LQ Optimal Control

- Stability and the Lyapunov equation
- Linear Quadratic Optimal Control
- Solution with completion of squares
- The algebraic Riccati equation
- Cheap control and asymptotic properties
- Robustness properties

Related Reading

[KK]: 9.1-9.2, 10 and [AM]: 4.4, 6.4

Lyapunov Functions for Linear Systems

We have analyzed asymptotic stability of the linear system

$$\dot{x} = Ax = f(x), \quad A \in \mathbb{R}^{n \times n}$$

by a direct consideration of e^{At} . It sheds an new light on linear stability analysis and prepares for later if we use Lyapunov theory.

Since the system is linear, let's try to use a (homogenous) **quadratic** Lyapunov function $V: \mathbb{R}^n \to \mathbb{R}$. Such functions are described by

$$V(x) = x^T P x$$
 with a symmetric matrix $P \in \mathbb{R}^{n \times n}$.

For applying the Lyapunov theorem (Lecture 2) we need to consider

$$\partial V(x)f(x) = 2x^T PAx = x^T [A^T P + PA]x.$$

Remark. If some formulas for derivatives are not familiar to you, you should verify them by arguing on the basis of those rules that you know.

Recap: Simple Facts from Linear Algebra

Let $Q \in \mathbb{R}^{n \times n}$ and $R \in \mathbb{R}^{m \times m}$ be symmetric $(Q = Q^T \text{ and } R = R^T)$.

- 1. Q is positive semi-definite $(Q \geq 0)$ iff we have either:
 - $x^TQx \ge 0$ for all $x \in \mathbb{R}^n$
 - all eigenvalues of Q are non-negative
 - Q can be written as C^TC (with C of full row rank)
- 2. R is positive definite $(R \succ 0)$ iff we have either:
 - $u^T R u > 0$ for all $u \in \mathbb{R}^m$ that are not zero
 - all eigenvalues of R are positive
 - R can be written as U^TU with a square and invertible U.
- 3. If a positive semi-definite matrix has a zero on the diagonal, then the corresponding row and column must be zero.

For any vector $x \in \mathbb{R}^n$ the Euclidean norm $\sqrt{x^T x}$ is denoted by ||x||.

Lyapunov Conditions for Asymptotic Stability

Theorem 2-13 requires to make sure that

$$x^T P x > 0$$
 and $x^T [A^T P + P A] x < 0$ for all $x \neq 0$.

We hence arrive at the following result.

Theorem 1 If there exists a $P \succ 0$ such that $A^TP + PA \prec 0$ then $\dot{x} = Ax$ is (globally) asymptotically stable.

This result follows from general Lyapunov theory. On the next slide we provide a direct proof. In practice, the following recipe is often applied.

Theorem 2 For any $Q = Q^T \prec 0$ (such as for example Q = -I) consider the following linear equation in P:

$$A^T P + P A = Q.$$

If it has a unique positive definite solution then A is Hurwitz. Otherwise A is not Hurwitz.

Proof of Theorem 1

For some small $\alpha>0$ the matrix $A^TP+PA+\alpha P$ is still negative definite. Therefore $x^T[A^TP+PA+\alpha P]x\leq 0$ for all $x\in\mathbb{R}^n$ and hence

$$x^{T}[A^{T}P + PA]x \le -\alpha x^{T}Px. \tag{(*)}$$

For $\xi \in \mathbb{R}^n$ we need to show that $x(t) = e^{At} \xi \to 0$ for $t \to \infty$. Define

$$v(t) = x(t)^T P x(t) \ge 0.$$

We then infer with the help of (2) that

$$\dot{v}(t) = \frac{d}{dt}x(t)^T P x(t) = x(t)^T [A^T P + P A] x(t) \le -\alpha x(t)^T P x(t) = -\alpha v(t).$$

Hence $r(t)=\dot{v}(t)+\alpha v(t)\leq 0$. By the variation-of-constants formula $0\leq v(t)=v(0)e^{-\alpha t}+\int_0^t e^{-\alpha(t-\tau)}r(\tau)\,d\tau\leq v(0)e^{-\alpha t}\to 0$ for $t\to\infty$.

Therefore $\lim_{t\to\infty}v(t)=0$. Since P is positive definite, it can be written as V^TV , V invertible. Then $v(t)=x(t)^TV^TVx(t)=\|Vx(t)\|^2\to 0$; hence $Vx(t)\to 0$ and thus $V^{-1}Vx(t)=x(t)\to 0$ for $t\to\infty$.

Proof of Theorem 2

In what follows we present the algebraic analogue of the trajectoryoriented proof given the previous slide.

Suppose that $P \succ 0$ and $A^TP + PA = Q \prec 0$. Let $Ax = \lambda x$ with $x \in \mathbb{C}^n \setminus \{0\}$. We infer

$$0 > x^*(A^TP + PA)x = \bar{\lambda}x^*Px + \lambda x^*Px = 2\operatorname{Re}(\lambda)x^*Px.$$

Since $x^*Px > 0$, this implies $Re(\lambda) < 0$.

The converse follows from Theorem 3.

Lyapunov Equation

Theorem 3 Let $A \in \mathbb{R}^{n \times n}$ be Hurwitz.

• For every symmetric matrix $Q \in \mathbb{R}^{n \times n}$ the Lyapunov equation

$$A^T P + PA = Q$$

does have a unique symmetric solution $P \in \mathbb{R}^{n \times n}$.

- If Q is negative semi-definite then P is positive semi-definite.
- If $Q \leq 0$ and (A, Q) is observable then P is positive definite.

The equation is well-studied also in the case that A is **not** Hurwitz. Then, for any symmetric and positive definite Q:

- either the Lyapunov equation has no solution;
- or there exists a solution but it is not unique;
- or there exists a unique solution but it is not positive definite.

Proof

Since e^{At} decays exponentially to zero for $t \to \infty$ the matrix

$$P = -\int_0^\infty e^{A^T t} Q e^{At} \, dt$$

is well-defined. Moreover we have

$$A^T P + PA = -\int_0^\infty A^T \left[e^{A^T t} Q e^{At} \right] + \left[e^{A^T t} Q e^{At} \right] A dt =$$

$$= -\int_0^\infty \frac{d}{dt} \left[e^{A^T t} Q e^{At} \right] dt = -\left. e^{A^T t} Q e^{At} \right|_{t=0}^{t=\infty} = Q.$$

Hence P solves the Lyapunov equation.

