# (3.4) Hermite Interpolation MATH 4701 Numerical Analysis

Suppose  $x_0$ ,  $x_1$ , ...,  $x_n$  are n+1 **distinct** numbers, and  $y_0$ ,  $y_1$ , ..., $y_n$  and  $z_0$ ,  $z_1$ , ..., $z_n$  are arbitrary numbers.

Suppose  $x_0, x_1, ..., x_n$  are n+1 **distinct** numbers, and  $y_0, y_1, ..., y_n$  and  $z_0, z_1, ..., z_n$  are arbitrary numbers.

We would like to find a polynomial H(x) of degree at most 2n + 1 such that

$$H(x_k) = y_k$$

$$H'(x_k)=z_k$$

 $H(x_k) = y_k$  and  $H'(x_k) = z_k$  for all  $0 \le k \le n$ .

Suppose  $x_0$ ,  $x_1$ , ...,  $x_n$  are n+1 **distinct** numbers, and  $y_0$ ,  $y_1$ , ..., $y_n$  and  $z_0$ ,  $z_1$ , ..., $z_n$  are arbitrary numbers.

We would like to find a polynomial H(x) of degree at most 2n + 1 such that

$$H(x_k) = y_k$$
 and  $H'(x_k) = z_k$  for all  $0 \le k \le n$ .

Although we already know how to find such polynomial using divided differences, we want to find a description of such polynomial in a way similar to that of Lagrange interpolating polynomial as it turns out to be useful later.

Suppose  $x_0$ ,  $x_1$ , ...,  $x_n$  are n+1 **distinct** numbers, and  $y_0$ ,  $y_1$ , ..., $y_n$  and  $z_0$ ,  $z_1$ , ..., $z_n$  are arbitrary numbers.

We would like to find a polynomial H(x) of degree at most 2n + 1 such that

$$H(x_k) = y_k$$
 and  $H'(x_k) = z_k$  for all  $0 \le k \le n$ .

For each  $0 \le k \le n$ , we find a polynomial  $H_k(x)$  of degree 2n + 1 satisfying

$$\begin{cases} H_k(x_k) = 1 \\ H_k(x_j) = 0 \\ H'_k(x_j) = 0 \end{cases} \text{ for all } 0 \le j \le n, j \ne k$$

We would like to find a polynomial H(x) of degree at most 2n + 1 such that

$$H(x_k) = y_k$$
 and  $H'(x_k) = z_k$  for all  $0 \le k \le n$ .

For each  $0 \le k \le n$ , we find a polynomial  $H_k(x)$  of degree 2n + 1 satisfying

$$\begin{cases} H_k(x_k) = 1 \\ H_k(x_j) = 0 \\ H'_k(x_j) = 0 \end{cases} \text{ for all } 0 \le j \le n, \ j \ne k$$
 for all  $0 \le j \le n$ 

For each  $0 \le k \le n$ , we find a polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

$$\begin{cases} \hat{H_k}(x_j) = 0 & \text{for all } 0 \le j \le n \\ \hat{H_k}'(x_j) = 0 & \text{for all } 0 \le j \le n, j \ne k \\ \hat{H_k}'(x_k) = 1 \end{cases}$$

We would like to find a polynomial H(x) of degree at most 2n + 1 such that

$$H(x_k) = y_k$$
 and  $H'(x_k) = z_k$  for all  $0 \le k \le n$ .

For each  $0 \le k \le n$ , we find a polynomial  $H_k(x)$  of degree 2n + 1 satisfying

$$\begin{cases} H_k(x_k) = 1 \\ H_k(x_j) = 0 & \text{for all } 0 \le j \le n, j \ne k \\ H'_k(x_j) = 0 & \text{for all } 0 \le j \le n \end{cases}$$

For each  $0 \le k \le n$ , we find a polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

$$\begin{cases} \hat{H_k}(x_j) = 0 & \text{for all } 0 \le j \le n \\ \hat{H_k}'(x_j) = 0 & \text{for all } 0 \le j \le n, j \ne k \\ \hat{H_k}'(x_k) = 1 \end{cases}$$

Then  $H(x) = y_0 H_0(x) + ... + y_n H_n(x) + z_0 \hat{H}_0(x) + ... + z_n \hat{H}_n(x)$  is a polynomial of degree at most 2n + 1 satisfying the conditions (H) above.

