Lezione 20

Saverio Salzo*

28 ottobre 2022

1 Punti di discontinuità

Definizione 1.1. Sia $f: A \to \mathbb{R}$ e $x_0 \in A$. Si dice che f è discontinua in x_0 (o che x_0 è un punto di discontinuità di f) se f non è continua in x_0 . Supponiamo che x_0 sia punto di discontinuità di f, allora si hanno i seguenti casi

- (i) $\lim_{x\to x_0} f(x) = l \in \mathbb{R}$ e $l \neq f(x_0)$. In tal caso x_0 si dice un punto di discontinuità eliminabile per f. Infatti in tal caso si può modificare il valore di f in x_0 in modo che $\lim_{x\to x_0} f(x) = f(x_0)$ e quindi rendere f continua in x_0 .
- (ii) Se x_0 è punto di accumulazione a destra e a sinistra di x_0 e $\lim_{x\to x_0^-} f(x) = l_- \in \mathbb{R}$ e $\lim_{x\to x_0^+} f(x) = l_+ \in \mathbb{R}$ con $l_- \neq l_+$, allora si dice che x_0 è punto di discontinuità di prima specie o di salto. In tal caso la quantità $l_+ l_-$ si chiama salto della funzione f in x_0 . Si veda Figura 1.
- (iii) se non si verificano i casi precedenti, allora x_0 si dice punto di discontinuità di seconda specie.

Esempio 1.2.

- (i) La funzione parte intera $[\cdot]: \mathbb{R} \to \mathbb{Z}$ ha discontinuità di prima specie sui punti di \mathbb{Z} . In tali punti il salto vale 1.
- (ii) Sia $f: \mathbb{R} \to \mathbb{R}$ definita come

$$\forall x \in \mathbb{R}$$
: $f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$

^{*}DIAG, Sapienza Università di Roma (saverio.salzo@uniroma1.it).

Figura 1: Discontinuità eliminabile (in alto a sinistra), di prima specie (in alto a destra) e di seconda specie (in basso).

Abbiamo visto che il limite $\lim_{x\to 0} \operatorname{sen}(1/x)$ non esiste. Proviamo adesso che in realtà non esistono neanche i limiti sinistro e destro di f in 0 e perciò la funzione ha una discontinuità di seconda specie. Si tratta di far vedere che

$$\exists \lim_{x \to 0} f_{|\mathbb{R}^*_+}(x) \quad e \quad \exists \lim_{x \to 0} f_{|\mathbb{R}^*_-}(x).$$

Proviamo solo il primo, l'altro si prova allo stesso modo. Cerchiamo due sottoinsiemi $B_1^+, B_2^+ \subset \mathbb{R}_+^*$ per cui 0 è di accumulazione per entrambi e

$$\lim_{x \to 0} f_{B_1^+}(x) \neq \lim_{x \to 0} f_{B_2^+}(x).$$

Poniamo

$$B_1^+ = \{x \in R_+^* \mid \text{sen}(1/x) = 1\}$$
 e $B_2^+ = \{x \in R_+^* \mid \text{sen}(1/x) = -1\}.$

Allora evidentemente

$$B_1^+ = \left\{ \frac{1}{\pi/2 + 2k\pi} \mid k \in \mathbb{N} \right\} \quad \text{e} \quad B_1^+ = \left\{ \frac{1}{-\pi/2 + 2k\pi} \mid k \in \mathbb{N}^* \right\}$$

e quindi 0 è di accumulazione per entrambi e chiaramente

$$\lim_{x\to 0} f_{B_1^+}(x) = 1 \quad \text{e} \quad \lim_{x\to 0} f_{B_2^+}(x) = -1.$$

(iii) La funzione di Dirichelet

$$f \colon \mathbb{R} \to \mathbb{R}, \quad f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

