- При исследовании накачек не забываем про отрицательную накачку (0 итераций накачки).
- Если язык подозрителен на не-CFL, пытаемся свести задачу к известным с помощью пересечения с регулярными языками и гомоморфизмов.
- Если язык подозрителен на CFL, пытаемся разбить его на непересекающиеся более простые языки.
- За отсутствие состояния-ловушки в минимальных автоматах штрафа не будет.

 Язык — пересечение. Аккуратно строим два элементарных языка и дальше действуем автоматически.

Язык слов, которые одновременно являются правильно построенными логическими формулами и реверсами правильно построенных логических формул. Алфавит $\{T, F, \lor, \neg, \&, (,)\}$.

 Инфиксы, суффиксы еtс известного языка. Пишем грамматику исходного языка в форме Грейбах и на её основе грамматику, которая пропускает порождение префиксных или суффиксных символов.

Язык всевозможных префиксов регулярного выражения только c * u конкатенацией, не итерирующего пустое слово. Алфавит $\{a, *, (,)\}$.

$$S \rightarrow (S)^* S \quad S \rightarrow (S)^*$$

 $S \rightarrow \alpha S \qquad S \rightarrow \alpha$

Грамматика префиксов:

$$S \to (S)^* S \quad S \to (S)^* \quad S \to (S)$$

$$S \to (S) \quad S \to \alpha S \quad S \to \alpha$$

$$S \to (S) \quad S \to \alpha S \quad S \to \alpha$$

 Вычисляющий язык (вычисляет константу). Пытаемся понять, какие свойства подвыражений порождают требуемое значение.

Язык КС-грамматик, порождающих пустое слово. Алфавит $\{S,A,B,\epsilon,\to,\alpha,\$\}$ (\$ — разделитель). Выполняется, если:

- Есть правило $S \to \varepsilon$.
- Есть правило вида $S \to [$ строка только из нетерминалов]
- Данные нетерминалы можно разделить на классы (их, самое большее, будет 3) такие, что через $\mathfrak n$ промежуточных нетерминалов нетерминал переписывается в $\mathfrak e$.

- Языки путей в грамматике. Пытаемся посмотреть через линзу гомоморфизма и пытаться свести к языкам, порождаемых этой грамматикой.
- Языки с условиями вида $|w|_{v_1} = |w|_{v_2}$. Пытаемся понять, какая взаимосвязь есть между вхождениями v_1 и v_2 . Если взаимосвязь исчерпывается конечным числом случаев язык регулярный, иначе строим КС-язык, но имеем в виду перекрытия!

Определение типа языка

Подсказки, что язык — не контекстно-свободен:

- Если косвенно встречается указание на равенство подструктур (неограниченных индексов в натуральных числах и т.д.)
- Если не удаётся разбить слово на фрагменты, соответствующие ПСП, имеющие синхронные «накачки».

Фрагменты должны чётко отделяться друг от друга! Иначе могут возникнуть иллюзии: см. $\{v_1 \, w \, v_2 \, w \, | \, w \in \{a, b\}^+\}$ (и сравним с $\{v_1 \, w \, v_2 \, w \, | \, w \in a, b^+ \ \& \ v_2 \in b^+\}$).

Определение типа языка

Подсказки, что язык — не регулярен:

- Если косвенно встречается указание на подсчёт вхождений, причём в промежуточном состоянии подсчёта могут быть сколь угодно большие значения разницы числа вхождений.
- Если есть намёк на ПСП.

То же замечание, что и для не КС (ищем чётко различающий инфикс, а если есть сомнения — пересекаем с регулярным языком).

Структура тестов на контесте

- регулярно-замкнутые (20 * 0, 5);
- **2** линейные КС с накачкой (5 * 1 + 10 * 2);
- **3** регулярные с поглощением накачек (10 * 2 + 5 * 3);
- с произвольно длинными фрагментами накачек (10*2+5*3);
- ы КС, содержащие в себе линейный КС с накачкой (5 * 3);
- **6** синтаксические ошибки (5 * 0, 5);
- «монстры» (КС-грамматики со сложно разрешимой регулярностью) (5 примеров).

Регулярно-замкнутые грамматики

Если в языке нет ни одного нетерминала, который переписывается так: $N_i \to^* \alpha N_i \beta$, где $\alpha \neq \epsilon$ и $\beta \neq \epsilon$, то язык регулярен.

Доказательство: можно скачать конструкцию со статьи Mohri–Nederhof (см. non-self-embedding grammars)

- Выделяем нетерминалы, переписывающиеся только в ε, и стираем их. Они не влияют на язык.
- Строим множества взаимно-рекурсивных нетерминалов:

$$M_s = \{T \,|\, \forall T_i, T_j \in M_s (T_i \to^* \alpha \,T_j \,\beta \,\&\, T_j \to^* \gamma \,T_i \,\delta)\}.$$
 Если хотя бы одно взаимно-рекурсивное замыкание имеет вид $T_i \to^* \alpha \gamma \,T_i \,\delta \beta$, причём языки обеих сентенциальных форм $\alpha \gamma$, $\delta \beta$ отличны от языка $\{\epsilon\}$ (и не пусты), тогда грамматика не регулярно-замкнута.

Линейные КС с накачкой

Если $S \to^* \alpha S \beta$ и $S \to^* \gamma$, причём существуют слова w_α , w_β , w_γ такие, что $w_\tau \in \mathsf{L}(\tau^*)$ & $\forall \tau_1(\tau_1 \neq \tau \Rightarrow w_\tau \notin \mathsf{L}(\tau_1^*))$, то язык — не регулярен.