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n + 1 satisfying

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n+1 satisfying

$$\blacksquare \left\{ \begin{array}{l} H_k(x_k) = 1 \\ H_k(x_j) = 0 \\ H'_k(x_j) = 0 \end{array} \right. \text{ for all } 0 \le j \le n, j \ne k$$

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of degree  $n$ , satisfies  $L_k(x_k) = 1$  and  $L_k(x_j) = 0$  for all  $0 \le j \le n$ ,  $j \ne k$ .

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n+1 satisfying

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of degree  $n$ , satisfies  $L_k(x_k) = 1$  and  $L_k(x_j) = 0$  for all  $0 \le j \le n$ ,  $j \ne k$ .

Polynomial 
$$L_k^2(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)^2}{(x_k-x_j)^2} = \frac{(x-x_0)^2...(x-x_{k-1})^2(x-x_{k+1})^2...(x-x_n)^2}{(x_k-x_0)^2...(x_k-x_{k-1})^2(x_k-x_{k+1})^2...(x_k-x_n)^2},$$
 of degree  $2n$ , satisfies  $L_k^2(x_k) = 1$  and  $L_k^2(x_i) = 0$  and  $(L_k^2)'(x_i) = 0$  for all

of degree 2n, satisfies  $L_k^2(x_k) = 1$  and  $L_k^2(x_j) = 0$  and  $(L_k^2)'(x_j) = 0$  for all  $0 \le j \le n$ ,  $j \ne k$  (all  $x_j$ ,  $j \ne k$  are double roots of  $L_k^2(x)$ ).

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n + 1 satisfying

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of

degree n, satisfies  $L_k(x_k)=1$  and  $L_k(x_j)=0$  for all  $0\leq j\leq n,\, j\neq k$ .

Polynomial 
$$L_k^2(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)^2}{(x_k-x_j)^2} = \frac{(x-x_0)^2...(x-x_{k-1})^2(x-x_{k+1})^2...(x-x_n)^2}{(x_k-x_0)^2...(x_k-x_{k-1})^2(x_k-x_{k+1})^2...(x_k-x_n)^2},$$

of degree 2n, satisfies  $L_k^2(x_k)=1$  and  $L_k^2(x_j)=0$  and  $(L_k^2)'(x_j)=0$  for all  $0\leq j\leq n,\ j\neq k$  (all  $x_j,\ j\neq k$  are double roots of  $L_k^2(x)$ ).

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$ 

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n + 1 satisfying

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of

degree n, satisfies  $L_k(x_k)=1$  and  $L_k(x_j)=0$  for all  $0\leq j\leq n,\, j\neq k$ .

Polynomial 
$$L_k^2(x) = \prod_{\substack{1 \leq j \leq n \\ j \neq k}} \frac{(x-x_j)^2}{(x_k-x_j)^2} = \frac{(x-x_0)^2...(x-x_{k-1})^2(x-x_{k+1})^2...(x-x_n)^2}{(x_k-x_0)^2...(x_k-x_{k-1})^2(x_k-x_{k+1})^2...(x_k-x_n)^2}$$

of degree 2n, satisfies  $L_k^2(x_k)=1$  and  $L_k^2(x_j)=0$  and  $(L_k^2)'(x_j)=0$  for all  $0\leq j\leq n,\ j\neq k$  (all  $x_j,\ j\neq k$  are double roots of  $L_k^2(x)$ ).

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n + 1 satisfying

$$\blacksquare \begin{cases} H_k(x_k) = 1 \\ H_k(x_j) = 0 \\ H'_k(x_j) = 0 \end{cases} \text{ for all } 0 \le j \le n, j \ne k$$

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of degree  $n$ , satisfies  $L_k(x_k) = 1$  and  $L_k(x_i) = 0$  for all  $0 \le j \le n$ ,  $j \ne k$ .

Polynomial 
$$L_k^2(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)^2}{(x_k-x_j)^2} = \frac{(x-x_0)^2...(x-x_{k-1})^2(x-x_{k+1})^2...(x-x_n)^2}{(x_k-x_0)^2...(x_k-x_{k-1})^2(x_k-x_{k+1})^2...(x_k-x_n)^2},$$

of degree 2n, satisfies  $L_k^2(x_k)=1$  and  $L_k^2(x_j)=0$  and  $(L_k^2)'(x_j)=0$  for all  $0\leq j\leq n,\ j\neq k$  (all  $x_j,\ j\neq k$  are double roots of  $L_k^2(x)$ ).

