AVFORMER: TRANSFORMER BASED AUDIO-VISUAL SPEECH SEPARATION FOR 2ND COG-MHEAR AVSE CHALLENGE

Mandar Gogate, Kia Dashtipour, Amir Hussain

Edinburgh Napier University, UK m.gogate@napier.ac.uk

1. PROPOSED APPROACH

We propose a time-domain audio-visual speech separation (SE) model based on Transformer [1] as depicted in Fig. 1 for the 2^{nd} COG-MHEAR audio-visual speech enhancement challenge. The model exploits noisy speech, and target speakers lips to supress unwanted background noise and enhance the target speech.

Fig. 1. Proposed Framework

Audio feature extraction: The time domain audio signals are encoded and decoded using 1-D convolutional and transpose convolutional neural network as proposed in [2]. The convolutional layer had 16 filters and 8 stride size.

Visual feature extraction: The visual feature extraction stage of the pipeline consist of 3D convolutional layer with filter size of $5 \times 7 \times 7$ and stride of $1 \times 2 \times 2$, followed by ResNet-18. The ResNet-18 is followed by conformer for temporal modelling [3]. The extracted visual features are upsampled to match the video sampling rate.

Multimodal fusion: The upsampled visual features and encoded audio features are concatenated and fed to a series of three transformer modules. The self attention head present in each transformer module consists of 4 heads and 16 dimension per head. The processed latent space is then fed to a decoder module that maps the latent space to the output dimension after applying cross attention. The cross attention modules present in the encoder comprise of 4 heads and 16 dimensions each.

Table 1. Objective evaluation on eval set (leaderboard)

	PESQ	STOI	SI-SDR
Noisy	1.136	0.441	-5.073
Baseline	1.414	0.556	3.667
Proposed	2.110	0.781	12.355

Table 2. System parameters

Parameter		
No. of parameters	22.1 M	
Training epochs	100	
Latency (M1 Macbook Pro)	0.5 sec processing time for	
	1 sec of video	
Training hardware	2 x NVIDIA RTX A6000	
Time per epoch	60 min	
Total training steps	200k	
Batch size	4 per GPU	
Training Time	5 days	
Total epochs	100	
Optimiser	Adam	
Learning rate	0.003	
Learning rate scheduler	Multiply learning rate by 0.8	
	if validation loss stops	
	decreasing for two epochs	
DNN Framework	PyTorch	

2. EXPERIMENTAL RESULTS

Table 1 demonstrated the overview results for objective evaluation on the AVSEC 2 leaderboard eval set. It can be seen that for all objective measures the proposed AV outperforms baseline. Table 2 presents the system parameters.

3. REFERENCES

[1] Cem Subakan, Mirco Ravanelli, Samuele Cornell, Mirko Bronzi, and Jianyuan Zhong, "Attention is all you need in speech separation," in *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2021, pp. 21–25.

- [2] Yi Luo and Nima Mesgarani, "Conv-tasnet: Surpassing ideal time–frequency magnitude masking for speech separation," *IEEE/ACM transactions on audio, speech, and language processing*, vol. 27, no. 8, pp. 1256–1266, 2019.
- [3] Pingchuan Ma, Stavros Petridis, and Maja Pantic, "End-to-end audio-visual speech recognition with conformers," in *ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*. IEEE, 2021, pp. 7613–7617.