

Universidade Federal do Ceará Centro de Tecnologia Pós-Graduação em Engenharia Elétrica Rômulo Damasceno Moura

CHAVE FUSÍVEL COM DUPLO ISOLAMENTO PARA REDES DE DISTRIBUIÇÃO

Fortaleza Julho, 2012

Rômulo Damasceno Moura

CHAVE FUSÍVEL COM DUPLO ISOLAMENTO PARA REDES DE DISTRIBUIÇÃO

Dissertação submetida à Universidade Federal do Ceará como parte dos requisitos para a obtenção do grau de Mestre em Engenharia Elétrica.

Orientador:

Prof. Ricardo Silva Thé Pontes, Dr.

Co-orientador:

Prof. José Carlos Teles Campos, Dr.

Fortaleza

Julho, 2012

Rômulo Damasceno Moura

CHAVE FUSÍVEL COM DUPLO ISOLAMENTO PARA REDES DE DISTRIBUIÇÃO

	tação foi submetida omo parte dos requisito		_	
Dissertação avaliad	a em de julho de	2012.		Nota:
	Banca	a Examinado	ora:	
		o Silva Thé F Orientador	Pontes, Dr.	
	Prof ^a . Ruth Pa	stôra Saraiva	Leão, PhD.	

Aos meus pais e meus irmãos, por acreditarem na realização desse sonho tão esperado, sempre dando força para não desistir nos momentos de dificuldades enfrentados pela vida.

À minha esposa e filhos, que sempre estiveram ao meu lado apoiando e sabendo aceitar as ausências para que pudéssemos desfrutar desse momento tão importante em nossas vidas.

Dedico!

AGRADECIMENTOS

A Deus, por nos proporcionar esse momento de alegria na conclusão de mais um ciclo na vida acadêmica.

Ao Professor Ricardo Thé, por acreditar no projeto, nos apoiando e orientando na elaboração desse trabalho.

Ao Professor Tomaz, que nos reanimou a voltar ao curso de mestrado.

A todos os funcionários da Coelce em Aracati-CE, que nos ajudaram diretamente na elaboração e desenvolvimento do projeto.

Ao responsável pelo departamento de Distribuição Leste da Coelce, Eduardo Nascimento, que nos ajudou e nos incentivou na execução desse trabalho.

À responsável pelo departamento de Normas da Coelce, Keyla Sampaio, que nos ajudou na padronização e na melhoria do projeto para que pudesse ser utilizado por toda Coelce.

Aos meus colegas de trabalho, em especial ao José Lucio da Silva, por nos ajudar na realização desse trabalho.

À minha amiga, Carla Torres de Albuquerque, que sempre nos ajudou e nos incentivou para concluirmos esse trabalho.

A todos estes que foram citados e aos demais que diretamente ou indiretamente apostaram no êxito desse trabalho os meus agradecimentos.

O temor do Senhor é o princípio da sabedoria, e o conhecimento do Santo é prudência (Pv 9:10).

Nunca ande pelo caminho traçado, pois ele conduz somente até onde os outros foram (Grahan Bell).

RESUMO

Moura, R. D. "Chave Fusível com Duplo isolamento" Universidade Federal do Ceará – UFC, 2011, 66p.

O presente trabalho propõe a implantação de um novo modelo de chave fusível para ser utilizado em locais com alto índice de poluição salina, para com isso reduzir significativamente as ocorrências de falta indevida de chaves fusíveis. Foram utilizadas como experimento de campo as redes de distribuição existentes nas cidades de Aracati, Fortim e Icapuí, nos quais se observou um excelente desempenho da chave fusível com duplo isolamento para as situações, onde existe um alto índice de poluição salina. A chave do tipo fusível é um equipamento composto de elementos destinados à proteção do circuito contra danos e efeitos dinâmicos resultantes de falhas no sistema de distribuição de energia. A utilização da chave fusível de duplo isolamento foi responsável pela redução das ocorrências provenientes da poluição salina no período seco. Para se chegar a esse modelo de chave fusível foram desenvolvidos vários protótipos, os quais tentam eliminar a corrente de fuga ocasionada pela poluição salina. Com a utilização dessa nova chave fusível pôde-se constatar a preservação dos elos fusíveis e a diminuição dos registros de operações indevidas, que provocavam acréscimo no tempo de trabalho das equipes, perda de material e principalmente insatisfação do cliente. Este trabalho enfatiza as principais características deste novo modelo de chave fusível no que concerne a confiabilidade e a segurança no fornecimento de energia.

Palavras-chave: Salina. Poluição. Chave.

viii

ABSTRACT

Moura, R. D. "Fuse Switch with double insulation" Universidade Federal do Ceará – UFC,

2011, 66p.

This paper proposes the implementation of a new type of switch fuse to be used in areas with high saline pollution, to reduce significantly the occurrences of lack of improper

switch fuses. Distribution networks were used as field experiment in the towns of Aracati,

Fortim and Icapuí, in which there was an excellent performance of the switch fuse with

double insulation for situations where there is a high rate of saline pollution. The switch,

which is in the form of fuse, is a device composed of elements designed to protect the circuit

from damage and dynamic effects resulting from faults in power distribution system. The use

of double isolated switch fuse was responsible for the reduction of saline pollution

occurrences in the dry season. To achieve this type of switch fuse, several prototypes were

developed to try the elimination the leakage current caused by pollution saline. By using this

new equipment, we could see the preservation of fuse links and the reduction of improper

operations records, which caused an increase in working time of staff, loss of material and

especially customer dissatisfaction. This paper emphasizes the main features of this new

model of switch fuse when it comes to reliability and security of energy supply.

Keywords: Saline. Pollution. Switch.

SUMÁRIO

LISTA DE SIGLAS	xii
LISTA DE FIGURAS	xiii
LISTA DE TABELAS	xv
1 INTRODUÇÃO	1
1.1 Relevância	
1.1.1 Redes de distribuição aérea no Brasil	
1.1.2 Redes de distribuição aérea na cidade de Aracati- experimento de campo.	
1.2 Contextualização	
1.3 Objetivo do trabalho	
1.4 Organização do texto	
2 METODOLOGIAS DE MANUTENÇÃO	6
2.1 Manutenção no setor elétrico	
2.1.1 Tipos de manutenção utilizados no setor elétrico	
1.1.1 Manutenção corretiva	
1.1.1.2 Manutenção preventiva	
1.1.1.3 Manutenção preditiva	
2.1.2 Engenharia de manutenção	
2.2 Evolução tecnológica no sistema de energia	
2.3 Equipamentos de proteção no sistema de distribuição x manutenção	
2.4 Conclusão	
3 FERRAMENTA DE AUXÍLIO À MANUTENÇÃO DA REDE ELÉTRICA	15
3.1 Introdução	
3.2 Descrição de ferramenta computacional – protecad	
3.2.1 Desenho de diagrama unifilar	
3.3 Localização de faltas em sistema de potência	
3.4 Atuação das proteções do sistema	
3.5 Resistividade de solos	
3.6 Resistência de contato	22

3.7 Conclusão	27
A ANÁLIGE DA PROTECÃO DO GISTEMA EM ESTUDO DOR MEIO DE CHAVE	
4 ANÁLISE DA PROTEÇÃO DO SISTEMA EM ESTUDO POR MEIO DE CHAVE FUSÍVEL	28
4.1 Introdução	
4.2 Interrupções instantâneas no sistema de distribuição	
4.3 Descrição de chave fusível	
4.3.1 As partes principais de uma chave fusível	
4.4 Chave fusível especial – tipo religadora	
4.5 Descrição detalhada do sistema para estudo de caso em campo	
4.6 Estudo de coordenação da proteção do alimentador do estudo de caso	
4.6.1 Ajustes do religador da SED do alimentador ART01N3	
4.6.2 Ajustes do religador de linha do alimentador ART01N3	
1.1.2 Ajustes dos seccionalizadores do alimentador ART01N3	
4.6.3 Dimensionamento dos elos das chaves fusíveis do alimentador ART01N3	
4.7 Conclusão	
4.7 Conclusão	43
5 CHAVE FUSÍVEL COM DUPLO ISOLAMENTO	46
5.1 Introdução	46
5.2 Detalhamento do projeto da chave fusível com duplo isolamento	47
5.3 Ensaios da chave com duplo isolamento	
5.4 Conclusão	
6 ANÁLISE DE RESULTADOS	58
6.1 Introdução	58
6.2 Análise do sistema antes da aplicação da nova configuração de chave fusível	58
6.3 Conclusão	64
7 CONCLUSÃO	66
8 REFERÊNCIAS	68
APÊNDICE A – Diagrama unifilar do alimentador ART01N3	70
APÊNDICE B – Faltas assimétricas em sistema de potência	71

X1	

LISTA DE SIGLAS

ANEEL Agência Nacional de Energia Elétrica.

CURVAS Ajuste para tornar a sensibilidade de atuação mais rápida ou mais lenta.

DEC Duração Equivalente de Interrupção por Unidade Consumidora expresso em

horas e centésimos de hora.

DIC Duração de Interrupção Individual por Unidade Consumidora expresso em horas

e centésimos de hora.

DMIC Duração Máxima de Interrupção por Unidade Consumidora.

FEC Frequência Equivalente de Interrupção por Unidade Consumidora expressa em

número de Interrupções e centésimos do número de Interrupções.

FIC Frequência de Interrupção Individual por Unidade Consumidora expressa em

número de Interrupções.

I_{Pick Up} Corrente que sensibiliza o relé de proteção

NBI Nível de isolamento.

OAP Ordem de Ajuste da Proteção.

PDCA Planejar, Fazer, Verificar e Atuar (*Plan, Do, Check, Act*).

SDCA Padronizar, Fazer, Verificar e Atuar (Standardize, Do, Check, Act).

PH Potencial Hidrogeniônico.

RTC Relação de Transformação de Corrente.

SED Subestação de Distribuição de Energia Elétrica

TAPE Valor de ajuste da corrente no relé no secundário

ART01N2 Alimentador 01N2 da subestação Aracati

ART01N3 Alimentador 01N3 da subestação Aracati

ICP01N1 Alimentador 01N1 da subestação Icapuí

ICP01N2 Alimentador 01N2 da subestação Icapuí

PRODIST Procedimentos de Distribuição

LISTA DE FIGURAS

Figura 2.1 – Tipos de manutenção	6
Figura 2.2 – Manutenção corretiva não planejada	8
Figura 2.3 – Manutenção preventiva	9
Figura 2.4 – Manutenção preditiva	. 10
Figura 2.5 – Evolução dos tipos de manutenção	. 11
Figura 2.6 – Modelo de Gerenciamento PDCA	. 12
Figura 2.7 – Modelo de Gerenciamento SDCA	. 13
Figura 3.1 – Configuração de projeto no protecad	. 17
Figura 3.2 – Configuração das linhas de distribuição	. 17
Figura 3.3 – Descrição da linha no unifilar	. 18
Figura 3.4 – Unifilar com as correntes de curto-circuito	. 18
Figura 3.5 – Configuração da proteção de um alimentador	. 19
Figura 3.6 – Unifilar de um alimentador com equipamentos de proteção	. 20
Figura 3.7 – Ocorrências de curto-circuito no sistema elétrico	. 21
Figura 3.8 – Curtos-circuitos temporários x permanentes	. 22
Figura 3.9 – Localização de falta para um defeito	. 24
Figura 3.10 – Tela de informação dos dados de campo	. 25
Figura 3.11 – Tela de informação do trecho afetado	. 26
Figura 4.1 – Distância de escoamento em uma chave fusível	. 29
Figura 4.2 – Distância de escoamento em isolador de pino	. 30
Figura 4.3 – Distância de escoamento em isolador tipo ancoragem	. 30
Figura 4.4 – Chave fusível tipo pedestal	. 31
Figura 4.5 – Chave fusível tipo corpo único de 15 kV	. 32
Figura 4.6 – Chave fusível tipo corpo único de 27 kV	. 32
Figura 4.7 – Chave fusível tipo corpo único de 38 kV	. 32
Figura 4.8 – Porta-fusível	. 33
Figura 4.9 – Elo tipo botão	. 34
Figura 4.10 – Elo tipo argola	. 34
Figura 4.11 – Curva tempo x corrente para elos fusíveis tipo <i>K</i>	. 36
Figura 4.12 – Chave fusível religadora	. 37
Figura 4.13 – Circuito das barras no protecad	.41

Figura 4.14 – Estrutura de fixação de religador	43
Figura 5.1 – Isolador de porcelana utilizado na fixação da chave fusível	47
Figura 5.2 – Primeiro protótipo da chave fusível com duplo isolamento	48
Figura 5.3 – Isolador de vidro utilizado na fixação da chave fusível	48
Figura 5.4 – Segundo protótipo da chave fusível com duplo isolamento	49
Figura 5.5 – Junções de fixação da chave fusível com duplo isolamento	49
Figura 5.6 – Conexões das junções na base de fixação da chave fusível e na base de	
fixação em "L"	50
Figura 5.7 – Desenho da chave fusível com duplo isolamento	50
Figura 5.8 – Laboratório de ensaios da BQ.	51
Figura 5.9 – Ensaio chave fusível com duplo isolamento	52
Figura 5.10 – Chaves fusíveis que foram realizados os ensaios	53
Figura 5.11 – Chave CF-1/10	54
Figura 5.12 – Correntes de fuga na chave CF-1/10 com ensaio a seco	54
Figura 5.13 – Corrente de fuga na chave CF-1/10	55
Figura 5.14 – Chave CF-2/10	55
Figura 5.15 – Correntes de fuga na chave CF-2/10 com ensaio a seco	56
Figura 6.1 – Estrutura de Transformador com Chaves fusíveis poluídas	58
Figura 6.2 – Ocorrências indevidas por ação da poluição salina	59
Figura 6.3 – Clientes afetados por ocorrências indevidas por ação da poluição salina	60
Figura 6.4 – Custos por lavagem por alimentador	61
Figura 6.5 – Custos por manutenções realizadas	61
Figura 6.6 – Alimentador ICP01N1 com o pior desempenho	63
Figura 6.7 – Alimentador ART01N3 com o melhor desempenho	64
Figura 6.8 – Estrutura de transformador com utilização da chave fusível com duplo	
isolamento	64
Figura B.1 – Circuito unifilar de um sistema trifásico equilibrada	71
Figura B.2 – Circuito trifásico com falta entre fase-terra	72
Figura B.3 – Circuito trifásico com falta entre fase-fase	72
Figura B.4 – Circuito trifásico com falta entre duas fases-terra	73

LISTA DE TABELAS

Tabela 1.1 – Indicadores de DEC e FEC do Centro de Serviço Aracati	4
Tabela 4.1 – Coordenação de elos fusíveis tipo K	35
Tabela 4.2 – NBR 7282 – características elétricas dos dispositivos fusíveis	37
Tabela 4.3 – Classificação dos alimentadores do sistema em estudo de caso	39
Tabela 4.4 – Parâmetros de ajustes do relé do religador ART01N3	42
Tabela 4.5 – Parâmetros complementares dos ajustes relé do religador ART01N3	42
Tabela 4.6 – Parâmetros de ajustes do religador de linha	43
Tabela 4.7 – Parâmetros complementares dos ajustes do religador de linha	43
Tabela 4.8 – Parâmetros de ajustes dos secionadores	44
Tabela 4.9 – Dimensionamento de elos fusíveis	44
Tabela 5.1 – Instrumentos utilizados no ensaio da CFDI	52
Tabela 6.1 – Custo por unidade de chave fusível	62

1 INTRODUÇÃO

1.1 Relevância

O Brasil, dada sua extensão continental, possui milhares de quilômetros de linhas de transmissão e distribuição compostas em sua maioria por linhas aéreas. Devido à magnitude dos circuitos, o desempenho dos sistemas de distribuição apresenta-se como um desafio.

