

Universidade de Brasília - UnB Faculdade UnB Gama - FGA Requisitos de Software

Relatório 2

Autor: Nicácio Arruda, Pedro Sales, Ruan Nawe, Sabryna de Sousa

Orientador: (Prof. Elaine Venson)

Brasília, DF 2016

Nicácio Arruda, Pedro Sales, Ruan Nawe, Sabryna de Sousa

Relatório 2

Universidade de Brasília - UnB Faculdade UnB Gama - FGA

Orientador: (Prof. Elaine Venson)

Brasília, DF 2016

Lista de ilustrações

Gigura 1 – Processo à nível de Portfólio
Figura 2 — Processo à nível de Programa
Figura 3 — Processo à nível de Time
Figura 4 – Atributo do requisito - Origem $\dots \dots \dots$
Figura 5 – Atributo do requisito - Status
Figura 6 – Atributo do requisito - Prioridade
Figura 7 — Atributo do requisito - Risco
Figura 8 – Rastreabilidade dos Requisitos (Épicos - Features)
Figura 9 — Rastreabilidade dos Requisitos (Features - User Stories) $\ \ldots \ \ldots \ 2$
Figura 10 – Rastreabilidade dos Requisitos completa (Features - User Stories) 2
Figura 11 – Cronograma de Atividades
Figura 12 – Visão geral do processo

Lista de tabelas

Tabela 1 – Atributos do requisito		20
-----------------------------------	--	----

Lista de abreviaturas e siglas

MA Metodologia Ágil

ER Engenharia de Requisitos

SAF Scaled Agile Framework

CMMI Capability Maturity Model - Integration

MPS.BR Melhoria do Processo de Software Brasileiro

MR-MPS Modelo de Referência

MA-MPS Método de Avaliação

MN- MPS Modelo de Negócio

GRE Gerência de Requisitos

DRE Desenvolvimento de Requisitos

TI Tecnologia de Informação

Sumário

1	INTRODUÇÃO	9
2	CONTEXTO DO NEGÓCIO	11
2.1	Solução	
3	EXPERIÊNCIA NA EXECUÇÃO DAS TÉCNICAS DE ELICITAÇÃO	13
4	GERÊNCIA DE REQUISITOS	15
4.1	Nível de Portfólio	15
4.1.1	Épicos Identificados	15
4.2	Nível de Programa	16
4.2.1	Requisitos não-funcionais	16
4.2.2	Features Identificadas	17
4.2.3	Roadmap	18
4.3	Nível de Time	19
4.3.1	User Stories Identificadas	19
4.4	Gerência de Mudança	20
4.4.1	Atributos de Requisitos	20
4.4.1.1	Origem	20
4.4.1.2	Status	20
4.4.1.3	Prioridade	21
4.4.1.4	Complexidade	21
4.4.1.5	Risco	22
4.5	Rastreabilidade	22
5	DESENVOLVIMENTO	25
6	CONCLUSÃO	27
6.1	Experiência com as Técnicas de Elicitação:	
	Referências	29
	APÊNDICES	31
	APÊNDICE A – CRONOGRAMA	33
	APÊNDICE B – PROCESSO DE ENGENHARIA DE REQUISITOS	35

1 Introdução

"Os problemas que os engenheiros de software têm para solucionar são, muitas vezes, imensamente complexos. Compreender a natureza dos problemas pode ser muito difícil, especialmente se o sistema for novo. Consequentemente, é difícil estabelecer com exatidão o que o sistema deve fazer. As descrições das funções e das restrições são os requisitos para o sistema; e o processo de descobrir, analisar, documentar e verificar essa funções e restrições é chamado de engenharia de requisitos." Sommerville [2003].

Este documento irá apresentar a execução do processo de Engenharia de Requisitos conforme planejado no Trabalho 1. Para esta segunda fase do trabalho foi elaborado um novo cronograma que pode ser encontrado no apêndice A.

A abordagem utilizada neste processo foi a ágil, seguindo o modelo do Scaled Agile Framework (SAFe) e a modelagem deste processo encontra-se no apêndice B. A ferramenta para gerência dos requisitos foi o Tracecloud e as técnicas de elicitação utilizadas foram a entrevista e o brainstorming.

