Designation du signal	Valeur d'adaptation	Numéro du contact	Mis au potentiel de référence.
Suppression (Commutation rapide)	6h. à + 6.4V étal logique "Zéro" (6) - 1V à + 3V étal logique "un" (6) Impédance de charge 75Ω III (7)	16	
Masse suppression		<u>*</u>	
Bus de données pour l'intercommunication N	Confact non utilise (utilisation future a l'étude)	12	
Bus de donnees pour Eintercommunication N 2	Confact non utilisé (utilisation future a l'étude)	16	
Masse commune des bus de donnees pour l'intercommunication		<u>4</u>	
Blindage de la fiche		21	Conditions de mesure et observation

uri des irrequences superieutes ou egales as an fix. I fig. 1a et Ib. Dour les systèmes de televisiant a modulation sidéo positive. Ta tolerance peut être portee s A rensions specifiées pour l'entree et la sorite vidéo ou une adaptation d'impédance est requise doivent s'en

ii tension appliquee à une charge de mesure fictive. our des signaux analogiques en mode différentel l'écart entre deux composantes qu

blanc. Fraid iogique "un" correspond a la suppression. Niveaux dans le signal composite et détails des signaux de synchronisations de ligne

a) Systèmes NTSC en PAL

b) Système SECAM

3.5 Le clavier

Le clavier du TO7 est du type clavier à membrane souple, matriciel à 8 lignes et 8 colonnes.

On se reportera pour l'étude de son fonctionnemnet au chapitre 2.6.

4. Les interfaces

4.1 L'interface RS232/CENTRONICS

L'extension communication est encartable sur le bus standard du TO7. Les entrées/sorties vers les périphériques se font par un connecteur miniature type D 25 broches.

Cette extension permet la communication avec n'importe quel type de terminal, sous forme de liaison série ou parallèle. Le standard de communication série est conforme à la norme RS 232, et l'interface parallèle est de type CENTRONICS.

CONTROLEUR DE COMMUNICATIONS

- L'interface série RS 232 se compose de 7 lignes :
- Deux sorties (DSR et CD) figées à +12V sous 330Ω .
- Deux sorties (RD et CTS) pouvant prendre les valeurs logiques

 \emptyset si $9V \le Vs \le 12V$ sous 300Ω

 $1 \text{ si } -12 \text{V} \leq \text{Vs} \leq -8 \text{V sous } 300\Omega$

le courant est limité à 10mA.

— Trois entrées (TD, RTS et DTR) qui transforment les tensions en valeurs logiques

 \emptyset si $1.25V \le Ve \le 3\emptyset V$

 $1 \text{ si } -3\emptyset \text{V} \leq \text{Ve} \leq 1\text{V}$

- L'interface parallèle se compose de 11 lignes :
- Neuf sorties TTL: STROBE et Data 1 à Data 8
- Deux entrée DTR au niveau logique (BUSY) et Acknowledge

Ø si Ve < 1V

1 si Ve > 1,25V

1. Étude des circuits

— Pour la comptabilité avec le standard RS 232 il a été nécessaire de fabriquer du – 12V à partir des tensions existantes du TO7, c'est-à-dire le – 5V et le + 12V.

Un oscillateur a été réalisé à l'aide d'une porte inverseuse Trigger de Schmitt 74LS14, d'une résistance R1 de 330Ω et d'un condensateur C2 de 100nF.

La porte bascule pour une tension typique sur front montant de 1,6V et possède un hystérésis de Ø,8V. La fréquence des oscillations rectangulaires en sortie voisinera les 33 kHz typiques.

Alimentation — 12 V interface RS 232

Ce signal rectangulaire attaque deux amplificateurs en opposition de phase, fonctionnant en mode saturé/bloqué et dont les sorties en court-circuit basculent entre +12V et -5V.

Le signal obtenu derrière $C5 = 4.7 \mu F/25V$ aura donc l'allure ci-dessous.

Allure de la tension au point A

Décodage d'adresse du 6821 RS 232

Le doubleur de tension réalisé par D1, D2 (1N4001) et C5, C6 ($22\mu F/16V$) permet d'obtenir une tension négative d'environ 16V qui sera stabilisée à -12V par R9 (1000) et Dz (BZX12V).

Le décodage d'adresse est réalisé conformément au schéma ci-après et permet grâce au signal CSE (\$E000-\$EFFF) de sélectionner le PIA de \$E7E0 à \$E7E3.

On remarquera que les liaisons A1 \(\to \) RSØ et AØ \(\to \) RS1 permettent d'adresser ce PIA par mots de 16 bits puisque l'on trouve d'abord les 2 registres de direction DDRA, DDRB puis les deux registres de contrôle CRA et CRB.

2. Étude du logiciel de gestion

Le contrôleur de communication est un sous-programme du moniteur TO7 accessible à l'adresse \$E812.

Ce logiciel, appelé RSCO\$, travaille selon le même principe que K7CO\$. Il utilise en effet un registre d'état RS.STA (\$602C), et un mot de code RS.OPC d'adresse \$602B, dont la valeur permet de choisir l'une des opérations cidessous :

	/ RS.OPR	970	00000001	Ouverture en lecture/écriture
				(RS232)
	RS.RDC	970	00000010	Lecture d'un octet
	RS.OPW	970	00000100	Ouverture en écriture seulement (RS232)
RS.OPC	RS.WRC	%	00001000	Écriture un octet
	RS.CLS	97 ₀	00010000	Fermeture
	RS.CPY	970	ØØ1ØØØØØ	Copie graphique d'écran
	\ RS.OPP	%	01000000	Ouverture en écriture
				parallèle
RS.STA	RS.NRD	%	10000000	Dispositif pas prêt

Mode série

- a) En ouverture, RD et CTS (PAØ et PA1 du 6821) sont positionnés à 1. Puis le TO7 teste DTR:
- Si DTR = 1 → le terminal n'est pas prêt
- Si DTR = \emptyset → le terminal est prêt

L'entrée DTR correspond au bit 6 du PORTA. Si ce bit est à 0 alors C (bit de carry) est mis à 0, sinon c'est mis à 1.