Como o tema é muito amplo possibilitam inúmeras discussões, este trabalho limitarse-á a abordar a utilização da chave fusível com duplo isolamento em redes elétricas de distribuição de energia.

1.1.1 Redes de distribuição aérea no Brasil

As redes de distribuição brasileiras apresentam algumas diferenças regionais para adaptarem-se as topografias climáticas. Apesar disso, apresentam algumas características comuns, dentre as quais se podem citar:

- Redes com grande extensão (acima de 200 km em média);
- Redes do tipo predominantemente aéreas;
- Redes situadas em solos de alta resistividade ($\cong 1000 \Omega$.m ou maior em muitos casos);
- Redes situadas em regiões de elevado índice de ocorrência de descargas atmosféricas;
- Redes situadas em orla marítima com elevado teor de névoa salina proveniente da maresia que polui os isoladores.

As redes de distribuição têm as suas subestações construídas com as tensões nominais de operação de 13,8 kV, 23,1 kV e 34,5 kV, padronizadas pela legislação vigente regulamentada pela ANEEL (CEMIG, 2005; COELBA, COSERN, CELPE, 2003; CELESC, 2001).

As causas mais comuns de falta de energia nos grandes centros urbanos são abalroamentos em postes, acidentes provocados por terceiros, cargas de grandes clientes com proteções inadequadas, incidentes por causas naturais e brincadeiras de crianças com pipas entre outros.

Já em pequenos municípios rurais e em áreas isoladas, as principais causas de falta de energia são quedas de árvores sobre a rede, incidências de descargas atmosféricas, quebra de

postes provocada por implementos agrícolas, objetos estranhos jogados nas redes, aves e outros animais.

A seguir serão abordados os esforços realizados para minimizar, ano a ano, o tempo de duração dos desligamentos indesejados e, consequentemente, os índices de qualidade acompanhados pela ANEEL.

Segundo o modelo 8 do prodist, as concessionárias ao distribuir energia elétrica aos seus consumidores não podem ultrapassar as metas mensais, trimestrais e anuais dos indicadores de qualidade, sob pena de ressarcimento aos consumidores.

Os indicadores de qualidade, individuais e coletivos, são:

- DIC duração individual por consumidor: representa o tempo em que o consumidor permanece sem o fornecimento de energia elétrica;
- FIC frequência individual por consumidor: representa o número de vezes que o fornecimento de energia elétrica é interrompido;
- DMIC máxima duração individual por consumidor: representa o tempo máximo que o consumidor permanece sem energia elétrica.
- DEC duração equivalente por consumidor: contabiliza a duração das faltas de energia elétrica em determinados conjuntos de clientes no mesmo período, geralmente por subestações;
- FEC frequência equivalente por consumidor: contabiliza a frequência das faltas de energia elétrica em determinados conjuntos de clientes no mesmo período, também por subestações. (ANEEL, 2008).

Observando os índices DEC e FEC no Brasil nos últimos 15 anos, pode-se verificar uma melhora com redução significativa do DEC médio. Ele passou de 26h para 16h até maio de 2011. Houve também uma redução no FEC médio. O número de interrupções caiu de 22 para 11 até maio de 2011.

Esses índices eram apurados pela extinta portaria da DNAEE nº 046, de 17 de abril de 1978 até o ano 2000 e a partir de 2001 passaram a ser apurados pela Resolução ANEEL nº 024, de 27 de janeiro de 2000 (ANEEL, 2011).

Um evento comum nas áreas litorâneas, que afeta diretamente o funcionamento do sistema elétrico é a poluição salina.

A perda do isolamento nas chaves fusíveis, devido à presença de poluentes salinos, resulta em operações das proteções do sistema ou danos dinâmicos a equipamentos, ou seja, falhas no fornecimento de energia. Além disso, pode ocasionar também a queima de transformadores, chaves fusíveis e isoladores de pino.

Consequentemente, as faltas de energia geram insatisfação aos clientes, perda de recursos financeiros e de materiais para concessionárias de energia.

Como ação preventiva, deve ser feita a lavagem das estruturas poluídas com água pressurizada e instalação de chaves fusíveis com nível de isolamento de 24 kV (NBR 7282, 2011) seguindo um cronograma de inspeção no sistema de distribuição elétrica.

Embora os equipamentos sofram menos com estas ações, observou-se que ainda havia o risco de desconexão de um alimentador no momento da lavagem devido um curto-circuito entre as fases ou entre uma das fases e a cruzeta. Pois os equipamentos podem perder as suas características dielétricas quando muito poluídos, permitindo um caminho de fuga no momento da lavagem.

Essas atuações imprevistas interrompem as programações das equipes de manutenção, sobrecarregando-as e tornando necessária a solicitação de equipes de apoio ao centro de operação para auxiliar o atendimento emergencial da região.

1.1.2 Redes de distribuição aérea na cidade de Aracati- experimento de campo

Com o intuito de validar os resultados desse trabalho escolheu-se uma rede de distribuição em uma região litorânea do Ceará, para ser feito o estudo de campo. A área escolhida faz parte do centro de serviço de Aracati da Coelce - empresa do grupo Endesa.

O centro de serviço de Aracati atende cinco cidades: Aracati, Icapuí, Itaiçaba, Fortim e Jaguaruana. E tem sob sua responsabilidade 04 subestações de força, 16 alimentadores com a extensão total de 1.952,42 km de linhas de distribuição, 2.405 transformadores de distribuição de propriedade da Coelce e 356 transformadores de propriedade particular, atendendo uma quantidade de 55.149,00 consumidores divididos entre urbanos (28.733) e rurais (26.416).

A concessionária de energia elétrica do Ceará – Coelce – enfrenta os mesmos problemas das outras concessionárias do país: descargas atmosféricas, furto de cabos e a poluição salina. Na cidade de Aracati, onde foi realizado o experimento, os principais problemas são o furto de cabos e a poluição salina.

A tabela 1.1 mostra os índices de DEC e FEC do centro de serviço de Aracati nos últimos 02 anos.

Tabela 1.1 – Indicadores de DEC e FEC do Centro de Serviço Aracati

Indicadores	2010	2011
DEC	21,31	13,68
FEC	14,28	5,71

Fonte: Estudo do autor – Planilha Excel ...

1.2 Contextualização

O grupo Endesa que gerencia duas concessionárias de distribuição no Brasil, Coelce no Ceará e Ampla no Rio de Janeiro. Tem mostrado grande interesse na busca de ferramentas ou dispositivos que contribuam eficientemente no combate as interrupções por poluição salina.

Percebe-se que o bom desempenho do sistema elétrico frente à poluição salina está diretamente relacionado ao nível de isolamento dos equipamentos. A Coelce busca obter uma solução confiável e de baixo custo para enfrentar esse problema.

Apesar de vários trabalhos desenvolvidos sobre o tema, alguns pontos ainda merecem pesquisas adicionais, tais como:

- i) A vida útil dos materiais inseridos no sistema elétrico, das regiões com alto índice de poluição salina;
- ii) O desenvolvimento de uma ferramenta computacional capaz de gerenciar e sinalizar o melhor momento para intervenções preventivas.

Nesse sentido foram destacados os pontos relevantes que nortearam a elaboração dessa dissertação.

- i) O registro das ocorrências indevidas originadas pela poluição salina;
- ii) O acompanhamento do desempenho de chaves fusíveis inseridas nos sistema elétrico com diferentes níveis de isolamento;

1.3 Objetivo do trabalho

Com o objetivo de reduzir as ocorrências originadas pela poluição salina no alimentador ART01N3 do sistema de Aracati, foi utilizada uma chave fusível com duplo isolamento.

Essa inovação foi apresentada em um programa da Coelce intitulado DEU CERTO. O programa consiste em apresentar para toda empresa as práticas adotadas que colaboraram para a melhoria do fornecimento de energia. O programa é dividido em quatro ciclos de

apresentações durante o ano e o Projeto da chave fusível com duplo isolamento foi vencedor do quarto ciclo de apresentações no DEU CERTO do ano de 2011.

Seguindo esse raciocínio, foram montados alguns protótipos de chaves fusíveis com diferentes isoladores na parte de fixação da chave. Essa nova configuração foi instalada no sistema elétrico e seu comportamento foi analisado.

Já os isoladores de vidro apresentaram-se como uma boa opção por possuírem, na parte de fixação, uma extremidade quadrada. Porém nem todos os isoladores de vidro poderiam ser utilizados, o que se melhor adequou dentre os existentes foi o isolador de pino grosso (NBR 7109, 2009).

O objetivo dessa dissertação é comprovar por meio de ensaios em laboratório e experimento em campo, que a solução inovadora da chave fusível com duplo isolamento contribui com a redução das ocorrências indevidas provenientes de poluição salina.

1.4 Organização do texto

No capítulo 1 são descritos alguns dos principais problemas encontrados na rede de distribuição no Brasil e também é feito um estudo de caso.

No capítulo 2 são apresentadas as metodologias de manutenção usuais.

No Capítulo 3 é apresentada uma ferramenta computacional que auxilia o processo de manutenção na localização de defeitos temporários ou permanentes.

O capítulo 4 aborda o estudo de coordenação das proteções em um alimentador e a sua utilização no sistema estudado.

O capítulo 5 apresenta a chave fusível com duplo isolamento e seu comportamento quando utilizada no mesmo sistema.

O capítulo 6 apresenta uma análise dos resultados obtidos. E finalmente, o capítulo 7 apresenta as conclusões do trabalho.

2 METODOLOGIAS DE MANUTENÇÃO

2.1 Manutenção no setor elétrico

Para as concessionárias de energia atingirem as ousadas metas sugeridas pelo mercado, não se concebia executar a manutenção de forma tradicional, era preciso inovar e, com o passar dos anos, as empresas começaram a investir em novas tecnologias. Novos princípios foram formulados e procedimentos foram mudados com o intuito de melhorar a metodologia da manutenção e assim garantir o melhor desempenho da empresa, permitindo o alcance de indicadores e eficácia globais.

Atualmente, os departamentos de manutenção evoluíram: tornaram-se capazes de realizar intervenções em equipamentos ou máquinas sem interromper ou afetar o desempenho das empresas.

Nessa transformação pela qual passou o setor, a engenharia de manutenção teve um papel fundamental para garantir a eficiência do sistema. (PINTO; XAVIER, 2009)

2.1.1 Tipos de manutenção utilizados no setor elétrico

Existem quatro tipos de manutenção utilizados atualmente no setor elétrico. Cada uma delas aplicada de acordo com a necessidade ou abordagem adotada pelo setor de manutenção da empresa. A Figura 2.1 exemplifica os tipos de manutenção existentes.

Figura 2.1 – Tipos de manutenção

Fonte: Manutenção função estratégica.

1.1.1.1 Manutenção corretiva

A manutenção corretiva é uma filosofia ultrapassada para os dias atuais. Nela são efetuadas apenas intervenções em sistemas que apresentem alguma falha ou desempenho diferente do esperado. Vale ressaltar que a manutenção corretiva não é, necessariamente, a manutenção de emergência.

Princípios básicos para a realização da manutenção corretiva:

- Surgimento de falha;
- Desempenho inferior ao normal para as mesmas condições no acompanhamento das variáveis operacionais.

Em ambos os casos, os recursos são utilizados indevidamente e as equipes trabalham em um alto nível de stress por intervirem em um sistema onde o cliente final encontra-se prejudicado e o tempo de reposição tem que ser o menor possível.

Este procedimento gera uma liberação de energia muitas vezes maior que o necessário, pois quando ocorre uma intervenção dessa natureza não há tempo para realizar um planejamento detalhado da situação. Além disso, em muitos casos será necessário realizar novas intervenções para corrigir definitivamente o defeito.

Dessa forma a manutenção corretiva deve ser reduzida ao máximo, devendo ser executada apenas em casos urgentes e onde o nível de risco de acidente à terceiros e às equipes é inevitável (PINTO; XAVIER, 2009).

A manutenção corretiva pode ser dividida em duas classes:

- a) Manutenção corretiva não planejada;
- b) Manutenção corretiva planejada.

A Figura 2.2 apresenta o acompanhamento de uma manutenção corretiva não planejada. Os intervalos de tempos entre t_0 à t_1 e t_2 à t_3 , correspondem ao período em que o equipamento esteve em operação. Entre o intervalo t_1 à t_2 , foi realizada uma manutenção corretiva não planejada. (PINTO; XAVIER, 2009).

Figura 2.2 – Manutenção corretiva não planejada

Fonte: Manutenção função estratégica.

1.1.1.2 Manutenção preventiva

A filosofia da manutenção preventiva diferencia-se do tipo de manutenção descrita anteriormente por objetivar reduzir ou evitar a falha seguindo um plano devidamente elaborado, o que reduz o tempo de paralisação dos equipamentos.

Tomando como base as intervenções realizadas ao longo do tempo, são identificados os possíveis postos de defeitos e é realizado um planejamento prévio para intervir antes que ocorra uma paralisação indesejada ou redução significativa do desempenho.

A manutenção preventiva sustenta-se nos pilares do planejamento, execução e disciplina operacional, ou seja, realiza as devidas manutenções de acordo com o que está na programação.

Podem ocorrer duas condições distintas que antecipam a intervenção dada pela manutenção preventiva:

- a) Registro de falhas antes do período previsto para manutenção;
- b) Falha do equipamento ou substituição de peças prematuramente.

Nesse caso o tempo em que o equipamento fica inoperante é menor que o do caso anterior, haja vista que foi realizado planejamento para essa intervenção e que o material necessário e a equipe já se encontram no local.

A Figura 2.3 mostra o ganho econômico com o exercício da manutenção preventiva comparada com a manutenção corretiva. Os intervalos de tempos entre t_0 à t_1 , t_2 à t_3 , t_4 à t_5 , t_6 à t_7 correspondem ao período em que o equipamento esteve em operação. Os itens P_1 , P_2 e P_3

correspondem aos períodos de planejamento para a execução da manutenção preventiva. Entre os intervalos t_1 à t_2 e t_3 à t_4 foram realizadas paralisações para execução de manutenção preventiva. Esses intervalos de paralisação são menores do que o intervalo entre t_5 à t_6 no qual foi realizada uma manutenção corretiva não planejada. (PINTO; XAVIER, 2009).

Figura 2.3 – Manutenção preventiva

Fonte: Manutenção função estratégica.

