

# **GOLDS-UFSC Documentation**

GOLDS-UFSC Documentation SpaceLab, Universidade Federal de Santa Catarina, Florianópolis - Brazil

#### **GOLDS-UFSC Documentation**

June, 2020

#### **Project Chief:**

Eduardo Augusto Bezerra

#### Authors:

Gabriel Mariano Marcelino André Martins Pio de Mattos Eduardo Augusto Bezerra

#### **Contributing Authors:**

#### **Revision Control:**

| Version | Author               | Changes           | Date       |
|---------|----------------------|-------------------|------------|
| 0.1     | Gabriel M. Marcelino | Document creation | 2020/06/05 |



© 2020 by SpaceLab. GOLDS-UFSC Documentation. This work is licensed under the Creative Commons Attribution–ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

| Lis | + ^ | ŧΕ | ia |    | ^  |
|-----|-----|----|----|----|----|
| LIS | ιο  | IF | ιq | ur | es |

| 4.1 | Reference diagram of the PC-104 bus. |  |  |  |  |  |  |  |  |  | • |  |  |  |  |  |  |  | 9 |
|-----|--------------------------------------|--|--|--|--|--|--|--|--|--|---|--|--|--|--|--|--|--|---|
|-----|--------------------------------------|--|--|--|--|--|--|--|--|--|---|--|--|--|--|--|--|--|---|

# List of Tables

| 3.1 | Mission schedule              | 5  |
|-----|-------------------------------|----|
| 4.1 | PC-104 bus pinout             | 10 |
| 4.2 | PC-104 bus signal description | 11 |

# Contents

| Lis | st of Figures                                                                                                                                                                                                                 | V                                      |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| Lis | sta of Tables                                                                                                                                                                                                                 | vii                                    |
| No  | omenclature                                                                                                                                                                                                                   | vii                                    |
| 1   | Introduction 1.1 Mission Description                                                                                                                                                                                          | 1<br>1<br>1                            |
| 2   | Mission Requirements                                                                                                                                                                                                          | 3                                      |
| 3   | Mission Schedule                                                                                                                                                                                                              | 5                                      |
| 4   | Overall Description 4.1 General Diagrams 4.2 General Behaviour 4.3 Orbit Parameters 4.4 Power Budget 4.5 Link Budget 4.5.1 VHF Link 4.5.2 UHF Links 4.6 PC-104 Bus                                                            | <b>7</b> 7 7 7 7 7 8                   |
| 5   | Subsystems5.1 On-Board Data Handling5.2 Telemetry, Tracking and Command Module5.3 Electrical Power System5.4 Attitude Determination and Control System5.5 Mechanical Structure5.6 Payloads5.6.1 Environmental Data Collection | 13<br>13<br>13<br>13<br>13<br>13<br>13 |
| 6   | Ground Segment                                                                                                                                                                                                                | 15                                     |
| 7   | Operation Planning                                                                                                                                                                                                            | 17                                     |
| Re  | eferences                                                                                                                                                                                                                     | 19                                     |

### Introduction

.

# 1.1 Mission Description

.

# 1.2 Mission Objectives

- 1. To serve as a host platform for the EDC payload.
- 2. Validate the EDC payload in orbit.
- 3. Validate EDC functionality in orbit.
- 4. Validate core-satellite functions in orbit.
- 5. Evaluate the behavior of the core modules.
- 6. Perform experiments on radiation effects in electronic components in orbit.
- 7. Serve as relay for amateur radio communications.

### Mission Requirements

- 1. The power system shall be able to harvest solar energy.
- 2. The power system shall be able to store energy for use when GOLDS-UFSC is eclipsed.
- 3. The power system shall supply energy to all other modules.
- 4. The data handling system shall communicate with the other modules and store their data.
- 5. The communications system shall send a beacon signal periodically using VHF radio.
- 6. The communications system shall send the CubeSat telemetry using UHF radio.
- 7. The communications system shall be able to receive telecommands and respond to them accordingly.
- 8. The attitude system shall be able to perform a 1-axis stabilization of the CubeSat.
- 9. GOLDS-UFSC shall have the capability to receive and execute a shutdown telecommand, therefore ceasing all transmissions.
- 10. The downlink transmissions shall be done once at a time, either telemetry or beacon.
- 11. The ground station shall operate under the proper radio frequency communication licenses.
- 12. GOLDS-UFSC shall comply with international and Brazilian radio license agreements and restrictions.
- 13. The team shall build and operate a ground station for full communication with GOLDS-UFSC.

