Методы машинного обучения

Лекция 7

Метрики качества регрессии и классификации Эльвира Зиннурова

elvirazinnurova@gmail.com

НИУ ВШЭ, 2019

Подготовка признаков

Важность признаков

• Если признаки масштабированы, то вес характеризует важность признака в модели

$$a(x) = \langle w, x \rangle = w_0 * 1 + w_1 x^1 + \dots + w_d x^d$$

Term	Coefficient	Std. Error	Z Score
Intercept	2.46	0.09	27.60
lcavol	0.68	0.13	5.37
${\tt lweight}$	0.26	0.10	2.75
age	-0.14	0.10	-1.40
lbph	0.21	0.10	2.06
svi	0.31	0.12	2.47
1cp	-0.29	0.15	-1.87
${\tt gleason}$	-0.02	0.15	-0.15
pgg45	0.27	0.15	1.74

Квадратичные признаки

- Можно добавлять новые признаки, зависящие от исходных
- Модель может восстанавливать более сложные зависимости
- Пример: квадратичные признаки

[площадь, этаж, число комнат]

• Новые признаки:

[площадь, этаж, число комнат, площадь², этаж², число комнат², площадь* этаж, площадь* число комнат, этаж* число комнат,]

Категориальные признаки

- Пример: район квартиры на продажу
- Сделаем столько новых бинарных признаков, сколько районов:

$$\begin{pmatrix} 3 юзино \\ Хамовники \\ Пресненский \\ Хамовники \end{pmatrix}
ightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ ? & ? \end{pmatrix}$$

Категориальные признаки

- Пример: район квартиры на продажу
- Сделаем столько новых бинарных признаков, сколько районов:

$$egin{pmatrix} 3 юзино \ Хамовники \ Пресненский \ Хамовники \end{pmatrix}
ightarrow egin{pmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{pmatrix}$$

One-hot-кодирование

- Заводим столько новых признаков, сколько значений у категориального
- Каждый соответствует одному возможному значению
- Единице равен только тот признак, чье значение принял исходный категориальный признак на этом объекте

• Иногда категории — это числа, а не строки!

One-hot-кодирование

- Пример: предсказать, купит ли пользователь данный товар в интернетмагазине
- Признаки:
 - Идентификатор пользователя
 - Идентификатор товара
 - Идентификатор категории товара
 - Стоимость товара
 - •
- Могут иметь смысл квадратичные признаки
 - например, пользователь + категория товара
- После one-hot кодирования получим миллионы признаков
- Линейные модели способны справиться с такими задачами

Метрики качества

- Не все алгоритмы подходят для решения задачи
- Как выбрать лучший?
- Если много способов определить, что такое «лучший»
- Метрики качества
 - Насколько алгоритм подходит для решения задачи?
 - Какой из двух алгоритмов лучше подходит?

Метрики качества регрессии

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Легко минимизировать
- Сильно штрафует за большие ошибки

MAE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} |a(x_i) - y_i|$$

- Сложнее минимизировать
- Выше устойчивость к выбросам

Среднеквадратичная ошибка

MSE
$$(a, X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2$$

- Подходит, чтобы сравнивать разные модели
- Чем меньше, тем лучше
- Не позволяет понять, хорошая ли модель получилась
- MSE = 32955 хорошо или плохо?

Среднеквадратичная ошибка

RMSE
$$(a, X) = \sqrt{\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2}$$

То же самое, но можно интерпретировать

- Предсказываем стоимость квартир (в тыс. руб.)
- MSE = 32955 хорошо или плохо?
- RMSE $= \sqrt{32955} \approx 181$ тыс.руб. средняя ошибка для одной квартиры

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (y_{i} - a(x_{i}))^{2}}{\sum_{i=1}^{\ell} (y_{i} - \bar{y})^{2}}$$

- $\bar{y} = \frac{1}{\ell} \sum_{i=1}^{\ell} y_i$ средний ответ
- Доля дисперсии, объясненная моделью, в общей дисперсии ответов
- Значение можно интерпретировать

Коэффициент детерминации

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{\ell} (y_{i} - a(x_{i}))^{2}}{\sum_{i=1}^{\ell} (y_{i} - \bar{y})^{2}}$$

- $0 \le R^2 \le 1$ (для разумных моделей)
- $R^2 = 1$ идеальная модель
- $R^2 = 0$ модель на уровне константной
- $R^2 < 0$ модель хуже константной

Метрики качества классификации

Качество классификации

• Доля неправильных ответов:

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) \neq y_i]$$

Качество классификации

• Доля правильных ответов (accuracy):

$$\frac{1}{\ell} \sum_{i=1}^{\ell} [a(x_i) = y_i]$$

Улучшение метрики

- Два алгоритма
- Доли правильных ответов: r_1 и r_2
- Абсолютное улучшение: $r_2 r_1$
- Относительное улучшение: $\frac{r_2 r_1}{r_1}$

