

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 75700 N	M _t	= 139000 Nmm	σ_{a}	= 220 N/mm ²	G	= 73000 N/mm ²
T_y	= 46700 N	M_x	= -2440000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 81100 N
                                                                 M_{\star}
                                                                            = -2520000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 47800 N
                                                                           = 200000 \text{ N/mm}^2
          = 101000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 86100 N
                                                                      M_{\star}
                                                                                  = 2610000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 33000 N
                                                                                  = 200000 \text{ N/mm}^2
           = 110000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 67500 N
                                                               M_{\star}
                                                                          = -3170000 Nmm
T_y M_t
                                                                          = 220 \text{ N/mm}^2
          = 42200 N
                                                                          = 200000 \text{ N/mm}^2
          = 126000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 73000 N
                                                                      M_{\star}
                                                                                  = -2130000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 43200 N
                                                                                  = 200000 \text{ N/mm}^2
           = 135000 Nmm
                                                                       \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 78200 N
                                                               M_{\star}
                                                                         = -2180000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 43900 N
                                                                         = 200000 \text{ N/mm}^2
          = 97400 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 93600 N
                                                                      M_{\star}
                                                                                  = -2880000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 36900 N
                                                                                 = 200000 \text{ N/mm}^2
           = 116000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 65200 N
                                                                M_{\star}
                                                                          = -2760000 Nmm
T_y M_t
                                                                          = 220 \text{ N/mm}^2
          = 39200 N
                                                                          = 200000 \text{ N/mm}^2
          = 122000 Nmm
                                                                \tau(M_t)_d =
y_{G}
                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                \sigma_{tresca} =
                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= -1840000 Nmm
                                                                                                                                                             = 73000 \text{ N/mm}^2
Ν
           = 70500 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 39800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 130000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 128000 N	M,	= 175000 Nmm		= 220 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_v	= 97900 N	M_x	= -8220000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A _.	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{vb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$	=	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_{v})_{d}$	=	σ_{tresca}	=	•	
		,					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 137000 N
                                                                        M_{\star}
                                                                                    = -8800000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 70000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 193000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 99800 N
                                                                        M_{\star}
                                                                                    = -9440000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 76000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 210000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 114000 N
                                                                        M_{\star}
                                                                                    = -7110000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 88900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 234000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 124000 N
                                                                        M_{\star}
                                                                                    = -7620000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 93900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 170000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 133000 N
                                                                        M_{\star}
                                                                                    = -8140000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 67000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 187000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 101000 N
                                                                        M_{\star}
                                                                                    = -9360000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 80300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 211000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 111000 N
                                                                        M_{\star}
                                                                                    = -6580000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 85300 N
                                                                                   = 200000 \text{ N/mm}^2
           = 226000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 120000 N
                                                                        M_{\star}
                                                                                    = -7040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 89900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 164000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 108000 N
                                                                      M_{\star}
                                                                                 = -4120000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                 = 220 \text{ N/mm}^2
           = 47800 N
                                                                                 = 200000 \text{ N/mm}^2
           = 152000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                            \sigma_{\text{IId}}
                                                                                                                                            \sigma_{tresca} =
                                                                                                                                            \sigma_{\text{mises}} =
                                                                                                                                            \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 77700 N
                                                               M_{\star}
                                                                          = -4160000 Nmm
T_y M_t
                                                                          = 220 \text{ N/mm}^2
          = 50200 N
                                                                          = 200000 \text{ N/mm}^2
          = 164000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                               \sigma_{\text{IId}}
                                                                                                                               \sigma_{tresca} =
                                                                                                                               \sigma_{\text{mises}} =
                                                                                                                               \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 84200 N
                                                                        M_{\star}
                                                                                    = -2860000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 52100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 175000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 98700 N	M,	= 134000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_{y}	= 65000 N	M_x	= -3620000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
$A_{_{\star}}$	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_{v}	=	$\tau(T_y)_d$	=	σ_{tresca}	=		

