Beiträge zur Chemie der Schwefelhalogenide. 11 [1]

# UV/VIS-spektroskopische Untersuchung über die Existenz von CF<sub>3</sub>S(O)I und das Schwingungsspektrum von CF<sub>3</sub>S(O)Br

R. Minkwitz\* und R. Lekies

Dortmund, Abteilung Chemie, Anorganische Chemie der Universität

Inhaltsübersicht. Sehr instabiles CF<sub>3</sub>S(O)I wird durch Vergleich seiner UV/VIS-Absorptionen bei 245, 310, 340 nm innerhalb der Reihe der Trifluormethylsulfinylhalogenide und durch seine Zerfallsprodukte identifiziert. Es wird die Zuordnung der Schwingungen von CF<sub>3</sub>S(O)Br angegeben.

Contribution to the Chemistry of Sulfur Halides. 11. UV/VIS Spectroscopic Investigations on the Existence of  $CF_3S(0)I$  and the Vibrational Spectrum of  $CF_3S(0)Br$ 

Abstract. The very instable compound  $CF_3S(O)I$  is identified by correlating its UV/VIS absorptions (245, 310, 340 nm) with those of the homologous trifluoromethylsulfinylhalides and by the decomposition products. The assigned vibrational spectrum of  $CF_3S(O)Br$  is given.

### Einleitung

Bei unseren Untersuchungen über Schwefel-Iod-Verbindungen gelang uns kürzlich die Darstellung von Trifluormethyliodsulfan  $CF_3SI$  [2]. Das Molekül ist instabil und zersetzt sich bereits oberhalb von -90°C in  $I_2$  und  $CF_3SSCF_3$ .

In Fortsetzung dieser Arbeiten waren wir bemüht, das innerhalb der homologen Reihe der Trifluormethylsulfinylhalogenide  $CF_3S(O)X$  (X = F, Cl, Br) noch unbekannte Iodid nachzuweisen, denn die einzige in der Literatur beschriebene S(IV)-Iod-Verbindung ist bisher  $OSI_2$ , welches nur kurzzeitig bei Zimmertemperatur in verdünnter Lösung auftritt [3]. Auch das von RATCLIFFE und SHREEVE 1968 nachgewiesene  $CF_3S(O)Br$  ist bereits bei Raumtemperatur instabil [4] und hat sich bis heute einer Reindarstellung entzogen. Seine schwingungsspektroskopische Charakterisierung ist ebenfalls unvollständig [4] und wird im Rahmen dieser Arbeit komplettiert.

Nach diesen Betrachtungen war zu vermuten, daß  $\mathrm{CF_3S}(O)\mathrm{I}$ , ähnlich wie  $\mathrm{OSI}_2$ , äußerst instabil ist und sich nur UV-spektroskopisch und an Hand seiner Zersetzungsprodukte zu erkennen gibt.

#### **Experimentelles**

 $\mathrm{CF_3S}(\mathrm{O})\mathrm{Cl}$  wird nach Vorschrift dargestellt [5] und an einer Stock-Apparatur gereinigt.

In Anlehnung an die Darstellung von  $CF_3S(O)Cl$  kann auch  $CF_3S(O)Br$  aus  $CF_3SBr$  oxydativ mit 3-Chlorperoxybenzoesäure hergestellt werden.

Eine äquimolare Mischung beider Komponenten (20 mmol) wird in einem Young-Hahn-Gefäß nach 4tägigem Stehen im Dunkeln an einer Stock-Apparatur mehrmals von  $-65\,^{\circ}$ C nach  $-100\,^{\circ}$ C fraktioniert. Die Probe enthält dann nach NMR-Messungen noch 13% CF<sub>3</sub>SO<sub>2</sub>Br und 0,8% CF<sub>3</sub>SBr, die sich nicht mehr auf diese Weise entfernen lassen. Eine weitere Reinigung mittels Codestillation führt zur vollständigen Disproportionierung zu CF<sub>3</sub>SBr und CF<sub>3</sub>SO<sub>2</sub>Br.

