5CCS2FC2: Foundations of Computing II

Optimisation and Approximation

Week 9

Dr Christopher Hampson

Department of Informatics

King's College London

Warm-up: The Eight Queens

• Position eight Queens (8 x ") on the board so that no Queen is threatened.

(no two Queens can appear in the same row, column, or diagonal)

Objectives for Today

- To be able to explain local search, and where it might fail,
 - Global vs Local maxima / minima,
- To be able to explain what it means for a problem to be approximable or unapproximable
- To be able to apply the 2-opt algorithm for the TSP.

• State Space collection of all possible solutions and non-solutions

(e.g. all possible ways of placing eights / four queens on a chessboard)

Successor Function All the 'locally' accessible states

(e.g. all configurations that differ by one vertical move)

• Heuristic Function Assigns a 'score' to each state in the state space

h: search space \rightarrow possible score

Heuristic h(x) = 4

(e.g. the number of pairs currently in conflict)

Hill-climbing Local Search

- Step 1) Guess an initial configuration,
- **Step 2)** Evaluate the heuristic function of the successor states,
- **Step 3)** Move to a successor state with a better heuristic 'score'.
- Step 4) Repeat until no further improvement to the score are possible.

(the Greedy SAT algorithm from last week employed Hill-climing)

Potential Pitfalls: The Hill-climbing search may get 'stuck' in a local maximum/minumum!

8	3	3	3	3	2	3	₩	3
7	3	3	4	2	W	4	2	4
6	2	W	3	3	5	4	2	3
5	3	2	4	₩	4	4	3	2
4	3	3	4	3	4	w	2	3
3	3	5	3	2	4	3	2	₩
2	4	3	W	2	2	3	3	3
1	w	3	3	2	2	3	2	3
	Α	В	С	D	E	F	G	Н

(there is only one conflict – (D5,G8) – but no local improvements!)

The happens with The Eight Queens about 86% of the time!

(...so only successful 14% of the time!)

However each paths are typically quite short,

(takes about 3 moves on average to get stuck!)

- Can quickly stop and re-search from a random configuration,
- I was able to get 577 successes out of 4160 runs in <20 seconds

Global and Local Optima

- Global and Local Maxima
 - ullet Global Maximum $h(x^*) \geq h(x)$ for all $x \in X$ $(x^* ext{ is attains the greatest value } anywhere)$
 - Local Maximum $h(x^*) \geq h(x)$ for all 'neighbouring' $x \in X$

(similarly, we may define global and local minima)

Optimisation Problems

Decision vs Optimisation Problems

Decision Problems

Decide whether a solution exists or not.

VS

Optimisation Problems

Identify the best /
optimal solution.

- Some problems make sense only as Decision Problems
 - Examples: The SAT problem, the Hamiltonian cycle problem,
 the Clique problem, the Graph Isomorphism problem,

(typically problems where the answer is yes/no)

- Others are more natual to consider as Optimisation Problems
 - Examples: The Travelling Salesman Problem, Vertex-cover problem,
 the Knapsack problem, etc.

Decision vs Optimisation Problems

We can parameterize any optimisation problem into a decision problem:

Vertex Cover Optimisation Problem Input) A graph (V, E), Output) A vertex cover with the fewest nodes.

Vertex Cover Decision Problem

Input) A graph (V, E) and parameter k,

Output) Is there a vertex cover with fewer than k nodes?