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

$$H'_k(x) = AL_k^2(x) + (A(x - x_k) + 1)2L_k(x)L'_k(x).$$

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n + 1 satisfying

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of degree  $n$ , satisfies  $L_k(x_k) = 1$  and  $L_k(x_i) = 0$  for all  $0 < j < n$ ,  $j \ne k$ .

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

$$H'_k(x) = AL_k^2(x) + (A(x - x_k) + 1)2L_k(x)L'_k(x).$$

For all 
$$0 \le j \le n$$
,  $j \ne k$ ,  $H'_k(x_j) = AL^2_k(x_j) + (A(x_j - x_k) + 1)2L_k(x_j)L'_k(x_j) = 0$ 



For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n + 1 satisfying

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of

degree n, satisfies  $L_k(x_k) = 1$  and  $L_k(x_j) = 0$  for all  $0 \le j \le n$ ,  $j \ne k$ .

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

$$H'_k(x) = AL_k^2(x) + (A(x - x_k) + 1)2L_k(x)L'_k(x).$$

For all 
$$0 \le j \le n$$
,  $j \ne k$ ,  $H'_k(x_j) = AL^2_k(x_j) + (A(x_j - x_k) + 1)2L_k(x_j)L'_k(x_j) = 0$ 

Additionally, 
$$H'_k(x_k) = AL_k^2(x_k) + (A(x_k - x_k) + 1)2L_k(x_k)L'_k(x_k)$$

◆ロト ◆個 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n+1 satisfying

$$\blacksquare \begin{cases} H_k(x_k) = 1 \\ H_k(x_j) = 0 \\ H'_k(x_j) = 0 \end{cases} \text{ for all } 0 \le j \le n, j \ne k$$

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of degree  $n$ , satisfies  $L_k(x_k) = 1$  and  $L_k(x_i) = 0$  for all  $0 \le j \le n$ ,  $j \ne k$ .

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

$$H'_k(x) = AL_k^2(x) + (A(x - x_k) + 1)2L_k(x)L'_k(x).$$

For all 
$$0 \le j \le n$$
,  $j \ne k$ ,  $H'_k(x_j) = AL_k^2(x_j) + (A(x_j - x_k) + 1)2L_k(x_j)L'_k(x_j) = 0$ 

Additionally,

$$H'_k(x_k) = AL_k^2(x_k) + (A(x_k - x_k) + 1)2L_k(x_k)L'_k(x_k) = A(1)^2 + (A(0) + 1)2(1)L'_k(x_k)$$

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n + 1 satisfying

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of degree  $n$ , satisfies  $L_k(x_k) = 1$  and  $L_k(x_j) = 0$  for all  $0 \le j \le n$ ,  $j \ne k$ .

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

$$H'_k(x) = AL_k^2(x) + (A(x - x_k) + 1)2L_k(x)L'_k(x).$$

For all 
$$0 \le j \le n$$
,  $j \ne k$ ,  $H'_k(x_j) = AL_k^2(x_j) + (A(x_j - x_k) + 1)2L_k(x_j)L'_k(x_j) = 0$ 

Additionally, 
$$H'_k(x_k) = AL_k^2(x_k) + (A(x_k - x_k) + 1)2L_k(x_k)L'_k(x_k) = A(1)^2 + (A(0) + 1)2(1)L'_k(x_k) = A + 2L'_k(x_k).$$

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n+1 satisfying

Polynomial 
$$L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)} = \frac{(x-x_0)...(x-x_{k-1})(x-x_{k+1})...(x-x_n)}{(x_k-x_0)...(x_k-x_{k-1})(x_k-x_{k+1})...(x_k-x_n)}$$
, of

degree n, satisfies  $L_k(x_k)=1$  and  $L_k(x_j)=0$  for all  $0\leq j\leq n,\, j\neq k$ .

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

$$H'_k(x) = AL_k^2(x) + (A(x - x_k) + 1)2L_k(x)L'_k(x).$$

For all 
$$0 \le j \le n$$
,  $j \ne k$ ,  $H'_k(x_j) = AL^2_k(x_j) + (A(x_j - x_k) + 1)2L_k(x_j)L'_k(x_j) = 0$ 

Additionally, 
$$H'_k(x_k) = AL_k^2(x_k) + (A(x_k - x_k) + 1)2L_k(x_k)L'_k(x_k) = A(1)^2 + (A(0) + 1)2(1)L'_k(x_k) = A + 2L'_k(x_k)$$
. Therefore, to make sure  $H'_k(x_k) = 0$ , we choose  $A = -2L'_k(x_k)$ .

