta_{\gamma''_{i},0}^{p^{a}}(\widetilde{N}\tau)}{\eta_{\gamma''_{i}p^{a},0}(\widetilde{N}\tau)} \right)^{s''_{i}},$$

Remark

Again, $f_{H n^a}^{p^j}(\tau) \equiv 1 \pmod{p^{j+1}}$.

Definition

Given $H(\tau)$, p^a and $j \in \mathbb{Z}^+$, let

$$F_{H,p^a,j}(\tau) := H(\widetilde{N}\tau) f_{H,p^a}^{p^j}(\tau) \equiv H(\widetilde{N}\tau) \pmod{p^{j+1}}.$$

Proof.

By the order of vanishing formula at a cusp $\frac{\lambda}{\mu\epsilon}$, if $p^a|\gcd(\delta_i,\delta_i',\delta_i'',\frac{\gamma_i}{2})$, and

$$p^{a} \geq \sqrt{\frac{\sum_{i=1}^{t} \gamma_{i} s_{i} + \frac{1}{2} \sum_{i=1}^{x} \gamma_{i}' s_{i}' + \sum_{i=1}^{y} \gamma_{i}'' s_{i}'' + \sum_{i=1}^{v} \delta_{i}' r_{i}'}{-\frac{1}{2} \sum_{i=1}^{u} \delta_{i} r_{i} + \frac{1}{2} \sum_{i=1}^{v} \frac{r_{i}'}{\delta_{i}'} + \sum_{i=1}^{w} \frac{r_{i}''}{\delta_{i}''} - \frac{1}{2} \sum_{i=1}^{x} \gamma_{i}' s_{i}'}},$$

then $F_{H,p^a,j}$ is holomorphic. Thus $H(\tau)$ is lacunary modulo p^j .

Conclusion

Theorem 1 (C-M-S-Z)

Suppose $G(\tau)$ is an arbitrary eta-quotient of the form

$$G(\tau) = \frac{\eta(\delta_1 \tau)^{r_1} \eta(\delta_2 \tau)^{r_2} \cdots \eta(\delta_u \tau)^{r_u}}{\eta(\gamma_1 \tau)^{s_1} \eta(\gamma_2 \tau)^{s_2} \cdots \eta(\gamma_t \tau)^{s_t}}$$

with integer weight k and p is a prime such that p^a divides $\gcd(\delta_1,\ldots,\delta_u)$. If

$$p^{a} \ge \sqrt{\frac{\sum_{i=1}^{t} \gamma_{i} s_{i}}{\sum_{i=1}^{u} \frac{r_{i}}{\delta_{i}}}},$$

then $G(\tau)$ is lacunary modulo p^j for any positive integer j.

Conclusion

Example

$$G(\tau) := G_{1,18,3}(\tau) = \frac{\eta(18\tau)^3}{\eta(\tau)}$$

X	$\delta(G,2;X)$	$\delta(G,3;X)$	$\delta(G,5;X)$
200,000	0.498880	0.687250	0.199315
400,000	0.498670	0.693443	0.199788
600,000	0.499515	0.696803	0.200428
800,000	0.500148	0.699180	0.200126
1,000,000	0.500073	0.701041	0.200324
:	:	:	:
∞	1/2	1	1/5

Thank you!

Acknowledgements

Advisors

Ken Ono, PhD.

Professor, Department of Mathematics and Computer Science Emory University

Hannah Larson, AB. Graduate Student, Department of Mathematics Stanford University

Funding and Resources

NSF grant DMS-1557690 Emory University