1.1.1.3 Manutenção preditiva

A manutenção preditiva é considerada uma primeira quebra de paradigmas. Sua principal finalidade é realizar um acompanhamento rigoroso e detalhado de todos os parâmetros para evitar o surgimento de falhas nos equipamentos ou sistemas, garantindo assim, uma continuidade na operação do equipamento com um custo de manutenção reduzido.

Neste caso, todas as informações são obtidas com o equipamento em operação e constantemente são desenvolvidos instrumentos que permitem uma análise cada vez mais detalhada e confiável dos parâmetros internos e externos correspondentes aos sistemas operacionais e às instalações.

No momento em que a degradação do equipamento chega aos limites estabelecidos, é planejada a intervenção deste equipamento, diminuindo assim, os custos com paradas desnecessárias e a consequente redução da produtividade.

Alguns fatores relevantes para utilização desse tipo de manutenção são listados a seguir:

- Com o monitoramento continuo do equipamento, os custos com intervenções desnecessárias são eliminados;
- O equipamento permanece mais tempo em operação;
- A segurança patrimonial e operacional é observada.

Com relação aos custos envolvidos, alguns pontos relevantes devem ser considerados.

Um monitoramento sistemático e on-line por meio de rede de sensores de medição não representa um custo elevado, pois a evolução no setor de microeletrônica mostra a tendência de redução no valor desta instrumentação.

Para a instalação desse sistema de monitoramento, estima-se um investimento inicial que corresponde a 1% do valor do equipamento que será monitorado e o programa de acompanhamento apresenta uma relação de custo beneficio de 1/5 do valor do equipamento.

É importante salientar que todo esse processo necessita de uma mão de obra qualificada capaz de analisar e diagnosticar as informações fornecidas (PINTO; XAVIER, 2009).

Devido o monitoramento constante, o equipamento só será desligado quando apresentar redução significativa em seu desempenho, aumentando seu tempo de utilização.

A Figura 2.4 mostra a utilização da manutenção preditiva na realização das intervenções. Os intervalos de tempos entre t_0 à t_1 e t_2 à t_3 , correspondem ao período em que o equipamento esteve em operação. O item T_P corresponde ao tempo de planejamento da intervenção para a correção do problema. Entre o intervalo t_1 à t_2 , foi realizada paralisação para execução de manutenção. (PINTO; XAVIER, 2009).

Figura 2.4 – Manutenção preditiva

Fonte: Manutenção função estratégica.

2.1.2 Engenharia de manutenção

Quebrando o paradigma de que, para se realizar a manutenção, necessariamente tem que se consertar algo, a engenharia de manutenção introduz a ideia de não apenas consertar o equipamento, mas procurar as causas do problema. É possível também corrigir ou modificar situações onde existem um mau desempenho.

A engenharia de manutenção também tem como objetivo desenvolver equipamentos e materiais que permitam um melhor desempenho e uma melhor confiabilidade para o sistema sem aumentar os custos da empresa significativamente.

Por exemplo, a utilização de um material adequado a cada micro regiões climáticas, como no caso de equipamentos basicamente construídos por partes metálicas que são usados no semiárido e não devem ser utilizados no litoral.

Essa nova filosofia tem como objetivo aproximar os setores de projeto e logística dos setores operacionais. O desenvolvimento técnico da humanidade é acompanhado de perto pela história da manutenção (TAVARES, 1999).

A Figura 2.5 retrata a evolução nos resultados da manutenção à medida que melhores técnicas são inseridas no processo. É importante destacar que, quando se realiza a mudança de corretiva para preventiva, ocorre uma melhoria muito discreta (PINTO; XAVIER, 2009).

Figura 2.5 – Evolução dos tipos de manutenção

Fonte: Manutenção função estratégica.

2.2 Evolução tecnológica no sistema de energia

No intuito de minimizar os eventos de falta de energia foram criadas muitas técnicas e procedimentos para garantir que o fornecimento elétrico seja o mais continuo e confiável possível.

Um deles é o método de gerenciamento PDCA (Planejar, Realizar, Verificar e Atuar). Esse Método é utilizado para realização de ações corretivas com a finalidade de melhorar o processo em estudo (CAMPOS, 2004).

Outro método é conhecido como SDCA (Padronizar, Fazer, Verificar e Atuar).

A Figura 2.6 retrata o modelo PDCA que é utilizado para gerenciar processos internos de forma a garantir o alcance de metas estabelecidas.

Figura 2.6 – Modelo de Gerenciamento PDCA

Fonte: Gerenciamento da rotina do dia-a-dia.

A Figura 2.7 retrata o modelo SDCA que é utilizado para gerenciar processos internos de forma a garantir o alcance de metas estabelecidas.

Figura 2.7 – Modelo de Gerenciamento SDCA

Fonte: Gerenciamento da rotina do dia-a-dia.

Esses eventos podem ocasionar danos materiais além de reduzir o crescimento industrial. O setor hoteleiro, por exemplo, é afetado quando ocorre uma falta de energia, sofrendo o transtorno de não conseguir proporcionar aos seus clientes conforto e comodidade. Também é complicada a situação dos hospitais que utilizam a energia para garantir a vida de pessoas eletro-dependentes que necessitam de aparelhos hospitalares. Fica então evidente que a falta de energia gera um grande impacto em todos os setores da economia.

Analisando o sistema elétrico de potência pode-se constatar a evolução no setor de distribuição, com relação aos equipamentos de proteção que foram desenvolvidos e aplicados nas linhas para garantir uma melhor qualidade no fornecimento de energia. Esses equipamentos são instalados de modo que o trecho que apresenta o defeito fique sem fornecimento até que sejam tomadas as devidas providências garantindo ao usuário que não pertence ao trecho afetado uma continuidade no seu fornecimento

Alguns desses equipamentos são: chave fusível, seccionalizadores e religadores automatizados com comando a distância. Eles devem ser instalados de forma coordenada para garantir uma seletividade na eliminação do ponto de defeito, facilitando a localização e agilizando o reestabelecimento da energia para a região que foi afetada.

2.3 Equipamentos de proteção no sistema de distribuição x manutenção

A indústria também tem investido para melhorar o desempenho dessas ferramentas.

Por exemplo, os religadores de linha. Com eles é possível monitorar qualquer ramal onde esteja instalado, possibilitando verificar se o ramal está desbalanceado, se necessita de recondutoramento e, no caso de qualquer interrupção, verificar qual a fase do defeito, a proteção que atuou e ainda comandar seu fechamento ou abertura à distância.

Chaves fusíveis são comumente conhecidas como corta-fogo e podem ser fabricadas em diversos níveis de tensão, corrente e modelos e ainda podem ser padronizadas de forma mais adequada para cada região, de acordo com a norma (NBR 7282, 2011).

Com a evolução desse equipamento, já existe hoje no mercado a chave fusível de abertura em carga que dispensa o uso do *loadbuster*, equipamento utilizado para extinguir arco elétrico proveniente da abertura de chaves com carga (MAMEDE FILHO, 2005).

2.4 Conclusão

O mercado de distribuição de energia está em constante mutação e o consumidor tornou-se mais exigente por possuir equipamentos que necessitam cada vez mais de continuidade e qualidade no fornecimento. Para isso é necessário acompanhar o desenvolvimento tecnológico.

Por outro lado, com a reformulação do setor elétrico brasileiro, onde grande parte das empresas do setor elétrico no Brasil foram privatizadas e diante da nova regulamentação do setor, as distribuidoras buscam dar relevância a melhoria de sua manutenção, aumentando a qualidade de fornecimento de energia elétrica, visando a maior competitividade do setor.

Seguindo essas premissas, as concessionárias de energia a cada ano investem pesado em treinamentos internos procurando difundir esses conhecimentos técnicos entre os funcionários, a fim de criar a cultura de que equipamentos instalados corretamente e trabalhando de maneira eficaz garantem uma melhor qualidade de energia.

3 FERRAMENTA DE AUXÍLIO À MANUTENÇÃO DA REDE ELÉTRICA

3.1 Introdução

Na ocorrência de um curto-circuito, surge uma corrente de elevada intensidade que pode trazer efeitos mecânicos e térmicos danosos aos equipamentos instalados ao longo do alimentador sob falta.

Os efeitos mecânicos, cujas forças são proporcionais ao quadrado da corrente, podem deformar condutores e romper materiais isolantes. E os efeitos térmicos podem produzir aquecimento dos materiais condutores e isolantes e consequentemente a deteriorização.

Daí a necessidade da utilização de equipamentos de proteção para que estes danos sejam minimizados.

3.2 Descrição de ferramenta computacional – protecad

O protecad é uma ferramenta computacional desenvolvida pela companhia energética do Ceará – Coelce, capaz de calcular as correntes de curtos-circuitos ao longo das linhas de distribuição a partir das seguintes informações: as impedâncias no barramento da subestação, a bitola do cabo e a extensão da linha de distribuição (GENTIL, 2007).

Com essas informações o protecad realiza as seguintes atividades:

- Desenhar a rede de distribuição em diagrama unifilar;
- Calcula a corrente de curto-circuito em qualquer parte do diagrama unifilar de uma rede de distribuição;
- Informar no diagrama unifilar as correntes de curto-circuito;
- Plotar os coordenogramas de corrente x tempo de cada proteção associada;
- Gerar relatórios com resumo do estudo.

O desafio principal do protecad era reproduzir curvas que em muitos equipamentos são definidos experimentalmente pelo fabricante, por exemplo: chaves fusíveis, alguns relés eletromecânicos e religadores antigos.

Analisando alguns métodos de plotagem de curvas optou-se pelo método da interpolação, onde por meio de 20 a 30 pontos coletados pode-se representar a curva de um relé. Nesse caso, quanto mais pontos coletados, melhor a precisão nos pontos calculados.

O método da interpolação logarítmica trabalha com a seguinte fórmula:

$$\mathbf{t} = \mathbf{10}^{\left(\frac{(\log t_1 - \log t_2) \times \log I + \log I_1 \times \log t_2 - \log I_2 \times \log t_1}{\log I_1 - \log I_2}\right)}$$
(3.1)

Em que:

t: tempo de resposta a ser calculado;

I: corrente a ser calculada nesse tempo de resposta;

I₁: corrente conhecida que possui valor menor do que I;

I₂: corrente conhecida que possui valor maior do que I;

t_{1:} tempo de resposta que corresponde a I₁;

t₂: tempo de resposta que corresponde a I₂.

O Borland Delphi[®] foi o ambiente de programação utilizada na plataforma do projeto Protecad. O software matlab[®] foi utilizado para verificar a precisão entre os valores coletados e também para os valores calculados das correntes de curto-circuito.

3.2.1 Desenho de diagrama unifilar

Utilizando o protecad, um usuário é capaz de representar um sistema elétrico por meio de um diagrama unifilar. Inicialmente é necessário criar um projeto inserindo as informações da subestação e do alimentador que será trabalhado. Com essas informações é que se pode identificar a subestação e os cálculos de curto-circuito representados por barras (GENTIL, 2007).

Na Figura 3.1 é representada a tela inicial de criação de um projeto inicial no protecad, onde são solicitadas as seguintes informações: nome da subestação, alimentador, data de análise do projeto, valores de base do curto-circuito e as impedâncias reduzidas na subestação.

Figura 3.1 – Configuração de projeto no protecad

Fonte: Protecad – Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará.

Com o projeto criado inicia-se o desenho das linhas de distribuição, onde o usuário irá definir a extensão em quilômetros e o tipo de cabo da linha. Essas informações são importantes para o projeto, pois influenciam diretamente na queda de tensão e nos valores da corrente de curto-circuito.

A Figura 3.2 mostra a configuração das linhas de saída de uma subestação.

Figura 3.2 – Configuração das linhas de distribuição

Fonte: Protecad – Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará.

Na Figura 3.3 pode-se verificar o diagrama unifilar de um alimentador com as descrições das linhas e distância em quilômetros.

2 km Cobre 16U 4 km Cobre 25U 5 km Cobre 25U 2 3 ART01N3 2 2 3

Figura 3.3 – Descrição da linha no unifilar

Fonte: Protecad – Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará.

O cálculo das correntes de curto-circuito é uma das aplicações principais do protecad. Seu cálculo é realizado utilizando as informações de potência instalada, tensão de base, resistência do solo, impedâncias de sequência positiva e de sequencia zero dos cabos da subestação. O protecad informa as correntes de curto-circuito trifásicas, bifásicas, fase-terra máximo e fase-terra mínimo.

Na Figura 3.4 é mostrado o diagrama unifilar do alimentador com as correntes de curto-circuito.

Figura 3.4 – Unifilar com as correntes de curto-circuito

Fonte: Protecad – Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará.

Em que:

3F: curto-circuito trifásico;

2F: curto-circuito bifásico;

FT: curto-circuito fase-terra;

FTm: curto-circuito fase-terra mínimo.

A partir dos resultados calculados para as correntes de curto-circuito, o protecad permite a realização do estudo de coordenação da proteção dos alimentadores com a utilização de equipamentos como: chaves fusíveis, relés, seccionadores e religadores.

O técnico responsável pelo estudo de coordenação, após analisar os valores das correntes de curto-circuito, pode determinar se a linha de distribuição tem necessidade de instalação de algum equipamento de proteção.

A Figura 3.5 mostra a configuração da proteção no alimentador em estudo.

Figura 3.5 – Configuração da proteção de um alimentador

Fonte: Protecad – Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará.

A Figura 3.6 mostra um diagrama unifilar de um alimentador com a inserção de um religador de linha e chave fusível, que foi inserido no diagrama após configuração da proteção, conforme foi comentado na figura anterior.

Figura 3.6 – Unifilar de um alimentador com equipamentos de proteção

Fonte: Protecad – Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará.

3.3 Localização de faltas em sistema de potência

Muitos estudos já foram feitos para localização de falta em um sistema de distribuição e, nos anos 50, teve início a metodologia de localização de falta utilizando técnicas de inspeção, com o uso de carros e helicópteros, associados ao método de análise das ondas viajantes (AIEE COMMITEE REPORT, 1955; STRINGFIELD; MARIHART; STEVENS; 1957).

Nos anos 80, Roytman desenvolveu a técnica de localização de falta a partir de obtenção da impedância através da medição de corrente e tensão em um terminal, analisando o circuito da frequência fundamental (CASTRO; BUNCH; TOPKA, 1980; ROYTMAN et al., 1982).

Assim, fica restrita a cada empresa de forma individual e com procedimentos específicos, a escolha do processo de detecção de defeitos.

Com o intuito de resolver o problema da localização de falta, a Coelce, através do projeto SEG-I_{cc}, desenvolveu uma técnica de localização de falta para qualquer tipo de curto – circuito.

A nova metodologia computacional de localização de falta à Coelce foi desenvolvida pelo funcionário da Coelce, José da Silva Gouveia.

O princípio de funcionamento do SEG-I_{cc} é realizar a interpolação das correntes de falta informadas pelos relés de proteção, tornando possível prever o local do defeito, pois através do protecad, todos os níveis de curto-circuito de uma linha de distribuição são conhecidos.

3.4 Atuação das proteções do sistema

As falhas no sistema de distribuição podem ser classificadas como permanentes ou transitórias. As falhas permanentes são aquelas irreversíveis espontaneamente, que provocam a abertura definitiva dos equipamentos de proteção (disjuntores, religadores), necessitando da intervenção da manutenção.

