

PREDICTING UBER AND LYFT SURGES TO INCREASE TAXI-CAB COMPETITION

BOSTON SURGE PRICE DETECTION

PREMISE

- Traditional cabs have difficulty competing against Uber/ Lyft
- One advantage of cabs: no "surge" pricing
- Goal: Create service to alert cabs when/where surge pricing is expected

DATA

- Features: time, location, and weather
- Target: Surge or No Surge
- 18 days' worth of Uber and Lyft data in Boston
 - ~700k rides
- Hourly weather forecasts

MODEL SELECTION

- Interpretability is a high priority
- Data is linearly inseparable
- Candidate models:
 - Decision Tree
 - Random Forest
 - Naive Bayes

UNDERSTANDING PERFORMANCE METRICS

- Accuracy is a poor metric
 - Only 0.03% of rides had surge pricing

$$Precision = \frac{Detected Surge}{Detected Surge + Falsely Detected Surge}$$

$$Recall = \frac{Detected\,Surge}{Detected\,Surge + Undetected\,Surge}$$

Maximizing precision makes the most business-sense

MODELING PROCESS

BASELINE MODEL

Baseline model results:

	Accuracy	Recall	Precision	F1
Decision Tree	95.16%	15.61%	15.08%	15.34%
Random Forest	96.02%	5.10%	9.88%	6.72%
Naive Bayes	66.07%	100%	7.65%	14.22%

FEATURE ENGINEERING

- Recent rides
- Cyclical time
- Boston sports team game days
- Weather observation:

COMPARING MODEL PERFORMANCE

	Accuracy	Recall	Precision	F1
Decision Tree	97.70%	58.85%	63.17%	60.93%
Random Forest	78.35%	91.62%	11.53%	20.48%
Naive Bayes	66.57%	99.88%	8.33%	15.38%

COMPARING MODEL PERFORMANCE

For our business, it is essential to minimize FPR

DECISION TREE CONFUSION MATRIX

Decision Tree Confusion Matrix

CONCLUSIONS AND FUTURE WORK

- Decision tree is the best model for the objective
 - Minimizes False Positive Rate, maximizes precision
- More data required
- Improve hyper-parameters
- Consider changing business model