ĐÈI

ĐỀ GIỮA KỲ MÔN GTS – TT & HTTTQL K62 Tg: 60 phút Học kỳ: 20182 Mã HP: MI3041

<u>Câu 1</u>.

Đưa ra ý tưởng và trình bày thuật toán sử dụng phương pháp tiếp tuyến giải phương trình để tìm số e với sai số ε cho trước. Áp dụng tìm e với 6 chữ số đáng tin sau dấu phẩy.

(Ghi rõ ít nhất 3 giá trị đầu và 3 giá trị cuối của dãy xấp xỉ tính được, nhận xét kết quả)

<u>Câu 2</u>.

Trình bày thuật toán giải phương trình đại số tuyến tính bằng phương pháp Gauss – Jordan. Áp dụng giải phương trình.

$$\begin{cases} 20.5x_1 + 1.7x_2 - 3.2x_3 + 2.1x_4 + 9.23x_5 - 3.52x_6 = 21.41 \\ 2.5x_1 + 37.1x_2 + 5.2x_3 + 2.8x_4 + 7.23x_5 - 5.52x_6 = 27.11 \\ 11.3x_1 + 2.7x_2 - 38.2x_3 + 4.1x_4 - 7.58x_5 + 4.25x_6 = 14.17 \\ 8.4x_1 - 4.6x_2 - 6.5x_3 + 52.1x_4 + 1.43x_5 + 15.26x_6 = 52.49 \\ 42.7x_1 - 36.9x_2 - 42.7x_3 + 61.1x_4 + 2.43x_5 - 35.26x_6 = 56.72 \\ 9.2x_1 - x_2 + 35x_3 - 2x_4 + 14.73x_5 + 5.64x_6 = 18.57 \end{cases}$$

(Ghi rõ kết quả của quá trình biến đổi Gauss ở lần khử đầu tiên và cuối cùng và ghi kết quả nghiệm. Thử lại kết quả và cho nhận xét)

ĐÈ II

ĐỀ GIỮA KỲ MÔN GTS – TT & HTTTQL K62 Tg: 60 phút Học kỳ: 20182 Mã HP: MI3041

Câu 1.

Đưa ra ý tưởng và trình bày thuật toán sử dụng phương pháp dây cung giải phương trình để tìm số π với sai số ε cho trước. Áp dụng tìm π với 6 chữ số đáng tin sau dấu phẩy.

(Ghi rõ ít nhất 3 giá trị đầu và 3 giá trị cuối của dãy xấp xỉ tính được, nhận xét kết quả)

<u>Câu 2</u>.

Trình bày thuật toán giải phương trình đại số tuyến tính bằng phương pháp Gauss. Áp dụng giải phương trình.

$$\begin{cases} 20.5x_1 + 1.7x_2 - 3.2x_3 + 2.1x_4 + 9.23x_5 - 3.52x_6 = 21.41 \\ 2.5x_1 + 37.1x_2 + 5.2x_3 + 2.8x_4 + 7.23x_5 - 5.52x_6 = 27.11 \\ 11.3x_1 + 2.7x_2 - 38.2x_3 + 4.1x_4 - 7.58x_5 + 4.25x_6 = 14.17 \\ 8.4x_1 - 4.6x_2 - 6.5x_3 + 52.1x_4 + 1.43x_5 + 15.26x_6 = 52.49 \\ 42.7x_1 - 36.9x_2 - 42.7x_3 + 61.1x_4 + 2.43x_5 - 35.26x_6 = 56.72 \\ 9.2x_1 - x_2 + 35x_3 - 2x_4 + 14.73x_5 + 5.64x_6 = 18.57 \end{cases}$$

(Ghi rõ kết quả phân tách Choleski và nghiệm phụ và nghiệm tìm được. Thử lại kết quả và cho nhận xét) ĐỀ III

ĐỀ GIỮA KỲ MÔN GTS – TT & HTTTQL K62 Tg: 60 phút Học kỳ: 20182 Mã HP: MI3041

Câu 1.