Falhas temporárias ou fortuitas são aquelas que ocorrem e logo desaparecem, sem deixar defeito na rede e sem provocar abertura definitiva de equipamentos de proteção.

A Figura 3.7 mostra as ocorrências por nível de curto-circuito na rede elétrica de distribuição (KINDERMAN, 1997).

Figura 3.7 – Ocorrências de curto-circuito no sistema elétrico

Natureza do curto-circuito em %

■ 3Ф ■ 2Ф □ 2Ф-Тегга □ 1Ф-Тегга

A Figura 3.8 mostra as ocorrências de curtos-circuitos permanentes e temporários, sendo os temporários responsáveis pela maior concentração dos defeitos.

Fonte: Curto-circuito.

Figura 3.8 – Curtos-circuitos temporários x permanentes

Curto-circuito 1 -terra em %

Fonte: Curto-circuito.

3.5 Resistividade de solos

Uma única rede de distribuição, seja em sistema radial ou anel fechado, passa ao longo de sua extensão por variados tipos de solo, sendo muito comum parcela de sua extensão em solo arenoso, solo argiloso, solo rochoso ou até mesmo a mistura de todos.

Além disso, parte ou a totalidade da massa do solo pode estar em estado seco ou úmido. Assim sendo, pode-se afirmar que a resistividade do solo não é a mesma para toda a extensão da rede de distribuição.

Em consequência tem-se uma forma complexa e imprecisa para avaliar a resistividade do solo. Além disso, é necessário levar em consideração a sazonalidade climática e até mesmo a regional com micro-climas diferenciados, nos quais as redes de distribuição estão inseridas.

3.6 Resistência de contato

Nos curtos-circuitos do tipo bifásico ou trifásico é fácil determinar a resistência de contato, uma vez que os contatos são diretos, cabo a cabo. Já nos curtos-circuitos do tipo faseterra (F_t), o cálculo deste parâmetro envolve alta complexidade, pois o meio físico de contato para terra apresenta grande diversidade. Assim, é possível afirmar que é bastante complexo conhecer seu valor real, pois este depende diretamente do valor da resistividade do solo. O que torna o problema de localização exata da falta fase-terra bastante complexo.

Como mencionado anteriormente, a Coelce desenvolveu um sistema computacional para a localização de faltas fase-terra, o SEG- $I_{\rm cc}$.

O sistema baseia-se em dois parâmetros conhecidos no momento da falta, o valor da corrente de curto-circuito fase para terra (F_t) medido no momento da falta pelos relés de proteção e o valor de curto-circuito (F_t) calculado por expressões matemáticas em função da impedância e da reatância dos cabos Estes parâmetros são utilizados para determinar os curtos-circuitos trifásicos, bifásicos, fase-terra e fase-terra mínimo.

Através deles também se estabelece o fator de localização de falta, como mostrado na equação 3.2. Baseando-se na experiência já acumulada (falhas onde a manutenção atuou) da rede, constrói-se uma tabela logarítmica especialmente desenvolvida para esta solução tornando a localização da falha fase-terra imediata e precisa.

A seguir será apresentado um exemplo de uma ocorrência em campo evidenciando o uso da ferramenta computacional descrita.

Essa falha ocorreu no dia 23/06/2009 sendo ocasionada por um abalroamento de veículo com um poste de concreto, causando o rompimento de condutor na fase B do alimentador ART01N2 e atuando a proteção fase-terra com o valor de corrente de 592 A. Na primeira intervenção para manutenção corretiva, foi localizado o ponto do defeito. Uma vez calculado o curto-circuito deste ponto de defeito em função da impedância e reatância do local foi verificado um valor de corrente de 580 A. Utilizando a expressão (3.2) criada para a técnica:

$$F_{if} = \frac{I_{cc}}{I_r}$$

$$F_{if} = \frac{580}{592}$$

$$F_{if} = 0.98$$
(3.2)

Em que:

F_{lf} – fator de localização de falta;

I_{cc} – corrente de curto circuito calculada no ponto de defeito;

I_r – corrente do relé de proteção do sistema.

Uma vez conhecido o intervalo de corrente em função do fator de localização de falta, torna-se conhecida a localização de falta utilizando apenas o valor de corrente do relé.

Figura 3.9 – Localização de falta para um defeito

Fonte: SEG-I_{cc} Coelce - Planilha Excel .

Rapidamente conhecemos a corrente correlacionada do local de defeito com a seguinte expressão (3.3):

$$I_{Scc} = I_r * F_{1f}$$
 (3.3)
 $I_{Scc} = 592 * 0.98$
 $I_{Scc} = 580 \text{ A}$

Em que:

I_{Scc} – Seguir corrente de curto-circuito (produto do ponto de defeito).

Este resultado final torna possível a localização de defeitos podendo então direcionar as turmas de manutenção do sistema elétrico para o local geograficamente correto com antecipação da localização do defeito. Desta forma, evitam-se procedimentos desnecessários como tentativas de manobras e tentativas de religamentos, o que resulta numa maior qualidade no fornecimento de energia e melhoria na segurança no trabalho, sendo possível ainda, a localização do defeito tanto em regime transitório como em regime de falta permanente.

Figura 3.10 – Tela de informação dos dados de campo

Fonte: SEG- I_{cc} Coelce - Planilha Excel $^{\circledR}$.

Automaticamente, uma segunda tela aparece informando o trecho afetado por esta corrente, que aparece marcado em vermelho, mostrado na Figura 3.11.

Figura 3.11 – Tela de informação do trecho afetado

Fonte: SEG- I_{cc} Coelce - Planilha Excel $\overset{\textcircled{\scriptsize (R)}}{\cdot}$.

O operador tem uma visão antecipada e clara dos equipamentos que devem ser manobrados antes mesmo que as equipes de emergência cheguem ao local, neste caso específico.

A aplicação desta técnica para localização de faltas permanentes permite identificar o local dos defeitos no menor tempo possível.

Nas faltas transitórias isto é um ganho, pois é possível realizar uma inspeção minuciosa no trecho mapeado e posteriormente uma manutenção preventiva, evitando uma possível falta permanente.

3.7 Conclusão

Neste capítulo foi apresentado uma solução computacional desenvolvida pela Coelce, para análise, proteção e localização de faltas, em especial as faltas fase-terra, facilitando a manutenção e melhorando assim, o fornecimento de energia.

Com auxílio dessa ferramenta foi possível agilizar a mobilização de pessoal, identificar a causa do incidente, manobrar o sistema e transferir cargas para outras linhas de distribuição, deixando sem fornecimento de energia, apenas o bloco de carga afetado pelo incidente.

4 ANÁLISE DA PROTEÇÃO DO SISTEMA EM ESTUDO POR MEIO DE CHAVE FUSÍVEL

4.1 Introdução

As distribuidoras de energia têm investido a cada ano na melhoria da proteção nas subestações de distribuição de energia elétrica (SEDs), nas redes aéreas de distribuição e transmissão através da utilização de disjuntores, religadores, seccionadores e chaves fusíveis. A chave fusível é o elemento de proteção que existe em maior quantidade e por menor custo permitindo assim, uma melhor seletividade no secionamento dos trechos com falhas permanentes.

A chave do tipo porta fusível é um equipamento constituído de elementos destinados à proteção do circuito contra danos e efeitos dinâmicos resultantes de curto-circuito no sistema elétrico, sendo facultativa sua utilização para cortar circuitos em situações de manutenção e manobras na distribuição do sistema elétrico.

Esse tipo de chave é fabricado em vários modelos de acordo com o nível de tensão, corrente, nível básico de isolamento (NBI) e distância de escoamento. Sendo a distância de escoamento a menor distância entre as partes condutoras medidas a partir da superfície isolante existente entres as partes condutoras (NBR 10621, 2005).

A distância de escoamento é de fundamental importância na escolha da chave em um projeto elétrico. É importante observar o meio ambiente das instalações, em especial na distribuição de energia elétrica em zonas litorâneas. Sua principal função é evitar a diminuição da rigidez dielétrica da parte energizada das chaves fusíveis instaladas em ambientes com alto índice de poluição salina.

4.2 Interrupções instantâneas no sistema de distribuição

Com o acúmulo da poluição salina nos isoladores, chaves seccionadoras e chaves fusíveis ocorre a diminuição da rigidez dielétrica ocasionando problemas como a interrupção do fornecimento de energia e o comprometimento da vida útil dos equipamentos existentes na rede de distribuição.

A chave fusível de 15kV não é recomenda a sua utilização em áreas litorâneas por possuir pequena distância de escoamento em seu corpo isolante. Com o acúmulo dos poluentes em seu isolador a chave fusível de 15kV perde suas características dielétricas.

Quando isso ocorre, a chave não oferece isolamento suficiente para evitar o escoamento entre os pontos de contato do cartucho "porta fusível" até o ponto mecânico de sustentação da chave, sendo inevitável a passagem de corrente para a terra. Dessa forma, ocorrem indesejadas atuações das proteções do sistema elétrico devido o acúmulo de sujeira no corpo da chave fusível ilustrada em vermelho na Figura 4.1.

Figura 4.1 – Distância de escoamento em uma chave fusível

Fonte: Desenho do acervo do Autor.

Em que:

c – representa a distância de escoamento.

Na Figura 4.2 pode-se verificar a distância de escoamento em isolador de pino de classe de isolamento 34,5 kV, mais utilizado em regiões litorâneas.

E na Figura 4.3 é possível verificar a distância de escoamento em isolador ancoragem, utilizado em redes de distribuição.

Figura 4.2 – Distância de escoamento em isolador de pino

Fonte: Lavagem a seco de isoladores da rede elétrica de distribuição.

Figura 4.3 – Distância de escoamento em isolador tipo ancoragem

Fonte: Lavagem a seco de isoladores da rede elétrica de distribuição.

4.3 Descrição de chave fusível

Existem duas classes de chave fusível utilizadas no sistema de potência, uma com isolador de corpo único e outra do tipo pedestal. Essas chaves fusíveis seguem o mesmo princípio de funcionamento, apesar de serem diferentes em suas configurações (MAMEDE FILHO, 2005).

As chaves fusíveis só devem ser operadas sem carga, por motivo de segurança. Caso seja necessário manobrá-las com carga é recomendado à utilização do *load-buster*, um equipamento utilizado para extinguir arcos elétricos em situações onde é necessário abrir chaves seccionadoras ou fusíveis com carga.

A chave fusível do tipo pedestal é composta de dois isoladores numa base metálica e é muito utilizada em subestações de 69 kV.

Esse tipo de chave era muito utilizado em *by-pass* de religadores em subestações das concessionárias de energia, mas por questões de segurança, foram substituídas por chaves seccionadoras. (ELO-ELÉTRICO, 2012).

Figura 4.4 – Chave fusível tipo pedestal

Fonte: Site Elo-elétrico.

As chaves fusíveis tipo corpo único são utilizadas principalmente no sistema de distribuição e com uma corrente nominal de no máximo de 300 A.

Essas chaves fusíveis podem ser classificadas também pelo seu nível de isolamento e estão disponíveis com os seguintes níveis de tensão: 15 kV, 24 kV e 38 kV. Elas também são projetadas para suportar os esforços mecânicos de abertura e fechamento no momento da operação.

Serão ilustradas nas Figuras 4.5, 4.6 e 4.7 os modelos de chaves fusíveis de acordo com seu nível de isolamento (DELMAR, 2011).

Figura 4.5 – Chave fusível tipo corpo único de $15~\mathrm{kV}$

Fonte: Site Delmar.

Figura 4.6 – Chave fusível tipo corpo único de 27 kV

Fonte: Site Delmar.

Figura 4.7 – Chave fusível tipo corpo único de 38~kV

Fonte: Site Delmar.

4.3.1 As partes principais de uma chave fusível

As chaves fusíveis podem ser divididas em três partes: porta-fusível, elo fusível e o corpo isolante.

O porta-fusível mostrado na Figura 4.8 é formado por um tubo de fibra de vidro ou fenolite, possui um revestimento interno capaz de aumentar a robustez do tubo e gerar gases para a extinção do arco elétrico.

Figura 4.8 – Porta-fusível

Fonte: Site Delmar.

A cada operação da chave fusível ocorre a diminuição da espessura da parede do tubo do porta-fusível, resultante de desgastes da camada que gera os gases liberados pelo tubo interno, previamente constituído de materiais apropriados para extinção do arco elétrico.

O porta-fusível apresenta também uma função secundária muito importante, a sinalização do trecho com defeito. A chave fusível fica suspensa em sua parte inferior, quando atua o porta-fusível, facilitando a identificação do trecho com problema (MAMEDE FILHO, 2005).

Os elos fusíveis mostrados nas Figuras 4.9 e 4.10 são elementos metálicos com a finalidade de fundir no momento em que surgir uma corrente de carga maior que aquela para a qual foi projetado. Sua atuação é inversamente proporcional ao tempo, ou seja, quanto maior for a corrente menor será o tempo de atuação do elo fusível.

Um elo de má qualidade pode ser um transtorno para o sistema elétrico, pois não é possível garantir seu perfeito funcionamento e com isso a seletividade e a coordenação do sistema elétrico podem ficar comprometidos.

De acordo com as características construtivas, existem dois tipos de elos fusíveis: os elos tipo botão e argola. (MAMEDE FILHO, 2005).

Figura 4.9 – Elo tipo botão

Fonte: Site Delmar.

Fonte: Site Delmar.

De acordo com suas características elétricas e tempo de rompimento, existem alguns tipos de elos que são muito usados no sistema elétrico de potência. São os elos do tipo K, tipo H e tipo T.

Os elos do tipo H são utilizados para proteção de transformadores de distribuição e sua atuação é considerada lenta. Já os elos do tipo K são utilizados para proteção de ramais em linhas primárias de distribuição e sua atuação é considerada rápida para correntes elevadas.

Elos do tipo *T* também são utilizados para proteção de ramais em linhas primárias de distribuição e diferenciam-se dos elos do tipo *K* por atuarem de forma lenta para correntes elevadas.

Os elos preferenciais (6, 10, 15, 25, 40, 65, 100, 140 e 200 K) permitem uma margem de coordenação maior entre os elos fusíveis do que os elos não-preferenciais (8, 12, 20, 30, 50, 80 K).

Portanto, quando são usados no sistema de distribuição com o intuito de realizar uma coordenação, deve-se seguir a recomendação de não utilizar elos preferenciais e elos não-preferenciais na mesma linha de distribuição. Caso contrário, isso acarretaria uma descoordenação dos elos fusíveis.

A Tabela 4.1 mostra a coordenação entre os elos de tipo K. Nesta tabela é possível verificar por meio das curvas tempo x corrente dos elos fusíveis, os valores limites de coordenação. Os elos protetores não podem exceder a 75% do tempo de fusão mínimo dos elos protegidos.

Elo Elo Fusível Protegido Fusível Protetor 8K 40K 10K 12K 15K 20K 25K 30K 50K 65K 80K 100K 140K 200K 8k 10k 12k 15k 20k 25k 30k 40k 50k 65k 80k 100k 140k

Tabela 4.1 – Coordenação de elos fusíveis tipo *K*

R Fonte: Estudo de coordenação acervo Coelce – planilha Excel .

