Лекция 5

Ilya Yaroshevskiy

6 апреля 2021 г.

Содержание

1 Производящие функции для регулярных языков	1
2 Автомат КМП и автокор. многочлен 2.1 Пентагональная формула Эйлера	2 3
1 Производящие функции для регулярных языков	
L- регулярный язык	
$ L \cap \Sigma^n = a_n$	
$L(t) = a_0 + a_1 t + \dots$	
$\mathit{\Pi pume vanue}.\ L$ — регулярная спецификация ψ — регулярное выражение:	
1. $L(\psi) = L$	
2. $\forall x \in \mathbf{L} \; \exists !$ способ x удовлетворяющий ψ	
$oldsymbol{\Pi}$ емма $oldsymbol{1}.$ $\Sigma-$ конечный алфавит, $L\subset \Sigma^*$ $L-$ регулярная спецификация $\Leftrightarrow L$ получаетя из $\Sigma:$	
1. Дизъюнктное объединение +	
2. Прямое произведение ×	
3. Последовательность Seq	
Доказательство. Общее рассжудение: по индукции рассмотрим для каждой операции во что о перейдет, надо показать что единственность вывода сохраняется Не работает	на
Пример.	
$ab^* a^*b$	
$a \times \text{Seq } b \text{Seq } a \times b$	
объединение дизъюнктное? ⇒ не регелярная спецификация	
Пример.	
$(ab^*)^*$	
$\operatorname{Seq}(a imes \operatorname{Seq}b)$	

Теорема 1.1. Если у L есть регулярная спецификация, то L — дробно рациональная

Теорема 1.2 (Производящая функция регулярного языка). L — регулярный язык над Σ , ДКА A:

- Состояния Q, |Q| = n
- $s \in Q$ стартовое сотояние
- $T \subset Q$ терминальные

$$u = (0, 0, \dots, \underbrace{1}_{s}, 0, \dots, 0)$$

$$v = (0, \underbrace{1}_{\in T}, 0, \underbrace{1}_{\in T}, \dots, \underbrace{1}_{\in T}, 0)$$

$$D = (d_{ij})^{T}, d_{ij} = |\{c|i \stackrel{c}{\rightarrow} j\}|$$

$$L(t) = \vec{u}(I - tD)^{-1}\vec{v}$$

Пример. Язык из слов, которые содержат abb как подстроку

2 Автомат КМП и автокор. многочлен

Конструкция Гуибаса-Одлызко

$$p = [p_1, p_2, \dots, p_k]$$

$$c_i = [p[i+1 \dots k] = p[1 \dots k-i]]$$

$$c(t) = c_0 + c_1 t + c_2 t^2 + \dots + c_{k-1} t^{k-1}$$

Пример. p = aabbaa c = (1, 0, 0, 0, 1, 1) $c(t) = 1 + t^4 + t^5$

Теорема 2.1.

•
$$\Sigma$$
, $|\Sigma| = m$

 S_n — количество слов длины n, не содержащих p

$$S(t) = s_0 + s_1 t + s_2 t^2 + \dots$$

$$S(t) = \frac{c(t)}{t^k + (1 - mt)c(t)}$$

 Π ример. p = abb

$$c(t) = 1$$

$$\frac{1}{t^3 + (1-2t) \cdot 1} = \frac{1}{1-2t+t^3}$$

2.1 Пентагональная формула Эйлера

$$p_0 p_1 p_2 \ldots p_n \ldots$$

 p_n — количество разбиений n на слагаемые из $\mathbb N.$ Порядок не важен

- $U = \{0\}, u_1 = 1, U(t) = t$
- $N = \operatorname{Seq}^+ U =$ положительно целые числа
- P = MSet N

$$P(t) = \prod_{k=1}^{\infty} \frac{1}{1 - t^k}$$

$$Q(t) = \prod_{k=1}^{\infty} (1 - t^k)$$

$$R(t) = \prod_{k=1}^{\infty} (1 + t^k) [t^n] R \to r_n$$

 r_n — количество разбиений на различные слагаемые

$$[t^n]Q = \sum_{\substack{\text{разбиение } n \text{ на}\\ \text{различные слагаемые}}} (-1)^{\text{число слагаемых}}$$

$$q_n = e_n - o_n$$

 e_n — число разбиений на четное число различных слагаемы, o_n — число разбиений на нечетное число различных слагаемы,

Теорема 2.2.

$$Q(t) = 1 + \sum_{k=1}^{\infty} (-1)^k \left(t^{\frac{3k^2 - k}{2}} + t^{\frac{3k^2 + k}{2}}\right)$$

Лемма 2.

$$n \neq \frac{ek^2 \pm k}{2}, mo \ e_n = o_n$$

$$n = \frac{ek^2 \pm k}{2}$$
, mo $e_n = o_n + (-1)^k$