2 Contexto do Negócio

Devido a grande quantidade de projetos desenvolvidos em paralelo no Campus Gama da Universidade de Brasília, e a desinformação a respeito do processo colaborativo em relação a estes, a empresa júnior Eletrojun foi motivada a iniciação do projeto de Compartilhamento e Gerência de projetos, com a intenção de integrar os alunos da universidade, de modo que corroborem na produção e conclusão de projetos, incentivando ainda a divulgação dos mesmos.

O objetivo desta proposta é alcançar um nível avançado e organizado de produção e controle de projetos, concentrando ainda as propostas de projeto e os projetos em andamento em uma plataforma acessível a todos os estudantes que por ventura tenham interesse em ingressar e colaborar com projetos, proporcionando desta forma uma maior completude da aplicação prática dos conhecimentos acadêmicos.

A fim de solucionar tal defasagem do âmbito de controle, criação e colaboração de projetos, a Eletrojun, sob a liderança da estudante Mônica Damasceno, iniciou a produção de um software para esta finalidade. Porém, esta produção foi interrompida ainda em sua fase inicial.

Neste cenário, se faz necessária a refatoração do produto produzido até o momento, de forma a corresponder de forma coerente às necessidades que o cliente expressa para que solucione o problema objetivo.

2.1 Solução

Foi proposta a solução de refatoração e evolução da plataforma iniciada, corrigindo problemas estruturais, funcionais e conflitos de requisitos identificados. Além de organizar sua produção, fazendo com que esta plataforma, em sua completude, permita a criação e administração de projetos de forma colaborativa, a fim de que os usuários possam evoluir seus projetos distribuindo tarefas aos colaboradores, com funcionalidade de premiação por colaborações e ranking de projetos.

Esta deve suportar ainda uma plataforma de chat entre os usuários, permitindo a interação entre estes, além de mecanismos para personalização de configurações da plataforma na página do usuário. A solução também conta com o contexto administrativo da plataforma, onde se tem um controle dos projetos e usuários cadastrados, concedido ao(s) administrador(es) da plataforma.

3 Experiência na Execução das Técnicas de Elicitação

4 Gerência de Requisitos

4.1 Nível de Portfólio

A divisão em camadas do SAFe proporciona uma visão ampla de todos os níveis de requisitos que devem ser tratados. A camada Portifólio abrange os requisitos a nível de negócio, ou seja, uma visão com alto nível de abstração. De acordo com o nosso processo, o nível de portifólio visto na (Figura 4.1) possui as seguintes tarefas:

- Analisar a empresa Eletrojun.
- Compreender as necessidades da empresa.
- Identificar conjunto de épicos.
- Priorizar épico.
- Gerenciar épicos.

Figura 1 – Processo à nível de Portfólio

As tarefas listadas foram cumpridas com o auxílio das técnicas de elicitação, Brainstorm e Entrevista. As atas de reunião, juntamente com as entrevistas, podem ser encontradas no apêndice XX.

4.1.1 Épicos Identificados

Tema de Investimento: Gestão e desenvolvimento de projetos.

A partir das prioridades da organização, identificou-se que a empresa desejava investir na Gerência e Desenvolvimento de novos projetos. Este tema de investimento tem a função de fomentar o desenvolvimento de novos projetos por parte dos alunos da FGA, tendo como principal característica a necessidade de um meio que una os estudantes e crie um ambiente favorável para o desenvolvimento de ideias e projetos.

Para a especificação dos épicos utilizou-se o padrão recomendado pelo SAFe [SAFe 2015], que é o template lightweight business case.

Épico 01 - EP-01: Gerenciamento de Usuários: Abrange todas as ações de administração dos usuários do sistema, desde o cadastro de um usuário até a sua exclusão do sistema.

Épico 02 - EP-02: Gerenciamento de Projetos: Abrange todas as ações de administração de projetos no sistema, desde a sua publicação até o seu cumprimento total; Épico 03 - EP-03: Gerenciamento de Atividades: Abrange todas as ações de administração e gerenciamento de atividades pontuais, dentro e fora dos projetos.

Épico 04 - EP-04: Gerenciamento de Premiações: Abrange todas as ações manutenção de premiações aos usuários do sistema.

4.2 Nível de Programa

A camada de programa é a camada intermediária do processo. Este nível é responsável por identificar requisitos concretos e estabelecer estratégias para a implementação da solução. O nível de programa (Figura 4.2) possui as seguintes atividades:

- Levantar Features
- Identificar requisitos não-funcionais
- Definir Roadmap
- Priorizar Features
- Planejamento da Release
- Gerenciar Features
- Planejamento da Release

4.2.1 Requisitos não-funcionais

Requisitos de portabilidade: O sistema deverá rodar em dispositivos móveis e também em Computadores. Os navegadores suportados devem incluir Google Chrome, Internet Explorer 8 ao 11, Mozilla Firefox, Ópera e Safari.

