Aufgabe 1 (Herbst 1974). Man beweise:

- (a) Ist (G, \cdot) eine Gruppe und sind $H, I, J \subseteq G$ Untergruppen mit $H \subseteq I \cup J$, dann ist $H \subseteq I$ oder $H \subseteq J$.
- (b) Es gibt eine Gruppe (G, \cdot) mit Untergruppen H, I, J, K, so daß $H \subseteq I \cup J \cup K$, aber weder $H \subseteq I$ noch $H \subseteq J$ noch $H \subseteq K$ gilt. Hinweis: Man betrachte $G = \mathbb{Z}/2 \times \mathbb{Z}/2$.

Aufgabe 2 (Frühjahr 1999). Seien U und V Untergruppen einer endlichen Gruppe G mit $U \cap V = \{e\}$. Es bezeichne $\langle U \cup V \rangle$ die von $U \cup V$ erzeugte Untergruppe von G. Man zeige:

- (a) $|U| \cdot |V| \leq |\langle U \cup V \rangle|$.
- (b) In (a) gilt Gleichheit, wenn U Normalteiler in G ist. (Das werden wir nächste Woche besprechen.)
- (c) Man gebe eine Gruppe G mit zwei Untergruppen U und V mit $U \cap V = \{e\}$ an, so daß in (a) nicht Gleichheit besteht.

Aufgabe 3 (Herbst 1978). Man beweise, daß eine Gruppe genau dann endlich ist, wenn sie nur endlich viele Untergruppen hat.

Aufgabe 4 (F14T2A2). Sei $r \in \mathbb{Z}$ Summe zweier Quadrate. Dann ist auch $2r \in \mathbb{Z}$ 2 Summer zweier Quadrate.