TWO-VARIABLE POLYNOMIALS

Ex 1. (Bezout) Let be given polynomial P(x, y) such that P(a, y) = 0 for some fixed value of a and for infinitely many values of y. Prove that P(x, y) is divisible by x - a.

Ex 2. Does there exist P(x,y) such that $P(x,y) > 0, \forall x,y \in \mathbb{R}$ and P(x,y) surjective on \mathbb{R}^+ ? **Problem 1.**

a) Find all polynomials P(x, y) such that

$$xP(z, y) + yP(x, z) = 2zP(x, y)$$
 for all $x, y, z \in \mathbb{R}$.

b) Find all polynomials P(x, y) such that

$$P(x+y,x-y)=2P(x,y)$$
 for all $x,y\in\mathbb{R}$.

Problem 2. Let P(x) be a polynomial such that P(0,0) = 0 and

$$P(x+2y,x+y) = P(x,y)$$
 for all $x,y \in \mathbb{R}$.

Prove that $x^2 - 2y^2 \mid P(x, y)$ and there exists Q(x) such that $P(x, y) = Q((x^2 - 2y^2)^2)$.

Problem 3.

- a) Find all polynomials P(x, y) such that $P(x^2 + y^2, 2xy) | P^2(x, y)$.
- b) Does there exist P(x, y) such that $P^2(x, y) + 2021$ is divisible by $x^2 + y^2 + 2022$?

Problem 4.

a) Let be given polynomial P(x, y) such that

$$P(xy, z^2 + 1) + P(yz, x^2 + 1) + P(zx, y^2 + 1) = 0$$
 for all x, y, z .

Prove that $P(x) \equiv 0$.

b) Let P(x, y) is a non-constant polynomials such that

$$P(x, y) \cdot P(z, t) = P(xz + yt, xt + yz)$$
 for all $x, y, z, t \in \mathbb{R}$.

Prove that P(x, y) is divisible by x + y or x - y.

Problem 5. Suppose that with some $m \in \mathbb{Z}^+$, there exists polynomials P(x), Q(x) and R(x, y) of real coefficients such that for all $a, b \in \mathbb{R}$ with $a^m = b^2$ then

$$P(R(a,b)) = a$$
 and $Q(R(a,b)) = b$.

Prove that m = 1.

Problem 6. Given that set $S = \{(a,b) | a \neq b; a,b \in \mathbb{Z}, 1 \leq a \leq 4, 1 \leq b \leq 4\}$ and $f_0(x,y)$ is a non-constant integer polynomials with minimum degree and $f(a,b) = 0, \forall (a,b) \in S$. Prove that

$$f_0\left(\frac{3}{2};\frac{5+\sqrt{6}}{2}\right)=0.$$

Problem 7*. Prove that for positive integer n, the polynomial $x^n + xy + y^n$ cannot be written as the product of two 2-variable polynomials with degree less than n.