BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry

JANUARY, 1944.

I.—ALIPHATIC.

Modern methods of preparative organic chemistry. V. Introduction of fluorine into organic compounds. W. Bockemüller. VI. Use of biochemical oxidations and reductions for preparative purposes. F. G. Fischer. VII. Molecular distillation. F. Wittka (Angew. Chem., 1940, 53, 419—424, 461—471, 557—568).—Reviews.

Isomerisation and alkylation of [saturated] hydrocarbons.—See B., 1943, II, 366.

Catalytic hydrogenation of carbon monoxide. Methane synthesis from water-gas.—See B., 1943, II, 365.

Alkylation of paraffins with olefines. Identification of the paraffins Alkylation of paraffins with oleflnes. Identification of the paraffins formed. A. V. Grosse and V. N. Ipatiev (J. Org. Chem., 1943, 8, 438—447; cf. A., 1935, 1348).—The hexanes formed by the catalytic alkylation of CHMe₃ with C_2H_4 in the presence of BF₃ or AlCl₃ are CHMe₂Pr β (90—70% of the total hexanes), Pr α Pr β (10—20%), and traces of EtBu γ (>3%). With both catalysts the relative amounts are approx. the same. Identification is accomplished by the isolation of (CMe₂Br)₂ and NO₂·CMe₂·CEt(NO₂)₂, m.p. 96°, and by their Raman spectra. The two other hexanes can be present only in negligible amounts if at all. Pr β ₂ probably arises by isomerisation of the orimary EtBu γ but the origin of Pr α Pr β is obscure. H. W. of the primary EtBu but the origin of PraPrs is obscure.

Kinetics of vinyl derivative polymerisation.—See A., 1944, I, 20.

End-group structure of polyvinyl alcohol. C. S. Marvel and G. E. Inskeep (J. Amer. Chem. Soc., 1943, 65, 1710—1714).—Hydrolysis (NaOMe) of polyvinyl acetate and re-esterification (C₅H₅N; Ac₂O; H₂SO₄—AcOH) of the alcohol (I) causes irregular increase or decrease in the degree of polymorius ion. This irregular to the possible in the degree of polymerisation. This is ascribed to the possible existence in (I) of a terminal CHO, which in acid can form acetals with the OH of other mols. of (I), whereas in alkali aldol or reverse aldol reactions can occur.

Geometrical isomerism of cyclic acetal derivatives from polyhydric nitro-alcohols.—See A., 1944, II, 23.

Preparation and purification of nitrated pentaerythritols.-See B., 1943, II, 367.

Isomeric $\alpha\gamma$ - and $\beta\gamma$ -benzylidene-D-arabitols. W. T. Haskins, R. M. Hann, and C. S. Hudson (J. Amer. Chem. Soc., 1943, 65, 1663—1667).—D-Arabitol (I) (1 mol.) and BzCl (2 mols.) in C_5H_5N 1663—1667).—D-Arabitol (I) (1 mol.) and BzCl (2 mols.) in C_5H_5N at 0—5° and then room temp. give the ax-diberzoate (II) (51%), m.p. $131-132^\circ$, $[a]_D^{20}+8\cdot4^\circ$ in C_5H_5N , and thence the ax-diberzoate $\beta\gamma\delta$ -triacetate, m.p. $102-103^\circ$, $[a]_D^{20}+31\cdot0^\circ$ in CHCl₃. The structure of (II) is proved by consumption of 1-94 and 2-02 mols. of Pb(OAc)₄ in AcOH in 30 and 60 min., respectively, with formation of 1 mol. of HCO₂H and 2 mols. of OBz-CH₂-CHO (1-14 mols. isolated as cryst. semicarbazone). With PhCHO and ZnCl₂ at room temp. (II) gives semicarbazone). With PhCHO and ZnCl₂ at room temp. (II) gives $\beta\gamma$ -benzylidene-D-arabitol ax-dibenzoate (III) (73%), m.p. $108-109^\circ$, $[a]_D^{20}+12\cdot6^\circ$ in CHCl₃, and thence the ax-dibenzoate δ -acetate, m.p. $73-75^\circ$, $[a]_D^{20}+2\cdot1^\circ$ in CHCl₃, and adx-tribenzoate (IV), m.p. $101-103^\circ$, $[a]_D^{20}-14\cdot6^\circ$ in CHCl₃. NaOMe-MeOH-CHCl₃ converts (III) into $\beta\gamma$ -benzylidene-D-arabitol (90%), m.p. $81-83^\circ$, $[a]_D^{20}+10\cdot8^\circ$ in EtOH, $+18\cdot1^\circ$ in C_5H_5N , the structure of which (and of its forerunners) is proved by consumption of $1\cdot05$ mol. of aq. NaIO₄ with runners) is proved by consumption of 1.05 mol. of aq. NaIO₄ with formation of CH₂O (0.74 mol. isolated as dimethone derivative) and syrupy 2: 3-benzylidene-D-threose, the structure of which is proved by conversion into 2: 3-isopropylidene-D-threose and thence L-tartaric acid and by hydrogenation (Raney Ni; EtOH; 25°/110 tartaric acid and by hydrogenation (Raney Ni; EtOH; $25^{\circ}/110$ atm.) to syrupy β_{Y} -benzylidene-D-threitol and thence D-threitol, m.p. $88-89^{\circ}$, $[a]_{1}^{0}+4\cdot6^{\circ}$ in $H_{2}O$ (dibenzylidene derivative, $[a]_{D}^{0}-90\cdot2^{\circ}$ in $C_{5}H_{5}N$). Passing HCl into (I) and PhCHO at room temp. gives a_{Y} -dibenzylidene-D-arabitol (V) (84%; conc. HCl gives only 10-11%), m.p. $151-152^{\circ}$, $[a]_{2}^{10}-7\cdot6^{\circ}$ in $C_{5}H_{5}N$ (cf. Fischer, A., 1894, i, 395), converted by $BCl-C_{5}H_{5}N$ into the $\beta\delta z$ -tribenzoate, m.p. $137-138^{\circ}$, $[a]_{D}^{10}-133\cdot8^{\circ}$ in CHCl₃, which with $H_{2}SO_{4}-Ac_{2}O$ -AcOH gives D-arabitol $\beta\delta z$ -tribenzoate a_{Y} -diacetate, m.p. $65-66^{\circ}$, $[a]_{2}^{10}-8\cdot2^{\circ}$ in CHCl₃. $H_{2}SO_{4}-Ac_{2}O$ -AcOH converts (IV) into D-arabitol $a\delta z$ -tribenzoate βy -diacetate, a syrup, $[a]_{D}^{0}+19\cdot1^{\circ}$ in CHCl₃. The structure of (V) is thus proved (cf. Steifer et al., A., 1934, 1364). M.p. are corr. R. S. C. M.p. are corr.

New form of crystalline xylitol. J. F. Carson, S. W. Waisbrot, and F. T. Jones (J. Amer. Chem. Soc., 1943, 65, 1777—1778).—Xylitol is

obtained in a more stable form, m.p. 93—94.5°. Crystallo-optical data are given for this and the form of m.p. 61—61.5° (A., 1942, II,

Two syntheses of polygalitol (αε-anhydro-D-sorbitol). N. K. Richtmyer, C. J. Carr, and C. S. Hudson (J. Amer. Chem. Soc., 1943, 65, 1477—1478).—Polygalitol (I) is a by-product in Zervas' synthesis of styracitol (A., 1930, 1160). Di-β-glucosyl disulphide octaacetate with Raney Ni in EtOH gives slowly the tetra-acctate of (I), also obtained in poor yield similarly from β glucothing the state of (I), also obtained in poor yield similarly from β -glucothiose tetracetate, m.p. 74—75° (lit. 113—114°), $[a]_{20}^{20}$ $-8.3^{\circ} \rightarrow +47.0^{\circ}$ in 12 weeks in 90% EtOH.

Aliphatic β -monoglycerides. B. F. Daubert, H. H. Fricke, and H. E. Longenecker (J. Amer. Chem. Soc., 1943, 65, 1718—1720).— $\alpha\gamma$ -Benzylideneglycerol with RCOCI in C_5H_5N at 20° gives $\alpha\gamma$ benzylideneglyceryl β -hexoate, m.p. 34·1°, and β -octoate, m.p. 35·0°, converted by H_2 -Pd-black-EtOH at 36 lb. into glyceryl β -n-hexoate, m.p. -8° to -10° , and β -n-octoate, m.p. $29\cdot8^\circ$, respectively.

m.p. -8° to -10° , and β -n-octoate, m.p. $29\cdot8^{\circ}$, respectively.

R. S. C.

Series of $\alpha\omega$ -dimercaptans. W. P. Hall and E. E. Reid (J. Amer. Chem. Soc., 1943, 65, 1466—1468).—[CH₂]_n(SH)₂ (A) are prepared from the dibromides by CS(NH₂)₂ and then KOH in boiling H₂O in 80-85% yield; H₂S-NaOEt-EtOH-Et₂O at the b.p. gives 70—85% yields if $n \to 6$, but if n = 4 or 5 yields are low owing to cyclisation. (A) of low mol. wt. are difficult to isolate because they are sol. in H₂O and tend to polymerise and to form S([CH₂]_n·SH)₂. CH₂(SH)₂ could not be prepared. [CH₂]₃(SH)₂, m.p. -79° , b.p. $104\cdot6^{\circ}/100$ mm., $172\cdot9^{\circ}/760$ mm., is obtained in 40-50% yield by K xanthate + KOBz or by NHPh·CS₂M (M = Na or NH₄). The following are described: (A) in which n = 2, m.p. $-41\cdot2^{\circ}$, b.p. 146° , 4, m.p. $-53\cdot9^{\circ}$, b.p. $74\cdot5^{\circ}/10$ mm., $195\cdot6^{\circ}/760$ mm., 5, m.p. $-72\cdot5^{\circ}$, b.p. $90\cdot1^{\circ}/10$ mm., $217\cdot3^{\circ}/760$ mm., and 6, m.p. -21° , b.p. $106^{\circ}/10$ mm., $237\cdot1^{\circ}/760$ mm.; $\alpha\eta$ -dithiol-n-heptane, m.p. $-38\cdot1^{\circ}$, -72.5° , b.p. $90.1^{\circ}/10$ mm., $217.3^{\circ}/760$ mm., and 6, m.p. -21° , b.p. $106^{\circ}/10$ mm., $237.1^{\circ}/760$ mm.; $a\eta$ -dithiol-n-heptane, m.p. -38.1° , b.p. $119.5^{\circ}/10$ mm., $252.2^{\circ}/760$ mm.; $a\theta$ -dithiol-n-octane, m.p. 0.9° , b.p. $132^{\circ}/10$ mm., $269.3^{\circ}/760$ mm.; $a\iota$ -dithiol-n-onane, m.p. -17.5° , b.p. $145^{\circ}/10$ mm., $284^{\circ}/760$ mm.; $a\iota$ -dithiol-n-decane, m.p. 17.8° , b.p. $161^{\circ}/10$ mm., $297.1^{\circ}/760$ mm.; $a\iota$ -dithiol-n-undecane, m.p. -5.4° , b.p. $171.5^{\circ}/10$ mm., $308.8^{\circ}/760$ mm.; $a\iota$ -dithiol-n-decane, m.p. 28.4° , b.p. $181.5^{\circ}/10$ mm., $319.3^{\circ}/760$ mm.; $a\iota$ -dithiol-n-octadecane, m.p. 52° ; $[CH_2]_5(OH)_2$, m.p. -18° ; $Br\cdot[CH_2]_n\cdot Br$ in which n-6, m.p. -2.3° , 7, m.p. -41.7° , 9, m.p. -22.5° , and 11, m.p. -10.6° . d, n, and latent heats of evaporation are also recorded and regularities are noted. Suberic and azelaic acids are prepared by oxidising ricinoleic acid by $HNO_3 + NH_4$ acids are prepared by oxidising ricinoleic acid by HNO₃ + NH₄ vanadate (trace), removing the monobasic acids in steam, esterifying the dibasic acids, and fractionating the esters.

Sulphonium compounds. III. Reaction of organic sulphides with organic sulphates. F. E. Ray and J. L. Farmer (J. Org. Chem., 1943, 8, 391—396; cf. A., 1938, II, 135).—It is shown that rearrangements can occur during the formation of sulphonium sulphates and the mechanism proposed (loc. cit.) for the formation of sulphonium halides has been extended to these compounds. Me2SO4 and Me2S react vigorously at 0°, giving the extremely deliquescent trimethylsulphonium methosulphate, which could not be isolated pure; it is hydrolysed to the sulphate, which forms a clear solution in H2O. Addition of BiCl₃ to this solution leads to tristrimethylsulphonium chloride dibismuth chloride, 3SMe₃Cl,2BiCl₃, decomp. 245°, also obtained from SMe₃Cl and BiCl₃; with a smaller proportion of BiCl₃ the product is trimethylsulphonium chloride bismuth chloride, m.p. 121—123°. A solution of (CH₂Ph)₂S and Me₂SO₄ (1:1) in C₆H₆ is heated for 14 hr. at 100°, then hydrolysed by H₂O and treated with heated for 14 hr. at 100°, then hydrolysed by H₂O and treated with BiCl₃ followed by HCl, thereby giving tribenzyldimethylsulphonium chloride dibismuth chloride, m.p. 140°, decomp. 145°, whereas (CH₂Ph)₂S and Me₂SO₄ (2:1) in hot AcOH afford tribenzylsulphonium sulphate, m.p. 173°, also obtained from (CH₂Ph)₂S, MeOH, and conc. H₂SO₄ in hot AcOH. Me₂S, CH₂Ph·OH, and H₂SO₄ in glacial AcOH at room temp. afford dibenzyldimethylsulphonium chloride bismuth chloride, m.p. 138°, no rearrangement having occurred. A modified method for the determination of Bi is given (see C., 1944, Part 1). Part 1).

Identification of organic acids by partition between ethyl ether and water. O. C. Dermer and V. H. Dermer (J. Amer. Chem. Soc., 1943, 65, 1653—1654).—Many org. acids may be identified by shaking 50 ml. of 0·ln. aq. solution with 50 ml. of Et₂O (saturated with $\rm H_2O$) at 25·0±0·5° and titrating the acid in each layer. Partition coeffs. are recorded for 61 acids. R. S. C.

Methyldiallylcarbinyl acetate. W. G. Young, L. J. Andrews, and S. J. Cristol (J. Amer. Chem. Soc., 1943, 65, 1657).—Adding CH₂·CH·CH₂·MgCl in Et₂O to AcCl in Et₂O gives methyldiallylcarbinyl acetate [β -allyl- Δ 8-pentenyl β -acetate], b.p. 126—129°/192 mm., which is difficult to hydrolyse. R. S. C.

Esters of normal aliphatic alcohols and acids. J. H. Hoback, D. O. Parsons, and J. F. Bartlett (J. Amer. Chem. Soc., 1943, 65, 1606—1607).—The following are prepared from ROH, R'CO₂H, and p-C₆H₄Me·SO₃H in C₆H₆: Pr, m.p. -68·7°, b.p. 85·28°|20 mm., Bu, m.p. -64·3°, b.p. 99·21°|20 mm., amyl, m.p. -47·0°, b.p. 116·6°|20 mm., nonyl, m.p. -22·3°, b.p. 173·3°|20 mm., undecyl, m.p. -10·5°, b.p. 198·4°|20 mm., dodecyl, m.p. -4·6°, b.p. 221·3°|20 mm., tridecyl, m.p. 6·9°, tetradecyl, m.p. 2·0°, and pentadecyl n-hexoate, m.p. 16·3°; Pr, m.p. -63·5°, b.p. 98—100°|20 mm., Bu, m.p. -67·5°, b.p. 112—114°|20 mm., and amyl heptoate, m.p. -49·0°, b.p. 118—119°|20 mm.; Pr, m.p. -45·0°, b.p. 112—113°|20 mm., Bu, m.p. -43·0°, b.p. 121—122°|20 mm., and amyl n-octoate, m.p. -34·5°, b.p. 124—126°|20 mm.; Pr, m.p. -36·0°, b.p. 120—122°|20 mm., Bu, m.p. -38·0°, b.p. 122—124°|20 mm., and amyl n-nonoate, m.p. -27·0°, b.p. 120—132°|20 mm. Temp. are corr. R. S. C.

Macromolecular compounds. CCXLVII. Constitution of highly polymerised synthetic materials. H. Staudinger and H. Warth (J. pr. Chem., 1940, [ii], 155, 261—298).—Interconversions of polyvinyl acetates (I) and alcohols (II) establish the macromol. nature of these compounds. A series of fractions of (I) are obtained nature of these compounds. A series of fractions of (1) are obtained from CH₂:CH·OAc polymerised in the cold and in absence of a catalyst; these are hydrolysed by NaOH-EtOH in dioxan in complete absence of air to (II), which are reacetylated by Ac₂O-C₃H₃N. Mol. wts. of (I) and (II) are determined osmometrically in H₂O and $\eta_{sp.}/c$ is observed for (I) in COMe₂ at 20° and (II) in H₂O at 20°. The K_m const. falls much below the calc. val. and is progressive. Oxidation of (II) with H₂O₂ lends no support to the hypothesis of the formation of branched chains during polymerisation since AcOH and formation of branched chains during polymerisation since AcOH and CO2 but no (CH2 CO2H)2 could be detected. Closely similar observations are made with Me polyacrylate and polymethylacrylate. viscosity law for linear colloids is valid for natural products such as cellulose and its derivatives and the mannans and for relatively simply polymerised synthetic materials; with more highly polymerised compounds divergencies occur as with the polyvinyl sub-Since in these cases the variations in K_m are continuous and there is no evidence that different branching is caused by differing conditions of polymerisation, it is probable that the mols. of polyvinyl compounds are not simply stretched in solution but are bent in a manner which is more pronounced as the complexity of the mol. increases. H.W.

Aluminium stearates. E. Eigenberger and A. Eigenberger-Bittner (Kolloid-Z., 1940, 91, 287—294).—Pptn. from alcoholic K stearate (acid or neutral) with aq. K alum (acidic, basic, or neutral) gives Al stearate of composition $(C_{18}H_{35}O_2)_{10}Al_8O_7,xH_2O$ (x=8-12), which is const. on repptn. It is stable up to 110° , decomp. at 120° . All the stearic acid is replaced by alizarin (I) on boiling a PhMe + EtOH solution of Al stearate with (I), to give (I)₁₀Al₈O₇. Pseudo-Al stearates of higher Al contents are formed by addition of aq. alkaline K alum to neutral or acid K stearate, or of stearic acid to pptd. Al(OH)₃. These stearates show variable composition on repptn., and (I) is adsorbed as well as replacing stearic acid. The pseudo-salts are formed by peptisation of the Al(OH)₃ by stearic acid. I, H, BA.

Preparation of acetoacetic esters of alighatic alcohols.—See B., 1943, II, 367.

p-Nitro-, [a] $_{\rm D}^{20}$ -58°, and p-amino-benzyl ether, [a] $_{\rm D}$ -65°, -40°, of hyaluronic acid.—See A., 1943, III, 925.

Activated oxalic acid.—See A., 1944, I, 21.

Conversion of maleic acid into maleic anhydride. Maleic anhydride purification.—See B., 1943, II, 367.

Preparation of nonane- and decane- $\alpha\omega$ -dicarboxylic acids. W. P. Hall and E. E. Reid (*J. Amer. Chem. Soc.*, 1943, 65, 1468).— μ -Hydroxystearic acid is boiled with conc. HNO₃ + a little NH₄ vanadate; the monobasic acids are removed in steam, the dibasic acids are esterified, and the esters are fractionated and then hydrolysed. Thus is obtained $\sim 40\%$ each of $\rm CO_2H^{\bullet}[CH_2]_n^{\bullet}CO_2H$ (n=11 and 12).

Manufacture of unsaturated aldehydes.—See B., 1943, II, 368.

Oxygenation of crotonaldehyde. L. N. Owen (J.C.S., 1943, 463—468).—CHMe.CH·CHO (I) in AcOH (equal vol.) containing known amounts of Mn(OAc)₂ is shaken in O₂ atm. at room temp.; the optimum amount of Mn(OAc)₂ is 2×10^{-6} mol. per l. The reaction products (except those from highest catalyst concns.) contain peroxides or per-acids. Co(OAc)₂ behaves similarly, but Cu(OAc)₂ has little effect. In absence of solvent Mn is detrimental at all concns.

oxidation being most effective without any catalyst. Treatment of (I) with O_2 at 5 atm. resulted in an earlier separation of solid CHMe:CH·CO₂H (II), yield 70%. The highest yields of (II) are produced by oxygenating pure (I), avoiding undue rise of temp. From the steam-distillate of the reaction product a bis-2: 4-dinitrophenylhydrazone, $C_{16}H_{14}O_8N_8$, m.p. 298°, is obtained, possibly a derivative of COEt·CHO. The part not volatile in steam yields cryst. dl-erythro-a β -dihydroxybutyric acid. Crotyl crotonate, an oil, b.p. ~175°/770 mm., is synthesised by adding CHMe:CH·CH₂Br, b.p. 105—110°, to Ag crotonate in Et₂O. (I) gives a compound, CaCl₂, 2C₄H₆O. H. Sch.

Aldol condensation. Π. Reaction of isobutyraldehyde with its aldol. R. H. Saunders, M. J. Murray, and F. F. Cleveland (J. Amer. Chem. Soc., 1943, 65, 1714—1717; cf. A., 1943, II, 319).— When 10% KOH is added to PrβCHO-Et₂O containing a few drops of NHBu₂ at 5—10° and the product is washed with H₂O, distillation then gives \$80% of the trimeride (I), b.p. 110—111°/8 mm., of PrβCHO; if the crude product is washed with 5% H₂SO₄, catalysis during distillation leads to formation of PrβCHO and OH·CHPrβ-CMe₂·CHO (II). (I) and (II) are differentiated by Raman spectra, (I) having strong lines at 770, 798, and 1722, and (II) at 787 cm.⁻¹ The spectrum of the crude product shows complete absence of (II). The spectrum of (I) shows absence of CO. (I) is also obtained from (II) and PrβCHO at room temp.; with boiling 15% KOH-EtOH it gives OH·CHPrβ-CMe₂·CH₂·OH and PrβCO₂H. (I) is the primary product of "aldolisation"; this accounts for the max. yield of (II) being 66·7%. It is probably 4-hydroxy-5: p-dimethyl-2: 6-diisopropyl-1: 3-dioxan and not PrβCO₂·CH₂·CMe₂·CHPrβ-OH as previously supposed. R. S. C.

Termolecular acetone peroxide in isopropyl ether. F. Acree, jun., and H. L. Haller (J. Amer. Chem. Soc., 1943, 65, 1652).—Distilling old $\text{Pr}^{\beta}_{2}\text{O}$ in air gives, as residue, the trimeride, m.p. 98°, of acetone peroxide. R. S. C.

Bββ-Trifluoro-ethylamine and -diazoethane. H. Gilman and R. G. Jones (J. Amer. Chem. Soc., 1943, 65, 1458—1460).— CF₃·CO·NH₂ (prep. in 99% yield from CF₃·CO·Et by dry NH₃-Et₊O at 60—70°) with P₂O₅ at 145—150° gives CF₃·CN (74%), b.p. $-63\cdot9^\circ/743$ mm., hydrogenated (PtO₂; Et₂O; 55—60°/1500 lb.) to βββ-trifluoroethylamine (I) (50—80%), b.p. 37—37·3°/737 mm. (I) is a very weak base; its hydrochloride, sublimes at >125°, reacts acid to Me-red. With aq. HNO₂-Et₂O, (I) yields βββ-trifluorodiazoethane (65—67%), yellow, which is stable in Et₂O for 6 weeks at room temp., is decomposed by acids, and with I-Et₂O gives slowly aa-di-todo-βββ-trifluoroethane, m.p. −15° to −13·5°, b.p. 54°/39 mm. CF₃·CH₂I is also prepared (no details). R. S. C.

Contiguously substituted aminodihydroxyalkanes. I. Contiguously substituted aminodihydroxyalkanes. I. Syntheses of α-amino-βγ-dihydroxy-n-hexane and γ-amino-αβ-dihydroxy-n-hexane and γ-amino-αβ-dihydroxy-n-hexane. C. Niemann, A. A. Benson, and J. F. Mead (J. Org. Chem., 1943, 8, 397—404).—Gradual addition of CH₂:CH-CHO to MgPr^αBr in Et₂O gives OH-CHPr^α-CH:CH₂, b.p. 90—94°/150 mm., converted by BzO₂H in CHCl₃ at 25° for 2 days into αβ-expoxy-γ-hydroxy-n-hexane, b.p. 87—90°/25 mm., which with conc. aq. NH₃ at 25° for 15 hr. affords α-amino-βγ-dihydroxy-n-hexane (I), b.p. 91°/0-06 mm., np. 53° Ovidation of (I) by NaIO, or Ph(OAc), follows the normal m.p. 53°. Oxidation of (I) by NaIO₄ or Pb(OAc)₄ follows the normal course but the yield of CH₂O is not even approx. quant. Equimol. amounts of (I), CH₂Ph-O·COCl, and NaOH yield a-carbobenzyloxy-amino-βγ-dihydroxy-n-hexane (II), m.p. 114—115°. (I) and Ac₂O in dry C₂H₃N at 25° afford a-acetamido-βγ-diacetoxy-n-hexane, m.p. 95.8—96.5°, hydrolysed by Ba(OMe), in dry MeOH at 25° to α-acciamido-βγ-dihydroxy-n-hexane (III), b.p. 140—145°/0·11 mm. Oxidation of (II) or (III) requires 1 mol. of NaIO₄ or Pb(OAc)₄. The transformations OH-CHMe-CO₂Me \rightarrow CHMe-Cl-CO₂Me \rightarrow OMe-CHMe-CO₂Me \rightarrow OMe-CHMe-COcl are described in detail; the last substance could not be converted into OMe-CHMe-COPra (IV) by ZnPraI. OMe-CHMe-CN, obtained from CHMeCl-OMe and dry CuCN, is transformed by MgPr^aBr into (IV), b.p. 92—93°/100 mm. (semicarbazone, m.p. 168·5—170°), reduced by HCO₂NH₄ and subsequently hydrolysed to γ-amino-β-methoxy-n-hexane, b.p. 95—98°/100 mm., which is converted by boiling HBr (d 1·5) into γ-amino-β-hydroxy-n-hexane, b.p. 95°/20 mm. 207·2°). (di-3:5-dinitrobenzoyl derivative, m.p. 207.2°). Passage of OEt-[CH₂], OH vapour over Cu at 300—325° gives OEt-CH₂ CHO, b.p. 104—106°/747 mm., converted by HCl in abs. EtOH at 0° into OEt-CHCl·CH₂·OEt, b.p. 68-73°/30 mm. This is transformed by Hg(CN)₂ in boiling light petroleum (b.p. 60—70°) into αβ-diethoxypropionitrile, b.p. 96—98°/34 mm., which is converted by MgPraBr in dry Et.O into αβ-diethoxy-n-hexan-y-one, b.p. 114—116°/30 mm., hydrogenated at 150°/150 atm. in NH₃-MeOH containing Raney Nilo acquiring aβ-diethoxy-n-hexane b.p. 85—87°/6 mm. 93—95°/10 to γ-amino-aβ-diethoxy-n-hexane, b.p. 85—87°/6 mm., 93—95°/10 mm., which is hydroxyed by HBr (d 1.5) to γ-amino-aβ-dihydroxy-nhexane (V), b.p. 92—95°/0·1 mm.; the carbobenzyloxy-derivative, m.p. 109—110°, is oxidised in the usual manner by NaIO₄ or Pb(OAc)₄. It thus appears that the N-acyl derivatives of (I) and (V) have normal structures and that the stoicheiometry of the oxidation of these compounds by NaIO₄ and Pb(OAc)₄ is normal and predictable. Additional and substantial evidence in favour of the β-amino-ay-dihydroxy-n-octadecane structure for dihydrosphingosine is thus provided although other structures are not definitely excluded.

Derivatives of N-carboxy-a-amino-acid esters. M. Frankel and E. Katchalski (J. Amer. Chem. Soc., 1943, 65, 1670—1674).— Passing CO2 into NH2·CHR·CO2R' in dry Et2O at <0° gives salts, CO2R'·CHR·NH·CO2NH3·CHR·CO2R' (cf. A., 1940, II, 7). Thus are prepared salts in which (a) R = H, R' = Me (I) or Et (II), (b) R = Me, R' = Et, (c) R = Ph, R' = Et, and (d) R = Bu, R' = Et. The salts are stable at 0° (dry) or in CO2 at room temp., in air at room temp. absorb H2O and evolve CO2, dissolve unchanged in H2O at 0° but with liberation of CO2 at < room temp., and in conc. acid liberate CO2 quantitatively. Structures are proved as follows. With an aq. suspension of Ca(OH)2, (I) gives Siegfried's salt, CH2·CO2Ca (96%) (A., 1906, i, 324). CH2·N2 in Et2O at 0° converts (II) into NH2·CH2·CO2Et and CO2Me·NH·CH2·CO2Et, b.p. 127—129°/13 mm.; (I) gives similarly NH2·CH2·CO2Me and N-carbonethoxyglycine Me ester, b.p. 130°/20 mm., hydrolysed by conc. H2SO4 at room temp. to CO2Me·NH·CH2·CO2H, m.p. 95°. CH2·N2-Et2O similarly converts NH4·OBz into MeOBz and EtCO2NH4 into EtCO2Me.

\$\(\cdot \

Interaction of amides with amines. General method of acylation. A. Galat and (Miss) G. Elion (J. Amer. Chem. Soc., 1943, 65, 1566—1567).—The reaction, NH₂R,HCl + R'CO·NH₂ \rightarrow NH₄Cl + R'CO·NHR, is effected in 70—100% yield at 60°—the b.p. Examples are R = Me, Et, Pr, CH₂·CO₂H, Ph, C₆H₄·OH, tolyl, CH₂Ph, Ph-[CH₂]₂, and C₁₀H₇ (also benzidine), and R' = H, Me, Et, Pr^{\beta}, or Ph; CO(NH₂)₂ may be used at 250°. Hydrazines, but not guanidines, may be thus acylated. R. S. C.

Kinetics and mechanism of the racemisation of optically active cobalt trisdiguanide complex.—See A., 1944, I, 19.

Pilzcerebrin [cerebrin from lower plants]. II. F. Reindel, A. Weickmann, (Miss) S. Picard, K. Luber, and P. Turula (Annalen, 1940, 544, 116—137).—Cerebrin (I), new formula, C₄₆H₉₃O₅N, m.p. 1940, 544, 116—137).—Cerebrin (I), new formula, $C_{46}H_{93}O_5N$, m.p. 143—143·5°, is obtained pure only by way of its tetra-acetate, m.p. 67—68°, which is hydrolysed by KOH-MeOH at 50° (cf. A., 1930, 920). Anhydrocerebrin (II), $C_{46}H_{91}O_4N$, m.p. 116·5°, $[a]_D + 15·6°$ in C_5H_3N , best obtained from (I) (1 g.) by 0·06 g. of conc. H_2SO_4 in boiling MeOH (100 c.c.), is hydrolysed by conc. H_2SO_4 (3 g.) in boiling PraOH (30 c.c.) to $C_{24}H_{49}$ ·CH(OH)·CO₂H (III), m.p. 103—105°, and a base (IV), $C_{20}H_{41}O_2N$, m.p. 87—89°, b.p. 245°/12 mm., $[a]_D^{12}$ +31° in CHCl₃. (IV) is unaffected by H_2SO_4 -MeOH and resists hydrogenation, but, when heated at 90 . in boiling $C_5H_{1.5}$, or rapidly hydrogenation, but, when heated at 90 , in boiling C_6H_{14} , or rapidly in NH_3 -EtOH, gives an isomeride (V), m.p. $100-101\cdot5^\circ$, $[\alpha]^{27}+30^\circ$ in CHCl₃. BzCl-C₅H₅N converts (\overrightarrow{IV}) or (\overrightarrow{V}) into the same Bz_2 derivative, m.p. 117·4—118°, hydrolysed by alcoholic alkali to a Bz_1 derivative, m.p. 105—106·5°, and thence (Pr^aOH -KOP r^a ; with B₂ derivative, m.p. 105—106·5°, and thence (Pr^aOH-KOPr^a; with difficulty) to impure (IV). A mono-, m.p. 79—80°, and di-acetate, m.p. 69—71°, and picrolonate, m.p. 161—162°, of (IV) are also prepared. With KMnO₄-COMe₂, (IV) gives an acid (VI), $C_{15}H_{31}$ ·CO₂H, m.p. 55·5—56° (anilide, m.p. 86·5—87°). Hydrolysis (HCl-MeOH; loc. cit.) of (I) gives (III), (IV), and a base (VII), now formulated as $C_{20}H_{43}O_3N$; a product (VIII), m.p. 108—109·5°, [a]_p +15·5° in CHCl₂ (cf. loc. cit.), is $C_{43}H_{90}O_6N_2$, formed by loss of H_2O from 2 mols. of (VII) and 1 mol. of COMe. and readily hydrolysed thereinto. With BzCl-C₅H₅N, (VIII) gives an oily product, converted by hot KOH-MeOH-H₂O into the N-Bz derivative, m.p. 130—131°, [a]₁₈ +5·0° in C_5H_5N [with CrO₃-AcOH or Pb(OAc)₄ gives NH₂Bz], of (VII). Pb(OAc)₄ converts (I) in AcOH + a trace of Ac₂O into the amide, m.p. 122·5—124°, of (III), an aldehyde (IX), probably $C_{15}H_{21}$ ·CHO, m.p. 28—32°, b.p. 155—165°/11 mm. [polymer (X), m.p. 63—64·5°; semicarbazone, m.p. 104—104·5°, hydrolysed by C_6H_4 (CO)₂O to (X); thiosemicarbazone, m.p. 81—83°; 2: 4-dinitro-, m.p. 93·5—95° (corr.), and p-nitro-phenylhydrazone, m.p. 80—82°], and a substance (XI), $C_4H_8O_3$ [di-p-nitro-, m.p. 281—283° (decomp.), and bis-2: 4-dinitro-phenylosazone, m.p. 29b—297° (decomp.)]. (XI) is not formed directly by Pb(OAc)₄ in the reaction products therefore are 290—297° (decomp.)]. (XI) is not formed directly by Pb(OAc)₄ in C₄H₅, but is obtained when the reaction products therefrom are heated in HCl-MeOH or 50% AcOH. (III) has [a]_D +2·1° in c₅H₅N, gives an acetate, m.p. 74—75°, and anilide, m.p. 88—89°, and with Pb(OAc)₄ in AcOH gives (?) HCO₂H and an aldehyde, m.p. 72—78° (semicarharone m.p. 115—115.5°: p-nitrophenythydrazone. 72—76° (semicarbazone, m.p. 115—115.5°; p-nitrophenylhydrazone, m.p. 104—105°), oxidised by CrO_3 —AcOH to the acid, $C_{25}H_{50}O_2$, m.p. 81°, which is also obtained similarly from (III). M.p. show that 81°, which is also obtained similarly from (III). M.p. 181°, which is also obtained similarly from (III). M.p. 181°, who what (III), (IX), etc. contain a branched chain. For comparison, n-palmitaldehyde-2: 4-dinitro-, m.p. 105°-107° (corr.), margaraldehyde-p-nitro-, m.p. 96·5-97·5°, and -2: 4-dinitro-phenylhydrazone, m.p. 102, 108°-8° (corr.) m.p. 103-105° (corr.), and -semicarbazone, m.p. 107-108.5°, are prepared. (XI) gives no colour with Schiff's reagent; its structure is uncertain but uncertain but is not OH-CH₂ CMe(OH)-CHO (no osazone) or OH-CHMe-CH(OH)-CHO [di-p-nitrophenylosazone, m.p. 304° (de-comp.) comp.)]. Acid hydrolysis of (I) leads to (III) + (VII) or, by way

of (II), to (III) + (IV). Structures for (I) etc. are suggested. Ruppol's cerebrin, formulated as $C_{46}H_{91}O_4N$ (A., 1937, III, 484), is really (I). R. S. C.

Hydrogenation of aliphatic dinitriles. See B., 1943, II, 368.

Catalytic hydrogenation of adipodinitriles to produce hexamethylene-diamines.—See B., 1943, II, 368.

Preparation of diazomethane. M. D. Owen (Current Sci., 1943, 12, 228).—NH₂·CO·NMeAc, m.p. 179—180°, obtained by slowly adding 10% NaOH to NH₂Ac and Br at 0° and then at 100°, is hydrolysed (boiling 3% HCl) and then converted by NaNO₂ into NH₂·CO·NMe·NO, which can be kept in quantity at 0°. It is converted by aq. KOH in Et₂O into CH₂N₂.

J. F. M.

II.—SUGARS AND GLUCOSIDES.

Chemical constitution and the tanning effect. II. Pentagallates of glucose and mannose. A. Russell, W. G. Tebbens, and W. F. Arey (J. Amer. Chem. Soc., 1943, 65, 1472—1474; cf. A., 1943, II, 61).— β -d-Glucose 1:2:3:4:6-pentagallate (I), softens 133°, sinters 143°, $[a]_{\rm l}^3+25\cdot33^\circ$ in EtOH, is obtained from the acetate by NaOH-NaOAc in aq. COMe₂-N₂. d-Mannose and 3:4:5:1-(OAc)₃C₆H₂·COCl in CHCl₃-quinoline at room temp. give d-mannose penta(triacetylgallate), sinters 121°, $[a]_{\rm l}^5-55\cdot5^\circ$ in CHCl₃, and thence, as above, d-mannose pentagallate (II), sinters 161°, $[a]_{\rm l}^{23}-72\cdot38^\circ$ in EtOAc. Similarly are obtained d-glucose Et₂ mercaptal penta(triacetylgallate), sinters 82°, $[a]_{\rm l}^{22}+18\cdot75^\circ$ in CHCl₃, and pentagallate (III), sinters 167°, $[a]_{\rm l}^{3}+11\cdot13^\circ$ in EtOAc, and thence (dil. H₂SO₄) aldehydo-d-glucose pentagallate (IV), sinters 113°, $[a]_{\rm l}^{0}+10\cdot13^\circ$ in EtOAc. (I)—(IV) make as good leather as does gallotannin. R. S. C.

Azoyl derivatives of sugars. [Their] separation by chromatographic adsorption. II. G. H. Coleman and C. M. McCloskey (J. Amer. Chem. Soc., 1943, 65, 1588—1594; cf. A., 1942, II, 395).—Some esters of sugars and ArN₂·C₆H₄·CO₄H etc. are separated by chromatography on magnesite, dicalite, or SiO₂ gel. It is usually best to separate mixtures first into groups (mono-, di-saccharides etc.) and then to treat these groups on fresh columns. The following are prepared by RCOCl in C₆H₆N at 0°, room temp., or 90°: a., m.p. 265—266°, [a] +223°, and β-D-glucose (II), m.p. 252—253°, [a] —50°, a. (II), m.p. 275—276°, [a] +436°, and β-D-galactose (III), m.p. 255—255·5°, [a] +170°, penta-p-benzeneazobenzoate; β-D-fructose, m.p. 124·5—125·5°, [a] +440°, a-D-xylose, m.p. 156—157°, [a] +244°, β-D- (IV), m.p. 261·5—262°, [a] —755°, and β-L-arabinose (V), m.p. 262—262·5°, [a] +755°, tetra-p-benzeneazobenzoate; sucrose, m.p. 125—125·5°, [a] +35°, aa- (VI), m.p. 134—134·5°, [a] +210°, and ββ-trehalose (VII), m.p. 328—329°, [a] +17°, a., sinters 265°, m.p. 287—288°, [a] +320°, and β-lactose, m.p. 199—204° [a] +167°, a-gentiobiose, m.p. 232—233°, [a] +62°, β-maltose, m.p. 274—275°, [a] +2°, β-cellobiose (VIII), sinters 268°, m.p. 272—273° [a] +105°, β-melibiose, m.p. 279·5—280°, [a] +172°, melezitose, sinters 127—130°, [a] +188°, and raffinose, m.p. 143—145°, [a] +146°, octatoric (*hepta-)p-benzeneazobate ([a] above are [a]₆₄₃₈; diisopropylideneglucose, m.p. 111—112°, [a]₆₄₃₈² = 81·5°, regalactose, m.p. 124·5—126°, [a]₆₄₃₈² +19°; isopropylideneglucose tri-p-benzeneazobenzoate, m.p. 282–284°, [a]₆₄₃₈² = -57°, and -mannose p-benzeneazobenzoate, m.p. 190·5—191°, [a]₆₄₃₈² +74°, and -cellobioside tetra-p-benzeneazobenzoate, m.p. 282–284°, [a]₆₄₃₈² = -63°, and β-cellobiose hepta-acetate p-benzeneazobenzoate, m.p. 282–284°, [a]₆₄₃₈² = -63°, and β-cellobiose hepta-acetate p-benzeneazobenzoate (X), m.p. 282—2284°, [a]₆₄₃₈² = -63°, and β-cellobiose hepta-acetate p-benzeneazobenzoate (X), m.p. 282—284°, [

Action of diazomethane on acyclic sugar derivatives. V. Halogen derivatives. M. L. Wolfrom and R. L. Brown (J. Amer. Chem. Soc., 1943, 65, 1516—1521; cf. A., 1943, II, 294).—1-Diazo-Ideoxy-(I) with HCl-COMe₂—Et₂O gives 1-chloro-keto-D-galaheptulose pentaacetate, forms, m.p. 89—90° and 101—102°, $[a]_D^{24}$ —32·8°, and thence (NaI-COMe₂) the 1-I-compound (II), m.p. 144—146°, $[a]_D^{26}$ —44·8°. With the acetate of the appropriate acid in boiling C₈H₈, (I) gives keto-D-galaheptulose 2:3:4:5:6-penta-acetate 1-(D-galactonate penta-acetate), m.p. 165—167° (soft glass), 171·5—172·5° (Pyrex glass), $[a]_D^{31}$ +13·0°, 1-(D-gluconate penta-acetate), m.p. 112—113°, $[a]_D$ +22·0°, and 1-(D-arabonate tetra-acetate), m.p. 153—155·5 (soft glass), 155·5—156·5° (Pyrex), $[a]_D^{32}$ +22·5°. With I in EtOH in light, (I) gives 1:1-di-iodoketo-D-galaheptulose penta-acetate (III), m.p. 160—163°, $[a]^{19}$ +13°. 47% HI reduces (I), (II), or (III) exothermally to 1-deoxyketo-D-galaheptulose penta-acetate, forms, m.p. 65·5—67·5° and 78—79°, $[a]_D^{23}$ —14° (X-ray diagrams given; oxime,

m.p. $125 \cdot 5 - 126 \cdot 5^{\circ}$, $[a]_D^{28} + 28^{\circ}$). 1-Iodoketo-D-glucoheptulose pentaacetate, m.p. $79 - 81^{\circ}$, $[a]_D^{25} - 9 \cdot 9^{\circ}$, and -fructose tetra-acetate, m.p. $55 - 56^{\circ}$, $[a]_D^{21 \cdot 5} + 63^{\circ}$, 1-deoxyketo-D-fructose tetra-acetate, m.p. $81 - 83^{\circ}$ (lit. $77 - 78^{\circ}$), $[a]_D^{20} + 56^{\circ}$, and 1-bromoketo-D-galaheptulose penta-acetate, m.p. $124 - 125^{\circ}$, $[a]_D^{23} - 36^{\circ}$, are similarly prepared. COPhMe is obtained from COPh-CHN₂ by 47% HI. The following revised data are recorded (cf. A., 1942, II, 395): 1-chloro-, $[a]_D^{23} - 2 \cdot 8^{\circ}$, and 1-bromo-keto-D-glucoheptulose penta-acetate, m.p. $87 - 88^{\circ}$, $[a]_D^{23} - 5 \cdot 5^{\circ}$, and 1-bromoketo-D-fructose tetra-acetate, m.p. $67 - 68^{\circ}$, $[a]_D^{21} + 65^{\circ}$. [a] are in CHCl₃. R. S. C.

Lead tetra-acetate oxidations in the sugar group. IV. Rates of oxidation of trehalose, β -glucosan, α -methyl-\$L\$-sorbopyranoside, polygalitol, and styracitol in glacial acetic acid. R. C. Hockett, (Miss) M. T. Dienes, and H. E. Ramsden (\$J\$. Amer. Chem. Soc., 1943, 65, 1474—1477; cf. A., 1943, II, 219).—The following rules are postulated: (\$a\$) \$\leq 2\$ Pb(OAc)_4\$ are consumed by a vicinal triol; consumption after 2 mols. is often rapid owing to side-reactions, e.g., HCO_2H; (\$b\$) cis-groups are most rapidly oxidised; (\$c\$) OH·CHR·CHO is attacked, but often slowly; (\$d\$) OH·CHR·CHO is more rapidly oxidised if a \$\gamma\$- or \$\delta\$-OH permits formation of a hemiacetal which simulates an \$a\beta\$-glycol. The oxidation curves of \$\beta\$-methyl-\$D\$-xyloand-gluco-pyranoside, \$\beta\$-glucosan, trehalose, \$a\$-methyl-\$L\$-sorbose and \$-D\$-gluco-pyranoside resemble each other, but differ from those of \$a\$-methyl-\$D\$-mannopyranoside and styracitol (\$I\$), which in turn are similar; that of polygalitol is intermediate between the two types. The evidence favours the 1: 5-mannitan structure for (\$I\$).

Preparation of \$\beta\$-primaverose and \$\beta\$-vicianose hepta-acetates. C. M. McLoskey and G. H. Coleman (\$J\$. Amer. Chem. Soc., 1943, 65, 1778—1780).—Passing HBr into xylose tetra-acetate in Ac_2O and keeping at room temp. gives \$\beta\$-D-xylosyl bromide 2:3:4-triacetate (88—90%), m.p. 98—99°, which with \$\beta\$-D-glucose 1:2:3:4-tetra-acetate, Ag_3O, "Drierite," and I in CHCl_3 gives 57% of \$\beta\$-primaver-ose hepta-acetate, m.p. 216—217° (corr.), [a]_{D}^{24} - 26·2° in CHCl_3, \$\beta\$-L-Arabinosyl bromide triacetate gives similarly \$\beta\$-vicianose hepta-acetate (34%), m.p. 158—159° (corr.), [a]_{D}^{24} + 9·4° in CHCl_3, and a substance, m.p. 144—149°.

Emulsin. XLIII. Fermentative fission of diglucosides of proto-catechualdehyde. B. Helferich and R. Griebel (Annalen, 1940, 544, 191—205; cf. A., 1940, 11, 67).—Diglucosides derived from protocatechualdehyde 4-glucoside (I) and 4-β-d-galactoside (II) (see below) are relatively very slowly hydrolysed by emulsin from almonds or lucerne. The tetra-acetate of (I) with acetobromossorhamnose and NaOH in H₂O-COMe₂ at room temp. gives protocatechualdehyde 4-β-d-glucoside 3-β-d-isorhamnoside hepta-acetate (~29%), m.p. 195—196·5°, [a]¹⁹—56·2° in CHCl₃, converted by boiling NaOMe-MeOH into protocatechualdehyde 4-β-d-glucoside 3-β-d-isorhamnoside (~92%), +EtOH and anhyd., m.p. 158—160°, [a]¹⁸ (anhyd.) – 115·3° in H₂O. Similarly are prepared the 4-β-d-glucoside tetra-acetate 3-β-d-glucoside 2': 6'-diacetate 3'-methanesulphonate (~24%), m.p. 128·5—129°, [a]¹⁸ –80·4° in CHCl₃ (converted by Ac₂O-C₅H₅N into the hepta-acetate, m.p. 186°, [a]¹⁸ –74·9° in CHCl₃), and thence (1% MeOH-NaOMe in CHCl₃ at -20°; 90 min.) the 4-β-d-glucoside 3-β-d-glucoside 2'-acetate 3'-methanesulphonate (~60%), +4H₂O and anhyd., m.p. 89°, [a]¹⁸ –73·1° in H₂O (complete deacetylation could not be achieved). 3:4:1-OAc·C₆H₃(OH)·CHO, acetobromogalactose (III), and NaOH in aq. COMe, at room temp. give protocatechualde-191-205; cf. A., 1940, 11, 67).—Diglucosides derived from protocat-(III), and NaOH in aq. COMe, at room temp, give protocatechualdehyde 3-acetate 4- β -d-galactoside tetra-acetate (~33%), m.p. 141-5-142-5°, $[\alpha]_D^{21} - 2$ -96° in CHCl₃, and thence (NaOH-H₂O-MeOH-N₂ at room temp.) (II) (~58%), m.p. 178-5°, $[\alpha]_D^{20} - 71$ -4° in H₂O, $[\alpha]^{19} - 122$ ° in 0-5N-NaOH. 3:4:1-(OH)₂C₆H₃-CHO with (III) and NaOH in aq. COMe₂ at room temp. gives, according to the relative amounts, the 4-β-d-galactoside tetra-acetate (IV), a syrup [hydrolysed to (II)], or the 3: 4-di-β-galactoside octa-acetate ($\sim 51\%$), m.p. 149·5°, [a]_D¹⁰ $-37\cdot3°$ in CHCl₃, and thence (NaOMe-MeOH) the 3: 4-di-β-galactoside ($\sim 61\%$), m.p. 239-241°, [a]_D¹⁰ $-85\cdot6°$ in H₂O. (IV) yields, as above, protocatechualdehyde 4-β-d-galactoside tetra-acetate 3-β-d-glucoside triacetate -methanesulphonate ($\sim 61\%$), m.p. 187·5-188°, [a]_D²¹ $-43\cdot4°$ in CHCl₃, and thence (NaOMe-MeOH-CHCl₃) the 4-β-d-galactoside 3-β-d-glucoside 6"-methanesulphonate ($\sim 82\%$), +H₃O and anhyd., m.p. 146-148°, [a]_D²⁰ (anhyd.) $-99\cdot2°$ in H₂O. Similarly are prepared protocatechualdehyde 4-β-d-lactoside, m.p. 215-220° (decomp.), [a]_D²¹ $-62\cdot0°$ in H₂O, [a]_D²² -105° in 0·5n-NaOH [hepta-acetate (V), m.p. 203-207° (decomp.), [a]_D²² $-29\cdot8°$ in CHCl₂], 4-β-d-lactoside 3-β-d-glucoside, +H₂O and anhyd., m.p. 235-237°, [a]_D²⁰ (anhyd.) $-81\cdot7°$ in H₂O (undeca-acetate, amorphous, softens 126-129°, [a]_D²⁰ $-55\cdot4°$ in CHCl₃), and 3: 4-di-β-d-lactoside, hygroscopic, m.p. ~ 200 (decomp.), [a]_D²⁰ $-50\cdot1°$ in H₂O (tetradeca-acetate, amorphous, softens 126-129°, [a]_D²⁰ $-52\cdot9°$ in CHCl₃). Vanillin yields similarly vanillin 3-β-d-lactoside, m.p. 228° (decomp.), [a]_D²⁰ $-38\cdot9°$ in CHCl₃, also obtained from (V) (proof of structure) by CH₂N₂ or Me₂SO₄). PhOH gives Ph β-d-lactoside, m.p. 190·5 $-191\cdot5°$, [a]_D³⁰ $-36\cdot3°$ in H₂O (hepta-acetate, m.p. 161·5°, [a]_D²⁰ $-23\cdot2°$ in CHCl₃). M.p. are corr. NaOH in aq. COMe, at room temp. gives, according to the relative M.p. are corr.

Acid hydrolysis of dl-alkyl- β -d-glucosides.—See A., 1944, I, 19.

Fructose anhydrides. XXIII. Phlein. Ring-structure of polyfructosans. XXIV. Group of natural polyfructosans. H. H. Schlubach and O. K. Sinh (Annalen, 1940, 544, 101—111, 111—116; cf. A., 1940, II, 119).—XXIII. Phlein (I) (prep. described), $[a]_{\rm D}$ —50-0° in H₂O, has mol. wt. (cryoscopic in H₂O) 2480—2615, has a reduction val. (Bertrand) 0·27%, undergoes 50% hydrolysis in N-H₂SO₄ at 20° in 235 min., and with Ac₂O in warm aq. C₅H₅N gives a triacetate, m.p. 233°, $[a]_{\rm D}$ +20·7° in CHCl₃, which in dil. aq. KOH (not by Zemplen's method) regenerates (I) and with Me₂SO₄-30% aq. NaOH-N₂ at 55° gives a Me_3 ether (OMe 45·4%), m.p. 172°, $[a]_0^{\rm D}$ 0—57·7° in CHCl₃, mol. wt. (cryoscopic in C₆H₈) 3280, hydrolysed to 1:3:4-trimethylfructose containing 1·62% of dimethylfructose as sole impurity. (I) has thus a cyclic structure containing 15—16 fructose units united at positions 2 and 6. Inulin, a-dextrin, and glycogen also contain closed rings. "End-group" determinations are of no val. for determination of mol. wts.

XXIV. Natural polyfructosans fall into groups. The acetates of lævan, (I), poain, and secalin are dextrorotatory; the differences between [a] of these acetates and the respective fructosans decreases in the same order as the yield of 1:3:4-trimethylfructose, i.e., with increased chain-branching; with increasing chain-branching the mol. wt. decreases and the rate of hydrolysis increases (readier fission of side-chains). The same regularities hold for inulin, asparagosin, sinistrin, and graminin, which yield 3:4:6-trimethyl-fructose, except that the differences between [a] of the acetates and fructosans increase with increased branching. The purity of asphodelin is open to doubt. Triticin is abnormal and probably belongs to a third type. Irisin in also abnormal. R. S. C.

Macromolecular compounds. CCXLVI. Constitution of salepmannan. E. Husemann (J. pr. Chem., 1940, [ii], 155, 246—260).—Salep powder is boiled (1 hr.) with EtOH to inactivate a degrading enzyme and the product is washed with EtOH and Et₂O and dried at 35° vac. The residue is shaken in the dark with H_2O and the somewhat turbid solution is pptd. with MeOH. The ppt. is well pressed and triturated before treatment with Et₂O, which is removed at room temp. before the final desiccation at 35— $40^{\circ}/\text{vac}$. Salepmannan (I) of various degrees of degradation is obtained by alteration of the conditions of extraction without removal of the enzyme. (I) is a macromol. compound since nitration does not considerably alter the degree of polymerisation. Determinations of the Staudinger K_m const. from observations of η in Schweitzer's reagent or H_2O of (I) of osmotically determined degree of polymerisation proves the validity of the viscosity law for degrees of polymerisation between 46 and 1550 and the similar structure of all samples of (I). K_m of (I) is nearly identical with those of cellulose (II) and pure mannan, thereby indicating an extended, unbranched structure of (I) similar to that of (II). Fractionation proves that (I) is very heterogeneous. (I) loses solubility in H_2O when treated with alkali and acid, which results in elimination of 1 AcOH from 11 mannose mols. Attempts to prepare a sol. (I) by restricted acetylation were unsuccessful.

Glucan of the yeast membrane. V. C. Barry and T. Dillon (*Proc. Roy. Irish Acad.*, 1943, 49, B, 177—185).—Yeast glucan (I) is oxidised by HIO₄, then aq. Br, or the latter alone, in similar manner to that described for laminarin (II) (cf. A., 1942, II, 397). and the product is boiled with aq. $H_2C_2O_4$ to give a disaccharide, which affords laminaribiosazone. The mean length of the chain of glucose units in the mol. of (I) is 28 units, viz., 1.75 times that of (II). Configuration of the glucose units is shown to be β , i.e., the same as that of the units in (II).

Limit dextrins and starch. VI. Limit dextrins from potato starch by action of pancreatic amylase. VII. Difficultly hydrolysable glucosidic linkings in starch. K. Myrback, B. Örtenblad, and K. Ahlborg. VIII. Constitution of a limit dextrin. Demonstration of α-glucosidic 1: 6-linking in dextrin and starch. K. Myrback and K. Ahlborg (Biochem. Z., 1940, 307, 49—52, 53—68, 69—78; cf. A., 1943, III, 684).—VI. Potato starch was hydrolysed by pancreatin at pH 6·8 and room temp. for 5 months. The product, treated with increasing concns. of EtOH, yielded ten fractions of decreasing P₂O₅ content (11·7—~0·1%) and mol. wt. (~1200—550) and increasing reducing power (~16—32% as glucose). Thus the greater part (probably ~75%) of the limit dextrins (I) consists of tetrasaccharides and the remainder of trisaccharides. Each (I) appears to contain one α-glucosidic 1: 6-linking in addition to the maltose linkings.

VII. The unimol. coeff. of hydrolysis of maltose by HCl has a const. val., whilst that of sol. starch (II) increases during the reaction excepting towards the end, when it decreases slightly. This indicates the presence of a small no. of difficultly hydrolysable linkings in (II). A variety of limit (I) all show a marked decrease (which is the greater the lower is the mol. wt.) in the reaction const. during hydrolysis. Hence a-glucosidic linkings other than the 1:4 are present in (II) and (I) and it is probable that one of these abnormal linkings is present per mol. of (I). The enzymic hydrolysis of (II) and (I) apparently does not involve linkings other than the 1:4 and 1:6. The possibility of the presence of an isomaltose linking is discussed.

VIII. (I), prepared by the action of amylase on maize starch, mol. wt. \sim 480, [a] +124°, was repeatedly methylated and then distilled in a vac. to give a methylated trisaccharide (OMe 51·5%), [a] +136·5° in CHCl₃, which, on hydrolysis, gave 1 mol. of tetramethyl- and 2 mols. of trimethyl-glucose. The trimethylglucose fraction was shown by the Oldham-Rutherford method (A., 1932, 254) to consist of approx. equal parts of 2:3:4- and 2:3:6-trimethylglucose. Thus the trisaccharide contains a maltose and an isomaltose linking, the latter (a-glucosidic 1:6-linking) being present in starch to an extent of \gtrsim 3% of the total glucosidic linkings. The trisaccharide arises from a branching of the starch mol., if Freudenberg's theory of the structure of (II) is accepted.

Starch-iodine complex.—See A., 1944, I, 5.

Viscosity of cellulose acetate solutions. H. Lohmann (J. pr. Chem., 1940, [ii], 155, 299—309).—Cotton linters is acetylated (Ac_O-H_sO_4 in AcOH) so as to give products of differing degree of polymerisation which 'Are then partly hydrolysed (H_sO_4-H_2O) to the COMe_*sol. stage (~2·4 OAc). Determinations of η of these products (I) which have been washed acid-free by distilled or tap H_O show a very pronounced influence of slight differences in ash content, which are generally <0·1%. These abnormalities are not observed in AcOH. For the correlation of mechanical properties of acetate silk fibres and η in COMe_* it is essential that the measurements be made in very dil. solution and that dilution must be the greater as the degree of polymerisation increases. The greatest increase of η in COMe_* is caused by CaCl_*; SrCl_* has a small effect but other Ca salts, as also Mg, Al, and alkali salts, are ineffective. Increase of [CaCl_*] causes increase of η and increased turbidity, the effect being less marked at 40° than at 15°. The associations causing increase of η are due to subsidiary valency activities dependent on temp. The viscosity of (I) in m-cresol, CH_*Cl_*-EtOH (8:2 by vol.), CH_*(O^*[CH_*]_2^*OH)_*, dioxan, or COMe-EtOH is not affected by CaCl_* which causes a small increase in NH_2Ph and HCO_Et and a great increase in COMeEt, MeOAc, and CHCl_*-COMe_* (1:1). A "salt effect" is not shown by solvents containing OH or OAlk but is very obvious with esters or ketones.

III.—HOMOCYCLIC.

Formation of cyclopropanes from monohalides. IV. Reactions of a-chloro- β -phenylisobutane (neophyl chloride). F. C. Whitmore, C. A. Weisgerber, and A. C. Shabica, jun. (*J. Amer. Chem. Soc.*, 1943, **65**, 1469—1471; A., 1943, II, 21).—CPhMe₂·CH₂Cl (I) (prep. from CH₂·CMe-CH₂Cl by C_0H_0 -H₂SO₄ at 20°; 68% yield), b.p. 97°/13 mm., reacts less readily with Na than does CH₂Bu'Cl; with 5 Na at 490° it gives PhBu' (34· β %), 1-phenyl-1-methylcyclo-propane (11·9%), and CHPh:CMe₂ (13·7%). With NaEt in C_5H_{12} at -10° to 20°, (1) gives the same products and is thus more reactive than CH₂Bu'Cl towards NaEt. These results confirm Morton's views (A., 1943, II, 114) on the Wurtz reaction. With Na (2 atoms) in liquid NH₃, (I) gives mainly PhBu'. (I) decomposes only slowly at 135°, but at the b.p., 222°/741 mm., gives CHPh:CMe₂, CH₂:CMe·CH₂Ph, and CH₂Ph·CMe₂Cl. (I) does not react with NaOEt, C_5H_5 N, or Na fluorenyl. It readily gives a Grignard reagent and thence CPhMe₂·CH₂·CO₂H (81·6%) or CPhMe₃·CH-Cl (30·7%).

cis-trans Isomerisation and spectral characteristics of carotenoids and related compounds. L. Zechmeister and A. Polgár (J. Amer. Chem. Soc., 1943, 65, 1522—1528).—When an all-trans natural carotenoid is isomerised by boiling in C_8H_{14} or by I, λ and ϵ of the main max. progressively decrease, but the chief effect is appearance of a max. at 320—380 m μ ., the "cis-peak" effect. λ of this peak is 141—144 m μ . below that of the highest max. for the all-trans-compound for 12 C_{40} -compounds. Methylbixin and Ph·[CH;CH]₄·Ph show the same phenomenon and adding I increases ϵ at 240—280 m μ . for vitamin-A.

Action of cold concentrated hydriodic acid on carotenes. Structure and cis-trans isomerisation of reaction products. A. Polgár and L. Zechmeister (J. Amer. Chem. Soc., 1943, 65, 1528—1534).—Shaking a- or β -carotene in light petroleum with 55—58% HI (freed from I) and chromatography of the products gives >9% each of 5:6-dihydro- β - and -a-carotene, structures of which are indicated by analysis, determination of CMe₂:, spectroscopy, and quant. hydrogenation. The products undergo cis-isomerisation when boiled in light petroleum, melted, or treated with I, and six α - and six β -isomerides are characterised by absorption max.

R. S. C.

cis-trans Isomerisation and spectral characteristics of gazaniax anthin. Its structure. L. Zechmeister and W. A. Schroeder (J. Amer. Chem. Soc., 1943, 65, 1535—1540).—Petals of Gazania rigens, R. Br., grown in S. California, yield gazaniax anthin (I) (0·14%), lycopene (0·0435%), γ - (0·01%) and β -carotene (0·006%), lutein, and crypto-xanthin (cf. Schon, A., 1938, II, 436). (I) is $C_{40}H_{58}O$, contains 11 conjugated C:C, with O_3 gives 1 mol. of COMe2, but may be dihydrorubixanthin. It is fairly stable in light petroleum at room temp.,

but in boiling C_8H_8 or with I isomerisation occurs and the absorption changes in the manner characteristic of C_{40} -carotenoids. R. S. C.

Preservation and utilisation of styrene. Preparation of styrene.—See B., 1943, II, 369.

Organic reactions with boron fluoride. XXVIII. Isomeric p-dibutylbenzenes. G. F. Hennion and L. A. Auspos (J. Amer. Chem. Soc., 1943, 65, 1603—1606; cf. A., 1943, II, 125).—PhBu with PraCOCl or PrBCOCl and AlCl₃ in CS₂ give 76—91% of n., b.p. 138°/6 mm., sec.-, b.p. 125°/3 mm., iso-, b.p. 116°/3 mm., and tert.butyl-n-butyrophenone, b.p. 128°/5 mm., and n., b.p. 118°/3 mm., sec.-, b.p. 116°/3 mm., iso-, b.p. 121°/7 mm., and tert.butyl-isobutyrophenone, b.p. 140°/4 mm., whence Zn-Hg-H₂O-AcOH-HCl yields p-di-n., m.p. —24°, b.p. 259°/745 mm., 124°/15 mm., and p-di-iso-butylbenzene, m.p. —21°, b.p. 242°/739 mm., 109°/15 mm., p-n-butyl-sec.-, b.p. 250°/739 mm., 117°/15 mm., -iso-, b.p. 251°/743 mm., 118°/15 mm., and -tert.-, m.p. —46°, b.p. 248°/743 mm., 116°/15 mm., p-sec.-butyl-iso-, b.p. 241°/739 mm., 113°/15 mm., and -tert.-, b.p. 235°/745 mm., 108°/15 mm., and p-isobutyl-tert.-, b.p. 239°/751 mm., 109°/15 mm., -butylbenzene. In presence of BF₃-H₃PO₄, Bu^aOH or Bu^βOH introduces sec.-Bu and Bu^γ, respectively, into PhBu, thus giving the as-compounds and p-di-sec.-, m.p. —58°, b.p. 239°/739 mm., 108°/15 mm., and -tert.-butylbenzene, m.p. 77·7°, b.p. 237°/743 mm., 109°/15 mm. (lit. 225°). n and d are also given; they are low for the compounds prepared by alkylation, probably owing to presence of small amounts of o-isomerides.

Thermal decomposition of the dibromide of aayy-tetraphenyl-β-methylpropene. C. F. Koelsch and R. V. White (J. Amer. Chem. Soc., 1943, 65, 1639—1640).—The product from CHPh₃·CHMe·CO₂Me and MgPhBr in boiling Et₂O with a trace of H₂SO₄ in boiling AcOH gives aayy-tetraphenyl-β-methyl-Δ-propene (I) (43%), m.p. 132—133°, which with CrO₃-AcOH gives, by pinacol rearrangement, γγδδ-tetraphenyl-n-butan-β-one, m.p. 118—119°. AcOH solutions of the dibromide of (I), when distilled, give 3-phenyl-2-benzhydrylindene (II) (72%), m.p. 162—163·5°, oxidised by CrO₃-AcOH at 100° to benzophenone-2-acetic acid, m.p. 130—131°. 2-Benzylideneindanone with C₆H₆ and AlCl₃ gives 2-benzhydrylindanone (74%), m.p. 109—111°, converted into (II) by MgPhBr and then 2% H₂SO₄-AcOH. 2-Phenylindane-1:3-dione and MgMeI-Et₂O give 2-phenyl-3-methylindone (45%), m.p. 69—71°; o-C₆H₄Ph·MgI gives an oil.

R. S. C. Preparation of diphenyldimethylpolyenes. K. Bernhauer and I. Skudrzyk (J. pr. Chem., 1940, [ii], 155, 310—316).—CHPh:CMe·CHO (p-nitrophenylhydrazone, m.p. 203°) and (CH₂·CO₂H)₂ with PbO₂-Ac₂O at 140°, at the b.p., afford αθ-diphenyl-βη-dimethyl-Λα²εη-octatetraene, m.p. 174° (cf. Kuhn et al., A., 1938, II, 437). ε-Phenyl-β-methyl-Δβδ-pentadien-α-al, m.p. 58° [corresponding carboxylic acid, m.p. 160°; semicarbazone, m.p. 239° (decomp.); p-nitrophenylhydrazone, m.p. 212—213°], similarly yields αμ-diphenylδι-dimethyl-Δα²εηλ-dodecahexaene, m.p. 217° (decomp.); the Et₂ analogue has m.p. 206—209·5°. Tiglaldehyde is obtained from MeCHO-EtCHO-1% aq. NaOH (CO₂) at 10°. A. T. P.

Process of obtaining a- and β -methylnaphthalene and fractions enriched in either of these compounds.—See B., 1943, II, 369.

Aromatic cyclodehydration. XII. Mechanism of the cyclisation of o-benzylphenones. C. K. Bradsher and E. S. Smith. XIII. 1:2:3:4-Dibenzphenanthrene. C. K. Bradsher and L. Rapoport (J. Amer. Chem. Soc., 1943, 65, 1643—1645, 1646—1647; cf. A., 1943, II, 265).—XII. α-o-Chlorophenylisopropyl alcohol (prep. from o-C₆H₄Cl·CO₂Me and MgMeI in E₂O; 82·5% yield), b.p. 94°/8 mm., with C₆H₄ and AlCl₃ at <10° gives β-phenyl-β-o-chlorophenylpropane (61%), b.p. 146°/7 mm. With CuCN-CH₂Ph·CN-C₅H₅N at 250° this gives β-phenyl-β-o-cyanophenylpropane (I) (68%), m.p. 62—63·5° (unaffected by boiling KOH-EtOH), and with CuCN-H₂O-C₅H₅N at 250° gives o-αa-dimethylbenzylbenzamide (20%), m.p. 132—134°, also obtained similarly (31%) from (I), and resistant to hydrolysis. MgPhBr and (I) in boiling C₆H₆ give o-αa-dimethylbenzylbenzophenoneimine hydrochloride (60%), unchanged by hot 10% HCl but in boiling 48% HBr giving 10-phenyl-9:9-dimethyl-9:10-dihydroanthracene (II), m.p. 145—146° (the intermediate ketone cannot enolise). o-CHPh₂·C₆H₄·CO₂Me and MgMeI give a carbinol, cyclised to (II) (proof of structure) by AlCl₃ in CS₂ at <10°.

XIII. Adding o-C₆H₄PhI and then 1-keto-1:2:3:4-tetrahydro-naphthalene to Li in Et₂O gives 1-2'-diphenylyl-3:4-dihydronaphthalene (47·5%), m.p. 75·5—76·5°, which with o-CO₂H·C₆H₄·CO₃H in Et₂O gives the 1:2-epoxide, m.p. 98—99°. With boiling 34% aq. HBr-AcOH this gives resinous 9:10-dihydro-1:2:3:4-dibenz-phenanthrene (picrate, m.p. 135—136°), which with S at 200—220° and then 250° gives 1:2:3:4-dibenzphenanthrene, m.p. 115—116° (picrate, m.p. 139·5—140·5°; quinone, m.p. 238—240°) (cf. Hewett, A., 1938, II, 132).

Synthesis of 3'-alkyl-1: 2-cyclopentenophenanthrenes. B. Riegel, M. H. Gold, and M. A. Kubico (f. Amer. Chem. Soc., 1943, 65, 1772—1776).—β-2-Phenanthryl-n-butyric acid gives (cf. Bachmann et al., A., 1940, II, 326) I'-keto-3'-methyl-1: 2-cyclopentenophen-

anthrene (I), m.p. $135-136^{\circ}$ [oxime, a-, m.p. $169-171^{\circ}$ (decomp.), and β -form, m.p. $165-170^{\circ}$ (decomp.)]. 2-Propionylphenanthrene (II) and Al(OPr β)₃-Pr β OH give 2-a-hydroxy-n-propylphenanthrene (73%), m.p. $87\cdot4-88\cdot4^{\circ}$, converted by PBr₃-Et₂O into the bromide (87·5%), m.p. $81\cdot5-83^{\circ}$, which with CHNa(CO₂Et)₂ in EtOH₂C₄H₆ gives β -2-phenanthryl-n-valeric acid acid chloride with AlCl₃ in PhNO₃ at room temp.—80° gives 1'-keto-3'-ethyl-1: 2-cyclopentenophenanthrene (78·5%), m.p. $110-111\cdot2^{\circ}$ [oxime, a-, m.p. $172\cdot5-174\cdot5^{\circ}$ (decomp.), and β -form, m.p. $169-170\cdot8^{\circ}$ (decomp.)], reduced (Clemmensen) to 3'-ethyl-1:2-cyclopentenophenanthrene (94%), m.p. $85-86^{\circ}$, sublimes $130-140^{\circ}/2-3$ mm. [picrate, m.p. $94\cdot8-96\cdot4^{\circ}$ (decomp.)]. 2-isoButyrylphenanthrene yields similarly a-2-phenanthrylisobutyl alcohol, m.p. $104\cdot4$ pentenophenanthrene (94%), m.p. 85—86°, sublimes 130—140°/2—3 mm. [picrate, m.p. 94·8—96·4° (decomp.)]. 2-isoButyrylphenanthrene yields similarly α-2-phenanthrylisobutyl alcohol, m.p. 104·4—104·7°, and bromide, m.p. 91—94° (decomp.), β-2-phenanthrylisohexoic acid (21%), m.p. 148·8—149·6° (and α-2-phenanthrylisobutyl Et ether, m.p. 81—83°), 1'-keto-3'-isopropyl-, m.p. 143·6—144·4° [oxime, m.p. 205—211° (decomp.)], and 3'-isopropyl-1: 2-cyclopentenophenanthrene, m.p. 97·6—98·4° [impure picrate, m.p. 108—113° (decomp.), dissociates readily]. (NH₄)₂S_x in dioxan at 160° and then HCl-AcOH converts (II) into β-2-phenanthrylpropionic acid (56·5%), m.p. 177·2—178·4°, and thence 1'-keto-1: 2-cyclopentenophenanthrene (92%), m.p. 188·6—189·4° (lit. 183—184°) [oxime, m.p. 235—236° (decomp.)], and 1: 2-cyclopentenophenanthrene, m.p. 134·4—135·8° [s-C₆H₃(NO₂)₃ compound, m.p. 165—167°]. 9: 10-Dihydrophenanthrene, R·[CH₂]₂·COCl, and AlCl₃ in CS₃ at 0° give 2-β-bromo- (III), m.p. 76—77·3°, 2-β-chloro- (IV), m.p. 72—73°, and 2-β-methoxy-propionyl-9: 10-dihydrophenanthrene, m.p. 87·8—88·7°. [also obtained from (III) and (IV) by NaOMe-MeOH], which with chloranil in boiling xylene give only tars, although 9: 10-dihydrophenanthrene thus gives 65% of phenanthrene (V). Br·[CH₂]₂·COCl, (V), and AlCl₃ in CS₂ give 2-β-bromo-propionylphenanthrene (15%), m.p. 118·7—119·8°, reduced (Clemmensen) to 2-n-propylphenanthrene (picrate, m.p. 89—91°) but giving only tars when cyclised. M.p. are corr. R. S. C.

Resolutions of enantiomorphs. III. Chromatographic adsorption. H. B. Hass, T. De Vries, and H. H. Jaffé (J. Amer. Chem. Soc., 1943, 65, 1486—1488; cf. A., 1943, II, 229).—Only slight resolution of dl-a-phenylethylamine H d-tartrate, m.p. 159—162°, or brucine dl-mandelate occurs by adsorption on Al2O3, CaSO4, C, fuller's earth, MgO, or glucose.

Selective monoreduction of aromatic dinitro-compounds by alkaline sulphides and by acid stannous chloride. H. H. Hodgson (J. Soc. Dyers and Col., 1943, 59, 246—247).—In αβ-dinitronaphthalenes, AcOH-HCl-SnCl₂ preferentially reduces the a-NO₂ (and ultimately produces diamines) whilst alkaline sulphides (or polysulphides) (I) reduce the β-NO₂ and then practically cease to react. This is explained on the basis of the (-I) inductive effect of the second nucleus (cf. A., 1938, II, 316), making the α -NO₂ more electropositive. The less positive β -NO₂ has its O atoms more available for reaction with (I). Anomalous cases are discussed. The reduction of 1:2:4-CH MCNO₂ to residue the second control of the sec $C_8H_2Me(NO_8)$, at position 4- by $SnCl_3$, but at 2- by (I), and of picric to picramic acid by (I), is explained as due to the (+I) inductive effects of the Me and OH rendering the 2-NO₈ less positive.

Iodinated derivatives of sulphonamido-compounds. C. J. Klemme and E. L. Beals (J. Org. Chem., 1943, 8, 448—455).—p-NHAc·C₆H₄·SO₂·NH·CH₃·CO₂H is hydrolysed by 5N-HCl and then added dropwise to ICl in hot 5N-HCl, giving 3:5-di-iodosulphanilylglycine, m.p. 249·5° (decomp.); this is diazotised and converted by KI into 3:4:5-tri-iodobenzenesulphonylglycine, m.p. 279—280° (decomp.). p-Iodobenzenesulphonylglycine has m.p. 189—191° (decomp.). p-NH₂·C₆H₄·SO₂·NH·C₆H₄·SO₃H-p is converted by ICl in 10% HCl at 40—50° into N-3:5(?)-di-iodosulphanilylsulphanilic acid, isolated as the K salt (anhyd. and +2H₂O), which is converted by diazotisation and treatment with KI into N-3:4:5-tri-iodobenzenesulphonylsulphanilic acid, m.p. >310°. pbenzenesulphonylsulphanilic acid, m.p. >310°. p-NH₂·C₈H₄·SO₂·NH·C₄H₄·CO₂H, m.p. 201°, in AcOH is transformed by ICl in 10% HCl at 80–90° into p-3′:5′(?)-di-iodosulphanil-amidobenzoic acid, m.p. 261·1° (decomp.), and by diazotisation amidoenzote atia, m.p. 261-1° (decomp.), and by diazotisation followed by KI into p-iodobenzenesulphonamidobenzote acid, m.p. $265-267^\circ$ (decomp.). Addition of ICl in 25% HCl to NH(SO₂·C₈H₄·NH₂)₂ gives 3:5:3'-iri-iododisulphanilamide, m.p. $249\cdot2^\circ$ (decomp.) (Na salt), whereas use of the reagents in the reverse order gives this compound with the 3:5:3':5'-I₄-derivative, m.p. $259-260^\circ$ (decomp.; darkens at 230°) (NH₄ salt). K 4:4'-diiododibenzenesulphonamide is described. 2-3':5'-Di-iodosulphanilamidopyridine has m.p. $269-272^\circ$ (decomp.). H. W.

Polymerisation of free radicals of the Wurster dye type. resonance bond. L. Michaelis and S. Granick (J. Amer. Chem. Soc., 1943, 65, 1747—1755).—Prep. of six Wurster dyes, obtainable cryst. only as bromides or perchlorates, is described. Change of colour with temp. is observable with yellow or red, but not with blue, dyes. The dyes exist in equilibrated mono- and di-meric forms in solution, but for solids there is an "all or none" law: crystals are either completely polymerised and diamagnetic with the susceptibility of an

ordinary org. mol. or are completely in the free radical state and paramagnetic with the susceptibility of an org. mol. with one odd electron. The latter is so only for Wurster blue. Dimers have the structure (A), the two electrons (e) being shared between the two

$$N^+R'R''' \underbrace{\hspace{1.5cm} N {\overset{H}{<}_R}^H {\overset{H}{>}_N} N}_{\hspace{1.5cm} N {\overset{H}{<}_R}'' R''} \hspace{0.5cm} (A.)$$

N, and the H and R forming a square in a plane perpendicular to the plane of the rings; resonance consists in alternation of the two rings between the quinonoid and benzenoid states. Such dimers can exist so long as at least one H is present on a N. Higher polymers can be formed along similar lines.

Evidence for the sulphite and sulphonate structures of Hantzsch's potassium benzene -syn- and -anti-diazosulphonates. H. H. Hodgson and E. Marsden (J.C.S., 1943, 470—472).—Hantzsch's syn-formula for K benzene-syn-diazosulphonate is incorrect, and a sulphite

structure, viz., NPh.N·O·SO₂K or N₂Ph}O·SO₂K, or an equilibrium of both, accounts for all its reactions; the anti-form of Hantzsch is of both, accounts for all its reactions; the anti-form of Hantzsch is valid. The syn-form (I) is rapidly converted by moisture into the anti-form. Thus, (I) and excess of alkaline β -C₁₀H₇·OH give PhN₂·C₁₀H₆·QH- β (II), corresponding to 77·5% of syn + 22·5% of anti; a delay of 15 min. before coupling causes a decrease in synform to 33%. Coupling of (I) with p-NO₂·C₆H₄·N₂Cl (III) yields a complex, converted by alkaline β -C₁₀H₇·OH into (II) + p-nitrobenzeneazo- β -naphthol (IV); oxidation of the filtrate affords a similar mixture. (III) combines at the S to give a N-S linking, and does not form a diazonium salt. Complexes prepared from both syn- and anti-isomerides by coupling with ArN-Cl are unstable, syn- and anti-isomerides by coupling with ArN2Cl are unstable, except that from K benzene-anti-diazosulphonate (does not couple with β -C₁₀H₇·OH) and (III); coupling with β -C₁₀H₇·OH then gives (IV). The complex from Na β -nitrobenzene-anti-diazosulphonate and PhN₂Cl at 0°, couples with β -C₁₀H₇·OH to give (II), whereas (IV) is obtained from the filtrate after air oxidation. The synisomeride (V), prepared from neutral (III) and Na₂SO₃ at 0°, similarly yields (II) + (IV), also obtained from the filtrate after oxidation. (V) and (III) afford a complex and therea alreat curs (IV) (V) and (III) afford a complex, and thence almost pure (IV).

Diphenyl series. III. Attempted chlorination of the acetate, benzoate, and benzenesulphonate of 4-chloro-4'-hydroxydiphenyl. 3:4'-Dichloro-4-hydroxydiphenyl. (Miss) C. M. S. Savoy and J. L. Abernethy (J. Amer. Chem. Soc., 1943, 85, 1464—1465; cf. A., 1943, II, 88).—p-C₆H₄Cl·C₆H₄·OH-p (I) and Cl₂ in CCl₄ give 3:4'-dichloro-4-hydroxydiphenyl (92%), m.p. 71—72° (acetate, m.p. 74·5—75°; benzoate, m.p. 125—126°; benzenesulphonate, m.p. 100—101°), converted by more Cl₂ in CCl₄ into 4:3:5-OH·C₆H₂Cl₂·C₆H₄Cl-p, which is also obtained directly from (I). Esters of (I) are unaffected by Cl₂-I (trace) in CCl₄.

Preparation of 4-halogeno- and 4-nitro-2-naphthols; resonance structure of the internal diazo-oxides (diazonaphthols). H. H. Hodgson and S. Birtwell (J.C.S., 1943, 468—469).—Decomp. of 4-halogenonaphthalene-1: 2-diazo-oxides (I) by Al powder in boiling EtOH (cf. Morgan et al., J.C.S., 1919, 115, 1126) gives 4: 2-C₁₀H₆Hal·OH (II). Thus prepared are 4-chloro-2-naphthol (84%), m.p. 100° (Me ether, m.p. 44—45°; acetate, m.p. 56°; 1-benzeneazo-derivative, m.p. 165°), 4: 2-C₁₀H₆Br·OH (77%) (Me ether, m.p. 64°; acetate, m.p. 61°; 1-benzeneazo-derivative, m.p. 160°), and 4-iodo-2-naphthol (60%), m.p. 128·5° (Me ether, m.p. 67°; acetate, m.p. 59°; 1-benzeneazo-derivative, m.p. 176°). (I) with SnCl₂-aq. NaOH at 80—90° gives variable yields of (II). Attempts to prepare (II) from 4: 2-C₁₀H₆Hal·NH₂ failed. 4-Nitronaphthalene-1: 2-diazo-oxide and Fe-CuSO₄-EtOH-H₂O give 50% of 4: 2-NO₂·C₁₀H₆·OH. The properties of diazonaphthols indicate that they are resonance hybrids. Preparation of 4-halogeno- and 4-nitro-2-naphthols; resonance hybrids.

Synthetic estrogenic compounds. I. Monosubstituted derivatives of ay-di-p-hydroxyphenylpropane. A. H. Stuart and R. C. Tallman (J. Amer. Chem. Soc., 1943, 65, 1579—1581).—The rat unit of estrogenic activity for Ar-[CH₂]₂·CHRAr and CHR(CH₂Ar)₂ (Ar = p-OH·C₆H₄) is 5—10 mg., a slight max. appearing at R = Pra and Et, respectively. Introduction of R has little effect. Adding p-OMe·C₆H₄·CH·CO·C₆H₄·OMe-p to MgRHal (3 mols.) in Et₂O at -5° to -10° and keeping at room temp. gives p-methoxy-β-p-anisyl-n-butyro-, m.p. 72° (semicarbazone, m.p. 142—143°), -n-valero-, m.p. 70° (semicarbazone, m.p. 127—128°), -n-, m.p. 78—79° (semicarbazone, m.p. 126—127°), and -iso-hexo-, m.p. 510—52° (semicarbazone, m.p. 166—168°), -n-hepto-, m.p. 59° (semicarbazone, m.p. 125—127°), and -n-octo-phenone, m.p. 70°, p-methoxy-β-phenyl-β-p-anisylpropiophenone, m.p. 88°, p-methoxy-γ-phenyl-β-p-anisyl-n-butyrophenone, m.p. 102° (semicarbazone, m.p. 146°), and p-methoxy-ββ-di-p-anisyl-propiophenone, m.p. 83—84° (semicarbazone, m.p. 161—162·5°). Reduction, best by H₂-Cu chromite in EtOH at 200°/~150 atm., gives ay-di-p-anisyl-n-butane, b.p. 152—154°/1 mm. 101—102-5°]. Reduction, best by H_2 —Cu chromite in EtOH at 200°/ \sim 150 atm, gives $a\gamma$ -di-p-anisyl-n-butane, b.p. 152—154°/1 mm., -n-pentane, b.p. 161—163°/1 mm., -n-hexane, b.p. 198—200°/3 mm., -5-methyl-n-pentane, b.p. 178—179°/2 mm., -n-heptane, b.p. 201—203°/3 mm., and -n-octane, b.p. 194—195°/2 mm., β -phenyl-ay-di-p-anisyl-popane, m.p. 63°, δ -phenyl-ay-di-p-anisyl-n-butane, m.p. 36—38°, and $a\beta\gamma$ -tri-p-anisyl-popane, m.p. 62—63°, demethylated

(AcOH-57% HI or EtOH-KOH) to aγ-di-p-hydroxyphenyl-n-butane, a resin, -n-pentane, m.p. 99—100°, -n-hexane, m.p. 101°, -δ-methyl-n-pentane, -n-heptane, and -n-octane, resins, β-phenyl-aγ-di-p-hydroxyphenylpropane, m.p. 105—106°, and δ-phenyl-aγ-di-p-hydroxyphenyl-n-butane, m.p. 108—110°. p-OMe·C₆H₄·COR (improved prep. for R = Pra and Bua), and HCl at ~15° give p-anisyl a-methyl-, m.p. 60°, α-ethyl-, b.p. 200—203°/1·5 mm., and α-n-propyl-p-methoxystyryl hetone, b.p. 207—208°/2 mm., converted as above into CHR(CH₂·C₆H₄·OMe-p)₂ in which R = Me, m.p. 68—69°, Et, m.p. 43°, and Pra, b.p. 181°/2 mm., and thence into CHR(CH₂·C₆H₄·OH-p)₂ in which R = Me, m.p. 130°, Et, m.p. 102°, and Pra, m.p. 118—119°.

Arelamas of hamsels. B. B. B. Bellen (M. 14) and Charles.

102°, and Pra, m.p. 118—119°.

Analogues of hexcestrol. B. R. Baker (J. Amer. Chem. Soc., 1943, 65, 1572—1579).—The (NH₂)_n, (CH₂Ph)₂, and three steric analogues of hexcestrol are pharmacologically inactive [denoted (I) below]. The 3:4:3':4'-(OH)₄-analogue is feebly active. p-OMe·C₀H₄·CO·CH:CH·C₆H₄·OMe-p and H₂-Raney Ni in EtOH at 55°/2—3 atm. give p-OMe·C₀H₄·CO·[CH₂]₂·C₀H₄·OMe-p, m.p. 40—42°, which with MgPraBr in boiling Et₂O and then KHSO₄ at 100—120° gives ay-di-p-anisyl-Δβ-n-hexene (88%), b.p. 188—190°/1 mm.; reduced as above to ay-di-p-anisyl-n-hexane, b.p. 178—180°/1 mm.; 48% HBr in boiling AcOH then yields ay-di-p-hydroxyphenyl-n-hexane (I) (61%), m.p. 101·5—103° (di-p-nitrobenzoate, m.p. 114—116°). Reduction of RCO·[CH₂]₄·COR to R·[CH₂]₆·R (R = anisyl) is best (82%) effected by N₂H₄ in boiling EtOH followed by KOH on the product at 140° and finally 200°. 3:4-Dimethoxypropiophenoneazine, m.p. 151—153°, with H₂-PdCl₂-AcOH-MeOH gives the oily H₄-azine, which with CuSO₄, NaOH, and air gives the H₂-azine, converted in boiling xylene into yδ-di-3:4-dimethoxy-(19·5%), forms, m.p. 102—105° and 133—133·5°, and thence γδ-di-3:4-dihydroxy-phenyl-n-hexane (I) m.p. 231—235°. 50-µg. doses of (I) cause 100% response in ovariectomised rats, 20-µg. doses cause 29% response. p-Propionamidopropiophenoneazine, m.p. 276—280°, reives similarly the H₂-azine (18%) m.p. >160° (decomp.) which at athydroxy-phenyl-n-hexane (1) m.p. 231—235°. 50-μg. doses of (1) cause 100% response in ovariectomised rats, 20-μg. doses cause 29% response. p-Propionamidopropiophenoneazine, m.p. 276—280°, gives similarly the H_σ-azine (18%), m.p. >160° (decomp.), which at 180° and then 240° gives γδ-di-p-propionamidophenyl-n-hexane, meso-, m.p. 261—264°, and dl-, m.p. 207—215°, -forms. Boiling conc. H₂Cl then gives γδ-di-p-aminophenyl-n-hexane, meso-, m.p. 132—134°, and dl-, m.p. 63—65°, -forms, respectively, the configuration of which is determined by converting the former by HNO₂ into meso-hexœstrol. m-C₆H₄Et·OR (R = H or Me) with HCl-Zn(CN)₂-AlCl₃-C₆H₈ gives 4-hydroxy- (II), m.p. 51—53°, b.p. 140—145°/1 mm., and 4-methoxy-2-ethylbenzaldehyde, b.p. 133—134°/12 mm., and the derived azines, m.p. 204·5—206° and (III) 117—118° [also obtained from (II) by Mc₂SO₄-KOH-H₂O-MeOH followed by N₂H₄], respectively. (III) yields the H₂-azine, m.p. 70—73°, and thence aβ-di-4-methoxy- (8%), m.p. 60—62°, and -4-hydroxy-2-ethylphenylethane (I), m.p. 131—133°. β-Nitro-α-panisyl-Δα-butene (prep. from ArCHO, Pr°NO₂, and OH·[CH₂]₂·NH₂ at room temp.; 64%), m.p. 55—57°, with FeCl₃-Fe in boiling HCl-EtOH-H₂O gives p-OMe·C₆H₄·CH₂·COEt (IV), b.p. 142—147°/13 mm. [semicarbazone, m.p. 153—154° (lit. 156—157°)], and thence the dihydroazine, m.p. 89—90°, pyrolysis of which was unsuccessful. CN·CH₂·CO2Et, (IV), NH₄OAc, and AcOH in boiling C₆H₆ with removal of H₂O give E^t α-cyano-β-p-methoxybenzyl-Δα-pentenoate, b.p. 167—168°/1 mm., reduced (H₂-PtO,-McOH; 2—3 atm.) to Et α-cyano-β-p-methoxybenzyl-η-valerate (V), b.p. 158—159°/1 mm. NaOEt-EtBr in EtOH-C₆H₆ then gives Et α-cyano-β-p-methoxybenzyl-α-ethyl-n-valerate, b.p. 176—178°(2 mm., converted by KOH NaOEt-EtBr in EtOH-C₈H₆ then gives Et a-cyano-β-p-methoxy-benzyl-a-ethyl-n-valerate, b.p. 176—178°/2 mm., converted by KOH in diethylene glycol at 135—140° and then decarboxylation by a in diethylene glycol at $135-140^{\circ}$ and then decarboxylation by a trace of CuO at 200° into γ -cyano-8-p-methoxybenzyl-n-hexane (94%), b.p. $135-136^{\circ}$ /l mm., which resists hydrolysis by acid or alkali but with p-OMe- C_0H_4 -MgBr in $Et_2O-C_0H_6$ gives 57-76% of γ -p-anisoyl-8-p-methoxybenzyl-n-hexane, b.p. $208-211^{\circ}$ /l mm. Clemmensen reduction then yields $\gamma 8$ -di-p-methoxy- (VI) (78%), form, m.p. $71-72^{\circ}$, b.p. $190-195^{\circ}$ /l mm., and thence (HI-AcOH) $\gamma 8$ -di-p-hydroxy-benzyl-n-hexane (I), (? meso-)form, m.p. $156-157^{\circ}$ [gives (VI)] p-OMe- C_0H_4 -CH₄Cl, (V), and NaOEt in EtOH- C_0H_6 give Et a cyano- $\alpha \beta$ -di-p-methoxybenzyl-n-valerate (77%), b.p. $225-230^{\circ}$ /l mm., and thence, successively, (by KOH) $\alpha \beta$ -di-p-methoxybenzyl-n-valeronitrile, b.p. $214-216^{\circ}$ /l mm. (dl-form, m.p. $136-137^{\circ}$), (by MgMcI-Et₂O) $\gamma \delta$ -di-p-methoxybenzyl-n-hexan- β -one (89%), b.p. 213-100*IgMcI-Et₂O) yô-di-p-methoxybenzyl-n-hexan-β-one (89%), b.p. 213—216°/1 mm. (form, m.p. 86—88°), and (by N₂H₄-CH₂Ph·ONa-CH₂Ph·OH) (**VI**). CN·CHNa·CO₂Et and OH·CHEt·CN in EtOH at 0° and later with EtBr at the b.p. give Et γδ-dicyano-n-hexane-γ-carboxylate (52%), b.p. 135—136°/3 mm., converted by boiling 18% HCl and then AcCl into (CHEt·CO)₂O, b.p. 100—102°/1 mm., which with PhOMe-AlCl₂-C₆H₆ at 15—20° and then H₂SO₄-MeOH-C₆H₆ gives Me β-p-anisoyl-a-ethyl-n-valerate (91%), b.p. 150—152°/1 mm. (enol lactone, b.p. ~170°/1 mm.), reduced by Zn-Hg-conc. HCl-H₂O₂-H₂ to see a significant distribution of the second concept of the second conc

Effect of reducing agents on the autoxidation of photographic developing agents.—Sec A., 1944, I, 20.

Chlorination of anisole. C. Weygand [with K. Vogel] (J. pr. Chem., 1940, [ii], 155, 342—346).—PhOMe (I) and Cl_2 at 150—160° give products of variable Cl content; a H_2O -insol. residue is obtained consisting of $(m\cdot C_2H_4Cl)_2CO_3$, formed from $m\cdot C_2H_4Cl\cdot OH$ and $m\cdot C_3H_4Cl\cdot OH$ and $m\cdot C_3H_4Cl\cdot OH$

C₈H₄Cl·O·CCl₃. Better results are obtained with (I) as vapour; thus, chlorination at 220—225° yields PhO·CH₂Cl and PhO·CHCl₂. In a vac. at ~122°, a low yield of product containing 8.7% Cl results.

Higher homologues of azo- and azoxy-phenol ethers, and p-alkoxy-benzylideneaniline derivatives. C.Weygand and R. Gabler (J. pr. Chem., 1940, [ii], 155, 332—341).—p-NO₂·C₆H₄·OK and AlkBr in COMeEt 1840, [11], 185, 352^{-341}]. $-p^{-1}NO_2^{-}C_6H_4^{-}OK$ and ARBI in Collectic (or, for higher members, cyclopentanone) give $p^{-}NO_2 \cdot C_6H_4$ Bua, b.p. $160 - 163^{\circ}/7$ mm., m.p. 32° , $n^{-}C_5H_{11}$, b.p. $162 - 163^{\circ}/5$ mm., n. C_6H_{13} , b.p. $172 - 174^{\circ}/5$ mm., m.p. 26° , $n^{-}C_7H_{15}$, b.p. $184 - 185^{\circ}/5$ mm., $n^{-}C_8H_{17}$, b.p. $196 - 197^{\circ}/5$ mm., m.p. 24° , $n^{-}C_9H_{19}$, b.p. $206 - 207^{\circ}/7$ mm., m.p. 20° , $n^{-}C_{10}H_{21}$, m.p. 41° , $n^{-}C_{11}H_{23}$, m.p. 30° , and $n^{-}C_{12}H_{25}$ ether, m.p. 53° . Electrolytic reduction (Pb anode; Pb or Ni cathode) then affords the following p-azozyphenol dialkyl ethers Ni cathode) then affords the following p-azoxyphenol dialkyl ethers [the occurrence of cryst.-liquid phases is observed (cf. A., 1938, II, 493; 1939, II, 16), and the clarification temp. or transition points are given in parentheses]: Bu^a , m.p. 107° (134°, Pl form), di-n-amyl, m.p. 82° (119°, Pl), -n-hexyl, m.p. 81° (127°, Pl, and 72°, Bz form), -n-heptyl, m.p. 74° (122·5°, Pl, and 92°, Bz form), -n-octyl, m.p. 76° (124·5°, Pl; 106°, Bz), -n-nonyl, m.p. 77° (121°, Pl; 113°, Bz), -n-decyl, m.p. 78° (123°, Pl; 119·5°, Bz), -n-undecyl, m.p. 78° (120·5°, Bz), and -n-dodecyl, m.p. 82° (122°, Bz). (p-OH·C₆H₄·N·), and aq. Alki-KOH-MeOH afford the Et₂, m.p. 159° (150°, Pl), Bu^a , m.p. 135° (124°, Pl), di-n-amyl, m.p. 112° (106°, Pl), -n-hexyl, m.p. 102° (114°, Pl), -n-heptyl, m.p. 102° (100°, Pl; 97°, Bz), -n-octyl, m.p. 98°, -n-nonyl, m.p. 103° (107°, Pl; 99°, Bz), and -n-dodecyl ether, m.p. 106° (107°, Pl). p-OH·C₆H₄·CHO affords p-OAlk·C₆H₄·CHO (I); Alk = Bu^a , b.p. 154—155°/6 mm., n-C₇H₁₅, b.p. 162—164°/7 mm., n-C₈H₁₇, b.p. 162—163°/4 mm., n-C₉H₁₇, b.p. 181—183°/4 mm., Pr^a , b.p. 135—136°/16 mm., isoamyl, b.p. 136—137°/15 mm., and isohexyl, b.p. 175—176°/15 mm. p-OEt·C₆H₄·NH., in EtOH then yields p-n-propoxy-, m.p. 125° (123·5°, Pl), -n-amyloxy-, m.p. 102·5° (119°, Pl), -hexyloxy-, m.p. 99° (119° Pl), -nonyloxy-, m.p. 101·5° (115°, Pl; 84°, 104°, Bz I; 79°, Bz II), and -hexadecyloxy-benzylidenephenetidine, m.p. 106·5° (105·5°, Pl). Similarly prepared are pp'-n-propoxybenzylidene-n-hybroxy-, m.p. 133° (calc. 107° Pl), -n-hybroxylidene-n-hybroxy-, m.p. 136° (106°) Pl), -n-hybroxylidene-n-hybroxy-, m.p. 133° (calc. 107° Pl), -n-hybroxylidene-n-hybroxylidene-n-hybroxy-, m.p. 133° (calc. 107° Pl), -n-hybroxylidene-n-hybroxylidene-n-hybroxylidene-n-hybroxylidene-n-hy [the occurrence of cryst.-liquid phases is observed (cf. A., 1938, II, 79°, Bz II), and -hexadecyloxy-benzylidenephenetidine, m.p. 106·5° (105·5°, Pl). Similarly prepared are pp'n-propoxybenzylidene-n-propoxy-, m.p. 133° (calc. 107°, Pl), -n-butoxybenzylidene-n-butoxy-, m.p. 125° (121°, Pl), and -n-amyloxybenzylidene-n-amyloxy-aniline, m.p. 113° (103°, Pl), and -n-nonyloxybenzylidene-nisidine, m.p. 108° (96°, Pl); pp'-n-nonyloxybenzylidine-toluidine, m.p. 73° (76°, Pl; 74°, Bz I, 70°, Bz II), -ethylaniline, m.p. 65° (77°, Bz I; 74°, Bz II), and -n-propylaniline, m.p. 51° (83°, Bz I; 79°, Bz II), and -n-otyloxybenzylidenetoluidine, m.p. 70° (75°, Pl; 67°, Bz I; 59°, Bz II). (I) and p-NH₂·C₂H₄·CH:CH·CO₂Et in EtOH afford Et p-n-propoxy-, m.p. 64° (159°, Bz I; 131°, Bz II), -n-butoxy-, m.p. 66° (162°, Bz I; 134°, Bz II), -n-amyloxy-, m.p. 62° (158°, Bz I; 128°, Bz II), -n-hexyloxy-, m.p. 49° (156°, Bz I, 126°, Bz II), and -n-nonyloxy-benzylidene-p-aminocinnamate, m.p. 74° (154°, Bz I; 116°, Bz II).

Condensation of o-cresol with formaldehyde in alkaline solution. F. Hanus (J. pr. Chem., 1940, [ii], 155, 317—331).—o-Cresol (1 mol.) in 10% aq. NaOH and 40% CH₂O (1 mol.) at 10—15° for 2 days give a mixture (A) from which 2-hydroxy- (I), m.p. 32·8—33·8°, and 4-hydroxy-3-methylbenzyl alcohol, m.p. 81—84°, are isolable. 2 Mols. of CH₂O yield 2:1:3:5-OH·C₆H₂Me(CH₂·OH)₂ (II) and/or di-(4-hydroxy-5-hydroxymethyl-3-methylphenyl)methane (III), according to conditions used. Oxidation (aq. NaOH-m-NO₂·C₆H₄·SO₃Na) of (A) gives, through the NaHSO₃ compounds, 2:1:3- and 2:1:5-OH·C₆H₃Me·CHO, and o-cresol-3:5-dialdehyde (IV), m.p. 122—122·6° [dioxime, m.p. 182—183° (sinters from 174°); also obtained by CrO₃-AcOH oxidation of (II)]. (III), also prepared from (II) and the calc. amount of aq. NaOH at 40°, or from (I) + (II) in 10% aq. NaOH at 15°, is oxidised by Na₂Cr₂O₇-AcOH to (IV). A. T. P.

Reaction of epichlorohydrin with the Grignard reagent. Derivatives of cyclopropanol. G. W. Stahl and D. L. Cottle (J. Amer. Chem. Soc., 1943, 65, 1782—1783).—Epichlorohydrin with MgBr₂ (1 mol.) and a trace of FeCl₃ and then MgEtBr (3 mols.) gives rapidly 43% of cyclopropanol (cf. Magrane et al., A., 1942, II, 214), b.p. 100—103°, which could not be purified but is characterised as phenyl-, m.p. 101·5—102°, a-naphthyl-, m.p. 100·5—101·5°, and p-nitrophenyl-urethane, m.p. 159—160°, p-nitro-, m.p. 72—72·5°, and 3:5-dinitro-benzoate, m.p. 108—109°, and allophanate, m.p. 179—181° (decomp.). When kept over K₂CO₃ it gives CHEt:CMe·CHO (semicarbazone, m.p. 187—188°).

Lignin. XLII. [Hydrogenation of methoxyphenols.]---See A., 1943, II, 402.

Antispasmodics. V. F. F. Blicke and N. Grier (J. Amer. Chem. Soc., 1943, 65, 1725—1728).—p-C₆H₄Ph·CO·CO₂Et (I) (prep. from Ph. by CO·Et·COCl and AlCl₂ in CS₂) with boiling Na₂CO₃-H₂O-EtOH gives p-C₆H₄Ph·CO·CO₂H (II), m.p. 105—107° (lit. decomp. 170°), and with H₂-Pt (? Pd)-C in EtOH at 3 atm. and then 10% KOH-EtOH gives p-C₆H₄Ph·CH(OH)·CO₂H, m.p. 201—203° (lit. 192°), reduced by red P-I-AcOH to p-C₆H₄Ph·CH₂·CO₂H. Adding MgRBr to (I) in Et₂O-N₂ and then hydrolysing by 10% KOH-

EtOH gives a-hydroxy-a-phenyl-a-p-xenyl-, m.p. 168—170°, and a-hydroxy-a-cyclohexyl-a-p-xenyl-acetic acid, m.p. 202—203°, and a-hydroxy-a-p-xenyl-propionic acid, m.p. 168—169°. MgRBr and (II) in Et₂O give a-hydroxy-a-p-xenyl-butyric, m.p. 175—177°, -n-valeric, m.p. 142—143°, and -n-hexoic acid, m.p. 178—179°. Red P-I-AcOH then gives a-phenyl-a-p-xenyl-, m.p. 141—142°, and a-cyclohexyl-a-p-xenyl-acetic acid, m.p. 204—205°, a-p-xenyl-propionic (III), m.p. 145—147°, -n-butyric, m.p. 123—125°, -n-valeric, m.p. 116—117°, and -n-hexoic acid, m.p. 99—101°. The following are prepared by heating the appropriate acid and aminoalkyl chloride in PrβOH or the appropriate acid chloride and NH₂-alcohol in C₂H₄: β-dimethylaminoethyl, m.p. 158—159°, β-piperidinoethyl, in C₆H₈: β-dimethylaminoethyl, m.p. 158—159°, β-piperidinoethyl, m.p. 163—164°, and γ-diethylaminopropyl α-p-xenylacetate hydrochloride, m.p. 113—115°; β-diethylamino-, m.p. 139—141°, β-dibutylamino-, m.p. 128—130°, and β-piperidino-ethyl, m.p. 147—149°, γ-diethylamino-, m.p. 117—119°, and γ-piperidino-n-propyl α-p-phenyl-α-p-xenylacetate hydrochloride, m.p. 103—105°; β-diethylamino-, m.p. 170—172°, and β-piperidino-ethyl, m.p. 179—181°, and γ-diethylamino-n-propyl α-cyclohexyl-α-p-xenylacetate hydrochloride, m.p. 149—151°; β-diethylamino-, m.p. 141—143°, and β-piperidino-ethyl, m.p. 162—164°, γ-diethylamino-, m.p. 112—114°, and γ-piperidino-n-propyl α-p-xenylpropionate hydrochloride, m.p. 142—144°; β-diethylamino-, m.p. 154—156°, and β-piperidino-ethyl, m.p. 146—148°, and γ-diethylamino-n-propyl α-p-xenyl-n-butyrate hydrochloride, m.p. 97—99°; β-diethylamino-, m.p. 122—124°, and β-piperidino-ethyl, m.p. 127—129°, and γ-diethylamino-n-propyl α-p-xenyl-n-valerate hydrochloride, m.p. 100—102°. Of the esters, those of (III) are the most potent antispasmodics on the untreated, isolated intestinal strip.

R. S. C. in C_sH_s: β-dimethylaminoethyl, m.p. 158—159°, β-piperidinoethyl, untreated, isolated intestinal strip.

Preparation of iodine-containing X-ray contrast substances. II. α-Phenyl-β-3: 5-di-iodo-4-hydroxyphenylpropionic acid ("biliselectan"). W. Baker and (in part) H. Sansbury (J.S.C.I., 1943, 63, 191—192).—ρ-OH·C₆H₄·CHO, anhyd. CH₂Ph·CO₂Na, and Ac₂O at 170—180° (bath; 17 hr.) and hydrolysis (aq. EtOH-NaOH) of the product give ρ-OH·C₆H₄·CH:CPh·CO₂H (83%) (and some ρ-OH·C₆H₄·CH:CHPh), reduced in aq. NaOH-EtOH by Raney Ni and H₂ (2—3 atm.) to ρ-OH·C₆H₄·CH₂·CHPh·CO₂H (I) (93%). With ICl in hot aq. AcOH-HCl, this gives 4:3:5:1-OH·C₆H₂I₃·CH₂·CHPh·CO₂H (II), m.p. 159—160° (corr.; shrinks from ~153°), purified by pptn. of the Na salt from hot 10% NaOH by NaCl, followed by crystallisation of the acid successively from CHCl₃, 45% (vol.) EtOH, and 55% EtOH; overall yield 52%. It is also prepared (42% overall yield) from ρ-OMe·C₆H₄·CHO (could not be demethylated satisfactorily), which is converted into ρnot be demethylated satisfactorily), which is converted into p-OMe· C_0H_4 ·CH₄·CHPh·CO₂H as above, and then demethylated with aq. HBr-AcOH to (I). (II) titrates as a dibasic acid; it is an orally-administered X-ray contrast substance for the gall-bladder.

Fluorinated compounds of possible chemotherapeutic interest. E. Bograchov (J. Amer. Chem. Soc., 1943, 65, 1652—1653). C₆H₄F·COCl and 4:1-PhN₂·C₁₀H₆·NH₂ in C₅H₆N-CHCl₃ at 0° give 1-o-, m.p. 154°, and 1-p-fluorobenzamido-4-benzeneazonaphthalene, m.p. 201° N⁴-o-Fluorobenzoylsulphanilamide, m.p. 264°, is prepared from o-C₆H₄F·COCl and p-NH₂·C₆H₄·SO₂·NH₂ in AcOH at 0°.

2'-Hydroxydiphenylphthalide. M. H. Hubacher (J. Amer. Chem. Soc., 1943, 65, 1655—1656).—4'-Hydroxydiphenylphthalide, new m.p. 170·1—170·4°, obtained from o-C_sH₄Bz·COCl and PhOH in C_sH₆ at 40°, is accompanied by a little of the 2'-OH-isomeride, m.p. 240·5—241·3° [separated by sublimation; acetale, m.p. 136·6—137·7°; Me ether, m.p. 126·1—126·7° (lit. 127—128°); with KOH at 240—245° gives 9-phenylxanthene and BzOH]. R. S. C.

Optically active acyl peroxides. Preparation, decomposition, and use as catalysts for vinyl polymerisation. C. S. Marvel, R. L. Frank, and E. Prill (*J. Amer. Chem. Soc.*, 1943, 65, 1647–1652).—p- C_6H_4 BrBu-sec. (I) with CuCN gives dl-p-sec.-butylbenzonitrile (84%), b.p. 78—80°/4 mm., hydrolysed by 75% H_2 SO₄ at 150° to dl-, m.p. 93·5—94° (91—92° by Grignard method), resolved by quinine to 1-p-sec.-butylbenzoic acid (I), m.p. 88·5—89°, [a] $_2^{20}$ —23·5° in MeOH (quinine salt, m.p. 184—185°, [a] $_3^{0}$ –138·4° in MeOH; impure d-form, [a] $_3^{10}$ +18·2° in MeOH). The derived (SOCl $_2$ - C_6H_6 N) dl-, b.p. 135—137°/15 mm., and 1-chloride, b.p. 143—144°/20 mm., in C_6H_6 with aq. Na $_3$ O $_2$ at 0° give dl-, m.p. 49—50°, and 1-p-sec.-butylbenzoyl peroxide (II), m.p. 45·5—47°, [a] $_3^{27}$ –29·0° in dioxan. In dioxan at 55°, dl- or l-(II) decompose to give dl- or l-(I), respectively, but changes in [a] for l-(II) are too small for calculation of kinetics. changes in [a] for l-(II) are too small for calculation of kinetics. l-Menthyl H phthalate, m.p. 108·5—110°, gives similarly l-o-carbomenthoxybenzoyl peroxide, m.p. 117—118° (decomp.), [a]²7 —91·6° in dioxan, decomp. of which in dioxan at 55° is unimol. (k l·15 × 10⁻⁴ sec.-¹; half-life l·75 hr.). Polymerisation of styrene, CH₂:CMe·CO₂Me, or CH₂:CH·CN in presence of l-(II) discloses no peculiarity.

R. S. C.

Antispasmodics. II. Basic esters of polynuclear carboxylic acids. R. R. Burtner and J. W. Cusic (J. Amer. Chem. Soc., 1943, 65, 1582—1585; cf. A., 1943, II, 161).—Of the esters described below. (I) and (II) are much the most potent antispasmodics. The following are usually prepared by LiBua and then CO₂:9:10-dihydro-

anthracene-9-, xanthene-9-, thioxanthene-10-, m.p. 227°, 10-methyl-5: 10-dihydroacridine-0-, m.p. 184° (decomp.), 9-, m.p. 194—196°, and 10-methyl-9: 10-dihydroanthracene-9-, m.p. 204—207°, and 9-cyclohexylfluorene-9-carboxylfic acid, m.p. 220—222°. The following cyclohexylfluorene-9-carboxylic acid, m.p. 220—222°. The following are prepared, m.p. being those of the hydrochlorides: β-diethylaminoethyl (I), m.p. 170—171°, β-, m.p. 185°, and γ-diethylamino-n-propyl, m.p. 136°, β-di-n-butylaminoethyl, m.p. 130°, and β-morpholinoethyl 9:10-dihydroanthracene-9-carboxylate, m.p. 142°; atc., m.p. 192—193°; β-diethylaminoethyl 10-, m.p. 202°, and 9-methyl-9:10-dihydroanthracene-9-carboxylate, m.p. 157—159°, xanthene-9-carboxylate (II), m.p. 159—160°, thioxanthene-10-carboxylate, m.p. 195°, acridan-5-carboxylate, m.p. 201°, 10-methylacridan-5-carboxylate, m.p. 157—158°, acridine-5-carboxylate, m.p. 190° (lit. 179—180°), 9-ethyl-, m.p. 168—169°, and 9-cyclohexyl-fluorene-9-carboxylate, m.p. 184°, indene-1-carboxylate, m.p. 141—143°, 1-naphthoate, m.p. 159—161°, 1: 4-dihydro-, m.p. 152°, and 1:2:3:4-tetrahydro-1-naphthoate, m.p. 137—138°, diphenylyl-2-acetate, m.p. 108—109°, and phenanthrene-9-carboxylate, m.p. 169—170° (lit. 171—171-5°).

Representation of allocated and managers.

Pentagallates of glucose and mannose.—See A., 1944, II, 6.

4:4'-Dicyanobenzaldazine. H. J. Barber and R. Slack (J. Amer. Chem. Soc., 1943, 65, 1776—1777).—Contrary to Sah (A., 1942, II, 313), p-CN-C₆H₄·CHO (prep. from the alcohol by N_2O_4) with N_2H_4 , H_2O in EtOH gives the azine, m.p. $318-320^\circ$, which yields no (p-CN-C₆H₄·CH:)₂ but when repeatedly sublimed at $300-320^\circ$ gives a small amount of p-C₆H₄(CN)₂. R. S. C.

Gattermann reaction with monomethoxydiphenyl ethers. H. E. Ungnade and E. F. Orwoll (J. Amer. Chem. Soc., 1943, 65, 1736—1739).—o-OMe·C₆H₄·OPh with AlCl₃-HCN in C₆H₆ at 0° and then 40—50° gives 40—50% of mixed aldehydes (A), whence KMnO₄-COMe₂ gives 4:3:1-OMe·C₆H₃(OPh)·CO₂H (I), m.p. 186—186·5°. 1:3:4-C₆H₃MeBr·N₂·HSO₄ with boiling aq. Na₃SO₄-H₃SO₄ gives 1:3:4-C₆H₃MeBr·OH (93—96%), b.p. 102—104°/20 mm., the Me ether, b.p. 126—127°/25 mm., of which with KOPh and Cu powder at 160—200° gives Ph 4-methoxy-m-tolyl ether, m.p. 38·5—39°. With HI-AcOH this gives Ph 4-hvdroxy-m-tolyl ether, m.p. 69·5—70°. and HI-AcOH this gives Ph 4-hydroxy-m-tolyl ether, m.p. 69.5-70°, and HI-AcOH this gives Ph 4-hydroxy-m-lolyl ether, m.p. 69.5—70°, and with KMnO₄ in aq. C₈H₈N gives (I), converted by AlCl₃ in C₈H₆ or HBr-AcOH at 150° (not H1-Ac₂O) into 4-hydroxy-3-phenoxybenzoic acid, m.p. 187.6—188°, AlCl₃ in C₈H₈ converts (A) into 4-hydroxy-3-phenoxybenzaldehyde (II), m.p. 121.5—122°, and o-OH·C₆H₄·OPh (III). Me₂SO₄ converts (II) into 3-phenoxy-4-methoxybenzaldehyde, m.p. 49—50° [semicarbazone, m.p. 172.4—173°; oxidised to (I]]. o-OMe·C₈H₄·O·C₈H₄·CHO-p (semicarbazone, m.p. 207—208°) with AlCl₃ in C₆H₆ gives (III), whence its formation from (A) is explained. By successive treatment with HI-Ac₂O-AcOH, esterification (Ag salts), and extraction with NaOH, the acids from (A) give o-AlCl₃ in C₆H₆ gives (III), whence its formation from (A) is explained. By successive treatment with HI-Ac₂O-AcOH, esterification (Ag salts), and extraction with NaOH, the acids from (A) give o-OH·C₆H₄·O·C₈H··CO₂H··P (IV), which is also obtained by KOH-(CH··OH)₂. With KOH-(CH₂·OH)₂ o-OMe·C₆H₄·O·C₆H₄·CO₂H··P gives (IV) (53%), but (I) gives (III) (75%). The oxazolone, m.p. 183·5—184°, from (II) gives m-phenoxytyrosine, m.p. 236° (block; preheated at 200°) [absorption max. at 2970 A. (log g 3·62), min. at 2750 A. (log g 3·4)]. The aldehyde mixture (B) obtained in 40—45% yield from m-OPh·C₆H₄·OMe (V) gives acids (C), whence H₂SO₄ gives 16·7% and AcCl gives 23% of 3-methoxyxanthone (VI); 2:4:1-OPh·C₆H₃(OMe)·CO₂H (VII) gives 84% of (VI). 3-Hydroxyxanthone, prepared from (VI) by AlCl₃, has m.p. 249—250° (lit. 243°). (VII) gives similarly 4-hydroxy-2-phenoxybenzoic acid, m.p. 163—164°. 1:4:2-C₆H₃MeCl·OH (85%), m.p. from the NO₂-compound by H₂-Raney Ni in MeOH at 60°/2000 lb.), b.p. 120—125°/40 mm., gives 1:4:2-C₆H₃MeCl·OH (85%), m.p. 67—68°, the Me ether, b.p. 104—106°/25 mm., of which with KOPh and Cu powder at 250—270° gives 4:1:2-OPh·C₆H₃Me·OMe (10%), b.p. 275—276°, oxidised and then demethylated (AcOH-HI) to 2-hydroxy-4-phenoxy-benzoic acid (VIII), m.p. 182·4—183°. (VIII) is obtained (m.p. 180·8—181·4°) from (C) by AlCl₃. (V) with KOH-(CH₂·OH)₂ or HI-AcOH gives m-OPh·C₆H₄·OH (oxyacetic acid derivative, m.p. 67—67·4°), also obtained from (B) by AlCl₃-C₆H₆. By the Gattermann synthesis p-OPh·C₆H₄·OMe gives 6% of p-OMe·C₄H₄·O·C₄H₄·CHO. mann synthesis p-OPh·C₆H₄·OMe gives 6% of p-OMe·C₆H₄·O·C₆H₄·CHO.

Formation and structure of organic molecular compounds: II. Formation and structure of organic molecular compounds: II. Molecular compounds of s-trinitrobenzene with unsaturated ketones. J. Weiss (J.C.S., 1943, 462—463).—s-C₈H₃(NO_{*})₃ (I) and unsaturated ketones with the CO forming part of the conjugated system form mol. compounds. Compounds with the following ketones have been prepared in EtOH, the ratio ketone: (I) and m.p. being indicated: (CHPh:CH)₂CO, 1:2, 127°; 2:1, 115°; p-OMe·C₈H₄·CH:CH·CO·CH:CHPh, 1:1, 114°, 1:2, 124°; (p-OMe·C₈H₄·CH:CH)₂CO, 1:1, 115°; 2:1, 122°; (CHPh:CH·CH:CH)₂CO, 1:1, 113°; 1:2, 110°. Compounds are not formed by ketones of the type RCOMe (R = CHAr:CH); hence it is not the isolated group R but the conjugate system as a whole that is responsible for com-R but the conjugate system as a whole that is responsible for compound formation, the link being provided by the CO. The structure of the compounds and its relation to their colour are discussed.

Properties of m-nitrodibenzoylmethane. R. P. Barnes and L. B. Dodson (J. Amer. Chem. Soc., 1943, 65, 1585—1588).—mNO₂·C₄H₄·COMe, PhCHO, and NaOH in MeOH-H₂O give mnitrophenyl styryl ketone, m.p. 125—127°, the dibromide (I), m.p.
162—162·3°, of which with NaOMe-MeOH and then HCl-MeOH
gives an enol (II), OH·CPh:CH·CO·C₄H₄·NO₂, m.p. 131—134° (cf.
Bodforss, A., 1917, i, 223). With NH₂OH, HCl and KOH in EtOH,
(I) pives 5.-thenyl-3-m-nitrophenylisocrapole, m.p. 169·5—170° also (I) gives 5-phenyl-3-m-nitrophenylisooxazole, m.p. 169-5-170°, also obtained from (II) by NH₂OH,HCl in MeOH. Similar treatment of COPh (CHBr), C₆H₄·NO₂ gives 3-phenyl-5-m-nitrophenylisooxazole, m.p. 180°. Warming (I) with NHPh NH₂ in MeOH and later warming with KOH gives 1:5-diphenyl-3-m-nitrophenylpyrazole (III), m.p. 131°. N₂H₄ leads similarly to 5-phenyl-3-m-nitrophenylpyrazole (IV), m.p. 206°. Incorrect configurations were previously (loc. cit.) assigned to (III) and (IV). (loc. cit.) assigned to (III) and (IV).

Condensation of ethyl methylacetoacetate with ethyl chlorofumarate. R. B. Woodward and W. A. Reed (J. Amer. Chem. Soc., 1943, 65, 1569—1572).—Contrary to Ruhemann et al. (J.C.S., 1896, 69, 50, 1509—1572].—Contrary to Ruhemann et al. (J.C.S., 1896, 69, 1386; 1897, 71, 325), Et₂ chlorofumarate and CHMeAc·CO₂Et give an enolic form of Et_2 4-methyl- Δ^5 -cyclohezene-1: 3-dione-4: 5-dicarboxylate [absorption max. at 326 (log ϵ 3·68) and ~250 m μ .], converted by hot, conc. HCl into 4:6:1:2-(OH)₂C₆H₂Me·CO₂H and thence by conc. H₂SO₆ at 100° into 2:4:6:8-tetrahydroxy-1:5-dimethylanthraquipone (tetra-scette m. p. 221—239°). methylanthraquinone (tetra-acetate, m.p. 231—232°).

β-Alkylation of certain cationoid systems by means of Grignard reagents. A. J. Birch and (Sir) R. Robinson (f.C.S., 1943, 501—502; cf. A., 1942, II, 345).—Carvone and MgMeI-Et₂O in presence of a little CuBr, followed by heating the product with a trace of I at 180°, afford 6-methylcarvomenthone, b.p. 235—240°, with some diene, b.p. ~200°. 2-Keto-Δ¹:•-octohydronaphthalene and 180°, afford 6-methylcarvomenthone, b.p. 235—240°, with some diene, b.p. ~200°. 2-Keto-Δ¹:°-octohydronaphthalene and MgMeI (+ CuBr) give cis-2-keto-9-methyldecahydronaphthalene, m.p. ~14·5°, b.p. 250—254° (2: 4-dinitrophenylhydrazone, m.p. 106°; CHPh.' derivative, m.p. 85—86°; the oxime separates as a mixture of isomerides, converted by NH₂OH,HCl-aq. EtOH in 1 week into the form, m.p. 100°), oxidised to cis-1-methylcyclohexane-1: 2-diacetic acid (cf. Linstead et al., A., 1937, II, 406). 2-Keto-10-methyl-Δ¹:°-octahydronaphthalene similarly gives (?) trans-2-keto-9: 10-dimethyldecahydronaphthalene, m.p. 90—95° (semicarbazone, m.p. 202—203°). Et cyclohexylidenecyanoacetate and n-C₁₀H₂₁·MgBr or MgMeI yield Et 1-n-decyl- (14%), b.p. 230—235°/15 mm. (and some C₂₀H₄₂), or (after previous extraction of the product with aq. EtOH-NaCN) Et 1-methyl-cyclohexane-1-cyanoacetate (45%), b.p. 155—160°/12 mm., respectively. The latter and 15% aq. NaOH give 1-methylcyclohexane-1-malonamic acid, m.p. 151°, converted at 180° into the -1-acetamide, m.p. 112—113°. 2-β-Carbethoxyethylcyclohexanone, CN·CH₂·CO₂Et, and piperidine at 100° (bath; 10 hr.) yield Et 2-β-carbethoxyethyl-Δ¹-cyclohexane-1-cyanoacetate, b.p. 150—153°/0·1 mm., which is not alkylated by MgMeI (+CuBr).

Structure of diketen.—See A., 1944, I, 4.

Structure of diketen.—See A., 1944, I, 4.

Structure of diketen.—See A., 1944, I, 4.

Reactions and enolisation of cyclic diketones. VII. 1:2-Diketo-3-tert.-butylhydrindene. C. F. Koelsch (J. Amer. Chem. Soc., 1943, 65, 1640—1643; tf. A., 1942, II, 23).—Enolisation of 1:2-diketo-3-tert.-butylhydrindene (I) (see below) is entirely suppressed by the Buγ. CO(CH:CHPh), and MgBuγCl in boiling Et₂O—C₆H₆ give az-diphenyl-ζζ-dimethyl-Δα-hepten-γ-one (II), m.p. 146—148°, oxidised by KMnO₄-COMe₂ or, less well, CrO₃-AcOH to β-phenyl-γγ-dimethyl-n-valeric acid (III), m.p. 114—116° (anilide, m.p. 123—125°), the chloride (SOCl₂) of which with AlCl₃ in C₆H₆ gives 3-tert.-butyl-1-hydrindone, b.p. 150—153°/20 mm. (oxime, m.p. 135—137°). With OBu·NO-conc. HCl-EtOH at 22—65° this gives the 2-NOH: derivative, m.p. 182—185°, converted by CH₂O-HCl-AcOH into (I), m.p. 76—78° NaHSO₃ compound; with o-C₆H₄(NH₂)₂ gives a quinoxaline, m.p. 131—132°]. Solid (I) is orange and its solutions in org. solvents are orange-pink; in aq. alkali it is deep blue. It is stable to air and Br-CCl₆. In aq. NaOH, H₂O₂ converts it into α-tert.-butylhonophthalic acid, m.p. 176—178° (gas) (anhydride, m.p. 106—107°). CHPh:CH·COMe and MgBuγCl in Et₂O give δ-phenyl-εz-dimethyl-n-hexan-β-one (IV), m.p. 61—62°, b.p. 145—150°/20 mm., and, by 1:2-addition, CHPh:CH·CMeBuγ-OH (V). (V) could not be purified nor could the dehydration product. CHPh'CH-CR-WiCh (Chemed by distillation, but the presence of the (V) could not be purified nor could the dehydration product, CHPh.CH.CBu.Y.CH.2, formed by distillation, but the presence of the CHPh:CH·CBu^{*}:CH₂, formed by distillation, but the presence of the latter is proved by condensation with (:CH·CO)₂O at 100° to give 5-tert.-butyl-1:2:3:4-tetrahydrodiphenyl-2:3-dicarboxylic anhydride, m.p. 177—178°, and thence the derived acid, sinters 170°, m.p. 190—192° (gas) (Ag₂ salt). With S at 250° this gives 5-tert.-butyldiphenyl-2:3-dicarboxylic [5-tert.-butyl-3-phenylphthalic] acid, sinters 170°, m.p. 190—192° (gas) [salt, NaHX, H₂X, m.p. >270°; anhydride, m.p. 142—143°], which with conc. H₂SO₄ at 100° yields 3-tert.-butyl-9-fluorenone-1-carboxylic acid, m.p. 184—186°. Only a poor yield of (III) is obtained from (IV) by HOHal; a better yield is obtained by condensing with PhCHO to give (II) which is then yield is obtained by condensing with PhCHO to give (II) which is then oxidised as above.

Synthesis of substances related to the sterols, XLII. R. H. Martin and (Sir) R. Robinson (J.C.S., 1943, 497—501; cf. A., 1941, II, 295).—3-Phenyl- Δ^2 -cyclopentenone-2-acetic acid and Ac₂O at

190° give 3'-keto-4-acetoxy-1: 2-cyclopentenonaphthalene, m.p. 159—160°; hydrolysis with aq. NaOH-EtOH gives the 4-OH-compound (improved prep.; cf. loc. cit.). The Me ether (I), m.p. 127.5—128.5° atm.) and then hydrolysed (KOH-MeOH-little H₂O) to 4-methoxy-1:2-cyclopentenonaphthalene-3'-acetic acid (II), m.p. 136—137·5° (previous sintering). With SeO₂ in boiling AcOH (3 min.), (I) gives 2':3'-diketo-4-methoxy-1:2-cyclopentenonaphthalene, m.p. 178—180°. m-OMe·C₆H₄·CO·CHAc·CO₂Et is hydrolysed (10% aq. NH₃ followed by boiling 10% aq. NaOH) to m-OMe·C₆H₄·COMe, which with furfuraldehyde in cold 1% MeOH-NaOMe affords furfurylidene-3-methoxyacetophenone, b.p. 175°/0·45 mm., m.p. 38·5—39·5° (2:4-dinitrophenylhydrazone, m.p. 190—191°). The derived γζ-diketo-ζ-m-anisylheptoic acid, m.p. 87—88°, and 2% aq. NaOH yield 3-m-anisyl-Δ²-cyclopentenone-2-acetic acid, m.p. 100—101°; Ac₂O then affords 3'-keto-4-acetoxy-7-methoxy-1:2-cyclopentenonaphthalene, m.p. 177·5—178°, and (probably) some 5-OMe-isomeride, m.p. 196·5—198°. Reinvestigation (loc. cit.) of the hydrogenation of 4:6-dimethoxy-1:2-cyclopentadienonaphthalene-3'-acetic acid 196.5—198°. Reinvestigation (loc. cit.) of the hydrogenation of 4:6-dimethoxy-1:2-cyclopentadienonaphthalene-3'-acetic acid shows that the acid, C₁₇H₂₂O₄, m.p. 117—118°, is a mixture (A) of stereoisomerides; the main constituent is 4:6-dimethoxy-5:6:7:8-tetrahydro-1:2-cyclopentenonaphthalene-3'-acetic acid, m.p. 131—132·5°. With boiling HI (d 1·7)-AcOH (30 min.), followed by Me₂SO₄-aq. KOH-MeOH, (A) yields 4-methoxy-7:8-dihydro-1:2-cyclopentenonaphthalene-3'-acetic acid, m.p. 154·5—156·5°, the Me ester of which with Pd-C (N₂) at 300°, followed by hydrolysis, gives (II). The non-cryst. acids in the prep. of (A) are complex mixtures (deoxygenated) yielding indefinite products on dehydrogenation; their Me esters with Pd-C-N₂ at 220°, followed by hydrolysis, give an acid, C₁₅H₁₈O₂, m.p. 109·5—111·5°. o-Tolyl carbonate (III), m.p. 57—57·5°, and (?) ClCO₂C₂H₄Me-o, b.p. 84°/15 mm. [convertible by C₅H₅N-C₆H₆ into (III)], are obtained from o-cresol and COCl₂-aq. NaOH at 70—75°. With HNO₃ (d 1·43) in H₂SO₄ at —15° to 0°, followed by boiling aq. K₂CO₃, (III) affords a little 3- + 4-, but mainly 5-nitro-o-cresol. 1:4:2-C₆H₃MeCl·OMe, obtained from 1:4:2-C₆H₄MeCl·NH₂ through the diazo-reaction and subsequent 1:4:2-C,H,MeCl·NH, through the diazo-reaction and subsequent 1: 4: 2-C₆H₄MeCl·NH₂ through the diazo-reaction and subsequent methylation, is converted by AcCl–CS₂–AlCl₃ into 6-chloro-4-methoxy-3-methylacetophenone, m.p. 45·5—46°; its furfurylidene derivative, m.p. 78—79°, and boiling conc. HCl–EtOH give 2-(4'-chloro-6'-methoxy-m-tolyl)furan-5-β-propionic acid, m.p. 175—177° (slight sintering) (Me ester, m.p. 77—78°) (attempts to open the furan ring failed). 3'-Keto-4: 6-dimethoxy-1: 2-cyclopentenonaphthalene and SeO₂–AcOH (b.p.) give 2': 3'-diketo-4: 6-dimethoxy-1: 2-cyclopentenonaphthalene, m.p. 243—245° (decomp.) [quinoxaline derivative, m.p. 247°, from o-C₆H₄(NH₂)₂ in AcOH], converted by H₂O₂–aq. NaOH into 2-carboxy-4: 6-dimethoxy-1-naphthylacetic acid, m.p. 255—257° (decomp.).

Synthesis of substances related to the sterols. XLI. Androstenedione. I. R. H. Martin and (Sir) R. Robinson (J.C.S., 1943, 491—497; cf. A., 1941, II, 295).—A mixture of a max. of eight (probably less) dl-stereoisomerides of androstenedione is probably prepared. 2:1-OMe·C₁₀H₆·CHO and H₂-EtOH-Raney Ni at 100°/100 atm. give 6-methoxy-5-methyl-1:2:3:4-tetrahydronaphthalene prepared. 2: 1-OMe·C₁₀H_e·C·HO and H₂-EROH-Kaney NI at 100⁻/
100 atm. give 6-methoxy-5-methyl-1: 2: 3: 4-tetrahydronaphthalene
(I), m.p. 51·5—52° (HI-AcOH give the 6-OH-compound, m.p.
113·5—114·5°), better prepared by a similar hydrogenation of
1: 2-C₁₀H₆Me·OH, followed by Me₂SO₄-aq. NaOH at 80°, then at
100°. (I) and CrO₃-aq. AcOH at <20° yield 1-keto-6-methoxy-5methyl-1: 2: 3: 4-tetrahydronaphthalene (II), m.p. 112—113°
(2: 4-dinitrophenylhydrazone, m.p. 249—250°), converted by Et₂OMgMeI-C₆H₆, followed by S at 215°, into 2-methoxy-1: 0-dimethylnaphthalene, m.p. 96—97°; HI-AcOH gives 1: 5: 2-C₁₀H₅Me₂·OH,
m.p. 161—162°. Me₂C₂O₄-dry NaOMe-C₆H₆ (under N₂) and
(II)-C₆H₆ at room temp., then at b.p., afford Me 1-keto-6methoxy-0-methyl-1: 2: 3: 4-tetrahydro-2-naphthylglyoxylate, m.p.
136—137°, which loses CO at 170—180° to give Me 1-keto-6-methoxy-5-methyl-1: 2: 3: 4-tetrahydronaphthalene-2-carboxylate (III), m.p.
100—101° (immersed at 93°) (2: 4-dinitrophenylhydrazone, m.p.
223—224° after darkening at 195°). (III) and boiling MeI-NaOMeC₆H₆ give the 2-Me derivative, m.p. 89—90·5°, which with
CH₂Br·CO₂Me-Zn-C₆H₆-Et₂O (+ I) at 70° yields (chromatographic
separation) Me 1-hydroxy-6-methoxy-2-carbomethoxy-2: 5-dimethyl1: 2: 3: 4-tetrahydro-1-naphthylacetate (IV), m.p. 106·5-108°;
SOCl₂-C₆H₆-C₈H₄N at room temp., followed by boiling aq. KOHMeOH, gives a mixture of the cis-anhydride (V), m.p. 204—205°, of
1-carboxymethylene-6-methoxy-2: 5-dimethyl-1: 2: 3: 4-tetrahydronaphthalene-2-carboxylic acid, and the trans-1: 2-dicarboxylic acid
in one experiment. 1-keto-6-methoxy-2: 5-dimethyl-1: 2: 3: 4-tetrahydronaphthalene-2-carboxylic acid, and the trans-1: 2-dicarboxylic acid
in one experiment. 1-keto-6-methoxy-2: 5-dimethyl-1: 2: 3: 4-tetrahydronaphthalene-2-carboxylic acid, and the trans-1: 2-dicarboxylic acid [in one experiment, 1-keto-6-methoxy-2:5-dimethyl-1:2:3:4-tetrahydronaphthalene, m.p. 113—114° (2:4-dimitrophenylhydrazone, m.p. 229°), was also isolated]. (IV) and HCl-C₆H₈-CaCl₂ at room temp. give stereoisomeric Me_2 esters (VI), $C_{18}H_{22}O_5$, b.p. 150°/0·05 mm. and m.p. 105-5—106-5°. (V) (crude) is hydrolysed by KOH-EtOH, and the resulting K salts reduced by 2% Na-Hg to the H_2 -acids, and esterified (CH₂N₂) to the a- Me_2 ester (VII), m.p. 112— 113° , of 2-carboxy-6-methoxy-2:5-dimethyl-1:2:3:4-tetrahydro-1-naphthyl-acetic acid; the β - Me_2 ester, m.p. 53— 54° , also formed is obtained

cryst. through the β -Me H ester (VIII), m.p. 149—150°, and CH₂N₂. The α -Me H ester (IX) has m.p. 137—139°. A mixture of α - (main product) and β -Me₂ esters is obtained by catalytic reduction of (VI), using PtO₂ in AcOH or EtOAc, Pd-C or Pd-black in COMe₂, or SrCO₂-Pd, or Raney Ni at $60^{\circ}/25$ atm. Boiling KOH-MeOH converts the Me₂ esters into the a-, m.p. 217—217- 5° (slight sintering), and β -dicarboxylic acid, m.p. 198— 200° , and thence (Ac₂O) the a-, m.p. 173— 174° , and β -anhydride, m.p. 168— 169° , respectively. Thermodynamic dissociation consts. of the dicarboxylic acids are investigated [by J. C. Speakman], but spatial structure could not be proved. It is probable that CO_3Me and $CH_2 \cdot CO_2Me$ are cis- in the α - and trans- in the β -series. Reduction of (VI) using Raney Ni (above) is unreliable, and in one experiment, much degradation occurred; after hydrolysis with KOH-EtoH, followed by Ac_2O_3 . occurred; after hydrolysis with KOH-EtOH, followed by Ac₂O, (V) was isolated; also formed were 1:2:5:6-C₁₀H₄Me₃·OMe and (?) 6-methoxy-2:5-dimethyl-3:4-dihydro-1-naphthylacetic acid, m.p. 180—192° (H₂-Pd-SrCO₃-EtOAc-COMe₂ gives the H₄-acid, m.p. 155·5—159°). (VII) with HI (d 1·7)-AcOH followed by boiling H₂SO₄-MeOH gives Me a-2-carboxy-6-hydroxy-2:5-dimethyl-1:2:3:4-letrahydro-1-naphthylacetale, m.p. 169—170° (+ MeOH), and a-2-carbomethoxy-6-hydroxy-2:5-dimethyl-1:2:3:4-tetrahydro-1-naphthylacetic acid, m.p. $179.5-180.5^{\circ}$. When the crude demethylation product of (VII) or the corresponding dicarboxylic acid is refluxed with MeOH-H₂SO₄, the Me_2 ester (X), m.p. $122-123^{\circ}$, of the phenoldicarboxylic acid is obtained; the β -dicarboxylic acid is the phenoldicarboxylic acid is obtained; the β-dicarboxylic acid is demethylated and esterified (HCl-MeOH) to give the Me₂ ester, m.p. 125—126°, isomeric with (X). (X) and H₂-dry dioxan-Raney Ni give only a trace of Me 2-carbomethoxy-6-hydroxy-2: 5-dimethyl-decahydro-2-naphthylacetate, b.p. 180° (bath)/0·05 mm.; there is considerable deoxygenation. The chloride from (IX) and SOCl₂—Et₂O (+C₆H₆N) with Et₂O-CH₂N₂ in C₆H₆ gives the diazo-ketone, which with Ag₂O-MeOH affords Me α-2-carbomethoxy-6-methoxy-2: 5-dimethyl-1: 2: 3: 4-tetrahydronaphthalene-1-β-propionate, m.p. 84—85°; NaOMe-C₆H₆ (under N₂) then gives Me 3'-keto-6-methoxy-2: 5-dimethyl-1: 2: 3: 4-tetrahydro-1: 2-cyclopentenonaphthalene-2'-carboxylate, m.p. 107·5—108·5°, converted by boiling HI-AcOH into 6-hydroxy-3'-keto-2: 5-dimethyl-1: 2: 3: 4-tetrahydro-1: 2-cyclopentenonaphthalene-a (XI), m.p. 189—191° (vac.). (VIII) similarly yields the OH-ketone-β, m.p. 230—231° (vac.). The use of 2% Pd-SrCO₃ as catalyst for hydrogenations in dioxan is illustrated. Thus PhOH at 20°/113 atm., then 75—140°/125 atm., gives almost quant. yield of cyclohexanol, p-C₆H₄(OMe)₂ affords 1: 4-dimethoxycyclohexane, p-OH·C₆H₄·CO₂Et in pure dioxan at 15°/118 mm., then 155°/150 atm. and 157°/90 atm., or in EtOAc at 140—150°/140 atm., yields trans-k-carbothoxycyclohexane (X) is not similarly reduced 155°/150 atm. and 157°/90 atm., or in EtOAc at 140—150°/140 atm., yields trans-4-carbethoxycyclohexanol. (X) is not similarly reduced, but (XI) (in dioxan) at 196°/134 atm., then 202°/133 atm., gives stereoisomeric 6: 3'-dihydroxy-2: 5-dimethyldecahydrocyclopentenonaphthalenes, a colourless glass, oxidised by CrO₃-AcOH at 10—15° to a mixture of diketones containing 6:3'-diketo-2:5-dimethyldecahydro-1: 2-cyclopentenonaphthalene-x-a, m.p. 116—117°. The mixed diketones (not cryst.) with NaNH₂ in boiling Et₂O (N₂) for 6 hr., followed by COMe·[CH₂]₂·NMeEt_{*}I in EtOH (N₂), give mixed (?) androstenediones (absorption in EtOH confirms C.C.CO).

Crystalline bisulphite additive compounds of menadione [2-methyl-1:4-naphthaquinone]. F. Ablondi, R. W. Price, B. R. Baker, and G. H. Carlson (J. Amer. Chem. Soc., 1943, 65, 1776).—Cryst. LiHSO₃, NH₄HSO₃, and Ca(HSO₃)₂, m.p. (air-dried) 97—98°, (anhyd.) 115—117° (decomp.), derivatives of 1:2:4-O:C._aH.Me:O are prepared.

R. S. C. Synthesis of 2-methyl-1: 4-naphthaquinone-8-sulphonic acid. A. Bendich and E. Chargaff (J. Amer. Chem. Soc., 1943, 65, 1568—1569).—2-C₁₀H₇Me and ClSO₃H in CCl₄ at -10° to room temp. give 2:8- (49% isolated as Ba salt) and 2:1-C₁₀H₈Me·SO₃H (cf. Vesely et al., A., 1930, 1173). 2:8-C₁₀H₈Me·SO₃K and PCl₅ at 100° give the sulphonyl chloride, m.p. 94—95°, and thence (conc. aq. NH₃) the sulphonamide, m.p. 197°, which with CrO₃-AcOH at 80°—the b.p. gives 2-methyl-1:4-naphthaquinone-8-sulphonamide, m.p. 231—232° (decomp.). NaNO₂-H₂SO₄-AcOH then gives 2-methyl-1:4-naphthaquinone-8-sulphonic acid [Ba, K, and Tl, m.p. 263—264° (decomp.), salts], which has little or no vitamin-K activity. 264° (decomp.), salts], which has little or no vitamin-K activity.

Synthesis of the pentacene ring system. C. F. H. Allen and J. W. Gates, jun. (J. Amer. Chem. Soc., 1943, 65, 1502—1503).—1:3-Diphenylısobenzfuran and p-O:C₆H₄:O in boiling EtOH give 7:12:5:14-diepoxy-5:7:12:14-tetraphenyl-5:5a:6a:7:12:12a:13a:14-octahydropentacene-6:13-quinone, m.p. 197—198°, converted by conc. H₂SO₄ at -10° into 5:7:12:14-tetraphenylpentacene-6:13-quinone (A., 1942, II, 320). 7:12:5:14-Diepoxy-5:7:12:14-tetraphenyl-2:3:9:10-tetramethyl-5:5a:6a:7:12:12a:13a:14-octahydropentacene-6:13-quinone is similarly prepared.

R. S. C.

IV.—STEROLS AND STEROID SAPOGENINS.

17-Amino-10: 13-dimethylcvclopentanopolyhydrophenanthrene compounds —See B., 1943, III, 303.

quinone is similarly prepared.

Steroids with ethylenic linkings between quaternary carbon atoms. III Structure of a-spinasterol. H. E. Stavely and G. N. Bollenback (J. Amer. Chem. Soc., 1943, 65, 1600—1603; cf. A., 1943, II, 332).—y-Cholestenyl acetate (I) is unchanged by PtO₂, Pt- or Pdblack unless the catalyst has been treated with H₂ (cf. Wieland et al., A., 1943, II, 268). In presence of H₂ all three catalysts isomerise (I). When Pd-black is first shaken in EtOAc with H₂, it then isomerise merises (I) under N_2 , but this treatment fails with PtO_2 or Pt-black. a-Spinasterol is proved to be the $\Delta^{8(9)}$ -compound. Its acetate with CrO₃-AcOH at room temp, gives a mixture (cf. Simpson, A., 1937, II, 339), resolved by chromatography into 8:9- (II), m.p. 229—230°, $[a]_{\rm D}$ $-32\pm1\cdot5^{\circ}$, and 8:14-epoxy-3-acetoxy- Δ --stigmasten-7-one (III), m.p. 171—173°, $[a]_{\rm D}^{24}$ $-77\pm3^{\circ}$, both having no selective adsorption at >230 m_{\mu}, and a residue which by hydrolysis (HCladsorption at >230 m μ ., and a residue which by hydrolysis (HCIEtOH), treatment with Girard's reagent T, acetylation, and chromatography yields $3\text{-}acetoxy-\Delta^{8(9):2\cdot(2^3)}\text{-}stigmastadien-7-one}$ (3%), m.p. $202-204^\circ$, $[a]^{23}-36\pm2^\circ$ (absorption max. at 252 m μ ., ϵ 8300), $3\text{-}acetoxy-\Delta^{9(1):8(14).-2(2^3)-stigmastatrien-3-one}$, m.p. $190-192^\circ$, $[a]_D^3-24\pm2^\circ$ (absorption max. at 299 m μ ., ϵ 5300; also obtained from (II) or (III) by HCl-EtOH and then $\text{Ac}_2\text{O-C}_5\text{H}_5\text{N}$], and $3\text{-}acetoxy-\Delta^{8(14)-stigmasten-7-one}$, m.p. $140-141^\circ$, $[a]_D-53\pm1^\circ$ 5° (absorption max. at 260 m μ ., ϵ 7800; reduced by $\text{H}_2\text{-Pd-black}$ or -PtO, in AcOH to α -spinastenyl acetate, m.p. 117° , $[a]_D+13\pm1^\circ$). [a] are in CHCl₃.

Preparation and properties of the 7-epimeric cholestane-3(\$\beta\$): 7-ols. O. Wintersteiner and (Miss) M. Moore (J. Amer. Chem. Soc., reparation and properties of the Periment choestanes (β). Periodics. O. Wintersteiner and (Miss) M. Moore (J. Amer. Chem. Soc., 1943, 65, 1503—1507).— H_2 —PtO₂ converts 7-ketocholesteryl acetate (I) in AcOH into 3(β)-acetoxycholestan-7(a)- (II), m.p. 71—75°, [a] $_{10}^{22}$ +35·3°, and -7(β)-ol (III), forms, m.p. 116—117° and 124°, [a] $_{10}^{23}$ 0, with small amounts of β-cholestanyl acetate and 7-ketocholestanyl acetate (IV), m.p. 149—149·5°, [a] $_{10}^{22}$ -36·0° (cf. Marker et al., A., 1940, II, 17); with H_2 —PtO₂ in EtOAc, (I) gives (IV), which in AcOH yields only (II) and (III). CrO₃ oxidises (II) or (III) to (IV). Boiling 5% KOH-MeOH hydrolyses (II) and (III) to cholestane-3(β): 7(a)- (V), forms, m.p. 156—158° and 167—168°, [a] $_{10}^{23}$ +52·9° {diacetate [prep. from (II)], forms, m.p. 64—69°, 74—78°, and 81—87°, [a] $_{10}^{224}$ +54·7°; dibenzoate, m.p. 151—152°, [a] $_{10}^{23}$ +67·6°}, and -3(β): 7(β)-diol, m.p. 152—153°, [a] $_{10}$ +8·1° (diacetate, m.p. 138—139°, [a] $_{10}$ —17·2°; dibenzoate, m.p. 152·5—153°, [a] $_{10}^{24}$ +23·0°), respectively. In C_8H_8 N at room temp., (II) gives 7(a)-ptoluenesulphonyloxy-3(β)-acetoxycholestane, m.p. 152·5—153°, [a] $_{10}^{24}$ +11·6°. With PCl₅—CaCO₃—CHCl₃ at 0°, (II) gives 3(β)-acetoxy-7-cholestanyl chloride, m.p. 118—119°, [a] $_{10}^{23}$ —21·7°, and thence (20% KOH-MeOH) 7-chlorocholestan-3(β)-01, m.p. 170·5—171·5°, [a] $_{10}^{225}$ —19·8°; Walden inversion may have occurred. With SOCl₂—CaCO₃—Et₂O, (II) gives di-3(β)-acetoxy-7(a)-cholestanyl sulphite, m.p. -19.8° ; Walden inversion may have occurred. The CaCO₃-Et₂O, (II) gives di-3(β)-acetoxy-7(α)-cholestanyl sulphite, m.p. 131.5—133.5°, hydrolysed by 5% KOH-MeOH to (V). [a] are in R. S. C.

Dehydration of the 7-epimeric $3(\beta)$ -acetoxycholestan-7-ols. Transformation products of γ -cholestenol. O. Wintersteiner and (Miss) M. Moore (J. Amer. Chem. Soc., 1943, 65, 1507—1513).—Dehydration of $3(\beta)$ -acetoxycholestan-7(β)-ol by CuSO₄ in boiling xylene, p-C₅H₄Me·SO₂Cl in boiling C₅H₅N, or PCl₅ in CHCl₃ at 0°, by elimination of ArSO₃H from the 7-p-toluenesulphonate by NaI and C₅H₅N, or of HCl from the 7(α)-chloride by KOAc-AcOH at 130° gives an inseparable mixture (A). containing mostly γ - (Δ ⁷⁽⁰⁾-cholestenyl or of HCl from the 7(a)-chloride by KOAc-AcOH at 130° gives an inseparable mixture (A), containing mostly γ - ($\Delta^{7(8)}$ -)cholestenyl acetate. Pd-H₂ isomerises (A) in AcOH to give a good yield of α - ($\Delta^{8(14)}$ -)cholestenyl acetate. With OsO₄ in Et₂O at room temp. (6 days) and then Na₂SO₃ in hot aq. EtOH and acetylation, (A) gives $3(\beta)$: 7-diacetoxycholestan-8-ol, m.p. 168— 169° , [a]_D -39-8°, and thence by hot 5% KOH-MeOH cholestane-3(β): 7:8-triol, m.p. 176— 178° , [a]_D $-12\cdot9^{\circ}$ (no digitonide). (A) consumes 2 BzO₂H in CHCl₃ in 8 days (cf. Schenck et al., A., 1937, II, 59), giving 8: 14-epoxy-3(β)-acetoxycholestan-7-ol (I), m.p. 122— 123° , [a]_D 3 +6·1°, converted by Ac₂O-C₄H₃N at room temp. into the $3(\beta)$: 7-diacetate (II), m.p. 162— 163° , [a]²²— $11\cdot9^{\circ}$. 5% hot KOH-MeOH hydrolyses (I) or (II) to 8: 14-epoxycholestane-3(β): 7-diol, m.p. 186— 187° , [a]_D 1 +81° (digitonide, decomp. 225°). Some samples of (A) give, besides (I), an isomeride thereof, m.p. $145\cdot5$ — 146° , [a]²³ 2 + $27\cdot6^{\circ}$ (derived diacetate, sinters 59° , m.p. 63— 64°). CrO₃-AcOH at room temp. converts (I) into 8: 14-epoxy-3(β)-acetoxycholestan-7-one (III), m.p. $139\cdot5$ — 140° , [a]_D m.p. 63—64°). Cro3-Acori at room temp. converts (1) into 6.17-epoxy-3(β)-acetoxycholestan-7-one (III), m.p. 139-5—140°, [a]_D —75-7° (slight absorption at <240 m μ .; no semicarbazone), converted by conc. HCl in boiling EtOH into 3(β)-acetoxy- Δ 8(9):14(15)- or $-\Delta$ 9(11)-8(14)-cholestadien-7-one, sinters [63°, m.p. 166°, [a]²) —17-6° [absorption max. at 297 (ϵ 4800), min. at 257 (ϵ 1500), end at <240 m μ . in EtOH; 2: 4-dinitrophenylhydrazone, m.p. 225—228°, obtained also from (III)]. This is reduced by H_2 -Pd in EtOH to $3(\beta)$ -acetoxy- $\Delta^{8(14)}$ -cholesten-7-one, m.p. $141\cdot5$ — $142\cdot5$ °, $[a]_{21}^{21}$ — $62\cdot2$ ° [absorption max. at 262·5 m μ . (ϵ 9500); 2: 4-dinitrophenylhydrazone, m.p. 210—211°], further reduced in AcOH to a-cholestenyl + 7-ketocholestanyl acetates. [a] are in CHCl3.

Oxidation products of a-cholestenyl acetate. O. Wintersteiner and (Miss) M. Moore (J. Amer. Chem. Soc., 1943, 65, 1513—1516).— O. Wintersteiner Neutral products obtained from a-cholestenyl acetate (I) by CrO₃-AcOH-C_sH_s give, by chromatography, 8:14-epoxy- $3(\beta)$ -acetoxy-cholestan-7-one with smaller amounts of $3(\beta)$ -acetoxy- $\Delta^{8(14)}$ -cholesten-15-one, m.p. 134—135°, $[a]_D$ —118° [absorption max. at 259 m μ . (ϵ 12,750) in EtOH; 2:4-dinitrophenylhydrazone, m.p. 208—209°; derived 3-OH-hetone, m.p. 145— 146° (digitonide); slowly hydrogenated to (I)], 8:14-epoxy- $3(\beta)$ -acetoxycholestan-15-one, m.p. 180— 181° , $[a]_D^{22}+4\cdot7^\circ$ (in conc. HCl–EtOH gives mixed dienones), (?)8:14-dihydroxy- $3(\beta)$ -acetoxycholestane-7:15-dione, m.p. 184— 185° , $[a]_D^{22}+73\cdot5^\circ$, and (?)14-hydroxy- $3(\beta)$ -acetoxy- $\Delta^{8(9)}$ -cholestene-7:15-dione, m.p. 218— 219° (decomp.), $[a]_D^1+143\cdot5^\circ$ [absorption max. at 254 m μ . (\$ 10,400)]. [a] are in CHCl3. R. S. C.

(ε 10,400)]. [a] are in CHCl₃.

Bromination of steroid ketones. L. H. Sarett, P. N. Chakravorty, and E. S. Wallis (J. Org. Chem., 1943, 8, 405—416).—Cholestanc-3:6-dione is converted by Br (9 mols.) in dry CHCl₃—AcOH into Λ⁴-2:4:7:7-tetrabromocholestene-3:6-dione (I), m.p. 190°, [a]₂²⁰+22°, converted by 15% HBr-AcOH in CHCl₃ into Λ⁴-4:7:7-tribromocholestene-3:6-dione (II), m.p. 195°, [a]₂²⁰+16°, also obtained if the prep. of (I) is prolonged or if (I) in AcOH-CHCl₃ is treated with Br + I. (I) in boiling C₆H₆ containing a little EtOH is reduced by fine Fe powder to Λ⁴-4:7-dibromocholestene-3:6-dione (III), m.p. 175°, [a]₂²⁰+82°, whereas Fe and boiling EtOH reduce (I) to cholestane-3:6-dione, m.p. 171°. Fe powder in boiling C₆H₆ containing EtOH reduces (I), (II), or (III) to Λ⁴-4-bromocholestene-3:6-dione, m.p. 169·5°, [a]₂²⁰-38°, the constitution of which follows from its conversion by o-C₆H₄(NH₂)₂ into the same quinoxaline derivative, C₃₃H₄₆ON₂, m.p. 143° (opaque; clear at 157°), as is obtained from cholestane-3:4:6-trione. (I) is converted by AgNO₃ in C₅H₅N at room temp. into Λ⁴-1-2:4:7-tribromocholestadiene-3:6-dione, m.p. 164°, [a]₂²⁰-38°, transformed by HBr-AcOH-CHCl₃ into Λ⁴-1-4:7-dibromocholestadiene-3:6-dione, m.p. 182°, [a]₂²⁰-18°, and by Fe dibromocholestadiene-3: 6-dione, m.p. 182° , $[a]_{\rm B}^{20}-18^{\circ}$, and by Fe powder in boiling C_aH_a -EtOH into $\Delta^{4:7-7}$ -bromocholestadiene-3: 6-dione, m.p. 182° , $[a]_{\rm B}^{0}$ —141°. Attempted hydrolysis of 5(a): 7-dibromocholestan-3-ol-6-one acetate gives only intractable gels whereas acid hydrolysis of the corresponding $5(\beta)$ -derivative gets whereas acid hydrolysis of the corresponding $5(\beta)$ -derivative leads smoothly to $5(\beta)$: 7-dibromocholestan-3-ol-6-one, decomp. $117-119^{\circ}$, $[a]_{D}^{0}-50^{\circ}$, re-acetylated by boiling Ac₂O to the parent acetate and oxidised by CrO₃ in AcOH to $5(\beta)$: 7-dibromocholestane-3: 6-dione, decomp. 100° , $[a]_{D}^{20}-41^{\circ}$, which is converted by KOAc and boiling aq. AcOH into Δ^{4} -7-bromocholestene-3: 6-dione (IV), m.p. $130-131^{\circ}$, $[a]_{D}^{20}-41^{\circ}$. (IV) is reduced by Zn dust in boiling ETOH to cholestane 3: 6 dione, and converted by Rr. in CHCl. EtOH to cholestane-3: 6-dione, and converted by Br in CHCl₃-AcOH containing NaOAc into Δ^4 -2: 7-dibromocholestene-3: 6-dione (V), m.p. 119° , $[a]_{D}^{25} + 118^{\circ}$ (whence a diquinoxaline derivative, $C_{39}H_{46}N_4$, m.p. 194°). Further bromination of (V) proceeds very slowly and only initial material is isolated from the product. Cholestane- $3(\beta):5(a)$ -diol-6-one in CHCl₃ is converted by Br (1 mol.) in AcOH at 35° into 7-bromocholestane-3(β): 5(a)-diol-6-one, decomp. 250°, $[a]_{20}^{26}$ —24° [acetate (+ 1MeOH), m.p. 172°], oxidised by CrO₃ in 90% AcOH to 7-bromocholestan-5(a)-ol-3: 6-dione, m.p. 165—171°, which is reduced by Zn dust and boiling EtOH to cholestan-5(a)-ol-3:6-dione, m.p. 232°; attempted dehydration with 95% HCO₂H at room temp. or 100° , with dry HCl or HBr in CHCl₃, or with hot Ac₂O gives only uncrystallisable oils. Cholestane-3: 6-dione in CHCl₃ is converted by Br (2 mols.) in AcOH containing NaOAc into 2:2-dibronocholestane-3: 6-dione (VI), decomp. $175-195^\circ$ depending principally on the size of the crystals, $[a]_2^{14}+65^\circ$, which gives an oil when heated with AgNO₂-C₅H₅N at room temp., decomposes slowly when heated with $AgNO_3 - C_5 H_5 N$ at foom temp., decomposes slowly at room temp., and does not give a quinoxaline derivative. (VI) is transformed by boiling $C_5 H_5 N$ into $\Delta^4 \cdot 2$ -bromocholestene-3: 6-dione, m.p. 204—207°. -Acid hydrolysis of 7-bromocholestan-3-ol-6-one acetate gives the parent alcohol, m.p. 113°, $[a]_2^{20} + 51^\circ$, oxidised by CrO_3 in 95% AcOH at 0° and then at room temp. to 7-bromocholestane-3: 6-dione, m.p. 135°, $[a]_2^{20} + 76^\circ$. Cholestan-3-ol-6-one in Et₂O is transformed by Br in AcOH into 5(a)-bromocholestan-3-ol-6-one, m.p. $a = 150^\circ$ (decomp.) $[a]_2^{20} = 156^\circ$ converted by 7n dust and EtOH m.p. $\sim 150^{\circ}$ (decomp.), $[a]_D^{26} - 156^{\circ}$, converted by Zn dust and EtOH into the parent compound and by Ac_2O into the acetate, m.p. 164° ; it is oxidised to 5(a)-bromocholestane-3: 6-dione, decomp. $80-85^{\circ}$, $[a]_{D}^{26}$ +140°, which slowly decomposes with loss of HBr at room temp. and is rapidly transformed by boiling C₅H₅N into Δ⁴-cholestene-3: 6dione. [a]D are in CHCl3. H.W.

Sterols. CLIX. Sapogenins. LXXI. Bethogenin. R. E. Marker, R. B. Wagner, C. H. Ruof, P. R. Ulshafer, D. P. J. Goldsmith (J. Amer. Chem. Soc., 1943, 65, 1658—1659).—Bethogenin (I) (Noller et al., A., 1943, II, 333) is an artefact in Beth root, being obtained from kryptogenin (II) by treating with HCl-MeOH and

then 2% KOH-MeOH. It has the structure shown. With HBr-AcOH it regenerates (II) or a similar diketone with hydrolysis of the OMe and with NH_2OH in C_2H_3N gives the dioxime of (II).

Saponins and sapogenins. XXIII. Constitution of bethogenin. C. R. Noller and M. R. Barusch (J. Amer. Chem. Soc., 1943, 65,

1786).—The structure below is suggested for bethogenin (I). (I) or its acctate with HBr-AcOH loses OMe and gives a diacetate, $C_{31}H_{46}O_6$, m.p. $148-149^\circ$, $[a]_{25}^{26}-161^\circ$ in dioxan (dioxime, m.p. $194-195^\circ$), hydrogenated (PtO₂; EtOH) to a H_2 -diacetate, m.p. $116-117^\circ$, $[a]_{D}$ —11° in dioxan [CO proved by absorption spectrum;

saturated towards C(NO.)4]. H₂-PtO₂ reduces (I) in EtOH, with removal of OMe, to an unsaturated ketone (diacetate, C₅₁H₄₈O₆ m.p. 142—144°, [a]²⁴—156° in dioxan), and, by exhaustive treatment, a saturated, non-ketonic substance.

 $C_{27}H_{46}O_4$, m.p. 203—208·6°, [a]] $^{25}_{17}$ -57·7° in dioxan, converted by $Ac_2O-C_5H_4N$ into an acetate, $C_{22}H_{46}O_4$, m.p. 204—207·5°, [a]] $^{25}_{27}$ -62·2° in dioxan. Kryptogenin may be a keto-aldehyde, since with HBr-AcOH, (I) but not diosgenin, tigogenoic or chlorogenoic acid, or Me chlorogenoate, yields a substance which gives a pink colour with Schiff's reagent and a red colour with 1: 4-C₁₀H₆(OH),-HCl-AcOH.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Triterpene group. X. Continuation of parts II and V. J. C. E. Simpson and R. A. Morton (J.C.S., 1943, 477—486; cf. A., 1938, II, 448; 1939, II, 331).—The previous hypothesis of the presence of an aromatic ring in the hydroxydione, $C_{30}H_{44}O_{3}$ (obtained originally from β -amyrin by mild S-dehydrogenation and subsequent oxidation), and its congeners is withdrawn, and the results obtained by a study of these compounds are critically considered with reference to recent publications of Ruzicka et al. (A., 1942, II, 371) and Kon et al. (ibid., 148). It is concluded that neither the Ruzicka nor the Kon formulation for the compound accounts for the properties of certain derivatives of this substance, and this is attributed to incorrect siting of the chromophore. The substances discussed have been examined both chemically and spectrographically, and NO2-derivatives of the cholesterol series have been included. Generalisations arc made respecting the scope and limitation of the Liebermann-Burchard and the $C(NO_2)_4$ reaction for the diagnosis of unsaturation in polycyclic hydroaromatic compounds. Reduction $(Na-C_5H_{11}\cdot OH)$ of the OAc-compound (I), $C_{32}H_{46}O_5$, gives an acid (II), $C_{30}H_{50}O_4$, m.p. $264\cdot 5-266\cdot 5^\circ$ [Ac_2 Me ester (III), $C_{35}H_{46}O_6$, m.p. $228-229^\circ$, $(E_3)_1$ (+63° in CHCl₃), and a neutral fraction, which after accetylation yields a substance, $C_{30}H_{48}O_3$, m.p. $195-205^\circ$, clear at $\sim 250^\circ$. Oxidation of (III) by BzO_2H affords an oxide, $C_{35}H_{56}O_7$, m.p. $233\cdot 5-234\cdot 5^\circ$. Acetylation $(Ac_2O-C_5H_5N)$ of (II) leads to the Ac_2 -acid, m.p. $249-251^\circ$, $[a]^{19}+59^\circ$ in CHCl₃, which is oxidised (CrO_3-ACOH) to an acid, $C_{34}H_{52}O_7$, m.p. $285-286^\circ$, esterified (CH_2N_2) to the Ac_2 Me keto-dihydro-ester, $C_{35}H_{56}O_7$, m.p. $275-277^\circ$, also obtained by oxidation (CrO_3) of (III). Oxidation (CrO_3) of (II) gives a diketo-acid, $C_{30}H_{44}O_4$, m.p. $192-194^\circ$. Reduction of (I) with $2\frac{1}{2}\%$ $(C_5H_{11}\cdot ONa-C_5H_{11}\cdot OH$ affords an acid, $C_{30}H_{46}O_5$, m.p. $240-241^\circ$ (decomp. on keeping), which is esterified (CH_2N_2) and acctylated to the Ac Me ester, $C_{33}H_{50}O_6$, m.p. $179-180\cdot 5^\circ$ (decomp. on keeping). PCl₅ and the OH-compound (IV), $C_{30}H_{44}O_4$, yield a substance, $C_{30}H_{42}O_3$, m.p. $295-297^\circ$ (decomp.). The lactone obtained in small yield from the oxidation products of (IV) is reduced $(2\frac{1}{2}\% C_5H_{11}\cdot ONa)$ to an acid, $C_{23}H_{40}O_5$, m.p. $251-253^\circ$ which is esterified to the Me ester, also obtained by hydrolysis of the lactone. F. R. S. Burchard and the C(NO2)4 reaction for the diagnosis of unsaturation

Sapogenins.-See B., 1943, III, 280.

VI.—HETEROCYCLIC.

Rubber, polyisoprenes, and allied compounds. V. Chemical linking of rubber and of other olefines with phenol-formaldehyde resins. J. I. Cunneen, E. H. Farmer, and H. P. Koch (J.C.S., 1943, 472—476).—1-Methylcyclohexene (I) in excess with saligenin (II) at 180° in sealed tubes gives 12-methyl-1: 2: 3: 4: 12: 13-hexahydroxanthen, b.p. 138—139°/10 mm., with a little p-o-hydroxybenzyl-12-methyl-1:2:3:4:12:13-hexahydroxanthen. Dihydromyrcene with (II) similarly affords mono-, b.p. 118°/0-05 mm. [mainly 2: 2-dimethyl-3-(y-methyl-\Delta'-pentenyl)chroman], and di-saligeninodihydromyrcene, (y-methyl- Δ^{γ} -pentenyl)chroman], and di-saligeninodihydromyrcene, b.p. 200—205°/0·05 mm. [mainly a-(2:2-dimethylchromanyl-3)- β -(2:3-dimethylchromanyl-2)-ethane]. When purified rubber (1 mol.) in CaHa is heated with (II) in two different proportions (0-18 and 0.27 mol.) two distinct oxygenated products are formed, containing hydroxylic (presumably phenolic) as well as ethereal O, in the ratios 1:2 and 5:8, so indicating that most of the O is present in simple chroman units. Sepctrographic measurements confirm the constitutions assigned, and 7:12-dimethyl-1:2:3:4:12:13-hexa-hydroxanthen, b.p. 147—150°/10 mm., from (I) and 2:5:1-OH·C₈H₃Me·CH₂·OH, has been prepared for comparison. The relation of chroman-formation to the formation of PhOH-CH₂O resins is discussed and it is suggested that rubber, isoprenic olefines, and doubtless most olefinic substances combine by virtue of their

unsaturation with the condensation products of PhOH and CH₂O to give chroman derivatives. F. R. S.

Action of Grignard reagents on benzpyrones. I. Preparation of some chromens from 4-substituted coumarins. A. R. S. Kartha and K. N. Menon (*Proc. Indian Acad. Sci.*, 1943, 18, A, 28—30).— 7-Methoxy-4-methylcoumarin (4-methylumbelliferone Me ether) and boiling MgPhBr-C₆H₆ give 7-methoxy-2: 2-diphenyl-4-methyl-Δ³-chromen [7-methoxy-2: 2-diphenyl-4-methyl-1: 2-benzpyran] (I), m.p. 60—65°, hydrolysed by boiling 50% aq. KOH to m-anisyl benzhydryl ether, m.p. 105-5°. Similarly prepared to (I) are the 2:2-di-p-anisyl, m.p. 110°, -dibenzyl, m.p. 52°, -($C_{10}H_7$ -a)₂, m.p. 240—241°, and -Me₂ analogue, b.p. 158—160°/12 mm. a-Naphthocoumarin and MgPhBr give 2: 2-diphenyl-4-methyl-a-naphtho-Δ³-chromen, m.p. 126—127°. A. T. P.

Tetrahydrobenzpyrans.—See A., 1943, II, 342.

Geometrical isomerism of cyclic acetal derivatives from polyhydric nitro-alcohols. M. Senkus (J. Amer. Chem. Soc., 1943, 65, 1656).—5-Nitro-2-phenyl-5-methyl-1: 3-dioxan, m.p. 118·3°, obtained from NO₂·CMe(CH₂·OH)₂ and PhCHO (A., 1942, II, 111), is accompanied by a stereoisomeride, m.p. 78·4°; these are reduced to amines, m.p. 84·0° and 48·2°, respectively. NO₂·CEt(CH₂·OH)₂ and PrCHO give similarly. Satisfactors in No. 104. 106° from and PrCHO give similarly 5-nitro-, forms, b.p. 104—106°/5 mm. and 136·0—136·5°/5 mm., reduced to 5-anino-5-ethyl-2-propyl-1: 3-dioxan, forms, b.p. 94—95°/10 mm. and 95°/10 mm., respectively.

Vat dyes.—See B., 1943, II, 344.

Preparation of iodine-containing X-ray contrast substances. I. 3:5-di-iodo-4-pyridone-N-acetic acid ("perabrodil"). W. Baker and A. S. Briggs (J.S.C.I., 1943, 63, 189—191).—C₅H₈N (100 g.), treated with AlCl₃ 2 g., C₂H₂Cl₄ 100 g., and Br 1 mol. for 48 hr. at 20—25°, gives 4-pyridylpyridinium bromide hydrobromide, the aq. solution of which, after distilling off C₂H₂Cl₄, is heated in an autoclave at 150° for 8 hr., made alkaline, and distilled, leaving a solution of 4-pyridone. This solution is holled with L and made alternately of 4-pyridone. This solution is boiled with I and made alternately acid and alkaline 6 times during 1 hr., giving 3:5-di-iodo-4-pyridone. This is finally pptd. by acid, and heated with aq. NaOH and CH₂Cl·CO₂H, giving 3:5-di-iodo-4-pyridone-N-acetic acid, m.p. ~247° (decomp.) (lit. 246°); yield 107 g. S. A. M.

Indole synthesis from a m-carboxyphenylhydrazone. C. F. Koelsch (J. Org. Chem., 1943, 8, 295—299).—m-NH₂·C₆H₄·CO₂H, prepared from the NO₂-acid by (NH₄)₂S, is best isolated as hydrochloride (I). m-CO₂H·C₆H₄·N₂Cl and Et cyclopentanone-2-carboxylate (II) in aq. NaOH give a (?) formazyl compound. Treating (I) in HCl at 0° with, successively, NaNO₂, NaOAc, and (II) gives Et 2-m-carboxybenzeneazocyclopentanone-2-carboxylate, sinters 105°, m.p. 118—120° (decomp.), converted by boiling 7% Na₂CO₃ (2 min.) into the hydrazone, m-CO₂H·C₆H₄·NH·N:C(CO₂Et)·[CH₂]·CO₂H (\neq 70%), m.p. 165—167°. In boiling 10% NaOH this gives a-ketoadipic acid m-carboxyphenylhydrazone, m.p. 215—218° (gas), and in boiling 1: 10 (vol.) H₂SO₄-EtOH gives Et₂ a-ketoadipate-m-carbethoxyphenylhydrazone, m.p. 125—127°, which in boiling 1: 5 (vol.) H₂SO₄-EtOH gives Et β -2: 4- (III), m.p. 105—106°, and β -2: 6-dicarbethoxyndole-3-propionate (IV), m.p. 113°. Structures are proved as follows. CrO₃ in AcOH + a little H₂O at 25—30° oxidises (III) and (IV) to Et γ -keto- γ -2-(ethyl oxalamido)-6- (V), m.p. 84—86°, and Indole synthesis from a m-carboxyphenylhydrazone. C. F. Koelsch follows. CrO₃ in AcOH + a little H₃O at 25—30° oxidises (111) and (IV) to Et y-keto-y-2-(ethyl oxalamido)-6- (V), m.p. 84—86°, and -4-carbethoxyphenyl-n-butyrate (VI), m.p. 97—99°, hydrolysed by H₂SO₄-EtOH to Et y-keto-y-2-amino-4- (VII), a colourless oil, and -6-carbethoxyphenyl-n-butyrate (VII), yellow, m.p. 87—88° [Bz derivative, m.p. 86—88°, hydrolysed by alkali to a (?) quinoline derivative, sinters and darkens at 210°], respectively. Hot 10% aq. KOH hydrolyses (VIII) to γ-keto-γ-2-amino-4-carboxyphenyl-n-butyric acid, yellow, m.p. 250° (block) or partially in a bath at 215° butyric acid, yellow, m.p. 250° (block) or partially in a path at 210 (resolidifies), but converts (VII) into the corresponding 6-CO₂H-acid, sinters 168°, m.p. 180° (gas), with some 1:3-diketo-4-amino-hydrindene-2-acetic acid, sinters 192°, m.p. 202° (decomp.). Alkali converts (VI) into (?) 4-hydroxy-2:7-dicarboxyquinoline-3-acetic acid, sinters and darkens at >255°. Alcoholysis of (VI), diazotis-time (OP: NO) and there believe since since Et Al-afront 7-caphythosy. ation (OBu·NO), and then boiling gives Et 4-hydroxy-7-carbethoxy-cinnoline-3-acetate, m.p. 168-171°; similar treatment of (V) gives y-keto-y-2-ethoxy-6-carboxyphenyl-n-butyric acid, m.p. 166-168°. Attempted Dieckmann reactions with (III) failed.

Antimalarials. I. Veratrole group. K. C. Frisch and M. T. Bogert (J. Org. Chem., 1943, 8, 331—337).—3:4:5:1:2-(NO₂)₃C₆H(OMe)₂, m.p. 143° (lit. 144—145°), obtained from vera-

which with fuming HNO₃ in oleum at 0—10° gives 5: 8-dinitro-, m.p. 155°, reduced by, best, SnCl₂-HCl at room temp., to 5: 8-diamino-6: 7-dimethoxyquinoline (85%), b.p. 170°/0-2 mm. (picrate, m.p. 185—186°; dihydrochloride, m.p. 186—187°). With (CH₂·CO)₂O, (CH-CO)₂O, or o-C₆H₄(CO)₂O in boiling COMe, this gives 5: 8-di-succin-, m.p. 159—160° (decomp.), -malein-, m.p. 219—220° (decomp.), or -phthal-amido-6: 7-dimethoxyquinoline (I), m.p. 173—175°, respectively; with (CH₂·CO)₂O at 120° or o-C₆H₄(CO)₂O in boiling dioxan it gives 5: 8-di-succin-, m.p. >310° (block; sublimes), and -phthal-imido-6: 7-dimethoxyquinoline m.p. 236—238° (decomp.) and -phthal-imido-6: 7-dimethoxyquinoline, m.p. 236-238° (decomp.; block) [also obtained from (I) in boiling EtOH], respectively, but no dimalcinimide can be obtained. M.p. are corr. R. S. C.

Preparation of iodine-containing contrast substances. III. Structure of "choloselectan." W. Baker, H. Sansbury, and (in part) W. H. C. Simmonds (J.C.S.I., 1943, 63, 193—194).—p-OH·C₅H₄Ac (I) (from PhOAc and AlCl₃ in PhNO₂), treated with ICl in dil. HCl, gives 4:3:5:1-OH·C₅H₂I₂·COMe (II), which with 5-iodoisatin (III) (from isatin and ICl in boiling AcOH) gives 6:3':5'-tri-iodo-4'hydroxy-2-phenylquinoline-4-carboxylic acid (IV), m.p. 271° (lit., decomp. 215—226°). Refluxing the K salt of (II) with Cl-[CH₂]₂·OH in COMeEt gives 3: 5: 4: 1-C₈H₂I₂(O·[CH₂]₂·OH)·COMe (V), which with (III) gives (IV), m.p. 274°. Reduction of (IV) by 1½ atm. H₂ and Raney Ni gives 4'-hydroxy-2-phenylquinoline-4-carboxylic acid [Ac derivative, m.p. 212—213°, identical with a specimen prepared from isatin and (I)]. (V) is hydrolysed to (II) by KOH-EtOH. Choloselectan (VI) is believed to be very impure (IV), prepared from (\mathbf{V}). Since (\mathbf{IV}) gives no X-ray visualisation of the gall bladder, the reputed effect of (\mathbf{VI}) must be due to an impurity. S. A. M.

Nature of the amino-group in aminoacridines. I. Evidence from electrometric studies. A. Albert and R. Goldacre. H. Evidence from chemical reactions. A. Albert and B. Ritchie (f. C.S., 1943, 454—458, 458—462).—I. The relative basicities of acridine, 1-, 2-, 3-, 4, and 5-hydroxy-, 1-, 2-, 3-, 4-, and 5-amino-, 1-, 2-, 3-, 4-, and 5-acetamido-acridine, m.p. 276° (corr.), 2-, 3-, 4-, and 5-amino-10-methylacridinium hydroxide, 2-aminoacridine-7-carboxylic acid (I), decomp. 200°, -7-sulphonic acid, and -7-sulphonamide, are examined, and it is found that the structure of 2- and 5-aminoacridines permits a greater degree of resonance in the ion than occurs in the nonionised base. Hence, these isomerides show an abnormally high degree of ionisation, an effect that parallels their high biological activity. The properties of the other isomerides suggest that they are fairly normal NH2-derivatives of acridine. Condensation of 4:2:1-NO₂·C₉H₃Cl·CO₂H and p-NH₂·C₆H₄·CO₂H (Cu-NaOAc) gives 5-nitrodiphenylamine-2:4'-dicarboxylic acid, m.p. 281°, which with POCl₃ affords 2-nitroacridone-7-carboxylic acid, m.p. >360°. Reduction (Al-Hg) of this acid yields the 2-aminoacridan acid, which is oxidised (FeCl₂) to (I).

II. Examination of the chemical reactions of the five monoaminoacridines reveals no correlation as striking as that between ionisation and antisepsis. The biologically outstanding isomerides (5-, 2-, and 1-) show the greatest chemical individuality, particularly the first, which behaves distinctively on diazotisation, alkaline hydrolysis, hydrogenation, and reaction with aldehydes and with MeI. Because of the highly electrophilic nature of the acridine nucleus, the NH₂ is readily detached from the salts of all the isomerides by NH2Ph and by acid at 160°. Condensation with aldehydes gives 1-, m.p. 151°, 3-, m.p. 148° (uncorr.), and 4-benzylidene-, m.p. 182°, and 2 salicylidene-aminoacridine, m.p. 236°, and 2-nitrodiphenylamine-2'-aldehyde, m.p. 120° (uncorr.). 5-Aminoacridine (II) is the only compound which affords a satisfactory product, 5-amino-10-methylacridinium iodide, with MeI. The appropriate acetamidoacridine when methylated (p-C₄H₄Me·SO₃Me) and treated with HBr gives 2- (+H₂O), m.p. 243°, 3-, 4-, m.p. 267° (uncorr.), and 5-amino-10-methylacridinium bromide, m.p. ~305° (decomp.). v-Amino-5-hydroxy-10-methylacridan, obtained from the bromide, affords at 130° 5-imino-10-methylacridan, m.p. 134—136° (sealed tube). Reduction (fresh FeCO.) of 3-nitro-n-ammoacridine hydrochloride Reduction (fresh FeCO3) of 3-nitro-v-ammoacridine hydrochloride leads to 3:5-diaminoacridine, m.p. 229—230° (sealed tube). 5-Phenoxyacridine with NH₃MeCl and PhOH gives 5-methylamino-Phenoxyacridine with NH₃MeCl and PhOH gives 5-methylamino-acridine, m.p. 173—174° (sealed tube); o-dimethylaminoacridine hydrochloride, m.p. 275° (decomp.), is similarly prepared. The two foregoing bases and (II) are hydrolysed (KOH-EtOH) to the OH-compound but not the 1-, 2-, 3-, and 4-NH₂-derivatives; the latter are, however, hydrolysed by HCl [4-hydroxyacridine, m.p. 250° (decomp.), and 2-derivative, m.p. 285° (sealed tube)]. Treatment of the amine hydrochloride with NH₂Ph affords 1-, m.p. 191°, 2-, m.p. 238°, 3-, m.p. 236°, 4-, m.p. 220° (decomp.), and 5-anilinoacridine, m.p. 230·5°. Hydrogenation affords the corresponding acridans [3-aminoacridan, m.p. 187—188° (lit. 191—192°)]. M.p. are corrupless otherwise stated. unless otherwise stated. F. R. S.

Basic esters of polynuclear carboxylic acids.—See A., 1944, II, 15. Hydantoins.—See B., 1943, II, 342.

Derivatives of piperazine. XX. Monoalkylation of piperazine by alkylene oxides. L. J. Kitchen and C. B. Pollard (J. Org. Chem., 1943, 8, 338—341; cf. A., 1941, II, 149).—By use of an excess of piperazine in, e.g., MeOH at 80°, $(CH_2)_2O$, $\alpha\beta$ -epoxy-propane and

-isobutane give good yields of mono(hydroxyalkyl) compounds. Thus are prepared 1-β-hydroxy-ethyl-, b.p. 119·2°/10 mm. [dihydrochloride, m.p. 188·6—189·6° (lit. 182—183°); picrate, m.p. ~245° (decomp.) (lit. 247—248°); phenylthiocarbamide derivative, m.p. 114·9—115·3°], -n-propyl-, b.p. 108·5°/10 mm. [dihydrochloride, m.p. ~237·3° (decomp.); picrate, m.p. 174·5—177·5°; phenylthiocarbamide derivative, m.p. 144—144·5°], and -isobutyl-, m.p. 80·2—80·5°, b.p. 106°/10 mm. [dihydrochloride, decomp. ~215°; slowly at <215°; picrate, m.p. 257° (decomp.); phenylthiocarbamide derivative, m.p. 129·3—129·5°], and 1: 4-di-β-hydroxy-ethyl-, m.p. 134·3—150°, -n-propyl-, m.p. 116·7—117·9° (lit. 115—116°) [dihydrochloride, m.p. 223·7—224·7° (decomp.)], and -isobutyl-piperazine, m.p. 101·5—102·5°, M.p. are corr. R. S. C.

Barbituric acids.—See B., 1943, III, 280.

Cinnolines. II. Influence of substituents on the Widman-Stoermer and the Pschorr reaction. J. C. E. Simpson (J.C.S., 1943, 447—452).—A review of the published evidence respecting cyclisation of diazotised o-aminoarylethylenes of type $\mathrm{NH_2\cdot C_0H_4\cdot CR\cdot CHR'}$ leads to the conclusion that the Widman–Stoermer cinnoline synthesis is inhibited when R = H or CO_2H and R' = aryl or another negative group such as CO_2H , CO_2Et , or CN. It is now shown that the attachment of a Ph group to $C_{(a)}$ is a dominant factor favouring cinnoline formation. The Grignard compound from $1-C_{10}H_7$ CH_2CH_3 with o-NH₂·C₆H₄·COPh gives a mixture of (CH₂·C₁₀H₇-I)₂, m.p. 161—161·5° (lit. 100°), and a-phenyl-a-(2-aminophenyl)-β-(1'-naphthyl)-ethylene, m.p. 182—183°, and its isomeride (I), m.p. 144—145°; 161—161·5° (lit. 100°), and α-phenyl-α-(2-aminophenyl)-β-(1'-naphthyl)-ethylene, m.p. 182—183°, and its isomeride (I), m.p. 144—145°; the intermediate aminocarbinol with Ac₂O affords the acetamido-carbinol, m.p. 175—176°. The diazonium solution from (I) with NaOAc and Cu (Pschorr reaction) yields 2-phenylchrysene, m.p. 192—192·5°, whilst when diluted at room temp. it is cyclised to 4-phenyl-3-(1'-naphthyl)cinnoline, m.p. 178—179°. CH₂Ph·MgCl with ο-NH₂·C₆H₄·COPh gives phenyl-2-aminophenylbenzylcarbinol, m.p. 150—150·5°, dehydrated (20% H₂SO₄) to α-(2-aminophenyl)-aβ-diphenylethylenes, m.p. 113—114° and 102—104° (geometrical isomerides), which are cyclised following diazotisation to 3: 4-diphenyl-innoline, m.p. 149—150°. Ph·[CH₂]₂·Br similarly affords phenyl-2-aminophenyl-β-phenylethylcarbinol, m.p. 97—98° (N-Ac derivative, m.p. (68—168·5°), α-phenyl-α-(2-aminophenyl)-β-benzylethylene, m.p. 108—109°, and 4-phenyl-3-benzyleinnoline, m.p. 116·5—118°. Mg allyl bromide with ο-NH₂·C₆H₄·COPh gives a mixture of a basic substance, C₁₆H₁₇ON, m.p. 79—80° [isomerised (5% H₂SO₄) to a substance, m.p. 129·5—130·5°], and phenyl-2-aminophenylallylcarbinol, m.p. 70—72° (N-Ac, m.p. 129—130°, and N-Bz derivatives, m.p. 173·5—175°). Condensation (C₅H₁₁N) of 1:2:4-C₆H₃Me(NO₂)₂ with furfuraldehyde, piperonal, and vanillin yields products, C₁,H₉O₅N₂, m.p. 135—136°, C₁₅H₁₀O₆N₂, 179·5—180·5°, and C₁₅H₁₂O₆N₂, m.p. 135—136°, C₁₅H₁₀O₆N₂, 179·5—180·5°, and C₁₅H₁₂O₆N₂, m.p. 135—136°, C₁₅H₁₀O₆N₂, 179·5—180·5°, and S₁₅H₁₂O₆N₂, m.p. 135—136°, C₁₅H₁₀O₆N₂, 179·5—180·5°, and C₁₅H₁₂O₆N₂, m.p. 130·5—131·5° (N-Ac derivative, m.p. 168·5—169·5°), from the diazo-solutions of which cryst. products could not be obtained. From hydroxy- and -2'-hydroxy-5'-methyl-benzophenone, the corresponding carbinols, m.p. 173—174°, and 117—118.5°, have been obtained (cf. Simpson et al., A., 1942, II, 273).

F. R. S.

Tetrazole.—See B., 1943, III, 280.

Condensation of aminoantipyrine. III. (I) Synthesis of methylubazoic acid. E. Emerson and L. C. Beegle (J. Org. Chem., 1943, 8,

429 432). Methylrubazoic acid (I),

m.p. 175—176°, is prepared by oxidising an equimol. mixture of aminoantipyrine (II) and 1-phenyl-3-methylpyrazol-5-one or by condensing (I) with 4-keto-1-phenyl-3-methylpyrazol-5-one. The reactions also establish the structures of many of the other coloured products formed in the positive test with (II). Repetition of the work of Proscher (A., 1902, i, 505) shows that the product described by him as (I) is greatly contaminated by products of high mol. wt. probably due to the nitrosoantipyrine used.

H. W.

Properties of m-nitrodibenzoylmethane.—See A., 1944, II, 17.

Bacterial chemotherapy. I. Synthesis of N¹-substituted sulphanilamides. II. Synthesis of possible intestinal antiseptics of the sulphanilamide group. III. Synthesis of possible lipophilic chemotherapeuticals of the sulphonamide group. S. Rajagopalan (Proc. Indian Acad. Sci., 1943, 18, A, 100—103, 104—107, 108—112).—
I. NHAC·C₆H₄·SO₂Cl is condensed in C₅H₅N with various amines, and the Ac hydrolysed by hot dil. HCl. The following are described, in addition to those mentioned in A., 1942, II, 289: ω-N⁴-acetylsulphanilamidoaceto-phenone, m.p. 151—152° (decomp.), and -anaphthone, m.p. 202—204° (decomp.); the hydrochlorides of ω-sulphanilamidoaceto-phenone, m.p. 200—202° (decomp.), and -anaphthone, sinters 185°, m.p. 189° (decomp.); 5-sulphanilamido-ventriazole, m.p. 135—137°; 5-N⁴-acetylsulphanilamidoindazole, m.p. 262° (decomp.); 1-sulphanilylindole, m.p. 159° (decomp.) (x⁴-Λc derivative, m.p. 146—147°); 3-N⁴-acetylsulphanilamido-indotriazine [-1:2:4-triazacarbazole], m.p. 261—262°. The m.p. of Bacterial chemotherapy. I. Synthesis of N1-substituted sulph-

3-N4'-acetylsulphanilamido-1:2:4-triazole is now given as 210° (decomp.). The following Schiff's bases are prepared by boiling mol. proportions of an aldehyde and a sulphonamide in EtOH until crystals separate: m-hydroxy-, m.p. 138°, and o-nitro-benzylidene-sulphanilamide, m.p. indefinite; o-, m.p. indefinite, and m-nitro-benzylidenesulphathiazole, m.p. 220—222° (decomp.); recrystallistic intervals. ation is impossible.

II. Chiefly by the action of alkyl or aralkyl halides or alkyl sulphates on sodio-sulphanilamido-derivatives of heterocyclic compounds, a series of compounds insol. in alkali, therefore not likely to be absorbed in the intestine, and so expected to be particularly to be absorbed in the intestine, and so expected to be particularly useful in infections of the intestinal tract, have been prepared. The following are described: 3-methyl-, m.p. 196—198°, and 3-ethyl-sulphanilimido-2: 3-dihydrothiazoline, m.p. 181—182° (decomp.); N¹-phenyl-, glassy at 156°, clearing at ~185° (N⁴-Ac derivative, m.p. 230°), and N¹-allyl-sulphathiazoline, softens 187°, m.p. 186—189° (N⁴-Ac derivative, sinters 176°, m.p. 179—181°); 2-sulphanilimido-, m.p. 234° (decomp.) (N⁴-Ac derivative, m.p. 215—218°), and 2-pnitrobenzylaminobenzenesulphonimido-1-p-nitrobenzyl-1: 2-dihydro-pyridine, m.p. 208—210°; 2-sulphanilimido-3-p-nitrobenzyl-, m.p. 199—200° (decomp.), and -3-m-nitrophenacyl-2: 3-dihydrothiazole, m.p. 238—239° (N⁴-Ac derivative, m.p. 216—218°).

III. Some members of the sulphonamide group known to be active

III. Some members of the sulphonamide group known to be active in coccal infections are acylated, with a view to rendering them lipophilic, and thus useful for mycobacterial infections. By conlipophilic, and thus useful for mycobacterial infections. By condensing sulphonamides and acyl chlorides in C_5H_5N , the following additional compounds are prepared (cf. A., 1943, II, 144); N⁴-n-octoylsulphapyridine, m.p. 213—214°; N⁴N¹-diacylsulphapyridines: acyl = Ac, m.p. 194°, n-butyryl, m.p. 163°, n-hexoyl, m.p. 155—157°, n-octoyl, m.p. 135°, Bz, m.p. 217°, cyclohexoyl, m.p. 193—195°, cinnamoyl, m.p. 196—198°; N⁴-furoylsulphathiazole, decomp. >240°; N⁴-n-octoylsulphanildimethylamide, m.p. 79—82°; N⁴-n-hexoyl-, m.p. 215°. N⁴-n-heptoyl-, m.p. 173—174°, and N⁴-n-octoyl-2-sulphanilimido-3-methyl-2: 3-dihydrothiazole, m.p. 153—154°; N⁴-n-butyryl-, m.p. 248—250° (decomp.), and N⁴-n-hexoyl-, m.p. 235—236°, and N⁴-n-hexoylsulphanilylsulphanilamide, m.p. 162° (lit. 225°); N⁴-n-butyryl-, m.p. 235—236°, and N⁴-n-hexoylsulphanilylsulphanilamide, m.p. m.p. 235—236°, and N*n-hexoylsulphanilysulphanilamide, m.p. 184—186°; 2-, m.p. 226—228° (decomp.), and 4-N*'-butyrylsulphanilamidobenzoic acid, m.p. 224—226°. The m.p. of 2-sulphanilamidobenzoic acid is ~215° (decomp.) (lit. 225°), and of its 4-isomeride is 181—182° (lit. 202°, 198—200°). The following are prepared by the 181—182° (ltt. 202°, 198—200°). The following are prepared by the action of Me₂SO₄ on aq. alkaline solutions of the corresponding N¹-unsubstituted N⁴-acylsulphonamides: 2-N⁴-n-butyryl-, m.p. 213°, and 2-N⁴-n-hexoyl-sulphanilimido-1-methyl-1: 2-dihydrobyridine, m.p. 213—215°; 2-N⁴-n-hexoyl-, m.p. 201—203°, and 2-N⁴-n-heptoyl-sulphanilimido-3-methyl-2: 3-dihydrolthiazoline, m.p. 170°.

S. A. M.

Photographic products.—See B., 1943, II, 400.

Thiazinocyanines. III. Carbocyanines containing the perinaphtha-1:3-thiazine nucleus. (Miss) F. M. Hamer and R. J. Rathbone (J.C.S., 1943, 487—491).—The observations of Joy et al. (A., 1937, II, 37) have been confirmed. 2-Methylperinaphtha-230° (decomp.)], with CH(OEt)₃ in C₅H₅N gives bis-2-(3-methyl-perinaphtha-1: 3-thiazine)trimethincyanine iodide, m.p. 223° (decomp.), without CHCl₃ of crystallisation; the methosulphate, m.p. 223° (decomp.), without CHCl₃ of crystallisation; the methosulphate, m.p. 232° (decomp.), is similarly obtained from the corresponding methodiazine, m.p. 213° (decomp.), its hydriodide, m.p. 235-240° (decomp.), and melhomethylsulphate, m.p. 116° (decomp.), are obtained from p-NMe₂·C₆H₄·CHO and (II) or its appropriate derivative. The carbocyanines and dicarbocyanine from (II) are abnormal in being decolorised by alkali. Absorption data for MeOH solutions of the dyes are recorded and comparisons made with the dihydro-1: 3thiazine, 2: 4-benzthiazine, and naphthathiazole series. F. R. S.

VII.—ALKALOIDS.

Senecio alkaloids. I. Rosmarinine. (Miss) M. F. Richardson and F. L. Warren (J.C.S., 1943, 452—454).—Rosmarinine (I), isol-

ated originally from S. rosmarinifolius, Linn., has now been found in other species. S. hygrophilus, R. A. Dyer and C. A. Sm., is con-sp. with "S. adnatus," DC., but the alkaloid content varies; (I), platyphylline, and an alkaloid, $C_{18}H_{27}O_6N$, m.p. $175-176^\circ$ (corr.), $[a]_2^{125}-62.4^\circ$ in MeOH, have been isolated as sole constituents or as mixtures, depending on stage of growth, season, and (South African) district. Hydrolysis of (I) gives rosmarinecine, $C_8H_{18}O_3N$ (probably 3': 4-dihydroxy-3-hydroxymethylpyrrolizidine), m.p. $171-172^\circ$ (corr.), $[a]_2^{25}-118.5^\circ$ [methiodide, m.p. 195° (corr.)], and senecic acid, m.p. 151° (corr.), $[a]_2^{25}+11.8^\circ$ in EtOH, neither compound having previously been obtained cryst. Platynecic acid is senecic acid lactone.

Curare alkaloids from Chondrodendron tomentosum.—See A., 1944, III, 88.

VIII.—ORGANO-METALLIC COMPOUNDS.

Diazonium borofluorides. IV. Preparation of copper aryl compounds. F. A. Bolth, W. M. Whaley, and E. B. Starkey (J. Amer. Chem. Soc., 1943, 65, 1456—1457; cf. A., 1942, II, 336).—The reaction, ArN.·BF. + 2Cu CuAr + N₂ + CuF + BF₃, is realised for Ar = Ph, ρ - and o-NO₂·C₆H₄, and ϕ -tolyl in C₆H₆ or PhMe at ~70—85°. For CuPh and Cu·C₆H₄Me- ρ (I) analysis of the solution shows yields of CuAr to be 4—8% and 30—35%, respectively. CuPh and (I) do not react with Michler's ketone. CuPh, but not (I), reacts with BuBr in C₆H₆ or PhMe. Cu aryls are hydrolysed at once by moisture and with solid CO₃ give amorphous compounds which react at once with air. They are pptd., probably as complexes, by dioxan or Et₂O. C₅H₆N ppts. CuPh and p-nitrophenyl tripyridine (II), which are blue and stable in air, even at 110°, but in boiling H₂O Cu is pptd. from (II). CuPh and Cu·C₆H₄·NO₂- σ with CH₆Cl·COCl give good yields of CH₂Cl·COAr. The significance of these results for various diazonium reactions is noted.

Solvents in organometallic chemistry. A. H. Haubein (Iowa State Coll. J. Sci., 1943, 18, 48—50; cf. C., 1944, Part 1).—The orders of stability of LiR compounds in Et₂O and of R₂O compounds in presence of LiBu, LiBu⁷, and Li-CHMeEt were determined by difference between the total and inorg. base formed on hydrolysis. Cleavage by Li compounds of ethers containing NR₂·CH₂· can be used to introduce this group into a large no. of mols. F. R. G.

Mercurated aliphatic nitriles.—See B., 1943, III, 280.

Selenium compounds.—See B., 1943, II, 343.

Borohydrides of gallium.—See A., 1944, I, 22.

IX.-PROTEINS.

Nature of formaldehyde compounds of proteins. K. H. Gustavson (Kolloid-Z., 1943, 103, 43—54).—The tanning effect of CH₂O on proteins is discussed. Fibrous proteins, e.g., collagen (I), are more easily studied than H₂O-sol. proteins, since they have measurable properties altered by CH₂O treatment. Properties studied are temp. of contraction, swelling in H₂O, and degradation by trypsin. In dil. CH₂O solutions irreversible CH₂O fixation is due to the e-NH₂-groups of lysine in the pH range 5—8, and the NH₂-groups of arginine at pH >8. In conc. solutions secondary reactions occur. CH₂O combines with partly deaminated (I) freed from primary NH₂ groups, but does not have a tanning effect. Thus the CH₂O attached to NH₂-groups of arginine residues does not stabilise (I) chains by cross-linking; tanning by CH₂O results from formation of cross-linkings between e-NH₂-groups of lysine in neighbouring chains. In acid solutions native (I) shows a tanning effect at high CH₂O concn., but deaminated (I) is unchanged. CH₂O fixation is a slow reaction in this case. CH₂O is also taken up by peptide groups, but is not then involved in cross-linking and stabilising the structure. CH₂O is also effective in org. solvents.

Complex formation between synthetic detergents and proteins. F. W. Putnam and H. Neurath (J. Biol. Chem., 1943, 150, 263—264; cf. Lundgren et al., A., 1943, III, 838).—Cryst. horse serum-albumin is pptd. on the acid side (complex formation but no pptn. occurs on the alkaline side) of the isoelectric point by Na dodecyl sulphate (I) when the ratio of protein to (I) ranges from 5:1 to 2·5:1, all the (I) being bound by the protein. Excess of (I) causes dissolution of the pptd. complex, but protein recovered from the solution does not differ in solubility and electrophoretic properties from that recovered from the ppt. The max. concn. of (I) required for complete pptn. (144 mols. per g. of protein × 10°) corresponds closely with the total acid-binding capacity of the protein. Protein recovered from the complex after removal of detergent with BaCl₂ is electrophoretically homogeneous but the hydrodynamic vol. is diminished to 75% of the original val. and the mobility at pH 7·6 is increased slightly. Measurements of viscosity show that denaturation occurs on both sides of the isoelectric point. The denaturing power of (I) is that of CO(NH₂)₂ or guanidine. W. McC.

Constitution of proteins. Demonstration [of the presence] of porphyrin complexes, pyridine rings, and elementary [characteristic?] complexes. N. Troensegaard (5 Nordiske Kemikermøde, 1939, 232). — Proteins are acetylated and/or hydrogenated in H_2O -free solvents (no details) to protect them during hydrolysis. The product is hydrolysed in the cold, giving acidic and basic fractions, the latter containing piperazines, pyrroles, and (from some proteins) piperidine. The acid fraction contains complexes characteristic of the original protein: gliadin gives $C_{10}H_{14}O_3N_2$ or $C_{10}H_{12}O_3N_2$. M. H. M. A.

Coloured metallic complexes of keratin and fibroin. B. Nilssen (5 Nordiske Kemikermøde, 1939, 234-236).—The coloration given with HNO₂ and keratin or fibroin is due to conversion of tyrosine residues into o-quinonemonoxime residues which give lakes with heavy metals.

M. H. M. A.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Crystalline barium acid heparinate. M. L. Wolfrom, D. I. Weisblat, R. J. Morris, C. D. DeWalt, J. V. Karabinos, and J. McLean (Science, 1943, 97, 450).—The following molar ratios were established: anhydrohexosamine: anhydrohexuronic acid: SO_2 : Ba = $2 \cdot 0 \cdot 1 \cdot 9 \cdot 6 \cdot 0 \cdot 3 \cdot 0$; N: S: Ba = $2 \cdot 6 \cdot 3$. Summation of these data (89%) does not preclude the possible presence of another constituent. d-Glucosamine, the NH₂-group of which is not acetylated and not free, was identified in the hydrolysate of the acid Ba salt. Repeated crystallisation from warm, dil. AcOH destroys the anticoagulant power, and is accompanied by the appearance of a free NH₂-group. Prolonged drying and dil. H₂O₂ also inactivate the salt. E. R. R.

Derivatives of lonchocarpic acid. H. A. Jones and H. L. Haller (J. Org. Chem., 1943, 8, 493—496).—In spite of their closely related origin, no close relationship exists between lonchocarpic acid (I) and rotenone (II). It is quite probable that the characteristic chroman-chromanone system present in (II) is absent from (I). (I), obtained from an unknown species of Lonchocarpus, has usually m.p. 203—204° (corr.) when cryst. from EtOAc and 220—221° (corr.) when cryst. from EtOH. It is converted by NaOAc and boiling Ac₂O into diacetyl-lonchocarpic acid, m.p. 154°, which is insol. in aq. alkali and when hydrolysed by alkali gives (I), alkali-insol. material, and alkalisol. resin whereas it affords an unpurified product with KOAc in abs. EtOH. It is indifferent towards CH₂N₂ in MeOH or Et₂O. Methylation of (I) by CH₂N₂ in Et₂O gives methyl-lonchocarpic acid, m.p. 210—212°, whereas in MeOH the product is dimethyl-lonchocarpic acid, m.p. 150—151°; both products are insol. in alkali and do not yield an alkali-sol. product when hydrolysed by KOH-MeOH. Me₂SO₄ appears to give a mixture of mono- and di-acid. Catalytic hydrogenation (PtO₂ in EtOH) of (I) leads to tetrahydrolonchocarpic acid, m.p. 239—240° (diacetate, m.p. 192—192-5°; Me., m.p. 211—212-5°, and Me₂, m.p. 166—167°, derivatives). Oxidation of (I) by I in EtOH containing KOAc does not give a recognisable product, whereas p-OH·C₈H₄·CO₂H is obtained in ~25% yield by use of H₂O₂ in alkaline solution. PCl₃ and SOCl₂ do not react with (I).

Scandenin, a constituent of the roots of Derris scandens. E. P. Clark (J. Org. Chem., 1943, 8, 489—492).—Extraction of the powdered air-dried roots of D. scandens gives scandenin (I), $C_{2e}H_{2e}O_{6}$, m.p. 231° , lonchocarpic acid, m.p. 223° (corr.), softens at $200-205^{\circ}$, and small quantities of a third substance which by reason of its solubility in alkali, its m.p. 190°, and behaviour in the Durham test is regarded as robustic acid. Rotenone is not observed and the substances isolated do not appear to belong to the rotenone group of fish poisons. (I) contains 1 OMe and 2 OH since it readily gives a diacetate, m.p. 150° , and is converted by CH_2N_2 into a Me. ether, m.p. 129° , in poor yield. Although an oxime or semicarbazone could not be obtained it probably contains a p-OH· C_6H_4 -CO since it gives the corresponding acid when oxidised by alkaline H_2O_2 . It absorbs ~ 3 mols. of H_2 when hydrogenated in EtOH containing PtO₂. It is somewhat acidic, dissolving in dil. alkalis. It gives a relatively sparingly sol. Na and K salt. It fails to give the reaction for a 2:2-dimethyl- Δ^5 -chromene system.

Helvolic acids $C_{32}H_{64}O_8$, m.p. 212°, $[a]_D^{20}-49\cdot 4^\circ$ in CHCl. (Me ester, m.p. 261°).—See A., 1943, III, 917.

Aspergillic acid, $C_{12}H_{20}O_2N_2$.—See A., 1943, III, 916.

X-Ray diffraction data on ferritin and apoferritin.—See'A., 1944,

XI.—ANALYSIS.

Spectrophotometric analysis of multicomponent mixtures.—See A., 1943, I, 319.

For abstracts on analysis, see C., 1944, Part 1.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry.

FEBRUARY, 1944.

I.—ALIPHATIC.

Isomorphous replaceability of bivalent atoms and ψ -atoms in organic compounds. A. Lüttringhaus (Ber., 1940, 73, [B], 1022—1023).—A reply to Bruni (A., 1943, II, 308). Valency angles are considered. R. S. C.

Behaviour of the free n-propyl radical. G. Semerano, L. Riccoboni, and L. Gotz (Z. Elektrochem., 1941, 47, 484—486).—From the amounts of C_3H_6 and C_3H_6 produced by the thermal decomp of AgPra it is concluded that $\sim 77\%$ of the Pra radicals initially formed disproportionate to C_3H_6 and C_3H_8 and the remainder dimerise to $n\text{-}C_6H_{14}$.

Optical rotation and atomic dimension. The four optically active β -halogenopentanes. D. H. Brauns (J. Res. Nat. Bur. Stand., 1943, 31, 83—106).—The enantiomorphic modifications of pentan- β -ol (I) have been prepared in the pure state and the laworotatory isomeride has been converted into dextrorotatory β -Cl-, -Br-, and -I-derivatives. Laworotatory β -CHMePraF is obtained from the dextrorotatory β -bromo- or -iodo-pentane and AgF. The derivatives obtained by halogenation of the alcohol with PHal₃ have higher [a] than those obtained by use of HHal. The purity of the Cl-, Br-, and I-derivatives is ~70—80%; the optical purity of the F-derivative, the prep. of which involves another Walden inversion, is less. The relative amounts of the isomeric modifications are determined by the purity of the alcohol obtained by hydrolysis and the relative optical rotations of the pure F-, Cl-, Br-, and I-derivatives are calc. All halogen derivatives of (I) of like configuration have the same sign of optical rotation. The difficulty of obtaining optically pure compounds on account of incomplete Walden inversion (partial racemisation) prevents an adequate check of the rule according to which for compounds in which the halogen is directly attached to the asymmetric C the differences of sp. rotations of the d- or l-compounds (CI — F), (Br — Cl), and (I — Br) have the same numerical relation as the differences of the respective at radii of the neutral halogen atoms. The experimental data, however, in no manner contradict the rule, the deviations which are observed being plausibly explained by the incompleteness of the Walden inversion.

Hydrogenation of the triple linking. A. L. Henne and K. W. Greenlee (J. Amer. Chem. Soc., 1943, 65, 2020—2023).—CH·CAlk in liquid NH₃ are quantitatively reduced to trans-olefines by Na and (NH₄)₂SO₄ (insol. in liquid NH₃); NH₄Cl, which is sol. in liquid NH₃, gives inefficient reduction; thus, H generated from an acetylene is more efficient than H generated from NH₄; the function of the NH₄ salt is to regenerate the acetylene from its Na derivative. Reduction of CAlk; CAlk' by Na and NH₄ salts is inefficient, some H₂ escaping and an excess of Na being consumed; the Na probably adds to the C.C. Catalytic hydrogenation of acetylenes to olefines is best effected by Ni-kieselguhr in EtOH at 30—80°/3 atm.; it yields mainly cis-olefines (cf. Campbell et al., A., 1941, II, 216; 1942, II, 71). The following are prepared: Δα-, m.p. —102·56°, b.p. 121·37°, trans-Δβ-, f.p. —87·8°, b.p. 124·94°, trans-Δγ-, f.p. —110·05°, b.p. 123·29°, and trans-Δδ-, f.p. —93·80°, b.p. 122·37°, 'cis' 'Δβ-, f.p. —100·5°, b.p. 125·62°, ''cis ''-Δγ-, f.p. —137° to —138°, b.p. 122·27°, and ''cis ''-Δβ-n-octene, f.p. —120·2°, b.p. 122·3°; ''cis' 'Δβ-, f.p. —141·4°, and -Δγ-n-hexene, f.p. —143·3°; ''cis ''-Δε-, decene, f.p. —112·8°. With Na and (NH₄)₂SO₄ in NH₃, [CH₂]₃(CCH)₂ and [CH₂]₃(C;CMe)₂ give Δα-hoptadiene, f.p. —129·35°, b.p. 90·01°, and impure trans-trans-Δβn-nonadiene (I), i.p. —76·2°, b.p. 150·5°. (I), prepared by Na alone, is purer and has f.p. —72·4°, b.p. 150·3°. Catalytic hydrogenation gives impure cis-cis-Δβn-nonadiene, a glass, b.p. 151·0°.

Substituted neatylenes and their facetylenes.

Substituted acetylenes and their derivatives. XLVI. Formaldehyde derivatives of acetylenic hydrocarbons. G. F. Hennion and E. P. Bell (J. Amer. Chem. Soc., 1943, 65, 1847—1848; cf. A., 1942, II, 327).—Adding RCO₂·CH₂Cl to finely dispersed CR'-CNa (prep. in situ described) in C₆H₆-N₂ and then boiling gives Δβ-n-heptinenyl acetate (16%), b.p. 82—83°/7 mm., propionate (21%), b.p. 70—71°/4 mm., and benzoate (10%), b.p. 160—162°/2 mm., and -C₅H₁·C-C·CH₂·OAc (10%), b.p. 79—81°/6 mm.; coating of the CR':CNa with NaCl prevents more than initial reaction. CH₂Cl·OAc does not react with CH₂CNa in Et₂O or C₆H₆; CBu^a·CNa cannot be B (A., II.)

obtained sufficiently fine in Et₂O to react. CH₂Cl·OR and CBu^a:C·MgBr in Et₂O give Me (42%), b.p. $80-81^{\circ}/29$ mm., Et (27%), b.p. $77-78^{\circ}/20$ mm., and Pr^{α} Δ^{β} -n-heptinenyl ether (34%), b.p. $60-62^{\circ}/6$ mm.; (CH₂Cl)₂O in presence of a little CuCl gives di- Δ^{β} -n-heptinenyl ether (21%), b.p. $140-142^{\circ}/6$ mm. CH₂Br₂ does not react with CBu^a·CNa in liquid NH₃ (gives much tar) or CBu^a·C·MgBr in Et₂O. CH₂·SO₄, CBu^a·C·MgBr, and a trace of CuCl in boiling Et₂O give $\Delta^{\epsilon\theta}$ -n-tridecadi-inene (13%), b.p. $108-110^{\circ}/8$ mm. d, n, and [M] are given for the products. R. S. C.

Radioactive exchange and adsorption of methyl bromide with several inorganic bromides.—See A., 1944, I, 42.

βββ-Trifluoroethyl iodide. H. Gilman and R. G. Jones (J. Amer. Chem. Soc., 1943, 65, 2037—2038).— CF_3 -CHN₂ with HI-PhMe at -75° gives βββ-trifluoroethyl iodide (I) (77%), b.p. $54\cdot5$ - 55° /730 mm., obtained only in 4-5% yield from CF_3 - CH_2 -OH by I-P. With Mg in Et_2O-N_2 , (I) gives no Grignard reagent (Michler's ketone test) but instead CH_2 - CF_2 , b.p. 91° /740 mm. R. S. C.

Electrolysis of the nitroparafflas. R. Pearson and W. V. Evans (Trans. Electrochem. Soc., 1943, 84, Preprint 21, 227—231).— Electrolysis of MeNO, containing 1% of NMe₃ between Pt electrodes at 15° with c.d. 0·8—2·4 amp. per dm.² gives at the cathode NHMe·OH (oxalate, m.p. 157—158°; sulphate, m.p. 129°) in 53% yield and at the anode NO₂·[CH₂]₂·OH, b.p. 191·5°, in 25% yield, identified further by reduction to NH₂·[CH₂]₂·OH; NO, NH₂OH, and some CH₂·N·OH are also obtained. Under similar conditions EtNO₂ affords NHEt·OH (oxalate, m.p. 95—96°) in 40% yield and NO₂·[CHMe]₂·OH in 25% yield with some NH₂OH and apparently CHMe·N·OH. In aq. alkali NH₂OH does not result and the solution contains NO₂' but not NO₂'; O₂ is evolved at the anode. Prβ·NO₂ and NMe₃ give a green solution probably containing NO·CMe₂·NO₂; on electrolysis NHPrβ·OH is formed at the cathode and COMe₂ at the anode with a residue of high b.p. In presence of NaOH there is no production of NH₂OH but there is a 15% yield of dinitro-βγ-dimethylbutane which causes partial polarisation of the anode, at which O₂ is evolved.

Anode reactions in the electrolysis of ethyl alcohol.—See A., 1944, I, 43.

Catalytic dehydrogenation. I. Catalytic conversion of alcohols into aldehydes, paraffins, and olefines. E. J. Badin (J. Amer. Chem. Soc., 1943, 65, 1809—1813).—Catalytic changes of n-CH₂₂-OH (x-5, 8, 9, 10, and 16) in presence of Raney Ni at 140—275° are reported. Reactions are successively: loosening of an a-H; R-[CH₂]₂·OH \rightarrow R-[CH₂]₂·CHO + H₂; R-[CH₂]₂·CHO \rightarrow CHR:CH₂ + CO + H₃; R-[CH₂]₂·CHO + CHR:CH₂ + H₂ \rightarrow CH₄ + H₂O. At 140° only aldehyde is formed. Max. amounts of aldehyde (measured as 2:4-dinitrophenylhydrazone; probably present largely as acetal) are obtained at 200— 215° , of CH₂MeR at 250° , and of olefine at 275° . Temp. is thus the main factor. n-Decaldehyde-2:4-dinitrophenylhydrazone has m.p. 104° .

Reaction between alcohols and metal oxides. E. Berner (5 Nordiske Kemikermede, 1939, 231—232).—Anhyd. MeOH and CaO give basic Ca methoxide, of very variable composition, which reacts with more MeOH to give Ca(OMe)₂ and H₂O. Sr(OMe)₂ and Ba(OMe)₂ are freely sol. in MeOH at room temp.; their pptn. on heating is due to conversion into an unsolvated modification. PbO and MeOH at room temp. in sunlight or Hg-vapour light give finely-divided Pb; the reaction is quantitatively reversed in darkness.

Leaf alcohol. IV. trans-cis Problem of the leaf alcohol, $\Delta^{\gamma}-n-$ hexen- α -ol. S. Takei, M. Ono, and K. Sinosaki (Ber, 1940, 73, [B], 950-955; cf. A., 1939, III, 536).— H_2 -Pd-BaSO₄ converts CEt-C·[CH₂]₂·OH (I) in Et₂O at -18° into trans- (II) $(96^{\circ})_0$) (3:5-dinitrobenzoate, m.p. 49° ; allophanate, m.p. 146° ; anthraquinone-2-carboxylate, m.p. 68°) but in xylene at 100° into cis-CHEt:CH·[CH₂]₂·OH (III) (3:5-dinitrobenzoate, m.p. 28° ; allophanate, m.p. 143° ; anthraquinone-2-carboxylate, m.p. 50°), and in C_6H_6 at 50° into a mixture (cf. Stoll et al., A., 1939, II, 2). Complete hydrogenation in Et₂O yields n-C₆H₁₃·OH (3:5-dinitrobenzoate, m.p. 59— 60°). (II) is identical with the natural product (A., 1938, II, 345). (III) is also obtained from Et₂ sorbate by reduction by Na. The dibromide, b.p. 119— $122^{\circ}/6$ mm. (4'-iododi-

phenylylurethane, m.p. 127°), of (II) with KOH-aq. EtOH in the cold gives $C_8H_{10}Br\cdot OH$, b.p. $68-69^\circ/3$ mm. (allophanate, m.p. 171°), and thence at the b.p. (I), b.p. $69-71^\circ/16$ mm. [allophanate (IV), m.p. 187° ; 3:5-dinitrobenzoate, m.p. 72° ; anthraquinone-2-carboxylate, m.p. 129°] (cf. loc. cit.), regenerated by distilling (IV) + KOH in steam and oxidised by aq. KMnO₄ at 70° to EtCO₂H.

Volatile vegetable compounds. XXV. Presence of Matsutake's alcohol (Δ^a -n-octen- γ -ol) and of 3-methylcyclohexanol in oil of pennyroyal [Mentha puleguim, L.]. Y. R. Naves (Helv. Chim. Acta, 1943, 26, 1992—2001).—Different samples of the oil of Spanish origin which contain piperitenone and n-octan- γ -ol also contain octenols. In one such sample d-n-octan- γ -ol, Δ^a -l-n-octen- γ -ol, and 3-methylcyclohexanol have been identified; other alcohols are present. dl-n-Octan- γ -yl allophanate, m.p. 155·5—156°, appears new. d-n-Octan- γ -yl allophanate has m.p. 182—182·5°. H. W.

Optically active phytol. P. Karrer, A. Geiger, H. Rentschler, E. Zbinden, and A. Kugler (Helv. Chim. Acta, 1943, 26, 1741—1750).—
Partly racemised (+)-citronellol (I), b.p. 106—108°/12 mm., [a]₁₅ +2·9·5 is hydrogenated (Pt) to (+)-dihydrocitronellol, b.p. 104—107°/12 mm., [a]₁₅ +2·56°, which is converted by PBr₃ at 0° into (-)-dihydrocitronellyl bromide, b.p. 98—100°/12 mm. This is condensed with CHAcNa·CO₂Et to Et (-)-βζ-dimethyloctylacetoacetate, b.p. 155°/12 mm., φ -1·6°, hydrolysed by KOH-MeOH at room temp. to (+)-hexahydro-ψ-ionone (II), b.p. 122°/12 mm., [a]₁₅ +0·55°, which is purified to optical homogeneity through the semicarbazone, m.p. 95°. (II) and C₂H₂ afford γηλ-trimethyl-Δα-dodecinen-γ-ol, b.p. 140—142°/13 mm., φ +0·82°, converted by partial hydrogenation (Pt or Pd) into γηλ-trimethyl-Δα-dodecen-γ-ol, b.p. 142—144°/13 mm., which gives successively γηλ-trimethyl-Δβ-dodecenyl bromide (which could not be purified), Et γηλ-trimethyl-Δβ-dodecenylacetoacetate, and (-)-ζκξ-trimethyl-Δε-pentadecen-β-one (III), b.p. 175—178°/11 mm., φ_D-0·20°. Thus far the compounds contain only one asymmetric C but partial reduction of (III) involves the formation of a second asymmetric centre. Only one (-)-ζκξ-trimethylpentadecan-β-one, b.p. 168—172°/11 mm., φ_D-0·24°, appears to be formed as judged by the behaviour of the cryst. semicarbazone, m.p. 68°, [a]_D-0·35° in EtOH. Optical homogeneity at C_(ξ) is not regarded as definitely established. Addition of C-H₂ to the ketone leads to γηλο-tetramethyl-Δε-kexadecen-γ-ol, b.p. 159—164°/0·6 mm., φ_D-0·2°, transformed by partial catalytic hydrogenation into (-)-γηλο-tetramethyl-Δε-hexadecen-γ-ol, b.p. 159—164°/0·6 mm., φ_D-0·2°, transformed by partial catalytic hydrogenation into (-)-γηλο-tetramethyl-Δε-hexadecen-γ-ol, b.p. 159—164°/0·6 mm., φ_D-0·2°, transformed by PBr₃ into phytyl bromide, converted by KOAe in COMe₂ followed by hydrolysis into (-)-phytol (IV), b.p. 132°/0·02 mm., φ 0·18°. Since the processes involved in the production of (IV) ar

Vitamin-A.. P. Karrer and E. Bretscher (Helv. Chim. Acta, 1943, 26, 1758—1778).—The unsaponifiable matter of winter trout-liver oil is largely freed from sterols by freezing and purified by repeated chromatography over Ca(OH), followed by distillation in a cathoderay vac. The best specimens of vitamin-A, thus obtained still contain ~2—3% of -A as judged by the yield of geronic acid after ozonisation. This result invalidates the formulæ for -A, proposed by Gillam et al. (A., 1938, III, 315) and by Gray (A., 1942, II, 185). The isolation of COMe, and CH2O by the ozonisation of -A2 indicates that it may be a mixture of isomerides, CMe, CH:CH2: CMe:CH:CH2: CMe:CH:CH2: OH and CH2:CMe:[CH2]2: [CMe:CH:CH:CH]2: CMe:CH:CH2: OH, similar to that occurring in natural citronellal. It is, however, possible that the production of CH2O is due to an isomerisation within the mol. under the action of O3 since -A gives the product in smaller amount than -A2 and nearly equal amounts are derived from carotene and lycopene; in these cases it is undoubtedly due to subsidiary reactions or isomerisations. The constitution of -A2 is confirmed by its hydrogenation to dihydrophytol, isolated as the allophanate, m.p. 73°. The purest

Derivatives of α-bromo-β-methyl-n-valeric acid. C. D. Hurd and F. W. Cashion (f. Amer. Chem. Soc., 1943, 65, 2037).— CHMcEt·CH.·CO₂H with red P-Br at 95° gives α-bromo-β-methyln-valeryl bromide (54%), b.p. 98—100°/23 mm., and thence the amide, m.p. 104°, anilide, m.p. 84°, and p-toluidide, m.p. 105°.

specimens of $-A_2$ have $\sim 1/10$ th of the physiological activity of -A; this is due in part to the presence of -A, but it appears that the rat

H. W.

has a limited capacity to cyclise -A, to -A.

Course of autoxidation reactions in polyisoprenes and allied compounds. VII. Rearrangement of double linkings during autoxidation. E. H. Farmer, H. P. Koch, and D. A. Sutton (J.C.S., 1943, 541—547; cf. A., 1943, II, 151).—Et linolenate (I) and Me docosahexaenoate (II), both showing unsaturation of the methylene interrupted type, CCCCCCCC, are shown by spectrographic measurements to develop conjugated-diene and -triene unsaturation during incorporation of mol. O2. (II) is obtained from glycerides of cod-liver oil, which are converted by MeOH-HCl into Me esters, the C₂₃ ester fraction is separated by mol. distillation at <115°, and after rapid hydrolysis with KOH-MeOH, the K soaps are converted through the free acid into Li soaps, and the purified, more sol., Li soap yields the free acid and thence (II), which is purified by mol. distillation in N. or high and the value solar days leading in O. is distillation in N2 or high vac.; the yellow colour developed in O2 is removed by chromatographic treatment (Al_2O_3) in purified N_2 . (I) absorbs $1\cdot 1\%$ of O_3 in 24 hr., $3\cdot 7\%$ in 48 hr., and 12% in 110 hr.; (II) absorbs $6\cdot 3\%$ in 72 hr., and a second sample, $7\cdot 2\%$ in 24 hr. Extent of double linking displacement is correlated with degree of peroxidation. After incorporation of 1 mol. of O2, rearrangement of double linkings in (I) has progressed to a stage at which $\sim\!28.5\%$ of ester contains 2 double linkings in conjugation, and 4.5% has 3 conjugated. (II) exhibits a similar rearrangement, as shown by the development of intense absorption in the originally feeble absorbing regions of 2340 and 2700 A. (cf. Triebs, A., 1942, II, 392). Squalene (rectified by mol. distillation at <112°, and purified by chromatographic treatment in N₂) and rubber (purified by fractional dissolution of crepe rubber in petroleum-COMe, in N₂) show another type of unsaturation, *C.C.C.C.C.C.C.C.C.C.C.C., and do not develop conjugated units. No representative increase in absorption of light is noted. Such small increases observed in the spectra of squalene or two of its oxidation products are probably due to small degrees of conjugation or to formation of peroxide groups. Apart from an induction period (no O2 is absorbed in 2 days, but 8.7% is absorbed in 10 days), the result of oxidising (1) at room temp. in complete darkness is the same with regard to efficiency of peroxide formation and extent of double linking rearrangement as that observed in summer daylight. Mechanisms of autoxidative reactions are discussed.

Configurative relation between optically active lactic acid and a-hydroxybutyric acid. A. Fredga, M. Tenow, and I. Billstrom (Arkiv Kemi, Min., Geol., 1943, 16, A, No. 21, 10 pp.).—r- (I), through the brucine salt, gives (—)-a-hydroxybutyric acid (II), m.p. 55—55·5°, [a]₂²⁶—2·5° in H₂O, —4·1° in COMe₂, +1·7° in AcOH, +6·8° in CHCl₃. (I)—aq. NaOH-CS₃, then EtBr, afford ethylcarbothiolon-a-hydroxybutyric acid, SEt·CS·O·CHEt·CO₂Et (III), m.p. 58—59°, resolved into the (+)- (IV), m.p. 31·5—32° (cinchonidine salt, +H₂O), and (—)-acid, m.p. 30·5—31·5° (brucine salt, +3H₂O). The (+)-acid, also obtained from (—)-(I), shows vals. of [a]₂²⁵ +39·2° in C₆H₆, +14·5° in CHCl₃, +6° in AcOH, which are similar to those of SEt·CS·O·CHMe·CO₂H (V). M.p. curves of (+)- and (—)-(II) or (III), r-(III) and r-(II), (+)-(III) and (+)-(V) (cutectic) are shown. The 1:1 mol. compound, indicated from the curve derived from (+)-(III) and (—)-(V), gives a continuous m.p. curve with r-(V), but with r-(III) affords a cutectic. The steric series (II), (IV), (+)-(V), (+)-OH·CHMe·CO₂H is deduced.

Irreversible transformation of dehydroascorbic acid.—See A., 1944, III, 127.

Rearrangement of allyl-type esters of β-keto-acids. W. Kimel and A. C. Cope (J. Amer. Chem. Soc., 1943, 65, 1992—1998).—CH₂Ac·CO·O·CH₂·CH:CH₂ (I) and its derivatives at 250° give Ac·[CH₂]₂·CH:CH₂ etc. and CO₂, reaction proceeding by chelation, migration of allyl etc. to the CH₂ of CO·CH₂·CO with inversion, shift of the ethylenic linking, and finally loss of CO₂. Similar reactions with CH₂Bz·CO·O·CHR·CH:CHR' (R and R' = H or Me) occur even more readily, owing to the superior activating effect of Bz on CH₂. Formation of Ac·[CH₂]₂·CH:CHPh (II) or CH₂Ac·CHPh·CH-CH-CH₂ (III) from CH₂Ac·CO₂Et and CHPh·CH-CH₂·OH (Carroll, A., 1941, II, 310) occurs by re-esterification in presence of the alkaline catalyst, followed by an allylic shift of Ph and the ethylenic linking. CH₂Ac·CO₂Me and CH₂:CH·CH₂·OH give (I) (71%), but the reaction fails with analogous alcohols. The alcohols with diketen and 0·01 mol. of NaOAlk at 0—25° give β-methylallyl (IV) (85%), b.p. 95—97°/18 mm., crotyl (V) (83%), b.p. 100—102°/16 mm., Δν-β-butenyl (VI) (89%), b.p. 92—93°/18 mm., cinnamyl (VII) (69%), b.p. 101—104°/0·025 mm., a-phenylpropenyl (VIII) (70%), b.p. 77°/0·002 mm., linallyl (IX) (61%), b.p. 71—74°/0·006 mm., and geranyl (X) (77%), b.p. 79—80°/0·006 mm., acetoacetate. (X) contains some neryl ester (disclosing itself by variation of n); hydrogenation of (X) gives only tetrahydrogeraniol. At the b.p., (I) gives CH₂:CH·CH₂·OH, COMe₁, dehydroacetic acid, and only 5·5% of COMe·[CH₂]·CH:CH₂·OH, CoMe₂, dehydroacetic acid, and only 5·5% of COMe·[CH₂]·CH:CH₂·CH.CMe·CH₂Cl and CHAcNa·CO₂Et), (V) at 190—220° gives COMe·CH₂·CH:CH₂·CH:CH₂ (37%), and (VI) at 185—200° gives COMe·CH₂·CH:CHme·CH:CH₂ (37%), and (VI) at 185—200° gives COMe·CH₂·CH:CHme·CH:CH₂ (37%), b.p. 161—153° (semicarbazone, m.p. 104·5—105·5° (lit. 97°); with O₃-C₃H_{1*} and then H₂O₂ gives

MeCHO and COMe·[CH₂]₂·CO₂H}. At 250° (VII) (no solvent) gives (III) (74%), b.p. 85—86°/1 mm. [2:4-dinitrophenylhydrazone, m.p. 102—103° (lit., 101—102°)], (VIII) at 200—240° gives (II) (88%), b.p. 97—99°/0·3 mm. [2:4-dinitrophenylhydrazone, m.p. 143·5—145° (lit. 145—146·5°); semicarbazone, m.p. 130·5—131° (lit., 132°)]; geranylacetone, b.p. 101·5—103°/2·5 mm. [semicarbazone, m.p. 94·5—96° (lit. 96°)], is obtained (78%) from (IX) at 170—235° or (23%) from (X) at 220—230°. CH₃B₂·CO₂Et, ROH, and NaOR give crotyl (31%), b.p. 112—114°/0·20 mm., and Δ^{γ} -β-butenyl benzoylacetate (65%), b.p. 110°/0·5 mm., which at 240—250° give Ph β-methyl- Δ^{γ} -butenyl (76%), b.p. 98—100°/2·1 mm. (semicarbazone, m.p. 176—177·5°; with 0_3 —C₅H₁₂ at -5° and then H₂O–Zn dust-quinol-AgNO₃ gives CH₂O and with H₂-Pd–C–EtOH gives COPh·CH₂·CHMeEt), and Δ^{γ} -n-pentenyl ketone (83%), m.p. 23°, b.p. 96—97°/9 mm. (semicarbazone, m.p. 129—130°; with O₃ gives MeCHO and with H₂-Pd–C gives n-C₆H₁₃Ph), respectively. In the pyrolyses yields of CO₂ considerably exceed those of the ketones.

Carboxyphenylhydrazones in the identification of carbonyl compounds. S. Veibel [with A. Blaaberg and H. H. Stevns] (5 Nordiske Kemikermode, 1939, 223—225; cf. A., 1939, II, 133)—p-SO₃H·C₈H₄·NH·NH₂ is unsuitable for the identification of CO; compounds owing to its poor solubility. o- (I) is as suitable as ρ -CO₂H·C₆H₄·NH·NH₂ (II) for this purpose; both react normally with a- and γ -CO-acids, but with β -CO-acids (I) reacts normally whilst (II) yields pyrazolones. (II) reacts normally with CH₂Ac₂ whilst (I) gives an unidentified substance sol. in acids and pptd. by M. H. M. A.

Methanetri- β -propionic acid. V. Prelog and K. Balenovic (Ber., 1940, 73, [B], 875—877).—CH([CH₂], Br)₃ is converted by the protracted action of KCN in boiling aq. EtOH into $\alpha\varepsilon$ -dicyano- γ - β -cyanoethylpentane, m.p. 83°, hydrolysed by boiling aq. H₂SO₄ (1:1) to methanetri- β -propionic acid [γ - β -carboxyethylpentane- $\alpha\varepsilon$ -dicarboxylic acid] (I), m.p. 108·5—109°. The corresponding Et_3 ester, b.p. 163°/0-06 mm., is condensed by Na in PhMe at 115—120° to β -4-keto-3-carbethoxycyclohexylpropionic acid, m.p. 101°; alkaline hydrolysis affords the free keto-acid, decomp. ~80°, which at 100°/9·05 mm. yields β -4-ketocyclohexylpropionic acid. m.p. 69—70° 0.05 mm. yields β -4-ketocyclohexylpropionic acid, m.p. $69-70^{\circ}$ (hydrate, m.p. 55° ; 2:4-dinitrophenylhydrazone, new m.p. 156°), also obtained by heating (I) with Ac_2O (cf. Harris et al., \hat{A} ., 1938, II, 332). II, 332).

Hydroxyl-ion-catalysed aldol condensation of benzaldehyde with methyl ethyl ketone and acetone.—See A., 1944, I. 42.

α-Keto-β-hydroxybutyric acid. E. Hoff-Jørgensen (5 Nordiske Kemikermode, 1939, 251—252).—CHMeBr-CO-CN (from EtCO-CN with Br-AcOH) is heated with aq. Pb(OAc), for 30 min. at 70°, PbBr₂ filtered off and all Pb removed with H₂S, and the solution evaporated 4—5 times, with H₂O addition, at 50° to give n-a-keto- β -kydroxybutyramide, m.p. 214°, which is converted via the Me ester, liquid, and the Ba salt into the corresponding acid (I). (I) reduces Fehling's solution and is decarboxylated at pH >7, but is stable in acid addition. M. H. M. A. acid solution.

Stabilisation of keto-compounds by acetalisation. M. Kühn (*J. Pr. Chem.*, 1940, [ii], **156**, 103—149; cf. Salmi, A., 1938, II, 427).— Stabilisation of CO-compounds as acetals, which because of their tendency to form peroxides may be useful as polymerisation catalysts, is studied. Cyclic acetals are obtained from various CORR' and a glyco' in C₈H₆ or C₂HCl₃ using an acid catalyst (e.g., PhSO₃H); the H₂O formed in the reaction is removed by distillation. Thus, saturated α , β , γ , and δ -CO-acids (as esters) all give 5- and 6-membered ring ketals; the ring is completely stable to alkali and is hydrolysed by dil. HCl only at >50°. Reaction does not occur with ketones containing C:C $\alpha\beta$ to the CO (e.g., CHR:CAc·CO₂Et; R = Ph, 2-furyl) or with compounds which can enolise to produce C:C·CO· (e.g., CHAc₂·CO₂Et; CN·CHPh·COMe). CEt₂Ac·CO₂Et does not react. cycloHexanone (I), glycerol, and a trace of PhSO₃H does not react. cycloHexanone (I), glycerol, and a trace of PhSO₃H in boiling C₈H₆ thus give cyclohexanone γ(or β)-hydroxy-αβ(or αγ)-propylene ketal (64%), b.p. 133—135°/15 mm. [chloroacetate, b.p. 170—174°/15 mm., with NEt₂·[CH₂]₂·OH in EtOH affords the 1:1 additive compound, m.p. 196° (decomp.)], ultra-violet irradiation of which causes strong peroxide formation. CH₂Cl·[CH₂]₂·OH with camphor (in C₆H₆ + PhSO₃H) and COPhMe (in PhMe + H₂SO₄) gives the γ-chloro-αβ-propylene ketals, b.p. 146°/17 mm. and 138—140°/15 mm., respectively. (CH₂·OH)₂ and COPh·CH₂Cl in C₆H₆ + PhSO₃H afford the ethylene ketal (95%), b.p. 144—146°/15 mm., m.p. 67°, the Cl of which is stable to EtOH-NaOH and to CHNaAc-CO₆Et or OMe·[CH₂]₂·O·[CH₂]₂·ONa in PhMe; it slowly forms a Grignard reagent. COPh·CHCl₂ does not similarly react but ethylene ketals of the following are prepared: COPh·CH, Br, b.p. but ethylene ketals of the following are prepared: COPh CH2Br, b.p. out enguene retails of the following are prepared: COPh'CH₂Bf, 5.p. 154°/17 mm., m.p. 60—61° (no reaction with MeOH-NaOMe at 60°/10 hr.), COMe·CH₂Br, b.p. 76—78°/16 mm., CO(CH₂Br),, b.p. 113°/16-mm., COMe·CH₂Cl, b.p. 62—64°/18 mm., and CO(CH₂Cl)₂, b.p. 105°/12 mm. CH₂:CH·COMe (II), (CH₂·OH)₂, and C₆H₆ + PhSO₃H give a mixture of probably (COMe·[CH₂]₂·O·CH₂)₂ and its diketal; COMe·[CH₂]₂·Cl [from (II) and HCl in C₆H₆] gives an impure product from which the hetal of (II) could not be obtained impure product [from which the ketal of (II) could not be obtained B 2 (A., II.)

by treatment with alkali] and COPh·[CH $_2$] $_2$ ·Cl affords a polymerisation product. CHPh·CH·COPh and CHR·CH·COMe (R = Ph, 2-furyl) did not react (cf. above). Glucose and (I) in C $_6$ H $_6$ -BuOH-PhSO3H give 1:2:5:6-dicyclohexylidene-3:4-anhydroglucofuranose

3: 4:5:6-Disopropylideneglucosazone (from COMe₂ + PhSO₃H) is a resin. NEt₂·[CH₂]₃·COMe (as hydrochloride which is dried by C₆H_g) does not react with CH₂R·OH (R = Me, Pr, Bu, C₇H₁₅) and H₂SO₄ in various hydrocarbons but gives the ethylene, b.p. 163°/15 mm. NEt₂·[CH₂]₂·COMe affords the ethylene, b.p. 93—94°/13 mm., 208°/760 mm. (the wax-like quaternary salt with C₁₂H₂·Br is an emulsifying agent for oils), ay-butylene, b.p. 112—113°/13 mm., and γ(or β)-hydroxy-aβ(or aγ)-propylene ketal, b.p. 145—150°/12 mm. Me β-N-cyclohexyl-N-ethylaminoethyl ketone (from C₆H₁₁·NHEt,HCl, CH,O, and COMe₂) and 2-N-cyclohexyl-N-methylaminomethylcyclohexanone [from (I), cyclohexylamine hydrochloride, and CH₂O] give ethylene ketals, b.p. 166°/14 mm. and 190—192°/14 mm., respectively. NN-Di-(y-keto-Δδ-pentenyl)cyclohexylamine [from cyclohexylamine sulphate, (II), and (CH₂O)_x in AcOH] does not react with (CH₂·OH)₂ in C₆H₆ + PhSO₃H; diacetonamine similarly decomposes but diacetone-ethylamine and Me β-cyclohexylaminoethyl ketone [from cyclohexylamine and (II)] Me β -cyclohexylaminoethyl ketone [from cyclohexylamine and (II)] form ethylene ketals, b.p. $84-86^{\circ}/14$ mm. and $162-163^{\circ}/18$ mm., respectively. The hydroxypropylene ketal obtained from glycerol and mixed COPh·CH₂·NMe₂RCl ($R=C_{10}-C_{20}$ alkyl) forms a frothy

and mixed COPh·CH₂·NMe₂RCl ($\mathbf{R} = \mathbf{C}_{10}$ — \mathbf{C}_{20} alkyl) forms a frothy aq. solution which emulsifies oils. CH, \mathbf{A} c·CO₂Et (\mathbf{IV}) does not react with $[\mathrm{CH}_2]_4(\mathrm{OH})_2$ or various CH₂R·OH in $\mathbf{C}_6\mathbf{H}_6$ + PhSO₃H or PhMe + H₂SO₄; its ethylene ketal (\mathbf{V}) ($loc.\ cit.$) is hydrolysed by 5N-aq. EtOH–NaOH to CH₂Ac·CO₂H ethylene ketal (readily sol. in H₂O), which can be esterified to (\mathbf{V}) (46%0 yield). The $a\gamma$ -butylene ketal of (\mathbf{IV}) is similarly hydrolysed. (\mathbf{IV}) also yields the γ (or β)-hydroxy- $a\beta$ (or $a\gamma$)-propylene, b.p. 145° /14 mm., and γ -chloro- $a\beta$ -propylene ketal (\mathbf{VI}), b.p. 132° /13 mm. Boiling MeOH–NaOMe converts (\mathbf{VI}) into the not quite pure $a\beta$ -allene ketal (\mathbf{VII}), b.p. 118— 120° /13 mm.; MeOH–NaOPh gives (\mathbf{VII}) (42%0 and the γ -chenoxy- $a\beta$ -bropylene ketal NaOPh gives (VII) (42%) and the γ-phenoxy-αβ-propylene hetal (48%), b.p. 198°/11 mm., and Na p-isooctylphenoxide in PhMe affords the γ-p-isoactylphenoxy-αβ-propylene ketal. Et dodecylaceto-acetate, b.p. 168—170°/0·5 mm., gives the ethylene ketal, b.p. 184—186°/0·5 mm. (corresponding acid, m.p. 63°). Ethylene ketals of the 186°/0·5 mm. (corresponding acia, m.p. 63°). Ethylene netals of the following are prepared: CO(CH₂·CO₂Et)₂, b.p. 162—164°/25 mm., CH₂Ph·CHAc·CO₂Et, b.p. 178—179°/11 mm., Et₂ α-acetylglutarate, b.p. 180—182°/24 mm., Me Et(a) α-acetylglutarate, b.p. 168—170°/15 mm. (γ-chloro-αβ-propylene ketal, b.p. 209—210°/17 mm.), Et γ-acetylbutyrate, b.p. 135—136°/17 mm., Et lævulate, b.p. 110—112°/15 mm., AcCO₂Et, b.p. 80—81°/15 mm., Et and Bu α-formylphenylacetate, b.p. 172—174°/15 mm. and 212—214°/20 mm. respectively. Et γ-ketobutylmalonate, b.p. 162—164°/14 mm. Et pnenylacetate, 5.p. $172-174^\circ/16$ mm. and $212-214^\circ/20$ mm., respectively, Et γ -ketobutylmalonate, b.p. $162-164^\circ/14$ mm., Et γ -keto- α -cyanohexoate, b.p. $168-170^\circ/14$ mm., and Et₂ α -acetylsuccinate, b.p. $162^\circ/14$ mm. Et phenacylacetoacetate and $(CH_2 \cdot OH)_2$ (2 mols.) in PhMe + PhSO₃H give the di(ethylene hetal), b.p. $174-178^\circ/0.5$ mm., m.p. $62-64^\circ$ (free acid, m.p. $150-151^\circ$), and Et 2-phenyl-5-methylfuran-3-carboxylate (free acid, m.p. $179-181^\circ$) 2 (hlorocyalohexanono and CHM) α (CR) in PhMe 179-181°). 2-Chlorocyclohexanone and CHNaAc CO2Et in PhMe followed by $(CH_2 \circ OH)_2 \sim PhSO_3 H$ give Et 1-methyl-3: 4: 5: 6-tetra-hydrocoumarone-2-carboxylate, b.p. $143-144^\circ/13$ mm. (free acid, m.p. 161°). $CH_2(CHAc \cdot CO_2Et)_2$ affords the di(ethylene ketal), b.p. $214-218^\circ/20$ mm.

Deuterium as indicator in keto-enolic tautomerism. A. Tananger (5 Nordiske Kemikermede, 1939, 229—230).—The type of di-enolisation in diketo-compounds is studied by introducing D into an active CH2 group and measuring the rate of enolisation and the distribution of D in the dienol.

Behaviour of trimethylamine, trimethylammino-sulphur trioxide, and trimethylamine oxide towards sulphur dioxide.—See A., 1944, I, 16.

Additive compounds of trimethylamine with boron fluoride and its methyl derivatives.—See A., 1944, I. 44.

Interaction of higher α -chloroparaffins with ammonia, primary, sec., and tert. amines. O. Westphal and D. Jerchel (Ber., 1940, 73, [B], 1002—1011).—RC1 (R = n-alkyl here and below) with 1:1 liquid NH3-EtOH give mainly NHR2 with smaller amounts of NH2R and NR₃; the amount of NR₃ decreases with the size of R. Thus, $n\text{-}C_8\text{H}_{17}\text{Cl}$ (I) at 140° gives $n\text{-}C_8\text{H}_{17}\text{NH}$, (11·4%), b.p. 76—78°/12 mm., $(n\text{-}C_8\text{H}_{17})_2\text{NH}$ (~40%), m.p. 35°, b.p. 142—147°/3 mm., and $tri\text{-}n\text{-}octylamine}$ (~22%), b.p. 183—185·5°/3 mm. $n\text{-}C_{12}\text{H}_{25}\text{Cl}$ (II) at 170° gives $(n\text{-}C_{12}\text{H}_{-5})_2\text{NH}$ (III) (81%), m.p. 57—58° (lit. 55—56°) hydroshloride dimorphic (transition point ~79°) m.p. ~200° [hydrochloride, dimorphic (transition point \sim 72°), m.p. \sim 200° (decomp.)], but at 110° gives $n\text{-}C_{12}\text{H}_{25}\text{\cdot}N\text{H}_2$ (IV) (16%) [hydrochloride, m.p. 183—186° (decomp.)] and (III) (64%). H.-Ni-Co-Cu at 100°/ \sim 100 atm. reduces $n\text{-}C_{11}\text{H}_{23}\text{\cdot}CN$ in MeOH-H.O (150: 80 ml.) to (IV) but in 96% EtOH to (III). $n\text{-}C_{16}\text{H}_{33}\text{Cl}$ (V) at 170° gives much (n-C₁eH₃₃)₂NH and 24% of n-C₁H₃·NH. (hydrochloride, m.p. 178°). In EtOH at 175° (II) and (IV) give 47% of pure (III). With NH₂Me in a little EtOH, RCl gives NHMeR and NMeR₃ (only with lower alkyl), but, if R = C₅, no NMeR₃Cl. Thus, Bu°Cl at 100—110° gives methyldi-n-butylamine (69%), b.p. 53·5—54°/11 mm., and some NHMeBu^a. n-C₆H₁₃Cl at 100° gives much NHMe·C₆H₁₃-n and 40% of (n-C₆H₁₃)₂NMe, b.p. 118°/12 mm. At 140° (I) gives n-C₈H₁₇·NHMe (24%) and methyldi-n-octylamine (30%), b.p. 143—145°/3 mm. At 160° (II) gives n-C₁₂H₂₅·NHMe (VI) (59%), b.p. 108—110°/1·5 mm. (hydrochloride, m.p. 181—184°), and methyldi-n-dodecylamine (37%), m.p. 15—16°, b.p. 201°/1·5 mm. [obtained in 51% yield from (II) and (VI) in EtOH at 160°]. At 140—150° (V) gives n-C₁₆H₃₃·NHMe (15%) (hydrochloride, m.p. 169—170°) and (n-C₁₆H₃₃)₂NMc (68%), m.p. 36—37° (lit. 34—35°), b.p. 269—271°/1 mm. With sec. amines RCl in MeOH or EtOH (not C₈H₆ or light petroleum) gives, usually, good yields of tert. base. E.g., NHEt, with (I) at 160° gives diethyl-n-octylamine, b.p. 112—113°/12 mm. and with (II) at 140° gives diethyl-n-dodecylamine (86%; in absence of EtOH), b.p. 122—124°/2 mm. (hydrochloride, m.p. 119-5°). NH(CH₂Ph)₂ and (II) at 150° give diethzyl-n-dodecylamine (75%), b.p. 219—220°/2 mm. (hydrochloride, m.p. 101°). NHMe₂ and (V) at 140° give dimethyl-n-hexadecylamine (82·5%), b.p. 138°/1 mm. (hydrochloride, m.p. 198°). Higher alkyl chlorides and tert. amines react with difficulty in EtOH and not at all in other solvents or alone. NMe₂·CH₂Ph (VI) and (I) in a little EtOH at 105° (24 hr.) give benzyldimethyl-n-octylammonium chloride (~90%), f.p. ~0°. NMe₃ and (II)—EtOH at 80—90° give trimethyl-n-dodecylammonium chloride (75—80%), m.p. ~37°. (VI) and (II)—EtOH at 90° (45 hr.) give henzyldimethyl-n-dodecylammonium chloride (~100%), an oil. NMe₃ and (II)—EtOH at 180° (18 hr.) give n-C₁₂H₃₅·NMe₂ (hydrochloride, m.p. ~132°). NMe₃ and (V)—EtOH at 100—105° (12—16 hr.) give n-

Constitution of thionylamines. K. A. Jensen (5 Nordiske Kemikermode, 1939, 216—217).—The absence of syn- and anti-forms and their low dipole moments support the resonance structure: $R-N=S\rightarrow O \rightleftharpoons R-N \leftarrow S=O$.

M. H. M. A.

Reaction of d-glucosamine with o-phenylenediamine. R. Lohmar and K. P. Link (J. Biol. Chem., 1943, 150, 351—352).—d-Glucosaminic acid and o-C₆H₄(NH₂)₂ (I) do not give a cryst. product. Direct oxidative condensation of d-glucosamine hydrochloride with (I) in presence of $\operatorname{Cu}(\operatorname{OAc})_2$ -aq. AcOH at 50° affords 3-(D-arabotetrahydroxybutyl)quinoxaline, m.p. 192—193° (decomp.), [a]²⁰ -85-8° in 4N-HCl (tetra-acetate, m.p. 121°, [a]²⁰, -29-2° in CHCl₃) (cf. Ohle, A., 1934, 392).

Amino-acids and peptides. XV. Physical properties of l(+)- and d(-)-alanine. M. S. Dunn, M. P. Stoddard, L. B. Rubin, and R. C. Bovic (J. Biol. Chem., 1943, 151, 241—258).—Benzoyl-dl-alanine is resolved into its optical components by successive use of strychnine and brucine in aq. solution and the optically active substances are hydrolysed by HCl. The following sp. rotations are recorded: l-strychnine benzoyl-l(+)-alanine dihydrate, $[a]_{\rm D}=10\cdot45^{\circ}$ in H₂O; l-brucine benzoyl-l(-)-alanine $(+4\cdot5H_2{\rm O})$, $[a]_{\rm D}=26\cdot53^{\circ}$ in H₂O; l-benzoyl-l(+)-alanine, $[a]_{\rm D}+33\cdot4$ in N-NaOH; benzoyl-l(-)-alanine, $-32\cdot5^{\circ}$ in $1\cdot05$ N-NaOH; l(+)-alanine (I), $[a]_{\rm D}^{25}=13\cdot60^{\circ}\pm0\cdot01^{\circ}$ in 6N-HCl. Vals. of $[a]_{\rm D}^{0}$ (θ varied between 0·50° and $45\cdot0^{\circ}$) (I) and (II) in 7·25N-, 5·97N- (c=10, 6, or 3·5), 4·83N- (c=2), 0·884N-(c=8), 0·502N- ($c=4\cdot5$), and 0·228N-HCl (c=2), and in H₂O (c=10 or 6) are recorded. The solubilities of (I) and (II) in H₂O have been determined. The sp. rotations of (I) and (II) recorded in the literature have been evaluated by means of temp. and solute concn. factors derived from the present authors' data.

Dihydroxyacyl derivatives of β -alanine and l-leucine from tunny fish liver —See A., 1944, III, 124.

Isolation of valylvaline from gramicidin hydrolysates. H. N. Christensen (J. Biol. Chem., 1943, 151, 319—324).—Valylvaline (I) has been isolated as the Bz derivative (II), m.p. 218°, apparently optically inactive, from hydrolysates of gramicidin (III) prepared by boiling this substance with 16% HCl for 6 or 24 hr. (none obtained in 2 hr.). The resulting mixture of NH₂-acids is fractionated as the Cu salts and the fraction sol. both in H₂O and in MeOH is freed from reagents and benzoylated. When completely hydrolysed (II) yields BzOH and 2 mols. of dl-valine, identified as the Ac (IV), m.p. 149°, and p-toluenesulphonyl (V), m.p. 170° (corr.), derivatives. In separate experiments $\sim 90\%$ of the N was recovered as valine hydrochloride, 80% as (IV), and 50% as (V). The implication of the presence of (I) in the hydrolysates of (III) is discussed.

Amide metabolism in etiolated seedlings. I. H. B. Vickery and G. W. Pucher (J. Biol. Chem., 1943, 150, 197—207).—See A., 1944, III, 83). Almost quant. results are obtained in Schiff's method for the prep. of aspartic acid (A., 1885, 377) if the asparagine is hydrolysed with HCl (2 mols.) for 3 hr., aq. NH₃ (1 mol.) added, followed by EtOH, and the pH then adjusted to 3.0.

Carbamic acid peptides. New type of peptide. Possible source of ammonia from proteins. A. H. Corwin and (Miss) C. I. Damerel (J. Amer. Chem. Soc., 1943, 65, 1974—1984).—NH₂·CH₂·CO₂·CH₂Ph, HCl, KCNO, and a slight excess of NaOH in H₂O at 100° (2—3 min.) give N-earbamylglycine CH₂Ph ester (50%), m.p. 124·5—126°, converted by CH₂Cl-COCl in boiling C₈H₈ (1 hr.) into N-N'-chloroacetylcarbamylglycine CH₂Ph ester (70%), m.p. 179·5—180°, which with H₂-Pd-C in MeOH-H₂O-AcOH (a little) gives N-N'-chloroacetylcarbamylglycine (65%), m.p. 198—200° (decomp.), also obtained (56%) from NH₂·CO·NH·CH₂·CO₂H (I) by CH₂Cl-COCl in dioxan (not various other solvents). The Et ester, m.p. 145—146°, is also prepared. NH₂·CO·NH·CHR·CO₂H and the appropriate acid halide lead similarly to N-N'-chloroacetylcarbamyl-dl-alanine (51%), m.p. 181—181·5° (decomp.), N-N'-a-chloropropionylcarbamyl-glycine (51%). m.p. 208·5—211° (decomp.). -dl-alanine (56%), m.p. 191—192·5° (decomp.), and -l-leucine (46%), m.p. 147—148° (remelts at 148—148·5°), N-N'-a-bromopropionyl- (10%), m.p. 201—204° (decomp.). and N-N'-aetyl-carbamylglycine (poor yield), m.p. 234—235° (decomp.). The halogenated products with liquid NH₃ in ice-COMe₂ give N-N'-glycylcarbamyl-glycine (II) (70%), m.p. 192·5—194°, and -dl-alanine (III) (77%), and N-N'-alanylcarbamyl-glycine (IV) (55%), +H₂O (absorbed from air), softens 180°, m.p. 190—195° (decomp.). (II)—(IV) are amphoteric, having pK₁~3·34 and pK₂~7·6, and changes in titration curves due to CH₂O resemble those of NH₃-acids and polypeptides. The course of hydrolysis is elucidated by titration. In 0·3N-NaOH at room temp. (II) or (III) gives glycine + (I) or NH₂·CO·NH·CH₂·CO₃H, gives AOH + (I); to a slight extent, more with (IV) than with (Hander of NH₂·CO) (II), (III), and (IV) give NH₂·CO+H·CH₂·CO₃H, when the decomp further with liberation of NH₃·CHR·CO₃H, the anide then decomp further with liberation of NH₂·CHR·CO₃H, that you are obtained. In 0·3N-HCl at 90—100°

Crystalline quinine salt of pantothenic acid. Synthesis and resolution of the racemate. R. Kuhn and T. Wieland (Ber., 1940, 73, [B], 971—975).—COCl·[CH₂]₂·NH₂,HCl (prep. from the acid by PCl₅-AcCl) with CH₂Ph·OH at 70—80° give β -alanine CH₂Ph ester hydrochloride, m.p. 100—101° [derived platinichloride, m.p. 202—203° (block)], which with the lactone (I) of OH·CH₂·CMe₂·CH(OH)·CO₂H (II) at 100°, and then H₂-PtO₂ in AcOH or HCO₂H, gives syrupy dl-pantothenic acid, obtained pure by adsorption from H₂O at pH 8·5 on Al₂O₃ and elution by Ba(OH)₂. This acid has 2 × 10⁷ Sbm units per g. (cf. A., 1943, III, 124). The derived Ba salt (pH 8·5) with quinine sulphate in H₂O gives l-pantothenic acid, [a]₂^{2b} -26·7° in H₂O, [a]₂^{2d} -56·3° in MeOH {Ba, [a]₂^{2b} -115° in H₂O, and quinine salt, m.p. 165—167° (block), [a]₃^{2b} -115° in H₂O, having 4·5—5 × 10° Sbm units per g. and a rat dose ~15 μ g. per day. With hot, aq. Ba(OH)₂, (I) gives the derived Ba salt, m.p. 220°, and thence, by quinine sulphate, the quinine salts, m.p. 182—183°, and 164—165°, of (—)- and (+)-(II), respectively, and thence d-, m.p. 82—84°, [a]₂²⁰ +28·0°, and l-(I), m.p. 76—80°, respectively.

Solubilities of amides etc.—See A., 1944, II, 34.

Structure and insecticidal properties of organic compounds. N. N. Melnikov, N. D. Suchareva, and M. L. Fedder (Compt. rend. Acad. Sci. U.R.S.S., 1941, 31, 610—613).—See A., 1944, III, 133. The following are described (% yields in parentheses): Pr^a (88), b.p. $108-110^{\circ}/4$ mm.; allyl (60), b.p. $115-117^{\circ}/5$ mm.; Bu^a (88), b.p. $114-115^{\circ}/3$ mm.; Bu^{β} (92), b.p. $111-113^{\circ}/4$ mm., and octyl thiocyanate (63), b.p. $185-187^{\circ}/16$ mm.; Pr^a (80), b.p. $125-127^{\circ}/8$ mm., allyl (72.5), b.p. $113-114^{\circ}/5$ mm., Bu^a (75), b.p. $137-140^{\circ}/10$ mm., Bu^{β} (70), b.p. $125-126^{\circ}/9$ mm., and octyl a-thiocyanobulyrate (53), b.p. $159-162^{\circ}/5$ mm.

Theory of allyl isomerisation. IV. Allyl thiocyanate \rightarrow allyl-thiocarbimide. O. Mumm and H. Richter (Ber., 1940, 73, [B], 843—860; cf. A., 1939, II, 113, 478).—Further evidence is adduced in favour of the view that there is a change in position of attachment of the allyl group in all cases of allyl isomerisation in which the intermediate production of a 6-membered ring is possible even by participation of partial valencies. Technical CHMe:CH·CHO is reduced [Al(OPr β)₃] to CHMe:CH·CH₂·OH, converted by saturated aq. HBr at 0° into a mixture of 87% of the primary and 13% of the sec. bromide. Gradual addition of NH₄CNS to this material in well-cooled EtOH leads to crotyl thiocyanate (I), b.p. 40°/0-7 mm., which can be kept for a few days in the dark at 0° but soon becomes

isomerised at room temp. The presence of the identical chain in [I] and the initial material is proved by ozonisation of (I) and decomp. of the ozonide by H₂O to MeCHO, further identified by oxidation to AcOH in 77% yield [anhyd. NaOAc has m.p. 330° (corr.; block)]. Distillation under atm. pressure causes isomerisation of (I) to crotylthiocarbimide (II), b.p. 158—159°/760 mm. (II) is converted by aq. NH₃ into crotylthiocarbamide, m.p. 107—108°, reduced (H₂ at room temp./15 atm., Pd-BaSO₄-H₂O) to sec.-butylthiocarbamide (III), m.p. 131—133°. Authentic material is obtained as follows: CHMEEtBr is converted by σ-C₆H₄(CO)₂NK at 210° into sec.-butylphthalimide (IV), m.p. 24:5—25.5°, transformed by aq. NaOH at 100° into sec.-butylphthalamic acid (V), m.p. 132—133°, and further hydrolysed to CHMEEtN+1₂ [platinichloride, m.p. 228° (decomp.)]. The base is transformed by CS₂ in Et₂O into the dithiocarbamate, which with aq. HgCl₂ yields successively sec.-butylthiocarbimide, m.p. 159.5°, and (III), (II) and σ-C₆H₄(CO₂H)₂ at 155° afford crotylphthalimide (a-methylallylphthalimide), m.p. 87—88°, and its unsymmetrical isomeride, CO
C₆H₄-C(N-CHMe-CH:CH₂ (VI), m.p. 52—53°, the former of which is hydrogenated to (IV), further identified by conversion into (V). (VI) is hydrogenated (Pd-BaSO₄ in EtOAc) and then partly hydrolysed to sec.-butylisophthalamic acid, CO₂H-C₅H₄-C(OH):N-CHMeEt, m.p. 101°. (II) is therefore identical with the product described by Charon (A., 1899, i, 848). The product described by Schimmel & Co. (A., 1910, i, 759) is CHMe:CH-CH₂-NCS. OH-CHEt-CH:CH₂ is converted into a mixture separated by fractional distillation into γ- and a-ethylallyl chloride. The former compound is slowly transformed by NH₄CNS in well-cooled EtOH into γ-ethylallyl thiocyanate (VII), b.p. 55°/1·6 mm., which becomes isomerised with separation of S in a few days at room temp. Fission of (VII) by O₃ gives EtCHO (p-nitrophenyl-hydrazone, m.p. 123—124°) and oxidative fission of the ozoni

Effect of molecular environment on absorption of organic compounds in solution. Compounds containing the chromophore :C:C:C:C:N..—See A., 1944, 1, 28.

II.—SUGARS AND GLUCOSIDES.

d-Ribose. Preparation of a crystalline anhydroribose. H. Bredercck, M. Köthnig, and (Miss) E. Berger (Ber., 1940, 73, [B], 956–962).—[a] $_{0}^{0}$ of d-ribose (I) (prep. described) in $C_{5}H_{5}N$ at 20° changes regularly from $-38\cdot4^{\circ}$ (after 4 min.) to $-43\cdot1^{\circ}$ in 2 days, but const. vals. for k are not obtained (cf. Phelps et al., A., 1934, 494). With CPh₅Cl in $C_{5}H_{5}N$ at 37° (4 days) and then 100° (0·5 hr.), (I) gives the 5-CPh $_{3}$ ether (+0·5EtOH), m.p. 125°, [a] $_{0}^{3}$ (in $C_{5}H_{5}N$) + 12·1° (4 min.) \rightarrow 9·9° (12 hr.) (k = \sim 0·0205, const.) (reduces Fehling's solution; blue colour with CuSO $_{4}$ -alkali), and thence (Ac $_{2}$ O-C $_{5}H_{5}N$; room temp.) the 5-CPh $_{3}$ ether 1 : 2 : 3-triacetate, a syrup, [a] $_{0}^{0}$ +4·9° to +5·2° in EtOH, which with HBr-AcOH at 0° gives anhydroribose <1, 5><1, 4> 2 : 3-diacetate, m.p. 169°, and thence anhydroribose <1, 5><1, 4>, sinters 225°, m.p. 229—230°, [a] $_{0}^{2}$ 0 +78° to +77·8° in H₅O (reduces Fehling's solution only after hydrolysis; blue colour with CuSO $_{4}$ -alkali). R. S. C.

Carbohydrate characterisation. IV. Identification of d-ribose, l-fucose, and d-digitoxose as benziminazole derivatives. R. J. Dimler and K. P. Link (J. Biol. Chem., 1943, 150, 345—349; cf. A., 1942, II, 248).—d-Ribose and l-fucose are oxidised by KOI-MeOH to d-ribonic acid (I) (through the K salt) and l-fuconic acid (through the Ba salt), and condensation with o-C₆H₄(NH₂)₂-HCl-H₂PO₄ at 135° then gives d-ribo- (II), m.p. 190°, [a]₂²⁵ +22·5° in x-HCl (hydrochloride, m.p. 196—198°; picrate, m.p. 185—186°) (cf. Richtmeyer et al., A., 1942, II, 395), and l-fuco-benziminazole, m.p. 248—240°, [a]₂²⁵ -41·2° in x-HCl [hydrochloride, m.p. 224—225°; picrate, m.p. 189—191° (also +H₂O)], respectively. K d-arabonate [~5%) is also formed during prep. of (I), by epimerisation, and gives insol. d-arabobenziminazole, m.p. 235—237°, [a]₂²⁵ -45° in N-HCl (picrate, m.p. 155—156°), which is not isolated if (I) is prepared by oxidation by the Br-Ba(OBz)₂ method of Hudson et al. (A., 1929, 1043). Oxidative condensation of d-digitoxose in presence of uu(OAc)₂, H₂O-aq. AcOH at 53° for 14 hr. yields d-digitoxobenziminazole, m.p. 207—209°, [a]₂²⁶ -45·7° (hydrochloride, an oil; picrate, m.p. 124—127°).

Reaction of glucose with some amines. A. E. Mitts (Iowa State Coll. J. Sci., 1943, 18, 68—70).—NH₂R with glucose yields glucosyln-butyl-, m.p. 96—97°, $[a]_{0}^{25}$ —22° to —7.8° in EtOH, -amyl-, m.p. 96—97°, $[a]_{0}^{25}$ —22° to —8° in EtOH, -heptyl-, m.p. 97—98°, $[a]_{0}^{25}$ 13° to —7° in EtOH, and -dicyclohexyl-amine, m.p. 97—98°, $[a]_{0}^{25}$ —23·5° to —11·6° in EtOH. Cryst. compounds were not obtained

from β -C₈H₁₇·NH₂, NH₂·CHMe·CH₂·NH₂ and NH₂Pr β . Also prepared were glucosyl-n-octa-, m.p. $104-105^\circ$, and -hexa-decylamine, m.p. $106-107^\circ$, and diglucosylethylenediamine, m.p. $152-153^\circ$, $[a]_D^{-17}$ to +14·5° in EtOH. Hydrogenation (Raney Ni) of these yields N-butyl-, m.p. $126-127^\circ$, $[a]_D^{20}-14^\circ$ in 50% EtOH, N-amyl-, m.p. $129-130^\circ$, $[a]_D^{21}-138^\circ$ in 50% EtOH, N-heptyl-, m.p. $126-127^\circ$, $[a]_D^{22}-14^\circ$ in 50% EtOH, N-cyclohexyl-, m.p. $145-146^\circ$, $[a]_D^{23}-11^\circ$ in 50% EtOH, N-hexadecyl-, m.p. $123-124^\circ$, and N-octadecyl-d-glucamine, m.p. $118-119^\circ$, and NN'-ethylenediglucamine, m.p. $136-137^\circ$, $[a]_D^{22}-15\cdot5^\circ$ in 50% EtOH. F. R. G.

d-Fructopyranose, a sugar unfermentable by yeast. A. Gottschalk (Austral. J. Exp. Biol., 1943, 21, 133—137; cf. Hopkins et al., A., 1935, 1538).—At 0° and pH 4·3 the rate of fermentation of the β -pyranose form of d-fructose by suspension of baker's yeast is minute compared with that of a-d-glucose, is independent of the concu. of the yeast, and depends on the partial conversion of d-fructopyranose into d-fructofuranose. Hence it is the latter alone which undergoes alcoholic fermentation. At 0° and pH 3·05—5·35 the rate of mutarotation of a-d-glucose is < one tenth of that of β -d-fructopyranose: this indicates that a-d-glucose is fermented without first undergoing a change in mol. structure. The pH of the yeast cell is 5·9: its buffering power, which is high compared with that of serum, is chiefly due to its content of salts. W. McC.

Proportion of fructofuranose in d-fructose solution at equilibrium. A. Gottschalk (Austral. J. Exp. Biol., 1943, 21, 139—140).—Advantage is taken of the fact that the only fermentable component of d-fructose solution at equilibrium is fructofuranose, to determine the proportion of this form in the equilibrium mixture at pH 4·3. The val. is ~12% at 0° and probably 20% at 20°.

W. McC.

Alkaline degradation of phenyl-β-lactoside, -β-cellobioside, and -D-gluco-β-D-guloheptoside. (Miss) E. M. Montgomery, N. K. Richtmyer, and C. S. Hudson (J. Amer. Chem. Soc., 1943, 65, 1848–1854).—Phenyl-β-lactoside in boiling 2-6n-KOH ([a] – 36-0° becomes – 44-0°) gives, after acetylation (Ac₂O-C₅H₅N), 4-β-D-galactopyranosido-D-glucosan<1, 5>β<1, 6> hexa-acetate, m.p. 206—208°, [a] –40-8° in CHCl₃ (cf. Karrer et al., A., 1933, 1146). converted by Ba(OMe), into the unesterified glucosan, +H₂O, m.p. 128—130°, [a] –50-6° in H₂O, and anhyd., m.p. 140—144°, [a] –53-5° in H₂O (lit., an oil; does not reduce Fehling's solution), which in 2: 1 Ac₂O-AcOH containing 2-5% (vol.) H₂SO₄ at 20° gives α-lactose octa-acetate (83%). Phenyl-β-cellobioside hepta-acetate (prep. described), m.p. 206—208° (lit. 193°), [a] –36-0° in CHCl₃, with Ba(OMe)₂ gives phenyl-β-cellobioside, m.p. 211—213°, [a] –59-5° in H₂O, which in 2-6n-KOH at 110—115° gives 4-β-D-gluco-pyranosido-D-glucosan<1, 5>β<1, 6>, m.p. 122°, [a] –75-0° in H₂O (loc. cit.), by way of the hexa-acetate, m.p. 145—146°, [a] –54-4° in CHCl₃. D-Gluco-β-D-guloheptose hexa-acetate, m.p. 134—135°, [a] +4-8° in CHCl₃, with HBr-AcOH at room temp. (dark) gives acetobromo-D-gluco-a-D-guloheptose (I), m.p. 111°, [a] +187° in CHCl₃ (cf. lit.). With PhOH and Ag₂CO₃ in C₈H₈ and then Ba(OMe)₂ this gives phenyl-D-gluco-β-D-guloheptoside, m.p. 168°, [a] –90-0° in H₂O (hepta-acetate, m.p. 99°, [a] +8-0° in CHCl₃), which in boiling 2-6n-KOH gives D-gluco-D-guloheptosan<1, 5>β<1, 6> (II), m.p. 95°, [a] +52-9° in H₂O (additive compound with 1 NaCl, m.p. 165—167°, [a] +48-6° in H₂O), isolated as tetra-benzoate, m.p. 154—155°, [a] +144-4° in CHCl₃, or -p-nitro-benzoate, m.p. 268°, [a] +218° in C₈H₈N, and converted by H₂SO₄-Ac₂O-AcOH into D-gluco-β- (60%) and -a-D-guloheptose (20%), m.p. 157°, [a] +34-6° in CHCl₃, and thence the 4-acetate 2: 3: 7-tri-p-toluenesulphonate, +COMe₂, m.p. 105° gives the 7-iodide 4-acetate 2: 3-di-p-t

[(Miss) O. P. Hartley.] Methyl-D-gluco- β -D-guloheptoside, m.p. $167-169^{\circ}$, $[a] -74\cdot7^{\circ}$ in H_2O , gives its penta-acetate, m.p. $153-154^{\circ}$ (lit. 150°), $[a] -21\cdot3^{\circ}$ in CHCl $_3$ (lit., -16°), also obtained from (I) by MeOH-Ag $_2$ CO $_3$. Methyl-D-gluco-a-D-guloheptoside, $+0\cdot5$ EtOAc, hygroscopic, [a] (solvent-free) $+111\cdot3^{\circ}$ in H_2O (penta-acetate, m.p. $174-175^{\circ}$, $[a] +105\cdot5^{\circ}$ in CHCl $_3$), and Cd D-gluco-D-idoheptonate [d- β -glucoheptonate], $+CdBr_2+H_2O$, discolours at 190° , $[a] -5\cdot7^{\circ}$ in H_2O , are reported. [a] are $[a]_D^{BD}$. R. S. C.

Synthesis of the acetyl derivative of primulaveroside, the glucoside of the ordinary primrose (Primula officinalis). F. Mauthner (J. pr. Chem., 1940, [ii], 156, 150—153).—Gentisic acid (prep. from o-OH·C₆H₄·CO₂H by K₂S₂O₈ in aq. NaOH + FeSO₄ at room temp.) is methylated (Me₂SO₄, aq. NaOH) to the 5-Me ether, the Me ester, b.p. $261-262^{\circ}$ (lit. $235-240^{\circ}$) (prep. by MeOH-HCl), of which with acetobromoprimverose and dry Ag₂O in quinoline gives primulaveroside hexa-acetate, m.p. $198-199^{\circ}$. H. B.

New hamameli-tannin, C. P. Edwards and M. Nierenstein (Pharm. f., 1943, 151, 241).—The bark of English witch-hazel

(Hamamelis virginica, Lin.), extracted with CCl₄ and then CHCl₃, yields to cold H_2O γ -hamameli-tannin (I), m.p. 217— 233° (slight decomp.), and then to hot H_2O ellagitannin, m.p. 347° (decomp.), $[a]_D^{-1} + 23 \cdot 07^\circ$ in H_2O , $[a]_D^{-1} + 17 \cdot 11^\circ$ in EtOH. (I) is 3:4:5:1-(OH)₃C₆ H_2 ·CO₂·[C₆ $H_{10}O_4$ ·O]₂·CO·C₆ H_2 (OH)₂·OMe-1:3:4:5; with hamamelase in H_2O at 37° it yields gallic acid, the 3-Me ether thereof, and glucose: with ac NaHCO in air it

OR OAC OCO OAC OR'

hamamelase in H₂O at 37° it yields gallic acid, the 3-Me ether thereof, and glucose; with aq. NaHCO₃ in air it gives a mixture, whence Ac₂O yields ellagic acid Me₂ ether diacetate (II; R - R' = Me), m.p. 287—291°, Me₁ ether triacetate (II; R = Ac, R' =

OAc ellagic acid Me_2 ether diacetate (II; R-R'=Me), m.p. $287-291^\circ$, Me_1 ether triacetate (II; R=Ac, R'=Me), m.p. $301-302^\circ$, and tetra-acetate (II; R=R'=Ac), m.p. $344-347^\circ$.

Two types of molecules in starch. B. Brimhall and R. M. Hixon (Wallerstein Lab. Comm., 1943, 6, 95—100).—Evidence supporting the two-component theory of starch structure is presented. Methods for separating amylose (straight chain) and amylopectin (branched chain) are outlined, and the properties of these components discussed, variations between starches of different origin being noted.

Starch. X. End-group determination of starch components. K. Hess and B. Krajnc (Ber., 1940, 73, [B], 976—979).—Erythroand amylo-amylose (Samec et al., A., 1921, i, 226) give, in end-group determinations, $4\cdot94-5\cdot01$ and $0\cdot46-0\cdot50\%$, respectively, of tetramethylglucose, indicating $23\cdot3-23\cdot4$ and 229-247 units per mol., respectively, whereas η in CHCl₃ indicates 113—129 and 213—283 units, respectively.

Characterisation of components of starch. J. F. Foster (Iowa State Coll. J. Sci., 1943, 18, 36—38).—Mol. wts. of various amyloses have been determined from viscosity measurements and are related to the potentials at which I is taken up. Osmotic behaviour of amylose and amylopectin has also been investigated. F. R. G.

Starch-iodine complex. R. R. Baldwin (Iowa State Coll. J. Sci., 1943, 18, 10—12).—Absorption spectra of the starch-I complex under varying conditions indicate that the I atoms have definite positions in the starch helix. From these results deductions concerning the structure of starch can be made. F. R. G.

Starch. XXV. Glycogen of native muscle. K. H. Meyer and R. Jeanloz (Helv. Chim. Acta, 1943, 26, 1784—1798).—Only a part of the glycogen (I) of mussel muscle can be extracted with hot H₂O. The remainder is found with the coagulated proteins. This fraction can be solubilised by CCl₃·CH(OH)₂ or 40% CaCl.. These reagents do not hydrolyse the proteins or rupture chemical linkings between carbohydrate and protein but the glycogen remains insol. (I) therefore consists of parts sol. and insol. in H₂O. Sol. (I) after pptn. by MeOH contains 85% of pure (I) and proteins, the greater part of the latter being removable by pptn. with picric acid. Electrodialysis of (I) gives a fraction (A) sol. and limpid, an opaque fraction (B), and swollen particles (C). A and B can be freed from proteins by agitation with CHCl₃ but this method is not applicable to C, which is dissolved in 40% CaCl. and pptd. by I as a brown compound from which the carbohydrate is readily regenerated. There remains some (I) which can be solubilised with a proportion of proteins by heating with 33% CCl₃·CH(OH)₂ and purified through its compound with I (fraction D). Even after complete purification C and D remain insol. in H₂O. (I), prepared by treatment with KOH at 100°, is also composed of sol. and insol. portions. P is absent from all fractions and the N content can be diminished to 0·07% by methods which do not attack chemical linkings. After dissolution in CCl₃·CH(OH)₂ and pptn. by EtOH, the fractions are acetylated by Ac₂O and C₅H₃N, the difficulty increasing with the insolubility of the fraction; measurements of the fractions are acetylated by Ac₂O and C₅H₃N, the difficulty increasing with the insolubility of the fraction; measurements of the increasing with the insolubility of the fraction; measurements of the increasing with the insolubility of the fraction; measurements of the increasing with the increasing with the increase that the mol. of (I) is very highly branched and compact in character. The limit of degradat

Yeast-mannan. R. Garzuly-Janke (J. pr. Chem., 1940, [ii], 156, 45—54).—By the methods of Salkowsky (A., 1894, i, 316), Daoud et al. (A., 1931, 1277), and Harden et al. (J.C.S., 1902, 81, 1224), bakers' yeast yields mannans having $[a]_0^{20}+90\cdot1^\circ$, $+70^\circ$, and $+78^\circ$, respectively, and containing no P or N. Extraction of the yeast by H.O at successively, room temp., 40° , and 100° (total 100-120 hr.) gives a product containing carbohydrate $85\cdot8-87$, N $0\cdot89-0\cdot99$, P $0\cdot08-0\cdot09$, and ash $1\cdot00-1\cdot18^\circ$, and having $[a]_0$ $+62^\circ$ to $+63^\circ$. Extraction with 75° /6, H_2SO_4 at room temp. (<24 hr.) gives a product containing carbohydrate $87\cdot6-89\cdot5$, N $1\cdot09-1\cdot21$, P $0\cdot12-0\cdot18$, and ash $1\cdot91-2\cdot00^\circ$ /6, and having $[a]_0$ $+66\cdot8^\circ$ to $+67\cdot2^\circ$. Alkali extraction thus decomposes the mannan-protein or -lipin components originally present. R. S. C.

Preparation of main valency gels by net formation from cellulose molecules in solution. R. Signer and P. von Tavel (Helv. Chim. Acta, 1943, 26, 1972—1978).—Methylcellulose (I) of mean mol. wt. 21,000 and containing 68 free OH groups per 100 glucose residues reacts with (COCl)₂ (II) in CHCl₃ containing p-C₆H₄Me·NMe₂ (III) to form a main valency gel. For every such solution a definite solidification time can be determined. It is considered that a mol. of (II) reacts one-sidedly with a free OH of a mol. of (I) to give an ester chloride; the second COCI group is unable for steric reasons to react with a further OH of the same mol. of (1) but speedily encounters a OH of a second mol. so that oxalic ester bridges are produced between 2 macromols. The bridge building extends to a third and to further mols, and ultimately proceeds through the whole solution. With a const. ratio of 0.5 mol. of (II) to 1 free OH of (I) increase in the amount of (III) diminishes the solidification time and increases the rate of gel formation. With a const. ratio of 1 mol. of (III) per OH the time of solidification is short with 0.5 mol. of (II), much greater in presence of 1 mol., whilst further increase in the proportion of (II) prevents gel formation. With 1 mol. of (II) per OH the time of (II) prevents ger idination. With I mot. of (II) per Off the time of solidification diminishes sharply with increasing conen. of (III). It appears that (III) also facilitates the reaction: OR·CO·COCI + OR·CO·COCI + (COCI)₂ [R and R' are glucose residues of different mols. of (I)]. Simultaneous variation of (II) and (III) shows the influences which have been studied separately (see above) to be superimposed. The time of solidification increases the conen of (I) diminishes in the conet presence of (I) diminishes in the conet presence of (II) diminishes in the conet. as the concn. of (I) diminishes in the const. presence of 0.5 mol. of (II) and 2 mols. of (III) per OH. The transition sol \rightarrow gel occurs the more rapidly as the distance between the thread mols. in the solution diminishes. In solutions with higher concn. of (I) solidifications with higher concn. ation occurs simultaneously through the entire solution whereas in more dil. solution a solid surface layer is first produced which later extends to the lower portions. Net formation is also observed with succinyl, glutaryl, and sebacyl chlorides and partly acetylated celluloses may be used in dioxan. Withdrawal of solvent and reswelling of these systems occurs exactly as with isotropic, main valency sels.

H. W. valency gels.

Kinetics of oxidation of cellulose with periodic acid.—See A., 1944, I, 41.

End-group content of natural ramie. K. Hess and K. P. Jung (Ber., 1940, 73, [B], 980—983).—No tetramethylglucose is obtained from ramie by end-group determinations if degradation is avoided during its prep. R. S. C.

III.—HOMOCYCLIC.

Spectral characteristics and configuration of stereoisomeric carotenoids including prolycopene and pro-y-carotene. L. Zechmeister, A. L. LeRosen, W. A. Schroeder, A. Polgár, and L. Pauling (J. Amer. Chem. Soc., 1943, 65, 1940—1951).—Steric conditions preclude more than 5 ethylenic linkings becoming cis in the β -carotene series, 6 in the y-carotene, or 7 in the lycopene series. The denomination "all-cis" refers to these max. Change of the all-trans to a one-cis compound shifts the absorption max. by 4—6 m μ . Procarotenoids have "available" one-trans linking, since melting and chromatography reveals compounds having max. at still shorter λ . The isomerides in the lycopene series are investigated in detail; not all have the "cis-peak" (A., 1944, II, 9). For lycopene in light petroleum the band at ~470 m μ . is due to the electron transition $0 \rightarrow 1$, corresponding to oscillation of the "unsaturation" electrons between the ends of the chain; the cis-peak is due to the $0 \rightarrow 2$ transition and oscillation between the centre and ends of the chain; the ~ 270 m μ . band is due to the $0 \rightarrow 3$ transition and oscillation between (a) the first and third and (b) second and fourth quarters of the chain. Lycopene isomerides having a vertical plane of symmetry should have an intensity at the main absorption band $\ll \sim 80\%$ of that of the all-trans-compound; this is the case for several known isomerides. The cis-peak does not exist for compounds having a centre of symmetry; its intensity depends on the distance between the cis-linking and the straight line joining the two ends of the chain; it is thus a max. for the compound in which the central C.C is cis and the others trans (in the lycopene series, neolycopene-A). The intensity of the $0 \rightarrow 3$ max. ∞ approx. that of the main max. but is less for compounds which are twice bent. Further considerations allow prediction of the ease of isomerisation, e.g., that the central C.C is easiest the isomerise. Equilibrium amounts of isomerides are $10^{-\alpha}$, κ being the no. of cis-

Physical data of alkylcvclohexanes. A. W, Schmidt and A. Grosser (Ber., 1940, 73, [B], 930—933).—The following -cyclohexanes are obtained by hydrogenation (PtO₂ in warm AcOH) of the requisite alkylbenzenes; the process is often irregular and generally very slow, re-activation of the catalyst being frequently necessary n-butyl-, b.p. 64°/12 mm.; n-heptyl-, b.p. 109—110°/12 mm., m.p. 41°; n-dodecyl-, b.p. 131—132°/0·8 mm., m.p. 12°; n-tetradecyl-, b.p. 155°/0·8 mm., m.p. 25°; n-hexadecyl-, b.p. 163—164°/1·5 mm., m.p. 32·5°. Vals. of d, n, and η are recorded. H. W.

Methylation of benzene. A. Klit (5 Nordiske Kemikermøde, 1939, 217—218).—MeCl and m-xylene (AlCl₃-HCl) do not give $1:2:3\cdot C_0H_3Me_3$ or $1:2:3:4\cdot C_0H_2Me_4$. The equilibrium mixture from o-xylene (I) (AlCl₃-HCl) does not contain (I). M. H. M. A.

Syntheses of one-, two-, and three-nuclear hydrocarbons with 22 carbon atoms. N. Turkiewicz (Ber., 1940, 73, [B], 861—866).—p-Cymene (I) and lauryl chloride are converted by AlCl3 in CS2 into carvacryl undecyl ketone (II), m.p. 40·5°, b.p. 168—170°/1 mm., reduced (Clemmensen) with difficulty to 2-dodecyl-p-cymene, b.p. 163—164°/1 mm. Reduction (Raney Ni-H2 at 230—240°/148 atm.; decahydronaphthalene) of (II) affords 2-dodecyl-p-menthane, b.p. 159—160°/1 mm. Diisoamylacetyl chloride, (I), and AlCl3 in CS2 give carvacryl diisoamylnethyl ketone, b.p. 162°/1 mm., reduced (Raney Ni) to a-hexahydrocarvacryl- β -diisoamylethane [4-isopropyl-2- $\beta\beta$ '-diisoamylethylkexahydrotoluene], b.p. 150—152°/1 mm. (I) is converted by CH2O and HCl in presence of anhyd. ZnCl-and NiCl- into carvacrylmethyl chloride (IV), converted by Mg and CO2 into a β -dicarvacrylethane (III), b.p. 155—156°/1 mm., and carvacryl-acetic acid, m.p. 69—70°; the corresponding Et ester, b.p. 136°/2 mm., and 1-C10H7·MgBr afford 1-naphthyl carvacrylmethyl ketone, b.p. 195—198°/0-5 mm., hydrogenated at 240—260°/150 atm. in decahydronaphthalene containing Raney Ni to a-hexahydrocarvacryl- β -1-decahydronaphthylethane, b.p. 165—166°/1 mm. (III) is obtained from (IV) and Na in boiling Et2O and is hydrogenated at 240—260°/120—160 atm. in presence of Raney Ni to a β -dihexahydrocarvacrylethane, b.p. 150—154°/1 mm. 1-C10H7·MgBr and lauronitrile give a-naphtyl undecyl ketone, reduced to 1-dodecyldecahydronaphthalene, b.p. 170—171°/1 mm.

 $pp^\prime\text{-Diradical}$ of diphenyl of the type of triphenylmethyl. II. W. Theilacker and W. Ozegowski (Ber., 1940, 73, [B], 898—908; cf. A., 1940, II, 270).—Comparison of the absorption curves of 4:4′-dihydroxydiphenylmethyldiphenyl, its 2:2′-Me_2 derivative, and CPh_3·OH in conc. H_2SO_4 shows them to be generally similar. Similarly the absorption curves of 2:2′-dimethyl-4:4′-diphenylene-bisdiphenylmethyl (I) and CPh_3 in C_6H_6 are closely alike and indicate that the two halves of the former are not optically independent of one another. The spectroscopic behaviour of the Tschitschibabin hydrocarbon (II) differs from that of (I) and indicates that it

has predominatingly the quinonoid form CPh.

is predominatingly the diradical,

exposed to air crystals of (II) give an orange-red peroxide, m.p. 111—112°, which immediately liberates I from acidified KI, evolves $\mathrm{CH_4}$ from MgMeI, and in conc. $\mathrm{H_2SO_4}$ gives the same halochromism as the carbinol. The substance has the structure

(A) or $[OH \cdot O \cdot CPh_2 \cdot C_6H_4]_2$, of which the former is considered the more probable. Passage of air through a solution of (II) in C_6H_6 or tetrahydronaphthalene causes a change of colour with gradual separation of a peroxide, m.p. $156-171^\circ$ according to the mode of prep.; this slowly liberates I from acidified KI, evolves CH_4 from MgMeI, and in conc. H_2SO_4 gives the same halochromism as the carbinol. Analytical results indicate the formula A with n>10. (I) and (II) behave similarly towards O_2 . Since all the available evidence points against the existence of a true diradical in (II) it is doubtful whether the behaviour towards O_2 is a true criterion of diradical nature. H. W.

Reactions of tetrahydrophenanthrene. II. W. E. Bachmann and M. W. Cronyn (J. Org. Chem., 1943, 8, 456—465).—A mixture of γ-1- and -2-naphthylbutyric acid is treated with PCl₅ in C₆H₆ at 5-00 memp. and then at 100° followed by SnCl₄ in C₆H₆ at 5-10° and hydrolysis, thereby giving a mixture of 1- and 4-ketotetrahydrophenanthrene (85% yield), reduced to 1:2:3:4-tetrahydrophenanthrene (II) in 90% yield. AcCl is added to anhyd. AlCl₃ in CS₂ followed by (CHCl₂)₂; the mixture is warmed at 45—50° until the AlCl₃ has dissolved completely to a green solution, which is cooled to 15° and treated with (I) in CS₂; the product is hydrolysed to 9-acetyl-1:2:3:4-tetrahydrophenanthrene (II), b.p. 163—166°/0·1 mm., m.p. 56·5—58°. Successive additions of AcCl in PhNO₂ to AlCl₃ at 5° and (I) in PhNO₂ at −14° give (II) and 7-acetyl-1:2:3:4-tetrahydrophenanthrene (III), m.p. 90·5—91·5°, reduced (Zn-Hg and HCl in boiling AcOH-PhMe) to 7-ethyl-1:2:3:4-tetrahydrophenanthrene (picrate, m.p. 90—91°), dehydrogenated (Pd-C at 300—320°) to 7-ethylphenanthrene, m.p. 65—66° (picrate, m.p. 93·5—94·5°). 7-Bromoacetyl-1:2:3:4-tetrahydrophenanthrene, ene, from_(III) and Br in abs. Et₂O at −15° to −5°, m.p. 115·5—116·5°, is converted by condensation with CHNa(CO₂Et)₂ followed by hydrolysis and decarboxylation of the product into β-1:2:3:4-tetrahydrophenanthryl-7-propionic acid, m.p. 155·5—157°. Addition of (I) in CS₂ to a solution of AlCl₈ and BzCl in the same solvent

leads to 9-benzoyl-1:2:3:4-tetrahydrophenanthrene, m.p. 120—121°, the oxime, m.p. 228—229°, of which is converted by PCl₅ in boiling C₈H₈ into 1:2:3:4-tetrahydrophenanthrene-9-carboxylanilide (IV), m.p. 240—241°, also obtained from the acid chloride and NH₂Ph. Similarly (I). EtCOCl, and AlCl₂ in CS₂-C₂H₂Cl₄ afford 9-propionyl-1:2:3:4-tetrahydrophenanthrene, b.p. 160—162°(0-05 mm., m.p. 43—44°, reduced (Clemmensen) to 9-propyl-1:2:3:4-tetrahydrophenanthrene, m.p. 25—25-5° (picrate, m.p. 106—107°), which is dehydrogenated (Pd-C at 300—320°) to 9-propylphenanthrene, m.p. 58-5—59-5° (picrate, m.p. 95-96°). Dropwise addition of Br in C₆H₆ to (I) in C₄H₆ containing reduced Feleads to 9-bromo-1:2:3:4-tetrahydrophenanthrene, b.p. 142—145°(0-05 mm. (picrate, m.p. 102—103°), converted by CuCN in C₄H₄N at 215—225° into the 9-CN-compound, m.p. 124—125°, which is hydrolysed by protracted action of boiling KOH-MeOH to 1:2:3:4-tetrahydrophenanthrene-9-carboxylic acid, m.p. 215—216° (Me ester, m.p. 70-5—71°). (I), paraformaldehyde, AcOH, HCl, and 85% H₃PO₄ at 80—85° yield 9-chloromethyl-1:2:3:4-tetrahydrophenanthrene (V), b.p. 163—165°/0-05 mm., m.p. 60-5—61°, which in boiling aq. COMe₂ containing KCN passes into 1:2:3:4-tetrahydrophenanthrene (VI), m.p. 153—153-5°, also obtained by hydrolysis of the -9-acetio acid (VI), m.p. 153—153-5°, obtained by the Willgerodt method from (II). Treatment of (IV) with PCl₂ in C₅H₆ and of the product with anhyd. SnCl₂ and dry HCl in Et₂O-C₂H₄Cl₂ followed by hydrolysis leads to 1:2:3:4-tetrahydrophenanthrene-9-aldehyde, m.p. 128-5—129°, which condenses with CH₂(CO₂H)₂ in C₅H₆ Nh 100° to β-1:2:3:4-tetrahydrophenanthrene-9-aldehyde, m.p. 128-5—129°, which condenses with CH₂(CO₂H)₂ in C₅H₆ Nh 2100° to β-1:2:3:4-tetrahydrophenanthrene, m.p. 191—192°, hydrolysed by boiling HCl—EtOH to the 9-amine, m.p. 191—192°, hydrolysed by boiling HCl—EtOH to the 9-amine, m.p. 136—137°.

The oxime, m.p. 157—158°, of (III) is transformed by

1:2:9:10-Tetramethylanthracene. R. B. Sandin, R. Kitchen, and L. F. Fieser (J. Amer. Chem. Soc., 1943, 65, 2018—2020).—1:2-Dimethylanthraquinone (modified prep.), m.p. 157·5—158·5°, with MgMeI-Et₂O and then HI (50%)-HBr (d 1·4)-MeOH gives impure, yellow, amorphous (?) 1:2:9-trimethyl-10-iodomethylanthracene (I), which with NaOMe-MeOH at 60—70° yields (?)1:2:9-trimethyl-10-nethoxymethylanthracene (II), yellow, fluorescent, m.p. 124·5—125·5° [compound, m.p. 142·5—143·5°, with s-c₈H₃(NO₂)₃], and (?) 9-methoxy-1:2:9-trimethyl-19:10-dihydro-anthracene, non-fluorescent, colourless, m.p. 141—142° [with a drop of HCl in MeOH gives (II)]. SnCl₂—conc. HCl-dioxan at the b.p. reduces (I) to yellow 1:2:9:10-tetramethylanthracene, m.p. 52—54° after softening, which is too unstable in air to be isolated except as picrate, m.p. 137—138°, or compound, m.p. 170·5—171·5°, with s-C₈H₃(NO₂)₃. M.p. are corr.

Aromatic cyclodehydration. XIV. 9:10-Dialkylphenanthrenes. C. K. Bradsher and S. T. Amorc (J. Amer. Chem. Soc., 1943, 65, 2016—2017; cf. A., 1944, II, 10).—COR₂ with o-C₆H₄Ph·MgI-Et₅O and then aq. NH₄Cl gives a-2-diphenylylisopropyl alcohol, m.p. 71° (lit., 75°), b.p. 145—154°/7 mm., γ -2-diphenylyl-n-pentan- γ -0, b.p. 155—157°/7 mm., δ -2-aiphenylyl-n-heptan- δ -0 (I), m.p. 68°, b.p. 182—183°/11 mm., and ε -2-diphenylyl-n-nonan- ε -0, b.p. 185—192°/8 mm., dehydrated by KHSO₄ at 160°. to β -2-diphenylyl-propylene (71% over-all), b.p. 125—128°/7 mm., γ -2-diphenylyl- Δ^{β} -n-pentene (47% over-all), b.p. 138—141°/7 mm., δ -2-diphenylyl- Δ^{β} -n-pentene (71% over-all), b.p. 155—157°/8 mm., and ε -2-diphenylyl- Δ^{β} -n-nonene (55% over-all), b.p. 178—179°/7 mm., respectively, containing small amounts of Ph₂. Thence BzO₂H-CHCl₃ at 0°, followed by boiling 34% HBr, yields 9-methyl-(40%; 68% obtained from the oxide by KHSO₄ at 160°), m.p. 92° (picrate, m.p. 154°), 9-methyl-10-ethyl- (54%), m.p. 85° (picrate, m.p. 150°), 9-ethyl-10-n-butyl-phenanthrene (67%), m.p. 74° (picrate, m.p. 99°), respectively. With H₂SO₄ (5 drops) in boiling AcOH (15 c.c.), (I) gives 9: 9-di-n-propylfuorene, m.p. 37—38°.

Acetylation of primary aromatic amines in vivo and in vitro.—See A., 1944, III, 129.

Derivatives of 1:2:4:5-tetrachlorobenzene. III. Amination of 2:3:5:6-tetrachloro-nitrobenzene and -4-nitroaniline. A. T. Peters, F. M. Rowe, and D. M. Stead (J.C.S., 1943, 576—577; cf. A., 1943, II, 323).—The NO₂ and, to a smaller extent, both Cl o to

it in $2:3:5:6:1-C_6HCl_4\cdot NO_2$ (I) are labile. With EtOH-NH₃ at 200° for 10 hr., (I) affords $2:3:5:6:1-C_6HCl_4\cdot NH_2$ (61%) and 3:5-dichloro-1-nitro-2:6-diaminobenzene (II) $(5\cdot6\%)$, m.p. $172-173^\circ$ [Ac_2 derivative, m.p. 315° (decomp.), darkens 295°]; $9\cdot7\%$ of $1:3:5:6:2-NO_2\cdot C_6HCl_3\cdot NH_2$ is also formed, as shown by reduction with aq. EtOH-Na₂S₂O₄ to the diamine, and conversion by phenanthraquinone (III) in AcOH into 1:2:4-trichloro-5:6:9':10'-phenanthraphenazine, m.p. $262-263^\circ$. (II) does not condense with (III); reduction and then condensation of 4:6:1:2:3- $C_6HCl_2(NH_2)_3$, m.p. $121-122^\circ$ (decomp.), with (III) gives 2:4-dichloro-1-amino-5:6:9':10'-phenanthraphenazine (IV), m.p. 265° . 3:5:1:2- $C_6H_2Cl_2(NO_2)_2$ is unaltered with KNO₃-25% oleum at $130-160^\circ$. 1:2:5:4:6-NH₂· $C_6HCl_2(NO_2)_2$, m.p. $170-171^\circ$, is reduced (Na₂S₂O₄) to 3:6:1:2:5- $C_6HCl_2(NO_2)_2$, m.p. $170-171^\circ$, is reduced (Na₂S₂O₄) to 3:6:1:2:5- $C_6HCl_2(NO_2)_2$, m.p. $170-171^\circ$, is reduced (Na₂S₂O₄) to 3:6:1:2:5- $C_6HCl_2(NO_2)_2$, w.p. $170-171^\circ$, is reduced (Na₂S₂O₄) to 3:6:1:2:5- $C_6HCl_2(NO_2)_2$, w.p. $170-171^\circ$, is reduced (Na₂S₂O₄) to 3:6:1:2:5- $C_6HCl_2(NO_2)_2$, w.p. $170-171^\circ$, is reduced (Na₂S₂O₄) to 3:6:1:2:5- $C_6HCl_2(NO_2)_2$, w.p. $170-171^\circ$, is reduced (Na₂S₂O₄) to 3:6:1:2:4-11:11-

Action of aluminium chloride on phenol homologues. G. Baddeley (J.C.S., 1943, 527—531).—PhOH (1 mol.) and AlCl₃ (1 mol.), warmed until evolution of HCl ceases, afford OPh·AlCl₂, b.p. 210°/15 mm., m.p. 183° (with H₂O gives PhOH). p-C₆H₄Me·O·AlCl₂ is stable at 200° for several hr., but p-cresol (I) and AlCl₃ (>1 mol.) at 130° for 2 hr. give some m-cresol (II). Kinetic study shows this change to be reversible and unimol. in respect of p-C₆H₄Me·O·AlCl₂, but bimol. in respect of the further AlCl₃ used. The reagent is not used up, and the unimol, velocity coeff. at a given temp. cc square root of amount of reagent present. (I) or (II) and AlCl₃ at 135° (34 hr.) give an equilibrium mixture containing 60·7% of (II) and 39·3% of (I). At 125°, a similar mixture results; thus the heat of isomerisation is small. o-Cresol (III) (1 mol.) and AlCl₃ (2 mols.) at 130° for 3 hr. give (III) only, but at 170° for 5 hr., intermol. change occurs and (III) [or (II) or (I)] gives PhOH + m-5-xylenol (IV). (IV) is also obtained from m-2-xylenol and AlCl₃ at 130—135°. m-4-Xylenol (at 115—120°) gives some o-3- and p-xylenol (V), but at 130—135° for 4·5 hr., (IV) is formed: (V) or o-4-xylenol is convertible into (IV), and (V) + (IV) are obtained from o-3-xylenol and AlCl₃ at 120—125°. Hemimellithenol is isomerised (quant.) to iso-\(\psi\$-cumenol by AlCl₃ at 100° for 10 hr. With AlCl₃, p- or m-C₆H₄Et·OH, also obtained from o-, m-, or \(\psi\$-C₆H₄Et·OH at 100°; C₂H₄ is probably an intermediate. 3:4:1-C₆H₃MeEt·OH. With (I), PhMe, and AlCl₃ at 135°, much decomp. and some demethylation occur, and PhOH (I) are isolable. Mechanisms of interconversions are suggested. Intermol. migration is associated with a high nuclear electron availability. The sequence, C₆H₆ homologues, xylenols, cresols, PhOH, is one of decreasing electron availability (nucleophilic character) in presence of excess of AlCl₃. A mechanism is deduced for the Scholl reaction.

Action of aluminium chloride on aromatic bromo-compounds. G. Baddeley and J. Plant (J.C.S., 1943, 525—527).—PhBr is a brominating agent in presence of AlCl₃. Thus, PhBr and AlCl₃ at 100° give some p-C₀H₄Br₂. p-Cresol (I), PhBr, and AlCl₃ at 100° yield small amounts of 2:1:4-C₆H₃BrMe·OH (II), C₆H₆, higher-boiling products, and unchanged materials. PhOH similarly affords highboiling products, but no C₆H₄Br·OH. o-, m-, or p-C₆H₄Br·OH (III) (1 mol.) and AlCl₃ (2 mols.) at 130° afford (III) (~70%) and PhOH (~17%), with higher-boiling products; isomerisation of the o- is more facile than that of the m-isomeride. (I) (1 mol.), (III) (1 mol.), and AlCl₃ (4 mols.) at 130° yield PhOH, (II), higher-boiling products, and (I) + (III). At 100° for 20 hr., 3:1:4-C₆H₃BrMe·OH (1 mol.) and AlCl₃ (2 mols.) give (I) (3%), (II) (60%), and 2:6-dibromo-p-cresol (IV) (3%), .m.p. 109° (obtained also from 2:6:1:4-C₆H₂Br₂Me·NH₂); at 127° for 1 hr. the respective % are 8; 67, and 6. 2:4:1-C₆H₃BrEt·OH (p-nitrobenzoate, m.p. 57°) and AlCl₃ at 100° afford unchanged material, p-C₆H₄Et·OH, and 3:4:1-C₆H₃BrEt·OH (V) (p-nitrobenzoate, m.p. 108°). 4:2:1-OMe·C₆H₃Br.COMe (semicarbazone, m.p. 198°) is reduced (Clemmensen) to 3:4:1-C₆H₃BrEt·OH (V). With AlCl₃ at 130° for 1 hr., 3:5:1:4-C₆H₃BrEt·OH (V), m.p. 61° [probably intermediate in forming (IV)], is obtained also. 3:1:4-C₆H₃BrMe·OH and Br-AcOH give (VI) and 2:3:5:1:4-C₆H₃Br₂Me·OH, new m.p. (177—178°. 3:6:1:4-C₆H₂Br₂Me·OH and AlCl₃ at 130° give IV). With 2:6:4:1-C₆H₂Br₂Me·OH and AlCl₃ at 130° give IV). With 2:6:4:1-C₆H₂Br₂Me·OH and AlCl₃ at 130° at 110° causes some isomerisation to 3:5-dibromo-4thlybhenol, m.p. 116—117° (convertible into 2:3:5:6:4:1-C₆HBr₄Et·OH, m.p. 106°). 4:3:1-C₆H₃ClBr·OH is obtainable from 4:2:1-C₆H₃ClBr·OH, but o-C₆H₄Cl·OH or 3:5:1:4-C₆H₂Cl₂Me·OH

is not isomerised by AlCl₃. Br migrates to the nuclear positions of greatest electron density, as indicated by nuclear alkylation.

