> Power Output and Efficiency:

- Refer to the figure in the next slide
 - riangle The constant offset of $|V_{EB2}|$ is neglected
- Both transistors are not ON over the entire cycle
 - $\diamond Q_1$ takes care of the positive half cycle
 - Q_2 takes care of the negative half cycle
- V_{oM} : *Maximum value of* V_o
 - * Maximum possible swing between $[V_{CC} V_{CEI}(HS)]$ and $[V_{EE} + V_{EC2}(HS)]$
- I_{oM} : *Maximum value of load current* (= V_{oM}/R_L)
- Average rms power P_L delivered to load:

$$P_{L} = \frac{V_{oM}}{\sqrt{2}} \times \frac{I_{oM}}{\sqrt{2}} = \frac{V_{oM}^{2}}{2R_{L}}$$

Aloke Dutta/EE/IIT Kanpur

- Now, we need to calculate the power supplied to the stage by the power supplies
- The average current I_{supply} drawn by Q_1 from V_{CC} (happens only during the positive half cycle):

$$I_{\text{supply}} = \frac{1}{T} \int_{0}^{T} I_{c1}(t) dt = \frac{1}{2\pi} \int_{0}^{\pi} I_{oM} \sin \theta d\theta = \frac{I_{oM}}{\pi} = \frac{V_{oM}}{\pi R_{L}}$$

- The same current will also be pushed by Q_2 to V_{EE} (= $-V_{CC}$) during the negative half cycle
- Thus, over a complete cycle, the average supply power P_{supply} drawn from the power supplies:

$$P_{supply} = 2V_{CC}I_{supply} = 2V_{CC}V_{oM}/(\pi R_L)$$

• Thus, the *power conversion efficiency* (η) :

$$\eta = \frac{P_{L}}{P_{\text{supply}}} = \frac{V_{\text{oM}}^{2}/(2R_{L})}{2V_{\text{CC}}V_{\text{oM}}/(\pi R_{L})} = \frac{\pi V_{\text{oM}}}{4V_{\text{CC}}}$$

- η directly proportional to V_{oM} , and independent of R_L
 - ⇒ Significant advantage
- Also, $V_{oM}(max) \approx V_{CC}$ $\Rightarrow \eta_{max} = \pi/4 = 0.785 \text{ (or 78.5\%)}$
- This value may not be attainable in practice
 - ❖ For $V_{oM} = -V_{CC}$, V_i has to be less than $-V_{CC}$, which may not be practically achievable
 - **This analysis** neglects the standby power (quite small though) \Rightarrow Inclusion of this term will reduce η_{max}