Supervised Machine learning technique using decision trees

Group-5

Name - Kirath Singh Shashwat Arya

Student Number – 9082129405 9082094328

Email id - <u>ksingh52@wisc.edu</u> <u>sarya3@wisc.edu</u>

Abstract

The aim of this project is to conceptualise the decision tree algorithm for supervised machine learning (clustering and regression) as well as understanding different mechanisms to prevent overfitting of the decision tree models.

Learning objectives

- 1. The concept of Gini impurity used in decision tree- Gini impurity is used to measure the degree or probability variable being incorrectly classified when it is randomly chosen .For ex. Gini impurity of value 0 means sample are perfectly homogeneous and all element are similar, whereas, Gini impurity of value 1 means maximal inequality among elements.
- 2. The mathematics behind the classification tree algorithm for supervised machine learning (classification and regression)-the use Gini index as a cost function in order to evaluate split in feature selection for building classification tree.

Background

For a bank to consider whether to offer someone a loan they often go through a sequential list of questions to figure out if it is safe to give said loan to an individual. Those questions can start as simple as what kind of income does the person have? If it is between \$30–70k they move on to the next question. How long have they held their current job? If 1–5 years it leads to their next question of do, they make their credit card payments? If yes, then they offer the Loan and if no they do not. This process at its most basic form is a Decision Tree. A decision tree is a largely used non-parametric effective machine learning modelling technique for regression and classification problems. To find solutions a decision tree makes sequential, hierarchical decision about the outcome's variable based on the predictor data.

Decision tree models where the target variable uses a discrete set of values are classified as Classification Trees. In these trees, each node, or leaf, represent class labels while the branches represent conjunctions of features leading to class labels. A decision tree where the target variable takes a continuous value, usually numbers, are called Regression Trees. The two types are commonly referred to together at CART (Classification and Regression Tree).

Each CART model is a case of a Directed Acyclic Graph. These graphs have nodes representing decision points about the main variable given the predictor and edges are the connections between the nodes. In the Loan scenario above the \$30-\$70k would be an edge and the "Years Present in Job" are nodes.

As the goal of a decision tree is that it makes the optimal choice at the end of each node it needs an algorithm that can do just that. That algorithm is known as Hunt's algorithm, which is both greedy, and recursive. Greedy meaning that at step it makes the most optimal decision and recursive meaning it splits the larger question into smaller questions and resolves them the same way. The decision to split at each node is made according to the metric called **purity**. A node is 100% impure when a node is split evenly 50/50 and 100% pure when all its data belongs to a single class.

In order to optimize our model, we need to reach maximum purity and avoid impurity. To measure this, we use the Gini impurity, which measures how often a randomly chosen element is labelled incorrectly if it was randomly labelled according to distribution. It is calculated by adding the probability, pi, of an item with the label, i, being chosen multiplied by the times the probability (1–pi) of a mistake categorizing the time. Our goal is to have it reach 0 where it will be minimally impure and maximally pure falling into one category. [1]

Predictors			Target					
					7			Decision Tree
Outlook	Temp.	Humidity	Windy	Play Golf			Outlook	
Rainy	Hot	High	Falce	No	Ι			J
Rainy	Hot	High	True	No	I			
Overoast	Hot	High	Falce	Yes	Ī	Sunny	Overcast	Rainy
Sunny	Mild	High	Falce	Yes	I	20,	Overcast	, any
Sunny	Cool	Normal	Falce	Yes	Ι			
Sunny	Cool	Normal	True	No	I			
Overoast	Cool	Normal	True	Yes		Windy	Yes	Humidity
Rainy	Mild	High	Falce	No				
Rainy	Cool	Normal	Falce	Yes	Ι			
Sunny	Mild	Normal	Falce	Yes	I	FALSE	TRUE	High Normal
Rainy	Mild	Normal	True	Yes	I			-
Overoast	Mild	High	True	Yes	I	 _		
Overoast	Hot	Normal	Falce	Yes		Yes	No	No Yes
Sunny	Mild	High	True	No	I			

Consider the above dataset, the decision tree for the data has been constructed on the left of the dataset.