Le programme d'initialisation ci-dessous réalise les opérations ci-dessus après avoir initialisé le PIA.

RSINI	LDD STD	BLOCZ CRA2	Bloc de OO Acces aux DDR
	LDD	# %00000	D1111111111 Bit7:TXDATA-INPUT Bit6:DTTRMN-INPUT Bit5:REGTS-INPUT Bit1:CLRTS-OUTPUT Bit0:RXDATA-OUTPUT PORTB: OUTPUT
	STD	PRA2	Ecrit dans PRA2 et PRB2
	LDD	* %00000	10000111100 CA2:inactif CA1:actif sur front descendant avec IRQ inhibee (RTS) CB2: DUTPUT a 1 (STR) CB1:actif sur front descendant avec IRQ inhibee (ACKNOWLEDGE)
	STD LDA	CRA2 PRB2	dans CRA2 et CRB2 Test de l'existen du controleur: on lit PRB
	COMA STA	PRB2	On reecrit dedans
	CMPA	PRB2	Et on verifie la
	BNE	BUSY	reecriture Si non conforme, controleur non present
	COM	PRB2	Si present, on le remet dans son etat initial.

	LDA STA	#3 PRA2	CLEAR TO SEND : masque et RXDATA=mark
DTTEST	LDA	PRA2	Bit6 de A = DATA TERMINAL READY
	EORA	RS.STA	Si RS>STA=RSOPP A(6) est inverse
	ANDA	#%001000	000 On ne conserve que le bit 6.
	ADDA	#%11111	

RTS

b) Pour émettre un octet plusieurs vitesses sont possibles. La vitesse sélectionnée devra être placée dans le registre BAUDS (\$6044) selon le code suivant :

\$ 046A → vitesse de 110 Bauds : Durée 9090 (μs)

\$ Ø19B → vitesse de 300 Bauds : Durée 3333 (μs)

\$ 000CA → vitesse de 6000 Bauds : Durée 1666 (μs)

\$ 00062 → vitesse de 12000 Bauds : Durée 833 (µs)

\$ 002E → vitesse de 2400 Bauds : Durée 416 (µs)

\$ 0015 → vitesse de 4800 Bauds : Durée 208 (µs)

\$ 60007 → vitesse de 9600 Bauds : Durée 104 (µs)

On peut également envoyer 7 ou 8 bits (sans parité) suivant le contenu du registre NOMBRE (\$6046):

Si NOMBRE:

 $\% 100000000 \rightarrow 8 \text{ bits}$

% Ø1ØØØØØØ → 7 bits

L'octet à transmettre est placé dans l'accumulateur B avant l'appel de la routine :

Le moniteur commence par tester DTR:

— Si DTR = 1 → ERREUR

— Si DTR = $\emptyset \rightarrow$ il envoie un START, les 7 ou 8 bits de l'octet puis deux STOPS sur la ligne RD

Puis il attend que DTR passe à 0 pour sortir.

c) A la réception d'un octet, les registres BAUDS et NOMBRE doivent être correctement positionnés.

Le moniteur teste alors DTR:

- Si DTR = 1 → ERREUR
- Si DTR = \emptyset \rightarrow il teste RTS :
 - Si RTS = \emptyset , il positionne CTS à \emptyset et attend que TD passe à \emptyset , après quoi il attend un 1/2 délai puis teste à nouveau TD :
 - Si TD = 1 on recommence à attendre que TD passe à \emptyset .
 - Si $TD = \emptyset$, on a alors bien un bit de START.

Il saisit alors les 7 ou 8 bits à chaque délai. Après avoir saisi le dernier bit, l'octet est placé dans B, CTS est remis à 1, on attend 1/2 délai et on attend que DTR passe à Ø pour sortir.

— Si RTS = 1, le périphérique n'a rien à envoyer et on ressort quand DTR passe à \emptyset .

• Mode parallèle

- a) En ouverture, le STROBE est mis à 1, puis le moniteur teste DTR :
- Si DTR = 1 → le terminal n'est pas prêt
- Si DTR = $\emptyset \rightarrow$ la ligne est ouverte
- b) Pour émettre un octet, on teste DTR :
- Si DTR = 1 \rightarrow ERREUR
- Si DTR = \emptyset \rightarrow on envoie l'octet sur le PORTB, puis le STROBE est mis à \emptyset pendant 8μ s avant de revenir à 1. (Action sur CRB2)

Le moniteur attend alors que DTR passe à 1 puis à nouveau à \emptyset pour sortir. Dans ce mode, l'octet à transmettre est également passé par l'accumulateur B.

• Copie graphique d'écran

Dans ce mode, le moniteur envoie en mode parallèle un premier octet contenu dans le registre GRCODE (\$6047) et qui est le code "BEL" — \$07. Puis sans tester DTR, il envoie les 8000 octets de l'écran à raison d'un carac-

tère toutes les 75μ s environ, ce qui permet de recopier l'écran sur imprimante thermique en 6s. environ.

• Copie d'écran avec l'imprimante PR 90-880

L'imprimante à impact tape des points par paquets de 8 points verticaux. Pour recopier l'écran, il faut donc le lire verticalement 8 lignes par lignes sur une largeur d'écran (40 colonnes) puis recommencer avec les 8 lignes suivantes, etc.