Die Darstellung von CF<sub>3</sub>S(O)I erfolgt in n-Hexan durch Schütteln einer  $10^{-4}$  molaren CF<sub>3</sub>S(O)Cl-Lösung mit KI bei 0°C. Der Halogenaustausch an  $\sim 0.2$  molaren CF<sub>3</sub>S(O)Cl-Lösungen mit KI führt zu den <sup>19</sup>F-NMR-spektroskopisch identifizierten Produkten CF<sub>3</sub>SI ( $\delta = -41.9$  ppm (s)), CF<sub>3</sub>SSCF<sub>3</sub> ( $\delta = -46.9$  ppm (s)), CF<sub>3</sub>I ( $\delta = -4.7$  ppm (s)), CF<sub>3</sub>SO<sub>2</sub>SCF<sub>3</sub> ( $\delta = -77.6$  ppm (q), -36.9 ppm (q);  $J_{\rm F,F} = 4.6$  Hz) und CF<sub>3</sub>SO<sub>2</sub>K ( $\delta = -88.6$  ppm (s)). Bei -80°C findet kein Halogenaustausch statt. Die Umsetzung von CF<sub>3</sub>S(O)Cl mit KI liefert CF<sub>3</sub>SSCF<sub>3</sub>, CF<sub>3</sub>SO<sub>2</sub>K, CF<sub>3</sub>I, SO<sub>2</sub> und I<sub>2</sub>.

Die Ramanspektren werden bei  $-78\,^{\circ}$ C mit  $\lambda = 647,1$  nm eines Kr<sup>+</sup>-Lasers (Spectra Physics) und dem Spektrometer Coderg T 800 registriert und die UV/VIS-Spektren mit dem Spektrometer ACTA MVII der Firma Beckman.

### Schwingungsspektrum von CF<sub>3</sub>S(0)Br

An einer nur Spuren  $\text{CF}_3\text{SBr}$  und wenig  $\text{CF}_3\text{SO}_2\text{Br}$  enthaltenden Probe gelang es, die Schwingungen von  $\text{CF}_3\text{S}(O)\text{Br}$  aus dem bei  $-78\,^{\circ}\text{C}$  registrierten Ramanspektrum zuzuordnen.

Tabelle 1 Schwingungsfrequenzen in cm<sup>-1</sup> der Sulfinylhalogenide CF<sub>3</sub>S(O)X (X = F, Cl, Br)

|                                                | 1                                         |                                          | -, -,,                                    |
|------------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|
| $CF_3S(O)Br$ [7]<br>Ra (flüssig, $T = -80$ °C) | CF <sub>3</sub> S(O)Cl [6]<br>Ra, flüssig | CF <sub>3</sub> S(O)F [6]<br>Ra, flüssig | Zuordnung                                 |
| 1200                                           | 1205-1260                                 | 1257                                     | v(S=O)                                    |
| 1168                                           | 1190                                      | 1242                                     | , ,                                       |
| 1110                                           | 1120                                      | 1227                                     | v(C-F)                                    |
|                                                | 1100                                      | 1217                                     | ,                                         |
| 748                                            | 752                                       | 757                                      | $\delta_{_{\mathrm{S}}}(\mathrm{CF_{3}})$ |
|                                                |                                           | 745-710                                  | $\nu(S-F)$                                |
| 568                                            | 574                                       | 587                                      |                                           |
| n.g.                                           | 553                                       | 550                                      | $\delta_{ m as}({ m CF_3})$               |
|                                                | 489                                       | ,                                        | ν(S Cl)                                   |
| 456                                            | 463                                       | 480                                      | $\nu(C-S)$                                |
| 433                                            | •                                         |                                          | v(S-Br)                                   |
| 336                                            | 346                                       | 413                                      | $\sqrt{2}$                                |
| 238                                            | 267                                       | 342                                      | $O = S \setminus_{CF_0}$                  |
| 261                                            | 301                                       | 289                                      | 3/                                        |
| 210                                            | 211                                       | 220                                      | $\varrho(\mathrm{CF_3})$                  |
| 133                                            | 163                                       | 192                                      | $\delta(CSX)$                             |
| n.g.                                           | n.g.                                      | n.g.                                     | $	au(\mathrm{CF_3})$                      |

n.g.: nicht gemessen

 $CF_3S(O)Br$  hat die Symmetrie  $C_1$ , und alle gemessenen Schwingungen sind Ra-aktiv und polarisiert, wie Abb. 1 bestätigt. Ihre Zuordnung erfolgt durch Frequenzvergleich einerseits mit  $CF_3S(O)F$  [6] und  $CF_3S(O)Cl$  [6] in Tab. 1 und andererseits mit  $CF_3SCl$  [8] und  $CF_3SBr$  [9].

Es ist deutlich in Tab. 1 die durch induktive Effekte bedingte Abnahme von  $\nu(C-S)$  beim Übergang vom Sulfinylfluorid zum -bromid zu erkennen, während  $\nu(S-X)$  jeweils im mittleren Erwartungsbereich beobachtet werden.