4 D > 4 A > 4 B > 4 B > B + 9 Q (

For each  $0 \le k \le n$ , we would like to find the polynomial  $H_k(x)$  of degree 2n+1 satisfying

Polynomial 
$$H_k(x) = (A(x - x_k) + 1)L_k^2(x)$$
, of degree  $2n + 1$ , satisfies  $H_k(x_k) = (A(x_k - x_k) + 1)L_k^2(x_k) = 1$  and  $H_k(x_j) = (A(x_j - x_k) + 1)L_k^2(x_j) = 0$ .

$$H'_k(x) = AL_k^2(x) + (A(x - x_k) + 1)2L_k(x)L'_k(x).$$

For all 
$$0 \le j \le n$$
,  $j \ne k$ ,  $H'_k(x_j) = AL^2_k(x_j) + (A(x_j - x_k) + 1)2L_k(x_j)L'_k(x_j) = 0$ 

Additionally, 
$$H'_k(x_k) = AL_k^2(x_k) + (A(x_k - x_k) + 1)2L_k(x_k)L'_k(x_k) = A(1)^2 + (A(0) + 1)2(1)L'_k(x_k) = A + 2L'_k(x_k)$$
. Therefore, to make sure  $H'_k(x_k) = 0$ , we choose  $A = -2L'_k(x_k)$ .

Therefore, 
$$H_k(x) = (-2L'_k(x_k)(x-x_k)+1)L^2_k(x)$$
, where  $L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x-x_j)}{(x_k-x_j)}$  is the polynomial of degree  $2n+1$  satisfying the conditions

For each  $0 \le k \le n$ , we would like to find the polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

For each  $0 \le k \le n$ , we would like to find the polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

$$\begin{array}{l}
\blacksquare \begin{cases}
\hat{H_k}(x_j) = 0 & \text{for all } 0 \le j \le n \\
\hat{H_k}'(x_j) = 0 & \text{for all } 0 \le j \le n, j \ne k \\
\hat{H_k}'(x_k) = 1
\end{array}$$

$$\hat{H}_k(x) = (x - x_k) L_k^2(x)$$
, where  $L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x - x_j)}{(x_k - x_j)}$  is the polynomial of degree  $2n + 1$  satisfying the conditions  $\blacksquare$ .

For each  $0 \le k \le n$ , we would like to find the polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

 $\hat{H}_k(x) = (x - x_k) L_k^2(x)$ , where  $L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x - x_j)}{(x_k - x_j)}$  is the polynomial of degree 2n + 1 satisfying the conditions  $\blacksquare$ .

 $\hat{H}_k(x)$  has one factor of  $x - x_k$  and two factors of  $(x - x_j)$  for all  $j \neq k$ .

For each  $0 \le k \le n$ , we would like to find the polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

 $\hat{H}_k(x) = (x - x_k) L_k^2(x)$ , where  $L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x - x_j)}{(x_k - x_j)}$  is the polynomial of degree 2n + 1 satisfying the conditions  $\blacksquare$ .

 $\hat{H}_k(x)$  has one factor of  $x - x_k$  and two factors of  $(x - x_j)$  for all  $j \neq k$ . Therefore,  $\hat{H}_k(x_j) = 0$  for all  $1 \leq j \leq n$ .

<ロ > < 回 > < 回 > < 巨 > < 巨 > 三 の < @

For each  $0 \le k \le n$ , we would like to find the polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

$$\begin{array}{l}
\blacksquare \begin{cases}
\hat{H_k}(x_j) = 0 & \text{for all } 0 \le j \le n \\
\hat{H_k}'(x_j) = 0 & \text{for all } 0 \le j \le n, j \ne k \\
\hat{H_k}'(x_k) = 1
\end{array}$$

$$\hat{H}_k(x) = (x - x_k) L_k^2(x)$$
, where  $L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x - x_j)}{(x_k - x_j)}$  is the polynomial of degree  $2n + 1$  satisfying the conditions  $\blacksquare$ .