C'est ce que permet de faire le programme ci-joint qui illustre parfaitement l'utilisation en assembleur du programme moniteur RSCO\$.

```
CODIE d'un ecran complet sur
l'imprimante PR 70-080

CARRY = 0 Tout est OK.
CARRY = 1 Erreur. voir RS.STA

Cinc sauts de ligne sont effectues
la la fin de la copie de facon a
l'tenir trois copies dans une page
l'2''.

Taille = 145 octets
l'
```

```
4000 STAD
                    EQU
                            $4000
         SF40 ENDAD EQU
                            $5F40
         EB12 RSCO
                     EQL
                            $E810
         5028 RSDFC EQUI
                            $602B
         0040 RSOPP EQU
                            $40
         0008 RSWRC EQU
                            $08
         0010 RSCLS EQU
                            $10
         £703 PRC
                     EQU
                            $E703
         0028 INTERL EQU
                            $28
         000A LF
                     EQL
                            $0A
         000F SI
                     50U
                            $0~
A000
                     ORE
                            $A000
A000 34
         36
             SEIKO
                    PSHS
                            D. X. Y.
A002 E6
        40
                     LDB
                            #RSOPP # Ouverture en //
A004 57
         602B
                     STE
                           RSOPE
A007 BD
        E812
                     JSR
                           8500
A00A 25
         77
                     BCS
                            SE IKS
A000 B6 E703
                    LDA
                           PRC
AOOF BA
         01
                     ORA
                           #1
A011 87
        E703
                     STA
                           PRC
                                   Select. mem. forme
A014 BE
         5F40
                    LDX
                            #ENDAD
A017 86 78
                    LDA
                           #3#INTERL
```

		A	ν.	M
A019 6F	80 SEIK1	CLR	, X+	Raz octets inutil.
A018 4A		DECA	PETIN	
A010 26	FB	BNE	SEIK!	
401E C6	08	LDB	#RSWRC	Paris and linium
A020 F7	6028	STB	RSOPC	Ecrit. sur liaison
A023 8D	69	BSR	SEIK10	Ecrit BS
A025 25	5C	BCS	SEIK?	Select de 12 names
A027 8E	4000	LDX	#STAD	Debut de l'ecran
A02A B6	28 SEIKZ	LDA	#4 0	40 colonnes
A020 34	02	PSHS	A	Compteur de Col.
A02E 34	10 SE1K3	PSHS	χ	Sauv. pointeur
A030 86	08	LDA	#8	8 bits par octet
A032 34	02	PSHS	A	Compt. gen. decalg
HOUL U.	v -			•
A034 C6	40 SEIK4	LDB	#\$40	Bit dans CY->Stop
A036 A6	E4 SEIKS	LDA	,s	Recup compte decal
A038 34	02	PSHS	A	compt decal 1 oct.
A03A A6	84	LDA	.X	Recup actet concer
HU-JH HO	70	LUN	• ^	HELED GEBEL BONES.
A03E 44	SEIKA	LSRA		Le decaler
A03D 6A	E4	DEC	.s	Un decal en moins
A03F 26	FB	BNE	SE1K6	Pas fini?, contin.
A041 32	61	LEAS	1.5	Resto de S
A043 30	88 28	LEAX		.X Descendre i ligne
A046 56		RORP		Recup bit select.
A047 24	ED	BCC	SE1K5	Pas encore fini
A049 56		RORE		Bit de gauche a :
AO4A BD	42	BSR	SEIK10	on a fini, on ecrit
A04C 24	04	BCC	SE IK7	Caract bien ecrit
A04E 32	64	LEAS	4,8	On remet dans S
A050 20	31	BRA	SEIK9	Erreur
	••			
A052 30	99 FEEB SET	IK7 LEA	X -7#1	NTERL, X X au debut
A056 6A	E4	DEC	,s	Decr compt gen dec
A058 26	DA	BNE	SEIK4	On continue
A05A 32	61	LEAS	1.5	Resto de S
A05C 35	10	PULS	X	Recup du debut
A05E 30	01	LEAX	1,X	Avancer sur octet
A060 6A	E4	DEC	,S	Decr compt colonne
A062 26	CA	BNE	SEIKJ	Traiter 8 octets
A064 32	61	LEAS	1,5	Resto de S
A066 C6	0A	LDB	QLF	
A068 BD	24	BSR	SEIK10	Avancer d'1 ligne
A06A 25	17	BCS	SE IK9	
A06C 30	89 00F0	LEA	X 611	NTERL,X

114

A070 8C	5F40	CMPX	#ENDAD Fini ?
A073 25	B 5	BLD	SEIK2 Non
A075 CC	070A	LDD	#7#256+LF Cadrage
A078 BD	14 SEIKB	BSR	SEIK10
A07A 25	07	BCS	SE IK9
	V/		SE IN 7
A07C 4A		DECA	
A07D 26	F9	BNE	SEIKB Pas encore fini
A07F C6	0F	LDÐ	#SI Mode caractere
A081 8D	OB	BSR	SE IK10
A083 34	01 SEIK9	PSHS	CC Sauver l'etat CY
A085 C6	10	LDB	#RSCLS
A087 F7	• •	STB	RSOPC
AOBA BD	02	BSR	SEIK10 On ferme
A0BC 35	B7	PULS	CC.D,X,Y,PC Retour
A08E 7E	E812 SEIK10	JNP	RSCC

A091 39 RTE

9000 END

00000 Total Errors

4.2 L'interface MUSIQUE et JEUX

Cette interface qui utilise un PIA 6821 est logée aux adresses suivantes : &H E7CC pour le PORTA (et le DDRA) &H E7CD pour le PORTB (et le DDRB) &H E7CE pour le CRA &H E7CF pour le CRB Cette interface a un double rôle :

1. Gérer les deux manettes de jeux (JOYSTICKS) branchées sur les connecteurs 6 broches dont le schéma est donné ci-dessous :

Connection aux manettes

C'est le rôle du PORTA et des bits B_6 et B_7 tous programmés en entrées, que de permettre cette gestion, ainsi que des deux entrées d'interruption CA_1 et CA_2 .

2. Synthétiser des sons à l'aide d'un convertisseur numérique/analogique (CNA) réalisé avec les 6 bits restants du PORTB, de B_{θ} à B_{5} , programmés en sorties et bufferisés, et d'un circuit de conversion du type R/2R dont la sortie filtrée est reliée à la ligne SON du connecteur standard.

Le niveau de tension maximum sur cette sortie est de 450 mV.

Attention: A la mise sous tension les deux PORTS du PIA sont programmés en ENTREES, il faut donc commencer tout programme par l'initialisation en SORTIE des bits B₀ à B₅ du PORTB.