4-Diphenylyl butyrate. S. E. Hazlet and L. C. Hensley (J. Amer. Chem. Soc., 1943, 65, 2041).—This ester, m.p. 59—60·3°, is prepared (81%) from b-C₆H₄Ph·OH and PrCOCl in C₅H₅N-dioxan.

R. S. C.

Triterpenes. LXXXI. Synthesis of 3-hydroxy-1:2:5-trimethylnaphthalene and of 1:2:6-trimethylphenanthrene. L. Ruzicka, E. Rey, and W. J. Smith (Helv. Chim. Acta, 1943, 26, 2057—2065).—Successive addition of 1:2:3-C₈H₃Me₂·OMe and (CH₂·CO)₂O to AlCl₃ in PhNO₂ at 0° gives γ-keto-γ-4-methoxy-2:3-dimethylphenyl-n-butyric acid, m.p. 178°, reduced (Zn-Hg in AcOH-conc. HCl) to γ-4-methoxy-2:3-dimethylphenyl-n-butyric acid, m.p. 122—123°; the acid chloride (SOCl₂) could not be cyclised satisfactorily by AlCl₃ in CS₂ but the acid and P₂O₅ in boiling C₆H₆ give 1-keto-7-methoxy-5:6-dimethyl-1:2:3:4-tetrahydronaphthalene (I), m.p. 78° [semicarbazone, m.p. 243° (decomp.)]; attempted cyclisation with 80% H₂SO₄ at 120—130° results also in hydrolysis to the 7-OH-compound, m.p. 203° [semicarbazone, m.p. 243° (decomp.)]. (I) is converted by an excess of MgMeI in Et₂O followed by treatment of the product with a little I at 140° and dehydrogenation by Se at 330° into 3-methoxy-1:2:5-trimethylnaphthalene, m.p. 106—107° [unstable picrate, m.p. 150—151·5° (decomp.)]; this is demethylated by HBr in AcOH to the 3-OH-compound, m.p. 140—141° (slight decomp.) (unstable picrate). 4-Methylcyclohexanone is converted by Mg β-2:3-dimethylphenylethyl bromide into β-1-hydroxy4-methylcyclohexy1-a-2:3-dimethylphenylethane, b.p. 130—160°/0·1 mm., dehydrated and cyclised by P₂O₅ to 1:2:6-trimethyl-5:6:7:8:9:10:13:14-octahydrophenanthrene, b.p. 117—120°/0·06 mm., which is dehydrogenated by Se at 320° to 1:2:6-trimethylphenanthrene, m.p. 128·5—129° (picrate, m.p. 167—168°). This is oxidised by CrO₃ in AcOH at room temp. to 1:2:6-trimethylphenanthrene, m.p. 207—208° (quinoxaline derivative, m.p. 181—182°). M.p. are corr.

Antibacterial action of stilbene derivatives. G. Brownlee, F. C. Copp, W. M. Duffin, and I. M. Tonkin (Biochem. J., 1943, 37, 572—577; cf. A., 1944, III, 144).—p-Methoxydeoxybenzoin is reduced (Zn-Hg, aq. HCl) to p-methoxydibenzyl, which with MgMel at 180—200° gives p-hydroxydibenzyl (cf. Späth, A., 1914, i, l). a-Ethyldeoxybenzoin with Et₂O-MgEtBr affords a-hydroxy-αβ-diethyldibenzyl [αβ-diphenyl-α-ethyl-n-butyl alcohol], b.p. 182—186°/14 mm., dehydrated (PCl₃) to (CPhEt:)₂, b.p. 170°/15 mm. (cf. Carlisle and Crowfoot, A., 1941, I, 103), reduced (H₂-PtO₂-COMe₂) to (CHPhEt)₃, m.p. 83—84° (lit. 88°, 92—93°). COPhEt and Al-Hg in wet Et₂O afford (CPhEt·OH)₂, m.p. 135—136° (lit. 138—139°). p-Methoxy-αβ-diethylstilbene, m.p. 79—80° (from distillation of δ-phenyl-γ-anisylhexan-γ-ol), is reduced (H₂, Pd-C, COMe₂) to p-methoxy-αβ-diethylstilbene, m.p. 89—90°; demethylation (MgMel) affords p-hydroxy-αβ-diethylstilbene, m.p. 125—127°, and p-hydroxy-αβ-diethyldibenzyl, m.p. 139—140° [benzoate, m.p. 110°; O-SO₃H-derivative (C₆H₅N salt, m.p. 195—196°)], respectively-4-hydroxy-4'-methoxy-αβ-diethylstilbene, m.p. 101—102°, is obtained as a by-product during demethylation of the Me₂ ether. p-Nitrodeoxy-benzoin and EtI in boiling EtOH-NaOEt yield p-nitro-a-ethyldeoxybenzoin, m.p. 78—80°, reduced (Fe-FeCl₃-H₂O-xylene) to the NH₂-compound, m.p. 128—129°, which with MgEtBr gives p-amino-β-hydroxy-αβ-diethyldibenzyl, m.p. 91—92°, converted by AcOH-HCl into p-amino-αβ-diethylstilbene hydrochloride, m.p. 207—208°, of p-sulphanilanido-αβ-diethylstilbene, m.p. 180—182°. 4'-Nitro-4-hydroxy-diethylatione is reduced (EtOH-aq. NH₃-FeSO₄ at b.p.) to 4'-amino-4-hydroxystilbene is reduced (EtOH-aq. NH₃-FeSO₄ at b.p.) to 4'-amino-4-hydroxystilbene, m.p. 270—271° (decomp.). p-CN·C₆H₄·CH₂·CO₂H with p-OH·C₆H₄·CHO and piperidine at 140° gives 4-hydroxy-4'-eyanostilbene, m.p. 221—223°, converted (method: Ashley et al., A., 1942, II, 172) into 4-hydroxy-4'-amidinostilbene hydrochloride, m.p. 3

Formation of phenols by the action of hydrogen peroxide on nonphenolic, aromatic aldehydes. E. Spath, M. Pailer, and G. Gergely (Ber., 1940, 73, [B], 935—938).—Shaking 100-vol. aq. H₂O₂ with Et₂O and drying gives 2% H₂O₂-Et₂O, whence evaporation gives ~4—6% H₂O₂-Et₂O. This reagent (1·1 mol. of H₂O₂) with ArCHO at 20° (~15 hr.), sometimes with CHCl₃ or more Et₂O, gives (i) 2:4:1-(OMe)₂C₆H₃-OH (26·1%) (no acid is formed), (ii) 2:4:5:1-(OMe)₂C₆H₃-OH (17·6%) and -(OMe)₃C₆H₂·CO₂H (trace), (iii) 3:4:6:1-(OMe)₂C₆H₂Et₂CH (13·7) and -(OMe)₂C₆H₂Et₂CO₂H (4·2%), (iv) p-OMe·C₆H₄·OH (7·1) and p-OMe·C₆H₄·CO₂H (6·5%), (v) o-OMe·C₆H₄·OH (6·6) and o-OMe·C₆H₄·CO₂H (4·7%), (vi) 3:4:1-(OMe)₂C₆H₃·OH (1·4) and -(OMe)₂C₆H₃·CO₂H (4·7%), and (vii) PhOH (0·7) and BzOH (8·6%). ArCHO not thus accounted for is mainly recovered unchanged. OH·CHAr·O₂H may be intermediates. R. S. C.

Synthesis and structure of ψ -cumoqumol monoalkyl ethers. W. John and F. H. Rathmann (Ber., 1940, 73, [B], 995—1001).— ψ -Cumoquinol, 2:3:5:1:4-C₆HMe₃(OH)₂ (I), with MeOH-H₂SO₄ at room temp. gives the 1-Me ether (II), m.p. 101°; Me₂SO₄ gives

mainly the Me₂ ether with a little (II). $1:2:5:3-C_6H_2Me_3\cdot OMe$ (prep. by Me₂SO₄) with 1:2 HNO₃ (d 1·52)-AcOH at ~30° gives the $6\cdot NO_3$ -, m.p. $107-108^\circ$, reduced by Sn-conc. HCl-EtOH to the $6\cdot NH_2$ -derivative (III), m.p. 75° (hydrochloride, decomp. >230°; impure stannichloride, m.p. $213-215^\circ$), whence diazotisation in $0\cdot 5N-HCl$ and heating at 75° gives (II). In boiling 90% HCO₂H $3:1:2:5:6-OH\cdot C_6HMe_3\cdot NH_2$ gives 6-formanidoiso- ψ -cumenol, m.p. $216-219^\circ$, which with Me₂SO₄ gives the N-CHO derivative, m.p. $178-179^\circ$, of (III), hydrolysed to (III) by conc. HCl. $1:2:5:3-C_8H_2Me_3\cdot OH$ and 1:4 HNO₃ (d 1·52)-AcOH at room temp to 45° give the $(NO_2)_2$ -derivative, m.p. $134\cdot 5^\circ$ (K and Na salts; Me, m.p. 96° , and Et ether, m.p. 92° , prepared from the Ag salt), but no $(NO_2)_1$ -derivative could be obtained. With ROH- H_2SO_4 , (I) gives the 1-Et, m.p. $87-88^\circ$ [acetate (IV), m.p. $57-58^\circ$; propionate, m.p. $40-41^\circ$], -Pr, m.p. 78° , $-Bu^2$ (80%; 20-30% obtained by BuBr-NaOEt-EtOH), m.p. 68° , and -isoanyl ether, m.p. 51° . (IV) is physiologically inactive.

Constituents of red sandalwood, II. Constitution of pterostilbene. E. Spath and J. Schlager (Ber., 1940, 73 [B], 881—884; cf. A., 1940, II, 286).—The freely sol. portion of the Et₂O extract of red sandalwood is treated with hot CCl_4 . The residue after removal of the solvent is dissolved in Et₂O and fractionally extracted with aq. KOH; the alkaline extracts are acidified and extracted with Et₂O, and the residue from this extract is cryst. from Et₂O-light petroleum, thus giving pterostilbene [4-hydroxy-3': o'-dimethoxy-stilbene] (I), m.p. 85—86°, a O. (I) contains 2 OMe. It is converted by CH₂N₂ into pterostilbene Me ether (II), m.p. 56—57°. (I) quantitatively absorbs 1 H₂ in AcOH containing Pd sponge. Oxidation of (I) and (II) gives $3:5:1-(OMe)_2C_0H_3\cdot CO_2H$ (III) and p-OMe·C₄H₄·CO₂H with (III) respectively.

Hexahydroxybenzene and its derivatives. I. E. Neifert and E. Bartow (J. Amer. Chem. Soc., 1943, 65, 1770—1772).— 1:2:3:5:6:4-O:C_6(OH)_4:O is obtained (80%) from the Na $_2$ salt (prep. from i-inositol by conc. HNO $_3$ and then NaHCO $_3$) by 1:10 45% HI–37% HCl, and with 45% HI (3 pts.) in boiling EtOH (10 pts.) gives ~70% of $C_6(OH)_6$. This yields a hexa-acetate, m.p. 203°, -propionate, m.p. 133°, -n-, m.p. 135°, and -iso-butyrate, m.p. 164·5°, -n-, m.p. 103°, and -iso-valerate, m.p. 155°, -n-hexoate, m.p. 97°, -n-octoate, m.p. 86°, -n-decoate, m.p. 85°, -chloroacetate, m.p. 212°, 4richloroacetate, m.p. 245°, (decomp.), and -benzoate, m.p. 254°. In 50% EtOH it gives compounds, $C_6(OH)_6, NH_2Ar$, in which Ar = Ph, o-, m-, and p-tolyl, m- and p- (not o-)C $_6H_6Cl$, and a compound, $C_6(OH)_6, NH_2\cdot C_6H_4Me-o$. R. S. C.

Preparation of fluoreneazo-dyes. W. Bielenberg, H. Goldhahn, and H. Pluskal (Ber., 1940, 73, [B], 878—881).—The following 2-fluoreneazo-dyes are obtained by mixing equiv. amounts of 2-fluoreneaizonium chloride (I) and the requisite phenol with at least 3 equivs. of KOAc in EtOH and purifying the product by repeated dissolution in EtOH and pptn. by H₂O: -phenol, m.p. 187-6—191°; -m-, -o-, and -p-cresol, m.p. 200°, 173—174°, and 143—144°, respectively; -thymol, m.p. 164—164·5°; -guaiacol, m.p. 145—146°; -resorcinol, m.p. 204—204·5°, decomp. at a slightly higher temp.; -orcinol, m.p. 220—221°; -m-4-xylenol, m.p. 179—180°; -phloroglucinol, softens at 215° and decomposes at a higher temp.; -pyrogallol, no distinct m.p. (I) and o-C₆H₄(OH)₂ give a product, m.p. 172—173°; an almost colourless, unidentified compound, m.p. 112—113°, is formed from o-C₆H₄(OAc)₂ but normal coupling occurs with o-OH·C₆H₄·OBz to the benzoate, m.p. 223°, of 2-fluoreneazopyrocatechol, m.p. 175°.

Lignm and related compounds. LXXII. Ultra-violet absorption spectra of compounds related to lignin.—See A., 1944, I, 28.

Constitution of the internal diazo-oxides (diazo-phenols and -naphthols). H. H. Hodgson and E. Marsden (J. Soc. Dyers and Col., 1943, 59, 271—275).—Previous views on the constitution of the diazo-oxides are reviewed and it is concluded that they are not internal cyclic oxides but resonance hybrids whereas the more stable o-diazosulphides are true cyclic compounds. Supporting evidence is adduced from (a) coupling, especially in acid solution, (b) replacement by H, (c) a new bromination reaction in which 6-nitronaphthalene-2:1-diazo-oxide affords 6:2:4:1-NO₂·C₁₀H₄Br₂·OH via the diazoperbromide, and (d) the action of ZnCl₂ or SbCl₃ in EtOH on diazo-oxides made from p-NH₂·C₆H₄·OH, p-NH₂·C₆H₄·SO₃H, 1:8:3:6-NH₂·C₁₀H₄(OH)(SO₃H)₂, 1:8:4-1 and 1:6:2-(NO₂)₂C₁₀H₅·NH₂; these do not give isolable double salts (considered to be formed) and are recovered unchanged on dilution with H₂O when SO₃H is not present and giving Zn salts of the sulphonic acids. The diazo-oxides do not afford periodides with KI but either replace N₂ by I or give K salts of the diazo-oxide sulphonic acids. K. H. S.

Catalytic debenzylation. Effect of substitution on the strength of the O- and N-benzyl linkings. R. Baltzly and J. S. Buck (J. Amer. Chem. Soc., 1943, 65, 1984—1992).—The effects of substitution on catalytic debenzylation (Pd-C-H₂; usually in EtOH or MeOH) are investigated by observing the rates of hydrogenolysis of CHARR-OH

and COArR etc. and by isolating the products of competitive hydrogenolysis of the hydrochlorides (bases not reduced) of CH₂Ar·NH·CH₂Ar or CH₂Ar·NMe·CH₂Ar. R = alkyl or OH-alkyl reduces the rate of reaction; R = CO·NH₂ or CO₂H prevents it; the exact effect of R = CN or Ph is uncertain, but hydrogenolysis proceeds normally. Benzoin and α-diketones are readily reduced. Reductions of CiC and CH₂·OH in CHPh:CH·CH₂·OH proceed at approx. the same rate. Substitution in Ar of OMe, OH, NH₂, Cl, NR₃Cl, or Me increases the stability. α- or β-C₁₀H₇·CH₂ is removed in preference to CH₂Ph, this being the only case in which the ease of removal of CH₂Ph is exceeded; its preparative usefulness is limited to special cases. Ephedrine is not reduced. Hydrogenation of COPhEt in presence of an inefficient catalyst and NH₄Cl gives 85% of CHPhEt·OH [Hartung]. Hydrochlorides (m.p. in parentheses) of the following are described: σ- (123—123·5°) and m-methoxybenzyl-(128·5—129°), 4-diphenylylmethyl-[265° (decomp.)], and α-naphthylmethyl-methylamine (189·5—190°); 4-methoxy-3': 4'-methylenedioxy- (246—247°) and -4'-hydroxy-dibenzylamine (179—179·5°); 2: 4'- (160—161°) and 3: 4'-dimethoxy- (159—160·5°), 4-methyl-(161—162°), and 4-chloro-dibenzylmethylamine (146·5—146·5°); benzyl-a- (225°) and -β-naphthylmethyl-(230·5—231°) and α-naphthylmethyl-4-diphenylylmethyl-methylamine (211·5—212°). p-Aminobenzylmethylamine (dihydrochloride, m.p. 201·5—202°), p-aminomethylphenyltrimethylammonium chloride hydrochloride, m.p. 223—5°, p-dimethylaminodibenzylamine methochloride hydrochloride, m.p. 329·5°, p-dimethylaminodibenzylamine methochloride hydrochloride, m.p. 182·5—183°), are also described. (I) is prepared by the reactions: p-NMe₂·C₆H₄·CHO + CH₂Ph·NH₂ → p-NMe₃·C₆H₄·CH₂·NR·CH₂Ph (A; R = H) → (A; R = Ac) → p-NMe₃·C₆H₄·CHO + CH₂Ph·NH₂ → p-NMe₃·C₆H₄·CHO + CH₂Ph·NH₂ → p-NMe₃·C₆H₄·CHO + CH₂Ph·NH₂ → p-NMe₃·C₆H₄·CHO + CH₂Ph·NH₂ → p-NMe₃·C₆H₄·CHO + CH₂Ph·NH₂

Action of potassium on benzpinacol in boiling ether under nitrogen. L. Anschutz and (Miss) A. Ungar (J. pr. Chem., 1940, [ii], 156, 38—44).—When K is added to (CPh₂·OH)₂ (I) in boiling Et₂O-N₂, change in the b.p. indicates halving of the mol. wt. within 1—2 min., followed in ≼10 min. by appearance of a blue colour due to CPh₂·OK. The first change is due to KOH present in the K decomp. (I) into COPh₂ and CHPh₂·OH, which later react with K to give (i) CPh₂·OK and (ii) CHPh₂·OK + H. Analysis (method: C., 1944, Part 1) shows presence of ~80% of CHPh₂·OK and ~20% of CPh₂·OK, this being caused by reduction of COPh₂ to CHPh₂·OH by the liberated H. (I) and K react more slowly in Et₂O at room temp., in this case evolution of H₂ being visible. KOH may play a part in all formations of ketyls from pinacols. R. S. C.

Synthetic mydriatics. III. F. F. Blicke and H. M. Kaplan (J. Amer. Chem. Soc., 1943, 65, 1967—1970; cf. A., 1942, II, 237).—
The following esters are prepared by heating the appropriate aminoalkyl chloride and acid in PrβOH. Mydriatic activity in 2% aq. solution is indicated by 1 poor, 2 moderate, 3 good, or 4 excellent; absence of an entry for the salts indicates inactivity. β-Dipropyl- (hydrochloride, m.p. 116—118°) and β-dibutyl-aminoethyl (hydrochloride, m.p. 104—106°), β-piperidinoethyl (hydrobromide, m.p. 140—141°), γ-dibutylamino- (hydrochloride, m.p. 92—93°) and γ-piperidino-npropyl (hydrochloride, m.p. 136—137°), γ-dimethylamino- [hydrochloride, m.p. 145—146°), γ-dibutylamino- (G), m.p. 66—67°, and γ-piperidino-ββ-dimethyl-npropyl (G), m.p. 96—97°, mandelate; β-dimethyl- [hydrochloride (G, m.p. 152—153°], β-diethyl- [hydrochloride (3, G), m.p. 163—166°] and β-dibutyl-amino-n-propyl [hydrochloride (G), m.p. 163—166°] and β-dibutyl-amino-n-propyl [hydrochloride (G), m.p. 165—166°], γ-diethyl- [hydrochloride (G), m.p. 167—168°], γ-diethyl- [hydrochloride (G), m.p. 168—167°], γ-dimethyl- [hydrochloride (G), m.p. 168—167°], γ-dimethyl- [hydrochloride (G), m.p. 168—169°], and γ-dibutyl-amino-n-propyl [hydrochloride (G), m.p. 150—151°] and γ-diethyl-amino-ββ-dimethyl-hydrochloride (G), m.p. 160—115°] and γ-diethyl-amino-ββ-dimethyl-hydrochloride (E), m.p. 130—140° (Iit. 141—142°)] benzilate; β-diethylamino- (hydrochloride, m.p. 108—109°), β-dibutylamino- [hydrochloride (E), m.p. 130—131°], γ-dimethyl-[hydrochloride (E), m.p. 160—121°], and β-piperidino-n-propyl [hydrochloride (E), m.p. 130—131°], γ-dimethyl-n-propyl (phosphate, m.p. 150—151°) and γ-diethyl-amino-ββ-dimethyl-n-propyl (phosphate, m.p. 128—129°] and γ-diethyl-amino-ββ-dimethyl-n-propyl (phosphate, m.p. 128—129°] and γ-piperidino-n-propyl [hydrochloride (E), m.p. 130—131°], γ-dibutylamino-(hydrochloride (S), m.p. 130—131°], γ-dibutylamino-(hydrochloride, m.p. 131—132°), γ-dibutylamino-(hydrochloride, m.p. 149—132°), γ-dibutylamino-(hydrochloride

amino- (methobromide, m.p. 129—131°) and β-pipcridino-ethyl (hydrochloride, m.p. 102—103°; methobromide, m.p. 113—115°), γ-dibutylamino- (methobromide, m.p. 87—89°) and γ-piperidino-n-propyl (hydrochloride, m.p. 143—144°), γ-dimethyl- (methobromide, m.p. 117—119°) and γ-diethyl-amino-ββ-dimethyl-n-propyl (hydrochloride, m.p. 89—90°) β-hydroxy-β-phenylpropionate; β-diethyl-amino- [hydrochloride (2, G), m.p. 144—146°], β-dipropylamino-[hydrochloride (E), m.p. 115—116°], and β-piperidino-ethyl [hydrochloride (G), m.p. 169—171°], γ-diethylamino- [hydrochloride (E), m.p. 127—128°], and γ-piperidino-n-propyl [hydrochloride (E), m.p. 127—128°], and γ-piperidino-n-propyl [hydrochloride (E), m.p. 126—138°] β-hydroxy-ββ-diphenylpropionate. Generalities noted include the frequent but not universal concurrence of mydriatic and anæsthetic activity, irregularities among homologues, the general activity of benzilates, and the lack of or slight anæsthetic activity of tropates. CH₂Ph-CH(OEt)₂, b.p. 114—120°/15 mm., is obtained (70%) from CH₂Ph-MgCl and CH(OEt)₃ in Et₂O and with, successively, 10% H₂SO₄, NaHSO₃, KCN, and 18% HCl gives CH₂Ph-CH(OH)-CO₂H. β-Piperidinoethyl chloride, b.p. 69°/12 mm. [hydrochloride, m.p. 229—230° [lit., 208°, 231°]], NBu₂·CHMe·CH₂Cl, b.p. 116—120°/29 mm., NPr₂·[CH₂]₃·Cl, b.p. 99—102°, NBu₂·[CH₂]₃·Cl (aurichloride, m.p. 143—146°), and NMe₂·CH₂·CMe₂·CH₂Cl, b.p. 44—49°/14 mm., are also described.

Rearrangement of allyl groups in three-carbon systems. III. Nitriles and an acid. D. E. White and A. C. Cope (J. Amer. Chem. Soc., 1943, 65, 1999—2004; cf. A., 1941, II, 279).— C:C·CRR'·CH2·CH:CH2 (R and R' = CN or CO2Et) rearranges at 135—200°, with inversion, to CH₂:CH·CH₂·CH·C;CRR′. cyclo-Hexylidenephenylacetonitrile (I) (modified prep.), b.p. 173—174°/10 mm., with NaNH₂ in liquid NH₃ gives the Na derivative, which with CH₂:CH·CH₂Br (II) in boiling Et₂O gives a- Δ ¹-cyclohexenyl-a-phenyl- Δ ⁷-pentenonitrile (III) (77%), b.p. 106—109°/0·001 mm., hydrogenation of which proceeds in two stages, giving, best with Raney Ni in EtOAc at ~200°/~130 atm., acet- β - Δ ¹-cyclohexenyl- β -phenyl-n-amylamide (IV) (45%), m.p. 141·5—143°. With Pr^aI instead of (II) in C₈H₈, (I) gives a- Δ ¹-cyclohexenyl-a-phenyl-n-valeronitrile, b.p. 147—148°/1·5 mm., hydrogenated as above to (IV) (53%), m.p. 140·5—142° (proof of structure). CH₂Ph·CN with NaNH₄-NH₃ and then cyclohexyl bromide in C₈H₈ gives cyclohexyl-135-200°, with inversion, to CH2:CH·CH2·CH·C:CRR'. NaNH.—NH₃ and then cyclohexyl bromide in C₆H₈ gives cyclohexyl-phenylacetonitrile (72%), m.p. 55—55.5° (lit., 56°, 60°), b.p. 165— 167°/9 mm., which by propylation as above gives a-cyclohexvl-a-phenyl-n-valeronitrile (70%), b.p. 155—158°/3-5 mm., and thence phenyl-n-valeronitrile (70%), b.p. 155—158°/35 mm., and thence by hydrogenation as above acet-β-cyclohexyl-β-phenyl-n-amylanida (48%), m.p. 129—130°. At 220° in N₂, (III) gives 2-allylcyclohexylidenephenylacetonitrile (V) (85%), b.p. 160—162°/2 mm., the structure of which is proved as follows. (V) absorbs 0.996 H₂ rapidly and then slowly a further quantity. Distillation of (V) from KOH in aq. (OH-[CH₂]₂)₂O (VI) gives NH₃, CH₂Ph-CO₂H (73%), and 2-allylcyclohexanone (VII) (43% isolated as 2: 4-dinitrophenylhydrazone, m.p. 145—146°). CHPhNa-CN and (VII) in boiling PhMe give 28% of (V) (possibly a slightly different mixture of geometrical isomerides). Heating CN-CH₂-CO₂H, cyclohexylidenecyanoacetic acid, which is decarboxylated at 130—140°/50—70 mm. and NH₄OAc in C₆H₆ with removal of H₂O gives cyclohexylidene-cyanoacetic acid, which is decarboxylated at 130—140°/50—70 mm. to Δ¹-cyclohexenylacetonitrile (79%), b.p. 99°/15 mm. This is converted by NaNH₂-NH₃ and then (II)-Et₂O at, successively, -40°, room temp., and the b.p. into a-Δ²-cyclohexenyl-Δ²-n-penteno-nitrile (VIII) (19%), b.p. 85—87°/1·5 mm., a-Δ¹-cyclohexenyl-a-allyl-Δ²-n-pentenonitrile (IX) (40%), b.p. 107—108·5°/1·5 mm., and a substance, C₂₂H₃₀N₂, m.p. 105—106°. At 185° in N₂, (VIII) gives 2-allylcyclohexylideneacetonitrile, fractions, b.p. 121—122°/10 mm. and 122—123°/10 mm., converted by KOH as above, with much hydrolysis, into small amounts of (VII) and AcOH At 175° (IX) and $122-123^{\circ}/10$ mm., converted by KOH as above, with much hydrolysis, into small amounts of (VII) and AcOH. At 175° (IX) gives a-2-allylcyclohexylidene- Δ^{γ} -n-pentenonitrile (78%), b.p. $117-119^{\circ}/2$ mm., cleaved as above into (VII) (poor yield). Alkylation of CH₂:CH·CH₂·CN as above gives a-vinyl-a-allyl- Δ^{γ} -n-pentenonitrile (X) (31%), b.p. $103-104^{\circ}/35$ mm., which at 180° in N₂ yields a-allyl- Δ^{α} -heptadienonitrile (62%), b.p. $95-96^{\circ}/13$ mm., whence O₃ in EtOAc and then aq. H₂O₂ at 100° yields (CH₂·CO₂H)... Distipling H₂O from COEt₂-CN·CH₂·CO₂H-NH₄OAc-AcOH-C₉H₈ and heating the product at $140-145^{\circ}/40-60$ mm. gives β -ethyl- Δ^{β} -n-pentenonitrile (72%), b.p. $104-105^{\circ}/72$ mm., which by alkylation pentenonitrile (72%), b.p. 104—105°/72 mm., which by alkylation gives β-ethylidene-α-allyl-n-valeronitrile (38%), b.p. 69—70°/2 mm. At 195° (N_α), this gives γ-nethyl-β-ethyl-Δα-heptadienonitrile (70%), b.p. 100—101°/11 mm., whence O₃ gives COEt-CHMe-CH₂·CO₂H, also obtained by ozonising COEt-CHMe-CH₂·CH:CH₂ in EtOAc. With COH (WILL) (NIC) and the control of the contr With KOH-(VI)-H₂O, (X) gives a-vinyl-a-allyl-Δ^γ-n-pentenoic acid (54%), b.p. 108—110°/2·5 mm., rearranged at 185° (N₂) into α-allyl-Δ^{αε}-n-heptadienoic acid (61%), b.p. 116—118°/1·5 mm. [with O_n gives (CH2*CO4H)27.

Oxidation of o-cresol to salicylic acid by alkali fusion. D. E. Bland (J. Proc. Austral. Chem. Inst., 1943, 10, 239—242).—Under the most favourable conditions, the method of Lock et al. (A., 1939, II, 113) gives >>31% of o-OH·C₆H₄·CO₆H. Yields of 29—39% are obtained from a dry, intimate mixture of o-cresol and NaOH (3 parts) at 250°/3 hr.

A. T. P.

Photochemical dimerisation of trans-cinnamic acid. H. I. Bernstein and W. C. Quimby (J. Amer. Chem. Soc., 1943, 65, 1845—1846).—Rapidly pptd. or commercial trans-CHPh:CH·CO₂H gives only \$\textit{g}\$-truxinic acid on exposure to sunlight, but after slow recrystallisation it gives \$\alpha\$-truxilic acid. W. R. A.

Synthesis of 3-methylpyrogallolaldehyde [2:4-dihydroxy-3-methoxybenzaldehyde]. F. Mauthner (f. pr. Chem., 1940, [ii], 156, 154—156).—The fraction, b.p. $145-155^{\circ}/12$ mm., of the mixture obtained from $1:2:3\cdot C_6H_3(\mathrm{OH})_3$ (100 g.) in EtOH (200 c.c.), MeI (80 g.), and KOH (29·4 g.) in EtOH (150 c.c.) after 10 hr. at the b.p., is treated with boiling AcCl and the product fractionated. Fractional crystallisation of the material, b.p. $160-180^{\circ}/12$ mm., from EtOH gives 1:2:3- and $2:1:3\cdot \mathrm{OMe}\cdot C_6H_3(\mathrm{OA})_2$, m.p. $51-54^{\circ}$ (more sol.). Hydrolysis (dil. NaOH) then affords a poor yield of $2:1:3\cdot \mathrm{OMe}\cdot C_6H_3(\mathrm{OH})_2$, m.p. $85-87^{\circ}$, converted by $\mathrm{Zn}(\mathrm{CN})_2-\mathrm{Et}_2\mathrm{O-HCl}$ into $2:4\cdot dihydroxy-3\cdot methoxybenzaldehyde$, m.p. $83-84^{\circ}$ (p-nitrophenylhydrazone, decomp. 250°).

Stabilisation of keto-compounds by acetalisation.—See A., 1944, II, 33.

cis- and trans-8-Methyl-1-hydrindanone. W. E. Bachmann and S. Kushner (J. Amer. Chem. Soc., 1943, 65, 1963—1967).—Et 1-hydroxy-2-carbethoxy-2-methylcyclohexylacetate (prep. improved to give 88% yield; cf. Chuang et al., A., 1935, 859), b.p. 173—177°/18 mm., with SOCl₂—C₅H₅N and then KOH-MeOH gives 2-carboxy-2-methylcyclohexylideneacetic (I), m.p. 101·8—103·5°, and 2-carboxy-2-methyl-Δ⁶-cyclohexenylacetic acid (II), m.p. 170·5—170·8° [? a stereoisomeride of (I)]. H₂—PtC₂ converts (II) in AcOH into cis-2-carboxy-2-methylcyclohexylacetic acid (III), m.p. 161·5—163° (A., 1943, II, 372, m.p. 163—164°), but (I) gives also a small amount of the trans-acid (IV), m.p. 173—174°. Treating crude (III) with CH₂N₂ and then NaOH-H₂O-MeOH gives cis-2-carbomethoxy-2-methylcyclohexylacetic acid, m.p. 54·5—60° (Chuang et al., loc. cit.), which with SOCl₂ and a little C₅H₅N in C₆H₆ at 40° and then CH₂N₂-C₆H₆—Et₂O gives a diazo-ketone, converted by Ag₂O-MeOH into Me cis-β-2-carbomethoxy-2-methylcyclohexylpropionate, a syrup. Cyclisation by NaOMe-C₆H₆ and subsequent treatment with boiling HCl-AcOH-H₂O yields cis-8-methyl-1-hydrindanone, m.p. 38·2—39·5°, b.p. 121—123°/45—47 mm. (oxime, m.p. 85·5—87°). Hydrogenation (Raney Ni; 125—150°/1800—2000 lb.; H₂O) of K H 1-methyl-Δ²-cyclohexene-1: 2-dicarboxylate gives trans-1-methyl-cyclohexane-1: 2-dicarboxylic acid, m.p. 214—214·3° (lit. 210°), which yields, as above, trans-2-carbomethoxy-2-methylcyclohexane-1-carboxylic acid, m.p. 90—91·5° after softening. With (COCl)₂ in C.H₆ this gives the acid chloride, which with, successively, CH₂N₂, Ag₂O-MeOH, and KOH-MeOH-H₂O yields (IV), m.p. 175—177·8°, which is converted, as above, into trans-8-methyl-1-hydrindanone, b.p. 108—109°/20 mm. [semicarbazone, m.p. 234° (bath preheated to 190°); oxime, m.p. 113—115·5°].

Relationship between anti-mitotic action and constitution in colchicine derivatives. H. Lettré and H. Fernholz (Z. physiol. Chem., 1943, 278, 175—200; see also A., 1944, III, 92).—Colchiceine (in CHCl₃) and the diazoalkane (in Et₂O) give the amorphous methyl-, melts from ~130° (probably not identical with colchicine, ethyl-, melts from ~110°, n-propyl-, melts from 98°, and n-butyl-colchiceine, melts from 90°. p-Anisyl 3:4:5-trimethoxystyryl ketone, m.p. 134° [from 3:4:5:1-(OMe)₃C₆H₂·CHO (I) and p-OMe·C₆H₄·COMe in EtOH + MeOH-NaOMe], is reduced (H₂, Pt-black, AcOH) to the β-3:4:5-trimethoxyphenylethyl ketone, m.p. 98°, the oxime, m.p. 102°, of which is reduced (Na-Hg, EtOH-AcOH) to α-p-anisyl-γ-3:4:5-trimethoxyphenylpropylamine (Ac derivative, m.p. 88°). Ph 3:4:5-trimethoxyphenylpropylamine (Ac derivative, m.p. 137—138°). N-Acetyl-α-p-anisyl-, m.p. 112°, and -a-phenyl-γ-3:4-dimethoxyphenyl-, m.p. 122°, -α-phenyl-γ-panisyl-, m.p. 117°, -γ-phenyl-α-p-anisyl-, m.p. 115—117°, -α-p-di-p-anisyl-, m.p. 114°, and -αγ-diphenyl-propylamine, m.p. 88—89°, are similarly obtained. N-Acetyl-α-p-anisylethylamine, m.p. 74—75°, and the Ac, m.p. 91—92° (lit. 93—94°), propionyl, m.p. 79°, n-butyryl, m.p. 80—81°, and isovaleryl derivative, m.p. 104°, of 3:4:5:1-(OMe)₃C₆H₂·[CH₂]·NH₂ (mescaline) are described. 7-Nitro-4'-methoxystilbene is reduced (Zn dust, EtOH-AcOH) to the corresponding oxime, which with H₂-PtO₂-EtOH-H₂C₂O₄ gives α-phenyl-β-p-anisylethylamine (as oxalate, m.p. 197°; Ac derivative, m.p. 150°). 7-Nitro-3':4'-di- and -3':4':5'-tri-methoxystilbene ismilarly afford α-phenyl-β-3:4-di- and -3':4':5'-tri-methoxystilbene ismilarly afford α-phenyl-β-3:4-di- and -3':4':5'-tri-methoxyphenylethylamine (Ac derivatives, m.p. 143—144° and 153—154°, respectively). p-OMe·C₆H₄·CH₂·NO₂ and (I) in EtOH-NH₂Me give 7-nitro-4:3':4':5'-tetramethoxystilbene, m.p. 137°.

New preparation of hydroxy-aromatic ketone. I. Monoketones. S. S. Israelstam and H. Stephen. II. Diketones. S. S. Israelstam (J. S. African Chem. Inst., 1943, 26, 41—48, 49—53).—I. A trace of conc. $\rm H_2SO_4$ is added to an equimol. mixture of $\rm Ac_2O$ and a phenol containing two or more OH groups in the meta position; there is an immediate rise in temp. of $\sim 60^\circ$, after which the mixture is heated at 130° for 15 min.; the product is boiled with $\rm H_2SO_4$ -EtOH to hydrolyse any O-Ac derivative. Thus are obtained: 2:4:1-

Hoesch (A., 1915, i, 820) is the corresponding ketimine sulphate. II. Increase in the relative proportions of acid anhydride and conc. H_aSO_4 results in the introduction of two acyl groups. Thus resorcinol affords a mixture of 2:4-, m.p. 92° , and 4:6-diacetyl-resorcinol, m.p. 182° (Me_2 ether, m.p. 171°); similar mixtures are obtained from resorcinol, AcCl, and conc. H_2SO_4 and from m- $C_6H_4(OAc)_2$ and hot conc. H_2SO_4 . 4:6- and 2:4-Dipropionyl-resorcinol, m.p. 125° and 81° , respectively, are obtained similarly. All the following diketones give a red colour with FeCl₂ in EtOH: diacetylphloroglucinol, m.p. 153° ; dipropionylphloroglucinol, m.p. 137— 138° ; 4:6-diacetylpyrogallol, m.p. 188° (diacetate, m.p. 218°); 4:6-dipropionylpyrogallol, m.p. 186° . H. W.

Biochemistry of the lower fungi. VI. Synthesis of fumigatin. T. Posternak and H. W. Ruelius (Helv. Chim. Acta, 1943, 26, 2045—2049).—3:5:4:1-(OH), $_2$ C₄H₂(OMe)·CHO is hydrogenated in abs. EtOH containing PtO₂ to 3:5-dihydroxy-4-methoxybenzyl alcohol (I), m.p. 177—178°, or in glacial AcOH containing Pd-black to 3:5-dihydroxy-4-methoxytoluene (II), m.p. 135—136°, also obtained under these conditions from (I). (II) is converted by amyl nitrite through the K salt into 2-nitroso-3:5-dihydroxy-4-methoxytoluene, m.p. 118° (decomp.), reduced catalytically or by Na₂S₂O₄ to the unstable amine which is immediately oxidised to fumigatin [3-hydroxy-4-methoxy-2:5-toluquinone], m.p. 113—113·5°. H. W.

Biochemistry of the lower fungi. V. New syntheses of phoenicin and isophoenicm. T. Posternak, H. W. Ruelius, and J. Tcherniak (Helv. Chim. Acta, 1943, 26, 2031—2044).—4:1:3:5-NO₂·C₆H₂Me(OH)₂ is converted by Me₂SO₄ and NaOH into 4-nitro-3:5-dimethoxytoluene, m.p. 147—147·5°, reduced (H₂-PtO₂-abs. EtOH) to the 4-NH₂-compound, m.p. 64—65° (H sulphate), whence the 4-I-compound, m.p. 96—97°. This is transformed by activated Cu (Adams) at 170—210° into 2:6:2':6'-tetramethoxy-4:4'-dimethyldiphenyl, m.p. 145—146°, which with HNO₃ (d 1·4) in Ac₂O at -10° affords 3:3'-dinitro-2:6:2':6'-tetramethoxy-4:4'-dimethyldiphenyl, m.p. 197—198°, reduced to the 3:3'-(NH₂)₂-compound, m.p. 168° or (+2H₂O) m.p. 132—134° (evolution of steam) and, after resolidification, m.p. 168°; this can be diazotised normally with production of relatively very stable salts. It is oxidised by Na₂Cr₂O₇ and H₂SO₄ to 2:2'-dimethoxy-4:4'-dimethyldiphenyl-3:6:3':6'-diquinone (phoenicin Me₂ ether), m.p. 131—132° identical with the compound obtained from phoenicin (I), Ag₂O, and McI and hydrolysed to (I) by 2% Na₂CO₃ at 100°. 4-Iodotoluquinone is converted by Thiele's reagent at room temp. into a mixture of 4-iodo-2:3:5-(II), m.p. 154—155°, and 4-iodo-2:5:6-triacetoxytoluene (III), m.p. 1717—118°, which retains a trace of (II). (II) is transformed by activated Cu into leucophoenicin hexa-acetate (IV), m.p. 200—201°. Leucoisopheenicin hexa-acetate, m.p. 178—181°, is obtained similarly from (III) or better, together with (IV), from an equimol. mixture of (II) and (III). (II) is partly hydrolysed by HCl-MeOH to 4-iodohydroxydiacetoxytoluene (VI), m.p. 164° [also obtained by methylation (CH₂N₂) leads to 4-iododiacetoxymethoxytoluene (VI), m.p. 164° [also obtained by methylation by FeCl₃ into (I). Partial hydrolysis (HCl in abs. MeOH) of (III) gives 4-iodohydroxydiacetoxyloluene, m.p. 140°, which is converted by hydrolysis followed by oxidation by FeCl₃ into (I). Partial hydrolysis (HCl in abs. MeOH) of (III)

IV.—STEROLS AND STEROID SAPOGENINS.

Oxidative degradation of neoergosteryl acetate. R. P. Jacobsen (J. Amer. Chem. Soc., 1943, 65, 1789—1792).—The acetate (I), m.p. 118—119°, of neoergosterol (modified prep. from bisergostatrienol in boiling $n\text{-}C_5H_{11}\text{-}OH\text{-}N_2$), m.p. $152\text{-}5\text{--}154^\circ$ (lit. $151\text{---}152^\circ$), $[a]_{10}^{19}$ —10° in CHCl₃, with successively OsO₄—Et₂O at room temp., ag. EtOH—Na₂SO₃, and HIO₄ in Et₂O containing a little MeOH at 15° gives $a\text{--}3(\beta)\text{-hydroxy-}\Delta^{5:7:9}\text{--eestratrien-}17\text{-ylpropionic}$ acid (II),

+0.5H₂O, m.p. 206·5—208·5° (Remesov, A., 1938, II, 18, m.p. 210—212°), [a]₁₉¹⁹ — 7° in COMe₂ [Me ester (III), m.p. (air-dried) 173—175°, (dried at 110°/vac.) 174—176·5°], also obtained (m.p. 203·5—206°) from (I) by O₃ in 2 : 1 AcOH–CCl₄ in 6·5—9% yield (cf. loc cit.). With hot Ac₂O–C₅H₅N and then CH₂N₂, (II) gives its Me ester acetate (IV), m.p. 159·5—161·5° (loc. cit., m.p. 144—145°). (IV) with MgPhBr–Et₂O–PhMe gives aa-diphenyl-β-3(β)-acetoxy- $\Delta^{5:7.9}$ -astratrien-17-yl-n-propyl alcohol, +0·5H₂O, m.p. 112—120° (effervescence), dehydrated by Ac₂O–C₅H₅N and then boiling Ac₂O (a little)–AcOH to aa-diphenyl-β-3(β)-acetoxy- $\Delta^{5:7:9}$ -astratrien-17-yl- Δ^{a} -propene (16%), m.p. 197—201°, [a]₁₉¹⁹ +171° in CHCl₃. With MgMeI in PhMe–Et₂O, (III) gives γ-3(β)-hydroxy- $\Delta^{5:7:9}$ -astratrien-17-yl-β-methyl-n-butan-β-ol (V), m.p. 179—183°, [a]₁₉¹⁹ —27° in CHCl₃, which with Ac₂O–C₅H₅N at room temp. gives the 3(β)-acetate, m.p. 127—130°. This is dehydrated by AcOH + a little Ac₂O at 150—155° (less well, Ac₂O–ZnCl₂ or anhyd. H₂C₂O₄), to γ-3(β)-acetoxy- $\Delta^{5:7:9}$ -astratrien-17-yl-β-methyl- Δ^{a} -n-butene (VI), m.p. 135—136°, [a]₁₉ —14° in CHCl₃ [corresponding 3(β)-3': 5'-dinitrobenzoate, m.p. 252—255° (decomp.)]. With OsO₄— and then HIO₄-Et₂O, (VI) gives, after hydrolysis, a-3(β)-hydroxy- $\Delta^{5:7:9}$ -astratrien-17-ylethyl Me ketone, m.p. 177—181°, [a]₁₉ —22° in CHCl₃ (acetate, m.p. 148—152°), which with MgMeI–PhMe–Et₂O gives (V), thus proving the structure. M.p. are corr.

Steroid exeretion in a case of adrenocortical carcinoma. I. Isolation of a Δ⁵-androstene-3(β): 16: 17-triol. H. Hirschmann (J. Biol. Chem., 1943, 150, 363—379).—Urine obtained from a boy with adenocarcinoma of the adrenal cortex is hydrolysed by boiling with HCl; it is extracted with Et₂O and the 17-keto-steroids in the neutral fraction are determined (method: Callow et al., A., 1938, III, 905). The neutral fraction is extracted with C₈H₈ and the insol. residue affords Δ⁵-androstene-3(β): 16: 17-triol (I), C₁₀H₃₀O₃, m.p. 267—270° (decomp.). Ac₂O-C₅H₅N at room temp. gives the triacetate (II), m.p. 189·5—191°, [a]²⁶₅—102° in 95% EtOH; the mother-liquors (chromatographic separation) yield a diacetate, m.p. 183—187°, and 3-monoacetate (III), m.p. 243—245°, both of which are hydrolysed by aq. NaOH-MeOH at room temp. to (I), +0·5MeOH, m.p. 266—270° (decomp.). Hydrogenation (Pd-CaCO₃; EtOH) of (I) affords androstane-3(β): 16: 17-triol (IV), m.p. 256—260° (digitonide); its triacetate, m.p. 175·5—176·5°, [a]²⁶₆—44° in 95% EtOH, is obtained by hydrogenating (II). (I) and HIO₄,2H₂O-aq. dioxan (in N₂) at room temp. give a product, m.p. 131—134°. CrO₃-AcOH at room temp. (21 hr.) convert (IV) into 3-ketoætioallobilianic acid (V), m.p. 253—256°, which is also obtained from isoandrosterone as follows: NaOMe-MeOH-PhCHO afford 16-benzylideneandrostan-3(β)-ol-17-one, m.p. 181·5—182·5°; its acetate, m.p. 237—238°, and CrO₃-AcOH at 60° yield β-3-hydroxy-αtioallobilianic acid, new m.p. 254—257° (decomp.), converted by CrO₃-AcOH at room temp., and COMe₂-NaI gives. β-3-hydroxy-Δ5-ætiobilienic acid, forms, m.p. 232—236° and 247—255°, or after acetylation (Ac₂O-C₅H₅N), β-3-acetoxy-Δ5-ætiobilienic anhydride, m.p. 186—188°. (I) is not identical with that described by Butenandt et al. (A., 1939, II, 165) or Stodola et al. (A., 1942, II, 104), there being probably a different spatial arrangement at C₍₁₆) to hydrolysis. M.p. are corr.

Photochemical transformation of $a\beta$ -unsaturated steroid ketones under the influence of ultra-violet light. II. A. Butenandt and L. Poschmann (Ber., 1940, 73, [B], 893—897; cf. A., 1939, II, 328).— Exposure to ultra-violet light of cholestenone in pure hexane in absence of air gives lumicholestenone, $[a]_D^{23} + 36^\circ$ to $+37^\circ$ (11—12%), and 4% of cholestenonepinacol (I) (A, R = C_8H_{17}), $[a]_1^{23} + 103^\circ$ in CHCl₃. (I) does not exhibit absorption in the ultra-violet and hence is stable to further irradiation in hexane or C_8H_8 . In CHCl₃ in sunlight it passes into the hydrocarbon (B, R = C_8H_{17}), m.p. 244—

$$(4.)\begin{bmatrix} R \\ OH \end{bmatrix}_2 \begin{bmatrix} R \\ OH \end{bmatrix}_2 (B.)$$

246° (block) (slight decomp. at 170°), $[a]_{13}^{23}-230^{\circ}$ in CHCl₃. The change is ascribed to the catalytic influence of HCl derived from decomp. of CHCl₃; it also occurs in EtOH or C_eH_e containing a trace of HCl in absence of light. Analogously, testosterone propionate (II) in C_eH_e -hexane (1:10) affords lumitestosterone propionate (II), m.p. 350—355°, and the pinacol (A, R = O·COEt), m.p. 223° after softening, $[a]_{13}^{23}+75^{\circ}$ in CHCl₃, also obtained by reduction of (II) by Na–Hg in 96% EtOH and dehydrated by repeated dissolution in EtOH or insolation in CHCl₃ to the compound (B, R = O·COEt), m.p. 275—280°, decomp. >230°, $[a]_{13}^{23}-272^{\circ}$ in CHCl₃.

Barbier-Wieland degradation of 3-hydroxy-12-ketocholanic acid. B. Riegel and R. B. Moffett (J. Amer. Chem. Soc., 1943, 65, 1971—1973).—Steric hindrance at the 12-CO allows application of the Barbier-Wieland degradation in the 3-hydroxy-12-ketocholanic acid series. A little AcCl in MeOH at the b.p. and then room temp. or PrβOH at room temp. converts 3-hydroxy-12-ketocholanic acid into the Me (I), m.p. 111·5—113·5° (lit. 110—111·5°), or Prβ ester, m.p. 149·5—151°, respectively. With MgPhBr in boiling Et₂O-C₆H₆ and then, best, 7·5% KOH-MeOH, (I) gives diphenyl-3-hydroxy-12-ketonorcholanylcarbinol (II) (32%), m.p. 215—216·5°, converted by boiling Ac₂O-AcOH into aa-diphenyl-β-12-keto-3-acetoxybisnorchanylethylene (III), m.p. 180·5—182°, which with CrO₃-AcOH-CHCl₃ at ~35° and then boiling aq. NaOH gives 3-hydroxy-12-ketonorcholanic acid, m.p. 248—250° (Me ester, m.p. 149·5—151°). The crude H succinate, m.p. 97—115°, of diphenyl-3: 12-dihydroxynorcholanylcarbinol (IV), m.p. 114—119°, with CrO₃-aq. AcOH at room temp. and then boiling KOH-MeOH gives (II), m.p. 214—215°. Ac₂O-AcOH and then 10% KOH-MeOH converts (IV) into aa-diphenyl-β-3: 12-dihydroxybisnorcholanylethylene, +0·5MeOH (retained at 78°/1 mm.), m.p. 108—110°, which with (CH₂·CO)₂O in C₃H₃N at 100° (5 min.) and then room temp. (24 hr.) gives the 3-H succinate, m.p. 198—201°, converted by CrO₃-AcOH-H₂O at 0—5° and then boiling KOH-MeOH into aa - diphenyl - β - 3 - hydroxy - 12 - ketobisnorcholanylethylene, +0·5EtOH (retained at 78°/1 mm.), m.p. 158—159° [acetate = (III), m.p. 181·5--182·5°]. M.p. are corr. R. S. C.

Bile acids and related substances. XXVII. a-Oxides of the two 3-hydroxy- and the 3-keto-A¹¹-cholenic acid. G. H. Ott and T. Reichstein (*Helv. Chim. Acta*, 1943, 26, 1799—1815).—Me 3-kcto-Reichstein (Helv. Chim. Acta, 1943, 26, 1799—1815).—Me 3-keto- Δ^{11} -cholenate (I) is hydrogenated (Raney Ni) in alkaline medium and then esterified (CH₂N₂) and acetylated to a mixture of Me 3(a)- (II), m.p. 119—121°, and Me 3(β)-acetoxy- Δ^{11} -cholenate (III), m.p. 149—151°, separated from one another by chromatography over A_2O_3 . Gradual addition of an aq. solution of NHBrAc and NaOAc, 3H₂O to (II) in COMe, at 55—30° and chromatography of the product over Al₂O₃ gives the corresponding dibromide, Me 11(a): 12(a)-oxido-3(a)-acetoxycholanate (III), m.p. 154—155° [a]₁₅¹² +62·0°±2° in COMe₂, and Me 12-keto-3(a)-acetoxy- Δ^{3} -cholenate (V), m.p. 146—148°, [a]₁₅¹⁴ +100·0°±2° in COMe₂. The formation of (IV) and possibly of (V) is due to the intervention of the Al₂O₃. Under somewhat $[a]_D^{14} + 100.0^{\circ} \pm 2^{\circ}$ in Cone₂. The formation of of (V) is due to the intervention of the Al_2O_3 . of (V) is due to the intervention of the $H_2^{\bullet}O_3$. Under somewhat modified conditions (II) is converted by NHBrAc in aq. COMe₂ containing NaOAc, $3H_2O$ or in $C_5H_5N-C_6H_8$ into $Me\ 12$ -bromo-11(a)-hydroxy-3(a)-acetoxycholanate (VI), m.p. $201-203^\circ$, $[a]_5^{17}+70.5^\circ\pm 2^\circ$ in COMe₂. (VI) is unchanged by boiling C_5H_5N or by Al_2O_3 which has been washed with dil. HCl and hot MeOH and dried at 250° but has been washed with dif. Her and not MeOH and dried at 200° but converted into (IV) by Al_2O_3 in presence of a little C_5H_5N or by technical Al_2O_3 containing alkali. Zn dust and boiling AcOH or Zn-Cu in AcOH is without action on (VI). Hydrogenation at $50^{\circ}/100-115$ atm. in MeOH- C_5H_5N containing Raney Ni causes some formation of (IV). (VI) is oxidised by CrO₃ in AcOH-CHCl₃ to Me. 12-bromo-11-keto-3(a)-acetoxycholanate, m.p. $183-185^{\circ}$, [a] 18 +13·0°±2° in COMe₂, debrominated by Zn dust in warm AcOH to Me 11-keto-3(α)-acetoxycholanate, m.p. 131—133°. (VI) is transformed into (IV) by KOH-MeOH at room temp. followed by reesterification (CH₂N₂), or by technical Al₂O₃ containing alkali. Short treatment with boiling AcOH leaves (IV) almost unchanged whereas leaves treatment results in relleasy approach to the content of the co whereas longer treatment results in yellow, amorphous materials. CrO₃ in AcOH exidises (IV) at room temp, to an unidentified neutral substance, m.p. 131—138°. Boiling H₂SO₄-MeOH followed by remethylation and acctylation transforms (IV) into a product, m.p. 131—133°. (IV) is hydrogenated (120—145°/~150 atm.; Raney Ni-MeOH), then re-methylated and acetylated, to Me 11(a)-hydroxy-Mi-MeOri, then re-incritylated and acetylated, to hie $\Pi(a)$ -hydroxy-3(a)-acetoxycholanate, m.p. $147-149^\circ$. (I), NHBrAc, and NaOAc, $3H_2O$ in aq. COMe₂ afford Me 12-bromo-11(a)-hydroxy-3-ketocholanate, m.p. $166-167^\circ$, $[a]_1^{18}+48\cdot9^\circ\pm2^\circ$ in COMe₂, converted by technical Al_2O_3 containing alkali into Me 3-keto-11(a):12(a)-oxidocholanate (VII), m.p. $121-122^\circ$, $[a]_1^{17}+34\cdot0^\circ\pm2^\circ$ in COMe₂. (III) is converted by NHBrAc and NaOAc, $3H_2O$ in aq. COMe₂ or by NHBrAc in C_aH_a containing C_aH_b N into Me 12-bromo-11(a)-hydroxy- $3(\beta)$ -acetoxycholanate (VIII), m.p. $196-198^\circ$, $[a]_1^{18}+50\cdot4^\circ\pm2^\circ$ in COMe₂, with (probably) some of the dibromide. (VIII) is oxidised hydroxy-3(β)-acetoxycholanate (VIII), m.p. 196—198°, [a] $_{\rm L}^{13}$ +50·4° ±2° in COMe,, with (probably) some of the dibromide. (VIII) is oxidised to Me 12-bromo-11-keto-3(β)-acetoxycholanate, m.p. 226—227°, [a] $_{\rm L}^{15}$ —7·3° ±2° in COMe₂, debrominated to Me 11-keto-3(β)-acetoxycholanate, m.p. 174—175°. Technical Al $_{\rm L}^{2}$ O₃ transforms (VIII) into Me 11(a): 12(a)-oxido-3(β)-acetoxycholanate (IX), m.p. 151—152°, [a] $_{\rm L}^{8}$ +39·9° ±1° in COMe $_{\rm S}$; the change is also conveniently effected by KOH-MeOH followed by methylation (CH $_{\rm L}^{2}$ N $_{\rm S}^{2}$) and acetylation. (IX) is hydrolysed, esterified (CH $_{\rm L}^{2}$ N $_{\rm S}^{2}$), and then oxidised to (VII), also obtained analogously from (IV). M.p. are corr. (block); limit of error +2°. of error $\pm 2^{\circ}$.

Isomerisation of 17-hydroxy-20-keto-steroids. IV. Reaction of $3(\beta):17(\alpha)$ -diacetoxyallopregnan-20-one with magnesium methyl bromide. C. W. Shoppee and D. A. Prins (Helv. Chim. Acta, 1943, 26, 2089—2095).—Addition of $3(\beta):17(\alpha)$ -diacetoxyallopregnan-20-one (I) in Et₂O-dioxan to MgMeBr in boiling Et₂O followed by treatment of the product with Ac₂O-C₅H₅N at room temp. gives unchanged material, small amounts of a substance, m.p. ~265°, $17(\alpha):20$ -dihydroxy- $3(\beta)$ -acetoxy-20-methylallopregnane (II), m.p. 168— 170° , and $17a(\beta)$ -hydroxy- $3(\beta)$ -acetoxy-17a-methyl-D-homo-

androstan-17-one, m.p. $159-160^{\circ}$, $[a]_{1}^{18} -33^{\circ} \pm 3^{\circ}$ in COMe₂. Oxidation by (II) by CrO_3 in AcOH at room temp. and hydrolysis of the neutral portion of the product leads to *trans*-androsterone, thus affording direct proof that (I) belongs to the *allo*pregnane series. M.p. are corr. (block); limits of error $\sim \pm 2^{\circ}$. H. W.

Steroids and sex hormones. LXXXVII. alloPregnan-3(β)-ol-21-al-20-one and pregnan-3(β)-ol-21-al-20-one. Testalolone. L. Ruzicka, V. Prelog, and P. Wieland (Helv. Chim. Acta, 1943, 26, 2050—2057).—3(β)-Acetoxyætioallocholanic acid is converted through the acid chloride and diazo-ketone into 21-chloroallopregnan-3(β)-ol-20-one, m.p. 152—153°, which with hot C₅H₅N gives the pyridinium salt, C₂₆H₄₀O₃NCl, m.p. 273—274° (decomp.) (also +1H₂O), converted by p-NO·C₆H₄·NMe₃ into the nitrone, m.p. (indef.) 119—120°, which is hydrolysed by HCl to allopregnan-3(β)-ol-21-al-20-one (I) [monohydrate, m.p. 155°, softens at 136°, [a]_D +92·7°±3° in C₅H₅N, giving after desiccation at 90°/high vac. a semihydrate, [a]_D +87·5°±3° in C₅H₅N; dioxime, m.p. 246—249° (decomp.); Me₂ acetal, m.p. 113—115°, [a]_D +111·5°±3° in CHCl₃]. Similarly 3(β)-acetoxyætiocholanic acid is converted into 21-chloropregnan-3(β)-ol-20-one, m.p. 184—185°, [a]_D +116·5°±2° in CHCl₃, transformed through the pyridinium chloride, m.p. 284° (decomp.), into pregnan-3(β)-ol-21-al-20-one (II) [monohydrate, m.p. ~143°, softens at 127°, [a]_D +103°±3° in C₅H₅N; dioxime, m.p. 217—223° (decomp.); Me₂ acetal, m.p. 126—129°, [a]_D +132°±10° in CHCl₃]. (I) and (II) are oxidised by HIO₄ to 3(β)-hydroxyætioallo-, m.p. 245—247°, and 3(β)-hydroxyætio-cholanic acid, m.p. 224—225·5°, respectively and by CrO₃ in AcOH to the corresponding keto-acids. Neither (I) nor (II) is identical with testalolone (A., 1936, II, 644). M.p. are corr.

Pyridazine derivative of cholestanedione. K. Bursian (Ber., 1940, 73, [B], 922—923).—Contrary to Noller (A., 1940, II, 18) the pyridazine derivative (I) of cholestanedione is a well-defined cryst. compound. It has m.p. >200° to a brown liquid, softens and darkens at 170°. The vals. for the mol. wt. in $C_{10}H_B$, C_0H_0 , PhOH, and exaltone do not reach the high data recorded by Noller but show ill-defined association varying from solvent to solvent and never indicating double the expected formula so that only the formula $C_{27}H_{44}N_2$ is possible. Solutions of (I) in boiling C_0H_0 are turned brown by passage of air whereas (I) can be subjected to protracted heating in a high vac. at ~180° without suffering change; at ~200° it melts to a brown liquid which does not form a sublimate.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Condensation of dipentene dihydrochloride with phenol. A. Zinke and H. Hönel [with O. Benndorf, R. Dreweny, and E. Ziegler] (J. pr. Chem., 1940, [ii], 156, 97—102).—Dipentene dihydrochloride (I), PhOH, and a little AlCl₃ or ZnCl₂ at 40—65° give a resinous product from which CH₂Cl₂ or C₆H₆ extracts 1:8-di-p-hydroxyphenylmenthane (+H₂O) (II), m.p. 166° (diacetate, m.p. 122°; dibenzoate, m.p. 169·7°; di-p-bromobenzoate, m.p. 208·8°), which does not resinify when heated, could not be dehydrogenated, and is oxidised by HNO₃ (d 1·1) at 150° to picric acid. Halogenation of (II) gives no cryst. products. Resinous products are obtained from (I) and resorcinol or guaiacol; C₆H₆-AlCl₃ gives resin and some 1:8-di-phenylmenthane, m.p. 242·5°.

Syntheses in the pinane series. G. Komppa (5 Nordiske Kemikermode, 1939, 213—214).—The total synthesis of α- (I) and δ-pinene (II), starting from R(CO₂H)₂ (III) (R = -CH CH₂ CH-), has been accomplished in the following stages: (III) via the anhydride and Me H ester gave CO₄Me·R·COCl, and thence, with ZnMeI, CO₂Me·R·COMe, and then (Reformatsky) CO₄Me·R·CMe(OH)·CH₂·CO₂Me (IV). H₂O was split off from (IV) with SOCl₂ to give CO₂Me·R·CMe·CH·CO₃Me, catalytically hydrogenated to CO₂H·R·CHMe·CH₂·CO₂H, the Pb salt of which on dry distillation gave verbanone (V). Reduction of (V) (Na-EtOH) gave which with SOCl₂-C₅H₆N gave (II). (V) with NaNH₂-CO₂ gave C₈H₁₄ CHCO₂H which was electrolytically reduced to C₄H₁·CH·CO₂H, losing H₂O (Ac₂O) to yield C₈H₁₄ CHCO₂H and thence (Curtius) C₈H₁₄ CH₂CO, converted into (I) by known methods. (Cf. A., 1942, II, 147.) M. H. M. A.

Mechanism of the sulphonation of camphor. P. Lipp and H. Knapp (Ber., 1940, 73, [B], 915—921).—The (incorrect) hypothesis that the by-product (I) obtained by Frèrejacque (A., 1926, 1251) in the sulphonation of camphor (II) is a mixed anhydride of camphor-

enolsulphuric acid and AcOH suggests that Reychler's acid (III) is obtained according to the scheme:

$$(II) \longrightarrow CH_{2} - C \cdot OR \longrightarrow CH_{2} - C \cdot OR \longrightarrow CH_{2} CH_{2} CH_{2} \cdot OR \longrightarrow CH_{2} CH_{2} \cdot OR \longrightarrow CH_{2} CH_{2} \cdot OR \longrightarrow CH_{2} \cdot OR \longrightarrow$$

(R — H, Ac, or SO_3H). In support of this hypothesis it is shown that (III) is obtained from 1-hydroxycamphene (IV) and $Ac_2O-H_2SO_4$ more rapidly than from (II). (I) yields AcOH but no trace of H_2SO_4 under the influence of $Ba(OH)_2$ and hence is an acetate but not a H sulphate. Further it is resistant to KMnO₄ in COMe₂, does not absorb Br in CHCl₃, and cannot be catalytically hydrogenated; it is therefore saturated and is not an intermediate compound in the sulphonation of (II). The tert. nature of OH in (IV) is established by the positive Wienhaus reaction and by the resistance of (IV) to the formation of a p-nitrobenzoate. Attempts to establish the presence of the semicyclic ethylenic linking in (IV) by fission with O_3 to CHO₂ and hydroxycamphenilone show that ketonisation to (II) takes place more rapidly than ozonisation. It is, however, readily hydrogenated giving 1-hydroxyisocamphane (V), m.p. 113·5—114°. Attempted methylation of (V) with Ag_2O and MeI leads to (II), the Ag_2O behaving as a dehydrogenating agent. (V) has the constitution assigned by Kresstinski et al. (A., 1937, II, 253) to their isoborneol. Since (V) has quite different properties from those of isoborneol, the observations of Kresstinski must be explained otherwise. H. W.

Triterpene resinols and related acids. XIV. Oxidation of acetylursolic acid. E. S. Ewen and F. S. Spring (J.C.S., 1943, 523—525). —Oxidation (AcOH-H₂CrO₄) of acetylursolic acid affords hetoacetylursolic acid (I), $C_{22}H_{48}O_5$, m.p. $315-316^\circ$ (decomp.), $[a]_D^{20}+40\cdot8^\circ$ in CHCl₃, and a small amount of a lactone, $C_{32}H_{46}O_6$, m.p. $305-306^\circ$ (decomp.). Similar oxidation of Et acetylursolate yields Et hetoacetylursolate, m.p. $210-212^\circ$, $[a]_D^{20}+92^\circ$ in CHCl₃, identical with that obtained from the acid and CHMeN. Quinoline and (I) give nor-a-amyradienonyl acetate, m.p. $203-205^\circ$, $[a]_D^{-1}+41^\circ$ in CHCl₃, with loss of HCO₂H. This acetate contains the chromophoric system O.C·C.C.C.C. These transformations indicate that the CO₂H of ursolic acid is in the vicinity of the ethylenic linking. F. R. S.

VI.—HETEROCYCLIC.

Synthesis of 2-ketocyclohexylsuccinic acid and related substances. III. Syntheses involving ethylene and propylene oxides. J. A. McRae, E. H. Charlesworth, F. R. Archibald, and D. S. Alexander (Canad. J. Res., 1943, 21, B, 186—193).—Addition of (CH₂)₂O to a well-cooled solution of CHNa(CO₂Et)₂ in EtOH followed by CH₂Cl·CO₂Et and alkaline hydrolysis of the product gives 2-keto-tetrahydrofuran-3-carboxylic-3-acetic acid, m.p. 165° (Et₂ ester, b.p. 204—206°/15 mm.), which passes at 160° into 2-ketotetrahydrofuran-3-acetic acid, m.p. 56—58°; this is converted by NH₃-EtOH at 100° into β-hydroxyethylsuccindiamide, m.p. 137—139° (decomp.). Under similar conditions Br·[CH₂]₂·CO₂Et affords Et₂ 2-ketotetrahydrofuran-3-carboxylate-3-propionate, b.p. 204—206°/16 mm.; the corresponding dicarboxylate-3-propionate, b.p. 204—206°/16 mm.; the corresponding dicarboxylate-3-propionate, b.p. 204—206°/16 mm.; the corresponding dicarboxylate acid, m.p. 125° (decomp.), is decarboxylated at 160° to 2-ketotetrahydrofuran-3-β-propionic acid, m.p. 51·5—53°. Analogously CH₂PhCl gives Et 2-keto-3-benzyltetrahydrofuran-3-carboxylated, b.p. 195—197°/0·5 mm., hydrolysed and then decarboxylated to 2-keto-3-benzyltetrahydrofuran, b.p. 165—166°/10 mm. Condensation of propylene oxide (I) with CHNa(CO₂Et)₂ and hydrolysis of the product leads to the unstable β-hydroxypropylmalonic acid (isolated as the Ba salt), decarboxylated at 160° to 2-keto-5-methyltetrahydrofuran [y-valerolactone], b.p. 83—84°/12 mm.; if the Na derivative of the original condensation product is not hydrolysed by NaOH but immediately acidified the unstable γ-hydroxy-α-carbethoxyvalerolactone, b.p. 125—135°/25—40 mm. (partial decomp.), results. Successive treatments of CHNa(CO₂Et)₂ in EtOH with (I) and Br·[CH₂]₂·CO₂Et followed by hydrolysis and decarboxylation of the product lead to 2-keto-5-methyltetrahydro-furan-3-β-propionic acid, m.p. 54—56°.

New furancarboxylic acids from glucose. T. Széki and E. László (Ber., 1940, 73, [B] 924—929).—Glucose, CH₂Bz·CO₂Et, and ZnCl₂ in abs. EtOH give Et 2-phenyl-5-aβyδ-tetrahydroxybutylfuran-3-carboxylate (I), m.p. 176—177°, [a]_D —38·4° in AcOH, converted by Ac₂O and C₅H₅N at 0° into the tetra-acetate, m.p. 95°, [a]_D⁶—51·2° in CHCl₃, and by benzoylation into an oil. Oxidation of (I) by Pb(OAc)₄ in AcOH-C₅H₅ at 0° affords Et 5-aldehydo-2-phenyl-furan-3-carboxylate (II), m.p. 76°, [a]_D ±0° (semicarbazone, m.p. 170—171°; phenylhydrazone, m.p. 124—126°), which gives a cryst additive product with NaHSO₃. (II) is converted by boiling 15°/6 NaOH containing Ag₂O into 2-phenylfuran-3:5-dicarboxylic acid, m.p. 270—271° (decomp.) (dichloride, m.p. 68—72°; diamide, m.p. ω6—208°; diamilide, m.p. 147—150°; Me₂ ester, m.p. 95—96°). "Phenyl-5-tetrahydroxybutylfuran-3-carboxylic acid, m.p. 195—197° (decomp.), [a]²⁵—24·6° in AcOH, is oxidised [Pb(OAc)₄ in C₆H₆-AcOH] to 5-aldehydo-2-phenylfuran-3-carboxylic acid, m.p. 145—147°, in poor yield. Similarly CO(CH₂·CO₂Et)₂ is condensed to Et₂

5-tetrahydroxybutylfuran-3-carboxylate-2-acetate (III), m.p. 128—130°, [a] $_{0}^{20}$ —14·7° in MeOH, oxidised to Et_{3} 5-aldehydofuran-3-carboxylate-2-acetate, an oil (semicarbazone, m.p. 180—182°; phenylhydrazone, m.p. 96—97°; 3:5-dinitrophenylhydrazone, m.p. 168—170°). (III) is transformed by boiling alkaline KMnO₄ followed by MeOH into Me_{3} furan-2:3:5-tricarboxylate, m.p. 68—73°. H. W.

Polyalkylbenzenes. XXXIII. 3:5:6-Trimethylcoumaran-2-one and its conversion into 4-hydroxy-3:5:6-trimethyl-I-isopropyl-coumaran. L. I. Smith, J. A. King, W. I. Guss, and J. Nichols (J. Amer. Chem. Soc., 1943, 65, 1594—1599; cf. A., 1943, II, 193).—2:3:5:1-C₆H₂Meg·OCH₂:CO₂H (prep. from 2:3:5:1-C₆H₂Meg·OH by K₂CO₃-CH₂Br·CO₂Et-COMe₂ and then NaOEt-EtOH), m.p. 130—131° (lit. 128°), in H₂SO₄ at 90—95° gives 3:5:6-trimethyl-coumaran-2-one (I) (86%), m.p. 90·5—91·5° [2:4-dinitrophenyl-hydrazine salt, m.p. 231° (decomp.), of the enolic form], converted by ZnCl₂-EtOH exothermally into 2-ethoxy-3:5:6-trimethyl-coumarone, m.p. 86—88°. With a drop of H₂SO₄ in Ac₂O, (I) gives 2-acetoxy-3:5:6-trimethylcoumarone, m.p. 88—89°, which with Br-CCl₄ gives 2-acetoxy-3:5:6-trimethylcoumaran-1-one, m.p. 127·5—128·5°. With ZnCl₂ in boiling COMe₂, (I) gives 3:5:6-trimethyl-1-isopropylcoumaran (III), m.p. 38—39°, and converted by O₃ in EtBr and then H₂O₂-H₂O into 2-hydroxy-3:4:6-trimethylbenzoic acid, m.p. 181—182° (decomp.) (decarboxylated at > m.p. to 2:3:5:1-C₆H₂Me₃·OH). 2:3:4:5:1-OH·C₆HMe₃·CO₂H, m.p. 181° (decomp.), is obtained from 2:4:5:1-C₆H₂Me₃·ONa and (solid) CO₂ at 250°. With Br-CCl₄ (II) gives HBr and 1-bromo-3:5:6-trimethyl-1-a-bromoisopropylcoumaran, m.p. 127—128° (decomp.). Br-CCl₄ converts (III) into 4-bromo-3:5:6-trimethyl-1-isopropylcoumaran, m.p. 65—66°, which with cyclohexyl bromide and EtBr and then Mg in Et₂O gives a Mg derivative, whence O₂ yields 4-hydroxy-3:5:6-trimethyl-1-isopropylcoumaran, m.p. 65—66°, which with cyclohexyl bromide and EtBr and then Mg in Et₂O gives a Mg derivative, whence O₂ yields 4-hydroxy-3:5:6-trimethyl-1-in-propylcoumaran, m.p. 65—66°, which with cyclohexyl bromide and EtBr and then Mg in Et₂O gives a Mg derivative, whence O₂ yields 4-hydroxy-3:5:6-trimethyl-1-n-propyl-coumarone (16%), m.p. 88—80°, reduced by H₂-Raney Ni in EtOH at 135°/1300 lb. to the derived coumaran, m.p. 96—97°. R. S. C.

Reaction between quinones and metallic enolates. XVII. Dibromo-p-xyloquinone and sodiomalonic ester. L. I. Smith and J. Nichols (J. Amer. Chem. Soc., 1943, 65, 1739—1747; cf. A., 1942, II, 267).—1:2:5:4-O.C. H2Mc2.O (I) or 2:5:1:4-C. H2Mc2(OH)2 (II), m.p. 208—213° (lit. 208° to 213°), with Br in AcOH at room temp. gives the red dibromoquinhvdrone, converted by HNO2 in the EtOH into 1:2:5:3:6:4-O.C. Me2Br2.O (III), softens 178°, m.p. 183—184° (derived quinol. m.p. 1745—175:5° after softening) m.p. 183—184° (derived quinol, m.p. 174.5—175.5° after softening), which with CHNa(CO₂Et)₂ (2 mols.) in pure dioxan at room temp. gives Et_2 5-bromo-3: 6-dimethyl-1: 4-benzoquinon-2-ylmalonate (IV) (83.7%; much less under other conditions), m.p. 65—66°. With Na₂S₂O₄-H₂O-Et₂O or H₂-PtO₂ in light petroleum this gives the derived quinol (V), softens 108°, m.p. 111—112°, which with H₂SO₄ (2 drops) in Ac₂O at room temp. gives Et₂ 6-bromo-2:5-diacetoxy-p-3-xylylmalonate (VI), m.p. 110—111°, and, when shaken in CHCl₃ with 75% H₂SO₄, is cyclised to give Et o-bromo-4-hydroxy-3: 6-dimethylcoumaran-1-one-2-carboxylate (VII) (91-2%), m.p. 117—118-5° [acetate (VIII), m.p. 120—122°]. Boiling (IV) with Zn in AcOH, (VII) in AcOH, or (VIII) in 1: 1 HCl-AcOH gives 5-bromo-4-hydroxy-3: 6-dimethylcoumaran-1-one (IX), m.p. 200—201° (decomp.) [acetate, m.p. 166—168°, obtained from (IX) by Ac₂O-H₂SO₄ at rooth temp. or (VIII) by boiling AcOH]. Me₂SO₄-KOH converts (V) in boiling MeOH into Et v-bromo-4-methoxy-3: 6-dimethylcoumaran-1-one-2-carboxylate (X), m. 96—97° with some 5-bromo-1: 4-dimethory-3: 6-dimethylcoundaran-1-one-3-6-dimethylcoundaran-1-one-3 (X), m.p. 96—97°, with some 5-bromo-1: 4-dimethoxy-3: 6-dimethylbenzfuran-2-carboxylic acid (XI), m.p. 210—211° (bath preheated at 200°) (decomp.), both [(50.8% of (X)] also obtained from (VII) by NaOH-Me₂SO₄ and both converted by boiling 70% AcOH into 5-brono-4-methoxy-3:6-dimethylcoumaran-1-one (XII), m.p. 165—166°, unchanged by boiling KOH-EtOH-H₂O. With KOH-Me₂SO₄ in boiling MeOH, (IX) (81·7% yield) or (XII) (62·7% yield) gives 5-bromo-3:6-dimethoxy-p-2-xylylacetic acid (XIII), m.p. 158—159°. Me₂SO₄-KOH converts (II) in boiling MeOH into 2:5:1:4-C₄H₂Me₂(OMe)₂ (XIV), m.p. 107—108°, which with Br-AcOH gives 3-bromo-2:5-dimethoxy-p-xylene (75·8%), m.p. 57—59°, purified by chromatography and converted by HCl-CH₂O-AcOH at 60—70° into 4-bromo-3:6-dimethoxy-2:5-dimethylbenzyl chloride (77·8%), m.p. 94—98°, which with boiling KCN-EtOH-H₂O gives the cyanide, m.p. 115—116°, hydrolysed by boiling H₂SO₄-AcOH-H₂O to (XIII). With an excess of CHNa(CO₂Et)₂ in pure dioxan, (IV) gives 2:5-dimethyl-76°, not obtained directly from (III) and reduced by aq. Na₂S₂O₄-Et₂O to the quinol (80%), m.p. 151—154°, which, when shaken in CHCl₃ with 75% H₂SO₄, gives 2:6-diketo-3:7-dicarbethoxy-4:8-dimethylbenz[1, 2-b-4:5-b'-]tetrahydrodifuran [bis-1'-ket-2'-carbethoxy-1':2'-dihydrofurano-1':2'-2:3-1'':2'':5:6-p-xylene] (XVI) (62·5%), m.p. 129—131°. In boiling 80% AcOH, (XVI) gives 2:6-diketo-4:8-dimethylbenz[1, 2-b-4:5-b'-]tetrahydrodifuran [bis-1'-ket-2'-carbetothylbenz[1, 2-b-4:5-b'-]tetrahy NaOH-Me2SO4 and both converted by boiling 70% AcOH into 2: 6-diketo-4: 8-dimethylbenz[1,2-b-4:5-b'-]tetrahydrodifuran [bis-1'-keto-1':2'-dihydrofurano-1':2'-2:3-1'':2''-5:6-p-xylene], decomp. 337-340°, also obtained from (XV) by Zn in boiling 70% AcOH and

converted by KOH-Me₂SO₄-MeOH into 2:5-dimethoxy-p-xylylene-3:6-diacetic acid (XVII) (34.6%), m.p. 267—271° (decomp.). HCl-CH₂O converts (XIV) into 2:0-dimethoxy-3:6-di(chloromethyl)-p-xylene (89%), m.p. 165.5—166°, which with NaCN in EtOH-COMe₂ gives the dinitrile, m.p. 207—207.5°, and thence (H₂SO₄-AcOH-H₂O) (XVII). With an excess of CHNa(CO₂Et)₂ in pure dioxan, (I) gives 4-hydroxv-3: 6-dimethylcoumaran-1-one-2-carboxylate 3.8% of (XVI)], which is hydrolysed and decarboxvlated by distillation in steam to give 4-hydroxy-3: 6-dimethylcoumaran-1-one (41.5%), m.p. 214—216°. R. S. C.

Crystalline natural α - and γ -tocopherols. C. D. Robeson (J. Amer. Chem. Soc., 1943, 65, 1660).—Natural α -, m.p. 2-5—3-5° ($E_{1\text{ cm.}}^{*}$, 71 at 292 m μ .) and γ -, m.p. -3° to -2° ($E_{1\text{ cm.}}^{2}$, 93-2 at 298 m μ .), and synthetic α -tocopherol, m.p. \sim 0° ($E_{1\text{ cm.}}^{2}$, 70 at 292 m μ .), are prepared. Synthetic dl-α-tocopherol was amorphous. R. S. C.

Derivatives of 2- and 2:8-substituted dibenzfurans. H. B. Willis (Iowa State Coll. J. Sci., 1943, 18, 98-101).—Dibenzfuran derivatives are discussed. New m.p. are recorded for 2-benzoyldibenzfuran (135—136°) and its oxime (182—183°). The following are stated to be new but no analyses are given: di-(2-, m.p. 201—202° and di-(3-dibenzfurvl), m.p. 245—246°: dibenzfuran-2-carboxyldiethylamide, m.p. 77—78°, and 4-carboxyldimethylamide, m.p. 116.5°, 2-benzoyldibenzfuran-x-carboxylic acid, m.p. 265—266° 116·5°, 2-benzoyldibenzfuran-x-carboxylic acid, m.p. 265—266° (Me ester, m.p. 189—190°), 3-nitro-2: 8-diamino-, m.p. 210—213° (Ac₂ derivative, m.p. 322—324°), -2-β-benzamidoethyl-, m.p. 183·5—183·9°, 3-sulphanilamido- (II), m.p. 245° (Ac derivative, m.p. 223—224°), 4-sulphanilamido- (II), m.p. 195° (Ac derivative, m.p. 218°), 1: 9(?)-bisbenzeneazo-2: 8-dihydroxy-dibenzfuran, m.p. 155—156°; Et₂ 4-, m.p. 75—76°, and Et₂ 3-aminodibenzfuran-N-ethylmalonate, m.p. 99—100°; 2-acetoxy-1-dibenzfurancarboxylic acid, m.p. 151—152°. (I) and (II) are too insol. to be tested pharmacologically.

F. R. G.

Santonin series. I. Two new desmotroposantonins and two new desmotroposantanous acids. H. Minlon, C. P. Lo, and L. J. Y. Chu (J. Amer. Chem. Soc., 1943, 65, 1780—1781).—Santonin with a Chu (J. Amer. Chem. Soc., 1943, 65, 1780—1781).—Santonin with a drop of H_2SO_4 in cold or warm Λc_2O gives l-desmotroposantonin ($\sim 100\%$), m.p. $194-195^\circ$. d-180Desmotroposantonin in dil. H_2SO_4 at 100° gives l-desmotroposantonin (I), m.p. $260-261^\circ$, $[a]_D^0 - 106\cdot 2^\circ$, which with the d-isomeride gives the dl-compound (II), m.p. $231-232^\circ$ (acetate, m.p. $182-183^\circ$). Zn in dil. AcOH reduces (I) to d-desmotroposantanous acid, m.p. $175-176^\circ$, $[a]^{21}+54\cdot 0^\circ$, which with the l- gives the dl-acid, m.p. $180-181^\circ$, also obtained by reducing (II). Alkali-fusion converts (I) into the low-melting l-desmotroposantonin. Nomenclature of the series is revised.

Halogenated m-dioxans.—See B., 1944, II, 6.

Synthesis of a tetrahy hiophen with substituted amino-groups in the 2- and 5-positions. G. B. Brown and G. W. Kilmer (J. Amer. The 2- and 3-positions. G. B. Brown and G. W. Klimer (J. Amer. Chem. Soc., 1943, 65, 1674—1675).—cis-Tetrahydrothiophen-2: 5-dicarboxylic acid [prep. from meso-(CH₂·CHBr·CO₂H)₂], sinters 135°, m.p. 141—143° (lit. 144—145°), gives the Et₂ ester, b.p. 157°/10 mm., converted by N₂H₄,H₂O in EtOH at ~70° into the dihydrazide (23%), m.p. 208—209°, which with NaNO₂-H₂O-HCl-Et₂O at 0° and then abs. EtOH at ~50° to the b.p. gives 2: 5-dicarbethoxyamino)tetrahydrothiophen (53%), m.p. 152—154°. In (carbethoxyamino)tetrahydrothiophen (53%), m.p. $152-154^{\circ}$. In boiling N-HCl it gives much H₂S and in boiling 5% Ba(OH)₂ or NaOH gives 0-8 mol. of NH₃ in 30 min.; with HCl-EtOH-H₂O it gives (CH₂·CHO)₂, isolated as di-p-nitrophenylhydrazone. R. S. C.

Relative reactivities of organometallic compounds. LI. lation of thianthren and dibenzo-p-dioxin. H. Gilman and C. G. Stuckwisch (J. Amer. Chem. Soc., 1943, 65, 1461—1464; cf. A., 1943, II, 293).—Thianthren (I) with LiBua (improved prep.) in Et₂O Stuckwisch (f. Amer. Chem. Soc., 1943, 65, 1461—1464; cf. A., 1943, II, 293).—Thianthren (I) with LiBu^a (improved prep.) in Et₂O and then solid CO₂ etc. gives thianthren-1-carboxylic acid, m.p. 217—218° [by decarboxylation gives (I)]. o-C₈H₄Br·SK with PhI and Cu-bronze in boiling xylene gives o-C₅H₄Br·SFh (65%), b.p. 203°/6 mm., converted by S and AlCl₃ into 1-bromothianthren (25%), m.p. 145°, which with LiBu^a etc. gives (I) (proof of structure). With LiBu^a and then NH₂-OMe-Et₂O, (I) gives 1-thianthrenylamine (II), m.p. 139° [hydrochloride, m.p. 231° (decomp.)]. which yields the N⁴-acetylsulphanilyl, m.p. 154°, and thence the sulphanilyl derivative, decomp. >120°. 2-Aminothianthren yields the N⁴-acetylsulphanilyl, m.p. 163°, and sulphanilyl derivative, decomp. >125°. 4-N⁴-Acetylsulphanilyl-, m.p. 192°, amd 4-sulphanilyl-amidophenox-thionin, m.p. 168°, are also prepared. No BuSH, Bu₂S, or Bu₂S, is obtained from (I) and LiBu^a if S is entirely removed from the (I), e.g., by conc. NaOH (cf. A., 1939, II, 131; 1941, II, 54). Dibenzo-p-dioxin with LiBu^a-Et₂O gives, after carboxylation, dicarboxylic acids, m.p. 297—298° (20%; Me₂ ester, m.p. 142—143°) and >335° (7%; Ne₂ ester, m.p. 202—204°); LiMe leads to dibenzo-p-dioxin-1-carboxylic acid (10%), m.p. 210° (Me ester, m.p. 86°). Me 3-bromosalicylate, m.p. 62°, could not be converted into dibenzo-p-dioxin-1: 6-dicarboxylic acid. dioxin-1: 6-dicarboxylic acid. R. S. C.

Heteropolar (XXXVI), polyarylated [compounds]. XII. Action of nitrosoaryl compounds on cyclones. Preparation of pentaphenylpyrrole. W. Dilthey, G. Hurtig, and H. Passing (J. pr. Chem., 1940, [ii], 156, 27—37).—Tetracyclone [2:3:4:5-tetraphenylcyclo-

pentadienone] (I) reacts similarly to, but less vigorously than, phencyclone [2:5-diphenyl-3:4-2':2"-diphenylenecyclopentadienpnencycione | z : o-cipnenyi-3 : 4-2 : 2''-dipnenylenecyclopentadienone] (II) (A., 1939, II, 326). p-NO-C₈H₄·NMe₂ and (I) in warm (not cold) C₈H₅N give 3 : 4 : 5 : 6-tetraphenyl-2-p-dimethylaminophenyliso-oxazine (III) (81—83%), m.p. 212—213° [colourless monoperchlorate, m.p. 239—240° (decomp.); picrate, m.p. 167—169° (decomp.); no reaction with MgMeI], and CO (83%). cis-(CPhBz.)₂ and p-NH₂-C₈H₄·NMe₂.HCl in boiling C₈H₈N-N₂ give (III) and impure reaction with MgMeI], and CO (83%). cis-(CPhBz')2 and p-NH₂·C₆H₄·NMe₂.HCl in boiling C₅H₅N-N₂ give (III) and impure 2:3:4:5-tetraphenyl-1-p-dimethylaminopyrrole, m.p. 270—273°. PhNO and (II), alone at 70°, or exothermally in C₅H₅N, give (i) CO (61·3%) and 9:10-dibenzoylphenanthrenemonoanil (IV) (57—59%), m.p. 217—218° [perchlorate, m.p. 297—298° (decomp.); picrate, m.p. 227° (decomp.)], and (ii) CO₂ (25·2%) and 1:2:5-triphenyl-3:4-diphenylenepyrrole (V) (23—25%), m.p. 351° (no salts or reaction with MgMeI). 2:5-Diphenyl-3:4-diphenylenefuran, NH₂Ph, HCl, and Al₂O₃ at 400° give (V). 50—70% of (V) is obtained by boiling (II) in PhNO₂-N₂. C₅H₅N-C₅H₅N, HCl or AcOH hydrolyses (IV) to 9:10-dibenzoylphenanthrene (VI), so that condensation of (VI) with NH₂Ph is impossible. Dissolution of (IV) in C₅H₅N and addition of aq. N₂H₄ gives the azine, m.p. 335—336°, of (VI). H₂O₂ converts (IV) in warm AcOH or HCO₂H into (VI). H₂S converts (IV) in boiling C₅H₅N into (V). With MgPhBr in Et₂O-PhMe and then aq. NH₄Cl, (IV) gives 9-benzoyl-10-a-hydroxy-benzhydrylphenanthreneanil, m.p. 279—280° (decomp.) [azenium perchlorate, m.p. 342 (decomp.), and picrate m.p. 233—234° (decomp.)]. PhNO and (I) in boiling C₅H₅N-N₂ give 1:2 CO₃-CO and a mixture including 1:2:3:4:5-pentaphenylpyrole, m.p. 282° (no salts), also obtained (m.p. 283°) from (I) and boiling PhNO₂ or tetraphenylfuran (VII), NH₂Ph, HCl, and Al₂O₃ at 400°. (VII) does not react with p-NH₂·C₆H₄·NMc₂·HCl.

Attempts to find new antimalarials. XVIII. D. C. Ouin and

Attempts to find new antimalarials. XVIII. D. C. Quin and (Sir) R. Robinson. XIX. W. L. Glen and (Sir) R. Robinson. XX. (Miss) J. Crum and (Sir) R. Robinson (J.C.S., 1943, 555—556, 557—561, 561—565).—XVIII. Condensation of 8-amino-6-methoxy-in-like (T) with J. C. V. (CO.) MICH J. Pr. given 8.8 a bill clinicity. 201—501, 501—503).—X VIII. Condensation of 8-amino-6-methoxy-quinoline (I) with o-C₆H₄(CO)₂N·[CH₂]₂·Br gives 8-β-phthalimido-ethyl-6-methoxyquinoline, m.p. 153—155°. OPh·[CH₂]₃·NH₂ and o-C₆H₄(CO)₂N·[CH₂]₃·Br in dioxan afford phthalo-γ-(γ'-phenoxy-propylamino)propylimide hydrobromide, m.p. 184°, which with HBr yields the phthalo-γ-(γ'-bromo)-compound, m.p. 195°. This salt with (I) gives 8-x-phthalimido-paphylan amino-paphylanino 6 methoxy (I) gives 8-γ-phthalimidopropyl-γ-aminopropylamino-6-methoxy-quinoline dihydrobromide, m.p. 222—223°, which with N₂H₄ yields 8-y-aminopropyl-y-aminopropylamino-6-methoxyquinoline trihydro-chloride, almost devoid of antimalarial activity; the latter was chloride, almost devoid of antimalarial activity; the latter was thought to be the most probable structure for R.63 (cf. Robinson, et al., A., 1934, 1368). 1:2:4-C₆H₃Cl(NO₂)₂ and (CH₂·NH₂)₂ in EtOH afford 2:4-dinitro- β -aminoethylaniline, m.p. 54° [hydrochloride, m.p. 250° (decomp.)], which with OPh·[CH₂]₃·Br and K_2 CO₂ in EtOAc forms 2:4-dinitro-N- γ -phenoxypropyl- β -aminoethylaniline hydrochloride, m.p. 114°. 8- γ -Phthalimidopropyl-mine for the terminal control of the amino-6-methoxyquinoline (II) and o-C₆H₄(CO)₄N·[CH_{2]a}·Br give a mixture, from which is separated, as the hydrobromide, 8-di-yphthalimidopropylamino-6-methoxyquinoline, m.p. 166°, which with N₂H₄ yields 8-bis-γ-aminopropylamino-6-methoxyquinoline trihydro-chloride, a weak antimalarial. 5-Chloro-8-amino-6-methoxyquinoline, m.p. 154° (lit. 150—152°), with Cl·[CH₂]₂·NEt₂,HCl affords υ-chloro-8-β-diethylaminoethylamino-6-methoxyquioline, m.p. 76°, which has weak antimalarial properties. 2:5-Dichloro-7-methoxy-indicated the statement of the s acridine with 8-y-aminopropylamino-6-methoxyquinoline (III) and acridine with 8-y-aminopropylamino-b-methoxyquinoline (III) and PhOH gives 2-chloro-b-(6'-methoxyquinolyl-8'-y-aminopropylamino)-7-methoxyacridine, m.p. 114° [dihydrochloride, m.p. 223° (decomp.)], and with (II), 2-chloro-5-y-phthalimidopropylamino-(N-6'-methoxy-8'-quinolyl)-7-methoxyacridine, m.p. 253° (decomp.), is obtained. XIX. New preps. of R.63 have been made, and the high antimalarial activity is confirmed. Fractionation of the dimeconate (+2H₂O), decomp. ~150—160° (corresponding tartrate), has afforded no specimen of higher activity and in some cases a reduction of

no specimen of higher activity and in some cases a reduction of activity has occurred in all fractions without traceable loss of material. No light has been shed on the nature of R.63 by the synthesis of various substances that might have been produced in the formation reaction. (III) forms a dimeconate (+H₂O), m.p. 165—166° (decomp.). Br·[CH₂]₁₀·Br, o·C₅H₄(CO)₂NH, and K₂CO₃ give phthalo-w-bromodecylimide (IV), m.p. 57—58°, which with (I) affords 8-w-phthalimidodecylamino-6-methoxyquinoline, m.p. 83-84° [hydrochloride, m.p. 151-153° (decomp.)], converted by N_2H_4 into the 8- ω -NH₄-compound, isolated as the dihydrochloride, m.p. 172° (R.95). This base with (IV) yields 8- ω -aminodecyl- ω -aminodecylamino-6-methoxyquinoline, isolated as the meconate (weak antimalarial). (III) and (IV) heated together, followed by treatment malarial). (III) and (IV) heated together, followed by treatment with N₂H₄, give 8-ω-aminodecyl-γ-aminopropylamino-6-methoxy-quinoline, isolated as the meconate, m.p. 160—164°. (III) with Cl·[CH₂]₁₁·NEt₂,HCl gives a substance (meconate, R.97, m.p. ~155°, a potent antimalarial), the salts of which could not be cryst. CHEtCl·[CH₂]₂·NEt₂,HCl and (III) condense to a substance (meconate, R.113, decomp. 160—165°, a potent, non-toxic, antimalarial), whilst a similar substance [meconate, R.103, m.p. 150—155° (decomp.)] is obtained from (III) and CHMeBr·[CH₂]₃·NEt₂,HBr. p-NHAc·C₆H₄·SO₂Cl and (III) afford 8-γ-p-acetamidobenzenesulphonamidoprobylamino-6-methoxyguinoline, m.p. 189°.

amidopropylamino-6-methoxyquinoline, m.p. 189°.

NEt₂·[CH₂]₁₁·Cl,HCl with 5-chloro-8-amino-6-methoxyquinoline gives 5-chloro-8- ω -diethylaminoundecylamino-6-methoxyquinoline hydrochloride, m.p. 126—128°. Br·[CH₂]₁₀·CO₂Et and (I) lead to 8- ω -carbethoxydecylamino-6-methoxyquinoline, m.p. 43—47°, successively converted into the acid, m.p. 110—111°, and amide, m.p. 113—114°. Br·[CH₂]₁₁·CN and (I) give 8- ω -cyanodecylamino-6-methoxyquinoline, m.p. 84—85°, which is converted through the iminoether hydrochloride with EtOH-NH. into the 8- ω -guanyl derivative, isolated as the hydrochloride (+H₂O), m.p. 76—77°. A similar prep. from 8-aminoquinoline affords 8- ω -cyano-, m.p. 60—61°, and guanyl-decylaminoquinoline, isolated as the hydrochloride, m.p. 92—93°. The appropriate reagents yield 8- γ -cyano-, m.p. 52—53°, and guanyl-propylaminoquinoline (hydrochloride, m.p. 152—154°). 6-Acetamidoquinaldine and o-C₈H₄(CO)₂N·[CH₂]₃·Br give ψ -6-acetamido-2-methyl-1- γ -phthalimidopropylquinolinium bromide, m.p. 240—245° (decomp.), which with p-NMc₂·C₈H₄·CHO affords ψ -5-acetamido-2-p-dimethylaminostyryl-1- γ -phthalimidopropylquinolinium bromide, converted by HBr into ψ -6-amino-2-p-dimethylaminostyryl-1- γ -pathaliminopropylquinolinium bromide (no antimalarial properties, but is antiseptic and trypanocidal).

XX. A method for including sec. amine end groups in the basic side-chain in antimalarials of the plasmoquin series has been devised by alkylation of (I) by means of a chlorohydrin, replacement of OH in the product by Cl, and interaction of the chloroalkylamino-com-

compound with primary bases. The general formula of the bases is (V) and in the substances described x = 3. Interesting variations of antimalarial activity of the compounds are recorded. Trimethylenechlorohydrin, (I), and compound with SOCl₂ affords the -Cl-compound (VI), b.p. 115°/0·0001 mm., and some bis-(8-γ-chloropropylamino-6-methoxyquinoline, m.p. 201°]. The latter compound with NHEt. forms the bis-8-γ-NEt-derivative (R.118), m.p. 85° [hydrochloride (+3H₂O), m.p. 200-201°]. The latter compound with NHEt. forms the bis-8-γ-NEt-derivative (R.118), m.p. 85° [hydrochloride (+H₂O), m.p. 150° (decomp.)]. Condensation of (VI) with the appropriate amine affords γ-γ-methyl- (R.105), b.p. 166° (0-5 mm. (H oxalate, m.p. 188°; hydrochloride, m.p. 218°), -ethyl- (R.106) [H oxalate, m.p. 189°; hydrochloride (+H₂O), m.p. 206°], -propyl- (R.119) (hydrochloride, m.p. 136°; hydrochloride, m.p. 173°), -isopropyl- (R.108) (H oxalate (+H₂O), m.p. 180°], -isobutyl- (R.110) [H oxalate (+H₂O), m.p. 180°], -isobutyl- (R.110) [H oxalate (+H₂O), m.p. 180°], -isobutyl- (R.110) [H oxalate (+H₂O), m.p. 180°], -isobutyl- (R.114) (H oxalate, m.p. 181°; hydrochloride, m.p. 178°), -henzyl- (R.114) (H oxalate, m.p. 181°; hydrochloride, m.p. 178°), -henzyl- (R.114) (H oxalate, m.p. 181°; hydrochloride, m.p. 110—112°), -benzyl- (R.117) [H oxalate, m.p. 230°; hydrochloride, m.p. 110—112°), -benzyl- (R.117) [H oxalate, m.p. 250°; hydrochloride, m.p. 178°], hydrochloride, m.p. 208°), and -methylpropyl-aminopropylamino-6-methoxyquinoline (R.123) [meconate (+H₂O), m.p. 180°]; hydrochloride, m.p. 180°], shydrochloride, m.p. 180°], hydrochloride, m.p. 180°],

Oxidations with selenium dioxide. W. Borsche and H. Hartmann (Ber., 1940, 73. [B], 839—842; cf. A., 1938, II, 202).—2-Methylpyridine is oxidised by SeO₂ in boiling EtOAc to small amounts of pyridine-2-aldehyde (phenylhydrazone, m.p. 178—179°; 2:4-dinitro phenylhydrazone, m.p. 239—240°) and some pyridine-2-carboxylic acid. Under similar conditions 1:2:3:4-tetrahydroacridine is partly oxidised to 4-keto-1:2:3:4-tetrahydroacridine [dinitrophenylhydrazone, m.p. 273—274° (decomp.), and its hydrochloride, decomp. 255°] but mainly dehydrogenated to acridine. Similarly the 2-Me derivative is in part oxidised to 4-keto-2-methyl-1:2:3:4-tetrahydroacridine (dinitrophenylhydrazone, decomp. 257—258°) but mainly dehydrogenated. On the other hand in so far as it reacts 7-aza-5:6-benzhydrindene is converted into the -hydrindone (dinitrophenylhydrazone, darkens and decomp. >300°). Dimethyldihydroresorcinol and SeO₂ in boiling EtOAc give anhydrodimethone

r-aza-5: 0-benznydrindene is converted into the -hydrindone (ainitrophenylhydrazone, darkens and decomp. >300°). Dimethyldihydroresorcinol and SeO₂ in boiling EtOAc give anhydrodimethone CH₂—CO·C·ScO·C·CO—CH₃ give anhydrodimethone selenium oxide, CMc₂·CH₂·C·O—C·CH₂·CMc₂ [bisdinitrophenylhydrazone, m.p. 281—282° (cf. Stamm et al., A., 1933, 1314)]. Under similar conditions β -C₁₀H₃·OH affords dihydroxydinaphthyl selenide, m.p. 195—196°, which gives a dark green colour with FeCl₃, dissolves unchanged in NaOH, couples with PhN₂Cl, and yields a dibenzoale, m.p. 213—214°.

Relative reactivities of organo-metallic compounds. LIII. Dimetallation of 9-phenylcarbazole. H. Gilman and C. G. Stuckwisch (J. Amer. Chem. Soc., 1943, 65, 1729—1733).—9-Phenylcarbazole (I) (0.082) with LiBua (0.25 mol.) in Et₂O and then CO₂ gives 9-phenylcarbazole-2'-carboxylic (II) and -2':6'-dicarboxylic acid (III) (25%), m.p. 273—274° [by decarboxylation gives 87% of (II) (cf. A., 1942, II, 122)]. CH₂N₂ gives the Me₂ ester, m.p. 156—157°, of (III). PCl₅ and then SnCl₄ in xylene at 0° converts (III) into benz[ij]carbazolo[1:9:8-cdef]quinolizine-7:11-dione (IV), m.p. 228—230°, which gives a mono-oxime, m.p. 262—264°, but does not condense with l-menthyl Naminocarbamate. Carbazole-1-carboxylic acid. m.p.

benz[i]]carbazolo[1: 9: 8-cdef]quinolizine-7: 11-dione (IV), m.p. 228—230°, which gives a mono-oxime, m.p. 262—264°, but does not condense with l-menthyl N-aminocarbamate. Carbazole-1-carboxylic acid, m.p. 275—276°, is obtained from Mg 9-carbazolyl bromide and CO₂ at >1 atm. in 18% yield; its Me ester, m.p. 98—100°, with o-C₈H₄I·CO₂Me, K₂CO₃, and Cu-bronze in boiling PhNO₂ and then 30% KOH gives 9-phenylcarbazole-1: 2'-dicarboxylic acid, m.p. 231—232° (Me, ester, m.p. 144—145°), eyelised as

and Cu-bronze in boiling PhNO₂ and then 30% KOH gives 9-phenylcarbazole-1: 2'-dicarboxylic acid, m.p. 231—232° (Me₂ ester, m.p. 144—145°), cyclised as above into (IV) (proof of structure). Similar condensations gives 9-phenylcarbazole-2: 2'-, m.p. 266—267° (Me₂ ester, m.p. 146—147°), -3: 2'-, m.p. 246—247° (Me₂ ester, m.p. 143—144°), and -2': 4'-dicarboxylic acid, m.p. 278—280° (Me₄ ester, m.p. 160—161°). 1: 3: 2-C₆H₃Mc₂I (V) and boiling aq. KMnO₄ give 2: 1: 3-C₆H₃I(CO₂H)₂, m.p. 260° (decomp.) (lit. 205—220°, 236°). Condensation of 2: 1: 3-C₆H₃I(CO₂H)₂ and carbazole (VI) and then hydrolysis gives only 70% of [C₆H₃(CO₂H)₂-2: 6]₂, m.p. 390° (decomp.). No products are obtained by condensing (VI) with (V). The Li₂ derivative of (I) with Me₂SO₄ in Et₂O gives an inseparable mixture. Conc. HNO₃ converts (III) in AcOH at 100° into the 3: 6-(NO₂)₂-derivative, m.p. >350°, which by decarboxylation gives 3: 6-dinitro-9-phenylcarbazole, m.p. 298°, obtained from 3: 6-dinitrocarbazole by PhI; HNO₃ in AcOH at room temp. gives 3-nitro-9-phenylcarbazole-2': 6'-dicarboxylic acid, m.p. 282—284°, which by decarboxylation gives 3-nitro-9-phenylcarbazole and resists cyclisation. R. S. C.

Hydrolysis of substituted barbituric acids under pressure. H. Ruhkopf (Ber., 1940, 78, [B], 938—940).—H₂O at 5 atm. hydrolyses substituted barbituric acids to 1:1 mixtures of acyl-urcides and -amides (+CO₂ + NH₃), but at 10 atm. the amide is the sole product. At 5 atm. salts of strong acids favour formation of urcide, those of weak acids lead to mainly urcide, and alkalis cause further hydrolysis to the acid. E.g., 5:5-diethylbarbituric acid in H₂O at 5 atm. gives CHEt₃·CO·NH·CO·NH₂ (I) (47%) and CHEt₃·CO·NH₂ (II) (~40%), but in aq. NaCl at 3 atm. gives 80% of (I). 5:5-Diallylbarbituric acid in H₂O at 10 atm. gives 95% of (CH₂:CH·CH₂)₂CH·CO·NH₂. In aq. Na₂SO₃ at 5 atm. 5-phenyl-5-cthylbarbituric acid gives 80% of CHPhEt·CO·NH₂. 1-Methyl-5:5-diethylbarbituric acid in H₂O at 10 atm. gives (II), CO₂, and NH-Me.

Heterocyclic nitrogen compounds. Stereochemistry of tervalent nitrogen. H. H. Hatt and (Miss) E. F. H. Stevenson (J. Amer. Chem. Soc., 1943, 65, 1785—1786).—Known compounds having the ring-system of 1:2-trimethylenepyrazolidine (Buhle et al., A., 1943, II, 207) are listed.

R. S. C.

Pyrazole compounds. IV. Acylation of 3-phenyl- and 3-anilino-5-pyrazolone. A. Weissberger and H. D. Porter (J. Amer. Chem. Soc., 1943, 65, 1495—1502; cf. A., 1943, II, 280).—3-Phenyl-5-pyrazolone with Ac₂O or Ac₂O-AcOH at 100° gives 62—66% of the 1-Ac derivative (II), m.p. 127—128° (lit. 121°), and ≯20% of 5-acetoxy-3-phenylpyrazole (III), m.p. 150—152° (cf. Curtius, A., 1895, i, 246; von Rothenburg, ibid., 686). NaOH hydrolyses (II) and, more readily, (III) to (I). (II), but not (III), is sol. in Na₂CO₃. (II) gives a magenta dye with p-NO·C₀H₄·NMe₂ (IV) or in the film-strip test with p-NH₂·C₀H₄·NMe₂, (Fischer, Phot. Korr., 1914, 51, 19). (II) and (III) are equilibrated in boiling 66% AcOH, but CջH₂N converts (II) irreversibly into (III); thus (III) is best prepared by treating (I) in CջH₂N with Ac₂O at 100° or AcCl at room temp. Further treatment of (I), (II), or (III) with Ac₂O or of (III) with Accl—CջH₂N gives 1-acetyl-5-acetoxy-3-phenylpyrazole (V), m.p. 84° [previously (loc. cit.) considered to be the 1:2-diacetoxypyrazolone], insol. in Na₂CO₃ but slowly hydrolysed to (I) by NaOH, to (II) by boiling piperidine–EtOH, and to (III) by hot 66% AcOH. Ac₂O and (I) give also a small amount of 1-acetyl-3-acetoxy-5-phenyl-pyrazole [? 1:2-diacetyl-3-phenyl-o-pyrazolone], m.p. 75—76°, insol. in Na₂CO₃, which is also obtained from (V) by Ac₂O-AcOH, is hydrolysed by NaOH to (I) and by 66% AcOH to (III), and with hot piperidine–EtOH gives 3-hydroxy-1-acetyl-5-phenylpyrazole, m.p. 144—146°, sol. in Na₂CO₃, hydrolysed to (I) by NaOH, and giving no dye by either test. With BzCl—CջH₂N at 100°, (I) gives 5-benzoyloxy-3-phenylpyrazole (VII), m.p. 170—171°, insol. in NaOH, reconverted into (I) by piperidine–EtOH and with Ac₂O at 100° or with AcCl—CջH₂N giving 1-acetyl-5-benzoyloxy-3-phenylpyrazole, m.p. 108—109°, which is hydrolysed to (I) by piperidine-EtOH. With BzCl in CջH₃N, (VI) gives 1-benzoyl-5-benzoyloxy-3-phenylpyrazole (VIII), m.p. 117—118°, but in PhMe some 1-benzoyl-3-benzoyloxy-5-phenylpyrazole (VIII), m.p. 181—1

treatment with piperidine gives erratic results; HCl in dioxan gives (VI) from (VII) or (VIII). With Ac₂O at 100° (5 min.) or Ac₂O (1 mol.)-C₅H₅N, 3-anilino-5-pyrazolone (IX) gives 3-anilino-1-acetyl-5-pyrazolone (X), m.p. $207-209^{\circ}$ (decomp.), sol. in Na₂CO₃, hydrolysed to (IX) by NaOH, and giving with (IV) a magenta dye containing Ac and formed also in the film-strip test. With Ac₂O at 100° (30 min.), (IX) or (X) gives 3-anilino-1-acetyl-5-acetoxy-pyrazole (XI), m.p. 131° , insol. in Na₂CO₃ [converted by piperidine (1 mol.) or aq. AcOH into (IX)], and a small amount of 5-anilino-1-acetyl-3-acetoxy-pyrazole (XII), m.p. $108-109^{\circ}$, insol. in Na₂CO₃, hydrolysed by NaOH to (IX) and by piperidine to 3-hydroxy-5-anilino-1-acetyl-pyrazole, m.p. $203-205^{\circ}$ (decomp.), sol. in Na₂CO₃, giving (IX) by NaOH, but yielding negative dye tests. Boiling AcOH causes transformation of (XI) into (XII), but (X) is unaffected. (XII) is best obtained by boiling (IX) in Ac₂O. When heated with Bz₂O or BzCl (2 mols.) + H₂O (1 mol.) in C₅H₅N, (IX) gives 3-anilino-5-benzoyloxy-pyrazole, m.p. $148-150^{\circ}$, insol. in Na₂CO₃ and hydrolysed to (IX) by piperidine; heating with BzCl-C₅H₅N in absence of H₂O gives 3-anilino-1-benzoyl-5-pyrazolone, m.p. $198-200^{\circ}$ (decomp.), relatively stable to NaOH, sol. in Na₂CO₃, and giving positive dye tests; BzCl in dioxan at 100° yields 3-anilino-1-benzoyl-5-benzoyl-oxypyrazole, m.p. $132-134^{\circ}$, insol. in Na₂CO₃. R. S. C.

Synthesis of purine nucleosides. III. 4-Glycosidaminopyrimidines. J. Baddeley, B. Lythgoe, and A. R. Todd. IV. 4:6-Diaminopyrimidine. New synthesis of pyrimidine derivatives. G. W. Kenner, B. Lythgoe, A. R. Todd, and A. Topham (J.C.S., 1943, 571—574, 574—575).—III. Direct glycosidisation of 4-aminopyrimidines is complicated since such compounds may behave as derivatives of 4-iminodihydropyrimidine. d-Xylose, 4:6-diamino-2-methylthiopyrimidine (I), and NH₂Cl in EtOH give 6-amino-4-dxylosidamino-2-methylthiopyrimidine (II), m.p. 190—192° (decomp.), hydrolysed to (I), isolated as the picrate, m.p. 212° (decomp.). Ac₂O, AcCl, and (II) in C₅H₅N afford 6-acetamido-4-triacetyl-d-xylosidamino-2-methylthiopyrimidine, m.p. 226°, [a]¹⁶/₁₀ +5'' o in C₅H₅N, which with MeOH-NaOMe yields the 6-acetamido-4-d-compound, m.p. 95—100°, or 192—193° (hydrated), [a]²⁰/₁₀ +123° in C₅H₅N. Acetylation with EtOAc-AcCl of (I) affords the hydrochloride (+H₂O), m.p. 213—214°, of the Ac derivative. 6-Amino-4-d-mannosidamino-2-methylthiopyrimidine (+1·5H₂O), m.p. 213—214° (decomp.), similarly prepared, gives rise to 6-acetamido-4-tetra-acetyl-d- (+3H₅O), m.p. 140—150°, [a]²⁰/₁₀ -100° in C₅H₅N, and -4-d-mannisidamino-2-methylthiopyrimidine, m.p. 242—243° (decomp.), [a]⁰/₁₀ -55° in C₅H₅N. 4:6-Diamino-2-methylpyrimidine, d-xylose, EtOH, and HCl give 6-amino-4-d-xylosidamino-2-methylpyrimidine, m.p. 219° (decomp.), [a]₁ +158° in H₂O (constitution proved by hydrolysis).

[a]_D +158° in H₂O (constitution proved by hydrolysis).

IV. 4:6-Dichloropyrimidine, m.p. 67·5°, prepared from the corresponding (OH)₂-compound and POCl₃-NPhMe₂, under pressure at 170° with NH₃-EtOH gives some 4:6-(NH₂)₃-compound (III). Small yields of (III) are also obtained from 4:6-diamino-2-thiolpyrimidine with NaOAc and H₂O₂, and from 6-iodo-4-amino-pyrimidine with NH₃-EtOH at 180-200°. Malondi-iminoether dihydrochloride, obtained from CH₂(CN)₂ and HCl-EtOH, with cold NH₃-EtOH affords malondiamidine dihydrochloride, which with Na-MeOH, followed by HCO₂Et, gives (III).

F. R. S.

Pyrimidines.—See B., 1944, II, 7.

Synthesis and properties of ninhydrin ureide. D. D. Van Slyke and P. B. Hamilton (J. Biol. Chem., 1943, 150, 471—476),—Ninhydrin (I) (1 mol.) and $CO(NH_2)_2$ (II) (1 mol.) combine in boiling $0\cdot1v\cdot H_2SO_4$ to form ninhydrin "ureide" (III), $C_{10}H_{10}O_5N_2$, or after loss of 7-6% H_2O in vac. at 56°, $C_{10}H_8O_4N_2$, m.p. 216—217° (decomp.); there may be anhydride formation or H_2O of crystallisation. In boiling H_2O , at pH 2, (III) undergoes partial degradation or hydrolysis, with loss of CO_2 and possible decomp. to (I) + (II). (I) has a retarding effect (noted after 1 min.) on evolution of CO_2 from (II) at 100° . From the velocity of the combination of (I) and (II), conditions are defined which enable (II) to be removed from solution nearly quantitatively by formation of (III). A. T. P.

Formation and properties of azlactones obtained from vanillin substitution products. L. C. Raiford and C. H. Buurman (J. Org. Chem., 1943, 8, 466—472).—The following 2-phenyl-4-3'-methoxy-4'-acetoxybenzylideneoxazol-5-ones (azlactones) are obtained by heating the requisite substituted vanillin (I) with hippuric acid (II) and NaOAc in Ac₂O at 100°: 5'-chloro-, m.p. 190·5—191·5°; 6'-chloro-, m.p. 205—206°; 5': 6'-dichloro-, m.p. 239—240°; 5'-bromo-, m.p. 191—191·5°; 6'-bromo-, m.p. 211°; 5': 6'-dibromo-, m.p. 265°; 2': 5': 6'-tribromo-, m.p. 190·5—191°; 5'-bromo-4'-methyl-, m.p. 167·5—168·5°; 5'-iodo-, m.p. 180—181°. 2-Bromo-hippuric acid, m.p. 193—194°, similarly affords 2-2'-bromophenyl-4-3'-methoxy-4'-acetoxybenzylideneoxazol-5-one, m.p. 158·5—159·5°, and its 5'-, m.p. 187—188°, and 6'-Br-, m.p. 197—198°, 5: 6-Br₂-, m.p. 225—226°, and 2:5:6-Br₃-, m.p. 189—191°, -derivatives. Aceturic acid yields the following 4-3':4-dimethoxybenzylidene-2-methylpyrazol-5-ones by condensation with the appropriate vanillin derivative: 5'-chloro-, m.p. 203—204°; 5'-chloro-4'-methyl-, m.p. 169—170°; 5'-bromo-, m.p. 206—207°; o'-bromo-4'-methyl-, m.p. 169—170°; 5'-bromo-, m.p. 206—207°; o'-bromo-4'-methyl-, m.p. 169—163°; 6'-bromo-, m.p. 119—120°; 5'-iodo-, m.p. 196—197°.

Cautious heating of the azlactone (III) from (I) and (II) with ~3% KOH gives a-benzamidoferulic (a-benzamido-4-hydroxy-3-methoxy-cinnamic) acid, m.p. 208·5—209·5°, reconverted into (III) by Ac₂O at 100°. The following substituted 4-hydroxy-3-methoxycinnamic acids are obtained analogously: 5-chloro-a-acetamido-, m.p. 212—213°; 4-chloro-a-benzamido-, m.p. 227—228°; o-bromo-a-acetamido-, m.p. 203—204°; 5-bromo-a-benzamido-, m.p. 229—230°; 5-iodo-a-acetamido-, m.p. 217—218°; 5-iodo-a-benzamido-, m.p. 227—228°. a-Acetamido- and 5-bromo-a-benzamido-3: 4-dimethoxycinnamic acids have m.p. 198—199° and 201—202° respectively. Et, m.p. 196—197°, and Me, m.p. 205—206°, 5-bromo-a-benzamido-4-hydroxy-3-methoxycinnamate and Me 5-bromo-a-benzamido-3: 4-dimethoxycinnamate, m.p. 119—121°, have been prepared. The azlactones are converted by boiling 6N-NaOH into NH₃, BzOH, and the following 4-hydroxy-3-methoxyphenylpyruvic acids: 5-chloro-, m.p. 228-28·5° (oxime, m.p. 158—159°); 5-bromo-, m.p. 237·5—239°/(decomp.) [oxime, m.p. 169° (decomp.); semicarbazone, m.p. 195—196°; diacetate, m.p. 193—194°]; 5-iodo-, m.p. 234—235° (oxime, m.p. 170—171°). 5-Bromo-3: 4-dimethoxyphenylpyruvic acid, m.p. 175—177°, gives a Me ether, m.p. 162—163°.

Hydroindazolone derivatives; search for new analgesics. C. W. Picard and D. E. Seymour (Quart. J. Pharm., 1943, 16, 264—269; cf. A., 1944, III, Mar.).—A simplified method for prep. of 1-phenyl-tetrahydroindazolone (I) consists in condensing Et cyclohexanone-2-carboxylate (II) with a salt of NHPh·NH₂ instead of the free base; similarly condensation of (II) with N₂H₄,H₂SO₄ in H₂O yields tetrahydroindazolone. Condensation of (I) with the appropriate alkyl halide in boiling EtOH-KOH yields 1-phenyl-2-n-, m.p. 65-5°, and -isopropyl-, m.p. 84—85°, -2-n-butyl-, an oil, m.p. 84°, and -isoamyl, an oil, and -2-allyl-tetrahydroindazoline, m.p. 65—67°. (I) with BzCl in C₅H₅N gives the 2-Bz derivative, m.p. 110°. Treatment of 1-phenyl-2-methyltetrahydroindazolone with ClSO₃H and subsequently with NH₃ yields 2-p-sulphonamidophenyl-1-methyltetrahydroindazolone, m.p. 272—273°. 1-p-Acetamidobenzenesulphonyl-2-phenyltetrahydroindazolone has m.p. 190—191°. J. N. A.

Further diacridines and diacridylium salts. K. Gleu and R. Schaarschmidt (Ber., 1940, 73, [B], 909—915).—Acridones (I) are reduced to "diacridines" by methods which must be adapted to the individual cases (Zn and HCl—EtOH are frequently useful) and these are readily oxidised to diacridylium nitrates by boiling dil. HNO₃. Alternatively (I) are treated with Mg+MgI2 in boiling PhOMe; the resulting pinacols are too unstable for isolation and, after removal of the solvent with steam, the diacridylium salts are usually removal of the solvent with steam, the diacridylum salts are usually immediately obtained as the sparingly sol. iodides, which are readily converted into the nitrates and chlorides. The following are described: 10:10'-diethyl' diacridine," m.p. 275°; 10:10'-diethyl-diacridylium H nitrate, C₃₀H₂₆N₂(NO₃)₂,HNO₃,3H₂O; 10:10'-di-phenyl' diacridine," m.p. 342°; 10:10'-di-phenyldiacridylium nitrate and chloride, C₂₈H₂₆N₂Cl₂,2HCl₈H₂O, and the compound, C₂₈H₂₆N₂Cl₂,ZnCl₂,H₂O; 10:10'-dimethyldiacridylium nitrate tetra-and di-hydrate. 10:10'-Diethyl- and -dimethyl-acridylium salts show green luminessence of about the same intensity. The chemishow green luminescence of about the same intensity. The chemiluminescence colour of the 10:10'-Ph2 compounds in very dil. solution is pure blue comparable in shade and intensity with that of 3-aminophthalhydrazide; the fluorescence colour is pure green so that in this instance there is a distinct difference between fluorescence and chemiluminescence. Further, the chemiluminescence colour depends on the concn. whereas the fluorescence colour is not materially affected. The concn. of H2O2 is also significant. It appears therefore that the chemiluminescence phenomenon is more complex than assumed hitherto and that there is no general identity between fluorescence- and chemiluminescence-spectra; the identity sometimes observed is accidental. Diacridines show marked chemiluminescence in org. media in which autoxidation occurs without addition of alkali; it is best observed by addition of EtOH to a diacridine in cyclohexanone.

Pyridazine derivative of cholestanedione.—See A., 1944, II, 52.

ms-Benzacridan derivatives. H. Waldmann and K. G. Hindenburg [with S. Back] (J. pr. Chem., 1940, [ii], 156, 157—168).—1-Anilino-2: 3-benzanthraquinone is converted by AlCl₂ (10 parts) at 150° (bath)/2 hr. or by 75% H₂SO₄ (20 parts) at 180°/8 hr. into 2: 3-benzcæramidonine, m.p. 262°. 1-Amino-2: 3-benzanthraquinone, o-C₄H₄Cl·NO₂, K₂CO₃, Cu(OAc)₂, and Cu powder in boiling PhNO₂ give the 1-o-nitroanilino-, m.p. 283° [less readily obtained from 1-chloro-2: 3-benzanthraquinone (I), o-NO₂·C₄H₄·NH₂, K₂CO₃, and Cu(OAc)₂ in PhNO₂], reduced (EtOH-Na₂S) to the 1-o-amino-anilino-derivative, m.p. 264°, which with NaNO₃ in aq. AcOH at —6° to 0° affords 1-1'-benztriazoly1-2: 3-benzanthraquinone, m.p. 288° [also prepared from (I), benztriazole (II), KOAc, and Cu(OAc)₂ in PhNO₂]; this in boiling NHPh₂ gives 3: 4-phthaloyl-ms-benzacridan, m.p. 289—290°. 1-o-Chloroanilino-2: 3-benzanthraquinone, m.p. 206°, is obtained from (I), o-C₄H₄Cl·NH₂, and NaOAc. 1: 4-Dichloro-2: 3-benzanthraquinone (III), (II), KOAc, and Cu(OAc)₂ in PhNO₂ at 190° (bath) give 1: 4-di-1'-benztriazoly1-2: 3-benzanthraquinone, decomp. 291° (also formed by HNO₂ on the 1: 4-di-o-aminoanilino-derivative), which in boiling NHPh₂ affords 1: 2-

oyl-6: 7-benzo-ms-benzacridan, m.p. $>320^\circ$, and 1: 2-phthaloyl-4:5:8:9-di-2':3'-naphtho-3:10-dihydro-3:10-diazapyrene, m.p. $>400^\circ$, are similarly obtained directly using lin.-naphthotriazole. lin.-Naphthotriazole-4:9-quinone with (I) and (III) in boiling PhNO₂ similarly affords the mono-, m.p. $>370^\circ$, and di-naphthotriazolequinonyl derivative, m.p. $>400^\circ$, respectively, from which N₂ could not be eliminated. 3-Bromobenzanthrone (IV), o-NO₂·C₆H₄·NH₂, KOAc, and Cu(OAc)₂ in boiling PhNO₂ give the 3-o-nitroanilino-, m.p. 266°, reduced (EtOH-Na₂S) to the 3-o-aminoanilino-derivative, m.p. 268°. This with NaNO₂ in aq. AcOH at $>-2^\circ$ affords 3-1'-benztriazolylbenzanthrone, m.p. 306·5° [less readily obtained from (II) and (IV)], which in boiling anthracene gives the carbazole derivative (B), m.p. 348° [cautious oxidation (CrO₃, AcOH) gives anthraquinone-1-carboxylic acid].

Isolation of mononucleotides after hydrolysis of ribonucleic acid by crystalline ribonuclease. H. S. Loring and F. H. Carpenter (J. Biol. Chem., 1943, 150, 381—388).—The NH₄ salt of ribonucleic acid (I) (yeast-nucleic acid is used) in neutral or slightly acid medium is treated with cryst. ribonucleinase (preferable to the term ribonuclease; cf. Kunitz, A., 1941, III, 47) at room temp. at pH 6·3 (decreases to 5·5). Four acids are obtained: guanylic [purified through the dibrucine salt, $+7H_{*}O$, sinters at 210°, decomp. 224° (immersed at 200°), and Na₃ salt, $[a]_{D}^{23} - 57\cdot6^{\circ}$ in aq. NãOH], uridylic [dibrucine salt, $+7H_{*}O$, $[a]_{D}^{24} - 61\cdot6_{D}^{4}$ in $C_{5}H_{5}N$; (NH₄)₂ salt, shrinks at 170—175°, decomp. 183° (immersed at 165°), $[a]_{D} + 20\cdot9^{\circ}$ in $H_{2}O$], cytidylic, decomp. 230°, and adenylic, $+H_{2}O$, decomp. 196°, $[a]_{D}^{24} - 38^{\circ}$ in $H_{2}O$. These four nucleotides are not formed during fractionation processes, as they could not be obtained in experiments in which nucleic acid, in absence of enzyme, is fractionated.

New method for isolation of crystalline adenine nucleotides. M. V. Buell (J. Biol. Chem., 1943, 150, 389—394).—The following reaction is characteristic of adenine mononucleotides and of yeast-nucleic acid (I): addition of solutions containing picrate + Al ions (at pH 2·4) [e.g., Al(OAc)₃ + picric acid] affords (mainly) an Al picrate complex of the nucleotide. The method is used for the isolation of cryst. adenine nucleotide (II). Thus, the K acetate salt of guanine nucleotide is pptd. by 95% EtOH from a neutral solution of (I), previously treated with 0·3-N aq. KOH for 24 hr. at room temp. The filtrate then a fords the Al picrate salt of (II); after dissolution in morpholine and pptn. with COMe₂, the salt is converted by aq. KOH + AcOH (pH 5) into (II), +2H₂O (purified through the Pb salt). Cryst adenylic acid (III) is isolated from beef heart. Enzyme action is inhibited by freezing the muscle, and proteins are removed from an aq. extract by heat-coagulation and picric acid pptn. (III) is obtained from the filtrate as the Hg salt, then pptd. as the Al picrate complex, and purified through the Pb salt.

A. T. P.

Fluorescent irradiation products of thiazole. R. Stampfli (Helv. Physiol. Pharm Acta, 1943, 1, C54—55).—"Vitachrome" is most strongly fluorescent (deep blue) in acid solution. It is heat-stable, lowers surface tension, and is stable to long-wave ultra-violet radiation. Fluorescent substances were obtained from 2-thiol-4:5-dimethylthiazole, 2-thiol-4-methyl-5-acetoxyethylthiazole, Na 2-thiol-4-methylthiazolecarboxylate, and 2-thiol-4-methylthiazole; the last two prioducts show max. fluorescence at alkaline pH. Negative results were obtained with 4-methylthiazole and its nitrate, 2-amino-4-methylthiazolium nitrate, 3-benzyl-4-methyl-5- β -hydroxyethylthiazolium chloride, 3:4-dimethyl-5-hydroxymethylthiazolium chloride, 4-methyl-3-diethylaminoethyl-5-hydroxyethylthiazolium chloride, 4-methyl-benzylthiazolium chloride. A. S.

Conversion of 2-phenyl-4-chloromethylmiazole into 5-chloro-2-phenyl-4-hydroxymethylthiazole. E. H. Huntress and K. Pfister, tert. (J. Amer. Chem. Soc., 1943, 65, 1667—1670).—2-Phenyl-4-chloromethylthiazole (I) [obtained from CO(CH₂Cl)₂ and

PhCS·NH₂ with subsequent hydrolysis by conc. HCl; 71% yield], m.p. 48·2—51·2°, with boiling 0·ln-NaOH or KOAc-AcOH gives 2-phenyl-4-hydroxy- (II), m.p. 66—69°, and 2-phenyl-4-acetoxy-methylthiazole, m.p. 42—43° [also obtained from (II)], respectively. CrO₃-H₂SO₄-H₂O oxidises (II) to 2-phenylthiazole-4-carboxylic acid (22%), m.p. 175—176·5° [acid chloride (III), m.p. 97·7—98·5°; amide, m.p. 143·3—143·8°]. With NaI-COMe₂, (I) gives 2-phenyl-4-iodo-methyl-, m.p. 103·5—104·6°, and with NaCN-EtOH gives 2-phenyl-4-cyanomethyl-thiazole, m.p. 43·1—44·2°, b.p. 147—148°/2 mm. (lit. 180—185°/4—5 mm.), hydrolysed by boiling 6n-HCl to 2-phenyl-4-thiazolylacetic acid, m.p. 88·8—89·8° (lit. 90°) [Na salt; hydrochloride, m.p. 203·1—205·1° (gas) (lit. 206—207°)]. Boiling conc. HNO₃-H₂O (10:24 ml.) converts (I) into 5-chloro-2-phenyl-4-hydroxymethyl-hiazole (57·5%), m.p. 116·5—118° (acetate, m.p. 63·3—64·1°; 3:5-dinitrobenzoate, m.p. 155·1—155·3°), which with CrO₃-H₂SO₄-H₄O gives 5-chloro-2-phenylthiazole-4-carboxylic acid (41·6%), m.p. 198·8—199·3° (gas), also obtained in 21% yield with 2-phenylthiazole-4-carboxylic acid (54%) from (III) by HNO₃-H₂O. 29·2% of BzOH is obtained from (II) by dil. alkaline KMnO₄. M.p. are corr. (block). R. S. C.

Oxidation product of aneurin effective antineuritically. O. Zima and R. R. Williams (Ber., 1940, 73, [B], 941—949).—Triturating aneurin chloride hydrochloride (I) with saturated, aq. K_2CO_3 at room temp. gives the quaternary chloride, $C_{12}H_{17}ON_4ClS$, decomp. when heated. In NaOEt–EtOH, (I) gives a yellow colour and yields a yellow Na salt (II), $C_{12}H_{18}ON_4SNa$, $+3H_*O$ (lost at 78° /vac.), unstable in air. When repeatedly dissolved in EtOH and pptd. there-

from by Et₂O, this gives a colourless Na salt (III), +4H₂O, converted over CaCl₂ at room temp./vac. into a dihydrate, but becoming yellow at 110°. (III) is also obtained by adding aq. NaOH to (I) in H₂O

at 0° and treating the product with COMe₂. It is probably formed by way of the quaternary hydroxide. (II) and (III) do not give a nitroprusside reaction, but the reaction is not characteristic in this series as it fails also with (I) and five related thiazole derivatives. The yellow colour in alkali is fairly characteristic of (I) but is no criterion of antineuritic activity as it is given also by the 4-Me isomeride. When (III) is treated in H₂O at 0° with aq. I-KI, 1 I is rapidly absorbed and thereafter more is absorbed very slowly; use of 1 I leads to the colourless disulphide (IV), +Bu^aOH, m.p. 173°, or +COMe₂ + H₂O, obtained anhyd. (m.p. 177°) by EtOH-Et₂O (dihydrochloride, m.p. 231°). (IV) becomes yellow when melted and dissociates in high-boiling solvents, but its mol. wt. is correctly given in MeOH by Menzies and Wright's method (A., 1921, ii, 622). Benzthiazole methodide and I give a similar disuphide, which does not dissociate. Zn-HCl reduces (IV) to (I); boiling HCl-EtOH-H₂O hydrolyses it to 6-amino-2-methyl-5-aminomethylpyrimidine, but boiling NaOEt regenerates (I). In boiling (CH₂·OH)₂, (IV) gives thiochrome (V) and a product (VI), C₁₂H₁₆O₂N₄S, m.p. 233—234°,

Cyanine dyes etc.—See B., 1944, II, 7, 10.

VII.—ALKALOIDS.

Constitution of yohimbine and its degradation products. B. Witkop (Annalen, 1943, 554, 83—126).—It is shown that the OH group of yohimbine (I) is attached to C₍₁₇₎. (I) has m.p. 234°, new [a]_D° +62·2° in EtOH; technical samples of its hydrochloride may contains a little isoyohimbine but the presence of alloyohimbine is excluded. Decarboxylation of yohimboaic acid (II) by NaOH-CaO cannot be effected at <350° and gives the ketone yohimbone (III), m.p. 307° (decomp.) [methiodide, m.p. ~290° (decomp.), darkens at 250°; methochloride (+2H₂O), m.p. 276° (decomp.); hydrochloride of 2: 4-dinitrophenylhydrazone, m.p. >300°, darkens at 280°]. Rapid treatment of (II) with TlOH at 300°/0·1 mm. gives decoxy-yohimbol, m.p. 149°, [a]_D²⁰ -24·3° in C₅H₅N (hydrochloride, m.p. 228°; picrate, m.p. 224°; methiodide, m.p. 198°; the methochloride is physiologically inactive in the frog). The mother-liquors from (III) contain indole and isoquinoline derivatives so that direct crystallisation is impossible but treatment with MeI in MeOH leads to the isolation of yohimbol methiodide, m.p. 282° (decomp.) (corresponding methochloride, m.p. 259°, softens at 245°). At 260° (II) evolves CO₂ but gives a non-crystallisable residue. In presence of Cu powder decarboxylation occurs at 225°, giving (III) in 8% yield; mol. Ag and Ag₂O are without influence. (III) is obtained in good yield from

(II) mixed with anthracene at 320°, and in poor yield from (II) and aq. Ba(OH)₂ at 280°. Slow decarboxylation of (II) with NaOH–CaO at 270—300° leads to "tetrahydroyobyrine" (IV), m.p. 166°. Dehydrogenation of (I) by Al(OPh)₃ and cyclohexanone in xylene at 150° gives (III), [a]²⁰₈₀ – 105·8° in C₅H₅N (hydrochloride, m.p. 328°; picrate, m.p. 171°), similarly obtained from (II); attempts to isolate the intermediate "yohimbinone" under milder conditions were unsuccessful. (III) is dehydrogenated by black Se at 300° to tetraunsuccessful. (III) is dehydrogenated by black Se at 300° to tetrahydroyobyrine, m.p. 167° (hydrochloride, m.p. 236°), and yobyrine, m.p. 215° [picrate, m.p. 239° (much decomp.]], but does not appear to be affected by Pb(OAc). alloYohimboaic acid and Al(OPh), in boiling cyclohexanone-xylene afford alloyohimbone, m.p. 230° (decomp.) (2: 4-dinitrophenylhydrazone, darkens at 250° and softens comp.) ($\dot{2}$: 4-dinitrophenylhydrazone, darkens at 250° and softens and swells at 264°), whilst under similar conditions yohimbenic acid affords yohimbenone, m.p. 268° (decomp.) (2:4-dinitrophenylhydrazone hydrochloride darkens at 260°, softens at 280°). (III), $\Lambda 1(OPr\beta_3)$, and $Pr\beta OH$ in xylene afford yohimbol (V), m.p. 243° (decomp.), $[a]_{20}^{20} = 63.4$ ° in EtOH, -55.4° in MeOH [hydrochloride $(+0.5H_2O)$, m.p. 291°, $[a]_{20}^{20} = -51.5$ ° in MeOH], and epiyohimbol (VI), $C_{10}H_{24}ON_2$, m.p. 258°, $[a]_{20}^{20} = 80.1$ ° in MeOH (methiodide, m.p. >300° after darkening and softening; methochloride, m.p. 298°); a short period of reaction favours (V) whilst with very protracted action the yield of (VI) is >50%. (IV) (hydrochloride, m.p. 236°) is dehydrogenated by Pd sponge at 280° to 2:3-isoquinolyl-3-ethylindole, m.p. 128° (hydrochloride, m.p. 212°; methiodide, m.p. 192°), isomeric with yobyrine (VII) [hydrochloride, m.p. 271° (much decomp.), softens at 240°; picrate, m.p. 239° (decomp.)], which decomp.), softens at 240°; picrate, m.p. 239° (decomp.)], which remains unchanged under these conditions. (VII) is oxidised by SeO. in boiling xylene or, preferably, Ac₂O to yobyrone (VIII), C₁₉H₁₄ON₂, m.p. 185°, which does not react with (NO₂)₂C₄H₃·NH·NH₂ in dil. HCl. (VII) is converted by paracetaldehyde at 260° into ethylideneyobyrine, m.p. 298° (darkening); with p-NO₂·C₄H₄·CHO a similar condensation occurs at 180—200° but in subsequent working up the reduct is converted by acid but in subsequent working up the product is converted by acid into (VIII) and o-C₆H₄Me-CO₂H. (VII) is hydrogenated (PtO₂ in AcOH at 40°) to hexahydroyobyrine, m.p. 197°. apoYohimbine (IX) is oxidised by Pb(OAc)₄ in AcOH at 40° and then hydrolysed to the hydrogeneous content of the hydrolysed in the hydrolysed in the hydrolysed to the hydrolysed in the hydrolys tetrahydroyobyrinecarboxylic acid (X), m.p. 286° (decomp.), [a] $^{20}_{10}$ +217.6° in EtOH [hydrochloride (+2H₂O), m.p. 303° (much decomp.), [a] $^{20}_{10}$ +307.3° in EtOH], oxidised by SeO₂ in boiling C_5H_5N to tetrahydroyobyronecarboxylic acid [hydrochloride semihydrate, m.p. 244° (decomp.)], which does not react with 2:4-(NO₂)₂C₅H₃·NH·NH°, in dil. HCl. Hydroxyhexahydroyobyrinecarboxylic acid ["tetradehydroyohimboaic acid"] (+H₂O), m.p. 325°, is not obtained in the same manner as (X) but is best prepared is not obtained in the same manner as (**X**) but is best prepared through the ester hydrochloride; the presence in it of active CH₂ is proved by the reduction of SeO_{*} in C_5H_5N . Yohimboaic acid sulphate hydrochloride, m.p. 308° (decomp.) [free sulphate, m.p. 289° (decomp.)], is converted by HCl in boiling MeOH followed by NH₃ into ε -yohimbine, m.p. 203° (darkening), softens at 195°, [a] $_2^{99}$ +29-8° in C_5H_5N , and (1). Boiling KOH-MeOH hydrolyses (IX) to apoyohimboaic acid, m.p. 306° (decomp.), with two bases, $C_{21}H_{24}O_2N_3$, m.p. 201° (decomp.), becomes yellow at 160°, and $C_{21}H_{24}O_2N_3$, m.p. 228°. In 50% of AcOH containing Pd-C under H_2 (IX) passes into a-isoyohimboaic acid (+1.5H₂O), m.p. 238°, and converted by NaOAc and boiling Λ c₅O into (IX); oxidation (Opverted by NaOAc and boiling Ac₂O into (IX); oxidation (Oppenauer) of it does not give a base or CO-acid. The isolation of p-cresol by the distillation of (I) with Zn dust is described. The physiological activity of many quaternary bases of the yohimbine scries is discussed. For these experiments the methiodides are frequently too sparingly sol. and must be converted into the methochlorides. apo Yohimbine methiodide monohydrate, effervesces at 250° after softening at 246° and becoming brown at 220°, appears H. W.

Constitution of derivatives of the harman series from the view-point of their ultra-violet spectra. F. Pruckner and B. Witkop (Annalen, 1943, 554, 127—144).—Comparison of the absorption spectra of norharman (I) and yobyrine (II) leads to the conclusion that substitution in (I) at C₍₃₎ causes a marked diminution in the intensity in band II to an extent which exceeds the enhancement caused by addition of the extinction of the xylene residue. The spectrum of (I) and still more that of (II) is very similar to that of carbazole. The diminished height of the bands with (II) may be due to substitution as such which diminishes the symmetry of the mol. This effect is yet more prominent in the comparison of the spectra of (II) and tetrahydroyobyrinecarboxylic acid; the extinction vals, of hydroxyhexahydroyobyrinecarboxylic acid (which has nearly the same position of the bands) could not be measured. Similar results are recorded for papaverine (III)-isoquinoline (IV) in which substitution causes a displacement of all bands towards the red and exaltation of the extinction is caused by the addition of an aromatic ring separated by a CH_2 group; this is particularly noticeable in band II. The complete absence from the spectrum of (III) of the individual bands seen in that of (IV) is ascribed to the presence of OMe in (III). In support of this hypothesis it is observed that the individual bands of indole are absent from the spectra of 5- and 6-methoxyindole; similar observations are recorded for lepidine and p-methoxylepidine. The spectrum of harmine (V) differs considerably from that of harmaline (VI), which behaves optically more like a derivative of indole than a hydrogenated harman. Further evidence in the same direction is based on the observation that the spectrum of (VI) does not differ so greatly from that of its methiodide as do the spectra of the methiodides of (V) and (II) differ from those of the tert.-bases. This difference shows that (V) and (II) are closely related in spite of the differences in their spectra. The transition of (V) into the quaternary salt causes a weakening of the aromatic system similar to that caused by the change, p-toluidine $\rightarrow p$ -C₀H₄Me·NMe₃Cl but when N of (VI) becomes quaternary so great a change in the dihydropyridine ring C is not occasioned. The spectra of yohimbine and its methiodide indicate that caution is necessary in generalising this line of argument. Reasoning based on the chemical properties of indole and its OMe derivatives leads to the conception that the great spectroscopic differences between (V) and (I) are due to the mobility of imino-II in (V); exchange reactions with D2O offer a possible experimental means of examining the problem. Close analogy is shown between the absorption spectra of 2:2'-isoquinolyland 2:2'-tetrahydroisoquinolyl-3-ethylindole.

Lycoris alkaloids. XVI. Constitution of lycorenine. H. Kondo and T. Ikeda (Ber., 1940, 73, [B], 867—874).—Lycorenine (I), m.p. 200—202°, [a] $_{22}^{p2}$ +149·33°, is A. Catalytic hydrogenation (Pd or

PtO, in AcOH) of (I) gives dihydrolyco-renine, m.p. 175—177°, or under more drastic conditions deoxytetrahydrolyco-

OMe A C NMe CH:CH₂

renine, m.p. 165—168°, with compounds, C₁₈H_{*2(25)}O₃N, m.p. 120—123°, and C₁₈H_{*2}O₂N, m.p. 165—167°. (I) is transformed by Ac₂O and fused NaOAc at 100° into a mono-, m.p. 185—187°, and a di-, m.p. 173—176°, -acetyl-lycorenine, the latter are different and the context of t fig. 180—187, and a ar, m.p. 113—110, acception of the latter compound being produced with much the greater difficulty. Lycorenine methiodide, decomp. 260°, is converted by AgOH followed by distillation at 130°/vac. mainly into the amorphous a-methine base (analysed as the methiodide, C₁₈H₂₀O₃NMe.], decomprehens 8-methine base. comp. 223°), with a smaller proportion of amorphous β -methine base de-N-Lycorenine (II), m.p. $114\cdot 5^\circ$, is $C_{15}H_{10}O(OMe)_2$. One O is lost as H_2O in the first stage of the degradation and the residual O is present in CO and not in OH since (II) cannot be acetylated but present in CO and not in OH since (II) cannot be acetylated but affords an oxime, C₁₇H₁₆O₂:N·OH, m.p. 147—150°. The n nucleus is readily aromatised during the Hofmann degradation by the formation of a new double linking owing to loss of H₂O, and :CH·OH at C_(g) passes into CHO whilst N is eliminated. Ozonisation of (II) leads to CH₂O, a dialdehyde (III), C₁₈H₁₄O₄, m.p. 155—157° (disemicarbazone, decomp. 238°), and an aldehydic acid, C₁₈H₁₄O₅, m.p. 228—230° (p-nitrophenylhydrazone, decomp. 276—278°), also obtained by oxidising (III) with KMnO₄ in COMe₂ at room temp., and further oxidised to a dicarboxylic acid, C₁₈H₁₄O₆, m.p. 256—257° (Me₂ ester, m.p. 135—137°). This is characterised as 3:4 imethoxydiphenyl-6:3'-dicarboxylic acid by hydrolysis of the Meester obtained synthetically from 3:4:6:1-(OMe)₂C₆H₂Br·CO₂Me, ester obtained synthetically from $3:4:6:1-(OMe)_2C_6H_9Br\cdot CO_2Me$, $m-C_6H_4I\cdot CO_2Me$, and Cu powder at $255-260^\circ$. CH₂O is readily obtained by the action of O₃ on (I) but the aldehydic base formed simultaneously is too unstable for further examination. Like a typical ψ -base (I) affords an oxime hydrochloride, decomp. 258° .

Strychnos alkaloids. XCII. Reactions of N-methylsec.-\(\psi\)-brucine and related bases. H. Leuchs and H. G. Boit (Ber., 1940, 73, [B], 885-892).—An amended method of obtaining ψ -brucine (I) is reported. The action of MeI on (I) in MeOH gives 7% of quaternary salt against 3—4% in H_2O but the quaternary salt observed previously (A., 1939, II, 349) is not encountered when (I), free from brucine, is produced. With ψ -brucine Me ether and MeI the yields of tert. base and quaternary salt are 39 and 61% in presence of MeOH and 60 and 40% in presence of H_{*}O. Reaction of (I) with Me₂SO₄ yields exclusively tert.-N-Me base. Dihydro-\(\psi\)-brucine Me ether and McI in $\rm H_2O$ afford N-methyldihydro- ψ -brucine methiodide in 84% yield; this forms ~25% of the product from dihydro- ψ -brucine. Methylation of (I) may be expected to occur in accordance with the scheme, 'C(OH)'N: 'CO'NMe' but the product does not react with NH-CO'NH'NH- or with NH2OH,HCl in C5H5N and NH₂·CO·NH·NH₄ does not affect the quaternary methiodide or its H₂-derivative. MnO₄ oxidises (I) at 20° in COMe₂ but with 10 equivs. of O₅ ~40% remains unchanged and the rest is altered in an ill-defined manner. The Me base is converted by MnO₂ and SO₂ and SO₂ are converted by MnO₂ and SO₂ and SO₂ and SO₂ are converted by MnO₂ and SO₂ and SO₂ and SO₂ are converted by MnO₂ and SO₂ and SO₂ and SO₂ are converted by MnO₂ and SO₂ ar into two isomeric sulphonic acids, $C_{24}H_{27}O_5N_2$:SO₃H, $[a]_{10}^{29}-120\cdot3^9/d$ and $41^9/d$ in 2 mols. of $0\cdot1$ N-NaOH; the homogeneity of a third material, $[a]_{20}^{20}-62\cdot3^9/d$, is not established. With PhCHO in boiling NaOMe-MeOH it yields benzylidene- (II), m.p. 234-236° (vac.) reduced (Na-Hg in dil. MeOH containing a little AcOH) to benzyl N-methylsec.-ψ-brucine, m.p. 195—197° (vac.) (hydrobromide; per-chlorate). Hydrogenation (PtO. in 25% AcOH) of (II) leads to benzyldihydro-N-methylsec.-ψ-brucine [hydrobromide (+H₂O), m.p. 105—110° to a resin or, anhyd., m.p. 215—225° (slight decomp.); hydrochloride, m.p. ~100° and 215—225°]. (I) condenses with PhCHO to benzylidene-ψ-brucine, isolated as the hydrobromide, here at 225° and each by N. Ha in dil MOOH to a mixture of heavylchars at 225°, reduced by Na-Hg in dil. MeOH to a mixture of benzylψ-brucine and -brucine hydrobromide and hydrogenated (PtO₂ in 50% AcOH) to benzyldihydro-ψ-brucine (hydrochloride, m.p. ~220° after softening; darkens at 190°). The lert. ether base obtained by the action of NaOMe or Na-Hg on N-methyl-ψ-brucine methiodide is hydrolysed by 12n-HCl at 100° to N-methylsec.-ψ-brucine. The methiodide of this base is reduced by Na-Hg-H₂O to the methiodide, $C_{2g}H_{3g}O_5N_{2}$,MeI, m.p. 276—278°; other methods of treatment lead to a neutral perchlorate, ($C_{2g}H_{34}O_5N_2$),HClO₄, m.p. 102°, decomp. 112°, and a base, $C_{2g}H_{32}O_5N_3$, m.p. 230—233° (vac.), which contains only 2 OMe and hence has suffered an Emde fission. This base absorbs 4 H when hydrogenated (PtO₂ in 0·1n-HCl) and according to conditions gives two interconvertible salts, $C_{2g}H_{30}O_5N_2$,HClO₄, hydrated, m.p. 114—115° (decomp.), softens at 100°, anhyd. m.p. 263—269°, and $C_{2g}H_{3g}O_5N_2$,HClO₄, m.p. 153—164° (decomp.); the corresponding bases are non-cryst. but another experiment gives a cryst. base, $C_{2g}H_{34(3g)}O_5N_2$, m.p. 172° in <10% yield. H. W.

Veratrine alkaloids. XIV. Correlation of the veratrine alkaloids with the solanum alkaloids. L. C. Craig and W. A. Jacobs (Science, 1943, 97, 112).—5-Methyl-2-ethylpyridine (I) was isolated from the distillate from solanidine and Sc. (I) is a characteristic degradation product of the veratrine alkaloids, which are probably C₂₇ compounds closely related to the sterols.

E. R. R.

VIII.—ORGANO-METALLIC COMPOUNDS.

Chemistry of bivalent and tervalent rhodium. V. Co-ordination complexes of rhodous halides with dialkylarsines.—See A., 1944, I, 46.

Synthetic application of o-β-bromoethylbenzyl bromide. II. Preparation and properties of 2-substituted 1:2:3:4-tetrahydro-isoarsinolines. III. Preparation and optical resolution of 2-phenyl-2-p-chlorophenacyl-1:2:3:4-tetrahydroisoarsinolinium bromide. F. G. Holliman and F. G. Mann (J.C.S., 1943, 547—550, 550—554).
—II. o-Br·[CH₂]₂·C₆H₄·CH₂Br (I) in Et_{*}O with AsPhCl₂ and Na-EtOAc in absence of air give 2-phenyl-1:2:3:4-tetrahydroiso-arsinoline (II), b.p. 110—112° [0·01 mm. (inethiodide, m.p. 136—137°), which is oxidised by HNO₃ to the oxy-compound, isolated as the hydroxy-nitrate, m.p. 149—150°; by Br-CHCl₃ to the arsine dibromide, isolated as the isoarsinoline dichloride, m.p. 147—149°, or as 2-phenyl-1:2:3:4-tetrahydroisoarsinoline sulphide, m.p. 124° (by H₂S), and by chloramine-T to the oxy-compound, isolated as the hydroxy-picrate, m.p. 116—118°. AsMcCl₂ with (I) in a similar manner affords 2-methyl-1:2:3:4-tetrahydroisoarsinoline (III), b.p. 131°/18 mm. (methiodide, m.p. 179—181°; methopicrate, m.p. 163—164°), which is oxidised with HNO₃ to the hydroxy-nitrate, isolated as the hydroxy-picrate, m.p. 164—165·5°. Cl₃ in CCl₄ converts (III) into 2-methyl-1:2:3:4-terahydroisoarsinoline dichloride, which at 130—140° gives McCl and 2-chloro-1:2:3:4-tetrahydroisoarsinoline, b.p. 157°/14 mm., unaffected by boiling C₈H·N. 2-Phenyl-1:2:3:4-tetrahydroisophsphinoline, b.p. 130—160°/0·2 mm. (methiodide, m.p. 116—118°), can be prepared in small yield only. None of the compounds tested possesses trypanocidal or antimalarial activity.

III. p-C₆H₄Cl·CO·CH₂Br and (II) give dl-2-phenyl-2-p-chlorophenacyl-1:2:3:4-tetrahydroisoarsinolinium bromide, m.p. 190—191° (dl-iodide, m.p. 190-5°), which with Ag d-bromocamphorsulphonate yields the d-bromocamphorsulphonate, m.p. 119—131°, [M]₁₈ +279°. Crystallisation from C₆H₆-cyclohexane affords the l-isoarsinolinium d-bromocamphorsulphonate, m.p. 236—238°, [M]₁₆ -140°, which is converted into the picrate, [M]₁₆ -450°, and iodide, m.p. 178·5—179°, [M]₁₆ -352°. The Ag l-salt similarly gives d-isoarsinolinium l-bromocamphorsulphonate, m.p. 236—237°, a₁₉ +0·89°, from which the picrate, [M]₁₆ +457° is obtained. 2-phenyl-2-p-chlorophenacyl-1:2:3:4-tetrahydroisoarsinolinium d-camphorsulphonate, m.p. 210—212°, [M]₁₆ +112°, similarly prepared, gives the chloroplatinate, m.p. 211—213°, and chloroawate, 157—158°. The picrates and iodide are optically stable in CHCl₃ at room temp. These are the first arsonium salts to be obtained in optically stable forms, and the correlation of their optical and chemical stability provides strong evidence that the optical instability previously recorded for dissymmetric arsonium salts has been due to the formation of a "dissociation-equilibrium" in solution. The properties of other dissymmetric 4-covalent As compounds are discussed on this basis. All rotations are in CHCl₃.

Autoxidation of lead tricyclohexyl and its behaviour towards carbon tetrachloride. F. Hein, E. Nebe, and W. Reimann (Z. anorg. Chem., 1943, 251, 125—160).—PbR₃ (R = cyclohexyl) in solution is stable towards O_2 in the dark but undergoes oxidation in light thus: $4PbR_3 + 5O_3 = PbR_2O + 2PbO + PbO_3 + other products.$ The only intermediate product is $(PbR_3)_*O$. PbR_3 reacts with CCl_4 in presence of O_2 in the dark at room temp., giving PbR_3Cl , PbR_2Cl_3 , COl_3 , COl_3 , COl_4 , COl_3 , and Cl_2 , and even in absence of Ol_2 affords PbR_3Cl , PbR_2Cl_3 , and Cl_2 , and Cl_3 . Free CCl_3 is an intermediate product. CBr_4 and Cl_2Br_5 react similarly but even more energetically. Mechanisms are suggested.

Introduction of water-solubilising groups into some organometallic compounds. R. W. Leeper (Iowa State Coll. J. Sci., 1943, 18, 57—59).—The following were prepared: PbPh3 H maleate, m.p. 207°, (PbPh3)2 maleate, sinters 198—199°, Pb triphenyl o-hydroxy-phenyl, m.p. 216—218°, PbPh29-phenanthryl, m.p. 169—171°, PbPh. di-9-phenanthryl, m.p. 208—210°, PbPh3-7-(1:2-benzanthryl), m.p. 295—296°, PbPh dicyclohexyl chloride, m.p. 195°, decomp. 205°, PbPh2Et chloride, sinters 142°, decomp. 146—147°, Pb(C₈H₄·NO₂-m)2 dichloride, sublimes 250°, decomp. 285—289° (di-iodide, decomp. 135°), GeBua3 iodide, b.p. 126—128°/4 mm., Ge tetra-2-furyl, b.p. 163°/1 mm., m.p. 99—100°, SnBua tri-iodide, b.p. 154°/5 mm., Sn dicarbethoxymethyl dibromide, m.p. 139°.

Organolead compounds containing water-solubilising groups. D. S. Melstrom (Iowa State Coll. J. Sci., 1943, 18, 65—67).—RHal with LiBu^α in Et₂O gives LiR which with CO₂ yields RCO₂H, the following being new: 2:4:5-triphenylfuran-3-, m.p. 257—258° (Me ester, m.p. 123·5—124°), 3:4:6-triphenylfuran-3-, m.p. 2carboxylic acid, m.p. 166—168° (decomp.) (Me ester, m.p. 117—118°) p-carboxyphenylethyl alcohol, m.p. 127—128°, α-p-carboxyphenylethyl alcohol, m.p. 138—139°. The reaction of LiR with PbPh₃Cl leads to the formation of PbPh₃ o- (I), m.p. 134—136°, m-p. mp. 113—114°, and p-hydroxymethylphenyl (II), m.p. 98—100°; PbPh₃ p-β-, m.p. 87—88°, and -α-hydroxyethylphenyl, m.p. 68—70°. (II) was oxidised (KMnO₄) to PbPh₃ p-carboxyphenyl, m.p. 256—258° (Me ester, m.p. 125—127°; Na and K salts). Similarly (I) produces the anhydride of PbPh₂ o-carboxyphenyl hydroxide, m.p. 300—305° (with turbidity) [chloride, m.p. 210—220° (with turbidity) (Me ester, m.p. m.p. 170—171°)]. Also prepared were p-phenylenedi(lead triphenyl), m.p. 285—288° and PbPh₃ o-anisyl, m.p. 128—129°. F. R. G.

Long-chained organometallic compounds. R. N. Meals (Iowa State Coll. J. Sci., 1943, 18, 62—64).—The following were prepared: Hg di-n-dodecyl, m.p. 44—44·5°, -tetradecyl, m.p. 53—54°, -hexadecyl, m.p. 61—62°, and -octadecyl, m.p. 66·5—67°; Hg n-dodecyl, m.p. 114—114·5°, -hexadecyl, m.p. 114—115°, and -octadecyl chloride, m.p. 115—16°; Hg n-dodecyl, m.p. 108—108·7°, -tetradecyl, m.p. 110—111°; Hg n-dodecyl, m.p. 110·5—111·5°, and -octadecyl bromide, m.p. 110—111°; Hg n-dodecyl-, m.p. 91°, and -hexadecyl iodide, m.p. 93; Sn tetra-n-dodecyl, m.p. 15—16°, -tetradecyl, m.p. 33—34°, -hexadecyl, m.p. 41·5—42·5°, and -octadecyl, m.p. 47°; Pb tetra-n-tetradecyl, m.p. 31°, and -hexadecyl, m.p. 42°; Sn tri-n-dodecyl, m.p. 33°, -tetradecyl, m.p. 46—47°, -hexadecyl, m.p. 55·5—56·5°, and -octadecyl chloride, m.p. 61—62°; Pb tri-n-dodecyl, m.p. 64—65°, -tetradecyl, m.p. 74—75°, -hexadecyl, m.p. 79—80°, and -octadecyl chloride, m.p. 82—83°; tri-dodecyl-, b.p. 200°/0-009 mm., and tetradecyl-arsine.

Organotin compounds. C. E. Arntzen (Iowa State Coll. J. Sci., 1943, 18, 6—9).—A survey. The following were prepared (Grignard): SnPh₃ o-, m.p. 176—177° (decomp.), and p-hydroxy-, m.p. 201—203°, SnPh₂ o-hydroxy-, m.p. 136—138°, SnPh₃ o-, m.p. 158—159°, and p-hydroxymethyl- (I), m.p. 98—100°; SnPh₃ o-methoxymethyl-, m.p. 94·5—95·5°; SnPh₃ o-, m.p. 110—112°, and p-dimethylamino-phenyl (II), m.p. 132—134°. (I) is oxidised (KMnO₄) to SnPh₃ p-carboxyphenyl, m.p. 166—168°. Coupling of (II) yields SnPh₃ 4-dimethylamino-3-(4'-nitrobenzeneazo)phenyl, m.p. 190—192°.

Organothallium compounds. R. K. Abbott, jun. (Iowa State Coll. J. Sci., 1943, 18, 3—5).—Sol., non-toxic compounds were prepared from TlAryl2 and AgX (X = solubilising acid group); $TlPh_2$ sulphanilate, m.p. 345° (decomp.), Tl Me_2 , m.p. 231—233°, Et_2 m.p. 220—221°, and Ph_2 saccharate, m.p. 315—320° (slight decomp.), Tl di-2-pyridyl lactate, m.p. 205—208° (decomp.). With fuming H_2SO_4 at -20° $Tl(O-C_8H_4Me)_2Br$ yields Tl di-2-(4-sulphotolyl) sulphate (Na salt). Nitration of $TlPh_2$ ·NO3 gives Tl di-mnitrophenyl nitrate, decomp. >300°, also obtained from m-C₈H₄(NO₂)₂ H_3BO_3 , and $TlCl_3$. $TlEt_2Cl$ with NaOEt yields $TlEt_2$ ethoxide, b.p. $101-102^\circ/0$ ·1 mm., m.p. $43-45^\circ$. The following were also prepared from TlX_3 and the appropriate compounds; $Tl(C_8H_4\cdot OH-O)_2$ bromide, m.p. >340°, Tl di-2-pyridyl chloride, m.p. 288—291°, $TlCl_3$, 3-C₈H₄N₇N, m.p. $148-150^\circ$, $TlBr_3$, 3-C₈H₄NN, m.p. $113-115^\circ$, $TlCl_3$, 3-C₈H₄NN, m.p. $148-150^\circ$, $TlBr_3$, 3-C₆H₄(NH₂)N, 3HCl, m.p. $121-125^\circ$ (decomp.), $TlCl_3$, cysteine, HCl, m.p. $\sim 350^\circ$ (decomp.), Tl (G_8H_3 (NMe)₃-p]₂ bromide, m.p. $> 330^\circ$, Tl di-p. m.p. $> 330^\circ$, and di-o-anisyl bromide, m.p. $> 330^\circ$. p-Li-C₄H₄·NMe₂ with BBua(OH)₂ gives p-dimethylaminophenylboric acid, m.p. $243-245^\circ$ (decomp.), which with $TlCl_3$ yields a purple dye. The following Tl salts were prepared: 2:4:6-trinitrobenzoate, m.p. $160-163^\circ$ (decomp.); oxalate, m.p. $185-187^\circ$, lawryl-, m.p. $143-145^\circ$, and p-toluene-sulphinate, m.p. $185-187^\circ$, lawryl-, m.p. $140-163^\circ$ (decomp.); 0-calate, m.p. 0-100°, and 0-100°, and

IX.—PROTEINS.

Denaturation of tobacco mosaic virus by carbamide. I. Biochemistry. M. A. Lauffer and W. M. Stanley (Arch. Biochem., 1943, 2, 413—424; cf. A., 1939, III, 729).—Tobacco mosaic virus is transformed by 6M-CO(NH_e)₂ from a substance sol. in dil. aq. electrolytes into one insol. in such solvents. The denatured protein is readily sol. in 6m-, considerably less sol. in 4·5m-, and very slightly sol. in 3M-CO(NH₂)₂. It dissolves easily in very dil. aq. Na dodecyl sulphate and in 0-1m-NaOH, but not at all readily in 0.01m-NaOH. These changes are shown by means of osmotic pressure, high-speed quantity centrifugation, ultra-centrifugation, stream double refraction, and turbidimetric examination to be accompanied by disintegration of the high-mol. virus nucleoprotein particles into much smaller particles $\sim 10^4$ or 10^5 . The nucleic acid is removed from the protein in this disintegration, and the no. of SH groups increases during denaturation. CO(NH_a)₂ also causes a loss of virus infectivity. Residual infectivity is always associated with remaining high-mol. nucleoprotein in cases of partial denaturation, and the sp. infectivity of this residual material is considerably < that of untreated virus. This shows that virus inactivation can occur before the virus nucleoprotein mol. is extensively disintegrated, and denaturation by CO(NH2)2 appears to involve at least two consecutive reactions. The overall denaturation process is irreversible.

Effect of denaturation on sulphur content of ovalbumin and edestin. B. M. Hendrix and J. Dennis (Arch. Biochem., 1943, 2, 371—380).—Denaturation of ovalbumin with acid and alkali causes a decrease in the S content of the protein. Material rich in S is removed from the protein by these treatments, and denaturation appears to be accompanied by addition of $\rm H_2O$ to the protein. Alkali-denaturation of edestin resembles acid- and alkali-denaturation of albumin, whilst acid-denaturation of edestin differs from other acid- and alkali-denaturations in that no S is removed from the protein.

J. N. A.

Effect of dry grinding on properties of proteins. I. Native, denatured, and coagulated ovalbumin. H. R. Cohen (Arch. Biochem., 1943, 2, 1—8).—Dry grinding (ball mill at 100 r.p.m.) of cryst. and acid-denatured ovalbumin (I) produces insol. protein. Heatdenatured (I) gives some H₂O-sol. protein; the insol. fraction contains more S and less tyrosine and tryptophan than does cryst. (I). The rates of digestion by pepsin of the ground proteins are intermediate between those of cryst. and coagulated (I).

Effect of dry grinding on properties of proteins. II. Casein. III. Gelatin. IV. Human, ox, and pig coagulated hæmoglobins. H. R. Cohen (Arch. Biochem., 1943, 2, 345—351, 353—355, 357—361).—II. When casein (I) is dry ground for 48 hr. a H₂O-sol. fraction is obtained, which contains more P and less tryptophan (II) than the unground (I); it is also attacked by rennin. The other H₂O-sol. fractions by successive 48-hr. periods of grinding all contain more P and less (II) than native (I), and they are all unaffected by rennin. There is very little difference in N content of any of the fractions. They all contain dialysable proteins, and are pptd. from aq. solution by picric, trichloroacetic, and phosphotungstic acids, HgCl₂, and 50% saturation with (NH₄)₂SO₄. They are not precipitinogenic but produce anaphylactic sensitisation in guinea-pigs. The insol. residue left after prolonged grinding is only slowly attacked by trypsin. The H₂O-sol. fractions are all digested much more readily, whilst that from the first grinding is hydrolysed at a greater rate during the first 45 hr. than is native (I). The total H₂O-sol. product is partly nutritionally deficient since it does not support growth of mice although they are maintained in good health and at relatively const. wt., whilst the insol. residue is just as effective as is unground (I). The mechanism of degradation of the protein mol. by grinding is discussed.

the protein mol. by grinding is discussed.

III. Dry grinding of gelatin converts it into a protein sol. in cold H₂O. Grinding for 7 hr. has no effect on the ability to gel, but there is a marked increase in solubility in H₂O at room temp., and the time for gelling is considerably increased. After grinding for 72 hr. the product no longer forms a gel. There is no increase in formol titration val. during grinding, which shows that there is no appreciable cleavage of peptide bonds.

IV. Dry grinding of coagulated human, ox, and pig hæmoglobins (III) produces H₂O-sol. fractions which contain varying amounts of Fe. They all give the benzidine reaction, and the fact that the hæmatin is sol. in H₂O shows that the prosthetic group is not removed from the protein constituent during grinding. The H₂O-sol, proteins contain dialysable protein; they are non-coagulable by heat and require 50% or more EtOH for pptn. They are pptd. by HgCl₂, picric acid, and CCl₃·CO₂H, and by 50% saturation with (NH₄)₂SO₄. They are sol. in acids and alkalis, and do not give rise to precipitin antibodies and do not react with native (III) antisera. The N content decreases with successive fractions, and in the case of human (III) the amount of tyrosine decreases in each successive fraction, whilst with ox (III) the amount of tyrosine in each fraction

is fairly const. Tryptophan is absent from the last fractions from human (III) and from one of the $\rm H_2O$ -sol. fractions from ox-(III). 79% of coagulated human (III) is converted into $\rm H_2O$ -sol. protein in 384 hr. For coagulated ox- and pig-(III) the corresponding vals. are 75% in 192 hr. and 32.5% in 96 hr. respectively. The $\rm H_2O$ -sol. fractions from human (III) contain at least 70% of dialysable-N which shows that they are small mol. fragments. The $\rm H_2O$ -sol. fractions from the various (III) differ from native (III) mainly in the ultra-violet spectrum between 313 and 264 m μ . In this region there is considerably more absorption than with native (III).

Methionine- and tryptophan-free casein hydrolysates. A. A. Albanese (Science, 1943, 98, 46).—1 kg. of casein in refluxed for 20-23 hr. with 500 ml. of H_2SO_4 and 1 l. of H_2O , cooled to 80° , 200 ml. of 30% H_2O_2 added, and the mixture kept at room temp. for 24 hr. 2 l. of H_2O and 4 l. of 16% CaO suspension are added, and the mixture is kept overnight and filtered through a norite-precoated filter. The CaSO₄ is re-suspended in 2 l. of hot H_2O , filtered, and the filtrate and washings cone. in vac. at $50-60^\circ$ to 2 l., neutralised with 50% H_2SO_4 , and refiltered. 650 g. of tryptophan-free (not detected) and methionine-free (0·12—0·21% of the protein) hydrolysate are obtained. E. R. R.

Etherification of hydroxyamino-acid residues in silk fibroin by dimethyl sulphate. A. H. Gordon, A. J. P. Martin, and R. L. M. Synge (Biochem. J., 1943, 37, 538—543).—Fibroin with Me₂SO₄ and N-NaOH is O-methylated; the max. degree of methylation obtainable corresponds to conversion of nearly all the tyrosine residues and about half the serine residues, suggesting the presence in fibroin of two types of serine residues, differing in accessibility to methylation.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Lignin esters of mono- and di-basic aliphatic acids. H. F. Lewis, F. E. Brauns, M. A. Buchanan, and E. B. Brookbank (Ind. Eng. Chem., 1943, 35, 1113—1117).—The prep. of lignin from soda black liquor from hardwood cooks by pptn. with CO_n is described. Lignin esters are prepared by adding the acid chloride to a solution of lignin in C_bH_bN , and isolated by pouring into ice- H_2O . The esters of 17 monobasic aliphatic acids, ranging from acetic to stearic, and of succinic, adipic, suberic, azelaic, benzoic, p-toluenesulphonic, and phthalic acids were prepared and their m.p. and solubility data tabulated. In esters of monobasic acids, 3, 4, or 5 acyl groups are combined with each structural unit of lignin. The m.p., which are not sharp, decrease with increasing chain length of the acid group. These esters are sol. in $COMe_2$, dioxan, C_6H_6 , and EtOAc; the solubility in MeOH and EtOH decreases and in Et_2O and light petroleum increases with increasing mol. wt. of the acid radical. Esters of dibasic acids have higher m.p. and are less sol.; this is attributed to attachment of the acid mol. to two neighbouring lignin chains forming a network structure. The stearic ester has possible industrial applications as a mould lubricant for wood plastics and for incorporation in inks and paints.

Purification and properties of humulon. V. Salac and J. Dyr (Gambrinus, 1943, 4, 253—255).—A solution in MeOH of the residue obtained by extracting lupulin with Et₂O and evaporating the solution was freed from myricin wax, and the humulon (I) pptd. by aq. Pb(OAc). The Pb salt of the a-bitter acid (II) was extracted with 25% $\rm H_2SO_4 + 4$ vols. of Et₂O, and (I) purified by the o-C₆H₄(NH₂)₂ method, followed by pptn. of a solution in MeOH with H₂O. The crystals had m.p. 63—64°, [a]₁0° —206·24° in MeOH, $-212\cdot53^\circ$ in EtOH, $-190\cdot44^\circ$ in Et₂O. With solutions in C₆H₄[a]₂0° was \propto the concn. Dil. aq. FeCl₃ gave a violet-brown and dil. aq. CuSO₄ an emerald-green colour with a solution of (II) in EtOH. Polarimetric determinations of (I) from different hops gave lower vals. than pptn. with Pb(OAc)₂.

Relationship of lupulin to the bitter constituents of hops. V. Salac and J. Dyr (Gambrinus, 1943, 4, 255—258).—Crude β -bitter acid (I), obtained as fine needles by the evaporation at 30° in CO₂ of an extract of lupulon (II) in C_5H_{12} , was dissolved in McOH; 2 days later, two layers [a syrupy liquid containing β -soft resin (III), and a milky upper layer containing fine needles of (I)] had separated. After recrystallisation (I) had m.p. 78—81°, but (II) remained amorphous; both had [a] 0. Aq. FeCl₃ produced a brown and aq. CuSO₄ a bluegreen colour with the MeOH solution. The crystals of (II) and their solutions in MeOH had no bitter taste, but (III) was very bitter. A dil. solution of lupulin in MeOH–H₂O boiled free from MeOH became very bitter owing to the rapid conversion of (II) into (III). Since [a] of hop oil is ~0, humulon can be determined polarimetrically (see above).

Esters of penicillin.—See A., 1944, III, 141.

Purification and properties of penatin.—See A., 1944, III, 141.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II-Organic Chemistry.

MARCH, 1944.

I.—ALIPHATIC.

Catalytic isomerisation of saturated hydrocarbons.—See B., 1944, II, 2.

Production of branched-chain alkanes.—See B., 1944, II, 30, 31. Production of isooctane.—See B., 1944, II, 2.

Reaction of unsaturated molecules with sodium platinichloride. A. Gelman (Compt. rend. Acad. Sci. U.R.S.S., 1941, 31, 761—764).— Na₂PtCl₅ is reduced by CO, butadiene, or C_2H_4 , to Na₂PtCl₄. Removal of the excess of Na₂PtCl₅ and then treatment with C_5H_5N gives the compounds, C_5H_5N ,H[PtCl₃·CO], [PtCl₂(C_4H_6)(C_5H_5N)], and [PtCl₂(C_2H_4)(C_5H_5N)], respectively. Little, if any, reaction occurs with NO. R. S. C.

γδ-Diethyl-Δγ-hexene and γδ-diethylhexane. Preparation and properties. H. Koch and F. Hılberath (Ber., 1940, 73, [B], 1171—1173).—CEt₂(CO₂Et)₂ passes in presence of Na and EtOH under H. at 250°/70 atm. into CHEt₂·CO₂Et, converted by MgEtBr into γδ-diethylhexan-γ-ol. This is dehydrated by H₂C₂O₄ at 110° to a mixture of much γδ-diethyl-Δγ-hexene (I) and little -Δβ-hexene which are readily separated from one another by fractional distillation. (I) has b.p. 158·10°/758·0 mm., 157·85°/754 mm., and 158·2° (corr.)/760 mm. Oxidation with KMnO₄ or Pb(OAc)₄ affects the sidechains exclusively and ozonisation followed by catalytic hydrogenation takes an abnormal course, probably by reason of the inertia of the double linking and the unusual readiness of substitution. For this reason correct I vals. are obtained only by the I-CNS method. The results with ICl (Wijs) or NaBr-Br solution are 25% and 110% high whereas those with ICl in MeOH saturated with CaCl₂ are very low. (I) is not hydrogenated in abs. EtOH containing PtO₂ at atm. pressure but passes smoothly in presence of Pd-C into γδ-diethylhexane, b.p. 160·7°/760 mm.; this gives an uninvestigated cryst. product when irradiated in presence of Br.

Hydration of olefines.—See B., 1944, II, 3.

Hydroxylation of unsaturated halides.—See B., 1944, II, 3.

Recent developments in nitroparaffins.—See B., 1944, II, 29.

Purification of pentaerythritol.—See B., 1944, II, 31.

Phosphates. III. Phosphatase models. M. Lora Tamayo and F. Segovia (Anal. fts. quim., 1943, 39, 382—395).—Mg* accelerates the trans-esterification of Na β -glycerophosphate by MeOH, and the catalysis by CH₂Bz·OH of the hydrolysis of Et phenylphosphate (I). Hydrolysis of (I) is slightly catalysed by OH·CH₂·CO·NHPh but Mg is without effect.

F. R. G.

Long-chain acids containing a quaternary carbon atom. II. N. Polgar and (Sir) R. Robinson (J.C.S., 1944, 615—619).—a-Elhyl-a-decylletradecoic acid (I) has been synthesised by the method of Hudson et al. (A., 1942, II, 130) and found to differ from phthioic acid (II) (cf. Stenhagen et al., A., 1941, II, 331). It appears probable that the chain in (II) must be longer than thought possible heretofore on X-ray evidence. Any structure with two long chains of comparable length will probably be found inconsistent with the small area of the compressed films of (II). Hence there is probably only one long chain and the smaller apparent length is due to the considerable tilting of the mols. n-C₁₀H₂₁·CH(CO₂Et)₂ is transformed into n-C₁₀H₂₁·C(C₁₂H₂₅)(CO₂Et)₂, which yields a-decyl-n-tetradecoic acid (III), m.p. 47° (amide, m.p. 112·5°); the Me ester, b.p. 198—200°/0·25 mm., is transformed by CPh₃Na and MeI followed by alkaline hydrolysis into a-methyl-a-decyl-n-tetradecoic acid (III), m.p. 41° rising to 44·5° in 8 months (corresponding amide, m.p. 42°). It could not be resolved into its optical antipodes by quinine, cinchonine, strychnine, or brucine. a-Ethyl-a-decyl-n-tetradecoic acid, m.p. 27—28° rising to 31° in a few weeks (amide, a viscous oil), is prepared similarly. The Me ester of a-n-heptyl-n-hexadecoic acid, m.p. 42°, is transformed analogously into a-methyl-a-n-heptylhexadecoic acid, m.p. 42°—27°, obtained from n-C,H₁₅Br and CH₂(CO₂Et)₂, is transformed through the Me ester into a-methyl-a-heptylhonoic acid, a viscous liquid, b.p. 171—171·5°/0·2 mm. (amide, a very viscous oil, b.p. 181—182°/0·2 mm.). COMe·C₉H₁₉ C (A., II.)

and C₁₂H₂₆·MgBr afford mainly methyl-n-nonyl-n-dodecylcarbinol, b.p. 200—204°/~0·2 mm. CH₂(CO₂Et)₂, sec.-C₁₁H₂₃Br, Na, and some NaI in boiling EtOH yield Et₂ sec.-undecylmalonate, b.p. 180—182°/18 mm., converted into Et₂ sec.-undecyl-n-dodecylmalonate, b.p. 210—212°/0·16 mm., hydrolysed by boiling KOH-Pr^oOH and then decarboxylated to β-methyl-α-n-dodecyl-lauric acid, b.p. 228—230°/0·3 mm. (amide, m.p. 102—103°). (III) is converted by successive treatments with SOCl₂ and CH₂N₂ in Et₂O into the corresponding diazo-ketone, which with a hot suspension of Ag₂O in MeOH yields Me β-n-decyl-β-n-dodecylpropionate, b.p. 212—214°/0·25 mm., hydrolysed to the acid, m.p. 0° rising after several weeks to 26·5° (amide, m.p. 55°). β-Methyl-α-n-dodecyl-lauric acid is converted through the chloride and diazo-ketone into the Et ester of y-methyl-β-n-dodecyltridecoic acid, b.p. 209—210°/0·1 mm. (noncryst. amide). (IV) passes through the chloride into the diazo-ketone, m.p. 36°, which gives Me β-methyl-β-decylpentadecoate, b.p. 196—197°/0·2 mm.; the acid, a viscous liquid, furnishes a non-cryst. amide. (n-C₁₀H₂₁)₂CO, Zn filings, and CH₂Br·CO₂Et in boiling C₆H₆-Et₂O yield an undistillable product, converted by SOCl₂ in C₆H₆-Et₂O yield an undistillable product, converted by SOCl₂ in 192—196°/0·4 mm.; this is hydrogenated (Raney Ni) at 40—60°/60 atm. to Et β-decyltridecoate, b.p. 179—181°/0·2 mm., which is reduced (Na-Bu°OH-light petroleum) to γ-decyltridecanol, b.p. 163—165°/0·16 mm. The corresponding iodide and CHNa(CO₂Et)₂ afford Et₂ γ-decyltridecylmalonate, b.p. 221—224°/0·45 mm., transformed by Na and MeI followed by hydrolysis and decarboxylation into a-methyl-δ-decylpentadecoic acid, which becomes turbid at 0°.

Purification of maleic anhydride.—See B., 1944, II, 3.

Production of glutaric acid.—See B., 1944, II, 3.

New reaction of ethylene oxide. V. Condensation of ethylene oxide with cyclic β -keto-esters. K. G. Pakendorf and F. F. Matschus (Compt. rend. Acad. Sci. U.R.S.S., 1941, 31, 441—443).—Et cyclopentanone-2-carboxylate and (CH₂)₂O, with piperidine at room temp. for 20 days, give a-(γ -carbethoxypropyl)- γ -butyrolactone, b.p. 172—174°/6 mm. Me 6-methylcyclohexanone-2-carboxylate similarly gives a-(δ '-carbomethoxy-n-amyl)- γ -butyrolactone, b.p. 175°/6 mm. The mechanism suggested is the alcoholysis of the spirocyclic lactones first formed. S. A. M.

Separation of aldehydes and ketones.—See B., 1944, II, 4.

Stabilisation of unsaturated ketones.—See B., 1944, II, 32.

Manufacture of tertiary amines.—See B., 1944, II, 32.

Rotatory dispersion of α -amino-acids. J. W. Patterson and W. R. Brode (Arch. Biochem., 1943, 2, 247—257).—Measurements of the rotatory dispersion for λ 4400 to 6600 m μ . of 14 NH $_2$ -acids, their hydrochlorides, and Na salts are employed to determine configuration. Simple rules are given for assigning configuration to α -NH $_2$ -acids which are based on examination of rotatory dispersion curves. W. McC.

Complexes of zinc and glycine.—Sec A., 1944, I, 67.

Organic catalysts for the elimination of carbon monoxide from formamide. III. Catalysts with phenolic hydroxyl as active group. T. Enkvist [with A. Kurkela] (Ber., 1940, 73, [B], 1253—1258; cf. A., 1940, II, 71).—In presence of alkali, compounds with phenolic OH accelerate the elimination of CO from HCO·NH2 more markedly than the corresponding catalysts with alcoholic OH. PhOH is nearly as potent as the most efficient catalysts (sucrose; OH·CH2·CO·NHPh) with alcoholic OH. The catalytic effect of phenols can be increased by suitable substituents, the position of which frequently has a very decisive influence. In o- and p-cresol Me is weakly activating, scarcely so in m-cresol, and restrictive in orcinol. C_bH_{11} and Pr^{β} do not activate. In o- and p-positions Ph activates slightly but a second C_b nucleus as in $C_{10}H_b$ has no noticeable effect. Cl is indifferent or inactivating. NH2 is at most slightly inactivating, strongly inactivating, or indifferent accordingly as it is in the o-, m-, or p-position. NMe2 and NEt2 are distinctly inactivating in the m-position. OMe and ·CH(OH)·CH2·NHMe are indifferent. NO2, NO, N2·SO3H, ·CH2·CH(NH3)·CO2H, and ·CH:NPh are inactivating, as also is the substitution of

 C_5H_5N for C_6H_6 . CO_3H is usually inactivating but can be indifferent. In the cases investigated 'CO-NHPh is inactivating. OH in ortho- or vic-position causes strong activation $[o-C_6H_4(OH)_3]$; 3:4:1- $(OH)_3C_6H_3$ · CO_3H ; adrenaline, 1:2:3- $C_6H_3(OH)_3$]; in the p-position (quinol) activation is less pronounced, whereas in the m-position (resorcinol; orcinol), sym. $[1:3:5-C_6H_3(OH)_3]$ and as. $[1:2:4-C_6H_3(OH)_2]$ positions there is slight or marked inactivation increasing to complete inhibition with $1:3:5-C_6H_3(OH)_3$. In the following points the catalysts do not appear to conform with Langenbeck's rules (A., 1940, I, 326). With different substituents there appears to be no definite position causative of activation or inactivation. One and the same substituent can be activating or inactivating according to its position; this is true in particular for OH and less so for Me. Not only all substituents of the second order (CO₂H, NO₂, NO, SO₃H) but also certain typical members of the first order (NH_{*}, Cl) are inactivating. The reactions are discussed.

Properties of urea, biuret, and triuret. R. C. Haworth and F. G. Mann (J.C.S., 1944, 603—606).—Biuret (I) (38%), m.p. 190°, and triuret, CO(NH·CO·NH₂)₂ (15%), m.p. 231—232°, are best prepared from CO(NH₂)₂ (II) and SOCl₂. Under controlled conditions (II) and SO₂Cl₂ give the substance, C₄H₁₆O₇N₈S, but on heating cyanuric acid (III) with ClSO₃H (0·5 mol.) it gives (I), with 1·0 mol. it gives (II) or NH₂·SO₃H according to conditions. The properties of (II) are the converse of those of CS(NH₂)₂ (IV) in that H₂O cannot be abstracted from (II), but H₂S is readily eliminated from (IV), whilst NH₃ is readily lost from (II) but not from (IV). (I) may exist as a resonance hybrid between the normal form and several zwitterion forms, or may be partly or fully enolised. The peculiarities of (I) are discussed. (III) with CaCl₂ and NH₃ gives (?) Ca cyanurate trihydrate.

Co-ordination number of bivalent lead.—See A., 1944, I, 68.

Preparation of thioamides.—See B., 1944, II, 4.

##Halogens. XXXV. Solid and liquid thiocyanic acid. L. Birckenbach and E. Büchner [with K. Kraus and, in part, E. Kayser] (Ber., 1940, 73, [B], 1153—1168).—HCNS cannot be prepared by the action of HCl or HF on an alkali thiocyanate but is obtained pure from KCNS and KHSO₄ by a modification of the method of Rück et al. (A., 1912, i, 954). The vapours condense in liquid air to colourless, enamel-like thiocyanic acid [I], m.p. −110° (vac.) (lit. m.p. 5°). When cautiously warmed it melts to a completely colourless, transparent, mobile liquid which solidifies at −110° to colourless (I), which again gives a colourless molten mass if the temp. of warming is −100°. The solidifying point is determined at −110° from the cooling curve. Slow warming of (I) causes formation of individual crystals at ~-90° and between −90° and −85° solidification to a polymer (II) although it is sometimes possible by very careful warming and avoidance of all agitation to keep small quantities of substance as liquid up to −50° or over. Generally at −55° to −50° (II) undergoes decomp. with (in vac.) formation of a substance (III) of ivory or pale yellow colour which darkens towards 0°. If a good vac. is maintained during slow warming the product can be kept for days in a vac. at room temp. If the amount is not too great, this can be almost completely depolymerised in a high vac., volatilisation being accompanied by absorption of much heat. This behaviour combined with analytical results (determinations of mol. wt. are impossible) allies (III) with cyanuric acid and causes it to be regarded as a trimeride "thiocyanuric acid and causes it for heaps and thus induces impurities. In the rectification of larger amounts of substance between −110° and −40° these parts must be cooled in CO₃-Et₄O at −50° to −40°. If (III) is allowed to warm to room temp. in a closed vessel filled or not filled with dry air but without pumping off the gas it darkens slowly to dark brown or red and at 3° a rapid change occurs with considerable evolution of heat, fo

Production of nitriles.—See B., 1944, III, 33.

System hydrocyanic acid-diethyl ether. L. Birckenbach and E. Büchner (Ber., 1940, 73, [B], 1168—1171).—The m.p. diagram of mixtures of HCN and Et₂O proves the formation of an additive compound (1:1), m.p. -87° . Its stability is small. It does not exist in the vapour phase. HCN and Et₂O give a cutectic mixture at $-121\cdot5^{\circ}$ to $-121\cdot6^{\circ}$. H. W.

II.—SUGARS AND GLUCOSIDES.

Calcium chloride compounds of D- α -glucoheptose (D-glycero-D-guloaldoheptose). H. S. Isbell and H. L. Frush (J. Res. Nat. Bur. Stand., 1943, 3, 163—168).—In support of the concept that sugars having like configurations for the atoms comprising the pyranose ring have like properties, it has been found that D-glycero-D-guloaldoheptose (I) (formerly D- α -glucoheptose) resembles D-gulose in that it forms cryst. compounds with CaCl₂ and that the equilibrium which exists in aq. solutions is shifted markedly by changes in [CaCl₂], addition of which shifts the equilibrium towards the unknown α -pyranose modification. The equilibrium optical rotation of (I) in 4% aq. solution in presence of CaCl₂ varies according to $[\alpha]_D^{20} = -20 \cdot 2 + 3 \cdot 54m - 0 \cdot 067m^2$, where m = g, of CaCl₂ in 100 mols. of solution. The cryst. compound, (I), CaCl₃, 2H₂O, mutarotates in 4% aq. solution in accordance with $[\alpha]_D^{20} = -6 \cdot 5 \times 10^{-00712} - 9 \cdot 3^\circ$.

The cardiac glucosides. W. E. Bouman (Pharm. Tijds. Nederl. Indie, 1941, 18, 39—48, 65—75, 97—104, 130—137, 177—187).—A review.

N-Glycosides. II. Amadori transformations. F. Weygand (Ber., 1940, 73, [B], 1259—1278; cf. A., 1940, II, 69).—Glycosides of primary aromatic amines are readily obtained by heating 1 mol. of sugar with $1\cdot 1-1\cdot 4$ mols. of amine and 2-4 mols. of H_2O . Only sugar with I-I—I-4 mols, of amine and 2—4 mols, of H₂O. Only those derived from glucose are converted into isoamines when melted or heated in MeOH or EtOH. Surprisingly, pure p-phenetidine-d-glucoside (I) is not isomerised in EtOH. Apparently identical experiments in which glucose, p-OEt·C₆H₄·NH₂, and H₂O are heated at 100° lead sometimes to (I) and sometimes to d-isoglucose-p-phenetylamine (II) so that it is doubtful if (II) is formed through (I). Addition to the mixture of increasing amounts of HCl leads to the isolation of (II) (the glucosides of p-toludine, p-OMe·C₆H₄·NH₂, and c-4-xylidine behave similarly) in very greatly improved yield. and o-4-xylidine behave similarly) in very greatly improved yield, small amounts of acid increasing both the rate of glucoside formation small amounts of acid increasing both the rate of glucoside formation and isomerisation. Larger amounts of acid rapidly cause darkening. The prep. of piperidine-d-glucoside, m.p. 129—130°, and sulphanilamide-d-glucoside, m.p. 207—208°, from the sugar, amide, H₂O, and a little HCl is described. The prep. of the following under varied conditions is described: d-isoglucose-p-tolylamine (III), m.p. 153—154°, from glucose or mannose; d-isoglucose-p-phenetylamine, m.p. 154°; d-isoglucose-p-anisylamine, m.p. 140—141°, and d-isoglucose-3: 4-dimethylphenylamine, m.p. 161—162°. (III) is reduced by Na-Hg in H₂O to p-tolyl-d-mannamine, m.p. 195—196°. In acid solution in which they form salts the catalytic hydrogenation (PtO₂) of the isosugaramines affects preferentially hydrogenation (PtO₂) of the isosugaramines affects preferentially the aromatic nucleus and the CO group of the side-chain remains intact. In neutral solution the results are variable whereas in alkaline solution reduction occurs generally in the side-chain, whereby 1 mol. of the isoamine absorbs exactly $1 H_2$. A method of determining isoamine in solution is thus afforded. The following are thus produced: 3:4-dimethylphenyl-d-mannamine, m.p. 185–186°, [a]²⁰ +21·4° in C₅H₅N; p-anisyl-d-mannamine, m.p. 191–192°, [a]²⁰ +27·8°. Xylose, p-toluidine, H₂O, and AcOH at 75° rapidly yield p-toluidine-d-xyloside, further converted into d-isoxylose-p-tolyl-amina, which could not be obtained cryst. It is converted into amine, which could not be obtained cryst. It is converted into d-lyxose-p-tolylamine, m.p. $156-158^{\circ}$, $[a]_{10}^{19}+26^{\circ}$, when hydrogenated (PtO₂) in EtOH containing the acid used in the isomerisation or in alkaline solution at 20° or 4° but not at 58°. Non-cryst. or in alkaline solution at 20° or 4° but not at 58°. Non-cryst l-isoarabinose-p-tolylamine is obtained from l-arabinose (IV), p-toluidine, H_2O , and AcOH and identified by hydrogenation to the expected epimerides, l-arabinose-p-tolylamine (V), m.p. $178-179^\circ$, $[a]_1^9-7^1^\circ$, and l-ribose-p-tolylamine, m.p. $140-141^\circ$, $[a]^{10}+31^\circ$ in C_5H_5N . (V) is obtained also by reduction of p-toluidine-l-arabinoside (Ni in aq. MeOH; H_2 at $90^\circ/50$ atm.). (IV), o-4-xylidine, H₂O, and HCl afford l-isoarabinose-3: 4-dimethylphenylamine, hydrogenated (PtO₂ in EtOH containing acid at 10°) to l-arabinose-3: 4-dimethylphenylamine, m.p. $138-139^\circ$, $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-ribose-3: 4-dimethylphenylamine, m.p. 143° , $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-ribose-3: 4-dimethylphenylamine, m.p. 143° , $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-ribose-3: 4-dimethylphenylamine, m.p. 143° , $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-ribose-3: 4-dimethylphenylamine, m.p. 143° , $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-ribose-3: 4-dimethylphenylamine, m.p. 143° , $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-ribose-3: 4-dimethylphenylamine, m.p. 143° , $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-ribose-3: 4-dimethylphenylamine, m.p. 143° , $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-12\cdot 3^\circ$, in neutral solution to l-rabose-3: 4-dimethylphenylamine, m.p. $[a]_1^1-1$ in neutral solution to $1\text{-}ribose\text{-}3:4\text{-}dimethylphenylamine}$, m.p. 143° , $[a]_D + 30^\circ$ in C_bH_bN , also obtained in alkaline solution. d-Arabinose is converted into $d\text{-}isoarabinose\text{-}3:4\text{-}dimethylphenylamine}$, hydrogenated in alkaline solution at 20° to $d\text{-}ribose\text{-}3:4\text{-}dimethylphenylamine}$, m.p. 142° , $[a]^{22} - 31\cdot 4^\circ$, identical with the substance obtained from o-4-xylidine-d-riboside. Under the new conditions $p\text{-}toluidine\text{-}l\text{-}rhamnoside}$ is isomerised to $1\text{-}rhamnose\text{-}p\text{-}tolylamine}$, m.p. $183\text{--}184^\circ$, $[a]_D^{20} - 19\cdot 7^\circ$ in C_bH_bN . Aniline-d-glucoside in presence of H_aO or a little acid is isomerised to the non-cryst. d-2soglucosephenylamine, which strongly reduces cold, alkaline solutions of $o\text{-}C\text{-}H\text{-}(NO_s)$, and is hydrogenated in alkaline alkaline solutions of o-C₆H₄(NO₂)₂ and is hydrogenated in alkaline solution to d-mannosephenylamine, m.p. 175—176°, showing that the Amadori isomerisation, impossible under the older conditions, has actually occurred. d-isoGlucose-p-tolylamine is obtained by Amadori isomerisation not only from p-toluidine-d-glucoside but also from p-toluidine-d-mannoside. In cases in which the isoamines can be obtained from two epimeric glycosides it is proposed to name the iso-compound from the sugar which is commonest in nature or in the case of the rare sugars from that with which isomerisation is first effected. The successful isomerisation of p-toluidine-d-galactoside is shown by the subsequent hydrogenation to d-galactose-p-tolylamine, m.p. 180—181°, $[a]_D^{21}$ —13·6° in C_5H_5N . The mechanism of the Amadori isomerisation is formulated thus $(R = C_8H_4Me)$:

NHRX	NHR·X	NH,RX	NH RX
H¢-	CH	CH	ÇH ₂
H¢-OH	H·¢·OH	ǕOH	ço
OH-C-H O ->	OH·¢H →	OH·¢H →	OH-¢H
НС∙ОН	Н¢∙ОН	н¢-он	н¢∙он
H¢	н¢-он	Н¢∙ОН	н¢-он
CH ₂ ·OH	CH2-OH	CH ₂ ·OH	CH ₂ ·OH

If isolation of the glucosides of primary amines is desired it is generally necessary to work without addition of acid although if the Amadori isomerisation occurs slowly acids or H salts may be added if the reaction is interrupted sufficiently soon. A suitable division of the glycosides is sketched. For the prep. of N-polyhydroxylalkyl derivatives by hydrogenation (at $80-100^{\circ}/\text{high}$ pressure) of N-glycosides complete absence of acid is necessary if the hydrogenation product is to be free from epimeric compounds. The formation of (d-arabo)tetrahydroxybutylquinoxaline from o-C₃H₄(NH₂)₂ and d-glucose in slightly acid solution is readily explained if the incidence of an Amadori isomerisation is admitted. In the biogenesis of lactoflavin it is possible that the ribityl residue in a preliminary stage enters the flavin mol. by an Amadori isomerisation from either an N-d-riboside or N-d-arabinoside. The CO group at C₍₂₎ must be reduced to CH-OH with formation of the d-ribityl configuration. H. W.

N-Glycosides. III. Steric course of the hydrogenation of isoglucosamines. Rules of rotation with 9-polyhydroxyalkylflavines and N-polyhydroxyalkylbenzenes. F. Weygand (Ber., 1940, 73, [B], 1278—1283).—In acid solution, only l-arabinose-3: 4-dimethylphenylamine is isolated by the hydrogenation of l-isoarabinose-3: 4-dimethylphenylamine whereas at 20° in presence of EtOH-alkali the only isolable product is the l-ribamine derivative. It is not impossible that the epimerides are formed in small proportion. Hydrogenation of isoglycosamines in alkaline solution, i.e., in the enolic form, is an addition of H_2 at an ethylenic linking which occurs in the cis- or trans-position according to the rate of hydrogenation and to the catalyst employed. Since the ethylenic compound can occur in a maleinoid and fumaroid form varying proportions of epimeric compounds are to be expected according to the form which is present and the mode of addition. The sense of rotation of the 9-polyhydroxyalkylflavines for the D line depends solely on the configuration at $C_{(\beta)}$. If in Fischer's projection ('CH₂·OH group below; 'CH₂·N: group above) the OH at $C_{(\beta)}$ of the polyhydroxyalkyl chain projects to the right, the rotation in 0-IN-NaOH is negative and conversely. Similarly for N-polyhydroxyalkylbenzenes if in Fischer's projection ('CH₂·OH group below; 'CH₂·NHR group above) the OH at $C_{(\beta)}$ of the polyhydroxyalkyl chain projects towards the right, the rotation in C_2 H₅N is negative and conversely.

Karakin, glucoside of Corynocarpus lævigata, and hiptagenic acid. C. L. Carter (J.S.C.I., 1943, 62, 238—240).—Karakin, a constituent of karaka nuts, closely resembles hiptagin in chemical properties, but from lack of a specimen of hiptagin the exact relationship cannot be established. Their common hydrolytic product, hiptagenic acid, is believed to be the oxime of aldehydroglyceric acid, OH·N:CH·CH(OH)·CO₂H. A second hydrolytic product of karakin is aminoglucose or aminomannose.

Amylolytic degradation of starch. W. N. Haworth, H. Kitchen, and S. Peat (J.C.S., 1944, 619—626).—It is shown that β -amylase (I) hydrolyses the amylopectin component of starch with the formation of maltose and a limit dextrin, dextrin-A or α -amylodextrin (II) (40 wt.-% of original starch). End-group assay shows (II) to have an apparent unit chain length of 11-12 glucose units. (II) is not susceptible of further attack by (I) until it has been "sensitised" by contact with salivary amylase. The action of (I) then continues until a second resting stage is reached, viz., dextrin-B (III) [38% of (II), 7—8 glucose units]. (III) is not further hydrolysed by (I), nor sensitised by saliva, but is hydrolysed by salivary amylase to dextrin-C (IV) [67% of (III); 5-6 glucose units] and maltose. (IV) is slowly hydrolysed by pancreatic amylase to dextrin-D (V) [80% of (IV); 4—5 glucose units] and a sugar. Properties of (II)—(V) are given. The mechanism of amylolysis is explicable on the basis of the simple laminated formulation of the structure of starch of Haworth et al. (A., 1937, II, 232) if it be assumed (i) that the impediment to the action of (I) is represented by the polymeric link which unites the unit chains; (ii) that the polymeric links are ruptured by an enzymic constituent of saliva and of malt α -amylase; and (iii) that the unit chains so liberated immediately recombine with the formation of new polymeric (1: 6- α -glucosidic) links with a different orientation of position on the respective chains. It is not necessary to postulate a complex, highly ramified structure for

amylopectin, such as that proposed by Meyer (A., 1940, II, 268), to explain the facts of amylolysis.

H. M. C.

III.—HOMOCYCLIC.

Cracking of cyclohexane; thermal and catalytic decomposition at high pressures.—See B., 1944, II, I.

Preparation and absorption spectra of five pure carotenoid pigments. F. P. Zscheile, J. W. White, jun., B. W. Beadle, and J. R. Roach (*Plant Physiol.*, 1942, 17, 331—346).—Methods of purifying a- and β -carotene, cryptoxanthol, luteol, and zeaxanthol are described, absorption spectra in the range 3800—5300 A. are determined. A. G. P.

Catalytic alkylation of aromatic hydrocarbons.—See B., 1944, 1, 4.

Production of benzylsulphonyl chlorides.—See B., 1944, II, 33.

Mechanism of inhibition of styrene polymerisation.—See A., 1944, I, 66.

Mechanism of addition polymerisation. Kinetics and elementary steps of polyreactions. Rate theory and some physical and chemical properties of high polymers.—See A., 1944, I, 65.

Exchange reactions of lithium phenyl. IV. Production of diphenyl from finorobenzene and lithium phenyl. G. Wittig, G. Pieper, and G. Fuhrmann (Ber., 1940, 73, [B], 1193—1197).—Under identical conditions LiPh reacts with PhI, PhBr, PhCl, and PhF in Et₂O to the extent of 5, 7, 5, and 75%, respectively. The greatly superior reactivity of PhF is due to the strongly electronegative nature of F which polarises the o-CH linking more strongly than the other halogens and thus facilitates replacement of H by Li. Entry of the metal polarises the C-F linking and thus increases the reactivity of F. Evidence in favour of this view is found in the production of o-C₆H₄Ph-CPh₂·OH (converted by AcOH into 9: 9-diphenylfluorene) by the action of COPh₂ on the product from PhF and LiPh. F appears superior to OMe in polarising action. In practice the change appears somewhat more complex and a scheme is discussed according to which it is impossible to obtain diphenyls in 100% yield from halogenobenzenes and LiPh or other metallic phenyl. With o- and p-C₆H₄Br₂ the production of diphenyls C_6H_4 Br₂ + LiPh \rightarrow LiBr + C_6H_4 Br is overshadowed by halogenmetal interchange, C_8H_4 Br·Br LiPh \rightarrow Li·C₆H₄Br + PhBr. In the reactions of PhF further evidence is found in favour of the view that alkali-org. compounds are intermediates in the elimination of HHal from AlkHal and alcoholic alkali, EtBr \rightarrow K·[CH₂]₂·Br \rightarrow CH₂·CH₂ + Br, and in displacements of the ethylenic linking, CH₂Ph·CH:CH₂ \rightarrow CHPhK·CH:CH₂ \rightarrow CHPhCHCHe₂.

Polymerisation of 1:2-dihydronaphthalene and polymer.—See B., 1944, II, 4.

Preparation of 1- and 2-methylnaphthalenes from tar oil fractions. II. 1-Methylnaphthalene.—See B., 1944, II, 1.

Preparation of 2:3-dinitronaphthalene and 3-nitro-2-naphthylamine. H. H. Hodgson and H. S. Turner (*J.C.S.*, 1944, 635—636).—3:1-NO₂·C₁₀H₆·NHAc is nitrated (HNO₃) to 2:3-dinitro-1-naphthylamine, m.p. 160—161°, deaminated to 2:3-C₁₀H₆(NO₂)₂, m.p. 169°. This is reduced to 3-nitro-2-naphthylamine, m.p. 86·5° (Ac derivative, m.p. 191·5—192·5°), by hydrated Na₂S. NN'-Di-toluenesulphonyl-1:4-naphthylenediamine, m.p. 249—250°, could not be nitrated and 2:3:1:4-(NO₂)₂C₆H₂(NH₂)₂ could not be deaminated. H. M. C.

Derivatives of sulphanilamide.—See B., 1944, III, 16, 17.

Complex formation and rearrangement of p-hydroxylaminobenzenesulphonamide. H. Burton and N. Walker (J.C.S., 1943, 656—657; cf. A., 1941, II, 220).—Confirmatory evidence is given that p-OH·NH·C₈H₄·SO₂·NH₂ (I), m.p. 140°, and p-NH₂·C₈H₄·CO₂·NH₂ (II) form a 2:1 complex (III), m.p. 161·5° (cf. Sevag, A., 1943, II, 158). (II) can be isolated after removal of (I) [as azoxybenzene-4:4′-disulphonamide (IV)] by air oxidation of (III) in dil. aq. NH₃ at room temp. After acetylating (III) by Ac₂O at room temp., the respective Ac derivatives of (I) and (II) are isolable (from MeOH). (III) is prepared from its components in H₂O. (I) and 5% aq. HCl or H₂SO₄ (in CO₂) at 100° (bath) give (IV) and p-NH₂·C₈H₄·OH (V); (III) similarly yields (IV), (V), and (II).

Derivatives of p-aminobenzenesulphonanilide.—See B., 1944, II, 4.

Preparation and properties of certain poly-sulphanilamide compounds. F. G. Mann and J. Watson (J.C.S., 1943, 606-609).—p-NHAc-C₆H₄·SO₂Cl (I) and 10% aq. NaOH, added successively in very small quantities to aq. C(CH₂·NH₃)₄ at $45-50^\circ$, at great dilution, give tetra-(p-acetamidobenzenesulphonamidomethyl)methane, m.p. $304-306^\circ$, hydrolysed by boiling dil. HCl to the (NH_2)₄-derivative, m.p. $243\cdot5-244^\circ$. Similarly, N([CH₂]·NH₂)₃ affords tri-(β -p-acetamidobenzenesulphonamidoethyl)amine, m.p. $198\cdot5-200\cdot5^\circ$ (softens at 115°), and thence tri-(β -sulphanilamidoethyl)amine, m.p. $178\cdot5-180^\circ$ (decomp.). The analogous sulphonamido-derivative

from N([CH₂]₃·NH_{*})₃ could not be prepared. OH·CH(CH_{*}·NH_{*})₂ gives, through the Ac_2 derivative, m.p. $232\cdot5-233\cdot5^\circ$, $\beta\gamma$ -di(sulphanilamido)isopropyl alcohol, m.p. $177-179^\circ$. NH₂·CH(CH₂·NH₂)₂ yields aby-tri(sulphanilamido)propane, m.p. $234\cdot5-236^\circ$ (decomp.) (softens at 220°) (Ac_3 derivative, m.p. $218\cdot5-220\cdot5^\circ$) N/·Di-amidoethyl)ethylenediamine, m.p. $290\cdot5-291\cdot5^\circ$, and thence the (NH₂)₄-derivative, m.p. $208-209^\circ$, are obtained from (CH₂·NH·[CH₂]₃·NH₂)₂ and (I) in C₅H₅N. No antimalarial activity is noted with the compounds.

p-Substituted benzenesulphonyldiguanides.—See B., 1944, II, 5.

Mechanism of the diazo-coupling reaction. II. Further evidence in favour of the polarisation theory. H. H. Hodgson and E. Marsden (J. Soc. Dyers and Col., 1944, 60, 16—19; cf. A., 1943, II, 8).— Examples are discussed of the decomp. of unstable equilibrium mixtures of diazonium and their isomeric diazo-compounds, whereby reactions of both types of compound could be simultaneously compared. Evidence is given supporting the theory developed previously (loc. cit.).

A. T. P.

Separation of phenols and alkylated products thereof.—See B., 1944, II, 5.

Synthesis of 5-hydroxyindane. (Miss) K. Paranjape, N. L. Phalnikar, and K. S. Nargund (J. Univ. Bombay, 1943, 12, A, Part 3, 66—67).—Addition of Et eyelopentylideneacetate and HCO₂Et to Na in Et₂O at 0° and then at room temp. gives unstable Et 2-formyl-cyclopentylideneacetate (semicarbazone, m.p. 201°), converted by CH₂(CO₂H)₂ in C₅H₅N containing a little piperidine at 100° followed by hydrolysis into cyclopentylideneacetic-2-β-acrylic acid, m.p. 62°, in 80% yield. This is converted by heating at 150° with Ba(OH)₂ followed by distillation at 180°/80 mm. into 5-keto-Δ⁴: '-dihydro-indane, b.p. 105°/20 mm., 140°/80 mm. (semicarbazone, m.p. 161°), more conveniently obtained by condensation of 2-formylcyclopentanone with COMe₂ and NaOEt in EtOH. It is converted by long contact with fuming HCl in a scaled tube at room temp. into 5-hydroxyindane, m.p. 55° (benzoate, m.p. 106—107°). H. W.

Halogenated 2: 2'-dihydroxydiphenylmethanes.—See B., 1944, II,

Dienestrol. G. I. Hobday and W. F. Short (J.C.S., 1943, 609—612).—a-Chloro-a-p-anisyl- Δ^a -propene, m.p. 43°, is obtained from anetholc dichloride (I) and boiling EtOH-NaOEt, or from p-OMe·C₈H₄·COEt (II) and PCl₅ at -5° , followed by aq. KOH-EtOH at room temp. β -Chloro-a-p-anisyl- Δ^a -propene (III), b.p. 135—136°/10 mm., is prepared from (I) and C₅H₅N at 100° (bath) or from anisylacetone and PCl₅. Crude (III) and boiling KOH-MeOH give a-p-anisyl- Δ^a -propinene (IV), b.p. 115—117°/9 mm. The structure of (III) is shown by ozonolysis in CHCl₃ to anisaldehyde (60%), and by the isolation of β -p-anisyl- α -methylacrylic acid (V) and a of (III) is shown by ozonolysis in CHCl₃ to anisaldehyde (60%), and by the isolation of β - ρ -anisyl- α -methylacrylic acid (\mathbf{V}) and a little $\alpha\delta$ -di- ρ -anisyl- $\beta\gamma$ -dimethyl- $\Delta\beta^{\gamma}$ -butadiene, m.p. 162°, from the products of the successive action of Mg and CO₂ in Et₂O. Anethole dibromide (\mathbf{V} I) and NPhMe₂ give β -(N-methylanilino)anethole, m.p. 116°; (\mathbf{IV}) is also probably formed. $\alpha\beta$ -Dibromo- β - ρ -anisylisobutyric acid and dil. aq. NaOH afford β -bromo- α - ρ -anisyl- $\Delta\alpha$ -propene (\mathbf{V} II), b.p. 130—132°/6 mm. (not the α -Br-derivative, as stated by Balaban et al., B.P. 547,027; B., 1942, III, 246), also obtained from (\mathbf{V} I) and boiling 1·7n-KOH-EtOH. (\mathbf{V} II) gives a Grignard reagent, which when carbonated at -10° yields (\mathbf{V}). (\mathbf{V} II) and Mg give $\alpha\delta$ -di- β -anisyl- $\beta\gamma$ -dimethyl- $\Delta\beta\gamma$ -butadiene, m.p. 163° [ozonolysis products anisaldehyde (73%) and some Ac₂], reduced (H_2 -Pd-C-COMe₂) to some $\alpha\delta$ -di- β -anisyl- $\beta\gamma$ -dimethylbutane, m.p. 68—69°; the latter is also obtained from β -chloro- α - β -anisylpropane and Mg in latter is also obtained from β -chloro-a-p-anisylpropane and Mg in bolling Et₂O. γδ-Di-p-hydroxyphenylhexane-γδ-diol, m.p. 204—206°, gives a dibenzoate, m.p. 235—236°, and di-p-toluenesulphonate, m.p. 205°. γδ-Di-p-anisylhexane-γδ-diol, m.p. 194° [Ac₂O-AcCl give mainly γy-di-p-anisylhexan-δ-one (see below)], is also obtained from (II)-HgCl₂-Et₂O-Mg-C₆H₆, or by electrolysis of (II) in aq. NaOH-EtOH, or from propionoin and SeO₂ (distil slowly), and treatment of the resulting dipropionyl with p-OMe·C₆H₄MgBr. A second form (VIII) (isopinacol), m.p. 94-95°, of γδ-di-p-hydroxyphenyl-hexane-γδ-diol is obtained as by-product on electrolytic reduction of p-OH·C₆H₄·COEt, or by electrolytic reduction of p-benzoyloxy-propiophenone, m.p. 117°, in aq. NaOH-dioxan. Benzoylation of (VIII) yields probably its dibenzoate, readily converted into γγ-di-p-benzoyloxyphenylhexan-δ-one, m.p. 178°. (VIII) and warm AcOH or mineral acid give γγ-di-p-hydroxyphenylhexan-δ-one, m.p. 136°, which does not form CO-derivatives, but affords a diacetate, m.p. 91—92°, and a liquid Me₂ ether reducible by Na-C₅H₁₁·OH to stillbostrol Me, ether: with NOH at 200° it for its diacetate) gives stilbæstrol Me₂ ether; with KOH at 200°, it (or its diacetate) gives (probably) $a\alpha$ -di-p-hydroxyphenylpropane, m.p. 134° (Me₂ ether, m.p. 44°). (IV) and HBr-C₈H₆ at 0° (whence α -bromo- α -p-anisyl- Δ ^{α}-propene; cf. Balaban, loc. cit.), followed by Mg and then CuCl₂, aford anethole, (?) (IV), and a resin; demethylation (MgMeI) of the last gives a little dienestrol (IX), m.p. $230-233^{\circ}$ [$(CH_2Ph)_2$ ether, m.p. 205° ; di-p-toluenesulphonate, m.p. 168° ; dibenzoate, m.p. 224°]. Some Me_1 ether (X), m.p. 142° , is obtained from (IX) and CH_2N_2 at room temp., whereas Me_2SO_4 (4 mols.) in N-NaOH yields (X) (73%) and the Me_2 ether (XI), m.p. $130-131^{\circ}$, also prepared

[29% of (X) + 30% of (XI)] using MeI in boiling KOH-EtOH. Ozonolysis of (XI) in AcOH gives anisil (16%), converted into 2:3-di-p-anisylquinoxaline, m.p. 149—150°. (X) or (XI) is demethylated to (IX) by MgMeI, but gives an isomeride, isodienæstrol (XII), m.p. 189°, with EtOH-KOH at 220°. (XII) is reduced (Pd-C) to a 2:1 mixture of hexcestrol and isohexcestrol, and the liquid Me₂ ether of (XII) similarly yields (mainly) hexcestrol Me₂ ether. (IX) and (XII) are probably stereoisomerides. A. T. P.

Fluorescence of vitamin-A. H. Sobotka, (Miss) S. Kann, and E. Loewenstein (J. Amer. Chem. Soc., 1943, 65, 1959—1961).—The intensity of fluorescence of higher fatty acid esters of vitamin-A or its acetate in Et₂O, CHCl₃, or C₆H₆ rapidly decreases slightly but later only slowly; the "steady" val. is approx. & concn. in the range 0·1—5·0 i.u. per ml. (cf. C., 1944, Part 1). In EtOH, however, there is a rapid great initial increase, followed by a slightly slower, but still rapid, decrease, finally to extinction. The highest val. obtained is increased by increasing the intensity of illumination. Cessation of illumination during the decrease gives after its resumption the same val. and the same rate of subsequent decline. The rate of decline is lowered by flushing with CO₂ or N₂. Vitamin-A₂ esters show the same phenomena, but cryst. -A itself shows only an immediate decline. Adding C₆H₆ to -A esters in MeOH, EtOH, or BuβOH is without effect until with 65—70% of C₆H₆ a sudden complete change to the non-polar solvent behaviour occurs.

R. S. C. Conversion of lutein in a boric acid—naphthalene melt. I. L. Zechmeister and J. W. Sease (J. Amer. Chem. Soc., 1943, 65, 1951—1955).—Chromatography of lutein (prep. from Tagetes extract described) which has been heated at 140° in C₁₀H₈-H₄BO₃ yields deoxylutein-I (3—4%), m.p. 149° (corr.; in CO₂; block) [acetate, m.p. 139° (corr.)], -II (10%), m.p. 156·5—158° (corr.) after softening [acetate, softens 139°, m.p. 141° (corr.)], and -III (3—4%), m.p. 162° (corr.) after softening. All are C₄₀H₅₆O (±H₂), have no vitamin-A activity (rats), contain 11 C.C and an esterifiable OH, resemble cryptoxanthin on partition, and undergo isomerisation by I, developing cis-peaks. Photomicrographs are given. -II and -III are brownish-orange, -I is redder. Absorption spectra of -II and -III are similar, showing several peaks, but -I shows only one peak (at 494 mµ.). Only 10 C.C are conjugated in -II and -III. Structural possibilities are discussed.

cyclo Alkanyl peroxides.—See B., 1944, II, 34.

Chlorination product of benzyl thiocyanate. B. Holmberg (Arhiv Kemi, Min., Geol., 1943, 16, B, No. 12, 3 pp.).—Slow (2—3 hr.) chlorination of CH₂Ph·CNS in H₂O suspension at 0° gives benzylsulphinyl cyanide (I), m.p. 81—82°; CH₂Ph·SO₂H (II) (identified by reaction with CH₂·CH-CO₂H to CH₂Ph·SO₂·[CH₂]·CO₂H) is formed in small amount only, by hydrolysis of (I) (cf. Johnson et al., A., 1939, II, 498). (I) is rapidly hydrolysed to (II) by dil. NaOH.

Mercapturic acids. I. Synthesis of phenyl-l-cysteine and l-phenylmercapturic acid. S. H. Zbarsky and L. Young (J. Biol. Chem., 1943, 151, 211—215).—Treatment of l-cystine in 1·5n-H₂SO₄ at 100° with Zn dust with occasional additions of mossy Zn and of the filtrate with an aq. suspension of Cu₂O leads to cysteine Cu¹ mercaptide, converted by PhN₂·HSO₄ into phenyl-l-cysteine (I), decomp. 170—172°, [a]²⁵ +11° in 0·1n-NaOH; (I) is also obtained by debromination (Na-Hg at room temp.) of p-bromophenyl-l-cysteine. l-Phenylmercapturic acid, m.p. 142°, [a]²⁷ —23° in EtOH, is obtained by decomp. the product of the interaction of PhN₂Cl and acetylcysteine with Cu powder, by treatment of (I) with Ac₂O and n-NaOH at 0°, and by debromination of p-bromophenylmercapturic acid by Na-Hg.

Mechanism of chemical reactions. VII. Significance of molecular compounds in catalytic hydrogenations. III. Hydrogenation of mandelic acid and mandelic esters. K. Kindler and D. Kwok (Annalen, 1943, 554, 9—15; cf. A., 1934, 879; 1935, 1362).— Catalytic hydrogenation (Pd sponge) of OH·CHPh·CO₂H (I) in AcOH containing $\rm H_2SO_4$ proceeds rapidly at room temp., giving $\rm CH_2Ph\cdot CO_2H$ in 90% yield. In absence of $\rm H_2SO_4$ hydrogenation occurs very slowly or not at all and ceases after absorption of ~15% of the theoretical quantity of the gas. The action is ascribed in part

to the formation of mol. compounds HX ·OH·CHPh·C(OH):O···HX in which the asterisked atoms are so extensively saturated that the reductive removal of the greatly loosened alcoholic OH proceeds more readily than in (I), and in part to the production of esters CHPhX·CO₂H in which X is more readily removable than the OH of (I). HClO₄ has the same effect. Similarly OH·CHPh·CO₂Et (II) is not hydrogenated in AcOH alone but in presence of H₂SO₄ or HClO₄ gives CH₂Ph·CO₂Et in ~85% yield. At 100°, (II) rapidly absorbs H₂ even in absence of H₂SO₄ or HClO₄; reaction ceases after absorption of 4 H₂ with production of Et cyclohexylacetate (III); if the change is interrupted after absorption of 1 H₂ the products are CH₂Ph·CO₂Et (~90%) with traces of (III), the OH being reduced more rapidly than the ring. This difference in reactivity is much less when OAlk or Alk is substituted in the

nucleus. Thus Et p-cthylmandelate is converted by partial hydrogenation at 100° into a difficultly separable mixture of unchanged material, Et 4-ethyl*cyclo*hexylacetate, and a little $p\cdot C_0H_4$ Et·CH $_2$ ·CO $_2$ Et. The rate of hydrogenation of (I) in presence of H_2SO_4 or $HClO_4$ diminishes with diminished concn. of mineral acid and also with increasing H_2O content of the mixture. $ZnCl_2$ -HCl can replace H_2SO_4 or $HClO_4$. H. W.

High-pressure catalytic hydrogenation. I. Partial hydrogenation of diphenylacetic acid. A. Sandoval L. (Ciencia, 1943, 4, 107—108).—OAc·CPh₂·CO₂Me is hydrogenated (Raney Ni) to CHPh₂·CO₂Me and thence to Me cyclohexylphenylacetate. F. R. G.

a-Chlorodiphenylacetic acid and its derivatives. S. A. Setlur, A. N. Kothare, and V. V. Nadkarny (J. Univ. Bombay, 1943, 12, A. Part 3, 68—70).—CPh₂Cl·CO₂H (I) is converted by the requisite NaOAlk into α-methoxy-, m.p. 100°, and α-ethoxy-, m.p. 114°, -diphenylacetic acid. With (NH₄)₂CO₃ and conc. aq. NH₃ at 100° (I) gives a small proportion of α-anninodiphenylacetic acid, m.p. 245°, but much OH·CPh_{*}·CO₂H is produced. With the respective amine in C₆H₈ at 100° (I) yields α-benzylamino-, m.p. 211° (decomp.), α-o-toluidino-, m.p. 160° (decomp.), α-m-toluidino-, m.p. 165° (decomp.), a-m-nitroanilino-, α-o-carboxyanilino-, m.p. 193° (decomp.), and α-piperidino-, m.p. 180° (decomp.), -diphenylacetic acid. Almost all the anilinodiphenylacetic acids are rapidly hydrolysed by conc. H₂SO₄, which gives a blood-red colour [as with (I)] on warming or keeping for some time.

Synthetic anthelmintics. VII, VIII. Compounds related to desmotroposantonin. (Miss) K. Paranjape, N. L. Phalnikar, and K. S. Nargund (J. Univ. Bombay, 1943, 12, A, Part 3, 60—63).—VII. 1-Keto-7-methoxy-1:2:3:4-tetrahydronaphthalene (I), CHMeBr·CO₂Et, and Zn turnings in boiling PhMe yield Et a-1-hydroxy-7-methoxy-1:2:3:4-tetrahydro-1-naphthylpropionate, b.p. 185°/25 mm., converted by P₂O₃ in C₆H₆ at 100° into Et a-7-methoxy-3:4-dihydro-1-naphthylpropionate, b.p. 175°/25 mm. The corresponding acid, b.p. 215°/25 mm., is transformed by the protracted action of 60% H₂SO₄ at room temp. into a-2-hydroxy-7-methoxy-1:2:3:4-tetrahydro-1-naphthylpropionalactone, b.p. 210°/25 mm., demethylated (HBr in AcOH) to a-2:7-dihydroxy-1:2:3:4-tetrahydro-1-naphthylpropionalactone, b.p. 240°/25 mm.

demethylated (HBr in AcOH) to a-2:7-dihydroxy-1:2:3:4-tetrahydro-1-naphthylpropionolactone, b.p. 240°/25 mm.

VIII. (I), Me₂C₂O₄, and McOH-NaOMe give Me 1-keto-7-methoxy-1:2:3:4-tetrahydro-2-naphthylglyoxylate, m.p. 57° (semicarbazone, m.p. 225°), which at 150—180° followed by distillation affords Me 1-keto-7-methoxy-1:2:3:4-tetrahydronaphthalene-2-carboxylate, b.p. 205°/70 mm., m.p. 57·5° (violet colour with FeCl₃). This with Na and CH₂Br:CO₂Et gives Et 1-keto-2-carbomethoxy-7-methoxy-1:2:3:4-tetrahydro-2-naphthylacetate, m.p. 61°, which could not be hydrolysed under any conditions. (I) and Br in CS₂ afford 2-bromo-1-keto-1-methoxy-1:2:3:4-tetrahydronaphthalene (II), m.p. 48°. (I) is converted by successive treatments with NaNH₂ in boiling Et₂O and CH₂Br·CO₂Et followed by hydrolysis into 1-keto-7-methoxy-1:2:3:4-tetrahydro-2-naphthylacetic acid (III), m.p. 88°. (II) and CHNa(CO₂Et)₂ in boiling C₃H₆ afford Et₂ 1-keto-7-methoxy-1:2:3:4-tetrahydro-2-naphthylmalonate, which on acid hydrolysis yields (III) and is reduced by Al(OPrβ)₃ in boiling PrβOH and then hydrolysed to 1-kydroxy-7-methoxy-1:2:3:4-tetrahydro-2-naphthylacetic acid, m.p. 88°; this is converted at 100° into the corresponding lactone, m.p. 76°, demethylated to 1:7-dihydroxy-1:2:3:4-tetrahydro-2-naphthylmalonate, which gives a-1-keto-, m.p. 91°, and a-1-hydroxy-7-methoxy-1:2:3:4-tetrahydro-2-naphthylpropionic acid, m.p. 77°; the corresponding lactone, m.p. 83°, is demethylated to a-1:7-dihydroxy-1:2:3:4-tetrahydro-2-naphthylpropionic acid, m.p. 77°; the corresponding lactone, m.p. 83°, is demethylated to a-1:7-dihydroxy-1:2:3:4-tetrahydro-2-naphthylpropionic acid, m.p. 77°; the corresponding lactone, m.p. 83°, is demethylated to a-1:7-dihydroxy-1:2:3:4-tetrahydro-2-naphthylpropionolactone, m.p. 112°.

Electrolytic reduction of p-nitro- to p-amino-benzoic acid. P. H. Ravenscroft, R. W. Lewis, and O. W. Brown (Trans. Electrochem. Soc., 1943, 84, Preprint 2, 11—17).—p-NO₂·C₆H₄·CO₂H (I) is reduced to p-NH₂·C₆H₄·CO₂H (II) in yields of 98—98·5% using, e.g., a Sn cathode, a catholyte consisting of 500, c.c. of 14·1 wt.-% HCl, 5 g. of (I), 3—5 g. of SnCl₂,2H₂O, and a c.d. of 8 amp. per sq. dm. at 10°. Tenip., acid conci., and c.d. must be controlled so that Sn^{**} ons remain in solution until sufficient current to reduce (I) has passed. With a Pb cathode at 70°, a c.d. of 6 amp. per sq. dm., a catholyte consisting of 500 c.c. of 8·7 wt.-% HCl, and 5 g. of (I) ½—95% yields of (II) were obtained. (II) was separated by neutralisation of its hydrochloride with NaOH to the isoelectric point.

Electrolytic reduction of aromatic trinitro-compounds to triamines by use of a carrier catalyst. R. W. Lewis and O. W. Brown (Trans. Electrochem. Soc., 1943, 84, Preprint 1, 1—9).—A SnCl₂ carrier-catalyst was employed in the electrolytic reduction of 1:2:4:6-C₆H₂R(NO₂)₃ (I) (R = CO₂H, OH, Me) to the C₆H₂R(NH₂)₃ (II). The method has several advantages over the method using a Pb cathode. The best conditions for complete reduction to (II) are: a Sn cathode, a catholyte (total vol. 500 c.c.) of 1:1 (vol.) HCl containing respectively 3.95, 4.43, or 4.47 g. of SnCl₂,2H₂O, and (usually) 5 g. of (I), a c.d. of 7—8 amp. per sq. dm., and a temp.

of 35°. Yields and current efficiencies under these conditions are 93—97%. To obtain high yields of (II) temp., acid concn. of the catholyte, and c.d. must be controlled so that the Sn" ions remain in solution until sufficient current to reduce (I) has passed. The 'Sn" ions are mainly responsible for the reduction. H. Sch.

Electrolytic reduction of cinnamic acid. New preparative method for βγ-diphenyladipic acid. C. L. Wilson and K. B. Wilson (Trans. Electrochem. Soc., 1943, 84, Preprint 4, 25—35; cf. B., 1943, II, 276).—Reduction of CHPh:CH·CO₂H (I) at a Hg cathode in aq. H₂SO₄ in presence of a H₂O-sol. org. solvent (e.g., EtOH) gives <10% of Ph·[CH₂]₂·CO₂H, ~45% (55% under most favourable conditions) of a ~1:1 mixture of meso- (II) (Me. ester, m.p. 166—168°) and dl- (III) -(CHPh·CH₂·CO₂H)₂, and ~45% of a partly reduced polymer (IV) which seems to be formed by union of 2 or more mols. of (I) with reduction of some of the CO₂H groups. The yield of (II) + (III) is not materially altered when (I) is replaced by its Et ester, and is highest when OH·[CH₂]₂·OEt and NMe₂·CHO are added to the catholyte. (IV), readily separated by its solubility in cold Ce₆H₆, is a viscous liquid, equiv. ~300 [i.e., 1 CO₂H to 2 mols. of (I)]. With 85% H.SO₄ at 100°, (II) and (III) give the known trans- and cts-diketohexahydrochrysene, respectively. Similar reduction of o-Ce₆H₄Cl·CH:CH·CO₂H gives βγ-di-o-chlorophenyladipic acid, forms, fl.p. 301—307° and 197—200°. p-OMe·Ce₆H₄·CH:CH·CO₂H affords dianisyladipic acids, m.p. 257—258° and 178—180°. Reduction of o-CN·Ce₆H₄·CH:CH·CO₂H in presence of 30% H₂SO₄ gives (probably) di(cyanophenyl)adipic acid, m.p. 310—314° (decomp.), and (probably) β-o-carbanylphenylpropionic acid (V), m.p. 173—174°. In 25% H₂SO₄ only (V), m.p. 176—178°, is formed. 10% NaOH converts (V) at 100° into β-o-carboxyphenylpropionic acid. The viscous reduction product of m-OH·Ce₇H₄·CH:CH·CO₂H gives after methylation mixed di-mansyladipic acids (form, m.p. 247—250°, isolable). H. Sch.

Addition of maleic anhydrides to substituted styrenes. M. Lora Tamayo (Anal. fis. quim., 1943, 39, 209—214).—Differences between the adduct of (:CH·CO)₂O and anethole previously obtained (A., 1941, II, 134) and that of Hudson and Robinson (A., 1942, II, 53) are attributed to differences in experimental conditions.

Condensation of n-alkylsuccinic anhydrides with anisole. S. U. Mehta, K. V. Bokil, and K. S. Nargund (J. Univ. Bombay, 1943, 12. A, Part 3, 64—65).—Anhyd. AlCl₃ is added gradually to a mixture of the n-alkylsuccinic anhydride and PhOMe in PhNO₂ at \$\pm\$40°; after 4 hr. at room temp. the mixture is decomposed with ice and HCl. Thus are obtained: a-p-methoxyphenacyl-propionic acid, m.p. 141° (Me, b.p. 173—180°/18 mm., and Et, b.p. 190°/30 mm., ester), -butyric acid, m.p. 108—109° (semicarbazone, m.p. 155°; Me ester, m.p. 56—57°), -valeric acid, m.p. 88—89° (semicarbazone, m.p. 145°), -heptoic acid, m.p. 80° (semicarbazone, m.p. 135°; Me ester, m.p. 41—42°), -octoic acid, m.p. 92° (semicarbazone, m.p. 142°), -hexadecoic acid, m.p. 99—100° (does not form a semicarbazone; Me ester, m.p. 45°), and -octadecoic acid, m.p. 86° (semicarbazone, m.p. 170—171°; Me, m.p. 38—39°, and Et, m.p. 41—42°, ester).

Preparation of derivatives of 2:2-dialkylcyclohexanone. A. J. Birch (J.C.S., 1943, 661—662; cf. Johnson, A., 1943, II, 330).—2-Methylcyclohexanone, piperonal (I), and EtOH-NaOEt at room temp. for 4 days afford 6-piperonylidene-2-methylcyclohexanone, m.p. 74—75°, converted by NaNH₂ in boiling PhMe, followed by MeI, into 6-piperonylidene-2:2-dimethylcyclohexanone, m.p. 67° [also obtained from 2:2-dimethylcyclohexanone and NaNH₂ in boiling C₆H₆ followed by (I)], or by NaNH₂-C₆H₆, then EtI, into 6-piperonylidene-2-methyl-2-ethylcyclohexanone, m.p. 60—61°. A. T. P.

Condensation of ethylene oxide with cyclic β -keto-esters.—See A., 1944, II, 70.

Ionone. I. Cleavage of ethyl ionylideneacetate. H. Sobotka, (Miss) E. Bloch, and D. Glick (J. Amer. Chem. Soc., 1943, 65, 1961—1963).—a- and β-Ionone give, by the method of Karrer et al. (A., 1932, 852; 1933, 605), probably the same Et ionylideneacetate, b.p. 155°/1 mm., which, by distillation of the derived Ba salt with (HCO₂)₂Ba and SiO₂ or soft glass at 150°/2 mm., gives a-ionone (2:4-dinitrophenyl-, m.p. 143°, and p-chlorobenzoyl-hydrazone, m.p. 214—215°; phenylsemicarbazone, m.p. 183—184°) (cf. Heilbron et al., A., 1935, 978; 1936, 983). β-Ionone-2:4-dinitrophenyl-, m.p. 125—127°, and -p-chlorobenzoyl-hydrazone, m.p. 218—219°, and -phenylsemicarbazone, m.p. 160—162°, are described.

R. S. C.

Electrolytic production of benzoquinone and quinol.—See B., 1944,

IV.—STEROLS AND STEROID SAPOGENINS.

Water-soluble derivatives of vitamin-D.—See B., 1944, III, 19.

Minor sterols of yeast. XII. Hydrogenation of sterols. H. Wieland and W. Benend [with, in part, F. Rath] (Annalen, 1943, 554, 1—8).—Further evidence is adduced in favour of the view that

catalytic hydrogenation of poly-unsaturated sterols occurs in such a manner that the saturation of reactive double linkings is accompanied by a displacement of the inert double linking also present. This retains its passive character and is displaced from $\Delta^{7:8}$, $\Delta^{8:9}$, or $\Delta^{9:11}$ to $\Delta^{3:14}$. *soDehydrocholesterol is hydrogenated (Pt in AcOH) to a-cholestenol, m.p. 119—120° (acetate, m.p. 77—78°), also obtained in presence of Pd+C in EtOAc, whereas with Pt in EtOAc the product is 8-cholestenol, m.p. 120°, [a] 30 +11° (acetate, m.p. 107—108°, [a] 30 +12·5°). 7-Dehydrocholesteryl benzoate is hydrogenated (Pt in EtOAc) to γ -cholesteryl benzoate is hydrogenated (Pt in EtOAc) to γ -cholesteryl benzoate. m.p. 157°, clear at 176°. Ergosteryl benzoate (I) is hydrogenated (PtO₂ in EtOAc) to γ -ergostenyl benzoate (II), m.p. 179°, [a] 10 0 ±0°, hydrolysed (KOH-MeOH) to γ -ergostenol (III), m.p. 148°, [a] 20 0 ±0° (Pt in EtOAc) of γ -ergosteryl acetate]; under somewhat different conditions (I) is converted (PtO₂ in EtOAc) into γ -dihydroergosteryl benzoate (IV), m.p. 193—195°, [a] 30 0 —8° in CHCl₃, hydrolysed to γ -dihydroergosterol (V), m.p. 173—175°, [a] 30 0 —21° in CHCl₃ (acetate, m.p. 180—181°, [a] 10 0 —21° in CHCl₃. (V) is hydrogenated (Pt in EtOAc) to (III), m.p. 145—146°, also obtained by use of Na. in EtOH; similarly (IV) is hydrogenated to (II). The transition of ascosterol into fæcosterol appears exceptional.

Sterol group. XLV. Investigation of the homogeneity of sitosterol by oxidation with the Oppenauer reagent. D. H. R. Barton and E. R. H. Jones (J.C.S., 1943, 599—602; cf. A., 1942, II, 286).— Oppenauer oxidation, followed by chromatographic analysis of the ketones, is of great val. for examining the homogeneity of sitosterols, and in particular for determining the approx. proportion of sitostanol. It provides a convenient criterion of purity and may be generally applicable in the steroid series. Tall-öl sitosterol (I), m.p. 137—138°, after oxidation (Oppenauer) and chromatographic analysis (large columns; adsorbent; adsorbate: 100:1) thus affords 66% of sitostenones, mainly Δ^4 . β -sitostenone (II), new m.p. 88° [oxime, m.p. 175.5°; semicarbazone, m.p. 250° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 253° (decomp.)], and a little of a closely-related sitostenone, m.p. 86°; 3·2% of unidentified ketone (II) (mainly $\alpha\beta$ -unsaturated), m.p. ~115°, and 3·8% of unoxidised (I) are also isolated. Similar treatment of sitosterol (IV), m.p. 137—138°, from wheat-germ oil gives sitostenones (69·5%) [mainly (II)], triacontane (0·3%) [also isolable from (IV)], (III) (1·8%), and recovered (IV) (1·5%). The small amount of sitostanol present in (I) and (IV) is oxidised to sitostanone, m.p. 157° [2:4-dinitrophenylhydrazone, m.p. 223° (decomp.)] [2·5% or 5·9% from (I) or (IV), respectively].

β-Cholesterol oxide. R. A. Baxter and F. S. Spring (J.C.S., 1943, 613—615).—Oxidation [BzO₂H or o-CO₂H·C₆H₄·CO₃H (cf. Chakravorty et al., A., 1943, II, 58)] of cholesteryl benzoate gives a mixture of the a-benzoate oxide, m.p. 168— 169° , and "aβ-cholesteryl benzoate oxide" (I), m.p. 150— 151° , [a]_p +3·6° (all vals. in CHCl₃) (previously described as the β-derivative; A., 1939, II, 477). (I) is hydrolysed to "aβ-cholesterol oxide" (II), m.p. 107— 108° , [a]_p -15° (previously described by many investigators as the β-oxide), and the suggestion of Hattori (J. Pharm. Soc. Japan, 1940, 60, 334) that it is a 1:1 mixed crystal of a-cholesterol oxide (III) and β-cholesterol oxide (IV) is confirmed; (IV), m.p. 131— 132° , [a]_p -11·5° [acetate (V), m.p. 111° , [a]_p ±0°; benzoate (VI), m.p. 172— 173° , [a]_p +16°], identical with the (IV), m.p. 136° , of Hattori, is isolated from the mother-liquors of (II). (II) can be prepared from equal parts of (III) and (IV) in MeOH. Vals. of [a] indicate that (I) is a 1:2 mixed crystal of the a-benzoate oxide and (VI). Fission of (III) and its derivatives with HCl affords solely chlorohydrins of type A. Fission of (II) and its derivatives is more complicated. (II) or (I) and BzCl-C₈H₈N at 100° (bath) give

5-chloro-3: 6-dibenzoyloxycholestane, m.p. 183—184° (type B; R=R'=Bz); with (II), some 6-chloro-5-hydroxy-3-benzoyloxycholestane (A; R=Bz) is also formed. In contrast to the results of Chakravorty et al. (loc. cit.), $\alpha\beta$ -cholesteryl acetate oxide (VII) affords 5-chloro-6-benzoyloxy-3-acetoxycholestane (VIII), m.p. 176°, $[a]_D^{22}$ —75·8°, and a little 6-chloro-5-hydroxy-3-acetoxycholestane (IX), m.p. 186—187°. (VII) and HCl in CHCl, affords 5-chloro-6-hydroxy-3-acetoxycholestane (X), new m.p. 190—191° (cf. Hattori) (B: R=Ac, R'=H), and (IX), whereas interaction with HCl-EtOH gives 5-chloro-3: 6-dihydroxycholestane, m.p. 171°, $[a]_D^{19}$ —22·5° (B; R=R'=H), the latter being formed also from (II) and HCl in CHCl, or EtOH. Fission of (IV) and its derivatives affords chlorohydrins of type B in ~90% yield. With $BzCl-C_5H_5N$, (VI) gives 5-chloro-3: 6-dibenzoylcholestane, and (V) yields (VIII). With HCl in CHCl₃. (V) gives (X).

Œstradiol derivatives.—See B., 1944, III, 17.

Steroid ketones.—See B., 1944, III, 17, 18.

Sterol group. XLVI. Isolation of a new form of Δ^4 -cholestenone. D. H. R. Barton and E. R. H. Jones (J.C.S., 1943, 602—603; cf., A., 1942, II, 286).—Oppenauer oxidation of cholesterol and careful chromatographic analysis of the product gives Δ^4 -cholestenone in two interconvertible forms, m.p. 88° and 82°, both [a]_D +92·2° in CHCl₃ (cf. lit.), which afford the same semicarbazone and 2:4-dinitrophenylhydrazone. Vals. of [a] and light-absorption intensities of both forms are slightly > those previously recorded.

A. T. P.

VI.—HETEROCYCLIC.

Derivatives of furfuraldehyde; determination of their physicochemical constants. H. Paillard and R. Szasz (Helv. Chim. Acta, 1943, 26; 1856—1861).—Appreciable amounts of tetrahydrofurfuraldehyde (I) are not obtained from tetrahydrofurfuryl alcohol (II) by catalytic dehydrogenation (Bouveault) at 270—450°, by oxidation by air in xylene containing quinoline, m-C₆H₄(NO₂)₂, or finely-divided Cu, by SeO₂ or N₂O₄, by CrO₃, by O₃, or by electrolytic oxidation. Treatment of tetrahydrofurfuryl chloride, b.p. 149—150°/720 mm., with Pb(NO₃)₂ or hydrolysis of tetrahydrofurfurylidene chloride.does not afford (I). (II) is converted by Na and the requisite alkyl halide into tetrahydrofurfuryl isobutyl, b.p. 65—67°/8 mm., n-amyl, b.p. 89—91°/12 mm., n-heptyl, b.p. 122—124°/12 mm., n-octyl, b.p. 139—142°/12 mm., phenyl-n-propyl, b.p. 165—167°/12 mm., and cinnamyl, b.p. 182—183°/13 mm., ether. (II), Na, and PrβBr afford propylene whilst resins are derived from NaOPrβ and tetrahydrofurfuryl bromide. d, n, surface tension, parachor, and dielectric const. are recorded for the ethers.

Condensation of phenols with aβ-unsaturated aldehydes. E. Adler and S. Tingstam (Arkiv Kemi, Min., Geol., 1943, 16, B, No. 18, 7 pp.).

—Addition of CH₂:CH·CHO (1 mol.) slowly (15 hr.) to o-4-xylenol (I) in glacial AcOH at 5° in presence of a trace of HCl yields an alkali-insol. compound, m.p. 185° (not investigated further), and 1-(2':4'-dimethylphenoxy)-2:4:6-trimethyl-1:2-dihydrobenzjuran (II), m.p. 89°. The constitution of (II) follows from its insolubility in alkali, stability to Ac₂O-C₅H₅N, Br, and KMnO₄, and its conversion on Zn-dust distillation into (I) and 2:4:6-trimethylbenzfuran (III). (II) with hot conc. HBr-AcOH yields (I), much resin, and traces of (probably) (III).

Synthesis of cantharidin. (Miss) K. Paranjape, N. L. Phalnikar, B. V. Bhide, and K. S. Nargund (Current Sci., 1943, 12, 256—257).—CMeAcNa·CO₂Et and I afford Et₂ aa′-diacetyl-aa′-dimethylsuccinate, which is brominated and then converted by mol. Ag into Et₃ 3:6-diketo-1:2-dimethylcyclohexane-1:2-dicarboxylate (I). Clemmensen reduction of (I) followed by hydrolysis affords deoxycantharidin. Reduction of (I) by Al(OPrβ)₃ followed by etherification and hydrolysis by H₂SO₄ yields cantharidin, m.p. 217°, identical with a sample obtained from Mylabris pustulata (cf. Woodward et al., A., 1942, II, 142). No experimental details are given.

Steric isomerides of a-tocopherol. P. Karrer and H. Rentschler (Helv. Chim. Acta, 1943, 26, 1750—1758).—(—)-Phytyl bromide and trimethylquinol (I) afford [C₍₂₎-dl, C*₍₈₎C*₍₉₎-l]-a-tocopherol (II), which is sterically homogeneous at C₍₈₎ and possibly at C₍₉₎ but racemic at C₍₂₎. It gives an allophanate, m.p. 192°, and a non-cryst. acetate. Attempted resolution of (II) by means of 3-bromo-d-camphor-7'-sulphonyl chloride does not give decisive results. The compound obtained from (I) and natural d-phytol is possibly optically homogeneous with respect to C₍₈₎ and C₍₉₎ and racemic with respect to C₍₂₎, and hence is designated [C*₍₂₎dl, C*₍₈₎C*₍₆₎-d]-a-tocopherol (II) and synthetic dl-phytol is racemic with respect to all three asymmetric C and hence is termed [C*₍₂₎dl, C*₍₈₎C*₍₆₎-dl]-a-tocopherol (III). Optical activity cannot be detected in (I) and (II) or its acetate and no differences are observed in the m.p. of the allophanates, dinitrobenzoates, and p-nitrophenyl-urethanes of (I), (II), and (III). The physiological activities of (I), (II), (III), and natural a-tocopherol (IV) are identical within the limits of experimental error. The sole marked difference between the physical properties of (IV) and (II, (II), and (III) is the m.p. of the allophanate (161—162° and 172—173° respectively). Reply is made to John (A., 1942, II, 421).

Halogenated 1:3-dioxans.—See B., 1944, II, 6.

Dioxan derivatives.—See B., 1944, II, 35.

Ethyl 4-phenyl-1-methylpiperidine-4-carboxylate.—See B., 1944, II. 35.

2:4-Diarylpyrroles. I. Synthesis of 2:4-diarylpyrroles and 2:2':4:4'-tetra-arylazadipyrromethines. III. Methines. III. 3-Amino-2:4-diphenylpyrrole. M. A. T. Rogers (J.C.S., 1943, 590—596, 596—597, 598—599).—I. γ-Nitro-β-phenylbutyrophenone with HCO₂NH₄ at 180—190° gives some 2:4-diphenylpyrrole (I). m.p. 178—179°, and 2:2':4:4'-tetraphenylazadipyrromethine (II), m.p. 287—288°, a deep blue substance containing a new chromo-

phoric system. Compounds similarly prepared are: 2:2'-diphenyl-4:4'-di-(m-nitrophenyl)-, m.p. 330°, from γ-nitro-β-(m-nitrophenyl)-butyrophenone, m.p. 74—77°; -(m-hydroxyphenyl)-, m.p. 304—306°, from γ-nitro-β-(m-hydroxyphenyl)butyrophenone, m.p. 96—98°; -(p-dimethylaminophenyl)-, m.p. 276—278° (dimethiodide), from γ-nitro-β-(p-dimethylaminophenyl)-, m.p. 276—278° (dimethiodide), from γ-nitro-β-(p-dimethylaminophenyl)-, m.p. 276—278° (dimethiodide), from γ-nitro-β-(p-dimethylaminophenyl)-, m.p. 270°, from p. 114—115° (αxime, m.p. 121—123°); -(3:4-methylenedioxyphenyl)-, m.p. 258—259°; and -(p-acetanidophenyl)-, m.p. -370°, from β-benzoyl-α-(p-acetanidophenyl)propionitrile, m.p. 163—164-5°; 4:4'-diphenyl-2:2'-di-p-anisyl-, m.p. 239—242°, from γ-nitro-β-phenyl-p-methoxybutyrophenone, m.p. 92—93°; 2:2'-diphenyl-4:4'-di-p-anisyl-, m.p. 288—290°, from γ-nitro-β-p-anisylbutyrophenone, m.p. 66°; and 2:2':4'-tetra-p-anisyl-azapyrromethine, m.p. 281—282°. Metal complexes of certain of the compounds are described, e.g., Cu, Co, Ni, and Zn bis-(2:2':4:4'-tetra-phenylazadipyrromethine). Se-dehydrogenation of 2:4-diphenylpyrrolidine affords (I). Reduction (H₂-Ni) of 8-p-anisoyl-a-phenylpyrrolidine affords (I). Reduction (H₂-Ni) of 8-p-anisoyl-a-phenyl-propionitrile yields 4-phenyl-2-p-anisyl-pyrroline, b.p. 235—250°, m.p. 74—75° (picrate, m.p. 180—181°), dehydrogenated (Se) to the -pyrrole, m.p. 205—207°. 2-Phenyl-4-p-anisyl-pyrroline, b.p. 232—238°/7 mm., s.p. 27° (picrate, m.p. 166—158°), and -pyrrole (III), m.p. 197—199°, are similarly obtained. Nitros-2-phenyl-4-p-anisyl- (V) [base, m.p. 176—177° (decomp.)], and 4-phenyl-2-p-anisyl-pyrrole hydrochloride (+m.p. 171—172°). 5-Nitroso-2-phenyl-4-p-anisyl-pyrrole hydrochloride (+meOH), decomp. 170°, are similarly prepared. Condensation of (I) and (IV) in AcOH-Ac₂O leads to (II), and 2:2':4-triphenyl-4'-p-anisylazadipyrromethine, m.p. 256—257° is obtained from (IV) and (III) or (I) and (V). Degradation of (II) by 55% HI gives (I); the solution of (II) in moist dioxan,

are similarly prepared. Condensation of (1) and (1) and (2) leads to (II), and 2:2':4-triphenyl-4'-p-anisylazadipyrromethine, m.p. 256—257°, is obtained from (IV) and (III) or (I) and (V). Degradation of (II) by 55% HI gives (I); the solution of (II) in moist dioxan, C_δH_δN, or OH·[CH₂]₂·OEt is reduced by NaHSO₃ to a nearly colourless leuco-compound, readily reoxidised to (II) by air. γ-Nitro-β-phenyl-hexophenone, m.p. 156—158°, and -butyrophenoneoxime, m.p. 108—110°, are also described.

II. CH(OEt)₃ and (I) in AcOH give 2:2':4:4'-tetraphenyldipyrromethine (VI), m.p. 284—286° (Cu bis-complex, 2 methine = 1 Cu). HCO·NPhMe, POCl₈, and (I) yield 2:4-diphenylpyrrole-5-aldehyde, m.p. 187—188° [oxime, m.p. 202° (slow decomp.); p-nitrophenyl-hydrazone, m.p. 241—242°], which gives a-(2:4-dinitrophenyl-β-(2:4-diphenyl-5-pyrroly)ethylene, m.p. 254—255°, with 1:2:4-C₈H₃Me(NO₂)₂]; condensed with (I) it affords (VI) and is reduced (Ni-H₂) to the -5-carbinol, m.p. ~170° (decomp.). 2-Phenyl-4-p-anisylpyrrole-5-aldehyde, m.p. 158—159° (oxime, m.p. 196—198°, mixture of syn- and anti-forms), similarly prepared, with (III) yields 2:2':4-triphenyl-4'-p-anisyldipyrromethine, m.p. 240—247°. CPhCl₃ and (I) in AcOH give 2:2':4:4-tetraphenyl-meso-phenyldipyrromethine. Benzoylation of (VII) and PhCHO in air is shown to be 3:3'-dibenzylideneamino-2:2':4:4'-tetraphenyl-meso-phenyldipyrromethine. Benzoylation of (VII) affords the 3-NHBz-compound (VIII) and a red compound, 3:3'-dibenzamido-2:2':4:4'-tetraphenyl-meso-phenyldipyrromethine. Benzoylation of (VII) affords the 3-NHBz-compound (VIII) and a red compound, 3:3'-dibenzamido-2:2':4:4'-tetraphenyl-meso-phenyldipyrromethine, m.p. 345° (decomp.), also obtained from (VIII) and CPhCl₃.

2-Halogeno-5-sulphanilamidopyridines.—See B., 1944, III, 18.

Pyridine derivatives.—See B., 1943, III; 303; 1944, II, 6.

Nitration of isatin. W. C. Sumpier and W. F. Jones (J. Amer. Chem. Soc., 1943, 65, 1802—1803).—By the methods of Baeyer (A., 1879, 938), Rupe et al. (A., 1924, i, 764), or Calvery et al. (A., 1926, 187), isatin gives the 5-NO₂-derivative (85%), m.p. 254—255° [phenylhydrazone, m.p. 295° (lit., 284°, 286°)], the structure of which is proved by oxidation by $\rm H_2O_2$ -NaOH- $\rm H_2O$ to 5:2:1-NO₂-C₈H₃(NH₂)-CO₂H (86%), m.p. 278° (decomp.) (Ac derivative, m.p. 221°) (cf. Rupe et al., A., 1926, 843). R. S. C.

Benzoylated derivatives of indigotin. VII. H. de Diesbach, G. Rey-Bellet, and T. S. Klang (Helv. Chim. Acta, 1943, 26, 1869—1885).—2-o-Carboxyphenylquinoline-4-carboxylic acid is reduced (Na-Hg) in alkaline solution to the lactam (I), m.p. 239°, of 2-o-carboxyphenyl-1:2:3:4-tetrahydroquinoline-4-carboxylic acid (Meester, m.p. 175°), decarboxylated to 2-o-carboxyphenyl-1:2:3:4-tetrahydroquinoline, m.p. 140°, and oxidised by CrO₃ in AcOH to the lactam (II), m.p. 168°, of 4-keto-2-o-carboxyphenyl-1:2:3:4-tetrahydroquinoline (phenylhydrazone, m.p. 222°; CHPh derivative, m.p. 228°; unstable 3-Br-compound, m.p. 257°). This is converted into the lactam (III), m.p. 267°, of 4-keto-2-o-carboxyphenyl-1:4-dihydroquinoline by heating with Se, SeO₂, or S, by treatment with PCl₈, and by bromination in CHCl₃ followed by removal of a mol. of HBr by boiling with C₄H₈N. This compound is not identical with that obtained by Hope et al. (A., 1933, 1060) by degradation of Höchst-yellow R, thus disproving the constitution assigned to this dye—and also to Hochst-yellow U. Alternatively (III) is obtained by condensing o-NH₂·C₆H₄·COMe with o-C₆H₄(CO)₂O to o-phthaloylamidoacetophenone, m.p. 135°, which is heated with P₂O₅ at 160°. (III) is transformed by alkali into 4-keto-2-o-carboxy-phenyl-1:4-dihydroquinoline, m.p. 263° (recyclisation) (Me ester,

m.p. 314°). (III) is converted by Br in boiling CHCl₃ into a perbromide, also formed in AcOH, in which it passes on prolonged treatment into the lactam, m.p. 233°, of 3-bromo-4-keto-2-o-carboxyphenyl-1: 4-dihydroquinoline. (III) is converted by P₂S₅ in boiling C₆H₈, into the lactam, m.p. 253°–254°, of 4-thio-2-o-carboxyphenyl-1: 4-dihydroquinoline, which with excess of NHPh·NH₂ in boiling C₅H₈N affords a phenylhydrazone, C₂₂H₁₅ON₃, m.p. 224—225°; Hope's degradation product does not react with P₂S₅. (I) is converted by Br in AcOH at 100° into the lactam, m.p. 257°, of x-bromo-2-o-carboxyphenyl-1: 2: 3: 4-tetrahydroquinoline-4-carboxylic acid, oxidised by KMnO₄ in alkaline solution to o-C₆H₄(CO₅H)₃ and oxidised by CrO₃ in AcOH to the lactam (IV), m.p. 202°, of x-bromo-4-keto-2-o-carboxyphenyl-1: 2: 3: 4-tetrahydroquinoline (phenyl-hydrazone, m.p. 247—248°; CHPh derivative, m.p. 231—232°). (IV) is converted by Br in hot CHCl₃ followed by C₅H₅N into the lactam, m.p. 261°, of x-bromo-4-keto-2-o-carboxyphenyl-1: 4-dihydroquinoline, showing that Br is not attached to C₍₂₎ of the quinoline nucleus; in AcOH this gives a perbromide which gradually passes into the lactam, m.p. 272°, of x: 3-dibromo-4-keto-2-o-carboxyphenyl-1: 4-dihydroquinoline. (I) is converted by short ebullition with HNO₃ (d 1·4) into the lactam, m.p. 260° (decomp.), of x-nitro-2-o-carboxyphenyl-1: 2: 3: 4-tetrahydroquinoline-4-carboxylic acid, oxidised by CrO₃ in AcOH to the (?) lactam, m.p. 253°, of 3-nitro-4-keto-2-o-carboxyphenyl-1: 4-dihydroquinoline-3-carboxylic acid, oxidised by CrO₃ in AcOH to the (?) lactam, m.p. 253°, of 3-nitro-4-keto-2-o-carboxyphenyl-1: 4-dihydroquinoline (II) is converted by boiling KOH-McOH into a (?) polymeride, m.p. 309—310°, of x-nitro-4-keto-2-o-carboxyphenyl-1: 4-dihydroquinoline. (II) is converted by boiling KOH-McOH into a (?) polymeride, m.p. 310°. With o-NO₂·C₆H₄·CHO and a little piperidine at 170° (II) gives the o-nitrobenzylidene derivative, m.p. 262°,

Steric factors in quaternary salt formation. W. G. Brown and S. Fried (J. Amer. Chem. Soc., 1943, 65, 1841—1845).—Methiodides and ethiodides of N-methyl-indoline and -tetrahydroquinoline at 45° are formed much faster than those of N-methyltetrahydrohomoisoquinoline. Hindrance thus occurs when the two rings are not planar. Similarly, with monocyclic bases there is hindrance when the groups attached to the C_6H_6 ring cannot assume co-planarity with it; thus, the relative effects of substituents reported by Evans et al. (A., 1939, I, 527) are the same as their effectiveness in preventing free rotation in the Ph_2 series; also formation of o- $C_6H_4Bu^3$ - NMe_3 is very slow. Attack of the RI occurs at the free electrons and is easier if these are exposed. Relative rates of formation of methiodides of 2:6:1- $C_6H_3Me_2$ - NMe_2 , 4:3:1- NO_2 - C_6H_3Me - NMe_3 , m.p. 83°, 2-nitro-NN-dimethyl-m-5-xylidine (Me = 1; prep. from the Brompound by $NHMe_2$ at 100—120°), m.p. 111°, are inconclusive. E and $\log PZ$ are also recorded.

Aminoacridines: some partition and surface phenomena. A. Albert, R. Goldacre, and E. Heymann (J.C.S., 1943, 651—654).— The results obtained from measurements of oil- H_2O partition coeffs. and air- H_2O surface activities of a no. of aminoacridines suggest that marked oleophilic and surface-active properties are unnecessary for, and if present in high degree are inimical to, the development of good antiseptic properties in this series. The following are described: 2-chloro-b-amino-1-methoxyacridine, m.p. 271°, and the hydrochlorides of 5-butyl-, m.p. 189—190°, -cyclohexyl-, m.p. 271°, -heptyl- (+ H_2O), m.p. 106°, -dodecyl- (+ H_2O), m.p. 92°, and -hexadecyl-aminoacridine (+ H_2O), m.p. 99—100°.

N-Substituted 6-chloro-9-amino-2-methoxyacridines. J. H. Burckhalter, E. M. Jones, W. F. Holcomb, and L. A. Sweet (J. Amer. Chem. Soc., 1943, 65, 2012—2015).—CH₂:CH-CN and the appropriate amine at the b.p. or 100°/>1 atm. give β-di-n- (90%), b.p. 104—105°/10 mm., and -iso-propyl- (12%), b.p. 100—102°/13 mm., and β-di-n- (96%), b.p. 127—131°/11 mm., and -iso-butyl- (51%), b.p. 116—117°/10 mm., β-n-amyl- (88%), b.p. 112—113°/10 mm., β-di-n-ottyl- (80%), b.p. 180—182°/2 mm., β-di-β'-ethyl-n-hexyl- (65%), b.p. 163—164°/2 mm., μ-ethyl-β'-hydroxyethyl- (72%), b.p. 133—134°/7 mm. (picrate, m.p. 72—74°), and β-N-β'-hydroxyethyl-N-n-butyl- (61%), b.p. 147—148°/7 mm. (picrate, m.p. 62—63°), -propionitrile. The following are recorded: γ-di-n-, b.p. 91—93°/15 mm. (dipicrate, m.p. 180—181°), and -iso-propyl-, b.p. 98—99°/15 mm. (dipicrate, m.p. 182—184°), and -iso-butyl-, b.p. 121—123°/16 mm. (dipicrate, m.p. 190—192° (decomp.)], γ-n-amyl-, b.p. 102—103°/15 mm. (dipicrate, m.p. 190—192° (decomp.)], γ-n-amyl-, b.p. 102—103°/15 mm. (dipicrate, m.p. 173—174°), γ-ethyl-β'-hydroxyethyl-n-propylamine, b.p. 147—148°/15 mm. o-C₆H₄(CO)₂N·[CH₂]₃·Br and p-NH₂·C₆H₄·NMe₂ at 120—130° give N-γ-p-diethylaminoanilinon-propylphthalimide, m.p. 106—107°, converted by 85% N₂H₄,H₂O in boiling EtOH into p-NEt₂·C₆H₄·NH·[CH₂]₃·NH₂, an oil. 6:9-Dichloro-2-methoxyacridine and the appropriate diamine, some-

times with K_2CO_3 , in PhOH at 100° give 6-chloro-9- γ -di-n- (45%) [dihydrochloride, $+H_2O$ m.p. 228—229° (decomp.)], and -iso-propyl- (62%) [dihydrochloride, $+H_2O$, m.p. 227—230° (decomp.)], -9- γ -di-n- (50%) (dihydrochloride, $+H_2O$, m.p. 210—221° (decomp.)], -9- γ -di-n-anyl- (65%), m.p. 90—91°, -9- γ -di-n-anyl- (63%) (dihydrochloride, $+H_2O$, m.p. 219—221° (decomp.)], -9- γ -n-anyl- (65%), m.p. 90—91°, -9- γ -di-n-anyl- (63%) (dihydrochloride, $+H_2O$, m.p. 165—166°), -9- γ -ethyl- β -hydroxyethyl- (65%) [dihydrochloride, $+H_2O$, m.p. 180—182°), -9- γ -hydroxyethyl-N- α -butyl- (53%) (dihydrochloride, $+H_2O$, m.p. 180—182°), -9- γ -diethylaminoanlino- (79%) [dihydrochloride, m.p. 185° (decomp.)], -9- γ - β -diethylaminoethoxy- (40%) [dihydrochloride, $+H_2O$, m.p. 221—222° (decomp.)], -9- γ - β -diethylamino-(75%), m.p. 221—222°, -9- γ -6-methoxy-8'-quinolylamino- (76%) [dihydrochloride, $+H_2O$, m.p. 241—242° (decomp.)], -9- γ -6'-chloro-2'-methoxy-9'-acridylamino-(72%), m.p. 189—190° (decomp.), and -9- γ -6'-chloro-2'-methoxy-9'-acridylamino-2-methoxyacridine, 6-chloro-9- β -hydroxyethyl-(55%), m.p. 201—202° (lit., 191—192°), -9- β -chloroethyl- (58%), m.p. 248° (decomp.), -9-3-6'-methoxyacridine, 6-chloro-9- β -hydroxyethyl-(55%), m.p. 266° (decomp.)], -9-acribylamino-n-hexyl- (80%), m.p. 217—220° (decomp.), -9- β -6'-methoxy-8'-quinolylamino-n-butyl-(48%) (dihydrochloride, +H2O, m.p. 231—233°), -9-e-6'-methoxy-8'-quinolylamino-n-amyl- (55%) [hydrochloride, +H2O, m.p. 135—138° (decomp.)], -amino-2-methoxyacridine, and 6-chloro-9-anilino-(65%), m.p. 199—201°, -9-p-dimethylaminoanilino- (66%), m.p. 135—138° (decomp.)], -amino-2-methoxyacridine, and 6-chloro-9-anilino-(65%), m.p. 199—201°, -9-p-dimethylaminoanilino- (66%), m.p. 187—188°, -9-p-diethylaminoanilino- (48%), m.p. 127—129° (decomp.), and -9-p-anisidino- (79%), m.p. 177—179°, -2-methoxyacridine, and 6-chloro-9-anilino-

Attempts to prepare optically active tervalent nitrogen compounds. II. 1:9-(2':3':4':5'-Tetrahydrophenylene)carbazole. R. W. G. Preston and S. H. Tucker (J.C.S., 1943, 659—661).—9-Aminocarbazole (picrate, m.p. 136—138°) and cyclohexanone give cyclohexanonediphenylenehydrazone (cf. Manjunath, A., 1927, 978), which with dry HCl in tetralin affords 1:9-(2':3':4':5'-tetrahydrophenylene)carbazole, m.p. 99—100° [s-C₆H₃(NO₂)₃ compound, m.p. 164—166°; picrate, m.p. 159—160°], dehydrogenated (S) to 1:9-phenylenecarbazole, m.p. 136-5—138·5°. This compound is synthesised by diazotisation (in H₂SO₄-AcOH) of 1-amino-, m.p. 90—98°, obtained by reduction (Na₂S-EtOH) of 1-nitro-9-phenylcarbazole, m.p. 130—132°, which is prepared from 1-nitrocarbazole, PhI, K₂CO₃, and Cu. 3-Nitro-9-phenylcarbazole, m.p. 140—142°, and the diphenylenehydrazones of AcCO₂H, m.p. 157—160° (decomp.) [lit., 148—150° (decomp.)], AcCO₈Me, m.p. 89—90°, CH₂Ac-CO₂Et, m.p. 113°, Et oxaloacetate, m.p. 85—87°, and COMe₂, m.p. 78—81°, are described.

4-Amino-2-methyl-5-\beta-bromoethylpyrimidine hydrobromide. J. M. Slobodin (*Compt. rend. Acad. Sci. U.R.S.S.*, 1943, **39**, 237—238).— In the compound $C_0H_{10}N_3Br_3$ all 3 Br are titrated with AgNO $_3$, so that the bond CH_2 ·Br must be nearly dissociated. J. J. B.

Sulphonamidopyrimidines.—See B., 1944, III, 18.

Pharmacological properties of simple compounds of histamine with amino-acids. M. Rocha e Silva (J. Pharm. Exp. Ther., 1943, 77, 198—205).—See A., 1944, III, 211. The following are described: acetyldehydrophenylalanyl- [a-acetamidocinnamyl-], m.p. 134—137°, acetyl-dl-phenylalanyl-, m.p. 95—100°, benzoyl-l-tyrosyl-, m.p. 140°, carbobenzyloxy-l-tyrosyl-, m.p. 147°, carbobenzyloxy-l-leucyl-histamine, m.p. 113—117°.

Preparation of sulphanilamidoindazoles. C. E. Kwartler and P. Lucas (J. Amer. Chem. Soc., 1943, 65, 1804—1806).—6-Amino, m.p. 209—210°, is rapidly obtained from 6-nitro-indazole by H₂-Raney Ni in MeOH at 50°/30 atm. o-CN·C₆H₄·N₂Cl and SnCl-conc. HCl give 3-aminoindazole. p-NHAc·C₆H₄·SO₂Cl with the appropriate aminoindazole in COMe₂ or C₅H₅N gives 3-, m.p. 253—255°, 5-, m.p. 250—252°, 6-, m.p. 245—246°, and -7-N⁴-acetylsulphanilamidoindazole, m.p. 258—260°, hydrolysed by aq. acid or alkali or 20% HCl-EtOH to 3-, m.p. 225—226°, 5- (I), m.p. 247—248°, 6- (II), m.p. 195—196°, and 7-sulphanilamidoindazole, m.p. 254—256°, respectively. These have bacteriostatic action; some are bactericidal and show promise against Streptococcus hæmolyticus and Pneumococcus in mice. (I) and (II) are, respectively, 2 and 3—4 times as effective as p-NH₂·C₆H₄·SO₂·NH₂ against Streptococcus.

(A) Allylic character of 2-α-chloroalkylbenziminazoles. H. Skolnik, J. G. Miller, and A. R. Day. (B) Reaction of 2-α-chloroalkylbenziminazoles with potassium iodide in acetone solution. H. Skolnik, A. R. Day, and J. G. Miller (J. Amer. Chem. Soc., 1943, 65, 1854—1858, 1858—1862).—(A) 2-α-Chloroalkylbenziminazoles are even more reactive than the usual allyl chloride types (cf. A., 1939, II, 285; 1941, II, 150). 2-Chloromethylbenziminazole (I), m.p. (at 1° per min.) 159—160° or (at 2° per min.) >250° (after changing to a yellow solid at 140°; ? polymerisation), with MgPhBr in Et₂O or boiling KCN—EtOH—H₂O gives gums, in boiling H₃O (45 min.) gives 2-hydroxy- (94%), m.p. 170·5—171·5° [also obtained from o-C₄H₄(NH₂)₂ (II) and OH·CH₂·CO₂H], with KI in boiling COMe₂

gives 2-iodo-methylbenziminazole (31%), m.p. 137—139° (decomp.), and with boiling NaOEt-EtOH gives 1:2-4:5-di-1':2'-benziminazolopiperazine (73%), m.p. >300°, but is unchanged by boiling EtOH or NPhMe₂- or C₅H₅N-EtOH. 2-Ethoxymethylbenziminazole, m.p. 154·5—155°, is obtained (88%) from (II) and OEt·CH₂·CO₂H. 2-a-Chloro- (III), m.p. 134—135°, in boiling H₂O (10 min.) gives 2-a-hydroxy-ethylbenziminazole (70·6%), m.p. 179—180°, and 2-a-chloro- (IV), m.p. 144·5—145·5°, gives similarly 2-a-hydroxy-n-propylbenziminazole, m.p. 220—221° [whence (IV) is prepared by SOCl₂-CHCl₃]; the products are also obtained from (II) by OH·CHMe·CO₂H or OH·CHEt·CO₂H (prep. from OH·CHEt·CN by conc. HCl at room temp. and then 60—70°), respectively. 2-a-chloroisopropylbenziminazole (V), m.p. 135·5—136·6°, is hydrolysed to the 2-a-OH-compound, m.p. 227·5—228° [prepared from (II) by OH·CMe₂·CO₂H and giving (V) with SOCl₂-CHCl₃], by evaporating its solution in COMe₂ containing a little H₃O in a stream of air at room temp., and with a little C₅H₅N in boiling EtOH gives 2-a-ethoxyisopropylbenziminazole (56%), +H₂O (retained at 130°), m.p. 203·7—204·4°. o-NH₂·C₅H₄·NHMe,2HCl (VI) and CH₂Cl·CO₂H in boiling 2N-HCl give 1-methyl-2-chloro- (VII) (58%), m.p. 94·5—95·5°, which with KCN-COMe₂-H₂O gives 1-methyl-2-cyano-methylbenziminazole (80%), m.p. 239—240°. OH·CHMe·CO₂H and (VI) give 1-methyl-2-a-chloro-ethylbenziminazole (VIII), m.p. 64—65°. M.p. are corr.

(B) Interaction of 2-a-chloroalkylbenziminazoles with KI in

(B) Interaction of 2-a-chloroalkylbenziminazoles with KI in COMe, proceeds to conclusion as a bimol. reaction. k is measured at 25° by the method of Conant et al. (A., 1924, i, 273), but not by other methods. It is const. for given concus. but increases greatly as the concu. of the Cl-compound decreases. Relative k vals. are (I) < (III) < (IV) < (VIII) < (V) < (VIII); all are $\gg k$ for CH₂·CH·CH₂Cl or CH₂PhCl, which are similarly affected by concu. The high reactivity is probably caused by resonance of the type,

 $>_N$ c:c \longleftrightarrow $>_N$ $>_C:c$

R. S. C.

Diels-Alder synthesis with 2:3-dimethylquinoxaline. Reaction between maleic anhydride and anthranil. A. Schonberg and A. Mostafa (J.C.S., 1943, 654-656).-2:3-Dimethylquinoxaline (I) and $(:CH \cdot CO)_2O$ form a 1:1 additive product, m.p. $>305^\circ$; p-benzoquinone in PhMe gives a 2:1 additive product, m.p. 190° . Alternative formulæ are suggested for the products. No reaction of this kind is observed between (I) and $(:CH_2 \cdot CO)_2O$ or between (II) or p-benzoquinone and quinoxaline or its derivatives not capable of forming a diene system. $o \cdot C_g \cdot H_4(NH_2)_2$ and (II) give an additive product, $C_{14}H_{12}O_6N_2$, m.p. $189-190^\circ$, and an additive product, m.p. $\sim 150^\circ$, (some decomp.), is formed from 1:1 mol. proportions of (II) and anthranil.

Heterocylic nitrogen compounds. I. Derivatives of 7:16-diazanaphthacene. H. H. Hatt and (Miss) E. F. M. Stephenson (f.C.S., 1943, 658—659).—Phthalaz-1:4-dione and $o-C_6H_4(CH_2Br)$, at 215—220° give 6:17-diheto-6:8:15:17-tetrahydro-7:16-diazanaphthacene, m.p. 196·5—197·5°, in 65% yield [also obtained from $o-C_6H_4(COCl)_2$ and 1:2:3:4-tetrahydrophthalazine hydrochloride (I)], which with NaOEt-EtOH affords the Na salt of 2-o-carboxy-benzoyl-1:2:3:4-tetrahydrophthalazine (+2·5H₂O). 3:1:2-NO₂·C₄H₃(COCl)₂ and (I) in C_5H_5 N yield 1-nitro-6:17-diheto-6:8:15:17-tetrahydro-7:16-diazanaphthacene, m.p. 249—250° (slight decomp.), reduced (SnCl₂-HCl) to the 1-NH₂-compound, m.p. 185—187° (decomp.) [Bz derivative, m.p. 260—261° (slight decomp.)]. 4:1:2-C₆H₃Cl(CO)₂NH, N₂H₄, and EtOH give 6-chlorophthalaz-1:4-dione, m.p. 348—350° (sealed tube).

Ichthyopterin, the blue-fluorescent substance of fish skin. R. Hüttel and G. Sprengling (Annalen, 1943, 554, 69—82).—The presence of blue or green fluorescence in fish skins appears to be a family property; green or no fluorescence is observed in species without or with slightly developed scales. The intact skin of Phoxinus laevis, Ag, is not fluorescent but slight injury induces this phenomenon. If the fish is killed without other damage, fluorescence appears slowly after 1—2 hr. Alcohols, 1% CH₂O, and urethane solution cause almost immediate death with simultaneous appearance of fluorescence. Dil. acids and alkalis induce fluorescence only if the animal is so hurt that it dies within 15 min. The activity of neutral salts depends on the anion; only univalent ions induce fluorescence. The skins of freshly-killed Leuciscus rutilus, Scardinius erythrophthalamus, and Blicca bjorkna are pre-extracted and preserved by EtOH and then extracted several times with dil. AcOH. The conc. extracts are pptd. with EtOH, and Ca is removed as CaC₂O₄. The remaining solution is treated with Pb(OAc)₂ at pH 8—9, the ppt. is decomposed with H₂SO₃, and the fluorescent material is eluted from the PbSO₄ by C.H₅. H₂O. It is purified first by use of NH₃ and finally through the Na H salt, thereby giving ichthyopterin (I), probably C₇H₈O₃N₄. Spectroscopically (I) is similar to but distinct from leucopterin and almost identical with "anhydroleucopterin" (8-deoxyleucopterin) (II). Like (II) it shows the characteristic "redox" reaction with

fuming HI. Fluorescences of (I) and (II) are identical in colour, in dependence on pH, and, generally, in intensity. However, (I) and (II) are certainly not identical. Very probably (I) is the chromophor of (II) and therefore a derivative of 9-hydroxypteridin. H. W.

Constitution of yeast-ribonucleic acid. VI. Nature of the carbohydrate radicals. J. M. Gulland and G. R. Barker (J.C.S., 1943, 625—628).—Examination of the evidence on which the conclusion that d-ribose is the carbohydrate of yeast-nucleic acid (I) and the related nucleotides is based shows it to be unsatisfactory. d-Ribose, and l-lyxose in small amount, have been identified, by oxidation and conversion into benziminazoles, in the products of hydrolysis of (I), and d-ribose has been similarly identified as the carbohydrate of guanylic, adenylic, and cytidylic acids prepared from (I), which is therefore designated correctly as the ribonucleic acid of yeast. d-Ribobenziminazole, m.p. 239—240°, [a] $_{0}^{20}$ —50·4° in 5% aq. citric acid [lit. m.p. ~190° (decomp.), [a] $_{0}^{20}$ +21·6°], has been prepared from synthetic d-ribonic acid. d(—)-Arabinose-2: 4-dinitrophenylosazone, m.p. 259—260°, is identical with that obtained from (I)

Chlorophyll d, a green pigment of red algæ. W. M. Manning and H. H. Strain (J. Biol. Chem., 1943, 151, 1—19).—Various species of red algæ contain, in addition to chlorophyll a (I), a second green pigment containing Mg, chlorophyll d (II). Chlorophyll b or c is not found in these algæ. (II) is most easily prepared by adsorption of the pigments obtained by the partial extraction of Sigartina agardhii. Max. light absorption by (II) occurs at \(\lambda\) longer than that of the max. of (I); in MeOH the max. absorption for (II) is at 696 m\(\mu\), and for (I) at 665 m\(\mu\). Absorption at long \(\lambda\) by (II) may extend by 30 m\(\mu\). the range of light used in photosynthesis. (II) is converted, rapidly when heated or slowly at room temp., into a mixture containing three isomerides in addition to unaltered material. One of these isomerides, chlorophyll d', has an absorption spectrum very similar to that of (II) whereas the other two, isochlorophyll d (III) and isochlorophyll d', have spectra resembling that of (I). The isomerides are reconvertible into (II). Treatment of (II) with acid removes the Mg and forms a mixture of two interconvertible phæophytins. At -80° treatment with acid produces mainly the labile, yellow-brown phæophytin d (IV); at room temp., grey isophæophytin d (V) is the principal product. (IV) is rapidly converted into (V) when it is treated with acid at room temp. (III) yields (V) when treated with acid at room temp. (V) is remarkably similar to phæophytin a in its absorption spectrum and in its adsorbability on powdered sugar. With Grignard's reagent (V) produces (III) but little or no (I). Neither (II) nor (III) is formed when (IV) is treated with Grignard's reagent. The same final product is formed in each case when (II) and its isomerides are treated successively with alkali and acid. When treated in this manner (I) gives a product distinctly different from that derived from (II).

Effect of pH changes on the properties of sodium thymonucleate solutions. C. F. Vilbrandt and H. G. Tennent (J. Amer. Chem. Soc., 1943, 65, 1806—1809).— η of 0·3% Na thymonucleate solution (pH 5·6) containing 1% of NaCl decreases gradually as the pH is changed to 2·6 or 11·6. Subsequent neutralisation raises η , but not to the original val. and the recovery is slow. Sedimentation and diffusion experiments connect these changes with dc- and repolymerisation; the range of mol. wts. after re-polymerisation is it was originally and some of the newly formed mols. are very large. Isolation of nucleic acids will thus give altered substances unless it is conducted in neutral solution. R. S. C.

Quaternary cetylammonium compounds.—See B., 1943, III, 30s.

Interaction of o-quinones and o-quinoneimines with primary amines. G. McCoy and A. R. Day (J. Amer. Chem. Soc., 1943, 65, 1956—1959).—Retenequinone (I) with CH₂R·NH₂ (R = Pre, OH·CH₂, or Ph) in EtOH, PhMe, etc. at 70—100° gives 40—80% yields of 2-substituted reteneoxazoles, but with CHPhMe·NH. or NH₂Pr⁸ gives gums (cf. Bamberger et al., A., 1885, 905; Pschorr, A., 1902, i. 672). Reaction proceeds by way, of successively, (i) the Schiff's base, (ii) 9-alkylideneamino-10-hydroxy-compound, and (iii) 2:3-dihydro-oxazole, which is oxidised by unchanged (I). Step (i) is proved by isolation of H₂O when the reaction is effected in PhMe and by evolution of NH₃ when retenequinonemonoimine (II) replaces (I). Step (ii) is proved by formation of PhCHO when a reacting mixture of (I) and CH₂Ph·NH₂ is treated with HCl and by the fact that 9-amino-10-phenanthrol with Pr^aCHO or PhCHO gives 2-n-propyl- and 2-phenyl-phenanthroxazole (III), respectively. The final oxidation by (I) is proved by adding p-O:C₆H₄·O, which finally appears as quinol and quinhydrone. That yields exceed 100% is due to the ready re-oxidation of retencquinol. Liberation of NH₃ from (II) proves that reaction occurs at the NH. Yields from (II) are > those from (I), because side-reactions due to H₂O are eliminated. Phenanthraquinone and CH₂Ph·NH₂ in boiling PhMe give (III) (9%), 2-phenyl-1-benzylphenanthriminazole (IV) (2-7%), m.p. 241—241·5°, and PhCHO, but in boiling AcOH give 48% of phenanthroxazine, m.p. >360°, with 14% of (III) and 4% of (IV);

NH₂Bu^a gives only gums. Phenanthraquinonemonoimine with CH₂Ph·NH₂ or NH₂Bu^a in PhMe gives (III) (59%) and 2-propylphenanthroxazole (35%), respectively. 2-Hydroxymethylreteneoxazole, m.p. 187·5—189° (acetate, m.p. 134·5—136°), is described.

Vitamin-B₁. 4-Methyl-5-β-hydroxyethylthiazole. J. M. Slobodin and E. E. Gelms (Compt. rend. Acad. Sci. U.R.S.S., 1943, 39, 152—154).—In Buchman's synthesis (A., 1936, 1394) of 4-methyl-5-β-hydroxyethylthiazole some 4-methyl-5-a-hydroxyethylthiazole, b.p. 121—122·5°/2 mm. (picrate, m.p. 91°), is also produced. J. J. B.

2-Amino-4:5-trimethylenethiazole.—See B., 1944, II, 35.

Photosynthesis of a fluorescent substance of the thiazole series (vitachrome). P. Karrer and M. C. Sanz (Helv. Chim. Acta, 1943, 26, 1778—1784).—Exposure of crude 4-methyl-5-β-hydroxyethylthiazole (I) in 1% aq. solution at pH 8 to ultra-violet light followed by chromatographic purification leads to the isolation of vitachrome (II) in 1—3% yield. (II) does not arise from (I) which has been purified through the picrate and its production is due to the presence in (I) of small amounts of 2-chloro-4-methyl-5-β-hydroxyethylthiazole (III), b.p. 88—92°/0·002—0·003 mm., which does not form a picrate, gives a viscous acetate, and is converted by anhyd. KOAc in AcOH followed by hydrolysis with 10% H₂SO₄ into 2-keto-4-methyl-5-β-hydroxyethyl-2: 3-dihydrothiazole, m.p. 132—133°. Fluorescence is observed sooner in the irradiation of crude (I) than in that of (III) but the difference disappears after a few hr. (II) has m.p. 175° (corr.). The crystals have a pale yellow-green fluorescence in ultraviolet light, in which the aq. solution appears a very intense pale blue. (II) gives a cryst. diacetate with a very marked, pale blue

fluorescence and is probably CN. Me . (II) diffuses very rapidly into the cell, accumulates in the vacuoles, and is frequently fixed by the living cytoplasm. Generally it is the neighbourhood of the cell nucleus which fluoresces most strongly. No harmful effects have been noticed. It appears completely nontoxic to small animals and to pass unchanged through the kidneys.

Pyrazolones, benzthiazoles, etc.—See B., 1943, II, 400.

Cyanines.—Sec B., 1944, II, 10.

Photographic sensitisers.—See B., 1944, II, 57, 58.

Miscellaneous heterocyclic compounds.—See B., 1944, II, 7.

VII.—ALKALOIDS.

Ergot alkaloids. IX. Dihydro-derivatives of the natural, lævorotatory ergot alkaloids. A. Stoll and A. Hofmann (Helv. Chim. Acta, 1943, 26, 2070—2081).—Lævorotatory ergot alkaloids (I) arc converted into homogeneous H_2 -derivatives (II) in good yield by hydrogenation at $60^\circ/35$ atm. in dioxan containing Pd sponge. They differ so little from (I) in cryst. form, solvent of crystallisation, and solubility that it may be assumed that hydrogenation does not cause any marked change in the configuration of the mols. With org. and inorg. acids (II) generally give stable, well-cryst, salts. (II) scarcely show the intense blue fluorescence in the ultra-violet which is characteristic of (I) but the dark blue Keller colour reaction is retained. The following are described: dihydroergotamine, $C_{33}H_{37}O_{5}N_{5}$, $2COMe_{2}$, $2H_{2}O$, m.p. 239° (decomp.), $[a]_{10}^{20}$ — 64° , $[a]_{1640}^{20}$ — 79° in $C_{5}H_{5}N$ [hydrochloride, m.p. 220— 225° (decomp.), $[a]_{10}^{20}$ — 64° , $[a]_{1640}^{20}$ — 64° , in $[a]_{1640}^{20}$

Synthesis in the series of cinchona alkaloids. IV. Homomeroquinine and the partial synthesis of quinotoxine. M. Proštenik and V. Prelog (Helv. Chim. Acta, 1943, 26, 1965—1971).—Technical cinchonine is purified by Hg(OAc)₂ and successively treated with 50% H₂SO₄ at 140°, benzoylated in presence of K₂CO₃ and CHCl₃, and treated with NH₂OH, thereby giving a mixture of stereo-isomeric N-benzoyleinchotoxineoximes, m.p. 65—95°. This is transformed by p-C₄H₄Me·SO₂Cl and NaOH into a mixture of amides,

hydrolysed by alkali to homomeroquinine, isolated as the Et ester, b.p. $102-104^{\circ}/0\cdot1$ mm., $[a]_{1}^{16}+42\cdot2^{\circ}$ in 96% EtOH [aurichloride, m.p. $110\cdot5-112^{\circ}$ (decomp.); N-Bz derivative (I), b.p. $190-194^{\circ}/0\cdot1$ mm., which rapidly becomes discoloured when kept]. This is hydrolysed by alkali to the free base, m.p. $211-212^{\circ}$ (decomp.), $[a]_{p}+50\cdot4^{\circ}$ in $H_{2}O$ [normal dibenzoyl-d-tartrate, m.p. 186° (decomp.); reinechate, m.p. $131\cdot5-132^{\circ}$]. N-Methylhomomeroquinine Et ester, b.p. $135-140^{\circ}/23$ mm., $[a]_{p}^{15}$ + $30\cdot3^{\circ}$ in EtOH, results similarly from N-methylcinchotoxineoxime. (I) is condensed with Et quinate by dry NaOEt at $80-90^{\circ}$ and the product is hydrolysed to quinotoxine [normal dibenzoyl-d-tartrate, m.p. 183° (decomp.), $[a]_{p}^{15}$ - $16\cdot0^{\circ}$ in EtOH-CHCl₃ (1:2), identical with the product obtained from quinine; dipicrolonate, m.p. 210° (decomp.), transformed into a mixture of stereoisomeric benzoylquinotoxineoximes, m.p. $65-95^{\circ}$.

10-Iodohydroquinines. (Miss) A. G. Renfrew, C. L. Butler, and L. H. Cretcher (J. Amer. Chem. Soc., 1943, 65, 2038—2039).— isoQuinine and HI (d 1·7) at 100° give 10-iodohydroquinine, a-, [a] -218° , and a'-form, anhyd., m.p. 130°, [a]p $-22\cdot3^\circ$, and $+C_6H_6$, [a] -19° (cf. Suszko et al., A., 1936, 490, 870). Rotations in (?) EtOH. R. S. C.

Berberine content of Coscinium fenestratum (Colebr.). R. Child and W. R. N. Nathaniel (Current Sci., 1943, 12, 255—256).—Extraction of the air-dried stems (H₂O, 6·8%) of Ceylonese material with 95% EtOH removes 9·2% of material and from the alcoholic extract berberine is readily pptd. as the H sulphate (yield of crude salt \sim 4·1%) by a slight excess of H₂SO₄. The residue from the evaporated filtrates is treated with H₂O and then with Et₂O, which removes 4·1% of resin. The aq. extract after being made alkaline with NaOH gives crude alkaloids (0·67%) to Et.O and after saturation with CO₂ 0·2% of crude phenolic alkaloids, thus partly confirming the findings of Varier et al. (A., 1944, III, 156). The ash, insol. in 2N-HCl, contains CaO 36·8, K₂O 7·6, and Cl' 0·33%. The high Ca content is noticeable, corresponding with 1·0% of CaO in the original stems.

Alkaloids of fumariaceous plants. XXXVI. Corydalis thalictrifolia, Franch. and constitution of a new alkaloid, thalictrifoline. XXXVH. Dactylicapnos macrocapnos, Hutchinson. R. H. F. Manske (Canad. J. Res., 1943, 21, B, 111—116, 117—118).—XXXVI. C. thalictrifolia, Franch., contains protopine, d-stylopine (partly

racemised), *l*-corypalmine, adlumidine, d-thalictrifoline (I), m.p. 155°, [a]²⁵ +218° in MeOH, dehydrothalictrifoline, isolated as hydrochloride (II), m.p. 271°, and alkaloids F 59, C₁₉H₂₀O₅N(OMe), m.p. 176°, largely resolidifying and remelting at 192—200°, and F 60, C₁₉H₁₈O₂N(OMe), m.p. 123°. (I) with I and NaOAc in hot EtOH

yields a quaternary salt, reduced (Zn + HCl) to the hydrochloride of dl-thalictrifoline, m.p. 161°, similarly obtained from (II). Oxidation (KMnO₄) of (I) yields m-hemipinic acid, but no 3:4-methylenedioxyphthalic acid. (I) with dil. H_2SO_4 containing phloroglucinol, followed by methylation and racemisation (by oxidation and reduction), yields mesocorydaline. All m.p. are corr.

XXXVII. D. macrocapnos, Hutchinson, contains protopine, allocryptopine, stylopine, and a considerable amount of fumaric acid, but no phenolic bases.

A. Li.

Structure of monocrotaline. IX. Proof of the position of the ethylenic linking in retronecine. R. Adams and J. E. Mahan (J. Amer. Chem. Soc., 1943, 65, 2009—2012).—The structure of retronecine (A., 1943, II, 113) is confirmed. Deoxyretronecine hydrochloride in SOCl₂ at the b.p. gives chloroisoheliotridene (83%), b.p. 59·5—60·5°/4·5 mm., [a]₂^{3b} +50·10° (homogeneous) [picrate, m.p. 179·5—180 (decomp.)], reduced by CrCl₂—HCl (prep. in situ described) to isoheliotridene (88%), [CH₂]₃ CH·CMe CH, b.p. 73°/

30 mm., $[a]_D^8 - 45.79^\circ$ (homogeneous) (picrate, m.p. $198.5 - 199.5^\circ$), which with H_2 -PtO₂ gives heliotridane and, as hydrochloride in H_2 O, with O₃ yields 2-acetylpyrrolidinoacetic acid hydrochloride (42%), m.p. $180 - 181^\circ$, $[a]_D^{27} - 4.40^\circ$ in MeOH [free acid unstable; 2:4-dinitrophenylhydrazone, m.p. $199 - 201^\circ$ (decomp.), titrates as an NH_2 -acid hydrochloride; CHI₃ test positive in H_2 O]. This is hydrogenated (PtO₂) in EtOH to 2-a-hydroxyethylpyrrolidinoacetic acid, m.p. $186.5 - 187.5^\circ$, $[a]_D^8 - 63.47^\circ$ in H_2 O [hydrochloride (II), m.p. $147 - 148^\circ$, $[a]_D^{32} - 54.31^\circ$ in EtOH; gives the CHI₃ test] [and some of its lactone (III) (see below)], which with $CH_2N_2 - Et_2O$ gives the hygroscopic, oily betaine,

chloride, softens 170°, m.p. 176—177°). In Ac₂O at 100° (II) gives (III) (methiodide, m.p. 242—243°; picrate, m.p. 169—170°). M.p. are corr. R. S. C.

Constitution of hydroxypachycarpine. A. P. Orechof, M. I. Kabatschnik, and T. J. Kefeli (Compt. rend. Acad. Sci. U.R.S.S., 1941, 31, 335—338).—Hydroxypachycarpine (I) is very resistant

towards acids and alkalis but is hydrolysed by conc. HCl at 180° for 15 hr. and the product is esterified to Et pachycarpate (II), b.p. $162-166^{\circ}/2$ mm., $[a]_{1}^{14}-12\cdot 2^{\circ}$ in EtOH, which re-forms (I) when hydrolysed by 50% H_2SO_4 . The presence of NH in (II) is established

b.p. 162-1669/2 mm., $[a]_B^3 - 12^2$ 2 in EtOH, which re-forms (I) when hydrolysed by 50% H₂SO₄. The presence of NH in (II) is established by the isolation of a Bz derivative, m.p. $121-122^\circ$, and a NO-compound, m.p. $86-88^\circ$. A lactam group is therefore present in (I) and consequently also in hydroxysparteine. The constitution of (I) is established.

VIII.—ORGANO-METALLIC COMPOUNDS.

Mercuric derivatives of acetamido-acids.—See B., 1944, III, 18. 3-Pyridylmercuric chloride.—See B., 1944, III, 18.

Azo-lead dyes. C. G. Stuckwisch (Iowa State Coll. J. Sci., 1943, 18, 92—94).—Halogen-metal interconversion studies led to the prep. of PbPh₃ p-, m.p. 172°, and o-amino-, m.p. 164—165°, p-methylamino-, m.p. 97—98°, o-dimethylamino-, m.p. 101°, and o-hydroxyphenyl, m.p. 217—218° (decomp.), and Pb p-dimethylaminophenyl Et₃, b.p. 130°/1 mm. (no details given). Organo-Pb compounds containing an azo-linking are preferably prepared from PbR compounds and diazotised amines rather than from diazotised Pb aminoaryl compounds. The following were prepared: PbPh₃ 4- and 2-(2'-hydroxy-1'-naphthaleneazo)phenyl, 2-hydroxy-3: 5-di-(p-nitrobenzeneazo)phenyl, 2-hydroxy-5-(p-chloro-,-bromo-,-iodo-, and-carboxy-benzeneazo)phenyl; 4:4'-bis-(4'-hydroxy-3'-triphenylplumbophenyl-azo)diphenyl; PbPh₃ 5-(p-nitro-,-chloro-,-bromo-, and -carboxy-benzeneazo)-2-dimethylaminophenyl; PbPh₃ 4-methoxy-3- and 2-methoxy-5-p-nitrobenzeneazophenyl.

IX.—PROTEINS.

Role of glycine in protein structure. H. Neurath (J. Amer. Chem. Soc., 1943, 65, 2039—2041).—The absence of side-chains in, and free rotation of, glycine allows closer packing of bulky NH₂-acids, readier orientation of polar side-chains at interfaces, and unusual repeating patterns (e.g., in silk fibroin). Glycine is probably present at least in small amounts in all proteins, difficulties in its detection having often led to its being overlooked. The large space-requirements of proline and hydroxyproline in gelatin (~32%) and elastin (~17%) are compensated by large contents (~25% and 29%, respectively) of glycine.

Hydrolysis of proteins and peptones at high temperatures and catalytic effect of metal ions on rate of hydrolysis. F. Lieben (J. Biol. Chem., 1943, 151, 117—121).—Complete hydrolysis of casein is effected by heating a 2% solution in 20% $\rm H_2SO_4$ for 1 hr. at 160°. Similar data are given for other proteins. The importance of a low initial substrate concn. is stressed. Ti and Sn salts catalyse the reaction appreciably; Cu, Mu, and Ni salts are without effect. Peptones proved more resistant than casein or gelatin. E. C. W.

Influence of sugars on formation of sulphydryl groups in heat-denaturation and coagulation of egg-albumin. C. D. Ball, C. R. Hardt, and W. J. Duddles (J. Biol. Chem., 1943, 151, 163—169).—Hexoses and pentoses inhibited the formation of SH groups (for determination of. C., 1944, Part 1) and increased the amount of non-coagulable N when ovalbumin (I) was denatured by heat. This inhibiting influence towards coagulation is not increased by longer contact of the sugar with (I) at a pH of either 4·8 or 8·6. (I) coagulated in presence of glucose yields no more reducing substances after partial hydrolysis than (I) coagulated alone.

Amino-acids yielded by β-lactoglobulin. D. Bolling and R. J. Block (Arch. Biochem., 1943, 2, 93—95).—Cryst. β-lactoglobulin contained N 15.53, S 1.68, cystine 3.5, arginine 3.2, histidine 1.8, lysine 9.9, tyrosine 4.2, tryptophan 1.9, phenylalanine 5.2, threonine 5.8, isoleucine 6.4, valine 6—9, and leucine 13—21%. E. R. S.

Dispersion of keratins. I. Dispersion and degradation of keratins by sodium sulphide. C. B. Jones and D. K. Mecham (Arch. Biochem., 1943, 2, 209—223).—When the keratin (I) (N $16\cdot7-16\cdot1$, H_2O 7—10%) of the freshly plucked feathers of hens is treated with Na₂S, max. dispersion and min. degradation are achieved by using 100 ml. of $0\cdot1\text{M}-\text{Na}_2\text{S}$ at 30° and digesting for ~2 hr. Approx. quant. recovery of the dispersed material is attained by adjusting the pH to $4\cdot2$. (I) of the feathers is more readily dispersed and less stable in solution than are (I) of cattle hooves, wool, and hog's hair. W. McC.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II-Organic Chemistry.

APRIL, 1944.

I.—ALIPHATIC.

Modern methods of preparative organic chemistry. XI. Oxidations with selenium dioxide. G. Stein. XIII. Hydrogenation with Raney catalysts. R. Schroter. XIV. Boron fluoride as catalyst of chemical reactions. D. Kastner (Angew. Chem., 1941, 54, 146—152; 229—234, 252—260; 273—281, 296—304).—

Reaction of hydrogen atoms with propylene. B. S. Rabinovitch, S. G. Davis, and C. A. Winkler (Canad. J. Res., 1943, 21, B, 251—257).—The principal products of the reaction between H atoms and C_3H_6 , studied by the Wood-Bonhoeffer method over the temp. range $30-250^\circ$, are C_3H_8 , C_2H_6 , and CH_4 . No unsaturated products appear to be formed. The nature and proportions of the products are independent of temp. A mechanism is suggested based on the formation of an active Pr radical as the primary step. H. W.

Action of anisole with ααα-trichloro-β-methyl-Δβ-propene. C. C. Price and H. D. Marshall (J. Org. Chem., 1943, 8, 532—535).—CCl₃·CMe.'CH₂ (I) is very resistant to attack by Br in CCl₄ or aq. KMnO₄ and does not dissolve in conc. H₂SO₄. Addition of HCl or HBr is not practicable because of the ease with which it undergoes the allylic rearrangement. In presence of HF as catalyst, (I) and ρ-OMe·C₆H₄·NH_{*}, smoothly yield αα-dichloro-γ-p-anisyl-β-methyl-Δα-propene (II), b.p. 124—126°/4 mm., oxidised by CrO₃ to ρ-OMe·C₆H₄·CO₂H. CH₂Cl·CMe·CCl₂, formed by allylic rearrangement of (I) under the influence of HF, gives very little (II) when treated with ρ-OMe·C₆H₄·NH₂ and HF under the same conditions. The formation of (II) from (I) may therefore be interpreted as a direct addition of the base to the double linking in (I) in opposition to Markovnikov's rule; the additive product then gives (II) by loss of HCl. It is, however, possible that the dissociation of (I) gives a resonating ion common to both the allylic rearrangement and the Friedel—Crafts reaction.

Reactions of monovinylacetylene with chlorine and bromine. K. Rengert and H. J. Schumacher (Ber., 1940, 73, [B], 1025—1042).—CH₂·CH·C·CH (I) and Br, when illuminated at 60—150°/100 mm., give a liquid mixture, $C_4H_4Br_4$, b.p. 172—180°/20 mm., the low v.p. of which prevents investigation of the kinetics; the thermal reaction also interferes. Thermal interaction of Cl_2 with (I) is a chain reaction up to 650 mm., leading to a mixture, $C_4H_4Cl_4$, b.p. 90—110°/25 mm., or, if an excess of (I) is used, mainly to a product (II), $C_4H_4Cl_2$, b.p. 35°/40 mm. Investigation of the kinetics is complicated by the stepwise reaction, rearrangement of (II), polymerisation, and addition of Cl_2 to the polymers. H_2 and O_2 , if introduced, take part in the reaction.

[Laboratory] preparation of nitroethane. H. McCombie, B. C. Saunders, and F. Wild (J.C.S., 1944, 24—25).—Et₂SO₄ (100 g.) is shaken for 20 hr. with NaNO. (100 or 150 g.) in H₂O (125 or 187 g.). The best yield is 46% (65% on Et₂SO₄ not recovered), based on Et₂SO₄ \rightarrow NaEtSO₄. More EtNO₂ is obtained by distilling solid NaEtSO₄, NaNO₂, Na₂CO₃, and a little H₂O above 100°. S. A. M.

Reduction of nitroparaffins in liquid ammonia. G. W. Watt and C. M. Knowles (J. Org. Chem., 1943, 8, 540—543).—EtNO2, PraNO2, PrbNO2, BuaNO2, and BubNO2 dissolve in and react with liquid NH3 at -33.5° to form relatively unstable NH_4 salts of the type CHR:N(\rightarrow O)·ONH4. All are colourless, cryst. solids which decompose slowly with liberation of NH3. Qualitatively the decreasing order of stability of the corresponding NH4 salts is $PrbNO_2 > BubNO_2 > PraNO_2 > BuaNO_3 > PraNO_4 > BubNO_5 > PraNO_4 > BubNO_5 > PraNO_6 > PraN$

122—123°, Pr^{α} , m.p. 77—78°, and Bu^{β} , m.p. 80—81°, ether. iso-Propylhydroxylamine hydrochloride and n-butylhydroxylamine platinichloride are described. M.p. are corr. H. W.

Polymerisation of vinyl ethers. I. Vinyl n-butyl ether. M. F. Schostakovski and I. F. Bogdanov (J. Appl. Chem. Russ., 1942, 15, 249—259).—OBu $^{\rm a}$ -CH.'CH $_2$ (I) prepared (not quite pure) from Bu $^{\rm a}$ OH and C $_2$ H $_2$, b.p. 92—93°, is polymerised by SnCl $_4$ or FeCl $_3$ to an oil (n and η of 1% solutions in C $_4$ H $_6$ given). The heat of polymerisation is 11-6—14-4 kg.-cal. per 100 g.; to prevent overheating the mixture of monomer and catalyst is either cooled (to keep the temp. at 40—60°) or diluted with polymer. Some η vals. are given for (I)–Bu $^{\rm a}$ OH mixtures.

Role of neighbouring groups in replacement reactions. VII. Methoxyl group. S. Winstein and R. B. Henderson (J. Amer. Chem. Soc., 1943, 65, 2196—2200; cf. A., 1943, II, 228).—Owing to interaction of neighbouring groups, reaction of CHMeBr·CHMe·OMe or trans-I-bromo-2-methoxycyclohexane (I) occurs substantially without inversion. threo-, b.p. 55·6—55·7°/40 mm., and erythro-β-Bromo-γ-methoxy-n-butane, b.p. 55·7—56·2°/40 mm., are obtained by trans-addition to (CHMe·), by NHBrAc + H₂SO₄ (trace) in MeOH at < 0°. The following are prepared by known methods: threo-, b.p. 126·4—126·5°/752 mm. (α-naphthylurchane, m.p. 84—85°; acetate, b.p. 154·8—155·4°/750 mm.), and erythro-γ-methoxy-n-butan-β-ol, b.p. 132·3—132·5°/748 mm. (α-naphthylurchane, m.p. 111—112°; acetate, b.p. 153·4—154·0°/749 mm.); trans-2-methoxycyclohexanol (from the oxide by H₂SO₄-MeOH), b.p. 72·5—73·2°/100 mm. (3:5-dinitrobenzoate, m.p. 101—102°; acetate, b.p. 87·5—88·0°/10 mm.). (I) could not be resolved by brucine.