Requisitos de implementação: O sistema deverá ser desenvolvido na linguagem Ruby com Framework Rails.

Requisitos de eficiência: O sistema deverá processar todas as requisições dos usuários ao mesmo tempo e sem demora .

Figura 2 – Processo à nível de Programa

Requisitos de confiabilidade: O sistema deverá ter alta disponibilidade, ficando disponível 24 horas por dia e todos os dias da semana.

4.2.2 Features Identificadas

Com base nas atividades descritas no processo, a equipe de Engenharia de Requisitos levantou as Features junto a cliente, para que a partir destas Features as Histórias de Usuário possam ser levantadas.

Feature 1 (EP-1 FT-1): Manutenção de Usuários Esta feature tem como objetivo manter os usuários do sistema, permitindo o cadastro e edição de perfil.

Feature 2 (EP-1 FT-2): Acesso dos Usuários Esta feature é responsável pelo controle de acesso dos usuários, que podem realizar o login e o logout.

Feature 3 (EP-2 FT-3): Manutenção de projetos Feature responsável pelo cadastro, edição, e exclusão de projetos.

Feature 4 (EP-2 FT-4): Manutenção de usuários em projetos Feature responsável por incluir e administrar usuários em um projeto.

Feature 5 (EP-4 FT-5): Sistema de pontuações e níveis para usuário. Feature responsável por permitir que o usuário possa obter pontuação nos projetos e desta forma avançar de nível na medida em que se contribui.

Feature 6 (EP-2 FT-6): Sistema de avaliação e ranking de projeto Feature responsável por permitir que o usuário possa avaliar projetos, bem como atualização do ranking de projetos.

Feature 7 (EP-3 FT-7): Sistema de ajuda Feature responsável por permitir que o usuário peça ajuda aos outros usuários.

Feature 8 (EP-3 FT-8): Sistema de registro de vendas Feature responsável por permitir que o usuário registre a venda de um produto criado na plataforma.

Feature 9 (EP-1 FT-9): Sistema de adicionar e seguir usuários Feature responsável por permitir que o usuário adicione e siga amigos e projetos.

Feature 10 (EP-3 FT-10): Sistema de pesquisa Feature responsável por permitir que o usuário pesquise por outros usuários e projetos.

Feature 11 (EP-2 FT-11): Sistema de tarefas Feature responsável por especificar e controlar atividades designadas aos usuários do projeto.

Feature 12 (EP-3 FT-12): Sistema de notificações Feature responsável por manter sistema de recebimento e envio de notificações por parte de usuários e por parte do sistema.

Feature 13 (EP-3 FT-13): Sistema de comunicações Feature responsável por manter sistema de comunicações entre usuários e entre sistema e usuários.

Feature 14 (EP-1 FT-14): Opções de configurações e preferências Feature responsável por manter as opções de configurações da conta e preferências do usuário.

Feature 15 (EP-4 FT-15): Premiações em moedas de acordo com contribuições Feature responsável por manter o sistema de premiações e bonificações de usuários conforme seu merecimento.

Feature 16 (EP-1 FT-16): Administração do Sistema Feature responsável pela parte administrativa do sistema, onde o administrador pode monitorar e cancelar contas de usuários.

4.2.3 Roadmap

Roadmap constitui-se em um mapa baseado em tempo, composto por camadas. O método, por flexível, apresenta múltiplos escopos, tendo, por consequência, distintas formas de representação [1].

Em geral, Roadmaps são utilizados para estabelecer um plano ou estratégia para atingir metas. Na arquitetura de software, esse tipo de plano ou estratégia detalha o conjunto de atividades de trabalho relacionados a arquitetura e estabelece prazos de entrega na linha do tempo de sua produção, com objetivo de evidenciar como se dará a evolução do trabalho.

Leffingwell é ainda mais pontual, descrevendo o Roadmap como uma série de releases planejadas em datas, onde cada uma delas possui uma lista de features priorizadas.[2]

No presente projeto, foi levado em conta a assincronicidade das features, por terem seu desenvolvimento distribuído entre 2 sprints, de forma a permitir a possibilidade de sua entrega em duas parcelas. Entretanto, tal metodologia visa a completude de cada entrega, sendo assim a primeira parcela completamente independente da segunda, no que

diz respeito a sua plena funcionalidade.