Soit par exemple en assembleur :

CLR \$E7CF Mise à Ø du CRB2 → DDRB LDD #\$3FØ4 STA \$E7CD B₀ à B, en SORTIES STA \$E7CD Mise à 1 du CRB2 → PORTB

CNA

1. Principe de fonctionnement des manettes

A l'intérieur de chaque manette sont placés 4 interrupteurs de position, plus 1 interrupteur de commande.

Au repos tous ces interrupteurs sont ouverts et les entrées sont donc au "1" logique.

Si un interrupteur est actionné, il se ferme et l'entrée correspondante passe alors au "Ø" logique, car l'interrupteur est relié à la masse (borne 1).

Les 4 bits d'une manette (par exemple la manette \emptyset) fournissent donc les codes suivants :

BASIC	A_3	A_2	A_1	A_{\emptyset}	POSITION
Ø	1	1	l	1	REPOS
1	1	1	1	Ø	AVANT
5	1	1	Ø	1	ARRIÈRE
3	Ø	1	1	1	DROITE
7	1	Ø	1	1	GAUCHE
2	Ø	1	1	Ø	AVANT & DROITE
8	1	Ø	1	Ø	AVANT & GAUCHE
4	Ø	1	Ø	1	ARRIÈRE & DROITE
6	1	Ø	Ø	1	ARRIÈRE & GAUCHE

Pour le BASIC, les positions de la manette sont codées de 0 à 8, 0 correspond à l'état neutre (repos), les valeurs de 1 à 8 correspondent aux positions NORD, NORD-EST, EST, etc. c'est-à-dire à la rotation dans le sens horaire (voir fig. 3).

Code BASIC d'une manette jeu

De la même façon, si l'interrupteur de commande de la manette \emptyset n'est pas actionné alors l'entrée bit 6 du PORTB est à 1, sinon ce bit passe à \emptyset .

Le programme moniteur JOYS\$ implanté en &HE827 a pour objet de fournir (par l'accumulateur B) le code BASIC de la position de la manette dont le numéro lui aura été passé (par l'accumulateur A), ainsi que l'état du bouton de commande (par le bit de CARRY du CCR).

Le bouton de commande est codé comme suit :

Si $C = \emptyset \rightarrow la$ gachette est au repos.

Si $C = 1 \rightarrow la$ gachette est enfoncée.

On peut éventuellement faire fonctionner la gachette en mode interruption puisque B6 et CA1 d'une part et, B7 et CA2, d'autre part sont reliés.

Dans ce cas le logiciel doit être créé par l'utilisateur.

2. Principe de fonctionnement du convertisseur

Calcul de l'influence d'un bit

Supposons que seul le bit B5 soit à 1, et appelons $V_{\rm M}$ la tension en sortie du buffer correspondant.

Dans ce cas le schéma équivalent du convertisseur est le suivant :

BIT 5="1" et autres BIT à "0"

Dans ce cas la tension sur la sortie SON n'est que de \emptyset , \emptyset 45. V_M . On peut calculer de la même façon la tension en sortie si seul le bit B4 est à "1" \rightarrow SON = \emptyset , \emptyset 23. V_M soit la moitié de la tension créée par B5.

On voit donc que la tension sur la sortie SON est proportionnelle au poids du BIT à "i".

Si plusieurs BIT sont à "1" simultanément, la tension SON sera égale à la somme des tensions propres à chaque bit. Exemple, si B5 et B4 sont seuls à 1, la tension SON vaudra $(\emptyset, \emptyset45 + \emptyset, \emptyset23)$. $V_M = \emptyset, \emptyset68$ V_M .

La tension maximum en sortie sera donc d'environ \emptyset , \emptyset 9 V_M soit 450mV puisque V_M est au maximum égale à 5 Volts.

Méthode de synthèse d'un son

a) Echantillonnage

Soit le son pur sinusoïdal ci-dessous :

Signal réel

Échantillonner ce signal consiste à mesurer des "échantillons" de tension à des intervalles de temps égaux (période d'échantillonnage). Si l'on échantillonne avec une période $T_e = T/12$ le signal échantillonné est alors le suivant :

Signal échantilloné

b) Échantillonnage-blocage

Si on maintient la valeur de la tension échantillonnée entre deux prises d'échantillon, on bloque l'échantillon, et le signal correspondant a alors l'allure suivante :

Signal échantillonné bloqué

c) Synthèse

Si l'on veut "fabriquer" un signal approché du signal réel de la figure 5, il suffit de ranger dans une table binaire (6 bits dans le cas présent) des mots dont la valeur est proportionnelle aux échantillons.

Puis avec une fréquence fe = 1/Te, on envoie ces mots binaires dans le convertisseur N/A qui fabrique alors une tension SON proportionnelle aux échantillons successifs.

Entre deux échantillons, le précédent est maintenu en sortie et même légèrement intégré.

On reconstituera d'autant mieux un son que le nombre d'échantillons sera grand.

On peut faire varier la fréquence d'un son en augmentant ou en diminuant l'intervalle de temps séparant deux échantillons.

Logiciel de synthèse

Le logiciel de synthèse d'un son suivra l'ordinogramme ci-dessous.