Como relatado anteriormente, os elos fusíveis seguem a premissa de que o tempo de atuação é inversamente proporcional à magnitude da corrente de defeito. A Figura 4.11 ilustra o comportamento dos elos fusíveis tipo *K* para vários níveis de corrente.

Figura 4.11 – Curva tempo x corrente para elos fusíveis tipo *K*

Fonte: Manual de equipamentos elétricos.

4.4 Chave fusível especial – tipo religadora

Existe ainda a chave fusível especial tipo religadora de abertura monopolar que possui três portas fusíveis ligados em paralelo, trabalhando em um sistema temporizado entre si.

No momento em que o primeiro elo se rompe, um mecanismo hidráulico realiza a conexão com o segundo elo e da mesma forma com o terceiro elo. Persistindo o defeito, todos os elos ficarão atuados e o sistema sem fornecimento.

Sua instalação é recomendada para regiões distantes e de difícil acesso, pois a maioria dos curtos-circuitos são temporários. Esse tipo de chave não é recomendado para a instalação em linhas próximas à praia, onde a poluição salina interfere em seu funcionamento (MAMEDE FILHO, 2005).

Figura 4.12 – Chave fusível religadora

Fonte: Site Delmar.

A Tabela 4.2 mostra as características elétricas dos dispositivos fusíveis conforme NBR 7282.

Tabela 4.2 – NBR 7282 – características elétricas dos dispositivos fusíveis

	Elos fusíveis	Dispositivo fusível a utilizar			
Tipo	Corrente nominal A _{eficaz}	Tensão máxima kV _{eficaz}	Corrente nominal do porta-fusível A _{eficaz}	Capacidade de interrupção simétrica kA _{eficaz}	
	0,5, 1, 2, 3 e 5	15	400	7,1	
Н		24,2		4,5	
		36,2		3,5	
	6, 10, 15, 25, 40, 65 e 100	15	100	7,1	
KeT		24,2		4,5	
	8, 12, 20, 30, 50 e 80	36,2		3,5	
KeT	140 a 200	15	200	7,1	

Fonte: NBR 7282.

Além da escolha adequada dos equipamentos de proteção, é imprescindível um projeto de coordenação adequada entre eles. Para um programa de coordenação eficiente, devem ser seguidos os seguintes passos:

- Coletar os valores das impedâncias e reatâncias do barramento da subestação de força 69/13,8kV - SED que distribui potencial para os alimentadores divididos conforme projeto;
- Realizar os cálculos de curto-circuito da linha de distribuição de cada alimentador levando-se em conta também as impedâncias e reatâncias dos cabos em função das distâncias que estão distribuídos no sistema elétrico;

Conhecidos os níveis de curto-circuito em vários pontos do alimentador, passa-se a uma segunda etapa do estudo: a coordenação dos equipamentos instalados ao longo do alimentador que pode ser obtida com os seguintes passos:

- Fazer o somatório de todas as potências aparentes instaladas e da corrente de carga máxima registrada nos últimos 12 meses;
- Determinar a constante K utilizando a fórmula dada pela equação 4.1 que dará, aproximadamente, a corrente real passante em qualquer ponto da distribuição desse alimentador.

Constante
$$K = \frac{I_{pk}}{S_{total}}$$
 (4.1)

Em que:

 I_{pk} - representa o valor máximo de corrente registrado no período de 12 meses no alimentador em estudo;

S_{total} – representa o somatório das potências aparentes no alimentador em estudo.

Com base no valor da constante *K*, conhecendo-se as curvas de atuação do tempo x corrente das proteções de fase e terra do religador ou disjuntor instalado no barramento de 13,8 kV e as curvas de atuação dos equipamentos instalados ao longo do alimentador é possível determinar a coordenação de todos os equipamentos.

Essa coordenação inicia sempre pela coordenação chave fusível x chave fusível, seguida pela coordenação chave fusível x seccionador automático e por fim, seccionador automático x religador.

4.5 Descrição detalhada do sistema para estudo de caso em campo

Conforme relatado no capítulo 01, a Coelce possui, na cidade de Aracati, um centro de serviço responsável pela manutenção na rede de distribuição de energia.

Para atender a essa demanda, o centro de serviço de Aracati dispõe de 10 funcionários Coelce, 03 equipes de atendimento emergencial 24 h cada uma com 05 homens trabalhando em regime de escala, 02 equipes de manutenção composta por 02 homens trabalhando em horário comercial e 01 equipe de construção composta por 06 homens trabalhando em horário comercial totalizando um efetivo de 35 pessoas para realizar manutenções corretivas e preventivas nos alimentadores de responsabilidade neste centro de serviço.

Estão sob sua responsabilidade 16 alimentadores que estão distribuídos conforme Tabela 4.3. Esses alimentadores podem ser classificados como rural/urbano ou praia/sertão.

Tabela 4.3 – Classificação dos alimentadores do sistema em estudo de caso

Alimentador	Classificação I	Classificação II
ART01N1	Rural	Sertão
ART01N2	Urbano	Praia
ART01N3	Urbano/Rural	Praia/Sertão
ART01N4	Rural	Sertão
ART01N5	Urbano	Sertão
ART01N6	Urbano	Sertão
ICP01N1	Rural	Praia/Sertão
ICP01N2	Urbano	Praia
ICP01N3	Rural	Sertão
ITC0111	Urbano/Rural	Sertão
ITC01I2	Rural	Sertão
ITC01I3	Rural	Sertão
JGA01N1	Rural	Sertão
JGA01N2	Rural	Sertão
JGA01N3	Urbano	Sertão
JGA01N4	Rural	Sertão

Fonte: Estudo do autor – planilha Excel .

Esse trabalho tem como foco os alimentadores de praia que consomem mais tempo e uma maior quantidade do investimento devido a complexidade do sistema no qual estão inseridos.

Os alimentadores de praia são responsáveis por 70% das anomalias registradas pelos inspetores das linhas de distribuição e por 80% do consumo do orçamento destinado à manutenção para manter o sistema operando em condições normais.

Nas manutenções realizadas nestes alimentadores de praia são substituídos isoladores, chaves fusíveis, chaves seccionadoras, transformadores e postes danificados pela ação da maresia. Apenas no ano de 2011 até o mês de novembro foram substituídas 369 chaves

fusíveis, 154 chaves seccionadoras, 240 isoladores e 136 postes em todo o centro de serviço de Aracati.

Atualmente, nos alimentadores de praia, as chaves fusíveis convencionais estão sendo substituídas por chaves fusíveis com duplo isolamento para eliminar as atuações indevidas ocasionadas pela poluição salina, o objeto de estudo desta dissertação.

No ano de 2011 foram substituídas 310 chaves fusíveis com duplo isolamento nos alimentadores de praia do centro de serviço de Aracati.

4.6 Estudo de coordenação da proteção do alimentador do estudo de caso

Para uma melhor compreensão, será ilustrado no apêndice A, parte do diagrama unifilar do alimentador ART01N3 no qual foi realizado o estudo de coordenação.

A medição de todas as resistências do solo de um alimentador tornaria inviável o desenvolvimento dessa ferramenta, por isso é adotada a resistência média do solo de 100Ω . Esse valor é considerado como padrão para os estudos de coordenação da Coelce.

A utilização do protecad torna o estudo da coordenação do sistema elétrico mais ágil e seguro e possibilita identificar graficamente os níveis de corrente de curto-circuito desde o barramento da SED até o ponto mais distante dos alimentadores.

Desta forma, em qualquer operação do religador, as correntes registradas poderão orientar o sentido do possível ponto de defeito, ou seja, se o defeito encontra-se próximo ou não do referido religador.

É possível incluir também, equipamentos especiais utilizados para proteção de sistemas elétricos como religadores e seccionadores, proporcionando a visualização do circuito por inteiro e facilitando a compreensão por parte dos técnicos que examinam o projeto de coordenação.

A Figura 4.13 representa o alimentador ART01N3 mostrado anteriormente em um diagrama unifilar diferente, onde estão inseridas somente as barras de curto-circuito calculadas pelo protecad.

Figura 4.13 – Circuito das barras no protecad

Fonte: Protecad – Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará.

No exemplo a seguir será mostrado o estudo completo da coordenação da proteção do alimentador ART01N3 utilizando a chave fusível com duplo isolamento. Esse alimentador foi escolhido por encontrar-se distante da sede e pela quantidade de ocorrências originadas pela poluição salina.

4.6.1 Ajustes do religador da SED do alimentador ART01N3

Antes de iniciar o estudo de coordenação, é necessário obter os parâmetros existentes no relé de proteção do religador da subestação de Aracati para o alimentador ART01N3.

Na Tabela 4.4 é possível verificar algumas informações sobre o relé e os ajustes para as proteções de fase e de terra para esse alimentador. Os ajustes são oriundos de uma Ordem de Ajuste da Proteção conhecida por (OAP).

Tabela 4.4 – Parâmetros de ajustes do relé do religador ART01N3

Ajuste	Tipo do Relé	RTC	I pick-up(a)	Tape	Curva	Família de curva	Instantâneo
Fase	EFACEC	400-5	360	4,50	0,26	M.I	OFF
Terra	EFACEC	400-5	24	0,30	0,42	M.I	OFF

Fonte: Estudo de coordenação acervo Coelce – planilha Excel .

A Tabela 4.5 nos mostra outros itens importantes para este estudo que são: sequência de operação, tempo de reset e os tempos dos religamentos do religador em estudo.

Tabela 4.5 – Parâmetros complementares dos ajustes relé do religador ART01N3

Seguência de energeão	Tompo do reget (cog.)	Tempos de religamentos (seg.)		
Sequência de operação	Tempo de reset (seg.)	1°	2°	3°
1I-3T	45	2	5	15

Fonte: Estudo de coordenação acervo Coelce – planilha Excel ...

A partir das informações do relé de proteção do alimentador ART01N3 é possível determinar os ajustes dos equipamentos de proteção tais como religadores de linha, seccionadores e chaves fusíveis que estão ao longo desse alimentador, tendo sempre a preocupação de que exista seletividade entre os equipamentos.

Após obter as informações sobre o religador da SED referente ao alimentador ART01N3, iniciam-se os ajustes dos religadores de linha e dos seccionadores, e com o cálculo do fator K dado pela equação 4.1, pode-se estimar o valor da corrente que circulará por um determinado ramal. A partir desses valores serão calculados os ajustes de fase e de terra para os religadores de linha e seccionadores.

É importante lembrar que o princípio básico da coordenação é afetar o menor número de clientes possível, daí a importância do ajuste adequado dos equipamentos.

4.6.2 Ajustes do religador de linha do alimentador ART01N3

Os religadores de linha e os seccionadores são responsáveis por 70% da coordenação de um alimentador. Dessa forma, seguem na Tabela 4.6 os parâmetros dos ajustes das proteções de fase e terra do religador de linha que foi instalado na estrutura de sustentação BC-2234, sendo ilustrado na Figura 4.14.

Figura 4.14 – Estrutura de fixação de religador

Fonte: Foto do acervo do autor.

Na Tabela 4.6 são apresentados os parâmetros de ajuste do religador de linha citado no referido estudo.

Tabela 4.6 – Parâmetros de ajustes do religador de linha

Equipamento	Ajuste	Tipo	I Pick-up(a)	Curva rápida	Curva lenta	Código da estrutura
1	Fase	NOVA	70	KYLE 111	KYLE 120	DC2224
1	Terra	NOVA	15	KYLE 115	KYLE 132	BC2234

Fonte: Estudo de coordenação acervo Coelce – planilha Excel .

Na Tabela 4.7 podem-se verificar os itens complementares para os ajustes de religador de linha em estudo que são: sequência de operação, tempo de reset e os tempos dos religamentos.

Tabela 4.7 – Parâmetros complementares dos ajustes do religador de linha

E	C^	T 1 4 ()	Tempos de religamento (seg.)		
Equipamento	Sequência de operação	1 empo de reset (seg.)	1°	2°	3°
1	1I-3T	35	1	5	10

Fonte: Estudo de coordenação acervo Coelce – planilha Excel .

1.1.2 Ajustes dos seccionalizadores do alimentador ART01N3

Concluídos os ajustes do religador de linha, iniciam-se os cálculos dos ajustes dos seccionadores instalados nas estruturas BA2926, AU9525 e AU9004. Na Tabela 4.8 são mostrados os ajustes dos seccionadores do alimentador em estudo.

Tabela 4.8 – Parâmetros de ajustes dos secionadores

Equipamento Ajuste		Tipo de seccionalizador	I Pick-up(a)	Código da estrutura	
1	Fase	GH3E ou GH3VE	56	BA 2926	
1	Terra	GH3E ou GH3VE	7	DA 2920	
2	Fase	GH3E ou GH3VE	GH3E ou GH3VE 24		
Δ	Terra	GH3E ou GH3VE	7	AU 9525	
2	Fase	GH3E ou GH3VE	24	AU 9004	
3	Terra	GH3E ou GH3VE	7	AU 9004	

Fonte: Estudo de coordenação acervo Coelce – planilha Excel ...

Terminada a primeira etapa da coordenação do alimentador dá-se início à segunda etapa, o dimensionamento dos elos das chaves fusíveis instaladas ao longo do alimentador ART01N3.

4.6.3 Dimensionamento dos elos das chaves fusíveis do alimentador ART01N3

Segue abaixo, na Tabela 4.9, o dimensionamento dos elos fusíveis das chaves instaladas nas estruturas do alimentador em estudo.

Tabela 4.9 – Dimensionamento de elos fusíveis

Código da Chave Fusível	Código da Estrutura	Elo Recomendado
1	AU8555	6K
2	BA9025	3K
3	AV7031	3K
4	AU9632	15K
5	AV4636	10K
6	AU8520	3K
7	BA9742	25K
8	BA6875	10K
9	BA9769	15K
10	BA7103	15K
11	BA6115	8K
12	BA3973	8K
13	BA7120	3K

Código da Chave Fusível	Código da Estrutura	Elo Recomendado
14	BA2160	3K
15	BA7146	3K
16	AW1292	3K
17	AU8920	3K
18	AU9012	15K
19	AU9055	10 K
20	AU9080	3K
21	BA4929	10K
22	BA5879	6K
23	BC0690	6K
24	AU9160	10K
25	BA9572	3K

Fonte: Estudo de coordenação acervo Coelce – planilha Excel .

4.7 Conclusão

A escolha de equipamentos adequados é imprescindível para o bom funcionamento do sistema, bem como, para sua manutenção. Devem ser levados em consideração não só a necessidade técnica da rede, mas também o ambiente hostil onde o equipamento será instalado. E outro fator importante a ser observado é a coordenação entre estes equipamentos.

As chaves fusíveis apresentam um bom desempenho quando instaladas no interior, porém, quando inseridas em regiões litorâneas, constatam-se os danos ocasionados pela ação da poluição salina, onde muitas vezes ocorre a operação indevida do equipamento de proteção.

Daí a importância da busca de soluções alternativas que se adequem melhor às necessidades desses locais.

