MÉTODOS NUMÉRICOS 1 Atividade 0 : Introdução ao curso

Fernanda Costa de Sousa - Matrícula: 485404

fernandacosta@alu.ufc.br

Curso: Ciência da computação

Departamento de Computação (DC)

Universidade Federal do Ceará A(UFC)

Ementa do curso:

- Unidade 0: Apresentação Geral
- Unidade 1: Teoria dos Erros
- Unidade 2: Raízes de Equações
- Unidade 3: Sistemas de Equações
- Unidade 4: Interpolação Numérica

Bibliografia

- Ruggiero, M.A.G. e Lopes, V.L.R., Cálculo Numérico, Makron Books.
- Cláudio, D.M. e Marins, J.M., Cálculo Numérico Computacional, Atlas.
- Barroso, L. at al., Cálculo Numérico, Harbra.
- Ruas, V., Curso de Cálculo Numérico, LTC.
- Forsythe, R. at al., Computer Methods for Mathematical Computations, Prentice-Hall.
- Vandergraft, J.S., Introduction to Numerical Computations, Academic Press.

Requisitos

- Background:
 - Programação Linguagens C e C++, etc
 - Matemática Geometria, Álgebra Linear, etc
- Programação:
 - Código Aplicação Linguagens C, C++, etc
 - Sistema Operacional Windows, Linux, etc

O que é Método Numérico?

Conjunto de métodos utilizados para obtenção do resultado de problemas matemáticos através de aproximações.

Métodos Numéricos

- Área que estuda métodos numéricos para resolver problemas matemáticos
- Os métodos numéricos, por sua vez, são programas de computador que resolvem problemas matemáticos, fornecendo resultado numérico, que possui um certo grau de aproximação
- Apesar de aproximada, a solução pode ser obtida com um certo controle do erro

Cálculo Numérico trabalha com aproximações

Motivação

Entendendo bem os fundamentos, podemos resolver problemas numéricos por meio de implementações com um dado modelo.

A teoria e técnica nos ajudam na resolução dos problemas.

Exemplos de uso

Problema que não tem solução analítica:

$$\chi(e^{\chi}) = 3$$

Desejamos achar x para essa equação, a solução numérica: raízes de equações.

Exemplos de uso

- Problema com custo computacional caro:

- Se n é alto (ex:1milhão) é caro, e a solução são sistemas de equações

Exemplos de uso

Problemas difíceis de estimar os resultados:

T, Celsius	ρ, kg/m³	μ, N x s/m²	v, x s/m²
-40	1.52	1.51 x 10⁻5	0.99 x 10 ⁻ 5
0	1.29	1.71 x 10 ⁻ 5	1.33 x 10 ⁻ 5
20	1.20	1.80 x 10 ⁻ 5	1.50 x 10 ⁻ 5

Se deseja-se propriedades para T = 15° C A solução numérica é interpolação numérica

Resolução de problemas

Resolução de problemas

- No levantamento de dados os dados podem ser coletados de várias maneiras mas devem ser válidos para serem confiáveis.
- Deve-se construir e escolher um modelo matemático apropriado que solucione corretamente o problema a ser resolvido.
- A escolha do método depende do tipo de problema que se deseja resolver.
- A análise dos resultados é importante pois não deve-se confiar cegamente nos métodos, pois ele pode resolver o problema corretamente mas o problema pode ter sido formulado de maneira errada.

Assuntos estudados

- Teoria dos erros
- Raízes de equações
- Sistemas de equações
- Interpolação numérica

Teoria dos erros

Tipos de erros

Erros nos dados experimentais e nos valores dos parâmetros:

- sistemáticos(nos dados de entrada)
- Fortuitos(gerados pelo modelo)

Erros de truncatura: Resultam do uso de fórmulas aproximadas

Erros de arredondamento: Resultam da representação de números reais com um número finito de algarismos significativos.