If \tilde{P} is another solution we infer for $\Delta = \tilde{P} - P$ that $A^T \Delta + \Delta A = 0$. If we define $M(t) = e^{A^T t} \Delta e^{At}$ we have $M(\infty) := \lim_{t \to \infty} M(t) = 0$ and

$$\dot{M}(t) = e^{A^T t} A^T \Delta e^{At} + e^{A^T t} \Delta A e^{At} = e^{A^T t} [A^T \Delta + \Delta A] e^{At} = 0.$$

Hence $M(\cdot)$ is constant; thus $\Delta = M(0) = M(\infty) = 0$; hence $P = \tilde{P}$.

Proof

If $Q \leq 0$ we infer $e^{A^Tt}Qe^{At} \leq 0$ for all $t \geq 0$ and thus

$$P = -\int_0^\infty e^{A^T t} Q e^{At} \, dt \succcurlyeq 0.$$

Now suppose that, in addition, (A,Q) is observable. If $x\in N(P)$ then

$$0 = x^T (A^T P + PA - Q)x = -x^T Qx$$

which implies Qx = 0. Hence

$$0 = (A^T P + PA - Q)x = PAx$$

which leads to $Ax \in N(P)$.

In summary, $AN(P)\subset N(P)$ and $N(P)\subset N(Q)$. By Theorem 4-7 we infer $N(P)=\{0\}$. This implies $P\succ 0$.

```
The command lyap(A,R) solves the equation AX + XA^T + R = 0:
A=[-2 \ 3;1 \ 1]; P=lyap(A', eye(2)); eig(P)=[-0.8090; 0.3090]
%%
As=[-2 \ 3;1 \ 1]-1.8*eye(2); P=lyap(As',eye(2))
eig(P) = [0.1089; 68.2607]
%%
ev=eig(A);
As=A-ev(1)*eve(2);
P=lyap(As',eye(2))
??? Error using ==> lyap
Solution does not exist or is not unique.
```

LQ Optimal Control

There are many ways to find controls u(.) such that the state of

$$\dot{x} = Ax + Bu, \quad x(0) = \xi \in \mathbb{R}^n$$

converges to zero for $t \to \infty$. Designing feedback gains by pole-placement is not simple since it is difficult to balance the speed of convergence of x(.) and the "size" of the corresponding control action u(.).

This motivates to **quantify** the average distance of the state-trajectory from 0 and the effort involved in the control action as

$$\int_0^\infty x(t)^T Q x(t) \, dt \quad \text{and} \quad \int_0^\infty u(t)^T R u(t) \, dt$$

respectively, where Q and R are symmetric **weighting matrices** that are positive semi-definite and positive definite respectively.

The weighting matrices allow to put individual emphasis on the different components of the state- and control-trajectories.

LQ Optimal Control

Achieving fast state-convergence to zero with the least possible effort then amounts to minimizing the **cost function**

$$\int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt \tag{C}$$

over all trajectories satisfying

$$\dot{x}(t) = Ax(t) + Bu(t), \quad x(0) = \xi \quad \text{and} \quad \lim_{t \to \infty} x(t) = 0. \tag{S}$$

Definition 4 Solving the optimal control problem of minimizing the quadratic cost function (C) over all controls u(.) that satisfy (S) is the **linear quadratic** (LQ) optimal control problem (with stability).

We stress that other cost criteria might better reflect the desired objectives; these would result in more general problems of **optimal control**.

The choice of a quadratic cost for linear systems is motivated by a beautiful problem solution and fast solution algorithms.

Choice of Weighting Matrices

Often $Q = \operatorname{diag}(q_1, \dots, q_n)$ and $R = \operatorname{diag}(r_1, \dots, r_m)$ are taken to be diagonal and the cost then reads as

$$\sum_{k=1}^{n} \int_{0}^{\infty} q_{k} x_{k}(t)^{2} dt + \sum_{k=1}^{m} \int_{0}^{\infty} r_{k} u_{k}(t)^{2} dt.$$

The scalars $q_k \geq 0$ and $r_k > 0$ allow us to balance the emphasis put on the state- and input-components:

- Large values of q_k or r_k penalize the component $x_k(t)$ or $u_k(t)$ heavier. Therefore these components are expected to be pushed to smaller values by optimal controllers.
- Small values of q_k or r_k allow for larger deviations of $x_k(t)$ from zero or for a larger action of $u_k(t)$.
- With $q_k = 0$ no emphasis is put on $x_k(t)$. For technical reasons $r_k = 0$ is not allowed: **All control components have to be penalized.**

Completion of Squares

For any symmetric matrix P and any state-trajectory with (S) we have

$$\frac{d}{dt}x(t)^{T}Px(t) = \dot{x}(t)^{T}Px(t) + x(t)^{T}P\dot{x}(t) =
= (Ax(t) + Bu(t))^{T}Px(t) + x(t)^{T}P(Ax(t) + Bu(t)) =
= x(t)^{T}(A^{T}P + PA)x(t) + x(t)^{T}PBu(t) + u(t)B^{T}Px(t).$$

Let us add on both sides $x(t)^TQx(t)$ and $u(t)^TRu(t)$. Now suppose $R=U^TU$ with some square invertible U. We infer

$$\begin{split} x(t)^T P B u(t) + u(t) B^T P x(t) + u(t)^T R u(t) &= -x(t)^T P B R^{-1} B^T P x(t) + \\ + x(t)^T P B R^{-1} B^T P x(t) + x(t)^T P B u(t) + u(t) B^T P x(t) + u(t)^T R u(t) &= \\ &= -x(t)^T P B R^{-1} B^T P x(t) + \|U u(t) + U^{-T} B^T P x(t)\|^2. \end{split}$$

This latter step is called **completion of the squares**. Purpose?

Completion of Squares

We have derived the following key relation along any system trajectory:

$$\begin{split} \frac{d}{dt}x(t)^T P x(t) + x(t)^T Q x(t) + u(t)^T R u(t) &= \\ &= x(t)^T [A^T P + P A - P B R^{-1} B^T P + Q] x(t) + \\ &+ \|U u(t) + U^{-T} B^T P x(t)\|^2. \end{split}$$

This motivates to choose $P = P^T$ as a solution of the following so-called algebraic Riccati equation (ARE)

$$A^T P + PA - PBR^{-1}B^T P + Q = 0.$$

If that was possible we could infer

$$\frac{d}{dt}x(t)^{T}Px(t) + x(t)^{T}Qx(t) + u(t)^{T}Ru(t) =$$

$$= ||Uu(t) + U^{-T}B^{T}Px(t)||^{2}.$$

Completion of Squares

If we integrate over [0,T] for T>0 we finally arrive at

$$x(T)^{T}Px(T) + \int_{0}^{T} x(t)^{T}Qx(t) + u(t)^{T}Ru(t) dt =$$

$$= \xi^{T}P\xi + \underbrace{\int_{0}^{T} \|Uu(t) + U^{-T}B^{T}Px(t)\|^{2} dt}_{\geq 0}.$$

ullet For any trajectory of (S) we have $x(T) \to 0$ for $T \to \infty$ and thus

$$\int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt \ge \xi^T P \xi.$$

The cost is **not smaller** than $\xi^T P \xi$, no matter which stabilizing control function is chosen.