Fructose-1:6-diphosphoric acid and fructose-6-monophosphoric acid. C. Neuberg, H. Lustig, and M. A. Rothenburg (Arch. Biochem., 1943, 3, 33—44).—Ba H_2 d-fructose-1:6-diphosphate (I) was prepared from the strychnine H salt by treatment with $\text{Ba}(\text{OH})_2, H_2\text{O}$ in McOH, $[a]_1^{17}$ +4·04° to +4·15° (free acid), reducing power (K salt) 0·48 times that of d-fructose, and resistant to Br-H₂O, The Ba H salt was prepared by treating (I) with HBr at 3° and pptn. with EtOH. Partial hydrolysis of fructose-1:6-diphosphates (Ca salt with HCl, Ba salt with HBr) at 35° gave 50% yield of Ba d-fructose-6-phosphate, $[a]_1^{19}$ +3·58° (Ba salt), reducing power (K salt) 0·82 times that of d-fructose, and resistant to Br-H₂O.

Invert soaps. II. Dimethyl-butyl-, octyl-, -dodecyl-, and -hexadecyl-sulphonium iodides. R. Kuhn and O. Dann (Ber., 1940, 73, [B], 1092—1094; cf. A., 1944, II, 115).—RSMe and MeI-N₂ at ~20° give dimethyl-butyl-, -octyl-, -dodecyl-, and -hexadecyl-sulphonium iodide, all cryst. but very hygroscopic. RHal and NaSMe in EtOH at room temp. to -10° (exothermic) and then the b.p. give Me octyl, b.p. $100\cdot5-102\cdot5^\circ/17-18$ mm., dodecyl, b.p. $163-165^\circ/19$ mm., and hexadecyl sulphide, m.p. $19\cdot5-20\cdot5^\circ$. SMe₂RI is surface-active if $R = C_{48}$; SMe₂RI are effective against B. coli and staphylococci, respectively, at the following concns.: R = Me, Bu, or octyl 22%, $C_{12}H_{25}$ O·1, 0·2%, and $C_{10}H_{33}$ O·5, 0·02%; for $C_{12}H_{25}$ SMeCl·CH₂Ph the concns. are 0·1 and 0·067, for $C_{12}H_{25}$ NMe₂Br·CH₂Ph 0·0167 and 0·02%, respectively.

Methanetri-β-propionic acid.—See A., 1944, III, 33.

Reaction of sodium triphenylmethyl with esters of a β -unsaturated acids.—See A., 1944, II, 99.

Glycidyl esters of aliphatic acids. E. B. Kester, C. J. Gaiser, and M. E. Lazar (f. Org. Chem., 1943, 8, 550—556).—Glycidyl laurate, b.p. $126^{\circ}/1$ mm., 290° (decomp.)/760 mm., m.p. 21° , myristate, b.p. $146^{\circ}/1$ mm., 310° (decomp.)/760 mm., m.p. $33\cdot5-34\cdot5^{\circ}$, palmitate (I), b.p. $170^{\circ}/1$ mm., m.p. $44\cdot5-45\cdot0^{\circ}$, stearate, b.p. $193^{\circ}/1$ mm., m.p. $50\cdot5-51\cdot3^{\circ}$, and oleate, b.p. $185^{\circ}/1$ mm., m.p. -1° , and β -methylglycidyl myristate, b.p. $130^{\circ}/1$ mm., m.p. $21\cdot5^{\circ}$, are obtained by boiling the requisite Na salt with epichlorohydrin (II) (or β -methylepichlorohydrin) in excess. The best results are obtained under atm. pressure and strictly anhyd. conditions. The use of increased pressures shortens the time of reaction considerably but the increased temp. favours the formation of quantities of material of high b.p. With imperfectly dried reactants at atm. pressure

90

50-60% of materials polymerised or of high b.p. are produced. An excess of (II) is preferable to PhMe or light petroleum to produce fluidity of the soap suspension. (II) does not react satisfactorily with Na. sebacate and glycidyl sebacate, m.p. 44°, is best obtained from glycidol and sebacyl chloride in PhMe containing NEt₃ as acceptor for HCl in place of C₅H₅N, thus enabling NEt₃, HCl to be almost quantitatively filtered off. (I) is obtained similarly

The soaps are best obtained by neutralising the fatty acid in COMe2 with 5N-NaOH. Glycidyl esters of the mixed acids of babassu, soya-bean, walnut, and castor oils and rosin have been prepared.

Synthesis of $d(-)-\beta$ -phosphoglyceric acid and $d(+)-\alpha$ -phosphoglyceric acid. C. Neuberg (Arch. Biochem., 1943, 3, 105—112).—d(-)-Glyceric acid was phosphorylated by EtPO₃, and the insol. Ba H d(-)- β -phosphoglycerate obtained in 70% yield; Ag d(+)- α -phosphoglycerate was obtained also in 7% yield. The synthetic and natural products are identical.

Quantitative effect of X-rays on ascorbic acid in simple solution and in mixtures of naturally occurring compounds.—See A., 1944, III, 284.

Mechanism of ketol formation from pyruvate and aldehydes. R. L. Berg and W. W. Westerfeld (*J. Biol. Chem.*, 1944, 152, 113—117).—Oxidation of (CHMe·OH)₂, CHMeAc·OH, and Ac₂ by KIO₄ leads to rupture of the linking between the substituted C atoms and conversion of the substituent OH groups into CHO while the CO groups are transformed into CO₂H. Oxidation of the 4-C ketol produced in the enzymic reaction between pyruvate (I) and EtCHO gives AcOH and EtCHO thereby identifying the ketol as CHETACOH gives AcOH and EtCHO, thereby identifying the ketol as CHEtAc OH. Association of CO of the ketol with the 2-C portion of the structure derived from (I) makes doubtful the possibility of intermediate compound formation between EtCHO and (I) prior to the decarboxylation of the latter.

Reaction of ethylenediamine with Zeise's salts. A. Gelman (Compt. rend. Acad. Sci. U.R.S.S., 1943, 38, 243—246; cf. A., 1940, I, 267).—(CH2·NH2)2 (I) and aq. Zeise's salt [K(PtC2H1Cl3)] afford a complex, Pt ethylene ethylenediamine dichloride, $(C_2H_4\cdot PtCl_2\cdot NH_2\cdot CH_2)_2$ (II); no cycle is formed, but (I) unites two central atoms as a bridge. Evaporation of the mother-liquor from (II) at 100° (bath) gives C_2H_4 and $(CH_2\cdot NH_2)_2PtCl_2$. (I) and the butadiene salt, $K_2[(PtCl_3)_2C_4H_6]$, afford the very long-chain complex, Pt butadiene ethylenediamine dichloride (III); the bridges between two central atoms are formed by butadiene on the one hand and (I) on the other. (II) and (III) are decomposed by boiling H₂O. probable reason why (I) does not follow Tschugaev's rule when there is a C₂H₄ mol. in the inner sphere is the instantaneous formation of an insol. ppt. [(PtCl₂·C₂H₄)₂(CH₃·NH₃)₂], when an attempt is made to introduce (I).

Synthesis of amino-acids from substituted cyanoacetic esters. P. E. Gagnon, R. Gaudry, and F. E. King (J.C.S., 1944, 13-15). Alkylcyanoacetic esters are converted into hydrazides, to which the Curtius reaction is applied (cf. Darapsky, A., 1936, 1494). Curtus reaction is applied (cf. Darapsky, A., 1936, 1494). CN·CHPrβ·CO₂Et gives a syrupy hydrazide, which gives 60% yield of valine (PhNCO gives α-N-phenylcarbamidoisovaleric acid, m.p. 149°). CN·CH₂·CO₂Et (I) and CH₂PhBr give 44% yield of CH₂Ph·CH(CN)·CO₂Et, b.p. 165—173°/15 mm. [hydrazide (II), m.p. 123—124°], and 23% yield of Et α-cyano-ββ-dibenzylacetate, b.p. 190—200°/15 mm. (hydrazide, m.p. 235—237°); (II) gives 50% yield of phenylalanine (phenylcarbamyl derivative, m.p. 168—170°). (I) and anisyl chloride give 48% yield of Et α-cyano-β-anisyl reprinate and anisyl chloride give 48% yield of Et a-cyano-β-anisylpropionate, b.p. 165—170°/0·2 mm.; the hydrazide, m.p. 122—123°, gives 30% b.p. $165-170^{\circ}/0.2$ mm.; the hydrazide, m.p. $122-123^{\circ}$, gives 30% yield of O-methyltyrosine, but if conc. HCl-AcOH is used in place of the usual 20% HCl for the final hydrolysis of the urethane, tyrosine is obtained (yield 11%). (1) and $OPh^{-}[CH_{2}]_{3}$ -Br give Et a-cyano-8-phenoxyvalerate (40% yield), b.p. $175-190^{\circ}/0.7$ mm.; the hydrazide, m.p. 85° , gives a 40% yield of a-amino-8-phenoxyvaleric acid, m.p. $265-267^{\circ}$ (decomp.), with which PhNCO forms a phenylureide, m.p. 158° . (I) and Br $^{-}[CH_{2}]_{3}$ -CO $_{2}$ Et give 40% yield of Et_{2} a-cyanoadipate, b.p. $178-186^{\circ}/15$ mm.; the dihydrazide, m.p. 128° , cannot be converted into the desired ornithine. Similarly (I) and Br $^{-}[CH_{2}]_{3}$ -CO $_{2}$ Et give 30% yield of Et_{2} a-cyanopimelate, b.p. $183-197^{\circ}/12$ mm., the dihydrazide, m.p. $115-116^{\circ}$, from which cannot be converted into lysine. cannot be converted into lysine.

Raman spectrum of glycine.—See A., 1944, I, 78.

New mode of formation of β -alanine. C. Enders [with Zellweger] (Naturwiss., 1943, 31, 209).—A substance promoting the growth of yeast and considered to the β -alanine is obtained when AcCHO is heated with 40% NH₃ at 100°. It is also formed in neutral or slightly acid solution from AcCHO and glycine. The mechanism of the change is discussed.

Complex compounds of diguanide with bivalent metals. VII.— See A., 1944, I, 89.

Optical antipodes of pantothenic acid. R. Kuhn and T. Wieland (Ber., 1940, 73, [B], 1134).—Resolution of dl-pantothenic acid by quinine in COMe₂-EtOH or COMeEt gives d- and l-acids, [a]_D

 $\pm 27^{\circ}$ in H₂O. The d-acid has $45-50 \times 10^{8}$ SbmE units of activity per g.; the l-acid is inactive (cf. A., 1942, II, 297; 1944, II, 36).

Analogues of pantothenic acid. III. Preparation of growth-inhibiting analogues related to N-pantoyltaurine (Miss) J. Barnett (J.C.S., 1944, 5—8; cf. A., 1942, II, 250; III, 621).—NH₂·[CH₂]₂·SH [from (CH₂)₂NH and H₂S] (2: 4-dinitrobenzoylthioether, m.p. 93·5— 94.5°) and pantolactone (α-hydroxy-ββ-dimethylbutyrolactone) (I) in a sealed tube in vac. (100°, 1 hr.) give N-pantoyl-β-aminoethylthiol (II), a yellow oil (86% pure), highly toxic to rats. (NH₂·[CH₂]₂)₂S₂ and (I) in abs. MeOH (reflux, 1 hr.) give bis-(N-pantoyl-β-aminoethyl) disulphide (III), m.p. 141—144°. (NH₂·[CH₂]₂)₂S (IV) and (I) in abs. MeOH (cold, 12 hr.; reflux, 1 hr.) give bis-(N-pantoyl-β-aminoethyl) sulphide (V), a viscous oil. (IV) and Br-H₂O give bis-β-aminoethyl sulphide (V), a viscous oil. (IV) and Br-H₂O give bis-β-aminoethyl sulphide (V), a viscous oil. (IV) and Br-H₂O give bis-β-aminoethyl sulphide (V), a viscous oil. (IV) and Br-H₂O give bis-β-aminoethyl sulphide (V), a viscous oil. aminoethyl sulphoide (V), a viscous oil. (IV) and Br-H₂O give bis-β-aminoethyl sulphoxide dihydrobromide, m.p. 201—202° (quant. yield, ~100% pure); this with NaOEt gives the sulphoxide (VI), a syrup [dihydrochloride (VII), m.p. 220°; 97% pure]. (VI) and (I) in abs. MeOH (20°, 3 days) give bis-(N-pantoyl-β-aminoethyl) sulphoxide (VIII), a syrup (~92% pure); after 3 months in a sealed tube. COMe₃ extracts a compound, m.p. 143—144°, identical with (III). (IV) or (VII) and KMnO₄ in 50% AcOH give 50% yield of bis-β-aminoethyl sulphone dihydrochloride, m.p. 226—228°; the sulphone and (I) in abs. MeOH (reflux, 1 hr.) give bis-(N-pantoyl-β-aminoethyl) sulphone (IX), a syrup. (II) and (III) inhibit the growth in vitro of Lactobacillus arabinosus to approx. the same degree as pantoyltaurine, (V), (VIII), and (IX) to a smaller degree; rats are more susceptible (V), (VIII), and (IX) to a smaller degree; rats are more susceptible to Streptococcus hamolyticus in presence of any of these substances than in their absence.

Dimethanesulphonimide, a strong acid. B. Helferich and H. Grünert (Ber., 1940, 73, [B], 1131—1133).—NH(SO₂Me)₂ is best Grünert (Ber., 1940, 73, [B], 1131—1133).—NH(SO₂Me)₂ is best (~90%) obtained by adding 5N-NaOH (4) and McSO₂Cl (2 mols.) to conc., aq. NH₄Cl (1 mol.) at 0°. It is a strong acid (cf. A., 1942, II, 297); 0·1, 0·01, and 0·001N. solutions have pH 1·27, 2·20, and 3·25, respectively. With CHMeN₂ it gives dimethanesulphonethylimide (100%), m.p. 94—95° (corr.), also obtained (47%) from NH₂Et,HCl (1 mol.), MeSO₂Cl (2·6), and NaOH (4·7 mols.) at 0—5°. NH₂R,HCl (1), MeSO₂Cl (1 mol.), and NaOH (2—2·21 mols.) at 2—5° give methanesulphon-ethylamide, b.p. 105·5—107° (corr.)/0·3 mm., and -methylamide (~60%), b.p. 118°/0·3 mm. [with some dimethanesulphonmethylimide, m.p. 115·5—116·5° (corr.)]. R. S. C.

Trimethylacetic acid. Isolation and degradation of pivalazide. A. Buhler and H. E. Fierz-David (Helv. Chim. Acta, 1943, 28, 2123-2136).—The behaviour of pivalazide (I) contradicts the theory that an enolisable CO or a vicinal C.C linking is essential for the Curtius transformation of azides. Survey of the literature leads to the conclusion that at present there is no experimentally established theory of the isomerisation incident to the Hofmann and Curtius degradations. Freshly sublimed pivaloylhydrazine, m.p. $56-57^\circ$, in 2n-HCl at -5° to -3° is converted by NaNO, into (I), a mobile, odourless liquid, m.p. 0° , which can (generally) be distilled unchanged in a high vac.; it is less advantageously prepared from Bu²COCl and NaN₃. It passes quantitatively at 100° into N₂ and Bu²NCO, b.p. 84·6° (corr.), a colourless liquid with a pleasant odour, which does not solidify at -30° and could not be polymerised by prolonged the solidified of the following as a described. accs not sonarry at -30° and could not be polymerised by prolonged irradiation. The following are described: NN'-ditert.-butyl-, m.p. 242°, N-phenyl-N'-tert.-butyl-, m.p. 153° (corr.), and N-tert.-butyl-carbamide, m.p. 242°; NHBu''-CO₂Me, b.p. 56°/11 mm., NHBu''-CO₂Et, b.p. 74°/11 mm., m.p. 30—21°, NH₂Bu'', b.p. 44° (hydrochloride, m.p. 273—275°).

Modern methods of preparative organic chemistry. X. Syntheses with diazometham. B. Eistert (Angew. Chem., 1941, 54, 99—105. 124-131).-A review.

SUGARS AND GLUCOSIDES.

Methanesulphonates of the sugar group. III. B. Helferich and H. Jochinke (Ber., 1940, 73, [B], 1049—1052; cf. A., 1939, II, 468).—β-Disopropylidenefructose and MeSO₂Cl in C₅H₅N at 0° give 2: 3-4:5-dissopropylidene-d-fructopyranose 1-methanesulphonate (85%), m.p. 125—126°, [a]²¹₂ —29·3° in CHCl₃, converted by H₂SO₄-MeOH-H₂O into syrupy fructose 1-methanesulphonate. Discopropylidenesorbose gives similarly 2: 3-4:6-diisopropylidene-d-fructopyranose 1-methanesulphonate (~70%), m.p. 116—117°. a-Discopropylidenefructose gives 1: 2-4:5-diisopropylidene-d-fructopyranose 3-methanesulphonate (>90%), m.p. 104—105°, [a]_p—161·4° in CHCl₃, converted by boiling H₂SO₄-MeOH-H₂O into syrupy d-fructose 3-methanesulphonate or, by shorter treatment, into 1: 2-isopropylidene-d-fructopyranose 3-methanesulphonate (I) (variable yield up to 70%), m.p. 133° (decomp.), [a]_p—138° in COMc₂. With MeSO₂Cl-C₃H₅N at 0°, (I) gives 1: 2-isopropylidene-d-fructopyranose 3: 4: 5-trimethanesulphonate, m.p. 128—130°, [a]_p—115·5° in CHCl₃, or with Ac₂O-C₅H₅N at 37° gives 1: 2-isopropylidene-d-fructopyranose 4: 5-diacetate 3-methanesulphonate (>80%), m.p. 84—36°. Phenyl-β-d-fructopyranoside with MeSO₂Cl-C₅H₅N at 38°, (1) m.p. 84—36°. Phenyl-β-d-fructopyranoside with MeSO₂Cl-C₅H₅N at 38°, (1) m.p. 84—36°. Phenyl-β-d-fructopyranoside with MeSO₂Cl-C₅H₅N at 38°, (1) m.p. 84—36°. m.p. 197° (decomp.), [a]_D —135·3° in C_5H_5N , or at —19° gives, after

acetylation, impure phenyl- β -d-fructopyranoside triacetate 1-methane-sulphonate (II), whence boiling NaOMe-MeOH gives phenyl- β -fructopyranoside 1-methanesulphonate, m.p. 120° (decomp.), $[a]_D$ –172·2° in C_5H_5N , which by reacetylation gives pure (II), m.p. 127—128°, $[a]_N^{10}$ –135·4° (does not react with NaI-COMe₂ at 125—130°). R. S. C.

Splitting of sucrose by ultrasound.—See A., 1944, I, 88.

Starch. XI. Highly methylated starch. Sugars obtained by fission. K. Hess, H. A. Schulze, and B. Krajnc. XII. Comparison of end-group content, viscosity, and osmotic pressure of starch and its components. K. Hess and E. Steurer (Ber., 1940, 73, [B], 1069—1076, 1076—1079).—XI. When methylated potato starch (40—41% OMe) is treated with Na, liquid NH₃, and MeI in PhOMe, the product contains usually ~44—45.5% of OMe; high OMe content is obtained only if not too much Na is used, an excess causing backhydrolysis. MeI-Ag₂O similarly gives variable results up to 45.6% of OMe. Hydrolysis of a product containing 45.55% of OMe gives methyl-tetra-3.99, -tri-86.7, -di-4.77, and -mono-methylglucoside 2.27%. It is concluded that methylation is still incomplete but may involve structural changes.

XII. Data on the end-group content, η , and osmotic pressure of starch (potato; maize) and amylo- and erythro-amylose are recorded. They are considered too inconsistent to serve as a basis for final generalisation.

R. S. C.

Limit dextrins and starch. XII. Preparation and constitution of a difficultly hydrolysable disaccharide ("isomaltose") from starch. K. Ahlborg and K. Myrback (Biochem. Z., 1941, 308, 187—195; cf. A., 1944, II, 8; III, 67).—The prep. of isomaltose (I) from maize starch by hydrolysis with 0·2n·H₂SO₄ followed by removal of glucose and fractional pptn. with EtOH is described. Hydrolysis of a limit dextrin with takadiastase gives 20% yield of (I). The theoretical yield is calc. to be ~36%, whence it is concluded that the mol. of the limit dextrin with mol. wt. 700—1000 contains one (I) unit. The action of pancreatin on potato starch shows that it contains one (I) for every 15—20 maltose units. Since amylose is probably not branched, amylopectin must contain one (I) to every 10 maltose units. The structure of (I) is shown by methylation followed by hydrolysis, which yields 2:3:4-tri- and 2:3:4:6-tera-methyl-glucose.

J. N. A.

Phosphorylase of waxy maize.—See A., 1944, III, 289.

Amorphin, a glycoside in Amorpha fruticosa, L. F. Acree, jun., M. Jacobson, and H. L. Haller (J. Org. Chem., 1943, 8, 572—574).— The seeds of A. fruticosa, L., give the colour reaction in the Durham test which heretofore has been considered sp. for rotenone and the rotenoids, but no compounds of this class could be isolated from them. The product responsible for the positive reaction is amorphigenin (I), $C_{22}H_{22}O_7$, the aglycon of the glycoside, amorphin (II), $C_{33}H_{40}O_{16}$. (I) has m.p. $191-192^\circ$, does not reduce Fehling's solution before or after acid hydrolysis, and gives a negative phenol test. (II) has m.p. $151-151\cdot5^\circ$, does not reduce Fehling's solution until after acid hydrolysis, and gives a positive Durham and orcinol test and a negative phenol test. A substance, m.p. 218° , which gives a positive Durham test has been isolated in quantity too small for extended examination.

III.—HOMOCYCLIC.

Action of ultra-violet light on liquid benzene. C. B. Allsopp and B. Szigeti (J.S.C.I., 1944, 63, 31—32).—When liquid C_eH_e is irradiated in presence of air with ultra-violet light of λ 2537 a., small quantities of five different substances can be separated by chromotographic fractionation of the products. The absorption spectrum of one of them resembles those of the diphenylpolyenes, and another yields a bromophenylhydrazone. None of them has been definitely identified.

2:3:5-Trimethylnaphthalene in coal tar. O. Kruber (Ber., 1940, 73, [B], 1174—1175).—The first cryst. sulphonic acids obtained by partial sulphonation (with 92% $\rm H_2SO_4$) of a neutral, heavy oil fraction, b.p. 286—289°, readily yield 2:3:5-trimethylnaphthalene (I), b.p. 285°/762 mm., m.p. 25·3° (picrate, m.p. 124°; styphnate, m.p. 148°), after purification through the K salts. The hydrocarbon from subsequent sulphonates requires purification through the picrate, which is successful only if much preliminary enrichment has been effected by sulphonation. Its constitution is established by its oxidation by $\rm CrO_3$ in AcOH at 60° to 2:3:5-trimethyl-1:4-naphthaquinone, m.p. 128°, which is further oxidised by aq KMnO₄ at 60—70° to 3:1:2-C₆H₃Me(CO₂H)₂, m.p. 154°, or to 2:3:1-C₆H₃Me₂·CO₂H if excess of KMnO₄ is used at 100°.

H. W. aphtheses in the naphthalene group. III. Syntheses of 2-benzylnaphthalenes. W. Borsche, P. Hofmann, and H. Kuhn [and, in part, R. Manteuffel] (Annalen, 1943, 554, 23—40; cf. A., 1937, II, 18, 257).—α-Phenacylcinnamic acid (I) is hydrogenated (Pd-C in EtOAc) to α-phenacyl-β-phenylpropionic acid, reduced (Zn-Hg and HCl in boiling MeOH) followed by hydrolysis to γ-phenyl-α-benzyl-

n-butyric acid, b.p. 198°/1 mm., m.p. 54—55°, also obtained by hydrogenation (Pd-C in EtOAc) of (I) or of phenylbenzylcrotonolactone. This is converted by treatment with PCl₃ and subsequent distillation in vac. into 1-keto-2-benzyl-1:2:3:4-tetrahydronaphthalene (II), b.p. 176°/1 mm., m.p. 53—54° (2:4-dinitrophenylhydraz-one, m.p. 53—54°), reduced (Clemmensen) to 2-benzyl-1:2:3:4tetrahydronaphthalene, b.p. 195°/13 mm., which is dehydrogenated by Se at 280—300° to 2-C₁₀H₂·CH₂Ph, m.p. 58° (lit., m.p. 35·5°). (II) is transformed by MgPhBr followed by dehydration and dehydrogenation (Se) of the product into 1-phenyl-2-benzylnaphthalene, m.p. 87—88°. (CH₂Ph)₂CH·CH₂·COCl is cyclised by distillation to 1-heto-3-benzyl-1: 2:3:4-tetrahydronaphthalene, b.p. ~170°/1 mm. (2: 4-dinitrophenylhydrazone, m.p. 220°), which is reduced and dehydrogenated to (III), m.p. 57—58°. 2-C₁₀H₇·COPh is reduced by N₂H₄·H₂O at 220—230° to 2-C₁₀H₇·CH₂Ph, m.p. 58° (picrate, m.p. N₂H₄,H₂O at 220—230° to 2-C₁₀H₇·CH₂rn, m.p. as (picrate, m.p. 93°). 1-C₁₀H₇·COPh is transformed similarly into 1-C₁₀H₇·CH₂Ph, m.p. 57·5—58° (picrate, m.p. 103—104°). Na β-anisoylpropionate, PhCHO, and Ac₂O at 100° afford p-anisylbenzylidenecrotonolactone, m.p. 176—177°, converted by Na₂CO₃ in boiling aq. MeOH into a-p-methoxyphenacylcinnamic acid, m.p. 171°, which is hydrogenated to a-p-methoxyphenacyl-β-phenylpropionic acid, m.p. 132°; reduced (Clemmensen) to a-benzyl-γ-p-anisyl-n-butyric acid, b.p. ~200°/1 mm., m.p. 77°, which is cyclised to 1-keto-7-methoxy-2-benzyl-1: 2: 3: 4-tetrahydronaphthalene (III), b.p. 202—204°/1 mm., m.p. 120—121° (2: 4-dinitrophenylhydrazone, m.p. 223°). Reduction (Clemmensen) followed by dehydrogenation (Se) of (III) leads to 7-methoxy-2-benzylnaphthalene, m.p. 75.5° (picrate, m.p. 92—93°). y-p-Anisylbutyric acid, m.p. 53—55°, is smoothly obtained by hydrogenation (Pd-C in EtOAc) of y-keto-y-p-anisyl-n-butyric acid, y-Keto-y-phenyl-y-anisylidenebutyric acid, m.p. 179°, is reduced catalytically and subsequently according to Clemmensen to γ-phenyl-a-4-methoxybenzylbutyric acid, m.p. 87°; this gives successively 1-keto-2-4'-methoxybenzyl-1: 2: 3: 4-tetrahydronaphthalene, m.p. 65° 1-keto-2-4-methoxybenzyl-1: 2: 3: 4-tetranyaronaphthalene, m.p. 65° (2: 4-dinitrophenylhydrazone, m.p. 195°), and 2-4'-methoxybenzyl-1: 2: 3: 4-tetrahydronaphthalene, m.p. 69°, but the subsequent dehydrogenation does not appear to proceed smoothly. Reduction of 2-anisoylnaphthalene by N₂H₄ affords 2-4'-hydroxybenzylnaphthalene, m.p. 98° (picrate, m.p. 125—126°). Na β-anisoylpropionate, p-OMe·C₆H₄·CHO, and Ac₂O at 100° afford p-anisyl-anisylidene-crotonolactone, m.p. 175—176°, converted by prolonged boiling with Na CO, in an MeOH into p-anethoxyar-d-apethoxyabenocylcinaphysic croinolatione, m.p. 175—176°, converted by prolonged boiling with Na_2CO_3 in aq. MeOH into p-methoxy-a-4-methoxyphenacylcinnamic acid, m.p. 191°, which is reduced directly to γ -p-anisyl-a-4-methoxybenzyl-n-butyric acid, m.p. 112°; this is treated with PCl₃ and then cyclised to 1-keto-7-methoxy-2-4'-methoxybenzyl-1:2:3:4-tetrahydronaphthalene, b.p. 233—236°/1 mm., m.p. 90·5° (2:4-dinitrophenylhydrazone, m.p. 200°), which is reduced (Clemmensen) and then dehydrogenated (Se at 280—300°) to 7-methoxy-2-4'-methoxybenzyl-naphthalene, m.p. 121·5°. Na β -veratroylpropionate, PhCHO, and Ac.O at 100° give 3:4-dimethoxybhenzylbenzylbenzylbenzylagnecontoxylctone (IV) m.p. 139—140°, converted by Na₂CO₃ in boiling aq. MeOH into a-3: 4-dimethoxyphenacylcinnamic acid, m.p. 212°, and by boiling NaOMe-MeOH with immediate acidification into Me a-3: 4-dimethoxyphenacylcinnamate, m.p. $121-122^\circ$, which is transformed by N_2H_4 , H_2O at $120-130^\circ$ into 3-keto-6-3': 4'-dimethoxyphenyl-4-benzyl-2: 3: 4: 5-tetrahydropyridazine, m.p. $173-174^\circ$. The ester is hydrogenated to Me a-3: 4-dimethoxyphenacyl- β -phenylpropionate, m.p. $136-137^\circ$ (corresponding acid, m.p. 140°), which is reduced (Cleman 1998). mensen) to y-3: 4-dimethoxyphenyl-a-benzylbutyric acid, b.p. ~240° I mm., also obtained by catalytic hydrogenation of (IV) and converted into 1-keto-6: 7-dimethoxy-2-benzyl-1:2:3:4-tetrahydronaphthalene, m.p. 143° (2:4-dinitrophenylhydrazone, m.p. 227°). Gradual addition of NaOMe in MeOH to Me β -veratroylpropionate and PhCHO in MeOH at 30° leads to β -veratroyl- β -benzylidenepropionic acid, m.p. 124—126°; this is hydrogenated (Pd-C) in EtOAc) to the corresponding saturated acid, which is reduced (Clemmensen) to the non-cryst. y-3: 4-dimethoxyphenyl-\(\theta\)-benzyl-n-butyric acid, b.p. \(\simes 220^{\circ}/1\) mm. The corresponding non-cryst. 1-keto-6: 7-dimethoxy-3-benzyl-1: 2: 3: 4-tetrahydronaphthalene (2: 4-dinitrophenylhydrazone, m.p. 230^{\circ}) is dehydrogenated to 6: 7-dimethoxy-2-benzylnaphthalene, m.p. 105-106°, which does not give a colour with FeCl₂.

Perylene and its derivatives. LI. A. Zinke, U. Noculak, R. Skrabal, and H. Troger (Ber., 1940, 73, [B], 1187—1192).—Gradual addition of Br to a solution of perylene in boiling C₆H₆ gives a tetrabromoperylene (I), m.p. 310°, which gives a dark green colour in conc. H₂SO₄ and a more freely sol. (probably non-homogeneous) tetrabromoperylene (II), m.p. (indef.) 198—203°, which dissolves in warm conc. H₂SO₄ to a blue solution becoming violet and then dirty red when further heated. Under similar conditions 3:9-dibromoperylene gives (I) and a further tetrabromoperylene (III), m.p. 250—251°, whereas the 3:10-Br₂-compound gives a tetrabromoperylene (IV), m.p. 265°, softens at 254°. It is uncertain whether (II), (III), and (IV) are isomeric compounds or identical products in different stages of purity. Hot conc. H₂SO₄ transforms (I), (II), (III), and (IV) into quinones which are non-cryst, and sol. in alkali. (I) and conc. H₂SO₄ at 90° give a product with the approx. composition of a dibromoperylenequinone. Attempts to establish the position of Br in (I), (II), (III), and (IV) by use of (CH·CO)₂O are shown to be useless since no reaction occurs with

3:4:9:10-tetra-chloro- or -nitro-perylene although the 1:12positions are free. Condensation with (CH·CO)2O is not completely

inhibited by the presence of substituents since inhibited by the presence of substituents since 3:9-dichloroperylene gives a compound [(V), R = Cl] and 3:9-dibenzoylperylene affords a substance [(V), R = Bz]. Treatment of this with AlCl₃ at 170—180° gives varying results; it is decarboxylated by NaOH-CaO to 1:12-benzperylene, m.p. 272°, the Bz groups being removed. Decarboxylation of 4:5-benz-1:2-diphenylaceperylene-Bz1:Bz2-dicarboxylic anhydride leads to a hydrocarbon, m.p. 279°, of the expected diphenylacebenzperylene but

with the composition of the expected diphenylacebenzperylene but it is doubtful whether both Ph groups are still present. Condensation of tribenzoylperylene with (:CH·CO)₂O in boiling PhNO₂ yields tribenzoyl-1: 12-benzperylene-Bzl: Bz2-dicarboxylic anhydride.

Invert soaps. III. Benzylmethyldialkylammonium chlorides. Kuhn, D. Jerchel, and O. Westphal (Ber., 1940, 73, [B], 1095—1100; cf. A., 1944, II, 90).—CH.PhCl and NMeR, at 110—120° give benzylmethyldi-butyl-, m.p. 181°, -hexyl-, m.p. 58°, -octyl- (I), m.p. 68°, -dodecyl- (II) (prep. in EtOH at 120° and then 90°), m.p. 96⁵, and -cetyl-ammonium chloride (III) (prep. in EtOH at 100°), m.p. 99°. Dimethyldi-hexyl-: m.p. ~35°, and -tetradecyl-ammonium methosulphate, m.p. 129—130°, and methylethyldidodecylammonium iodide, m.p. 149°, and nitrate, m.p. 14°, are also prepared. Surface activity reaches a sharp max. at (II). For CH.Ph.NMeR.Cl, efficiency against Streptobacterium plantarum is a max. with (II). Efficiency against staphylococci, B. coli, E. typhi, and Friedlander bacillus is a max. at (I); against paratyphoid-B bacteria, (II) is see effective as (I).

R. S. C. as effective as (I).

Aniline homologues in coal tar. O. Kruber and L. Rappen (Ber., 1940, 73, [B], 1178—1184).—The most volatile fractions obtained in the separation of quinoline (I) are acetylated and the Ac derivatives are separated from one another by fractional crystallisation. The total primary bases constitute only 0.12% of crude (I). The presence of o-, m-, and p-toluidine, m-4-, p-, m-5 (II), and o-3-xylidine is established. The three toluidines are present in tar in about the same ratio as the three cresols. Among the xylidines as among the xylenols the m-compounds, particularly (II), predominate.

H. W. Reactions of 3-nitro-1-naphthylamine, including anil formation, bromination, and the preparation of 1:2:3:4-tetrabromonaphthalene. H. H. Hodgson and D. E. Hathway (J.C.S., 1944, 21—22).—3:1-NO_{*}·C₁₀H_{*}·NH₂ (I) [Bz, m.p. 220°, p-toluenesulphonyl, m.p. 200°, CHPhi, m.p. 122°, o-, m.p. 194°, m-, m.p. 188°, and p-nitrobenzylidene, m.p. 242° (sinters at 235°), and p-hydroxybenzylidene derivative, m.p. 233°1 and Zn-Ac₂O-NaOAc give 1:3-C₁₀H₄(NHAc)₂, m.p. 264°. (I)-NaNO₂-AcOH-H₂SO₄, followed by Cu₂O-EtOH, afford an almost quant. yield of 2-C₁₀H₄·NO₂. Br (1 or 2 mols.)-CHCl₃ converts (I) into 2:4-dibromo-3-nitro-1-naphthylamine, m.p. 182° (Ac derivative, m.p. 202°). 3:2:4:1-NO₂·C₁₀H₄Br₂·N₂HSO₄ and Cu₂O-EtOH yield 1:3-dibromo-2-nitronaphthalene, m.p. 130·5°; CuBr-HBr (d 1·7) at <20° affords 1:3:4-tribromo-2-nitronaphthalene, m.p. 218° (reduced by aq. Na₂S₂O₄-EtOH to the corresponding amine, m.p. 163°), and CuCl-Na₂S₂O₄-EtOH to the corresponding amine, m.p. 163°), and CuCl-HCl (d 1·16) gives 4-chloro-1:3-dibromo-2-nifronaphthalene, m.p. 198° (amine, m.p. 161°). 1:2:3:4-Tetrabromonaphthalene, m.p. 196°, is obtained from 1:3:4:2- $C_{10}H_4Br_3\cdot N_2HSO_4$. A. T. P.

Chromophoric naphthalene nucleus.—See A., 1944, I, 52.

"Carpasemine" isolated from Carica papaya seeds. T. B. Panse and A. S. Paranjpe (Proc. Indian Acad. Sci., 1943, 18, A, 140—144).—"Carpasemine" (I) (A., 1941, II, 381) is identified as benzylthiocarbamide, m.p. 165° (Ac derivative, m.p. 131°; methiodide, m.p. 103—105°). (I) is transformed by boiling 20% NaOH into NH₃, CH₂Ph·NH₆ (hydrochloride, m.p. 245—246°), and NH₂·CO·NH·CH₂Ph, m.p. 148—149° (Ac derivative, m.p. 130°), oxidised (KMnO₄) to an unidentified compound, m.p. 205—207°. A synthesis of (I) starting from CH₂Ph·CN is recorded. H. W.

Complex compounds of diguanide with bi- and ter-valent metals. VI. Copper, nickel, and cobaltic phenyldiguanide-p-sulphonic acid. P. Ray and S. K. Siddhanta (J. Indian Chem. Soc., 1943, 20, 250—252; cf. A., 1942, II, 254).—Dicyanodiamide and boiling aq. p-NH₂·C₆H₄·SO₃H give phenyldiguanide-p-sulphonic acid (I), p-SO₃·C₆H₄·NH·C(:NH)·NH·C(:NH)·NH₃+, m.p. 265—268° (decomp.), which behaves as an ampholyte. Aq. CuSO₄·SH₂O (at 50—60°) or NiCl 6H O (at 100°) added to (I) in an excess of an NH affords the Which, $6H_2O$ (at 100°) added to (I) in an excess of aq. NH_3 affords the $Cu^{"}$, $+H_2O$, or $Ni^{"}$ complex, $+2H_*O$ (probably trans-forms). $CoCl_2, 6H_2O$ and aeration yields the $Co^{"}$ complex, $+5H_2O$.

A. T. P. Derivatives of diphenylsulphonamides. I. Preparation of 2-aminodiphenyl-4-sulphonamide. A. H. Popkin. II. Derivatives of 2-aminodiphenyl-4-sulphonamide, A. H. Popkin and (Miss) G. M. Perretta (J. Amer. Chem. Soc., 1943, 65, 2043—2045, 2046—2048).—I. Adding o-C₈H₄Ph·NHAc (I) to CISO₃H at <10° and then heating at 60° gives 2'-acetamidodiphenyl-4-sulphonyl chloride (II), m.p. 149—150·5°, converted by hot, conc., aq. NH₃ into the amide,

m.p. 201-202°, which with hot, conc., aq. HCl-MeOH gives 2'aninodiphenyl-4-sulphonamide (III), m.p. 186—187° o-C₆H₄Ph·NO₂ and ClSO₃H give, as above, 2'-nitrodiphenyl-4-sulphonyl chloride (IV), m.p. 78—80°, and thence the amide, m.p. 203—204°, which with Sn-conc. HCl-EtOH yields (III). 2'-Aminodiphenyl-4-sulphonic acid, decomp. >250°, is obtained from (II) by boiling 18% aq. HCl or from (I) by 96% H₂SO₄ at 120°; when it is diazotised in 10% H₂SO₄ at room temp. and then heated at 60° and the Na₂ salt resulting is fused with NaOH at 270—290°, o-OH·C₆H₄·C₆H₄·O₇H₇·OH-p, m.p. 161·5—162·5° [diacetate, m.p. 94·5—96·5° (lit. 94°)], is obtained, thus proving the structure.

II. (II) is unstable when kept. NH₄R and (II) or (IV) in C₈H₃N-COMe₂ at 50° and then room temp. give o-NHAc·C₆H₄·C₆H₄·SO₂·NHR-p or o-NO₂·C₆H₄·C₆H₄·NHR-p, respectively, converted by HCl-MeOH or Sn-conc. HCl-MeOH respectively, into o-NH₂·C₆H₄·C₆H₄·SO₂·NHR-p, which are inactive against E. coli in vitro and streptococci in mice. The following are described: 2'-aminodiphenyl-4-sulphon-anilide, m.p. 100—100·5° (Ac derivative, m.p. 163·5—164·5°), -benzylamide, m.p. 106·5—107° aminodiphenyl-4-sulphonamide (III), m.p. 186-187°.

described: 2'-aminodiphenyl-4-sulphon-anilide, m.p. $100-100\cdot5^{\circ}$ (Ac derivative, m.p. $163\cdot5-164\cdot5^{\circ}$), -benzylamide, m.p. $106\cdot5-107^{\circ}$ (Ac derivative, m.p. $161-162^{\circ}$), -o-, m.p. $165\cdot5^{\circ}$ (Ac derivative, m.p. $173\cdot5-175^{\circ}$), and -p-xenylamide, m.p. $169-170^{\circ}$ (Ac derivative, m.p. $196-196\cdot5^{\circ}$); 2'-nitrodiphenyl-4-sulphon-anilide, m.p. $155\cdot5-156\cdot5^{\circ}$, -benzylamide, m.p. $128\cdot5-130^{\circ}$, -o-, m.p. $161-162^{\circ}$, and -p-xenylamide, m.p. $164-165^{\circ}$; N⁴-2''-acetamido-, m.p. $231\cdot5-232\cdot5^{\circ}$, N⁴-2''-amino-, m.p. $197\cdot2-198\cdot2^{\circ}$, and N⁴-2''-nitro-diphenyl-4'-sulphonylsulphanilamide, m.p. $239\cdot5-240^{\circ}$; 2'-2'''-acetamido-, m.p. $148\cdot5-150^{\circ}$ (decomp.), 2'-2'''-amino-, m.p. $263-264^{\circ}$, and 2'-2'''-nitro-diphenyl-4''-sulphonamidodiphenyl-4-sulphonamide, m.p. $173-174^{\circ}$. R. S. C. amide, m.p. 173-174°.

Decomposition of the diazonium salts of 4-nitro-1-naphthylamine by sodium sulphite and sodium acetate. Preparation of 4: 4'-dinitro-1: 1'-azonaphthalene. H. H. Hodgson, D. E. Nicholson, and G. Turner [with, in part, J. Habeshaw] (J.C.S., 1944, 15—17).—Rapid addition of aq. Na₂SO₃ to 4: 1-NO₂·C₁₀H₈·N₂Cl (or ·N₂HSO₄) (I) + NaOAc (excess) at 0° yields 4: 4'-dinitro-1: 1'-azonaphthalene (II), m.p. 334°, and a trace of 4: 1-NO₂·C₁₀H₈·OH. Excess of NaOAc alone initiates an oxidation-reduction reaction with (I) NaOAc alone initiates an oxidation-reduction reaction with (1) and affords (II), 4:4'-dinitro-1:1'dinaphthyl (III), m.p. 246°, and thords (11), 4:4-dinitio-1:1-dinaphthyl (111), in.p. 240, and (by a simultaneous decomp. by H₂O or OH') some 4:4-dinitronaphthalene-1':2-azo-1-naphthol (IV), m.p. 278° (also obtained from 4:1-NO₂·C₁₀H₆·N₂Cl and 4:1-NO₂·C₁₀H₆·OH in aq. NaHCO₃). (I) and aq. Na₂SO₃ at 0° afford numerous substances, including (II) (10—20%), (III), and 1-C₁₀H₇·NO₂; no (IV) is formed. In the above reactions, 4:4'-dinitronaphthalene-1':2-azo-1-naphthylamine, m.p. 274°, is not obtained, but is prepared from 4: 1-NO₂·C₁₀H₀·N₂Cl and 4: 1-NO₂·C₁₀H₀·NH₂ in AcOH-NaOAc. Mechanisms of reactions are postulated, and colour reactions recorded. (II) gives a bright blue colour with H2SO4, suggesting that salt formation has produced a di-indamine-like structure.

Replacement of the diazonium by the nitro-group. method based on decomposition of the aryldiazonium cobaltinitrites. H. H. Hodgson and E. Marsden (J.C.S., 1944, 22—24).—Aryldiazonium cobaltinitrites (I), (ArN₂)₃Co(NO₂)₆, are prepared by adding Na₃Co(NO₂)₆ to a solution of ArN₂Cl neutralised with CaCO₃. Na₃CO(NO₂)₈ to a solution of Arn₂CI neutralised with CaCO₃. They decompose on heating, sometimes with explosive violence, and couple with alkaline β -C₁₀H₁·OH. (I) (Ar = Ph, o-, m-, and p-NO₂:C₆H₄*, and p-C₆H₄(Cl·) with Cu₂O in conc. aq. NaNO₂ give PhNO₂ (75·5%), o- (67·4%), m- (72%), and p-C₆H₄(NO₂)₂ (75·9%), and p-C₆H₄(NO₂)₂ (75·9%), respectively. Small amounts of 1- (20%) and 2-C₁₀H₇·NO₂ (16·9%) are obtained similarly from (I) (Ar = 1- and 2-C₁₀H₇), but CuSO₄-Cu₂O-NaNO₂ gives 68 and 60%, respectively. Using the latter method. o- and b-toluidine and o- and b-anisidine Using the latter method, o- and p-toluidine and o- and p-anisidine also give >60% of the respective NO₂-compounds. A. T. P.

Interpretation of the Sandmeyer reaction. IV. Catalysed decomposition of diazonium cations by anionoid complexes with special reference to those of cobalt and ferric iron. H. H. Hodgson, S. Birtwell, and J. Walker (J.C.S., 1944, 18—19; cf. A., 1943, II, 28).—% Yields of m- and p-C₆H₄Cl·NO₂ (I) obtained by decomp. of m- and p-NO₂-C₆H₄·N₂Cl with metallic salts in boiling HCl (d 1·16) and p-NO₂-C₈H₄·N₂Cl with metallic salts in boiling HCl (d 1·16) are recorded in parentheses: HCl alone (47·3; 54·4), hydrated AlCl₃ (54·4; 60·7), SbCl₃ (31·6; 37·1), anhyd. CaCl₂ (47·3; 54·4) hydrated CoCl₂ (60·7; 70·9), CuCl, hydrated CuCl₂, or anhyd. FeCl₃ (67·5; 77·6), anhyd. ZnCl₂ (47·3; 54·4); the use of CrCl₃, SnCl₄, NiCl₄, and HgCl₂ is also examined in the case of (I). At the acid concn., FeCl₃ or CuCl₂ is as efficient as CuCl. CoCl₂ in the blue complex anionoid condition catalyses the reaction, whereas in the pink cationoid state it loses its catalytic influence. The results support the mechanism previously suggested (A., 1942, II, 52, 254). A. T. P.

Decomposition of diazotised 1:6-dinitro-2-naphthylamine by precipitated copper in organic solvents. H. H. Hodgson and H. S. Turner (J.C.S., 1944, 10—11).—1:6:2-(NO₂)₂C₁₀H₅·N₂HSO₄ is added to pptd. Cu in a solvent at 15° (cf. Cu₂O method; A., 1943, II, 158); if MeOH is used, no CH₂O is formed and a yield of 58% of 1:6-C₁₀H₆(NO₂)₂ results. Yields are recorded using other solvents, e.g., EtOH (57·5), PrβOH (54·5), Bu°OH (36·5), COMEEt (44·5), and Cl·[CH₂]₂·OH (36%) (cf. loc. cit.). 2:1-NO₂·C₁₀H₆·NH₂

is deaminated similarly to 2-C10H7'NO2 in MeOH (35) or EtOH

Colour and constitution. VIII. Coupling of the four m-halogenophenols and the chromoisomerism of the 3-halogeno-4-benzeneazophenois, explained on resonance theory. H. H. Hodgson (J. Soc. Dyers and Col., 1944, 60, 43—45; cf. A., 1943, II, 361).—The unique mono-coupling of m-C₀H₄F·OH in position 4, and the monoand di-coupling of the other three m-C₈H₄Hal·OH in the 4- and 2:4positions, are discussed from the viewpoint of H bonding and theory of resonance. The consequent chromoisomerism which arises both in the 3-halogeno-4-benzeneazophenols and in 3:2-NO₂·C₁₀H₆·NH₂ is explained.

p-Diphenylyl iodoacetate. L. C. Hensley and S. E. Hazlet (J. Amer. Chem. Soc., 1943, 65, 2256).—CH.Br.CO.C. H.Ph.p or CH.Cl.CO.C. H.Ph.p with KI in COMe. at room temp. and then the b.p. give 77.8 and 18.3%, respectively, of p-diphenylyl iodoacetate, m.p. 113·5—114·3°.

Reduction products of o-nitrophenyl esters of arylsulphonic acids. L. C. Raiford and J. R. Shelton (J. Amer. Chem. Soc., 1943, 65, 2048—2051).—o-NO₂·C₀H₄·O·SO₂Ar (A) and its derivatives are reduced by SnCl₂-EtOH-conc. HCl to NH₂-esters without migration of acyl; mixed aliphatic acyl arylsulphonyl derivatives of o-NILCH CHARLES (A) and the control of th NH2. C3H4. OH and its substitution products are stable. Latimer's theory (A., 1930, 9) does not account for this difference between theory (Å., 1930, 9) does not account for this difference between ary sulphonyl and purely aliphatic derivatives. (A) are prepared from o-NO₂·C₆H₄·OH etc. and ArSO₂Cl in C₅H₅N. The following are described. o-NO₂·C₆H₄ benzene-, m.p. 64° (lit. 75°), p-toluene-, m.p. 81°, p-bromo-, m.p. 98·5°, and m-nitro-benzene-sulphonate, m.p. 131°, p-toluenesulphonate, m.p. 141°, p-bromo-, m.p. 131°, and m-nitro-benzenesulphonate, m.p. 141°, p-bromo- m.p. 131°, and m-nitro-benzenesulphonate, m.p. 113°; 3-bromo-5-nitro-p-tolyl benzenesulphonate, m.p. 155°, p-toluenesulphonate, m.p. 127°, p-bromo-, m.p. 151°, and m-nitro-benzenesulphonate, m.p. 98°; 4-bromo-2-nitrophenyl, m.p. 88—89°, 4-nitro-m-tolyl, m.p. 89-84°, 6-bromo-4-nitro-m-tolyl, m.p. 119—120°, and 2:6-dibromo-4-nitro-m-tolyl benzenesulphonate, m.p. 124—126°; 4-bromo-2-nitrophenyl, m.p. 101°, 6tolyl, m.p. 119—120°, and 2:6-dibromo-4-nitro-m-tolyl benzenesul-phonate, m.p. 124—126°; 4-bromo-2-nitrophenyl, m.p. 101°, 6-bromo-4-nitro-m-tolyl, m.p. 86—87°, and 4-nitro-m-tolyl p-bromo-benzenesulphonate, m.p. 91—92°; 0-aminophenyl benzenesulphonate, m.p. 86°, p-toluenesulphonate, m.p. 98·5° (lit. 102°), p-bromo-m.p. 111—112°, and m-amino-benzenesulphonate, m.p. 125—126°; 6-bromo-4-amino-m-tolyl, m.p. 100°, and 3-bromo-5-amino-p-tolyl benzenesulphonate, m.p. 95°; 4:6-dibromo-2-aminophenyl p-toluene-, m.p. 129—130°, and p-bromobenzene-sulphonate, m.p. 128°; 3-bromo-5-amino-p-tolyl p-toluene-, m.p. 88°, and p-bromobenzene-sulphonate, m.p. 112—113°.

R. S. C.

Synthesis and properties of aryl vinyl ethers. M. F. Schostakovski and M. S. Burmistrova (J. Appl. Chem. Russ., 1942, 15, 260—266).—PhOH containing 10—16% of H.O, C.H. at 10—18 atm., and NaOH afford at 180° OPh·CH:CH₂, b.p. 155—156° (only slightly hydrolysed by 2% H₂SO₄); if PhOH is dry, a polymer is formed. Similarly are prepared o-tolyl, b.p. 167—168·5°, m-tolyl, b.p. 173—174·5°, p-tolyl, b.p. 175·5°, a-naphthyl, b.p. 257—258·5°, and benzyl (I), b.p. 183—184°, vinyl ether. The mol. refraction of the ethers, except (I), is by 0·8—1 > expected, and all the ethers, except (I), polymerise on heating. polymerise on heating.

30% aq. KI at 90—100° into 4-iodo-6-nitro-1-naphthol, m.p. 214—216°. 4:5-Dinitro-1-diazo-2-naphthol (III) [from 2:4:5:1-[from 2:4:5:1-(NO2)3C10H4 NH2], decomp. slowly if heated gradually, explodes at 160° on rapid heating, is converted by Al + a little Cu in boiling EtOH into $4:5:2\cdot(NO_2)_2C_{10}H_3\cdot OH$, m.p. $237-238^\circ$ (lit. $\sim 230^\circ$). 1-Bromo-4:b-dinitro-2-naphthol, m.p. $218-220^\circ$, is obtained from (III) and 30% HBr-CuBr at 100° (bath). $\beta\cdot C_{10}H_7\cdot NH\cdot SO_2\cdot C_8H_4Me-p$ with Br-AcOH at 90° , followed by hydrolysis (cold, conc. H_2SO_4) and disrotiestion affects R_1 -from R_2 -from R_3 -fro and diazotisation, affords 6-bromo-2-diazo-1-naphthol, m.p. 214° (decomp.) (darkens \sim 145°; shrinks \sim 160°), converted by Al-Cu-Devarda's alloy in boiling EtOH into 6:1-C₁₀H₆Br·OH. 1:6:2-(NO₂)₂C₁₀H₅·NH·SO₂·C₈H₄Me- ϕ after hydrolysis, diazotisation, and

immediate addition to β -C₁₀H₇·OH in aq. NaOH at <10° gives 1: 6-dinitro-2-naphthaleneazo-β-naphthol, m.p. 310°. M.p. are corr.

Phenols of the heavy oil of coal tar. II. O. Kruber and A. Marx (Ber., 1940, 73, [B], 1175—1177).—Fractional extraction with 4—5% NaOH of a phenol mixture, b.p. 248—252°, leads to the isolation of 5-hydroxyhydrindene (I), b.p. 251°/760 mm., m.p. 54—55° [phenylurethane, m.p. 155°; oxyacetic acid, m.p. 157°; benzoate (II), m.p. 110°], and 3:4:5-trimethylphenol (III), b.p. 248°/758 mm., m.p. 106° (phenylurethane, m.p. 148°; oxyacetic acid, m.p. 149°). (III) forms mixed crystals with (I) which can be removed as (II). as (II).

 $\beta\beta$ -Di-p-hydroxyphenylpropane.—See B., 1944, II, 65.

Alkylpyrocatechols.—See B., 1944, II, 65.

Invert soaps. IV. Quaternary salts of aminophenyl ethers. R. Kuhn and D. Jerchel (Ber., 1940, 73, [B], 1100—1105; cf. A., 1944, II, 95).—o-NO₂·C₆H₄·OK, n·C₁,H₂₅Cl, and a little ZnCl₂ in EtOH at 180° give o-NO₂·C₆H₄ (05.—65%), b.p. 201—203°/3·5 mm., hydrogenated (PtO₂; EtOH) to o-NH₂·C₆H₄ n-C₁₂H₂₅ ether, m.p. 39°, b.p. 188—189°/3 mm. (hydrochloride), which with Me₂SO₄ at ~150° gives o-NMe₂·C₆H₄ n-C₁₂H₂₅ ether (80%), b.p. 220°/3 mm. [methylmethosulphate (I), m.p. 102—104°]. p-NO₂·C₆H₄·OK gives similarly p-NO₂·C₆H₄, m.p. 55°, and thence p-NH₂·C₆H₄ (hydrochloride, m.p. 103—106°), and (by Me₂SO₄) p-NMe₂·C₆H₄ n-C₁₂H₂₅ ether [methylmethosulphate (II), m.p. 118—120°]. m-NMe₂·C₆H₄·OK gives m-NMe₂·C₆H₄ n-C₁₂H₂₅ ether, m.p. 28—29° [methylmethosulphate (III), m.p. 118—120°]. m-NMe₂·C₆H₄·OK gives m-NMe₂·C₆H₄ n-C₁₂H₂₅ ether, m.p. 28—29° [methylmethosulphate (III), m.p. 82—83°]. The bactericidal and bacteriostatic activity of (I)—(III) are quantitatively similar to those of n-C₁₂H₂₅·NMe₂Br·CH₂Ph.

Perivatives of 4 · 4′-diaminodinhenyl sulphone.—See B. 1944.

Derivatives of 4:4'-diaminodiphenyl sulphone.—See B., 1944,

Role of neighbouring groups in replacement reactions. VII. Methoxyl group.—See A., 1944, II, 90.

Action of anisole with aga-trichloro- β -methyl- $\Delta\beta$ -propens.—See A., 1944, II, 89.

Behaviour of hydrogenated anisoles towards lithium phenyl.—See A., 1944, II, 114.

Synthesis of 1:4-epoxycyclohexane. R. C. Olberg, H. Pines, and V. N. Ipatiev (J. Amer. Chem. Soc., 1943, 65, 2260).—Passing cis- or trans-cyclohexane-1:4-diol over activated Al₂O₃ at 275° gives 28 or 73%, respectively, of 1: 4-epoxycyclohexane, b.p. 120·1°/760 mm., converted by 48% HBr into trans-1: 4-dibromocyclo-

Restricted rotation in arylolefines. VII. New synthesis of ndered β -substituted β -arylacrylic acids. R. Adams and C. W. hindered β -substituted β -arylacrylic acids. R. Adams and C. Theobald (J. Amer. Chem. Soc., 1943, 65, 2208—2211; cf. A., 1943, II, 10).—Di-o-substitution only slightly reduces the ease with which II, 10).—Di-o-substitution only slightly reduces the ease with which CPh₂C·CO₂H undergoes addition reactions. 2:4:6:1-C₆H₄Me₃·COMe and PCl₅ at 60° (3 hr.) and then 100° (45 min.) give 2:4:6:1-C₆H₂Me₃·CCl:CH₂ (50%), b.p. 122—124°/25 mm., -C₆H₄Me₃·CO·CH₂Cl (19%), m.p. 62—63°, and some α-mesitylvinyl H₂ phosphate, m.p. 229—232°. 2:4:6:1-C₆H₂Me₃·C·CH with MgEtBr-Et₂O and then CO₂ at <0°/2·5—3 atm. gives mesityl-propiolic acid (I) (43%), m.p. 165—167° (decomp.), which with gaseous HCl in AcOH at 80—90° gives β-chloro-β-mesitylacrylic acid (67%), m.p. 145—146°, obtained also (71%) from 2:4:6:1-C₆H₂Me₃·CO·CH₂·CO₂H by POCl₃-PCl₅ at 0°. With HBr-AcOH (79% yield) or, less well, aq. HBr at room temp. (I) gives β-bromo-β- C_0H_2 Me₃·CO·CH₂·CO₂H by POCl₃–PCl₅ at 0°. With HBr-AcOH (79%) yield) or, less well, aq. HBr at room temp. (I) gives β-bromo-β-mesitylacrylic acid, m.p. $135-135\cdot5^\circ$. 2: 3: 4: 6: $1-C_0HMe_4$ ·COMe (II) and PCl.–PCl₃–POCl₃ at, successively, 0°, room temp., 55° , and $65-70^\circ$ give a-isodurylvinyl chloride (III), b.p. 225° /745 mm., with ω-chloroacetoisodurene, m.p. $88-88\cdot5^\circ$, b.p. 144° /6 mm., and ? a-isodurylvinyl H₂ phosphate, m.p. $184-184\cdot5^\circ$. NaOEt converts (III) in boiling EtOH into isodurylacetylene (~65%), b.p. 86° /1 mm., which affords, as above, isodurylpropiolic (67%), m.p. $164-164\cdot5^\circ$ (decomp.), and thence β-chloro- (90%), m.p. 185° , and (by aq. HI at room temp.) β-iodo-β-isodurylacrylic acid (90%), m.p. $183-184^\circ$. MgEtBr-Et₂O and then CO₂ converts (II) into β-heto-β-isoduryl-propionic acid (71%), m.p. $113-114^\circ$ (decomp.). M.p. are corr.

Synthesis of amino-acids from substituted cyanoacetic esters.—See A., 1944, II, 91.

Condensation of aldehydes with malonic acid. XV. Condensation of 5-bromo- and 3:5-dibromo-salicylaldehyde; influence of dissimilar groups. K. C. Pandya and (Miss) R. B. K. Pandya (*Proc. Indian Acad. Sci.*, 1943, 18, A, 164—170; cf. A., 1941, II, 170).—Condensation of o-OH·C₆H₄·CHO with CH₂(CO₂H)₂ is facilitated by the presence of Br or Cl in the aromatic nucleus. By reason of the the presence of Br of Cl in the aromatic nucleus. By reason of the ready sublimation of $2:5:1-OH\cdot C_6H_3Br\cdot CHO$ condensation with $CH_2(CO_2H)_2$ in presence of a little C_5H_5N at 100° proceeds somewhat slowly, giving 5-bromo-2-hydroxycinnamic acid (1), m.p. $150-152^\circ$ (yield 50-55%) (no colour with FeCl₃; decolorises Baeyer's reagent), and 5-bromosalicylidenemalonic acid, m.p. 175° (decomp.) (yield 24%), which passes at 180° into (I). At $100-105^\circ$ in absence of a condensing agent the reactants afford 6-bromocoumarin-3-carboxylic acid, m.p. 200° (yield 92.5%), with small amounts of a compound, m.p. 241° (decomp.). 2:3:5:1-OH·C $_8$ H $_2$ Br $_2$ ·CHO (II), fused NaOAc, and Ac $_2$ O at 170—180° afford 6:8-dibromocoumarin, m.p. 176°, in ~33% yield. (II), CH $_2$ (CO $_2$ H) $_2$, and a little C $_5$ H $_6$ N at 110° give a substance, m.p. 323—327°, darkens at 210°, which contains Br but not OH, CHO, or CO $_2$ H, 3:5-dibromo-2-hydroxy-cinnamic acid, m.p. 185—187° (yield 31%), and 3:5-dibromo-salicylidenemalonic acid, m.p. 157—159° (yield 22%). In absence of a condensing agent the reactants afford 6:8-dibromocoumarin-3-carboxylic acid, apparently dimorphous, m.p. 224—226°. H. W.

Reaction of sodium triphenylmethyl with esters of αβ-unsaturated acids. W. D. McPhee and E. G. Lindstrom (J. Amer. Chem. Soc., 1943, 65, 2177—2180).—CPh₃Na does not cause enolisation of CHMe:CH·CO_{*}Et in Et₂O, but by 1: 4-addition gives [CPh₃·CHMe·CH·CO_{*}Et]Na (I), whence H₂O and then boiling 10% KOH-EtOH gives β-triphenylmethyl-n-butyric acid (II), m.p. 213·5—215·5° (214—216°) after sintering (p-bromophenacyl ester, m.p. 174—176° after sintering) (cf. Michael et al., A., 1943, II, 192). Adding BzCl to (I) in situ gives a glass, whence distillation gives CHPh₃ and impure CPh₃·CHMe·CHBz·CO₂Et (III), hydrolysis of (III) to a ketone was impracticable. ~2 mols. of CH₂·CH·CO₂Me are required to discharge the colour of 1 mol. of CPh₃Na; hydrolysis of the product affords, with difficulty, γγγ-triphenyl-n-butyric (IV) (16%), m.p. 153—156° (p-bromophenacyl ester, m.p. 193·5—194·5°), and α-β'β'β'-triphenylethylglutaric acid (18%), m.p. 205—206° (bis-Sbenzylthiuronium salt, m.p. 144—144·5°). CPh₃Na and (CH₂)₂O in Et₂O give γγγ-triphenyl-n-propyl alcohol (96%), m.p. 107—108°, b.p. 208—212°/3 mm., converted by red P-I at 165° into the iodide, m.p. 173·5—174·5° (cf. Wooster et al., A., 1934, 1095), the Grignard reagent of which with gaseous CO₂ gives 19% of (IV), sinters 148°, m.p. 154—156° (p-bromophenacyl ester, sinters 192°, m.p. 194—195·5°).

Reformatsky reaction with benzylideneaniline. H. Gilman and M. Speeter (f. Amer. Chem. Soc., 1943, 65, 2255—2256).—CHPh:NPh, CH₂Br·CO₂Et (gives 54% yield) or CH₂Br·CO₂·CH₂Ph (gives 40% yield), and Zn in boiling PhMe give, after or without hydrolysis, β -anilino- β -phenylpropiolactam, m.p. 154°. Use of CHMeBr·CO₂Et gives 85% of β -anilino- β -phenylrsobutyrolactam, m.p. 109—110°.

Anhydrides of peptides and dehydrogenated peptides. J. E. Tictzman, D. G. Doherty, and M. Bergmann (J. Biol. Chem., 1943, 151, 387—394).—Acetyldehydrophenylalanyldehydrophenylalanine (I) and C₅H₅N-H₂O (1:1) at 100° (bath), followed by 2N-HCl at 0°, afford anhydroacetyldehydrophenylalanyldehydrophenylalanine (II), m.p. 210—212° (decomp.), also obtained similarly, but more slowly, at 37.5° (20 days), or from the azlactone of (I) at 100° (bath). Hydrogenation (2 H₂; Pd-black in EtOH at 20—25° for 150 hr.) of (II) yields anhydroacetylphenylalanylphenylalanine, m.p. 203—204° (decomp.) (Me ester, m.p. 135—137°) (decomposed by boiling HCl to phenylalanine), and an acetylphenylalanylphenylalanine (III), m.p. 246—248° (decomp.). The azlactone of the Bz analogue of (I) and C₅H₅N-H₂O (1:2) at 100° (bath) give anhydrobenzyldehydrophenylalanyldehydrophenylalanine, m.p. 258—259° (decomp.). The crude azlactone from glycine, PhCHO, and Ac₂O-NaOAc with boiling H₂O (2 hr.) (cf. Dakin, A., 1929, 811) gives a product, C₂₀H₁₆O₃N₂, m.p. 254—255° (decomp.) (structure suggested); it forms Na, NH₄, and C₅H₅N salts. The azlactone of acetylbis(dehydrophenylalanyl)dehydrophenylalanine and COMc₂ in N-NaOH at room temp. yield anhydrobis(dehydrophenylalanyl)dehydrophenylalanine affords (II) and an isomeride, m.p. 183—185°. Acetyldehydrophenylalanylglycine at 180° in vac. gives only a tar, and neither it nor its Bz analogue could be transformed by C₅H₅N-H₂O into anhydropeptides. A. T. P.

Cyclic fatty acids. cycloHexylgeranylacetic acid. L. Leder-Pakendorf (Compt. rend. Acad. Sci. U.R.S.S., 1941, 31, 757—760).— Adding Et cyclohexylmalonate and then geranyl chloride to Na powder in xylene-PhMe gives Et_2 cyclohexylgeranylmalonate [Et a-carbethoxy- α -cyclohexyl- $\delta\theta$ -dimethyl- $\Delta \gamma n$ -decadienoate], b.p. 201—203-5°/5 mm., the derived (50% KOH) oily acid from which at $40-150^\circ$ gives a-cyclohexyl- $\delta\theta$ -dimethyl- $\Delta \gamma n$ -decadienoic acid (I), b.p. 213—214°/7 (? 17) mm. (Et ester, b.p. 215—218°/25 mm.), reduced by H_2 -Pd-Pt-C in EtOH to a-cyclohexyl- $\delta\theta$ -dimethyl-n-decoic acid (II), b.p. 218—219°/14 mm. (I) and (II) are only feebly toxic, but are effective against Lupus vulgaris, Lepra, and [(I) much more effective than (II)] tubercle bacilli. R. S. C.

Chemotherapeutic study of p-nitrobenzoyl and related compounds. C. Siebenmann and R. J. Schnitzer (f. Amer. Chem. Soc., 1943, 65, 2126—2128).—cycloHexanol (2 mols.) and p-NO₂·C₆H₄·COCl (I) (1 mol.) in C₆H₅N at <20° and then at the b.p. give cyclohexyl p-nitrobenzoate (II), m.p. $51\cdot5-52\cdot5^\circ$. Resorcinol (2 mols.) and (I) (1 mol.) in C₈H₅N at 100° give resorcinol mono-, m.p. 175—177°, and some di-p-nitrobenzoate, m.p. $185-186^\circ$ [best obtained by use of an excess of (I)]. The following are similarly prepared. Pyrocatechol mono-, m.p. $151-152^\circ$, and di-, m.p. $162-165^\circ$, quinol

mono-, m.p. 190—194°, and di-, m.p. 252—257°, pyrogallol mono-, m.p. 193—197°, and tri-, m.p. 229—231°, 4-hexylresorcinol mixed (III) (m.p. 60—72°) mono- and di-, inositol hexa- (prep. without a solvent at 180—200°), m.p. 310—315°, -p-nitrobenzoate; cyclohexyl 3:5-dinitrobenzoate, m.p. 109—111°; p-nitrobenzoate; cyclohexyl 101—106°, -piperidide, m.p. 115—118°, and -cyclohexylamide, m.p. 203—204°; 3:5-dinitrobenz-morpholide, m.p. 184—187°, and -piperidide, m.p. 143—144·5°; 1:4-di-p-nitrobenzoylpiperazine, m.p. 318°. p-NH-C₆H₄·SO₂·NH₂ (IV) (0·11) and (I) (0·23 mol.) in C_8 H₅N at <30° and then 100° give N¹N⁴-di-, m.p. 268° (decomp.), hydrolysed by boiling 30% NaOH to N¹-p-nitrobenzoylsulphanilamide (V), m.p. 218—219° (lit. 235—240°). 1 mol. each of (I) and (IV) in C_5 H₅N give N⁴-p-nitrobenzoylsulphanilamide, m.p. 260°. N¹-Benzoyl- (VI), m.p. 178—180° (lit. 181·2—182·3°), and N¹N⁴-dibenzoyl-sulphanilamide, m.p. 252° (decomp.) (lit. 268—270°), are also prepared. Most of these compounds have little or no anticoccal activity. (II) is slightly active against pneumoccoci. (VI) is extremely effective against meningococci in mice, and (VI) is sp. against pneumoccoci. (III) is effective against pneumoccoci. (VI) is extremely effective against meningococci in mice, and (VI) is sp. against pneumoccoci. The N¹N⁴-derivatives of (IV) are quite inactive, as arc the 3:5-dinitrobenzoyl derivatives. R. S. C.

Isomorphism of organic compounds. VI. H. Lettré [with H. Barnbeck, P. Lehmann, and M. Stier] (Ber., 1940, 73, [B], 1150—1152).—p-OMe·C₆H₄·CO₂H (I) gives eutectics with BzOH and p-C₆H₄R·CO₂H (R = OH, Me, Cl, Br, and I). OMe therefore resembles OH in inability of isomorphous replacement by other substituents. (I) forms additive compounds (1:1) with o-, m-, and p-NO₂·C₆H₄·CO₂H. r-OH·CHPh·CO₂H (II) gives only a eutectic with r-p-OMe·C₆H₄·CH(OH)·CO₄H (III). Similar observations are made with (+)-p-OMe·C₆H₄·CH(OH)·CO₂H and (+)- and (-)-OH·CHPh·CO₂H. (II) and (III) form a system of two true racemates in which the racemic forms are not isomorphous. The sterically similar forms do not give mixed crystals and a partial racemate does not arise from the sterically opposite modifications.

Rearrangement of benzyl ethers of salicylic acids. D. S. Tarbell and V. P. Wystrach (J. Amer. Chem. Soc., 1943, 65, 2146—2149).—2:3:5:1-OH·C₈H₂Cl₂·CO₂H (I), CH₂PhCl, K₂CO₃, and NaI in boiling COMeEt-H₂O give Me 3:5-dichloro-2-benzyloxybenzoate, m.p. 42·5-43·5°, hydrolysed by KOH-H₂O-MeOH to the acid (II), m.p. 148—148·5°. At 153° (II) gives CH₂Ph 3:5-dichlorosalicylate (III) (65—72%), m.p. 109·5—110·5° [also obtained from (I) (as Na salt) by CH₂Ph·OH and a little NEt₃ at 135°], (I) (20%), and 8—10% of CO₂, but no other decarboxylation product. In NPhMe₂ at 155° (II) gives 51% of (III) and 25% of (I); (III) is also obtained slowly in boiling AcOH, but (II) is unchanged in PhMe-xylene at 116—117°. o-CH₂Ph·O·C₆H₄·CO₂H at 185—190° gives o-OH·C₆H₄·CO₂·CH₂Ph (35%), o-OH·C₆H₄·CO₂H (17—~35%), and 5:2:1-CH₂Ph·C₆H₃(OH)·CO₂·CH₂Ph (a little; identified by hydrolysis). 5:2:1-NO₂·C₆H₃(OH)·CO₂Et, m.p. 97—97·5° (lit. 93°), gives, as above, Et 5-nitro-2-benzyloxybenzoate, m.p. 75—75·5°, which with KOH-H₂O-MeOH at the b.p. gives 5:2:1-NO₂·C₆H₃(OMe)·CO₂H, m.p. 159·5—160·5° (lit. 161°), but at room temp. gives 5-nitro-2-benzyloxybenzoate acid, m.p. 166—166·5°. At 175° this gives CH₂Ph 5-nitrosalicylate (63%), m.p. 83·5–85·5° [also prepared from 5:2:1-NO₂·C₆H₃(OH)·CO₂H (28%)). The reaction mechanism is discussed. M.p. are corr. R. S. C.

Effect of heat on the β-naphthylmethyl and 9-phenanthrylmethyl ether of 3:5-dichlorosalicylic acid. D. S. Tarbell and V. P. Wystrach (J. Amer. Chem. Soc., 1943, 65, 2149—2153).—The 9:10-ethylenic linking of phenanthrene is sufficiently "aliphatic" to cause rearrangement of 9-phenanthrylmethyl ethers to resemble that of allyl (A., 1942, II, 258) rather than that of CH₂Ph ethers (cf. preceding abstract). This is not so for the 1:2-linking of C₁₀H₈, since β-C₁₀H₇:CH₈ resemble CH₂Ph ethers. β-C₁₀H₇:CH₂Cl with 2:3:5:1-OH·C₆H₂Cl₂·CO₆Me (I) and NaOH in aq. COMeEt and then KOH-MeOH-EtOH gives 3:5-dichloro-2-β-naphthylmethoxybenzoic acid (II) (50%), m.p. 142—142·5° (decomp.), which at 147—148° gives β-naphthylmethyl 3:5-dichlorosalicylate (III) (67%), m.p. 138·5—139° [identified by hydrolysis to 2:3:5:1-OH·C₆H₂Cl₂·CO₂H (IV) and β-C₁₀H₇·CH₂·OH], CO₂ (9·5%), and (IV) (~10%). (III) is also obtained when (II) is crystallised from AcOH. HCl passed into phenanthrene, conc. HCl, and 40% CH₂O at 94° gives 9-chloromethylphenanthrene (V) (21%), m.p. 101·5—102° [picrate, m.p. 101·6—102° (lit. 99·5—100·5°)], which with (I), NaI, and K₂CO₃ in aq. COMeEt gives Me 3:5-dichloro-2-9'-phenanthrylmethoxybenzoate (56%), m.p. 162·5—163·5°. Hydrolysis with alkali then yields the derived acid (VI), m.p. 174·5—175°, which at 229° gives CO₂ (75%), (IV) (29·8%), and 9·3':5'-dichloro-2'-hydroxybenzyl-]phenanthrene (41%), m.p. 136·5—137·5° (acetate, m.p. 208—208·5°). (VI) is unchanged in boiling AcOH. 9-Phenanthroyl chloride, 2:4:1-C₆H₃Cl₂·OH (VII), and AlCl₃ in CS₂ give 2:4:1-C₆H₃Cl₂ 9-phenanthroate (14%), m.p. 183—184°, which with EtOH gives some of the Et ester, m.p. 114·5—115°. (V), (VII), NaI, and K₂CO₃ in aq. COMeEt give 9-2':4'-dichlorophenoxymethylphenanthrene (60%), m.p. 125—125·5°, which at 279—280° (not 240°) yields (VII) as sole product isolated. Mg,

(V), and a trace of MeI in boiling Et₂O-C₈H₈ give, after treatment with aq. NH₄Cl, $\alpha\beta$ -di-9-phenanthrylethane (69%), m.p. 252·5—254·5°, and a little (?) 9-methylphenanthrene. Zn-HCl-EtOH is without effect on (V). M.p. are corr. R. S. C.

Synthesis of phenolic acid esters. I. Depsides. C. J. Cavallito and J. S. Buck (J. Amer. Chem. Soc., 1943, 65, 2140—2142).— OH·C₀·H₄·CO₂Na and CH₂PhCl (1·1 mol.) in boiling aq. EtOH give up to 40% of CH₂Ph p-, m.p. 111°, o-, b.p. 158°/3 mm., and m-lydroxybenzoate, m.p. 70°. 2:4:1-(OH)₂C₀·H₃·CO₂·H and CH₂PhCl (1·05 mol.) in boiling KOH-EtOH-H₂O give CH₂Ph 2:4-dihydroxybenzoate, m.p. 60°, b.p. 215°/2 mm. Similar use of an excess of CH₂PhCl gives CH₂Ph p-benzyloxybenzoate, m.p. 115°, hydrolysed by alkali to p-CH₂Ph·O·C₀·H₄·CO₂·H₄·m.p. 188°. Similarly are prepared o-benzyloxy-, m.p. 70°, 2:4-di-, m.p. 180°, and 3:4:5-tri-benzyloxybenzoic acid, m.p. 189°. The benzyloxy-acids with SOCl₂ give the acid chlorides, which with CH₂Ph esters of OH-acids give CH₂Ph·O·C₆H₄·CO₂·C₆H₄·CO₂·C₆H₄·CO₂·C₆H₂Ph etc., whence H₂-spongy Pd in dioxan at 50°/40 lb. gives the free depsides. Thus are obtained: p-benzyloxy-, m.p. 110°, and 3:4:5-tribenzyloxy-benzoyl chloride, m.p. 115°; CH₂Ph p-, m.p. 166°, m-, m.p. 107°, and o-p'-benzyloxy-benzoyloxy-m.p. 111°, and p-3':4':5'-tribenzyloxybenzoyloxy-benzoyloxy-benzoyloxy-benzoyloxy-m.p. 240°, m.p. 247°, and o-p'-hydroxy-benzoyloxybenzoyloxy-m.p. 255—260°, and 2:4-di-p-hydroxy-benzoyloxybenzoic acid, m.p. 250°.

Action of sodium on ethyl β-methylbutane-αβδ-tricarboxylate. III. Synthesis of cis-allosantenic acid. IV. R. N. Chakravarti (J. Indian Chem. Soc., 1943, 20, 243—246; 247—249; cf. A., 1943, II, 371).—III. CO₂Et·CH₂·CMe(CN)·CH(CN)·CO₂Et and EtOH-NaOEt-MeI at room temp., then boiling, give Et₂ γδ-dicyano-γ-methylpentane-αδ-dicarboxylate, b.p. 185°/5 mm., converted by boiling conc. HCl, followed by EtOH-H₂SO₄ at 110°, into Et₃ γ-methylpentane-αγδ-tricarboxylate (I), b.p. 154°/5 mm. [free acid, m.p. 178° (cf. Sen-Gupta, A., 1933, 1049)]. (I) and Na in boiling C₃H₂ give Et₂ 2:3-dimethylcyclopentanone-3:5-dicarboxylate, b.p. 135°/4 mm., which with boiling 6% HCl affords 2:3-dimethylcyclopentanone-3-carboxylic acid, a liquid (semicarbazone, decomp. 204°); its Et ester (HCl-EtOH), b.p. 99°/4 mm. and anhyd. HCN (+ a little KCN) at 9° yield a cyanohydrin, dehydrated by POCl₃-C₅H₅N at 145—150° and then hydrolysed by boiling conc. HCl to a mixture, m.p. 140—145°, of santenenic and isosantenenic acid. The mixture is hydrogenated (PtO₂, AcOH, room temp., 1 atm.) to 2:3-dimethylcyclopentane-1:3-dicarboxylic acid, converted by AcCl into cisallosantenic anhydride (II), m.p. 92°, and some isomeric santenic acids. Hydrolysis of (II) with EtOH-KOH yields cis-allosantenic acid, m.p. 151—152° (cf. Enkvist, A., 1933, 822).

IV. CO₂Et·[CH₂]₃·CMe(CO₂Et)·CH₂·CO₂Et and Na-C₆H₆, followed by CH₂Br·CO₂Et, give Et₃ 4-methylcyclopentanone-2:4-dicarboxylate-2-acetate, b.p. 170°/5 mm., hydrolysed by boiling conc.

loved by CH₂Br·CO₂Et, give Et₃ 4-methylcyclopentanone-2: 4-dicarboxylate-2-acetate, b.p. 170°/5 mm., hydrolysed by boiling conc. HCl to 4-methylcyclopentanone-4-carboxylic-2-acetic acid (Et₂ ester, b.p. 145°/6 mm.), reduced (Clemmensen) to 1-methylcyclopentane-1-carboxylic-3-acetic acid (III), m.p. 124—125°. Et 3-methylcyclopentanone-3-carboxylate and CH₂Br·CO₂Et-Zn afford esters, converted by POCl₃-C₈H₈ into unsaturated esters, b.p. 125°/4 mm., and thence by H₅-PtO₇-EtOH at room temp. and 1 atm., followed by boiling 10% aq. KOH-EtOH, into (III). (III) is probably identical with the acid, m.p. 126°, described by Banerjee (A., 1941, II, 16) as the 2-acetic acid.

Sulphonated esters, amides, and imides of cis-3: 6-endomethylene-hexahydrophthalic acid,—See B., 1944, II, 66.

Synthesis of condensed ring compounds. XI. A tricyclic compound [obtained] by the di-inene double addition reaction. W. Nudenberg and L. W. Butz (J. Amer. Chem. Soc., 1943, 65, 2059—2060: cf. A., 1943, II, 330).— δ -1-Hydroxycyclopentyl- β -methyl- Δ -n-butinen- β -ol. b.p. 124°/5 mm., and KHSO₄ at 160—180° give δ - Δ -cyclopentenyl- β -methyl- Δ -buten- Δ -inene (62%), b.p. 81°/13 mm., which with ('CH-CO)₂O-CO₂ at 110—120° and then 150—160° gives 8-methyl-7: 12-cyclopenta[a]naphthitadiene-5: 6: 10: 11-[1-methyl-5: 6-trimethylene-2: 3: 4: 6: 7: 8-hexahydronaphthalene-3: 4: 7: 8-]tetracarboxylic anhydride (13%), m.p. 168—170° (vac.) [absorption max. at 2500 A. (z 18,000) in EtOH]. δ -1-Hydroxy-2-methylcyclopentyl- β -methyl- Δ -n-butinen- β -ol (prep. in 70% yield), b.p. 122—123°/1—2 mm., in boiling 15: 37 (vol.) HaSO₄-HaO gives δ -2-methyl- Δ 1-cyclopentenyl- β -methyl- Δ 2-buten- Δ 3-inene (38%), b.p. 85—95° (90°)/13—14 mm., which with Me2 furnarate (3 mols.)—N2 at 190—200 gives (?) Me_4 4: 8-dimethyl-7: 12-cyclopenta[a]-naphthitadiene-trans-trans-5: 6: 10: 11-[1: 6-dimethyl-5: 6-trimethylene-2: 3: 4: 6: 7: 8-hexahydronaphthalene-trans-trans-3: 4: 7: 8]-tetracarboxylate, a glass, whence N2Ha yields no cryst. product. Me4 Δ 3-(14): 6-chrysitadiene-trans-6: 7: 11: 12-tetracarboxylate and N2Ha, H2O in boiling MeOH give a Me4 ester dihydrazide, m.p. 161—168° (decomp.). M.p. are corr. R. S. C.

Preparation of p-aminobenzaldehyde, and the mechanism of the reactions of sodium polysulphides with p-nitrotoluene. H. G. Beard and H. H. Hodgson $(J.C.S., 1944, 4-5).-p-C_6H_4$ Me·NO₂ and Na₂S_x

in boiling aq. EtOH-NaOH (90 min.) give p-NH₂·C₆H₄·CHO (I) in yields of 35—40 (x=1), 45·3 (x=2), 53·4 (x=3), and 72—75% (x-4); much by-product results when x=5. In absence of an alcohol (EtOH is more efficient than MeOH or Pr°OH) or of free alkali the optimum yield of (I) falls to 31 or <10%, respectively. A mechanism of the reaction is postulated.

[With R. R. Davies.] (I) (52%) and its o-Cl-derivative (48%) are prepared by a modification of Geigy's process (G.P. 86,874), using the respective nitrotoluene and 17% aq. NaOH + S. A. T. P.

Reaction of p-bromophenacyl bromide with chloride ions. H. H. Pokras and H. I. Bernstein (J. Amer. Chem. Soc., 1943, 65, 2096—2097).—p-C₀H₄Br·CO·CH₂Br (I) and NaCl or KCl (excess) in boiling 62% EtOH give p-bromophenacyl chloride (II), also obtained (m.p. 117—118°; 80%) from PhBr, CH₂Cl·COCl, and AlCl₃. Use of 1 mol. of NaCl causes only partial conversion, but the reverse change could not be effected. Solubilities of (I) and (II) in 62% EtOH at 25° are 0.332 ± 0.008 and 0.278 ± 0.01 g. per 100 c.c., respectively. Mixtures of (I) and (II) melt at intermediate temp. (mixed m.p. diagram given). Formation of (II) may obscure identification of compounds contaminated with NaCl.

Fluorine derivatives of acetophenone and ethylbenzene. J. H. Simons and D. F. Herman (J. Amer. Chem. Soc., 1943, 65, 2064—2066).—Fluorination may be effected by active AgF (AgF_{1-a}) in liquid HF or by F_a in liquid HF. Gradual replacement of Cl in C₂PhCl₅ by F progressively increases the difficulty of further exchange; exchange starts at C_(a). COPh·CHBr₂ and AgF₁₋₆ in liquid HF at 75° (not other methods) give COPh·CHF₂ (40%), b.p. 83—85°/29 mm. (2:4-dinitrophenylhydrazone, m.p. 221—223), converted by warm 5% NaOH into OH·CHPh·CO₂H. COPhMe, F₂, and Ag₂O in HF at 0° give COPh·CHF₂ (20·2%) with small amounts of CF₄ and BzF. COPh·CCl₃ and AgF₁₋₆ in HF at <0° give ωω-dichloro-ω-fluoro- (48·7%), b.p. 111—112°/24 mm., and ω-chloro-ωω-difluoro-acetophenone (8·5%), b.p. 84—85°/25 mm., both converted by warm 10% NaOH into BzOH but failing to give 2:4-dinitrophenylhydrazones; a little BzF is also formed; COPh·CF₃ could not be obtained thus from COPh·CCl₃ or the products. COPh·CCl₃ and PCl₆ at 220° give C₂PhCl₅ (84%), b.p. 155—156°/15 mm., which with HF at 145°/⇒300 lb. gives αβββ-tetrachloro-α-fluoroethylbenzene (I) (51·1%), b.p. 246°/731 mm., 123—126°/14 mm., βββ-trichloro-α-difluoroethylbenzene (II) (29·8%), b.p. 219°/731 mm., 100°/16 mm., and small amounts of BzF and (?) CPhF₂·CCl₂F. With SbF₃-SbCl₅ at 170—180° (I) gives (II) (47·3%), ββ-dichloro-ααβ-tripfluoroethylbenzene (III) (6·7%), b.p. 177—178°/731 mm., 94—95°/42 mm., and a little BzF. Repeated treatment of (II) with AgF₁₋₆·HF at 180° gives 19·9% of β-chloro-ααβ-tetrafluoro- (IV), b.p. 152—153°/733 mm., and 16% (III), SbCl₅ and (III) in HF at 180°/>400 lb. give 15% of (IV) and a small amount of C₂PhF₅ (not obtained pure by this method).

Preparation and properties of mesityl-2:4:6-trimethylbenzyl-glyoxal [αγ-dimesitylpropane-αβ-dione]. R. P. Barnes and A. E. Brandon (J. Amer. Chem. Soc., 1943, 65, 2175—2177).—CHR:CH·COR (R = mesityl) and H₂O₂ in NaOH-H₂O-MeOH at 30° give βγ-eροχγ-αγ-dimesitylpropan-α-one, geometrical isomerides, m.p. (I) 95° and (II) 110°; illumination of (I) in EtOH gives (II), but the reverse change could not be effected. In boiling NaOH-MeOH-H₂O, (II) gives β-hydroxy-αγ-dimesityl-Δβ-propen-α-one (III), m.p. 143°; (I) gives mainly the geometrical isomeride (IV), m.p. 128°, and a little (III). (III) and (IV) give red colours with FeCl₃-EtOH and are respectively ~70% and ~40% enolic (Kurt Meyer), but are not interconvertible. Br in MeOH converts (III) or (IV) into γ-bromo-αγ-dimesitylpropane-αβ-dione (V), yellow, m.p. 137—148°, converted by boiling conc. HCl-MeOH into the colourless enolic form (VI), m.p. 143°, and by KI and a little AcOH in COMe₂ into (III). (VI) gives a dark brownish-green colour with FeCl₃-EtOH and is ~5% enolic (Kurt Meyer). With boiling Ac₂O-KOAc, (V) or (VI) gives γ-bromo-β-acetoxy-αγ-dimesityl-Δβ-propen-α-one, m.p. 133—134°, whence boiling conc. HCl-MeOH yields (VI). R. S. C.

Preparation and properties of mesityl-p-methoxybenzylglyoxal. R. P. Barnes and H. Delaney (J. Amer. Chem. Soc., 1943, 65, 2155—2157).—2:4:6:1-C₆H₂Me₃·CÖMe and p-OMe·C₆H₄·CHO in NaOH-H₂O-EtOH at room temp. give mesityl p-methoxystyryl ketone, m.p. 103—104°, which with H₂O₂ in NaOH-H₂O-EtOH at ~35° gives the oxide, an oil, converted by boiling NaOH-MeOH-H₂O in 10 min. into β-hydroxy-γ-p-anisyl-a-mesityl-Δβ-propen-a-one, m.p. 97—98°. This is 99% enolic (Kurt Meyer) in EtOH, with alkaline H₂O₂ gives p-anisyl-a-mesityl-propane-aβ-dione, an oil, converted by KOAc in boiling. AcOH into β-hydroxy-γ-acetoxy-γ-p-anisyl-a-mesityl-Δβ-propen-a-one (I), m.p. 128—129°. (I) gives a red colour with FeCl₃, is 83% enolic, is unchanged by AcCl, but with boiling KOAc-Ac₂O gives βγ-diacetoxy-γ-p-anisyl-a-mesityl-Δβ-propen-a-one (II), m.p. 96°. Hydrolysis of (I) or (II) by cone. H₂SO₄ gives the white, crystenediol (III), which gives a bluish-green colour with FeCl₃, decoloring indophenol, and, when kept, is converted by autoxidation into an orange peroxide and then into deep yellow α-p-anisyl-γ-mesityl-y-me

propane-aβγ-trione, m.p. 106°. (III) is thus much less stable than its o-anisyl analogue (A., 1943, II, 66). R. S. C.

Polycyclic compounds. III. Benzonaphthone [perinaphthindenone] bromide, the primary product of interaction of bromine and benzonaphthone. A. M. Lukin (Bul. Acad. Sci. U.R.S.S., Cl. Sci. chim., 1941, 565—572).—Contrary to Brass and Clar (A., 1940, II, 75) the primary interaction product of benzonaphthone and Br is the dibromide. The monobromide is an intermediate stage, as is the complex formed by the mono- and di-bromides. V. B.

Ionone. II. Optical resolution of dl-a-ionone. H. Sobotka, (Miss) E. Bloch, H. Cahnmann, (Misses) E. Feldbau, and E Rosen (J. Amer. Chem. Soc., 1943, 65, 2061—2062; cf. A., 1944, II, 78).—dl-a-Ionone and l-menthydrazide, $[a]_2^{23}$ —76·7° in 95% EtOH, in boiling EtOH containing a little NaOAc and AcOH give the difficultly separable l-, m.p. 185°, $[a]_2^{23}$ —320° in EtOH, and d-a-ionone-l-menth-hydrazone, m.p. 176°, $[a]_2^{23}$ +230° in EtOH, whence distillation with o-C₈H₄(CO)₂O in steam yields l-, $[a]_2^{27}$ —406° (2:4-dinitro-phenylhydrazone, m.p. 133°; p-chlorobenzoylhydrazone, m.p. 200—201°), and d-a-ionone, $[a]_2^{23}$ +347° (2:4-dinitrophenylhydrazone, m.p. 129°; p-chlorobenzoylhydrazone, m.p. 196—198°), which differ in odour. β -Ionone-l-menth-hydrazone, m.p. 178°, [a] -35°, dl-a-ionone-2:4-dinitrophenylhydrazone, m.p. 143°, and p-chlorobenzoylhydrazone, m.p. 214°, are also described. Use of the active compounds for investigating the a- β -ionone equilibration is discussed.

Volatile vegetable substances. XXVI. Ionones. Y. R. Naves and P. Bachmann (Helv. Chim. Acta, 1943, 26, 2151—2165).—a-Ionone (I) [semicarbazone, m.p. 142—148° (lit. 137—138°); δ-phenylsemicarbazone, m.p. 186·5—187°; 2 : 4-dinitrophenylhydrazone, m.p. 151° (lit. 147—148°)] is readily obtained pure through the H sulphite or oxime. β-Ionone (II) is obtained pure by hydrolysis of the semicarbazone (III), m.p. 148·5—149°, becomes yellow at >100°, with aq. o-C₈H₄(CO₂H), in a current of steam; the δ-phenylsemicarbazone has m.p. 157·5—158° and is stable to light and air whereas a phenylsemicarbazone, m.p. 151—152°, obtained from (III) and NH₂Ph at 180°, rapidly becomes yellow in air. The reactions of (I), (II), and methyl-α-ionone (IV) with NaOEt-EtOH and according to Legal, Rosenthaler, Ehrlich-Muller, and Hanriot are described in detail. Reduction of (I), (II), and (IV) with Na in boiling EtOH gives dihydro-α-ionol (V), b.p. 126—127°/10 mm. (acetate, b.p. 131—132°/10 mm.), differing in physical consts. from the product of Palfray et al. (A., 1937, II, 108), dihydro-β-ionol, b.p. 132—133°/10 mm., m.p. 41° [allophanate, m.p. 162·5—163° (lit. 171·5°); acetate, b.p. 137—138°/10 mm.], and dihydromethyl-α-ionol, b.p. 136—138°/10 mm. (acetate, b.p. 141—142°/10 mm.), respectively. Hydrogenation (PtO₂ in 90% AcOH at 70°) of (V) affords cis-tetrahydroionol, b.p. 130—131°/10 mm. (allophanate, m.p. 162—162·5°), oxidised to cis-tetrahydroionone (semicarbazone, m.p. 183—184°; 2 : 4-dinitro-phenylhydrazone, m.p. 120—120·5°). It is probable that the product obtained by Kandel (A., 1939, II, 169) is the trans-isomeride. a-Methyltetrahydroionol, b.p. 138—139°/10 mm., is similarly obtained. (I) is hydrogenated (Raney Ni in 95% EtOH at 65°) to dihydro-a-ionone, b.p. 119—120°/10 mm. [semicarbazone, m.p. 167—167—167·5° (lit. 171—172°)]. The dihydroionol obtained by hydrogenation (Raney Ni in 95% EtOH at 66°) is non-homogeneous and appears to contain ~22°% of ketones. (I) is dehydrated by I to 1:1:6-trimethyl-1:2:3:4-tetrahydrona

Reaction between quinones and metallic enolates. XVIII. Mechanisms. L. I. Smith, R. T. Arnold, and J. Nichols (J. Amer. Chem. Soc., 1943, 65, 2131—2134; cf. A., 1944, II, 54).—The varying modes of reaction of bromopolymethylbenzoquinones with CHNa(CO₂Et)₂ or other anionoid reagents are correlated and shown to be rational on the basis of possible modes of resonance. Similar explanations can be applied also outside this series of compounds. R. S. C.

Vitamin-K group. I. Synthesis of potassium 2-methyl-1: 4-naphthaquinone-3-sulphonate. D. A. Bochvar, L. A. Schukina, A. S. Chernyshev, N. G. Semenov, and M. M. Shemiakin. II. Mechanism of biological action of vitamin-K and of its synthetic analogues, M. M. Shemiakin, L. A. Schukina, and J. B. Shvezov (J. Amer. Chem. Soc., 1943, 65, 2162—2164, 2164—2167).—I. With KHSO₃ in 5% H₂SO₄ and then K₂Cr₂O₇, 1:2:4-O:C₁₀H₈Me:O

(I) gives >9% of K 2-methyl-1; 4-naphthaquinone-3-sulphonate (II) (cf. Fieser and Fieser, A., 1935, 585; Moore, A., 1941, II, 369).

By use of aq. KHSO₃ (no acid) at 115—120° and then $K_2Cr_2O_7$ or, better, aq. Cl. ~60% of (II) is obtained. The reaction mechanism is (I) — (III) — (IV) — (V) and thence, by oxidation, (II). The change (IV) \rightarrow (V) is accelerated by H' or OH', but for (I) the reverse change to (I) is accelerated by H' to a greater degree so that the total effect of acid is unfavourable; for 1:4-O:C₁₀H₀·O (VI) the total effect is favourable (cf. loc. cit.). (II) has only slightly less antihæmorrhagic effect than has (I) (cf. Moore, loc. cit.; Baker et al., A., 1942, 11, 285; Menotti, A., 1943, II, 303; a different method of test is used).

II. Biological activity of (I) and its derivatives is held to be due to biological degradation to o- $C_eH_4(CO_2H)_2$ (VII) or its derivatives. (VII) and particularly its Et₂ ester and diamide have vitamin-K activity. In boiling H_2O (30 hr.) (I) (20 g.) gives (VII) (0.9 g. isolated as anhydride) and a (?) quinhydrone, m.p. >350°; 1·2 g. of (VII) is obtained by boiling aq. KOH (45 min.). In H_2O (5 hr.), (II) (20 g.) gives 0·8 g. of (VII) and 3·3 g. of a quinhydrone (VIII), m.p. 243—244° (decomp.) (oxidised to a quinone by Cl_2 and reduced to a quinol by Zn-AcOH). In 25% aq. KOH at room temp., (II) gives the yellow K_2 salt (IX), which in H_3O rapidly gives (VII) and (VIII) but by further treatment with 25% KOH gives the orangered K_2 salt (X) and thence, by acid, regenerates (II). Generation of

(IX.)
$$CH_2$$
 CH_2K SO_2K SO_2K CH_2K CH_2K

(VII) depends on formation of a 2-CHR: derivative, which explains why (I), but no other 2-alkyl derivatives, is antihæmorrhagic and why substitution at C₍₃₎ usually has little effect. R. S. C.

Perylene and its derivatives. L. A. Zinke, H. Troger, and E. Ziegler (Ber., 1940, 73, [B], 1042—1048; cf. A., 1937, II, 142).—Contrary to Zinke et al. (A., 1927, 1190), perylene (I), ο-C₆H₄(CO)₂O, and AlCl₃ (or AlCl₃-NaCl) at 170° give di-o-carboxybenzoylperylene-A₁, m.p. >360°, and -A₃, sinters from 260°, m.p. 292—296°, o-carboxybenzoylperylene-A₁, m.p. 277—278° (sinters 260°), and diphthaloylperylene-B₁ (violet-blue vat) and -B₂ (blue-green vat). In boiling PhNO₂, -A₃ gives -B₁ and ? a half-cyclised acid; gives similarly ? impure -B₂. (CH₂·COCl)₂. (I), and AlCl₃ in CS₂ give γ-keto-γ-3-perylenyl-n-butyric acid, darkens 240°, m.p. 255° (B_{K4}-derivative, m.p. 190°; Me, m.p. 183°, and E ester, m.p. 168°), converted by Ac₂O into ? 2: 3-succinylperylene. (CH₂·CO)₂O and (I) give impure products.

IV.—STEROLS AND STEROID SAPOGENINS.

Organ extracts. III. Unsaponifiable lipoids from arteriosclerotic aortas. E. Hardegger, L. Ruzicka, and E. Tagmann (Helv. Chim. Acta, 1943, 26, 2205—2221).—The comminuted material is extracted exhaustively with COMe₂ and neutral lipoids result after removal of acids and substances readily sol. in H.O from the extract. These are hydrolysed successively with Ba(OH)₂ and KOH (whereby alterations of the native material are not excluded) and the unsaponified residue is separated into its components by crystallisation and chromatography over Al₂O₃. 370 human aortas yield 127 g. of unsaponifiable matter from which is obtained ~90 g. of cholesterol (I) containing (according to [a]_D) ~5·6% of dihydrocholesterol. On average 1 aorta contains ~240 mg. of total (I) compared with 5—50 mg. in the normal organ. From the residual (I)-poor unsaponifiable matter are isolated: \$\Delta^{2:5}\$-cholestadien-7-one (II), m.p. 114—114·5°, [a]_D —299°±5° in CHCl₃ (oxime, m.p. 176—178°; semicarbazone, m.p. 206·5—207·5°); \$\Delta^{4:5}\$-cholestadien-3-one (III), m.p. 79·5—81°, [a]_D +35°±2° in CHCl₃ (oxime, m.p. 176—177°); cholestane-3(\(\beta\)): 5: 6(trans)-triol (IV), m.p. 244—245° (softens at 227°) (diacetate, m.p. 165—167°), which does not give a colour reaction with SbCl₃, C(NO₂)₄, or CCl₃·CO₂H; 7(\(\beta\))-divenzy-cholesterol (V), m.p. 188—188·5°, [a]_D —93°±2° in CHCl₃ (dibenzoate, m.p. 301—303°, [a]_D +61°±17° in CHCl₃; substance B, m.p. 301—301·5°, [a]_D +25·5°±3° in CHCl₃; substance B, m.p. 301—301·5°, [a]_D +25·5°±3° in CHCl₃; substance B, m.p. 301—301·5°, [a]_D +25·5°±3° in CHCl₃; substance B, m.p. 301—301·5°, [a]_D +60°±1° in CHCl₃; substance B, m.p. 301—301·5°, [a]_D +60°±1° in CHCl₃; substance B, m.p. 301·60·2, substance E, m.p. 68—69°, [a]_D +17°±4° in CHCl₃, which gives a red colour with SbCl₃ in CHCl₃ and a blue colour with CCl₃·CO₂H in CHCl₃; substance E, m.p. 68—69°, [a]_D +17°±4° in CHCl₃, Provisionally, the possibility cannot be excluded that (II), (III)

Organ extracts. IV. Unsaponifiable lipoids from swine spleen. V. Prelog, L. Ruzicka, and P. Stein (*Helv. Chim. Acta*, 1943, 26, 2222—2242).—The material is extracted with COMe₂ and the extract is treated with hot MeOH into which the bulk of the unsaponifiable matter passes, leaving the fatty acid glycerides undissolved. From the MeOH extract the bulk of the cholesterol (I) is separated by crystallisation from COMe₂. What remains is hydro-

lysed by NaOH-MeOH and much of the fatty acids are separated as the insol. Ba salts, which retain a considerable proportion of the residual unsaponifiable matter, the removal of which is described. This is then freated with Girard's reagent T and the reacted and unchanged portions are chromatographed over Al_2O_3 . The following are isolated: Δ^5 -cholestene- $3(\beta)$: 7(a)-diol [7(a)-hydroxycholesterol], m.p. $168-170^\circ$, $[a]_D^{11}-12\cdot3^\circ\pm3^\circ$ in CHCl₃ (dibenzoate, m.p. $170\cdot5^\circ$, $[a]_D^{11}+97^\circ+5^\circ$ in CHCl₃), which does not give a colour with $C(NO_2)_4$ and with $SbCl_3$, $CCl_3\cdot CO_2H$, and Lifschütz reagent gives the colours typical of hydroxycholesterols; Δ^4 -cholestene- $3(\beta)\cdot 6$ -diol, m.p. 254° , $[a]_D^{20}+8\cdot4^\circ\pm4^\circ$ in C_5H_5N (diacetate, m.p. 181° , $[a]_D^{20}-73\cdot0^\circ\pm2\cdot5^\circ$ in $CHCl_3$); cholestan- $3(\beta)$ -ol-6-one, m.p. 181° , $[a]_D^{20}-73\cdot0^\circ\pm2\cdot5^\circ$ in $CHCl_3$); cholestan- $3(\beta)$ -ol-6-one, m.p. $128-129^\circ$, $[a]_D^{13}-305^\circ\pm4^\circ$ in $CHCl_3$; $\Delta^3\cdot5$ -cholestadien-7-one, m.p. 114° , $[a]_D^{13}-305^\circ\pm4^\circ$ in $CHCl_3$; $\Delta^4\cdot6$ -cholestadien-3-one (oxime, m.p. $173\cdot5-175^\circ$); substance, $C_{27}H_{48}O_2$, m.p. $155\cdot5-156^\circ$, $[a]_D^{10}-132^\circ\pm4^\circ$ in $CHCl_3$, which gives the colour reactions typical of hydroxycholesterols, gives a monoacetate, m.p. $110-111^\circ$, $[a]_D^{20}$ This is then freated with Girard's reagent T and the reacted and hydroxycholesterols, gives a monoacetale, m.p. $110-111^\circ$, $[a]_D^{10}$ +118°±4° in CHCl₃, and a monobenzoate, m.p. $134-135^\circ$, $[a]_D^{10}$ -79°±3° in CHCl₃, cannot be pptd. with digitonin, and is oxidised by Al(OPh)₃ and COMe₂ to $\Delta^{4:6}$ -cholestadien-3-one (oxime, m.p. $172-174^\circ$); in EtOH it does not exhibit absorption in the ultraviolet; it gives a marked depression of m.p. with Δ^a -cholestene-3:5-diol, of which it is very possibly a stereoisomeride; batyl alcohol, m.p. $64\cdot5-65\cdot5^\circ$, $[a]_D^{10} + 5\cdot3^\circ \pm 1\cdot5^\circ$ in CHCl₃ (bisphenyl-wethane, m.p. $98\cdot5-99^\circ$); (?) palmitylsphingosine, m.p. $90-91^\circ$, $[a]_D^1 \pm 0^\circ \pm 3^\circ$ in CHCl₃; compound A, $C_{27}H_{48-48}O$, m.p. $210-216^\circ$, $[a]_D^1 - 74\cdot8^\circ \pm 2^\circ$ in CHCl₃, which does not give a yellow colour with C(NO₃)₄; substance B, $C_{29}H_{48}O_3$, m.p. $200-201^\circ$, $[a]_D^{10} - 5\cdot7^\circ \pm 3^\circ$ in CHCl₃, which does not give the hydroxycholesterol colour reactions or a yellow colour with C(NO₂)₄, does not give a ppt. with digitonin, and is not identical with cholestane- $3(\beta):5:6$ -(trans)-triol or $-3(\beta):5:6$ -(cis)-triol; substance C, m.p. $86-87^\circ$, which does not give a yellow colour with C(NO₂)₄. As impurities a hydrocarbon, $C_{25}H_{52}$, m.p. $53\cdot5-54^\circ$, and friedelin, m.p. $255-259^\circ$, are isolated. According to their constitution, all the isolated steroids can be represented as oxidation or transformation products of (I). In this violet; it gives a marked depression of m.p. with Δ6-cholestenerepresented as oxidation or transformation products of (I). In this and similar researches it has been found possible to isolate from organ extracts all derivatives of (I) which have been identified from the autoxidation or photo-oxidation of (I). It cannot therefore be decided definitely whether the transformation products of (I) isolated from organ extracts are present as such in the organism or are produced during the working up. The biochemical significance of the isolation of the steroids is therefore very difficult to evaluate. The total result is, however, valuable. Since steroids with 18, 19, and 21 C atoms have only so far been isolated from the sexual tract, the adrenals, and urine, their occurrence appears provisionally to be characteristic of these sources. M.p. are corr. H. W.

Steroids and sex hormones. LXXXVIII. 3(a)-Hydroxyalloætio-cholanic acid. P. A. Plattner and A. Fürst (Helv. Chim. Acta, 1943, 26, 2266—2273).—Oxidation of $3(\beta)$ -hydroxyalloætiocholanic acid by CrO₃ in AcOH gives 3-ketoalloætiocholanic acid (I), m.p. 260—262°, the yield of which is greatly diminished by the simultaneous formation of isoalloætiolithobilianic acid. Similar oxidation of the hydrogenation product of $\Delta^{5:6}$ -3(β)-hydroxypregnen-20-one gives 20-keto-23-allopregnane-2: 3-diacid, m.p. 219—219-5°, [a]p +93-8° in CHCl₃. Hydrogenation (PtO₂ in AcOH containing HBr at 60°) of (I) gives 3(a)-acetoxyalloætiocholanic acid, m.p. 215—218°, [a]p +50-3° in CHCl₃; the Me ester (II), m.p. 199—202°, [a]p +54-5° in CHCl₃, is hydrolysed to 3(a)-hydroxyalloætiocholanic acid (III), m.p. 281—284°, [a]p +45-3° in CHCl₃ (Me ester, m.p. 178—181°, [a]p +52-6° in CHCl₃). Similar hydrogenation of larger quantities of crude (I) gives a product from which cryst. derivatives of (III) cannot be separated. From the ethereal solution of the hydrogenated product separates a substance of high m.p. from which by esterification (CH₂N₂) and chromatography Me₂ isoalloætiotihobilianate, m.p. 82—83°, [a]p +47-2° in CHCl₃, is isolated. Esterification and acetylation of the more sol. products lead to Me alloætiocholanate, m.p. 140—142°, [a]p +55-4° in CHCl₃ (acid, m.p. 225—227°, [a]p +55-8° in CHCl₃), and Me $3(\beta)$ -bromoalloætiocholanate, m.p. 135°, [a]p +59-3° in CHCl₃. Me $3(\beta)$ -p-toluenesul-phonyloxyalloætiocholanate, m.p. 147°, [a]p +80-1° in CHCl₃, from the OH-ester and p-C₆H₄Me-SO₂Cl in dry C₅H₅N at 0° and then at room temp., is converted by anhyd. NaOAc in boiling AcOH into (II) (yield 50%) and Me $\Delta^{2:3}$ - or $\Delta^{3:4}$ -alloætiocholanate, m.p. 129—131°, [a]p +94-8° in CHCl₃, hydrogenated (PtO₂ in AcOH) to Me alloætiocholanate, m.p. 142—144-5°, [a]p +53-3° in CHCl₃. M.p. alloætiocholanate, m.p. 142—144-5°, [a]p +53-3° in CHCl₃. M.p.

Bile acids and related substances. XXVIII. 12(a)-Hydroxycholanic acid. M. Sorkin and T. Reichstein (Helv. Chim. Acta, 1943, 26, 2997—2101; cf., A., 1942, II, 412).—Hydrogenation (Raney Ni-MeOH at 20°) of Me 12-ketocholanate (I) gives a mixture of Me 12(a)- (II) and $12(\beta)$ - (III) -hydroxycholanate, partly separated chromatographically, after which (III) can be caused to crystallise. Crude (II) is hydrolysed to 12(a)-hydroxycholanic acid (IV), m.p.

109—115°, $[a]_{1}^{19}+37\cdot 9^{\circ}\pm 2^{\circ}$ in COMe₂, also obtained by treating Me 3-keto-12(a)-acetoxycholanate with N_2H_4,H_2O and NaOEt-EtOH at 180°. $12(\beta)$ -Hydroxycholanic acid has $[a]_{1}^{19}+43\cdot 5^{\circ}\pm 2^{\circ}$ in COMe₂. The constitution of (IV) is established by methylation (CH₂N₂) followed by oxidation (CrO₃ in AcOH at room temp.) to (I). Substitution of NaOH-MeOH for pure MeOH in the hydrogenation of Me 3(a)-hydroxy-12-ketocholanate so favours the production of 3(a): 12(a)-dihydroxycholanic acid that the greater part of it can be separated pure by two crystallisations; a simplified method is described for the separation of the remainder of it from deoxycholic acid. M.p. are corr. (block); limit of error $\pm 2^{\circ}$. H. W.

Steroids and sex hormones. LXXXIX. Simple digitaloid lactones with allocholane configuration. P. A. Plattner, L. Ruzicka, and A. Fürst (Helv. Chim. Acta, 1943, 26, 2274—2278).—3(a)-Acetoxyalloætiocholanic acid is converted by SOCl₂ in boiling C_6H_6 into the chloride, which with CH_2N_2 in C_6H_6 — Et_2O at -10° affords 21-diazo-3(a)-acetoxyallopregnan-20-one, decomp. 156— 158° , $[a]_D+141\cdot 6^{\circ}$ in CHCl₃. converted by AcOH at 100° into 3(a):21-diacetoxyallopregnan-20-one, m.p. 165° , $[a]_D-92\cdot 1^{\circ}$ in CHCl₃. This is converted by Zn and $CH_{\circ}Br^{\circ}CO_{\circ}Et$ in C_6H_6 -dioxan followed by treatment with boiling dil. HCl and $Ac_2O-C_6H_5N$ at room temp. into 20:21-dihydroxy-3(a)-acetoxynorallocholanolactone (I), m.p. 255° (loss of H_2O), $[a]_D+60^{\circ}$ in CHCl₃. (I) is converted by prolonged boiling with Ac_2O into $\Delta^{\circ}(22-21$ -hydroxy-3(a)-acetoxy-, m.p. 230° , $[a]_D+19^{\circ}$ in CHCl₃, and thence by 2N-HCl in dioxan at 100° into $\Delta^{\circ}(22-23)$ in 21-diacetoxyalloætiocholanic acid similarly gives 21-diazo- $3(\beta)$ -acetoxyallopregnan-20-one, m.p. 131— 132° , $[a]_D+134\cdot 4^{\circ}$ in CHCl₃, which gives $3(\beta):21$ -diacetoxyallopregnan-20-one, m.p. 151— $152\cdot 5^{\circ}$, $[a]_D+80\cdot 8^{\circ}$ in CHCl₃, converted into $\Delta^{20:22-21}$ -hydroxy-3(β)-acetoxynorallocholenolactone, m.p. 193— 194° , $[a]_D+1^{\circ}$ in CHCl₃. Likewise alloætiocholanic acid yields 21-diazoallopregnan-20-one, m.p. 12O— 121° (decomp.), $[a]_D+151\cdot 3^{\circ}$ in CHCl₃, which gives successively 21-acetoxyallopregnan-20-one, m.p. 200° , $[a]_D+101\cdot 8^{\circ}$ in CHCl₃, and $\Delta^{\circ}(22-21$ -hydroxynorallocholenolactone, m.p. 200° , 200°

Constituents of the adrenal cortex and related substances. Etiocholane-3(a): $12(\beta)$ -diol-17-one. H. Reich and T. Reichstein (Helv. Chim. Acta, 1943, 26, 2102—2109).—Me $3(a):12(\beta)$ -diacctoxycholanate is oxidised by CrO₃ in AcOH at ~75° and the product is divided into acidic (I) and neutral (II) portions. Direct crystallisation of (II) leads to the removal of unchanged material and the residue is hydrolysed by alkali. The acids thus isolated contain some deoxycholic acid and a lactone, $C_{25}H_{38}O_5$, m.p. 285—288°, which is probably a monoacetate corresponding to the lactone obtained by Miescher et al. (A., 1939, II, 160) by the oxidation of cholesteryl acetate dibromide and is converted by energetic acetylation into a diacetate, $C_{27}H_{40}O_6$, m.p. 271—274°. The relatively small amounts of neutral, unsaponifiable substances are treated with Girard's reagent T, thus leading to the isolation of pregnane-3(a): 12(β)-diol-20-one (identified as the diacetate) and atiocholane-3(a): 12(β)-diol-17-one (diacetate, m.p. 162—162-5°, [a) $\frac{16}{5}$ +176·0° ± 2 °, [a) $\frac{16}{5}$ diol-17-one (diacetate, m.p. 162—162-5°, [a) $\frac{16}{5}$ +176·0° ± 2 ° in COMe₂). (I) is completely hydrolysed, methylated (CH₂N₂), and fractionally hydrolysed whereby Me 3(a): $12(\beta)$ -diacetoxyætiocholanate is largely unaffected. All the yields are very poor. M.p. are corr. (block); limits of error ± 2 °. H. W.

D-Homosteroids.—See B., 1944, III, 33, 34.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Characterisation of carboxylic acids by carbodi-imides. X. Optically active carbodi-imides. F. Zetzsche and A. Fredrich (Ber., 1940, 73, [B), 1114—1123).—l-Menthylamine (I) and CS₂ in PhMe at ~50° and then the b.p. give 83% of s-di-l-menthylthiocarbamide, m.p. 201°, [a]_D —125·6° in CHCl₃ (in this and other cases), converted by HgO in CS₂ at room temp. into carbodi-1-menthylimide, C(:NR)₂ (82%), b.p. 213—215°/14 mm., [a]_D —101·4°, which gives no ureides. p-NMe₂·C₆H₄·NCS (II) and (I) in Et₂O at room temp. give N-p-dimethylaminophenyl-N'-1-menthylthiocarbamide (87%), m.p. 149—150°, [a]_D —80·3°, and thence N-p-dimethylaminophenyl-N'-1-menthylcarbodi-imide (III) (67%), m.p. 50—52°, [a]_D —70·3°. With HCO₂H in Et₂O, (III) gives N-p-dimethylaminophenyl-N'-1-menthylcarbamide, m.p. 229—230°, [a]_D —62·9°, and with stearic acid in C₅H₃N at 100° or, in other cases, RCO₂H in Et₂O at room temp. gives N-stearcyl-, m.p. 115—116°, [a]_D —33·2°, N-benzoyl-, m.p. 115—116°, [a]_D —55·0°, N-p-bromobenzoyl-, m.p. 216—218°, [a]_D —48·8°, N-cinnamoyl- m.p. 148—149°, [a]_D —59·7°, and N-pipercyl-N- (or N'-)p-dimethylaminophenyl-N'- (or N-)1-menthylcarbamide, m.p. 190—192°. Bornylamine hydrochloride (IV), [a]_D —5·3°, gives similarly s-dibornylthiocarbamide (55%), sinters 225°, m.p. 227—228°, [a]_D —19·4°, and thence carbodibornylimide (84%), m.p. 229—231°, which gives N-benzoyl-NN'-dibornylcarbamide, sinters 148°, m.p. 150—152° (but no other urcide), and with AcOH or H₃C₂O₄ in dioxan gives dibornylcarbamide, sublimes from 300°, decomp. ~345° (lit. sublimes >290°). The base from (IV)

with (II) gives N-p-dimethylaminophenyl-N'-bornylthiocarbamide, m.p. 181°, [a]_D -11·1°, and thence the carbodi-imide, m.p. 31—34°, b.p. 203—204°/0·12 mm., [a]_D -11·9°, which yields, as above, N-p-dimethylaminophenyl-N'-bornylcarbamide, m.p. 199—200°, and the CHMeBr·CO, m.p. 139—140°, Bz, m.p. 137—138°, and cinnamoyl derivatives, m.p. 139—140°, thereof. s-Dicyclohexylthiocarbamide, m.p. 180—181°, is obtained in 95·8% yield from the base and CS₂ in PhMe. N'-cycloHexyl-N-p-dimethylaminophenylthiocarbamide (prep. as above; 92% yield), m.p. 131—132°, gives the carbodi-imide, b.p. 175—176°/0·6 mm., carbamide (VI), m.p. 187—188°, and the crotonyl, m.p. 107—108°, stearoyl, m.p. 80—81°, CHMeBr·CO, m.p. 138—139°, CHEtBr·CO, m.p. 120—121°, Bz, sinters 140°, m.p. 141—142°, and cinnamoyl derivative, m.p. 160—161°, thereof. Similarly are prepared CS(NH·CH₂Ph)₂ (95·4% yield) and carbodibenzylimide (VII) (76%), b.p. 208—210°/18 mm., which is unstable and gives a diner, m.p. 102—103° [reacts more slowly than does (VII)]. In C₈H₃N at 100° (VII) with BzOH gives benzoyl-NN'-dibenzylcarbamide, m.p. 98—99°, but with AcOH or n-C₈H₁₇·CO₂H, gives CO(NH·CH₂Ph)₂, m.p. 166—167°. N-p-Dimethylaminophenyl-N'-benzylthiocarbamide has m.p. 127—128°. With CH₂CH·CO₂H, a-bromopalmitic acid, or CHMeBr·CH₂·CO₂H. Formation of ureides thus depends on the nature of both the acid and carbodi-imide (cf. C., 1944, Part 2).

ω-Nitrocamphene. P. Lipp, H. Braucker, and H. Sauer [with, in part, J. Gerdes] (Ber., 1940, 73, [B], 1146—1150; cf. A., 1940, II, 136).—Reduction of ω-nitrocamphene (I) with Zn dust and AcOH gives mainly tricyclal (II) containing a small proportion of camphenilanealdehyde, separated from (II) as its enol acetate and identified by oxidation to isocamphenilanic acid (III), m.p. 117·5—118·5° (corr.). In addition to (II) and in the ratio ~3:1 there is produced 2-acetoxyapocamphanealdehyde [semicarbazone, m.p. 216·5—217·5° (corr.)], readily converted by air and more readily by other oxidising agents into 2-acetoxyapocamphanecarboxylic acid, m.p. 121—122° (corr.) [corresponding chloride, b.p. 111—113°/0·3 mm., m.p. ~60°, and amide, m.p. 99—100° (corr.)]. This is hydrolysed to 2-hydroxyapocamphanecarboxylic acid, m.p. 225—226° (lit. m.p. 237°), which is oxidised (KMnO₄-KOH) to ketopinic acid, m.p. 232·5—234° (corr.). The non-carboxylic compounds contain essentially the two isocamphanols, removed as the p-nitrobenzoates, which are only partly separable from one another by crystallisation (small amounts of a p-nitrobenzoate, m.p. 148—149°, are isolated); the alcohols from the remaining mixture of p-nitrobenzoates are oxidised to (III). The nitrile, b.p. 93·5—96°/8 mm., of (III) or camphenilanic acid is indifferent towards p-NO₂·C₈H₄·COCl. In contrast to the complete change in system caused by additions to (I) in strongly acid solution the isocamphane skeleton is changed only in part and in part remains intact in a slightly acid medium.

Rearrangement of camphorquinone. I. Formation and reactions of the inactive modifications of 2:2:3-trimethylcyclohexan-4-one-1-carboxylic acid. R. N. Chakravarti (J. Indian Chem. Soc., 1943, 20, 301—306).—Synthetic camphor is oxidised with SeO₂ to dl-camphorquinone (cf. Evans et al., A., 1934, 299), which with conc. H₂SO₄ gives dl-2:2:3-trimethylcyclohexan-4-one-1-carboxylic acid (I), m.p. 109° (cf. d-acid, Manasse and Samuel, A., 1898, i, 147; 1903, i, 45; Bhagvat and Simonsen, A., 1927, 250) [monohydrate, m.p. 73—74°; semicarbazone, m.p. 230—231°; Me ester, b.p. 100°/4 mm.; Et ester (II), b.p. 120°/6 mm.]. Clemmensen reduction of (I) gives 1:2:2-trimethylcyclohexane-3-carboxylic acid, b.p. 118°/5 mm. (p-phenylphenacyl ester, m.p. 114°), the Me ester, b.p. 95°/12 mm., of which when dehydrogenated by Se at 340° in a sealed tube for 28 hr. gives o-xylene and o-xylene-3-carboxylic acid. Treatment of (II) with Et₂C₂O₄ and NaOEt gives an oxalyl derivative, which loses CO on heating to yield Et₂ 2:3:3-trimethylcyclohexan-1-one-4:6-dicarboxylate (III), b.p. 155°/6 mm. (violet colour with FeCl₃-EtOH), which in a closed tube with NaOEt at 150—200° for 24 hr. gives aβ8-trimethylpentane-aye-tricarboxylate, b.p. 160°/4 mm. (no colour with FcCl₃-EtOH). Treatment of this with Na and C₄H₆ regenerates (III), hydrolysis of which with either KOH-H₂O-EtOH or dil. HCl re-forms (I).

New derivatives of 4-phenylcamphor. S. S. Nametkin and T. V. Scheremeteva (Compt. rend. Acad. Sci. U.R.S.S., 1943, 38, 131—134).—4-Phenyl- (I) and 4-p-aminophenyl-camphor (II) (Ac derivative, m.p. 181—184°) are prepared by modified methods. (I) and 100% H₂SO₄ at 35—40° give 4-p-sulphophenylcamphor, m.p. 189—190° (Ba, +6H₂O, and Pb salt, +8H₂O). 4-p-Hydroxyphenylcamphor, m.p. 125°, is obtained by decomp. of the aq. diazonium solution from (II) at room temp. (I) and HCO₂C₃H₁₁₋₁₈₀ + Na yield 4-phenyl-3-hydroxymethylenecamphor (III), m.p. 50—54° (Bz derivative, m.p. 149—150°), converted by prolonged action of aq. AcOH at room temp. into 3-aldehydo-4-phenylcamphor, m.p. 91—95° (does not give a Bz derivative). 4-Phenylcamphorquinone, m.p. 142—143°, is obtained from (III) and 1% KMnO₄ in cold dil. alkali, and 4-p-nitrophenylcamphor and SeO₂-Ac₂O afford 4-p-nitrophenylcamphorquinone, m.p. 137°.

A tricyclic compound obtained by the di-inene double-addition reaction.—See A., 1944, II, 101.

Triterpenes. LXXXII. Degradation of diacetoxynorlupanone and acetylbetulic acid to acetoxybisnorlupandicarboxylic acid. L. Ruzicka and E. Ray (Helv. Chim. Acta, 1943, 26, 2143—2151).— Diacetoxynorlupanone (A., 1941, II, 71) in C₆H₆ is partly hydrolysed by KOH-EtOH at room temp. to dihydroxynorlupanone 2-acetate, m.p. 293°, [a]_D -7°, oxidised by CrO₃ in AcOH at room temp. to acetoxynorlupanonic acid (I), m.p. 253°, [a]_D -10°. The corresponding Me ester (II), m.p. 235°, [a]_D -45°, identical with the product obtained by Ruzicka et al. (A., 1941, II, 72) by the oxidation of Me acetylbetulate, the constitution of which is thereby established. (I) is hydrogenated (PtO₂ in AcOH) to acetylnorlupandiclic acid, m.p. 289°, [a]_D +10°, which could not be lactonised. (II) is oxidised by SeO, in hot AcOH to Me acetoxynorlupanalonate, m.p. 184°, [a]_D -16°, further oxidised by 30% H₂O₂ in boiling AcOH and then esterified to Me acetoxybisnorlupandicarboxylate (III), m.p. 182°, [a]_D -13°. Acetylbetulic acid is oxidised by SeO₂ in boiling AcOH to acetyl-lupenalolic acid, m.p. 295°, [a]_D +11°, which does not give a vellow colour with C(NO₂)₄ and yields a yellow solution in conc. H₂SO₄ which rapidly becomes red. It is oxidised by CrO₃ in AcOH to acetyl-lupenoldicarboxylic acid, m.p. ~300°, [a]_D +14°, which does not give a colour reaction with C(NO₂)₄, and (after esterification) (III). Hydrolysis of (III) by KOH-MeOH gives Me₂ hydroxybisnorlupandicarboxylate, m.p. 210°, [a]_D -13°, and the corresponding Me₁ ester, m.p. 296°. M.p. are corr. [a]_D are in CHCl₃ (l = 1). The experiments further confirm the presence of the isopropenyl group in the C skeleton of betulin. The formulation of lupane derivatives by Jones et al. (A., 1942, II, 60) and Kon et al. (ibid. 60) is criticised adversely.

Triterpenes. LXXXIII. Oxidative degradation of rings A and B in hederagenin. L. Ruzicka, J. Norymberski, and O. Jeger (Helv. Chim. Acta, 1943, 26, 2242—2250).—Repetition of the work of Kitasato et al. (A., 1932, 1035; 1933, 612) confirms the composition of the hydroxytetracarboxylolactone Me₃ ester C₃₀H₄₆O₈ (I) and thus brings indirect evidence of the attachment of C₍₃₀₎ of the oleanolic acid skeleton to C of the ring. Hederagenin is converted by 33% HBr-AcOH into diacetylhederageninlactone, m.p. 248—248·5°, hydrolysed by KOH-EtOH to hederageninlactone (II), m.p. 358—360° (high vac.). Hederageninbromolactone is oxidised by CrO₃ in AcOH containing a little conc. H₂SO₄ to (?) hedragone-bromolactone and acidic products, debrominated (Zn dust in AcOH) and then converted by HBr-AcOH into hedragenone dicarboxylolactone, m.p. 266—267°, [a]_D +23·7° (Mç ester, m.p. 199—200°, [a]_D +28·5°). (II) is oxidised by CrO₃ in boiling AcOH to hedragonelactone, m.p. 309—310° (vac.), [a]_D +44·0, and the ketohydroxydicarboxylolactone (III) (A; R = H), m.p. 263—264°. The corresponding Me ester is oxidised by CrO₃ and H₂SO₄-AcOH and

(A.)
$$RO_2C$$
 B
 Me
 RO_2C
 B
 Me
 Me
 Me
 Me
 Me

the product is dissolved in Et₂O which is extracted successively with aq. KHCO₃ and Na₂CO₃. The former extract gives (III), sparingly sol. in Et₂O, and the hydroxycarboxylolactone (B; R = H), m.p. 238—239°, converted by CH₂N₂ in Et₂O-CHCl₃ into the Me₂ ester, m.p. 170—170.5°, and passing when heated at 240—250°/high vac. into the pyroketone, C₂·H₄₀O₃, m.p. 288—289° (high vac.), [a]n +152°. The portion of the KHCO₃ extract which is freely sol. in Et₂O after esterification with CH₂N₂ affords (I), m.p. 199—200°, [a]p -16.6°. The Na₂CO₃ extract yields (III). M.p. are corr. [a]p are in CHCl₃.

Triterpenes. LXXXIV. New evidence of the different position of the carboxyl group in oleanolic and glycyrrhetic acid. L. Ruzicka, O. Jeger, and W. Ingold (Helv. Chim. Acta, 1943, 26, 2278—2282).—Energetic oxidation of oleanolic and deoxoglycyrrhetic acid with SeO. gives dienedione derivatives converted by CrO₃ into oxides, which when treated drastically with alkali suffer fission of ring E with production of different acids. This behaviour is not compatible with the formulation of Kon et al. (A., 1942, II, 148, 418), according to which only one acid should be produced. Me Δ¹0:11-13:18-2-acetoxyoleadiene-12:19-dione-20-carpoxylate is oxidised by CrO₃ in AcOH at 90° and then at room temp. to Me Δ¹0:11-

AcOH at 90° and then at room temp. to Me Δ¹⁶:11.
13:18-oxido-2-acetoxyoleanene-12:19-dione-20-carboxylate, m.p. 282—283°, [a]_D +86° in CHCl₃, which is transformed by 10% KOH at 200° into the noracid (I), m.p. 241°, [a]_D +101° in C₃H₅N, +131° in COMe₂ (non-cryst. Me ester), which gives a marked enol reaction with FeCl₂ in EtOH and a yellow colour with C(NO_{2/4}. M.p. are corr.

Triterpenes LXXXV. Sumaresinolic acid. L. Ruzicka, O. Jeger, A. Grob, and H. Hösli (Helv. Chim. Acta, 1943, 26, 2283—

2300).—Sumaresinolic acid (I) belongs to the oleanolic acid (II) group and, like hederagenin, siaresinolic and echinocystic acid, to the sub-group of hydroxyoleanolic acids. The position of 1 OH in (I) is

not definitely assigned but it must be attached to $C_{(7)}$ or $C_{(8)}$ in ring B. In formula A (R = R' = R'' = H) OH is placed arbitrarily at $C_{(7)}$; $C_{(8)}$ cannot be excluded. In the following formulæ x indicates 7 or 8. The relationship of (I) to (II) is established by chemical reactions and comparison of [a]D for analogous derivatives of the acids. Extraction of Sumatra gum benzoin with boiling EtOH and treatment of the extract with NaOH

treatment of the extract with NaOH leads through the Na salt (III) to (I), m.p. 298°, $[a]_D + 54 \cdot 0^\circ$, converted by CH_2N_2 in Et,O at 0° into the Me ester (IV), m.p. $220-221^\circ$, $[a]_D + 46 \cdot 7^\circ$, also obtained from (III) and Me,SO₄ and hydrolysed with great difficulty (Claisen solution at 200° for 12 hr.) to (I). The Et ester has m.p. 212° , $[a]_D + 44 \cdot 7^\circ$. (IV) is transformed by Ac₂O in C_5H_5N at room temp. into Me 2-acetylsumaresinolate (V), m.p. 227° , $[a]_D + 40 \cdot 6^\circ$, converted by mild alkaline hydrolysis into (IV). Et 2-acetylsumaresinolate has m.p. 231° . Passage of HCl into a solution of (V) in AcOH at room temp. affords Me 2-acetylanhydrosumaresinolate, m.p. $174-175^\circ$. $[a]_D + 48^\circ$. obtained analogously but in poorer yield from (IV). room temp. affords Me 2-acetylanhydrosumarcsinolate, m.p. 174—175°, $[a]_D$ +48°, obtained analogously but in poorer yield from (IV). Me diacetylsumarcsinolate (VI), m.p. 258°, $[a]_D$ +26·3°, is obtained from HCl, Ac_2O , and (V) at 100° and subsequently at room temp. or from (V) and BF_3 — Et_2O in Ac_2O at room temp. Mild hydrolysis converts (VI) into Me x-acetylsumarcsinolate, m.p. 134—135° (loss of MeOH of crystallisation and softening $\sim 100^\circ$), $[a]_D$ +48·0°, reacetylated by Ac_2O in C_5H_5N at room temp. to (VI) and drastically hydrolysed to (IV). (I) is oxidised by CCO_3 in AcOH at room temp. to $\Delta^{12:13}$ -x-heto-2-hydroxyoleanene-28-carboxylic acid (VII), m.p. 286—287°, $[a]_D$ +31·6°, converted by Ac_2O in C_5H_5N into a mixed anhydride, C_3 4H $_{50}O_7$, m.p. 312°, of the ketoacetoxy-acid and AcOH, which is well adapted to the isolation of homogeneous (VI). Me $\Delta^{12:13}$ -x-heto-2-hydroxysumaresenecarboxylate (VIII), m.p. 205—206°, is obtained analogously from (IV) or from (VI) and CH_2N_2 . (V) $\Delta^{12.13}$ -x-helo-2-hydroxysumaresenecarboxylate (VIII), m.p. 205—206°, is obtained analogously from (IV) or from (VI) and CH₂N₂. (V) is oxidised by CrO₃ to Me $\Delta^{12:13}$ -x-heto-2-acetoxyoleanene-28-carboxylate (IX), m.p. 285—286°, [a]_D +44·9°, converted by mild hydrolysis into (VIII), which is reacetylated to (IX) and by drastic hydrolysis gives (VII). It appears to be unchanged by N₂H₄, H₂O and NaOEt-EtOH at 210—220° but is quantitatively reduced (Clemmensen) to the 13:28-latons of x heta 12 hydroxy 2 activations and 28-latons of x heta 12 hydroxy 2 activations and 28-latons of 28-latons EtOH at 210—220° but is quantitatively reduced (Ciemmensen) to the 13: 28-lactone of x-heto-13-hydroxy-2-acetoxyoleanane-28-carboxylic acid (X), m.p. $324-326^{\circ}$ (high vac.), $[a]_D+4\cdot6^{\circ}$. Gradual addition of Br-CHCl₃ to (IX) in boiling CHCl₃ leads to a compound, $C_{33}H_{49}O_5Br$, m.p. $215-225^{\circ}$ (decomp.), $[a]_D+38\cdot6^{\circ}$, and an isomeric Br-hetone, m.p. $293-294\cdot5^{\circ}$, $[a]_D+81^{\circ}$; both substances give a yellow colour with $C(NO_2)_A$. Prolonged contact of (IX) with 33%meric Br-hetone, m.p. 293—294·5°, [a]_D +81°; both substances give a yellow colour with C(NO₂)₄. Prolonged contact of (**IX**) with 33% HBr-AcOH at room temp. gives (**X**), hydrolysed by alkali to the 2:13-(OH)₃-derivative, m.p. >370°. (**X**) is oxidised by SeO₂ in dioxan at 200—210° to an acidic substance and the 13:28-lactone of enol-7:8-diketo-13-hydroxy-2-acetoxyoleanane-28-carboxylic acid, m.p. 265—267°, [a]_D —30°, which could not be acetylated by Ac₂O in C₃H₅N or by Ac₂O and the BF₃-Et₂O complex, and is hydrolysed by boiling 5% KOH-MeOH to the corresponding 2-OH-derivative, m.p. 325—327°, into which it is re-converted by Cu₂O-BF₃-Et₂O. Slow oxidation of (**IV**) by CrO₃ and H₂SO₄ in AcOH at room temp. affords Me Δ¹2:¹3-2: x-diketo-oleanene-28-dicarboxylate, m.p. 190—191° after loss of MeOH of crystallisation at 110—114°, [a]_D +35·2° [oxime, m.p. 265—267° (decomp.); semicarbazone, m.p. 267—258° (decomp.)], which gives a marked yellow colour with C(NO₂)₄. The non-cryst. Me Δ¹2:¹3-2-keto-x-acetoxyoleanene-28-carboxylate, obtained analogously from the 2-OH-compound, gives an oxime, m.p. 151—152° (decomp.), and a semicarbazone, m.p. 216—218° (decomp.). (**VI**) is oxidised by SeO₃ in boiling AcOH to Me Δ¹2:¹3-¹8:¹9-2: x-diacetoxyoleadiene-28-carboxylate, m.p. 234—235° [a]_D —156·0°, which gives a brown colour with C(NO₂)₄; in dioxan at 200° the product is Me Δ¹0:1¹-1³:¹8-12:19-diketo-2: x-diacetoxyoleadiene-28-carboxylate (**XI**), m.p. 230—231°, [a]_D —189° (a second modification, m.p. 211°, is sometimes obtained), which does not give a yellow colour with C(NO₂)₄ and is hydrolysed by very prolonged boiling with 10% KOH-MeOH to Δ¹0:¹¹-1³:¹¹8-12:19-diketo-2: x-dihydroxy-28-noroleadiene (**XII**), m.p. 300—302°, [a]_D +228° (2-acetate, m.p. 264°, [a]_D +212°), and Δ¹0:¹¹-1³:¹¹8-12:19-diketo-2: x-dihydroxy-28-noroleadiene (**XII**), m.p. 300—302°, [a]_D +228° (2-acetate, m.p. 264°, [a]_D +212°), and Δ¹0:¹¹-1³:¹¹8-12:19-diketo-2: x-dihydroxy-0eadiene-28-carboxylic acid, boiling xylene into (XII). (XI) is transformed by boiling 5% HCl-MeOH into Me $\Delta^{10:11-13:18}$ -12:19-diketo-2-hydroxy-x-acetoxyoleadiene-28-carboxylate, m.p. $310-312^\circ$, which does not give a yellow colour with $C(NO_2)_4$. With N_2H_4 , H_9O in EtOH at 200° (XII) gives a pyridazine derivative, $C_{29}H_4$, O_2N_2 , decomp. ~350°, $[a]_D$ +283°. M.p. are corr. $[a]_D$ are in CHCl₃.

dienol (I) with PCl₅ yields a-dichloroamyradiene, m.p. 128—129°, $[a]_D + 407°$, which with AcOH–Zn affords d-a-amyratriene, m.p. 131—133°, $[a]_D + 439°$. Dehydration of (I) with P₂O₅ leads to l-a-amyratriene, m.p. 140—142°, $[a]_D^{20} - 450°$, which contains a conjugated triene system (absorption spectrum). The ethenoid linking of a-amyrin must consequently be situated in the vicinity of the OH. All rotations are in CHCl3

Chemical composition of Calotropis gigantea. I. Wax and resin components of the latex. P. B. R. Murti and T. R. Seshadri (Proc. Indian Acad. Sci., 1943, 18, A, 145—159).—The latex of C. gigantea is converted by EtOH into a soft coagulum (A) and an aq. alcoholic solution (B). (A) is transformed by successive extractions with boiling EtOH and Et₂O into a sticky solid which has not been investigated completely, a small amount of a substance, m.p. $248-250^\circ$, and a residue which is hydrolysed to AcOH and $Pr^\beta CO_2H$ and and a residue which is hydrolysed to AcOH and FIPCO₂H and mixtures of resinols which are separated into their components by acetylation or benzoylation followed by fractional crystallisation. Thus are obtained: a-calotropeol (I), $C_{30}H_{50}O$, m.p. $204-205^{\circ}$, $[a]_D + 102 \cdot 0^{\circ}$ in C_6H_6 (acetate, m.p. $250-251^{\circ}$, $+98 \cdot 0^{\circ}$ in C_6H_6 ; benzoate, m.p. $273-274^{\circ}$, $[a]_D + 743^{\circ}$ in C_6H_6), which gives a bright pink solution immediately with the Liebermann-Burchard reagent, an orange-yellow solution with deep green fluorescence with Salkowski's reagent, and appears to contain one double linking; β -calotropeol, $C_{30}H_{50}O$, m.p. $216-217^\circ$ (benzoate, m.p. $279-280^\circ$, $[a]_D + 69\cdot0^\circ$ in C_6H_6 ; acetate, m.p. 238° , $[a]_D^{30} + 43\cdot9^\circ$), which resembles (I) in its colour reactions; a mixture of β -amyrin and tetracyclic resinols. (B) yields to Et₂O-CHCl₃ a cryst. substance (? mixture), m.p. ~242°, indicated by its colour reactions and solubility to belong to the cardiac poisons and containing N and S; CaC₂O₄ is also present in very fine subdivision. is also present in very fine subdivision.

VI.—HETEROCYCLIC.

Additive compounds of organo-magnesium derivatives with furanoid compounds. E. Cherbuliez and M. K. Araqui (Helv. Chim. Acta, 1943, 26, 2251—2252).—Coumarone, coumaran, diphenylene oxide (I), or methylcodeine (II) in C₀H₀ is added to MgMeI, MgEtBr, MgPhBr, or CH₀Ph·MgCl in Et₂O. The Et₂O is distilled off and the residual solution is boiled for 0.5—2 hr., whereby the additive compound is gradually and produced the productive solution. residual solution is boiled for 0.9-2 in., whereby the auditive compound is gradually pptd., usually almost quantitatively. Substitution of C_8H_6 by PhMe does not alter the change. Substances closely allied to (II) such as thebaine and deoxycodeine react with organo-magnesium compounds in Et₂O with rupture of the furanoid ring. (I) is obtained in 28% yield by heating PhOH with PbO at 170° until H₂O ceases to be evolved and then distilling the product residual with a free deeps. rapidly with a free flame.

Transformation products of simpler benzopyrylium compounds. P. Karrer, C. Trugenberger, and G. Hamdi (Helv. Chim. Acta, 1943, 26, 2116—2120; cf. A., 1943, II, 101; Pratt et al., J.C.S. 1923, 123, 745).—3: 4'-Dimethoxy-2-phenylbenzopyrylium ferrichloride (I), m.p. 150—151° (lit. 135°), is obtained directly by passing HCl into a solution of o-OH·C₆H₄·CHO (II) and p-OMe·C₆H₄·CO·CH₂·OMe (III) in abs. EtOH; the corresponding chloride (IV), m.p. 109°, is almost quantitatively obtained by passing HCl into (II) and (III) in AcOH. (I) is transformed by hot MeOH containing NaOAc into the Me ether (V) of the carbinol base, m.p. 149°, more readily prepared from ether (V) of the carbinol base, m.p. 149°, more readily prepared from (IV) and cold MeOH; the corresponding Et ether has m.p. 132°.

(V) and BzO₂H in CHCl₃ give 2:3:4'-trimethoxyflavanone, m.p. 220°, hydrolysed (HCl in boiling aq. MeOH) to 4'-methoxyflavanol, m.p. 230° (lit. 225°). (V) and Br in CHCl₃ afford 3:4'-dimethoxy-2-phenylbenzopyrylium perbromide, m.p. 143°, reconverted into (V) by MeOH. COPh·CH₂·OMe and (II) in anhyd. HCO₂H saturated with dry HCl at room temp. give 3-methoxy-2-phenylbenzopyrylium chloride, m.p. 119° (corresponding perbromide, m.p. 122°), converted by H₂O into the corresponding carbinol base, m.p. 121°, which in hot EtOH smoothly gives the El ether, m.p. 124°. H. W. EtOH smoothly gives the Et ether, m.p. 124°.

Reaction between quinones and metallic enolates. Mechanisms.—See A., 1944, II, 103.

1:3-Dioxans.—See B., 1944, II, 35.

Im.-Dibenzothionaphthen in coal tar. O. Kruber and L. Rappen (Ber., 1940, 73, [B], 1184-1186).—The solid residue obtained from the C_6H_6N mother-liquors used in the purification of chrysene from coal tar are extracted with EtOH containing 10% of xylene. The undissolved material is oxidised by 30% H_2O_2 in AcOH at 100° to dibenzothionaphthen sulphone (I), m.p. 231° , thus establishing the presence of lin.-dibenzothionaphthen (II) in coal tar. Successive addition of S and AlCl₃ to $2\text{-}C_{10}H_7\text{Ph}$ at 110° and subsequent heating of the mixture to 200° give a product from which (I) can be obtained by oxidation but from which (II) could not be isolated. Brasan is transformed by molten KOH at $280-320^\circ$ into $3\text{-}hydroxy-2\text{-}o\text{-}hydroxy-phenylnaphthalene,}$ converted into (II), m.p. 160° (picrate, m.p. 128°), by distillation with P_2S_5 in a vac. The distillate contains also a substance which is oxidised (H_2O_2 in AcOH) to a sulphone, tains also a substance which is oxidised (H2O2 in AcOH) to a sulphone, m.p. 264°.

Piperidine derivatives.—See B., 1944, II, 35,

Iron derivatives of heterocyclic acids. I. Ferric complexes of chelidamic acid. J. H. Gorvin (J.C.S., 1944, 25-28).—Picolinic acid and Fe(QH)₃ give tripicolinato-iron $(+H_2O)$, decomp. 282° (corr.), and di-(4-chloropicolinato)hydroxo-iron, darkens 260—270°, is obtained for the chelidation of the control of the c is obtained from the Cl-acid. Chelidamic acid with Fe(OH)₃ forms dichelidamiatoferric acid (+2H₂O) (I), which affords NH_4 (+2·5H₂O), NEt_4 (+2H₂O), o-toluidine, C_5H_5N , quinoline, quinine, Na (+2H₂O), K (+2H₂O), Ag (+2H₂O), Ba (+2·5H₃O), di-p-toluidine (+H₂O), decomp. 220—225°, and dinor-d- ψ -ephedrine salts; Ag_3 and triaquoferric dichelidamiato-oxoferrate (+4H₂O). (I) contains one free and one masked CO2H, and gives rise to two series of H2O-sol. salts. The light-absorption of the complexes has been studied.

Azo-dyes. I. Preparation and bacteriostatic properties of azo-derivatives of 2:6-diaminopyridine. R. N. Shreve, M. W. Swaney, and E. H. Riechers (J. Amer. Chem. Soc., 1943, 65, 2241—2243). and E. H. Riechers (J. Amer. Chem. Soc., 1943, 65, 2241—2243).—2:6-Diamino-3-arylazopyridine monohydrochlorides are prepared in which aryl = Ph (I), m.p. 137°, o-, m.p. 184°, m-, m.p. 123·2°, and p-tolyl, m.p. 151·3°, o-, m.p. 193°, m-, m.p. 99·5°, and p-anisyl, m.p. 192°, o-, m.p. 127°, and m-OEt·C₆H₄, m.p. 114·3°, o-, m.p. 189°, m-, m.p. 209·4°, and p-OH·C₆H₄, m.p. 232°, m-C₆H₄Cl, m.p. 259°, o-, m.p. 209·5°, m-, m.p. 141°, and p-C₆H₄I, m.p. 198°, 5:1:2-, m.p. 292°, and 6:1:3-OH·C₆H₃Me, m.p. 203—204°, 3:1:4-, m.p. 233°, 4:1:2-, m.p. 265°, and 5:1:2-NO₂·C₆H₃Me, m.p. 251°, 2:5:1-OMe·C₆H₃Cl, m.p. 204°, 6:2:1-NO₂·C₆H₃Me, m.p. 251°, 2:5:2·OMe·C₆H₃Cl, m.p. 204°, 6:2:1-NO₂·C₆H₃Me, m.p. 122°, o-, m.p. 135·6°, and p-C₆H₄Ph, m.p. 230·5°, p-PhN₂·C₆H₄, m.p. 203—204°, o-CO₂Me·C₆H₄, m.p. 177°. and o-CO₂Et·C₆H₄, m.p. 170°. M.p. are corr. Solubilities in H₂O are recorded, that of (I) being much the highest. For bacteriostatic properties, see A., 1944, III, much the highest. For bacteriostatic properties, see A., 1944, III, 295.

Invert soaps. V. Quaternary salts of isomeric hydroxyquinoline ethers. R. Kuhn and O. Westphal (Ber., 1940, 73, [B], 1105—1108; cf. A., 1944, II, 98).—3-Amino- is obtained (92%) from 3-bromo-quinoline by conc., aq. NH₃ and CuO at .140—150°. The K salt (pptd. by KOEt-EtOH) of 3-hydroxyquinoline with n-C $_{12}$ H $_{26}$ Br salt (pptd. by KOEt-EtOH) of 3-hydroxyquinoline with $n\text{-}C_{12}\text{H}_{25}\text{-Br}$ in EtOH at 180° gives 3-n-dodecyloxyquinoline, m.p. 42° [methylmethosulphate (I), m.p. 115—116°]. 8-n-Dodecyloxyquinoline, m.p. 25°, b.p. 225°/3 mm. [hydrochloride, m.p. 73—80°; methylmethosulphate (II), m.p. ~23°], is similarly prepared. $n\text{-}C_{12}\text{H}_{25}\text{Cl}$ gives 6-n-dodecyloxyquinoline, m.p. 45°, b.p. 235°/2 mm. [hydrochloride, m.p. 150—151°; methylmethosulphate (III), m.p. 70° (decomp.)]. Bactericidal and bacteriostatic activities of (I), (II), (III), and $n\text{-}C_{12}\text{H}_{25}\text{\cdot}\text{NMe}_2\text{Br}\cdot\text{CH}_2\text{Ph}$ are very similar. R. S. C.

Polarisation of fluorescence and anisotropy of molecules of dyes.—See A., 1944, I, 77.

cycloTetramethylenepyrazolone. III. Molecular compounds. H. Ruhkopf (Ber., 1940, 73, [B], 1066—1068; cf. A., 1940, II, 108).—By mixed m.p. diagrams [only eutectics and m.p. of compounds (in parentheses below) are recorded] it is shown that 1phenyl-2-methyl-3: 4-cvclotetramethylene-5-pyrazolone form 1: 1 additive compounds with CHPhEt·CO·NH₂ (m.p. 92°), CHPhPra·CO·NH₂ (m.p. 78°), CHPh₂·CO·NH₂ (m.p. 125°), and phenylethylhydantoin (m.p. 146°), and a 1:2 additive compound, m.p. 128°, with α -allyl- Δ^{γ} -pentencylcarbamide, but no compound with CHR₂·CO·NH₃ (R. Et. Pra or allyl) and the proportion of the compound of the co A'-pentenoyicarbamide, but no compound with CHR2·CO·NH2 (R = Et, Pra, or allyl), a-cyclohexenyl-n-propionamide, CH2Ph·CO·NH2, CHRR'·CO·NH·CO·NH3. (R = R' = Et or Pr; R — Ph, R' = Et), or diketopyrazolidine. It is similarly shown that no compounds are formed from (a) 1-phenyl-2-methyl-3: 4-cyclotrimethylene-5-pyrazolone with CHPhEt·CO·NH2, CHPh2·CO·NH4, or CHR2·CO·NH·CO·NH2 (R = Et, Pr, or allyl), or phenacetin. or (c) 4-dimethyl-amenino-1-phenyl-2: 3-dimethyl-5-pyrazolone or phenacetin, or (c) 4-dimethylamino-1-phenyl-2: 3-dimethyl-5-pyrazolone (I) with CHR₂·CO·NH₂ (R = Et or Ph), CHPhEt·CO·NH₂, or phenacetin, but that (I) gives a 1:1 additive compound, m.p. 147°, with phenylethylhydantoin. From these results general rules are propounded.

Pyrimidines.—See B., 1944, III, 34.

Synthesis of carbazo-condensed systems from a- and a'-amino-Synthesis of carbazo-condensed systems from a- and a'-aminonicotines. V. Synthesis of 3-phenylpyriminazole and its nicotine analogue. J. L. Goldfarb and M. S. Kondakova (J. Appl. Chem. Russ., 1942, 15, 151—163; cf. 1937, A., II, 473).—2-Aminopyridine (I) and CHPhBr·CO·CO₃H in aq. NaHCO₃ yield, besides COPh·CH₂·OH and CH₂Ph·CO₂H, 3-phenylpyriminazole-2-carboxylic acid, m.p. 201—202° (decomp.) (hydrochloride, m.p. 225—227°; hydrobromide, m.p. 246°; platinichloride, m.p. 243—247°; picrate, m.p. 205—207°), which at 210—220° gives 3-phenylpyriminazole. m.p. 97—98°. b.p. 188—192°/6 mm. (hydrobromide, m.p. 195°; azole, m.p. 97-98°, b.p. 188-192°/6 mm. (hydrobromide, m.p. 195°; platinichloride does not melt up to 285°; picrate, m.p. 236°), giving with aq. KMnO₄ (I) and with Br-H₂O a Br additive product. 2-Aminonicotine (II) and CHPhBr·CO·CO₂H in aq. NaHCO₃ give 7-(N-methylpyrrolidyl)-3-phenylpyriminazole-2-carboxylic acid, which could not be isolated but gave a picrate, m.p. 210—211° (decomp.), and at 230—240° afforded 7-(N-methylpyrrolidyl)-3-

phenylpyriminazole, m.p. 94-95° [picrate, m.p. 240° (decomp.)], which is oxidised by CrO₃ to (II).

Pyridylquinolines.—See B., 1944, II, 66.

Invert soaps. VI. Triazolium salts. R. Kuhn and O. Westphal (Ber., 1940, 73, [B], 1109—1113; cf. A., 1934, II, 111).—The K salt of 1:2:4-triazole and n-C₁₂H₂₅Cl in EtOH at 110° gives 1-n-dodecyl-1:2:4-triazole, m.p. 39° [ethobromide, m.p. 150—152°]. The K or Na salt of benztriazole with AlkCl in EtOH at 100—120° gives 60— 80% of 1-alkylbenztriazole but AlkBr affords 1:3-dialkylbenz-80% of 1-alkylbenztriazole but AlkBr affords 1:3-dialkylbenztriazolium bromide. Thus are obtained 1-n-dodecyl-, m.p. 44—46° [3-methylmethosulphate, m.p. ~25°; 3-ethobromide (I), m.p. 27°; butylobromide, m.p. 33°], and 1-n-hexadecyl-benztriazole, m.p. 62° (3-methylmethosulphate, m.p. 76—77°; 3-ethobromide, m.p. 96—97°), 1:3-dioctyl-, m.p. 147—148°, and 1:3-di-n-dodecyl-benztriazolium bromide, m.p. 141—143°, and 1:3-dibenzylbenztriazolium chloride, m.p. 207—209°. Bactericidal and bacteriostatic activities of the salts against six bacteria are recorded. The activity of (I) is of exceptional degree. exceptional degree.

Fluorescence of chlorophyll.—See A., 1944, I, 77.

Constitution of yeast-ribonucleic acid. VII. Diffusion coefficients and mol. wts. W. E. Fletcher, J. M. Gulland, D. O. Jordan, and (in part) H. E. Dibben. VIII. Electrometric titration of the acid groups. W. E. Fletcher, J. M. Gulland, and D. O. Jordan (J.C.S., 1944, 30—33, 33—39; cf. A., 1944, II, 85).—VII. Diffusion coeffs. suggest that yeast-ribonucleic acids (I) of different origins have mol. wts. ranging between those corresponding with 8 and 18 hypothetical tetranucleotides. Deamination of B.D.H. (I) under the special conditions described does not diminish the mol. wt., confirming the conclusion that phospho-amide groups are not essential links between nucleotides in that acid. Less controlled conditions cause extensive mol. degradation.

VIII. Electrometric titration of samples of (I) indicates that (I) has four acid dissociations per tetranucleotide when existing as a polytetranucleotide, three of which are primary dissociations, and one a secondary dissociation of H₃PO₄. The deaminated acid is similarly constituted. Mild hydrolysis reduces the mol. wt. of the polytetranucleotide, and the titration results suggest that a further secondary dissociation of H_3PO_4 becomes free. These data necessitate a modification of the formula previously proposed for (I); this is discussed in relation to the existing mol. wt. and enzyme data.

F. R. S.

Nucleic acids. XVI. Constitution of thymonucleic acid. Position of the linking between bases and deoxyribose. H. Bredereck, G. Müller, and (Miss) E. Berger. XVII. Nucleotide syntheses. Synthesis of uridylic acid. H. Bredereck, and (Miss) E. Berger (Ber., 1940, 73, [B], 1058—1065, 1124—1125).—XVI. Linkage of the sugar to positions 9 and 3 is proved for purine and pyrimidine deoxyribonucleotides, respectively (cf. Gulland et al., A., 1938, II 128, 296). to positions 9 and 3 is proved for purine and pyrimidine deoxymo-nucleotides, respectively (cf. Gulland et al., A., 1938, II, 128, 296). Adding Me₂SO₄ and aq. NaOH to Na thymonucleate at 30—35° and pH 8—9 gives a Na salt (I) containing 7 NMe and 2 OMe; further methylation slightly increases the OMe but not the NMe content. Fission of (I) by emulsin at 37° and pH 4·9 causes an increase of 4 equivs. in acidity so that the methylated acid is tetrabasic; one Me is probably present as phosphoric ester. Passing gaseous HCl into (I) in 95% MeOH gives 1: N_(a)-dimethyladenine,

CH N= C.C.(NMe)·NMe picrate m.p. 235°), also obtained (pic-NH·C.—N:CH

rate, m.p. 236°) from adenosine by Me₂SO₄-NaOH and then HCl-MeOH. With 25% H₂SO₄ at 175—180° (I) gives 1:N₍₈₎-dimethylcytosine, NH-CO-Me (picrate, m.p. 222°) [also obtained (picrate, m.p. 222°)]

m.p. 218°) from cytidine nitrate by Me.SO₄-NaOH and then 25%

m.p. 218°) from cytidine nitrate by Me₂SO₄-NaOH and then 25% H₂SO₄ at 175—180°], and (? l-)methylthymine, m.p. 210° (A., 1908, i, 835, m.p. 202—205°), but no methylguanine. Me₂SO₄-NaOH and then HCl-MeOH converts guanosine into a dimethylguanine (hydrochloride, m.p. 275°; picrate, m.p. 214°).

XVII. Triphenylmethyluridine (A., 1933, 149) with (OPh)₂POCl in C_zH_zN at -18° and then aq. NaOH at 100° gives uridylic acid, isolated as brucine salt, sinters 188°, m.p. 195°, [a]₁° -54·8°. Known processes yield 3:5-benzylideneguanosine, m.p. 295° (2-acetate, m.p. 263°), guanosine 2-acetate, m.p. ~180°, and guanosine 5-CPh₃ ether, amorphous (2-acetate, amorphous).

R. S. C.

Aminothiazoles and benzenesulphommidothiazolines etc.—See B., 1944, II, 34, 35.

Ring fissions with thiazolium salts. A. Schöberl and M. Stock (Ber., 1940, 73, [B], 1240—1252).—Addition of CH.PhBr to 2:4-dimethylthiazole gives 3-benzyl-2:4-dimethylthiazolium bromide (I), m.p. 171°. Interaction of COMe·CH₂Cl with MeCS·NHPh at 15—20⁵ gives S-acetonylthiacactanilide hydrochloride, which passes when heated or holled with alkali and subsequently acidited into when heated or boiled with alkali and subsequently acidified into 3-phenyl-2: 4-dimethylthiazolium chloride, transformed by KI into the corresponding iodide (II), which gives an intense blue colour with phosphotungstic acid and a red colour with Na nitroprusside after addition of NH₃. The initially yellow solution of (I) in 2N- NaOH becomes colourless when heated but addition of acid does not cause liberation of \$H_2\$S and there is no production of PbS on boiling with alkali plumbite; the parallel experiment with aneurin is positive. In alkaline solution (I) is immediately oxidised by I and is converted by air into a substance, m.p. (indef.) 96—97°. Gradual addition of AcOH to a solution of (I) or (II) in 2N-NaOH-EtOH containing NaNO. causes the development of an intense yellow colour which does not appear to be very sensitive. When 9(18)-phosphotungstic acid is added to solution of (I), (II), or aneurin (III) which has been kept for some time an intense blue colour appears which can be used in the detection and determination of thiazolium salts. Addition of freshly prepared Na nitroprusside solution to aq. solutions of (I) and (II) which have been treated with 2N-NH3 causes the appearance of a cherry-red colour which attains its max. after a time and is very stable. The colour does not appear in 2N-NaOH and is markedly less stable in 0·1N-NaOH than in NH3. It is not given by (III). The test can be used quantitatively. Increase of temp. (55—60°) facilitates the development of the colour, which does not then reach its full intensity since decomp. is also facilitated. The solutions are rapidly bleached by exposure to light. They are, however, stable for days in the dark. They should be prepared in a subdued red light and exposed as briefly as possible to the photometer light. NH:CMe·SH and OH·CH:CCl·CO₂Et are condensed and then hydrolysed to 2-methylthiazole-5-carboxylic acid, m.p. 209° (decomp.) (Et ester, b.p. 117—120°/19 mm.), not identical with the acid thus described in the literature. 2-Methylthiazole-4: 5-dicarboxylic acid, m.p. 169°, loses CO₂ at 175° with production of a monocarboxylic acid, m.p. 169°, loses CO₂ at 175° with production of a monocarboxylic acid, m.p. 169°, loses CO₂ at 175° with production of a monocarboxylic acid, m.p. 169°, loses CO₂ at 175° with production of a

Reactions of benzthiazole derivatives. IV. 1-Thiocyanobenzthiazole. W. H. Davies and W. A. Sexton (J.C.S., 1944, 11—13).—1-Thiocyanobenzthiazole (I) is not stable to prolonged storage and decomposes fairly rapidly when heated. With many reagents, e.g., NaOH and Na₂S, it is converted into derivatives of 1-thiolbenzthiazole. With MeOH, (I) gives mainly Me benzthiazyl-1-thion-carbamate, m.p. 175° (Et compound, m.p. 163°, from EtOH). The mechanism of this reaction is discussed.

Cyanine type dyes.—See B., 1944, II, 58, 90, 91.

Dioxazine dyes.—See B., 1944, II, 69.

VII.—ALKALOIDS.

Fluorescent alkaloid in rye-grass (Lolium perenne, L.). I. Introduction. R. E. R. Grimmett and J. Melville. II. Extraction from fresh rye-grass and separation from other bases. R. E. R. Grimmett and D. F. Waters. III. Extraction and properties. I. Reifer and N. O. Bathurst. VI. Investigation of a volatile base C₄H₇N. F. B. Shorland, E. P. White, and R. E. R. Grimmett (New Zealand J. Sci. Tech., 1943, 24, B, 149—150, 151—155, 155—159, 179—185; cf. A., 1944, III, 282; also C, 1944, Part 2).—I. A neutral or acid EtOH extract of the basal shoots of rye-grass, from which anthocyanins and fat-sol. pigments have been removed, gives an intense greenish fluorescence on addition of NH₃. This is due to an alkaloid, named perloline (I). Other alkaloids are present in smaller amount.

II. The only other pasture species to give comparable yields of (I) is tall fescue. For bulk extraction, grass of >0.02% alkaloid content is chosen by spot testing. 60—70% of (I) in the grass is extracted by 0.75% HCl. Neutralisation with Ca(OH)₂ and adjustment of pH to 7.5 with Na₂CO₃ gives a sludge containing 50—60% of (I) in the extract; if tannic acid is also added, 90% is pptd.; approx. quant. extraction of the sludge is effected by excess of Na₂CO₃ and EtOH. (I) is finally separated from other bases by its greater basicity, and its hydrochloride is crystallised out of a solution conc. below 50°. Fraction "B" contains other CHCl₃-sol., Et₂O-insol. bases, similar to (I), but less fluorescent. Fraction "C" contains an Et₂O-sol. base, subliming at 295° (180°/0.04 mm.), decomp. 316°; the hydrochloride (subliming at 297°, decomp. 317°) gives a bright blue fluorescence in aq. solution, and characteristic ppts. with KI₃, KBiI₄, KHgI₃, AuBr₃, and HgCl₂. Fraction "D" (II) was sol. in ligroin and had an odour like C₅H₅N.

III. Dried ground rye-grass leaves are extracted with EtOH and AcOH. Dried unground grass is extracted with 1% H_2SO_4 . Purification of (I) is carried out by partition between CHCl₃ and dil. HCl; after 7 crystallisations from H_2O , the hydrochloride analyses for $C_{36}H_{22}O_3N_4(OMe)_4$,2HCl. 0·2 p.p.m. can be detected in daylight by the fine green fluorescence of solutions in CHCl₃ or EtOH, which are not stable to direct sunlight. Ppts. are given with AgNO₂, picric acid, HgCl₂, KBiI₄, KHgI₃, phospho-molybdic and -tungstic acids, AuCl₃, PtCl₄, KI₃, and NH₄ reineckate, and colours with NaVO₃-H₂SO₄ (brown) and Ti₂O₃-H₂SO₄ (brick-red). Oxidation (KMnO₄ or H₂O₂) gives a colourless base with blue fluorescence, and reduction (TiCl₃) a non-fluorescent material. The alkaloid content of rye-grass varies with environmental conditions from traces to 6196.

VI. (II) is almost entirely a base, C₆H₇N, b.p. 134—138° (picrate, m.p. 154—156°, mercurichloride, m.p. 151—152°), which can be

reduced catalytically to a $H_{\rm e}$ -derivative (hydrochloride m.p. 169—171°; 3:5-dinitrobenzoate, m.p. 110—112°). (II) is not a picoline; possible formulæ are discussed. S. A. M.

VIII.—ORGANO-METALLIC COMPOUNDS.

Mode of reaction of lithium phenyl. V. Behaviour of halogenated anisoles towards lithium phenyl. G. Wittig and G. Fuhrmann (Ber., 1940, 73, [B], 1197—1218).—The halogenated anisoles are allowed to react with LiPh in Et_2O under comparable conditions and investigation is made of the products formed after addition of H₂O or COPh₂. In the reaction of the o-halogenoanisoles it is found that I is replaced rapidly and Br more slowly by Li whereas Cl and F (the latter more rapidly than the former) give the Li halide with consequent formation of o-C_oH₄Ph-OMc. H between OMe and halogen in the meta-compounds is readily exchanged for Li and in consequence of this action the formation of CoH4Ph OMe and LiHal predominates. In comparison the exchange of halogen for metal, which is observed only with m-C₆H₄I-OMe, recedes into the background. Common to para-substituted anisoles is the replacement of "mobile" H by metal which is facilitated by increasingly electronegative character of the halogen and with p-C₆H₄F·OMe results in the production of p-C₆H₄Ph·OMe. p-C₆H₄I·OMe and p-C₆H₄Br·OMe also exchange their halogen for Li. The exchangeability of aromatically bound H for Li depends on the polarisation of C-H linkings by electronegative substituents such as OMe or F and is explicable by the theory of induced alternating polarities. Since the acidifying effect diminishes with increasing distance only H in the orthoposition is replaceable and the entry of Li to the C_6H_6 nucleus is facilitated by the presence of 2 meta-substituents between which the Li enters. The influence of OMe and the 4 halogens on the action is qualitatively but not quantitatively similar to the effect on the acidity of AcOH. The theory fails to explain the observation that the exchange of H for Li is considerably facilitated by an accumulation of negative substituents even in the para-position. Here the alternating induction is subsidiary to a second effect which behaves as a "general effect" from C to C and, for example, causes the acidifying effect of a halogen in a fatty acid to diminish with increasing distance from CO2H. Steric effects are also obvious. If Li replaces H ortho to halogen as has been established for PhF and is observed with m-halogenoanisoles, the halogen becomes so reactive and the subsequent production of Ph2 derivatives under the further influence of LiPh is so rapid that in only one case it has been possible to trap the metallic compound as the carbinol by use of COPh₂. A polarising counter action of Li corresponds with the polarising A polarising counter action of Li corresponds with the polarising action of halogen. An electronic explanation of the replaceability of halogen by Li is advanced. The following appear new: 1:6(or 1:8)-dimethoxy-9:9-diphenylfluorene, m.p. 201—202°; 1-methoxy-, dimorphic, m.p. 180·5—181° and 193—194°, converted by Br in boiling AcOH into 2(or 4)-bromo-1-methoxy-9:9-diphenylfluorene, m.p. 222·5—223°; 5-iodo-, m.p. 136—137°, 5-chloro-, m.p. 118—119°, and 5-fluoro-3-methoxytriphenylcarbinol, m.p. 129·5—131°. m-C₈H₄Ph-OMe is converted by successive treatments with LiPh in Et-O and COPh, into 2-methoxy-4-phenyllriphenylcarbinol m.p. in Et₂O and COPh, into 2-methoxy-4-phenyltriphenylcarbinol, m.p. 138-5-139-5°. Under similar treatment veratrole gives 2:3-dimethoxytriphenylcarbinol, m.p. 110-111-5°. 1:2:3-C₆H₃(OMe)₃ is converted by LiPh in Et₂O followed by COPh₂ and then by 2N-NaOH into 1:3:2-(OMe)₂C₆H₃·ONa (whence the benzoate, m.p. 114—116°); other products are unchanged material, CPh₃·OH, and 2: 3: 4-trimethoxytriphenylcarbinol, m.p. 140—140·8° (lit. 139°). 1: 3: 5-C₆H₃(OMe)₃ when treated similarly yields 2: 4: 6-trimethoxytriphenylcarbinol, m.p. 114—115° (lit. 110—111°).

Mereury diallyl. K. V. Vijayaraghavan (J. Indian Chem. Soc., 1943, 20, 318; cf. A., 1942, II, 41).—CH₂:CH·CH₂·HgI (I) and conc. aq. KCN give (CH₂:CH·CH₂)₂Hg (II). Fresh aq. suspensions of (I) give a faint odour of (II) with Na₂S₂O₃, Na₂S, or KI on keeping or gently warming; on heating Hg and complex inorg. Hg salts are formed. (I) in EtOH with Na₂S or Na₂S₂O₃ ppts. Hg and gives inorg. complex salts; with KI-EtOH it gives a faint odour of (II) on warming, but K₂HgI₄ on heating. (I) in COMe_n with Na₁ gives a faint odour of (II), but is mainly unchanged. S. A. M.

IX.—PROTEINS.

Denaturation changes in ovalbumin with urea, radiation, and heat. J. H. Clark (J. Gen. Physiol., 1943, 27, 101—111).—When 10-50% of $CO(NH_2)_a$ (I) is added to isoelectric solutions of ovalbumin (II) the pH val. is altered to ~5.2—5.8 depending on the concn. of (I). The extent of the denaturation produced by (I) depends on concns. of (I) and (II) and also on the temp. of the solution. 0.9% (II) solution is not denatured by 20% (I); it is denatured slowly by 25% and rapidly by 35% (I) at room temp. At higher temp. 30% (I) is rapidly effective. Denaturation of (II) by ultra-violet radiation or heat is accompanied by structural changes but the molhas a fair degree of symmetry except at the isoelectric point, and

there is no association or dissociation of the mol. within the pH range outside the zone in which aggregation follows denaturation. Denaturation of (II) by (I) causes no change in optical rotation until the conen. of (I) is high enough to dissociate the mol. The optical rotation of fresh native (II) does not vary over the pH range 3.4—10.5, but it is increased ~100% after boiling the solution for 5 min. at pH 3.4 or 6.4—7.2, and the increase is the greater the nearer is the pH to the isoelectric point. In presence of (I) a (I)-protein complex is formed in which the protein is denatured but is not pptd. because of the dispersive action of (I); this prevents pptn. of protein exposed to ultra-violet radiation and subsequent heating to 40° because the complex is not decomposed at 40°. Decomp. occurs at 55—58° so that aggregation results at a temp. < that of rapid heat-denaturation. This is not due to an acceleration of heat-denaturation or odecrease in the temp. of heat-denaturation but results from the effect of heat on the complex which liberates the (I)-denatured protein and causes its pptn.

Invert soaps. I. Action of invert soaps on albuminous substances. R. Kuhn and H. J. Bielig [in part, with O. Dann] (Ber., 1940, 73, [B], 1080—1091).—Invert soaps ppt. the echinochrome symplex [B], 1080-1091).—Invert soaps ppt. the echinochrome symplex from H_2O or aq. Na_2CO_3 , the ppt. retaining the dye tenaciously (cf. Kuhn et al., A., 1943, 111, 738). In dil. AcOH invert soaps liberate the dye (removed by Et_2O) with pptn., and subsequent addition of Na_2CO_3 ppts. the almost colourless protein. A 1% solution of invert soap gives with chloroplastin a ppt. containing all the chlorophylls and carotenoids in extractable (Et_2O , C_6H_6) form; as the concn. of $n-C_{12}H_{25}$ -SMc₂I (I) added is increased, the amount of dye liberated slowly increases; this amount suddenly becomes much greater, approx. when the drop no. of the soap solution is a max. (0.2% solution); an approx. parallelism also exists between the amount of dye liberated and the surface activity of various sulphonium iodides. ~30 mols. of (I) are needed to liberate 1 mol. of chlorophyll-a when up to one sixth of the dye is liberated; complete liberation of the dye requires much more (I). Normal soaps do not affect chloroplastin. The carotene of yellow carrots is present as symplex in non-extractable form but is at once liberated by 1-1.5% invert soap solutions. Invert soaps do not split chromoproteins. CH₂Ph·NMe₂Br·C₁₂H₂₅-n (II) does not ppt., and prevents coagulation of, the yellow enzyme of yeast or of oxyhæmoglobin (III) by heat; its action on (III) is antagonised by Na deoxycholate. Methæmoits action on (III) is antagonised by Na deoxycholate. Methamoglobin is pptd. by ~1% invert soap solution. Catalase is unaffected by an equal vol. of 0·1—10% (II) at pH 7·2—5·4, but is pptd. and inactivated by a 1% solution at pH 8·2 (Na₂CO₃). Ferritin (IV) is completely pptd. from 2 c.c. of 0·1% solution by 1 c.c: of a 1:300, but not 1:350, solution of (II); the (IV) is denatured but the Fe is not liberated; 1 mol. of (II) ppts. 1·03 atom of Fe. Invert soaps ppt. oxyhæmocyanin from dil. Na₂CO₃ (not dil. AcOH), the fresh (not old) ppt. being sol. in an excess of soap or (NH₄)₂SO₄ and dissolving also if the original mixture is warmed; Cu is not liberated. Ovoverdin is split by 0·00005% invert soap solution (colour change to the red of astaxanthin), but pptn. of the protein requires 0·0005% soap solution. Gelatins and ovalbumin (V) are pptd. by invert soap solution. Gelatins and ovalbumin (V) are pptd. by invert soaps if the pH is such that the protein is present as anion; for proteins having isoelectric point near pH 7.2 the CO_2 content of the solution is important. With (V), SH is liberated before pptn. occurs. The concn. of the soaps required for bactericidal action is approx. that (0.001-0.00002%) required for pptn. of proteins. The action of invert soap on genes resembles that of X-rays. Isolation of β carotene (from carrots) and of lycopene (from tomatoes) is described.

Crystalline muscle phosphorylase.—See A., 1944, III, 218.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Lignin and related compounds. LXIII. Ultra-violet absorption spectra of ethanol lignins. R. F. Patterson and H. Hibbert (J. Amer. Chem. Soc., 1943, 65, 1869—1873; cf. A., 1943, II, 346).— Absorption spectra are recorded for the fractions of spruce and maple lignins and for ethanolysis products from OH-CHMe-COAr and OH-[CH₂]-COAr (Ar = vanillyl). Comparisons with those of known ingredients and related compounds (loc. cit.) confirm the aromatic nature of lignin, the existence of OH-derivatives of 4:3:1-OH-C₂H₃(OMe)-COEt in both lignins and of 4:3:5:1-OH-C₂H₄(OMe)-COEt in spruce lignin, and conjugation (to an unkown extent) between the arv1 nucleus and the side-chain.

Lignin. XII. Sulphite liquor from beech wood. H. Friese and G. Stoeck [with, in part, R. Konau] (Ber., 1940, 73, [B], 1135—1145; cf. A., 1938, II, 331).—The liquor is repeatedly evaporated with H₂O under diminished pressure to remove volatile acids and taken to dryness after neutralisation with CaCO₃. Treatment with

boiling EtOH and MeOH gives pure d-xylose (I), isolable by direct crystallisation. The non-cryst. residue in acetylated to a protein sol. in CHCl₂ and H₂O but not in Et₂O and containing $\sim 36\%$ OAc with Ca, S, and OMe, and an Et₂O-sol. fraction free from Ca and S but containing 71·8% OAc and 2·1% OMe. Hydrolysis gives (I) and fermentable hexoses, mainly mannose. Glucose is probably present. Methylpentoses, ketoses, uronic acids, and, probably, arabinose and galactose are absent. (I) frequently contains OMe in non-glucosidic union. The extractions remove sugars almost quantitatively. Their amount is 26-30% of the dry residue but depends on the boiling. (I) constitutes $\sim 76\%$ of the free carbohydrates. The remaining portion of the alcoholic extract separable by acetylation is a lignin-carbohydrate compound (Ca 4·2, S 6·5, OMe 11·0, OAc 36·5, C 45·2, H 4·7%). Extraction of the residue from the alcoholic extractions with 80% MeOH gives a brown solid (25-35% of the initial material, dependent on the duration of boiling). It contains Ca 6, S 6, OMe 11% and gives only small amounts of sugar acetates when drastically treated. The residue from the acetylation is a pale brown lignin-carbohydrate compound which contains little combined lignin. Hydrolysis with dil. H₂SO₄ is incomplete but sulphacetolysis leads to Et₂O-sol, sugar acetates with OAc 68·8, OMe 2·34% but no Ca or S. Ultrafiltration of the remaining material leaves a brown powder with C 52 H 4·7, OMe 16, S 5·1, and Ca 4·0%. The ultrafiltrate on pptn. with MeOH gives a substance with C 41·7, H 5·1, OMe 10·5, S 7·3, and Ca 8·5%; the MeOH contains Ca(OAc)₂. (HCO₂)₂Ca, and small amounts of Ca ligninsulphonate.

Oxidative degradation of pectin in aqueous solution. Viscosimetric determinations. H. Deuel (Helv. Chim. Acta, 1943, 26, 2002—2025).—The irreversible oxidative degradation of pectin (I) in aq. solution is followed viscosimetrically. Ascorbic acid (II) and similar enediols degrade (I) in the presence of O_2 , the change being accelerated by increase of temp., and occurring most rapidly at the neutral point. Decomp. of (I) and oxidation of (II) are inter-related. Dehydroascorbic acid has a weak degrading action. At room temp. H_2O_2 in small concn. causes decomp. of the mol. of (I); increase of temp. causes very marked acceleration; this degradation occurs more rapidly in the presence of (II), Fe^{II} salts, N_2H_4 , and NH_2OH . The oxidation of (I) is decelerated by EtOH and sucrose and inhibited by H_2S , SO_2 , and I. The degradation of (I) described above is externally similar to hydrolysis by pectinase and oxidative decomp. by HIO_4 but the reaction mechanism is different. Activated H_2O_2 and autoxidising (II) degrade the most varied carbohydrates on addition to (I).

Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. I. Production, physical and biological properties. J. R. Johnson, W. F. Bruce, and J. D. Dutcher (J. Amer. Chem. Soc., 1943, 65, 2005—2009).—Prep. of gliotoxin, new formula $C_{13}H_{14}O_4N_2S_2$, $[\alpha]_{25}^{20}-290\pm10^\circ$ in EtOH, $-270^\circ\pm10^\circ$ in C_5H_5N , $-255\pm10^\circ$ in CHCl₂, $\pm111^\circ\rightarrow0^\circ$ in 5 days in NaOH-EtOH-H₂O, is described. The mol. wt. is best determined cryoscopically in NHPh₂, other solvents giving erroneous or erratic results. Crystallo-optical properties and solubilities [much the greatest in C_5H_5N (at 100°) or dioxan] in 16 solvents are described. The absorption spectrum (detailed) resembles that of indole and tryptophan, indicating presence of an indole nucleus. For physiological properties see A., 1944, III, 292.

R. S. C.

Formation of a nicotinamide-like substance from various aminoacids and related compounds. M. R. Bovarnick (J. Biol. Chem., 1943,
151, 467—475).—The reaction between asparagine (I) and glutamic
acid (II) that results in the formation of a nicotinamide-like substance (III) is catalysed by Mn (best; 10 times amount of (III)] and
Fe salts (Mg, Ca, Al, Cr, Co, Ni, and Cu have little effect), and is
promoted by aeration. Certain NH₂-acids and non-N dibasic acids
are capable of substituting for (II) in the reaction. In order of
decreasing activity are methionine [as active as (II)], proline,
citrulline, ornithine, a-ketoglutaric acid, glutaric acid, maleic acid,
arginine, phenylalanine, hydroxyproline, fumaric acid, tyrosine,
oxalacetic acid, lysine, serine, threonine, and malic acid. All the
terminal-substituted C₅ NH₂-acids react. The only effective substitute for (I) is glutamine. The NH₄ salts of aspartic, a-ketoglutaric,
maleic, and malic acids when heated with (II) produce small amounts
of nicotinamide activity, although their Na salts are inactive. With
many mixtures of (I) + NH₂-acid, much more activity is produced
by treating with H₂O₂ for 2 days at room temp., then autoclaving (15
min.), than at 100° (48 hr.); also small amounts of nicotinamide
activity are produced from many NH₂-acids and from the NH₄ salts
of several dicarboxylic acids by H₂O₂ alone, in absence of (I) and
(II). Reaction mechanisms are discussed.

A. T. P.

Hypericin and a non-fluorescent, photosensitive pigment from St. John's wort (Hypericum perforatum).—See A., 1944, III, 232.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry.

MAY, 1944.

I.—ALIPHATIC.

Separation and purification of organic compounds by filtration of the molten eutectics. L. Kofler and R. Wannenmacher (Ber., 1940, 73, [B], 1388—1391).—A thin layer of the mixture is spread evenly over a piece of hardened filter-paper, $\sim 18 \times 18$ mm., placed on an object glass over which a second object glass is firmly placed. The between that of the beginning and end of the melting of the mixture (determined previously). The upper object glass is then pressed firmly on to the mixture and removed, generally bringing the unmelted crystals on its under side. The filter-paper is changed and the whole operation is repeated several times at a temp. gradually increased to that above the point of primary crystallisation. Hardened paper is useful only at \$200°, above which thin porous platelets are used. The possibility of the presence of a third component in a mixture in which two substances are known to be present is examined by determining the eutectic temp, of a synthetic mixture of the two substances under the microscope; its identity with that of the mixture under examination is evidence against the presence of further compounds, which can be strengthened if the eutectic temp. remains unchanged when a mixture of the two mixtures is used. If the two components form a mol. mixture either it or one of the components is obtained according to the relative amounts of the substances which are present.

Catalytic dehydrogenation of hydrocarbons and its application to the synthesis of rubber from gases. A. A. Balandin (Buil. Acad. Sci. U.R.S.S., 1942, Cl. Sci. chim., 21—44).—Dehydrogenation of hydrocarbons is considered from the point of view of the author's and the point of view of the authors multiplet theory. The results of experimental work, published elsewhere, on the conversion of $n\text{-}C_4H_{10}$ into C_4H_8 (B., 1943, II, 101), $\Delta^c\text{-}C_4H_8$ into C_4H_6 (B., 1942, II, 417, and infra), and PhEt into styrene over Cr_2O_3 and other catalysts are discussed. R. C. P.

Catalytic dehydrogenation of butylene to butadiene at reduced pressure. A. A. Balandin, N. D. Zelinski, O. K. Bogdanova, and A. P. Schtscheglova (J. Appl. Chem. Russ., 1942, 15, 128—138).— \$\delta^2\$-Butene (I) passed through an unspecified catalyst gives s-butadiene; the yield is up to 85% on the (I) consumed and up to 29% on the (I) passed through; the best temp. is 580—600°. The yield of (CH₂:CH)₃ is almost independent of the rate of gas flow and Pearly se high as corresponds to the equilibrium copper. A few 90 of nearly as high as corresponds to the equilibrium concn. A few % of (I) are isomerised to $\Delta\beta$ -butene, and a few % of C are formed.

Commercial alkylation with hydrogen fluoride catalyst.—See B., 1944, II, 61.

Chlorination of gaseous unsaturated compounds.—See B., 1944, II,

[Catalytic] reaction of sulphur dioxide with olefines. Ceiling-temperature phenomena.—See A., 1944, I, 108.

Stereoisomerism of unsaturated compounds. VII. Diastereoisomeric dibromides. W. G. Young, S. J. Cristol, and T. Skei (J. Amer. Chem. Soc., 1943, 65, 2099—2102; cf. A., 1943, II, 290)—meso-and dl-(CHEt-OH)₂ with $Ac_2O + H_2SO_4$ (few drops) give meso-op. 8:3-83-79/5-5 mm., and dl-diacetates, b.p. 88-0—88-49/5-5 mm., and thence (65% HBr; room temp.; l week) meso-(I), b.p. $70\cdot1$ —70·3°/9 mm., and dl-(CHEtBr)₂ (II), b.p. $72\cdot1$ — $72\cdot5$ °/9 mm., respectively. Rates of reaction with KI in 99% MeOH at 75° and 60° give heats of activation as follows: dl-threo-25·7 and dl-erythro-CHMieBr-CHEtBr 25·66, (I) 25·10, (II) 26·60, dl-(III) 24·40 and meso-CHEtBr-CHBuaBr 25·25. k differ markedly for the isomerides and are used for identification. The rule that meso- have higher neats of activation than dl-isomerides (A., 1939, II, 399) does not nold for the C₈-compounds. The steps, glycol \rightarrow diacetate \rightarrow (Inversion) dibromides, are proved by k for the crude products to Proceed without formation of stereoisomerides in the C₆- and C₈-series. The reactions, dibromide + Zn-Cu couple in boiling 96% EtOH \rightarrow olefine \rightarrow dibromide, are proved similarly to involve formation of $\frac{1}{100}$ for the crude products of discounting the first three couples of the couple of t olefine → dibromide, are proved similarly to involve formation of 6.4% of diastereoisomeride from (II) and 19.5% from (III); these and earlier results (loc. cit.; A., 1936, 310; Lucas et al., A., 1941, II, 84) show that the amount of rearrangement increases with the length

F (A., II.)

of the chain; this may be due to the slower reaction of the higher dibromides allowing longer time of contact of the olefine with ZnBr2.

Catalysed hydrobromination of unsaturated organic compounds.— See B., 1944, II, 62.

n-Butanol and acetone.—See B., 1944, II, 61.

Acetylene derivatives. XXIV. Halogen derivatives of vinylethinylearbinols. I. N. Nazarov and J. M. Janbikov (Bull. Acad. Sci. U.R.S.S., 1942, Cl. Sci. chim., 66—79).—The carbinol CRR'X*C·C·CH:CH₂ [R = R' = Me, X = OH (I)] gives with dry HCl, PCl₃, and SOCl₂ the corresponding chloride (II), b.p. 31—32°/10 mm., with PBr₃ the bromide, b.p. 55—56°/17 mm., and with conc. HI the iodide, b.p. 65°/6 mm. (crude product explodes above 120°). Treatment of similar carbinols with HCl are wields the combounder. The total of similar carbinols with HCl gas yields the compounds (R = Me, R' = Et, X = Cl), b.p. $46\cdot5-48^{\circ}/8$ mm., (R = Me, R' = Et, X = Cl), b.p. $61\cdot5-63^{\circ}/9$ mm., (R = R' = Et, X = Cl), b.p. $61\cdot5-63^{\circ}/9$ mm., (R = R' = Et, X = Cl), b.p. $59-61^{\circ}/7$ mm. These monohalogeno-derivatives react with $AgNO_3$ and revert to the carbinols when shaken with aq. KOH, but do not accompanied (R) shaken with cone HRr at room temp. yields a and revert to the carbinols when shaken with aq. KOH, but do not polymerise. (I) shaken with conc. HBr, at room temp. vields a mixture containing a dibromide, C₂H₁₀Br₂, b.p. 92—93°/6 mm, and a monobromide which is stable to alkali and polymerises readily. Agitation of (II) with 1% of Cu₂Cl₂ + 0·1% of NH₄Cl at room temp. yields a complex mixture containing CH₂:CH·C₂·C·CMc;CH₂ (III), δ-chloro-β-methyl-Δα⁴-hexatriene (IV), b.p. 38—40°/9 mm. (stable to AgNO₃ and aq. KOH, polymerises on keeping), a dichloride, C₇H₁₀Cl₂ (V), b.p. 64—65°/6 mm., and probably CMc₂·C:CCl·CH:CH₂. (III) with conc. HCl at room temp. gives δζ-dichloro-β-methyl-Δβδ-hexadiene, b.p. 72—73°/9 mm., and with an insufficiency of HCl, a monochloride, C₇H₉Cl, b.p. 39—41°/14 mm. (reacts with AgNO₃, does not polymerise). (III) with conc. HCl, Cu₂Cl₂, and NH₄Cl yields mono- and di-chlorides probably identical with (IV) and (V). R. C. P.

Stereoisomerism of the leaf alcohol, natural Δ^{γ} -hexenol. M. Stoll and A. Rouve (Ber., 1940, 73, [B], 1358—1360).—In reply to Takei et al. (A., 1940, II, 335) it is pointed out that the assignment of the cis-configuration to the hexenol obtained by reduction (colloidal Pd) of Δ^{γ} -hexinol (and hence the configuration of the natural leaf alcohol) depends on the universality of the observations of Bourguel (A., 1930, 317) and is not affected by conflicting results obtained by different methods and with other catalysts.

Racemisation accompanying molecular rearrangements. P. G. Stevens and S. H. J. Greenwood (J. Amer. Chem. Soc., 1943, 65, 2153—2155).—d-CHMePra-CO₂H (prep. from the dl-acid by cinchonidine), b.p. 84·5°/9 mm., [a]₂²⁵ +7·1°, and CH₂N₂ give the Meester, b.p. 77°/98·5 mm., [a]₂²⁵ +9·1°, converted by MgMeI at 0° and then room temp. and finally aq. NH₄Cl into l-CHMePra-CMe₂·OH, b.p. 75°/29 mm., [a]₂⁵ -17·7°. With conc. HCl this gives a 1:1 dl-mixture (A) of CHMePra-CMe₂·OH (II) and CMePra-PrβCl (II), hydrolysed to dl-CHMePra-CMe₂·OH (III) (phenylurethane, m.p. 74°) and dl-CMePra-Prβ-OH (IV) (phenylurethane, m.p. 90·5°). A similar mixture (A) is obtained from either (III) or (IV) by conc. HCl. d-CHPraBu-OH and conc. HCl give 6% of l-CHPraBu-Cl. [a]₂ -14°, and 47% each of (I) and (II). l-CHPraBu-OH and conc. HCl give 94·2% of d-(I) (cf. A., 1939, II, 2).

Proposition of pentagraphytical—See B. 1944 II 62

Preparation of pentaerythritol.—See B., 1944, II, 62.

Acetolysis of trimethylene-D-mannitol. βε-Methylene-D-mannitol. A. T. Ness, R. M. Hann, and C. S. Hudson (J. Amer. Chem. nitol. A. T. Ness, R. M. Hann, and C. S. Hudson (J. Amer. Chem. Soc., 1943, 65, 2215—2222).—Structures given below are proved by the reactions described. $a\gamma$ - $\delta\zeta$ -Dimethylenedulcitol $\beta\varepsilon$ -dibenzoate in H_2 SO₄-Ac₂O-AcOH at 25° gives (?) $\gamma\delta$ -diacetoxymethyldulcitol $\beta\varepsilon$ -dibenzoate $a\zeta$ -diacetate, m.p. 87—88° (consumes 6 NaOH), hydrolysed by NaOMe-MeOH in CHCl₃ at room temp. to dulcitol (83%) and CH₃O (1·83 mols.). $a\gamma$ - $\delta\zeta$ -Dimethylenedulcitol $\beta\varepsilon$ -diacetate gives similarly (?) $\gamma\delta$ -diacetoxymethyldulcitol $a\beta\varepsilon\zeta$ -tetra-acetate (76%), m.p. 93—94°. The "mannitol triformacetal of Schulz and Tollens (A., 1894, i, 438; 1896, i, 115) is $a\gamma$ - $\beta\varepsilon$ - $\delta\zeta$ -trimethylene-D-mannitol (II), m.p. 232—233° (corr.), $[a]_{20}^{20}$ —104·2° in CHCl₃; its prep. is improved to give a 94% yield; under other conditions $a\gamma$ - $\delta\zeta$ - or $a\gamma$ - $\varepsilon\zeta$ -dimethylene-D-mannitol (II), m.p. 204—208° (corr.), $[a]_{20}^{20}$ —91·0° in H_2 O, is also obtained. With CH₂O-conc. HCl at 50° (II) rapidly gives (I). In H_2 SO₄-Ac₂O-AcOH, (I) gives γ 0-diacetoxymethyl- $\beta\varepsilon$ -methylene-D-mannitol $a\zeta$ -diacetate (81%), m.p. 129—118

130°, $[a]_2^{20} + 57.6^\circ$ in CHCl₃, hydrolysed by NaOMe-MeOH in CHCl₃ to \$\beta \cdot methylene-D-mannitol (III), m.p. 173—174° (corr.), $[a]_2^{20} - 51.4^\circ$ in H₂O [tetra-acetate, m.p. 117—118°, $[a]_2^{20} - 1.3^\circ$ in CHCl₃, -benzoate, m.p. 107—109°, $[a]_2^{20} - 7.5^\circ$ in CHCl₃, and -p-toluenesulphonate, m.p. 177—178° (corr.), $[a]_2^{20} + 3.5^\circ$ in CHCl₃]. (III) consumes 1.07 equivs. of Pb(OAC)₄ in AcOH and 1·10—1-14 equivs. of aq. NaIO₄ (giving no CH₂O or acid). With aq. HIO₄, (III) gives methylene-bis-2-D-glycerose (IV), CH₂[O·CH(CH₂·OH)·CHO]₃, $[a]_2^{20} + 10.5^\circ$ in H₂O, hydrogenated (Raney Ni; room temp./133 atm.) in situ to methylenebis-\$\beta \cdot glycerol, m.p. 85—86° (tetrabenzoate, m.p. 69—71°), which in 2N-H₃SO₄ at room temp and then the b.p. gives glycerol and CH₂O. With 2 mols of BzCl in C₅H₅N at 0° and then 20°, (III) gives \$\beta \cdot \cdot methylene-D-mannitol a\beta \cdot \cdot \cdot dibenzoate (V), m.p. 119—120°, [a]_3^0 —70·3° in CHCl₃, which consumes 4·92 equivs. of Pb(OAC)₄ in AcOH but with 1·1 equivs. and then NH₂·CO·NH·NH₂ gives the disemicarbazone dibenzoate, m.p. 193—195° (corr.), [a]_D +83·6° in AcOH, of (IV). With PhCHO and ZnCl₂ at room temp., (V) gives $\gamma \delta$ -benzylidene-\$\beta \cdot methylene-D-mannitol a\beta \cdot dibenzoate, m.p. 151—152°, [a]_3^0 +61·2° in CHCl₃, also obtained from $\gamma \delta$ -benzylidene-D-mannitol a\beta \cdot dibenzoate, paraformaldehyde, and CaSO₄ in C₅H₆ at 150°. Treating (IV) in solution with acid, neutralising, and hydrogenating (Raney Ni) gives 5-hydroxy-4: 4: 6-tri(hydroxymethyl)-1: 3-dioxan, m.p. 139—140°, [a]_5^0 +30·7° in H₂O (tetra-acetate, m.p. 94—94°, [a]_2^0 +12·4° in CHCl₃, +20·4° in COMe₂). R. S. C.

Dibenzoates of sorbitol and mannitol and their methylene derivatives. W. N. Haworth and L. F. Wiggins (J.C.S., 1944, 58—61).—Sorbitol $\alpha\zeta$ -dibenzoate gives dimethylenesorbitol $\alpha\zeta$ -dibenzoate, m.p. 160° , $[a]_b^3 + 22\cdot7^\circ$ in CHCl₃, which gives $\beta\gamma\delta\varepsilon$ -dimethylenesorbitol (I), m.p. $192-193^\circ$, $[a]_b^3 + 42\cdot5^\circ$ in H_{*}O. Oxidation of (I) (CrO₃ in AcOH) gives dimethyleneglucosaccharic acid and a dimethylene-hexonic acid, showing the Bz groups to have been at $C_{(\alpha)}$ and $C_{(\zeta)}$, and CH₂ radicals at $C_{(\beta)}$, $C_{(\beta)}$, and $C_{(\varepsilon)}$, though exact structure is not determined. (I) gives $a\zeta$ -dithloro, m.p. $116-118^\circ$, $[a]_b^{15} + 20\cdot0^\circ$ in CHCl₃, $a\zeta$ -ditriphenylmethyl-, m.p. $209-210^\circ$, $[a]_b^{18} + 12\cdot0^\circ$ in CHCl₃, $a\zeta$ -direphonyl-, m.p. $102-103^\circ$, $[a]_b^{13} + 5\cdot4^\circ$ in CHCl₃, and $a\zeta$ -dimethyl-dimethylenesorbitol, m.p. 43° , $[a]_b^{17} + 9\cdot4^\circ$ in CHCl₃. Mannitol gives a similar series: dimethylenemannitol $a\zeta$ -dibenzoate, m.p. 121° , $[a]_b^1 + 51\cdot2^\circ$ in CHCl₃, and monomethylenemannitol $a\zeta$ -dibenzoate, m.p. 154° $[a]_b^{17} + 25\cdot0^\circ$ in CHCl₃; $\beta\gamma$ -δε-dimethylenemannitol, m.p. $138-139^\circ$, $[a]_b^{18} + 70\cdot5^\circ$ in H₂O; $a\zeta$ -dimethyl-, m.p. $65\cdot5^\circ$, $[a]_b^{19} + 74\cdot9^\circ$ in CHCl₃, and $a\zeta$ -ditriphenylmethyl- $\beta\gamma$ -δε-dimethylenemannitol, m.p. 210° , $[a]_b^{18} + 24\cdot0^\circ$ in CHCl₃.

Manufacture of vinyl ethers.—See B., 1944, II, 62.

Reactions of carboxylic acids in aqueous solution. P. S. MacMahon and T. N. Srivastava (J. Indian Chem. Soc., 1943, 20, 307—311).—HgCl₂ is unsuitable as a reagent because of formation of complexes. The reduction of HAuCl₄ (I) by oxalic (II), citric (III), malic (IV), tartaric (V), and malonic (VI) acid is not accompanied by formation of H₂O₂, is retarded by NaCl and KCl, and is accelerated by light [except for (VI)], O₂ [except for (II)], temp., concn. of acid, and small amounts of KMnO₄ [except for (II)]; the last effect is a max. if (I) is added last, immediately after the KMnO₄ is decolorised; the effect gradually diminishes as the period between the additions is increased, but is still appreciable after 14 days. This enhanced reducing power, hitherto ascribed to chemical induction, is [except for (II)] due to intermediate oxidation products, shown to be CO(CH₂·CO₂H)₂ from (III), possibly [:C(OH)·CO₂H]₂ from (V), and not to be CO₂H·CH·C(OH)·CO₂H from (IV). "After-effects" following photobromination of (IV) are due to an impurity, and are not shown by the pure acid; of (III), are due to CBr₃·CO·CHBr₂; and of (V) to an oxidation product, possibly aldehydotartronic acid or an isomeride. S. A. M.

Application of the isotopic method to the investigation of the mechanism of chemical reactions. III. Mechanism of the reaction of acid anhydrides with alcohols. N. I. Dedusenko and A. E. Brodski (Acta Physicochi n. U.R.S.S., 1942, 17, 314—318).—Acylation with Ac₂O of EtOH having a high content of ¹⁸O affords evidence that the reaction proceeds according to EtO:H + AcO·Ac -> EtO·Ac + AcO·H and not according to Et:OH + Ac·OAc -> Et·OAc + Ac·OH, where points of formation are indicated by dots. Heavy EtOH was prepared by fractional distillation of ordinary EtOH.

C. R. H.

Palladium-synthetic high polymer catalysts.—See A., 1944, I, 109.

Solidification point curves of binary [fatty] acid mixtures.—See A., 1944, I, 104.

Synthesis of Δ^o - and Δ^n -octadecenoic acids. R. Kapp and A. Knoll (J. Amer. Chem. Soc., 1943, 65, 2062—2064).—Condensing $CO_2Et\cdot CHAc\cdot [CH_2]_5\cdot CO_2Et$, b.p. $164-165^\circ/4\cdot 5$ mm., with $CH_2\cdot CH\cdot [CH_2]_3\cdot COCl$, b.p. $127\cdot 5-128^\circ/13$ mm., and boiling the product with, successively, 4% KOH, 5% H₂SO₄, and 5% NaOH gives η -keto- Δ^n -octadecenoic acid (28%), m.p. $72\cdot 2-73^\circ$ (semicarbazone, m.p. $102\cdot 5-103^\circ$), reduced by N₂H₄.HCl-NaOEt-EtOH at 185-200 to Δ^n -octadecenoic acid (65%), m.p. $55-55\cdot 5^\circ$, which with KMnO₄-COMe₂ gives $[CH_2]_3(CO_2H)_2$, m.p. 118° . CHMe:CH· $[CH_2]$ -COCl, b.p. $112-113^\circ/4$ mm., leads similarly to

 η -keto- Δ^o -octadecenoic acid (23%), m.p. 78·4—78·9° (semicarbazone, m.p. 112·8—113·5°), and thence Δ^o -octadecenoic acid, m.p. 62·8—63·5°, which with KMnO₄ gives [CH₂]₁₂(CO₂H)₂, m.p. 124—124·2°. M.p. are corr. R. S. C.

Unsaturated synthetic glycerides. I. Unsymmetrical monooleo-disaturated triglycerides. B. F. Daubert, H. H. Fricke, and H. E. Longenecker. II. Unsymmetrical dioleo-monosaturated triglycerides. B. F. Daubert, C. J. Spiegl, and H. E. Longenecker (J. Amer. Chem. Soc., 1943, 65, 2142—2144, 2144—2145).—I. Boiling oleic acid with (COCl)₂ with removal of H₂O gives oleyl chloride (I) (90%), b.p. 163°/2 mm. isoPropylideneglycerol with (I) in quinoline-CHCl₃ at room temp. and then conc. HCl-Et₂O gives α-mono-olein, m.p. 35·5° (lit. an impure oil), converted by RCOCl in quinoline-CHCl₃ at 45° into glyceryl α-oleate βγ-di-n-decoate, m.p. 3-4°, -n-dodecoate, m.p. 20·0°, -myristate, m.p. 25·0°, -palmitate, m.p. 34·5°, and -stearate, m.p. 38·5°. Hydrogenation (Pd-black; EtOH; 20 lb.) then gives glyceryl α-stearate βγ-didecoate, m.p. 44°, βγ-diodecoate, m.p. 45·2°, βγ-di-n-myristate, m.p. 57·0° and βγ-dipalmitate, m.p. 63·0°.

II. α-Acylglycerol and (I) in quinoline-CHCl₃ at the b.p. give

m.p. 57.0° and βγ-dipalmitate, m.p. 63.0 .

ÎI. α-Acylglycerol and (I) in quinoline-CHCl₃ at the b.p. give glyceryl αβ-dioleate γ-n-hexoate, m.p. —11.0° to —10.0°, γ-n-octoate, m.p. —6.6° to —5.6°, γ-n-decoate, m.p. —0.8° to 0.5°, γ-n-dodecoate, m.p. 5.5—6.5°, γ-myristate, m.p. 12.5—13.5°, γ-palmitate, m.p. 18.0—19.0°, and γ-stearate, m.p. 22.5—23.5°, whence hydrogenation as above yields glyceryl αβ-distearate γ-n-hexoate, m.p. 44.0°, γ-n-octoate, m.p. 47.5°, γ-n-decoate, m.p. 47.8°, γ-myristate, m.p. 58.2°, and γ-palmitate, m.p. 62.3°.

R. S. C.

Oxidation of oxalic acid solutions by elementary oxygen in presence of manganese.—See A., 1944, I, 107.

N-Nitrosoacylarylamides as catalysts in addition polymerisation. A. T. Blomquist, J. R. Johnson, and H. J. Sykes (J. Amer. Chem. Soc., 1943, 65, 2446—2448).—Mixed polymers are formed (i) when CH₂'CHPh is kept in the dark in presence of p-C₅H₂Br·NAc·NO (I) at room temp. or of NN'-dinitrososuccindi-p-bromoanilide, m.p. 116°, at 27° (N₂), (ii) when CH₂'CMe·CO₂Me is kept at 26° with (I), a-bromo-N-nitrosoisovaleranilide (II), m.p. 59°, or N-nitroso-m-bromobenzanilide (III), m.p. 61° (gives also a little m-C₄H₂Br·CO₂H), or (iii) CH₃'CH·CN is kept with (I) at 60—70°, or at room temp. with (II) in light petroleum, or at 27—30° with (III) in C₆H₆. The polymers contain Br when the Ar, but not the R, of NO·NAr·COR contains Br. This indicates decomp. as follows: NO·NAr·COR contains Br. This indicates decomp. as follows: NO·NAr·COR contains Br. This indicates decomp. as follows: NO·NAr·COR contains Br. The NO-compounds are prepared by adding NOCl-Ac₂O to NHAr·COR, KOAc, and P₂O₅ in AcOH-Ac₂O at 7° and keeping at 7—12° for 2 hr. NN'-Dinitrosofumardianilide, m.p. 121° (explosive decomp.), and NN'-dinitrososuccin-di-p-chloromilide, m.p. 95°, dianilide, m.p. 111° and 137°, and -di-β-naphthalide, m.p. 118°, and aa'-dibromo-NN'-dinitrososuccindianilide, m.p. 110°, are also described.

R. S. C.

Condensations. XX. Acetoacetic ester condensations effected by means of sodium or potassium amide and magnesium isopropyl bromide. J. C. Shivers, B. E. Hudson, jun., and C. R. Hauser J. Amer. Chem. Soc., 1943, 65, 2051—2053; cf. A., 1943, II, 216).— With KNH₂ in liquid NH₃, EtOAc gives only 5—10% of CH₂Ac·CO.Et (cf. Titherly, J.C.S., 1902, 81, 1520; Freund et al., A., 1902, i, 584). Adding CH₂Ph·CO₂Et to KNH₂-Et₂O (prep. described) at room temp. and then boiling gives 97% (calc. on KNH₂) of CH₂Ph·CO·CHPh·CO₂Et. In presence of NaNH₂-Et₂O Bu^yOAc gives 57% and in presence of MgPr^βBr-Et₂O gives up to 42% of CH₂Ac·CO₂Bu^y, b.p. 75—78°/15 mm. (semicarbazone, m.p. 163°). In presence of KNH₂, Bu^βCO₂Bu^y gives 11% and in presence of MgPr^βBr gives 29% of Bu^βCO·O·CHPr^β·CO₂Bu^y, b.p. 125—126°/15 mm., with some unchanged ester. No condensation of Pr^βCO₂Bu^y occurs in presence of MgPr^βBr. R. S. C.

Rotation dispersion and configuration of a-hydroxy-acids.—See A., 1944, I, 98.

Fatty acid mono-esters of *l*-ascorbic acid and *d*-isoascorbic acid. D. Swern, A. J. Stirton, J. Turer, and P. A. Wells (Oil and Soap. 1943, 20, 224—226).—Pure mono-esters of *l*-ascorbic (I) and *d*-isoascorbic acid (II) with lauric, myristic, palmitic, and stearic acids (m.p. of anhyd. *l*-ascorbyl esters $105 \cdot 5 - 106 \cdot 5^{\circ}$, $110 \cdot 5 - 111 \cdot 5^{\circ}$, $116 - 117^{\circ}$, and $117 \cdot 5 - 118^{\circ}$ respectively, and of the d-isoascorbyl series 78—79°, 84—85°, 88·5—89·5°, 91·5—92·5°) have been prepared in 40—50% yields by interaction of the (I) or (II) with the fatty acid at room temp. in conc. H₂SO₄. The white cryst. products are sol. in most org. solvents (but not light petroleum), and in fats and oils on gently warming; they are mono-esters, reaction having occurred probably at the primary C_(a)-OH.

Effect of X-rays on ascorbic acid.—See A., 1944, III, 284.

Constitution and detection of hibiscic acid. C. Griebel (Z. Unters. Lebensm., 1942, 83, 481—586; cf. B., 1939, 993).—Hibiscic acid (I). [a] $_{2}^{20}$ +122° in H₂O, is the d(+)-component of dl-allohydroxycitrolactone. The acid obtained on opening the lactone ring has $[a]_{2}^{20}$ +31° in H₂O. Red grapes contain an optically active lactone not identical with (I). (I) is detected as Pb salt (needles), by titration

(before and after opening of the lactone ring), and by measuring change in [a] produced on opening the lactone ring. Tartaric acid

Derivatives of glucosaccharic acid. W. N. Haworth and W. G. M. Jones (J.C.S., 1944, 65—67).—K H glucosaccharate (modified prep. given), with CH₂O and HCl, gives methyleneglucosaccharolactone (I), m.p. 144—146° (hydrate), 165° (anhyd.), [a]₁¹⁷ +118° in H₂O. (I) with EtOH and a little HCl gives monomethyleneglucosaccharolactone Et ester, m.p. 195—197°, but with boiling 4% HCl-MeOH gives Me₂ monomethyleneglucosaccharate (II), m.p. 166°, [a]₀ +22·6° in H₂O. With NH₃ and H₂O (II) gives monomethyleneglucosaccharodiamide, m.p. 235°, and on heating (175°) (II) gives monomethyleneglucosaccharodiamide, m.p. 235°, and on heating (175°) (II) gives monomethyleneglucosaccharolactone Me ester, m.p. 214°. (II) with paraformaldehyde and H₂SO, gives Me₂ dimethyleneglucosaccharate m.p. 157°. hyde and H₂SO₄ gives Me₂ dimethyleneglucosaccharate, m.p. 157°, and with paracetaldehyde and H₂SO₄ gives Me. monomethylene-monoethylideneglucosaccharate, m.p. 153°, [a]_D +25·5° in CHCl₃. The CaCl₂ compound (III) of Et₂ glucosaccharate gives (PhCHO and 70°Cl) Et glu In Cact, compound (III) of Et. glucosaccharate, m.p. 124°, [a]_D +36·6° in CHCl₂. With COMe₂ and ZnCl₂ (III) gives Et₃ isopropylidene-glucosaccharate, b.p. 150° (bath)/0·005 mm., giving isopropylidene-glucosaccharodiamide, m.p. 184°. With paracetaldehyde and ZnCl₂, (III) yields Et₂ monoethylideneglucosaccharate (IV), b.p. 165° (bath)/0023 mm. (IV) gives monoethylideneglucosaccharodiamide, m.p. 187°, and [Ba(OH)₂] monoethylideneglucosaccharolactone, m.p. 213°, [a]₁₈ -5·3°. D. G.

Epimerisation of some dimethylenesaccharic acids and their derivatives. W. N. Haworth, W. G. M. Jones, M. Stacey, and L. F. Wiggins (J.C.S., 1944, 61—65).—K H glucosaccharate with paraformaldehyde and H₂SO₄ gives, after esterification, Me. dimethyleneglucosaccharate (I), m.p. 157.5°. The exact configuration of the CH, groups has not yet been determined. At 60°, with Ba(OH)₂ and CH₂: groups has not yet been determined. At 60°, with Ba(OH)₂ and H₂O, (I) gives dimethyleneglucosaccharic acid (II), m.p. 223°, [a]²₁ +42.5° in H₂O. At 100°, with Ba(OH), and H₂O, both (I) and (II) give dimethylene-1-idosaccharic acid (III), m.p. 292° (decomp.), [a]_D +73.7° in H₂O, which separates in 33% yield as the sparingly sol. Ba salt. (III) with MeOH and HCl gives Me., dimethylene-1-idosaccharate, (IV), m.p. 297°, and with NH₃ and H₂O dimethylene-1-idosaccharodianide (V), decomp. 350°. (I) with NH₃ and dry MeOH gives (IV) and with NH₃ and H₂O gives (V). With Ba(OH)₂ and H₂O at 100°, (III) gives (II), isolated as (I) in 40% yield. (III) salso obtained from Me₂ dimethylenemannosaccharate with Ba(OH)₂ and H₂O at 100°. Tetramethylglucosaccharic acid could not be and H₂O at 100°. Tetramethylglucosaccharic acid could not be epimerised under similar conditions. A di-enol form of the saccharic acids is postulated to account for these changes. D. G.

Stabilisation of aldehydes.—See B., 1944, II, 63.

Preparation of aldehydes and ketones by ozone oxidation. A. L. Henne and W. L. Perilstein (J. Amer. Chem. Soc., 1943, 65, 2183—2185).—Conditions and apparatus (C., 1944, Part 2; cf. A., 1943, II, 252) for ozonolysis and hydrogenation (1% Pd-CaCO₃) of the ozonide are described. Yields of ketone or aldehyde are as follows: from CHBua;CMe. in MeOH 49%; from n-C₅H₁₁·CH:CHMe in EtOAc 8, MeOH 24, or EtOH 37%; from n-C₆H₁₃·CH:CH₂ in EtOAc 26, MeOH 30, or EtOH 35%; from CMeBua;CMe. in EtOAc 61%; from n-C₅H₁₁·CMe:CMe₂ in EtOAc 44, MeOH 35, or EtOH 40%. cycloPentene in EtOAc gives [CH₂]₃(CHO)₂ (71%); cyclohexene gives [CH₂]₄(CHO)₂ (21%).

Interaction of chloral with magnesium cyclohexyl bromide. V. W. Floutz (J. Amer. Chem. Soc., 1943, 65, 2256).—Adding CCl₃·CHO in Et₂O to Mg cyclohexyl bromide in Et₂O and then boiling gives CCl₃·CH₂·OH (up to 65%) and 1:2-dibromocyclohexane with a little dicyclohexyl. The reverse addition gives slightly better yields. R. S. C.

Kinetics of polymeric aldehydes. XIII. Alteration of the mode of reaction of polyoxymethylene by mechanical pulverisation. J. Löbering and J. Hilber (Ber., 1944, 70, [B], 1382—1388).—Polyoxymethylenes can be subdivided in vibration mills in 20 hr. to the smallest particles of size $\sim 1-3 \,\mu$. The microscopic character of the product is unchanged after 90 hr. The mechanical subdivision causes a change in the rate of dissolution which persists after the microscopic appearance has become const. It appears that the mechanical treatment causes a degradation of the polyoxymethylene main valency chains.

Preparation of primary amines with liquid ammonia. J. von Braun and R. Klar (Ber., 1940, 73, [B], 1417—1419).—The increasing insolubility of alkyl halides with increasing mol. wt. in liquid In the substitute of alkyl halides with increasing mot. Wt. in inquice H_1 diminishes the suitability of the latter for the prep. of more complex amines. Thus cetyl bromide (I) and liquid NH_3 at 50° give cetylamine, b.p. $\sim 145^{\circ}/0.15$ mm., m.p. 47° (Ac derivative, m.p. 71°), in 45% yield. (I) and NHEt₂, which are mutually sol., yield diethylcetylamine, b.p. $161^{\circ}/0.1$ mm., quantitatively. Under similar conditions estades affords octade evaluation. similar conditions octadecyl chloride affords octadecylamine, b.p. 164—166°/10 mm., m.p. 47° (hydrochloride, m.p. 162°; picrate, m.p. 106°; Ac derivative, m.p. 68°), in only 35% yield whereas docosyl bromide (II) does not react with liquid NH₃ but with anhyd. NHMe₂ affords dimethyldocosylamine, b.p. 190°/0·6 mm., m.p. 44°, quantit

atively. This is converted into the methosulphate and then into the quaternary base, which when distilled with conc. alkali affords docosene, b.p. $162^{\circ}/0.15$ mm., m.p. 41° . (II) is transformed by prolonged treatment with a large excess of KCN in aq. COMe₂ into tricosanonitrile, m.p. 54° , hydrolysed by HCl at 110° to the acid, m.p. 78° . This with HN₃ and H₂SO₄ in CHCl₃ gives docosylamine, b.p. $\sim 200^{\circ}/0.5$ mm., m.p. 67° (hydrochloride; nitrate, m.p. 119° ; Ac derivative, m.p. 88°).

Manufacture of isobutenylamines.—See B., 1944, II, 64.

Crystalline barium acid heparinate. M. L. Wolfrom, D. I. Weisblat, J. V. Karabinos, W. H. McNeely, and J. McLean (J. Amer. Chem. Soc., 1943, 65, 2077—2085).—Prep. is described of cryst. Ba H heparinate (I), $[a]_D^{26} + 44^\circ$ in H_2O (purified by way of the benzidine salt to a product having $[a]_D^{25} + 47\cdot5^\circ$ in H_2O), neutral, $[a]_D^{25} - 15^\circ$ in H_2O , and Na H mucoitin sulphate, $[a]_D^{5} - 7\cdot4^\circ$ in H_2O , and neutral, $[a]_D^{5} - 24^\circ$ in H_2O , and Na H chondroitin sulphate, $[a]_D^{5} - 11\cdot5^\circ$ in H_2O . Analysis of (I) etc. for C, H, N, and S, anhydrohexuronic acid, and anhydrohexosamine indicates components of (I) to be anhydrohexosamine : anhydrohexuronic acid: $SO_3: Ba =$ anhydrohexosamine: anhydrohexuronic acid: SO₃: Ba = 2.0: 1.8: 6.0: 3.0, but another component may also be present (cf. Charles et al., A., 1936, 1534). (I) may be $C_{24}H_{35}O_{36}N_2S_8Ba_{2\cdot5}$ or $C_{30}H_{42}O_{43}N_2S_6Ba_3$. It contains no NAc, CMe, or NH₂; η excludes a high mol. wt.; the titration curve shows that all the CO₂H of the uronic acid component is free. Hydrolysis gives D-glucosamine. The N may be present as >CH·NH·CH·O· <> >CH·N·CH·. Na H heparinate consumes a small amount of NaIO4, indicating an equiv. wt. = 1900 for (I). Repeated crystallisation of (I) from dil. AcOH changes the cryst. form (photomicrographs given) and causes inactivation. (I) is also inactivated by long drying at 100° and the Na salt is inactivated by H_2O_2 -NH₃. Neither the toluidine-blue test nor the S content is a criterion of activity. Two possible structures are discussed.

 $\omega\omega'$ -Dimethionine. H. R. Snyder, E. E. Howe, G. W. Cannon, and M. A. Nyman (J. Amer. Chem. Soc., 1943, 65, 2211—2214).— dl-Methionine (I), prepared by the method of Barger et al. (A., 1931, 1279), is accompanied by $\sim 5\%$ of " ψ -methionine" (II), m.p. 285—2869. 288°, which is shown to be a mixture of dl- and meso- $\omega\omega'$ -dimethionine, {CH₂·S·[CH₂]₂·CH{NH₂}·CO₂H}₂. (II) gives a green colour with anhyd. CuSO₄-H₂SO₄, contains 2 CO₄H and 2 NH₂. (Van Slyke) but no CMe, SMe, or S·S, gives a Ac_2 , m.p. 173–174°, Bz_2 , m.p. 157–160°, and $(HCO)_2$ derivative, m.p. 114–115°. (CH₂·S·[CH₂]₂·Cl)₂ (1 mol.), NHAc·CH(CO₂Et)₂ (2 mols.), and NaOEt in boiling EtOH give the ester, {CH₂·S·[CH₂]₂·C(CO₂Et)₂·NHAc)₂ (25·2%), m.p. 154–155°, converted in boiling NaOH-H₂O-EtOH into (II). PhNCO and (II) give, after ring-closure by HCl, dl- and mesoethylene di-(β -3-phenyl-5-hydantoinyl sulphide) (69%), m.p. 155–164° (decomp.), reduced (H₂-Raney Ni) to 3-phenyl-5-thylydantoin (75%), m.p. 121–122°, also obtained from (I). H₂O₂-AcOH converts (I) into the disulphone, decomp. 325–350° (block), but in Ac₂O-AcOH gives a-acetamido- γ - β -hydroxyethanesulphonyl-n-butyric 288°, which is shown to be a mixture of dl- and meso-ωω'-dimethionverts (1) into the disniphone, decomp. $325-360^{\circ}$ (block), but in $Ac_2O-AcOH$ gives a-acetamido- γ - β' -hydroxyethanesulphonyl-n-butyric acid (61%), darkens 226° m.p. $231-235^{\circ}$ (decomp.; variable), converted by boiling, conc. HCl and then C_5H_3N in 25% EtOH at 0° into a-amino- γ - β' -hydroxyethanesulphonyl-n-butyric acid (III), darkens 250° , decomp. $265-280^{\circ}$. 3:6-Di- β -chloroethyl-2:5-diketopiperazine, SH·[CH₂]₂-OH, and KOH in boiling EtOH give 3:6-di- β - β' -hydroxyethylthiolethyl- (IV) (53·3%), m.p. $148-149^{\circ}$, and a small amount of 3- β -chloroethyl-6- β - β' -hydroxyethylthiolethyl- 2:5-diketopiperazine, m.p. $171-178^{\circ}$. Boiling conc. HCl hydrolyses 2: 5-diketopiperazine, m.p. 171—178°. Boiling conc. HCl hydrolyses (IV) to impure α-amino-γ-β'-hydroxyethylthiol-n-butyric acid, amorphous, m.p. 275—280° (decomp.), whence (III) is obtained (35·4%) by H₂O₂-AcOH. R. S. C.

Interaction of ethyl diazoacetate with stannic chloride and ferric chloride. A. N. Nesmejanov and A. E. Segalevitsch (Bull. Acad. Sci. U.R.S.S., 1942, Cl. Sci. chim., 8—13).—Interaction of SnCl₄ and CHN₂·CO₂Et in cold light petroleum yields the compound, [CN₂·C(OEt)·O]₂SnCl₂. FeCl₃ reacts analogously, yielding the compound, CN₂·C(OEt)·O·FeCl₃. At room temp. decomp. of both compounds begins within a few min.; moisture immediately liberates N, from them.

II.—SUGARS AND GLUCOSIDES.

Nicotinamide riboside,—See A., 1944, III, 270.

Super-molecular constitution of cellulose. T. Lieser (Chem.-Ztg., 1943, 67, 197-202).-A review.

Application of the isotopic method to the investigation of chemical reactions. IV. Reaction of xanthation, reaction of cellulose mercerisation, and the structure of alkali-cellulose. I. A. Makolkin (Acta Physicochim., U.R.S.S., 1942, 17, 319—322; cf. A., 1944, II, 119).—The xanthation of EtOH and cellulose (I) has been investigated using NaOH with a high 180 content. The data show that O from NaOH and not O from EtOH or (I) passes into H₂O, O from these latter passing into xanthate. A similar investigation of the mercerisation of cellulose affords evidence that alkali-cellulose is an additive product of NaOH to cellulose and not an alcoholate.

C. R. H.

Steroids. XXXV. Preparation of saccharide derivatives of steroids. C. Meystre and K. Miescher (*Helv. Chim. Acta*, 1944, 27, 231—236; cf. A., 1938, II, 174).—The yields of steroid glucosides are greatly improved if the H₂O formed by the action of the steroid and aceto-halogeno-sugar in presence of Ag₂O is removed continuously by halogeno-sugar in presence of Ag_{\bullet} O is removed continuously by azeotropic distillation. $C_{\bullet}H_{\delta}$ is particularly suitable as solvent but PhMe or CHCl₃ can also be used. Thus are obtained: *soandrosterone- β -d-glucoside, m.p. 216—217° and its tetra-acetate, m.p. 192°; deoxycorticosterone- β -d-glucoside, m.p. 192—195° (tetra-acetate, m.p. 172°); testosterone- β -a-glucoside tetra-acetate, m.p. 125—128° and 163° after re-solidification; cholesterol- β -d-glucoside; Ag_{\bullet} - $\Delta^{5:6-20:22-3} \cdot 21$ -dihydroxynorcholadienolactone- β -d-glucoside tetra-acetate, [a]¹⁹⁻²⁵ —34°±4° in MeOH; 3-benzoylæstradiol-17-β-mattoside hepta-acetate, m.p. 227—229°, [a]¹⁹⁻⁵ +56°±4° in MeOH. Deoxy-corticosterone-β-maltoside hepta-acetate, m.p. 183—185°, is hydrolysed to the maltoside, m.p. 232—235°, [a]¹⁹⁻⁵ +124°±4° in MeOH.

III.—HOMOCYCLIC.

Dehydrogenation and decomposition of cyclohexane at high temperatures over metallic catalysts. A. A. Balandin and N. Z. Kotelkov (J. Appl. Chem. Russ., 1942, 15, 139—150).—cycloHexane (I) was passed over heated metal spirals. There was no decomp. with Fe below 550° or with Cr-plated Fe below 500° ; a little decomp. occurred with nichrome at 300°, and at higher temp. much CH₄ etc. was formed in addition to C₆H₆. Platinised nichrome dehydrogenates (I) at 300—400°; the rate is lowered by dilution with CO₂ at 300—350° and raised by dilution with N₂ at 400°. Soot gradually builds up on the catalyst, and the energy of activation drops from 10 kg.-cal. to 5 kg.-cal. per mol.; the activity of the catalyst has a max. at some medium soot content. An explanation is given for the promoter Dehydrogenation and decomposition of cyclohexane at high temmedium soot content. An explanation is given for the promoter effect of soot. Palladised nichrome is less active than platinised nichrome, and the energy of activation (without soot) is 7 kg.-cal.

Photochemical nitration of benzene and nitrobenzene with nitrogen oxides.—See A., 1944, I, 109.

Vapour-phase nitration of toluene. J. L. Bullock and E. T. Mitchell (J. Amer. Chem. Soc., 1943, 65, 2426—2427).—The isomeride ratio in the gas-phase nitration of PhMe over a wide range of experimental conditions is fairly const. at 55% o-, 5% m-, and 40% p-C₂H₄Me·NO₂. The by-products of the nitration process represent expected multiple nitration and oxidation products. W. R. A. expected multiple nitration and oxidation products.

Polymerisation of styrene in presence of nitrothiophen and chloranil. C. C. Price (J. Amer. Chem. Soc., 1943, 65, 2380—2381).—Polymerisation of CHPh:CH₂ by Bz_2O_2 in presence of 2-nitrothiophen (I) or chloranil (II) leads to incorporation of (I) or (II), respectively, into the mol. 2-Chloroanthraquinone (III) is largely not so incorporated. (I) acts as retarder. (II) as a chain-transfer agent. "Polymerisation" porated. (I) acts as retarder, (II) as a chain-transfer agent. "Polymers," OBz-[C₃H₈]₁₀·C₄H₂S·NO₂,O₄ (n = 10 and 16) and Cl·[C₃H₈]₁₀·C₆Cl₃O₂,O₃, are described. (III) gives a product containing only 1 mol. of (III) per 7 mols. of polymer. R. S. C.

Chain transfer in the polymerisation of styrene. solvents with free radicals.—See A., 1944, I. 107. Reaction of

Co-polymers of p-chlorostyrene and methyl methacrylate. C. S. Marvel and G. L. Schertz (J. Amer. Chem. Soc., 1943, 65, 2054—2058).—Under comparable conditions, CH.; CMe·CO₂Me (I) gives 85·6% of polymers in 45 hr., p-C_eH₄Cl·CH·CH₂ (II) gives 23·8% in 45 hr. and 40·2% in 66 hr.; $45\cdot2\%$ of co-polymer is obtained from a mixture of (I) and (II) in 66 hr.; a = ratio of the rates of entry of (II) and (I) is $1\cdot46\pm0\cdot20$ and is unaffected by irradiation or change of solvent. a are recorded as follows: (I) styreng $1\cdot34\pm0\cdot20$ markhorosolvent. a are recorded as follows: (I): styrene 1.34 ± 0.20 ; m-chlorostyrene (III): styrene 1.28 ± 0.20 ; (III): (I) 1.42 ± 0.20 ; (II): (I) 1.46 ± 0.20 . η of the polymer is independent of the extent of polymerisation; thus, polymerisation once started rapidly proceeds to the final stage. CH2 CH OAc and (II) probably do not co-polymerise. Products from (II) and >2 mols. of Me₂ fumarate or Et₂ maleate contain 49 mol.-% of ester. m-C₆H₄Cl·CHMe·OH (prep. from m-C₆H₄Cl·MgBr and MeCHO), b.p. 93—94°/3 mm., with KHSO₄ gives (III), b.p. 41—43°/3 mm. R. S. C. 43°/3 mm.

Homologues of cyclopentyl- and cyclohexyl-benzene and products of their hydrogenation. E. S. Pokrovskaja (Compt. rend. Acad. Sci. U.R.S.S., 1943, 39, 25—30).—Hydrocarbons falling into the temp. range of kerosene and Diesel oil fractions have been prepared temp. range of kerosene and Diesel oil fractions have been prepared by the action of AlCl₂ on a mixture of the appropriate benzenoid hydrocarbon and cyclo-pentene or -hexene. Some of them are reduced by H₂ at 180—190°/atm. pressure in presence of Pt-C. The following are described: cyclopentylmesitylene, b.p. 276—276·5°/767 mm.; cyclopentyl-p-cymene, b.p. 121—122°/6·5 mm.; dicyclopentylmesitylene, b.p. 164—165°/1 mm.; cyclohexyltoluene, b.p. 261—262°/762 mm.; dicyclohexyltoluene, b.p. 165—166°/3 mm.; cyclo-, b.p. 237·5°/757 mm., and dicyclo-, b.p. 150—152⁶/2 mm., -pentyltoluene; cyclopentyl-p-xylene, b.p. 254·5—255°/762 mm., m.p. —44°; 2-cyclopentyl-1: 3:5-trimethylcyclohexane, b.p. 254—255°/754 mm., max. NH₂Ph point 59·0°; cyclopentyl-1-methyl-4-

isopropylcyclohexane, b.p. 271—273°/752 mm., max. NH₂Ph point 63.7°; cyclohexylmethylcyclohexane, b.p. 252—253°/756 mm., max. NH₂Ph point 55.5°. Addition of Me to hydrocarbons of the type of cyclopentylbenzene has little effect on d or n but considerably increases η . Replacement of Me by Pr^{β} reduces all these properties. Mono- and di-cyclopentyltoluenes have higher d and n but much lower η than the corresponding cyclohexyltoluenes.

Box model in theory and practice of aromatic compounds. O. Schmidt (*Ber.*, 1940, 73, [A], 97—116).—A summary of work already reviewed (A., 1938, I, 298, 437; 1939, I, 183). R. S. C.

Cumulenes. III. R. Kuhn and G. Platzer (Ber., 1940, 70. [B], 1410—1417; cf. A., 1938, II, 354).—Compounds CRR':C:C:C:C:C:CR" are readily prepared by reduction of the corresponding glycols by CrCl₂ when R and R' are identical but are not obtainable if R and R' differ either because the tendency of the electrons in the primarily formed double radicals to pass into that of the cumulenes is considerably repressed or because the reactivity of the unsymmetrical cumulenes is so greatly enhanced that they immediately react further with the HCl required for the reaction with CrCl₂. Successive treatments of MgEtBr in Et₂O with C₂H₂ and p-OPh·C₆H₄Bz lead to aδ-diphenyl-aδ-di-p-phenoxyphenyl-Δβ-butinene-aδ-diol, m.p. 108°, from which the cryst. butatriene could not be obtained by means of P_2I_4 in Et₂O. $a\delta$ -Bisdiphenylene- $\Delta\beta$ -butinene- $a\delta$ -diol is reduced by Tall in anhyd. Et₂O to ad-bisdiphenylene- $\Delta a\beta^{\nu}$ -butatriene, m.p. 330° (vac.), softens at 320°, which does not give a colour reaction with SbCl₃-CHCl₃. With C₂H₂ and CO(C₆H₄Me-p)₂ MgEtBr affords add-tetra-p-tolyt- Δ^{β} -butinene-ad-diol, m.p. 78°, converted (P₂I₄ in anhyd. Et₂O) into add-tetra-p-tolyt- $\Delta^{\alpha}\beta^{\nu}$ -butatriene, m.p. 240°. aaζζ-Tetra-p-tolyl-Δβδ-hexadi-inene-aζ-diol, m.p. 158°, aaζς-letra-p-tolyl-Δρο-nexati-inene-aζ-atol, m.p. 158°, from CO(C₈H₄Me-p)₂, (CH₂C)₂, and MgEtBr, is reduced [Cr(OAc)₂ and HCl in Et₂O] to aaζζ-letra-p-tolyl-Δαβγδε-hexapentaene, m.p. 326° (vac.), becomes black-green at 200°, and softens at 320°. Analogously, aaζζ-letra-p-chlorophenyl-Δβδ-hexadi-inene-aζ-diol, m.p. 169°, is dehydrated (CrCl₂) to aaζζ-letra-p-chlorophenyl-Δαβγδε-hexapentaene, m.p. 218° (vac.; decomp.). aaζζ-Tetra-p-anisylhexadi-inene-aζ-diol has m.p. 130°. Successive additions of C₂H₂ and CPh₂:CO to MgEtBr in Et₂O give a compound, C₃₀H₂₂O, m.p. 187°, which is

Polyarylated indenes. C. F. H. Allen and J. W. Gates, jun. (J. Amer. Chem. Soc., 1943, 65, 2129—2131).—The carbinol, obtained Amer. Chem. Soc., 1943, 65, 2129—2131).—The carbinol, obtained from 2:3:5:6-tetraphenylindenone by MgPhBr, and HBr-AcOH give 1-brono-1:2:3:5:6-pentaphenylindene (I) (cf. A., 1943, II, 196). In boiling EtOH, (I) gives the 1-OEt-compound, m.p. 170—176°, and with MgPhBr-C₆H₆ gives a red solution, which in 3 days becomes colourless and then yields 1:1:2:3:5:6-hexaphenylindene, m.p. 269—270°. With Zn in AcOH, (I) gives 1:2:3:5:6-pentaphenylindene (II), m.p. 280° (cf. A., 1943, II, 37), oxidised by CrO₅-AcOH to 4:5:1:2-C₆H₂Ph₂(CO₂H)₂ (III) and BzOH, whereby the structure of (II) is proved. The hydrocarbon, m.p. 227°, obtained from 3:3:5:6-tetraphenylindanone (IV) (A., 1943, II, 67), is shown to be 1:1:3:5:6-pentaphenylindene by oxidation (CrO₅-AcOH) to (III) and BzOH. MgPhBr and (IV) give 2 glycol, which cannot be reduced to a hydrocarbon. The hydroglycol, which cannot be reduced to a hydrocarbon. The hydrocarbon (V), m.p. 222° (A., 1943, II, 37), is 1:1:2:5:6-pentaphenylindene; with CrO₃-AcOH it gives the lactone, 5:6-

 $C_4H_2Ph_2$ $(1)CPh_2 CO$ (2)CHPhm.p. 184—185°, converted by NaNH₁ in boiling p-cymene into 2:3:9:10-tetraphenylanthracene, m.p. 324—325°, which is also obtained from the 9:10-diol by KI-AcOH. The oxido-enol benzoate, m.p. (+ AcOH) 125° and (solvent-free) 196°, or ketol, m.p. 156°, from 2:3:3-triphenylindanone (Koelsch, A., 1939, II, 117), with NaNH, in p-cymene gives 9:10-diphenylanthracene. (II) is unaffected at 420°, but (IV) and (V) give (II).

Dehydration of 1-hydroxy-1: 2: 3-triphenylindenes by acid is thus shown to involve a $1 \rightarrow 3$ migration of Ph.

tert.-Butyl homologues of naphthalene. F. C. Whitmore and W. H. James (f. Amer. Chem. Soc., 1943, 65, 2088—2090).—C₁₀H₈. Bu⁷Cl, and AlCl₃ in CS₂ at 0° give C₁₀H.Bu⁷ (I) (45%), m.p. -4°. b.p. 145°/15 mm., and mixed C₁₀H₆Bu⁷₂, m.p. 80—81°, b.p. 310—312° (cf. Bromby et al., A., 1943, II, 185; Wegscheider, A., 1884, 1185). (I) gives a picrate, m.p. 100—101°, quinone, m.p. 76—77°, mixed liquid Br- and Cl-compounds, but not C₁₀H₇·CO₂H. 1: 2: 3: 4-Tetrahydronaphthalene. Bu⁷Cl, and AlCl. in CS. give 1: 2: 3: 4-Tetrahydronaphthalene, Bu⁵Cl, and AlCl₃ in CS₂ give 53% of a tert.-butyltetrahydronaphthalene, b.p. 100—102°/6 mm., converted by S into C₁₀H₇Bu⁵ (50%), b.p. 106—107°/5 mm. C₁₀H₈, CMe₂:CH₁, and AlCl₃ in CS₂ give 34% of C₁₀H₇Bu⁵, b.p. 278°/735 mm., 144—146°/15 mm., and a large amount of viscous

Diterpenes. Synthesis of 3:6-dimethyl-1-isopropylacenaphthene and of 1:5-dimethyl-2-naphthol. L. Ruzicka and E. Rey (Helv. Chim. Acta, 1943, 26, 2136—2142).—p-C₆H₄Me·COPr^β is converted by CH₂Cl-CO₂Et and Mg activated by f in abs. Et₂O into Et β-hydroxy-β-p-tolyl- γ -methyl-n-valerate, b.p. ~150°/13 mm., transformed by successive treatments with PBr₂ in cold C₆H₆ and NPhMe₂ at 230° into Et β-p-tolyl- γ -methyl- Δ ^a-pentenoate b.p. 104—108°/0·4 mm. (corresponding acid, b.p. 110°/0·1 mm.). This is hydrogenated (Pt in AcOH) to Et β-p-tolyl- γ -methylvalerate, b.p. 92°/0·3 mm., hydrolysed to the acid (I), m.p. 77. (I) is transformed by SOCl₂ into the corresponding chloride, b.p. 113°/1 mm., converted by AlCl₃ in CS₂ into 1-keto-6-methyl-3-isopropylindane, b.p. 148—155°/10 mm. [semicarbazone, m.p. 194° (decomp.)], which with activated Mg and CHMeBr-CO₂Et in Et₂O affords Et a-1-hydroxy-6-methyl-3-isopropyl-1-indanylpropionate, b.p. 173—178°/11 mm. This is converted by successive treatments with PBr₃ and NPhMe₂ into Et a-6-methyl-3-isopropyl-1-indanylpidenepropionate, b.p. 129—130°/0·8 werted by successive freatments with Fig. and NFHMe. Inco 2-a-6-methyl-3-isopropyl-1-indanylidene propionate, b.p. 129—130°/0-8 mm., reduced (Bouveault) to \(\beta\)-6-methyl-3-isopropyl-1-indanyl-propyl alcohol, b.p. 122—124°/0-1 mm. The corresponding bromide, propyl alcohol, b.p. $122-124^\circ/0\cdot 1$ mm. The corresponding bromide, b.p. $129-130^\circ/0\cdot 2$ mm., is converted by KCN in EtOH at 100° followed by hydrolysis into β -6-methyl-3-isopropyl-1-indanyl-n-butyric acid, b.p. $170^\circ/6$ mm. cyclised by successive treatments with SOCl₂ and AlCl₃ in CS₂ at room temp. to 6-keto-3:6-dimethyl-1-isopropyltetrahydroacenaphthene (II), b.p. $145^\circ/0\cdot 5$ mm. (semicarbazomes, m.p. $204-205^\circ$ and $167-168^\circ$ respectively). This is reduced (Na and EtOH) to the corresponding carbinol, b.p. $134^\circ/0\cdot 5$ mm., which is dehydrogenated (Se at 350°) to 3:6-dimethyl-1-isopropyl-acenaphthene, b.p. $125^\circ/0\cdot 05$ mm. (picrate, m.p. 109-110: styphnate, m.p. $120-121^\circ:$ additive compound, m.p. $93\cdot 5-94\cdot 5^\circ$, with s- $C_4H_4(NO_2)_3$], not identical with the hydrocarbon $C_{17}H_{20}$ obtained by the dehydrogenation of agathicdicarboxylic acid (A., 1931, 311).

1:5-Dimethyl-3:4-dihydronaphthalene is converted CO.H·C₆H₄·CO₃H in Et₂O into 2-keto-1:5-dimethyl-1:2:3:4-kirahydronaphthalene, b.p. 160—163°/13 mm., transformed by Pd-C at 300—325° into 1:5-dimethyl-2-naphthol, m.p. 158—159°. 5-Keto-2-methoxy-1-methyl-5:6:7:8-tetrahydronaphthalene is converted by successive treatments with MgMeI and I at 150° into 2-methoxy-1:5-dimethyl-7:8-dihydronaphthalene, which is de-hydrogenated by Se at 330° to 2-methoxy-1:5-dimethylnaphthalene, m.p. 92-93° (picrate, m.p. 91-92°). M.p. are corr. H. W.

Sesquiterpenes. LXII. Novel sesquiterpene hydrocarbon from the leaf oil of Cedrus atlantica, Manetti. L. Ruzicka, H. Schinz, and P. H. Müller (Helv. Chim. Acta, 1944, 27, 195—206).—A fraction of the oil, b.p. $90-104^{\circ}/0.3$ mm., dissolved in dry Et₂O is converted by HCl at 0° into the sesquiterpene dihydrochloride (I), m.p. $117-118^{\circ}$, $[a]_{\rm D} - 7.90^{\circ}$ in CHCl₃, converted by boiling MeOH or, leave advantageously, by heating at $120-150^{\circ}$ into the monohydrochloride, m.p. $59-60^{\circ}$, $[a]_{\rm D}^{10} + 104^{\circ}$ in CHCl₃, from which (I) is regenerated by HCl in Et₂O. (I) and boiling 20% KOH-MeOH slowly yield the hydrocarbon, $C_{16}H_{24}$ (II), b.p. $128-129^{\circ}/12$ mm., $[a]_{\rm D} + 67.2^{\circ}$. Ozonisation of (II), with or without after-oxidation by KMnO₁, does not afford large homogeneous fragments, CH.O. or [1] +67-2°. Ozonisation of (II), with or without after-oxidation by KMnO₄, does not afford large homogeneous fragments, CH₂O, or COMe₂ so that the double linkings appear to be within the ring and CH₂ or 'CMe₂ is not present. At 310° (II) is dehydrogenated by Se mainly to 1:6-C₁₀H₆Me₂. Dehydrogenation, best with Pd containing 1% of Cu at 310°, gives also a hydrocarbon, C₁₅H₁₈, m.p. 81–82°, characterised by its picrate, m.p. 165–166°, and additive compound, m.p. 191°, with s-C₈H₃(NO₂)₃, and apparently, according to its absorption spectrum, closely related to the polyalkylnaphthalenes. p-C₈H₄Me-CH₂·CHO, activated Zn filings, and CHPrβBr·CO₂Et in abs. C₈H₆ afford Et β-hydroxy-γ-p-tolyl-α-isopropyl-a-isopropyl-α-pentenoate, b.p. 115–117°/0·05 mm., which is reduced (Raney Ni and 96% EtOH) and then hydrolysed to γ-p-hlyl-α-isopropyl-α-pentenoate, b.p. 113–118°/0·04 mm. This is cyclised by successive treatments with SOCl₂ in boiling Et₂O and alCl₃ in CS₂ to 4-heto-1:6-dimethyl-3-isopropyl-1:2:3:4-tetra-

alCl₃ in CS₂ to 4-keto-1:6-dimethyl-3-isopropyl-1:2:3:4-tetra-hydronaphthalene, b.p. 98—102°/0.05 mm., which is reduced by Na

with the series of the series

donaphthalene (IV), b.p. 107—108°/0-07 mm. (semicarbazone, m.p. 217°), which is reduced to the carbinol, converted by S at 10 into 1:2:6:8-C₁₀H₄Me₄, b.p. ~100°/0-02 mm. [picrate, m.p.

133—134°; additive compound, m.p. 153—154°, with s- $C_8H_3(NO_2)_3$; styphnate, m.p. 148—150°]. (IV) is treated with an excess of MgMeI followed by Girard's reagent T and the carbinol is heated with I at 160°, whereby disproportionation occurs to 1:2:4:6:8-pentamethyl-1:2:3:4-tetrahydronaphthalene (\mathbf{V}), b.p. 136°/13 mm., and 1:2:4:6:8-C₁₀H₃Me₅, b.p. 173—178°/10 mm., m.p. 101—102° [picrate, m.p. 171—172°; additive compound, m.p. 183—184°, with s-C₆H₃(NO₂)₃], also obtained by heating (\mathbf{V}) with S at 220°.

H. W.

Benzcyclooctatetraenes. IV. 1:2:3:4:5:6-tribenz-Δ^{1:3:5:7}-cyclooctatetraene. R. G. Shuttleworth and (in part) W. S. Rapson and E. T. Stewart. V. Absorption spectra of tetraphenylene and 1:2:3:4:5:6-tribenz-Δ^{1:3:5:7}-cyclooctatetraene in relation to their structures. W. S. Rapson, (Miss) H. M. Schwartz, and E. T. Stewart (J.C.S., 1944, 71—73, 73—74; cf. A., 1933, II, 197).—IV. Tetraphenylene (I) on oxidation (CrO₃) gives 1:2:3:4:5:6-tribenzcyclooctatetraene-7:8-dicarboxylic anhydride (II), m.p. 228—229°, which on decarboxylation gives 1:2:3:4:5:6-tribenz-Δ^{1:3:5:7}-cyclooctatetraene (III), m.p. 138-5—139°, stable to KMnO₄ and giving no picrate. (III) gives 1:2:3:4:5:6-tribenz-Δ^{1:3:5:7}-cyclooctatetraene 7:8-dibromide, m.p. 155—156°, and is reduced (Pt catalyst) to 1:2:3:4:5:6-tribenz-Δ^{1:3:5:6}-cyclooctatriene, m.p. 111—113°. Further oxidation (CrO₃) of (II) gives o-diphenylbenzene-2':2''-dicarboxylic acid (IV), m.p. 262-5—263-4°, identical with a specimen prepared by the Ullmann reaction from Et 2-iododiphenyl-2'-carboxylate and o-C₈H₄I·CO₂Et. Identification of (IV) establishes the structures of (I) and (III).

V. A close similarity is found between the assorption spectra of tetraphenylene and 2:2'-disheaveldiphenyl-2

V. A close similarity is found between the absorption spectra of tetraphenylene and 2:2'-diphenyldiphenyl, suggesting a non-planar structure for tetraphenylene, a hypothesis supported by X-ray crystallographic analysis. The absorption spectrum of 1:2:3:4:5:6-tribenz- $\Delta^{1:3:5:7}$ -cyclooctatetraene also shows none of the attributes of a compound containing condensed aromatic rings. These results support the view that cyclooctatetraene itself is non-planar and non-aromatic in type. D. G.

Polycyclic systems. II. Naphtha-2': 3-1: 2-chrysene, a new hydrocarbon of the 1: 2-benzanthracene series. M. Beyer and J. Richter (Ber., 1940, 73, [B], 1319—1328; cf. A., 1938, II, 236).—Chrysene and o-C₆H₄(CO)₂O in C₆H₆ containing AlCl₃ at 35—45° give o-2-chrysenoylbenzoic acid (I), m.p. 213—214° (Me, m.p. 176—177°, and Et, m.p. 134°, ester), which gives a red-brown solution in cone. H.SO, rapidly becoming yields and then bright blue and in conc. H₂SO₄, rapidly becoming violet and then bright blue, and a blue colour which rapidly becomes brown-red with SbCl₅ in CHCl₃. It is transformed by PCl₅ in C₆H₆ into the *chloride*, m.p. a once colour which rapidly decomes brown-red with SbU₈ in ChCl₃. It is transformed by PCl₅ in C₈H₈ into the chloride, m.p. 219°, which reacts very slowly with alcohols, is moderately stable towards H₂O, but is rapidly converted by aq. NH₃ into 0-2-chrysenoylbenzamide, m.p. 158° (decomp.), becomes yellow at 138° and softens at 148°. (I) is reduced by Zn-Hg and HCl in boiling AcOH to 0-2-chrysenylmethylbenzoic acid, m.p. 246—247° (Na salt; Me, m.p. 150—151°, and Et, m.p. 174° ester). (I) and BzCl in 1-C₁₀H₇Cl at 245—255° afford naphtha-2': 3'-1: 2-chrysene-1: 4'-quinone (II), m.p. 272°, hydrogenated (PtO₂ in AcOH) to a non-cryst. H₈-derivative. (II) could not be caused to react with NH₂·CO·NH·NH₂,HCl, MgMeI, or P + HI but is converted by yellow P in boiling EtCO₂H containing a little I into 4'-propionoxynaphtha-2': 3'-1: 2-chrysene (III), m.p. 200—201°, transformed by NaOH and Devarda's alloy in boiling aq. EtOH into (II). Distillation of (III) with electrolytic In dust affords 1'-keto-1': -dihydronaphtha-2': 3'-1: 2-chrysene, m.p. 285—286°, also obtained from (III), NaCl, somewhat moist InCl₂, and In dust at 280°; it does not react with NH₂·CO·NH·NH₂HCl, NH₂OH,HCl, MgMeI in Et₂O, Bu²QO, or PhEt or with P + I. (II) is reduced by Zn-Hg and 12N-HCl in boiling AcOH-PhMe under H₂ followed by chromatography over Al₂O₃ into naphtha-2': 3'-1: 2-chrysene, m.p. 185—186°, in small yield. It gives a cryst additive product, m.p. 169°, with s-C₆H₃(NO₃)₃, and adducts of indefinite m.p. with picric acid, styphic acid 2': Idinitroanthraquinone and arwhitiol tatrawith s-C₈H₃(NO₉)₃, and adducts of indefinite m.p. with picric acid, styphnic acid, 2:7-dinitroanthraquinone, and erythritol tetranitrate. During its prep. it appears to give an additive product, $C_{2e}H_{1e}$, $C_{2e}H_{3e}$, which does not give adducts with picric acid or 2:7-dinitroanthraquinone.

"Oxidising" actions of alkalis. VI. o-Nitrotoluene. G. Luck [with F. Stitz] (Ber., 1940, 73, [B], 1377—1381).—Treatment of o-C₆H₄Me·NO₂ with 70% KOH at 200° gives o-toluidine (I) and o-NH₂·C₆H₄·CO₂H (II) in preparative yields of 18·2% and 15·7% respectively, with some 2:2'-azoxytoluene, m.p. 58·5°. The mechanism is probably: C₆H₄Me·NO₂ + 3KOH \rightarrow 3H. + NO₃·C₆H₄·CO₂K \rightarrow NO₂·C₆H₄·CO₂K + 3H₂ \rightarrow NH₂·C₆H₄·CO₂K + 2H₂O; C₆H₄Me·NO₂ + 3H₂ \rightarrow (I) + 2H₂O; 2C₆H₄Me·NO₂ + 3H₂ \rightarrow C₆H₄Me·NO·C₅·H₄Me + 3H₂O. 1:4:2- and 1:3:2-C₆H₃Me₂·NO₂ give small amounts of NH₃ and HCN, small amounts of the corresponding amines, but no homogeneous NH₂-acid. oof the corresponding amines, but no homogeneous NH₂-acid. o-C₆H₄Et·NO₂ yields NH₃, HCN, unchanged product, o-C₆H₄Et·NH₂ and resin. (I) and (II) are almost quantitatively recovered. Anthranil affords a little NH₃ and HCN, (II), and resin. o-NOCCOLUMNIC COLUMNIC COL $NO_2 \cdot C_6 H_4 \cdot CO_2 H$ reacts very vigorously, giving very little NH_2 and being mainly resinified. PhNO₂ is largely unchanged but gives a little NH_3 , $(NPh')_2$, and resin. H. W.

Identification of alkylbenzenes. III. Acetamido- and benzamido-derivatives of isobutylbenzene. V. N. Ipatiev and L. Schmerling (J. Amer. Chem. Soc., 1943, 65, 2470; cf. A., 1938, II, 316).—PhBuβ, b.p. 166—170° [NHAc-, m.p. 127—128°, (NHAc)₂-, m.p. 210—211°, and NHBz-derivative, m.p. 128—129°], is prepared in 30 and 10% yield, respectively, from (i) PhBr, BuβBr, and Na in C₆H₈ or (ii) CH₂Ph·MgCl and PrβBr in Et₂O.

R. S. C.

 $dl\text{-}\beta\text{-Phenyl-}n\text{-propylmethylamine, b.p. 211° (hydrochloride, m.p. 144°).—See A., 1944, III, 279.$

β-Anilinobutadienes.—See B., 1944, II, 100.

Derivatives of acetanilide. L. S. Fosdick and G. W. Rapp (J. Amer. Chem. Soc., 1943, 65, 2307—2308).—CH₂Cl·COCl with NH₂Ph or NO₂·C₆H₄·NH₂ in COMe₂ gives NHPh·CO·CH₂Cl or NO₂·C₆H₄·NH·CO·CH₂·NR₂ or NO₂·C₆H₄·NH·CO·CH₂·NR₂ in hot COMe₂ into NHPh·CO·CH₂·NR₂ or NO₂·C₆H₄·NH·CO·CH₂·NR₂ (A), respectively. H₃—PtO₂ in EtOH at 40—50 lb. reduces (A) to NH₂·C₆H₄·NH·CO·CH₂·NR₂ (B). The following (m.p. in parentheses are those of hydrochlorides or, for diamines, dihydrochlorides are thus prepared: ω-dipropyl-, b.p. 145—146°/1·5 mm. (m.p. 184—186°), and ω-dibutyl-aminoacetanilide, b.p. 155—156°/1 mm. (m.p. 101—102°); m- (m.p. 195—197°) and p-nitro-ω-diethylaminoacetanilide, m.p. 44—46°; o-, m.p. 48·5—50° (m.p. 114—115°), m- (m.p. 147—149°), and p-nitro-ω-di-propylaminoacetanilide, m.p. 40—48°; o- (m.p. 132—133°), m- (m.p. 131—132°), and p-nitro-ω-di-butylaminoacetanilide, m.p. 75—76°; m- (m.p. 231—234°), and p-amino-ω-diethylaminoacetanilide (m.p. 235—240°); o- (m.p. 182—183°), m- (m.p. 180—182°), and p-amino-ω-dipropylaminoacetanilide (m.p. 269—273°); o- (m.p. 178—180°), m- (m.p. 172—174°), and p-amino-ω-dibutylaminoacetanilide, m.p. 43—46°. (B) have slight anæsthetic activity; substitution by NH₂ and increase in mol. wt. decrease the action; NO₂ destroys it. (A) have slight vasopressor activity. (A) and (B) are highly toxic. R. S. C.

β-Nitrosoacylarylamides.—See A., 1944, II, 120.

Monoreduction of 1:3-dinitronaphthalene and separation of 3-nitro-1- and 4-nitro-2-naphthylamine. H. H. Hodgson and S. Birtwell (J.C.S., 1944, 75-77).—1:3- $C_{10}H_{6}(NO_{2})_{2}$ (I) and aq. Na₂S-NaHCO₃-MeOH (boil for 20 min.) afford 87% of 3:1-NO₂· $C_{10}H_{6}$ ·NH₂ (II) (mainly) (Ac derivative, new m.p. 259°) and 4:2-NO₂· $C_{10}H_{6}$ ·NH₂ (III) (Ac derivative, new m.p. 241). Mixtures of (II) and (III) are separable by preferential acetylation [of (III)] with Ac₂O in AcOH-NaOAc. (II) or (III) with boiling 90% HCO₂H gives 3-nitroform-1-, m.p. 216°, or 4-nitroform-2-naphthalide, m.p. 205°, respectively. (I) and $H_{3}S-C_{5}H_{6}N$ give 75% of mixed (II) + (III). 3:1-NO₂· $C_{10}H_{6}$ ·N₂Cl is stable; its $ZnCl_{2}$ double salt and boiling EtOH give 2- $C_{10}H_{7}$ ·NO₂ whilst the Sandmeyer reaction affords 1:3- $C_{10}H_{6}$ Cl·NO₂, new m.p. 129-5°, and 2-nitro-4-cyanonaphthalene, m.p. 163°.

Relation between chemical structure and bacteriostatic activity of sulphanilamide-type compounds.—See A., 1944, III, 294.

Acetylsulphanilylguanidine. A. Divinski and S. Vorobieva (Compt. rend. Acad. Sci. U.R.S.S., 1942, 36, 203—205).—Acetylsulphanilylguanidine (I), m.p. 263—264°, is obtained in 50% yield by the gradual addition of p-NHAc·C₆H₄·SO₂Cl to a mixture of 50% NaOH, NH:C(NH₂)»,HNO₃, and C₅H₅N bases at 10—15°. It is quantitatively deacetylated at 100° by 10% HCl to sulphanilylguanidine. In Marshall's method (A., 1941, III, 786) (I) is accompanied by a small proportion of a compound, m.p. 290°. Contrary to Marshall the solubility of (I) in H₂O is 2·5% (see also A., 1944, III, 358).

III, 358).

H. W.

Synthesis of di-β-naphthylthiocarbazone and its analogues. D. M.

Hubbard and E. W. Scott (J. Amer. Chem. Soc., 1943, 65, 2390—2393).—β-C₁₀H₇·N₂Cl-HCl-NaOAc-H₂O and MeNO₂-NaOH-H₂O-EtOH at 0° give (β-C₁₀H₇·N₂)₂CH·NO₂, m.p. 198—200°, converted by NH₃-H₂S-EtOH at 0° into unstable β-C₁₀H₇·NH·N:C(SH)·NH·NH·C₁₀H₇·β, m.p. 135—137° (decomp.), which with 5% KOH-EtOH gives β-C₁₀H₇·NH·N:C(SH)·NiN·C₁₀H₇·β (purfied by treatment in warm CHCl₃ with NH₂OH), β-C₁₀H₇·NH·NH·CS·NH₂, and C₁₀H₇·NH₂. Similarly are prepared (ArN₂)₂CH·NO₂ in which Ar = Ph, m.p. 150—152°, σ-, m.p. 153—154°, and φ-tolyl, m.p. 160—162°, φ-C₆H₄Ph, m.p. 168—170°, α-C₁₀H₇, m.p. 160—162°, φ-NH₂·SO₂·C₆H₄, m.p. 208—210°, φ-C₆H₄Br, m.p. 156—158°, and φ-NO₂·C₆H₄·, m.p. 138—140°, NHAr·N:C(SH)·NH·NHAr in which Ar = Ph, m.p. 156—168° (decomp.), σ-, m.p. 140—142° (decomp.), and φ-tolyl, m.p. 145—147° (decomp.), ρ-C₆H₄Ph, m.p. 215—217° (decomp.), and φ-C₆H₄Br. Transmittancy curves of five (A) and four derived Hg complexes in CHCl₃ are recorded.

R. S. C.

Kinetics of formaldehyde-phenol condensation.—See A., 1944, I, 106.

Effect of changes in the acyl group on the Fries reaction with esters of 2:6-dichlorophenol and 2:6-dimethylphenol. D. S. Tarbell and P. E. Fanta (J. Amer. Chem. Soc., 1943, 65, 2169—2174).—Fries rearrangement of 2:6:1-C₆H₃R₂·OAcyl (R = Cl or

Me) is hindered if $C_{(a)}$ of the acyl is substituted by Me, Cl, or Ph. The rearrangement is held to be probably a bimol. acylation. Esters described below were prepared from $2:6:1-C_6H_4\text{Cl}_2\text{-OH}$ (I) and RCOCI in C5H5N except for the chloroacetates which are obtained from the K phenoxide (II) and acyl chloride. (II) and CH₂Cl·COCl in boiling Et₂O give 2: 6: 1- $C_8H_3Cl_2$ chloroacetate (III) (61%), b.p. 115—116°/2 mm., and 2: 6-dichlorophenoxyacetate (IV) (5%), m.p. 153—153·5°. Hydrolysis of (IV) gives 2: 6-dichlorophenoxyacetic acid, m.p. 134·5—135°, also obtained from (I) and CH₂Cl·CO₂H. Conditions described below are the optimum for prep. of the OH-ketone, 1·1 mol. of AlCl₃ and no solvent being used in each case, 2:6:1-C₆H₃Cl₂ propionate, b.p. 113—115°/0·5 mm., at 135—145° (2 hr.) gives 3:5-dichloro-4-hydroxypropiophenone (87%), m.p. 110—111°, and 7% of (I); with BF₃ it gives a solid complex, unstable at 100°, but decomp. thereof at 200° gives no ketone. 2:6:1-C₆H₃Cl₂ isobutyrate, b.p. 130—130·5°/3 mm., at 130—135° (4·5 hr.) gives 3:5-dichloro-4-hydroxyisobutyraphenone (42%), m.p. 112—113°, with 46% (? 32%) of phenol [little (I)]. 2:6:1-C₆H₃Cl₂ acdimethylpropionate (V), b.p. 130—132°/3 mm., at 120° (0·25 hr.) gives 71% of (I) and no ketone, and at 155° (1 hr.) gives only tars. 2:6:1-C₆H₃Cl₂ ββ-dimethyl-n-butyrate, b.p. 114—116°/1 mm., at 135—145° (2 hr.) gives 3:5-dichloro-4-hydroxy-ββ-dimethyl-n-butyrophenone (28%), m.p. 94—95·5°, and 5% of (I). At 112—114° (2·5 hr.) (III) gives 3:5:a-trichloro-4-hydroxyacetophenone (77%), m.p. 120—121° [2:4-dinitrophenylhydrazone, m.p. 221—223° (decomp.); with NaOI gives 4:3:5:1-OH-C₆H₂Cl₂·CO₂H₁, and 2% of (I). 2:6:1-C₆H₃Cl₂ dichloroacetate, b.p. 113—114°/0·5 mm., at 134° (2 hr.) gives 3:5: aa-tetrachloro-4-hydroxyacetophenone (9%), m.p. 92·5—94·5° [with p-NO₂·C₆H₄·NH·NH₂ gives 3:5-dichloro-4-hydroxyaphenyleylyaxal-p-nitrophenylosazone, m.p. 289·5—200° (hot prepalator) Conditions described below are the optimum for prep. of the OH-(9%), m.p. 92.5—94.5° [with p-NO₂·C₆H₄·NH·NH₂ gives 3:5-dichloro-4-hydroxyphenylglyoxal-p-nitrophenyllosazone, m.p. 289.5—290° (hot stage)], and 79% of unchanged ester. 2:6:1- $C_6H_3Cl_2$ trichloroacetate, b.p. 119—120°/1 mm., is largely unchanged at 110° (5 hr.) and at 137° gives tars. 2:6:1- $C_6H_3Cl_2$ phenylacetate, b.p. 167—172°/2 mm., at 112° (4 hr.) gives 4:3:5:1- $OH \cdot C_6H_2Cl_2$ CH_nPh ketone (26%), m.p. 136·5—138° (p-nitrophenyl-hydrazone, m.p. 227·5—228·5°), and 28% of unchanged ester, but only tars could be obtained from 2:6:1- $C_6H_3Cl_2$ diphenylacetate, m.p. 132—133°. 2:6:1- $C_6H_3Cl_2$ benzoate, m.p. 74—74·5°, at 154° (2·5 hr.) gives 3:5-dichloro-4-hydroxybenzophenone (71%), m.p. 145—146°, with 10% each of (I) and unchanged ester; the mesitoate 164 (246) with 10% each of (I) and unchanged ester; the mesitoate, m.p. 84.5—86.5°, at 155° (1 hr.) gives 3:5-dichloro-4-hydroxy-2':4':6'-trimethylbenzophenone (79%), m.p. 201.5—203°. m-2-Xylyl isobutyrate, b.p. 126—128°/22 mm., at 125° (3.5 hr.) gives 94% Xylyl isobutyrate, b.p. 126—128°/22 mm., at 125° (3·5 hr.) gives 94% of 4-hydroxy-3:5-dimethylisobutyrophenone, m.p. 106·5—107°, but the aa-dimethylpropionate, b.p. 80—83°/0·5 mm., and trichloroacetate, m.p. 58·5—59·5°, are unchanged or yield tars. With AlCl₃ in PhNO₂ at room temp. (48 hr.) 2:6:1-C₈H₃Cl₂·O·COPr^a gives 20% of (I) (the amount varying with the quality of the AlCl₃) (cf. A., 1943, II, 283); similar treatment of (V) gives 40% of (I). Ph₂O, (V), and AlCl₃ in boiling CS, give 73% of (I) and a small amount of impure p-phenoxy-aa-dimethylpropiophenone, obtained pure [m.p. 52—52·5° (2:4-dinitrophenylhydrazone, m.p. 172—173)] by the direct Friedel-Crafts reaction. Mp. are corr.

Synthesis of 2·6 dimethyl appropriate annual to a 1·5 a

Synthesis of 3:6-dimethyl-1-isopropylacenaphthene and of 1:5-dimethyl-2-naphthol.—See A., 1944, II, 124.

Syntheses in the naphthalene series. III. 1-Hydroxy-2:3-benzfluorene and 4-hydroxy-2-methyl-5:6-benzcoumaran. A. Latı́ and G. Soliman (J.C.S., 1944, 56—58).—CH₂Ph·CO·CHNa·CO₂Et and CH₂PhCl yield Et γ-phenyl-a-benzylacetoacetate, b.p. 182—184°/7 mm., converted by cold H₂SO₄ into 1-hydroxy-2:3-benzfluorene, m.p. 164° (acetate, m.p. 171°; Me ether, m.p. 70°) [Zn dust distillation gives 2:3-benzfluorene (I)]. Similarly, Et γ-phenyl-a-allyl-acetoacetate, b.p. 160—162°/6 mm., gives 4-hydroxy-2-methyl-5:6-benzcoumaran, m.p. 130° (monoacetate, m.p. 93°), oxidised by CrO₃-AcOH to 2-methyl-5:6-benzcoumaran-4:7-quinone, m.p. 167°. CH₂Ph·CHAc·CO₂Et and cold H₂SO₄ give a low yield of 3-methyl-indene-2-carboxylic acid, m.p. 199—200°. o-C₆H₄(CHO)₂ and σ-hydrindone in MeOH-KOH give 2:3-benzfluorenone and thence (Zn dust) (I).

Synthetic estrogenic compounds related to stilbene and diphenylethane. II. E. C. Dodds, L. Golberg, E. I. Grünfeld, W. Lawson, C. M. Saffer, jun., and (Sir) R. Robinson (Proc. Roy. Soc., 1944, B. 132, 83—101; see also, A., 1944, III, 343].—αβ-Dianisylpropan-β-0l, m.p. 62—63° [from deoxyanisoin (I) and Et₂O-MgMeI], is dehydrated (KHSO₄ at 190°) to 4: 4'-dimethoxy-α-methylstilbene, m.p. 123—124. demethylated (EtOH-KOH at 190°; general procedure unless stated otherwise) to the 4: 4'-(OH)₂-derivative, m.p. 181—182 (diacetate, m.p. 124—125°; dibenzoate, m.p. 176—177°). MgBu^αCl and (I) give (p-OMe·C₆H₄·CH:)₂ and the Me₂ ether, b.p. 190—195°/0·4 mm., of 4: 4'-dinydroxy-α-n-butylstilbene, m.p. 114. Similarly prepared are 4: 4'-dinethoxy-α-isobutyl-, b.p. 164—168 / 0·05 mm., -α-n-propyl-, b.p. 183—185°/0·07 mm., -α-isopropyl-, b.p. 172—176°/0·4 mm., -α-n-amyl-, b.p. 195—198°/0·1 mm., and α-cyclohexyl-, b.p. 190°/0·05 mm., and 4: 4'-dihydroxy-α-isobutyl-, m.p. 128°, -α-n-propyl-, m.p. 91°, -α-isopropyl-, m.p. 166°, -α-n-amyl-, m.p. 96°, and -α-cyclohexyl-stilbene, m.p. 136°. Reduction [H₂ (1 atm.), Pd-C, COMe₂, room temp.] of cis- (II) or trans-(p-OMe·C₆H₄·CEt')₂ (III) affords the same H₂-derivative (IV), m.p.

145—146°, but similar reduction at 45° of a mixture of (II) and (III) (ives (IV) and a little of an isomeric H₂-derivative (V), b.p. 161—163°/0·09 mm., m.p. 56—57°. Similar reduction of ψ-diethylstilbœstrol (impure; m.p. 140—142°) affords meso-(p-OH·C₄H₄·CHEt)₂ (hexœstrol) (VI), m.p. 184—185°; a little diethylstilbœstrol (VII) (? originally present) is also isolable. (VII) is hydrogenated to dl-(p-OH·C₆H₄·CHEt)₂, m.p. 128° [Me₂ ether (prep. by Me₂SO₄), m.p. 56—57°, = (V)]. γδ-Dianisylhexane, m.p. 145—146°, is demethylated [AcOH-HI (d 1·7) at 150°) to (VI). Reduction of (p-OMe·C₆H₄·CMe·)₂ gives βy-dianisyl-n-butane, m.p. 87—88°, demethylated (AcOH-HI at 160—170°) to the (OH)₂-derivative, m.p. 138—139°. Methyldeoxyanisoin (VIII), Mg, and CH₂·CH·CH₂·Br in Et₂O afford 4: 4'-dimethoxy-a-methyl-β-allyl- (or -propenyl-)stilbene, m.p. 162°. The product from (VIII) and MgPr^aBr is dehydrated (KHSO₄ at 180—190°) to 4: 4'-dimethoxy-a-methyl-β-n-propylstilbene, b.p. 178—180°/0·09 mm., denothylated deviated (All) derivatives h.p. 180°/0·09 mm., (VIII) and MgPr°Br is dehydrated (KHSO₄ at $180-190^\circ$) to $4:4^\circ$ -dimethoxy-a-methyl- β -n-propyletilbene, b.p. $178-180^\circ$ (0·09 mm, demethylated to mixed (OH)₂-derivatives, b.p. $201-202^\circ$ (0·23 mm, ldbenzoates, m.p. $140-141^\circ$ and $202-204^\circ$ (IX)]; hydrolysis (aq. MeOH-KOH) of (IX) gives the trans- $(OH)_2$ -compound, m.p. 158° . Catalytic reduction of (p-OMe·C₅H₄·CPr²·)₂ affords $\delta\varepsilon$ -dianisyloctane-a, m.p. $121-122^\circ$, and -b, b.p. $175-177^\circ$ (0·06 mm., demethylated (AcOH-HI) to $\delta\varepsilon$ -di-p-hydroxyphenyloctane-a, m.p. 165° (poor yield), and -b, b.p. $185-187^\circ$ (0·1 mm., respectively. n-C₁₆H₃₂Br added to (I) in EtOH-NaOEt gives cetyldeoxyanisoin (X), b.p. $262-265^\circ$ (0·1 mm., m.p. $46-48^\circ$, reduced (Clemmensen) to the Me_2 ether, b.p. $245-248^\circ$ (0·1 mm., of $a\beta$ -di-p-hydroxyphenyloctadecane, m.p. $86-87^\circ$ (di-2-naphthoate, m.p. $135-136^\circ$). Reduction (Na, EtOH) of (X) and subsequent dehydration affords Reduction (Na, EtOH) of (X) and subsequent dehydration affords the Me₂ ether, b.p. 244—246°/0·1 mm., of 4:4'-dihydroxy-a-cetyl-stilbene, b.p. 268—275°/0·15 mm. (di-2-naphthoate, m.p. 95—96°; silibenzoate, m.p. 62—63°). Dehydration of the products from (X) and MgRBr gives the Me₂ ethers, b.p. 260—264°/0·15 mm. and 238—242°/0·1 mm., of 4:4′-dihydroxy-a-ethyl-, m.p. 90—91°, and α-n-anyl-β-cetylstilbene, m.p. 98° (bis-3:5-dinitrobenzoate, m.p. 140—141°), respectively. Benzyldeoxyanisoin, m.p. 122°, and CH₂Ph·MgCl yield aδ-diphenyl-βy-dianisylbutan-β-ol, m.p. 113—114°, dehydrated (KHSO₄ or Ac₂O-AcCl) and then demethylated to 4:4′-dihydroxy-aβ-dibenzylstilbene, forms, m.p. 181—182° and 160—161°. aaβ-Triphenylbutyl alcohol, m.p. 93—94° (from CHPhEt·COPh and MgPhBr), is dehydrated (KHSO₄) to aaβ-triphenyl-Δα-butene, m.p. 80—81°, reduced (Na, EtOH) to aaβ-triphenylbutane, m.p. 77—78°. aβ-Diphenyl-α-anisylethyl alcohol, m.p. 112—113° (from β-OMe·C₈H₄·CO·CH₂Ph and MgPhBr), gives the Me ether, b.p. 175—178°/0·2 mm., of α-p-hydroxyphenylstilbene, m.p. 117—118° Dehydration (KHSO₄) of the product from p-methoxy-α-ethyldeoxybenzoin and MgPhBr affords α-anisyl-β-methylstilbene, forms, m.p. 117—118° and 88—89°, both demethylated to α-p-hydroxy-phenyl-β-methylstilbene, m.p. 104—105°. α-Phenyl-αβ-dianisylbutan-α-ol, m.p. 107—108° (prep. by MgPhBr), gives the Me₂ ether, m.p. 80—81°, of 4:4′-dihydroxy-α-phenyl-β-ethylstilbene, m.p. 177—178°. 2:2′-Dimethoxy-α-ethyldeoxybenzoin, b.p. 167—171°/0·4 mm., m.p. 56° (from the deoxybenzoin and EtI in EtOH-NaOEt), and MgEtBr afford y∂-di-o-anisylhexan-y-ol, m.p. 103—104°, whence 2:2′-dimethoxy-a-ethyldeoxybenzoin and 2:2′-dimethoxy-b-p. 140—140°/0.25° mp. m.p. 113—114° and 2:2′-dimethoxy-b-p. 140—140°/0.25° mp. m.p. 113—114° and 2:2′-dimethoxy-b-p. 140—140°/0.25° mp. m.p. 113—114° and 2:2′-dimethoxy-b-p. 140—140°/0.25° mp. m.p. 113—140° and 2:2′-dimethoxy-b-p. 140—140°/0.25° mp. m.p. 113—140° and 2:2′-dimethoxy-b-p. 140—140°/0.25° mp. m.p. 113—140° and 2:2′-dimethoxy-b-p. 1400—140°/0.25° mp. m.p. 113—140° and 2:2′-dimethoxy-b-p. 1400—140° mp. 1400—1 dibenzoate, m.p. 62-63°). Dehydration of the products from (X) 56° (from the deoxybenzoin and EtI in EtOH-NaOEt), and MgEtBr afford γδ-di-o-anisylhexan-γ-ol, m.p. 103—104°, whence 2:2'-di-methoxy-, b.p. 140—142°/0·35 mm., m.p. 113—114°, and 2:2'-di-hydroxy-aβ-diethylatilbene, m.p. 152—153°. m-OH·C₆H₄·COEt is reduced (Al-Hg in moist Et₂O) to 3:3'-dihydroxy-γδ-diphenyl-kexane-γδ-diol, m.p. 145—146° [purified through the diacetate, m.p. 158—159° (prep. by boiling Ac₂O-C·H₅N)], dehydrated (Ac₂O-AcCl) to 3:3'-dihydroxy-γδ-diphenyl-Δβδ-hexadiene, m.p. 166—167° [as diacetate, m.p. 85°). 2:2'-Dihydroxy-γδ-diphenylhexane-γδ-diol, forms, m.p. 270—271° and 162—163° (obtained similarly from o-OH·C₆H₄·COEt), is methylated (Me₂SO₄) to the 2:2'-Me₂ ether, forms, m.p. 168—169° and 132—133°, respectively, also obtained by reduction of σ-OMe·C₆H₄·COEt, and dehydrated to the Me₂ by reduction of o-OMe·C₆H₄·COEt, and dehydrated to the Me₂ ether, m.p. 112—113°, of 2:2'-dihydroxy-γδ-diphenyl-Δβδ-hexadiene, m.p. 136—137°. Ethyldeoxyanisoin and PCl₆ at 100° (bath) give a-chloro-4:4'-dimethoxy-β-ethylstilbene, b.p. 179—184°/0·1 mm., which could not be demethylated (AlBr₃; EtOH-KOH; AcOH-KOH) HCl). 4:4'-Dibenzoyloxy-a-ethyldeoxybenzoin and PCl₃ afford a compound, C₃₀H₂₂O₄Cl₂, m.p. 166°, probably OBz-C₅H₃Cl-CEt:CCl-C₆H₄·OBz, converted by hot quinoline into a substance, m.p. 182°. Anisoin and PCl₅ lead to anisil; PCl₃ at 100° (bath) invessions a characteristic m. 86° (and much P-contains). (bath) gives some a-chlorodeoxyanisoin, m.p. 86° (and much P-containing oil) (converted by EtOH into anisoin Et ether, m.p. 105°), whilst PCl₃ followed by PCl₅ at 100° affords αβ-dichloro-4: 4'-dimethoxysilbene, m.p. 170°. Benzoin (XI), PhCl, and H₂SO₄ at 100°/24 hr. give tetraphenylfuran, m.p. 170°, benzil, and α-p-chlorophenyldeoxyoenzoin, m.p. 104°; the last with PCl₅ (heat) affords α-chloro-β-p-chlorophenylstilbene, b.p. 194°/0·1 mm. PhOMe and (XI) similarly yield some α-o-, m.p. 91°, and α-p-anisyldeoxybenzoin, m.p. 127°, whilst anisoin, PhOMe, and H₂SO₄ at 100° give α-p-anisyldeoxyanisoin, b.p. 240°/0·1 mm., converted by p-OMe·C₅H₄·MgBr into tetra-anisylethylene, m.p. 188°, which is demethylated to tetra-p-hydroxyphenylethylene, chars >330°, and a mixture of CO(C₆H₄·OH-p)₂ and CH₂(C₅H₄·OH-p)₂. (bath) gives some a-chlorodeoxyanisoin, m.p. 86° (and much P-contain- $CO(C_6H_4\cdot OH-p)_2$ and $CH_2(C_6H_4\cdot OH-p)_2$.

Synthesis of estrogenio indene derivatives. Configuration of stilbestrol. U. V. Solmssen (J. Amer. Chem. Soc., 1943, 65, 2370—

2375).—The Na salt (prep. by NaOEt-EtOH in Et₂O) of p-OMe·C₆H₄·CH₂·CO₂H with m-OMe·C₆H₄·CHO in AcOH at 175° (bath) gives m-methoxy-a-p-anisylcinnamic acid (I) (92·2%), m.p. 169°, with some 3 : 4'-dimethoxystilbene, m.p. 109—110°, and the anhydride, m.p. 120–121° (identified by hydrolysis by hot 5% aq. NaOH), of (I). H₂-Pd reduces (I) in AcOH to a-p-anisyl- β -m-anisylpropionic acid, m.p. 106°, which with P₂O₅ in C₆H₈ at room temp. gives 7- (? 5-) (II) (34·4%), m.p. 172°, and 5- (? 7-)methoxy-2-p-anisyl-1-indanone (III) (34·4%), m.p. 96°. (II) does not react with MgEtI (hence suggested orientation), but (III) in C₆H₈-Et₂O gives readily a Mg derivative and thence a carbinol, dehydrated by boiling 5% H₂SO₄ to 6-methoxy-2-p-anisyl-3-ethylindene (IV) (71·4%), m.p. 87—88° (purified by chromatography). With HBr-AcOH, (IV) gives 6-hydroxy-2-p-hydroxyphenyl-3-ethylindene (V), unstable in air, m.p. 136° [diacetate (VI), m.p. 118—120°; dipropionate (VII), m.p. 88—89°). H₂-Pd-MeOH and then HBr-AcOH converts (IV) into 5-hydroxy-2-p-hydroxyphenyl-1-ethylindane (VIII), m.p. 162—163°. Absorption curves (max. at 295 and 297 mµ., respectively) are very similar for (VI) and trans-stilbene, but those of stilbœstrol (IX) and its diacetate are quite different, which renders doubtful the supposed trans-configuration of (IX). Œstrogenic doses (subcutaneous) relative to (IX) are: (VI) 11·6, (VII) 375, (V) 15, (VIII) 23·3, œstrone 1·2; oral doses of (IX) and (VI) are 1:60·5.

R. S. C.

Aromatic cyclodehydration. XV. 9:10-Di-p-hydroxyphenylphenanthrene. C. K. Bradsher and L. J. Wissow (J. Amer. Chem.
Soc., 1943, 65, 2304—2305; cf. A., 1944, II, 42).—Benzoin and
o-C₆H₄Ph·MgI (I) (>2 mols.) in C₆H₆ give, after boiling, mixed
glycols, cyclised by boiling 48% aq. HBr-AcOH (1:1) (2 days) to
9:10-diphenylphenanthrene (29%). Anisoin and (I) give mixed
glycols, converted by hot 48% aq. HBr-AcOH (3:2) into (? impure) 9:10-di-p-hydroxyphenylphenanthrene (III) (28%), shrinks
at 286—288°, m.p. 296—298° (diacetate, m.p. 234°; dipropionate,
m.p. 185—186°), but with 34% aq. HBr-AcOH gives 9:10-di-panisylphenanthrene (III) (2%), m.p. 256°. (III) (m.p. 256—258°)
is obtained by Me₂SO₄-10% NaOH from (II) and is reconverted
thereinto by HI-AcOH or 42% aq. HBr-AcOH. R. S. C.

Organic derivatives of silicon. LI. Bisdihydroxytetraphenylethane orthosilicate. F. S. Kipping and J. T. Abrams (J.C.S., 1944, 81—84).—SiCl₄, Mg, Et₂O, and COPh₂ give some bisdihydroxytetraphenylethane orthosilicate and mainly (CPh₂·O·SiCl₃)₂, which with H₂O gives variable mixtures of a- and β-benzpinacolins, dihydroxytetraphenylethane, and SiO₂, together in some cases with a little C₂Ph₄. It is inferred that the linkage of Si atoms, under the conditions stated, is brought about by Mg monohalide. F. R. S.

Syntheses in the naphthalene series. I. 1:3-Dihydroxynaphthalenes. G. Soliman and R. W. West. (J.C.S., 1944, 53—55).—The Na derivative of CH₂Ph·CO·CH₂·CO₂Et (I) and MeI in EtOH afford Et y-phenyl-a-methylacetoacetate, b.p. 176—178°/18 mm., further methylated to the aa-Me₂ compound, b.p. 180°/22 mm. Similarly prepared are the a-ethyl, b.p. 160°/6 mm., -propyl, b.p. 164°/6 mm., -isopropyl, b.p. 158°/6 mm., -butyl, b.p. 172—174°/7 mm., -isobutyl, b.p. 172—174°/7 mm., and -isoamyl analogue, b.p. 152°/2 mm. Conc. H₂SO₄ first at 0° and then at room temp. converts (I) into 1:3-C₁₀H₆(OH)₂, m.p. 118—120°, and traces of CH₂Ph·COMe and CH₂Ph·CO₂H. Similarly prepared are 1:3-dihydroxy-2-methyl-m.p. 139—140° (diacetate, m.p. 118°), -2-ethyl-, m.p. 126—128° (diacetate, m.p. 82°), -2-propyl-, m.p. 103° (diacetate, m.p. 75°), -2-isopropyl- (impure) (diacetate, m.p. 75°), -2-butyl-, m.p. 108—110° (diacetate, m.p. 65°), -2-aeobutyl- (impure) (diacetate, m.p. 135°), and -2-isoamyl-naphthalene, m.p. 92—93° (diacetate, m.p. 198—110° (dibenzoate, m.p. 108—109). 2:1:3-C₁₀H₅Ph(OH)₂ or 1:3:2-(OH)₂C₁₀H₅·CO₂Et is obtained from cold H₂SO₄ and CH₂Ph·CO·CHPh·CO₂Et or CH₂Ph·CO·CH(CO₂Et)₂, respectively, p-NO₂·C₆H₄·CH₂·COCl and CHAcNa·CO₂Et in boiling C₆H₆ give after hydrolysis with aq. NH₃ Et y-p-nitrophenylacetoacetate, m.p. 12° (decomp.) [hot H₂O gives (II)].

Labile union of oxygen with carbon. Relations between resonance

Labile union of oxygen with carbon. Relations between resonance in the anthracene system and the labile state of oxygen in photo-oxides. C. Dufraisse, R. Demuynck, and A. Allais (Compt. rend., 1942, 215, 487—489).—Consideration of resonance in the anthracene system indicates that the photo-oxide (I) of 2: 3-dimethoxy-5: 10-diphenylanthracene should dissociate only slightly less readily than that (II) of the corresponding 1: 4-compound; this is verified experimentally, (I) dissociating at a slightly higher temp. (120°) than (II). The photo-oxide of 5: 10-diphenylanthracene dissociates at 180°; those of the 1- and 2-OMe-derivatives dissociate at 150° and 160°, respectively, and the photo-oxide of the 1: 8-(OMe)₂-compound dissociates at 215°. These facts support the authors' views on the participation in the resonance effects of electrons from OMe groups.

A. J. E. W.

Keten acetals. XIII. Cyclic trimerisation of keten diethyl acetal by hydrogen fluoride: 1:1:3:3:5:5-hexaethoxycyclohexane. S. M. McElvain and J. W. Langston (J. Amer. Chem. Soc., 1943, 65, 2239—2241; cf. A., 1944, II, 144).—Adding HF (0.25 g.) in Et₂O

(25 ml.) to CH₂:C(OEt)₂ (I) (25 g.) in Et₂O (2·5 l.) and keeping for 7—14 days gives 1:1:3:3:5:5-hexaethoxycyclohexane (II), m.p. 72-74°, and the dimeride (A., 1940, II, 202) of (I) (cf. A., 1942, II, (II) gradually loses EtOH when kept; the change is very greatly accelerated by acid and, in order to obtain (II), all glass-ware must be washed with NaOH. Distilling (II) with a trace of conc. H₂SO₄ gives EtOH (100% of 3 mols.) and s-C₆H₃(OEt)₃ (83%). Adding solid CO₂ to (II) in aq. EtOH gives 83% of s-C₆H₃(OEt)₅. CHMe.C(OEt)₂ and HF give EtCO₂Et and EtF.

R. S. C.

Rearrangement of 2-allyloxychrysene. C. K. Bradsher and S. T. Amore (J. Amer. Chem. Soc., 1943, 65, 2466).—2-Chrysenol (prep. improved to give a 86% yield; cf. Newman et al., A., 1941, II, 38), CH₂*CH·CH₂Br, and K₂CO₃ in COMe₂ give 2-allyloxychrysene (63%), m.p. 110—111°, which with Ac₂O-NPhMe₂ at 160—180° gives 2-acctors, all all like the second (97%), m.p. 102° 2-acetoxy-1-allylchrysene (87%), m.p. 103°.

Unexpected rearrangement in the application of the Skraup reaction to 3-nitro-4-aminoveratrole. K. C. Frisch, M. Silverman, and M. T. Bogert (J. Amer. Chem. Soc., 1943, 65, 2432—2434).—3:1:2:4-NO₂·C₆H₂(OMe)₂·NH₂ (I) (prep. modified; cf. Pisovschi, A., 1910, i, 643; Ac derivative, m.p. 150·5°) gives no quinoline by the Skraup reaction using As_2O_5 or PhNO₂ and dil. or conc. H_2SO_4 ; use of glycerol— As_2O_5 in 85% H_3PO_4 gives 30% of 5:1:2:4-NO₂·C₆H₂(OMe)₂·NH₂ (II). The As_2O_5 and glycerol may be omitted, as (I) in hot 85% H_3PO_4 + AcOH at 140—160° (not in boiling tetrahydronaphthalene) gives up to 30% of (II). Prep. of obling tetrahydronaphthalene) gives up to 30% of (II). Prep. of (II) from 1:2:4-(OMe)₂C₅H₃·NHAc, of 1:2:4:5-(OMe)₂C₅H₂(NH₂)₂, m.p. 131° (picrate, m.p. 192°; Ac₂ derivative, m.p. 204—205°), 2:3-diphenyl-5:6-, m.p. 139—140°, and -6:7-dimethoxyquinoxaline, m.p. 251—252°, is described. Temp. are Temp. are R. S. C.

Unsymmetrical diacyl derivatives of 4:4'-diaminodiphenyl sulphone. H. A. Shonle and A. M. Van Arendonk (J. Amer. Chem. Soc., 1943, 65, 2375—2377).—In parentheses below, activities against phone. H. A. Shonle and A. M. Van Afendonk (J. Amer. Chem. Soc., 1943, 65, 2375—2377).—In parentheses below, activities against Streptococcus > that of sulphanilamide and against Pneumococcus type I > that of sulphapyridine are indicated * and †, respectively. (RCO)₂O (I) and SO₂(C₆H₄·NH₂-p)₂ (*†) (1 mol.) in boiling dioxan give p-NH₂·C₆H₄·SO₂·C₆H₄·NH·COR-p (R = Me, m.p. 232—233°, Et, m.p. 201—202°, and Pr^a, m.p. 192—193°) [and some SO₂(C₆H₄·NH·COR-p)₂], converted by R'COCl in C₆H₅N at 80° into p-COR·NH·C₆H₄·SO₂·C₆H₄·NH·COR'-p, the following being thus prepared: 4-acetamido-4'-propion-, m.p. 227—228° (*), -n-butyr-, m.p. 223·4° (*), -n-hexo-, m.p. 197—198°, -n-deco-, m.p. 164—165°, -n-hexadeco-, m.p. 158—160°, -n-octadeco-, m.p. 157—162°, -croton-, m.p. 231—232° (*), -H malein- (? fumar-), m.p. 130—231°, -cinnam-, m.p. 180—181°, -chloroacet-, m.p. 214—215° (*), -trichloroacet-, m.p. 268—270° (*), -pyridine-2-carboxyl-, m.p. 282—283°, -benz-, m.p. 268—270° (*), -pyridine-2-carboxyl-, m.p. 282—283°, -benz-, m.p. 241°, -amidodiphenyl sulphone; 4-propionamido-4'-butyr-, m.p. 201—202° (*†), -H malein- (? fumar-), m.p. 223—224° (*), and -chloroacet-, m.p. 201—202° (*), -amidodiphenyl sulphone; 4-n-butyr-amido-4'-chloroacetamidodiphenyl sulphone, m.p. 178—179° (*). R. S. C. 2 : 5-Dihydroxybenzyl [gentisyl] alcohol, m.p. 100° (dimethyl ether,

2:5-Dihydroxybenzyl [gentisyl] alcohol, m.p. 100° (dimethyl ether, b.p. 140°/3·3 mm.).—See A., 1944, III, 290.

Amino-alcohols. XII. Optical isomerides in the ephedrine series of compounds. C. Jarowski and W. H. Hartung (J. Org. Chem., 1943, 8, 564—571).—The mixture of bases obtained by reduction 1943, $\overline{8}$, $\overline{564}$ —571). The mixture of bases obtained by reduction of OH·CHPh·CHMe·NO₈ is separated into dl- and dl- ψ -propadrine by crystallisation of the hydrochlorides from abs. EtOH. The bases are separated into their optical isomerides by use of the optically active mandelic acids in EtOH or, sometimes, sec.-BuOH. Thus are obtained: (—)-ephedrine (—)-mandelate, m.p. 170°, $[a]_D^{5.5} - 70 \cdot 6^{\circ}$ ([a] of all salts are in H₂O), and (+)-mandelate, m.p. $78-91^{\circ}$, $[a]_D^{25.6} + 21 \cdot 3^{\circ}$; (—)-propadrine, m.p. $171 \cdot 5 - 172^{\circ}$, $[a]_D^{25.6} - 70 \cdot 6^{\circ}$, and (+)-propadrine, m.p. $164 \cdot 5 - 165^{\circ}$, $[a]_D^{25.6} + 21 \cdot 3^{\circ}$; (—)-mandelate, m.p. $171 \cdot 5 - 172^{\circ}$, $[a]_D^{-1} + 70 \cdot 7^{\circ}$; dl-propadrine, m.p. $164 \cdot 5 - 165^{\circ}$, $[a]_D^{25.4} - 41 \cdot 3$, (—)-mandelate, m.p. $161 - 162^{\circ}$; (+)- ψ -propadrine, m.p. 170° , $[a]_D^{25.4} - 45 \cdot 3^{\circ}$, and (—)- ψ -propadrine dl-mandelate, m.p. $162 \cdot 5 - 163^{\circ}$; (+)-benzedrine, m.p. $162 \cdot 163^{\circ}$, $[a]_D^{15.4} - 41 \cdot 3$, (—)-mandelate; $dl \cdot \psi$ -propadrine dl-mandelate, m.p. $162 \cdot 5 - 163^{\circ}$; (+)-benzedrine, m.p. 163° , $[a]_D^{15.6} - 50^{\circ}$, $[a]_D^{15.6} - 50^{\circ}$, and (—)-benzedrine (+)-mandelate, m.p. 163° , $[a]_D^{25.6} + 49 \cdot 8^{\circ}$; dl-benzedrine dl-mandelate, m.p. $156 \cdot 5^{\circ}$; (—)- β -phenylpropylamine (—)-mandelate, m.p. $127 - 127 \cdot 5^{\circ}$, $[a]_D^{10.8} + 49 \cdot 8^{\circ}$; dl-benzedrine dl-mandelate, m.p. $127 - 127 \cdot 5^{\circ}$, $[a]_D^{10.8} + 58 \cdot 7^{\circ}$, and (—)-mandelate, m.p. $118 \cdot 5 - 119^{\circ}$, $[a]_D^{15.8} - 47 \cdot 5^{\circ}$; dl-phenylpropylamine dl-mandelate, m.p. $129 \cdot 5 - 120 \cdot 5^{\circ}$; dl-phenylethanolamine dl-mandelate, m.p. $144 - 145^{\circ}$, $[a]_D^{15.8} - 47 \cdot 5^{\circ}$; dl-phenylethanolamine (—)-mandelate, m.p. $144 - 145^{\circ}$, $[a]_D^{15.8} - 58 \cdot 3^{\circ}$. The following consts. are recorded: (—)-ephedrine, m.p. $34 - 40^{\circ}$, $[a]_D^{15.8} - 3 \cdot 47^{\circ}$ in abs. EtOH (the same solvent for all this series); (—)-, m.p. 102° , $[a]_D^{15.9} - 38 \cdot 7^{\circ}$; (-)-propadr of OH·CHPh·CHMe·NO, is separated into dl- and dl-ψ-propadrine

(-)-phenylethanolamine, $[a]^{30}$ -20-90°. Solubilities of the diastereoisomeric mandelates in H2O and normal saline at 37° and 25° are recorded. Pharmacological data for many mandelates are recorded. From the data it appears that the optimum configuration for activity is found in those isomerides in which C attached to Ph, if asymmetric, is lavorotatory and in which the carbamine-C, if asymmetric, is dextrorotatory. In all cases except that of the ψ -propadrines the isomeride forming the less sol. mandelate is the more active physiologically. An isosteric analogy betwee CHPhMe·CH₂·NH₂ and OH·CHPh·CH₂·NH₂ is indicated. H. W. between

Inhibition of oxidation of adrenaline by malonic acid.—See A., 1944, III, 250.

Tautomerism of indene. C. F. Koelsch and R. A. Scheiderbauer (J. Amer. Chem. Soc., 1943, 65, 2311—2314).—A fixed position for the Δ^2 -ethylenic linking of indene derivatives is indicated by the prep. of isomeric 5- and 6-substituted derivatives. H₂-PtO₂ in EtOH reduces crude 6-nitro- to 6-amino-1-indanone (47—54%), m.p. 168—171°, which, when diazotised as sulphate and then added to hot 30% H₂SO₄, gives 6-hydroxy-1-indanone (50—70%), m.p. 151—153°. Adding this and then CH₂Br·CO₂Et to NaOEt-EtOH and warming gives Et 1-keto-6-indanyloxyacetate (I) (76%), m.p. 111—112°. With warm 10% KOH, (I) gives a (?) polymeric acid, m.p. 227—229°, but with 15% H₂SO₄ gives 1-keto-6-indanyloxyacetic acid (80%), m.p. 161·5—162·5°. (I) gives an unstable phenylhydrazone, m.p. 113—115°, reduced by H₂-Raney Ni in EtOH at 140° to NH₂Ph (44%) and 1-amino-6-indanyloxyacetic acid (39—40%), sinters ~225°, decomp. 269° [Et ester hydrochloride (+EtOH) (II), m.p. 171—172°]. Hydrogenation (Pd-black) of the oxime, m.p. 130·5—132°, of (I) in EtOH or HCl-EtOH gives impure products, but in Ac₂O yields Et 1-acetamido-6-indanyloxyacetate, m.p. 116—117°, also obtained from (II) by Ac₂O-NaOAc. Hydrogenation (Raney Ni) of (I) in EtOH, at 105°/1175 lb. gives an oil, which with 10% KOH yields 1-hydroxy-6-indanyloxyacetic acid, +H₂O prep. of isomeric 5- and 6-substituted derivatives. H2-PtO2 in 116—117°, also obtained from (II) by Ac₂O-NaOAc. Hydrogenation (Raney Ni) of (I) in EtOH, at 105°/1175 lb. gives an oil, which with 10% KOH yields 1-hydroxy-6-indanyloxyacetic acid, +H₂O (67%), m.p. 82—84°, effervesces and resolidifies at 105°, remelts 147—150°, but, when distilled over a little KHSO₄, is dehydrated to Et 5-indenyloxyacetate (III) (63—78%), m.p. 48—48·5°, b.p. 200—205°/30 mm. With dil. KOH, (III) gives a mixture and with 10% H₂SO₄ a resin, but with boiling 2% Na₂CO₃ it gives 5-indenyloxyacetic acid (IV) (85—89%), m.p. 118—119°, hydrogenated (Ptblack) in EtOH to 5-indanyloxyacetic acid, m.p. 154—155°. Boiling 5% KOH isomerises (IV) to 6-indenyloxyacetic acid (11%), m.p. 140·5—143°, and polymers. p-OMe·C₆H₄·CH·CH·CO₂Et (prep. from p-OMe·C₆H₄·CHO, EtOAc, NaOEt, and a little EtOH in 58—61% yield) resists H.-Cu chromite; the derived acid is reduced electrolytically to p-OMe·C₆H₄·[CH₂]₂·COCl and AlCl₃ in PhNO₂ give 3—17% (lit. 20%) of 6-methoxy-1-indanone and in C₆H₆ gives p-OMe·C₆H₄·[CH₂]₂·COCl and AlCl₃ in PhNO₂ give 3—17% (lit. 20%) of 6-methoxy-1-indanone and in C₆H₆ gives p-OMe·C₆H₄·[CH₂]₂·COPh (44—59%). 2-C₁₀H₇·[CH₃]₂·CO₂Et gives a CO·CO-Et derivative (44—63%), which in 80% H₂SO₄ at 85° and then boiling 10% NaOH gives 4: 5-benzindene -2-carboxylic acid (31—40%), m.p. 263—265° (decomp.), decarboxylated by Cu(OAc)₂ in quinoline at 220—240° to 4: 5-benzindene (45—85%), m.p. 48·5—50°, b.p. 173°/33 mm. (picrate, m.p. 125—127°). 7-Hydroxy-4-methyl-1-indanone (V) resists Na-EtOH or -C₅H₁₁·OH and H₂-Cu chromite, and its benzoate resists H₂-catalyst. With CH₂Br·CO₂Et and NaOEt in EtOH, (V) gives Et 1-keto-4-methyl-7-indanyloxyacetate (VI) (70—85%), m.p. 124·5—125·5°, hydrolysed by aq. KOH to the corresponding acid, m.p. 200—203°. H-Raney Ni at 140—175°/100 atm. reduces (VI) to an oil, which in 10% KOH gives 4-methyl-7-indanyloxyacetate acid (36—41%), m.p. Insect by aq. KOH to the corresponding acta, m.p. 200—203°. Harmaney Ni at 140—175°/100 atm. reduces (VI) to an oil, which in 10% KOH gives 4-methyl-7-indanyloxyacetic acid (36—41%), m.p. 191—192°, but at 100° gives a mixture, whence hydrolysis yields 1-hydroxy-4-methyl-7-indanyloxyacetic acid (46—56%), m.p. 122—123° (decomp.). The oxime, m.p. 186—187° (gas), of (VI) resists H₂-Pt-black in dioxan; the phenylhydraxone, m.p. 163—166°, with H₂-Raney Ni in EtOH at 100°/100 atm. gives the lactam (36%), m.p. 241—241.5° of lamino-4-methyl-7-indanyloxyacetic acid m.p. 241-241.5°, of 1-amino-4-methyl-7-indanyloxyacetic acid.

R. S. C. Restricted rotation in arylolefines. VIII. Synthesis and resolution of β-snbstituted β-arylacrylic acids. R. Adams and C. W. Theobald (J. Amer. Chem. Soc., 1943, 65, 2383—2387; cf. A., 1944, II, 98).—2:4:6:3:1-C₆HMe₃Br·COMe (I) (prep. improved to give a 74% yield) with HNO₃ (d 1·5) at 0° gives the 5-NO₂-derivative, m.p. 119—120°, and with PCl₅-POCl₃-PCl₃ at 65° (17 hr.) and then 90° (1 hr.) gives α-chloro-α-bromomesitylethylene (II) (63%; not obtainable pure under other conditions of prep.), b.p. 109—110°/0·3 mm., ω-chloroacetobromomesitylene (11·5%), m.p. 64—65°, and an impure phosphate (8·5%), m.p. 209—212°, of the enolic form of (I). With boiling NaOEt-EtOH (not NaNH₂ in xylene or alkali in aq. EtOH), (II) gives bromomesitylacetylene (III) (57%), b.p. 84°/0·2 mm. (Hg salt, m.p. 255°). Bromomesitylpropiolic acid (IV) (63%) (prep.; loc. cit.), m.p. 168—169°, also obtained, less well, from 2: 4:6:3:1-C₆HMe₃Br·CCl:CH·CO₂H (V) by hot 10% aq. NaOH, with AcOH-HCl gives 86% of (V) (cf. A., 1942, II, 93), the active form of which has a half-life period = 200 min. in boiling Bu°OH. HBr adds to (IV) in AcOH at 65—70°, giving β-bromo-β-bromomesitylacrylic acid (VI) (83%), m.p. 158·5—159·5°, which with quinine in EtOH yields the 1-, m.p. 155·165·5°, [a]_D²³ -37·2° in EtOH [quinine salt, m.p.