Charakteristisch ist die Lagekonstanz der  $\delta_s(CF_3)$  in den Sulfinylhalogeniden  $CF_3S(Q)$  X(X=F,Cl,Br) bei  $\sim 750$  cm<sup>-1</sup>, in den Sulfurylhalogeniden  $CF_3SO_2X$  (X=F,Cl,Br) bei  $\sim 770$  cm<sup>-1</sup> und in der homologen Reihe der Sulfane  $CF_3SX$  (X=Cl,Br,I) bei  $\sim 760$  cm<sup>-1</sup>.



Abb. 1 Ramanspektrum des  $CF_3S(O)Br$  bei  $-78\,^{\circ}C$  || = parallel polarisiert,  $\perp$  = senkrecht polarisiert. Aus Gründen der Übersichtlichkeit sind die Banden des  $CF_3SO_2Br$  nicht mit aufgeführt.

## Ergebnisse und Diskussion zur Existenz von CF<sub>3</sub>S(0)I

In Abb. 2 sind die UV-Spektren der Trifluormethylsufinylhalogenide  $CF_3S(O)X$  (X=Cl, Br, I) abgebildet, und in Tab. 2 sind die entsprechenden Daten denen der Trifluormethylsulfane  $CF_3SX$  gegenübergestellt. In beiden ist wie bei den  $OSX_2$ - und  $S_2X_2$ -Verbindungen beim Übergang zu den schweren Halogenen eine systematische Rotverschiebung der Absorptionen festzustellen. Das neue  $CF_3S(O)I$  hat seine  $\lambda_{max}$ -Werte bei 245 und 310 nm mit einer vorgelagerten Schulter bei 340 nm.



Abb. 2 UV/VIS-Spektren der Trifluormethylsulfinylhalogenide in n-Hexan bei 20°C. Spektrum  $-\cdot\cdot$ : CF<sub>3</sub>S(O)Cl; Spektrum  $-\cdot\cdot$ : CF<sub>3</sub>S(O)Br; Spektrum  $-\cdot\cdot$ : CF<sub>3</sub>S(O)I

Während  $\text{CF}_3\text{S}(O)\text{Cl}$  in Lösung bei Raumtemperatur völlig stabil ist, haben sich von der verdünnten Bromverbindung ( $\sim 10^{-4} \, \text{m}$ ) nach 24 Stunden bereits  $20 \, \%$  zersetzt. Unvergleichlich instabiler ist dagegen noch  $\text{CF}_3\text{S}(O)\text{I}$ . Schon während seiner Darstellung durch Schütteln einer etwa  $10^{-4}$  molaren  $\text{CF}_3\text{S}(O)\text{Cl}$ -Lösung mit KI ist die Bildung von  $I_2$  zu beobachten, und nach 24 Stunden hat seine Konzentration um  $85 \, \%$  abgenommen, wie der in Abb. 3 über diesen Zeitraum verfolgte Zerfall zeigt. Aufgrund der Instabilität von  $\text{CF}_3\text{S}(O)\text{I}$  ist es nicht möglich

| Tabelle 2 G | Gegenüberstellung der UV/VIS-spektroskopischen Daten in nm für die spektrochemischen |
|-------------|--------------------------------------------------------------------------------------|
|             | S(O)X und CF <sub>2</sub> SX (X = Cl. Br. I), gemessen in n-Hexan bei 20°C           |

| X  | $\mathrm{CF_3SX}$ [2]                                     | $CF_3S(O)X$ [7]                                           |
|----|-----------------------------------------------------------|-----------------------------------------------------------|
| Cl | $\lambda_{\max} = 214$                                    | 2 975                                                     |
| Br | $\lambda_{\text{max}} = 333$ $\lambda_{\text{max}} = 255$ | $\lambda_{\text{max}} = 275$ $\lambda_{\text{max}} = 215$ |
| I  | $\lambda_{\text{max}} = 372$ $\lambda_{\text{max}} = 270$ | $\lambda_{\text{max}} = 303$ $\lambda_{\text{max}} = 245$ |
|    | $ \lambda_{\rm sh} = 330 $ $ \lambda_{\rm sh} = 425 $     | $\lambda_{\max} = 310$ $\lambda_{\mathrm{sh}} = 340$      |



Abb. 3 Zerfall einer 10<sup>-4</sup> molaren CF<sub>3</sub>S(O)I-Lösung bei 20°C Spektrum 1: Durch Halogenaustausch dargestellte Lösung; Spektrum 2: nach 2h; Spektrum 3: nach 6h; Spektrum 4: nach 24h

gewesen, durch Halogenaustausch an konzentrierten  $CF_3S(O)Cl$ -Lösungen bei 0°C das Iodid  $^{19}F$ -NMR-spektroskopisch nachzuweisen. Stattdessen werden die Signale von  $CF_3SI$ ,  $CF_3I$ ,  $CF_3SSCF_3$  und  $CF_3SO_2SCF_3$  registriert, und im KI/KCl-Feststoff ist noch  $CF_3SO_2K$  enthalten.