5 CHAVE FUSÍVEL COM DUPLO ISOLAMENTO

5.1 Introdução

As consequências dos efeitos da poluição, principalmente a atmosférica em regiões litorâneas, geram agentes agressores e degradadores dos materiais elétricos, condutores ou isolantes, das redes aéreas de distribuição e transmissão de energia.

No Brasil, em sua imensa maioria, a transmissão e distribuição de energia são feitas através de linhas aéreas, portanto totalmente expostas à intempérie climática e à poluição ambiental.

A poluição ambiental provoca principalmente a diminuição da capacidade dielétrica dos isoladores, aumentando a corrente de fuga, o que acarreta a redução no seu desempenho isolante, a consequente ocorrência de descargas "flash over", a redução de sua resistência mecânica e ainda o desgaste de outros materiais.

Frequentemente, no sistema elétrico de potência, ocorrem interrupções indesejáveis devido às falhas em materiais e equipamentos, particularmente nos isoladores, seja pela degradação dos materiais ou por vandalismo.

A busca pela qualidade no fornecimento de energia faz com que as empresas do setor invistam significativas quantias em manutenção a fim de garantir ao sistema elétrico índices aceitáveis de continuidade no fornecimento.

Para assegurar essa continuidade, as concessionárias utilizam grande contingente de homens, equipamentos, instrumentos e procedimentos técnicos especializados dentre os quais se destacam os serviços de lavagem de linhas aéreas e subestações energizadas ou não, além de outras medidas de manutenção.

O serviço de lavagem de isoladores é necessário, principalmente nas regiões litorâneas, devido aos efeitos causados pela grande precipitação atmosférica de cloreto (salinização) e outros poluentes, que agridem os isoladores provocando os defeitos já citados e resultando em falhas no sistema elétrico.

A poluição urbana e a industrial também provocam falhas no sistema elétrico, mas em menor escala.

5.2 Detalhamento do projeto da chave fusível com duplo isolamento

Não existia, no mercado, nenhuma solução para o problema de poluição salina, a única ferramenta utilizada nesses casos era a utilização de chaves fusíveis com tensões de 24 kV. E ainda assim, era necessária uma sistemática de lavagem para que não ocorressem as atuações indevidas que eram constantes nas chaves fusíveis com tensões de 17 kV.

No momento em que se realizavam as lavagens convencionais, havia o risco de curtocircuito entre a parte energizada e a estrutura de concreto. Em muitos casos as chaves eram danificadas e os clientes tinham o fornecimento de energia interrompido.

A seguir serão apresentados os passos do desenvolvimento da chave fusível com duplo isolamento – CFDI para corrigir o problema já identificado.

Para eliminar essa circulação de corrente surgiu a idéia de instalar entre a chave e a estrutura de fixação da chave fusível um isolador de amarração tipo porcelana de 15 kV. A possível solução para o problema não foi definitiva, pois se constatou que os isoladores de porcelana resolviam apenas o problema da corrente de fuga.

Devido à tipologia e estrutura de fixação dos isoladores, surgiu outro problema: o movimento lateral da chave fusível no momento em que era manobrada. Facilitada pela parte arredondada do olhal de fixação do isolador de amarração, em alguns casos era capaz até de provocar curto-circuito entre as fases.

A Figura 5.1 apresenta o isolador de porcelana utilizado na fixação da chave fusível (SANTA TEREZINHA, 2011).

Figura 5.1 – Isolador de porcelana utilizado na fixação da chave fusível

Fonte: Site Santa terezinha.

Optou-se então, por utilizar o isolador porcelana tipo suspensão. Assim surgiu o primeiro protótipo da CFDI, ilustrado na Figura 5.2.

Figura 5.2 – Primeiro protótipo da chave fusível com duplo isolamento

Fonte: Foto do acervo do autor.

Como o isolador de porcelana de suspensão possuía essa limitação, iniciou-se o estudo com outro tipo de isolador de amarração: o de vidro. Ele tem as mesmas características que o anterior e com o olhal de fixação no formato quadrado que dificultaria o giro da chave fusível. Esse foi o segundo protótipo da chave fusível com duplo isolamento.

A confecção da CFDI neste momento era trabalho bastante artesanal dominado por poucos, impossibilitando assim a disseminação do projeto. Em uma das etapas de preparação era necessário serrar parte do isolador de vidro para permitir a fixação da base metálica em "L" da chave fusível.

A Figura 5.3 apresenta o isolador de vidro utilizado na fixação da chave fusível.

Figura 5.3 – Isolador de vidro utilizado na fixação da chave fusível

Fonte: Foto do acervo do autor.

Com a utilização do isolador de vidro tipo suspensão ocorreu uma melhoria no protótipo. Na Figura 5.4 é ilustrado o segundo protótipo da CFDI.

Figura 5.4 – Segundo protótipo da chave fusível com duplo isolamento

Fonte: Foto do acervo do autor.

Em parceria com o setor de normas da Coelce foram desenvolvidos dois tipos de junções para facilitar e consequentemente disseminar a utilização da chave fusível em outras regionais da Coelce.

Foram desenvolvidas as junções de aço galvanizado, para fixar o isolador na base de fixação em "L" e outra junção para fixar o isolador e a base da chave fusível. A Figura 5.5 ilustra as junções de fixação relatadas.

Figura 5.5 – Junções de fixação da chave fusível com duplo isolamento

Fonte: Foto do acervo do autor.

Com aquisição dessas junções, surgiu o terceiro protótipo da CFDI, que pôde ser montado rapidamente, corrigindo assim, as anomalias de corrente de fuga e dando liberdade ao movimento da chave no momento da manobra.

A Figura 5.6 apresenta as conexões das junções na base de fixação da chave fusível e na base de fixação em "L".

Figura 5.6 – Conexões das junções na base de fixação da chave fusível e na base de fixação em "L"

Fonte: Foto do acervo do autor.

Na Figura 5.7 ilustra o desenho do modelo atual da chave fusível com duplo isolamento, que será mais detalhado ao longo deste capítulo com os benefícios de sua utilização.

Figura 5.7 – Desenho da chave fusível com duplo isolamento

Fonte: Desenho acervo AutoCad Coelce.

A utilização da chave fusível com duplo isolamento tem como principal objetivo aumentar a rigidez dielétrica, diminuindo a ação da poluição salina que leva a chave fusível a operar indevidamente. (COELCE, 2011).

5.3 Ensaios da chave com duplo isolamento

A norma NBR 10621 de 2005, trata dos métodos de ensaios em isoladores com poluição artificial, mas ela não se aplica para ensaios com chaves fusíveis. Portanto, para os ensaios das chaves fusíveis, tomou-se como base a norma NBR 10621.

Os ensaios foram realizados no laboratório da empresa B&Q localizado na cidade do Eusébio, região metropolitana de Fortaleza. Esse laboratório é certificado pelo Inmetro desde 2010 (NBR 17025, 2005). A Figura 5.8 mostra uma foto do Laboratório da B&Q.

Figura 5.8 – Laboratório de ensaios da BQ.

Fonte: Foto do acervo do autor.

Para a realização dos ensaios foram estabelecidos os seguintes procedimentos:

Inicialmente utilizou-se uma chave fusível nova com classe de isolamento 24 kV a qual foi submetida a uma sequência de descargas impulsivas de 5 kV, 10 kV, 15 kV, 25 kV e 25 kV durante 03 minutos e foi medida a corrente de fuga para cada descarga aplicada. Em seguida repetiu-se o mesmo processo de ensaio com as chaves fusíveis retiradas do campo.

Esses valores serão adotados como referência para comparação de chaves fusíveis em operação no campo com e sem o duplo isolamento. Foram tomados como referência os procedimentos de ensaios adotados por Sousa (2010).

A tabela 5.1 relaciona os instrumentos utilizados na realização dos ensaios.

Tabela 5.1 – Instrumentos utilizados no ensaio da CFDI

Instrumentos Utilizados no Ensaio							
Instrumentos	Marca	Modelo	Série/Identificação	Certificado			
Voltimetro Digital -AT	Vitrek	4670A	17134	DIMCI 2529/2009			
Temporizador Digital	Coel	HWE	19138/01	R1726/2009			
Termohigrômetro	Minipa	MT-241	3496	J336167/2009			
Multimetro Digital	Amprobe	38XR-A	71202484	2879/2009			
Régua Graduada	Tajima	SSR30DC	3043	13297/09			

Fonte: Estudo do autor — planilha Excel $^{(\mathbb{R})}$.

Para constatar a eficiência da utilização do isolador de amarração associado a uma chave fusível, foram realizados em dois momentos ensaios com chaves fusíveis novas, onde os valores de corrente de fuga foram praticamente iguais.

Na Figura 5.9 é possível observar o ensaio com a chave fusível nova.

Figura 5.9 – Ensaio chave fusível com duplo isolamento

Fonte: Foto do acervo do autor.

Num segundo momento foram realizados ensaios com chaves fusíveis retiradas do campo com aproximadamente o mesmo tempo em operação no sistema elétrico. Nele, foi possível constatar a eficiência na utilização da chave fusível com duplo isolamento.

Durante os ensaios foi tomado todo cuidado para evitar contato com as superfícies das chaves para que não comprometesse o resultado final.

Na Figura 5.10 são mostradas as chaves fusíveis que foram utilizadas para o ensaio no laboratório da B&Q.

Figura 5.10 – Chaves fusíveis que foram realizados os ensaios

Fonte: Foto do acervo do autor.

A chave fusível com duplo isolamento, embora suja (poluída), apresentou o valor da corrente de fuga próximo ao de uma chave fusível totalmente limpa (nova).

Para melhor identificação, as chaves fusíveis foram referenciadas com os códigos CF-1/10 – chave fusível retirada do campo com duplo isolamento e CF-2/10 - chave fusível retirada do campo no modelo convencional. Iniciou-se o ensaio com a chave CF-1/10 que tinha sido instalada no campo com o duplo isolamento (NBR 10621, 2005).

Na chave CF-1/10 foram realizados os ensaios com a chave fusível sob poluição natural com a configuração convencional e também com o duplo isolamento, sendo constatados valores de corrente de fuga diferente para a chave CF-1/10.

A Figura 5.11 mostra a chave CF-1/10 que foi realizado o ensaio sob poluição natural com a configuração convencional e com duplo isolamento.

Figura 5.11 – Chave CF-1/10

Fonte: Foto do acervo do autor.

A Figura 5.12 mostra as curvas com os valores das correntes de fuga coletados na chave CF-1/10 com ensaio realizado a seco sob poluição natural.

Figura 5.12 – Correntes de fuga na chave CF-1/10 com ensaio a seco

A Figura 5.13 mostra a corrente de fuga na chave fusível CF-1/10 no momento em que ocorre a perda da rigidez dielétrica entre a base de fixação e o contato fixo da chave fusível.

Figura 5.13 – Corrente de fuga na chave CF-1/10

Fonte: Foto do acervo do autor.

Seguindo o mesmo procedimento, foram realizados os ensaios na chave CF-2/10 que foi instalada no campo como uma chave fusível convencional, sendo também constatados valores de corrente de fuga diferentes.

A Figura 5.14 mostra a chave CF-2/10, a qual se realizou ensaio sob poluição natural com a configuração convencional e com duplo isolamento.

Figura 5.14 – Chave CF-2/10

Fonte: Foto do acervo do autor.

A Figura 5.15 mostra as curvas com os valores das correntes de fuga coletados na chave CF-2/10 com ensaio realizado a seco sob poluição natural, utilizando as duas configurações descritas neste capítulo (NBR 10621, 2005).

Figura 5.15 – Correntes de fuga na chave CF-2/10 com ensaio a seco

Fonte: Estudo do autor – planilha Excel .

Os resultados obtidos nos ensaios da corrente de fuga comprovam a eficiência esperada da chave fusível com dupla isolação, pois ela apresenta uma maior rigidez dielétrica, portanto menor corrente de fuga.

Além disso, verifica-se que se trata da comprovação experimental de uma inovação tecnológica com custo mínimo e grande facilidade para a fabricação e/ou montagem e também, prolongando o tempo de utilização da chave fusível.

5.4 Conclusão

A chave fusível com duplo isolamento é uma opção viável e segura para sistema elétrico de potência.

A substituição de chave fusível de 17 kV por chave fusível de 24 kV também é muito utilizada, gerando custos adicionais aos processos de manutenção das concessionárias, onde em muitos casos não se consegue manter baixa a circulação de corrente de fuga ao longo do tempo. Essa corrente de fuga pode danificar a chave fusível e ocasionar atuações indevidas como foi relatado neste capítulo.

A segurança de técnicos e terceiros também foi observada neste estudo e os problemas identificados ao longo dos anos, devido a poluição salina, instigaram a equipe do centro de serviço da Coelce em Aracati a buscar soluções para esse incômodo que sazonalmente surge

nas redes de transmissão e distribuição. Prezando por tudo isso, a chave fusível com duplo isolamento está sendo implementada em regiões de alto índice de poluição salina.

A chave fusível com duplo isolamento surgiu para as equipes de manutenção como uma solução viável e eficaz para os problemas com os quais elas se deparavam nos meses de ausência de chuvas, uma vez que a chave fusível com duplo isolamento elimina as atuações indevidas que ocorriam nas chaves fusíveis convencionais.

6 ANÁLISE DE RESULTADOS

6.1 Introdução

O alimentador ART01N3 escolhido para a realização deste trabalho atende a 6.569 consumidores em uma extensão de 180 km de linhas de média tensão. Totalizando 270 transformadores de distribuição e 1.325 chaves fusíveis, dentre as quais 435 foram substituídas por chaves fusíveis com duplo isolamento, o que corresponde a 33% das chaves fusíveis deste alimentador. Ele pode ser classificado como rural, urbano e de praias.

A utilização da chave fusível com duplo isolamento nesse alimentador foi analisada com bastante atenção, pois a região possui uma grande diversidade econômica.

6.2 Análise do sistema antes da aplicação da nova configuração de chave fusível.

Após o período chuvoso as redes de distribuição de energia elétrica localizadas nas áreas litorâneas ficam constantemente poluídas por uma névoa salina formada por partículas de água misturadas com sal. Essa névoa forma uma crosta condutora na superfície do isolador e é a principal responsável por uma série de problemas nas linhas de distribuição.

Na Figura 6.1 mostra uma estrutura de transformador com as chaves fusíveis poluídas.

Figura 6.1 – Estrutura de Transformador com Chaves fusíveis poluídas

Fonte: Foto do acervo do autor.

Verificou-se que nos meses de estiagem (a partir do mês de agosto) surgiam várias ocorrências originadas da poluição salina e em muitos casos ocorria também, a atuação das chaves fusíveis indevidamente, pois não havia chuva para limpar esse acúmulo de poluição.

Quando a poluição está acentuada, apenas uma chuva passageira de poucos milímetros é suficiente para ocasionar a atuação indevida das chaves fusíveis. Isso ocorre porque as gotas de água juntamente com as partículas de sal existentes no corpo isolante da chave fusível permitem a circulação da corrente de fuga. Na lavagem convencional com água pressurizada a probabilidade desse tipo de ocorrência é mínima.