è discontinua in ogni punto, con discontinuità di seconda specie: per qualunque x_0 non esistono i limiti destro e sinistro di f per x che tende a x_0 . Infatti si può definire

$$B_1^+ = \mathbb{Q} \cap]x_0, +\infty[$$
 e $B_2^+ =]x_0, +\infty[\setminus \mathbb{Q}]$

e chiaramente

$$\lim_{x \to x_0} f_{B_1^+}(x) = 1 \quad \text{e} \quad \lim_{x \to x_0} f_{B_2^+}(x) = 0.$$

Osservazione 1.3. La Definizione 1.1 richiede che il punto di discontinuità debba appartenere al dominio della funzione. Quindi, per esempio, la funzione $x \mapsto 1/x$ non è discontinua in 0: semplicemente, non ha senso parlare di continuità o discontinuità in 0 poiché 0 non è un punto del dominio.

Spesso capita nelle applicazioni di definire funzioni continue su sottoinsiemi di \mathbb{R} che siano "piccoli" in qualche senso. Si pone allora il problema di capire se queste funzioni si possono estendere in modo continuo a insiemi più grandi. A tale scopo si ha il seguente risultato.

Teorema 1.4 (di prolungamento per continuità). Sia $A \subset \mathbb{R}$ un insieme non vuoto $e f : A \to \mathbb{R}$. Sia $B \subset \mathbb{R}$ tale che

- (i) $A \subset B \subset \overline{A}$
- (ii) $\forall x_0 \in B \setminus A \text{ esiste finito } \lim_{x \to x_0} f(x).$

Allora esiste uno ed un solo prolungamento continuo di f a B, cioè una funzione $\bar{f}: B \to \mathbb{R}$ continua e tale che $\bar{f}_{|A} = f$.

Esempio 1.5. La funzione $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definita come $f(x) = \frac{\operatorname{sen}(x)}{x}$ si può prolungare a tutto \mathbb{R} definendo la funzione

$$\bar{f} \colon \mathbb{R} \to \mathbb{R} \quad \bar{f}(x) = \begin{cases} \frac{\sin x}{x} & \text{se } x \neq 0 \\ 1 & \text{se } x \neq 0. \end{cases}$$

e la funzione \bar{f} è continua su \mathbb{R}

2 Proprietà topologiche per successioni

Teorema 2.1 (Caratterizzazione dei limiti mediante successioni). Sia $f: A \to \mathbb{R}$, $l \in \overline{\mathbb{R}}$ e $x_0 \in \overline{\mathbb{R}}$ punto di accumulazione per A. Allora le seguenti proposizioni sono equivalenti.

- (i) $\lim_{x \to x_0} f(x) = l$
- (ii) Per ogni successione $(a_n)_{n\in\mathbb{N}}$ di punti di A_{x_0} risulta $\lim_{n\to+\infty} a_n = x_0 \Rightarrow \lim_{n\to+\infty} f(a_n) = l$.

Dimostrazione. (i) \Rightarrow (ii): Questa implicazione è una conseguenza del teorema sui limiti delle funzioni composte. Infatti la successione $(f(a_n))_{n\in\mathbb{N}}$ non è altro che la funzione composta

$$f \circ a \colon \mathbb{N} \to \mathbb{R}$$
.

Diamo comunque una dimostrazione diretta, perché è istruttiva. Sia $(a_n)_{n\in\mathbb{N}}$ una successione di elementi di A, diversi da x_0 , tale che $\lim_{n\to+\infty} a_n = x_0$. Dobbiamo provare che $\lim_{n\to+\infty} f(a_n) = l$, cioè che

 $\forall V \text{ intorno di } l, \exists \nu \in \mathbb{N} \text{ tale che } \forall n \in \mathbb{N}, n > \nu \colon f(a_n) \in V.$

Sia quindi V un intorno di l in $\overline{\mathbb{R}}$. Dato che $\lim_{x\to x_0} f(x) = l$, esiste U intorno di x_0 tale che

$$\forall x \in U \cap A_{x_0} \colon \quad f(x) \in V. \tag{1}$$

Inoltre, essendo $\lim_{n\to+\infty} a_n = x_0$, in corrispondenza di U, esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N} \colon n > \nu \implies a_n \in U. \tag{2}$$

Perciò, essendo $a_n \in A_{x_0}$, da (1) e (2), consegue che

$$\forall n \in \mathbb{N}, n > \nu \colon f(a_n) \in V.$$

Quindi si è provato che $\lim_{n\to+\infty} f(a_n) = l$.

