SN54150, SN54151A, SN54LS151, SN54S151, SN74150, SN74151A, SN74LS151, SN74S151 DATA SELECTORS/MULTIPLEXERS

DECEMBER 1972-REVISED MARCH 1988

- '150 Selects One-of-Sixteen Data Sources
- Others Select One-of-Eight Data Sources
- All Perform Parallel-to-Serial Conversion
- All Permit Multiplexing from N Lines to One Line
- Also For Use as Boolean Function Generator
- Input-Clamping Diodes Simplify System Design
- Fully Compatible with Most TTL Circuits

	TYPICAL AVERAGE	TYPICAL
TYPE	PROPAGATION DELAY TIME	POWER
	DATA INPUT TO W OUTPUT	DISSIPATION
′150	13 ns	200 mW
151A	8 ns	145 mW
'LS151	13 ns	30 mW
'S151	4.5 ns	225 mW

description

These monolithic data selectors/multiplexers contain full on-chip binary decoding to select the desired data source. The '150 selects one-of-sixteen data sources; the '151A, 'LS151, and 'S151 select one-of-eight data sources. The '150, '151A, 'LS151, and 'S151 have a strobe input which must be at a low logic level to enable these devices. A high level at the strobe forces the W output high, and the Y output (as applicable) low.

The '150 has only an inverted W output; the '151A, 'LS151, and 'S151 feature complementary W and Y outputs.

The '151A and '152A incorporate address buffers that have symmetrical propagation delay times through the complementary paths. This reduces the possibility of transients occurring at the output(s) due to changes made at the select inputs, even when the '151A outputs are enabled (i.e., strobe low).

SN54151A, SN54LS151, SN54S151 . . . J OR W PACKAGE SN74151A . . . N PACKAGE

SN74LS151, SN74S151 . . . D OR N PACKAGE

SN54LS151, SN54S151 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

SN54150, SN54151A, SN54LS151, SN54S151, SN74150, SN74151A, SN74LS151, SN74S151 DATA SELECTORS/MULTIPLEXERS

logic symbols†

[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are D, J, N, and W packages.

'150 FUNCTION TABLE

		INI	PUT	S	OUTPUT
	SEL	ECT	•	STROBE	w
D	С	В	_A	Ğ	VV
Х	X	Х	Х	н	Ŧ
L	L	L	L	L	ΕÖ
L	L	L	H	L	E1
L	L	H	L	L	E2
L	L	Н	Н	L	Ē3
L	Н	L	L	Ļ	Ē4
L	Н	L	н	L	E5
L	н	Н	Ļ	L	E6
L	н	Н	н	L	Ē7
H	L	L	Ł	L	€8
н	L	L	H	L	Ē9
Н	L	н	L	L	E10
н	L	Н	н	L	E11
н	н	L	L	L	E12
н	Н	L	н	L	E13
н	Н	Н	L	L	E14
н	н	н	н	L	Ē15

'151A, 'LS151, 'S151 FUNCTION TABLE

	11	NPUT	S	OUT	PUTS
S	ELEC	т:	STROBE	v	w
С	В	A	Ğ	*	**
Х	Х	Х	Н	L	Н
L	L	L	L	DO	<u>50</u>
L	L	Н	L	D1	D1
L	Н	Ł	L	D2	02
L	н	Н	L	D3	D 3
н	L	L	L	D4	D4
н	L	H	L	D5	D5
н	н	L.	L	D6	D6
Н	Н	н	L	D7	D7

H = high level, L = low level, X = irrelevant

 $\overline{E0}$, $\overline{E1}$... $\overline{E15}$ = the complement of the level of the respective E input

DO, D1 . . . D7 = the level of the D respective input

schematics of inputs and outputs

SN54150, SN54151A, SN74150, SN74151A DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