SYNTHÈSE D'UN SON

121

La partie de calcul peut éventuellement être réalisée en BASIC (voir programme ci-joint), mais pour plus de souplesse il est conseillé de réaliser la partie de synthèse proprement dite en assembleur (voir programme ci-joint).

```
10 *
            ****************
20 "
30 *
            * PROGRAMME DE SYNTHESE *
40 '
            *
                    SONORE
                                    *
50 '
60 °
            ****************
70 -
80 '
90 *
100 '----INITIALISATION-----
110 *
120 SCREEN2,4,4:CONSOLEO,24:CLS
122 LOCATEO, O, O: PRINT"** SYNTHESE D'UN
SON SINUSCIDAL **"
130 CLEAR, &H9FFF
140 DIM ECH(255)
150 "
160 '----INIT. DU PIA----
170 *
180 POKE &HE7CF.O
                     'Acces a DDRB
190 POKE &HE7CD &H3F 'BO a B5 en SORTIE
200 POKE &HE7CF, &H04 'Acces au PORTE
210 "
220 '----ROUTINE ASSEMBLEUR-----
230 *
240 FOR I=0 TO 57
250 READ D
260 POKE &HA000+1,D
270 NEXTI
280 '
290 DATA &H34,&H7E
300 DATA &H1A, &H10
310 DATA &HFC.&HAO.&H52
320 DATA &HF3,&HA0,&H54
330 DATA &HFD,&HAO,&H56
340 DATA &HBE, &HAO, &H52
350 DATA &HF6,&HA0,&H51
360 DATA &H30,&H85
370 DATA &HA6,&H84
380 DATA &HB7, &HE7, &HCD
390 DATA &HB6, &HA0, &H50
400 DATA &H4A
410 DATA &H26, &HFD
420 DATA &HBC, &HAO, &H56
122
```

```
430 DATA &H2D,&HEE
440 DATA &H1F,&H10
450 DATA &HB3, &HA0, &H54
460 DATA &H1F, &H01
470 DATA &H7F, &HE7, &HC9
480 DATA &HB6. &HE7, &HC8
490 DATA &HB1,&HFF
500 DATA &H24,&HDA
510 DATA &H1C.&HEF
520 DATA &H35,&HFE
530 '
540 '----CALCUL DES ECHANTILLONS---
550 °
560 CDNSOLE15,24:CLS:LOCATEO,15,0
570 INPUT"NB D'ECHANTILLONS (255 MAX) :
580 INPUT"TEMPORISATION (de 0 a 255) : "
,TE
590 INPUT "PAS DE PRELEVEMENT : ", PAS
600 PRINT: PRINT: COLOR1: ATTRB1, 1: PRINT"SI
LENCE, JE CALCULE": COLDR2: ATTRB0.0
610 POKE &HA050,TE 'Duree de Tempo
620 POKE &HA051, PAS 'Pas d'echantill
630 POKE &HA052, &HBO 'Debut de la tabl
640 PDKE &HA053,&H00 'd'echantillonage
650 POKE &HA054,NE @ 256
                               'Nombre
660 POKE &HA055, NE MOD 256
                               'd'echant
670 CONSOLE2,12:CLS:LOCATE0,2,0
680 LINE(0,16)-(0,100),6
690 LINE(0,100)-(320,100),6
692 LOCATE1, 2: PRINT "Vs": LOCATE39, 11: PRIN
T"t";
700 W=6.28
710 FOR I=0 TO NE-1
720 ECH(I)=31+31*SIN(W*I/NE)
730 POKE &HB000+1.ECH(I)
740 NEXTI
750 FOR I=0 TO NE-1 STEP PAS
 760 FOR J=0 TO PAS-1
 770 PSET(I+J.100-ECH(I))
 780 NEXTJ.I
 790 '
 800 '----SYNTHESE D'UN SON-----
 810 '
 820 EXEC &HA000
 830 FORN=1T0100:NEXTN
 840 GOTO 560
```

850 END

* ROUTINE D'ENVOI DES ECHANTILLONS
DANS LE PORTE DU PIA
1
* ENTREES:
<pre>\$ \$A050 = Duree de la temporisation { \$ \$A051 = Pas d'echantillonage } \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
\$ \$A052 = Debut de la table
‡
SORTIES:
\$ \$A056 = Fin de la table 1
1
PORTE en \$E7CD
* CLAVIER en \$E7C8 et \$E7C9
1

E7CD PORTB2 EQU \$E7CD E7CB PORTA1 EQU \$E7CB E7C9 PORTB1 EQU \$E7C9

A000		ORG	\$A000
A000 34	7E	PSHS	U,Y,X,D₽,B.A
A0 02 1A	10	DRCC	#\$10
A004 FC	A052	LDD	\$A052
A007 F3	A054	ADDD	\$A054
AOOA FD	A056	STD	\$A056
AOOD BE	A052	LÐX	\$A052
A010 F6	A051 BOUC0	LDB	\$A051
A013 30	85 BOUCT	LEAX	B. X
A015 A6	84	LDA	, X
A017 B7	E7CD	STA	PORTB2
A01A B6	A050	LDA	\$A050
124			

A01D 4A	BOUC2	DECA		
A01E 26	FD	BNE	BOUCZ	
A020 BC	A056	CMPX	\$A056	
A023 2D	EĒ	BLT	BOUC1	
A025 1F	10	TFR	X, D	
A027 B3	A054	SUBD	\$A054	
A02A 7F	E7C9	CLR	PORTB1	
A02D B6	E7C8	LDA	PORTA1	CLAVIER
A030 81	FF	CMPA	#\$FF	
A032 24	DC	BHS	BOUCC	
A034 1C	EF	ANDCC	#\$EF	
A036 35	FE	PULS	A,B,DF,	X,Y,U,PC
	0000	END		

00000 Total Errors

C'est ce programme assembleur qui est rentré en \$A000 à l'aide de l'instruction POKE &HA000+I, D et appelé ensuite par EXEC &HA000. Pour générer d'autres types de sons il suffit de changer ligne 720 la formule de calcul des échantillons.

4.3 Le MODEM

L'extension TELETEL (\$E7E8, \$E7FF) contient un MODEM et un interface de raccordement direct à la ligne conformes aux normes (PTT et V23) appliquées pour le terminal annuaire et le terminal VELI7Y.

Modem pour TO7

Ce modem s'interface d'un côté au bus interne du micro-ordinateur et de l'autre à la ligne du réseau téléphonique commuté.

Il transmet les informations binaires provenant du terminal en mode synchrone et fonctionne en modulation par déplacement de fréquence.

Selon l'application, la transmission s'effectue :

- en 75/1200 bits/s duplex intégral dans le cas d'une liaison avec une banque de données;
- en 1200/1200 bits/s alternat pour liaison entre ordinateurs. Ce modem est conforme aux recommandations de l'avis V23 du CCITT.

