Дисциплина Математический анализ Курс 1 Семестр 2 2009–2010 уч. год

Фамилия студента

№ группы

Сумма баллов	
Фамилия	
проверяющего	

Оценка	
Фамилия	
экзаменатора	

1. 5 Найти первый и второй дифференциал функции f(x,y) в точке $M_0(1,0)$ и выписать формулу Тейлора до $o((x-1)^2+y^2)$, где $f(x,y)=\operatorname{th}(x\cos y-1)$.

2. **⑥** Исследовать на непрерывность и дифференцируемость при всех $\alpha \in \mathbb{R}$ функцию $f(x,y) = \begin{cases} \ln(1+|x|^{1/2}\cdot|y|^{\alpha}), & x^2+y^2 \neq 0, \\ 0, & x^2+y^2 = 0, \end{cases}$ в точке (0,0).

3. ③ Найти длину дуги кривой $y = \ln(1 + \sin x), x \in [0, \pi/2].$

4. Исследовать на сходимость и абсолютную сходимость интегралы:

a) 4
$$\int_{0}^{+\infty} \frac{\arctan x \, dx}{(1+x^2)(e^x-1)^{\alpha}};$$

b) **6**
$$\int_{0}^{1} \frac{\ln^{\alpha}(1+x^{2})\cos\frac{1}{x}dx}{x^{4}}.$$

5. ② Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(\operatorname{ch} \frac{1}{\sqrt{n}} \right)^{-n^2}$.

6. ⑤ Последовательность $f_n(x) = e^x \cos \frac{1}{nx}$ исследовать на сходимость и равномерную сходимость на множествах $E_1 = (1,2)$ и $E_2 = (2,+\infty)$.

7. ⑤ Ряд $\sum_{n=1}^{\infty} \left(e^{x/\sqrt{n}}-1\right) \arctan \frac{x^2}{n+1}$ исследовать на сходимость и равномерную сходимость на множествах $E_1=(0,1)$ и $E_2=(1,+\infty)$.

8. ④ Разложить в ряд по степеням x функцию $f(x) = x^2 \arccos \frac{4x}{4+x^2}$ и найти радиус сходимости полученного ряда.

9. ④ У непрерывных функций f(x) и g(x) интеграл $\int\limits_{1}^{\infty}f(x)\,dx$ сходится условно, а интеграл

 $\int\limits_{1}^{\infty}g(x)\,dx$ сходится абсолютно. Может ли интеграл $\int\limits_{1}^{\infty}f(x)g(x)\,dx$: а) сходиться абсолютно; b) сходиться условно?

Дисциплина Математический анализ Курс 1 Семестр 2 2009–2010 уч. год

Фамилия студента

№ группы

Сумма баллов	
Фамилия	
проверяющего	

Оценка	
Фамилия	
экзаменатора	

- 1. 5 Найти первый и второй дифференциал функции f(x,y) в точке $M_0(0,1)$ и выписать формулу Тейлора до $o(x^2+(y-1)^2)$, где $f(x,y)=\ln(1+y\sin x)$.
- 2. **⑥** Исследовать на непрерывность и дифференцируемость при всех $\alpha \in \mathbb{R}$ функцию $f(x,y) = \begin{cases} \arctan(|x|^{\alpha} \cdot |y|^{1/3}), & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ в точке (0,0).
 - 3. (3) Найти площадь фигуры, ограниченной кривыми $y = e^x \sin x, y = 0, x = \pi/4.$
 - 4. Исследовать на сходимость и абсолютную сходимость интегралы:

a) (4)
$$\int_{1}^{+\infty} \frac{\arctan(x-1) dx}{e^x(x-\sqrt[3]{x})^{\alpha}};$$

b) **6**
$$\int_{1}^{+\infty} \ln^{\alpha} \left(1 + \frac{1}{x} \right) \sin x^{3} dx$$
.

- 5. ② Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{3^{2n}(n!)^4}{(3n)!(n+1)!}$.
- 6. ⑤ Последовательность $f_n(x) = \sqrt{n} \ln \left(1 + \sqrt{\frac{x}{n}} \right)$ исследовать на сходимость и равномерную сходимость на множествах $E_1 = (0,1)$ и $E_2 = (1,+\infty)$.
- 7. ⑤ Ряд $\sum_{n=1}^{\infty} \left(1-\cos\frac{x^2\sqrt{x}}{\sqrt{n}}\right)$ $\arctan\frac{e^x}{\sqrt{n}}$ исследовать на сходимость и равномерную сходимость на множествах $E_1=(0,1)$ и $E_2=(1,+\infty)$.
- 8. ④ Разложить в ряд по степеням x функцию $f(x) = x^4 \mathrm{arcctg} \frac{3x}{\sqrt{1-9x^2}}$ и найти радиус сходимости полученного ряда.
 - 9. ④ У непрерывных функций f(x) и g(x) интегралы $\int\limits_1^\infty f(x)\,dx$ и $\int\limits_1^\infty g(x)\,dx$ сходятся условно.