175° (decomp.), $[a]_2^{126} - 83 \cdot 2^\circ$ in EtOH; half-life period = 64 hr.], and d-acid, m.p. 155—156°, $[a]_2^{126} + 33 \cdot 6^\circ$ in EtOH [quinine salt, m.p. 164—164·5° (decomp.), $[a]_2^{126} - 48 \cdot 1^\circ$ in EtOH]. With MgEtBr and then ClCO₂Me in boiling Et₂O, (III) gives Me bromonesityl-propiolate (52%), m.p. 83·5—85° (and a substance, $C_{13}H_{13}Br$, m.p. 160—161°), which with NaOMe in boiling MeOH affords Me β -mathem β have constant β by β also β and β are β have constant β by β also β . 160—161°), which with NaOMe in boiling MeOH affords $Me\ \beta$ -methoxy- β -bromomesitylacrylate (VII) (60%), m.p. 78—79-5°, also obtained by CH₂N₂ from 2:4:6:3:1-C₆+MMe₃Br-CO·CH₂·CO₂H, m.p. 114—115° (decomp.) (lit., 98—99°). Boiling KOH—EtOH—H.O hydrolyses (VII) to β -methoxy- β -bromomesitylacrylic acid (VIII), m.p. 156—157° (decomp.), which could not be resolved and yields non-mutarotating quinine, [a] $\frac{37}{4}$ —87·3° in EtOH, and 1-brucine salts, [a] $\frac{30}{4}$ —37·5° in EtOH. The Cl and CO₂H of (VI) are trans, but the OMe and CO₂H of (VIII) are probably cis. 2:3:4:6:1-C₆HMe₄·CCl·CH·CO₂H is resolved by quinine in EtOAc to the d-, m.p. 184—185°, [a] $\frac{30}{6}$ +35·7° in EtOH [quinine salt, m.p. 163—165° (decomp.), [a] $\frac{32}{6}$ —59·6° in EtOH], and l-acid, m.p. 184—185°, [a] $\frac{32}{6}$ —35·7° in EtOH [quinine salt, m.p. 193—194° (decomp.), [a] $\frac{32}{6}$ —84·0° in EtOH; half-life period = 174 min.]. M.p. are corr. M.p. are corr.

Interaction of sodium triphenylmethyl with esters of acetylenic acids. E. G. Lindstrom and W. D. McPhee (J. Amer. Chem. Soc., 1943, 65, 2387—2389).—Adding CMe; C·CO₂Et, b.p. 162—164°, to NaCPh₂ (>1 mol. consumed) gives acases-hexaphenyl-8-methyl-Δ^v-newleys access (J. 1952). NaCPh₃ (>1 mol. consumed) gives acaces-hexaphenyl-δ-methyl-Δ'-n-penten-β-one (I) (53%), m.p. (from C₆H₆-light petroleum) 226—227° or (from AcOH) 226—230·5°, and the Et ester of β-triphenyl-methylerotonic acid (II) (24%), sinters 245°, m.p. 256—257° (decomp.). The reverse addition gives 23% of crude (I), 28% of (II), and 45% of CHPh₃. The structure of (II) is proved by oxidation (KMnO₄-KOH-H₂O; 100°) to CPh₃·COMe (or, in one experiment, CPh₃·OH). (II) resists H₂-Raney Ni or H₂-PtO₂ at 75°/60 lb. and is not obtained from CPh₃·COMe by CH₂Br·CO₂Et and Zn. Conc. HCl-MeOH converts (II) into its Me ester, m.p. 162·5—163·5°, which with NaCPh₃ (excess) in Et₂O gives (I) (proof of structure). CEt₂C·CO₂Et, b.p. 78—80°/16—18 mm., and NaCPh₃ give similarly caa-triphenyl-δ-triphenylmethyl-Δ'-n-hexen-β-one (III) (70%), m.p. 201—202°, and, after hydrolysis, γ-triphenylmethyl-Δ'-n-pentenoic 201—202°, and, after hydrolysis, γ -triphenylmethyl- Δ^{α} -n-pentenoic acid (16%), sinters 208°, m.p. 215—217° [Me ester, m.p. 170—171°, with NaCPh₃ gives (III)]. R. S. C.

Chloromethylation of tetrahydronaphthalene. Synthesis of β-5-tetrahydronaphthylpropionic acid. R. T. Arnold and R. Barnes (J. Amer. Chem. Soc., 1943, 65, 2393—2395).—Adding conc. H₂SO₄ to tetrahydronaphthalene, 40% CH₂O, and conc. HCl at 60—65° during 5—6 hr. gives a mixture (I), b.p. 110—114°/3 mm. of 5-and 6.CH Cl derivatives, which when freshly prepared is reduced and 6-CH₂Cl derivatives, which when freshly prepared is reduced by H₂-Pd-BaSO₄ in EtOH at 45 lb. to 5- - 6-methyl-1:2:3:4tetrahydronaphthalenes (A), but, after being kept for several days, methylene-1-indanone (81%), m.p. 63—64·5°, reduced by Zn-Hg-HCi-rl₂O-AcOH-PhMe to 4:5-tetramethyleneindane, m.p. 107·5—108·5° (lit., 109—110°). S at 225—250° dehydrogenates (II) to 1-C₁₀H₂·[CH₂]₂·CO₂H, m.p. 151—152°. 6-Propionyl-1:2:3:4-tetrahethyleneinthylenei 1- \mathbb{C}_{10} H₇·[\mathbb{C} H₂]₂· \mathbb{C} O₂H, m.p. 151—152°. 6-Propionyl-1:2:3:4-tetrahydronaphthalene with S and H₂S in aq. NH₃-dioxan at 165° and then hot aq. KOH gives (III), m.p. 81· \mathbb{E} —82· \mathbb{E} ° (cf. Newman et al., A., 1943, II, 300), the Me ester, b.p. 165—168°/12 mm., of which with S at 235—250°, and then KOH-MeOH-H₂O gives 2- \mathbb{C}_{10} H₇·[\mathbb{C} H₂]₂· \mathbb{C} O₂H, m.p. 134—135°. R. S. C.

Preparation of benz-p-aminoanilide. C. E. Spencer (J. Amer. Chem. Soc., 1943, 65, 2470—2471).—p-NO₃·C₅H₄·NHBz with H₂-Pt-black (from PtO₂) and a little FeSO₄ in EtOH at $56^{\circ}/50$ lb. gives 90% of p-NH₂·C₆H₄·NHBz, m.p. 129° (corr.). R. S. C.

Polyisopropylbenzenes. IV. Bromo-derivatives, nitriles, amides, ad carboxylic acids. A. Newton (J. Amer. Chem. Soc., 1943, 65, 1943, 65) and carboxylic acids. A. Newton (J. Amer. Chem. Soc., 1943, 65, 2441—2443).—By the method of Fuson et al. (A., 1941, II, 223) (no replacement occurs), $m\cdot C_6H_4Pr\beta_2$ gives the 4- (I) (77%) and 2-Br-, $p\cdot C_6H_4Pr\beta_2$ gives the 2-Br-, $1:2:4\cdot C_6H_4Pr\beta_3$ gives the 5-Br- (also obtained from $1:2:4:5\cdot C_6H_2Pr\beta_3\cdot SO_3H$), and s- $C_6H_3Pr\beta_3$ gives the 2-Br-derivative. With CuCN (I·1 mols.) in C_5H_3 N at 220°, these Br-compounds give $2:4\cdot di$ - [81·9%; also obtained in 36·5% yield from the amine, thus proving the structure of (I), $2:5\cdot di$ - (II) (75·9%), $2:4:5\cdot tri$ - (III) (requires 2·1 mols. of CuCN and 245° for its prep.; 84·9%), mp. 43·5—44·5°, and $2:4:6\cdot tri$ -isopropylbenzomitrile (82%). KOH-BuOH-H₂O (a little) at the b.p. then yields $2:4\cdot di$ -, m.p. $157\cdot 9-158\cdot 3^\circ$, $2:5\cdot di$ -, m.p. $143\cdot 7-144\cdot 4^\circ$, $2:4:5\cdot tri$ -, m.p. $189-189\cdot 6^\circ$, and $2:4:6\cdot tri$ -isopropylbenzomide (IV), m.p. $218\cdot 7-219\cdot 3^\circ$, and thence (10%) NaOH: 200°) the corresponding acids, m.p. $107\cdot 8-108\cdot 2^\circ$, $70\cdot 5-71\cdot 2^\circ$, $162\cdot 2-163\cdot 2^\circ$, —, respectively. (IV) resists hydrolysis. (II) is not and carboxylic acids.

hydrolysed by $\rm H_2SO_4$ at 100° or $\rm H_3PO_4$ at 160° and only very slowly by boiling EtOH-KOH. 70% HNO₃ (1·44 mols.) in $\rm H_2SO_4$ at 5—10° converts (II) or (III) into 5-nitro-2: 4-diisopropylbenzonitrile, m.p. $107\cdot3$ — 108° . Physical data are given for the oily products.

m.p. 107·3—108°. Physical data are given for the oily products.

R. S. C.

Basic-alkyl esters of p-aminoalkylbenzoic acids. I, II. F. F.

Blicke and W. M. Lilienfeld (J. Amer. Chem. Soc., 1943, 65, 2281—
2284, 2377—2378).—I. Esters, p·NH₂·[CH₂]_x·C₆H₄·CO₂·[CH₂]_y·NRR' (x — 1—3; y — 2—4), are prepared but, with one exception, are pharmacologically of no val. p-C₆H₄Me·CO₂·H [prep. from p-C₆H₄Me·CO₂·I [prep. from p-C₆H₄Me·COC1 (92%), b.p. 117—120°/24 mm., which with Cl₂ at 120—130° in light gives p-CH₂C·C₆H₄·COC1 (89%), b.p. 155—160°/35 mm., converted by boiling EtOH containing a few drops of C₆H₅N into p-CH₂Cl-C₆H₄·CO₂Et (90%), b.p. 140—150°/15 mm. With NaI in boiling COMe₂ this gives p-CH₂l·C₆H₄·CO₂Et, which with (CH₂)₆N₄ in boiling CHCl₃ yields a cryst. complex (II), converted by boiling conc. HCl-EtOH into p-NH₂·Ch₆L₄·CO₂H (III) (64%), darkens >270°, m.p. >360°, which is also obtained (50%) from (I) by, successively, Cl₂, (CH₂)₆N₄, and HCl-EtOH. p-Br·[CH₂]₂·C₆H₄·COMe and NaOBr give p-Br·[CH₂]₂·C₆H₄·CO₂H (80·5%) and thence the acid chloride, amide (97%), and (by SOCl₂) intrile (68%), m.p. 49—50°, b.p. 148—151°/5 mm.; further treatment as above then yields p-β-aminoethylbenzoic acid (IV) (52%). Ph·[CH₂]₃·Br, AcCl, and AlCl₃ in CS₂ at 0° give p-y-bromopropylacetophenone (85·5%), b.p. 160—164°/7 mm., and thence, as above, p-y-bromo- (78%), m.p. 118—120° (nitrile, b.p. 153—157°/4 mm.), and p-y-amino-n-propylbenzoic acid (V), decomp. >290°. Structures of (IV) and (V) are proved by oxidation to p-C₆H₄(CO₂H)₂. With boiling SOCl₂ and HCl-Et₂O, (III)—(V) give p-aminomethyl-, and p-y-aminopropyl-benzoyl chloride hydrochloride, which with OH·[CH₂]₃·NRR', HCl in boiling PhMe-(CH₂Cl), give boiling SOCl₂ and HCl-Et₂O, (III)—(V) give p-aminomethyl-, p-β-aminoethyl-, and p-γ-aminopropyl-benzoyl chloride hydrochloride, which with OH·[CH₂]₂·NRR',HCl in boiling PhMe-(CH₂Cl)₂ give (a) β-diethylamino-, m.p. 187—189°, and β-piperidino-ethyl, m.p. 233—235°, γ-piperidino-, m.p. 228—230°, and γ-morpholino-n-propyl, m.p. 218—220° (decomp.), p-aminomethylbenzoate dihydrochloride, (b) β-piperidinoethyl, m.p. 222—225°, γ-piperidino-, m.p. 188—190°, and γ-morpholino-n-propyl, m.p. 190—192°, and γ-biperidino-β8-dimethyl-n-propyl, m.p. 248—250° (decomp.) p.β-biperidino-β8-dimethyl-n-propyl, m.p. 248—250° (decomp.) p.β-188—190°, and γ-morpholino-n-propyl, m.p. 190—192°, and γ-piperidino-ββ-dimethyl-n-propyl, m.p. 248—250° (decomp.), p-β-aminoethylbenzoate dihydrochloride, and (c) γ-dibutylamino-, m.p. 200—202°, γ-piperidino-, m.p. 168—170°, and γ-morpholino-n-propyl, m.p. 193—195°, and γ-piperidino-ββ-dimethyl-n-propyl, m.p. 196—199°, p-γ-amino-n-propylbenzoate dihydrochloride. In boiling anhyd. HCl-EtOH, (II) gives ρ-NH₂·CH₂·C₈H₄·CO₂Et, b.p. 145—148°/8 mm. In boiling EtOH-C₆H₆, the above acid chlorides give Et p-aminomethyl-, m.p. 235—237°, ρ-β-aminoethyl- (VI), m.p. 178—180°, and p-γ-amino-n-propyl-benzoate hydrochloride, m.p. 174—176°. None of the esters has anæsthetic action and only (VI) has definite (week) preserved. definite (weak) pressor action.

II. Adding AlCl₃ to p-NHAc-[CH₂]₂-Ph and AcBr in (CHCl₂)₂ at

0° and then boiling gives p-β-acetamidoethylacetophenone (74%), m.p. 99—101°, b.p. 214—216 /3 mm., converted by NaOBr in aq. dioxan at 0° into β-p-acetamido- (78%), m.p. 173—175°, and thence by conc. HCl into p-β-amino-ethylbenzoic acid (62%). NHAc·CHMe·CH₂Ph, m.p. 88—91° (lit., 93°), b.p. 144—145°/2 mm., since in ideals $\frac{2}{3}$ converted by NaOBr in aq. $\frac{2}{3}$ converted by NaOB NHACCHMeCH₂Ph, m.p. 88—91° (lit., 93°), b.p. 144—145°/2 mm., gives similarly p- β -acetamido-n-propylacetophenone (77%), m.p. 97—99°, b.p. 206—208°/3 mm., p- β -acetamido-(84.5%), m.p. 208—210°, and p- β -amino-n-propylbenzoic acid (59%), decomp. from ~290° (chloride hydrochloride; Et ester hydrochloride, m.p. 140—142°; β -piperidinoethyl, m.p. 218—220°, γ -piperidino-, m.p. 255—257°, and γ -morpholino-n-propyl, m.p. 251—253°, and γ -piperidino- β -dimethyl-n-propyl, m.p. 223—226°, ester dihydrochloride). The esters have little or no anæsthetic or pressor action.

have little or no anæsthetic or pressor action.

have little or no anæsthetic or pressor action.

R. S. C.

Synthesis of alkyl and dialkylaminoalkyl esters of 4-fluoro-3aminobenzoic acid. L. S. Fosdick and A. F. Dodds (J. Amer. Chem.

Soc., 1943, 65, 2305—2306).—M.p. in parentheses below are those of
the hydrochlorides. 3:4:1-NO₂·C₂H₂F-COCl (prep. from the acid
by SOCl₂), m.p. 23·5—25°, and ROH give Me, m.p. 60—61°, Et,
m.p. 47—48° (lit., 45·3°), Pr^a, b.p. 147—157°/4 mm., Bu^a, b.p.
190—200°/35 mm., dimethyl- (m.p. 168—169°), diethyl- (m.p. 142—
143°), dipropyl- (m.p. 123—124°), and dibutyl-aminoethyl (m.p.
82°), diethyl- (m.p. 145—147°), dipropyl- (m.p. 140—141°),
and dibutyl-aminopropyl (m.p. 83—84°) 4-fluoro-3-nitrobenzoate,
reduced by H₂-PtO₂ to Me, m.p. 123—126°, Et, b.p. 140—145°/5
mm., Pr^a, m.p. 24—26°, Bu^a, m.p. 155—160° (decomp.), dimethyl(I) (m.p. 170—172°), diethyl- (m.p. 138—140°), dipropyl- (m.p.
119—120°), and dibutyl-aminoethyl, diethyl- (m.p. 138—142°),
dipropyl- (m.p. 145—148°), and dibutyl-aminopropyl (m.p. 136—
138°) 4-fluoro-3-aminobenzoate, respectively. The NH₂-esters,
except (I), are potent anæsthetics, are generally one third to one except (I), are potent anæsthetics, are generally one third to one half as toxic as procaine, but are unstable. R. S. C.

Vicinal substituted resorcinols. III. Extension of the reaction between m-dinitrobenzene, potassium cyanide, and methanol to other alcohols. Mechanism of the reaction. A. Russell and L. M. Addison (J. Amer. Chem. Soc., 1943, 65, 2379—2380; cf. A., 1942, II, 308).— n_1 - $C_6H_4(NO_2)_2$ and ROH-KCN give 2:6:1-OR- $C_6H_3(NO_2)$ -CN (A), which with R'OH-KCN gives 2:6:1-OR- $C_6H_3(OR)$ -CN (B). Thus are obtained (A) in which R = Me (11%), m.p. 172°, Et (9%), m.p. 136°, Pr^a (3·5%), m.p. 109°, Pr^B RÓH-KCN

(7.5%), m.p. 102°, Bu^a (5.5%), m.p. 101°, sec.-Bu (4.5%), m.p. 109°, n-amyl (4%), m.p. 103°, and n-hexyl (1.5%), m.p. 88°, and (B) in which R=R'=Me (85%), m.p. 118°, Et (50%), m.p. 122°, and Pr (6%), m.p. 45°, and R=Me, R'=Et, m.p. 66°. The reaction mechanism is discussed.

Permanent fading of alkaline phenolphthalein solutions. M. H. Hubacher (J. Amer. Chem. Soc., 1943, 65, 2097—2098).—Phenolphthalein in 0·2N·NaOH in air gives a little o·C₆H₄·(CO₂H). (I) and p·OH·C₆H₄·CO₂H₄·CO₂H-o (39—45%), m.p. 211·1—212·9° (corr.; decomp.) [lit. 210° (decomp.)], but with 30% H₂O₂ in N·NaOH gives quinol and (I). o·Cresolphthalein, which is more stable, in 0·1N·NaOH in air gives o·CO₂H·C₆H₄·CO·C₆H₂Me·OH-3:1:6, m.p. 224·1—225·0° (corr.), and a trace of (I), and with H₂O₂ gives 2:1:4·C₆H₃Me(OH)₂ and (I). 3:4·Dihydroxydiphenylphthalide is less stable and in 0·1N·NaOH in air gives PhOH (43%) and (I) (44%). R. S. C.

Pyrolysis of 2-allyloxy-1-allyl-3-naphthoic acid. V. P. Wystrach and D. S. Tarbell (J. Amer. Chem. Soc., 1943, 65, 2472).—Adding aq. NaOH to 2:3-OH·C₁₀H₄·CO₂Me, m.p. 74—74·5°, and CH₂·CH·CH₂Br in boiling COMeEt and boiling for 6 hr. gives, after distillation in a vac., 1:2:3-CH₂·CH·CH₂·C₁₀H₅(OH)·CO₂Me (86·3%), b.p. 160—162°/1 mm., which by further similar treatment and then hydrolysis yields 2-allyloxy-1-allyl-3-naphthoic acid (26%), m.p. 112·5—113°. This is unchanged at 150°, but at 214° gives 0·25 mol. of CO₂ and a tar. M.p. are corr. R. S. C.

Hydrazides of diphenic and 4-nitrodiphenic acids and their reactions. R. A. Labriola and A. Felitte (J. Org. Chem., 1943, 8, 536—539).—2-Nitrophenanthraquinone is oxidised by 6% H₃O₂ in boiling AcOH to 6-nitrodiphenic acid (I), m.p. 250°, in 75—80% yield. The corresponding Me₂ ester, m.p. 96°, from (I), MeOH, and HCl at room temp., is transformed by N₂H₄H₄O in boiling abs. EtOH into 4-nitrodiphendihydrazide, m.p. 209°. 4-Nitrodiphenic anhydride (II) and N₂H₄, H₂O yield 4-nitro-2-carboxydiphenyl-2'-carboxyhydrazide (III), m.p. 200°, degraded (Curtius) to 7-nitrophenanthridone, m.p. 290° (lit. 284—285°). When heated in a vac. at 200° (III) gives N-amino-4-nitrodiphenimide, m.p. 319°. Diphenmonohydrazide is converted by diphenic anhydride in boiling EtOH into NN-di-o-2-carboxyphenylbenzoylhydrazine (IV), m.p. 253° (decomp.), in which N is determined by measurement of the gas evolved on treatment with 40% KOH and saturated aq. K₃Fe(CN)₈. (IV) is converted by MeOH saturated with HCl at room temp. into the Me₂ ester, m.p. 182°, hydrolysed to the original acid. (II) and the appropriate hydrazide in boiling EtOH afford N-o-2-carboxyphenylbenzoyl-N'-o-4-nitro-2-carboxyphenylbenzoylhydrazine (V), m.p. 261°, and N-o-2-carboxyphenylbenzoyl-N'-5-nitro-2'-carboxyphenylbenzoylhydrazine (N), m.p. 252°; (V) is also obtained from (III) and diphenic anhydride. (IV), (V), and (VI) are converted by boiling Ac₂O into compounds considered to be oxadiazole derivatives, C₂₈H₁₈O₄N₂, m.p. 400°, and C₂₈H₁₈O₆N₃, m.p. 351° and 360°, respectively. These have no Ac and are converted by boiling KOH-EtOH into the original acids. If the Me ester is used in place of (IV) this change does not occur and an Ac₁ derivative, C₂₂H₂₈O₇N₃, m.p. 141—142°, results.

Synthesis of bis(dialkylaminoalkyl) esters of 4-fluoroisophthalic acid. L. S. Fosdick and J. C. Calandra (J. Amer Chem. Soc., 1943, 65, 2308—2309).—4:1:3-C₆H₂F(CO₂H)₂, m.p. 282—286°, prepared from 1:3:4-C₆H₃Me₂F by aq. KMnO₄ at 100°, with boiling SOCl₂ gives the diacid dichloride, b.p. 100—103°/2 mm., which with the appropriate NH₂-alcohol in boiling C₆H₆ gives bis-B-di-ethyl-, m.p. 181°, -propyl-, m.p. 195°, and -butyl-aminoethyl, m.p. 165°, and bis-y-di-ethyl-, m.p. 155°, -propyl-, m.p. 110°, and -butyl-amino-n-propyl, m.p. 193°, 4-fluoroisophthalate dihydrochloride. The bases, but not the salts, are topical anæsthetics. Toxicities are one half to one eighth of that of procaine hydrochloride, increasing with the length of the side-chain.

Novel preparation of s-octahydrophenanthrene-9:10-dicarboxylic anhydride. C. C. Price, M. Knell, and J. P. West (J. Amer. Chem. Soc., 1943, 65, 2469—2470).—Treating 2-cyclohexylidenecyclohexanone (I) with, successively, Br and (CH-CO)₂O in Et₂O cooled by solid $\rm CO_2$ -MeOH and then boiling gives s-octahydrophenanthrene-9:10-dicarboxylic anhydride (16%), m.p. 312° (block) (lit., 310°). Products from (I) and Br, $\rm SO_2Cl_2$, or $\rm Cl_2$ are unstable oils, whence no products could be isolated. (I) alone does not react with (CH-CO)₂O. R. S. C.

Application of the conditions of the Tiemann-Reimer reaction to benzaldehyde. W. S. Rapson, D. H. Saunder, and E. T. Stewart (J.C.S., 1944, 74—75).—Contrary to Chaudhuri (A., 1942, II, 227), PhCHO (0·2 mol.), CHCl₃ (0·2 mol.), and boiling aq. KOH (1·1 mols.) give CH₂Ph·OH (I), BzOH, and mandelic acid (II); no o-o m-CHCl₂·C_oH₄·CHO is obtained. PhCHO (2 mols.), CHCl₃ (2·2 mols.), and aq. NaOH (2 mols.) in EtOH at 100° (bath) for 30 min. afford (I), (II), BzOH, and CCl₃·CHPh·OH.

 $\beta\text{-Substituted}$ acrylacetic esters. J. English, jun., and L. J. Lapides (J. Amer. Chem. Soc., 1943, 65, 2466—2467).—CHR:CH·CO₂H and boiling SOCl₂ give 82—97% of CHR:CH·COCl, but PCl₅-C₆H₆

is preferable when R = $1-C_{10}H_7$. Adding CHR:CH-COCl to freshly prepared CHAcNa-CO₂Et in xylene and keeping at room temp. for 24 hr. gives Et β -keto- α -acetyl- δ -phenyl- (75%), m.p. 46° , -2-furyl-(45%), m.p. 48° , -1-naphthyl- (I) (42%), m.p. 80° , -p-anisyl- (80%), m.p. 65° , -cyclohexyl- (II) (45%), and -3:4-methylenedioxyphenyl-(55%), m.p. 104° , $-\Delta^{\gamma}$ -pentenoate. Saturating these esters in N-NaOH with NH₃ at 0° and keeping at room temp. for 1 hr. gives Et β -keto- δ -phenyl- (III) (82%), m.p. 45— 46° , -2-furyl- (64%), m.p. 60° , -p-anisyl- (70%), m.p. 44— 45° , and -3:4-methylenedioxyphenyl- (64%), m.p. 60° , - Δ^{γ} -pentenoate, which, except for (III), are purified by way of their Cu salts. The reaction with NH₃ fails for (I) and (II).

Polysopropylbenzenes. V. Acetylation. A. Newton (J. Amer. Chem. Soc., 1943, 65, 2444—2445).—With Ac₂O-AlCl₃ in CS₂ at 30—40°, m-C₆H₂Pr β ₂ gives p-C₆H₄Pr β -COMe (I) (11·5%) (oxime, new m.p. 71·1—71·6°), 2:4-di-(II) (54·0%) (semicarbazone, m.p. 195·7—196·5°), and 2:4:6-tri-isopropylacetophenone (III) (11·5%), m.p. 86·6—87·1°, and (?) cumene (0·8%). p-C₆H₄Pr β ₂ gives (I) (15·5%), (II) (51·9%), (III) (17·1%), and cumene (2·4%). s-C₆H₂Pr β ₃ gives (II) (24·9%) and (III) (29·4%); 1:2:4:5-C₆H₂Pr β ₄ gives (II) (30·2%) and (III) (17·5%); the Pr β ₃ and Pr β ₄ compounds give also ~50% of a jelly and probably traces of (I) and cumene. Structures are established as follows. KMnO₄ oxidises (II) in aq. KOH at 35—37° to 2:4-diisopropylphenylglyoxylic acid, m.p. 140·1—140·8°, and 2:4:1-C₈H₃Pr β ₂·CO₂H, m.p. 108·7—109·5°, and (III) to 2·4:6-triisopropylphenylglyoxylic acid, m.p. variable, 195° to 207° (gas), decomp. when heated from 170° to 229° to 2:4:6:1-C₈H₂Pr β ₃·CO₂H. R. S. C.

Volatile vegetable compounds. XXVII. Presence of 2:4:4-trimethylcyclopentanone in oil of pennyroyal (Mentha pulegium, L.). Y. R. Naves (Helv. Chim. Acta, 1944, 27, 51—56; cf. A., 1944, II, 31).—Treatment of a fraction of terpenes and alcohols, b.p. 155—162°, of the oil with Girard's reagent P leads to the isolation of a small proportion of 2:4:4-trimethylcyclopentanone (I), b.p. 159·5—160·5°/760 mm. (semicarbazone, m.p. 158·5—159°; 2:4-dinitrophenylhydrazone, m.p. 160·5—161°). It is oxidised by aq. KMnO₄ at room temp. to CH₂Ac·CMe₂·CH₂·CO₂H (semicarbazone, m.p. 170·5—171°; 2:4-dinitrophenylhydrazone, m.p. 154·—154·5°) and by HNO₃ to CO₂H·CMe₂·CH₂·CHme·CO₂H and CO₂H·CMe₂·CH₃·CO₃H. Wallach's prep. (A., 1918, i, 442) of (I) from 3:3:5-trimethylcyclohexanone is repeated. Temp. are corr.

Rearrangement of camphorquinone. Formation and reactions of inactive 2:2:3-trimethylcyclohexan-4-one-1-carboxylic acid.—See A., 1944, II, 107.

Structure of pyrethrolone and related compounds. I. T. F. West (J.C.S., 1944, 51—53).—Pyrethrolone, prepared by treating its semicarbazone, m.p. 208°, with cold, aq. KHSO₄-Et₂O-CO₂, has b.p. 164—166°/2 mm. **soPyrethrolone* enol (I), b.p. 165°/1 mm., purified by fractionation or by acetylation and subsequent hydrolysis by boiling NaOMe-MeOH, has an absorption max. always at 2400 a. but a varies from 15,000 to 27,000 (in EtOH here and below); its acetate has b.p. 143°/1·5 mm. and an absorption max. at 2300 a. (a 18,300). Tetrahydrossopyrethrolone enol (II), prepared from (I) by H₂-PtO₄-EtOAc or from tetrahydropyrethrolone (absorption max. at 2320 a.) by Zn dust in KOH-EtOH, has b.p. 156°/1 mm. and gives an acetate, b.p. 116°/1 mm. (absorption max. at 2363—20,200). Diosphenol acetate, b.p. 109°/2 mm., has an absorption max. at 2400 a. (a 12,400). (I) is thus probably 2-hydroxy-3-methyl-4- Δ -**-pentadienyl- Δ -**-cyclopentenone. The absorption max. of (II) is displaced from 2430—2436 a. (a 16,400—20,600) to ~2615 a. (a 17,000) in very dil. solution (>0.005%), possibly owing to the tautomerism, 3-**—5-methyl-4-n-amyl- Δ -**-cyclopenten-2-ol-1-one.

Polycyclic compounds. V. Reaction of chlorine with perinaphthindenone. A. M. Lukin (Bull. Acad. Sci. U.R.S.S., 1942, Cl. Sci. chim., 55—64).—Chlorination of perinaphthindenone (I) in cold AcOH or aq. suspension yields the greenish-yellow 2-Cl-derivative (II), m.p. 152—152·5°, also obtained from (I) and SO₂Cl₂ in PhNO₂. The intermediate products are much more labile than those from bromination but can be isolated if C₆H₆ is used as solvent. Chlorination of (I) in C₆H₆ at 7—8° gives an orange ppt. of "perinaphthindenone chloride," C₂₆H₁₆O₂Cl (Cl reactive to AgNO₃), and a solution containing colourless 2:3-dichloroperinaphthindenone (III) (one Cl reactive); at 40° (III) is formed directly. Finely powdered (III) when kept at 40—45° for 20 hr. is converted with some decompinto the brownish-orange hydrochloride of (II); further heating or treatment with aq. NH₃ gives (II). The structure of (II) is confirmed by oxidation with NaOCl to naphthalic acid and by synthesis from 2:1-C₁₀H₆Cl-OH and glycerol. (II) is a satisfactory dye for acetate silk. Chlorination of (I) in AcOH at 75—80° yields a dichloroperinaphthindenone, m.p. 230·8—231°; if one Cl atom of this is in the probable position 2, the second cannot be in position 3 since oxidation with NaOCl yields a chloronaphthalic acid.

R. C. P.
Synthesis of compounds related to the sex hormones. W. E.
Bachmann, R. A. Gregg, and E. F. Pratt (J. Amer. Chem. Soc.,

1943, 65, 2314—2318).—1-C₁₀H₇-[CH₂]₂·CH(CO₂Et)₂ (I) (prep. by NaOMe-EtOH-C₆H₆ in 89% yield), b.p. 170—175°/0·05 mm., in hot C₆H₆ gives a Na derivative, which with CO₂Et-[CH₂]₂·COCl Nationa—C₆H₈ lin 89% yield), b.p. 170—17b for the first point of C₆H₈ gives a Na derivative, which with CO₂Et[CH₂]₂·COCl (prep. from the H ester by SOCl₂ at room temp. and then the b.p.; 97% yield), b.p. 94—96°/2 mm., in C₆H₈ at 0° gives 1-C₁₀H₇·[CH₂]₂·C(CO₂Et)₂·CO·[CH₂]₂·CO₂Et (II), b.p. 180—195°/002 mm. Cyclisation of (II) is hindered by absence of OMe in the aromatic nucleus (cf. A., 1942, II, 263 and below). When (II) is cyclised by heating with 100% H₃PO₄ at 64° for 36—48 hr. and the product is hydrolysed by hot 45% aq. KOH and then decarboxylated in H₂O at 100°, there is obtained 15—23% of β-2-carboxy(3:4-)dihydro-1-phenanthryl-propionic acid (III), m.p. 234—236° [Me ester (IV), m.p. 73—74°] (cf. Bardhan, A., 1937, II, 63). With Pd-C-N₂ at 310—320° (IV) gives Me β-2-carbomethoxy-1-phenanthryl-propionate, m.p. 114—116°, which with NaOMe in hot C₆H₆ and then hot HCl-AcOH gives 3'-keto-1: 2-cyclopentenophenanthrene, m.p. 196—197° (A., 1938, II, 17). NaOMe in boiling C₆H₆ (1 hr.) cyclises (IV) to 3'-keto-2'-carbomethoxy-(? 3:4-)dihydro-1: 2-cyclopentenophenanthrene, m.p. 142—144° (olive-green colour with FeCl₂-EtOH), whence HCl-AcOH-H₂O yields 3'-keto-(? 3:4)-dihydro-1: 2-cyclopentenophenanthrene (98%), m.p. 214—216° (lit., 210°, 212—213°). Hydrogenation (Pd-C) of (IV) in EtOAc gives Me β-2-carbomethoxy-1: 2: 3:4-tetrahydro-1-phenanthryl-propionate, m.p. 88—89°, which is a sheet of the state of the stat EUGI), whence fict—ACOH—H₂O yields 3-keto-(? 3: 4)-dinydro-1: 2cyclopentenophenanthrene (98%), m.p. 214—216° (lit., 210°, 212—213°). Hydrogenation (Pd-C) of (IV) in EtOAc gives Me β-2-carbomethoxy-1: 2: 3: 4-tetrahydro-1-phenanthrylpropionate, m.p. 88—89°, which yields, as above, 3'-keto-2'-carbomethoxy- (91%), m.p. 134—135° (purple FeCl₃ colour in EtOH), and thence 3'-keto-(92%), m.p. 112—113° (Koebner et al., A., 1941, II, 365, m.p. I11—112°), -1: 2: 3: 4-tetrahydro-1: 2-cyclopentanophenanthrene. 6: 1-OMe-C₁₆H₆:[CH₂]₂-CH(CO₂Et)₂, b.p. 193—198°/0·2 mm., gives [cf. (II)] the 6-OMe-derivative of (II), which in 100% H₃PO₄ at 42° (4—5 hr.) and then KOH gives 45% (over-all) of β-2: 2-dicarboxy-7-methoxy-1: 2: 3: 4-tetrahydro-1-phenanthrylidenepropionic acid, m.p. 150—151° [Me₃ ester (V), m.p. 159—160°]. With H₂-30% Pd-C in EtOAc and then 45% aq. KOH, (V) gives β-2: 2-dicarboxy-7-methoxy- (93%), m.p. 193—195°, and thence (180—185°) β-2-carboxy-7-methoxy-1: 2: 3: 4-tetrahydro-1-phenanthrylpropionic acid (95%), m.p. 150—155° [Me₂ ester (VI), m.p. 60—61°]. NaOMe-C_eH₆ converts (VI) into 3'-keto-2'-carbomethoxy-7-methoxy-m.p. 139—141° (purple colour with FeCl₃-EtOH), which with HCl-AcOH-H₂O gives 7-hydroxy-3'-keto- (89%), m.p. 246—247° (vac.) (cf. Koebner et al., loc. cit.), -1: 2: 3: 4-tetrahydro-1: 2-cyclopentanophenanthrene (Me ether, m.p. 116—117°, b.p. 200°/0-01 mm.). The K derivative of (I) with CO₂Et-[CH₂]₃·COCl gives 1-C₁₀H₁-[CH₂]₂·C(CO₂Et)₂·CO·(CH₃]₃·CO₂Et (VII), a syrup, which requires 10 hr. at 100° for cyclisation by 100% H₃PO₄; subsequent boiling in cone. HCl-AcOH-N₂ gives in poor over-all yield 3-keto-1: 2: 3: 4: 5: 6-hexahydrochrysene, m.p. 160·5—161·7° (cf. Chuang et al., A., 1939, II, 270), the identity of which is confirmed by conversion (MgMeI; Pd-c) into 3-methylchrysene. The 6-OMe-derivative (prep. as above) of (VII) is more readily cyclised than is (VII); with H₁PO₄ at room temp. and then KOH-MeOH it gives y-2: 2-dicarboxy-7-methox thereof yields, as above, 3-keto-4-carbomethoxy-10-methoxy-, m.p. 167.5.—168°, and 10-hydroxy-3-keto-1:2:2a:3:4:5:6:6a-octa-hydrochrysene, m.p. 273—275° [Me ether, m.p. 140.5—141.5° (N₂); benzoate, m.p. 204—208° after softening]. R. S. C.

Carbon rings. XXXIII. Preparation of cyclodecane-1:6-dione from decahydronaphthalene. P. A. Plattner and J. Hulstkamp (Helv. Chim. Acta, 1944, 27, 211—219; cf. Durland et al., A., 1939, II, 156).—Undiluted, technical decahydronaphthalene is treated in countercurrent with ozonised air and the product is distilled in a vac., thus giving a fraction rich in cis- and trans-decahydronaphth-9-ols. This is converted by $ZnCl_2$ into crude Δ^9 : 10 -octahydronaphthalene, which is ozonised in 40% AcOH to cyclodecane-1: 6-dione (I). alene, which is ozonised in 40% AcOH to cyclodecane-1: 6-dione (I). The over-all yield is 14%. trans-1-Ketodecahydronaphthalene and 8-ketosebacic acid are among the by-products. Reduction (H₂ at 90°/50 atm.-Raney Ni-96% EtOH) of (I) affords a mixture (II), m.p. 145°, of α-, m.p. 151—153° (dibenzoate, m.p. 168°; di-p-nitrobenzoate, m.p. 264°), and β-cyclodecanediol, m.p. 146° (dibenzoate, m.p. 77°; di-p-nitrobenzoate, m.p. 181°). As by-product (II) contains cis-9: 10-dihydroxydecahydronaphthalene, m.p. 89—91° (monohydrate, m.p. 88°), the structure of which is established by its conversion by conc. H₂SO₄ at -10° and subsequently at room temp. into spirocyclopentanocyclohexanone [semicarbazone, m.p. 190—193° (decomp.)]. Dehydration of (II) by several reagents did not yield cyclodecadiene; the tendency towards bridge formation not yield cyclodecadiene; the tendency towards bridge formation appears so great that various dicyclic products result. Unsuccessful attempts to convert (II) into the dibromide are described. The product from (II) and aq. HBr appears to contain only ~20% of 8-bromocyclodecanol as sole monocyclic compound; the remainder appears to contain only ~20% of 6-bromocyclodecanol as foliocyclic Br-compounds and dicyclic alcohols. Catalytic hydrogenation (Pd-CaCO₃) of the crude product leads to (?) cyclodecanol, m.p. 62°. Small yields of (I) are obtained by

dehydration of cyclopentylcyclopentanol by $\rm ZnCl_2$ at 150° and ozonisation of the resulting hydrocarbon in 50% AcOH and by chlorination of decahydronaphthalene at 100°, prolonged treatment of the chloride with KOH–EtOH at 100°, and ozonisation of the resulting hydrocarbon. M.p. are corr. H. W.

Ultra-violet absorption spectra of alicyclic di- and tri-ketones. H. Bastron, R. E. Davis, and L. W. Butz (J. Org. Chem., 1943, 8, 515—525).—The absorption spectra of the following have been determined in EtOH: xxxx-6:9-methano-, m.p. $75-76^\circ$, cis-2-methyl-, m.p. $79\cdot6-80\cdot6^\circ$, 5-acetoxy-2:7:8-trimethyl-, m.p. $116-117^\circ$; xxxx-, m.p. $123\cdot4^\circ$, and xyyx-, m.p. $84\cdot7^\circ$, -5-acetoxy-6:9-ethano-2-methyl-, and 2-methoxy-5-methyl- $\Delta^{2:7}$ -naphthitadiene-1:4-dione-the configurations are assigned entirely on the basis of the Alder-(the configurations are assigned entirely on the basis of the Alder-Stein rule and it is uncertain which is isomeride xxxx and which is Stein rule and it is uncertain which is isomeride xxxx and which is xyyx; 3-methylcyclopentane-1:2:4-trione, m.p. $118\cdot2-119\cdot6^\circ$, and its monohydrate, m.p. $78-80^\circ$; 5-methyl- Λ -naphthitene-1:2:4-trione, m.p. $174-175^\circ$; cyclohexane-1:3-dione, m.p. $105-107^\circ$; 2-methylcyclohexane-1:3-dione, m.p. $205-208^\circ$; 2-methylcyclopentane-1:3-dione, m.p. $212\cdot2-214\cdot6^\circ$; 4-hydroxy-2-methylcyclopentane-1:3-dione, m.p. $165-165\cdot8^\circ$; 5-acetoxy-2-methylcyclopentane-1:3-dione, m.p. $165-165\cdot8^\circ$; 5-acetoxy-2-methylcyclopenthyl-6(or 9)-vinyl- Λ -naphthitene-1:4-dione, m.p. $109-110^\circ$; 5-methyl-6(or 9)-vinyl- Λ -naphthitene-1:2:4-trione, m.p. $206-210^\circ$; 4-hydroxy-10-methyl- Λ -naphthitene-1:3-dione, m.p. $206-210^\circ$; 4-hydroxy-10-methyl- Λ -naphthitene-1:3-dione, m.p. $213\cdot4-215\cdot2^\circ$. The data are applied to the elucidation of structure within this group. within this group.

within this group.

Hydrogenation of 3-methylcyclopentane-1:2:4-trione. M. Orchin and L. W. Butz (J. Amer. Chem. Soc., 1943, 65, 2296—2299).—Condensing COMeEt with Et₂C₂O₄ by NaOEt-EtOH and boiling the product in 50% H₃PO₄ gives 3-methylcyclopentane-1:2:4-trione, (I) + H₂O, m.p. 74—79°, and (II) anhyd., m.p. 118:2—119:6°. Hydrogenation (PtO₂) of (II) in EtOAc gives 4-hydroxy-2-methylcyclopentane-1:3-dione (III) (62%), m.p. 166:6—168:2°, but of (I) in EtOH gives (III) (39%) and 2-methylcyclopentane-1:3-dione (IV) (15%), m.p. 212—214° (Cornforth et al., A., 1941, II, 19, m.p. 208—210°). A trace of H₂O favours formation of (IV), even in EtOAc. (IV) gives a violet colour with aq. FeCl₃ but no colour in EtOH, is a monobasic acid, with KMnO₄ gives (CH₂:CO₂H)₂, absorbs 2 Br in AcOH-NaOAc, has an absorption max. at 2500 A. (ε 17,800) in EtOH, and gives a dioxime, m.p. 198° (decomp.). (III) gives a colour with FeCl₃ in H₂O (not EtOH), is monobasic, and is unaffected by hot, dil. HCl. With CH₃N₂-Et₂O, (III) gives isomeric Me ethers, m.p. 167—168:2° and 85—86:4°, both non-acidic, giving no colour with FeCl₃, and hydrolysed to (III) by 0.05N-NaOH at 80°. With MeI-Ag₂O-MeOH at, successively, 0°, room temp., and the b.p. and then KOH-H₂O-EtOH at the b.p., (III) gives (?) 4-methoxy-2-methylcyclopentane-1:3-dione (small yield), m.p. 110:4—111:2° (acidic; violet FeCl₃ colour). H₂-PtO₂ reduces (III) very slowly in EtOH but no (IV) could be isolated. (III) absorbs 2 Br in AcOH-NaOAc and has an absorption max. at 2500 A. (ε 16,000). KHSO₄ at 160°/20 mm., later 150—155°/20 mm., converts (III) into (?) the compound (V), m.p. 213:4—215:2° [mol. wt. in p-OH-C₆H₄·O-CH₃Ph (k 126:15)], which is not acidic, gives no oxime, and is hydrogenated (2:34 H₂; PtO₂; EtOH) to (IV),

not acidic, gives no oxime, and is hydrogenated (2.34 H₂; PtO₂; EtOH) to (IV), but does not add (CH.:CH), in EtOH at 50° or C₆H₆ at 100°. M.p. are corr. M.p. are corr.

Synthesis of condensed ring compounds. XIV. 2-Methoxy-5-methyl- $\Delta^{2:7}$ -naphthitadiene-1:4-dione. M. Orchin and L. W. Butz (J. Org. Chem., 1943, 8, 509—514),—5-Methoxy-2-methyl-p-benzoquinone very slowly adds (CH₂:CH)₂ in abs. EtOH at 100° to give 2-methoxy-5-methyl- $\Delta^{2:7}$ -naphthitadiene-1:4-dione (I), m.p. 94·5—95·5° (yield ~75%), converted by conc. HCl at 100° into 5-methyl- Δ^{7} -naphthitene-1:2:4-trione enol, m.p. 172—173°. Zn and MeOH-AcOH convert (I) into a greenish-yellow oil, $C_{11}H_{14}O_3$, b.p. 105—115°/0-027 mm. which does not give an enol reaction b.p. 105—115°/0.027 mm., which does not give an enol reaction with FeCl₃-EtOH. (I) absorbs 3 H. (Adams' catalyst in MeOH). It is suggested as a working hypothesis that (CH₂*CH)₂ reacts faster with C atoms attached to H than to others (steric effect) and of these, as an anionoid reagent, it reacts fastest with the most cationoid C in the quinone (electrostatic effect). In some instances the rate of the favoured reaction may be so. the rate of the favoured reaction may be so the rates of the other

possible reactions that only one adduct is obtained. M.p. are corr. [By E. W. J. Butz.] $\Delta^{1:3}$ -cycloHexadiene and 1:2:5:4- $0:C_6H_2Me_2:O$ (II) give (probably) 3:9-dimethyl-5:8:9:10-tetrahydro-1:4-naphthaquinone, m.p. 65° , which decompose slowly at room terms to (II) poses slowly at room temp. to (II).

Synthesis of condensed ring compounds. XII. Preparation of 1:3:4-triketo-9-methyl- Δ^4 -octahydronaphthalene. E. W. J. a 1:3:4-triketo-y-methyl-A*-octahydronaphthalene. E. W. J. Butz and L. W. Butz (J. Org. Chem., 1943, 8, 497—499; cf. A., 1943, II, 330).—5-Acetoxy-1:4-toluquinone (I) and (CH₂:CH)₂ (II) in EtOH at 75° for 68 hr. followed by alkaline hydrolysis give p-methyl-Δ*-naphthitene-1:2:4-trione enol (III), m.p. 174—175°, which gives a dark purple colour with FeCl₃ and titrates as a monobasic acid with NaOH and phenolphthalein. (III) results from the addition of (II) to the 'CMe.CH· linking of (I). The neutral byproducts from (III) are oxidised by FeCl₃ to (?) 2-methyl-5: 8-dihydro-1: 4-naphthaquinone, m.p. 82—84°. On another occasion 2-methyl-1: 4-naphthaquinone, m.p. 100—102°, was isolated, proving that some addition of (II) to the OAc-C:CH· linking of (I) has also occurred. Reduction of (III) by Zn dust and AcOH at 15° affords 4-hydroxy-10-methyl- Λ^2 -naphthitene-1: 3-dione, m.p. 130° and 146—148°, which gives a faint pink colour with FeCl₃. Catalytic hydrogenation (Adams) of (III) gives a H_3 -compound, m.p. 180—182°, probably one of the 5-methylnaphthitane-1: 2: 4-triols. M.p. are corr.

Theoretical discussion, based on resonance theory, of the function of halogen in the 2-halogenobenzoquinones, the 3-halogenobenzoquinone-4-oximes, the m.p. rule for nitroso-quinonoid isomerides, and the nitration of 3-fluoroanisole and of 3-fluoro-2:4:6-trichloroanisole. H. H. Hodgson (J. Soc. Dyers and Col., 1944, 60, 65—67).— The m.p. order and variation of colour of the 2-halogenobenzoquinones are interpreted on resonance theory, which also accounts for m.p. irregularity in the 3-halogenobenzoquinone-4-oximes. Benzoquinonemonoximes and their ethers melt at a higher temp. than the tautomeric nitrosophenols, owing to predominance of a more highly polarised resonance structure. The nitrations of m-C₆H₄F*OMe and 3:2:4:6:1-C₈HFCl₃*OMe (all 3 Cl are replaced by NO₂ in the probable order 6, 2, 4) are also discussed. A. T. P.

Synthesis of condensed ring compounds. XIII. Preparation of 5- and 6-carbalkoxy-1: 4-toluquinones. Addition of 5- and 6-carbomethoxy-1: 4-toluquinone to butadiene. W. Nudenberg, A. M. Gaddis, and L. W. Butz (J. Org. Chem., 1943, 8, 500—508).— Under the experimental conditions employed, (CH₂:CH)₂ reacts only at the double linking with the ester group in 5- (I) and 6- (II) -carbomethoxy-1: 4-toluquinone. 3-Methylgentisic acid (III), mp. 219—222° (lit. 215°), obtained from 2: 3: 1-OH·C₆H₃Me·CO₃H by oxidation with K₂S₂O₈-NaOH followed by hydrolysis with conc. HCl at 100°, is converted into the Me ester, m.p. 106·6—108·2°, which is oxidised by Ag₂O-Na₂CO₃ in dry C₆H₆ at 40—50° to (II), m.p. 50·2—51·4°. This may be kept in N₂ over P₂O₅ in the dark. 4-Methylgentisic acid is converted by MeOH-HCl into a small proportion of unidentified material, m.p. 79—81°, and Me 4-methylgentisate, m.p. 119—122°, oxidised (Ag₂O-Na₂CO₃ in dry C.H.) to (I), m.p. 38·4—39·4°. (I) with (CH₂:CH)₂ in C₆H₆ under anhyd. conditions at 100° gives Me 1: 4-diketo-2-methyl-\Delta^2·7-naphthitadiene-5-carboxylate (IV), b.p. 137—139°/0·5 mm., hydrolysed by KOH under N₂ at room temp. to 2-methyl-5: 8-dihydronaphthalene-1: 4-diol (V), m.p. 173—174° (and its oxidation products), and some acidic material, m.p. 110—135°, converted by Na₂S₂O₄ in Et₂O into (?) o-pyruvylacetophenone (VI), m.p. 171·4—172°, softens at 169·8°. (II) and (CH₂:CH)₂ in anhyd. C₆H₆ at 100° for 66 hr. afford Me 1: 4-diketo-2-methyl-\Delta^2:7-naphthitadiene-10-carboxylate (VII), b.p. 155—157°/1—2 mm., which absorbs 3 H₂ (Adams catalyst) and is converted by alkali into (V), the identity of which is further confirmed by its oxidation to 2-methyl-\Delta:2:-Naphthitadiene-10-carboxylate, b.p. 170—174°/0·25 mm., from the Me ester by alkyl exchange, is treated with dry Ag₂O and anhyd. Na₂CO₃ in C₆H₆ at 50° and the (non-isolated) quinone is transformed by (CH₂:CH)₂ at 50° into cyclohexyl 1: 4-diketo-2-methyl-\D

Syntheses in the naphthalene series. II. 3-Hydroxy-2-alkyl-1: 4-naphthaquinones. G. Soliman and (in part) A. Latif (J.C.S., 1944, 55—56).—1: 3- $C_{10}H_{4}$ (OH)₂ in ~3.75% EtOH-KOH (exposed to air for 2 days, followed by acidification) gives 1: 2: 4-O: $C_{10}H_{5}$ (OH):O. Similarly prepared are 3-hydroxy-2-alkyl-1: 4-naphthaquinones: alk. = Me, m.p. 174°, Et, m.p. 141°, Pra, m.p. 103—104°, Pr $^{\beta}$, m.p. 95°, Bu $^{\alpha}$, m.p. 101—102°, Bu $^{\beta}$, m.p. 134°, and isoamyl, m.p. 94° [Zn-Ac₂O affords the quinol triacetate, m.p. 120° (lit. 110—112°)]; the 2-Ph analogue has m.p. 147°. A. T. P.

IV.—STEROLS AND STEROID SAPOGENINS.

Steroids. XXXV. Preparation of saccharide derivatives of steroids.—See A., 1944, II, 123.

Organ extracts. V. Two steroids with odour of musk from extract of swine testes. V. Prelog and L. Ruzicka (Helv. Chim. Acta, 1944, 27, 61—66).—Chromatography (Al₂O₃) of the COMe₂ extract of swine testes leads to the isolation of Δ^{16} -androsten-3(a)-ol, m.p. $142\cdot5$ — 143° , $[a]_D^{20}+13\cdot1^{\circ}\pm2^{\circ}$ in CHCl₂ (substance F), and $-3(\beta)$ -ol, m.p. $122\cdot5$ — 123° (substance G), which have a marked odour of musk which is shared by the partly synthetic materials. The substances show no androgenic activity in the Fussgänger test. It is uncertain whether they are present as such in the testes or are

formed from other derivatives during the working up of the extracts.

M.p. are corr.

H. W.

Steroids and sex hormones. XC. Preparation of the two \$\Delta^{16}\$- androsten-3-ols with odour of musk and related compounds. V. Prelog, L. Ruzicka, and P. Wieland (Helv. Chim. Acta, 1944, 27, 66—71).—Thermal decomp. of androstan-17(\$\beta\$)-0-3-one hexahydrobenzoate at 300° in \$N_2\$ gives hexahydrobenzoic acid and \$\Delta^{16}\$-androsten-3-one (I), m.p. 140—141°, \$[a]_b^1 +38° \pm 1°\$ in CHCl_3\$, which gives an intense blue colour in Kagi and Miescher's reaction. (I) is reduced (Wolff-Kishner) to \$\Delta^{16}\$-androstene, m.p. 74·5—75·5°, \$[a]_b^1 +17·4° \pm 2°\$ in 96% EtOH, readily hydrogenated to androstane, m.p. 50—50·5°, \$[a]_b^1 +2° \pm 2°\$ in CHCl_3\$. (I) is reduced by \$Al(OPr\$\beta_3\$) in \$Pr\$\beta OH\$ to \$\Delta^{16}\$-androsten-3(a)-ol (II), m.p. 143·5—144°, \$[a]_b^1 +13·9° \pm 2°\$ in CHCl_3\$, and -3(\$\beta\$)-ol (III), m.p. 125—127°, \$[a]_b^1 +11·2° \pm 2.5°\$ in CHCl_3\$ (digitonide). These are identical with substances \$F\$ and \$G\$ from swine testes. The odour of (I) is more intense than that of the alcohols. Reduction \$(H_2\$, PtO_2\$, AcOH) of (II) and (III) gives androstan-3(a)-ol, m.p. 145—146°, \$[a]_b^1 +2° \pm 2°\$ in CHCl_3\$, and -3(\$\beta\$)-ol, m.p. 147·5—148°, \$[a]_b^1 +0·9° \pm 0·9°\$ in CHCl_3\$, respectively. M.p. are corr. (Cf. preceding abstract.)

Steroids and sex hormones. XCI. β' -[3(a): 7(a): 12(β)-Trihydroxynorcholanyl-(23)]- $\Delta \alpha'\beta$ -butenolide, a homologue of the digitaloid aglucone. L. Ruzicka, P. A. Plattner, and H. Heusser [and, in part, W. Schlegel] (Helv. Chim. Acta, 1944, 27, 186—194).—Triformylcholic acid, m.p. 210—211°, $[\alpha]_{2}^{21}$ +83·6° in CHCl₃ (prep. from cholic acid and 95% HCO₂H described), is converted by SOCl₂ in boiling abs. C_8H_6 into the chloride, which with CH₂N₃ in abs. Et₂O-C₆H₆ at -10° and subsequently at room temp. affords 25-diazo-24-keto-3(a): 7(a): 12(β)-triformoxy-25-homocholane (I), m.p. 128—129° (decomp.), $[\alpha]_{2}^{21}$ -87·2° in CHCl₃, hydrolysed by KOH-MeOH to the $(OH)_3$ -derivative (II), which could not be caused to crystallise. Crude (II) is transformed by glacial AcOH at room temp. and then at 96° followed by treatment with Ac₂O and C_8H_6 N at 160° into 24-keto-3(a): 7(a): 12(β): 25-tetra-acetoxy-25-homocholane (III), m.p. 132—132·5°, $[\alpha]_{3}^{11}$ +77·1° \pm 3° in CHCl₃. (I) and AcOH at 100° give 24-keto-3(a): 7(a): 12(β)-triformoxy-25-acetoxy-25-homocholane (IV), m.p. 118—119°, $[\alpha]_{D}$ +77·5° in CHCl₃. CH₂Br-CO₂Et, activated Zn filings, and (III) in C_8H_6 -dioxan afford β' -[3(a): 7(a): 12(β)-triformoxy-25-acetoxy-26-homocholane (IV), m.p. 118—119°, $[\alpha]_{D}$ +77·5° in CHCl₃.

OAc OAc CH₂ CO

CH₂Br-CO₂Et, activated Zn filings, and (III) in C_6H_6 -dioxan afford β' -[3(a): 7(a): $12(\beta)$ -triacetoxynorcholanyl-(23)]- $\Delta^{\alpha}\beta'$ -butenolide (\overline{Y}), amorphous, m.p. 85—90°, [a] $_2^{17}$ + 74·0° ± 2 ° in CHCl₃, which is hydrolysed by 2N-HCl in aq. dioxan at 100° to the β' -3(a)-hydroxy-7(a): $12(\beta)$ -diacetoxy-compound (\overline{Y} 1) m.p. 162-5—163-5°.

Zimmermann reaction. Factors affecting the colour intensity; relation of molecular structure to colour production.—See C., 1944, Part 2.

Constituents of the adrenal cortex and related substances. LXVI. Reactions of androstan-3(β)-ol-17-one with propargyl alcohol and further transformations of the acetylene derivative so formed. V. Wenner and T. Reichstein ($Helv.\ Chim.\ Acta$, 1944, 27, 24—42; cf. Ruzicka et al., A., 1938, II, 99; Stavely, A., 1939, II, 119).— Δ^5 -Androsten-3(β)-ol-17-one acetate when hydrogenated (PtO₂ in AcOH), re-oxidised (CrO₃), and hydrolysed (K_2CO_3 in hot aq. MeOH) gives androstan-3(β)-ol-17-one (I), m.p. 177—179°, the mother-liquors from which after acetylation (Ac_2O in C_5H_5N at room temp.) afford ætiocholan-3(β)-ol-17-one acetate, m.p. 156—168°. (I) is transformed by CH₂C·CH₂·OH and CMc₂E+·OK at room temp. and then at 60—70° into allohomo- Δ^{20} - ω -pregnine-3(β): 17(a): 22-triol (II), leaflets, m.p. 250—251°, [a] $_2^{12}$ —42·0°±3° in MeOH, converted by Ac_2O - C_5H_5N at room temp. into the 3: 22-diacetate (III), tetrahedra, m.p. 134—135°, or sometimes needles, m.p. 120—125° and, after solidification, 134—135°, [a] $_2^{15}$ —44·8°+2° in COMe₂. The configuration at $C_{(17)}$ is established by ozonisation of (III), which gives large amounts of neutral substances and an acid which is converted after alkaline hydrolysis by esterification (CH₂N₂) into Me 3(β)-17(a)-dihydroxyætioallocholanate, m.p. 212—213°. Hydrogenation of (II) proceeds rapidly and, if interrupted after absorption of 1 H_{\circ} , leads to allohomo- Δ^{20} - ω -pregnene-3(β): 17(a): 22-triol, m.p. 222—224°, [a] $_2^{13}$ +16·7°±3° in MeOH [3: 22-diacetate (IV), m.p. 114—116°, [a] $_2^{13}$ +23·6°±1·5° in COMe₂,

which does not give a yellow colour with $C(NO_2)_*$ but decolorises Br in $CHCl_3$]. Similar partial hydrogenation of (III) affords (IV), 17(a): 22-oxidoallohomo- Δ^{20} -\$\tilde{\text{-}u}\$-pregnen-3(\$\beta\$)-ol acetate (\$\mathbb{V}\$), m.p. 152—154°, [a]\beta^1 + 30·4° \pm 1° in COMe_2 (hydrolysed by alkali to the free alcohol, needles, m.p. 186—188°, or plates which pass into these needles when heated, $[a]_0^{14} + 35·8° \pm 2°$ in COMe_2), and a diacetate (\$\mathbb{V}\$I), m.p. 100-102°, $[a]_0^{16} + 8·1° \pm 1°$ in COMe_2. Purification is effected by protracted chromatography over Al_2O_3 , which appears to cause partial conversion of (IV) into (\$\mathbb{V}\$) and (\$\mathbb{V}\$I) appear to be cis-trans-isomerides since either is hydrogenated to allohomo-\$\tilde{\text{-}}pregnane-3(\$\beta\$): 17(a)-diol 3-monoacetate, m.p. 124-125°, $[a]_0^{16} - 6·2° \pm 2°$ in COMe_2 (obtained also from 17-allylandrostane-3(\$\beta\$): 17(a)-diol 3-monoacetate, m.p. 102-104°, and, after resolidification, m.p. 114-116°, $[a]_0^1 - 5·2° \pm 2°$ in COMe_2. Hydrogenation of (\$\mathbf{V}\$) yields $17(a): 22\text{-}oxidoallohomo-$\tilde{\text{-}}pregnane-3(β)-ol acetate (\mathbf{V}II), m.p. <math>124-125°$, $[a]_0 - 30·0° \pm 2°$ in COMe_2. Short ozonisation of (\$\mathbf{V}\$) followed by oxidation with CrO_3 in AcOH gives neutral products, which after hydrolysis yield (\$\mathbf{I}\$) and acidic substances which afford Me $3($\beta$): <math>17(a)$ -dihydroxyætioallocholanate, m.p. 210°. (\$\mathbf{V}\$) is almost quantitatively oxidised by CrO_3 in AcOH actate (\$\mathbf{V}\$III), m.p. 212-214°, $[a]_0^{16} + 69·3° \pm 2°$ in COMe_2, which reacts with 2 mols of boiling alkali, does not with 2 mols of boiling alkali, do

OAC H (vm.)

acetate (VIII), m.p. $212-214^\circ$, $[a]_D^{19}+69\cdot3^\circ\pm2^\circ$ in COMe₂, which reacts with 2 mols. of boiling alkali, does not give a yellow colour with C(NO₂)₄, and has the absorption spectrum characteristic of $a\beta$ -unsaturated lactones. It is hydrogenated to allopregnane- $3(\beta):17(a)$ -diol-21-carboxylactone acetate, m.p. $162-163^\circ$, $[a]_D^{10}-20\cdot9^\circ\pm2^\circ$

in COMe₂, also obtained in poor yield by oxidation of (VII). Hydroxylation (OsO₄ is abs. Et₂O at room temp.) of (IV) and (VI) leads to allohomo- ω -pregnane-3(β): 17(α): 20: 21: 22-pentaols, m.p. 260—266° [:CMe. ether, m.p. (indef.) 125—130° (decomp.)], m.p. 250—253°, [a] $_{13}^{13}$ +5·15°±2° in MeOH (:CMe₂ ether, m.p. 120—125° and 175—179° after resolidification, [a] $_{13}^{13}$ -17·55°±3° in MeOH), and m.p. 238—241°, [a] $_{13}^{13}$ +1·9°±3° in MeOH. H. W.

Isomerisation of 17-hydroxy-20-ketosteroids. V. 17a-Methyl-Dhomoætiocholane and derivatives. C. W. Shoppee (*Helv. Chim. Acta*, 1944, 27, 8—23; cf. A., 1944, II, 51).—Successive additions of C₂H₂ and CMe₂Et·OK in CMe₂Et·OH to 3(β)-hydroxyætiocholan-Acta, 1944, 27, 8—23; cf. A., 1944, II, 51).—Successive additions of C_2H_2 and $CMe_2Et\cdot OK$ in $CMe_2Et\cdot OH$ to $3(\beta)$ -hydroxyætiocholan-17-one in C_6H_6 -Et₂O give a non-cryst. product, transformed by $Ac_2O-C_5H_5N$ at 20° into 17(a)-hydroxy- $3(\beta)$ -acetoxy- Δ^{20} -pregnine (I), m.p. 140— $140\cdot 5^\circ$, $[a]_{5770-5790}^{15}$ — 20° + 1° in $COMe_2$, hydrolysed by K_2CO_3 in boiling aq. MeOH to $3(\beta):17(a)$ -dihydroxy- Δ^{20} -pregnine, cubes, m.p. 120— 130° , rearranging to needles, m.p. 154° . (I) is converted by NH_2Ph in C_6H_6 and aq. $HgCl_2$ at 60° into 17(a)-hydroxy- $3(\beta)$ -acetoxy-pregnan-20-one, m.p. 154° , $17a(\beta)$ -hydroxy- $3(\beta)$ -acetoxy-17a-methyl-D-homoætiocholan-17-one (II), m.p. 167° , $[a]_5^h$ - $16\cdot 5^\circ$ + 2° in $COMe_2$, and 17a-anitino- $3(\beta)$ -acetoxy-17a-methyl-D-homoætiocholan-17-one, m.p. 184— 185° , $[a]_3^h$ -62° + 2° in $COMe_2$ (corresponding mitrosoamine, m.p. 192— 194° (decomp.)]. (II) is unchanged by contact with Al_2O_3 in moist C_6H_6 , is converted by boiling KOH-MeOH into $3(\beta):17a(\beta)$ -dihydroxy-17a-methyl-D-homoætiocholan-17-one (III), m.p. 202— 203° (becomes opaque at $\sim 130^\circ$), and by Ac_2O and BF_3 , Et₂O in AcOH at 20° into the diacetate (IV), m.p. 202— 204° , $[a]_3^h$ $+8^\circ$ + 2° in $COMe_2$, of (III). (I) is converted by HgO and BF_3 , Et_2O in AcOH containing Ac_2O at 20° into (IV) (also isolated in platelets, m.p. 220— 222°), and $3(\beta):17(a)$ -diacetoxypregnan-20-one, m.p. 170— 171° , transfnyl-D-homoætiocholan-17-one, m.p. 212° (becomes opaque at $\sim 80^\circ$), which yields $(Ac_2O$ in C_5H_5N at 20°) the $3(\beta)$ -acetoxy-17a-methyl-D-homoætiocholan-17-one, m.p. 212° (becomes opaque at $\sim 80^\circ$), which yields $(Ac_2O$ in C_5H_5N at 20°) the $3(\beta)$ -acetoxy-17a-methyl-D-homoætiocholan-17-one, m.p. 222° , compound. Successive treatments of (V) with PBr_3 in C_6H_6 and C_6C_6 in C_6C_6 m.p. 214— 218° , which is oxidised (CrO₃ in AcOH) to 17a-methyl-D-homoætiocholane-3: 17-dione, prisms, m.p. 132°, resolidifying to needles, m.p. 146— 148° , $[a]_0^{20} - 36\cdot 5^\circ \pm 2^\circ$ in COMe₂; this is transformed by N₂H₄,H₂O and NaOEt-EtOH at 175° into 17a-methyl-D-homoætiocholane, m.p. 86— 88° , $[a]_0^7$ $0^\circ \pm 2^\circ$, $[a]_{5401}$ $+1\cdot 7^\circ \pm 2^\circ$ in COMe₂, $[a]_1^3$, $0^\circ \pm 2\cdot 5^\circ$, $[a]_0^3$, $0^\circ \pm 2\cdot 5^\circ$, $[a]_0^3$, $0^\circ \pm 2\cdot 5^\circ$, in dioxan. (V) and N₂H₄,H₂O in NaOEt-EtOH at 175° yield $3(\beta)$ -hydroxy-17a-methyl-D-homo- Δ^{17} -ætiocholene, prisms, m.p. 135° , which pass into long needles, m.p. 162° , $[a]_0^{14} + 62^\circ \pm 2\cdot 5^\circ$ in COMe₂, hydrogenated (PtO₂ in AcOH at 20°) to $3(\beta)$ -hydroxy-17a-methyl-D-homoætiocholane, m.p. 183— 184° , $[a]_0^{14}$ $0^\circ + 3^\circ$ in COMe₂, which is oxidised (CrO₃ in AcOH at 20°) to 17a-methyl-D-homoætiocholan-3-one (VI), m.p. 116— 117° , $[a]_0^{12} + 17^\circ \pm 2^\circ$ in COMe₂. (VI) is transformed by Br-AcOH followed by boiling C_6 H₈N into 17a-methyl-D-homo- Δ^4 -ætiocholen-3-one, m.p. 132— 134° , reduced to 17a-methyl-D-homo- Δ^4 -ætiocholen-3-one, (VII), m.p. 180° . Hydrogenation and subsequent oxidation of 17a-methyl-D-homo- Δ^4 -17-androstadien-3-one affords (VI) and (VII). M.p. are corr. (block). Limit of error $\pm 2^\circ$. (VI) and (VII). M.p. are corr. (block). Limit of error $\pm 2^{\circ}$. H. W.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Diterpenes. Synthesis of 3:6-dimethyl-1-150 propylacenaphthene and of 1:5-dimethyl-2-naphthol.—See A., 1944, II, 124.

Synthesis of tricyclenone. S. S. Nametkin and A. S. Zabrodina (Compt. rend. Acad. Sci. U.R.S.S., 1942, 36, 142—144).—Bornylenol (I) (Nametkin et al., A., 1938, II, 148) is oxidised (CrO₃ in AcOH) to tricyclenone (II), m.p. 111—112° [semicarbazone (III), m.p. 214—215°]. (III) is converted by NaOEt-EtOH at 160—170° into tricyclene, m.p. 62—63·5°, further identified by hydration (glacial AcOH containing a little 50% H₂SO₄) to isoborneol (phenylurethane, m.p. 139°). A mechanism of formation of (II) from (I) is suggested but it is also possible that (I) is actually tricyclenol. H. W.

VI.—HETEROCYCLIC.

Reaction between lactones and the Grignard reagent. II. Intermediate stages of the reaction. T. A. Geissman and E. Baumgarten (J. Amer. Chem. Soc., 1943, 65, 2135—2136; cf. A., 1941, II, 201).—2: 3-Diphenylchromen-2-ol (prep. from the 3-phenylflavylium ferrichloride by Et₂O-H₂O), m.p. 122—122·5°, with MgPhBr in Et₂O gives 2: 3: 4-triphenylchroman-2-ol (72%), m.p. 158·5—159°, dehydrated by H₃PO₄-AcOH to 2: 3: 4-triphenyl- Δ^2 -chromene, m.p. 129—129·5° (lit., 131°) (cf. A., 1940, II, 313). Reaction thus proceeds by way of o-C₆H₄·CPh-CPh·OMgBr \rightarrow o-OMgBr·C₆H₄·CH:CPh·COPh \rightarrow o-OMgBr·C₆H₄·CH:CPh·CPh·CPh·OMgBr. No chromenol could be obtained from flavylium perchlorate, but 4-phenylflavylium ferrichloride in aq. COMc₂ gives 2: 4-diphenylchroman-2-ol, m.p. 68—71° (immediate) or 136—138° (slow heating). With MgPhBr this gives o-OH·C₆H₄·CPh:CH·COPh (I) and 2: 3: 4-triphenyl- Δ^2 -chromene [also obtained from (I) by hot AcOH].

4-Hydroxy-2-methyl-5: 6-benzcoumaran.—See A., 1944, II, 128.

Chromans.—See B., 1944, II, 101.

Photo-reactions, VII. Reactions in sunlight involving (a) rupture of the ethane linking, (b) dehydrogenation effected by quimone and benzophenone derivatives, and (c) addition reactions between ketones and methanes. A. Schonberg and A. Mustafa (J.C.S., 1944, 67—71; cf. A., 1943, II, 265).—Reduction of CO(C₆H₄R-p)₂ (R = Cl or OMe) in Pr^oOH and sunlight (in 15 or 30 days, respectively) to the corresponding pinacols occurs. The reverse reaction is illustrated when xanthopinacol (I) or fluorenopinacol is photochemically transformed (in COMe₂ in 31 days) into Pr⁰OH and xanthone (II) or fluorenone, respectively; the mechanism of the rupture of the C-C linking is discussed. Photo-oxidation of (OH-CPhMe)₂ (40 days), (OH-CR₂)₂ (III) [R = Ph (14 days), p-C₆H₄·OMe (31 days), p-C₆H₄Mc (10 days), or p-C₆H₄Cl (20 days)], 9:10-dihydroxy-9:10-diphenyldihydrophenanthrene (IV) (4 days), and 7:8-diphenylacenaphthene glycol (V) (7 days) in C₆H₆ with p-O:C₆H₄·O,C₆H₄(OH)₂. (V) or (VI) yields (o-C₆H₄B₂)₂ or 1:8-C₁₀H₆B₂, respectively. (I) and (VI) give an excellent yield of (II). CPh₂·OH does not react with (VI) in C₆H₆ in sunlight in COMe₂ (1 month) into the corresponding pinacol + Pr⁰OH. CH₂Ph₂ and (VI), after exposure for 1 month, yield quinhydrone and (CHPh₂)₂. Similarly, fluorene, xanthen (VII), anthrone, and dinaphthapyran afford diffuorenyl, dixanthylene), respectively. Photochemical action between COR₂ and CH₂K'₂ is either additive (OH-CR₂·CHR'₂) or affords (CR₂·OH)₂ and (CHR'₂)₂. Thus (VII) and (II) in a few hr. in C₆H₆ yield 9-hydroxydixanthyl, m.p. 194° (decomp.) (dehydrated by AcCl to dixanthylene), and (VII) and COPh₂ (10 days) yield diphenyl-9-xanthylcarbinol, m.p. 160° (dehydrated to oo'-oxidotetraphenylethylene). (CHPh₃)₂ is formed from CH₂Ph₂ and anthraquinone (6 months) or (II) (3 months): (II) and anthrone (1 month) give (IX). Dinaphthapyran and (II) (10 days in C₆H₆) give bisdinaphthaxanthen, m.p. >300°.

Synthesis of a second isomeric form of 3; 4-diaminotetrahydrothiophen. G. W. Kilmer and H. McKennis (J. Biol. Chem., 1944, 152, 103—111).—(;CH·CH₂·OAc)₂ and Br in CHCl₃ at -30° to -40° give (CHBr·CH₂·OAc)₂ (I), m.p. 84—85°, which with HCl-MeOH at 45—47° affords (CHBr·CH₂·OH)₃, m.p. 131—131-5°. This is converted by o-C₆H₄(CO)₂NK in xylene at 170° into βy -diphthalimidobutane-a8-diol (II), m.p. 300—302°, slowly hydrolysed by

boiling 48% HBr to $\beta\gamma$ -diaminobutane-a\(\delta\)-diol dihydrobromide (III), incipient decomp. ~220\(^\ext{o}\), which gives a Bz_* derivative (IV), m.p. $208-209^\circ$ (dibenzoate, m.p. $203-204^\circ$). (III) is less advantageously obtained by converting (I) by $o\text{-}C_0H_4(\text{CO})_2\text{NK}$ in boiling xylene into $\beta\gamma$ -diphthalimido-a\(^\delta\)-diacetoxybutane, m.p. 250\(^\ext{o}\), transformed by boiling 48% HBr into (III) with some (?) β -bromo- γ -phthalimido-a\(^\delta\)-diacetoxybutane, m.p. 148—149\(^\delta\). Attempts to replace the OH groups of (II) by halogen by use of SOCl₂, PCl₅, or P + I were unpromising and the prep. of an a\(^\delta\-dihalogenobutane derivative from (III), (IV), or $\beta\gamma$ -di-p-bromobenzenesulphonamidobutane-a\(^\delta\-diol, m.p. 245—247\(^\delta\), y a variety of reagents was unsatisfactory. (III) does not react with PCl₅ in presence of AcCl and is largely unchanged by boiling 57\(^\delta\) HI. (III) is converted by aq. Ag₂SO₄ followed by conc. H.SO₄ at 140\(^\delta\) into $\beta\gamma$ -diamino-a\(^\delta\-butyl H_2 disulphate, decomp. >280\(^\delta\, which with aq. Na₂S at 140\(^\delta\ yields 3: 4-diamino-tetrahydrothiophen (isomeride B) (V) (Bz_2 , m.p. 238—239\(^\delta\, and Ac_4 derivative, m.p. 173—175\(^\delta\) or, after crystallisation from COMe₈, m.p. 135—141\(^\delta\) isolated as the dipicrate (VI), incipient decomp. 220\(^\delta\) (VI) is converted into the dihydrochloride, which when heated with 85\(^\delta\ H₂PO₄ at 400\(^\delta\ and then treated with Br in CCl₄ affords tetrabromothiophen. (V) differs from isomeride A (A., 1943, II, 44) in its derivatives and by its failure to yield a dibenzquin-oxaline derivative. It resembles A in its inability to give a cyclic carbamide under the conditions which lead to the resynthesis of biotin from 3: 4-diamino-2-tetrahydrothiophen-n-valeric acid.

Synthesis of 3-phenylpiperidines. C. F. Koelsch (J. Amer. Chem. Soc., 1943, 65, 2093—2095).—Hydrogenation (Raney Ni; 150°/200 atm.; EtOH) of CN·CHPh·[CH₂]₂·CO₂Me gives 5-phenyl-2-piperidone (88%), m.p. 127—129°, without formation of sec. bases. Na-Bu°OH then yields 3-phenylpiperidine (57%), m.p. 14—15°, b.p. 139—142°/19 mm. [Bz derivative, m.p. 89—90°; hydrochloride, m.p. 143—144° (lit., 146—147°)]. CN·CHPh·CHMe·CH₂·CO₂Et gives similarly 5-phenyl-4-methyl-2-piperidone, α-, m.p. 210—212°, and β-form, m.p. 89—92°, b.p. (both forms) 210—220°/10 mm., and thence 3-phenyl-4-methyl-1-piperidine, α-, m.p. 10°, b.p. 143—144°/22 mm. (hydrochloride, m.p. 189—190°; Bz derivative, m.p. 129—130°; picrate, m.p. 188—189°), and β-form, b.p. 151—153°/23 mm. (hydrochloride, m.p. 250—252°; Bz derivative, m.p. 100—101°; picrate, m.p. 217—218·5°). Similarly are obtained 5-phenyl-4: 4-dimethyl-, m.p. 167—169°, 4:5-diphenyl-, α-, m.p. 192—194°, and β-form, sinters 174°, m.p. 177—178°, and 4-carbethoxy-5-phenyl-2-piperidone, α-, m.p. 162—163°, b.p. 244°/9 mm., and β-form, m.p. 74—77°, 3-phenyl-4:4-dimethyl- (hydrochloride, m.p. 274—276°; Bz derivative, m.p. 108—110°), 3:4-diphenyl-piperidine, α-, m.p. 83—84°, b.p. 230—240°/23 mm. [hydrochloride, m.p. 197—199°; Bz, m.p. 138—139°, and 1-Me derivative, m.p. 79—80°, b.p. ~195°/15 mm. (hydrochloride, m.p. 203—206°)], and β-form, m.p. 115—116° (hydrochloride, m.p. 203—206°)], and β-form, m.p. 115—116° (hydrochloride, m.p. 205—206°)], and β-form, m.p. 159—160°, and 1-Me derivative, m.p. 54—57°, b.p. 200—210°/15 mm.), and 3-phenyl-piperidine-4-carboxylic [3-phenylisonipecotic] acid (1), sublimes ~360° (decomp.) [Me ester, m.p. 62-63° [hydrochloride, m.p. 253—255° (decomp.)]}. (1) is accompanied by 3-phenyl-4-piperidylcarbinol, sinters 98°, m.p. 110°, b.p. 215—218°/24 mm.

Halogenation of pyridine. S. M. McElvain and M. A. Goese (J. Amer. Chem. Soc., 1943, 65, 2227—2233).—Passing C₅H₅N (6) and Br (9 mols.) through a packed tube (cf. C., 1944, Part 2) at 500° gives 2-bromo- (I) (46%) (gives no quaternary salfs) and 2:6-dibromo-pyridine (17%) (cf. den Hertog et al., A., 1932, 522). Similar prep. of 3-bromopyridine (II) is slow, but C₅H₅N,HCl (2 mols.) and Br (1 mol.) give a perbromide which at 160—170° evolves HCl and at 195—200° gives (apparatus: C., loc. cit.) (II) (37%) and 3:5-dibromopyridine (26%) (methiodide, m.p. 273—274°; metho-ptoluenesulphonate, m.p. 219—221°) (cf. A., 1929, 577). (II) gives a hydrochloride, m.p. 158—159°, methiodide, m.p. 164—165°, and metho-p-toluenesulphonate, m.p. 156—157°. C₅H₅N and Br give exothermally a cryst. perbromide (III), which at 250—260° gives black material (~50%), a fraction (A) (27%) containing (II), a small amount of 3:4-dibromopyridine, and ~2% of (I). When kept, (A) deposits successively salts, m.p. 165—167° (~20% of ionic Br) and ~300° (~32% of ionic Br). C₅H₅N, HBr gives a perbromide which undergoes autobromination at 230—250°; the sulphate cannot be used. C₅H₅N, HCl slowly gives a semi-solid perchloride, which loses Cl at >100° and at 160—180° gives ~4% each of 3-chloro- and 3:5-dichloro-pyridine. C₅H₅N, HCl (1.5 mols.) and I (0.75 mol.) give a stable periodide, m.p. ~150°, which at 280—290° gives 37% of pentaiodopyridine. Methylpyridine hydrochlorides give perbromides which at >135° give black polymers, but the 2-Me derivative (IV) at 120—130° gives very slowly 3% of 5-bromo-2-methylpyridine, D.p. 73—74°/17 mm. 2-Methylpyridine and (IV) give black polymers.

Sulphonation of pyridine and picolines. S. M. McElvain and M. A. Goese (J. Amer. Chem. Soc., 1943, 65, 2233—2236).—At 220—230° 20—22% oleum with $C_{\rm g}H_{\rm g}N$ gives pyridine-3-sulphonic acid (71%)

in 24 hr.), m.p. $352-356^\circ$ (block), and with 2-, 3-, and 4-methylpyridine gives, respectively, 6- (60% in 24 hr.), darkens 318° , m.p. $338-341^\circ$ (block), 5- (23% in 16 hr.), darkens 308° , m.p. $312-314^\circ$ (block), and 4-methylpyridine-3-sulphonic acid (40% in 8 hr.), darkens 310° , m.p. $353-355^\circ$ (block). The Na salts of these acids with NaCN at $340-400^\circ$ give nicotinonitrile (46%), m.p. $49-50^\circ$, 6- (8%), m.p. $84-85^\circ$ (lit. 58°), 5- (35%), m.p. $83-84^\circ$, and 4-methylpyridine-3-nitrile (12%), m.p. $43-44^\circ$ (and much C_5H_5N etc.), hydrolysed to the appropriate acids.

Hydrolysis of nicotinonitrile by ammonia. C. F. Krewson and J. F. Couch (J. Amer. Chem. Soc., 1943, 65, 2256—2257).—Nicotinonitrile and conc. aq. NH₃ at $107-109^{\circ}$ (bomb) give nicotinamide (72·66—98·93%) and a small amount of acid. Addition of NaOH yields more acid. H₂O₂-NH₂ gives 94—96% yields more quickly. H₄O₂-NaOH at 50° give 89—93% of less pure amide. R. S. C.

Azo-dyes. H. Preparation and bacteriostatic properties of azo-derivatives of 8-hydroxyquinoline. R. N. Shreve and R. B. Bennett (J. Amer. Chem. Soc., 1943, 65, 2243—2245; cf. A., 1944, II, 111).—5-Arylazo-8-hydroxyquinolines (figures in parentheses are m.p. of the hydrochlorides) are prepared in which aryl = Ph, m.p. 172·4° (lit. 174°) (202°), o-, m.p. 211·6° (241·2°), m-, m.p. 192·2° (236·6°), and p-C₆H₄Cl, m.p. 232·8° (238·7°), 2:5:1-C₆H₃Cl₂, m.p. 246·8° (239·3°), o-, m.p. 178·1° (213·2°), m-, m.p. 167·8° (226·1°), and p-tolyl, m.p. 189·1° (lit. 185—186°) (sinters 207°), 1:3:2-C₆H₃Me₂, m.p. 196·5° (223·3°), o-, m.p. 221·1° (206·6°), m-, m.p. 249·4° (221·3°), and p-NO₂·C₆H₄, m.p. 283·5° (lit. 281°) (225·8°), o-, m.p. 219·2° (228·4°), m-, m.p. 250° (sinters 198°), m-, m.p. 256° (decomp. >300°), and p-CO₂H-C₆H₄, m.p. 287·7° (decomp. >300°), p-AsO₃H··C₆H₄, m.p. 235·4° (219·8°), p-p'-NH₄·C₆H₄·C₆H₄, sinters 265° (decomp. >300°), 4'-amino-3:3'-dimethoxydiphenylyl-4-, m.p. 285·6° (decomp. >300°), m- and p-SO₄H-C₆H₄, 1:4-, 1:2-, and 6:2-SO₃H·C₁₀H₆, and 1:3:6:8-OH·C₁₀H₄(SO₃H)₃, decomp. >300° (decomp. >300°), is also prepared. Solubilities of the bases in 95% EtOH and of the hydrochlorides in (CH₂·OH)₂ and 0·1n-HCl are recorded. For bacteriostatic properties see A., 1944, III, 295.

R. S. C.

Barbiturates containing the Δ²-cyclopentenyl group. A. P.
Centolella, J. W. Nelson, and H. G. Kolloff (J. Amer. Chem. Soc., 1943, 65, 2091—2092).—The following are prepared. Et, Δ²-cyclopentenylalkylmalonates, in which alkyl = Me, b.p. 138—142°/19 mm., Et, b.p. 141—146°/12 mm., Prα, b.p. 158—163°/25 mm., Buβ, b.p. 158—163°/7 mm., allyl, b.p. 149—155°/16 mm., iso-, b.p. 138—140°/7 mm., and n-propenyl, b.p. 146—152°/11 mm., and β-methylallyl, b.p. 157—161°/18 mm.; 5-Δ²-cyclopentenyl-5-ethyl-, m.p. 160—161°, -5-n-propyl-, m.p. 147—148°, -5-propenyl-, m.p. 186—188°, -5-allyl- (I), m.p. 139—140°, -5-isopropenyl-, m.p. 136—137°, -5-β-bromoallyl-, m.p. 192—193°, -5-β-methylallyl-, m.p. 168—169°, and -5-isobutyl-barbituric acid, m.p. 171—172°; 5-Δ²-cyclopentenyl-5-ethyl-, m.p. 194—195°, -5-n-propyl-, m.p. 126—127°, -5-β-bromoallyl-, m.p. 206—207°, -5-β-methylallyl-, m.p. 178—180°, and -5-isobutyl-thiobarbituric acid, m.p. 150—151°; 5-Δ²-cyclopentenyl-1: 5-dimethylbarbituric acid, m.p. 138—139°; 5-Δ²-cyclopentenyl-1-methyl-5-ethyl-, m.p. 117—118°, -5-n-propyl-, m.p. 104—105°, -5-allyl-, m.p. 96—97°, -5-isopropenyl-, m.p. 137—139°, -5-β-bromoallyl-, m.p. 139—141°, -5-β-methylallyl-, m.p. 137—139°, -5-β-bromoallyl-, m.p. 139—141°, -5-β-methylallyl-, m.p. 137—139°, -5-β-bromoallyl-, m.p. 139—141°, -5-β-methylallyl-, m.p. 132—133°, and -5-isobutyl-barbituric acid, m.p. 150—151°. The min. effective and lethal doses, the induction period, and duration of anæsthesia of these acids are recorded. (I) is the most promising compound.

R. S. C.

Pyrazole compounds. V. Acylation of 3-hydroxy-l-phenyl-5-

Pyrazole compounds. V. Acylation of 3-hydroxy-1-phenyl-5-pyrazoloneimide. A. Weissberger and H. D. Porter (J. Amer. Chem. Soc., 1943, 65, 2180—2183; cf. A., 1944, II, 58).—5-Amino-3-hydroxy-1-phenyl-5-pyrazoline (I) in Ac₂O at 100° gives 5-imino-3-acetoxy-4-acetyl-1-phenylpyrazoline (II) (25%), m.p. 192—193°, and 5-acetimido-3-hydroxy-1-phenylpyrazoline (III) (14%), m.p. 233—234°. 2% NaOH at room temp. hydrolyses (II) to 5-imino-3-hydroxy-4-acetyl-1-phenylpyrazoline (86%), m.p. 233—234°, which is stable in hot 10% NaOH but in Ac₂O at 100° regenerates (II). With C₅H₅N in Ac₂O at 100° (I) gives 5-acetimido-2-acetyl-3-acetoxy-1-phenyl-\Delta^3-pyrazoline (72%), m.p. 83—84°, converted slowly into (I) by 10% NaOH at 100° and by 2% NaOH at room temp. into (III). Adding BzCl to (I) and C₅H₅N in dioxan at 100° gives 5-imino-3-benzoyloxy-1-phenylpyrazoline (IV) (35%), m.p. 105—106°, and 5-benzimido-3-benzoyloxy-1-phenylpyrazoline (IV) (10%), m.p. 193—194°, but an excess of BzCl and C₅H₅N yields 75% of (V). NaOH in aq. EtOH at room temp. hydrolyses (V) to 5-benzimido-3-hydroxy-1-phenylpyrazoline (VI), m.p. 237—238°, or (IV) or (I); aq. NaOH converts (V) into (VI) and then into (I). Further benzoylation of (IV) or (VI) gives (V).

Pyridine and pyrazole derivatives.—See B., 1944, II, 101. Pyridylquinolines.—See B., 1944, II, 102.

Keten acetals. XII. Reaction of keten diethyl acetal with diazonium salts. S. M. McElvain and A. Jelinek (*J. Amer. Chem. Soc.*, 1943, 65, 2236—2239; cf. A., 1943, II, 79).—PhN₂Cl (0·11) and

CH₂:C(OEt)₂ (I) (0·5 mol.) at the b.p. give EtCl (62%), N₂ (7%), 4-ethoxy-1-phenylpyridaz-6-one, NPh<CO·CH>C·OEt (35%), m.p. 125—126° (Sonn, A., 1935, 990, m.p. 124—125°) [hydrolysed by NaOH in boiling 75% EtOH to the OH-derivative, m.p. 229—230° (loc. cit., 221—222°), EtOAc, CMe(OEt), CHEtAcCO₂Et, and dimerides of (I). b-OEt·C₆H₄·N₂Cl and (I) give di-p-anisylformazyl formate, b-OEt·C₆H₄·NH·N·C(CO₂Et)·N·N·C₆H₄·OEt-p (27%), m.p. 130—131, and 4-ethoxy-1-p-anisylpyridaz-6-one (25%), m. 159—160°, b-NO₂·C₄H₂·NCl and (I) give 4-ethoxy-1-p-anisydphamul-1-p-anisydpham 130—131, and 4-ethoxy-1-p-anisylpyridaz-0-one (20%), m.p. 109—160°. p-NO₂·C₆H₄·N₆Cl and (I) give 4-ethoxy-1-p-nitrophenylpyridaz-6-one (II) (25%), m.p. 249—250°, and impure Et p-nitrophenzoylformate-p-nitrophenylhydrazone, darkens 150°, decomp. 183—185°. p-CO₂Et·C₆H₄·N₂Cl and (I) give 4-ethoxy-1-p-carbethoxyphenylhydrazone (1·2%), m.p. 131—132°, and Et glyoxylate-p-carbethoxyphenylhydrazone (1·2%), m.p. 92—93°. 4-Hydroxy-3-carboxy-1-p-nitrophenylpyridaz-6-one (III) in Ph₂O at 250° gives CO₂ and 4-hydroxy-1-p-nitrophenylbyridaz-6-one (IV) (76%), m.p. 3-carboxy-1-p-intropneny, hydraz-6-one (II) in Fn₂O at 250 gives CO₂ and 4-hydroxy-1-p-nitrophenylpyridaz-6-one (IV) (76%), m.p. 299—300°, which with 1 equiv. each of NaOEt and EtI gives (II). Hydrogenation (Raney Ni; H₂O; 50°/500 lb.) of the Na salts of (III) and (IV) gives 4-hydroxy-3-carboxy- (65%), m.p. 297—299° (gas), and 4-hydroxy-1-p-aminophenylpyridaz-6-one (60%), m.p. 250—251°, respectively.

Derivatives of 4-pyrimidylacetic acid. D. E. Worrall (J. Amer. Chem. Soc., 1943, 65, 2053—2054).—2-Imino-6-keto-1:2:3:6-tetrahydro-4-pyrimidylacetic acid, m.p. 189—190° (decomp.), is obtained from NH:C(NH₂)₂,H₂CO₃ and CO(CH₂·CO₂Et)₂ in boiling EtOH (cf. A., 1918, i, 409). It gives salts with mineral acids, alkalis, and NH₃. With HCl-MeOH it gives the Me ester, m.p. 192—193° (decomp.) (hydrochlorids) with corp. NH gives arians, and NH₃. With McI-MeOH it gives the the ester, in.p. 192—193° (decomp.) (hydrochloride), with conc. NH₂ gives the amide, m.p. >285° (decomp.), with HCI-OH-[CH₂]₂·Cl gives the Ch-[CH₂]₂ ester, m.p. 164°, with boiling NaOH-Mel-EtOH gives the 1-Me derivative, m.p. 256—258° (decomp.), and with conc. HNO₂ gives a nitrate, which by evaporation at 100° gives a NO₂-and thence (Sn-HCl) the 5-NH₂-acid, m.p. indefinite (decomp.). With Rr-AcOH it gives the 5-Rr acid, m.p. indefinite (hydrochromide). With Br-AcOH it gives the 5-Br-acid, m.p. indefinite (hydrobromide, m.p. indefinite).

Preparation of octahydrophenazone. M. A. Phillips (Chem. and Ind., 1944, 129).—2-Chlorocyclohexanone, NH₃ (d 0.88), and EtOH at 100°, in a sealed tube or on a water-bath in a current of CO₂, afford octahydrophenazone, m.p. 108° (hydrochloride, m.p. 147-150°).

A. T. P. 150°).

ωω'-Dimethionine,-See A., 1944, II, 122.

5-Ethyl-5-2'-pyridylbarbituric acid. S. M. McElvain and M. A. Goese (J. Amer. Chem. Soc., 1943, 65, 2226—2227).—Et, 2-pyridyl-malonate, CO(NH₂)₂, and NaOBu⁷ in boiling Bu⁷OH give a-2-pyridylbutyrylcarbamide (55%), m.p. 122—123°, and 5-2'-pyridyl-5-ethylbarbituric acid (I) (10%), m.p. 257—258° (cf. A., 1935, 1504). (I) has no hypnotic or anæsthetic action (rats).

R. S. C.

Polynuclear, condensed systems with heterocyclic rings. Attempted ring-closure with 1-phenyl-1:2:3-triazole-4:5-dicarboxylic acid. W. Borsche, H. Hahn, and M. Wagner-Roemmich (Annalen, 1943, 554, 15—23).—1-Phenyl-1:2:3-triazole-4:5-dicarboxylic acid (I) (Me₂ ester, m.p. 127°), obtained by the oxidation of 1-phenyl-5-methyl-1:2:3-triazole-4-carboxylic acid (II) by KMnO₂, is converted by SOCl₂ into the dichloride, m.p. 40° [corresponding diswilled m.p. 255°); this is transformed by AICl (corresponding dianilide, m.p. 255°); this is transformed by AlCl₃ and C₆H₆ into 4-benzoyl-1-phenyl-1:2:3-triazole, m.p. 125° (2:4dinitrophenylhydrazone, m.p. $254-255^\circ$). Et₂ 1-phenyl-1: 2: 3-triazole-4: 5-dicarboxylate, powdered Na, and EtOAc at 100° afford Et β -keto- β -4-1-phenyl-1: 2: 3-triazolylpropionate, m.p. 115° (2: 4-dinotrophenylhydrazone, m.p. $235-236^\circ$), which gives a dark red colour with FeCl₃ in EtOH and is hydrolysed by N-KOH-EtOH to colour with FeCl₃ in EtOH and is hydrolysed by N-KOH-EtOH to (II); it is converted by H₂O at 124—130° or by boiling NaOH-EtOH into 4-acetyl-1-phenyl-1:2:3-triazole, m.p. 113° (2:4-dinitrophenylhydrazone, m.p. 251—252°). Me₂ 1-phenyl-1:2:3-triazole-4:5-dicarboxylate, COPhMe, and powdered Na in boiling C₈H₈ give 4-benzoylacetyl-1-phenyl-1:2:3-triazole, m.p. 169—170°, which gives a dark red colour with FeCl₃ and a blue-green ppt. with Cu(OAc)₂. (I) is converted by SOCl₂ into the cryst. chloride (corresponding anilide, m.p. 150°) and thence by AlCl₃ in C₆H₆ into 4-benzoyl-1-phenyl-5-methyl-1:2:3-triazole (2:4-dinitrophenylhydrazone, m.p. 246°). Et1-phenyl-5-methyl-1:2:3-triazole-4-carboxyl-ate, m.p. 60°, EtOAc, and Na powder at 100° alone and subsequently in presence of C₈H₈ afford 4-acetyl-1-phenyl-5-methyl-1:2:3-triazole,

(III.) CO NPh (III), m.p. 255 256°.

in presence of C₂H₅ afford 4-acetyl-1-phenyl-5-methyl-1: 2: 3-triazole, m.p. 99—100° (2: 4-dinitrophenylhydrazone, m.p. 211°). (I) is transformed by HCl-EtOH at room temp. followed by vac.-distillation into Et 1-phenyl-1: 2: 3-triazole-4-carboxylate, b.p. 210°/22 mm., m.p. 88°. 4-Hydroxy-1-phenyl-1: 2: 3-triazo-5: 6-benzoindene (A., 1939, II, 229) couples with diazotised p-toluidine in N-KOH-MeOH to give 4-hydroxy-7-p-tolueneazo-1-phenyl-1:2:3-triaza-5:6-benzoindene, m.p. 210° (decomp.), converted by glycerol and \$2% H₂SO₄ at 150° into 9-keto-7:8-azimido-1'-phenylperinaphthindene

aβyδ-Tetraphenylchlorin. M. Calvin, R. H. Ball, and S. Aronov (J. Amer. Chem. Soc., 1943, 65, 2259).—The "tetraphenylporphin" of Rothemund (A., 1940, II, 27) contains a porphyrin A and a chlorin B (cf. Aronov et al., A., 1943, II, 343). Zn(OAc), in boiling n-C₆H₁₃·OH (I) converts A into its Zn salt (absorption max. at 555, 596, and 518 m μ .), reduced by Na to the phosphorescent Zn salt (absorption max. at 620, 600, and 559 m μ .) of B, which gives a green hydrochloride. Cu(OAc)₂ in (I) converts B into its Cu salt (absorption max. at 536 and 615 m μ .), whence O₂ yields the Cu salt (absorption max. at 538 m μ .) of A.

Reaction of o-quinoneimmes with alkylidenebisamines and hydrobenzamide. G. McCoy and A. R. Day (J. Amer. Chem. Soc., 1943, 65, 2157—2159).—Retenequinoneimine with benzylidenebispiperidine (I) in boiling EtOH gives 2-phenylreteneoxazole (II) (100%), with methylenebismorpholine (III) gives 2-morpholinoreteneoxazole (86%), and with hydrobenzamide (IV) (0.33 mol.) gives (II) (92.5%). HCl and (IV) in Et₂O give CHPh(NH₂)₂,HCl (2 equivs.). Phenanthraquinoneimine with (I) or (IV) gives 2-phenylphenanthroxazole (98 and 86%, respectively) and with (III) gives 2-morpholinophenanthroxazole (51%). Reaction mechanisms are proposed.

o-Condensations which lead to oxazole or iminazole formation. G. McCoy and A. R. Day (J. Amer. Chem. Soc., 1943, 65, 2159—2162).—Oxazoles are formed from compounds containing •CX:C•N:CYR (A) when X = OH and Y = H, OH, NH_2 , NHR, NR_2 , or N:CHAr. Glyoxalines are formed when $X = NH_2$ and Y = H, OH, NH_2 , NHR, or NR_2 , or X = NHR and Y = H. (A) is the common intermediate in many reactions. R. S. C.

2-Phenylthiazole-4: 5-dicarboxylic acid derivatives. E. Huntress and K. Pfister, tert. (J. Amer. Chem. Soc., 1943, 65, 2167—3169).—SH-CPh.NH and CO₂Et-CCl.C(OH)·CO₂Et in boiling EtOH give SH-CPh.'NH and CO₂Et-CCl:C(OH)-CO₂Et in boiling EtOH give Et₂ 2-phenylthiazole-4: 5-dicarboxylate (83%), m.p. 95-5—96-5°, whence hot KOH-MeOH gives K H 2-phenylthiazole-4: 5-dicarboxylate, m.p. 258—259·2° (decomp.), and then HCl gives the dicarboxylic acid (I), m.p. 190·3—190·8° (SOCl₂, not Ac₂O or AcCl, gives the anhydride, m.p. 200·3—202·3°). At 165—170° (I) gives 2-phenylthiazole-4-carboxylic acid (91·5%), m.p. 175·7—176·7° (also obtained from the K H salt at 200° and then 265° and from 2-phenyl-4-hydroxymethylthiazole by oxidation). With N₂H₄, H₂O in 95% EtOH at 100° (I) gives the divarazide sinters ~200° mp. 95% EtOH at 100° (I) gives the dihydrazide, sinters ~200°, m.p. 349.5—351.5° [(CMe^*)₂ derivative, m.p. 252.9—253.2°], but on longer heating yields the cyclohydrazide, m.p. 348.5—350.5° (decomp.), which is not chemiluminescent with K_3 Fe(CN)₆-alkali- H_2 O₂. SH·CPh:NH and CHO·CHCl·CO₂Et (or the Na salt) in boiling EtOH give Et 2-phenylthiazole-5-carboxylate (37%), m.p. 64.8—65.8°, and thence the acid, m.p. 192—193° (gas) (chloride, m.p. 125.3—126.5°; amide, m.p. 213.7—214.5°). M.p. are corr. (block). R. S. C.

Oxidation of 2-aminobenzthiazoles. W. Kirk, jun., J. R. Johnson, and A. T. Blomquist (*J. Org. Chem.*, 1943, 8, 557—563).—The appropriate 2-aminobenzthiazole is oxidised by NaOCl in H₂Odioxan at room temp. to 2-azobenzthiazole (I), m.p. 295° (decomp.), and its 6: 6'-dimethyl, m.p. 319° (decomp.), 6: 6'-dichloro-, m.p. 348° (decomp.), 6:6'-dibromo-, m.p. 338° (decomp.), 6:6'-diethoxy-, m.p. 290° (decomp.), and 4:4-dimethyl, m.p. 301° (decomp.), derivatives. These compounds are also obtained by the action of Na₂SnO₂ on 2-nitro- (II), m.p. 157—158°, 2-nitro-6-methyl-, m.p. 131—132°, 2-nitro-6-ethoxy-, m.p. 151—152°, 6-chloro-2-nitro-, m.p. 160—161°, 6-bromo-2-nitro-, m.p. 179—180°, and 2-nitro-4-methyl-, m.p. 152—153°, -benzthiazole prepared according to the scheme:

 $C_6H_3R \stackrel{S}{<_N} C \cdot NH_2 \rightarrow C_6H_3R \stackrel{S}{<_N} C \cdot N_2BF_4 \rightarrow (NaNO_2 + Cu)$ $C_6H_3R < N > C \cdot NO_2$. The structure of the NO_2 -compounds is confirmed by reducing them to NH₂-derivatives identified as their Ac derivatives. Reduction of the NO₂-compounds by glucose affords 6:6'-dimethyl-, m.p. 314° (decomp.), 6:6'-dichloro-, m.p. 344° (decomp.), 6:6'-diethoxy-, m.p. 272° (decomp.), and 4:4'-dimethyl-, m.p. 293° (decomp.), 2-azoxybenztriazole; (II) similarly gives (I). M.p. are block.

Benzthiazoles etc. See B., 1944, II, 122.

Photochemical synthesis of vitachromes for vital staining.—See A., 1944, III, 237.

2:4-Diamino-5-(4'-methyl-5'- β -hydroxyethylthiazolium chloride)-2:4-Diamino-5-(4-methyl-5-p-nydroxyetnyltmazonum enorace)-methylpyrimidine hydrochloride, a new analogue of aneurin. W. Huber (J. Amer. Chem. Soc., 1943, 65, 2222—2226).—OEt·CH:C(CN)₂ [modified prep. from CH₂(CN)₂, CH(OEt)₃, and Ac₂O at 110—95°; 72·6% yield], m.p. 67—68°, and guanidine (prep. from the nitrate in situ) in EtOH at <15° (cooling) give 2:4-diamino-b-cyano-pyrimidine (54%), m.p. 318° (decomp.) [monohydrochloride, m.p. >360°; picrate, m.p. 281—283° (decomp.)], which with boiling Ac.O gives the Ac. m.p. 238°, with Ac.O at 200° gives the Ac. Ac₂O gives the Ac_1 , m.p. 238°, with Ac₂O at 200° gives the Ac_5 derivative, m.p. 197—198°, and with H₂-NH₃-MeOH-Raney Ni at room temp./60 lb. (or 200 lb.; less well, PtO₂ or Pd-ZrO₂) gives 2:4-diamino-5-aminomethylpyrimidine (81%) [dihydrochloride (I), m.p. 278—280° (decomp.)], and some di-(2: 4-diamino-5-pyrimidylmethyl)amine [tetrahydrochloride (II), m.p. 357° (decomp.); obtained as sole product by Pd-ZrO_{*} in aq. HCl]. Neutralisation of (II) in H_{*}O by 10% NaOH gives NH₃ and 2: 4-diamino-5-hydroxymethylpyrimidine (90%), m.p. 265° (decomp.) [hydrochloride, m.p. 327° (decomp.); picrate, m.p. 244—246° (decomp.)]. Treating (I) in H₂O with aq. K₂CO₃ and then aq. HCS₂K at <15° gives 2: 4-diamino-5-hioformamidomethylpyrimidine (III) (86%), m.p. 181—182° (decomp.) [monohydrochloride, m.p. 205—206° (decomp.)]. CHAcBr·[CH₂]₂·OH (modified prep.; irritant) and (III) in HCO₂H at 40°, rising to 60°, give, after hydrolysis by 5% HCl at 40°, 3-2': 4'-diamino-5'-pyrimidylmethyl-4-methyl-5-β-hydroxyethylthiazolium chloride hydrochloride (IV), m.p. 245—247° [corresponding bromide hydrobromide, m.p. 214—216° (decomp.)]. 25-γ doses of (IV) have no vitamin-B₁ activity. Colorimetric analysis of (IV) is inaccurate (cf. C., 1944, Part 2). m.p. 278-280° (decomp.)], and some di-(2: 4-diamino-5-pyrimidyl-

VII.—ALKALOIDS.

Gelsemine. I. Degradation of gelsemine to 2:3-dimethylindole. L. Marion (Canad. J. Res., 1943, 21, B, 247—250).—Gelsemine, m.p. 179°, is degraded by soda-lime or black Se at 320° to a mixture of bases and neutral products in the latter of which the presence of 2: 3-dimethylindole (picrate, m.p. 153°) has been established. The bases afford picrates, m.p. 210° (softens somewhat at 202°) and m.p. 238° (decomp.) after softening, in quantity too small for investigation.

Alkaloids of Lycopodium species. IV. L. tristachyum, Pursh. L. Marion and R. H. F. Manske (Canad. J. Res., 1944, 22, B, 7-4).— The following alkaloids have been extracted from L. tristachyum, Pursh: nicotine; lycopodine, m.p. 116° (perchlorate, m.p. 279°); alkaloid L13 (perchlorate, C₁₆H₂₅ON,HClO₄, m.p. 274°), also found in L. obscurum; alkaloid L14 (perchlorate, C₁₆H₂₈N,HClO₄, m.p. 238°); alkaloid L15 (perchlorate, C₂₀H₃₁O₄N,HClO₄, m.p. 231). M.p. are corr.

Structure of monocrotaline. X. Monocrotalic acid. R. Adams and J. M. Wilkinson, jun. (J. Amer. Chem. Soc., 1943, 65, 2203—2208; cf. A., 1944, II, 87).—Contrary to previous views (A., 1940, II, 29), monocrotalic acid is probably (I). The Legal test, not

II, 29), monocrotalic acid is probably (I). The Legal test, not given by Me anhydromonocrotalate (II), is not sp. for βy-unsaturated γ-lactones. With boiling HCl-MeOH, (I) gives Me monocrotalate (III) (40%) and some (II). Further, (III) and its analogues in aq. NH₃ rapidly give the amides. Boiling SOCl. converts (I) into the chloride (IV), m.p. 145—146°, whence hot MeOH gives (III), but longer heating gives, after hydrolysis in air, anhydromonocrotalic acid, m.p. 115—117° (or sometimes an oil), [a]_D +196·0° in EtOH, hydrogenated (Raney Ni; Et₂O; 125°/2000 lb.) to the known H₂-acid (V). With CH₂N₂-Et₂O, (IV) gives the diazo-ketone, m.p. 132—134° (decomp.), which with Ag₂O etc. gives tars but with 1:1 conc. HCl-H₂O gives a Cl-ketone, m.p. 97—99°, the Cl of which resists H₂-Pd. Boiling HNO₃ (d 1·42) oxidises (I) to ('CMe·CO)₂O and a little Ac₂, but only AcOH is obtained by KMnO₄. In 16N. aq. NH₃, (III) gives monocrotalamide (VI), m.p. 209—211°; anhydro-, m.p. 146—147°, and dihydro-anhydro-monocrotalamide, softens 125°, m.p. 130—132°, are similarly prepared. Interaction of KCN with Me dihydroanhydromonocrotalamide. anhydro-monocrotalamide, softens 125°, m.p. 130—132°, are similarly prepared. Interaction of KCN with Me dihydroanhydromonocrotalate in H₂SO₄—MeOH (cf. Ranganathan, A., 1937, II, 398) gives, after hydrolysis, only a form, m.p. 111—112°, [a]₂²⁷—55·7° in EtOH, of (**V**). Et H cis-αβ-dimethylsuccinate (prep. from the anhydride by hot EtOH), b.p. 115—117°/3 mm., and PCl₅ at room temp. and then 100° give the acid chloride, b.p. 96—97°/15 mm., addition of which in Et₂O to CN·CHNa·CO₂Et-Et₂O gives Et₂β-keto-α-cyano-γδ-dimethyladipate (42%), b.p. 136—138°/2 mm., which did not yield (**VI**). CHAc:CH-CO₂Et, b.p. 65—67°/2 mm. (semicarbazone, m.p. 205—207°), CHMeBr·CO₂Et, and Zn in boiling C₆H₆-PhMe give (?) Et β-kydroxy-δ-carbethoxy-αβ-dimethyl-Δ^γ-pentenoate (30%), b.p. 121—122°/2 mm., stable to POCl₅ or P₂O₆-C₆H₆. M.p. are corr.

VIII.—ORGANO-METALLIC COMPOUNDS.

Organo-boron-nitrogen compounds. III. Reactions of p-anisidine. benzylamine, and nitrobenzene with boron chloride. C. R. Kinney and C. L. Mahoney (J. Org. Chem., 1943, 8, 526—531).—Gradual addition of BCl₃ to p-OMe·C₆H₄·NH₂·HCl (I) suspended in C₆H₆ at 0° and then at room temp. gives the salt (II), p-OMe·C₆H₄·NH₂·BCl₃, m.p. 108°, softens at 105° when slowly heated, m.p. 110° (decomp.),

softens at 105° when rapidly heated. In boiling C_6H_6 it loses 2 HCl with formation of trichlorotri-p-anisyltriboron nitride, RN $\stackrel{\text{BCl} \cdot NR}{\text{BCl} \ NR}$ BCl (R = p-C₆H₄·OMe) (also +1C₆H₆), m.p. 229— RN $\stackrel{>}{_{BCl\ NR}}$ >BCI (R = p-C₆H₄·OMe) (also + IC₆H₆), m.p. 229—235° (vac.; decomp.). This is hydrolysed by cold H₂O apparently to the corresponding OH-compound and by boiling H₂O completely to p-OMe·C₆H₄·NH₂ and H₃BO₃. When heated with an excess of the base BCl₃ yields B tri-p-anisidide, m.p. 124°, relatively stable in air but rapidly hydrolysed by boiling H₂O; with HCl in C₆H₆ it appears to give a mixture of (I) and (II). CH₂Ph·NH₂ and BCl₃ in dry C₆H₆ give a good yield of the additive product (III), m.p. 166—167°, decomp. '> 185°. On concentrating the C₆H₆ solution only a small quantity of needles which rapidly changed to plates separated in place of the expected trimeride. BCl₃ is converted by excess of CH₂Ph·NH₂ in boiling C₆H₆ into CH₂Ph·NH₃,HCl and a compound, m.p. 145°, containing N but not B or Cl; this last compound does not result in boiling xylene. $PhNO_2$,BCl₃, m.p. 45—47° in a sealed capillary, is obtained directly from its components; 47° in a sealed capillary, is obtained directly from its components; it is very sensitive to moist air.

Organic compounds of mercury. XXI. Properties and structure of mercury derivatives of acetylene. R. H. Freidlina (Bull. Acad. Sci. U.R.S.S., 1942, Cl. Sci. chim., 14-20).—The compounds, CHCl:CH·HgX (I), where X = Br, m.p. $121-122^\circ$; CN, m.p. $101-102^\circ$; OBz, m.p. $120-122^\circ$; ·CiCPh, m.p. $102-103^\circ$; ·N(CO) $_2$ C $_6$ H $_4$ - $_0$, m.p. $166-167^\circ$ (all with decomp. at m.p.), and Ac, no m.p., decomp. ~85°, are pptd. from the strongly alkaline solution [presumably containing (I) (X = OH)] obtained from an aq. suspension of (I) (X = Cl) and Ag $_2$ O. The complex, CHCl:CH·HgCl, C $_5$ H $_5$ N, m.p. 84° (decomp.), is formed from (I) (X = Cl) in EtOH. C_2 H $_2$ is liberated from (I) by the action of HCl, KI, KCN, and o-allylphenol, also from (I) (X = Cl, CN) on heating above the m.p. heating above the m.p.

IX.—PROTEINS.

Rate of liberation of cystine from proteins by acid hydrolysis. W. C. Hess and M. X. Sullivan (Arch. Biochem., 1943, 3, 53-60). Wool, finger nail, lactalbumin, gliadin, edestin, and a-globulin (lima bean) were hydrolysed with 20% HCl, 1:1 HCl-HCO₂H, and HI, and the liberated cystine was determined at intervals. The max. vals. for each protein were the same by the three reagents. No humin was formed with HI, but hydrolysis was slower with the HCl-HCO₂H than with HI or HCl. The hydrolysis of wool by HCl is a second-order reaction up to 90% liberation of cysting. The S in wool is probably combined in at least two forms, RS-SR and RSR'.

Cysteine, cystine, and methionine content of proteins. W. C. Hess and M. X. Sullivan (*J. Biol. Chem.*, 1943, 151, 635—642).—Practically all the S of 7 out of 10 unhydrolysed proteins is accounted for by cysteine (I), cystine, and methionine, whilst 85, 82, and 87% are accounted for in calf globin, edestin, and squash-seed globulin, respectively. Of the S of squash-seed globulin ~13% is lost during hydrolysis in an unknown form. Total SH in unhydrolysed protein agrees with the (I) determined in the acid hydrolysate, indicating that (I) complexes are present in the native protein. H. G. R.

Amino-acid yield from various animal and plant proteins after hydrolysis of fat-free tissue.—See A., 1944, III, 349.

Dispersion of keratins. II. Dispersion of keratins by reduction in neutral solutions of protein denaturants. C. B. Jones and D. K. Mecham (Arch. Biochem., 1943, 3, 193—202; cf. A., 1944, II, 88).—
Vals. are given for moisture, ash, N, S, cystine, and cysteine in the keratins from chicken and duck feathers, tortoise scutes, snake skin, cattle hoof and horn, wool, pig and human hair, and ovokeratin. The keratins are dispersed in neutral solution at 40° for 18 by by classing of their Sec. lishings by this classical statements. snake skin, cattle mon and norm, woo, pig and numan man, accovokeratin. The keratins are dispersed in neutral solution at 40° for 18 hr. by cleavage of their -S·S- linkings by thioglycol, SH·CH₂·CO₂H, or NaHSO₃, in presence of CO(NH₂), guanidine, NH₄CNS, HCO·NH₂, NH₂Ac, CS(NH₂)₂, or detergents of the Na alkyl sulphate type. The neutral keratin dispersions are clear liquids of low η . The dispersed protein is pptd. by MgSO₄ or (NH₄)₂SO₄, acidification, addition of protein precipitants, or by dialysis. In some cases increase of the pH val. to 8 causes pptn., whilst in others addition of H₂O has the same effect. The extent whilst in others addition of H₂O has the same effect. The extent of dispersion depends on the size of the keratin particles. The various keratins differ in their degree of dispersal in neutral solution, and also with particular combinations of reducing and dispersion are solutions are solved in their degree of dispersal in neutral solution, and also with particular combinations of reducing and dispersion are solved in the persing agents. Feather keratin is most readily dispersed in neutral solution, whilst ovokeratin is exceptionally resistant to dispersion not only in neutral solution, but also in alkaline reducing solutions. I. N. A.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II-Organic Chemistry.

JUNE, 1944.

I.—ALIPHATIC.

Fluorinated derivatives of propane. V. A. L. Henne and J. V. Flanagan (J. Amer. Chem. Soc., 1943, 65, 2362—2363; cf. A., 1942, II, 126).—HgO-HF (apparatus: C., 1944, Part 3) replaces Cl by F in C_3H_8 derivatives, including those containing H. In CCl_2RR' gradual change of R = Me to $R = CCl_3$ progressively hinders and finally prevents the changes, $CCl_2 \rightarrow CCl_F \rightarrow CF_2$. A central CF_2 usually has little effect on the ease of fluorination of an adjacent CCl_2 . I mol. of HgO suffices to introduce 2E = 10-12 mols of usually has little effect on the ease of fluorination of an adjacent CCl₃. I mol. of HgO suffices to introduce 2 F. 10—12 mols. of HF are used, the excess acting as solvent. The reactants, precooled to -78°, are mixed at -78° and left to warm up or heated for reaction. Recovery of Hg, best as HgO, is described. Yields may be up to 86%. CH₂Cl·CMeCl₂ at room temp. gives 51% of CH₂Cl·CMeF₂. CCl₂(CH₂Cl)₂ at 125° (6 hr.) gives aβγ-trichloro-β-fluoro-, m.p. -67·8°, b.p. 130·80°, and then aγ-dichloro-ββ-difluoro-propane (I), m.p. -30·04°, b.p. 96·69°, structures being proved by chlorination of (I) in light to aaγ-trichloro-ββ-difluoro-propane, m.p. -60·80°, b.p. 127·27°, and then CCl₃·CF₂·CH₂Cl, m.p. -17·13°, b.p. l51·18°, and CF₂(CCl₃)₂. CH₂Cl·CCl₂·CHCl₂ gives with decomp. a little monofluoride (not purified) and (?) CHClF·CClF·CH₂Cl, a glass. CCl₃·CMeCl₂ (II) [a commercial product, erroneously stated to be little monofluoride (not purified) and (?) CHČIF·CCIF·CH₂Cl, a glass. CCl₃·CMeCl₂ (II) [a commercial product, erroneously stated to be CHCl(CHCl₂)₂] at 100° gives a solid solution of CCl₃·CMeClF, m.p. 102·4°, b.p. 138·2·—138·6°, with a little CCl₂F·CMeCl₂; further fluorination of (II) gives aaβ-trichloro-aβ-difluoropropane, m.p. 27·6°, b.p. 97·7°, which is also obtained from CCl₃·CMeClF and with Cl₂ in light gives aaβγγγ-hexachloro-aβ-difluoropropane, m.p. -55°, b.p. 196·0°. CCl₃·CMeF₂ yields very readily 86% of a-chloro-aaββ-tetra-fluoropropane, m.p. -74·72°, b.p. 19·93°, which is very slowly chlorinated to CCl₃·CF₂·CClF₂ (III), m.p. -92·78°, b.p. 113·95°. CCl₃·CF₂·CH₂Cl yields at 135° (6—8 hr.) 50% of CClF₂·CF₂·CH₂Cl, m.p. -75·0°, b.p. 68·2°, readily converted into (III). CCl₂F·CF₂·CH₂Cl, m.p. -79·8°, b.p. 109·5°, and CCl₃·CHCl·CH₂Cl, b.p. 192·5—193°, are also reported.

R. S. CH

Use of semi-micro-technique in elementary organic chemistry. II. N. D. Cheronis, P. G. Arvan, and H. Teifeld (J. Chem. Educ., 1943, 20, 431—437; cf. A., 1939, II, 192).—Apparatus for ordinary, fractional, and steam distillations is described. The semi-microprep. of decane, cyclohexene, and BuaBr is given. L. S. T.

Ozonisation of terminal groups of saturated hydrocarbons of the aliphatic series.—See A., 1944, I, 131.

Photochemical chlorination and photochemical oxidation of tetrachloroethylene sensitised by chlorine.—Sec A., 1944, I, 132.

Unique polyene pigment of the marine diatom Navicula tor-quatum.—See A., 1944, III, 370.

Conjugated systems. XX. Reaction of chloroprene with iodine chloride. XXI. Reaction of $\alpha\beta$ -dichlorobutadiene with hypobromous acid and alkyl hypoiodites. Synthesis and properties of auchlorovinylethylene oxide and ap-dichloro-y-alkoxybutadienes. XXII. Order of addition of bromine to bromoprene. Synthesis and Roperties of αβ-dibromo-Δαγ-butadiene. A. A. Petrov (J. Gen. Chem. Russ., 1943, 13, 155—158, 230—236, 237—241).—XX. Chloroprene and ICl in CHCl₃ at -5° yield chiefly CHCl·CH·CHCl·CH₂I. XXI. CH₃:CH·CCl·CHCl (I) and aq. NHBrAc in 1% H₂SO₄ yield αβ-dichloro-δ-bromo-Δα-buten-γ-ol, b.p. 100—106°/10 mm. (acetate, bp. 109—112°/10 mm.), from which αβ-dichloro-γδ-oxido-Δα-butene, bp. 94—95.5°(85 mm. is obtained by distillation at 150° from 80°/2. bp. 109—112°/10 mm.), from which aβ-dichloro-γδ-oxido-Δα-butene, bp. 94—95-5°/85 mm., is obtained by distillation at 150° from 80%. OH. This with 50% H₂SO₄ at 60° yields aβ-dichloro-Δα-butene-β-diol, b.p. 135—136°/10 mm. (diacetate, b.p. 128·5—129°/10 mm.). (l) and I in MeOH or EtOH in presence of HgO afford aβ-dichloro-δ-20do-γ-methoxy-, b.p. 90—91·5°/5 mm., or -γ-ethoxy-Δα-butene, b.p. 94·5—95°/5 mm. (decomp.). These ethers are converted by heating with 20% KOH in EtOH into aβ-dichloro-γ-methoxy-, b.p. 90·5—91·5°/55 mm., or -γ-ethoxy-Δα-butene, b.p. 103·5—105°/85 mm., from which Me aβ-dichlorovinyl ketone, b.p. 61·5—62°/30 mm., is obtained by hydrolysis with 5% H₂SO₄ at 40°.

XXII. Bromoprene and Br in CHCl₃ at 10—15° yield aβ8-tri-oromo-Δβ-butene, b.p. 121—122°/10 mm. This with KOH in EtOH at 0° gives aβ-dibromo-Δα-butene, b.p. 46—46·5°/10 mm.; when the reaction is conducted in boiling solution (CH:C), is also produced.

Raman spectra of two forms of alloocimene.—See A., 1944, I, 118. G (A., II.)

Sesquiterpenes. LXI. Synthesis of an aliphatic sesquiterpene alcohol with irregular isoprene chain. H. Schinz and P. H. Muller (Helv. Chim. Acta, 1944, 27, 57—60; cf. A., 1943, II, 181, 182).— Geranylacetone, b.p. $126-130^{\circ}/11$ mm., condenses with 33% CH₂O and Ba(OH)₂,2H₂O in EtOH at 60° to a-hydroxymethylgeranylacetone (I), b.p. $122^{\circ}/0.15$ mm. [allophanate, m.p. $99-100^{\circ}$, from which (I) is not readily regenerated; non-cryst. semicarbazone], converted by MgMeI into $\beta \zeta_{\kappa}$ -trimethyl-i-hydroxymethyl- $\Delta^{\beta \zeta}$ -undecadien- κ -ol, b.p. $134-137^{\circ}/0.07$ mm. This is dehydrated by $o\text{-C}_{6}\text{H}_{4}(\text{CO})_{2}\text{O}$ at 180° with a short period at 190° to $\beta \zeta_{\kappa}$ -trimethyl-i-hydroxymethyl- $\Delta^{\beta \zeta_{\kappa}}$ -undecatriene, b.p. $88^{\circ}/0.02$ mm., $154^{\circ}/12$ mm., which absorbs 3 mols. of H, and has an odour reembling that of farnesol. H. W. mols. of H2 and has an odour reembling that of farnesol.

mols. of H₂ and has an odour reembling that of farnesol. H. W.

Interaction of hydroxy-compounds and phosphorus and thionyl halides in the absence and presence of tertiary bases. I. Optically active β-octanol, ethyl mandelate, and phenylmethylcarbinol. W. Gerrard (J.C.S., 1944, 85—90).—Addition of PCl₃ to (+)-β-octanol (I) and to (-)-OH-CHPh-CO₂Et (II) gives the chloride, RCl, and the H phosphite, P(OR)₂·OH. Reversed order of mixing gives the chlorophosphite, PCl₂·OR, which did not decompose to RCl. PCl₃ mixed with (-)-CHPhMe·OH (III) in either order gives (+)-CHPhMe·Cl (IV) without chlorophosphite. (-)-Tri-β-octyl phosphite and PCl₃ give an equilibrium mixture of the two chlorophosphites PCl₂·OR and PCl(OR)₂ and PCl₃. SOCl₂ mixed in either order with (I) and (II) gives an equilibrium mixture of the chlorosulphinate OR·SOCl (V), the sulphite R₂SO₃ (VI), and SOCl₂. SOCl₂ and (III) give only (IV). With C₅H₅N in Et₂O (I), (II), and (III) on addition of PCl₃ give the corresponding phosphites; with SOCl₂ (same conditions) (I) and (II) give the corresponding sulphites but (III) gives (IV) and no sulphite. (III) with Et chlorosulphinate gives (-)-α-phenylethyl Et sulphite, which with SOCl₂ gives the non-inverted CHPhMeCl. SOCl₂ and (+)-di-β-octyl sulphite give an equilibrium mixture of (V), (VI), and SOCl₂. Mechanisms depending on oriented collisions on the "front" or on the "back" of the asymmetric C are discussed. Compounds described include: (-)-β-octyloxy-phosphorus dichloride, b.p. 83—84°/2 mm. 118—119°/17 mm., a¹⁸/₁ -34·5°; (+)-di-β-octyl H₂ phosphite, a¹⁶/₁ +7·0; (+)-di-β-octyl H₂ phosphite, a¹⁶/₁ +7·0; (+)-di-β-octyl H phosphite, b.p. 138—140°/2 mm., a¹⁸/₁ +15·8°; (-)-tri-β-octyl H phosphite, b.p. 138—140°/2 mm., a¹⁹/₁ +124·1; (-)-α-phenylethyl Et sulphite, b.p. 218—221°/2 mm., a²⁹/₁ +124·1; (-)-α-phenylethyl Et sulphite, b.p. 93°/2—3 mm., a²⁹/₁ -94·5°. (Vals. of a are for l = 10 cm.).

Stabilisation of polysulphones towards heat. C

Stabilisation of polysulphones towards heat. C. S. Marvel and W. H. Sharkey (J. Org. Chem., 1944, 9, 113—116).—Polysulphones made from olefines containing a trace of CH₂:CH·CH₂Br (I) are much more stable towards heat than polysulphones made from pure olefines. The preformed polysulphone can also be treated with (I) to cause some stabilisation but the effect is less marked. The effect appears sp. for (I) and is not shown by CH₂:CH·CH₂CI, EtBr, CH₃:CH·CH₂OH, CH₂:CH·[CH₃]₂·Br, camphene, a-bromoheptene, undecylenyl bromide, CHPh:CHBr, CH₃:CH·CO₃Et, COEt·CH₃CI, CHCl₃, C₇H₁₅·SH, CCl₄, p-C₆H₄Br·CH₂Cl, CH₂PhCl, CH₂Ph·OH, furfuryl alcohol, furfurylacrylic acid, and chlorossodurene. Heattreatment of polysulphones appears to remove some of the readily decomposable material so that the residue is more stable towards heat. Dissolution and repptn. also improves the thermal stability to some extent. Presence of peroxides in polysulphones increases the amount of decomp. which occurs when they are heated. H. W.

Use of phenyl esters in the Reformatsky reaction.—See A., 1944, II, 162.

Union of gaseous oxygen with methyl oleate at 20° and 120°. D. Atherton and T. P. Hilditch (J.C.S., 1944, 105-107).—The products of autoxidation in O_2 of Me oleate are partly separated by adsorption on SiO_2 gel, and then oxidised $(KMnO_4$ in $COMe_2$) and the scission products examined. At 20° the main products are suberic (I), octoic (II), azelaic (III), and nonoic acids (IV), confirming peroxidation at the CH croups adjacent to the double linking (CI) farmer. A (II), azelaic (III), and nonoic acids (IV), connuming peroduction at the 'CH₂' groups adjacent to the double linking (cf. Farmer, A., 1943, I, 151). At 120°, only (III) and (IV) and a trace of (I) were isolated, with no (II), as well as more complex products, suggesting at the double linking.

D. G.

Normal aliphatic β-hydroxy- and α-keto-acids. F. Adickes and G. Andresen (Annalen, 1943, 555, 41—56).—The prep. of β -OH-acids by diazotisation of β -NH₂-acids could not be successfully accomby diazotisation of β-NH₂-acids could not be successfully accomplished and ozonisation of allylalkylcarbinols gives only poor yields. Condensation of the aldehydes with 2 fewer C atoms with CH₂Br-CO₂Et (Reformatzky) and hydrolysis of the esters gives the OH-acids in 10—12% yield. The following are described: β-hydroxy-valeric, m.p. 43—44° (Et ester, b.p. 83—85°/10 mm.); -hexoic, m.p. 13°; -heptoic, m.p. 40—41° (Et ester, b.p. 94—96°/5 mm.); -octoic, m.p. 38—38-5° (Et ester, b.p. 101—104°/5 mm.); -nonoic; -decoic, m.p. 56—56-5°; -undecoic, m.p. 73—73-5°, softens at 72°; -lauric acid, m.p. 70—70-5°, softens at 69°. a-CO-acids up to C₁₀ are obtained by prolonged condensation at room temp. (shortened by obtained by prolonged condensation at room temp. (shortened by boiling under a reflux condenser) of the requisite ester with Et₂C₂O₄ and NaOEt in Et₂O. For esters of higher mol. wt. KOEt in C₅H₅N is used as condensing agent. The esters are hydrolysed and decarboxylated by boiling HCl. Thus are obtained: a-ketovaleric, m.p. 6—7°, softens at 5° (Ba salt; Et a-ketovalerate 2:4-dinitrophenylhydrazone, m.p. 116—116-5°, softens at 115°); -hexoic, b.p. 101—102°/20 mm., m.p. 7—8° [Ba salt; oxime, m.p. 132—133° (decomp.), softens at 129°; phenylhydrazone, m.p. 84—86°, softens at 80°; Et a-ketokexoate 2:4-dinitrophenylhydrazone, m.p. 117—118°, softens at 114°]; -isohexoic, b.p. 92—94°/20 mm.; -heptoic, m.p. 29—30° (Ba salt; oxime, m.p. 126—127°, softens at 125°; phenylhydrazone, m.p. 102—103°; Et ester, b.p. 87—88°/8 mm., and its 2:4-dinitrophenylhydrazone, m.p. 102—103°); -octoic, m.p. 32—33°, b.p. 118—123°/13 mm., 104°/6 mm.; -nonoic, m.p. obtained by prolonged condensation at room temp. (shortened by m.p. 32-33°, b.p. 118-123°/13 mm., 104°/6 mm.; -nonoic, m.p. 13. 43. 44°, softens at 42° (Na salt; oxime, m.p. 98.—98.5°, softens at 97°; Ei a-ketononoate 2:4-dinitrophenylhydrazone, m.p. 86.—87°, softens at 85°); -decoic, m.p. 46.—47°, b.p. 148.—151°/18 mm. (oxime, m.p. 85.—86°, softens at 80°; 2:4-dinitrophenylhydrazone, m.p. 134°, softens at 132°); -undecoic, m.p. 55°, softens at 52°, coving m.p. 95.—86° softens at 23°; El a-ketandecota 2:4 di m.p. 134°, softens at 132°); -undecoic, m.p. 55°, softens at 52° (oxime, m.p. 85—86°, softens at 83°; Et a-ketoundecoate 2:4-dinitrophenylhydrazone, m.p. 86°, softens at 85°); -lauric, m.p. 56·5—57°, softens at 56° (oxime, m.p. 80—81°, softens at 77°; Et a-ketolaurate 2:4-dinitrophenylhydrazone, m.p. 86—86°, softens at 83°); -tridecoic, m.p. 62—62·5° (oxime, m.p. 86—86·5°, softens at 84°; phenylhydrazone, m.p. 91—92°, softens at 88°; Et a-ketotridecoate 2:4-dinitrophenylhydrazone, m.p. 84—84·5°, softens at 83°); -pentadecoic acid, m.p. 68—68·5°, softens at 66° (oxime, m.p. 88—88·5°, softens at 87°; Et a-ketopentadecoate 2:4-dinitrophenylhydrazone, m.p. 86—87°, softens at 84°). The following arc incidental: Et, a-oxalbutyrate, b.p. 84—85°/0-7 mm. (2:4-dinitrophenylhydrazone, m.p. 98—99°, softens at 96°); Et₂ a-oxalbaerate 2:4-dinitrophenylhydrazone, m.p. 85—86°; Et₂ a-oxalbaexoate, b.p. 118—122°/mm. hydrazone, m.p. $85-86^{\circ}$; Et_2 a-oxalhexoate, b.p. $118-122^{\circ}$ /mm. (2:4-dinitrophenylhydrazone, m.p. $84-85^{\circ}$); Et_n a-oxalheptoate, b.p. 135-140°/1 mm. (2: 4-dinitrophenylhydrazone, m.p. 82-83°); Et_2 a-oxaloctoate 2: 4-dinitrophenylhydrazone, m.p. $62-63^\circ$, softens at 61° ; Et_a a-oxalonoate 2: 4-diphenylhydrazone, m.p. $65-66^\circ$, softens at 64° ; Et_2 a-oxalonyristate 2: 4-dinitrophenylhydrazone, m.p. 74-75°.

Monocrotalic acid.—See A., 1944, II, 147.

a-Alkylthiol-aliphatic acids. A. J. Hill and E. W. Fager (J. Amer. Chem. Soc., 1943, 65, 2300—2301).—Adding a trace of cryst. KI and then, dropwise, CHRBr·CO₂H (1) in 50% EtOH to KOH (1) and R'SH (1 mol.) in boiling EtOH-N₂ gives 70—80% (crude) of a-n-dodecylthiol-n-undecoic, m.p. 46—48°, a-n-tetradecylthiol-n-butyric, m.p. 38—39°, and a-n-hexadecylthiol-acetic, m.p. 73·5—74°, -propionic, m.p. 58—59°, -n-valeric, m.p. 47·5—49°, -n-hexoic, m.p. 48·5—49·5°, -n-decoic, m.p. 42—43°, -n-undecoic, m.p. 47—49°, -n-dodecoic, m.p. 46—48°, -n-tetradecoic, m.p. 46—48°, and -palmitic acid, m.p. 46—48°. When R = H—Bu, the products crystallise from light petroleum, but the higher SH-acids gelatinise and are purified by way of the Ba salts.

Derivatives of ω-hydroxybutanal. R. Paul (Compt. rend., 1942, 215, 303—305).—Pentane-aβε-triol (I) is converted into aβ-iso-propylidenedioxypentan-ε-ol, b.p. 117—118°/12 mm., transformed by NaNH₂ into the Na derivative, which with CH₂PhCl in boiling PhMe affords ε-benzyloxy-aβ-isopropylidenedioxypentane, b.p. 170—171°/11 mm. This is hydrolysed by 0·25N-H₂SO₄ at 40° to ε-benzyloxypentane-aβ-diol, b.p. 188—190 /5 mm., which is readily oxidised by Pb(OAc)₄ at room temp. to γ-benzyloxybutanal, b.p. 143°/10 mm. (p-nitro-, m.p. 88°, and 2:4-dinitro-phenylhydrazone, m.p. 94—95°). It is oxidised by Ag₂O to Ag γ-benzyloxybutyrate, m.p. 200°. γ-Chlorobutanal, b.p. 50—51°/13 mm. (2:4-dinitrophenylhydrazone, m.p. 134—135°), is obtained by oxidising [Pb(OAc)₄ or NaIO₄] the mixture of ε-chloropentane-aβ-diol and β-chloropentane-ag-diol prepared by the action of AcCl on aδ-epoxypentan-ε-ol. It appears to be polymerised readily by heat. Its oxime, m.p. 74·5°, is isomerised by Raney Ni at ~100° to γ-chlorobutyramide, m.p. 99—100°. (I) in anhyd. Et₂O is readily oxidised by Pb(OAc)₄ to OH·[CH₂]₄·CHO, b.p. 65—68°/10 mm. (2:4-dinitrophenylhydrazone, m.p. 104°; oxime, b.p. 147°/12 mm.). It is reduced by Na-Hg to OH·[CH₂]₄·OH and oxidised by excess of Ag₂O at room temp. to Ag γ-hydroxybutyrate, m.p. 178—180°. It is converted by 1% HCl—McOH into 2-methoxytetrahydrofuran, b.p. 105—107°/760 mm., in very poor yield.

Solubilities of normal aliphatic primary amines of high mol. wt.—See A., 1944, I, 123.

Amino-alcohols. XIII. Synthesis of aliphatic amino-alcohols of pharmacological interest. I. W. C. Gakenheimer and W. H. Hartung (J. Org. Chem., 1944, 9, 85—88).—Electrolytic reduction of NO₃-alkanols (I) gives good yields of the corresponding NH₃-alkanols (II). Raney Ni in presence of CO₃ or AcOH catalyses the hydrogenation of (I) to (II). If reduction is effected in a neutral solvent (I) undergoes fission of the alkane chain with the formation of primary and sec. amines. Evidence indicates that fission takes place with some partly hydrogenated product. The following are reported: γ-nitroheptan-δ-ol, b.p. 122—123°/18 mm.; β-nitro-β-methylhexan-γ-ol, b.p. 122—123°/21 mm.; ε-nitro-octan-δ-ol, b.p. 123—124°/13 mm.; α-nitro-γ-ethylpentan-β-ol, b.p. 109—111°/26 mm.; β-nitro-δ-ethylhexan-γ-ol, b.p. 118—120°/22 mm.; α-nitroheptan-β-ol, b.p. 118—120°/24 mm.; β-nitro-octan-γ-ol, b.p. 133—134°/22 mm.; γ-nitrononan-δ-ol, b.p. 142—143°/23 mm.; α-nitro-octan-β-ol, b.p. 130—132°/24 mm.; β-nitrononan-γ-ol, b.p. 134—136°/23 mm.; β-amino-δ-ethylhexan-γ-ol, b.p. 110—112°/27 mm. (Bz derivative, m.p. 151°); γ-aminoheptan-δ-ol, b.p. 98—99°/20 mm. (Bz derivative, m.p. 145°); ε-amino-octan-δ-ol, b.p. 118—119°/26 mm. (Bz derivative, m.p. 158°); ε-amino-octan-δ-ol, b.p. 118—119°/26 mm. (Bz derivative, m.p. 158°); ε-amino-octan-δ-ol, b.p. 118—119°/26 mm. (Bz derivative, m.p. 158°); γ-aminononan-δ-ol, b.p. 116—118°/27 mm. (Bz derivative, m.p. 161°).

Amino-acids. II. Alanine. J. H. Billman and E. E. Parker (J. Amer. Chem. Soc., 1943, 65, 2455—2456; cf. A., 1943, II, 253).—NH₂·CHMe·CH₂·OH affords a phthalimide derivative only with difficulty, but, when treated with BzCl in presence of Na₂CO₃ in C_6H_6 at \Rightarrow 10° and then kept at 0°, gives β -benzamido-n-propyl alcohol (90—91%), m.p. 107—108°, which (crude) with KMnO₄ in aq. NaOH at \Rightarrow 40° gives NHBz·CHMe·CO₂H (65—70%), m.p. 166°, and thence (boiling 18% HCl) alanine (70—71%).

Solubilities of normal aliphatic nitriles of high mol. wt.—See A., 1944, I, 122.

Preparation of malononitrile. A. R. Surrey (J. Amer. Chem. Soc., 1943, 65, 2471—2472).—70—72% yields are obtained by boiling $\text{CN-CH}_2\text{-CO-NH}_2$ (1260 g.), POCl_3 , (800 ml.), and NaCl (1 kg.) in (CH₂Cl)₂ (5 l.) for 8 hr. R. S. C.

II.—SUGARS AND GLUCOSIDES.

Theory of a method for comparing the structures of certain compound sugars. Probable relationship of turanose to maltose. C. S. Hudson (J. Org. Chem., 1944, 9, 117—120).—The keypoint of the method is the symmetry about the central point of mannitol, threitol, the active tartaric acids, and iditol. From this viewpoint are discussed the correlation of natural gentiobiose with synthetic 1- β -D-glucopyranosido-D-fructose, the probable relationship of turanose to maltose, and the possible relationship of laminaribiose to cellobiose. H. W.

Separation of methylated sugars by chromatographic adsorption of their azobenzene-4-earboxylates. J. K. Mertzweiler, D. M. Carney, and F. F. Farley (J. Amer. Chem. Soc., 1943, 65, 2367—2368)—p-PhN,·C_eH₄·CO esters of methylated sugars are prepared in C_bH_b at, successively, 0° (3 days), 30° (2 days), and 0° (3 days) and are purified by dissolution in CHCl₃ and then filtration through a 4—5-cm. column of Al₂O₃ (to remove p-PhN₂·C_eH₄·CO₂H), and finally crystallisation from CHCl₃-EtOH or EtOH. Yields are $\not\sim$ 95%. Mixed esters are separated by chromatography (? from CHCl₃-C_eH₆-light petroleum) on SiO₂ (prep. described); elution is by 1:4 EtOH-CHCl₃; the solutions obtained are examined colorimetrically as they contain colloidal SiO₃. Excellent results are described for mixed esters of (i) 2:3:4:6-tetramethyl-(I) and 3-methyl-glucose and (ii) (I), 2:3:6-tri- and 2:3-di-methylglucose.

R. S. C.
Constitution and configuration of digitalose. O. T. Schmidt, W.
Mayer, and A. Distelmaier [with, in part, E. Fürst] (Annalen, 1943, 555, 26—41, and Naturwiss., 1943, 31, 247—248; cf. Kiliani, A., 1931, 1273).—Digitalose (I) is 3-methyl-d-fucose (A). Digitalin is

CHO BY TO SELECT THE CHO BY THE CHO

hydrolysed and the product is largely freed from glucose by fermentation with brewer's yeast. The resulting (I) after crystallisation from EtOH is 80% pure according to OMe content and with NHPh·NH₃ in aq. AcOH at 100° gives digitalosephenylosazone, m.p. 179—180°, $[\alpha]_D^2 + 0.5^\circ$ to +18° (final val.) in C_bH_3N —EtOH (2:3). OMe in (I) cannot therefore be attached to $C_{(2)}$. Attachment at $C_{(5)}$ is also excluded since digitalonic acid is oxidised by HNO, to a trihydroxy-

HC-OH (2:3). OMe in (1) cannot therefore be attached to $C_{(2)}$. Attachment at $C_{(5)}$ is also excluded since digitalonic acid is oxidised by HNO₃ to a trihydroxyglutaric acid which contains the first 5 C atoms of (I) and also OMe. Since digitalonolactone, m.p. 137—138°, $[a]_{2}^{20}$ —92·5° to -74·9° in H_{2} O in 16 days, has the γ structure OMe is not united to $C_{(3)}$ and only $C_{(3)}$ remains. a-Methyl-l-fucoside is converted by 10n-NaOH and Me_{2} SO₄ into 2:3:4-trimethyl-a-methyl-l-fucoside, b.p. 84—88°/1 mm., m.p. 97—98°, $[a]_{2}^{20}$ —209° ±1° in H_{2} O. 2:3:4-Trimethyl-8-methyl-1-fucoside, b.p. 82—84°/1 mm., m.p. 101·5—102·5°, $[a]_{2}^{20}$ —21·1° ±1° in H_{2} O, is obtained analogously. These are hydrolysed

by N-H₂SO₄ at 85° to 2:3:4-trimethyl-a-l-fucose (II), m.p. 36—37°, $[a]_D^{20}-130^{\circ}\pm 1\cdot 3^{\circ}$ (final val.) in H₂O {monohydrate, m.p. 65°, $[a]_D^{20}-169^{\circ}\pm 2^{\circ}$ to $-118^{\circ}\pm 2^{\circ}$ (final val.) in H₂O}. (I) is transformed by HCl-MeOH into a mixture of a- and β -methyldigitaloside, further methylated by K and MeI in liquid NH₃ to a mixture of trimethylmethyldigitalosides. This is hydrolysed by N-H₂SO₄ at 85° and the product is distilled and finally crystallised from Et₂O-light petroleum, thus giving 2:3:4-trimethyl-a-d-fucose monohydrate, m.p. 65°, $[a]_D^{20}+168\cdot 6^{\circ}\pm 2^{\circ}$ to $+118^{\circ}\pm 2^{\circ}$ (final val. after 24 hr.) in H₂O; this is the optical antipode of (II). β -Methyl-l-fucoside is converted by COMe₂ containing conc. H₂SO₄ into 3:4-isopropylidene- β -methyl-fucoside (+1H₂O), m.p. (indef.) 89—97°, transformed by Na and MeI in Et₄O into 2-methyl-3:4-isopropylidene- β -methyl-l-fucoside (+1H₂O), m.p. 88—92°, $[a]_D^{20}-10\cdot 9^{\circ}\pm 1^{\circ}$ in MeOH. l-Fucose, from Fucus vesiculosus, is converted by CH₂Ph·SH and saturated HCl at -15° into l-fucose dibenzyl mercaptal, m.p. 184° , $[a]_D^{20}+27\cdot 8^{\circ}$ in C_5H_5 N. l-Fuconamide, m.p. 182° , is converted by NaOCl and NaOH into l-lyxomethylose, isolated as the phenylbenzylhydrazone, m.p. $100\cdot 5$ — 101° , $[a]_D^{20}-36\cdot 4^{\circ}$ in C_5H_5 N. H. W.

Photolysis of the d-glycosides: a-benzylfructofuranoside, β -benzylfructopyranoside, and a- and β -phenyl-, -benzyl-, and β -phenylethylglucosides; and the bearing of the data on the transfer of energy between molecules.—See A. 1944, I, 132.

 β - $\beta'\beta'\beta'$ - Trichloroethylgentiobioside, m.p. 204—206° (decomp.), [a] $_{\rm L}^{5}$ - $41\cdot2^{\circ}$ in $\rm H_{2}O$.—See A., 1944, III, 384.

Polysaccharide hydroxylation by means of p-toluenesulphonyl chloride and triphenylchloromethane. W. Low and E. V. White (J. Amer. Chem. Soc., 1943, 65, 2430—2432).—The arabogalactan (I) from Larix occidentalis with p-C₆H₄Me·SO₂Cl in C₅H₅N at 55—90° (1–38 hr.) and then NaI-COMe₂ at 100° gives a product in which, independently of the p-C₆H₄Me·SO₂ content (4·7—13·1 units), 3·08—3·21 C₆H₄Me·SO₂ are replaced and 2·93—3·22 I are introduced. With CPh₃Cl in C₅H₅N at 50° (I) gives a product containing 2·80 CPh₃, into which Ac₂O-C₅H₅N introduces 15·6 Ac (CPh₃: Ac = 3:17·2). Thus (I) is proved to contain 3 primary OH.

Structure of pyrodextrins. B. Brimhall (Ind. Eng. Chem., 1944, 36, 72—75).—A roasted maize-starch product of British gum type yielded 70% of a fraction (F), sol. in 30% and insol. in 70% MeOH, which behaved towards HIO₄ similarly to starch and contained no linear mols. of sufficient length to give a blue I colour, though the average mol. size was \sim 66 glucose units. Solubility relationships indicated a structure different from that of acid-produced amylodextrins (A), whilst F was degraded only to the extent of 22% by β -amylase and gave no Schardinger dextrins with B. macerans. Endgroup assay in conjunction with mol. size indicated for F a mol. with 4—5 branches with \sim 5 glucose units in each. Dextrination of amylopectin, amylose, A, and other starch products, followed by changes in solubility, reducing power, and β -amylase digestibility, shows that heating causes linear portions of starch mols. to become branched, and the probable mechanism of this change is discussed.

I. A. P.

Cellulose triphenylmethyl ether. W. M. Hearson, G. D. Hiatt, and C. R. Fordyce (J. Amer. Chem. Soc., 1943, 65, 2449—2452).—

Cellulose (best, regenerated from the acetate) and CPh₃Cl in C₅H₅N give an ether [1·03 CPh₃ (in this and similar cases per glucose unit)], which with PhNCO—C₅H₅N gives a CPh₃ ether phenylcarbamate (1·03 CPh₃, 1·97 NHPh·CO). HCl—dioxan removes all the CPh₃, giving an ester (1·97 NHPh·CO), which with p-C₆H₄Me·SO₂Cl—C₅H₅N yields a mixed ester (1·97 NHPh·CO, 0·95 p-C₆H₄Me·SO₂), converted by NaI in COMe₂ into a product containing 1·97 NHPh·CO, 0·90 I, and 0·05 p-C₆H₄Me·SO₂. Thus, of the 1·03 CPh₃ introduced, 0·90 were attached to primary and 0·13 to sec. OH; the relative reactivities are thence calc. to be 13·8:1. The optimum conditions for the reactions described are reported.

R. S. C.

III.—HOMOCYCLIC.

Transformations of hydrocarbons at a vanadium contact. III. Ethylcyclopentane. A. F. Plate and O. G. Sterligov (J. Gen. Chem. Russ., 1943, 13, 202—212).—Ethylcyclopentane passed over 1:10 V_2O_3 -Al $_2O_3$ catalyst at 440—500° yields gaseous (H $_2$, C_nH_{2n+2} , C_nH_{2n} , CO, CO $_2$) and liquid products (methylcyclopentadiene, cyclopentadiene, PhMe). The catalyst is gradually inactivated by a layer of soot; it may be reactivated by passing air at 500°.

Semicyclic ethylenic linkings. Effect of certain reagents capable of addition to ethylenic linkings on cyclohexylidene derivatives. D. N. Kursanov and A. S. Kursanova (J. Gen. Chem. Russ., 1943, 13, 184—188).—The C:C linking of cyclohexylideneacetic acid (I) does not react with cyclopentadiene under the conditions of the Diels-Alder diene reaction. The Me ester (II) of (I) with MgMeI yields γ-cyclohexylidene-β-methyl-Δα-propene, b.p. 103—103-5°/62 mm., which does not react with CH.·CHO. (II) does not react with CH.·N₂ or with CHN₂·CO₂Et. It is concluded that the reactivity of semicyclic C:C linkings is < of those in other positions. R. T.

New type of carotene pigment from red yeast (Torula rubra).—See A., 1944, III, 369.

3-Chloro-1-α-chlorovinyl-Δ³-cyclohexene and 1:5-dichloro-Δ¹:5-cyclooctadiene. J. G. T. Brown, J. D. Rose, and J. L. Simonsen (J.C.S., 1944, 101—103).—The two dimerides formed when chloroprene is kept (cf. Carothers et al., B., 1932, 156; A., 1933, 371) are shown to be 3-chloro-1-α-chlorovinyl-Δ³-cyclohexene (I), b.p. 66—67°/4 mm., 105°/20 mm., and 1:5-dichloro-Δ¹-5-cyclooctadiene (II), b.p. 84—85°/2 mm., 126°/18 mm., by the reactions below. With Br (I) gives a tetrabromide, m.p. 146—147°. (I) on hydrogenation gives ethylcyclohexane, and on ozonolysis gives β-α-chloro-vinyladipic acid (III), m.p. 152—154° (di-p-phenylphenacyl ester, m.p. 54—55°). (III) on ozonolysis gives butane-αβδ-tricarboxylic acid, m.p. 121—122°. Hydrogenation of (III) (Pd catalyst) gives β-cthyladipic acid (IV), m.p. 47—49° (di-p-phenylphenacyl ester, m.p. 100—101°). Reduction of Et 1-cthylcyclopentan-2-one-1-carboxylate, b.p. 115°/13 mm. (from Et sodiocyclopentan-2-one-1-carboxylate and EtI), gives Et α-ethyladipate (V), b.p. 133°/13 mm. (V) gives α-ethyladipic acid, m.p. 47—49° (di-p-phenylphenacyl ester, m.p. 118—120°), not identical with (IV). Hydrogenation of (II) (PtO₂ catalyst) gives cyclooctane, which yields suberic acid, m.p. 140—141°, on oxidation. Ozonolysis of (II) gives (CH₂-CO₂H)₂ and a CHO-acid, probably δ-chloro-η-carboxy-Δδ-heptenal, isolated as its 2:4-dinitro-phenylhydrazone, m.p. 119°.

Cyclic compounds containing sulphur. M. Mousseron (Compt. rend., 1942, 215, 357—359).—Na₂S and 2-chlorocyclohexanol at ~70° yield di-2-hydroxycyclohexyl sulphide (I), b.p. 215°/20 mm., m.p. 71—72° (diacetate, m.p. 61—62°), whereas under the same conditions or in the cold-epoxycyclohexane affords (I) with a small proportion of an isomeride (II), m.p. 89°. (I) and (II) are regarded as dl- and meso-forms. cis-2-Chlorocyclohexanol gives the cis-cis-di-2-hydroxycyclohexyl sulphide, m.p. 103—104°. Di-2-hydroxycyclohexyl sulphide, m.p. 103—104°. Di-2-hydroxycyclohexyl, b.p. 205°/20 mm., m.p. 44°, -cycloheptyl, b.p. 225°/20 mm., m.p. 88°, di-3-hydroxy-1:2:3:4-tetrahydro-2-naphthyl, m.p. 151°, and di-3-hydroxy-2:3-dihydro-2-indenyl, m.p. 135°, sulphide are described. A similar change does not appear to occur with 4-chlorocyclohexanol. The action of NaCNS and anhyd. CuSO₄ on cyclenes affords 1:2-dithiocyano-2-methyl-, m.p. 60°, -ethyl-, m.p. 82°, -propyl-, m.p. 86°, and -4-methyl-, m.p. 81°, -cyclohexane, 1-thiocyano-2-thiocyanomethylcyclohexane, m.p. 63°, 2:3-dithiocyano-1:2:3:4-tetrahydronaphthalene, m.p. 74°. Optically active 1-methyl-Δ³-cyclohexene adds NH₄HSO₃ to give NH₄ 3-methylcyclohexanesulphonate, characterised by the Ba salt, [a]₅₄₆₁ +4·38° in H₂O, and the optically inactive NH₄ 4-methylcyclohexanesulphonate. 2-Chlorocyclohexanone and NaSEt in anhyd. Et₂O afford cyclopentanethiocarboxylic acid, b.p. 103°/15 mm., m.p. 92—93°.

Reductions with nickel-aluminium alloy and aqueous alkali. II. Displacement of groups by hydrogen. E. Schwenk, D. Papa, B. Whitman, and H. Ginsberg (J. Org. Chem., 1944, 9, 1—8; cf. A. 1943, 11, 93).—When treated with Ni-Al alloy and aq. alkali halogens and SO₃H are displaced by H, the reaction being apparently independent of their no. or position or of the presence of other groups (substances tested are PhBr, m-C₆H₄Cl·CO₂H, p-C₆H₄Cl·NO₂, p-C₆H₄Cl·CO₁, 2:5:1-OH·C₆H₃Cl·CHO, p-C₆H₄Cl·CO₁, p-C₆H₄Cl·CO₂H, p-C₆H₄Cl·CO₁, p-C

increased proportion of alloy and alkali is used. OMe is not displaced from 3:2:1-, 4:3:1-, or 4:2:1-(OMe) $_2$ C $_6$ H $_3$ ·CO $_2$ H. 3:4:1-(OMe) $_2$ C $_6$ H $_3$ ·CO $_1$ CH $_2$] $_3$ ·CO $_2$ H (I) does not lose 4-OMe although ρ -OMe·C $_6$ H $_4$ ·CO·[CH $_2$]·CO $_2$ H gives Ph·[CH $_2$] $_3$ ·CO $_2$ H in 65% yield; (I) affords γ -3:4-dimethoxyphenylbutyrolactone in 70% yield with a small amount of intractable oil. Neither CO $_2$ H nor OMe is displaced from 3:4:5:1-(OMe) $_3$ C $_6$ H $_4$ ·CO $_2$ H. H. W.

Polymorphic and isomorphic phenomena with trinitrotoluene etc. -Sec A., 1944, I, 100.

Ethylation of benzene. Course of the reaction. E. M. Marks, J. M. Almand, and E. E. Reid (J. Org. Chem., 1944, 9, 13—20).—The proportions of the products obtained by the action of C_0H_4 on C_0H_4 in the presence of AlCl₃ depend greatly on the rate of passage of the gas, the temp., the rate of stirring, and the amount of catalyst. A portion of the C₆H₆ appears to be transformed into C₆Et₆, which is then dealkylated to a type of equilibrium mixture containing much s-C₆H₃Et₃.

Polyisopropylbenzenes. III. Sulphonyl and nitrosulphonyl chlorides. A. Newton $(J.\ Amer.\ Chem.\ Soc.,\ 1943,\ 65,\ 2439-2441)$.—Susceptibility to replacement of Pr^{β} on treatment of polyisopropylides. A. Newton (J. Amer. Chem. Soc., 1943, 65, 2439—2441).—
Susceptibility to replacement of Pr\$\beta\$ on treatment of polyisopropylbenzenes with ClSO_3H (3 equivs.) in CCl_4 at 30—32\beta\$ (rising to 45—
55\beta\$) is sometimes more marked than in nitration. m-C_6H_4Pr\$\beta\$_2
gives 1:3:4-C_6H_3Pr\$\beta_2\cdot SO_2Cl\$ (I), m.p. 35—40\beta\$ (derived amide,
m.p. 144·2—144·9\beta\$, and anilide, m.p. 113·9—114·5\beta\$. p-C_6H_4Pr\$\beta_2
gives p-diisopropylbenzene-2-sulphonyl chloride (II), m.p. 52·5—53\beta\$
(derived amide, m.p. 110·2—110·8\beta\$, and anilide, m.p. 124·1—125\beta\$.

1:2:4-C_6H_3Pr\$\beta_3\text{ gives } 1:2:4-trisopropylbenzene-5-sulphonyl chloride (III), m.p. 141·5—142·2\beta\$ (derived amide, m.p. 154·8—155·7\beta\$,
and anilide, m.p. 187·8—188·8\beta\$. s-C_6H_3Pr\$\beta_3\text{ gives } 1:3:5-trisopropylbenzene-2-sulphonyl chloride (IV), m.p. 97·2—98·4\beta\$ (derived amide, m.p. 119·0—129·6\beta\$, and anilide, m.p. 163·6—164·2\beta\$.

1:2:4:5-C_6H_2Pr\$\beta_4\text{ gives (III) (incorrectly described by Huntress et al., A., 1942, II, 136, as 1:2:4:5:3-C_6HPr\$\beta_4\cdot SO_2Cl)\$. With an excess of 96\beta\$ (HNO_3, (I) or (III) gives 6-nitro-1:3-disopropylbenzene-4-sulphonyl chloride, m.p. 102·1—103\beta\$ (derived amide, m.p. 192·8—) and anilide, m.p. 172·5—173·5\beta, and anilide, m.p. 192·8—193·7\beta, and anilide, m.p. 172·5—173·5\beta, and anilide, m.p. 192·8—193·7\beta, and anilide, m.p. 182·4—183·3\beta\$); these NO_2-products can be purified only by chromatography (Al₂O₃); 4\beta_0\text{ of a dinitrohexaisopropyldiphenyl sulphone, m.p. 150·2—151·1\beta}, is isolated from crude (V).

Nitration of halogenodinhenvis. II. Dis and tetra-nitro-derivatives

Nitration of halogenodiphenyls. II. Di- and tetra-nitro-derivatives of 2: 2'-dichlorodiphenyl. F. H. Case and R. U. Schock, jun. III. of 2:2'-dichlorodiphenyl. F. H. Case and R. U. Schock, jun. III. Nitro-derivatives of 2-chloro- and 2-bromodiphenyl. F. H. Case (f. Amer. Chem. Soc., 1943, 65, 2086—2088, 2137—2140; cf. A., 1943, II, 26).—II. $(o-C_6H_4Cl)_2$ (I) with conc. $HNO_3-H_2SO_4$ at $<40^\circ$ and then 100° gives 2:2'-dichloro-5:5'- (II), m.p. $202-203^\circ$ [also obtained (m.p. $203-204^\circ$) from 5:2:1-NO $_2$ -C $_6H_4ClI$ (III) by Cu], with a small amount of 2:2'-dichloro-3:3'-(? 3:5'-)dinitrodiphenyl (IV), m.p. $128-129^\circ$ (cf. Mascarelli et al., A., 1934, 62). With HNO $_3$ (d $1\cdot6$)-H-SO $_4$ at 100° , (I), (II), or (IV) gives 2:2'-dichloro-3:3': 5:5'-tetranitrodiphenyl (V), m.p. $304-305^\circ$, which loses its Cl to NaNO $_2$ in 50% aq. dioxan (to give a non-phenolic product) (cf. to NaNO₂ in 50% aq. dioxan (to give a non-phenolic product) (cf. van Alphen, A., 1932, 729). 2-Chloro-1-iodo-4: 6-dinitrobenzene [prep. from 4:6:2:1-(NO₂)₂C₆H₂Cl·NH₂], m.p. 117—118°, with Cu at 240° gives 2:2'-dichloro-4:4':6:6'-tetranitrodiphenyl, m.p. 159—160°. 2:1:4-C₆H₃Cll·NO₂ and Cu give 2:2'-dichloro-4:4'-di-, m.p. 107—108°, and thence 2:2'-dichloro-4:5:4':0'-tetranitrodiphenyl (VI), m.p. 201—202°. With H₂SO₄-HNO₃ (d 1:6) at 100° (VII) gives 3-chloro-1 ido 4:5 dinitrobenzere. which with Cu powder in boiling PhNO₂ gives (VI). 2-Iodo-4: 5-dinitrobenzene, m.p. 98—99°, which with Cu powder in boiling PhNO₃ gives (VI). 2-Iodo-4: 5-dinitroanisole (prep. from the phenol by CH₂N₂), m.p. 69—70°, with Cu powder in boiling PhNO₂ gives [2:3:5:1-OMe·C₆H₂(NO₂)₂]₂, m.p. 186—187° [also obtained from (o-OMe·C₆H₄)₂], and thence by hydrolycic [3:2:5:1-OMe·C₆H₂(NO₂)₂]₂, hydrolysis $[2:3:5:1-OH\cdot C_cH_1(NO_2)_2]$ (VII), m.p. $245-246^\circ$ (lit. $249-250^\circ$) (cf. Diels et al., A., 1902, i, 219; Borsche et al., A., 1917, i, 390). The structure of (V) is proved by conversion into (VII) by NaNO₂ in boiling aq. dioxan.

III. The structure of o-C₈H₄Cl-C₈H₄·NO₂-p (VIII), m.p. 74—75°, in confirmed by prep. from p.

of Mascarelli et al. (loc. cit.) is confirmed by prep. from p-NO₂·C₆H₄·C₆H₄·NH₂-o by a Sandmeyer reaction, but the compound, m.p. 159—160°, supposed (loc. cit.) to be o-C₆H₄Cl·C₆H₃(NO₂)₂-1:3:4, is 2-chloro-4':5-dinitrodiphenyl (IX). (IX) is obtained by

1.3:4, is 2-chloro-4':5-dinitrodiphenyl (IX). (IX) is obtained by nitrating (VIII) (proof of the 4'-NO₃), is unchanged by boiling CrO₃-V₂O₅-AcOH, and is destroyed by reduction. 5:2:1-NO₂·C₆H₄Cl·N₂Cl in 1:1 conc. HCl-H₄O with C₆H₆ and 5N-NaOH gives 2-chloro-5-nitrodiphenyl, m.p. 59—60°, which with HNO₃ (d 1·5) at 100° gives (IX) (proof of the 5-NO₂). By Schoutissen's method 2:4:1-NH₂·C₆H₃(NO₃·C₆H₄·NO₂·p gives 2-chloro-4:4'-dinitrodiphenyl, m.p. 153—154°. o-C₆H₄PhBr with, best, OEt·NO₂ in conc. H₂SO₄ at <2° and then 25° gives 2-bromo-4':5-(X), m.p. 165—166° (Finzi et al., A., 1938, II, 225), and some -2':5-dinitrodiphenyl (XI), m.p. 139—140° [also obtained (m.p. 140—141°) similarly from o-C₆H₄Br·C₆H₄·NO₃-o]. 5:1:2-NO₄·C₅H₃Ph·NH₂ (prep. from

the \$p\$-C_6H_4Me·SO_3\$ derivative by boiling 1:1 H_2SO_4\$), m.p. 125—126°, in AcOH with NaNO_2-H_2SO_4\$ at <40° and then CuBr in H_2O—HBr gives 1:2:5-C_6H_3PhBr·NO_2\$ (XII) and thence (HNO_3-H_2SO_4\$) (X). 2-Bromo-4:4'-dinitrodiphenyl, m.p. 148—149°, is similarly prepared. o-C_6H_8Br·C_6H_4:NH_2-p with KNO_3\$ in H_2SO_4-oleum at <6° and then Ac_2O gives 2-bromo-5-nitro-4'-acetamido-, m.p. 186—187°, hydrolysed by boiling H_SO_4-H_2O to 2-bromo-5-nitro-4'-amino-diphenyl* (XIII), m.p. 111—112°, which with NaNO_4 in EtOH-dil. H_2SO_4\$ gives (XIII). KNO_3-H_2SO_4-oleum converts (XIII) into 2-bromo-2':5-dinitro-4'-aminodiphenyl*, m.p. 149—150° (isolated as Ac derivative, m.p. 246—247°), whence (XI) is obtained by deamination. HNO_3\$ (d 1.59) at 100° converts (X) or (XI) into 2-bromo-5:2':4'-trinitrodiphenyl, m.p. 140—141°. o-C_6H_4Br-C_6H_4*NHAc-p and HNO_3\$ (d 1.5) in Ac_2O-AcOH at 70° give 2-bromo-3'-nitro-4'-acetamido-, m.p. 135—136° and thence -4'-amino-diphenyl, m.p. 145—146°, which with NaNO_2-H_2SO_4-H_2O-EtOH gives o-C_6H_4Br-C_6H_4*NO_2-m, m.p. 79—80°. With OEt·NO_2 this gives 2-bromo-5:3'-dinitrodiphenyl* (XIV), m.p. 165—166°, which with boiling SnCl_2-EtOH and then Ac_2O gives 2-bromo-5:3'-diacetamidodiphenyl* (XV), m.p. 265—266°. m-NO_2·C_6H_4*C_6H_4*NHAc-m with Br in AcOH-NaOAc gives 2-bromo-3'-nitro-5-acetamidodiphenyl* (XV), m.p. 193—194°, and thence the 5-NH_2-compound, m.p. 112—113°, which yields, as above, 2:5-dibromo-3'-nitrodiphenyl*, m.p. 97—98°, converted by SnCl_2-EtOH and then CrO_3-AcOH into 2:5:1-C_6H_3Br.*CO_2H. SnCl_2-EtOH reduces (XVI) to (XV). 5:2:1-NO_2·C_6H_3Br.N_2·HSO_4 in AcOH-H_2SO_4 is converted by KI-NaOAc-H_2O at 0° into 4-bromo-3-iodo-1-nitrobenzene, m.p. 97—98°, which with 1:3:4-C_0H_3I(NO_2)_2 and Cu gives 2-bromo-5:3':4'-trinitrodiphenyl*, m.p. 222—223°, also obtained from (XIV) by HNO_3\$ (d 1.59) and oxidised by CrO_3-V_2O_6-AcOH to 5:2:1-NO_2·C_6H_3Br.CO_2H.

Use of semi-micro-technique in elementary organic chemistry. IV. Semi-micro-chlorination of organic compounds. N. D.

Use of semi-micro-technique in elementary organic chemistry. IV. Semi-micro-chlorination of organic compounds. N. D. Cheronis (J. Chem. Educ., 1943, 20, 611—614, 621).—Apparatus for, and results obtained in, the semi-micro-chlorination of C₆H₆, PhMe, $C_{10}H_8$, and *cyclo*hexane are described.

Xanthhydrol as a reagent for the identification of sulphonamides. R. F. Phillips and V. S. Frank (J. Org. Chem., 1944, 9, 9—12).—Unsubstituted sulphonamides condense with xanthhydrol in AcOH at room temp. to N-xanthylsulphonamides, SO₂R·NH·CH(C₂H₄)₂O₂ which are dried at room temp, and crystallised from dioxan-H₂0 Thus are obtained benzenesulphonxanthylamide, m.p. 200-(3:1). Thus are obtained benzenesupnonxantaylamiae, in.p. 200-200·5° (block), and the following derivatives: o-Me, m.p. $182-183\cdot5°$, p-Me, m.p. $197-197\cdot5°$, p-Et, m.p. $195\cdot5-197°$, p- Pr° , m.p. $199-200\cdot5°$; p- Bu° , m.p. $185-186\cdot5°$, p-n-amyl, m.p. $164\cdot5-165°$; $3:4\cdot Me_2$, m.p. 189-190°, $2:4\cdot Me_2$, m.p. $187-188\cdot5°$; $2:5\cdot Me_2$, m.p. 175-176°; $2:4:6\cdot Me_3$, m.p. 203-204°; p- NH_2 °, m.p. 207-208°, and saccharin-, m.p. 198-199°. Xanthyl derivatives are not obtained from $2:4:6:1-C_8H_2$ Et₃·SO₂·NH₄. p-tert.-butyl-, p-tert.-amyl-, and the p-cymene-benzenesulphonamides and p-C₆H₄Me·NEt·SO_{*}H. p-sec.-Butyl- and 2-methyl-4-isopropyl-benzenesulphonamides give very poor yields of products. Branched alkyl groups appear to inhibit the reaction and larger N-alkyl groups retard its rate. (See also C., 1944, 86.)

Organic reactions with boron fluoride. XXIX. Sulphonation of naphthalene derivatives in presence of boron trifluoride. G. F. Hennion and C. J. Schmidle (J. Amer. Chem. Soc., 1943, 65, 2468—2469; cf. A., 1944, II, 10).—BF, acts in sulphonation reactions only as a powerful dehydrating agent and has no orienting 2469; cf. A., 1944, II, 10).—BF₃ acts in sulphonation reactions only as a powerful dehydrating agent and has no orienting influence. Passing BF₃ into a-C₁₀H₇·NH₂ in H₂SO₄ at 75—80° gives 86% of NH₂·C₁₀H₄·SO₃H, the yield being 60% in absence of BF₃. Similarly, at 50—55° β-C₁₀H₇·NH, gives 95% of acids containing 52% of 2:5- and 48% of 2:8-NH₂·C₁₀H₇·SO₃H; at 20 these proportions are 44:56 and at 80° are 67:33; in absence of BF₃ only 57% sulphonation occurs. Passing BF₃ into β-C₁₀H₇·OH (29 g.) in H₂SO₄ (previously saturated with BF₃ at room temp.) at 80—90° gives 22 g. of acid, mainly 2:3:6-OH·C₁₀H₅(SO₃H)₃.

R. S. C.

Polyisopropylbenzenes. II. Nitro- and amino-derivatives. A. Newton (J. Amer. Chem. Soc., 1943, 65, 2434—2439; cf. A., 1943, II, 222).—Nitration of polyisopropylbenzenes usually, but not always, involves partial replacement of Prb by NO₂ when all the orienting groups favour entry of NO2 at this position. In absence of this condition, no such replacement occurs. In experiments recorded below, hydrocarbons were nitrated by 96% HNO₃ (1.24 recorded below, hydrocarbons were nitrated by 96% HNO₃ (1·24 2·05 mols.) in AcOH—Ac₂O at 45—50° and then usually kept at room temp. for 24 hr.; NO₂-compounds (2·5 g.) were oxidised by 70% HNO₃ (20 ml.) and H₂O (12 ml.) at 180° (H₂), yields of crude acids being 50—60% for NO₂- and 13% for (NO₂)₂-compounds; NO₂-compounds were reduced to amines by H₂-Raney Ni in 99% PrβOH at 100°/1200 lb.; amines were nitrated in H₂SO₄ by 70% HNO₃ (1·1 mols.) at 5—10°. m·C₆H₄Prβ₂ gives a 95% yield of 2- (25%) and 4-nitro-m-diisopropylbenzene (74%) (and traces of polynitro-compounds), oxidised to 2:1:3- and 4:1:3-NO₂·C₆H₃(CO₅H)₃, respectively, and reduced to 2-. an oil (B₇) NO₂·C₆H₃(CO₂H)₂, respectively, and reduced to 2-, an oil (B_n, m.p. 106—106·7°, and? Ac₂ derivative, an oil), and 4-amino-m-disopropylbenzene (I) (Ac, m.p. 108·3—109°, and Bz derivative, m.p.

H. M. C.

162·8—163·4°), respectively. With 96% HNO₃ (3·17 mols.) in H.SO₄ at 70°, m-C₆H₄Prβ₂ gives 4:6-dinitro-m-diisopropylbenzene, m.p. 76·9—77·7°, oxidised to 4:6:1:3-(NO₂)₂C₆H₂(CO₂H)₂ (Et₂ ester, new m.p. 124·5—125·2°) and reduced (one NO₂ at room temp., the other at 60°) to 4:6-diamino-m-diisopropylbenzene (II), m.p. 72·6—72·9° [Ac₂ derivative, m.p. 320·5—321·5° (uncorr.)]. (I) gives 6-nitro-4-amino-m-diisopropylbenzene (III), m.p. 75·3—76·1° (Ac derivative, m.p. 116·2—117°), and thence (II). By the general method, p-C₆H₄Prβ₂ gives p-C₆H₄Prβ·NO₂ (49·7%) and 2-nitro-p-diisopropylbenzene (33·7%), yields being 65·0 and 13·6%, respectively, when 70% HNO₃ (~2 mols.) in H₂SO₄ at 0—6° is used. Reduction then affords p-C₆H₄Prβ·NH₂ (hydrochloride; Ac, new m.p. 105·8—106·6°, and Bz derivative, m.p. 161·4—162°), and 2-amino-(hydrochloride; Ac, m.p. 80·8—81·5°, and Bz derivative, m.p. 124·6—125°), and thence 6-nitro-2-amino-, m.p. 95·2—96·3°, and 2:6-diamino-p-diisopropylbenzene, m.p. 77·9—78·3°. 1:2:4-C₆H₃Prβ₃ gives 5-nitro- and thence 5-amino-1:2:4-triisopropylbenzene-A (IV) (Ac, m.p. 141·9—142·5°, and Bz derivative, m.p. 159·8°). Nitration of (IV) gives (III). s-C₆H₃Prβ₃ gives the 2-NO₂-derivative, m.p. 74·6—75·5°, which with 96% HNO₃ in H₂SO₄ at 35—53° and finally 100° gives the 2:4:6-(NO₂)₃-derivative, m.p. 190·8—191·6°. Reduction etc. affords 2-amino-[hydrochloride; Ac, m.p. 177·3—178·1°, and Bz derivative, m.p. 286·5—287·2° (uncorr.)], 4-nitro-2-amino-, m.p. >360°). Adding 96% HNO₃ (1·76 mols.) to 1:2:4:5-C₆H₂Prβ in AcOH—Ac₂O at 30—45° and then keeping at 0° gives 3-nitro-1 2:4-tri-isopropylbenzene-B VI), m.p. 40·9—41·9° and 5-nitro-1:2:4-tri-isopropylbenzene-B VI), m.p. 40·9—41·9° and 6-(Pa amixure of -A and -B). Reduction of the -B or -C forms (VI etc.) gives (IV). Reduction of (V) gives 3-amino-1:2:4:5-tetraisopropylbenzene, m.p. 150·5—160·4°. Physical data are recorded for the oily products. M.p. are corr. except where stated. R. S.

New method of nuclear methylation of aromatic amines. (Miss) M. G. Barclay, A. Burawoy, and G. H. Thomson (J.C.S., 1944, 109—112).—Dry distillation (temp. >300°) of anhydro-p-aminobenzyl alcohol gives a 1:1 mixture (<25%) of NH₂Ph and p-toluidine (I), small amounts of p-C₆H₄Me·NHMe, amines of higher b.p., and NH₃, and much resin. In presence of alkali [e.g., Na₂CO₃: Ca(OH)₂] 35—40% of (I) and negligible amounts of by-products are obtained. Anhydro-4-amino-3-methylbenzyl alcohol (from o-C₆H₄Me·NH₂,HCl and aq. CH₂O) in presence of Ca(OH). affords m-4-xylidine and some (4:3:1-NH₂·C₆H₃Me)₂CH₂. Anhydro-4-amino-2:3-dimethylbenzyl alcohol (from o-3-xylidine) gives 4-amino-1:2:3-trimethylbenzyl alcohol (from σ-3-xylidine) gives 4-amino-1:2:3-trimethylbenzyl alcohol (from p-xylidine) affords ψ-cumidine and some (4:2:5:1-NH₂·C₆H₂Me₂)₂CH₂, whilst anhydro-4-amino-3-methoxybenzyl alcohol (from σ-anisidine) gives a moderate yield of 4:1:3-NH₂·C₆H₃Me·OMe; anhydro-4-amino-1-hydroxymethylnaphthalene (from α-C₁₀H₂·NH₂) affords α-C₁₀H₂·NH, and 4:1-C₁₀H₆Me·NH₂. (p-NH₂·C₆H₄)₂CH-at 400°/18 hr. yields NH₂Ph and (I). It is suggested that the first-formed radicals 'NH₂·C₆H₄·CH₂·NH]_n·C₆H₄·CH₂· undergo disproportionation to, e.g., NH₂·[C₆H₄·CH₂·NH]_n·C₆H₄·CH₂· undergo disproportionation to, e.g., NH₂·[C₆H₄·CH₂·NH]_{n-1}·C₆H₄·CH₂· The reaction can be extended to anhydro-4-aminoaryl alcohols derived from, e.g., NHPhMe.

Synthesis of p-chloroacetanilide. L. Blas and L. Arimany (Anal. Fis. Quim., 1942, 38, 71—82).—NHPhAc in $(CHCl_2)_2$ at $100-115^\circ$ with a slow stream of Cl_2 , and at $140-150^\circ$ with a rapid stream of Cl_2 , yields exclusively $p\text{-}C_6H_4Cl\text{-}NHAc$ and $2:4:1\text{-}C_6H_3Cl\text{-}NHAc$ respectively. F. R. G.

Derivatives of chloral with aromatic amines. W. T. Sumerford and D. N. Dalton (J. Org. Chem., 1944, 9, 81—84).—Additive [CCl₃·CH(OH)·NHAr (I)] or condensation [CCl₃·CH(NHAr)₂ (II)] compounds are obtained by shaking a solution of the amine or its salts in AcOH with CCl₃·CH(OH)₂ dissolved in H₂O containing NaOAc at room temp. Thus are obtained $\beta\beta\beta$ -trichloro-aa-diaryl-aminoethanes in which Ar = o-C₆H₄·COEt, m.p. 160°, p-C₆H₄·CO₂Et, m.p. 91·5°, p-C₆H₄·CO₂Me, m.p. 104°, β -C₁₀H₇, m.p. 116—118° m-tolyl, m.p. 103·5°, o-C₆H₄Cl, m.p. 104°, β -C₁₀H₇, m.p. 116—118° and Bz, m.p. 116°, and $\beta\beta\beta$ -trichloro-a-arylaminoethanols in which Ar = o-C₆H₄·CO₂Me, m.p. 105°, 2:4-OH·C₆H₃·CO₂Me, m.p. 93°, and p-C₆H₄·COMe, m.p. 93°. When heated at 75° 2 mols. of '(I) lose 1 mol. of CCl₃·CH(OH)₂ and yield (II). In no instance was it possible to cause (I) to lose the elements of H₂O with production of the Schiff's base. M.p. are corr.

Relations between chemical activity and absorption in the ultraviolet of organic molecules. VI. Action of nitrosyl chloride on substituted amides of acetoacetic acid. K. G. Naik, R. K. Trivedi, and B. N. Mankad (J. Indian Chem. Soc., 1943, 20, 384—388).—CH₂Ac·CO·NHPh (in anhyd. C₈H₈) saturated with gaseous NOCl at ~0° and then heated at 100° (bath) gives NHPh·CO·CAc.N·OH. Similarly the following are obtained: oximinoacetoacet-o-, m.p. 130°, and -p-toluidide, m.p. 92°, -m-4-xylidide, m.p. 145°, -a-, m.p. 138°,

and - β -naphthalide, m.p. 152°. Contrary to expectation no structural or stereo-isomerides can be isolated. CH₂Ac·CO·NHAr with SO₂Cl₂ in Et₂O gives chloroacetoacet-anilide, m.p. 138°, -m-4-xylidide, m.p. 114°, and - α -naphthalide, m.p. 135°. (Cf. A., 1944, I, 116.)

Activity of halogen derivatives of substituted amides of malonic acid. I. Action of Grignard's reagent on the chloro-derivatives of substituted amides of malonic acid. II. Velocity of replacement of chlorine atom of the group 'CHCl' in monochloro-derivatives of substituted amides of malonic acid. K. G. Naik, R. K. Trivedi, and S. M. Mehta (J. Indian Chem. Soc., 1943, 20, 345—348, 355—357).— I. Grignard's reagents (MgPhBr and CH₂Ph-MgCl) with CCl₂(CO·NHAr)₂ give CHCl(CO·NHAr)₂ and no ditert.-alcohol. A reaction mechanism is suggested. The second Cl cannot be removed in this way. Chloromalondi-anilide, m.p. 176°, -p-, m.p. 212°, and -o-toluidide, m.p. 179°, and -m-4-xylidide, m.p. 202°, are described. II. The Cl of CHCl(CO·NHAr)₂ (Ar = Ph, o- and p-tolyl, m-4-xylyl) is replaced by H on treatment with HI. The velocity of replacement is influenced by the position of the substituents in the C₈H₈ rings and the mol. wts. of the residues attached to the CO-

Preparation and properties of N-substituted sulphamic acids. L. F. Audrieth and M. Sveda (J. Org. Chem., 1944, 9, 89—101).— NHR·SO₃H and NRR'·SO₃H are obtained (a) by the gradual addition of CISO₃H to 3 equivs. of the amine in dry CHCl₃ at >0°: 3NHRR' + CISO₃H \rightarrow NRR'·SO₃H,NHRR' + NHRR',HCl, (b) by reduction of the NO₃-compound by Na₂S₂O₄ in presence of Na₃PO₄ (to prevent the solution from becoming acid): ArNO₂ + Na₂S₂O₄ + H₂O \rightarrow NHAr·OH + SO₂ + Na₂SO₄; NHAr·OH + SO₂ + Na₂SO₄ + NHAr·SO₃Na + H+; the method suffers from the disadvantage of involving large quantities of H₂O-sol. salts which render difficult the isolation of the sulphamates: (c) by treatment of the C₆H₅N,SO₃ additive compound (I) with ~2·5 mols. of the requisite amine in a 3-fold vol. of H₂O at 0° followed by addition of a slight excess of the requisite metallic hydroxide; a disadvantage is the relative instability of (I): (d) by interaction of amine and ClSO₃Na which occurs thus: 2NH₂R + ClSO₃Na \rightarrow NHR·SO₃H,NH₂R + NaCl; the addition of NaOH is therefore not avoided and the method has the further disadvantage that technical ClSO₃Na contains 30% of NaCl. The following are described: Na phenyl-, Na p-phenyl-, Na p-tolyl-, Na N-phenyl-N-methyl-, Na benzyl-, Na β-phenylethyl-, Na y-phenyl-N-methyl-, Na benzyl-, Na β-phenylethyl-, Na N-phenyl-N-methyl-, Na benzyl-, Na dicyclohezyl-, Na N-cyclohezyl-N-ethyl-, Na N-cyclohezyl-N-ethyl-, Na N-cyclohezyl-N-nethyl-, Na N-cyclohezyl-, and Na 1:2:3:4-tetrahydronaphthyl-sulphamates. cyclohezyl-, m.p. 169—170°, and dicyclohezyl-, m.p. 161°, -sulphamic acid have been prepared. The antipyretic action of these compounds is discussed. The extraordinary sweetness of certain N-substituted sulphamic acids is thus far limited to those containing as a substituted and (b) a free H on the N, viz., NHR·SO₃X, where X is almost any salt-forming group.

Sulphanilamide derivatives.—See B., 1944, III, 73. Sulphanlylalkylguanidines.—See B., 1944, III, 73.

 $p\text{-}Aminoarylsulphonamidoaryl-}\rho\text{-}sulphonic acids and their salts.}$ See B., 1944, III, 73.

Carbon rings. XXXIV. cycloDecane and its derivatives and the two 9:10-diaminodecahydronaphthalenes. P. A. Plattner and J. Hulstkamp (Helv. Chim. Acta, 1944, 27, 220—230).—Largely a repetition and extension of the work of Hückel et al. (A., 1930, 76: 1933, 494). Reduction of cyclodecane-1:6-dionedioxime (corresponding monoxime, m.p. 155°) gives varying amount of mono- and di-amines and neutral products. Treatment with Na and EtOH gives ~60% of basic components relatively poor in cyclodecane derivatives. Replacement of EtOH by amyl alcohol gives nearly 100% of bases, essentially a mixture of a- (I) and β- (II) -1:6-diaminocyclodecane with cis- (III) and trans- (IV) -9:10-diaminodecahydronaphthalene. The reaction product is distilled and dissolved in EtOH which is saturated with CO₂, causing the pptn. of the sparingly sol. carbamates of (I) and (II). The bases regenerated therefrom are purified through their hydrochlorides. Thus are obtained (I), b.p. 145°/12 mm., m.p. 43—46° (yield 40%), probably the trans-compound and identical with Hückel's base, m.p. 50° (Ac₂ derivative, m.p. 296°; dipicrate, decomp. 280—285°; dihydrochloride, slow decomp. >200°), and (II) (yield 20%), b.p. 145°/12 mm., m.p. 8—10° [dihydrochloride (+2H₂O), gradual decomp. >200°; Ac, derivative, m.p. 253°; mono-, decomp. 200—210°, and di-picrate, decomp. 247—252°]. The portion of the basic mixture which gives EtOH-sol. carbamates or does not give a carbamate consists mainly of (III), b.p. 121°/12 mm., m.p. 41° [dihydrate; dihydrochloride (+1H₂O); Ac₂ derivative, m.p. 242°; mono-, m.p. 236° (decomp.), and di-picrate, decomp. 242—247°]. (IV) is present to the extent of ~3% and is identified by comparison with the product of the reduction of trans-9:10-dinitrodecahydronaphthalene; it has m.p. 70°, b.p. ~120°/12 mm., and gives a dipicrate, decomp. 262—264°, and an Ac₂ derivative, m.p. >360°.

The constitution of (III) and (IV) is established by conversion by HNO₂ into 2-spirocyclopentanocyclohexanone. The basic mixture appears to contain further cryst, compounds partly of hydroazulene structure. (I) is transformed by MeI and 5N-KOH-MeOH into a-di-1: 6-dimethylaminocyclodecane dimethiodide, decomp. 305—320°, converted by Ag₂O into the quaternary base, which when decomposed thermally yields cyclodecadiene, b.p. 69°/12 mm., hydrogenated (Adams) to cyclodecane (V), b.p. 75°/12 mm., m.p. 9·5°. Analogously (II) affords β -di-1: 6-dimethylaminocyclodecane dimethiodide, decomp. 310—330°, which is converted into (V), m.p. 9·4°. (II) is transformed by MeI and KOH-MeOH into bisdimethylaminodecahydronaphthalene dihydriodide (corresponding base, m.p. 86°).

1:4-Diamino-2-methylnaphthalene.—See B., 1944, II, 129.

Relations between chemical activity and absorption in the ultraviolet of organic molecules. IV. Interaction of phenylhydrazine with the chloro-derivatives of substituted amides of malonic acid. K. G. Naik, R. K. Trivedi, and C. M. Mehta (J. Indian Chem. Soc., 1943, 20, 369—371; cf. A., 1944, I, 116).—CCl₂(CO·NHAr)₂ with NHPh·NH₂ (I) in boiling EtOH gives NHPh·N:C(CO·NHAr)₂; in the cold NHPh·NH·CCl(CO·NHAr)₂ results. The following are described: mesoxal-diantilide-, m.p. 175°, -di-m-chlorotoluidide-, m.p. 196°, -di-p-, m.p. 185°, and -di-o-toluidide-, m.p. 148°, -di-m-4-xylidide-, m.p. 172°, -mono-p-toluidide-, m.p. 195°, and -mono-chloroanilide-phenylhydrazone, m.p. 180—190°; a-chloro-a-phenylhydrazinomalondi-anilide, m.p. 179°, -p-, m.p. 210—211°, and -o-toluidide, m.p. 158°, -m-chlorotoluidide, m.p. 218—219°, and -m-4-xylidide, m.p. 206°. CH₂Cl-CCl(CO·NH·C₆H₄Me)₂; 1-anilino-2: 2-di-o-, m.p.

145°, and -p-tolylcarbamylaziridine, m.p. 190°, are described.

Action of cuprous oxide on diazotised amines. III. Action in sulphuric acid–glacial acetic acid. H. H. Hodgson, S. Birtwell, and E. Marsden (J.C.S., 1944, 112—113; cf. A., 1943, II, 158).— Deamination by Cu₂O in H_2SO_4 -AcOH attains >70% efficiency for amines of the $C_{10}H_3$ series, but is <40% for those of the C_6H_6 series. Efficiency ∞ the positivity of the C atom to which the diazo-group is attached.

Manufacture of phenols.—See B., 1944, II, 129.

Hydrogen bonding. Nitrocresols. Nitrodihydroxybenzenes.—See A., 1944, I, 129.

Iodination of 4-hydroxydiphenyl. J. C. Colbert, H. W. Houghton, H. R. Schmidt, and J. L. Abernethy (J. Amer. Chem. Soc., 1944, 66, 122—124).—With 1 mol. of I in KI, $p\text{-}C_6H_4\text{Ph}\text{-}OH$ (I) in aq. NH₃ (91·1%) yield) or, less well, in NaOH or with ICl in AcOH gives 3-iodo-4-hydroxydiphenyl, m.p. 115—116°, which in C_5H_5 N yields a benzoate, m.p. 99·5—100°, and with conc. HNO₃ in AcOH gives a (?5-) NO_2 -derivative, m.p. 95—100° (decomp.). Attempts to diiodinate (I) in NaOH by I-KI give a compound, $C_2H_{16}O_2I_2$, m.p. 170—171° (decomp.), but I-KI in aq. NH₃ or ICI-AcOH yields 3:5-di-iodo-4-hydroxydiphenyl, m.p. 95—97° (86—87°) (benzoate, m.p. 159—160°). Tri-iodination could not be achieved.

Phosphoric acid esters of phenols. F. L. Breusch and H. Keskin (Rev. Fac. Sci. Istanbul, 1942, 7, 182—189).—POCl₃ and the corresponding phenol gave on warming tri-m-tolyl (I), b.p. 258—263°/4 mm., m.p. 25—26°, tri-p-xylyl, m.p. 77°, tri-2:4:6-trichloro-phenyl, m.p. 200—201°, and di-o-chlorophenyl phosphate, m.p. 121·5° (separated from the tri-ester by solubility of the latter in PhMe). Br and (I) give tri-6-bromo-m-tolyl phosphate, m.p. 90°. Br and (p-C₄H₄Me)₃PO₄ give tri-3:5-dibromo-p-tolyl phosphate, m.p. 178°, hydrolysed to 2:6:4:1-C₆H₂Br₂Me·OH. Triaryl phosphates are hydrolysed by alkali (curves given) but are stable towards acid reagents. Solubility data are also given.

Anomalous oxidation of an ethylene derivative by perbenzoic acid. C. K. Bradsher (J. Amer. Chem. Soc., 1944, 66, 45—46).—o-C_4H_4Ph:MgI (I) with an excess of PhCHO in boiling C.H. gives o-C_6H_4Ph:COPh (69.5%), m.p. 86—87°, which with MgMcI and then KHSO_4 gives o-C_5H_4Ph:CPh:CH_2 (II) (56—73%), m.p. 59—61°, b.p. 201—202.5°/12 mm., obtained much less well from (I) and COPhMe. With BzO_4H in Et_2O at room temp., (II) gives a "dioxide," C_0H_16O_2 (46%), m.p. 111—112°, converted by boiling 34% aq. HBr-AcOH, KHSO_4 at 170—180°, or conc. H_2SO_4 at 100° (2 min.) into 10-phenyl-9-phenanthrol. R. S. C.

Diphenylyl \(\beta\)-methylallyl ethers.—See B., 1944, II, 129.

a-Bromo-aββ-tri-p-anisylethylene.—See B., 1944, II, 130.

Derivatives of 4:4'-diaminodiphenyl sulphone.—See B., 1944, III, 74.

Synthesis and chemical properties of diasone [disodium form-aldehydesulphoxylate-diaminodiphenyl sulphone].—See A., 1944, III,

Preparation of cyclohexanols by catalytic reduction of phenols. H. E. Ungnade and A. D. McLaren (J. Amer. Chem. Soc., 1944, 66, 118—122).—In presence of Raney Ni at, usually, 100—300 atm. phenols are reduced in excellent yield to cyclohexanols, substitution having little effect unless two o-substituents are present; 2:6:1-C₀H₃Pra₂·OH (I) is unaffected at 360°, but 4:2:6:1-C₀H₃MeEt₂·OH (II) gives 1-methyl-3:5-diethylcyclohexane, b.p. 175—176·5°. Presence of a small amount of 40% NaOH slightly lowers the temp. required for reduction (normally 125—200°) and permits reduction of (I) to cis-cis-2: 6-di-n-propylcyclohexanol, m.p. 109—110°, b.p. 241—242° (phenyl-, m.p. 145-5—146.5°, and a-naphthyl-urethane, m.p. 137—138°) (cf. Vavon et al., A., 1937, II, 287), and of (II) to mixed 4-methyl-2: 6-diethylcyclohexanols [90% including a form, m.p. 86—87°, b.p. 219—220° (a-naphthylurethane, m.p. 143-5— In general only one stereoisomeride is formed, but 4:2:1-144)]. In general only one stereosomeride, but 1.1 (a. 1.1 (a. 1.1 (b. 1.1 (131.5°) (both forms yield the same cyclohexanone). At 110-125°/ 1200 lb. p-C₆H₄Ph·OH gives 4-cyclohexylcyclohexanol (59.2%), p-cyclohexylphenol (25.7%), and 4-phenylcyclohexanol (7.4%), but in presence of NaOH at 95—115° gives more rapidly 43.2, 16.6, and 30.3%, respectively. Hydrogenation of o-allyl-, o-propenyl-, or 2:6-diallyl-phenol gives the alkylphenol very rapidly at 50° and then the alkylcyclohexanol at 140—160°; alkali catalyses both reactions. Acylphenols in EtOH at ~110° give good yields of alkylphenols and then at 180° (usually cis-)alkylcyclohexanols, isolation of the alkylphenol being unnecessary; in presence of alkali at 45-65° mixtures of alkylphenols and hydroxyalkylcyclohexanols arc obtained; at 110° mixtures of alkyl- and hydroxyalkyl-cyclo-hexanols are formed; some hydrogenolysis of the OH of the hydroxyalkylcyclohexanols occurs during this second stage, but it cannot be completed even at 220° and is thus probably catalysed by the Na phenoxide. Incidentally are described trans-4-methyl-, by the Na phenoxide. Incidentally are described trans-4-methyl, b.p. 167—170° (3:5-dinitrobenzoate, m.p. 137·2—138·7°; phenyl, m.p. 124—124·5°, and a-naphthyl-urethane, m.p. 156·5—157·5°), cis-2-ethyl-, b.p. 180—182° (phenyl-, m.p. 99—99·8°, and a-naphthyl-urethane, m.p. 151—153·5°), 3-ethyl-, b.p. 191·5—192° (a-naphthyl-urethane, m.p. 98·5—99·5°), 4-ethyl-, b.p. 191—192° (phenyl-, m.p. 114—115°, and a-naphthyl-urethane, m.p. 139·5—140·5°), cis-2-n-propyl-, b.p. 201·5—202° (phenyl-, m.p. 94—95°, and a-naphthyl-urethane, m.p. 103—104°), (?cis-trans-)2: 4-, b.p. 176·5—177·5° (phenyl-, m.p. 95—96°, and a-naphthyl-urethane, m.p. 152·5—153·5°), cis-trans-2: 5- b.p. 179—180·5° (phenyl-, m.p. 116—117°, and (phenyl-, m.p. 163—180-5° (phenyl-, m.p. 116—117°, and a-naphthyl-urethane, m.p. 179—180-5° (phenyl-, m.p. 116—117°, and a-naphthyl-urethane, m.p. 172—173-5°), 3:4-, b.p. 188—189-5° (phenyl-, m.p. 96—97°, and a-naphthyl-urethane, m.p. 162—163°), and cis-cis-3:5-dimethyl-, m.p. 8—9-8°, b.p. 181—183° (phenyl-, m.p. 108—107-5°, and a-naphthyl-urethane, m.p. 141—143°), 2:3:5-, h.p. 196—197° (a-naphthylurethane, m.p. 148—149°), and 2:4:6-trimethyl-, m.p. 70·5—71°, b.p. 182—184° (a-naphthylurethane, m.p. 197·5—198°), 4-a-hydroxyethyl-, m.p. 91—92·2° (di-3:5-dinitrobenzoate, m.p. 210—212°), and 2-a-hydroxy-n-propyl-, b.p. 256—259° (di-3:5-dinitrobenzoate, m.p. 182·5—164°), -cyclohexanol.

4:4'-Dihydroxy-3:3:5':5'-tetra(hydroxymethyl)diphenylmethane. F. Seebach (Ber., 1940, 73, [B], 1338—1346).—The compound regarded previously as 1:2:6-OH·C₆H₃(CH₂·OH)₂ (A., 1939, II, 476) is shown to be 4:4'-dihydroxy-3:5:3':5'-tetra(hydroxymethyl)diphenylmethane (I). The Mg, Cu, Li₂, Na₂, Ca, and (FeOH) compounds are described. The triacetate (loc. cit.) is the hexa-acetate of (I). (I) is converted by CH₂N₂ (not Me₂SO₄ or Me1) into 4:4'-dimethoxy-3:3':5:5'-tetra(hydroxymethyl)diphenylmethane, m.p. 115°, oxidised by KMnO₄ at 95° to 4:4'-dimethoxybenzophenone-3:5:3':5'-tetracarboxylic acid (+AcOH) (II), m.p. 216° (oxime, m.p. 265°, Me₄ ester, m.p. 158°), hydrolysed by HI to 4:4'-dihydroxybenzophenone-3:5:3':5'-tetracarboxylic acid, m.p. 310° (Mg H salt). This is transformed by KOH at 310° into 4:1:3:5-OH·C₆H₃(CO₂H)₃, m.p. 306°, and 2:1:3-OH·C₆H₃(CO₂H)₂, m.p. 241°. (II) is decarboxylated in boiling quinoline to CO(C₆H₄·OH-p)₂, m.p. 206°, methylated to CO(C₆H₄·OMe-p)₂, m.p. 141°.

4-Phenyl-2-methylcyclohexylacetic acid and related compounds. C. K. Chuang, J. H. Chu, and Y. S. Kao (Ber., 1940, 73, [B], 1347—1353).—Et 1-hydroxy-2-methylcyclohexylacetate is converted by SOCl₂ and C₅H₅N into a mixture of Et 2-methyl-Δ¹-cyclohexenylacetate and Et 2-methylcyclohexylideneacetate, transformed by C₈H₄ and AlCl₃ (2 mois.) at room temp. into a product, b.p. 165—167°/2 mm. (saturated towards Br in CCl₄ and alkaline KMnO₄), hydrolysed by alkali to a mixture (I) from which 4-phenyl-2-methylcyclohexylacetic acid (II), m.p. 126—128° (amide, m.p. 183—184°), is isolated. 2-Phenyl-2-methylcyclohexylacetic acid cannot be present in (I), which is not cyclised to the corresponding hexahydrophenanthrone by 85% H₂SO₄ or anhyd. ZnCl₂. (II) is esterified (EtOH-H₂SO₄), dehydrogenated (S at 220—230°), and hydrolysed (KOH-EtOH) to 3-methyldiphenyl-4-acetic acid, m.p. 145°. Et 4-phenyl-2-methylcyclohexylacetate and MgPhBr give the non-cryst. diphenylcarbinol, which is oxidised by CrO₃ in AcOH to 4-phenyl-2-methylcyclohexanecarboxylic acid, m.p. 140—141° (amide, m.p.

176—177°), dehydrogenated and decarboxylated by Se at 330—340° to 3-methyldiphenyl, identified by oxidation to diphenyl-3-carboxylic acid, m.p. $165-166^\circ$. Me 4-phenyl-2-methylcyclohexane-carboxylate is dehydrogenated by S at $220-240^\circ$ and then hydrolysed to 3-methyldiphenyl-4-carboxylic acid (Me ester, m.p. $62-63^\circ$). H. W.

Synthesis of coumarins from o-hydroxyaryl alkyl ketones. IV. Formation of o-coumaric acids from o-hydroxyaldehydes. D. Chakravarti and S. A. Momen (J. Indian Chem. Soc., 1943, 20, 338—340).—2: δ: 1-OMe·C₆H₃Me·CHO, 2: 4: 1-(OMe)₂C₆H₃·CHO, and 2: 1-OMe·C₁₀H₆·CHO condensed with CH₂Br·CO₂Et and CHMeBr·CO₂Et gave OH-esters, which on dehydration and hydrolysis gave trans-o-coumaric acids. o-OMe-aldehydes always give trans-o-methoxycinnamic acids by Perkin's, Chakravarti and Majumdar's, and CH₂(CO₂H)₂ condensations. The following appear new: trans-2-methoxy-5-methyl-, m.p. 145—146° (Et ester, b.p. 165°/7 mm.), trans-2-methoxy-a: 5-dimethyl-, m.p. 109—110° (Et ester, b.p. 160°/5 mm.), and trans-2: 4-dimethoxy-a-methyl-cinnamic acid, m.p. 130° (Et ester, b.p. 200°/6 mm.); β-2-methoxy-1-naphthyl-, m.p. 153—154° (Et ester, b.p. 210—212°/4 mm.), and β-2-methoxy-1-naphthyl-a-methyl-acrylic acid, m.p. 138—139° (Et ester, b.p. 220—225°/5 mm.). Et β-hydroxy-β-4-methoxy-m-tolylpropionate has b.p. 200°/12 mm.

Transamination reaction. Effect of various nuclear substituted a-amino-a-phenylacetic acids on the course of the reaction. E. K. Harvill and R. M. Herbst (J. Org. Chem., 1944, 9, 21—30).—The reaction between AcCO₂H and various NH₂-acids is followed by the determination of CO₂ evolved after definite intervals of time and the characterisation of volatile and non-volatile aldehydes produced. In the reaction between AcCO₂H and p-OH·C₆H₄·CH(NH₂)·CO₂H, new m.p. 240—241° (decomp.), sublimes at 229°, p-OMe·C₆H₄·CH(NH₂)·CO₂H, decomp. 248—285°, sublimes at 230°, and a-anino-a-o-anisylacetic acid (+H₂O), m.p. 161—162° [Cu salt (+2H₂O)], both MeCHO and an aromatic aldehyde are formed with alanine (I) and CO₂ whereas in the change between AcCO₂H and a-anino-a-p-chlorophenyl-, m.p. 261—262° (decomp.), -o-chlorophenyl-, m.p. 219·5°, and -o-hydroxyphenyl-, m.p. 194-195° (decomp.), -acetic acid only an aromatic aldehyde is produced with (I) and CO₂. In the system, CO₂H·CH(C₆H₄Y)·N·CMe·CO₂H → C₆H₄Y·CH·N·CHMe·CO₈H + CO₂, the rate of formation of CO₈ increases with increasing dipole moment of C₈H₄Y. The effect of the same group is enhanced by shifting it from the p- to the o-position. In their effect on the rate of formation of CO₂ the groups studied fall into the order: o-Cl > o-OMc > o-OH > p-Cl > p-OMe > p-OH. a-Amino-a-2-furylacetic acid has m.p. 212—213° (decomp.). The NH₂-acids are obtained by hydrolysis with Ba(OH)₂ of the 5-arylhydantoins,

priate aldehyde, KCN, and (NH₄)_oCO₃ in aq. EtOH. Compounds are described in which R = p-anisyl, m.p. 195° (lit. 191·5°), o-anisyl (II), m.p. 189° (lit. 186—187°), p-C₆H₄Cl·, m.p.191°, o-C₆H₄Cl·, m.p. 175—176°, p-OH·C₆H₄·, m.p. 269—270° (decomp.) [lit. 263° (decomp.)], o-OH·C₆H₄· (III), m.p. 240—244° (decomp.), and furyl, two forms, m.p. 101° and 147°. (III) could not be obtained by the general procedure but results from the hydrolysis of (II) by HI (d 1·5). The NH₂-acids and PhNCO in alkaline solution give a-phenylcarbamido-a-arylacetic acids, in which Ar = p-anisyl, m.p. 196° (decomp.), o-anisyl, m.p. 186·2°, p-C₆H₄Cl·, m.p. 187—179°, p-OH·C₆H₄·, m.p. 192° (decomp.), and 2-furyl, m.p. 147° (decomp.). The are converted by boiling HC1 into 3-phenyl-5-arylhydantoins, HR·NH

there are converted by bonning 1103. The converted by bonning 1109, m.p. 179°, o-anisyl, m.p. 184°, p-C₈H₄Cl·, m.p. 187·5°, p-OH·C₈H₄·, m.p. 187·5°, p-OH·C₈H₄·, m.p. 171° and 201° after resolidification, and o-OH·C₈H₄·, m.p. 224—225°. M.p. are corr. H. W.

Dialkyl phenyl- and phenylalkyl-malonates.—See B., 1944, II, 130. 9: 9-Di-β-carbamylethylfluorene.—Sec B., 1944, II, 129.

[Attempted] synthesis of caryophyllenic acid. M. D. Owen (J. Indian Chem. Soc., 1943, 20, 343—344).—The condensation product of CMe₂:CO and cyclopentadiene was oxidised (COMe₂-KMnO₄ at \$4°) to 4-keto-2-carboxy-3: 3-dimethylcyclobutylacetic acid (?) (I), p. 124—125°. Attempts to reduce (I) to caryophyllenic acid uave so far been unsuccessful. D. G.

Amidine salts.—See B., 1944, II, 129.

Lignin. XLII. Vanillincarboxylic acid and related acids. K. recudenberg and F. Klink (Ber., 1940, 73, [B], 1369—1376).—Me 2-hydroxy-3-methoxy-5-allylbenzoate is not isomerised by KOH in solling C₅H₁₁·OH or by KOH-MeOH at 135° but is converted by at 220—235° into 2-hydroxy-3-methoxy-5-propenylbenzoic acid (I), m.p. 157° (Me ester, m.p. 73·5°; acetate, m.p. 141°), which when ozonised in EtOAc and then hydrogenated (Pd-C in EtOAc) affords -hydroxy-5-aldehydo-3-methoxybenzoic (vanillin-5-carboxylic) acid, m.p. 255° (decomp.). (I) is converted by Me₂SO₄ and NaOH at room temp. into 2: 3-dimethoxy-5-propenylbenzoic acid, m.p. 101°,

ozonised and hydrogenated to 5-aldehydo-2: 3-dimethoxybenzoic acid,

m.p. 152°, and oxidised by KMnO₄-NaHCO₃ to isohemipinic acid (II), m.p. 255°. (I) is treated with PhSO₂Cl in C_1H_5 N and then oxidised (KMnO₄-NaHCO₃) and hydrolysed (NaOH) to 4-hydroxy-5-methoxyisophthalic acid, m.p. 276°. 4:5:1:3- $OH \cdot C_2H_2(OMe)(CHO)_2$ is methylated to $4:5:1:3-(OMe)_2C_3H_2(CHO)_2$, m.p. 125°, oxidised to (II), which is converted by boiling AcOH-48% HBr into $4:5:1:3-(OH)_2C_3H_2(CO_2H)_2$ (III), m.p. 291° [Me₂ ester, (IV), m.p. 139°]. Partial esterification of (III) by MeOH- H_2SO_4 gives 1-Me H 4:5-dihydroxyisophthalate, m.p. 216°. (IV) is transformed by successive treatment with MeOH-NaOMe and $-CH_2I_2$ at 140° into Me_2 4:5-methylenedioxyisophthalate, m.p. 145—146°, hydrolysed (KOH-MeOH) to the acid, m.p. 293—294° (decomp.). Guaiacoldialdehyde is demethylated to 4:5-dihydroxyisophthalaldehyde, m.p. 200° (bisphenylhydrazone, m.p. 249°), which yields 4:5-methylenedioxyisophthalaldehyde, m.p. 153—154°. H. W.

o-Aldehydocarboxylic acids. IV. Synthesis of 5:6-methylene-dioxyphthalaldehydic acid. S. N. Chakravarti (J. Indian Chem. Soc., 1943, 30, 382—383).—5:6-Methylenedioxyhomophthalic acid (modified prep.; cf. Haworth et al., A., 1926, 951) was oxidised (SeO₂ in boiling xylene) to 5:6-methylenedioxyphthalonic acid, converted through its NaHSO₃ compound into 5:6-methylenedioxyphthalaldehydic acid, m.p. 155°, which was reduced (Na-Hg; dil. NaOH) to 5:6-methylenedioxyphthalide, m.p. 227°. H. M. C.

Lignin and related compounds. LXXIV. Relation of wood ethanolysis products to the Hibbert series of plant respiratory catalysts. Allylic and dismutation rearrangements of γ-chloro-α-3: 4-dimethoxyphenylpropan-β-one and α-bromo-3: 4-dimethoxyphenylpropan-β-one. A. M. Eastham, H. E. Fisher, M. Kulka, and H. Hibbert (J. Amer. Chem. Soc., 1944, 66, 26—32; cf. A., 1944, II, 115).—The ease with which rearrangements, CH₂Ar-CO-CH₂X. — CHAr-X-COMe ~ COAr-CHMeX, occur supports Hibbert's view that the C₆—C₃ products isolated after ethanolysis of wood are stabilised end-γroducts formed from progenitors of the coniferyl alcohol type. 3: 4: 1-(OMc)₂C₆H₃-CH:CMc·NO₂ with FeCl₃, Fe dust, and HCl gives the oxime, which by hydrolysis yields veratryl Me ketone (I) (70%), b.p. 118°/0·2 mm., which with Br and a trace of Bz.O₂ in CHCl₃ gives α-bromoveratryl Me ketone (II) (58%), m.p. 87—88° (semi-carbazone, m.p. 201·5—202·5°). With 5% KOAc at 100° (I) gives α-hydroxyveratryl Me ketone (III) (55%), m.p. 76—77° (semicarbazone, m.p. 155—156°), which is unchanged by 5% KOAc at 100° (CO₂) and with AcCl-C₂H₃N yields the oily α-acetate (89%) (2: 4-dimitrophenyl-hydrazone, m.p. 149—150°), also obtained from (I) by Pb(OAc)₄-AcOH at 88°. 3: 4: 1-(OMe)₂C₃H₃-CHCl·CO·NH₂ and HI in AcOH at room temp. give 3: 4: 1-(OMe)₂C₃H₃-CH₂-CO·NH₂ and thence, successively, the acid, acid chloride, CHN₂ ketone (IV), and veratryl CH₂-OAc ketone (85%), m.p. 55—56° (semicarbazone, m.p. 128—129°). CuSO₄ oxidises (III) or 3: 4: 1-(OMe)₂C₃H₃-CH₂-CO·NH₂-ChHe·OH (V) (semicarbazone, m.p. 154—155°) in aq. C₃H₃-CH₂-CO-CH,Cl (VII) gives 3: 4: 1-(OMe)₂C₃H₃-CH₂-CO-CH,Cl (VII) gives 3: 4: 1-(OMe)₂C₃H₃-CO-CH,Cl (VII) arthory-analogue, b.p.

Use of phenyl esters in the Reformatsky reaction. M. S. Bloom and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 152—153).— RCO₂Ph and CR'R"Br·CO₂Et undergo the Reformatsky reaction in boiling PhMe-C₆H₈ satisfactorily if neither component has H on C_(a1); CMe₂Br·CO₂Et with PhOBz gives 52% of CMe₂Bz·CO₂Et, with p-C₆H₄Ph·OAc gives 11% of CMe₂Ac·CO₂Et, and does not condense with EtOBz; very low yields of β -CO-ester are obtained from CH₂Br·CO₂Et by PhOBz or EtCO₂·C₆H₄Ph-p. All the Zn is nevertheless used when the reaction fails; probably condensation of the Ph esters (with H at C_(a)) and enolisation of the β -CO-ester are caused by the Zn alkyl halide. R. S. C.

cycloAlkenyl methyl ketones.—See B., 1944, II, 130.

Absorption spectra and structure of pyrethrins I and II.—See A., 1944, I, 97.

Preparation of cyclopentenones from lactones. R. L. Frank, P. G. Arvan, J. W. Richter, and C. R. Vanneman (J. Amer. Chem. Soc., 1944, 66, 4—6).—Et lævulate (prep. in 81% yield by distilling a solution of the acid and a little conc. H₂SO₄ in EtOH-C₆H₆), b.p. 93—94°/18 mm., with n-C₆H₁₃·MgCl in boiling Et₂O-C₆H₆ gives γ-methyl-γ-n-decolactone (28%; C₆H₁₃·MgBr gives 31%), b.p. 120—125°/4—5 mm., which with P₂O₃ gives 50% of dihydrojasmone and with Br in CCl₄ at room temp. and then 70—75° (ultra-violet light) gives (?) C₆H₁₃·CMeBr·CH₂·CHBr·CO₂H, converted by distillation into a-bromo-γ-methyl-γ-n-decolactone, b.p. 121—122°/1 mm. With NaOMe-MeOH at room temp. this gives a-methoxy-γ-methyl-γ-n-decolactone (65%), b.p. 107—108°/3 mm. (and a substance, C₁₂H₂₂O₃,

b.p. 151-170°/3-4 mm.), which with P₂O₅ gives a hydrocarbon, b.p. 74—82°/3—5 mm., and (?) β-methyl-y-n-nonolactone, b.p. 112-115°/3-5 mm.

1:3-Rearrangement of a phenyl group. C. F. H. Allen and J. Van Allan (J. Amer. Chem. Soc., 1944, 66, 7—8).—1:3-Migration of Ph is proved (cf. A., 1943, II, 325). 2:5-Diphenyl-3:4-di-p-bromophenyl- α 2:4-cyclopentadienol and MgPhBr give 1:2:5-triphenyl-3:4-di-p-bromophenyl- α 2:4-cyclopentadienol (I), m.p. 195°, which gives a red colour in H₂SO₄, shows one active H but does not add MgMeI, and with (CHCO) of the 200° gives 2:6 diphenyl-4:5 diphenyl-4:5 with (CH·CO)2O at 200° gives 3: 6-diphenyl-4: 5-di-p-bromophenyl-3: 6-endo-a-hydroxybenzylidene- Δ^4 -letrahydrophthanc annyariae, m.p. 222°. At 260—265°/14 mm., (I) rearranges to 2: 3: 5-triphenyl-3: 4-di-p-bromophenyl- Δ^4 -cyclopentenone, m.p. 178°, which gives a yellow colour in H_2SO_4 , adds 1 MgMeI but shows no active H, and with CrO_3 -AcOH gives p- C_8H_4Br -COPh (53·5%) (2: 4-dinitrophenylhydrazone, m.p. 207—209°), BzOH (63%), and p-C.H.Br-CO.H (32%).

2:3-Disubstituted indones. R. L. Frank, H. Eklund, J. W. 2:3-Disubstituted indones. R. L. Frank, H. Eklund, J. W. Richter, C. R. Vanneman, and A. N. Wennerberg (f. Amer. Chem. Soc., 1944, 66, 1-4).—Adding 2-phenylindane-1:3-dione, m.p. $144-145^{\circ}$, in much C_6H_6 or PhMe to 3-4 mols. of MgRHal in C_6H_6 gives 2-phenyl-3-methyl- (40%), m.p. $67-68^{\circ}$ (phenylhydrazone, m.p. 120°), -3-ethyl- (I) (42%), m.p. $97-98^{\circ}$ (phenyl-1, m.p. $96-97^{\circ}$, and 2:4-dinitrophenyl-hydrazone, m.p. $206-207^{\circ}$), and -3-cyclohexyl-indone (10%), m.p. $163-164^{\circ}$ (phenylhydrazone, m.p. $166-167^{\circ}$), and 2:3-diphenylindone (48%), m.p. $152-153^{\circ}$. Phthalide, ArCHO, and NaOEt-EtOH give 2-anisyl- $(34\cdot6\%)$, m.p. $153-154^{\circ}$, and 2-3':4'-dimethoxyphenyl-indane-1:3-dione ($33\cdot4\%$), m.p. $188-190^{\circ}$, and thence, as above, 2-anisyl-3-ethyl- (42%), m.p. $119-120^{\circ}$ and 2-3': 4'-dimethoxyphenyl-indane-1: 3-dione (33·4%), m.p. 188—190°, and thence, as above, 2-anisyl-3-ethyl- (42%), m.p. 119—120° (phenylhydrazone, m.p. 156—157°), and -3-isopropyl- (23%), m.p. 188—139°, b.p. 198—203°/2 mm. (phenylhydrazone, m.p. 166—168°), and 2-3': 4'-dimethoxyphenyl-3-ethyl- (27%), m.p. 111—112°, b.p. 192—195°/4 mm. (phenylhydrazone, m.p. 188—190°), -indone. CHEtBr·CO₂Et, COPh₂, and Zn in C₆H₆ give OH·CPh₂·CHEt·CO₂Et, cyclised by conc. H₂SO₄ at room temp. to 3-phenyl-2-ethylindone (22%), m.p. 92—93° (oxime, m.p. 179—180°). CHPr²Br·CO₂Et, b.p. 93—94°/25 mm., with COPh₂ and Zn in C₆H₆ gives a substance, m.p. 112—113°, cyclised by H₂SO₄ to 3-phenyl-2-n-propylindone, m.p. 72·5—73° (phenylhydrazone, m.p. 107—108°). With O₃ and then Zn in AcOH, (I) gives the ozonide (II), m.p. 92—93°, and 2-propionylbenzil, m.p. 93°. 83% of (II) is obtained in CHCl₂ at 0°. (II) is very stable, does not explode when heated, and is unaffected by H₂-PtO₂ in EtOH; with 10% KOH-EtOH it gives BzOH (0·95 mol.). With NH₂OH,HCl in boiling C₃H₅N-EtOH, (II) gives 1-keto-4-ethyl-2: 3: 1-benzoxazine. 1-keto-4-ethyl-2:3:1-benzoxazine, o-C.H. CELN (58%), m.p.

117—119°, and with NHPh·NH, at 230—235° gives 3-phenyl-1-ethylphthalazone (2·5%), m.p. 110—112° (Gottlieb, A., 1859, i, 511, m.p. 102°), also obtained in aq. KOH by NH.OH or NHPh·NH., respectively, from o-CoEt·CoH; CO.H [prep. from o-CoH4(CO)2O, EtCO.H, and EtCO.Na at 170°], m.p. 96—97°. The structure of (I) is also confirmed by its absorption spectrum [max. at 255 mu. (log ≈ 4.765) in 95% EtOH].

2-Methylenecyclohexanone. K. Dimroth, K. Resin, and H. Zetzsch (Ber., 1940, 73, [B], 1399—1409).—In accordance with Mannich et al. (A., 1920, i, 850) cyclohexanone (I), CH₂O, and NHMe₂,HCl condense smoothly to 2-dimethylaminomethylcyclohexanone, b.p. 93—94°/11·5 mm. (86% yield), which contrary to these authors gives a methiodide (II), m.p. 136—137° (2:4-dinitrophenylhydrazone, m.p. The corresponding quaternary base gives under all conditions as neutral portion a viscous liquid, $C_{14}H_{20}O_{2}$ (semicarbazone, m.p. 190—191°; oxime, m.p. 120·5°), which is not 2-methylenecyclo-

hexanone, is termed provisionally "dimeric ketone" (III), and is possibly (A). (III) appears identical with the compound obtained by Mannich et al. (A., 1928, 300) from 2-piperidinomethylcyclohexanone (IV). Condensation of (I)

with CH₂O and NH₂Me, HCl proceeds very heterogeneously, giving a most volatile fraction [semicarbazone (V), m.p. 195°] which, contrary to Mannich et al., does not consist of 2-methylenecyclo-hexanone but is 2-methylcyclohexanone; the less volatile fractions contain some (III). The ability of (V) to decolorise Br is not evidence of unsaturation but is a general property of the semicarbazones of cyclohexanones and is accompanied by the separation of NH₂·CO·NH·NH₂,HBr. Decomp. of (IV), its hydrochloride, or oxalate, m.p. 136—137°, under the mildest possible conditions gives only (III) and it is improbable that the monomeric ketone can be obtained from such ammonium salts. Energetic dehydrating agents transform 2-hydroxymethylcyclohexanone (VI) into compounds of high mol. wt. Passage over Al₂O₃ (Brockmann) and treatment with NH₂·CO·NH·NH₂,HCl and KOAc leads to a compound, $C_{14}H_{12}O_3$ (VII), m.p. 148°, obtained previously by Mannich (loc. cit.) and then regarded as a symmetrical ether of (VI) but now (unpublished work) considered as allied closely to (III). Al₂O₃ in

boiling abs. C_5H_5 transforms (VI) into (III) whilst (VII) is obtained from (VI) and BzCl in C_5H_5N . Direct condensation of cyclohexanone with CH₂O in dil. aq. alkali gives unchanged material and a viscous villous oil of high ha yellow oil of high b.p.

Interaction of diazomethane with 1-keto-1:2:3:4-tetrahydronaphthalene. R. B. Thompson (J. Amer. Chem. Soc., 1944, 66, 156).—1-Keto-1:2:3:4-tetrahydronaphthalene, CH₂N₂, and Na₂CO₃ in EtOH at 10—15° give 7—8% of non-ketonic material, b.p. 93—96°/0·7 mm., and 6—7% of 3:4-benz-Δ³-cyclooctenone, m.p. 73—75°, b.p. 103—106°/0·7 mm. (oximes, m.p. 164—165° and 99—906°) probably by way of 2:4-benz Δ³-cyclooctenone which 89-90°), probably by way of 3:4-benz-Δ3-cycloheptenone which reacts as fast as it is formed.

D. H. Hey, R. J. 1944. 97—100).— 2-Methylmesobenzanthrone and derivatives. 1944, Nicholls, and C. W. Pritchett (J.C.S., 1944, 97—100).— CH₂'CMe·CHO (oxime, b.p. 65°/14 mm.) (new methods of prep. given) in dioxan with anthrone in AcOH—H₂SO₄ (d 1·53) at 80° gave 2-methylmesobenzanthrone (I), oxidised (CrO₃) to anthraquinone-1-carboxylic acid (II). With MnO₂ and H₂SO₄ (I) gave 2:2'-dimethyl-3:3'-dibenzanthronyl (III) and 3-hydroxy-2-methylmesobenzanthrone, m.p. 206—208 (decomp.) [Me ether, m.p. 142°; also prepared from CH₂:CMe·CO₂Me and anthrone, and from 3-amino-2-methylmesobenzanthrone (IV), m.p. 232°, by diazotisation and heating]. With KOH—EtOH at 120—130° (III) gave 16:17-dimethyldibenzanthrone (V). KOH fusion of (I) in presence of glucose or and C. W. Pritchett (J.C.S., neating]. With KOH-ETOH at 120—130° (111) gave 10: 17-almethyldibenzanthrone (V). KOH fusion of (I) in presence of glucose or KOAc-C₁₀H₈-MnO₂ gave (V). With dichloramine-T in AcOH, (I) gave 3-chloro-2-methylmesobenzanthrone (VI), m.p. 227—228°; 3-nitro- (VII), m.p. 218—219° [from (I) and 88% HNO₃ in PhNO₂ at 40—50°; oxidised (CrO₃) to (II)], and 3-bromo-2-methylmesobenzanthrone [from (I) and from (IV)], m.p. 225°, are described. (VII) is reduced (Na₂S) to (IV). (VI) with KOH-EtOH at 150—155° gave 6: 15-dimethylisodibenzanthrone (VIII). (VI) with Se. 155° gave 6: 15-dimethylisodibenzanthrone (VIII). (VI) with Sec. Ca(OH)₂, and Cu-bronze in EtOH at 200° gave 2: 2'-dimethyl: 3: 3'-dibenzanthronyl selenide, m.p. 310—315°, which gave (VIII) with KOH-EtOH at 120—130°. (V) in boiling PhNO, (preferably in presence of BaO) gives a product for which the structure

is suggested.

Synthesis of 2-methyl-1: 4-naphthaquinone (vitamin-K) from benzene and citric or d-tartaric acid. P. P. T. Sah and W. Brüll (Ber., 1940, 73, [B], 1430—1432).—The scheme is: citric or tartaric acid >CO₂H·CHMe·CH₂·CO₂H > CHMe·CO

CH₂Bz·CHMe·CO₂H > Ph·[CH₂]₂·CHMe·CO₂H >

Ph·[CH₂]₂·CHMe·COCl >C₈H₄ CH₂·CH₂

CH₂·CH₄ CH₄ CH₄·CH₄

CH₂·CHMe

CH₂·CHMe

CH₂·CHMe

CH₃·CHMe

CH₄·CHMe

CH₄·CHMe

CH₄·CHMe

CH₄·CHMe

CH₄·CHMe

CH₄·CHMe

CH₄·CHMe $2-C_{10}H_7Me$ 2-methyl-1: 4-naphthaquinone.

Condensation of naphthaquinones with polar ethylenes. M. Gates (J. Amer. Chem. Soc., 1944, 66, 124—130).—Condensation readily occurs between CAr₂:CH₂ and naphthaquinones owing to their electron department. (J. Amer. Chem. Soc., 1944, 66, 124—130).—Condensation readily occurs between CAr₂:CH₂ and naphthaquinones owing to their electron-donating and -accepting capacities, respectively. The reaction is not catalysed by acids or bases and does not occur in AcOH, in accordance with this explanation. (p-NMe₂·C₀H₄)₂C.CH₂ (I) (1 mol.) and 1:4-O.C₁₀H₆.O (II) (2 mols.) condense in C₆H₄, COMc₂, or dioxan at room temp. or, best (59% yield), dioxan at 70 (24 hr.) to 2-ββ-di-p-dimethylaminophenyluinyl-1:4-naphthaquinone (III), purple, m.p. 272—273·5°, and 1:4-C₁₀H₆(OH)₂ (95%). With Zn dust in Ac₂O-C₅H₅N, (III) gives the quinol diacetate, yellow, m.p. 230—231° (decomp.). 1:2-O.C₁₀H₅·O (IV) condenses very rapidly with (I) in warm MeOH, giving 4-ββ-di-p-dimethylaminophenyluinyl-1:2-naphthaquinone (83·7%), blue-black, m.p. 199—201° (decomp.) [yellow quinol diacetate, m.p. 105·6—106·8°; red azine, m.p. 246—247·5°, from o-C₅H₄(NH₂)₂]. Naphthazarin in C₅H₆ at the b.p. and then 74° or its diacetate in dioxan at 78° with (I) gives similarly 5:8-dihydroxy- (V), black, m.p. 306—308° (uncorr.), or 5:8-diacetoxy-2-ββ-di-p-dimethylaminophenyluinyl-1:4-naphthaquinone, blue-black, amorphous, m.p. 261—264° [by hydrolysis gives (V), m.p. 307—308° (uncorr.)], respectively, but 1:2:4-O.C₁₀H₅Me.O gives a substance, C₄₀H₅₀O₄N₈, m.p. 298—300° (block; uncorr.). (p-OMe·C₆H₄)₂C.CH₂, being less polar than (I), condenses less readily; with (II) in boiling MeOH it gives slowly 2-ββ-di-p-anisylvinyl-1:4-naphthaquinone, orange-red, m.p. 211·8—212·3°, but with (IV) gives 1:2:4-O.C₁₀H₅(OMe):O (8%) and 4:4'-dihydroxy-3 dimethoxy-1:1'-dinaphthyl (43%), pink, m.p. 277·5—278·8 afte slight decomp. (derived phous quinone, m.p. 260—262),

CH-C C6H4:NMe2-p (VI.)

slight decomp. (derived phous quinone, m.p. 260-262). which gives the known (OMe), Dissolution (recompound. versible) of the highly coloured products in 3N-HCl gives much paler solutions; this is due to

resonance of the free quinones, e.g., (III) with the form (VI), which

is suppressed by salt-formation. Unless otherwise stated, m.p. are

IV.—STEROLS AND STEROID SAPOGENINS.

Separation of trans-cestradiol.—See B., 1944, III, 74.

16-Substituted steroids. I. isoŒstriol-A. M. N. Huffman and H. H. Darby (J. Amer. Chem. Soc., 1944, 66, 150—152).—Œstrone benzoate and iso-C₈H₁₁·O·NO in KOBu^{*}-Bu^{*}OH-N₂ at room temp. followed by 0·5N-KOH at room temp. give 16-oximino-æstrone (81%), m.p. 214—215° (decomp.), reduced by Zn dust in AcOH-H₂O at AcOH-H₂O at 40—45° and then 120—125° to an impure æ-ketol, which with H.—PtO. in 0.5N-NaOH gives isoæstriol-A (I), m.p. 267—269°, [a]; 5' +88° in EtOH. (I) has the same absorption as theelol [œstriol] but is less sol. With Me₂SO₄-NaOH, (I) gives a Me₁ ether, m.p. 141—142°, but with Ac₂O-C₅H₅N at 100° gives a triacetate, m.p. 152°.

Oxidation of sterols.—See B., 1944, III, 74.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Hydrocarbon polymerisation and method of determining catalyst activity.—See A., 1944, I, 131.

Reactions of atoms and free radicals in solution. V. Non-coplanar free 1-appeamphyl radical. M. S. Kharasch, F. Engelmann, and W. H. Urry (J. Amer. Chem. Soc., 1943, 65, 2428—2429; cf. A., 1943, II, 150).—appeCamphane-1-carboxyl chloride, Na₂O₂, and a little H₂O in Et₂O at -5° to 10° give a relatively stable, cryst. peroxide (I), which in CCl₃ at the b.p. (20 hr.) gives 1-chloroappecamphane (36%), m.p. 170—171° (Bartlett et al., A., 1940, II, 17, m.p. 154—156°). appecamphanyl appecamphane-1-carboxylate (50%) [hydro-fired from the company of the apocamphanyl apocamphane-1-carboxylate (50%) lysed by KOH in (CH₂·OH)₂], di-1-camphyl (9%), m.p. 216—217°, apocamphane-1-carboxylic acid (II) (5%), and C₂Cl₆ [removed from (II) by KOH-(CH₂·OH)₂]. Decomp. of (I) yields R· (R = apocamphyl) and RCO₂·, and, by interaction of R· with CCl₄, gives CCl₃·; R· is more reactive than CCl₃·. R. S. C.

Triterpenes. LXXXVI. Birch-tar oil. L. Ruzicka, A. G. Boer, and E. Rey (Helv. Chim. Acta, 1944, 27, 183—186).—Technical birch-tar oil is extracted successively with dil. HCl, Na₂CO₃, NaOH, and H₂O, boiled with 10% NaOH-EtOH, and distilled. A fraction b.p. 110-160°/12 mm., is dehydrogenated by S at 180-250° and converted through a series of picrates into additive compounds with ${}_{5}C_{6}H_{3}(NO_{2})_{3}$, thus leading to the recognition of the presence of ${}_{2}:7-C_{10}H_{6}Me_{2}$, $1:2:7-C_{10}H_{5}Me_{3}$, and $1:2:5:6-C_{10}H_{4}Me_{4}$. It thus appears that the portions of birch-tar oil which can be dehydrogenated to the methylnaphthalenes are not sesquiterpenes but products of the pyrolysis of betulin.

H. W. products of the pyrolysis of betulin.

Scandol, $C_{30}H_{50}O$, m.p. $161-163^\circ$, $[a]_{15}^6+56\cdot 9^\circ$ in $CHCl_3$ (acetate, m.p. $165-168^\circ$, $[a]_{15}^7+60\cdot 5^\circ$ in $CHCl_3$; benzoate, m.p. $210-212^\circ$, $[a]_{15}^6+73\cdot 84^\circ$ in $CHCl_3$).—See A., 1944, III, 383.

VI.—HETEROCYCLIC.

Synthesis of δ -3: 4-dicarboxy-2-furyl-n-valeric acid and its derivatives. K. Hofmann (J. Amer. Chem. Soc., 1944, 66, 51—53).— β -2-Furylacrylidenemalonic acid [prep. from β -2-furylacraldehyde, $CH_2(CO_2H)_2$, and a little piperidine in C_5H_5N], decomp. 190—195°, gives, by hydrogenation (Pd-C; MeOH; 0-1 atm.) and subsequent heating in C_5H_5N at 130—140°, δ -2-furyl-n-valeric acid, m.p. 42—43° (anilide, m.p. 75—76°), which with (:C-CO₂Et)₂ at 100° gives an adduct, hydrogenated (Pd-black) in EtOAc to δ -1: 4-epoxy-2: 3-dicarbethoxy- Δ -cyclobexenyl-n-valeric acid. At 190—200° 16 mm dicarbethoxy- Δ^2 -cyclohexenyl-n-valeric acid. At 190—200°/16 mm. this gives C_2H_4 and δ -3: 4-dicarbethoxy-2-furyl-n-valeric acid, hydrolysed by 5N-KOH at the b.p. to 8-3:4-dicarboxy-2-furyl-n-valeric acid, m.p. 188—190° (Et₃ ester, b.p. 165—166°/0-02 mm.; absorption spectrum resembles that of furan-3:4-dicarboxylic acid), and converted by SOCl, into the acid chloride, b.p. $177-178^{\circ}/0.02$ mm. Thence are obtained δ -3:4-dicarbethoxy-, b.p. $210-211^{\circ}/0.02$ 102 mm., and 0-3: +4 102—133°. M.p. are corr. and δ-3: 4-dicarboxy-2-furyl-n-valeropiperidide, m.p.

Synthesis of two stereoisomeric 3:4-diaminotetrahydro-2-furylavaleric acids. K. Hofmann (J. Amer. Chem. Soc., 1944, 66, 157). δ-2-Furyl-n-amyl alcohol (α-naphthylurethane, m.p. 58—59°) by condensation with (•C-CO₂Et)₂ and then high-pressure hydrogenation gives δ -3: 4-dicarbethoxytetrahydro-2-furyl-n-amyl alcohol, which yields dihydrazides, m.p. 208—211° and 177—180°, and thence Successively (Curtius) s-3:4-di(carbethoxyamino)tetrahydro-2-furyl-1-amyl alcohols, m.p. 110—113° and 128—130°, (CrO₃-AcOH) the derived n-valeric acids, m.p. 118—124° and 157—159°, and [conc. Da(OH)₃] 8-3:4-diaminotetrahydro-2-furyl-n-valeric acids (Bz₃ derivatives of the Me esters, m.p. 183-186° and 171-172°), respectively.

Hydroxycoumarins. I. Synthesis of 4-hydroxycoumarins. A. Stahmann, I. Wolff, and K. P. Link. II. Condensation of 4-Hydroxycoumarins.

aldehydes with 4-hydroxycoumarins. W. R. Sullivan, C. F. Huebner M. A. Stahmann, and K. P. Link. III. Dehydration of the aldehyde condensation products. C. F. Huebner, W. R. Sullivan, M. A. Stahmann, and K. P. Link (J. Amer. Chem. Soc., 1943, 65, 2285—2287, 2288—2291, 2292—2296).—I. o-OAcC₆H₄·CO₂Me [prep. from o-OH·C₆H₄·CO₂Me (I) by Ac₂O and a little H₂SO₄ at 40°; 95% yield], m.p. 47—49°, and Na give >13% of 4-hydroxycoumarin (II) by the method of Pauly et al. (A., 1915, i, 146), but 22% is obtained in liquid paraffin at 240—250°; other alkaline condensing agents offer no advantage; by-products include o-OH·C₆H₄·CO₂H, PhOH, PhOMe, MeOAc, AcOH, and acidic substances separating at pH 5-5—6 (and thus removable). Pure (II) has m.p. 214—216° (lit. 204—206°). Me O-propionylsalicylate, b.p. 141—142°/9 mm., is obtained as above. RCOCl and (I) at the b.p. give Me O-n- (81%), b.p. 155—156°/12 mm., and O-iso-butyryl- (68%), b.p. 140—143°/6 mm., O-n- (65%), b.p. 158—159°/8 mm., and O-iso-valeryl- (71%), b.p. 151—152°/8 mm., O-n-hezoyl- (56%), b.p. 173—174°/9 mm., O-n-heptoyl- (73%), b.p. 181—182°/9 mm., O-stearyl- (47%), m.p. 41—43°, b.p. 226—230°/0-05 mm., O-β-phenylpropionyl- (74%), b.p. 197—201°/5 mm., and O-phenylacetyl- (63%), m.p. 59—60° (lit. 50°), -salicylate. With Na in liquid paraffin at 240—250° these esters give 4-hydroxy-3-methyl- (28%), m.p. 227—228° (lit. 230°), -3-ethyl- (28%), m.p. 155—156°, -3-n- (32%), m.p. 134—135°, and -3-iso-propyl- (25%), m.p. 172—174°, -3-n-butyl- (26%), m.p. 155—156°, -3-n- (32%), m.p. 135—315°, and -3-iso-propyl- (25%), m.p. 172—174°, -3-n-butyl- (26%), m.p. 155—156°, -3-n- (32%), m.p. 136—315°, and -3-iso-propyl- (25%), m.p. 172—174°, -3-n-butyl- (26%), m.p. 158—159°, -3-n-anyl- (30%), m.p. 202—205°. The 3-alkylcoumarins have slight anticoagulant activity, increasing with the size of the alkyl and being greater for 3-aryl derivatives.

coumarin (22%), m.p. 202—205°. The 3-alkylcoumarins nave slight anticoagulant activity, increasing with the size of the alkyl and being greater for 3-aryl derivatives.

II. o-OH·C_eH₄·CHO (III) (1 mol.) and (II) (1 mol.) in EtOH at the b.p. (10 min.) and then 25° (1 hr.) give 2:5-diketo-3-salicylidene-chroman (IV) (20%), yellow, m.p. 175°, and other products. 1 mol. each of (IV) and (III) in boiling EtOH (5 hr.) give colourless 4-4'-hydroxycoumarinylcoumarino-4': 3'-2: 3-1: 4-benzpyran (V) (76-3%), m.p. 245° (decomp.) also obtained (44%) from (III) (0-031) and (II) m.p. 245° (decomp.), also obtained (44%) from (III) (0.031) and (II) (0.019 mol.) in boiling EtOH (1 hr.) or (73.2%) by boiling (IV) in EtOH for 13.5 hr. The structure of (V) is proved by electrometric titration (one deflexion; at pH 5.7), by its anticoagulant activity, and conversion by NH₂Ph at 180° into the anil of (II). Similar titration (one deflexion; at pH 5-7), by its anticoagulant activity, and conversion by NH₂Ph at 180° into the anil of (II). Similar reactions of (II) with 2:4:1-(OH)₂C₄H₃·CHO lead to the 7-OH-derivative, m.p. 251° (decomp.) [acetale, m.p. 236° (decomp.); Me ether, m.p. 301—304° (decomp.)], of (V) and 2:4-diketo-3-2':4'-di-hydroxybenzylidenechroman, decomp. 224°. 4-Hydroxy-6-methyl-coumarin and (IV) in hot EtOH (5 hr.) give the 6'- and 6''-Me derivative (61·7%), m.p. 277—278° (decomp.), of (V). Simple biscondensation of RCHO (0·5—0·7) and (II) (1 mol.) in boiling EtOH leads to 3:3'-ethylidene- (67%), m.p. 176—178° (lit. 165°), 3:3'-propylidene- (69%), m.p. 144—145° (Me₂ ether, m.p. 129°), and 3:3'-iso-butylidene- (78%), m.p. 199—200° (Me₂ ether, m.p. 214—215°), 3:3'-n-(75%), m.p. 113° (Me₂ ether, m.p. 129—130°), and 3:3'-iso-butylidene-, m.p. 142—143° (Me₂ ether, m.p. 148°), 3:3'-n-hexylidene- (prep. in presence of 0·25 mol. of AlCl₃) (18%), m.p. 104—105° (Me₂ ether, m.p. 113—115°), 3:3'-benzylidene- (91%), m.p. 228—229° (Me₂ ether, m.p. 181—183°), 3:3'-benzylidene- (91%), m.p. 228—229° (Me₂ ether, m.p. 170—173°), 3:3'-p-anisylidene- (85%), m.p. 197—198° (Me₂ ether, m.p. 170—177°, 3:3'-y-phenylpropylidene- (85%), m.p. 197—198° (Me₂ ether, m.p. 170—171°), 3:3'-y-anisylidene- (80%), m.p. 242° (decomp.) (Me₂ ether, m.p. 170—171°), 3:3'-y-anisylidene- (80%), m.p. 242° (decomp.) (Me₂ ether, m.p. 160—161°), -bis-4-hydroxyooumarin. [CH₂]₄(CHO)₂. (II), and a little H₂C₂O₄ in hot EtOH give 3:3':3''-hexamethylene- (prep. from CHO-CO₂H in boiling H₂O; 76%), m.p. 210—220° (Me₄ ether, m.p. 230—232°). The ethers are obtained by CH₂N₂. 232°). The ethers are obtained by CH₂N₂.

III. 3:3'-Methylenebis-4-hydroxycoumarin (VI) is not dehydr-III. 3:3'Methylenebis-4-hydroxycoumarin (VI) is not dehydrated by $Ac_2O-C_5H_5N$ (cf. A., 1941, II, 202) but with KHSO₄ at 270°, red P-I-AcOH-H₂O at 155—165°, or $(OPh)_2POCl-C_5H_5N$ at room temp. gives 4:4'-epoxy-3:3'-methylenebiscoumarin [3:2-5:6-di-(3':4'-coumarino)-4-pyran] [(VII), R = H], m.p. 321—323° (decomp.). (VII) are obtained from 3:3'-alkylidene- and 3:3'-arylidene-analogues of (VI) by $Ac_2O-C_5H_5N$ at room temp., there being thus obtained derivatives of (VII) in which R=Me, m.p. 322—323° (decomp.), Et, m.p. 292—294° (decomp.), Pr^{α} , m.p. 246° (decomp.), Pr^{β} , m.p. 303°, Bu^{α} , m.p. 231°, Bu^{β} , m.p. 290°, n-amyl, m.p. 182°, Ph, m.p. 393—395°, CI_2Ph , m.p. 385° (decomp.), $Ph^{\alpha}[CH_2]_3$, m.p. 243—245°, p-anisyl-, m.p. 345° (decomp.), 3:4:1-

 $OMe \cdot C_8H_3(OAc)$ (from 3: 3'-vanillylidenebis-4-hydroxycoumarin after acetylation thereof), m.p. 288—289°, and 3:4:1- CH_2O_2 . C_8H_3 , m.p. 355—356°. Dehydration is the easier the larger is R. m.p. 355—356°. Dehydration is the easier the larger is K. Mono-O-Me, -Bz, and PO_3Me_2 derivatives of (VI) give (VII) by loss of MeOH, BzOH, and Me_2HPO_4 , respectively. Diacyl derivatives of (VI) and its analogues resist dehydration so that $Ac_2O-C_5H_5N$ probably effects it by way of the monoacetate. PCl_5 and (VI) in C_8H_6 give a mixture, converted by hot MeOH into the 4- PO_3Me_2 derivative (VIII), m.p. 186—187°, of (VI); this is hydrolysed to (VI) by hot 3% HCl-MeOH but is converted in 94—97% yield into (VII), R = H, by hot NaOMe-MeOH or aq. KOH at 25° or, less well, by heating at 200°. 0.5N-NaOMe converts (VII) R = H into the (VII), R = H, by hot NaOMe–McOH or aq. KOH at 25° or, less well, by heating at 200° . 0.5n-NaOMe converts (VII), R = H, into the 4-Me ether (IX), m.p. $171-172^{\circ}$, of (VI); with CH_2N_2 this gives the 4.4'-Me₂ ether but at 180° regenerates (VII), R = H. The Na_1 salt (prep. by 1 equiv. of hot, aq. 0.05n-NaOH) of (VI) gives the Ag_1 salt, which with a deficiency of BzCl and $CaSO_4$ in C_6H_6 at room temp. gives the 4-Bz derivative, m.p. $225-229^{\circ}$; at > the m.p. this gives BzOH and (VII), R = H, with 1 mol. of NaOMe–MeOH at 65° gives a mixture of (i) (VII), R = H, and NaOBz with (ii) MeOBz and the Na salt of (VI). CH_2N_2 - Et_*O converts (VIII) into the 4-Me ether 4'- PO_3 Me₂ derivative, m.p. $140-141^{\circ}$, which is also obtained from (IX) by $POCl_3-C_5H_5N$ at 0° and then MeOH. The epoxy-ring of (VII) is stable to aq. alkali or acid or boiling NH_2Ph , but is opened by NaOMe (see above); fusion with KOH gives a small amount of by NaOMe (see above); fusion with KOH gives a small amount of o-OH·C₆H₄·CO₂H. (VII) give no colour with FeCl₃, give a yellow to orange solution in conc. H₂SO₄, and have no anticoagulant action. Prep. of (VII), R = Ph, by dehydration by boiling 58% HBr-AcOH is described. The 4-Et₁ ether, m.p. 163—166°, of (VI) and 3:3'ethylidenebis-4-hydroxycounarin 4-Me1 ether, m.p. 154-155°, are also

Egonol. XIII. 4-Bromo- and 3-nitro-acetylegonol and a new degradation of the 3-nitrofuran ring. S. Kawai, T. Nakamura, Y. Kitazawa, and K. Komatsu (Ber., 1940, 73, [B], 1328—1337).—3-Nitroacetylegonol (I) is converted by boiling 2% KOH-EtOH into KNO₂, piperonylic acid, α-keto-β-ethoxy-α-3: 4-methylenedioxyphenyl-β-2-hydroxy-3-methoxy-5-γ-hydroxy-n-propylphenylethane, m.p. 147° (non-cryst. oxime), and an oily material not identical with styraxinolaldehyde and from which the di-p-nitrobenzoate of 2-methoxyaxtiolatelyde and from which the al-p-nitroocnizate of 2-methoxy-6-ethoxymethyl-4-y-hydroxy-n-propylphenol, m.p. 130-5°, is derived. (I) and boiling 1·7% KOH-MeOH afford only 3-nitroegonol, m.p. 151°. 4-Bromo-3-nitroacetylegonol (II), m.p. 139°, is obtained from (I) and Br in AcOH at room temp. or by addition of HNO₃ (d 1·4) to 4-bromoacetylegonol in well-cooled AcO. (II) is transformed by boiling NaOEt-EtOH into 4-bromo-3-nitro-2 hydroxy-2: 3 dibadecesses. oxy-2: 3-dihydroegonol, m.p. 166-5°, converted by boiling 2N. aq. KOH into 5-bromo-2-methoxy-6-hydroxymethyl-4-y-hydroxy-n-propyl-phenol, m.p. 129-5° (tri-p-nitrobenzoate, m.p. 189-5°), which is methylated and oxidised (KMnO₄ in COM₂₂) to 2-bromo-4:5-dimethoxybenzously, 3-dimethoxybenzously, 3-dimethoxy ene-1:3-dicarboxylic acid (III), identified as the diphenacyl ester (IV), m.p. 153.5°. 6-Bromovanillin is transformed by CH₂:CH·CH₂Br m.p. 153.5°. 6-Bromovanillin is transformed by CH₂:CH·CH₂Br and dry K₂CO₃ in boiling anhyd. COMe₂ into the allyl ether, m.p. 89°, isomerised at 230—250° to 6-bromo-5-allylvanillin, m.p. 134°. This is transformed into the Me ether, m.p. 63—64°, which is oxidised to (III), identified as (IV).

Tetrahydrodibenzpyran.—See B., 1944, III, 74.

Mechanism of a photo-disproportionation reaction [13-phenyldibenzoxanthenium perchlorate].—See A., 1944, I, 110.

Natural coumarins. LIV. Constitution of luvangetin. E. Spath, P. K. Bose, H. Schmid, E. Dobrovolny, and A. Mookerjee (Ber., 1940, 73, [B], 1361—1368).—Luvangetin (I) is A. The finely-divided ripe fruits of Luvanga scandens,

Ham., are extracted with Et2O, the extract is subjected to the lactone separation, and the total non-phenolic coumarins are separated by distillation in a high vac., whereby xanthotoxin, xanthyletin, and (I) are obtained; isopimpinellin is also present.

m.p. 108-109°, is optically inactive, contains 1 OMe, and does not react with carbonyl reagents. It cannot be acetylated. It dissolves slowly in dil. aq. KOH, giving a yellow K salt which regenerates (I) when acidified. It is not dehydrogenated by Pd-sponge at 180°, 200°, or 240—250°. (I) is rapidly hydrogenated (Pd-sponge in AcOH of 180° to diludration of the property of the proper in AcOH at 16°) to dihydrolwangetin, m.p. 130°, which does not give (CH₂·CO₂H)₂ when oxidised, and then much more slowly to tetrahydroluvangetin, m.p. 99°, which gives (CH₂·CO₂H)₂ when treated with HNO₃ (d 1·4). (I) is converted by successive treatments with red P and 48% HBr at 150°, CH₂N₂ in MeOH–Et₃O, NaOH and Me₂SO₄, and 3% aq. NaOH into 2:3:4:1-(OMe)₃C₆H₂·CO₂H. Ozonisation of (I) and decomp. of the ozonide by boiling H₂O leads to 7-hydroxy-8-methoxycoumarin-6-aldehyde, m.p. 197.5—198.5° (vac.), also obtained by ozonisation of xanthotoxin. OH·CMe₂·CO₂H is obtained by oxidation of (I) by KMnO₄.

Tetramethylpopulnetin, m.p. 164—166°.—See A., 1944, III, 384.

Thiophan compounds. II. Thiophan-3-one. P. Karrer and H. Schmid. Thiophan compounds. III. H. Schmid. Thiophan

compounds. IV. P. Karrer and F. Kehrer (Helv. Chim. Acta, 1944, 27, 116—123, 124—127, 127—142, 142—151).—II. I-[CH₂]₂·COCl (I), b.p. 71—75°/11 mm., obtained from I-[CH₂]₂·CO₂H and SOCl₂ in 90% yield, is converted by CH₂N₂ in Et₂O followed by HCl into CH_2Cl β -iodoethyl ketone, m.p. 54—55°, which can be kept only when pure. Gradual addition of Na.S to a solution of it in much when pure. Gradual addition of Na,S to a solution of it in much EtOH leads to thiophan-3-one (II), b.p. 84—85°/24 mm., separated as the semicarbazone, m.p. 191—192° (decomp.). Smaller yields are obtained if (I) is replaced by Cl·[CH₂]₂·COcl probably because of the too great differences in the reactivities of the Cl atoms. Cl·[CH₂]₂·CO₂Na, SH·CH₂·CO₂H, and KOH in boiling H₂O afford CO₂H·CH₂·S·[CH₂]₂·CO₃H, m.p. 94° (yield nearly quant.), converted by HCl-EtOH into the Et₂ ester, b.p. 148—150°/10 mm., which is ring-closed by NaOEt or NaNH₃ to Et 3-ketothiophancarboxylate (III), b.p. 123—127°/11 mm. This gives a red-violet colour with FeCl₃ and is hydrolysed and decarboxylated by boiling 10% H₂SO₄ to (II). Methylation and subsequent decarboxylation of (III) gives Methylation and subsequent decarboxylation of (III) gives 4-methylthiophan-3-one (IV), isolated as the *semicarbazone*, decomp. 192·5—193·5°.

II. $SH^{\cdot}[CH_{\cdot}]_{\cdot}^{\cdot}CO_{\cdot}H$ is converted by boiling abs. $EtOH-H_{\circ}SO_{\cdot}$ under CO_{\circ} into Et β -thiolpropionate, b.p. $77.5^{\circ}/20$ mm., which is transformed by CHMeBr- $CO_{\circ}Et$ and NaOEt in abs. EtOH into Et, sulphido-a-propionate-β-propionate, b.p. 149—153°/10·5 mm. This is cyclised by NaNH, in abs. EtOH at 40—50° to Et 3-keto-2-methylthiophan-4-carboxylate, b.p. 125—128° (bath)/9 mm., which gives a marked red-violet colour with FeCl₃. This is hydrolysed and decarboxylated by boiling 10% H₂SO₄ to 2-methylthiophan-3-one, b.p. 90—100° (bath)/11 mm. (semicarbazone, m.p. 183—184° (decomp.)], thus indirectly establishing the structure of (IV). The isolation of two isomeric phenylhydrazones, m.p. 141.5-142.5° and 167° respectively, proves that (III) is a mixture of Et 3-ketothiophan-2- and -4-carboxylate.

phanes- and -4-carboxylate.

III. Br- $[CH_2]_4$:Br, b.p. 78—81°/11 mm., obtained in 58% yield from $[CH_2]_4$:(CO₂Ag)₂ and Br in CCl₄, is converted by NaOMe in MeOH-C₆H₆ into Me δ -bromo-n-butyl ether, b.p. 70—82°/34—35 mm., which is transformed with aid of CHNa(CO₂Et)₂ into E_1 mm, which is transformed with aid of CHNa(CO₂Et)₂ into £1₂ δ-methoxybutylmalonate, b.p. 146°/8·5 mm., hydrolysed by alkali to the non-cryst. acid. This is converted by Br in Et₂O-CCl₄ into a-brono-δ-methoxybutylmalonic acid, m.p. 122—123° (decomp.), which passes at 120—130°/vac. into a-brono-ε-methoxyhexoic acid, b.p. 124—128° (bath)/0·08 mm. The Et ester, b.p. 128—132°/10 mm. (corresponding Me ester, b.p. 120—124°/10 mm.), is condensed with SH·[CH₂]₃·CO₂Et by NaOEt-EtOH to Et₂ sulphido-β-propionate a-ε-methoxyhexoate, b.p. 145—148°/0·02 mm., cyclised by NaOMe in PhMe at 45—50° to Et 3-keto-2-δ-methoxy-n-butylthiophan-4-carboxylate (V), b.p. 115° (bath)/0·01 mm. [oxime (VI), b.p. 145—155° (bath)/0·02 mm.; non-cryst, bhenylhydrazone], which gives a marked (bath) 0.02 mm.; non-cryst. phenylhydrazone], which gives a marked red-violet colour with FeCl₃ in EtOH-H₂O. (VI) is reduced by Al-Hg in moist Et₂O to Et 3-amino-2-8-methoxy-n-butylthiophan-4-Al-Hg in moist Et₂O to Et 3-amino-2-8-methoxy-n-butylthiophan-4-carboxylate. (V) is hydrolysed and decarboxylated by boiling H₂O-AcOH-H₂SO₄ under N₂ to 2-8-methoxy-n-butylthiophan-3-one (VII), b.p. 102—103°/0·05 mm. This is oxidised by Br in aq. MeOH containing CaCO₃ to 4-hydroxy-2-8-methoxy-n-butylthiophan-3-one, which strongly reduces Ag₂O-NH₃ but could not be purified; it is converted by NH₂OH, HCl and KOAc in H₂O at 40° into 2-8-methoxy-n-butylthiophan-3: 4-dionedioxime (VIII), m.p. 189° [corresponding phenylosazone (IX), m.p. 141° (decomp.)]. (VII) could not be converted into 3: 4-diamino-2-8-methoxy-n-butylthiophan. Reduction of (VII) by Na-Hg in EtOH-AcOH at ~50° leads to 4(3)-amino-3(4)-hydroxy-2-8-methoxy-n-butylthiophan, m.p. 107—108°, which is 3(4)-hydroxy-2-8-methoxy-n-butylthiophan, m.p. 107—108°, which is very hygroscopic and avidly absorbs atm. CO₂; under completely anhyd. conditions the product is non-homogeneous. Na in boiling EtOH reduces (VIII) to an oil with 8-6% N. H₂ at 70°/24 atm. in abs. EtOH containing Raney Ni does not attack (VIII). With Al-Hg and H₂O in EtOH-Et₂O (VIII) appears to give 3(4)-amino-2-δ-methoxy-n-butylthiophan, m.p. 157°, softens at 151°. Attempted reduction of (IX) by Na-Hg in EtOH-AcOH gives ill-defined results. Mc, sulphido-β-a-methoxypropionate-a-ε-methoxyhexoate, b.p. 140–145° (bath) (0.005 mm., is cylised by NaOEt in PhMe at 18° and then at 40° to a non-homogeneous product, hydrolysed and decarboxylated to (VII). (II) is converted by C₅H₁₁·O·NO and conc. HCl into 2: 4 dioximinothiophan-3-one, decomp. 210°, becoming increasingly discoloured at >170°. (III) couples with p-NO₂·C₆H₄·N₂Cl in aq. EtOH to a mixture, m.p. 145—150°, of Et 2-p-nitrobenzeneazo-3-ketothiophan-4-carboxylate and Et 4-p-nitrobenzeneazo-3-ketothiophan-2carboxylate with some Et 4-p-nitrobenzeneazo-3-ketothiophan-4-carboxylate, m.p. 168—169°. Reduction of these dyes gives p-C₆H₄(NH₂)₂ as sole recognisable product.

IV. CHBr·CH₂>CH·CH₂Cl is converted by successive treatment ĊO

with KI and Na2S into 4-hydroxythiophan-2-carboxylactone (X), m.p. 60.5°, in very poor yield. [CH₂]₄(CO₂H)₂ transformed by successive treatments with SOCI. Transformed by successive freatments with 15 min Et a. 60° with irradiation, and EtOH into Et α-bromoglutarate, b.p. 136—144°/11 mm., whigh 15 condensed with Et β-bromopropionate, b.p. 77—78 / 20 mm., to Et sulphido-β-propionate-α-glutarate, b.p. 150—153°/0·02 mm., which is cyclised by NaOEt in PhMe at room

CH-CH, CH

temp. and then at 55—60° to Et₂ 3-ketothiophan-4-carboxylate-2-β-propionate (XI), b.p. 130—133°/0·04 mm., hydrolysed and decarboxylated by boiling 10% H₂SO₄ to 3-ketothiophan-2-β-propionic acid (XII), b.p. 132—135° (bath)/0·03 mm., m.p. 51° (Me ester). Attempts to convert (XII) into its :N·OH derivative were unsuccessful. (XI) couples with p-NO₂·C₆H₄·N₂Cl to (?) Et₈ 4-p-nitrobenzeneazo-3-ketothiophan-4-carboxylate-2-β-propionate, which could not be reduced to the NH₂-ketone. Cautious bromination of (XII) in presence of CaCO₃ gives the unstable 4-Br-compound and thence 4-hydroxy-3-ketothiophan-2-β-propionic acid, m.p. 129—130° (slight decomp.). This is converted by NH₃OH₄HCl and KOAc at 100° into 3: 4-dioximinothiophan-2-β-propionic acid, decomp. 185—189° (corresponding phenylosazone, decomp. 112—115°), which could not be satisfactorily reduced to the diamine. (XI) is transformed by Br in light petroleum followed by boiling 10% H₂SO₄ into 3: 4-dihydroxy-thiophen-2-β-propionic acid, decomp. 194—197°, which gives a bluegreen colour with FeCl₃.

Synthesis of 3-alkylpiperidones. C. F. Koelsch (J. Amer. Chem. Soc., 1943, 65, 2458—2459).—CH₂:CH·CN and CHNa(CO₂Et)₂ in EtOH at 40° and then 65° give Et γ-cyano-α-carbethoxy-n-butyrate (40—45%), b.p. 175—180°/25 mm., which is hydrogenated and cyclised by H₂-Rancy Ni (no solvent) at 100°/2000 lb. to yield Et 2-piperidone-3-carboxylate (57%), m.p. 78—79°, b.p. 205—215°/15 mm. With NaOEt and then EtI in boiling EtOH, this gives Et 3-ethyl-2-piperidone-3-carboxylate (66%), m.p. 46—49°, b.p. 190—198°/12 mm., hydrolysed by aq. KOH at 105° to the syrupy acid, which, when distilled, yields 3-ethyl-2-piperidone, m.p. 66—68°, b.p. 149°/15 mm. (reduced by Na-BuOH to 3-ethylpiperidine). Adding CH₂:CH·CO₂Me (I) to CN·CHNa·CO₂Et (II) in EtOH and then heating yields Et₂ a-cyanoglutarate, b.p. 180°/25 mm., which with H₂-Raney Ni in EtOH at 140°/2000 lb. gives Et 2-piperidone-5-carboxylate, m.p. 62—64°, b.p. 163°/2 mm. (partial decomp. at 20 mm.). Adding CH₂PhCl to the Na derivative from (I) and (II) in EtOH and then boiling gives Et₂ a-cyano-α-benzylghtarate, b.p. 187—195°/2 mm., converted by H₂-Raney Ni in EtOH at 165°/2000 lb. into Et 5-benzyl-2-piperidone-5-carboxylate, +H₂O, m.p. 64—68°, which is hydrolysed by 2% NaOH to the corresponding acid, m.p. 221—222°.

Synthesis of 4-phenylpiperidines. C. F. Koelsch (J. Amer. Chem. Soc., 1943, 65, 2459—2460).—CO.Et·CH₂·CHPh·CH(CN)·CO₂Et (from CHPh·CH·CO₂Et and CN·CHNa·CO₂Et), b.p. 172—175°/2 mm., with H₂-Raney Ni at 140°/2000 lb. gives Et 4-phenyl-2-piperidone-5-carboxylate (67%), m.p. 102—103° (crude, 91—94°, 1stereoisomerides) (derived acid, m.p. 214—215°), which with Na-BuOH gives 4-phenylpiperidine-3-carboxylic acid [hydrochloride (I), yellow at 150°, sinters 250°, m.p. 257—259° (gas)]. With 40% CH₂O at 100°, (I) gives 4-phenyl-1-methylpiperidine-3-carboxylic acid hydrochloride, m.p. 219—222° (Et ester hydrochloride, m.p. 171—173°). Et γ-cyano-α-carbethoxy-β-phenyl-n-butyrate [from CHPh:CH·CN, CH₂(CO₂Et)₂, and NaOEt in boiling EtOH; 83% yield], m.p. 43—45°, b.p. 190—195°/0-5 mm., with H₃-Raney Ni at 155°/2000 lb. gives Et 4-phenyl-2-piperidone-3-carboxylate, a syrup, and 4-phenyl-2-piperidone (II), m.p. 137—139°. Na-BuOH reduces (II) to 4-phenylpiperidine, m.p. 57—60° (lit., 57—58°), b.p. 137—147°/21 mm. (and a base, m.p. 137°, b.p. 160—220°/18 mm.), the hydrochloride, sinters 110°, m.p. 164—165° (slow heating), 150° (decomp.; immediate), of which with an excess of aq. CH₂O at 100° gives 4-phenyl-1-methylpiperidine, b.p. 138—140°/17 mm. (hydrochloride, m.p. 185—187°), and (?) methylenebis-4-phenylpiperidine, m.p. 101—103°.

Two syntheses of β-1-benzoyl-4-piperidylpropionic acid. C. F. Koelsch (J. Amer. Chem. Soc., 1943, 65, 2460—2465).—Epichlorohydrin with H₂SO₄ in boiling MeOH gives OMe·CH₂·CH(OH)·CH₂·Cl (I) (75—85%), b.p. 75—78°/12 mm., and CH₂Cl·CH(OH)·CH₂·O·SO₃H (deliquescent Na salt). With aq. NaCN at 44—46°, rising later to 50°, (I) gives β-hydroxy-γ-methoxy-n-butyronitrile (II) (77—92%), b.p. 133°/18 mm., which is converted into γ-methoxycrotononitrile (III), b.p. 175—185°, by distillation from K₂CO₃ (70% yield) or by acetylation (boiling Ac₂O) into β-acetoxy-γ-methoxy-n-butyronitrile (16%), b.p. 128—130°/21 mm. (hydrolysed by boiling 0·ln-NaOH a I min.), which yields (III) (83%) when distilled from a little KOAc. CH₂(CO₂Et)₂ or CN·CH₂·CO₂Et does not condense with III), but CHNa(CO₂Et)₂ and (III) in hot EtOH give Et γ-cyano-acarbethoxy-β-methoxymethyl-n-butyric acid (77%), b.p. 180—185°/2500 lb. gives Et 4-methoxy-2-piperidone-3-carboxylate (60%), b.p. 220—225°/30 mm., whence hydrolysis (aq. KOH) and distillation yields 4-methoxymethyl-2-piperidone (IV) (83%), m.p. 59—62°, b.p. 179—181°/21 mm. Na (4 atoms utilised)-BuOH reduces (IV) to 4-methoxymethyl-piperidine (60—68%), hygroscopic, m.p. ~0°, b.p. 80—81°/27 mm. [picrate, m.p. 146—148°; hydrochloride, m.p. 150°; nydrobromide (V). m.p. 143°; p-NO₂·C₆H₄·CO derivative, m.p. 84—86°; NO-derivative, b.p. 158—160°, with Zn-H₂SO₄ at 55—60° gives the 1-NH₂-derivative, b.p. 100—110°/25 mm. (hydrobromide, m.p. 102—104°)]. (V) is converted by boiling 48% HBr in 10 min. into 4-hydroxymethyl-, m.p. 150—151°, and in 7 hr. into impure 4-bromomethyl-piperidine hydrobromide (VI), hygroscopic, identified

by conversion by 5% NaOH into 1-azadicyclo[1, 2, 2]heptane. I-Benzoyl-4-bromomethylpiperidide (VII) [prep. from, best, pure (VI) by BzCl-aq. Na₂CO₃ at 0°; 73%], m.p. 88—90°, does not condense with the Na derivative of Et β-keto-β-4-quinolylpropionate [sulphate, m.p. 150° (decomp.); picrate, m.p. 160—163°] in EtOH and in Et₂CO₃ gives tars, but with the Ag derivative at 100° gives 1-benzoyl-4-piperidylmethyl cinchonate, m.p. 132—133° (picrate, sinters 165°, m.p. 170—172°), also obtained from (VII) and Ag cinchonate at 100°. Et cinchonate picrate, m.p. 183—185°, is described. CHNa(CO₂Et)₂ and (VII) (28 g.) in hot EtOH give a syrupy ester, which, when hydrolysed by NaOH-H₃O-EtOH and then heated at 185°, gives β-1-benzoyl-4-piperidylpropionic acid (VIII) (5·2 g.), m.p. 145—147°, and its Et ester (7·7 g.), b.p. 240—245°/6 mm. Pyridine-4-carboxylic acid (prep. from 4-methylpyridine by boiling aq. KMnO₄ in 45—62·4% yield) and H₂SO₄-EtOH give the Et ester (67%), which with NaOEt and EtOAc in boiling EtOH-Et₂O gives Et β-keto-β-4-pyridylpropionate (53·5%). With H₂-Raney Ni in EtOH at 100°/2200 lb. this gives Et β-4-pyridylhydracrylate, an oil (hydrochloride, sinters 153°, m.p. 155—157°), hydrolysed by hot HCl to β-4-pyridylhydracrylic acid, sinters 193°, m.p. 201—202° [purified by way of the Cu salt, m.p. 207—208° (decomp.); hydrochloride, sinters 170°, m.p. 173—175°]. 1: 1 (vol.) H₂SO₄-H₄O at the b.p. then gives β-4-pyridylacrylic acid, brown at 190°, m.p. 280—285° (decomp.) [lit., 296° (corr.)] {Cu salt, brown at 235°, m.p. 255° (gas) [lit., 296° (corr.)], which with Na-Eu°OH and then BzCl-NaOH gives (VIII).

2-Chloroacetylpyrrole. F. F. Blicke, J. A. Faust, J. E. Gearien, and R. J. Warzynski (J. Amer. Chem. Soc., 1943, 65, 2465—2466).—2-Chloroacetylpyrrole (I), m.p. $118-119^{\circ}$ (lit., 115°), is obtained from the product of interaction of pyrrole and MgEtBr and CH₂Cl·CN in Et₂O at 0° and then the b.p. (16% yield) or from pyrrole, CH₂Cl·CN, and HCl in Et₂O (20% yield). Use of MgEtI gives only 2-acetylpyrrole. NaI-COMe₂ converts (I) into 2-iodoacetylpyrrole (95%), m.p. $130-131^{\circ}$ (lit., 81°), which with AgOAc in boiling C_6H_6 gives 2-acetoxyacetylpyrrole (90%), m.p. 70—71°. R. S. C.

Pyridinesulphonamide.—See B., 1944, III, 73.

Vitamin-B₆.—See B., 1944, III, 74.

Boron fluoride as a condensing agent in the Fischer indole synthesis. H. R. Snyder and C. W. Smith (J. Amer. Chem. Soc., 1943, 65, 2452—2454).—BF₃ or BF₃,Et₂O is usually approx. as effective (16 examples) as other reagents in converting hydrazones into indoles, and the products are easily isolated. In successful cases, a coloured complex is first formed which is then decomposed by heat; a solvent (AcOH) may be used. The colour indicates the following reaction mechanism: CRMe:N·NHAT—BF₃ (I) \rightleftharpoons CHMeR·N·NAT—BF₃; (I) \rightarrow CH₀·CR·NH·NHAT→BF₃ \rightarrow or NH₂·CR·CH·C₅H₄·NH₂→BF₃ etc. \rightarrow indole derivative. This is in line with recovery of phenylhydrazones in other forms, e.g., a-keto-y-butyrolactonephenylhydrazone, m.p. 100·5°, and Et a-keto-y-cyanobutyratephenylhydrazone, m.p. 84·5°. 3-isoPropylindole, b.p. 138—142°/6 mm., gives a picrate, m.p. 117·5° (lit., 98—99°). Failures of the BF₃ synthesis include CHMe:N·NHPh and CMe₂:N·NHPh.

Improved synthesis of quinaldines and 3-alkylquinolines. W. P. Utermohlen, jun. (J. Org. Chem., 1943, 8, 544—549).—A suitable oxidising agent (O) is obtained by running PhNO, into 20% oleum at 20—30° and then heating the mixture at 60—70° until it is completely sol. in H₂O. The following methods are used: (A) adding the base to a mixture of O and H₂O, raising the temp. to 125°, adding the aldehyde diacetate gradually, and then slowly raising the temp. to 175° while allowing H₂O and AcOH to distil; (B) adding the aldehyde dropwise to a mixture obtained as under (A) and heated at 105—110° and finally to 135° with distillation of H₂O; (C) Doebner-von Miller method; (D) adding the aldehyde dipropionate slowly to a hot, stirred mixture of As₂O₅, H₂O, base, and conc. H₂SO₄. The following -quinolines are prepared (the name of the non-basic reactant, method of prep., and % yield being placed in brackets: 2-methyl- [CHMe:CH·CHO (I), B, 43; CHMe:CH·2H(OAc), (II), A, 49·5]; 2:7-dimethyl- [(II), A, 47; (I), B, 62·5]; 7-chloro-2-methyl- [(II), B, 60]; 6-chloro-2-methyl- [(II), A, 55]; 2:6-dimethyl- [CHMe:CH·CH(O·COEL), A, 49]; 6-nitro-2-methyl- [(II), D, 30]; 3-methyl-, b.p. 252—253° (picrate, m.p. 187·5°; ethiodide, m.p. 226·5°) [CH₂:CMe·CH(OAc), (III), A, 46; CH₂:CMe·CH(OAc), (III), A, 46; CH₂:CMe·CH(OAc), (III), A, 54; CH₂:CEt·CHO (VII), B, 42; (VII), C, 2·5]; 3:6-dimethyl-, b.p. 270—271·5°, m.p. 56·5° (picrate, m.p. 240·5°; ethiodide, m.p. 250°) [(III), A, 65; (V), B, 25]; 3:8-dimethyl-, b.p. 260—262° (picrate, m.p. 208·5°; ethiodide, m.p. 181°) [(III), A, 46]; 6-mitro-3-methyl-, m.p. 151 (picrate, m.p. 200°) [(IVI), D, 35]; 7-chloro-3-methyl-, b.p. 142—144°/10 mm., m.p. 84·5° (corr.) (picrate m.p. 187·5°; ethiodide, m.p. 270°) [(III), A, 52]; 6-methyl-3-ethyl-b.p. 284—285·5° (picrate, m.p. 247°; ethiodide, m.p. 204°) [(VI), A, 55]; 6-methyl-3-ethyl-b.p. 284—285·5° (picrate, m.p. 247°; ethiodide, m.p. 204°) [(VI), A, 55]; 6-methyl-3-ethyl-b.p. 284—285·5° (picrate, m.p. 247°; ethiodide, m.p. 204

32]; 7-methyl-3-ethyl-, b.p. 282—283° (picrate, m.p. 224·5°; ethiodide, m.p. 180°) [(VI), A, 34; (VII), B, 35]. M.p. are corr.

5- and 7-Trifluoromethylquinolines. H. Gilman and D. Blume (J. Amer. Chem. Soc., 1943, 65, 2467—2468).—m-CF₃·C₆H₄·NH₂ (0·4), glycerol (1·3), As₂O₅ (0·4), and H₂SO₄ (1·1 mol.) give, after boiling, a mixture, fractionation of which yields pure 7- (I) (31·8%), m.p. 66—68°, b.p. 219—221°/731 mm., and 5-trifluoromethylquinoline (5·7%), b.p. 214—215°/732 mm. (oxalate), the structure of which is proved by hydrolysis by boiling 80% H₂SO₄ to quinoline-7- and -5-carboxylic acid, m.p. 341—343° (lit., 338—340°), respectively. Li·C₆H₄Me-p adds normally to (I) in Et₂O, yielding a product which with PhNO₂ in Et₂O gives 2-p-tolyl-7-trifluoromethylquinoline (61%), m.p. 131—133°.

aβ-Diamino-ketones. I. Reactions of heterocyclic sec.-amines with a-bromo-β-amino-ketones. N. H. Cromwell, C. E. Harris, and D. J. Cram (J. Amer. Chem. Soc., 1944, 66, 134—137).—The following reactions conform to the mechanism previously postulated (A., 1943, II, 243). a-Bromo-β-morpholino-β-phenylethyl Me ketone (I) with tetrahydroquinoline (II) [a weaker base than morpholine (III)] in EtOH (51% yield) or Et₂O (20·4% yield) at room temp. gives a-morpholino-β-tetrahydroquinolino-β-phenylethyl Me ketone, m.p. 173°, hydrolysed by acid to PhCHO, (II), and morpholinoacetone (oxime, m.p. 104—106°). With piperidine (IV), which is weaker than (III), in EtOH, (I) gives an inseparable mixture of amines but the mixed product produced in Et₂O yields 10% of β-piperidino-a-morpholino-β-phenylethyl Me ketone, m.p. 123°. a-Bromo-β-piperidino-β-phenylethyl Me ketone with (III) in EtOH (32%) or Et₂O (90·2% yield) gives a-piperidino-β-morpholino-β-phenylethyl Me ketone, forms, m.p. 117° and 101° (hydrolysed to a-piperidinoacetone). CHPh:CBr·COPh and tetrahydroisoquinoline (V) in Et₂O-light petroleum at —10° give a-bromo-β-tetrahydroisoquinoline (V) in Et₂O-light petroleum at —10° give a-bromo-β-tetrahydroisoquinoline (V) in EtOH at room temp. slowly (cf. loc. cit.) yields aβ-ditetrahydroisoquinolino-α-phenyl-propiophenone, m.p. 184—186°, also obtained (m.p. 187°; 57% yield) from CHPhBr·CHBr·COPh by (V) in EtOH at 0° and then room temp. With (III), which is weaker than (V), (VI) in EtOH at room temp. Bives β-morpholino-a-tetrahydroisoquinolino-β-tetrahydroquinolino-β-phenylpropiophenone (47%), m.p. 164°. a-Bromo-β-morpholino-β-phenylpropiophenone (47%), m.p. 164°. a-Bromo-β-phenylpropiophenone, m.p. 163°, is obtained. a-Bromo-β-piperidino-β-phenylpropiophenone with (V) gives a mixed product, whence 13% of impure a-morpholino-β-tetrahydroisoquinolino-β-phenylpropiophenone with (V), which is weaker than (IV), gives a-piperidino-β-tetrahydroisoquinolino-β-phenylpropiophenone (100°), m.p. 165° (identified by hydrolysis), a

Purification of 2-nitro-5-amino-7-ethoxyacridine. A. Albert and W. Gledhill (J.S.C.I., 1944, 63, 96).—2-Nitro-7-ethoxyacridine, occurring as impurity in the prep. of the 2-nitro-o-amino-compound (I) (cf. A., 1942, II, 425), may be removed most suitably as its EtOH-sol. Na salt. A more conc. aq. solution of (I) may be obtained by dissolving in boiling H₂O containing lactic acid.

Transamination reaction. Effect of various nuclear substituted a-amino-a-phenylacetic acids on the course of the reaction.—See A., 1944, II, 161.

Pyrimidines. CLXXXI. Reactions characterising the oxide of 5-chloro-6-hydroxy-6-methyl-1:5-dicvclouracil. T. B. Johnson (J. Amer. Chem. Soc., 1944, 66, 146—148; cf. A., 1943, II, 340).— The compound (I), (NH< CO-CCI CMe)2O, with H2O2 in conc. HCl at room temp. gives 5:5-dichloro-6-hydroxyhydro-orotic acid (II), NH< CO-CCI COH)-CO2H, m.p. 182—183° (gas), reduced by red P-H1 to 5-chloro-orotic acid (III). With conc. HNO3 at room temp. (I) gives (III), and with Br-H2O at room temp. gives 5-chloro-o-bromo-6-hydroxyhydro-orotic acid, m.p. 192—193°. Ba(OH)2 converts (II) or (IV) into dialuric acid, the colour test for which is thus not sp. R. S. C.

Acid hydrolysis of a 5:5-dichlorohydroxy-6-arylhydrouracil. T. B. Johnson (J. Amer. Chem. Soc., 1944, 66, 148—150).—6-Phenyluracil and $\rm H_2O_2$ -conc. HCl give 5:5-dichloro-6-hydroxy-6-phenylhydrouracil, m.p. 209—210° (decomp.), which with red P-HI at 100° gives 5-chloro-6-phenyluracil (I), m.p. 260—261°, and in hot conc. HCl gives NH.Cl and BzOH (100%) with a trace of (I).

Biological effects of benziminazole and their reversed by purines. D. W. Woolley (J. Biol. Chem., 1944, 152, 225—232).—See A., 1944, III, 435).—5-Aminobenziminazole, m.p. 105—106° (uncorr.), was prepared by condensing 1:2:4-C₈H₃(NH₂)₃ with HCO₂H. It differed (mixed m.p. depression) from the compound, m.p. 104—105°,

obtained by reducing Bamberger and Berle's nitrobenziminazole (A., 1893, i, 435); these are therefore the 4- NH_2 - and 4- NO_2 -compounds.

Isatoic anhydride. I. Reactions with primary and secondary amines and with some amides. R. H. Clark and E. C. Wagner (f. Org. Chem., 1944, 9, 55—67).—Isatoic anhydride (I) is conveniently obtained by passing COCl₂ into a solution of o-NH₂·C₆H₄·CO₂H in dil. HCl at 50°. Strongly basic primary amines react readily with (I) at room temp. to 130° in most cases and some even in H₂O. Aromatic primary amines with o-substituents or with negative Aromatic primary amines with o-substituents or with negative substituents in o- and p-substituents react less readily and yield largely or almost entirely "abnormal" products. The amount of CO_2 evolved in the "abnormal" reaction indicates the nearly quant. participation of (I). The normal change is (I) + NH_2R $\rightarrow o-NH_2\cdot C_6H_4\cdot CO\cdot NHR$ (II) + CO_2 ; the "abnormal" reaction follows thus: (I) + (II) $\rightarrow NH_2\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot CO\cdot NHR \rightarrow NH_2\cdot C_6H_4\cdot CO\cdot NH\cdot C_6H_4\cdot CO\cdot NHR$. In support of this mechanism it is found that no isolable normal product is obtained from equivarious of (I) and $a\cdot C$ $A\cdot Brank Aroman anthrapic observes a some authrapia or have$ amounts of (I) and o-C₆H₄Br·NH₂ whereas some anthranit-o-bromophenylamide, m.p. 115-5—116-0°, is obtained if a large excees of base is used. The interaction of equiv. amounts of (I) and NH₂Ph phenylamide, m.p. 115·5—116·0°, is obtained if a large excees of base is used. The interaction of equiv. amounts of (I) and NH₂Ph is normal but when 2 equivs. of (I) are used the product is amorphous. When pure o-NH₂·C₆H₄·CO·NHPh (III) a (normal product is heated with an equiv. amount of (I), the theoretical amount of CO₂ is evolved and the abnormal product results. Hydrolysis of the "abnormal" product from (I) and (III) by conc. HCl under pressure gives o-NH₂·C₆H₄·CO₂H and NH₃, the amount of the latter indicating x = 2. The following anthranil-amides are obtained: ethyl-, m.p. 102—103° (uncorr.); -n-propyl-, m.p. 98·5—100°; -n-butyl-, m.p. 83—84°; -n-amyl-, m.p. 80·0—81·0°; -isoamyl-, m.p. 123·0—123·5°; -phenyl-, m.p. 125·5—126·5°; -b-tolyl-, m.p. 123·0—123·5°; -phenyl-, m.p. 125·5—126·5°; -b-tolyl-, m.p. 150—151·0°; -p-anisyl-, m.p. 126·0—126·0°; -m-bromophenyl-, m.p. 147·5—149°; -p-bromophenyl-, m.p. 148·0—149·0°; -m-chlorophenyl-, m.p. 130·0—131·5°; -p-chlorophenyl-, m.p. 140—141·5°; -2: 4-dimethylphenyl-, m.p. 137—138° (uncorr.); -o-carboxyphenyl-, m.p. 205·5—206·5°; -2-pyridyl-, m.p. 132·0—133·0°; -4-methyl-2-thiazolyl-, m.p. 117·5—118·5°; -6-methyl-2-benzthiazolyl-, m.p. 186·0—187·0°; -phenyl-imino-, m.p. 172·0—173·0° (uncorr.); -hydroxy-, m.p. 78° (uncorr.); -o-carbothoxyphenyl-, m.p. 93·5—94·5°; -o-carbomethoxyphenyl-, m.p. 114·5—115·5°. M.p. are corr. unless otherwise indicated. Reaction is largely abnormal with m-2- and m-5-xylidine, o-NH₂·C₆H₄·CO·NH₂, o- and p-NO₂·C₆H₄·NH₂. (CH₂·NH₂)₂ and CH₂(CH₂·NH₂)₂ give the corresponding 5-dianthranoyldiamines, m.p. 242·0—243·0° (uncorr.) and 183·0—184·0° respectively. When equiv. amounts of (I) and sec. amines are heated CO₂ is evolved but "normal" products are obtained usually in small yield if at equiv. amounts of (I) and sec. amines are heated CO₂ is evolved but "normal" products are obtained usually in small yield if at all, the reaction products being generally resinous, gummy mixtures from which well-defined compounds cannot be isolated. If the base is kept in marked excess and conditions for rapid action are chosen moderate yields of normal products are sometimes secured. The following anthranil-amides are thus obtained: -diethyl-, b.p. 147—148°/1 mm., 158—160°/4 mm., m.p. 70—70·5° (uncorr.); -di-n-propyl-, b.p. 174—177°/4 mm. (picrate, m.p. 104—104·5°); -piperidyl-, b.p. 160—163°/1—2 mm., m.p. 73·0—74·0°; -phenyl-methyl-, m.p. 127—127·5°; -phenylethyl-, m.p. 102·5—103°; -phenyl-n-propyl-, m.p. 75·5—76·5°. (I) and NH₂Ac at 180° slowly yield amorphous products, apparently mixtures. Benzoylenecarbamide with considerable amorphous material results from (I) and CO(NH). with considerable amorphous material results from (I) and CO(NH₂); or NH₂·CO₂Et. 3:4-Dihydroquinazol-4-one, m.p. 136—136·5°, and its p-tolyl, m.p. 144—145°, and p-anisyl, m.p. 194—195°, derivatives are obtained from the requisite base, (I), and boiling CH(OEt)₃. Attempts to extend the synthesis by use of CMe(OEt)₃ were unsuccessful. unsuccessful.

Transformation of verdohæmochromogens into monoazahæmins. R. Lemberg (Austral. J. Exp. Biol., 1943, 21, 239—247; cf. A., 1935, 884).—A modification of the method of preparing pyridine verdohæmochromogen and verdomesohæmochromogen is described. At room temp. in presence or absence of O₂, NH₃ (but not NH₂Me) converts these compounds into monoaza-hæmin and -mesohæmin respectively. N₂H₄, H₂O in AcOH (but not conc. H₂SO₄) removes Fe from monoazahæmins, the monoazaporphyrins thus obtained being identical with Fischer's monoimidoporphyrins. The spectroscopic properties of some monoazahæmatin compounds are described and an explanation is suggested of the stability of the Fe linkage in azahæmins and its instability in verdohæmatins. W. McC.

Tetrahydrofuryl-amino-alcohols. A. Burger and G. H. Harnest $(J.\ Amer.\ Chem.\ Soc.,\ 1943,\ 65,\ 2382-2383).-2$ -Furoyl chloride and CH₂N₂-Et₂O at 0° and then room temp. give a solution of crude diazoketone, which with conc. aq. HCl gives 2-chloroacetylfuran (88%), m.p. <0°. With piperidine (2·5 mols.) in Et₂O at 0° and then room temp., this gives 2-piperidinoacetylfuran (73%), b.p. 139-140°/4 mm., which in presence of Ni or Pt absorbs >3 mols. of H₂, but, as hydrochloride, m.p. 264-266° (decomp.), is reduced by boiling 3N-Al(OPr β ₃-Pr β OH to 2-a-hydroxy- β -piperidinoethylfuran (38%), b.p. 127-128°/5 mm. (hydrochloride, m.p. 172-174°).

H₂-Raney Ni in EtOH at 1 atm. then yields 2-α-hydroxy-β-piperidinoethyltetrahydrofuran (64%), b.p. 125—126°/4 mm. (hydrochloride, m.p. 170—173°; acetate hydrochloride, m.p. 191—194°). The following are similarly prepared: 2-morpholino- (49%) (hydrochloride, m.p. 221—229°), and 2-4'-methylpiperidino-acetylfuran (51%), b.p. 133—139°/4 mm. (hydrochloride, m.p. 253—265°); 2-α-hydroxy-β-morpholino- (70%), m.p. 67—68°, b.p. 146—150°/1 mm. (hydrochloride, m.p. 185—186° (decomp.); acetate hydrochloride, m.p. 166—167° (decomp.)], and -β-4-methylpiperidino-ethylfuran (74%), m.p. 70—72°, b.p. 126—128°/4 mm. [acetate hydrochloride, m.p. 170—181° (decomp.)]; 2-α-hydroxy-β-morpholino- (41%), b.p. 138—140°/12 mm. (hygroscopic hydrochloride, m.p. 170—176°), and -β-4-methylpiperidino-ethyltetrahydrofuran (33%), b.p. 131—132°/4 mm. 3-Acetyl-2: 5-dimethylfuran, paraformaldehyde, and NHMe₂,HCl give 3-β-dimethylaminopropionyl-2: 5-dimethylfuran hydrochloride, m.p. 175—177°.

Substituted aminobenzfuranoquinolines. R. Adams, J. H. Clark, N. Kornblum, and H. Wolff (j. Amer. Chem. Soc., 1944, 66, 22—26).—Separation of benzfurano-2': 1'-6: 7- (I) from -1': 2'-5: 6-quinoline (II) is improved (cf. Mosettig et al., A., 1935, 871). With HNO₃ (d 1·50) in 30 sec., (I) gives a NO₂- (84%), m.p. 267—268°, and thence (H₂-Raney Ni; EtOH; 2—3 atm.) an NH₂-derivative, m.p. 236·5—247°, which with Cl·[CH₂]₃·NH₂,HCl or 4-y-chloro-n-propylmorpholine hydrochloride in Bu°OH at 140—150° gives the rdiethylamino-n-propylamino-, an oil, and y-morpholino-n-propylamino-derivative, m.p. 120°, respectively. With HNO₃ (d 1·50), (II) gives NO₂-derivatives, m.p. 297—298° and 282°, reduced to NH₂-derivatives, m.p. 180—182° and 204°, respectively. 2-Acetamidodibenzfuran (modified prep.), m.p. 183° (lit. 178°), and HNO₃ (d 1·5) in AcOH give the 3-NO₂-derivative (73%), m.p. 205° (lit. 196°) (and a substance, m.p. 261—262°), hydrolysed to 3-nitro-2-aminodibenzfuran (III), m.p. 232—233° (lit. 222°), which with glycerol, H₃AsO₄, and H₂SO₄ at 130—140° gives 8-nitrobenzfurano-1': 2'-5: 6-quinoline (24%), m.p. 206—207° (cf. Kirkpatrick et al., A., 1935, 985); H₂-Raney Ni + a trace of PtO₂ in EtOH at 50°/3 atm. then yields the 8-NH₂-, m.p. 197—198°, and thence, as above, the 8-y-morpholino-n-propylamino-derivative, b.p. 238—240°/0·03 mm. 2-Benzenesulphonamidodibenzfuran, m.p. 162—163°, with HNO₃ (d 1·5) in AcOH at 18° gives the 3-NO₂-derivative (IV), m.p. 266—227°, hydrolysed by 25% HCl to (III), which with PhSO₂Cl in hot C₅H₅N gives (IV) and the 3-nitro-2-dibenzenesulphonamidoderivative, m.p. 263—265°. H₂-PtO₂ reduces (IV) in EtOH at 2-3 atm. to 3-amino-2-benzenesulphonamidodibenzfuran, m.p. 227—288°, which with glycerol, PhNO₂, and H₂SO₄ at 145—150° gives 5-benzenesulphonamido- (45%), m.p. 197—198°, and thence [3:1 (vol.) H₂SO₄-H₂O at 145°] 5-amino- (V), m.p. 139—140°, and impure 5-diethylamino-a-methyl-n-butylamino-benzfurano-2': 1'-5: 6-quinoline, m.p. 82—83·5

5-(p-Aminobenzenesulphonamido)thiazole. M. H. M. Arnold and C.W. Scaife (J.C.S., 1944, 103—104).—Chrysean, prepared from H.S. NaCN, with a little aq. NH3, is 5-aminothiazole-2-thioamide (I), m.p. 204° (decomp.), obtained in 15—20% yield. (I) with Pb(OAC)2 gives 5-aminothiazole-2-nitrile, which, with CaCO3 followed by cautious evaporation, leads to the 2-amide, decomp. 156°, with dil. HCl affords the 2-carboxylic acid, decomp. 185°, and with PhCHO yields 5-benzylideneaminothiazole-2-nitrile, m.p. 141° p-NO2·C6·H4·SO2·Cl and (I) in C5·H3·N form 5-(p-nitrobenzenesulphonamido)thiazole-2-thioamide, m.p. 185° (decomp.), whilst the 2-nitrile, m.p. 148°, and 5-(p-acetamidobenzenesulphonamido)thiazole-2-thioamide (II), m.p. 237°, and 2-amide, m.p. 253—255° (decomp.), are similarly prepared. Hydrolysis (NaOH-PbCO3) of (II) gives 5-(p-aminobenzenesulphonamido)thiazole, m.p. 185° (decomp.), which is not pharmaceutically promising. F. R. S.

Reactions of nitriles as acid anammonides. E. L. Holljes and E. C. Wagner (J. Org. Chem., 1944, 9, 31—49).—Closure of the glyoxaline, oxazole, and pyrimidine rings is effected by interaction 1:2- or 1:3-(NH₂)₂-compounds or of o-NH₂·C₆H₄·OH and altriles, the processes being essentially identical with conventional ring-closures of the Ladenburg type as effected (at lower temp.) by carboxylic acids and their anhydrides. The cases studied comprise the formation of 2-alkyl- or 2-aryl-glyoxalines from o-CtH₄(NH₂)₂, of 2-alkyl- or 2-aryl-benzoxazoles from o-NH₂·C₆H₄·OH, of 2-substituted pyrimidines from 1:8-C₁₀H₆(NH₂)₂, and of 2-substituted dihydroquinazolones from o-NH₂·C₆H₄·CO·NH₂. In these reactions the nitrile C is incorporated into the ring; the nitrile N is finally present as NH₄ salt or NH₃. These reactions require the presence of acid and appear to be catalysed by H. Reaction occurs slowly in absence of added acid if one of the reactants is acidic in character (e.g., o-NH₃·C₆H₄·OH) but is markedly promoted by the presence of a strong acid which may be introduced as a salt of the NH₂-compound used. Closure of the glyoxaline and oxazole ring when HCl is used as catalyst appears to depend on the preliminary formation of the iminochloride by additive union of nitrile

and acids. This reacts with an $\mathrm{NH_2}$ -group to yield the substituted amidine (an ammono-acyl compound), which undergoes ring-closure as do the analogous aquo-acyl compounds of the O system. The first step is relatively slow and requires the use of high temp. and extended reaction periods. The subsequent steps, each realised separately, proceed rapidly and almost quantitatively. The acid is rendered available for another cycle by the thermal dissociation of $\mathrm{NH_4Cl}$, which is the by-product. 2-n-Butyl-, b.p. 68—70°/20 mm., and 2-n-amyl-benzoxazole, b.p. 114—114·5°/2 mm., appear new.

Photochemical reactions of leuco-dyes in rigid solvents. Quantum efficiency of photo-oxidation.—See A., 1944, I, 109.

Dehydrothio-p-toluidine. H. E. Fierz-David [with W. Brunner] (Helv. Chim. Acta, 1944, 27, 1—8).—The crude primuline melt obtained from p-toluidine and S is separable into at least 4 components by successive use of EtOH, PhCl, and o-C₆H₄Cl₂. Distillation of it in a high vac. and without previous purification gives ~50% of pure dehydrothio-p-toluidine (I). The alcoholic extract contains also didehydrothio-p-toluidine, which can be sublimed unchanged at 220°/0·001 mm., but decomposes at a higher pressure and hence during the distillation of (I). Quant. measurements confirm the view that naphthamine-yellow NN (II) obtained by oxidising dehydrothio-p-toluidinesulphonic acid (III) with OCl', K₃Fe(CN)₆, and other oxidising agents is (SO₃H·C₆H₂Me
C·C₆H₄·N)₂; it is most simply prepared by oxidising (III) to the azoxy-compound, which is then reduced to the azo-substance by Na₂S, Na₂SO₂, or glucose but not Na₂S₂O₄. Similarly (I) is quantitatively oxidised by Cl₂ in NaOH-EtOH to the unstable azoxy-compound, directly reduced to the azo-derivative, (C₅H₃Me
C·C₆H₄·N:)₂ (III), m.p. 322·5° (corr.), reduced by ZnCl₂ and HCl in EtOH to (I). Sulphonation of (III) gives an isomeride of (II) superior in shade and fastness to light; it probably contains SO₃H vicinal to N of the thiazole ring. pp'-2-Benzthiazolylazobenzene, m.p. 304° (corr.), is obtained by oxidation of 4-p'-aminophenylbenzthiazole with NaOCl and subsequent reduction with NaOCl or Na₂S, from azobenzene-1: 4'-dicarboxylic acid and o-NH₂·C₆H₄·SH, and by condensation of p-NO₂·C₆H₄·COCl with o-NH₂·C₆H₄·SH, and reduction of the nitro-thiazole with Zn dust and NaOH.

4-Methylthiazolo(2, 3-b) tetrahydropyrimidine hydrobromide. F. C. Whitmore and A. W. Rytina (J. Amer. Chem. Soc., 1943, 65, 2472—2473).—2-Amino-4-methylthiazole and $\operatorname{Br} \cdot [\operatorname{CH}_2]_3$ ·Br in boiling EtOH give 4'-methyl-3: 4:5:6-tetrahydrothiazolo-2':3'-2:3-pyrimidine hydrobromide, m.p. 235·5—237°. R. S. C.

VII.—ALKALOIDS.

Cupreine derivatives.—See B., 1944, III, 74.

Thiocarbimides of the hydroquinine series and radical exchange with thiocarbimides and thiocarbamides. F. Zetzsche and A. Fredrich (Ber., 1940, 73, [B], 1420—1424).—Radical exchanges between amines or thiocarbamides and thiocarbimides are recorded. 5-Thiocarbimidohydroquinine, m.p. 198—200° (decomp.), is obtained from 5-aminohydroquinine and CS2 or PhNCS in boiling Cs4. A similar reaction is observed with p-NMe2·Cs44·NCS but not with CH2·CH·CH2·NCS or BuβNCS. 5-Thiocarbimido-optoquin, m.p. 196—198° (decomp.), [a]p +156·3° in CHCl3 (picrate, decomp. 150—152°), is obtained similarly. CO(NH·Cs44·NMe2·p), or freshly prepared p-NH2·Cs44·NMe2 and PhNCS at 160° afford p-NMe2·Cs44·NCS, m.p. 65—67°. Benzidine (I) and boiling PhNCS yield di-4: 4′-thiocarbimidodiphenyl, m.p. 204°, and a substance, m.p. 313—315°, which is the main product of the action of (I) with PhNCS in boiling COMe2 or Cs44, or with CS(NHPh)2 in boiling EtOH. (I) and boiling CS2 give a material of m.p. 280—285°.

Cinchona alkaloids in pneumonia. XII. Derivatives of 6'-amino-apocinchonidine. A. G. Renfrew, W. W. Carlson, and L. H. Cretcher (J. Amer. Chem. Soc., 1943, 65, 2309—2310; cf. A., 1943, II, 344).—apoCupreine (I) (0·2 mol.) with NaHSO3 (1 mol.) and NH. (CH. 1 2. OH (1·7) or NH2. (CH. 1 2. NEt2 (1·1 mols.) in H2O at 160° give 6'- 1 2. hydroxy- (30%), [a]p -291° in EtOH [dihydrochloride (II)], and 6'- 1 3-diethylamino-ethylaminoapocupreine (37%), [a]p -231° in EtOH (H camphorate, [a]p -113° in H2O; H d-tartrate (III), [a]p -150° in H2O]. Bacteriostatic concns. against Pneumococcus II and intraperitoneal toxicities, respectively, are (I) 1 in 3 × 10⁵, 6—8 mg., (II) 1 in 5 × 10⁴, 6—7 mg., and (III) — (confluent growth at 1 in 5 × 10⁴), 2 mg. per 20-g. mouse. R. S. C.

Strychnos alkaloids. CXIII. N-Acetyl derivatives of sec.- ψ -strychnine and their oxidation. H. Leuchs (Ber., 1940, 73, [B], 1392—1397).—Prolonged treatment of ψ -strychnine containing strychnine (I) with Ac₂O and C₅H₅N at 100° gives (I) and N-acetyl-sec.- ψ -strychnine (II), C₂₂H₂₄O₄N₂.CHCl₃, which does not react with NH₂·CO·NH·NH₂ and is hydrogenated (PtO₂ in AcOH) to acetyl-

dihydro-sec.- ψ -strychnine, m.p. 269° (vac.). (II) is oxidised by KMnO₄ in COMe₂ at 20° to the keto-acid, C₂₂H₂₄O₇N₂ (III), m.p. 225—230° (decomp.) after softening and darkening, [a]₀° +321°/d in AcOH [Me ester, m.p. 230°, softens at 225°; amide (IV), m.p. 230—240° (decomp.), softens at 210°; semicarbazone, m.p. 205° (decomp.), occasionally up to 220°, becomes brown at 190°]. (III) scarcely absorbs H₂ (PtO₂ in AcOH) and does not give cryst. Products with Na-Hg and H₂O. (III) is transformed by 0·5N-NaOH at 100° into a substance, C₂₁H₂₀O₄N₂ [also +1 MeOH, m.p. 280° (decomp.), softens at 260°], also obtained from (IV) and 13N-NH₃ at 100°. ψ -Brucine when similarly treated affords N-acetyl-sec.- ψ -brucine, which could not be obtained cryst. It is oxidised to a keto-acid (V), C₂₅H₂₈O₂N₂, m.p. 235—238°, softens and becomes discoloured at 225° from MeOH or m.p. 195—200° (decomp.) from H₂O, [a]₀° +280°/d in AcOH [non-cryst. Me ester; amide, m.p. 170—188° to a resin which becomes brown at 195° and foams at 205°; semicarbazone, anhyd. m.p. ~215° (decomp.), darkens at 195°]. (V) is reduced (Na-Hg in H₂O) to the acid, C₂₃H₃₀O₈N₃, m.p. 235—237° (slight decomp.), softens at 225°, and is converted by 0·5N-NaOH at 100° into the compound, C₂₃H₂₄O₄N₂, m.p. 229—231° (vac.), softens at 225°.

Lycoris alkaloids. XVII. Constitution of lycorine. H. Kondo and H. Katsura (Ber., 1940, 73, [B], 1424—1430).—Lycorine (I) is (A). Lycorinanhydrohydromethine (II), m.p. 71—71.5°, obtained by the Emde degradation of the a(\$\textit{\eta}\$)-methodelicity of (I) widds (H. O. but not MCCHO).

by the Emde degradation of the $a(\beta)$ -methochloride of (I), yields CH_2O but not MeCHO when ozonised in $CHCl_3$. Catalytic hydrogenation (PtO₂ in AcOH) of (II) yields the H_6 -derivative, m.p. $70-72^\circ$ (picrate, m.p. $218-221^\circ$). Oxidation (KMnO₄ at 30°) of (II) leads to hydrastic acid. An unusual addition of H to nucleus B therefore occurs

during the Emde degradation. (II) is converted into the methiodide, m.p. 235°, and thence into the methochloride, which is reduced (Na-Hg-H₂O) to the compound, C₁₈H₂₁O₂N, b.p. 165° (bath)/0·01 mm. (picrate, m.p. 147—148°), which gives a methiodide, m.p. 186—187°, and thence a methochloride, reduced to de-N-anhydrohydrolycorine, b.p. 160—170° (bath)/0·03 mm. Reduction (Na-Hg) of the lycorinanhydromethine obtained by the Hofmann degradation gives a product not identical with (II). Reduction (Na-Hg) of lycorinanhydromethine methochloride (corresponding methiodide, decomp. 226°) leads to (II). Spectrographic curves of (I), dihydrolycorine, and the two Ac derivatives are closely similar, showing that the double linking in the B nucleus of (I) is not conjugated with that of the nucleus and lies between C₍₁₁₎ and The curve of (II) is completely different, showing that in it the double linking C₍₁₁₎—C₍₁₎ has been hydrogenated and that the remaining double linking is conjugated with that of nucleus A. H. W.

