Mo2Hap

Rendering VR Performance Motion Flow to Upper-body Vibrotactile Haptic Feedback

Motion Salient Triangle

Torso Center of Mass (CoM)

- MST_{DP}

 MST Dynamic Point
 - A framework of rendering a performer's 3D motions with skeletal data into high-quality haptic feedback

MST Dynamic Point

Motion Salient Triangle (MST) is a
 3D triangulation calculated in real-time

$$MST_{DP} = J_C + \frac{(J_A - J_C) \cdot \omega_{Active} + (J_R - J_C) \cdot \omega_{Root} + (J_T - J_C) \cdot \omega_{Torso}}{\omega_{Active} + \omega_{Root} + \omega_{Torso}}, N = \{x, y, z\}$$

Translating Parameters: Localization / Intensity

- Localization : 3D Warping, Direct Surface Mapping, Out-of-Range Projection
- Designating the Target Point, Ray-cast is drawn towards MST Dynamic Point
- Intensity: **Distance value of MST_{DP} to J_T** to the level of tactile intensity is **linearly combined**
- Acceleration and Distance value of J_A is considered for Weight Distribution

[Warping Methods for Localization]

 $D_t = Distance (Torso_{CM}, MST_{DP})$ Distance $(A_1, B_1) = |A_1 - B_1|$ $I_t = (\alpha \cdot D_t \cdot C + (1 - \alpha) \cdot I_t - 1)$

[Flow chart for Intensity]

Kyungeun Jung (kyungeun.jung@kaist.ac.kr)
Sang Ho Yoon* (sangho@kaist.ac.kr)

