Sea-Bird Electronics, Inc.

13431 NE 20th Street, Bellevue, WA 98005-2010 USA

Phone: (+1) 425-643-9866 Fax (+1) 425-643-9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 3769 CALIBRATION DATE: 07-Mar-15 SBE 37 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Siemens/meter

COEFFICIENTS:

j = 2.825911e-005

BATH TEMP (ITS-90)	BATH SAL (PSU)	BATH COND (Siemens/m)	INST FREQ (Hz)	INST COND (Siemens/m)	RESIDUAL (Siemens/m)
22.0000	0.0000	0.0000	2746.31	0.00000	0.00000
1.0000	34.6169	2.96054	5351.09	2.96055	0.00001
4.5000	34.5970	3.26607	5550.17	3.26605	-0.00001
15.0000	34.5542	4.24285	6142.82	4.24283	-0.00002
18.5000	34.5450	4.58625	6337.77	4.58625	0.00001
24.0000	34.5350	5.14139	6640.53	5.14140	0.00001
29.0000	34.5298	5.66065	6911.43	5.66065	0.00000
32.5000	34.5274	6.03128	7098.29	6.03127	-0.00001

f = INST FREQ * sqrt(1.0 + WBOTC * t) / 1000.0

Conductiv ity = (g + h * f^2 + i * f^3 + j * f^4) / (1 + δ * t + ϵ * p) Siemens / meter

 $t = temperatur e[^{\circ}C)$; p = pressure[decibars]; $\delta = CTcor$; $\epsilon = CPcor$;

Residual = instrument conductivity - bath conductivity