Desta forma, o Roadmap proposto apresenta-se da seguinte forma:

IMAGEMMMMMMMMMMM

Como descrito acima, a Feature 2 terá uma parcela entregue na Sprint 1 e uma outra parcela entregue na Sprint 2, garantindo a plena usabilidade das duas parcelas. O Roadmap completo se encontra no apêndice XX.

4.3 Nível de Time

O nível de time compreende a camada mais baixa de todo o processo ágil, esta camada é responsável pela implementação da solução técnica, e também pelo detalhamento mais estrito dos requisitos levantados nas camadas superiores, gerando assim as histórias de usuário. O nível de time (Figura 4.2) são desempenhadas as seguintes atividades:

- Levantar User Stories
- Planejar Sprint
- Priorizar e detalhar User Stories
- Desenvolver Sprint
- Retrospectiva da Sprint
- Gerenciar User Stories

Figura 3 – Processo à nível de Time

4.3.1 User Stories Identificadas

Logo abaixo é possível verificar as histórias dos usuários, que estão organizadas nos respectivos épicos e features. As histórias seguem o padrão do cartão abaixo.

TABELAAA

Atores identificados:

- Usuário do sistema
- Usuário colaborador
- Gerente de projeto
- Administrador do Sistema

4.4 Gerência de Mudança

4.4.1 Atributos de Requisitos

De forma a contribuir na identificação e na obtenção de informações mais detalhadas dos requisitos dentro do projeto, foi realizada uma identificação por atributos nestes, dentro da plataforma, de forma a identificar rastreabilidade, progresso, prioridade e risco dentro do projeto.

4.4.1.1 Origem

De forma a garantir a rastreabilidade e origem dos requisitos, os atributos foram identificados de acordo com a seguinte tabela:

Tabela 1 – Atributos do requisito

EP	Épico
FT	Feature
US	User Story

4.4.1.2 Status

Visando monitorar o grau de completude do requisito, foi utilizado um atributo de Status do requisito, em forma de porcentagem.

Figura 4 – Atributo do requisito - Origem

Figura 5 – Atributo do requisito - Status

4.4.1.3 Prioridade

Para caracterizar a prioridade dos requisitos, eles foram classificado entre prioridade média, alta ou baixa, de forma a evidenciar sua importância no contexto do projeto.

Figura 6 – Atributo do requisito - Prioridade

4.4.1.4 Complexidade

De forma a ter um controle de tempo de entrega dos requisitos, foi atribuído ainda o nível de complexidade deste, de forma a permitir um maior controle de data de entrega.

Tal classificação tem 3 níveis: Baixa, Média e Alta. É feita a atribuição na descrição do requisito.

4.4.1.5 Risco

Caracteriza o risco que a implementação deste requisito traz para a integridade do projeto. Também classificado em 3 níveis: Baixo, Médio e Alto e também atribuído na descrição do requisito.

Figura 7 – Atributo do requisito - Risco

4.5 Rastreabilidade

Rastreabilidade define-se, segundo Edwards, como sendo a técnica usada para prover relacionamento entre requisitos, arquitetura e implementação final do sistema [3]. Ela auxilia ainda na compreensão dos relacionamentos existentes entre requisitos do software ou entre artefatos de requisitos, arquitetura e implementação. Esses relacionamentos permitem aos projetistas mostrar que o projeto atende aos requisitos. A rastreabilidade também apóia a detecção precoce daqueles requisitos não atendidos pelo software [4].

IMAGEMMM

A rastreabilidade foi foi documentada na ferramenta Tracecloud como se segue:

Figura 8 – Rastreabilidade dos Requisitos (Épicos - Features)

Figura 9 – Rastreabilidade dos Requisitos (Features - User Stories)

Figura 10 – Rastreabilidade dos Requisitos completa (Features - User Stories)

5 Desenvolvimento

6 Conclusão

Esta seção traz informações a respeito da experiência da equipe na execução do trabalho, bem como as obtidas com as Técnicas de Elicitação de Requisitos utilizadas e as considerações finais a respeito do processo de aprendizagem da disciplina.