### Mission Schedule



Table 3.1: Mission schedule.

# **Overall Description**

.

## 4.1 General Diagrams

.

#### 4.2 General Behaviour

.

### 4.3 Orbit Parameters

.

# 4.4 Power Budget

.

## 4.5 Link Budget

#### 4.5.1 VHF Link

• Direction: Downlink

• Frequency: 145,97 MHz

• Modulation: MSK

• Datarate: 1200 bps

• Output Power: 30 dBm (1 W)

• Protocol: NGHam

#### 4.5.2 UHF Links

#### Main UHF Link

• Direction: Downlink and uplink

• Frequency: 436,9 MHz

• Modulation: MSK

• Datarate: 4800 bps

• Output power: 30 dBm (1 W)

• Protocol: NGHam

#### **EDC UHF Link**

• Direction: Uplink

• Frequency: 401.635 MHz

• Modulation: ????

• Datarate: ???? bps

### 4.6 PC-104 Bus



Figure 4.1: Reference diagram of the PC-104 bus.

| Pin Row    | H1 Odd         | H1 Even     | H2 Odd                 | H2 Even     |
|------------|----------------|-------------|------------------------|-------------|
| 1-2        |                |             |                        |             |
| 1-2<br>3-4 | -              | _           | -<br>FDC 1 FN          |             |
| 5-4<br>5-6 | -              | _           | EDC_1_EN<br>BE UART RX | EDC_2_EN    |
|            | -<br>DA CDIO 0 |             |                        | _           |
| 7-8        | RA_GPIO_0      | RA_GPIO_1   | BE_UART_TX             | _           |
| 9-10       | RA_GPIO_2      | -<br>DA ENI |                        |             |
| 11-12      | RA_RESET       | RA_EN       | BE_SPI_MOSI            | BE_SPI_CLK  |
| 13-14      | -              | _           | BE_SPI_CS              | BE_SPI_MISO |
| 15-16      | -              | -<br>DLV EN | _                      | _           |
| 17-18      | EDC_UART_RX/TX | PLX_EN      | _                      | _           |
| 19-20      | EDC_UART_TX/RX | -           | _                      | _           |
| 21-22      | -              | -           | _                      | _           |
| 23-24      | -              | _           | -                      | -           |
| 25-26      | -              | _           | -                      | -           |
| 27-28      | -              | _           | _                      | _           |
| 29-30      | GND            | GND         | GND                    | GND         |
| 31-32      | GND            | GND         | GND                    | GND         |
| 33-34      | -              | _           | _                      | _           |
| 35-36      | RD_SPI_CLK     | _           | ANT_VCC                | ANT_VCC     |
| 37-38      | RD_SPI_MISO    | _           | _                      | _           |
| 39-40      | RD_SPI_MOSI    | RD_SPI_CS   | _                      | _           |
| 41-42      | PL_I2C_SDA     | _           | -                      | RES_GPIO    |
| 43-44      | PL_I2C_SCL     | _           | -                      | -           |
| 45-46      | OBDH_VCC       | OBDH_VCC    | BAT_VCC                | BAT_VCC     |
| 47-48      | EDC_VCC        | EDC_VCC     | _                      | _           |
| 49-50      | RD_VCC         | RD_VCC      | EPS_I2C_SDA            | -           |
| 51-52      | BE_VCC         | BE_VCC      | EPS_I2C_SCL            |             |

Table 4.1: PC-104 bus pinout.

