Modelos de transporte y asignación

Objetivos de aprendizaje

- Estructurar problemas de PL para modelos de transporte, trasbordo y asignación.
- Utilizar el método de la esquina noroeste y el método de Aproximación de Vogel
- Resolver problemas de localización de instalaciones y otras aplicaciones con los modelos de transporte.
- 4. Resolver problemas de asignación con el método húngaro (reducción de matriz).

Introducción

- En este capítulo exploramos tres tipos especiales de modelos de programación lineal:
 - Pel problema de transporte
 - Pel problema de asignación
 - ≥el problema de trasbordo.
- Forman parte de una categoría de técnicas de PL conocida como problemas de flujo en red.

Problema de transporte

- El *problema de transporte* maneja la distribución de bienes desde varios puntos de oferta (*orígenes* o *fuentes*) hasta varios puntos de demanda (*destinos*).
- En general, se tiene la capacidad (oferta) de bienes en cada fuente, un requerimiento (demanda) de bienes en cada destino, y el costo de envío por unidad.
- El objetivo de este problema que se minimice el costo total de transporte y los costos de producción.

Problema de transporte

- La corporación Furniture fabrica escritorios de oficina ejecutiva en tres lugares: Des Moines, Evansville y Fort Lauderdale.
- La firma distribuye los escritorios a través de los almacenes regionales situados en Boston, Albuquerque y Cleveland.

■ **TABLE 8.1** Table of constraint coefficients for linear programming

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

Table 8.2

■ **TABLE 8.2** Shipping data for P & T Co.

	SI	nipping Cost (\$) per Truckload	i				
		Warehouse						
	1	2	3	4	Output			
1	464	513	654	867	75			
Cannery 2	352	416	690	791	125			
3	995	682	388	685	100			
Allocation	80	65	70	85				

Table 8.3

Table 8.4

■ **TABLE 8.4** Terminology for the transportation problem

Prototype Example	General Problem				
Truckloads of canned peas	Units of a commodity				
Three canneries	m sources				
Four warehouses	n destinations				
Output from cannery i	Supply s_i from source i				
Allocation to warehouse <i>j</i>	Demand d_i at destination j				
Shipping cost per truckload from cannery	Cost c_{ij} per unit distributed from source				
<i>i</i> to warehouse <i>j</i>	<i>i</i> to destination <i>j</i>				

Table 8.5

■ TABLE 8.5 Parameter table for the transportation problem

		Cost per Unit	Distributed				
		Destination					
	1	2		n	Supply		
1	C ₁₁	c ₁₂		C _{1n}	S ₁		
Source 2	C ₂₁	C ₂₂		C _{2n}	s ₂ :		
m	C _{m1}	C _{m2}		C _{mn}	S _m		
Demand	d_1	d_2		d_n			

	Α	В	С	D	E	F	G	Н	1	J
1	P&	T Co. Dist	ribution Pro	blem						
2										
3		Unit Cost			Destination	(Warehouse)				
4				Sacramento	Salt Lake City	Rapid City	Albuquerque			
5		Source	Bellingham	\$464	\$513	\$654	\$867			
6	(Cannery) Eugene		\$352	\$416	\$690	\$791				
7	Albert Lea		\$995	\$682	\$388	\$685				
8										
9										
10		Shipment	Quantity	Destination (Warehouse)						
11		(Truckload		Sacramento	Salt Lake City	Rapid City	Albuquerque	Total Shipped		Supply
12		Source	Bellingham	0	20	0	55	75	=	75
13	(Cannery) Eugene			45	0	0	125	=	125	
14	Albert Lea 0		0	70 30		100	=	100		
15			Total Received	80	65	70	85			
16	=		=	=	=			Total Cost		
17			Demand	80	65	70	85			\$ 152,535

Solver Parameters
Set Target Cell: TotalCost Equal To: Max Min C By Changing Cells:
ShipmentQuantity
-Subject to the Constraints:
TotalReceived = Demand TotalShipped = Supply

Solver Options					
Assume Linear Model					
Assume Non-Negative					

Range Name	Cells
Demand	D17:G17
ShipmentQuantity	D12:G14
Supply	J12:J14
TotalCost	J17
TotalReceived	D15:G15
TotalShipped	H12:H14
UnitCost	D5:G7

	Н
11	Total Shipped
12	=SUM(D12:G12)
13	=SUM(D13:G13)
14	=SUM(D14:G14)

	С	D	E	F	G
15	Total Received	=SUM(D12:D14)	=SUM(E12:E14)	=SUM(F12:F14)	=SUM(G12:G14)

	J
16	Total Cost
17	=SUMPRODUCT(UnitCost,ShipmentQuantity)

Table 8.6

Problema de transporte

Representación en red de un problema de transporte con costos, demandas y ofertas

Corporación Executive Furniture

Programación lineal para el ejemplo de transporte

- Sea X_{ij} = número de unidades enviadas de la fuente i al destino j,
 - donde:
 - i = 1, 2, 3, con 1 = Des Moines, 2 = Evansville y 3= Fort Lauderdale
 - *j = 1, 2, 3, con 1 = Albuquerque, 2 = Boston y 3 = Cleveland.

