Problem 2

```
# 1). PCA and Kernel PCA to the data
cancerdata <- read.table("Cancer.txt", header = FALSE)
names(cancerdata) <- NULL
cancerdata <- as.matrix(cancerdata)
# Due to the computation limitation, I will choose use all of
# the data to do PCA and use part of data to do kernel PCA.
prin_cancer <- prcomp(cancerdata, rtex = TRUE)
# Check the screeplot of PCA result, it seems that the first
# principal components contain a large portion of
# information, which can be used to compress and cluster the
# data
screeplot(prin_cancer)</pre>
```

prin_cancer

Rotated Data from first and second PC direction


```
# To further illustrate, I can check the variance
# contribution of first several principal components.
explain_var_cancer <- sapply(1:144, function(i) sum(prin_cancer$sdev[1:i]^2)/sum(prin_cancer$sdev^2))
head(explain_var_cancer) # The first PC contains almost 70% of information.

## [1] 0.6939 0.7676 0.8068 0.8282 0.8453 0.8568

###### Kernel PCA with Gaussian kernel function #####
library(kernlab)
rbf <- rbfdot(sigma = 0.001)
kern_cancer <- kernelMatrix(rbf, scale(cancerdata[1:3000, ])) #Part of the data due to computation limits linits limits limits limits limits limits limits limits limits limi
```


Rotated Data On First and Second PC direction

14 clusters using k-means before PCA

14 clusters using k-means after normal PCA


```
# Comment: we have a majority of points being classfied in
# one group, it means that PCA does not identify them into
# different groups, and they have similar variance in most of
# PC loading directions.
kmeans_kpca <- kmeans(t(rotated(kp_cancer)), 14, nstart = 1)
plot(rotated(kp_cancer), pch = kmeans_kpca$cluster, main = "14 clusters using k-means using kernel PCA")</pre>
```

14 clusters using k-means using kernel PCA

K-mediods clustering before PCA

K-mediods after PCA

K-mediods after kernel PCA

[#] Comment: Probably it is due to the lack of useful genes or
it is due to the fact that the principal component needs to
be further revised in this case, we cannot cluter out the
points.