		SN54'			SN74'		
<u></u> _	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH		-	-800			-800	μА
Law-level output current, IQL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	.c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	SA SAAAFTED	TEST CONDITI	oue†		1150	•		′151A		
	PARAMETER	TEST CONDITI	UNS'	MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	UNIT
VιΗ	High-level input voltage			2			2			٧
VIL	Low-level input voltage					0.8			0.8	>
VIK	Input clamp voltage	VCC = MIN. II =	-8 mA			- 1.5			-1.5	V
Vон	High-level output voltage	$V_{CC} = MIN, V_{IH}$ $V_{IL} = 0.8 \text{ V}, I_{OH}$	1	2.4	3.4		2.4	3.4		٧
VOL	Low-level output voltage	$V_{CC} = MIN, V_{IH}$ $V_{IL} = 0.8 \text{ V}, I_{OL}$			0.2	0.4		0.2	0.4	>
11	Input current at maximum input voltage	VCC = MAX, VI =	5.5 V	-		1 ,			1	mΑ
l _{lH}	High-level input current	VCC = MAX, VI =	2.4 V			40			40	μА
l _{IL}	Low-level input current	$V_{CC} = MAX, V_I =$	0.4 V		·	-1.6			-1.6	mA
		V MAY	SN54'	- 20		- 55	- 20		- 55	
los	Short-circuit output current [§]	V _{CC} = MAX	SN74'	- 18		- 55	- 18		- 55	mA
lcc	Supply current	VCC = MAX, See N	lote 3		40	68		29	48	mΑ

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

switching characteristics, VCC = 5 V, TA = 25°C

	FROM	TO	TEST	,-	150			151/	4	
PARAMETER*	(INPUT)	(OUTPUT)	CONDITIONS	MIN T	ΥP	MAX	MIN	TYP	MAX	UNIT
^t PLH	A, B, or C	Υ						25	38	
^t PHL	(4 levels)	,						25	38	пş
tPLH	A, B, C, or D	w			23	35		17	26	
tPHL	(3 levels)				22	33		19	30	ns
tPLH	Strobe G	Y	Cլ = 15 թF,					21	33	ns
tPHL	Strone G	•	$R_L = 400 \Omega$,					22	33	1113
tPLH	Strobe G	W	See Note 4 i	1	5.5	24		14	21	ns
tPHL_	Strope G		000 17010 17		21	30		15	23	''3
†PLH	DO thru D7	Y						13	20	
^Ţ PHŁ	Bo till a D	,						18	27	ns
tPLH	E0 thru E15, or	w			8.5	14		8	14	
tPHL	D0 thru D7	••			13	20		8	14	ns

 $[\]P_{\text{tpLH}} = \text{propagation delay time, low-to-high-level output}$ $\text{tp}_{\text{HL}} = \text{propagation delay time, high-to-low-level output}$

[†] All typical values at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ}\text{C}$.

Not more than one output of the '151A should be shorted at a time.

NOTE 3: ICC is measured with the strobe and data select inputs at 4.5 V, all other inputs and outputs open.

NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

recommended operating conditions

	S	N54LS	151	Si	N74LS1	51	LINICT
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5,5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-65		125	0		70	C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS T	S	N54LS1	51	s	N74LS1	51	LIAUT
	PARAIVIE I ER	IESI CON	DITIONS.	MIN	ΤΥ₽‡	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage			2	•		2			٧
V _{IL}	Low-level input voltage					0.7			0.B	٧
Vik	Input clamp voltage	VCC - MIN, It =	–18 mA			- 1.5			-1.5	٧
Vон	High-level output voltage	V _{CC} = MIN, V _{IH}	= 2 V, = -400 μA	2.5	3.4	-	2.7	3.4		٧
VoL	Low-level output voltage	V _{CC} = MIN, V _{IH} V _{II} = V _{II} max	= 2 V, I _{OL} = 4 mA I _{OL} = 8 mA		0.25	0.4		0.25 0.35	0.4 0.5	٧
lţ	Input current at maximum input voltage	VCC = MAX, VI =				0.1			0.1	mA
ΉΗ	High-level input current	VCC - MAX, VI -	2.7 V			20			20	μА
I _I L	Low-level input current	V _{CC} = MAX, V _I =	0.4 V			-0.4			-0.4	mΑ
los	Short-circuit output current§	V _{CC} = MAX		- 20		- 100	- 20		- 100	mΑ
lcc	Supply current	V _{CC} = MAX, Outp All inputs at 4.5 V	uts open,		6.0	10		6.0	10	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device type.