Programación lineal para el ejemplo de Transporte

F. O. Minimizar el costo total =
$$5X_{11} + 4X_{12} + 3X_{13} + 8X_{21} + 4X_{22} + 3X_{23} + 9X_{31} + 7X_{32} + 5X_{33}$$

S. A.

$$X_{11} + X_{12} + X_{13} \le 100$$
 (oferta en Des Moines)
 $X_{21} + X_{22} + X_{23} \le 300$ (oferta en Evansville)
 $X_{31} + X_{32} + X_{33} \le 300$ (oferta en Fort Lauderdale)
 $X_{11} + X_{21} + X_{31} = 300$ (demanda en Albuquerque)
 $X_{12} + X_{22} + X_{32} = 200$ (demanda en Boston)
 $X_{13} + X_{23} + X_{33} = 200$ (demanda en Cleveland)
 $X_{ij} \ge 0$ para toda i y j .

Modelo general de PL para problemas de transporte

Sea:

- X_{ij} = número de unidades enviadas de la fuente i al destino j.
- c_{ij} = costo de enviar una unidad de la fuente i al destino j.
- $\triangleright s_i$ = oferta en la fuente *i*
- $\rightarrow d_i$ = demanda en el destino j.

Modelo general de PL para problemas de transporte

Minimizar el costo = $\sum_{j=1}^{n} \sum_{i=1}^{m} c_{ij} x_{ij}$ sujeto a:

$$\sum_{j=1}^{n} x_{ij} \le s_{i}$$

$$\sum_{j=1}^{m} x_{ij} \le d_{j}$$
 $j = 1, 2, ..., n.$

 $x_{ij} \ge 0$ para toda i y j.

Problema de asignación

- Este tipo de problema determina la asignación más eficiente de personas a tareas específicas, etc.
- El objetivo es casi siempre minimizar el costo total o el tiempo total para realizar las tareas.

Programa lineal para el ejemplo asignación

- Fix-it shop acaba de recibir tres nuevos proyectos de reparación que deben repararse rápidamente: una radio, un horno tostador y una mesa de café.
- Se dispone de tres personas que reparan, cada una con talentos diferentes, para realizar los trabajos.
- El dueño del taller estima el costo en salarios, si los empleados se asignan a cada uno de los tres proyectos.
- Objetivo: minimizar el costo total.

Ejemplo de un problema de Asignación en el formato de una red de transporte

Programación lineal para un ejemplo de asignación

Sea:

 $\mathbf{x}_{ij} = \mathbf{1}$ si la persona *i* se asigna al proyecto *j*, o 0 de otra manera

Donde:

- i = 1, 2, 3 con 1 = Adams, 2 = Brown y 3 = Cooper
- j = 1, 2, 3 con 1 = Proyecto 1, 2 = Proyecto 2y 3 = Proyecto 3.

ProgramaCIÓN lineal para el ejemplo de asignación

Minimizar el costo total = $11X_{11} + 14X_{12} + 6X_{13} + 8X_{21} + 10X_{22} + 11X_{23} + 9X_{31} + 12X_{32} + 7X_{33}$ sujeto a:

$$X_{11} + X_{12} + X_{13} \le 1$$
 $X_{21} + X_{22} + X_{23} \le 1$
 $X_{31} + X_{32} + X_{33} \le 1$
 $X_{11} + X_{21} + X_{31} = 1$
 $X_{12} + X_{22} + X_{32} = 1$
 $X_{13} + X_{23} + X_{33} = 1$
 $X_{ij} = 0 \text{ o 1 para toda } i \text{ y } j$

Programación lineal para el ejemplo de asignación

- $X_{13} = 1$, de modo que Adams se asigna al proyecto 3.
- $X_{22} = 1$, de modo que Brown se asigna al proyecto 2.
- $X_{31} = 1$, de modo que Cooper se asigna al proyecto 1.
- El costo total de las reparaciones son \$25.

Aplicaciones de trasbordo

Cuando los artículos deben pasar por un punto intermedio (llamado *punto de trasbordo*) antes de llegar al destino final, es un *problema de trasbordo*.

Centros de Distribución

- Frosty Machines fabrica barredoras de nieve en fábricas localizadas en Toronto y Detroit.
- Los productos se envían a centros de distribución regionales en Chicago y Búfalo.
- Desde allí se reparten a las casas de oferta en Nueva York,
 Filadelfia y St. Louis.
- Los costos de envío varían según la ubicación y el destino.
- Las barredoras de nieve no pueden enviarse directamente desde las fábricas a las casas de oferta.