Улучшение метрики

•
$$r_1 = 0.8$$

•
$$r_2 = 0.9$$

$$\cdot \frac{r_2 - r_1}{r_1} = 12.5\%$$

•
$$r_1 = 0.5$$

•
$$r_2 = 0.75$$

$$\bullet \, \frac{r_2 - r_1}{r_1} = 50\%$$

•
$$r_1 = 0.001$$

•
$$r_2 = 0.01$$

$$\cdot \frac{r_2 - r_1}{r_1} = 900\%$$

Несбалансированные выборки

- Пример:
 - Класс -1: 950 объектов
 - Класс +1: 50 объектов
- a(x) = -1
- Доля правильных ответов: 0.95

Несбалансированные выборки

- q_0 доля объектов самого крупного класса
- Для разумных алгоритмов должно выполняться:

accuracy ∈
$$[q_0, 1]$$

• Если получили большой ассuracy — посмотрите на баланс классов

Цены ошибок

- Пример: кредитный скоринг
- Модель 1:
 - 80 кредитов вернули
 - 20 кредитов не вернули
- Модель 2:
 - 48 кредитов вернули
 - 2 кредита не вернули
- Кто лучше?

Цены ошибок

- Что хуже?
 - Выдать кредит «плохому» клиенту
 - Не выдать кредит «хорошему» клиенту
- Доля верных ответов не учитывает цены ошибок

Матрица ошибок

	y = +1	y = -1
a(x) = +1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Матрица ошибок

	y = +1	y = -1
a(x) = +1	True Positive (TP)	False Positive (FP)
a(x) = -1	False Negative (FN)	True Negative (TN)

Как запомнить:

True

Верно ли

классифицирован объект?

объект верно отнесенк классу +1

Матрица ошибок

• Модель $a_1(x)$:

	y = +1	y = -1
a(x) = +1	80	20
a(x) = -1	20	80

• Модель $a_2(x)$:

	y = +1	y = -1
a(x) = +1	48	2
a(x) = -1	52	98

Точность (precision)

• Можно ли доверять классификатору при a(x) = +1?

$$precision(a, X) = \frac{TP}{TP + FP}$$

Точность (precision)

• Модель $a_1(x)$:

	y = +1	y = -1
a(x) = +1	80	20
a(x) = -1	20	80

• precision $(a_1, X) = 0.8$

• Модель $a_2(x)$:

	y = +1	y = -1
a(x) = +1	48	2
a(x) = -1	52	98

• precision(a_2, X) = 0.96

Полнота (recall)

• Как много положительных объектов находит классификатор?

$$\operatorname{recall}(a, X) = \frac{TP}{TP + FN}$$

Полнота (recall)

• Модель $a_1(x)$:

	y = +1	y = -1
a(x) = +1	80	20
a(x) = -1	20	80

• $recall(a_1, X) = 0.8$

• Модель $a_2(x)$:

	<i>y</i> = +1	y = -1
a(x) = +1	48	2
a(x) = -1	52	98

• recall(a_2, X) = 0.48

Антифрод

- Классификация транзакций на нормальные и мошеннические
- Высокая точность, низкая полнота:
 - Редко блокируем нормальные транзакции
 - Пропускаем много мошеннических
- Низкая точность, высокая полнота:
 - Часто блокируем нормальные транзакции
 - Редко пропускаем мошеннические

Кредитный скоринг

- Неудачных кредитов должно быть не больше 5%
- Ограничение: precision $(a, X) \ge 0.95$
- Максимизируем полноту

Медицинская диагностика

- Надо найти не менее 80% больных
- Ограничение: $\operatorname{recall}(a, X) \ge 0.8$
- Максимизируем точность

Несбалансированные выборки

- accuracy(a, X) = 0.99
- precision(a, X) = 0.33
- $\operatorname{recall}(a, X) = 0.1$

	y = 1	y = -1
a(x) = 1	10	20
a(x) = -1	90	10000

Точность и полнота

- Точность можно ли доверять классификатору при a(x) = +1?
- Полнота как много положительных объектов находит a(x)?

- Оптимизировать две метрики одновременно очень неудобно
- Как объединить?

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

Арифметическое среднее

$$A = \frac{1}{2}(\text{precision} + \text{recall})$$

- precision = 0.1
- recall = 1
- A = 0.55

• Плохой алгоритм

Арифметическое среднее

$$A = \frac{1}{2} (precision + recall)$$

- precision = 0.55
- recall = 0.55
- A = 0.55
- Нормальный алгоритм
- Но качество такое же, как у плохого

 $M = \min(\text{precision, recall})$

 $M = \min(\text{precision, recall})$

- precision = 0.05
- recall = 1
- M = 0.05

 $M = \min(\text{precision, recall})$

- precision = 0.55
- recall = 0.55
- M = 0.55

 $M = \min(\text{precision, recall})$

- precision = 0.4, recall = 0.5
- M = 0.4

- precision = 0.4, recall = 0.9
- M = 0.4

• Но второй лучше!