 $\hat{H}_k(x)$  has one factor of  $x-x_k$  and two factors of  $(x-x_j)$  for all  $j \neq k$ . Therefore,  $\hat{H}_k(x_j) = 0$  for all  $1 \leq j \leq n$ .

$$\hat{H}_{k}'(x) = L_{k}^{2}(x) + 2(x - x_{k})L_{k}(x)L_{k}'(x).$$



For each  $0 \le k \le n$ , we would like to find the polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

 $\hat{H_k}(x) = (x - x_k)L_k^2(x)$ , where  $L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x - x_j)}{(x_k - x_j)}$  is the polynomial of degree 2n + 1 satisfying the conditions  $\blacksquare$ .

 $\hat{H}_k(x)$  has one factor of  $x-x_k$  and two factors of  $(x-x_j)$  for all  $j \neq k$ . Therefore,  $\hat{H}_k(x_j) = 0$  for all  $1 \leq j \leq n$ .

$$\hat{H}_k'(x) = L_k^2(x) + 2(x - x_k)L_k(x)L_k'(x).$$

$$\hat{H}_k'(x_j) = L_k^2(x_j) + 2(x_j - x_k)L_k(x_j)L_k'(x_j) = 0$$
, when  $j \neq k$ .



For each  $0 \le k \le n$ , we would like to find the polynomial  $\hat{H}_k(x)$  of degree 2n+1 satisfying

 $\hat{H}_k(x) = (x - x_k) L_k^2(x)$ , where  $L_k(x) = \prod_{\substack{1 \le j \le n \\ j \ne k}} \frac{(x - x_j)}{(x_k - x_j)}$  is the polynomial of degree 2n + 1 satisfying the conditions  $\blacksquare$ .

 $\hat{H}_k(x)$  has one factor of  $x - x_k$  and two factors of  $(x - x_j)$  for all  $j \neq k$ . Therefore,  $\hat{H}_k(x_i) = 0$  for all 1 < j < n.

$$\hat{H}_{k}'(x) = L_{k}^{2}(x) + 2(x - x_{k})L_{k}(x)L_{k}'(x).$$

$$\hat{H_k}'(x_j) = L_k^2(x_j) + 2(x_j - x_k)L_k(x_j)L_k'(x_j) = 0$$
, when  $j \neq k$ .

$$\hat{H_k}'(x_k) = L_k^2(x_k) + 2(x_k - x_k)L_k(x_k)L_k'(x_k) = (1)^2 + 0 = 1.$$



#### Example

Find the Hermite interpolation polynomial for the following data:

| X     | 1.1   | 1.3   | 1.5  |
|-------|-------|-------|------|
| f(x)  | 0.45  | 0.27  | 0.07 |
| f'(x) | -0.89 | -0.96 | -1   |

#### Error Estimate For Hermite Interpolation

Suppose  $f \in C^{2n+1}[a, b]$  and  $f^{(2n+2)}(x)$  exists for all  $x \in (a, b)$  and  $x_0, x_1, x_2, ..., x_n$  are distinct numbers in [a, b].

#### Error Estimate For Hermite Interpolation

Suppose  $f \in C^{2n+1}[a,b]$  and  $f^{(2n+2)}(x)$  exists for all  $x \in (a,b)$  and  $x_0, x_1, x_2, ..., x_n$  are distinct numbers in [a,b]. Let  $H_n(x)$  be the Hermite polynomial of degree at most 2n+1 satisfying

$$H_n(x_k) = f(x_k)$$
 and  $H'_n(x_k) = f'(x_k)$  for all  $0 \le k \le n$ .

#### Error Estimate For Hermite Interpolation

Suppose  $f \in C^{2n+1}[a,b]$  and  $f^{(2n+2)}(x)$  exists for all  $x \in (a,b)$  and  $x_0, x_1, x_2, ..., x_n$  are distinct numbers in [a,b]. Let  $H_n(x)$  be the Hermite polynomial of degree at most 2n+1 satisfying

$$H_n(x_k) = f(x_k)$$
 and  $H'_n(x_k) = f'(x_k)$  for all  $0 \le k \le n$ .

Then for each  $x \in [a, b]$ , there is a number  $\zeta(x) \in [x_0, x_1, ..., x_n, x]$  such that

$$f(x) - H_n(x) = \frac{f^{(2n+2)}(\zeta(x))}{(2n+2)!}(x-x_0)^2(x-x_1)^2...(x-x_n)^2$$