- A Search Space for Vertex Cover
 - State Space All possible subsets of vertices,

$$\mathcal{P}(V) \ = \ \{U \ : \ U \subseteq V\}$$

(i.e., the powerset of V)

Successor Relation All sets the differ by a single vertex

$$X \longleftrightarrow Y \quad \text{iff} \quad ig|(X-Y) \cup (Y-X)ig| = 1$$

(for all $X, Y \subset V$)

Heuristic Function The number of edges that are not covered.

$$h(X) \ = \ \big|\{(u,v) \in E \ : \ u \not\in X \text{ and } v \not\in X\}\big|$$

(for all $X \subseteq V$)

Example: \boldsymbol{B} $\overline{\{A,C,D,E\}}$ $\{A, C, D, F\}$ $\{A,C,D\} \quad \{C,D,E\}$ $\{B,C,D\}$ $\{C, D, F\}$ \boldsymbol{E} $\{B,D\}$ $\{C,D\}$ $\{D,E\}$ $\{A,D\}$ $\{E\}$ $\{D\}$ \boldsymbol{F} \boldsymbol{D} $\{F\}$ $\{G\}$ $\{B\}$ $\{A\}$ $\{C\}$ **Vertex Cover** \boldsymbol{G} $\{A,C,D,E\}$

Approximate Algorithms

Approximate Algorithms

The Approximation Ratio

$$R \, = \max \left(rac{C}{C^*} \, , \, rac{C^*}{C}
ight)$$

(if $C < C^*$ then $R = C^*/C$, otherwise $R = C/C^*$)

- C is the cost of the approximate solution
- C* is the cost of the optimal solution

• R-approximable problems There is an approximate algorithm such that every instance of the problem has an approximation ratio $\leq R$.

(the algorithm never returns a solution worse that R times the optimal)

Approximate Algorithms

The Travelling Salesman (Optimisation) Problem (TSP):

Input) A complete weighted graph (V, d),

(d(x,y) is the distance between two points $x,y\in V$)

Output) The shortest Hamiltonian cycle, visiting all nodes.

Theorem TSP is NP-complete.

But can find a 'good' approximation for TSP?

The 2-OPT swap move:

Step 1) Given a cycle, choose two *non-adjascent* edges in the cycle:

$$(x,y)$$
 and (u,v)

(where x, y, u, and v are all distinct)

Step 2) Compare the weight of (x,y) and (u,v) with the weight (x,v) and (u,y).

• The 2-OPT swap move (cont.):

Step 3) Replace the two edges (x,y) and (u,v) with (x,v) and (u,y) whenever,

$$d(x,v) + d(u,y) < d(x,y) + d(u,v)$$
 after swap before swap

The new path visits all nodes in a shorter distance!

Input: A complete weighted graph G = (V, d),

Step 1) Construct a minimum spanning tree of the complete weighted graph.

(using Prim's Algorithm, for example)

Step 2) Use the **preorder traversal** of the spanning tree as an initial cycle.

Step 3) Apply the 2-opt swap move for each pair of non-adjacent edges.

Step 4) Repeat until no more optimisations are possible.

The 2-OPT approximation algorithm for TSP

 In this instance our approximate algorithm was able to find the optimal path!

length_of (optimal path)
$$\approx 14.71$$

- In general, for other instances, we may may get stuck in a local optimum.
- But how close to the global optimum does our approximate algorithm get,
 when we get stuck?

What is the Approximation Ratio in the worst case?

Theorem The cycle found is no worse than **twice** the optimal length!

Proof: Step 1) Let H and H^* denote the following cycles

H = Local optimal found by 2-OPT algorithm

 H^* = Global optimal Hamiltonian cycle,

(we want to show that length_of $(H) \leq 2 \times \text{length_of } (H^*)$)

Step 2) Remove one edge from H^* to create a path T,

 $\mathsf{length_of}\left(T\right) \; \leq \; \mathsf{length_of}\left(H^*\right)$

(note that T is a *(trivial) spanning tree!*)

The 2-OPT approximation algorithm for TSP

Step 3) Let T_0 denote the following minimum spanning tree computed as the first step of the 2-OPT algorithm,

$$T_0$$
 = Minimum spanning tree

It then follows that

$$\operatorname{length_of}(T_0) \leq \operatorname{length_of}(T)$$

(since a minimum spanning tree is shorter than another spanning tree!)