 \bullet Equality is achieved exactly when $Uu(t) + U^{-T}B^TPx(t) = 0$ or

$$u(t) = -R^{-1}B^T P x(t) \text{ for all } t \ge 0.$$

Insights

- Any solution $P = P^T$ of the ARE gives us a **lower bound** $\xi^T P \xi$ on the cost function for all admissible control functions.
- The lower bound is attained if we can choose the control function to satisfy $u(t) = -R^{-1}B^TPx(t)$. This could be assured as follows:
 - 1. Solve $\dot{x} = [A BR^{-1}B^TP]x$ with $x(0) = \xi$ for x(.).
 - 2. Then define the control function by $u_*(t) = -R^{-1}B^TPx(t)$.

But we need to make sure that $\lim_{t\to\infty} x(t) = 0$ which requires that

$$A - BR^{-1}B^TP$$
 is Hurwitz.

If there exists a P as indicated then the constructed input $u_*(\cdot)$ is indeed a unique optimal open-loop control function.

• Moreover, the optimal control function can actually be implemented by a **feedback strategy** u = -Fx with gain $F = R^{-1}B^TP$.

(a) Harrier "jump jet"

Consider Harrier at vertical take-off ([AM] pp.53,141,191) modeled as

$$m\ddot{x} = F_1 \cos(\theta) - F_2 \sin(\theta) - c\dot{x},$$

$$m\ddot{y} = F_1 \sin(\theta) + F_2 \cos(\theta) - mg - c\dot{y},$$

$$J\ddot{\theta} = rF_1.$$

With state $z=(x,y,\theta,\dot{x},\dot{y},\dot{\theta})$ and input $u=(F_1,F_2)$ put the system into a first-order description and linearize at the equilibrium $u_e=(0,mg)$ and $z_e=(x_e,y_e,0,0,0,0)$. This leads to

$$\left(\begin{array}{c} A \, | \, B \end{array} \right) = \left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & -g & -c/m & 0 & 0 & 1/m & 0 \\ 0 & 0 & 0 & 0 & -c/m & 0 & 0 & 1/m \end{array} \right).$$

For a scale model choose the parameters

$$m = 4$$
; $J = 0.0475$; $r = 0.25$; $g = 9.81$; $c = 0.05$.

For Q and R we compute with

$$[F, P, E] =$$
lqr (A, B, Q, R)

the LQ-gain F, the stabilizing ARE solution P and the closed-loop eigenvalues E = eig(A - BF).

For Q=I, R=I, $\xi=(1,-1,0.35,0,0,0)$ get closed-loop responses

The second state is very slow. Also the first should be somewhat faster. This motivates to increase the penalty (weight) on these states e.g. to Q = diag(10, 100, 1, 1, 1, 1).

The responses are faster, at the expense of a larger control action:

Let's now allow for an even larger control action by reducing the input weight to $R=0.1I. \label{eq:R}$

This speeds up the responses further, but again at the expense of larger control actions:

By reducing $\rho>0$ in $R=\rho I$ we put less weight on the control input. This typically comes along with high gains in the state-feedback matrix.

Riccati Theory

Definition 5 Let $A \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times m}$, $Q \in \mathbb{R}^{n \times n}$, $R \in \mathbb{R}^{m \times m}$ satisfy $Q = Q^T$ and $R \succ 0$. The quadratic matrix equation

$$A^T P + PA - PBR^{-1}B^T P + Q = 0 (ARE)$$

in the unknown $P \in \mathbb{R}^{n \times n}$ is called **algebraic Riccati equation** (ARE) (for the linear system described by (A, B) and the quadratic cost function defined with (Q, R)).

Any solution P of the ARE which also satisfies

$$eig(A - BR^{-1}B^TP) \subset \mathbb{C}^-$$

it is said to be a stabilizing solution.

We are typically only interested in **symmetric** solutions P of the ARE.

Can we characterize the existence of (stabilizing) solutions of the ARE? Can we compute them (efficiently) if they exist? Yes we can ...

Riccati

Jacopo Francesco Riccati (1676-1754)

The Hamiltonian Matrix

Definition 6 The **Hamiltonian matrix** of the ARE is defined as

$$H = \begin{pmatrix} A & -BR^{-1}B^T \\ -Q & -A^T \end{pmatrix} \in \mathbb{R}^{2n \times 2n}.$$

Why is H relevant? If P solves the ARE we have

$$-Q - A^T P = P[A - BR^{-1}B^T P].$$

This leads to the relation

$$H\left(\begin{array}{cc} I & 0 \\ P & I \end{array}\right) = \left(\begin{array}{cc} I & 0 \\ P & I \end{array}\right) \left(\begin{array}{cc} A - BR^{-1}B^TP & -BR^{-1}B^T \\ \mathbf{0} & -[A - BR^{-1}B^TP]^T \end{array}\right)$$

and thus

$$\begin{pmatrix} I & 0 \\ P & I \end{pmatrix}^{-1} H \begin{pmatrix} I & 0 \\ P & I \end{pmatrix} = \begin{pmatrix} A - BR^{-1}B^TP & -BR^{-1}B^T \\ \mathbf{0} & -[A - BR^{-1}B^TP]^T \end{pmatrix}$$

Hence a solution P of the ARE allows to transform H by similarity into a block-triangular form. Many insights can be extracted from here.

Riccati Theory: Main Result I

Let P be a stabilizing solution of the ARE. We then infer from

$$eig(H) = eig(A - BR^{-1}B^{T}P) \cup eig(-[A - BR^{-1}B^{T}P]^{T})$$

and since $A - BR^{-1}B^TP$ is Hurwitz that

H has no eigenvalues on the imaginary axis.

Of course, we also conclude that (A,B) is stabilizable. This proves one direction of the following key result.

Theorem 7 (ARE) has a stabilizing solution iff (A,B) is stabilizable and the corresponding Hamiltonian matrix H has no eigenvalues on the imaginary axis.

The proof is constructive and allows to determine "the" stabilizing solution of the ARE by solving an eigenvalue problem.

Let's first prove uniqueness.

Uniqueness

Let P be a stabilizing solution of the ARE. We then infer that

$$R\left(\begin{array}{c}I\\P\end{array}\right)=\sum_{\lambda\in\mathbb{C}^{-}}\ker[(H-\lambda I)^{2n}],$$

which is the complex generalized eigenspace of H related to its eigenvalues in \mathbb{C}^- (and also often just called the stable subspace of H).

