Load and Explore the Datasets

Dataset A: IMDB (50K Movie Reviews)

IMDB dataset having 50K movie reviews for natural language processing or Text analytics. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training and 25,000 for testing. So, predict the number of positive and negative reviews using either classification or deep learning algorithms.

Labels: positive or negative (textual)

Text: Full movie reviews

Format: CSV (2 columns – review, sentiment)

Preprocessing

- Lowercase
- Remove URLs
- Remove mentions
- Remove hashtags
- punctuation/numbers
- tokenize
- remove stopwords.words('english')

by nltk

```
def preprocess_text(text):
```

```
text = text.lower()  # Lowercase
text = re.sub(r"http\S+|www.\S+", ", text) # Remove URLs
text = re.sub(r"@\w+", ", text) # Remove mentions
text = re.sub(r"#\w+", ", text) # Remove hashtags
text = re.sub(r"[^a-z\s]", ", text) # Remove punctuation/numbers
tokens = word_tokenize(text)
tokens = [w for w in tokens if w not in stopwords.words('english') and len(w) > 2]
return tokens
```

Research Opportunities/Tasks

a. Sentiment Classification

- **Binary classification**: Both datasets are labeled as **positive (1)** and **negative (0)**. You can train models like Logistic Regression, LSTM, or BERT.
- Justification: These datasets are large and well-labeled, suitable for supervised learning.

b. Domain Adaptation & Transfer Learning

- Train on IMDB (movie reviews) to study how well models transfer across domains.
- **Justification**: Real-world applications involve cross-domain texts (e.g., applying product review models to social media).

c. Preprocessing & NLP Pipeline Comparison

• Compare performance with different text-cleaning and preprocessing steps: stop word removal, stemming, lemmatization etc.

unique words list, Bigrams and Trigrams

Unigrams unique words top 20 in IMDB data set

		Top 20 Unigrams in		
Top 20 Unigrams in Positive Reviews:		Negative Reviews:		
word	freq		word	freq
film	39414		movie	47488
movie	36010		film	35042
one	25737		one	24636
like	17050		like	21771
good	14343		even	14918
great	12646		good	14141
story	12373		bad	14068
see	11868		would	13633
time	11777		really	12220
well	10979		time	11494
really	10676		see	10567
also	10545		dont	10029
would	10363		get	9996
even	9363		much	9898
much	8999		story	9672
first	8868		people	9115
films	8454		could	9031
love	8393		make	8985
people	8363		made	8391
best	8292		movies	8352

Binary Top 20 Bigrams IMDB DATA SET

Top 20 Bigrams (Binary) in		Top 20 Bigrams (Binary) in Negative			
Positive Reviews:		Reviews:			
word	freq			word	freq
one best	1599			ever seen	1614
ive seen	1061			special effects	1369
even though	1016			waste time	1349
ever seen	912			looks like	1219
first time	904			dont know	1191
dont know	862			ive seen	1086
new york	802			much better	955
special effects	763			one worst	936
years ago	703			look like	927
see movie	701			even though	852
great movie	647			ive ever	843
good movie	629			low budget	838
well done	601			bad movie	824
real life	571			im sure	771
dont think	563			watch movie	708
pretty good	556			worst movie	706
must see	556			see movie	694
saw movie	551			dont think	679
im sure	548			pretty much	677
watch movie	532			really bad	675

Trigrams Top 20 Trigrams IMDB DATA SET

Top 20 Trigrams (Trinity) in Positive Reviews:		Top 20 Trigrams (Trinity) in Negative Reviews:	
ive ever seen	348	ive ever seen 637	
new york city	180	worst movie ever 352	
world war ii	153	dont waste time 308	
one best movies	139	one worst movies 301	
one best films	123	movie ever seen 220	
based true story	120	worst movies ever 200	
first time saw	115	waste time money 170	
first saw movie	91	one worst films 163	
films ever made	89	dont get wrong 158	
films ive seen	88	movie ive ever 158	
seen long time	85	worst film ever 156	
dont get wrong	82	movies ever seen 152	
highly recommend movie	81	movie ever made 137	
movie ever seen	79	worst movie ive 135	
international film festival	79	bad acting bad 120	
well worth watching	79	movies ive ever 116	
would love see	79	complete waste time 112	
first saw film	73	worst films ever 107	
movie ive seen	71	doesnt make sense 103	
many years ago	70	movie ive seen 102	

Most common words or phrases in positive vs. negative reviews

IMDB data set :-

movie, film, one, like, even, good, bad, would, really, time, see, dont, get, much, story, people, could, make, made, movies, ever seen, special effects, waste time, looks like, dont know, ive seen, much better, one worst, look like, even though, ive ever, low budget, bad movie, im sure, watch movie, worst movie, see movie, dont think, pretty much, really bad, ive ever seen, worst movie ever, dont waste time, one worst movies, movie ever seen, worst movies ever, waste time money, one worst films, dont get wrong, movie ive ever, worst film ever, movies ever seen, movie ever made, worst movie ive, bad acting bad, movies ive ever, complete waste time, worst films ever, doesnt make sense, movie ive seen, great, well, also, first, films, love, best, one best, first time, new york, years ago, great movie, good movie, well done, real life, pretty good, must see, saw movie, new york city, world war ii, one best movies, one best films, based true story, first time saw, first saw movie, films ever made, films ive seen, seen long time, highly recommend movie, international film festival, well worth watching, would love see, first saw film, many years ago

Data set comparison

Feature	IMDB
Domain	Movie reviews
Size	50,000 labeled reviews
Language	English
Text Length	Long-form reviews (100–300+ words)
Label Type	positive, negative
Structure	2 columns: review, sentiment
Preprocessing Needed	Basic HTML removal, lowercasing

Aspects Identify from These Datasets

IMDB Reviews (Long-form):

- Aspects:
 - o Acting, direction, storyline, cinematography, music, screenplay
 - Each aspect can carry different sentiment → suitable for Aspect-Based
 Sentiment Analysis (ABSA)

Comparison of the Two Datasets and Highlight Key Differences

Category	IMDB Reviews
Text Type	Long-form, structured reviews
Tone	Formal/neutral
Content	Movies and storytelling

Category	IMDB Reviews
Noise Level	Relatively clean
Preprocessing Complexity	Medium
Label Balance	Balanced (~25k each)
Use Cases	Product/movie reviews, recommendation systems
Aspect-level Analysis	Easier (explicit mentions of plot/acting etc.)
Generalization Ability	Suitable for fine-tuned sentiment tasks