(ii) \Rightarrow (i): Supponiamo per assurdo che l non sia limite di f(x) per $x \to x_0$. Allora esiste V intorno di l tale che

$$\forall U \text{ intorno di } x_0 \colon f(U \cap A_{x_0}) \not\subset V,$$

e quindi

$$\forall U \text{ intorno di } x_0 \ \exists x \in U \cap A_{x_0} \text{ tale che } f(x) \notin V.$$
 (3)

Prendiamo una successione $(U_n)_{n\in\mathbb{N}}$ di di intorni x_0 nel modo seguente

$$U_{n} = \begin{cases} \left[x_{0} - \frac{1}{n+1}, x_{0} + \frac{1}{n+1} \right] & \text{se } x_{0} \in \mathbb{R} \\ \left[n, +\infty \right] & \text{se } x_{0} = +\infty \\ \left[-\infty, n \right] & \text{se } x_{0} = -\infty. \end{cases}$$

$$(4)$$

Allora da (3) segue che

$$\forall n \in \mathbb{N} \,\exists \, a_n \in U_n \cap A_{x_0} \text{ tale che } f(a_n) \notin V.$$

Si definisce così una successione $(a_n)_{n\in\mathbb{N}}$ di punti di A_{x_0} e

$$\forall n \in \mathbb{N} : a_n \in U_n \ \text{e} \ f(a_n) \notin V.$$

Allora, per come sono definiti gli intorni U_n in (4), è facile vedere che, per confronto si ha $a_n \to x_0$ per $n \to +\infty$. Ma essendo $\forall n \in \mathbb{N} \colon f(a_n) \notin V$ e V un intorno di l, $f(a_n)$ non può tendere a l per $n \to +\infty$. Questo contrasta con l'ipotesi in (ii).

Teorema 2.2 (Caratterizzazione della continuità mediante successioni). Sia $f: A \to \mathbb{R}$ e $x_0 \in A$. Allora le seguenti proposizioni sono equivalenti.

- (i) $f \ \hat{e} \ continua \ in \ x_0$
- (ii) Per ogni successione $(a_n)_{n\in\mathbb{N}}$ di punti di A si ha $\lim_{n\to+\infty} a_n = x_0 \Rightarrow \lim_{n\to+\infty} f(a_n) = f(x_0)$.

Dimostrazione. (i) \Rightarrow (ii): Sia $(a_n)_{n\in\mathbb{N}}$ una successione di elementi di A tale che $a_n \to x_0$. Proviamo che $f(a_n) \to f(x_0)$. Sia V un intorno di $f(x_0)$. Allora, dato che f è continua in x_0 ,

esiste U intorno di
$$x_0$$
 tale che $f(U \cap A) \subset V$.

Adesso, dato che $a_n \to x_0$ ed essendo U intorno di x_0 , esiste $\nu \in \mathbb{N}$ tale che

$$\forall n \in \mathbb{N}, n > \nu \colon a_n \in U \text{ e quindi } f(a_n) \in V.$$

(ii) \Rightarrow (i): Si procede come nella dimostrazione del Teorema 2.1. Supponiamo che esista un intorno V di $f(x_0)$ tale che

$$\forall U \text{ intorno di } x_0 \colon f(U \cap A) \not\subset V.$$

Si definisce una successione $(U_n)_{n\in\mathbb{N}}$ di intorni di x_0 come prima e allora

$$\exists a_n \in U_n \cap A \text{ tale che } f(a_n) \notin V$$

e si prova che $a_n \to x_0$, mentre $f(a_n) \not\to f(x_0)$.