	Camlin Page
	Date
-	Entropy - If the sample is sample the sample is equally the ordropy is 0 if the sample is equally divided then it's entropy is
-	the ordropy is O if the sample is ap
	divided the it's entropy is
	a división true
5	In order to build a deliant
_	We need to calculate it affer of attribute
- a)	In order to build a decision true We need to calculate a types of entropy Entropy wing frequency table of I altribute
-	No of samples = 1
	No. of samples = 1 Samples for which play golf is Yes' = 9
10	611' 6
	Samples for which play golf is "No"=5
	en 000
	Hence E(S) = Z - pi loga Pi, Entropy
15	(2) Entropy = -plog2 p - 4/20929
	Hence, F. (S) = Z - Pi log 2 Pi Boloopy = 0.5 log - p :=1 Entropy = -plog 2 P - 9, log 2 9, Entropy (5, 9) = Entropy (0.36, 0.64)
	(200) (200)
	= -(0.36 log_2(0.36)) - (0.64 log_2(0.64))
	=0.99
20	=0.71
, , \	Entropy Moving frequency table of 2 attributes
b) 8	stropy Msing frequency table of a
	E (7 Y) 5 O() 5 ()
25	$E(T,X) = \sum_{c \in X} P(c) E(c)$
	Playball Rlay Goral
E	(Flay Golf, Outlook) = (Sunny) * (Sunny Yes, durny No)
	(Play Golf, Outlook) = P(Sunny) *E (Sunny Yes, Sunny No)
30	P(Overcast) & B(B) Play Golf Yes, No)
	# 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	P(Rainy) * E(Play Galf /s, No)

Date
= (5/14) * 0.971 + (4/14) * 0.0 + (5/14) * 0.971
=0.693
Information Gain - It is based on the decrease in
entropy after a dataset is split on an attribute
Entropy (Play Golf) = 0.94
Erbropy (Play Golf, Outlook) = 0.693
Information Gain = 0.94-0.693
20.247
We usually shoose attribute suit the largest
information gain as the decision node,
de civide ettre Malaset, repeat the same process

Calculation of Gini index/Gini impurity

Gini index says, if we select two items from a population at random then they must be of same class and probability for this is 1 if population is pure.

- 1. It works with categorical target variable "Success" or "Failure".
- 2. It performs only Binary splits
- 3. Higher the value of Gini higher the homogeneity.
- 4. CART (Classification and Regression Tree) uses Gini method to create binary splits.

Steps to calculate Gini index/impurity

- 1. Calculate Gini for sub-nodes, using formula sum of square of probability for success and failure (p²+q²).
- 2. Calculate Gini for split using weighted Gini score of each node of that split

Example: -

Consider the above graph containing equal number of green and blue points. Let us make a split at x=1.5.

This imperfect split breaks our dataset into these branches: -

Left branch, with 4 blues.

Right branch, with 1 blue and 5 greens. It's obvious that this split is worse, but how can we quantify that?

This is where Gini impurity comes into picture.

Let's calculate the Gini Impurity of our entire dataset. If we randomly pick a datapoint, it's either blue (50%) or green (50%). Now, we randomly classify our datapoint according to the class distribution. Since we have 5 of each colour, we classify it as blue 50% of the time and as green 50% of the time. [3]

What's the probability we classify our datapoint incorrectly?

Event	Probability
Pick Blue, Classify Blue ✓	25%
Pick Blue, Classify Green 💢	25%
Pick Green, Classify Blue 💢	25%
Pick Green, Classify Green ✓	25%

We only classify it incorrectly in 2 of the events above. Thus, our total probability is 25% + 25% = 50%, so the Gini Impurity is $\boxed{0.5}$.

All Demokratics of the Control of th	Gini undex
	8.
5	Idal classes = C
	Probability of pecking a datapoint of class: = p(i)
10	of classi = p(c)
	Gini impurity $(G)^2 \sum_{i=1}^{2} p(i) * (1-p(i))$
	G = p(1) * (1-p(1)) + p(2) * (1-p(2))
15	= 0.5*(1-0.5)+0.5*(1-0.5)
I C	Scanned with CamScanner

	C)	Both A and B			
	D)	It is not a machine learning model			
Answer - Op	tion	В			
Question 2 S	elect	the correct options.			
	A)	The information gain is based on the decrease in entropy after a dataset is split on an attribute.			
	B)	Decision tree is the same as binary tree			
	C)	Entropy is calculated with the help of a frequency table			
	D)	Decision tree is used in clustering			
Answer – Op	tions	s A, C			
Question 3 V	Vhat	is true about Entropy in decision tree model?			
	A)	If the sample is homogenous, the entropy is zero			
	B)	If the sample is homogenous, the entropy is one			
	C)	If the sample is equally divided, the entropy is zero			
	D)	If the sample is equally divided, the entropy is one			
answer – Options A, D					
Question 4 V	Vhat	is a decision node?			
	A)	It is just an ordinary node			
	B)	When a sub-node splits into further sub-nodes, then it is called decision node.			
	C)	The node that makes a decision			
	D)	The last node of the decision tree			
Answer – Op	tion	В			

Page 6 | 12

Now that we have studied about the decision tree model, let us test our knowledge with the help of a short quiz, comprising 5 questions.