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 104000 N
                                                                M_{\star}
                                                                           = -3660000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 44800 N
                                                                           = 200000 \text{ N/mm}^2
          = 146000 Nmm
                                                                \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 74900 N
                                                                 M_{\star}
                                                                           = -3670000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 46700 N
                                                                           = 200000 \text{ N/mm}^2
          = 158000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 91900 N
                                                                        M_{\star}
                                                                                    = -3270000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 57800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 186000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 96200 N
                                                                 M_{\star}
                                                                            = -3240000 Nmm
T_y M_t
          = 60400 N
                                                                            = 220 \text{ N/mm}^2
                                                                            = 200000 \text{ N/mm}^2
          = 131000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 101000 N
                                                                M_{\star}
                                                                           = -3220000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 41800 N
                                                                           = 200000 \text{ N/mm}^2
          = 141000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                 \sigma_{tresca} =
                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 110000 N
                                                                        M_{\star}
                                                                                    = -10100000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 85000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 255000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 120000 N
                                                                        M_{\star}
                                                                                    = -7250000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 90800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 275000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 130000 N
                                                                        M_{\star}
                                                                                    = -7920000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 96300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 200000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 147000 N
                                                                        M_{\star}
                                                                                    = -8950000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 75700 N
                                                                                   = 200000 \text{ N/mm}^2
           = 227000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 106000 N
                                                                        M_{\star}
                                                                                    = -9380000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 81400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 247000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 116000 N
                                                                        M_{\star}
                                                                                    = -6680000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 86700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 266000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 133000 N
                                                                        M_{\star}
                                                                                    = -7880000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 102000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 201000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 142000 N
                                                                        M_{\star}
                                                                                    = -8260000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 72500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 220000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 103000 N
                                                                        M_{\star}
                                                                                    = -8630000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 77800 N
                                                                                    = 200000 \text{ N/mm}^2
           = 239000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 74400 N
                                                                 M_{\star}
                                                                           = -2310000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 46300 N
                                                                           = 200000 \text{ N/mm}^2
          = 138000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 79500 N
                                                                 M_{\star}
                                                                            = -2350000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 47300 N
                                                                            = 200000 \text{ N/mm}^2
          = 99500 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                   \sigma_{\text{IId}}
                                                                                                                                   \sigma_{tresca} =
                                                                                                                                   \sigma_{\text{mises}} =
                                                                                                                                   \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 83600 N
                                                                        M_{\star}
                                                                                    = 2370000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 32400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 107000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 66500 N
                                                                        M_{\star}
                                                                                    = -3040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 41900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 125000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 71800 N
                                                                        M_{\star}
                                                                                    = -2020000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 42900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 133000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 76500 N
                                                                 M_{\star}
                                                                            = -2030000 Nmm
          = 43400 N
                                                                            = 220 \text{ N/mm}^2
                                                                           = 200000 \text{ N/mm}^2
          = 95800 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 92000 N
                                                                  M_{\star}
                                                                             = -2770000 Nmm
T_y \\ M_t
                                                                             = 220 \text{ N/mm}^2
          = 37000 N
                                                                             = 200000 \text{ N/mm}^2
          = 114000 Nmm
                                                                  \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                    \sigma_{\text{IId}}
                                                                                                                                    \sigma_{tresca} =
                                                                                                                                    \sigma_{\text{mises}} =
                                                                                                                                    \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                  \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 64300 N
                                                                        M_{\star}