Step 4) The length of the *pre-order traversal* is at most twice the length of the spanning tree,

$$\operatorname{length_of}(W) \leq 2 \times \operatorname{length_of}(T_0)$$

(we walk the length of each edge twice—first on the left, then on the right)

The 2-OPT approximation algorithm for TSP

Step 5) Every application of the 2-OPT swap decreases the length of the cycle, so

$$\mathsf{length_of}\,(H) \, \leq \, \mathsf{length_of}\,(W)$$

where H is the local minimum return by the 2-OPT algorithm.

Step 6) Therefore

$$\mathsf{length_of}(H) \leq \mathsf{length_of}(W)$$

$$\leq 2 \times \mathsf{length_of}(T_0)$$

$$\leq 2 \times \mathsf{length_of}(T)$$

$$\leq 2 \times \mathsf{length_of}(H^*)$$

Q.E.D

- Caution! In the above example, we assumed that our weighted graph was 'reasonable'.
- We assumed that it satisfied the triangle inequality

$$d(x,y)+d(y,z) \, \geq \, d(x,z)$$

d(x,y) y d(x,z)

(for all nodes $x, y, z \in V$)

If we drop this requirement then there is no approximate algorithm for TSP.

Theorem If d does not satisfy the triangle inequality then TSP is unapproximable.

Proof:

Step 1) Suppose that there is a polynomial time approximate algorithm for TSP whose approximation ratio is R.

(so all approxiate solutions are no worse that ${\it R}$ times the optimal)

Step 2) Consider a instance of the **Hamiltonian Cycle** problem

$$G=(V,E)$$

and let n = |V| denote the number of vertices in G.

We will convert the graph ${\cal G}$ into an instance of TSP and use the approximate algorithm to find a solution for the Hamiltonian Cycle problem

Step 3) Construct a complete weighted graph (V, d) by setting

$$d(x,y) \; = \; egin{cases} \mathbb{1} & ext{if } (x,y) \in E \ \\ nR + \mathbb{1} & ext{if } (x,y)
ot\in E \end{cases}$$

(the edges from the original graph are short)

Step 4) Let H be the cycle returned by the approximate algorithm.

We will show that

$$\operatorname{length_of}(H) \leq nR \iff egin{array}{c} G ext{ has a} \\ \operatorname{Hamiltonian cycle} \end{array}$$

Left-to-Right) Suppose that H is a 'short' TSP cycle

$$\operatorname{length_of}(H) \leq nR$$

Then *H* must use only 'short edges'!

('short edges' = length 1)

Therefore H is a Hamiltonian cycle in G!

Right-to-Left) Suppose that G has a Hamiltonian cycle.

Then there is a TSP path H^* that uses only 'short' edges.

length_of
$$(H^*) = \underbrace{1+1+\cdots+1}_{n \text{ nodes}} = n$$

(H^* must be *optimal* as no shorter paths can visit all n nodes)

Since our proposed approximate algorithm has an **approximation** ratio of R, we must have that

$$\operatorname{length_of}(H) \, \leq \, R \times \operatorname{length_of}(H^*) \, = \, nR$$

Therefore H is 'short' TSP cycle!

Step 5) This equivalance is a key to efficiently deciding whether G has a Hamiltonian cycle.

A Polynomial Time Algorithm for TSP (?)

- Convert G into a TSP graph,
- Use polynomial-time approimate algorithm to find H,
- If length_of $(H) \leq nR$ then return **TRUE**,
- Else return FALSE

Conclusion) Either we have just proved that $P = NP \dots$ or ...

There is no polynomial-time approximate algorithm for TSP.

Q.E.D

Summary of TSP

- Summary
 - If your graph is 'reasonable' then TSP is 2-approximable,

('reasonable' = satisfies the triangle inequality)

Otherwise the graph is unapproximable.

Routing to minimise *distance* is approximable...

... Routing to minimse duration is not!

Summary of TSP

https://xkcd.com/399/

End of Slides!

Feedback

• Let me know how you found today's lecture?

https://goo.gl/forms/wHsWHGU9qWskEm8x2

Teaching Excellence Awards 2018

Teaching Excellence Awards 2018