	Fonctionnement 75/12 80	Fonctionnement 12 00
Débit d'information	1200 bits/s rec 75 bits/s em	1200 bits/s
Rapidité de modulation	1200 bauds rec/ 75 bauds em	1200 bauds
Mode de transmission	asynchrone	asynchrone
Type de modulation	déplacement de fréquence	déplacement de fréquence
Procédure de transmission Liaison à la voie de transmission :	duplex intégral	alternat
• Support de transmission	RC	RC
• Impédance aux accès	600Ω symétrique	600Ω symétrique
Niveau émission	-2 et -10 dBm	-2 et -10 dBm
Niveau réception	Ø à −43 dBm	Ø à −43 dBm
 Régulation du courant 		
continu de ligne	automatique	automatique
Alimentation	$-5V \pm 12V$	+5V/ ± 12V
Consommation	< 1,5W	<1.5W
Température fonctionne-	·	,
ment	5 °C à + 45 °C	5° C à +45 °C
Température stockage	-40 °C à + 70 °C	-40 °C à +70 °C
Humidité relative	≤ 80 %	≤ 8Ø %0
Dimensions:		
$H \times L \times P(mm)$	$70 \times 70 \times 50$	$70 \times 70 \times 50$

Elle permet la consultation des banques de données en se branchant simplement sur la prise téléphone, et en utilisant la ROM contenant le logiciel de gestion de l'extension.

Le fonctionnement à 1200 bauds en half duplex permet la communication entre deux TO7 via la ligne PTT commutée ou entre un TO7 et un ordinateur ayant son propre protocole à condition de développer le logiciel de gestion approprié.

Ce modem contient un relais qui permet de basculer la ligne entre le poste et le TO7 ainsi qu'un circuit d'interface asynchrone ACIA 6850 de Motorola.

5. Le moniteur

5.1 Map Mémoire du T9000 et du TO7 Modèle 1

AGGG STEEL CARTOLICUE DOM ENGICUARIE 16K

Map Mémoire du TO7 modèle 1

ADRESSE (HEX)

<i>101010</i> 10-3FFF	CARTOUCHE RUM ENFICHABLE 10K
4000-5FFF	MEMOIRE D'ECRAN 8K
6000-60FF	PAGE Ø
6100-7FFF	MEMOIRE UTILISATEUR 8K
8000-BFFF	EXTENSION MÉMOIRE 16 K
C000-DFFF	8K LIBRE
E000-E7BF	1,9K POUR FLOPPY
E7CØ-E7C7	PIA 6846 SYSTEME
E7C8-E7CB	PIA 6821 SYSTEME
E7CC-E7CF	PIA 6821 EXTENSION JEU
E7DØ-E7DF	CONTROLEUR DE MINI-FLOPPY
E7EØ-E7E3	PIA 6821 RS-232 ET INTERFACE PARALLELE
E7E4-E7FF	TELETEL
E800-FFFF	MONITEUR SYSTEME 6K

REVISION: 03/01/83

Map mémoire du TO7 modèle 2

ADRESSE (HEX)

0000-3FFF 4000-5FFF 6000-60FF 6100-9FFF A000-DFFF E000-E7BF E7C0-E7C7 E7C8-E7CB E7CC-E7CF E7D0-E7DF E7E0-E7E3	CONTROLEUR DE MINI-FLOPPY PIA 6821 RS-232 ET INTERFACE PARALLELE
E7DØ-E7DF	CONTROLEUR DE MINI-FLOPPY
E7E4-E7FF	LOGIC GATE ARRAY
E7E8-E7FF E800-FFFF	TELETEL 6850 ACIA MONITEUR SYSTEME 6K

REVISION: 15/07/83

5.2 Page zéro du moniteur s	système d	u T9000
-----------------------------	-----------	----------------

Adresse	Identificateur	Commentaires
\$6000	TERMIN,25	Table des terminateurs de lignes
\$6019	STATUS,1	BIT7 = SEMIGRAPH, BIT6 = ROLLUP RAPIDE,
40217	Q111111,	BIT5 = INTERRUPT TIMER USER, BIT3 =
		CU.USER, BIT2 = CURSEUR, BIT1 = INCRE-
		MENT CLAVIER, BITØ = TOUCHE DEJA LUE
\$601A	TABP,1	Forme avec RANG un pointeur courant de 16 bits
-		dans la table des terminateurs de lignes
\$601B	RANG,1	
\$601C	TOPTAB,1	Forme avec TOPRAN un pointeur de 16 bits sur le
		sommet logique de la table des terminateurs
\$601D	TOPRAN,1	1re rangée de la fenêtre
\$601E	BOTTAB,1	Forme avec BOTRAN un pointeur de 16 bits sur la fin
		logique de la table des terminateurs
\$601F	BOTRAN,1	Dernière rangée de la fenêtre
\$6020	COLN,1	
\$6021	IRQTP,2	Pointeur IRQ utilisateur
\$6023	FIRQTP,2	Pointeur FIRQ utilisateur
\$6025	CC1PT,2	Pointeur INTERRUPT sur CCI
\$6027	TIMEPT,2	Pointeur INTERRUPT TIMER UTILISATEUR
\$6029	K7.OPC,1	Mot de code de l'opération cassette désirée Status courant du contrôleur cassette
\$602A	K7.STA,1	
\$602B	RS.OPC,1	Mot de code pour la liaison RS-232 Status courant de la liaison RS-232
\$602C	RS.STA,1	Pointeur sur le générateur de caractère usager
\$602D	USERAF,2 SWI,2	Pointeur SWI
\$602F	TEMPO,2	Tempo général de l'interpréteur musical
\$6031 \$6033	DUREE,2	Durée
\$6035	TIMBRE,1	Timbre
\$6036	OCTAVE,2	
\$6038	FORME, I	Couleur du PLOT et du DRAW (- 8 à +7)
\$6039	ATRANG,1	
40007	711111111111111111111111111111111111111	HAUTEUR
\$603A	ATRSCR,1	BIT7 = FOND, BIT6 = FORME, BIT2 = LAR-
• 0.00		GEUR, BIT1 = HAUTEUR
\$6Ø3B	COLOUR,1	X.X.B.V.R.B.V.R
\$603C	TELETL,1	Flag de mode Teletel et PR.STA, BIT7 = MODE
		PAGE, BIT6 = ECHO
\$603D	PLOTX,2	Dernier plot
\$6Ø3F	PLOTY,2	Dernier plot
\$6041	CHDRAW,1	Caractères ASCII utilisés pour PSET, LINE et BOX
		"CH"
\$6042	CURSFL,1	Flag de mouvement curseur indiquant que l'on ne pose
		pas de liens de ligne dans la table des terminateurs
\$6043	COPCHR,1	Flag indiquant que BACKSPACE et HORIZONTAL
		TABULATION copient le caractère courant
\$6044	BAUDS,2	Paramètre de vitesse de la líaison RS232 Nombre de bits de transmission RS232 : 1 ou 2
\$6046 \$6047	NOMBRE,1 GRCODE,1	
\$6047	OKCODE,I	Code decientian le mode grapmque de l'imprimante