Die Reaktion von  $CF_3S(O)Cl$  ohne Lösungsmittel mit KI liefert die Hauptzersetzungsprodukte  $CF_3SSCF_3$ ,  $I_2$  und  $CF_3SO_2K$  neben geringen Mengen von  $CF_3I$  und  $SO_2$ .

Der komplexe Zerfall des CF<sub>3</sub>S(O)I wird wie beim CF<sub>3</sub>S(O)Br durch eine Disproportionierung in CF<sub>3</sub>SI und CF<sub>3</sub>SO<sub>2</sub>I eingeleitet.

$$2 \operatorname{CF_3S}(O)I \to \operatorname{CF_3SI} + \operatorname{CF_3SO_2I}. \tag{1}$$

Das  $CF_3SI$  zersetzt sich weiter in  $CF_3SSCF_3$  und  $I_2$ , während für das intermediär auftretende  $CF_3SO_2I$  offensichtlich zwei Zerfallsmöglichkeiten bestehen. Zum einen kann es in Gegenwart von Iodid-Ionen unter  $I_2$ -Abspaltung zum Sulfinat abreagieren

$$CF_3SO_2I + KI \rightarrow CF_3SO_2K + I_2.$$
 (2)

und zum anderen thermisch in  $\mathrm{CF_3I}$  und  $\mathrm{SO_2}$  zerfallen. Auch Alkylsulfonyliodide reagieren in gleicher Weise schon bei ihrer Darstellung unter Abgabe von  $\mathrm{SO_2}$  [10], und das bei der Umsetzung von  $\mathrm{SO_2Cl_2}$  mit KI intermediär anzunehmende  $\mathrm{SO_2I_2}$  zerfällt so schnell in  $\mathrm{SO_2}$  und  $\mathrm{I_2}$ , daß es nicht UV-spektroskopisch nachzuweisen ist [3].

Die Bildung von  $CF_3SO_2SCF_3$  läßt sich aus der Reaktion der primär entstehenden Disproportionierungsprodukte  $CF_3SO_2I$  und  $CF_3SI$  unter  $I_2$ -Abspaltung und Knüpfung einer S-S-Bindung verstehen.

$$CF_3SO_2I + CF_3SI \rightarrow CF_3SO_2SCF_3 + I_2.$$
(3)

Zusammenfassend läßt sich feststellen, daß die vom  ${\rm SOI_2}$  bekannte Instabilität auch auf das  ${\rm CF_2S}(O)$ I zutrifft.

Wir danken dem Land Nordrhein-Westfalen für materielle Unterstützung.

#### Literatur

- [1] 10. Mitteilung: Minkwitz, R.; Nass, U.: J. Fluorine 31 (1986) 175.
- [2] MINKWITZ, R.; LEKIES, R.: Z. anorg. allg. Chem. 527 (1985) 161.
- [3] MANZEL, K.; MINKWITZ, R.: Z. anorg. allg. Chem. 441 (1978) 165.
- [4] RATCLIFFE, C. T.; SHREEVE, J. M.: J. Am. Chem. Soc. 90 (1968) 5403.
- [5] BURTON, C. A.; SHREEVE, J. M.: Inorg. Chem. 16 (1977) 1039.
- [6] Kirchmeier, R. L.; Shreeve, J. M.: Inorg. Chem. 14 (1975) 2431.
- [7] diese Arbeit.
- [8] BIELEFELDT, D.; WILLNER, H.: Spectrochim. Acta A36 (1980) 989.
- [9] Minkwitz, R.; Lekies, R.; Radünz, A.; Oberhammer, H.: Z. anorg. allg. Chem. 531 (1985) 31.
- [10] TRUCE, W. E.; WOLF, G. C.: J. Org. Chem. 36 (1971) 1727.

Bei der Redaktion eingegangen am 5. Dezember 1985.

Anschr. d. Verf.: Prof. Dr. Rolf Minkwitz und Dipl. Chem. Reinhard Lekies, Abt. Anorg. Chemie d. Univ., Otto-Hahn-Str. 6, D-4600 Dortmund 50