Design Specification, Sorting part

Senni Tan, tans28@mcmcaster.ca April 6, 2020

Comparator Module

Module

Comparable

Uses

Job

Syntax

Exported Access Programs

Routine name	In	Out	Exceptions
CompareString	Job, Job	\mathbb{Z}	
CompareOutlook	Job, Job	\mathbb{Z}	
CompareNOC	Job, Job	\mathbb{Z}	
CompareRegionS	Job, Job	\mathbb{Z}	

Semantics

Access Routine Semantics

CompareString(a, b):

- output: out := a.get_title.compareTo(b.get_title)
- exception: None

// compare To is a build in method to compare String in lexgraphical order.

CompareOutlook(a, b):

- output: $out := (a.get_outlook > b.get_outlook) \Rightarrow 1 \mid (a.get_outlook < b.get_outlook) \Rightarrow -1 \mid 0$
- exception: None

CompareNOC(a, b):

• output: $out := (a.get_noc(0) > b.get_noc(0)) \Rightarrow 1 \mid (a.get_noc(0) < b.get_noc(0)) \Rightarrow -1 \mid 0$

• exception: None

CompareRegionS(a, b):

 $\bullet \ \, \text{output:} \ \, out := \text{a.get_regions.compareTo} \\ \text{(b.get_regions)} \\$

• exception: None

// compare To is a build in method to compare String in lexgraphical order.

Sorting Module

Module

Sorting

Uses

Comparable

Syntax

Exported Access Programs

Routine name	In	Out	Exceptions
sortString	Seq of Job		
sortOutlook	Seq of Job		
sortNOC	Seq of Job		
sortRegionS	Seq of Job		

Semantics

Access Routine Semantics

sortString(a):

• transition: sortString(a, 0, |a|-1)

• exception: None

sortOutlook(a):

• transition: sortOutlook(a, 0, |a|-1)

• exception: None

sortNOC(a):

• transition: sortNOC(a, 0, |a|-1)

• exception: None

sortRegionS(a):

• transition: sortRegionS(a, 0, |a|-1)

• exception: None

Local Functions

```
exch: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
\operatorname{exch}(a,i,j) \equiv \operatorname{exchange a[i]} and a[j] in the array
sortString: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
\operatorname{sortString}(a, lo, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, lo, j-1) \&\& \operatorname{sortString}(a, j+1, lo, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, lo, j-1) \&\& \operatorname{sortString}(a, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{return} \mid \operatorname{sortString}(a, ho, hi) \equiv (\operatorname{hi} <= \operatorname{hi}) \Rightarrow \operatorname{hi} \in \operatorname{hi}
hi) where j = partitionString(a, lo, hi)
partitionString: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
partitionString(a, lo, hi) \equiv partition on array a using ComapreString, see detail in code
sortOutlook: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
\operatorname{sortOutlook}(a, lo, hi) \equiv (\operatorname{hi} \le \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortOutlook}(a, lo, i-1) \&\& \operatorname{sort
j+1, hi) where j = partitionOutlook(a, lo, hi)
partitionOutlook: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
partitionOutlook(a, lo, hi) \equiv \text{partition on array } a \text{ using ComapreOutlook, see detail in}
code
sortNOC: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
\operatorname{sortNOC}(a, lo, hi) \equiv (\operatorname{hi} \le \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortNOC}(a, lo, j-1) \&\& \operatorname{sortNOC}(a, j+1, hi)
where j = partitionNOC(a, lo, hi)
partitionNOC: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
 partitionNOC(a, lo, hi) \equiv partition on array a using ComapreNOC, see detail in code
sortRegionS: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
\operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, j-1) \&\& \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, lo, hi) \equiv (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, hi) = (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, hi) = (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, hi) = (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, hi) = (\operatorname{hi} \leq \operatorname{lo}) \Rightarrow \operatorname{return} \mid \operatorname{sortRegionS}(a, hi) = (\operatorname{hi} \leq \operatorname{hi} \leq \operatorname{hi} = \operatorname
j+1, hi) where j = partitionRegionS(a, lo, hi)
 partitionRegionS: Seq of Job \times \mathbb{Z} \times \mathbb{Z} \to \text{None}
partitionRegionS(a, lo, hi) \equiv \text{partition on array } a \text{ using ComapreRegionS}, \text{ see detail in}
code
```