Delphinium alkaloids. II. Ajacine. J. A. Goodson (J.C.S., 1944, 108—109).—Ajacine, $C_{34}H_{46}O_{9}N_{2}.2H_{2}O$, m.p. 154° , $[a]_{D}^{22}+49.5^{\circ}$ in EtOH, is acetylanthranoyl-lycoctonine, since on hydrolysis with NaOH-EtOH it gives o-NHAc·C₈H₄·CO₈H and lycoctonine, and with 10% HCl affords AcOH and anthranoyl-lycoctonine. F. R. S.

VIII.—ORGANO-METALLIC COMPOUNDS.

Aliphatic arsonic acids. VI. Attempted preparation of diarsonosuccinic acid and its salts. A. R. Marquez (Rev. Fac. Cienc. Quím., La Plata, 1942, 17, 109—116).—(CHBr-CO₂Et)₂ with As₂O₃ in NaOH yields a solution, which with BaCl₂ gives Ba₂ aa'-diarsonosuccinate (Ca₂ and Na₄ salts).

F. R. G.

Relations between chemical activity and absorption in the ultraviolet of organic molecules. V. Interaction of atoxyl with the halogen derivatives of substituted amides of malonic acid. K. G. Naik, R. K. Trivedi, and C. M. Mehta (J. Indian Chem. Soc., 1943, 20, 372—373).—CHBr(CO·NHAr), but not CCl₂(CO·NHAr), reaction atoxyl in boiling aq. EtOH to give p-arsonoanilinomalondi-p-bromeanilide, m.p. 251—253° (decomp.), -p-toluidide, m.p. 233° (decomp.), and -benzylamide, m.p. 266° (decomp.).

Mercurials from aliphatic glycols. A. J. Shukis and R. C. Tallman Amer. Chem. Soc., 1943, 65, 2365—2366).—R·(O·[CH₂]₃)_n·OH (R = H or alkyl) with C₂H₄ and Hg(OAc)₂ at 70—90° and then aq. NaCl gives OEt·[CH₃]₂·HgCl, m.p. 92°, compounds, Et·(O·[CH₂]₂)_r·O·[CH₃]₂·HgCl in which x = 1, m.p. 34—35° (lit., an oil), 2, m.p. 50° (lit., an oil), 3, m.p. 53—54°, and 4, an oil, Hg β-β'-hydroxyethoxyethoxyethyl chloride, m.p. 70—72°, and Hg β-β'-hydroxyethoxyethyl chloride, m.p. 58—89°. OH·[CH₂]₂·Cl gives similarly Hg β-β'-chloroethoxyethyl chloride, m.p. 54°. The appropriate glycols yield compounds, OH·[CH₂]_n·O·[CH₂]₂·HgCl, in which n = 3, m.p. 114—116°, 4, m.p. 92—93°, and 6, m.p. 98—99°. OH·CH₂·CHMe·OH gives a compound, m.p. 80—81°. Distribution

coeffs. (solubility in C_6H_6 /solubility in H_2O) and bacteriostatic activity against Staph. aureus are recorded for the products; close parallelism exists. R. S. C.

Mercuri derivatives.—See B., 1944, III, 75.

IX.—PROTEINS.

Conversion of globular into oriented fibrous proteins. I. By heat and mechanical working. F. R. Senti, C. R. Eddy, and G. C. Nutting (J. Amer. Chem. Soc., 1943, 65, 2473).—Heating casein, β -lactoglobulin (I), hæmoglobin, ovalbumin (II), edestin, zein, or proteins from peanuts or soya beans in H_2O and then stretching or extruding them in hot or cold H_3O or H_4O vapour gives products having β -keratin structure (X-ray). X-Ray spacings are quoted for (I) and (II). The tensile strength of protein fibres, thus treated, is greatly increased. R. S. C.

o-Benzoic sulphinide ferridehæmoglobin. Reaction of hæmoglobin with nitrite. Verdohæmochromogens.—See A., 1944, III, 323.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

American musk. II. Scent glands of the beaver. P. G. Stevens (J. Amer. Chem. Soc., 1943, 65, 2471; .cf. A., 1942, II, 178).—The neutral products (6·3 g.) obtained by boiling 10% KOH-EtOH from the Et₂O-extract of dried beaver-glands (113 g.) yield an oily, unsaturated substance, C₁₁H₁₈O₂, b.p. 147—155°/1 mm., having a spicy odour. The neutral products from another sample of glands yielded a mixture containing a similar liquid and a small amount of cholesterol. The acidic products include B2OH, p-anisic, and amorphous castoric acids. Large-ring ketones and fatty acids are absent.

R. S. C.

Lignin and related compounds. LXXV. Alkaline nitrobenzene oxidation of plant materials and application to taxonomic classification. R. H. J. Creighton, R. D. Gibbs, and H. Hibbert. LXXVI. Alkaline nitrobenzene oxidation of maize stalks. Isolation of phydroxybenzaldehyde. R. H. J. Creighton and H. Hibbert. LXXVII. Re-investigation of the ethanolysis products of maple wood. M. Kulka, H. E. Fisher, S. B. Baker, and H. Hibbert. LXXVIII. Chromic acid oxidation of lignin-type substances, wood ethanolysis products, and wood. W. S. MacGregor, T. H. Evans, and H. Hibbert (J. Amer. Chem. Soc., 1944, 66, 32—37, 37—38, 39—41, 41—44; cf. A., 1944, II, 162).—LXXV. Alkaline PhNO₂-oxidation of 47 woods, almost all gymnosperms, yields only vanillin (I) (15—24% calc. on Klason lignin) and of angiosperms yields generally a 1:3 mixture (35—51%) of (I) and syringaldehyde (II). Certain primitive angiosperms yield a 1:1 mixture of (I) and (II). Gnetales genera yield (I) and (II) and may thus be angiosperms. Very, few Coniferales yield both (I) and (II). Behaviour on oxidation parallels that in the Maule reaction and may be used for taxonomic classification

LXXVI. Maize-stalk meal with PhNO₂-aq. NaOH at 160° yields 4·5, 2·6, and 1·4% of pure (I), (II), and p-OH·C₆H₄·CHO (III), respectively. OMe-contents of m-nitrobenzoylhydrazides indicate the possibility of existence of (III) also in maize cobs, bamboo and rye straw; presence of (III) may distinguish mono- from di-cotyle-dons.

LXXVII. The alkali-sol. part of the H₂O-sol. ethanolysis of maple wood lignin yields, by improved methods (cf. A., 1939, II, 172), 3·1% of 4:3:1-OH·C₆H₃(OMe)·CO·CHMe·OEt and 3·2% of 4:3:5:1-OH·C₆H₂(OMe)₂·CO·CHMe·OEt, m.p. 73—74° (lit. an oil), and a mixture yielding a 1:3 mixture of the respective derived Me ethanolysis of maple wood amount to 9·8% of the Klason lignin, but the actual contents are considered to be much higher.

LXXXVIII. CrO₃-oxidation of compounds containing Ar-C₃ gives 0.9—0.95 mol. of AcOH (reduced somewhat if the Ar is very stable) if the C₃ includes a terminal Me, but only traces of AcOH if terminal Me is present. Spruce or maple wood gives > traces of AcOH. Extracted amorphous maple EtOH-lignin gives very little AcOH, but that from spruce gives 1 AcOH per 4—5 Ar-C₃ units; more AcOH is obtained if the spruce lignin is subjected again to HCl-EtOH. Support is thus given to the view that native lignin contains no terminal Me and that its presence in products from wood is due to rearrangement of products of hydroxyconiferyl alcohol type.

R. S. C.

Lignin. XLII. Vanillinearboxylic acid and related acids.—See A., 1944, II, 161.

Pigments of cottonseed.—See A., 1944, III, 444.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry.

JULY, 1944.

I.—ALIPHATIC.

Chemical behaviour of free ethyl at low temperatures. G. Scmerano L. Riccoboni, and F. Callegari (Ber., 1941, 74, [B], 1297—1308).— L. Riccoboni, and F. Callegari (Ber., 1941, 74, [B], 1297—1308).—When AgNO₃ (1 mol.) and PbEt₄ (1·5—1·6 mols.) interact in EtOH at -80° , some decomp. of AgEt occurs; when this is completed by warming, the gas evolved contains $C_{\circ}H_{0}$ (53·2), $C_{4}H_{10}$ (36·2), $C_{4}H_{4}$ (9·9%), and traces of CO₂ and CO. The Et thus yields only $C_{t}H_{10}$ and $C_{2}H_{6}+C_{2}H_{4}$. The deficiency of $C_{2}H_{4}$ is accounted for by interaction thereof with EtOH to yield Et₂O (isolated; cf. C., 1944, Part 3); in MeOH MeOEt is probably similarly formed. The reaction mechanism is discussed.

R. S. C.

Manufacture of ethylene.—See B., 1944, II, 125.

Manufacture of ethylene.—See B., 1944, II, 125.

Physical data of Δ^a -olefines and n-paraffins. A. W. Schmidt, V. Schoeller, and K. Eberlein (Ber., 1941, 74, [B], 1313—1324).—M.p., bp., d, n, and η are recorded for most of the Δ^a -olefines and paraffins containing 5—30 C, including the following: Δ^a -C_nH_{2n} in which n=9 m.p. -88° , b.p. 33·5°/11 mm., 10 m.p. $-66\cdot3^\circ$, b.p. 52°/11 mm., 11 m.p. $-49\cdot5^\circ$, b.p. 74·8°/11 mm., 12 m.p. $-33\cdot6^\circ$, b.p. 89-89·5°/11 mm., 13 m.p. $-22\cdot2^\circ$, b.p. 104° /11 mm., 15 m.p. -4° , b.p. $135\cdot2^\circ$ /11 mm., 17 m.p. 11°, b.p. 157° /11 mm., and 21 m.p. $35\cdot5^\circ$, b.p. 134° /0·04 mm.; n-C_nH_{2n+2} in which n=8 m.p. $-57\cdot0^\circ$, b.p. 124° /11 mm., 11 m.p. $-24\cdot8^\circ$, b.p. 74° /11 mm., 13 m.p. $-5\cdot5^\circ$, b.p. 104° /11 mm., 17 m.p. $21\cdot2^\circ$, b.p. 157° /11 mm., 21 m.p. $39\cdot4^\circ$, b.p. 129° /0·05 mm., 26 m.p. $56\cdot4^\circ$, b.p. 169° /0·05 mm., and 30 m.p. $65\cdot5^\circ$, b.p. 202° /0·05 mm. The olefines are prepared from MgRHal and CH.:CH·CH₂Br in Et₂O. n-Octane was prepared by the Wurtz-Fittig reaction (60% yield), n-C_nH_{2n+2} (n=11—21) by hydrogenation of C_nH_{2n}, and n-C₂₀H₅₄ and -C₃₀H₆₂ by electrolysis of the K salt in EtOH.

Structure of copolymers of isobutylene and isoprene. J. Rehner, jun. (Ind. Eng. Chem., 1944, 36, 46—51).—O₃ degradation, in CHCl₃ or, better, in CCl₄, applied to investigation of the structure of isobutylene-isoprene copolymers of various degrees of unsaturation, indicates that the incompanion of the structure of the copolymers of various degrees of unsaturation, indicates that the copolymers of various degrees of unsaturation, indicates that the isoprene units are exclusively in the ab-position as in natural rubber; any units with $a\beta$ - or $\gamma\delta$ -addition must be 1%0 of the isoprene present. No occurrence of the C_5H_8 units in sequences could be detected, and the C_5H_8 must enter the growing chain in a random manner. D. F. T.

Separation of divinylacetylene and ethinylbutadiene (Δ^{ae} -hexadien- Δ^{γ} - and $\Delta^{\gamma e}$ -hexadien- Δ^{a} -inene).—See B., 1944, II, 126.

Effect of natural inhibitors on the photochemical oxidation of iodoform. K. Weber and M. Czirfusz (Ber., 1941, 74, [B], 1338—1342).—Light-petroleum extracts of oatmeal or cornflour decrease the rate of autoxidation of CHI, in light. This is shown not to be due to absorption of the effective light.

Allylic rearrangements. XIV. Hydrolysis of butenyl chlorides.— See A., 1944, I, 157.

Polyene series. XII. Ethynylcarbinols from sorbaldehyde and octatrienal. Poly-carbon anionotropic rearrangements. I. M. Heilbron, E. R. H. Jones, and J. T. McCombie. XIII. Acetylenyl slycols from polyene aldehydes and their rearrangement with acids. I. M. Heilbron, E. R. H. Jones, and R. A. Raphael. XIV. Anionothe reinford, E. R. H. Jones, and R. A. Raphael. XIV. Anionotopic rearrangements of carbinols from condensation of croton-aldehyde with vinyl- and β -methylvinyl-acetylene. I. M. Heilbron, E. R. H. Jones, and B. C. L. Weedon. XV. Condensation of carbonyl compounds with propenylethynylcarbinol and hex-3-en-5-yn-2-ol. J. Cymerman, I. M. Heilbron, A. W. Johnson, and E. R. H. Jones. XVI. Condensation of $\alpha\beta$ -unsaturated ketones with 1-hexpne. L. Cymerman, I. M. Heilbron and F. R. H. Lones (J. C. S. 1044-124). Johnson RVI. Condensation of αβ-unsaturated ketones with 1-hexyne. J. Cymerman, I. M. Heilbron, and E. R. H. Jones (J.C.S., 1944, 134—136, 136—139, 140—141, 141—144, 144—147; cf. A., 1943, II, 249).—XII. Sorbaldehyde (I) in liquid NH₃ with C₂HNa gives octa-δζ-dien-α-yn-γ-ol (II), b.p. 71—74°/0·5 mm. Octatrienal (III) (similar conditions) gives deca-δζθ-trien-α-yn-γ-ol (IV), b.p. 94—96°/1 mm., m.p. 73·5—74·5°. (II) undergoes anionotropic rearrangement with H₂SO₄ (N₂ atm.) to give octa-γε-dien-α-γη-η-ol, b.p. 62—60°/0·5 mm., unstable in air, which on hydrogenation (PtO₂) and oxidation (CrO₂) yields COMe²C. H. · · · · · Similarly (IV) gives and oxidation (CrO₃) yields COMe·C₈H₁₃·n. Similarly (IV) gives deca-γεη-trien-α-γη-t-ol, m.p. 82—83°, which affords COMe·C₈H₁₇·η. Replacement of an ethenoid by an acetylenic linking has a negligible effect on the location of the absorption max. 177 H (A., II.)

XIII. (I) (CMgBr), (from C2H2 and MgEtBr) in N2 followed by All. (1) (Polity Bl.), (Holin C₂H₂ and MgEth) in N₂ followed by aq. NH₄NO₃ gives tetradeca-βδκμ-tetraen-η-yne-ζι-diol (V), m.p. 95—102°. (III) (similar conditions) gives octadeca-βδζμξπ-hexaen-ι-yne-θλ-diol (VI), m.p. 154°. (V) undergoes autonotropic rearrangement (aq. H₂SO₄, N₂ atm.) to tetradeca-γειλ-tetraen-η-yne-βν-diol (VII), m.p. 115—116° (sealed tube). Similarly (VI) gives octadeca-γεηλνο-hexaen-ι-yne-βρ-diol (VIII), sinters 145°, m.p. 149° (sealed tube). (VII) on hydrogenation and oxidation (NaOBr) yields [CH₂]₁₀(CO₂H)₂. (VIII) on hydrogenation gives octadecang-βρ-diol, which is oxidised. (VIII) on hydrogenation gives octadecane- $\beta\rho$ -diol, which is oxidised to $[CH_2]_{14}(CO_2H)_2$. (VII) and (VIII) resemble corresponding polyenes in their light-absorption properties.

XIV. Mg vinylacetylenyl bromide with CHMc:CH·CHO (IX) gives octa- $\beta\eta$ -dien- ϵ -yn- δ -ol (X), b.p. $72-73^\circ/3\cdot5$ mm. (a-naphthylurethane, m.p. 95—96°), also given by (IX) and CH₂:CH·C;CH with Na in liquid NH₃. (X) with H₂SO₄ (N₂) is isomerised to octa-yη-dien- ϵ -yn- β -ol (XI), b.p. $78^\circ/4$ mm. Hydrogenation and subsequent oxidation of (XI) yields COMe·C₆H₁₃-n. Methylvinylacetylene and (IX) (similar conditions) give η -nuethylocta- $\beta\eta$ -dien- ϵ -yn- δ -ol (XII), b.p. $62-68^\circ/3$ mm. (a-naphthylurethane, m.p. 99°), which isomerises to η -nuethylocta-y η -dien- ϵ -yn- β -ol (XIII), b.p. $75-78^\circ/2$ mm., 27° (bath)/ 10^{-4} mm. (a-naphthylurethane, m.p. 89°). (XIII) is hydrogenated to η -methyloctan- β -ol, b.p. $57^\circ/3$ mm. (a-naphthylurethane, m.p. 75°), which gives (CrO₃) η -methyloctan- β -one, b.p. $78^\circ/17$ mm. (semicarbazone, m.p. $132-133^\circ$). Absorption spectra of (X), (XI), (XII), and (XIII) are analogous in location and intensity of max, to each other and compounds previously described. XIV. Mg vinylacetylenyl bromide with CHMe:CH-CHO (IX) gives

cach other and compounds previously described.

XV. CHMe.CH.CH(OH).C.CH condenses (Grignard method) with XV. CHMe:CH·CH(OH)·C:CH condenses (Grignard method) with COPh₂, Pr°CHO, PhCHO, and (IX) respectively to aa-diphenylhept-e-en-β-yne-aδ-diol, m.p. 131°, dec-β-en-ε-yne-δη-diol (XIV), b.p. 52° (bath)/10-4 mm. [two bisphenylurethanes, m.p. 125° and 153° (decomp.); bis-a-naphthylurethane, m.p. 194° (decomp.)], a-phenylhept-e-en-β-yne-aδ-diol, b.p. 80—90° (bath)/10-4 mm., m.p. 108°, and deca-βθ-dien-ε-yne-δη-diol (XV), b.p. 90—100° (bath)/10-4 mm., m.p. 91°. Hex-y-en-ε-yn-β-ol (XVI) with Pr°CHO, PhCHO, β-OMe-C₈H₄·CHO, COMe-Et, (IX), and COPh₃ respectively yields dec-y-en-ε-yne-βη-diol (XVII), b.p. 72° (bath)/10-4 mm., a-phenylhept-δ-en-β-yne-aζ-diol, b.p. 78° (bath)/10-4 mm., a-(p-anisyl)hept-δ-en-β-yne-aζ-diol, b.p. 78° (bath)/10-4 mm., n.p. 19—20°, γ-nuethylnon-ζ-en-δ-yne-γθ-diol, b.p. 63° (bath)/10-4 mm., ad-ag-dien-ε-yne-βη-diol (XVIII), b.p. 75° (bath)/10-4 mm. Both (XV) and (XVIII) give deca-γη-dien-ε-yne-βι-diol, b.p. 110—115° (bath)/10 4 mm., and (XIV) with aq. H₂SO₄ yields (XVII). The products from (XVI), with the exception of (XIX) which dissociates into COPh₂, exhibit light-absorption characteristics consistent with the conjugated vinylacetylene chromophore in their mol.

acetylene chromophore in their mol.

acetylene chromophore in their mol.

XVI. CBu^a:CH (converted into CBu^a:C·MgBr by MgEtBr) condenses with COMe·CH:CH₂, COMe·CH:CHMe, mesityl oxide (XX), and oct-γ-γη-β-one respectively to give at room temp. γ-methylnon-δ-en-ε-γη-δ-γη-δ-γη-γ-οl (XXI), b.p. 61—61·5°/3·5 mm., δ-methyldec-β-εη-ε-γη-δ-οl (XXII), b.p. 62—62·5°/2 mm., βδ-dimethyldec-β-εη-ε-γη-δ-οl (XXIII), b.p. 69—69·5°/3 mm., and η-methyltrideca-εθ-diyn-η-ol. (XXII), (XXII), and (XXIII) show no light absorption. With aq. H₂SO₄, (XXI) gives γ-methylnon-β-εη-ο-γη-α-οl (XXIV), b.p. 75·5—76°/3·5 mm. (α-naphthylurethane, m.p. 69—70°). (XXIV) yields H₂-PtO₂) γ-methylnonan-α-ol, b.p. 121°/24 mm. (α-naphthylurethane, m.p. 49°), which gives (CrO₃) β-η-hexylbutyric acid (p-toluidide, m.p. 76—77°). (XXII) similarly gives ο-methyldec-γ-εη-ε-γη-β-οl (XXV), b.p. 84°/2 mm., 28° (bath)/10⁻⁴ mm. (α-naphthylurethane, m.p. 71°); δ-methyldecan-β-ol, b.p. 104°/12 mm. (α-naphthylurethane, m.p. 63°), and δ-methyldecan-β-one, whilst (XXIII) yields βδ-dimethyl-γ-εη-ε-γη-β-οl (XXVI), b.p. 35° (bath)/10⁻⁴ mm. (XVI) condenses with (XX) to give βδ-deca-βη-dien-ε-γηε-δι-diol, b.p. 60° (bath)/10⁻⁴ mm., which undergoes some rearrangement with aq. H₂SO₄. The anionotropic rearrangements above are easier than those for related sec. carbinols; it is suggested that this is due to the inductive effect of the text. Ma group which facilitates the separation of the related sec. carbinols; it is suggested that this is due to the inductive effect of the tert. Me group which facilitates the separation of the hydroxylic anion. The isomerisation products (XXIV), (XXV), and (XXVI) exhibit light-absorption characteristic of the vinylacetylene chromophore.

βγδε-Diisopropylidene-DL-xylitol. R. M. Hann, A. T. Ness, and C. S. Hudson (*J. Amer. Chem. Soc.*, 1944, 66, 73—76).—βγδε-Diisopropylidene-DL-xylitol (modified prep.; cf. Tipson et al., A., 1943,

II, 149), m.p. 33—34° (a-acetate, m.p. 45—46°; a-benzoate, m.p. 61—62°), gives an a-p-toluenesulphonate (I), m.p. 77—78° (loc. cit., 70—71°), which with NaI in (CH₂Ac)₂ at 60° gives the a-iodide, m.p. 57—59°, reduced by H₂-Raney Ni in Ba(OMe)₃-MeOH at 27°/810 mm. to a-deoxy- $\beta\gamma\delta\epsilon$ -disopropylidene-DL-xylital (II), b.p. 88—90°/6—7 mm. (II) consumes 3 HIO₄ in H₂O at 25°. Boiling 20% AcOH hydrolyses (II) to a-deoxy-DL-xylital, a syrup, which reduces 2.87 NaIO₄ in H₂O at 25°, giving 0.91 MeCHO. These facts prove the structure of (I). a $\beta\gamma\delta$ -Dibenzylidene-D-sorbitol $\epsilon\zeta$ -di-p-toluenesulphonate with NaI in COMc₂ at 100° gives 2 p-C₆H₄Me·SO₃Na and a $\beta\gamma\delta$ -dibenzylidene-D-sorbitoleën, m.p. 187—188°, [a]²⁹ +19·0° in CHCl₃, reduced by H₂-Raney Ni to a $\beta\gamma\delta$ -dibenzylidene- $\epsilon\zeta$ -deoxy-D-sorbitol, m.p. 184—185°, [a]²⁰ +39·4° in CHCl₃, whence it appears that p-C₆H₄Me·SO₂ esterined to contiguous primary and sec. OH are both removed by NaI (cf. loc. cit.)

primary and sec. OH are both removed by NaI (cf. loc. cit.).

R. S. C.

Isomerisation of trialkyl phosphites. G. M. Kosolapov (J. Amer. Chem. Soc., 1944, 66, 109—111).—Interaction of $\operatorname{Et_3PO_3}$ with $\operatorname{Bu^aBr}$ (at 150°), $n\cdot\operatorname{C_6H_{13}Br}$ (at 133° and 150°), or $\operatorname{CH_2Br}$)₂ (at 150°) is followed by measuring the rate of evolution of EtBr. According to the proportions of the reactants, $(\operatorname{CH_2Br})_2$ reacts according to the equation, $\operatorname{2Et_3PO_3} + (\operatorname{CH_2Br})_2$ $\operatorname{2EtBr} + \operatorname{CH_2[PO(OEt)_2]_2}$ ·Br (I). (I) is, however, not isolated because of its instability. An induction period occurs in all the reactions, during which $\operatorname{PRBr}(\operatorname{OEt})_3$ accumulates; this is shortened by rise in temp. R. S. C.

Purification of ethers.—See B., 1944, II, 126.

Sulphur linkage in vulcanised rubbers. Reaction of methyl iodide with sulphur compounds.—See B., 1944, II, 187.

Carbon-carbon cleavage in the hydrogenolysis by Raney nickel catalyst of ethylenedithiol and its ethers. H. R. Snyder and G. W. Cannon (J. Amer. Chem. Soc., 1944, 66, 155–156).—Hydrogenation (Raney Ni) of (CH₀·SiR)₂ gives (a) $2RH + C_2H_6$ and (b) $2RH + 2CH_4$. The following yields of C₀·H₆ and CH₄, respectively, are recorded: R = [CH₂]₃·CH(NH₂)·CO₂H 66, 34, NPh·CO CH·[CH₂]₂ 56, 44, OH·[CH₂]₂ 100, 0, Ph 77, 23, and H 86, 14%. R. S. C.

Action of nitric acid on ethyl isodehydracetate. L. Panizzi (Gazzetta, 1942, 72, 423—429).—5-Carbethoxy-4: 6-dimethylcumalin (Et isodehydracetate), CO₂Et-C CMc:CH CO, with HNO₃ (d 1.52)

gives its 3-NO_n-derivative (I) (cf. Angeli, A., 1893, i, 197), reduced by SnCl₂-HCl-Et₂O to the stannichloride of 3-amino-5-carbethoxy-4:6-dimethylcumalin, m.p. 80—81° (Bz derivative, m.p. 128—129°), which with conc. aq. NH₃ gives a product, C₁₀H₁₅O₅N, m.p. 203—205° (decomp.), regarded as CO₂Et·CHAc·CMe:C(NH₃)·CO₂H or CO₂Et·CHAc·CHMe:C(:NH)·CO₂H. With NHPh·NH₃-AcOH at the b.p., (I) gives Et 1-phenyI-3:5-dimethylpyrazole-4-carboxylate, CO₂, and MeNO₂.

Esterification under the catalytic influence of acid chlorides. K. Freudenberg and W. Jakob (Ber 1941, 74, [B], 1001—1002).—Small amounts of AcCl, CiCO₂Et, SOCl₂, or n-C₁+ H_{35} -COCl cause very rapid esterification of acids with alcohols at $\Rightarrow 20^{\circ}$. Examples are the Me and Et esters of veratric, p-nitrobenzoic, and stearic acid. Polyacrylic acid is thus 40% esterified; OH-CHPh-CO₂Me is not thus formed. A mol. compound of the acid chloride with probably, the acid is formed, which reacts faster with the alcohol than with H_2 O; thus, ethylene glycol monopalmitate is formed only if an excess of glycol is present and the dipalmitate cannot be obtained. The method is preferable to that using HCl. R. S. C.

Chemical morphology of liquids. III. Liquid-crystalline aliphatic monocarboxylic acids. C. Weygand, R. Gabler, and J. Hoffmann (Z. physikal. Chem., 1941, B, 50, 124—127).— $\Delta^{\alpha\gamma}$ -Nonadienoic acid, prepared by condensation of CHBu°.CH·CH·O with CH₂(CO₂H). followed by decarboxylation, passes above 23° into a characteristic nematic phase, becoming clear at 49°. The melt may be supercooled to ~10°, and still lower with small drops, but no smectic phase appears. It is suggested that the diene group adjacent to the CO₂H plays the same rôle as the C₆H₆ ring in the mesomorphic p-n-alkylbenzoic acids, conferring rigidity on a considerable length of the dimeric acid mol., and that such rigidity, provided that the m.p. is sufficiently low, will result in mesomorphic properties. The mesomorphic states of the many p-derivatives of C₆H₆, of sterol derivatives, and of Tl and alkali-metal soaps are discussed in the light of this concept.

W. R. A.

Shellac. XIII. Transformation of aleuritic into hexadecenoic acid. W. Nagel and W. Mertens (Ber., 1941, 74, [B], 976—982).—Me isopropylidenealeuritate, an oil, prepared from Me aleuritate, COMe, and a little H₂SO₄ at room temp., with p-C₆H₄Me·SO₂Cl-C₅H₅N at room temp. gives the oily o-p-toluenesulphonate (I), which with NaOMc-MeOH at 70—75° yields aleuritic acid o-Me ether [θi-di-hyāroxy-o-methoxypalmitic acid] (80%), m.p. 76° (Me ester, m.p. 65°). With NaI in COMe₂ at ~70°, (I) gives the o-I-ester, which with Zn and H₂SO₄ and then boiling 3N-KOH gives θi-dihydroxy-

palmitic acid (II), m.p. $89-90^{\circ}$. The Me ester thereof with $p-C_6H_4\text{Me·SO}_{\circ}\text{Cl-C}_5H_5\text{N}$ gives an oily ester, converted by NaI-COMe, and then Zn dust in AcOH into Me Δ^0 -n-hexadecenoate, b.p. $181-183^{\circ}/15$ mm. Δ^0 -n-hexadecenoic acid (III), m.p. 33° , obtained therefrom by 2N-KOH, gives a dibromide, m.p. $\sim 30^{\circ}$, and is converted by KMnO₄-KOH into (II) ($\sim 40\%$). Ag_{*}O oxidises (II) (0·6) in boiling C_gH_6 to azelaic (0·25) and heptoic acid (0·03 g.). (III) is accompanied by an isomeric oily acid, oxidised by KMnO₄ to a (OH)₂-acid, m.p. 125° . (III) may be identical with hypogaic acid. R. S. C.

Unsaturated synthetic glycerides. III. Unsaturated symmetrical mixed diglycerides. B. F. Daubert and H. E. Longenecker (J. Amer. Chem. Soc., 1944, 66, 53—55).—Glyceryl a-esters and CPh₃Cl in quinoline at 100° give glyceryl a-CPh₃ ether a'-dodecoate (I), m.p. $47\cdot0^\circ$, a'-tetradecoate, m.p. $56\cdot0^\circ$, a'-palmitate, m.p. $62\cdot0^\circ$, and a'-stearate, m.p. $66\cdot0^\circ$, converted by oleyl chloride in quinoline-CHCl₃ at room temp. into the β -oleates. Hydrolysis of these products by HCl in light petroleum at $\sim\!5^\circ$ involves migration, yielding glyceryl a-n-dodecoate, m.p. $32\cdot0^\circ$, a-n-tetradecoate, m.p. $41\cdot0^\circ$, a-palmitate, m.p. $46\cdot0^\circ$, and a-stearate, m.p. $54\cdot0^\circ$, a'-oleate, structures of which are proved by hydrogenation. Glyceryl a-n-dodecoate a'-stearate, m.p. $62\cdot0^\circ$, is also obtained from (I) by way of glyceryl a-CPh₃ ether β -n-dodecoate a'-stearate, m.p. $25\cdot0^\circ$. R. S. C.

Long-chain acids containing a quaternary carbon atom. III. W. H. Hook and (Sir) R. Robinson (J.C.S., 1944, 152—154; cf. A., 1944, II, 17).—Et α-methylhexylidenecyanoacetate (I) treated with n-C₅H₁₁'MgBr in presence of Cu₂l₂ gives Et α-cyano-ββ-di-n-anyl-tutyrate (II), b.p. 137—139°/0·3 mm., and Et α-cyano-ββ-di-n-anyl-butyrate (II), b.p. 137—139°/0·3 mm., and Et α-cyano-ββ-methyloctoate, b.p. 90—92°/0·1 mm. (II), after boiling with H.SO₄-AcOH-H₂O, and decarboxylation (160°/vac.), yields ββ-di-n-anylbutyric [β-methyl-β-n-anyloctoic] acid, b.p. 125—130°/0·3 mm. Et α-methyldecylidene-cyanoacetate, b.p. 146—148°/0·25 mm. (from COMe-C₉H₁₉-n and CN·CH₂·CO₂Et), with MgBu°Br and Cu₂I₂ gives Et α-cyano-β-n-butyl-β-n-nonylbutyrate, b.p. 150—160°/0·2 mm., which on hydrolysis and decarboxylation gives β-n-butyl-β-n-nonylbutyronitrile (III), b.p. 130—136°/0·3 mm., and a little β-methyldodecoamide, m.p. 87°. (III) after hydrolysis and treatment with MeOH and H₂SO₄ yields Me β-n-butyl-β-n-nonylbutyrate (IV), b.p. 116—120°/0·1 mm. The hydrolysis also gives β-n-butyl-β-n-nonylbutyranide, b.p. 165—180°/0·45 mm., which yields (IV) on hydrolysis. Alkaline hydrolysis of (IV) gives β-n-butyl-β-n-nonylbutyric acid, b.p. 155—157°/0·3 mm. (I) with n-C₇H₁₅·MgBr yields Et α-cyano-β-n-anyl-β-n-heptylbutyrate, b.p. 155—158°/0·12 mm., which affords β-n-amyl-β-n-heptylbutyrate, b.p. 155—158°/0·25 mm., Me β-n-amyl-β-n-heptylbutyrate, b.p. 168—172°/0·5 mm., β-n-amyl-β-n-heptylbutyrate, b.p. 168—172°/0·5 mm., β-n-heptylbutyrate, b.p. 168—172°/0·5 mm., β-n-heptylbutyrate, b.p. 168—172°/0·6 mm. Et α-n-propylisohexylidenecyanoacetate, b.p. 168—172°/0·6 mm. Et α-n-propylisohexylidenecyanoacetate, b.p. 120—125°/0·4 mm. (Et α-n-propylisohexylidenecyanoacetate, b.p. 120—125°/0·4 mm. (Et α-n-propylisohexylidenecyanoacetate, b.p. 100—108°/0·3 mm., Me β-n-propyl-ββ-diisoamylpropionite, b.p. 115—118°/0·8 mm., Me β-n-propyl-ββ-diisoamylpropionite, b.p. 110—118°/0·3 mm., and β-n-propyl-ββ-diisoamylpropionite, b.p. 115—118°/0

Linear superpolyesters from dilinoleic acid. J. C. Cowan and D. H. Wheeler (J. Amer. Chem. Soc., 1944, 66, 84—88).—Superpolymers (i.e., mol. wt. >10,000) are obtained by heating dilinoleic acid (I) with OH·[CH₂]₁₀·OH, and hydrogenated dilinoleyl glycols. Owing to loss of (CH.·OH)₂, this glycol gives superpolymers only by glycolysis in presence of p-C₆H₄Me·SO₃H. Superpolymers from (I) are essentially similar to those from hydrogenated (I), so that the unsaturation plays no vital role. They are sol. in CHCl₃ and are converted into cross-linked, non-cryst. solids by long exposure to air or by heating at 290—300°. Determination of mol. wt. by end-group assay or η gives concordant results, except at very high mol. wts. when end-group assay has a large experimental error.

R. S. C.

Chemistry of Phytomonas tumefaciens. II. Composition of acetone-soluble fat. S. F. Velick and R. J. Anderson. III. Phytomonic acid, a new branched-chain fatty acid. S. F. Velick (J. Biol. Chem., 1944, 152, 523—531, 533—538).—II. P. tumefaciens (I), grown on a medium in which sucrose is the main source of C, contains 6.4% of lipins and 41.7% of COMe₂-sol, fat, m.p. 9°. The latter contains ~70% of free fatty acids, which after hydrolysis with boiling KOH-EtOH (N₂) afford palmitic acid (II), and (mainly) liquid acids which are reduced (H₂-PtO₂), esterified (CH₂N₂), and hydrolysed to stearic acid (III) + some (II), and a little of an acid (IV), C₂₀H₄₀O₂, m.p. ~15° (liquid Mc ester). The presence of glycerol in the H₂O-sol. constituents after hydrolysis suggests that the fat is a mixture of free fatty acids and neutral glycerides. In the unsaponifiable fraction, some Ph₂O, m.p. 28° (Br₃-derivative,

m.p. 55·6-56°), is isolable, but is not found in organisms grown

under slightly different conditions.

III. The hydrolysis product (boiling 5% aq. H₂SO₄ under N₂) of the phosphatide from (I) is reduced (H₂-PtO₂-EtOH), (II) + (III) are removed, and a branched-chain acid, "phytomonic acid," m.p. 24° (hydrazide, m.p. 56.6°), identical with (IV), is isolated through its Me ester. It is probably a homologue of tuberculostearic acid.

Use of potassium tert-amyloxide for the alkylation of acetoacetic ester and its alkyl substitution products. W. B. Renfrow, jun. (J. Amer. Chem. Soc., 1944, 66, 144—146).—KO·CMe₂Et-CMe₂Et-OH is approx. as efficient as NaOEt-EtOH for condensation of n-AlkBr (Alk = Et or Bu) with CH₂Ac·CO₂Et, but is superior for branched-chain AlkBr (Alk = Prβ 50%, Buβ 61%, iso-C₈H₁₁ 72% yield), and much superior for alkylation of CHRAc·CO₂Et (CEt₂Ac·CO₂Et 75%, CBu²₂Ac·CO₂Et 70% yield). Superiority of KO·CMe₂Et is due to the stronger base hindering the reverse Claisen equilibrium and depressing dissociation of the enolates.

R. S. C.

Acidity and diazomethane reaction of C-methylacetoacetic ester. F. Arndt, L. Loewe, and B. Beyer (Ber., 1941, 74, [B], 1460—1464). —The rate of reaction of COR·CH₂·CO₂Et with CH₂N₂ depends on the amount of enol in the equilibrium mixture, which parallels the acidity of the enol. The inductive effect of R is the primary factor. When O-methylation is slow, formation of the γ-ethylcne oxide (and thence the C-Me derivative) occurs. CHMeAc·CO₂Et (I) reacts very slowly with CH₂N₂ in Et₂O, but in Et₂O-MeOH gives, more quickly, a mixture of (II), estimated by its OMe content to contain 1 part of OMc·CMe·CMe·CO₂Et and 4 parts of Et βγ-epoxy-aβ-dimethyl-n-butyrate (III). Treating (II) with cone. aq. HCl-Et₂O at -20° (2 hr.) and then room temp. (1 hr.) gives Et β-hydroxy-amethyl-β-chloromethyl-n-butyrate (IV), b.p. 98—100°/8 mm., which with 2·5% aq. KOH-Et₂O gives pure (III), b.p. 62—63°/5 mm., whence Ac₂O and a little FeCl₃ at room temp. and then 100° give Et β-acetoxy-a-methyl-β-acetoxymethyl-n-butyrate (V), b.p. 88—91°/2 mm. (III) and (IV), but not (V), give abnormally high OMe vals. (I) gives a less acid enol than does CH₂Ac·CO₂Et (VI). When the Na derivative of (VI) is treated with MeI in PhMe, unchanged (VI) is removed from the product in Et₂O by aq. NH₃ and the (I) is then extracted by N-NaOH at 0° and immediately recovered therefrom by cold 10% H₂SO₄ under Et₂O; the Et₂O residue contains a little CMe₂Ac·CO₂Et. The yield of (I) depends largely on the loss in alkali. Pure (I) has b.p. 59°/5 mm.

r-a-Hydroxy-ββ-dimethyl-γ-butyrolactone (pantolactone). J. H. Ford (J. Amer. Chem. Soc., 1944, **66**, 20—21).—OH·CH₂·CMe₂·CHO (? its dimeride, 4-hydroxy-5: 5-dimethyl-2-β-hydroxy-tert.-butyl-1: 3-disxan), m.p. 78—81°, with NaCN and then HCl in aq. CaCl₂, finally at 100°, gives a solid solution, m.p. 89·8—91·0°, b.p. 117—121°/10 mm., a 0, of the d- and l-forms of pantolactone.

Branched-chain fatty acids. II. Synthesis in the C₁₀- and C₂₆-series. Preparation of keto-esters. J. Cason and F. S. Prout (J. Amer. Chem. Soc., 1944, 66, 46—50; cf. A., 1942, II, 297).—CH₂Buβ·MgBr and CdCl₂ in Et₂O-N₂ at 0° and then room temp. give Cd(CH₂Buβ)₂, which with CO₂Me·[CH₂]₂·COCl (I) in C₂H₃ exothermally and then at the b.p. gives CH₂Buβ·CO·[CH₂]₂·CO₂Me (3·5%; 42·5% obtained in Et₂O), b.p. 116·5—117°/8 mm., and a little CO₂Me·[CH₂]₂·CO₂Et. Cd(CH₂Buβ)₃ and ground (CH₂·CO)₂O in boiling C₂H₃ give CH₂Buβ·CO·[CH₂]₂·CO₂H (30·8%), b.p. 152—153°/4 mm., and fractions, b.p. 100—111°/4 mm. and 147—150°/4 mm. Cd(CH₂Buβ)₂ and CO₂Et·[CH₂]₃·COC₂Et (give similarly Et t-keto-valuely-ln-tetradecoate (85%), b.p. 180—182°/3 mm. CdMe. gives similarly COMe·[CH₂]₃·CO₂Et (II) (86·5%) [semicarbazone, m.p. 103·8—107° (lit. 107°)] and COMe·[CH₂]₃·CO₂Et (III) (89·6%) (semicarbazone, m.p. 110·7—112·8°). Hydrolysis of crude (I) yields the derived acid, dimorphic, m.p. 59° (immediate), partly resolidifies, remelts at 60° (cf. lit.), [CH₂]₃(CO₂H)₂ (IV), and dodecane-βλ-dione, m.p. 67·4—67·8° [obtained by further interaction of (III) with CdMe₂]. Zn(CHMePr^a)₂ and (I) in Et₂O at —5° to —7° give γ-keto-bmethyl-n-octoate (21·5%), b.p. 130·5—130·7°/21 mm.

cd(CH,-CHMeEt)₂ and (I) in Et₂O give 24—27% of crude CHMeEt·CH₂·CO·[CH₂]₂·CO₂Me, b.p. 132—134°/16 mm., which by hydrolysis yields the derived acid [semicarbazone, m.p. 137–138° (decomp.)] and bv Zn-Hg in aq. HCl gives CHMeEt·[CH₂]₄·CO₂H, b.p. 98—105°/1—2 mm. (amide, m.p. 90·4—91·6°). COMe·[CH₂]₄·CO₂H, b.p. 125·5—127·5°/36 mm. Na-EtOH reduces (V) to CHMeEt·[CH₃]₄·CO₂H, b.p. 125·5—127·5°/36 mm. Na-EtOH reduces (V) and n-kexadecane-γ-decoate (VI) (76·5%), b.p. 192—195°/2 mm., and a fraction, bp. 130°/2 mm., whence hydrolysis yields (IV) and n-kexadecane-γ-decoate (78·6%), b.p. 170—175°/1·5 mm., hydrolysed to the derived acid (VII), m.p. 49·9—50·6° (amide,

in Et₂O at 0° and then the b.p. give a OH-ester (VIII) (and a little $C_{36}H_{74}$), which with I at 180—190° and then PtO₂— H_2 —EtOH yields Et ε -methyl-n-tetracosoate (29·2%), b.p. 211—214°/~0·5 mm., and thence the derived acid, m.p. 57·5—60·5° (amide, m.p. 83·9—85·3°; tribromoanilide, m.p. 94·4—97·2°). Hydrolysis of (VIII) by KOH-EtOH gives ε -hydroxy- ε -methyl-n-tetracosoate acid, m.p. 46—47·3°. Similar methods lead to Et ε -methyl-n-tetracosoate, b.p. 218—222°/~0·5 mm., and the derived acid, m.p. 50·5—51·5° (amide, m.p. 77·5—78·5°; tribromoanilide, m.p. 84·2—84·8°). M.p. are corr. R. S. C.

Kinetics of transformation of 2-ketopolyhydroxy-acids.—See A., 1944, I, 157.

Alkali antimonyl citrates. Y. Volmar and G. Gcottelmann (Compt. rend., 1942, 215, 417—418).—The action of a mixture of a normal citrate (I) and citric acid (II) (mol. ratio 1:5) on Sb(OH)₃ gives salts (CO₂H·CH₂)₂C(CO₂R)·O·Sb \bigcirc C(CH₂·CO₂H)₂,H₂O in which R = K, Na, or NH₄. With a mixture of (I) and (II) in equimol. ratio the product is

CO₂H·CH₂C(CO₂R)·O·Sb CO·CH₂·CO₂H·H₂O (R = K, Na, or NH₄). A dialkall salt could not be obtained. The antimonyl citrates are very stable, very sol. in H₂O to acid solutions, and very sparingly sol. in org. media. They can be heated with H₂O at 110° without undergoing hydrolysis; Sb is not immediately pptd. from them by H₂S. Mineral acids and alkalis decompose them with formation of Sb(OH)₃. They are very sensitive to ultra-violet light, Sb being liberated.

H. W.

β-Acetyl-δε-isopropylideneascorbic acid. C. S. Vestling and M. C. Rebstock (J. Biol. Chem., 1944, 152, 585—591).—Acetylation of δε-isopropylideneascorbic acid, m.p. 221·6° (decomp.), $[a]_{2}^{25\cdot6}$ +22° in H_2O , by a rapid stream of keten in anhyd. COMe, at room temp. is followed by indophenol titration. The resulting β-acetyl-δγ-isopropylideneascorbic acid (I), m.p. 115—116°, $[a]_{2}^{27}$ +27·4° in MeOH, does not react readily with CH_2N_2 in MeOH at -40° or in dioxan at 13°. Hydrolysis of (I) in 3% HPO₃ at 70° and pH 1·9 indicates a pseudo-first-order reaction. A linear rate of decomp. of (I) is noted during 2 hr., equiv. to 0·1% per min. Hydrolysis is ~75% in 1 hr., and during the 2nd hr. oxidative decomp. occurs at such a rate as to make it impossible to obtain accurate vals.

Raman spectra of vitamin-C and its oxidation products.—See A., 1944, I, 142.

Preparation of d-galacturonic acid and l-galactonic acid and derivatives thereof.—See B., 1944, II, 128.

Plant growth substances. XXXIII. Constitution of biotin from egg-yolk. F. Kogl, J. H. Verbeek, H. Erxleben, and W. A. J. Borg (Z. physiol. Chem., 1943, 279, 121—139).—In relationship to the sulphohexoic acid (I) obtained from biotin, the degradation of β-sulphohexoic acid (II) by alkali fusion is studied. Δα-n-Hexenoic acid, prepared from Et α-bromohexoate and quinoline at 185° and subsequent hydrolysis of the unsaturated ester, adds NH4HSO3 to form the NH4 salt of (II) (m-toluidine salt, m.p. 145°). With 50% KOH at 170° the SO2 is removed. The product is hydrogenated (PtO3), heated at 200°, and again hydrogenated. The n-hexoic acid produced is identified as p-phenylphenacyl ester, m.p. 72°. (I) with KOH at 225° (lower temp. does not remove SO2) and subsequent hydrogenation affords CHMEPtβ-CO2H, identified as the p-phenylphenacyl ester, m.p. 73°. The y-sulpho-acid was synthesised by the following stages. CH2Ph-SNa + CH2Br-CH:CH3 gives CH2Ph allyl sulphida (III), b.p. 110—155°/13 mm. Addition of HBr to (III) affords β-bromo-α-benzyllhiolpropane (IV), b.p. 98·5—99°/0·05 mm. With CHNa(CO2Et)2 (IV) gives Et α-carbethoxy-y-benzylthiol-β-methyl-n-butyrate (V), b.p. 147°/0·007 mm., converted by way of the Na compound of (V) with MeI into Et α-carbethoxy-y-benzylthiol-αβ-dimethyl-n-butyrate (VI), b.p. 136°/0·003 mm. [also obtainable from (III) and CHMe(CO2Et)2]. Hydrolysis of (VI) gives the free acid (VII), m.p. 120°, decarboxylated to y-benzylthiol-αβ-dimethyl-n-butyric acid (VIII). Fission of (VIII) with Na in NH3 affords y-thiol-αβ-dimethyl-n-butyric acid, an oil, the Ba salt of which is oxidised by Br to Ba y-sulpho-αβ-dimethyl-n-butyrate (IX) (m-toluidine salt, m.p. 103—105°). The anhydride of (IX), b.p. (1X) is therefore excluded as a possibility for (I). CHPrβ(CO2H)2, NHMe2, and CH2O afford dimethylaminomethylisopropylmalonic acid, m.p. 112·5°, which when boiled in slightly acid solution gives a-methylene β-methylbutyric acid (X), b.p. 98°/18 mm. (p-phenyl-phenacyl ester, m.p. 76-77°). With AcSH (X) yields as a

optically active (XIII), with no measurable rotation. The m-toluidine salt, m.p. 156°, gives no m.p. depression with the corresponding product from (I). When heated with SOCl₂ in C_6H_6 , (XIII) gives the anhydride (XIV), b.p. $113^\circ/0.02$ mm. (XIV) with NH₂Ph in C_6H_6 affords the aniline salt of the anilide (XV), m.p. 223° (micro), 248° (ordinary method, quick heating). The corresponding optically active component has m.p. $234-235^\circ$ (micro), $250-251^\circ$ (ordinary). With CH_2N_2 , (XV) or the free anilide yields the Me ester (XVI), m.p. 134° , of the anilide. The optically active Me ester has m.p. 135° , $[a] + 2 \cdot 12^\circ$ in COMe₂. By similar treatment (I) gives the anilide aniline salt [cf. (XIV)], m.p. $224-225^\circ$, and the Me ester [cf. (XV)], m.p. 135° , and the respective mixed m.p. showed no depression. The constitution NH-CH(CO₂H)·CH·S·CH₂ is assigned to biotin from egg yolk (now termed a-biotin). J. H. B.

Decomposition of chloral hydrate by piperidine. L. Yang and P. F. Hu (J. Chinese Chem. Soc., 1943, 10, 190—193).— $CCl_3 \cdot CH(OH)_2$ (I) is decomposed by piperidine (II) at 25° ; with (II) in excess, the reaction is unimol., but with equal concn. of (I) and (II) or with excess of (I), reaction is bimol. It is probable that with excess of (II), the formation of the adduct, (I) + (II), is instantaneous, and the reaction rate represents mainly the decomp. of the adduct. In excess of (I), addition is slower than decomp. A. T. P.

Reaction of acetaldehyde with ethyl bromide at 400°.—Sec A., 1944, I, 157.

Derivatives of aldol and crotonaldehyde. III. Constitution of paraldol. E. Spath and H. Schmid (Ber., 1941, 74, [B], 859—866).—Removing volatile ingredients at 100°/10 mm. from commercial aldol, keeping the residue at 18°, and then treating with Et₂O gives paraldol (I), m.p. ~95—97° (decomp.; vac.), which at the b.p., 125° (bath)/15 mm., regenerates aldol, whence (I) is rapidly re-formed on keeping. With $Ac_2O-C_5H_5N$ at 18° or, better, keten in boiling Et₂O, (I) gives its diacetate (II), b.p. 120—125° (bath)/1 mm. With H_2 -Pd-black in warm AcOH, (II) gives 4-methyl-2-β-acetoxy-n-propyl-1: 3-dioxan, b.p. 80—85° (bath)/1 mm. (and AcOH), hydrolysed by 3% NaOH-MeOH at room temp. to 4-methyl-2-β-hydroxy-n-propyl-1: 3-dioxan, m.p. —62° to —59°, b.p. 90° (bath)/8mm, which is also obtained from aldol, OH·CHMe·[CH₂]-OH, and HCl at 50° (proof of structure). 0-05N-HCl-EtOH-H₂O at 70·0° hydrolyses 1 Ac of (II) in ~4 min., but the second Ac only very slowly, 0.58 OAc surviving after 85 min. With NH₂OH-MeOH at 18° (II) gives a 1:1 mixture of aldoxime and acetylaldoxime. (I) is, therefore, considered to be 4-hydroxy-6-methyl-2-β-hydroxy-n-propyl-1: 3-dioxan; the OAc which is readily removed from (II) is the semi-acetal group at $C_{(4)}$. R. S. C.

Higher primary alkylamines and their reaction with carbon disulphide. T. Wagner-Jauregg, H. Arnold, and H. Rauen (Ber., 1941, 74, [B], 1372—1378).—Higher NH₂Alk are not obtained from AlkHal by liquid NH₃ but are prepared by o-C₀H₄(CO)₂NK (I), followed by N₂H₄. With CS₂ in cold EtOH they give 70—75% of amine dithiocarbamates, but after prolonged boiling give excellent yields of thiocarbamides, by means of which they can be characterised. Turpin's method (A., 1888, 1174) gives only thiocarbamides. Use of Hg(OAc)₂ and CS₂ in boiling EtOH gives the alkylthiocarbimides. Thus are obtained cryst. cetylamine, oleylamine (from oleyl bromide, b.p. 180—200°/0·15 mm.), cryst., b.p. ~175°/0·2 mm. (hydrochloride, m.p. 161—165°; cinnamoyl derivative, m.p. 77—78·5°), hydnocarpylamine, chaulmoogrylamine, cryst., b.p. 185°/0·1 mm., cetylamine N-cetyldithiocarbamate, m.p. 100—101°, s-dicetyl-, m.p. 88—89°, s-dioleyl-, m.p. 67—69°, and s-dihydnocarpyl-thiocarbamide, m.p. 65—66°, cetyl-, cryst., b.p. 180—194°/0·35 mm., and oleyl-thiocarbimide, b.p. 200—210°/0·4 mm., N-oleyl-, m.p. 72—75°, b.p. 260—270°/0·4 mm., N-hydnocarpyl-, m.p. 57°, and N-chaulmoogryl-phthalimide, cryst.

Preparation of unsymmetrical secondary aliphatic amines. K. N. Campbell, A. H. Sommers, and (Miss) B. K. Campbell (J. Amer. Chem. Soc., 1944, 66, 82—84).—Adding RCHO gradually to NH₂R' and KOH at 0° gives 52—83% of NPra:CHMe, b.p. 74—81°, ethylidene-butylamine, b.p. 98—106°, NEt;CHEt, b.p. 70—76°, propylidene-n-butylamine, b.p. 118—127°, n-butylidene-ethylamine, b.p. 100—108°, -n-, b.p. 120—124°, and -iso-propylamine, b.p. 100—111°, and -cyclo-hexylamine, b.p. 78—88°/20 mm., NPra:CHPr\$, b.p. 108—114°, isoamylidene-n-propylamine, b.p. 130—139°, and -n-butylamine, b.p. 90—96°/100 mm. Hydrogenation (PtO₂ or, more slowly, Pd-C) of the aldimines in EtOH at 2—3 atm. gives 33—63% of NHEtPra, b.p. 77—80°/738 mm. (a-naphthylthiocarbamide, m.p. 122—123°; hydrochloride, m.p. 223—224°), NHEtBu*, b.p. 109°/737 mm. (a-naphthylthiocarbamide, m.p. 125°; hydrochloride, m.p. 197°), NHPraBua, b.p. 92—93°/200 mm. [a-naphthylthiocarbamide, m.p. 197°), NHPraBua, b.p. 92—93°/200 mm. [a-naphthylthiocarbamide, m.p. 143—144°; hydrochloride, m.p. 278—282° (decomp.)], NHPraC₅H₁₁-iso, b.p. 106—107°/200 mm. [a-naphthylthiocarbamide, m.p. 137—138°; hydrochloride, m.p. 264—265° (decomp.)], NHPraBua, b.p. 121°/733 mm. (a-naphthylthiocarbamide, m.p. 137—138°; hydrochloride, m.p. 264—265° (decomp.)], NHPraBua, b.p. 121°/733 mm. (a-naphthylthiocarbamide, m.p. 265°; hydrochloride, m.p. 195—196°), NHBuaC₅H₁₁-iso, b.p. 64—65°/14 mm. (a-naphthylthiocarbamide, m.p. 195—196°), NHBuaC

thiocarbamide, m.p. 117-5—118-5°; hydrochloride, decomp. 290°), and cyclohexyl-n-hexylamine, b.p. 87—90°/12 mm. [a-naphthylthiocarbamide, m.p. 107—108°; hydrochloride, m.p. 278—283° (decomp.)]. Reduction occurs in presence of Raney Ni, but yields no sec, amine.

R. S. C.

Availability of ε-acetyl-l-lysine and ε-methyl-dl-lysine for growth.—See A., 1944, III, 490.

Invert soaps. IX. Azinium salts. O. Westphal (Ber., 1941, 74, [B], 1365—1372).—NRR'·NH₂, in which R is a short-chain and R' a long-chain alkyl, react with MeHal or EtHal to give NH₂·NMcRR'}Hal (A) etc. MeI and EtI react exothermally; EtBr reacts best in EtOH during several hr.; EtCl reacts only in EtOH at 100° and causes some substitution to give inseparable mixtures. Addition of Alk₂SO₄ or CH₂Br·CO₂Alk is quant. A are sparingly sol. in H₂O; supersaturated solutions may form gels. A are surface-active and ppt. proteins. Against lactic acid bacteria they are approx. as effective as are NR₄X, max. effectiveness occurring at R' = octyl. NR₂·NHR' are also approx. as effective, but the max. occurs at R' = C₁₂H₂₅. Against staphylococci also A are about as effective as NR₄X or NR₂·NHR', but the max. occurs at R' = C₁₂H₂₅. NRR'·NH·CO·CH·CH·CO₂H is effective in acid, but not in alkaline, solution. NR₂·NHR' are prepared by interaction of NR₂·NH₂ with AlkCl. The following are described: NNN-tn-n-hexylhydrazinium chloride (prep. from C₆H₁₃Cl and N₂H₄ in EtOH at 150°), m.p. 65°; N-methyl-N-n-dodecylhydrazine hydrochloride, m.p. 70—72°; N-methyl-N-ethyl-N-n-dodecyl-, m.p. 82°, and -cetyl-hydrazinium bromide, m.p. 94°; NN-dimethyl-N-n-dodecyl-, m.p. 96°, and -cetyl-hydrazinium chloride and bromide, oils; N-cyano-N-methyl-N-allylhydrazinium chloride and bromide, oils; N-cyano-N-methyl-N-dodecylhydrazinium bromide, m.p. 163—164·5° (decomp.) (corresponding methosulphate, m.p. 99—100°); N-methyl-N-n-dodecyl-hydrazinium hydrodide, m.p. 163—164·5° (decomp.) corresponding methosulphate, m.p. 99—100°); N-methyl-N-n-dodecyl-hydrazinium chloride and bromide, oils; N-cyano-N-methyl-N-172°; N-methyl-N-cetylhydrazinium bromide, m.p. 163—164·5° (decomp.) corresponding methosulphate, m.p. 99—100°); N-methyl-N-n-dodecyl-hydrazinium chloride and bromide, oils; N-cyano-N-methyl-N-172—174'/11 mm. n-C₁₂H₂₅-MgCl and NEt₂-CH₂·CN in Et₂O give, after hydrolysis, diethyltridecylamine, b.p. 169°

G9·5—70·5°. M.p. are m.p. (micro). R. S. C.

aζ-Diamino-βγ-δε-dimethylenemannitol. W. N. Haworth, R. L. Heath, and L. F. Wiggins (J.C.S., 1944, 155—157).—Mannitol with fuming HCl (sealed tube at 95°) gives aζ-dichloromannitol (I), m.p. 174°, and other compounds not yet investigated. (I) condenses with CH₂O to aζ-dichlorodimethylenemannitol (II), m.p. 156°, with a little of an isomeride, m.p. 96°, [a]p. −18·2°. (II) is also obtained by treating (I) with paraformaldehyde and H₂SO₄. (II), fused with o-C₆H₄(CO)₂NK in presence of glycerol, gives (20% yield) aζ-diphthalimidodimethylenemannitol (III), m.p. 277°, hydrolysed (hydrazine method) to aζ-diaminodimethylenemannitol monohydrate (IV), m.p. 48—52°, [a]p¹⁸ +67·7° in CHCl₃. (II) with NH₃ in MeOH (autoclave at 150°), followed by aq. Ba(OH)₂ (N₂), yields 60% of (IV). (IV) gives aζ-diaminodimethylenemannitol dihydrochloride (V), m.p. 220—224° (decomp.), reconverted into (IV) by aq. Ba(OH)₁. Crystallising (IV) from dry EtOAc-Et₂O yields the anhyd. diamine (hygroscopic), m.p. 50°. (IV) gives aζ-bis-N-salicylideneaminodimethylenemannitol, m.p. 191—192°, aζ-bis-p-benzenesulphonamidodimethylenemannitol, m.p. 249—251°, and several salts: oxalate, m.p. 280° (decomp.), adipate (VI), m.p. 205°, sebacate (VII), m.p. 162°, dimethylene-1-idosaccharate, decomp. 270—300°. (VI) and (VII) when heated above their m.p. give polymers which do not give oriented fibres when cold-drawn. With o-C₈H₄(CO)₈O (IV) gives (III), and with CH₂Ac-CO₂Et a compound, C₂₀H₃₂O₈N₂, m.p. 120°, [a]₃ +67·2° in CHCl₃ (structure suggested). Hydrolysis of (V) (10% HCl) gives aζ-diaminomannitol dihydrochloride, m.p. 238—240° (decomp. 302—305°). (II), with KOH in EtOH, or fused with Na, yields dimethylenedioxy)-Δaε-hexadiene, m.p. 80°, [a]_p +281·5° in CHCl₃. This reaction supports the suggestion that the ·CH_{*}. Erous bridge C_β-C_δ and C_γ-C_δ.

Degradation of amino-acids in the animal organism. I. l-Alanine,—See A., 1944, III. 426.

Action of amino-acids on a-ketohexonates. K. Maurer and K. Knoevenagel (Ber., 1941, 74, [B], 1003—1006).—Me a-ketogluconate with NH₂-CHMe-CO₂Et or NH₂-CH₂-CO₂Et in MeOH in absence of air gives the NH₂-ester salt, and thence by KOH the K salt (33 and 41%, respectively), of isoascorbic acid. Similar reactions occur with (i) NH₂-[CH₂]₂-CO₂Et or arginine, and (ii) Me or Et a-ketogulonate. The primary products could not be crystallised. The reaction could not be followed by changes in a or by I-titration; yields thus recorded average 60—100%.

R. S. C.

Aliphatic carbodi-imides. III. E. Schmidt and W. Striewsky (Ber., 1941, 74, [B], 1285—1296; cf. A., 1943, II, 219).—The stability of NR:C:NR' towards storage and Na is increased by increase in mol. wt. and still more so if R or R and R' are sec. Prep. of NR:C:NR' is much improved by use of moist HgO, which reduces the amount of carbamide obtained as by-product. The

following are described: di-n-, b.p. 53—54°/10 mm., and -iso-propyl-, b.p. 36—37°/10 mm., N-n-propyl-N'-isopropyl-, b.p. 45°/10 mm., -N'-cyclohexyl-, b.p. 105—106°/10 mm., and -N'-y-dimethyl-amino-n-propyl-, b.p. 99—101°/10 mm. (methiodide, m.p. 98·5—99·5°), N-isopropyl-N'-cyclohexyl-, b.p. 97—98°/10 mm., -N'-n-dodecyl-, b.p. 169—170·5°/10 mm., and -N'-y-dimethylamino-n-propyl-, b.p. 91—92°/10 mm. (methiodide, m.p. 108—109°), and N-methoxymethyl-N'-y-dimethylamino-n-propyl-, b.p. 105—106°/10 mm. (methiodide, m.p. 89—90°), -carbodi-imide; N-n-propyl-N'-isopropyl-, m.p. 90—91°, -N'-cyclohexyl-, m.p. 88·5—89·5°(~103° after resolidification), and -N'-y-dimethylamino-n-propyl-, an oil (picrate, m.p. 155·5—156·5°), NN'-diisopropyl-, m.p. 141—141·5° (lit. 161°), N-isopropyl-N'-cyclohexyl-, m.p. 139—140°, -N'-n-dodecyl-, m.p. 74·5—78·5°, and -N'-y-dimethylamino-n-propyl-, m.p. 79—80° (picrate, m.p. 158—159°), and N-methoxymethyl-N'-y-dimethylamino-n-propyl-, m.p. 56·5—58·5°, -thiocarbamide. OH·[CH₂]·NH₂ and CH₂:CH-CH₂·NCS in cold CHCl₃ give N-β-hydroxyethyl-N'-allylthiocarbamide, m.p. 77·5—78·5°, which with HgO in H₂O gives, by ring-closure of the carbodi-imide, 2-allylimino-oxazolidine, b.p. 104—105°/10 mm. (picrate, m.p. 146—147°). N-y-Hydroxy-n-propyl-N'-allylthiocarbamidely, m.p. 58—59°, with moist HgO in Et₂O or C₆H₆ gives similarly 2-allyliminotetrahydro-1: 3-oxazine, b.p. 101·5—103°/10 mm. (picrate, m.p. 132—133°).

Acrylonitrile, V. Cyanoethylation of aldehydes. H. A. Bruson and T. W. Reiner (J. Amer. Chem. Soc., 1944, 66, 56—58; cf. A., 1943, II, 122, 153).—CHEt₂·CHO or CHEtBu·CHO with CH.;CH·CN in 50% KOH at 55—58° gives γ-aldehydo-γ-ethyl-n-hexonitrile (I) (76·6%), b.p. 128°/4 mm., or -n-octonitrile (II) (79·5%), b.p. 140—142°/5 mm., respectively, hydrolysed by boiling 10% NaOH to γ-aldehydo-γ-ethyl-n-hexoic (III), b.p. 142°/3 mm., and -n-octoic acid (IV), b.p. 157°/4 mm. Air, H₂O₂, or KMnO₄ oxidises (III) and (IV) to aa-diethyl-, m.p. 84°, and a-ethyl-a-n-butyl-glutaric acid (V), m.p. 81—82°, respectively. The CHO of (I) and (II) resists alkali but is oxidised in air; thus, (I) yields γ-carboxy-γ-ethyl-n-hexonitrile, m.p. 88°. H₂-Raney Ni converts (II) and (IV) in aq. NaOH into the lactones, b.p. 101°/2·5 mm. and (VI) 124°/3·5 mm., of γ-hydroxy-methyl-γ-ethyl-n-hexoic and -n-octoic acids, respectively. CHPra:CEt·CHO and CH₂:CH·CN give, with migration of H, γ-aldehydo-γ-ethyl-Δ³-n-octenonitrile, b.p. 138—140°/6 mm., and -n-octenoic acid (VII), b.p. 154°/4 mm. Hydrogenation of (VII) gives (VI) and oxidation gives (V).

II.—SUGARS AND GLUCOSIDES.

Blood-sugars. IV. Effect of mercury on the reducing power of dilate solutions of glucose. M. Lora Tamayo and J. M. Pinar Miura (Anal. Fts. Quim., 1940, 36, 132—140).—Dil. solutions of glucose are oxidised by HgCl_2 in NaOH to AcOH and $\operatorname{H}_2\operatorname{C}_2\operatorname{O}_4$. Acid solutions remain unchanged.

Formation of anhydro-derivatives by the action of alkali on monomitate acetates of glucose and methylglucoside. E. K. Gladding and C. B. Purves (J. Amer. Chem. Soc., 1944, 66, 76—81).—In the sugar series, the behaviour of nitrates towards alkali resembles that of halides, methane- or p-toluene-sulphonates: fission is normally >CH·O·NO₂ \rightarrow >CH·OH + HNO₃, but, if the NO₂ is "blocked," some reaction $CH_2R\cdotO\cdot NO_2 \rightarrow RCHO + HNO_2$ occurs. a-D-Gluco-pyranose 2:3:4:6-tetra-acetate 1-nitrate (I), m.p. 148— 149° (corr.), $[a]_1^{29}+148^\circ$ in $CHCl_3$, is obtained by nitrating β -glucose penta-acetate in $CHCl_3$; the NO₂ is as labile towards alkali as are the Ac; with NaOMe—MeOH it gives 75% of a $CHCl_3$ -sol. material which, after re-acetylation, on one occasion crystallised to an inseparable mixture, on another yielded 28% of β -methylglucoside tetra-acetate (II), and probably consists of a 1:1 mixture of (II) and glucosan < $1:5>\beta<1.6>$ triacetate (III); with NaOH in aq. dioxan it gives 33% of (III), $4\cdot5\%$ of HNO₃, and $\sim66\%$ of a gum. The NO₃ of β -methylglucoside 3:4:6-triacetate 2-nitrate. (IV) is removed rather faster than is that of (I); with NaOH in aq. dioxan gives only $2\cdot3\%$ of HNO₃ with 84% of mixed anhydromethyl-hexosides, $[a]_{20}^{20}-111^\circ$ to -106° in H_2O (a fraction having m.p. 127— 136° was isolated), containing $\Rightarrow 6\%$ of methylhexosides. Conscutive methylation, nitration, and treatment with boiling BaCO₃—160H converts D-glucosan < $1.5>\beta<1.6>$ into 2:3:4-trimethyl- β -methyl-D-glucopyranosidyl 6-nitrate (50%), m.p. 52— 54° (corr.), $1a_{10}$ — 7° in CHCl₃, which is more stable towards alkali than is (I) or (IV); NaOH in 50% aq. MeOH at 60° yields 75% of 2:3:4-trimethyl- β -methylglucoside, 20% of HNO₂, and 20% of an acidic, methylated tar.

α-Methylglucopyranoside 2:3:4-triacetate 6-nitrate and β-methylpyranoside 3:4:6-triacetate 2-nitrate. E. K. Gladding and C. B. Purves (f. Amer. Chem. Soc., 1944, 66, 153—154).—α-Methylglucoside 6-CPh₃ ether 2:3:4-triacetate (modified prep.), new m.p. 43—145° (corr.), with P_2O_3 —HNO₃ at 3—5° gives α-methylglucoside \cdot :3:4-triacetate 6-nitrate (88%), m.p. 112—113° (corr.), $[a]_D^{30}$ +132° in CHCl₃, also obtained from the 6-iodide by AgNO₃ (excess) in hot 1: and converted thereinto by NaI in (CH₂Ac)₃. β-Methylglucoside 3:4:6-triacetate (modified prep.) gives similarly its 2-nitrate, m.p. 117—118° (corr.), $[a]_D^{30}$ —1° in CHCl₃. R. S. C.

Glucose 6-fluorohydrin and its derivatives. B. Helferich and A. Gnuchtel (Ber., 1941, 74, [B], 1035—1039).—a-Methylglucoside tetramethanesulphonate and KF in boiling H₂O (30% yield) or, better, MeOH at 100° (tube) give a-methylglucoside 6-fluoride 2: 3: 4-trimethanesulphonate, m.p. 133—134°, [a] $_{22}^{22}$ +93·1° in C₅H₅N, but the MeSO₂ cannot be removed without affecting the F. a-Methylglucoside 2: 3: 4-triacetate 6-methanesulphonate and KF give only glucose and derivatives of anhydroglucose. 3: 5-Benzylidene-1: 2-isopropylideneglucopyranose 6-methanesulphonate and KF, 2H.O in MeOH at 100° give 3: 5-benzylidene-1: 2-isopropylideneglucofuranose 6-fluoride (96%), m.p. 104—105° (corr.), [a] $_{12}^{31}$ +14·2° in C₆H₅N at 100° gives glucose 6-fluoride 1: 2: 3: 4-tetra-acetate (45%), m.p. 125—126°, [a] $_{12}^{19}$ +20·1° in C₅H₅N. H₂SO₄-MeOH-H₂O then yields glucose 6-fluoride (>60%), sinters ~145°, m.p. 155°, [a] $_{12}^{1}$ +85·8° \rightarrow +46·8° in H.O, whilst HBr in AcOH and then AcOH-CHCl₃ gives 1-bromoglucose 6-fluoride 2: 3: 4-triacetate (I), m.p. 127—128° (corr.), [a] $_{12}^{1}$ +234° in CHCl₃. PhOH and Ag₂O in quinoline convert (I) into phenyl-β-d-glucoside 6-fluoride 2: 3: 4-triacetate, m.p. 167—168° (corr.), [a] $_{12}^{1}$ —8·2° in CHCl₃, and thence (NaOMe) phenyl-β-d-glucoside 6-fluoride, m.p. 148—149° (corr.), [a] $_{12}^{2}$ —79·0° in H₂O. Vanillin, (I), and NaOH in aq. COMe₂ at room temp. give vanillyl-β-d-glucoside 6-fluoride, m.p. 181—182° (corr.), [a] $_{12}^{15}$ —48·6° in C₅H₂N, by way of its triacetate, m.p. 166—167° (corr.), [a] $_{12}^{15}$ —35·7° in CHCl₃.

Glucoside of a γ -hydroxy-carboxylic acid. B. Helferich, W. Richter, and H. Flechsig (Ber., 1941, 74, [B], 1019—1022).—Aceto-bromoglucose, CMe₂,CH-[CH₂]₂·CHMe·OH, CaSO₄, and Ag₂O in CHCl₃ give mixed diastereoisomerides, whence ~11% of ζ -methyl- β - Δ ^e-n-heptenylglucoside tetra-acetate, m.p. 93—94°, $[a]_D^{\circ}$ —2·8° in CHCl₃, is obtained. With boiling NaOMe-MeOH this gives the free glucoside (I), m.p. 78—79°, $[a]_D^{\circ}$ —23° in H₂O, and with O₃—AcOH, followed by Zn dust in Et₂O-AcOH, gives γ -glucosidoxy-n-valeraldehyde tetra-acetate (~65%), m.p. 128—129°, $[a]_D^{\circ}$ —0·5° in CHCl₃ (semicarbazone, m.p. 108—109°, $[a]_D^{\circ}$ 0 —2·3° in CHCl₃; 2: 4-dinitrophenylhydrazone, m.p. 170°), oxidised by KMnO₄—COMe₂ at ~2° to γ -glucosidoxy-n-valeric acid tetra-acetate (60%), m.p. 92—93°, a 0 (Me ester, m.p. 85—86°, a 0). The rate of hydrolysis of (I) by cmulsin is reduced to about one seventh by conversion into the aldehyde.

Nature of erythroamylose particles and of higher dextrins produced by a-diastase.—See A., 1944, III, 432.

Relation of starch-iodine absorption spectra to the structure of starch and starch components. R. R. Baldwin, R. S. Bear, and R. E. Rundle (J. Amer. Chem. Soc., 1944, 66, 111—115).—The position of the max. and val. of ε_{\max} , of the absorption spectra of starch—I complexes (0.01% solution) differentiate amyloses from amylopectins, but cannot be used to analyse whole starch owing to variation among amyloses and amylopectins from different starches. The amount of I bound increases as the [KI] decreases, becoming I I per ~6 glucose units at infinitely small [KI]. Increase in chainlength of amylose or in length of the unbranched portion of amylopectin shifts the max. to longer λ and increases ε ; both phenomena, particularly ε , may be used to determine mol. wts. and degrees of branching, giving vals. in agreement with other methods. The spectrometric method shows higher vals. for bound I than does potentiometric titration, owing to rapid removal of I from the ends of the helices during the titration.

Effect of acid hydrolysis on activity of polysaccharides in enzymic synthesis of starch.—See A., 1944, III, 500.

Influence of dextrin on synthetic action of plant phosphorylase.—See A., 1944, III, 500.

Cellulose and liquid hydrogen chloride. Influence of morphological structure and crystal lattice structure on the reaction and activity of cellulose. M. Ulmann and K. Hess (Ber., 1941, 74, [B], 1465—1473).—The reaction velocity of ramic cellulose (I) with liquid HCl at -15° to 20° is given, up to 66% completion, by dx/dt=K(a-x)/l, in which l measures diffusion of HCl into the (I); l can be represented as $K'\sqrt{l}$, whence for the whole reaction $K=0.5\sqrt{l\log_s a(a-x)}$. After 66% completion of the reaction (for which K=0.058), the velocity suddenly increases, proceeding then to 100% completion. When ground in a "swinging" mill, (I) reacts much faster (K=0.103) up to 58% completion; a similar sudden increase in reaction rate then occurs. The non-reducing portion remaining from partly reacted ground (I) consists of unchanged (I) and H.O-sol. cellulose (II); the amount of (II) is const. (25%) until shortly after the sudden increase in velocity but then falls gradually to approx. nil. When ground (I) is boiled in H₂O for 1 hr. and the suspension is then evaporated and dried at 105° , a "recryst." cellulose (III) is obtained, which reacts with HCl initially at the same rate (K=0.060) as does natural (I); a sudden increase in velocity occurs after 40% completion; 8% of (II) is also formed from (III), this amount remaining const. for a long time. (III) may also be prepared without heating, by drying the H₂O-treated (I) with EtOH and Et₂O. The amount of reaction is determined by the Bertrand reducing val.; results by Willstatter

and Schudel's method are more erratic. The X-ray diagram of (I) remains normal up to 66% reaction and thereafter is that of an amorphous substance; X-ray diagrams of (II) and (III) are both the same as that of "cellulose hydrate." The following interpretations are offered. The effect of grinding on the initial velocity, being reversible by H₂O, is due to lattice distortion; subdivision proceeds only to the individual fibrils. Also formation of (II), largely reversible by H2O, occurs from lattices deformed by grind-The sudden increase in velocity is due to HCl penetrating through less reactive layers (which react more slowly) and suddenly exposing normally reactive portions.

Cellulose-water adsorption isotherm.—Sec A., 1944, I, 153.

Study of the amorphous portion of dry, swollen cellulose by an improved thallous ethoxide method. A. G. Assaf, R. H. Haas, and C. B. Purves (J. Amer. Chem. Soc., 1944, 66, 59—65).—The no. of accessible OH in cellulose is determined by treatment with TIOEt in a solvent and then with MeI-C6H6 and determining the OMe in the product. When hydrocarbons $(n-C_2H_{10}, -C_{10}H_{22}, -C_{10}H_{34})$ are used as solvent, the % OMe is const., but when ethers [Et₂O, Pr₂O, Bu₂O, (C₅H₁₁)₂O] are used, the % OMe α the mol. vol. of the solvent ether. The % "amorphous" cellulose is defined as the % wetted by an ether of zero mol. vol., estimated by extrapolation from the ether graph. Thallation in alcohols is probably accompanied by swelling but confirms the results within ±10%. Unswellen linters contains only 0.25—0.5% of amorphous cellulose, but swellen linters contains up to $27\pm2\%$; the corresponding colloidal surfaces are $10-520\times10^4$ sq. cm. per g. R. S. C.

III.—HOMOCYCLIC.

Spectroscopic evidence for conjugation in cyclopropane systems. I. M. Klotz (J. Amer. Chem. Soc., 1944, 66, 88-91).—Hyperconjugation of a cyclopropane ring with an ethylenic linking causes some absorption due to resonance, so that absorption spectra are intermediate between those of systems containing C·C·C:C or C:C·C:C. Examples are Δ^6 -i-cholestadiene, i-cholesteryl Me ether, i-cholesteryl Me ether, i-cholesteryl Me stenone, and carone. The same principle may apply to terpenes containing cyclobutane rings.

Polycyclopentyls. J. von Braun and (Frl.) J. Reitz-Kopp (Ber., 1941, 74, [B], 1105—1110).—n-Heptyl- Δ -cyclopentene, b.p. 102° /15 mm., is obtained (Grignard) from n- $C_7H_{15}Br$ and Δ^3 -cyclopentenyl chloride (I) in nearly 50% yield and is freed from halogen by Na at 100°. With fuming HBr (excess) at 100° or room temp. it gives 3-bromo-n-heptylcyclopentane (II) (>70%), b.p. 97— 102° /0·2 mm., which reacts more slowly than does the Et analogue with Mg (A., 1037—II 404) yielding after treatment with solid CO $3n_1$ between 1937, II, 404), yielding after treatment with solid CO, 3-n-heptylcyclopentane-1-carboxylic acid (22%), b.p. 186—188°/13 mm., and 3:3'-di-n-heptyldicyclopentyl (III) (~10%), b.p. 230°/13 mm. ~30% of (II) is obtained from (I) by Na wire and a little EtOAc in Et.O of (II) is obtained from (I) by Na wire and a little EtOAc in Et_{*}O at room temp. and then the b.p. 3-cycloPentenyl-1-ethylcyclopentane, b.p. 75—85°/12 mm. [obtained (34%) from Mg 3-ethylcyclopentyl bromide and (I)], with fuming HBr at room temp. gives 3-bromo-3'-ethyldicyclopentyl (IV) (77%), b.p. 135°/16 mm., which with Mg and then CO₂ gives impure 3-ethyldicyclopentyl 3'-carboxylic acid, b.p. ~130°/0·1 mm., and 3:3'-diethylquater-cyclopentyl (~10%), b.p. 160—170°/0·3 mm. [obtained in 20% yield from (IV) by Na]. The similarity in reactions of (II) and (IV), which contain the same no. of C, is noted. Mg 3-dicyclopentylyl bromide and (I) give, after treatment with Na, Δ-tricyclopentyleue [3-Δ2".cyclopentenyldicyclopentyl] (V) (nearly 20%). pentylyl bromide and (I) give, after treatment with Na, Δ^{-} -tricyclopentylene $\{3-\Delta^{2''}$ -cyclopentenyldicyclopentyl] (V) (nearly 20%), b.p. $139-140^{\circ}$ /10 mm., and quatercyclopentyl (12%), b.p. $205-207^{\circ}$ /9 mm. H_2 -Pd in McOH reduces (V) to tricyclopentyl (92%), b.p. 144° /12 mm. HBr converts (V) into 3-bromotricyclopentyl (~50%), b.p. 182° /10 mm., yielding with Na in Et₂O hexacyclopentyl (almost 40%), b.p. 235° /0·1 mm., of which 10% is obtained having m.p. $143-146^{\circ}$. d and n of polycyclopentyls increase regularly, but the b.p. show signs of alternation. In the above compounds the cyclopentyl nuclei are united in the 1: 3-positions compounds the cyclopentyl nuclei are united in the 1:3-positions.

Reactions of cyclohexane and decahydronaphthalene under hydrogenation-cracking conditions.—See B., 1944, II, 125.

Chlorination of cyclohexane.—See B., 1944, II, 128.

Rubber, polyisoprenes, and allied compounds. VI. Mechanism of halogen-substitution reactions and the additive halogenation of rubber and of dihydromyrcene. G. F. Bloomfeld. VII. Action of itric oxide thereon. G. F. Bloomfield and (in part) G. A. Jeffrey (J.C.S., 1944, 114—120, 120—124; cf. A., 1943, II, 289).—Chlorination of peroxide-free cyclohexene (I) by Cl₂ or SO₂Cl₂ gives substituted and additive derivatives, the former retaining full uncertainty (I) with Classical conditions and the condition of the saturation. (I) with Cl₂ yields cyclohexene, mono- (II), 1:2-di-(III), and tri-chlorocyclohexane, b.p. 52—53°/0·01 mm. Comparison of the reactions of (II) and 1-chlorocyclohexene (from cyclohexanone and PCl₅) towards AgNO₃ in EtOH and to ICl suggests that (II) is a mixture of 3- (IV) and 4-chlorocyclohexene (20%). SO₂Cl₂ with (I) in presence of peroxide gives (III) but with peroxide-free (I) in presence of quinol gives (III) and (IV) and the chloride of 2-chloro-

cyclohexyl sulphite, b.p. 74°/0.002 mm., which with H.O yields 2-chlorocyclohexanol and bis-(2-chlorocyclohexyl) sulphite (?), m.p. 2-chlorocyclohexanol and bis-(2-chlorocyclohexyl) sulphite (?), m.p. 92°. SO₂Cl₂ and (I) with a little I at 80° give (III) and (IV). SO₂Cl₂ (I mol. per 4 .) and dihydromyrcene (V) in presence of Bz₁O form the dichloride, b.p. 55—56°/0·2 mm., but SO₂Cl₂ (g mol.) and (V) (I mol.) give (Bz₂O present) the tetrachloride, b.p. 82—90°/0·002 mm., m.p. 50°. Rubber (VI) with SO₂Cl₂ and Bz₂O gives polyisoprene dichloride, (C₅H₈Cl₂)_m indistinguishable from material obtained from (VI) and PhICl₃. (V) with (CH₃·CO)₂NB₇ (VII) gives monobromodihydromyrcene, b.p. 54°/0·1 mm. (VI) and (VII) (0·5 Br per C₅H₈ unit) yield a compound, (C₁₀H₁₅Br)_n, without formation of HBr. (VI) gives an entirely additive reaction with Br at 0° (if a little EtOH is present in the solvent, e.g., CHCl₃, used) and a method based on Br addition can be used for determination and a method based on Br addition can be used for determination of rubber hydrocarbon. The reaction mechanism of chlorination of (VI) is discussed, and it is suggested that provision of Cl in free radical form is necessary for a wholly additive reaction. The reaction of mol. Cl₂ or Br is explained by formation of an activated dihalide, further products being determined by the nature of the

olefinic system and the experimental conditions.

VII. In the reaction of NO with (I), 1-methylcyclohexene (VIII), (V), and (VI) the general characteristics of a free-radical chain mechanism are exhibited. The induction period (15—30 min.) varies with the light intensity. N₂ which is formed stops the reaction, but if removed >1 mol. of NO per: is absorbed, 1/3—1/4 vol. of N₂ being evolved per vol. of NO absorbed. Products contain N (generally linked to C) in various states of combination with O. It is suggested that NO is converted into higher oxides of N (in the liquid phase only) by a mechanism involving the hydrocarbon, and HNO, or N_2O_3 was detected. The apparatus used is described. (I) (1 mol.) absorbs NO (1-6 mols.) to give the ψ -nitrosite, m.p. 153° (decomp.), for which a bimol structure is confirmed by X-ray examination, a mixture of 1-nitrocyclohexene (giving adipic acid on oxidation, and cyclohexanoncoxime on reduction) and 3-nitro-cyclohexene (?), and an oil (IX), C₆H₁₀O_{3·6}N_{1·6}, containing N and O added or substituted at the original (IX) gives a compound, C₆H₈O₃N₂, m.p. 107—108°, with KOH, and on oxidation (KMnO₄) gives adipic acid and a neutral oil. (V) (1 mol.) absorbs NO (0.73 mol.) and evolves N₂ (0.22 mol.) giving a nitrodihydromyrcene (?), b.p. 60—70°/0.001 mm., and a solid, C₁₀H₁₈O_{3·3}N_{1·8}. (VIII) gives a nitromethylcyclohexene (?), b.p. 50°/0.01 mm., and a viscous residue. The properties of the products obtained from (VI) for absorption of various amounts of NO are tabulated. No definite compounds were isolated.

cis-trans-Isomerisation and cis-peak effect in the a-carotene set and in other stereoisomeric sets. L. Zechmeister and A. Polgar (J. Amer. Chem. Soc., 1944, 66, 137—144).—The ethylenic linkings of carotene etc. are numbered serially, no. 1 being that in the β -ionone ring. cis-Linkings are indicated by prefixes, e.g., 3:6-dicis-indicates that ethylenic linkings nos. 3 and 6 are cis. In a serial cis-indicates that ethylenic linkings nos. 3 and 6 are cis. In a serial cis-indicates that ethylenic linkings nos. carotene (I), nos. 3, 5, 6, 7, and 9 can be cis and 32 stereoisomerides carotene (1), nos. 3, 5, 6, 7, and 9 can be as and 32 stereoisomerates are possible. By boiling or illumination in light petroleum, by treating in light petroleum with I (in light), 10% HI, or 37% HCl, or by melting, (I) gives varying amounts of the following neo-acarotenes, listed in order of decreasing adsorption affinity with absorption max. (A. in light petroleum) in parentheses: U (4712, 4415), V (4655, 4370), W (4705, 4410), X (4635, 4350), Y (4675, 4370), all trans-a-carotene (4770, 4465), A (4685, 4390), B (4665, 4370), C (4725, 4425), D (4600, 4320), and E (4615, 4335). U.m.e. 4370), C (4725, 4425), D (4600, 4320), and E (4615, 4335). U, m.p. 65° (corr.), $[\alpha]_{\rm D}^{264} + 221^{\circ} \pm 5\%$ in $C_{\rm c}H_{14}$, and W, m.p. 97° (corr.), $[\alpha]_{\rm D} + 365^{\circ}$ in light petroleum, are obtained cryst. (photomicrographs). Absorption data (partly new) are interpreted to indicate the following configurations: U 9-cis, W 3-cis, V 3:9-di-cis, A (? 7:)9-di-cis, C 6- or 5-cis, B 5:9- or 6:9-di-cis, A and B being chosen from 5:9-, 6:9-, and 3:6-di-cis; neolutein A 6- or 5-cis, B 3- or 9-cis; neolycopene A 6-cis., B 1:6- or 3:6-di-cis. R. S. C.

Alkylation of o- and p-xylene. D. Nightingale and J. R. Janes J. Amer. Chem. Soc., 1944, 66, 154—155).—With BurCl-FeCl₃ of (J. Amer. Chem. Soc., 1944, 66, 154—155).—With Bu^yCl-FeCl₃ of Bu^yOH-BF₃, o-xylene gives good yields of 1:2:4-C₆H₃Mc₂Bu['] (oxidised to 2:4:1-C₆H₃MeBu^y-CO₂H). p-Xylene does not condense with Bu^yOH-80% H₂SO₄, Bu^yCl-FeCl₃, or CMc₂:CH₂-FeCl₃, and with Bu^yOH-BF₃ gives an inseparable mixture. PhMe is readily alkylated by CMc₂:CH₂-FeCl₃.

R. S. C.

Delay in the heat-polymerisation of styrene caused by p-henzoquinone. J. W. Breitenbach and K. Horeischy (Ber., 1941, 74, [B], 1386 1389).—When styrene is heated with 2 mol.-% of p-O:C₈H₄.O [I] at 120°, quinhydrone can be isolated from the product. Polymerisation is not prevented by (I) but leads to products of quite low η and mol. wt., which invalidates the conclusions of Foord (A 1940 I 167). (A., 1940, I, 167).

Alkylation by olefines in presence of aluminium chloride. 1. S. I. Lurie and A. J. Golovatscheva (J. Gen. Chem. Russ., 1943, 10, 189—194).—m-Xylene and CMc₂:CH₂ at 12—14° in presence of AlCl₃ in EtBr afford 1:2:4-C₆H₃Mc₂Bu^γ in 18% yield. Various activators (HCl, CHCl₃, CCl₄) raise the yield, the most active being CCl₄ (60%). With alkoxybenzenes the CH: groups act as promoters of the reaction, rendering the presence of added activators unnecessary. R. T.

Hydrolytic rupture of carbon linkings. VI. Substituted stilbenes. M. M. Schemjakin and N. I. Oranski (J. Gen. Chem. Russ., 1943, 13, 175–183). —Substituted stilbenes are hydrolysed by aq. alkalis as follows: CHR:CHR' + II.0 \rightarrow R·CHO + R'Me [R = R' = Ph, o-NO₂·C₆H₄·, 2: 4-C₆H₃(NO₂)₂, 2: 4-NO₂·C₆H₃·SO₃H; R = o-NO₂·C₆H₄, R' = 2: 4-C₆H₃(NO₂)₂; R = Ph, R' = 2: 4-C₆H₃(NO₂)₂]. The velocity of the reaction rises with increasing asymmetry of the mol. R. T.

Physical data of aa-diphenyl-alkenes and -alkanes and aaww-tetraphenylalkenes. A. W. Schmidt and C. Hartmann (Ber., 1941, 74, [B], 1325—1332).—By interaction of MgPhBr with RCO₂Et or $\text{X}(\text{CO}_2\text{Et})_2$ and subsequent dehydration by KHSO₄ are prepared aa-diphenyl- Δ^a -n-butene, b.p. 108—110°/4 mm., -octene, m.p. -5·5° to -6°, b.p. 133—134°/0·05 mm., -dodecene, m.p. 5—6°, b.p. 170—171°/0·05 mm., -hexadecene, m.p. 25·5°, b.p. 196—197°/0·04 mm., and -octadecene, b.p. 202—203°/0·04 mm., (CPh₂·CH·[CH₂]₂) in which n=1 m.p. 108°, and 2 m.p. 113° (lit. 92—93°), aakk-tetraphenyl- Δ^a -n-decadeene, m.p. 113°, and aaox-tetraphenyl- Δ^a -n-octadene, m.p. 77°. H₂-Pd-BaSO₄ in Et.O or EtOH then yields aa-diphenyl-n-butane, b.p. 103—104°/0·05 mm., -octane, m.p. -5° to -4°, b.p. 143—145°/0·1 mm., and -hexadecane, m.p. 26°, b.p. 211—213°/0·1 mm., and aa-diphenyl-n-hexadecan-a-ol, m.p. 48—49°. n, d, and η are also recorded for the hydrocarbons.

Magnetic investigations of organic substances. XXI. Diradicaloid terphenyl derivatives. XXII. Diradicaloid quaterphenyl derivative. E. Muller and H. Pfanz (Ber., 1941, 74, [B], 1051—1074, 1075—1083).—XXI. p-0₆H₄Ph₂, p-0₆H₄Ph-COCl, and AlCl₃ at 190—200° give, after sublimation of the product, 4: 4"-di-p-phenylbenzoyl-p-terphenyl (20%), mp. 406—408°. This is finely powdered, stirred in molten C₁₀H₈—N₂, diluted with C₆H₆, and treated with p-LirC₆H₄Ph-Et₂O-N₂ at 25—30° [at 70° much (p-C₆H₄Ph), is formed], thus yielding 4: 4"-bis-(a-hydroxydi-p-xenylmethyl)-p-terphenyl (58%), sinters from ~140°, m.p. 165—175°, resolidifies, remelts at ~283—286° (violet-blue in H.SO₄), which with gaseous HCl in boiling C₄H₆—AcOH gives the dichloride (54%), sinters from 165°, m.p. 185°, resolidifies, remelts at ~294—296°, whence Cu-bronze or "mol." Ag in C₆H₆—N₂ at 80° yields 4: 4"-p-terphenyleuebisdi-p-xenylmethyl (I) (peroxide). Similarly are prepared 4: 4"-dibenzoyl-, m.p. 296—297°, 4: 4"-bis-(a-hydroxy-a-p-xenylbenzyl)-, sinters 100°, m.p. 150—245° (greenish-blue in conc. H.SO₄), 4: 4"-bis-(a-chloro-a-p-xenylbenzyl)- (prep. by gaseous HCl in, successively, MeOH-C₆H₆, AcCl-C₄H₆, and AcCl-C₆H₆—Et₂O), sinters from 270°, m.p. 282—283°, 4:4"-bis-a-hydroxybenzhydryl- (II), +C₆H₆, sinters 130°, m.p. ~160—165°, and solvent-free, m.p. 207·5—209·5° (reddish-violet in H₂SO₄), and 4: 4"-bis-a-chlorobenzhydryl-, m.p. 248—249°, -p-terphenyl and 4: 4"-p-terphenyleuebis-phenyl-p-xenylmethyl (III) (peroxide) and -di-henylmethyl (IV), sinters 135—140°, m.p. 165—200° (N₂) (di- or poly-meric peroxide). Structures are confirmed by absorption spectra of Ph₂, p-C₆H₄Pl₁, CPh₃·OH, p-C₆H₄(CPh₂·OH)₂ [max. at ~2640 ∧. (log ε 3·12)], (p-OH-CPh₂·C₆H₃·2) [max. at 2630 ∧. (log ε 4·52)], and (II) [max. at 2920 ∧. (log ε 4·7)] in dioxan; changes in Λ_{max}, are regular. χ_{mol}, are recorded for the diketones, dicarbinols, dichlorides, (I), (III), and (IV) in C₆H₆, a

XXII. 4: 4"'-p-Quaterphenylenebisdiphenylmethyl (V) is diradicaloid. By the methods described above $(p-p'-C_6H_4Ph)_2$ (VI) gives 4:4 -dibenzoyl- (49%), m.p. $357-359^\circ$, 4:4"-bis-a-hydroxybenz-hydryl- (VII), sinters $\sim 120^\circ$, m.p. $220-221^\circ$, and 4:4"-bis-a-chlorobenzhydryl-p-quaterphenyl, m.p. $263-264^\circ$, and (V). (VII) is green-sh-blue in H_2SO_4 and has an absorption max. at 3090 A. χ are recorded for (VI) and the products. (V) is paramagnetic, has heat of dissociation -7.3 ± 2.5 kg.-cal., μ_{eff} . 0.81 at 20° and 1.23 at 80° , and in C_8H_6 an apparent diradical content 15.5+3% at 20° and 19.0+3% at 80° . (V) is magnetically anisotropic. It is very highly electrified by friction; the charge is dissipated when the surrounding air is ionised by Ra.

pp'-Diphenyl diradical of the triphenylmethyl type. III. W. Theilacker (Ber., 1941, 74, [B], 1353—1359).—Polemical against Muller (cf. preceding abstract). Association of pp'-diradicals, $\sim_{\rm e} H_4 \cdot C_{\rm e} H_4 \cdot$, to dimerides is extremely improbable on steric grounds. Dissociation of such radicals (if formed) is more complicated than Müller assumes, since partial dissociation to ${}^{\rm e}[C_{\rm e} H_4]_4 \cdot$ gives a para-

magnetic mol. The solids are probably long-chain structures formed by polymerisation. R. S. C.

Syntheses of compounds related to vitamin-K. I. Synthesis of 2-methylnaphthalene. E. J. H. Chu and Z. I. Shen (J. Chinese Chem. Soc., 1943, 10, 119—113).—PhMe, (CH₂·CO)₂O, and AlCl₃ yield p-C₆H₄Me·CO·[CH₂]₂·CO₂H, m.p. 126·2—127·3°, reduced (Clemmensen) to p-C₆H₄Me·[CH₂]₃·CO₂H, m.p. 56°, convertible through the chloride by AlCl₃ in PhMe at room temp. into 1-keto-7-methyl-1: 2: 3: 4-tetrahydronaphthalene, m.p. 33°, and thence (Clemmensen) 6-methyl-1: 2: 3: 4-tetrahydronaphthalene, b.p. 94—96°/10 mm. (some 3: 4: 3': 4'-tetrahydro-7: 7'-dimethyl-1: 1'-dinaphthyl, m.p. 162—163°, is isolated); S at 215—230° then gives 2-C₁₀H₄Me (overall yield, 6%).

A. T. P.

Triterpenes. LXXXVI. Birch-tar oil.—Sec A., 1944, II, 165.

New route to polycyclic compounds having an angular methyl group. Synthesis of isochrysofluorene. N. N. Chatterjee and H. B. Roy (J. Indian Chem. Soc., 1943, 20, 329—330).—Et 2-methyl-cyclohexanone-2-carboxylate with 1- C_{10} H-·MgBr gave Et 1-anaphthyl-2-methylcyclohexanol-2-carboxylate, b.p. 220—225°/6 mm., dehydrated (SOCl₂- C_5 H₅N-Et₂O) to Et 1-a-naphthyl-2-methyl- Δ -cyclohexenc-2-carboxylate, b.p. 210—220°/6 mm., which was reduced (H₂, PtO₂, EtOH) very slowly to Et 1-a-naphthyl-2-methylcyclohexano-2-carboxylate, b.p. 208—210°/6 mm. The free acid, b.p. 235—245°/7 mm., was converted into its acid chloride, which with AlCl₃ gave methylhexahydroperibenzanthrone (I), b.p. 215—225°/4 mm. Reduction of (I) (HI and red P) gave methylhexahydroisochrysofluorene (not isolated pure), which with Se gave isochrysofluorene, m.p. 84° (picrate, m.p. 110—111°).

Perylene and its derivatives. LIV. Molecular compound of perylene with two molecules [four atoms] of iodine, $C_{20}H_{12}$, $2I_2$. M. Pestemer and E. Treiber (Ber., 1941, 74, [B], 964—975).—Dependence of the saturation conen. on the composition of the solid phase in the system, perylene (I)–I–C₀H₆ or –CHCl₃, shows the existence of a compound, $C_{20}H_{12}$, 4I, forming mixed crystals with excess of I, in the solid phase (cf. Brass et al., A., 1933, 57; 1939, II, 207). The solubilities and additivities of absorption spectra prove that the compound is $\not = 95\%$ dissociated in solution. Absorption spectra are recorded for (I) and I in C_7H_{16} and in C_9H_6 , and for Br, 3:9-and 3:10-dibromoperylene in cyclohexane.

Fission of amines by alkali metals. E. Stoelzel (Ber., 1941, 74, [B], 982—986).—Amines, NRR'2, are cleaved by K or K-Na in Bt₂O at room temp. to KR + KNR'2; products are identified by interaction with CO₂. Thus, NPh₂·CPh₃, NMe₂·CPh₃, or NH₂·CPh₃ gives CPh₃·CO₂H; NPh₃·CH₂Ph gives NPh₂·CO₂H and NHPh₂; benzhydryldimethylantine (prep. from CHPh₃Br by NHMe₂ and then Na-Hg in C₆H₆-EtOH), m.p. 72°, or NH₂·CHPh₂ gives CHPh₂·CO₂H.

R. S. C.

Analogues of pantothenic acid. IV. Aryl derivatives of pantoyltaurine. J. Barnett, D. J. Dupre, B. J. Holloway, and F. A. Robinson (J.C.S., 1944, 94—96).—CHPhCl·CH₂·NH₂,HCl (from OH·CHPh·CH₂·NH₂,HCl and SOCl₂) with Na₂SO₃ at 100° gives α-phenyltaurine (I), m.p. 258°. The Na salt of (I) with pantothenolactone gives the Na salt of β-(α γ'-dihydroxy-β'β'-dimethylbutyramido)-α-phenylethanesulphonic acid (II). β-Hydroxy-αα-diphenyl-propaldehyde, m.p. 137—139° (from CHPh₂·CHO and CH₂O), is converted into its cyanohydrin, which is hydrolysed to dl-α-hydroxy-ββ-diphenyl-y-butyrolactone, (III), two forms, m.p. 141° and 174°. (III) with the Na salt of taurine gives β-(αγ-dihydroxy-ββ-diphenyl-butyramido)ethanesulphonic acid (IV). Pantothenolactone gives mono-p-toluenesulphonylpantothenolactone, m.p. 114—115°, which with the Na salt of taurine gives the Na salt of β-(α-p-toluenesulphonyl-γ'-hydroxy-β'β'-dimethylbutyramido)ethanesulphonic acid (V). (II), (IV), and (V) showed no bacteriostatic activity in vitro or in vivo. Prep. of α-hydroxy-β-phenylisovaleric acid, m.p. 94—95°, is described.

Action of nitrous acid on 4-dimethylaminodiphenyl. J. Guiteras (Anal. Fts. Qutm., 1940, 36, 354—359).—The derivative, m.p. 112— 115° , of García Banus et al. (A., 1922, i, 333) is $p\text{-}C_{\circ}\text{H}_{1}\text{Ph}\cdot\text{NMe}\cdot\text{NO}$ (m.p. 115— 116°) (with HNO2 gives the 3-NO2-derivative); 3-nitro-4-dimethylaminodiphenyl (I), m.p. 70— 71° , is also formed. $p\text{-}C_{\circ}\text{H}_{4}\text{Ph}\cdot\text{NMe}_{2}$ or (I) with AcOH-HNO2 yields 3:5-dinitro-, m.p. 104— 105° , reduced by Na2S to 3-nitro-5-amino-[hydrochloride, m.p. 175— 180° , (decomp.)], by SnCl2 to 3:5-diamino-4-dimethylamino-, m.p. 113— 115° (oxidised by CrO_{3} to BzOH), and converted by HNO2 into 3:5-dinitro-4-nitrosomethylamino-diphenyl, m.p. 121— 122° , The nitration of bases by HNO2 is considered to take place through a quinonoid form, which has been isolated in the case of $(p\text{-NMe}_{2}\cdot\text{C}_{5}\text{H}_{4})_{2}$, and subsequent nitration. Quinol with $\text{C}_{5}\text{H}_{11}\cdot\text{O}\cdot\text{NO}$ gives quinhydrone and benzoquinone.

Intramolecular transformations among completely substituted benziminophenylthiocarbamides and thiobenzoylguanidines. H. Rivier and M. Langer (Helv. Chim. Acta, 1943, 26, 1722—1740).—PhCS·NPh-C(;NPh)·NPhR is converted by heat into NPh;CPh·NPh·CS·NPhR when R = Et. Change occurs in the reverse direction when R = Me. The mechanism of the reactions is discussed. Carbodiphenylimide (I) (trimeric) is converted by an

equimol. quantity of NHPhAlk at room temp. into 2-methylanilino-1:2:3:4:5:6-hexaphenyldihydroisomelamine,

NPh C(.NPh)·NPh C(NHPh)·NPhMe, m.p. 144—145°, and the corresponding Et compound, m.p. 149—150°. At ~110° the corresponding products are NN'N"-triphenyl-N-methyl- (II), m.p. 128—129° (hydrochloride, m.p. 216—217°), and -N-ethyl-, m.p. 89—90° (hydrochloride, m.p. 205—206°), -guanidine. Nascent (I) and NHPhMe give an isomeride (III), m.p. 115—116° (rapid), ~127° (slow heating) (hydrochloride, m.p. 205—206°), of (II) (II) or (III) is transformed by BzCl in alkali or CHCl₃-C₈H₈N into N"-benzoyl-NN'N"-triphenyl-N-methylguanidine, m.p. 194—195°; the corresponding Et compound has m.p. 109—110°. PhCSCl and (II) (Schotten-Baumann) give N"-thiobenzoyl-NN'N"-triphenyl-N-methylguanidine (IV), m.p. 182—183° (hydrochloride, decomp. ~160°: picrate, m.p. (IV), m.p. 182—183° (hydrochloride, decomp. ~160°; picrate, m.p. 188—189°), also obtained from chlorodiphenylmethylamidine and PhCS·NHPh in CHCl₂ containing C₅H₅N. N''-Thiobenzoyl-NN'N''-triphenyl-N-ethylguanidine (V), m.p. 130·5—131°, and its hydrochloride are described. Since either base is readily regenerated from its hydrochloride there is no transformation under the influence of HCl under these conditions. Addition of NPh CPhCl in CHCl₃ (free under these conditions. Addition of NPh:CPhCl in CHCl₃ (free from EtOH) to a solution of NPh:C(SH)·NPhMe in CHCl₃ containing C₅H₅N at room temp. gives N'-N-phenylbenzimino-N'N'-diphenyl-N''-methylthiocarbamide (VI) (+C₆H₆ or +Et₂O), m.p. 96-98°; the corresponding Et compound (VII) has m.p. 131—132° (also +lC₆H₈, m.p. 89—91°). In the initial absence of C₅H₅N these reactants give isomerides of (VI) and (VII) (as red hydrochlorides); C₅H₅N then gives (IV) and (VII) [or (NPh:CPh).S] respectively. NPh:CCl·NPhMe and NPh:CPh·SNa give (VI). Chloro-NN'-diphenyl-N-ethylamidine b.p. 196—200°/10 mm., m.p. 58—59°, under similar conditions affords (VII). (VI) is also obtained from NPh:CPh·NHPh and NPhMe·CSCl in CHCl₃ (free from EtOH) at 30—35°; with the crude chloride in boiling CHCl₃ the product is triphenyldimethyldithiobiuret, m.p. 204—205°. (VII) is obtained analogously from NPhEt·CSCl. (VI) and (VII) afford yellow hydrochlorides from which the bases are readily regenerated by C₅H₅N, showing that under the experimental conditions there is no transshowing that under the experimental conditions there is no transshowing that under the experimental conditions there is no transformation under the influence of HCl. (IV) is unchanged by boiling C_gH_g whereas under these conditions (V) is partly converted into (VII). (VI) remains unchanged in boiling C_gH_g whereas at 180—200° it is converted into (IV). N'-N-Phenylbenzimino-N'-phenylthiocarbamyl chloride, m.p. 112—113°, is prepared from NPh:CPh·NHPh and CSCl₂ in CHCl₃. M.p. are corr. H. W.

ann-a-Hydroxylamino-y-oximino-a-di-p-amsyl- Δ^{δ} -pentene, m.p. 156—157° (corr.).—See C., 1944, 64.

Synthesis of chloro-ortho-esters of silicic acid. J. N. Volnov and A. Mischelevitsch $(J.\ Gen.\ Chem.\ Russ.,\ 1943,\ 13,\ 213-216)$.—The following esters were obtained from SiCl₄ and the appropriate OHcompound in Et.O: trichlorothymoxysilan, b.p. 122—124°/23 mm., dichlorodithymoxysilan, b.p. 195—200°/3 mm., chlorotrithymoxysilan, b.p. 251—255°/7—8 mm. trichlorocarvacryloxysilan, b.p. 108—111°/ 4 mm., and trichloro-o-anisyloxysilan, b.p. 134-136°/30 mm.

Dipole moments of friedelin, cerin, isomerides of friedelinol, and isomerides of γ -(a-naphthyl)-a-chloro- Δ^a -propene.—See A., 1944, I,

Syntheses of 2:4:6-trialkylresorcinols from products of the Nidhone process. I. 2:4:6-Triethylresorcinol. S. D. Limaye (Rasāyanam, 1943, 1, 246—250).—2:1:3-C₆H₃Et(OH), gives (Ac.O-NaOAc at 155—160°) its diacetate, m.p. 70—71°, which with AlCl₃ at 150° yields 4: 6-diacetyl-2-ethylresorcinol, m.p. 110°, reduced (Clemmensen) to 2: 4: 6-triethylresorcinol (I), m.p. 85°. 2: 4: 1: 3-C₆H₂Et₂(OH)₂ with AcOH–ZnCl₂ at 140° gives 6-acetyl-2: 4-diethylresorcinol, m.p. 115°, giving (I) on reduction. 4:6:1:3-C₆H₂Ac₂(OH)₂ with AcCl and AlCl₃ at 110° gives 2: 4: 6-triacetylresorcinol, m.p. 136° also reduced to (I) 136°, also reduced to (I).

Migration of radicals during a Grignard reaction. αα-Di-p-hydroxyphenyl-ββ-diethylethylene. Z. Foldi and I. Demjen (Ber., 1941, 74, [B], 930—934).—Anisoin and SOCl₂ at 50° give chlorodeoxyanisoin (I), m.p. 80—82°, which with MgEtBr gives (p-OMe·C₆H₄)₂CH·CEt₂·OH (II), m.p. 84—85°, b.p. 164—167°/~0·01 mm., converted by POCl₃ alone at room temp. into (p-OMe·C₆H₄)₂CiCEt₂ (III), m.p. 90—92°, or by POCl₃ in PhMe at 100° into (p-OMe·C₆H₄·CEt¹)₂, m.p. 121—123° (cf. Peteri, A., 1940, II, 306; von Wessely et al., Monatsh., 1940, 73, 132). Structures are proved as follows. CrO₃-AcOH at room temp. and then 100° oxidises (I) to anisil; with MgMeI, (II) gives 80—85% of CH₄, and with CrO₃-AcOH gives (p-OMe·C₆H₄)₂CO; KOH-EtOH at 200° converts (III) into (p-OH·C₆H₄)₄CCEt₅, m.p. 170—173°, and H₂-Pd-C in EtOH gives (p-OMe·C₆H₄)₄CH·CHEt₆, b.p. 115—124°/~0·01 mm. With a little H₂SO₄ and distillation at ~0·01 mm., II) yields (III). PBr₅ converts (III) into an oily bromide, which with boiling KOH-EtOH yields (III). R. S. C. Natural stilbenes. III. Synthesis of resveratrole. E. Spath and

Natural stilbenes. III. Synthesis of resveratrole. E. Spath and K. Kromp. IV. Synthesis of pinosylvin. E. Spath and F. Liebherr. V. Synthesis of pinosylvin monomethyl ether. E. Spath

and K. Kromp (Ber., 1941, 74, [B], 867—869, 869—872, 1424—1428). --III. $3:5:1-(OH)_2C_6H_3\cdot CHO$ (I) and $p-OH\cdot C_6H_4\cdot CO_6$ Na in Ac_2O -III. 3:5:1-(OH)₂C₈H₃·CHO (I) and p-OH·C₈H₄·CO₂Na in Ac₂O at 160° give, after keeping in aq. NaOH-N₂ at room temp., 3:5-dihydroxy-a-p-hydroxyphenylcinnamic acid (46%), m.p. 284—286° (decomp.), decarboxylated to resveratrole (Takaoka, A., 1940, II, 328) (CH₂N₂ gives the Me₃ ether = pterostilbene) by Cu-bronze in quinoline at 220° (4 min.).

IV. 3:5:1-(OAc)₂C₈H₃·CO₂H and SOCl, at 60—70° give the acid chloride, m.p. 89·5—90°, converted by H₂-Pd-BaSO₄ in xylene at 160° into (I), m.p. 161—162° (decomp.) (lit., 145—146°) (diacetate, m.p. 53·5—54·5°). CH₂Ph·CO₂Na (II) and (I) in Ac₂O at 100° and then 160° give 3:5-diacetoxy-a-bhenylcinnamic acid (46°%).

100° and then 160° give 3: 5-diacetoxy-a-phenylcinnamic acid (46%), m.p. 197.5—198.5°, converted by Cu-bronze in quinoline at 260° and then 240° into an oil which with boiling 5% aq. NaOH-N.

gives pinosylvin.

V. 3:5:1-(OH)₂C₆H₃·CO₂Me and Me₂SO₄ in MeOH-NaOMe at 20° and then the b.p. give 3-hydroxy-n-methoxybenzoic acid (36%), m.p. 203—204° (and a small amount of the Me₂ ether ester), conm.p. 203—204° (and a small amount of the Me₂ ether ester), converted by boiling AcCl into the acetate, m.p. 151·5—152·5°, which with SOCl₂ at 75° gives 3-acetoxy-5-methoxybenzoyl chloride. H₂-Pd-BaSO₄ in xylene at 160° then gives 3 : 5 : 1-OH·C₈H₃(OMe)·CHO, m.p. 130—131°, which with (II) in Ac₂O at 160° and then aq. KOH-N₂ at 20° gives 3-hydroxy-5-methoxy-a-phenylcinnamic acid (III), m.p. 200—201°, and a small amount of an isomeric acid (IV), m.p. 181—182°. With Cu-bronze in quinoline at 240° and then 220°. (III) gives an oil, isomerised by short heating at 350°/vac 220°, (III) gives an oil, isomerised by short heating at 350°/vac. (not other methods) into pinosylvin Me ether (67% yield), m.p. 121.5—122°, which is obtained directly by decarboxylation of (IV).

Structure of hydroxyazo-dyes according to their absorption spectra. Spectroscopic analysis of acyloxyazo-compounds. P. Ramart-Lucas (Compt. rend., 1942, 215, 468—470).—Spectra of (:NPh)₂. p-OAc·C₀H₄·N₂Ph, p-NPhAc·N:C₀H₄·O, and 4:1:3-OAc·C₀H₃Me·N₂Ph are recorded; the spectrum of the O-Ac derivatives is very close to that of (:NPh)_n. The structure of acyloxyazo-compound is therefore determinable from their spectra.

Action of montmorillonite clays on vitamin-A. Mesomerism in the carotenoid group. P. Mcunier (Compt. rend., 1942, 215, 470—473).—Montmorillonite clays become blue by the adsorption of vitamin-A from non-polar solvents (C_6H_6 , light petroleum, cyclohexane, and even CHCl₃). Other clays behave similarly after treatment with HCl or H_2SO_4 . The colour is very persistent, particularly if the clay is soaked in the solvent. It can easily be removed by a trace of a polar solvent (EtOH, COMe₂, Et₂O). If the latter is removed and a polar solvent used again, the blue colour the latter is removed and a polar solvent used again, the blue colour reappears. It is considered that mesomerism between the ψ -quinonoid and ψ -benzenoid forms is caused by the reaction of widely differing reagents, all of which have incomplete octets, on carotenoids in non-polar media. A trace of polar solvent causes the disappearance of mesomerism (and the colour reaction in consequence) by a mutual attraction of the dipoles; the mol. -A is detached in one of its forms. The colour with the clays is thus brought into line with that given by SbCl3.

Contact synthesis of o-methylbenzyl alcohol from crotonaldehyde and ethyl alcohol. J. A. Gorin and K. N. Tscharskaja (J. Gen. Chem. Russ., 1943, 13, 131—135).—A mixture of CHMe: CH-CHO and EtOH passed over the dehydrating component of Lebedev's catalyst (A., 1934, 168) at 350° gives o-C₆H₄Me·CH₂·OH in 5% yield.

Phenol-formaldehyde resins. II. Quinonemethide as intermediate product in the hardening of phenol resins. V. Reactions of p-hydroxymethyl groups during hardening. VI. Oxido-reduction of p-hydroxymethyl groups during hardening. VI. Oxido-reduction processes during heating of polymeric quinonemethides. K. Hultzsch (Ber., 1941, 74, [B], 898—904, 1533—1538, 1539—1543).—II. Heating 2:3:5:1-OH·C₈H₂Me₂·CH₂·OH (I) at 175° in CO. gives H₂O, an oil, and a resin containing a di- or tri-meride, m.p. 200° (II), of 1:3:5:2-CH_a.C₈H_a.Me₂.O and much (2:3:5:1-OH·C₆H₂Me₂·CH₂)₈O (III), m.p. 100° (diacetate, m.p. 85:5°). At 190—200° (III) gives (II) and at 225° gives (2:3:5:1-OH·C₆H₂Me₉)₂CH₂ (IV) (does not condense with paraformaldehyde at 200—240°). Heating (II) to 240° in CO₂ causes darkening and formation of (2:3:5:1-OH·C₆H₂Me₂·CH₂)₂ (V), m.p. 168° (diacetate, m.p. 124°; Br₄-derivative, m.p. 258°), and a tetracyclic resin, but no H.O or CH₂O. Heating (I) rapidly to 235° in CO. gives H₂O, CH₂O, (IV), (V), and 2:3:5:1-OH·C₆H₃Mc₂·CHO. Quinonemethides are considered to be intermediates in the hardening of (I) etc., reacting by disproportionation and diene addition. portionation and diene addition.

portionation and diene addition.

V. Hardening of 4:3:5:1-OH·C₆H₂Me₂·CH₂·OH (VI) proceeds similarly to that of (I) by way of the quinonemethide, but is slower and requires a higher temp.; it is, however, very rapid if other mols. have free p-positions. 68% of (VI), m.p. 105°, with very little (4:3:5:1-OH·C₆H₂Me₂)₂CH₂ (VII) is obtained from 1 mol. each of 2:6:1-C₆H₃Me₂·OH (VIII), 30% CH₂O, and 10% NaOH in the cold. (VI) is partly unchanged by distillation at 1 mm, but ~50% is resinified, giving, inter alia, (VII), m.p. 175°. Heating (VI) at 230—240° in CO₂ gives H₂O, CH₂O (a little), 4:3:5:1-OH·C₆H₂Mc₂·CHO, mesitol (a trace), (4:3:5:1-OH·C₆H₂Me₂·CH₂)₂ (4:3:5:1-OH·C₆H₂Me₂·CH²)₂ (IX), an isomeride, m.p. 224—226°

[gives the known (4:3:5:1-OH·C₆H₂Me₂·CHBr)₂, m.p. 178—186° [decomp.)], of (IX), and a resin (mol. wt. 584) (cf. Adler et al., A.,

1943, II, 130)

VI. Hardening of o-hydroxybenzyl alcohols containing no free o- or p-position is held to proceed entirely by way of o-quinonemethides, which dimerise to coumaran derivatives and thence, by oxidation and reduction, give all the products hitherto isolated. Similarly p-hydroxybenzyl alcohols give p-quinonemethides, which dimerise to stilbene derivatives, whence all isolated products are derived by oxidation and reduction. Isolation of mesitol after heating (I) is described. 2-Hydroxy-5-cyclohexyl-3-methylbenzyl also usescribed. 2-Hydroxy-5-cyclohexyl-3-methylbenzyl alcohol gives 4-cyclohexyl-2: 6-dimethylphenol, m.p. 78—79°, also obtained from (VIII) by cyclohexanol and 72°, H_2SO_4 at 60—70°; $2:3:5:1\text{-OH-}C_6H_3\text{MeBu}^y\text{-CH}_2\text{-OH}$ gives $2:6\text{-}dimethyl\text{-}4\text{-}tert\text{--}butyl-phenol}$, m.p. 81— 82° , also obtained from (VIII) by BuyOH and 72% H_2SO_4 at 60—70°. R. S. C.

Cyclic compounds containing sulphur,—See A., 1944, II, 154.

9:10-Dialkyl-9:10-dihydrophenanthrenediols and related com-9:10-Dialkyl-9:10-dihydrophenanthrenediols and related compounds. E. J. H. Chu and Z. I. Shen (J. Chinese Chem. Soc., 1943, 10, 116—118).—Phenanthraquinone and MgAlkBr give 9:10-din-heptyl- (64%), m.p. 93·3—94·3°, -di-n-heptyl- (80%), m.p. 78·6—78·8°, and -di-n-octyl-9:10-dihydrophenanthrene-9:10-diol (69%), m.p. 92·3—93·2°, which yield oils on attempted rearrangement. The 9:10-Bu*a analogue (78%), m.p. 134·5—136·5°, is rearranged by boiling AcOH-I to 10:10-di-n-butyl-9-phenanthrone (94%), m.p. 71·8—72·8°, reduced (Clemmensen) to 9:9-di-n-butyl-9:10-dihydro-bhenauthrene (10%) m.p. 76° (cf. Bachmann et al., A., 1932, 745).

Mercapturic acids. IV. Synthesis of p-fluorophenyl-l-cysteine and its conversion into p-fluorophenylmercapturic acid in vitro and in vivo. S. H. Zbarsky and L. Young (J. Biol. Chem., 1944, 152, 599—602).—Cysteine Cu' mercaptide (A., 1944, II, 76) and p-C₄H₄F·N₂HSO₄ at 0°, then at 60—70°, afford, after purification with Sn-aq. HCl at 100° (bath), p-fluorophenyl-1-cysteine (I), decomp. 180—183°, [a]²⁵ +13° in 0·1N-NaOH. Successive treatment of (I) with 0.11-NaOH and Ac2O at 0° gives p-fluorophenylmercapturic acid, m.p. 158—159°, [a]_D —20° in EtOH, which is isolated (14—15% conversion) from the urine of rats fed on a diet containing (I). A. T. F

1:1-Diphenylindane and its derivatives. 1:1-Diphenyl-3-mdanyl- and -3-indenyl-acetic acids. P. E. Gagnon, L. Gravel, and L. P. Amiot (Canad. J. Res., 1944, 22, B, 32—44).—1:1-Diphenylindane (I) (improved prep.) with Br (1 mol.) in boiling CS2 gives the 3-Br-derivative (II), m.p. 87—88°, converted by MeOH, EtOH, piperidine, p-toluidine, and NH2Ph into 3-methoxy- (III), m.p. 101—102°, 3-ethoxy-, m.p. 70—71°, 3-piperidino-, m.p. 108—109° (hydrochloride, m.p. 213—215°), and 3-anilino-1:1-diphenylindane, m.p. 125—126° (hydrochloride, m.p. 213—219°), and 3-anilino-1:1-diphenylindane, m.p. 125—126° (hydrochloride, m.p. 213—214°), respectively. With aq. KOH or K2C03, (II) gives 1:1-diphenylindene (IV), m.p. 90—91°, and a little di-(1:1-diphenyl-3-indanyl) ether, m.p. 192—195°, while (III) and boiling 48% HBr yields (IV). (II) with CHNa(CO2Et), m boiling PhMe gives Et 1:1-diphenyl-3-indanylmalonate, b.p. 268°/1 mm.; the malonic acid, m.p. 160° (Ag salt; di-p-nitrobenzyl ester, m.p. 73—75°), at 170—180° gives 1:1-diphenyl-3-indanylacetic acid (V), m.p. 173—174° [Ag salt; p-nitrobenzyl ester, m.p. 172—173°; anide (VI), m.p. 181—182°; anilide, m.p. 171—172°]. Boiling SOCl2 and (VI) yield 1:1-diphenyl-3-indanylacetonitrile, m.p. 120—191° 1:1-Diphenylindane and its derivatives. 1:1-Diphenyl-3-SOCI₂ and (**VI**) yield 1: 1-diphenyl-3-indanylaceiontirile, m.p. 120—121°, reduced (Na, EtOH) to β-1: 1-diphenyl-3-indanylethylamine (hydrochloride, m.p. 180—185°). (**VI**) and Et₂O-EtOH-HCl give hydrochloride, m.p. 180—185°). (VI) and Et₂O-EtOH-HCl give hydrochloride, m.p. 191—192°. 3:3-Diphenylindanone with CH₁Br·CO₂Et (Reformatsky) gives Et 3-hydroxy-1:1-diphenyl-3-indanylacetate, m.p. 93—94°, dehydrated (HCl in PhMe) to Et 1:1-diphenyl-3-indenylacetate (VII), m.p. 80—81° [free acid (VIII), m.p. 178—179° (Ag salt; p-nitrobenzyl ester, m.p. 142—143°)]. Reduction (H₂, PtO₂, AcOH) of (VIII) [or (VII) and subsequent hydrolysis] gives (V). hydrolysis] gives (V).

^{ααα'α'}-Ditetramethyleneadipic [ethylene- $\alpha\beta$ -biscyclopentane-1:1'-dicarboxylic] acid. Ring-contraction by oxidation. C. Mannich (βετ., 1941, 74, [B], 1007—1014).—cycloPentanespiro-1': 2-cyclo-Pentanonespiro-3: 2 -cyclohexanone (A., 1943, II, 373) with 30% (H.O.) in ACM circumstations with a superscript (A.) in ACM circumstations and the superscript (A.) in ACM circumstations are superscript (A.) in ACM circumstations and the superscript (A.) in ACM circumstations are superscript (A.) in AC H₁O₂ in AcOH gives exothermally (cooling) aa-a a'-ditetramethylene-dipic acid (I) (87%), m.p. 220°, sublimes 205—210°, the structure which follows from proof that it is symmetrical (below) and from the facts that it (i) resists dehydrogenation by Pt-asbestos at 300-500°, Br at 165° (partial decomp.; complete at 195°), or Se at 200° (partial decomp.) 300° [gives a small amount of 1-β-cyclopentylethylcyclopentane-icarboxylic acid, m.p. 35—36° (amorphous Ag salt), and CO₂], (i) is partly decomposed but not decarboxylated by Cu-bronze in acridine-N₂ at 300°, (iii) is 50% decomposed and 50% unchanged by Br and red P at 100°, (iv) does not undergo condensation to a setting and (iv) in boiling AcO gives a dimeric anhydride (II) by Br and red P at 100°, (iv) does not undergo condensation to a setone, and (v) in boiling Ac₂O gives a dimeric anhydride (II), m.p. 187° [hydrolysed to (I) by alkali but unaffected by boiling MeOH]. With boiling SOCl₂-C₆H₆ and then NH₃-MeOH at 0°, I gives the diamide (77%), m.p. 245—246°. With CH₂·CH·CH₂·NH₂ (III) in C₆H₆ at 45°, (II) gives the mono- (IV) (~50%), dimorphic, m.p. 84° (resolidifies, remelts 103°) and 103°, and the di-allylamide

(V), m.p. 205°. The mono- (VI) (~50%), m.p. 93°, and di-n-propylamide (VII), m.p. 218°, are similarly prepared. The N-propyl-N'allyldiamide, m.p. 213°, is prepared from (IV) by SOCl₂ at 40° and then NH₂Pra-EtOH at 0° or from (VI) by SOCl₂ and then (III); a mixture of (V) and (VII) shows a sharp m.p. (214—215°), so that this proof of symmetry is invalid. Me₂SO₄-NaOH converts (I) into the Me₂ ester (VIII), m.p. 88°; HCl-EtOH at room temp. gives the Et₂ ester, b.p. 189—190°/4 mm. The Na, salt of (I) with CH₂PhC1 in boiling MeOH gives the (CH₂Ph)₂ ester (IX), m.p. 91°. Boiling KOH-90% MeOH converts (VIII) into the Me H ester (X) (50%), m.p. 85°, which with boiling SOCl₂-C₆H₆ and then NH₃Ph-COMe₂ gives Me aaa a-ditetramethyleneadipamilate, m.p. 115° [anilic acid (XI), m.p. 163°]. With Na and a little H₃O in CH₂Ph·OH at 100°, (IX) gives the CH₂Ph·OH] [anilide, m.p. 96°, gives (XI) by mild hydrolysis], which with CH₂N₂ gives the CH₂Ph Me ester (XII), m.p. 39°. (XII) is also obtained from the K salt of (X) by CH₂PhCl in boiling MeOH and is converted into (X) by H₂-Pd-C in MeOH. in boiling MeOH and is converted into (X) by H₂-Pd-C in MeOH. The sparingly sol. Ca salt of (I) at 470—550° gives cyclopentane-spiro-1: 2'-cyclopentanone, b.p. ~165°/13 mm. (semicarbazone, m.p. 211°, absorbs no H. in presence of Pd-C). R. S. C.

Aceconitic acid. C. Grundmann (Annalen, 1943, 555, 77-80).-Aceconitic acid, m.p. 220—221° (corr.) [Me, ester, m.p. 56—57° (corr.); very sparingly sol. Ba salt], obtained by Baeyer (Annalen, 1865, 165, 308) by the action of Na on CH2Br CO2Et, is identified as trans-cyclopropane-1:2:3-tricarboxylic acid. Lower yields are obtained from CH2Cl·CO2Et.

Optically active chromium lakes. P. Pfeiffer and S. Saure (Ber., 1941, 74, [B], 935—941).—For hexaco-valent, tetrahedral com-/0>R M-NSR' N-

pounds (A), there are 6 optically active cisand 4 optically active trans-isomerides, plus 5 corresponding racemates. However, if R = R', there are only two active (+ its racemate) forms and one, inactive trans-form. The Cr compounds described below were obtained in on. The Na salt [(I), X = Na] with H.SO.

only one configuration. in aq. MeOH gives the yellowish-brown complex [(I), X = H],

which gives no cryst. quinine salt but with CHPhMe·NH, gives the dl-base dl-acid salt and with the d-base gives a salt, [M]p the di-base di-acid salt and with the d-base gives a salt, $[M]_D$ -2196° in 50% EtOH, whence dil. H_2SO_4 yields the l-complex [(II), X = H], $a \sim 0$ in 50% EtOH, $[M]_D -2196^\circ$ as Na salt in 50% EtOH. The Na salt [(II), X = Na] gives similarly the substance [(II), X = H] which with strychnine yields salts, $[M]_D + 820^\circ$ and -1438° , and thence substances $[(II), X = H], [M]_D$ (as Na salt) $+1109^\circ$ and -693° , respectively, in 50% EtOH. R. S. C.

Preparation of retinene in vitro.—See A., 1943, III, 405.

Alkylation by olefines in presence of aluminium chloride. II. S. I. Lurie and A. J. Golovatscheva (*J. Gen. Chem. Russ.*, 1943, 13, 195—201).—Butylation of COMeR (R = Ph, $2:4\text{-}C_6H_3\text{Me}_2$, 2:5- and $2(4):4(2)\text{-}OMe^{\cdot}C_6H_3\text{Me}$) by means of $\text{CH}_2^{\cdot}\text{CMe}_2$ in CS_2 in presence of AlCl_3 does not take place, suggesting that the CO group instation the solutions of the solution of th inactivates the mol.

Ring enlargement in cyclanes. Methylcyclopentane, cyclo-heptane, and indane series. (Mlle.) B. Tchoubar (Compt. rend., 1942, 224-225).-2-Methylcyclopentanone is converted into its cyanohydrin, b.p. 134—135°/35 mm., which is hydrogenated (PtO.) to 2-methyl-1-aminomethylcyclopentanol, b.p. 105°/15 mm. (hydrochloride, m.p. 157°). This is deaminated (NaNO₂-dil. AcOH) exclusively to 3-methylcyclohexanone (semicarbazone, m.p. 178°). Rupture of the ring occurs only between $C_{(1)}$ and $C_{(2)}$. 3-Methyl-cyclopentanone cyanohydrin, b.p. $122-124^{\circ}/19$ mm., is hydrogenated cyclopentanone cyanonyarm, b.p. 122—124 /19 mm., is hydrogenated to 3-methyl-1-aminomethylcyclopentanol, b.p. 115°/20 mm., deaminated to 3- and 4-methylcyclohexanone (semicarbazones, m.p. 178° and 198°, respectively), fission occurring mainly between C·C on the substituted side of the ring. cycloHeptanone cyanohydrin, b.p. 138—139°/15 mm., affords 1-aminomethylcycloheptanol, b.p. 14° (?)/ 18 mm. (hydrochloride, m.p. 185°), deaminated to cyclooctanone, b.p. 90°/12 mm. (semicarbazone, m.p. 164—165°). 2-Indanone is converted through the H sulphite into the cyanohydrin, m.p. 121°, and thence into the NH₂-alcohol, which is deaminated directly to 2-keto-1:2:3:4-tetrahydronaphthalene (semicarbazone, m.p. 215°).

Syntheses in the santonin series. I. 4-Alkyl-Δ²:5-cyclohexadienones. II. 2-Keto-1: 10-dimethyl-Δ¹(9):3-hexahydronaphthalene. III. Santonin. (Miss) K. Paranjape, N. L. Phalnikar, B. V. Bhide, and K. S. Nargund (Rasāyanam, 1943, 1, 233—237, 237—243, 243—245).—I. Et Δα-nonenoate, HCO-Et, and Na in Et₂O give Et γ-formyl-Δα-nonenoate (I), b.p. 120°/8 mm. (ρ-nitrophenyl-hydrazone, m.p. 113°), oxidised (cold aq. KMnO₄ + MgSO₄) to n-amylmalonic acid (II). (I) with CH₂(CO₂H)₂ in C₅H₅N-piperidine at 100° (bath) gives Et H γ-n-amyl-Δαβ-pentadiene-αz-dicarboxylate, b.p. 130°/4 mm., and thence (alkali) the free acid (III). With Ba(OH)₂ at 180° (III) gives 4-n-amyl-Δαβ-pentadiene-αz-dicarboxylate, b.p. 194°/713 mm. (oxime, m.p. 48°; p-nitrophenylhydrazone, m.p. 99°), oxidised to (II) and converted by conc. HCl at room temp. (21 days) into ρ-n-amylphenol. Similarly Et hexenoate gives Et γ-formyl-Δαβ-pentadiene-αz-dicarboxylate, b.p. 80°/8 mm. (free acid), and 4-ethyl-Δβ-pentadiene-αz-dicarboxylate, b.p. 80°/8 mm. (free acid), and 4-ethyl-Δβ-5-cyclohexadienone (IV), b.p. 160°/713 mm. (p-nitrophenylhydrazone, m.p. 83°). (IV) with funing HCl followed by Br gives 4: 2: 3: 6: 1-C₈HEtBr₃·OH, m.p. 57—58°.

II. 2-Formylcyclohexanone (V), CH₂(CO₂H)₂, and C₅H₅N-piperidine give β-2-ketocyclohexaloxylic acid, two forms, probably geometric isomerides, b.p. 120°/20 mm. (VI) (semicarbazone, m.p. 195°), and b.p. 200 / 20 mm. (VII) (semicarbazone, m.p. 225°; Me ester, b.p. 210°/40 mm., and its semicarbazone, m.p. 195°), and b.p. 200 / 20 mm. (VII) (semicarbazone, m.p. 225°). Oxidation (KMnO₄) of (VI) or (VII) gives cyclohexanone-2-carboxylic acid. The Me ester of (VI) with CH₂Br·CO₂Et gives (Reformatsky) a OH-ester, b.p. 144°/30 mm.; hydrolysis (EtOH-KOH) and dehydration (Aco) gives (poor yield) β-2-carboxymethylenecyclohexylacrylic acid, m.p. 86°, which gives a trace of (?) (VIII) (below) on distillation with Ba(OH)₂.

II. 2-Formylcyclohexanone (V), CH₂(CO₂H)₂, and C₅H₅N-piperidine give β-2-ketocyclohexylacrylic acid, two forms, probably geometric isomerides, b.p. 120°/20 mm. (VI) (semicarbazone, m.p. 185°; Me ester, b.p. 100°/40 mm., and its semicarbazone, m.p. 195°), and b.p. 200 / 20 mm. (VII) (semicarbazone, m.p. 225°; Me ester, b.p. 210°/40 mm., and its semicarbazone, m.p. 225°). Oxidation (KMnO₄) of (VI) or (VII) gives cyclohexanone-2-carboxylic acid. The Me ester of (VI) with CH₂Br·CO₂Et gives (Reformatsky) a OH-ester, b.p. 144°/30 mm.; hydrolysis (EtOH-KOH) and dehydration (Ac,O) gives (poor yield) β-2-carboxymethylenecyclohexylacrylic acid, m.p. 86°, which gives a trace of (?) (VIII) (below) on distillation with Ba(OH)₂. (V) with COMe₂ and NaOEt in EtOH gives 2-keto-Δ^{1(9)·3}-hexahydronaphthalene (VIII), b.p. 105°/25 mm. (semicarbazone, m.p. 115°; oxime, m.p. 72°). With boiling conc. HCl (VIII) gives 5:6:7:8-tetrahydro-2-naphthol, m.p. 62°. (V) with COMeEt gives 2-keto-1-methyl-Δ^{1(9)·3}-hexahydronaphthalene, b.p. 85°/5 mm. (oxime, m.p. 52°; p-nitrophenylhydrazone, m.p. 92°), which with HCl gives 1-methyl-5:6:7:8-tetrahydro-2-naphthol, m.p. 78° (benzoate, m.p. 91°). (V) (Na salt) with McI in C₆H₆ at 60° gives 2-formyl-2-methylcyclohexanone (IX), which with COMe₂ gives 2-keto-10-methyl-Δ^{1(9)·3}-hexahydronaphthalene, b.p. 70°/5 mm. (oxime, m.p. 55°), converted (HCl) into 4-methyl-5:6:7:8-tetrahydro-2-naphthol, m.p. 70° (benzoate, m.p. 89°), also prepared from 1-keto-7-methoxy-5-methyl:2:3:4-tetrahydronaphthalene (Ruzicka et al., A., 1940, II, 184). (IX) with COMeEt gives 2-keto-1:10-dimethyl-Δ^{1(9)·3}-hexahydronaphthalene, b.p. 60°/5 mm. (oxime, m.p. 48°), which with HCl gives 2-keto-1:10-dimethyl-Δ^{1(9)·3}-hexahydronaphthalene, b.p. 60°/5 mm. (oxime, m.p. 48°), which with HCl gives 2-keto-1:10-dimethyl-Δ^{1(9)·3}-hexahydronaphthalene, b.p. 60°/5 mm. (oxime, m.p. 48°), which with HCl gives 2-keto-1:10-dimethyl-Δ^{1(9)·3}-hexahydronaphtholene, b.p. 60°/5 mm. (oxime, m.p. 48°), which with HCl gi

III. The product from 3-chloro- Δ^2 -cyclohexenone and CMeNa(CO₂Et)₂ in C₈H₆ is hydrolysed (aq. EtOH-H₂SO₄) to α -(2-hydroxy-3-ketocyclohexyl)propiolactone (**X**) (semicarbazone, loses H₂O at 100°, m.p. 150°), which with HCO₂Et and Na in Et₂O gives the 4-CHO-derivative (**XI**) (semicarbazone, m.p. 199°) of (**X**). The Na derivative of (**XI**) with MeI in C₆H₆ at 60° affords the 4-Me derivative of (**XI**), which with COMeEt and NaOEt gives santonin (**XII**), m.p. 171° (semicarbazone, m.p. 203°), identical (mixed m.p.) with natural (**XII**). The synthetic (**XII**) was optically active (lævorotatory); this is claimed to be the first example of an abs. asymmetric synthesis.

Syntheses in the naphthalene group. IV. Cyclisation of phenylbenzylpyrotartaric [α-(α'β'-diphenylethyl)succinic] acid. W. Borsche and F. Sinn (Annalen, 1943, 555, 70—77; cf. A., 1937, II, 18).—Cyclisation of α-(α'β'-diphenylvinyl)succinic acid (I) [prep. from COPh·CH₂Ph and (CH₂·CO₂Et)₂ described] gives mixtures of compounds from which only very small amounts of individuals can be isolated. (I) is reduced by Nα-Hg at 100° to a mixture (II) of isomerides (racemates of the potentially active and meso-forms) from which α-(α'β'-diphenylethyl)succinic acid (III), m.p. 186—187°, is readily isolated. It is also obtained by hydrogenation (Pd-C in EtOH) of the Et₂ ester of (I) and hydrolysis of the product. (III) gives (CH₂N₂) a Me₂ ester and is converted by boiling AcCl into an anhydride (IV), m.p. 102—103°, re-converted by KOH-MeOH into (III). Treatment of (III) with NaOAc and boiling AcCl affords predominatingly an anhydride (V), m.p. 133—134°, hydrolysed (KOH-MeOH) to iso-α'β'-diphenylethylsuccinic acid (VI), m.p. 150—151°, or (+1 C₂H₂), m.p. 96° (decomp.) and 151° after resolidification. (VI) and CH₂N₂ give a Me₂ ester, m.p. 114-5—115-5°, also obtained from (V) and boiling MeOH containing fuming HCl. I-Keto-3-phenyl-1: 2: 3: 4-tetrahydro-2-naphthylacetic acid (VII), m.p. 171° [oxime, m.p. 151°, softens ~135°; non-cryst. Me ester (2: 4-dinitrophenylhydrazone, m.p. 169—171°)], is obtained from (III) and AlCl₃ with an isomeride, m.p. 204—205°) (previous sintering)], from (IV) and AlCl₃ with an isomeride, m.p. 204—205°) (previous sintering)], from (IV) and AlCl₃ with an isomeride, m.p. 142—145°, from (V) and AlCl₃ and from the non-cryst. residue from (III) and H₂SO₄ in Et₂O at 0°, from the chloride of (III) with AlCl₃ (with an isomeride, m.p. 204—205°) (previous sintering)], from (IV) and AlCl₃ with an isomeride, m.p. 204—205°) (previous sintering)], from (IV) and AlCl₃ with an isomeride, m.p. 169—171°)], is obtained from (IV) and Fayod in Et₂O at 0°, from the chloride of (III) with AlCl₃ characterised as a γ-CO acid

into two compounds, $C_{18}H_{14}O_2$, m.p. $199-203^\circ$ (monodinitrophenylhydrazone, m.p. 271° , darkens at 265°) and m.p. $131-135^\circ$ (monodinitrophenylhydrazone, decomp. $230-231^\circ$) (cf. Knott, Diss., Frankfurt, 1937). Provided the correct constitution has been assigned to (VII) the compounds must be partly hydrogenated derivatives of 1:2-benzanthracene or 2:3-benzphenanthrene. H. W.

2-Alkyl-3-phytyl-1: 4-naphthaquinones.—See B., 1944, III, 100.

IV.—STEROLS AND STEROID SAPOGENINS.

Sex hormones and sterols. XVII. Side-chains of β - and γ -sitosterol. W. Dirscherl and H. Nahm (Annalen, 1943, 555, 57—69).—Examination of the oxidation products of β - (I) and γ - (II) -sitosterol proves that the side-chain 'CHMe·[CH₂]₂·CHEtPr^{\beta} is present in each. Optically it exerts a positive action in (I) and a negative effect in (II). In the two cases it differs in configuration at $C_{(24)}$, possibly also at $C_{(20)}$ and $C_{(17)}$. The yield of COMe·[CH₂]₂·Bu^{\beta} obtained by the gradual addition of CrO₃ in 50% AcOH to cholesteryl acetate in boiling AcOH is materially improved by the addition of moderate amounts of $K_2S_2O_3$; "ceroyd" and SeO₂ appear ineffective and $K_2S_2O_3$ alone gives no ketone. Under similar conditions β -sitosteryl acetate affords COMe. and ζ -methyl-z-ethylheptan- β -one, b.p. 80—92°/16 mm., $[a]_{10}^{29} + 2\cdot54^{\circ} \pm 0\cdot04^{\circ}$, $3\cdot11\pm0\cdot3^{\circ} + 3\cdot11\pm0\cdot3^{\circ}$ in Et.O (2:4-dinitrophenylhydrazone, m.p. 86—87°; semicarbazone, m.p. 141—142°, $[a]_{10}^{29} + 2\cdot54^{\circ} \pm 0\cdot04^{\circ}$ in EtOH, $[a]_{20}^{29} + 4\cdot5^{\circ} + 1^{\circ}$ in CHCl₃), the structural identity of which with synthetic dl-COMe·[CH₂]₂·CHEtPr^{\beta} is established rontgenographically. Similar treatment of the acetate of (II) leads to COMe. and (—)- ζ -methyl-z-ethylheptan- β -one, $[a]_{10} - 2\cdot4^{\circ} \pm 0\cdot4^{\circ}$ in Et₂O (semicarbazone, m.p. 140—142°).

Formation of cholestenone from cholesterol dibromide by removal of hydrogen bromide with collidine. F. Galinovsky (Ber., 1941, 74, [B], 1048—1049).—Boiling cholesterol dibromide in collidine and subsequent chromatography yields Δ^4 -cholestenone. R. S. C.

Metabolism of steroids. IV. Ketonic acids derived from cholic acid. G. A. D. Haslewood (Biochem. J., 1944, 38, 108—111; cf. A., 1943, II, 199).—The series of six possible acids obtainable by oxidation to CO of one or two >CH·OH of cholic acid is completed by the prep. of 12-hydroxy-3: 7-diketocholanic acid (I), m.p. 165—166° (with apparent change in η at 175°). Et 3: 12-dihydroxy-7-ketocholanate (II), m.p. 155—157° (improved prep.), and AcCl-C₅H₅N-C₆H₆ at 0° give Et 12-hydroxy-7-keto-3-acetoxycholanate (III), m.p. 147—148°, oxidised by CrO₃-aq. AcOH to Et 7: 12-dihton at 20°, then at 100°, afford Et 7-heto-12-p-nitrobenzoyloxy-, m.p. 159—160°, and Et 7-keto-12-3′: 5′-dinitrobenzoyloxy-3-acetoxycholanate, m.p. 171—172°, converted by boiling 10N-HCl-EtOH, followed by CrO₃-aq. AcOH, into Et 3: 7-diheto-12-p-nitrobenzoyloxy- (IV), m.p. 160—161°, and -3′: 5′-dinitrobenzoyloxy-cholanate, m.p. 204°, respectively. The latter could not be hydrolysed without formation of highly coloured products, but (IV) and boiling KOH-MeOH give an acid, esterified (EtOH-H₂SO₄) to Et 12-hydroxy-3: 7-dihetocholanate, m.p. 168—169°, which with boiling aq. HCl-CoMe. gives (I), with CrO₃-AcOH yields Et dehydrocholate, m.p. 218—220°, and with N₂H₄, H₂O-NaOEt-EtOH at 195—210°, followed by CrO₃, affords 12-ketocholanic acid. (II) and BzCl-C₆H₅N-C₆H₆ at 16—18° give Et 12-hydroxy-7-keto-3-benzoyloxycholanate, m.p. 167—168°, and converted by boiling aq. K₂CO₃-EtOH into (probably) 12-hydroxy-7-keto-3-benzoyloxycholanate, m.p. 167—168°, and converted by boiling aq. K₂CO₃-EtOH into (probably) 12-hydroxy-7-keto-3-benzoyloxycholanate, m.p. 167—168°, and converted by boiling aq. K₂CO₃-EtOH into (probably) 12-hydroxy-7-keto-3-benzoyloxycholanate, m.p. 167—168°, convertible by N₂H₄, H₂O-NaOEt-EtOH at 200—210° into 7: 12-dihydroxycholanic acid, m.p. 250°

Sapogenin derivatives.—See B., 1944, III, 101.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Synthesis of safranic acid. G. Wendt (Ber., 1941, 74, [B], 1242—1251).—Safranal resists oxidation to the acid by air or AgNO₃-NaOH, and its oxime in warm Ac₂O gives a nitrile, b.p. 86°, which resists hydrolysis. β-cycloGeranic acid (I) (prep. from β-cyclocitral by shaking in air), m.p. 93—94° (p-C₆H₄Br·CO·CH_{*} ester, m.p. 103—104°), is much more slowly hydrogenated (PtO₂; AcOH) than is its a-isomeride; similarly, the latter, but not (I), readily adds Br. With Br-CCl₄ in light or with C₆H₅N,H₂SO₄-Br, (I) gives the 3-Br-acid [3-bromo-2:6:6-trimethyl-Δ²-tetrahydrobenzoic acid] (II) (65—70%), m.p. 97—98°, converted by boiling H₂O or NaOH-H₂O-MeOH into the 3-OH-acid (III) (80—90%), m.p. 184° [44e ester, b.p. ~100° (bath)/0·01 mm.] (Kuhn-Roth determination yields 1·2 AcOH) (cf. Tiemann, A., 1901, i, 158). With CrO₃ (±0 O) in H₂SO₄-AcOH-H₂O at 20°, (I) gives CO₂H·CMe₂[CH₂]₂·CO₂H, AcOH, and CO₂, but with CrO₃ (±1 O) gives 3-keto-2:6:6-trimethyl-Δ²-tetrahydrobenzoic acid, m.p. 192° [semicarbazone m.p. 240° (decomp.)] (cf. loc. cit.), which proves the structure of (II) and

(III). With H₂SO₄-HCO₂H, (III) gives a *CHO* derivative, m.p. 179° (decomp.). In C₅H₅N or collidine at 160°, (II) gives safranic [2: 2: 6-trimethyl-2: 3-dihydrobenzoic] acid (IV), m.p. 63—64°, b.p. 85—90°/0·001 mm. (p- $C_6H_4BrcO\cdot CH_2$ ester, m.p. 102°). The structure of (IV) is proved by the resemblance of its absorption spectrum (max. at 291 mµ. in EtOH) to that of 2: 3-dihydro-o-toluic acid (max. at 283 m μ .); the corresponding aldehydes show similarly max at 323 and 317 m μ ., respectively. In presence of Pt-SiO₂ in AcOH, (IV) absorbs 1 H₂ fast and a second mol. more slowly; partial hydrogenation yields (I). With HBr-CHCl₃, (III) gives 4-bromo-2: 6: 6-trimethyl-Δ1-tetrahydrobenzoic acid, which is decarboxylated by warm H2O. NaOH-KOH and a little HO at 210° convert (II) into a dehydrocyclogeranic acid, C₁₀H₁₄O₂, m.p. 130°, of unknown structure. (III) and (IV) have no termone action on cells of Chlamydomonas eugametos f. synoica.

Temisin. II. Y. Asahina and T. Ukita (Ber., 1941, 74, [B], 952—963; cf. A., 1940, II, 330).—Temisin (I) is shown to be the 2-lactone of a-2:6-dihydroxy-4-methyl-4-vinyl-3-isopropenylcyclo-bexylpropionic acid. Formation of 1:7- $C_{10}H_6$ MeEt by Se at 270—280° (Nakamura et al., A., 1933, 651; 1934, 1007) is confirmed by mixed m.p. determinations with the product from santonin. Na-iso-C-H₁₁OH reduces the lactone group of (I), yielding temisol [β·2: 6-dihydroxy-4-methyl-4-vinyl-3-isopropenylcyclohexyl-n-propyl alcohol] (II), m.p. 126°, [a]]¹⁰ +14·93° in EtOH, which with H₂-PtO₂ in AcOH with the street of alcohol] (II), m.p. 126°, [a]₀¹⁰ +14·93° in EtOH, which with H₂-PtO₂ in AcOH gives β-tetrahydrotemisol [the 4-ethyl-3-isopropyl compound], m.p. 128—130°, [a]₀ +24·61° in EtOH; this is isomeric at C₍₃₎ with α-tetrahydrotemisol, which may indicate presence of 4-CMe-in place of 4-CH₂. CMe· in (II) or its formation by the alkali during the reduction (cf. below); the fact that two CiC survive Na-C₁H₁₁·OH proves that they are not conjugated. Temisone [the lactone of α-2-hydroxy-6-keto-4-methyl-4-vinyl-3-isopropenylcyclohexylpropionic acid] (III) with O₃ in CHCl₃ yields CH₂O (0·37 mol.) but no COMe₂, proving absence of CMe₂. Hydrolysis of tetrahydrotemisme by warm 0·1n-NaOH gives the oily OH-acid, which is dehydrated by boiling Ac₂O-NaOAc to the lactone (IV), m.p. 145°, of the enol form of α-2-heto-4-methyl-4-ethyl-5-isopropylcyclohexylidenepropionic acid (V), m.p. 129—130°. (IV) is unaffected by KMnO₄ or Ac₂O-NaOAc, gives a colour with C(NO₂)₄ but not with Na nitroprusside, absorbs Br slowly in AcOH, absorbs 3 H₂ (PtO₂: AcOH; to give an oily deoxy-acid), and with hot NaOH-EtOH-H₂O gives (V) and mixed isomeric cyclohexenylpropionic acids, sinter ~75°, m.p. 90°. (V) decolorises KMnO₄, does not react with C(NO₂)₄, NH₂·CO·NH·NH₂, MIXED ISOMETIC CYCLONEXCHYIPTOPIONIC acids, sinter ~75°, m.p. 90°. (V) decolorises KMnO₄, does not react with $C(NO_2)_4$, NH_2 :CO·NH·NH₂, ρ -NO₂·C₆H₄·NH·NH₂, H_2 —PtO₂-AcOH, or NaOI, with boiling Ac₂O-NaOAc regenerates (IV), and with O₃ in cold CHCl₃ gives AeCO₂H and β -methyl- β -ethyl- β -isopropyladipic acid, m.p. 134°, [a]²⁶ +5·94° in EtOH, which proves the cyclic nature of one (cyclohexane) ring. Similarly, (III) with 1 equiv. of 0·1n-NaOH at 100° gives a colourless, oily OH-acid, converted by boiling Ac₂O-NaOAc into the lactone [VII], m.p. 79°. [a]₂, -74·83° in C.H₂, of the enol form of π -2-beta (VI), m.p. 79°, [a]D -74.83° in CeHe, of the enol form of a-2-keto-(II), III.D. 10°, [a]p — 14°85° in C₆H₆, of the end form of a-2-reto-4-methyl-4-vinyl-5-isopropenylcyclohexylidenepropionic acid (VII), m.p. 162°5°; (VI) is also obtained directly from (III) by Ac₂O-NaOAc. H₂-PtO₂ reduces (VI) in AcOH to an oily acid, boiling NaOH-EtOH-H₂O converts it into (VII) and mixed isomeric cyclohexenyl-propionic acids, sinters ~110°, m.p. 125°. Hydrogenation (PtO₂) of (VII) in AcOH gives (V). An excess of NaOH in hot EtOH-H₂O converts (III), with isomerication, into a latter visual acid. converts (III), with isomerisation, into a-6-keto-4-vinyl-3-isopropylidene-Δ¹-cyclohexenylpropionic acid (VIII), m.p. 108-5°, [a]b⁶ +162-99° in EtOH [p-nitrophenylhydrazone, m.p. 126°; absorbs 3 H₂ (PtO_n; AcOH)], which with O₃ in CHCl₃ at 0° gives COMe₂, EtCO₂H, CO₂H-CHMe-CH₂·CO₂H, CH₂O (0·148 mol.), and presumably, 3 CO₂; these products at the constant of the these products and the isoprene rule confine the structure of (VIII) to three possibilities, of which one is excluded because formation of the C.C from a β -OH-acid excludes a C.C-C-O grouping and a second is excluded because the absorption max. of (VIII) at 3180 A. [log ϵ 4-27) indicates a C.C-C-CO. These facts prove the structure of (I) etc. Since hydrolysis and subsequent esterification of (I) causes no re-lactonisation, the free OH and the CHMe CO are in trans-relation. In hot NaOI-NaOH, (III) gives CHI3 by prior transformation into (VIII) and hydrolysis thereof to COMe₂.

R. S. C.

Formation of d-santenone from π -aldehydocamphor. Configuration of santenone and santenic acid. M. Ishidate and T.

figuration of santenone and santenic acid. M. Ishidate and T. Sano (Ber., 1941, 74, [B], 1189-1194).—When $trans-\pi$ -keto-camphor [(I), R = CHO] is kept in air, it rapidly yields, by autoxidation, isoketopinic acid (II) [(I), R = CO₂H] and, by fission, isoketopinic acid (II) [(I), R = CO₂H] and, by fission, isoketopinic acid (II) [(I), R = CHO] is EtOH [semicarbazone, m.p. $235-236^{\circ}$ (decomp.)]. Fission also occurs when [(I), R = CHO] is kept in H_2O-N_2 , the change being catalysed by O_2 or OH' and prevented by H_2SO_4 . (III) is an optically pure component of Aschan's dI-a-santenone (A., 1933, 1166). (II) is stable in boiling C_5H_5N + Cu-bronze and in boiling 10% KOH and is thus not an intermediate in the fission.

boiling 10% KOH and is thus not an intermediate in the fission ith KMnO₃ in 1% KOH, (III) gives d-cis-a-santenic acid (IV), [CH₂]₂ CH(CO₂H) CHMe (CO₂H and Me on C₍₇₎ all cis), m.p. 151—152, [a₁b₀ +38·31° in EtOH, which with AcCl at room temp.

gives the anhydride, m.p. 129-130°, reconverted into (IV) by hydro-(IV) is better obtained by converting (III) by SeO₂ in boiling 74°, b.p. 110—112°/12 mm., $[a]_D$ —75·38° in EtOH, and oxidising this with H_2O_2 —EtOH—Na₂CO₃. (IV) cannot be isomerised to the trans-acid by, e.g., conc. HCl-AcOH at 190°. R. S. C.

Examination of the sesquiterpene alcohol schairol, from Ferula pyramidata (Kar. et Kir.), Eug. Kov. (syn. F. paniculata, LDB). N. P. Kirialov (J. Gen. Chem. Russ., 1943, 13, 145—154).—Schairol N. P. Kirialov (J. Gen. Chem. Russ., 1943, 13, 140—164).—Schalrot (I), heated with 90% HCO₂H, yields a hydrocarbon, $C_{15}H_{24}$, an oil; with Se (7 hr. at 250—280°) it affords an azulene hydrocarbon, $C_{15}H_{18}$, b.p. 131—132°/2 mm. (picrate, m.p. 111—113°). (I) is oxidised (KMnO₄ in aq. COMe₂) to a substance (II), $C_{15}H_{24}O(OH)_2$, m.p. 221—222°, and a substance, $C_{15}H_{25}(OH)_3$, m.p. 102—103°, [a]p +2·83° in aq. EtOH. (II), heated in a scaled tube with KOH—104°, a foods a substance (II), $C_{15}H_{24}O(OH)_2$, $C_{15}H_{25}O(OH)_3$, $C_{15}H_{$ EtOH (8 hr. at 100°), affords a substance, $C_{15}H_{12}O$, b.p. $128-130^\circ/5$ mm., $[a]_D+14\cdot 0^\circ$ in aq. EtOH, from which a hydrocarbon, possibly cadalene, is obtained by treatment with Sc. Hydrogenation of (I) in AcOH solution, using PdCl₂ or PtO₂ catalysts, was unsuccessful. The results support the view that (I) is an isomeride of guaiol.

Sapogenin.—See B., 1944, III, 101.

VI.—HETEROCYCLIC.

Polymerisation processes. IX. Dimeric methyl vinyl ketone. K. Alder, H. Offermanns, and E. Rüden. X. Dimeric aeraldehyde. K. Alder and E. Rüden. XI. General scheme of dimerisation of a \(\beta\)-unsaturated aldehydes and ketones. K. Alder, H. Offermanns, and E. Rüden (Ber., 1941, 74, [B], 905—920, 920—926, 926—929).—IX. The dimeride of CH. CH-COMe is shown to Offermanns, and E. Rüden (Ber., 1941, 74, [B], 905—920, 920—926, 926—929).—IX. The dimeride of CH. CH·COMe is shown to be 6-acetyl-2-methyl-Δ-dihydropyran (I). Its ethylenic linking is susceptible to numerous addition reactions. Heating CH. CH·COMe with 1% of quinol (to depress formation of higher polymers) at 145° (autoclave) for 22 hr. gives ~55% of (I) with a trimer and other polymers. (CH·CO)₂O and (I) do not react at 200°. 1 H₂ is absorbed by (I) in MeOH in presence of Pd-CaCO₃, yielding 2-acetyl-6-methyltetrahydropyran (II), b.p. 64°/12 mm. (semicarbazone, m.p. 175°; p-OMe·C₆H₄·CH· derivative, m.p. 174—175°). MgPhBr (only 1 mol. consumed) and (II) in Et₂O, later at the b.p., give a carbinol, b.p. 150—170°/11 mm., dehydrated by KHSO₄ at 180—190° to 2-α-phenylvinyl- [? 2-α-phenylethylidene-]6-methyltetrahydropyran, b.p. 138—140°/12 mm. With aq. KMnO₄-CO₂ at room temp. and then CH₂N₂-Et₂O, (II) gives δ-n-hexolactone (proof of ring structure), identified by (i) conversion by NH₃-EtOH at 100° into δ-hydroxy-n-hexoamide, m.p. 74°, which is also obtained from the synthetic δ-lactone and depresses the m.p. (74°) of the isomeric γ-OH-amide, and (ii) oxidation by HNO₃ to glutaric (III) and succinic (IV) acids. KMnO₄-CO₅ and (I) yield (III), which proves the location of the C.C. HNO₃-H₂O [83 (d 1·4): 23 c.c.] and (I) yield, after methylation, Me₂C₂O₄, (CH₂·CO₂Me)₂, OH·CHMe·CO₂Me (V), the Me ester, m.p. 45—46°, of the lactone of α-hydroxyglutaric acid [converted by 57% HI into (III); dihydrazide, m.p. 167—188°), and Me₂ fumarate [derived from (V)]. With NaOBr at 30°, (I) gives exothermally CHBr₃ and 2-methyltetrahydropyran-6-carboxylic acid (Me ester, b.p. 205—210°: hydrazide, m.p. 92—93°) (I) gives exothermally CHBr₃ and 2-methyltetrahydropyran-6-carboxylic acid (Me ester, b.p. 205—210°; hydrazide, m.p. 92—93°) (proof of COMe). 2% HCO₂H at room temp. converts (I) into n-octan-y-ol-8η-dione, b.p. 147°/13 mm. [disemicarbazone (VI), m.p. 217°; bis-2: 4-dinitrophenylhydrazone, m.p. 186°, also obtained by heating (I) with 2: 4-(NO₂)₂C₆H₃·NH·NH₂ in EtOH], probably by way of 2-hydroxy-6-acetyl-2-methyltetrahydrofuran. With aq. way of 2-hydroxy-6-acetyl-2-methyltetrallydrolla..... NH₂·CO·NH·NH₂,HCl-NaOAc, first warm and then at 0°, (I) gives its semicarbazone, m.p. 176°, and, by addition prior to fission, (VI). EtOH or MeOH in AcOH adds exothermally to (I), yielding 2-ethoxy-[semicarbazone, m.p. 180°; regenerates (I) and EtOH when distilled at 12 mm.] and 2-methoxy-6-acetyl-2-methyltetrahydropyran (semicarbazone, m.p. 183°), respectively. H_2O_2 and (I) in AcOH give exothermally di-2-methyl-6-acetyltetrahydro-2-pyranyl peroxide, m.p. 124—125°. With N_2H_4 , H_2O and then KOH, (II) gives 2-methyl-6-ethyltetrahydropyran, b.p. 34—35°/15 mm., and an isomeric, unsaturated alcohol, b.p. 81—82°/13 mm.

X. The dimeride of CH_2 :CH-CHO is proved to be 6-formyl- Δ^2 -dihydropyran (VII). It is obtained in 40—45% yield by heating at

hydropyran (VII). It is obtained in 40-45% yield by heating at 170° with 1% of quinol, has b.p. 145—148°, gives a semicarbazone, m.p. 123—124°, and with aq. KMnO₄–CO₂ gives (IV) (~100%). H₂–PtO₂ reduces (VII) in MeOH to 2-formyltetrahydropyran (VIII), b.p. 156—159° (semicarbazone, m.p. 154°), which with KMnO₄–CO₂ b.p. 156—159° (semicarpazone, m.p. 16*), which with Manho₄—Co₂ and then HNO₃ gives (III) and (IV), and with MgPhBr-Et₂O gives a carbinol, b.p. 150—160°/11 mm., whence KMnO₄—CO₂ yields quantitatively (III), (IV), and BzOH. With N₂H₄,H₂O in MeOH at ~50° and then KOH, (VIII) gives 2-methyltetrahydropyran, b.p. 104—106° (and a substance, b.p. 160—165°), which is also obtained the debudgating (by distillation) and then reducing (H₆-PtO₆): by dehvdrating (by distillation) and then reducing (H.-PtO.; McOH) OH·[CH₂]₄·COMe.

XI. The unidirectional 1:4 addition of C.C to C.C.C.O during dimerisation of CH. CH. COX (X = H or Me) is a general phenomenon. It is reported (without details) also for X = Ph, but in this case the cryst. dimeride can undergo further self-condensation.

Other cases are X = Et and dimerisation of quinonemethides to coumarin derivatives.

New heterocyclic compound with antihemorrhagic (vitamin-K) activity. P. Meunier and C. Mentzer (Compt. rend., 1942, 215, 259—261).—o-OH-C₆H₄·CO₂Me is slowly converted by boiling (EtCO)₂O into Me o-propoxybenzoate, b.p. 154°/14 mm, transformed by Na at 165—180° into 2: 4-dihydroxy-3-methylchroman (I), m.p. 229—230° (decomp.), which could not be obtained by the action of NaNH₂ and McI on benzotetronic acid. The physiological activity of (I) is ~0·1 of that of 2-methylnaphthaquinone and is in harmony with the hypothesis that the book. C:C:C(OH)·CH₂· is responsible for antihæmorrhagic activity. H. W. and is in harmony with the hypothesis that the group •CO·CH.CH₂ \rightleftharpoons

Chromans.—See B., 1944, II, 101.

Chromans.—See B., 1944, II, 101.

Natural chromones. II. Constitution of visnagin (from Ammi visnaga). E. Spath and W. Gruber (Ber., 1941, 74, [B], 1492—1500).—Mother-liquors from kellin (A., 1938, II, 111) yield 0.045% of visnagin, m.p. 144—145° (oxonium nitrate), which is shown to be 5-methoxy-2-methylfurano-3': 2'-6: 7-chromone. With H₂O₂ in 5% NaOH at 20° it gives H₂C₂O₄ and furan-2: 3-dicarboxylic acid (23%), and in boiling 1% NaOH is hydrolysed to AcOH and visnagone [5-hydroxy-4-acetyl-3-methoxybenzfuran] (I), m.p. 109—111° (brownish-green colour with FeCl₃), sol. in alkali, whence Ac₂O and NaOAc at 150—155° give 3-acetylvisnagin, m.p. 192—193°. In 1: 1 NaOH-KOH at 205° (I) gives s-C₆H₃(OAc)₃. Et₂SO₄-20% aq. KOH converts (I) into its Et ether, m.p. 153—154°, reduced by Hg-Zn-aq. HCl to 3-methoxy-5-ethoxy-4-ethylbenzfuran (74%), m.p. 54—57°, which with O₃ in CHCl₃ at -5° gives 6: 3: 2: 4: 1-OH-C₆HEt(OMe)(OEt)·CHO (II) (58%), an oil [p-nitrophenylhydrazone, m.p. 218—220° (decomp.)]. With Et₃SO₄-10% KOH, (II) gives 6: 4: 3: 2: 1-(OEt)₃C₆HEt(OMe)·CHO (III), b.p. 124—126°/0·01 mm. (semicarbazone, m.p. 182—183°), whence KMnO₄-COMe₂-MgSO₄ at 50° yields 2-methoxy-4: 6-diethoxy-3-ethylbenzoic acid (IV), 0.01 mm. (semicarbazone, m.p. 182—183°), whence KMnO₄–COMe₃–MgSO₄ at 50° yields 2-methoxy-4: 6-diethoxy-3-ethylbenzoic acid (IV), m.p. 118—120° (decomp.; vac.). 2:4:6:1-(OH)₃C₆H₂·COMe and Zn–Hg–HCl–H₂O–EtOH give 2:4:6:1-C₆H₂Et(OH)₃ (76%), m.p. 123—125°, converted by HCN–HCl–Et₂O into 2:4:6-trihydroxy-3-ethylbenzaldehyde (78%), m.p. 174—176°. With EtI and K₂CO₃ in boiling COMe₂ this gives the 4:6-Et₂ ether (76%), m.p. 94—95° [p-nitrophenylhydrazone, m.p. 254—256° (decomp.; vac.)], whence Me₂SO₄–20% KOH at 70° yields (III) (p-nitrophenylhydrazone, forms, m.p. 180—182° and 169—171°), and thence (IV). R. S. C.

Synthesis of chroman derivatives having the ring-system of atocopherol. Synthesis of iso-a-tocopherol from (IV) ψ -cumene, (V) ψ -cumoquinol monomethyl ether. W. John and (IV) P. Günther, (V) F. H. Rathmann (Ber., 1941, 74, [B], 879—890, 890—898).—The synthesis of a-tocopherol analogues described in Part IV below uses accessible starting materials but requires <3 mols. of Grignard reagent in the last stage; that described in Part V needs only 2 mols.

in the last value, and the stage, that the starting materials are less accessible.

IV. 2:4:5:1-C₆H₂Me₃·CHO [prep. by Gattermann synthesis from ψ-cumene (I) in 70% yield] (32 g.), b.p. 105—110°/0·5 mm., with COMe₂ and NaOEt in EtOH at, successively, 0°, room temp., and 35° gives α -2:4:5-trimethylphenyl- Δ^{α} -buten- γ -one (II) (24 g.), m.p. 51° [semicarbazone, m.p. 220° (decomp.)], and a small amount of α e-di-2:4:6-trimethylphenyl- Δ^{α} -pentadien- γ -one, m.p. 165.5°; use of aq. NaOH leads to a difficultly separable 3:1 mixture of (II) and a-2: 4: 5-trimethylphenyl-n-butan-a-ol-y-one, m.p. 92°. Hydrogenation (Pd-black; EtOH) of (II) gives mainly β -2: 4:5-trimethyl-phenylethyl Me ketone (III), m.p. 55° (semicarbazone, m.p. 185—187°) (and ? isomerides), which with MgMeI gives δ -2: 4:5-tri-187°) (and ? isomerides), which with MgMe1 gives δ -2: 4: δ -trimethylphenyl- β -methyl-n-butan- β -ol, m.p. 44° (dinitrobenzoate, m.p. 134°; could not be satisfactorily nitrated). Adding crude (III) in light petroleum to KNO₃-H₃SO₄ at -5° and then stirring at room temp. for a few min. gives β -3: 6-dinitro-2: 4: 5-trimethylphenylethyl Me ketone (IV), m.p. 136·5°, and a very small amount of a substance, C₁₃H₁₄O₆N₂, m.p. 151°. With SnCl₂-conc. HCl-AcOH at \sim 80°, (IV) gives the diamine stannichloride, which by repeated treatment with CrO₂ in 2N-H₂SO₄ at. successively. 5°. room temp., and 30° with CrO₃ in 2N-H₂SO₄ at, successively, 5°, room temp., and 30° yields ~40—45% of 1:2:3:5:6:4-O:C₄Me₃([CH₂]₂·COMe):O, m.p. 56°, whence the quinol (**V**), m.p. 125° (lit., 122°), is best obtained by Zn dust-H₂SO₄-MeOH-H₂O at room temp. CH₂O-HCl converts (**I**) at 70° into 2:4:5-trimethylbenzyl chloride (**V**I) HCl converts (I) at 70° into 2:4:5-trimethylbenzyl chloride (VI) (40—45%), b.p. 98—108°/1 mm., and a small amount of di(chloromethyl)-ψ-cumene, m.p. 99—101°. With CHAcNa·CO₂Et in C₀H₀ at room temp. and then the b.p., (VI) gives an oily ester, which by hydrolysis (10% KOH-MeOH at room temp.) and distillation affords crude (III), best purified at the (NO₂)-stage (IV). n-C¹₁4H₂₀·MgCl (prep. from Mg activated by C¹₁4H₂₀·Br, I, and MeI) (3 mols.) and (V) in Et₂O-CℴH₀-N₂ yield a carbinol, cyclised by boiling 10% p-C₀H₄Me·SO₃H-AcOH and by Zn dust and then HBr in AcOH to "iso-a-tocopherol" [6-hydroxy-2:5:7:8-tetramethyl-2-n-tetradecylchroman] (VII), m.p. 64°, which is purified by way of its allophanate, m.p. 174—175° [absorption max. at 280 mμ. (ε 1740)]; this is separated from C₃o-H₀a₀ by chromatography and from cetyl-urethane, m.p. 93°, and cetyl allophanate, m.p. 153°, by crystallisation. (VII) reduces AgNO₃-EtOH and in conc. HNO₃-EtOH gives a red colour. C¹₁4H₂₀·MgBr yields more hydrocarbon.

V. 1:2:3:6:4-OH·C₆HMe₃·OMe (VIII), Zn(CN)₂, AlCl₃, and HCl in C₆H₆ at 0° and then 40° give only small amounts of 3-hydroxy-6-methoxy-2:4:5-trimethylbenzaldehyde, m.p. 107—108°, and thence a-3-hydroxy-6-methoxy-2:4:5-trimethylphenyl-Δα-buten-γ-one, m.p. 104°, and β-3-hydroxy-6-methoxy-2:4:5-trimethylphenylethyl Me ketone (IX), m.p. 76°. 40% CH₂O and conc. HCl at room temp. convert (VIII) into 3-hydroxy-6-methoxy-2:4:5-trimethylphenylethyl chloride (~75%) (X), m.p. 128°; the corresponding 6-OEt-, m.p. 123—124°, 6-OPr-, m.p. 117—118°, and 6-OBu-compound, m.p. 83—85°, are similarly prepared. With CHACNa·CO-Et in C₆H₆, (X) gives Et 3-hydroxy-6-methoxy-2:4:5-trimethylbenzylacetoacetate (not quite pure), m.p. 52—53°, and thence (0·5n-NaOH) the derived acid, m.p. 128° (decomp.), which at slightly >100° yields almost 50% (calc. on ψ-cumoquinol) of (IX), m.p. 81°. With MgMcI (2 mols.) in Et₂O-C₆H₆, (X) gives 8-3-hydroxy-6-methoxy-2:4:5-trimethylphenyl-β-methyl-n-butan-β-ol, m.p. 104—105°, converted by AgOAc into 1:2:3:5:6:4-O'C₆Me₃([CH₂]₂·CMe₂·OH).O, m.p. 55°, whence p-C₆H₄Me·SO₃Me-AcOH or Zn dust-HBr-AcOH yields 6-hydroxy-2:2:5:7:8-pentamethylchroman. With MgRBr in Et₂O-C₆H₆, (IX) similarly gives a-3-hydroxy-6-methoxy-2:4:5-trimethylphenyl-γ-methyl-n-pentan-γ-ol, m.p. 98·5—99·5°, -n-heptan-γ-ol, m.p. 88°, and -n-pentadecan-γ-ol, m.p. 98·5—99·5°, -n-heptan-γ-ol, m.p. 88°, and -n-pentadecan-γ-ol, m.p. 69—71°. n-C₁₁H₂₂·MgCl yields an oily carbinol, converted by AgOAc and then HBr-AcOH into (VII), which is purified as above, giving an allophanate, m.p. 176° [absorption max. at 280 mµ. (ε 1740) and min. at 250 mµ. (ε 200)].

Furo-coumarone group. II. 3:3'-Dimethyl-6':7'-furo-coumar-

Furo-coumarone group. II. 3:3'-Dimethyl-6':7'-furo-coumarone. D. B. Limaye and V. V. Nagarkar (Rasāyanam, 1943, I, 255—257; cf. A., 1941, II, 374).—2:4:1:3-C₀H₂Ac₂(OH), (Na H salt) with CH₂Br·CO₂Et gives Me 2:4-diacetylresorcinol-1-carboxylate (I), m.p. 168° (Et, m.p. 75°, and Me ester, m.p. 69°). (I) with NaOAc and Ac₂O gives 4-acetoxy-5-acetyl-3-methylcoumarone, m.p. 108°, which wilds A bulgary 5-acetyl-3-methylcoumarone, M.D. 108°, which yields 4-hydroxy-5-acetyl-3-methylcoumarone (II), np. 70° (semicarbazone, m.p. 255°; benzoate, m.p. 118°; Me ether, m.p. 72)°. (II) (Na salt) with CH₂Br·CO₂Et gives, after hydrolysis, Me 5-acetyl-3-methylcoumarone-4-carboxylate, which with NaOAc and Ac₂O yields 3: 3'-dimethyl-6': 7'-furo-coumarone, m.p. 27°. D. G.

Coumarin-y-pyrone group. IV. 4:2'-Dimethyl-3'-acetyl-7:8-coumarin-y-pyrone and 4:4'-dimethyl-7:8-coumarin-a-pyrone. D. B. Limaye and K. M. Kulkarni (Rasāyanam, 1943, 1, 251—254). D. B. Limaye and K. M. Kulkarni (Rasayanam, 1943, 1, 251—254).

—8-Acetyl-4-methylumbelliferone (acetate, m.p. 191°) with Ac₂O and NaOAc gives 4: 4'-dimethyl-1': 2'-pyrono-5': 6'-8: 7-coumarin, m.p. 242°, and (main product) 5'-acetyl-4: 6'-dimethyl-1': 4'-pyrono-5': 6': 8: 7-coumarin (I), m.p. 265°. (I) with aq. NaOH gives 4-methylumhelliferone-8-carboxylic acid (II), m.p. 263° (decomp.). (II) is also obtained from y-resorcylic acid (A., 1936, 854) with CH₂Ac₂CO₂Et and H₂SO₄. (II) gives a 7-OMe-derivative (III), m.p. 246° (decomp.) [Me (IV), m.p. 189°, and Et ester, m.p. 163°]. (III) and (IV) on hydrolysis (NaOH aq.) yield 2-hydroxy-4-methoxy-3-carboxy-β-methylcinnamic acid, m.p. 194°, and (IV) with KOH in EtOH gives 2: 4-dimethoxy-3-carboxy-β-methylcinnamic acid, m.p. 208° (decomp.). (decomp.).

Constitution of paraldol.—See A., 1944, II, 183.

Plant growth substances. XXXIV. β -Biotin.—See A., 1944, III, 487.

isoThioindigotin. P. Chovin (Compt. rend., 1942, 215, 419-420).—1-Hydroxythionaphthen (I) is converted by PhNO or p-NO·C₆H₄·NMe₂ into leucoisothioindigotin, m.p. 260° (decomp.), which gives only a violet, non-cryst. resin when its oxidation to isothioindigotin (II) is attempted. A similar resin is produced when (I) is treated with S₂Cl₂, SOCl₂, or FeCl₃. In EtOH at 0° (I) is transformed by SeO₆ into (II), m.p. 224° (decomp.), which is darker in colour than thioindigotin. darker in colour than thioindigotin.

2:4-Diarylpyrroles. IV. Formation of acylated 5-amino-2:4-diphenylpyrroles from β-benzoyl-α-phenylpyropionitrile and some notes on the Leuckart reaction. W. H. Davies and M. A. T. Rogers (J.C.S., 1944, 126—131).—CH₂Bz·CHPh·CN (I) with HCO₂NH₄ gives 2:2':4:4'-tetraphenylazadipyrromethine (II), but with HCO·NH₂ affords mainly a colourless compound, m.p. 172°, now shown to be a formyl derivative of 5-amino-2:4-diphenyl-pyrrole (III) (cf. Rogers, A., 1944, II, 80), which has been synthesised pyrrole (III) (cf. Rogers, A., 1944, II, 80), which has been synthesised from the parent pyrrole and the mixed anhydride of HCO₂H and AcOH. The mechanism of this reaction and the formation of (II) from (I) and HCO2NH4 or HCO·NH2 are discussed and inter-related The mechanisms of the Leuckart reaction and of its Ott-Ingersoll modification are shown to involve different intermediates which may, in the case of certain ketones, result in different products. The following derivatives of (III) have been isolated in readily interconvertible isomeric forms: formyl, m.p. 172° and 176°, Ac_1 , m.p. 171°, 176°, and 192°, acetyl-formyl, m.p. 134°, 139°, and 152°, Ac_2 , m.p. 186—188°, and Ac_3 , m.p. 111—112°. F. R. S.

Electronic resonance of 1-methyl-2-piperidone.—See A., 1944, I, 143.

Nicotinyl chloride. M. Lora Tamayo and A. Vargas (Anal. Fis. Quim., 1942, 38, 179—183).—Nicotinyl chloride hydrochloride (cf. Spath and Spitzer, A., 1926, 958) is converted by boiling C_5H_5N , or by prolonged exposure over $CaCl_2$ in vac., into the high-melting form of nicotinyl chloride (cf. Meyer, A., 1901, i, 407). The low-melting form of Meyer and Graf (A., 1928, 1379) was not isolated.

Synthesis of hydroxy-derivatives of 2-methylpyridine-3: 5-dicarboxylic acid esters. E. Ochiai and Y. Ito (Ber., 1941, 74, [B], 1111—.1114).—OEt·CH:C(CO₂Et)₂ (I) and NH₂·CMe:CH·CO₂Et at 100° (40 hr.) give Et₂ hydroxy-2-methylpyridine-3: 5-dicarboxylate, m.p. 205°, converted by hot 5% KOH-MeOH into an Et H ester, m.p. 225°, and then into the dicarboxylic acid, m.p. 305°. Decarboxylation of the acid by Cu chromite in quinoline at 300—315° (bath) gives 6-hydroxy-2-methylpyridine, m.p. 158° (picrate, m.p. 149·5—150°), whence the orientation of the products follows. (I), CH₂Ac·CO₂Et, and HCl gas at room temp. give, with partial decarboxylation, Et 4-hydroxy-2-methylpyridine-3-carboxylate, m.p. 207°, converted by POCl₃ at 150° into Et 4-chloro-2-methylpyridine-3-carboxylate, m.p. 64°, which with Zn dust in dil. HCl at 100° gives Et 2-methylpyridine-3-carboxylate (picrate, m.p. 146—147°; hydrochloride, decomp. 225°). CHAcNa·CO₂Et, (I), and Na in hot C₆H₆ give Et₂ 4-hydroxy-2-methylpyridine-3: 5-dicarboxylate, m.p. 156—157°, which with NH₃-EtOH (saturated at <0°) at 100° gives the derived diamide, decomp. 321°, and Et 4-hydroxy-(?)5-carboxylamido-2-methylpyridine-(?)3-carboxylate, m.p. 252°.

R. S. C.

Salts of pyridine-2: 6-dicarboxylic acid.—See B., 1944, III, 101.

Two new syntheses of quinoline from henzene and glycerol. L. Bert (Compt. rend., 1942, 215, 415—417).—C₆H. is condensed with CH.Cl-CH.CHCl [obtained by dehydration of OH-CH(CH₂Cl)₂] directly (Friedel-Crafts) or indirectly through MgPhBr to CH.Ph.CH:CHCl, which when added gradually to a deficiency of H₂SO₄-HNO₃ at -10° gives a mixture (I) of o- and p-NO₂·C₆H₄·CH:CH·CHCl. This when heated with an alcohol ROH [usually R = Me, Et, or Bu^a) and excess of KOH affords a mixture [II] of o- and p-NO₂·C₆H₄·CH:CH·CH₂·OR converted into o- (III) and p-NO₂·C₆H₄·CHO, separable from one another by distillation with steam or through their compounds with NaHSO₃. Alternatively [I] is nitrated by fuming HNO₃-Ac₂O mainly to (III), which is reduced (FeSO₄-NH₃) to o-NH₂C₆H₄·CHO and thence transformed into quinoline (IV) according to Friedlander. (I) is readily reduced (Fe+HCl) to the corresponding amines, which are easy to separate from one another. The o-compound is converted by excess of KOH and boiling ROH (R is any radical) into o-NH₂·C₆H₄·CH:CH·CH₂·OR, transformed by HCl under pressure into o-CH₂Cl·CH:CH·C₆H₄·NH₂,HCl. This with aq.-alcoholic (CH₂)₆N₄ passes into CHO·CH:CH·C₆H₄·NH₂,HCl, readily converted into (IV). Experimental details are not given.

Reaction product from hydrazine and 4-chloroquinaldine. E. Koenigs and J. Freund (Ber., 1941, 74, [B], 1085—1088).—SnCl. in conc. HCl at 100° reduces 3-nitro-4-amino- to 3: 4-diamino-2-methyl-quinoline, m.p. 226—227° (hydrochloride, +H₂O, m.p. 317—318°; picrate, m.p. 227—228°), which with HNO₂ gives a triazole derivative (hydrochloride, m.p. 316°; picrate, darkens >220°, decomp. 252°). Passing HCl gas into 4-chloro-3-nitro-2-methylquinoline and SnCl₂ in AcOH gives exothermally 3-amino-2-methylquinoline m.p. 160°—161° (lit., 159—160°) (gives 3-chloro-2-methylquinoline by a diazo-reaction), and a small amount of 4-chloro-3-amino-2-methylquinoline (hydrochloride, m.p. 150° after sintering; picrate, darkens from 200°, decomp. ~220°), which is the sole product of reduction by Fc(OH)₂-aq. NH₃-MeOH at 90°. The structure of the product from N₂H₄ and 4-chloro-2-methylquinoline remains obscure (cf. A., 1935, 989).

Heterocyclic ketones. II. Alkylation. E. I. Elkina and M. M. Schemjakin. III. Chlorination by means of oxalyl chloride. M. M. Schemjakin and E. I. Elkina (J. Gen. Chem. Russ., 1943, 13, 164—168, 169—174).—II. The K₂ salt of 6-hydroxynicotinic acid with PrI in PraOH (1 hr. at 180°) yields a mixture of N-propyl-2-pyridone-5-carboxylic acid (I), m.p. 141—142°, 6-n-propoxynicotinic acid, m.p. 116—117°, and the Pra ester of (I), b.p. 147—149°/4 mm.
III. N-Methyl-2-quinolone and (COCl)₂ in Et₂O yield 2:2-dichlorol-methyl-1; 2-dichydroquinoline, whilst with (I) the product is 2:2-dichlorol-levelyl-1; 2-dichydroquinoline, whilst with (I) the product is 2:2-dichlorol-levelyl-1; 2-dichydroquinoline.

III. N-Methyl-2-quinolone and (COCl)₂ in Et₂O yield 2:2-dichlorol-methyl-1:2-dihydroquinoline, whilst with (I) the product is 2:2-dichlorol-propyl-1:2-dihydropyridine-5-carboxylic acid; these Cl₂-derivatives rapidly decompose on exposure to the atm. 1-Hydroxy:8-dimethoxy-3-acetylisoquinoline and (COCl)₂ in Et₂O give l-chloro-7:8-dimethoxy-3-acetylisoquinoline, m.p. 145—146°, whilst with PCl₅ the product is 1-chloro-7:8-dimethoxy-3-a-chlorovinylisoquinoline, m.p. 116—117°. 2-Pyridone and (COCl)₂ yield a substance, C₁₀H₁₀ON₂Cl₂, m.p. 137—138°. R. T.

Syntheses by means of sodamide. O. Eisleb (Ber., 1941, 74, [B], 1433—1450).—lert. Halogenoalkyl-amines or -amides do not react with NaNH2 or NaNH2-NH3 at 100°. NaNH2 is thus a very effective reagent for introducing aminoalkyl groups into substances which contain H replaceable by Na. Further, use of $NR([CH_2]_2\cdot Cl)_2$ and substances containing activated CH_2 leads to di-condensation with formation of 4-substituted piperidine derivatives. $X([CH_2]_2\cdot Cl)_2\cdot (X=S \text{ or } O)$ react similarly. The best technique is to add NaNH2,

ground in a warm, dry mortar, gradually to the reactants in PhMc, usually at 40-60°, raised later to ~100°; condensations below are usually at 40—60°, raised later to ~100°; condensations below are thus effected, successive temp. being noted in parentheses. NEt₂[CH₂]₂·Cl (I) and COPh·CH₂Ph give (45—50°, b.p.) γ -diethylamino-a-phenyl-n-butyrophenone (80%), b.p. 192—193°/4 mm., the hydrochloride, m.p. 148°, of which has spasmolytic activity. CH₂Ph·SO₂Ph and (I) give (50—55°, 90—95°) Ph γ -diethylamino-a-phenyl-n-propyl sulphone, m.p. 39—40°, b.p. 210°/3 mm. (hydrochloride, m.p. 139—140°, neutral in H.O). CH₂Ph₂ and (I) give (b.p.) only 14% of $\gamma\gamma$ -diphenyl-n-propyldiethylamine, b.p. 170—175°/4 mm., the hydrochloride, m.p. 143—144°, of which has local anæsthetic and spasmolytic activity. Indene and (I) give (in C.H.: 4 mm., the hydrochloride, m.p. 143—144°, of which has local anæsthetic and spasmolytic activity. Indene and (I) give (in C_8H_6 ; $40-50^\circ$, 80°) $3\cdot\beta$ -diethylaminoethylindene, b.p. 140°/4 mm., the hydrochloride, m.p. 156—159°, of which has local anæsthetic activity. Fluorene and (I) give (60° ; 100°) $9\cdot\beta$ -diethylaminoethylfluorene, b.p. 192—210°/4 mm., the hydrochloride, m.p. 217—218°, of which is weakly acid in H_2O and has local anæsthetic activity. NHPl₂ and (I) give (60° , 90— 100°) NN-diphenyl-N'N'-diethylethylene-diamine (81%; <40% in absence of NaNH-3), b.p. 173— 174° /4 mm., the monohydrochloride, m.p. 169— 170° , and N'-methopomide, m.p. 173° of which have local anæsthetic activity. Pyrrole 4 mm., the monohydrochloride, m.p. $169-170^\circ$, and N'-methobromide, m.p. 173° , of which have local anæsthetic activity. Pyrrole and (I) give (in C_5H_6 ; $40-50^\circ$, 80°) $1-\beta$ -diethylaminoethylpyrrole (~66%), b.p. $223-225^\circ$ /760 mm., 80° /4 mm. (hydrochloride, m.p. $113-114^\circ$, has no pharmacological action; ethylethosulphate, m.p. $131-132^\circ$). Pyrrole does not react with (I) in presence of NaOEtEtOH, but tetraiodopyrrole at $30-35^\circ$ and then 40° thus gives 2:3:4:5-tetraiodo- $1-\beta$ -diethylaminoethylpyrrole, sinters 114° , m.p. 120° (decomp.) (hydrochloride; nitrate; phosphate). 2-Methyl-indole and (I) (in C_6H_6 ; $40-50^\circ$, 80°) give 2-methyl- $1-\beta$ -diethylaminoethylindole (80° ₀), b.p. 156° /4 mm. Carbazole and (I) give ($85-90^\circ$; 100°) $9-\beta$ -diethylaminoethylcarbazole (94° ₀), b.p. 196° /3 mm., the phosphate, m.p. $151-155^\circ$, of which has local anæsthetic activity. Acridone and (I) give ($120-130^\circ$) $10-\beta$ -diethylaminoethylacridone (97° ₀), m.p. $112-113^\circ$ (hydrochloride, decomp. $246-247^\circ$; no oxime or hydrazone), the structure of which is proved by conversion by Na-EtOH into $10-\beta$ -diethylaminoethyl-, m.p. $58-59^\circ$, and by MgPhBr into 5-hydroxy-5-phenyl- $10-\beta$ -diethylaminoethyl-acridan, MgPhBr into 5-hydroxy-5-phenyl-10-β-diethylaminoethyl-acridan, MgPhBr into 5-hydroxy-5-phenyl-10- β -diethylaminoethyl-acridan, m.p. 151—153° (and the derived acridinium chloride hydrochloride). CH₂Ph·CN and (I) give (in C₅H₆; <40°, 75—80°) γ -diethylamino-α-phenyl-n-butyronitrile (~60%), b.p. 132°/3 mm. n-C₆H₁₃·CHPh·CN and (I) give α-phenyl-α- β -diethylaminoethyl-n-octonitrile (>75%), b.p. 180—185°/4 mm. CH₂Ph·CHPh·CN and 1- β -chloroethylpiperidine give (45—50°, 95—105°) γ -piperidino-α-phenyl-α-benzyl-n-butyronitrile, m.p. 93°, b.p. 203°/3 mm. (hydrochloride, m.p. 215°), and another base, b.p. 200—210°/3 mm. MeSO₂·NEt₂ and (I) give 100—105°) γ -diethylaminopropagaesylbhondiethylamide, b.p. and another base, b.p. 200—210°/3 mm. MeSO₂·NEt₂ and (I) give (80°, 100—105°) γ -diethylaminopropanesulphondiethylamide, b.p. 185°/20 mm. (hydrochloride, m.p. 120—121°). NR([CH₂]₂·Cl)₂,HCl are prepared from NR([CH₂]₂·OH)₂ by SOCl₂ and are stable, but the free bases are unstable and are prepared therefrom in situ just before use. CH₂Ph·CN and NMe([CH₂]₂·Cl)₂ (II), b.p. 71°/9 mm., give (30—40°, b.p.) 4-phenyl-1-methylpiperidine-4-nitrile (III) (66%), m.p. 53°, b.p. 148°/4·5 mm. (hydrochloride, m.p. 221—222°, sublimes at 6 mm.), hydrolysed by KOH—MeOH—H₂O at 160—170° to the 4-carboxylic acid (IV), +H₂O, m.p. 299° (decomp.) [neutral in H₂O; chloride hydrochloride, m.p. indefinite, > 150° (decomp.)], which at 4-carboxylic acid (IV), +H₂O, m.p. 299° (decomp.) [neutral in H₂O; chloride hydrochloride, m.p. indefinite, >150° (decomp.)], which at 340° slowly gives 4-phenyl-1-methylpiperidine, b.p. 255—260°/760 mm., 130°/15 mm. (hydrochloride, m.p. 196—197°; pierate, decomp.) 236—237°; pierolonate, m.p. 221°). Treating (III) with 80% (wt.) H₂SO₄ at 130—150° and then gradually adding EtOH at 103—108° (temp. in liquid) gives the Et ester (~95%), m.p. 30°, b.p. 155°/5 mm. (hydrochloride, m.p. 187—188°; pierate, m.p. 189—190°; H₂ citrate, decomp. >206°), of (IV). p-Toluenesulphondi-β-hydroxyethylamide {prep. from p-C₆H₄Me·SO₂Cl and NH([CH₂]₂·OH)₂ in 2N-Na₂CO₃ at 65—70° and then 95°), m.p. 100—101°, with SOCl at 90—95° and then 130° yields p-toluenesulphondi-β-chloroethylamide, m.p. 48—49°, which with CH₂Ph·CN gives (40—45°, b.p.) p-toluenesulphon-4-phenylpiperidide-4-raitile (37%), m.p. 200—201°, converted by 75% H₂SO₄ at 140—150° and then EtOH at 110° as above into Et 4-phenylpiperidide-4-carboxylate (~85%), m.p. 36—37°, p-toluenesulphon-4-phenylpiperidide-4'-nitrile (37%), m.p. 200—201°, converted by 75% H₂SO₄ at 140—150° and then EtOH at 110° as above into Et 4-phenylpiperidide-4-carboxylate (~85%), m.p. 36—37°, b.p. 155°/3·5 mm. [hydrochloride (**V**), m.p. 133—134°; picrate, m.p. 157—158°]. CH₂Ph·N([CH₂]₂·Cl)₂, b.p. ~126—127°/1 mm. (hydrochloride, m.p. 149°), and CH₂Ph·CN give (35—50°, b.p.) 4-phenyl-1-benzylpiperidine-4-nitrile, m.p. 75—76° (hydrochloride, m.p. 259—260°), and thence (70% H₂SO₄) the 4-carboxylic acid, decomp. 288° (Et ester, m.p. 73—74°); the derived Et ester hydrochloride, decomp. 235—238°, with H₂-Pd-black in EtOH at 40—50° gives (**V**). O([CH₂]₂·Cl)₂ and CH₂Ph·CN give (40—50°, 100°) 4-phenyltetra-hydropyran-4-nitrile (49%), m.p. 49—50°, b.p. 147—148°/5 mm., hydrolysed by 66% H₂SO₄ at 100° to the 4-carboxylamide, m.p. 216—218° (which has sedative action), and by hot KOH-MeOH to the 4-carboxylic acid, m.p. 129—130° [chloride, m.p. 53—54°, b.p. 140°/3 mm.; β-diethylaminoethyl ester, an oil (hydrochloride, m.p. 181°, spasmolytic)]. CH₂Ph·CN and S([CH₂]₂·Cl)₂ give (40—45°, b.p.) 4-phenylpentamethylene sulphide-4-nitrile (47%), m.p. 56—57°, b.p. 175°/6 mm., and thence by 80% H₂SO₄ at 72° the 4-carboxylamide (**VI**), m.p. 158—159°, and 4-carboxylic acid (better obtained by KOH-MeOH at 190—200°), m.p. 157—158° (1: 1-dioxide, m.p. 215°); the 1: 1-dioxide, m.p. 237—238°, of (**VI**) has sedative action. 1-Methyloxindole and (**II**) give (35—45°, b.p.) 1:1'-dimethylpiperidine-4-spiro-3'-oxindole (51%), m.p. 104—106° (hydrochloride, m.p. 245—246°). Fluorene and (II) give (100—105°, 140°) 1-methylpiperidine-4-spiro-9'-fluorene, m.p. 113·5—114·5° (hydrochloride, m.p. 274—275°, has local anesthetic action; phosphate, m.p. 244—246°). McSO₂·NEt₂ and (II) give (80°, 100—105°) 1-methylpiperidine-4-sulphondiethylamide, m.p. 32°, b.p. 138°/3 mm. (hydrochloride, m.p. 183—185°). PhMcSO₂ and (II) give (90—95°, 105—110°) 1-methyl-4-piperidyl Ph sulphone, m.p. 115°, b.p. 182—192°/3 mm. (hydrochloride, m.p. 228—229°). CH₂Ph·SO₂Ph and (II) give (45—50°, 95—100°) 4-phenyl-1-methyl-4-piperidyl Ph sulphone, m.p. 165° (hydrochloride, m.p. 251° (decomp.)]. Attempts to alkylate CH₂Ph·CO·NR₃ (R = Et or Ph) failed, as did attempts to prepare piperidine derivatives from CH₂Ph·COPh or CH₃Ph₂ by (II).

Synthesis of nitrogenous hetero-rings. XXIV. Synthesis of dibenzindolizine derivatives. I. Synthesis of 4':5':4'':5''-tetramethoxy-3:4:7:8-tetrahydro-1:2:5:6-dibenzindolizine. S. Sugasawa and K. Kodama (Ber., 1941, 74, [B], 1237—1241).-6:7:3':4'-Tetramethoxy-3-benzyl-3:4-dihydroisoquinoline methylmethosulphate and H₂-FtO₂ in EtOH give 6:7:3':4'-tetramethoxy-3-benzyl-1-methyl-1:2:3:4-tetrahydroisoquinoline, m.p. 99°, converted by HI (d 1·7) at 150° into the corresponding (OH)₄-compound (tetra-acetate, m.p. 133—135°), the hydriodide of which with KOAc, then chloranil in EtOH, and finally HCl gives 3':4':3'':4''-tetrahydroxy-9-methyl-3:4:7:8-tetrahydroindolizinium chloride (I) (cf. Robinson et al., A., 1932, 527). Mc₂SO₄-33% KOH-H₂ and then KI converts (I) into the Me₄ ether iodide, decomp. 248—249°, which at 215—220° (the crude salt decomposes) gives 3:4':3'':4''-tetramethoxy-3:4:7:8-tetrahydro-m.p. 146—147° (decomp.), de-

at 213—220 (the crude sait decomposes) gives 3:4':3'':4''-tetramethoxy-3:4:7:8-tetrahydro-, m.p. $146-147^\circ$ (decomp.), dehydrogenated by Pt-black and air in boiling EtOH to $3':4':3'':4''-tetramethoxy-4:7-dihydro-1:2:5:6-dibenzindolizine [(II) R - Me], m.p. <math>193-194^\circ$ (purplered Ehrlich reaction). With boiling Ac_2O and a few drops of C_8H_8N , (I) gives

and a few drops of C₅H₅N, (I) gives 3': 4': 3'': 4''-tetra-acetoxy-4: 7-dihydro-1: 2: 5: 6-dibenzindolizine [(II) R = Ac], m.p. 198—200°, unaffected by air—Pt-black in EtOH.

p-Nitrophenylmethylpyrazolone. T. Iseki, T. Sugiura, S. Yasunaga, and M. Nakasima (Ber., 1941, 74, [B], 1420–1424).—Picrolonic acid (I) and cone. HNO₃ (d 1·45) give 4:4-dinitro-1-p-nitrophenyl-3-methyl-5-pyrazolone (II) (almost 100%), m.p. 204°, which is unstable. In NaOH, (II) gives CO₂ and as.-dinitroacetone-p-nitrophenylhydrazone, m.p. 147°. In MeOH, (II) gives nitropyrazole-blue [di-(5-keto-1-p-nitrophenyl-3-methyl-4-pyrazolidene]) (III) (96%), decomp. 255°, which is also obtained from 1-p-nitrophenyl-3-methyl-5-pyrazolone by NHPh·NH. and then FeCl₃. Heating (I) at 124—125° (10 min.) gives 4:4-dihydroxy-1-p-nitrophenyl-3-methyl-b-pyrazolone (IV), yellow, m.p. 185° [obtained as a by-product (1·7%) during the above prep. of (III)], with small amounts of (III) and an orange-red substance, m.p. 199—200°. With NHPh·NH., (IV) in boiling AcOH gives 1-p-nitrophenyl-3-methyl-4:5-diketopyrazoline-4-phenylhydrazone, m.p. 242°, and, when repeatedly crystallised from MeOH, gives 4-hydroxy-5-methoxy-1-p-nitrophenyl-3-methyl-5-pyrazolone, m.p. 192—193° (red in alkall). (IV) gives a red colour in dil. NaOH and hydrolysis occurs yielding aβ-diketo-n-butyric acid-β-p-nitrophenylhydrazone (90%), m.p. 175—176°. R. S. C.

Pyridyl and pyrazole acetamides.—See B., 1944, II, 101.

Action of nitric acid on ethyl isodehydroacetate.—See A., 1944, II, 179.

p-Nitrobenz-β-4-iminazylethylamide.—See B., 1944, III, 101.

Action of phosphorus pentasulphide on barbituric acids. H. C. Carrington (J.C.S., 1944, 124—126).—When barbituric acids containing two hydrocarbon residues in the 5-position react with P₂S₅, one, two, or three of the O of the barbituric acid ring may be replaced by S according to the reaction conditions and the nature of the substituents (cf. Henze et al., A., 1943, II, 339). 5:5-Diethylbarbituric acid, P₂S₅, and K₂S in xylene give 5:5-diethyl-2:4-di-y.m.p. 205—206°, and -2:4:6-tri-thiobarbituric acid (I), m.p. 192—193°, also obtained from the -2-thio-acid. Aq. NH₃ and (I) afford 6-inino-5:5-diethyl-2:4-dithiobarbituric acid, decomp. at 230°, whilst (I) with Mc₂SO₄-NaOH gives the 6-methylthio-acid, m.p. 130°. The following are also described: 5-ethyl-5-n-propyl-2:4-di-y.m.p. 188°, and -2:4:6-tri-, m.p. 177°, -b-isopropyl-2:4-di-y.m.p. 173°, 5:b-di-n-propyl-2:4-di-y.m.p. 189°, and -2:4:6-tri-y.m.p. 189°, and -2:4:6-tri-y.m.p. 190°, and -2:4:6-tri-y.m.p. 190°, and -2:4-di-y.m.p. 190°, and -2:4-di-y.m.p. 127°, b-ethyl-b-isobutyl-2:4-di-y.m.p. 190°, and -2:4-di-y.m.p. 125°, and -2:4-di-y.m.p. 168°, 5-ethyl-b-in-b-methyl-butyl-2:4-di-y.m.p. 168°, and -2:4-di-thiobarbituric acid, m.p. 160°. F. R. S.

Thiobarbituric acids.—See B., 1944, III, 101.

Formation of pyrimidine rings. Z. Foldi and A. Salamon (Ber., 1941, 74, [B], 1125—1128),— NH_2 ·CMc:N·CH:C(CN)·CO₂Et (I) with HCl-EtOH at 0° gives the imino-ether and thence by hot

NaOEt-EtOH Et 4-amino-2-methylpyrimidine-5-carboxylate (II), m.p. 122°, converted by aq. NH₃ (d 0.91) at room temp. into the derived amide, m.p. 260—261° (hydrochloride), and by 2.5% NaOH at 90° into the derived acid, m.p. 275° (hydrazide, m.p. 220°). If (I) is freed from traces of alkali by AcOH and then heated in boiling H₂O, (II) is formed, and the picrate, m.p. 170—175°, of (II) is obtained when the picrate, m.p. 140—144°, of (I) is melted. The effect of alkali on the direction of ring-closure is noted (cf. Todd et al., A., 1937, 216).

R. S. C.

Ethyl esters of 2-keto- and 2-thio-1:2:3:4-tetrahydro-5-pyrimidinecarboxylic acids. D. W. McKinstry and (Miss) E. H. Reading (J. Franklin Inst., 1944, 237, 203—205).—CO(NH₂). (1 mol.), CH₂Ac·CO₃Et (1·5 mols.), and a substituted PhCHO (1 mol.) boiled in EtOH (modified Biginelli condensation) give Et 2-keto-4-R-6-methyl-1:2:3:4-tetrahydropyrimidine-5-carboxylates, R depending on the aryl substituent. R = 2-chlorophenyl, m.p. 214°, 5-chloro-2-hydroxyphenyl, m.p. 203°, 3:4-diethoxyphenyl, m.p. 165°, 4-dimethylaminophenyl, m.p. 231°, 4-diethylaminophenyl, m.p. 199°. With CS(NH₂)₂ the following Et 2-thion-4-R-6-methyl-1:2:3:4-tetrahydropyrimidine-5-carboxylates are obtained: R = 3:4-dimethoxyphenyl, m.p. 231°, 3:4-diethoxyphenyl, m.p. 125°, 4-dimethylaminophenyl, m.p. 197°, and 4-diethylaminophenyl, m.p. 200°.

Pyrazine-water azeotrope.—See A., 1944, I, 150.

Reactions of NN'-diacetyltetrahydro-4: 4'-dipyridyl. B. Emmert and A. Wolpert (Ber., 1941, 74, [B], 1015—1018).—Di-1-acetyl-1: 4-dihydro-4-pyridyl (I) (modified prep.; cf. Dimroth et al., A., 1922, i, 48) in Ac₂O-CO₂ at 100° gives C_5H_5N , 4-ethylpyridine (II), and a little di-4-pyridyl, but in boiling MeOH-CO₂ gives C_5H_5N , (II), and 4-acetylpyridine [oxime, m.p. 157·5—158° (lit., 142°)]. With NH₂OH in boiling MeOH-CO₂ (I) gives 1-acetyl-4-a-oximino-ethyl-1: 4-dihydropyridine, m.p. 121—122° (rapid heating), and some C_5H_5N . In presence of Pd-black in EtOH, (I) absorbs \sim 4 H₂ to yield di-1-acetyl-4-piperidyl, m.p. 174°. Reaction mechanisms are discussed. R. S. C.

Pyridylquinolines etc.—See B., 1944, II, 102.

Synthesis of dimethoxyquinazolones. V. M. Rodionov and A. M. Fedorova (J. Gen. Chem. Russ., 1943, 13, 249—252).—2-Amino-3:4-dimethoxybenzoic acid, heated with Ac_2O , yields 6-keto-3':4'-dimethoxy-2-methylbenzo-2:1-4:5-oxazine (I), m.p. 165—168°, converted by recrystallising from AcOH into 2-acetamido-3:4-dimethoxybenzoic acid, m.p. 194—195°, and by aq. NH₃ into 7:8-dimethoxy-2-methyl-4-quinazolone (hydrochloride, m.p. 226—228°). 6-Amino-2:3-dimethoxybenzoic acid similarly yields 6-keto-3':4'-dimethoxy-2-methylbenzo-1:2-4:5-oxazine, but this reacts differently with aq. NH₃, giving 2-acetamido-5:6-dimethoxybenzamide. β -Amino-e-diethylaminopentane and (I) (2—3 hr. at 120—130°) afford 7:8-dimethoxy-2-methyl-3-(8-diethylamino-a-methylbutyl)-4-quinazolone (trihydrochloride, m.p. 171—173°).

isoOxindigo. P. Chovin (Compt. rend., 1942, 215, 466—468).—Condensation of o-OH·C₈H₄·CH₂·CO₂H with o-OH·C₈H₄·CO·CO₃H by PBr₃ gives an orange substance (I), converted by KOH-EtOH followed by HCl into a yellow compound (II), C₁₆H₈O₃, m.p. 305°. The constitution of the two isomerides cannot be elucidated by considerations of colour. (I) gives a difficultly purified ozonide (III), transformed by hydrolysis or pyrolysis into o-OH·C₆H₄·CO₂H and o-OH·C₆H₄·CO·CO₂H or its lactone, whereas (II) affords a colourless substance, C₁₆H₈O₆, m.p. 269°, which behaves like (III) when pyrolysed. Improvement in the yield of (I) by the substitution of the lactones for the acids indicates for it the isoindigoid structure and this view is strengthened by the exclusive formation of (I) in 50% yield from 2-coumaranone. (II) is thus probably the dibenzonaphthyrone.

Action of oxidising agents on 5-keto-3-thion-6-benzyl-1:2:4-triazine. E. Cattelain (Compt. rend., 1942, 215, 257—259).—5-Keto-3-thion-6-benzyl-1:2:4-triazine (I) is converted by I in neutral solution into di-o-keto-6-benzyl-1:2:4-triazinyl 3:3'-disul-phide, m.p. 173°, which does not reduce Nessler's reagent or Cull salts but is transformed into (I) by (NH₄)₂S or NaHSO₃. It gives a green Cull (II) and a yellow Cull (III) salt, both insol. in H₂O. When freshly prepared it liberates I from KI in acid solution. In presence of phenolphthalein it can be titrated as a di-acid. It is converted by Na-Hg into α-thiosemicarbazido-β-phenylpropionic acid. With excess of I in alkaline solution (I) gives 3:5-diketo-6-benzyl-1:2:4-triazine. (I) is transformed by CuSO₄ according to the relative proportions into a mixture of the Cu compound of (I) and (III), a mixture of (II) and (III), or exclusively (III).

Invert soaps. VII. Tetrazolium salts. R. Kuhn and D. Jerchel [with, in parts, E. F. Moller, M. von Czernucki-Hrebeljanowitsch, and R. Brill] (Ber., 1941, 74, [B], 941—948).—NHPh·N:CH·CO.Et, m.p. 133° (lit., 131°), is best obtained by exothermal interaction of NHPh·NH. with CO.Et·CH(OH)·OEt. Formazans, NR:N·CR':N·NHR'', are obtained by treating CHR':N·NHR'' with RN.Cl and NaOAc in EtOH; they are tautomeric with NR'':N·CR':N·NHR (cf. von Pechmann, A., 1894, i, 456; Busch

et al., A., 1931, 1156), since the pairs, R = Ph, $R'' = p\text{-NO}_2 \cdot C_0 H_4$ or vice versa, and R = Ph, $R'' = p\text{-C}_6 H_4 Br$ or vice versa ($R' = n\text{-C}_{11}H_{23}$ in both cases), are identical when prepared from any possible set of components. Formazans are best (72—83%) oxidised to tetrazolium salts by $Pb(OAc)_4$. Thus are prepared: C-carbethoxy-NN'-diphenyl-C-n-hexyl- (I), m.p. 76°, and -C-n-undecyl-, m.p. 61°, -formaxan; N-phenyl-N'-p-nitrophenyl-(II), m.p. 108—109°, -N'-p-bronophenyl-, m.p. 53°, and -N'-a-naphthyl-, m.p. 60°, -C-n-undecyl-ormaxan; 2:3-diphenyl-u-nethyl-, decomp. 271°, -5-n-hexyl- (III), decomp. 220°, and -5-n-undecyl- (IV), m.p. 141°, -tetrazolium chloride; 2:3:5-triphenyl-u-nethyl-, decomp. 263° (lit., m.p. 243°), and 5-carboxy-2:3-diphenyl-, decomp. 198—200° (lit., 195—198°), -tetrazolium chloride; 2-phenyl-3-p-bromophenyl- (V), m.p. $\sim 60^\circ$, and -3-a-naphthyl- (VI), a glass, -5-n-undecyletrazolium chloride. M.p. are taken on a microscope stage. Absorption spectra (detailed) of (I) and (III) differ greatly. (II) gives a deep green $Cu^{\Pi}_{0.5}$ derivative, m.p. 131°, indicating that the tautomerism of formazans depends on chelation. The tetrazolium salts ppt. egg-albumin at pH > the isoelectric point. Drop nos. of 1% solutions are (III) 464 and (IV) 75·7. Bacteriostatic properties of (IV)—(VI) against lactic acid bacteria approx. equal those of $n\text{-C}_{12}H_{25}$:NMe₂Br·CH₂Ph; those against Staph, paratyphus, B. coli, diphtheria and Friedlander bacilli are \ll those of benztriazolium salts (A., 1942, II, 112).

Identity of "euglenarhodone" with astacene.—Sec A., 1944, III,

Internal rearrangements in the aromatic series. III. Arylation and alkylation of aryl substituted carbamides. G. I. Gerschzon [J. Gen. Chem. Russ., 1943, 13, 136—144).— β -C₁₀H₇·OH (I) with MHPh·CO·NPhEt or NHPh·CO₂Me at 240—250° for 4 hr. yields 2:3:5:6-di-2':1'-naphtha-1:4-pyrone 4-anil (II). (I) and MHPh·CO·NH₂ (6 hr. at 245°) give 2-C₁₀H₇·NHPh, in 54% yield. CO(NPhEt)₂ does not react with (I), even at 300°. The process of formation of (II) is, on the basis of the above results, and of those of Dziewonski et al. (cf. A., 1933, 833), presented as: (I) +CO(NHPh)₂ \rightarrow NHPh·C(O·C₁₀H₇):NPh (III). Part of (III) undergoes intramol. rearrangement to the anil of 1-phenylcarbamyl-2-maphthol, which condenses with (III) as follows:

Thiazoles. I. Condensation of aδ-dichloro-γ-valerolactone with thioamides. H. Beyer (Ber., 1941, 74, [B], 1100—1104).—δ-Chloro-acetyl-γ-valerolactone (1) and SO₂Cl₂ (1 mol.) at 0° (exothermally) and then 100° give aδ-dichloro-a-acetyl-γ-valerolactone (I), b.p. 130—131°/0·3 mm., which in dil. HCl at 100° gives CH₂Cl-CH(OH)·CH₂·CHCl·COMe (II), which spontaneously yields mostly 4-chloro-5-methyl-2-chloromethyl-2: 3-dihydrofuran. When (I) is heated with CS(NH₂)₂ in 4n-HCl at 100°, the intermediate (II) condenses to yield, with loss of HCl, 2-amino-4-methyl-5-βγ-epoxy-n-propylthiazole, sinters 145°, m.p. 150—152° (clear at 153°) (picrate, sinters 172°, m.p. 175—176°) (and some dihydrofuran derivative, bp. 70—75°/0·1 mm.), which, when made acid to Congo-red by HCl in MeOH, yields 2-amino-4-methyl-b-γ-chloro-β-hydroxy-n-propylthiazole, m.p. 144—146° (picrate, sinters 185°, m.p. 190—192°). With MeCS·NH₂ or PhCS·NH₂, (I) in 4n-HCl at 100° similarly yields 2: 4-dimethyl-5-βγ-epoxy-n-propylthiazole (picrate, m.p. 136—137°) and 2-phenyl-4-methyl-5-γ-chloro-β-hydroxy-n-propylthiazole (picrate, m.p. 198—199° (decomp.)], respectively. R. S. C.

Benzthiazole. E. Ochiai and T. Nishizawa (Ber., 1941, 74, [B], 1407—1415).—Although cyclic S is generally equiv. to cyclic CH:CH, the reactivity of the C₆H₄ ring of benzthiazole differs from that of the C₆H₄ ring of quinoline. 6-Hydroxy-2-methylbenzthiazole (I) with CH₂:CH·CH₂Br and K₆CO₃ in boiling abs. EtOH gives the wivl ether (II) (85%), b.p. 130—140° (bath)/0·03 mm. (picrate, m.p. 152°), which at 240—250° (10 min.) gives a mixture (~20:1) of 6-hydroxy-2-methyl-7- (III), m.p. 133—135°, resolidifies, remelts 14′ (picrate, m.p. 125—126°), and -5-allylbenzthiazole (IV), m.p. 188° (picrate, decomp. 216—219°), with 4% of unchanged (II). (III) and (IV) give allyl ethers, b.p. ~180° (bath)/0·1 mm. (picrates, m.p. 115—116° and 161—163°, respectively), converted at 235—50° into 6-hydroxy-2-methyl-5: 7-diallylbenzthiazole (V), m.p. 148°, the allyl ether (picrate, m.p. 92°) of which is stable at 240°. PhN₂Cl does not couple with (I) in aq. AcOH but in NaOH gives the PhN₂Cl derivative (82%), m.p. 119°. p-NO₂·C₆H₄·N₂Cl (VI) and (I) in aq. AcOH or NaOH give the p-NO₂·C₆H₄·N₂-derivative (90—95%), m.p. 144—225°. PhN₂Cl does not couple with (III) in acid or alkali. (pot acid) gives a little 6-hydroxy-5-p-nitro-

(VI) in alkali (not acid) gives a little 6-hydroxy-5-p-nitrozeneazo-2-methyl-7-allylbenzthiazole, m.p. 203°. (IV) couples with (VI) in acid or alkali giving 6-hydroxy-7-p-nitrobenzeneazo-2-methyl-vallylbenzthiazole, m.p. 147°. (V) and (VI) do not react in acid or alkali.

R. S. C.

Constitution of the so-called carbothialdines and the preparation of some homologous compounds. A. D. Ainley, W. H. Davies, H. Gudgeon, J. C. Harland, and W. A. Sexton (J.C.S., 1944, 147—152).—Consideration of methods of formation leads to structure SCHR'·NH—CHR' [(I), R = H, R' = Me] for "carbothialdine" (or "thiuram carbomethyl") and to (I) (R = Me, R' = H) for "dimethylformocarbothialdine" which is identical with "2:4-dimethyl-2-methylenecarbothialdine" Absorption spectra are in accord with the proposed formulæ and the names should be 2-thio-4:6- and -3:5-dimethyltetrahydro-1:3:5-thiadiazine, respectively. NH_aPh, CS₂, and H₂O with aq. NH₂Me give 2-thio-3-phenyl-5-methyltetrahydro-1:3:5-thiadiazine, m.p. 148°. By treatment of the Ba salt of the aryldithiocarbamic acid with the sulphate of the aliphatic amine, followed by CH₂O, the following have been prepared: 2-thio-3-a-naphithyl-, m.p. 159—160°, -3-(p-hydroxyphenyl)-, m.p. 139—140°, -3-(p-anisyl)-, m.p. 160—161°, -3-(p-hydroxyphenyl)-, m.p. 163—164°, 3-(3'-chloro-4'-hydroxyphenyl)-, m.p. 168—169°; and 2-thio-3-phenyl-5-(β-diethylamino)-, m.p. 103—104° (with some OH-CH₂ derivative of 2-anilino-4:5-dihydrothiazole, m.p. 165°), and -5-(β-hydroxyethyl)-tetrahydro-1:3:5-thiadiazine, m.p. 136°; and p-diethylaminophenylammonium p-diethylaminophenyldithiocarbamate, m.p. 97—99°.

VII.—ALKALOIDS.

Hydrazides of dihydro-lysergic and -isolysergic acids.—See B., 1944, III, 102.

Chemical study of Fritillaria raddeana, RGL. A. Sadikov and G. Lazurevski (J. Gen. Chem. Russ., 1943, 13, 159—163).—The dry bulbs contain carbohydrates 60·5 (monosaccharides 2·4, disaccharides 6·2, starch 41·3, cellulose 7·8, and hemicellulose 2·8%), resins 4, and an alkaloid raddeanine (I), C₂₁H₂₅O₂N, m.p. 255—257°, 0·7%. The carbohydrates may be utilised as fodder, or as a nutrient medium for yeast. The perchlorate, m.p. 204—205°, hydrochloride, m.p. 167—168°, aurochloride, m.p. 130—132°, methiodide, m.p. 248—250°, and Bz derivative, m.p. 235—236°, of (I) are described. (I) is not affected by treatment with KOH-EtOH (5 hr. at the b.p.).

R. T.

Aconite alkaloids. XIII. Isolation of pimanthrene from dehydrogenation products of staphisine. XIV. Oxidation of the hydrocarbon from dehydrogenation of atisine. L. C. Craig and W. A. Jacobs (J. Biol. Chem., 1944, 152, 645—650, 651—657; cf. A., 1943, II, 210).—XIII. Commercial abietic acid (probably contains some d-pimaric acid) is dehydrogenated by Se at 340° (in N_{*}) for 2 hr. to give, after chromatographic separation, retene and some pimanthrene, m.p. 84—85° (picrate, m.p. 131—133°), identical with the product, m.p. 78—81°, obtained by dehydrogenating staphisine (I) (cf. A., 1942, II, 40). The main hydrocarbon, C₁₀H₂₀, from (I) is probably a methylretene with the second Mc in position 2, 3, or 4. It is oxidised by CrO₃—AcOH at 100° (bath) to a quinone, m.p. 213—216°, further oxidised by KMnO₄ to (probably) a nydroxysiopropylphthalic acid (II), C₁₁H₁₂O₅, melts with effervescence at ~170°, resolidifies and melts at ~290—294°. (II) is not found in the KMnO₄ oxidation products of retenequinone, but in addition to hydroxyisopropyldiphenyltricarboxylic acid, m.p. ~186—192° (cf. Ruzicka et al., A., 1931, 360), a new acid, C₁₀H₆O₇, probably a dicarboxyphenylglyoxylic acid, is isolated as the Me₃ ester (III), m.p. 149—151°.

XIV. The hydrocarbon, C₁₇H₁₈ (probably 1:6- or 6:1-methylethylphenanthrene), obtained by dehydrogenating atisine is oxidised by CrO₃-AcOH at 100° (bath) for 7 hr. and then at 0° for 24 hr. to a quinone, C₁₇H₁₄O₂, m.p. 149—151°, further oxidised (KMnO₄) to a diphenyltetracarboxylic acid (IV), m.p. 340—345°, with decompand sublimation and probable anhydride formation (Me₂ ester, m.p. 149—150°, hydrolysed by aq. NaOH-MeOH to a Me ester, m.p. 338—341°). Attempts to oxidise (IV) by fuming HNO₃ and a little Mn(NO₃)₂ at 100° (bath) afford only a monoanhydride, m.p. 338—340°, of (IV). After separation of (IV) in the above oxidation, the mother-liquors are esterified (CH₂N₂ in COMe₂) to yield the Me₃ ester, m.p. 93—98°, of (?) hemimellitic acid, and (after hydrolysis with aq. HCl at 110° in a sealed tube) (?) trimellitic acid, m.p. 220—227°. In addition to the above Et₂O-extracted acid oxidation products, an acid is obtained which yields a Me₃ ester, m.p. 148—149°, identical with (III).

Veratrine alkaloids. XXI. Conversion of rubijervine into allorubijervine. The sterol ring systems of rubijervine. W. A. Jacobs and L. C. Craig (J. Biol. Chem., 1944, 152, 641—643; cf. A., 1943, II, 246, 313).—Rubijervine (I), like solanidine, possesses the regular steroidal skeleton, with a six-membered ring B. (I) and Cu (in CO₂) at 150—200° for 15 min., then 200—290° for 15 min., at 1 atm., then 290°/0·1 mm. for 1 hr., yield rubijervone (II), m.p. 202—204° (slight previous sintering). Its oxime melts largely at 160°, resolidifies, and remelts at $\sim\!\!247$ —254° (depends on rate of heating). (II) and Al(OPr\$\beta\)3 yield a product, C₂₇H₄₃O₂N, softens to a melt at 218—220°, isomeric with (I) and probably containing allo-+ epi-

allo-rubijervine. This transformation is analogous to that of cholestenone and allocholesterol; the original suggestion that $C_{(b)}$ in (I) carries an ang. Me is improbable. A. T. P.

Comparative study of Boerhaavia diffusa, Linn., and the white-and red-flowered varieties of Trianthema portulacastrum, Linn. R. N. Chopra, N. R. Chatterjee, and S. Ghosh (Indian J. Med. Res., 1940, 28, 475—480).—Extraction with EtOH of the three plants used as the drug "Punarnava," yielded KNO₃: B. diffusa 0.36%, T. portulacastrum (white) 1.7%, T. portulacastrum (red) 2.6%. Extraction of the NH₃-alkaline mother-liquors with CHCl₃ and pptn. with Et₂O yielded a crude alkaloid, punarnavine, m.p. ~175° (decomp.) (picrate, m.p. 118—120°; chloroplatinate, m.p. 121—122° (cf. A., 1936, 652). The yield (on dry wt.) of drug was 0.04, 0.02, and 0.05%, respectively.

Alkaloids in Adenocarpus intermedius. I. Rivas (Anal. Fis. Quim., 1942, 38, 197—198).—The leaves contain 1.28% of alkaloids (cf. Santos Ruiz and Albiñana, B., 1942, III, 275). F. R. G.

Alkaloids of the seeds of Delphinium consolida, L.—See A., 1944, III, 516.

VIII.—ORGANO-METALLIC COMPOUNDS.

Organo-metallic compounds. I. Silver methyl, ethyl, and n-propyl. G. Semerano and L. Riccoboni (Ber., 1941, 74, [B], 1089—1099).—PbMe4 and AgNO3 in EtoH at -80° give AgMe or, if an excess of AgNO3 is used, the compound, AgMe,AgNO3. This is stable at -50° , but decomposes rapidly at -35° , giving Ag and C_2H_6 with traces of CO3 and CO. PbEt4 and AgNO3 at -80° give a ppt. (AgEt) which decomposes when warmed to give Ag, C_2H_6 53, C_2H_4 10, and C_4H_8 37% with traces of CO. PbPra4 and AgNO3 in EtoH at -80° give a similar ppt. (AgPra), which is less stable, decomp. at $\sim\!-60^\circ$ to give Ag (1 atom) and $<\!1$ mol. of ($C_2H_8+C_3H_6$) with, presumably, C_6H_{14} . Clearly the decomp. is AgR \rightarrow Ag + R-, followed by dimerisation and disproportionation of R- (except for R=Me) and small amounts of reduction by R-. The initial reaction is: Ag^+ + PbR4 \rightarrow AgR + PbR3+. AgAlk are not explosive but are thermally less stable than AgAryl. R. S. C.

Mode of reaction of halogenated hydrocarbons with lithium phenyl [(VI)] and mechanism of the Wurtz-Fittig synthesis. G. Wittig and H. Witt (Ber., 1941, 74, [B], 1474—1491).—Exchange of Li and halogen occurs when sufficient electro-negative groups are present, the Li going to the more anionic component. In the series, o-OMe-C₈H₄·Hal, reactivity is I > Br > Cl, F. With arylalkyl chlorides exchange occurs only if CHCl is absent (cf. below). CH.PhBr (2 mols.) and LiPh (1 mol.) give (CH₂Ph)₂ and PhBr in almost 100% yield; CHPh₂Br (1) and LiPh (1 mol.) give PhBr and (CHPh₂)₃ (90%); CPh₂Br₂ (2 mols.) and LiPh (1 mol.) give, by way of Li-CPh₂Br, PhBr (~100%), C₂Ph₄, and tar. CH₂Br₂ (1) and LiPh (1 mol.) give ~25% of PhBr and, by way of CH₂PhBr and (CH₂Ph)₂. Interaction of CHBr₃ or CBr₄ is still more complex, but gives ~40% of PhBr. CCl₄ similarly gives PhCl and an inseparable mixture. CPhCl₃ gives very rapidly PhCl (30%) and a tar. CPh₂Cl₂ (1) and LiPh (1 mol.) give more slowly PhCl (30%) and C₂Ph₄. CPh₂Cl (1) and LiPh (1 mol.) give (CPh₃·O)₂ and CPh₄, but no PhCl. CHPh₂Cl (1) and LiPh (1 mol.) give (CPh₃·O)₂ and CPh₄, but no PhCl. CHPh₂Cl (1) and LiPh (1 mol.) give (CHPh₂)₂ (30%). Exchange of H for Li depends on the "acidifying" nature of the substituent (F > Cl > Br > I > OMe > Ph). Thus, CH₂PhCl (1) and LiPh (1 mol.) give CHPh₂Ch₂Ph (I) (52%) by way of Li-CHPhCl and Li-CHPl₂; CH₂Ph₂ does not react with LiPh and is thus not an intermediate. Benzyl fluoride (prep. from CHPhN₂ by HF-Et₂O; 18% yield), b.p. 60—61°/55 mm., gives CH₂Ph₂ (24%), (I) (27%), and other products. CHPhCl₂ reacts rapidly to give a tar, not containing PhCl. Loss of HCl can also occur with unreactive halides, but the factors governing this reaction are not yet clear. CHPh:CHBr (1 mol.) and LiPh (2 mols.) give CHPh:CHLi, whence COPh₂ gives OH-CPh₂-C-CPh (II) (54%). CHPh:CHCl (1 mol.) with LiPh (2 mols.) gives, after hydrolysis, CPh-CH (70%) and PhCl, but

IX.—PROTEINS.

Formula for agar. V. C. Barry and T. Dillon (Chem. and Ind., 1944, 167).—Gelidium latifolium is bleached in sunlight, boiled for several hr. with distilled H₂O (which does not become acid), and filtered. The filtrate sets to a stiff jelly which after being twice

Complex affinity of heavy metals for proteins. II. Effect of acidity on flocculation of proteins by silver salts. Binding of silver by proteins and organic nitrogen compounds. W. Haarmann and E. Frühauf-Heilmann (Biochem. Z., 1941, 309, 13—31).—Proteins differ very greatly in the extent to which they are pptd. from unbuffered solutions by AgNO₂, gelatin not being pptd. even by high concns. There are also great variations in the optimum pH for pptn., the val. for serum-albumin, ψ -globulin, and hemoglobin being 7.5 and that for ovalbumin, casein, and euglobulin 5.0. With gelatin, capability for flocculation increases as pH increases. The Ag-binding power of proteins and NH₂-acids (e.g., alanine, glycine, tyrosine) increases with increase in alkalinity, 2—3 times as much being bound at pH 10 as at pH 7. K₂CrO₄ serves as indicator of the extent of formation of complex Ag-protein and $-NH_2$ -acid compounds. The extent varies greatly with the N compound used. W. McC.

Ferritin and apoferritin in the ultracentrifuge. A. Rothen (J. Biol. Chem., 152, 1944, 679—693).—Results from the ultracentrifuging of ferritin (I) solution showed that ferritin is a mixture of a colourless, homogeneous protein and a coloured, heterogeneous material. The former proved to be identical with apoferritin (II), a protein already isolated from (I) by removing the Fe. The latter appeared to be a complex of Fe(OH)₃ micelles of various sizes combined with (II). The mol. wt. of (II) is 465,000, and the mol. has an asymmetry of the same order as ovalbumin.

J. F. M.

Effect of acylating agents on thiol groups of crystalline ovalbumin. H. Fraenkel-Conrat (J. Biol. Chem., 1944, 152, 385—389).—At pH 5—6, PhNCO and C₃O₂ reacted more readily with the SH groups of cryst. ovalbumin than with either the phenolic or NH₂-groups. Keten reacted with a greater proportion of NH₂-groups than of SH groups of the native protein. Esters formed by any of the reagents were hydrolysed by alkali at room temp.; reversible acylation of SH groups was demonstrated also with cysteine and glutathione. G. D.

Partial hydrolysis products from the action of proteolytic enzymes on casein.—See A., 1944, III, 500.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Lignin. XLVI. Action of glycol chlorohydrin on pine lignin. K. Freudenberg and L. Acker (Ber., 1941, 74, [B], 1400—1406). — Heating pine-wood with $\text{Cl}\cdot[\text{CH}_2]_2\cdot\text{Ol}$ (I) gives an alkali-sol lignin (II) with 3% of $\text{OH}\cdot[\text{CH}_2]_2\cdot\text{O}\cdot[\text{CH}_2]_2\cdot\text{Cl}$, methylene di-\$\beta\chi^2\chi\beta\chi^2\chi\beta\chi\beta\chi^2\chi\beta\chi\beta\chi^2\chi\beta\chi\beta\chi^2\chi\beta\chi\beta\chi^2\chi\beta\chi\beta\chi^2\chi\beta\

Isolation of gliotoxin and fumigacin from culture filtrates of Aspergillus fumigatus. A. E. O. Menzel, O. Wintersteiner, and J. C. Hoogerheide (J. Biol. Chem., 1944, 152, 419—429).—The fumigacin of Waksman et al. (cf. A., 1943, III, 770) is a mixture of fumigacin and gliotoxin; the latter contributes most of the antibiotic activity. Fumigacin is identical with helvolic acid, isolated from A. fumigatus culture medium by Chain et al. (cf. A., 1943, III, 917). The prepof fumigacin Me ester, C₃₀H₄₀₋₄₂O₇, m.p. 260—261° (oxime, m.p. 204—206°; semicarbazone, m.p. 225—228°), is described.

Toxic principle of poison ivy and other related plants. D. Wasserman and C. R. Dawson (J. Chem. Educ., 1943, 20, 448-453).—A review.

L. S. T.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II-Organic Chemistry.

AUGUST, 1944.

I.—ALIPHATIC.

Cinchona alkaloids. VI. Configuration of (-)-γ-methyl-δ-ethylexane. V. Prelog and E. Zalan (Helv. Chim. Acta, 1944, 27, 545 bexane. V. Prelog and E. Zalan (Helv. Chim. Acta, 1944, 27, 545—547).—The configuration (A) is established for (-)- γ -methyl- δ -ethylhexane (I) by its prep. from (-)-CHMeEt·CO₂Me. (-)-CHMeEt·CO₂H, b.p. $71-72^{\circ}/12$ mm., $[a]_{D}-17\cdot35^{\circ}\pm0.05^{\circ}$, is converted by CH₂N₂ into the Me ester, b.p. $108-112^{\circ}/730$ mm., $[a]_{D}^{15}-19\cdot42^{\circ}\pm0.05^{\circ}$, which with MgEtBr in Et₂O affords (+)- γ -methyl- δ -ethyl-kexan- δ -ol, b.p. $63-65^{\circ}/11$ mm., $[a]_{D}^{19}+17\cdot1^{\circ}\pm0.05^{\circ}$. This is dehydrated by anhyd. $H_{2}C_{2}O_{4}$ to the corresponding hexene, which is hydrogenated (PtO₂ in AcOH) to (I), b.p. $155-162^{\circ}$ (bath), $[a]_{D}^{10}-3\cdot18^{\circ}\pm0.05^{\circ}$. bexane.

Polymerisation of isobutene on hydrated silicate catalysts.—See A., 1944, I, 180.

Diolefines from allylic chlorides. II. A. L. Henne and H. H. Chanan (J. Amer. Chem. Soc., 1944, 66, 392—394; cf. A., 1942, II, 126).—Treating 1: 1 mixtures of (a) CH₂:CH·CH₂Cl, CH₂:CMe·CH₂Cl, or butadiene hydrochloride and (b) piperylene hydrochloride or isoprene hydrochloride with Mg in Et₂O gives diolefines in which the as. product predominates. Compositions are determined by fractionation. Structures are proved by reduction and ozonolysis. The following are proved. Structure in a 10.2%: Section 1.10.2%: Section 1.1 fractionation. Structures are proved by reduction and ozonolysis. The following are new: δ -methyl- Δ^{ac} -heptadiene, b.p. $110\cdot3^{\circ}$; δ -dimethyl- Δ^{bc} -octadiene, m.p. $-64\cdot8^{\circ}$, b.p. $153\cdot3^{\circ}$; $\beta\delta$ -, b.p. $132\cdot1^{\circ}$, and $\gamma\delta$ -dimethyl- Δ^{ac} -n-heptadiene, b.p. $129\cdot8^{\circ}$; $\gamma\gamma$ -dimethyl- Δ^{ac} -n-heptadiene, b.p. $129\cdot8^{\circ}$; $\gamma\gamma$ -dimethyl- Δ^{ac} -n-heptadiene, b.p. $149\cdot7^{\circ}$; $\beta\eta$ -dimethyl- Δ^{bc} -n-octadiene, m.p. $-74\cdot4^{\circ}$, b.p. $168\cdot6^{\circ}$; $\beta\delta\delta$ -trimethyl- Δ^{ac} -n-hexadiene, b.p. $126\cdot3^{\circ}$; $\beta\zeta$ -dimethyl- Δ^{ac} -n-heptadiene, m.p. $-102\cdot7^{\circ}$, b.p. $141\cdot9^{\circ}$; $\beta\epsilon$ -dimethyl- Δ^{bc} -n-heptadiene, b.p. $134\cdot6^{\circ}$; $\delta\epsilon$ -dimethyl-n-octane, b.p. $162\cdot4^{\circ}$; $\gamma\delta$ -dimethyl-, b.p. $140\cdot1^{\circ}$, and $\beta\epsilon\epsilon$ -trimethyl-n-heptane, b.p. $152\cdot8^{\circ}$; γ -keto-amethyl-n-valeric acid semicarbazone, m.p. 178° (lit. 191° , 182°). B.p. are corr.

R. S. C.

Conjugated diolefines by double bond displacement. H. A. L. Henne and H. H. Chanan (J. Amer. Chem. Soc., 1944, 66, 395-396; cf. A., 1942, II, 294).—Conversion of unconjugated into conjugated dienes in presence of Al₂O₃ is greatly improved by including 5 mol.-% of Cr₂O₃ in the catalyst (prep.: Grosse *et al.*, B., 1940, II, 260). The optimum temp. is 250°. The catalyst is gradually impaired by deposition of C but is regenerated by heating at 450°, first in by deposition of C but is regenerated by heating at 450°, first in air and then in H₂, but repeated treatment impairs the efficiency. (CH₂:CH·CH₂)₂ gives (CHMe:CH), (76·7%). (CH₂:CMe·CH₂)₂ gives (CMe₂:CH), (85·5%). CH₂:CH·CHMe·CH₂·CH:CHMe gives CHMe:CH·CH:CMeEt (73·1%). CH₂:CH·CH₂·CHMe·CH:CHMe gives CHMe:CH·CMe:CHEt (37·1%), b.p. 135·9°. CH₂:CH·[CHMe]₂·CH:CHMe gives CHMe:CH·CMeEt (22·6%), b.p. 156·5°. CH₂:CH·CHMe]₂·CH:CMe₂ gives CHEt:CH·CH:CMe₂ (54·4%), m.p. -96·4°, b.p. 135·8°. CH₂:CH·CHMe·CH₂·CH:CMe₂ gives CMeEt:CH·CH:CMe₂ (48·9%), m.p. -63·1°, b.p. 156·9°. CH₂:CMe·CH₂·CH·CHMe·CH:CHMe₂. CH:CHMe₂. CH:CHMe₂. CH:CHMe₂. CH:CHMe₂. CH:CHMe₂. CH:CHMe₂. CH:CHMe₂. CH:CHMe₂. CH:CH₂:CH·CMe₂. and CH₂:CMe·(CH₂)₂·CH:CMe₂ are not thus rearranged. R. S. C. CH2:CMe [CH2]2 CH:CMe2 are not thus rearranged.

Kinetics and mechanism of thermal polymerisation of acetylene and its reaction with nitric oxide. Mercury-photosensitised polymerisation of acetylene.—See A., 1944, I, 179, 180.

Dehydrochlorination of γ-chloro-Δβ-propen-a-ol. Preparation of propargyl alcohol. L. F. Hatch and A. C. Moore (J. Amer. Chem. Soc., 1944, 66, 285—287).—The a- and β-forms of CH₂Cl-CH:CHCl in boiling 10% Na₂CO₃ give the a- (I), b.p. 146·3°/746 mm., and β-forms (II), b.p. 153·6°/756 mm., respectively, of γ-chloro-Δβ-propen-a-ol. Up to 69·3% of CH:C-CH₂OH is obtained from (I) by 10% NaOH, but (II) is unaffected except by >10% alkali, which causes resunification.

Optically active phytol. II. P. Karrer, H. Simon, and E. Z. Binden (Helv. Chim. Acta, 1944, 27, 313—316; cf. A., 1944, II, 31).—The conversion of phytols (I) into phytadienes is accompanied by marked increase in optical activity and the products derived from (I) of differing dextrorotatory power or apparent optical inactivity have approx. the same rotation. Possibly (I) in spite of repeated fractions of the same rotation. tionation retains a lævorotatory impurity which more or less com-209 I (A., II.)

pensates the dextrorotation of (I) or, more probably, pure natural (I) has an immeasurably small optical activity and the dextrorotation of many distilled specimens is due to a difficultly removable, dextrorotatory impurity (unidentified). At any rate it is established that natural (I) is not a racemate but an actual or latent optically active compound. Synthetic *l*-phytol (II) yields a *l*-phytadiene which has only slightly greater optical activity than the initial material and is much less active than the *d*-compound from natural (I). (II) and (I) are not therefore optical antipodes; (I) is probably racemic with respect to Distinction is drawn between: natural d-phytol (sterically homogeneous with respect to both asymmetric C atoms and probably having immeasurably small [a] and d-phytadiene; synthetic l-phytol, sterically homogeneous with respect to $C_{(k)}$ and racemic at $C_{(\eta)}$ and synthetic l-phytadiene; synthetic dl-phytol, racemic in respect of both asymmetric C atoms, and optically inactive and synthetic dl-phytadiene. H. W.

Lead tetra-acetate oxidations in the sugar group. V. Rates of oxidation of open-chain polyalcohols in dry acetic acid. R. C. Hockett, (Miss) M. T. Dienes, H. G. Fletcher, jun., and H. E. Ramsden. VI. Structures of di- and tri-benzoates of D-sorbitol and D-mannitol. R. C. Hockett and H. G. Fletcher, jun. (J. Amer. Chem. Soc., 1944, 66, 467—468, 469—472; cf. A., 1944, II, 7).—V. Under standard conditions, the rate of oxidation of polyhydric alcohols, rapid at first and then slower, is independent of configuration but dependent on the no. of CHOH in unbroken series figuration but dependent on the no. of CHOH in unbroken series. An empirical rule enables the no. of vic. CHOH to be determined; reaction is not stoicheiometric as HCO₂H formed reduces more Pb(OAc)₄. The diacetamides of *D*-threose, -erythrose, -arabinose,

and -lyxose behave similarly.

VI. Oxidation of D-sorbitol at-dibenzoate by Pb(OAc), closely VI. Oxidation of D-sorbitol a_{ξ} -dibenzoate by Pb(OAc)₄ closely resembles that of erythritol and gives no CH₂O, which proves its structure. The structure of the $a\beta\xi$ -tribenzoate is similarly confirmed by consumption of 2 Pb(OAc)₄ without formation of HCO₂H. D-Sorbitol and BzCl in $C_{\xi}H_{\xi}N$ at 20° give an $a\beta$ -dibenzoate and a small amount of $a\beta\xi$ -tribenzoate (I), m.p. 147.7—148.3° (corr.), $[a]_{D}^{-8}$ —11·1° in CHCl₃. The structure of (I) is proved by consumption of 2 Pb(OAc)₄ and formation of L-OBz·CH₂·CH(OBz)·CHO and no CH.O.

Structure of styracitol. R. C. Hockett and (Miss) M. Conley (J. Amer. Chem. Soc., 1944, 66, 464—466).—The structure of styracitol (I) as as-anhydro-D-mannitol (A., 1944, II, 7) is confirmed. Hydroxyglucal tetra-acetate (II) with H₂-PtO₂ in AcOH at 23 lb., falling to ~45 lb., and then NaOMe-McOH at 70° gives (I) (57%), m.p. 154—155°, [a]₁²⁰ –50·9° in H₂O. Hydrogenation of (II) in McOH and then bolling gives mainly a syrup, [a]₂²⁰ +37·1° in EtOH, with only a trace of (I). Treating (I) with Pb(OAc)₄-CHCl₃ and then Br-SrCO₃-H₂O gives Sr D-hydroxymethyldiglycollate (44%). The Me₄ ether, b.p. 88—93°/2 mm., [a]₁0° –35·0° (homogeneous), with conc. HNO₃ at 100° gives l-(OMe·CH·CO₂H)₂ (cf. Asahina et al., A., 1931, 1033), isolated as Me₂ ester and diamide. (I) gives a m-nitrobenzylidene derivative, m.p. 175—175·5°.

Stateschemistra of mathellicia. I. Zachmaistra and R. B. Estern

Stereochemistry of methylbixin. L. Zechmeister and R. B. Escue (J. Amer. Chem. Soc., 1944, 66, 322—330).—The methylbixins (photomicrographs) corresponding sterically to naturally occurring and β -bixin are termed "natural" (I), m.p. $161-161\cdot 5^{\circ}$ (corr.), and "all-trans"-methylbixin (II), m.p. 198° (corr.), respectively. Isomerisation, followed by chromatography, yields also neomethylbixin A, m.p. 190—192° (corr.) (photomicrograph), B, and C, m.p. 150—151° (corr.) (photomicrograph). Light is needed for development of a cis-peak. Chromatograms and adsorption data are recorded for products obtained from each isomeride (except B) by making leaving refluying or irradicting in light particles. melting, keeping, refluxing, or irradiating in light petroleum, or treating with I. (II) is very stable to light, and (I) nearly as stable, but A and C are more photosensitive. The changes, (I) C and $(II) \rightleftharpoons A$, are readily achieved, but the interconversion, $(I) \rightleftharpoons (II)$, is very slow. The following configurations are probable: $A \ 5$ -cis, $(I) \ 2$ -cis, $(I) \ 2$ -cis, $(I) \ 2$ -cis, and $(I) \ 2$ -cis, $(I) \ 2$

Use of trimethyl phosphate as a methylating agent. A. D. F. Toy (J. Amer. Chem. Soc., 1944, 66, 499).—52·7—69·5% yields of ROMe are obtained by heating Me_3PO_4 with AlkOH at or just below the b.p., provided that this is $<160^\circ$. (CH₂·OH)₂ gives 37·2% of the Me_1 ether. An excess of Me_3PO_4 increases the yield. Some olefine

210

211

and mixed alkyl H phosphates are formed. Me β-ethyl-n-hexyl, b.p. 159—160°, and β-heptyl ether, b.p. 139—140°, are described. R. S. C.

Preparation of calcium and sodium formate.—See A., 1944, I, 182. Alkyl exchange of carboxylic esters.—Sec A., 1944, II, 220.

Unsaturated synthetic glycerides. B. F. Daubert and H. E. Longenecker (Oil and Soap, 1944, 21, 42—46).—Previous literature and recent work by the authors and collaborators (cf. A., 1944, II, 120) on the synthesis, by modern methods, and properties of mixed unsaturated-saturated glycerides of known configuration are reviewed, and graphs are given showing the m.p. and n_D of various series, viz., (a) unsymmetrical and (b) symmetrical mono-oleyl-disaturated (C_{10-18}) triglycerides; (c) unsymmetrical dioleyl-monosaturated triglycerides, (d) unsaturated-saturated symmetrical mixed diglycerides. In each series the m.p. of the corresponding products obtained by hydrogenation of the unsaturated glycerides are shown for comparison. All synthetic unsaturated glycerides show anomalous results in cryoscopic determinations (in C₆H₆) of mol. wt., the apparent mol. wt. decreasing with increasing concn., so that extrapolation to zero concn. is necessary in order to obtain true mol. wts.

Unsaturated synthetic glycerides. IV. Symmetrical mono-oleo-disaturated triglycerides. F. L. Jackson, B. F. Daubert, C. G. King, and H. E. Longenecker. V. Unsymmetrical monoelaidyl-disaturated and monosaturated-dielaidyl triglycerides. B. F. Daubert (J. Amer. Chem. Soc., 1944, 66, 289—290, 290—292; cf. A., 1944, II, 120).—IV. OH·CH₂·CH(OH)·CH₂·O·CPh₃ with RCOCl (R = saturated alkyl) in CHCl₃-C₅H₅N at 0° and then HCl-light petroleum at 0° gives the ay-diesters, which with oleyl chloride in CHCl₃-quinoline at 100° give glyceryl gy-diagylate Repleate in which the acyl is at 100° give glyceryl αγ-diacylate β-oleate, in which the acyl is n-decoate, m.p. 5—6°, n-dodecoate, m.p. 14·5—15°, n-tetradecoate, m.p. 26—27°, palmitate, m.p. 35·5—36°, and stearate, m.p. 42·5—43°. Structures are confirmed by hydrogenation to fully saturated

glycerides.

V. a-Monoelaidin, forms, m.p. 58·5°, 44·0°, and 17·6° (cf. Bomer et al., A., 1937, II, 439), is obtained from isopropylideneglycerol by (a) elaidyl chloride (I) [prep. by (COCl), at 70—80°], b.p. 168—170°/1 mm., in CHCl₃-quinoline and then HCl-Et₂O or (b) HCl-elaidic acid and then Et₂O-conc. aq. HCl. With saturated acyl chlorides in CHCl₃-quinoline it gives glyceryl βγ-diacylate α-elaidate, in which the acyl is n-tetradecoate, m.p. 39·5°, n-dodecoate, m.p. 27·0°, n-decoate, m.p. 15·0°, and n-octoate, m.p. 30·0°. α-Monomyristin and (I) in CHCl₃-quinoline give glyceryl α-acylate βγ-dielaidate, in which the acyl is n-tetradecoate, m.p. 40·0°, n-dodecoate, m.p. 35·5°, and n-decoate, m.p. 25·0°. Structures are proved by hydrogenation. Glyceryl βγ-di-n-octoate α-stearate, m.p. 31·5°, is prepared also solely from saturated acids.

Synthesis of cetyl esters.—See A., 1944, II, 228.

Preparation of unsaturated fatty acid chlorides. T. R. Wood, F. L. Jackson, A. R. Baldwin, and H. E. Longenecker (*J. Amer. Chem. Soc.*, 1944, 66, 287—289).—Oleic, claidic, linoleic, and linolenic acids are converted by boiling (COCI), into their acid chlorides, which are shown by their absorption spectra to contain \$1\% of conjugated material. Use of SOCl2 is unsatisfactory. R. S. C.

Autoxidation reactions in polyisoprenes and allied compounds. VIII. Photo-oxidation of methyl elaidate. D. A. Sutton (J.C.S., 1944, 242—243).—In ultra-violet light Mc elaidate at 35° absorbs O₂ (0.2 mol.) to form a hydroperoxide, which on hydrogenation and hydrolysis followed by acetylation and fractional crystallisation gives a monohydroxystearic acid, m.p. 79° , and a OH-acid, m.p. $30-50^{\circ}$.

Condensations. XXII. Alkylation of isopropylmalonic ester using sodium triphenylmethide. J. C. Shivers, B. E. Hudson, jun., and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 309; cf. A., 1944, II, 120).—Adding CPh₃Na and then EtI to CHPrβ(CO₂Et)₂ in Et₂O-N₂, keeping for 7 days, decanting, removing the Et₂O, and boiling the residue with EtI in C₆H₆ gives 73% of CEtPrβ(CO₂Et)₂, b.p. 234—236°/760 mm., 118—120°/15 mm., converted by KOH-EtOH and then decarboxylation into CHEtPrβ-CO₂H (48%), b.p. 104—105°/15 mm. (anilide, m.p. 118—119°). Use of PrβI in C₆H₆-N₂ gives Et₂ diisopropylmalonate (23%), b.p. 122—124°/15 mm., converted by boiling KOH-EtOH in 18—24 hr. into the Et H ester, m.p. 71—72°, which is slowly decarboxylated by heat to give Et β-methylasisopropyl-n-butyrate, b.p. 71—72°/15 mm.

Colour reactions of assorbic acid—See A. 1944 III 488

Colour reactions of ascorbic acid.—See A., 1944, III, 488.

Ketones, ketonic acids, and enol-lactones. III. Enol-lactone fission. New preparation of esters of β-ketonic and ββ'-diketonic acids which are also αδ-diketones. P. Ruggli and A. Maeder (Helv. Chim. Acta, 1944, 27, 436—443; cf. A., 1943, II, 351).—Et, butanolidenemalonate, CH₂CH₂CC(CO₂Et)₂ (I), is best obtained

(63% yield) by addition of (CH₂·CO)₂O to CHNa(CO₂Et)₂ in boiling Et₂O. It is converted by CN·CHNa·CO₂Et in boiling Et₂O into Et 3 β e-diketo-a-cyanohexane-a $\zeta\zeta$ -tricarboxylate, an oil [Cu derivative, decomp. (indef.) \sim 180°], converted by NHPh·NH2 in cold AcOH into Et 1-phenyl-3-y-keto-δ-cyano-δ-carbethoxy-n-butylpyrazol-5-one-4-carboxylate, m.p. 106—107° (green Cu compound), and in hot solucarooxylate, m.p. 106—101° (green Cu compound), and in not solution into α-4-carbethoxy-1-phenyl-3-pyrazol-o-onyl-β-4-cyano-1-phenyl-3-pyrazol-5-onylethane, m.p. 167—168°. CHAcNa·CO₂Et and (CH₂·CO)₂O in C₆H₆ at room temp. and then at the b.p. afford Et₂ βδη-tetraketodecane-yθ-dicarboxylate (Et₂ succinyldiacetoacetate) (II), m.p. 48° (Cu derivative, decomp. 235°), with some Et H β-keto-α-acetyladipate, m.p. 81—82°. (II) and NHPh·NH₂ in hot 50% AcOH afford α-di-αβ-4-carbethoxy-1-phenyl-5-methyl-3-pyrazolylethane (III), m.p. 156—157°, which does not give a colour with FeCl₃. When kept overnight in Et₂O (I) and CHAcNa·CO₂Et give mainly Ft. β-hydroxy-s-keto-g-acetyl-Δ⁰-hevene-g-U-tricarboxylate with When kept overlands in L^{2O} (a) and CIII the latter can be accumulated by the more rapid pptn. of its Cu compound, but separation or identification is best effected through (III) and a-4-carbethoxy-1-phenyl-3-pyrazol-5-onyl- β -4-carbethoxy-1-phenyl-2-methyl-3-pyrazolylethane, m.p. 114—116°.

Preparation of calcium D-altronate. P. P. Regna and B. P. Caldwell (J. Amer. Chem. Soc., 1944, 66, 244—246).—Enzymic hydrolysis of citrus pectin yields D-galacturonic acid, isolated as Na Ca salt, $(C_0H_0O_7)_3NaCa$, $+6H_2O$, $[a]_D^0+33\cdot0^\circ$ in H_2O , which in aq. Ca(OH)₂—CaCl₂ gives completely (owing to insolubility of the product) basic Ca and thence normal $Ca\delta$ -keto-L-galactonate, $+5H_2O$, $[a]_D^{20}-14\cdot0^\circ$ in H_2O , which with H_2 -Raney Ni in H_2O at $80^\circ/2300$ lb. yields approx. equal amounts of Ca L-galactonate, $+5H_2O$, and D-altronate, $+3\cdot5H_2O$, $[a]_D^{20}+11\cdot8^\circ \rightarrow 24\cdot8-25\cdot0^\circ$ in ~ 90 min. in N-HCl, best separated by way of the derived Cd salts. R. S. C.

Synthesis of uronic acids. II. 2:3:4-Trimethyl derivatives of mannuronic, glucuronic, and galacturonic acids. F. Smith, M. Stacey, and P. I. Wilson (J.C.S., 1944, 131-134).— α -Methylmanno-pyranoside in C_5H_5N with CPh_3Br gives 6-triphenylmethyl- α -methylmanoside with the side M_5SO . Nicol in COM_5 and M_5SO . mannoside, which with Me₂SO₄-NaOH in COMe₂ affords 6-triphenyl-methyl-2: 3: 4-trimethyl-a-methylmannoside, m.p. 149°, [a]²⁰ +27° in CHCl₃, from which the CPh₃ is removed (HCl) to yield 2: 3: 4-trimethyl-a-methylmannoside. Oxidation (KMnO₄) of this compound gives 2: 3: 4-trimethyl-a-methylmannuronoside. Similar oxidation of 2:3:4-trimethyl- β -methylglucoside and α -methylgalactoside affords respectively 2:3:4-trimethyl- β -methyl- β -methyl- α -glucuronoside and a-methyl-a-galacturonoside. aby-Trimethyl-mannonolactone, m.p. 74°, $[a]_D^{20} + 131^\circ \rightarrow +80^\circ$ (equil.) in H_2O , and -mannonamide, m.p. 142°, $[a]_D^{20} +5^\circ$ in H_2O , are described. F. R. S.

Lactones of mannosaccharic acid. I. $a\delta$ -Dimethyl- Δ^{γ} -mannosaccharo- $\beta\varepsilon$ -lactone methyl ester. W. N. Haworth, (Miss) D. Heslop, (Miss) E. Salt, and F. Smith (*J.C.S.*, 1944, 217—224).—Mannosaccharodilactone (I) (prep. given) shows reducing properties after treatment with alkaline reagents, correlated with an absorption treatment with alkaline reagents, correlated with an absorption band at λ 2630 A. in alkaline solution, moving to 2290 A. on acidifying. Methylation of (I) gives similar isomerisation. With MeI and Ag₂O (I) gives Me₂ dimethylmesotartrate (II), a trimethylmannosaccharolactone Me ester, and $\alpha \delta$ -dimethyl- Δ -mannosaccharo- $\beta \epsilon$ -lactone Me ester (III), b.p. 152—158° (bath)/0.04 mm., $[\alpha]_D^{1\beta}$ -25° in H₂O, absorption band at λ 2290 A. in H₂O. (III) is also obtained from (I) with CH₂N₂, or CH₂N₂ followed by MeI and Ag₂O, together with a little 6-carbomethoxy-3-methoxy- α -pyrone, m.p. 212°. The structure of (III) is confirmed by ozonisation, giving as final product mainly Me β -hydroxy- α -methoxyerythrosuccinate (IV), b.p. 105structure of (111) is confirmed by ozonisation, giving as final product mainly Me β -hydroxy- α -methoxyerythrosuccinate (IV), b.p. 105– 110° (bath)/0·01 mm., $[a]_{D}$ — 43° in MeOH. On methylation (Mel and Ag₂O) (IV) gives (II), which with NH₃ in MeOH gives dimethoxyerythrosuccindiamide. With NH₃ in MeOH (IV) yields the amide of β -hydroxy- α -methoxy-1-erythrosuccinic acid (V), m.p. 153° , not optically active in H₂O. (IV) with NH₃Me in MeOH gives the bismethylamide of (V), m.p. 136° , $[a]_{D}^{18}$ + $10\cdot7^{\circ}$ in H₂O, identical with that prepared from d-araboascorbic acid (cf. A., 1944, II, 213). (IV) on hydrogenation violes $\frac{\partial d}{\partial x}$ distributed activation of the control of the contr (III) on hydrogenation yields a δ -dimethyl- γ -deoxymannosaccharo- β elactone Me ester, b.p. 160° (bath)/0·03 mm., [a] $_{\rm D}^0$ -4° in H₂O, which affords a δ -dimethyl- γ -deoxymannosaccharodiamide (VI), m.p. 187°, [a] $_{\rm D}^0$ -74° in H₂O (negative Weerman test). The spatial arrangement in (VI) of the OMe and H on Cs is not yet determined. Absorption curves for (III) and a comparable l-ascorbic acid derivative are given. The diamide of $\alpha\beta\delta$ - (or $\alpha\gamma\delta$ -)trimethylmannosaccharic acid, m.p. 258° (decomp.), $[a]_D^{20} - 41^\circ$ in H_2O , and the half-amide NH_4 sali of (∇) , m.p. 181° (decomp.), are described. D. G.

Preparation of a-ketopolyhydroxy-acids. P. P. Regna and B. P. Caldwell (J. Amer. Chem. Soc., 1944, 66, 243—244).—Dissolving D-glucono-y-lactone and a little H_3PO_4 in boiling MeOH, adding NaClO₃ and V_2O_5 , shaking at 20°, and then keeping at 3° gives Me a-keto-D-gluconate, m.p. 175—176°, $[a]_D^{20} - 76\cdot8^\circ$ in H_2O , hydrolysed by $2N-H_2SO_4$ at 30° to the acid, which is isolated as Ca salt, $+3H_2O$, $[a]_D^{20} - 70\cdot8^\circ$ in H_2O . Shaking K D-galactonate, KClO₃, V_2O_5 , and H_3PO_4 in H_2O and isolation by way of the K salt, $[a]_D^{30} - 6\cdot7^\circ$ in H_2O , gives a-keto-D-galactonic acid, m.p. 170—171°, $[a]_D^{30} - 6\cdot0^\circ$ in H_3O (Me ester, m.p. 138—139°, $[a]_D^{9} - 11\cdot3^\circ$ in H_2O). a-D-Glucohepto-y-lactone, neutralised with aq. Na₂CO₃, gives a-D-Glucohepto-y-lactone, neutralised with aq. Na₂CO₃, gives similarly Na a-keto-D-glucoheptonate, +H₂O, $[a]_D^{10}$ +45.5° in H₂O. Mixed a- and β -D-galactoheptonic acids give similarly K a-keto-D-galactoheptonate, $[a]_D$ +67.5° in H₂O. R. S. C.

Condensations. XXIII. Acetylation of unsymmetrical aliphatic ketones with acetic anhydride in presence of boron trifluoride. C. R. Hauser and J. T. Adams (J. Amer. Chem. Soc., 1944, 66, 345—349; cf. A., 1944, II, 211).—Isomeric ketones are usually obtained at 0° from COMeAlk (1 mol.) by Ac₂O (2 mols.) saturated with BF₃. Thus, COMeEt gives only (100%) CHMeAc₂; COMePr^a, n-C₅H₁₁·COMe, and n-C₆H₁₂·COMe give 90% of CHEtAc₂, CHBu^aAc₂, and n-C₅H₁₁·CHAc₃, respectively, with 10% of COAlk·CH₂Ac. COMeBu^g gives 45% of γ-acetyl-δ-methyl-n-pentan-β-one, b.p. 183—185°/750 mm. (gives no enol test or Cu salt), and 59% of CH₂Ac·COBu^g; COMePr^g gives 68% of γγ-dimethyl-n-pentane-βδ-dione, b.p. 172—174° (gives no enol or Cu salt), and 32% of CH₂Ac·COPr^g; 2-methyl-cyclohexanone gives 50% each of 6- (purple FeCl₃ colour and oily Cu salt) and 2-acetyl-2-methylcyclohexanone, b.p. 220—222° (no enol colour or Cu salt). The mixed products are analysed by their ability or inability to dissolve in NaOH or give Cu salts. R. S. C.

n-Propyldi-n-butylamine. T. D. Perrine (J. Amer. Chem. Soc., 1944, 66, 312).—NHBu^a₂ (2 mols.) and Pr^aI (1 mol.) at 120° or NBu^a₂·[CH₂]₃·MgCl and aq. HCl give NPr^aBu^a₂, b.p. 193°/754 mm., 73—75°/8 mm. (picrate, m.p. 115·8—116·2°). R. S. C.

Anhydrous tetramethylammonium compounds.—See A., 1944, I.

Bismethylamides of α-hydroxy-β-methoxy-d- and l-erythrosuccinic acid. (Miss) D. Heslop, (Miss) E. Salt, and F. Smith (J.C.S., 1944, 225—229).—d-Araboascorbic acid with CH₂N₂ gives $\alpha\beta$ -dimethyl-d-araboascorbic acid (II), which with CClPh₃ in C₆H₅N yields ε-triphenylmethyl-αβ-dimethyl-d-araboascorbic acid (II), m.p. 174°, [a]₁¹⁵ –41° in CHCl₃ (gives no reaction with NH₃ in MeOH). This with MeI and Ag₂O gives ε-triphenylmethyl-αβδ-trimethyl-d-araboascorbic acid, [a]₁⁸ –28° in CHCl₃, hydrolysed to αβδ-trimethyl-d-araboascorbic acid, [a]₁⁸ –28° in CHCl₃, hydrolysed to αβδ-trimethyl-d-araboascorbic acid (III), b.p. 170° (bath)/0·02 mm., m.p. 74°, [a]²² +10° in H₂O, which gives αβδε-tetramethyl-d-araboascorbic acid (IV) all show an absorption band at λ 2350 A. (III) on ozonisation and hydrolysis yields H₂C₂O₄ and β-methyl-d-erythronic acid (V), isolated on distillation of the Me ester as the γ-lactone (VI), m.p. 113°, [a]₁¹ –108° in H₂O (no change on keeping). With NH₃ and NH₂Me respectively in MeOH (VI) gives the amide, m.p. 105°, [a]₁¹⁵ +36° in H₂O, and the methylamide, m.p. 82°, [a]₁¹⁷ +57·5° in MeOH, of (V), and with NH₃-MeOH after methylation (MeI, Ag₂O) the amide, m.p. 72°, [a]₁² +55·5° in H₂O, of αβ-dimethyl-d-erythronic acid. On oxidation (HNO₃), esternication, and treatment with NH₂Me-MeOH, (VI) yields the bismethylamide of a-hydroxy-β-methoxy-d-erythrosuccinic acid, m.p. 136°, [a]₁¹⁸ +11° in H₂O, identical with that prepared from αδ-dimethyl-d-araboascorbic acid, a glass, which on ozonisation yields Me βγ-di-p-nitrobenzoyl-d-trythronate, m.p. 133°, [a]¹⁷ +29° in CHCl₂ (loses acyl groups on attempted methylation). mesoTartaric acid on partial methylation (Me₂SO₄ and NaOH) affords dl-CO₂H-CH(OH)-CH(OMe)-CO₂H, which is purified by distillation, b.p. 100—105° (bath)/0·04 mm., and crystallisation of the amide, m.p. 191°, or by distillation of the Me ester, b.p. 96—98° (bath)/0·01 mm., and resolved by brucine, the less

Structure-chemical investigations. IX. Adipdithioamide. H. Erlenmeyer and G. Bischoff (Helv. Chim. Acta, 1944, 27, 412—413).—Addition of $\text{CN}\cdot[\text{CH}_2]_4\text{-CN}$ to NaOEt in EtOH saturated with H_2S at -10° followed by heating at 70° affords adipdithioamide, m.p. 180°, which is converted by COMe·CH₂Cl into $\alpha\delta$ -di-4-methyl2-thiazolylbutane dihydrochloride, m.p. 251°.

Gyanoalkylpyruvic esters from aliphatic nitriles. G. S. Skinner, J. H. Taylor, and J. L. Ernst (J. Amer. Chem. Soc., 1944, 66, 496—497).—In presence of NaOEt, Bu°CN and Et₂C₂O₄ give 13%, in presence of KOEt give 55%, and in presence of 1:9 KOEt-NaOEt give 31%, of Et α-keto-β-cyano-n-hexoate (I), b.p. 135—137°/15 mm. (cf. A., 1937, II, 134). In presence of KOEt, Pr°CN or n-C₅H₁₁·CN with Et₂C₂O₄ gives Et α-keto-β-cyano-n-valerate (65%), b.p. 127—129°/15 mm., and -n-heptoate (58%), b.p. 148—150°/15 mm., respectively. In presence of 1:1 NaOEt-KOEt, EtCN and Et₂C₂O₄ give 79% of CN·CHMe·CO·CO₂Et. With Et₂SO₄-NaOEt-EtOH, (I) give Et β-cyano-α-ethoxy-Δ^α-n-hexenoate, b.p. 114°/1 mm. R. S. C.

Unsaturated esters of glycollonitrile. D. T. Mowry (J. Amer. Chem. Soc., 1944, 66, 371—372).—40% of OH·CH₂·CN (I), b.p. 99—100°/17 mm., is obtained by adding COMeEt and then NaCN to aq. NaHSO₃ at 0°, treating the product with 37% CH₂O + a little NaCN at 30°, and finally distilling with o-C₄H₄(CO)₂O. Adding RCOCl to CH₂O and NaCN in H₂O at 10° gives CN·CH₂ acrylate (17%), b.p. 60°/4 mm., β-methylacrylate (68%), b.p. 90—91°/10 mm., crotonate (60%), b.p. 103—104°/17 mm., β-chlorocrotonate (53%), b.p. 116°/16 mm., cinnamate (II) (73%), m.p. 63°, b.p. 164—165°/4 mm., and a-methylcinnamate (63%), b.p. 162—163°/3 mm. Adding (I) to RCOCl and NPhMe₂ in Et₂O at 10° gives (II) (75%),

 $CN \cdot CH_2$ fumarate (45%), m.p. 83°, and mesaconate (43%), b.p. 192—193°/3 mm.

II.—SUGARS AND GLUCOSIDES.

Lead tetra-acetate oxidations in the sugar group. VII. Oxidation rates of ethyl β -D-galactofuranoside, methyl α -D-mannofuranoside, and $\gamma\zeta$ -anhydro-D-sorbitol. R. C. Hockett, M. H. Nickerson, and W. H. Reeder, tert. (J. Amer. Chem. Soc., 1944, 66, 472—474; cf. A., 1944, II, 210).—The OH attached to the ring of methyl- α -D-mannofuranoside (I) are cis and, as expected, the rate of oxidation by Pb(OAc)₄ under standard conditions is very rapid until 1 mol. has been consumed and then much slower, only traces of CH₂O being produced. The OH attached to the ring of ethyl- β -D-galactofuranoside are trans, so that they are not attacked by Pb(OAc)₄ faster than are the exocyclic C·OH; thus the rate of oxidation shows no break until >2 mols. have been consumed and CH₂O is formed in quantity (? 1 mol.). $\gamma\zeta$ -Anhydro-D-sorbitol (prep. from methyl-6-deoxy- α -D-glucopyranoside 6-iodide triacetate by way of 3:6-anhydro-D-glucose), m.p. 108—109°, oxidises, as expected, at a rate very similar to that of (I). CH₂Ac₂ consumes 3 mols. of Pb(OAc)₄ in an unbroken reaction.

3:6-Anhydrogalactose. II. 2-Methyl- and 4-methyl-3:6-anhydro-a-methylgalactopyranoside. (Mrs.) P. A. Rao and F. Smith (J.C.S., 1944, 229—232; cf. A., 1940, II, 244).—a-Methylgalactopyranoside or its 6-p-toluenesulphonate (I) with p-C₄H₄Me·SO₂Cl-C₄H₅N gives a-methylgalactopyranoside 2:6-di-p-toluensulphonate (II), m.p. 148°, [a]]⁸ +68° in C₅H₅N. This with aq. 3N-NaOH gives 3:6-anhydro-a-methylgalactopyranoside, m.p. 139°, but with N-NaOH in aq. EtOH yields 3:6-anhydro-a-methylgalactopyranoside, m.p. 138°, [a]]⁸ +56° in CHCl₃, which with MeI and Ag₂O gives the 4-Me compound, m.p. 126°, [a]]³ +88° in CHCl₃, hydrolysed with NaOH in aq. EtOH at 60° to 4-methyl-3:6-anhydro-a-methylgalactopyranoside, b.p. 110° (bath)/0·03 mm, m.p. 55°, [a]]⁹ +81° in MeOH, [a]]¹⁶ +75° in H₂O, yielding 2:4-dimethyl-3:6-anhydro-a-methylgalactoside, b.p. 100° (bath)/0·02 mm., [a]]¹⁶ +75° in H₂O, which isomerises to the β-form, m.p. 83°, on treating with dry HCl. (II) with COMe₂ and H₂SO₄ gives the 3:4-CMe₂: derivative, m.p. 148°, [a]_D +115° in C₅H₅N, also obtained from (I). This on methylgalactopyranoside p-toluenesulphonate, m.p. 88°, [a]²³ +99° in C₅H₅N, which is hydrolysed (1%) HCl in MeOH) to 2-methyl-a-methylgalactopyranoside 6-p-toluenesulphonate, [a]]²³ +27° in EtOH, giving with NaOH in aq. EtOH 2-methyl-3:6-anhydro-a-methylgalactopyranoside, m.p. 102°, [a]]¹⁶ +88° in H₂O.

Action of diazomethane on acyclic sugar derivatives. VI. D-

Action of diazomethane on acyclic sugar derivatives. VI. D-Sorbose. M. L. Wolfrom, S. M. Olin, and E. F. Evans (J. Amer. Chem. Soc., 1944, 66, 204—206; cf. A., 1944, II, 6).—aldehydo-D-Xylose tetra-acetate (prep. from the Et₂ mercaptal tetra-acetate improved; cf. A., 1932, 146), m.p. 90—91°, [a]²² —23·3° in CHCl₃, by oxidation (cf. Major et al., A., 1937, II, 49) and then treatment with PCl₃ in Et₂O gives D-xylonyl chloride tetra-acetate, m.p. 72—73°, [a]²⁵ —14° in CHCl₃, whence CH₂N₂ in Et₂O yields 1-deoxy-1-diazoketo-D-sorbose tetra-acetate (92%), m.p. 124·5—125·5°, [a]²⁵ +44·5° in CHCl₃. In boiling AcOH this gives keto-D-sorbose penta-acetate (73%), m.p. 97·5—98·5°, [a]²⁵ —2·5° in CHCl₃ (oxime, m.p. 113—114°, [a]²⁶ —42° in CHCl₃), which, when crystallised with its L-isomeride, gives the DL-form, m.p. 83—84°. 0·6N-Ba(OH)₂ hydrolyses (I) to D-sorbose (80%), m.p. 158—160°, [a]²⁶ +40·5° in CHCl₃. 1: 3-Bisdiazomucyldimethane tetra-acetate with 47% HI in CHCl₃ gives mucyldimethane tetra-acetate (78%), m.p. 204—206°. R. S. C.

Preparation of $\beta\beta$ -trehalose octa-acetate. C. M. McCloskey, R. E. Pyle, and G. H. Coleman (J. Amer. Chem. Soc., 1944, 66, 349—350).—a-D-Glucosyl bromide 2:3:4:6-tetra-acetate (I) (modified prep.) and β -D-glucose 2:3:4:6-tetra-acetate [prep. from (I) by $\rm H_2O$ and $\rm Ag_2CO_3$ in COMe, at 0° and then 50—60°] give, by Schlubach and Scheteling's method (A., 1933, 148), \Rightarrow 4% of $\beta\beta$ -trehalose octa-acetate, m.p. 180-5—181-5° (corr.), [a]_b —18-4° in CHCl₃, 18-8% condensation being indicated by the reducing val. By use of $\rm Ag_2CO_3$, I, and $\rm CaSO_4$ in EtOH the yield is raised to 10-5%, the reducing val. indicating 30—40% condensation (cf. A., 1936, 827).

III.—HOMOCYCLIC.

Action of sulphuric acid on 1-phenyl-2-alkylcyclopropanes. D. Davidson and J. Feldman (J. Amer. Chem. Soc., 1944, 66, 488—489).—Decomp. of the appropriate pyrazoline by Pt-asbestos and KOH gives 1-phenyl-cyclopropane, b.p. 174°, -2-methyl- (I), b.p. 184—186°, -2-ethyl- (II), b.p. 203—205°, and -2-isopropyl-cyclopropane (III), b.p. 213—216°. In 90% H₂SO₄ at 35—40°, (II) gives 1:1:2-trimethylindane, b.p. 208° (identified by oxidation to o-CO₂H-C₆H₄-CMe₂·COMe), but (I) and (II) give polymers. In 86°% H₃PO₄ isomerisation to olefines occurs (no details are given). The cyclopropanes obey the modern version of Markovnikov's rule.

R. S. C.

Factors determining the course and mechanism of Grignard reactions. XII. Effect of cobaltous chloride on the reaction of magnesium methyl bromide with alicyclic chlorides. M. S. Kharasch, F. Engelmann, and W. H. Urry (J. Amer. Chem. Soc., 1944, 66, 365—367; cf. A., 1943, II, 284).—With MgMeBr-Et₂O at the b.p. (28 hr.), trans- (I) or cis-methylcyclohexane (II) gives methylcyclohexane (III) 10% and -hexene (IV) 33—34%, and isobornyl chloride (V) gives a mixture (VI) (90%) of camphene and bornylene, but only 5% interaction occurs with bornyl chloride (VII); in all cases pure CH₄ is evolved. In presence of 5 mol.-% of CoCl₂, reaction is 86—98% complete in 5 hr.; (I) and (II) give (III) 28—34%, (IV) 23—31%, and di-2-methylcyclohexyl 22—27%, and the gas contains CH₄ 77—83, C₂H₆ 9—15, and C₂H₄ 8%; cyclohexyl chloride gives cyclohexane 27, cyclohexene 29, and dicyclohexyl 26% with a gas containing CH₄ 85, C₂H₆ 9, and C₂H₄ 8%; (V) gives camphane 19, (VI) 44, and dibornyl 31% with CH₄ 77, C₂H₆ 15, and C₂H₄ 8%; (VII) gives camphane 15, (VI) 20, and dibornyl 63% with CH₄ 72, C₂H₆ 19, and C₂H₄ 9%. The reactions thus differ from those with aliphatic chlorides (loc. cit.). The CoCl₂ results are explained as a free radical chain reaction, the electronic strength of the radicals playing a major part in determining the nature of the products.

Condensation of cyclohexanol with halogenobenzenes in presence of sulphuric acid. R. Pajeau (Compt. rend., 1942, 215, 578—580).—cycloHcxanol and PhCl or PhBr in presence of $\rm H_2SO_4$ at room temp. give ~30% of p-chloro- or -bromo-cyclohexylbenzene, respectively. $\rm H_2SO_4 + 60\%$ oleum is used to give the corresponding I-derivative, which is oxidised by $\rm CrO_3$ -AcOH to p-C₆ $\rm H_4I$ -CO₂H. Similarly prepared are 4-chloro-3-methyl-, b.p. 150°/4 mm., and 5-chloro-2-methyl-cyclohexylbenzene, b.p. 149°/14 mm. Examination of Raman spectra indicates absence of isomerides. A. T. P.

"Cyclisation" of vitamin-A and allied compounds. E. G. E. Hawkins and R. F. Hunter (Biochem. J., 1944, 38, 34—37).—
"Cyclised" vitamin-A (I), m.p. 77—78°, max. at 372 mμ.
3760) has been obtained (cf. Shantz et al., A., 1943, II, 257). Failure to "cyclise" (by HCl-EtOH) β-apo-2-carotenal, axerophthylidene-acetone (II) [max. at 395 mμ. 1460) and with SbCl₃ a max. at 735 mμ.], the C₂₀-aldehyde (III) [max. at 395 and 730 mμ. (SbCl₃)] of Haworth et al. (A., 1939, II, 114), and the alcohol prepared by Pondorff reduction of (III), suggests that a terminal OH is necessary for the reaction. This is not the only necessary condition, since β-apo-2-carotenol does not cyclise. The absence of OH in (I) (cf. Heilbron et al., A., 1932, 1174) is confirmed (Zerevitinov). Axerophthylideneisopropyl alcohol [max. at 351 mμ. and 713 mμ. (SbCl₃)] [from (II) and Al(OPrβ)₃] and 0-04ν-HCl-EtOH give a "cyclised" product which shows max. at 420, 395, and 372 mμ. The results are discussed in connexion with the structure of vitamin-A₂, which undergoes "cyclisation" to a substance having max. identical with those of (I), but distinguishable from (I) by the absorption band at 693 mμ. (SbCl₃) (cf. Embree et al., A., 1940, III, 321; Shantz et al., A., 1943, II, 261). "Cyclised" subvitamin-A (IV) is formed in the product of "cyclisation" of the unsaponifiable matter of acetylated shark-liver oil and of a similar liver oil which is oxidised in stages by acration. In the latter case, (IV) is present when ≯80% of the original -A alcohol is destroyed, suggesting that (IV) is a primary oxidation product of -A, probably formed by attack of the double linking of the β-ionone ring in -A by O₂.

A. T. P.

spiroPentane. M. J. Murray and E. H. Stevenson (J. Amer. Chem. Soc., 1944, 68, 314).—C(CH₂Br)₄ and Na in molten NH₂Ac containing also NaI and Na₂CO₃ give $\sim 40\%$ of spiropentane, C₅H₈, b.p. 38·3—38·5°; olefines which are also formed are removed by successive treatment with aq. NH₃, aq. AgClO₃, and Br. The Raman spectrum and chemical inertness indicate the structure $C(\subset_{CH}^{CH_2})_2$. The yield is $\sim 1-5\%$ in aq. MeOH. R. S. C.

1:2:3:4-Dibenzphenanthrene and its derivatives. II. Synthetic attempts. F. Bergmann and H. E. Eschinazi (J. Amer. Chem. Soc., 1944, 66, 183—184; cf. A., 1943, II, 296).—Δ¹-cycloHexenyl-cyclohexanone (I) and 1-C₁₀H₇·MgBr in C₆H₆ give 2-hydroxy-2-anaphthyl-Δ¹'-²- or -Δ¹-¹'-decahydrodiphenyl (42%), b.p. 225—230°/0-8 mm., cyclised, best by AlCl₃ in C₆H₆ at 0° and then room temp., to 9:9-spirocyclohexyl-3:4-tetrahydrobenzfluorene and an isomeride, b.p. 210—230°/0-1 mm. (picrate, m.p. 160—161°), and 250—270°/0-1 mm. (picrate, m.p. 169—170°), which with Se at 320° give 9:9-spirocyclohexyl-3:4-benzfluorene (II), b.p. 225—230°/0-05 mm. (picrate, m.p. 141—142°). With K₂Cr₂O₇-AcOH at the b.p., (II) gives the 1:2-quinone (? a p-quinonoid isomeride), m.p. 228°. The structure of (II) follows from its absorption spectrum (following abstract) and its resistance to further dehydrogenation by Se or Pd-asbestos at 350°. The oily products obtained by Rapson (A., 1941, II, 95) as by-products of triphenylene ring-closures are probably also spirans. Interaction of Mg 9-phenanthryl bromide with (I), followed by cyclisation as above and dehydrogenation by Se at 350°, gives 9:9-spirocyclohexyl-1:2:3:4-dibenzfluorene, b.p. 230—260°/0-2 mm. (brown picrate, m.p. 157—159°), with a smaller amount

of 1:2:3:4:5:6:7:8-tetrabenznaphthalene [1:2:7:8-dibenzchrysene], b.p. $290-320^\circ/0\cdot1$ mm. [reddish-black picrate, m.p. $210-212^\circ$ (lit. 200°)]. R. S. C.

Spectrographic characterisation of a hydrocarbon synthesised by Bergmann and Eschinazi. R. N. Jones (J. Amer. Chem. Soc., 1944, 66, 185—186).—The structure of 9:9-spirocyclohexyl-3:4-benz-fluorene (preceding abstract) follows from the resemblance of its absorption spectrum [max. at 3150 (4·45), 3250 (4·43), 3395 (4·55), 3845 (1·38), 4105 (1·61), and 4360 a. (1·69) in EtOH; figures in parentheses are log $E_{\rm mol.}$] to that of 3:4-benzfluorene and the difference thereof from those of chrysene and 3:4-benzphenanthrene. The absorption of the 1:2-quinone [max. at 2470 (4·28), 2680 (4·32), 3330 (3·94), and 4600 a. (3·49)] renders its formula probable but not certain.

Labile union of oxygen to carbon. Influence of supplementary cyclisations. C. Dufraisse and M. T. Mellier (Compt. rend., 1942, 215, 576—578).—1: 9-5:10-Di-o-phenyleneanthracene and 5:6-11:12-di-o-phenylenenaphthacene are stable to light in CS_2 . The unsymmetrical 5:6-diphenyl- and 6-chloro-5-phenyl-11:12-o-phenylenenaphthacene afford the normal photo-oxides (62 or 20% yield, respectively), which are decomposed at 150° and 90° to give 24% and 5% of O_2 , respectively, and CO_2 .

A. T. P.

Reaction between benzylamine and alkali metals. W. Krabbe and G. Grünwald [with E. Polzin and W. Menzel] (Ber., 1941, 74, [B], 1343—1352).—Bright colours are developed by NaNH, with NH₂R (R = OH·CPh₂·CH₂, OH·CHPh·CHPh, OH·CPh₂·CHPh, CH,Ph, Ph·[CH₂]₂, Ph, p-tolyl, p-C₆H₄Cl, o- and m-NO₂·C₆H₄l, NH(CH₂Ph)₂, NHPh₂, N(CH₂Ph)₃, NPh₃, C₅H₅N, or piperidine. NH₂·CH₂Ph gives a very similar colour (absorption spectrum) with Li in Et₂O; the absorption and conductivity with different proportions of NH₂·CH₂Ph and Li are determined; the solution contains a ~1:1 mixture of LiNH₂ and LiNH·CH₂Ph. LiPh (prep. from PhBr) with NH₂·CH₂Ph in Et₂O yields a compound, LiBr,2NH₂·CH₂Ph, m.p. 106°. R. S. C.

Theoretical study of the interaction of dimethylaniline and nitric acid. H. H. Hodgson (J. Soc. Dyers and Col., 1944, 60, 151—153).— With HNO3 at 0°, NPhMe2 gives 2:4:6:1-(NO3)3C6H2·NMe·NO3 (HNO3, d1·52), or 2:4:6:1-(NO2)3C6H2·NHMe (d1·42), or 2:4:1-(NO2)2C6H3·NMe2 (I) (d1·34 and 1·254), or 3:5:3:5·tetranitrotetramethylbenzidine (II) (40%) + (I) (60%) (d1·12); no reaction occurs with HNO3 of d1·046 and 1·024. With rise in temp., Me is expelled with HNO3 of d1·34 and 1·254, but not with acid of d1·12. NaNO2 accelerates, and CO(NH2)2 delays or inhibits, the reactions. Reactions of (II) with HNO3 (d1·52 and 1·42) are analogous to similar reactions of NPhMe2 and (I). All the reactions are interpreted on the basis of modern electronic theory.

A. T. P.

Preparation of selenocarbamides from carbodi-imides. F. Zetzsche and H. Pinske (Ber., 1941, 74, [B], 1022—1024).—Dicyclohexyl-carbodi-imide, m.p. (microscope) 29—30°, and H₂Se in Et₂O give s-dicyclohexylselenocarbamide, decomp. 194°. Similarly are prepared s-di-p-tolyl- (I), m.p. 174° (decomp.), s-di-p-dimethylaminophenyl-(II), m.p. 183—185° (decomp. from 150°), s-di-1-menthyl-, m.p. 177° (decomp.), [a]—91·8°, and N-p-dimethylaminophenyl-N'-1-menthyl-, m.p. 147° (decomp.), [a]—38·4°, -selenocarbamide and, from the carbodi-imide salts, the monomethiodide, m.p. 187—188° (decomp.), and monomethosulphate, sinters 165°, m.p. 167—170° (decomp.), of (II). Selenocarbamides are unstable in air or when treated with oxidising agents or heated at 120° in vac. Acidic decomp. of (I) in air or H₂ gives p-C₆H₄Me·NC and Se, probably by way of p-C₈H₄Me·NCSe. PhNCS decomposes (I) with pptn. of Se.

Sulphanilamide.—See B., 1944, II, 149.

Derivatives of sulphanilamide.—See B., 1944, III, 118.

New class of medicinal; polymethine colouring matters. Buu-Hoi (Compt. rend., 1942, 215, 580—582).—p-NH₂·C₆H₄·SO₂·NH₂ (I) and CNBr in aq. C₅H₆N give a-p-sulphamylanilino-e-p-sulphamylanilo- Δ^{ay} -pentadiene. Furfuraldehyde (II), (I), and NH₂Ph,HCl in EtOH afford the hydrochloride of a-anilino-e-p-sulphamylanilo-o-hydroxy- Δ^{ay} -pentadiene. Analogous hydrochlorides are obtained by replacing NH₂Ph with m- and p-C₆H₄Cl·NH₂ and -C₈H₄Br·NH₂, o-, m-, and p-C₆H₄R·NH₂ (R = NO₂. OMe, and Me), 2: 4: 1-NO₂·C₆H₃Mie·NH₂. a- and β -C₁₀H₃·NH₂, 1: 2-NO₂·C₁₀H₈·NH₂, p-NH₂·C₆H₄·N·NPh, and 5: 2: 1-NH₂·C₆H₃(OH)·CO₂H. m- and p-C₆H₄(NH₂); yield compounds, [p-NH₂·SO₂·C₆H₄·N·CH·C(OH)·CH·CH·CH·NH)₂C₆H₄,2HCl, and benzidine gives a similar derivative. (p-NH₂·C₆H₄)₂SO₂, NH₂Ph,HCl, and (II) give the dihydrochloride, [NHPh·CH·CH·CH·CH·C(OH)·CH·N·C₆H₄]₂SO₂,2HCl; β -C₁₀H₇·NH₂ reacts similarly to NH₂Ph, and diamines give more complex derivatives. Analogous compounds are obtained from NH₃Ph or β -C₁₀H₇·NH₂ and (p-NH₂·C₆H₄)₂SO. A. T. P.

1:4-Diammocyclohexane.—See B., 1944, II, 155.

Mechanism of the diazo-coupling reaction. III. Unusual coupling phenomena and their interpretation. H. H. Hodgson and E. Marsden (J. Soc. Dyers and Col., 1944, 60, 120—124).—An extension of views on the mechanism of the coupling reaction (A., 1943, II, 8; 1944,

II, 75) to cover apparently anomalous examples, e.g., the weak and limited coupling of o-OH·C₀H₄·CO₂H, 1:3-NO₂·C₁₀H₆·OH, and 1:5-C₁₀H₆(OH)₂, and the polycoupling of resorcinol. There $1:5\cdot C_{10}H_6(\hat{O}H)_2$, and the polycoupling of resortinol. There are also discussed the coupling of arylamines, the diazoamino- \Rightarrow aminoazo-conversion, the failure of o- or p-C_eH₄Me·NMe₂ to couple, and the coupling of aminonaphtholsulphonic acids, all from the resonance viewpoint. There is also discussed the effect of C_eH₅N in promoting the activity of weakly-coupling diazo-compounds, the diazo-exchange reaction, and the coupling of phenol ethers.

K. H. S. Pyrolysis of lactic acid derivatives. Production of phenyl and o-tolyl acrylate. E. M. Filachione, J. H. Lengel, and C. H. Fisher (J. Amer. Chem. Soc., 1944, 66, 494—496).—Heating 80% OH-CHMe-CO₂H with AcOH, C₆H₆, and a trace of conc. H₂SO₄ with removal of H₂O gives OAc:CHMe-CO₂H (77%), converted by SOCl₂ into OAc-CHMe-COCl (82%), which with ArOH at 100° gives Ph (I) (86—88%), b.p. 143°/12 mm., and o-tolyl a-acctoxy-propionate (II), b.p. 112—113°/<1 mm. Pyrolysis of (I) at 440—600° gives up to 80% of CH₂:CH-CO₂Ph, b.p. 63—64°/1—2 mm., and of (II) at 500—591° gives up to 75% of CH₂:CH-CO₂·C₆H₄Me-o, b.p. 55—57°/0·5 mm., with larger yields of AcOH and, from (I), up to 20% of styrene and some CO₂ and CO. The acrylates are stable unless washed with alkali; polymerisation yields relatively stable unless washed with alkali; polymerisation yields relatively hard resins.

Halogenophenols.—See B., 1944, II, 197.

Diphenyl series. IV. Iodination of the acetate, benzoate, and benzenesulphonate of 4-hydroxydiphenyl. H. R. Schmidt, (Miss) C. M. Savoy, and J. L. Abernethy (J. Amer. Chem. Soc., 1944, 66, 49I—494; cf. A., 1944, II, 12).—p-C₆H₄Ph·OAc with I and conc. HNO₃ in hot CCl₄ (38·3% yield) or AcOH (13·8% yield), or with ICl in AcOH (10·5% yield), gives p-C₆H₄I·C₆H₄·OAc-p, m.p. 155—156°, hydrolysed by KOH-EtOH-H₂O to p-C₆H₄I·C₆H₄·OH-p (I) (also obtained from benzidine) and obtained therefrom by Ac₂O and a little syrupy H-PO. p-C.H-Ph·OR (R = Bz or PhSO) with I-HNO₃-AcOH or ICl-AcOH similarly gives p-C₈H₄·OR-p-(R = Bz, m.p. 207°; p-C₈H₄Me·SO₂, m.p. 93·5° (corr.)], hydrolysed to and obtained from (I).

Preparation of phenolic esters. E. Baumgarten, H. G. Walker, and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 303—304).—RCOCl and ArOH in C_5H_5N give 4-diphenylyl (82%), m.p. 74·2—4·8°, and Ph isobutyrate (87%), b.p. $111-112\cdot2^\circ/25\cdot5$ mm., and 4-diphenylyl Et carbonate (60%), m.p. $73\cdot9-75\cdot0^\circ$. R. S. C.

Nitrogenous derivatives of $dl-\gamma\delta$ -di-p-hydroxyphenylhexane. L. Spitzer (Gazzetta, 1942, 72, 445—450).—dl-(p-OH·C₆H₄·CHEt)₂ (Dodds et al., A., 1939, II, 312) in C₆H₈ with dil. HNO₃ gives $dl-\gamma\delta$ -di-(3-nitro-4-hydroxyphenyl)hexane (I), m.p. 114—115°, with ~5% of, probably, the meso-isomeride, m.p. 226—228°, also obtained by nitrating meso-(p-OH·C₆H₄·CHEt)₂. With Me₂SO₄-MeOH-KOH, (I) gives the aci-form (II), m.p. 106.5°, yellow, of dl-γδ-di-(3-nitro-4-methoxyphenyl)hexane, of which the normal form (III), m.p. 107—109°, almost colourless, is obtained by nitrating dl-γδ-di-(3-nitro-4-methoxyphenyl)hexane. Hydrogenation (Pd-C) of (II) or (III) gives dl-γδ-di-(3-amino-4-methoxyphenyl)hexane, m.p. 113-115° fpicrate, m.p. 130—131°; (COEt)₂ derivative, m.p. 106—108°), the Ac. derivative, m.p. 152—153°, of which is oxidised by KMnO₄–MgSO₄ to 3:4:1-NHAc·C₆H₃(OMe)·CO₅H. E. W. W.

Synthesis of substances with very high estrogenic activity. C. Mentzer and G. Urbain (Compt. rend., 1942, 215, 554—556).— p-OMe·C₆H₄·CH₂·CN (I) and EtBr-NaNH₂ give α-p-anisylbutyronitrile, (?) m.p. 130° (corresponding acid, m.p. 68°, and amide, m.p. 101—102°). (I) and m-OMe·C₆H₄·[CH₃]₂·Br similarly afford α-p-anisyl-y-m-anisylbutyronitrile, b.p. 205—210°/3 mm., hydrolysed to the corresponding acid, which is exclised (POCI) to 1 to 6 meth.

anisyl-y-m-anisylbutyonitrile, b.p. 205—210°/3 mm., hydrolysed to the corresponding acid, which is cyclised (POCl₃) to 1-keto-6-methoxy-2-p-anisyl-1:2:3:4-tetrahydronaphthalene, convertible by MgMeI, followed by demethylation, into 6-hydroxy-2-p-hydroxy-phenyl-1-methyl-3:4-dihydronaphthalene (cf. Salzer, A., 1943, II, 8), which shows cestrogenic activity in doses of 0.3— $0.5 \mu g$. Cleavage of phenol ethers by pyridine hydrochloride. V. Prey (Ber.; 1941, 74, [B], 1219—1225).— C_5H_5N ,HCl (I), m.p. 144°, boils undecomposed at 218° and, acting as a strong acid, is very effective for dealkylation of ArOAlk, even for PhOMe. Heating with 3 parts of (I) at ~200° for 5—6 hr. usually gives 70—100% yields. Unstable substituents, e.g., in anethole or isocurgenol, reduce the parts of (I) at ~200° for 5—6 nr. usually gives 70—100% yields. Unstable substituents, e.g., in anethole or isocugenol, reduce the yield to 15-20%. Ph₂O is unaffected. All OAlk of polyhydric phenol ethers are hydrolysed, but conditions can be found for partial dealkylation; e.g., for o- or $m\text{-C}_8\text{H}_4(\text{OMe})_2$ use of 1·3 mols. of (I) and 5-15% of AcOH at $180-190^\circ$ gives 6-75% of OMe, ether. R. S. C.

Dissociation of hexa-arylethanes. XV. Methoxyl substituents. C. S. Marvel, J. Whitson, and H. W. Johnston (J. Amer. Chem. Soc., 1944, 66, 415—417; cf. A., 1943, II, 27).—Dissociation into free materials. free radicals, indicated by magnetic susceptibility, of OMe-substituted hexa-arylethanes is is indicated by cryoscopy (cf. Gomberg et al., A., 1923, i, 211; Lund, A., 1927, 661). This is because the ethanes are unstable, giving low "mol. wts." by dispropor-

tionation. The following are reported: $m\text{-}O\text{Me}\text{-}C_5\text{H}_4\text{-}CO_2\text{Et}$ (prep. by distilling the acid with $\text{H}_2\text{SO}_4\text{-}\text{EtOH-}C_6\text{H}_6$), b.p. $130-135^\circ/15$ mm.; $p\text{-}O\text{Me}\text{-}CPh_2\text{-}OH$, m.p. 60° (lit. $58-61^\circ$, 84° , 82°); diphenyl-m-anisyl-, m.p. $89-90^\circ$, and tri-m-anisyl-methyl chloride, m.p.

o-Phenylenedioxyacetic acid and its ethyl ester. W. G. Christiansen and M. A. Dolliver (J. Amer. Chem. Soc., 1944, 66, 312).—o-C₈H₄(OH)₂ (I), CHCl₂·CO₂Et, and NaOEt (2 mols.) in EtOH-N₂ give Et o-phenylenedioxyacetate, b.p. 115—117°/12·5 mm., and thence (N-NaOH) the derived acid, m.p. 107—108°. CHCl₂·CO₂H does not condense with (I).

Salts of phenolsulphonic acids.—See A., 1944, I, 182, 183.

Mechanism of the reaction of (—)-phenylalkylcarbinols with hydrogen bromide. C. L. Arcus (J.C.S., 1944, 236—239).—The view of Levene *et al.* (A., 1939, II, 155) that the three mechanisms of substitution (S_N i; S_N 2; S_N 1) do not suffice to explain the rotation-temp. curves for the reactions between HBr and CHPhR·OH ($R = M_N$). The transfer of the reactions between HBr and CHPhR·OH ($R = M_N$). Me, Et, Pra) is modified. If the part played by each mechanism in the total reaction is represented by a distribution curve about a max. at a certain temp., it is found that the algebraic sum of the optical results of the three mechanisms reproduces the experimental curves. The "domain" of each mechanism, represented by the area between its distribution curve and the temp. axis, is calc. for the three reactions.

Reaction of citronellal with magnesium benzyl chloride. W. G. Young and S. Siegel (*J. Amer. Chem. Soc.*, 1944, 66, 354—358).—Citronellal (I) and an excess of CH₂Ph:MgCl in Et₂O give 80% of Citronellal (I) and an excess of CH₂Ph·MgCl in Et₂O give 80% of a-benzylcitronellol (II), b.p. 153—156°/3 mm., but use of an excess of (I) leads to 70-80%, of o-a-hydroxy- β (-dimethyl- Δ^c - (or $-\Delta^n$ -)octenylbenzer (III), b.p. 234—235°/3 mm. (cf. Rupe, A., 1914, i, 131; Gilman et al., A., 1930, 1409). The structure of (III) is proved by its mol. wt. in camphor or C₄H₄, possession of 2 active H (MgMeI) (and no CO), 2 OH (quant. interaction with Ac₂O), 2 C.C (Br; H₂-Pd-BaSO₄), 2 citronellyl radicals [with CrO₃ gives 2·61—2·66 AcOH, whereas (II) gives 1·14—1·16 AcOH], oxidation by KMnO₄-C₅H₅N to o-C₈H₄(CO₂H)₂ (IV) (but no BzOH), dehydration by KHSO₄ at 160°/<1 atm. to 2:6·di-az-dimethyl- Δ^b - (or $-\Delta^c$ -)n-hezenyl-3:4-benz- Δ^s -dihydro-1:2-pyran, b.p. 215—217°/3 mm. [which is probably the substance isolated by Rupe (loc. cit.)], and by the different course of the following reaction. The aldol (prep. by KOH in 95% EtOH), of the following reaction. The aldol (prep. by KOH in 95% EtOH), b.p. 170.5—173°/5 mm., of (I) with CH₂Ph·MgCl gives the "normal" addition product, oxidised to BzOH with only traces of (IV), and dehydrated to a partly cyclised hydrocarbon, C₂₇H₄₀, b.p. 204—206°/2 mm. 206°/3 mm.

Vinyl polymers. XVIII. Optically active styrene derivative and its polymer. C. S. Marvel and C. C. Overberger (J. Amer. Chem. Soc., 1944, 66, 475—477; cf. A., 1944, II, 123).—d-sec.-BuOH, [a]_D with Na and then p-C_eH₄Br·CH₂Br in boiling C_eH_e gives p-bromobenzyl d-sec.-Bu ether (I) (49·1%), b.p. 109—110°/8 mm., [a]_D²³ +10·2° in 95% EtOH. p-C_eH₄Br·CH₂·OMe, CuCN, and some C₃H₃N at 215—225° give 68% of p-CN·C₄H₄·CH₂·OMe (II), b.p. 108—110°/9 mm. Similarly, but with addition of a little CuSO₄ and p-C₆H₄Me·CN, (I) gives impure p-cyanobenzyl d-sec.-Bu ether (III) (90%), b.p. 134—137°/9 mm., [a]_D²⁵ +10·9° (the dl-sec.-Bu ether also could not be completely purified), hydrolysed by KOH in boiling 95% EtOH to (? dl-)p-sec.-butoxynethylbenzoic acid, m.p. 77—78°. With an excess of MgMeI in Et₂O, (II) or (III) gives p-methoxymethylacetophenone (52%), b.p. 104—105°/9 mm. (2: 4-dinitrophenylhydrazone, m.p. 170—171°), or p-d-sec.-butoxymethylacetophenone (IV) (65%), b.p. 129—130°/10 mm., [a]_D²⁰ +10·8° in 95% EtOH (2: 4-dinitrophenylhydrazone, m.p. 158—159°), respectively. Slow distillation of (IV) with Al(OPr^B)₃-Pr^BOH then yields a-p-d-sec.-butoxymethylphenylethyl alcohol (60%), b.p. 144—149°/9 mm., [a]_D²³ +11·2° in 95% EtOH, converted by KHSO₄ and a trace of quinol at 200—220°/60—100 mm. (N₂) into p-vinyl-benzyl d-sec.-Bu ether (V) (47%), b.p. 111—113°/8 mm., [a]_D²⁵ +12·8° in diovan at 55° give a solid benzyl d-scc.-Bu ether (\mathbf{V}) (47%), b.p. 111—113°/8 mm., $[\alpha]_{10}^{25}$ +12.8° in dry dioxan. (\mathbf{V}) and some Bz₂O₂ in dioxan at 55° give a solid polymer, OBz· $[(C_{13}H_{18}O)_{8}O_{11}]_{s}$; during 27 hr. changes from +0.917° to +0.722°; measurement (±0.01°) is sufficiently accurate to indicate a first-order reaction.