If P_1 and P_2 are two stabilizing solutions we hence conclude

$$R\left(\begin{array}{c}I\\P_1\end{array}\right) = R\left(\begin{array}{c}I\\P_2\end{array}\right)$$

and thus $P_1 = P_2$. This proves the following result.

Lemma 8 (ARE) has at most one stabilizing solution.

Remark. This holds for so-called indefinite AREs as well, which are defined with some non-singular and merely symmetric matrix R.

A Property of the Hamiltonian Matrix

The eigenvalues of the real matrix H are clearly located symmetrically with respect to the real axis in the complex plane. Due to the particular structure of H the same holds with respect to the imaginary axis.

Lemma 9 If λ is an eigenvalue of H with algebraic multiplicity k then $-\bar{\lambda}$ is as well an eigenvalue of H with the same algebraic multiplicity.

Proof. Define the skew-symmetric (and orthogonal) matrix

$$J = \left(\begin{array}{cc} 0 & -I \\ I & 0 \end{array} \right).$$

One easily checks that JH is symmetric. This implies $JH=(JH)^T=H^TJ^T=-H^TJ$ and thus

$$JHJ^{-1} = -H^T.$$

Similarity of H and $-H^T$ proves the statement.

Since H has no eigenvalue on the axis and by Lemma 9, H has n eigenvalues in the open left- and in the open right half-plane respectively.

Therefore there exists an invertible $T \in \mathbb{C}^{2n \times 2n}$ such that

$$T^{-1}HT=\left(egin{array}{cc} M & M_{12} \\ \mathbf{0} & M_{22} \end{array}
ight) \quad \mathrm{with} \ M\in\mathbb{C}^{n imes n} \ \mathrm{being} \ \mathrm{Hurwitz}.$$

Just choose $T_1 \in \mathbb{C}^{2n \times n}$ as a basis of the stable subspace of H:

$$R(T_1) = \sum_{\lambda \in \mathbb{C}^-} N[(H - \lambda I)^{2n}];$$

then extend with T_2 to a non-singular matrix $T=(T_1\ T_2)$. Since $R(T_1)$ is H-invariant, the above structure follows.

Now partition T as H into four $n \times n$ -blocks as

$$T = \left(\begin{array}{cc} U & T_{12} \\ V & T_{22} \end{array} \right) \quad \text{implying} \quad HZ = ZM \quad \text{for} \quad Z := \left(\begin{array}{c} U \\ V \end{array} \right).$$

The key step is to show: U is invertible and VU^{-1} is real symmetric (even though T is computed over $\mathbb C$ to block-triangularize H).

Step 1. $V^*U = U^*V$.

HZ=ZM implies $Z^*JHZ=Z^*JZM$. Since the l.h.s. is a Hermitian matrix, so is the right-hand side. This implies $(Z^*JZ)M=M^*(Z^*J^*Z)=-M^*(Z^*JZ)$ by $J^*=-J$. Since M is Hurwitz, we infer from $M^*(Z^*JZ)+(Z^*JZ)M=0$ that $Z^*JZ=0$ (Theorem 3) which is indeed nothing but $V^*U-U^*V=0$.

Step 2. $Ux = 0 \Rightarrow B^T Vx = 0 \Rightarrow UMx = 0$.

Ux=0 and the first row of ZMx=HZx imply $UMx=(AU-BR^{-1}B^TV)x=-BR^{-1}B^TVx$ and thus $x^*V^*UMx=-x^*V^*BR^{-1}B^TVx$. By Step 1 we get $-x^*V^*BR^{-1}B^TVx=x^*U^*VMx=0$ and thus

 $B^TVx = 0$. From $UMx = -BR^{-1}B^TVx$ we infer UMx = 0.

Step 3. U is invertible.

Suppose $N(U) \neq \{0\}$. Since Ux = 0 implies UMx = 0 (Step 2), N(U) is M-invariant. Since non-trivial, there exists an eigenvector of M in N(U), i.e., an $x \neq 0$ with $Mx = \lambda x$ and Ux = 0. Now the second row of HZ = ZM yields $(-QU - A^TV)x = VMx$ and thus $A^TVx = -\lambda Vx$. Since Ux = 0, we have $B^TVx = 0$ (Step 2). Because (A,B) is stabilizable and $\text{Re}(-\lambda) > 0$, we infer Vx = 0. Since Ux = 0, this implies Zx = 0 and hence x = 0 because Z has full column rank. Contradiction!

Step 4. $P := VU^{-1}$ is Hermitian.

 $V^*U=U^*V$ implies $U^{-*}V^*=VU^{-1}$ and hence $(VU^{-1})^*=VU^{-1}$.

Step 5. P is a (and hence the) stabilizing solution of the ARE.

From HZ=ZM we infer $HZU^{-1}=ZU^{-1}(UMU^{-1})$ and hence

$$\left(\begin{array}{c} A-BR^{-1}B^TP\\ -Q-A^TP \end{array}\right)=H\left(\begin{array}{c} I\\ P \end{array}\right) \ = \ \left(\begin{array}{c} I\\ P \end{array}\right)(UMU^{-1}).$$

The first row implies $A-BR^{-1}B^TP=UMU^{-1}$ such that $A-BR^{-1}B^TP$ is Hurwitz. The second row reads as $-Q-A^TP=P(A-BR^{-1}B^TP)$, which just means that P satisfies the ARE.

Step 6. P is real.

Since the data matrices are real, we have

$$\overline{A^TP+PA-PBR^{-1}B^TP+Q}=A^T\bar{P}+\bar{P}A-\bar{P}BR^{-1}B^T\bar{P}+Q$$
 and
$$\overline{A-BR^{-1}B^TP}=A-BR^{-1}B^T\bar{P}. \text{ Hence } P \text{ and } \bar{P} \text{ are both stabilizing solutions of the ARE, which implies } P=\bar{P} \text{ (Lemma 8)}.$$

How to Block-Triangularize the Hamiltonian?

Let us mention three possibilities to block-triangularize the Hamiltonian:

ullet Choose T which block-diagonalizes H.

One can e.g. transform H into the (suitably ordered) real or complex Jordan canonical form and extract the first n columns of T.

In practice H is often diagonizable. Then these first n columns of T can be taken equal to n linearly independent eigenvectors of H that correspond to the eigenvalues of H in the open left half-plane.

- ullet A numerically much more favorable way is to use the **ordered Schur decomposition**: Recall that one can always compute a **unitary** T which achieves the required block-triangular form of H.
- Modern algorithms (for large matrices) construct T with symplectic transformations on H that preserve the Hamiltonian structure.