Este é um grande desafio para o setor de manutenção, além de um problema para as equipes de atendimento emergencial. Em agosto de 2005, por exemplo, em um só dia houve a atuação de mais de 90 chaves fusíveis ocasionando um transtorno para as equipes do atendimento emergencial e para os consumidores.

Os técnicos da Coelce verificaram que as chaves danificadas possuíam algo em comum: todas tinham trilhas de escoamento entre o contato fixo e a base de fixação das chaves na estrutura de concreto.

A Figura 6.2 mostra a quantidade de ocorrências observadas entre 2007 e 2011 cuja causa registrada foi a maresia.

Figura 6.2 – Ocorrências indevidas por ação da poluição salina

OCORRÊNCIA POR MARESIA

Fonte: Estudo do autor – planilha Excel .

A Figura 6.3 mostra o número de clientes afetados nos alimentadores provenientes de interrupções ocasionadas por maresia.

Figura 6.3 – Clientes afetados por ocorrências indevidas por ação da poluição salina

Fonte: Estudo do autor – planilha Excel .

Neste acompanhamento foram registrados 53.348 clientes afetados. O total de clientes afetados por ocorrências devido à maresia no período acompanhado de 05 anos se assemelha a uma interrupção que afeta todo o centro de serviço de Aracati, que possui um quantitativo de 55.000 clientes.

Nesses cinco anos foram gastos cerca de 258.129,00 reais em lavagens convencionais de alimentadores para amenizar os efeitos da névoa salina. Em algumas lavagens as estruturas encontravam-se muito poluídas, sendo necessário interromper o fornecimento de energia no trecho que estava sendo lavado.

A Figura 6.4 mostra o acompanhamento dos custos com lavagem nos alimentadores que são afetados pela poluição salina.

LAVAGENS REALIZADAS **CUSTO POR LAVAGENS** 2007 50.000,00 2008 40.000,00 2009 30.000,00 **2010** 20.000,00 **2011** 10.000,00 0,00 ART01N2 ART01N3 ICP01N1 ICP01N2 **ALIMENTADORES**

Figura 6.4 – Custos por lavagem por alimentador

Fonte: Estudo do autor – planilha Excel

A Figura 6.5 mostra os custos com as equipes de manutenção para restabelecer o sistema nas ocorrências provenientes da ação da poluição salina.

Figura 6.5 – Custos por manutenções realizadas

Fonte: Estudo do autor – planilha Excel .

Através dos gráficos pode ser observado que o custo de manutenção corretiva e preventiva nesses alimentadores, que recebem a influência da névoa salina é elevado e impacta diretamente no recurso destinado à manutenção do sistema elétrico.

No período em que foi realizado este estudo, foram gastos cerca de R\$ 283.473,00 com manutenção e lavagem convencional para manter o sistema de distribuição em condições operativas.

As ocorrências relacionadas com a poluição salina nos isoladores, chaves seccionadoras e chaves fusíveis no centro de serviço de Aracati acarretaram no ano de 2010 um déficit de R\$ 66.833,00 no orçamento destinado a manutenção das redes de baixa e média tensão.

O Valor gasto no atendimento das ocorrências decorrentes da poluição salina representa 3% do valor total planejado para a execução de manutenção corretiva e preventiva na região em estudo durante um ano.

Como exemplo comparativo, são apresentados os alimentadores ART01N3 e o ICP01N1, ambos próximos ao litoral. No ART01N3 foi feita a instalação da chave fusível com duplo isolamento e no ICP01N1 foram utilizadas ferramentas convencionais para mitigar o problema: lavagem periódica e a substituição das chaves fusíveis de 17,5 kV por chaves de 24 kV.

Na tabela 6.1 podem ser observados os custos agregados à montagem da chave fusível com duplo isolamento a partir da chave fusível 17,5kV comparada com o custo da substituição da chave fusível de 17,5kV pela chave fusível 24kV.

Custos Por Unidade das Chaves Fusíveis Isolador Junções de Valor Chave Valor Chave Vidro fixação Fusível 17,5kV Fusível 24kV Valor Total Chave Convencional 168,4 168,4 Chave com Duplo Isolamento 26,00 16,00 142,12 184,12

Tabela 6.1 – Custo por unidade de chave fusível

Fonte: Estudo do autor – planilha Excel .

Apesar do valor na montagem da CFDI apresentar valor maior do que a chave convencional, o retorno financeiro virá com o aumento da vida útil da chave fusível e com a redução das operações indevidas provenientes da poluição salina.

Na Figura 6.6 é mostrada a curva de crescimento no quantitativo de ocorrências causadas pela maresia no ICP01N1 entre os anos de 2007 e 2011. Verifica-se que a tendência da curva teve uma mudança no seu sentido no ano de 2011, o que caracteriza uma melhoria no combate desse tipo de defeito.

Vale ressaltar que a instalação da CFDI no ICP01N1 iniciou no terceiro trimestre de 2010.

Figura 6.6 – Alimentador ICP01N1 com o pior desempenho

Na Figura 6.7 pode-se verificar uma tendência de queda no quantitativo de ocorrências por maresia do ART01N3 ao longo dos anos.

Fonte: Estudo do autor – planilha Excel ®.

Com a utilização da chave fusível com duplo isolamento houve a redução de lavagem artificial nesse alimentador. Oportuno lembrar que o ano de 2008 foi um ano de baixas ocorrências devido o excesso de chuvas em toda região, o que proporcionou a limpeza natural dos isoladores e das chaves.

Figura 6.7 – Alimentador ART01N3 com o melhor desempenho

Fonte: Estudo do autor – planilha Excel .

Na Figura 6.8 é mostrada uma estrutura de transformador com a utilização de chave fusível com duplo isolamento.

Figura 6.8 – Estrutura de transformador com utilização da chave fusível com duplo isolamento

Fonte: Foto do acervo do autor.

6.3 Conclusão

A chave fusível com duplo isolamento é uma ferramenta de baixo custo que proporciona um alto desempenho ao sistema elétrico ao eliminar a atuação indevida da chave fusível, ocasionada pela poluição salina.

Dessa Forma, a concessionária garante uma redução no custo com lavagem, manutenção corretiva e proporciona ao consumidor uma melhoria na qualidade do fornecimento de energia.

7 CONCLUSÃO

Os efeitos da poluição salina além de reduzirem a vida útil dos equipamentos por meio da corrosão, também provocam a atuação indevida das chaves fusíveis. Essa atuação indevida gera custo à concessionária e insatisfação aos clientes afetados devido o tempo gasto para atender a todos os casos registrados no centro de serviço.

Até então, solução conhecida para esse tipo de problema era a realização de lavagens periódicas nas estruturas que possuíam equipamentos e chaves. Porém esse tipo de intervenção além de ser onerosa ao orçamento da manutenção, também poderia gerar danos ao sistema elétrico se ocorresse algum erro na execução do serviço.

Uma alternativa foi idealizada pelo eletricista da Coelce José Lucio da Silva, uma adaptação para as chaves fusíveis com o objetivo de eliminar a circulação da corrente de fuga da parte energizada (corpo de porcelana) para a cruzeta que fixa a chave fusível.

Com a utilização desse artifício verificou-se que o desempenho das chaves fusíveis melhorou e que essas chaves não atuavam indevidamente com as chaves normais.

Verificada a oportunidade de melhoria no sistema, foi elaborado um plano de ação para substituir as chaves fusíveis que se encontravam próximas às áreas com alto teor de poluição salina, levando em consideração o nível de criticidade.

Nos últimos três anos foram substituídas, em toda a área, mais de 600 chaves fusíveis por chave fusível com duplo isolamento. O que resultou numa redução nos índices de DEC e FEC que tinham por causa a poluição salina.

Essa prática foi apresentada à concessionária, sendo aprovada e normatizada para a utilização dessa ferramenta em toda Coelce. Também foi apresentada para a concessionária AMPLA no Rio de Janeiro como uma inovação no combate aos efeitos da poluição salina.

O centro de serviço de Aracati é referência em toda a empresa nesse tipo de prática, sendo sempre visitado por funcionários de outros centros de serviço da Coelce e até da Ampla, como foi relatado.

Os custos para substituir uma chave fusível convencional por uma chave fusível com duplo isolamento é irrisório, pois o preço das peças de junção associado ao isolador de vidro chega ao valor de apenas R\$ 42,00 e o preço pago por uma hora trabalhada de uma equipe de atendimento custa à concessionária de energia o valor de R\$ 64,00. Portanto, o retorno desse projeto é imediato.

No ano de 2011 foram instaladas no centro de serviço de Aracati 310 chaves com duplo isolamento sendo esperada uma redução de R\$ 15.000,00 na execução das lavagens que corresponde a 30% do orçamento de lavagem e uma redução de R\$ 4.000,00 com equipes de atendimento emergencial que corresponde a 60% do valor gasto para atender ocorrências causadas pela poluição dos equipamentos devido à maresia.

A utilização da chave fusível com duplo isolamento representou uma melhoria no fornecimento de energia em regiões com alto índice de poluição salina.

Trabalhos Futuros

Avaliação do desempenho do protótipo da chave fusível com duplo isolamento em outras regiões com diferentes índices de salinidade.

Realizar uma produção industrial do protótipo, para que outras concessionárias possam utilizar esse novo equipamento.

Publicações dessa Dissertação

- SBSE 2012;
- Revista Eletricidade Moderna maio de 2012;
- Submetido ao SENDI 2012.

8 REFERÊNCIAS

- [1] A. K. Pinto, J. N. Xavier, "Manutenção função estratégica", 3. ed., Rio de Janeiro: Qualitimark, 2009.
- [2] Agência Nacional de Energia Elétrica ANEEL, "Brasil Indicadores de Qualidade", Disponível em: <a href="http://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="http://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="http://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.aneel.gov.br/indqual/VisualizarGraficosmedias.asp?Empresa="https://cfx.asp?Empresa="https://cfx.asp?Empresa="https://cfx.asp?Empresa="https://cfx.asp?Empresa="https://cfx.asp?Empresa="https://cfx.asp?Empresa="https://cfx.a
- [3] Agência Nacional de Energia Elétrica ANEEL, "Procedimento de Distribuição de Energia Elétrica no Sistema Elétrico Nacional Prodist. Módulo 8 Qualidade de Energia", 2008.
- [4] AIEE COMMITTEE REPORT. "Bibliography and summary of fault location methods", Transactions of the American Institute of Eletrical Engineers Part III, Power Apparatus and Systems. New York, Ny, v.74, n.3, pp.1423-1428, 1955.
- [5] Associação Brasileira de Normas Técnicas ABNT, "NBR 10621 Isoladores utilizados em sistemas de alta tensão em corrente alternada Ensaios de poluição artificial", 2005.
- [6] Associação Brasileira de Normas Técnicas ABNT, "NBR 17025 Requisitos gerais para a competência laboratórios de ensaio e calibração", 2005.
- [7] Associação Brasileira de Normas Técnicas ABNT, "NBR 7109 Isolador de Disco de Porcelana ou Vidro Dimensões e Características", 2009.
- [8] Associação Brasileira de Normas Técnicas ABNT, "NBR 7282 Dispositivos Fusíveis de Alta Tensão Dispositivos Tipo Expulsão Requisitos e Métodos", 2011.
- [9] C. Castro, J. Bunch, T. Topka, "Generalized algorithms for distribution feeder deployment and sectionalizing", IEEE Transactions on power apparatus and systems, Piscataway; NJ, v. Pass -99, n.2, pp. 549-557, 1980.
- [10] C. F. Wagner, R. D. Evans, "Componentes simétricas", New York and London: McGraw-Hill, 1933.
- [11] Centrais Elétricas de Santa Catarina CELESC, "Fornecimento de energia em tensão primária de distribuição", 2001.
- [12] Companhia Energética de Minas Gerais CEMIG, "Fornecimento de energia elétrica em média tensão, redes de distribuição aérea ou subterrânea", 2005.
- [13] Companhia Energética do Ceará COELCE, "Protecad", Fortaleza: Revista Deu Certo, pp. 100-101, 2009.

- [14] Companhia Energética do Ceará COELCE, "Chave Fusível com duplo isolamento contra maresia", Fortaleza: Revista Deu Certo, pp. 100-101, 2011.
- [15] Companhia Energética do Rio Grande do Norte COSERN; Companhia Energética do Pernambuco CELPE; Companhia de Eletricidade do Estado da Bahia COELBA "Fornecimento de energia elétrica em tensão primária de distribuição classe 15 kV", 2003.
- [16] Delmar, "Produtos: Chave fusível" Disponível em: http://www.delmar.com.br/rd.asp Acesso em: 13 nov. 2011.
- [17] Elo-Eletrico, "Produtos: Chave fusível unipolar de força", Disponível em: http://eloeletrico.com.br/portal/modules/rmms/prods.php?idp=428>, Acesso em: 24 jun. 2012.
- [18] J. Mamede Filho, "Manual de equipamentos elétricos", 3. ed., Rio de Janeiro: LTC, 2005.
- [19] K. Geraldo, "Curto-circuito", 2. ed. Sagra Luzzatto, 1997, pp. 140-142.
- [20] L. A. Tavares, "Administração moderna da manutenção", Rio de Janeiro: Novo Polo Publicações, 1999.
- [21] L. E. Gentil, "Protecad Software para análise de coordenação da proteção da rede de distribuição de energia elétrica do Ceará", Fortaleza, 2007.
- [22] R. O. Sousa, "Lavagem a seco de isoladores da rede elétrica de distribuição", Fortaleza, 2010. Dissertação realizada na Universidade Federal do Ceará com obtenção do titulo de Mestre.
- [23] L. Roytman; B. Thomas; F. Trutt; M. Swamy, "Direct Fault Location in Electrical Power Systems". IEEE Transactions on Power Apparatus and Systems, Piscataway, NJ, v.PAS-101, n.10, pp. 4049 4054, 1982
- [24] SANTA TEREZINHA, "Vidro Isoladores de Suspensão", Disponível em: http://www.cst-isoladores.com.br/portugues/produtos/tit-pop/porc-isol-susp.html, Acesso em: 13 nov. 2011.
- [25] T.W. Stringfield, D.J. Marihart and R.F. Stevens, "Fault Location Methods for Overhead Lines", Transactions of the AIEE, Part III, Power Apparatus and Systems, Vol. 76, Aug. 1957, pp. 518-530.
- [26] V. F. Campos, "Gerenciamento da rotina do dia-a-dia", 8. ed., Belo Horizonte: Desenvolvimento Geral, 2004. pp. 248.

APÊNDICE A – Diagrama unifilar do alimentador ART01N3

APÊNDICE B – Faltas assimétricas em sistema de potência

Faltas assimétricas

As faltas assimétricas podem ser consideradas como sendo qualquer curto-circuito no sistema de potência proveniente de faltas entre fase-terra, duas fases-terra ou entre fases. Para análise das faltas é muito frequente a utilização do método das componentes simétricas, por facilitar a análise de ocorrências em linhas equilibradas que se tornam desequilibradas pela atuação do curto-circuito.

Faltas assimétricas em sistema de potência

A Figura B.1 mostra um circuito unifilar que representa um sistema trifásico com as suas respectivas correntes.