Teoria dos erros

Erro absoluto e erro relativo

Seja X um número com valor exato e x um valor aproximado de X. A diferença entre o valor exato e o aproximado é erro de x. Ao módulo desse valor, chama-se de Erro absoluto de x.

Geralmente não temos acesso ao valor exato X, o erro absoluto não tem na maior parte dos casos utilidade prática.

Assim, temos que determinar um majorante de Δ . Este valor designa-se de Δ '. SAtisfaz a condição:

Teoria dos erros

Erro absoluto e erro relativo

O mínimo do conjunto dos majorantes Δ' de Δ , chama-se "erro máximo absoluto" em que x representa X.

Ao quociente entre o "erro absoluto" e o módulo do valor exato, c'erro relativo de X. $\delta = \frac{\Delta}{|X|}$

$$\delta = rac{\Delta}{|X|}$$

 $\delta = rac{\Delta}{|X|} \leq rac{\Delta}{|x|}$ rante deste. Se Δ muito menor que X então, Como na prática não temos acesso ao erro relativo e temos que

$$\delta = rac{\Delta}{|X|} \leq rac{\Delta}{|x|}$$

Raízes de Equações

- Dada uma função y = f(x), o objetivo é determinar valores x = E tais que f(E) = 0.
- Estes valores são chamados de raízes da equação f(x) = 0 ou zeros da função y = f(x).
- Será tratado o caso em que E é um número real

Raízes de Equações

Geometricamente, conforme mostra a figura, estes valores são os pontos de interseção do gráfico de y = f(x) com o eixo das abscissas.

Sistemas de Equações

- A solução de um sistema de equações lineares, A.X = B, é um vetor X que satisfaz, simultaneamente, a todas as equações.
- A classificação de um sistema linear é feita em função do número de soluções que ele admite, da seguinte maneira:
- (a) Compatível determinado: quando admitir uma única solução.
- (b)Compatível indeterminado: quando admitir um número infinito de soluções.
- (c) Incompatível: quando não admitir solução. Portanto, resolver um sistema de equações lineares significa discutir a existência de soluções e obter uma solução quando for possível. DERAL DO CEARA 20

Sistema de Equações

Métodos Diretos

Métodos Diretos Os aqueles são exceto que, por fornecem solução erros de arredondamento, а exata de equações lineares, caso ela de um sistema exista, por meio de finito de operações número um aritméticas.

Interpolação numérica

A interpolação polinomial

Dados os pontos (x0, f(x0)), (x1, f(x1)),..., (xn, f(xn)), (n+1) pontos, queremos aproximar f(x) por um polinômio pn(x), de grau menor ou igual a n, tal que:

$$f(xk) = pn(xk) com k = 0, 1, 2,..., n$$

Interpolação numérica

A interpolação linear

Dados os pares ordenados (x0, y0) e (x1, y1), com x0 diferente de x1, de uma função y = f(x). Para obtermos uma aproximação de f(x'), $x' \in (x0,x1)$ faz-se a seguinte aproximação: $f(x) \approx P1(x) = a0 + a1x$

onde P1(x) é um polinômio interpolador de 1ª ordem. Impondo que o polinômio interpolador passe pelos dois pares ordenados, temos o seguinte sistema de equações lineares de 2ª ordem:

$$P1(x0) = y0$$

 $P1(x1) = y1$

Interpolação numérica

segue o sistema:

$$a0 + a1x0 = y0$$

$$a0 + a1x1 = y1$$

transformando o sistema acima em um sistema triangular, podemos obter a solução. Logo, o polinômio interpolador pode ser escrito:

$$P1(x) = a0 + a1x = (y0 - a1x0) + a1x = y0 + a1(x - x0)$$

Exemplos de Aplicação

Animação

- Uso de interpolação entre key frames;
- Movimento da túnica;
 - Sistema de partículas;
 - Equações Diferenciais Ordinárias.

Exemplos de aplicação

Simulação usando CFD (Computational Fluid Dynamics)

Equações diferenciais parciais

