

CLAIMS

What is claimed is:

1 1. A method for improving open loop power control in
2 spread spectrum telecommunications systems, the method
3 comprising the steps of:

4 transmitting at least one first access channel probe
5 for a first message from a mobile station to a base station,
6 the transmission power level of each access channel probe in
7 the at least one first access channel probe being increased
8 until a base station acknowledgment is received for a
9 specific access channel probe of the at least one first
10 access channel probe at a first transmission power level;

11 storing the first transmission power level at the
12 mobile station; and

13 transmitting at least one second access channel probe
14 for a second message from the mobile station to the base
15 station, the transmission power level of an initial access
16 channel probe of the at least one second access channel
17 probe for the second message being based upon the first
18 transmission power level.

1 2. The method as defined in claim 1, further comprising
2 the step of:

3 storing a recently measured received code power from
4 the base station at the mobile station, the transmission
5 power level of the initial access channel probe of the at
6 least one second access channel probe for the second message
7 being further based upon the recently measured received code
8 power.

9 3. The method as defined in claim 1, further comprising
10 the step of:

11 storing a recently measured base station interference
12 level at the mobile station, the transmission power level of
13 the initial access channel probe of the at least one second
14 access channel probe for the second message being further
15 based upon the recently measured base station interference
16 level.

17 4. The method as defined in claim 1, wherein the first
18 message is a first packet and the second message is a second
19 packet in a packet mode transmission.

1 5. The method as defined in claim 1, wherein the
2 transmission power level of an initial access channel probe
3 of the at least one first access channel probe for the first
4 message is based upon a path loss between the mobile station
5 and the base station.

6 6. The method as defined in claim 5, wherein the
7 transmission power level of an initial access channel probe
8 of the at least one first access channel probe for the first
9 message is further based upon a base station interference
0 level.

1 7. The method as defined in claim 1, wherein the
2 transmission power level of the initial access channel probe
3 of the at least one second access channel probe for the
4 second message is closer to the first transmission power
5 level than a transmission power level of an initial access
6 channel probe of the at least one first access channel probe
7 for the first message.

18 8. The method as defined in claim 1, wherein the
19 transmission power level of the initial access channel probe

1 of the at least one second access channel probe for the
2 second message is closer to a transmission power level that
3 is required to have the initial access channel probe reach
4 the base station than a transmission power level of an
5 initial access channel probe of the at least one first
6 access channel probe for the first message.

7 9. The method as defined in claim 1, wherein the
8 transmission power level of the second message is at or
9 slightly above a transmission power level that is required
10 to have the second message reach the base station.

11 10. An apparatus for improving open loop power control in
12 spread spectrum telecommunications systems, the apparatus
13 comprising:

14 at least one memory for storing a first transmission
15 power level of a specific access channel probe of at least
16 one first access channel probe for a first message
17 transmitted from a mobile station to a base station, the
18 specific access channel probe of the at least one first
19 access channel probe being the first access channel probe to
20 receive an acknowledgment from the base station; and

1 at least one processor for determining a second
2 transmission power level of an initial access channel probe
3 of at least one second access channel probe for a second
4 message to be transmitted from the mobile station to the
5 base station, the second transmission power level of the
6 initial access channel probe of the at least one second
7 access channel probe for the second message being determined
8 based upon first transmission power level.

9 11. The apparatus as defined in claim 10, wherein the
0 memory also stores a recently measured received code power
1 from the base station, the second transmission power level
2 of the initial access channel probe of the at least one
3 second access channel probe for the second message being
4 further based upon the recently measured received code
5 power.

6 12. The apparatus as defined in claim 10, wherein the
7 memory also stores a recently measured base station
8 interference level, the second transmission power level of
9 the initial access channel probe of the at least one second
0 access channel probe for the second message being further

1 based upon the recently measured base station interference
2 level.

3 13. The apparatus as defined in claim 10, wherein the first
4 message is a first packet and the second message is a second
5 packet in a packet mode transmission.

6 14. The apparatus as defined in claim 10, wherein the
7 transmission power level of an initial access channel probe
8 of the at least one first access channel probe for the first
9 message is based upon a path loss between the mobile station
10 and the base station.

