1. Suppose that
$$\mathcal{B}$$
 is a basis for \mathbb{R}^2 . If the \mathcal{B} – coordinate vector for $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is

$$\begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 and the \mathcal{B} -coordinate vector for $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$, what is the \mathcal{B} -coordinate vector for $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$?

Let
$$\mathcal{B} = (\vec{v}_1, \vec{v}_2)$$
 and $S = [\vec{v}_1 | \vec{v}_2]$. We want to determine $\begin{bmatrix} 3 \\ 1 \end{bmatrix}_{\mathcal{B}} = S^{-1} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$. We are

given
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 or $S \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ or $\begin{bmatrix} 1 \\ 1 \end{bmatrix} = S \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. This data

allows us to find S. Combining the vector equations into one matrix equation,

$$\begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} = S \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix} \text{ or } S = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 4 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix} (-\frac{1}{5}) \begin{bmatrix} 1 & -2 \\ -4 & 3 \end{bmatrix} =$$

$$\left(-\frac{1}{5} \right) \begin{bmatrix} -3 & 1 \\ -2 & -1 \end{bmatrix} = \frac{1}{5} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix}. \text{ So } S^{-1} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{pmatrix} \frac{1}{5} \begin{bmatrix} 3 & -1 \\ 2 & 1 \end{bmatrix} \end{pmatrix}^{-1} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \end{bmatrix}.$$

- 2. If A and B are two $n \times n$ matrices, A is said to be *similar* to B if and only if there is an invertible $n \times n$ matrix S so that $A = SBS^{-1}$. Now, suppose that A, B and C are $n \times n$ matrices.
 - a. Show: A is similar to itself.

I is an $n \times n$ invertible matrix and $A = (I)A(I)^{-1}$.

b. Show: if A is similar to B, then B is similar to A.

There is an $n \times n$ invertible matrix S so that $A = SBS^{-1}$. But S^{-1} is an $n \times n$ invertible matrix such that $B = (S^{-1})A(S^{-1})^{-1}$.

c. Show: if A is similar to B and B is similar to C, then A is similar to C. There are $n \times n$ invertible matrices S and T so that $A = SBS^{-1}$ and $B = TCT^{-1}$. ST is an invertible matrix and $A = SBS^{-1} = S(TCT^{-1})S^{-1} = (ST)C(ST)^{-1}$.

1

3. Consider the matrix $A = \begin{bmatrix} 0 & 2 \\ 1 & 1 \end{bmatrix}$ and the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$. Let $\mathcal{B} = (\vec{v}_1, \vec{v}_2)$. Notice that $A \vec{v}_1 = 2 \vec{v}_1$ and $A \vec{v}_2 = -\vec{v}_2$. Find a diagonal matrix D and invertible matrix S so that $SDS^{-1} = A$. This result shows that A is similar to a diagonal matrix.

If we let
$$S = [\vec{v}_1 | \vec{v}_2] = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$
 and $D = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$, then $SDS^{-1} = A$.

4. $\mathcal{B} = (\vec{v}_1, \vec{v}_2) = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \begin{bmatrix} -4 \\ 3 \end{pmatrix}$ is a basis for \mathbb{R}^2 . Define the linear transformation

$$T: \mathbf{R}^2 \to \mathbf{R}^2$$
 by $[T(\vec{v}_1)]_{\mathcal{B}} = \begin{bmatrix} 7 \\ 0 \end{bmatrix}$ and $[T(\vec{v}_2)]_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

a. Describe T in geometric terms.