Доказательство: пересечём с регуляркой, вынуждающей итерироваться $(x_1 w_{\alpha} x_2)^* (x_3 w_{\gamma} x_4) (x_5 w_{\beta} x_6)^*$, и попробуем накачать фрагмент, захватывающий целиком w_{β} .

Здесь языки линейные (т.е. ровно с 1 нетерминалом в правой части), но может быть несколько вложенных подвыводов (с чёткой границей саморекурсивного фрагмента слева и справа).

6/11

Линейные КС с накачкой

Если $S \to^* \alpha S \beta$ и $S \to^* \gamma$, причём существуют слова w_{α} , w_{β} , w_{γ} такие, что $w_{\tau} \in L(\tau^*)$ & $\forall \tau_1(\tau_1 \neq \tau \Rightarrow w_{\tau} \notin L(\tau_1^*))$, то язык — не регулярен.

Доказательство: пересечём с регуляркой, вынуждающей итерироваться $(x_1 w_{\alpha} x_2)^* (x_3 w_{\gamma} x_4) (x_5 w_{\beta} x_6)^*$, и попробуем накачать фрагмент, захватывающий целиком w_{β} .

Достаточно, чтобы нашлось w_{γ} , не входящее ни в один язык (α^* и β^*). Это рассуждение работает надёжно, только если языки α , β не допускают пустое слово (т.е., например, если $\alpha = (\alpha|b)^*$, β — любой регулярный, а $\gamma = c$, то весь язык всё равно регулярный, см. идемпотентность языков).

Регулярные с поглощением накачек

Если $T \to \alpha T \beta$, где α , β — регулярные языки, причём $\alpha^* \approx \beta^*$, т.е. $\forall w(\exists i, k_1(w^{k_1} \in \alpha^i) \Leftrightarrow \exists j, k_2(w^{k_2} \in \beta^j))$, и к тому же для языка $T \to^* \gamma$ слов, не проходящих через этот рекурсивный цикл, также выполнено $\gamma^* \approx \beta^*$, то язык, описываемый T, регулярен.

Если $\alpha = \alpha \alpha$ или $\beta = \beta \beta$ (регулярные языки идемпотентны), то язык сразу регулярен, если γ регулярен.

Если нашлось w, опровергающее условие аппроксимации, то это возможная подсказка, с чем нужно пересекать грамматику для попытки поиска накачек. Если нашлись такие w и для α , и для β — это очень хорошая подсказка. Деталь: регулярные языки могут собираться по разным ветвям вывода, например $S \to \alpha S b | \alpha S \alpha | \alpha | b | b S \alpha | b S b$. Имеем: $(\alpha|b)^* = (\alpha|b)^*$.

С произвольно длинными фрагментами...

Если коммутативный образ языка L вынуждает соотношение $|w|_b < \sum k_j \cdot |w|_{\alpha_j} + C_0$ для некоторых букв b, α_j , но при этом можно построить слово в L, содержащее произвольно длинный фрагмент ν , такой что $|\nu|_b > \sum k_j \cdot |\nu|_{\alpha_j} + C_0$, тогда язык L не регулярен.

Пример: $S \to \alpha \, S \, \alpha \, | \, b \, S \, \alpha \, | \, b$ (смотрим на подслово b^n в префиксе).

Коммутативный образ многократно саморекурсивных правил строится перемещением саморекурсивных вызовов вслед за базисными. Положим $S \to b S S S \mid \alpha$. Имеем $S \to (b S S)^+ S \mid \alpha$, теперь проталкиваем вперёд все базисные случаи: $S \to (b\alpha\alpha)^+ S \mid \alpha$, и по лемме Ардена: $S = (b\alpha\alpha)^+ \alpha$.

Синтаксис

Начальный нетерминал: [S], пустое слово — _.

```
\langle \text{grammar} \rangle ::= \langle \text{rule} \rangle^+

\langle \text{rule} \rangle ::= \langle \text{nterm} \rangle->\langle \text{term} \rangle^+

\langle \text{term} \rangle ::= \langle \text{nterm} \rangle | [a-z] |_{\_}

\langle \text{nterm} \rangle ::= [[A-z]^+[0-9]^*]
```

- Всего из 80 тестов 5 будет с некорректным синтаксисом, и уже на этих пяти тестах можно с гарантией заработать 2,5 балла.
- Использование табуляций, лишних пробелов, а также различных вариантов перевода строки, и наличие лишних пустых строк синтаксическими ошибками не считаются.

Свидетельства

- Ответ: regular, non-regular, unknown записывается в файл result.txt в корневой папке. Т.е. файл result.txt содержит ответ строго на один тест. По умолчанию не требуется сообщать, каким образом была установлена регулярность или нерегулярность.
- Если по ключу запуска будет возможно получить свидетельство ответа (свойство грамматики, которое дало возможность сделать вывод о её регулярности), то это добавит +3 балла к базовой сумме баллов (до повышающего множителя).
- Свидетельство ответа в свободной форме. Записывается в лог, не являющийся файлом result.txt.

Проверка корректности

- Если просмотр кода после РК выявит грубую подгонку под тесты / рандомизацию, с вас снимаются все баллы по срезам (соответственно, награждаются следующие по очереди) и накладывается командный штраф 5 баллов за каждое нарушение.
- Если ваши же собственные секретные тесты окажутся неустойчивыми при контрольной проверке, ваши баллы за секретные тесты умножатся на 0,5.
- Недетерминированными алгоритмами пользоваться можно в том случае, если они выбирают путь разбора случаев. При этом могут дополнительно получаться результаты unknown или timeout, но не может получаться на одном прогоне regular, а на другом non-regular — это считается априори рандомизацией и штрафуется (см. п.1).