Here is some (very naive) Matlab code that computes the stabilizing ARE solution (instead of using are or care):

```
% Check stabilizability of (A,B)
% Check whether or not H has eigenvalues on imaginary axis
H=[A -B*inv(R)*B';-Q -A'];eig(H)
% Determine Z if H is diagonizable
[n,n]=size(A); [T,D]=eig(H); Z=[];
for j=1:2*n;
    if real(D(j,j))<0;Z=[Z T(:,j)];end;
end;
% Compute P
if size(Z,2)==n;
    U=Z(1:n,:);V=Z(n+1:2*n,:);P=V*inv(U);
end:
```

Riccati Theory: Additional Fact I

Typically, the ARE has infinitely many solutions. In the solution set of the ARE the stabilizing solution (if existing) has a particularly nice location.

Theorem 10 The stabilizing solution of (ARE) is largest among all other solutions.

Remark. Here the partial ordering among symmetric matrices P_1 , P_2 is defined through $P_1 \preccurlyeq P_2 \Leftrightarrow 0 \preccurlyeq P_2 - P_1$.

Proof. Let P be the stabilizing and X any other solution of the ARE. With $\hat{A}=A-BR^{-1}B^TP$ and $\Delta=X-P$ one easily checks by subtracting the two AREs that

$$\hat{A}^T \Delta + \Delta \hat{A} = \Delta B R^{-1} B^T \Delta.$$

Since \hat{A} is Hurwitz, Theorem 3 implies $\Delta \leq 0$ thus $X \leq P$. This shows that P is largest among all solutions.

A Second Property of the Hamiltonian Matrix

The case $Q\succcurlyeq 0$ is particularly nice. Then the eigenvalues of H on the imaginary axis

$$\mathbb{C}^0 := \{ \lambda \in \mathbb{C} \mid \operatorname{Im}(\lambda) = 0 \} = \{ i\omega \mid \omega \in \mathbb{R} \}$$

are determined by the uncontrollable modes of (A, B), denoted as

$$eig(A - sI \ B) = \{ \lambda \in \mathbb{C} \mid rk(A - \lambda I \ B) < n \}$$

and the unobservable modes of (A, Q), denotes as

$$\operatorname{eig}\left(\begin{array}{c} A-sI\\ Q \end{array}\right)=\{\lambda\in\mathbb{C}\mid\operatorname{rk}\left(\begin{array}{c} A-\lambda I\\ Q \end{array}\right)< n\},$$

on the imaginary axis.

Theorem 11 If $Q \succcurlyeq 0$ then

$$\operatorname{eig}(H) \cap \mathbb{C}^0 = \left(\operatorname{eig}(A - sI \ B) \cup \operatorname{eig}\left(\begin{array}{c} A - sI \\ C \end{array}\right)\right) \cap \mathbb{C}^0.$$

Proof

If H has the eigenvalue $\lambda \in \mathbb{C}^0$ we infer

$$\left(\begin{array}{cc} A & -BR^{-1}B^T \\ -Q & -A^T \end{array}\right) \left(\begin{array}{c} e_1 \\ e_2 \end{array}\right) = \lambda \left(\begin{array}{c} e_1 \\ e_2 \end{array}\right) \quad \text{for some} \quad \left(\begin{array}{c} e_1 \\ e_2 \end{array}\right) \neq 0.$$

With $R = U^T U$ and $Q = C^T C$ we get

$$Ae_1 - BU^{-1}[BU^{-1}]^T e_2 = \lambda e_1$$
 and $-C^T C e_1 - A^T e_2 = \lambda e_2$. (*)

By left-multiplying e_2^{st} and e_1^{st} we infer

$$e_2^*Ae_1 - \|e_2^*BU^{-1}\|^2 = \lambda e_2^*e_1$$
 and $-\|Ce_1\|^2 - e_1^*A^Te_2 = \lambda e_1^*e_2$.

The conjugate of the latter is $-\|Ce_1\|^2 - e_2^*Ae_1 = \bar{\lambda}e_2^*e_1$. Adding to the first and exploiting $\bar{\lambda} + \lambda = 0$ (since $\lambda \in \mathbb{C}^0$) implies $\|e_2^*BU^{-1}\|^2 + \|Ce_1\|^2 = 0$ and thus $e_2^*B = 0$ and $Ce_1 = 0$; therefore $Qe_1 = 0$. By (3) we hence have $(A - \lambda I)e_1 = 0$ and $(A^T - \bar{\lambda}I)e_2 = 0$. Since either $e_1 \neq 0$ or $e_2 \neq 0$, λ is either an unobservable mode of (A,Q) or an uncontrollable mode of (A,B). The **converse** is shown by reversing the arguments.

Riccati Theory: Main Result II

Theorem 12 If $Q \succcurlyeq 0$, the ARE $A^TP+PA-PBR^{-1}B^TP+Q=0$ has a stabilizing solution if and only if (A,B) is stabilizable and (A,Q) has no unobservable modes on the imaginary axis.

Proof. If the ARE has a stabilizing solution, Theorem 7 implies that (A, B) is stabilizable and H has no eigenvalues in \mathbb{C}^0 ; by Theorem 11 we infer that (A, Q) cannot have unobservable modes in \mathbb{C}^0 .

If (A,B) is stabilizable and (A,C) has no unobservable modes in \mathbb{C}^0 , then H has no eigenvalues in \mathbb{C}^0 by Theorem 11; hence Theorem 7 shows the existence of the stabilizing solution of the ARE.

Remark. The unobservable modes of (A,Q) coincide with those of (A,C) in case that $Q=C^TC$; hence the existence of the stabilizing ARE solution is guaranteed if (A,B) is stabilizable and (A,C) is detectable.

Riccati Theory: Additional Fact II

Theorem 13 If Q > 0, the stabilizing solution P of (ARE) (if existing) is positive semi-definite. If, in addition, (A, Q) is observable, then P > 0.

Proof. If P is any symmetric solution of the ARE we infer

$$(A - BR^{-1}B^{T}P)^{T}P + P(A - BR^{-1}B^{T}P) = -PBR^{-1}B^{T}P - Q.$$

With $\hat{A}=A-BR^{-1}B^TP$ and $\hat{Q}=-PBR^{-1}B^TP-Q$ we infer

$$\hat{A}^T P + P \hat{A} = \hat{Q}.$$

If P is the stabilizing solution then \hat{A} is Hurwitz. Since $Q\succcurlyeq 0$, we have $\hat{Q}\preccurlyeq 0$ and thus $P\succcurlyeq 0$ by Theorem 3.

