Case Study using Posto

Lucky M. Kispotta

luckymk.mcs2024@cmi.ac.in

Chennai Mathematical Institute

2025-10-26

Table of Contents

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Introduction

Given an autonomous system which evolves in discrete times.

Devise a statistical method to monitor an autonomous system independent of it's nature (Linear / Non-linear).

Introduction

Given an autonomous system which evolves in discrete times.

Devise a statistical method to monitor an autonomous system independent of it's nature (Linear / Non-linear).

This method could be used to argue the safety of a self-driving car system is > c. Here c is the confidence.

System I/O execution model

Definition

The system I/O model is defined as:

$$f_{\mathrm{sys}}: 2^{\mathbb{R}^n} \times \mathbb{R} \times \bigcup_{i \in [t-1]} o_i \to 2^{\mathbb{R}^n}$$

$$f_{\text{sys}}(\theta_0, t, [O]_{t-1}) = \theta_t$$

where,
$$\theta_0, \theta_1 \subset \mathbb{R}^n$$
 , $\forall_{i \in [t-1]} o_i \subset \mathbb{R}^n$

Intuitively, f defines a transition function which maps the initial state to the next "t" th step w.r.t to some environment inputs.

Trajectory

Definition

A trajectory τ of the system is an ordered sequence of states given as follows: $\tau = \{x_0, x_1, \cdots, x_H\}$ where $\forall t \in [0, H]$ and $\mathrm{fsys}(x_0, t, t - 1) = x_t$.

Trajectory

Definition

A trajectory τ of the system is an ordered sequence of states given as follows: $\tau = \{x_0, x_1, \cdots, x_H\}$ where $\forall t \in [0, H]$ and $\mathrm{fsys}(x_0, t, t - 1) = x_t$.

Here, each $q_i \in \mathbb{R}^2$. Since we are trying to model a system which represents the movement of an object in a space (here 2d).

Valid trajectories

Definition

A trajectory
$$\tau = \{x_0, x_1, \cdot \cdot \cdot, x_H\}$$
 is said to be valid with respect to a given $\log l = \left\{\left(\widehat{\theta}_t, t\right) \mid \theta_t \subseteq \widehat{\theta}_t, t \leq H\right\}$ if $\forall_{\left(\widehat{\theta}_t, t\right) \in l} x_t \in \widehat{\theta}_t$.

Intuitively,

Random Trajectory

Definition

Let a trajectory τ be randomly chosen from the set of all valid trajectories τ_{val} (w.r.t. to and environmental inputs $[O]_H$).

This is randomly drawn according to the distribution D, and formally expressed as $\tau = \text{Sample}(\text{fsys}(\cdot), l, [O]_H, D)$

Visualization of Random Trajectory 1)

Figure 6: 3*D* trajectory plot.

Figure 7: Random Trajectories.

Log

Definition

Given a system I/O execution model a finite size log of the system is defined as follows:

$$l = \left\{ \left(\hat{\theta}, t \right) \mid \theta_t \subseteq \hat{\theta}, t \leq H \right\}$$

where,

$$t, H \in R$$

Log

2) Visualization of Log

Figure 9: Given T=20 and Porbablilty $\log=20$ a) The visualization of bounds of states for uncertain log. b) The visualization of log.

Problem Statement

Now we formally define the Problem statement in hand.

Problem Statement

Now we formally define the Problem statement in hand.

Problem Statement

Given,

- 1. The system I/O model that is f_{sys} .
- 2. An uncertain $\log l$.
- 3. Environment inputs $[O]_H$
- 4. The probabilistic distribution D 5. An unsafe set of trajectories \mathcal{U} .
- 6. A confidence parameter $c \in (0,1)$ desired.

The problem is to perform monitoring to ensure safety of the system with confidence c as defined by $\mathcal{J}BF$ based hypothetical testing.

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Overview

Overview

- Let *K* be the number of trajectories that need to be checked.
- The goal of this method is to correctly devise a value for K such that it "guarantees" that the system will work correctly with confidence > c.
- To enable hypothesis testing : Formulate two hypothesis.
- First one (H_0) represents the undesired result and the second one (H_1) represents the desired result.
- For each sample or trajectory check if it supports hypothesis H_0 or H_1 .
- If any sample is *Unsafe* return **False**.
- else return **True**.

 $\bullet \,$ Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$

- \bullet Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that is the system is safe with confidence less than c.