Proposizione 2.3. $Sia\ A \subset \mathbb{R}\ e\ x \in \mathbb{R}$. Allora

$$x \in \overline{A} \iff \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} \ tale \ che \ a_n \to x$$

Dimostrazione. Proviamo prima l'implicazione " \Leftarrow ". Se $(a_n)_{n\in\mathbb{N}}$ è una successione di elementi di A e $\lim_{n\to+\infty}a_n=x$, allora per ogni V intorno di x esiste $\nu\in\mathbb{N}$ tale che

$$\forall n \in \mathbb{N}: n > \nu \Rightarrow a_n \in V$$

e quindi $V \cap A \neq \emptyset$ (per esempio $x_{\nu+1} \in V \cap A$). Viceversa, supponiamo che $x \in \overline{A}$. Consideriamo gli intorni di x del tipo

$$V_n = \left[x - \frac{1}{n+1}, x + \frac{1}{n+1} \right] \quad \text{con } n \in \mathbb{N}.$$

Allora, essendo $x \in \overline{A}$, si ha

$$\forall n \in \mathbb{N} : V_n \cap A \neq \emptyset$$

e quindi, per ogni $n \in \mathbb{N}$ esiste $a_n \in V_n \cap A$. Si definisce così una successione $(a_n)_{n \in \mathbb{N}}$ di elementi di A e chiaramente risulta

$$\forall n \in \mathbb{N} \colon \ x - \frac{1}{n+1} < a_n < x + \frac{1}{n+1}.$$

Perciò per il teorema dei carabinieri si deduce che $a_n \to x$.

Proposizione 2.4. Sia $A \subset \mathbb{R}$. Allora sono equivalenti

- (i) A è chiuso
- (ii) $\forall x \in \mathbb{R}, \ \forall (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} : \lim_{n \to +\infty} a_n = x \implies x \in A.$

Dimostrazione. (i) \Rightarrow (ii): Sia $(a_n)_{n\in\mathbb{N}}$ una successione di elementi di A convergente ad un punto $x \in \mathbb{R}$. Per la Proposizione 2.3 $x \in \overline{A}$. Ma A è chiuso e quindi $\overline{A} = A$ e perciò $x \in A$.

(ii) \Rightarrow (i): Sia $x \in A$. Allora, per la Proposizione 2.3 esiste una successione $(a_n)_{n \in \mathbb{N}}$ di elementi di A tale che $a_n \to x$. Da (ii) si conclude che $x \in A$. Si è quindi provato che $\overline{A} \subset A$ e quindi che $\overline{A} = A$. Perciò A è chiuso.

Teorema 2.5 (di Bolzano-Weierstrass^a). Da ogni successione numerica limitata si può estrarre una sottosuccesione convergente.

^aSi vedano anche le note manoscritte sul metodo di bisezione in generale

Dimostrazione. Sia $(a_n)_{n\in\mathbb{N}}$ una successione reale limitata. Dato che $(a_n)_{n\in\mathbb{N}}$ è limitata, esiste un intervallo $I_0 = [\alpha_0, \beta_0]$ che contiene tutti gli elementi della successione. Sia $\gamma_0 = (\alpha_0 + \beta_0)/2$, il punto medio tra α_0 e β_0 . Evidentemente uno dei due insiemi

$$\{n \in \mathbb{N} \mid a_n \in [\alpha_0, \gamma_0]\}$$
 e $\{n \in \mathbb{N} \mid a_n \in [\gamma_0, \beta_0]\}$

è infinito, perché la loro unione è \mathbb{N} che è infinito. Chiamiamo \mathbb{N}_1 tale insieme e indichiamo con $I_1 = [\alpha_1, \beta_1]$ l'intervallo corrispondente, per cui

$$\mathbb{N}_1 = \{ n \in \mathbb{N} \mid a_n \in I_1 \}$$
 è infinito.