Electrolytic reduction of acetophenone in alkaline solution. S. Swann, jun., P. E. Ambrose, R. C. Dale, R. C. Rowe, H. M. Ward, H. D. Kerfman, and S. Axelrod (Trans. Electrochem. Soc., 1944, 85, Preprint 9, 93-99).-Of many metal cathodes examined in connexion with the alkaline electrolytic reduction of COPhMe in presence of EtOH and KOAc, Sn gave the highest yield of pinacol isomerides: 77% yield was obtained at 85° with c.d. 0.005 amp. per sq. cm. Yields at Cr, Mo, W, Bi, Pb, Zn, Cd, Hg, and Cu cathodes were good, at Fe moderate, and at Ni, Co, and Mg poor.

1-n-Alkylcyclopentanols and their derivatives. C. R. McLellan and W. R. Edwards, jun. (J. Amer. Chem, Soc., 1944, 66, 409412).—cycloPentanone and MgRBr give 1-methyl-, m.p. 36°, b.p. 81°/100 mm. (p-nitro-, m.p. 83°, and 3:5-dinitro-benzoate, m.p. 115·5°), 1-ethyl-, m.p. -10 , b.p. 74·5°/20 mm. (p-nitro-, m.p. 52·5°, and 3:5-dinitro-benzoate, m.p. 108·3°), 1-n-propyl-, m.p. -37·5°, b.p. 83°/20 mm. (p-nitro-, m.p. 59·5°, and 3:5-dinitro-benzoate, m.p. 108·3°), 1-n-heryl-, m.p. 31°, and 3:5-dinitro-benzoate, m.p. 75·3°), 1-n-hexyl-, b.p. 124°/20 mm. (3:5-dinitro-benzoate, m.p. 75·3°), 1-n-hexyl-, b.p. 124°/20 mm. (p-nitro-, m.p. 26°, and 3:5-dinitro-benzoate, m.p. 76·8°), 1-n-octyl-, m.p. -17·5°, b.p. 135·5°/9 mm. (3:5-dinitrobenzoate, m.p. 77°), 1-n-decyl-, m.p. -18°, b.p. 133°/7 mm. (slight decomp.) (3:5-dinitrobenzoate. m.p. 78°), 1-n-dodecyl-, m.p. 2°, b.p. 142·5°/3 mm. (decomp.) (3:5-dinitrobenzoate, m.p. 81·5°). Condensation with PhOH (methods: Huston et al., A., 1937, II, 494; Welsh et al., A., 1938, II, 94) gives 1-p-hydroxyphenyl-1-methyl-, m.p. 95·5°, -ethyl-, m.p. 96·3°, b.p. 137°/2·5 mm. (2':6'-Br₂-derivative, m.p. 97°), -n-propyl-, m.p. 67·5°, b.p. 135°/1 mm. (2':6'-Br₂-derivative, m.p. 104·5°), -n-butyl-, m.p. 57·5°, b.p. 151°/2 mm. (2':6'-Br₂-derivative, m.p. 53·5°, b.p. 174°/2·5 mm., and -n-octyl-cyclopentane, m.p. 42·8°. B.p. at various pressures (apparatus: C, 1944, Part 3), d₄⁰, d₀²⁰, and parachors are given for the cyclopentanes; this is due to the packing being governed for the lower alkyl derivatives by the size of the cyclopentane ring the alkylcyclopentanes; this is due to the packing being governed for the lower alkyl derivatives by the size of the cyclopentane ring but for the higher alkyl by the size of the alkyl. The phenols in which alkyl = Me—Bu are approx. equally bacteriostatic (Staph. aureus), but the higher alkyl derivatives are ineffective. R. S. C.

Stereochemistry of cryptoxanthin and zeaxanthin. L. Zechmeister and R. M. Lemmon (J. Amer. Chem. Soc., 1944, 66, 317—322).—Irradiation (sunlight) of dil. solutions (1—10 mg. per 100 ml.) of cryptoxanthin (I) or zeaxanthin (II) in light petroleum causes bleaching due to stereoisomerisation, structural conversion interesting the statement of the into other pigments, and cleavage to colourless or almost colourless substances; these changes occur in the order stated but overlap; they are faster for (II) than for (I). I in light petroleum (also melting or keeping or refluxing in solution in the dark) causes isomerisation, but light (even for a few sec.) is needed for development of a c15-peak. Adsorption orders and absorption max. are detailed. The following structures are probable: neocryptoxanthin B 6-cis, U 3- or 9-cis, and A 6: x-di-cis-cryptoxanthin; neozeaxanthin A 6-cis, B 5-cis, and C (? 6: x-)di-cis-zeaxanthin.

R. S. C.

Cyclitol series. VII. Cyclitol (mytilitol) of mussels and related substances. T. Posternak (*Helv. Chim. Acta*, 1944, 27, 457—468; cf. Jansen, A., 1931, 791; Ackermann, A., 1921, i, 764).—Mytilitol (I) is (A) and isomytilitol (II) is (B). (I), m.p. 266—268° (slight decomp.) (hexa-acetate, two forms, m.p. 181° and ~170° and 181° after re-solidification), gives 1 mol. of AcOH when oxidised by Cro. Showing it to be a Cro. CrO₃, showing it to be a C-methylinositol; under like conditions quercitol does not afford AcOH appreciably. (I) is obtained synthetically by the action of a large excess of MgMeI followed by Ba(OH), on either form of the penta-acetate of scyllomesoinosose (III); it is accompanied by a small proportion of (II). Either penta-acetate and CH₂N₂ in well-cooled CHCl₃-Et₂O affords penta-acetoxymethylenecvclonexane oxide (IV), m.p. 213°, hydrogenated

(A.) (B.) (IV.)

(PtO₂ in glacial AcOH) to isomytilitol penta-acetate, m.p. 226—228°. This is resistant towards CrO₃-AcOH and Ac₂O-C₅H₈N at room temp. and is hydrolysed [Ba(OH)₃-MeOH] to (II), rhombs or occasionally long needles, m.p. 225—226° [hexa-acetate (boiling Ac₂O containing conc. H.SO₄ or, preferably, ZnCl₂), m.p. 188—189°]. (III) and CH₂N₂ give pentahydroxymethylenecyclohexane oxide (V), gradual decomp. >250° in a capillary, m.p. 244—247° (block), hydrogenated to (II). Boiling Ac₂O containing anhyd. FeCl₂ or ZnCl₂ converts (IV) or (V) into the hepta-acetate, m.p. 158—159°, of hydroxymytilitol (VI) (also +0.5H₂O), m.p. 247° after softening. With boiling Ac₂O-NaOAc or -KOAc, (IV) gives the hexa-acetate (VII), m.p. 185—186°, of hydroxyisomytilitol (VIII), m.p. 223°, transformed by boiling Ac₂O-ZnCl₂ into the hepta-acetate, m.p. 191—192°. (IV) and HBr-AcOH at room temp. give bromosomytilitol penta-acetate, m.p. 219—220°, which with Ac₂O-H₂SO₄ yields a peracetate, m.p. 191°, and with KOAc gives (VII). Hydroxyisomytilitol penta-acetate mono-p-toluenesulphonate, m.p. 187—188° (decomp.; rapid heating) [from (IV) and anhyd. p-C₄H₄Me·SO₂H in CHCl₂], NaI, and COMe₂ at 110° afford iodoisomytilitol penta-acetate, m.p. 227—231°. (I) is oxidised by HIO₄ less rapidly than (II), thus proving that all the successive OH groups in (I) are trans-

to one another. Similar differences in the rate of oxidation are found for scyllitol and meso-inositol and for (VI) and (VIII), respectively.

Organic sulphur compounds. New sulphide and its derivatives. A. Cabra Fernández and M. Cabanzón Martínez (Anal. Fis. Quím., 1942, 38, 400—404).—CHPhPr°Cl with K₂S-EtOH gives di-a-phenyl-n-butyl sulphide, b.p. 160—165°/40 mm. (sulphoxide, m.p. 50°; sulphone, m.p. 56—57°).

F. R. G.

Coupling αβ-unsaturated compounds with diazonium salts. C. F. Koelsch and V. Boekelheide (J. Amer. Chem. Soc., 1944, 66, 412—415).—When ArN₂Cl reacts with CHR CHR' in presence of the aq. Coupling αβ-unsaturated compounds with diazonium salts. C. F. Koelsch and V. Boekelheide (J. Amer. Chem. Soc., 1944, 66, 412—415).—When ArN₂Cl reacts with CHR:CHR' in presence of the aq. NaOAc and CuCl₂, the first reaction is reversible formation of NAr;N·OAc, followed by irreversible dissociation into Ar, AcO· and N₂. Then follow the reactions, (i) Ar + CHR:CHR' → CHARR·CHR' (A), (ii) Cu⁺⁺ + (A¹) → Cu⁺ + CHARR·CHR' (B), and (iii) Cu⁺⁺ + AcO· → Cu⁺⁺ + OAc⁻. The direction of addition of Ar in (i) is governed by the natures of R and R'. The final reaction is (B) + Cl⁻ → CHARR·CHR'Cl (C) or (B) → H⁺ + CArR:CHR', according to the natures of R and R'. If R' = CO₂H, (C) is formed; if R = CO₂H, (B) is decarboxylated. Since the rate of evolution of N₂ varies for different olefines, formation of a complex must precede formation of NAr;N·OAc. Yields are poor and much tar is formed. CHMe;CH·CO₂Et (I) and p·C₂H₂Cl·N₂Cl (II) etc. (in COMe₃ at 20°) give Et a-chloro-β-p-chloro-phenyl-n-butyrate (34%), b.p. 125—140°/2—3 mm., converted by KOH-MeOH into p·C₂H₂Cl·CMcCl·CQ₂H (II), mp. 134° (turbid; clear at 138·5°) [also obtained from p·C₂H₂Cl·CMe(OH)·CH₂·CO₂Et, b.p. 160—162°/11 mm], partly converted by warm conc. H₂SO₂ into a stereoisomeride, m.p. 92—99° (lit. 94°). Non-formation of CHMeCl·CH(C₂H₄Cl-p)·CO₂Et in the condensation is proved by boiling the crude product in NPhEt₂, hydrolysing the resulting ester, hydrogenating (H₂-Raney Ni; NaOH; 40 lb.), and treating with PCl₂ and then with AlCl₃ in C₂H₃, which gives mainly (40%) 3-methylindanone. PhN.Cl and (I) etc. at 20—35° give CHPhMe·CHCl·CO₂Et (7·5%), b.p. 100—104° (some decomp.)/4 mm., recognised by conversion into the known CPhMe·CH·CO₂H. CHMe·CH·CO₂He and 2: 4: 1·C₂H₃Cl₂·N₂Cl etc. in aq. COMe₂ at 5° give 2: 4: 1·C₂H₃Cl₂·ChMe·CH·CO₂Me (20%) (cf. A., 1939, II, 262), converted by KOH-MeOH into β-2: 4-dichlorophenyl-rotonic acid, m.p. 128—127°, which is hydrogenated (Raney Ni; aq. NaOH) to CHPhMe·CH·CO₂He. CHMe·CH·CO₂He and (II) etc. in aq. COMe₂ at 0° followed

Reactions of tert.-butyl cinnamate and benzoate with magnesium phenyl bromide. F. Frostick, E. Baumgarten, and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 305).—Adding CHPh:CH·CO₂Bu^y (0·115) to MgPhBr (0·23 mol.) in Et₂O and then boiling gives only (44%) Buγ ββ-diphenylpropionate, m.p. 55·5-5·6°, identified by hydrolysis. BuγOBz (0·3) and MgPhBr (0·5 mol.) in Et₂O at room temp. and then the b.p. give CPh₃·OH (41%) and BzOH (10%), but not CMe₂·CH₂ or PhBuγ. R. S. C.

[Alkyl exchange of] carboxylic esters. II. F. Adickes and V. Krawczyk (Ber., 1941, 74, [B], 1389—1394).—Occurrence of the exchange, RCO₂Et + MeOH \rightarrow RCO₂Me + EtOH, cannot be predicted from the nature of R. It occurs readily (70% in 8 hr. at the b.p. with 10 mols. of anhyd. MeOH) with Et 2-hydroxythionaphthen-legathoxylate Sediovide (D) (derived Measter p. 2.177 the b.p. with 10 mols. of anhyd. MeOH) with Et 2-hydroxythionaphthen-1-carboxylate S-dioxide (I) (derived Me ester, m.p. 177–180°), fairly readily (~5—10%) with CH(CO₂Et)₃, CN·CHPh·CO₂Et, (CO·CO₂Et)₂, or Et 1-bromo-2-keto-1: 2-dihydrothionaphthen-1-carboxylate S-dioxide (? Me hemiacetal, m.p. 90°), slightly (~1—3%) with CN·CPh(CO₂Et)₂ or the Me ether of (I), and not with C(CO₂Et)₄. Et₂ fumarate and r-tartrate, (2·C·CO₂Et)₂, CO₂Et·CH₂·NH₂,HCl, CN·CH₂·CO₂Et, OH·CPh₂·CO₂Et, CPh₂F·CO₂Et, CN·CPh₃·CO₂Et, (OPh)₃·C(CO₂Et)₂, p C₆H₄Me·SO₂·CHPh·CO₂Et, Et nicotinate, and 2-hydroxy- or 2-methoxy-coumarone-1-carboxylate. R. S. C.

Hydrogenolysis of benzyl esters in contact with nickel catalysts. Y. R. Naves (*Helv. Chim. Acta*, 1944, 27, 261—268).—Esters of CH2PhOH suffer rapid hydrogenolysis in contact with Raney Ni at room temp. and < atm. pressure, whereas esters of alcohols and phenols apparently closely related to CH_Ph-OH are changed slowly phenois apparently closely related to CH₂Pn OH are changed slowly or not at all. A possible means is afforded of evaluating CH₂Ph esters in essential oils, natural perfumes, etc. CHPh:CH·CO₂CH₂Ph readily absorbs 2 H₂ at 30° with formation of PhMe and Ph·[CH₂]₂·CO₂H; after union with 1 H₂ the product contains PhMe, Ph·[CH₂]₂·CO₂CH₂Ph, and Ph·[CH₂]₂·CO₂H but no CHPh:CH·CO₂H. The product of the reaction at 135—140°/10 atm. is (CH₂Ph·CH·CO₂H)₃·Hydrogenolysis in contact with Raney Ni in presence of EtOH of EtOAc of CH₂Ph acetate, laurate, succinate, benzoate, and salicylate

is rapid and complete at a low temp. CH2AcCO2Et behaves individually on account of the simultaneous decomp. of CH_Ac-CO_H. Dioxan inhibits and NPhMe₂ retards hydrogenolysis. There is little hydrogenolysis of anisyl, p-tolylcarbinyl, p-cuminyl, dl-phenylmethyl, p.p. 72—73°/4 mm. [not identical with the product thus described by Kenyon et al. (A 1022 6041) or phenylethyl carbinyl by Kenyon et al. (A., 1933, 604)], or phenylethyl-carbinyl acetate, and 'practically no hydrogenolysis with phenyldimethylcarbinyl acetate, b.p. 81—82°/2·8 mm., Ph-[CH₂]₂ acetate or phenylacetate, or CH₂Ph-CO₂·C₂H₄Me-p. Cinnamyl cinnamate, trans-to-suggent acetate or phenylacetate, and the control of the phenylacetate or phenylacetate, or CH₂Ph-CO₂·C₂H₄Me-p. Cinnamyl cinnamate, trans-to-suggent acetate or phenylaceta acetate or phenylaceta or phen ate, and eugenol benzoate are hydrogenated without appreciable hydrogenolysis. H. W.

Complex of nickel with toluamidoxime. L. Malatesta and R. Pizzotti (Gazzetta, 1942, 72, 564—567).—Ni(OAc)₂ and p-C₅H₄Me·C(NH₂);N·OH in KOH-EtOH, followed by H₂O₂, give not a Ni^{IV} (Kuras, Chem. Zentr., 1942, 113, I, 2244), but a Ni^{IV} compound, C₅H₄Me·C Ni(O).

NiNH Ni^{II} C·C₆H₄Me, which is circles to that abtained by Mclastate to the abta

C·C,H₄Me, which is similar to that obtained by Malatesta (Gazzetta, 1940, 70, 842) from NH₂·CPh.N·OH; with HCl it evolves N₂. E. W. W.

Action of formaldehyde on m-hydroxybenzoic acid. I. C. A. Buehler, T. A. Powers, and J. G. Michels (J. Amer. Chem. Soc., 1944, 66, 417—418).—m-OH-C₆H₄·CO₂H (I) and 40% CH₂O in conc. HCl-H₂SO₄ at 30—40° give 3-hydroxyphthalide (CO = 1) (II), m.p. 254° [Me (III), m.p. 127°, and Et ether, m.p. 170°; acetate, m.p. 96—97°], and a substance, m.p. 175°. KOH-KMnO₄ at 60—75° converts (III) into 3:1:2-OMe·C₆H₃(CO₂H)₂ [Me₂ ester, m.p. 73—74° (lit. 71°)]. Br and (I) in AcOH at 50° give 3:4:6:1-OH·C₆H₂Br₂·CO₂H, the Me ether, m.p. 205° (lit. 202—203°), of which with CH₂(OMe)₂-conc. HCl-H₂SO₄ at 50—55° gives 4:6-dibromo-3-hydroxyphthalide, m.p. 146°, reduced to (II) by H₂-Raney Ni at 150—200°/500 lb.

R. S. C.

Derivatives of di-iodohydroxybenzoic acids.—See B., 1944, II, 156.

Reactions of o-substituents during stilbene syntheses. ski, J. Georgescu, and C. Bachmeyer (*Ber.*, 1941, 74, [*B*], 1279—1284).—2:1:4-CN·C₆H₂Me·NO₂ with 30% H₂O₂ in boiling MeOH-H₂O-KOH gives 4-nitro-o-toluamide (Me = 1) (I), m.p. 175° (resistant to NaOMe-MeOH at room temp.), which with NaOMe-PhCHO-MeOH at room temp. gives 4-nitrostilbene-2-carboxylamide (II), m.p. 263° (partial decomp.), and with o-NO₂·C₆H₄·CHO (III)-NaOMe-MeOH gives 4: 2'-dinitrostilbene-2-carboxylamide, m.p. 228°. With (III) at 140—150°, (I) gives o-nitrobenzylidene-NN'-bis-4'-nitro-toluamide, m.p. 253°, but with RCHO-NaOMe-MeOH at room temp. gives 4-nitro-, m.p. 206° [with, in one experiment, (II)], and 4:2'-dinitro-stilbene-2-carboxylic acid, m.p. 210°. R. S. C.

Reaction of γ-anisyl-γ-butyrolactone with potassium cyanide. 6-Methoxy-1:2:3:4-tetrahydro-2-naphthoic acid. C. C. Price and W. Kaplan (J. Amer. Chem. Soc., 1944, 66, 477—478).—ρ-OMe·C₆H₄·CO·[CH₂]₂·CO₂H (prep. modified to give a 95% yield), m.p. 144°, when esterified by boiling with EtOH in a Soxhlet extractor with removal of H₂O by CaC₂ in the thimble and the heated with Al(OPrθ)₃-PrβOH with very slow removal of COMe₂, gives 79% of cryst. γ-ρ-anisyl-γ-α-butyrolactone. Interaction gives 70% of cryst. y-p-anisyl-y-n-butyrolactone. Interaction thereof with KCN at 210° (N₂) involves rearrangement, yielding β-cyano-y-p-anisyl-n-butyric acid (I), m.p. 116.5° (corr.) (cf. Blaise, A., 1897, i, 323), the structure of which is proved as follows. With HF at 100° (not H₂SO₄ or, as chloride, AlCl₂) and then conc. H₂SO₄ HF at 100° (not H₂SO₄ or, as chloride, AlCl₂) and then conc. H₂SO₄ at room temp. (1 week), (I) gives 4-keto-6-methoxy-1:2:3:4-tetra-hydro-2-naphthoamide, m.p. 178° (corr.) [ozime, m.p. 217—219° (corr.)], reduced by 10% Pd-C-H₂ in EtOH at 41 lb. to 6-methoxy-1:2:3:4-tetrahydro-2-naphthoamide (II) (68%), m.p. 141° (corr.). Thence HCl-H₂O-AcOH at the b.p. yields the acid (III) (85%), m.p. 151° (corr.), not demethylated by KOH-EtOH or HBr-AcOH-H₂O. S at 210—245° converts (II) into a thioamide, which with KOH-EtOH gives 6:2-OMe·C₁₀H₂·CO₂H, m.p. 194—196° (lit. sinters 190°, m.p. 209°) [amide, m.p. 220—221° (lit. 219°)].

R. S. C.

Haloform reaction. R. T. Arnold, R. Buckles, and (Miss) J. Stoltenberg (J. Amer. Chem. Soc., 1944, 66, 209-210).-In aq. MeOH the haloform reaction applied to Ac compounds may lead directly to Me esters owing to the intermediate CO-CCl₃ reacting faster with MeOH than with H₂O (cf. acid chlorides). 5-Methoxy-1:2:3:4-tetrahydronaphthalene, Ac₂O, and AlCl₃ in PhNO₂ at 0—5° give 5-acetyl-8-methoxy-1:2:3:4-tetrahydronaphthalene (I), b.p. 164—166°/8 mm. [oxime, m.p. 136—139° (decomp.)], which o.p. 164—166°/8 mm. [oxime, m.p. 136—139° (decomp.)], which with Ca(OCl)₂, KOH, and K₂CO₃ in aq. MeOH gives Me 8-methoxy-1.2:3:4-tetrahydronaphthalene-5-carboxylate (II) (80%), m.p. 63—64°, and a small amount of the corresponding acid (III), m.p. 216·5—216° [with CH₂N₂ gives (II)]. With Ca(OCl)₂ and KOH (excess) in aq. dioxan, (I) gives 7-chloro-8-methoxy-1:2:3:4-tetrahydronaphthalene-5-carboxylic acid, m.p. 154—156°, which is obtained very rapidly by chlorination of (III) and is not obtained in the haloform reaction if the excess of KOCl is destroyed before acidification of the corresponding to the haloform reaction if the excess of KOCl is destroyed before acidification. With Br in AcOH, (I) gives 5-bromoacetyl-, m.p. 73—74°, and thence by KOAc in boiling EtOH 5-acetoxyacetyl-8-methoxy-1:2:3:4-tetrahydronaphthalene, m.p. 91—92°, hydrolysis of which did not give a pure OH·CH₂·CO derivative. Structures are proved by conversion of (II) by S at 250° into 4: 1-OMe·C₁₀H₆·CO₂H.

Phthaleins from phenol and naphthalene-1:2-dicarboxylic acid. M. H. Hubacher (J. Amer. Chem. Soc., 1944, 66, 255—256).—1:2-C₁₀H₆(CO)₂O, PhOH, and SnCl₄ at 113—116° give phenol-2:1-(I), 1:2-C₁₀H₆ CO (22%), m.p. 291·1—292·4° (diacetate, m.p. $223\cdot8-225\cdot9^{\circ}$; dipropionate, m.p. $162\cdot7-163\cdot7^{\circ}$), and -1:2-naphthalein (II), $2:1-C_{10}H_{\star} < \stackrel{C(C_{\bullet}H_{\bullet}'OH-p)_{2}}{CO} > O$ (5%), m.p. 267.5—269.5° (diacetate, m.p. 154.5—155.6°; dipropionate, m.p. 109.6—110°), converted by KOH at 240—245° into 2- and 1- $C_{10}H_7$ ·CO₂H, respectively; the colour change (to magenta) occurs at pH ~8.8—10.5, but the colour given by (I) is ~4 times as intense at the colour given by (II). as that given by (II); neither colour fades in dil. acid and that of (I) resists H₂O₂. M.p. are corr. R. S. C.

Derivatives of cis-3: 6-endomethylene- Δ^4 -tetrahydrophthalic acid. M. S. Morgan, R. S. Tipson, A. Lowy, and W. E. Baldwin (J. Amer. Chem. Soc., 1944, 66, 404 407).—cis-3: 6-endoMethylene- Δ^4 -tetrahydrophthalic anhydride (I) with H_2 -Raney Ni in dioxan at 45° /2050 lb. gives 97% of the H_6 -anhydride (II), m.p. $167\cdot5$ — 168° . The derived acids show each two well-defined breaks in the titration the derived acids show each two wentermed broads in the target curve, whereas $(CH_2 \cdot CO_2H)_2$ shows only one break and $o \cdot C_0H_4(CO_2H)_2$ shows only a trace of the first break. In boiling MeOH, (I) and (II) give $Me \ H \ cis-3: 6$ -endomethylene- Δ^4 -tetrahydro-, m.p. 76—78.5°, and -hexahydro-phthalate, m.p. 77—79°, respectively. With a little (II) give $Me\ H\ cis-3$: 6-endomethylene- Δ^4 -tetrahydro-, m.p. 76—78-5°, and -hexahydro-phthalate, m.p. 77—79°, respectively. With a little ρ -C₆ H_4 Me·SO₃H in boiling ROH, (I) gives Me_2 , b.p. 129—130°/9 mm. (indifferent to NH₃ at 0°), Ei_2 , b.p. 138—140°/8 mm., and Bu^a_2 cis-3: 6-endomethylene- Δ^4 -tetrahydrophthalate, b.p. 174—176-6°/8 mm. With dry NH₃ at 170° or (NH₄)₂CO₃ at 200°, (I) gives the imide (III), m.p. 186-5—187°; (II) gives its imide, m.p. 174—175-5°, by the former method. With NH₂Ph in warm C₆H₆, (I) gives the phenylimide, m.p. 144°; in CHCl₃, (II) gives exothermally the anilic acid, m.p. 175—176° (decomp.), readily converted into the phenylimide, m.p. 152—153°. With p-toluidine in C₆H₆, (I) gives its p-tolylimide, m.p. 156·5—157°. With CH₂PhCl and NaOEt in boiling EtOH the imides give the unsaturated, m.p. 82·5—83·5°, in boiling EtOH the imides give the unsaturated, m.p. $82\cdot5-83\cdot5^\circ$, and saturated benzylimide, m.p. $101-103^\circ$. In conc. aq. NH₃ at room temp. (I) or (II) gives NH_4 cis-3:6-endomethylene- Δ^4 -tetrahydro-, m.p. 172° (decomp.), and -hexahydro-phthalamate, m.p. 177° (decomp.), respectively, converted by aq. HCl at room temp. into the phthalamic acids, m.p. 136° (decomp.) and $165-166^\circ$ (decomp.), respectively, which in boiling H_2O give NH_4 H cis-3:6-endomethylene- Δ^4 -tetrahydro-, m.p. 148° (decomp.) [derived $(NH_4)_2$ salt, m.p. indefinite], and -hexahydro-phthalate, m.p. $149-150^\circ$, respectively. An attempt to prepare the diamide from (III) by boiling conc. aq. NH₃ failed. With AlCl₃ in C_4H_5 at $\Rightarrow 45^\circ$, (II) gives 3-benzoylnor-camphane-2-carboxylic acid (87%), m.p. $170-171^\circ$, which gives no anthraquinone derivative in H_2SO_4 at 100° .

R. S. C. in boiling EtOH the imides give the unsaturated, m.p. 82.5-83.5°,

New synthesis of phenylpropaldehyde and its nuclear homologues. L. Bert (Compt. rend., 1942, 215, 356—357).—A benzenic hydrocarbon ArH is condensed directly (Friedel-Crafts) or, more generally, indirectly through MgArBr with CH₂Cl·CH;CHCl to CH₂Ar-CH;CHCl, which is converted by cold Br or heated PCl₅ into CH₂Ar·CHBr·CHClBr which is converted by cold by or neatest x_{i_5} mooths. The converted by cold by or neatest x_{i_5} mooths. On the cold by the converted No experimental results are recorded.

Complex behaviour of potassium permanganate towards an ethylcomplex behaviour of potassium permanganate towards at easylenic function leading to a new mode of formation of p-isopropylenenylacetaldehyde. L. Bert (Compt. rend., 1942, 215, 276—277).—
p-C₆H₄Prβ·CH:CH·CH₂·OR (I) (R = Me, Et, Pr^a, Prβ, Bu^a, Buβ, iso-C₅H₁₁) is converted by agitation with a saturated aq. solution of KMnO₂ at room temp. into b-C₆H₄Prβ·CH₂·CHO (II) with some p-C₆H₄Prβ·[CH·OH]₂·CH₂·OR. When R = Bu^a or iso-C₅H₁₁ small encountered Pr^aCO Horizo C. H. OH respectively are also obtained. results are recorded.

Substituted a-amylcinnamaldehydes, A. Weizmann (J. Amer. Chem. Soc. 1944, 66, 310—311).—RCHO, n-C₆H₁₃·CHO (I), and piperidine in C₈H₅N at 100° give a-p-anisylidene-, b.p. 145° [0·3 mm. (semicarbaxone, m.p. 143—145°), a-3: 4-dimethoxybenzylidene-, b.p. 165°/0·6 mm. (semicarbazone, m.p. 175°), and a-3: 4-methylenedioxybenzylidene-n-heptaldehyde, b.p. 158—159°/0·9 mm. (semicarbazone, m.p. 155°). PhCHO condenses more readily than do the above eldehydes. azone, m.p. 155°). PhCHO condenses more reabove aldehydes. Vanillin and (I) do not react.

Beaction of maleic anhydride with aromatic oximes. G. La Parola (Gazzetta, 1943, 78, 94—99; cf. A., 1937, II, 501).—(:CH·CO) $_2$ O (I) and α -p-tolualdoxime in C $_6$ H $_6$ at the b.p. give N-p-toluoylaspartic acid, m.p. 182°. With α -anisaldoxime, (I) gives N-anisoylaspartic

acid, m.p. 180°. a-p-NMe₂·C₅H₄·CH:N·OH and a-piperonaldoxime give the nitriles, and a-salicaldoxime the aldehyde. E. W. W.

Spectroscopic study in the stereoisomeric capsanthin set. cis-Peak effect and configuration. A. Polgár and L. Zechmeister (J. Amer. Chem. Soc., 1944, 66, 186—190).—The fine structure of the absorption spectrum of capsanthin in hexane is obliterated by adding as little as 2% of EtOH and in abs. EtOH no structure at all is visible. 32 isomerides are possible, 5 of the ethylcnic linkings being capable of trans \rightarrow cis isomerisation. Isomerisation by I, insolation, and melting is investigated. Light is needed for development of a cis-peak. The customary considerations lead to the structures: neocapsanthin A 6-cis, B 5- or 7-cis, and C di-cis.

R. S. C.

Isomerisation of aromatic ketones with aluminium chloride. G. Baddeley $(J.C.S.,\ 1944,\ 232-236$; cf. A., 1943, II, 264).—The isomerisations are of two types, viz., (A) those resembling the isomerisation of o-hydroxyaryl alkyl ketones, the mobile alkyl moving intramolecularly into the adjacent position, and (B) those involving migration (possibly intramol.) of the CO group. Migrations of alkyl in C₆H₆ homologues, phenols, aryl and hydroxyaryl ketones are related to one another, and to the Jacobson reaction. o-C₆H₄Me·COMe (semicarbazone, m.p. 212°) and AlCl₃ (2 mols.) at 170° for 1·5 hr. give p-C₆H₄Me·COMe (I) (85%) (type B) (semicarbazone, m.p. 208°), and no type A product. In presence of m·5-xylenol (II) at 160°, the yield of (I) is halved owing to formation of 2:4:5:1-OH·C₆H₂Me₂·COMe (III); the production of an acylating agent is thus possibly responsible for (I). o-C₆H₄Me·COEt similarly yields the p-isomeride (83%). 2:5:1-C₆H₃Me·COMe gives the 3:5:1-isomeride (77%) (A) (semicarbazone, m.p. 219°) and 8% of the 3:4:1-compound (IV) (B) [no (IV) is formed if (II) is present in the reaction mixture]. o-C₆H₄Et·COMe (semicarbazone, m.p. 182°) and AlCl₃ yield the m-isomeride (70%) (A) (semicarbazone, m.p. 182°) and AlCl₃ yield the m-isomeride (70%) (A) (semicarbazone, m.p. 182°) and AlCl₃ yield the m-isomeride (70%) (A) (semicarbazone, m.p. 180°), thus howing the great mobility of Et. 2:4:1-C₆H₃Et₂·COMe (2:4-dinitrophenylhydrazone, m.p. 191°). but no 3:4:1-isomeride (semicarbazone, m.p. 180°), thus showing the great mobility of Et. 2:4:1-C₆H₃Me₂·COMe (semicarbazone, m.p. 202°) and AlCl₃ or AlBr₃ (3 mols. at 150°) give 80% of (IV); AlCl₃ + (II) give (III) also. 2:4:6:1-C₆H₂Me₃·COMe and AlCl₃ afford the 3:4:5:1-isomeride (87%) (A) (semicarbazone, m.p. 217°) and 2:5:1-C₆H₃Me₃·COPh (at 190°) yields the 3:5:1-compound (90%) (A). p-Hydroxyacetophenones undergo isomerisations of type B only, and complete isomerisation of 4:2:1-into 2:4:1-OH·C₆H₃Me₃·COMe is converted into the 2:4:1-into 2:4:1-OH·C₆H₃Me₂·COMe is converted into the 2:4:1-into 2:4:1-OH·C₆H₃Me₂·COMe is converted into the 2:4:1-into 2:4:1-OH·C₆H₃Me₂·COMe is conv isation of o-hydroxyaryl alkyl ketones, the mobile alkyl moving intramolecularly into the adjacent position, and (B) those involving isomerisation occurring under conditions where there is no reagent isomerisation occurring under conditions where there is no reagent capable of producing type A. 1-Keto-5: 8-dimethyl-1: 2: 3: 4-tetrahydronaphthalene (\mathbf{V}), b.p. $164^{\circ}/20$ mm. (semicarbazone, m.p. 222°), yields the 5: 7-Me₂ compound (90%) (A) (semicarbazone, m.p. 245°), but 4: 7-dimethyl- α -hydrindone (\mathbf{V} I), m.p. 77°, is unchanged with AlCl₃. Ketones with no alkyl group o- to CO do not isomerise. All the o-alkylaryl ketones and (\mathbf{V}), but not (\mathbf{V} I), are hydrolysed by $\mathbf{H}_3\mathbf{PO}_4$ at 180° , CO being detached from the nucleus. The rigid and planar structure of (\mathbf{V} I) suggests that the isomerisation of an aromatic ketone requires the propulsion of CO out of the plane an aromatic ketone requires the propulsion of CO out of the plane of the aromatic nucleus. An explanation is given why isomerisation of type A is accelerated by alkyl para to the one which migrates. AlBr₂ (3 mols.) at 150° isomerises 6:2:4:1- to 2:4:5:1-OH·C₈H₂Mc₂·COMe. AlCl₂ does not isomerise homologue are new 3:5-dimethylbergetherage may 70° common the following are new 3:5-dimethylbergetherage may 70° common the common terms of The following are new: 3:5-dimethylbenzophenone, m.p. 70°; semi-carbazones, m.p. 205°, 226°, and 143°, of m-C₆H₄Mc·COMe, 1-keto-1:2:3:4-tetrahydronaphthalene, and p-C₆H₄Pra·COEt (VII), respectively; (VII) and 2:5:1-C₆H₃Pra₂·COMe give 2:4-dinitrophenylhydrazones, m.p. 147° and 75°, respectively.

A. T. P.

Factors determining the course and mechanism of Grignard reactions. XIII. Effect of metallic halides on the reaction of sterically hindered acid halides with magnesium methyl iodide. M. S. Kharasch, R. Morrison, and W. H. Urry (J. Amer. Chem. Soc., 1944, 66, 368—371; cf. A., 1944, II, 215).—Adding MesCOCl (Mes = mesityl) to MgMeI gives good yields of COMeMes, but the reverse addition gives 25% of COMeMes and 50% of (MesCO)₂ (cf. Fuson et al., A., 1938, II, 445). Use of very pure Mg or allowing the MgMeI solution to age increases the proportion of COMeMes, as also does addition of 1 atom-% of Cu or, better, 1 mol.-% of MnCl₂, FeCl₃, or CuCl. MgMeBr gives 87% of COMeMes, but addition of CoCl₂ leads to much (MesCO)₂, an effect shown less markedly with MgMeI. A free radical chain mechanism is proposed.

Acetylation of 1:2-dimethylnaphthalene. P. A. Plattner and A. Ronco (Helv. Chim. Acta, 1944, 27, 400—403).—1:2- $C_{10}H_6Me_2$, b.p. 135—137°/13 mm. (picrate, m.p. 129—130°), is obtained homogeneous (76% yield) by the successive action of Li and Me_2SO_4 on 2:1- $C_{10}H_6MeBr$ in Et_2O . It is converted by AcCl and $AlCl_3$ in CS_2 or PhNO₂ into 3:4-dimethyl-1-naphthyl Me ketone (I), b.p. 135—137°/0·3 mm. (picrate, m.p. 134—135°; semicarbazone, m.p. 225°). The constitution of (I) is established by its oxidation

(NaOBr) to 3:4-dimethyl-1-naphthoic acid, m.p. 226—227° (Me ester, m.p. 49°), also obtained by converting 4:1:2-C₁₀H₅BrMe₂ by CuCN at 260° into 3:4-dimethyl-1-naphthonitrile, m.p. 120—121°, and subsequent hydrolysis with boiling 25% KOH–EtOH. M.p. are corr.

Molecular rearrangements of phenyl styryl ketone oxides. J. Algar and J. McKenna (Proc. Roy. Irish Acad., 1944, 49, B, 225—249).—COAr•CH:CHAr' with H₂O₃—aq. EtOH—NaOH gives the oxide, which is rearranged by 50% H₂SO₄ at room temp. into COAr•CHAr'•CHO. This is converted into the corresponding pyrazole by EtOH—NHPh•NH₂. The following are described: Ph 3: 4-dimethoxystyryl ketone oxide, m.p. 87—89°; o-, m.p. 114—115°, and p-anisyl p-methoxystyryl ketone oxide, m.p. 119—121°; o-anisyl 3: 4-methylenedioxystyryl ketone oxide, m.p. 119—121°; o-anisyl-enedioxyphenylpropane-ay-dione, m.p. 108—109°; a-phenyl-β-3: 4-methylenedioxyphenylpropane-ay-dione, m.p. 108—109°; a-phenyl-β-0-anisyl-propane-ay-dione (an oil; Cu salt, m.p. 190—195°, softening at 185°); β-phenyl-α-p-anisylpropane-ay-dione, m.p. 135—136°; β-phenyl-α-o-anisyl-propane-ay-dione (I) [an oil; Cu salt (+EtOH), m.p. 243° (decomp.), softening at 240°]; α-o-anisyl-β-p-anisylpropane-ay-dione [an oil; Cu salt m.p. 221—222° (decomp.), softening at 214°]; α-o-anisyl-β-3: 4-methylenedioxyphenylpropane-ay-dione [an oil; Cu salt m.p. 275°) (uncorr.; decomp.)]; α-o-anisyl-β-3: 4-dimethoxyphenylpropane-ay-dione (II) [an oil; Cu salt (+EtOH), m.p. 200—210° after softening]. 1:5-diphenyl-4-p-anisyl-, m.p. 150—151°, -4-3′: 4′-methylenedioxyphenyl-pop-nanisyl-, m.p. 163°, and 1-phenyl-4: 5-di-p-anisyl-pyrazole, m.p. 173°. Small yields of isoflavone and 7-hydroxyisoflavone are obtained from (I) and (II), respectively, by AlBr₃ in boiling C₈H₄. Prolonged refluxing of (I) gives a compound, m.p. 147-5—148-5°, probably o-OH·C₈H₄·CO·CPh:CHPh. M.p. are corr. except where stated.

Functional aptitude of the methyl group. VIII. Formation of anilides by the action of nitroso-derivatives on compounds with an active methyl group. L. Chardonnens and P. Heinrich (Helv. Chim. Acta, 1944, 27, 321—332; cf. A., 1940, II, 160).—Certain secondary products of the condensation of activated Me groups with NO-compounds are shown to be anilides and not nitrones. 3:4:1-NO₂·C_eH₃Me·COPh and p·NO·C_eH₄·NMe, afford 2-nitro-4-benzoyl-benzaldehyde-p'-dimethylaminoanil, m.p. 174—175°, and 3-nitro-benzophenone-4-carboxy-p-dimethylaminoanilide (I), m.p. 217°. Similarly PhNO yields 3-nitrobenzophenone-4-carboxy-p-dimethylaminoanilide (I), m.p. 169°. 2-Nitro-4-benzoylstilbene is oxidised (CrO₃ in AcOH) to 3-nitro-benzophenone-4-carboxylic acid (Me ester, m.p. 82°), the chloride of which with NH₂Ph (or p-NMe₂·C₆H₄·NH₂) in C₅H₅Naffords (I) [or III]. The minor compound from 3:3'-dinitro-4-methylbenzophenone (III) and p-NO·C₆H₄·NMe, is 3:3'-dinitro-4-methylbenzophenone (III) and p-NO·C₆H₄·NMe, is 3:3'-dinitro-4-methylbenzophenone (III) and PhCHO in presence of piperidine afford trans(?)-3:3'-dinitro-4-styrylbenzophenone, m.p. 168°, also obtained from the isomeride, m.p. 155—156°, by the action of a little I in boiling PhNO₂; it is oxidised by CrO₃ in AcOH at 70° to 3:3'-dinitrobenzophenone-4-carboxylic acid, m.p. 193—194°, also obtained from (III) and HNO₄ (d 1·15) at 155—165°; it is converted through its chloride into the Me ester, m.p. 124°, (IV), and (V). 2-Nitro-4-benzoylbenzaldehyde and NHPh·OH in boiling EtOH afford the N-Ph derivative, m.p. 136°, of 2-nitro-4-benzoylbenzaldehyde, m.p. 142·5° [phenylhydrazone, m.p. 218·5° (decomp.)], converted by NHPh·OH involhydrazone, m.p. 218·5° (decomp.)], converted by NHPh·OH involhydrazone, m.p. 218·5° (decomp.)], converted by NHPh·OH in Vh. The N-Ph derivative, m.p. 147·5°, of 2-nitro-4-benzeneazobenzaldoxime which is isomerised by Na-CO₂Ph (VI) and HNO₈ (d 1·15) at 160—170°] is converted (SOCL) into the chloride and thence into th

NO₂·C₆H₂Me·CO₂Ph (**VI**) and HNO₃ (*d* 1·15) at 160—170°] is converted (SOCl₂) into the chloride and thence into the *p*-dimethylaminoanilide, m.p. 240°, identical with the substance derived from *p*-NO·C₂H₁·NMe₂ and (**VI**), which, therefore, is not a nitrone.

Normal and \$\psi\$-structures of 8-benzoyl-1-naphthoic acid and derivatives. H. E. French and J. E. Kircher (J. Amer. Chem. Soc., 1944, 66, 298—300).—Crystallisation of 8:1-C₁₀H₆Bz·CO₃H (A) from EtOH, 70% AcOH, or CHCl₃ gives a form (I), m.p. 110° (Mason, A., 1925, i, 33, 34), but from xylene, cyclohexane, or PhMe gives a form (II), m.p. 129—130° (Knapp, A., 1936, 726). After heating at 90°, (I) gives a form, m.p. 154°. (I) or (II) in CHCl₃ or (II) after boiling in cyclohexane has absorption max. at 3081—3120 and 3252—3297 A., thus resembling 8:1-C₁₀H₆COOO (III)

(max. at 3092 and 3275 A.) but not $1:8-C_{10}H_6Bz_2$ (max. at 2190 A.). (III), its ditolyl analogue, and $1:8-C_{10}H_6(CO)_2O$ show a blue

fluorescence in ultra-violet light, but (VI) and (VII) (below) appear greyish-white; (A), its toluoyl analogue, and (V) (below) appear blue. Thus, (A) exists in solution largely as $8:1-C_{10}H_8$ CPh(OH) With SOCl₂, (I) gives a product which by crystallisation from C_6H_6 gives a-chloro-a-phenyl-1:8-naphthalide (IV), m.p. $125-127^\circ$ (absorption max. at 2961, 3074, and 3251 a.), converted by EtOH into the a-OEl-compound (Et 8-benzoyl-1-naphthoate ψ -ester) (V), m.p. 166° (absorption max. at 3085 and 3259 a.) (cf. Mason, loc. cit.). The Ag salt of (A) with EtI gives Et 8-benzoyl-1-naphthoate (normal form) (VI), m.p. 134° [absorption max. at 2946 a.; cf. 1:8-C10H₆(CO₂Et)₂ (VII), max. at 2950 a.]. (V) and (VI) are separated by chromatography (Al₂O₃; C_6H_6 -light petroleum), whereby it is proved that crude (V), prepared from (IV), contains some (VI). The crude oily chloride from (I) reacts with EtOH more readily than does pure (IV) and gives mainly (VI); the crude product thus contains much 8:1-C10H₈Bz·COCl. With C_6H_6 -AlCl₃, (IV) gives 25-50% of (III); the oily chloride gives HCl and tars. R. S. C.

Structure of pyrethrolone and related compounds. II. T. F. West (J.C.S., 1944, 239—242; cf. A., 1944, II, 136).—(+)-Pyrethrolone (I) with Me₂SO₄-Et₂O-KOH gives a Me ether (II), b.p. 87°/0·3 mm., $|a|_D^{90} + 97\cdot 3^\circ$ in EtOH [regenerated from its semicarbazone (III), m.p. 183—184°, $[a]_D^{20} - 82^\circ$ in C_5H_5N , by aq. KHSO₄-Et₂O], whereas the semicarbazone, m.p. 208°, of (I) with MeOH-H₂SO₄ yields dl-pyrethrolone Me ether (IV), b.p. 85°/0·2 mm. (semicarbazone, m.p. $190-197^\circ$, $[\alpha]_D \pm 0^\circ$ in C_5H_5N). (III) with Me₂SO₄-H₂SO₄ gives (IV). (II) and (IV) are probably stereoisomeric; neither is reducible by

CMe HC 2C:CH-CH2-CH:CHMe HO-HC CO (A.)

the Ponndorf-Meerwein method. An explanation for the failure of derivatives of (I) to undergo Diels-Alder condensation (cf. LaForge, et al., A., 1938, II, 372) is based on the postulation of a cts-configur-

the postulation of a cis-configuration for the pentadienyl side-chain. A new formulation (A) for (I) is proposed.

A. T. P.

Preparation of substituted cyclopentanones. Catalytic hydrogenation of (III) αβ-unsaturated carbonyl compounds, (IV) 2:3-diphenyl-Δ¹-cyclopentenone. H. A. Weidlich and M. Meyer-Delius (Ber., 1941, 74, [B], 1195—1212, 1213—1218).—III. Catalytic hydrogenation of CC·CO in acid is an ionic reaction, occurring by 1:2-addition to the CC or C:O; in alkaline solution the reaction is at and occurs by 1:4-addition. Hydrogenations listed below are by H₂-PdO₂ in EtOH; "acid" and "alkali" denote addition of a little conc. HCl or KOH-EtOH, respectively. In alkali CHPh:CH·COPh gives Ph·[CH₂]₂·COPh (100%) and in acid gives [CH₂]₂·Ph₂ (100%). Reduction of CHPh:CH·CHO in alkali becomes very slow after absorption of 1 H₂ and a good yield of Ph·[CH₂]₂·CHO is obtained (cf. lit.). 4-Hydroxy-3:4-diphenyl-Δ¹-cyclopentenone (anhydroacetonebenzil), m.p. 146—147°, b.p. 190⁵/0·4 mm. [2:4-dinitrophenylhydrazone, m.p. 262° (decomp.)], in alkali absorbs 1 H₂, giving a partly dehydrated mixture, whence by dehydration in boiling AcOH, 3:4-diphenyl-Δ³-cyclopentenone (I), m.p. 108—109° [semicarbazone, m.p. 219° (decomp.)], is obtained; in acid ~2·5 H₂ are absorbed, yielding (I) and 1:2-diphenyl-Δ¹-cyclopentene, b.p. 119°/0·4 mm., the structure of which is proved by oxidation to ae-diphenyl-n-pentane-ae-dione, m.p. 64·5—65°. In alkali or acid (I) yields only cis-3:4-diphenyl-yclopentanone, m.p. 106°. Dimerisation during hydrogenation occurs by way of C·CH:C·OH which either adds 1 H or dimerises, and will thus occur only when reduction is slow, i.e., in alkaline solution; thus, CO(CH:CHPh)₂ in acid gives CO([CH₂]₂·Ph)₂, (2:4-dinitro-phenylhydrazone, m.p. 115—117°) and OH·CH([CH₂]₂·Ph)₂, but in alkali gives Ph·[CH₂]₂·CO·CH:CHPh and [CHPh.C·C·C·CH, CHPh)₂. The steric course of reduction may be predicted in simple cases: 1:2-addition in acid resembles simple hydrogenation of an isolated C:C and leads to the energy-roborer trans-form. E.e., 3-8-tone-part trans-form.

simple hydrogenation of an isolated CiC and leads to the energy-incher cis-form; 1: 4-addition in alkali leads to CH-CiC-OH, ketonisation of which leads to the energy-poorer trans-form. E.g., 3- β -naphthyl- Δ^2 -cyclopentenone-2-acetic acid (as Me ester) in alkali rapidly absorbs 1 H₂ to yield cis-3- β -naphthylcyclopentanone-2-acetic acid, m.p. 106° , b.p. 192° /0-3 mm., the trans-form of which was obtained by Koebner et al. (A., 1939, II, 75) by H₂-Pd-SrCO₃; their x-norequilenin was similarly a trans-form. Cyclisation of $[CH_2]_4Bz_2$ gives 2-benzoyl-1-phenylcyclopentanol (II) and thence 1-benzoyl-2-phenyl- Δ^2 - (III), m.p. 97° (2: 4-dinitrophenylhydrazone, m.p. 132- 140°), and $-\Delta^1$ -cyclopentene (IV), m.p. 42° (2: 4-dinitrophenylhydrazone, m.p. ~ 165 - $\sim 170^\circ$) (cf. Bauer, A., 1914, i, 701). (II) is a mixture; trans-elimination of H₂O from the trans-form gives (IV), whereas (III) is derived from cis-(II). In alkali, (III) or (IV) gives only trans-2-benzoyl-1-phenylcyclopentane, m.p. 75- $\sim 76^\circ$ (2: 4-dinitrophenylhydrazone, m.p. 129- $\sim 130^\circ$), but in acid gives cis-1-phenyl- ~ 132 - $\sim 134^\circ$)

hydrazone, m.p. $132-134^\circ$). IV. Hydrogenation of 2:3-diphenyl- Δ^2 -cyclopentenone (∇) in alkaline EtOH in presence of Pd gives trans-2:3-diphenylcyclo-

pentanone (VI), m.p. 97° (semicarbazone, m.p. 192°) (cf. Burton et al., A., 1939, II, 567), but in EtOH + 1 drop of conc. HCl gives cis-1: 2-diphenylcyclopentane (VII), (VI), and, sometimes, trans-trans-2: 3-diphenylcyclopentanol (VIII), m.p. $110-112^{\circ}$ [oxidised by CrO₃-AcOH to (VI)]. The alkaline reduction and formation of (VII) in acid conforms to the rules laid down above; formation of

(VI) and (VIII) in acid is due to hindrance by the 2 Ph slowing reaction so that 1:4-addition occurs. In presence of CH(OEt)₃, addition to the O is largely prevented and hydrogenation in acid gives, by way of the ketal, cis-2:3-diphenylcyclopentanone, m.p. 71° (semicarbazone, m.p. 189—190°), as well as some (VI). In presence of PtO₂ in acid, (V) gives trans-cis-2:3-diphenylcyclopentanol (IX), b.p. 142—144°/0·3 mm., oxidised to (VI) by CrO₃-AcOH.

Dehydrogenation of cyclohexanols [to cyclohexanones].—See B., 1944, II, 156.

Derivatives of 5-methoxyhydrindene and 6-methoxy-1:2:3:4tetrahydronaphthalene. Synthesis of β -2-carboxy-5-methoxyphenyltetrahydronaphthalene. Synthesis of β -2-carboxy-5-methoxyphenylpropionic acid. W. S. Johnson, J. M. Anderson, and W. E. Shelberg (J. Amer. Chem. Soc., 1944, 66, 218—222).—m-OH·C₆H₄·CHO, CH₂(CO₂H)₂, and a little piperidine in C₅H₅N at 100° give m-OH·C₆H₄·CH·CH·CO₂H, m.p. 194—195°, hydrogenated (PtO₂; MeOH) to m-OH·C₆H₄·[CH₂]₃·CO₂H, m.p. 111·8—112·5°, which in HF gives 5· (85%) (I), m.p. 184—185·5° [semicarbazone, m.p. 222—22·5° (decomp.; bath preheated at 215°); accetate, m.p. 92·8—93·2°], and 7-hydroxy-1-hydrindone (13%), m.p. 110·5—111·5°. Me₂SO₄-alkali converts (I) into the Me ether (II), m.p. 110—110·5° [semicarbazone, m.p. 240—241° (decomp.); 2:4-dinitro-, m.p. 282—284° (decomp.; uncorr.), and p-nitro-phenylhydrazone, m.p. 209—211·5° (decomp.; bath preheated at 200°)], which is also obtained in 78% yield from 5-methoxyhydrindene by CrO₃ in AcOHobtained in 78% yield from 5-methoxyhydrindene by CrO_3 in $AcOH-H_2O$ at 5—10° and then room temp. With NaOMe and HCO_2Et in C₂H₄-N₂, (II) gives 5-methoxy-2-hydroxymethylene-1-hydrindone (III) (98%), m.p. 138—138·5° (decomp.) (purple FeCl₃ colour) [bis-2:4-dinitrophenylhydrazone, m.p. 223—226° (decomp.; bath preheated at 220°)], which at 140—150° gives HCO₂H and 5-methoxy-2-1'-keto-5'-methoxy-2'-hydrindenylidenemethyl-1-hydrindone, m.p. 213-215° (decomp.; bath preheated at 205°), and with NH₂OH,HCl in AcOH at room temp. gives di-(1-keto-5-methoxy-2-hydrindenylidenemethyl)-hydroxylamine (IV) (90%), m.p. 216—218° (decomp.; bath preheated The supposed nitrile of Robinson et al. (A., 1939, II, 511) is probably a similar bimol, hydroxylamine derivative. Br-Et₂O, (II) gives 2-bromo-5-methoxy-1-hydrindone (95%), m.p. 107·8—108·5° [2:4-dinitrophenylhydrazone, m.p. 202·5—204·5° 107.8—108.5° [2:4-dinitrophenylhydrazone, m.p. 202.5—204.5° (decomp.; bath preheated at 195°)], converted by conc. aq. NaCN in boiling EtOH into 2-cyano-5-methoxy-1-hydrindone (V) (73%), m.p. 96—96.5° [2:4-dinitrophenylhydrazone, m.p. 217.5—219.5° (decomp.; bath preheated at 215°); semicarbazone, m.p. 219.5—220° (decomp.; bath preheated at 214°)], which could not be obtained from (III) or (IV). 6-Methoxy-1:2:3:4-tetrahydronaphthalene and Pb(OAc)₄ in AcOH at room temp. give exothermally (cooling required) 1-acetoxy-6-methoxy-1:2:3:4-tetrahydronaphthalene (62%), b.p. 118.5° (0.5 mm. which is unstable, particularly in presence of b.p. 118.5°/0.5 mm., which is unstable, particularly in presence of b.p. 118-5'/0-5 mm., which is unstable, particularly in presence of traces of acid, and with a little KHSO₄ at 120° rapidly gives AcOH and 7-methoxy-1: 2-dihydronaphthalene (VI), b.p. 94—95'/2—3 mm. 48% HBr converts (VI) into a dimeride (? 7-methoxy-3-6'-methoxy-1': 2': 3': 4'-tetrahydro-1'-naphthyl-1: 2-dihydronaphthalene), m.p. 75-5—76-5', supposed by Long et al. (A., 1942, II, 96, m.p. 73—74') to be (VI). \$\beta 2-Carboxy-\text{-nethoxy-phenylpropionic acid, m.p. 203-5—204'}, is obtained from (IV) by boiling 2% aq. NaOH (61% yield), from (V) by boiling 5% KOH (88% yield), and from (VI) by KMnO₄ in COMe₂ at 0—3° and then room temp. (40% yield), and is cyclised to (II) by distilling with BaO. Unless otherwise stated, m.p. are R. S. C.

Introduction of the angular methyl group. II. cis- and trans-8-Methyl-1-hydrindanone. W. S. Johnson (J. Amer. Chem. Soc., 1944, 66, 215—217; cf. A., 1943, II, 330).—cis-1-Keto-2-benzyl-idene-9-methyldecahydronaphthalene (I) with KMnO₄ (excess) in COMe₂ at 2—4° and then 0° gives crude β-2-carboxy-2-methylcyclohexylpropionic acid, m.p. 99·5—103°, converted by distillation with BaO at 300—320° into cis-8-methyl-1-hydrindanone, m.p. 34·5—36°, b.p. 106°/20 mm. (oxime, m.p. 87—88°; 2 : 4-dinitrophenylhydrazone, m.p. 140·5—141°), which only slowly gives the semicarbazone, m.p. 224·5—225·5° (decomp.) (cf. lit.). The transisomeride of (I) gives similarly trans-β-2-carboxy-2-methylcyclohexylpropionic acid, m.p. 179—180°, and thence trans-8-methyl-1-hydrindanone, b.p. 109°/20 mm. (oxime, m.p. 115—115·5°; 2 : 4-dinitrophenylhydrazone, m.p. 146·5—147°, resolidifies, remelts 153·5—154°), which readily forms the semicarbazone, m.p. 242—243° (decomp.) (cf. lit.). M.p. are corr.

Synthesis of 5-hydroxy-1-keto-6: 7-dimethoxy-3-ethyl-1: 2: 3: 4-tetrahydronaphthalene. K. Wallenfels (Ber., 1941, 74, [B], 1428—1433).—2: 3: 4: 1-(OMe) $_{\rm s}$ C $_{\rm e}$ H $_{\rm s}$ CHO (I) (improved prep.), b.p. 161—163°/10 mm., (Pr $^{\rm a}$ CO) $_{\rm s}$ O, and Pr $^{\rm a}$ CO $_{\rm s}$ K at 180° give 2: 3: 4-trimethoxy-a-ethylcinnanic acid (II), m.p. 117°. CHEtBr·CO $_{\rm s}$ Et, (I), Zn, and a trace of I in boiling C $_{\rm s}$ H $_{\rm s}$ give an Et ester, m.p. 62°, b.p. 176—177°/3 mm., hydrolysed to (I) by boiling 10% KOH-EtOH. H $_{\rm s}$ Pd-BaSO $_{\rm s}$ reduces (II) in AcOH to a-2: 3: 4-trimethoxybenzyl-n-butyric acid, b.p. 156—157°/0-05 mm., which with boiling SOCl $_{\rm s}$ C $_{\rm s}$ H $_{\rm s}$ gives the acid chloride and thence the oily CHN $_{\rm s}$ -ketone. With Ag $_{\rm s}$ O-MeOH at 50° and then the b.p. this gives the Me ester, b.p. C_6H_6 gives the acid chloride and thence the oily CHN₂-ketone. With Ag₂O-MeOH at 50° and then the b.p. this gives the Me ester, b.p. 128—130°/0·1 mm., hydrolysed by boiling 2N-NaOH to β -2: 3: 4-trimethoxybenzyl-n-valeric acid, b.p. 152—153°/0·05 mm., which with SOCl₂-light petroleum and then $SnCl_4$ - C_6H_6 gives 1-keto-5: 6: 7-trimethoxy-, b.p. 121—122°/0·05 mm., or with AlCl₃ in CS₃ at 0° and then the b.p. gives 5-hydroxy-1-keto-6: 7-dimethoxy-3-ethyl-1:2:3:4-tetrahydronaphthalene (III), m.p. 115°. With SeO₂ in AcOH or EtOH, (III) gives a red dye, 1:3:2:5:6:7:4-O.C₁₀+Et(OH)₂(OMe)₂:O (absorption max. at 553 m μ .), sol. in NaHCO₃ with a violet and in NaOH with a blue colour, reduced by NaSO₄ to the colourless quinol and converted by CH-N₂ into the Na₂S₂O₄ to the colourless quinol and converted by CH₂N₂ into the lighter-coloured (OMe), quinone, insol. in NaHCO3 or NaOH, which in boiling, dil. HCl gives 1:3:5:2:6:7:4-O.C10HEt(OH)(OMe), O, insol. in NaHCO, but sol. in NaOH with a red colour.

Ketones, ketonic acids, and enol-lactones. IV. cyclo-Pentane-1:3-diones. P. Ruggli and J. Schmidlin (Helv. Chim. Acta, 1944, 27, 499—502).—2:4-Diphenylcyclopentane-1:3-dione (I), m.p. 204— 205°, has been obtained by a second method (cf. Eskola, Diss., Helsinski, 1937). Like other supposedly cyclopentane-1: 3-diones, it possesses unusual properties which may be proper to these compounds or indicative of a different structure. CO(CH₂Ph)₂ and Et₂C₂O₄ give 3:5-diphenylcyclopentane-1:2:4-trione, m.p. 190—192°, hydrogenated (Raney Ni-EtOH at 50°) to 5-hydroxy-2:4-diphenylcyclopentane-1:3-dione (II), m.p. 173—175° (decomp.), which phenylcyclopentane-1: 3-atone (11), m.p. 173—176° (decomp.), which dissolves in cold Na₂CO₃ and is converted by Ac₂O-C₅H₅N at room temp. into a diacetate, m.p. 114·5—115·5°. Dehydration of (II) in anhyd. glycerol at 185—190° leads to 3: 4-diphenyl-Δ⁴-cyclopentene-1: 3-dione, m.p. 146—146·5°, which dissolves in warm dil. NaOH, does not give a colour with FeCl₃, and is hydrogenated (Raney Nits C. H. et room temp.) to (I) in C₆H₆ at room temp.) to (I).

Labile union of oxygen to carbon. Photo-oxidation of hetero-coerdianthrone. C. Dufraisse and M. T. Mellier (Compt. rend., 1942, 215, 541—543).—Irradiation of heterocoerdianthrone (7': 7") (I) (in CS₂) causes rapid oxidation with disappearance of the violet colour, and formation of the photo-oxide (II) (cf. Scholl et al., A., 1932, 617), reconverted into (I), with evolution of O_2 , at 150°. In C_5H_5N (6 hr.), followed by heating with C, (I) yields (II) and the 9:10-dihydroxy-9:10-dihydro-derivative (III). Colourless solutions of (II) in C_5H_5N in sunlight become similar in colour to that observed with (I) in Similar in colour to that observed with (x), in C_5H_5N . Change of solvent and use of C partially transforms (II) into (III); after irradiation of (I) in C_5H_5N for 3 min., (II) is ifficult to purify.

A. T. P.

formed but is more difficult to purify.

Substituted naphthaquinones.—See B., 1944, II, 197.

Optically active a-phylloquinone (vitamin- K_1). P. Karrer, H. Simon, and E. Zbinden (Helv. Chim. Acta, 1944, 27, 317—319).—a-Phylloquinone (I), obtained by condensation of 2:1:4- $C_{10}H_5Me(OH)_2$ with natural phytol and anhyd. $H_2C_2O_4$ in dioxan followed by Ag_2O in $Et_2O + Na_2SO_4$, has $[a]_D^{20} 0.4^{\circ} \pm 0.04^{\circ}$ in C_6H_6 . Dihydro-a-phylloquinone diacetate, obtained from (I) and Zn dust in $Ac_2O-C_5H_5N$, has $[a]_D^{20} \sim +1.5^{\circ}$ to $+1.65^{\circ}$ or -1.8° in EtOH, when derived from phytol with $[a]_D +0.06^{\circ}$ or $+0.20^{\circ}$.

(A) Structure of hydroxyanthraquinones in their salts. Homopolar (pseudo-)ammonium salts. Mesomerism. (B) Formation of [substituted] ammonium salts in solution in their basic components and of metal complex salts with ammonia and amines. R. Scholl [(A) with P. J. Dahll]. (c) Structure of anthraquinol-1-carboxy-lactones and their salts. R. Scholl, K. Meyer, and C. Secr. (Ber., 1941, 74, [B], 1129—1170, 1171—1181, 1182—1189).—(A) Salts are prepared containing: 1-hydroxyanthraquinone and 1 mol. of NH₃, NH₂R (R = Me, Et, and Pr^a here and below), NHMe₂ and NHEt₂; 2-hydroxyanthraquinone and 1 mol. of NH₃, NH₂R, NHR₂, NMe₃, NEt₂, and 1-ethylpiperidine (I); alizarin and 1 mol. of NH₃, NH₂Et, NH₂Pr^a, NHR₂, NMe₃, NEt₃, (I), and C₅H₅N, or 2 mols. of NH₃ and NH₂Me; hystazarin with 2 mols. of NH₃ and piperidine; quinizarin and 1 mol. of NH₃, NH₂Et, NH₃Pr^a, NHMe₃, or NHEt₂, or NHEt₂, or NH₃Pr^a, NHMe₄, anthrapping and 1 mol. of NH₃ or 2 mols. of NH₃Me₄ anthrapping and 1 mol. of NH₃ or 2 mols. 2 mols. of NH₂Me; anthrarufin and 1 mol. of NH₂ or 2 mols. of NH₂R; anthraflavin and 1 mol. of NHPr^a₂, NMe₃, NEt₃, or (I), and 2 mols. of NH₃, NH₄R, or NHR₂; purpurin and 1 mol. of NHR₂, NR₃, or (I), 2 mols. of NH₃, NH₂Et, or NH₂Pr^a, 2·5 mols. of NH₃, or 3 mols. of NH₃Me; when no salt is recorded in these series, none could be obtained. Prep. was by gaseous NH₃ or by

an excess of the liquid amine at room temp. or 20° above its b.p. Colours of the salts are of three types, yellow to orange-red or brown, pink to red, or bluish-violet to blue. Colour in solution often differs from that of the solid and light-coloured solids (or base-free anthraquinone) often separate from dark-coloured solutions. of solutions is often reversibly changed by addition of a second solvent. The depth of colour and tendency to salt-formation decrease for any one anthraquinone from primary through sec. to tert. bases; salt-formation thus involves linkings R.O.H.←NR, Differences in colour are due to existence of the separate mesomeric forms, e.g., the series (A)-(B)-(C)-(D) and $(E)-(\bar{F})-(G)$; these are

termed electrotropic forms. Salts, solid or in solution, may exist as equilibria with one form largely preponderating. The yellow-orange forms are wholly or mostly the "el.-benzoid" form (A), (E), etc., and may be written, e.g., $(A \leftrightarrow B)$; the blue or violet forms are mainly or wholly (D), (G), etc., termed "el.-quinoid," and may be written $(A \leftrightarrow D)$ etc.; the red forms are (B) or (C) and (F), are termed "el.-carbeniates," and may be written $(E \leftrightarrow F) \in (A \oplus C)$ etc.; decision between (B) and (C) for the red 1-OH-compounds is impossible. Metal lakes are similarly considered to be, e.g., $(H \leftrightarrow l)$, $(J \longleftrightarrow K)$ (M = metal) etc.

(B) The colour of solutions of hydroxyanthraquinones in bases or mixed bases is used to determine the "activity" of the bases. These activities are in the same qual, order as the dielectric consts.

so long as the latter do not vary greatly.
(C) Salts of anthraquinol-l-carboxylactones which are capable of electropism in the way outlined above are orange, red, or blue according to the nature of the base, solvent, or mixture of solvents; their general colour behaviour resembles that of hydroxyanthraquinones. Thus, red salts of anthraquinol-1-carboxylactone (A.,

1930, 1588) are el.-lactoid ($L \longleftrightarrow M$) and blue salts are el.-furoid $(L \longleftrightarrow M)$. Absorption spectra support this view. R. S. C.

IV.—STEROLS AND STEROID SAPOGENINS.

Water-in-oil emulsifying agents. H. Synthesis of cholesteryl and cetyl esters. E. L. Cataline, L. Worrell, S. F. Jeffries, and S. A. Aronson (J. Amer. Pharm. Assoc., 1944, 33, 107—108; cf. Powers et al., B., 1940, 402).—The following were prepared from the acid (0·02), alcohol (0·02 or 0·04), and ρ-C₆H₄Me·SO₃H (0·0015 mol.) in C₆H₆ (150 ml.) at 130—140° (bath) for 3 hr.: cholesteryl n-butyrate, m.p. 102° (clears at 110°), n-hexoate, m.p. 98—99°, laurate, m.p. 91—92°, myristate, m.p. 80° (86°), palmitate, m.p. 89—90°, stearate, m.p. 82—83°, and H succinate, m.p. 175—175·5°; dicholesteryl oxalate, m.p. 226—227°, succinate, m.p. 220° (240°), and adipate, m.p. 195° (222°); cetyl laurate, m.p. 40—41°, myristate, m.p. 47—48°, palmitate, m.p. 53—54°, stearate, m.p. 56·5—57°, and λ-hydroxystearate, m.p. 68-69°; dicetyl oxalate, m.p. 56·5—57°, succinate, m.p. 58·5—59°, and adipate, m.p. 56·5—57°. The use of these substances for emulsions is discussed.

Bromination of cholesteryl benzoate. H. Bretschneider, Z. Foldi, F. Galinovsky, and G. von Fodor (Ber., 1941, 74, [B], 1451—1455).—Cholesteryl benzoate (I) and Br in CHCl₃ at 1° give stereoisomeric dibromides (II), m.p. 138—140° (after sintering), 136·5—137·5

(vac.), $[a]_{1}^{16}$ —40·31° in CHCl₃, and (III), m.p. 158—160° (decomp.), $[a]_{D}$ +80° in CHCl₃ (cf. Obermüller, A., 1891, 298; Dorée et al., A., 1916, i, 261; Petrow, A., 1937, II, 417). The structure of (II) is proved by its normal mol. wt. (cryoscopic in $C_{6}H_{6}$), behaviour as a single substance on chromatography (Al₂O₃), reduction to (I) by H_{2} -Pd-C in Et₂O, and by conversion into (III) by heating in EtOH. In boiling $C_{6}H_{6}$ or CHCl₃, (II) or (III) gives an equilibrium mixture containing 79—83% of (III) as judged by [a]. The 5:5′-dibromo-3:3′-dibenzoyloxy-6:6′-dicholestanyl of Petrov (loc. cit.) is (II).

Steroids and sex hormones. XCIV. Introduction of a hydroxyl group in position 5 of the sterol skeleton by hydrogenation of 5:6-or 4:5-oxido-compounds. P. A. Plattner, T. Petrzilka, and W. Lang (Helv. Chim. Acta, 1944, 27, 513—524).—Hydrogenation of cholesteryl acetate a-oxide (I) leads smoothly to the production of 5-OH-compounds, whereas a similar treatment of the β-compounds gives 6-OH-derivatives, whilst the oxido-O and that attached to Cu) are in part removed. Hydrogenation of 4:5- or 5:6-oxides in the steroid series gives a means of introducing OH at C(s). The course of the change appears to depend considerably on experimental conditions, the configuration of the oxide, and the presence of substituents at vicinal C atoms. (I) is hydrogenated homogeneously (PtO₂ in AcOH) to 5-hydroxy-3(β)-acetoxycholestane (II), m.p. 185—185.5°, [a]_D +12.5°, +10.7° (c = 0.83, 0.423) in CHCl₃, which gives a very stable chromate with CrO₂ in AcOH, hydrolysed which gives a very stable chromate with CPG₃ in AcOH, hydrotysed [as is (II)] to $3(\beta)$: 5-dihydroxycholestane (III), m.p. 224—225°, [a]_D +20·6°, +16·9° (c = 0·477, 0·860) in CHCl₃, converted by boiling Ac₂O (2 hr.) into (II) and by AcCl-NPhMe₂ in boiling CHCl₃ into the $3(\beta)$: 5-diacetate, m.p. 140—141°, [a]_D +31·8° (c = 1·220) in CHCl₃. (III) is oxidised by CrO₃ in 90% AcOH at room temp. to 5-hydroxy-3-ketocholestane, m.p. 205—208°, [a]_D +40·0° in CHCl₃, dehydrated by boiling Ac₂O to Δ ⁴-cholestenone. The product obtained by the action of per-acids on cholesteryl acetate is an obtained by the action of per-acids on cholesteryl acetate is an additive compound (A), m.p. $114-115^{\circ}$, of (I) and cholesteryl acetate β -oxide (IV), m.p. $113-114^{\circ}$, $[a]_{D}$ $-1\cdot0^{\circ}$ $(c=1\cdot004)$ in CHCl₃, separable into its components by chromatography over $A_{1}O_{3}$. (A) is also obtained from cholestane-3: 5:6-triol. (IV) is hydrolysed (boiling 0.5n-NaOH-MeOH) to cholesterol β -oxide, m.p. hydrolysed (bolling 0.5N-NaOH-MeOH) to choisetero β -oxtue, in.p. 132°, $[\alpha]_D + 10.3^\circ$ (c = 0.509) in CHCl₃, and is hydrogenated (PtO₂ in AcOH) to cholestane (\mathbf{V}), m.p. 80—81°, cholestanyl $3(\beta)$ -acetate (\mathbf{V} I), m.p. 109—110°, and 6-hydroxy-3(β)-acetoxy- (\mathbf{V} II), m.p. 143—144°, $[\alpha]_D - 6.6^\circ$ in CHCl₃ [oxidised to 6-keto-3(β)-acetoxy-, m.p. 128—129°], acetylated (Ac₂O-C₅H₅N at room temp.) to $3(\beta)$: 6-diacetoxy-, m.p. 137.5—138.5°, -cholestane. Hydrogenation (PtO₂ in AcOH) of (A) with subsequent chromatography leads to (\mathbf{V}). (\mathbf{V} I), and (\mathbf{V} II) with a mixture probably of (\mathbf{V} I) and (\mathbf{V} II). Absorption of H. and (VII) with a mixture probably of (VI) and (III). Absorption of H₂ by (A) is not observed in presence of PtO₂-EtOAc, PtO₂-EtOH, Raney Ni in EtOH or EtOH + a little conc. NaOH, Pd-CaCO₃ in EtOAc, or PtO₂ in EtOAc containing a little AcOH. 5:6-Oxido-cholestane, m.p. 79·7—80·5°, [a]p. -55·9° in CHCl₃, is hydrogenated to (V) and a non-cryst. product, oxidised (CrO₃ in AcOH at room temp.), and then separated into cholestan-6-one, m.p. 98—99°, and $\frac{5}{2}$ -hydroxycholestane, m.p. 109—110°, $[a]_D$ +11·2°, $+9\cdot3$ ° (c -0·89, $\frac{9}{2}$ 92) in CHCl₃. 4:5-Oxidocholestane ["coprostene oxide"], m.p. 95—96°, $[a]_D$ +80·3° in CHCl₃, is hydrogenated (PtO₂ in AcOH) to $\frac{5}{2}$ -and 4-, m.p. 187—187·5°, $[a]_D$ +2·8° in CHCl₃, -hydroxycholestane. Cholesterol a-oxide has $[a]_D^{-1}$ -43·1° in C_8H_8 (cf. lit.). M.p. are

Steroids and sex hormones. XCIII. Hydrogenation of the two oxides of trans-dehydroandrosterone acetate. L. Ruzicka and A. C. Muhr (Helv. Chim. Acta, 1944, 27, 503—512).—trans-Dchydroandrosterone acetate is converted by o-CO₂H·C₆H₄·CO₃H in CCl₄ into a-(I), m.p. 222—224°, [a]₁½ —12° in CHCl₃, [a]₁½ —12·4° in COMe₂, and β-(II), m.p. 186—187°, [a]₁½ +40·7° in CHCl₃, +47° in COMe₂, 5:6-oxido-3(β)-acetoxyandrostan-17-one. (I) is hydrogenated (PtO₂ m AcOH) to 5: 17-dihydroxy-3(β)-acetoxyandrostane (III), m.p. 192—197°, oxidised (CrO₂ in AcOH) to 5-hydroxy-3(β)-acetoxyandrostan-17-one. (IV), m.p. 152·5—153·5° and 162·5—163·5° after resolidification, [a]₁½ +59·3° in CHCl₃, which is stable towards Ac₂O—C₆H₆N and BzCl—C₅H₅N in the cold and is hydrolysed (K₂CO₃ in aq. MeOH) to 3(β):5-dihydroxyandrostan-17-one, m.p. 281—282° (vac.; partial sublimation), [a]₁½ +92·8° in MeOH; this is oxidised [Al(OBu')₃ in abs. COMe₂-dioxan] to Δ⁴-androstene-3: 17-dione, m.p. 171—172·5°, [a]₁n +190·5° in CHCl₃. Partial hydrogenation (PtO₂ in AcOH) of (I) gives unchanged material, and (IV) which is reduced to (III), whereas partial hydrogenation in EtOH affords a-5: 6-oxido-17-hydroxy-3(β)-acetoxyandrostane, m.p. 146—147° and 152·5—153·5° after resolidification, [a]₁½ —66° in CHCl₃ [yielding a-5: 6-oxido-3[β): 17-diacetoxyandrostane, m.p. 165—166°, [a]₁½ —69·3°, hydrogenation (PtO₂ in AcOH) of (II) leads to 17(a)-hydroxyandrostane (V), m.p. 164—166°, [a]₁½ +13·1° in CHCl₃, oxidised to androstan-17-one (VI), m.p. 119·5—120·5°, [a]₂ +87·8° in CHCl₃; partial hydrogenation [rtO₂ in AcOH) gives unchanged material, (V), (VI), and 6: 17-di-ny roxy-3(β)-acetoxyandrostane, m.p. 204—207°, oxidised (CrO₃ in Loches) in CHCl₃.

Steroid ketones.-See B., 1944, III, 119.

Steroids and sex hormones. XCV. Preparation of 2-keto-, 2(α) and 2(β)-hydroxy-cholestane. L. Ruzicka, P. A. Plattner, and M. Furrer (Helv. Chim. Acta, 1944, 27, 524—530).—3-Keto-2-cholestanylpyridinium bromide is converted by p-NO·C₆H₆·NMe₂ and N-NaOH in CHCl₃-EtOH at 20° into the corresponding nitrone, C₃₅H₅₄O₂N₂, m.p. 178—179° (decomp.), converted by 2N-HCl-Et₂O into form A, m.p. 135—137°, [a]_D +76° in CHCl₃ (cf. Stiller et al., A., 1938, II, 193), of 2:3-diketocholestane; this is converted by Ac₂O-C₅H₃N at 100° into the enol acetate A, m.p. 138—139°, [a]_D +96° in CHCl₃, hydrolysed to homogeneous Δ³-2-ketocholesten-3-ol. This with p-C₆H₄Me·SO₂Cl in C₅H₅N at 20° gives the 3-p-toluenesulphonate (I), m.p. 161—162°, [a]_D +83° in CHCl₃, which is converted by NaI in anhyd. COMe₂ at 160° into Δ³-5-cholestadien-2-one, m.p. 121·5—122·5°, [a]_D -62° in CHCl₃ [hydrogenated (PtO₃ in AcOH) and then oxidised (CrO₃) to cholestan-2-one (II), m.p. 130·5—131·5°, [a]_D +49° in CHCl₃, also obtained by hydrogenation (Raney Ni in EtOH at 70°) and subsequent oxidation of (I]. Oxidation of (II) by CrO₃ in 90% AcOH at 60° affords the dicarboxylic acid, C₄₇H₄₆O₄, m.p. 194—196° (Me₂ ester, m.p. 59—60°), obtained by Windaus et al. (A., 1915, i, 678) by oxidation of cholestanel. (II) is hydrogenated (PtO₂ in AcOH) to 2(β)(?)-hydroxycholestane, m.p. 154—156°, [a]_D +33° in CHCl₃, the configuration assigned to which is based on its precipitability with digitonin. With Na and EtOH (II) affords 2(a)(?)-hydroxycholestane, m.p. 178—180°, [a]_D +36° in CHCl₃ (no ppt. with digitonin). M.p. are corr.

Lumiœstrone. A. Butenandt, A. Wolff, and P. Karlson (Ber., 1941, 74, [B], 1308—1312).—Irradiating (ultra-violet) æstrone (I) in dioxan-N₂ gives lumiæstrone (II), m.p. 268—269°, $[a]_D^2 - 43^\circ$, $[a]_D^3 - 45^\circ$ 5° in dioxan [acetate, m.p. 89—90°; Me ether (III), m.p. 129—130°, $[a]_D^{23} - 28^\circ$ in CHCl₃], which gives an oxime, m.p. 200—202°, and semicarbazone (IV), m.p. 273° (micro), only with difficulty. NaOEt-EtOH at 190—200° reduces (IV) to deoxolumiæstrone, m.p. 170—171°, which could not be obtained by irradiating deoxoestrone. Pd-black at 260° converts (I) into d-isoequilenin (14-epiequilenin), m.p. 257—258°, $[a]_D^{20} + 152^\circ$ in dioxan (cf. A., 1939, II, 76), but converts (II) into l-isoequilenin, m.p. 256—258°, $[a]_D^0 - 151^\circ$ in dioxan (dl-compound, m.p. 222—223°) (cf. A., 1940, II, 225). Na-PraOH reduces (III) to lumiæstradiol Me ether, m.p. 137—138°, $[a]_D^{20} + 15.5^\circ$ in CHCl₃. Since Pd-black isomerises $C_{(14)}$, irradiation of (I) probably isomerises $C_{(13)}$, so that (II) is 13-epiæstrone, but inversion at $C_{(9)}$ may also have occurred.

Conversion of Δ^4 -cholestene-3:6-dione into cholestan-3-ol-6-one by partial reduction. H. Bretschneider (Ber., 1941, 74, [B], 1361—1363).—1 mol. of H_2 is rapidly and a second mol. more slowly absorbed by Δ^4 -cholestene-3:6-dione. After 2 mols. have been absorbed in presence of Raney Ni in EtOH, cholestan-3-ol-6-one is obtained; partial hydrogenation in presence of 20% Pd-C in AcOH gives cholestane-3:6-dione.

Oxidation of cholestenone by oxygen. Formation of progesterone. H. Bretschneider (Ber., 1941, 74, [B], 1360—1361).— O_2 is blown into cholestenone (4 pts.) and V_2O_5 (1 pt.) at 170° ; alkali-sol. products are removed. Shaking the Et₂O-solution of the residue repeatedly with conc. HCl removes substances, whence chromatography yields progesterone. R. S. C.

Diginin. III. Degradation of diginigenin to a hydrocarbon diginane. C. W. Shoppee (Helv. Chim. Acta, 1944, 27, 246—260; cf. A., 1943, II, 151).—Direct oxidation of diginigenin (I) gives mixtures of neutral and acid products from which individuals cannot be isolated. Treatment of (I) or its semicarbazone with N₂H₄, μ₂O-NaOEt in EtOH at 180° leads to a mixture (II) of substances from which deoxodiginigenin (III), C₂₁H₃₀O₃, m.p. 163—164° (hydrate, m.p. 86°), [a]_b¹⁵ -71·5° ±4° in COMe₂, is most readily isolated. The presence of a sec. OH in (III) is established by the isolation of an acetate, m.p. 61—62°, hydrolysed to (III), but the functions of the remaining, non-reactive O atoms are not elucidated. (III) does not reduce Ag₂O-NH₃ at 20° and gives negative Raudnitz-Puluj, Legal, and Zimmermann tests. Under energetic conditions it does not afford an oxime. (III) is readily hydrogenated (PtO₂ in AcOH) to dihydrodeoxodiginigenin (IV), m.p. 190—191°, [a]_b¹⁵ +7·9°±2° in COMe₂ (acetate, an oil), which does not give a yellow colour with C(NO₂)₄. N₂H₄ and alkali yield resinous products or unchanged material from (IV). CrO₂ smoothly oxidises (IV) to dihydrodeoxodiginigenin (V), m.p. 178—179°, [a]_b¹⁵ +21·5° ± 2·5° in COMe₂ (oxime, m.p. 159—160), reduced (Wolff-Kishner) to dihydrodeoxydeoxodiginigenin, m.p. 113—115°, becomes opaque at 60—70°, [a]₃³ +10°±3° in COMe₂, which retains only the two non-reactive O of (I) and does not give a cryst. product with Ac₂O at 200°. (V) is reduced (Clemmensen) and subsequently hydrogenated (PtO₂ in AcOH) to a liquid substance, C₂₁H₃₂(34)O, which does not give a yellow colour with C(NO₂)₄ and has not been further studied since isomerisations may have occurred in its production. Chromatographic purification of (II) leads also to Δ¹-dihydroxyketo-diginene (VI), C₂₁H₃₂O₃, m.p. 147°, [a]₁¹⁷ -24°±2° in COMe₂, which gives a non-cryst. diacetate, hydrolysed to (VI). CO does not appear present in (VI), which gives negative

Zimmermann tests. (VI) gives a marked yellow colour with C(NO₂)₄ and is readily hydrogenated to the saturated dihydroxyketodiginane (VII), m.p. 195—196°, [a]_b^T -20°±3° in COMe₂, which yields a non-cryst. diacetate, hydrolysed to (VII). CrO₃ oxidises (VII) to (impure) triketodiginane, which gives a 2:4-dinitrophenylhydrazone, m.p. (indef.) 120°, and a dioxime, softens 180—200° (decomp.), and probably contains the non-reactive :CO of (I). The residue left after (II) has been freed as completely as possible from (III) and (VI) gives after hydrogenation (PtO₂ in AcOH) dihydroxydiginane (VIII), plates which become opaque at ~105°, are converted without melting into needles at 140—142° and then have m.p. 153—154°, or, after sublimation, m.p. 155—156°, [a]_b² +25·4°±2° in CHCl₃; the non-cryst. diacetate is hydrolysed to (VIII). CrO₃ oxidises (VIII) smoothly to diketodiginane, m.p. 140—141°, [a]_b¹ +39·5°+2° in COMe₂ (bis-2:4-dinitrophenylhydrazone, m.p. 185°), reduced (Wolff-Kishner) to diginane, C₂₁H₃₆, m.p. 75—77°, [a]₃⁶ +24°±4°, [a]₃²61 +27·5°±4° in CHCl₃. M.p. are corr. (block); limit of error ~±2°.

Diginin and diginigenin. IV. C. W. Shoppee (Helv. Chim. Acta, 1944, 27, 426—435; cf. preceding abstract).—The experimental results do not justify the consideration of diginigenin (I) as a steroid

but they can all be brought into harmony with the structure (A) (R=H) for (I) and $(R=C_7H_{13}O_3)$ for diginin. Such a formulation expresses the possible biogenetic relationship with the steroid digitalis saponins and sapogenins. The observation that mild oxid-

ation of (I) and its monoacetate does not yield well-defined acids indicates that the CO group is present as ketone in the group CC·CO·CH₂·O·C·. The few substances described in the literature with this arrangement show, like (I), strong reducing action and positive reactions with 1:4-C₁₀H₈(OH)₂ and according to Legal and Zimmermann. The latter reactions are characteristic of activated CH₂ and are not shown by derivatives of (I) obtained by hydrogenation or reduction (Wolff-Kishner). The presence of CH₂·CO· in (I) is confirmed by the isolation of piperonylidene-diginigenin (monohydrate, m.p. 128—131°). Diginigenin monoacetate is hydrogenated (PtO₂ in AcOH at 17°) to tetrahydrodiginigenin monoacetate (II), prisms, m.p. 174°, or needles, m.p. 156°, slowly converted by Ac₂O in C₅H₄N into the diacetate, m.p. 120—121°, [a]_p +17°±2° in COMe₂. (II) is oxidised by CrO₃ in AcOH at 15° to the amorphous dihydrodiginigenin monoacetate (semicarbazone, m.p. 226°), which has strong reducing power and gives the three colour changes. Energetic acetylation converts it into a non-cryst., unsaturated compound, apparently an enol diacetate, since it is transformed by ozonisation followed by treatment with hot H₂O into a cryst. acid. C₂₃H₃₂O₇, m.p. 302—304°, the Me ester, m.p. 203—204°, of which does not react with 2:4-dinitrophenylhydrazine sulphate and reduces Ag₃O-NH₃ when heated but not appreciably at 20°. Hexahydrodiginigenin diacetate (III) is quantitatively hydrolysed to the parent compound, which is converted by short treatment with boiling Ac₂O into the monoacetate, m.p. 83°, and with Ac₂O and C₅H₅N at 100° into a non-cryst. diacetate possibly identical with (III). The reducing power and colour reactions of many derivatives of (I) are described. ω-Methoxy-acetophenone, b.p. 122°/15 mm., has been obtained from CH₂Ac·OMe and MgPhBr. M.p. are corr. (block); limits of error ±2°.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Factors determining the course and mechanism of Grignard reactions. XII.—See A., 1944, II, 215.

Triterpene resinols and related acids. XVI. Preliminary examination of a major oxidation product of the β -amyrin group. N. Mower, J. Green, and F. S. Spring $(J.C.S...1944,\,256-260)$.—Oxidation of either β -amyrenonyl acetate, $C_{32}H_{50}O_3$, or β -amyradienonyl acetate (II), $C_{32}H_{48}O_3$, with SeO2 gives an acetate (II), $C_{32}H_{46}O_5$ (" O_5 -acetate"), m.p. $252-253^\circ$, $[a]_2^{23}+35^\circ$ ($c=2\cdot 1$). Similar oxidation of corresponding benzoates gives the benzoate, $C_{32}H_{48}O_5$, m.p. $262-263^\circ$, $[a]_2^{6}+42^\circ$ ($c=2\cdot 0$). Oxidation (H_2CrO_4) of β -amyradienyl-II acetate yields (II) with some (I). Treatment of (II) with KOH affords, in high yield, a yellow amorphous product, acetylation of which does not regenerate (II) but a diacetate, $C_{52}H_{44}O_8$ (?), m.p. $249-251^\circ$, $[a]_2^{62}+149^\circ$ ($c=0\cdot 7$). Hydrolysis (MeOH-HCl) of (II) gives the parent alcohol, $C_{30}H_{44}O_4$, m.p. $280\cdot 5-281\cdot 5^\circ$, reacetylated to (II). It is shown that (II) does not contain either a OH or reactive CO and is resistant to catalytic hydrogenation. This new type of oxidation product is found to be characteristic of the β -amyrin group; SeO2 treatment of either Me ketoacetyloleanolate or H_2CrO_4 oxidation of Me acetyldehydro-oleanolate affords an acetate, $C_{33}H_{46}O_7$, m.p. $253-254^\circ$, $[a]_{10}^{10}+15\cdot9^\circ$ in C_5H_5N , (alcohol, $C_{21}H_{44}O_8$, m.p. $255-256^\circ$, $[a]_{10}^{10}-3\cdot55^\circ$ in C_5H_5N), which is an exact analogue of (II).

Hydration of camphene to isoborneol. L. M. Pesin, E. T. Beljanina, and V. A. Pavlovskaja (J. Appl. Chem. Russ., 1943, 16,

129—133).—Hydration of camphene (1 part), m.p. 42°, by "Kontakt" (petroleum sulphonic acids) (3 parts) at 50° (12 hr.) yielded up to 90% of crude cryst. ***soborneol*, m.p. 186°. The best results are obtained by freeing the "Kontakt" from mineral oil but not from $\rm H_2SO_4$. V. B.

Camphyl compounds.—See B., 1944, II, 198.

4-Camphorylthiosemicarbazide and 4-camphorylsemicarbazide. J. A. McRac and W. H. Stevens (Canad. J. Res., 1944, 22, B, 45—52).—Camphorylthiocarbimide (I) (from camphoryldithiocarbamic acid and BzCl-C₅H₅N, or HNO₂) with N₂H₄, H₂O in EtOH at 0° gives a little dicamphorylthiocarbamide, m.p. 176°, and (80%) yield) 4-camphorylthiosemicarbazide (II), m.p. 168° (corr.), [a]_D +17·34° in CHCl₃. (II) with dil. HCl or NaOH at room temp. yields the anhydride, m.p. 239°, [a]_D +281·5° in CHCl₃, which, by conversion into its Ag derivative and treatment with MeI, gives the monomethylanhydride, m.p. 107°, [a]_D -57·4°. (II) with BzCl in C₅H₅N yields the 1-benzoate, m.p. 225°, and with PhNCO N-anilinoformyl-N'-camphorylaminothioformylhydrazine, m.p. 139—143° (decomp.). (II) with the corresponding aldehyde in EtOH gives benzylidene-, m.p. 215—216°; [a]_D +68·6° in CHCl₃, p-, m.p. 234°, [a]_D +105·2° in CHCl₃, and m-nitrobenzylidene-, m.p. 140°, anisylidene-, m.p. 148—149°, [a]_D +83·8° in CHCl₃, and 3: 4-diethoxybenzylidene-, m.p. 111—113°, [a]_D +34·6° in CHCl₃, -camphorylthiosemicarbazone, but many aldehydes and ketones do not give cryst. products. The possible use of (II) as resolving agent for dl-carbonyl compounds is thus limited. (I) with ArNH·NH₂ in bot EtOH gives the corresponding -4-camphorylthiosemicarbazides: 1-o-, m.p. 171°, [a]_D +34·6° in CHCl₃, and 1-p-tolyl-, m.p. 226°, [a]_D +231·6° in CHCl₃, 1-m-nitrophenyl-, m.p. 204° (decomp.), [a]_D +31·3·4° in CHCl₃, 1-m-nitrophenyl-, m.p. 204° (decomp.), [a]_D +15·2° in EtOH, 1-(2': 4'-dinitrophenyl)-, m.p. 227° (decomp.), [a]_D +15·2° in EtOH, 1-(2': 4'-dinitrophenyl-, m.p. 226°, [a]_D -26·9° in CHCl₃. Camphorylthiosemicarbazide, m.p. 228°, [a]_D -26·9° in CHCl₃. Camphorylcarbimide with N₂H₄, H.O vields 4-camphorylsemicarbazide (III), m.p. 215°, [a]_D -26·3° in EtOH. With aq. HCl (III) gives the anhydride, sublimes 325°, [a]_D +115·4° in EtOH, and m-, m.p. 178°, and p-nitrobenzylidene-semicarbazones, m.p. 223°

VI.—HETEROCYCLIC.

Action of sodium cyanide on methyl γ-bromo-αα-dimethylaceto-acetate. C. F. Koelsch (J. Amer. Chem. Soc., 1944, 66, 306—307).—Contrary to Lawrence (J.C.S., 1899, 75, 417) and Conrad et al. (A., 1899, i, 258; 1900, i, 475), CH₂Br·CO·CMe₂·CO₂Me and NaCN give Me β-cyano-βγ-epoxy-αα-dimethyl-n-butyrate (not CN·CH₂·CO·CMe₂·CO₂Me), since hydrolysis yields 4-hydroxy-2-kelo-3: 3-dimethyltetrahydrofuran-4-carboxylic acid (I) (not the 5-carboxylic acid), m.p. 213—217° (Me ester, m.p. 104—105°), the structure of which is proved by synthesis. OAc·CH₂·CO·CMe₂·CO₂Me (stable when heated with K₂CO₃ or kept; cf. lit.) and boiling HCl-EtOH give 2: 4-diketo-3: 3-dimethyltetrahydrofuran (86%), b.p. 200—210°/740 mm., 103—107°/6 mm., which with aq. HCl-NaCN gives an oily cyanohydrin, hydrolysed to (I) by boiling 20% HCl.

Furfurylamines.—See B., 1944, II, 198.

5-Hydroxy- and -methoxy-flavylium salts. L. R. Row and T. R. Seshadri (Proc. Indian Acad. Sci., 1944, 19, A, 141—145).—Condensation of γ-resorcylaldehyde and its Me ether (improved preps.) in EtOAc-HCl with the appropriate substituted COPhMe gives 3:5:4'-trihydroxy-, m.p. >300°, 3:4'-dihydroxy-5-methoxy-, m.p. 258—260°, 3:5:3':4'-tetrahydroxy-, m.p. >300°, and 3:5:3':4':5'-pentahydroxy-flavylium chloride, m.p. >300°. These substances exhibit negligible fluorescence even in conc. H₂SO₄. The structural factors which affect fluorescence in flavylium salts are discussed; comparison is made with coumarins.

F. R. S.

Benzopyrylium salts. IV. Nitration of 2:3-diphenylbenzopyrylium perchlorate. R. L. Shriner and R. B. Moffett (J. Amer. Chem. Soc., 1944, 66, 301—302; cf. A., 1942, II, 109).—The position of NO₂ entering 2-phenylflavylium perchlorate (I) is governed by electronic considerations on the assumption that the salt has carbenium structure. In fuming HNO₃ at 0°, (I) gives crude 3-p-nitrophenylflavylium perchlorate (II) (53·5%), m.p. ~217° (decomp.), and thence the ferrichloride (III), m.p. 136—137°. Pure (II) (93·5%), m.p. 235—237° (decomp.), and thence (III), m.p. 137—138°, is obtained from p-NO₃·C₆H₄·CII₃·COCl. o-OH·C₈H₄·CHO (IV). HCl (gas), and 72% HClO₄ in AcOH. In H₂SO₄-HNO₃ at <0° and then 45°, (I) or (II) gives 3'nitro-3-p-nitrophenylpyrylium perchlorate (V) (>90%), m.p. 258—258·5° (decomp.), also obtained from (IV)-PNO₂·C₆H₄·CH₂·CO·C₆H₄·NO₂·m, HCl, and 72% HClO₄-AcOH. In boiling MeOH, (V) gives 2-methoxy-2-m-nitrophenyl-3-p-nitrophenyl-3-chromene, m.p. 178—179° (177·5—178·5°).

Santonin series. I. Two new despectances to the series and two new

Santonin series. I. Two new desmotroposantonins and two new desmotroposantonous acids. M. Huang, C. P. Lo, and L. J. 1. Chu (J. Chinese Chem. Soc., 1943, 10, 126—135).—Santonin (I) and

Ac₂O (+H₂SO₄) at 100° (bath) or at room temp. (2 weeks) give l_{α} -desmotroposantonin acetate, m.p. 156—157°, hydrolysed by boiling 10% aq. NaOH to $l_{-\alpha}$ -desmotroposantonin (II), m.p. 194—195°. $d_{-\beta}$ -Desmotroposantonin (III), m.p. 260—261°, $[a]_{2}^{21}$ +106-2° in EtOAc (acetate, m.p. 154—155°), is obtained from (I) or (II) and boiling aq. H₂SO₄, and $l_{-\beta}$ -desmotroposantonin (IV), m.p. 260—261°, $[a]_{2}^{21}$ —106-2° in EtOAc (acetate, m.p. 156—157°), is similarly formed from the $d_{-\alpha}$ -form, m.p. 196—196°. (IV) is probably identical with the l-desmotroposantonin, m.p. 253°, described by Clemo (A., 1934, 1225), and is converted by aq. KOH at 210° (oilbath) into (II). Equal amounts of (III) and (IV) in boiling EtOAc, on cooling, yield the $d_{-\beta}$ -compound (V), m.p. 231—232° (Ac₂O-NaOAc gives the acetate, m.p. 182—183°, also obtained from the $d_{-\beta}$ -l-l-a-cetates), converted by aq. KOH at 210° into dl-a-desmotroposantonin, m.p. 200—201°, which is formed also from the d-l-l-a-forms, and is reconvertible into (V) by boiling aq. H_{2} SO₄. (IV) and Zn dust in boiling aq. AcOH yield $d_{-\beta}$ -desmotroposantonous acid, m.p. 175—176°; the d-a-analogue has m.p. 177—178°. dl- β -Desmotroposantonous acid, m.p. 180—181°, is obtained from the d-l-l-l-forms or by reducing (V). The above nomenclature replaces the system of isodesmotropo- by d-a-desmotropo-, the l- by l-a-, and d- by d-a-; the lower-melting series is designated by a; desmotroposantonin is referred to as the d- β -form. The isolation of (IV) allows the transformation of any known active stereoisomeride of desmotroposantonin into others by acid or alkali treatment, as above.

Dioxan diphosphate. E. Baer (J. Amer. Chem. Soc., 1944, 66, 303).—Dioxan (I) (vapour or liquid) and $\rm H_3PO_4$ give (exothermally il liquids) dioxan 1: 4-diphosphate, sinters 78°, m.p. 83—87° (sealed tube), sol. in many org. solvents, dissociating in $\rm H_2O$, stable at mom temp. or, for a short time, at 150°, giving at 175° (I) and a little MeCHO, and with Na₂HPO₄ (2·2 mols.), $\rm K_3PO_4$, or Na₃PO₄ (l·1 mol.) at 120—130° yielding (I) quantitatively. R. S. C.

Aldol condensation. III. Aldol-aldehyde addition products and their derivatives. R. H. Saunders and M. J. Murray (J. Amer. Chem. Soc., 1944, 66, 206—208).—Aldolisation of CHRR'-CHO leads tol:3-dioxans (cf. A., 1944, II, 4), which with \$Ac_0-C_5H_5\$N at room temp. yield \$6-acetoxy-2:4-dimethyl-, b.p. \$5.5°/10 mm., -5-methyl-2:4-diethyl-, b.p. 100°/7 mm., -5-ethyl-2:4-di-n-propyl-, b.p. 114°/3 mm., and -5:5-dimethyl-2:4-disopropyl- (I), b.p. 93·5°/2 mm., -1:3-dioxan. \$d_3^2\$, [M]_{B'}^{**}, and Raman spectra are recorded for these products and for 6-hydroxy-2:4-dimethyl-, -5-ethyl-2:4-di-n-propyl-, and -5-methyl-2:4-diethyl-1:3-dioxan, b.p. 91·5°/7 mm. The strongest line (at 834 cm.-1) is due to the symmetrical breathing of the ring and a line at 1750 cm.-1 to the ester-CO of the OAc. Compounds containing a neopentyl group show a strong line between 750 and 800 cm.-1 Anhyd. 1% HCl-MeOH at room temp. converts (I) into 6-methoxy-5:0-dimethyl-2:4-disopropyl-1:3-dioxan, b.p. 110°/20 mm. Further aldolisation of OH-CHPr\$-CMe_2*CHO being impossible, dissociation into Pr\$CHO occurs, which then yields 6-hydroxy-5:5-dimethyl-2:4-diisopropyl-1:3-dioxan and 'paraldol' (the derived dimeric aldol), m.p. ~105—107°.

Alkyl exchange of carboxylic esters.—See A., 1944, II, 220.

Compounds of copper sulphate with pyridine. T. L. Chang and P. F. Hu (J. Chinese Chem. Soc., 1943, 10, 113—115).—CuSO₄,5H₂O m aq. C₅H₅N and hot C₅H₅N-95% EtOH, on cooling, give Cu^{II} sulphate tetrapyridine monohydrate (I), CuSO₄,4C₅H₅N,H₂O. The use of relatively more EtOH affords complexes, CuSO₄,3C₅H₅N,3H₂O [II) and CuSO₄,2C₅H₅N,2H₂O (III); excess of 95% EtOH converts [I) or (II) into (III), and all the complexes lose C₅H₅N in air.

A. T. P.

Pyridine acids.—See B., 1944, II, 198.

Condensation of 2- and 4-methylpyridine derivatives with cinnam-aldehyde. E. Spath, G. Kubiczek, and E. Dubensky (Ber., 1941, 74, [B], 873—879).—In absence of ZnCl₂ (cf. Proske, A., 1909, i, 413) this condensation at 150—160° sometimes gives partly the butenol as well as the butadiene. 2-Methylpyridine and CHPh:CH-CHO (II) give α-phenyl-δ-2-pyridyl-Δ^α-buten-γ-ol (II), m.p. 148°, and Δ^{αγ}-butadiene, m.p. 123—124° (picrate, m.p. 222°), hydrogenated (Pd-black; AcOH) to δ-phenyl-α-2-pyridyl-n-butan-β-ol, m.p. 36·5—37° (picrate, m.p. 107—109°), and -n-butane (picrate, m.p. 113—114°), respectively. 4-Methylpyridine and (I) give α-phenyl-δ-4-pyridyl-Δ^α-buten-β-ol, m.p. 115—116°, and only traces of α-phenyl-δ-4-pyridyl-Δα-buten-β-ol, m.p. 157·5—159° [the sole product (m.p. 161—162°) in presence of Ac₂O at 170°]; hydrogenation (Pd-black; MeOH) then gives δ-phenyl-α-4-pyridyl-n-butan-β-ol (picrate, m.p. 109—110°). 2: 6-Dimethylpyridine and (I) give α-phenyl-δ-6-methyl-2-pyridyl-Δα-buten-γ-ol (picrate, m.p. 162°) and -Δαγ-butadiene, m.p. 110—111° [picrate, m.p. 220° (decomp.)], hydrogenated to δ-phenyl-α-6-methyl-2-pyridyl-n-butan-β-ol (picrate, m.p. 117—118°) and α-phenyl-δ-6-methyl-2-pyridyl-n-butane (picrate, m.p. 87—88°); both condensation products are oxidised to BzOH and 6-methyl-yridine-2-carboxylic acid, m.p. 128—129°. 2-Methylquinol-me and (I) give only α-phenyl-δ-2-quinolylbutadiene, m.p. 119° [picrate, m.p. 244° (decomp.)], reduced as above to α-phenyl-δ-2-

quinolyl-n-butane, an oil (picrate, m.p. 123—124°). Pd-black at 150° converts (II) into a-phenyl- δ -2-pyridyl- Δ a-buten-y-one, m.p. 132—133° (picrate, m.p. 110—111°). R. S. C.

1-Arylaminopyridines. III. Influence of substituents [on the] constitution of anhydro-bases. W. Schneider and W. Riedel (Ber., 1941, 74, [B], 1252—1278).—Treating COArMe with H_2SO_4, H_2O_4 and Ac.O, first cold and then at $50-80^\circ$, gives 2: 4-diaryl-6-methyl-pyrylium salts, which with NHAr'·NH2 in hot C_6H_6 give 1-arylamino-2: 4-diaryl-6-methylpyridinium salts (A). Heating (A) with alcoholic alkali gives highly coloured anhydro-bases which change to brown to red 2: 4-diaryl-6-o-aminobenzylpyridines (B). The structure of (B) is shown by conversion of (B; aryl = Ph) into the o-NHBz-derivative, the o-NBz·NO-compound from which in boiling C_6H_6 gives an indazole derivative. The time taken for the anhydrobase to pass into (B) under standard conditions varies from 1:3 to 320 min., according to the substituents present in Ar and Ar'. It is assumed that the anhydro-bases exist as coloured (C) in equilibrium with (D) (by way of H-bridged ring intermediates) and that

only (D) isomerises to (B). The electronic nature of the substituents is shown to account semi-quantitatively for the variations in the time required for the change (D) → (B). The colour of the anhydro-base solutions accords approx. with the relative amounts of (C) believed to be present. The following are described. 2: 4-Di-p-., m.p. 228° (corresponding sulphoacetate, m.p. 195°), and -m-tolyl-, m.p. 209°, 2: 4-di-p-, m.p. 254° (decomp.), and -m-bromophenyl-, m.p. 182°, and 2: 4-di-p-, m.p. 225°, and -m-chlorophenyl-, m.p. 189°, -6-methylpyrylium iodide. 2: 4-Di-p-tolyl-6-cthylpyrylium sulphopropionate, m.p. 195° (decomp.), and iodide, m.p. 232-5°. l-Anilino-2: 4-di-p-anisyl-, m.p. 155°, -p-, m.p. 166°, and -m-tolyl-, m.p. 190-5°, -p-, m.p. 184-5°, and -m-bromophenyl-, m.p. 196-5°, -p-, m.p. 150-5°, and -m-chlorophenyl-, m.p. 181°, -6-methylpyridinium iodide. 1-p-Toluidino-2: 4-di-p-anisyl-, m.p. 134°, -p-, m.p. 172°, and -m-tolyl-, m.p. 154-5°, -p-bromophenyl-, m.p. 151°, -p-, m.p. 131°, and -m-chlorophenyl-, m.p. 153-5°, -6-m-ethylpyridinium iodide. 1-p-Bromoanilino-2: 4-di-p-anisyl-, m.p. 152°, -p-tolyl-, m.p. 192° (decomp.), and -p-bromophenyl-, m.p. 180°, -6-methylpyridinium iodide. 1-m-Toluidino-2: 4-di-p-anisyl-, m.p. 180°, -6-methylpyridinium iodide. 1-m-Toluidino-2: 4-di-p-anisyl-, m.p. 180°, -6-methylpyridinium iodide. 1-m-Toluidino-2: 4-di-p-tolyl-, m.p. 181°, -p-, m.p. 164°, and -m-tolrophenyl-, m.p. 137°, -p-, m.p. 126°, and -m-tolyl-, m.p. 131°, -p-, anisyl-, m.p. 137°, -p-, m.p. 126°, and -m-tolyl-, m.p. 131°, -p-, anisyl-, m.p. 134°, -p-, m.p. 166°, and -m-chlorophenyl-, m.p. 150°, and -p-chlorophenyl-, m.p. 165°, -6-2'-amino-4'-methylbenzylmethylpyridine. 2: 4-Di-p-anisyl-, m.p. 166°, -6-2'-amino-4'-methylbenzylmethylpyridine. 2: 4-Di-p-anisyl-, m.p. 166°, -6-2'-amino-4'-methylbenzylmethylpyridine. 2: 4-Di-p-anisyl-, m.p. 160°. 1-Anilino-1-p-toluidino-, m.p. 145°, and 1-p-bromoanilino-2: 4-diphenyl-6-ethylpyridinium iodide with alkali give blue anhydro-bases which very rapidly yield (?) 2: 4-

New case of opening of the isatin ring. G. Jacini (Gazzetta, 1942, 72, 510—514).—Isatin-3-imide with aq. NH₃-H₂O₂ gives o-carboxyl-amidophenylcarbamide (I) (picrate, m.p. 340°), which when heated decomposes to give 2:4-dihydroxyquinazoline (II). (I) is also obtained from o-NH₂·C₆H₄·CO·NH₂ (III) and KCNO in AcOH, or from (II) and EtOH-NH₃ at 100°. Isatin and aq. NH₃-H₂O₂ give o-NH₂·C₆H₄·CO₂H. Biuret and (III) at \$145° give dianthranyl-biuret, m.p. 315°, easily hydrolysed to (II).

E. W. W.

Carbon-alkylation with quaternary ammonium salts. Synthesis of compounds containing the β-indolemethylene group. H. R. Snyder, C. W. Smith, and J. M. Stewart (J. Amer. Chem. Soc., 1944, 66, 200—204).—CH₂Ar·NR₃Hal reacts with CHXNa·CO₂R (X = CN, Ac, or CO₂Et) to give CH₃Ar·CHX·CO₂R, the yield depending largely on the conditions. CH₂Ar·NR₂ does not react unless X = CO₂Et, in which case the yield is poor. CH₂Ph·NPhMe₂Cl (I) with CHNaA·CO₂Et (II) in boiling EtOH gives 60% of CH₂Ph·CHA·C·CO₂Et (2:4-dinitrophenylhydrazone, m.p. 71·5°), and with CHNa(CO₂Et)₂ (III) thus gives 37·6% of CH₂Ph·CH(CO₂Et)₂ (IV). With (III) in EtOH, 32, 36, 22, 36, 20, and 26% of (IV) are obtained from (I) at 115° or 130°, benzylmethylpiperidinium iodide (V) at 120° or 135°, or benzylmethylpiperidinium chloride at 135° or 130°, respectively, with notable amounts of (CH₂Ph)₂C(CO₂Et)₂ (identified by hydrolysis and decarboxylation), but NPhMe₂ does not react at 130°. CH₂Ph·NPhMe₂·OEt and (III) at 150° and then 110° give 51·3% of (IV). In absence of solvent at 110° and then 140° (III) and (I) give 79%, (V) and (III) in Bu₂O give 77% of (IV). 3-Dimethylaminomethylindole (VI) (prep. improved), m.p. 127—128°, and MeI-EtOH at room temp. and then 0° give the methiodide (VII),

which with (III) in Bu₂O at 110° and then 145° gives 85% of Et a-carbethoxy-β-3-indolylpropionate (85%), m.p. 62°, whence boiling 30% aq. NaOH yields the dicarboxylic acid (VIII), m.p. 178° (decomp.) (diamide, m.p. 206°), decarboxylated at 180—190° to β-3-indolylpropionic acid (IX), m.p. 132—133°. CN·CHNa·CO₂Et and (VII) give similarly an oil (87%) and thence by hydrolysis (IX). K₂Ag(CN)₃ and (VII) in boiling H₂O give an oil, hydrolysed by boiling 20% aq. KOH to 3-indolylacetic acid (46%; 11·4% by KCN), m.p. 164·5—165·5°. (III) and (VI) at 120—150° give, after hydrolysis, 41% of (VIII).

Pyridines and quinolines.—See B., 1944, II, 130.

Doebner reaction. IV. R. Ciusa (Gazzetta, 1942, 72, 567—570).— p-NH₂·C₆H₄·SO₂·NH₃ with AcCO₂H and PhCHO in EtOH gives 4-p"-sulphamylanilo-5-keto-2-phenyl-1-p'-sulphamylphenylpyrrolidine, m.p. $260-263^{\circ}$, and a solution which with Na₂CO₃ gives 6-sulphamyl-2-phenylquinoline-3-carboxylic acid [Na salt (+2H₂O)]. Using p-NH₂·C₃H₄·SO₂·NH·C₅H₄N, the product is a cinchonic acid, C₂₂H₁₈O₄N₃S, m.p. 157° . E. W. W.

Action of sulphur on heterocyclic compounds: carbazole thiocompounds. (Signa.) L. Raffa (Gazzetta, 1942, 72, 557-563). compounds. (Signa.) L. Raffa (Gazzetta, 1942, 72, 557—563).— Carbazole (I) and S at ~240° give a product from which CS₂ extracts dicarbazyl disulphide, m.p. 218—221° (Bz₂ derivative, m.p. 160—170°); the CS₂-insol portion yields on extraction with COMe₂ dicarbazyl trisulphide [Bz₂ derivative, m.p. 205—210° (decomp.)]; the residue contains a product, C₂₄H₁₄N₂S₅ (Bz₂ derivative, m.p. 218—222°), converted by hot 0·5N-NaOH into a product, C₂₄H₁₄N₂S₄. The product from (I), Mg, and EtBr does not react with S.

E. W. W. Cyclisation in the benzquinoline series. W. S. Johnson and F. J. Mathews (J. Amer. Chem. Soc., 1944, 66, 210—215).—δ-2-Naphthylimino-n-pentan-β-one (prep. from β-C₁₀H₁₇·NH₂, CH₂Ac₂, and CaSO₄ at 100°), m.p. 98·5—99°, in conc. H₂SO₄ at 100° gives 2: 4-dimethyl-6: 7-benzquinoline-x-sulphonic acid (I) (91%) and 2: 4-dimethyl-5: 6-benzquinoline (II) (4%), m.p. 128·5—120° (Reed, A., 1887, 681), in conc. H₂SO₄ at 60° gives 2: 4-dimethyl-6: 7-benzquinoline (III) (83%), dimorphic, m.p. 93—93·8° and 74·5—75·5° (Coombes, A., 1888, 968, m.p. 66—67°), and 2% of (I), and in HF at room temp. gives only (90%) (II). (II) is obtained in 70% yield by hydrolysis of (I) by 10% (vol.) H₂SO₄ at 220°. Structures are proved by the following reactions. With aq. K₂Cr₂O₇ in boiling AcOH, (II) gives 5: 6-phthaloyl-2: 4-dimethylquinoline (IV) (48%), m.p. 215—216°, photosensitive, which in Na₂S₂O₄ gives a deep ACOH, (11) gives o: 6-phinaloyl-2: 4-aimenyiquinoline (IV) (48%), m.p. 215—216°, photosensitive, which in Na₁S₂O₄ gives a deep purple vat, with Zn dust, Ac₂O, and H₂SO₄ gives the quinol diacetate (37%), m.p. 198—199°, and is very readily converted by KMnO₄ in 20% (vol.) H₂SO₄ into o-C₆H₄(CO₂H)₂. 1:2-C₁₀H₆Me·NH₂ (improved prep.), m.p. 49—50°, gives similarly δ-1-methyl-2-naphthyl-imino-n-pentan-β-one, m.p. 93—94·8°, which in HF gives 2:4:8-trimethyl-6:7-benzquinoline (V), m.p. 126·2—127°, oxidised as above trimethyl-6: 7-benzquinoline (\mathbf{V}), m.p. 126·2—127°, oxidised as above to (\mathbf{IV}). (II) and (\mathbf{V}) are readily sulphonated [the SO₃H derivative of (\mathbf{V}) is described], give yellow hydrochlorides, m.p. 324—325° (decomp.; uncorr.) and 295—296° (decomp.; uncorr.), respectively, and picrates, m.p. ~271—273° (decomp.; bath preheated at 250°) after darkening and 253—255° (decomp.; bath preheated at 240°) after darkening, respectively, and in C_8H_8 at room temp. or the b.p., respectively, give 5: 8-maleic anhydride adducts, m.p. ~110—130° (decomp.) (impure) and 203·5—204·5°, respectively. 5: 6-Benzquinoline (\mathbf{VI}) and (\mathbf{III}) give colourless anhydrides, are less readily sulphonated, and give tars with (:CH-CO)₂O. The reactivity of (\mathbf{IV}) towards KMnO₄ is paralleled by that of 6: 7-phthaloyl-quinoline. Structures are supported by absorption spectra (dequinoline. Structures are supported by absorption spectra (detailed), there being close resemblance between those of (a) (III), (V), and anthracene, and (b) (II), (VI), and 2:4-dimethyl-7:8-benzquinoline (prep. in 80—90% yield from the anil by H₂SO₄) (cf. also phenanthrene). Unless otherwise stated, m.p. are corr. R. S. C.

Thiobarbituric acids.—See B., 1944, III, 119.

Preparation of N-mono- and unsymmetrically di-substituted piperazines. R. Baltzly, J. S. Buck, E. Lorz, and W. Schon (J. Amer. Chem. Soc., 1944, 66, 263—266).—Monosubstituted piperazine derivatives are obtained in good yield by the appropriate reagent (unless otherwise stated, 1 mol. in 50—100% MeOH or EtOH). CH₂ArCl gives 1-benzyl- (I), b.p. 127—130°/2 mm. (dihydrochloride, m.p. 253°), 1-p-anisylmethyl-, b.p. 150°/2·5 mm. [dihydrochloride, m.p. 263° (decomp.)], and 1-p-chlorobenzyl-piperazine, b.p. 140—142°/2·5 mm. [dihydrochloride, m.p. 296° (decomp.)]. Ph·[CH₃]₂·Br or n-C₁₂H₂₅Br (0·7 mol.) gives 1-β-phenylethyl-, b.p. 150—152°/8 mm. (dihydrochloride, m.p. 252°), or 1-n-dodecyl-piperazine, b.p. 140°/0·25 mm. (dihydrochloride, decomp.) (CH₃)₂O (0·5—0·66 (athydrochloride, in.p. 252), or 1-n-dodecy1-piperazine, 5.p. 140°-60°-25 mm. (dihydrochloride, decomp. >220°). (CH₂)₂O (0·5—0·66 mol.) gives 1-\(\beta\)-hydroxyethylpiperazine, b.p. 122—123°/10 mm. (dihydrochloride, m.p. 189°5°). ClCO₂Et in 95% EtOH at \$50° (cooling) gives 1-carbethoxy- (hydrochloride, m.p. 145°) and 1:4-dicarbethoxy-piperazine, m.p. 49°. Ac₂O in AcOH at 48—54° gives 1-acetylpiperazine (hydrochloride, m.p. 183°). These products wield by further reaction: 1 hereof the decomposition of the products and the further reaction in the second of the products and the further reaction in the second of the products and the further reaction in the second of the products and the further reaction in the second of the products are second of the products and the products are second of the products are second o yield, by further reaction: 1-benzoyl-4-phenyl-1, m.p. 245°, -4-p-phenylethyl-, m.p. 246°, -4-p-chlorobenzyl-, m.p. 265°, and -4-p-anisylmethyl-, m.p. 234°, 1-phenylacetyl-4-p-anisylmethyl-, m.p. 225°, and -p-chlorobenzyl-, m.p. 241°, -piperazine hydrochloride; 1-benzyl-

4-methyl- (II), m.p. 250° (decomp.), -4-ethyl- (III), m.p. 250° (decomp.), -4-n-dodecyl-, decomp. >250° [dimethiodide, m.p. 225° (decomp.), of the derived base], -4-β-hydroxyethyl-, m.p. 225°, -4-3': 4'-dimethoxyphenacyl-, decomp. 250—270°, and -4-3': 4'-dihydroxyphenacyl-, decomp. 250°, 1-p-chlorobenzyl-4-3': 4'-dihydroxyphenacyl-, decomp. >200°, and 1-p-ansyl-4-3': 4'-dihydroxyphenacyl-, (V), m.p. 230—231°, -piperazine dihydrochloride; 1: 4-di-n-dodecylpiperazine dihydrochloride; 1-β-benzoyloxyethyl-piperazine dihydrochloride, m.p. 208—210°, and -4-ethylpiperazine dihydrochloride, m.p. 245° (decomp.); 1-benzyl-4-β-benzoyloxy-, m.p. 245°, -4-β-p-acetamidobenzoyloxy-, m.p. 229° (decomp.), -4-β-p-chlorobenzoyloxy-, m.p. 242°, -4-β-p-nitrobenzoyloxy-229° (decomp.), -4-\(\beta\)-chlorobenzoyloxy-, m.p. 242°, -4-\(\beta\)-p-nitrobenzoyloxy-, m.p. 236—237°, -ethylpiperazine dihydrochloride; 1-benzyl-4-\(\beta\)-p-nitrobenzoyloxy-, m.p. 236—237°, -ethylpiperazine dihydrochloride; aminobenzoyloxyethylpiperazine trihydrochloride, m.p. 258—260° (decomp.); (by means of PhNCO) 4-p-chlorobenzylpiperazine-1-carboxylanilide hydrochloride, m.p. 258° (decomp.); (by means of NH₂·CO·NH·NO₂) 4-p-chlorobenzyl-, m.p. 265°, 4-benzyl-, m.p. 238·5—239°, 4-β-hydroxyethyl-, m.p. 177°, and 4-β-benzyloxyethyl-, m.p. 205° (decomp.), -piperazine-1-carboxylamide hydrochloride. SMe·C(NH₂):NH,HX and (I) in 65% EtOH give 1-guanyl-4-benzyl-piperazine sulphate, m.p. 200° (decomp.), and (in EtOH, followed by MeI-MeOH) 4-methiodide hydroidide, m.p. 219—220° (decomp.). BrCN (1 mol.) and (I) (2 mols.) in Et₂O and then alone at 150—160° give 4:4'-dibenzyl-1:1'-dipiperazinylcarbimide hydrobromide, m.p. 229°. Heating (Cl·[CH₂]₂)₂O and (I) gives 4-benzylmorpholine-4':1-spiropiperazinium 1-chloride 4-hydrochloride, m.p. >280°. Hydrogenation (Pd-C) of (II) and (III) gives 1-methyl-, +H₂O, m.p. 110°, and 1-ethyl-piperazine dihydrochloride, m.p. 203—205°, respectively, and (PtO₂) of (IV) and (V) gives 1-benzyl-, decomp. >210°, and 1-panisylmethyl-4-β-hydroxy-3': 4'-dihydroxyphenylethylpiperazine dihydrochloride, m.p. 175°.

Pinerazines.—See B. 1944, II, 147. aminobenzoyloxyethylpiperazine trihydrochloride, m.p. 258-260°

Piperazines.—See B., 1944, II, 147.

Pyrazole synthesis. VII. Reactivity of carbonyl groups in asymmetric β -diketones. R. Fusco [with (Signa.) R. Pizzotti] (Gazzetta, 1942, 72, 411—423).—Hexane- $\beta\delta$ -dione in NaOMe-MeOH-Et₂O with β -NO₂·C₆H₄·NH·N:CBr·CO₂Et gives the Et ester (I), m.p. 174° of p-NO₂C₄H₁NH.N.C.GrCO₂Et gives the Et ester (1), in.p. 114, of 4-propionyl-1-p-nitrophenyl-5-methylpyrazole-3-carboxylic acid (II), in.p. 230° (decomp.). With HNO₃ (d 1·41), (I) or (II) gives 1-p-nitrophenyl-5-methylpyrazole-3: 4-dicarboxylic acid (III) (A., 1939, II, 451). The expected isomeride of (I), Et 4-acetyl-1-p-nitrophenyl-5-ethylpyrazole-3-carboxylate, was not isolated; the mother-liquor in which it should be contained was, however, oxidised by HNO₃ to 1-p-nitrophenyl-5-ethylpyrazole-3: 4-dicarboxylic acid (IV), mp. 250° 1-p-nitrophenyl-5-ethylpyrazole-3: 4-dicarboxylic acid (IV), m.p. 250°. Heptane-ye-dione, treated as above, gives the Et ester (V), m.p. 124°. of 4-propionyl-1-p-nitrophenyl-5-ethylpyrazole-3-carboxylic acid (VI), m.p. 169° (decomp.); either (V) or (VI) with HNO3 gives (IV). Similarly heptane-βδ-dione gives Et 4-n-butyryl-1-p-nitrophenyl-5-methylpyrazole-3-carboxylate, m.p. 114°, oxidised to (III), with a product, containing Et 4-acetyl-1-p-nitrophenyl-5-propylpyrazole-3-carboxylate, oxidised to 1-p-nitrophenyl-5-propylpyrazole-3:4-di-carboxylic acid (VII), m.p. 228°. Similarly nonane-δζ-dione gives Et 4-butyryl-1-p-nitrophenyl-o-propylpyrazole-3-carboxylate, m.p. 94°, oxidised to (VII). Octane-yz-dione (prepared either from EtCO₂Et and COMePr or from PrCO₂Et and COMeEt) gives a mixture of Et 4-propionyl-1-b-nitrophenyl-5-propyl- and 4-butyryl-1-p-nitrophenyl-5-ethyl-pyrazole-3-carboxylate, oxidised to (IV) + (VII) Phenoxyacetylacetone similarly treated gives a mixture of the Ei ester, m.p. 144°, of 4-acetyl-1-p-nitrophenyl-5-phenoxymethylpyrazole-3-carboxylic acid (VIII), m.p. 147—148°, and Et 4-phenoxyacetyl-1-p-nitrophenyl-5-methylpyrazole-3-carboxylate (not isolated). With NaOBr, (VIII) gives 1-p-nitrophenyl-o-phenoxymethylpyrazole-3: 4 dicarboxylic acid, m.p. 233° (with decomp. to the 4-carboxylic acid, m.p. 193—194°). The results suggest that the reactivity of ketonic groups is in the order CO·CH₂·OPh > Ac > COEt > COPr. The reaction between CH₂Ac·CO·CO₂R and 2NH₂OH₄HCl, if carried out in alkaline media, followed by heating with conc. HCl, gives mainly 3-methyl:sooxazole-5-carboxylic acid (through the dioxime?); in acid media the product is mainly 5-methyl:sooxazole-3-carboxylic

Synthesis and hydrogenation of 1:8-naphthyridine homologues. E. Ochiai and K. Miyaki (Ber., 1941, 74, [B], 1115—1126).—Substitution of one ring of 1:8-naphthyridine by Me reduces the susceptibility of that ring to catalytic hydrogenation (cf. A., 1939, II, 452). 2: 6-Diaminopyridine, CH₂Ac₂, and ZnCl₂ at 120—130° give 7-amino-, m.p. 220° (Ac derivative, m.p. 300°), and thence (NaNO₁-40% H₂SO₄) 7-hydroxy- (I), m.p. 251°, and (POCl₃; 140°) 7-chloro: 2: 4-dimethyl-1: 8-naphthyridine (II), m.p. 146—147°. Boiling 20% NaOMe-MeOH converts (II) into 7-methoxy-2: 4-dimethyl-1: 8-naphthyridine (III), m.p. 148—148°. 20% NaOMe-MeOH converts (II) into 7-methoxy-2: 4-dimethyl-1: 8-naphthyridine, m.p. 65° (picrate, m.p. 188—189°). With H₁-Ni-kieselguhr in EtOH at 170—180°/110 atm., (I) yields 2: 4-dimethyl-3: 4-dihydro-1: 8-naphthyrid-2-one, m.p. 175—180°. With H₂-Pd-C in 10% MeOH-KOH, (II) yields, first, 2: 4-dimethyl- (III), m.p. 85—86° (hydrochloride, decomp. 240°; picrate, decomp. 204—206°; methiodide, +H₂O, m.p. 93—94°; platinichloride, decomp. 242—244°; aurichloride, decomp. 166—167°), and then 2: 4-dimethyl-5: 6: 7: 8-tetrahydro- (IV), m.p. 118° (picrate, m.p. 207°; Ac derivative, m.p. 42—43°), -1: 8-naphthyridine, but with H₂-PdO-CaCO₃ and a trace of Pd-C in 5% KOH-MeOH gives only

(III) and with H2-PtO2 in AcOH or H2-Raney Ni in cyclohexane-EtOH at 120—190°/70 atm. gives only (IV). (IV) is unaffected by H₁-PtO₂ in AcOH at 110 atm. but with Na-EtOH gives dl-2:4-dimethyldecahydro-1:8-naphthyridine, m.p. 92—93° (Ac₂ derivative,

dimethyldecahydro-1: 8-naphthyridine, m.p. $92-93^\circ$ (Ac_2 derivative, b.p. $135-145^\circ/0.02$ mm.). CH₂Cl·COMe and (IV) in a little EtOH give an adduct, C₁₈H₂₂O₂N₂Cl, m.p. $181-182^\circ$, converted by aq. Na₂CO₃ into (IV) and the indolizine (V), a resin (blue Ehrlich test). 2:7-Dichloro-4-methyll: 8-naphthyridine with H₂-PdO-CaCO₃ and a trace of Pd-Cin 10% KOH-MeOH gives 4-methyll: 8-naphthyridine (VI) (\sim 70%), b.p. $147-180^\circ$ (\sim 70%), b.p. \sim 70%), b.p. $147-180^\circ$ (\sim 70%), b.p.

 H_1 -PtO₂ in AcOH reduces (VI) to 4-methyl-5:6:7:8- (VII) (4 n_1 -rio₂ in Acom reduces (VI) to 4-methyl-5:6:7:8- (VII) (4 parts), m.p. 102—103° (picrate, decomp. 248°; Bz, m.p. 105—106°, and NO_2 -derivative, m.p. 217—218°; 2 nitrate, m.p. 124—125°) (cf. Seide, A., 1927, 62), and -1:2:3:4-tetrahydro-1:8-naphthyridine (VIII) (1 part), m.p. 62—63° (Bz derivative, m.p. 86—87°). (VII) is unaffected by H_2 -PtO₂ in AcOH at 65 atm., but with Na-C₅ H_{11} OH (not Na-EtOH) (VII) or (VIII) gives 4-methyldecahydro-1:8-naphthyridine m. 87° (bicrate decomp. 210°) idine, m.p. 87° (picrate, decomp. 210°).

Ketones, ketonic acids, and enol-lactones. III.—See A., 1944, II, 211.

Fission of indolacylpyridinium salts by alkalis. I. G. Sanna (Gazzetta, 1942, 72, 357—363; cf. Babcock et al., A., 1933, 74; Kröhnke, ibid., 591).—With PhCHO and 25% NaOH, 2'-indolacylpyridinium bromide in aq. EtOH gives indole-2-carboxylic acid and phenacylpyridinium bromide (I). 3-Methyl-2-indolacyl bromide, m.p. 210° (Ag salt) (obtained from CH₂Br·COBr and the MgBr derivative dindole), with C₅H₅N gives 3'-methyl-2'-indolacylpyridinium bromide, m.p. 245°, which with NaOH and PhCHO gives 3-methylindole-2-carboxylic acid and (I). 2'-Pyrrolacylpyridinium bromide, m.p. 215°, similarly gives pyrrole-2-carboxylic acid and (I). E. W. W.

Indole a-ketoaldonitrones. I. Preparation of ketoaldehydes of the pyrrole and indole series. G. Sanna (Gazzetta, 1942, 72, 363— 310):—Indolacylpyridinium bromide (I) with PhNO in EtOH at -5° and N-NaOH gives 2-aniloacetylindole N'-oxide (I), m.p. 215°, converted by 10% NaOH into 2-indolylglyoxylic acid. With 0-lnconverted by 10% NaOH into 2-indolylglyoxylic acid. With 0-1N-H₂SO₄, (II) gives 2-phenylhydroxylaminoglycollylindole, m.p. 93°, reconverted into (II) by keeping over P₂O₅. With NHPh·NH₂ in EtOH, (II) gives a mixture, m.p. 223°, of the a- and 3-phenyl-bydrazones of indolylglyoxal (III). With NH₂Ph in EtOH, (II) gives the bisaniline derivative, m.p. 132°, of (III). With p-No·C₆H₄·NMe₂ (IV), (I) gives 2-p-dimethylaminoaniloacetylindole N'-oxide, m.p. 228°, which with 25% H₂SO₄ (V) gives the hydrate of (III). 2'-Methyl-3'-indolacylpyridinium bromide and (IV) [PhNO?] give 3-aniloacetyl-2-methylindole N'-oxide, m.p. 140°, which with (V) gives 3-phenylhydroxylaminoglycollyl-2-methylindole, which gives a gives 3-phenylhydroxylaminoglycollyl-2-methylindole, which gives a mixture, m.p. 115°, of methylindolylglyoxalphenylhydrazones (additive product, m.p. 138°, with H₂SO₄), and a bisaniline derivative. 3'-Methyl-2'-indolacylpyridinium bromide and (IV) [PhNO?] give aniloacetyl-3-methylindole N'-oxide, m.p. 238°, which readily decomposes to 3-methylindole-2-carboxylic acid, and with (V) gives ²phenylhydroxylaminoglycollyl-3-methylindole, m.p. 137°.

Synthesis of optical sensitisers. isoCyanines substituted in position III. V. A. Alexeeva (J. Appl. Chem. Russ., 1943, 16, 95—104; d. B., 1938, 141).—11 dyes of the general formula 1:1'-dimethyl-4X-isocyanine iodide were prepared. Groups at X and respective p. are: Me (α), 233°; Me (γ), 255°; Et, 258° (decomp.); Ph, 246°; OH, 230°; OMe, 323° (decomp.); OEt, 233° (decomp.); HPh, 281° (decomp.); Cl, 268° (decomp.) [6-Me derivative, 234° (decomp.)]; I, 273—274° (decomp.). Comparison of the methods of prep. described by Kaufmann (A., 1912, i, 503) and Hamer [C.S. 1921, 110, 1440) showed that the method of the former. V.C.S., 1921, 119, 1440) showed that the method of the former save better yields. However, the OH-compound is obtainable only by Hamer's method and the OMe-compound only by Kaufmann's. Efforts to introduce the NH₂, NHMe, and NHPh·NH groups in Sosition 4 were unsuccessful. position 4 were unsuccessful.

Triazines.—See B., 1944, II, 158, 198.

Chemistry of nucleotides. J. M. Gulland (J.C.S., 1944, 208—17).—Tilden lecture, surveying progress over the past five years. Over 100 literature references are given.

isoOxazole group. XI. Nitrodimethylisooxazole. A. Quilico and C. Musante (Gazzetta, 1942, 72, 399—411).—4-Nitro-3:5-dimethylisooxazole (I) in dil. aq. NaOH with RN₂Cl gives, with ring-opening and -closing, 5-benzeneazo-2-phenyl- (II), m.p. 135—136°, and 5-plotteneazo-2-p-tolyl-, m.p. 165—166°, -4-methyl-2:1:3-triazole 3-oxide. In aq. SnCl₂-HCl, (II) gives 5-amino-2-phenyl-4-methyl-2:1:3-trazole, new m.p. 92—93° (Ac derivative, m.p. 148—149°; Bz. denvative, m.p. 144—145°; CHPh derivative, m.p. 119—120°; ONHPh derivative, m.p. 240°). With PhCHO in EtOH, followed by NHEt₂, (I) gives 4-mitro-5-styryl-3-methylisooxazole (III), m.p. (dibromide, m.p. 167—168°), which on keeping, especially in

sunlight, gives a dimeride, m.p. $201-202^{\circ}$. Similarly 4-nitro-5-p-methoxy-, m.p. $163-164^{\circ}$, -5-(3': 4'-methylenedioxy)-, m.p. $208-209^{\circ}$, -5-m-, m.p. $230-231^{\circ}$, and -p-nitro-, m.p. $\sim 220^{\circ}$, and -5-dimethyl-amino-styryl-, m.p. $193-194^{\circ}$, and -5-cinnamylidenemethyl-3-methylisooxazole, m.p. $\sim 204-205^{\circ}$, are obtained from the corresponding aldehydes. With $SnCl_2-HCl-EtOH$, (III) gives 4-amino-5-styryl-3-methylisooxazole (IV), m.p. 122° [Bz derivative (V), m.p. 176° ; Ac_2 derivative, m.p. $111-112^{\circ}$; -azo- β -naphthol, m.p. $185-186^{\circ}$]. KMnO₄-COMe₂ oxidises (V) to 4-benzamido-3-methylisooxazole-5-carboxylic acid, m.p. $176-177^{\circ}$ (Me ester, m.p. $125-127^{\circ}$), which with conc. HCl gives the hydrochloride of 4-amino-3-methylisooxazole oxylic acid, m.p. 176—177° (Me ester, m.p. 125—127°), which with conc. HCl gives the hydrochloride of 4-amino-3-methylisooxazole (cf. A., 1943, II, 74). The hydrochloride of (IV) with ice and aq. NaNO₂, followed by HCl, gives, after heating, 4-chloro-5-styryl-3-methylisooxazole (VI), m.p. 75° (dibromide, m.p. 135°), with PhCHO and a yellow product (CHPh:CH·CO·CHCl·COMe?), decomposed by NaOH to CHPh:CH·CO₂H. K₂Cr₂O₇-H₂SO₄ oxidises (VI) to 4-chloro-3-methylisooxazole-b-carboxylic acid, m.p. 158—159° (Ag salt). E. W.

Behaviour of 4-nitro-derivatives of isooxazole. Transformation into pyrazole derivatives. C. Musante (Gazzetta, 1942, 72, 537—140) -4-Nitro-3: 5-dimethylisooxazole with NHPh·NH2 (I) in EtOH 548).—4-Nitro-3: 5-dimethylisooxazole with NHPh'NH₂ (I) in EtOH at the b.p. gives 4-nitro-1-phenyl-3: 5-dimethyl- (II) and with N₂H₄ gives 4-nitro-3: 5-dimethylpyrazole. (II) is reduced by SnCl₂-HCl to 4-amino-1-phenyl-3: 5-dimethylpyrazole, m.p. (anhyd.) 38—40°, (+H₂O) 68° [Ac, m.p. 130—131°, and m-NO₂·C₈H₄·CH'. derivative, m.p. 125—126°; -4-azo-β-naphthol, m.p. 188—189°; -4-azoacetylacetone, m.p. 118—119° (decomp.)]. 4-Nitro-5-methylisooxazole (III) and (I) in EtOH give 4-nitro-5-amino-1-phenyl-3-methylpyrazole, which with SnCl₂-HCl, followed by NaOH and PhCHO. gives 4: 5-bis/benzylideneamino-1-phenyl-3-methylbyr-1-phenyl-3-methylpyrazole. PhCHO, gives 4:5-bis(benzylideneamino)-1-phenyl-3-methylpyrazole (?), m.p. 161°, and when heated with 20% NaOH and acidified gives 4-nitro-1-phenyl-3-methylpyrazole. Fone (?). With N₂H₄, (III) gives 4-nitro-5-amino-3-methylpyrazole, m.p. 228° (Ac derivative, m.p. 180°; -5-azo-β-naphthol, darkens from 250°). 5-Methyliso-oxazole does not react with (III) or N₂H₄ under the above conditions but with (III) at the half of 15 hr gives come 5 or incompared to the conditions. ditions, but with (III) at the b.p. for 15 hr. gives some 5-amino-1-phenyl-3-methylpyrazole. 4-Nitro-3-phenyl- and -3-methyl-isor-phenyl-3-methylpyrazole. 4-Mitro-3-phenyl-3-methyl:sooxazole with H₂SO₄-HNO₃ (d 1·40) gives 5-p-nitrophenyl-, m.p. 180° (oxidised to p-NO₂·C₅H₄·CO₂H), reduced to 5-p-aminophenyl-3-methylisooxazole, m.p. 151—152° (hydrochloride, m.p. 250°; Ac, m.p. 241°, Bz, m.p. 235°, and CHPh., m.p. 155°, derivatives; -azo-β-naphthol, m.p. 194°; -azoacetylacetone, m.p. 196—197°). E. W. W.

Heterocyclic syntheses. V. L. Panizzi (Gazzetta, 1943, 73, 99-105).—3-Phenyl-5-dichloromethylssooxazole with NaOEt-EtOH at 140—160° gives 3-phenylisooxazole-5-aldehyde (I), m.p. 75—76° [oxime, m.p. 165—166°; phenylisooxazole-5-aldehyde (I), m.p. 75—76° [oxime, m.p. 165—166°; phenylhydrazone, m.p. 153—154°; p-nitrophenylhydrazone, m.p. 233—234° (decomp.); anil, m.p. 133—134°], oxidised by K₁Cr₂O₃-H₂SO₄ to the -5-carboxylic acid, m.p. 179—180°, also obtained with 3-phenylisooxazolyl-5-carbinol (Bz derivative, m.p. 74—75°) from (I) and hot 20% NaOH. With benzenesulphonhydroxamic acid and NaOH-EtOH, (I) gives 3-phenylisooxazolyl-5-carboxylhydroxamic acid, m.p. 170° (decomp.); with CH₂N₂ in Et₂O, 5-acetyl-3-phenylisooxazole, m.p. 103—104° [p-nitrophenyl-hydrazone, m.p. 228—229° (decomp.)]; with MeNO₂ and MeOH-NaOMe, a-nitro-β-3-phenyl-5-isooxazolylethylene, m.p. 87—88°. a-nitro-β-3-phenyl-5-isooxazolylethylene, m.p. NaOMe. CH(OEt)₂·CO₂Et and COMe₂, with Na in Et₂O, give aa-diethoxy-acetylacetone, b.p. 90—91°/4 mm. (Cu salt, m.p. 124—125°), which with NH₂OH gives 3-methylisooxazole-5-aldehyde. E. W. W. with NH2OH gives 3-methylisooxazole-5-aldehyde.

Morpholinomethyl derivatives of carbamide and substituted carbamides. W. I. Weaver, J. K. Simons, and W. E. Baldwin (J. Amer. Chem. Soc., 1944, 66, 222—225).—OBz·[CH₂]₂·NH₂, HCl and CO(NH₂)₂ (I) at 130—140° give β -benzoyloxyethylcarbamide (36%), m.p. 122—124°. Morpholinomethyl alcohol (II) (1) and (I) (1 mol.) at 80—90° give 92%, morpholinomethyl alcohol (II) (1) and (1) (1 mol.) at 80—90° give 92%, morpholine (III), (I), and paraformaldehyde (IV) (equiv. amounts) in boiling dioxan give 84%, and methylenebismorpholine and (I) in boiling dioxan give 33%, of morpholinomethylcarbamide (V), m.p. 162—163°. s-Di(morpholinomethyl)carbamide (VI), m.p. 163—164°, is obtained from (I) by 2 mols. of boiling (II) (95%), and from (I) (1 mol.), (III) (2), and (IV) (2 mols.) in boiling dioxan (90% yield). Prep. of (VI) (60% yield) from CO(CH₂·OH)₂ by (III) (excess) in boiling H₂O and failure of NHR·CO·NHR' to condense with (II) proves the symmetrical nature of (VI) and the products named proves the symmetrical nature of (VI) and the products named below. Hot 10% NaOH hydrolyses (V) or (VI) to (III); Zn-HCl reduces (V) or (VI) to 1-methylmorpholine, which is also obtained with (I) from (V) by H_2 -PtO₂ in EtOH. Ac₂O and (V) at 100° give acetylmorpholine (VII) and a substance, ? [•CH₂·N•CO·N•CH₂·]_x, m.p. 235—236°. In AcOH, (V) and (VI) give picrates, m.p. 162—163·3° and 163—164°, respectively, but in EtOH or H₂O give 163:3° and 163—164°, respectively, but in EtOH or H_2O give picrates which gradually decompose to regenerate (∇) and (∇ I) when recrystallised. (∇) yields, usually in H_2O , N-morpholino-methyl-N'-methyl-, m.p. 124·4—125·4°, -ethyl-, m.p. 109·6—110·8°, -n-, m.p. 89·2—90°, and -iso-propyl-, m.p. 126·8—128°, -allyl-, m.p. 104—105°, -n-, m.p. 109—109·6°, -iso-, m.p. 112—112·6°, -sec.-, m.p. I11—112°, and -tert.-butyl-, m.p. 137·8—138·8°, -sec.-, m.p. 107—108·4°, and -tert.-amyl-, m.p. 107·4—109°, -eyclohexyl-, m.p. 138—139°, - β -hydroxyethyl-, m.p. 118—119·8°, and - β -benzoyloxy-

methyl-, m.p. 125·4—127·6°, -carbamide, N-phenyl-, m.p. 149·4—149·8° (picrate, m.p. 156—158°), N-benzyl-, m.p. 149·3—149·8°, and N-acetyl- (VIII), m.p. 161—161·8° (picrate, m.p. 195°), -N'-morpholinomethylicarbamide, Good yields of morpholinomethylicarbamide, m.p. 1414—142°, succin-, m.p. 109·6—110·4° (picrate, m.p. 188—189°), and phthal-morpholinomethylimide, m.p. 117·8—118·8° (picrate, m.p. 205°), benzene-, m.p. 81·6—82·6°, and p-toluene-sulphomnorphol-inomethylamide, m.p. 109·6—111·2°, are obtained. (RCO)₂O and (VIII) at 100° give N-acetyl-N'-acetoxy-, m.p. 144·6—145·2° [and (VII)], and -N'-butyroxy-methylcarbamide, m.p. 116·8—117°. 1-Carbamylmorpholine, m.p. 131.6-133°, is also prepared. R. S. C.

Condensation of xanthhydrol with hydroxyquinolines. (Signa.) L. Monti and M. Delitala (Gazzetta, 1942, 72, 520—524).—4-Hydroxy-2-methylquinoline in AcOH with xanthhydrol (I) in EtOH gives 4-hydroxy-3-xanthyl-2-methylquinoline, m.p. 300-305° (decomp.). 4-Hydroxy-3-xanthyl-2: 8-dimethyl-, decomp. from 290—292°, 4-hydroxy-6-methoxy-3-xanthyl-2-methyl-, decomp. from 295—300°, **Nydroxy-6-methody-5-xthicky-2-methy-*, decomp. 190—190"), 3-hydroxy-4-xanthyl-, m.p. 240—242° (Ac derivative, m.p. 190—192°), 5-hydroxy-8-xanthyl-, decomp. 195—200°), 6-hydroxy-5-xanthyl-, m.p. 260—262° (Ac derivative, m.p. 214—215°), 8-hydroxy-5-xanthyl-, m.p. 193—195°, and 2: 7-dihydroxy-8-xanthyl-4-methyl-quinoline (Ac derivative, decomp. from 205—210°, m.p. 215—220°) are obtained similarly. 2-Hydroxy-4-methyl- and 2-hydroxy-6-methoxy-4similarly. 2-Hydroxy-4-methyland z-nydroxy-0-methyl-quinoline do not condense with (I), nor do alkyloxy- or acetoxy-quinolines. An improved prep. of 2:7-dihydroxy-4-methyl-quinoline from $m\text{-NH}_2\text{-}C_6H_4\text{-}OH$ and $\text{CH}_2\text{Ac-}\text{-}CO_2\text{Et}$ ($C_5H_5\text{N}$) is E. W. W.

Thiazoles.—See B., 1944, II, 131.

Cyanines etc.—See B., 1944, II, 160.

3: 6-Epoxycyclohexene from furan and ethylene. W. Nudenberg and L. W. Butz (J. Amer. Chem. Soc., 1944, 66, 307—308).—Furan, C_2H_4 , and a trace of quinol at $150-155^\circ/1100-1200$ lb. (cf. A., 1942, II, 167) give 3: 6-epoxy- Δ^1 -cyclohexene (5-8%), b.p. $118-119^\circ$, which with PhN₂ gives 3: 6-epoxy-1'-phenyl-1': 2': 3'-triazol-inecyclohexene

inocyclohexane. m.p. 166—167° (corr.), -CH-CH -CH₂ and with H2-PtO2 in McOH and then Ac2O-ZnCl2 yields 1:4-diacetoxycyclohexane.

Condensation reactions of xanthhydrol [with heterocyclic compounds containing active NH groups]. (Signa.) L. Monti (Gazzetta, 1942, 72, 515—520).—Xanthhydrol (I) and 4-hydroxyquinazoline in AcOH give 3-xanthyl-4-quinazolone, m.p. 198—200°. 2-Hydroxybenziminazole with (I) in AcOH-EtOH gives 1-xanthyl-, m.p. 268—283—285°. 2-Thiolbenziminazole and (I) in AcOH-EtOH give 270°, or with excess of (I) gives 1: 3-dixanthyl-benziminazolone, m.p. (I:1) 1-xanthyl-, m.p. 252—254°, or (I:2) 1:3-dixanthyl-benziminazolthione, m.p. 260—262°. Rhodanine and (I) give 3-xanthylrhodanine, m.p. 190-192°.

Synthesis of vitamin-B₁. A. I. Gravin (J. Appl. Chem. Russ., 1943, 16, 105-117).—From a survey of the literature it is concluded that a suitable industrially applicable method for the synthesis of vitamin-B₁ is the condensation (in CHBr₃) of 4-amino-2-methyl-5-bromomethylpyrimidine hydrobromide (I) with 4-methyl-5- β -hydroxyethylthiazole (II). (I) is obtained by condensing acetamidine with Et formylsuccinate, and converting the product by amining the product by P_2O_5 into the chloride and then, by NH_2 , into 4-amino-2-methyl-pyrimidyl-5-acetamide. This is converted (Hofmann) into the amine and then (HNO₂) the OH-derivative; HBr then gives (I). (II) is obtained by condensing γ -chloro- α -acetoxypentan- δ -one with $(NH_4)_2COS_2$, yielding 2-thiol-4-methyl-5- β -acetoxyethylthiazole, which is oxidised by H_2O_2 to (II). The entire synthesis is divided into 1.7 stages for each of which yields and experimental details into 17 stages, for each of which yields and experimental details are given.

Action of sulphur on heterocyclic compounds: indole and pyrrole

Action of sulphur on heterocyclic compounds: indole and pyrrole thio-compounds. (Signa.) L. Raffa (Gazzetta, 1942, 72, 549—557).—

3-Methylindole and S at 115—125° give a substance, C₂₇H₂₃N₃S₂, probably 2:3-di-(2':2''-indolylsulphido)-3:3':3''-trimethylindole, m.p. 215—217° (decomp. 188°). Indole and S at 190—200° give a green compound [regarded as 3:3'-(dithio)indigo (A), 2:2'-(dithio)iso-indigo, or 3:2'-(dithio)indirubin] (Bz₂ derivative), which on alkalifusion gives o-NH₂·C₄H₄·CO₂H. Pyrrole and S at 115—125° give a sulphurised pyrrole-black, (C₁₂H₁₂N₃S)₂.

E. W. W.

VII.—ALKALOIDS.

Strychnos alkaloids. XXVIII. Emde degradation of vomicine. H. Wieland and W. Weisskopf [with, in part, R. Huisgen] (Annalen, 1943, 555, 1—9).—Treatment of vomicinium methosulphate in 3N-AcOH containing NaOAc with Na-Hg at 60-70° leads to

methylvomicine I (I), m.p. 232.5° , [a]_D $+156.5^{\circ}$, and methylvomicine II (II), m.p. 240° , [a]_D $+126^{\circ}$ [methiodide, m.p. 206° (decomp.)], which gives a violet colour with FeCl3 and suffers opening of the which gives a violet colour with Fel.₃ and suners opening of the lactam ring when boiled with 20% KOH-MeOH. (II) contains 1 OMe and 1 NMe and is hydrogenated (PtO. in 4n-AcOH) to a H₄-derivative (picrate, m.p. 142—144°). (II) is demethylated by boiling 40% HBr to a substance, C₂₂H₂₇O₄N₂Br, m.p. >300°. (I) in 60% H₂SO₄ is reduced at a Pb cathode to methyluomicidine I, m.p. 230° (decomp.), becomes brown at >225°. The Emde degradation of the methyluonic I, laces to discretizate I. (III) m.p. 230° (decomp.), becomes brown at >225°. The Emde degradation of the methiodide of (I) leads to dimethylvomicine I (III), m.p. 92° [perchlorate, m.p. 250° (decomp.)], which is rapidly decomposed without yielding a cryst. product by boiling 25% HBr or HCl. Boiling 40% HBr transforms (I) into the OH-base (IV), C₂₂H₂₆O₄N_a, m.p. 272° (methiodide, m.p. ~215°; benzoate, m.p. ~227°, sinters at 218°; CHPh. derivative, m.p. 208—210°), in which OH is not tert, since (IV) is converted by Ac₂O at 180° into a non-cryst. is not tert. since (IV) is converted by \$A_2^{\circ}\$O at 180° into a non-cryst. acetate which regenerates (IV) when hydrolysed, can be distilled almost unchanged at 290°/high vac., and is indifferent to SOCl₁. Demethylated (I) is hydrogenated (PtO₂ in 2N-AcOH) to a compound which gives a picrate, m.p. 218°. Electrolytic reduction of (III) at a Pb cathode leads to dimethylvomicidine I, m.p. 236° (slight decomp.). The methiodide of (III) is transformed by KOH-MeOH at 110—120° into NMe₃ and an isomeric dimethylvomicine methiodide, m.p. 278° (slight decomp.). Emde degradation of the methiodide of (II) gives partly (II) and partly dimethylvomicine II (V), m.p. 184°, the lactam ring of which is readily opened by KOH-MeOH. (V) is hydrogenated (PtO₂ in 2N-NaOH) to a H₂-derivative, m.p. 165° [methiodide, m.p. 290° (decomp.)], and is reduced at a Pb cathode to dimethylvomicidine II, m.p. 236°.

H. W.

Struchnes alkaloids. XXIX Constitution of deavyyomicine. R.

Strychnos alkaloids. XXIX. Constitution of deoxyvomicine. R. Huisgen and H. Wieland (Annalen, 1943, 555, 9—25).—Colourless deoxyvomicine (I) is converted by boiling HBr-AcOH containing red P into tert-bromodihydrodeoxyvomicine (II), decomp. 235°, becomes discoloured at >165°, re-converted into (I) by Zn dust in AcOH but transformed by these reagents in boiling MeOH into dihydrodeoxyvomicine (III), m.p. 209°, [a]_D +245° in CHCl₃, +221° in EtOH. This is also obtained through a Br-base from dihydrovomicine and HBr but could not be derived by direct hydrogenation

of (I). (II) is re-converted into (I) by boiling C_5H_5N or by anhyd. NaOAc in boiling AcOH. (I) has therefore the partial formula A (R = CHMe) and approximately approximately A (A = A pears to be the deoxy-derivative of isovomicine (IV), formed from vomicine (V) under the influence of HBr and having the structure A ($R = CH \cdot CH_2 \cdot OH$). Actually (IV) is converted into (I) by replacement

of OH by Br, which is exchanged for H by Zn dust and AcOH. The formation of (IV) from (V) takes place through this Br-compound in analogy to the production of isostrychnine from bromodeoxystrychnine. In the prep. of deoxyresistrychnine from bromodeoxystrychnine. In the prep of deoxyvomicine from (V) by HI in AcOH the yellow variety (VI) is obtained, converted into the more stable (I) by alkalis, by distillation in a high vac., or by protracted heating with solvents. (VI) and (I) differ in m.p., [a]p, ultra-violet absorption, and reactions but are catalytically hydrogenated to the saturated base $C_{22}H_{30}O_2N_2$ among other products. The isomerism of (I) and (VI) appears to be caused by differing arrangement of the double linkings, which in (1) is as shown in A since on ozonisation (I) gives >80% of the is as shown in A since on ozolinsation (1) gives >80% of the quantity of MeCHO (as dinitrophenylhydrazone) calc. for 1 mol. (∇) also gives MeCHO but more slowly and in much lower yield. The double linking in the lactam ring is $\beta \gamma$ to CO (not $\alpha \beta$ as assumed previously) since (\mathbf{I}) contains a reactive CH₂. Whereas (∇) and strychnine only condense with PhCHO under the influence of alkali, this condensation occurs with (I), (III), and (IV) in presence of piperidine (benzylidenedeoxyvomicine has m.p. 198—199°). (VI) is not immediately derived from (V) and HI, which directly yield iododihydrodeoxyvomicine II hydriodide, m.p. 214° (decomp.) Attempts to isolate the free base are accompanied by elimination of HI and formation of (VI). Replacement of I by H by use of In of H1 and formation of (VI). Replacement of 1 by H by use of 2 dust in cold HI affords dihydrodeoxyvomicine II (VII), m.p. 168°. [a]20 +345° in CHCl, [hydrochloride (VIII), m.p. 235° (decomp.) after becoming pink]. (VIII) is reduced at a Pb cathode to dihydrodeoxyvomicidine II, m.p. 269° (decomp.). (VII) is not identical with dihydrodeoxyvomicine I (IX) (CHPh derivative, m.p. 222°) obtained from dihydrodeoxyvomicine. The two deoxyvomicines and HI called different indealing and different indealing and the constant of the to give different iododihydrodeoxyvomicines. The adduct from (VI) is identical with the intermediate product of the prep. of (VI) from Like this base that derived from (I) passes by loss of HI into the original material. This occurs less readily than in the yellow

series but still so easily (with NaOAc) that there can be no doubt about the attachment of I to test. C. The isomerism of the hydriedides is epimeric (cf. B and C). That derived from (VI) is C, thus leading to D from (VI). (III) is hydrogenated (PtO₂ in 2n-AcOH) to tetrahydrodeoxyvomicine (X), m.p. 246—247° [methiodide, m.p. 222° (decomp.), $[a]_D^{21} + 210^\circ$ in CHCl₃; :CHPh derivative, m.p. 247°, obtained by use of 20% NaOH but not of piperidine], and deoxyvomicine B (XI), m.p. 185— 186° , $[a]_D^{20} + 270^\circ$ in CHCl₃. The change proceeds more rapidly in glacial AcOH but leads exclusively to (X), which is also obtained by hydrogenation (PtO₂ in EtOH) of (II) and primary bromodihydrodeoxyvomicine. (X) and (XI) are electrolytically reduced in 60% H_*SO_4 at a Pb cathode to tetrahydroxyvomicidine-A, m.p. 250— 251° (decomp.), softens at 240° , and -B, m.p. (indef.) ~200°. The isomerism of (X) and (XI) depends on the union of the carbocyclic

CH CH— CH
CH CH— CH
CO CH₂ (E)

and -B, m.p. (indef.) ~200°. The isomerism of (X) and (XI) depends on the union of the carbocyclic and heterocyclic 6-membered rings (cf. E) in the cis- or trans-position. Fission of the oxide ring of (I) by H halides proceeds similarly with (V), strychnine (XII), brucine, and their H₂-bases. An apparent exception appears to be afforded by (XII), which with HI under drastic conditions gives tetrahydrodeoxystrychnine. Under milder, precisely specified conditions (XII) gives deoxystrychnine, m.p. 197—198°, softens at 195—196°.

(XII) has a semicyclic double linking and when ozonised affords MeCHO (as 2:4-dinitrophenylhydrazone) in 90% yield. apo-Strychnine, C₂₁H₂₀ON₂, m.p. 242—244°, is obtained as by-product of the action of HBr on (XII).

Physostigmine [eserine] and related substances. IV. Chemical studies on physostigmine breakdown products and related epinephrine derivatives. S. Ellis (J. Pharm. Exp. Ther., 1944, 79, 364—372).— Methods are described for the prep. of eseroline, rubreserine (I), eserine-blue, eserine-brown, and adrenochrome (II). Measurements of absorption spectra of (I), (II), and 2-iodoadrenaochrome indicate that (I) contains a substituted 2:3-dihydroindole-5:6-quinone group and is thus structurally related to (II), the oxidation product of adrenaline.

F. R. S.

Structure of monocrotaline. XI. Proof of the structure of retronecine. R. Adams and N. J. Leonard (J. Amer. Chem. Soc., 1944, 66, 257—263; cf. A., 1944, II, 147).—Retronecine is proved to be 7-hydroxy-1-hydroxymethylpyrrolizidine,

CH₂—CH(OH)·CH·C(CH₂·OH)—CH, by synthesis of retronecanone

CH₂—N·CH₂—N·CH₂—CH, COC to 4 methylpigoridiae (1988)

(II). Adding molten m-NO₂·C₆H₄·COCl to 4-methylpiperidine (prep. from 4-methylpyridine by H₂-Raney Ni at 210°/150—300 atm.), bp. 126—129°, and aq. NaOH at 35—40° gives 1-m-nitrobenzoyl-4-methylpiperidine, m.p. 72—73°, oxidised by boiling aq. KMnO₄ to dl-8-m-nitrobenzanido-β-methyl-n-valeric acid (III) (57%), m.p. 103—105°, which with quinidine in EtOH-Et₂O gives the 1- (IV) (36%) and d-acids, m.p. 113—114°, [a]₃³⁰ -5·0±0·2°, +5·3±0·2°, respectively, in EtOH [quinidine salt of (IV), m.p. 125—126·5° (corr.), [a]₃³ +111·3° in EtOH]. Br and red P at 90° convert (III) into the crude, oily a-Br-acid (V) with some dl-3: 3-dibrono-1-m-nitrobenzoyl-4-methyl-2-piperidone (VI), m.p. 152—153° (corr.). Boiling Ac₂O cyclises (III) to 1-m-nitrobenzoyl-4-methyl-2-piperidone (VI), m.p. 167—168° (corr.), [a]₃³⁰ -20·2±0·2° in C₅H₃N, and oily l-(V). In N-NaOH at 37°, dl- or l-(V) gives dl- and l-1-m-nitrobenzoyl-3-methylpyrrolidine-2-carboxyliacids, oils, which with boiling 3N-aq. HCl and then boiling HCl-EtOH yield Et dl-, b.p. 90—91·5°/17·5 mm. (picrate, m.p. 112·5—114°), and 1-3-methylpyrrolidine-2-carboxylate, b.p. 97—98°/23 mm. [a]₂³⁰ -0° in EtOH, which add CH-3-CH-CO₂Et (in presence of a trace of quinol) at the b.p. to yield Et dl- (97%), b.p. 163·5—165·5° (la mm. picrate, m.p. 98—99°), and 1-β-2-carbethoxy-3-methyl-1-pyrrolidino-propionate, b.p. 170—171°/25 mm., [a]₃³⁰ -34·9±0·5° in EtOH, cyclisation by K in xylene-C₆H₄, then affords dl-, b.p. 96-98°/18 mm. [picrate, m.p. 189—190° (corr.), 1-menthhydrazide, m.p. 175·5—176·5° (corr.), [a]₂²⁰ -83·2±0·5° in EtOH, and other derivatives, and by conversion into retronecanol methiodide acctate, m.p. 175·5—176·5° (corr.), [a]₂²⁰ -83·2±0·5° in EtOH, dn other derivatives, and by conversion into retronecanol methiodide acctate, m.p. 218—219° (corr.), 1-menthhydrazide, m.p. 175·5—176·5° (corr.), [a]₂²⁰ -77·3±1·5° in EtOH, of retronecanol and in EtOH + a little conc. HCl gives an isomeride {picrate, m.p. 230—232° (corr.; decomp.);

VIII.—ORGANO-METALLIC COMPOUNDS.

Amidino-arsenicals. II. Tervalent arsenicals. F. Linsker and M. T. Bogert (J. Amer. Chem. Soc., 1944, 66, 191—192; cf. A., K. (A. II.)

1943, II, 284).—p-CN·C₆H₄·AsO.H₂ in 2N-NaOH with, successively, KI, H₂SO₄ (excess), and SO₂ at >10° gives p-cyanophenylarsinous acid (I) (85%), softens 230°, m.p. 234° (decomp.; corr.), also obtained [80%, m.p. 230—240° (decomp.)] from p-NH₂·C₆H₄·AsO,2H₂O, m.p. 98° (decomp.) [lit. m.p. 100° (decomp.)], by treating the derived diazonium chloride with CuSO₄–KCN, purification being by dissolution in N-NaOH and pptn. by NH₄Cl. HCl-EtOH-Et₂O converts (I) at 0° into the imino-ether hydrochloride (95%), softens 150°, m.p. 152° (decomp.), hydrolysed by ;10% NH₃–EtOH at 60° to p-amidinophenylarsinous acid hydrochloride, m.p. 210° (decomp.), whence HCl or HBr at 0° yields dichloro-p-amidinophenylarsine hydrochloride, sinters 202°, m.p. 208° (decomp.), or the dibronoarsine hydrobromide, m.p. 219° (decomp.), respectively. p-Arsinibenzimino ether hydrochloride, m.p. 130° (decomp.), is also described.

Preparation of phenylarsinoxides. VI. p-Arsinoxidobenzoylcarbamide and related compounds. H. G. Steinman, G. O. Doak, and H. Eagle. VII. p-Arsinoxido-compounds containing amide groups. VIII. Arsonic acids and arsinoxido-compounds containing the azolinking. G. O. Doak, H. G. Steinman, and H. Eagle (J. Amer. Chem. Soc., 1944, 66, 192—194, 194—197, 197—200; cf. A., 1942, II, 337).—VI. p-COCl·C_cH₄·AsCl₂ (I) does not yield p-COCl·C_cH₄·AsCl by any direct method; with Na urethane in Et₂O (not C₆H₈ or C₅H₆N) it gives Et di-p-arsinoxidobenzoylcarbamate. p-Nitrobenzoylisocarbimide (II) [prep. from p-NO₂·C₆H₄·COCl (III) by AgNCO in boiling C₅H₆], m.p. 209—210°, with NH₂·[CH₂]₂·OH in C₆H₈ gives N-p-nitrobenzoyl-N'-β-hydroxyethylcarbamide (30%), m.p. 186—187°, hydrogenated (method: Stevinson et al., A., 1935, 1139, in this and similar cases) to the NH₂-derivative, m.p. 230·5—231·5°, which yields (Bart) the p-AsO₂H₂-, m.p. 238—238·5° (decomp.), and thence (SO₂) the amorphous p-AsO-derivative (not obtainable from p-AsO₃H₂-C₆H₄·COCl by AgNCO etc.). NH₂·CH₂-CH(OH)·CH₂·OH and (II) give N-p-nitrobenzoyl-N'-βy-dihydroxy-n-propylcarbamide (22%), m.p. 197—199°, whence H₂-Raney Ni yields only p-NH₂·C₆H₄·CO·NH₂. Boiling (II) and CO(NH₂)₂ in C₆H₄ gives α-p-nitro- (50%), m.p. 203—205°, and thence α-p-amino- (90%), sinters ~270°, and α-p-arsono-benzoylbiruet, m.p. >360°. Boiling ASCl₂·C₆H₃Me·COCl with CO(NH₂)₂ and hydrolysing the product gives p-arsinoxido-" a "toluoylcarbamide, decomp. >272°. N-p-Arsinoxyoxidoanilinoacetcarbamide, amorphous, m.p. 106—168° (decomp.), is obtained by reducing the AsO₃H₂-compound by SO₂. NH₂-CO-CH₃·NH₂-HCl (IV) and (III) in aq. NaHCO₃ give p-nitrobenzamidoacetamide, m.p. 228° (decomp.) reduced to the p-NH₂-derivative, m.p. 228° (decomp.) reduced to the p-NH₂-derivative, m.p. 211—213° (decomp.); this does not yield the p-AsO-derivative, decomp. >226°, which is obtained from (I) and (IV) in aq. Na₂CO

similarly p-arsenoxido-" a"-toluamido-, m.p. 133° (decomp.), and p-arsenoxidobenzenesulphonamido-acetamide, amorphous, m.p. 193—195° (decomp.). Amorphous N-p-arseno-, m.p. 326·5°, and N-p-arsenoxido-benzoylearbamide, m.p. 270—271°, are also described.

VII. m-5-Xylidine gives (Bart) m-5-xylylarsonic acid (18%), m.p. 222—223°, oxidised. by KMnO4 to the salt, KHX, H₂X [X = (CO₂H)₂C₆H₃·AsO₃], decomp. >300°, whence PCl₂-PCl₅ and then cold, aq. NH₃ yields 5-arsenoxidoisophthalic acid, +2H₂O, amorphous, m.p. 224—225°. The derived Me2 ester, m.p. 255°, with NH₃ at 100° gives the diamide, +H₂O, a glass, softens 75°. 5-Nitro-o-tolylarsonic acid (prep. by Scheller-Bart reaction), m.p. 240°, gives 5-nitro- and thence 5-anino-2-arsonobenzoic acid, m.p. >360°, which affords (method: Doak et al., A., 1941, II, 272, but using CuCN) impure 5:1:2-CN·C₀H₃(CO₂H)·AsO₃H₂, decomp. >300°, whence 30% H₂O₂ yields 6-arsono-, m.p. 347·5°, and thence 6-arsinoxido-isophthalamic acid, +H₂O, m.p. 236·5—237·5°. Similarly are prepared 4-nitro-o-tolylarsonic acid, m.p. 235—236°, 4-amino-, +H₂O, decomp. 220° [lit., anhyd., m.p. 120° (decomp.)], and 4-cyano-2-arsonobenzoic acid, decomp. >351°, 4-arsono-, m.p. >360°, and 4-arsinoxido-terephthalamic acid, m.p. 221·5—222·5°. 2:1:4-NO₂·C₆H₃(CO₂H)·AsO₃HK gives (PCl₅-POCl₃) the acid chloride, converted by cold, aq. NH₃ into 2-nitro-4-arsinoxidobenzamide, m.p. 162—163° (decomp.), which with 30% H₂O₂ gives 3-nitro-4-carbamyl-m-arsanitic acid, decomp. >270°. This is hydrogenated to 4-carbamyl-m-arsanitic acid, decomp. >220°, reduced by SO₂ to the AsO-compound (V), +1·5H₂O, m.p. 177—178°, which is better obtained from 4:2:1-AsO·C₆H₃(NH₂)·CO₂Me by aq. NH₃ at 90°. The amorphous Ac derivative, +H₂O, m.p. 263—264° (decomp.), of (I) is obtained therefrom by Ac₂O but not by reduction of the AsO₃H₂-compound. 2:4:1-NHAC·C₆H₃(AsO₃H₂)·CO₂H could not be converted into the benzamide derivative. 4-Arsinoxido-, +H₂O, m.p. >36

4-Hydroxy-5-carbamyl-m-arsanilic acid (similarly prepared) gives an

unstable dichloroarsine hydrochloride, m.p. 177—178°.

p-CN·C₆H₄·AsO₃H₂ with SO₂-HI-H₂SO₄ gives p-arsinobenzonitrile, amorphous, m.p. 195·5—197·5°, whence HCl-Et₂O-95% EtOH at 0° gives p-dichloroarsinobenzimino Et ether hydrochloride, +H₂O, m.p. 141°, hydrolysed by NaHCO₃ to p-arsinoxidobenzimino Et ether, +H₄O, amorphous, m.p. 184·5—185°. p-AsCl₂·C₆H₁·COCl (VI) with 3:1:2-NH₂·CH₂·CH(OH)·CH₂·OH and Na₂CO₃ in aq. COMc₂ gives p-arsinoxidobenz-by-dihydroxypropylamide, amorphous, decomp. $>250^{\circ}$, with N₂H₄,H₂O in C₆H₆N-C₆H₆ gives s-di-p-arsinoxidobenzoyl-hydrazine, amorphous, decomp. $>360^{\circ}$, and with CN-CH₂·NH₂,H₋SO₄ in Na₂CO₃ gives p-arsinoxidobenzcyanomethylamide, amorphous, decomp. >265°, oxidised by I to the arsonic acid, m.p. 251—252° (decomp.). Similarly (VI) with (CH₂·NH₂)₂ or NHAc·NH₂ gives s-di-p-arsinoxidobenzethylenediamide, amorphous, decomp. >320°, or N-p-arsinoxidobenzoyl-N'-acetethylenediamide, amorphous, decomp. 270—272° (decomp.), respectively. Glycylacetanilide-p-di-chloroarsine hydrochloride is obtained from the NO₂-compound and chloroarsine hydrochloride is obtained from the NO₂-compound and is hydrolysed to the AsO-compound. N-p-Toluoylarsanilic acid (prep.: Schotten-Baumann), m.p. $>360^\circ$, with KMnO₄-MgSO₄-H₂O gives p-C₆H₄(CO₂H)₂(100%). p-C₆H₄(COCl)₂and o-NH₂-C₆H₄·AsO₃H₂ (VII) give NN'-terephthaloyldiarsanilide (25%), amorphous, decomp. $>250^\circ$, and p-arsonoterephthalanilic acid (5%), m.p. $>360^\circ$ (cf. G.P. 191,548). p-CN·C₆H₄·COCl (prep. from the acid by SOCl₂ and C₅H₅N in Ét₂O) and (VII) give N-p-cyano-, amorphous, m.p. $>360^\circ$, converted by 3% H_2 O₂ into N-p-carbamyl-benzoylarsanilic acid, m.p. $>360^\circ$, whence the amorphous arsine oxide, m.p. 319°, is obtained. p-NH₂·C₆H₄·S·C₆H₁·NO₃-p gives (Scheller-Bart) p-p'-nitrophenylthiolphenylarsonic acid (39%), m.p. 291—292°, and thence the NH_2 -acid, decomp. $>190^\circ$, and (Sandmeyer) the CN-acid (32%), decomp. $>200^\circ$, whence H₂O₂ yields p-p'-carbamylbenzenesulphonyl-phenylarsonic acid, m.p. 310·5°.

VIII. ArN₂Cl couples with o- and m-OH·C₆H₄·AsO₃H₈ in the

VIII. ArN₂Cl couples with o- and m-OH·C₈H₄·AsO₃H₂ in the position p- to OH; when the OH is p- to the AsO₃H₂, partial replacement of AsO₃H₂ by ArN₂ and then further coupling occur, the amounts of three reactions depending largely on the pH. The Bart and Scheller-Bart reactions can also be used with azobenzene derivatives. 2-Hydroxy-5-, m.p. 257.3°, and o-hydroxy-2-benzene-azophenylarsonic acid, m.p. 237.5°, are obtained by coupling in NaHCO₃ or NaOH; they are converted by hydrogenation (Raney Ni) and then reduction in HCl into 4-amino-2-, m.p. 183—183-4°, and 5-amino-4-dichloroarsinophenol hydrochloride, m.p. 128—128-2°, respectively. p-OH·C₆H₄·AsO₃H₂ (VIII) at pH 5·8—6·6, 7·3—7·4, or 8.5-9.5 (respective yields in parentheses) gives p-PhN2.CaHa.OH 36.9, 39.4, 9.4), 4-hydroxy-3-benzeneazophenylarsonic acid (0.5, 5.9, 0), m.p. 290° (obtained in 40% yield by a Scheller-Bart reaction), and 2:4:1-(PhN₂)₂C₆H₃·OH (4.6, 12.2, 27.8%). (VIII) does not couple with p-N₂Cl·C₆H₄·CO₂H or m-C₆H₄Me·N₂Cl. 2:4:1-(OH)₂C₆H₃·AsO₃H₂ at pH 7·6—7·9 or 8·5—9·5 gives 84 and 5·6%, respectively, of 2:4-dihydroxy-3:5-dibenzeneazophenylarsonic acid, with p-N₂Cl. 2:4-dihydroxy-3:5-dibenzeneazophenylarsonic acid, with p-N₂Cl. 2.4-dihydroxy-3:5-dibenzeneazophenylarsonic acid, p-N₂Cl. 2.4-dihydroxy-3-dibenzeneazophenylarsonic acid, p-N₂Cl. 2.4-dihydroxy-3-dibenzeneazophenylarsonic acid, p-N₂Cl. 2.4-dihydroxy-3-dibenzeneazophenylarsonic acid, p-N₂Cl. 2.4-dihydroxy-3-dibenzeneazophenylarsonic acid, p-N₂Cl. 2.4m.p. 268°, with, in the latter case, mixed phenols. 4:1-OH·C₁₀H₈·AsO₃H₂ (IX) at pH 7·1—7·4 gives 4:1-PhN₂·C₁₀H₆·OH (34·4%), (PhN₂)₂C₁₀H₅·OH (33·8%), and 4-hydroxy-1-benzeneazo-naphthylarsonic acid (X) (20%), m.p. 245°. 4-Amino-1-naphthyl benzoate (prep. from the NO₂-ester by H₃-Raney Ni in EtOH or from the NH₂-ester hydrochloride by NH₃), m.p. 107·2—107·6°, gives (Scheller-Bart) 4-arsono-1-naphthyl benzoate (19%), m.p. 199·8—200° whence cold HCI-MeOH yields (IX) (57%) and MoOR 199.8—200°, whence cold HCI-MeOH yields (IX) (57%) and MeOBz. H₂-Raney Ni reduces the Na₁ salt of (X) to 2-amino-I-naphthol-4-arsonic acid, decomp. when heated, whence 4-hydroxy-1: 4-a-naphthisooxazine-6-arsonic acid is prepared. Bart, or, better, Bart-Scheller, reactions yield p-PhN₂·C₆H₄·AsO₂H₂, m.p. 332·5—333·5°, p-toluene-p'-azophenyl- (XI), m.p. >360°, and 4-hydroxy-3-benzene-azophenyl-arsonic acid, but failed with p-5-anino-2-hydroxyazobenzene-4'-sulphonic acid (Na salt of the Ac derivative) and its anide (Ac derivative). Oxidising (XI) by KMnO₄ gives p-p'-arsono-benzeneazobenzoic acid, m.p. > 360°, converted by PCl₅-POCl₃ and then aq. NH2R into p-p'-arsinoxidobenzeneazobenz-amide, decomp. >260°, and -\$\beta_h\dots\parallar h\dots\parallar h\dots\para

benzeneazophenylarsonic acid, decomp. when heated.

Mercuripurine derivatives of phthalimide. G. Carrara and E. Mori (Gazzetta, 1943, 73, 113—116).—Allylphthalimide [new prep. from $C_0H_4(CO)_2O$ and allylamine] and $Hg(OAc)_2$ in MeOH at the b.p. give N-β-acetatomercuri-y-methoxypropylphthalimide, m.p. 139-140° which with theophylline gives a-phthalimido-y-methoxy-p-propyl-mercuritheophylline, m.p. 225—226°. E. W. W.

IX.—PROTEINS.

Strometin.—See A., 1944, III, 450.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Formation of "excess material" in the treatment of wood with sodium chlorite and its significance for the chemistry of wood and lignin. G. Jayme, L. Escr, and G. Hanke (Naturwiss., 1943, 31, 275—276).—Subjection of the solutions obtained by treating wood with NaClO, to dialysis and electrodialysis yields from pine 10·13% of material with 8·62% OMe and 22·30% lignin residue and from poplar 9·42% of material with 6·84% OMe and 25·05% lignin residue. In these cases the excess material amounts to 7·87% and 7.06% respectively; this consists of a mixture of substances with short chains the individual fractions of which give varying amounts of residue in the customary lignin determination. The observations are explained by assuming the presence of a polysaccharide of the hexose type or its precursor substituted mainly with guaiacyl residues, two aromatic residues being united to each pyranose ring by the loss of 1.5—2 mols. of H_0O or 0.5—2 atoms of O.

Isolation of euphol and a-euphorbol from euphorbium. G. T. Newbold and F. S. Spring (J.C.S., 1934, 249—252).—Two cryst. monohydric alcohols have been isolated by the chromatographic method from euphorbone, an amorphous solid obtained from euphorbium. One of these is identical with α -euphorbol (cf. Bauer et al., A., 1931, 847), m.p. $126-127^\circ$, $[a]_1^{17} \pm 0^\circ$ in CHCl₃ [acetate, m.p. $124-125^\circ$, $[a]_1^{15} \pm 0^\circ$ in CHCl₃; benzoate, m.p. $133-135^\circ$. $[a]_0 + 15^\circ$ in C_5H_5N ; acetate dibromide, m.p. $169-171^\circ$ (decomp.)], which contains at least two double bonds, the acetate being reduced to dihydro-a-euphorbyl acetate, m.p. $133-135^\circ$, $[a]_0^1 - 15^\circ$ in C_5H_5N . The second component is euphol, $C_{30}H_{50}O$ (?), m.p. 116° , $[a]_0^{19} + 32^\circ$ in CHCl₃, containing two double bonds, one of which is relatively inert; it gives an acetate, m.p. 109° , $[a]_0^3 + 41^\circ$ in CHCl₃, benzoate, m.p. $137-139^\circ$, $[a]_0^{18.5} + 59^\circ$ in C_5H_5N , acetate dibromide, m.p. $138.5-139.5^\circ$, $[a]_1^{20} + 23.5^\circ$ in CHCl₃, and dihydroeuphol, m.p. 120° , $[a]_5^{18.5} + 34^\circ$ in CHCl₃ (acetate, m.p. $123.5-124^\circ$, $[a]_0^{19} + 34.5^\circ$ in CHCl₃, and benzoate, m.p. $160-161^\circ$). One of these is identical with a-euphorbol (cf. Bauer

Biochemistry of Eidamella spinosa.—See A., 1944, III, 502.

Folic acid. I. Concentration from spinach. H. K. Mitchell, E. E. Snell, and R. J. Williams. II. Adsorption. E. H. Frieden, H. K. Mitchell, and R. J. Williams. III. Chemical and physiological properties. H. K. Mitchell and R. J. Williams. IV. Absorption spectra. H. K. Mitchell (J. Amer. Chem. Soc., 1944, 66, 267—268, 269—271, 271—274, 274—278; cf. A., 1941, III, 1066).—
1. The filtrate obtained from pulped spinach (1000 lb.) by H₂O at 30—35° and then the h.p. is adjusted to pH 30—3-2 treated with 30—35° and then the b.p. is adjusted to pH 30—3·2, treated with "Super-cel," filtered, and stirred with C. The C is cluted with boiling 2·55% aq. NH₃, which is then stirred with C pretreated with aq. NH₂Ph and then H₂O. Elution by boiling 8% aq. NH₂Ph, extraction with Et₂O, and adjustment of pH to 3·0—3·2 are then followed by a similar adsorption and elution. Finally follow successive pptn. by Pb(OAc)₂, elution of the ppt. by boiling aq. (NH₄)₂SO₄, pptn. by aq. AgNO₃ at pH 6.5, elution by boiling aq. NH₄Cl, pptn. by Lloyd's reagent, elution by 5% aq. NH₃, adsorption on Al₂O₃, fractional elution by NH₃-MeOH-H₂O, pptn. by HCl at 0°, redissolution in aq. NH₃, adsorption on Al₂O₃, and elution and pptn. as above. Thus are obtained 1.2 mg. of amorphous folic acid (I) having a potency 137,000 times as great as Wilson liver fraction B when tested as growth stimulant for Streptococcus lactis R. Other procedures are less effective.

II. Impure (I) is readily eluted from C on which it has been adsorbed, but pure (I) is tenaciously retained. Retention of pure (I) is rendered less severe by pretreatment of the C by adsorbable substances. Adsorption isotherms confirm the dual nature of the adsorption; equilibrium is reached only slowly. Similar isotherms

in and this feather only indicate similar phenomena. III. (I) is readily inactivated by oxidation, reduction, acid, alkali, dry heat, light, acylation, esterification, methylation, benzylation, HNO₂, NaOBr, Br, etc., but the mol. wt. and absorption spectra (and thus chemical structure) are often little affected by these changes. The mol. wt., determined by diffusion, and analyses indicate $C_{18}H_{15}O_8N_5$ as approx. formula. (1) is required for the growth of 4 yeasts, but the relative amounts of different concentrates required for yeasts and bacteria may vary. Thymine (1 μ g. per ml.) may replace (1) for S. lactis R, as also may 10 μ g. per ml. of 9 other pyrimidine derivatives, but numerous other compounds are ineffective. (I), having potency 75,000, has one fifth of the antianæmia activity of xanthopterin (II).

IV. Absorption spectra and the effect of pH thereon are very similar for (I) and (II), indicating a similar structure. Results are recorded also for other pyrimidine derivatives. Purification affects the spectra, but inactivation has much less effect. For (I), (II), etc. sudden changes in adsorption at pH ~2.5 and ~9 are due to electronic shifts and tautomerism, respectively.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry.

SEPTEMBER, 1944.

I.—ALIPHATIC.

Reactions of hydrocarbons with sulphuryl chloride and with sulphur dioxide-chlorine mixtures.—See A., 1944, I, 206.

dioxide-chlorine mixtures.—See A., 1944, I, 206.

a-Methylenic reactivity in olefinic systems. I. Prins reaction with propylene. J. W. Baker (J.C.S., 1944, 296—301).—CHMc:CH. with paraformaldehyde in 100% AcOH—100% H₂SO₄ at 35° gives the diacetate (I), b.p. 65°/1 mm., of OH·CHMe-[CH₂]₂·OH (II) (63·5%) (di-a-naphthylurethane, m.p. 153°), 4-methyl-1: 3-dioxan (III) (14%), b.p. 25°/22 mm., and 4-acetoxytetrahydro-y-pyran (IV) (22·5%), b.p. 47·5°/1 mm. (III) with 2: 4: 1-(NO₂)₂C₆H₃·NH·NH₂ in aq. HCl yields the hydrazone of CH₂O and (II). (IV) is hydrolysed [aq. Ba(OH)₂] to 4-hydroxytetrahydro-y-pyran (V), b.p. 60·5°/9·7 mm. (p-nitrobenzoate, m.p. 69°), oxidised (CrO₃) to tetrahydro-4-pyrone (VI), b.p. 73°/20 mm. (2: 4-dintrophenylhydrazone, m.p. 186—187°). Oxidation (HNO₃) of (IV), (V); and (VI) affords CO₂H·CH₂·O·[CH₂]·CO₂H, m.p. 97° [diamide, m.p. 174°; Me₂ ester, b.p. 138°/24 mm.; Me ester amide (?), m.p. 73°], reduced by HI to I·[CH₂]·CO₂H. (II) with CH₂O in AcOH—H₂SO₄ gives (I) and (III) but no (IV). Results for a kinetic examination are given, and it is suggested that (II) and (III) are formed by acid-catalysed addition of CH₂O to the double linking but (IV) is obtained by reaction with H of Me of CHMe;CH₂ activated by conjugation. BF₃ does not catalyse the Prins reaction, but improves the catalytic efficiency of H₂SO₄.

D. G.

Production of a- and β -pyronene from alloocimene. L. A. Goldblatt and S. Palkin (J. Amer. Chem. Soc., 1944, 66, 655—656).—Pyrolysis (apparatus: C, 1944, Part 4) of alloocimene at, best, 400° gives a- (~30%), b.p. 54—56°/20 mm., and β -pyronene (~45%), b.p. 62—64°/20 mm. R. S. C.

Conjugated systems. XXIII. Synthesis and properties of dibalogeno-derivatives of isoprene. A. A. Petrov (f. Gen. Chem. Russ., 1943, 13, 331—338).—OH-CMe₂-CCH (I), in cold CHCl₃, with 0.75 mol. of Cl₂, yields polychloro-derivatives and 50% of OH-CMe₂-CX:CHX (II), X = Cl, trans-form, b.p. 61·5—62°/10 mm.; dehydration of the latter by P₂O₅, with short time of contact, gives 35% of αβ-dichloro-γ-methyl-Δαγ-butadiene (III), b.p. 60·5—61°/85 mm., and a yellow, powdery polymer. Bromination of (I) (accelerated by illumination), under similar conditions, yields 95% of αβ-dichromo-β-methyl-Δγ-buten-β-ol, [(II), X = Br], b.p. 91·5—92·5°/10 mm.; a higher-boiling form of (II), X = Br], was obtained, in one isolated experiment, together with the product described. (II), X = Br, is dehydrated over P₂O₅ at 100°/20 mm. to a mixture of cis- and trans-αβ-dibromo-γ-methyl-Δαγ-butadiene, b.p. 51·5—52°/10 mm. (IV) (probably trans-) and b.p. 66·5—67°/10 mm. (V). (III) and (IV), in PhMe at 100°, form sticky polymers (7—8% in 1 hr.) and, on keeping in diffused light, become viscous in 4—5 months owing to formation of soft rubber-like polymers; they do not condense with (CH·CO)₂O. In boiling 20% KOH-EtOH, (III), (IV), and (V) react in 30 min. to the extent of 8, 25, and 44% respectively, (IV) and (V) yielding CH₂:CMe-C-CBr. (II), X = Cl or Br, is decomposed by alcoholic or aq. KOH to COMe₂, CHX:CHX, and CH:CX; trans-(II), X = Cl, yields trans-C₂H₂X₂. R. C. P.

CH;CX; trans-(II), X = Cl, yields trans-C₂H₂X₂. R. C. P. Conjugated systems. XXIV. Reaction of isoprene with hypobromous acid and with alkyl hypoiodites. A. A. Petrov (J. Gen. Chem. Russ., 1943, 13, 481—490).—HOBr, as NHACBr (I), and isoprene (II) (1:1·5 mol.) give δ-bromo-y-hydroxy-y-methyl-Δ^a-butene (III), b.p. 49·5°/10 mm. (33% yield on HOBr), an isoprene dibromide, m.p. 86° (yield <25%), besides oily dibromides and products of reaction of (II) with (I) itself. (III) affords with AcCl a monoacetate (IV), with Cl-compounds, whilst with Ac₂O it gives 91% pure (?) (IV), b.p. 60°—95°. Br and (III) give αβδ-tribromo-y-hydroxy-methylbutane, b.p. 136·5°/10 mm., which is largely unchanged on treatment with Na₂Cr₂O₇ in AcOH-H₂SO₄, but with aq. 80% KOH at 120° it gives αβ-epoxy-β-methyl-Δ'-butene (70% yield), b.p. 78·5—79°/715 mm., decomposed by H₂SO₄ to tiglaldehyde. Treatment of (I) with (II) (2:1 mol.) gives αy-dibromo-βy-dihydroxy-β-methylbutane, m.p. 86°. (II) with HgO, I, and either MeOH or EtOH gives δ-iodo-y-methoxy-, b.p. 60°/10 mm., or δ-iodo-y-ethoxy-, b.p. 66°5°/10 mm., -y-methyl-Δ^a-butene.

Preparation and purification of glucose 1-phosphate with the aid

Preparation and purification of glucose 1-phosphate with the aid of ion exchange adsorbents. R. M. McCready and W. Z. Hassid

(J. Amer. Chem. Soc., 1944, **66**, 650—563).—Potato starch is digested with crude potato phosphorylase in presence of Na phosphates, inorg, phosphates are then removed by $Mg(OAc)_2-NH_3$, and the filtrate is passed through a cation-absorbing resin, Amberlite IR-100. The resulting acid solution is then passed through an anion-absorbing resin, Amberlite IR-4; weak acids pass through but glucosel-phosphoric acid is adsorbed and subsequently recovered by aq. NH_3 and pptn. as K_5 salt, $+2H_2O$, $[\alpha]_D$ $+78^\circ$ in H_2O . Glucose-6-fructose-6-, and glycero-phosphoric and fructose-1: 6-diphosphoric acids are similarly purified.

Carboxonium salts. I. Acetyl fluoborate. F. Seel (Z. anorg. Chem., 1943, 250, 331—351).—Acetyl fluoborate, $Ac[BF_4]$ (I), obtained as white crystals by direct union of AcF and BF₃, dissociates appreciably at room temp, and completely at the b.p. of AcF. It is hydrolysed by H_2O to AcOH and HBF₄. With dry KF it affords AcF and KBF₄; with other K halides in presence of ionising solvents (e.g., liquid SO₂) it gives KBF₄ and Ac halide. With NaNO₃ it reacts: NaNO₂ + 2(I) \rightarrow NaBF₄ + (NO)BF₄ + Ac₂O. EtOH and AcOH give EtOAc and Ac₂O respectively. NO-OEt affords NO·BF₄ and EtOAc. Warm Et₂O yields AcF and BF₃,Et₂O, which when further heated form EtOAc, BF₃, and EtF. (I) is an electrolyte in liquid SO₂, Λ at -70° being approx. that of KI, but decreasing rapidly with rising temp. Its reactions with KI and KOAc may be followed conductometrically. Its structure is ionic, [Ac]+[BF₄]-. F. J. G.

Allylic rearrangements. XV. Carbonation of magnesium butenyl bromide. J. F. Lane, J. D. Roberts, and W. G. Young (J. Amer. Chem. Soc., 1944, 66, 543—545; cf. A., 1944, I, 157).—Adding the Grignard solution from mixed CHMe:CH·CH₂Br (80%) + CH,:CH·CHMeBr (20%) to solid CO₂ gives 75% of CH.:CH·CHMe-CO,H (I), b.p. 95·5°/35 mm. (chloride, b.p. 55—58°/110 mm.; amide, m.p. 98°, hydrogenated to CHMeEt·CO·NH₂; CHPhMe·NH₂ salt, m.p. 119·5—120·5°). Arnold's method (A., 1942, II, 142) gives 63% of (I), 13% of dibutenyl ketone, b.p. 93—94°/100 mm., smaller amounts of octadienes, b.p. 52—53°/100 mm., and a fraction, b.p. 100—115°/30 mm.

R. S. C.

Reduction of ester vinylogues. R. H. Baker and P. C. Weiss (J. Amer. Chem. Soc., 1944, 66, 343—345).—2-Ethylchromone is unaffected by boiling Al(OPr\$)3-Pr\$OH, as also is CHBz;CMe·OEt (I), which is largely unchanged by Al(OBu-sec.)3 at 100°; OEt·CH;CAc·CO₂Et (II) gives a (polymerised) tar with a little dimeride. With H₂-Raney Ni, (II) at 23° gives CHMeAc·CO₂Et (50%), (I) at 118° gives OEt·CHMe·CH₂·CHPh·OH (III) (57%) and at 120° gives, after absorption of only 1 H₂, 64% of (III) + CH₂Bz·CHMe·OEt; OEt·CMe·CH·CO₂Et (IV) at 130° gives OEt·CHMe·CH₂·CO₃Et (V) (86%). With H₂-Cu chromite, (II) at 150° gives a tar, (I) at 180° gives COPhPra (58%), and (IV) at 170° gives (V) (45%).

Autoxidation of β -elæostearic acid. Application of the spectrophotometer to the study of the course and the kinetics of the reaction.—See A., 1944, I, 204.

Cryoscopy [and structure] of isanic acid.—See A., 1944, 1, 169.

β-Lactones and β-lactonic acids. III. Condensation of citral with malonic acid. N. S. Vulfson and M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 13, 436—447).—Citral with $CH_2(CO_2H)_2$ in presence of piperidine and AcOH affords, via $CMe_2:CH:[CH_2]_2:CMe:CH:CH:C(CO_2H)_2$, (I), both $CMe_2:CH:[CH_2]_2:CMe:CH:CH:CH:CO_2H$, b.p. $\sim 170^\circ/15$ mm., and the

β8-dilactone of (I), viz., CMe, CH-[CH₂]₂-CMe-CH₂-CH-CH-CO (II),

m.p. 187°. When titrated with aq. NaOH (II) behaves as a monobasic acid: with boiling aq. NaOH both rings open and on acidification the product affords the corresponding δ -hydroxy- β -lactonic acid, m.p. 113—114° (III), with the δ -hydroxy- β -lactone, m.p. 119·5—120·5° (IV). With boiling AcCl (III) gives (II), CO2, (IV), and the monoacetate (V) of (IV) (?), whilst on long heating with H_2O or with C_0H_6 (IV) is formed. Oxidation of (III) by aq. KMnO4 in alkaline solution gives $H_2C_2O_4$ but no HCO2H; hence the lactone ring is formed at the β -position. (IV) is unattacked by boiling Ac2O;

thus the OH is on a tert. C so that it is a δ-lactone; with AcCl it gives (V), m.p. 117---118°. F. Hı.

247

 β -Lactones and β -lactonic acids. IV. Rate of fission of the β lactone ring.—Sec A., 1944, I, 204.

Action of aromatic diazo-compounds on alkylacetoacetic esters as a method of preparing arylhydrazones of α-keto- and α-amino-acids. VII. Synthesis of n-valine. V. V. Feofilaktov and V. N. Zaitzeva (J. Gen. Chem. Russ., 1943, 13, 358—362).—CHPrAc CO₂Et (I) and (I. Gen. Chem. Russ., 1943, 13, 358—362).—CHPrAc·CO₂Et (I) and PhN₂·OK, under conditions already specified (A., 1940, II, 70, 85), give NHPh·N:CPr·CO₂Et (II) (35·4%) in a form, m.p. 103°, not previously described; reduction of (II) by Zn dust and HCl-EtOH, followed by treatment with Ag₂CO₃ and H₂S, yield n-valine (III) (77·4%). Similarly, (I) and p-C₀H₄Me·N₂·OK give a mixture of two forms of a-hetovaleric acid p-tolylhydrazone (IV) (43·5%); crystallisation from C₀H₆ yielded the a-form, m.p. 134—135°, and an inseparable mixture of the a- and β-forms, m.p. 123—131°. Reduction of (IV) (a- and β-forms mixed) as above gives (III) (96·4%). tion of (IV) (a- and β -forms mixed) as above gives (III) (96.4%). R. C. P.

Action of aromatic diazo-compounds on substances of the type of alkylacetoacetic esters as a method for obtaining arylhydrazones of a-keto-acids and of a-amino-acids. IX. Reaction of ethyl cyclohexan-2-onecarboxylate with diazobenzene. V. V. Feofilaktov and A. Ivanov (J. Gen. Chem. Russ., 1943, 13, 457—467).—The reaction of cyclic compounds allied to monoalkylacetoacetic esters with aromatic diazo-compounds has been studied partly to widen the scope of the method of obtaining a-NH $_2$ -acids from monoalkylacetoacetic esters and partly to obtain a-aminodicarboxylic acids. Et cyclohexan-2-one-1-carboxylate with PhN₂Cl in acid aq. EtOH containing NaOAc affords CO₂H·[CH₂]₃·C(N·NHPh)·CO₂Et in 98% yield, the product beng an a-form, m.p. $89.5-90^{\circ}$, admixed with a minor proportion of a β -form (cf. Jackson and Manske, A., 1931, 363); hydrolysis of the mixture gives a-ketopimelic acid phenylhydrazone in two forms; that predominating (I) (from a-ester?) has m.p. 143—144°; the other form has m.p. 131—132° (cf. Linstead and Wang, A., 1937, II, 340). With HCl in aq. EtOH and Zn dust (I) gives CO₂H·[CH₂]₃·CH(NH₂)·CO₂H. F. HI.

Thermal decomposition of acetaldehyde.—Sec A., 1944, I, 204.

Thermal decomposition of acetaldehyde.—Sec A., 1944, I, 204.

Preparation of ketones from nitro-olefines. (Miss) D. Nightingale and J. R. Janes (J. Amer. Chem. Soc., 1944, 66, 352—354).—AlkCHO and CH₂Alk'·NO₂ give 70—80% of OH·CHAlk·CHAlk'·NO₃, the acetate of which with boiling NaHCO₃-MeOH-H₂O gives 90—95% of CHAlk:CAlk'·NO₂, decomposed at the b.p./1 atm., reduced by Zn dust in boiling Et₂O-25% AcOH to CH₄Alk·CAlk'·N·OH (usually 50—60%), whence boiling CH₂O-H₂O-H₂SO₄ yields COAlk'·CH₄Alk. The following are described, m.p. in parentheses being those of the a-naphthylurethanes. a. b.p. 75°/2 mm. (m.p. 118—119°), and γ-nitrobutan-β-ol, b.p. 78°/17 mm. (m.p. 122—123°); a., b.p. 85°/2 mm. (m.p. 99—100°), and γ-nitropentan-β-ol, b.p. 78°/2 mm; (m.p. 100—101°); β-nitropentan-γ-ol, b.p. 79°/2 mm. (m.p. 126°), γ-, b.p. 64°/2 mm. (m.p. 137°), and α-nitro-γ-methylbutan-β-ol, b.p. 66°/1 mm. (m.p. 97-5—98°); α-nitrohexan-β-ol, b.p. 80°/1 mm. (m.p. 103°); β-nitrohexan-γ-ol, b.p. 82°/2 mm. (m.p. 136—137°); γ-nitrohexan-δ-ol, b.p. 89°/2 mm. (m.p. 113—114°); β-nitro-δ-hpj γ-nitrohexan-δ-ol, b.p. 75°/4 mm. (m.p. 97—98°); α-nitroheptan-β-ol, b.p. 105°/2 mm.; β-nitro-heptan-γ-ol, b.p. 92°/2 mm. (m.p. 126-0). b.p. 75°/4 mm. (m.p. 97—98°); α-nitroheptan-δ-ol, b.p. 92°/2 mm.; β-nitro-β-methylhexan-γ-ol, b.p. 105°/2 mm.; β-nitro-β-methylhexan-γ-ol, b.p. 100°/2 mm.; γ-nitro-ε-ethylhexan-γ-ol, b.p. 100°/2 mm.; β-nitro-δ-ethyloctan-γ-ol, b.p. 100°/2 mm.; γ-nitro-σ-ctan-δ-ol, b.p. 100°/2 mm.; γ-nitro-σ-ctan-δ-ol, b.p. 100°/2 mm.; γ-nitro-σ-ctan-δ-ol, b.p. 100°/2 mm.; γ-nitro-σ-ctan-δ-ol, b.p. 100°/2 mm.; γ-nitro-δ-hexene, b.p. 57°/1 mm., -ε-methyl-Δγ-hexene, b.p. 53°/1 mm., -ε-methyl-Δγ-hexene, b.p. 55°/1 mm., -ε-methyl-Δγ-hexene, b.p. 55°/1 mm., -α-methyl-Δγ-hexene, b.p. 55°/1 mm., -α-methylhexane, b.p. 56°/1 mm., and -ε-ethylnonane, b.p. $55^{\circ}/1$ mm.; β -oximino- δ -ethylhexane, b.bp. $69^{\circ}/1$ mm., and -δ-ethyloctane, b.p. 81°/1 mm.; ε-ethylnonan-y-one, b.p. 53°/1 mm. Efforts to condense the nitro-olefines with (CH2,CH), or cyclopenta-

Condensation of isobutaldehyde with aliphatic ketones. Powell and F. Hagemann (J. Amer. Chem. Soc., 1944, 66, 372—376).—Pr $^{\beta}$ CHO with COMeR (R = Pr $^{\alpha}$, Bu $^{\alpha}$, Bu $^{\beta}$, n-amyl, or n-hexyl) in KOH-EtOH at $<35^{\circ}$ gives 35—65% of CHPr $^{\beta}$ CH·COR (A); only n-C $_{\delta}$ H $_{11}$ COMe gives a little CHPr $^{\alpha}$:CBu $^{\alpha}$ -COMe (hydantoin derivative, m.p. 175—176°). Na in NaHCO $_{3}$ -Et $_{2}$ O-H $_{2}$ O usually converts (A) into CHPr $^{\beta}$:CH·CHR·OH, but reduction is sometimes incomplete. H -PtO is always effective $^{\beta}$ Mathyl $^{\lambda}$ $^{\alpha}$ decreases incomplete: H_2 -PtO₂ is always effective. β -Methyl- Δ 'n-decensione, b.p. 223—224° (hydantoin derivative, m.p. 135—136°), with Na-EtOH gives β -methyl- Δ \beta-n-decensioned (42%), b.p. 129·5—131°/30 mm. (3:5-dinitrobenzoate, an oil), whence O₃ gives COMe₂ (no

PrβCHO) and Δ^{α} -octenaldehyde [semicarbazone, m.p. 169—170° (lit. 163°)]. COEt₂ and PrβCHO give CHPrβ:CMe·COEt, b.p. 176—178° (2:4-dinitrophenylhydrazone, m.p. 174—175°) (cf. Franke 178° (2:4-dinitrophenylhydrazone, m.p. 174—175°) (cf. Franke et al., A., 1924, i, 6). The following are described: m.p. prefixed by h are those of the derived hydantoins. CHPrB.CH.COPra, b.p. 85—86°/25 mm.; β-methyl-Δ'n-nonen-ε-one, b.p. 103—105°/25 mm. (h m.p. 149·5—150°); βη-dimethyl-Δ'-n-octen-ε-one, b.p. 199—200°; β-methyl-Δ'-n-undecen-ε-one, b.p. 135—136°/28 mm. (h m.p. 118·5—119°); COPra-CH₂Buβ, b.p. 177—179° [semicarbazone, m.p. 144·5—145·5° (cf. lit.); h m.p. 175—175·5°]; β-methyl-n-nonan-ε-one, b.p. 203—204° (h m.p. 192—192·5°); βη-dimethyl-n-octan-ε-one, b.p. 196—198° (semicarbazone, m.p. 78—79°; h m.p. 216—217°); β-methyl-n-decan-ε-one, b.p. 119—121°/28 mm. [nitroguanylhydrazone, m.p. 78—79·5° (decomp.); h m.p. 192—192·5°]; β-methyl-n-undecan-ε-one, b.p. 126—128°/23·5 mm. [nitroguanylhydrazone, m.p. 84·5—86° (decomp.); h m.p. 175—175·5°]; δ'-dimethyl-n-heptan-y-one, b.p. 170—173° (h m.p. 186—186·5°); β-methyl-n-nonan-ε-ol, b.p. 111·5—113°/28·5 mm. (3:5-dinitrobenzoate, m.p. 63·5—64·5°); CH₂Buβ·CHBuβ·OH, b.p. 107—108°/29·5 mm. (3:5-dinitrobenzoate, m.p. 63·5—64·5°); CH₂Buβ·CHBuβ·OH, b.p. 107—108°/29·5 mm. (3:5-dinitrobenzoate, m.p. 81—82°); β-methyl-n-decan-ε-ol, b.p. 122·5—123°/24 mm. (124—126°/24 mm.); β-methyl-n-undecan-ε-ol, b.p. 132—133°/24 mm. (135°/24 mm.) M.p. and b.p. are corr. R. S. C. 85—86°/25 mm.; β -methyl- Δ^{γ} -n-nonen- ϵ -one, b.p. 103—105°/25 mm.

Synthesis of bromoacetals. P. Z. Bedoukian (J. Amer. Chem. Soc., 1944, 66, 651—652).—Adding Br to CH₂:CH·OAc in CCl₄ at 0—10° and pouring the mixture into ROH gives bromoacetaldehyde Me₂ (80—85%), b.p. 48—49°/14 mm., and Et₂ acetal (75—80%), b.p. 48—65°/16 mm. b.p. 64-65°/16 mm.

Anomalous base strength of the methylamines.—See A., 1944, I, 175.

Geranylamine. D. A. Sutton (J.C.S., 1944, 306).—Geranylamine hydrochloride, m.p. 145—146° (modified prep.), is a single substance, CMe₂:CH·[CH₂]₂·CMe:CH·CH₂·NH₃Cl. F. R. S.

Solubilities of symmetrical, normal aliphatic secondary amines of high mol. wt. C. W. Huerr, H. J. Harwood, and A. W. Ralston (J. Org. Chem., 1944, 9, 201—210).—The solubilities of dioctylamine, m.p. (α form) 14·60°, (β-form) 26·7° (lit. 36·5 and 34° respectively), f.p. 14·60°, didodecylamine, m.p. (α-form) 46·9° (lit. 51—53°), β-form 51·8°, f.p. 46·9°, ditridecylamine, m.p. 56·5°, f.p. 56·5°, ditetradecylamine, m.p. 60·6° (lit. 56—58°), f.p. 60·6°, dipentadecylamine, m.p. 63·3°, f.p. 63·3°, and dioctadecylamine, m.p. 72·3° (lit. 71—72°), f.p. 72·3°, have been determined in C₆H₆, cyclohexane, CCl₄, CHCl₃, Et₂O, EtOAc, BuOAc, COMe₂, COMeEt, MeOH, 95% EtOH, PrβOH, Bu°OH, and MeCN. In general, the sec. amines are more sol. in org. solvents than are primary amines of corresponding more sol. in org. solvents than are primary amines of corresponding chain length. This behaviour is apparently due to the fact that the polar group in the centre of the paraffin chain causes the m.p. of the sec. amines to be considerably < those of the primary amines containing the same no. of C atoms. If a temp. correction is made for the difference in m.p., the solubility curve of any sec. amine can be nearly superimposed on that of the primary amine of equal chain length in any given solvent. Compared in this manner, the sec. amines tend to be slightly more sol. in non-polar solvents and somewhat less sol. in the highly polar solvents than the corresponding primary amines. The solubilities of the nitriles, primary and sec. amines, which have relatively weak polar groups, tend to suggest that the shapes of the solubility curves are probably due primarily to association of the paraffin chains with the possibility that the more polar compounds such as the acids and amides may be further associated at the polar groups. The sec. amines are obtained by heating the respective primary amines with Raney Ni at 200°.

Metabolism of phosphorylcholine. I. Synthesis of calcium phosphorylcholine chloride containing the radioactive isotope, ³²P. R. F. phorylcholine chloride containing the radioactive isotope, ³²P. R. F. Riley (J. Amer. Chem. Soc., 1944, 66, 512—513).—Heating choline chloride (I) with P_2O_5 and 100% H_3PO_4 containing some ³²P at 165°/vac. and treating the product in H_2O with $CaCl_2$ and then $Ca(OH)_2$ to neutrality gives 63% of Ca phosphorylcholine chloride (II), $C_5H_{13}O_4$ NClPCa,4 H_2O , containing 96% of the original radioactivity. ²⁴% of (II) is obtained by heating choline hydroxide [prep. from aq. (I) by, successively, Ag_3CO_3 , $Ba(OH)_2$, and evaporation in vac. (N_2)] with H_3PO_4 in PhMe with removal of H_2O and treating the product in aq. EtOH with $CaCl_2$ - $Ca(OH)_2$ as above. Ag_3PO_4 or Ag_2PhPO_4 with bromocholine bromide in boiling EtOH gives 65 and 89%, respectively, of neurine. Phosphorylcholine gives 65 and 89%, respectively, of neurine. Phosphorylcholine reineckate and phosphotungstate, the HgCl₂ additive compound of phosphorylcholine, C₅H₁₅O₄NP,3HgCl₂, m.p. 180—184° (corr.), dicholine phosphate reineckate, and the additive compound, m.p. 202—207°, of dicholine phosphate and HgCl₂ are prepared.

Nitric ester of choline perchlorate, m.p. 188—189°.—See A., 1944, III, 553.

Chromammines. III. Preparation of diacidodiethylenediaminosalts by thermal decomposition of triethylenediamine luteo-salts.—See A., 1944, I, 206.

Spectroscopic evidence for the N·H·N linking in ethyleneimine. H. W. Thompson and G. P. Harris (J.C.S., 1944, 301—303).—Variation in the intensity of an absorption band at 3·1 μ . with the concn. of ethyleneimine in solution in CCl₄ suggests association through N·H·N linkings. Other evidence is adduced in support.

Polymerisation of ethyleneimine. G. D. Jones, A. Langsjoen, M. M. C. Neumann, and J. Zomlefer (J. Org. Chem., 1944, 9, 125— 147).—The polymerisation of ethyleneimine (I) is indicated to involve a bimol. reaction between (I) and ethyleneimonium or substituted ethyleneimonium ions. Dimeric (I) is identical with N- β -(aminoethyl)ethyleneimine (II), which appears to be an intermediate in the polymerisation of (I). Polyethyleneimine is regarded as a linear polysec.-amine of mean degree of polymerisation 25-100. The polymerisation of (I) is not greatly accelerated by ascaridole at 40° or 150°, Bz₂O₂ at 40°, old MeCHO at 40° or 150°, 30% H₂O₂ at 40°, K₂S₂O₈ at 40°, CuSO₄ at 40°, Cu-bronze, 5N-NaOH at 25°, Bu^aCl, o-, m-, and p-C₈H₄Cl·NO₂. Some acceleration is caused by 30% H₂O₂ at 145°, and by H₂O at the same temp. Vigorous or explosive polymerisation is caused by H₂S₂O₈ at 110°, EtOAc, EtNO₃, CuSO₄ at 145°, CH₂PhCl, CH₂CH·CH₄Cl, and Bu'Br. The effect of HNO₃, H₂SO₄, HCl, and AcOH is detailed. The polyethyleneimines studied are obtained by use of HCl or BF₃ under varied conditions. OH·[CH₂]₂·NH₂ is converted by successive treatments with HCl and SOCl₂ into β -chloroethylamine hydrochloride, m.p. 147-5—148°; β -chloro-n-propylamine hydrochloride, m.p. 180—182°, and N-phenyl- β -chloroethylamine hydrochloride, m.p. 155— 167°, are obtained similarly. Cl. [CH₂] NH₂ polymerises slowly at room temp., rapidly at 40°, suddenly at 95°. Rapid addition of a dil. solution of (I) in anhyd. Et₂O to an excess of dry HCl in Et₂O gives the unstable ethyleneimine hydrochloride, which rapidly polymerises. Dimeric (I), b.p. 126—127.5°, is obtained by polymerisation of (I) in Et₂O under defined conditions and treatment of the product with NaOH. NH₂:[CH₂]₂·NH·[CH₂]₂·OH is converted by distillation under 11 mm. with aq. H₂SO₄ to incipient charring followed by 40% NaOH into piperazine hydrate, m.p. 44°, and (II), shown to be identical with dimeric (I) by prep. of the *phenyl-hiocarbamate*, m.p. 129—131°. A polyethyleneimine I, obtained by use of conc. HCl at -78° and then at 25° for many days, is converted (Schotten-Baumann) into the Bz derivative, softens (Dennis bar) 110°, which with HCl in CHCl₂ yields a hydrochloride and is converted into a CH₂Ph derivative (hydrochloride) by condensation with PhCHO and reduction of the product by Na and abs. EtOH. The Bz derivative, softens (Dennis bar) 111°, of a polymeride obtained by use of BF₃ and the NO-derivative of a polymeride obtained in H₂O are described. Triethylenetetramine and $C_2H_4Br_2$ in abs. EtOH yield heptaethyleneoctamine (IV), b.p. $109-110^\circ$ / 0.5 mm. (Bz derivative, m.p. $202-220^\circ$); nonaethylenedecamine (V), b.p. 205° /2.5 mm. (Bz_n derivative, m.p. $75-105^\circ$), is obtained smilarly. Attempts to determine the chain length by Van Slyke NH2-N end-group analysis, cryoscopic measurements on the polymer, and extrapolation of η data obtained with compounds of low mol. wt. are described. For this purpose (CH₂·NH₂)₂, triethylenetetramine, tetraethylenepentamine, (IV), and (V) are used. Assuming no branching, the Van Slyke results indicate a degree of polymerisation of 5 units, the cryoscopic method of 42 units, and the extrapolation method of 57 units for a HCl-polymeride. Its nonextrapolation method of 57 units for a HCl-polymeride. distillability and relatively high η indicate the unreliability of the NH2-N method.

Derivatives of chondrosamine. M. Stacey (J.C.S., 1944, 272—274).—Chondrosamine hydrochloride (I) (new prep. from chondroin sulphate) with Ac_2O in C_5H_5N gives (60% yield) the $a-Ac_5$ (II), m.p. 178°, $[a]^{20} + 102^\circ$ in CHCl₃, but with Ac_2O and $ZnCl_2$ yields [30%] yield) the $\beta-Ac_5$ derivative (III), m.p. 235°, $[a]_D^{20} + 7^\circ$ in CHCl₃. (I) with AgOAc in $MeOH-Ac_2O$ yields $a-N-acetylchondrosamine monohydrate, m.p. 120—122°, <math>[a]_D^1 + 115^\circ \rightarrow 80^\circ$ after 50 hr. in H_3O . (II) with boiling 2% HCl-MeOH gives $N-acetylc-a-methylchondrosaminide, m.p. 217—218°, <math>[a]_D^{21} + 170^\circ$ in CHCl₃, which with $Mel-Ag_2O$ gives the Me_3 derivative (IV), m.p. 185°, sublimes 187°, $[a]_D^{20} + 121^\circ$ in CHCl₃. With Me_2SO_4 and NaOH, (II) gives (IV), (III) gives $N-acetyltrimethyl-\beta-methylchondrosaminide$ (V), m.p. 232°, sublimes 235° , $[a]_D^{20} + 7^\circ$ in CHCl₃, whilst a mixture of (II) and (III) gives (IV) and (V), separated by fractional crystallisation or vac.-sublimation. (V) is converted into (IV) in boiling HCl-MeOH as for the corresponding glucosamine derivative. (IV) on hydrolysis (aq. HCl) yields trimethylchondrosamine hydrochloride, m.p. 178°, $[a]_D + 114^\circ$ in H_2O . A mixture of (II) and (III) with HBr-AcOH affords acetobromochondrosamine (?), m.p. 152°, which loses Br on recrystallising (EtOH), giving triacetyl-N-acetylchondrosamine monohydrate, m.p. 183°, $[a]_D^0 + 60^\circ$ in CHCl₃.

Amino-acids. III. α -Amino-n- and -iso-butyric acid. J. H. Billmann-and E. E. Parker (J. Amer. Chem. Soc., 1944, 66, 538—539; cf. A., 1944, II, 152).—NH₂·CHEt·CH₂·OH, BzCl, and Na₂CO, in C₈H₈ at room temp. and then the b.p. give β -benzamido-n-butyl alcohol (89—91%), m.p. 98—99°, oxidised by KMnO₄ in aq. NaOH at 40° [less well, by PbO₂, Na₂Cr₂O₇-H₂SO₄, CrO₃, (NH₄)₂S₂O₈, or HNO₃] to NHBz·CHEt·CO₂H (67—72%), m.p. 139—140°, whence L 2 (A., II.)

boiling 18% HCl yields NH₂·CHEt·CO₂H (72%). NH₂·CMe₂·CH₂·OH yields similarly the N-Bz derivative (78—79%), m.p. 89—90°, and thence NHBz·CMe₂·CO₂H (91—93%) and NH₂·CMe₂·CO₂H (86%). R. S. C.

Purity of synthetic dl-leucine. D. M. Hegsted and E. D. Wardwell (J. Biol. Chem., 1944, 153, 167—170).—Leucine (I) and isoleucine (II) are essential for Lactobacillus arabinosus (A., 1944, III, 371). When synthetic dl-(I) is used it is found that (II) is no longer necessary, suggesting that natural l-(I) is free from (II) but that synthetic dl-(I) is not. 7 samples of commercial dl-(I) were tested by microbiological assay and 5 showed appreciable (II) activity. 3 had 10—20% of the activity of (II), and from one, (II) was isolated. Since d-leucine, tert. dl-(I), and dl-norleucine are all without (II) activity it is thought that the activity is due entirely to (II) or its optical isomerides.

Action of sulphites on cystine disulphide linkages of wool. IV. Methylation of thiol groups of bisulphited wools. S. Blackburn, R. Consden, and H. Phillips (Biochem. J., 1944, 38, 25—29; cf. A., 1942, II, 426).—SH groups formed when wool is treated with NaHSO3 are methylated by MeBr or MeI. A similar reaction occurs when wool is treated simultaneously with NaHSO3 and Me2SO4. S-Cysteinesulphonate groups are unaffected by these methylating agents. The isolation of S-methylcysteine from hydrolysates of S-methylated wools by partition chromatography of the N-acetylated NH2-acids is described. 1-N-Acetyl-S-methylcysteine, m.p. 73—80°, [a]₁₆¹⁹—37.8° in H2O, when heated at 100—110° in vac. is converted into dl-N-acetyl-S-methylcysteine, m.p. 155—156°.

Synthesis of homocystine and of methionine. H. R. Snyder and G. W. Cannon (J. Amer. Chem. Soc., 1944, 66, 511—512).—2:5-Diketo-3:6-di- β -chloroethylpiperazine (A., 1943, II, 72) and CS(NH₂)₂ in boiling EtOH give the di- β -isothiuronium chloride (I) (98%), darkens 250°, m.p. 255° (decomp.). Aq. NaOH at room temp. hydrolyses (I) to the (β -SH)₂ compound (not isolated), converted by FeCl₃-O₂ into the sulphide (not isolated), which in boiling conc. HCl gives homocystine (74.5%). Gradually adding aq. NaOH to (I) and Me₂SO₄ in H₂O at 0° (not other methods) gives the (β -SMe)₂ compound (75%), m.p. 226—227.5°, and thence dl-methionine (65%) (cf. loc. cit.).

Allylic rearrangement in the reaction of cuprous cyanide with butenyl halides. J. F. Lane, J. Fentress, and L. T. Sherwood, jun. (J. Amer. Chem. Soc., 1944, 66, 545—548).—CHMe:CH·CH₂X or CH₂:CH·CHMeX (X = Cl or Br) with CuCN at, successively, $60-70^{\circ}$, $95-100^{\circ}$, and $150-160^{\circ}$ gives $\Delta\theta$ -penteno- ($91\cdot5\pm0\cdot5^{\circ}$) and a-methyl- $\Delta\theta$ -buteno-nitrile ($8\cdot5\pm0\cdot5^{\circ}$), both b.p. 126° (corr.); the proportions, determined by n, are independent of the nature of the org. halide. The reaction is thus by way of the ion, [CHMe—CH—CH₂]⁺.

Binary systems formed from nitriles and halides of titanium, tin,

and antimony. N. A. Puschin, M. Ristic, I. Parchomenko, and J. Ubovic (Annalen, 1942, 553, 278—285).—HCN and McCN with SnCl₄ give compounds of high m.p. at which they decompose so that the systems cannot be investigated by the method of thermal analysis. Mixtures of HCl and PhCN with AsCl₃, of McCN with SnBr₄, PCl₃, AsCl₃, AsBr, and SbBr₃, and of EtCN or PhCN with SnBr₄ remain liquid at room temp. Thermal analysis shows the existence of the following compounds, the crystallisation temp. being given in parentheses: TiCl₄,EtCN (100°); TiCl₄,2PhCN (180°); TiCl₄,2C₅H₄Me·CN-p, (153°); SnCl₄,2EtCN (76·5°); SnCl₄,2PhCN (109°); SnCl₄,2-C₅H₄Me·CN-o; (73°); SnCl₄,2C₆H₄Me·CN-m (97°); SnBr₄,C₅H₄Me·CN-o (53°); SbCl₃,C₅H₄Me·CN-p (32°). Sbl₃ and PhCN do not afford a mol.

Ketone series. II. Condensation of monoketones with cyanoacetic acid. D. M. Trachtenberg and M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 437—480).—CN·CH₂·CO₂Et reacts with ketones in presence of piperidine for 3 hr. at $110-125^{\circ}$: CN·CH₂·CO₂Et + CORR' \rightarrow CRR':CH·CN. The ketones and yields of nitrile in each case are: COMePr, 70%; COMePr^β, 56% of βγ-dimethyl- Δ^{α} -pentenonitrile, b.p. 70—75°/165 mm.; COMeBu, 61% of β-methyl- Δ^{α} -hexenonitrile, b.p. 194—196°; COMe·C₆H_{·3}, 65%, b.p. 128—130°/100 mm.; mesityl oxide, 70% of βδ-dimethyl- $\Delta^{\alpha\gamma}$ -hexadienonitrile.

II.—SUGARS AND GLUCOSIDES.

Interpretation of reactions in the carbohydrate field in terms of consecutive electron displacement. H. S. Isbell (J. Res. Nat. Bur. Stand., 1944, 32, 45—59).—The general viewpoint is that the peculiar properties of systems involving double linkings may be explained by the migration of electron pairs in the mol. from points of high electron density to points of lower electron density with the addition and elimination of ions. Consideration of apparently unrelated complex reactions of the carbohydrates shows that the formation of the products may be explained by a few simple reactions involving shifts of electron pairs; these include enolisation, de-enolisation,

and double decomp. Mechanisms are presented for the formation of the saccharic acids by the action of alkali on sugars, of unsaturated lactones from OH-acids, of diacetylkojic acid from acetylated glucosone hydrate, for the conversion of glucal triacetate into ψ -glucal diacetate, of ψ - into iso- and proto-glucal, and of tetramethyl- Δ^1 -glucosene into ω -methoxymethylfurfuraldehyde, for the formation of lævulic acid from ω -hydroxymethylfurfuraldehyde and from 2-deoxypentoses and of furfuraldehyde from trimethylpentoses,

Reaction of glucose with amines. E. Mitts and R. M. Hixon (J. Amer. Chem. Soc., 1944, 66, 483—486).—Except when R = H, the rate of hydrolysis of glucosylamines, 'CH(OH)-CH(NHR)-O-, parallels the basic dissociation const. of NH₂R; when R = alkyl, equilibrium in \$2% aq. solution is established in 20 hr. at room temp. after 40% hydrolysis, but when R = aryl, only 8% of hydrolysis has occurred after 90 hr. and when R = acyl, the amides are stable even in acid (at room temp.). The Amadori rearrangement (to 'CO-CH₂*NHR) occurs only when R = aryl, and acid conditions are ideal for prep. of glucosylalkylamines: the Bu, n-amyl, n-heptyl, and dicyclohexyl derivatives are prepared from glucose (1 mol.) and amine (2 mols.) in 0-5N-HCl at 70—75°; other derivatives are prepared from 1 mol. each of glucose and base in boiling MeOH or EtOH (cf. A., 1944, II, 37). 2-Methylglucose (I) with NHPh·NH₂ and a drop of AcOH in H₂O at room temp. give 2-methylglucosylphenylhydraxine, m.p. 176—177°, but on further reaction at the b.p. gives glucosephenylosazone; however, with p-toluidine in H₂O at 100° (I) gives only 2-methylglucosyl-ptoluidine, m.p. 150—151°, which does not rearrange or condense further. Hydrogenation (Raney Ni) of the (even non-cryst.) glucosylalkylamines in MeOH, EtOH, or aq. EtOH at, usually, 70—83°/800—1300 lb. gives cryst. alkylglucamines, 'CH(OH)·CH₂·NHR (cf. loc. cit.), which are stable to strong acid or alkali and to heat and can be titrated electrometrically with dil. acid; the intermediate alkyl derivatives are surface-active. The following new or revised data (cf. loc. cit.) are recorded. Glucosyldicyclohexylamine, m.p. 97—98°, contains 1 mol. of dicyclohexylamine of crystallisation, which cannot be removed without decomp. NN'-Diglucosylethylene diamine, m.p. 152—154° (decomp.). Glucosyl-n-hexa-, m.p. 106—107° after softening, and -n-octa-decylamine, m.p. 104—105° after softening, N-n-exadecyl-, m.p. 127—128°, N-n-amyl-, [a]²⁵ —13·8° in 50% EtOH, and N-β-octyl-glucamine, m.p. 135—137°. 1-Aminoglu

Large-scale preparation of D-altrose. D-Altroseoxime and its rate of mutarotation. R. C. Hockett and L. B. Chandler (J. Aner. Chem. Soc., 1944, 68, 627—628).—Prep. of cryst. D-altrose (oxime, m.p. 143—144°, $[a]_D^{24.9} - 64\cdot0^\circ - 9\cdot8^\circ$ in H_2O , from D-lactose (cf. Richtmyer et al., A., 1935, 1355) is modified to give 3.7% over-all yield. R. S. C.

Preparation of mannose. E. K. Narayanan (Indian J. Med. Res., 1941, 29, 1—6).—Complete hydrolysis to mannose of the polysaccharide in ivory-nut meal requires 10 hr. boiling with N-H₂SO₄ or 15 hr. heating at 105°. About 7% of the total sugar is thereby destroyed.

S. E. M.

Magnitude of "unit chains" of liver-glycogen of rabbits supplied with glucose, fructose, and sucrose.—See A., 1944, III, 606.

Glycosides sensitive to alkali. Glucosides of nitro-alcohols. B. Helferich and M. Hase (Annalen, 1943, 554, 261—268).—Presence of NO₂, like that of SO₃H, in immediate propinquity to the glycosidic linking renders the glycosides very sensitive to alkali and hence enables them to reduce Fehling's solution immediately. Even under mild conditions the glucose liberated by alkaline hydrolysis immediately darkens. NO₂ remote from the glycosidic linking does not cause sensitiveness to alkali. The action of Ag₂CO₃ on a solution of acetobromoglucose (I) and NO₂·[CH₂]₂·OH in CHCl₃ at room temp. leads to β-nitroethyl-β-d-glucoside tetra-acetate, m.p. 119—120° (corr.), [a]_D δ −15·8° in CHCl₃, which could not be hydrolysed to the free glucoside; replacement of Ag₂CO₃ by Ag₂O and CaSO₄ gives (?) β-nitroethyl-α-d-glucoside tetra-acetate, m.p. 139—140° (corr.), softens at ~125°, [a]_D δ +37·5° in CHCl₃. NO₂·CH(CH₂·OH)₂. (I), and Ag₂CO₃ in anhyd. Et₂O yield β-nitropropane-αy-dioldi-β-d-glucoside tetra-acetate, m.p. 179·5—180·5° (corr.), [a]_D −25·8° in CHCl₃. NO₂·C(CH₂·OH)₃. (I), and Ag₂CO₃ in EtOAc afford β-nitro-isobutanetriol-β-d-glucoside (nitroisobutylglycerol-β-d-glucoside) tetra-acetate, m.p. (anhyd.) 132—134° (corr.), [+1H₂O), m.p. 94·5—96°, [a]_D −31·2° in MeOH; under similar conditions but with substitution of COMe₂ for EtOAc the product appears to be NO₂·C(CH₂·OH)₂·CH₂·O·CMe₂·O·C₂H₇·O(OAc)₄, m.p. (very indef, 154—156°/corr.), [a]_D −3·8° in CHCl₃; the substances are converted by Ac₂O and C₂H₂N at 0° and subsequently at room temp. into the corresponding hexa-acetates, m.p. 147—148° (corr.), [a]_D −24·1° in CHCl₃, and m.p. 144—146°, [a]_D −3·1° in CHCl₃. δ-Nitro-n-

butanol- β -d-glucoside tetra-acetate (II), m.p. 139—141° (corr.), $[a]_D^{2l}$ —18·7° in CHCl₃, is obtained from the corresponding I-compound and AgNO₂ in boiling C_eH_e; it reduces Fehling's solution only after hydrolysis and is converted by NaOH into the amorphous glucoside, re-acetylated to (II).

Cerebroglucoside, m.p. 185° , $[\alpha]_{1}^{16}$ — 11·3° in C₅H₅N, from spleen, its H₂-derivative, m.p. ~188°, $[\alpha]_{2}^{17}$ — 2·6°, and lignoceryldihydrosphingosine.—See A., 1944, III, 549.

Chemistry and biochemistry of plant materials. IX. Formation of dihydroflavonol and flavonol and synthesis of chalkoneflavanone-flavonol glucosides. L. Reichel and J. Steudel (Annalen, 1942, 553, 83—97).—Resacetophenone-4-glucoside (I) is used in further syntheses. Resacetophenone, α-acetobromoglucose, and 10% NaOH in COMe₂ at room temp. afford resacetophenone-4-glucoside tetra-acetate (cf. Müller, Diss., Karlsruhe, 1938), m.p. 130—131°, [α]₂₀²⁰ —29·7° in COMe₂, hydrolysed by gradual addition of Na to its solution in abs. MeOH to (I), m.p. 198—200°, [α]₂₀²⁰ —86·9° in COMe₂, PhCHO, (I), and 2N-NaOH give 2': 4'-dihydroxychalkone-4'-β-d-glucoside (II), m.p. 195—197°, (+1H₂O), [α]₂₀²⁰ —53·9° in COMe₂, hydrolysed by acid to 2': 4'-dihydroxychalkone, m.p. 147—148°. (II) is oxidised by alkaline H₂O₂ to 3:7-dihydroxyflavone-7-β-d-glucoside, m.p. 223—225°, [α]₂₀²⁰ —90·1° in dioxan, slowly hydrolysed by acid to 7-hydroxyflavanone-7-β-d-glucoside, m.p. 184—187°, (+1H₂O), [α]₂₀²⁰ —90·1° in COMe₂, also obtained slowly from (I), PhCHO, and NaOH in aq. EtOH at room temp. and hydrolysed by acid to 7-hydroxyflavanone, m.p. 182—184°. iso-Vanillin, (I), and NaOH at room temp. yield 3: 2': 4'-trihydroxy-4-methoxychalkone-4'-β-d-glucoside (4-methylbutein-4'-glucoside), m.p. 212—214°, (+1·5H₂O), [α]₂₀²⁰ —45·2° in COMe₂, oxidised by alkaline H₂O₂ to 3: 7: 3'-trihydroxy-4'-methoxyflavone-7-β-d-glucoside, m.p. 254—255° (decomp.), [α]₂₀²⁰ —59·3° in C₂H₂N, and converted by a little NaOH in aq. MeOH into 7: 3'-dihydroxy-4'-methoxyflavanone-7-β-d-glucoside, m.p. 208—211°, (+1H₂O), [α]₂₀²⁰ —84·3° in 50% COMe₂.

Chemistry and biochemistry of plant materials. X. Synthesis of

Chemistry and biochemistry of plant materials. X. Synthesis of flavanoneglucosides under physiological conditions. L. Reichel and R. Schickle (Annalen, 1942, 553, 98—102).—Negative results are obtained by the attempted condensation of hydroxyacetophenones with hydroxybenzaldehydes to hydroxychalkones or hydroxyflavanones under physiological conditions so that the biosyntheses of these compounds does not occur in this manner. Since these compounds are found in plants almost exclusively as glucosides it is highly improbable that the latter are formed in the cell from aglycone and sugar under the influence of carbohydrases. The authors have therefore examined the possibility that glycosides of the OH-compounds condense with one another and that the sugar residues are partly or wholly removed from the products by sp. enzymes; glycosides may then be resynthesised from these secondary aglycones. Resacetophenone-4-β-d-glucoside (I) and PhCHO at pH 8·3 give a 20 % yield of 7-hydroxyflavanone-7-β-d-glucoside, m.p. 184—187°, in 83 days; small additions of carotene are used as an antioxidant of PhCHO. 4'-Hydroxyflavanone-4'-β-d-glucoside, m.p. 218—220°, [a]½ —37·4° in dioxan, is obtained in 19% yield at pH 8·0 in 103 days from σ-OH-C₆H₄-COMe and ρ-hydroxybenzaldehyde-β-d-glucoside, m.p. 156—158° (obtained by hydrolysis of the tetracetate, m.p. 144—145°, prep. from p-OH-C₆H₄-COMe and 2:4-dihydroxybenzaldehyde-4-g-d-glucoside, m.p. 218—220°, [a]½ —102·1° in H₂O, afford 2':4'-dihydroxyflavanone-4'-β-d-glucoside, m.p. 180—183° (decomp.), (+2H₄O), [a]½ —47·1° in abs. MeOH; at pH 7·6 the yield is 23% after 40 days and at pH 8·3 it is only 12% after 63 days. (I) and isovanillin-β-d-glucoside afford 7:3'-dihydroxy-4'-methoxyflavanone-7:3'-β-d-diglucoside, m.p. 220—224°, [a]½ —124·3° in quinoline (also + 2H₂O); the yield is 20·4% in 83 days at pH 7·5 and 14·6% in 80 days at pH 8·4.

III.—HOMOCYCLIC.

Isomerisation of polymethylene hydrocarbons under the influence of aluminium chloride. X. Isomerisation of methylcycloheptane. M. B. Turova-Polak and P. L. Rappoport (J. Gen. Chem. Russ., 1943, 13, 353—357).—Over Pt-C at 305—310°, methylcycloheptane (I) is isomerised and dehydrogenated directly, in 94% yield, to xylene (p-, with a small proportion of m-). Bromination of (I) in the presence of AlBr₃ yields tetrabromoxylene, m.p. 253°. Addition of AlCl₃ to (I) causes a rapid rise of temp. and conversion of (I) into 1:4-dimethylcyclohexane, containing a very small amount of the 1:3- and a trace of the 1:2-compound.

R. C. P.

Carbon rings. XXXV. Preparation of cycloundecane from benzosuberane. P. A. Plattner (Helv. Chim. Acta, 1944, 27, 801—810).—Gradual addition of Ph-[CH₂]₄·COCl in much CS₂ to AlCl₃ in boiling CS₂ affords benzosuberone, b.p. 138—139°/12 mm., in 87% yield. This is reduced (Clemmensen-Martin) to benzosuberane (I), b.p. 99·8—100°/13 mm., m.p. -1·5°, which is hydrogenated (PtO₂ in AcOH or Raney Ni-H₂ at 180°/145 atm.—EtOH) to hexahydro-

benzosuberane (dicyclo-[0:4:5]-undecane), b.p. 88-5-89°/11 mm.

Ozonisation then yields mainly dicyclo-[0:4:5]-undecan-Ozonisation then yields mainly dicyclo-[0:4:5]-undecan1-ol (II), b.p. 118—120°/13 mm., m.p. 30—31° (dinitrobenzoate, m.p. 201°), with minor amounts of cycloundecane-1:6-dione (III), b.p. 110—115°/0·1 mm. [dioxime
(IV), m.p. 232—234° (decomp.); disemicarbazone, m.p.
218°]; a semicarbazone, m.p. 154°, of a dicyclic monoketone is also isolated. Addition of MnO₂ favours the formation
of (II) but unchanged material in considerable proportion remains.

III is converted by analyd. ZnCl. at 140° into dicyclo-[0:4:5]-

(II) is converted by anhyd. ZnCl₂ at 140° into dicyclo-[0:4:5]undecene (III), b.p. 90—91°/12 mm., which when ozonised in 50%
AcOH at -10° affords (III). More conveniently (III) is obtained by hydrogenation of (I) by Ca hexammine. Reduction of (IV) by Na and C₅H₁₁·OH leads to a mixture of amines from which 1:6diaminocycloundecane, b.p. 156—158°/12 mm., is readily isolated through the sparingly sol. carbamate. It gives a dihydrochloride, decomp. 230—260° with partial sublimation, dipicrate, m.p. 233—235°, and an Ac₁ derivative, m.p. 252·3—252·5°. It is methylate It is methylated to 1: 6-tetramethyldiaminocycloundecane dimethiodide, decomp.312-313°; the corresponding quaternary base is decomposed thermally into cycloundecadiene, which is readily hydrogenated (PtO₂ in EtOH– Et₁O at room temp.) to cycloundecane, b.p. 91-91.3°/12 mm.,

Binary system, tin tetrachloride-m-dinitrobenzene. E. Hertel (Annalen, 1942, 553, 286—288; cf. A., 1933, 27).—In reply to Puschin et al. (A., 1943, II, 4) it is stated that in the examination of the system TiCl₄-m-C₆H₄(NO₂)₂ the authors have so worked that in the region up to 50 mol.-% of TiCl₄ the compound 2TiCl₄,C₆H₄(NO₂)₂ is invariably formed in the primary crystallisation from the undercooled melt either spontaneously or by seeding. The eutectic between the phases $2 \, \mathrm{TiCl_4}, C_8 \, H_4 (\mathrm{NO_2})_2$ and $m \cdot C_6 \, H_4 (\mathrm{NO_2})_2$ happens to be at $\sim \! 50 \,$ mol.-% of $\mathrm{TiCl_4}$. Lack of suitable seeding material has prevented the discovery of other phases.

Valency tantomerism or mesomerism with ωω'-tetraphenylpolyenes. G. Wittig and B. Fartmann (Annalen, 1943, 554, 213-240). Chemical and physical methods of discriminating between valency tautomerism and mesomerism are discussed at the instances of p-vinylenedi(triphenylmethyl) (I), p- (II) and m- (III) -azoditriphenylmethyl. (p-C₆H₄Bz·CH₂)₂ is converted by Br in boiling PhNO₂ into pp'-dibenzoylstilbene, m.p. 234—235°, transformed by the successive action of LiPh in anhyd. Et₂O and H₂O into pp'-di(hydroxydiphenylmethyl)stilbene, m.p. 218—218-5°, which with HCl gives pp'-di(chlorodiphenylmethyl)stilbene, decomp. 213—216° when heat factors. when heated from 100° or decomp. 234° (bath preheated to nearly ^{234°}). This with MeOH in hot dioxan gives pp'-di(methoxydiphenyl-methyl)stilbene, m.p. 178—179°, and is dehalogenated by Cu powder apparatus see C., 1944, Part 4) to (I), m.p. 252—255°. Its solutions are immediately decolorised by O₂ without manifestation of the Schmidlin phenomenon. p-NO₂·C₆H₃·CPh₂Cl, m.p. 92—93°, is converted by NaOAc and AcOH into the corresponding carbinol IV), reduced by Zn dust and NaOH in aq. EtOH to pp'-di(hydroxy-diphenylmethyl)hydrazobenzene (V) which, on account of its instability, is immediately oxidised to pp'-di(hydroxydiphenylmethyl)-mobenzene (VI), m.p. 218—219°, either by Br and NaOH or, preferably, by CrO₂ in aq. AcOH. Electrolytic reduction of (IV) at a Pt cathode gives pp'-di(hydroxydiphenylmethyl)azoxybenene, m.p. 177-179°, and then (very slowly) (VI). (VI) is transformed by HCl in C₁H₆ containing a little AcCl into pp'-di(chlorodiphenylmethyl)azo-bnzene, decomp. 242° [corresponding (OMe)₂-derivative, m.p. 200— 201°, softens at 198°], converted by Cu powder in C_6H_6 , PhMe, or CCl_4 into (II), almost black crystals, m.p. 252—255°, which markedly depresses the m.p. of (I). Solutions of (II) are immediately and **non-recurringly decolorised by air with the formation of complex peroxides $\cdot O \cdot O \cdot CR_2 \cdot C_6H_4 \cdot N \cdot N \cdot C_6H_4 \cdot CR_2 \cdot O \cdot O \cdot CR_2 \cdot \cdots$. Formation by use of Cu powder and behaviour towards air indicate a diradical Structure for (II), the possible suipopoid extracture suggested by its structure for (II); the possible quinonoid structure, suggested by its formation by dehydration of (V), is negatived by its prolonged stability towards dil. H_2SO_4 at 60°, which also brings evidence against a tautomerism of two valency isomerides in solution. Since the magnetic properties of the analogous (I) exclude the possibility that these polyenes exist solely in the diyl form it appears highly probable that internal valency compensation has occurred between the conjugated systems of a quinone and a diradical and therefore that the polyene mol. is in a condition intermediate between the limiting structures of a quinone and a diyl. COPh·C₆H₄·NO₂-m Is transformed by PCl₅ at 120—130° into m-nitrobenzophenone di-chloride, m.p. 66°, converted by AlCl₃ and C₆H₆ into m-nitrotri-phenylmethyl chloride, m.p. 92—93°, which with NaOAc yields the carbinol, m.p. 75°. This is reduced electrolytically (Pb anode; Ni cathond, m.p. 75°. This is reduced electrolytically (Pb anode; Ni cathode) to mm'-di(hydroxydiphenylmethyl)azobenzene, m.p. 174—176°, which is converted by HCl and AcCl in CHCl₂ into mm'-di-(hlorodiphenylmethyl)azobenzene, m.p. 206—208° [corresponding (OMe)₂-derivative, m.p. 200—201°], transformed by Cu powder in absence of air and light into (III), which could not be obtained cryst. Its solutions are pale brown with a tendency towards green resembling in shade and depth those of CPh₂. (III) behaves as a true diradical dissociated to only a slight extent; at 80° the colour becomes con-

siderably more intense but the original shade is regained on cooling. The structure of (I), (II), and (III) is confirmed by their conversion into the corresponding dichlorides by PhICl₂. With Li-diphenylamine in Et₂O the dichlorides yield the corresponding diyls. solutions of (I) and (II) mixed crystals of the compounds are obtained. (I) and (III) do not yield cryst, materials and definite products could not be isolated from (II) and (III).

The dependence of absorption spectrum on temp, opens a new way for discriminating between mesomerism and valency tautomerism. In 0.0001M. solution the varying colour of the solutions with temp. is obvious; association is excluded since the solutions obey Beer's law. The violet-blue colour of (I) passes into blue at -70° and becomes non-characteristic at 100° . (II) is more violet (II) is more violet than (I); on cooling the colour is displaced towards shorter λ , on heating towards longer λ ; at 100° it appears almost carmine-red. Difficulties due to apparatus prevent quant. measurements within such wide limits but between 15° and 55° the absorption max. [\sim 590 m μ . for (I) and \sim 575 m μ . for (II)] is displaced towards shorter λ with increase of temp. Optical measurements could not be made with (III) since its max. lies at the short-wave border of the visible spectral region.

Hydrogenation of anthracene by tetrahydronaphthalene. M. Orchin (f. Amer. Chem. Soc., 1944, 66, 535—538).—In presence of Pd-C in an open tube, 1:2:3:4-tetrahydronaphthalene (I) at 225— 230° evolves much H₂. Presence also of anthracene (II) decreases evolution of H_2 , which is utilised for hydrogenation of the (II) to mainly 1:2:3:4-tetra- (III) with some 9:10-di- (IV) and s-octahydroanthracene. The amounts of H2 and hydrogenated products depend on the temp. and ratio of (I) to (II). Reaction in a sealed tube is similar. The di- and octa-hydroanthracene are formed by disproportionation of the H₄-compound, a reaction which is shown to be reversible. With Raney Ni in boiling EtOH, (II) or (IV) gives to be reversible. With Raney Ni in boiling EtOH, (II) or (IV) gives a good yield of (III). In presence of Pd-C cyclohexenone acts as a dihydrophenol and with (II) gives 30% of (III). These reactions show the need for caution in determining the primary products of hydrogenation of, e.g., coal. Chromatographic separation of (III) and (IV) on Al₂O₃ is described.

Hydroanthracenes and hydrophenanthrenes. H. J. W. Cook, (Miss) N. A. McGinnis, and S. Mitchell (J.C.S., 1944, 286—293; (Miss) N. A. McGinnis, and S. Mitchell (J.C.S., 1944, 250—295; cf. A., 1939, II, 103).—trans-Hexahydroanthrone $[(NO_2)_1$ -, m.p. 130.5—131.5°, and $(NH_2)_1$ -derivative, m.p. 165—166°] is reduced (Zn-HCl) to trans-as-octahydroanthracene (I), m.p. 63—64°, and a little (?) hexadecahydro-9: 9'-dianthryl, m.p. 245—250°, but with H2-PtO2 yields (I) and 9-hydroxy-trans-as-octahydroanthracene, m.p. 136°, giving a hexahydroanthracene, m.p. 63—66°, on dehydration. Sulphonation of (I) gives the Na sulphonate, converted by fusion with KOH into ar-hydroxy-trans-as-octahydroanthracene, m.p. 104°, affording trans-cyclohexane-1: 2-diacetic acid, m.p. 166—167°, on oxidation (KMnO₄). With AlCl₃ (I) yields a perhydroanthracene (II), m.p. 204°, and on catalytic hydrogenation (PtO₂) gives a perhydroanthracene (III), m.p. 39—40°, or (Raney Ni) at 200°/150 atm. a perhydroanthracene (IV), m.p. 89—90°. Hydrogenation of s-octahydroanthracene yields (Raney Ni) a mixture of (III) and (IV) and (PtO₂) a perhydroanthracene (V) (completely cis?), m.p. 61·5—63°. With AlCl₃ (V) is converted into (III) and (III) into (IV). (II) and (IV) are not dehydrogenated by Se or Pd but (V) with Se affords anthracene. AlCl₃ with crude as-octahydrophenanthrene (VI) (from cyclisation of 1-β-phenylethyl-Δ'-cyclohexene with AlCl₃ at 50—70° effects cis-trans-isomerisation, oxidation (CrO₃) of the product giving trans-9-keto-as-octahydrophenanthrene, m.p. 95—96° affording trans-cyclohexane-1: 2-diacetic acid, m.p. 166-167°, on at 50—70° effects cis-trans-isomerisation, oxidation (CrO₃) of the product giving trans-9-keto-as-octahydrophenanthrene, m.p. 95—96° (oxime, m.p. 176—177°), but at 125—130° tetrahydronaphthalene, (II), and (IV) are obtained. Structures are suggested for (II), (III), and (IV). 2-β-Phenylethylcyclohexylacetyl chloride (corresponding p-phenylphenacyl ester, m.p. 75—77°) with AlCl₃ in PhNO₂ gives a dibenzcyclooctanone (2:4-dinitrophenylhydrazone, m.p. 242—244°), and with SnCl₄ in C₆H₆ a lactone, C₁₃H₂₀O₂, m.p. 67—68°. 2-Benzylcyclopentylacetyl chloride with AlCl₃ yields 1:2:3:4:7:8:9:10-octahydro-5:6-benz-7-azulone, m.p. 56° (2:4-dinitrophenylhydrazone, m.p. 169—170°), giving the octahydrobenzazulol, m.p. 128—129°. m.p. 169—170°), giving the octahydrobenzazulol, m.p. 128—129°, dehydration of which gives 1:2:3:4:9:10-hexahydrobenzazulene, m.p. 29—35°, affording 1:2:3:4:7:8:9:10-octahydrobenzazulene, m.p. 29—30°, on hydrogenation. M.p. are corr. D. G.

Influence of n-alkyl groups on the rate of a cyclisation reaction. E. Berliner (J. Amer. Chem. Soc., 1944, 66, 533—535).—Cyclisation of o-CHPhMe CoH4 COR to dialkylanthracenes in boiling 48% HBr-AcOH depends on the nature of R (cf. Bradsher *et al.*, A., 1943, II, 95), k being R = Me 4·6, Et 1·8, Pr^a 0·99, Bu^a 0·35, n-amyl 0·36, n-C₆H₁₃ 0·36, Ph 0·16, and CH₂Ph 0·91 \times 10⁻² min.⁻¹ With (77%), b.p. 164-166°/17 mm. H2-Raney Ni in EtOH at 1 atm. then yields a-phenyl-a-o-chlorophenylethane, b.p. 158°/12 mm., which with CuCN and C₅H₅N (bath at 250—260°) gives o-CN·C₅H₄·CHPhMe

256

(75·7%), b.p. $190-191^{\circ}/17-18$ mm. With, successively, MgRCl-C_oH_b, 20% aq. NH_bCl, and boiling HCl-COMe₂-H₂O this gives o-a-phenylethyl-aceto- (75·5%), b.p. $184-186^{\circ}/16-17$ mm., -propio-, b.p. $189-190^{\circ}/16-17$ mm., -n-butyro-, b.p. $194-197^{\circ}/14-15$ mm., -n-valero-, b.p. $205-206^{\circ}/17-18$ mm., -n-hexo-, b.p. $209-212^{\circ}/15-16$ mm., -n-hepto-, b.p. $217-219^{\circ}/14-15$ mm., and -a-phenyl-aceto-phenone, b.p. $195-197^{\circ}/1-2$ mm., and 2-a-phenylethylbenzo-phenone, m.p. $47-48^{\circ}$, b.p. $216-219^{\circ}/7-8$ mm. Cyclisation (cf. above) yields 9-methyl-10-ethyl-, m.p. $143\cdot2-144^{\circ}$ (picrate, m.p. $137\cdot8-138\cdot4^{\circ}$), -10-n-propyl-, m.p. $97\cdot8-98\cdot6^{\circ}$ (picrate, m.p. $125\cdot5-126\cdot2^{\circ}$), -10-n-butyl-, m.p. $78\cdot2-78\cdot8^{\circ}$ (picrate, m.p. $91\cdot8-92\cdot8^{\circ}$), -10-n-amyl-, m.p. $71-71\cdot8^{\circ}$ (picrate, m.p. $85\cdot4-86\cdot2^{\circ}$), and -10-n-hexyl-, m.p. $65\cdot8-66\cdot5^{\circ}$ (semipicrate, m.p. $78\cdot2-79\cdot2^{\circ}$), 9-phenyl-10-methyl-, m.p. $113\cdot5-114\cdot5^{\circ}$ (lit. 112°) (picrate, m.p. $125\cdot2-126^{\circ}$), and 9-benzyl-10-methyl-, m.p. $167\cdot8-168\cdot6^{\circ}$, -anthracene. M.p. are corr.

Hydrogenolysis of abietic acid. H. B. Charmbury and C. C. Wright (J. Amer. Chem. Soc., 1944, 66, 526—532).—Hydrogenolysis of abietic acid for 2 hr. at 325°, 370°, 400°, 425°, and 450°, and for 3 discontinuous periods each of 1 hr. at 400°, is investigated. Decarboxylation to yield CO₂ accounts for almost all the loss of O₂; in 2 hr. it is incomplete at 325° but complete at 450°, and at 400° 73.9% complete in 1 hr.; some CO + H₂O are also obtained, being derived at least partly by reduction of CO₂. Loss of Pr^B does not occur at 375° but is rapid at higher temp., being then a function of [H₂] or partial pressure of H₃. The amounts of CH₄, C₃H₈, n- and iso-C₄H₁₀ formed show that the C₂H₈ results partly from cracking of C₃H₈, but that loss of 1 Me begins at 325° and is also a function of time and [H₂]. At 370° there is some addition of H₂ to C:C or C:C-C:C, but at higher temp. dehydrogenation occurs. Ring-fission begins at 425°, thereafter becoming more rapid and being a function of [H₂]; products isolated include trans-1: 2-dimethyl-, methyl-, and ethyl-cyclohexane, 3:5-dimethyl-\Delta^1-cyclohexene, and, by isomerisation of a C₆-ring, 1:3-dimethylcyclopentane. The H₂ consumed at lower temp. is almost all accounted for by saturation of C:C, cracking, and reduction of CO₂. The following products are isolated: at 370° 12-methyl-\Delta^{1(1)}-\Delta dodecahydroretene, b.p. 139—142°/4 mm.; at 400° (2 hr.) 1:12-dimethyl-\Delta^{1(1)}-decahydrophenanthrene, b.p. 122—125°/4 mm., and 12-methyl-dodecahydroretene, b.p. 143—146°/5·5 mm., and by discontinuous heating two isomeric decahydroretenes, b.p. 122—128°/4 mm., and 1:12-dimethyl-, b.p. 127—131°/2 mm.; at 425° 1-methyl-\Delta^{7:8(14)}-decahydro-, b.p. 118—120°/3 mm., and then 1-methyl-dodecahydro-phenanthrene, b.p. 112—116°/4 mm.

Aryl and aralkyl carbamides. J. S. Buck, R. Baltzly, and A. E. Ardis (J. Amer. Chem. Soc., 1944, 66, 311—312).—NH₂·CO·NH·NO₂ and NHRR' (reaction incomplete for o-substituted amines) give N-phenyl-N-β-hydroxyethyl-, m.p. 110°, and N-m-4-xylyl-, m.p. 73—74°, N-5-chloro-o-tolyl-, m.p. 93°, N-5-bromo-o-tolyl-, m.p. 88·5—89°, N-4-chloro-o-tolyl-, m.p. 166—167°, N-3-bromo-p-tolyl-, m.p. 116°, N-4-bromo-2-ethylphenyl-, m.p. 168—167°, N-p-ethylphenyl-, m.p. 122—124°, N-2-bromo-4-ethylphenyl-, m.p. 114°, and N-5-bromo-o-phenetyl-N-ethylcarbamide, m.p. 124—124·5°, N-benzyl-, m.p. 135°, N-p-methoxybenzyl-, m.p. 140—141°, N-3-chloro-4-methoxybenzyl-, m.p. 169—169·5°, N-3-bromo-4-methoxybenzyl-, m.p. 178°, N-β-3-chloro-4-methoxyphenylethyl-, m.p. 117·5—118°, and N-β-3-bromo-4-methoxyphenylethyl-N-methylcarbamide, m.p. 116·5—117°, N-5-bromo-o-tolyl-N-n-propyl-, m.p. 94·5—95·5°, N-4-chloro-o-tolyl-N-n-butyl-, m.p. 79·5—80°, and N-benzyl-N-n-butyl-carbamide, m.p. 61—62°. EtNCO and the appropriate amine give N-5-bromo-o-tolyl-N'-ethyl-, m.p. 230—232°, and N-m-4-xylyl-NN'-dethyl-carbamide, m.p. 61—62°. The following amines are prepared by standard methods: NHRMe in which R = 4:3:1-OMe·C₆H₃Cl·CH₂ (hydrochloride, m.p. 201—201·5°), -OMe·C₆H₃Br·CH₂ (hydrochloride, m.p. 202—203°), -OMe·C₆H₃Cl·[CH₃]₂ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₂ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 215—216°); NHREt in which R = 4:3:1-CMe·C₆H₃Cl·CH₃ (hydrochloride, m.p. 2

benzoyl-N'-o-ethylphenyl-N'-ethylcarbamide, m.p. 128—129°. The following amines are prepared by standard methods: NHRMe in which R = 4:3:1-OMe·C₆H₃Cl·CH₂ (hydrochloride, m.p. 201—201·5°), -OMe·C₆H₃Br·CH₂ (hydrochloride, m.p. 196°), and -OMe·C₆H₃Cl·[CH₂]₂ (hydrochloride, m.p. 196°), and -OMe·C₆H₃Br·[CH₂]₂ (hydrochloride, m.p. 215—216°); NHREt in which R = 2:4:1-C₆H₃MeCl, b.p. 136°/13 mm., -C₆H₃MeBr, b.p. 96—99°/0·25 mm., and -C₆H₃EtBr, b.p. 135°/3 mm., 4:2:1-C₆H₃MeBr, b.p. 137°/17 mm., and -C₆H₃EtBr, b.p. 107°/3 mm., 2:5:1-C₆H₃MeCl, b.p. 141°/27 mm., and -OEt·C₆H₃Br, b.p. 111°/0·25 mm., and p·C₆H₄Et, b.p. 122—123°/22 mm.; 2:5:1-C₆H₃MeCl·NHBu°, b.p. 125°/1 mm. M.p. are corr. R. S. C.

Metabolism of 2:4:6-trinitrotoluene (a-T.N.T.). H. J. Channon, G. T. Mills, and R. T. Williams (Biochem. J., 1944, 38, 70—85).—2:6:2':6'-Tetranitro-4:4'-azoxytoluene, m.p. 215—216', is obtained by oxidation of 2:6:1:4-(NO₂)₂C₈H₂Me·NH·OH with $K_2Cr_2O_7$ and H_2SO_4 or, preferably, of 2:6:1:4-(NO₂)₂C₈H₂Me·NH₂-EtOH gives (I), converted into its Bz, m.p. 263—264°, and $PhSO_2$ (II), m.p. 175—177°, derivatives. Electrolytic reduction of a-T.N.T. affords a mixture of dinitroaminotoluenes (III) from which after benzoylation 2:4-dinitro-6-benzamidotoluene, m.p. 216—217°, is isolated. (III) is more conveniently separated into its components by treatment with PhSO₂Cl and C_3H_3N , which leads to the isolation

of 2:4-dinitro-6-dibenzenesulphonamidotoluene, m.p. 222°, and (II) (m.p. 177—178°). These are hydrolysed to 2:4-dinitro-6-aminotoluene, m.p. 176° (Ac derivative, m.p. 159—160°), and (I), respectively. (See also A., 1944, III, 606, and C., 1944, 118.)

p-Hydroxylaminobenzenesulphonamide, its acetyl derivatives and diazotisation reaction. H. Bauer and S. M. Rosenthal (J. Amer. Chem. Soc., 1944, 66, 611—614).—p-NO₂·C₆H₄·SO₄·NH₂ and Zn dust in NH₄Cl-EtOH-H₂O at 45—52° give p-OH·NH·C₆H₄·SO₂·NH₂ (I) (63—88·5%), m.p. 143—144° (decomp. 148—158°) (lit. 139·5—140·5°), the mother-liquors from which with FeCl₃ yield p-nitrosobenzenesulphonamide, decomp. 155—268°. With NaNO₂-aq. HCl, (I) gives the N⁴-NO-, m.p. 120°, with Ac₂O gives the N-Ac, m.p. 228° (cannot be diazotised), but with Ac₂O in much H₂O gives mainly the O-Ac derivative (II), m.p. 138° (readily diazotised), p-NO₂·C₆H₄·CO₂H and Zn dust in NH₄Cl-NaOH-H₂O at 15—20° give p-hydroxylaminobenzoic acid (III) (31%), darkens ~240°, m.p. >300° [N-Ac, m.p. 210° (decomp.), and N-NO-derivative, decomp. when heated]. In AcOH the products obtained from (I), (II), (III), and NHPh·OH by HNO₂ contain 23, 63—67, 45%, and a trace, respectively (determined colorimetrically), of diazo-compound. Addition of Ac₂O prior to treatment of (I), (III), and NHPh·OH increases these amounts to 48, 63, and 10%, respectively. Use of this reaction to determine (I) in body fluids is liable to error owing to interference by other labile compounds.

R. S. C.

 $N^4\text{--Benzoyl-}N^1\text{--acetylsulphanilamide.}$ C. P. Lo and L. J. Y. Chu (J. Amer. Chem. Soc., 1944, 66, 660).— $N^4\text{--Benzoyl-}N^1\text{--acetylsulphanilamide,}$ m.p. 262—263°, is obtained from the $N^4\text{--Bz}$ derivative, m.p. 285—286° (lit. 280°), by $\text{Ac}_2\text{O--C}_5\text{H}_5\text{N}$ at 100° and from the $N^1\text{--Ac}$ derivative by $\text{BzCl--C}_5\text{H}_5\text{N}$ at 100°. The $N^1N^4\text{--Bz}_2$ derivative, m.p. 260° (decomp.) (cf. lit.), is also prepared. R. S. C.

Substituted phenols.—See B., 1944, II, 222.

Reaction of phenols with tert.-butyl chloride. S. C. Burket and R. Q. Brewster (Trans. Kansas Acad. Sci., 1943, 46, 133—135).— BuYCl and various o- and p-C₆H₄R·OH either do not react (in presence of C_5H_5N and, occasionally, $CaCO_3$) or give $CMe_2:CH_2$ and unchanged phenol (with NaOEt or $CaCO_3$). 5:2:1- C_6H_3 McCl·OH, p-CMe₂Et· C_6H_4 ·OH, and p-C₆H₄BuY·OH (using $CaCO_3$) give their BuY ethers, b.p. 265—270°/740 mm., 270—275°/740 mm., and 255—260°/740 mm., respectively. M. H. M. A.

Phenylcarbamyl derivatives of alkylated phenols. M.p. and X-ray powder diffraction data. J. B. McKinley, J. E. Nickels, and S. S. Sidhu (Ind. Eng. Chem. [Anal.], 1944, 16, 304—308).—Phenyl-urethanes of the following phenols are prepared: p-chloro-mp. 148·5°, p-nitro-, m.p. 156°, 4-chloro-2-tert.-butyl-, m.p. 133°, p-tert.-butyl-, m.p. 148·5°, 4-methyl-2-β-methylallyl-, m.p. 98·5°, p-tert.amyl-, m.p. 108°, 2-methyl-4(or 6)-tert.-butyl-, m.p. 139·5°, 2-methyl-6(or 4)-tert.-butyl-, m.p. 189°, 3-methyl-4(or 6)-tert.-butyl-, m.p. 167·5°, o. m.p. 111·5°, and p-, m.p. 145·5°, -cyclohexyl-, 4-methyl-2-tert.-amyl-, m.p. 124°, 3-ethyl-4(or 6)-tert.-butyl-, m.p. 156°, 4-cthyl-2-tert.butyl-, m.p. 134°, 2:3-dimethyl-4(or 6)-tert.-butyl-, m.p. 216°, 2:4-dimethyl-6-tert.-butyl-, m.p. 173°, 2:5-dimethyl-4-tert.-butyl-, m.p. 144°, 2:6-dimethyl-4-tert.-butyl-, m.p. 160°, 3:4-dimethyl-6-tert.-butyl-, m.p. 160°, 3:4-dimethyl-6-tert.-butyl-, m.p. 198·5°, 4-methyl-3:5-dissopropyl-, m.p. 198·5°, 4-methyl-3:5-dissopropyl-, m.p. 198·5°, 4-methyl-3:5-dissopropyl-, m.p. 171·5°, 4-cyclohexyl-2-tert.-butyl-, m.p. 170°, 3-ethyl-4:6-ditert.-butyl-, m.p. 160°, 2:3-dimethyl-4:6-ditert.-butyl-, m.p. 170°, 3-ethyl-4:6-ditert.-butyl-, m.p. 170°, 3-ethyl-4:6-ditert.-butyl-

p-Bromoaniline salts of monoaryl sulphates. D. H. Laughland and L. Young (J. Amer. Chem. Soc., 1944, 66, 657—658).—KArSO₄ with p-C₆H₄Br·NH₂,HCl in H₂O give p-C₆H₄Br·NH₂ Ph, o-anisyl, p-C₆H₄Br, p-tolyl, and a-C₁₀H, sulphate, which are unstable and have ill-defined m.p.

R. S. C.

Dialkylstilboestrols.—See B., 1944, III, 142.

Synthesis of two dihydroxyterphenyls. C. C. Price and G. P. Mueller (J. Amer. Chem. Soc., 1944, 66, 632—634).—Dropping o-C₆H₄(C₈H₄·N₂Cl-p)₂ in H₂O into boiling H₂O-steam gives 4:4"-dihydroxy-o-terphenyl (98%), m.p. 230·2—231·2° (corr.) [diacetate, m.p. 186—186·4° (corr.); Me₂ ether, m.p. 104·8—106·4° (corr.)]. p-C₈H₄(C₈H₄·NO₂·p)₂ with H₂-Raney Ni in C₈H₆ at 100°/2000 lb. gives the (NH₂)₂-compound, m.p. 240—244° [dihydrochloride, darkens 315°, m.p. 355—370° (decomp.)], whence 4:4"-dihydroxy-p-terphenyl (I), m.p. 375° [diacetate, m.p. 244·3—245·3° (corr.); Me₂ ether (II), m.p. 273—275°], is obtained as above but in very poor yield. p-OMe·C₈H₄·MgBr (III) and 1:2-dibromocyclohexane in Et₂O and later boiling Bu₂O give (II), and 4:4"-dimethoxydiphenyl (IV), m.p. 174·5—175·6°. Hydrolysis of (II) to (I) by KOH-EtOH at 200° and then oxidation by KMnO₄-NaOH gives

p-C₆H₄(CO₂H)₂ (proof of structure). (III) and (IV) in Bu₂O and then at 140° give a small amount of (II) and homologues.

Selective hydrogenation of eugenol and isoeugenol in presence of Raney nickel. B. Gauthier (Compt. rend., 1943, 217, 28-30).— Eugenol (I) and H₂-Raney Ni at room temp. yield dihydroeugenol (II), b.p. 133-135°/19 mm. (formate, b.p. 140°/12 mm.; acetate, bp. 149—150°/14 mm.; propionate, b.p. 154—155°/12 mm.; iso-butyrate, b.p. 158°/15 mm.; butyrate, b.p. 164°/13 mm.; isovalerate, b.p. 170°/13 mm.; p-nitrobenzoate, m.p. 76°; cinnamate, m.p. 88°; phenylurethane, m.p. 122°; diphenylylurethane, m.p. 104-60-65°, hydrogenation yields (II) and a little octahydroeugenol. iso Eugenol is hydrogenated (as above) only slowly at 20°. EtOH accelerates hydrogenation in both cases [(I) > (II)]. A. T. P.

Condensation of vanillin substitution products with nitromethane. L.C. Raiford and D. E. Fox (J. Org. Chem., 1944, 9, 170—174).—

8 Nitrostyrenes are best obtained by gently boiling a solution of vanillin or its substitution products and MeNO2 in AcOH containing NH4OAc, less frequently by keeping a solution of these reactants in abs. EtOH at room temp, for several days. β -Nitro-3:4-dimethoxystyrene, m.p. 140—141°, and the 2-, m.p. 134—135°, 5, m.p. 190—191°, and 6-Br-, m.p. 168—169°, 5:6-Br₂-, m.p. 166—167°, 2-, m.p. 188—189°, and 5-NO₂-, m.p. 183—184°, and 5-brono-2-nitro-, m.p. 169—170°, -derivatives of β -nitro-4-hydroxy-methoxystyrene are described. 3-methoxystyrene are described. Treatment of these compounds with Br saturates the side-chain and introduces Br at C(s) if OH is attached to C(4), thus giving a \beta-dibromo-\beta-nitro-a-o-bromo-4-hydroxy-3-methoxy-phenylethane (I), m.p. 127-, -a-5: 6-dibromo-4-hydroxy-3-methoxy-phenylethane (II), m.p. 126—128° after softening, and -a-3:4-dimethoxy-phenylethane (III), m.p. 113—114° (+0-5CS₂) (lost at ~65°/1 hr.). (I) is transformed by repeated crystallisation from EtOH or by boiling EtOH containing NaOAc into β: 5-dibromo-β-nitro-4-hydroxy-3-methoxystyrene, m.p. 166—167°, whilst (II) under similar conditions gives β : 5: 6-tribromo- β -nitro-4-hydroxy-3-methoxy-slyrene, m.p. 175—176°. At room temp. NaOAc in EtOH transforms (III) into β -bromo- β -nitro-3: 4-dimethoxystyrene, m.p. 119—120°. Oxidation of the condensation products or their Br adducts with March conversions of Br with KMnO4 causes loss of Br from the side-chain and gives the related aldehyde. When veratraldehyde is used as initial material, exidation of the condensation product gives the related acid, thus emphasising the retarding effect of p-OH. H. W.

Condensation of cyclohexene oxide, 1:2-dichlorocyclohexane, and yô-dichlorohexane with anisole. C. C. Price and G. P. Mueller (J. Amer. Chem. Soc., 1944, 66, 628—631).—Passing BF₃ into cyclohexene. bexene oxide (I) and PhOH at 40-70° gives trans-1: 2-dihydroxyproblems (II) and a little p-cyclohexylphenol (3:5-dinitrobenzoale, m.p. 164—166°). Passing BF₃ into (I) and PhOMe at 50° gives p-cyclohexylanisole (III) (8%), 1:3-di-p-anisylcyclohexane (IV), form, b.p. 160—165°/1 mm., and m-di-p-anisylbenzene [4:4"-di-methoxy-m-terphenyl] (V), m.p. 197—198° (corr.), also obtained in poorer yield from (II). Similar products are obtained from 1:2-displayers and and heavylet are obtained from 1:2-displayers and phoMe by AlCl are 5° but an isometric dichlorocyclohexane and PhOMe by AlCl3 at 5°, but an isomeride dichlorocyclohexane and PhOMe by AlCl₃ at 5°, but an isomeride (VI), m.p. 102·8—104°, of (IV) is also obtained. Formation of (III), (IV), and (V) probably results by disproportionation of 3-p-anisyl-Δ¹-cyclohexene. 10% Pd-C at 300° converts (IV) or (VI) into (V). KOH-EtOH at 200° converts (VI) into 1: 3-di-p-hydroxy-phenylcyclohexane (VII) (97%), m.p. 229—232° (diacetate, m.p. ¼·5—75·5°), but (IV) gives an oil. With KOH-EtOH at 200° or ll-AcOH, (V) gives 4: 4"-dihydroxy-m-terphenyl (VIII), m.p. 182—183° (diacetate, m.p. 130·1—131·5°), but KOH-EtOH occasionally yields a substance, C₂₀H_{3s}O₂, +0·5EtOH, m.p. 66—67·5°. KMnO₄—NaOH oxidises (VIII) to m.-C₆H₄(CO₂H)₂. Pd-C and a trace of Zn dust at 250° convert (VII) into m.-C₆H₄Ph₂. (CHEtCl)₂ with PhOMe and AlCl₂ in light petroleum at the b.p. and then Me₂SO₄-20% and AlCl₃ in light petroleum at the b.p. and then Me₃SO₄-20% aq. NaOH gives 1% of hexcestrol Me₂ ether, m.p. 142—143° (corr.). (VII) and (VIII) have no cestrogenic and (VII) has no androgenic R. S. C.

Absorption spectra of 1:2-benzenthracene and some methoxyderivatives.—See A., 1944, I, 164.

Syntheses of compounds related to vitamin-K. II. 4'-Hydroxy-3-alkylnaphthalene-1'-azobenzene-4-sulphonamides. E. J. H. Chu, Z. I. Shen, T. L. Chien, and T. S. Tuan (J. Amer. Chem. Soc., 1944, 66, 653).—a-C₁₀H₂·O·COR with ZnCl₂ or SnCl₄ at 140—150° gives good yields at 140—150° gives good b53).—a·C₁₀H₇·O·COR with ZnCl₂ or SnCl₄ at 140—150° gives good yields of 1:2-OH·C₁₀H₆·COR (formed also in minor amounts by AlCl₃). 2:1-C₁₀H₆·Alk·OH and p·NH₂·SO₂·C₆H₄·N₂X in aq. AcOH give 4'-hydroxy-3'-ethyl- (73%), m.p. 249°, -n-propyl- (69%), m.p. "51°, -n- (66%), m.p. 280°, and -ιso-butyl-, a gum, -n-amyl- (56%), m.p. 260°, and -β-phenylethyl- (51%), m.p. 261°, -naphthalene-1'-azobenzene-4-sulphonamide, which have no inhibitory effect on growth of B. coli, Staph. aureus, or Strept. pyogenes. 2:1-Ph·[CH₂]₂·C₁₀H₆·OH has m.p. 77—78° (decomp.) and gives a picrate, m.p. 179—180° (decomp.). 1:2-OH·C₁₀H₆·COR (R = Prβ and Bu^α· not Me) are obtained from the 1:4-isomerides by boiling and Bua; not Me) are obtained from the 1: 4-isomerides by boiling 35% NaOH.

Aralkyl iodides and alcohols.—See B., 1944, II, 221.

Rearrangement of β -amino-alcohols with heat and alkali. Campbell and K. N. Campbell (J. Org. Chem., 1944, 9, 178—183).—
Three aryl-substituted β-NH₂-alcohols rearrange to ketimines under the influence of heat and CaO; the change is shown to occur probably through the corresponding ethyleneimines. β-Amino-aadiphenylpropan-a-ol is converted by CaO under N₂ at 270° into CPh₂:NEt (I), b.p. 154—159°/10 mm., m.p. 58—59°; at 130—230° the amine is scarcely affected. (I) is readily hydrolysed by 6n-HCl at room temp. to COPh₂ and NH₂Et, and is reduced by Na and abs. EtOH to CHPh₂NHEt (II), b.p. 142°/8 mm. (I) is obtained by passing dry NH₂Et over CPh₂:NPh and a little NH₂Ph,HBr at 230°, and (II) from MgPhBr and CHPh NEt 2.9 Distance 2 230°, and (II) from MgPhBr and CHPh:NEt. 2:2-Diphenyl-3-methylethyleneimine is transformed into (I) in presence of CaO at 250—260° or in its absence at 175—205°. β-Amino-α-phenyl-α-p-tolylethanol and CaO at 260° afford Ph p-tolyl hetmethylimine, b.p. 165—169°/13 mm., also obtained from NPh:ChPh-C₆H₄Me-p, NH₂Ph,HBr, and dry NH₂Me at 200—210°; it is readily hydrolysed to COPh-C₆H₄Me-p and NH₂Me. It is reduced by Na and abs. EtOH to N:p-dimethylbenzhydrylamine, b.p. 169—172°/16 mm. [hydrochloride, m.p. 186—187° (lit. 199—201°); α-naphthylcarbamyl derivative, m.p. 171·5—172·5°], also obtained from CHPh:NMe and p-C₆H₄Me-MgBr. NH₂-CHPh-CPh₂-OH is partly rearranged by CaO at 260° to CPh₂:N·CH₂Ph, hydrolysed to COPh₂ and CH₂Ph·NH₂.

Quinoidation of triaryl compounds: (A) hydroxyphenyldiphenylyl-carbinols, (B) hydroxydiphenylyldiarylmethyl cations. L. C. Anderson and W. A. Fisher (J. Amer. Chem. Soc., 1944, 66, 589—593, 594—597).—(A) Introduction of 1 or 2 p-C₆H₄Ph into p-OH·C₆H₄·CAr₂·OH (A) causes a high and broad absorption band at ~3800 mm.-1, similar to that of Ph₂ and due to C_6H_4Ph ; this band covers the benzenoid absorption of (A) (Ar = Ph). Diphenylquinomethanes do not give the 3800 mm.⁻¹ band, wherefore it is concluded that the C_6H_4Ph

:CPh-<u>>>0-</u> structure is different and that absorption of fuchsones in Et2O is due largely to a structure (B).

p-C6H4Ph CPhCl (I) and PhOH at

room temp, give

 $p\text{-OH-C}_6H_4\text{-CPh}(C_6H_4\text{Ph-}p)\text{-OH}$ (II) (acetate, m.p. 134—136°) contaminated with $p\text{-C}_6H_4\text{-Ph-COPh}$ and $(p\text{-OH-C}_6H_4)_2\text{CPh-C}_6H_4\text{-Ph-}p$. At 130—140°/vac. (II) is dehydrated to phenyl-p-diphenylquinomethane (III), m.p. 166—167°, whence warm 70% AcOH yields
the quinonoid form (IV), m.p. 139—140°, of (II). Passing CO₂
into a solution of (III) or (IV) in 2.5% NaOH gives the benzenoid
form, m.p. 155—157°, of (II). AlCl₃ in boiling C₄H₆ converts the
Me ether of (II) into (IV), m.p. 134—140°. PhOH and (I) in boiling C₄H₆ (II) in boiling C₄H₆ (III) in the supplies the ing dry C_6H_6 (1 hr.) give diphenoxyphenyl-p-diphenylylmethane, m.p. 149—150°, but PhOH and (1) alone at 100° (5 days) give 4:4'-dihydroxytriphenyl-p-diphenylylmethane (55%), softens 157°, m.p. 163—165° (diacetate, m.p. 168—170°, clear at 187°). By similar reactions $(p-C_6H_4Ph)_2CCl_2$ [prep. from $CO(C_6H_4Ph-p)_2$ by PCl_5] gives p-hydroxyphenylbisdiphenylylcarbinol, quinonoid, m.p. 106—107.5°, and benzenoid forms, m.p. 124—126° (acetate, m.p. 140—158°) kie a diphenylylcarbythylar mythylar mythy 149—152°), bis-p-diphenylylquinomethane, m.p. 124—125° (slow heating) or 159—161·5° (bath preheated at 150°), diphenoxybis-p-diphenylylmethane, m.p. 118—120°, and di-p-hydroxyphenylbis-p-diphenylylmethane, m.p. 253—255·5° (diacetate, m.p. 256—258°).

phenylyImethane, m.p. 253—255-5' (diacetate, m.p. 256—258').

(B) Absorption spectra are recorded for b-b'-OR·C₆H₄·C₆H₄·C₆ArAr'·OH (C) (R = H or OMe; Ar and Ar' = Ph or p-C₆H₄Ph) in AcOH-H₂SO₄. Comparison with the spectra of p-C₆H₄Ph·CPh₂·OH and p-C₆H₄Ph·CPh(C₆H₄·OMe-p)·OH (V) indicates that C₆H₄Ph is quinonoid when R in (C) is Me. (C) (Ar = Ar' = Ph; R = H) does not exist in a quinonoid form and gives no diphenyldiphenylylquinomethane. (V) is prepared from p-OMe·C₆H₄·MgBr (VI) and p-C₆H₄Ph·COPh and from the phenol by Me₂SO₄. CO(C₆H₄Ph-p)₂ and (VI) in boiling Et₂O-C₆H₆ give p-anisylbis-p-diphenylylcarbinol, m.p. 146°. p-OH·C₆H₄·C₆H₄·COPh-p and MgPhBr in boiling C₆H₆-Et₂O give diphenyl-4'-hydroxy-p-diphenylylcarbinol, m.p. 224—227° (acetate, m.p. 154—156·5°), which is also obtained by AlCl₃-C₆H₆ from its Me ether, m.p. 108—109° (prep. from p-OMe·C₆H₄·C₆H₄·COPh-p by MgPhBr). p-C.H₄Ph·COCl (prep. from the acid by SOCl₂), p-C₆H₄Ph·OMe, and AlCl₃ in (CHCl₂)₂ at -10° to room temp. give p-C₆H₄Ph·OMe, and AlCl₃ in (CHCl₂)₂ at -10° to room temp. give p-C₆H₄Ph·OMe, and (VII) in boiling Et₇O give phenyl-p-diphenylyl A-methoxy-p-diphenylylarbinol, m.p. 141—143°. p-OMe·C₆H₄·C₆H (B) Absorption spectra are recorded for

Reductions with nickel-aluminium alloy and aqueous alkali. IV. Carbon-carbon double linking. E. Schwenk, D. Papa, B. Whitman, and H. F. Ginsberg (J. Org. Chem., 1944, 9, 175—177).—Examples of the reduction of conjugated, isolated, and cyclic double linkings using Ni-Al alloy and aq. alkali are afforded by CHPh.CH-CO2H, maleic, crotonic, oleic, and sorbic acid, p-OH·C₀H₄·CH:CHPh, b-OH·C₀H₄·CH:CPh·CO₂H, p-OMe·C₀H₄·CH:CPh·CO₂H, CHPh:C(C₆H₄·OMe)·CO₂H, CHPh:C(C₆H₄·OH)·CO₃H, cyclohexylideneacetic (I), a- Δ^1 -cyclohexenyl- and p-hydroxy- Δ^1 -cyclohexenyl-cinnamic acid. Δ^5 -3(β)-Hydroxyætiocholenic acid is recovered unchanged and the reduction of Δ^1 -cyclohexenylacetic acid is so incomplete as to suggest a preliminary partial isomerisation to (I). The cyclopentene ring of chaulmoogric acid is quantitatively reduced. Stilbæstrol gives the hexæstrols, m.p. 184—185° and 126—128°, in 30 and 50% yield respectively. The following appear new: a-phenyl- β -p-anisylpropionic acid, m.p. 108—109°; β -phenyl-a-p-anisylpropionic acid, m.p. 108—109°; β -phenyl-a-p-hydroxyphenylchyloppionic acid, m.p. 158—159°; a-p-hydroxyphenylchyloppionic acid, m.p. 158—159°; a-p-hydroxyphenylchylchyloppionic acid, m.p. 181°, -propionic acid. a-p-Anisylcinnamic acid has m.p. 162—153° (lit. 132—133°). H. W.

Steroids and sex hormones. XCVIII. Preparation of β-trans-4-hydroxycyclohexyl-Λ°β-butenolide. E. Hardegger, P. A. Plattner, and F. Blank (Helv. Chim. Acta, 1944, 27, 793—800).—CNa2(CO2Et)2 and CH2Cl·CH3·CO2Et give Et4 pentane-ayye-tetracarboxylate (II), b.p. 157—160°/high vac., cyclised by Na to Et3 cyclohexanone-2: 4: 4-tricarboxylate (II), b.p. 187—189°/water pump vac., with some Et cyclohexanone-4-carboxylate, b.p. 137°/water pump vac. (II) in C4H4 is hydrolysed by aq. NaOH at room temp. to cyclohexanone-4: 4-dicarboxylic acid, m.p. 147·5—149·5°. (I) is converted by successive treatment with Na, EtOH, and C4H4 at 100° followed by hydrolysis into cyclohexanone-4-carboxylic acid (III), m.p. 67—68°, which is reduced (H2, Raney Ni, N-NaOH) to cis-4-hydroxy-hexahydrobenzoic acid, m.p. 150·5—151° (Me ester), converted by boiling Ac2O into the lactone, m.p. 128° (lit. 109—110°). Na-Hg, or (less well) H3-PtO2-AcOH, reduces (III) to trans-4-hydroxyhexahydrobenzoic acid, m.p. 119—120° (Me ester and its benzoate, m.p. 92—94°). This is converted by boiling AcCl-Ac2O-AcOH into trans-4-acetoxyhexahydrobenzoic acid, m.p. 139—140° (Me ester, m.p. 45·5—46·5°), and thence (SOCl2) into the chloride and diazoketone, decomp. 86—87°, which passes in AcOH at 100° into trans-4-acetoxycyclohexyl-OAc·CH2 ketone (IV), m.p. 67—68° (semicarbazone, m.p. 167—168°). (IV) is readily transformed by Zn and CH2Br·CO2Et followed by acetylation into β-acetoxy-β-trans-4-acetoxycyclohexyl-Δαβ-butyrolactone, m.p. 142—142·5°, which passes at 225—240°/water pump vac. into β-trans-4-acetoxycyclohexyl-Δαβ-butenolide, m.p. 88—89°, giving a positive Legal test. β-trans-4-Hydroxycyclohexyl-Δαβ-butenolide has m.p. 95—95·5°.

Synthetic anthelmintics. IX. γ-6-Methoxy-m-tolyl- and γ-p-anisyl-α-alkylbutyrolactones. S. V. Mehta, J. J. Trivcdi, K. V. Bokil, and K. S. Nargund (J. Univ. Bombay, 1944, 12, A. Part 5, 33—35).— The appropriate alkylsuccinic anhydride and o-C₆H₄Me-OMe (Friedel-Crafts) give γ-keto-γ-6-methoxy-m-tolyl-α-ethyl-, m.p. 99° (semicarbazone, m.p. 179°), -α-n-propyl-, m.p. 96—97° (semicarbazone, m.p. 159°), and -α-n-amyl-butyric acid, m.p. 40—45° (purified through its Et ester, b.p. 260—265°/60 mm.), converted (method: A., 1942, II, 257) into γ-6-methoxy-m-tolyl-α-ethyl-, m.p. 63—64°, -α-n-propyl-, m.p. 93°, and -α-n-amyl-butyrolactone, m.p. 38—39°, b.p. 258°/28 mm., respectively. Similarly prepared from p-OMe-C₆H₄·CO·CH₂·CHAlk·CO₃H (A., 1944, II, 78) are γ-p-anisyl-α-ethyl-, m.p. 91—92°, -α-n-propyl-, m.p. 798—99°, -α-n-amyl-, m.p. 92°, -α-n-hexyl-, m.p. 98°, -α-n-tetradecyl-, m.p. 79-80°, and -α-n-hexyl-butyrolactone, m.p. 95—96°.

A. T. P.

Action of diazobenzene on alkylacetoacetic esters as a method of preparing phenylhydrazones of α -keto- and α -amino-acids. VIII. Synthesis of tyrosine. V. V. Feofilaktov, V. N. Zaitzeva, and K. I. Sirotkina (J. Gen. Chem. Russ., 1943, 13, 363—372).—Methods of synthesis of tyrosine are reviewed and a new procedure is described. To a stirred mixture of CH₂Ac·CO₂Et (10% excess) and NaOEt in EtOH at room temp., p-OMe·C₆H₄·CH₂Cl (prep. from PhOMe, CH₂O, and HCl in presence of ZnCl₂) was added dropwise, and the mixture then heated at 100° (bath) for 3 hr.; the resulting Et α -p-methoxybenzylacetoacetate (76·2%), b.p. 160—161°/3 mm., was added gradually with vigorous stirring to an equiv. of aq. PhN₂·OK and, after an additional 4 hr. stirring, the product extracted with Et₂O. Hydrolysis (aq. EtOH–KOH) of the Et₂O-sol. ester gives p-anisylpyruvic acid phenylhydrazone (I) (75·3%), dimorphic from C₆H₆-ligroin (b.p. 90—94°) (1:1), less sol. α -form, platelets, m.p. 158—159°, and predominating β -form, needles, m.p. 150°. (I) (crude or once crystallised) was reduced with Zn dust and HCl-EtOH, the EtOH evaporated in a vac., the residue ground with Ag₅CO₃, and then extracted with boiling H₂O. The aq. extracts, freed from metals with H₂S, were evaporated and crystallised from H₂O to give 55—58% of p-OMe·C₆H₄·CH₂·CH(NH₂)·CO₂H (III), m.p. 262° (sealed tube). (II) with boiling HI (b.p. 126°) for 5 hr. gives tyrosine (95·6%).

Raman spectra of salicylic acid and aspirin.—See A., 1944, I, 165.

Nitro- and nitroamino-derivatives of o-chlorobenzoic acid. H. Goldstein and G. Preitner (Helv. Chim. Acta, 1944, 27, 612—615; cf. A., 1938, II, 13, 98).—6:2:5:1-NO₂·C₆H₂Cl(NH₂)·CO₂H in EtOH-conc. H₂SO₄ is converted by *so-C₅H₁·O·NO at -10°, followed by a little Zn dust at the b.p., into 6:2:1-NO₂·C₆H₃Cl·CO₂H (I), also obtained by oxidising 1:2:6-C₆H₃MeCl·NO₂; lower yields of very impure product are obtained by diazotisation in H₂O and

adding EtOH. The chloride (SOCl₂) of (I) yields the Me, m.p. 94-95 (lit. $80-82^{\circ}$), and Et ester, m.p. $49-50^{\circ}$, the amide, m.p. $186-187^{\circ}$, and anilide, m.p. $176-177^{\circ}$. $1:2:5\cdot C_{g}H_{2}MeCl\cdot NHAc$ and HNO_{3} (d 1·4 mixed with d 1·52) at $>15^{\circ}$ give a mixture of mainly 2-chloro-4-nitro- (II), m.p. 113° , and a little 2-chloro-6-nitro-5-acetamidotoluene (III), m.p. $152-153^{\circ}$; the proportion of (III) is increased by using HNO_{2} (d 1·52) in AcOH at $5-10^{\circ}$. (II) is oxidised (aq. $KMnO_{4} + MgSO_{4}$) to 2-chloro-4-nitro-5-acetamidobenzoic acid, m.p. 214° , hydrolysed by boiling dil. HCl to the $5\cdot NH_{2}$ -acid, m.p. $239-240^{\circ}$ (decomp.). Similarly (III) gives $6:2:5:1\cdot NO_{2}\cdot C_{6}H_{2}\cdot Cl(NHAc)\cdot CO_{2}H$. M.p. are corr. H. W. Substituted ninearnylamides.

N-Substituted piperonylamides. S. I. Gertler and W. F. Barthel (J. Amer. Chem. Soc., 1944, 66, 659—660).—Piperonyl-ethyl-, m.p. 87—88°, -n-propyl-, m.p. 86—87°, and -n-amyl-amide, m.p. 104—105°, -m-chloro-, m.p. 110·5—112·5°, -o-, m.p. 109·5—110°, -m-, m.p. 116—117°, and -p-bromo-anilide, m.p. 222—222·5°, are prepared. M.p. are corr.

R. S. C.

Attempted syntheses of hemipinic acid from guaiacol. C. Weizmann and L. Haskelberg (J. Org. Chem., 1944, 9, 121—124).—2:3:1-OH-C₆H₃(OMe)·CO₂H, m.p. 200°, is obtained in good yield from dry o-ONa·C₆H₄·OMe and CO₂ at 200° whereas at 230° it is accompanied by 2:3:1:4-(OH)₂C₆H₂(CO₂H)₂, m.p. 308°. With Br in AcOH or CHCl₃ at room temp. it affords 5-bromo-2-hydroxy-3-methoxybenzoic acid, m.p. 211° [Me ester, m.p. 122° (acetate, m.p. 95°), obtained similarly from 2:3:1-OH-C₆H₃(OMe)·CO₂Me]. Bromination of 3:2:1-OMe·C₆H₃(OAc)·CO₂Me in AcOH containing anhyd. NaOAc, in CHCl₃, or without solvent leads to Me 6-bromo-3-methoxy-2-acetoxybenzoate, m.p. 124°, hydrolysed (aq. EtOH-NaOH) to 6-bromo-2-hydroxy-3-methoxybenzoic acid, m.p. 150°, which with NaCN and CuCN in 50% EtOH at 180° gives isovanillic acid, also obtained from 5-bromoguaiacol, NaCN, and CuCN under the same conditions.

Diene-addition reactions. II. Reaction of 6:6-pentamethylene-fulvene with maleic anhydride. R. B. Woodward and H. Baer (J. Amer. Chem. Soc., 1944, 66, 645—649; cf. A., 1943, II, 119).—6:6-Pentamethylenefulvene and (:CH·CO)₂O in C₆H₆ at 5° give the endo-(I), m.p. 132°, and some of the exo-adduct (II), C₁₅H₁₆O₃, m.p. 93·0—93·5°, but at higher temp. more and more (II) is obtained (cf. Alder et al., A., 1937, II, 321; Kohler et al., A., 1935, 852). H₂-PtO₂ in EtOH reduces the cyclohexene CH:CH of (I) or

(II) to give the endo- (III), m.p. 146°, and exo-H₂-adducts (IV). m.p. 103—104°, respectively; resistance of the cyclohexylidene C.C accords with the views of Linstead et al. (A., 1943, II, 62). Dissolving (III) or (IV) in MeOH and adding 10% aq. NaOH until alkaline to phenolphthalein gives the Me H endo-, m.p. 114° (Et H ester, m.p. 104·5—105°), or exo-H₂-ester, m.p. 118°, and thence the Me₂ endo- (V), a gum, and exo-H₂-ester (VI), m.p. 65°, respectively. (II) and EtOH similarly give the corresponding Et H ester, m.p. 137—137·5°. (V) and (VI) are both cis-esters, for both are isomerised by NaOMe-MeOH at the b.p. to the trans-Me₂ H_{*}-ester, m.p. 75°, whence HCl-AcOH yields the trans-dicarboxylic acid, m.p. 230—232° (decomp.). Hydrolysing (IV) by boiling AcOH-H₂O and then adding Br gives the Br-lactone-acid (VII), m.p. 146·5—147·5 (decomp.), but (III) gives the bromo-hydroxy-acid (VIII), m.p. 152—

163° (decomp.), this difference proving the stereochemical configurations. (I) dissociates in, e.g., EtOAc or C_8H_6 , slowly when cold and rapidly when heated, but (II) is stable, which accounts for the variation (above) in the ratio (I): (II) produced. Inemodes of addition and the differences are discussed on electronic and energetic grounds.

R. S. C.

9-Acylfluorenes and derived vinylamines. I. Von and E. C. Wagner (J. Org. Chem., 1944, 9, 155-169).—The formation of 9-

acylfluorenes by alkali-induced condensation of esters with the reactive CH2 of fluorene (I) has been extended to the 9-Ac compound. Fluorene-9-aldehyde (II) is obtained by similar use of 1-formylpiperidine, showing the ability of the latter to function as an aquo-ammono-ester of HCO₂H. The attempted ester condensation (for the prep. of CHO-derivatives) gives tarry products when applied to cyclopentadiene and indene whilst reaction does not occur with xanthene or acridan. The products from (I) and its 2:7-Br₂derivative and NH₃ are shown to be enamines and di-9-fluorenylmethyleneamines. (II), b.p. 169—172°/2 mm. [prep. from (I), KOMc, and HCO₂Et or, less well, by use of Na, NaOMe, or CPh₃Na], polymerises when kept. 2:7-Dibromofluorene-9-aldehyde, m.p. 180—181° (corr.), is converted by BzCl and NaOH into the enol benzoate, m.p. 221° (corr.), and by NH₂Ph in EtOH into the anil, m.p. 226—227° (corr.). 9-Acetylfluorene, m.p. 74·5—75·5° (corr.), obtained from (I), KOMe, and EtOAc in anhyd. Et₂O, gives a somewhat unstable phenylhydrazone, m.p. 138—139° (corr.; decomp.), and an apparently stable oxime, m.p. 137° (corr.); it liquefies when kept in a desiccator at room temp. and then solidifies to the dimeride, m.p. 247—248° (corr.), which does not react with NHPh·NH₂. It hes not condense with NH₂Ph or piperidine in dry C₆H₆ at 100°. Passage of dry NH₂ into a solution of (II) in dry C₆H₆ or Et₂O at 0° leads to 9-aminomethylenefluorene (III), m.p. 146—147° after softening, with a smaller proportion of di 9-fluorenylmethyleneamine (IV). (III) becomes discoloured when kept in a desiccator, immediately reduces KMnO₄, is indifferent to 10% NaOH at 100°, is immediately converted into (IV) by acid, and is measured. is immediately converted into (IV) by acid, and is monomeric in feezing C₆H₆. With dry HCl in Et₂O it yields the hydrochloride, the the second C₆H₆. With dry HCl in Bt₂O it yields the hydrochloride, chars without melting ~300°. (III) and Ac₂O in a vac. over NaOH and CaCl₂ afford 9-acetamidomethylenefluorene, m.p. 204·5—206° (corr.), which could not be cyclised to the soquinoline derivative by P₂O₅ in PhMe. Ozonolysis of (III) in CHCl₃ and treatment of the ozonide with H₂O at 100° gives fluorenone (V) and HCO·NH₂ (identified by conversion by o-NH₂·C₅H₄·CO₂H into 3: 4-dihydro-4-quinazolone, m.p. 212—213°). (III) is transformed by Br in CHCl₃ followed by H₂O into NH₂Br and 9-bromofluorene-9-aldehyde (VI) is obtained synthetically from (III) in C. H. (VI). (IV) is obtained synthetically from (II) and (III) in C₆H₆. Ozonolysis of (IV) gives (V) and diformamide and brominolysis yields (VI). Not quite homogeneous 2: 7-dibromo-9-aminomethylene-fluorene (VII), m.p. 212° (Dennis bar), undergoes brominolysis to sucrene (VII), m.p. 212° (Dennis bar), undergoes brominolysis to 2:7:9-tribromofluorene-9-aldehyde (VIII), m.p. 236—237° (corr.; decomp.), also obtained from the 2:7-Br₂-aldehyde. (VII) is converted by glacial AcOH at 100° or, readily, by dil. H₂SO₄ into di-2:7-dibromo-9-fluorenylmethyleneamine, m.p. >300°, converted by Br in CHCl₃ followed by hydrolysis into (VIII). 9-Acetyl-fluorene and NH₃ in dry Et₂O at 0° give 9-α-aminoethylidenefluorene or α-methyl-Δ^{9α}-fluorenemethylamine (IX), m.p. 124:5—126:5° (corr.; decomp.) after softening, which rapidly darkens and becomes oily decomp.) after softening, which rapidly darkens and becomes oily in a desiccator at room temp. (IX) is hydrolysed by 4% H₂SO₄ at room temp. to a mixture of monomeric and dimeric acetyl-The Ac derivative of (IX) has m.p. 180.5—181.5° (corr.).

Structure of aldehydo-acids and their tautomeric transformations. M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 13, 290-300).—The properties of aldehydo-acids (A) and their reactions are reviewed from the point of view of ionotropy. The conditions under which one or other tautomeric form of (A) reacts and the influence of structural and external factors are described. Evidence is adduced to support the view that isolated, cryst. (A) are OH-lactones. following compounds were tested with freshly prepared fuchsin-SO2 reagent: o-CHO·C₈H₄·CO₂H showed coloration in 5—10 sec. and max. intensity in 1—2 min.; opianic acid showed coloration in 5—10 sec. and max. in 2—3 min.; CHO·CBr:CBr·CO₂H showed coloration in ½—1 min. on undissolved solid but only after ½ hr. in solution and the intensity increased very slowly; CHO·CPh:CH·CO₂H showed coloration in 2—2 acid showed coloration in 2 coloration in 3 coloration in 5—10 sec. and max. in 5 showed coloration in 2-3 min. on undissolved solid and intensity again increased very slowly; nitro-opianic acid (I) showed no coloration in 24 hr. In MeOH solution, bromo-opianic acid forms the OH-lactone Me ether (ψ -Me ester) (low yield) at room temp. in $1\frac{1}{2}$ months or at the b.p. in 4—5 hr.; CHO·CBr:CBr•CO₂H similarly forms the ψ -ester at room temp. in 1 month. (I) with excess of piperiod for 5 min (water both). piperidine for 5 min. (water-bath), dilution with EtOH, and cooling to 0° for 1—2 hr. gives its dipiperidide, m.p. 160—161° (60—70%, including the less pure product recovered from the mother-liquor by evaporation at room temp.).

Polyenes. I. Synthesis and absorption spectra of the ionylidene-acetones and related compounds. W. G. Young, L. J. Andrews, and S. J. Cristol (J. Amer. Chem. Soc., 1944, 66, 520—524).—Absorption spectra in 95% EtOH (max. in brackets below) indicate that a- (I) and β -ionone- (II) yield polyenes without isomerisation. (I) [227 (ϵ 12,850) and 296 m μ . (ϵ 1950)] and (II) [296 (ϵ 8600) and 222 m μ . (ϵ 7640)] with Zn-CH₂Br·CO₂Et give OH-esters, which distil unchanged (β -ester, b.p. 153·5—155·5°/2—3 mm.) (cf. Karrer et al., A., 1932, 852) but with KHSO₄ at 150° give Et α -, b.p. 162·5°/5—7 mm. [272 (ϵ 14,700) and 236 m μ . (ϵ 11,800)], and β -ionylideneacetate, b.p. 162·3—164·5°/6 mm. [283 m μ . (ϵ 18,950)], hydrolysed by KOH-EtOH to the derived α - [267 m μ . (ϵ 17,650)] and β -acids (III), liquid [294 (ϵ 13,700) and 260 m μ . (ϵ 12,900)] and cryst.

(m.p. 124°) form [283 mμ. (ε 17,700)] (cf. loc. cit.). With PCl₃ and then CdMe₂-Et₂O these give a- (IV), b.p. $135\cdot5-138^{\circ}/2\cdot5$ mm. [285 m μ . (ϵ 14,500)], and β -ionylideneacetone (V) [ζ -2:6:6-trimethyl- Δ^2 -and- Δ^1 -cyclohexenyl- δ -methyl- $\Delta^{\gamma\epsilon}$ -hexadien- β -one, respectively. tively], b.p. $131-132^\circ/2^\circ$ 5 mm. [285 m μ . (\$ 11,600)]. Slowly distilling (I) and (II) with CN-CH₂·CO₂Me and a little NH₂Ac and NH₄OAc in AcOH gives Me a-cyano-8-2:6:6-trimethyl- Δ^2 -, b.p. 154·5—157·5°/1·5 mm. [292·5 mμ. (ε 16,100)], and -Δ¹-cyclohexenyl-β-methyl- Δ^a -pentenoate, b.p. 165—168°/2 mm. [353 (ε 12,000) and 286 m μ . (ϵ 14,300)], respectively, hydrolysed to the derived a-, an oil [286 m μ . (ϵ 14,300)], and β -acid, m.p. 160—163° (decomp.) (lit. an oil) [332 (ϵ 12,500) and 275 m μ . (ϵ 8700)], respectively. Decarban oil) [332 (ϵ 12,500) and 275 m μ . (ϵ 8700)], respectively. Decarboxylation then yields δ -2: ϵ : ϵ -trimethyl- Δ^2 -, b.p. 147·5—150°/3 mm. [262·5 m μ . (ϵ 18,900)], and $-\Delta^1$ -cyclohexenyl- β -methyl- $\Delta^{\alpha\gamma}$ -pentadienonitrile, b.p. 138—140°/3 mm. [300 (ϵ 12,500) and 256 m μ . (ϵ 14,500)] [hydrolysed to (III), m.p. 122—125°, by KOH-EtOH], also obtained from (I) and (II), respectively, by CN·CH₂·CO₂H. With MgMeI-Et₂O or LiMe, these give (IV) and (V), respectively. (IV) gives a semicarbazone, m.p. 162·5—164°, but (V) gives an oil with NH·CO·NH·NH₂ or NH₂OH, although it reacts with Girard's reagent T. The structures of (IV) and (V) are proved by consolveigness of (IV) are proved by (I reagent T. The structures of (IV) and (V) are proved by ozonolysis in EtOH, (IV) and (V) absorb 3 H_2 . NaOCl converts (I) and (II) into α -, an oil [<212.5 m μ . (ϵ >10,100)], and β -cyclocitrylideneacetic acid, m.p. 106—108° [277 m μ . (ϵ 9240)] (absorbs 1.96 H_2). (V) similarly gives (III), m.p. 122—124°.