- $\bullet \$ Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that is the system is safe with confidence less than c.
- Let alternative hypothesis be $H_1: r\big[f_{sys}(.), l, \mathcal{D}, \mathcal{U}\big] \geq c$

- $\bullet \ \ \text{Let Null hypothesis be} \ H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that is the system is safe with confidence less than c.
- Let alternative hypothesis be $H_1: r\big[f_{sys}(.), l, \mathcal{D}, \mathcal{U}\big] \geq c$
- This is the probability that the system is safe with confidence $\geq c$.

- $\bullet \$ Let Null hypothesis be $H_0: \Pr \big[f_{sys}(.), l, \mathcal{D}, \mathcal{U} \big] < c$
- This is the probability that is the system is safe with confidence less than c.
- Let alternative hypothesis be $H_1: r\big[f_{sys}(.), l, \mathcal{D}, \mathcal{U}\big] \geq c$
- This is the probability that the system is safe with confidence $\geq c$.
- We want the hypothesis testing to conclude that that the H_1 is true.

$\overline{\text{Derivation of }K}$

The probability that set of trajectories X is safe with confidence m is m^K .

 Lucky Kispotta
 2025-10-26
 Case Study
 16 / 26

Derivation of K

The probability that set of trajectories X is safe with confidence m is m^K .

Therefore the probability that the set of trajectories is safe given confidence < c is :

$$\Pr[\forall \tau \in X : \tau \cap = \emptyset \mid H_0] = \int_0^c q^K dq = \frac{c^{K+1}}{K+1}$$

Derivation of K

The probability that set of trajectories X is safe with confidence m is m^K .

Therefore the probability that the set of trajectories is safe given confidence < c is :

$$\Pr[\forall \tau \in X : \tau \cap = \emptyset \mid H_0] = \int_0^c q^K dq = \frac{c^{K+1}}{K+1}$$

Therefore the probability that the set of trajectories is safe given confidence $\geq c$ is :

$$\Pr[\forall \tau \in X : \tau \cap = \emptyset \mid H_0] = \int_c^1 q^K dq = \frac{1 - c^{K+1}}{K+1}$$

Bayes Factor

In any hypothesis testing problem the Bayes Factor measures how much likely is the data under H_1 than H_0 .

Bayes Factor

In any hypothesis testing problem the Bayes Factor measures how much likely is the data under H_1 than H_0 .

Bayes Factor

Bayes Factor is formally defined as the ratio:

$$\frac{\Pr[D \mid H_1]}{\Pr[D \mid H_0]}$$

Here, D are K safe trajectories.

Bayes Factor

Interpretation of Bayes Factor

If Bayes Factor is > 1 implies the data is more in favour of H_1 .

B=10 implies "the observed data is 10 times more likely under H_1 than H_0 ".

The paper uses a "hardcoded" Bayes Factor as a threshold to accept the hypothesis H_1 . Hence,

$$\frac{1-c^{K+1}}{c^{K+1}} > B \Longleftrightarrow K > -\log_c(B+1)$$

Intuition : is to find a K such that if K trajectories are safe then Bayes Factor of observed data > B.

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Flowchart

Figure 10: Flowchart of the algorithm

 Lucky Kispotta
 2025-10-26
 Case Study
 20 / 26

Content

Introduction

Statistical Hypothesis Testing

Algorithm

Results

Few Results (Logging Probability as variable)

Figure 11: The values of constraints are : unsafe = 0.7, op = 'ge', state = 1 (y)

Figure 12: As the Logging Probability increases the time increases. The color of the points depend on the ratio $\frac{|\text{valid trajectories}|}{|\text{total trajectories}|}$. Green implies safe and red implies not safe. The values of constraints are : unsafe = -0.1, op = 'le', state = 0 (x)

More Results (Logging Probability as variable)

Figure 13: The values of constraints are : unsafe = 0, op = 'le', state = 0 (x)

Figure 14: This is a very strict safety condition. The values of constraints are : unsafe = 0.1, op = `ge', state = 0 (x)

Few Results (Confidence as variable)

An observation to make is that the algorithm immediately produces counter examples.

Figure 15: The values of constraints are : unsafe = 0.7, op = ge, Figure 16: The values of constraints are : unsafe = -0.1, op = le, state = 0 (x)

More Results (Confidence as variable)

0.005 - 0.004 - 0.002 - 0.000

Figure 17: The values of constraints are : unsafe = 0, op = 'le', state = 0 (x)

Figure 18: This is a very strict safety condition. The values of constraints are : unsafe = 0.1, op = 'ge', state = 0 (x)

Thanks for Listening.

Bye Bye