$$F = \frac{2 * precision * recall}{precision + recall}$$

$$F = \frac{2 * precision * recall}{precision + recall}$$

- precision = 0.4, recall = 0.5
- F = 0.44

- precision = 0.4, recall = 0.9
- F = 0.55

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 0.5$
- Важнее полнота

$$F_{\beta} = (1 + \beta^2) \frac{\text{precision} * \text{recall}}{\beta^2 * \text{precision} + \text{recall}}$$

- $\beta = 2$
- Важнее точность

Оценки принадлежности классу

Классификатор

• Частая ситуация:

$$a(x) = [b(x) > t]$$

• b(x) — оценка принадлежности классу +1

Линейный классификатор

$$a(x) = [\langle w, x \rangle > t]$$

- $b(x) = \langle w, x \rangle$ оценка принадлежности классу +1
- Обычно t = 0:

$$a(x) = [\langle w, x \rangle > 0] = \text{sign}\langle w, x \rangle$$

- Как оценить качество b(x)?
- Порог выбирается позже
- Порог зависит от ограничений на точность или полноту

- Высокий порог:
 - Мало объектов относим к +1
 - Точность выше
 - Полнота ниже
- Низкий порог:
 - Много объектов относим к +1
 - Точность ниже
 - Полнота выше

-1	-1	+1	+1	+1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1	-1	+1	+1	+1	-1	+1	+1	-1	+1
0.01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

-1		-1	+1	+1	+1	-1	+1	+1	-1	+1
0.0	01	0.09	0.12	0.15	0.29	0.4	0.48	0.6	0.83	0.9

- Пример: кредитный скоринг
- b(x) оценка вероятности возврата кредита
- a(x) = [b(x) > 0.5]
- precision = 0.1, recall = 0.7
- В чем дело в пороге или в алгоритме?

- Кривая точности-полноты
- Ось X полнота
- Ось Ү точность
- Точки значения точности и полноты при различных порогах t

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

$$b(x) \begin{vmatrix} 0.14 & 0.23 & 0.39 & 0.52 & 0.73 & 0.90 \\ y & 0 & 1 & 0 & 0 & 1 & 1 \end{vmatrix}$$

$$b(x) \mid 0.14 \mid 0.23 \mid 0.39 \mid 0.52 \mid 0.73 \mid 0.90$$

 $y \mid 0 \mid 1 \mid 0 \mid 0 \mid 1 \mid 1$

$$b(x) \mid 0.14 \mid 0.23 \mid 0.39 \mid 0.52 \quad 0.73 \mid 0.90$$

 $y \mid 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 1$

PR-кривая в реальности

- Правая точка: (1,r), r доля положительных объектов
- Для идеального классификатора проходит через (1, 1)
- AUC-PRC площадь под PR-кривой

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

• Ось Y — True Positive Rate $TPR = \frac{TP}{TP + FN}$

- Receiver Operating Characteristic
- Ось X False Positive Rate

$$FPR = \frac{FP}{FP + TN}$$

Число отрицательных объектов

• Ось Y — True Positive Rate $TPR = \frac{TP}{TP + FN}$

Число положительных объектов

$$b(x)$$
 | 0.14 | 0.23 | 0.39 | 0.52 | 0.73 | 0.90
 y | 0 | 1 | 0 | 0 | 1 | 1

ROC-кривая в реальности

- Левая точка: (0, 0)
- Правая точка: (1, 1)
- Для идеального классификатора проходит через (0, 1)
- AUC-ROC площадь под ROC-кривой

AUC-ROC

$$FPR = \frac{FP}{FP + TN};$$

$$TPR = \frac{TP}{TP + FN}$$

- FPR и TPR нормируются на размеры классов
- AUC-ROC не поменяется при изменении баланса классов
- Идеальный алгоритм: AUC-ROC = 1
- Худший алгоритм: $AUC-ROC \approx 0.5$

AUC-PRC

$$precision = \frac{TP}{TP + FP}; recall = \frac{TP}{TP + FN}$$

- Точность поменяется при изменении баланса классов
- AUC-PRC идеального алгоритма зависит от баланса классов
- Лучше, если задачу надо решать в терминах точности и полноты

Пример

- AUC-ROC = 0.95
- AUC-PRC = 0.001

50000 объектов

y = -1

100 объектов y = +1

b(x)

950000 объектов

y = -1

Пример

- Выберем конкретный классификатор
- a(x) = 1 50095 объектов
- Из них FP = 50000, TP = 95
- TPR = 0.95, FPR = 0.05
- precision = 0.0019, recall = 0.95

$$y = -1$$

100 объектов у = +1

b(x)

950000 объектов

y = -1

Резюме

- Два вида классификаторов:
 - Ответ класс
 - Ответ оценка принадлежности классу
- Метрики в первом случае: доля правильных ответов, точность, полнота, F-мера
- Метрики во втором случае: AUC-ROC, AUC-PRC
- В регрессии: MSE, MAE, R^2