Step-1

$$B = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$
Given that

We have to show that the eigenvalues of B are $^{\pm \sigma_i}$, the singular values of A.

Step-2

$$B = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix}$$
We have

$$B^{2} = \begin{bmatrix} AA^{T} & 0\\ 0 & A^{T}A \end{bmatrix}$$

We know that the *singular values* of A in the singular value decomposition are the *square roots* of the eigenvalues of $A^{T}A$

Step-3

Observe that the upper left portion of B^2 is a $n \times n$ matrix AA^T and the right side is the zero matrix while the lower left is the square matrix of zeroes and the lower right is the square matrix A^TA

So, the eigenvalues of A^T and those of A^T and those of A^T .

So, the eigenvalues of *B* are the + or $\hat{a}\in$ the square roots of the eigenvalues of A^TA .

By the above result, these are nothing but the + or $\hat{a} \in$ "singular values of A.

Therefore, the eigenvalues of B are nothing but the + or $\hat{a}\in$ singular values of A denoted by $\pm \sigma_i$.

Hence the eigenvalues of B are the singular values of A.