Может ли интеграл $\int_{1}^{\infty} f(x)g(x) dx$: а) сходиться абсолютно; b) сходиться условно; c) расходиться?

Дисциплина Математический анализ Курс 1 Семестр 2 2009–2010 уч. год

Фамилия студента

№ группы

Сумма баллов	
Фамилия	
проверяющего	

Оценка	
Фамилия	
экзаменатора	

1. \odot Найти первый и второй дифференциал функции f(x,y) в точке $M_0(1,0)$ и выписать формулу Тейлора до $o((x-1)^2+y^2)$, где $f(x,y)=\operatorname{tg}(y^3+\ln x)$.

2. **(6)** Исследовать на непрерывность и дифференцируемость при всех $\alpha \in \mathbb{R}$ функцию $f(x,y) = \begin{cases} \ln(1+|x|^{1/4} \cdot |y|^{\alpha}), & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ в точке (0,0).

вокруг оси Ox.

4. Исследовать на сходимость и абсолютную сходимость интегралы:

a) 4
$$\int_{0}^{+\infty} \frac{x^{-\alpha} dx}{e^{\alpha x}(e^{x}-1)};$$

b) **6**
$$\int_{0}^{1} \frac{\arctan^{\alpha} x^{2}}{x^{3}} \sin \frac{1}{x} dx$$
.

5. ② Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \left(n \sinh \frac{1}{n} \right)^{-n^3}$.

6. \bigcirc Последовательность $f_n(x) = n \arctan \frac{\operatorname{tg} x}{n}$ исследовать на сходимость и равномерную сходимость на множествах $E_1 = (0, \pi/4)$ и $E_2 = (\pi/4, \pi/2)$.

7. ⑤ Ряд $\sum_{n=1}^{\infty} \sinh \frac{e^x}{n} \sin \frac{x}{\sqrt{n}}$ исследовать на сходимость и равномерную сходимость на множествах $E_1 = (0,1)$ и $E_2 = (1,+\infty)$.

8. ④ Разложить в ряд по степеням x функцию $f(x) = x \arctan \frac{2 + x^3}{2 - x^3}$ и найти радиус сходимости полученного ряда.

9. ④ У непрерывных функций f(x) и g(x) интеграл $\int\limits_{1}^{\infty}f(x)\,dx$ сходится условно, а интеграл $\int\limits_{1}^{\infty}g(x)\,dx$ сходится абсолютно. Может ли интеграл $\int\limits_{1}^{\infty}f(x)g(x)\,dx$: а) сходиться абсолютно; b) схо-

диться условно?

Дисциплина Математический анализ Курс 1 Семестр 2 2009–2010 уч. год

Фамилия студента

№ группы _____

Сумма баллов	
Фамилия	
проверяющего	

Оценка	
Фамилия	
экзаменатора	

1. 5 Найти первый и второй дифференциал функции f(x,y) в точке $M_0(1,0)$ и выписать формулу Тейлора до $o((x-1)^2+y^2)$, где $f(x,y)=\arctan(x^2-e^y)$.

2. **⑥** Исследовать на непрерывность и дифференцируемость при всех $\alpha \in \mathbb{R}$ функцию $f(x,y) = \begin{cases} \sin(|x|^{\alpha} \cdot |y|^{1/5}), & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0, \end{cases}$ в точке (0,0).

3. ③ Найти объем тела, образованного вращением вокруг оси Ox фигуры, ограниченной кривыми: $y = 1/(1+x^2), y = 0, x = 0, x = 1.$

4. Исследовать на сходимость и абсолютную сходимость интегралы:

a) (4)
$$\int_{0}^{+\infty} \frac{(x^{\alpha} + x) dx}{e^x \arctan x};$$

b) 6
$$\int_{1}^{+\infty} \arctan^{\alpha} \frac{1}{x} \cdot \cos x^{3} dx$$
.

5. ② Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{3^{2n} \cdot (2n)!}{n^n \cdot n!}$.

6. ⑤ Последовательность $f_n(x) = x^2 \sqrt{1 + \frac{1}{nx}}$ исследовать на сходимость и равномерную сходимость на множествах $E_1 = (0,1)$ и $E_2 = (1,+\infty)$.

7. ⑤ Ряд $\sum_{n=1}^{\infty} \ln\left(1+\frac{e^x}{n}\right) \sin\frac{x^3}{\sqrt{n}}$ исследовать на сходимость и равномерную сходимость на множествах $E_1=(0,1)$ и $E_2=(1,+\infty)$.

8. ④ Разложить в ряд по степеням x функцию $f(x) = x^3 \arccos \frac{2x}{\sqrt{1+4x^2}}$ и найти радиус сходимости полученного ряда.

9. ④ У непрерывных функций f(x) и g(x) интегралы $\int\limits_1^\infty f(x)\,dx$ и $\int\limits_1^\infty g(x)\,dx$ сходятся условно.

Может ли интеграл $\int\limits_{1}^{\infty}f(x)g(x)\,dx$: а) сходиться абсолютно; b) сходиться условно; c) расходиться?