Si noti che $|I_1| = \beta_1 - \alpha_1 = (\beta_0 - \alpha_0)/2$ (essendo $I_1 = [\alpha_0, \gamma_0]$ o $I_1 = [\gamma_0, \beta_1]$). Adesso prendiamo $\gamma_1 = (\alpha_1 + \beta_1)/2$, il punto medio di α_1 e β_1 , e consideriamo gli insiemi

$$\{n \in \mathbb{N} \mid a_n \in [\alpha_1, \gamma_1]\}\$$
e $\{n \in \mathbb{N} \mid a_n \in [\gamma_1, \beta_1]\}.$

Evidentemente questi sono sottoinsiemi di \mathbb{N}_1 e la loro unione è \mathbb{N}_1 che è un insieme infinito, per cui almeno uno dei due deve essere infinito. Chiamiamo con \mathbb{N}_2 tale insieme e indichiamo con $I_2 = [\alpha_2, \beta_2]$ l'intervallo corrispondente, per cui

$$\mathbb{N}_2 = \{ n \in \mathbb{N} \mid a_n \in I_2 \}$$
 è infinito.

Si ha $|I_2| = |I_1|/2 = (\beta_0 - \alpha_0)/2^2$. Procedendo in questo modo si costruisce una successione $(I_k)_{k \in \mathbb{N}}$ di intervalli chiusi e limitati di \mathbb{R} tale che, per ogni $k \in \mathbb{N}$

$$\begin{cases}
I_{k+1} \subset I_k \\
|I_k| = \frac{b_0 - a_0}{2^k} \\
\{n \in \mathbb{N} \mid a_n \in I_k\} \text{ è infinito.}
\end{cases}$$
(5)

Allora per il principio degli intervalli incapsulati $\bigcap_{k\in\mathbb{N}} I_k = \{x_0\}$. Definiamo una sottosuccessione di $(a_n)_{n\in\mathbb{N}}$ convergente a x. Poniamo $n_0 = 0$ e poi

$$n_1 = \min \left\{ n \in \mathbb{N} \mid a_n \in I_1 \text{ e } n > n_0 \right\}$$

$$n_2 = \min \left\{ n \in \mathbb{N} \mid a_n \in I_2 \text{ e } n > n_1 \right\}$$

In generale, se $n_k \in \mathbb{N}$ è stato definito, si definisce

$$n_{k+1} = \min \{ n \in \mathbb{N} \mid a_n \in I_{k+1} \in n > n_k \}.$$

Si noti che la definizione è ben posta, perché essendo $\{n \in \mathbb{N} \mid a_n \in I_{k+1}\}$ infinito, l'insieme $\{n \in \mathbb{N} \mid a_n \in I_{k+1} \in n > n_k\}$ è non vuoto. Si definisce così per ricorrenza una successione di numeri naturali $(n_k)_{k \in \mathbb{N}}$ tale che

$$\forall k \in \mathbb{N}: n_k \in \{n \in \mathbb{N} \mid a_n \in I_k\} \text{ e } n_{k+1} > n_k.$$

Allora, $(a_{n_k})_{k\in\mathbb{N}}$ è una sottosuccessione di $(a_n)_{n\in\mathbb{N}}$ e si ha

$$\forall k \in \mathbb{N} : a_{n_k} \in I_k$$
.

Proviamo che $a_{n_k} \to x$ per $k \to +\infty$. Basta notare che, essendo $a_{n_k}, x_0 \in I_k$, risulta

$$|a_{n_k} - x_0| \le |I_k| = \frac{b_0 - a_0}{2^k} \to 0 \quad \text{per } k \to +\infty.$$