switching characteristics, VCC = 5 V, TA 25 °C

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	ТҮР	MAX	UNIT
tPLH	A, B, or C	Y			27	43	
tPHL	(4 levels)	·			18	30	ns
tPLH	A, B, or C	w	1		14	23	
tPHL	(3 levels)	**			20	32	ns
tPLH	Strobe G	Y	15.55		26	42	
^t PHL	Strope G	•	C _L = 15 pF,		20	32	ns
^t PLH	Strobe G	R _L – 2 kΩ, W See Note 4		15	24	ns	
tpHL	Strobe G	W	See Note 4		18	30	ris
t P LH		Y]		20	32	
tpHL	Any D	Y	İ		16	26	ns
t P LH	A D	w	1		13	21	
[†] PHL	Any D	vv			12	20	ns

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C. $^{\$}$ Not more than one output should be shorted at a time and duration of short-circuit should not exceed one second.

[¶]tpLH = propagation delay time, low-to-high-level output tpHL = propagation delay time, high-to-low-level output NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

SN54S151, SN74S151 DATA SELECTORS/MULTIPLEXERS

recommended operating conditions

	S	N54S1	51		N74S15	51	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, VCC	4.5	5	5.5	4.75	5	5.25	ν
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mΑ
Operating free-air temperature, TA	55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONST		MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage			2			V
VIL	Low-level input voltage					0.8	V
Vik	Input clamp voltage	V _{CC} = MIN, I _I = -18 mA	-			-1.2	V
Vall	High-level output voltage	V _{CC} = MiN, V _{IH} = 2 V,	SN54S151	2.5	3.4		.,
νон	mign-rever output vortage	VIL = 0.8 V, IOH = -1 mA	SN74S151	2.7	3.4		٧
Va.	Law lavel output voltage	VCC = MIN, VIH = 2 V,				0.5	Ţ,,
VOL	Low-level output voltage	V _{IL} = 0.8 V, I _{OL} = 20 mA	i			0.5	ν
l ₁	Input current at maximum input voltage	VCC = MAX, V1 = 5.5 V				1	mA
lie .	High-level input current	V _{CC} = MAX, V _I = 2.7 V				50	μА
JIL.	Low-level input current	V _{CC} - MAX, V _I = 0.5 V				-2	mA
los	Short-circuit output current §	V _{CC} = MAX		-40		-100	mA
¹cc	Supply current	VCC = MAX, All inputs at 4.5 V, All outputs open		· · · ·	45	70	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable device

switching characteristics. V_{CC} = 5 V. T_A 25 °C

PARAMETER¶	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN	TYP	MAX	UNIT
^t PLH	A, B, or C	Y			12	18	
[†] PHL	(4 levels)	į	1		12	18	ns
[†] P LH	A, B, or C	W	1		10	15	
[†] PHL	(3 levels)				9	13.5	ns
tPLH	Any D	Y	$C_L = 15 pF,$ $R_L = 280 k\Omega,$		8	12	ns
[†] PHL	Ally				8	12	
tPLH	Any D	w	See Note 4		4.5	7	
tPHL	Ally D	VV	See Note 4		4.5	7	ns
[†] PLH	Strobe G	pe G Y	1		11	16.5	
[‡] PHL	311006 G	ŗ			12	18	กร
[†] PLH	Strobe G	104			9	13	
t _{PHL}	Juope G	w			8.5	12	กร