Representación en red de un ejemplo de trasbordo

Problema de transbordo

Datos para el trasbordo de Frosty Machine

			А			_
DE	CHICAGO	BÚFALO	NUEVA YORK	FILADELFIA	ST. LOUIS	OFERTA
Toronto	\$4	\$7	_	<u> </u>	_	800
Detroit	\$5	\$7	_	_	_	700
Chicago	_	_	\$6	\$4	\$5	_
Búfalo	_	_	\$2	\$3	\$4	_
Demanda	_	_	450	350	300	

Frosty quiere minimizar los costos de transporte asociados con el envío de suficientes barredoras de nieve, para cumplir con la demanda los destinos sin exceder la oferta en cada fábrica.

Problema de transbordo

Una descripción del problema sería reducir al mínimo costo sujeto a:

- 1.El número de unidades enviadas desde Toronto no es mayor que 800.
- 2.El número de unidades enviadas desde Detroit no es mayor que 700.
- 3. El número de unidades enviadas a Nueva York son 450.
- 4.El número de unidades enviadas a Filadelfia son 350.
- 5.El número de unidades enviadas a St. Louis son 300.
- 6.El número de unidades que salen de Chicago es igual al número de unidades que llegan a Búfalo.
- 7.El número de unidades que salen de Búfalo es igual al número de unidades que llegan a Búfalo.

Problemas de transbordo

Las variables de decisión deberían representar el número de unidades enviadas desde cada fuente hasta cada punto de transbordo, y de aquí a los destinos finales.

 X_{13} = número de unidades enviadas de Toronto a Chicago

 X_{14} = número de unidades enviadas deToronto a Buffalo

 X_{23} = número de unidades enviadas de Detroit a Chicago

 X_{24} = número de unidades enviadas de Detroit a Buffalo

 X_{35} = número de unidades enviadas de Chicago a Nueva York

 X_{36} = número de unidades enviadas de Chicago a Filadelfia

 X_{37} = número de unidades enviadas de Chicago a St. Louis

 X_{45} = número de unidades enviadas de Buffalo a Nueva York

 X_{46} = número de unidades enviadas de Buffalo a Filadelfia

 X_{47} = número de unidades enviadas de Buffalo a St. Louis

Problemas de transbordo

El modelo de PL es:

F.O. Minimizar el costo total =
$$4X_{13} + 7X_{14} + 5X_{23} + 7X_{24} + 6X_{35} + 4X_{36} + 5X_{37} + 2X_{45} + 3X_{46} + 4X_{47}$$

sujeto a
$$X_{13} + X_{14} \le 800$$
 (oferta en Toronto) $X_{23} + X_{24} \le 700$ (oferta en Detroit) $X_{35} + X_{45} = 450$ (demanda en Nueva York) $X_{36} + X_{46} = 350$ (demanda en Filadelfia) $X_{37} + X_{47} = 300$ (demanda en St. Louis) $X_{13} + X_{23} = X_{35} + X_{36} + X_{37}$ (envío por Chicago) $X_{14} + X_{24} = X_{45} + X_{46} + X_{47}$ (envío por Búfalo) $X_{ij} \ge 0$ para toda $i \ y \ j$ (no negativa)

Solución para el problema de trasbordo de Frosty Machines

			70 1	U U	α				 <u> </u>	
A	А	В	С	D	E	F	G	Н		G
1	Frosty Machine	s Transsh	ipment P	roblem						
2									11	Total shipped
3			Shippi	ng Cost F	Per Unit				12	=SUM(B12:C12)
4	From\To	Chicago	Buffalo	NYC	Phil.	St.Louis			12	-301VI(D12.C12)
5	Toronto	4	7							
6	Detroit	5	7							
7	Chicago			6	4	5				G
8	Buffalo			2	3	4			1/1	=SUM(D14:F14)
9									14	-30M(D14.F14)
10		Sol	ution - Nu	ımber of	units ship	ped				
11		Chicago	Buffalo	NYC	Phil.	St.Louis	Total shipped	Supply		
12	Toronto	650	150				800	800		В
13	Detroit	0	300				300	700	16	=SUM(B12:B13)
14	Chicago			0	350	300	650		10	-301VI(B12.B13)
15	Buffalo			450	0	0	450			
16	Total received	650	450	450	350	300				
17	Demand			450	350	300			A	D
18									16	=SUM(D14:D15)
19	Total cost =	9550								

B 19 =SUMPRODUCT(B5:F8,B12:F15)

Algoritmo de transporte

- Es un procedimiento iterativo donde se encuentra y evalúa una solución a un problema de transporte, mediante un procedimiento especial para determinar si la solución es óptima.
 - si la solución es óptima, el proceso se detiene.
 - si no es óptima, se genera una nueva solución.

Tabla de transporte para la corporación Executive Furniture