If (A,Q) is observable then (\hat{A},\hat{Q}) is: $\hat{A}x=\lambda x$, $\hat{Q}x=0$ implies $x^*\hat{Q}x=0$ and thus $B^TPx=$ and Qx=0; the former implies $Ax=\lambda x$; since (A,Q) is observable we get together with the latter x=0.

Then Theorem 3 even allows to conclude $P \succ 0$.

Riccati Theory: Additional Fact III

Theorem 14 Suppose that $P \succcurlyeq 0$ satisfies (ARE). If (A,Q) is detectable then P is the stabilizing solution.

Proof. As above we re-arrange the ARE to

$$(A - BR^{-1}B^{T}P)^{T}P + P(A - BR^{-1}B^{T}P) = -PBR^{-1}B^{T}P - Q.$$

Now suppose that $(A-BR^{-1}B^TP)x=\lambda x$ with $x\neq 0$. Left-multiplication with x^* and right-multiplication with x leads to

$$Re(\lambda)x^*Px = -x^*PBR^{-1}B^TPx - x^*Qx.$$

If $x^*Px=0$ we infer Px=0 and thus $x^*Qx=0$ and thus Qx=0. Due to $Ax=\lambda x$ we infer with the Hautus-test that $\mathrm{Re}(\lambda)<0$.

If $x^*Px>0$ we directly get $\mathrm{Re}(\lambda)\leq 0$; the latter inequality is strict since $\mathrm{Re}(\lambda)=0$ leads to a contradiction if following the arguments above.

Riccati Theory: Summary

Let us summarize all individual statements for the ARE

$$A^T P + PA - PBR^{-1}B^T P + C^T C = 0$$

under the hypothesis that (A,B) is stabilizable and (A,C) is detectable.

- The ARE has a unique stabilizing solution.
- The stabilizing solution is largest among all other solutions.
- The stabilizing solution is positive semi-definite.
- If *P* is positive semi-definite, it is the stabilizing solution.

These are the standard hypothesis as they are often formulated in the literature and used in applications.

Solution of the LQ-Problem: Summary

Suppose that (A,B) is stabilizable and that (A,Q) with $Q\succcurlyeq 0$ has no unobservable modes on the imaginary axis.

• Then one can compute the unique solution $P \geq 0$ of the ARE

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

for which $A - BR^{-1}B^TP$ is Hurwitz.

- The LQ-optimal control problem has a unique solution.
- The optimal value is $\xi^T P \xi$ and the optimal control strategy can be implemented as a static state-feedback controller:

$$u = -R^{-1}B^T P x.$$

The closed-loop eigenvalues are equal to those eigenvalues of the Hamiltonian that are contained in the open left half-plane.

This fundamental result follows directly from page 17 and Theorem 12. In Matlab the solution is made available with the command lqr.

Example: Segway

With the data of [AM] p. 189 and the linearization in the upright position (zero input), we designed a static state-feedback controller by pole-placement in Lecture 3 (blue). With R=0.1, $Q=\mathrm{diag}(100,1,1,1)$ the LQ-responses (green) are improved:

Recap: Schur-Complement

For a block-matrix with invertible D we have

$$\left(\begin{array}{cc} I & -BD^{-1} \\ 0 & I \end{array}\right) \left(\begin{array}{cc} A & B \\ C & D \end{array}\right) = \left(\begin{array}{cc} A - BD^{-1}C & 0 \\ C & D \end{array}\right).$$

Schur-determinant-formula: If D is invertible then

$$\det\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(A - BD^{-1}C)\det(D).$$

If
$$A = A^T$$
, $C = B^T$ and $D = D^T$ is invertible then

$$\begin{pmatrix} I & -BD^{-1} \\ 0 & I \end{pmatrix} \begin{pmatrix} A & B \\ B^T & D \end{pmatrix} \begin{pmatrix} I & 0 \\ -D^{-1}B^T & I \end{pmatrix} = \begin{pmatrix} A - BD^{-1}C & 0 \\ 0 & D \end{pmatrix}.$$

Schur-complement-lemma:

$$\begin{pmatrix} A & B \\ B^T & D \end{pmatrix} \succ 0 \iff D \succ 0 \text{ and } A - BD^{-1}C \succ 0.$$

Different variants are easily proved similarly.

Varying Input Weight

The closed-loop eigenvalues for the LQ-optimal gain are equal to the eigenvalues of the Hamiltonian in the open left half-plane.

With some fixed positive definite matrix R_0 suppose that we choose $R=\rho R_0$ for some scalar $\rho\in(0,\infty)$ to get

$$H = \begin{pmatrix} A & -\frac{1}{\rho}BR_0^{-1}B^T \\ -Q & -A^T \end{pmatrix}.$$

For large ρ we try to keep the control effort small. Since $-\frac{1}{\rho}BR_0^{-1}B^T$ approaches 0 for $\rho\to\infty$, the limiting closed-loop eigenvalues are equal to the stable eigenvalues of

$$H = \left(\begin{array}{cc} A & 0 \\ -Q & -A^T \end{array} \right).$$

Hence they equal the stable eigenvalues of A (open-loop eigenvalues) and of $-A^T$ (open-loop eigenvalues **mirrored on imaginary axis**).

Cheap Control

For small ρ we allow for a large control effort (i.e. control is "cheap"). Let us use

$$Q = C^T C, \quad R_0^{-1} = U_0 U_0^T \ (U_0 \ \text{invertible}), \quad G(s) = C(sI - A)^{-1} B U_0.$$

With the Schur-determinant formula we get

$$\det(sI - H) = \det(sI - A) \det(sI + A^T - Q(sI - A)^{-1}BR_0^{-1}B^T/\rho)$$

$$= \det(sI - A) \det(sI + A^T) \det(I - (sI + A^T)^{-1}C^TG(s)U_0^TB^T/\rho) =$$

$$= \det(sI - A) \det(sI + A^T) \det(I - U_0^TB^T(sI + A^T)^{-1}C^TG(s)/\rho) =$$

$$= \det(sI - A) \det(sI + A^T) \det(I + \frac{1}{\rho}G(-s)^TG(s)).$$

In general the zeros of this polynomial are not easy to analyze for $\rho \to 0$. One can show that some zeros move off to ∞ , and others move to the zeros of $\det(G(-s)^TG(s))$ if this polynomial does not vanish identically.