| Signal               | Pin(s)                       | Used By               | Description                                      |
|----------------------|------------------------------|-----------------------|--------------------------------------------------|
| GND                  | H1-29, H1-30,                | All                   | Ground reference                                 |
|                      | H1-31, H1-32,                |                       |                                                  |
|                      | H2-29, H2-30,                |                       |                                                  |
| DAT VCC              | H2-31, H2-32                 | EDC                   | Dattama tamainala (1)                            |
| BAT_VCC              | H2-45, H2-46                 | EPS                   | Battery terminals (+)                            |
| ANT_VCC<br>OBDH_VCC  | H2-35, H2-36<br>H1-45, H1-46 | EPS, ANT<br>EPS, OBDH | Antenna power supply (3.3 V)                     |
| EDC_VCC              | H1-47, H1-48                 | EPS, EDC 1,           | OBDH power supply (3.3 V) EDC power supply (5 V) |
| EDC_VCC              | ·                            | EDC 2                 | EDC power suppry (5 v)                           |
| RD_VCC               | H1-49, H1-50                 | EPS, TTC              | Main radio power supply (5 V)                    |
| BE_VCC               | H1-51, H1-52                 | EPS, TTC              | Beacon power supply (6 V)                        |
| RD_SPI_CLK           | H1-35                        | OBDH, TTC             | CLK signal of the main radio SPI bus             |
| RD_SPI_MISO          | H1-37                        | OBDH, TTC             | MISO signal of the main radio                    |
|                      |                              |                       | SPI bus                                          |
| RD_SPI_MOSI          | H1-39                        | OBDH, TTC             | MOS signal of the main radio SPI bus             |
| RD_SPI_CS            | H1-40                        | OBDH, TTC             | CS signal of the main radio                      |
|                      |                              |                       | SPI bus                                          |
| EPS_I2C_SDA          | H2-49                        | OBDH, EPS             | SDA signal of the EPS I2C                        |
| EBC 100 COI          | 110.54                       | 00011 500             | bus FRC 120.1                                    |
| EPS_I2C_SCL          | H2-51                        | OBDH, EPS             | SCL signal of the EPS I2C bus                    |
| BE_UART_RX           | H2-5                         | EPS, TTC              | EPS TX, Beacon RX (UART bus)                     |
| BE_UART_TX           | H2-7                         | EPS, TTC              | EPS RX, Beacon TX (UART                          |
| EDC_UART_TX/RX       | H1-25                        | OBDH, EDC             | bus)<br>OBDH TX, EDCs RX (UART                   |
| LB C_0/ ((()_1//()() | 111 23                       | 1, EDC 2              | bus)                                             |
| EDC UART RX/TX       | H1-27                        | OBDH, EDC             | OBDH RX, EDCs TX (UART                           |
| _ ,                  |                              | 1, EDC 2              | bus)                                             |
| EDC_1_EN             | H2-3                         | OBDH, EDC             | EDC 1 enable signal                              |
|                      |                              | 1                     | J                                                |
| EDC_2_EN             | H2-4                         | OBDH, EDC<br>2        | EDC 2 enable signal                              |
| PLX_EN               | H1-18                        | OBDH,                 | Payload X enable (GPIO)                          |
|                      |                              | Payload X             | r agroda / Criable (ar 10)                       |
| PL_I2C_SDA           | H1-41                        | OBDH,                 | SDA signal of the payload I2C                    |
|                      |                              | Payload X             | bus                                              |
| PL_I2C_SCL           | H1-43                        | OBDH,                 | SCL signal of the payload I2C                    |
|                      |                              | Payload X             | bus                                              |
| RES_GPIO             | H2-22                        | OBDH                  | Reserved GPIO pin                                |
| RES_GPIO             | H2-42                        | OBDH                  | Reserved GPIO pin                                |

Table 4.2: PC-104 bus signal description.

**Subsystems** 

.

# 5.1 On-Board Data Handling

OBDH [1]

## 5.2 Telemetry, Tracking and Command Module

TTC

## 5.3 Electrical Power System

**EPS** 

## 5.4 Attitude Determination and Control System

**ADCS** 

### 5.5 Mechanical Structure

.

# 5.6 Payloads

#### 5.6.1 Environmental Data Collection

EDC [2]

# **Ground Segment**

.

# Operation Planning

.

# Bibliography

- [1] Space Technology Research Laboratory (SpaceLab). *OBDH 2.0 Documentation*, 2020. Available at <a href="https://github.com/spacelab-ufsc/obdh2">https://github.com/spacelab-ufsc/obdh2</a>.
- [2] Instituto Nacional de Pesquisas Espaciais (INPE). *Environmental Data Collector User Guide*, October 2019. CNS-MNL-PY-00-002-V01.