The transformation T is a stretch by the factor 7 along the direction parallel to $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$ in the plane.

b. Determine the matrix A such that $T(\vec{x}) = A \vec{x}$ for any \vec{x} in \mathbb{R}^2 .

$$A = SDS^{-1} \text{ where } S = \begin{bmatrix} \vec{v}_1 \mid \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \text{ and } D = \begin{bmatrix} [T(\vec{v}_1)]_{\mathcal{B}} \mid [T(\vec{v}_2)]_{\mathcal{B}} \end{bmatrix} = \begin{bmatrix} 7 & 0 \\ 0 & 1 \end{bmatrix}.$$

So,

$$A = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 7 & 0 \\ 0 & 1 \end{bmatrix} (\frac{1}{25}) \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix} = \frac{1}{25} \begin{bmatrix} 3 & -4 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 21 & 28 \\ -4 & 3 \end{bmatrix}$$

$$= \frac{1}{25} \begin{bmatrix} 79 & 72 \\ 72 & 121 \end{bmatrix} = \begin{bmatrix} 3.16 & 2.84 \\ 2.84 & 4.84 \end{bmatrix}.$$

5. $P = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is clearly the matrix for projection onto the *xy*-plane in \mathbb{R}^3 . It

is easy to verify that this matrix has the usual properties that a projection matrix

should have: $P = P^2 = P^T$. By an appropriate change of coordinates, we can even show that the matrix for projection onto *any* plane through the origin in \mathbb{R}^3 is similar to P. This says, roughly, that all projections onto planes in \mathbb{R}^3 are the same, apart from the observer's orientation or viewpoint.

- a. Let M be any plane through the origin in \mathbf{R}^3 . [We note that M is a subspace of \mathbf{R}^3 and $\dim(M) = 2$.] Now choose a basis for \mathbf{R}^3 as follows. Let $\mathcal{B} = (\hat{u}_1, \hat{u}_2, \hat{u}_3)$ where the vectors in the basis are orthonormal (i.e. each has unit magnitude and they are pairwise orthogonal), \hat{u}_1 and \hat{u}_2 are in M and \hat{u}_3 is normal to M. $[(\hat{u}_1, \hat{u}_2)$ is a basis for M.] Now define $S = [\hat{u}_1 | \hat{u}_2 | \hat{u}_3]$.
 - a. Show that $S^T S = I$, i.e. $S^T = S^{-1}$.

First note that $\hat{u}_j^T \hat{u}_k = \delta_{jk}$. This says, quite simply, that the scalar (dot or inner) product of two basis vectors is 1 if they are the same and 0 otherwise. But, the jkth entry of the product matrix $S^T S$ is precisely the scalar product of the jth row vector of S^T (this is \hat{u}_j^T) and the kth column vector of S (this is \hat{u}_k). Of course, δ_{jk} is the jkth entry of the identity matrix.

b. Show that the matrix $Q = S P S^{-1}$ which is, by definition, similar to P, has the following expected properties.

i.
$$Q = Q^2 = Q^T$$
.

$$Q^{2} = (S P S^{-1})(S P S^{-1}) = S P (S^{-1}S) P S^{-1} = S P P S^{-1} = S P S^{-1} = Q.$$

 $Q^{T} = (S P S^{-1})^{T} = (S P S^{T})^{T} = S^{TT} P S^{T} = S P S^{-1} = Q.$

ii.
$$Q \hat{u}_1 = \hat{u}_1$$
, $Q \hat{u}_2 = \hat{u}_2$, and $Q \hat{u}_3 = \vec{0}$.

$$Q\,\hat{u}_{1} = S\,\,P\,\,S^{\,-1}\hat{u}_{1} = S\,\,P\,\,S^{\,T}\,\hat{u}_{1} = [\hat{u}_{1}\,|\,\hat{u}_{2}\,|\,\hat{u}_{3}] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{\underline{u}}_{1}^{\,T} \\ \hat{\underline{u}}_{2}^{\,T} \\ \hat{\overline{u}}_{3}^{\,T} \end{bmatrix} \hat{u}_{1} = [\hat{u}_{1}\,|\,\hat{u}_{2}\,|\,\hat{u}_{3}] \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \hat{u}_{1}$$

$$Q\hat{u}_{2} = S P S^{-1}\hat{u}_{2} = S P S^{T}\hat{u}_{2} = [\hat{u}_{1} | \hat{u}_{2} | \hat{u}_{3}]\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{u}_{1}^{T} \\ \hat{u}_{2}^{T} \\ \hat{u}_{3}^{T} \end{bmatrix} \hat{u}_{2} = [\hat{u}_{1} | \hat{u}_{2} | \hat{u}_{3}]\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \hat{u}_{2}$$

