

LECTURE 28 OF 42

Reasoning under Uncertainty: Introduction to Graphical Models, Part 2 of 2

William H. Hsu Department of Computing and Information Sciences, KSU

KSOL course page: http://snipurl.com/v9v3
Course web site: http://www.kddresearch.org/Courses/CIS730
Instructor home page: http://www.cis.ksu.edu/~bhsu

Reading for Next Class:

Hugin Bayesian Network tutorials: http://www.hugin.com/developer/tutorials/
Building, learning BNs: http://bit.ly/2yWocz
Kevin Murphy's survey on BNs, representation: http://bit.ly/4ihafj

ARTIFICIAL INTELLIGENCE

LECTURE 28 OF 42

COMPUTING & INFORMATION SCIENCES

LECTURE OUTLINE

- Reading for Next Class: Murphy tutorial, Part 1 of 3; Hugin tutorial
- Last Class: 14.1 14.2 (p. 492 499), R&N 2°
- Today: Graphical Models, Sections 14.3 14.5 (p. 500 518), R&N 2^e
- Coming Week: Graphical Models Concluded, Intro to Learning

INFERENCE BY VARIABLE ELIMINATION [1]: FACTORING OPERATIONS

Enumeration is inefficient: repeated computation

e.g., computes P(J = true|a)P(M = true|a) for each value of e

Variable elimination: carry out summations right-to-left, storing intermediate results (<u>factors</u>) to avoid recomputation

$$\begin{split} \mathbf{P}(B|J = true, M = true) &= \alpha \underbrace{\mathbf{P}(B) \sum_{e} \underbrace{P(e) \sum_{a} \underbrace{\mathbf{P}(a|B,e) P(J = true|a)}_{J} P(M = true|a)}_{M} \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(J = true|a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} f_{A}(a,b,e) f_{J}(a) f_{M}(a) \\ &= \alpha \mathbf{P}(B) \sum_{e} P(e) f_{\bar{A}JM}(b,e) \text{ (sum out } A) \\ &= \alpha \mathbf{P}(B) f_{\bar{E}\bar{A}JM}(b) \text{ (sum out } E) \\ &= \alpha f_{B}(b) \times f_{\bar{E}\bar{A}JM}(b) \end{split}$$

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

CIS 530 / 730

LECTURE 28 OF 42

COMPUTING & INFORMATION SCIENCE

INFERENCE BY VARIABLE ELIMINATION [2]: POINTWISE PRODUCT

Pointwise product of factors f_1 and f_2 :

$$\begin{array}{l} f_1(x_1,\ldots,x_j,y_1,\ldots,y_k)\times f_2(y_1,\ldots,y_k,z_1,\ldots,z_l) \\ = f(x_1,\ldots,x_j,y_1,\ldots,y_k,z_1,\ldots,z_l) \\ \text{E.g., } f_1(a,b)\times f_2(b,c) = f(a,b,c) \end{array}$$

Summing out a variable from a product of factors: move any constant factors outside the summation:

$$\Sigma_x f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \Sigma_x \ f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_{\bar{X}}$$
 assuming f_1, \dots, f_i do not depend on X

Adapted from slide © 2004 S. Russell & P. Norvig. Reused with permission.

INFERENCE BY CLUSTERING [2]: JUNCTION TREE ALGORITHM

Input: list of cliques of triangulated, moralized graph G_u Output:

Tree of cliques

Separators nodes S_i,

Residual nodes R_i and potential probability $\Psi(Clq_i)$ for all cliques

Algorithm:

- 1. $S_i = Clq_i \cap (Clq_1 \cup Clq_2 \cup ... \cup Clq_{i-1})$
- 2. $R_i = Clq_i S_i$
- 3. If i > 1 then identify a j < i such that Clq_i is a parent of Clq_i
- 4. Assign each node v to a unique clique Clq_i that $v \cup c(v) \subseteq Clq_i$
- 5. Compute $\Psi(Clq_i) = \prod_{f(v) Clq_i} = P(v \mid c(v)) \{1 \text{ if no } v \text{ is assigned to } Clq_i\}$
- 6. Store Clq_i , R_i , S_i , and $\Psi(Clq_i)$ at each vertex in the tree of cliques

CIS 530 / 730 Artificial Intelligence ECTURE 28 OF 42

INFERENCE BY CLUSTERING [3]:
CLIQUE TREE OPERATIONS

R; residual nodes
S; separator nodes

TERMINOLOGY

- **Uncertain Reasoning**
 - * Ability to perform inference in presence of uncertainty about
 - **⇒** premises
 - □ rules
 - * Nondeterminism
- Representations for Uncertain Reasoning
 - * Probability: measure of belief in sentences
 - ⇒ Founded on Kolmogorov axioms
 - ⇒ prior, joint vs. conditional
 - \Rightarrow Bayes's theorem: P(A | B) = (P(B | A) * P(A)) / P(B)
 - * Graphical models: graph theory + probability
 - * Dempster-Shafer theory: upper and lower probabilities, reserved belief
 - * Fuzzy representation (sets), fuzzy logic: degree of membership
 - - $\Rightarrow \underline{\textbf{Truth maintenance system}} : \textbf{logic-based network representation}$
 - ⇒ Endorsements: evidential reasoning mechanism

SUMMARY POINTS

- Last Class: Reasoning under Uncertainty and Probability
 - * Uncertainty is pervasive
 - **⇒ Planning**
 - **⇒** Reasoning
 - **⇒ Learning (later)**
 - * What are we uncertain about?
 - **⇒** Sensor error
 - ⇒ Incomplete or faulty domain theory
 - ⇒ "Nondeterministic" environment
- **Today: Graphical Models**
- **Coming Week: More Applied Probability**
 - * Graphical models as KR for uncertainty: Bayesian networks, etc.
 - * Some inference algorithms for Bayes nets