TtpLH = propagation delay time, low-to-high-level output

 $[\]ddagger$ All typical values are at \lor CC = 5 \lor , \lnot A = 25°C. \ddagger Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

tpHL - propagation delay time, high-to-low-level output NOTE 4: Load circuits and voltage waveforms are shown in Section 1.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

26-Sep-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽
SN74LS151DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74LS151J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74LS151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74LS151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74LS151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74S151D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74S151D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74S151DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74S151DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74S151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74S151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74S151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLII
SN74S151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SNJ54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	Level-NC-NC-NC
SNJ54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	Level-NC-NC-NC

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9558001QJA	ACTIVE	CDIP	J	24	1	TBD	Call TI	Level-NC-NC-NC
5962-9558001QKA	ACTIVE	CFP	W	24	1	TBD	Call TI	Level-NC-NC-NC
5962-9558001QKA	ACTIVE	CFP	W	24	1	TBD	Call TI	Level-NC-NC-NC
5962-9751601Q2A	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
5962-9751601QCA	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
5962-9751601QDA	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI
76010012A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
76010012A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
7601001EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
7601001EA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
7601001FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
7601001FA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/01401BKA	ACTIVE	CFP	W	24	1	TBD	Call TI	Level-NC-NC-NC
JM38510/01401BKA	ACTIVE	CFP	W	24	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07901BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/07901BFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30901B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30901B2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30901BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30901BEA	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30901BFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
JM38510/30901BFA	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SN54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	Level-NC-NC-NC
SN54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	Level-NC-NC-NC
SN54LS151J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN54LS151J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN54S151J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SN54S15J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SN74150N	ACTIVE	PDIP	N	24	15	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74150N	ACTIVE	PDIP	N	24	15	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74150NE4	ACTIVE	PDIP	N	24	15	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74150NE4	ACTIVE	PDIP	N	24	15	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74151AN	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74151AN	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS151D	ACTIVE	SOIC	D	16	40 (Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS151D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LS151DE4	ACTIVE	SOIC	D	16	40 (Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

om 17-Oct-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp (
SN74LS151DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151DR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151DRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN
SN74LS151J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74LS151J	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
SN74LS151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74LS151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74LS151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74LS151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S151D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S151D	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S151DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S151DE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLI
SN74S151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S151N	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74S151N3	OBSOLETE	PDIP	N	16		TBD	Call TI	Call TI
SN74S151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S151NE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	Level-NC-NC-NC
SN74S151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNL

.com 17-Oct-2005

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾ I	Lead/Ball Finis	h MSL Peak Temp ⁽³⁾
SN74S151NSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74S151NSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	Level-NC-NC-NC
SNJ54150J	ACTIVE	CDIP	J	24	1	TBD	Call TI	Level-NC-NC-NC
SNJ54150W	ACTIVE	CFP	W	24	1	TBD	Call TI	Level-NC-NC-NC
SNJ54150W	ACTIVE	CFP	W	24	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS151FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS151FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS151J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS151J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS151W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54LS151W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S151FK	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S151J	ACTIVE	CDIP	J	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S151W	ACTIVE	CFP	W	16	1	TBD	Call TI	Level-NC-NC-NC
SNJ54S15FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
SNJ54S15J	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI
SNJ54S15W	OBSOLETE	CFP	W	14		TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

4040084/C 10/97

J (R-GDIP-T**)

24 PINS SHOWN

CERAMIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Window (lens) added to this group of packages (24-, 28-, 32-, 40-pin).
- D. This package can be hermetically sealed with a ceramic lid using glass frit.
- E. Index point is provided on cap for terminal identification.

14 LEADS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP1-F16 and JEDEC MO-092AC

W (R-GDFP-F24)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
 - E. Index point is provided on cap for terminal identification only.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

N (R-PDIP-T24)

PLASTIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-010

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

24 PIN SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-011
- D. Falls within JEDEC MS-015 (32 pin only)

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AC.

MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2005, Texas Instruments Incorporated