定理 8.4.2 的图论证明 离散数学(2)

黄宇翔

清华大学计算机系

05/29/2022

- (ロ) (個) (注) (注) (注) り(()

清华大学计算机系

- 1 问题回顾与讨论
- 2 回路和引理的证明
- 3 回路和引理在置换分解中的应用

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

- 1 问题回顾与讨论
- 2 回路和引理的证明
- ③ 回路和引理在置换分解中的应用

定理 8.4.2

- 定理 8.4.2: 任何置换都可表为不相交轮换的乘积
- 置換: $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$
- 轮换: $\gamma = \begin{pmatrix} i_1 & i_2 & \dots & i_{s-1} & i_s \\ i_2 & i_3 & \dots & i_s & i_1 \end{pmatrix}$
- 看起来像图?

清华大学计算机系

转化为图论问题

- 置換: $\sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ \sigma(1) & \sigma(2) & \dots & \sigma(n) \end{pmatrix}$
- 建有向图:

$$G = G(V, E), V = \{1, 2, \dots, n\}$$

$$E = \{(1, \sigma(1)), (2, \sigma(2)), \dots, (n, \sigma(n))\}\$$

- 图的特征: 每个点只有一条出边, 也只有一条入边
- •

$$\forall v \in V, d^+(v) = d^-(v) = 1$$

- (ロ)(個)((重)(重)(の)(で

清华大学计算机系

转化为图论问题

- 轮换: $\gamma = \begin{pmatrix} i_1 & i_2 & \dots & i_{s-1} & i_s \\ i_2 & i_3 & \dots & i_s & i_1 \end{pmatrix}$
- 一条回路:

$$P = \{(i_1, i_2), (i_2, i_3), \dots, (i_{s-1}, i_s), (i_s, i_1)\}$$

回路和引理: 任给图 G = G(V, E), 若
∀v ∈ V, d⁺(v) = d⁻(v) = 1,则该图可以拆成若干回路的和,即 E = P₁ ∪ P₂ ∪ · · · ∪ P_k, P_i 是回路

- 4 D ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q CP

- 1 问题回顾与讨论
- 2 回路和引理的证明
- 3 回路和引理在置换分解中的应用

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

回路和引理的证明

- 回路和引理回忆: 任给图 G = G(V, E), 若 $\forall v \in V, d^+(v) = d^-(v) = 1$, 则该图可以拆成若干回路的和
- 1 构造回路:
 - 1.1 任取 $v_0 \in V$,取 $P_e = \emptyset, P_v = \{v_0\}$
 - 1.2 若 $\exists v \in P_v$ 满足 $\Gamma(v) \notin P_v$, 则 $P_e \leftarrow P_e \cup \{(v, \Gamma(v))\}$, $P_v \leftarrow P_v \cup \{\Gamma(v)\}$, 转 1.2
 - 1.3 Pe 是一条回路
- 2 G ← (V − P_v, E − P_e), 若 G ≠ ∅ 转 1
- 证明上述算法的正确性:
 - 步骤 1.2: 若存在这样的 v,则只能有一个这样的 v,因为对于非最后一次扩展的结点 v,其直接后继 $\Gamma(v)$ 已经被扩展进入 P_v (图中每个结点只有一个直接后继)
 - 对于最后被扩展进入的结点 v_I ,若非 $\Gamma(v_I) = v_0$,就有 $\Gamma(v_I) \notin V_e$
 - 因为若 $\Gamma(v_t) = v_t, v_t \in P_v, v_t \neq v_0$,考虑到 $\Gamma(v_{t-1}) = v_t$,则 $d^-(v_t) = 2$,矛盾

回路和引理的证明 (续)

- 回路和引理回忆: 任给图 G = G(V, E), 若 $\forall v \in V, d^+(v) = d^-(v) = 1$, 则该图可以拆成若干回路的和
- 1 构造回路:
 - 1.1 任取 $v_0 \in V$,取 $P_e = \emptyset, P_v = \{v_0\}$
 - 1.2 若 $\exists v \in P_v$ 满足 $\Gamma(v) \notin P_v$, 则 $P_e \leftarrow P_e \cup \{(v, \Gamma(v))\}$, $P_v \leftarrow P_v \cup \{\Gamma(v)\}$, 转 1.2
 - 1.3 Pe 是一条回路
- 2 $G \leftarrow (V P_v, E P_e)$,若 $G \neq \emptyset$ 转 1
- 证明上述算法的正确性:
 - 由于 |V| 是有限数,步骤 1.2 在有限步内停止,一定 $\exists v_k, s.t. \Gamma(v_k) = v_0$,则一定能形成回路
 - 由于 |V| 是有限数,步骤 2 在有限步内停止。此算法可以将图 G 拆分成若干回路的和

- 4 ロ ト 4 昼 ト 4 Ē ト · Ē · りへの

9 / 35

- 1 问题回顾与讨论
- 2 回路和引理的证明
- 3 回路和引理在置换分解中的应用

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

◆ロト ◆団 ト ◆ 差 ト ◆ 差 ・ り へ ②

清华大学计算机系

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & \boxed{3} & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & \boxed{2} & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

14 / 35

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & \boxed{4} & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & \boxed{6} & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & \boxed{5} & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & \boxed{1} & 4 & 5 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 - り 9 0 0

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix}$$

19 / 35

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

- イロト 4回ト 4 三 ト 4 三 ・ りq (C)

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

イロト (部) (重) (重) (重) のQで

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 ・ 夕久で

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

(ロ) (部) (注) (注) 注 り(()

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

(ロ) (部) (注) (注) 注 り(()

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1 \ 3 \ 2 \ 7 \ 5)$$

- 4 ロ ト 4 団 ト 4 豆 ト 4 豆 ・ 夕久で

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1 \ 3 \ 2 \ 7 \ 5)$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1 \ 3 \ 2 \ 7 \ 5)$$

(ロ) (固) (目) (目) (目) (の)

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1 \ 3 \ 2 \ 7 \ 5)$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1\ 3\ 2\ 7\ 5)\ \gamma_2 = (4\ 6)$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1\ 3\ 2\ 7\ 5)\ \gamma_2 = (4\ 6)$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1\ 3\ 2\ 7\ 5)\ \gamma_2 = (4\ 6)$$

$$\gamma_3 = (8) = I_8$$

- (ロ) (部) (注) (注) (注) り(()

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix}$$

$$\gamma_1 = (1\ 3\ 2\ 7\ 5) \ \gamma_2 = (4\ 6)$$

$$\gamma_3 = (8) = I_8$$

$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 7 & 2 & 6 & 1 & 4 & 5 & 8 \end{pmatrix} = (1\ 3\ 2\ 7\ 5)(4\ 6)$$

清华大学计算机系

谢谢!

• "任何置换都可表为不相交轮换的乘积"

\$

"任给图 G = G(V, E), 若 $\forall v \in V, d^+(v) = d^-(v) = 1$, 则该图可以拆成若干回路的和"

清华大学计算机系