6.1 Experiência com as Técnicas de Elicitação:

Para o presente trabalho, as técnicas de elicitação de requisitos adotadas foram de suma importância para o pleno entendimento do problema a ser solucionado e o levantamento dos requisitos em sua completude, de forma que fossem satisfeitas as necessidades, bem como os problemas que o mesmo buscava sanar com a solução proposta.

Inicialmente foi utilizada, assim como planejada anteriormente, a técnica de entrevista. Foram definidas agendas, de forma a se seguir um roteiro previamente combinado com o cliente, para que fosse obtido os insumos e produtos necessários para o levantamento adequado dos requisitos da solução.

A entrevista na fase inicial do projeto foi de extrema importância para a aproximação entre a equipe de Engenharia de Requisitos e o cliente, garantindo uma boa compreensão do contexto do problema bem como a proposta de solução idealizada. Nesta técnica foi compreendido ainda a solução inicializada previamente e os desacordos e acertos desta para com as reais necessidades do cliente, demonstrando aí a aptidão da cliente para um nível mais técnico e profundo de diálogo no que diz respeito a implementação da solução.

Porém, fugindo do planejamento inicial, foi constatado que os diálogos mantidos nas entrevistas ainda não estavam sendo suficientes para que fossem elicitados e compreendidos todos os requisitos da aplicação, de forma que se fez necessária a utilização da técnica *Brainstorming*, onde o cliente era incentivado a manifestar soluções imaginadas para a aplicação, passando pela fase da geração de ideias, em seguida o esclarecimento do processo proposto e finalmente a avaliação de tal proposta, podendo assim ser informalmente documentada para a geração de requisitos consistentes para a plataforma solução.

Foi constatado desta maneira que a utilização das duas técnicas proporcionaram uma maior dinamicidade e assim uma forma mais contundente de se levantar as reais necessidades e desejos do cliente para o contexto da aplicação, de forma ainda mais rápida e precisa.

Referências

APÊNDICE A – Cronograma

	(1)	Nome	Duração	Ínicio	Fim	Predecessores	Recursos
1		⊟Trabalho	68d?	29/03/2016	30/06/2016		
2		⊕ Primeira Entrega	46d?	29/03/2016	31/05/2016		
19		□ Segunda Entrega	29d?	23/05/2016	30/06/2016		
20	100	Criar estrutura do relatório final	6d?	23/05/2016	30/05/2016		Sabryna
21	100	Definir contexto de negócio	5d?	24/05/2016	30/05/2016	20IF	Nicácio
22	<u></u>	Explicar sobre o processo escolhido	5d?	24/05/2016	30/05/2016	2011	Pedro
23	100	Esclarecer as técnicas de elicitação de requisitos	1d?	24/05/2016	24/05/2016	2011	Ruan
24	<u> </u>	Reunião com a cliente	1d?	31/05/2016	31/05/2016	23	Equipe de ER
25	100	Levantamento dos Épicos	1d?	01/06/2016	01/06/2016	24	Equipe de ER
26		Revisão e Análise dos Épicos	1d?	02/06/2016	02/06/2016	25	Equipe de ER
27	3 2	Levantamento das Features	1d?	02/06/2016	02/06/2016	25	Equipe de ER
28	<u></u>	Planejamento da Release	1d?	03/06/2016	03/06/2016	27	Equipe de ER
29	\$ _	Reunião com a cliente	1d?	09/06/2016	09/06/2016	28	Equipe de ER
30	3 2	Levantamento das histórias	1d?	09/06/2016	09/06/2016	28	Equipe de ER
31	\$ _	Ponto de Controle 2	1d?	09/06/2016	09/06/2016		Equipe de ER
32		Planejamento da Sprint	1d?	10/06/2016	10/06/2016	30	Equipe de ER
33		Sprint 1	5d?	10/06/2016	16/06/2016	31	Equipe de ER
34	□	Retrospectiva da Sprint	1d?	16/06/2016	16/06/2016	32	Equipe de ER
35	<u></u>	Revisar Relatório	2d?	17/06/2016	20/06/2016	34	Equipe de ER
36	<u> </u>	Entrega do Relatório	1d?	21/06/2016	21/06/2016	35	Equipe de ER
37	<u></u>	Apresentação final	6d?	23/06/2016	30/06/2016	33	Equipe de ER

Figura 11 – Cronograma de Atividades

APÊNDICE B – Processo de Engenharia de Requisitos

Figura 12 – Visão geral do processo