Question 1. Decision tree model comes under which type of machine learning.

A) Unsupervised machine learning

B) Supervised machine learning

Quiz

Activity Based on the Lecture

Question 1 – Refer to the plot given below and answer the following questions related to the plot.

- a) Calculate the Gini impurity for the left branch (i.e. only blue points in the plot)
- b) Calculate the Gini impurity for the right branch (i.e. only green points in the plot)
- c) Comment on the Gini impurity values obtained in parts a) and b)

Question 2- Refer to the plot given below and answer the following questions related to the plot.

- a) Calculate the Gini impurity for the left branch (i.e. only blue points in the plot)
- b) Calculate the Gini impurity for the right branch (i.e. only green points in the plot)
- c) Comment on the Gini impurity values obtained in parts a) and b)
- d) Refer to the Gini impurity value for the dataset (before the split) given in the lecture notes and calculate the quality of the split by weighting the impurity of each branch by the total number of elements it has.
- e) Calculate the total amount of impurity removed in the split also known as Gini gain.
- f) Comment on the new Gini value obtained above and compare it with the Gini value calculated before the split.

Activity Solutions

Page No.
Question Date: 1 1201
a): The left branch has only blue points
: The Gini impurity is
Gleft = 1 * (1-1) + 0 * (1-0)
- 0+0 = 0
b) The Right branch has only green points
:. The Gini impurity is
Gright - 0* (1-0) + 1* (1-1) = = 0+0
- O
c) Both the branches (i.e. Left & Right) have
That indicates that own splitting of the dataset was perfect as it divided the dataset into 2 branches with 0 impirite
dataset into 2 branches with 8 impurite
CS Scanned with CamScanner
- Commod With Commod Commod

- [42]	Page No. Date: / /201
Question 2	Date: / /201
a) The Left branch has	only blues
1-lones	
I-tence reviewing the cresi	ults calculated earlier
Gleft = 0	
O .	
b) The Dist brown 2 man 1 1	1 - 0 -
b) The Right branch has I be	me & 5 greens
: 6 rest = 1 * (1-1)	+5*(1-5)
$\frac{1}{6}\operatorname{sight} = 1 * (1-1)$	6 (6)
the second section of section 1956	rec) Vijen outst
= 5	
18	
=0.278	
c) Lonsidering the empurities	of both left &
right Ibranches; it is a	Carly observable that -
i) The Left branch does	a perloct into a
it has a impurit	is classic use data ni
c) Lonsidering the impurities right branches; it is a i) The Left branch does of it has O impurity in	y surgery marga
in the foot right branch	The right split
will have some inaccu	vacy while classifying
ii) However due to the pres in the left granch, will have some inaccus datapoints	
Scanned with CamScanner	

	Page No. (Date: / /201	•
	Question 2	
		1
	Gini impurity for the dataset before the	and the same of th
	Gini impurity for the dataset before the split (given in Lecture notes) = 0.	5
	Gini Left = 0	-0167
	Giri Right = 0.278	
	Points in the Left branch = 4	eleine.
		and the
	Points in the Right branch = 6	
	: Quality of Split = (0.4*0) + (0.6*0.27	8)
	= 0.167	
	a) c: int las The dataset belong	
	e) Gini ampurity for the dataset before the split (given in Lecture notes) = 0.	5
	the split (given in allie will)	
	Gini empurity for the dataset after the split (saludated is part d) = 016.	70.167
	the split (calculated is part a) &	
	to it remarked	
	.: Total amount of impurity removed - 0.5-0.16 Luith the Split = 0.333	7
	duth the Split = 0.9-2.18	
	-0.333	
C	Scanned with CamScanner	
	Coarmed With Carriocallici	

Page No. Date: / /201 Question 2

Citations

- 1. Plapinger Thomas, what is decision tree? 30th Jul. 2017, Accessed on 26th Apr. 2020 . [Online]. Available: https://towardsdatascience.com/what-is-a-decision-tree-22975f00f3e1
- 2. Jain Rishabh, Decision Tree, it begins here, 21st Mar 2017, Accessed on 26th Apr. 2020. [Online]. Available: https://medium.com/@rishabhjain 22692/decision-trees-it-begins-here-93ff54ef134
- 3. Zhou Victor, A simple explanation on Gini index, 29th Mar 2019, Accessed on 26th Apr. 2020. [Online]. Available: https://victorzhou.com/blog/gini-impurity/