                                                                                    = -2650000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 38900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 120000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                                    = -1740000 Nmm
Ν
           = 69200 N
                                                                        M_{\star}
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 39400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 128000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 126000 N
                                                                        M_{\star}
                                                                                    = -7830000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 97100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 173000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 135000 N
                                                                        M_{\star}
                                                                                    = -8290000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 69300 N
                                                                                    = 200000 \text{ N/mm}^2
           = 190000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 97400 N
                                                                        M_{\star}
                                                                                    = 8760000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 75000 N
                                                                                    = 200000 \text{ N/mm}^2
           = 206000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 113000 N
                                                                        M_{\star}
                                                                                    = -6820000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 88300 N
                                                                                   = 200000 \text{ N/mm}^2
           = 231000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 122000 N	M,	= 168000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_v	= 93100 N	M_x	= -7250000 Nmm	Ē	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	\mathbf{r}_{u}	=
S_{u}^{n}	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 130000 N
                                                                        M_{\star}
                                                                                    = -7650000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 66400 N
                                                                                   = 200000 \text{ N/mm}^2
           = 184000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 100000 N
                                                                        M_{\star}
                                                                                    = -9040000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 79900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 209000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 109000 N
                                                                        M_{\star}
                                                                                    = -6310000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 84700 N
                                                                                   = 200000 \text{ N/mm}^2
           = 224000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 118000 N	M _t	= 162000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_v	= 89200 N	M_x	= -6690000 Nmm	E	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{\sf d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_c$	₃ =	σ_{ls}	=	r_u	=
$S_{u}^{^{\star}}$	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{vb})$) _d =	σ_{Id}	=	r_{o}	=
J_u	=	$\tau(T_{v})_{s}$, =	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_c$	₁ =	σ_{tresca}	=	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 106000 N
                                                                        M_{\star}
                                                                                    = -3960000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 47500 N
                                                                                    = 200000 \text{ N/mm}^2
           = 150000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 76400 N	M,	= 161000 Nmm		= 220 N/mm ²	G	$= 73000 \text{ N/mm}^2$
T_y	= 49800 N	M_x	= -3950000 Nmm	Ε̈́	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$	=	$ au_{d}$	=	θ_{t}	=
A,	=	$\tau(M_t)_c$	_I =	σ_{ls}	=	\mathbf{r}_{u}	=
Su	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{ld}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	•	
		-					

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 82500 N	M _t	= 172000 Nmm	σ_{a}	$= 220 \text{ N/mm}^2$	G	$= 73000 \text{ N/mm}^2$
T_y	= 51600 N	M_x	= -2680000 Nmm	Ē	$= 200000 \text{ N/mm}^2$		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	Θ_{t}	=
A _*	=	$\tau(M_t)$	_d =	σ_{ls}	=	r_u	=
S_{u}^{n}	=	$\tau(T_{yc})$) =	σ_{IIs}	=	r_{v}	=
C_{w}	=	$\tau(T_{yb})$) _d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)$	₃ =	σ_{IId}	=	J_{p}	=
J_v	=	$\tau(T_y)$	_d =	$\sigma_{ ext{tresca}}$, =	•	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 97500 N
                                                                        M_{\star}
                                                                                    = -3510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 64700 N
                                                                                    = 200000 \text{ N/mm}^2
           = 133000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 103000 N
                                                                        M_{\star}
                                                                                   = -3510000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 44500 N
                                                                                   = 200000 \text{ N/mm}^2
           = 145000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 73600 N
                                                                        M_{\star}
                                                                                    = -3490000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 46400 N
                                                                                    = 200000 \text{ N/mm}^2
           = 156000 Nmm
                                                                         \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 90600 N
                                                                        M_{\star}
                                                                                    = -3170000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
            = 57900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 184000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 94500 N	M _t	= 129000 Nmm	σ_{a}	= 220 N/mm ²	G	= 73000 N/mm ²
T_y	= 60500 N	M_x	= -3120000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_d$	=	Θ_{t}	=
A _*	=	$\tau(M_t)_c$	₁ =	σ_{ls}	=	r_u	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	_d =	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	·	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 99600 N
                                                                        M_{\star}
                                                                                    = -3090000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 41600 N
                                                                                    = 200000 \text{ N/mm}^2
           = 140000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 108000 N
                                                                        M_{\star}
                                                                                    = -9650000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 84300 N
                                                                                   = 200000 \text{ N/mm}^2
           = 252000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 118000 N
                                                                        M_{\star}
                                                                                    = -6810000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 89900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 270000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 127000 N
                                                                        M_{\star}
                                                                                    = 7330000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 95100 N
                                                                                    = 200000 \text{ N/mm}^2
           = 196000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 145000 N
                                                                        M_{\star}
                                                                                    = -8580000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 75200 N
                                                                                   = 200000 \text{ N/mm}^2
           = 225000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 104000 N
                                                                        M_{\star}
                                                                                    = -8900000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 80700 N