Cheap Control - Butterworth Pattern

If G(s) is SISO define $d(s)=\det(sI-A)$ with zeros $p_1,...,p_n$ and n(s)=d(s)G(s) with zeros $z_1,...,z_m$. We need to analyze the zeros of

$$d(-s)d(s) + \frac{1}{\rho}n(-s)n(s) = 0. \tag{*}$$

For $\rho \to 0$ the following holds (Kwakernaak, Sivan, 1972):

- 2m zeros of (\star) approach $\pm z_1, \ldots, \pm z_m$.
- 2(n-m) move to ∞ asymptotically along straight lines through the origin with the following angles to the positive real axis:

$$\frac{k\pi}{n-m}$$
, $k = 0, 1, \dots, 2n-2m-1$, $n-m$ odd

$$\frac{(k+\frac{1}{2})\pi}{n-m}$$
, $k=0,1,\ldots,2n-2m-1$, $n-m$ even.

Those in the open left half-plane are the closed-loop eigenvalues.

Example

Segway with $Q=C^TC$ and $C=\left(\begin{array}{cccc} 1 & 1 & 0 & 0 \end{array}\right)$ as well as $R_0=1.$

Magenta: Zeros d(s). Green: Zeros n(s). Eigenvalues for $\rho \in (10^{-6}, 100)$:

A Version of Barbalat's Lemma

It is convenient to use $L_2^n:=L_2([0,\infty),\mathbb{R}^n)$. Moreover let $L_{2,\mathrm{loc}}^n$ be all measurable $x:[0,\infty)\to\mathbb{R}^n$ with $x(.)\in L_2([0,T],\mathbb{R}^n)$ for every T>0.

Lemma 15 Suppose that $x \in L_2^n$ is locally absolutely continuous and that $\dot{x} \in L_2^n$. Then $x(t) \to 0$ for $t \to \infty$.

Proof. By partial integration we have

$$2\int_0^t x(\tau)^T \dot{x}(\tau) d\tau = ||x(t)||^2 - ||x(0)||^2.$$

Since $x(.)^T \dot{x}(.) \in L_1[0,\infty)$, the left-hand side has a limit for $t \to \infty$. This implies that there exists $\alpha \ge 0$ with $||x(t)|| \to \alpha$ for $t \to \infty$.

If $\alpha > 0$, there exists T > 0 such that

$$||x(t)||^2 \ge \alpha^2/2$$
 for $t \in [T, \infty)$

which clearly contradicts the fact that x(.) has a finite L_2 -norm. Hence $\alpha=0$ and thus $x(t)\to 0$ for $t\to \infty$.

Young's Inequality for Convolutions

Lemma 16 For $1 \leq p \leq q \leq \infty$ choose the unique $a \in [1, \infty]$ with

$$\frac{1}{p} + \frac{1}{a} = 1 + \frac{1}{q}$$

If $M \in L_a([0,\infty),\mathbb{R}^{k\times m})$ and $u \in L_p([0,\infty),\mathbb{R}^m)$ define

$$y(\bullet) = \int_0^{\bullet} M(\bullet - \tau) u(\tau) d\tau$$
 on $[0, \infty)$.

Then $y \in L_q([0,\infty),\mathbb{R}^k)$ and

$$||y||_q \le ||M||_a ||u||_p.$$

With the spectral norm $\|.\|$ for matrices and if $a < \infty$ we clearly use

$$\|M\|_a := \left\{ \begin{array}{l} \sqrt[a]{\int_0^\infty \|M(t)\|^a \, dt} \ \text{ for } \ a < \infty \\ \\ \operatorname{ess } \sup_{t \in [0,\infty)} \|M(t)\| \ \text{ for } \ a = \infty, \end{array} \right.$$

with the corresponding specializations to vector-valued functions.

A Useful Auxiliary Result

Lemma 17 Suppose that $\dot{x}=Ax+Bu$, y=Cx is detectable. If (x(.),u(.),y(.)) is any trajectory such that $u\in L_2^m$ and $y\in L_2^k$ then $x(t)\to 0$ for $t\to \infty$.

Proof. Choose L such that A-LC is Hurwitz. Then the trajectories also satisfy the relations

$$\dot{x}(t) = (A - LC)x(t) + v(t)$$
 for $v(.) := Ly(.) + Bu(.)$.

Note that $v \in L_2^n$. Since A-LC is Hurwitz, we certainly have $e^{(A-LC)\bullet} \in L_1([0,\infty),\mathbb{R}^{n\times n}) \cap L_2([0,\infty),\mathbb{R}^{n\times n})$.

The Variation-of-Constants formula and Young's inequality imply that $x(.) \in L_2^n$ and the differential equation then immediately reveals that $\dot{x}(.) \in L_2^n$ as well. By applying our version of Barbalat's lemma, the claim is proved.

A perfect implementation of a state-feedback controller leads to

In a non-ideal situation, the signal sent to the system might get distorted. This is modeled by a filter Δ which is just another dynamical system:

Typically examples: Actuator or transmission channel dynamics, delays

If Δ equals the static gain matrix $I \in \mathbb{R}^{m \times m}$, we know that the system is stable in the sense that $\lim_{t \to \infty} x(t) = 0$ for all $\xi \in \mathbb{R}^n$.

Question: How much can Δ deviate from I without loosing stability?

For example, one could consider static gain perturbations $\Delta \in \mathbb{R}^{m \times m}$.

The interconnection is then compactly described as

$$\begin{pmatrix} \dot{x} \\ z \end{pmatrix} = \begin{pmatrix} A & B \\ -F & 0 \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix}, \quad x(0) = \xi, \quad u = \Delta z.$$

Let P satisfy (ARE) and set $F = R^{-1}B^TP$. We infer

$$0 = \begin{pmatrix} A^TP + PA - PBR^{-1}B^TP + Q & 0 \\ 0 & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} A^TP + PA + Q - F^TRF & PB - F^TR \\ B^TP - RF & 0 \end{pmatrix} =$$

$$= \begin{pmatrix} A^TP + PA & PB \\ B^TP & 0 \end{pmatrix} + \begin{pmatrix} Q & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} F^TRF & F^TR \\ RF & 0 \end{pmatrix} \succcurlyeq$$

$$\succcurlyeq \begin{pmatrix} I & 0 \\ A & B \end{pmatrix}^T \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} + \begin{pmatrix} -F & 0 \\ 0 & I \end{pmatrix}^T \begin{pmatrix} -R & R \\ R & 0 \end{pmatrix} \begin{pmatrix} -F & 0 \\ 0 & I \end{pmatrix}$$

Why did we derive this inequality?

It leads to a crucial inequality that allows us to specify a very large class of Δ 's which do not destroy stability of the loop.