Figura B.1 – Circuito unifilar de um sistema trifásico equilibrada

Falta entre fase-terra simples

Uma falta entre fase-terra simples ou falta monofásica ocorre quando uma das fases tem um ponto de contado com a terra, gerando um desequilíbrio no sistema de potência. Um exemplo muito comum desse tipo de falha ocorre quando um isolador perde as suas características de isolamento e permite que a corrente que circula pelo condutor encontre um caminho de passagem alternativo para a estrutura de concreto (WAGNER; EVANS, 1933).

A Figura B.2 mostra um circuito trifásico com uma falta entre fase-terra simples.

Figura B.2 – Circuito trifásico com falta entre fase-terra

Utilizando as técnicas de componente simétrica pode-se chegar à equação adequada para esse tipo de falha. A corrente de falta de sequência positiva pode ser calculada através da equação (B.1) e (B.2).

$$I_{a1} = I_{a2} = I_0 \tag{B.1}$$

$$I_{a1} = \frac{V_f}{Z_1 + Z_2 + Z_0} \tag{B0.2}$$

Falta entre fase-fase

Uma falta fase-fase ocorre quando há o contato entre pelo menos duas fases gerando um desequilíbrio no sistema de potência, esta é uma falta bifásica. Um exemplo muito comum desse tipo de falha é quando os condutores de um vão não se encontram bem tensionados e qualquer ventania pode ocasionar o choque entre os condutores (WAGNER; EVANS, 1933).

A Figura B.3 mostra um circuito trifásico com uma falta entre fase-fase.

Figura B.3 – Circuito trifásico com falta entre fase-fase

Quando ocorre uma falta entre duas fases, as relações existentes entre tensões e a corrente de sequência positiva nessa ocorrência serão vistas nas equações (B.3) e (B.4).

$$\mathbf{V_{c1}} = \mathbf{V_{c2}} \tag{B.3}$$

$$I_{c1} = \frac{V_f}{Z_1 + Z_2} \tag{B.4}$$

Falta entre duas fases-terra

Outro tipo de falta bifásica ocorre quando duas fases entram em contato com o referencial para a terra, gerando um curto-circuito que não é muito comum no sistema de potência, a falta entre duas fases-terra (WAGNER; EVANS, 1933).

A Figura B.4 mostra o circuito trifásico com a respectiva falta.

Figura B.4 – Circuito trifásico com falta entre duas fases-terra

As equações (B.5) e (B.6) apresentam as relações entre as tensões e a equação para obtenção da corrente de sequência positiva nesse tipo de falha.

$$V_{c1} = V_{c2} = V_{c0} \tag{B.5}$$

$$I_{c1} = \frac{V_f}{Z_1 + \frac{Z_2 Z_0}{Z_2 + Z_0}} \tag{B.6}$$

Com essa modelagem apresentada pode-se resolver qualquer falha que velha surgir nos seja simétrica ou assimétrica.

ANEXO A - Artigo Publicado na revista eletricidade moderna

DISTRIBUIÇÃO - 2

Chave fusível de isolamento duplo para áreas com alta salinidade

Ricardo Silva Thé Pontes, da Universidade Federal do Ceará, e Rômulo Damasceno Moura, da Coelce - Cia. Energética do Ceará

Este artigo apresenta um novo modelo de chave fusível para áreas com alto índice de poluição salina, enfatizando as principais características, confiabilidade e segurança para o fornecimento de energia proporcionadas pelo equipamento. Foram desenvolvidos protótipos e realizados ensaios para verificação das correntes de fuga com diferentes níveis de tensão aplicada e sob poluição natural, em comparação com chaves convencionais.

poluição salina é um evento natural, exclusivo de áreas litorâneas, que afeta diretamente o funcionamento do sistema elétrico. A não realização de ações para minimizar seus efeitos, como a lavagem periódica dos equipamentos, pode ocasionar a queima de transformadores, chaves fusíveis e isoladores de pino.

As partes isolantes das chaves fusíveis têm como função princi-

pal isolar o potencial das partes energizadas para a terra. A perda de parte da rigidez dielétrica pela ação de poluentes condutores resulta em perda das operações de proteção do sistema ou danos dinâmicos ao equipamento, ou seja, em falhas no fornecimento de energia sem que exista um defeito de contato físico permanente com a terra.

Observações feitas no tratamento de casos de névoa salina mostraram que, mesmo agindo preventivamente e seguindo todas as recomendações, ainda persiste o risco de perda do alimentador durante a lavagem. Se a estrutura está muito poluída, qualquer desatenção pode ocasionar um curto-circuito entre fases ou entre uma das fases e a cruzeta. Neste caso, principalmente no momento de se jogar água para retirar a sujeira, os equipamentos podem perder as suas características dielétricas, além de permitir a ionização do ar, tornando-se excelentes

Estrutura de transformador com utilização da chave fusível de duplo isolamento — Redução dos desligamentos

condutores para formação de arcos elétricos.

No sistema da Coelce, essas atuações imprevistas interrompiam todas as programações das equipes de manutenção, pois quando vários conjuntos de chaves fusíveis atuavam simultaneamente, deixando muitos clientes sem energia e, para normalizar o sistema, era necessário solicitar equipes de apoio ao centro de controle, além das equipes de

atendimento emergencial da região. Tal procedimento impedia a realização das manutenções preventivas programadas para a data em que a chuva havia provocado a atuação dos elos fusíveis [4].

A alternativa escolhida para resolver esse problema foi a melhora do isolamento das redes de distribuição, através da inserção de uma resistência entre a cruzeta e a chave fusível. Desta forma, os efeitos da poluição salina seriam minimizados se a distância de escoamento entre a par-

DISTRIBUIÇÃO - 2

Tab. I - Causas de curto-circuito no sistema de distribuição	
Tipo de curto-circuito	Probabilidade
Trifásico	1%
Bifásico	14%
Monofásico (fase-terra)	85%

te energizada e a parte ligada à terra fosse aumentada. Seguindo esse raciocínio, foram montados alguns protótipos de chaves fusíveis com isoladores de porcelana e vidro na parte de fixação da chave, e o comportamento dessa nova configuração no sistema elétrico foi analisado.

A névoa dissipada no ar, na faixa entre o litoral da Paraíba e o litoral do Piauí, tem a segunda maior concentração de sal do mundo, perdendo apenas para o Mar Morto. O estudo de caso a seguir analisou uma experiência realizada nas redes de distribuição dos municípios cearenses de Aracati, Fortim e Icapuí, que obteve excelentes desempenhos de chaves fusíveis com dupla isolação para situações em que foram constatadas altas taxas de poluição salina.

Faltas assimétricas em sistema de potência

Falta fase-terra

Um exemplo muito comum desse tipo de falta ocorre quando um isolador perde as suas características de isolamento e permite que a corrente que circula pelo condutor encontre um caminho de passagem alternativo para a estrutura de concreto. Utilizando as técnicas de componente simétrica, a corrente de falta de sequência positiva pode ser calculada através das equações (1) e (2):

$$\begin{split} I_{aI} &= I_{a2} = I_0 \quad (1) \\ I_{al} &= \frac{V_f}{Z_1 + Z_2 + Z_o} \quad (2) \end{split}$$

onde:

 I_0 = corrente sequência zero;

 I_{al} = corrente na fase A, sequência positiva;

 I_{a2} = corrente na fase A, sequência negativa;

$$V_f$$
 = tensão na fonte;

 \vec{Z}_0 = impedância sequência zero;

 Z_I = impedância sequência positiva; e

 Z_2 = impedância sequência negativa.

Falta fase-fase

Um exemplo comum desse tipo de falha é quando os condutores de um vão não estão bem tensionados e qualquer ventania pode ocasionar o choque entre os cabos. Quando ocorre uma falta entre fases, as relações existentes entre tensões e a corrente de sequência positiva são as dadas pelas equações (3) e (4):

$$V_{cI} = V_{c2} (3)$$

$$I_{cI} = \frac{V_f}{Z_1 + Z_2}$$
 (4)

onde:

 I_{cI} = corrente na fase C, sequência positiva;

 V_{cI} = tensão na fase C, sequência positiva;

 V_{c2} = tensão na fase C, sequência negativa;

 V_f = tensão na fonte;

 \vec{Z}_1 = impedância sequência positiva; e Z_2 = impedância sequência negativa.

Falta de duas fases para a terra

Ocorre quando duas fases entram em contato com o referencial de terra, gerando um curto-circuito que não é muito comum no sistema de potência. As relações entre tensões e a corrente de sequência positiva nesse tipo de falha são dadas pelas as equações (5) e (6) [5]:

$$V_{c1} = V_{c2} = V_{c0}$$
 (5)

Fig. 1 – Ocorrências em que a causa registrada foi maresia

Fig. 2 – Clientes afetados por ocorrências causadas por maresia

resistente à vibrações blindagem 360°, otimzado para altas freqüências possibilitando aplicações seguras e protegidos contra EMI. Para maiores taxas de

dados, de até 10Gb, a RIA está lançando o modelo com quatro pares na codificação X e com as mesmas características do modelo com codificação D.

50b Schurter + OKW do Brasil Ltda. Tel. 11 5090 0030 • info@sob-brasil.com www.sob-brasil.com

DISTRIBUIÇÃO - 2

Fig. 3 - Custos de lavagem por alimentador

Fig. 4 – Custos das manutenções realizadas

$$I_{cl} = \frac{V_f}{Z_1 + Z_2 Z_o I(Z_2 + Z_o)} \ (6)$$

onde:

 I_{cI} = corrente na fase C, sequência positiva;

 V_{c0} = tensão na fase C, sequência zero;

 V_{cI} = tensão na fase C, sequência positiva; V_{c2} = tensão na fase C, sequência negativa; V_f = tensão na fonte; Z_0 = impedância sequên-

cia zero; Z_I = impedância sequência positiva; e Z_2 = impedância sequên-

 $Z_2 = \text{Impedancia sequencia negativa.}$

Atuação das proteções do sistema

Estudos mostram que praticamente todo desligamento não programado é provocado por curtos-circuitos que, nos sistemas de distribuição com neutro solidamente aterrado, estatisticamente distribuem-se como na tabela I. Como se verifica, 85% dos curtos-circuitos são monofásicos (fase-terra), sendo as causas principalmente descargas atmosféricas, contatos de árvores com a rede, falhas em equipamentos, animais, vento, abalroamentos, vandalis-

gramado é provocado Fig. 5 – Ensaio em chave fusível com duplo isolamento

136 EM MAIO, 2012

mo, falhas humanas em operações do sistema e outras. Diante deste fato, o grande desafio do projeto consistiu em solucionar o pior problema, ou seja, a localização de faltas provocadas por curto-circuito fase-terra.

Análise do sistema antes da aplicação da nova chave fusível

Após o período chuvoso, a partir de agosto, várias ocorrências decorrentes da poluição salina eram relatadas no sistema de distribuição das regiões litorâneas, como a atuação indevida das chaves fusíveis.

Quando a poluição estava muito acentuada, bastava uma chuva passageira de poucos milímetros para que ocorresse a atuação indevida das chaves fusíveis existentes, gerando problemas para as equipes de atendimento emergencial e para os consumidores. Registraram-se problemas em mais de 90 chaves fusíveis em um só dia. Os técnicos da Coelce verificaram que as chaves danificadas apresentavam trilhas de escoamento entre o contato fixo e a base de fixação na estrutura de concreto.

A figura 1 mostra as ocorrências causadas por maresia registradas entre 2007 e 2010. A figura 2 apresenta o número de clientes afetados, nos alimentadores, por interrupções ocasionadas pela maresia. Foram 52 mil clientes em quatro anos, número que corresponde a uma interrupção no centro de serviço do município de Aracati, CE, que possui 55 mil clientes.

A figura 3 mostra o acompanhamento dos custos com lavagem dos alimentadores afetados por poluição salina. Nesses quatro anos, foram gastos cerca de R\$ 258 000,00, sendo que, em algumas dessas lavagens, como as estruturas encontravam-se muito poluídas, ocorreu a interrupção do fornecimento de energia no trecho correspondente.

A figura 4 apresenta os custos com as equipes de manutenção para restabelecer o sistema nas ocorrências originadas pela poluição salina, os quais são bastante elevados. No período de realização deste estudo, foram gastos cerca de R\$ 283 089,00 com essas manutenções.

MAIO, 2012 EM 137

DISTRIBUIÇÃO - 2

Fig. 6 – Chaves fusíveis em que foram realizados os ensaios seco

Fig. 8 – Correntes de fuga na chave CF-1/10 com ensaio a seco

Ensaios realizados

Para constatar a eficiência da utilização do isolador de amarração associado à chave fusível, foram realizados ensaios com chaves fusíveis novas (figura 5) e retiradas de serviço, nos quais os valores de corrente de fuga foram praticamente iguais.

As chaves fusíveis retiradas do campo para os ensaios tinham aproximadamente o mesmo tempo em operação no sistema elétrico. Na figura 6 são mostradas as chaves fusíveis utilizadas para o ensaio no laboratório da empresa B&Q.

O ensaio tinha como objetivo submeter as chaves fusíveis a aplicações de cinco tensões elétricas diferentes, registrando-se o valor instantâneo de corrente de fuga sob cada tensão aplicada, assim como o valor da corrente de fuga registrado na aplicação da maior tensão durante um período de três minutos. Também se observou no ensaio a magnitude da corrente de fuga com a chave fusível sob poluição natural, tanto a seco quanto com água aspergida em condição condutiva.

Para melhor identificação, as chaves fusíveis foram referenciadas com os códigos CF-1/10 e CF-2/10. Na chave CF-1/10, foram realizados os ensaios sob poluição natural, na configuração convencional e também com o duplo isolamento (figura 7), sendo constatados valores de corrente de fuga diferentes. As curvas com esses valores, obtidos nessa chave com ensaio realizado a seco, estão na figura 8.

A figura 9 mostra a chave CF-2/10 em que foram realizados os mesmos ensaios. As curvas dos valores de correntes de fuga verificados nos ensaios a seco sob poluição natural estão na figura 10.

Análise econômica

O custo para substituir uma chave fusível por outra com duplo isolamento, na ocasião da realização do estudo, foi irrisório. O preço das peças adicionadas com o isolador de vidro chegou a R\$ 42,00, enquanto a hora trabalhada de uma equipe de atendimento custa à concessionária R\$ 64,00. Sendo assim, o retorno do investimento é imediato.

No ano de 2011, foram instaladas no centro de serviço de Aracati

Fig. 7 - Chaves fusíveis CF-1/10

250 chaves com duplo isolamento, sendo esperada uma economia de R\$ 15 000,00 com lavagens, o que corresponde a 30% do orçamento para execução de lavagem de linhas, e uma redução de R\$ 4 000,00 em custos com equipes de atendimento emergencial, valor que corresponde a 60% do empregado para atender as ocorrências causadas por poluição dos equipamentos pela maresia.

Comentários e conclusões

A lavagem periódica das estruturas é onerosa e pode gerar danos ao sistema elétrico em caso de erro na execução do serviço. Além de reduzir a vida útil dos equipamentos por meio da corrosão, a poluição salina também provocava, na

Fig. 9 – Chave CF-2/10