Reframing the Project

Table of contents

T	20 October	1
2	21 October	2
3	22 October	2
4	23 October	3
5	20 November	3
6	28 November	3
7	2 December	4
8	3 December	4
9	9 December	4
10	12 December	5

1 20 October

Identify regimes of RNA production where flow is observed.

- $dt_{\text{max}} = 0.1$
- $t_{\rm end} = 500$
- $c_0 = 3.6$

Values
$ \begin{cases} 0.01, 0.1 \\ 2.5 \\ 0, 2, 4, 6, 8, 10 \end{cases} $

- Nucleus grows significantly
- $k_{\rm prod} = 0.01$ negligibly slow dynamics $k_{\rm prod} = 0.1$ observable slow flow

- Deformation more observable for $x_{\rm p,0} \ll$

Parameter	Values
$k_{ m prod} \ \sigma_{ m prod} \ x_{ m p,0}$	$ \{1.0, 2.0, 3.0, 4.0, 5.0\} \{4.0\} \{6, 8, 10\} $

- Nucleus grows significantly
- $k_{\mathrm{prod}} \geq 1$ condensate nucleation at the origin
 - When $x_{p,0} = 6, 8$ seed fuses with nucleated
 - * Fused condensate forms elongated/deformed condensate
 - When $x_{p,0} = 10$ seed dissolves
- Once condensate is at the nucleus, increasing $k_{\rm prod}$ increases condensate size

2 21 October

Increase simulation time to see more dynamics and check if no flow is truly stationary.

- $dt_{max} = 0.1$
- $t_{\text{end}} = 6000$
- $c_0 = 3.6$

Values
$ \begin{cases} 0.01, 0.1, 1.0 \\ 2.5, 4.0, 8.0 \\ 0, 2, 4, 6, 8, 10 \end{cases} $

- Nucleus grows significantly
- $k_{\rm prod} = 0.01$ negligibly slow flow
- $k_{\text{prod}} = 0.1$ observable flow
- $k_{\text{prod}} = 1$ nucleation at the origin

No flow is probably not truly stationary.

3 22 October

A problem was that the condensate becomes so large it elongates at a length scale commensurate to the protein-promoter distance. Decrease condensate size by decreasing seed concentration.

• $dt_{max} = 0.1$

Parameter	Values
Parameter	Values
$\overline{k_{\mathrm{prod}}}$	{0.01, 0.1, 1.0}
$\sigma_{ m prod}$	$\{2.5, 5.0\}$
c_s	$\{5, 5.5\}$
$x_{\mathrm{p},0}$	$\{2, 4, 6, 8, 10\}$

Seed concentration has negligible effect on condensate size.

4 23 October

Instead of decreasing seed concentration, we decrease background protein concentration to be closer to the lower binodal point.

•
$$\mathrm{d}t_{\mathrm{max}} = 0.1$$

Parameter	Values
$\overline{k_{\mathrm{prod}}}$	$\{0.05, 0.5, 0.1\}$
c_0	${3.5, 3.525, 3.55, 3.75}$

Background protein concentration controls condensate size.

5 20 November

Using a smaller discretization of production rate and background protein concentration, we plot a phase diagram.

•
$$dt_{\text{max}} = 1$$

Parameter	Values
k_{prod}	$\{0.025, 0.05, 0.075, 0.1, 0.25, 0.5\}$
c_0	$\{3.51, 3.52, 3.53, \cdots, 3.64\}$

6 28 November

•
$$\mathrm{d}t_{\mathrm{max}}=1$$

Parameter	Values
Parameter	Values
$\overline{\tilde{k}}_{ep}$	{0.001, 0.005, 0.01}
$\sigma_{ m well} \ k_{ m prod}$	$\{0, 0.1, 0.5, 1\}$ $\{0.25, 0.5\}$
prod	(/)

7 2 December

 $\bullet \ \ k_{\rm prod} = 0.1$

Parameter	Values
$ ilde{k}_{ep}$	$\{10^{-n}, 5 \times 10^{-n} \text{ for } n = 1, 2, \dots, 8\}$
σ_e	$\{1, 3, 4, 5\}$

Parameter	Values
	$ \{0.1, 0.25, 0.5\} $ $ \{3.52, 3.54, 3.56\} $ $ \{0.01, 0.1, 1\} $

8 3 December

• $dt_{\text{max}} = 0.1$

Parameter	Values
$c_0 \ ilde{\chi}_{ m PR}$	$\{3.52, 3.54, 3.56\}$ $\{0.05, 0.1, 0.5\}$

9 9 December

• $\mathrm{d}t_{\mathrm{max}}=1$

Parameter	Values
k_{prod}	{0.1, 0.5}
$egin{aligned} k_{ ext{prod}} \ & & ilde{\chi}_{ ext{PR}} \ & & ilde{k}_{ep} \end{aligned}$	$\{0.1, 0.5\}$ $\{0.01, 0.05, 0.1, 0.5\}$
$r_{e,0}$	$\{0,10\}$

10 12 December

• $\mathrm{d}t_{\mathrm{max}}=1$

Parameter	Values
$\overline{\tilde{k}_{ep}}$	$\{0.0001, 0.0005, \cdots, \ 0.5, 1\}$
σ_e	$\{1, 3, 4, 5\}$