Đưa ra ý tưởng và trình bày thuật toán tìm $\sqrt[n]{a}$ với sai số ε cho trước. Áp dụng với a=n+2, n=STT+1 trong đó STT là số thứ tự của bạn theo dang sách. Kết quả cần lấy với 7 chữ số đáng tin sau dấu phẩy. (Ghi rõ ít nhất 3 giá trị đầu và 3 giá trị cuối của dãy xấp xỉ tính được, nhân xét kết quả)

<u>Câu 2</u>.

Trình bày thuật toán giải phương trình đại số tuyến tính bằng phương pháp Gauss. Áp dụng giải phương trình.

$$\begin{cases} 20.5x_1 + 1.7x_2 - 3.2x_3 + 2.1x_4 + 9.23x_5 - 3.52x_6 = 21.41 \\ 2.5x_1 + 37.1x_2 + 5.2x_3 + 2.8x_4 + 7.23x_5 - 5.52x_6 = 27.11 \\ 11.3x_1 + 2.7x_2 - 38.2x_3 + 4.1x_4 - 7.58x_5 + 4.25x_6 = 14.17 \\ 8.4x_1 - 4.6x_2 - 6.5x_3 + 52.1x_4 + 1.43x_5 + 15.26x_6 = 52.49 \\ 42.7x_1 - 36.9x_2 - 42.7x_3 + 61.1x_4 + 2.43x_5 - 35.26x_6 = 56.72 \\ 9.2x_1 - x_2 + 35x_3 - 2x_4 + 14.73x_5 + 5.64x_6 = 18.57 \end{cases}$$

(Ghi rõ kết quả của quá trình biến đổi Gauss ở lần khử đầu tiên và cuối cùng của quá trình thuận và ghi kết quả nghiệm. Thử lại kết quả và cho nhận xét)

ĐỀ IV

ĐỀ GIỮA KỲ MÔN GTS – TT & HTTTQL K62 Tg: 60 phút Học kỳ: 20182 Mã HP: MI3041

<u>Câu 1</u>.

Đưa ra ý tưởng và trình bày thuật toán tìm $\sqrt[n]{a}$ với sai số ε cho trước. Áp dụng với $a=2n,\ n=STT+2$ trong đó STT là số thứ tự của bạn theo dang sách. Kết quả cần lấy với 7 chữ số đáng tin sau dấu phẩy. (Ghi rõ ít nhất 3 giá trị đầu và 3 giá trị cuối của dãy xấp xỉ tính được, nhận xét kết quả)

<u>Câu 2</u>.

Trình bày thuật toán giải phương trình đại số tuyến tính bằng phương pháp Gauss - Jordan. Áp dụng giải phương trình.

$$\begin{cases} 20.5x_1 + 1.7x_2 - 3.2x_3 + 2.1x_4 + 9.23x_5 - 3.52x_6 = 21.41 \\ 2.5x_1 + 37.1x_2 + 5.2x_3 + 2.8x_4 + 7.23x_5 - 5.52x_6 = 27.11 \\ 11.3x_1 + 2.7x_2 - 38.2x_3 + 4.1x_4 - 7.58x_5 + 4.25x_6 = 14.17 \\ 8.4x_1 - 4.6x_2 - 6.5x_3 + 52.1x_4 + 1.43x_5 + 15.26x_6 = 52.49 \\ 42.7x_1 - 36.9x_2 - 42.7x_3 + 61.1x_4 + 2.43x_5 - 35.26x_6 = 56.72 \\ 9.2x_1 - x_2 + 35x_3 - 2x_4 + 14.73x_5 + 5.64x_6 = 18.57 \end{cases}$$

(Ghi rõ kết quả phân tách Choleski và nghiệm phụ và nghiệm tìm được. Thử lại kết quả và cho nhận xét)