Федеральное государственное автономное образовательное учреждение высшего образования

«Московский физико-технический институт (национальный исследовательский университет)»

Лабораторная работа №4.7.3

по курсу общей физики на тему: «Поляризация»

> Работу выполнил: Баринов Леонид (группа Б02-827)

1 Аннотация

В работе будут исследованы методы получения анализа поляризованного света.

2 Теоретические сведения

Получение эллиптически поляризованного света

Эллиптически поляризованной свет можно получить из линейно поляризованного с помощью двоякопреломляющих кристаллических пластинок.

Двоякопреломляющая пластинка имеет два взаимно перпендикулярных главных направления, совпадающих с осями эллипсоида диэлектрической проницаемости. Волны, поляризованные вдоль главных направлений, распространяются в пластинке с разными скоростями, не изменяя характера своей поляризации. Эти волны называются главными. Мы будем обозначать показатели преломления для главных волн через n_x и n_y , где x и y — главные направления кристаллической пластинки $puc.\ 1.$

Пусть на пластинку падает линейно поляризованная волна, электрический вектор которой ориентирован под некоторым углом α к оси x. Разложим вектор \overrightarrow{E} на составляющие E_x и E_y . На входе пластинки E_x и E_y находятся в фазе. На выходе из-за разности скоростей между ними появляется разность хода $d(n_x-n_y)$, при этом сдвиг фаз определяется соотношением:

Рис. 1. Разложение линейно поляризованного света по главным направлениям двоякопреломляющей пластинки

$$\Delta \varphi = \frac{2\pi}{m} = kd(n_x - n_y) \tag{1}$$

где k — волновое число (в пустоте), d — толщина кристаллической пластинки. Рассмотрим практически важные частные случаи

Рис. 2. Поворот направления колебаний с помощью пластинки в $\lambda/2$

Пластинка дает сдвиг фаз 2π (пластинка в длину волны λ). В результате сложения волн на выходе пластинки образуется линейно поляризованная волна с тем же направлением колебаний, что и в падающей волне.

Пластинка дает сдвиг фаз π (пластинка в полдлины волны $\lambda/2$). На выходе пластинки снова образуется линейно поляризованная волна. Направление bb' колебаний этой волны повернуто относительно направления aa' колебаний падающей волны ($puc.\ 2$). Направление bb' является зеркальным отображением направления aa' относительно одного из главных направлений пластинки. Такую пластинку используют для поворота направления колебаний линейно поляризованного света.

Пластинка создает между колебаниями сдвиг фаз $\pi/2$ (пластинка в четверть длины волны). При сложении двух взаимно перпендикулярных колебаний, имеющих разность фаз $\pi/2$, образуется эллипс, главные оси которого совпадают с координатными осями x и y. При равенстве амплитуд $E_x^{\max} = E_y^{\max}$ возникает круговая поляризация.

Пластинка чувствительного оттенка

Рис. 3. Пластинка чувствительного оттенка

Пластинка имеет форму стрелы (*puc. 3*), вдоль оси которой расположено главное направление, соответствующее большей скорости распространения.

Если между скрещенными поляроидами поместить пластинку чувствительного оттенка (λ) и пластинку $\lambda/4$ так, чтобы их главные направления совпадали, цвет пластинки изменится. Если у пластинки чувствительного оттенка и пластинки в $\lambda/4$ совпадут главные направления, соответствующие большей скорости распространения, то разность хода между E_x и E_y для зеленого света составит уже $5\lambda/4$. Это соответствует разности хода в λ для света с большей длиной волны.

3 Оборудование

- 4 Результаты измерений и обработка результатов
- 5 Обсуждение результатов и выводы