		PRIMITIVES DE DISQUE
\$6048	DK.OPC,1	MOT DE COMMANDE : code instruction utilisé par
		DKCONT pour appeler une commande paramétrée par
		les registres qui suivent
\$6049	DK.DRV,1	N° du disque sélecté
\$604A	DK.TRK,2	N° de piste
\$604C	DK.SEC,1	N° de secteur
\$604D	DK.NUM,1	Nombre de secteurs en accès multiple
\$604E	DK.STA,1	MOT D'ETAT : contient le code d'erreur signalé par
# C (1.4)	DW DUE A	C=1 en sortie de DKCONT
\$604F	DK.BUF,2	I/O BUFFER POINTER
	DEC	ISTRES COURANTS DE PISTE
\$6051		Position courante de la tête sur le drive Ø
\$6Ø53	TDACKU,2	Position courante de la tefe sur le drive l
\$6Ø55		Position courante de la tête sur le drive 2
\$6Ø57		Position courante de la tête sur le drive 3
100031	TRACKS,2	Fosition containe de la tele sur le drive 5
		AUTRES REGISTRES
\$6059	SEQUCE,1	\emptyset = NORAML, 2 = ESCAPE, 4 = UNSEP, 6 =
4	32 (3 3 2 , 3	DEVCO2, 8 = DEVCO3
\$605A	SCRPT,2	Pointeur d'écran
\$605C	SAVCOL,1	Double de COLOUR
\$605D	ASCII,1	Dernier caractère
\$605E	KEY,1	Touche clavier
\$605F	CMPTKB,1	REPEATS du clavier
\$6060	STADR,2	1er octet définissant l'origine de la fenêtre
\$6062	ENDDR,2	Dernier octet définissant la fin de la fenêtre
\$6064	TCRSAV,1	Sauvegarde de l'ETAT courant du timer
\$6065	TCTSAV,2	Sauvegarde du COMPTE courant du timer
\$6067	BAUD,1	Paramètre de vitesse de transmission cassette
\$6068	SAVTR,2	Sauvegarde des attributs courants d'écran
\$606A	US1,1	1er caractère des séquences UNIT SEPARATOR
\$6Ø6B	COMPT,I	Compteur de caractères répétés
\$606C	TEMP,2	Registre temporaire
\$606E	SAVEST,2	Registre de sauvegarde de S
\$6070	ACCENT,1	FLAG ACCENT $2 = affich$, accent; $1 = saut des$
		2 octets; 3 = cédille
A .d	Identificateur	Commentaires
Adresse	identificateur	Commentaires
\$6071	SS2GET,1	
\$6072	SS3GET,1	
\$6073	ABCMP,2	Compteur de la touche STOP pour avorter une lecture
		cassette
\$6075	EFCMPT,1	Flag de clignotement curseur
\$6076	BLOCZ,2	Bloc de deux Ø pour initialiser les registres 16 bits
\$6078	SCROLS,1	Flag de "smooth scroll"
\$6079	CHX1,2	Table des choix effectués au "menu" : 1er choix
\$607B	CHRX2,2	Table des choix effectués au "menu": 2º choix
\$607D	CUDV11	Table des aboix offeetuée ou (Imanul) . 26 aboin

CHRX3,2 Table des choix effectués au "menu": 3e choix RUNFLG,1 Flag indiquant une entrée en mode "RUN"

\$607D

\$607F

\$6080	DKFLG,1	Flag indiquant la présence du contrôleur de disque
\$6Ø81	STKEND,8Ø	Profondeur de la pile système
\$6ØDØ	STACK,*-1	Sommet de la pile
\$6ØD1	APPLIC,1	Checksum de l'application en cours
\$6ØD2	DECALG,1	Décalage du light-pen
\$60D3	LPBUFF,16	Buffer de saisie du light-pen
\$60E3	NBPST,1	Nombre de pistes par face disque
\$60E4	CPTSCT,1	Compteur de secteurs
\$6ØE5	DTAB1,3	Zone de travail
\$60E8	FTAB1,1	Fin de zone de travail DTAB1
\$6ØE9	TAB2,2	ADRESS MARK CLOCKES \$F5 \$FE
\$6ØEB	DTAB2,12	Zone de travail
\$6ØF7	FTAB2,0	Fin de zone de travail DTAB2

Modifications TO7 Modèle 1

Adresse	Identificateur	Commentaires
\$6019	STATUS,1	BIT3 = Flag interrupt clavier
		BIT1 supprimé sur le TO7
\$6025	NMIPT,Z	Pointeur NMI utilisateur
\$6Ø67	LATCLV,1	Latence clavier programmable
\$6073	BUZZ,1	Flag de buzzer : $\emptyset = ON 1 = OFF$
\$60D2	DECALG,1	Décalage du light-pen : Il fonctionne en octets sur le
		T9000 et en points sur le TO7 modèle 1
\$6ØD3	LPBUFF,24	Buffer de saisie du light-pen : 24 octets sur le TO7
		modèle 1 au lieu de 16 sur le T9000
\$60FE	TSTRST,2	Test du Reset

