Introduction to Algorithms

As part of Unit 1
CC4 Data Structures and Algorithms
Christine T. Gonzales

Table of Contents

- Priori and posteriori estimates
- Asymptotic notation
- Frequency count and Big-O notation

Priori and Posteriori Estimates

Priori analysis | Posteriori testing

Priori and Posteriori Estimates

- Originally used for statistics and partial differential equations
- In computer science, they are used to analyze algorithms and test their effectiveness
 - Priori estimate / priori analysis analysis of algorithms
 - Posteriori estimate / posteriori testing testing of program codes

Priori Analysis

- Focuses on analyzing an algorithm
 - Determine the efficiency of the algorithm
 - Determine the time and space
 - Done before it is coded into a program
- Independent of language
 - Usually expressed in pseudocode
- Independent on hardware
 - Worst case scenario is usually measured

Posteriori Testing

- Done on a program
 - Usually focuses on testing the efficiency of the program
 - Also looks into watch time and bytes
 - There are other factors that can change the efficiency
- Dependent on the:
 - Language
 - Hardware (usually space)
 - Operating system

Asymptotic Notation

What is asymptotic notation? | Types of asymptotic notations

What is Asymptotic Notation?

- Languages that analyzes an algorithm's running time
- Done by identifying its behavior as the input size for the algorithm increases
- Usually used to measure time, but can also measure space

Types of Asymptotic Notations

- Big-O notation (O)
 - Identifies the worst case scenario complexity of an algorithm
- Omega notation (Ω)
 - Identifies the best case scenario complexity of an algorithm
- Theta notation (Θ)
 - Identifies the average case scenario complexity of an algorithm

Frequency Count and Big-O Notation

What is the Frequency Count method? | Examples of frequency count method | What is the Big-O Notation? | Complexity chart | Examples of Big-O Notation

in Information Technology

What is the Frequency Count Method?

- Method to determine the time (usually) and space of an algorithm
- Can be known by assigning one unit of time / space for each statement
- If any statement is repeating, then the frequency is calculated and the time taken is computed

Example - Frequency Count Method

```
Frequency Count

K = 500;

for (j=1; j<=K; j++)

x = x+1;

n=200;

Substituting actual value for k.

Freq. count. = 1504

= 0(1)
```

What is the Big O Notation?

- Type of asymptotic notation
- Used to determine the efficiency and complexity of an algorithm:
 - Average
 - Best
 - Worst case usually used
- Looks into the complexity in terms of the input size
- Used for priori analysis
- Frequency count method must be done first to properly identify the complexity

General Rules to Determine:

- Ignore constants
- Certain terms dominate others:

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n2) < O(n2) < O(n1)$$

 Ignore low-order terms when the high-order terms are present

Big-O Complexity Chart

Big O Measure of Efficiency

Measure of efficiency for n = 10,000

Efficiency	Big-O	Iterations	Estimated Time
Logarithmic	O(logn)	14	Microsecond
Linear	O(n)	10,000	Seconds
Linear Logarithmic	O(nlogn)	140,000	Seconds
Quadratic	$O(n^2)$	10,0002	Minutes
Polynomial	$O(n^k)$	10,000k	Hours
Exponential	$O(c^n)$	210,000	Intractable
Factorial	O(n!)	10,000!	Intractable

- Looks into the time that is taken to finish a set of operations
- Usually states the efficiency of the algorithm
 - "Horrible" notations can be faster depending on the number of operations
 - "Good" notations are usually better on shorter operations, but worse at larger ones

- Constant time
- Linear time
- Quadratic time

Constant Time

- Independent of input size
- It doesn't matter what the operation is, it will have the same complexity
- Notation(s): O(1)
- Sample operations:
 - Assignment to a variable
 - Printing

Linear Time

- The more operations, the slower the time
- Better for shorter operations
- Notation(s): O(log N), O(N), O(N log N)
- Sample operations:
 - Decision control structures
 - One-layered iterative control structures

Quadratic Time

- The more operations, the shorter the time
- Better for longer operations
- Notation(s): O(N2), O(2N), O(N!)
- Sample operations:
 - Nested iterative control structures
 - Recursive loops
 - Permutations

- · O(1)
 - Constant; most instructions are executed once or at most only a few times
- O(log n)
 - Program slightly slower as N grows; normally in programs that solve a big problem by transforming it into a small problem, cutting the size by some constant factor
- O(n)
 - Linear; proportional to the size of N

- O(n log n)
 - Occurs in algorithms that solve a problem by breaking it up into smaller sub-problems, solve them independently and then combining the solution
- $\cdot \circ (n^2)$
 - Quadratic; can be seen in algorithms that process all pairs of data items.
- $\cdot \circ (n^k)$
 - Polynomial; algorithms that process polynomial of data items.

- $\cdot \circ (2^n)$
 - Exponential; brute-force situation
- O(n!)
 - Factorial

Example: given 2 algorithms performing the same task on N inputs, which is faster and efficient?

$$\frac{P1}{10n}$$
 $\frac{P2}{n^2/2}$ O(n) O(n^2)

<u>N</u>	<u>P1</u>	<u>P2</u>
1		
5		
10		
15		
20		
20 30		
		

Substitute values in N and determine which among the two algorithms is more efficient and faster.

CENTER OF EXCELLENCE

<u>P1</u>	<u>P2</u>
10	0.5
50	12.5
100	50
150	112.5
200	200
300	450
	10 50 100 150 200

P2 is faster and more efficient for $N \le 20$, but for $N \ge 20$, P1 proves to be faster than P2.

Example - Big O Notation

```
public static int returnSum (int a[], n) {
    int s = 0;
    for (int i = 0; i < n; i++) {
         s = s + a[i];
    return s;
```


Example – Big O Notation

```
for(j=1; j<=n; j++) {
    for(k=1; k<=n; k++) {
        c[j][k] = 0;
        for(l=1; l<=n; l++) {
            c[j][k] = c[j][k] * b[l][k];
        }
    }
}</pre>
```