For any systems trajectory and for all $t \ge 0$ we easily conclude:

$$0 \ge \begin{pmatrix} x(t) \\ u(t) \end{pmatrix}^T \begin{pmatrix} I & 0 \\ A & B \end{pmatrix}^T \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix} \begin{pmatrix} I & 0 \\ A & B \end{pmatrix} \begin{pmatrix} x(t) \\ u(t) \end{pmatrix} +$$

$$+ \begin{pmatrix} x(t) \\ u(t) \end{pmatrix} \begin{pmatrix} -F & 0 \\ 0 & I \end{pmatrix}^T \begin{pmatrix} -R & R \\ R & 0 \end{pmatrix} \begin{pmatrix} -F & 0 \\ 0 & I \end{pmatrix} \begin{pmatrix} x(t) \\ u(t) \end{pmatrix} =$$

$$= \begin{pmatrix} x(t) \\ \dot{x}(t) \end{pmatrix}^T \begin{pmatrix} 0 & P \\ P & 0 \end{pmatrix} \begin{pmatrix} x(t) \\ \dot{x}(t) \end{pmatrix} + \begin{pmatrix} z(t) \\ u(t) \end{pmatrix}^T \begin{pmatrix} -R & R \\ R & 0 \end{pmatrix} \begin{pmatrix} z(t) \\ u(t) \end{pmatrix} =$$

$$= \frac{d}{dt} x(t)^T P x(t) + \begin{pmatrix} z(t) \\ u(t) \end{pmatrix}^T \begin{pmatrix} -R & R \\ R & 0 \end{pmatrix} \begin{pmatrix} z(t) \\ u(t) \end{pmatrix}.$$

For any system trajectory and T>0 the following inequality holds

$$x(T)^T P x(T) + \int_0^T \left(\begin{array}{c} z(t) \\ u(t) \end{array} \right)^T \left(\begin{array}{c} -R & R \\ R & 0 \end{array} \right) \left(\begin{array}{c} z(t) \\ u(t) \end{array} \right) dt \le \xi^T P \xi. \quad (1)$$

Robustness Properties: Main Result III

Let $\Delta: L^m_{2,\mathrm{loc}} \to L^m_{2,\mathrm{loc}}$ have the following properties: There exist real constants γ and $\epsilon > 0$ such that for all $z \in L^m_{2,\mathrm{loc}}$ and for all T > 0:

$$\int_0^T \|\Delta(z)(t)\|^2 dt \le \gamma^2 \int_0^T \|z(t)\|^2 dt \tag{2}$$

and

$$\int_0^T \left(\frac{z(t)}{\Delta(z)(t)} \right)^T \left(\frac{-R}{R} \frac{R}{0} \right) \left(\frac{z(t)}{\Delta(z)(t)} \right) dt \ge \epsilon \int_0^T ||z(t)||^2 dt.$$
 (3)

Theorem 18 Let $P\succcurlyeq 0$ be the stabilizing solution of (ARE) for $Q\succcurlyeq 0$. With any Δ as above and any $\xi\in\mathbb{R}^n$, all responses $x\in L^m_{2,\mathrm{loc}}$ of the interconnection

$$\begin{pmatrix} \dot{x} \\ z \end{pmatrix} = \begin{pmatrix} A & B \\ -F & 0 \end{pmatrix} \begin{pmatrix} x \\ u \end{pmatrix}, \quad x(0) = \xi, \quad u = \Delta(z) \qquad \text{(4)}$$
 satisfy $\lim_{t \to \infty} x(t) = 0$.

Proof

Consider any response $x\in L^n_{2,\mathrm{loc}}$ of the interconnection. We infer that $z(.)=-Fx(.)\in L^m_{2,\mathrm{loc}}$ and thus $u(.)=\Delta(z(.))\in L^m_{2,\mathrm{loc}}$. We can hence merge (1) and (3) to infer

$$\epsilon \int_0^T ||z(t)||^2 dt \le \xi^T P \xi$$

for all T > 0. This implies $z(.) \in L_2^m!$

Then (2) leads to

$$\int_0^T \|u(t)\|^2 dt \le \gamma^2 \int_0^T \|z(t)\|^2 dt \le \gamma^2 \int_0^\infty \|z(t)\|^2 dt < \infty$$

for all T > 0 and hence $u(.) \in L_2^m$.

Since A - BF is Hurwitz, (A, -F) is detectable. Then the statement follows from Lemma 17.

Example: Static Gains

Let $D \in \mathbb{R}^{m \times m}$ be a static gain-matrix such that

$$\begin{pmatrix} I \\ D \end{pmatrix}^T \begin{pmatrix} -R & R \\ R & 0 \end{pmatrix} \begin{pmatrix} I \\ D \end{pmatrix} \succ 0.$$

Then Δ defined through $\Delta(z)(t):=Dz(t)$ for $t\geq 0$ satisfies all required hypotheses. Hence (4) described in this case through

$$\dot{x} = (A - BDF)x, \quad x(0) = \xi$$

satisfies, for any initial condition, $x(t) \to 0$ for $t \to \infty$.

The inequality characterizing allowed D's can be interpreted in various fashions. Here is a simple one: We can allow for D=dI with $d\in(\frac{1}{2},\infty)$; classically this means that the system has an impressive **gain-margin**.

If F is the optimal LQ-gain, it can be changed to dF for $d \in (\frac{1}{2}, \infty)$ without endangering stability of the closed-loop system.

Example: Static Nonlinearities

Let $N:\mathbb{R}^m\to\mathbb{R}^m$ be Lipschitz-continuous and suppose there exist $\gamma\in\mathbb{R}$ and $\epsilon>0$ such that for all $z\in\mathbb{R}^m$:

$$\|N(z)\| \leq \gamma \|z\| \quad \text{and} \quad \left(\begin{array}{c} z \\ N(z) \end{array} \right)^T \left(\begin{array}{c} -R & R \\ R & 0 \end{array} \right) \left(\begin{array}{c} z \\ N(z) \end{array} \right) \succ \epsilon \|z\|^2$$

Then Δ defined through $\Delta(z)(t):=N(z(t))$ for $t\geq 0$ satisfies all required hypotheses. Hence (4) described in this case through

$$\dot{x} = Ax - BN(Fx), \quad x(0) = \xi$$

satisfies, for any initial condition, $x(t) \to 0$ for $t \to \infty$.

- Lipschitz-continuity of N(.) implies that the ivp has a unique solution. The conditions then also guarantee that there is no finite escape time.
- ullet Our result covers a much larger class of Δ 's, that can be generated by finite- or infinite-dimensional dynamical systems. We just scratched the surface of an area which is called robust control.

Example: Segway

If compared to pole-placement controller (blue), the LQ-controller (green) leads to better robustness properties.

Example: Segway

The margin d=0.5 is tight, as seen from the next simulations for the LQ-controller (green) only.