Modifications TO7 Modèle 2 (TO7-76)

Adresse	Identificateur	Commentaires
\$6038	FORME,1	Couleur du PLOT et du DRAW, [-8,7] normal [8,15] pastel
\$603B	COLOUR,1	1/2 teinte fond. 1/2 teinte forme. B.V.R.B.V.R.
\$6081	STKEND,76	Profondeur de la pile système
\$60CD	PTCLAV,2	Pointeur décodage clavier
\$6ØCF	PTGENE,2	Pointeur générateur de caractère

5.3 Les adresses d'entrée-sortie

Adresses de l'écran

EQU	\$4000
EQU	STAD + \$1F40
EQU	STAD+\$118 ORIGINE DE LA PREMIERE RANGEE
EQU	STAD+\$258 ORIGINE DE LA DEUXIEME RANGEE
EQU	STAD+\$140 ORIGINE DU ROLLUP
EQU	STAD+\$280 ORIGINE DU ROLLUP DOU- BLE HAUTEUR
EQU	STAD+\$F18 CURSEUR SUR LA DERNIÈRE LIGNE
EQU SETDP	\$60 ADRESSE DE LA PAGE 0 DIRECT
EQU	\$28 SAUT INTERLIGNE
	EQU EQU EQU EQU EQU EQU SETDP

Adresses d'entrée/sorties

6846				
(CSR	EQU	\$E7CØ	COMPOSITE STATUS REGISTER
C	CRC	EQU	CSR + 1	REGISTRE DE CONTRÔLE DU PORT C CC1 (input) est libre (IRQ externe sur T9000) CC2 (output) son CT0 (output) Ecriture sur la K7
D	DRC	EQU	CSR + 2	REGISTRE DE DIRECTION DU PORT C
	PRC	EQU	CSR+3	REGISTRE DE DONNEES DU PORT C PØ (output) Forme P1 (input) Interrupteur crayon optique P2 (output) 1/2 teinte du tour : Ø = pastel, 1 = sature. Sur le T9000, c'était la commande de page cou- leur (desactivée) P3 (output) Led clavier P4 (output) Rouge tour P5 (output) Vert tour P6 (output) Bleu tour P7 (input) Lecture K7
T	TCR MSB TLSB	EQU EQU EQU	CSR + 5 CSR + 6 CSR + 7	TIMER CONTROL REGISTER TIMER M.S.B. TIMER L.S.B.

PRA	EQU	\$E7C8	REGISTRE DE DONNEES DU PORT A PAØ-7 (input) Lecture matrice
PRB	EQU	PRA+1	clavier REGISTRE DE DONNEES DU PORT B
			P8Ø-7 (output) Ecriture matrice clavier
CRA	EQU	PRA + 2	REGISTRE DE CONTROLE DU PORT A
			CA1 (input) Lecture de INITRAME
			CA2 (output) Commande moteur
CRB	EQU	PRA+3	K7 REGISTRE DE CONTROLE DU PORT B
			CB1 (output) Commande de OUT- PUT ENABLE sur T9000 et TO7 modele 1, commande d'incrusta- tion sur modele 2 :
			\emptyset = mode incruste, 1 = mode normal
			(positionné à 1 par defaut comme pour OUTPUT ENABLE).
6821 JEUX			
PRA1	EQU	\$E7CC	REGISTRE DONNEES PORT A1 PA0-7 (input) Lecture directions joysticks: Ø NordØ, 1 SudØ, 2 WestoØ, 3 EstoØ, 4 Nord1, 5 Sud1, 6 West1, 7 Est1
PRBI	EQU	PRA1 + 1	REGISTRE DONNEES PORT B1 PB0-5 (input) Convertisseur digi- tal/analogique sur 6 bits PB6 (input) Action joystick Ø PB7 (input) Action joystick 1
CRA1	EQU	PRAI+2	REGISTRE DE CONTROLE PORT A1
CRBI	EQU	PRA1 + 3	CA1 (input) Action joystick Ø REGISTRE DE CONTROLE PORT B1 CB1 (input) Action joystick 1

6821	RS-232	ET	INTERFACE	PARALLEL	Εđ	CENTRONICS

PRA2	EQU	\$E7EØ	REGISTRE DE DONNEES PORT A2 PAØ (output) Receive data PA1 (output) Clear to send PA5 (input) Request to send PA6 (input) Data terminal ready PA7 (input) Transmit data
PRB2	EQU	PRA2 + 1	REGISTRE DE DONNEES PORT B2 PBØ-7 (output) Données paralleles
TES.SRC			
CRA2	EQU	PRA2+2	REGISTRE DE CONTROLE PORT A2 CA1 (input) Request to send
CRB2	EQU	PRA2+3	REGISTRE DE CONTROLE PORT B2 CB1 (input) Acknowledge CB2 (output) Strobe

Modifications TO7 Modèle 1

Circuit 6846:

\$E7C1 CRC Registre de contrôle du PORT C : CC1 (input) est libre (1RQ sur le T9000)

Modifications TO7 Modèle 2 (TO7-70)

Circuit 6821 système

\$E7CB	CRB	Registre de contrôle du PORT B :
		CBI (output): — commande OUTPUT ENABLE
		sur T9000 et TO7 modèle 1
		 commande d'incrustation sur modèle 2 ;
		Ø mode incrusté
		1 mode normal
		positionné à 1 par défaut comme pour OUTPUT
		ENABLE
\$E7C9	PRB	PBØ
		PB1 Adressage codé de la matrice clavier
		PB2
		PB3 CS de la banque RAM 16K nº Ø
		PB4 CS de la banque RAM 16K nº 1
		PB5
		PB6 CS codé des banques de RAM 16K de l'extension
		PB7 mémoire 64K.