Pinacols and pinacolone from p-methoxyacetophenone. C. C. Price and G. P. Mueller (J. Amer. Chem. Soc., 1944, 66, 634—636).—Electrolytic reduction of p-OMe-C₆H₄·COMe (I) in KOAc-EtOH-Electrolytic reduction of p-OMe·C₆H₄·COMe (I) in KOAc–EtOH–H₂O (in absence or presence of EtOAc) gives $\beta \gamma$ -dihydroxy- $\beta \gamma$ -dip-anisyl-n-butane (90%), forms, m.p. (II) 122—123° and (III) 168—169°. (III) is also obtained by Al–Hg in moist Et₂O. Pb(OAc)₄–AcOH rapidly oxidises (II) to (I). A drop of H₂SO₄ in Ac₂O rearranges (II) or (III) to $\alpha \alpha$ -di-p-anisylethyl Me ketone (IV) (63%), m.p. 69·7—71·5°, cleaved by KOH at 170—180° to (p-OMe·C₆H₄)₂CHMe, m.p. 70—72° (lit. 59·4°). The structure of (IV) is proved by conversion of its oxime, m.p. 192—194° (insol. in alkali), by PCl₈–Et₂O into (p-OMe·C₆H₄)₂C:CH₂, m.p. 141—143°. R. S. C.

Lignin and related compounds. LXXIX. Synthesis and properties of γ -hydroxy- α -3: 4-dimethoxyphenylpropan- β -one. H. É. Fisher, M. Kulka, and H. Hibbert. LXXX. Ethanolysis of α -acetoxy- α -4-acetoxy-3-methoxyphenylpropan- β -one and its relation to lignin structure. L. Mitchell and H. Hibbert. LXXXI. Properties of a-bromo-a-4-acetoxy-3-methoxyphenylpropan- β -one and relation to lignin structure. L. Mitchell, T. H. Evans, and H. Hibbert. LXXXII. Synthesis and properties of ay-diacetoxy-a-4-acetoxy-3methoxyphenylpropan- β -one and γ -chloro- α -acetoxy- α -4-acetoxy-3-methoxyphenylpropan- β -one and their relation to lignin structure. J. A. F. Gardner and H. Hibbert (J. Amer. Chem. Soc., 1944, 66, 598—601, 602—604, 604—607, 607—610; cf. A., 1944, II, 176).— 598—601, 602—604, 604—607, 607—610; Cf. A., 1944, 11, 176).—
LXXIX. The properties of y-3: 4-dimethoxyphenylpropan-a-ol-\(\theta\)-omegaine (I) (which is synthesised) confirm the authors' views on lignin components. 3: 4: 1-(OMe)₂C₆H₃·CO₂H (prep. from the aldehyde by aq. KMnO₄ in 90% yield) gives (SOCl₂) the chloride, m.p. 70—71°, and thence (CH₂N₂) the CHN₂ ketone, m.p. 76—77° (lit. 75°), converted by Ag₂O-MeOH-CO₂ at 55—60° into Me homoverairate (72%), b.p. 110—113°/3 mm. The derived acid with SOCl₂ and then verted by Ag₂O-MeOH-CO₂ at 55-60° into *Me homoveratrate* (72%), b.p. 110—113°/3 mm. The derived acid with SOCl₂ and then CH₂N₂-C₆H₆ yields a CHN₂ ketone, which added (in EtOH) to H₃O at 70° gives (I), b.p. 150—160° (bath)/0.05 mm. (semicarbazone, m.p. 123—124°; known acetate, m.p. 55—56°). Boiling 5% H₂SO₆ in 24 hr. or 72% H₂SO₆ at room temp. in 2 hr. gives 19.5 and 62.5%, respectively, of polymer from (I). (I) is very sensitive to alkali; in 1% aq. NaOH at 100° (24 hr.) it gives 54% and in 3% aq. NaOH at room temp. gives 80%, but in 3% NaOH-EtOH-H₂O (1: 1) gives only 17% of polymer. It is unchanged (75% recovered) by boiling 5% aq. KOAc-CO₂ (12 hr.), but in 2% HCl-EtOH-CO₂ (48 hr.) gives 3:4:1-(OMe)₂C₆H₃·CO·CHMe·OEt (28%) and -(OMe)₂C₆H₃·CH(OEt)·COMe (52%).

LXXX. Ethanolysis of a-acetoxy-a-4-acetoxy-3-methoxyphenyl-propan-B-one (II) supports the authors' views on lignin structure. (II) is obtained (80%) from 3:4:1-OMe·C₆H₄(OAc)·CHBr·COMe by AgOAc in 1:1 aq. dioxan at room temp. and has m.p. 97—98°. Ethanolysis first removes the labile Ac and then causes rearrange.

by AgoAc in 1:1 aq. dioxan at room temp. and has m.p. 97—98°. Ethanolysis first removes the labile Ac and then causes rearrangement. Thus, 2% HCl-EtOH-CO₂ at the b.p. (48 hr.) gives 3:4:1-OMe·C₆H₃(OH)·CO·CHMe·OEt (54-6%), -OMe·C₆H₃(OH)·CH(OEt)·COMe (16·7%), -OMe·C₆H₃(OH)·CH(OEt)·COMe (1·3%), and polymers (10%).

LXXXI. Further evidence is provided by the properties of a-bromo-a-4-acetoxy-3-methoxyphenylpropan-β-one (III). 4-Acetoxya-oromo-a-4-acetoxy-3-methoxyphenylpropan-B-one (111). 4-Acetoxy-3-methoxyphenylacetone (prep. from the 4-OH-compound by Ac₂O-10% aq. NaOH at 0—10°), m.p. 47—48° (semicarbazone, m.p. 168—169°), with Br and a little Bz₂O₂ in CHCl₃ at <10° gives (III) (73%), m.p. 100—101° (semicarbazone, m.p. 180—181°), which with Ag₂SO₄ in 1:2 aq. dioxan-N₂ at room temp. gives 100% of AgBr, 35% of a polymer [? of 3:4:1-OMe·C₄H₃(OAc)·CH(OH)·COMe], and 60% of a mixture, whence removal of diketone as Ni glyoxime

salt and subsequent hydrolysis yields 3:4:1-OMeC₆H·₃(OH)·CO·COMe (IV) (44%) and -OMe·C₆H·₃(OH)·CH₂·COMe (V) (27%). (IV) and (V) are probably formed by way of (CHArAc)₂CO and, possibly, O CHAr-CMe(OH) 3·4·1-OMe·C₈H₃(OH)·CO·CHMe·OH and

a little (IV) are also obtained from (II) by boiling BaCO3-H2O-N2,

and from (III) by boiling 5% aq. KOAc.

LXXXII. Reactions described below indicate that compounds, OH·CHAr·CO·CH₂·OH ⇒ COAr·CH(OH)·CH₂·OH, may perhaps form building units of lignin to a limited extent. Treatment of 3:4:1-OMe·C₆H₃(OH)·CH(OH)·CN with HCl-EtOH at -10° and subsequent hydrolysis gives the Et ester (24%), m.p. 77°, and thence (2% NaOH; N₂) 4-hydroxy-3-methoxymandelic acid, m.p. 133°, the diacetate, +H₂O, m.p. 142°, of which with SOCl₂ in boiling C₆H₆ (105 min.; not longer) gives the diacetate acid chloride, m.p. 72°, (105 min.; not longer) gives the diacetate acia cnioriae, m.p. 12, and thence a-acetoxy-γ-diazo-a-4-acetoxy-3-methoxyphenylpropan-β-one (88%), m.p. 129—130°. This does not react with cold AcOH but with AcOH-Ac₂O-N₂ at the b.p. gives αy-diacetoxy-a-4-acetoxy-3-methoxyphenylpropan-β-one (VI) (77%), b.p. 65—70°/0·025 mm., and with HCl-Et₂O-C₆H₆ at 0° gives y-chloro-a-acetoxy-α-4-acetoxy-3-methoxyphenylpropan-β-one (VII) (81%), m.p. 110—111°. In boiling NaOAc-AcOH-CO₃, (VII) gives 75% of Ni glyoxime salt and thence by 12N-H-SO. at room temp. (IV). With boiling 2% and thence by 12N-H₂SO₄ at room temp. (IV). With boiling 2% HCl-EtOH-CO₂, (VI) gives 66% of polymer and 8% of (IV), with boiling 2% H₂SO₄ gives 8.6% of (IV), and with 72% H₂SO₄ gives 8.6% of polymer.

R. S. C.

Synthesis of a-mesitylpropiomesitylene. R. C. Fuson, N. Rabjohn, W. J. Shenk, jun., and W. E. Wallace [with in part, O. F. Soper, C. H. McKeever, S. Melamed, and J. L. Marsh] (J. Org. Chem., 1944, 9, 187-192).—A synthesis from mesitylacetonitrile (I) with other unsuccessful attempts is recorded. Et mesitylacetate, b.p. 152—153°/22 mm., is obtained from the acid chloride and EtOH, from the acid and EtOH containing p-C₂H₄Me·SO₃H, and, with a substance, C₂₂H₂₀ON, m.p. 236—237°, from (I) and boiling H₂SO₄-EtOH. It could not be caused to react with CH₂O or EtOAc but with Et₂C₂O₄ it yields a compound regarded as Et₂ mesitylmalonate, m.p. 49-80°, which could not be methylated. (I) fails to condense with CH₂O but is readily transformed by EtOAc in EtOH-NaOEt into a-mesitylacetoacetonitrile, m.p. 117—118°, converted by MeI and NaOH in EtOH into the Ô-Me derivative, b.p. 152—156°/3—4 mm. This is hydrolysed by boiling AcOH-H₂SO₄ to mesitylacetone, m.p. 60—61°, also obtained (impure) from s-C₈H₃Me₃, COMe-CH₂Cl, and AlCl₃ or from (I) and a large excess of MgMeI. COMe·CH₂Cl, and AlCl₃ or from (I) and a large excess of MgMeI. HCO₂Et, (I), and NaOEt in boiling EtOH afford β -hydroxy-amesitylacrylonitrile, m.p. 131·5—132·5° or 126·5—127·5° after several hr. (benzoate, m.p. 127—128°, unaffected by H₂ in presence of PtO₂), converted by NH₂Ph in boiling EtOH into β -anilino-amesitylacrylonitrile, m.p. 151·5—153°. MeCHO and Mg mesityl bromide give (?) di(mesitylmethylcarbinyl) ether, m.p. 94—95°; treatment of the crude condensation product with HCl in dry Et₂O followed by Mg and then 2 : 4 : 6 : 1-C₆H₂Me₃·COCl lead to mesitoic acid and (?) $\beta\gamma$ -dimesitylbutane, m.p. 139—140°. s-C₆H₃Me₃. CHMeCl·COCl, and AlCl₃ in CS₂ at 5° yield unstable a-chloropropiomesitylene, b.p. 99—100°/1·5 mm. [3 : 5-(NO₂)₃-derivative, m.p. 127·5—128·5°]; β -chloro-3 : 5-dinitropropiomesitylene has m.p. 190—191·5°. Addition of (I) to NaNH, in Et₃O leads to a-mesityl-191.5°. Addition of (I) to NaNH₂ in Et₂O leads to a-mesityl-propionitrile, b.p. 160—165°/35 mm., hydrolysed by boiling glacial AcOH-conc. H₂SO₄ to a-mesitylpropionic acid, m.p. 102—103° (amide, m.p. 100—101°). This with SOCl₂ followed by s-C₆H₃Me₂ and AlCl₂ gives a-mesitylpropiomesitylene, b.p. 160—165°/1—2 mm. m.p. 74—75°. (1), NaNH₂, and CH₂PhCl yield β-phenyl-a-mesityl-propionitrile, b.p. 173—180°/2—5 mm., hydrolysed by boiling H₂SO₄-AcOH to the acid, m.p. 136—137°, with some amide, m.p.

Rearrangement of arylamides of aromatic and aliphatic acids under the action of aluminium chloride. D. N. Kursanov (J. Gen. Chem. Russ., 1943, 13, 286-289).—NHPhAc and NHPhBz with AlCl, at Russ., 1943, 18, 280—289).—NHIFIAC and NHIFIDZ WITH ALC., at 200° for 1 hr. and 5 hr. respectively, give tarry products containing p-NH₂·C₆H₄·COR [R = Me (12%), R = Ph (5%)]. NHPhAc and AlCl., in presence of PhMe at 200° in a sealed tube for 2 hr., yield 16·2% of p-C₆H₄Me·COMe, indicating that the rearrangement proceeds through preliminary cleavage of the acyl group. R. C. P.

Volatile vegetable substances. XXIX. Isolation of a tricyclic isomeride of ionone. Y. R. Naves and P. Bachmann (Helv. Chim. Acta, 1944, 27, 645—649).—Treatment of the portion of the products of cyclisation of ψ-ionone which does not react with NaHSO3 with Girard's reagent P gives a mixture, b.p. 92—94°/4.6 mm., of ketones, which affords a semicarbazone, m.p. 209—209.5°, hydrolysed to tricycloionone (I), b.p. 90—90.5°/4 mm., the colour reactions of which are described. The tricyclic character of (I) is established by physical evidence. (I) gives a δ -phenylsemicarbazone, m.p. $186.5-187^{\circ}$, and a 2:4-dinitrophenylhydrazone, m.p. $151\cdot1-152^{\circ}$. (I) is reduced by Na and boiling EtOH to tricycloionol, b.p. 98—99°/2·5 mm. (acetate, b.p. 95—96°/1·2 mm.), which is not hydrogenated (PtO₂ in AcOH at 60°). NaOI and (I) do not give CHI₃.

Three coloured isomeric forms of benzaurins and phthaleins. Structure of form A. P. Ramart-Lucas (Compt. rend., 1943, 217, -26).-The fuchsone structure for benzaurin is discussed (cf. A., 1939, II, 260, 321).

Nature of the isomerism of the three coloured forms of benzaurins and phthaleins. Possible metamorphosis of derivatives. P. Ramart-Lucas (Compt. rend., 1943, 217, 114-116; cf. A., 1939, II. 321).—Absorption spectra of benzaurin (I), its Me ether (II), p-CPh₂:C₆H₄:O, (p-OMe·C₆H₄)₂CPh·OH, CPh₃·OH, and CPPh₃ are compared. (II), like (I), can exist in three forms, one of which (fuchsone, quinonoid form) exists in neutral, and one in acid, medium. A theory based on differing electronic states of the central C is suggested.

Synthesis of p-benzoquinone. J. H. Billman, B. Wolnak, and D. K. Barnes (f. Amer. Chem. Soc., 1944, 66, 652).—93—95% of p-O:C₆H₄:O is obtained by adding NH₄VO₃ to quinol and NaClO₃ in 2% H₂SO₄ at 40—42° (30 min.) and then cooling. R. S. C.

Easy method for the preparation of dianthraquinone. Action of pyridine on dianthranol and dianthrone. A. Schonberg and A. F. A. Ismail (J.C.S., 1944, 307).—Oxidation of dianthranol (I) with Final (7.0.3., 1944, 307).—Oxidation of diamination (1) with p-O.C₆H₄:O in COMe₂ at room temp. gives dianthraquinone (approximant, yield) with quinhydrone. Dianthrone (II) or (I) with C₅H₂N affords a compound, C₃₈H₂₈O₂N₂, m.p. 190° (efferv.), remelts 229°, which with HCl-EtOH forms (II).

IV.—STEROLS AND STEROID SAPOGENINS.

Chromatography and mesomerism in the sterol series. reaction. P. Meunier (Compt. rend., 1943, 217, 78—80).—The red colour of cholesterol (I) in CHCl₃-H₂SO₄ is attributed to mesomerism. This is supported by the production of some $\Delta^{3:5}$ -cholestadiene, m.p. 79° (absorption max. at 229, 235, and 245 mu.) (cf. Schoenheimer et al., A., 1936, 1105), in addition to dicholesteryl ether, from (I) (method: Bills et al., A., 1926, 981).

A. T. P.

Steroids and sex hormones. XCVII. Relationships between constitution and optical activity in the cholic acid series. P. A. Plattner and H. Heusser (Helv. Chim. Acta, 1944, 27, 748—757).— The observation of Bernstein et al. (A., 1942, II, 177) that changes in the side-chain of the sterols have little influence on $[M]_D$ is confirmed; the effect is very small when such changes occur at a distance from the asymmetric $C_{(20)}$ and when a new centre of asymmetry is not developed. The behaviour of Me cholate on partial or complete acetylation shows that the contributions to [M] of the asymmetric centres at $C_{(3)}$, $C_{(7)}$, and $C_{(12)}$ are largely independent of one another. Marked differences are found for the pendent of one another. Marked differences are found for the free, partly acetylated acids. It appears therefore that unpredictable influences also play a part. The relative independence of the asymmetric centres at $C_{(7)}$ and $C_{(12)}$ of the sterol skeleton is shown by observations of the effect of introducing OH groups into lithocholic acid. The following are described: Me triacetylcholate, m.p. $90.5-91^{\circ}$, $[a]_1^{14}+81.8^{\circ}$ in EtOH, $[a]_1^{17}+76.8^{\circ}$ in CHCl₃; Me triformylcholate, m.p. $133.5-134.5^{\circ}$, $[a]_1^{16}+90.0^{\circ}$ in EtOH, $[a]_1^{17}+86.0^{\circ}$ in CHCl₄; 3(a)-hydroxy-7(a): $12(\beta)$ -diacetoxycholanic acid, m.p. $202-203^{\circ}$, $[a]_1^{16}+71.6^{\circ}$ in EtOH (Me ester, m.p. $57-59^{\circ}$, $[a]_1^{16}+72.0^{\circ}$ in EtOH, $+63.7^{\circ}$ in CHCl₃); $12(\beta)$ -hydroxy-3(a): 7(a)-diacetoxycholanic acid, m.p. $261-263^{\circ}$, $[a]_1^{17}+49.8^{\circ}$ in EtOH (Me ester, m.p. $182-183^{\circ}$, $[a]_1^{16}+35.3^{\circ}$ in EtOH, $+31.0^{\circ}$ in CHCl₃); (a): (ain CHCl₃ (Ba salt); 3(a): 7(a)-diformoxycholanic acid, m.p. 132.5—133.5° and 180—182°, $[a]_{10}^{16}+31.0$ ° in EtOH. H. W.

Bile acids and related substances. XXIX. Derivative of hisnordeoxycholic acid and of 3(a):11(a)-dihydroxybisnorcholanic acid. A. Lardon and T. Reichstein (Helv. Chim. Acta, 1944, 27, 713—726).—Me $3(a):12(\beta)$ -dihydroxybisnorcholanate (Me bisnordeoxycholate) (I) is cautiously oxidised by CrO, in AcOH to Me 3:12-diketobisnorcholanate, m.p. 139—141°, [a]¹³ +82·1° ±2° in COMe. Partial acetylation of (I) by Ac₂O in boiling C₄H₈ affords Me 12(β)-hydroxy-3(a)-acetoxybisnorcholanate, m.p. 198—199°, [a]¹⁸ Partial acetylation of (I) by Ac₂O in boiling C_0H_8 affords Me $12(\beta)$ -hydroxy-3(a)-acetoxybisnorcholanate, m.p. $198-199^\circ$, $[a]^{19}+54\cdot7^\circ\pm1\cdot5^\circ$ in COMe₂, oxidised (CrO₃ in AcOH) to the 12-ketoseter, m.p. $168-170^\circ$, $[a]_D^{19}+93\cdot9^\circ\pm1\cdot5^\circ$ in COMe₂. Energetic acetylation (Ac₂O-C₂H₃N at 100°) of (I) yields Me 3(a): $12(\beta)$ -diacetoxybisnorcholanate, m.p. $169-170^\circ$, $[a]_D^{19}+84\cdot4^\circ\pm1^\circ$ in COMe₂, partly hydrolysed (1% HCl-McOH at 16°) to Me 3(a)-hydroxy- $12(\beta)$ -acetoxybisnorcholanate, m.p. $137-138^\circ$, $[a]_D^{20}+73\cdot2^\circ\pm1^\circ$ in COMe₂, oxidised to the 3-keto-ester (II), m.p. $136-137^\circ$, $[a]_D+64\cdot8^\circ\pm1\cdot5^\circ$ in COMe₂, and an unidentified by-product, $C_{25}H_{38}O_5$, m.p. $164-165^\circ$, $[a]_D^{15}+73\cdot4^\circ\pm1\cdot5^\circ$ in COMe₂. Alkaline hydrolysis and esterification (CH₂N₂) of (II), particularly if the conditions are not too drastic, leads mainly to Me $12(\beta)$ -hydroxy-3-ketobisnor-cholanate, m.p. $204-206^\circ$, $[a]_D^{13}+38\cdot6^\circ\pm1\cdot5^\circ$ in COMe₂, with some Me 12(β)-hydroxy-3-ketobisnor-20-isocholanate [only obtained amorphous but identified by conversion into the acetate, m.p. 169—1719, and oxidation to the 3: 12-(CO)₂-compound, double m.p. 116—118° and 140—141°], and by-products, m.p. 142—144° (oxidised to a compound, C₂₃H₃₄O₄, m.p. 181—183° and m.p. 177—179° (similarly oxidised to a substance, C₃₃H₃₄O₄, m.p. 164—166°). Me 3-keto-12(β)-benzoyloxy-, m.p. 135—136°, [a]₃¹³ +46-8° ±1·5° in COMe₂, and Me 3(a): 12(β)-dibenzoyloxy-, m.p. 170—171°, -bisnorcholanate are described. (I) is converted by anthraquinone-2-carboxyl chloride in abs. C₅H₈N—PhMe at 100° into Me 3(a): 12(β)-dianthraquinone-2-carboxybisnorcholanate, m.p. 221—223° [accompanied under less drastic conditions by the 12(β)-hydroxy-3(α)-anthraquinone-2'-carboxy ester, m.p. 271—273°], hydrolysed by KOPh in boiling EtOH-dioxan to the 3(a)-hydroxy-12(β)-anthraquinone-2'-carboxy ester [acetate (A), m.p. 116—118°, becomes opaque at ~100°]. Thermal fission of the above monobenzoate or of Me 3-keto-12(β)-anthraquinone-2'-carboxybisnorcholanate, a resin, leads to Me 3-keto-1-16(β)-anthraquinone-2'-carboxybisnorcholanate, m.p. 10—102°, new [a]¹³ + 13-8° ±1° in COMe₂, reduced (H₂, Raney Ni in MeOH containing NaOH) and then acetylated to Me 3(a) - (IV), m.p. 101—102°, new [a]¹³ + 13-8° ±1° in COMe₂, doubtiened by thermal fission of (A)], and Me 3(β)-acetoxy-Δ¹¹-bisnorcholenate, m.p. 139—140°, [a]¹³ + 13-8° ±1° in COMe₂, in AcOH at room temp.) to M

Degradation of bile acid derivatives. R. P. Jacobsen (J. Amer. Chem. Soc., 1944, 66, 662).—Bile acids are degraded in good yield by the following reactions. CHRMe·[CH₂].-COCl [+CdPh₂] \rightarrow CHRMe·[CH₂].-COCl [+CdPh₂] \rightarrow CHRMe·[CH₂].-COPh \rightarrow mixed CHRMe·CH₂-CHBr·COPh \rightarrow CHRMe·CH₂-CH(OH)·COPh \rightarrow CHRMe·CH₂-CH(OAc)·COPh CHRMe·CH₂-CO-COPh (65—70%) \rightarrow CHRMe·CH:C(OAc)·COPh \rightarrow CHRMe·CO₂H. The following are described: cholophenone [Ph norcholyl ketone], +0·5H,O, m.p. 174—176·5°, [a]²⁰ +26° [triacetate, m.p. 120·3—121°, [a]²⁰ +79°; 2:4-dinitrophenylhydrazone, m.p. 221—222·5°; oxime, m.p. 214—217° (decomp.)]; 23(? β)-bromocholophenone triacetate, +H₂O, m.p. 108·5—111·5°, [a]²⁰ +95°; 23(? a)-acetoxycholophenone triacetate, +0·5H₂O, m.p. 180—182°, [a]²⁰ —10°; Ph bisnorcholyl diketone triacetate, m.p. 166—169° (after drying, 161·5—166°), [a]²⁰ +92° (the 7:12-diacetate has m.p. 201—203·5°, [a]²⁰ +80°); 3-phenyl-2-bisnorcholyl-quinoxaline triacetate, m.p. 217—218·5°. [a] are in CHCl₃.

Adsorption of estrone, estriol, and a-cestradiol on a chromatographic column. B. F. Stimmel (J. Biol. Chem., 1944, 153, 327—553).—Strongly phenolic may be separated from weakly phenolic estrogens by means of a liquid chromatogram using activated $\Lambda l_2 O_3$, the weakly phenolic being eluted by a 9:1 $C_6 H_6$ -MeOH mixture and the strongly phenolic by a 4:1 mixture. The $\Lambda l_2 O_3$ is inactivated by the process and its subsequent use is inadvisable.

H. G. R. Synthesis of compounds related to sex hormones. W. E. Bachman and R. D. Morin (J. Amer. Chem. Soc., 1944, 66, 553—557).— 9:6:7:8-Tetrahydro-1-naphthylamine (prep. from a-C₁₀H₂·NH₂ by Na and fusel oil in 84% yield) gives (diazo-reaction) the 1-I-derivative (66%), b.p. 153—158°/20 mm., and thence, successively, [Grignard; (CH₂)₂O] β-5:6:7:8-tetrahydro-1-naphthylethyl alcohol (57%), b.p. 125—135°/0·4 mm., (PBr₃) the derived bromide (62%), b.p. 113—118°/0·05 mm., [CHNa(CO₂Et)₂; then hydrolysis and heating at 180°] y-5:6:7:8-tetrahydronaphthyl-1-butyric acid (65%), m.p. 94—95°, and (acid chloride; SnCl₄) 1-keto-s-octahydrophenanthrene (I) (88%), m.p. 80·5—82°. Me₂C₂O₄ and (I) give Me 1-keto-s-octahydrophenanthrene-2-carboxylate (89%), m.p. 103—104°, converted by heating with powdered, soft glass at 180° into Me 1-keto-s-octahydrophenanthrene-2-carboxylate (88%), m.p. 83—85°, which with NaOMe and MeI in MeOH-C₈H₆ gives Me 1-keto-2-methyl-s-octahydrophenanthrene-2-carboxylate, m.p. 77—78° (derived acid, m.p. 87—88°). The Reformatsky reaction then gives Me 1-hydroxy-2-carbomethoxy-2-methyl-s-octahydro-1-phenanthrylacetate (78—81%), m.p. 102—103° [converted by hot KOH-MeOH-H₂O into the 2-Me derivative of (I)], which with SOCl₂-C₃H₆N and then KOH-EtOH-H₂O gives 2-carboxy-2-methyl-s-octahydro-1-phenanthryl-tdeneacetic acid (92%), m.p. 140—141° (gas). This or an unpurified

solution of it with 2% Na-Hg in aq. KOH gives 2-carboxy-2-methyls-octahydro-1-phenanthrylacetic acid, a- (40—43%), m.p. 218—219°, and β -form (46—50%), m.p. 162—163°, the Me, esters (prep. by CH₂N₂), a-, m.p. 70·5—71°, and β -form, m.p. 81·5—82·5°, of which with hot NaOH-MeOH-H₂O give 2-carbomethoxy-2-methyl-s-octahydro-1-phenanthrylacetic acid (95—98%), a-, m.p. 121—122°, and β -form, m.p. 141—142°. Arndt-Eistert reactions then yield Me β -2-carbomethoxy-2-methyl-s-octahydro-1-phenanthrylpropionate, a- (75%), m.p. 63·5—64·5°, and β -form, an oil, cyclised by NaOMe in boiling C₆H₈ to Me 1: 2: 3: 4-tetrahydro-1-peulenone-16-carboxylate, a- (90%), m.p. 124—125° (dark green FeCl₃ colour), and β -form (85%), m.p. 121—122° (greenish-brown FeCl₃ colour), which in boiling HCl-AcOH-H₂O-N₂ give 1: 2: 3: 4-tetrahydro-1 i-equilenone, a- (88%), m.p. 72—73° (semicarbazone, m.p. 243—244°), and β -form (79%), m.p. 114—115° (vac.) [semicarbazone, m.p. 274—275° (vac.)] (cf. Marker et al., A., 1940, II, 95), converted by S at 210° into the a- and β -forms, respectively, of 17-equilenone. 2-C₁₀H₃-OMe and (CH₂·CO)₂O give 6: 2-OMe·C₁₀H₄·CO·[CH₂]₂·CO₂H₄, m.p. 147—148°, the Et ester, m.p. 107·5—108°, of which affords (Reformatsky) the lactone (II) (84%), m.p. 121—122°, of a-Me a'-H β -hydroxy- β -6-methoxy-2-naphthyladipate. Hot N-aq. NaOH-MeOH

2-C₁₀H₃-OMe and (CH₂-CO)₂O give b: 2-OMe-C₁₀H₃-CO·[CH₂]₂-CO₂H, m.p. 147—148°, the Et ester, m.p. 107·5—108°, of which affords (Reformatsky) the lactone (II) (84%), m.p. 121—122°, of α-Me α'-H β-hydroxy-β-6-methoxy-2-naphthyladipate. Hot N-aq. NaOH-MeOH converts (II) into β-6-methoxy-2-naphthyl-Λα-butene-αδ-dicarboxylic acid (III) (98%), m.p. 194—195°, the Me₂ ester, b.p. 190°/0·05 mm, of which yields by cyclisation 3-6'-methoxy- (80%), m.p. 125—126°, and thence (boiling HCl-AcOH-H₂O-N₂) 3-6'-hydroxy-2'-naphthyl-Λ²-cyclopentenone (IV), m.p. 252—253° (vac.) {Me ether, m.p. 169—170° [semicarbazone, m.p. 250—251° (vac.), reduced by NaOMe-EtOH at 180° to the known 1-6'-methoxy-2'-naphthylcyclopentene, m.p. 141—142°]; semicarbazone, m.p. 260—262° (vac.)}. 2% Na-Hg in aq. KOH reduces (III) to β-6-methoxy-2-naphthyladipic acid, m.p. 164—165°, the Me₂ ester, b.p. 180—190°/0·05 mm, of which by successive cyclisation, hydrolysis, decarboxylation, and demethylation affords 3-6'-hydroxy-2'-naphthylcyclopentanone (83%), m.p. 176—176·5° (semicarbazone, m.p. 212—213°), also obtained from (IV) by H₂-Pd-C in AcOH- By similar reactions β-C₁₀H₇·CO·[CH₂]₂·CO₂H gives the lactone, m.p. 111—112°, of a-Me a'-H β-hydroxy-β-2-naphthyladipate, β-2-naphthyl-Δ²-cyclopentenone (V), m.p. 126—127° [semicarbazone, m.p. 240—241° (lit. 244°)], 1-2'-naphthylcyclopentenone, β-2-naphthyl-Δ²-cyclopentenone, m.p. 250—66° (lit. 61°) [semicarbazone, m.p. 199—199·5° (lit. 196—197°)]. 2-Chloroacetyl-5: 6: 7: 8-tetrahydronaphthalene yields by similar

reactions γ -keto- γ -5:6:7:8-tetrahydro-2-naphthylbutyric acid, β -5:6:7:8-tetrahydro-2-naphthyl- Δ^{α} -butene- α 8-dicarboxylic acid, m.p.

185—186°, 3-5′: 6′: 7′: 8′-tetrahydro-2'-naphthyl- Δ^2 -cyclopentenone, m.p. 82—82·5° [semicarbazone, m.p. 235—236°; and thence by Pd-C-N, at 320° (V)], β -5: 6: 7: 8-tetrahydro-2-naphthyladipic acid, m.p. 159·5—160°, and 3-5′: 6′: 7′: 8′-tetrahydro-2'-naphthylcyclo-

pentanone, m.p. 73-74° (semicarbazone, m.p. 207-208°).

Steroids and sex hormones. XCVI. Rearrangement products of 2-acetoxycholestan-3-one. L. Ruzicka, P. A. Plattner and M. Furrer (Helv. Chim. Acta, 1944, 27, 727—737).—2-Acetoxy- (I) and 2-hydroxy-cholestan-3-one (II) are shown to be very labile compounds. Catalytic hydrogenation (Pt) of (I) in neutral or acidic solution affords a mixture (III) of compounds from which cholestan-1-yl acetale, m.p. 80—81°, [a]_D +9.5° in CHCl₃, is isolated in small amount. It is hydrolysed by boiling KOH-MeOH to cholestan-1-ole (IV), m.p. 165·5—166° [a]_D +14° in CHCl₃ (benzoate, m.p. 107—108°, [a]_D +0·2° in CHCl₃), oxidised (CrO₃ in AcOH) to cholestan-1-one (V), m.p. 120—120·5°, [a]_D +41° in CHCl₃, which is reduced (N₂H₄,H₂O) and Na in C₅H₁₁.OH at 190°) to cholestane (VI). The constitution of (V) is based on its non-identity with any known cholestanone. The following also are isolated from (III): acetoxycholestanol-A, m.p. 168—169°, [a] +41° in CHCl₃ (acetate, m.p. 161—162°, [a]_D +33° in CHCl₃; benzoate, m.p. 180—182°; p-tolucnesulphonate, m.p. 146·5—147·5°), oxidised (CrO₄) to acetoxycholestanone-A, m.p. 146—146°, [a]_D +1° in CHCl₃, which greatly depresses the m.p. of (I); acetoxycholestanol-B, m.p. 182·5—183·5°, and -C, m.p. 174—176°; (2) cholestane-2: 3-diol, m.p. 196—197°, and a mixture of various diols. Reduction (Clemmensen) of (I) gives (VI) exclusively. The following are obtained by reduction (Wolff-Kishner) of (I): (VI) with smaller proportions of (IV), cholestan-4-ol, m.p. 189·5—190° (acetate, m.p. 112·5—113°, [a]_D +16° in CHCl₃, benzoate, m.p. 117·5—118°), oxidised to cholestan-4-one, m.p. 99—99·5°, [a]_D +29·5° in CHCl₃, a cholestan-2-ol (the presence of which is established by oxidation to cholestan-2-one), and two azines, C₃₄H₂₂N₂, m.p. 235—124° (decomp.) and 200—210° (decomp.). Hydrolysis of (I) in C₆H₆ with K₂CO₃ in aq. MeOH gives (II) in moderate yield with large amounts of a (?) 3-hydroxycholestan-4-one (VII), m.p. 173—175°, softens at 171°, [a]_D +14·5°

Acetoxycholesten-2-one is hydrogenated (Raney Ni in EtOH) to $3(\beta)$ -acetoxycholestan-2-one (IX), m.p. $145\cdot5-146\cdot5^\circ$, $[a]_D+73^\circ$ in CHCl₃ [oxime (X), m.p. $178-179\cdot5^\circ$ (decomp.)], reduced (Wolff-Kishner) to (VI). Alkaline hydrolysis (KOH-MeOH) of (X) yields $3(\beta)$ -hydroxycholestan-2-oneoxime, m.p. $207-208^\circ$ (decomp.). NaOH-MeOH at 20° converts (IX) into $3(\beta)$ -hydroxycholestan-2-one, m.p. $104-105^\circ$, $[a]_D+65^\circ$ in CHCl₃, oxidised to the dicarboxylic acid, m.p. $193-195^\circ$, of Windaus et al. M.p. are corr.

Constituents of the adrenal cortex and related substances. LXVII. Attempted preparation of etiocholane-3(a): 12(\$\beta\$)-diol-17-one by systematic degradation. B. Koechlin and T. Reichstein (Helv. Chim. Acta, 1944, 27, 549—566; cf. A., 1944, II, 106).—Five known methods and one new one have been applied to the degradation of deviations of the degradation of the degradation. of derivatives of ætiocholanic acid or pregnan-20-one to derivatives of ætiocholan-17-one and particularly to the prep. of ætiocholane- $3(a):12(\beta)$ -diol-17-one (I). This has been obtained only from pregnane- $3(a):12(\beta)$ -diol-20-one by the method of Marker et al. (A., 1942, II, 230, 264) but the yield is unsatisfactory. Unsuccessful attempts to obtain cryst. diphenyl-3(a): 12(b)-diacetoxyætiocholanylcarbinol or the corresponding methene from Me ætiodeoxycholate (cf. A., 1941, II, 140) are described; a cryst. by-product, $C_{30}H_{40}O_5$, m.p. 152—153°, has been isolated. Treatment of allopregnane-3(β)-ol-20-one acetate with MgMeBr and subsequent acetylation affords 20-methylallopregnane-3(β): 20-diol 3-monoacetate (II), needles which pass into hexagonal plates at 185-190°, m.p. 200-202°, in good yield (cf. Butenandt et al., A., 1935, 1033). m.p. 200—202°, in good yield (cf. Butenandt et al., A., 1935, 1033). (II) loses H_2O in boiling AcOH, giving mainly 20-methyl- Δ^{20} -allopregnene- $3(\beta)$ -ol accetate (III), m.p. 111— 114° , $[a]_b^{15} \pm 0^\circ \pm 2^\circ$ in COMe₂, with smaller quantities of an isomeride (IV), m.p. 65— 67° , $[a]_b^{16} - 57\cdot 2^\circ \pm 1\cdot 5^\circ$ in COMe₂, and traces of 20-methyl- Δ^{17} -allopregnen- $3(\beta)$ -ol accetate, m.p. 144° . (II) sublimes unchanged at 145° (bath)/high vac., but is partly dehydrated by repeated distillation at $210^\circ/12$ mm., whereby the main product is (III). This is formed almost exclusively from (II) and $POCl_3$ – C_5H_5N at 130° , and (IV) is almost the sole product of the action of P_2O_5 (in C_5H_5) or of HCO_2H on (II). The constitution of (III) is deduced from its or of HCO₂H on (II). The consitution of (III) is deduced from its ozonisation to allopregnan-3(β)-ol-20-one acetate; it is hydrogenated to 20-methylallopregnan-3(β)-ol acetate, m.p. 124—125°. (IV) is hydrolysed to the corresponding alcohol, m.p. 144—145° after a transformation at ~140°. Ozonisation of (IV) gives some acidic transformation at ~140°. Ozonisation of (IV) gives some acidic products but mainly neutral material from which a *substance*, $C_{24}H_{38(40)}O_{4(5)}$, m.p. $186-188^{\circ}$, $[a]_{1}^{15}+22\cdot 1^{\circ}\pm 3^{\circ}$ in dioxan, is isolated which does not react with $NH_{2}\cdot CO\cdot NH\cdot NH_{2}$. Attempted chromatographic purification of this material by $Al_{2}O_{3}$ leads to *compounds*, $C_{24}H_{38}O_{4}$, m.p. $156-161^{\circ}$, and $202-205^{\circ}$. (IV) is hydrogenated (PtO₂ in AcOH) to a *substance*, $C_{24}H_{40}O_{2}$, m.p. $81-84^{\circ}$, which does not give a yellow colour with $C(NO_{2})_{4}$. Ag $3(\beta)$ -acetoxy-atioallocholanate is largely unattacked by Br in CCl₄ at room temp, and subsequently at incipient boiling. Addition of Br-AcOH to and subsequently at incipient boiling. Addition of Br-AcOH to altopregnan-3(β)-ol-20-one acetate in AcOH containing HBr and which, after acetylation, afford Me 3(β)-acetoxy-17-methylatioallo-cholanate, m.p. 200—202°, which does not give a colour with C(NO₂)₄. and acidic products from which after methylation, acetylation, and active products from which after metrification, acceptation, ozonolysis, and hydrolysis androstan- $3(\beta)$ -ol-17-one, m.p. 175°, is obtained in \sim 7% yield. A similar series of changes starting from pregnane- $3(\alpha)$: 12(β)-diol-20-one diacetate leads to Me $3(\alpha)$: 12(β)diacetoxy-17-methylæticallocholanate, m.p. 163—165°, and the diacetate, m.p. 160—162°, [a] $_{\rm D}^{\rm 16}$ +186·3° \pm 2° in COMe $_{2}$, of (I). Gradual addition of NaOEt–EtOH to a solution of allopregnane-3(β)-ol-20-one acetate and PhCHO in abs. BtOH gives 21-benzylideneallopregnan- $3(\beta)$ -ol-20-one acetate, m.p. 211—214° (lit. 207—209°), [a] $^{16}_{10}$ +75·5° $\pm 2^{\circ}$ in dioxan, and an isomeride, prisms, m.p. 150—152°, or hexagonal leaflets, m.p. 150—152° after transformation at 147°; either isomeride is converted by PCl₅ in C_0H_0 at 50° followed by ozonolysis into androstan-3(β)-ol-17-one. A similar change cannot be effected starting from 21-benzylidenepregnane-3(a): $12(\beta)$ -diol-20-one diacetate, m.p. 119—121°, [a] $_{0}^{16}$ +200-5° \pm 2° in dioxan. H. W.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Oil of layender. III. Monoterpene alcohols and acids present as esters in French oil of layender. C. F. Scidel, H. Schinz, and P. H. Müller (Helv. Chim. Acta, 1944, 27, 663—674).—Fractions, b.p. >100°/11 mm., of French oil of layender have been examined. The following alcohols have been isolated: l-linalool (I), b.p. 84—85°/11 mm., $a_D = 16.8^\circ$ (phenylurethane, m.p. $61-62^\circ$); geraniol (II), b.p. $115-116^\circ$ /14 mm. (allophanate, m.p. $115-116^\circ$; 3:5-dinitrobenzoate, m.p. $60-61^\circ$); nerol (III), (diphenylurethane, m.p. $55-62^\circ$); d-citronellol (IV), b.p. $104-105^\circ$ /11 mm. (allophanate, m.p. $105-106^\circ$, $[a]_D +2-50^\circ$ in MeOH); d-borneol (V), m.p. $203-204^\circ$; cumin alcohol (VI), b.p. 124° /13 mm. (allophanate, m.p. $184-185^\circ$; 3:5-dinitrobenzoate, m.p. 96°). (I), (II), and (III) are present in free and esterified forms, (V) and (VI) only as free alcohol, and (IV) only as ester. The identity of (VI) is confirmed by the prep. of it (and its derivatives) by reduction of cuminol with $Al(OPr^\beta)_3$ and by its synthesis from C_8H_8 and $Pr^\beta Br$ through

p-C₈H₄PrβBr and p-C₈H₄Prβ-MgBr + CH₂O. The higher fatty acids include d-CHMeEt-CO.H, b.p. 75—77°/10 mm., $a_{\rm D}$ +11° (thiuronium salt, m.p. 147—148°, [$a_{\rm D}$) +3·6° in MeOH), n-C₈H₁₁·CO₂H (thiuronium salt, m.p. 154—155°; anilide, m.p. 95—96°), an incompletely identified heptoic acid (thiuronium salt, m.p. 153°), pelargonic acid (thiuronium salt, m.p. 150—151°), tiglic acid, m.p. 63—64°, probably an unsaturated C₈ acid (thiuronium salt, m.p. 150—151°), a monocyclic, singly unsaturated acid, C₈H₁₄O₂, hydrogenated to a saturated acid, b.p. 130—135°/10 mm., $a_{\rm D}$ +3·4° (poorly cryst. anilide; thiuronium salt, C₁₇H₂₆O₂N₂S, m.p. 154—155°), BzOH, and an unidentified acid, C₁₀H₁₂O₂ (possibly a phenylbutyric acid) (thiuronium salt, m.p. 184—185°). Coumarin and umbelliferone Me ether are also present.

New transition from camphor to homocamphor. H. Rupe and C. Frey (Helv. Chim. Acta, 1944, 27, 627—645; cf. A., 1940, II, 136).—
The vigorous reaction between CH₂N₂ and camphorquinone gives a mixture from which the solid 4-methoxy-3: 4-dehydrohomocamphor (I), m.p. 54—55°, crystallises, leading the liquid variety (II). (I) and (II) give oximes, m.p. 195—196° and 185—185-5° respectively. Either isomeride is converted by Br in CHCl, at room temp. into 3-bromo-4-methoxy-3: 4-dehydrohomocamphor m.p. 104—105° and by dehydrohomocamphor m.p. 104—105° and by dehydrohomocamphor m.p. 104—105° and by the converted by Br in CHCl, at room temp.

dehydrohomocamphor, m.p. 104—105°, and by an excess of Br into 3: 3-dibromo-4-ketocamphor, C₈H₁₄COCBr₂ (III), m.p. 153—154°. (II) does not give homogeneous products with MgEtBr or MgPhBr. Hydrolysis of (I) or (II) leads to the strongly acidic 4-hydroxy-3: 4-dehydrohomocamphor (IV), m.p. strongly acidic 4-hydroxy-3: 4-dehydrohomocamphor (IV), m.p. $218-222^{\circ}$, and since the production of a new asymmetric C is excluded it appears that (I) and (II) are cis-trans isomerides, (I) being the trans variety. (IV) and Br in CHCl₂ yield 3-bromo-4-hydroxy-3: 4-dehydrohomocamphor, m.p. $189-191^{\circ}$, whilst (IV) and Br vapour yield (III). (IV) is transformed by $p\text{-NO}_2 \cdot \text{C}_6 H_4 \cdot \text{COCl}$ at 160° into the p-nitrobenzoate, m.p. $120-122^{\circ}$, and by boiling EtOH- $H_2\text{SO}_4$ into the Et ether, b.p. $142-146^{\circ}/12$ mm., m.p. $70-72^{\circ}$. With NHPh·NH₂ in EtOH (IV) gives a phenylhydrazone, m.p. 181° (colourless leaflets or red prisms into which the leaflets slowly pass), With NHPh-NH₂ in EtOH (IV) gives a phenylhydrazone, m.p. 181 (colourless leaflets or red prisms into which the leaflets slowly pass), but not a di-phenylhydrazone. 4-Ketohomocamphordioxime has m.p. 209° (decomp.). (IV) is converted by EtO·NO into 4-keto-3-oximinohomocamphor, m.p. 107—109°. PhCHO (1 mol.) reacts with (IV) (2 mols.) in C₅H₅N containing piperidine at 100° or in NaOMe-MeOH to give the substance, C₂₀H₃₆O₄, m.p. 146—149°. In C₅H₅N-piperidine at room temp. and then at 100°, p-NMe₂·C₄H₄·CHO and (IV) afford 4-keto-3-p-dimethylaminobenzylidenehomocamphor, m.p. 152·5—153°. Under similar conditions o-NO₂·C₅H₄·CHO gives 4-keto-3-o-nitrobenzylidenehomocamphor, m.p. 140—142° (decomp.), and a compound, C₂₉H₃₅O₆N. With PhN₅Cl (IV) yields 4-ketohomocamphor-3-phenylhydrazone, m.p. 117—118°. (IV) is comparatively easily oxidised by KMnO₄ to a-ketoepihomocamphoric acid (V), m.p. 125°, which passes when distilled in a vac. into CO and camphoric anhydride (VI). (V) gives a p-nitrobenzylthiuronium salt, m.p. 181—182°, and a dinitrophenylhydrazone, m.p. 192—193° (decomp.). (V) is reduced (Na-Hg) to a-hydroxy-epihomocamphorolactone, m.p. 202—204° (monohydrate, m.p. 171—173°, softens at 150°; p-nitrobenzylthiuronium salt, m.p. 171—172°). (VI) is obtained by oxidation of (IV) with CrO₃. (IV) is hydrogenated (Ni in dil. EtOH containing Na₂CO₃ at room temp.) to 3:4-dehydrohomocamphor (VII), m.p. 173—175° (oxime, m.p. 143·5—145°; dinitrophenylhydrazone, m.p. 181—184°). With Br in CHCl₂ (VII) gives 3:4-dibronohomocamphor, m.p. 103° (decomp.). Hydrogenation (Ni) of (VII) leads to homocamphor (VIII), m.p. 192—193° (oxime, m.p. 165°; dinitrophenylhydrazone, m.p. 232—233°). Hydrogenation (H₂ at 60—70°/90 atm., Ni in aq. EtOH) of (IV) gives (VIII) and a dimeric combound m.p. 276—279° (IV) is not (colourless leaflets or red prisms into which the leaflets slowly pass), (NI) of (VII) leads to homocamphor (VIII), m.p. 162-250 (oxime, m.p. 165°; dinitrophenylhydrazone, m.p. 232-233°). Hydrogenation (H₂ at 60-70°/90 atm., Ni in aq. EtoH) of (IV) gives (VII) and a dimeric compound, m.p. 276-279°. (IV) is not hydrogenated in presence of Pd-C, with Na-Hg, or with Zn and AcOH; Clemmensen reduction affords non-homogeneous products. (IV) is transformed by NH₂Me at 100° and later at 140-150° into 4-methylamino-3: 4-dehydrohomocamphor [nitrosoamine, m.p. 167° (decomp.); picrate, m.p. 178—180°], obtained similarly but less advantageously from (II). Vals. of [a]²⁰ in C₆H₆ for (I), (II), (IV), (VII), and (VIII) are recorded. H. W.

Sesquiterpenes. LXIII. Alcohols, hydrocarbons, and oxides of the sesquiterpene series from French oil of lavender. C. F. Seidel, P. H. Müller, and H. Schinz (Helv. Chim. Acta. 1944, 27, 738—747).—The following have been isolated from a fraction (2·7 kg.), b.p. >100°/11 mm., from 19·25 kg. of French oil of lavender: a probably primary, possibly sec., probably tricyclic alcohol, $C_{15}H_{24}O$, b.p. 96°/0-07 mm., occurring in the free form and giving a poorly cryst. allophanate, m.p. 183—187°; an unesterified monocyclic primary alcohol, $C_{15}H_{24}O$, b.p. 107°/0-07 mm., α_D —25·6°, hydrogenated (PtO₂ in EtOAc) to a H_4 -alcohol, b.p. ~100°/0-04 mm., which is saturated towards $C(NO_2)_4$, oxidised to an aldehyde, b.p. 100—110°/0-04 mm. (non-cryst. semicarbazone and 2 : 4-dinitrophenylhydrazone), and gives a small amount of CH_2O when ozonised; a primary dicyclic alcohol (I), $C_{15}H_{24}O$, b.p. 100—105°/0-04 mm. α_D —66·96° (allophanate, m.p. 188—189°), which is hydrogenated to a H_4 -compound (allophanate, m.p. 178—179°), oxidised to an

aldehyde, b.p. 95—100°/0·05 mm.; a tricyclic diol, $C_{15}H_{28}O_{2}$, m.p. 150—151° (present as an ester), saturated towards $C(NO_{2})_{4}$ and Br-CS₂ and indifferent to PtO₂ in AcOH, found in the residues from (I); free cadinol (II) identified as cadinene dihydrochloride; free bisabolol containing 5% of (II); caryophyllene, identified as the dihydrochloride and as caryophyllene alcohol; cadinene (III), identified as the dihydrochloride; bisabolene (IV), identified as the trihydrochloride; a dicyclic, cryst. oxide, $C_{15}H_{24}O$, m.p. 62—63°, $[a]_D$ —67·85° in CHCl₃, hydrogenated (PtO₂ in EtOAc) to a saturated oxide, $C_{15}H_{26}O$, b.p. 140—141°/11 mm., and separated from the hydrocarbons by adsorption on SiO₂ gel; cedrene could not be identified. Dehydrogenation of hydrocarbon fractions containing (III) and (IV) by Se at 340° gives cadalene (V) and 1:6-C₁₀H₅Me₂ (VI). To check the possibility of the production of (VI) by elimination of Pr β from (V), isozingiberene [a hydrocarbon allied to (III)] is dehydrogenated at various temp. Some (VI) is invariably produced in addition to (V), the yield increasing with increasing temp. of dehydrogenation. At 380° the elimination of Pr β is complete so that (V) can no more be detected.

Isolation of partheniol, parthenyl cinnamate, and other constituents from guayule resin. E. D. Walter (J. Amer. Chem. Soc., 1944, 66, 419—421).—An Et₂O extract of the exudate of Parthenium argentatum, Gray, in 80% alcohol deposits parthenyl cinnamate (~20%) [photomicrograph], m.p. 125—126°, also obtained in similar yield by keeping a COMe₂ extract of guayule rubber (cf. Alexander, A., 1911, i, 897). Hydrolysis of the ester yields cinnamic acid and partheniol, C₁₈H₂₈O, m.p. 131° (photomicrograph), which yields no 3:5-dinitrobenzoate or phenylurethane and in 90% HCO₂H at room temp. gives a formate, b.p. 215° (decomp.)/755 mm. Crystallo-optical properties of the alcohol are reported. Air-dried foliage or the whole shrub yields to warm COMe₂ a resin including ~0.25% of a wax (C 80.18, H 13.25%), m.p. 76°, which is also obtained from rubber from the retted or unretted shrubs. The alcohol and acid are also obtained by hydrolysing COMe₂ extracts of the rubber from retted or whole shrubs or of the foliage, yields of the alcohol being ~2.5%, ~2%, and <1%, respectively. Steam-distilling a COMe₂ extract of the rubber gives an oil, b.p. 244—245°/750 mm., [a]_D —17.92°; distilling the resin in vac. gives cinnamic acid and fractions varying from b.p. 70—78°/1 mm., [a]²² —10.5°, to a sesquiterpene, b.p. 246—247°/755 mm., [a]²³ —6.84°. This hydrocarbon may have been formed by dehydration of partheniol.

Triterpenes. LXXXVII. Transformation products of lanosterol. L. Ruzicka, E. Rey, and A. C. Muhr (Helv. Chim. Acta, 1944, 27, 472—489).—Lanosterol (I) contains an unsaturated side-chain with at least 4 C which terminates in the 'CMe2 group. In structure of this side-chain and in behaviour of the part of the mol. which contains the non-reactive double linking. (I) is identical with elemadienolic acid. The unsaponifiable matter of the wool fat of sheep is extracted with COMe2 and the fatty alcohols are removed chromatographically. The mixture is freed from cholesterol by repeated treatment with boiling MeOH. Chromatographic methods of separating the "socholesterol" (II) thus obtained are less satisfactory than the older acetate method, which leads to the following substances: lanosteryl acetate (III), m.p. 113:5—114:5°, [a]]6*+55:2°, hydrolysed to (I), m.p. 140—141°, [a]]6*+58:2° (benzoate, m.p. 191°; 3:5-dinitrobenzoate, m.p. 201°); dihydrolanosteryl acetate, (IV), m.p. 122—123°, [a]]6*+60:3°, hydrolysed to dihydrolanosteryl acetate, m.p. 142-5—143:6°, [a]]6*+85:9°, whence y-lanosterol (VI), m.p. 158—157:5°, [a]]6*+66:2°; a]nosteryl acetate, m.p. 174—176°, [a]]6*+88:3°, hydrolysed to agnosteryl acetate, m.p. 174—176°, [a]]6*+88:3°, hydrolysed to agnosteryl acetate, m.p. 164:5°, [a]]6*+76:9°. The main product of the dehydrogenation of (II) by Se at 350° is 1:7:8-trimethylphenanthrene; a homologue which could not be obtained pure appears to be also present with a hydrocarbon, (?) C₂₀H₂₉, m.p. 237:5—238:5°, which appears to be a homologue of chrysene according to its absorption in the ultra-violet. Ozonisation of (III) and subsequent fission of the ozonide by boiling H₂O gives COMe2 (identified as the p-nitrophenylhydrazone) and, after methylation, Me acetyltrinorlanosterate, m.p. 168—170°, hydrolysed to trinorlanosteric acid, m.p. 257:5—259:5° (Me ester, m.p. 152:5—154:5°). The readily hydrogenated double linking of (I) is therefore present in CMe2. (IV) is oxidised by CrO₂ in AcOH at 40° to ap-unsaturated

C₃₀H₅₀O₄, m.p. 194·5—196°, [a]_D²⁰ +86·7° (non-cryst. Me_2 ester), which passes at 280—310°/vac. of H₂O pump into nordihydrolano-stenone, m.p. 113·5—115°, [a]_D²⁰ +124·8° [oxime, m.p. 202° (decomp.)]. Dihydrolanostenone, m.p. 118—119°, [a]_D¹⁸ +70·2°, gives an oxime, m.p. 169—171°, and a semicarbazone, m.p. 236—238° (vac.; decomp.), which is converted by NaOEt-EtOH at 180° into dihydrolanostene, C₃₀H₅₂, m.p. 72·5—73·5°, [a]_D¹⁶ +104°, which gives an intense yellow colour with C(NO₂)₄; it is transformed by HCl in CHCl₂ into iso-dihydrolanostene, m.p. 79·5—80·5°, [a]_D¹⁵ +36°. (VI) is dehydrogenated (Cu powder) to γ -lanostenone, m.p. 128—129°, [a]_D¹⁶ +45·6° (oxime, m.p. 188·5—190·5°), converted through the semicarbazone, m.p. 222—225°, into γ -lanostene, m.p. 93—94·5° [a]_D¹⁶ +75·5°. M.p. are corr. and, unless otherwise stated, observed in open capillaries. [a]_D are in CHCl₃.

Triterpene group. XI. Non-saponifiable matter of Lactucarium germanicum. J. C. E. Simpson (J.C.S., 1944, 283—286).—The non-saponifiable matter of L. germanicum is shown to be a complex mixture of triterpene alcohols; the substances, lactucerin, lactucon, α - and β -lacturerol, and α - and β -lactucol, isolated by previous workers were mixtures. Taraxasterol, β -amyrin, and a monohydric alcohol, germanicol, $C_{30}H_{50}O$, m.p. 176—177°, [a] $_{17}^{17}$ +5·8° (acetate, m.p. 274—276°, [a] $_{20}^{19}$ +18·1°; benzoate, m.p. 269—270°, [a] $_{20}^{19}$ +39·0°), have been isolated. Rotations are in CHCl3. F. R. S.

VI.—HETEROCYCLIC.

Configuration of $a-\beta\zeta$ -epoxy- Δ^{γ} -heptene- γ -carboxylic [2:6-dimethyl-5:6-dihydro-1:2-pyran-3-carboxylic] acid. M. Delepine and G. Amiard (Compt. rend., 1942, 215, 309—312; cf. A., 1942, II, 248).—Decarboxylation of the $\beta\zeta$ -epoxyheptane- γ -carboxylic acids could not be effected by prolonged heating alone or with Raney Ni or in quinoline containing Cu chromite at 250°, the only observed result being the transformation of the isomeride, m.p. 92°, into that of m.p. 89°. dl-2:6-Dimethyl-5:6-dihydro-I:2-pyran-3-carboxylic acid is decarboxylated by Cu chromite-quinoline at 250° to dl-2:6-dimethyl-5:6-dihydro-I:2-pyran, b.p. 115—117°/atm. pressure. Similarly the d-acid (I) affords (+)-2:6-dimethyl-5:6-dihydro-1:2-pyran (II), $[a]_D$ +49·7° or +41·1° in Et_2O . The possibility that (I) is intermediately isomerised to 2:6-dimethyl-5:6-dihydro-1:4-pyran-3-carboxylic acid is excluded by the observation that this acid (l-form) is decarboxylated to (-)-2:6-dimethyl-5:6-dihydro-1:4-pyran (III), $[a]_D$ -73·5°. (III) (dl-form) is transformed by H_2O at 75° into heptan- β -ol- ζ -one (semicarbazone, m.p. 105°, or dihydrate, m.p. 65°), whilst the optically active material gives an active keto-alcohol, $[a]_D \sim -1$ ·6° (anhyd. semicarbazone, m.p. 103°, $[a]_D$ -15° in H_2O). Under similar conditions there is no reaction with (II). Hydrogenation (PtO₂ in Et_2O) of the unsaturated compounds leads to dl-, b.p. 114° /162 mm., and (+)-, b.p. $113\cdot5$ — 115° , $[a]_D$ +0·53°, -2:6-dimethylletrahydro-pyran. Evidence of the reality of the optical activity is afforded.

Synthetic experiments in the benzpyrone series. VIII. Transformations of 5-hydroxycoumarin derivatives. B. Krishnaswamy, K. R. Rao, and T. R. Seshadri (Proc. Indian Acad. Sci., 1944, 19, A, 5—13; cf. A., 1942, II, 170).—5-Hydroxy-4:7-dimethylcoumarin (I), obtained from orcinol and CH₂Ac·CO₂Et in conc. H₂SO₄ at room temp. (overnight) or 100° (1 hr.) or in HCl-EtOH, is converted by CH₂:CH·CH₂Br and K₂CO₃ in boiling COMe₂ into the allyl ether, m.p. 127—128°, which at 160—165° gives 5-hydroxy-4:7-dimethyl-6-allylcoumarin (II), m.p. 178—179°, at 195—200° gives 4:7-dimethyl-6-2lylcoumarin (II), m.p. 178—179°, at 195—200° gives 4:7-dimethyl-0²/dihydropyrano-2':3'-5:6-coumarin (III), m.p. 164—165°, and at 225—230° gives (III) and a small amount of 5-hydroxy-4:"-dimethyl-8-allylcoumarin, m.p. 239—240°. The structure of (II) is proved by conversion into (III) at 215—220°. In MeOH, (II) gives a HgCl₂ additive compound, m.p. 228—229°, converted by aq. KI-I at 100° into 4:7-dimethyl-5'-iodomethyl-, m.p. 166—167°, and thence (Na-EtOH) 4:7:5'-trimethyl-0²/dihydrofurano-2':3'-5:6-coumarin, m.p. 205—206°. The difference of this compound from (III) proves the ring-structure of (III).

-Allyloxy-5-methylcoumarin (prep. as above), m.p. 78—79°, at 200—205° or, less well, 230—240° gives 7-hydroxy-5-methyl-8-allylcoumarin, m.p. 174—175°. The acetate, m.p. 199—200° (lit. 195°), of (I) with AlCl₃ at 130—170° gives 5-hydroxy-6-acetyl-4:7-dimethyl-coumarin, m.p. 177—178°. The result of Fries rearrangement in the coumarin series depends on the nature and position of substituents and on the experimental conditions. R. S. C.

Azo-dye formation by 5-hydroxycoumarins. S. Rangaswami and K. R. Rao (*Proc. Indian Acad. Sci.*, 1944, 19. A, 14—16).—With 1 mol. of $p\text{-NO}_2\cdot C_4H_4\cdot N_2\text{Cl}$ at 0° 5-hydroxy-7-methyl- or -4: 7-dimethyl-coumarin in NH₃-EtOH-H₂O or 7-hydroxy-5-methylcoumarin in aq. Na₂CO₃ gives monoazo-dyes, but with >2 mols. gives mixed mono- and bis-azo-dyes. R. S. C.

Anthochlor pigments. V. Pigments of Coreopsis grandiflora, Nutt. II. T. A. Geissman and C. D. Heaton (J. Amer. Chem. Soc., 1944, 66, 486—487; cf. A., 1943, II, 274).—5:6-Dimethoxy-2-coumaranone [prep. from $3:4:5:1-(OH)_3C_6H_2\cdot CO\cdot CH_2Cl$ by Me₂SO₄—

Na₂CO₃-H₂O), m.p. 122—123°, and 3:4:1-(OMc)₂C₅H₃·CHO (I) in warm NaOH-EtOH-H₂O give 5:6:3′:4′-tetramethoxybenzylidene-2-coumaranone (84%), m.p. 156—157°, identical with leptosidin Me₃ ether. 3:4:5:1-OH-C₆H₄(OMe)₂·COMe and (I) in warm NaOH-EtOH-H₂O give 2:3:4-OH-C₆H₂(OMe)₂·CH:CH-C₆H₃(OMe)₂·3:4, m.p. 121—122° (lit. 119°), cyclised in boiling HCl-EtOH-H₂O to 7:8:3′:4′-tetramethoxyflavanone, m.p. 143·5—144° (and a small amount of another substance), identical with the Me₂ ether of the naturally occurring flavanone.

Synthesis of hibiscetin. P. R. Rao, P. S. Rao, and T. R. Seshadri (Proc. Indian Acad. Sci., 1944, 19, A, 88—92).—2:6:1:4-(CH₂Ph·O)₂C₆H₂(OMe)₂ with OMe·CH₂·CN, ZnCl₂, and HCl in Et₂O and then H₂O at 100° gives 2:6-dihydroxy-3:6: ω -trimethoxyacetohenone (I), m.p. 150—151°, by way of its semi-solid ketimine ydrochloride (formed with a by-product, m.p. 110—112°). The ZnCl₂ is responsible for the hydrolysis, since this does not occur in absence of ZnCl₂. 3:4:5:1-(OMe)₃C₆H₂·CO₂Na, [3:4:5:1-(OMe)₃C₆H₂·CO]₂O, and (I) at 175—180°/vac. give a moderate yield of 7-hydroxy-3:5:8:3':4':5'-hexamethoxyflavone, m.p. 238—240°, whence Me₂SO₄-NaOH yields hibiscetin Me, ether, hydrolysed by boiling HI-Ac₂O to hibiscetin (A., 1942, II, 327). R. S. C.

Constitution of belmacamgenin and belmacamdin. S. Wang and M. Hu (J.C.S., 1944, 307).—From the powdered root of Belmacamda, there has been isolated belmacamdin (I), m.p. >300°, which is hydrolysed (HCl-EtOH) to belmacamgenin (II), m.p. 227°, and glucose. (II) is probably a pentahydroxymonomethoxyisoflavone and it forms an Ac derivative, m.p. 184—185°, and Mc2 ether, m.p. 162°. Methylation of (I) followed by hydrolysis (HCl-EtOH) yields a compound, m.p. 165°, identical with 7:3'-dimethylirigenin

Oxidation of catechin to cyanidin: applications of the reaction. J. Lavollay and M. Vignau (Compt. rend., 1943, 217, 86—88).—Oxidation of catechin (I) to cyanidin is effected, without protecting the OH groups (cf. Appel et al., A., 1935, 757), by adding Fe₂(SO₄)₂, K₃Fe₂(CN)₆, CuO, MnO₂, KClO₃, NaBO₃, or K₂S₂O₈, in conc. H₂SO₄ to (I) in COMe₂; the diluted mixture is extracted with 150-C₅H₁₁OH. Possible applications of the reaction are discussed. A. T. P.

Auroxanthin. II. P. Karrer and J. Rutschmann (Helv. Chim. Acta, 1944, 27, 320).—Auroxanthin, m.p. 203°, obtained in very small amount from the blossoms of the yellow pansy, is $C_{40}H_{50}O_4$. Micro-hydrogenation indicates the presence of 9 double linkings. Acetylation (Ac₂O in C_5H_6N) appears to cause profound changes.

Dioxans.-See B., 1944, II, 157.

Reactions of anthocyanins with molybdate. H. Blaschko (Proc. Biochem. Soc., 1944, 38, xxxii—xxxiii).—Colour develops only on addition of NH₄ molybdate to solutions in 1% HCl of anthocyanins that contain free vicinal OH groups, e.g., cyanidin and delphinidin.

Thiochroman derivatives with tocopherol structure. P. Karrer and P. Leiser (Helv. Chim. Acta, 1944, 27, 678—684).—m-2-Xylenol is converted by H₂SO₄, H₃O at 100—110° into 1:2:6:4-OH·C₈H₂Me₂·SO₃Na, which with ClCO₂Et and NaOH affords Na O-carbethoxy-2: 6-dimethylphenol-4-sulphonate. The corresponding sulphonyl chloride, m.p. 127°, is reduced by Zn dust and HCl in EtOH to 4-thiol-2:6-dimethylphenol (I), m.p. 86°. This with phytol in boiling HCO₂H yields 6-hydroxy-5:7-dimethyl-2-δθμ-trimethyl-tridecylthiochroman (5:7-dimethylthiotocol), isolated as the acetate (II), b.p. 190—205°/0·001 mm. Condensation of (I) with CMe₂·CH·CH₂·OH [prep. from CMe₂·CH·CHO and Al(OPrβ)₃ described] gives 6-hydroxy-2:2:5:7-tetramethylthiochroman (III), b.p. 120—125°/0·002 mm. Trimethyl-p-benzoquinonemonoxime, m.p. 182°, is reduced (Na₂S₂O₄ in hot EtOH) to 4:2:3:6:1-NH₂·C₆HMe₃·OH, which affords 2:3:6:1-C₆H₂Me₃·OH when diazotised and heated with Zn dust. This yields 1:2:3:6:4-OH·C₆HMe₃·SO₃Na, converted by ClCO₂Et and NaOH into Na O-carbethoxy-2:3:6-trimethylphenol-4-sulphonate (+1H₂O). The corresponding sulphonyl chloride gives 4-thiol-2:3:6-trimethylphenol, m.p. 87° (Pb salt), which yields 6-hydroxy-0:7:8-trimethyl-2-δθμ-trimethyltridecylthiochroman (IV), b.p. 215—225° (bath)/0·001 mm. (II), (III), and (IV) like the tocopherols have marked reducing power and are oxidised by FeCl₃, AuCl₃, or AgNO₃. With FeCl₃ in presence of 2:2'-dipyridyl they appear to require 3 equivs. of oxidising agent probably on account of the conversion of thiol into disulphide. Oxidation with AuCl₃ is apparently not homogeneous. (II) is without vitamin-E action and is not antagonistic to α-tocopherol acetate.

Pyrolysis of xanthopinacol and related compounds. A. Schönberg and A. Mustafa (I.C.S., 1944, 305—306).—When heated in CO_2 , xanthydrol gives H_*O , xanthen (I), and xanthone (II); dixanthhydryl ether forms (I) and (II); xanthopinacol affords H_2O , (I) and (II), and thioxanthydrol yields thioxanthen, thioxanthone, and dithiodixanthylen. F. R. S.

Synthesis of compounds of the indole and trimethylenepyrrole type. Buu-Hoi and P. Cagniant (Compt. rend., 1943, 217, 26—28).—

 $ω-\Delta^2$ -cyclo $Pentenyl-ωω-dimethylacetophenone, b.p. 165—168°/12 mm., or -ω-methyl-ω-ethyl-, b.p. 180—182°/10 mm., or -ω-methyl-ω-benzyl-acetophenone, b.p. 232—235°/10 mm. (from ω-<math>\Delta^2$ -cyclopentenyl-ω-methylacetophenone, b.p. 158—160°/10 mm., and BzCl), is converted by NaNH-, in boiling PhMe into 4: 5-trimethylene-3: 3-dimethyl-, m.p. 89—90°, b.p. 158—162°/13 mm., -3-methyl-3-ethyl-, b.p. 180—182°/12 mm., and -3-benzyl-3-methyl-2-pyrrolidone, b.p. 232—236°/9 mm., respectively. With the last-named compound, some β- Δ^2 -cyclopentenyl-γ-phenylpropane, b.p. 137—140°/10 mm., is isolable. ω- Δ^2 -cyclopentenyl-ωω-dimethylacetophenone, b.p. 182—185°/14 mm. gives 2-keto-3: 3-dimethyloctahydroindole, m.p. 127-5—128°. Δ^2 -cycloPentenylphenylacetonitrile, b.p. 165—168°/10 mm., obtained from Δ^2 -chlorocyclopentane and CH₂Ph·CN (Na), is converted (Na derivative) by Ph·[CH₂]₂·Br into Δ^2 -cyclopentenophenyl-β-phenylethylacetonitrile, b.p. 202—205°/0·5 mm. CH₂·CH·CH₂·CO₂H gives an amide, m.p. 94°, not cyclised by NaNH₂ in boiling PhMe. No analyses of the compounds are given.

Synthetic analgesics. I. Synthesis of basic benzofuran derivatives and certain 4-phenylpiperidine compounds. F. Bergel, J. W. Haworth, A. L. Morrison, and H. Rinderknecht. II. New synthesis of pethidine and similar compounds. F. Bergel, A. L. Morrison, and H. Rinderknecht. III. Action of hydrogen halides on ethers of and H. Rinderknecht. 111. Action of hydrogen handes of eners of aa-bis- $(\beta'$ -hydroxyethyl)phenylacetonitrile. F. Bergel, A. L. Morrison, and H. Rinderknecht. IV. Synthesis of 3-substituted piperidines and pyrrolidines. F. Bergel, N. C. Hindley, A. L. Morrison, and H. Rinderknecht (J.C.S., 1944, 261-265, 265-267, 267-269, 266-267, 267-269)269-272).-I. Acetylpæonol, paraformaldehyde (I), and NHMe, HCl in EtOH give β-dimethylamino-2-acetoxy-4-methoxypropiophenone hydrochloride (II), m.p. 175°, hydrolysed (HCl) to the -2-OH-compound (III), m.p. 166—167°. Similarly peonol with C_bH₁₁N,HCl and (I) affords β-piperidino-2-hydroxy-4-methoxypropiophenone hydrochloride, m.p. 188—189°. CH₂BzBr and (III) with KOH do not form a coumarone but yield CH₂Bz·NMe₂ with some 2-hydroxy-4-methoxyphenyl vinyl ketone, isolated as the 2:4-dinitrophenylhydrazone, m.p. 244—245°. Et 5-methoxy-2-acetylphenoxyacetate, (I), and NHMe₂,HCl give Et 2-β-dimethylaminopropionyl-5-methoxyphenoxyacetate (IV), m.p. 149° (-piperidino-compound, m.p. 134°), and the corresponding acid, m.p. 197° (-piperidino-compound, m.p. 183—184°), is similarly prepared. Ac.O-NaOAc with (IV) causes disruption of the mol. Addition of Br in AcOH to (II) leads to a-bromo-β-dimethylamino-2-acetoxy-4-methoxypropiophenone hydrobromide, m.p. 161°, of which the -2-OH-compound, m.p. 179°, with K₂CO₃-COMe₂ affords the unstable 2-dimethylaminomethyl-6-methore. in EtOH give β-dimethylamino-2-acetoxy-4-methoxypropiophenone K2CO3-COMe2 affords the unstable 2-dimethylaminomethyl-6-methoxycoumaranone hydrochloride, m.p. 144—145° (picrate, m.p. 123—124°; polymeric substance, C₁₂H₁₈O₃NCl). o-Vanillin with CH₂AcCl and KOH-EtOH gives 7-methoxy-2-acetylcoumarone, m.p. 92°, which with (I) and C₅H₁₁N,HCl affords 2-β-piperidinopropionyl-7-methoxy-cournarone hydrochloride, m.p. 170—172° (picrate, m.p. 158—159°). The azlactone, m.p. 167—169°, of 2-benzyloxybenzaldehyde with The azlactone, m.p. 167—169°, of 2-benzyloxybenzaldehyde with NaOH in N₂ yields 2-benzyloxybhenyl-pyruvic acid, m.p. 119—120°, converted through the oxime into the -acetonitrile (V), m.p. 75—71°. o-CN·C₆H₄·CH₂·CN is similarly obtained from the azlactone, m.p. 164—166°, of 2-OMe·C₆H₄·CHO, and 2·3-dimethoxybhenylacetonitrile, b.p. 158—160°/12 mm., from the azlactone, m.p. 167—168°, of 2:3-(OMe)₂C₆H₃·CHO. (Cl·[CH₂]₂)₂NH, NaNH₂, and (V) in PhMe give 4-(2'-benzyloxybhenyl)-1-methylpiperidine-4-nitrile hydrochloride, m.p. 220—221°, which with HCl (sealed tube) affords the hydrochloride of 4-(2'-hydroxyphenyl)-1-methylpiperidine-4-carboxylic acid lactone (+0·5H₂O), m.p. 260—263°. The corresponding acetonitriles yield respectively 4-(2':3'-dimethoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 107—110°, and 4-(2'-hydroxy-3'-methoxyphenyl)-1-methylpiperidine-4-carboxylic acid lactone, m.p. 115—111°, and 4-(2'-methoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 97—99°, which with MgMeI affords 4-acetyl-4-(2'-methoxyphenyl)-1-methylpiperidine-4-methylpiperidine-4-nitrile, m.p. 97—99°, which with MgMeI affords 4-acetyl-4-(2'-methoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 97—99°, which with MgMeI affords 4-acetyl-4-(2'-methoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 97—99°, which with MgMeI affords 4-acetyl-4-(2'-methoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 97—99°, and 4-(2'-methoxyphenyl)-1-methylpiperidine-4-nitrile, m.p. 97-99°, which with MgMeI affords 4-acetyl-4-(2'-methoxyphenyl)-1-methylpiperidine (VI) (picrate, m.p. 197-200°). 4-Acetyl-4-phenyl-1-methylpiperidine with Na-EtOH gives 4-phenyl-1-methyl-4-(a-hydroxyethyl)piperidine, m.p. 117-119°. Na-EtOH and (VI) yield 2-methyl-3-4'-spiro-(1'-methylpiperidine)coumaran (picrate, m.p. 182-184°). 4-Phenyl-1-methylpiperidine-4-nitrile and Na-EtOH form 4-phenyl-1-methylpiperidine (picrate, m.p. 239-240°), identical with that obtained by decarboxylation of the corresponding -4-carboxylic acid. 4-(2'-Hydroxyphenyl)-, m.p. 179-181°, and 4-(2': 3'-dimethoxyphenyl)-1-methylpiperidine, b.p. 125-127°/1 mm. (picrate, m.p. 159-162°), are similarly prepared; the latter is hydrolysed to the (OH)₂-compound, m.p. 200-205°. γ-Diethylamino-a-phenyl-a-ethylbutyronitrile, b.p. 161-166°/10-12 mm., is similarly reduced to γ-phenyl-n-amyldiethylamine, b.p. 134°/15 mm. 4-Phenyl-1-methylpiperidine-4-nitrile is reduced (H₂-PdCl₂) to bis-(4-phenyl-1-methylpiperidyl-4-methyl)amine, m.p. 90-93°.

II. CH₂Cl·OMe with (CH₂)₂0 and HgCl₂ give Me β-chloroethyl

1-methytp:pperiayl-4-methyt)amine, m.p. 90—93°.

II. CH₂Cl·OMe with (CH₂)₂O and HgCl₂ give Me β-chloroethyl formal, b.p. 134—139°; β-chloroethyl Et formal, b.p. 62—65°/50 mm., is similarly prepared. CH₂Ph·CN with NaNH₂ and Cl·[CH₂]₂·O·CH;CH₂ affords aa-bis-(β'-vinyloxyethyl)phenylacetonitrile (VII), b.p. 125—135°/0·15 mm., hydrolysed (HCl) to aa-bis-(β'-hydroxyethyl)phenylacetonitrile, m.p. 96—98° [also obtained by mild acid hydrolysis of aa-bis-(β'-methoxymethoxyethyl)phenylacetonitrile, b.p. 147—155°/0·05—0·1 mm.], which with SOCl₂ and NPhEt₂ yields the aa-bis-(β'-chloroethyl) compound, m.p. 52°. This nitrile

condenses with NH₂Me in EtOH (sealed tube) to 4-phenyl-1-methylpiperidine-4-nitrile, which is identical with that obtained by Eisleb's method (cf. Ber., 1942, 75, 1435), and is hydrolysed to the 4-carboxylic acid. From the acid, the hydrochlorides of the Pr^a, m.p. 181—183°, Pr^β, m.p. 192—195°, OH·[CH₂]₂, m.p. 195—200°, allyl, m.p. 155—158°, and cyclohexyl esters, m.p. 234—236°, are prepared; the Et ester is pethidine. A similar series of reactions leads to aa-bis-(β'-vinyloxyethyl) b.p. 135—140°/0·1 mm., and -(β'-hydroxyethyl)-0-tolylacetonitrile, m.p. 95—100°, 4-(o-tolyl)-1-methylpiperidine-4-nitrile [hydrochloride, m.p. 279—280°; picrate, m.p. 265° (decomp.)], and Et 4-(o-tolyl)-1-methylpiperidine-4-carboxylate, b.p. 175°/11 mm. (hydriodide, m.p. 175—176°). III. CH₂Ph·CN, NaNH₂, and Br·[CH₂]-OEt in PhMe give aa-bis-(β'-ethoxyethyl)-phenylacetonitrile, b.p. 120—123°/0·05 mm., which with aq. HBr (sealed tube) forms a-phenyl-a-(β'-bromoethyl)-

III. CH₂PhCN, NaNH₂, and Br(CH₂)₂OEt in Phile give aa-bis-(β'-ethoxyethyl)phenylacetonitrile, b.p. 120--123°/0·05 mm, which with aq. HBr (sealed tube) forms a-phenyl-a-(β'-bromoethyl)-butyrolactone, b.p. 140--142°/0·2 mm. (Cl-compound, an oil), converted by piperidine into the -piperidino-compound, b.p. 154°/0·1 mm. (hydrochloride, m.p. 217--217°). Aq. HCl and (VII) afford a-phenyl-a-(β'-hydroxyethyl)butyrolactone, b.p. 172°/0·1 mm. 4-Phenylpenta-methylene oxide-4-nitrile and aq. HBr (sealed tube) yield phenyl-aa-bis-(β'-bromoethyl)acetic acid, m.p. 118° [also obtained from (VII) and HBr], which with EtOH-HCl followed by NH₂Me gives pethidine.

pethidine.

IV. CH₂Ph·NHMe and Br·[CH₂]₃·Cl give benzylmethyl-y-chloro-popylamine (VIII), b.p. 137—138°/16 mm. CH₂Ph·CN and bromo-acetal with NaNH₂ in Et₂O afford β-cyano-β-phenylpropaldehyde diacetal, b.p. 120—121°/0·2 mm., which is hydrolysed (HCl in N₂) to β-cyano-β-phenylpropaldehyde, b.p. 109—111°/0·1 mm. CH₂Ph·CN and benzylmethyl-β-chloroethylamine (IX) with NaNH₂ yield y-benzylmethylamino-a-phenylbutyronitrile, b.p. 158°/0·1 mm. (reineck-ale, m.p. 104—107°), which is reduced (H₂-C-PdCl₂) to 3-phenyl-1-methylpyrrolidine, b.p. 105—110°/11 mm. (picrate, m.p. 155—158°). CN·CHPh·CO.Et and Na in Et₂O with (IX) lead to Et a-cyano-y-benzylmethylamino-a-phenylbutyrate, b.p. 176—178°/0·2 mm., which is hydrogenated to Et 3-phenyl-1-methylpyrrolidine-3-carboxylate, b.p. 144°/0·4 mm. (picrate, m.p. 115—118°). CN·CHPh·CO₂Et with (VIII) and NaNH₂ forms Et a-cyano-8-benzylmethylamino-a-phenyl-valerate, b.p. 180°/0·2 mm., hydrogenated to Et 3-phenyl-1-methyl-piperidine-3-carboxylate, b.p. 104°/0·2 mm. (hydrochloride, m.p. 177—180°; hydriodide, m.p. 207°); the acid (picrate, m.p. 196—199°) formed by hydrolysis of the preceding ester gives a Mc ester (hydrochloride, m.p. 174—175°), Pr² ester, b.p. 110°/0·2 mm. (hydrochloride, m.p. 174—175°), Pr² ester, b.p. 110°/0·2 mm. (hydrochloride, m.p. 174—175°), Pr² ester, b.p. 110°/0·2 mm. (hydrochloride, m.p. 191—193°), and diethylamino-a-o-tolylvalerate, b.p. 199—200°/0·2 mm., hydrogenated to Et 3-(o-tolyl)-1-methyl-piperidine-3-carboxylate, b.p. 126—128°/0·2 mm. (hydrochloride, m.p. 200—201°; hydriodide, m.p. 178—180°). Using the appropriate reagents the following are prepared similarly: Et a-cyano-8-benzylmethylamino-a-benzylnethylamino-a-benzylnethylamino-a-benzylnethylamino-a-benzylnethylamino-a-benzylnethylamino-a-benzylnethylamino-a-benzylnethylamino-a-benzylnethylamino-a-benzylnethylamino-a-phenylvalerate, b.p. 125—135°/0·3 mm.; Et 3-benzyl-1-methyl-piperidine-3-carboxylate, b.p. 145°/0·1 mm., and aβ-dicyano-a-phenylbutyrate, b.p. 145°/0·1

Tetra- and hexa-hydronicotinic acid as growth-promoting factors for Staphylococcus aureas and Bacillus proteus vulgaris. H. von Euler, B. Högberg, P. Karrer, H. Salomon, and H. Ruckstuhl (Helv. Chim. Acta, 1944, 27, 382—390).—The isolation of 1:2:5:6-tetrahydronicotinic acid (I), its 1-Me derivative, and arecoline from technical residues is described. Me 1:2:5:6-tetrahydronicotinate hydrochloride is converted by NaNO2 and HCl into the NO-derivative of the ester, transformed by liquid NH3 into 1-nitroso-4-amino-piperidine-3-carboxylamide, m.p. 172° (hydrochloride, m.p. 227—228°). (I), CICO2Et, and Na2CO3 give 1-carbethoxy-1:2:5:6-tetrahydronicotinic acid, m.p. 78°, converted by successive treatments with SOCl2 and NH3-Et2O into 1-carbethoxy-1:2:5:6-tetrahydronicotinamide, m.p. 136—137°, from which CO2Et could not be removed without involving CO·NHa. (See also A., 1944, III, 616.)

Heterocyclic ketones. IV. Properties of αα-dihalogeno-derivatives of heterocyclic nitrogen compounds. E. I. Elkina and M. M. Schemjakin (J. Gen. Chem. Russ., 1943, 13, 301—303).—2:2-Dichloro-N-methyldihydropyridine (I) and the corresponding quinoline derivative react immediately with H₂O to form N-methyl-2-pyridone and N-methylcarbostyril respectively. (I) is converted by liquid NH₂ into 2-imino-N-methyldihydropyridine, and by NH₂Ph into the corresponding anilo-derivative.

R. C. P.

Oxidation of nicotine to nicotinic acid. N. A. Vasiunina, A. A. Beer, and N. A. Preobrashenski (J. Appl. Chem. Russ., 1943, 16, 206—210).—5 g. of nicotine (I) + 25 ml. of 27% HNO₃ are added dropwise to 180 ml. of 27% HNO₃ at 98°, and the mixture is kept at 98° for 3 hr. (yield 70%). 5 g. of (I) + 20 ml. of $\rm H_2O$ are slowly

introduced into KMnO₄ 20 g. in H₂O 80 g. at 70°, KMnO₄ crystals are slowly added to the solution, and the mixture is kept for 1 hr. at 80—85° (yield 80%). 5 g. of (I) + 50 ml. of 35% H₂SO₄ are added within 1 hr. to 41 g. of MnO(OH)₂ + 100 ml. of 35% H₂SO₄ at 100—105° (yield 75%). J. J. B.

Isolation of the nicotinamide formed from asparagine and glutamic acid. M. R. Bovarnick (J. Biol. Chem., 1944, 153, 1—3; cf. A., 1944, II, 116).—Pure nicotinamide has been isolated by extraction of the mixture formed by heating solutions of asparagine and glutamic acid with Et₀O, followed by repeated recrystallisation of the extract from C_0H_0 .

Nicotinamides.-See B., 1944, II, 157.

Sulphanilamide derivatives. F. S. Spring and E. P. H. Young (J.C.S., 1944, 248—249).—Sulphanilamide derivatives with alkyl attached to N¹ are prepared, to test their tuberculocidal properties, but they are inactive. Adipamide and Br-33% aq. NaOH at 100° (bath), followed by cold p-NO₂·C₄H₄·SO₂Cl (I) or p-NHAc·C₄H₄·SO₂Cl (II) in Et₂O, give NN'-di-(p-nitrobenzenesulphonyl)- (III), m.p. 201°, or NN'-di(acetylsulphanilyl)-tetramethylenediamine (IV), m.p. 233° (sinters at 218°), respectively. (III) is converted by Sn in boiling HCl-EtOH into NN'-disulphanilyltetramethylenediamine, m.p. 205° (hydrochloride, m.p. 241°), also obtained from (IV) and boiling HCl-EtOH. n-C₁₇H₃₅·NH₂ and (I) in Et₂O yield heptadecyl-p-nitrobenzenesulphonamide, m.p. 90·5°, converted by Sn-HCl into N¹-n-heptadecylsulphanilamide, m.p. 118°, also prepared by hydrolysis of its N⁴-Ac derivative, m.p. 128°, obtained from (II) in Et₂O. 2-n-Propylaminopyridine and (II) in dry C₅H₅N give N¹-2-pyridyl-N¹-n-propylsulphanilamide, m.p. 108°. 2-Aminopyridine (V) and NaNH₂-C₅H₅N, followed by n-C₅H₁₁Br (2 days at room temp., then reflux for 3 hr.), yield 2-n-amylaminopyridine, m.p. 43°, b.p. 130—135°/12 mm. (picrate, m.p. 121°), converted by (II) in C₅H₅N into the N⁴-Ac derivative, m.p. 83°, hydrolysed to N¹-2-pyridyl-N¹-n-amylsulphanilamide, m.p. 74—75°. 2-Cetylaminopyridine, b.p. 210—220°/12 mm., m.p. 67° (wax) (picrate, m.p. 84°); gives, through the N⁴-Ac derivative, m.p. 88°, and aq. NaOH-EtOH, N¹-2-pyridyl-N¹-octadecylsulphanilamide, m.p. 77°. 2-Octadecylaminopyridine, b.p. 180—185°/0-01 mm., m.p. 66—67° (waxy), affords N¹-2-pyridyl-N¹-octadecylsulphanilamide, m.p. 70—71°. (V), NaNH₂, and xylene at 100° (bath), then geranyl-N¹-2-pyridylsulphanilamide, m.p. 75-76°. n-C₁₅H₃,Cl, 6-amino-2-methylpyridine, and NaNH₂ (2 days) yield 2-octadecylamino-6-methylpyridine, b.p. 205°/0-25 mm., m.p. 46° (picrate, m.p. 101°), which gives, through the N²-Ac derivative, m.p. 84°, N¹-2-(6-methylpyridyl)-N²-octadecylsulph

Synthesis of dl-tryptophan. H. R. Snyder and C. W. Smith $(f.Amer. Chem. Soc., 1944, 66, 350-351).-CH_2(CO_2Et)_2$ with, successively, NaNO_2-H_2O-AcOH at 20°, H_s-Pd-C-EtOH at 1500 lb., and Ac_2O-EtOH gives NHAc-CH(CO_2Et)_2, the Na derivative of which, when treated with 3-indolylmethyltrimethylammonium iodide (I) (A., 1944, II, 234) in xylene-dioxan at 92°, raised gradually to 125°, gives Et a-acetamido-a-carbethoxy- β -3-indolylpropionate, m.p. 158°. Hot aq. NaOH then gives the corresponding NHAc-acid, m.p. 144-5° (decomp.), which in boiling H_O gives acetyl-dl-tryptophan and thence, by hot aq. acid, dl-tryptophan, they ivid being ~45% calc. on the indole used to prepare (I).

Synthesis of tryptophan. N. F. Albertson, S. Archer, and C. M. Suter (J. Amer. Chem. Soc., 1944, 66, 500).—3-Indolyldimethylethylammonium iodide with CRNa(CO₂Et)₂ (R = H, NHAc, or NHB2) (cf. Snyder, A., 1944, II, 234) gives Et a-carbethoxy- β -3-indolylpropionate, a-acet-, m.p. 157°, and a-benz-amido-a-carbethoxy- β -3-indolylpropionate, m.p. 142°, and thence the derived dicarboxylic acids, m.p. 187—189°, 135—137° (decomp.), and 85—90° (decomp.), respectively, and by decarboxylation (180—200°) thereof β -3-indolylpropionic acid, m.p. 128—130°, and its a-NHAc- and a-NHBz-derivatives, whence tryptophan is obtained in yields up to 35% calc. on the indole used.

Isatin and ammonia. III. Enlargement of the isatin into the quinazoline ring. G. Jacini (Gazzetta, 1943, 73, 85—88; cf. A., 1944, II, 234).—Isatin-3-anil and similar compounds in 10% NaOH with 20% aq. NH₃ and H₂O₂ give 3-phenyl-, m.p. 276°, 3-0-tolyl-, m.p. 246°, 3-p-aminophenyl-, m.p. 311°, 3-p-anisyl-, m.p. 229°, and 3-a-naphthyl-2: 4-diketotetrahydroquinazoline, m.p. 268°. Isatin-3-p-anisylimide has m.p. 229°.

Condensations with Michler's ketone (formation of dyes). H. L. Kehlstadt (Helv. Chim. Acta, 1944, 27, 685—701).—The condensation of $\mathrm{CO}(C_6H_4\cdot\mathrm{NMe}_2-p)_2$ (I) with 2-methylquinoline (II) and analogous substances and the reactions of the product with organo-metallic compounds are described. (I), (II), and AlCl_3 at 170° yield $aa\text{-}di\text{-}pp\text{-}tetramethyldiaminodiphenyl-$\beta\text{-}2-quinolylethylene}$ (III), m.p. $178\text{-}179^\circ$; condensation with ZnCl_2 is less satisfactory. The presence of unchanged (I) in (III) can be detected by the formation of an

immediate blue colour when a solution of (I) is reduced by Na-Hg immediate blue colour when a solution of (I) is reduced by Na-Hg and then acidified (AcOH). (III) is yellow but becomes orange when exposed to sunlight. (III) gives strongly coloured salts involving the ring N and nearly or completely colourless salts involving the N in NMe₂. There are obtained the yellowish triper-chlorate, decomp. 238°, red monoperchlorate, m.p. 238°, dark monopicrate, m.p. 200° (decomp.), styphnate, almost colourless, very unstable hydrochloride, and a dark red, non-hygroscopic, cryst. hydrochloride, m.p. 210°, methiodide, decomp. 170°, ferrocyanide, and an adduct with Me₂SO₄. (III) dyes mordanted cotton in brownish-red shades. (I), (II), and NaNH₂ at 140—150° give 2-quinolylmethyldi-pp-tetramethyldiaminodiphenylcarbinol (IV), m.p. 2-quinolylmethyldi-pp-tetramethyldiaminodiphenylcarbinol (IV), m.p. 2-quinosymethylai-pp-tetramethylaiaminoaiphenylaaroinol (IV), m.p. 187°, becomes yellow. (IV) is not readily converted into a dye. It is stable towards cold mineral acids, gives a colourless, cryst. perchlorate, m.p. (indef.) 180°, and can be cryst. Short warming with org. acids, preferably HCO₂H, leads to pure (III). MgPhBr could not be added to (III). LiPh and highly purified (III) yield a product which, after decomp. with dil. acid, gives a green solution resembling malachite-green (V) and darkening when heated. It appears definite that the addition of the third Ph leads to a system in which the tenaciousness of the Ph residues is inadequate so that in which the tenaciousness of the Ph residues is inadequate so that appreciable if not considerable hydrolysis to $OH\text{-}CPh(C_6H_4\text{-}NMe_2)_2$ occurs. Attempts to determine the (V) which is formed lead to the disclosure that union with LiPh is never complete. (V) cannot be separated by crystallisation and iodometric, titanometric, colorimetric, and chromatographic assays are unsatisfactory, but (V) can be determined by treatment with NH₃ in CHCl₃, alcoholysis of the product, and titration of the NH₃ produced. An optical method is also described. (III) is reduced (H₂ at 70—80°/120 atm.; Ni in EtOAc-EtOH-H₂O) to aa-di-pp'-tetramethyldiaminodiphenyl-β-1:2:3:4-tetrahydro-2-quinolylethane (VI), m.p. 106—107°, which gives colourless salts (very hygroscopic hydrochloride, m.p. 190°) and with CH₂Br-CO₂Et a material, decomp. 100—110°. As sec. base it affords a Bz derivative, m.p. 153—154°, and a NO-amine, but it could not be acetylated. The amorphous, hygroscopic methiodide, m.p. 154—156°, and yellow picrate, softens 148—158°, are described. (VI) is readily oxidised by PbO₂ or chloranil but the dark green-blue product is not a dye. (I) and CH₂Ph·MgCl in be separated by crystallisation and iodometric, titanometric, colorithe dark green-blue product is not a dye. (I) and CH₂Ph·MgCl in C_4H_6 afford a-phenyl- $\beta\beta$ -di-pp'-tetramethyldiaminodiphenylethylene (VII), m.p. 131°, which gives a dark blue-green solution in AcOH (VII), m.p. 131°, which gives a dark blue-green solution in AcOH becoming colourless on addition of mineral acid. (VII) yields a colourless hydrochloride, m.p. 190—192°, a yellow picrate, m.p. 182—190° (decomp.), and a yellow methiodide, m.p. 195°. It is reduced (H₂ at 80—90°/115 atm.; Ni in EtOAc-EtOH-H₂O) but not by Na and EtOH to a-phenyl-ββ-di-pp'-tetramethyldiaminodi-phenylethane (VIII), m.p. 131·5—132·5° [colourless perchlorate, m.p. 207—211° (decomp.); yellow picrate, m.p. 186°; pale yellow methiodide, m.p. 212°], also obtained in very poor yield from CH₂Ph-CHO, NPhMe, and ZnCl₂ in boiling PhMe. (VIII) gives a green-blue or iodide, m.p. 212°], also obtained in very poor yield from CH₂Ph·CHO, NPhMe., and ZnCl₂ in boiling PhMe. (VIII) gives a green-blue or violet colour when oxidised by PbO₂ or chloranil respectively. OH·CH(C_eH₄·NMe₅)₂ (IX) and (II) in boiling AcOH afford αα-di-pp'-tetramethyldiammodiphenyl-β-2-quinolylethane, m.p. 130—132° (colourless triperchlorate; brown-red formate, m.p. 57—58°; colourless methiodide, m.p. 153—155°), oxidised by PbO₂ to a dark red solution; it is hydrogenated to (VI). (IX) and phenylmethylpyrazolone in AcOH at 100° afford tetramethyldiaminodiphenylphenylmethylpyrazolylmethane, m.p. 185—195° (much decomp.), oxidised to a blue solution by PbO₂ and to a violet-red solution by H. W. chloranil.

Derivatives of 10-chlorobenz(g)quinoline [8-chloro-6:7-benz-quinoline]. F. H. Gerhardt and C. S. Hamilton (J. Amer. Chem. Soc., 1944, 66, 479—480).— β -C₁₀H₇·NHAc and Cl₂ give 1:2-C₁₀H₆Cl·NHAc (I), which with HNO₃ (d 1·49) at -10° gives 1-chloro-5- (II), m.p. 183—185°, and -8-nitro-2-acetnaphthalide (III), m.p. 188—190°, but in AcOH at room temp. some 1-chloro-6-nitro-2-acetnaphthalide (IV), m.p. 221—223°, is formed. (II) (80%). (III) (65%), and (IV) (76%) are also prepared by chlorinating the appropriate NO₂·C₁₀H₆·NHAc. With glycerol, H₂SO₄, and As₂O₅. (I) gives 8-chloro-6:7-benzquinoline [10-chlorobenz(g)quinoline] (V) (34%), m.p. 138—140°, which with HNO₃ (d 1·49) at -18° gives 10-chloro-6-nitro- (VI) (45%), m.p. 211—212°, and -9-nitro-benz(g)quinoline (VII) (12%), m.p. 209—211°. With glycerol and As₂O₅ in 70%

and -9-nitro-benz(g)quinoline (VII) (12%), m.p. 209—211°. With glycerol and As,O₅ in 70% H₂SO₄ at the b.p., (II), (III), and (IV) give (VI), (VII), and 10-chloro-7-nitrobenz(g)quinoline (VIII) (4%), m.p. 243—245°, respectively. With morpholine and a little KI or with piperidine, (V) at 150° yields 10-morpholino- (6%), m.p. 160—161°, and 10-piperidino-benz(g)quinoline (8%), m.p. 97—99°, respectively. Morpholine and a trace of Cubronze convert (VI) and (VIII) at the b.p. into 6- (5%), m.p. 156—158°, and 7-nitro-10-morpholinobenz(g)quinoline (3%), m.p. 202—204°. NHEt, does not react with (V), (VI), or (VIII). Passing Cl. into (V) in CHCl₃ gives 5: 10-dichlorobenz(g)quinoline (71%), m.p. 213—215° (cf. loc. cit.), the structure of which is proved by oxidation (CrO₃-AcOH) to benz(g)quinoline-5: 10-dione [1-aza-anthraquinone], m.p. 278—280°. With CrO₃-AcOH at the b.p. (VI) gives 6-nitrobenz(g)quinoline-5: 10-dione [6-nitro-1-aza-

anthraquinone] (42%), m.p. 243—245°, and with boiling Fe-AcOH-H₂O gives 10-chloro-6-aninobenz(g)quinoline (30%), m.p. 181—183°

R. S. C.

Derivatives of 1:10-phenanthroline. F. Richter and G. F. Smith (J. Amer. Chem. Soc., 1944, 66, 396—398).—Yields in Skraup reactions (As₂O₆-H₂SO₄; 130—135°) quoted below are dependent on optimum conditions which are defined. 2:4:1-NO₂·C₆H₃Cl·NH₄ (43·1 g.) gives 6-chloro-8-nitro- (47—48 g.), m.p. 159°, and thence 6-chloro-8-amino-quinoline, m.p. 73°, and 5-chloro-1:10-phenanthroline (56%), m.p. 123° (cf. Kuczynski et al., A., 1937, II, 116). 2:4:1-NO₂·C₆H₃Br·NH₂ (54·3 g.) gives 6-bromo-8-nitro- (60 g.), m.p. 170°, and thence 6-bromo-8-amino-quinoline, m.p. 78°, and 5-bromo-1:10-phenanthroline (I) (46%), m.p. (+H₂O) 86° or (anhyd.) 119°. The so-called (I) (m.p. 215°) of F.P. 804,454 must have a different structure. 4:2:1-NO₂·C₆H₃Mc·NH₂ (38 g.) gives 8-nitro- (38—40 g.), m.p. 121—122°, and thence 8-amino-6-methylquinoline, m.p. 73°, and 5-methyl-1:10-phenanthroline (II) (66%), m.p. 114°, b.p. 280—282°/13 mm. (picrate, m.p. 203—204°). The Me of (II) facilitates nitration (HNO₃-H₂SO₄; 120°), which yields a 5-NO₂-compound, m.p. 268—270°.

Syntheses in the carbazine series. H. Goldstein and G. Huser Syntheses in the carbazine series. H. Goldstein and G. Huser (Helv. Chim. Acta, 1944, 27, 616—619; cf. A., 1928, 647).—0-C₆H₄Me·NH·C₆H₄·CO₂H-p is converted by MeOH—conc. H₂SO₄ into the Me ester, m.p. 48·5°, which with MgPhBr in Et₂O yields 2-p-tolylaminotriphenylcarbinol, m.p. 164·5°; this is dehydrated by glacial AcOH containing HCl to 5:5 diphenyl-3-methyl-5:10-di-hydroacridine, m.p. 217°. Similarly Me N-p-anisylanthranilate, m.p. 53·5°, yields successively 2-p-anisidinotriphenylcarbinol, m.p. 123°. and 3-methoxy-5: 5-diphenyl-5: 10-dihydroacridine, m.p. 213-214°. Me N-β-naphthylanthranilate, m.p. 53°, is converted into 2-β-naphthylanthranilate, m.p. 132—133°, and thence into 5:5-diphenyl-5:10-dihydro-3:4-benzacridine, m.p. 260—261°. M.p. are corr.

Thiobarbituric acids.—See B., 1944, III, 119.

Pyrrole series. XI. Effect of substituents on the structure of dipyrrylmethenes. Relationships between dipyrryl- and triphenyl-methane dyes. K. J. Brunings and A. H. Corwin (J. Amer. Chem. Soc., 1944, 66, 337—342; cf. A., 1943, II, 72).—By electronic influences passage of dipyrrylmethyl bromides (A) into dipyrrylmethyl bromides (B) into dipyrrylmethyl bromin methene anhydro-bases or hydrobromides is favoured by substitution of the pyrryl by Me and hindered by substitution by CO₂Et. By preventing planar alignment (and thus resonance), 5-CO, Et is much more effective than 3- or 4-CO.Et, and 1-Me hinders the transformation. In extreme cases (A) exist as such and yield carbinols and carbinol ethers, but are converted into methene stannichlorides by SnCl₄; in less extreme cases (A) do not exist as such but with KOH-EtOH give the carbinol ether, though aq. KOH may give the carbinol or methene anhydro-base. (A) thus resemble triphenylmethyl halides; in the latter series storic reasons as above account for the lack of effect of o-substituents. Et. 3:5:3':5'-tetramethyldipyrrylmethene-4:4'-dicarboxylate hydrobromide (prep. from the methane by Br-CCl₄) with Ca(OH), in CHCl₂ gives the red anhydro-base, m.p. 189—190° (decomp.). Et. 4:5:4':5'-tetramethyldipyrrylmethene-3:3'-dicarboxylate hydrobromide, similarly prepared, gives similarly the orange-red anhydrobase, m.p. $164-165^{\circ}$ (decomp.). Et₂ 3:4:3':4'-tetramethyldi-pyrrylmethene-5:5'-dicarboxylate hydrobromide (I) (prep. as above). decomp. 160—165°, gives no anhydro-base but with, e.g., H₂O gives 5:5'-dicarbethoxy-3:4:3':4'-tetranethyldipyrrylcarbinol, decomp. 185—186°, and in boiling MeOH gives the Me ether, m.p. 169—170° (decomp.), thereof, both reconverted into (I) by HBr-CCl₄. Et₃ 3:5:4'-trimethyldipyrrylmethene-4:3':5'-tricarboxylate hydrobromide (similarly prepared) with KOH-MeOH gives the carbinol Me ether but with Ca(OH)₂-CHCl₃ gives the methene anhydro-base, m.p. 125—126° (decomp.). The appropriate methane with Br-CCl₄ gives 3:5:3':5'-tetracarbethoxy-4:4'-dimethyldipyrrylmethyl brom-the methane with the second of the methane with ide, m.p. 132—133° (decomp.), which becomes coloured in hot C₆H₆ and colourless again on cooling, colours filter-paper and textiles, has considered in the cooling colours filter-paper and textiles, and the coloured in becomes only weakly coloured in conc. H₂SO₄, but with SnCl₄ in CHCl₃ gives a colour (the methene stannichloride), destroyed by H₂O. The appropriate methane and Br-CCl₄ in complete absence of H₂O give 4:3':5'-tricarbethoxy-1:3:5:1':4'-pentamethyldipyrrylmethyl bromide, m.p. 135—136° (red), which gives brilliant colours in conc. H₂SO₄ or HClO₄ or with SnCl₄-CHCl₃, and in boiling McOH gives the carbinol Me ether, m.p. 93—94°. R. S. C.

Molecular rearrangements of phenyl styryl ketone oxides.—See A., 1944, II, 224.

Some basically substituted derivatives of benziminazole and lupinane. G. R. Clemo and G. A. Swan (J.C.S., 1944, 274—276). -4-Nitro-3-(ε-diethylamino-β-amyl)aminoanisole, prepared from 3bromo-4-nitroanisole, is identical with the product obtained from 3:4-dinitroanisole (cf. Toptschiev, A., 1936, 838). 4-Bromo-3-nitroanisole with δ -amino- α -diethylaminopentane and Cu (trace) give 3-nitro-4-(ε-diethylamino-β-amyl)aminoanisole, b.p. 195- $\bar{2}$ mm., reduced (SnCl₂-HCl) to the $3-NH_2$ -compound (I), b.p. 180-185°/2 mm. 4-Amino-3-(ε-diethylamino-β-amyl)aminoanisole (II)

with HCO₂H affords 1-(ϵ -diethylamino- β -amyl)-6-methoxy-benziminavole, b.p. 190°/1·5 mm. (dipicrolonate, m.p. 193°), and with Ac₂O yields the -2-methylbenziminazole, b.p. 190°/1·5 mm. (dipicrolonate, m.p. 230°). Similarly, (I) with HCO₂H gives 5-methoxy-1-(ϵ -diethylamino- β -amyl)benziminazole, b.p. 195°/2 mm. (picrate, m.p. 161°), and with Ac₂O forms the 2-Me derivative, b.p. 195°/2 mm. (dipicrate, m.p. 198°). 11-Bromolupinane condenses similarly to give 11-(ϵ -diethylamino- β -amyl)aminolupinane, b.p. 165—167°/2 mm. (tripicrolonate, m.p. is 166—172°). Condensation of (II) with CH₂Ac₂ affords a base, C₂₁H₃₄O₂N₃, b.p. 175°/1·5 mm.

Reaction between aromatic diamines and dicarboxylic acids. I. o-Phenylenediamine and phthalic anhydride. B. A. Porai-Koschitz and M. M. Antoschulskaja (J. Gen. Chem. Russ., 1943, 13, 339—352).

—o-C₆H₄(NH₂)₂ (I) and o-C₆H₄(CO)₂O (II) (I:1 mol.) at 120—130° (oil-bath) gave 70% of benzoylenebenziminazole (III), mp. 209·5—210° (extracted from the cooled melt with Ac₂O), diphthaloyl-o-phenylenediamine (IV), and o-di-2-benziminazolylbenzene (V); (IV) and (V) are insol. in Ac₂O and were separated by treatment with dil. HCl, crystallisation, and distillation. The use of C₆H₆ for the extraction and crystallisation of (III) leads to an impure product, indicating the presence in the melt of o-2-benziminazolylbenzoic acid, which is converted into (III) by Ac₂O. (IV), m.p. 296·5—297°, and diphthaloyl derivatives of other diamines are best prepared by slowly adding (I) to 7 mols. of boiling (II); the cooled melt is extracted with boiling 20% aq. Na₂CO₃, washed with H₂O, extracted with hot EtOH to remove (III), and cryst. from glacial AcOH. (V), m.p. 414—416°, was prepared in 70% yield by fusing together (II) and (II) (4:1 mol.) at 185—190° (oil-bath), extracting the melt with boiling aq. Na₂CO₃ and then with boiling dil. HCl; slow crystallisation of the acid extract and decomp. of the HCl salt, or direct neutralisation of the acid extract with NH₃, gave the base, which was purified by extraction with boiling polychlorobenzene, b.p. 183—187°, followed by C₆H₆, and final sublimation. Fusion of (III) with excess of (I) at 195° gave (V) in 92·6% yield; of (IV) with (I) (1:1 mol.) at 230—240° gave 30·9% of (III) together with (V); of (IV) with excess of (II) at 195° did not react, but addition of (III) under similar conditions, nor in the presence of C₅H₅N or piperidine.

N*-Substituted sulphonamides. J. Finkelstein (J. Amer. Chem. Soc., 1944, 68, 407—408).—The appropriate sulphanilamido-compound and CH₂Cl·COCl in C₅H₃N give p-CH₂Cl·CO·NH·C₆H₄·SO₂·NH₂, m.p. 211—213°, 2-N*-chloroacetylsulphanilamido-pyridine, m.p. 192—193°, -thiazole, m.p. 205—206°, -4-methylthiazole, m.p. 231—232°, and -pyrimidine, m.p. 208—210°, converted by conc. aq. NH₃ at 40° into the glycyl derivatives, m.p. (I) 216—218°, 220—221°, 215—216°, 205—206°, and 238—240°, respectively. The substance, m.p. 260°, of Pollak et al. (A., 1931, 1283, m.p. 256—258°), supposed to be (I), is iminobis-N*-acetylsulphanilamide. 2-N*-Hexoylsulphanilamido-pyridine, m.p. 193—194°, -thiazole, m.p. 193—195°, and pyrimidine, m.p. 214—215°, are also prepared. The drugs have low toxicity and may be useful therapeutically (preliminary data only are given).

R. S. C.

Heterocyclic compounds containing nitrogen. LII. Pyridylisatogens. P. Ruggli and H. Cuenin (Helv. Chim. Acta, 1944, 27, 649—662).—2-Methylpyridine, o-NO₂·C₆H₄·CHO, and Ac.O at 170—175° give 2-nitrostilbazole, m.p. 100—101° [hydrochloride, m.p. 213—215° (decomp)]; the dibromide, m.p. 181° (picrate, m.p. 174°), loses Br when treated with C₅H₅N, piperidine, KOH—EtOH, AgOAc, or AgOBz. The corresponding dichloride, m.p. 167—168° (decomp.)], is converted by prolonged boiling with C₅H₅N into μ-chloro-2-nitrostilbazole, m.p. 61·5—62° [hydrochloride, m.p. 160—165° (decomp.)], picrate, m.p. 128—128·5°], and by boiling KOH-MeOH into 2-nitrotolazole (I), m.p. 54·5—55°, [picrate, m.p. 171—171·5°; hydrochloride, m.p. 158°, resinifies when kept; very hygrocochloride, m.p. 158°, resinifies when kept; very hygrocylorudylate, m.p. 73—76°; dibromide hydrobromide, m.p. 250—252° (decomp.)]. (1) is transformed into 2-2'-pyridylisatogen (II), m.p. 182° [also + ICHCl₃; picrate, m.p. ~177° (decomp.); hydrochloride, m.p. 195—196°; sulphate, m.p. 215° (decomp.); oxalate, m.p. 160°; methiodide, m.p. 182°; additive compound, m.p. 119—120°, with H₂SO₃], slowly by insolation in C₅H₅N, rapidly by PhNO (functioning at "stoicheiometric catalyst"). (II) and NH₂OH,HCl in boiling EtOH afford the C-oxime, m.p. 215—217° (decomp.), reduced by Zn dust in boiling AcOH to which Ac₂O is subsequently added to 3-acetamido-2-pyridylindole (III), m.p. 189°, or, if addition of Ac₂O is omitted, to 3-amino-2-pyridylindole, m.p. 240°, softens at 100° and blackens at ~170°. (II) and NHPh·NH, in EtOH at ≯40° evolve N₂ and give 1:3-dihydroxy-2-2'-pyridylindole (V), m.p. 186° [picrate, m.p. 202° (decomp.)], which is the main product from (II) and NHPh·NH₂ in boiling EtOH; the oxime, m.p. 179—180° (blackens), is reduced by Zn dust and AcOH followed by Ac₂O to (III). (II) is reduced (Zn dust-AcOH-Ac₂O or catalytically in presence of Raney Ni and Ac₂O) to 3-acetyl-2-pyridylindoxyl (VI),

m.p. 129·5—130·5°, also obtained from (IV) and (V). In absence of Ac₂O (II) affords indoloneindoxyl, C₆H₄ CO CR·O·C C₆H₂ NH (R = C₅H₄N), decomp. (indef.) 210—230° [picrate, m.p. 205—207° (decomp.)], also obtained by reduction of (II) with Kf.-HCl. (II), (IV), or (V) yields with piperidine in boiling EtOH an adduct, C₁₈H₁₉ON₃, m.p. 184—185°; when treated with NaOH it gives piperidine, with 2N-HCl at 40° it gives (IV), and in cold dioxan it slowly yields (V) and a red resin. It is reduced (Zn dust-AcOH-Ac₂O) to (VII). (II) is transformed by H₂SO₄-EtOH at 100° into (?) 2-pyridylisoisatogen, m.p. 105—107°.

Hydrogenation—debydrogenation—Table (IV)

Hydrogenation-dehydrogenation reactions involving compounds of ammono-aldehyde, ammono-acetal, and aquo-ammono-aldehyde types. P. J. McLaughlin and E. C. Wagner (J. Amer. Chem. Soc., 1944, 66, 251—254).—The mechanism proposed by Simons (A., 1937, II, 185) for the conversion of CH₂(NH·C₆H₄Me-p)₂ (I) into the dihydroquinazoline (II) is confirmed and extended. Conversion of the intermediate tetrahydroquinazoline (III) into (II) is a crossed Cannizzaro reaction in which (I) or the trimer of p-C₆H₄Me·N:CH₂ (IV) functions as proton-acceptor; this function is exercised by dissociation into (IV) or, in acid at a lower temp., the cation thereof. The reaction is shown to be irreversible and independent of H₂O, air, or picric acid (used as precipitant). The proton-acceptor may also be CHPh:NPh, methylenebispiperidine, NPh:CH·NHPh, p-C₆H₄Me·NH·CHO, or HCO·NH₂ (i.e., substances of aldehydic or ammono-aldehydic type), but not NPh:CMe·NHPh, NHPhAc, or NH₂Ac. Sources of acid may be, in order of decreasing efficiency, p-C₆H₄Me·NH₂, HCl, NMe₃, HCl, the hydrochloride of (II), accords with their activities as proton donors.

R. S. C.

Heterocyclic compounds containing nitrogen. LI. New linear benzodipicoline, 2:6-dimethyl-1:5-anthrazoline. P. Ruggli and F. Brandt (Helv. Chim. Acta, 1944, 27, 274—291; cf. A., 1938, II, 460).—Derivatives of 2:6-dimethyl-1:5-anthrazolone (cf. A) are described. 1:4:2:5-C H McCl. (f) (prep. from

described. 1:4:2:5-C₆H₂Me₂Cl₂ (f) (prep. from p-xylene and Cl₂ in presence of Fe powder and absence of light described) is converted by dry Cl₃ in strongly irradiated C₆H₂Cl₄ at 120—130° into 2:5:1:4-C₆H₂Cl₂(CHCl₂)₂, b.p. 313°, m.p. 72·5—74°, converted by NH₂Ph at 100° into the tetra-anilno-compound, darkens >260°, and hydrolysed by conc. H₂SO₄ at 170° to 2:5:1:4-C₆H₂Cl₂(CHO)₂ (II), m.p. 157—158° (dianil, m.p. 213—214°). Chlorination of (I) at 130—140° in light in absence of solvent or catalyst affords 1:4:2:3:5:6-

by conc. H₂SO₄ at 170° to 2:5:1:4-C₆H₂Cl₄(CHO)₂ (II), m.p. 157—158° (dianil, m.p. 213—214°). Chlorination of (I) at 130—140° in light in absence of solvent or catalyst affords 1:4:2:3:5:6-C₄M₂Cl₄, m.p. 217·5°, and in strongly illuminated, technical C₄H₂Cl₂ at 120—130° gives 2:3:5:6-tetrachloro-1:4-dichloromethylbenzene, m.p. 174·5—175° (dianilino-compound, m.p. 170°). 2:5-Dichloro-1:4-di(trichloromethyl)benzene, m.p. 193°, is obtained by chlorinating (I) in illuminated C₂HCl₃ at 130—145°. Gradual addition of Br to (I) at 120—180° and finally at 210° yields 2:5:1:4-C₆H₂Cl₂(CHBr₂)₃, hydrolysed to (II). Gradual addition of Br to illuminated 1:4:2:5-C₆H₂Me₂Br₂ (prep. from p-xylene described) containing I at 120° and finally at 170° gives 2:5-dibromo-1:4-di(dibromomethyl)benzene, m.p. 162—163°, hydrolysed by H₅So₄H₂Oa ti 130—140° [25 mm. to 2:5-dibromoterephthalaidehyde (III), m.p. 189—190·5° (corresponding dianil, m.p. 234·5—235°). (III) is converted by NH₂Ac at 135—140° into 2:5-dibromoterephthalaitetra-acetamide, darkens at 305° and carbonises at a higher temp., and by p-C₆H₄Me·SO₂·NH₂. Cu powder, CuBr, and K₂CO₂ in PhNO₂ according to conditions into 2-bromo-2-p-toluenesulphonamido- m.p. 183—185°, or 2:5-di-p-toluenesulphonamido- (IV) -terephthalaidehyde, m.p. 241—243° (decomp.) [dipiperidine salt, decomp. 140°, reddens at 110°; dianil, m.p. 297° (decomp.)]. (IV) is transformed by CH₂Ac·CO₂Et in presence of piperidine at 70° into Et₂ 2:5-di-p-toluenesulphonamido-terephthalylidenediacetoacetate (V), m.p. 216—217° (decomp.), becomes discoloured at 210°, which with NH₂Ph at 100° affords a compound, C₅₄H₄₅O₅N₅S₂, m.p. 299—301° (decomp.). (V) with conc. H₂SO₄ at 27—32° suffers one-sided ring-closure to Et 6-amino-3-carbethoxy-2-methylquinoline-7-methenylacetoacetate (VI), m.p. 210°, becomes brown at 280°, also obtained from (VI) and (VII). This is decarboxylate dby Cu powder and Cu chromite in quinoline at 215° to 2:6-dimethyl-1:

Tetrahydrotriazines.—See B., 1944, II, 158.

Morpholinomethylurea.—See B., 1944, II, 157.

aβ-Diamino-ketones. II. Reactions of thalline and open-chain sec. amines with α-bromo-β-amino-ketones. N. H. Cromwell, J. A. Caughlan, and G. F. Gilbert (J. Amer. Chem. Soc., 1944, 66, 401—403; cf. A., 1944, II, 171).—Interaction of a-bromo-\(\beta\)-heterocyclic amino-β-phenylpropiophenone (or the COMe compound) with openamino-s-pnenylproproponencie (or the COMe compound) with open-chain sec. bases gives poor yields of mixed diamino-ketones, mainly owing to steric reasons. p-OMe·C₆H₄·NH₂, FeSO₄, p-OMe·C₆H₄·NO₂, glycerol, and H₂SO₄ at the b.p. give 6-methoxyquinoline (53%), m.p. 18—20°, b.p. 182—184°/34 mm., which with H₂-Cu chromite in EtOH at 180°/1800 lb. gives 6-methoxy-1:2:3:4-tetrahydro-quinoline (93%), m.p. 42—43°, b.p. 127—130°/1 mm. (picrate, m.p. quinoline (93%), m.p. 42—43°, b.p. 127—130°/1 mm. (picrate, m.p. 164—165°). a-Bromo-β-piperidino-β-phenylpropiophenone (1) with the appropriate amine in EtOH at 70° gives a-piperidino-β-6-methoxy-1:2:3:4-tetrahydroquinolino-β-phenylpropiophenone (85%), m.p. 159—160°; similarly are prepared a-morpholino-β-6-methoxy-1:2:3:4-tetrahydroquinolino-propiophenone (68%), m.p. 143°, a-piperidino-(39%), m.p. 124°, and a-morpholino-β-6-methoxy-1:2:3:4-tetrahydroquinolino-β-phenylethyl Me ketone (40%), m.p. 126°. CH₂Ph·NHMe and (I) in I:3 EtOH-Et₂O at room temp. (12 hr.) and then 0° (2 days) give β-N-methylbenzylamino-a-piperidino-β-phenylpropiophenone (36%), m.p. 138—140°, hydrolysed by 15% H₂SO₄ at 100° to a-piperidinoacetophenone; similarly are prepared a-piperidino-β-N-methyl-N-β'-hydroxyethylamino-β-phenylpropiophenone (10%), m.p. ω-piperidinoacetophenone; similarly are prepared α-piperidino-β-N-methyl-N-β'-hydroxyethylamino-β-phenylpropiophenone (10%), m.p. 108°, α-piperidino-β-N-methylbenzylamino- (14%), m.p. 111°, and -β-N-methyl-N-β'-hydroxyethylamino-β-phenylethyl Me ketone (5%), m.p. 132°. NH(CH₂Ph)₂ with (I) at room temp. and then 0° gives α-piperidino-β-dibenzylamino-β-phenylpropiophenone (13%), m.p. 173—175° (decomp.), and with α-bromo-β-piperidino-β-phenylethyl Me ketone in 37:63 EtOH-Et₂O at room temp. and then 0° gives α-piperidino-β-dibenzylamino-β-phenylethyl Me ketone (4%), m.p. 158—160° (decomp.).

Further 2-p-nitrophenyl-4-alkyloxazol-5-ones. P. Karrer and C. Christoffel (Helv. Chim. Acta, 1944, 27, 622—623; cf. A., 1943, II, 187).—dl-Phenylalanine in 2N-NaOH is converted by p-NO₂·C₆H₄·COCl in Et₂O into 2-p-nitrophenyl-4-benzyloxazol-0-one, m.p. 162°, which with NaOH-Et₂OH gives a dark violet colour becoming blue on addition of C₅H₅N; N-p-nitrobenzoylalanine, m.p. 168·5°, is obtained as by-product. Similarly, dl-valine affords 2-p-nitrophenyl-4-isopropyloxazol-ō-one, m.p. 92°. The colour of the likeli salts of the ovazolones in different media shows great variance. alkali salts of the oxazolones in different media shows great variations which do not appear related to the dielectric const. of the liquids.

Chemotherapy of bacterial infections. IX. Synthesis of some sulphathiazole derivatives. K. Ganapathi. X. 2-Acetsulphanil-imido-3-acetsulphanilylthiazolone and 2-diacetsulphanilylamido-thiazole. New route to sulphathiazole. C. V. Deliwala, K. Ganapathi, and M. V. Shirsat (Proc. Indian Acad. Sci., 1943, 18, A, 355—359, 360—363).—IX. The Na salt of sulphathiazole condenses with the appropriate alkyl bromide or iodide in EtOH to give 2-(p-aminobenzenesulphonimido)-3-methyl-, m.p. 244—246°, -ethyl-, m.p. 183—185°, -n-butyl-, m.p. 186—188°, -isoamyl-, m.p. 201—203°, -n-hexyl-, m.p. 156°, -β-hydroxyethyl-, m.p. 154—156°, -β-ethoxyethyl-, m.p. 150—152°, -acetonyl-, m.p. 202°, and -carboxymethyl-thiazolone, m.p. 184—185°. Of these compounds only the Me derivative shows good therapeutic activity. derivative shows good therapeutic activity.

X. 2-Aminothiazole condenses with acetylsulphanilyl chloride in H₂O or suspension in presence of NaHCO₃, CaCO₃, or BaCO₃ to yield 2-diacetsulphanilylamidothiazole, m.p. 128—129°, which in boiling EtOH isomerises to 2-acetsulphanilmido-3-sulphanilylthiazolone. These two products are hydrolysed by acid or alkali to sulphathiazole in good yield.

Synthesis of the aluminium and the magnesium salts of thiolbenzthiazole. K. D. Petrov and A. M. Fedortschenkova (J. Appl. Chem. Russ., 1943, 16, 211—213).—The salt, Al(OH)(C,H₄NS₂)₂,H₂O, from $(A_1, (SO_4)_3)$ and a saturated solution of thiolbenzthiazole (I) in NaOH, is easily hydrolysed. The salt, $Mg(C_7H_4NS_2)_2$, is prepared from (I) and MgO at 160—170°.

J. J. B.

Preparation of the zinc salt of thiolbenzthiazole and its trans-Preparation of the zinc salt of thiolbenzthiazole and its transformation during vulcanisation of rubber. K. D. Petrov (J. Appl. Chem. Russ., 1943, 16, 214—218).—A saturated solution of thiolbenzthiazole (I) in 1% NaOH with a 2.5% solution of Zn(OAc)2 yields the salt, Zn(C₇H₄NS₂) (II), which with 0.05 part of S in boiling xylene gives ZnS, (I), and a little dibenzthiazolyl disulphide (III), and with H₂S in C₆H₆ gives ZnS and (I). From rubber vulcanised by means of (II) and S, COMe, extracts (I). Probably, during vulcanisation (II) reacts with S, giving (III), which with H₂S forms (I) and active S, causing vulcanisation. J. J. B.

Synthesis and constitution of vitachrome. P. Karrer and M. C. Sanz (Helv. Chim. Acta, 1944, 27, 619—621).—(CS·NH₂)₂ and COMe·CHCl·[CH₂]₂·OH at 120° afford 4:4'-dimethyl-5:5'-di- β -hydroxyethyl-2:2'-dithiazolyl (vitachrome) (I), m.p. 180°, which when pure forms completely colourless needles with pure blue fluorescence in ultra-violet light. Its formation by irradiation of 2-chloro-4-methyl-5- β -hydroxyethylthiazole is due to dissociation of this compound into Cl atoms and residual radicals which become

dimerised. Similarly COMe·CHCl·[CH $_2$] $_2$ ·OAc affords vitachrome diacetate, m.p. 116—116·5°. The destruction of the fluorescence of (I) by aq. Na $_2$ S $_2$ O $_4$ (restored by shaking with air) is not due to the formation of a non-fluorescent reduction product since Na. 4:4'-dimethyl-2:2'-dithiazolyl-5:5'-dicarboxylate does not evolve CO, when treated with Na, S2O4.

280

Structure-chemical investigations. X. Reactive behaviour of dithioamides of aliphatic dicarboxylic acids. H. Lehr and H. Erlenmeyer (Helv. Chim. Acta, 1944, 27, 489—493).—(CS·NH₂)₂ and (CH₂·NH₂)₂,H₂O (1:2) in boiling EtOH yield 2-β-aminoethylaminothioformyl-iminazoline [-glyoxalidine], decomp. 250—255° (picrate, m.p. 284—285°), readily transformed by an excess of (CH₂·NH₂)₂,H₂O m.p. 284—285°), readily transformed by an excess of (CH₂·NH₂)₂,H₂O into di-2-Δ²-iminazolinyl.

CH₂·NH₂·C·C·NH-CH₃

m.p. 290—298°

(cf. Forssel, A., 1891, 1003). Adaptithioamide (I) and (CH₂·NH₂)₂,H₂O in EtOH or in absence of solvent afford aδ-di-2-Δ²-iminazolinyl-butane, m.p. 209—210° (picrate, m.p. 207°); the monomeric character of the products is remarkable. (I) and (CO·CH₂Br)₂ in abs. EtOH at room temp. give the chain polymer, (C₁₀H₁₀N₂S₂)_n, softens at 230° and then decomposes gradually. (I) and CH₂BzBr readily yield aδ-di-4-phenyl-2-thiazolylbutane, m.p. 89° (hydrobromide, m.p. 288°). CH₂BzBr and (CS·NH₂)₂ yield 4:4'-diphenyl-2:2'-dithiazolyl, m.p. 222°, from which a picrate or hydrobromide could not be obtained. be obtained.

2:2'-Dithiazolyl compounds. P. Karrer, P. Leiser, and W. Graf (Helv. Chim. Acta, 1944, 27, 624—625).—(CS·NH₂)₂ and COMe-CH₂Cl in boiling EtOH afford 4:4'-dimethyl-2:2'-dithiazolyl, m.p. 136°. Similarly (CS·NH₂)₂ and CHAcCl·CO₂Et at 120° give Et_2 4: 4'-dimethyl-2: 2'-dithiazolyl-5: 5'-dicarboxylate, m.p. 186°, hydrolysed to the acid, decomp. > 310°. (CS·NH₂)₂ and (CO·CH₂Br)₂ in EtOH yield a polythiazole compound of high mol. wt. The compounds resemble vitachrome in giving a very pronounced fluorescence in ultra-violet light; in conc. H₂SO₄ the fluorescence is intense in daylight.

Cyanine type dyes.—See B., 1944, II, 160.

VII.—ALKALOIDS.

Synthesis of dl-heliotridane (1-methylpyrrolizidine). V. Prelog and E. Zalán (Helv. Chim. Acta, 1944, 27, 531—534).—Addition of OPh-[CH₂]₂·CHMe·CN (I) to Mg γ -ethoxypropyl bromide in Et₂O leads to α -phenoxy- η -ethoxy- γ -methylheptan- δ -one, b.p. $100-110^\circ$ / $0\cdot2$ mm., the oxime, b.p. 150° / $0\cdot1$ mm., of which is reduced by Na and abs. EtOH to δ -amino- α -phenoxy- η -ethoxy- γ -methylheptane, b.p. $190-191^\circ$ /12 mm. The hydrobromide is transformed by 66% HBr at 100° into $\alpha\eta$ -dibromo- δ -amino- γ -methylheptane hydrobromide, which with dil. ac. NaOH affords dl-1-methylhyroplizidine bromide, which with dil. aq. NaOH affords dl-1-methylpyrrolizidine (dl-heliotridane) [picrate, m.p. 234—236°; styphnate, m.p. 196—197°; picrolonate, m.p. 162—163°; aurichloride, m.p. 200—201° (decomp.)]. The salts resemble closely those of the natural l-heliotridane. Only one of the two possible racemates appears to be produced. OMe·[CH₂]₂·Br, CHMe(CO₂Et)₂, and NaOEt-EtOH yield Et; methyl-symethylymlogate by 111—126°/11 mm. hydrolymed and β -methoxyethylmalonate, b.p. 111—126°/11 mm., hydrolysed and decarboxylated to γ -methoxy- α -methylbutyric acid (II), b.p. 114— 120°/11 mm., which is less suitable than (1) as initial material for the above synthesis. (II) is converted (SOCl₂) through the chloride into the amide, m.p. 45—47°, and anilide, m.p. 102—103°.

Alkaloids. I. Oxidation of papaverine to papaveraldine (xanthaline) by selenium dioxide. K. N. Menon (*Proc. Indian Acad. Sci.*, 1944, 19, A. 21—22).—This oxidation is readily effected by SeO₃ in AcOH at 100°. R. S. C.

Isolation of lupinine from technical anabasine sulphate. A. Sadikov and G. Lazurevski (J. Gen. Chem. Russ., 1943, 13, 319— 321).—Anabasine (I) and lupinine (II) in the fraction of b.p. 321).—Anabasine (I) and lupinine (II) in the fraction of b.p. 136—139°/12 mm., obtained by Orekhov's method (A., 1931, 498; 1932, 405) from Anabasis aphylla, were separated by stirring and heating the mixture, dissolved in PhMe or light petroleum, with Na. When reaction was complete (1½—2 hr.), the mixture was cooled and the yellow Na lupinate filtered off and washed with PhMe or light petroleum. This may be used directly for synthesis or decomp. with H₂O to regenerate (II) (yield 97%). The mother-liquor after distillation yields (I). Light petroleum gave better results than PhMe. results than PhMe.

Alkaloids of Ammothamnus lehmanni, Bge. A. Sadikov and G. Lazurevski (J. Gen. Chem. Russ., 1943, 13, 314—318).—Stems and leaves were extracted with EtOH containing 2% of NH₃. The extract, after evaporation, acidification, and removal of tar, saturated with KOH and extracted first with Et,O and then CHCl, (extracts A and B respectively). Evaporation of extract A gave 0.45% (on dry plant) of pachycarpine + sophocarpine (I). Evaporation of extract B and extraction of the residue with COMe₂ left a yellow powder (0.05%), from which was separated, by fractional pptn. from acid solution and recrystallisation from COMe₂, an alkaloid, ammothamnine, $C_{1b}H_{24}O_3N_2$, m.p. $199-201^\circ$, $\alpha'=0^\circ$ [picrate, m.p. $212-214^\circ$ (decomp.); hydriodide, m.p. $183-189^\circ$]. The total yield of crude alkaloids from the roots was 0.12%; 0.8% of $H_*C_2O_4$ was also separated from the plant. (I) is a good insecticide.

Alkaloids of Lycopodium species. V. L. obscurum, L. R. H. F. Manske and L. Marion (Canad. J. Res., 1944, 22, B, 53—55).—The following have been isolated from L. obscurum var. dendroideum (Michx.) D. C. Eaton: lycopodine, obscurine, alkaloid L13 (cf. Marion et al., A., 1944, II, 147), alkaloid L16, C₁₄H₂₅ON (perchlorate, m.p. 221°), and alkaloid L17, C₁₈H₂₇O₃N (perchlorate, m.p. 296°). All m.p. are corr. F. R. S.

Synthesis of possible degradation products of metathebainone. I. H. L. Holmes and L. W. Trevoy (Canad. J. Res., 1944, 22, B, 56—65).—7-Methoxy-3: 4-dihydro-2-naphthoic acid (I), m.p. 149·5—150° (improved general method of prep.), is dehydrogenated (S) to 7-methoxy-2-naphthoic acid, m.p. 195—196°, and condenses with (CH₂:CH)₂ to 3-methoxy-, m.p. 126—127°, and with (CH₂:CMe)₂ to 3-methoxy-6: 7-dimethyl-5: 8: 9: 10: 13: 14-hexahydrophenanthrene-14-carboxylic acid (II), m.p. 137·5—138·2°. The Et ester of (I) with (CH₂:CMe)₂ gives the Et ester of (II), b.p. 187°/2 mm. The acid thloride of (II) could not be converted into the corresponding aldehyde. The relationship of these hydrophenanthrenes to possible degradation products of morphine and metathebainone is discussed. M.p. are corr.

Cinchona alkaloids. VI. Configuration of (-)- γ -methyl- δ -ethyl-hexane.—See A., 1944, II, 209.

Cinchona alkaloids. V. Configuration of the asymmetric carbon stoms 3, 4, and 8 of the Cinchona alkaloids. V. Prelog and E. Ialan (Helv. Chim. Acta, 1944, 27, 535—545).—The configuration (A) [R = CH:CH., R' = OMe·C., H., N·CH(OH)·] with the two hydrocarbon residues in the endo position is assigned to the dextrorotatory

alkaloids, cinchonine and quinidine, and the structure (B) [R = CH:CH.; $R' = C_p H_a N \cdot CH(OH) \cdot]$ to the laworotatory cinchonidine and quinine. Cincholoipone Et ester (I), b.p. 81-84°/0.04 mm., 137—138°/11 mm., $[a]_D^{17} + 16 \cdot 75^\circ$ to $16 \cdot 85^\circ \pm 0 \cdot 05^\circ$ (cf. Kaufmann t al., A., 1917, i, 50), obtained by the degradation of cinchonine or by hydrogenation of meroquinine Et ester, is converted into its hydrochloride, m.p. $159-160^\circ$, $[a]_D^{23} - 9 \cdot 3^\circ \pm 1^\circ$ in EtOH, $[a]_D - 7 \cdot 0^\circ \pm 1^\circ$ in H_2O ; the hydrochloride of the free base has m.p. $202-203^\circ$, $[a]_D^6 - 4 \cdot 6^\circ \pm 1^\circ$ in H_2O . The ester is reduced by Na and abstact of the original of the structure of the structure of the H_2O of the hydrochyethylpiperidine, b.p. H_2O of H_2O of the EtOH, which with fuming HBr at H_2O in EtOH, which with fuming HBr at H_2O in EtOH. This is converted by Zn dust and AcOH at H_2O of in EtOH. This is converted by Zn dust and AcOH at H_2O of in EtOH, H_2O of in EtOH, H_2O of in CHCl₃ (picrate, m.p. H_2O of H_2O of in EtOH, H_2O of in CHCl₃ (picrate, m.p. H_2O of H_2O of H_2O of in EtOH, H_2O of in CHCl₃ (picrate, m.p. H_2O of H_2O of H_2O of H_2O of in EtOH, H_2O of in Substance, H_2O of H_2O of in EtOH, converted by H_2O of in substance, H_2O of H_2O of the cinchona alkaloids. (I) is converted by H_2O of in CHCl₃ of the cinchona alkaloids. (I) is converted by H_2O of in CHCl₃ of the cinchona alkaloids. (I) is converted by H_2O of the cinchona alkaloids. (I) is converted by H_2O of the cinchona alkaloids. (I) is converted by H_2O of the cinchona alkaloids. (I) is converted by H_2O of the cinchona alkaloids. (I) is converted by H_2O of the cinchona alkaloids. (I) is converted by H_2O of the cinchona alkaloids. (I) is converted by H_2O of the cinchona alkaloids. (I) is converted by H_2O of the H_2O of the cinchona alkaloids in EtOH. This is converted by H_2O of the H_2O of the containing NaOEt) into cis-1:2-diethyl

Partial Hofmann degradation of emetine and its dehydrogenation to emetamine. A. Ahl and T. Reichstein (Helv. Chim. Acta, 1944, 27, 366—381).—The results are compatible with but do not establish the constitutional formulæ proposed for emetine (I) by Spath et al. (A., 1927, 471) and Brindley et al. (ibid., 682) but cannot be recon-

ciled with the formula of Staub (Diss., Zurich, 1927). (I) in Et₂O is transformed by 10% KOH and Ac₂O at room temp. into N-acetylemetine, m.p. 97—99° [methiodide (II), m.p. 213—216°; methochloride, m.p. 192—195°; methoaurichloride, m.p. 127—129°; methoplatinichloride, m.p. 213—217° (decomp.)]. (II) is converted by Ag₂O and solid KOH followed by cautious thermal decomp. and reacetylation into the amorphous methine base, C₃₂H₄₄O₅N₂ [methiodide (III), m.p. 239—240°; methochloride, m.p. 217—225°; methoaurichloride, m.p. 137—141°]. Hofmann degradation of (III) followed by reacetylation leads to a base (methoaurichloride, m.p. III—118°), the methiodide, C₃₄H₄₉O₅N₂I, m.p. (indef.) 165—175°, of which is degraded under strictly defined conditions into NMe₃ and a neutral compound (IV), C₃₄H₃₀O₅N, in which the originally test. N is completely absent whilst the see. N remains unchanged as its Ac derivative. Oxidation of (IV) by KMnO₄—COMe₂ gives m-hemipinic acid (V) as sole isolable compound whereas with KMnO₄—dil. H₂SO₄ the products are (V) and 4:5-dimethoxyphthalonimide (VI), needles, m.p. 269—275° (decomp.), or occasionally granules which are converted into needles at 200°, obtained by Hermanns (Diss., Freiberg i. Br., 1915) by the oxidation of (I) with CrO₃. The structure of (VI) is confirmed by its prep. by oxidation of 6:7-dimethoxytetrahydrossoquinoline or its Ac derivative, m.p. 104—105°. Dehydrogenation (Pd-C) of (I) at 190—200° gives considerable amounts of amorphous products, 6:7-dimethoxy-1-methylisoquinoline, m.p. 106—107° (picrate, m.p. 266—267°), and emetamine, 2 forms m.p. 138—139° and 153—154°, alpha-11° in abs. EtOH (picrate, m.p. 149—151°). M.p. are corr. (block); limit of error ±2°.

Steroids and sex hormones. XCII. Stereoisomeric dihydrosolanidines. V. Prelog and S. Szpilfogel (Helv. Chim. Acta, 1944, 27, 390—400).—The isolation of four stereoisomeric dihydrosolanidines and of the two corresponding saturated parents emphasises the stereochemical similarity of solanidine (I) and cholesterol and strengthens the probability that (I) is (A). (I) is hydrogenated (PtO₂ in AcOH) to solanidan-3(β)-ol (II), m.p.

220° 196° , $[a]_{D}^{18} + 16 \cdot 5^{\circ} \pm 2^{\circ}$; p-toluenesulphonate (III), m.p. $169 \cdot 5 - 170^{\circ}$ }. (II) is oxidised $[Al(OPh)_{\pi}-COMe_{\pi}-C_{\theta}H_{\theta}]$ to solanidan-3-one, m.p. $210-212^{\circ}$, $[a]_{D}^{17} + 45 \cdot 8^{\circ} \pm 2^{\circ}$, hydrogenated (PtO₂-AcOH) to (II) but converted by similar

+45.8°±2°, hydrogenated (PtO₂-AcOH) to (II) but converted by similar hydrogenation with addition of HBr into a solanidanol acetate, m.p. 190°, [a]₁¹⁷ +18·0°±2°, hydrolysed by boiling KOH-MeOH to solanidan-3(a)-ol (IV), m.p. 211—212·5°, [a]₁¹⁸ +31·9°±4° (acetate, m.p. 174—176°, [a]₁¹⁸ +21·9°±3°), which does not give a ppt. with digitonin. The proof that (IV) is epimeric with (II) with respect to C₍₃₎ is furnished by the production of (IV) by treatment of (III) with NaOAc and subsequent alkaline hydrolysis. (II) and (IV) are converted by B₂O₃ at 290—200°/high vac. into Δ²- (or Δ³-)solaniden, m.p. 165°, [a]₁¹⁸ +67·9°±1°, which is hydrogenated to solanidan, m.p. 161·5—162·5°, [a]₁¹⁷ +33·1°±2°. (I) is transformed by Al(OBu³)₃ in boiling COMe, into Δ⁴-solaniden-3-one, m.p. 213—216·5°, [a]₁₀ +89·0°±1°, also obtained by use of Al(OPh)₃. This is hydrogenated (platinised Raney Ni in an alkaline medium) to allosolanidan-3(β)-ol, m.p. 216—217·5°, [a]₁¹⁸ +27·9°±2° (acetate, m.p. 140—141°, [a]₁¹⁸ +31·4°±3°), and allosolanidan-3(a)-ol, m.p. 212—214°, [a]₁¹⁸ +34·5°±3° (acetate, m.p. 140—141°, [a]₁¹⁸ +45·2°±3°). Further cryst. products could not be obtained from the residues but the presence of one of the solanidan-3-ols is established by epimerisation (Na in boiling xylene) followed by pptn. with digitonin, whereby (II) is isolated. B₂O₃ at 300°/high vac. transforms the allo-alcohols into Δ²- (or Δ³-)allosolaniden, m.p. 145·5—146·5°, [a]₂²⁹ +34·0°±3°, hydrogenated (PtO₂ in AcOH) to allosolanidan, m.p. 140—142°, [a]₁¹⁸ +34·8°±4°. M.p. are corr. [a]₀ are in CHCl₃. H. W.

VIII.—ORGANO-METALLIC COMPOUNDS.

Stereochemistry of organic derivatives of phosphorus. I. Synthesis of acidic and basic dissymmetric tertiary phosphines. Optical resolution of phenyl-p-(carbomethoxy)phenyl-n-butylphosphine sulphide. W. C. Davies and F. G. Mann (I.C.S., 1944, 276—283).—p-C₆H₄Br·PCl₂ and HgPh₂ in N₂ give phenyl-p-bromophenyl-chlorophosphine (I), b.p. 203—204°/11 mm., which with Cl₂ followed by H₂O affords the -phosphonic acid, m.p. 174·5°, and with MgEtBr yields the -ethylphosphine, b.p. 136—138°/0·05 mm. MgBr·C₆H₄·NMe₂ (special conditions of prep.) with (I) leads to phenyl-p-bromophenyl-p-dimethylaminophenylphosphine (II), m.p. 107—108° (also obtained by using the Li derivative), which with S in CS₂ forms the sulphide, m.p. 126°. The methiodide, m.p. 158—159°, of this sulphide is produced with difficulty and reacts to give the metho-d-camphorsulphonate, m.p. 224—226° (decomp.), methobromide Me alcoholate, m.p. 145°, and metho-d-a-bromocamphorsulphonate, m.p. 198—199°, which could not be resolved. Phenyl-p-bromophenyl-p-dimethyl-aminophenylphosphine selenide has m.p. 135·5—136·5°. Mg 2-bromopyridine with (I) affords phenyl-p-bromophenyl-2-pyridylphosphine, m.p. 90—91° (picrate, m.p. 132°), converted into the sulphide, m.p. 109° [methiodide, m.p. 132—134° (decomp.)], which is too weakly

basic for salt formation, as is also the sulphide, m.p. 115—116°, of the -3-pyridyl derivative [picrate, m.p. 143—144° (decomp.)]. p-OMe·C₆H₄·PCl, (III) with MgEtBr gives p-anisyldiethylphosphine (methiodide, m.p. 132—133°, lit. 91°), which is hydrolysed (HI) to the p-hydroxyphenyl compound, b.p. 168—176°/19 mm. (methiodide, m.p. 168—169°). HgPh, and (III) yield phenyl-p-anisyl-chlorophosphine (IV), b.p. 137°/0·03 mm., which with MgBu°Br leads to the -n-bulylphosphine, b.p. 139—141°/0·025 mm. This after hydrolysis (HI) with BzCl gives phenyl-p-benzoyloxyphenyl-n-bulylphosphine, m.p. 91° (oxide, m.p. 136°), which forms the sulphide, m.p. 66—67°, hydrolysed to the hydroxysulphide, m.p. 97—98°. This sulphide condenses with CH₂Br-CO₂Et to phenyl-p-(carboxymethoxy)phenyl-n-butylphosphine sulphide, which with d-CHPhMe·NH₂Cl gives the salt, cryst. to the d-a-phenylethylamine salt of the sulphide, m.p. 209—210°, decomposed (H₂SO₄) to the l-sulphide, —9·7° in C₆H₆ (l-NH₄ salt). From the mother-liquor is obtained the l-amine d-acid salt, m.p. 209—210°, decomposed to the d-sulphide, [M]¹⁶ +9·6° in C₆H₆ (d-NH₄ salt, [M]¹⁶ , +12·2° in H₂O).

MgEtBr and (IV) give phenyl-p-anisyl-ethylphosphine, b.p. 137°/0·1 mm. (methiodide, m.p. 114—115°), hydrolysed to the -p-hydroxy-phenyl compound, b.p. 160—175°/0·1 mm. (Bz derivative, m.p. 79—80°; benzoyloxyphosphine sulphide, m.p. 83—84°), which with S followed by CH₂Br·CO₂Et leads to phenyl-p-(carboxymethoxy)phenyl-ethylphosphine sulphide, m.p. 84° (Na salt; 1-phenylethylamine salt, m.p. 206—207°; d-sec.-butylamine salt, m.p. 189—190°; d-amino-camphor salt, m.p. 166—168°), which could not be resolved. MgPraBr and (IV) yield phenyl-p-anisyl-n-propylphosphine, b.p. 163·5°/0·3 mm. (methiodide, m.p. 114°), which with MgBr·C₀H₄Me affords the -p-tolylphosphine, m.p. 116—118° (p-chlorophenacyl bromide, m.p. 199°). Phenyl-p-bromophenyl-p-anisylphosphine, m.p. 71°, is similarly prepared. NH₄ palladochloride and (II) give dichlorobis(phenyl-p-bromophenyl-p-dimethylaminophenylphosphine)-palladium, partial m.p. 247—249°. Dichlorobis(phenyl-p-bromophenylethylphosphine)palladium, m.p. 172·5—174° (decomp.), is similarly prepared and both compounds appear to be homogeneous. PCl₃ and Mg 2-bromopyridine give tr₁-2-pyridyl-phosphine, m.p. 113—114°; the -arsine, m.p. 85°, is similarly obtained. The compounds are formulated abcP→N, where a, b, and c are unlike arylor alkyl groups, and X is oxide, sulphide, or selenide, and one compound has been resolved.

Sulphides and sulphones derived from p-thiolphenylarsonic acid. J. F. Morgan and C. S. Hamilton (J. Amer. Chem. Soc., 1944, 66, 874—875).—p-NH_α·C₆H₄·[CH₂]₅·OH (prep. from the NO₂-compound by H₂-Raney Ni in COMe₂), m.p. 43—44°, b.p. 232—235° (decomp.)/38 mm. (hydrochloride, m.p. 170°), gives (Bart) p-β-hydroxyethylthiolphenylarsonic acid, dimorphic, m.p. 120·5—121° and 132—133°. p-AsO₃H₂·C₆H₄·SCN in boiling 10°% NaOH gives an acid,? p-SH·C₆H₄·AsO₃H₂, which with the appropriate halide in boiling NaOH—H₂O or -EtOH yields p-γ-hydroxy-n-propyl-, m.p. 116·3—117·5°, p-β-cthoxyethyl-, m.p. 121—122°, p-β-β'-hydroxy-cthoxyethyl- (Na salt, m.p. >250°), p-acetonyl-, m.p. 172·5°, p-carboxymethyl- (I), m.p. 192° (lit. 187°, 248—250°). p-carbethoxymethyl-, m.p. 123° [some (I) is also obtained], and p-2'-amino-4'-pyrimidyl-(II), m.p. 131·5—132°, -thiolphenylarsonic acid and 4-nitro-, m.p. 183°, and thence (H₂-Raney Ni in aq. NaHCO₃) 4-amino-4'-arsono-diphenyl sulphide, m.p. 211·5° (decomp.). 27·5% H₂O₂ oxidises these compounds [except (II), which decomposes] to p-β-hydroxy-ethane-, m.p. 177°, p-γ-hydroxypropane-, m.p. 160·5°, p-β-ethoxy-ethane-, m.p. 182·5—184·5°, p-β-β'-hydroxyethoxyethane- (Na salt, m.p. 180·5°), p-acetone-, m.p. 202·5—203·5°, p-carboxymethane-, m.p. 182·6—189°, and p-carbethoxymethane-, m.p. 165—166°, -sulphonyl-phenylarsonic acid and 4-nitro-, m.p. >250°, and 4-amino-4'-arsono-diphenyl sulphone, m.p. 229—230° (decomp.). M.p. are determined in a preheated bath to minimise anhydride formation.

Factors determining the course and mechanism of Grignard reactions. XIV. Replacement of halogen atoms of aromatic halides with hydrogen atoms by the action of Grignard reagents and cobaltous chloride. M. S. Kharasch, D. C. Sayles, and E. K. Fields (J. Amer. Chem. Soc., 1944, 66, 481—482; cf. A., 1944, II, 223).—In presence of 5 mol.-% of CoCl., dihalogenated C. defence of 5 mol.-% of property of the monohalogenated compound (usually 40—55%) or, if a large excess of MgRBr is used, to the hydrocarbon; polymerides are also formed. Polycyclic aryl bromides with MgBuaBr give 44—62% of hydrocarbon, but \$p\$-C. H. PhBr gives also 1.3% of dixenyl. Use of MgPhBr gives also much Ph2. Mg \$p\$-xenyl or 9-phenanthryl bromide with EtBr and CoCl. gives 100% of dixenyl and diphenanthryl, respectively. A free radical mechanism is postulated. R. S. C.

IX.—PROTEINS.

Methylation and acetylation of wool, silk fibroin, collagen, and gelatin. S. Blackburn and H. Phillips (Biochem. J., 1944, 38, 171—178; cf. B., 1941, II, 338).—Acetylation of wool with Ac₂O diminishes the extent of subsequent methylation of free CO₂H by Me₂SO₄, MeBr, or MeI. When wool and silk fibroin are treated with Ac₂O in MeOH, methylation of free CO₂H groups and N- and O-acetylation occur simultaneously. Peptide methylation of wool and esterification of its free CO₂H are not prevented by previous treatment with borax, HNO₂, or CH₂O. Esterification is increased if amide groups are removed by acid hydrolysis. Me₂SO₄ esterifies free CO₂H and causes peptide methylation of collagen, H₂SO₄ becoming covalently linked to proteins. When MeBr or MeI replaces Me₂SO₄, esterification occurs but peptide methylation takes place slowly or not at all.

W. McC.

Reaction of casein with formaldehyde. V. Behaviour of the \(\varepsilon\)-amino-group of lysine and of the peptide groups. H. Nitschmann and H. Hadorn (Helv. Chim. Acta, 1944, 27, 299—312).—The \(\varepsilon\)-NH2 of lysine (I) is primarily involved in the action of CH2O on casein (II) at pH 5.6 and room temp. Comparison of the abilities of deaminated and ordinary (II) to unite with CH2O and the diminution of the Van Slyke N caused by CH2O tanning indicate that CH4O and the free NH2 of (I) react in the ratio 1:1. It is established that the amount of H2O formed is equiv. to the CH2O which reacts with (I). In addition to the NH2 of (I), other groups are present in (II) which react with CH2O in a weakly acid medium. These are probably peptide groups but their reaction with CH2O is not accompanied by condensation, at any rate in the cold. The tanning action of CH2O (loss of solubility; diminution of the ability to swell) appears to depend on the formation of CH3 bridges between the NH2 of (I) and the peptide groups whereby the protein mols, are united by main valencies.

Blue chromo-protein of eggs of goose-barnacle.—See A., 1944, III, 537.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Fundamental chemistry of lignin. K. Freudenberg (Svensk Kem. Tidskr., 1943, 55, 20; Chem.-Ztg., 1944, 68, 39—42).—A lecture.

R. S. C.

Colour reactions of lignin and their use in analytical chemistry. P. M. Isakov (*J. Appl. Chem. Russ.*, 1943, **16**, 234—240).—Drop reactions on newspaper paper (containing lignin) are different from those on filter-paper. Solutions of AuCl₃ give a black and of NH₄VO₃ a greenish-black spot. SnCl₂ and H₂PtCl₆ produce a stable orange spot. SnCl₂ and AgNO₃ form first AgCl and then Ag which is dissolved by Hg(NO₃)₂ solution. Picric acid and SnCl form picramic acid. Co(NO₃)₂ gives a stable blue spot with KCNS and an azure spot with picric acid. Fe(NO₃)₃ and K₃Fe(CN)₆ give Turnbull's blue. Aq. NH₄Ph gives a yellow and aq. benzidine an orange coloration. Dil. HNO₃ can be used as a sympathetic ink.

J. J. B.

Constitution of shellac. Increased yield of aleuritic acid. B. S.
Gidvani (J.C.S., 1944, 306).—By a new method of separation, the yield of aleuritic acid has been increased to nearly 43%. The previous formulæ for shellac resin may not be correct and shellolic acid is possibly not a primary product of hydrolysis. F. R. S.

Dyes from Ammothamnus lehmanni, Bge. A. Sadikov and G. Lazurevski (J. Gen. Chem. Russ., 1943, 13, 309—313).—The crude dye from this Central Asiatic plant (obtained by extraction with alkali and acidification of the extract, in 14% yield from roots, 4% from stems and leaves), after fractional extraction with alkali, was divided into two parts by extraction with EtOAc. The sol. part after purification by pptn. from EtOH, yielded an orange-red amorphous compound, C₁₆H₂₂O₄ (I), m.p. 96—98° (Ac₃ derivative, m.p. 107—109°); the insol. portion, recryst. from EtOH, yielded dark red plates, decomp. >360°, of an acidic compound (II), probably C₁₆H₂₂O₇N₂. (I) is pptd. from faintly alkaline solution by CO₂ and gives a dark green coloration with FeCl₃; distillation of (I) with Zn dust gave no recognisable products, oxidation with alkaline KMnO₄ gave H₂C₂O₄, and fusion with NaOH yielded phloroglucinol and AcOH. The similarity of (I) and tetrahydroa-mangostene is indicated. (I) and (II) are acid dyes, satisfactory for silk.

Chemical examination of root of Centaurea behen (Linn.). P. N. Bhargava and S. Dutt (Proc. Indian Acad. Sci., 1944, 19, A, 163—166).—Extraction of the root of C. behen ("behman") with EtOH affords "behnin," $C_{23}H_{45}O_2$ -OMe, sinters 72°, m.p. 79—80° (tetrabromide, m.p. 67°), which has properties of a $\Delta^{a\beta}$ -unsaturated lactone.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II-Organic Chemistry.

OCTOBER, 1944.

I.—ALIPHATIC,

Production of ethylene from [hydrocarbon] oil.—See B., 1944, II,

Reaction of dibromides of mono-substituted ethylenes with potassium iodide.—See A., 1944, I, 226.

n-Nonatriacontane. E. Stenhagen and B. Tagtstrom (J. Amer. Chem. Soc., 1944, 66, 845—846).—n-C₁₈H₃₇I, CO(CH₂·CO₂Et)₂, and Na in boiling BuaOH give an ester, converted in boiling, conc. HCl into n-nonatriacontan-v-one, m.p. 91·1-91·4° [long X-ray spacing (melted specimen) 51-5 A.], reduced (Clemmensen) to n-nonatriacon-iane, dimorphic (transition point ~75°), m.p. 80·0—80·2° (long X-ray spacings 51·3 and 47·1 A.).

R. S. C.

Hydrolysis of trimethylethylene dibromide [βy-dibromoisopentane]. Mechanism of ketone formation. C. M. Suter and H. D. Zook (J. Amer. Chem. Soc., 1944, 66, 738—742).—Conversion of βy-dibromoisopentane (prep. from CMe₂:CHMe by Br-CCl₄ at 10—20° or, much less well, from CMe₂Et·OH by Br), m.p. 12—13°, b.p. 59·5—61°/19 mm., into COMePrβ is shown to proceed by way of CHMeBr·CMc₂·OH and possibly OH·CHMe·CMe₂·OH by measuring the rates of hydrolysis in H₂O and aq. dioxan. The same may also hold for CH₄Br·CMe₂·Br.

R. S. C.

Preparation of pure octyl alcohol and methyl n-hexyl ketone.—See

Configuration of the β_{γ} -butylene glycols. S. A. Morell and A. H. Auernheimer (J. Amer. Chem. Soc., 1944, 66, 792—796).—Reactions Auemheimer (J. Amer. Chem. Soc., 1944, 66, 792—796).—Reactions described below prove the configurations assigned. Heating L(+)-(CHMe·OH)₂, b.p. 180—182°/745 mm., a {[a]_D (homogeneous) here and below} +1·06°, with Ac₂O, C₈H₈, and a little H₂SO₄ gives L(-)-(CHMe·OAc)₂, b.p. 190—192°/745 mm., a—0·60° (cf. Winstein et al., A., 1939, II, 401), which, when passed over stainless steel at 595°, yields (CH₂:CH)₂. AcOH, and L(-)-CH₂:CH·CHMe·OAc, b.p. 111·5—113·5°/745 mm., a—1·71°. Hydrolysis by aq. NaOH at 100° then gives L(+)-CH₂:CH·CHMe·OH, b.p. 96·2—96·5°/745 mm., a+0·68°, hydrogenated (PtO₂) at 45 lb. to L(+)-CHMeEt·OH, b.p. 99—100°/745 mm., a+0·24° (cf. Kenyon et al., A., 1925, i, 771). DL-CH₂:CH·CHMe·OH, b.p. 96·0—96·5°/745 mm., gives similarly DL-CHMeEt·OH, b.p. 99—100°/745 mm. D(-)-(CHMe·OH)₂ (I), a-12·85°. gives, as above, D(+)-(CHMe·OAc)₂ (II), a+1·35°, and thence D(-)-CH₂:CH·CHMe·OH, a-1·28°. Whereas in H₂SO₄-Ac₁O-C₆H₃, (I), a-12·100° is partly racemised to yield (II), a-14·100° is in AcOalena th 100° is in a Coalena th 100° is in a North 100° is in a Coalena th 100° is in a North 100° is in Ac₁O-C₆H₃, (I), a -12·99°, is partly racemised to yield (II), a +4·98°, in Ac₂O alone at 100° it gives (II), a +13·73°, whence NaOH-MeOH-H₂O regenerates (I), a -12·95°, thus rendering Walden inversion during acetylation very improbable. d and n are given for these substances. R. S. C.

Optical isomerides of butane- $\beta\gamma$ -diol produced by fermentation.— Sec A., 1944, III, 696.

Organ extracts. VI. Isolation of chimyl alcohol (d- α -hexadecyl-glycerol) from testes extract and its identity with "testriol." V. gycerol) from testes extract and its identity with "testriol." V. Prelog, L. Ruzicka, and F. Steinmann (Helv. Chim. Acta, 1944, 27, 674—677).—The isolation of chimyl alcohol, m.p. 64°, [a]p +2·5° in CHCl₃ (diphenylurethane, m.p. 97·5—98·5°; di-p-nitrobenzoate, m.p. 59—60°, [a]]⁶ -29·8° in CHCl₃), is described (cf. Baer and Fischer, A., 1941, II, 311). Oxidation by Pb(OAc)₄ gives CH₂O and hexadecoxyacetaldehyde (oxime, m.p. 79—80°). The alcohol is identical with the "testriol" of Hirano (J. Pharm. Soc. Japan, 1936, 56, 122) which therefore has not the structure. 56, 122), which therefore has not the structure OH·CMe₂·[CH₂]₁₄·CH(OH)·CH₂·OH assigned by him. All optically active a-glyceryl ethers have the same configuration whatever their

βδ:γε-Dimethylene-DL-xylitol and βδ-methylenexylitol. R. M. Hann, A. T. Ness, and C. S. Hudson (J. Amer. Chem. Soc., 1944, 66, β70—β73).—DL-Xylitol with 37% aq. CH₂O-conc. HCl at 50° gives prodimethylene-DL-xylitol (I), m.p. 201—202° (crystallo-optical data of this—4 by Lieuwerick grines) [—202° (crystallo-optical data of t the difference of the sum of the L-isomeride given) [a-acetate, m.p. 156—157° [crystallographic data]; a-benzoate, m.p. 164—165°; a-carbanilate, m.p. 196—197°], the a-p-toluenesulphonate, m.p. 145—146°, of which with NaI in, best, CH₂Ac₂ at 120° or boiling Ac₂O gives the a-iodide, m.p. 144—145°. H₂-Raney Ni reduces this in KOH-MeOH at 22° [6] RA are dimethallence decree DI available m.p. 155—156° also to $\beta\delta$: $\gamma\epsilon$ -dimethylene-a-deoxy-DL-xylitol, m.p. 155—156°, also obtained from $\beta\gamma$: $\delta\epsilon$ -dissopropylidene-a-deoxy-DL-xylitol by conc. M (A., II.)

HCl-CH2O-H2O at 50°. With H3O4 in AcOH-Ac2O at 5°, (I) gives γ-acetoxymethyl-β8-methylene-DL-xylitol aε-diacetate, m.p. 138—139°, which consumes 3 mols. of aq. NaOH and in NaOMe-MeOH-CHCl₃ gives βδ-methylene-DL-xylitol, m.p. 108—109° (triacetate, m.p. 87—88°; tribenzoate, m.p. 117—118°; tri-ptoluenesulphonate, m.p. 198—199°) (cf. following abstract), converted by BzCl-C₅H₅N at 25° into the αz-dibenzoate, m.p. 139—140°, but unaffected by aq. NaIO4 (proof of structure).

unaffected by aq. NaIO₄ (proof of structure). R. S. C.

Acetolysis of trimethylene-D-sorbitol. βδ-Methylene- and αγ: βδdimethylene-D-sorbitol. A. T. Ness, R. M. Hann, and C. S. Hudson
(J. Amer. Chem. Soc., 1944, 66, 665—670).—Structures assigned
below are proved by the reactions recorded. They prove that
acetolysis of CH₂. derivatives of sugar-alcohols occurs where the
CH₂·O is linked to a primary C (cf. A., 1944, II, 118). D-Sorbitol,
37% aq. CH₂O, and conc. HCl at 50° give (? αγ: βδ: εζ-)trimethylene-(I) (68%), m.p. 212—216°, [α]²⁰ —30·8° in CHCl₃, and αγ: βδdimethylene-D-sorbitol (II) (8%), m.p. 174—175°, [α]²⁰ —29·6° in H₂O
(cf. Schulz et al., A., 1894, i, 438). With a little conc. H₂SO₄ in
AcOH-Ac₂O, (I) gives γε-di(acetoxymethyl)-βδ-methylenesorbitol αζ-diacetate, m.p. 111—112°, [α]²⁰ +29·8° in CHCl₃, which consumes 4
mols. of NaOH and with 0·2n-NaOMo-MeOH in CHCl₃ at 5° gives
βδ-methylene-D-sorbitol (III), m.p. 163—164°, [α]²⁰ —9·8° in H₂O
(tetra-acetate, m.p. 150—151°, [α]²⁰ —1·5° in CHCl₃). (III) consumes
1 mol. of Pb(OAc)₄-AcOH, aq. NaIO₄, or HIO₄. With HIO₄ it gives
0·85 mol. of CH₂O and a reducing sugar, which with H₂-Raney Ni at I mol. of Pb(OAc)₄-AcOH, aq. NaIO₄, or HIO₄. With HIO₄ it gives 0·85 mol. of CH₂O and a reducing sugar, which with H₂-Raney Ni at I00°/133 atm. yields βδ-methylene-D-xylitol, m.p. 108—109°. In Ac₂O-C₆H₆N at 25° (II) gives the εζ-diacetate, m.p. 135—136°, $[a]_D^{20}$ — $12\cdot8$ ° in CHCl₃, in BzCl-C₆H₆N gives the εζ-diacetate, m.p. 135—136°, $[a]_D^{20}$ — $54\cdot8$ ° in CHCl₃, and in aq. NaIO₄ (1 mol. consumed) at 25° gives 0·98 mol. of CH₂O and aldehydo-αy: βδ-dimethylene-L-xylose, +H₂O (lost at 140—145°/vac.) (IV), sinters 150°, m.p. 175—180°, and anhyd., m.p. 189—192°, $[a]_D^{20}$ — $38\cdot7$ ° in H₂O (oxime, m.p. 227—228°, $[a]_D^{20}$ —272° in C₅H₅N, — $215\cdot0$ ° in H₂O). H₂-Raney Ni reduces (IV) in H₂O at 25° to βδ: γ-dimethylene-L-xylitol (V), m.p. 217—219°, $[a]_D^{20}$ — $25\cdot3$ ° in H₂O [a-acetate, m.p. 153—154°, $[a]_D$ + $2\cdot8$ ° in CHCl₃ (crystallo-optical data given)], which in H₂SO₄—Ac₂O-AcOH at 0° gives γ-acetoxymethyl-βδ-methylenexylitol ac-diacetate, m.p. 139—140°, α 0; the derived acξ-triacetate, m.p. 94—96°, $[a]_D^{20}$ + $11\cdot0$ ° in CHCl₃, with NaOMe-MeOH-CHCl₂ gives (III). CH₂O-HCl converts (V) into (I) (m.p. 210—214°). R. S. C.

 $a\gamma: \beta\delta$ -Dibenzylidene-D-sorbitol. S. J. Angval and J. V. Lawler (J. Amer. Chem. Soc., 1944, 66, 837—838).— $\beta\delta$ -Benzylidene-D-sorbitol (A., 1935, 1104) has m.p. 176—177°, $[a]_{1}^{17}$ —1·1° in H₂O, and is obtained (17% yield) from $a\gamma: \beta\delta$ -dibenzylidene-D-sorbitol (I) (A., 1942, II, 390) by hot AcOH-EtOH-H₂O, thus proving the structure of (I). The structure of $a\gamma: \beta\delta: \epsilon\zeta$ -tribenzylidene-D-sorbitol, dimorphic, m.p. 203° and ~195—199° (190°) (cf. A., 1937, II. 83), is proved by similar hydrolysis to (I) $[\epsilon t]$ -diagetate m.p. II, 83), is proved by similar hydrolysis to (I) [e\(^2\)-diacetate, m.p. 208—209° or between 202° and 206° (lit. 201—204°)]. Meunier's (CHPh.)₂ compound, m.p. 162° (A., 1889, 479), was a mixture. M.p. are corr.

Volemitol hepta-acetate. W. D. Maclay, R. M. Hann, and C. S. Hudson (J. Org. Chem., 1944, 9, 293—297).—Treatment of natural or synthetic volemitol [D-manno-D-taloheptitol] with Ac₂O and NaOAc gives almost quantitatively volemitol hepta-acetate (I), m.p. 63°, [a]²⁹ +36·1° in CHCl₃, +30·8° in glacial AcOH, identical with the product of Bougault et al. (A., 1903, i, 62), de-acetylated to pure volemitol (II). The compound described by Bourquelot (A., 1896, i, 273) and by Ettel (A., 1933, 47) is mannitol hexa-acetate (III). Photomicrographs of (I) and (III) are given. Directions are given for the isolation of (II) from the mixture of it with D-perseitol which results from the reduction of D-mannoheptulose. seitol which results from the reduction of D-mannoheptulose.

Polymerisation of simple vinyl ethers. Vinyl isobntyl ether. M. F. Schostakovski and F. P. Sidelkovskaja (J. Gen. Chem. Russ., 1943, 13, 428—435).—Polymerisation of Bu⁸O-CH:CH₂ can be 1943, 13, 428—435).—Polymerisation of BuPO-CH:CH₂ can be effected by BF₃, Et₂O, FeCl₃, AlCl₃, ZnCl₂, SnCl₄, I, or anhyd. SnCl₂; SnCl₂ (2 wt.-% on the ether) gives a polymer of mol. wt. (by η in C₄H₆) 1795—2000, separated into fractions of differing mol. wt. by pptn. from C₆H₆ with MeOH. The total polymer gives with aq. 20% HNO₃ at 100°/12 hr. H.C₂O₄ and a liquid product, b.p. 97—105°, whilst with Na in BuPOH, followed by treatment with H₂O, it gives polyvinyl alcohol (?), η_{ap} 0·2325, mol. wt. (η) 5280. F. HI.

Acetylenic ethers. IV. Hydration. T. L. Jacobs and S. Searles, jun. (J. Amer. Chem. Soc., 1944, 66, 686—689; cf. A., 1943, II, 89). —Rates of hydration of CH-C·OR (A) (R = Et, Bu, and Ph) are measured dilatometrically in H_2O or $12\cdot5-42\cdot7\%$ EtOH at 25° and pH $2\cdot255-6\cdot47$. The reaction is of first order with respect to [A] and [H_3O^+]. The mechanism is: (A) + H_2O^+ \rightarrow (CH_{*}:C·OR) (B) + H_2O ; (B) + H_2O \rightarrow [CH₂:C(OR)·OH₂] + \rightarrow (+ H_2O) CH₂:C(OR)·OH (C) + H_3O^+ ; (C) \rightarrow ROAc.

Unsaturated synthetic glycerides. VI. Polymorphism of s-monooleyl-disaturated triglycerides. B. F. Daubert and T. H. Clarke (J. Amer. Chem. Soc., 1944, 66, 690—691; cf. A., 1944, II, 211).—Heating and cooling curves yield the following transition points: a-monostearin, forms I 81-8°, II 78-0°, III 25-4°, IV 48-5° (Malkin's β , β' , a, and γ forms, respectively); a-monomyristin, forms I 71-0°, II 67-5°, III 55-3°, IV 21-3°; glyceryl β -oleate a γ -diacylate in which the acyl is stearyl, forms I 41-6°, II 37-0—37-6°, III 29-8°, IV 22-3°, palmityl, forms I 35-2°, II 30-4°, III 20-8°, IV 12-0°, myristyl, forms I 26-3°, II 21-5°, III 12-3°, IV 2-1°, dodecoyl, forms I 16-5°, II 11-0°, III 1-4°, IV —7-1° to —7-5°, and n-decoyl, forms I 6-2°, II 0-6, III —10-2°, IV —16-4°.

Ester interchange. H. J. Wright, J. B. Segur, H. V. Clark, S. K. Coburn, E. E. Langdon, and R. N. DuPuis (Oil and Soap, 1944, 21, 145—148).—The application of ester-interchange reactions to triglycerides, e.g., the formation of fatty acid esters of MeOH, EtOH, PrOH, OH·[CH₂]₂·O·CH₂Ph, polyhydric alcohols, furfuryl alcohol, etc., and liberation of glycerol by interaction of glyceride and the alcohol (or Me esters and polyhydric alcohols) in presence of Pb or alkaline salts as catalyst, is briefly reviewed. A continuous method of production, viz., mixing glyceride, MeOH, and NaOH catalyst at 65° for 5 min. and then centrifuging, yielded 85% of the theoretical glycerol. The utilisation of, e.g., the Me and Et esters (which are obtained very pale) in soap-making, and of other esters as possible plasticisers for lacquers and synthetic rubbers, or the furfuryl esters for resin formation, is considered.

Preparation of ethyl ε-bromo-n-hexoate. G. B. Brown and C. W. H. Partridge (J. Amer. Chem. Soc., 1944, 66, 839).—cyclo-Hexanonc and K₂S₂O₈ (cf. Robinson et al., A., 1937, II, 196) give n-hexo-ε-lactones, converted by 48% HBr-conc. H₂SO₄ at room temp. and then 100° and finally by boiling H₂SO₄-EtOH into Br·[CH₂]₅·CO₂Et (45—55% over-all), b.p. 120—125°/14 mm.

Polymerisation of undecenoic acid in presence of boron fluoride. J. R. Cann and E. D. Amstutz (J. Amer. Chem. Soc., 1944, 66, 839—840).—Undecenoic acid and gaseous BF₃ at room temp. give an oily polymer having reduced I val. and acid val., much of the CO₂H being "esterified" with the C:C. After hydrolysis the polymer gives a CHI₃ test, proving this interpretation. CHMe:CH·CO₂H and fatty acids from drying oils behave similarly.

R. S. C.

Reformatsky condensations involving vinylogues of halogenoacetic esters. II. Methyl γ-bromosenecioate. R. C. Fuson and P. L. Southwick (J. Amer. Chem. Soc., 1944, 66, 679—681; cf. A., 1938, II, 442).—A method of lengthening a C chain by an isoprene unit is described. CH₂:CMe·CH₂Cl and CuCN (cf. Tamele et al., A., 1941, II, 82) give β-methylallyl cyanide (76%), b.p. 134·5—136·5°, which with Br-CHCl₃ (cooling) yields βγ-dibromoisovaleronitrile, b.p. 89°/2—3 mm., converted by K₂CO₃ in boiling COMeEt into γ-bromosenecionitrile (~50%), b.p. 84°/8 mm., or by boiling H₂SO₄-MeOH [5:8 (vol.)] into Me βγ-dibromoisovalerate, b.p. 84—85°/3 mm. With K₂CO₃ in boiling COMeEt this gives impure CH₂Br-CMe·CH·CO₂Me (I), b.p. 63—66°/3 mm., better obtained by the method of Ziegler et al. (A., 1943, II, 2, 32). PhCHO, (I), Zn, and a trace of I in boiling C₆H₆-Et₂O give esters, b.p. 146—148°/2—3 mm. and 152—176°/2—3 mm., hydrolysed (KOH-EtOH) to δ-phenyl-β-methyl-Δαγ-pentadicnoic acid, forms A, m.p. 158·5—159·5°, and B, m.p. 156·5—157·5°, respectively (cf. loc. cit.). Form B is accompanied by some δ-phenyl-β-methyl-Δα-buteno-δ-lactone, m.p. 61—62°. Form A is also obtained by condensing CHPh:CH·COMe and CH₂Br-CO₂Et by Zn and subsequently hydrolysing by KOH-EtOH.

Ozonides and their fission. A. Rieche, R. Meister, and H. Sauthoff [with, in part, H. Pfeiffer] (Annalen, 1942, 553, 187—249).—Review of the properties of the ozonides and comparison with the alkyl peroxides confirms Staudinger's formulation, CHROCHR.

Pure ozonides are best obtained by use of O₃ passed through 0.01n-NaOH and dried with P₂O₅. MeCl and EtCl are the most suitable solvents; CCl₄ and EtOAc are also useful but AcOH is unsuitable since it is very hygroscopic, difficult to remove, and causes hydrolysis. The ozonisation of ('CHMe)₂ and C₂H₄ is described. In no case has there been any indication of a labile intermediate such as the "molozonide" of Staudinger. The physical properties of the ozonides are intermediate between those of the corresponding dialkyl and hydroxydialkyl peroxides. Refractometric measurements show that only one peroxide group is present in the ozonides, in which it exists in the same form as in the peroxides. Absorption

curves permit only qual. conclusions but show close similarity in constitution between peroxides and ozonides. The parachor vals, indicate the presence of a 4- or 5-membered ring. Determination of active O in peroxides and ozonides is seldom quant. but for ozonides a val. in excess of that required for one active O has never been observed. The use of the acetal formula does not involve any essential alteration in the Harries scheme for the decomp. of ozonides. Examination of the more tractable ozonide (I) of oleic acid confirms Harries' observation of its decomp. by Fe into the peroxides of nonaldehyde and azelaicsemialdehyde. In AcOH these substances are unimol. but in freezing dioxan or boiling Et₂O or COMe₁ and double mol. wt. is observed. Fresh analyses, determination of active O, and observed decomp. essentially into 2 mols. of aldehyde and 1 mol. of H_2O_2 show that the compounds are respectively dihydroxynonyl peroxide $\{Me^*[CH_2]_7\cdot CH(OH)\cdot O\}_2\}$ and the dicarboxylic acid $\{CO_2H\cdot[CH_2]_7\cdot CH(OH)\cdot O\}_2$; the former has been obtained synthetically from nonaldehyde and H_2O_2 . Similarly, Harries' formaldehyde peroxide 'is $(OH\cdot CH_2\cdot O)_2$. The first step in the fission of ozonides of n-olefines in the presence of H_2O is therefore the hydrolysis of the ether bridge. The invariable production of symmetrical dialdehyde peroxides and not mixed dihydroxyalkyl peroxides by the fission of ozonides is due to an exchange reaction since a hydroxyalkyl peroxide is shown to react with an aldehyde different from that contained in the peroxide with production of a symmetrical dihydroxyalkyl peroxide, 2OH·CHR' $\cdot O_2$ H+2R''CHO \rightarrow (OH·CHR'' $\cdot O_1$, + (OH·CHR'' $\cdot O_2$). Hydroxyalkyl H peroxides juitiated by rupture of the ether ring. Dihydroxyalkyl peroxides initiated by rupture of the ether ring. Dihydroxyalkyl peroxides are thus produced and form an equilibrium with hydroxyalkyl H peroxides, aldehyde, and H_2O_2 . Hydroxyalkyl H peroxides yield carboxylic acids and H_2O_2 . The ozonides of (CAlk₂)₂

 $(\Rightarrow RCO_2H) \text{ and } CR_2 < \bigcirc^{O \cdot O} CHR' \to CR_2O_2 \cdot + R'CHO. \quad \text{Catalytic fission in presence of } Fe^{11} \text{ salts, Ag, Pd, or Pt probably proceeds: } CHR < \bigcirc^{O \cdot O} CHR \to R \cdot C(:O) \cdot O \cdot CHR \cdot OH \to RCO_2H + RCHO;$

intramol. disproportionation accompanies hydrolysis and becomes the main reaction in anhyd. media. It appears probable that the weakening of the C-C union in the formation of ozonides depends on diradical formation and hence can be explained in the manner advanced by Criegee for the dehydrogenation of αβ-glycols. During the ozonisation of (I) in EtOAc or CCl₄, CA, CO, and CO₂ are evolved in amount corresponding to the shortening by 1 unit of 14% of the chain of (I); no theoretical explanation is advanced.

(OH-CHMe·O)₂ is converted by P₂O₅ in dry Et₂O or MeCl into a peroxide, b.p. 27°/55 mm., identical with that derived by the ozonisation of (CHMe)₂, thus directly establishing the structure of the ozonide; more complex compounds are obtained simultaneously.

Ozonisation of the simpler olefines gives viscous products which remain after removal of the monomerides and may form the main product if ozonisation is prolonged. The relatively small mol. wt. observed for these compounds in freezing AcOH is due to hydrolysis by the solvent, which increases with time; in C₈H₈, dioxan, and cineole much higher vals. are obtained so that the supposed "dimerides" are really polymerides which may contain a small proportion of dimerides. The latter are shown to exist by the isolation of dimeric butene ozonide O(CHMe·O·O·CHMe)₂O in addition to the monomeride from (OH·CHMe·O)₂ and P₂O₅, and of the cryst. highly explosive tetramethylene diperoxide from P₂O₅ and (OH·CH₂·O)₂. Most ozonisation products hitherto described in the literature as dimeric ozonides are multimol. and true dimene products have thus far been isolated only by synthesis from dihydroxyalkyl peroxides. Determinations of mol. wt., parachor, mol. refraction, and ultra-violet absorption spectrum indicate that the viscous liquids, regarded previously as dimerides, are mixtures of multimol. ozonides containing as a mean 4—6 mols. Polymeric

butene ozonide is therefore CHMe O2-CHMe O2-CHMe. In the

rings peroxide groups and ether bridges alternate, $O_2 \cdot CR_2 \cdot O_2 \cdot O_2 \cdot CR_2 \cdot O_2 \cdot O_2$

only one compound is formed in each case. The constitutions (A) and (B) are assigned. It is therefore impossible that even a

momentary rupture of the acid mols. into diradicals and direct intrusion of the O_3 mol. can occur. Addition of O_3 leads to a very short existence of a primary ozonide and hence to a single C-C linking; during rupture of this linking and establishment of the ether bridge free rotation is possible for an instant but the fixation of substituents occurs at definite places of the C atoms.

 $C:C + O_2 \rightarrow \cdots O \cdot C \cdot C \cdots + O_2 + C:C \rightarrow \cdots O \cdot C \cdot C \cdot O \cdot O \cdot C \cdot C \cdots$ etc. or

Ozonisation of (:CHMe)₂ under the conditions laid down by Harries for the production of the oxozonide and removal of all volatile matter from the product gives a residue similar to Harries' material; a similar product is also obtained by the after-treatment of multimol. butene ozonide with O_3 . Physical properties and chemical behaviour towards alkali and FeSO₄ show that the product is multimol. ethylidene peroxide, $(C_2H_4O_2)_8$. H. W.

Production of organic peracids and salts thereof.—See B., 1944, II, 219.

Production of lævulic acid [from wood].—See B., 1944, II, 220.

Dehydration of β-hydroxy-βγγ-trimethyl-n-valeric acid. M. S. Newman and R. Rosher (J. Org. Chem., 1944, 9, 221—225).— Dehydration of OH-CMeBuγ-CH₂-CO₂H (I) and its ester proceeds without mol. rearrangement. OH-CMeBuγ-CH₂-CO₂Me (II), b.p. 88—90°/14 mm., is obtained in 66% yield by gradually adding a solution of CH₂Br-CO₂Me and pinacolone in dry C₆H₆ to Zn foil in presence of a little I. The yield of this or the Et ester (III), b.p. $104-107^{\circ}/18$ mm., sinks to ~53% if all the reactants are placed together at once. Treatment of (II) with COCl. and C₅H₅N in Et₂O followed by hydrolysis, heating (III) with I followed by hydrolysis, or heating (I) with Ac₅O leads to a mixture of a solid acid (IV), m.p. $84.5-85.0^{\circ}$ (corr.), and a liquid acid (V), each of which yields the same amide, m.p. $141-142^{\circ}$ (corr.); they are regarded as geometrically isomeric forms of βγγ-trimethyl-Δα-pentenoic acid. Catalytic reduction (PtO₂) of (IV) or (V) gives βγγ-trimethyl-n-valeric [identified as the amide, m.p. $166-167^{\circ}$ (corr.)] in 83% yield. (IV) or (V) is transformed by NaOH at 225° into pinacolone, identified as the 2:4-dinitrophenylhydrazone, m.p. $124-125^{\circ}$. Reaction between (II) or (III) and I is erratic, sometimes giving a lachrymatory liquid, probably iodopinacolone. $Al_{\bullet}O_1$ at $300-325^{\circ}$ causes

[identified as the amide, m.p. $166-167^{b}$ (corr.)] in 83% yield. (IV) or (V) is transformed by NaOH at 225° into pinacolone, identified as the 2:4-dinitrophenylhydrazone, m.p. $124-125^{\circ}$. Reaction between (II) or (III) and I is erratic, sometimes giving a lachrymatory liquid, probably iodopinacolone. Al₂O₃ at 300—325° causes cleavage of (II). POCl₃ in boiling C₆H₆ transforms (III) into β -tert.-utyl- γ -butyrolactone (VI), b.p. 117° /20 mm., m.p. $99-100^{\circ}$, more easily obtained by heating (I), (II), (III), (IV), or (V) with 50% 100 at 100

Autoxidation of ascorbic acid in presence of copper.—See A., 1944,

l-Amino-acid oxidase of Proteus vulgaris. P. K. Stumpf and Green Biol. Chem., 1944, 153, 387—399; cf. A., 1944, III, 6881. 2.4-Dinitrophenylhydrazones of the following are described: 9-indolylpyruvic acid, m.p. 169°, α-ketohexoic acid, m.p. 134°, α-ketwisohexoic acid, m.p. 155°, α-ketovaleric acid, m.p. 160°, 2-iminazolyl pyruvic acid, m.p. 239° (decomp.) [hydrochloride (+2H₂O),

m.p. 192° (decomp.)], δ-guanido-α-ketovaleric acid, m.p. 267° (decomp.) [hydrochloride, (+1H₂O), m.p. 216° (decomp.)].

Reaction of diazomethane with ammonium salts of organic acids. M. Frankel and E. Katchalski (J. Amer. Chem. Soc., 1944, 66, 763—765).—NH₄, NH₂Me, NH₂Et, NHMe₂, or NEt₃ salts of malonic, succinic, or phthalic acid with CH₂N₂ in Et₂O give 72—92% of the Me₂ ester and the appropriate amine (which is not methylated; cf. A., 1944, II, 15). NH₄Cl and CH₂N₂-Et₂O give NH₃ (69%) and MeCl (53%).

R. S. C.

p-Carboxyphenylhydrazones of palmit-, m.p. 101—102° (decomp.), and stearaldehyde, m.p. 105° (decomp.), and corresponding carboxymethoximes, m.p. 68—89° and 81—82°, thiosemicarbazones, m.p. 109° and 112°, and glyceryl acetals, m.p. 48—49° and 57° respectively.—See C., 1944, 117.

Synthesis of hydroxycitronellal.—See B., 1944, II, 220.

Tests of mechanism for the photochemical decomposition of acetone.—See A., 1944, I, 229.

Silver (Ag $^{\rm III}$) ethylenedibiguanide hydroxide and its salts.—See A., 1944, I, 230.

Peptidases of intestinal mucosa. E. L. Smith and M. Bergmann (J. Biol. Chem., 1944, 153, 627—651).—The following are preps. of di- and tri-peptides as substrates for the study of peptidase action (cf. A., 1944, III, 689). l-Hydroxyproline (I) with carbobenzyloxyglycyl chloride (II) and 2n-NaOH at room temp. yields carbobenzyloxyglycyl-l-hyaroxyproline, m.p. 124—124·5°, hydrogenated (Pd-black) in aq. MeOH-AcOH to glycyl-l-hydroxyproline, [a]₀⁵—128·4° in H₂O (cf. Abderhalden and Koppel, A., 1928, 1041). (I) is esterified by HCl-CH₂Ph·OH to l-hydroxyproline CH₂Ph ester hydrochloride, m.p. 147—150°, which with carbobenzyloxyglycylglycine azide gives carbobenzyloxydiglycyl-l-hydroxyproline, [a]₀⁵—97·7° in H₂O. Similarly prepared are carbobenzyloxydiglycyl-l-proline, [a]₀⁵—97·7° in H₂O. Similarly prepared are carbobenzyloxydiglycyl-l-proline CH₂Ph ester hydrochloride (III), m.p. 162—164° (decomp.), of (I), coupled with (II) and treated with MeOH-NH₃, affords carbobenzyloxyglycyl-l-hydroxyprolineamide, m.p. 208°, which on hydrogenation etc. gives glycyl-l-hydroxyproline diketopiperazine, [a]₀⁶—190·4° in H₂O. Similarly prepared are carbobenzyloxyglycyl-l-prolineamide, m.p. 150—151°, and glycyl-l-proline diketopiperazine, m.p. 213°, [a]₀⁶—197·3° in H₂O (cf. Fischer and Reif, A., 1908, i, 1007). (III) with H₂O-CHCl₃-MgO, CH₂Ph·O·COCl, and finally C₅H₅N followed by HCl yields carbobenzyloxy-l-hydroxyproline hydrazide, m.p. 149—149·5°, from which are prepared in the usual way carbobenzyloxy-l-hydroxyprolylglycine CH₂Ph ester, m.p. 153°, and l-hydroxyprolylglycine, [a]²⁶—22·42° in H₂O. Also prepared are l-prolineamide hydrochloride, m.p. 173—175°, and l-hydroxyprolineamide, m.p. 139°.

Effect of dielectric constant and temperature on the catalysed decomposition of azodicarbonate ion.—See A., 1944, I, 227.

Interaction of diazomethane with a-cyanocrotonic acid. W. G. Young, L. J. Andrews, S. L. Lindenbaum, and S. J. Cristol (J. Amer. Chem. Soc., 1944, 66, 810—811).—CHMe:C(CN)·CO₂H (I) (modified prep.), m.p. 96—99° (lit. 80°, 92°), with CH₂N₂-Et₂O gives CMe₂·C(CN)·CO₂Me (II), m.p. 19·5—21°, b.p. 90—91°/5 mm. [absorption max. at 230 m μ . (ε 11,100) in 95% EtOH], also obtained (m.p. 21·5—22°) by Cope's method (A., 1938, 1I, 5), but, the Ag salt with MeI gives Me a-cyanocrotonate (III), m.p. 20—22°, b.p. 75·5—76·8°/4—5 mm. [absorption max. at 220 m μ . (ε 8400) in 95% EtOH]. In 3N-NaOH, (II) or (III) gives COMe₂ or McCHO, respectively, but with O₃ in CH₂Cl₂, (III) gives a little McCHO whereas (II) is unaffected. CH₂N₂ converts (III) into (II). Formation of (II) from (I) probably occurs by way of (III) and the pyrazoline, which is too unstable to exist as such. The mechanism of its formation and decomp. is discussed.

α-Toluenesulphonamido-δ-hydroxyvaleramide, m.p. 182—183° (decomp.).—Sec A., 1944, III, 605.

Resolution of a-xanthogenopropionic acid into optically active isomerides. A. Fredga and M. Tenow (Arkiv Kenii, Min., Geol., 1943, 17, B, No. 3, 5 pp.).—(—)-, m.p. 70—71°, [a]₂²⁶—91·1° in EtOAc, —81·8° in EtOH (resolved through the cinchonidine salt, EtOH), and (+)-xanthogenopropionic acid (1), m.p. 70—70·5°, [a]₂²⁶+92° in EtOAc (strychnine salt, +1H₂O), are prepared. (I) and conc. NH₃ (1 day), followed by H₂O₂, yield NH₂·CS·OEt and disulphidodi-a-propionic acid, m.p. 113—115°, [a]₂⁵—410° in H₂O. A. T. P.

Basically substituted aliphatic nitriles. Their catalytic reduction to [di]amines. F. C. Whitmore, H. S. Mosher, R. R. Adams, R. B. Taylor, E. C. Chapin, C. Weisel, and W. Yanko (J. Amer. Chem. Soc., 1944, 66, 725—731).—CH.:CH·CN (I) and NHR₂ yield, by 1:4-addition, NR₂·[CH₂]₂·CN (A), the rate of reaction being piperidine > morpholine > NHEt₂ and for other NHAlk₂ slower as the mol. wt. of R increases; in some cases a catalyst (noted with temp. of prep. below) is needed. The rate is not & f NHR₂. The reaction is reversible, since (i) higher (A) dissociate slowly at the

b.p. to give NHR_2 ; notably (A) (R = $[CH_2]_2 \cdot OH$) dissociates completely when distilled, (ii) yields are increased by using an excess of pletely when distinced, (ii) hydrogenation (Raney Ni) of (A) (NR₂ = morpholino) at 190° gives 35% of morpholine, and (iv) (A) (R = H) dissociates when kept into NH₃ and a tarry polymeride of (I). NH₂·[CH₂]_n·OH and (I) in presence of NaOMe give good yields of NR₂·[CH₂]_n·O·[CH₂]₂·CN. Hal·[CH₂]₃·CN and NHR₂ give NR₂·[CH₂]₃·CN, yields being much improved by use of a solvent (C₈H₆-CHCl₃). Hydrogenation (Raney Ni) of (A) at, usually, 90—130°/67—270 atm. gives the diamine with minor amounts of the sec amine (more in the butyro- than in the propio-nitrile series): the sec. amine (more in the butyro- than in the propio-nitrile series); the amount of sec. amine is decreased by presence of an excess of NH₃ and increased by addition of primary amine before hydrogenation. Shaking (I) with aq. NH₃ gives mainly NH₁([CH₂]₂·CN)₂ (II), b.p. $165^{\circ}/4$ mm. (picrate, an oil), and N([CH₂]₂·CN)₂, but with liquid NH₃ (7 mols.) at ~40° gives NH₂·[CH₂]₂·CN (22%), b.p. $66-69^{\circ}/1$ mm. (picrate, m.p. 178°), and (II) $(64^{\circ}\%)$. The following are described: NR₂·[CH₂]₂·CN in which R = Et (best prepared at room temp. and then the b.p.), b.p. $196^{\circ}/735$ mm., $104-106^{\circ}/35$ mm. (picrate, m.p. 85°), Pr^a, b.p. $116^{\circ}/20$ mm. (picrate, m.p. 111°), Bu^a, b.p. $141^{\circ}/20$ mm. (picrate, an oil), and n-hexyl, b.p. $145-146^{\circ}/2$ mm. (picrate, an oil); β -ethylaminopropionitrile (best at $<30^{\circ}$ and then 100°), b.p. $92-95^{\circ}/30$ mm. (picrate, m.p. 163°); di-(β -cyanoethyl)ethylamine, the amount of sec. amine is decreased by presence of an excess of NH3 oil); β -ethylaminopropionitrile (best at <30° and then 100°), b.p. 92—95°/30 mm. (picrate, m.p. 163°); di-(β -cyanoethyl)ethylamine, b.p. 200—202°/30 mm. (picrate, m.p. 170°); β -piperidino-, b.p. 129—130°/30 mm. (picrate, m.p. 160°), and β -morpholino-propionitrile, b.p. 149°/20 mm. (picrate, m.p. 139·5°); NR_2 ·[CH₂]₃·CN, in which R = Et, b.p. 101—103°/21 mm. (picrate, m.p. 69—70°), and OH·[CH₂]₂ (prep. at room temp.), decomp. when distilled (picrate, m.p. 108—109°); γ -piperidino-, b.p. 127—129°/25 mm. (picrate, m.p. 117°) and γ -morpholizo-n-butyronitrile, b.p. 148—150°/25 mm. m.p. 108—109 ; γ-piperiano-, υ.р. 121—129 μου mm. (pictace, m.p. 117°), and γ-morpholino-n-butyronitrile, b.p. 148—150°/25 mm. (picrate, m.p. 152—153°); β-hydroxy-β'β''-dicyanotriethylamine, decomp. when distilled (picrate, m.p. 137—138°); (CN·[CH₁]₂)₂O; comp. when distilled (picrate, m.p. $137-138^\circ$); (CN·[CH₁]₂)₂O; NN-diethyl-N'N'-di- β '-cyanoethylpropylene-ay-diamine, m.p. $233-235^\circ/25$ mm. (picrate, m.p. $168-167^\circ$); β -di-(y'-diethylamino-n-propyl)aminopropionitrile (at 100° ; catalyst: trace of Cu-bronze), b.p. $153^\circ/3$ mm. (picrate, m.p. $157-158^\circ$); β - β '-morpholinoethyl-, b.p. $183^\circ/20$ mm. (picrate, m.p. $176\cdot5^\circ$), and β - γ '-morpholino-n-propyl-, b.p. $178-180^\circ/9$ mm. (picrate, m.p. $148-149^\circ$), -amino-propionitrile; β - β '-diethylaminoethoxypropionitrile (prep. at 25°), b.p. $145^\circ/25$ mm. (picrate, m.p. 75°); β - γ '-diethylamino-n-propoxypropionitrile, b.p. $148-150^\circ/25$ mm. (picrate, an oil); β - δ '-diethylamino-a-methyl-n-butoxypropionitrile, b.p. $125-130^\circ/3$ mm. (picrate, an oil): β - δ - δ -methylanilinopropionitrile (at 180°); catalyst: mino-a -methyl-n-butoxypropionitrile, b.p. 125—130°/3 mm. (picrate, an oil); β-N-methylanilinopropionitrile (at 180°; catalyst: CuSO₄,5H₂O; CH₂Ph·NMe₃·OH is ineffective), b.p. 175—177°/29 mm. (picrate, m.p. 118°); 9-β-cyanoethylcarbazole (catalyst: CH₂Ph·NMe₃·OH), m.p. 155·5°; 1-β-cyanoethyl-1:2:3:4-tetra-hydroquinoline (in AcOH at 125°; other catalysts ineffective), b.p. 192°/10 mm. (picrate, m.p. 172°); NH₂·[CH₂]₂·NR₂ in which R = H, b.p. 138°/735 mm. (picrate, m.p. 178°), Et, b.p. 168°/735 mm. (picrate, m.p. 194°), Pr^a, b.p. 94°/20 mm. (picrate, m.p. 181°), and Bu^a, b.p. 121°/20 mm. (picrate, m.p. 188°); di-(γ-diethylamino-n-propyl)amine, b.p. 107°/3 mm. (picrate, m.p. 153—154°); N-ethyl-propylene-ay-diamine, b.p. 156°/735 mm. (picrate, m.p. 193°); γ-piperidino-, b.p. 205°/730 mm. (picrate, m.p. 209—210°), and γ-morpholino-n-propylamine, b.p. 219°/733 mm. (picrate, m.p. 193°), and di-(γ-piperidino-, b.p. 153°/2 mm. (picrate, m.p. 193°), and di-(γ-morpholino-n-propyl)amine, b.p. 185°/5 mm. (picrate, m.p. 213—215°); NR₂·[CH₃]₄·NH₂ in which NR₂ = NEt., b.p. 85—88°/18 mm. (picrate, m.p. 160·5°), and morpholino-, b.p. 112°/20 mm. (picrate, m.p. 120°/25 mm. (picrate, m.p. 160·5°), and morpholino-, b.p. 122°/20 mm. (picrate, m.p. 160·5°), and morpholino-n-butyl)amine, b.p. 200—202°/3 mm. (picrate, m.p. 160°); γ-di-(β-hydroxyethyl)amine-n-propylamine, b.p. 202—203°), and di-(δ-morpholino-n-butyl)amine, b.p. 200—202°/3 mm. (picrate, m.p. 168°); γ-di-(β-hydroxyethyl)amine-n-propylamine, b.p. 215°/2 mm. (picrate, m.p. 168°); γ-di-(β-hydroxyethyl)amine-n-propylamine, b.p. 215°/2 mm. (picrate, m.p. 168°); γ-di-(β-hydroxyethyl)amine-n-propylamine, b.p. 215°/2 mm. (picrate, m.p. 168°); γ-di-(β-hydroxyethyl)amine-n-propylamine, disperate, m.p. 168°); γ-di-(β-hydroxyethyl)amine-n-propylamine, disperate m.p. 168°/2 mm. (picrate, disperate m.p. 168°/2 mm. (picrate disperate m.p. 168°/2 disperate m.p. 168°/ n-propylamino-n-propyl)amine, b.p. $253-260^{\circ}/25$ mm. (picrate, m.p. 197°); γ -di-(γ -diethylamino-n-propyl)amino-n-propylamine, b.p. $155-165^{\circ}/3$ mm. (picrate, m.p. $162\cdot5^{\circ}$); γ - β -morpholinoethyl-, b.p. $120-123^{\circ}/2$ mm. (picrate, m.p. 208°), and γ - γ -morpholino-n-propyl-, b.p. $137-140^{\circ}/1\cdot5$ mm. (picrate, m.p. 205°), -amino-n-propylamine; γ - β -diethylamino-n-propoxy-, b.p. $118-122^{\circ}/25$ mm. (picrate, an oil), γ - γ -diethylamino-n-propoxy-, b.p. $130-132^{\circ}/25$ mm. (picrate, an oil), γ - δ -diethylamino-a-methyl-n-butoxy-, b.p. $80-83^{\circ}/2$ mm. (picrate, m.p. $88-89^{\circ}$), and γ -N-methylanilino-, b.p. $171-172^{\circ}/40$ mm. (picrate, m.p. 189° ; hydrobromide, m.p. 120°), -n-propylamine; di-(γ - β -diethylamino-thoxy-, b.p. $175^{\circ}/3$ mm. (picrate, an oil), and di-(γ - γ -diethylamino-a-methyl-n-butoxy-, b.p. $210-215^{\circ}/3$ mm. (picrate, an oil), -n-propyl-amine; 9- γ -amino-n-propyl-abzole, cryst., b.p. $228^{\circ}/3$ mm. (picrate, m.p. 273°); 1- γ -amino-n-propyl-1:2:3:4-tetrahydroquinoline, b.p. $132-135^{\circ}/3$ 1-y-amino-n-propyl-1:2:3:4-tetrahydroquinoline, b.p. 132-135°/3 mm. β-γ'-Diethylamino-n-propylamino-n-propionitrile, b.p. 163—165°/2 mm. (picrate, m.p. 123°), is prepared from NE₂:[CH₂]₂·NH₂ by (I) or Br·[CH₂]₂·CN, thereby proving the structure of the products. The appropriate diamine with p-NHAc·C₆H₄·SO₂Cl-K₂CO₃-COMe₂-H₂O and then 20% HCl yields N²-γ-diethylamino-, m.p. 109—110°, -di-n-propylamino-, m.p. 98—98-5°, -di-n-butylamino-

(hydrochloride, m.p. 110—115°), -piperidino-, m.p. 105·5—106° (Ac derivative, m.p. 109—111°), and -morpholino-, m.p. 94·5—95° (Ac derivative, m.p. 97—98°), -n-propylsulphanilamide, N¹N¹-di-(γ-di-ethylamino-n-propyl)- (hydrochloride, m.p. 195—197°; Ac deriv-ative, m.p. 83—85°), and N¹N¹-di-(γ-piperidino-n-propyl)-sulphanilamide, m.p. 171°.

Action of ammonia on allophanic azide. W. L. Lipschitz (J. Amer. Chem. Soc., 1944, 66, 658).—Contrary to Thiele et al. (A., 1899, i, 118), allophanic azide with conc. aq., dil. aq., or liquid NH gives only biuret.

II.—SUGARS AND GLUCOSIDES.

Action of copper sulphate on phenylosazones of sugars. Phenyl-

Action of copper sulphate on phenylosazones of sugars. Phenyl-D-glucosotriazole. R. M. Hann and C. S. Hudson (J. Amer. Chem. Soc., 1944, 66, 735—738).—Phenyl-D-glucosazone (I) (5 g.) and CuSO₄ (2 mols.) in boiling H₂O give 2-phenyl-D-glucosotriazole (II) (2—3 g.), m.p. 195—196°, [a]²⁰ —81·6° in C₈H₅N (tetra-acetate, m.p. 81—82°, [a]²⁰ —25·6° in CHCl₃; tetrabenzoate, m.p. 112—113°, [a]_D +3·0° in CHCl₃), and NH.Ph (20% isolated as NHPhAc) (cf. A., 1934, 633). Triazoles are similarly obtained (no details given) from the phenyl-osazones of L-sorbose (50%; m.p. 158—159°),

ch, oh osazones of L-sorbose (50%; m.p. 158—159°), D-galactose (III) (47%; m.p. 110—111°), D-altrose (62%; m.p. 134—135°), D-xylose (40%; m.p. 88—90°), cellobiose (62%; m.p. 164—165°), lactose (IV) [62%; (V), m.p. 180—181°], and turanose (VI) (70%; m.p. 193—194°). The reaction occurs in two stages, evident with the sol. phenylosazones of (IV) and (VI); a red Cu-osazone complex first forms and then decomposes to the colourless triazole, leaving the solution green owing to the Cu-NH₂Ph colour. (V) is hydrolysed by acids as readily as is (IV) and yields (II) and (III). (I) is readily identified by this reaction in acidified aq. Pr\$OH (cf. C., 1944, Part 4).

R. S. C.

M. L. Wolfrom and D. I. Weisblat (J. Acyclic sugar orthoacetate. Amer. Chem. Soc., 1944, 66, 805-806).-Crude 1-chloro-1-ethylthiolaldehydo-D-galactose penta-acetate, m.p. 95—98° (A., 1941, II, 211), with CaSO₄ and Ag₂CO₃ in EtOH at room temp. gives D-galactose Et₂ monothioacetal penta-acetate (A., 1940, II, 205) and a small amount of 1-ethylthiolaldehydo-D-galactose Et 1: 2-orthoacetate tetraacetate, $CH(SEt) \cdot O \cdot CMe \cdot OEt \quad \{R = [CH(OAc)]_3 \cdot CH_2 \cdot OAc\}, \quad m.p.$ 125—126°, $[\alpha]_D^{24}$ +54° in CHCl₃, from which 5 Ac are removed by

acid but only the 4 normal Ac by alkali.

Methyl-3-methyl-4:6-ethylidene- β -glucosides. R. E. Reeves (J. Amer. Chem. Soc., 1944, 66, 845).—Mixed methyl-3-methyl- α - and $-\beta$ -glucosides (from the syrupy triacetate) with parallehyde and a little conc. $\rm H_2SO_4$ at room temp. give methyl-3-methyl-4: 6-ethylidene-a-, m.p. $106-107^{\circ}$ (corr.), $[a]_{2}^{25}+114^{\circ}$, $[a]_{Hg}^{25}$ blue $+246^{\circ}$ in $\rm H_2O$, and $-\beta$ -glucoside, m.p. $133-134^{\circ}$ (corr.), $[a]_{2}^{25}-66^{\circ}$, $[a]_{Hg}^{25}$ blue -126° in H₂O (with MeI-Ag₂O gives the known 2:3-Me₂ compound, m.p. 103-105°).

Action of ultra-violet light on cellulose. I. Irradiation effects. II. Post-irradiation effects. R. A. Stillings and R. J. van Nostrand (J. Amer. Chem. Soc., 1944, 66, 753—760).—The photolysis of cellulose (I) in O₂ and in N₂ has been studied (for apparatus see C., 1944, Part 4). Glucose and cellobiose (II) have been irradiated in N₂. (I) in N2 is considerably degraded (lowering of degree of polymerisation and a-cellulose content, increase in Cu no., and liberation of CO and CO2), the degradation increasing with time of exposure. These changes are not related to the presence of O₂ in the N₂ or in the (I). Rate of degradation increases with increasing O_2 in the A_2 Of the (1)-Rate of degradation increases with increasing O_2 in the gas phase, but rate of change of chain length and Cu no. do not correspond with a first-order reaction. β -d-Glucose and (II) liberate CO and CO₂, but more slowly than (I). If (I) which has been irradiated in the absence of O_2 is left in air the changes brought about by irradiation continued to continue the state of ation continue to occur but cease when air is absent. Post-irradiation effects are enhanced by increased temp. to 70° and also by O2 instead of air, but diminished by replacement of O2 by N2. Reintroduction of O₂ causes production of post-irradiation effects. For (I) irradiated in O₂ the post-irradiation effects are less marked and of shorter duration.

III.—HOMOCYCLIC.

Thermal decomposition of substituted cyclohexenes. F. O. Rice and M. T. Murphy (J. Amer. Chem. Soc., 1944, 66, 765—767).—On pyrolysis at $\sim 700^\circ$ 1-methyl-, 3-vinyl-, and 1-phenyl-cyclohexene yield the expected substituted butadiene and C_2H_4 . Ethylcyclohexene does not yield the expected ethylbutadiene. Dipentene gives a high yield of isoprene, but 3-p-menthene does not give isopropylbutadiene although it gives a high yield of CH.:CHMe.

Debromination of pentaerythrityl bromide by zinc. Isolation of spiropentane. M. J. Murray and E. H. Stevenson (J. Amer. Chem. Soc., 1944, 66, 812—816).—A detailed account of work already reported (A., 1944, II, 215). Raman spectra are recorded for spiropentane, methylene- and methyl-cyclobutane, and cyclobutanene.

Friedel-Crafts synthesis of ketones and hydrocarbons by means of aluminium chloride and gallium chloride. H. Ulich ($Oel\ u.\ Kohle, 1943,\ 39,\ 523-527$).—The ketone synthesis takes place either as a homogeneous reaction after $AlCl_3$ has gone into solution in the form of an additive complex or as a surface reaction if excess of solid $AlCl_3$ is present. The hydrocarbon synthesis is autocatalytic and proceeds rapidly after a heavy oily phase has been formed by addition of $AlCl_3$ to the reaction products. Addition of C_2H_4 to C_4H_6 proceeds by formation of EtCl if EtCl is present, but direct addition by a surface reaction on EtCl if EtCl is possible. Since EtCl is readily sol. in EtCl is the hydrocarbon synthesis with EtCl is a purely homogeneous reaction. Addition of EtCl is the main reaction product.

Esters of p-toluenesulphonic acid. R. S. Tipson (J. Org. Chem., 1944, 9, 235—241).—Esters of p-C₆H₄Me·SO₃H are obtained usually in >75% yield by the action of p-C₆H₄Me·SO₂Cl on the requisite alcohol or phenol in dry C₅H₅N which must be shielded from atm. moisture. Generally, but not always, the temp. of the reacting mixture should be \Rightarrow 0°. Nothing is gained in small experiments by addition of the reactants in portions. Technical p-C₆H₄Me·SO₂Cl suffices, an excess of ~10% being used. Under these conditions chlorination is never observed even with OPh·[CH₂]₂·OH or 2:4:1-[NO₂)₂C₆H₃·OH, which readily yield Cl-compounds with p-C₄H₄Me·SO₂Cl in warm (or hot) C₅H₅N or NPhEt₂. The tendency towards the production of pyridinium salts, usually pronounced with EtOH, CH₂Ph·OH, and 2:4:1-(NO₂)₂C₆H₃·OH, is overcome by neutralising the excess of C₅H₅N as soon as esterification is considered to be complete. β-Methoxyethyl, b.p. 141°/0·2 mm., m.p. 10°, -ethoxyethyl, b.p. 122°/0·1 mm., m.p. 18·5°, -n-propoxyethyl, b.p. 140°/0·1 mm., m.p. 8°, -n-butoxyethyl, b.p. 142°/0·1 mm., phenoxyethyl, m.p. 80—81°, and diethylcarbinyl, m.p. 43—44°, p-loluenesulphonate are new. apoCupreine gives a mono-p-toluenesulphonate, amorphous, [a]²⁴ + 14·8° in abs. EtOH. H. W.

Interaction of benzene with butadiene in presence of sulphuric acid and hydrogen fluoride catalysts. V. N. Ipatiev, H. Pines, and R. E. Schaad (J. Amer. Chem. Soc., 1944, 66. 816—817).—The low-boiling fraction obtained from (CH.:CH)₂ and an excess of C_6H_6 in H.SO₄ at $0-5^\circ$ (14% yield) or HF at $5-20^\circ$ (59% yield) is CHPhEt·CH₂Ph, bp. 148°/12 mm. (NHAc-derivative, m.p. 219°), also obtained [b.p. l41°/12 mm. (NHAc-derivative, m.p. 227°), from CH₂Ph·COPh by interaction with MgEtBr, followed by dehydration over activated Λ_1O_3 at 350°, and hydrogenation (Raney Ni; C_6H_{12} ; 50°/100 atm.). COPh₂ and MgPr^aBr etc. lead to CHPh₃Pr^a, b.p. 145°/16 mm. (NHAc-derivative, m.p. 201—203°). COPhMe and MgBr·[CH₃]₂·Ph etc. lead to CHPhMe·[CH₂]₂·Ph, b.p. 291° (NHAc-derivative, m.p. 194°).

Pyrolysis of [asymmetric] diphenylethane compounds.—See B., 1944, II, 221.

Mechanism of peroxide-initiated styrene polymerisation.—See A., 1944, 1, 227.

Morphine-like properties of [aβ-]diphenylethylamine and related compounds. E. C. Dodds, W. Lawson, and P. C. Williams (Proc. Roy. Soc., 1944, B, 132, 119—132; see also A., 1944, III, 683).— The following are obtained by reduction (Na-Hg, EtOH-AcOH) of the appropriate ketoxime: αβ-di-p-anisylethylamine, m.p. 103—104° (hydrochloride, m.p. 210—212°); β-phenyl-α-p-anisyl-, an oil (hydrochloride, m.p. 215—217°), demethylated by HI (d 1·7) to β-phenyl-α-p-hydroxyphenyl-ethylamine (hydrochloride, m.p. 194—195°); β-cyclohexyl-α-phenylethylamine, b.p. 162—164°/12 mm. (βz derivative, m.p. 168°; picrate, m.p. 183—184°; hydrochloride, m.p. 280—282°); β-cyclohexyl-α-p-anisylethylamine, b.p. 130—135°/92 mm. (hydrochloride, m.p. 246—248°). COPh-CHPh·NH2,HCl and MgEt1 (6 mols.) give β-hydroxy-αβ-diphenyl-n-butylamine, an oil (hydrochloride, m.p. 215—217°); β-hydroxy-αβ-diphenyl-n-propyl- (hydrochloride, m.p. 248—250°) and -n-butyl-dimethylamine (hydrochloride, m.p. 251—252°) are similarly obtained from COPh-CHPh·NMa, HCl and MgAlkI. Ph hexahydrochazyl ketone, b.p. 169—170°/12 mm. (2: 4-dinitrophenylhydrazone, m.p. 157—188°; oxime, m.p. 100—101°), is prepared from cyclohexylacetyl chloride, C₈H₈, and AlCl₂.

p-Dimethylamino-derivatives of nitrostyrene. D. E. Worrall and Cohen (J. Amer. Chem. Soc., 1944, 66, 842).—p-NMe₂·C₆H₄·CHO with MeNO₂ or EtNO₂ and a little n-C₅H₁₁·NH₂ at 100° gives β-nitro-p-dimethylaminostyrene (I), m.p. 179—180·5°, and β-nitro-a-p-dimethylamino-Δ^a-propene, m.p. 118—120°, respectively. With MPh·NH₂ (excess), (I) gives p-NMe₂·C₆H₄·CH·N·NHPh and with Br-CHCl₃ first at the b.p. and then in sunlight gives a-bromo-β-nitro-p-dimethylaminostyrene, m.p. 121°.

R. S. C.

o-Diphenylyl- and 2-dicyclohexylyl-carbimide, s-di-o-diphenylyl- and s-di-2-dicyclohexylyl-carbamide. H. Fraenkel-Conrat and H. S. Ulcott (f. Amer. Chem. Soc., 1944, 66, 845).—The appropriate amine and COCl. in boiling PhMe give o-diphenylyl-, b.p. $100^{\circ}/0.5$ —1

mm., and 2-dicyclohexylyl-carbimide, b.p. 89—90°/0·5—1 mm., converted by aq. C_5H_5N at room temp. and 100° , respectively, into s-bis-o-diphenylyl-, m.p. 182° , and s-bis-2-dicyclohexylyl-carbamide, m.p. $225-228^\circ$. R. S. C.

Derivatives of sulphanilamide.—See B., 1944, III, 186.

p-Aminobenzenesulphonacylamides.—See B., 1944, III, 167.

Orientation in the diphenyl series. (A) Preparation of 2- and 4-aminodiphenyl-4'-sulphonamides. A. H. Popkin and G. B. McVea. (B) Derivatives of 2-aminodiphenyl. A. H. Popkin, G. M. Perretta, and R. Selig (J. Amer. Chem. Soc., 1944, 66, 796—798, 833—834).—
(A) NHAc, NH₂,HCl, or NH₃ attached to Ph₂ acts in acid as a morienting group, directing substituents to C_(4'). o- or p-C₆H₄Ph·NH₂,HCl in ClSO₃H at 10° and later 60° give, after treatment with NH₃, 2- and 4-NH₂·C₆H₄·C₆H₄·SO₂·NH₂-4', respectively. The same products are obtained from the free amines, which, however, are less reactive than their salts, requiring temp. up to 90° for

sulphonation.
(B) $o\text{-}C_0\text{H}_4\text{Ph}\cdot\text{NH}_2$ with Me₂SO₄-30% NaOH at <30° gives 92% of a 66: 34 mixture of $o\text{-}C_0\text{H}_4\text{Ph}\cdot\text{NMe}_2$ (I), b.p. 115—116°/2—3 mm., and $o\text{-}C_0\text{H}_4\text{Ph}\cdot\text{NHMe}$ (II) [isolated as Ac derivative (III), m.p. 98—99°] (cf. Evans et al., A., 1939, II, 414), and with MeOH-H₂SO₄ gives an 87: 13 mixture of (I) and (II). The structure of (III) is proved by synthesis from $o\text{-}C_0\text{H}_4\text{Ph}\cdot\text{NHAc}$ (IV) by Na, followed by MeI, in hot xylene. (III) is less readily hydrolysed by MeOH-conc. aq. HCI than is (IV). CuSO₄, PhOH, and aq. NaCl convert (I) into an analogue of methyl-violet.

R. S. C.

Synthesis of 1:2-diaminocyclobutane. Z. I. Schuikina (J. Gen. Chem. Russ., 1943, 13, 373—381).—For the purpose of studying its behaviour towards oxidising agents, 1:2-diaminocyclobutane was prepared. (CH₃·CHBr·CO₂Et)₂ (Stephen et al., J.C.S., 1913, 103, 271) with NaCN (Fuson et al., A., 1929, 794) gives Et₂ 1-cyanocyclobutane-1:2-dicarboxylate, hydrolysed [BaOH)₂] to cyclobutane-1:1:2-tricarboxylic acid, which is decarboxylated at 150° to mixed cis- and trans-cyclobutane-1:2-dicarboxylic acid, and the mixture is then treated with conc. aq. HCl at 190°/4 hr. to give wholly the trans-form. The derived Me₂ ester (MeOH-HCl or -H₂SO₄) with NH₃ gives the diamide, which with KOBr affords 1:2-diaminocyclobutane (I) [hydrochloride (II), decomp. 240° without melting; platinichloride; picrate +1H₂O, resinifies at >200°]. Treatment of (II) with solid KOH and then with fused BaO gives a mixture of (I) and pyrrole (?).

Diazoamino-compounds.—See B., 1944, III, 186.

Action of aluminium chloride on phenyl ethers. G. Baddeley (J.C.S., 1944, 330—332).—Alkylation of the PhOH nucleus is solely para- in presence of AlCl₃, whereas that of homologues is directed by alkyl in the nucleus. Ethylation occurs more readily than methylation and the products readily isomerise. PhOMc and

methylation and the products readily isomerise. PhOMe and AlCl₃ (1 mol.) give a complex, PhO(Me), AlCl₃, which decomposes at >40° to PhO·AlCl₂ and McCl, and at 100° for 2 hr. affords PhOH (I) in quant. yield. With 2 mols of AlCl₃, the products formed from PhOMe at 100°/11 hr. are (I) (68%), \$\rho_c\$-cresol (II) (16%), \$\circ_c\$-4-xylenol (III) (8%), and hemimellithenol (IV) (5%). The methylating agent is probably McCl, AlCl₃, and no \$\sigma_c\$-cresol is formed. Similarly, (I). Et₂O, and AlCl₃ (2.8 mols.) at 100° for 3 hr. give 15% of \$\rho_c\$-E₄H₄E+OH but no \$\sigma_c\$-isomeride. \$\rho_c\$-E₄H₄Me+OMe (V) and 0·5, 1·25, or 2 mols. of AlCl₃ at 100° for 2·75, 3, or 1 hr. give 50% of (V) + 50% of (II), 40% of (III) + 40% of (III) + 10% of (IV), or 30% of (II) + 40% of (III) + 20% of (IV) + a substance (VI), m.p. 125° (probably C₈Me₅·OH), respectively. With AlCl₃ (1·1 mols.) at 100°, PhOMe affords (I) (95%), \$m^{-}C_6H_4Me-OMe gives \$m^{-}C_8Me_5·OH), expectively. With AlCl₃ (1·1 mols.) at 100°, PhOMe affords (I) (15%). whilst 1: 3: 5·C₆H₃Me₂·OMe gives \$m^{-}S_8xylenol (70%), (IV) (20%), and higher homologues containing (VI). \$\sigma_c\$-C₄H₄Me-OMe and AlCl₃ similarly yield \$\sigma_c\$-cresol, \$\rho_c\$-(38%) and \$\sigma_c\$-3-xylenol, and \$iso-\rho_c\$-d-umenol (24%), m.p. 95°. \$\rho_c\$-C₆H₄Me-OMe and AlCl₃ (2 mols.) at 100° for 10 min. give (II), 1: 2: 4C₆H₃MeEt-OH (VII) (27%), and 2: 6-diethyl-p-cresol (VIII) (18%), m.p. 59° (also obtained by Clemmensen reduction of 4: 2: 6: 1-OH·C₆H₂Et₂-CHO). (II), EtBr, and AlCl₃ at 20° for 3 days afford 26% of (VII) and 31% of (VIII). \$\rho_c\$-H₄Me-OH-A mixture of equal amounts of m- and \$\rho_c\$-H₄Me-OMe at 125-130° yields (III) and \$m^{-} (54%) + \$\rho_c\$-csol (46%); interconversion of these cresols is not appreciable and thus methylation of \$\rho_c\$-H₄Me-OH-A (II) (3 mols.) in Et₂O at 75-80° for 4 hr. or 100° for 3 hr. gives 38% of (IXI), probably formed from the 6-isomeride. Ethylated cresols are accompanied

 ϕ -C₆H₄Et·OH (80°); 4- (88°), 5- (84°), and 6-ethyl-m-cresol (116°); 2- (116°) and 3-ethyl-p-cresol (98°); hemimellithenol (147°).

 β -p- and β -o-Anisylpropylmethylamines.—Sec B., 1944, II, 248.

Dimerisation of 6-methoxy-3: 4-dihydronaphthalene. Woodward and R. H. Eastman (J. Amer. Chem. Soc., 1944, 66, 674—679).—6-Methoxy-1:2:3:4-tetrahydronaphthalene (I) and Pb₃O₄ in Ac₂O-AcOH yield 1-acetoxy-6-methoxy-1:2:3:4-tetrahydronaphthalene (II), b.p. 144—149°/3 mm. Hydrogenation of 1-keto-6-methoxy-1:2:3:4-tetrahydronaphthalene (III) [absorption max. at 276 mµ. (log s 4·22)] is erratic, yielding (I) or 1-hydroxy-6-methoxy-1: 2: 3: 4-tetrahydronaphthalene (IV), b.p. 175°/16 mm. Contrary to Long et al. (A., 1942, IÎ, 96), 46% HBr converts (II) or (IV) into 6: 6'-dimethoxy-1: 2: 3: 4: 3': 4'-hexahydro-1: 2'-dinaphthyl (V), m.p. 76-77° [absorption max. at 274 mμ. (log ε 4.25)], mapmy (V), In.p. 10—11 [absorption max. at 274 mµ. (log & 4:25], purified by chromatography (Al₂O₃), the dimeric nature of which is proved by its mol. wt. (Rast) and consumption of 1 BzO₂H to give the 1':2'-oxide, m.p. 127—128·5° [absorption max. at 283 mµ. (log & 3·54)]. Hydrogenation of (V) gives an oily H₈-derivative, which in boiling 57% aq. HI-AcOH gives 6:6'-dimethoxy-1:2':3:4:1':2':3':4'-octahydro-1:2'-dinaphthyl, mixed stereo-1:2:3:4:1':2':3':4'-octahydro-1:2'-dinaphthyl, mised stereo-isomerides, m.p. up to 187—190°; demethylation of (V) is anomalous. KMnO₄-NaHCO₃ oxidises (V) at 0° to give small yields of β-2-carboxy-5-methoxyphenylpropionic acid, m.p. 201-5—203°, and 6:6'-dimethoxy-1:2:3:4-tetrahydro-1:2'-dinaphthyl (VI), m.p. 107-5—108-5°, but CrO₃-AcOH gives only a little (VI). With 10% Pd-C in CO₂ at 300° (or, less well, S at 200—300°), (V) gives 6:6'-dimethoxy-1:2'-dinaphthyl (VII), m.p. 91—92°, converted by 57% HI-AcOH into 6:6'-dihydroxy-1:2'-dinaphthyl, m.p. 187—188-5°. Freshly distilled 2:6-C₁₀H₆Br·OMe (prep. from the naphthol by MeOH-H₂SO₄), m.p. 105—106°, b.p. 160—164°/3 mm., with Mg and a little I in Et₂O and then boiling C₈H₆ gives the Grignard reagent, which with (III) gives 6:6'-dimethoxy-3:4-dihydro-1:2'-dinaphthyl, m.p. 126°, and thence by Pd-C at 300° yields (VII) or by H₂-PtO₂ in AcOH gives (VI). Distillation of crude (IV) sometimes gives 7-methoxy-1:2-dihydronaphthalene, b.p. 107—111°/2-5 mm. [absorption max. at ~270 mu. (log ε ~4·0)], converted by 46% HBr into (V).

α-Chloro-αββ-tri-p-anisylethylene.—See B., 1944, II, 248.

a-Chloro-αββ-tri-p-anisylethylene.—Sec B., 1944, II, 248.

Constitution of compounds of the type R.SX., R.SeX., and R.TeX. ---See A., 1944, I, 192.

Substituted sulphanilamidophenols.—See B., 1944, III, 168.

Water-soluble derivatives of 4:4'-diaminodiphenyl sulphone.— See B., 1944, III, 185.

Specificity of the action of i-inositol, growth factor of microorganisms.—See A., 1944, III, 615.

ay: βδ-Dibenzylidene-D-sorbitol.—Sec A., 1944, II, 286.

Preparation of β -amino- α -3: 4-dihydroxyphenylbutan- α -ol. C. M. Suter and A. W. Ruddy (J. Amer. Chem. Soc., 1944, 66, 747—748).—o-C₆H₄(OH)₂ and Pr^aCOCl in PhCl at 50°, followed by AlCl₃ first in the cold and then at 110°, give 3: 4: 1-(OH)₂C₆H₃·COPr^a (I) (68%), m.p. 146—146.5°, the (CH₂Ph)₂ ether (II), m.p. 86—87°, of which yields with Br-CaCO₃ in CH₂Cl₂ a-bromo-3: 4-dibenzyloxybutyro-phenone, m.p. 100—101°. This does not react smoothly with NH₃ or (CH₂)₈N₄ but with CHPh₂·NH₂ in boiling EtOH etc. gives a-benzhvárylamino-3: 4-dibenzyloxy-n-butyrothenone benzhydrylamino-3: 4-dibenzyloxy-n-butyrophenone hydrochloride (75%), m.p. 175—176° (decomp.), converted by $\rm H_2$ -Pd-sponge in EtOH at 55—70°/50 lb. into β -amino-a-3: 4-dihydroxyphenyl-n-butan-a-ol hydrochloride, m.p. 199—200° (decomp.). R. S. C.

Preparation of iodine-containing X-ray contrast substances. IV. Ethyl iodophenylundecoate ("pantopaque"). W. Baker, E. E. Cook, and (in part) W. G. Leeds (J.S.C.I., 1944, 63, 223—224; cf. A., 1944, II, 24).—A detailed process is described for the prep. of Et iodophenylundecoate, an X-ray contrast substance for the visualisation of the spinal canal and other body cavities. Undecenoic acid and C_6H_6 are condensed to give phenylundecoic acid, which is directly iodinated in AcOH solution in presence of HlO3, and the product esterified. The overall yield of purified material is 70%.

Effect of substituents on dissociation constants of carboxylic acids. -See A., 1944, I, 224.

Rearrangement of 5-bromosalicylic acid and its ethers by hydrokearrangement of 5-bromosalicylic acid and its ethers by hydrolysis of the bromomagnesium salts. M. Paty and R. Quelet (Compt. rend., 1943, 217, 229—231).—2:5:1-OMe·C₆H₃Br·CO₂MgBr (I) (from the acid and MgEtBr) is converted by dil. HCl into 4:3:1-OMe·C₆H₃Br·CO₂H. 4:3:1-OH·C₆H₃Br·CO₂H is similarly produced starting from 2:5:1-OH·C₆H₃Br·CO₂H. No rearrangement occurs when, e.g., (I) is decomposed by Et₂O-HCl. It is not certain that H O is solely responsible for the respect to the contract. that H₂O is solely responsible for the rearrangement. It is possible that similar rearrangement occurs during decomp. of the carbonation products of the Mg derivatives of 2: 4-dihalogenoanisoles (ibid., 1942, **214**, 910).

Amines related to epinephrine. I. Amines of the "eprocaine" type. R. Hill and G. Powell (J. Amer. Chem. Soc., 1944, 66, 742—743).—3:4:1-(OH)₂C₆H₃·CO·CH₂Cl and p-NH₂·C₆H₄·CO₂R in

boiling H₂O give Et (I), m.p. 220—221° (darkens) (lit. 201°) [triacetate (II), m.p. 143—144°], Pr^a , m.p. 210—211° (triacetate, m.p. 129—131°, Bu^a , m.p. 196—196-5° (triacetate, m.p. 120°), β -diethylaminoethyl (III) [hydrochloride, m.p. ~205° (darkens)], β -di-n- (IV) (hydrochloride, m.p. 223—224°), and -1so-propylaminoethyl [hydrochloride, m.p. ~225° (darkens)], and β -di-n-butylaminoethyl (hydrochloride, m.p. 227—230°) β -3′: 4′-dihydroxyphenacylaminobenzoate. Ac₂O-20% NaOH converts (I) into a diacetate, m.p. 179—181°; (II) etc. are prepared by warm $Ac_2O-H_2SO_4$. 0-1N-NaOH hydrolyses (IV) to p-3′: 4′-dihydroxyphenacylaminobenzoic acid. decomp. 241° (IV) to p-3': 4'-dihydroxyphenacylaminobenzoic acid, decomp. 241° (bath preheated at 230°). (III) [= Eprocaine] has pressor as well as anæsthetic activity (cf. Osborne, Science, 1935, 85, 105), though it causes tissue damage, but the simple alkyl esters have no anæsthetic action.

N-Hydroxy-a-amino-acids as possible intermediates in the oxidative degradation of α-amino-acids. R. E. Steiger (J. Biol. Chem., 1944 153, 691—692).—N-Hydroxy-dl-β-phenylalanine, m.p. 164—165 (corr.; decomp.), rapidly N-acetylated and converted into the azlactone, which is dissolved in boiling 67% AcOH to open the ring, yields a-acetamidocinnamic acid, converted into phenylpyruvic acid by boiling with N-HCl. This demonstrates the possibility of converting an N-hydroxy-a-amino-acid into an a-keto-acid through J. F. M. the a-imino-acid.

Alkaline fading of tetraiodophenolsulphonephthalein.—See A., 1944, I, 211.

Semi-nitrile of α-hydroxy-β-phenyl-α-benzylsuccinic acid. P. Cordier and J. Moreau (Compt. rend., 1943, 217, 199—201).—Condensation of CH₂Ph·CN with CH₂Ph·CO·CO₂H in 3% KOH gives 22% of a mixture of the stereoisomerides, m.p. 200° (I) (18%) and 158° (II) (4%), of CN-CHPh-C(OH)(CH₂Ph)-CO₂H (cf. A., 1935, 975). HCl-AcOH with (II) affords the corresponding *imide*, m.p. 161°, with a trace of α-phenyl-β-benzylmalcic anhydride (cf. loc. cit.). Conc. H₂SO₄ with (I) yields a mixture of the corresponding amide, m.p. 210°, and CH₂Ph-CO-CHPh-CO-NH₂, m.p. 165°.

F. R. S.

Truxillic acids. I. Rearrangement of ζ-truxinamic acids.

General theory of molecular rearrangements. I. S. Goldstein and
H. I. Bernstein (J. Amer. Chem. Soc., 1944, 66, 760—763).—pTruxinic acid and fused KOH give δ- and thence (169 g.), by NaOAc (145) and Ac₂O (365 g.) at 200—210°, ζ-truxinic acid (I). The anhydride (prep. by Ac₂O) of (I) with NH₃-C₆H₆ gives ζ-truxinic-α-amide acid, which with 0.5 n-NaOCl at 38—40° gives ζ-truxinic-α-amino-acid (II), m.p. 178—180° (decomp.; bath preheated at 170°) (Ac derivative, m.p. 224—225°). With NH₃-EtOH, (I) gives the NH. salt, which at 200—210° yields the imide, converted by 10% KOH-EtOH into the b-amide-acid, m.p. 229—230° (decomp.; bath preheated at 220°), and thence, as above, the b-amino-acid (III), m.p. 171—173° (Ac derivative, m.p. 124—125°). With NÖBr-Et₂O at -5° or aq. HNO₂ at 40°, (II) gives the lactone (IV), m.p. 133° (cf. Schenck, A., 1932, 1029). NOBr converts (III) into a Br-acid, m.p. 188—189°. These results do not accord with theory (A., 1942, II, 312).

Synthesis of β -bromoethylphthalimide. T. O. Soine (J. Amer. Pharm. Assoc., 1944, 33, 141—142).—o-C₆H₄(CO)₂N·[CH₂]₂·OH (from NH₂·[CH₂]₂·OH and phthalimide at 100°) with PBr₃ at 100 for 2 hr. affords o-C₆H₄(CO)₂N·[CH₂]₂·Br (81%). F. O. H.

Association of ketyls.—See A., 1944, I, 214.

Nuclear acylations according to Friedel-Crafts. II. W. Borsche and J. Barthenheier [with, in part, P. Grotsch] (Annalen, 1942, 558, 250—259).—The possibility is examined that the presence of OAlk may facilitate the acylation of simple C_8H_6 derivatives in which the Friedel-Crafts reaction is inhibited by certain substituents. The following changes are effected usually in gently boiling CS_2 : 0-OMe· C_6H_4 ·COMe [2:4·dinitrophenylhydrazone, m.p. 196—198° (lit. 160°)] to 2:4:1- $C_6H_3Ac_2$ ·OH, m.p. 95° (bis-2:4-dinitrophenylhydrazone, decomp. ~320°); b-OMe· C_6H_4 ·COMe (2:4-dinitrophenylhydrazone, m.p. 233—234°) is unchanged; o-OMe· C_6H_4 ·CO₂Me·to unchanged material and Me 2-loydray-5-acetylhensate m.p. 6unchanged material and Me 2-hydroxy-5-acetylbenzoate, m.p. 6-(2:4-dinitrophenylhydrazone, m.p. 237—238°); o-OMe·C₆H₄·CN to 2-methoxy-5-acetylbenzonitrile, m.p. 155° (2:4-dinitrophenylhydrazone, m.p. 283°), with a large amount of initial material containing a m.p. 260), which a large amount of initial material containing a small porportion of an unidentified ketone (2:4-dinitropheny-hydrazone, m.p. 228°); o-NO₂·C₆H₄·OMe (in PhNO₂ instead of CS₂) to 3:4:1-NO₂·C₆H₃(OMe)·COMe (I) (2:4-dinitrophenylhydrazone, m.p. 262°) and 1:3:4-CH₂Ph·CO·C₆H₃(NO₂)·OMe (II) (2:4-dinitrophenylhydrazone, m.p. 224–225°); o-NO₂·C₆H₄·OMe with [CH] (COCI), to a I dibeto a I discuss the analysis with the surface of m.p. pnenymyarazone, III.p. 224—225); o-NO₂-C₆H₄-OMe with [CH₂]₄(COCl)₂ to a ζ -diketo-a ζ -di-3-nitro-4-methoxyphenylhexane, m.p. 245—246° (bis-2:4-dinitrophenylhydrazone, decomp. 300°); m-NO₄-C₆H₄-OMe to m-NO₂-C₆H₄-OAc, m.p. 50—51° (lit. 55—56); p-NO₂-C₆H₄-OMe to p-NO₂-C₆H₄-OAc, m.p. 79—80°. (I) is converted by saturated NH₃-EtOH at 100° into 3-nitro-4-aminoacelo-phenone, m.p. 153—154°, reduced (best very rapidly) by H₂ in

presence of Pd-C in MeOH to 3: 4-diaminoacetophenone, m.p. 132-133°, which in warm MeOH is very smoothly transformed by Ac₂ into 6-acetyl-2: 3-dimethylquinoxaline, m.p. 117—119°, by Bz₂ into 6-acetyl-2: 3-diphenylquinoxaline, m.p. 171—172°, and by phenanthraquinone into 6-acetyl-1: 2-3: 4-dibenzophenazine, m.p. 278°; with boiling AcOH-4N-HCl it gives 5-acetyl-2-methylbenziminazole, m.p. 190—191° (2: 4-dinitrophenylhydrazone, decomp. 336°), and with 2N-HCl and NaNO, at 0° it affords 5-acetylaziminobenzene, m.p. 164-165° (2: 4-dinitrophenylhydrazone, decomp. 305°). 3-Nitro-4methylaminoacelophenone, m.p. 170°, is catalytically reduced to 3-amino-4-methylaminoacetophenone, m.p. 123—124°, which gives 5-acetyl-1-methylaziminobenzene, m.p. 144—145°. (I) is converted by N2H4,H2O in EtOH at 100° into 3-nitro-4-methoxyacetophenonehydrazone, m.p. 101°, and 6-acetylbenzazimidol, COMe C6H3 (N(OH))N, m.p. 195° (2:4-dinitrophenylhydrazone, sudden decomp., 242°). SeO₂ and (II) in Ac₂O at 160° give 3-nitro-4-methoxybenzil, m.p. $116-118^{\circ}$, less advantageously obtained by hydrolysis of the resin which results from $p\text{-NO}\cdot C_6H_4\cdot \text{NMe}_2$ and (II); 2-phenyl-3-3'-nitro-4'-methoxyphenylquinoxaline has m.p. $155-157^{\circ}$. H. W.

Nuclear acylations according to Friedel-Crafts. III. W. Borsche and F. Sinn (Annalen, 1942, 553, 260—277).—Generally the intersubstituents such as NO₂, CO, or CN is necessary to overcome the resistance to acylation according to Friedel-Crafts caused by these substituents. The reagents in order of decreasing activity are helegogeactful helider, and the helides of alighting aromatical halogenoacetyl halides, and the halides of aliphatic, aromatic-aliphatic, and aromatic acids. The experiments are performed in CS₂ and with 2 mols. of AlCl3 to 1 mol. of acid chloride or anhydride; the proportion of the latter to the second reactant varies. mixtures are kept for 14—16 hr. at room temp., gently boiled for a few hr., and worked up as usual. CH₂Ph·NO₂ is partly unchanged and partly resinified by acid chlorides. α-Nitro β-phenylethane, b.p. 128—135°/14 mm., from Ph·[CH₂]₂·I and AgNO₂ in Et₂O at room temp., and AcCl give a 75% yield of isomeric α-nitro-β-acetylphenylethanes from which the p-isomeride, m.p. 20° (2:4-dinitrophenylhydrazone, m.p. 209—210°), is isolated and identified by oxidation to p-C₉H₄(CO₂H)₂; with BzCl a small amount of (?) nitrobenzoylphenylethane (2:4-dinitrophenylhydrazone, m.p. 133—137°) results. Ph-[CH₂]₃·NO₂ (1) and AcCl yield a-nitro-y-p-acetylphenyl-propane, m.p. 31—33° (2:4-dinitrophenylhydrazone, m.p. 196°), oxidised exclusively to p-C₆H₄(CO₂H)₂ and converted by reduction of its Na salt by SnCl₂ and conc. HCl followed by treatment with NH OH into the discrete median of the same of its Na salt by SnCl₂ and conc. HCl followed by treatment with NH₂OH into the dioxime, m.p. 138—139°, of β -p-acetylphenylpropaldehyde; the intermediate monoxime could not be hydrolysed satisfactorily to the aldehyde. (I) and BzCl readily yield a-nitro-y-p(?)-benzoylphenylpropane, b.p. 222—226°/0·6 mm., m.p. 33—35° (2: 4-dinitrophenylhydrazone, m.p. 117°), but reaction occurs less readily with (CH₂·CO)₂O, giving β -p(?)-y'-nitropropylbenzoylpropionic acid, m.p. 115·5°, converted by N₂H₄,H₂O in MeOH into 3-keto-6-p-y-nitropropylphenyl-2: 3: 4: 5-tetrahydropyridazine, m.p. 139—140°. Attempted acylation of Ph·[CH₂]₂·CHO leads only to a black resin but its oxime and BzCl give a small yield of β -p-benzoylphenylpropionitrile, m.p. 83—84° (2: 4-dinitrophenylhydrazone, m.p. 185°, softens greatly at 164°). CH₂PhBz and AcCl readily give mainly a-keto-a-phenyl- β -p-acetylphenylethane, m.p. 159—160° [dioxime, m.p. 180—182°; bis-2: 4-dinitrophenylhydrazone, m.p. 230° after softening; oxidised to a mixture of BzOH and p-C₆H₄(CO₂H)₂], after softening; oxidised to a mixture of BzOH and p-C₆H₄(CO₂H)₂], with a small proportion of m-acetyldeoxybenzoin, m.p. 73—74° [dioxime, m.p. 135°; oxidised to m-C₆H₄(CO₂H)₂]. CH₂PhBz and CH₂Ph·COCl yield phenylacetyldeoxybenzoin, m.p. 175°, softens at 170°, but CH₂PhBz and BzCl do not react.
[With F. W. Roell.] Ph·[CH₂]₂·Bz and Ac₂O give a-keto-a-phenyl-rp(i)-acetylphenyl-propane, m.p. 72—73° [bis-2:4-dinitrophenyl-hydrazone, m.p. 195°), which with PhCHO and alkali yields a-keto-a-phenyl-y-p(i)-sinnamoylphenylbrophane, m.p. 98° arketo-a-phenyl-y-pholy-sinnamoylphenylbrophane, m.p. 98° arketo-a-phenyl-y-pholy-sinnamoylphenylprophane, m.p. 98° arketo-a-phenyl-y-pholy-sinnamoylphenylpholy-sinnamoylphenylpholy-sinnamoylphenylpholy-sinnamoylphenylpholy-sinnamoylphenylpholy-sinnamoylphenylpholy-sinnamoylphenylpholy-sinnamoylpholy-sinnamoylpholy-sinnamoylphenylpholy-sinnamoylph

-phenyl-γ-p(?)-cinnamoylphenylpropane, m.p. 98°. α-Keto-α-phenyl-γ-benzoylphenylpropane, m.p. 92—93°, is obtained similarly from BzCl. α-Keto-α-δ-diphenylbutane, m.p. 57° (from Ph·[CH₂]₃·CN and MgPhBr) (2:4-dinitrophenylhydrazone, m.p. 145°), and BzCl give α-keto-α-phenyl-δ-benzoylphenylbutane, m.p. 79°. Ph·[CH₂]₄·Bz and Accl give a-keto-a-phenyl-\(\varepsilon\)-acetylphenylpentane, m.p. 65° (cinnamylidene derivative, m.p. 90°), whilst BzCl gives a-keto-a-phenyl-\(\varepsilon\)-benzoylphenylpentane, m.p. 58°.

benzoylphenylpentane, m.p. 58°.

CH₂Ph·CO₂Et is transformed by AcCl followed by esterification into Et p-acetylphenylacetate, b.p. 183°/16 mm., m.p. 62—63° (lit. 68—69°). Ph·[CH₂]₂·CO₂Et and AcCl give a mixture of Et p(?)-acetylphenylpropionate, b.p. 194—197°/16 mm. (2:4-dinitrophenyl-hydrazone, m.p. 146—147°), and the corresponding acid, m.p. 119° [0xime, m.p. 151—152°; non-cryst. Mc ester (2:4-dinitrophenyl-hydrazone, m.p. 163—164°)]; with CH₂Ph·COCl it gives (after esterification) a mixture of isomeric Et phenylacetylphenylpropionates (2:4-dinitrophenylhydrazone, m.p. 94—104°) [from which after hydrolysis β-0/?)-phenylacetylphenylpropionic acid, m.p. 135 indices (2:4-childrophenyllydrazone, in.p. 54—104) [hom which after hydrolysis \$\beta\$-p(?)-phenylacetylphenylpropionic acid, m.p. 135—136°, is isolated] and (?) Et phenylacetylphenylacetylpropionate, \$C_{27}H_{28}O_4\$, m.p. 143—145°.

[With F. W. Roell.] Ph·[CH₂]₂·CO₂Me and BzCl afford Me benzoylphenylpropionate, m.p. 74° (2:4-dinitrophenylhydrazone, m.p. 136°), hydrolysed to the acid, m.p. 97°. (CH₂·CO)₂O converts CH₂Ph·CO₂Et

into β-carbethoxyethylbenzoylpropionic acid, m.p. 113-114° (corre-

10 β-caroeinoxyeinyioenzoyipropionic acia, m.p. 119—114 (corresponding diearboxylic acid, m.p. 193—195°).

Ph·[CH₂]₂·CN with AcCl gives β-p-acetylphenylpropionitrile, m.p. 44—46° (2:4-dinitrophenylhydrazone, m.p. 215°), oxidised exclusively to ρ-C₆H₄(CO₆H)₂; with CH₂Ph·COCl it yields β-p(1)-phenylacetylphenylpropionitrile, m.p. 113—115°, accompanied by (?) phenylacetylphenylpropionitrile h.p. 320—340°/06 mm.; with acetylphenylacetylphenylpropionitrile, b.p. $320-340^{\circ}$ /0.6 mm.; with BzCl it affords β -benzoylphenylpropionitrile, b.p. $\sim 200^{\circ}$ /1 mm., m.p. $83-84^{\circ}$, and with (CH₂·CO)₂O it yields β -p- β '-cyanoethylbenzoylpropionic acid, m.p. $151-152^{\circ}$, converted by N_2H_4 , H_2O in boiling EtOH into 3-keto-6-p- γ -cyanopropylphenyl-2: 3:4:5-tetrahydropyridziyn p. 172° idazine, m.p. 173°.

1:2-Addition of magnesium methyl iodide to mesityl ketones. R. C. Fuson, M. D. Armstrong, W. E. Wallace, and J. W. Kneisley (J. Amer. Chem. Soc., 1944, 66, 681—684).—2:4:6:1-C₆H₂Mc₃·COBu⁷ does not react with MgMeI. 2:4:6:1-C₆H₂Mc₃·COPh and MgMeI in boiling Et₂O and then C₆H₆ give, by 1:2-addition and spontaneous dehydration, a-mesitylstyrene (I) (64%), b.p. 120°/3 mm., also obtained in poor yield from COPhMe by 2:4:6:1-C₄H.Mc₅·MgBr. H₂-PtO₂ reduces (I) in 95% EtOH to a-bhenvi-3 mm., also obtained in poor yield from COPhMe by 2: 4:6:1-C₆H₂Me₃·MgBr. H₂-PtO₂ reduces (I) in 95% EtOH to a-phenyl-a-mesitylethane, b.p. 154—155°/4 mm. With fuming HNO₃ in Ac₂O-AcOH at 0°, (I) gives β -nitro-a-3-nitromesitylstyrene (II), m.p. 144—145°, reduced by H₂-PtO₂ in EtOAc to β -phenyl- β -3-nitro-mesitylvinylamine (III), m.p. 100—101° (Ac, m.p. 199—200°, and Bz derivative, m.p. 143—144°). SnCl₂-conc. HCl-EtOH at the b.p. reduces (II) or (III) to di-(β -phenyl- β -3-aminomesitylvinylamine (IV), m.p. 184—186°. (III) is neutral and resists hydrolysis but in HCl-EtOH-H.O gives di-(β -phenyl- β -3-nitromesitylvinyl)amine, m.p. 235—236°, also reduced to (IV) by SnCl₂. Benzoylisodurene (prep.: Friedel-Crafts; 78% yield), m.p. 60—61°, b.p. 159—164°/4 mm., with MgMeI as above gives a-isodurylstyrene (V) (42%), b.p. 152—154°/3 mm., and a substance, C₃₄H₃₈O₂, m.p. 191—192-5°. (V) is also obtained (10% yield) from COPhMe by 2: 3: 4: 6: 1-C₈HMe₄·MgBr, m.p. 54·5—55°, b.p. 160°/5 mm., and with fuming HNO₈ in Ac₂Owith H_2 -kaney N1 at $50^{\circ}/2000$ 1D. gives a-pnenyl-a-isourrylenane, m.p. $54\cdot5-55^{\circ}$, b.p. $160^{\circ}/5$ mm., and with fuming HNO₈ in $Ac_2O-AcOH$ yields, in 2 days, $\beta\beta$ -dinitro-a-5-nitroisodurylstyrene, m.p. $193-194^{\circ}$. 2: 4: 6: $1-C_6H_2Me_3$ -CO- C_6H_4Me -p and MgMeI give impure 2: 4: 6: $1-C_6H_2Me_3$ -C(C_6H_4Me -p):CH₂ and thence β -nitro-a-ptolyl-a-3-nitromesitylethylene, m.p. $174-175^{\circ}$. The styrene derivatives are oxidised by KMnO₄ or CrO₃ and absorb Br in CCl₄ with slow evolution of HBr.

Normal and ψ -esters of o-benzoylbenzoic acid types. II. M. S. Newman and B. T. Lord (J. Amer. Chem. Soc., 1944, 66, 731—732; cf. A., 1942, II, 100).—Normal forms of Me 2-benzoyl- (I), m.p. $60.6-63.6^\circ$, and 2-mesitoyl-* (III), m.p. $110.8-111.8^\circ$, -3:6-dimethylbenzoate and of -0.2':4'-dimethylbenzoylbenzoate * (IV), m.p. $64.6-65.6^\circ$, are obtained from the appropriate acids by CH_2N_2 - Et_2O . The ψ -forms of (I)* m.p. $113.6-114.4^\circ$, (II) m.p. $86.8-87.2^\circ$, and (IV), m.p. $62.2-63.2^\circ$, are prepared from the acid chlorides by $MeOH-C_5H_5N$, but (III) is formed also by this method. Forms marked * are obtained from Normal and ψ -esters of o-benzoylbenzoic acid types. II. M. S. formed also by this method. Forms marked * are obtained from the acid by HCl-MeOH. R. S. C.

Behaviour of γ-keto- and aldehydo-acid derivatives at the dropping mercury electrode. I. Esters and anhydrides. S. Wawzonek, H. A. Laitinen, and S. J. Kwiatkowski (f. Amer. Chem. Soc., 1944, 66, 827—830).—All esters of o-C₆H₄Bz·CO₂H (I) are reduced polarographically in 0·1M·NBu₄I-50% dioxan to α-phenylphthalide, but n- and cyclic esters behave differently. Cyclic esters are not hydrolysed in an alkaline buffer (NMe₄·OH-NMe₄I-H₃PO₄-50% dioxan) and the half-wave potentials are independent of pH; the ease of reduction increases with increasing ionisation const. of the alcoholic reduction increases with increasing ionisation const. of the alcoholic or phenolic component. Me and Et n-esters resemble COPh₂. Aryl n-esters are reduced at ~ 1.28 v. Anhydrides of (I) are also reduced but their behaviour does not permit conclusions as to R. S. C.

Behaviour of 3:6-dimethylphthalic anhydride in Friedel-Crafts and Grignard condensations. M. S. Newman and B. T. Lord (J. Amer. Chem. Soc., A., 1944, 66, 733—735).—2:5-Dimethylfuran and (:CH·CO)₂O in Et₂O give an adduct, m.p. 59—63°, which with 90% H₂SO₄ at —6° to 0° (later 10°) gives 3:6:1:2-C₆H₂Me₂(CO)₂O (I) and some 2:5:1-C₆H₃Me₂·CO₂H. With MgPhBr, 2:4:1-C₆H₃Me₂·MgBr, or 2:4:6:1-C₆H₂Me₃·MgBr in boiling C₄H₆ (1 hr.), (I) gives 2-benzoyl- (II) (81%), m.p. 182·6—183·2°, 2-2′:4′-dimethylbenzoyl- (III) (56%), m.p. 165·2—165·8°, and 2-mesitoyl- (IV) (44%; 27% in boiling Et₂O in 2 hr.), m.p. 174·8—175·6°, -3:6-dimethylbenzoic acid, respectively. With AlCl₃-C₆H₆, -m-xylene, or -mesitylene under optimum conditions (detailed), (I) gives (II) (57%), (III) 96%), or (IV) (34%), respectively. The structure of (IV) is proved Behaviour of 3:6-dimethylphthalic anhydride in Friedel-Crafts and 96%), or (IV) (34%), respectively. The structure of (IV) is proved by heating with a little of its Cu salt at 192–195°, yielding 2:4:6:2':5'-pentamethylbenzophenone, m.p. 77—78°, which is also obtained from 2:5:1-C₆H₃Me₂·COCl, s-C₆H₃Me₃, and AlCl₁ in CS₂ at room temp. M.p. are corr. R. S. C.

condensation of chrysene with succinic anhydride. J. W. Cook and W. Graham (J.C.S., 1944, 329—330).—Chrysene, (CH₂·CO₂)O, and AlCl₃ in PhNO₂ at 20° for 6 hr. give β -(4- or 5-chrysenoyl)-Condensation of chrysene with succinic anhydride.

propionic acid (I), m.p. $218-221^{\circ}$ [and not the 1-derivative as suggested by Beyer (A., 1938, II, 236)], and some β -2-isomeride, m.p. $192-194^{\circ}$. γ -(4- or 5-Chrysenyl)butyric acid, m.p. $210\cdot5-212\cdot5^{\circ}$ (cf. loc. cit.), is converted by $PCl_{\delta}-C_{\delta}H_{\delta}$, then $SnCl_{\delta}$, at room temp. for 20 hr. into 5'- or 8'-keto-5': 6': 7': 8'-tetrahydro-1\frac{1}{2}: 2': 3'-naphtha)phenanthrene, decomp. $>275^{\circ}$. This with $N_{2}H_{\delta}$, H_{0} 0 in NaOEt-EtOH at 200° in a scaled tube gives 5': 6': 7': 8'-tetrahydro-1: 2-(2': 3'-naphtha)phenanthrene, m.p. $217-218^{\circ}$, dehydrogenated by Pd-C at 300° (sealed tube; vac.) to 1:2-(2': 3'-naphtha)phenanthrene, m.p. $292-294^{\circ}$ (2: 7-dinitroanthraquinone complex, m.p. $278-279^{\circ}$).

Equilibrium mixture of cis- and trans-2: 6-dimethylcyclohexanone. R. Cornubert and P. Anziani (Compt. rend., 1943, 217, 197—199).—The methods (lit.) of prep. of 2: 6-dimethylcyclohexanone (I) give an equilibrium mixture of cis- and trans-isomerides. Ring-contraction probably occurs in the supposed prep. of (I) by the method of Ruzicka et al. (A., 1931, 1302) from 1:3-dimethyl- Δ^2 -cyclohexene.

Orientation phenomena during reduction of a cyclanone or its oxime. P. Anziani and R. Cornubert (Compt. rend., 1943, 217, 233—235).—Reduction of 2:6-dimethylcyclohexanone (I), using Pt in acid, alkaline, or neutral solution, gives the same alcohol (phenylurethane, m.p. 158°), whilst Na in moist Et₂O, EtOH, or BuOH leads to a phenylurethane, m.p. 132° (cf. Skita, A., 1924, i, 25). Reduction of the oxime, m.p. 79°, of (I) with H₂-Pt-black in AcOH-HCl or in a neutral medium gives an amine differing from that formed with Na-EtOH. It is concluded that the isomeride obtained does not depend on the acid medium but rather on the use of Pt.

[Ionones.] (A) L. Palfray, (B) Y. R. Naves and P. Bachmann (Helv. Chim. Acta, 1944, 27, 626).—(A) A reply to the criticisms by Naves and Bachmann (A., 1944, II, 103) of the paper by Kandel (A., 1939, II, 169).

(B) A reply.

Reaction between cyclic β-diketones and Grignard reagents. III. 2-Benzoyl-2-methyl-1-hydrindone. T. A. Geissman and V. Tulagin (J. Amer. Chem. Soc., 1944, 66, 719—722).—Keeping CH₂Ph·CH(CO₂Et)₂, MeI, and NaOEt in C₆H₆ and then hydrolysing by hot NaOH-EtOH-H₂O gives CH₂Ph·CMc(CO₂H)₂ (80%), m.p. 139.5-140° (lit. 135°), which with, successively, SOCl₂-C₅H₆N (little)—C. H. Social Algorithms (C. H. Spirithms and Algorithms (Social Social So 139°0–140° (nt. 130°), which with, successively, $SOCl_2-l_5H_5N$ (little)– C_6H_6 , $PCl_5-C_6H_6$, and $AlCl_3-C_6H_6$ yields 2-benzoyl-2-methyl-1-hydrindone (1) (good yield), m.p. 62·5–63·5°. The structure of (I) is proved by cleavage by boiling 30% NaOH to BzOH and 2-methyl-1-hydrindone (II). Interaction of (I) with MgPhBr in boiling C_6H_6 -Et₂O gives 1-hydroxy-1-phenyl-2-a-hydroxybenzhydryl-2-methyl-hydrindane (III) (4 pts.), m.p. 214—215°, and $CPl_3-OH + (II)$ (1 pt. 32ch). Thus, formation of a chelated intermediate deep rot allow Thus, formation of a chelated intermediate does not alone suffice to produce cleavage of β -dikctones by MgRHal. The structure of (III) is proved by oxidation by boiling aq. HNO₃ to COPh, and o-C₈H₄Bz·CO₂H as sole products. CHPh₂·CNa(CO₂Et)₂ and Mel in Et₄O give an ester, hydrolysed to benzhydrylmethylmalonic acid, m.p. 143—145° (gas), which with PCl₅–C₈H₈ and then AlCl₃ or SnCl₄ in C₈H₈ gives 1:3-diphenyl-2-methylhydrindene, m.p. 91—92°, but in CS₆ gives a tar. (CH₂Ph)₂CH·CO₂H with SOCl₂–C₆H₆–C₈H₅N and then CH₂N₂ gives a diazo-ketone, m.p. 72—74°, and thence $\gamma\gamma'$ -diphenylisovaleric acid, m.p. 85—86° (obtained also less well by a Reformatsky reaction), which by ring-closure (SOCl₂; SnCl₄–C₆H₆) yields 1-keto-3-benzyl-1:2:3:4-tetrahydronaphthalene, m.p. 54—56°. This gives the Me 2-glyoxylate, m.p. 85—87°, converted by heating with soft glass at 175° into Me 1-keto-3-benzyl-1:2:3:4-tetrahydronaphthalene-2-carboxylate, m.p. 77—78°. MeIsuffice to produce cleavage of β-dikctones by MgRHal. The struc-1:2:3:4-tetrahydronaphthalene-2-carboxylate, m.p. 77—78°. McI-NaOMe-C₆H₆ then gives Me 1-keto-3-benzyl-2-methyl-1:2:3:4-tetrahydronaphthalene-2-carboxylate, m.p. 114—115°, hydrolysis of which is difficult.

Reaction between cyclic β -diketones and Grignard reagents. II. B: 8-Dimethylperinaphthindane-7: 9-dione. T. A. Geissman and L. Morris (J. Amer. Chem. Soc., 1944, 66, 716—719; cf. A., 1942, II, 146).—1: 8-C₁₀H₆(CO₂O) with KOH-Me₂SO₄-MeOH gives 89% of 1: 8-C₁₀H₆(CO₂Me)₂ (I) and with CH₂(CO₂Et)₂-ZnCl₂ at 170—175° gives perinaphthindane-7: 9-dione (A), new m.p. 247° (decomp.), which with MeI-NaOEt-EtOH at 100° gives 2. method. (80°2) m.p. 183—185° (obtained in very poor

(decomp.), which with MeI-NaOEt-EtOH at 100° gives 8-methyl- (60%), m.p. 183—185° [obtained in very poor yield from (I) by EtCO₂Et-Na], and thence by Mel-NaOMe-COMe₂-MeOH (little) at the b.p. gives 8:8-dimethyl-perinaphthindane-7:9-dione (II) (30—40%), m.p. 99—101° (2:4-dinitrophenylhydrazone, m.p. 208—210°). Adding MgPhBr (1 mol.) to (II) in Et₂O-C₆H₆ at 0° gives slowly 7-hydroxy-7-phenyl-8:8-dimethylperinaphthindan-9-one (III), m.p. 190°, but 3 mols. of MgPhBr at room temp. give 7:9-dihydroxy-7:9-diphenyl-8:8-dimethylperinaphthindane (IV), m.p. 168°, or at 80° give 7-hydroxy-1:7-diphenyl-8:8-dimethylperinaphthindan-9-one (V), m.p. 238—239°. With a drop of conc. HCl in boiling MeOH, (III) or (V) gives its Me ether, m.p. 214—216° or 224°, respectively, and with HCl-CaCl₂-C₆H₆ gives the 7-Cl-derivative, m.p. 156° (decomp.) or 158—162° (decomp.), respectively. A trace of HCl in MeOH at the b.p. converts (IV)

into the 7: 9-epoxy-compound, m.p. 134°. Structures are confirmed by behaviour in the Grignard machine.

Hypericin, the photodynamic pigment of St. John's wort (Hypericum perforatum). H. Brockmann, F. Pohl, K. Maier, and M. N. Haschad (Annalen, 1942, 553, 1—52; cf., A., 1939, 483).—Hypericin (I) appears to be a hexahydroxy-2:2'-dimethylnaphthadianthrone. Extraction of the dried blossoms of H. perforatum with Et, O removes chlorophyll and carotenoids, after which (I) is removed from the residue by McOH. From this solution it is obtained cryst. by addition of HCl-MeOH and is subsequently cryst. by adding HCl-MeOH to the solution in C_8H_8N . The blue-black pigment has no definite m.p. but decomposes at $>330^\circ$ and cannot be sublimed in a high vac. The marked red fluorescence of its solutions in C_8H_6N disappears on addition of acid. (I) gives green solutions in alkali, sensitive to air. Adsorption on CaC₂O₄ shows that (I) is homogeneous. (I) does not contain OMe. Oxidation (Kuhn-Roth) geneous. (1) does not contain OMe. Oxidation (Kunn-Roth) affords AcOH. Analyses and determinations of the mol. wt. of the hexabenzoate (II), m.p. $\sim 228^{\circ}$, and hexa-p-bromobenzoate, m.p. $\sim 270^{\circ}$ [from (I) and the requisite chloride in C_5H_5N], establish the formula $C_{30}H_{18}O_8$ or, possibly, $C_{30}H_{18}O_8$. (I) is scarcely attacked by CH_2N_2 and is so sensitive to alkali that it cannot be methylated by Me_2SO_4 or MeI. With Ac_2O in C_5H_5N (I) affords a difficultly cryst., unstable acetate. (II) is insol. in cold Claisen solution. The remaining two O atoms are present in the quinone group since reductive benzoylation leads to an amorphous ôctabenzoate. Oxidation of (I) readily leads to small fragments. Distillation of (I) with Zn dust gives very small amounts of a red sublimate (III), also formed in very small yield when (I) is heated with conc. HI at 200° and the product dehydrogenated by Cu powder at 400° or Pd-asbestos at 350°, or when (I) is heated with Zn dust in molten ZnCl₂-NaCl. The amount of (III) obtained is too small for analysis but it is identified by absorption spectrum, fluorescence, chromato-graphy cover at O. II) and behaviour graphy and mixed chromatography (over Al₂O₃ II), and behaviour towards Br as *meso*anthrodianthrene. This cannot, however, be the parent hydrocarbon of (I) since it is not in accord with the % of H or the presence of 2 Me. During the formation of (III) a new ring must be formed by participation of the 2 Me so that the parent material is either 2:2'-dimethylmesobenzdianthrene or 2:2'dimethylnaphthadianthrenc and (I) is consequently a $(OH)_6$ -derivative of 2:2'-dimethylhelianthrone (IV) or of 2:2'-dimethylmssoative of 2:2-dimethylinellantifione (IV) or of 2:2-dimethylinellantifione (IV) or of 2:2-dimethylinellantifione (IV) or of IV:2-dimethylinellantifione (IV) or of IV:2-dimethylinellantifione (IV) or of IV:2-dimethylinellantifione (IV) or (IV) with IV:2 dust also gives (III) whereas treatment of (IV) with IV:2 dust in molten NaCl-ZnCl₂ or distillation of (IV) with IV:2 dust in a high vac. gives 2:2'-dimethylinellantificene (IV) in addition to (III); under the same conditions (IV) gives (III) with a small proportion of blue 2:2'-dimethylinesonaphthadianthrene (VII). Under all experimental conditions naphthadianthrene vields exclusively all experimental conditions naphthadianthrone yields exclusively the blue naphthadianthrene whereas, in addition, mesobenzdianthrene is obtained when helianthrone is distilled with Zn dust in a high vac. or treated with Zn dust in molten ZnCl2-NaCl. It does not appear possible under any conditions to obtain (VI) or (VII) from (I); this observation supports the naphthadianthrone structure for (I). Attempts to discriminate between the helianthrone and naphthadianthrone structures for (I) based on oxidation, behaviour towards conc. H₂SO₄, and photochemical behaviour of (I) and its derivatives and helianthrone and its compounds do not give well defined results. The acetates of reduced helianthrone and its 2:2-Mc₂ derivative and of (∇) have nearly the same absorption bands and therefore nearly the same colour as the corresponding parent hydrocarbons, one of which is red and the other blue. tive acetylation therefore affords a ready means of discriminating between a helianthrone and naphthadianthrone. Acetylating reduction of (II) gives a blue Ac derivative with bands very similar to those of (VII) or its 10:10'-(OAc)2-derivative. If, therefore, the OBz groups do not influence appreciably the position of the absorption bands it follows with certainty that (I) is a hexahydroxy-2:2'-dimethylnaphthadianthrone. The behaviour of the dibenzoate of 4:4'-dihydroxyhelianthrone when reductively acetylated appears to show that this is the case but the dibenzoate of 4:4'-dihydroxynaphthadianthrone could not be investigated on account of the sparing solubility. Further experiments are required to enable a definite decision to be made. Distillation of (I) with Zn dust can proceed beyond the formation of (III), giving yellow or colourless H_4 - or H_6 -derivatives which are invariably obtained as final products of reductive acetylation in C_5H_6N ; in Ac_2O these are obtained only from hydroxylated quinones and only when C₅H₅N is present, whereas OH-free quinones are not reduced beyond the coloured stage. (I) is not sensibly reduced by Zn dust in AcOH at room temp, and resembles in this respect many polynuclear quinones which do not give vats; in C₅H₅N containing a little AcOH in absence of air (I) gives a brown-red solution with ill-defined absorption bands. Addition of B₂O₃-Ac₂O to the red solution of (I) in Ac₄O causes immediate formation of a green solution with red fluorescence and new, well-marked absorption bands, thus indicating the presence of at least two α -OH groups. Warming the green solution causes slight displacement of the bands

towards shorter λ but the green colour persists. One or more 8-OH are therefore considered to have been acetylated but the acetylation remains incomplete since identical products are not

obtained thus and by the action of B2O3-Ac2O on the acetate or benzoate of (I). The colours OH of the solutions suggest that the green solution Me contains one or two a-OH groups in addition to those esterified by $\rm B_2O_3-Ac_2O$. (The possibility of the replacement of Ac or Bz groups during the action of B₂O₃-Ac₂O is established by experiments with quinizarin, chrysazin, and anthrarufin.) The annexed structure (A) is therefore tentatively suggested for (I). Other examples of the presence of polynuclear compounds in

plants are cited and suggestions for their genesis under biological conditions are discussed. (See also A., 1944, III, 708.) H. W.

IV.—STEROLS AND STEROID SAPOGENINS.

Preparation of steroidal carbinols.—See B., 1944, III, 169.

Neutral, non-saponifiable fraction of ox-bile. W. H. Pearlman J. Amer. Chem. Soc., 1944, 66, 806—809).—Inspissated ox-bile (J. Amer. Chem. Soc., 1944, **66**, 806—809).—Inspissated ox-bile (16 kg.; 70% solids) yields a non-saponifiable fraction, whence are obtained cholesterol (>50 g.) and alcohols A, $C_{27}H_{40}O_3$ (40 mg.), mp. 300° {acetate, m.p. 216—217°; benzoate, m.p. 155—157° [absorption max. at 2310 (ϵ 13,470) and 2720 A. (ϵ 973)]}, B [? a 3[β]-hydroxyallopregnane derivative], $C_{21}H_{36}O_2$ (15 mg.), m.p. 192—193° {digitonide; dibenzoate, m.p. 234—235° [absorption max. at 2310 (ϵ 27,700) and 2720 A. (ϵ 1985)]}, C, $C_{25-26}H_{40-42}O_4$ (46 mg.), m.p. 255—257° [acetate, m.p. 187°, with KOH in 90% MeOH regenerates C (m.p. 260°)], D, $C_{24}H_{40}O_3$ (28 mg.), m.p. 232—233° (acetate, m.p. 111°, [ϵ] $^{16}_{19}$ +72° in EtOH), and E, $C_{24}H_{42}O_4$ (20 mg.), m.p. 202° (an impure fraction, m.p. 204—206°, had [ϵ] $_{10}$ +37° in EtOH) (diacetate, m.p. 142·5°). Pregnane-3(β): 20(a)-diol has m.p. 182° (cf. Marker ϵ tal., A., 1938, II, 12) and gives a dibenzoate, m.p. 167—168°. M.p. et al., A., 1938, II, 12) and gives a dibenzoate, m.p. 167-168°. M.p.

Sterols of Calycanthus floridus. J. W. Cook and M. F. C. Paige (J.C.S., 1944, 336—337).—Unsaponifiable components comprise $\sim 1.6\%$ of the oil extracted by C_5H_6 from the seeds of C. floridus. Hydrolysis is carried out by boiling KOH–MeOH for 8 hr. The phytosterol mixture, mainly m.p. 135—137°, consists of <70% of B-sitosterol, m.p. 137.5—138.5°, $[a]_1^{18}$ —34° in CHCl₃ (isolated through the benzoate), a little a-sitosterol, and probably sitostanol, but no stigmasterol. Incomplete reduction (Meerwein–Ponndorff) of 7-keto-tholesteryl acetate and benzovlation gives 7-hydroxycholesterol discontinuous control of the co cholesteryl acetate and benzoylation gives 7-hydroxycholesterol dibenzoate (I) and some 7-ketocholesteryl benzoate, m.p. 159.5—161°, the opaque liquid then becoming green at 182.5° and colourless and clear at 183.5°, also obtained from 7-ketocholesterol and BzCl-C₅H₅N at 100m temp. (I) and boiling NPhMc₂ (8 hr.) yield 7-dehydrocholesteryl benzoate, which is converted into a- and thence into β -cholestenyl benzoate (cf. Schenck *et al.*, A., 1937, II, 59), which is hydrogenated (PtO2-AcOH-Et2O) to cholestanyl hexahydrobenzoate, m.p. 158.5hydrolysed to hexahydrobenzoic acid, m.p. 29-30°, and cholestanol, m.p. 141.5—142.5°. The trans-configuration assigned to the c-D ring fusion of the sterols is probably correct. A. T. P.

Sterol, m.p. 155—157°, $[a]_D^{25}$ —55·8° in CHCl₃ (acetate, m.p. 134—135°: 3:5-dinitrobenzoate, m.p. 222—223°, $[a]_D$ —17·3° in CHCl₃), from the common bean, *Phaseolus vulgaris*.—See A., 1944, III, 624.

Lactones of the cyclopentanopolyhydrophenanthrene series.—See B., 1944, III, 168.

B., 1944, III, 168.

Preparation of 24-keto- and 24-hydroxy-cholesterol and [their] derivatives. B. Riegel and I. A. Kaye (J. Amer. Chem. Soc., 1944, 68, 723—724).—3-Acetoxy-\(\Delta^5\)-cholenyl chloride with CdPr\(\beta^2\)-Et_6O and then KOH-MeOH gives 24-ketocholesterol (I) (53%), m.p. 137—138-5°, [a]\(\beta^2\)-37° in CHCl₃ (acetate (II), m.p. 127·5—128° (not fluid), turbid 129—130°, meniscus formed at 131°, [a]\(\beta^2\)-41° in CHCl₃ (azime, softens 155°, m.p. 156—158·5°); semicarbazone, m.p. 166—168°}, which is a good starting point for sterol syntheses. With 85% N₂H₄,H₂O and NaOEt in EtOH at 200°, (I) gives cholesterol. Al(OPr\(\beta\))₃—Pr\(\beta\)OH at the b.p. reduces (II), with hydrolysis, to 24-sydroxycholesterol (94%), m.p. 166—169°, which yields only the diacetate, softens 93°, m.p. 95—96°. The 3-p-toluenesulphonate, softens 115°, m.p. 119—120° (decomp.), [a]\(\beta^2\)-35° in CHCl₃, of (I) with dry KOAc in boiling MeOH gives 24-keto-i-cholesteryl Me ether [53%), m.p. 90·5—91·5°, [a]\(\beta^2\)+52° in CHCl₃, reduced by Al(OPr\(\beta\))₈-Li\(\beta\)OH to 24-hydroxy-i-cholesteryl Me ether, an oil, [a]\(\beta^{27\cdots}\)+31° in CHCl₃. M.p. are corr. CHCl₃. M.p. are corr.

Y.—TERPENES AND TRITERPENOID SAPOGENINS.

Rearrangements in the terpene series. I. Isomerisation and esterification of a-pinene. M. S. Kharasch and W. B. Reynolds (J. Chem., 1944, 9, 148—154).—a-Pinene (I) is heated at 135—140° with p-OMe·C₈H₄·CO₂H, CHPh·CH·CO₂H, BzOH, o-OMe·C₈H₄·CO₂H, 1-C₁₀H₇·CO₂H, OEt·CH₂·CO₂H, o- and m-

ester is hydrolysed, and the liberated borneol with a small proportion of isoborneol is determined. High yields under these conditions are obtained over a very narrow range of ionisation const., $K = 3.7 \times 10^4$ to 8×10^4 . At higher temp. acids with lower K are fairly effective. The yields of bornyl esters formed by acids of < optimum K (e.g., BzOH) are greatly improved by addition of o-C₆H₄(OH)₉, o- and m-cresol, PhOH, β -C₁₀H₇·OH, resorcinol, and p-NO₂·C₈H₄·OH, but not of PhOMe, PhNO₂, quinoline, or PhCN at 140°. This improvement is due to increased availability of H, not to increase in the dielectric const. of the reaction medium or to isomerisation of in the dielectric const. of the reaction medium or to isomerisation of (1) to camphene. d- α -Pinene when heated with a mixture of an org. acid and amide is converted into d-limonene in good yield; the amide appears to inhibit esterification. The principal products formed in the reaction of (I) with org. acids can be explained by assuming the preliminary capture of a proton by (I); the unstable ion thus formed rearranges and stabilises itself in various ways

Synthetic production of camphor from pinene. B. G. S. Acharya (J. Univ. Bombay, 1944, 12, A, Part 5, 29—30; cf. A., 1943, II, 239).—Pinene hydrochloride (1 mol.), dry Na. stearate (2 mols.), Na₂CO₃ (1 mol.), and NaOH (1 mol.), refluxed for 24 hr. and distilled, give camphene (I) in 90% yield, convertible into camphor without further purification. A slight increase in yield is obtained by working in and distilled, when the purification of the state of t ing in N2 and distilling under reduced pressure. Residues from distillation can be used again for 8—9 times. Yields of (I) using mowda, coconut, ground-nut, castor, linseed, and cottonseed oil, and mutton tallow in place of stearic acid are 90, 84, 69, 73, 71, 68, and 87%, respectively.

VI.—HETEROCYCLIC.

Furfurylamines.—See B., 1944, II, 198. Terpene ethers etc.—See B., 1944, II, 198.

Acetylene derivatives. XXII. Condensation of dimethylvinylethinylcarbinol and vinylisopropenylacetylene with o- and p-cresol.

I. N. Nazarov and F. I. Gotman. XXIII. Dimerisation of dimethylvinylethinylcarbinol to 1:1:3:3-tetramethyl-4-vinyliso-coumarone with elimination of water. I. N. Nazarov and G. P. Vercholetova (Bull. Acad. Sci. U.R.S.S., Cl. Sci. Chim., 1941, 545-555, 556-572).-XXII. o-Cresol condenses with dimethylvinylethinylcarbinol (I) or vinylisopropenylacetylene (II) (H3PO4 catalyst) in the same way as phenol (ibid., 1940, 314) giving the readily polymerised p-[aa-dimethyl-a-(vinylethinyl)]-o-cresol, b.p. 129—130°/2 mm. The Me ether, b.p. 115—116°/2 mm., m.p. 30—30·5°, is oxidised by KMnO₄ in COMe₂ to H₂C₂O₄ and a-(4-methoxy-3-methylphenyl)isobutyric acid, m.p. 108°, further oxidised by HNO, to 4-methoxy-3-methylbenzoic acid.

by HNO₃ to 4-methoxy-3-methylbenzoic acid.

m-Cresol condenses with (I) or (II) giving about equal amounts of neutral and acidic products. The latter contain p-[aa-dimethyl-a-(vinylethinyl)]-m-cresol (III) (phenylurethane, m.p. 112—112·5°), which is readily polymerised and is hydrogenated to 3-methyl-4-aa-dimethylamylphenol, b.p. 138—140°/3 mm. The Me ether of (III), also obtainable from m-C₆H₄Me·OMe and (I) or (II), b.p. 125—126°/3 mm., is oxidised to H₂C₂O₄ and (impure) a-(4-methoxy-2-methylphenyl)isobutyric acid, further oxidised to 4-methoxy-2methylbenzoic acid. The neutral product of the reaction is 3:3:6-trimethyl-2-allylidenecoumarone (IV), b.p. 122·5—123°/7 mm. (IV) is trimethyl-2-allylidenecoumarone (IV), b.p. 122·5—123°/7 mm. (IV) is hydrogenated to 3:3:6-trimethyl-2-propylcoumarone, b.p. 114—114·5°/6·5 mm., and ozonised to 2-keto-2:3:6-trimethylcoumarone (V), b.p. 114°/8 mm., sometimes accompanied by an aldehyde, $C_{13}H_{14}O_{2}$. (V) is hydrolysed by alkali to α -(2-hydroxy-4-methyl-phenyl)isobutyric acid, m.p. ~145° with reconversion into (V), and by NH₃ to the amide, m.p. ~150°. Opening of the lactone ring of $(\mathring{\nabla})$ followed by methylation affords a-(2-methoxy-4-methylphenyl)isobutyric acid, m.p. 136-136.5°, oxidised by HNO₃ to a nitro-methoxytoluic acid, m.p. 220-220.5°.

methoxytoluic acid, m.p. 220—220.5°.

XXIII. The compound previously obtained in small amount from (I) with H₂SO₄ or Ac₂O can be obtained in 70—80% yield by the action of HCO₂H, H₃PO₄, or FeCl₃ in C₄H₄; it is 1:1:3:3-tetramethyl-4-vinylisocoumarone (VI), b.p. 81°/3·5 mm., polymerised to a glass. It forms a hydrochloride, m.p. 88·25°, and a dibromide, m.p. 109·5°, and is oxidised by KMnO₄ to 1:1:3:3-tetramethylisocoumarone-4-carboxylic acid, m.p. 190—191°, whilst ozonisation also affords the corresponding aldehyde, b.p. 105—106°/6·5 mm., m.p. 52—53°, and HCO₂H. (VI) is hydrogenated to 1:1:3:3-tetramethyl-4-ethylisocoumarone (VII), b.p. 78—79°/3·5 mm., which on further reduction (Ni catalyst, 6 hr. at 130—140° and 2 hr. at 160°) gives a product, C₁₄H₂,O, probably (ethylisopropylphenyl)dimethyl gives a product, $C_{14}H_{22}O$, probably (ethylisopropylphenyl)dimethyl carbinol, m.p. $25-25\cdot5^{\circ}$. At higher temp, hydrogenation of the nucleus also takes place and one of the products, b.p. $182-186^{\circ}$, appears to be ethylisopropylcyclohexane.

Formation of a chromone by the von Pechmann condensation of ethyl acetoacetate with 2-chloro-m-5-xylenol. R. Adams and J. W. Mecorney (J. Amer. Chem. Soc., 1944, 66, 802—805).—1:3:2:5C₆H₂Mc₂Cl·OH (I) and CH₂Ac·CO₂Et in conc. H₂SO₄ at 100° (30 min.) and then room temp. (1 week) give 6-chloro-2: 5: 7-trimethyl-chromone (II) (35%), m.p. 145—146° (and an oil), the structure of which is proved as follows. (II) gives a 2-styryl-compound, m.p. 186—186·5°, with hot KOH-EtOH gives 2-chloro-4-acetoacetyl-m-5-xylenol (III) (45%), m.p. 148—150° [transient red FeCl₃ colour in AcOH (not H₂O, EtOH, or COMe₂); in warm AcOH + a drop of conc. HCl regenerates (II)], and with boiling aq. NaOH gives 5: 1: 3: 2: 4·OH·C₆HMc₂Cl·COMe (IV), dimorphic, m.p. 106—110° and 89·5—90° (clear at 110°) (cf. lit.) (known Me ether, m.p. 76—77°). Ac₂O-H₂SO₄ at 100° converts (I) into its acetate, m.p. 48°, whence AlCl₃ at 50° yields (IV), which with Na and EtOAc gives (II). 4: 5: 7-Trimethylcoumarin, m.p. 181° (lit. 175—176°), and H₂SO₄-HNO₃ at -5° to -10° give the 6-NO₂- (80%), m.p. 209—211° (lit. 208°), and thence (Sn-SnCl₂-conc. HCl-EtOH at room temp. or, less well, Fe powder in 75% EtOH) the 6-NH₂- (64%), m.p. 199—200°, and (diazo-reaction) 6-Cl-derivative (83%), m.p. 190—200°, and (diazo-reaction) 6-Cl-derivative (83%), m.p. 194—195·5°, whence O₃ in EtOAc-MeOH and then NaOH-aq. MeOH yields (IV). M.p. are corr.

Brominated 4-hydroxycoumarins. C. F. Huebner and K. P. Link (J. Amer. Chem. Soc., 1944, 66, 656).—Heating CH₂Ph·COCl and $2:5:1\text{-OH·C}_6H_3\text{Br·CO}_2\text{Me}$ at the b.p. and then further with C_5H_5N gives Me 5-bromo-2-phenylacetoxybenzoate, m.p. 68—70°, which with Na at 200° yields 6-bromo-4-hydroxy-3-phenylcoumarm, m.p. 252—254°, which crystallises from H₂O at pH 5—6. Me 5-bromo-2-acetoxybenzoate, m.p. 33—35°, with Na in kerosene at 200° gives 6-bromo-4-hydroxycoumarin, which with an excess of CH₂O in boiling EtOH yields 3:3'-methylenebis-6-bromo-4-hydroxycoumarin, m.p. 326—327° (Me₂ ether, m.p. 218—220°). R. S. C.

Chemistry and biochemistry of plant materials. IX. Formation of dihydroflavonol and flavonol and synthesis of chalkone-flavanone-flavanone-flavanone glucosides. L. Reichel and J. Stevdel (Annalen, 1942, 553, 83—97).—The inter-relationships of o-hydroxychalkone (I), flavanone (II), flavonol (III), and dihydroflavonol (IV) have been examined. Under the experimental conditions (I) is quantitatively converted by \{\frac{1}{2}}\ mol. of NaOH into (II) whereas with 1 mol. of NaOH (I) is unchanged, and (II) is converted completely into (I). Direct oxidation of (II) to (III) by H₂O₂ does not therefore occur; H₂O₂ reacts exclusively with (I). (IV) is formed from (I) suspended in MeOH by the action of alkaline H₂O₂ at room temp. With \{\frac{1}{1}\}\ mol. of NaOH and 5 mols. of H₂O₂ the yield of (IV) is small; it is good (~50%) with \{\frac{1}{1}\}\ mol. of NaOH; with 1 mol. of NaOH the yield is 8%, with 11% of (III). (IV) is dehydrogenated by alkaline H₂O₂ or by mol. O. to (III). A new autoxidisable system is represented by (IV); H₂O₂ produced by dehydrogenation autoxidation is identified by catalase. (IV) is an intermediate in the synthesis of (III). (II) and \{\frac{1}{2}\}\ mol. of NaOH give traces of (III) with 93% of unchanged (II). With 2 mols. of NaOH the products are 75% of (II) and 19% of (III); (IV) could never be identified and appears to be dehydrogenated to (III) under the experimental conditions. Under corresponding conditions (II) and 2 mols. of NaOH afford 46-2% of (I), which is an intermediate in the synthesis of (III). In 0-01M, solution in MeOH, (I), \{\frac{1}{2}\}\ mol. of NaOH, and 1 mol. of H₂O₂ give 67-9% of (II) in 18 days at room temp. Production of (IV) is first observed with 10 mols. of H₂O₂, the yield being 13-4% with \{\frac{1}{2}\}\ mol. of NaOH and 1 mol. of H₂O₂, the yield being 13-4% with \{\frac{1}{2}\}\ mol. of NaOH and 1 mols. of H₂O₂, under these conditions it is not transformed into (I). 20% of (III) is formed by use of 1 mol. of NaOH and 2 m

Dibenzfuran. XX. 2:3:6:7-Derivatives. H. Gilman, J. Swiss, H. B. Willis, and F. A. Ycoman (J. Amer. Chem. Soc., 1944, 66, 798—801; cf. A., 1939, II, 342).—3:6-Dibromodibenzfuran, NaOH, Cu-bronze, Cu, and CuSO₄,5H₂O at 235—240° give impure 3:5-dihydroxy- and thence (Me.SO₄-NaOH) 3:6-dimethoxy-dibenzfuran (45·5% over-all), m.p. 88—89°. With Br-AcOH at room temp. this gives 4:5- (? 4:7-) (2 pts.), m.p. 196—197°, and 2:7-dibromo-3:6-dimethoxydibenzfuran (I) (1 pt.), m.p. 260—261°. With LiBuand then Mc₂SO₄ in Et₂O-C₆H₈, (I) gives 3:6-dimethoxy-, m.p. 144—145°, and thence by HBr-AcOH-H₂O 3:6-dihydroxy-2:7-dimethyldibenzfuran (II), sinters 228°, m.p. 231—232°. 1:4:2:5-C₆H₂Mel(OMe)₂ (III) and Cu give [2:5:4:1-(OMe)₂C₆H₂Mer]₂ (50—84%), m.p. 134° (cf. Erdtmann, A., 1936, 184), whence HBr-AcOH gives a very small yield of (II). CuCN and (III) at 240° give 2:5-dimethoxy-p-tolunitrile (73%), m.p. 130—131°, hydrolysed by NaOH-EtOH-H₂O to the acid (41%), m.p. 125—126°, which is also obtained (35% yield) from (III) by LiBua (not by the Grignard reagent) and then CO₂ and is oxidised by aq. KMnO₄ to 2:5:1:4-(OMe)₂C₆H₂(CO₂H)₂, thus proving the orientation of (1)—(III). 1:2:5-C₆H₃Me(OMe)₂ gives 4:1:2:5-NO₂·C₆H₄Me(OMe)₂ (IV), hydrogenated (Raney Ni; EtOH; 100°/30—45 lb.) to the unstable amine, m.p. 108-5—109·5° (Ac derivative, m.p. 160—162°), whence (III) is obtained by a diazo-reaction, thus proving the orientation

of (IV). Br and a trace of Fe in CCl₄ convert (IV) into 1:4:2:5-C₅H₂MeBr(OMe)₂, m.p. 168°, whence HBr-AcOH and then Ac₂O give 1:4:2:5-C₆H₂MeBr(OAc)₂, m.p. 253—254°. Conc. HNO₃ in AcOH at 45° converts 2:5:1:4-(OMe)₂C₆H₂Me·CO₂H or (III) into (V).

Dinaphthylene dioxide. III. Acylation and nitration. R. Pummerer, E. Buchta, W. Gündel, W. Kiessling, K. Pfeiffer, H. Rath, K. Schuler, and H. Stinlendorfer (Annalen, 1942, 553, 103—146).— Benzoylation and phthaloylation of dinaphthylene dioxide (I) proceed relatively simply since only one mono- and only one di-derivative is produced in each case. Nitration is more complex since invariably two mono- and thence three di-derivatives arise which the reaction of 1 mol. of (I) with 2 mols of BzCl and somewhat > 2 mols of AlCl₃ in CS₂ or, more rapidly, in PhCl at 132° gives essentially 5:5'-dibenzoylnaphthylene dioxide (II), m.p. 324° (lit. 318°), with a small porportion of 5-benzoylnaphthylene dioxide (III), m.p. 252°. (III) is the main product when 1 mol. of BzCl is added gradually to a well-stirred mixture of somewhat > 1 mol. proportion of (I) and AlCl₃ in PhCl at 10-50°. The entry of >2 Bz is never observed even when a large excess of BzCl is used. (II) and Br vapour give essentially a Br₄-derivative, softens at 400°. (II) is much more resistant than (I) to oxidation and cannot be converted into a quinone by use of CrO₃ or Bz₂O₂. This does not immediately justify the assumption that Bz is attached to C_(4') (Stinzendorfer, Diss., Erlangen, 1936). (I) is transformed by oc C₆H₄Br·COCl into mono-, m.p. 308°, and di-, m.p. 346°, -o-brono-benzoylnaphthylene oxide, which when boiled with quinoline and alkali pass respectively into 4:5-benzoylenedinaphthylene dioxide, m.p. 323°, and 5:4:5':4'-dibenzoylenedinaphthylene dioxide (IV), from which a vat could not be obtained even in presence of C₈H₅N. The constitution of (IV) is catablished by its formation from Table 1978. The constitution of (IV) is established by its formation from Bz-2'hydroxybenzanthrone, whereby also the attachment of Bz to $C_{(3)}$ in (II) and (III) is proved. o- $C_6H_4(CO)_2O$, (I), and AlCl₃ in boiling PhCl afford 5:5'-di-o-carboxybenzoyldinaphthylene dioxide (V). decomp. >330° (also +2C₅H₅N), converted by boiling Ac₂O into the corresponding anhydride, m.p. >330°, and by boiling HNO_3 (d 1·32) into a $(NO_2)_3$ -derivative. Ring-closure of (V) or of the corresponding mono-derivative is greatly impeded by the pronounced tendency towards anhydride formation. H₂SO₄ causes sulphonation and oxidation in addition to the desired reaction, but (V) is transferred into 5:6:5':6'-diphthaloyldinaphthylene dioxide (VI), decomp. 320—330° after darkening and softening, by boiling with P_2O_5 in $BzCl-C_5H_3Cl_5$. $POCl_3$ cannot replace P_2O_5 and the change does not occur with P_2O_5 in boiling $C_6H_3Cl_3$ in absence of BzCl. (VI) is a reddish-brown vat dye. Nitration of (I) is almost as easy as that of a phenol and mono-nitration is best effected by the action of 13% aq. HNO₂ on (I) in PhCl or PhNO₂. The product after removal of unchanged (I) cannot be separated into its components by crystallisation but is separated by chromatography over Al₂O₃ into violet 4- (VII), m.p. 324—325°, and red 6- (VIII), m.p. 313—315°, -nitrodinaphthylene dioxide. (VII) is reduced by granulated Sn and HCl to 4-aminodinaphthylene dioxide (IX) (CHP), derivative, m.p. 236—238°), the Ac, m.p. 330° (decomp.) after darkening, and Ac₂ derivative, m.p. >250°, becomes brown at 260° and black at 350—360°, of which are obtained by addition of Zn dust to a suspension of (VII) in boiling Ac₂O-AcOH-C₅H₈N. (VIII) is similarly reduced to x-aminodinaphthylene oxide, which affords an Ac_2 compound, m.p. $258-259^\circ$, but could not be converted into a CHPh, derivative. It could not be deaminated by 18% HCl under O2 at 185°; this treatment transforms (VII) into 4:4'-dinaphthone of a suspension of finely-divided (I) in AcOH with 10% HNO₃ at 100° and chromatography of the product over Al₂O₃ leads to the isolation of raspberry-red (X), m.p. 310°, softens at 285°, brick-red (XI), m.p. 30° after darkening and (in very small amount) violet isolation of raspberry-red (X), m.p. 310°, softens at 285°, brick-red (XI), m.p. >300° after darkening, and (in very small amount) violet (XII), m.p. >320° after darkening, dinitrodinaphthylene dioxide. (X) is reduced by granulated Sn and HCl to a diamine [red (CHPh.)a derivative, m.p. 291—292° (corr.); diformyl derivative, m.p. 345° 346° (corr.)]. (XI) yields a brick-red amine [(CHPh.)a derivative, m.p. 314°; triformyl compound, decomp. >360°]. (X) and (XI) are also obtained from both (VII) and (VIII) whereas (XII) arises only from (VII) in 1—2% yield. (X) and (XI) can contain only 1 NO, at C(4) or C(4) whilst the other must be in that position which is already occupied in (VIII). (X) and (XI) do not contain the NO, groups in occupied in (VIII). (X) and (XI) do not contain the NO₂ groups in symmetrical positions. (XII) may be symmetrical and is then the 4:4'-compound; the minute amount available has prevented its attempted conversion into the 4:4'-quinone. (X) and (XI) are differentiated by the presence of the two NO₂ in the same nucleus in one case and in different nuclei in the other. Since there is no evidence of ring formation from the corresponding amines and PhCHO and HCO₂H it follows that C(3) and C(3) are not favoured for entry of the second NO_2 . Only $C_{(6)}$ and $C_{(5)}$ are not tavoured for entry of the second NO_2 . Only $C_{(6)}$ and $C_{(7)}$ remain and of these $C_{(6)}$ is preferred. 34% HNO_3 converts finely-divided (I) into hinitrodinaphthylene dioxide; the $(NO_2)_4$ -compound, which decomposes at a very high temp., is obtained from (I) with cold, fuming HNO_3 or boiling 50% HNO_3 and the $(NO_2)_4$ -derivative by very prolonged heating of (I) with HNO_3 (d 1-38).

[With A. Rieche and P. von Miller.] Dinaphthone dioxide (XIII) is transformed by boiling 50% HNO₃ into dinitrodinaphthone dioxide (XIV), decomp. at $>360^{\circ}$ without melting, which is reduced by Na,S₂O₄ and NaOH in boiling H₂O to diaminodinaphthone dioxide; this does nor appear to give a simple Bz derivative with boiling BzCl. Cold nitrating acid converts (I) into trinitrodinaphthone dioxide, which gives a green product with NH2Ph, red substances with NPhMe2 and quinoline, and olive-green products with toluidine and xylidine. These reactions are not shown by (XIV).

Synthetic thiophan derivatives. E. R. Buchman and H. Cohen (J. Amer. Chem. Soc., 1944, 66, 847—848).—CO₂Et·CH₂·S·[CH₂]₂·CO₂Et with Na in C₈H₈ gives Et 3-ketotetrahydrothiophen-4-carboxylate, b.p. 96°/4 mm. [phenylhydrazone, m.p. 100—101° (cf. Karrer et al., A., 1944, II, 167); semicarbazone, m.p. 176°], converted by acid into 3-ketotetrahydrothiophen, b.p. 83—85°/29 mm., unstable [semicarbazone, m.p. 196° (decomp.); 2: 4-dinitrophenylhydrazone, m.p. 179° (decomp.)]. CO₂Et·CHMe·S·[CH₂]·CO₂Et gives similarly Et 3-keto-2-wellydtetrahydrothiophen-4-carbarylate 2-methyltetrahydrothiophen-4-carboxylate, b.p. 93-95°/4.5 mm., and 2-methyltetrahydrothiophen-4-carooxyiaie, 0.p. 82°/28 mm. (semi-thence 3-keto-2-methyltetrahydrothiophen, b.p. 82°/28 mm. (semi-186° dinitrophenylhydrazone, m.p. 161—162°).

Thiophan derivatives. R. B. Woodward and R. H. Eastman (J. mer. Chem. Soc., 1944, 66, 849—850).—SH·CH. CO.Me, Soc., CH_2CH_CC_2Me, and piperidine give CO_2Me_CH_2\cdot CC_2Me, converted by NaOMe in PhMe at 110° into, mainly, Me 3-ketotetra-kydrothiophen-4-carboxylate, m.p. 37—38°, b.p. 128·5—129·5°/20 mm. [reddish-violet FeCl₃ colour; semicarbazone, m.p. 189·5—190°; CHBL\cdot Discourse and Colour in the colour in the colour interval in the colour interval in the colour interval interval in the colour interval interva CHPhi, m.p. 158—159°, and furfurylidene derivative (I), m.p. 157—158°], but in Et₂O at room temp. gives the 2-carboxylate (II), b.p. 116—116·5°/9 mm. (semicarbazone, m.p. 187—187·5°; CHPhi, m.p. 189 129-130°, and furfurylidene derivative, m.p. 139.5-140°). Hydrolysis of either product gives 3-hetotetrahydrothiophen, b.p. $58\cdot2-58\cdot4^\circ/7$ mm. [(CHPh:)₂, m.p. $187\cdot5^\circ$, and difurfurylidene derivative, m.p. $191-192^\circ$]. With I or FeCl₃ etc., (II) gives a compound, $C_{11}H_{14}O_6S_2$, m.p. $188\cdot5-189\cdot5^\circ$ [(CHPh:)₂ derivative, m.p. 236°], converted by desulphurisation into (?) $\delta\epsilon$ -dicarbomethoxy-n-octane- γ l-dione, m.p. $125-126^\circ$, which with dil. acid yields (?) 2:5-diethyl-furan-3:4-dicarboxylic acid, m.p. $152-153^\circ$. (I) contains the S-C skeleton of biotin. (Cf. preceding abstract.) R. S. C.

Thiophan compounds. V. P. Karrer, R. Keller, and E. Usteri (Helv. Chim. Acta, 1944, 27, 237—246; cf. A., 1944, II, 167).— Thiophan derivatives are described containing '[CH₂]₄·CN and (CH₂]₄·CO₂H attached to C₍₂₎. Br·[CH₂]₄·CN and CHNa(CO₂Et)₂ in abs. EtOH at 50° give Et₂ δ-cyano-n-butylmalonate, b.p. 127—129°]0·01 mm. The corresponding acid, m.p. 116°, is transformed by Br in CCl₄-Et₂O at 20° into the non-cryst. a-bromo-ε-cyano-pentane-aa-dicarboxylic acid, which passes at 100°/15 mm into a-bromo-ε-cyanohexoic acid, which with CH₂N₂ in Et₂O affords the Me ester, b.p. 114—116°/0·02 mm. This is transformed by SH·[CH₂]₂·CO₂Et and NaOEt in EtOH into β-carbethoxyethyl ε-cyano-α-carbomethoxy-n-amyl sulphide, b.p. 162—165°/0·01—0·02 mm., which with NaOEt in PhMe at 35° affords Et 3-keto-2-8-cyano-n-butylthiophan-4-carboxylate (I), b.p. 153—155° (bath)/0·01—0·02 n-butylthiophan-4-carboxylate (I), b.p. 153—155° (bath)/0·01—0·02 mm. (I) is converted by Br in CCl, at 0° into an unstable Br, derivative, which is gradually hydrolysed by boiling, dil. mineral acid and simultaneously oxidised by air to 3:4-dihydroxy-2-8carboxy-n-butylthiophen, m.p. 183°, which gives a dark blue colour with FeCl₃. (I) is hydrolysed and decarboxylated by a boiling mixture of dil. H₂SO₄ and AcOH to 3-keto-2-δ-carboxyl-n-butylthiomixture of dil. H₂SO₄ and AcOH to 3-keto-2-δ-carboxyl-n-butylthio-phan (II), m.p. 68°, which is more conveniently obtained by condensing Br·[CH₂]₄·CO₂Et with CHNa(CO₂Et)₂ to Et₃ n-pentane-act-tricarboxylate, b.p. 184°/15 mm.; this is hydrolysed to the acid, m.p. 88—89°, which yields successively the α-Br-derivative, decomp. 136—137°, non-cryst. α-bromopimelic acid, and Et₃ α-bromopimelate, b.p. 101—103°/0·005 mm. SNa·[CH₂]₂·CO₂Et converts this compound into β-carbethoxyethyl ac-dicarbethoxy-n-amyl sulphide, b.p. 165—170°/0·02 mm., transformed by NaOEt in xylene into 3-keto-2-δ-carbethoxy-n-butylthiophan-4-carbaxylate b.p. 148—155°

3-keto-2-8-carbethoxy-n-butylthiophan-4-carboxylate, b.p. 148-155° (bath)/0.02 mm., converted by acid ketonic fission into (II). Passage of Br through a solution of (II) in MeOH kept acid to Congo-red by gradual addition of $CaCO_3$ gives $3\text{-keto-4-hydroxy-2-}\delta\text{-carboxy-n-butyl-hiophan}$, m.p. $117-118^\circ$ (dioxime, decomp. ~215° according to the rate of heating and size of crystal). (I) couples with $p\text{-NO}_2\cdot C_3H_4\cdot N_2Cl$ to $Et 4\text{-p-nitrobenzeneazo-3-keto-2-8-cyano-n-butylthiophan-4-carboxyl-life which like the search of the s$ ale, which, like the compound with p-SO₂H·C₆H₄·N₂Cl, could not be reduced to the 4-NH₂-compound.

Synthesis of 2:4-diarylthiophens. E. Campaigne (J. Amer. Cnem. Soc., 1944, 66, 684—686).—"Anhydroacetophenone disulphide," CPhMe CPhMe CPhMe CPhMe CPhMe CH (I) (modified prep.; cf. Baumann A., 1895, i, 362), m.p. 107—108°, at 180° gives a tar containing very small amounts of 2:4-diphenylthiophen (II), in cooling xylene gives an unsaturated, highly coloured mixture, but Cu chromite in boiling xylene gives 83% of (II), m.p. 120·6—121·5° [picrate, m.p. 133·1—133·6° (lit. 133—134°); 5-HgCl derivative, m.p. 222—223°]. p-OMe·C₈H₄·COEt, H₂S, and HCl in EtOH at 0° give "anhydro-p-methoxypropiophenone disulphide" [2:4:6-

tri-p-anisyl-4-methyl-2-ethyl-1: 3-dithiacyclohexane (53.5%),158-1-158-6°, which in xylene gives a tar but no thiophen derivative, is unchanged in boiling EtOH alone or with Cu chromite, and with Cu chromite in boiling xylene gives 2: 4-di-p-anisyl-3: 5-diwith Cu chromite in boiling xylene gives $2:4\text{-}di\text{-}p\text{-}anisyl\text{-}3:5\text{-}di\text{-}methylthiophen}$ (III) (66%), m.p. $112\cdot3-112\cdot8^\circ$ (no derivatives formed). The reaction mechanism is thus: (I) \rightarrow CSPhMe + SH·CPh·CH·CPh·CH₂ (IV); (IV) \rightarrow (II) + H₂, Cu chromite or, less well, CSPhMe acting as H-acceptor. KOH in (CH₂·OH)₂ at 225° [0·5 mm. hydrolyses (III) to $2:4\text{-}di\text{-}p\text{-}hydroxyphenyl\text{-}}3:5\text{-}dimethylthiophen}$ (61%), darkens 185°, m.p. 194—196° (diacetate, m.p. 125·9—126·9°). Absorption max. of (II) and (III) in MeOH are very similar (250, 265, and 280 m μ .), but ϵ differ notably. M.p. are corr.