11 15. The apparatus as defined in claim 14, wherein the
12 transmission power level of an initial access channel probe
13 of the at least one first access channel probe for the first
14 message is further based upon a base station interference
15 level.

16 16. The apparatus as defined in claim 10, wherein the
17 second transmission power level of the initial access
18 channel probe of the at least one second access channel

1 probe for the second message is closer to the first
2 transmission power level than a transmission power level of
3 an initial access channel probe of the at least one first
4 access channel probe for the first message.

5 17. The apparatus as defined in claim 10, wherein the
6 second transmission power level of the initial access
7 channel probe of the at least one second access channel
8 probe for the second message is closer to a transmission
9 power level that is required to have the initial access
0 channel probe reach the base station than a transmission
1 power level of an initial access channel probe of the at
2 least one first access channel probe for the first message.

3 18. The apparatus as defined in claim 10, wherein the
4 second transmission power level of the initial access
5 channel probe of the at least one second access channel
6 probe for the second message is at or slightly above a
7 transmission power level that is required to have the
8 initial access channel probe reach the base station.

1 19. An article of manufacture for improving open loop power
2 control in spread spectrum telecommunications systems, the
3 article of manufacture comprising:

4 at least one processor readable carrier; and
5 instructions carried on the at least one carrier;
6 wherein the instructions are configured to be readable from
7 the at least one carrier by at least one processor and
8 thereby cause the at least one processor to operate so as
9 to:

10 transmit at least one first access channel probe for a
11 first message from a mobile station to a base station, the
12 transmission power level of each access channel probe in the
13 at least one first access channel probe being increased
14 until a base station acknowledgment is received for a
15 specific access channel probe of the at least one first
16 access channel probe at a first transmission power level;

17 store the first transmission power level at the mobile
18 station; and

19 transmit at least one second access channel probe for a
20 second message from the mobile station to the base station,
21 the transmission power level of an initial access channel
22 probe of the at least one second access channel probe for

1 the second message being based upon the first transmission
2 power level.

3 20. The article of manufacture as defined in claim 19,
4 further causing the at least one processor to operate so as
5 to:

6 store a recently measured received code power from the
7 base station at the mobile station, the transmission power
8 level of the initial access channel probe of the at least
9 one second access channel probe for the second message being
0 further based upon the recently measured received code
1 power.

2 21. The article of manufacture as defined in claim 19,
3 further causing the at least one processor to operate so as
4 to:

5 store a recently measured base station interference
6 level at the mobile station, the transmission power level of
7 the initial access channel probe of the at least one second
8 access channel probe for the second message being further
9 based upon the recently measured base station interference
0 level.

1 22. The article of manufacture as defined in claim 19,
2 wherein the first message is a first packet and the second
3 message is a second packet in a packet mode transmission.

4 23. The article of manufacture as defined in claim 19,
5 wherein the transmission power level of an initial access
6 channel probe of the at least one first access channel probe
7 for the first message is based upon a path loss between the
8 mobile station and the base station.

9 24. The article of manufacture as defined in claim 23,
10 wherein the transmission power level of an initial access
11 channel probe of the at least one first access channel probe
12 for the first message is further based upon a base station
13 interference level.

14 25. The article of manufacture as defined in claim 19,
15 wherein the transmission power level of the initial access
16 channel probe of the at least one second access channel
17 probe for the second message is closer to the first
18 transmission power level than a transmission power level of

1 an initial access channel probe of the at least one first
2 access channel probe for the first message.

3 26. The article of manufacture as defined in claim 19,
4 wherein the transmission power level of the initial access
5 channel probe of the at least one second access channel
6 probe for the second message is closer to a transmission
7 power level that is required to have the initial access
8 channel probe reach the base station than a transmission
9 power level of an initial access channel probe of the at
0 least one first access channel probe for the first message.

11 27. The article of manufacture as defined in claim 19,
12 wherein the transmission power level of the initial access
13 channel probe of the at least one second access channel
14 probe for the second message is at or slightly above a
15 transmission power level that is required to have the
16 initial access channel probe reach the base station.