                                                                                   = 200000 \text{ N/mm}^2
           = 243000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 114000 N
                                                                        M_{\star}
                                                                                    = -6270000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 85900 N
                                                                                   = 200000 \text{ N/mm}^2
           = 261000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 131000 N
                                                                        M_{\star}
                                                                                    = -7600000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 101000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 199000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                               \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 140000 N
                                                                        M_{\star}
                                                                                    = -7910000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 72000 N
                                                                                   = 200000 \text{ N/mm}^2
           = 217000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 101000 N
                                                                        M_{\star}
                                                                                    = -8190000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 77100 N
                                                                                   = 200000 \text{ N/mm}^2
           = 235000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                \sigma_{\text{IId}}
                                                                                                                                                \sigma_{tresca} =
                                                                                                                                                \sigma_{\text{mises}} =
                                                                                                                                                \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

Ν	= 75700 N	M _t	= 139000 Nmm		= 220 N/mm ²	G	= 73000 N/mm ²
T_y	= 46700 N	M_x	= -2440000 Nmm	E	= 200000 N/mm ²		
y_G	=	J_t	=	σ	=	σ_{mises}	=
u_o	=	σ(N)	=	$ au_{s}$	=	$\sigma_{\text{st.ven}}$	=
V_{o}	=	$\sigma(M_x)$		$ au_{d}$	=	θ_{t}	=
A _*	=	$\tau(M_t)_d$	_l =	σ_{ls}	=	\mathbf{r}_{u}	=
S_u	=	$\tau(T_{yc})$	=	σ_{IIs}	=	r_v	=
C_{w}	=	$\tau(T_{yb})$	d=	σ_{Id}	=	r_{o}	=
J_{u}	=	$\tau(T_y)_s$	=	σ_{IId}	=	J_p	=
J_v	=	$\tau(T_y)_d$	=	σ_{tresca}	=	-	

Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 81100 N
                                                               M_{\star}
                                                                         = -2520000 Nmm
                                                                         = 220 \text{ N/mm}^2
          = 47800 N
                                                                         = 200000 \text{ N/mm}^2
          = 101000 Nmm
                                                               \tau(M_t)_d =
y_{G}
                                                                                                                              \sigma_{\text{IId}}
                                                                                                                              \sigma_{tresca} =
                                                                                                                              \sigma_{\text{mises}} =
                                                                                                                              \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                               \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 86100 N
                                                                 M_{\star}
                                                                           = 2610000 Nmm
                                                                           = 220 \text{ N/mm}^2
          = 33000 N
                                                                           = 200000 \text{ N/mm}^2
          = 110000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
                                                                           = -3170000 Nmm
Ν
          = 67500 N
                                                                 M_{\star}
                                                                           = 220 \text{ N/mm}^2
          = 42200 N
                                                                           = 200000 \text{ N/mm}^2
          = 126000 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 73000 N
                                                                      M_{\star}
                                                                                  = -2130000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
           = 43200 N
                                                                                  = 220 \text{ N/mm}^2
                                                                                 = 200000 \text{ N/mm}^2
           = 135000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
          = 78200 N
                                                                 M_{\star}
                                                                            = -2180000 Nmm
                                                                            = 220 \text{ N/mm}^2
          = 43900 N
                                                                           = 200000 \text{ N/mm}^2
          = 97400 Nmm
                                                                 \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                  \sigma_{\text{IId}}
                                                                                                                                  \sigma_{tresca} =
                                                                                                                                  \sigma_{\text{mises}} =
                                                                                                                                  \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                 \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 93600 N
                                                                        M_{\star}
                                                                                    = -2880000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                    = 220 \text{ N/mm}^2
           = 36900 N
                                                                                    = 200000 \text{ N/mm}^2
           = 116000 Nmm
                                                                        \tau(M_t)_d =
y_{\mathsf{G}}
                                                                                                                                                 \sigma_{\text{IId}}
                                                                                                                                                 \sigma_{tresca} =
                                                                                                                                                 \sigma_{\text{mises}} =
                                                                                                                                                 \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                        \sigma_{\text{ld}}
```


Rappresentare sul foglio, in scala: G, assi u,v, ellisse d'inerzia, C.T.

Rappresentare i cerchi di Mohr

Operare le conclusioni sulla verifica di resistenza in *

Facoltativo: rappresentare l'asse neutro e l'andamento delle tens. normali.

Facoltativo: rappresentare l'andamento delle tens. tangenziali.

```
= 73000 \text{ N/mm}^2
Ν
           = 65200 N
                                                                      M_{\star}
                                                                                  = -2760000 Nmm
\begin{matrix} T_y \\ M_t \end{matrix}
                                                                                  = 220 \text{ N/mm}^2
           = 39200 N
                                                                                 = 200000 \text{ N/mm}^2
           = 122000 Nmm
                                                                      \tau(M_t)_d =
y_{G}
                                                                                                                                             \sigma_{\text{IId}}
                                                                                                                                             \sigma_{tresca} =
                                                                                                                                             \sigma_{\text{mises}} =
                                                                                                                                             \sigma_{\text{st.ven}} =
\sigma(N) =
\sigma(M_x) =
                                                                      \sigma_{\text{Id}}
```