$$Q\,\hat{u}_3 = S\,\,P\,\,S^{\,-1}\hat{u}_3 = S\,\,P\,\,S^{\,T}\,\hat{u}_3 = [\,\hat{u}_1\,|\,\,\hat{u}_2\,|\,\,\hat{u}_3\,] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{u}_1^{\,T} \\ \hat{u}_2^{\,T} \\ \hat{u}_3^{\,T} \end{bmatrix} \hat{u}_3 = [\,\hat{u}_1\,|\,\,\hat{u}_2\,|\,\,\hat{u}_3\,] \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \vec{0}$$

6. a. Using the results of problem 4, calculate the matrix Q for projection onto the plane M through the origin in \mathbb{R}^3 whose equation is x + 2y + 2z = 0.

First, we determine an orthonormal basis for \mathbb{R}^3 whose third member is chosen to

be a unit normal to M. So, we set $\hat{u}_3 = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$. Now any vector orthogonal to this

vector lies in M. There are infinitely many possibilities for picking a pair of unit vectors in M that are also orthogonal to each other. Any such pair will do. We

choose
$$\hat{u}_1 = \frac{1}{3} \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$$
 and $\hat{u}_2 = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$. So, $\mathcal{B} = (\hat{u}_1, \hat{u}_2, \hat{u}_3)$ is our orthonormal basis

whose first two vectors lie in M and whose third vector is normal to M. We have

$$Q = S P S^{-1} = S P S^{T} = \frac{1}{3} \begin{bmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & -2 & 1 \\ 2 & 1 & -2 \\ 1 & 2 & 2 \end{bmatrix}$$

$$=\frac{1}{9}\begin{bmatrix} 2 & 2 & 1\\ -2 & 1 & 2\\ 1 & -2 & 2 \end{bmatrix}\begin{bmatrix} 2 & -2 & 1\\ 2 & 1 & -2\\ 0 & 0 & 0 \end{bmatrix} = \frac{1}{9}\begin{bmatrix} 8 & -2 & -2\\ -2 & 5 & -4\\ -2 & -4 & 5 \end{bmatrix}.$$

b. Using a result obtained earlier, calculate the matrix N for projection onto the line through the origin in \mathbb{R}^3 that is normal to the plane M in part a.

We determine the matrix for projection onto the line through the origin and parallel

to
$$\hat{u}_3$$
. Now, the matrix for projection onto a line parallel to a unit vector $\hat{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}$

is
$$\begin{bmatrix} v_1 v_1 & v_1 v_2 & \dots & v_1 v_n \\ v_2 v_1 & v_2 v_2 & \dots & v_2 v_v \\ \vdots & \vdots & \ddots & \vdots \\ v_n v_1 & v_n v_2 & \dots & v_n v_n \end{bmatrix}$$
. We find $N = \hat{u}_3 \hat{u}_3^T = \frac{1}{3} \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \end{bmatrix} = \frac{1}{9} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 4 & 4 \\ 2 & 4 & 4 \end{bmatrix}$.

c. What is the relationship between N and Q? [This should suggest an alternate means to determine Q.]

N+Q=I. Projection onto the normal line plus projection onto the plane is the identity. Multiplying both sides of this equation on the right by any vector $\vec{x} \in \mathbf{R}^3$ gives us $\vec{x} = N\vec{x} + Q\vec{x}$ which is just another way of saying that any vector can be resolved into its projection normal to a plane and parallel to that plane. Since computing N is simpler than computing Q, this suggests that one compute N and then obtain Q = I - N by subtraction from the identity. There is another relationship involving these projection matrices. Since these are projections onto mutually orthogonal subspaces of \mathbf{R}^3 , we should expect that NQ = QN = 0. Indeed, straightforward matrix multiplication shows that this is true.