Action of Grignard reagents on oximes. IV. Aliphatic Grignard reagents and mixed ketoximes. K. N. Campbell, B. K. Campbell, L. G. Hess, and I. J. Schaffner (J. Org. Chem., 1944, 9, 184—186).— Ethyleneimines are obtained from aliphatic Grignard reagents and aryl alkyl ketoximes best in PhMe at 95—100°; higher temp. cause excessive formation of tar. MgEtBr and CPhMe:N·OH give 2-phenyl-2-ethylethyleneimine (I), b.p. 85—86°/7 mm. (somewhat hygroscopic hydrochloride, m.p. 191—191·5°; phenylthiocarbamide, m.p. 99—100°; a-napthylcarbamide, m.p. 129—130°), which does not reduce KMnO₄ in COMe₂ at room temp. It is hydrolysed by short boiling with 4n-HCl or 2n-H₂SO₄ to α-amino-β-phenylbutan-β-ol (II) and by longer boiling with 6n-HCl to CHPhEt-CHO. (I) is ol (II) and by longer boiling with 6n-HCl to CHPhEt·CHO. (I) is obtained synthetically by successive action of SOCl₂ and KOH in EtOH on (II). Similarly CPhMe:N·OH and MgPr^aBr afford 2-phenyl-2-n-propylethyleneimine, b.p. 90—91°/3 mm. (hydrochloride, m.p. 68—69°; phenylthiocarbanide, m.p. 100°), hydrolysed to a-phenyl-a-aminomethyl-n-butyl alcohol, b.p. 125—126°/7 mm. (Bz derivative, m.p. 112—113°), obtained also from CH₂Bz·NH₂,HCl and MgPr^aBr. CPhEt·N·OH and MgEtBr afford 2-phenyl-3-methyl-2-ethylethyleneimine, b.p. 77—79°/3 mm. (hydrochloride, m.p. 158—159°; phenylthiocarbanide, m.p. 130—131°), hydrolysed by 2n-H₂SO₄ to NH₂·CHMe·CPhEt·OH, b.p. 106—108°/5 mm. (hydrochloride, m.p. 230°; Bz derivative, m.p. 160°), obtained synthetically from COPh·CHMe·NH₂,HCl and MgEtBr. H. W. from COPh CHMe NH2, HCl and MgEtBr.

Antispasmodics and anticonvulsants. III. Miscellaneous amides and esters. J. H. Billman and J. L. Rendall (J. Amer. Chem. Soc., 1944, 66, 745—746; cf. A., 1943, II, 262).—The following activities 1944, **66**, 745—746; cf. A., 1943, II, 262).—The following activities (W= weak; I- ineffective) as anticonvulsants and antispasmodics respectively are reported. (CH₂Ph)₂CH·CO·O·CH₂Ph (W, I), m.p. 81·5°; CH₂Ph·CHPh·CO·O·CH₂Ph (I, I), b.p. 197—201°/1 mm; CH₂Ph lævulate (-, W), b.p. 148—150°/3 mm; CH_2 Ph I2-pyrrolidone-5-carboxylate (I, W), b.p. 202—204°/2 mm; $NEl_2\cdot[CH_2]_2$ γ -diethylamino-a-phenyl-n-butyrate (I, I), b.p. 170—173°/1 mm, 2-pyrrolidone-5-carboxylate (I, I), b.p. 183—184°/3 mm, nicotinate (I, I), b.p. 130—132°/2 mm, and acetoacetate, b.p. 113°/2 mm; benzyl- (-, W), m.p. 147·5°, and N-benzyl-N'-triphenylmethyl-carbanide (W, I), m.p. 228°; p-dibenzylacetamido-benzophenone (I, I), m.p. 60°, and -acetophenone (W, I), m.p. 135—136°. Preps. are by standard methods. standard methods.

Magnesium p-2':5'-dimethyl-1'-pyrrylphenyl bromide and [the corresponding] lithium [compound]. H. Gilman and G. J. O'Donnell (J. Amer. Chem. Soc., 1944, 66, 840).—Adding 1—2 drops of conc. HCl to p-C₆H₄Br·NH₂ in hot (CH₂Ac)₂ gives p-bromo-2':5'-dimethyl-1'-pyrrylbenzene (96%), m.p. 74°, which with Mg or, more readily, Li and then CO₂ gives p-2':5'-dimethyl-1'-pyrrylbenzoic acid (72 and 80% yield, respectively), m.p. 196—197°. R. S. C.

Nitrogen compounds in petroleum distillates. XXV. Isolation and identification of 3- and 4-cyclopentylpyridines from Californian petroleum. H. L. Lochte, E. D. Thomas, and P. Truitt (J. Amer. Chem. Soc., 1944, 66, 550—552; cf. A., 1943, II, 172).—When the aq. solution of the hydrochlorides of petroleum bases, b.p. 210—213°, is extracted with CHCl₃ (loc. cit.), the bases recovered from the aq. layer yield, by fractional distillation and fractional extraction, 3- (I), b.p. 215.5°/747 mm. (picrate, m.p. 117.5°), and 4-cyclopentylpyridine (II), b.p. 218°/744 mm. (picrate, m.p. 145—146°; platinichloride, decomp. 225—227°). Structures are proved by expresses (cf. Emmert et dl. A. 1943, II. 384; Crouch et al. A. platinichloride, decomp. 225—227°). Structures are proved by synthesis (cf. Emmert et al., A., 1943, II, 384; Crouch et al., A., 1943, II, 206). Adding $HgCl_2$ —cyclopentanone to $AlCl_3$ and a trace of I in C_3H_5N at the b.p. gives 1-2'-pyridylcyclopentanol, m.p. 83°, dehydrated by conc. H_2SO_4 at 100° to 1-2'-pyridyl- Δ^1 -cyclopentene, b.p. 238—239°/748 mm., whence H_2 -PtO₂ in AcOH yields 2-cyclopentylpyridine, b.p. 217—218°/750 mm. (picrate, m.p. $106\cdot5^\circ$). Etz cyclopentylmalonate (111), CH.;CH·CN, and NaOEt in dioxan at 35—40° and then 50° give Et_2 cyclopentyl- β -cyanoethylmalonate [Etz y-cyano-a-carbethoxy-a-cyclopentyl-n-butyrate], b.p. 162° /10 mm., converted by boiling conc. HCl into a-cyclopentylglutaric acid (IV), γ-cyano-a-carbethoxy-a-cyclopentyl-n-butyrate], b.p. 162°/10 mm., converted by boiling conc. HCl into a-cyclopentylglutaric acid (IV), form, m.p. 69°, b.p. 176—177°/1·5 mm. The Na derivative of (III) with Br·[CH₂]₂·CO₂Et in boiling xylene gives Et. a-carbethoxy-a-cyclopentylglutarate (72%), b.p. 168—170°/2·4 mm., converted by boiling 10% aq. KOH into a form, m.p. 152·5°, of (IV). The dichloride (prep. by SOCl₂), b.p. 140—145°/4·5 mm., of (IV) (m.p. 69°) yields the diamide, m.p. 174° (evolution of NH₃), converted at 200°/5 mm. into the imide (V), m.p. 131°, also obtained from (IV) (m.p. 152·5°) by AcCl, followed by NH₃ and then heating. PCl₅ converts (V) at 43° (exothermally) and then 100° into 2:5:6-tri-chloro-3-cyclopentylpyridine, m.p. 141°, which with H₂-Pd-C in MeOH at 20 lb. gives (I) (picrate, m.p. 118·7°). cycloPentane-aldehyde, b.p. 136°, CN·CH₂·CO·NH₂, and KOH in H₂O-EtOH give aa'-dicvano-β-cyclopentylglutardiamide, m.p. 213° (decomp.), hydrolysed by hot conc. HCl to β-cyclopentylglutaric acid, m.p. 111.5°; this is expecsatively belief with ΔCL to give the capacity of the control of th 111.5°; this is successively boiled with AcCl to give the anhydride, treated with NH₃ at 130°, heated at 210—230°, and treated with PCl₅ and finally H₂-Pd-C in MeOH, giving (II) (picrate, m.p. 146°). R. S. C.

Pyridine acids etc.—See B., 1944, II, 198.

Behaviour of y-keto- and aldehydo-acid derivatives at the dropping mercury electrode. II. Amides of o-benzoylbenzoic acid. S. Wawzonek, H. A. Laitinen, and S. J. Kwiatkowski (J. Amer. Chem. Soc., 1944, 66, 830—833).—Amides of o-C₆H₄Bz·CO₂H (I) are reduced polarographically in 0·In-NBu₄I-50% dioxan, usually to the corresponding I-keto-3-phenylisoindole. The no. and position of the sponding 1-keto-3-phenylisoindole. The no. and position of the waves usually permit deductions as to the approx. amounts of cyclic and open-chain forms. o-C₆H₄Bz·CO·NHPh (II), m.p. 195°, with SOCl₂ and then MeOH or with conc. HCl-MeOH at room temp. and then the b.p. gives 1-keto-3-methoxy-2: 3-diphenyl-1: 3-dihydroisoindole, m.p. 128—129° [regenerates (II) in conc. HCl-AcOH at room temp.], but the anil, m.p. 221°, gives the Me n-ester of (I). The ethylamide (III) of (I) similarly gives 1-keto-3-methoxy-3-phenyl-2-ethyl-1: 3-dihydroisoindole, m.p. 73—75° (75—78°), which regenerates (III) in conc. HCl-AcOH. With SOCl₂-C₈H₈ and then NHPhMe-C₈H₈ at room temp. (I) gives the open-chain methyl-NHPhMe C₆H₆ at room temp. (I) gives the open-chain methylanilide, m.p. 144-146°. R. S. C.

Syntheses of quinolines from o'-aminobenzylidene-p-toluidines. W. Borsche and W. Ried [with, in part, J. Barthenheier] (Annalen, 1943, 554, 269—290).—The synthesis of 6:7-dihydroxyquinoline is described and the limits of the synthesis of substituted quinolines from Schiff's bases and CO compounds are experimentally explored. o-NH₂·C₆H₄·CHO is heated with Λ cCO₂H in alkaline solution, which is then acidified and evaporated, thus giving quinoline-2-carboxylic acid in good yield. Similar treatment of a mixture of 6-aminoveratrylidene-p-toluidine (I) and Λ cCO₂H leads to 6:7-dimethoxy-quinoline-2-carboxylic acid, m.p. 215°, in 75% yield which diminishes quinoime-2-carooxyite acta, in.p. 215, in 15% yield which diminishes to 60—65% when NaOH is absent or replaced by piperidine. The picrate has m.p. 215°. The acid is decarboxylated by Cu-bronze at 225°/high vac. to 6:7-dimethoxyquinoline (II), b.p. 135°/0·5 mm. [freely sol. hydrochloride and sulphate; picrate, m.p. 252°; methiodide (III), m.p. 258°], also obtained from (I), CHMc:N·OH, and KOH in boiling EtOH. Determination of OMe in (II) according to Viebock gives about half the expected val. probably because some of the MeI which is formed is involved in the production of methiodide and thus escapes volatilisation; in accordance with this hypothesis (III) evolves the amount of MeI required for 2 OMe. 6-Aminopiperonylidenetoluidine (IV) analogously affords 6:7-methylenedioxyquinoline-2-carboxylic acid, m.p. 231° (decomp.) (picrate, m.p. 182—183°), decarboxylated in a high vac. to 6:7-methylenedioxyquinoline, m.p. 116—117° (picrate, m.p. 245°). CH₂Ph·CO·CO₂H behaves similarly to AcCO₂H. With (I) it gives 6:7-dimethoxy-3-phenylquinoline-2-carboxylic acid, m.p. 151—152°, decarboxylated to 6:7-dimethoxy-3-phenylquinoline, m.p. 90—91°, and with (IV) it yields 6:7-methylenedioxy-3-phenylquinoline-2-carboxylic acid, m.p. 172° (decomp.), and thence 6:7-methylenedioxy-3-phenylquinoline, m.p. 132°. o'-Aminobenzylidene-p-toluidine (V) with CH₂Ac·CO·CO₂Et yields Et 3-acetylquinoline-2-carboxylate, m.p. 93—94°, which does not give a picrate or a 2:4-dinitrophenylthis hypothesis (III) evolves the amount of MeI required for 2 OMe. with CH₂ACCO-CO₂Et yields Et 3-acetylquinotine-2-carooxylate, m.p. 93—94°, which does not give a picrate or a 2:4-dinitrophenyl-hydrazone but is transformed by N₂H₄,H₂O in boiling EtOH into 4:5-2':3'-quinolinopyridazinone, decomp. >320°. Similarly (I) gives Et 6:7-dimethoxy-3-acetylquinoline-2-carboxylate, m.p. 187—188°, converted into 6-keto-3-methyl-4:5-2':3'-(6':7'-dimethoxy-quinolino)-1:6-dihydropyridazine, m.p. ~315°, darkens at 295°. 6:7-Dimethoxy-3-acetylquinoline-2-carboxylic acid, m.p. 194° (decomp.) is decarboxylated to 6:7-dimethoxy-3-acetylquinoline m.p. comp.), is decarboxylated to 6: 7-dimethoxy-3-acetylquinoline, m.p. 161—162° (2: 4-dinitrophenylhydrazone, m.p. 301°). Analogously, (IV) gives Et 6: 7-methylenedioxy-3-acetylquinoline-2-carboxylate, m.p. -161° (corresponding pyridazinone, m.p. 355-357°) 160—161° (corresponding pyriaazinone, m.p. 300—301). CH₂Bz·CO·CO₂Et behaves similarly, giving with (V) Et 3-benzoyl-quinoline-2-carboxylate, m.p. 89° (6-keto-3-phenyl-4: 5-2: 3-quinolino-1: 6-dihydropyridazine, m.p. 308—310°), with (I) Et 6: 7-dimethoxy-3-benzoylquinoline-2-carboxylate, m.p. 196—197° (6-keto-3-phenyl-4: 5-2': 3'-6': 7'-dimethoxyquinolino-1: 6-dihydropyridazine, m.p. 218—218°), hydrolyesd to 6: 7-dimethoxy-3-benzoylquinoline-2-carboxylate (2-carboxylate). 316—318°), hydrolysed to 6: 7-dimethoxy-3-benzoylquinoline-2-carboxylic acid, m.p. 206—207°, decarboxylated to 6: 7-dimethoxy-3-benzoylquinoline, m.p. 156—157°, and with (IV) Et 6: 7-methylene-dioxy-3-benzoylquinoline-2-carboxylate, m.p. 247—248°. (V) does not tiped the desired 2-acytophylenes or other well defined and account yield the desired 2-acylquinolines or other well-defined products with αβ-diketones COR-COMe or with COMe-CPh.N.OH. With with aβ-diketones COR-COMe or with COMe-CPh.N-OH. With COMe-CH:N-OH (V) affords mainly quinoline-2-aldoxime, m.p. 188–189° (picrate, m.p. 226—227°), and an unidentified substance, m.p. 226—227°, insol. in alkali. Similarly, (I) gives 6:7-dimethoxy-quinoline-2-aldoxime, m.p. 243° (picrate, m.p. 253—254°; a methiodide could not be prepared), and an alkali-insol. by-product, C₂₂H₂₄O₈N₄, m.p. 267—269° (Ac derivative, m.p. 176—177°; 2:4-dinitrophenylhydrazone, m.p. 275—276°), which could not be iden-

tified. (V) likewise affords 6: 7-methylenedioxyquinoline-2-aldoxime, m.p. 252—253° (picrate, vigorous decomp. >340°), and an alkalinsol. substance, C₁₄H₁₀O₃N₂, m.p. >365°. COMe·CH:N·NHPh and (V) in presence of piperidine at 160—170° appear to give the anil, o-C₆H₄Me·N:CH·C₆H₄·N:CMe·CH:N·NHPh, m.p. 221° (quinoline-2-aldehydephenylhydrazone has m.p. 203°), which could not be distilled without complete decomp. and is indifferent towards boiling Ac₂O and KOH-EtOH. Analogously constituted compounds, m.p. 151—152° and 173—174° respectively, are derived from (I) and (IV). ay-Diketones and B-CO-esters with the group Ac react readily in all cases. Thus (V) and CH₂Ac₂ give 3-acetyl-2-methylquinoline, m.p. 57—58° (picrate, m.p. 233—234° after darkening; 2:4-dinitro-phenylhydrazone, m.p. 216—217°). 6:7-Dimethoxy-3-acetyl-2-methylquinoline, m.p. 142—143° (picrate, m.p. 265—266°), and 6:7-methylquinoline, m.p. 171—172° (picrate, m.p. 234—236°), are derived similarly from (I) and (IV) respectively. A 2:4-dinitrophenylhydrazone could not be obtained from 6:7-di-A 2: 4-dinitrophenylhydrazone could not be obtained from 6: 7-dimethoxy-3-benzoyl-2-methylquinoline, m.p. 158°, very smoothly prepared from CH₂AcBz and (I) in presence of piperidine at 100°. CH₂Ac₂ is transformed by a boiling solution of 2:4-(NO₂)₂C₆H₃·NH·NH₁ into 1-2':4'-dinitrophenyl-3:5-dimethylpyrazole, m.p. 119—120°; CH₂AcBz similarly yields 5-phenyl-1-2':4'-dinitrophenyl-5-methylpyrazole, m.p. 128—129°. CH₂Bz·CO₂Et and (V) afford the nonpyrazole, m.p. 128—129°. CH₂B2°CO₂Et and (V) afford the non-cryst. Et 2-phenylquinoline-3-carboxylate (picrate, m.p. 159—160°), hydrolysed to the acid, m.p. 229°. Similarly (I) gives Et 6:7-di-methoxy-2-phenylquinoline-3-carboxylate, m.p. 155° [acid (VI), m.p. 238—239° (decomp.)], and (IV) yields Et 6:7-methylenedioxy-2-phenylquinoline-3-carboxylate, m.p. 149°, hydrolysed to the acid (VII), m.p. 283—284° (with formation of 6:7-methylenedioxy-2-phenyl-ministration of 6:7-methylenedioxy-2-phenyl-phenyl-methylenedioxy-2-phenyl-methylenedioxy-2-phenyl-methylenedioxy-2-phenyl-ministration of Et (VI) quinoline, m.p. 110°). (V) and Ac₂O alone or in presence of Et.O at room temp, yield o'-acetamidobenzylidene-p-toluidine, m.p. 148—149°, which is deacetylated but does not give carbostyril under the influence of alkali. Under the same conditions (I) is transformed directly into 2-hydroxy-6: 7-dimethoxyquinoline, m.p. 179° (with some p-C₆H₄Me·NHAc, m.p. 150—152°), and (IV) into 2-hydroxy-6: 7-methylenedioxyquinoline, m.p. 158—159°.

6:7-methylenedioxyquinoline, m.p. 158—159°.

Treatment of (II) with boiling AcOH—HI (d 1·7) leads to 6:7-dihydroxyquinoline hydriodide, converted by aq. H₂SO₄ into the corresponding sulphate, m.p. ~270°, darkens at 240°; this is transformed by NaHCO₃ into the Na₁ compound, m.p. >360°, slowly darkens >225°, of 6:7-dihydroxyquinoline (VIII), which gives (Schotten-Baumann) 6:7-dibenzoyloxyquinoline, m.p. 135—136°; (VIII) affords a picrate, m.p. 270°. (II) is demethylated by pyridinium chloride at 180—190° to (VIII), m.p. 248—250°, softens at 230° (also +2H₂O), isolated by pptn. of the Pb salt, which is treated with H₂S. 6:7-Dimethoxy-2-methylquinoline (+2H₂O), m.p. 285°, becomes discoloured at 240°, and softens at ~265°, is obtained similarly.

(VI) is converted by SOCl₂ into the chloride, m.p. 225°, cyclised by AlCl₃ in PhNO₂ at room temp. into 3′: 4′-dimethoxybenzl' (2°: 3-4-azafhuorenone (A), m.p. 290—295° (2: 4-dinitrophenylhydrazone, m.p. 315—316°). Analogously, 6:7-methylenedioxy-3-phenylquinoline

one, m.p. 315—316°). Analogously, 6: 7- methylenedioxy-3-phenylquinoline-2-carboxyl chloride gives 3': 4'-methylenedioxybenz-1': 6'-2: 3-1-asa-fuorenone, m.p. 276—277° (oxime, m.p. 236—237°; 2: 4-dinitrophenylhydrazone, decomp. 332°), and the chloride of (VII) is cyclised to 3': 4'-methylenedioxybenz-1': 6'-2: 3-4-azafluorenone, m.p. 245—246° (oxime, m.p. 330°; 2: 4-dinitrophenylhydrazone, blackens > 320°, m.p. >360°). Quinoline-2-aldoxime is converted by boiling Ac₂O into 2-cyano-quinoline, m.p. 93°, from which a picrate or methiodide could not Quinoline-2-aldoxime is converted by boiling Ac₂O into 2-cyanoquinoline, m.p. 93°, from which a picrate or methiodide could not be obtained. The oxime is transformed by NHPh·NH₂ and conc. HCl in boiling EtOH into quinoline-2-aldehydephenylhydrazone, m.p. 203—204° (hydrochloride, m.p. 277—278°). Attempts to obtain quinoline-2-aldehyde by treatment of the oxime with CH₂O, o-C₂H₄(CO)₂O, or dil. H₂SO₄ were unsuccessful. The oxime subhate has m.p. 203—204°. Analogous methods lead to 6:7-asmethoxyquinoline-2-nitrile, m.p. 232—233°, and -2-aldehydephenylhydrazone, m.p. 170° (hydrochloride, m.p. 257—258°), and to 6:7-methylenedioxyquinoline-2-nitrile, m.p. 253—254°, and -2-aldehydephenylhydrazone, m.p. 245—246° (hydrochloride, m.p. 299—300°). W

Quinolines patterned as "open models" of atabrine. H. Gilman and S. M. Spatz (J. Amer. Chem. Soc., 1944, 66, 621—625). m-C₆H₆Cl·Li (1) {prep. from m·C₆H₄ClBr and LiBu^a in Et₂O-N₂ at —35° [for, best (69·7%), 9 min.]} with 6-methoxyquinoline in Et₂O-N₂ at, best, 0° gives, after hydrolysis, 6-methoxy-2-m-chlorophenylquinoline (49·3—53%), m.p. 110—111° (picrate, m.p. 19-197°), converted by BzO₂H in CHCl₃ at 0° into the N-oxide (73%). m.p. 153—154° (picrate, m.p. 158·5—159°), which with POCl₃ at 100° and then the b.p. gives 4-chloro-6-methoxy-2-m-chlorophenylquinoline (II) (63·2—63·8%), m.p. 153—154°. (II) is also obtained from 4-chloro-6-methoxyquinoline and (I) in 34·7% yield and with NEt₂·[CH₂]₃·CHMe·NH₂ at 200—205° gives 4-δ-diethylamino-a-methyl-NEt2 [CH2]3 CHMc·NH2 at 200-205° gives 4-δ-diethylamino-a-methyln-butylamino-6-methoxy-2-m-chlorophenylquinoline (III) (60-7) amorphous. 6-Methoxy-, m.p. 194—195° (picrate, m.p. 205°; Noxide, m.p. 166—168°), 4-chloro-6-methoxy-, m.p. 163-5—164°, and 4-8-diethylamino-a-methyl-n-butylamino-6-methoxy- (IV), amorphous, -2-p-chlorophenylquinoline are similarly prepared. o-OMe·C₆H₄Li and quinoline lead similarly to 2-o-anisyl-, b.p. 201—204° (203·5°)/2 mm. [hydrochloride, m.p. 184·5—185° (decomp.); picrate, m.p. 177—178°; N-oxide, m.p. 178—178·5° (picrate, m.p. 133·5—134°)], 4-chloro-2-o-anisyl-, m.p. 96—98° (picrate, m.p. 200—201°), 4-δ-di-uhylamino-α-methyl-n-butylamino-2-o-anisyl-quinoline (V), b.p. 248—255°/0-025 mm. Similar reactions lead to 6-methoxy- (N-oxide, m.p. 170—171°), 4-chloro-6-methoxy-, m.p. 110—111°, and 4-δ-di-uhylamino-α-methyl-n-butylamino-6-methoxy-2-phenylquinoline (VI), amorphous. (III), (IV), and (VI), but not (V), show antimalarial activity.

Arylation of isoquinoline derivatives. II. Synthesis of 1-m-nitrophenyl-3: 4-dihydroisoquinoline, quinoline, and their derivatives. V. M. Rodionov and E. V. Javorskaja (J. Gen. Chem. Russ., 1943, 13, 491-496).—The object of the work was the prep. of isoquinoline antimalarials. Ph·[CH₂]·NH₂ with m·NO₂·C₆H₄·COCl gave m-nitrobenz-β-phenylethylamide, m.p. 119—120° (62% yield), which with P₂O₅ in boiling xylene gave l·m-nitrophenyl-3: 4-dihydroisoquinoline (64%), m.p. 51–52° (hydro-line) l-m-nitrophenyl-3: 4-dihydroisoquinoline (64%), m.p. 51—52° (hydrothloride, m.p. 213—214°), reduced by Fe-AcOH to the m-NH₂-compound (I) (71%), m.p. 119—120° [hydrochloride, m.p. 280—281° (decomp.); Λc derivative (69%), m.p. 114—117°], is reduced by Sn-HCl to 1-m-aminophenyl-1: 2: 3: 4-tetrahydroisoquinoline (78%), m.p. 126—127°. NEt₂·[CH₂]₃·Cl and (I) gave 3-y-diethylaminopropylamino-1-phenyl-3: 4-dihydroisoquinoline (II) (48%), m.p. 226—229° (hydrochloride, hygroscopic, m.p. indef.). Ph·[CH₂]₂·NH₂ with σ-NO₂·C₆H₄·COCl gave σ-nitrobenz-β-phenyl-thylamide (65%), m.p. 115—116°, which with P₂O₅ in boiling xylene gave 1-o-nitrophenyl-3: 4-dihydroisoquinoline (73%), m.p. 84—85° (hydrochloride, m.p. 211—213°), reduced (Fe-AcOH) to the σ-NH-compound (52°) Nylene gave 1-0-nurophenyl-3: 4-anyaroisoquinoline (15%), n.p. $84-85^{\circ}$ (hydrochloride, m.p. $211-213^{\circ}$), reduced (Fe-AcOH) to the o- NH_2 -compound (52%), m.p. $95-96^{\circ}$ (Ac derivative), which was reduced (Sn, aq.-alcoholic HCl) to 1-o-aminophenyl-1: 2: 3: 4-letrahydroisoquinoline (82%), m.p. $108-109^{\circ}$, and with NEt_2 -[CH₂]₃:Cl gave 1-0-y-diethylaminopropylaminophenyl-3: 4-dihydroisoquinoline (III) (47%), m.p. 215—219°. (II), (III), and 1-p-y-diethylaminopropylaminophenyl-3: 4-dihydroisoquinoline (ibid., 1941, 11, 446) were inactive as avian antimalarials.

Hydantoins of sulphur-containing amino-acids. J. V. Karabinos and J. L. Szabo (J. Amer. Chem. Soc., 1944, 66, 649—650).—Synand J. L. Szado (J. Amer. Chem. Soc., 1944, 66, 649—650).—Syntheses are effected following the discovery that the hydantoin ring is unaffected by Na in liquid NH₃. Thus Na converts l-cystine hydantoin (I) in NH₃ into l-cysteine hydantoin (II), m.p. 144—145° (cf. Boyd, A., 1934, 195). S-Benzylhomocysteine in hot aq. KCNO and then hot HCl gives the hydantoin, m.p. 103—104°, whence Na-NH₃ yields dl-homocysteine hydantoin (III), m.p. 121—122°. Homocystine with KCNO and then HCl similarly yields homocystine hydantoin (IV), m.p. 204—205°, and thence (III). I oxidises (II) to (I) or (IV) to (III). M.p. are taken on a microscope stage. to (I) or (IV) to (III). M.p. are taken on a microscope stage.

Dehydration of hydantoin-5-propionic acid. J. L. Szabo and J. V. Karabinos (J. Amer. Chem. Soc., 1944, 66, 650—651).—Hydantoin-5-propionic acid, m.p. 170°, with P₂O₅ in boiling xylene gives the hydantoin-5-propio-1-lactam, NH

CO·N—CO

CO·CH·CH₂

201° and with boiling Ac O gives the Academistic (88%), m.p. 201°, and with boiling Ac₂O gives the Ac derivative (88%), m.p. 147—148°, of (I), also obtained from (I) by Ac₂O. The structure of (I) follows by analogy from conversion of 2-thiohydantoin-5-propio-1-lactam (prep. from 2-pyrrolidone-5-carboxylic acid and NH₄CNS in AcOH-Ac₂O at 100°) by hydrolysis by boiling N-HCl into 2-thiohydantoin-5-propionic acid and recovery therefrom by P₂O₅ in boiling PhMe.

Double invert soaps: symmetrical dipiperidinium salts. Niederl and A. E. Lanzilotti (J. Amer. Chem. Soc., 1944, 66, 844—845).—By AlkBr in hot 95% EtOH are prepared methylenebis-1-piperidinium di-n-heptyl, m.p. 178°, -n-octyl, m.p. 162°, -n-tetradecyl, m.p. 183°, and -n-hexadecyl dibromide, m.p. 170°, and benzylidenebis-1-piperidinium di-n-heptyl, m.p. 177°, -n-octyl, m.p. 165°, -n-tetradecyl, m.p. 181°, and -n-octadecyl dibromide, m.p. 179°. R. S. C.

Sulphanilamidopolyalkylpyrimidines.—See B., 1944, III, 142.

Amides of nicotinic and related acids. II. J. H. Billman and J. L. Rendall (J. Amer. Chem. Soc., 1944, 66, 540—541; cf. A., 1943, II, 262).—The following are prepared, usually by heating the appropriate acid and (high-boiling) amine in xylene with continuous transport. removal of H₂O or from the ester and amine: nicotin-benzyl- (I), m.p. 72-73°, -n-amyl-, b.p. 170-171°/1 mm., -allyl-, b.p. 158m.p. 72—73°, -n-amyl-, b.p. 170—171°/1 mm., -allyl-, b.p. 158—161°/1 mm., and -dibutylaminopropyl-amide, b.p. 226—230°/2 mm.; pyridine-4-carboxyl-benzyl-, m.p. 84·5—85°, -n-amyl-, b.p. 158—159°/2 mm., and -dibutylaminopropyl-amide, b.p. 236—240°/2 mm.; pyridine-2-carboxyl-benzyl-, m.p. 87—87·5°, -n-amyl-, b.p. 135—138°/2 mm., -allyl-, b.p. 166—170°/2 mm., and -dibutylaminopropyl-amide, b.p. 209—212°/1 mm.; pyrazinecarboxyl-, m.p. 116°, and quinoline-3-carboxyl-benzylamide, m.p. 139—139·5°; pyrazine-2:3-di(carboxyl-benzyl-, m.p. 171—171·5°, and -n-amyl-amide), m.p. 145·5—146°. Quinoxaline is prepared from o-C₆H₄(NH₂)₂ (27·0) and (OH·CH·SO₃H)₂ (68·8 g.) in (<700 ml.). (1) has antispasmodic activity. R. S. C.

Quinoxaline formation and the ortho-effect. Influence of bromine atoms and nitro-groups. R. C. Fuson and Q. F. Soper (J. Org. Chem., 1944, 9, 193—200).—Quinoxaline formation is made possible by the introduction of Br or NO₂ into the mesityl ring of mesityl-glyoxal or Ph mesityl diketone. In the latter compound the effect persists even when the substituent is on the Ph ring. Arylglyoxals which are not sufficiently reactive to yield quinoxalines always form Schiff's bases. Benzils, on the other hand, always form quinoxalines if they react at all. Substitution of Br or NO₂ on either aromatic nucleus of a benzil enhances its tendency to undergo reaction with o-C₆H₄(NH₂)₂. The H-bonding theory alone does not provide an adequate explanation of these observations. Most of the following (CO)₂-compounds are obtained by oxidising the ketone with a small excess of SeO₂ in boiling, wet dioxan: 3-nitromesityl- (I), m.p. 217—218-5° (corr.), 2: 4: 6-triisopropylphenyl- (II), b.p. 129—135° [4:5 mm. [phenylhydrazone, m.p. 158-5° (corr.); semicarbazone, m.p. 179—180° (corr.); hydrazone, m.p. 153—154° (decomp.)], 3-bromomesityl- (III), (2: 4-dinitrophenylhydrazone, m.p. 203—205°), and 3-bromo-5-nitromesityl-glyoxal (IV) (2: 4-dinitrophenylhydrazone, m.p. 260—261°), mesityl Me, b.p. 138—139° [17 mm., p-nitrophenyl mesityl, m.p. 115—116° (corr.), m-nitrophenyl mesityl, m.p. 108—108-5° (corr.), and p-bromophenyl mesityl diketone, m.p. 102—103° p-, m.p. 211—211-5° (corr.), and m-nitrophenylmesityl-, m.p. 144—146°, phenyl-3'-nitromesityl-, m.p. 198—199° (corr.), 3'-nitrophenyl-3''-nitromesityl-, m.p. 198—199° (corr.), 3'-nitrophenyl-3''. 5''-dinitromesityl-, m.p. 188—189° (corr.), phenyl-3' co'-dibromomesityl-, m.p. 182—133°, and nitrodi-o-tolyl-quinoxaline, m.p. 197-5—198-5°, are described. Acetomesitylene is converted by HNO₃ (d 1-51), AcOH, and Ac₂O into 3-nitroacetomesitylene, b.p. 157—159° [8 mm., m.p. 23°, which does not give an oxime. 2: 4: 6-Triisopropyl-phenylglyoxal is converted by fuming HNO₃ and glacial AcOH into (CO)₂-compounds are obtained by oxidising the ketone with a small m.p. 23°, which does not give an oxime. 2:4:6-Triisopropylphenylglyoxal is converted by fuming HNO₃ and glacial AcOH into 3:5-dinitro-2:4:6-triisopropylphenylglyoxylic acid, m.p. 90—92°, which does not react with 2:4-(NO₂)₂C₆H₃·NH·NH₂. 3:5-Dinitro-2:4:6-triisopropylacetophenone, m.p. 144—145°, and 3-nitrophenyl 3':5'-dinitromesityl diketone, m.p. 184—185° (corr.), are obtained from the parent ketone and fuming HNO₃. Ph 3-nitromesityl diketone, m.p. 89·5—90·5°, from COPh·CO·C₆H₂Me₃, fuming HNO₃. AcOH, and Ac₂O at room temp., is oxidised by H₂O₂ in boiling dioxan to BzOH and 3-nitromesitoic acid. p-NO₂·C₆H₄·CH₂·COCl, s-C₆H₃Me₃, and AlCl₃ in CS₂ afford p-nitrobenzyl mesityl ketone, m.p. 96—97° (corr.), m-Nitrobenzyl mesityl ketone, m.p. 133·5—134·5° (corr.), is obtained analogously. Nitration of the diketone leads to 4-nitrophenyl 3'-nitromesityl diketone, m.p. 99·5 diketone leads to 4-nitrophenyl 3'-nitromesityl diketone, m.p. 99.5-(corr.). 3:5-Dibromo-2:4:6-trimethylbenzoin is oxidised 101° (corr.). 3:5-Dibromo-2:4:6-trimethylbenzoin is oxidised by CuSO₄ in aq. C_5H_5N to Ph 3:5-dibromomesityl diketone, m.p. 101:— 104° . s- $C_6H_5Me_3$, p- C_6H_4Br -Ch₃·COCl, and AlCl₃ in CS₂ give p-bromobenzyl mesityl ketone, m.p. 82— 83° . Mesitil and fuming HNO₂ produce 3:3':5:6'-tetranitromesitil, m.p. 31— 319° (decomp.), which does not react with o- $C_6H_4(NH_2)_2$. A similar behaviour is shown by 3-nitrophenyl 3':5'-dinitro-2':4':6'-triso-propylphenyl diketone, m.p. 166— 167° , and 4:4'-dimethoxy-2:6-xylıl. (I), (II), and (III) with o- $C_6H_4(NH_2)_2$ give Schiff's bases, $C_{28}H_{26}O_5N_4$, $C_{40}H_{5^{\circ}}O_2N_2$, and $C_{28}H_{26}O_2N_2$ Br₂, m.p. 258—258-5 (corr.), 173— 174° , and 165— 167° or 202° (softens at 177° when slowly heated), whereas (IV) appears to yield a quinoxaline, slowly heated), whereas (IV) appears to yield a quinoxaline, $C_{17}H_{14}O_2N_3Br$, m.p. 156—157° (decomp.).

Structure of indanthrone, indigo, and some of their derivatives. R. Gill and H. I. Stonchill (J. Soc. Dyers and Col., 1944, 60, 183— 186).—The relation in the properties of indigo and indanthrone is explained by assigning H-bonded formulæ, which are resonance hybrids of the keto- and enol forms; this is supported by the different properties of N-methylindanthrone, which cannot form a H-bonded structure.

H. A. P.

Gliotoxin, the antibiotic principle of Gliocladium fimbriatum. II. General chemical behaviour and crystalline derivatives. General chemical behaviour and crystalline derivatives. W. F. Bruce, J. D. Dutcher, J. R. Johnson, and L. M. Miller. Structure of gliotoxin: (III) degradation by hydriodic acid; (IV) action of selenium. J. D. Dutcher, J. R. Johnson, and W. F. Bruce (J. Amer. Chem. Soc., 1944, 66, 614—616, 617—619, 619—621; cf. A., 1944, II, 116).—II. In boiling 10% NaOH, gliotoxin (I) gives NH₂Me, H₂S (40—60%), S (a little), and a red, amorphous, alkali-sol. Substance containing N and S. In boiling 15% Ba(OH)₂ it gives a cryst. product. whence sublimation yields a little indole-2-carboxylic substance containing N and S. In boiling 15% Ba(OH)₂ it gives a cryst. product, whence sublimation yields a little indole-2-carboxylic acid (II). (I) is inert towards PhNCO, and with CH₂N₂, MeI, or Me₂SO₄ gives gums. It gives no reactions for OMe or OEt, CO, CH₂O₂, or CH₂S₂. It reacts with AgNO₃-NH₃, Folin's reagent, or nitroprusside, probably owing to liberation of S" by the alkali. KMnO₄, aq. Br, or NaOCl yields SO₄". Na₂SO₃, SnCl₂, HI, Al-Hg, Zn- or Sn-acid gives H₂S. Hg(OAc)₂ or AgNO₃ liberates only 1 atom of S. CuSO₄, Pb(OAc)₂, or BaCl₂ has no effect. In C₅H₅N, (I) shows 2—3 active H (MgEtBr); with boiling Ac₂O or BzCl it gives gums. but at room temp. yields a di-p-brome- m.p. 193° gives gums, but at room temp. yields a di-p-bromo-, m.p. 193° (decomp.), $[a]_D + 20^\circ$ in CHCl₃, and di-p-nitro-benzoate, m.p. 189° (decomp.), $[a]^{22} + 13^\circ$ in CHCl₃, but no reaction occurs with p- C_8H_4 MeSO₂Cl or o- C_8H_4 (CO)₂O- C_5N_5N . (I) thus contains an indole nucleus.

III. With red P and HI in boiling AcOH, (I) gives 1: 4-diketo-

2: 3-dimethyltetrahydropyrazino[1, 2a]indole [3: 6-diketo-1: 2-dimethylindolo-1': 2'-4: 5-tetrahydropyrazine] (III), m.p. 122°, 2 H₂S, and 2 H₂O. The structure of (III) is proved by synthesis and by hydrolysis by 0·5n-KOH-MeOH at room temp. to N-indole-2-carboxyl-N-methylalanine (IV), m.p. 187° [Et ester (V), m.p. 127°], whence boiling 20% aq. KOH-N₂ yields (II). The chloride (prep. by SOCl₂-Et₂O) of (II) and dl-NHMe·CHMe·CO₂Et in Et₂O gives (V) (m.p. 126°), whence hydrolysis yields (IV) and cyclisation by 1% HCl-EtOH at room temp. yields (III). (III) is also obtained if synthetic (V) (probably containing a trace of HCl) is kept in EtOH. IV. Se and (I) at 230—250° give 1: 3: 4-triketo-2-methyltetrahydropyrazino[1, 2a]indole [2: 3: 6-triketo-1-methylindolo-1': 2'-4: 5-tetrahydropyrazine] (VI), m.p. 253—255°, 2H₂S, H₂O, and a derivative from 1 C. In n-KOH-MeOH at room temp., (VI) consumed 2 KOH, giving indole-2-carboxylmethylamide (VII), m.p. 220° [picrate, m.p. 168—170° (decomp.); I-derivative, m.p. 186°, prepared by aq. I-KI-NaOH] (and ? H₂C₂O₄), whence boiling 25% aq. KOH-N₂ yields (II) and NH₂Me. The chloride of (II) and NH₂Me in C₆H₈ give (VII), which with COCl·CO₂Et in C₆H₈N-Et₂O at room temp. gives (VI), m.p. 255°.

Nuclear acylations according to Friedel-Crafts.—See A., 1944, II, 297.

1:3:5-Triazines.—See B., 1944, II, 198.

Chlorophyll. CXV. Chloroviolins. M. Strell and E. Iscimenler (Annalen, 1942, 553, 53—66).—The conversion of "unstable chlorins" into chloroviolins (cf. A) is described. "Unstable chlorin 7" Mc₁ ester (I) is converted by BzCl in C₅H₅N

chlorin 7" Me₁ ester (I) is converted by BzCl in C₅H₅N into chloroviolin Me₁ ester (II), m.p. >330° (cu compound, m.p. >320°), which is not (A), coli in alkali. Fractionation of (II) with 18% HCl and esterification of the alkali-sol.

portion leads to chloroviolin Me_3 ester (III), gradual decomp. >270°. Cold, dil. KOH-MeOH also causes fission of (II), but prolonged action causes profound decomp. The removal of H_2O by BzCl appears mainly catalytic and is sp.; AcCl, $PhSO_2Cl$, BzCN, and NH_2Bz have no effect and BzBr is somewhat less efficient. The spectra of the chloroviolins are closely similar to those of the neopurpurins. (III) may also be regarded as neopurpurin 6 Me_3 ester. In addition to (II), an amorphous compound with chlorin spectrum is also obtained from (I) particularly when impure C_5H_5N is used. Phæoporphyrin a_7 lactone appears to be benzoylated by BzCl in C_5H_6N ; the chloroviolin reaction appears confined to the chlorin system. "Unstable chlorin 7" Me_2 ester does not show the change, which is undergone by "unstable chlorin 7" if reaction is rapid. The reaction is also negative with pyrrochlorin-7-glycollic acid and "unstable chlorin 5." "Unstable mesochlorin 7 Me_1 ester" gives mesochloroviolin Me_1 ester (IV), m.p. 292°, $[a]_{20}$ —343°, and Me_3 ester (V), m.p. 198°, $[a]^{20}$ —495° (with filter), —990° (violet colour, without filter), which yield salts, $C_{35}H_{32}O_3N_4Cu$, m.p. $>310^\circ$, $[a]^{29}$ +396° (with filter), +992° (without filter, green colour), and $C_{37}H_{38}O_6N_4Zn$, m.p. 218°, respectively. Important support for the assumption of a neopurpurin-like structure is found in the conversion of (IV) or (V) by HI into chloroviolin porphyrin Me_3 ester, m.p. 278° (Cu salt, $C_{27}H_{36}O_6N_4Cu$, m.p. 301°). H. W.

Chlorophyll. CXVI. Purpurin 3, its meso-compound and derivatives. Synthesis of inactive mesopurpurin 3. H. Fischer and F. Gerner (Annalen, 1942, 553, 67—82).—Attempts to oxidise mesophyllochlorin esters give negative results but free mesophyllochlorin is oxidised by finely-divided KMnO4 in C5H5N to mesopurpurin 3, converted by CH2N2 into the Me3 ester (I), m.p. 166°, which gives the typical reactions with NH2OH and CN·CH2·CO.Et + NH2Et and is identical with the substance obtained from isochlorin e4; 7: 8-dihydroxymesophyllochlorin Me ester, m.p. 131°, is isolated as byproduct. Synthetic mesophyllochlorin (from phyllohæmin) is similarly oxidised to optically inactive mesopurpurin 3, transformed into the Me3 ester, m.p. 178°. (1) gives salts, C33H36O3N4FeCl, m.p. 182°. [a]26hte +4000° in COMe2, and C33H36O3N4Cu3, m.p. 173°, [a]white ~+140° in COMc2, which are remarkably stable, and C33H36O3N4Zn, m.p. 193, dextrorotatory in COMe2, which is decomposed by 16% HCl. Purpurin 3 Me ester, (II), MeNO2, and NH2Et in C5H5N at 100° afford y-nitrovinylpyrrochlorin Me ester, m.p. 197°, in ~80% yield. With CN·CH2·CO2Et and NH2Et in C5H5N mesopurpurin 3 Me ester gives Et mesopyrrochlorin-y-a-cyanoacrylate Me ester, m.p. 226°. Moist Ag2O oxidises (II) in MeOH-dioxan containing C5H5N to 7:8-dihydroxypurpurin 3 Me ester, m.p. 196°, [a]white +1500° in COMe2, which gives a positive reaction with NH2OH but appears indifferent to BzCl. With KMnO4 in C5H5N (II) gives 2-carboxy-2-devinylpurpurin 3 Me2 ester, m.p. 181°, [a]36hte +1250° in COMe2. Unesterified purpurin 3 is transformed by MgEtBr followed by CH2N. into y-y'-hydroxypropylpyrrochlorin Me ester, m.p. 211° [a]-6en +1240° in COMe2, which gives a positive reaction with BzCl and passes when heated into pyrrochlorin (III) and a substance, (?) C38H36O2N4. m.p. 189°, [a]26hte +1060° in COMe2, which also reacts with BzCl, gives (III) when heated, and

does not contain OMe. Attempts to prepare γ - β' -hydroxyethylpyrrochlorin Me ester are described.

Chlorophyll. CXVII. Partial synthesis of 6-formylmesossochlorin e₄. H. Fischer and F. Gerner (Annalen, 1942, 553, 146—165).—The action of ClCO·NH₂ and SnB₁ on the Cu derivative (I) of mesoisochlorin e₄ Me₂ ester in dry CHCl₃ gives bromomesosochlorin e₄ Me₂ ester, decomp. ~130°, [a]²⁰_{olta} ~210°, [a]²⁰_{htts} +420° in COMe₂, which spectroscopically closely resembles mesomethylphæophorbide a. The Cu compound of mesophyllochlorin similarly yields bromomesophyllochlorin Me ester, decomp. ~120°, [a]²⁰_{ed} ±0°, [a]²⁰_{cd} ±0°, [a]²⁰_{cd} ±0°, [a]²⁰_{streen} +993° in COMe₂, which passes when heated into mesophyllochlorin and phylloporphyrin. Under similar conditions the Cu compound (II) of mesopurpurin 3 is dehydrated to γ-formylpyrroporphyrin; if the CHO group is protected by oximation the product is bromo-γ-formylpyrroporphyrin Me ester, m.p. 224°, unchanged spectroscopically when heated with AcOH or gives deoxophyllerythrin (IV). m.p. 268°, and a Cu complex (III), which, when shaken with HBr-AcOH, esterified with CH₂N₂, and extracted successively with 2% and 7% HCl affords mesoisochlorin e₄ 6-Me ester Me, ether, m.p. 159°, [a]²⁰_{blte} —668° in COMe₂ (Cu derivative, m.p. 170°, [a]²⁰_{hlte} —1260° in COMe₂), the spectrum of which is displaced towards the red in comparison with that of mesoisochlorin e₄ and is unchanged by AcOH or KOH-MeOH. The compound is stable towards cold cone. H₂SO₄ or KMnO₄-C₈H₈N but is converted by HI-AcOH at 70° into isochloroporphyrin e₄. Mesophyllochlorin 6 Me ether Me ester, m.p. 168° (Cu derivative, m.p. 137°, [a]²⁰_{hlte} —475° in COMe₂), is obtained analogously. Similarly (II) is transformed into a Cu derivative, converted by HBr-AcOH into γ-formylpyrroporphyrin 6 Me ether Me ester, m.p. 151°, [a]_{white} -505° in COMe₂, which is not changed spectroscopically by BzCl, and is converted by HI in AcOH at 70° into mesoisochlorin e₄ and isochloroporphyrin e₄. It gives (IV) when heated with (CH₂·CO)₂O at 220° or AcCO₂H at 1

Partial syntheses of devinyl- and 2-acetyl-2-devinylphyllochlorin H. Fischer and F. Balat (Annalen, 1942, 553, 166—186).—Optically inactive mesophyllochlorin Mc ester is converted by Fc(OAc)₂ and NaCl in AcOH into the salt, C₃₃H₃₈O₂N₄ClFe, m.p. 237°, whereas the corresponding active salt has m.p. 246°; the salt, C₃₃H₃₈O₂N₄Cu, m.p. 150°, is obtained in the usual manner. The prep of the active mesophyllochlorin Me ester (I) from chlorin e₈ is greatly improved by the substitution of boiling C₁₀H₃ for quinoline; vinylphylloporphyrin is obtained simultaneously in minor amount. The Fe¹¹ complex salt of (I) is transformed by molten resorcinol at 175°, followed by successive treatments with Fc(OAc)₂ in AcOH and conc. HCl and then by extraction with 39′, and then 8—10 °/6 HCl, esterification, and chromatography over Al₂O₃, into 2-devinylphyllochlorin Me ester, m.p. 156°, [a]₃₉₀₋₇₂₀ —775° in COMe₂ (salt, C₃₁H₃₄O₂N₄ClFe, m.p. 200°, [a]₃₀₀₋₇₂₀ —7075° in COMe₂ (salt, C₃₁H₃₄O₂N₄ClFe, m.p. 200°, [a]₃₀₀₋₇₂₀ —7075° in COMe₂). 2-Vinylphylloporphyrin Me ester is converted by Fe(OAc)₂ in AcOH containing NaCl into the complex, C₃₃H₃₄O₂N₄ClFe, m.p. 288°, which passes in resorcinol at 200° into a substance which after removal of Fe and esterification yields 2-de-ethylphylloporphyrin Me ester, m.p. 214° (Fe salt). The latter salt is treated successively with Na and boiling C₅H₁₁'OH under H₂, 15% HCl, FeCl₃ at 40°, and CH₂N₂, thus giving 2-devinylphyllochlorin Me ester (III), m.p. 147°, spectroscopically identical with the optically active material. (III) is converted by HBr-AcOH into 2-a-bromomesophyllochlorin, hydrolysed by 15% HCl and then esterified to 2-a-hydroxymesophyllochlorin Me ester (IV), m.p. 131°, [a]₈₉₀₋₇₂₀ —657° in COMe₂. Analogously (III) is converted by HBr followed by coiling MeOH into 2-a-methoxymesophyllochlorin Me ester, amorphous, m.p. 130—140°, spectroscopically almost identical with (IV). Oxidation of (IV) by finely-powdered (I

Double invert soaps: symmetrical dimorpholinium salts. J. B. Niederl and E. J. Kenney (J. Amer. Chem. Soc., 1944, 66, 840—841).

—By AlkBr in boiling 95% EtOH are prepared methylenebis-1-morpholinium di-n-butyl, m.p. 144° (decomp.), -n-heptyl, m.p. 141° (decomp.), -n-octyl, m.p. 143° (decomp.), -n-tetradecyl, m.p. 165° (decomp.), -n-tetradecyl, m.p. 165° (decomp.) (decomp.), and -n-hexadecyl dibromide, m.p. 180° (decomp.), and -n-hexadecyl dibromide, m.p. 180° (decomp.), and benzylidenebis-1-morpholinium di-n-butyl, m.p. 174°, -n-heptyl, m.p. 153°, -n-octyl, m.p. 156°, -n-tetradecyl, m.p. 175°, and -n-hexadecyl dibromide, m.p. 178°.

R. S. C.

Two acid redox indicators of the oxazine series. Semiquinone leavy. H. Eggers and H. Dieckmann (Biochem. Z., 1942, 310, 233-254).-Na. 3-dimethylaminophenonaphthoxazine-9: 12-disulphonate, prepared by condensation of R-acid with p-NO·C H4·NMe2, or with p-NH₂·C₆H₄·NMe₂ followed by oxidation, and K_2 3-dimethylaminophenonaphthoxazine-7: 9-disulphonate prepared by condensation of G-acid with p-NO·C₆H₄·NMe₂, are H₂O-sol. indicators, stable over a wide range of pH, and suitable for oxidation-reduction determinations. In aq. solution, a small amount of the dyes is present in the form of semiquinone radicals. The normal potentials for the dyes from R-acid and G-acid are +0.105 and +0.115 v., respectively. Light absorption by aq. solutions of the dyes does not obey Beer's law. Max. absorption with the R-acid and G-acid dyes are at 550 and 540 m μ ., respectively. The dye derived from R-acid catalyses the oxidation of hæmoglobin to methæmoglobin by O_2 .

J. N. A 2-Amino-4- ω -carboxyalkylthiazoles. Their reaction with acetyl-sulphanilyl chloride. W. M. Ziegler (J. Amer. Chem. Soc., 1944, 66, 744—745).—Substitution by CO₂H·[CH₂]_n hinders interaction of 2-aminothiazole with ϕ -NHAc·C₆H₄·SO₂Cl (I), the effect being a max. at $n = \sim 4$ (cf. A., 1942, II, 153). CO₂Et·[CH₂]_n·CHAc·CO₂Et (n = 1, 2, 3, or 10) with Br-CS₂ at 0° (later room temp.) and then (n=1, 2, 3, or 10) with Br-CS₂ at 0° (later room temp.) and then CS(NH₂)₂-H₂O at room temp. gives 2-amino-4-aβ-dicarbethoxyethyl-, m.p. 118—119°, -aγ-dicarbethoxy-n-propyl-, m.p. 87—88°, -aδ-dicarbethoxy-n-butyl-, m.p. 83—84°, and -aλ-dicarbethoxy-n-undecyl-thiazole, m.p. 79—80°, converted by boiling conc. aq. HCl-EtOH into γ-2-amino-4-thiazyl-propionic, m.p. 213—214° (hydrochloride, m.p. 243—245°), δ-2-amino-4-thiazyl-n-butyric, m.p. (+H₂O) 99—101° or (anhyd.) 125—127° (hydrochloride, m.p. 207—209°), ε-2-amino-4-thiazyl-n-valeric, m.p. 202—203-5° (hydrochloride, m.p. 235—237°), and μ-2-amino-4-thiazyl-n-dodecoic acid, m.p. 105—107° (hydrochloride, m.p. 178—179-5°), respectively. With (I) in C₄H₅N at 100° and then boiling 2N-HCl, these give γ-2-sulphanilamido-4-thiazyl-n-butyric acid (11%) [hydrochloride, m.p. 204—206° (partial decomp.)]; μ-2-N*-acetylsulphanilamido-4-thiazyl-n-dodecoic acid (40% yield), m.p. 98—100°, resists 2N-HCl and is destroyed by hot 2N-NaOH. The final products are ineffective against streptococci and pneumo-The final products are ineffective against streptococci and pneumococci. M.p. are corr. R. S. C.

Preparation of o-aminobenzyl- and β -aminoethyl-thiazolium salts. H. T. Clarke (J. Amer. Chem. Soc., 1944, 66, 652).—o-NO₂·C₆H₄·CH₂·Cl and 4-methylthiazole (I) in a little C₆H₆ at 95—100° give 3-o-nitro-(75%), decomp. 186-5—187°, reduced by Sn-SnCl-2N-HCl to 3-o-amino-benzyl-4-methylthiazolium chloride (hydrochloride, decomp. $204-212^{\circ}$). $o\text{-C}_8\text{H}_4(\text{CO})_2\text{N}\cdot[\text{CH}_2]_\circ$:Br and (I) at $95-100^\circ$ give 4-methyl-3- β -phthalimidoethyl-, m.p. 238° (slight decomp.), and thence (boiling 48% HBr) 4-methyl-3- β -aminoethyl-thiazolium bromide [hydrobromide, m.p. 222·5-223·5° (decomp.)]. R. S. C.

Sulphonamides in the benziminazole, benzthiazole, and benztriazole series. C. F. H. Allen, A. Bell, and C. V. Wilson (J.~Amer.~Chem.~Soc.,~1944,~66,~835-837).—Methods of preparing SO_2R derivatives of these heterocyclic systems are developed.

or these fleterocyclic systems are developed.

or No₂·C₆H₄·NH·CO·CO₂Et and ClSO₃H at 100° give 3:4:1-NO₂·C₆H₃(NH₂)·SO₂Cl, m.p. 152—153° [obtained in only 3—4% yield from o-NO₂·C₆H₄·NH₂ by ClSO₃H; derived amide (I), m.p. 206—207°], which with NH₂R and KOAc or NaOAc in AcOH gives 3-nitro-4-aminobenzenesulphon-p-acetamidoanilide, m.p. 265—266°, and -0-hydroxyanilide (II), m.p. 205—206° 3:4:1-

NO₂·C₆H₃Cl·SO₂Cl (III) gives similarly 4-chloro-3-nitrobenzenesulphon-p-chloro- (IV), m.p. 120—121° -p-acetamido-, m.p. 188—190°, -o-hydroxy-, m.p. 143—145°, and -2'-hydroxy-4'-methyl-, m.p. 155—156°, -anilide. H₂-Raney Ni or Na₂S₂O₄ reduces (I) to 3:4-diaminobenzenesulphonamide, m.p. 174—175°, which with HNO₂ gives benztriazole-5-sulphonamide, m.p. 236—237°, or with HCO₂H or AcOH gives benziminazole-, m.p. 213—214°, and 2-methylbenziminazole-5-sulphonamide, m.p. 221°, respectively. With OH·[CH₂]₂·NH₂ (V) in boiling C₄H₆. (III) gives 4-chloro-3-nitro-, m.p. 125°, but with an excess of (V) gives 3-nitro-4-β-hydroxyethylamino-benzenesulphon-β-hydroxyethylamide, m.p. 158° 3:4:1-NO₂·C₆H₃Cl·SO₂·NHR with 1:1 85°, N₂H₄,H₂O-EtOH at the b.p. gives 1-hydroxybenztriazole-b-sulphon-amide, m.p. 222° (decomp.), -o-hydroxyanilide, m.p. 228° (decomp.), and -β-hydroxyethylamide, m.p. 168° (decomp.), H₂-Raney Ni in EtOH at 90°/40 lb. reduces (II) to the diamine, which with CS₂ and 40% NaOH at the b.p. yields 2-thiolbenziminazole-b-sulphon-o-hydroxyanilide, m.p. 265° (decomp.). 2-Thiolbenziminazole-5-sulphon-p-acetamidoanilide (similarly prepared) in conc. HCl-Feory NO2·C4H2Cl·SO2Cl (III) gives similarly 4-chloro-3-nitrobenzenesulphonacole-5-sulphon-p-acetamidoanilide (similarly prepared) in conc. HCl-EtOH at the b.p. gives the p-aminoanilide, m.p. 240—242° (decomp.). Hot aq. Na₂S-S converts (**IV**) into 2-thiolbenzthiazole-5-sulphon-pchloroanilide, m.p. 208—210° (decomp.). 2-Thiolbenzthiazole-p-sul-phon-p-acetamido-, m.p. 284—285° (decomp.), -o-hydroxy-, m.p. 246—248° (decomp.), and -2'-hydroxy-4'-methyl-anilide, m.p. 218—220° R. S. C. (decomp.), are similarly prepared.

Metalation of phenthiazine. H. Gilman, D. A. Shirley, and P. R. Van Ess (J. Amer. Chem. Soc., 1944, 66, 625—627).—Adding LiPh-Et₂O-N₂ to phenthiazine (I), keeping for 35 hr., then pouring the mixture onto Et₂O-solid CO₂, and finally hydrolysing with H₂O gives phenthiazine-1-carboxylic acid (52%), m.p. 264—264-5°, the Me ester, m.p. 113—113-5°, of which with PhI, K₂CO₃, and Cupropagate the harmone at the harmo bronze at the b.p. yields Me 10-phenylphenthiazine-1-carboxylate (60%), m.p. 123.5—124.5°. Structures are proved by cyclisation

synthesis of quinine.

of the derived acid by PCl₅-xylene at room temp. and then SnCl₄-xylene at 0° to 9-quino[3, 2, 1-kl]-phenthiazone (II), (85%), m.p. 218—219°. o-C₄H₄I·CO₂Me, (I), K₂CO₃, and Cu-bronze in xylene—PhNO₂ give 10-o-carbomethoxyphenylphenthiazine PhNO₂ give 10-0-caroomethoxyphonisyphonimus.me (42%), m.p. 143—144°; ring-closure of the derived (15% aq. KOH) acid, m.p. 214—215°, as above yields 60% of (II), proving the structure of the latter. Conversion of 2-carbethoxydiphenylamine, b.p. 184—187°/6 mm., by S etc. into phenthiazine and coupling of (o-NH₂·C₆H₄·S)₂ with 3:2:1NO₂·C₆H₃Br·CO₂H-NaOAc-EtOAc at the b.p. or with o-C₆H₄Cl·CO₂K-NaOAc-Cu-bronze-C₅H₁₁·OH at the b.p. could not

be achieved.

Hemicyanine dyes.—See B., 1944, II, 244.

VII.—ALKALOIDS.

Total synthesis of quinine. R. B. Woodward and W. E. Doering (J. Amer. Chem. Soc., 1944, 66, 849).—The following synthesis is briefly recorded. 7-Hydroxysoquinoline \rightarrow 7-hydroxy-8-piperidinomethyl-, m.p. $81\cdot5-82\cdot5^\circ$, \rightarrow 7-hydroxy-8-methyl-, m.p. $232-233\cdot5^\circ$, \rightarrow (H₂-PtO₂) 7-hydroxy-8-methyl-1: 2: 3: 4-tetrahydro-, m.p. $246-250^\circ$, \rightarrow 7-hydroxy-1-acetyl-8-methyl-1: 2: 3: 4-tetrahydro-, m.p. $191-250^\circ$, \rightarrow 7-hydroxy-1-acetyl-8-methyl-1: 2: 3: 4-tetrahydro-, m.p. $191-250^\circ$, \rightarrow 7-hydroxy-1-acetyl-8-methyl-1: 2: 3: 4-tetrahydro-, m.p. $191-250^\circ$, $191-250^\circ$, 191-2250°, $\stackrel{?}{\Rightarrow}$ 7-hydroxy-1-acetyl-8-methyl-1: 2: 3: 4-tetrahydro-, m.p. 191—198° $\stackrel{?}{\Rightarrow}$ (H₂-Raney Ni) mixed 7-hydroxy-1-acetyl-8-methyldecahydro- (cis-compound, m.p. 126—128°; cis refers to ring-junctions) $\stackrel{?}{\Rightarrow}$ mixed cis-7-keto-1-acetyl-8-methyldecahydro-isoquinoline, $\stackrel{?}{\Rightarrow}$ H₂O, m.p. 80·5—82·5° $\stackrel{?}{\Rightarrow}$ (OEt·NO-NaOEt) 10-oximino-1-acetylhomomeroquinene Et ester, dimorphic, m.p. 96—98° (labile) and 108·5—109·5°, $\stackrel{?}{\Rightarrow}$ the 10-NH₂-compound (H_2 -derivative, $\stackrel{?}{\Rightarrow}$ 2H₂O, m.p. 186·5—188°) (McI-K₂CO₃) quaternary iodide $\stackrel{?}{\Rightarrow}$ (alkali) dl-homomeroquinene, m.p. 219—220° (decomp.) [isolated by way of the carbamide derivative, m.p. 165·2—165·8° (decomp.)] $\stackrel{?}{\Rightarrow}$ N-benzoylhomomeroquinene Et ester. By condensation with Et quininate etc. by Rabe's and Prelog's methods this yields dl-quinotoxine, whence d-quinotoxine. Prelog's methods this yields dl-quinotoxine, whence d-quinotoxine, an oil, $[a]_D + 43^\circ$, is obtained by means of its dibenzoyl-D-tartrate, m.p. $185.5 - 186^\circ$. With earlier work this constitutes a total

Colchicine and related compounds. III. J. W. Cook, W. Graham, and (in part) A. Cohen, R. W. Lapsley, and C. A. Lawrence. IV. Synthesis of 2:3:4:5-, 2:3:4:6-, and 2:3:4:7-tetramethoxy-9-methylphenanthrenes. G. L. Buchanan, J. W. Cook, and J. D. London (J.C.S., 1944, 322—325, 325—329).—III. 3:4:5-Trimethoxy-benzanilide, m.p. 136—137°, prepared from the corresponding benzoyl chloride and NH₂Ph, with PCl₅ gives the corresponding benzoyl chloride and NH₂Ph, with PCl₅ gives the chloro-imine, reduced (SnCl₂-HCl) to the -benzaldehyde, the diacetate, m.p. 112—113°, of which yields no cryst. nitration product. a-Cyano-α-p-anisyl-β-(3:4:5-trimethoxyphenyl)ethylene is brominated to the 2-Br-compound (I), m.p. 141—142·5°, hydrolysed (6N-NaOH) to a mixture of α-p-anisyl-β-(2-bromo-3:4:5-trimethoxyphenyl)acrylamide, m.p. 179—181°, and a gum oxidised (KMnO₄) to 3:4:5:2:1-(OMe)₃C₆+HBr-CO₂H; (I) could not be cyclised. 2:3:4:5:1-NO₂·C₆H(OMe)₃·CHO and p-OMe·C₆H₄·CH₂·CN afford α-cyano-α-p-anisyl-β-(2-nitrotrimethoxyphenyl)cthylene, m.p. 164·5—165·5°. 3:4:5:1-(OMe)₃C₆H₂·CHO and p-OH·C₆H₄·CH₂·CN give α-cyano-α-p-hydroxyphenyl-β-(3:4:5-trimethoxyphenyl)ethylene, m.p. 169·5—170·5°, which is reduced (Na-EtOH) to α-p-hydroxyphenyla-cyano-a-p-lydroxyphenyl-β-(3:4:5-trimethoxyphenyl)ethylene, m.p. 169-5—170-5°, which is reduced (Na-EtOH) to a-p-hydroxyphenyl-β-(3:4:5-trimethoxyphenyl)acrylamide, m.p. 211°. 3:4:5:1-(OMe)₃C₆H₂·CH₂·OH (3:5-dinitrobenzoate, m.p. 147—148°), obtained by reduction of the aldehyde, with SOCl₂ and NPhMe₃ gives the chloride (II), m.p. 60—61°. 3:4:5:1-(OMe)₃C₆H₂·CH₂·OH may also be prepared by methylation (MeI-NaOEt) of the syringic alcohol, m.p. 131—132°, obtained from 1:3-dimethylpyrogallol and aq. CH₂O-NaOH; if the methylation is carried out with C₆H₄Me·SO₃Me, the product is 1:2:3:5:6:7-hexamethoxy-9:10-dihydroanthracene, m.p. 201°. 4-Methoxycyclohexanone is brominated to the 2-Br-compound (III), the identity of which is brominated to the 2-Br-compound (III), the identity of which is shown by its conversion by CS(NH₂)₂ into 2-amino-6-methoxy-4:5:6:7-tetrahydrobenzthiazole, m.p. 141.5—144°. CH₂(CO₂Et)₂ and Na with (II) give Et 3:4:5-trimethoxybenzylmalonate, m.p. 67—71° (hydrolysed and decarboxylated to β-3:4:5-trimethoxyphenylpropionic acid, m.p. 100—102°), the Na compound of which with (III) forms, after hydrolysis, not the required product but a mixture containing 3:4:5-trimethoxybenzylmalonic acid, m.p. 115—116°. 2:4:1-(NO₂),C₆H₃·CH₂·CO₄Me with N₂H₄ affords

 $2:4\text{-}dinitrophenylacethydrazide,}$ m.p. $135\cdot5-137^\circ.$ A series of experiments with $3:4:5:1\text{-}(OMe)_3C_5H_2\cdot CO\cdot NH_2$ has failed to give the required methoxylated phenanthrenes. P_2O_5 with N-acetylcolchinol Me ether gives the same product (IV) as that obtained by Hofmann degradation of colchinol Me ether (cf. Windaus, A., $1924,\ i,\ 1089).$ Colchicine and $\text{CN}\cdot \text{CH}_2\cdot \text{CO}\cdot \text{NH}_2$ yield a product, decomp. $205^\circ,$ which is probably a quinoline or isoquinoline derivative.

IV. 3:4:5:1-(OMe)₃C₈H₂·COCl with anhyd. HCN in quinoline gives 1-(3':4':5'-trimethoxybenzoyl)-1:2-dihydroquinaldinonitrile, m.p. 176—177°, hydrolysed (H₂SO₄) to 3:4:5:1-(OMe)₃C₆H₄·CHO, also obtained through 3:4:5-trimethoxybenzhydrazide (+MeOH), m.p. 128—129°, and the benzenesulphonyl derivative, m.p. 250° (decomp.). 1-(o-, m.p. 173°, and 1-(m-nitrobenzoyl)-1:2-dihydroquinaldinonitrile, m.p. 171°, are similarly prepared from o- and m-NO₂·C₆H₄·CHO, and the 1-(2'-nitro-3':4':0-trimethoxybenzoyl) compound, m.p. 168°, is also prepared from the appropriate acid chloride. Me 2:3:4:6-tetramethoxyphenanthrene-9-carboxylate, m.p. 96—97°, prepared from the acid with CH₂N₂, is converted through the hydrazide and benzenesulphonyl derivative, m.p. 237° (decomp.), into the -9-aldehyde, m.p. 119°, which with N₂H₄ gives 2:3:4:6-tetramethoxy-9-methylphenanthrene, m.p. 108—109° (picrate, m.p. 116°). m-OMe·C₆H₄·CH₂·CO₂Na and 2:3:4:5:1-NO₂·C₆H(OMe)₃·CHO with Ac₂O, followed by acidification, yield a mixture of cis-, m.p. 139—140° (main product), and trans-2-nitro-3:4:5-trimethoxy-a-m-methoxyphenylcinnamic acids, m.p. 181°, reduced (aq. NH₃-FeSO₄) respectively to the 2-NH₃-acid, m.p. 162°, and 6:7:8-trimethoxy-a-m-methoxyphenylcarbostyril, m.p. 185—186°. The diazotised NH₂-acid is decomposed in Na₂CO₃ solution to a mixture of 2:3:4:7-, m.p. 236°, and 2:3:4:5-tetramethoxyphenanthrene-9-carboxylic acids, m.p. 162—163° and subsequently 185°. A series of experiments leads to 2:3:4:7-tetramethoxyphenanthrene-9-carboxylic acids, m.p. 162—163° and subsequently 185°. A series of experiments leads to 2:3:4:7-tetramethoxyphenanthrene-9-carboxylic acids, m.p. 162—163° and subsequently 185°. A series of experiments leads to 2:3:4:7-tetramethoxyphenanthrene-9-carboxylic acids, m.p. 190°, benzene-sulphonhydrazide, m.p. 250°, and the aldehyde, m.p. 134—135°. 2:3:4:5-Tetramethoxy-9-methylphenanthrene, m.p. 102° (picrate, m.p. 135°), benzene-sulphonhydrazide, m.p. 232°, and the aldehyde, m.p.

Ultra-violet absorption spectra od solutions of yohimbine, corynanthine, corynantheine, and some of their derivatives.—See A., 1944, I, 191.

VIII.—ORGANO-METALLIC COMPOUNDS.

Action of cæsium on ethylene. L. Hackspill and R. Rohmer (Compt. rend., 1943, 217, 152—153).—Cs and C_2H_4 slowly form a solid substance, $C_2H_4Cs_2$, hydrolysed quantitatively to CsOH and C_2H_6 . F. R. S.

Long-chained organo-metallic compounds. R. N. Meals (J. Org. Chem., 1944, 9, 211—218; cf. A., 1944, II, 66).—A series of long-chained organo-metallic compounds of Li, Na, K, Ca, Hg, As, Sn, and Pb has been prepared. The NaR, KR, and CaRI types examined are insol. in hydrocarbons including the kerosene fractions. Incidental to the prep. of these MR compounds there are formed R(—H), R·H, and R·R hydrocarbons as a consequence of disproportionation and coupling reactions. The prep. of NaC₁₂H₂₅-n in poor yield in Et₂O is of interest because of the ready cleavage of Et₅O by the simpler NaAlk compounds. Compounds LiR can be prepared in several solvents, the most suitable appearing to be light petroleum, b.p. 60—70°. Substances RCl are most suitable for the prep. of LiR types. 1:2:3-C₆H₃(OMe)₃ is metallated by LiC₁₂H₂₅-n in an ortho-position to give 2:3:4:1-(OMe)₃C₆H₂·CO₂H on subsequent carbonation. The long-chained organo-mercury halides are not particularly suitable as derivatives for rigid differentiation of contiguous, even-membered types. Thus HgC₁₆H₃₂Cl, HgC₁₈H₃₇Cl, and an equinol. mixture of them have m.p. 114—115°, 115—116°, and 113° respectively. Compounds SnAlk₃Cl and PbAlk₄Cl show greater differences in m.p. between homologues than do the Hg alkyl chlorides, but they are only of limited applicability as derivatives for differentiation of contiguous, even-membered homologues because of the small m.p. depressions of mixtures. Sn(C₁₆H₃₃)₄ and Pb(C₁₆H₃₃)₄ have m.p. 41·5—42·5° and 42°, respectively, and a mixture of equal parts of them melts at 42°. The following are reported in addition to those listed previously (loc. cit.): Hg dodecyl acetate, m.p. 64—65°; (Hg docedyl)₂ sulphate, m.p. 160—161°; (Hg dodecyl)₃ phosphate, m.p. 84—86°; Hg octadecyl cyanide, m.p. 98·5—99°; Pb tri-n-dodecyl nitrate, m.p. 44—45°, and acetate, m.p. 59°. The m.p. for the compounds Hg(C₁₂H₂₅)₂, Hg(C₁₄H₃₉)₂, Hg(C₁₆H₃₃)₂, and Hg(C₁₈H₃₇)₂ show a regular variation

Phenolic mercurials. J. B. Niederl and A. J. Shukis (J. Amer. Chem. Soc., 1944, 66, 844).—The appropriate phenol with the

requisite amount of Hg(OAc)₂ in 1:10:10 AcOH-EtOH-H₂O at the b.p. give 2-acetoxymercuri-, m.p. 158° (corresponding HgCl compound, m.p. 161°), 2:6-diacetoxymercuri-, m.p. 181° [corresponding (HgCl)₂ compound, m.p. 238° (decomp.)], 3-hydroxy-2:6-diacetoxymercuri-, m.p. 183° (decomp.), 2-acetoxymercuri-6-methyl-, m.p. 149°, -4-aaγy-tetramethyl-n-butylphenol, 1:1-di-4'-hydroxy-2'-acetoxymercuri-6'-methyl-, m.p. 200° (decomp.) [corresponding (HgCl)₂ compound, m.p. 225° (decomp.)], and 1:1-di-4'-hydroxy-2':6'-diacetoxymercuri-, m.p. 210° (decomp.) [corresponding (HgCl)₄ compound, m.p. 222° (decomp.)], -phenylcyclohexane, and ββεε-tetra-4'-hydroxy-2':6'-diacetoxymercuriphenyl-n-hexane, m.p. 308° (decomp.) [corresponding (HgCl)₈ compound, m.p. 247° (decomp.)].

Preparation of aromatic mercury salts of organic acids.—See B., 1944. III. 169.

Organomagnesium compounds. II. Reaction of Grignard reagents with carbonyl compounds. A. N. Nesmejanov and V. A. Sazonova (Bull. Acad. Sci. U.R.S.S., Cl. Sci. Chim., 1941, 499—517).—Using filtered and titrated Grignard reagents in an atm. of N₂, it is shown that the same compound CRR'R''·O·MgX,Et₂O is produced in all three reactions: (i) COR'R'' + MgRX,Et₂O, (ii) CORR' + MgR'X,Et₂O, and (iii) CRR'R''·O·H + MgEtX,Et₂O. The reaction product is thus a true alcoholate, as originally formulated by Grignard (A., 1902, i, 142) and contrary to the later views of Hess et al. (A., 1921, i, 777; 1924, i, 859), Meisenheimer et al. (A., 1921, i, 654; 1925, i, 527; 1926, 68), and Pfeiffer and Blank (A., 1939, II, 360), who postulate the formation of complexes which may or may not undergo internal rearrangement. The work of these authors is criticised in detail.

CHPhEt-OH (I) and MgEtBrin Et₂O afford CHPhEt-O-MgBr,Et₂O (II), biaxial prisms with negative optical sign and $r > v^1$, stable in dry air and converted by EtOAc into the acetate of (I) and by p-NO₂·C₈H₄·COCl into the p-nitrobenzoate of (I). The Et₂O in (II) can be removed by heating and partly replaced by PhCHO, the exchange being reversible. (II) with dil. H₂SO₄ affords C₂H₈. (II) is also formed from PhCHO and MgEtBr, the identity of the product being confirmed by the cryst. form, solubility in Et₂O, action of EtOAc and p-NO₂·C₈H₄·COCl, and formation of C₃H₈ from (I) by decomp. with aq. NH₄Cl; no C₂H₄ is produced by heating (II) in C₈H₈. EtCHO and MgPhBr in Et₂O afford CPhMeEt·O-MgBr,Et₂O (III), biaxial prisms with negative optical sign and v > r. It is converted by EtOAc into an ester, decomp. on distillation, and does not react with p-NO₂·C₈H₄·COCl. The Et₂O can be removed on heating with partial decomp. (III) is also formed from MgEtBr and COPhMe in Et₂O, identified as above by optical properties and solubility in Et₂O. MgEtBr and COPh₂ in cold Et₂O afford CPh₂Et·O-MgBr,Et₂O (IV), giving CPh₂Et·O-H with aq. NH₄Cl and no COPh₂. If the reaction mixture was boiled for 5 hr. some CPh.CH₂ was also isolated. MgBuBr and COPh₂ in Et₂O afford CHPh₂·O-MgBr,Et₂O (V), biaxial pyramids with positive optical sign and r > v, giving CHPh₂·OAc with EtOAc; (V) is also formed from CHPh₂·OH and MgEtBr in Et₂O. MgPhBr and fenchone (VI) in Et₂O afford a cryst. compound, which has not the expected formula C₁₀H₁₆O,MgPhBr,Et₂O (cf. Leroide, A., 1909, i, 596) and contains no MgPhBr, as it does not give Gilman's reaction or form C₆H₆ with H₂O, although it regenerates (VI). p-NH₂·C₆H₄·COPh and MgEtBr in Et₂O give C₂H₈ corresponding to 1 H of the NH₂ and therefore form the compound COPh·C₆H₄·NH·MgBr.

Trimethylsilane and silicon trimethyl chloride. A. G. Taylor and B. V. de G. Walden (J. Amer. Chem. Soc., 1944, 66, 842—843).—SiHCl₃ [prep. from ferrosilicon (95—97% Si)] and MgMeBr in Et₂O give SiHMe₃, b.p. 9—11°, which with Cl₂ at -20° yields SiMe₃Cl (75%), f.p. $\sim -40^{\circ}$, b.p. $57-59\cdot4^{\circ}/747$ mm. [v.p. given for $28\cdot9^{\circ}$ (308 mm.) to $56\cdot1^{\circ}$ (720 mm.)]. R. S. C.

IX.—PROTEINS.

Precipitation of proteins by synthetic detergents. F. W. Putnam and H. Neurath (J. Amer. Chem. Soc., 1944, 66, 692—697).—Pptn. of six proteins by $n\text{-}C_{12}\text{H}_{25}\text{-NaSO}_4$ (1) occurs at pH \Rightarrow the isoelectric point; for human carboxyhæmoglobin (isoelectric point 7-1) this pH is 6-4. At > this pH no pptn. occurs and ppts. formed at lower pH are redissolved by adjusting the pH to > the isoelectric point. The following are established for horse serum-albumin. The lower is the pH, the faster is the rate of coagulation, but the wt. of ppt. is const. The wt. of ppt. \varpropto concns. of protein and (I), and also increases with temp. The pH of protein solutions, previously adjusted to the isoelectric point, is gradually increased from 4-85 to \sim 6-4 by adding increasing amounts of (I). Treating the ppt. with Ba' yields $(n\text{-}C_{12}\text{H}_{25}\text{-}SO_4)_2\text{Ba}$ and a solution of recovered protein, which is shown by electrophoresis, diffusion, and η to be homogeneous but partly denatured. Possible applications of the pptn. are mentioned.

Diplococein, antibacterial protein from milk streptococci.—See A., 1944, III, 615.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II—Organic Chemistry

NOVEMBER, 1944.

I.—ALIPHATIC.

Rearrangement of alkyl halides.—See A., 1944, I, 252.

Preparation of aga-trichloropropane.—See B., 1944, II, 269.

Oxidations [of dienes] by hydrogen peroxide in presence of selenious anhydride. P. Seguin (Compt. rend., 1943, 216, 667—668).—SeO₂ is more convenient than OsO₄ or V₂O₅ for oxidations by means of H₁O₂. To limit the oxidation to one of two double linkings, the best solvent is Bu²OH. Second to this is COMe₂, although this is itself partly oxidised. The reaction should be carried out with conc. solutions, as otherwise it is liable to be lengthy. Experiments on cyclohexene (I) show that 4 g. of SeO₂ are required per g.-mol. of the substance being oxidised. The oxidation is complete in about a week, but may be regarded as practically complete after 48 hr. In the oxidation of (I) a 45% yield of trans-cyclohexanediol was obtained with no trace of the cis-compound, whereas when OSO₄ is used a mixture of cis- and trans-cympound is obtained. In the is used, a mixture of cis- and trans-compound is obtained. In the oxidation of dienes, 2 OH add on across 1:2 rather than 1:4. cycloPentene-1: 2-diol was obtained from cyclopentadiene. Piperylene gave a mixture of CHMe:CH·CH(OH)·CH₂·OH and a little CH₂·CH·CH(OH)·CHMe·OH. (CHPh:CH)₂ was very resistant to

Solubilities of high mol. wt. normal aliphatic primary alcohols.—See A., 1944, I, 221.

Manufacture of unsaturated alcohols.—Sec B., 1944, II, 246.

Properties of Δδ-penten-a-ol. Preparation of divinylmethane. R. Paul and H. Normant (Compt. rend., 1943, 216, 689—691).—2. Methyltetrahydrofuran (I) is obtained from CH₂:CH·[CH₂]₃·OH (II) by distilling with conc. H₂SO₄ (88% yield) or, less well, by NaHSO₃-pumice at 170°. Al₂O₃ at 390° converts (I) into CHMc:CH·CH:CH₂(15%) and (II) (11%). Passing CH₂:CH·[CH₂]₃·OAc over glass wool at 560° gives CH₂(CH:CH₂)₂ (60%), b.p. 26—27° (tetrabromide, m.p. 85·5—86°). R. S. C.

Manufacture of acylated secondary alcohols.—See B., 1944, II,

Manufacture of ethers from olefines.—See B., 1944, II, 271.

Glyceryl α-n-dodecyl ether. O. Grummitt and R. F. Hall (J. Amer. Chem. Soc., 1944, 66, 1229—1230).—n-C₁₂H₂₅°OH (2 mols.), epichlorohydrin (1 mol.), and a little anhyd. FcCl₃ at 160° give CH₂Cl·CH(OH)·CH₂·O·C₁₂H₂₅-n (39%; less in absence of FcCl₃ or with other proportions of reagents), b.p. 157°/1 mm., converted by NaOH in boiling Bu^a₂O into βy-epoxy-n-propyl n-dodecyl ether b.p. 132—135°/1—2 mm., whence 5% H₂SO₄ at 160° (not boiling dil. HCl) (apparatus: C, 1944, Part 4) gives glyceryl α-n-dodecyl ether (78%), m.p. ~20° [oxidised quantitatively, but slowly, by Pb(OAC)₄ in AcOH].

Proportion and collectic reduction of with O beth.

Preparation and catalytic reduction of γ-nitro-β-butyl p-nitro-penzoate. J. R. Reasenberg and G. B. L. Smith (J. Amer. Chem. 30c., 1944, 66, 991—994).—MeCHO and EtNO₂ with NaOH-EtOH-n₄O (a little) at room temp. give NO₂·[CHMe]₂·OH (I), b.p. 90°/11 mm., reduced (H₂-Raney Ni; EtOH; 3—4 atm.) to NH₂·[CHMe]₂·OH (II), b.p. 159° [H oxalate, m.p. 164° (decomp.); 0xalate, m.p. 200° (decomp.)], there being no evidence of formation of stereoisomerides (cf. Vanderbilt et al., A., 1940, II, 62). With r. O₂·C₆H₄·COCl in C₆H₄N at <25°, (I) gives a mixture, m.p. 30—90°, of stereoisomerides, whence repeated crystallisations or, 0x10 meter, two treatments with 0·1 mol. of NaOH in hot aq. EtOH give a pure γ-nitro-β-p-nitrobenzoyloxy-n-butane (III), m.p. 107—108°; 1someride is more readily hydrolysed or converted into NO₂·CMe.CHMe and is thus lost. With 3 H₂ in presence of Raney and a PtCl₄ in dioxan or in presence of PtO₂ as catalyst, 100° results of the second of th nd a PtCl₄ in dioxan or in presence of PtO₂ as catalyst, and a PtCl₄ in dioxan or in presence of PtO₂ as catalyst, and a PtCl₄ in dioxan or in presence of PtO₂ as catalyst, and a PtCl₄ in dioxan or in presence of PtO₂ as catalyst, and a PtCl₄ in dioxan or in presence of PtO₂ as catalyst, and a PtO₂ in presence of PtO₂ as catalyst, and a PtO₃ in presence of PtO₄ as catalyst, and a PtO₄ in presence of PtO₄ as catalyst, and a PtO₄ in presence of Raney Ni-PtCl₄ or PtO₂ in OH, (I) gives by reduction and spontaneous rearrangent R-p-aninohenzamido-γ-hydroxy-n-butane (VI), m.p. 145—146°

N (A., II.)

firmed. Catalytic hydrogenation of Et oleate ozonide ceases after ~70% of the theoretical quantity of gas has been absorbed. The yield of aldehydes is generally \$55-65% and 10-15% of acids are produced by spontaneous scission of the ozonide due to the heat of the hydrogenation or to H2O formed in the reaction. Saturated non-aldehydic compounds are formed in 15-25% yield and include fatty acid esters. It appears that scission does not occur

(hydrochloride; acetate, m.p. $145-146^{\circ}$). (II) yields p-NO₂·C₆H₄·CO·NH·[CHMe]₂·OH, m.p. 158° , whence (VI) is obtained by H₂-Raney Ni in EtOH. (VI) is also obtained from (IV) by H₂-Raney Ni. All reductions to (VI) give also small amounts of a substance, C₁₅H₂₄N₂O₂, an anæsthetic oil (Ac_2 derivative, m.p. 151° ; picrate, m.p. $171\cdot5-172^{\circ}$). R. S. C.

Alkyl sulphites. cycloHexyl sulphite. L. P. Kyrides (J. Amer. Chem. Soc., 1944, 66, 1006—1007).—Adding SOCl₂ to cyclohexanol at 25°/vac., falling to 5°/vac., and then slowly raising the temp. to 55° gives 93·5% of dicyclohexyl sulphite, b.p. 165°/4 mm., which is stable although it smells of SO₂ and cyclohexene (cf. Voss et al., Λ., 1935, 1492; Carré et al., ibid., 480). Mes, b.p. 124—127°, Et. b.p. 154—157°, Prβ₂, b.p. 73—74°/25 mm., Bu^a₂, b.p. 124—126°/29 mm., and di-β-octyl sulphite, b.p. 147—149°/o—6 mm., are similarly prepared in excellent yields. prepared in excellent yields.

Unsaturated synthetic glycerides. VII. Preparation and properties of synthetic α-monoglycerides and simple triglycerides of linoleic and linolenic acids. B. F. Daubert and A. R. Baldwin (J. Amer. Chem. Soc., 1944, 66, 997—1000; cf. A., 1944, II, 287).— isoPropylideneglycerol with linolenyl or linoleyl chloride (1 mol.) in quinoline-CHCl₃ at room temp. and then aq. HCl-Et₂O at ~0° gives α-monolinolenin, forms, m.p. -13·5° and 15·7° (hexabromide, m.p. 172°), and α-monolinolein, forms, m.p. -22·8° and 12·3° (hexabromide, m.p. 101·5°), respectively. Trilinolenin, forms, m.p. -44·6° and -24·2°, and trilinolein, forms, m.p. -45·6° and -12·9° (cf. Wheeler et al., A., 1940, II, 116), are prepared at 100°. R. S. C.

Preparation of cyanomethyl chloroformate. See B., 1944, II, 246.

tert.-Butyl trichloroacetate. W. E. Scovill, R. E. Burk, and H. P. Lankelma (J. Amer. Chem. Soc., 1944, 66, 1039).—Bur trichloroacetate, m.p. 25·5°, b.p. 37°/l mm., is obtained (95%) from CCl₃·COcl and BurOH in C₅H₅N or (80%) from CCl₃·CO₄H and CH₂·CMe₂.

Preparation and properties of *n*-alkyl acrylates. C. E. Rehberg and C. H. Fisher (*J. Amer. Chem. Soc.*, 1944, 66, 1203—1207).—
Good yields of Et, b.p. 43°/103 mm., Pr², b.p. 44°/40 mm., Bu², b.p. 35°/8 mm., *n*-amyl, b.p. 48°/7 mm., *n*-hexyl, b.p. 40°/1·1 mm., *n*-heptyl, b.p. 57°/1 mm., *n*-octyl (I), b.p. 57°/0·05 mm., *n*-nonyl, b.p. 76°/0·2 mm., *n*-decyl, b.p. 120°/5 mm., *n*-dodecyl, m.p. ~4°, b.p. 120°/0·8 mm., *n*-tetradecyl, m.p. ~14°, b.p. 138°/4 mm., and *n*-hexadecyl acrylate (II), m.p. ~24°, b.p. 148°/0·04 mm., are obtained by heating CH₂:CH·CO₂Me (III), b.p. 80°, ROH, a little H₂SO₄ [or, less well, *p*-C₆H₄Me·SO₃H, Al(OBu²)₃, or Al-Hg], and quinol or *p*-C₆H₄(NH₂)₂ with continuous removal of the MeOH-(III) azcotrope. Compositions of various azeotropes of ROH with (III) are given. Polymerisation in emulsion gives products which increase in stickiness from (III) (not sticky) to (II); the brittle point is a min. (—65°) with (II). Physical data of the esters are recorded.

Isolation and properties of naturally occurring octadecenoic (oleic) acids. R. C. Millican and J. B. Brown (J. Biol. Chem., 1944, 154, 437—450).—Octadecenoic acids isolated by low-temp. crystallisation of the Me esters of C₁₈-acids from a no. of fats and oils have been compared with oleic acid (I) similarly obtained from olive oil. The acids of chicken fat and of peanut, cottonseed, corn, and linseed oils appear to be identical with (I). Those of lard, beef tallow, beef adrenal phosphatides, pork liver lipins, human fat, and, to a somewhat smaller extent, soya-bean and rape-seed oils appear to be mixtures of (I) with other isomeric acids, (I) being the principal component. The results appear to confirm the previously reported presence of vaccenic acids in beef fat and lard.

F. R. S.

Secondary reactions of ozonolysis of the ethylenic linking. M. Stoll and A. Rouve (*Helv. Chim. Acta*, 1944, 27, 950—961).—The observations of Rieche *et al.* (A., 1944, II, 287) are extended and con-

318

exclusively between the two C atoms united by the ethylenic linking but that in small proportion the terminal C of the products may be removed. Ozonisation of brassidyl or erucyl acetate in EtOAc and hydrogenation of the ozonide followed by removal of acids and distillation, heating, or treatment of the product with boiling NaHSO3 causes the development of fresh acidity and evolution of gas. The monomeric, easily reduced ozonide must therefore be accompanied by one or more peroxides not reduced by H.. These can be the polymeric ozonides of Rieche which decompose thus: $^{\circ}$ C·CHR·O·O·CHR·O·

OAc·[CH₂]₁₂·CHO(CO₂H). Lauryl acetate has been isolated in 2—5% yield. The scheme does not explain other secondary products. The wt. of the ozonide is always > that calc. for one ethylenic linking and the sap. val. of the crude product is always > that of the original material. After hydrogenation the sap. val. remains unchanged and is unaltered by separation of the aldehydes. The sap. val. of the neutral, non-aldehydic portions has therefore been raised and from them Et n-nonoate and Et ω -acetoxytridecoate have been isolated. If the EtOAc used is free from EtOH it must itself have participated in the change, which may be expressed; $2\text{Me}\cdot[\text{CH}_2]_7\text{-CH}\cdot\text{O}\cdot\text{C}\text{CH}\cdot[\text{CH}_2]_{12}\cdot\text{OAc} + 2\text{EtOAc} \rightarrow$

 $\begin{array}{lll} \text{Me}\cdot [\text{CH}_2]_7\cdot \text{CHO} + \text{CO}_2\text{Et}\cdot [\text{CH}_2]_{12}\cdot \text{OAc} + \text{Me}\cdot [\text{CH}_2]_7\cdot \text{CO}_2\text{Et} + \\ \text{CHO}\cdot [\text{CH}_2]_{12}\cdot \text{OAc} + 2\text{AcOH}. & \text{Scission occurs after the introduction} \\ \text{of } O_3, & \text{during either evaporation of the solution or hydrogenation.} \\ \text{The use of ozonolysis for determining the position of a double linking} \\ \text{may thus give rise to error.} & \text{H. W.} \end{array}$

Ricinoleic acid derivatives.—See B., 1944, II, 271.

Physiological antioxidants. P. Gyorgv and R. M. Tomarelli (J. Biol. Chem., 1944, 154, 317—324).—(NHMe·C₈H₄·N:)₂ retards the autoxidation of linoleic acid (I) and synergistically enhances the antioxidant activity of rice bran extract or quinol but is ineffective with a-tocopherol (II). (II) is the only antioxidant tested which inhibits the oxidation of (I) and carotene catalysed by soya-bean lipoxidase but NHPh. has a slight activity. H. G. R.

Lipins of tubercle bacilli. LXVI. Structure of tuberculostearic acid. S. F. Velick ($J.\ Biol.\ Chem.$, 1944, 154, 497—502).—X-Ray examination of the crystal structure of the amides of tuberculostearic acid (I) and of dl- ι -methylstearic acid (II) gives results that are consistent with the hypothesis that (I), although showing no detectable optical rotation, is optically active, and support the structure of the d- or l-form of (II) for (I). F. R. S.

Preparation and pyrolysis of lactic acid derivatives. Production of β-alkoxyethyl and tetrahydrofurfuryl acrylates. M. L. Fein, W. P. Ratchford, and C. H. Fisher (J. Amer. Chem. Soc., 1944, 66, 1201—1203).—Heating 81-8% lactic acid with OR·[CH₂]₂·OH or tetrahydrofurfuryl alcohol and a little H₂SO₄ in C₆H₅ with continuous removal of H₂O gives β-methoxyethyl (56%), b.p. 81—82°/6 mm., β-ethoxyethyl (60%), b.p. 86—87°/5 mm., β-butoxyethyl (81%), b.p. 109—110°/6 mm., and tetrahydrofurfuryl lactate (79%), b.p. 114—115°/5 mm., which are also obtained in 70, 72, 71, and 84% yield, respectively, by heating Et lactate with the appropriate alcohol and Al-Hg with continuous removal of EtOH. 1·1 mols. of Ac₂O then yield 90—95% of the corresponding a-acetoxy-propionates, (I) b.p. 100—101°/7 mm., (II) b.p. 105—106°/6 mm., p. 120—121°/5 mm., and b.p. 132—133°/7 mm., respectively. When passed as vapour through a Pyrex glass tube at 475—525°, these give OMe·[CH₂]₂ (47·5%; yields in this reaction are quoted per mol. of reacted ester and are max.), b.p. 56°/12 mm., OEt·[CH₂]₂ (40%), b.p. 77°/19 mm., OBu·[CH₂]₂ (34%), b.p. 80°/6 mm., and tetrahydrofurfuryl acrylate (III) (70%), b.p. 87°/9 mm. (all obtained also by trans-esterification), with larger amounts of AcOH; (II) yields also 20—50% of MeCHO; (I) yields also 20% of MeCHO and 30% of MeOH. Thus, β-OR does not stabilise Et acrylate. The stability of (III) may be due to only one β-H being present in the alcohol component (cf. Claborn, U.S.P. 2,229,997; B., 1942, II, 55). Physical consts. of the esters are recorded.

Preparation, tautomerism, and reactions of γ-chlorinated aceto-acetic ester. F. Arndt, L. Loewe, and L. Capuano (Rev. Fac. Sci. Istanbul, 1943, 8, A, 122—152).—CCl₃·CHO is condensed with CH₂(CO₂H)₂ in boiling AcOH to CCl₃·CH(OH)·CH₂·CO₂H, the Et ester, m.p. 55—56°, of which is partly oxidised by CrO₃ in AcOH containing KHSO₄ or K₂S₂O₇ at room temp. The product is extracted with Et₂O and the extract is shaken with 20% NH₃, which is immediately acidified, thus giving crude Et γγγ-trichloroaceto-acetate (I), b.p. 91·5°/2·5 mm., which is purified through the Cu salt, m.p. 88·5 with darkening and then 92—93°. The b.p. does not remain const. when (I) is kept. (I) gives a dark red colour with FeCl₃ and is decomposed by NaOH with formation of CHCl₃. Me γγγ-trichloroacetoacetate (II), b.p. 77°/2·5 mm., 89—90°/4 mm. [Cu derivative, m.p. 156—157° (decomp.), softens at 110—112°], is obtained similarly, CH₂Cl·CO·CH₂·CO₂Et (III), b.p. 81—82°/3·5 mm., 103°/12 mm. (Cu derivative, m.p. 160°, decomp. 169°), and the corresponding Me ester (IV), b.p. 85°/4 mm., are described. (I) is

stable to steam and hence can be kept when pure whereas (II) is hygroscopic and readily yields a cryst. hydrate (V), m.p. 65—67° (indef.), softens at 58°, and loses H_{*}O at ~115°, whereby the difference between ketonic and enolic form is destroyed. Hydrates are not formed by (I) or (II). (I), (II), (III), and (IV) are sol. in dil. alkali and dil. NH₃ whilst (I) and (II) dissolve also in Na₂CO₃; all the alkaline solutions are unstable. The indirect Br titration method of Meyer is not applicable to chlorinated acetoacetic esters, which liberate I from acidified KI without intermediate use of Br. The direct titration method shows that the proportion of enol is greater in (III) than in (IV) and greater in either than in CH₂Ac·CO₂Et. (III) does not give a sharp end-point but the proportion of enol in the undiluted material is > that in (III). Br is very slowly decolorised by (V). In EtOH (IV) appears to exist as an equilibrium mixture of ketone, enol, and their common acetal. (III) and (IV) react more vigorously than CH₂Ac·CO₂Et with CH₂N₂; (I) and (II) when nearly anhyd. react violently and hence are pronouncedly acidic. With (III) and (IV) the products contain about equal proportions of the enol Me ether and ethylene oxide, the acidifying action of CH₂Cl being balanced by the electromeric action of the A effect. With (I) and (II) the acidifying action of CCl₃ dominates to such an extent that the product is almost exclusively enol ether practically free from the ethylene oxide. CCl₃·CH(OH)₂ and CHN₃·CO₂Et at 100° give (I) and Et $\gamma\gamma\gamma$ -trichloroglycidate (VI), b.p. 115—116°/11 mm., in the ratio 1:10. (VI) is unchanged by fuming, aq. HCl but is transformed by HCl-EtOH into the chlorohydrin, b.p. 122°/6 mm.

Condensations. Carboxylation and carbethoxylation of (XXIV) ketones, (XXV) esters, using sodium triphenylmethide reagent. (XXIV) β-Keto-ester synthesis. (XXIV) E. Baumgarten, R. Levine, and C. R. Hauser. (XXV) E. Baumgarten and C. R. Hauser (J. Amer. Chem. Soc., 1944, 66, 862—865, 1037—1038; cf. A., 1944, II, 213).—XXIV. COBuβ-with CPh₃Na at 0° and then Et₂CO₃ at room temp. gives COBuβ-CHPrβ-CO-Et (50%), but COMeEt with CPh₃Na and then p-C₆H₄Ph·O·CO-OEt (I) gives only COEt·CH:CMeEt. Carboxylation of CORR' is effected by interaction with CPh₃Na and then solid CO₂ in N₂, followed by estrification by CH₂N₂. Thus, COMeEt gives Me β-keto-n-valerate (37%), b.p. 73—76°/16 mm. (Cu salt, m.p. 160·3—160·9°), which with NHPh·NH₂ in AcOH gives 1-phenyl-3-ethyl-5-pyrazolone and with NaOMc-Bu^aBr-MeOH at 60° gives Me α-propionyl-n-hexoate (47%), b.p. 108—112°/16 mm., whence H₂SO₄-AcOH yields n-C₅H₁₁·COEt. Pinacolone gives similarly Me β-keto-γγ-dimethyl-n-valerate (57%), b.p. 82—84°/17 mm., COPrβ₂ gives Me β-keto-aαγ-trimethyl-n-valerate (55%), b.p. 94—96°/26 mm., and COBuβ₂ gives Me β-keto-8-methyl-a-isopropyl-n-hexoate (42%), b.p. 114—116·5°/19 mm. In general, when using CPh₃Na, the latter method is preferable to direct carbethoxylation.

general, when using CPh₃Na, the latter method is preserable to sate carbethoxylation.

XXV. By carboxylation in presence of CPh₃Na and then hydrolysis, Pr β CO₂Et gives CMe₂(CO₃H)₂ (II) (73%), m.p. 193—194 (decomp.) (lit. 192—193°), and EtOAc gives CH₂(CO₂H)₂ (III) (34%); without hydrolysis, Pr β CO₂Bu $^{\gamma}$ gives Bu $^{\gamma}$ H dimethylmalonate (IV) (81%), m.p. 80·0—80·0°, and Bu $^{\gamma}$ OAc gives Bu $^{\gamma}$ H malonate (V) (57%), decomp. when distilled. At 140—150°, (IV) gives CMe₂·CH₂, (II), and some Pr β CO₂H; at 120° (V) gives (III). In presence of CPh₃Na, EtOAc and Et₂CO₃ give CH₂(CO₂Et)₂ (41,0) and CH₂Ac·CO₂Et (12%); Pr β CO₄Et and (I) give CMe₂(CO₂Et)₂ (83%); Bu $^{\gamma}$ OAc and (I) give CO₂Et·CH₂·CO₂Bu $^{\gamma}$ (25%). R. S.

Induced oxidation of oxalic acid by dichromate with ferrous sulphate as indicator.—See A., 1944, I, 253.

Emetic [antimony] derivatives of oxalic and glyoxylic acids. Y. Volmar and G. Gœttelmann (Compt. rend 1943, 216, 828–828). H₂C₂O₄ and CHO·CO₂H unite with Sb₂O₃ to form antimonyl derivatives; those from H₂C₂O₄ are difficult to purify and exhibit a tendency to crystallise with one or more mols. of H₂C₂O₄ or norma oxalate. The products from AcCO₂H and CHO·CO₂H are less easy to prepare and are more hydrolysable. The following are described. SbHC₂O₅; SbK₂H(C₂O₄)₃,2H₂O; SbK(C₂O₄)₂,H₂O; H. G. R.

Purification of maleic anhydride.—See B., 1944, II, 246.

New type of active (partial) racemates. A. Fredga (Arkiv Kemi, Min., Geol., 1944, 18, B, No. 4, 7 pp.).—The possibility is indicated that, in some circumstances, an optically active compound may form a racemic-like mol. compound with an inactive compound of similar structure but without centres of asymmetry. An example is found in the system (+)-dimethylglutaric-glutaric acid (I). The mpcurve of (I) with r- or meso-dimethylglutaric acid is of the ordinary eutectic type.

Formation of ketobutyrolactone carboxylic esters (ketoparaconic esters) and the mechanism of reaction of ketolisation of oxalacetic ester. H. Gault and R. Durand (Compt. rend., 1943, 216, 850).—Et α-keto-γ-butyrolactone-β-carboxylate (I), m.p. 108° (phenythydrazone, m.p. 142.5°; semicarbazone, m.p. 209°), is obtained from CO₂Et·C(OK).CH·CO₂Et (II) and excess of 35% CH₂O at -12. Similarly prepared from MeCHO is the γ-Me derivative of (I),

oil (phenylhydrazone, m.p. 130°). A mechanism is suggested whereby RCHO [as $CHR(OH)_2$] yields an adduct with (II), followed by loss of $H_2O+EtOH$. The above results show that AlkCHO react similarly to ArCHO. A. T. P.

Trihydroxyssobutyric acid and its derivatives. H. M. Coleman [with J. W. E. Glattfeld] (J. Amer. Chem. Soc., 1944, 66, 1183—1188).—97% conversion of glycerol into CO(CH2·OH)2 (I) (crystallooptical properties described) by Acetobacter suboxydans at pH 6·0—6·8 is detailed, the reaction being followed by treatment of samples with HIO4 and back-titration thereof. Gradually adding NaCN to (I) in HF, concn. to a syrup, and then hydrolysing by aq. HCl at 0° gives (OH·CH2)2(OH)·CO2H (II) (84%), m.p. 117° (NHPh·NH2, m.p. 121—122°, and p-toluidine salt, m.p. 126·5—127°), isolated by way of the basic Ba, BaX·OH, and then the Ca, +4H4O, salts. With BzCl-C5H5N at 0°, (II) gives the 'dibenzoate, m.p. 137° [NHPh·NH2 (?) salt, m.p. 110°], but at 130—135° gives the tribenzoate [NHPh·NH2 (?) salt, m.p. 137—137·5° (red)], and with AcCl at 65° gives the triacetate, a resin [NHPh·NH2 (?) salt, 2(OAc·CH2)2C(OAc)·CO2H.3NHPh·NH2, m.p. 94° (red)], but by heating in Ac2O at 100° and distilling at 200—240° (bath)/1 mm. yields a dimer, m.p. 86—86·5°, of (?) tetra-acetoxymethylglycolide.

Autoxidation of ascorbic acid in presence of copper.—See A., 1944, J. 253.

Autoxidation of ascorbic acid in presence of vanadic acid, molybdic acid, and tungstic acid sols.—See A., 1944, I, 253.

Preparation of fully acetylated aldonic acids and nitriles. K. Ladenburg, M. Tishler, J. W. Wellman, and R. D. Babson (J. Amer. Chem. Soc., 1944, 66, 1217—1218).—d-Ribonic acid tetraacetate (I), m.p. 139—140°, [a]\(^3\)\(^6\) =27.5° in AcOH, is obtained by HCl-Ac2O in the stated yields from Cd (85%), NH4 (46%), K (25%), Ca (22%), and Ba (4%) d-ribonate. Cd arabonate similarly gives 86% of d-arabonic acid tetra-acetate. K ribonate and AcOH at 60° give d-ribonic acid, m.p. 112—113°, [a]\(^2\)\(^6\) =17.3° in MeOH, unstable at room temp., which by the method of Robbins et al. (A., 1940, II, 266) gives (I) (15%), d-ribolactone triacetate (II) (10%), m.p. 54—56°, [a]\(^6\)\(

Salts of galacturonic acid and their application to the preparation of galacturonic acid from pectic substances. H. S. Isbell and H. L. Frush (J. Res. Nat. Bur. Stand., 1944, 32, 77—94).—Neutralisation of galacturonic acid (I) with the corresponding carbonate or hydroxide gives Na, $[a]_D^{20} + 36\cdot0^\circ$, K ($+0\cdot5H_2O$), $[a]_D^{20} + 31\cdot6^\circ$, NH_4 ($+0\cdot5H_2O$), $[a]_D^{20} + 35\cdot5^\circ$, Cd ($+2H_2O$), $[a]_D^{20} + 28\cdot4^\circ$, and Ag ($+0\cdot5H_2O$), $[a]_D^{20} + 25\cdot1^\circ$, β -galacturonates and Ca ($+H_2O$) (II), $[a]_D^{20} + 36\cdot8^\circ$, and Sr ($+5H_2O$), $[a]_D^{20} + 29\cdot1^\circ$, α -galacturonates. Neutralisation of (I) with the correct proportions of the carbonates and/or hydroxides affords Na Ca ($+6H_2O$) (III), $[a]_D^{20} + 32\cdot4^\circ$, Na Sr ($+6H_2O$), $[a]_D^{20} + 30\cdot2^\circ$, and K Ca ($+6H_2O$), $[a]_D^{20} + 31\cdot4^\circ$, α -galacturonates. (III) treated with enough H_2O ($+6H_2O$), $[a]_D^{20} + 27\cdot8^\circ$, Na Cd ($+6H_2O$), $[a]_D^{20} + 27\cdot8^\circ$, and Na Pb ($+6H_2O$), $[a]_D^{20} + 27\cdot8^\circ$, Ac Cd ($+6H_2O$), $[a]_D^{20} + 27\cdot8^\circ$, and Cd ($+6H_2O$), Cd0), Cd1, Cd2, Cd3, Cd4, C

Dimethyl dimethylene-l-idosaccharate. W. G. M. Jones and L. F. Wiggins (J.C.S., 1944, 363).—l-Iditol (from l-sorbose with H_2 -Raney Ni) oxidises (HNO₃) to l-idosaccharic acid, isolated as l-casalt. This, with paraformaldehyde and l-gSO₄ followed by l-feOH, yields l-dependent of Me₂ dimethylene-l-idosaccharate, m.p. 296°, identical with that from epimerisation of l-dependent of l

Structure of monomethylene-d-glucosaccharolactone. W. G. M. Jones and L. F. Wiggins (J.C.S., 1944, 364—366).—ay-Monomethyleneglucosaccharo- $\beta\varepsilon$ -lactone on oxidation (CrO_3 in AcOH) and esterification yields $M\varepsilon_2$ ay-monomethylenexylotrihydroxyglutarate (I), m.p. 204°, identical with that obtained from d-xylose by oxidation HNO₃) to Ca xylotrihydroxyglutarate, condensation with paraformaldehyde, and esterification. (I) yields the free i-acid, m.p. 253—254°, and the diamide, m.p. 286° (negative Weerman test for a-OH), and on methylation (MeI and Ag₂O) affords $M\varepsilon_2$ β -methyl-ay-monomethylenexylotrihydroxyglutarate, m.p. 157°, giving the diamide, m.p. 295° (decomp.), with NH₃ in MeOH. Me₂ monomethylene-glucosaccharate gives (MeI and Ag₂O) $M\varepsilon$ δ -methyl-ay-monomethyleneslucosaccharo- $\beta\varepsilon$ -lactone, m.p. 149° and $M\varepsilon_2$ $\beta\delta$ -dimethyl-ay-monomethyleneglucosaccharate, m.p. 96—97°.

Formation of "active racemates" between organic compounds of sulphur and selenium. A. Fredga (Arkiv Kemi, Min., Geol., 1944, A. No. 17, 15 pp.).—r-Thioacetic-α-propionic acid (I), from CHMeBr·CO₂H and SH·CH₂·CO₂H, has m.p. 87—88°. Reduction N 2 (A., II.)

of (—)-(S·CHMe·CO₂H)₂ by Na–Hg and treatment of the product with CH₂Cl·CO₂Na gives (—)-thioacetic-α-propionic acid (II), mp. 79—80°, [α]₂²⁶ – 172·9° in EtOAc (cf. Fitger, Diss., Lund., 1924). The corresponding (+)-acid (III) has m.p. 79—80°, [α]₂²⁶ +172·7° in EtOAc, +173·3° in AcOH, +169·6° in abs. EtOH, +153·0° in COMe₂, +95·0° in CHCl₃, +109·8° in 0·4n·HCl, and +55·0° in neutral aq. solution. r-Thio-αβ-dipropionic acid, m.p. 72—72·5°, is obtained from SH·CHMe·CO₂H and Cl·[CH₂]₂·CO₂H. Reduction of (S·CHMe·CO₂H)₂ by Na–Hg and treatment of the product with Cl·[CH₂]₂·CO₂H affords (+)-thiodi-αβ-propionic acid (IV), [α]₂²⁶ +131·1° in EtOAc, +129·7° in AcOH, +129·2° in abs. EtOH, +125·2° in COMe₂, +111·1° in CHCl₃, +104·4° in 0·4n·HCl, +69·6° in neutral aq. solution. The similarly prepared (—)-acid (V) has [α]₂²⁶ –131·0° in EtOAc. r-Selenoacetic-α-propionic acid (VI), m.p. 65—66°, is obtained by the successive action of Na–Hg and CHMeBr·CO₂H on (Se·CH₂·CO₂H)₂ or of Na–Hg and CH₂Cl·CO₂H on (Se·CHMe·CO₂H)₃. The (+)-acid (VII), obtained by successive treatments of (+)-(Se·CHMe·CO₂H), with Na–Hg and CH₂Cl·CO₂H has m.p. 60·5—61·5°, [α]₂²⁶ +149·4° in EtOAc, +166·2° in AcOH, +150·4° in abs. EtOH, +137·1° in COMe₂, +123·7° in CHCl₃, +116·4° in 0·4n·HCl, and +40·7° in neutral aq. solution. r-Selenoac-gl-dipropionic acid (VIII), m.p. 72·5—73·5°, is obtained by reduction of (Se·[CH₂]₂·CO₂H)₂ in presence of neutralised CHMeBr·CO₃H but not through (Se·CHMe·CO₂H)₂ and β-halogenopropionic acids. It is best resolved into its optical components by quinine in aq. COMe₂, thus leading to the (—)-acid (IX), two forms, m.p. 53·5—54·5° and 61·5—62·5°, [α]₂²⁶ –124·2° in EtOAc, —110·5° in CHCl₃, —109·6° in do-4n·HCl, and —52·3° in neutral aq. solution (quinine salt, +3·33° in H₂O). M.p. diagrams show that (I) and (VI) are true racemates. (II) anbs. EtOH, —119·3° in COMe₂, —110·5° in CHCl₃, —109·6° in do-4n·HCl, and —52·3° in neutral

Catalytic formation of long-chain aldehydes.—See B., 1944, II, 272.

Carbonyl reduction by thioacetal hydrogenolysis. M. L. Wolfrom and J. V. Karabinos (J. Amer. Chem. Soc., 1944, 66, 909—911).— A general method is described for converting CO into CH₂ by conversion (by EtSH, ZnCl₃, and NaOH at 5°—room temp.) into >C(SR)₂, followed by hydrogenation of the crude products in presence of Raney Ni in boiling 70% EtOH. It is applied to 3 sugar acetates, 1 free sugar, and 5 other CO-compounds. Thus are obtained 1-deoxy-D-galactitol [L-fucitol] penta-acetate (66% from D-galactose penta-acetate), 1-deoxy-D-glucitol [1-deoxy-L-sorbitol, L-gulomethylitol] penta-acetate (60% from D-glucose penta-acetate), 2-deoxy-D-mannitol [-l-sorbitol, -D-glucitol] penta-acetate (20% from D-fructose penta-acetate), 1-deoxy-D-galactitol (24% from D-galactose), PhMe (65% from PhCHO), PhEt (66% from COPhMe), n-C₇H₁₈ (50% from COMe·C₈H₁₁-n and 40% from n-C₆H₁₃·CHO), and CH₂Ph₂ (77% from COPh₂). MeCHO is isolated from the reaction mixture after reduction of C₆H₁₃·CH(SEt)₂.

Condensations. XXVI. Acylation of methyl ketones with aliphatic esters by means of sodium amide. Synthesis of β-diketones of the type, COR·CH₂·COR'. J. T. Adams and C. R. Hauser. XXVII. Preparation of potassium triphenylmethide and its use in condensations. R. Levine, E. Baumgarten, and C. R. Hauser (f. Amer. Chem. Soc., 1944, 66, 1220—1222, 1230—1231; cf. A., 1944, II, 211).—XXVI. Adding COMER (1 mol.) and then R·CO₂Et (2 mols.) to NaNH₃. (2 mols.) in Et₂O gives CH₃(COEt)₂ (57% with 13% of COEt·CHMe·COMe), b.p. 78—80°/30 mm. (Cu salt, m.p. 209—210°), CH₂(COPr^a)₂ (68%), b.p. 101—102°/2 mm. (Cu salt, m.p. 156—157°), n-dodecane-εη-dione (80%), b.p. 109—1110°/20 mm. (Cu salt, m.p. 136—137°), ββ-dimethyl-n-decane-γα-dione (52% with some Bu^aCO·NH₂ and COBu^a·CHPr^a·CO₂Et), b.p. 116—119°/20 mm. (no Cu salt), βι-dimethyl-n-decane-εη-dione (76%), b.p. 116—119°/20 mm. (blue Cu salt, m.p. 157—158°), n-tridecane-ζβ-dione (68%), b.p. 162—164°/20 mm. (blue Cu salt, m.p. 119—120°), ββζζ-tetramethyl-n-heptane-γα-dione (28%), b.p. 96—97°/20 mm. (purple Cu salt, m.p. 197—198°), CH₂Ac₂ (54%), COMe·CH₂·COBu^a (43%), b.p. 70—71°/20 mm. (Cu salt, m.p. 191—192°), COEt·CH₂·COBu^a (70% with 2% of COMe·CH±·COEt), b.p. 84—76°/20 mm. (Cu salt, m.p. 157—158°), and COMe·CH₂·COPr^β (42%), b.p. 66—67°/20 mm. (Cu salt, m.p. 171—172°). 1 mol. of NaNH₂ gives about half these yields; a reaction mechanism to account for this is proposed. XXVII. CHPh₃ and KNH₂ in liquid NH₃ give KCPh₃, which

XXVII. CHPh₃ and KNH₂ in liquid NH₃ give KCPh₃, which after replacement of NH₃ by Et₂O is used effectively for self-condensation of Bu<sup>\$\textit{\theta}\$CO₂Et and condensation of Pr\$\theta\$CO₂Et with BzCl or EtI, and for conversion of COMeEt into COEt·CH₂·CO₃·H. The CHPh₃ recovered is re-used.

R. S. C.</sup>

Acetylene derivatives. XXXIII. Conversion of divinyl ketones. Addition of hydrogen chloride to $\beta\beta$ -dimethyldivinyl ketone. I. N.

Nazarov and T. D. Nagibina (Bull. Acad. Sci. U.R.S.S., Cl. Sci. Chim., 1943, 206—215).—Addition of 1 mol. of HCl to CH₂:CH·CO·CH:CMc₂ (I) (b.p. 42—43°/8 mm.) yields vinyl β -chloroisobutyl ketone, b.p. 57—60°/8 mm. (decomp.). Addition of 2 mols. of HCl gives a β -chloroeithyl β -chloroisobutyl ketone, b.p. 92—94°/9 mm. (decomp.). With a 1% solution of KOH in EtOH (I) forms δ -ethoxy- β -methyl- $\Delta\beta$ -hexen- δ -one; polymerisation of (I) also occurs. Hydrolysis (6% H₂SO₄) of δ -methoxy- β -methyl- $\Delta\beta$ -hexen- δ -one yields 2:2-dimethyltetrahydro-4-pyrone. Addition of 2 mols. of HCl to phorone with subsequent hydrolysis yields 2:2:6:6-tetramethyltetrahydro-4-pyrone, b.p. 73—75°/17 mm. V. B.

Solubilities of high mol. wt. symmetrical normal aliphatic tertiary amines.—See A., 1944, I, 221.

Steric strain and anomalous base strength of normal aliphatic amines.—See A., 1944, I, 224.

Preparation of sec.- and tert.-amines. C. Prévost and H. C. de Mauny (Compt. rend., 1943, 216, 771—772).—NHEt₂ and excess of cold 33% aq. CH₂O give NEt₂·CH₂·OH, convertible by HCl in C₆H₆ into CH₂Cl·NEt₂, HCl, which with MgBuCl, MgMeI, or MgPhBr affords n-C₅H₁₁·NEt₂, b.p. 155°/760 mm., NEt₃, or CH₂Ph·NEt₂, b.p. 209°/755 mm. NHMe·CH₂·OH similarly leads to CH₂Ph·NHMe, b.p. 181°/760 mm. (aurichloride, m.p. 138°). A. T. P.

Preparation of diamines from keto-nitriles.—See B., 1944, II, 247. Manufacture of sec. diamines.—See B., 1944, II, 248.

Reaction between amines and unsaturated compounds containing halogen attached to one of the ethylenic carbon atoms. III. Influence of a gem-dimethyl group. H. C. Murfitt and J. C. Roberts (J.C.S., 1944, 371—373; cf. A., 1938, II, 335).—CH₂:CBr·CO₂Et (I) with NHMc₂ in EtOH gives Et αβ-bis(dimethylamino)propionate, b.p. 95—96°/14 mm. [picrate, m.p. 122—123° (decomp.); platinichloride, m.p. 190° (decomp.), changes at 186°], also obtained from CH₂Br·CHBr·CO₂Et (II) and NHMe.. (I) or (II) and piperidine (III) yield (?) Et αβ-dipiperidinopropionate, b.p. 175—176·5°/13 mm. (no cryst. picrate). CMc₂Br·CHBr·CO₂Et, b.p. 112—114°/18 mm. (from CMc₂:CH·CO₂Et and Br), with NaOEt gives Et α-bromo-ββ-dimethylacrylate (IV), b.p. 88—89°/13 mm., which with (III) in EtOH yields impure Et α-piperidino-ββ-dimethylacrylate, b.p. 122—124°/18 mm. [platinichloride, m.p. 183° (decomp.), softens at 179°]. With NHMe₂ (IV) gives Et α-dimethylamino-ββ-dimethylacrylate, b.p. 76—78°/18 mm. (deliquescent hydrochloride). The gem-Me₂ thus diminishes the reactivity towards addition across the double linking.

Phosphorylcholine. E. Baer and C. S. McArthur [with, in part, D. B. Mundell] (J. Biol. Chem., 1944, 154, 451—460).—Phosphorylation of choline with $(\mathrm{OPh})_2\mathrm{POCl}$ in $\mathrm{C}_5\mathrm{H}_5\mathrm{N}$ gives diphenylphosphorylcholine, isolated as the aurichloride, m.p. 122—123°, decomposed by Ag to diphenylphosphorylcholine chloride, m.p. 133—134° (?), which is catalytically hydrogenated (PtO₂) to phosphorylcholine chloride, isolated as the Ba salt. No secondary reaction products are formed. The rates of hydrolysis of phosphorylcholine (I) in acid at 100° and 125° and alkali at 125° are comparable with those of a- and β -glycerophosphoric acid, and glyceric acid-3-phosphoric acid. True and pseudo-choline-esterase do not hydrolyse (I).

Tri(hydroxymethyl)aminomethane derivatives. I. Polyhydroxyamines. J. S. Pierce and J. Wotiz (J. Amer. Chem. Soc., 1944, 66, 879—881).—(OH·CH₂)₃C·NH₂ (I) (4 mols.) (hydrochloride, m.p. 149—150°; hydrobromide, m.p. 133—134°) and Br·[CH₂]_n·Br (1 mol.) in boiling EtOH give NN'-di-ββ'β''-trihydroxy-tert.-butyl-ethylene-m.p. 205—206°, -propylene-αγ-, m.p. 170—171°, and -hexamethylene-diamine dihydrobromide, m.p. 160·5—162°. OH·CH(CH₂Cl)₂ (1 mol.) and (I) (2 mols.), best in boiling EtOH, give β-hydroxy-NN'-di-ββ'β''-trihydroxy-tert.-butyl-propylene-αγ-diamine, an oil (dihydrochloride, m.p. 186—188°; dihydrobromide, m.p. 160—162°). NH([CH₂]₂·OH)₂ (II) (1 mol.) with epichlorohydrin (1 mol.) in EtOH at ~30° (cooling) and then (I) (1 mol.) in boiling EtOH gives β-hydroxy-NN-di-β-hydroxyethyl-N'-ββ'β''-trihydroxy-tert.-butyl-propylene-αγ-diamine dihydroxy-NNN'N'-tetra-β-hydroxyethyl-propylene-αγ-diamine dihydroxy-NNN'N'-tetra-β-hydroxyethyl-propylene-αγ-diamine dihydroxy-NNN'N'-tetra-β-hydroxyethyl-propylene-αγ-diamine dihydroxy-tert.-hydroxy-tertly-N'-ββ'β''-trihydroxy-tert.-butyl-N-β-hydroxy-ethyl-N'-ββ'β''-trihydroxy-tert.-butyl-N-β-hydroxy-ethyl-N'-ββ''-trihydroxy-tert.-butylamine dihydro-chloride, a syrup. (Cl·[CH₂]₃)₂O (1 mol.) and (I) (2 mols.) in EtOH at 150° yield 4-ββ β''-trihydroxy-tert-butylamino)-n-propyl-ββ'β''-trihydroxy-tert-butylamine hydrochloride, m.p. 184—185°. OH-CH₂CH(OH)-CH₂Cl (1 mol.) and (II) (2 mols.) in boiling EtOH give βγ-dihydroxy-n-propyl-ββ'β''-trihydroxy-tert-butylamine hydrochloride, a syrup; OH-[CH₂]₃-Cl or OH-[CH₂]₃-Br leads similarly to β-hydroxy-tert-butylamine hydrochloride, a syrup. OH-[CH₂]₃-Cl or OH-[CH₂]₃-Br leads similarly to β-hydroxy-tert-butylamine (hydrobromide, a syrup). Purification of the products is difficult. Many of the bases dissolve Fe(OH)₃, Bi(OH)₃, and other metal hydroxides.

Synthesis of β-amino-acids. IV. β-Aminononoic acid and its derivatives. V. M. Rodionov and V. A. Zvorkina (Bull. Acad. Sci. U.R.S.S., Cl. Sci. Chim., 1943, 216—232).—β-Aminobutyric acid hydrochloride, m.p. 109·5—110·5°, is obtained from CH₂(CO₂H)₂ and MeCHO-NH₃ in EtOH. β-Aminononoic acid (I), m.p. 205° (hydrochloride, m.p. 135·5—136°; Bz derivative, m.p. 129·5—131°; urethane derivative, m.p. 80°), results in 23% yield from heptaldehyde, CH₂(CO₂H)₂, and NH₃ in EtOH. KCNO yields the corresponding uraminic acid. (II), m.p. 127—128°. The amide, m.p. 185—186°, of (I) is obtained through SOCl.. With hot HCI (II) gives a mixture of n-hexylhexa-hydropyrimidine and -dihydropyrimidine.

Manufacture of β -alanine.—See B., 1944, II, 247.

Preparation of *l*-leucyl-*l*-glutamic acid anhydride. Its behaviour towards proteinases. N. Lichtenstein (*J. Amer. Chem. Soc.*, 1944, 66, 1103—1104).—dl-CHBu $^{\beta}$ Br-COBr (1·25 mols.) and *l*-glutamic acid (1 mol.) in aq. alkali give a solution whence crystallisation yields *l*-leucyl-*l*-glutamic acid (I), [a]¹⁴ +10·2° in n-HCl, constitution in $^{\beta}$ -C₁₀H₁·OH at 170—180° into the *anhydride*, m.p. 213—215°, [a]_D —47·4° in 0·1n-NH₃, which in HCl regenerates (I) and is unaffected by a glycerol extract of pancreatin, pancreatic proteinase, or papain. R. S. C.

Configuration of valyvaline in gramicidin. H. N. Christensen (J. Biol. Chem., 1944, 154, 427—436).—Valylvaline, separated as the free dipeptide and as the Bz derivative under various conditions from gramicidin hydrolysates, is the pure optically inactive dl form, d(-)-valyl-d(-)-valine + l(+)-valyl-l(+)-valine, since the p-phenyl-phenacyl ester, m.p. 201°, of the Bz derivative is identical with the synthetic r-form. The findings indicate that no substantial quantities of the other two possible isomerides are present in the hydrolysates. Hence optically inactive valylvaline could not have arisen by racemisation. These conclusions suggest that Bacillus brevis joins together in gramicidin only valines of like configuration. The p-phenylphenacyl ester of benzoyl-d(-)-valyl-l(+)-valine and its optical enantiomorph has m.p. 141— 142° ; the mixed Et ester has m.p. 152° , whilst the Et ester of benzoyl-d(-)-valyl-d(-)-valine and its enantiomorph has m.p. 153° .

Synthesis of tyrosyltyrosyltyrosine and tyrosyltyrosyltyrosyltyrosine. A. E. Barkdoll and W. F. Ross (J. Amer. Chem. Soc., 1944, 66, 951—956).—N-Carbobenzyloxytyrosyltyrosine (I), + H₂O (A, 1934, 809), with CHMeN₂ gives the Et ester (II), m.p. 159—160-5°. N-Carbobenzyloxy-O-acetyltyrosine Et ester (III) (loc. cit.) with H₂-Pd-black in 0.2N-HCl-EtOH gives tyrosyltyrosine Et ester (III) (loc. cit.) hydrochloride (IV), m.p. 216° (decomp.), also obtained similarly from (II) or from tyrosyltyrosine (V) by HCl-EtOH at 0°. Hydrogenation of the Me ester (prep. by CH₂N₂-MeOH), m.p. 174—175°, of (I) gives tyrosyltyrosine Me ester hydrochloride, m.p. 210°. With N-NaOH and then Ac₂O-dioxan-H₂O-NaOH, (III) gives N-carbobenzyloxy-O-acetyltyrosyl-O-acetyltyrosine, m.p. 209—210°, which is converted into an oil by PCl₅, probably owing to attack on the peptide linking. The Et ester of (V) [prep. from (IV) by NaHCO₂ in EtOAc-H₂O] with N-carbobenzyloxy-O-acetyltyrosyl chloride (VI) (modified prep.) in EtOAc gives N-carbobenzyloxy-O-acetyltyrosyltyrosyltyrosine Et ester (VIII), m.p. 211°, which with, successively, H₂-Pd-black-HCl-EtOH-dioxan, NaHCO₂-EtOAc-H₂O, and HCl-EtOAc at 0° give threconfluencing. Et ester [kulfocessively, H₂-Pd-black-HCl-EtOH-dioxan, NaHCO₃-EtOAc-H₂O, and HCl-EtOAc at 0° give tyrosyltyrosyltyrosine Et ester hydrochloride (IX), m.p. 231-231.5° after darkening and sintering. 1.1n-NaOH hydrolyses (VII) to N-carbobenzyloxyltyrosyltyrosyltyrosine, m.p. 182-183°, whence H₂-Pd-black and a trace of AcOH in MeOH yield tyrosyltyrosyltyrosine (X), +2H₂O, m.p. 181–182 [with HCl-EtOH gives (IX)]. N₂H₄ and (III) in EtOH give N-carbobenzyloxytyrosyltyrosine hydrazide, +H₂O, m.p. 246° (decomp.). which gives only indefinite products with the Et ester of (V). Pure (VI) with (VIII) in EtoAc gives N-carbobenzyloxy-0-acetyllyrosyltyrosyltyrosyltyrosine Et ester, m.p. 235·5—236·5°, hydrolysed by N-NaOH to the acid, +MeOH, darkens at 220°, m.p. 224—225, (decomp.), whence Ha-Pd-black and a trace of AcoH in MeOH yield tyrosyltyrosyltyrosine (XI), a glass. Tyrosine (XII), (V), and (X) have similar absorption max. (2750, 2760, and 2765 A., respectively) but increasing E_{\max} . (1350, 2850, and 4160, respectively). (XII) is almost insol., (V) and (X) are freely sol., but (XI) only slightly sol. in H₂O. In EtOH or MeOH solubility increases regularly from the monor to the tetra-partial. (X) and (XII) give puts with the mono- to the tetra-peptide. (X) and (XII) give ppts. with Millon's reagent. N-Carbobenzyloxy-O-acetyltyrosine Me ester [prep. from the acid (XIII) by CH₂N₂-MeOH], m.p. 73—74.5°, with H₂-Pd-black in 0.27N-HCl-MeOH gives tyrosine Me ester hydrochloride, but in AcOH gives O-acetyltyrosine Me ester [hydrochloride, m.p. 9018 (decemb)]. Similarly, IJ Dd black accomplete (YIVI) in AcOH. 201° (decomp.)]. Similarly, H2-Pd-black converts (XIII) in AcOH into O-acetyltyrosine [hydrochloride, m.p. 223° (decomp.)]. When (I) or (II) is treated with HCl-EtOH at 0°, esterification is accompanied by partial hydrolysis of the O·CO·O·CH.Ph, but at the b.p. both reactions are complete; these are general reactions since the) occur also with N-carbobenzyloxyglycine and its Et ester, m.p. 35.5-36.5°.

Synthesis of methionine containing isotopic carbon and G. W. Kilmer and V. du Vigneaud (J. Biol. Chem., 1944, 154,

247—253).—CH₂Ph·³⁴SH, obtained from CH₂PhCl and ³⁴S (from Na₃²⁴SO₃), with CH₂Cl·³CH₂Cl, obtained from ¹³CH₂Me·NH₂ (from Na¹³CN), gives CH₂Ph·³⁴S·¹³CH₂·¹³CH₂Cl, converted by methods previously described into isotopic methionine, ³⁴SMe·[¹³CH₂]₂·CH(NH₂)·CO₂H. F. R. S.

Hydrolysis of tartaramides. M. Badoche (Compt. rend., 1943, 216, 892—895).—A mechanism is given to explain the non-racemisation of d-tartaramide on alkaline hydrolysis, through an intermediate enolamine.

A. T. P.

Structure-chemical investigations. XIII. Malondithioamide. H. Lehr, W. Guex, and H. Erlenmeyer (Helv. Chim. Acta, 1944, 27, 970—972).—CH₂(CN)₂ is converted by H₂S in EtOH containing KOEt at -10° and then at $>50^{\circ}$ into malondithioamide (I), m.p. 212° after decomp., converted by warm CH₂AcCl into di-4-methyl-2-thiazolylmethane dihydrochloride, m.p. 221° (decomp.), and by COPh-CH₂Br in warm AcOH into di-4-phenyl-2-thiazolylmethane, m.p. 119—120°. With (CO-CH₂Br)₂ (I) gives a pale yellow, amorphous product which rapidly darkens, possibly denoting the conversion of a chain polymeride, in part at any rate, into a macrocyclic compound. H. W.

Reduction of nitroguanidine. Oxidation potentials of the nitroguanidine-nitrosoguanidine and nitrosoguanidine-aminoguanidine systems.—See A., 1944, I, 251.

Composition and constitution of ethylenebiguanide. K. Chakravarty and P. Ray (J. Indian Chem. Soc., 1944, 21, 41—43).— Attempts to prepare ethylenebiguanide from (CH₂·NH₄)g,2HCl and dicyanodiamide according to Dittler (A., 1908, i, 924) give ethylenedibiguanide [CH₂·NH·C(:NH)·NH·C(:NH)·NH-], isolated as the sulphate (+1·5H₂O). Its constitution is confirmed by the isolation of the compounds, $C_0H_{13}N_{10}Cu,H_0SO_4,2\cdot5H_2O$ and $C_0H_{14}N_{10}Cu,2HCl$.

Guanylurea salts.—See B., 1944, II, 248.

Preparation of ethyl monoalkylcyanoacetates by simultaneous condensation—reduction. E. R. Alexander and A. C. Cope (J. Amer. Chem. Soc., 1944, 66, 886—888).—Simultaneous condensation and hydrogenation (Pd-C; 1—2 atm.) of CORR' and CN·CH₂·CO₂Et gives, usually, good yields of CRR'·CH(CN)·CO₂Et. For aldehydes piperidine acetate and AcOH, and for ketones NH₄OAc–AcOH, are the best condensing agents. For ketones EtOH, for C₂₋₄-aldelydes AcOH, and for other aldehydes dioxan is the best solvent. Use of PtO₂ leads to reduction of CN, and Raney Ni is inactivated by the AcOH. COPra gives only a 39% yield, and COBu\$\beta\$, gives an impure product. CH₂(CO₂Et)₂ does not react thus. The following are new: Et a-cyano-n-nonoate, b.p. I11—113°/1 mm., -\beta\$-dimethyl-n-hexoate, b.p. 117—119°/8 nm., -\beta\$-methyl-n-octoate, b.p. 135—137°/8 mm., and -\beta\$-methyl-n-nonoate, b.p. 112—115°/1 mm.

Gleavage of (dialkylvinyl) alkylcyanoacetic esters by sodium alkoxides. E. M. Osman and A. C. Cope (J. Amer. Chem. Soc., 1944, 66, 881—886).—Cleavage of CHR:CR':CR''(CN)'CO₂R''' by NaOAlk—AlkOH at 30—80° to unsaturated nitriles and alkyl carbonates is very facile owing to the electron-attracting properties of CHR:CHR' and CN; variation of R'' affects the results as expected from the electronic properties of R''; variation of R''' has little effect, except that cleavage is slow when R''' = Me. The reaction is useful for the prep. of unsaturated nitriles, which are obtained mostly in the Δ^a-form. Hydrolysis by KOH-(CH₂·OH)₂ gives 49—81% of mixed Δ^a. and Δβ-acids. Cleavage of malonic ester derivatives is much slower. The following are described. Et a-cyano-aβ-dimethyl-Δβ-n-nexenoate, b.p. 106—108°/11 mm., a-cyano-aβ-dimethyl-Δβ-n-nexenoate, b.p. 129—133°/20 mm., a-cyano-aβ-dimethyl-Δβ-n-nexenoate, b.p. 129—133°/20 mm., and a-cyano-aβ-dimethyl-Δβ-n-nexenoate, b.p. 132—136°/12 mm.; Me, b.p. 114—116°/8 mm., and a-cyano-β-methyl-a-ethyl-Δβ-n-hexenoate, b.p. 139—142°/23 mm.; aβ-dimethyl-n-pentenonitrile, b.p. 64°/17 mm., -n-hexenonitrile, b.p. 13—77°/14—16 mm., and -n-octenonitrile, b.p. 96—98°/9 mm.; amethyl-β-ethyl-n-pentenonitrile, b.p. 74—76°/17 mm.; β-methyl-α-thyl-α-thyl-α-siopropyl-, b.p. 81—84°/9 mm., aβδ-trimethyl-, b.p. 14—76°/9 mm., and a-methyl-β-n-propyl-, b.p. 185—118°/10 mm., -140°/20 mm., and a-methyl-β-n-propyl-, b.p. 185—118°/10 mm., -140°/20 mm., and aβ-dimethyl-n-propyl-n-hexenoic, b.p. 129—133°/9 mm., and aβ-dimethyl-n-propyl-n-hexenoic, b.p. 129—130°/9 mm., hvdrolysed, as above, to CHMePra-CHEt-CO.H, b.p. 230° (amide, m.p. 96—97°). Adding (1) to NaNH2 in C₂H₆ exothermal) and then boiling gives β-methyl-a-ethyl-Δ-n-hexeno-amidine (27—53%), b.p. 99—101°/1 mm., unstable when kept (picrate, m.p. 136·5—137·5°).

II.—SUGARS AND GLUCOSIDES.

Starch. XXVII. Preparation of glucose 1-phosphate. P. Bern-C. de Traz, and C. Gautier (*Helv. Chim. Acta*, 1944, 27, 843—1—A detailed description is given of the prep. of glucose 1-phosphate.

phate, isolated as the K salt, by the enzymic phosphorolysis of starch.

Isolation of fructose 1-phosphate from biological material [liver].—Sec A., 1944, III, 743.

—Sec A., 1944, III, 743.

Synthesis of DL-threose. Preparation of DL-erythrose tribenzoate.

W. W. Lake and J. W. E. Glattfeld (J. Amer. Chem. Soc., 1944, 66, 1091—1095).—DL-Threonic acid (I) (modified prep.) and BzCl in C₅H₅N at > room temp. give DL-threonolactone dibenzoate (II), m.p. 142·5°. K DL-threo-γ-chloro-αβ-dihydroxybutyrate (prep. in EtOH) at 180—190°/0·1—0·5 mm. gives DL-threonolactone (III) (83%), b.p. 151—151·5°/0·5 mm., hydrolysed by H₂O at 70—80° to (I) and converted by BzCl-C₅H₅N into (II). By the method of Glattfeld et al. (A., 1935, 72), (III) gives DL-threonamide, m.p. 116°, converted by BzCl-C₅H₅N at room temp. into the tribenzoate, m.p. 155°. With N₂O₃ in AcOH at 15—20° this gives DL-threonic acid tribenzoate, forms, m.p. 95—98° and 121°, the chloride (prep. by SOCl₂), m.p. 113·5°, of which with H₂-Pd-BaSO₄ in xylene yields DL-threose tribenzoate (IV), m.p. 99—99·5° (2:4-dinitrophenyl-hydrazone, m.p. 182°). NaOMe-MeOH at -15° or 0·3N-Ba(OH)₂ at 0° hydrolyses (IV) to DL-threose, a syrup [osazone, m.p. 167—168° (darkens; bath preheated at 165°)], which is oxidised by Br to (I) [isolated as (II)]. Oily DL-crythronamide, similarly obtained, gives the tribenzoate, m.p. 208°, and thence DL-erythronic acid tribenzoate, m.p. 151·5—152°, the chloride, m.p. 103·5°, of which does not yield cryst. DL-crythrose. M.p. are corr. R. S. C.

Optical activity of the copper complexes of polysaccharides and substituted methylglucosides. R. R. Reeves (f. Biol. Chem., 1944, 154, 49—55).—The four methyl- β -methylglucopyranosides show widely different optical behaviour when dissolved in cuprammonium hydroxide solution (I). The optical activity of methyl-2-methyl- β -glucoside in $\rm H_2O$ and in (I) so closely resembles that of the polysaccharide from Phytomonas tumefaciens that it is suggested that this polysaccharide is composed of glucopyranose units linked chiefly through the 2 position. The optical behaviour of a 3-linked polysaccharide and several 4-linked polysaccharides is similar to that of the correspondingly substituted methylglucosides. The shift in the optical rotation of glucopyranoside polysaccharides in (I) may be used to classify glucose polysaccharides and furnish information regarding their structure.

Carbanilates of a- and β -methyl-d-glucosides. W. M. Hearon, G. D. Hiatt, and C. R. Fordyce (J. Amer. Chem. Soc., 1944, 66, 995—997).—a- or β -Methyl-d-glucoside 2:3:4-triacetate and PhNCO in C_5H_5N exothermally and then at 90° give a-, m.p. 147—148°, [a] +145° in CHCl3, and β -methyl-d-glucoside 2:3:4-triacetate 1-carbanilate, m.p. 147—148°, [a] +15° in CHCl3, respectively, hydrolysed by 0.5% HCl-MeOH at the b.p. to a-, m.p. 131—133°, [a] +115° in C_5H_5N , and β -methyl-d-glucoside 1-carbanilate, m.p. 144—145°, [a] -9° in C_5H_5N , respectively. 4:6-Benzylidene-a- and - β -methyl-d-glucoside gives similarly the 2:3-dicarbanilates, m.p. 216—217°, [a] +40° in CHCl3, and m.p. 247—248°, [a] -50° in CHCl3, hydrolysed by 0.75% HCl-MeOH at the b.p. to a-, m.p. 151—153°, [a] +55° in C_5H_5N (4:6-diacetate, m.p. 189—190°, [a] +124° in C_5H_6N), and β -methyl-d-glucoside 2:3-dicarbanilates, m.p. 219—220°, [a] -103° in C_5H_5N (4:6-diacetate, m.p. 217—218°, [a] -22° in C_5H_5N), respectively. a- and β -Methyl-d-glucoside 6-CPl3 ether give similarly the 2:3:4-tricarbanilates, m.p. 229—231°, [a] +52° in CHCl3, and m.p. 232—234°, [a] -5° in CHCl3, hydrolysed by 1% HCl-MeOH to a-, m.p. 192—193°, [a] +84° in CHCl3, and β -methyl-d-glucoside 2:3:4-tricarbanilate, m.p. 234·5°, [a] +6° in C_5H_5N . [a] are [a] $\frac{1}{2}$ 5. R. S. C. Hydrolysis of maltohexaose and the products obtained thereby,

Hydrolysis of maltohexaose and the products obtained thereby, principally maltotriose. K. Myrback and E. Leissner (Arkiv Kemi, Min., Geol., 1944, 17, A. No. 18, 22 pp.).—The concn. of the products of the hydrolysis of maltohexaose at time t is calc. on the following assumptions: (a) that all glucosidic linkings independent of the position and no. of the saccharide linkings are attacked at the same rate, (b) that the glucosidic linkings of the disaccharide are attacked with a velocity k_2 and all other linkings with a different velocity k_1 , (c) that a terminal linking of all saccharides is resolved at a rate k_1 and all other linkings at a rate k_2 , (d) that all linkings of as a saccharide with n units are resolved at the same rate k_n , whereby $k_n = Ck_{n+1}$; calculation is made for the special case in which C - 1.2. In hydrolysates of this kind the sum of monosaccharide (glucose) (I) + disaccharide (maltose) (II) is customarily determined by fermentation. In such a hydrolysate (I) is not determined and from its amount the concn. of the remaining hydrolytic products is calc. on the above assumptions. It is found, however, that maltotriose (III) in addition to (I) and (II) is fermentable. It is therefore possible that the composition of starch hydrolysates in which (I) and (II) have been determined by fermentation differs markedly from that which has been assumed. (III), like (II), is not attacked by amylase.

Sugar in the cerebroside of the spleen in Gaucher's disease.—See A., 1944, III, 755.

Constitution of the tannin from Indian teripods. H. G. Biswas (J. Indian Chem. Soc., 1944, 21, 32—34).—Extraction with EtOH

of the pod cases of Caesalpinia digyna yields a tannin, m.p. 205—212° (decomp.), which on hydrolysis yields gallic acid and glucose. Acetylation (Ac₂O-C₅H₅N at room temp.) gives a nona-acetate, m.p. 206—208° (decomp.). The hydrolysis data are in fair agreement with the tannin being monodigalloylglucose. C. R. H.

Catalposide, the heteroside of Catalpa fruits. H. Colin, G. Tanret, and (Mile.) M. Chollet (Compt. rend., 1943, 216, 677—679).—Catalposide, softens $\sim 160^\circ$, m.p. 165° , resolidifies, darkens at $\sim 190^\circ$, remelts 212° (block), [a]¹⁵—149° (anhyd.) in H₂O, is hydrolysed by H₃SO, or emulsin to B-d-glucose and an unstable aglucone.

Lead tetra-acetate oxidations in the sugar group. VIII. Preparation and proof of structure of N-acetyl-D-glucofuranosylamine. R. C. Hockett and L. B. Chandler (f. Amer. Chem. Soc., 1944, 66, 957—960; cf. A., 1944, II, 214).—aldehydo-D-Glucose penta-acetate (I) in 29% aq. NH₃ at 50—60° gives acet-D-glucofuranosylamide (II), m.p. 189—191° (decomp.), $[a]_2^{\rm D4} + 86.7^{\circ} \rightarrow +85.8^{\circ}$ in H_3 O in 10 days, converted by Ac_2 O- C_5H_5 N at 75—80° or Ac_2 O-NaOAc at 90° into the amide tetra-O-acetate, m.p. 82·5—84·5°, $[a]_D$ +32·7° in CHCl₃, which could not be obtained from (I) by NH₂Ac. D-a-Glucoheptoseoxime, m.p. 100—101°, $[a]_D$ —6·3° \rightarrow 0·9° in CHCl₄ in 70 hr., with Ac_2 O-NaOAc at 100° gives D-a-glucoheptomitrile hexa-acetate, m.p. 85·5—87·5° (lit. 112·5—113·5°, $[a]_D^{24\cdot8}$ +24·3° in CHCl₃), whence 29% aq. NH₃ at 50° gives (II), m.p. 192—194°. With Pb(OAc)₄, (II) gives an oxidation curve of type IV with production of CH₂O. Attempts to prepare D-xylose diacetamide and cryst. D-guloseoxime or D-gulonitrile pentacetate failed. The mechanism of formation of NHAc-derivatives of sugars is discussed.

Chemistry of tissues. I. Chondroitin from cartilage. H. G. Bray, J. E. Gregory, and M. Stacey (Biochem. J., 1944, 38, 142—146).— Chondroitin sulphate (I), isolated from bovine nasal septa and bovine and human trachea, is degraded and methylated to a sulphate-free product of low mol. wt. The amide of 2:3:4-trimethyl-a-methylglucuronoside and 3:4:6-trimethyl-N-acetyl-a-methylchondrosaminide are isolated from an acid hydrolysate. (I) has a branched chain structure of glucuronic acid and chondrosamine residues. Some of the glucuronic acid units are terminal groups which are combined by glycosidic linkings through their $C_{(1)}$ atom.

Adsorption of fatty acid by the linear component of corn starch. T. J. Schoch and C. B. Williams (J. Amer. Chem. Soc., 1944, 66, 1232—1233).—Extracting commercial maize starch with 81% aq. dioxan increases its I-affinity from $4\cdot1-4\cdot4\%$ to $5\cdot3\%$; the fatty acid is selectively adsorbed on the linear components (A), thus reducing the I-affinity. Heating 2% defatted maize starch paste (3 l.) in an autoclave, adding oleic acid (200 ml), and cooling slowly gives a 29% yield of A as a microcryst. floc having I-affinity 14·5% after extraction by MeOH; the non-pptd., branched chain has, after extraction, I-affinity <0.2%. The purest A has I-affinity 19·0%, whence it is calc. that defatted maize starch contains 28% of A.

R. S. C.

Mol. wt. of cellulose. Measurements of average degree of polymerisation. O. A. Battista (Ind. Eng. Chem. [Anal.], 1944, 16, 351—354).—Data on η and conen. are given for five samples of purified cellulose covering a degree of polymerisation from 300 to 3000. A plot of $\log \eta/c$ against c, and of the log of the relative η function at 0.5% conen. against degree of polymerisation, give straight lines. The data have been used to derive a mathematical expression by means of which the val. of the η function at 0.5% conen. may be converted to degree of polymerisation data equiv. to vals. obtained by extrapolation of η -conen. data to infinite dilution.

Form and mobility of cellulose molecule.—See A., 1944, I, 240.

III.—HOMOCYCLIC.

Acetylene derivatives in the C_6 alicyclic series. M. Mousseron (Compt. rend., 1943, 217, 155—157).—The optical activity of methylcyclohexane, substituted in the 3-position by groups containing C_5^*C , is increased by the C_5^*C (notably when distant from the ring), by the lengthening of the C side-chain (for a fixed (C_5^*C); the cis- has a higher rotation than the trans-isomeride. The presence of an intranuclear double linking in the corresponding cyclohexenes also raises the optical activity. The cis-, b.p. $58^\circ/25$ mm., $[a]_{546} - 6.3^\circ$, and trans-, b.p. $60^\circ/25$ mm., $[a]_{546} - 3.45^\circ$, -3-acctylenyl, cis-, b.p. $75^\circ/25$ mm., $[a]_{546} - 4.75^\circ$, and trans-, b.p. $77^\circ/25$ mm., $[a]_{546} - 4.75^\circ$, and trans-, b.p. $78^\circ/25$ mm., $[a]_{546} - 4.72^\circ$, - Δ^3 -propinenyl, cis-, b.p. $94^\circ/25$ mm., $[a]_{546} - 4.72^\circ$, and trans-, b.p. $98^\circ/25$ mm., $[a]_{546} - 6.71^\circ$, - Δ^3 -butinenyl and trans- Δ^a , b.p. $95^\circ/25$ mm., $[a]_{546} - 5.3^\circ$, and Δ^5 -, b.p. $92^\circ/25$ mm., $[a]_{546} - 7.74^\circ$, -butinenyl derivatives of methylcyclohexane are described. 1-Methyl-3-acetylenyl- and -3- Δ^a -propinenyl- Δ^3 -cyclohexene have $[a]_{546} + 75.2^\circ$ and $+88.4^\circ$, respectively. Me 3-methylcyclohexyl-butinenoate, b.p. $155^\circ/25$ mm., $[a]_{546} - 6.92^\circ$ (free acid, $[a]_{546} - 7.63^\circ$), and -pentinenoate, b.p. $175^\circ/25$ mm., $[a]_{546} - 6.92^\circ$ (free acid, $[a]_{546} - 7.63^\circ$), and -pentinenoate, b.p. $175^\circ/25$ mm., $[a]_{546} - 9.47^\circ$, are prepared.

Sulphonic acids of aromatic compounds.—See B., 1944, II, 274.

Sulphonation of phenylpropylenes. C. M. Suter and W. E. Truce (J. Amer. Chem. Soc., 1944, 66, 1105—1109).—Adding CPhMe:CH₄ (0·94 mol.) to dioxan (2·0), SO₃ (1·69 mols.), and (CH₂Cl), (400 g.) at 20—25°, keeping at 5°, and adding to aq. Ba(OH)₂ gives Baβ-phenyl-propene-ay-disulphonate (reduces KMnO₄ and decolorises aq. Br) and thence the di-S-p-chlorobenzylthiuronium salt (I), m.p. 215—217°. Adding CPhMe:CH₂ (54) to SO₃ (85), dioxan (176), and CCl₄ (500 g.) at 10—15° gives the corresponding dioxan salt (II) and thence the Na, salt. At 0° much monosulphonic acid is also formed. Treating (II) with PCl₅ in (CH₂Cl)₂ at the b.p. and then room temp., removing HCl by H₂O, and adding liquid NH₃ gives β-phenylpropene-ay-disulphonamide, m.p. 197—200°. OH-CPh(CH₂Cl)₂ [prep. from CO(CH₂Cl)₂ by MgPhBr] and Na₂SO₃ in H₂O at 100° give β-hydroxy-β-phenylpropane-ay-disulphonic acid (di-S-p-chlorobenzylthiuronium salt, m.p. 164—166°), the Na, salt of which with Ac₂O at about the b.p. or with POCl₃-PCl₅ at 75° and then hot aq. NaOH etc. yields (I). CH₂Ph-CHCH₂ with SO₂, dioxan, and (CH₂Cl)₂ at 220° and then aq. Ba(OH)₂ gives Baβ-hydroxy-y-phenylpropane-a-sulphonate (III) (derived S-p-chlorobenzylthiuronium salt, m.p. 156—158°) [and a resin (see below)], which with aq. KMnO₄ at 100° gives B2OH, does not decolorise aq. Br, and with PCl₅-(CH₂Cl)₂ at 100° and then NH₃ gives y-phenyl-Δ°-propene-a-sulphonamide, m.p. 65—67°. CHPh:CH-CH₂Cl (IV) with, successively, Na₂SO₃, PCl₅-(CH₂Cl)₂, and NH₃ gives a-phenyl-Δ°-propene-y-sulphonamide, m.p. 126—127°. The Na₂ salt derived from (III) is converted by Ac₂O at 120° into Na β-acetoxy-y-phenylpropane-a-sulphonate (V), m.p. 171—174°, which at 210—215° yields AcOH and Na α-phenyl-Δ°-propene-y-sulphonate [derived S-p-chlorobenzylthiuronium salt (VI), m.p. 196°], also obtained from (IV) by Na₂SO₃ and then Ac₂O into (V). (VI) is also obtained from the resin accompanying (III). CHPh:CHMe with SO₃, dioxan, an

Addition products of dienes to toluene. B. A. Arbusov and E. V. Kuznetzov (Compt. rend. Acad. Sci. U.R.S.S., 1943, 39, 311—313).— Butadiene (I), PhMe, and finely-dispersed Na at 90°/5 atm. for 10 hr. yield an oil, b.p. 80—220°/16 mm., which affords four adducts, viz., from 1 mol. of PhMe and 1, 2, 3, or 4 mols. of (I), of b.p. 92—94°, 140—142°, 188—191°, and 210—220°, all at 16 mm., and yields (based on above oil) of 50, 27, 20, and 3%, respectively. The 1:1 adduct, α-phenyl-Δγ-pentene, is cyclised by 90% H₂SO₄ (method: Bogert et al., A., 1929, 642) to 1-methyltetrahydronaphthalene, b.p. 153—155°/55 mm., dehydrogenated by S to 1-C₁₀H₂Me. The 1:2 adduct, t-phenyl-Δγ-nonadiene, similarly gives a hydrogenated ethylbenznaphthalene or hydrogenated methylphenanthrene, but the structure is not clear, and attempted dehydrogenation affords no pure compound. Tetrahydronaphthalene and (I) give 15% of an adduct, b.p. 140—142°/16 mm., probably a methylbenznaphthalene, cyclised to a substance, b.p. 148—150°/16 mm. Δβδ-Hexadiene and PhMe with Na at 70° in an autoclave (10 hr.) give ζ-phenyl-ε-methyl-Δγ-hexene, b.p. 106—110°/16 mm.

Photochemical processes in aromatic compounds.—See A., 1944, I, 255.

o-Substituted diphenyls. S. H. Zaheer and S. A. Fasceh (J. Indian Chem. Soc., 1944, 21, 27—28).—2-Chloro-(I), -bromo-, -iodo-(II), and -cyano- have been prepared (Sandmeyer) from 2-amino-diphenyl. An 80% yield of o-C_eH₄Ph·MgI is obtained from (II) and flaked Mg in boiling Et₂O-H₂. o-C_eH₄Ph·MgCl (32% yield) is formed from Mg and (I) in an evacuated sealed tube at 210—215°/6 hr.

Dissociation of hexa-arylethanes. XVI. Alkyl and halogen derivatives. C. S. Marvel, H. W. Johnston, J. W. Meier, T. W. Mastin, J. Whitson, and C. M. Himel (J. Amer. Chem. Soc., 1944, 68, 914–918; cf. 1944, II, 217).—p-Bu² has a remarkable promoting effect on the dissociation of C₂Ar₈. The following % of dissociation in C₈H₄ are determined magnetometrically (m.p. in parentheses are those of derived peroxides): tetra-m-cyclohexylphenyldi-p- (m.p. 169–170°) 39, tetra-p-cyclohexyldi-m- 16, and di-p-tert.-butylphenyltetra-m-cyclohexylphenylethane (m.p. 163–164·5°) 20; di-m- (m.p. 185–186°) 33–42 and di-o-tolyl- (m.p. 159–161°) 65–68, di-m-38–40 and di-o-bromophenyl-tetra-p-tert.-butylphenylethane 9½; diphenyltetra-p-5·3-7·6, tetraphenyldi-m- (m.p. 173–174°) 4–diphenyltetra-m- (m.p. 169–170°) 3·9–5·5, and hexa-p-fluorophenylethane 3·8; [m-C₆H₄Me·C(C₆H₄Me-p)₂], 2·1%. Boiling p-C₆H₄Bu²·CO₂H (prep. from p-C₆H₄Bu²·MgBr), EtOH, C₆H₈, and H₂SO₄ in a Soxhlet apparatus over CaCl₂ give the Et ester (1)

(75%), b.p. 120-120.5°/4 mm. Heating p-aminocyclohexylbenzene and a little Zn dust in AcOH with continuous removal of HoO gives the NHAc-compound, m.p. 129-130°, which with Fe and Br in AcOH at 30—40° (exothermic) gives 2-bromo-4-cyclohexylacetanilide (71.5%), m.p. 122—123°, hydrolysed by EtOH-conc. HCl to the NH2-compound, the hydrochloride, m.p. 207° (decomp.), of which gives (diazo-reaction; HPO₂) m-bromocyclohexylbenzene (II) (79%), b.p. 122—123°/4 mm. Adding Br to PhBu⁷ and a little Fe powder at 0—5° gives \$\rho_C_8H_4Bu^7Br\$ (75%), b.p. 80—81°/2 mm. \$\rho_C_8H_4Bu^7NO_2\$ and \$H_0-Raney Ni give \$\rho_C_6H_4Bu^7NH_2\$, b.p. 90—93°/3 mm. Prep. as for (II) yields m-bromo-p-tert.-butylbenzene, b.p. 222—223 /740 mm. Grignard reaction yields m-cyclohexylbenzoic acid, m.p. 120—121°; esterification as for (I) yields its \$Et\$ ester, b.p. 137—130°/3 mm, and other exters required for prept below. -139°/3 mm., and other esters required for preps. below. m.C_oH₁Me·MgBr and (I) give, after conversion into the Et ether, di-m-tolyl-p-tert.-butylphenylcarbinol (67%), m.p. 79—80°, and similar preps. yield o-tolyldi-p-tert.-butylphenylcarbinol, m.p. 129·5 similar preps. yield o-lolyldi-p-tert.-butylphenylcarbinol, m.p. 129.5—130°, o-bromophenyldi-p-tert.-butylphenylcarbinol, m.p. 136.5—137°, phenyldi-p-fluorophenylcarbinol, m.p. 100°, (p-C₆H₄F)₃C-OH, m.p. 94°, diphenyl-m-fluorophenylcarbinol, m.p. 117°, phenyldi-m-fluorophenylcarbinol, m.p. 114—114.5°, tri-m-fluorophenylcarbinol, m.p. 118-5—119°, and m-tolyldi-p-tolylcarbinol, m.p. 95—96°; other carbinols required for preps. below were oils. AcCl in C₆H₆ converts the appropriate carbinols into phenyldi-p, m.p. 50—51°, and -m-thlorophenyl-, m.p. 57—59°, di-m-cyclohexyl-bhenyl-p-cyclohexyl-benyl-p-cyclohexyl-benyl-p-cyclohexylchlorophenyl-, m.p. 57—59°, di-m-cyclohexylphenyl-p-cyclohexylphenyl-, m.p. 151—152°, and di-p-cyclohexylphenyl-m-cyclohexylphenyl-, m.p. 172—173°, di-m-cyclohexylphenyl-p-tert.-butylphenyl-, pnenyl-, m.p. 172—173°, di-m-cyclohexylphenyl-p-tert.-butylphenyl-, m.p. 133—134°, di-m-tert.-butylphenyl-p-cyclohexylphenyl-, m.p. 127—129°, o-, m.p. 171—172°, and m-tolyldi-p-tert.-butylphenyl-, m.p. 132—133°, o-, m.p. 135—136°, and m-toromophenyldi-p-tert.-butylphenyl-, m.p. 144—145°, diphenyl-m-fluorophenyl-, m.p. 84—84-5°, phenyldi-m-fluorophenyl-, m.p. 72·5—73°, tri-m-fluorophenyl- (prep. in EtOAc), m.p. 92—93°, tri-m-chlorophenyl-, m.p. 90—92°, and m-tolyldi-p-tolyl-, m.p. 67—69°, -methyl chloride.

R. S. C.

Thiocarbonyls. I. Condensation of thioacetophenone with activated nickel. J. K. Cline, E. Campaigne, and J. W. Spies (J. Amer. Chem. Soc., 1944, 66, 1136—1137).—Trithioacetophenone, m.p. 121—129.136. 122-1° (corr.), and Raney Ni in xylene—N₂ at 145—150° give, by "Wurtz" reaction, trans-(CPhMe.)₂ (18%) (cf. Mozingo et al., A., 1943, II, 293). Cu is ineffective.

Synthesis of eudalene. R. N. Chakravarti (J. Indian Chem. Soc., 1943, 20, 393—398).—o-C₆H₄Me·CH₂·CH(CO₂Et)₂ with CH₂Br·CO₂Et in cold EtOH-NaOEt gives Et γ-o-tolylpropane-aββ-tricarboxylate, b.p. 186°/5 mm., which on hydrolysis and loss of CO2 yields omethylbenzylsuccinic acid, m.p. 172° (previous shrinking) (anhydride, b.p. 270°/50 mm.; anilic acid, m.p. 157—158°; anil, m.p. 114°). Cyclodehydration (H₂SO₄) then gives 1-keto-5-methyl-1:2:3:4tetrahydronaphthalene-3-carboxylic acid (I), m.p. 164° (semicarbazone, m.p. 255°), reduced (Clemmensen) to 5-methyl-I: 2: 3: 4-tetrahydronaphthalenc-3-carboxylic acid, m.p. 132° [Et ester (II), b.p. 132°/4 mm.]. (II) with excess of MgMeI gives the 5-methyltetrahydronaphthyldimethylcarbinol, b.p. 145°/5 mm., dehydrogenated (Se at 230-300° for 24 hr.) to eudalene, b.p. 112°/6 mm. (styphnate, m.p. 120°). structure of (I) was confirmed by independent synthesis as follows: 4-methyl-1-hydrindone [semicarbazone, decomp. 260°; phenylhydrazone, m.p. 139° (decomp.) (lit. 133°)] (improved prep. from β -o-tolylpropionic acid) with HCO₂Et in presence of Na gives the unstable 2-OH-CH: derivative, which after successive treatment with AcOH-NH₂OH,HCl at 70° and aq. EtOH-KOH gives β -3-carboxy-0-tolyl-propionic acid, m.p. 172° [Et₂ ester (III), b.p. 150°/5 mm.]. (III) with Na in C₆H₆ followed by CH₂Br-CO₂Et, and subsequent alkaline hydrolysis gave γ -3-carboxy-0-tolylpropane-a β -dicarboxylic acid, m.p. 217—218°, the Et_2 ester, b.p. 178°/4 mm., of which yields (I) after treatment with Na followed by acid hydrolysis. J. N. A.

Jacobsen rearrangement. VIII. Cyclic systems. Mechanism. A. T. Arnold and R. A. Barnes (J. Amer. Chem. Soc., 1944, 66, 500—964; cf. A., 1941, II, 6).—A mechanism for the Jacobsen reaction, in which resonance plays a decisive role, is proposed. In H_2SO_4 , 1:2:3:4:5:6:7:8-octahydroanthracene gives 1:2:3:4:5:6:7:8-octahydrophenanthrene, but 5:6-tetramethylenehydrindene (I) gives 5: 6-benzhydrindene [2: 3-trimethylnenaphthalene]. In H₂SO₄ 2: 3- gives 1: 2-, but with AlCl₃ at 100 and then room temp. gives 1: 3-diethyl-5: 6: 7: 8-tetra-uydronaphthalene, structures being proved by dehydrogenation by Pd-C at 200—240° to the appropriate C₁₀H_eEt₂. In H₂SO₄ 5-methyl-6-ethylhydrindene (II) (see below) gives a 4:5-but with AlCl₃ gives a 4:6-dialkylhydrindene, structures being proved by oxidation. With H₂SO₄ 5:6-trimethylenehydrindene (III) (see below) gives a tar but with AlCl₃ gives a 5:6-trimethylene-4-alkyl- and gives a tar but with AlCl₃ gives a 5:6-trimethylene-4-alkyl- and 4:7-dialkyl-hydrindene, structures being proved by oxidation to enzenecarboxylic acids. 5-Chloromethylhydrindene (IV) with 4-BaSO₄ (or -PtO₂) in EtOH at 45—50 lb. gives 5-methylhydrindene, b.p. 86—88°/19 mm., converted by Ac₂O and AlCl₃ in PhNO₂ at-80° into 6-acetyl-5-methylhydrindene, b.p. 152—158°/11 which with HNO₃ gives 1:2:4:5-C₈H₂(CO₂H)₄ and with Cn-Hg-HCl-H₂O-AcOH gives (II), b.p. 112—116°/11 mm. Hydrne, (EtCO)₂O, and AlCl₃ in PhNO₂ give 5-propionylhydrindene

(V), b.p. 159°/12 mm. (oxime, m.p. 95-96°). CHNa(CO₂Et)₂ and (IV) in EtOH give Et, 5-hydrindenylmalonate, b.p. $158-165^\circ/3$ mm., and thence β -5-hydrindenylpropionic acid (91%), m.p. $82-84^\circ$, also obtained (m.p. $85-86^\circ$) from (V) by H_2 -S-N H_3 - H_2 O at $150-155^\circ$. PCl₅ in C_6H_6 then yields the acid chloride, converted by $SnCl_4-C_6H_6$ into 5:6-benzhydrind-1-one, whence $HCl-Zn-Hg-AcOH-H_2O-PhMe$ yields (III), m.p. 52—54°, b.p. 116—120°/9 mm. (I) gives a 4:7-Br₂-derivative, m.p. 141·5—142·5°. CPhEt:CH·CO₂Et with H₂-Cu chromite at 250°/2800 lb. yields CHPhEt·[CH₂]₂·OH, b.p. 145—148°/26 mm., and thence 1-keto-4-ethyl-1:2:3:4-tetrahydro-achthology. naphthalene, which with MgEtBr-Et₂O and then Pd-C-CO₂ at 225° gives 1: 4-diethylnaphthalene, m.p. 16·5-17°, b.p. 165°/25 mm. 1:2:3:4-Tetrahydronaphthalene with Ac₂O and AlCl₃ in CS₂ gives much 6-acetyl-1:2:3:4-tetrahydronaphthalene and some 9-acetyl-octahydrophenanthrene, m.p. $50\cdot5-51\cdot5^\circ$ (oxidised to the corresponding acid, m.p. 238—240°). Octahydroanthracene with Ac₂O and AlCl₂ in cold (CHCl₂)₂ gives the 9-Ac derivative, m.p. 72—72.5°, b.p. 169°/3 mm., converted by aq. KOCl into the 9-CCl₃·CO derivative, +H₂O, m.p. 123·5—124·5°. The picrate of 2: 3-C₁₀H₆Et, has m.p.

Constitution of "cyclised" vitamin-A. P. Meunier, R. Dulou, and (Mile.) A. Vinet (Compt. rend., 1943, 216, 907—908).—The following structure is assigned to "cyclised" vitamin-A ("axerophthene") (I). Vitamin-A and PBr₃ in C₅H₅N at 0°, then KI in boiling COMe₂ (method: Kuhn et al., A., 1934,

395), give a compound identical in properties with (I), and ozonisation affords

CH2O, thus supporting the terminal CH2.

Direct aromatic amination: reaction of hydroxylamine-O-sulphonic acid. R. N. Keller and P. A. S. Smith (J. Amer. Chem. Soc., 1944, 1122—1124).—NH₂·O·SO₃H-AlCl₃, HN₃ in light, or HN₃-66, 1122-1124).— $NH_2\cdot O\cdot SO_3H-AlCl_3$, HN_3 in light, or HN_3-AlCl_3 aminates the C_6H_6 ring of aromatic compounds, the active agent being NH or $NH_2\cdot H_4$, N_2H_4 , and/or NH_2OH are formed as by-products. $NH_2\cdot O\cdot SO_3H-AlCl_3$ at $95-105^\circ$ converts PhMe into (mainly p-)toluidine (30—51%), C_6H_6 into NH_2Ph (28%), o-xylene into o-4+ o-3-xylidine (21%), m-xylene into m-4-xylidine (16%), p-xylene into p-xylidine (13%), PhCl into o- + m-+ p- $C_6H_4Cl\cdot NH_2$ (2·3%), PhNO2 into m-NO2· $C_6H_4\cdot NH_2$ (\sim 1%), and PhOMe into $OMe\cdot C_6H_4\cdot NH_2$ (a trace). HN_3 converts PhMe in ultra-violet light at $15\pm 2^\circ$ into toluidine (a little); HN_3 -AlCl₃ gives mixed (mainly p-+ p-)toluidine: PhNO2 gives, by either gives mixed (mainly $p_- + o_-$)toluidine; PhNO₂ gives, by either method, a trace of amine. AlCl₃ and HN₃ in (CHCl₂)₂ or light petroleum at room temp. give much NH₃ or N₂H₄, respectively.

Separation of 3-nitro-1- and 4-nitro-2-naphthylamine by maleic anhydride, and monobromination of 4-nitro-2-naphthylamine. H. H. Hodgson and D. E. Hathway (f.C.S., 1944, 385—387; cf. A., 1944, II, 127).—4:2-(I), new m.p. 98·5° (p-nitrobenzoyl, m.p. 169°, and azo-β-naphthol derivative, m.p. 240°), and 3:1-NO₂·C₁₀H₆·NH₂ (II) are separated by preferential acylation of (I) by (iCH·CO)₂O (III) to give 4-nitro-2-naphthylmaleamic acid (IV), m.p. 193°. Further additions of (III) give mixtures, followed by pure 3-nitro-1-naphthyl-maleamic acid, m.p. 170°. (IV) is hydrolysed to (I) by boiling aq. EtOH-H₂SO₄. A thermal analysis diagram is constructed to determine the requisite amount of (III); the eutectic (73°) is 65:35 of (I): (II). (I) is only monobrominated by >2 equivs. of Br in CHCl₃ to 1-bromo-4-nitro-2-naphthylamine, m.p. 153° (Ac derivative, m.p. 177°), convertible (diazo-reaction) into 1: $4\text{-}C_{10}H_6\text{Br}\cdot\text{NO}_{\circ}$, new m.p. 87° . 1: $3\text{-}C_{10}H_6(\text{NO}_2)_2$ and aq. $\text{Na}_2\text{S}_2\text{O}_4$ (\equiv monoreduction) give 50% unchanged + 50% of 1: $3\text{-}C_{10}H_6(\text{NH}_2)_2$. A. T. P.

Phenylthiocarbamides. Contribution to the study of the triad -N·C·S-. XIV. Mechanism of desulphurisation. XV. Action of copper acetate on phenylthiocarbamide. R. Sahasrabudhey and H. Krall (J. Indian Chem. Soc., 1944, 21, 63—66, 67—70).—XIV. A new mechanism for desulphurisation is put forward. Reaction is probably initiated by the formation of mol. compounds of thiocarbamides with metal hydroxides, etc., through co-ordination at S. A second mobile H (from N to S) is essential.

XV. At ordinary temp. Cu(OAc), with NHPh·CS·NH, (I) gives Hector's base and the simultaneously formed CuOAc forms a complex with more (I). In boiling solutions, desulphurisation to NHPh-CN also takes place even in presence of considerable [AcOH]. F. R. S.

Structure and activity of sulphanilamides.—See A., 1944, III, 694.

Resolution and properties of the meso-form of a8-diamino-a-phenylpropane. W. Froentjes and K. M. Dijkema (Rec. trav. chim., 1943, 62, 722—728).—NH₂-CHPh-CHMe-NH₂ is separated by fracional crystallisation of the Ni tetrammine perchlorates into the meso-(I), b.p. 111—112°/9 mm. (yellow salt), and r-form, b.p. 109—110°/9 mm. (blue salt; picrate, m.p. 233°). (I) is resolved by crystallisation of the d- and l-ditartrates from MeOH. The d- and 1-bases (+2H₂O) (sulphates; picrates, m.p. 222°) have equal, opposite rotations in Et₂O and as ions in H₂O, but in the pure state the d-, e.g., [a]₅₈₉₃ +4·2°, has a much lower val. than the l-form, [a]₅₈₉₃ -46°. Other vals. of [a] and rotatory dispersion curves are given.

Preparation and diazotisation of p-aminomonomethylaniline. H. H. Hodgson and E. Marsden (J.C.S., 1944, 398—400).—Hantzsch's failure to diazotise p-NH₂·C₆H₄·NHMe (I) (cf. A., 1902, i, 324) was apparently, due to the presence of some p-C₆H₄(NH₂)₂, which catalyses the decomp. of diazo-compounds, and originates during the reduction of p-NO·C₆H₄·NHMe (II) with Zn-AcOH, by fission of Me. Reduction of (II) or p-NO₂·C₆H₄·NHMe with Fe and a little FeSO₄ or Fe(NH₄)₂(SO₄)₂ in boiling H₂O (1 hr.) gives (I) (picrate, m.p. 206°), with no rupture of Me. (I) is diazotised by <1 equiv. of HNO₃, added to excess of 10% aq. NaOH, unchanged (I) collected, and the filtrate coupled with β-C₁₀H₇·OH to give p-methylaminobenzeneazo-β-naphthol (III), m.p. 123° (hydrochloride, m.p. 197—202°), also obtained from p-NAcMe·C₆H₄·N₂Cl and β-C₁₀H₇·OH, followed by hydrolysis with boiling aq. HCl-EtOH. Similarly prepared from (I) and <1 mol. of HNO₂ are p-C₆H₄X·NHMe (X = Cl, Br); where X = I, the derivative is unstable and is converted into p-iodo-N-nitrosomethylamiline, m.p. 112°. (I) with >2 mols. of HNO₂, followed by alkaline β-C₁₀H₇·OH, yields p-N-nitrosomethylaminobenzeneazo-β-naphthol, m.p. 178°, also obtained from (III) and HNO₂.

Azoxysulphones; preparation and properties, and observations on the structure of diazotates. W. V. Farrar and J. M. Gulland (J.C.S., 1944, 368—371).—Chloramine-T (I) and ArNO yield azoxysulphones, regarded as resonance hybrids (cf. II and IIa). Thus, (I) and PhNO

in C_pH₅N at room temp. for 12 hr., then at 80° for 2 hr., afford Ph p-tolyl azoxysulphone (III), m.p. 112—113°. Similarly (I) and the appropriate ArNO yield the pale yellow o-tolyl p-tolyl, m.p. 82°, di-p-tolyl, m.p. 106°, and m-nitrophenyl p-tolyl, m.p. 122·5—124°, and the bright yellow p-phenetyl p-tolyl azoxysulphone, m.p. 128—128·5°. Similarly prepared from p-NO·C₆H₄·NAlk₂ are p-dimethylamino-phenyl (purple-red), m.p. 182° (decomp.), and p-diethylamino-phenyl (bright red), m.p. 178—179° (decomp.), and p-dimethylamino-phenyl Ph azoxysulphone (bronze), m.p. 175—176° (decomp.), which may be represented by resonance of the azoxysulphone form with a quinonoid form; in conc. acid, where hydrolysis is absent, the cation is colourless. Ph₂ azoxysulphone (IV), m.p. 123°, is obtained from PhSO₂·NClNa (chloramine-B) and PhNO in C.H₅N. With (I), p-NO·C₆H₄·OH and 5:1:2-NO·C₆H₃·NHMe afford amorphous products of possibly complex constitution. p-O·C₆H₄·O and (I) in cold EtOH give ill-defined substances. N-NO-compounds do not react in similar manner to the C-NO-derivatives. When heated alone, all monoazoxysulphone derivatives decompose violently at ~180—200°, with evolution of SO₂· m·C₆H₄(NO)₂ and (I) in C₅H₅N at 80° for 2 hr. yield m-phenylene bis-(p-tolyl azoxysulphone), m.p. 208° (decomp.) (darkens >200°). (III) and Zn-AcOH-EtOH give p-C₆H₄Me·SO₂·NH·NHPh; it is attacked only slowly by boiling dil. mineral acid, acid Na₂Cr₂O₇, or KMnO₄; cold conc. HNO₃ has no action. On distilling with 50% aq. H₂SO₄, (III) yields PhOH; PhN₂HSO₄ is formed from (III) and conc. H₂SO₄ at <10°, and 1:2-NPh·N·C₁₀H₆·OH is obtained from (III) is a n-diazotate. Thus the primary hydrolysis product of (III) is a n-diazotate. Thus the primary hydrolysis product of (III) is a n-diazotate. Theoretical implications of the hydrolysis, with special relation to Angeli's views on n- and 150-diozotates, are discussed. (IV) and conc. H₂SO₄ at 0°, followed by dilution and boiling, aff

Synthesis of iodosulphobenzeneazo- and iodocarboxybenzeneazo-derivatives of naphthol- and naphthylamine-sulphonic acids. C. J. Klemme and H. Bang (J. Org. Chem., 1944, 9, 254—258).—The dyes have been synthesised for testing as radiographic opaques. The following are obtained by coupling the requisite naphthol- or naphthylamine-sulphonic acid with diazotised 4:3:5:1- NH₂·C₆H₂I₃·SO₃H or 4:3:5:1- NH₂·C₆H₂I₄·CO₂H: Na₂ salts of 2-(2':6'-di-iodo-4'-sulphobenzeneazo)-1-naphthol-4-sulphonic acid and -1-naphthylamine-4-sulphonic acid and Na₃ salt of 2-(2':6'-di-iodo-4'-carboxybenzeneazo)-1-naphthol-4-sulphonic acid and -1-naphthylamine-4-sulphonic acid and Na₃ salt of 2-(2':6'-di-iodo-4'-carboxybenzeneazo)-1-naphthylamine-4:8-disulphonic acid and Na₃ salt of 2-(2':6'-di-iodo-4'-carboxybenzeneazo)-1-naphthylamine-4:8-disulphonic acid.

Interaction of aromatic diazo-compounds with β -ketonic esters. V. V. Feofilaktov (Bull. Acad. Sci. U.R.S.S., Cl. Sci. Chim., 1941, 521—530).—n-Valine (I), n-leucine (II), and d-tyrosine have been prepared from Et n-propyl-, n-butyl-, and p-methoxybenzyl-acetoacetates and PhN_nX., the resulting a-CO-acid phenylhydrazones being reduced to the a-NH $_2$ -acids. (I) and (II) have also been prepared using diazotates from o- and p-toluidine, m- and p-NO $_2$ -C $_6$ H $_4$ -NH $_2$, a- and β -C $_1$ 0H $_2$ -NH $_2$, and sulphanilic acid. The p-tolyhydrazone of n-butyrylformic acid occurs in two modifications, m.p. 134—135° and 123—131°. Et acetylsuccinate reacts with diazotates forming Et 4-arylazo-1-arylpyrazol-5-one-3-carboxylates,

e.g., from o-, m.p. 95—96°, m-, m.p. 146—147°, and p-toluidine, m.p. 143—144°, p-nitroaniline, m.p. 246—248°, sulphanilamide, m.p. 258—260°, naphthionic acid, benzidine. Sulphanilic acid affords up to 80% of tartrazine Et, ester, hydrolysed by NaOH to tartrazine (Na₃ salt). Bromotetronic acid may be used in this reaction in place of tetronic acid, forming mono- and di-arylhydrazones derived from the latter, e.g., a-p-nitrobenzeneazo-, m.p. 214°, a-m-tolueneazo-, m.p. 172°, α-1-naphthaleneazo-, m.p. 148—150°, and α-2-naphthaleneazo-β-ketobutyrolactone, m.p. 212°. Et ay-dibromo-acetoacetate similarly affords Et γ-bromo-α-1-naphthaleneazoaceto-acetate, m.p. 165°. Cyclic β-ketonic esters undergo this reaction with opening of the ring. Et cyclohexanonecarboxylate thus affords the phenylhydrazone of Et H α-ketopimelate, α-form, m.p. 89-5—90°, β-form, m.p. 142—143°, hydrolysed to α-ketopimelic acid phenylhydrazone, α-form, m.p. 144—145°, β-form, m.p. 131—132°. Reduction of this affords α-aminopimelic acid, m.p. 215—216°. Et cyclopentanonecarboxylate similarly gives the lower homologues of these compounds. Et camphorcarboxylate gives Et 3-benzeneazo-camphor-3-carboxylate, hydrolysed to α-aminohomocamphoric acid phenylhydrazone, m.p. 166°, reduced to α-aminohomocamphoric acid phenylhydrazone, m.p. 166°, reduced to α-aminohomocamphoric acid, m.p. 28°. 2-Cyanocyclopentanone undergoes a similar reaction.

Evidence for the isonitrile and nitrile structures of Hantzsch's aryl syn- and anti-diazocyanides. H. H. Hodgson and E. Marsden (J.C.S., 1944, 395—398).—Although Hantzsch's formula for the anti-diazocyanides is correct, that for the aryl syn-diazocyanides does not explain the reactions. The syn- and anti-forms exhibit differences in chemical activity which are accounted for by isonitrile and nitrile structures, respectively. The colours of both syn- and anti-compounds indicate covalent linkings between the diazo- and

•N:C and •C:N groups, respectively. There is close analogy between the syn-diazocyanides and diazorsocyanates. Temp. is of prime importance in transforming syn- into anti-diazocyanide, which occurs rapidly with the p-nitro- and p-chloro-benzene derivative, even in Et₂O at \sim 0°. With o- and p-chloro- or -bromo-, and p-nitro-syn- and -anti-benzenediazocyanides (method of prep.: Le Fèvre et al., A., 1938, II, 229), MgMeI in Et₂O affords complexes, the anti being of a deeper red colour than the syn. Decomp. with 2N- H_2SO_4 at 0° yields \sim 20% of MeCHO from the syn-complexes only.

probably as follows: $C_6H_4R\cdot N:N\cdot N:C + MgMcI \rightarrow C_6H_4R\cdot N:N\cdot N:CMe\cdot MgI \rightarrow C_9H_4R\cdot N:N\cdot N:CMe\cdot MgI \rightarrow C_9H_4R\cdot N:N\cdot N:CHMe \rightarrow MeCHO.$ The non-coupling p-nitrobenzenediazocarboxylamide (I) (stable CN linking) with Br in CHCl₃, AcOH, or C_6H_6 yields probably a perbromide, which readily loses Br to give p-nitrobenzenediazo-N-bromocarboxylamide hydrobromide (II), p-NO₂·C₆H₄·N:N·CO·NHBr,HBr, m.p. ~81° (decomp.). (II) couples with a- or β -C₁₀H₇·NH₂ in CHCl₃ or C_6H_6 (indicates a Hofmann rearrangement), and with β -C₁₀H₇·OH in aq. EtOH or aq. NaOH (not in CHCl₃, C_6H_6 , or abs. EtOH) (with hydrolysis to p-NO₂·C₆H₄·N:N·CO·NH-OH), to give the corresponding p-nitrobenzeneazo-derivatives. In each case, the formation of intermediate diazosocyanate with its weak N·N linking precedes coupling. The coupling with a- and β -C₁₀H₇·NH₂ in the above media supports the polarisation theory of Hodgson (A., 1943, II, 8). Acration of (II) in cold H₂O for 1—1·5 hr. gives some (I) and the filtrate then couples with alkaline β -C₁₀H₇·OH to give 1: NPh:N·C₁₀H₆·OH. (II) and cold 20% aq. NaOH give 4: 'Ohitrodiazoaminobenzene, also obtained from p-NO₂·C₆H₄·N₂·HSO₄ and aq. KCNO at 0°. The formation of syn-cyanides in mineral acid medium parallels that of diazoamino-compounds in similar media. Attempts to isolate a diazo-cyanate or -isocyanate from neutral p-NO₂·C₆H₄·N₂Cl with KCNO or AgCNO were unsuccessful because of the facile decomp. of the resulting diazo-compound. The views of Le Fèvre et al. (loc. cit.), with particular reference to the dipole moment data, are discussed.

Separation of m- and p-cresol.—See B., 1944, II, 274.

Nuclear methylation of phenolic substances. (Miss) M. G. Barclay, A. Burawoy, and G. H. Thomson (J.C.S., 1944, 400—404; cf. A., 1944, II, 157).—4:1:3:5-OH·C₆H₂Me(CH₂·OH)₂ (I), distilled at >250° alone or in presence of very weak alkalis, gives much p-cresol (II), some m-4-xylenol (III), and a little mesitol (IV); in presence of mild alkalis, e.g., Ca(OH)₂, Mg(OH)₂, borax, the amount of (IV) increases to 12—18% by wt. of (I). This reaction is characteristic of all hydroxymethylphenols and other substances capable of forming anhydrohydroxymethylphenols at high temp. The analogous behaviour of (I) and p-aminoaryl alcohols (loc. cit.) is shown by the formation of anhydrides, which then undergo disproportionation to yield methylated phenols and amines, respectively, and oxidised resins serving as a source of H; both also condense to a varying degree, controlled by the presence of alkalis, to form substances of high mol. wt. containing CH₂ linkings, which decompose to form mainly the original phenol or amine. Distillation of 4:1:0-OH·C₂H₃Me·CH₂·OH or of 3-piperidinomethyl-p-cresol with Ca(OH)₂ yields mainly (III), and a little (III) + (IV). Distillation of CH₂(C₆H₃Me·OH-5:2)₂ with Na₂CO₃ gives almost pure (II), but with Ca(OH)₂ yields mainly (II) and a little (III) + (IV), a similar mixture also being obtained from 4-hydroxy-3:5-bis-(6-hydroxy-a-interpretation).

methylbenzyl)toluene in presence of Na₂CO₃ or Ca(OH)₂. CH₂(C₆H₃Me·OH-5:4)₆ and Na₂CO₃ or Ca(OH)₂ afford mainly o-cresol and traces of (IV). CH₂[C₆H₂Me(OH)·CH₂·OH-5:4:3]₂ (V), m.p. 163° [prep. from o-cresol (1 mol.), NaOH (1·25 mols.), and aq. CH₂O for 1 week], distilled alone gives o-cresol, (III), m-2-xylenol (VI), and traces of (IV), but in presence of Ca(OH)₂ much (III), (VI), and (IV), with only a little o-cresol. 2:1:3:5-OH·C₆H₂Me(CH₂·OH)₂, m.p. 94°, gives, in presence of Ca(OH)₂, (III) + (VI) and a little (IV); the yield of (IV) is small owing to condensation to (V). 3:5-Dimethyl-2-piperidinomethylphenol with Ca(OH)₂ yields m-5-xylenol, 2:3:5:1-C₆H₆Me₃·OH (VII), and a little 2:3:5:6:1-C₆HMe₄·OH (VIII). 1:3:5:2:6-OH·C₆HMe₂(CH₂·OH)₂ with Ca(OH)₂ gives mainly (VII) + (VIII); no trace of 3:4:5-tri-, 2:3:4:5-tetra-, or penta-methylphenol was found, suggesting that these substances are not p-substituted derivatives of m-5-xylenol (cf. Caldwell et al., A., 1939, II, 523). Distillation of 1-piperidinomethyl-2-naphthol gives β -C₁₀H₇·OH + 1:2-C₁₀H₆Me·OH (IX), the yield of (IX) being higher in presence of CaCO₃, whereas Ca(OH)₂ decreases the amount of β -C₁₀H₇·OH and (IX); traces of 1-C₁₀H₇Me (X) are isolable. 2:2'-Dihydroxy-1:1'-dinaphthylmethane distilled alone or with Na₂CO₃ or Ca(OH)₂, yields much β -C₁₀H₇·OH and <2% of (IX) + (X). A mixture of phenolic substances forming a mixture of hydroxymethyl- or aminomethyl-phenols can be used: thus condensation of (II), CH₂O₂, and Ca(OH)₂, and distillation gives (III), (II), and (IV): he mixture on similar condensation and distillation affords 30% of (IV). Similarly (IV) is obtained from o-cresol and PhOH, a 20% yield of 2:3:4:6:1-C₈HMe₄·OH (XI) from m-cresol, and 30% of (VIII) from m-5-xylenol. A mixture of (IV) and (XI) results on similar treatment of the cresylic acids.

Relation of cestrogenic activity to structure in 4:4'-dihydroxydiphenylmethanes. E. E. Reid and (Miss) E. Wilson (J. Amer. Chem. Soc., 1944, 66, 967—969).—The appropriate ketone (1 mol.) and PhOH (3 mols.) in conc. HCl at room temp. (1 day to 20 weeks) or faster with gaseous HCl give ~90% of $\beta\beta$ -di-p-hydroxyphenyl-n-heptane, m.p. 101° (dibenzoate, m.p. 118°), octane, m.p. 88° (dibenzoate, m.p. 114°), and -y-methylbutane, m.p. 194° (dibenzoate, m.p. 204°), $\zeta\zeta$ -di-p-hydroxyphenyl-n-undecane, m.p. 148·5° (dibenzoate, m.p. 94°), 1: 1-di-p-hydroxyphenyl-4-methylcyclohexane, m.p. 170° (dibenzoate, m.p. 149·5°), aa-di-p-hydroxyphenyl-a-p-anisylethane, m.p. 291°), (p-OH·C₆H₄)₂C(CH-Ph)₂, m.p. 193° (dibenzoate, m.p. 221°), (p-OH·C₆H₄)₂C(CH-Ph)₂, m.p. 193° (dibenzoate, m.p. 223°), and [from (CH₂AC)₂] [(p-OH·C₆H₄)₂CMe·CH₂]₂, m.p. 302° (decomp.) (tetrabenzoate, m.p. 247°). Œstrogenic activity of the series, (p-OH·C₆H₄)₂CRR' is a max. at R = R' — Pr^a in contrast to the stilbene series (Campbell, A., 1941, II, 62).

Dibenzfuran. XXI. Benzene and diphenyl intermediates for 1:9-derivatives. H. Gilman and J. R. Thirtle (J. Amer. Chem. Soc., 1944, 66, 858—859; cf. A., 1944, II, 303).—Metallation of 1:2:4-C₆H₃(OMe)₂ by LiBu^a in boiling Et₂O-N₂ occurs almost exclusively at position 3, since subsequent treatment with I or CO₂ gives 1-iodo-2:3:6-trimethoxybenzene (I) (51%), m.p. 108—108-5°, or 2:3:6:1-(OMe)₃C₆H₂·CO₂H (47%), m.p. 149—150° (lit. 145—146°) (Me, m.p. 57—57·5°, and Et ester, m.p. 42·5—43°, obtained with difficulty), respectively. Cu powder converts (I) at 185—190° and then 210—215° (N₂) into 2:3:6:2':3':6'-hexamethoxydiphenyl (76·4%), m.p. 125—125·5°, which with HNO₃-Ac₂O at the b.p. gives the 5:5'-(NO₂)₂-compound (II), m.p. 151—151·5°. HNO₃-AcOH at 60° converts (I) into 1-iodo-5-nitro-2:3:6-trimethoxybenzene, m.p. 119·5—120°, converted by H₂-Pd-CaCO₃ in EtOH at 30 lb. into 1:3:4:6-(OMe)₃C₆H₂·NO₂, m.p. 128—129°, and by Cu powder at 210° and then 230° into (II). Attempts to prepare dibenzfuran derivatives are without effect or produce tars. R. S. C.

Vinyl alcohols. IX. Esters of $a\beta$ -dimesitylvinyl alcohol. R. C. Fuson, L. J. Armstrong, and W. J. Shenk, jun. (J. Amer. Chem. Soc., 1944, 66, 964—967).—The alcohol produced by dehydration of hydromesitoin or isohydromesitoin (A., 1943, II, 261) is shown to be ββ-dimesitylvinyl alcohol by the prep. of esters of the $a\beta$ -dimesityl isomerides and demonstration that these alcohols are too readily ketonised to exist in the free state. CHMesBr·COBr (Mcs = mesityl here and below) (prep. from OH·CHMes·CO₂H by PBr₃ at 100°), b.p. 138—139°/9 mm., with granulated Zn in Et₂O gives a solution of CHMes·CO, which could be isolated only as dimer, m.p. 197—200°, but which with MgMesBr-Et₂O and then BzCl gives trans- $a\beta$ -dimesitylvinyl benzoate, m.p. 147—148°. In NaOH-EtOH-H₂O at the b.p. this undergoes hydrolysis and ketonisation to COMes·CH₂Mes (I): it shows no active H (Grignard machine) and gives no Cu derivative; its structure is thus proved. With MgMeI, (I) evolves 0.96 CH₄ but then regenerates (II): other attempts to Preparc its enol also failed. MgEtBr and (I) in Et_nO give, after treatment with BzCl or AcCl, cis- $a\beta$ -dimesitylvinyl benzoate, m.p. 104—105.5° [no active H; hydrolysis gives (I)], or acatate, m.p. 68—69°, b.p. 188—193°/4 mm., respectively. Mesitylglyoxalhydrazone, m.p. 1-9—131°, HgO, CaSO₄, and a trace of KOH-EtOH in light petroum give mesityldiazomethane, m.p. 50—61° (decomp.), whence no keten could be obtained but whence boiling H₂O yields CH₂Mcs·CO₂H. 2: 4:6:1-C₆H₂Et₃·CHBr·COBr (prep. as above), b.p. 140—142°/5

mm., with Zn in Et₂O-Bu₂O gives a keten solution, whence H₂O yields $2:4:6:1-C_6H_2\text{Et}_3^*\text{CH}_2^*\text{CO}_2^*\text{H}$. $2:4:6:1-C_6H_2\text{Pr}\beta_3^*\text{COMe}$ and SeO₂ give $2:4:6:1-C_6H_2\text{Pr}\beta_3^*\text{CO}_2^*\text{CHO}$ (II), b.p. $138-143^\circ/7\cdot5$ mm., converted by $10\%_0^\circ$ KOH at 100° into 2:4:6-triisopropylmandelic acid, m.p. $163-164^\circ$ (corr.) (Me ester, m.p. $94-95^\circ$), which with $H_2\text{SO}_4$ -COMe₂ at 0° gives the dioxolone, m.p. $165-165\cdot5^\circ$, and thence (N₂H₄,H₂O-EtOH) the hydrazide, m.p. $156-157^\circ$. HgO etc. converts the hydrazone, m.p. $153-154^\circ$ (decomp.), of (II) into the diazo-compound, decomp. 104° or 125° , whence $H_2\text{O}$ yields 2:4:6:1-triisopropylphenylacetic acid (III), m.p. $146-146\cdot5^\circ$. 2:4:6:1-C₆H₂Pr β_3 -CH₂Cl with CuCN in C₅H₅N at $210-220^\circ$ gives 2:4:6-tisopropylbenzyl cyanide, m.p. $81-82^\circ$, b.p. $129-130^\circ/4$ mm., converted by KOH-H₂O-diethylene glycol at the b.p. into (III) but by KOH-EtOH into the amide, m.p. $170-171^\circ$.

R. S. C.

Vinyl alcohols. X. ββ-Diarylvinyl alcohols. R. C. Fuson, P. L.

Southwick, and S. P. Rowland (J. Amer. Chem. Soc., 1944, 66, 1109—1112; cf. supra).—CMes₂, CH·OH (Mes = mesityl here and below) (I), m.p. 129—129·5° (A., 1943, II, 261) [acetate (II), m.p. 132·5—133°; benzoate, m.p. 175·5—176°], is obtained (80%) with a dimer, m.p. 189—191°, and a trimer, m.p. 290—292°, from hydromesitoin by 55% H₂SO₄ at 100° and from isohydromesitoin (III) similarly or, less well, by boiling AcOH—conc. HCl, P₂O₆, or heating at 285°. It is unaffected by O₂ in COMe₂. KMnO₄ does not affect (II) whilst O₃ in CCl₄ gives CHMes₂·CO₂H; hydrogenation at 200°/3000 lb. yields CH₂Mes₂. Attempts to ketonise (I) failed: boiling HCl—MeOH yields the Me ether (IV), m.p. 129—130°, also obtained from (III) by HCl—MeOH at room temp. and converted by HI—AcOH into (CHMes.).s; the Et ether, m.p. 96—97°, is obtained from (I) by HCl—tOH. (I) is unaffected by Hg-Zn—HCl—AcOH, but with Zn dust at 300° or HI—AcOH at 100° gives (CHMes.)₂ and with H₂-Raney Ni—EtOH at 200° gives ββ-dimesitylethyl alcohol (V), m.p. 118—119° (acetate, m.p. 164—165°; benzoate, m.p. 151·5—152·5°) (and a little CH₂Mes₂), also obtained similarly from (I). O₃ in CCl₄ oxidises (CH₂Mes₂) [also obtained similarly from (I)]. O₃ in CCl₄ oxidises (I) to mesitoin, CrO₃-AcOH at room temp. or ScO₂ yields mesitil, KMnO₄ in aq. COMc₂, KOH—EtOH, or NaOCl gives a dimeric product (VI), C₄₀H₄₄O₂, m.p. 184·5—185° (decomp.). (VI) contains 1 active H, gives violet to red colours in solution at 70°, is unaffected by H₂-PtO₂ at 1 atm., and with hot HCl—MeOH or -EtOH gives a compound, C₃H₄₁O₃, m.p. 180–181°. CrO₃-AcOH oxidises (III) to MesCO₂H. With red P-I-AcOH-H₂O, (III) gives (CHMes)₂, with HI—AcOH at 100° or conc. H₂SO₄ at 0° gives (CHMes)₂, and with PCl₅-POCl₃ at room temp. gives aβ-dichloro-aβ-dimestiyl-ethane, m.p. 176—179°, also obtained similarly from (I) and (? with a diastereoisomeride) from (CHM

Toxic principles of poison ivy. II. Preparation and properties of diphenylmethylene ethers of pyrocatechols.—See A., 1944, $1\overline{1}$, 346.

Effect of bases on the hydrogenation of alkylphenols in the presence of Raney nickel. H. E. Ungnade and (Miss) D. V. Nightingale (J. Amer. Chem. Soc., 1944, 66, 1218—1220).—Hydrogenation (Raney Ni) of an alkylphenol is promoted by a small amount of its Na salt, best in absence of solvent (cf. A., 1944, II, 160). Differences in rate of hydrogenation of isomerides are removed by this catalysis, but the ratio of stereoisomeric cyclohexanols formed is unaffected except at high temp.

R. S. C.

Semihydrobenzoin and semipinacolic transformations in the α-phenyl-β-methyl- and -ethyl-Δ'-butene-αβ-diol series. Y. Deux (Compt. rend., 1943, 216, 776—778; cf. A., 1939, II, 265).— CHPh:CMe·CH:CH2, and HgO-I in Et₂O-H₂O give CHPhI·CMe(OH)·CH:CH₂, which with conc. aq. AgNO₃ affords γ-phenyl-Δδ-penten-β-one (I), b.p. 110—111°/14 mm. (oxime, m.p. 101—102°; semicarbazone, m.p. 138—139°) (semipinacolic change), hydrogenated (Raney Ni) to CHPhEt·COMe (semicarbazone, m.p. 187—188°). CHPhCl·CMe(OH)·CH:CH₂, m.p. 84—85°, and MgEtBr give (I), also obtained from HNO₂ and NH₂·CHPh·CMe(OH)·CH:CH₂ (picrate, m.p. 213—214°) (prepared from the corresponding epoxide and excess of NH₃ at 110—120° in a scaled tube). α-Phenyl-β-ethyl-Δγ-butene-αβ-diol, m.p. 93—94° (di-p-nitrobenzoate, m.p. 107—108°), prepared from the corresponding epoxide and acidulated H₂O at 70—80° for 2 hr., is converted by 30% H₂SO₄ into α-phenyl-α-ethyl-Δβ-butenaldehyde, b.p. 116—117°/15 mm. (semicarbazone, m.p. 160°; ozime, m.p. 98—99°) (semihydrobenzoin change). NH₂-CHPh-CEt(OH)·CH:CH₂ (picrate, m.p. 145—146°) and HNO₂ give CH₃:CH-CHPh-COEt (loc. cit.).

Halogenohydrins obtained by the action of hydracids on stilbene oxide. D. Reulos (Compt. rend., 1943, 216, 774—776).—trans-αβ-

Epoxy- $\alpha\beta$ -diphenylethane (stilbene oxide) (I) and excess of conc. FIG. 111 Et₂O attord, by a Walden inversion, cis- β -chloro- $\alpha\beta$ -diphenylethanol, m.p. 77° (p-nitrobenzoate, m.p. 103—104°), transformed into (I) by aq. KOH, and by SOCl₂ in CHCl₃ into cis-(CHPhCl)₂. (I) and HBr (d 1·38) similarly yield β -bromo- $\alpha\beta$ -diphenylethanol, m.p. 86° (p-nitrobenzoate, m.p. 121—122°), convertible into (I) by aq. KOH or into (CHPhBr)₂, m.p. 237°, by PBr₃; (I) and HI give the β -I-compound, m.p. 95—96°, readily decomposed with liberation of I. HCl in Et,O afford, by a Walden inversion, cis-β-chloro-αβ-diphenyl-

Dehydration of cyclohexane-1: 4-diol. Synthesis of 1: 4-epoxy-cyclohexane. R. C. Olberg, H. Pines, and V. N. Ipatiev (J. Amer. Chem. Soc., 1944, 66, 1096—1099).—trans-(I), m.p. 142°, and ciscycloHexane-1: 4-diol (II), m.p. 107° (mixed m.p. curve given), are separated by way of the diacetates, m.p. 103° and 33—34°, respectively. 350—400° there are obtained also cyclohexadienes, cyclohexene (\mathbf{V}), methylcyclohexene, CH₂O, Me₂O, diene polymers, and at 400° a little CO + H₂ (from CH₂O). (\mathbf{V}) is probably formed by hydrogenation of (\mathbf{IV}) by MeOH to cyclohexanol and subsequent dehydration. In EtOH at 300° only 21·4% of (\mathbf{IV}) and at 340° none is formed; in COMe₂ at 300° 17% of (\mathbf{IV}) and at 340° none is formed. Boiling the diol over activated Al₂O₃ slowly gives 48·6 mols. of (\mathbf{IV}) and 18·3 mols. of (\mathbf{III}). Use of I, KHSO₄, H₂SO₄, HBr, or Br gives no (\mathbf{IV}). Boiling 48% HBr converts (\mathbf{IV}) into trans-1: 4-dibromocyclohexane, m.p. 112—113°. R. S. C. 350-400° there are obtained also cyclohexadienes, cyclohexene (V),

Magnesium dehalogenation of cis-chlorohydrins of a-substituted cyclohexanediols; exclusive formation of alkylcyclohexanones by semipinacolic transformation. M. Tiffeneau, (Mme.) B. Tchoubar, and S. Le Tcllier (Compt. rend., 1943, 216, 856—860; cf. A., 1934, 1098). -- 2-Chlorocyclohexanone and MgMeI give cis-2-chloro-1-methylcyclohexanol (I), b.p. 83-84°/13 mm., purified from some transcompound by removal of the latter as epoxide by aq. KOH. (I) and I mol. of MgEtBr yield 2-methylcyclohexanone (semicarbazone, and I mol. of MgEtBr yield 2-methylcyclohexanone (semicarbazone, m.p. 189°). Similarly prepared, using MgEtBr or MgBu^aBr, are cis-2-chloro-1-ethyl-, b.p. 96—100°/18 mm., or -1-bityl-cyclohexanol, b.p. 96—99°/18 mm., and thence 2-ethyl- (semicarbazone, m.p. 165°) or 2-butyl-cyclohexanone (semicarbazone, m.p. 145°), respectively. 2-Chloro-1:4-dimethyl-, b.p. 92—94°/17 mm., or 2-chloro-1:5-dimethyl-cyclohexanol, b.p. 88—90°/14 mm., afford 2:4-dimethyl- (semicarbazone, m.p. 190°) or 2:b-dimethyl-cyclohexanone (semicarbazone, m.p. 170°), respectively. Thus the dehalogenation of cis-chlorohydrins of cyclohexanediols gives cyclohexanones whereas the trans-isomerides yield cyclopetryl betones hexanones, whereas the trans-isomerides yield cyclopentyl ketones. Mechanisms of reactions are discussed.

Alicyclic sulphur compounds. M. Mousseron (Compt. rend., 1943, 216. 812-814).—2-Chlorocyclohexanol (I) and thiolcyclohexane [Na derivative (II) in hot EtOH give 2-hydroxydicyclohexyl sulphide (III), b.p. 170°/12 mm.; similarly prepared are 2-hydroxydicyclopentyl sulphide, b.p. 157°/12 mm., and 2-cyclopentylthiolcyclohexanol, b.p. $165^{\circ}/12$ mm. (II) and epoxycyclohexane (IV) give a mixture, b.p. 5.p. 105 /12 init. (II) and epoxylytchexane (IV) give a mixture, i.p. $170^{\circ}/12$ mm., of two stereoisomerides of (III). Na₂S₂-EtOH yields $di\cdot(2-hydroxycyclopentyl)$ disulphide, m.p. $70-71^{\circ}$, and [from (I)] $di\cdot(2-hydroxycyclohexyl)$ disulphide (V), m.p. $156-157^{\circ}$; (IV) similarly gives stereoisomerides. (V) and Sn-HCl afford $di\cdot(2-hydroxycyclohexyl)$ sulphide, m.p. 71° (Et_1 , b.p. $165^{\circ}/15$ mm., and Et_2 ether, b.p. $190^{\circ}/15$ mm.) (probably through 2-thiolcyclohexanol by loss of H₂S), also obtained from (IV) and H₂S or KHS. (II) and 2-chloroyclohexanol spine t_1° (t_2°) and t_3° or t_3°) t_3° (t_3°) t_3°) t_3° and t_3° or t_3°) t_3° t_3° hexylamine give 2-aminodicyclohexyl sulphide, b.p. 160°/15 mm. [hydrochloride, m.p. 200° (decomp.)]; Na₂S₂ yields di-(2-aminocyclohexyl) disulphide, b.p. 200°/15 mm. [hydrochloride, m.p. 230° (decomp.)]. Epithiomethenecyclohexane (liquid) (from Na₂S and 1-thiocyano-1-thiocyanomethylcyclohexane) is converted by hot H₂O into di-(1-hydroxymethylcyclohexyl) sulphide, m.p. 55°, obtained from Na₂S and 1-chloro-1-hydroxymethylcyclohexane (Tiffeneau et al., A., 1937, II, 414). The appropriate Mg 3-methylcyclohexyl chloride and SO₂, followed by KMnO₄ oxidation of the product, give, through the K salts, [a]₅₄₆ +2·02° in H₂O, and [a]₅₄₆ +1·25° in H₂O, respectively, the cis-, m.p. 95°, [a]₅₁₆ +2·16° in C₆H₆, and trans-3-methylcyclohexanesulphonic acid, m.p. 93°, [a]₅₄₆ 1-1·44° in C H +1.44° in C₆H₆.

Condensation of 4-chloro-3:5-dinitrobenzaldehyde with malonic acid in presence of organic bases. D. S. Mittal (J. Indian Chem. Soc., 1944, 21, 34).— C_5H_5N , piperidine, and quinoline (0·15 mol.) successfully catalyse the condensation of equimol. mixtures of $3:5:4:1-(NO_2)_2C_6H_2Cl\cdot CHO$ and $CH_2(CO_2H)_2$. Yields of 84—92% of 4-chloro-3:5-dinitrocinnamic acid, m.p. 82°, are obtained by the successful of the successfu

Antispasmodics. VI. F. F. Blicke and R. F. Feldkamp (J. Amer. Chem. Soc., 1944, 66, 1087—1091; cf. A., 1944, II, 14).—1-C₁₀H₇·CH₂·CO₂Et (prep. from 1-C₁₀H₇·CH₂Cl by KCN and then hot H₂SO₄-EtOH), b.p. 180—181°/15 mm., Et₂C₄O₄, and NaOEt in EtOH give an ester, which at 175°/15 mm. yields CO and 1-

C₁₀H₇·CH(CO₂Et)₂ (69%), m.p. 62° (lit. 59—60°). The derived Na compound (prep. in xylene) with RI in boiling C₈H₈ gives 22—75-6% of pure Et₂ 1-naphthyl-methyl-, m.p. 46—47°, b.p. 170—171°/2—3 mm., -ethyl-, m.p. 48—49°, b.p. 171—174°/3 mm., -n-propyl-, m.p. 51—52°, b.p. 182—184°/4 mm., and -n-butyl-malonate, 1-C₁₀H₇·CR(CO₂Et)₂, m.p. 53—54°, b.p. 185—188°/4 mm., hydrolysed by boiling KOH—EtOH—H₂O to the malonic acids, which at 180° yield α-1-naphthyl-propionic, m.p. 148—149° (lit. 148°), -n-butyric, m.p. 86—87°, -n-valeric (I), b.p. 190°/4 mm., and -n-hevoic acid (II), m.p. 64—65°, b.p. 183°/3 mm. C₁₀H₈, COCl-CO₂Et, and AlCl₃ in (CHCl₂)₂ give 69% of mixed esters, separated by picric acid into 1- (46%), b.p. 167°/3 mm., and 2-C₁₀H₇·CO·CO₂Et, b.p. 161—165°/2—3 mm., hydrolysed by Na₂CO₃ in boiling aq. EtOH to the acids, m.p. (III) 112—113° and 92—93°, respectively (cf. lit.). MgRBr and (III) in Et₂O give 1-C₁₀H₇·CPh(OH)·CO₂H, softens ~90°, m.p. (complete) 147°, α-hydroxy-α-1-naphthyl-n-valeric, m.p. 139—140°, and -n-hexoic acid, m.p. 116—117°, reduced by red P and I to 1-C₁₀H₇·CHPh·CO₂H, (Î), and (II), respectively. The basic alkyl chloride and CHArR·CO₂H in boiling PrβOH give: β-diethylamino-ethyl α-1-naphthyl-acetate hydrochloride, m.p. 128—130°, -propionate hydrochloride, m.p. 98—100°, and -n-butyrate hydrochloride (IV), m.p. 117—119°, and α-phenyl-α-1-naphthylacetate hydrochloride, m.p. 128—136°, respectively; the γ-diethylamino-n-propyl ester hydrochlorides, m.p. 110—111°, 90—94°, 97—98°, and (VI) ~107°, respectively. The β-morpholino-ethyl ester hydrochlorides, m.p. 110—111°, 90—94°, 97—98°, and (VI) ~107°, respectively. The β-morpholino-ethyl ester hydrochlorides, m.p. 131—132°, 148—149°, 167—168°, and ~110°, respectively, are obtained from CHArR·COCl and the basic alcohol in C₈H₈ at 0° and then the b.p. β-Piperidinoethyl chloride, b.p. 69°/12 mm., gives a hydrochloride, m.p. 229—230° (lit. 208°, 231°). The esters have antispasmodic action at effective.

Nitro-amino-derivatives of o-bromobenzoic acid. H. Goldstein and G. Preitner (Helv. Chim. Acta, 1944, 27, 888—891).—Gradual addition of 5:2:1-NHAc:C₆H₃Br·CO₂H to HNO₃ (d 1·5) gives 2-bromo-6-nitro-o-acetamidobenzoic acid, m.p. ~250° (decomp.), also obtained by oxidising 6:1:2:5-NO₂·C₆H₂MeBr·NHAc (I) with aq. KMnO₄ + MgSO₄. It is hydrolysed by boiling 10% KOH to 2-bromo-6-nitro-5-aminobenzoic acid, m.p. 218°. Nitration of 1:2:5-C₆H₃MeBr·NHAc (II) with some (I) and 2-bromo-4:6-dinitro-5-acetamidotoluene, m.p. 224—225° (cf. Cohen et al., J.C.S., 1914, 105, 513). (II) is oxidised to 2-bromo-4-nitro-5-acetamido-, m.p. 208°, hydrolysed to 2-bromo-4-nitro-5-amino-, m.p. 236·5°, -benzoic acid. M.p. are corr.

Synthesis of alkyl and dialkylaminoalkyl esters of 5-fluoro-2-nitro-and -2-amino-benzoic acid. L. S. Fosdick and R. Q. Blackwell (J. Amer. Chem. Soc., 1944, 66, 1165-1166).—5-Fluoro-2-nitro-(J. Amer. Chem. Soc., 1944, 66, 1165—1166).—5-Fluoro-2-nitrobenzoyl chloride (prep. from the acid by SOCl₂), b.p. 130—140°/6—7 mm., yields, by the usual methods, Me, m.p. $36\cdot5-37^{\circ}$, Et, m.p. $43\cdot5-44^{\circ}$, Pr^{α} , b.p. $127-128^{\circ}/3$ mm., Bu^{α} , b.p. $152^{\circ}/7$ mm., $NR_{2}\cdot[CH_{2}]_{2}$ [R = Me (hydrochloride, m.p. $154-155^{\circ}$), Et (hydrochloride, m.p. $147\cdot5-148\cdot3^{\circ}$), Pr^a (hydrochloride, m.p. $131-131\cdot5^{\circ}$), and Bu^a (hydrochloride, m.p. $137\cdot5-138\cdot2^{\circ}$), Pr^a (hydrochloride, m.p. $122-122\cdot5^{\circ}$), and Bu^a (hydrochloride, m.p. $98\cdot3-99\cdot3^{\circ}$)] o-fluoro-2-nitrobenzoate, reduced (PtO₃) to Me, b.p. $105^{\circ}/2$ mm., E_{1} , b.p. $110^{\circ}/2$ mm., Pr^{α} , b.p. $116^{\circ}/2$ mm., Bu^{α} , b.p. $130^{\circ}/2$ mm., $NR_{2}\cdot[CH_{2}]_{3}$ [R = Me (hydrochloride, m.p. 175°), Et (hydrochloride, m.p. 125°), Pr^a (hydrochloride, m.p. 125°), Pr^a (hydrochloride, m.p. 165°), and Bu^a (hydrochloride, m.p. 125°), Pr^a (hydrochloride, m.p. 145°), and Bu^a (hydrochloride, m.p. $133-134^{\circ}$), Pr^a (hydrochloride, m.p. 145°), and Bu^a (hydrochloride, m.p. $107-108^{\circ}$)] 5-fluoro-2-aminobenzoate, respectively. The aminoalkyl NH₂-esters produce anæsthesia of long duration but are irritant and toxic. R. S. C. anæsthesia of long duration but are irritant and toxic. R. S. C.

Action of trimethylgallazide on cresols. R. O. Pepe (Anal. Asso. Quim. Argentina, 1941, 29, 124—128).—o-, m-, and p-Cresol in NaOH with 3:4:5:1-(OMe)₃C₈H₂·CON₃ in COMe₂ yield o-, m.p. 102°, m-, m.p. 124°, and p-totyl 3:4:5-trimethylgallate, m.p. 89°.

Action of trimethylgallazide on monomethyl ethers of diphenols. R. O. Pepe (Anal. Asoc. Quim. Argentina, 1942, 30, 235—239).— 3:4:5:1-(OMe)₃C₃H₂·CON₃ in COMe₂ with o-, m-, and p-OMe·C₆H₄·OH in NaOH yields o-, m.p. 115°, m-, m.p. 102°, and p-anisyl 3:4:5-trimethoxygallate, m.p. 89°. F. R. G.

5:8-Dichloro-2-naphthoic acid and -2-naphthylamine. H. Gold-5:8-Dichloro-2-naphthoic acid and -2-naphthylamine. H. Goldstein and P. Viaud (Helv. Chim. Acta, 1944, 27, 883—888).—2-C₁₀H₇·CN and Cl₂ in glacial AcOH–I (trace) at 110—120° in bright light give 5:8:2-C₁₀H₅Cl₂·CN, hydrolysed by AcOH–H₂SO₄-H₂O to 5:8:2-C₁₀H₅Cl₂·CO₂H, m.p. 301°. This is converted by McOH–H₂SO₄ into the Me ester (I), m.p. 145·5°, and by SOCl₂ or PCl₅ into the chloride, m.p. 102°, which yields the amide, m.p. 224°, and anilide, m.p. 226°. (I) and boiling N₂H₄, H₂O afford 5:8-dichloro-2-naphthoylhydrazine (II), m.p. 212°, which yields hydrazones with COMe₃, m.p. 192°, PhCHO, m.p. 239°, p-NO₂·C₆H₄·CHO, m.p. 284°, and COPhMe, m.p. 204°. (II) is transformed by I in boiling EtOH into NN'-di-D:8-dichloro-2-naphthoylhydrazine, m.p. 342°. NaNO₂ and

H₂SO₄ convert (II) into the azide (III), m.p. ~108° (decomp.), which with the requisite boiling alcohol affords Me, m.p. 161°, and Et, m.p. 141°, N-5: 8-dichloro-2-naphthylcarbamate. Boiling glacial Boiling glacial AcOH converts (III) into NN'-di-5: 8-dichloro-2-naphthylcarbamide, m.p. ~327°. (III) and boiling Ac₂O afford (after hydrolysis) 5:8:2m.p. ~ 327 °. (III) and botting Ac₂O afford (after hydrolysis) b:8:2- $C_{10}H_{\rm f}Cl_{\rm 2}$ °NH₂ (Bz derivative, m.p. 203°), also obtained by chlorinating (β - $C_{10}H_{\rm 7}$ ·NH₂)₂, $H_{\rm 2}$ SO₄ in 80% $H_{\rm 2}$ SO₄ and converted by diazotisation followed by treatment with boiling dil. $H_{\rm 2}$ SO₄ into 5:8-dichloro-2-naphthol, m.p. 143° (Me ether, m.p. 74°). 5:8-Dibromo-2-naphthol, m.p. 147° (Me ether, m.p. 83°), is derived from 5:8:2- $C_{10}H_{\rm 5}$ Br₂·NH₂. M.p. are corr. H. W.

Sulphocarboxylic acids. III. Acid amide-like autocondensation of 3-amino-5-sulphobenzoic acid. P. Ruggli and H. Dahn (Helv. Chim. Acta, 1944, 27, 867—882; cf. A., 1942, II, 197).—The prep. of $\rm H_2O$ -sol. org. compounds of approx. polymeric-homologous character and almost const. solubility in $\rm H_2O$ is described. The corresponding azo-dycs are very similarly adsorbed by $\rm Al_2O_3$. The NH2-acids and their dyes are not substantive to cotton in dil. Na₂CO₃; adsorption is not pronounced and the data cannot readily be reproduced. At any rate no such differences are found as might be expected from the great difference in mol. wt. This is possibly due to the very similar solubility. $3:5:1\text{-NO}_2\cdot\text{C}_6H_3(\text{SO}_3\text{H})\cdot\text{CO}_2\text{H}$ gives a $Sr\,H_2$ salt $(+2H_2\text{O})$, dipyridinium salt, loses C_6H_5N at $\sim 160^\circ$ leaving the pyridinium H salt, m.p. $202-203^\circ$, and a di(benzyl-lhitronium) salt, m.p. $173-174^\circ$. The presence of $3:5:1\text{-NO}_2\cdot\text{C}_6H_3(\text{SO}_2\text{Cl})\cdot\text{COCl}$ in $3:5:1\text{-NO}_2\cdot\text{C}_6H_3(\text{SO}_2\text{Cl})\cdot\text{CO}_2\text{H}$ (I) (cf. Shah et al., A., 1933, 1293) is determined by the formation of the alkali-insol. dianilide under the action of NH₂Ph. $3:5:1\text{-NH}_2\cdot\text{C}_6H_3(\text{SO}_3\text{H})\cdot\text{CO}_2\text{H}$ is readily obtained by catalytic reduction (H₂ at $80^\circ/50$ atm.—Raney Ni in neutral solution) of the NO₂-compound. The normal Sr salt $(+2H_2\text{O})$, sol. in $8\cdot3$ parts of $H_2\text{O}$ at 20° , monopyridinium, softens greatly with evolution of $C_5H_5\text{N}$ at $176-178^\circ$, and non-cryst, benzylthiuronium salt are described. The acid and Sr salt give a blue, the pyridinium a yellow, fluorescence Na₂CO₃; adsorption is not pronounced and the data cannot readily The acid and Sr salt give a blue, the pyridinium a yellow, fluorescence The acid and Sr sart give a blue, the pyridinium a yellow, inderescence in ultra-violet light. Neutralisation of an aq. suspension of $3:5:1-NH_2\cdot C_8H_3(SO_3H)\cdot CO_2H$ at $70-80^\circ$ with powdered $Sr(OH)_2$ and subsequent alternate additions of (I) and $Sr(OH)_2$ give the $Sr(+8H_2O)$ and $+3H_2O$) salt of 3-3'-nitro-5'-carboxybenzenesulphonamido-5-sulphobenzoic acid; the acid and benzylthiuronium salt are non-cryst. Reduction [FeSO₄ and $Sr(OH)_2$] of the NO_2 -acid affords the 3'- NH_2 -acid, softens at $120-130^\circ$, chars at $>300^\circ$ [Sr salt (also hexahvdrate)] and thence by diazotisation the correspondsalt (also hexahydrate)], and thence by diazotisation the corresponding N_2 -acid, very sparingly sol. in hot H_2O . The conversion of (I) into 3:5:1-NO $_2\cdot C_0H_3(SO_3H,C_0H_5N)\cdot CO\cdot C_0H_5NCl$ is described. Treatment of (I) with C_0H_0N followed by 3:5:1-NH $_3\cdot C_0H_3(SO_3H)\cdot CO_3H$ leads to $3\cdot 3\cdot$ nitro- $5\cdot$ -sulphobenzamido- $5\cdot$ -sulphob sulphobenzoic acid [tru(benzylthiuronium) salt, m.p. 180°], which is relatively stable to hydrolysis. It is reduced by FeSO₄ and Sr(OH)₂ or catalytically (Raney Ni) to the $3'-NH_2$ -compound (II), chars at >320°, the purity of which is best controlled by potentiometric titration of 'NH, with NaNO₂. This gives an internal diazonium salt, chars at ~320°; which couples with β -C₁₀H₇·OH to an azo-dye, m.p. 237—238°. (II) and (I) give 3-(3'-3''-nitro-5''-sulphobenzamido-5'-sulphobenzamido-5'-sulphobenzamido)-5-sulphobenzamido-6' (All Letra Chenzylthiamido-5'-sulphobenzamido)-5-sulphobenzoic acid [tetra(benzylthi-uronium) salt, m.p. 179°], reduced to the 3"-NH₃-acid, chars at >300° (Sr salt), which is converted into the diazo-compound, decomp. ~170°, m.p. 210°; this couples with \$\beta\$-C\$_{10}H\$_7*OH in \$C_5H_6\$N to a dye, m.p. 235—236°.

Condensation of 2-acetylnaphthalene with diethyl succinate. Johnson and A. Goldman (J. Amer. Chem. Soc., 1944, 66, 1030-1037).—Contrary to Stobbe et al. (A., 1911, i, 374), $2\cdot C_{10}H_7Ac$ and $(CH_2\cdot CO_2Et)_2$ with NaOEt in Et₂O give 18% of β -carbethoxy- γ -2-naphthyl-cis- $\Delta\beta$ -pentenoic acid (I) (A) (R = Et, R' = H), m.p. 119—119·5° (119—119·6°), but with NaOEt (~1 mol.) in boiling

$$\begin{array}{ccc} \text{CO}_2\text{R} \cdot \text{C} \cdot \text{CH}_2 \cdot \text{CO}_2\text{R}' & \text{CO}_2\text{R}' \cdot \text{CH}_2 \cdot \text{C} \cdot \text{CO}_2\text{R} \\ \text{2-C}_{10}\text{H}_7 \cdot \text{C} \cdot \text{Me} & \text{2-C}_{10}\text{H}_7 \cdot \text{C} \cdot \text{Me} \\ \text{(A.)} & \text{(B.)} \end{array}$$

EtOH give 21% of cryst. (I) and an oil, which by treatment with Ba(OH), and then AcCl gives the anhydride (II), m.p. 155.5—156°, bal(DI)₂ and then ACCI gives the anhyanae (II), m.p. 100·0—100·, or β -carboxy- γ -2-naphthyl-cis- $\Delta\beta$ -pentenoic acid (III) (A) (R = R' = n²) (see below) with larger amounts of the anhydride (IV), m.p. 116—116·5°, of the trans-dicarboxylic acid (V) (B) (R = R' = H) (see below). Structures are proved as follows. In boiling Ba(OH)₂-H₂O-EtOH, (I) gives (III), m.p. 179·5—180·5° (decomp.) [a further unpure crop, m.p. 163—165° (decomp.), could not be purified; cf. Stobbe et al. (loc. cit.)], whence ACCl at room temp. yields (II). Boiling EtOH containing a drop of H₂SO, converts (II) into Et Stobbe et al. (loc. cit.)], whence ACCI at room temp. yields (11), boiling EtOH containing a drop of H_2SO_4 converts (II) into Et recarboxy-y-2-naphthyl-cis- $\Delta\beta$ -pentenoate (VI) (A) (R = H, R' = 2t), forms, m.p. 118-5—119° and 105—105-5°, which is also obtained by partially esterifying (III) in EtOH- C_6H_6 + a little H_2SO_4 with continuous removal of H_2O . Such treatment with EtOH- C_6H_6 - SO_4 converts (I) into the cis- EI_2 ester (A) (R = R' = Et), b.p. $186^\circ/0.05$ —1 mm., which is also obtained from (VI) by boiling and is reconverted into (I) by partial hydrolysis by and is reconverted into (I) by partial hydrolysis by W), H)2-EtOH-H.O. Hydrolysis of (IV) by 2% NaOH yields Wp. 167-168° (decomp.), reconverted into (IV) by AcCl.

EtOH + a little H_2SO_4 converts (IV) into Et β-carboxy-γ-2-naphthyltrans- Δ β-pentenoate (VII) (B) (R = H, R' = Et), m.p. $102-102\cdot5^\circ$, whence hydrolysis and then dehydration regenerates (IV) and H_2SO_4 -EtOH- C_6H_8 (as above) yields the oily trans- Et_n ester, converted by partial hydrolysis into β-carbethoxy-γ-2-naphthyl-trans- Δ β-pentenoic acid (VIII) (B) (R = Et, R' = H), an oil (derived anilideacid, m.p. $153-154^\circ$). With O_3 in EtOAc and then Raney Ni at room temp, and finally the h.p., (I) (VII) or (VIII) yields 39-429. acid, m.p. 153—154°). With O_3 in EtOAc and then Raney Ni at room temp. and finally the b.p., (I), (VI), or (VII) yields 39-42%, of $2-C_{10}H_7Ac$. With a little NaOAc in boiling AcOH-Ac₂O, (VI) gives Et 3-methyl-6: 7-benz-1-indone-2-acetate (IX), m.p. 96·5—97°, and (II). With HNO₃ at $190-200^\circ$ (IX) gives $1:2:3:4-C_0H_2(CO_2H)_i$, with boiling conc. HCl gives the lactone (X), m.p. $168\cdot5-169^\circ$ [with NH₂·CO·NH·NH₂ gives a compound, $C_{17}H_{17}O_4N_3$, m.p. 244° (decomp.) (bath preheated at 239°)], of 3-hydroxy-3-methyl-6: 7-benz-1-hydrindone-2-acetic acid (XI) (see below), and with H_2 -30% Pd-C in EtOAc gives Et 3-methyl-6: 7-benz-1-hydrindone-2-acetate, m.p. $70\cdot2-70\cdot6^\circ$. 5% NaOH at room temp. hydrolyses (X) to (XI), m.p. $169-169\cdot5^\circ$ (decomp.) [a form, m.p. $148\cdot5-150^\circ$ (decomp.), may also exist] [and red, amorphous material, m.p. (decomp.), may also exist] [and red, amorphous material, m.p. 227—235° (decomp.)], which regenerates (X) in presence of traces of acid. (I) is largely unchanged by NaOAc-AcOH-Ac₂O, giving only a trace of (II), but with HF yields (X). NaOAc-AcOH-Ac₂O cyclises (VIII) to Et 4-acetoxy-1-methylphenanthrene-2-carboxylate (XII) (78%), m.p. 127·5—128°, hydrolysed by boiling HCl-EtOH to the 4-OH-ester (XIII), m.p. 178·5—179°, whence Me₂SO₄-aq. NaOH yields Et 4-methoxy-1-methylphenanthrene-1-carboxylate, m.p. NaOH yields Et 4-methoxy-1-methylphenanthrene-1-carboxylate, m.p. 74—74-5°, and thence the 4-OMe-acid, m.p. 225—225-5°, which with Cu powder in quinoline at 205°, rising to 220°, gives 4-methoxy-1-methylphenanthrene, m.p. 78—79° [picrate, m.p. 183—184° (lit. 182—183°)]. 5% KOH-EtOH hydrolyses (XII) to 4-hydroxy-1-methylphenanthrene-2-carboxylic acid (XIV), m.p. 253—254° (decomp.; uncorr.) (acetate, m.p. 227-5—229°), which is too sensitive for decarboxylation. (VII) is not cyclised by NaOAc-Ac₂O-AcOH, yielding only a little (IV). HF cyclises (III) to 3-methyl-6: 7-benz-1-indone-2-acetic acid, m.p. 215-5—219-5° [could not be obtained from (IX)], and some (X), and (V) gives (XIV). The crude product of the original condensation, after separation of much (I), is cyclised by NaOAc, whereby (VIII) yields (XII) and the remaining (I) can NaOAc, whereby (VIII) yields (XII) and the remaining (I) can be isolated; it is thus shown to contain 29% of (I) and 30% of (VIII); full esterification (to diesters, b.p. 203—206°/2—3 mm.), partial hydrolysis, and then cyclisation indicates 47% of (I) and 38% of (VIII). Unless otherwise stated, m.p. are corr.

Vitamin-A aldehyde (axerophthal). E. G. E. Hawkins and R. F. Within A aidenyde (axerophthal). E. G. E. Hawkins and R. F. Hunter (J.C.S., 1944, 411).—Vitamin-A aldehyde (I), max. at 6570 A. (SbCl₃), bands at 3680 and 3500 A. (2:4-dinitrophenyl-hydrazone, m.p. 208—209°, prepared in aq. EtOH-HCl-H₂ at 60°; band at 4350 A.), is prepared from vitamin-A alcohol (II), Al(OPr^β)₃, MeCHO, and C_6H_6 at 70° for 48 hr. in a sealed tube. Purification is effected by "cyclisation" of unchanged (II) and chromatography. Ponndorff reduction with $Al(OPr^{\beta})_3$ converts (I) into (II). In solution, (I) is oxidised rapidly at 0° to yield (chromatographic separation) a product which shows bands at 3300 A. and 6180—6200 A. (SbCl₃); it differs from (II) in that the ultra-violet absorption spectrum is unaltered after treatment with HCl-EtOH. Adding NaOEt-EtOH to (I) in COMe₂ at -5°, and keeping at room temp. for 2½ hr., gives axerophthylideneacetone, reduced by Al(OPr^β)₂ to axerophthylidene*iso*propyl alcohol. A. T. P.

Reaction of α-chloroketones with alkali. W. D. McPhee and E. Klingsberg (J. Amer. Chem. Soc., 1944, 66, 1132—1136).— COMe·CH₂Ph, b.p. 105—106°/23 mm. (2:4-dinitrophenylhydrazone, m.p. 155·5—156·5°), with SO₂Cl₂-CCl₄ at 45° gives COMe·CHPhCl (I) (84%), b.p. 115—118°/16 mm., which with PhSO₂Na in boiling 95% EtOH gives α-benzenesulphonylbenzyl Me ketone (88%), m.p. 120·5—122·5°. With NaOMe in boiling MeOH, (I) gives Ph·[CH₂]₂·CO₂Me (II) (60%), α-hydroxybenzyl Me ketone Me₂ acetal (III) (14%), m.p. 63—65°, and Ph·[CH₂]₂·CO₂H (IV) (9%) (cf. Richard, A., 1934, 191; 1935, 979; Aston et al., A., 1942, II, 247), but in MeOH containing a little H₂O gives 48% of (IV) and 20% of (III). With 2:4:1-(NO₂)₂C₆H₃·NH·NH·, (V) or NH₂·CO·NH·NH₂, (III) gives the bis-derivatives of BzCOMe. CH₂Ph·COCl with CH₂N₂ (2 mols.) in Et₂O and then gaseous HCl (cf. Bradley et al., A., 1929, 68) gives benzyl chloromethyl ketone (83%), b.p. 133—135°/19 mm. (derived benzenesulphonylmethyl hetone, m.p. 89·5— Reaction of α -chloroketones with alkali. W. D. McPhee and E. A., 1929, 68) gives benzyl chloromethyl ketone (83%), b.p. 133—135°/19 mm. (derived benzenesulphonylmethyl hetone, m.p. 89·5—90·5), which with NaOMe-MeOH gives readily 80% of (II). Ph·[CH₂]₂·COCl gives similarly Ph·[CH₂]₂·CO·CH₂Cl (85%), m.p. 39—40° (2:4-dinitrophenylhydrazone, m.p. 145—146°), which with NaOMe-MeOH and a little H₂O gives a mixture, b.p. 112—116°/2 mm., of Ph·[CH₂]₂·CO·CH₂·OH (VI) and Ph·[CH₂]₂·CO(Me)₂·CH₂·OH (and 8% of Ph·[CH₂]₃·CO₂H), which after boiling in EtOH + a drop of HCl yields (VI) (phenylhydrazone, m.p. 114·5—115·5°). Et a-chloro-a-benzylacetoacetate (prep. from CH₂Ph·CHAc·CO₂Et by SO₂Cl₂ at 0°), b.p. 121—125°/1 mm., in boiling H₂SO₄-AcOH-H₂O gives a-chloro-β-phenylethyl Me ketone (84%), b.p. 97—99°/4 mm. (2:4-dinitrophenylhydrazone, m.p. 138·5—139·5°), which with NaOMe-MeOH + H₂O gives ββ-dimethoxy-δ-phenyl-n-butan-γ-ol (54%), b.p. 119—121°/6 mm. This is unaffected by (V) in the cold (hydrolysed hot) but after treatment

with hot HCl-EtOH yields CH2Ph·CO·COMe [phenylosazone, m.p. with not rectain yields Cr_2 rinco-Come [phenylosazone, in.p. $169.5 - 171^{\circ}$ (lit. $172 - 173^{\circ}$)] and, when kept in Et_2O , gives a lactolide, $C_{22}H_{23}O_4$, m.p. $180 - 182.5^{\circ}$. S-Benzylthiuronium y-phenyl-n-butyrate, m.p. $141 - 141.5^{\circ}$, and β -phenylisobutyrate, m.p. $144 - 141.5^{\circ}$, are also described. The products, b.p. $104^{\circ}/0.04$ mm. and m.p. 40—41°, of Eastham et al. (A., 1944, II, 162) are 3:4:1-(OMe)₂C₈H₃·[CH₂]₂·CO₂R in which R — Et (lit. b.p. 193°/20 mm.) and Me (lit. m.p. 37°, 38—39°), respectively. M.p. are corr.

Reversibility of the benzoin reaction. J. Romo A. (Ciencia, 1943, 4, 216—217).—Benzoin, anisoin, and piperoin in EtOH with (NH₄)₂CO₃ and KCN yield the substituted hydantoins obtained by Bucherer et al. (A., 1934, 1231) under the same conditions from PhCHO etc. It is concluded that the reaction 2C₈H₄R·CHO C₈H₄R·CHO(DH)·CO·C₈H₄R is reversible. Benzil under these conditions yields for phasely by datation together with EtOPs. ditions yields 5-phenylhydantoin together with EtOBz.

New aspects of the ortho-effect. Cyclic ketones related to acetophenone. R. G. Kadesch (J. Amer. Chem. Soc., 1944, 66, 1207—1213).—6: 9-Dimethylbenzsuberone (I) (see below) behaves towards MgMel and NH₂OH as a highly hindered ketone [cf. acetomesitylene (II)] in contrast to 4: 7-dimethyl-1-indanone (III) and l-keto-5: 8-dimethyl-1: 2: 3: 4-tetrahydronaphthalene (IV). This is due to the CO of (I) being forced out of co-planarity with the CoH6 ring by incorporation into the C₇-ring, so that approach of reagents is blocked by the neighbouring Me, whereas the CO is held co-planar in the C_{5^-} and C_{6^-} rings of (III) and (IV). This also explains the hindrance exhibited by (II), but not by $2:4:6:1-C_{5}H_2Me_3$ ·CHO, the CHO being too small. Thus o-groups are necessary for hindrance but not alone sufficient. $2:1-C_{10}H_6Me$ ·COMe (V) is hindered, but not alone sufficient. $2:1-C_{10}H_0^*\text{Me}\text{-COMe}$ (V) is hindered, showing that the CH of the adjoining nucleus is sterically effective. (III), m.p. $77-78^\circ$, is obtained from $2:5:1-C_0H_3\text{Me}_2\text{-CO}^{-}\text{[CH}_2\text{[CH}_2\text{-CO}^{-}\text{[CH}_2\text{[CH}_2\text{-CO}^{-}\text{[CH}_2\text{[CH}_2\text{-CO}^{-}\text{[CH}_2\text{[CH$

83.5, and 4-menyt-isopropyt-1-manone, m.p. 107.

CHPh;CH·CH;CH·CO₂H, m.p. 160—164°, yields (H₂-colloidal Pd)

Ph·[CH₂]₄·CO₂H, m.p. 56—58°, and thence benz-1-suberone (VI),

b.p. 141·5—143°/14 mm. 2:5:1-C₆H₃Me₂·CO·[CH₂]₂·Cl yields,

as above, δ-keto-δ-p-xylyl-n-butane-αα-dicarboxylic acid, m.p. 117—118° (decomp.)

[Et₂ ester, b.p. 215—218° (decomp.)/15

mm.)], δ-keto-δ-p-xylyl-n-valeric, m.p. 72—

mm.)], 8-keto-8-p-xylyl-n-valeric, m.p. 72—73° (also obtained from p-xylene and

(VI.) (All of the content of the con 2: I-C₁₀H₆MeBr with only small amounts of (\mathbf{V}) (reverse addition gives none). 2: I-C₁₀H₆Me·CO₂H [prep. from (\mathbf{VII}) by CO₂] with SOCl₂ gives the chloride, b.p. 115—120°/1—2 mm., which with MgMeI gives 82% of (\mathbf{V}), b.p. 122—126°/1 mm. (ω -CHPh: derivative, m.p. 136·5—137·5°). R. S. C.

Action of sodium on ethyl β -methylbutane- $\alpha\beta\delta$ -tricarboxylate. V. R. N. Chakravarti (J. Indian Chem. Soc., 1943, 20, 399—402; cf. A., 1944, II, 101).—The product (A) of the action of Na on Et₂ β -methylbutane- $\alpha\beta\delta$ -tricarboxylate (A., 1943, II, 371) when reduced (Na-Hg) and subsequently esterified gives Et. 3-hydroxy-1-methylcyclopentane-1: 4-dicarboxylate, b.p. $145^{\circ}/5$ mm., converted by POCl₃ and C_5H_5N , followed by hydrolysis, into 1-methyl- Δ^3 -cyclopentene-1: 3-dicarboxylic acid (I), m.p. 168° . None of the isomeric 1-methyl- Δ^2 -cyclopentene-1: 2-dicarboxylic acid was detected which 1-methyl- Δ^2 -cyclopentene-1: 2-dicarboxylic acid was detected, which would be the case if (4) contained Et₂ 3-methylcyclopentanone-2: 3-dicarboxylate (cf. Baker, A., 1931, 957). Reduction (H₂, PtO₂, AcOH) of (I) gives a mixture of saturated acids from which cis-1methyleyelopentane-1: 3-dicarboxylic anhydride, m.p. 81°, was obtained by action of AcCl. Hydrolysis yielded the eis-acid identical with a sample synthesised as follows: dehydration (POCl₃-C₅H₅N) of the cyanohydrin of Et 3-methylcyclopentanone-3-carboxylate followed by hydrolysis gives a mixture (m.p. 155-162°) of unsaturated acids from which cis- and trans-1-methylcyclopentane-1: 3dicarboxylic acids were obtained on hydrogenation (H2-PtO2). (A) is therefore Et. 3-methylcyclopentanone-3: 5-dicarboxylate.

Constituents of pyrethrum flowers. XVI. Heterogeneous nature pyrethrolone. F. B. LaForge and W. F. Barthel (J. Org. Chem., of pyrethrolone. 1944, 9, 242—249),—Pyrethrolone (I) is a mixture of components differing with respect to the nature of the side-chain. These components can be partly separated by distillation and show marked differences in n. Determination of C-Me in successive fractions shows that one component has the conjugated system of dcuble

linkings and the other contains a side-chain terminating with the group C:CHMe. The acetate and Me ether are shown to be mixtures corresponding to the two systems of unsaturation. The heterogeneous nature of (I) explains the apparent discrepancies between absorption results and chemical facts and revisions of the formulæ of Gillam et al. (A., 1942, II, 415) become unnecessary. (I) consists predominatingly of the compound

CH₂·CMe OH·CH—CO CCH₂·CH:CH·CH:CH₂.

Polyenes. II. Purification of β -ionone. W. G. Young, S. J. Cristol, L. J. Andrews, and S. L. Lindenbaum (*J. Amer. Chem. Soc.*, 1944, **66**, 855—857; cf. A., 1944, II, 261).— β -Ionone (I) of max. purity (ε 10,700 at 296 mμ.) is obtained from its semicarbazone by cold conc. H₂SO₄ (cf. Heilbron et al., A., 1943, II, 60), but other methods cause partial decomp.; notably distillation in steam with o-C₈H₄(CO)₂O gives 80—90%-pure (I). (I) is not affected by cold conc. or dil. H₂SO₄. and only slowly by hot dil. H₂SO₄. CHPh:CH:CH:COMe and (I) react with B2O₂H in C₈H₆ or PhMe at 8° much faster than do Δ^a -mono-unsaturated ketones (A) until I mol. of BzO.H is absorbed and thereafter react as slowly as do (A); thus the hindrance to addition observed with C:C•CO is not observed with C.C.C.C.CO. .

Reported total asymmetric synthesis. J. M. O'Gorman (J. Amer.Chem. Soc., 1944, 66, 1041).—2-Formylcyclohexanone with hot MeI-10% EtOH-NaOEt or, better, the Na salt thereof with MeI-PhMe gives 2-formyl-2-methylcyclohexanone, a $0\pm0.7^{\circ}$ or $\pm0.1^{\circ}$.

Trimeric glyoxal. G. M. Dyson (Chem. and Ind., 1944, 342-343).—Trimeric glyoxal (I) may be converted into tetrahydroxy-p-benzoquinone by atm. oxidation of its aq. solution in $\mathrm{Na}_2\mathrm{CO}_3$, usually in presence of a bisulphite. The benzenoid skeleton must exist in (I), which is probably 1:1:2:3:4:4:5:6-octahydroxy- Δ^2 -cyclohexenone. (Cf. Raudnitz, A., 1944, II, 346.) F. R. S.

Indene derivatives. III. Constitution and reactions of bishydroxyindone. Photochemical reduction of triketohydrindene. A. Schönberg and R. Moubasher (J.C.S., 1944, 366—367; cf. A., 1943, II, 136).—The violet bis-1: 3-indanedione (bisdiketohydrindene) (cf. Wanag, A., 1937, II, 199; 1939, II, 326; Eck et al., A., 1935, 1492) is the dienol (I) in the solid state and is renamed bishydroxyindone.

It dissolves readily in aq. NaOH and with CH₀N₂-Et₂O gives an orange M₆, ether (II), m.p. ~122° (decomp.) (depends on rate heating), reconverted into (I) by conc. H₂SO₄ at 50°. (I) sublimes without decomp. in a vac. at 340°. It is stable to O₂ at room temp.

without decomp. in a vac. at 340° . It is stable to O_2 at room temp, but is oxidised $(O_2$; Se) at 340° to $o \cdot C_6H_4(CO)_2O$, also obtained similarly from (II). (I) is more reactive than 5:12-dihydroxynaphthacene-6:11-quinone (III), although the corresponding resonance structures of (I) and (III) are similar. (III) is only sparingly sol. in aq. NaOH and does not react with CH_2N_2 , probably owing to a 6-membered chelate ring (similarly $o \cdot OH \cdot C_6H_4 \cdot COMe$ does not react with CH_2N_2). The red triketohydrindene is photochemically reduced to the colourless hydrindantin, turns red at $e^{-2000^{\circ}}$ and decompositions. reduced to the colourless hydrindantin, turns red at ~200° and decomposes at higher temp., by PrBOH in sunlight for 10 days.

IV.—STEROLS AND STEROID SAPOGENINS.

Physico-chemical constants of cholesterol and its ozonide.—See A., 1944, I, 236.

Resinification of cholesterol. A. H. Roffo and L. M. C. Urquiza (Anal. Asoc. Quim. Argentina, 1942, 30, 177—196).—Cholesterol exposed to ultra-violet light from a Cd-vapour lamp is converted into an orange transparent resin, the absorption spectrum and Resinificintensity of fluorescence of which have been examined. ation is considered as a complex oxidation accompanied by a progressive decrease in m.p., d, and I val., and an increase in acidity. F. R. G.

Marine products. XV. Sterols of starfish. II. W. Bergmann and H. A. Stansbury, jun. (J. Org. Chem., 1944, 9, 281-289).—The sterol fraction from Asterias forbesi is a complex mixture of at least two sterols, the complete separation of which has not been accom-Prolonged fractional crystallisation of the sterol mixture (I) or of the acetates derived therefrom suggests that the least sol. component is identical with stellasterol (II). The discrepancy between the m.p. of the benzoates derived from (I) and of stellasteryl benzoate (III) depends on isomerisation induced by HCl when (II) is heated with BzCl so that (III) is a mixture of isomerides such as is is neared with DZCI so that (III) is a mixture of isomerides such as is also produced when (II) is treated with BzCl and C_tH_tN and the product subjected to HCl. Complete separation could not be effected by crystallisation of (I), its acetate or benzoate, chromatography of the acetates over Al_2O_3 , or bromination of the acetates which destroys most of the material but gives a very small amount of an unknown dibramids $C_tH_tO_{Rr} = 0.184$ 1850 Subsequent an unknown dibromide, C₃₁H₅₀O₂Br₂, m.p. 184—185°. Subsequent work is done with (I), the degree of unsaturation of which suggests

the presence of di-unsaturated (II) and a mono-unsaturated sterol which is termed stellastenol (IV). All fractions of starfish sterols and their derivatives are slightly dextrorotatory, indicating the absence of the $\Delta^{5:6}$ double linking; also they all give a green colour reaction with Br usually regarded as typical of sterols with a double linking at $C_{(8)}$. Hence it is assumed as a working hypotheses that (II) and (IV) have a double linking in the γ - (7:8), δ - (8:9), or a-(8:14)-position. The presence of a double linking in the side-chain of (II) is established by ozonolysis, giving d- $a\beta$ -dimethylbutalde-hyde isolated as the 2:4-dinitrophenylhydrazone, m.p. 119—120°, [a]_D +14·1°. 1-a β -Dimethylbutaldehyde-2:4-dinitrophenylhydrazone, derived from ergosterol, has m.p. 124—124·5°, [a] $_{\rm B}^{4}$ -37·7°. The mixed m.p. of the two derivatives is 119—122·5°. Bearing in mind that partial racemisation of the aldehydes is difficult to prevent it appears justifiable to conclude that the aldehydes are optical anti-

podes and that (II) has the side-chain CHMe·CH:CHMePr β in which the optical configuration at $C_{(24)}$ is the opposite of that of ergosterol. Preliminary studies show the presence of inert double linkings in (I). Thus a mixture of acetates with 14 double linkings absorbed ~0.5 mol. of H_2 with Pt-black catalyst in AcOH at room temp. and atm. pressure, giving a homogeneous α -stellastenyl acetate, m.p. $105-106^\circ$, $[a]_D^3+12.5^\circ$, hydrolysed to α -stellastenyl acetate, m.p. $123-125^\circ$, $[a]_D-19.8^\circ$ (3:5-dinitrobenzoate, m.p. $196.5-197.5^\circ$). This is isomerised by HCl in CHCl₃ at 0° to β -stellastenyl acetate, m.p. $94-96^\circ$, $[a]_D-19^\circ$ (hydrolysed to β -stellastenyl acetate, m.p. $94-96^\circ$, [a]_D+19° (hydrolysed to β -stellastenyl acetate, m.p. 143° , $[a]_D^{22}+22^\circ$ (acetate, m.p. $138-139^\circ$, $[a]_D^{24}+13.5^\circ$; 3:5-dinitrobenzoate, m.p. $204-205^\circ$). The optical activities of the two stellastenols and (V) agree with the general rule that α -unsaturated sterols have a less positive and β -unsaturated sterols a more positive rotation than the corresponding saturated sterols. (V) is isomeric with ergostanol and campestanol and like the latter it differs from ergostanol in the configuration at $C_{(24)}$. The starfish sterols are C_{28} compounds and are the first principal sterols of this order to be found in animal tissue. This complexity is difficult if not impossible to reconcile with the hypothesis of the exogenous origin of the sterols of marine invertebrates. M.p. are corr. $[a]_D$ are in CHCl₃.

Marine products. XVI. 7-Dehydroclionasterol. W. Bergmann, A. M. Lyon, and M. J. McLean ($J.\ Org.\ Chem.$, 1944, 9, 290—292).—Clionasteryl acetate is oxidised by CrO₃ in AcOH at 60—65° to 7-ketoclionasteryl acetate, m.p. 172—173°, [a] $^{27}_{37}$ —99·44°. This is reduced by Al(OPr β)₃ in Pr β OH and then hydrolysed to a mixture of diols; the form of higher m.p. gives a dibenzoate, m.p. 159—160°, [a]_D +93·4°, which is transformed by protracted boiling with NPhMe₂ into 7-dehydroclionasteryl benzoate, m.p. 133—135° (turbid; clear at 138°), also obtained from the dibenzoate of the form of lower m.p. This is hydrolysed by KOH-MeOH to 7-dehydroclionasterol (I), m.p. 138°, [a]_D —98·2°, which becomes yellow when kept. Better results are obtained by hydrolysing the mixed dibenzoates with NaOMe in MeOH-C₆H₆ and treatment of the product with boiling NPhMe₂; (I) is then isolated as the digitonide and the latter is converted directly by boiling Ac₂O into 7-dehydroclionasteryl acetate, m.p. 139—140°, [a]_D²⁴ —71·6°, the absorption spectrum of which is identical with that of ergosteryl acetate. M.p. are corr. [a]_D are in CHCl₃.

Bile acids and related substances. XXX. Simplified preparation of 3(a):12(a)-dihydroxyætiocholanic acid. V. Wenner and T. Reichstein (Helv. Chim. Acta, 1944, 27, 965—969).—Me $3(a):12(\beta)$ -dihydroxyætiocholanate is partly acetylated by boiling $Ac_2O-C_8H_6$, giving unchanged material, the diacetate, a little of the 12- and (mainly) the amorphous 3-acetate (I). Oxidation of (I) by CrO_3 in AcOH at 16° yields Me 12-keto-3(a)-acetoxyætiocholanate (II), m.p. 152— 154° , $[a]_b^{14}+151\cdot 5^\circ\pm 2^\circ$ in $CHCl_2$, hydrolysed to the 3(a)-or-ester (III), m.p. 169— 170° , $[a]_b^{13}+144\cdot 0^\circ\pm 1^\circ$ in $CHCl_3$. Or (III) is hydrogenated (Raney Ni in alkaline solution) to Me 3(a):12(a)-dihydroxyætiocholanate, m.p. 182— 183° , $[a]_b^{14}+51\cdot 9\pm 2^\circ$ in MeOH (3-monoacetate, m.p. 155— 156° , $[a]_b^{16}+52\cdot 3^\circ\pm 2^\circ$ in $COMe_2$). M.p. are corr. (block); limit of error $\pm 2^\circ$.

Comparison of methods for the preparation of dehydroandrosterone. S. Schreyer (Anal. Asoc. Quim. Argentina, 1941, 29, 141—148).— The yield of dehydroandrosterone obtained from cholesteryl acetate ulbromide by CrO₃ is not related to O consumed. The experimental conditions of Butenandt et al. (A., 1936, 77) give a higher yield than those of Ruzicka et al. (A., 1935, 1125) or Wallis et al. (A., 1935, 1242).

Constituents of the adrenal cortex and related substances. LXIX. Action of lead tetra-acetate on cholestenone. E. Seebeck and T. Keichstein (Helv. Chim. Acta, 1944, 27, 948—950).—The product obtained by oxidising \$\Delta^4\$-cholesten-3-one with Pb(OAc)_4 in AcOH-Ac_2O at 70° (cf. A., 1939, II, 552) is the 2-OAc-derivative, m.p. 141 142° [a]\(^1\)_5 +65.5°\pm 1° in CHCl_3, since it is converted by an drogenation and subsequent hydrolysis into cholestane-2: 3-diol [possibly a mixture of stereoisomerides) which is oxidised by CrO₃ n AcOH to the homogeneous dicarboxylic acid, m.p. 196—197° (le₂ ester, m.p. 62—64°), also prepared according to Windaus et al.

(A., 1914, i, 1066) by oxidation of cholestan-3(β)-ol. M.p. are corr. (block); limits of error $\pm 2^{\circ}$.

Constituents of the adrenal cortex and related substances. LXVIII. Pregnane-3(a): 11(a)-diol-20-one. J. von Euw, A. Lardon, and T. Reichstein (Helv. Chim. Acta, 1944, 27, 821—839).—Me 3(β)-11(a)-dihydroxybisnorcholanate is converted when heated with MgPhBr into the amorphous carbinol, the amorphous acetate of which is transformed by boiling AcOH into aadiphenyl-β-11(a)-hydroxy-3(β)-acetoxyætiocholanyl-Δα-propene, m.p. 282—284°. Ozonisation at -10° and fission of the ozonide by Zn dust and AcOH gives COPh₂ and a mixture which, after acetylation, is separated chromatographically into pregnan-3(β)-ol-11: 20-dione acetate (I), m.p. 169—170°, [a]]3 +89·1°±1·5° in COMe₂, and pregnane-3(β): 11(a)-diol-20-one 3-monoacetate (II), m.p. 163—164°, [a]3 +115·2°±1·5° in COMe₂. Ozonisation at -80° with use of 1 mol. proportion of O₃ and immediate fission of the ozonide leads almost exclusively to (II). Alkaline hydrolysis (KOH-MeOH) at 20° of (I) and (II) gives pregnan-3(β)-ol-11: 20-dione (III), m.p. 152—153° (becomes opaque at 100°), and pregnane-3(β): 11(a)-diol-20-one (? hydrate), m.p. 255—260°. (II) is readily oxidised by CrO₃ in AcOH to (I). By a similar series of changes Me 3(a): 11(a)-hydroxy-3(a)-acetoxyætiocholanyl-Δα-propene, m.p. 242—245°, and thence into pregnane-3(a): 11(a)-diol-20-one 3-monoacetate (IV), m.p. 182—184° [a]3 +147·5°±1·5° in COMe₂, hydrolysed to pregnane-3(a): 11(a)-diol-20-one, m.p. 222—225°, and oxidised by CrO₃ in AcOH to pregnan-3(a)-ol-11: 20-dione acetate (V), m.p. 132—133°, or, frequently, 138° when heating is slow (in one experiment hexagonal plates, m.p. 134—137°, were observed), [a]3 +121·7°±3° in COMe₂; pregnan-3(a)-ol-11: 20-dione has m.p. 172—174°.

133°, or, frequently, 138° when heating is slow (in one experiment hexagonal plates, m.p. 134—137°, were observed), [a]\frac{1}{3} + 121.7° ± 3° in COMe, pregnan-3(a)-ol-11: 20-dione has m.p. 172—174°.

Pregnan-12(β)-ol-3: 20-dione is converted by anthraquinone-2-carboxyl chloride and C₅H₅N in C₆H₆ into the anthraquinone-2-carboxylate, m.p. 208—209°, which passes at 295—300°/0·05 mm. into Δ¹¹-pregnene-3: 20-dione, m.p. 131—133°, transformed by NHAcBr and NaOAc,3H₂O in dil. AcOH, into 12-bromopregnan-11(a)-ol-3: 20-dione, m.p. 245—246° (decomp.) [the by-products afford (on oxidation) Δ⁰-pregnene-3: 12: 20-trione, m.p. 182—183°]. This is oxidised to 12-bromopregnane-3: 11: 20-trione, m.p. 192—193°, debrominated by Zn dust and NaOAc in AcOH to pregnane-3: 11: 20-trione (VI), m.p. 161—162°. This when partly hydrogenated (PtO₂ in AcOH) and then pptd. with digitonin and treated with Girard's reagent T gives mainly (III) characterised as (II), also obtained directly by chromatography of the acetylation-hydrogenation product. The by-products of the hydrogenation, incecssary after hydrolysis, are re-converted by cautious oxidation into (VI), whereby a good yield of (III) is secured. (III) (as acetate) is partly hydrogenated to pregnane-3(β): 20-diol-11-one 3-monoacetate, m.p. 200—201°, identified as the diacetate, m.p. 209—210°, and fully hydrogenated to pregnane-3(β): 11(a): 20-triol 3-monoacetate, double m.p. ~75° and 166—167°, which is converted by Ac₂O and C₅H₅N at 70° into the 3: 20-diacetate, m.p. 209—210°, by CrO₃ in AcOH into pregnane-3(β): 20-diol-11-one 3-monoacetate, m.p. 199—200°, and by Al(OPh)₃ in C₆H₆-COMe₂ at 98° into (III)

Pregnane-3(a): 12(β)-diol-20-one dianthraquinone-2'-carboxylate (VII), m.p. 283—284°, is hydrolysed by NH₂·CH₂·CO₃K in EtOH-dioxan or KOPh with excess of PhOH in EtOH-dioxan to the 12-monoanthraquinone-2'-carboxylate (VIII), m.p. 230—231°, which rapidly becomes green on exposure to air and gives an acetate (IX), m.p. 174—175°. (VIII) is oxidised by CrO₃ in AcOH at 18° to pregnan-12(β)-ol-3: 20-dione anthraquinone-2'-carboxylate, m.p. 209—210°. Pregnane-3(a): 12(β)-diol-20-one 3-monoacetate, m.p. (indef.) 95—110°, is converted into (IX) and a substance, m.p. (225—226°. Pregnane-3(a): 12(β)-diol-20-one and BzCl in C₅H₅N at 20° give the dibenzoate, m.p. 183—184°, partly hydrolysed by KOH-MeOH to the 12-monobenzoate, m.p. 160—161°, which gives a non-cryst. 3-acetate. At 290°/high vac. (IX) gives unchanged material, Δ3:11-pregnadien-20-one (X), m.p. 125—127°, and Δ11-pregnen-3(a)-ol-20-one acetate (XI), m.p. 136—137° (hydrolysed to the alcohol, m.p. 125—126°, which is oxidised to Δ11-pregnene-3: 20-dione, m.p. 132—134°).

3: 20-dione, m.p. 132—134°). Δ^{11} -Pregnen-3(a)-ol-20-one anthraquinone-2'-carboxylate (XII) has m.p. 240—242°. (VII) at 290—320°/0·02 mm. passes into (X) with some (XII) and (?) Δ^3 -pregnen-12(β)-ol-20-one anthraquinone-2'-carboxylate, m.p. 190—192°, and some unchanged material. (XI), NHAcBr, and NaOAc in dil. AcOH at 16° afford 12-bromo-pregnane-3(a): 11(a)-diol-20-one 3-monoacetate, m.p. 213—214°, oxidised to 12-bromo-pregnan-3(a)-ol-11: 20-dione acetate, m.p. 194—195°. This is converted by Zn dust, NaOAc, and AcOH into (V). Δ^9 -Pregnen-3(a)-ol-12: 20-dione acetate, double m.p. 150—152° and 162—164°, is described. Energetic hydrogenation of (V) leads to pregnane-3(a):11(a): 20-triol 3-monoacetate, m.p. 83—85°, converted by Al(OPh). in COMe2 into (IV). M.p. are corr. (block); limit of error +2°.

Introduction of the 3-keto- Δ^4 -conjugated system in the deoxycholic acid series. B. Riegel and A. V. McIntosh, jun. (*J. Amer. Chem. Soc.*, 1944, 66, 1099—1103).—3:12-Dihydroxycholic esters are con-

verted by ${\rm Al}({\rm OBu}^{\gamma})_3$ and cyclohexanone in boiling PhMe directly into 12-hydroxy-3-keto-esters. Thus are obtained Me 12-hydroxyinto 12-hydroxy-3-keto-esters. Thus are obtained Me 12-hydroxy-3-keto-cholanate (I) (63%), m.p. $140.5-142^\circ$, -norcholanate (II) (65%), m.p. $143-145^\circ$, -bisnorcholanate (78%), m.p. $203-204^\circ$, and -ætiocholanate (37%), m.p. $139-141.5^\circ$. With Br- Λ cOH at room temp. (1·75 min.) these give 4-Br-esters, m.p. $134-134.5^\circ$, $178.5-180^\circ$, $206-207^\circ$, and a resin, respectively, which in boiling C_5H_5N yield Me 12-hydroxy-3-keto- Δ^4 -cholenate (III), m.p. $144-145^\circ$ (lit. $150-152^\circ$), $-\Delta^4$ -norcholenate (IV), m.p. $136.5-137^\circ$, $-\Delta^4$ -bisnorcholenate (V), m.p. $164-167^\circ$ (? $175-176^\circ$), and $-\Delta^4$ -atiocholenate (VI), m.p. $152-153^\circ$, respectively. (III)—(VI) have characteristic absorption max. at 241-241.5 m μ ., ϵ being 14,470, 16,320, 14,100, and 14,940, respectively. Me 3: 12-diacetoxy-cholanate and -norcholanate, m.p. $153-153.4^\circ$, in 0.5N-KOH-EtOH at room temp. give 3-hydroxy-12-acctoxy-cholanic and -norcholanic acid (82.59%), m.p. hydroxy-12-acetoxy-cholanic and -norcholanic acid (82.5%), m.p. 219-221°, oxidised by CrO₃-AcOH to 3-keto-12-acetoxy-cholanic and -norcholanic acid, respectively, and thence, by hydrolysis followed by treatment with MeOH and a little AcCl, (I) and (II), respectively. Me 3: 12-diacetoxy-bisnorcholanate, m.p. 165-1676 and -ætiocholanate, m.p. $149-150\cdot 5^\circ$, and $12-hydroxy-3-keto-\Delta^4-bisnorcholenic acid$, m.p. $210-220^\circ$, are also prepared. M.p. are corr. R. S. C.

Steroids and sex hormones. XCIX. Synthesis of 12-epi-14-deoxy-digoxigenin. L. Ruzicka, P. A. Plattner, and J. Pataki (Helv. Chim. Steroids and Se. Rotal. Synthesis of Le-epi-14-2008; digoxigenin. L. Ruzicka, P. A. Plattner, and J. Pataki (Helv. Chim. Acta, 1944, 27, 988—994).— $3(a):12(\beta)$ -Diacetoxypregnan-20-one (I), m.p. $114-115^{\circ}$, $[a]^{17}+165 \cdot 5^{\circ}$ in CHCl₃, obtained by acetylation of the 3(a)-OH-compound, m.p. 208° , $[a]_{1}^{18}+158^{\circ}$ in CHCl₃, is converted by Zn and CH₂Br·CO₂Et followed by hydrolysis into $3(a):12(\beta):20$ -trihydroxynorcholanic acid, m.p. $221-222^{\circ}$, $[a]_{1}^{1.5} + 46 \cdot 4^{\circ}$ in EtOH. The Me ester, m.p. $158-159^{\circ}$, $[a]_{1}^{165} + 33 \cdot 7^{\circ}$ in CHCl₃, does not readily lose H₀O when boiled with Ac₂O but is converted into the triacetate (II), m.p. $162 \cdot 5-163 \cdot 5^{\circ}$, $[a]_{1}^{1.5} + 70 \cdot 2^{\circ}$ in CHCl₃. When sublimed at 170° /high vac., (II) gives a non-cryst. material from which after hydrolysis, hydrogenation, and re-acetylation Me diacetylnordeoxycholate is obtained. (I) is oxidised by Pb(OAc)₄ in AcOH-Ac₂O at $68-72^{\circ}$ to $3(a):12(\beta):21$ -triacetoxypregnan-20-one, m.p. $150 \cdot 5-151^{\circ}$ (lit. $114-115^{\circ}$), $[a]_{1}^{1.5} + 156 \cdot 9^{\circ}$ on CHCl₃, $[a]_{1}^{1} + 153 \cdot 2^{\circ}$ in COMe₂, which with Zn and CH₂Br·CO₂Et followed by Ac₂O-C₅H₅N gives 12-epi-14-deoxydigoxigenin 3:12-diacetate $[\Delta^{20}:22\cdot21$ -hydroxy- $3(a):12(\beta)$ -diacetoxynorcholenolactone], m.p. $180-181^{\circ}$, $[a]_{1}^{1.5} + 1070^{\circ}$ in CHCl₃, hydrolysed by 2n-HCl in dioxan at 100° to 12-epi-14-deoxydigoxigenin, m.p. $253-255^{\circ}$, $[a]_{1}^{1.5} + 51 \cdot 5^{\circ}$ in CHCl₃. M.p. are corr. (vac.).

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Terpene series. I. Dehydration of alcohols in the terpene series under pressure and in presence of dilute aqueous salt solutions. V. N. Ipatiev and H. Pines (J. Amer. Chem. Soc., 1944, 66, 1120—1122).—In aq. MgCl₂ at 230°/70 atm. terpineol or p-menthanc-1: 8diol gives a-terpinene [liquid tetrabromide, an oil; (iCH·CO)₂O adduct, m.p. 64—65°, and the corresponding acid, m.p. 127—128°], dipentene [tetrabromide, m.p. 124—125° (photomicrograph)], and a terpene [tetrabromide, m.p. 96° (photomicrograph)]; dehydration occurs without ring-change since hydrogenation and then dehydrogenation (Pt-Al₂O₃) gives p-cymene. Similar treatment of dihydrogenation (Pt-M₂O₃) gives p-cylinene. Similar treatment of dirydroterpineol gives p-methylisopropenylcyclohexane and dl-p-menthene (II), of menthol gives mainly (I), and of isoborneol gives camphene (II) and a small amount of a liquid isomeride (III). Borneol is more stable, but in aq. MgCl₂ at 285—295° gives (II) and an isomeride (IV), m.p. -15° (more at higher temp.). HCl converts (III) or (IV) into isobornyl chloride and hydrogenation gives isobornylene.

Action of selenium dioxide on camphor and a-substituted camphors. J. Vène (Compt. rend., 1943, 216, 772—774).—Camphor and excess of SeO₂ in boiling EtOH give 27% of camphorquinone (I); the yield of SeO₂ in boiling EtOH give 27% of campaorquinone (1); the yield is 88—90% in PhMe or xylene, and 95% in a little Ac₂O. SeO₂ and a-hydroxycamphor give 40% of (I) in EtOH (2 hr.), or 85% in absence of solvent (15 min.). a-Bromocamphor is almost unattacked by SeO₂ in Ac₂O at 135°, but in absence of solvent at 145—150° (6 hr.) yields 55% of (I); a-chlorocamphor behaves similarly, giving 30% of (I). Ethylcamphor and SeO₂ at 180—190° for 2 hr. yield 12% of (I), whereas benzylcamphor is dehydrogenated with SeO₂ at 200° to give 95% of henzylidenecamphor, stable to SeO₂ at 200° at 200° to give 95% of benzylidenecamphor, stable to SeO2 at 200° a-Oximinocamphor and SeO₂ at 85° (violent reaction) afford 23% of camphor-α-mononitrile and 27% of camphoric anhydride; a similar slower reaction occurs in EtOH or PhMe.

A. T. P.

Saponins and sapogenins. XXIV. Norechinocystenol-A and nor-Saponins and sapogenins. XXIV. Norechinocystenol-A and norechinocystenone-A. G. H. Harris and C. R. Noller (J. Amer. Chem. Soc., 1944, 66, 1005—1006; cf. A., 1944, II, 21).—The CO-ester acetate, in which the CO is β - to the CO₂H of echinocystic acid (A., 1939, II, 333), with N₂H₄, H₂O and NaOEt-EtOH at 200° gives norechinocystenol-A (I), m.p. 188—191°, $[a]_D^5 + 15\cdot 1^\circ$ in CHCl₂ (acetate, m.p. 217—220°, $[a]_D^1 + 21\cdot 6^\circ$ in CHCl₃), the CO being reduced, the Ac removed, and the CO₂H eliminated. CrO₃-AcOH oxidises (I) to norechinocystenone-A (II), m.p. 159—162°, $[a]_D^{21}$

+30.8° in CHCl₃. (I) differs from oleanol and (II) differs from oleanone (cf. A., 1940, II, 311). R. S. C.

Resin acids. Structure of the lactone of hydroxytetrahydroabietic acid. R. F. B. Cox (J. Amer. Chem. Soc., 1944, 66, 865—870).—The following reactions favour Ruzicka's formula (A., 1941, II, 69) The following reactions favour Ruzicka's formula (A., 1941, 11, 69) for abietic acid against Fieser's (A., 1938, II, 108) and indicate that lactonisation of hydroxytetrahydroabietic acid occurs at $C_{(4b)}$. With MgMeI in $Et_2O-C_aH_b$ and then aq. NH_b Cl the lactone (I) gives $\Delta^{4b:8a_-}$ (II), m.p. $185-186^\circ$, $[a]_D-36^\circ$ in EtOH, and $\Delta^{4b:6}$ -dihydroabietic acid (III), m.p. $147-148^\circ$, $[a]_D+68^\circ$ in EtOH. (II) and (III) are stable in boiling AcOH, but in HCl-EtOH regenerate (I); (III) lactonises faster than (II) does but unlactonised acid is thereby

than (II) does, but unlactonised acid is thereby than (II) does, but unlactonised acid is thereby isomerised to (II); (II) is not isomerised by this method. (III) is hydrogenated (PtO₃; AcOH) faster than is (II). With NOCl-AcOH or OBu·NO-HCl, (II) gives a blue 8b-NO-lactone, m.p. 91·5—92°, [a]_D—925° in EtOH, reduced by Na₂S-EtOH-H₂O to the 8b-NH₂-lactone, m.p. 144—145°, [a]_D +1° in EtOH, and hydrolysed to (I) by hot HCl-AcOH. NOCl-AcOH converts (III) into the 5-oximino-lactone, m.p. 184—185°, [a]_D—30° in CHCl₃, which with mineral acid undergoes Beckmann rearrangement. R. S. C.

VI.—HETEROCYCLIC.

Furfuryl furoate by condensation from furfuraldehyde. E. R. Nielsen (J. Amer. Chem. Soc., 1944, 66, 1230).—Dissolution of Na (18 g.) in furfuryl alcohol (250 g.) + C₀H₆ (750 c.c.) at the b.p. and gradual addition of distilled furfuraldehyde (1350 g.) gives furfuryl 2-furoate (77.8%), forms, m.p. 18.5° and 27.5°, b.p. 121°/1.5 mm. R. S. C.

Gossypol. IV. Behaviour of gossypol as an o-hydroxy-aldehyde: formation of a-pyrones and flavylium salts. B. Krishnaswamy, K. S. Murty, and T. R. Seshadri (*Proc. Indian Acad. Sci.*, 1944, 19. K. S. Murty, and T. R. Seshadri (*Proc. Indian Acad. Sci.*, 1944, 19, A, 370—376).—Gossypol (I) condenses with CH₂Ac·CO₋Et to form a pyrone, $C_{38}H_{34}O_{10}$, m.p. >330°, with CH₂(CO₂Et)₂ to a pyrone, $C_{34}H_{26}O_8$ (CO₂Et)₂, m.p. 248—250°, with COPhMe (HČI) to a flavylium sall, $C_{45}H_{40}O_6$ Cl₂, m.p. 295—297°, and with ω : 4-dihydroxy-acetophenone (+HCl) to a flavylium sall, $C_{40}H_{40}O_8$ Cl₂ (+3H₂0), m.p. >320°. These reactions indicate the presence of 2 o-OH-CHO groups in (I). The dianilino-compound of (I) also undergoes the reactions smoothly indicating that it is easily split up into (I) and reactions smoothly, indicating that it is easily split up into (I) and NH₂Ph under the reaction conditions.

Synthesis of coumarins from o-hydroxyaryl alkyl ketones. Y Formation of coumarins from o-hydroxyphenyl benzyl ketones. D. Chakravarti and B. C. Bera (J. Indian Chem. Soc., 1944, 21, 446).—5-Methyl-, 5-chloro-, and 3-chloro-2-methoxy-5-methyl-phenyl benzyl ketones condense (Reformatsky) with CH₂Br·CO₂Et and CHMeBr·CO₂Et to give OH-esters, which on dehydration (SOCl₂-C₅H₅N) and demethylation (HI) yield coumarins. The following are described: Et 2-methoxy-5-methyl-β-benzylcinnamate, b.p. 200are described: Et z-methoxy-5-methyl-β-oenzylcinnamate, b.p. 200-205°/3 mm.; 4-benzyl-6-methylcoumarin, m.p. 148°; 2-ethoxy-5-methyl-β-benzyl benzyl ketone, b.p. 200-201°/5 mm.; Et 2-ethoxy-5-methyl-β-benzylcinnamate, b.p. 210-215°/5 mm.; Et 2-methoxy-α-β-benzyl-a: 5-dimethylcinnamate, b.p. 203°/2-5 mm.; 4-benzyl-3: 6-dimethylcoumarin, m.p. 136°; Et 5-chloro-2-methoxy-β-benzyl-7-methoxy-βb.p. 208°/4 mm., and 5-chloro-2-methoxy-β-benzyl-a-methyl-cinnamate, b.p. 212°/2 mm.; 6-chloro-4-benzylcoumarin, m.p. 101°, and its 3-Me derivative, m.p. 162°; 3-chloro-2-hydroxy-5-methylphenyl benzyl ketone, m.p. 110° (2-OMe-compound, b.p. 195—200°,3-5 mm.); Et 3-chloro-2-methoxy-5-methyl-β-benzylcinnamate, b.p. 210—215°/4-5 mm. (a: 5-Me, derivative, b.p. 210°/2 mm.); and 8-chloro-4-benzyl-6-methylcoumarin, m.p. 161° (3: 6-Me, derivative, m.p. 173°).

4-Hydroxycoumarins. IV. Esters of 4-hydroxycoumarins. M.A. Stahmann, L. H. Graf, C. F. Huebner, S. Roseman, and K. r. Stahmann, L. H. Graf, C. F. Huebner, S. Roseman, and A. Link. V. Condensation of αβ-unsaturated ketones with 4-hydrocoumarin. M. Ikawa, M. A. Stahmann, and K. P. Link. VI. Glucosides of 4-hydroxycoumarins. C. F. Huebner, S. A. Karjala, W. R. Sullivan, and K. P. Link (J. Amer. Chem. Soc., 1944, 66, 900—902, 902—906, 906—909; cf. A., 1944, II, 166).—IV. 3:3-Alkylidenebis-4-hydroxycoumarins with RCOCl in C₅H₅N at 0° and Alkylidenebis-4-hydroxycoumarins with RCOCl in C₅H₅N at 0° and Alkylidenebis-4-hydroxycoumarins diagratate (II). then 25° give 3: 3'-methylcnebis-4-hydroxycoumarin diacetate (I). then 25° give 3:3'-methylcnebis-4-hydroxycoumarin diacetate (I). dipropionate (II), m.p. 247—248°, di-n-, m.p. 227—228°, and -iso-butyrate, m.p. 233—234°, di-n-, m.p. 224—225°, and -iso-valerate, m.p. 220—221°, di-n-hexoate, m.p. 225—226°, di-n-heptoate, m.p. 215—216°, dibenzoate (III), m.p. 263—264°, di-a-dimethyl-propionate, m.p. 210—211°, di[benzylcarbonate], m.p. 188—189, di(acetylsalicylate), m.p. 253—256°, di(arbomethoxysalicylate) (IV), m.p. 213—216°, di-(o-benzyloxybenzoate) (V), m.p. 212—213°, di-o-, m.p. 250—252°, and -p-chlorobenzoate, m.p. 288—291°, and di-2-furoate, m.p. 298—300°, 3:3'-ethylidene-, m.p. 209—210°, 3:3-propylidene-, m.p. 203—204°, and 3:3'-butylidene-bis-4-hydroxy-coumarin dibenzoate, m.p. 226—227°, 3:3'-propylidene-, m.p. 202—203°, and 3:3'-butylidene-bis-4-hydroxy-coumarin diacetate (VI), 203°, and 3:3'-butylidene-bis-4-hydroxycoumarin diacetate (VI),

m.p. 210—211°. 4-Acetylsalicyloxy-, m.p. 183—185°, and 4-obenzyloxybenzoyloxy- (VII), m.p. 173—175°, -3-phenylcoumarin are similarly obtained. 3:3'-Methylene- (VIII), -propylidene-, and -butylidene-bis-4-hydroxycoumarin are also diacetylated by boiling -outyidene-ois-4-hydroxycoumarin are also diacetylated by boiling Ac₂O alone, but the 3: 3'-benzylidene- and -ethylidene-coumarins are thus dehydrated to the 4: 4'-epoxy-compounds. The CHPh: compound is dehydrated also by BzCl-C₅H₅N. Aq. NaOH hydrolyses (I) or (II) to the parent OH-compound; 1 mol. of NaOEt in boiling EtOH converts (I), (II), or (VI) into the epoxy-compounds and EtOAcyl, probably by way of the monoester since this is also converted into the apparament by the parent of NaOEt. Beiling converted into the epoxy-compound by 1 mol. of NaOEt. Boiling aq. NaOAc converts (IV) into the epoxy-compound (63%), (VIII) (35%), o-OH-C₆H₄·CO₂H, and traces of o-CO₂Me-O-C₆H₄·CO₂H. 2 mols. of NaOEt in boiling EtOH convert (III) into (VIII) and some epoxy-compound. Hydrogenation (Raney Ni; 100°/1900 lb.;

epoxy-compound. Hydrogenation (Raney Ni; 100°/1900 lb.; dioxan) of (V) gives 3: 3'-methylenebis-4-salicyloxycoumarin, m.p. 223—225°, and [Pd-C-AcOH-EtOAc at 1 atm., which has no effect on (V)] of (VII) gives 4-salicyloxy-3-phenylcoumarin, m.p. 185—187°. V. Michael condensation of 4-hydroxycoumarin (IX) with unsaturated ketones, COR-CH-CR'R'', occurs best in boiling C₅H₅N or for CHPh-CH-COMe in boiling H₂O and yields (IX) substituted at C₍₃₎ by CR'R''-CH₂-COR. With CH₂N₂ these give 3-OMe-compounds but they are cyclised by boiling 4% HCl-MeOH and then methylated to yield substances (A). Michael condensation

to yield substances (A). Michael condensation with NaOEt, HCl, or piperidine in EtOH leads

with NaOEt, HCl, or piperidine in EtOH leads to mixtures of the primary products with (A). Thus are obtained 4-hydroxy-3-y-keto-a-methyl-n-butyl- (44%), m.p. 141° [Me ether, b.p. 170° (bath)/0.5 mm.], -3-y-keto-a-a-dimethyl-n-butyl- (X) (13%) m.p. 212°, -3-y-keto-a-phenyl-n-butyl- (XI) (40%), m.p. 161° (Me ether, m.p. 127°), -3-y-keto-a-p-anisyl-n-butyl- (45%), m.p. 160° [Me ether, b.p. 240° (bath)/0.5 mm.], -3-y-keto-a-y-diphenyl-n-propyl- (37%), m.p. 160° (Me ether, m.p. 91°), -3-y-keto-a-phenyl-y-o-hydroxyphenyl- (XII) (34%), m.p. 194°, -coumarin and 2-methoxy-2: 4-dimethyl- (29%), m.p. 124°, -2: 4: 4-trimethyl- (80%), m.p. 102°, -4-phenyl-2-methyl- (XIII) (83%), m.p. 166°, -4-p-anisyl-2-methyl- (75%), m.p. 163°, -4-4'-hydroxy-3'-methoxyphenyl- (82%), m.p. 187°, -2: 4-diphenyl- (13%), m.p. 205°, and -4-phenyl-2-hydroxyphenyl- (50%), m.p. 194° (decomp.), -3: 4-dihydrocoumarino-3': 4'-5: 6-1: 2-pyran. HCl-H₂O-EtOH converts (XI) into 2-ethoxy-4-phenyl-2-methyl-3: 4-dihydrocoumarino-3': 4'-5: 6-1: 2-pyran, m.p. 177°. In boiling HCl-H₂O-MeOH (1: 5: 5), (XIII) regenerates (XI) but in boiling NaOH-H₂O-MeOH (1: 5: 5) gives a salt, o-CO₂Na-C₆H₄·C

CO.Na·C. H4·CC. C(CO.Na) CHPh, which yields (XIII) by ringclosure on acidification. When ketones, o-OH·C. H4·CH·CH·COR, are used in the Michael condensation, the primary products suffer

spontaneous dehydration to (B); thus are obtained 4-acetonyl- (69%), m.p. 263° (decomp.), 4-phenacyl- (76%), m.p. 240° (decomp.), and 4-o-hydroxyphenyl-coumarino-4': 3'-2: 3-benz-4-pyrone (75%), m.p. 241° (decomp.). Dehydration, but without cyclisation, also accompanies formation of (X), yielding 34% of 2:4-diheto-3-ay-dimethyl- $\Delta\beta$ -buttenyl-idenechroman, m.p. 93°. Structures are

proved by synthesis of (XI) also from 3:3'-benzylidenebis-4hydroxycoumarin by NaOH. The Michael condensation of (**IX**) fails with CHPh:CH·CO₂Et, CHPh:C(CO₂Et)₂, phorone, CO(CH:CHPh)₂, or furfurylideneacetone. o-OH·C₆H₄·COMe and o-OH·C₆H₄·CHO in aq. NaOH at 85° give 2: 2'-dihydroxy-β-phenylacrylophenone (14%), m.p. 160° (decomp.) (dibenzoate, m.p. 114°). The primary Michael products and (A) have potent anticoagulant properties.

VI. Treating the appropriate 4-hydroxycoumarins in aq. NaOH VI. Treating the appropriate 4-hydroxycoumarins in aq. NaOH (1 mol.) with AgNO₃ (1·02 mol.) gives the Ag salts, which with acctobromoglucose (XIV) and CaSO₄ in C₆H₆ yield β -4-hydroxy-(40%), m.p. 178—179°, [a] $_{\rm B}^{15}$ —63·2° in CHCl₃, β -4-hydroxy-6-methyl- (36%), m.p. 168—170°, [a] $_{\rm B}^{25}$ —24·9° in C₆H₆, and β -4-hydroxy-6-phenyl-coumarin glucoside tetra-acetate (XV) (47%), m.p. 156—158°, [a] $_{\rm B}^{25}$ —58·4° in C₆H₅, and 3:3'-methylenebis-4-coumarin monoglucoside tetra-acetate (XVI) (25%), sinters at 185° [giving 3:3'-methylene-4:4'-epoxydicoumarin (XVII), m.p. 290°], whence a trace of NaOMe in MeOH yields β -4-hydroxy-(90%), m.p. 201—202°, [a]_D —106° in McOH, and β -4-hydroxy-6-methyl-coumarin glucoside $[a]_D$ – 106° in McOH, and β -4-hydroxy-6-methyl-coumarin glucoside (90%), m.p. 223—224°, $[a]_D^{25}$ –86° in C_5H_5N . The free hydroxy-coumarin with (XIV), CaSO₄, and a few drops of quinoline (no yield in absence thereof or in presence of a large amount) in C8H6 gives \$\lambda\$ \text{Absence thereof of the presence of a large amount of the presence of t acetates reduce Fehling's solution after boiling for a few min. owing to their rapid hydrolysis by alkali which is due to the high acidity of the enol. In Ba(OMe)₂-MeOH at room temp. (XV) gives 4-hydroxy-5-phenylcoumarin (81%) and α-methylglucoside, and (XVIII) gives (XVII) (59%). In boiling Ba(OMe)₂-MeOH, (XVIII) gives 59%,

and in boiling NaOMe-MeOH (XVI) gives 55-86%, of (XVII). mechanism of the methanolysis is discussed.

Keten acetals. XIV. Reactions of keten acetal with quinones. S. M. McElvain and E. L. Engelhardt (J. Amer. Chem. Soc., 1944, 66, 1077—1083; cf. A., 1944, II, 130).—Contrary to earlier views (A., 1942, II, 227), quinones and CH₂C(OEt)₂ (I) give 4-hydroxyl-tehoxyletraturans. Substitution by Me hinders and finally stops the addition. In the horozopirone carrier substitution by the statement of the contraction of the substitution of the statement of the substitution of the substitu the addition. In the benzoquinone series, substitution by Br facilitates reaction which occurs by addition at a nuclear C, but in the naphthaquinone series the Br is partly replaced. The product obtained (loc. cit.) from p-O:C_nH₄:O by (I) is shown to be 4-hydroxy-1-ethoxybenzfuran; with Ac₂O it gives a monoacetate and with MgMeI evolves I CH₄ without addition; with HBr in dioxan at room temp (24 hr) it gives 4 hydroxycoumgraph on (II) (879/) MgMeI evolves 1 CH₄ without addition; with HBr in dioxan at room temp. (24 hr.) it gives 4-hydroxycoumaran-1-one (II) (67%), m.p. 189—191°; in boiling 75% EtOH it gives 2:5:1- (OH)₂C₆H₃·CH₂·CO₂Et (47%), converted into (II) by boiling 10% HCl; it is unaffected by (I) or CHMeN₂, as also is (II), but with iso-C₅H₁₁·ONa-EtI in boiling iso-C₅H₁₁·OH, (I) or (III) gives 4-ethoxycoumaran-1-one, m.p. 89—90°. p-OH·C₅H₄·OEt (modified prep.), CH₂·CH·CH₂Br, and K₂CO₃ in COMe₂ give quinol Et allyl ether (80%), m.p. 39—40°, converted in boiling NPhEt₂ into 4-ethoxy-2-allylphenol (89·5%), b.p. 184—185°/50 mm., the acetate, b.p. 161—162°/1·5 mm., of which with, successively, O₃-AcOH, H₂O₂-AcOH-H₂O, NaOEt-EtOH, and HCl gives (II) (14·5%). 1:2:6:4-O:C₆H₂Me₂:O (modified prep.) and (I) at 160° (not at 125° or in boiling xylene) give a tar containing 7% of 4-hydroxy-1-ethoxy-3:5-dimethylbenzfuran, m.p. 100—101°, hydrolysed by hot 75% EtOH to Et 3:6-dihydroxy-2:4-dimethylphenylacetate, m.p. 147—148°, whence boiling 25% HCl yields 4-hydroxy-3:5-dimethyl-75% EtOH to Et 3:6-dihydroxy-2:4-dimethylphenylacetate, m.p. 147—148°, whence boiling 25% HCl yields 4-hydroxy-3:5-dimethylcoumaran-1-one (56%), m.p. 143—144°. 1:2:5:4-OlC₆H₂Me₂O (modified prep.) and (I) react only at 150°, giving tarry polymers and a small amount of the quinol, which may be derived from 1:4:2:5:6-(OH)₂C₈HMe₂CH:C(OEt). Duroquinone does not react with (I). 1:4-OlC₁₀H₆O and (I) at 90° give a tar containing 2% of 4'-hydroxy-4-ethoxynaphtha-1':2'-1:2-furan, m.p. 106—108°, whence boiling 75% EtOH yields 4-hydroxy-5:6-benzcoumaran-1-one, m.p. 204—205°. 1:2:4-OlC₆H₈Br.O (modified prep.) reacts with (I), giving 10% of EtBr and a product whence hot 75% EtOH yields (? 6-)bromo-4-hydroxycoumaran-1-one (26.5%), m.p. 202—204°, converted by methylacion etc. into (? 3-)bromo-2:0-dimethoxy-phenylacetic acid, m.p. 194—195° (could not be oxidised to ArCO₂H). 1:2:5:4-OlC₆H₂Br₂O and (I) in boiling C₆H₆ give, after treatment with 75% EtOH, Et 2:5-dibromo-3:6-dihydroxyphenylacetate (40%), m.p. 126—127°, but 1:2:6:4-OlC₆H₂Br₂O reacts in Et₂O to give with 75% EtOH, Et2: 5-dibromo-3: 6-dihydroxyphenylacetate (40%), m.p. 126—127°, but 1: 2: 6: 4-O:C₆H₂Br₂:O reacts in Et₂O to give only a tar (a trace of EtBr is formed). 1: 2: 4-O:C₁₀H₆Br₂:O (modified prep.) and (I) at 125° give EtBr (40%) and a product whence 75% EtOH yields xanthopurpurin Et₂ ether (20·6%); the primary product, 1: 4: 2-O:C₁₀H₆(:O)·CH:C(OEt)₂, has reacted with a second mol. of (I). 1: 2: 3: 4-O:C₁₀H₄Br₂:O (modified prep.) and (I) in boiling C₆H₆ give Et 3-bromo-1: 4-naphthaquinone-2-acetate (57·6%), m.p. 124—125°. 1: 2: 3: 4-O:C₁₀H₄MeBr:O reacts with (I) at 125°, yielding ~25% of EtBr and tars. R. S. C.

Constitution of trimeric glyoxal. H. Raudnitz (Chem. and Ind., 1944, 327).—"Trimeric glyoxal" is 2:3:6:7-tetrahydroxy-1:4:5:8"naphthodioxan" (I), formed by way of [CH(OH)₂]₂. With H₂SO₄ in COMe₂. (CHO)₂ gives the 2:3-6:7-(CMe₂:)₂derivative, m.p. 207° (cf. Fischer et al., A., 1926, 599), of (I), which contains no OH or CO and in hot mineral acid regenerates (CHO)₂ and COMe₂. (See also A. 1944, II. 340.)

R. S. C.

(See also A., 1944, II, 340.)

Toxic principles of poison ivy. II. Preparation and properties of diphenylmethylene ethers of pyrocatechols. H. S. Mason (J. Amer. Chem. Soc., 1944, 66, 1156—1158; cf. A., 1943, II, 447).—Con-Chem. Soc., 1944, 66, 1156—1158; cf. A., 1943, 11, 447).—Conversion of o-C₈H₄(OH)₂ (I) into its monoallyl ether and thence 3-allylpyrocatechol, m.p. 73—74° (lit. 70—72°), is described. CPh₂Cl₂ and (I) in warm C₈H₈ or, best, pinene at 100° (cf. Sachs et al., A., 1904, i, 878) give good yields of o-C₀H₄·O₂CPh₂, m.p. 94—94·6°. 3-n-Propyl-, m.p. 41·5—42°, and 4-tert -butyl-pyrocatechol CPh₂: ether, m.p. 138—139°, are similarly prepared. These ethers are readily hydrolysed by dil. boiling HCl-EtOH and disrupted by hydrogenolysis (Pd; EtOH), but are stable to hot 25% KOH-EtOH or McBuger.

Photochemical reactions. VIII. Reaction of ethylenes with phenanthraquinone. A. Schonberg and A. Mustafa (J.C.S., 1944, 387; cf. A., 1944, II, 142).—In sunlight, phenanthraquinone (I) reacts readily with stilbene (9 days), styrene (4 days), CPh₂:CHPh (4 days), or CH₂:CPh₂ (16 days) in C₆H₈ to give photo-products, m.p. ~260° (red melt) (II), m.p. ~130° (decomp.), m.p. ~225° (decomp.) (III), or m.p. 202—203° (orange melt), respectively, considered to be 5° 6 readily heavyly

H respectively, considered to be 5: 6-00-diphenylene-2: 3-dihydro-1: 4-dioxans, e.g., (II) = (A), R = Ph. All four products yield (I) with conc. H₂SO₄ at room temp.; (II) or (III) at ~270° or ~235° in CO₂ give (I) and stilbene or CPh₂:CHPh, respectively. A. T. P.

Ichthynone, $C_{23}H_{20}O_7$, m.p. $203-204^\circ$, $a\pm0^\circ$ (contains 2 OMe) [dibromide, m.p. $234-235^\circ$; phenylhydrazone, m.p. $195-200^\circ$ (decomp.); H_1 -compound, m.p. $233-234^\circ$], from Ichthyomethia piscipula.—See A., 1944, III, 708.

Amino-ketones. III. β-Tetrahydroisoquinolmo-ketones and [their] derivatives. Reactions with Grignard reagents. N. H. Cromwell and J. S. Burch (J. Amer. Chem. Soc., 1944, 66, 872—873; cf. A., 1944, II, 352).—Tetrahydroisoquinoline with CHPh:CH·COMe or CHPh:CH·COPh in 95% EtOH at, successively, the b.p., room temp., and 0° gives δ-tetrahydroisoquinolino-δ-phenyl-n-butan-β-one (I) (59%), m.p. 71—72°, and β-tetrahydroisoquinolino-β-phenyl-propiophenone (II) (83%), m.p. 90—91° (oxime, m.p. 173—175°), respectively. The oxime (prep. by NH₂OH,HCl-NaOAc-McOH-H₂O at, successively, the b.p., room temp., and 0°), m.p. 155—157°, of (I) with Na-EtOH gives γ-amino-a-tetrahydroisoquinolino-n-butylbenzene (32%), b.p. 178—180°/1 mm. (Bz derivative, m.p. 159—161°). MgPhBr and (I) or MgMeI and (II) in Et,O give δ-tetrahydroisoquinolino-β-diphenyl-n-butan-β-ol (43—45%), m.p. 115—116°. MgMeI and (I) give β-tetrahydroisoquinolino-β-phenyl-tert.-amyl alcohol [2-(γ-hydroxy-α-phenyl-γ-methyl-n-butyl)isoquinoline] (47%), m.p. 95—96°. MgPhBr and (II) give β-tetrahydroisoquinolino-acytriphenyl-n-propyl alcohol, m.p. 78—80°. R. S. C.

Interaction of iodine with some ketones in presence of pyridine. L. C. King (J. Amer. Chem. Soc., 1944, 66, 894—895).—COArAlk (1) and I (1 mol.) in an excess (2 mols. required for the reaction) of C_5H_5N at 100° give 1-phenacyl-, m.p. 215—219°, 1-a-naphthoyl-methyl-, m.p. 219—220°, 1-anthroylmethyl-, m.p. 235—237°, and 1-a-methylphenacyl-pyridinium iodide, m.p. 152—153° (derived perchlorates, m.p. 189—190°, 176—177°, 227—230°, and 141—142°, respectively), which with NaOH in boiling H_2O or 50% EtOH give B2OH, a- $C_{10}H_7$ ·CO₂H, 1-anthroic acid, and B2OH, respectively. R. S. C.

Production of aminosulphanilamidopyridines.—See B., 1944, III, 186.

Exerction of metabolic products of sulphapyridine in the dog. J. V. Scudi (*Proc. Soc. Exp. Biol. Med.*, 1944, 55, 197—199; cf. A., 1940, III, 758).—Following oral administration of sulphapyridine, a hydroxysulphapyridine, m.p. 180—181° (corr.), and a H₂O-sol. hydroxysulphapyridine glucuronide [as the Ag salt or the brucine salt, m.p. 215° (decomp.)] have been isolated from dog urine.

Structure and synthesis of pyridoxamine and pyridoxal. S. A. Harris, D. Heyl, and K. Folkers (*J. Biol. Chem.*, 1944, 154, 315—316).—Treatment of 3-hydroxy-2-methyl-5-hydroxymethyl-4-methoxymethylpyridine with NH₃ at 120—140° gives the -4-aminomethyl compound (pyridoxamine), m.p. 193—193·5°. Oxidation (KMnO₄) of pyridoxine gives an aldehyde, the oxime of which on decomp. with HNO₂ and treatment with EtOH-HCl affords a cyclic acetal. This is hydrolysed to 3-hydroxy-4-formyl-2-methyl-5-hydroxymethylpyridine (pyridoxal).

8-Hydroxyquinaldine as an analytical reagent. L. L. Merritt, jun., and J. K. Walker (Ind. Eng. Chem. [Anal.], 1944, 16, 387—389).— Technique for the prep. of 8-hydroxyquinaldine is recorded (cf. C., 1944, Part 4).

J. D. R.

Derivatives of 7- and 10-methoxybenz(f)quinolme. A. C. Mueller and C. S. Hamilton (f. Amer. Chem. Soc., 1944, 66, 860—862).—Stirring 2:8-NH₂·C₁₀H₆·SO₃H and KOH at 260° gives 2:8-NH₂·C₁₀H₆·OH (74%), the N-Ac derivative (prep. by boiling Ac₂O-AcOH), m.p. 215—216° (lit. 210—211°), of which with Me₂SO₄-2N-NaOH at 30° gives 2-acetamido-8-methoxynaphthalene (70%), m.p. 163—164°. Boiling conc. aq. HCl-EtOH then gives 8-methoxy-2-naphthylamine hydrochloride (81%), cryst., which with CO₂Et·CO·CHNa·CO₂Et (I) and a drop of conc. HCl in EtOH at room temp. gives the oily anil, which, introduced into mineral oil at 260°, yields Et 4-hydroxy-6'-methoxy-5: 6-benzquinoline-2-carboxylate [1-hydroxy-10-methoxybenz(f)quinoline-3-carboxylate] (II) (61%), m.p. 181—183°. This is hydrolysed by boiling 2n-

MeO OH CO₂Et

181—183". This is hydrolysed by boiling 2N-alkali to the corresponding acid (hydrochloride, cryst., hydrolyses in H₂O), which at the m.p. (250°) gives CO₂ and 4-hydroxy-6'-methoxy-5: 6-benzquinoline (III) (28%), m.p. 180—182°. Probably owing to steric hindrance the OH in

(III) could not be replaced by halogen. 2:5-NH₂·C₁₀H₈·OH, m.p. 198—200° (lit. 199·5°), gives similarly 2:5-NHAc·C₁₀H₈·OH, +H₂O, m.p. 117—121°, and anhyd., an oil (lit. 100°, 98—99°), and 5-methoxy-2-naphthylamine, m.p. 71—72°, unstable (N-Ac derivative, m.p. 151—152°; hydrochloride, cryst.), which with (I) etc. gives an anil, converted in mineral oil at 250° into Et 4-hydroxy-3'-methoxy-5: 6-benzquinoline-2-carboxylate [cf. (II]), m.p. 256—258°, and thence as above into the corresponding acid, m.p. 292—295° (decomp.), and (at 295°, later 280°) 4-hydroxy-3'-methoxy-5: 6-benzquinoline [1-hydroxy-7-methoxybenz(f)quinoline] (55%), m.p. 308—311°. With boiling POCl₃ this gives 4-chloro-(74%), m.p. 118—119°, and thence 4-morpholino-, m.p. 136—137°, and 4-piperidino-, m.p. 116—117°, -3'-methoxy-5: 6-benzquinoline. R. S. C.

Hydantoins. III. Chemical constitution and hypnotic action. A. Novelli, Z. M. Lugones, and P. Velasco (Anal. Asoc. Quim. Argentina, 1942, 30, 225—231; cf. A., 1941, II, 334).—Intraperitoneal injection in white rats of a no. of substituted hydantoins showed hypnotic action only for 5:5-diphenyl-, 5-phenyl-5-ethyl-, and 5-phenyl-5-n-propyl-hydantoin. The following are new: 5-phenyl-5-anyl-, m.p. 125—127°, -5-hexyl-, m.p. 140—142°, -3-N-methyl-5-n-propyl, m.p. 134—135°, -1:3-N-dimethyl-o-n-propyl-, m.p. 92°; 5-p-tolyl-5-n-propyl-, m.p. 189—190°, -3-N-methyl-5-n-propyl-, m.p. 116—117°, -1:3-N-dimethyl-5-n-propyl-, m.p. 77—78°; 5-p-bromo-phenyl-5-n-propyl-, m.p. 207—208°; 5-cyclohexyl-5-phenyl-, m.p. 236—237°; 5:5-o-diphenylene-3-N-methyl-, m.p. 248—250°; 5:5-o-diphenylene-1:3-N-dimethyl-, m.p. 205—206°; 5:5-diphenyl-3-N-methyl-, m.p. 215°; 5:5-o-phenylenetrimethylene-1:3-N-dimethyl-, m.p. 184-5°; 5:5-aminodiphenylene-, m.p. 310—312°; 5-2'-phenanthryl-3-N-methyl-5-ethyl-, m.p. 189—190°, and -1:3-N-dimethyl-5-ethyl-, m.p. 165°, and -1:3-N-dimethyl-5-ethyl-, m.p. 165°, and -1:3-N-dimethyl-5-ethyl-, m.p. 165°, and -1:3-N-dimethyl-byl-sopropylcyclopentamethylene-3-N-methyl-, m.p. 165°, and -1:3-N-dimethyl-byl-gantoin, m.p. 117—118°. The m.p. of 5:5-2'-methyl-5'-isopropylcyclopentamethylene-3-N-methyl-, m.p. 165°, and -1:3-N-dimethyl-hydantoin, m.p. 117—118°. The m.p. of 5:5-2'-methyl-5'-isopropylcyclopentamethylene-gantoin is now recorded as 257°.

1-Methylhistidine. I. Synthesis of dl-1-methylhistidine. W. Sakami and D. W. Wilson (J. Biol. Chem., 1944, 154, 215—222).—4(5)-Hydroxymethylglyoxaline from d-fructose is oxidised (HNO₃) to glyoxaline-4(5)-aldehyde, methylated (Me₂SO₄-COMe₂) to 1-methylglyoxaline-5-aldehyde, which condenses (NHEt₂-C₅H₅N) with 2-thio-3-acetylhydantoin (improved prep.) to 2-thio-(1'-methyl-5'-glyoxalinylmethylidene)hydantoin. Reduction and hydrolysis (HI-P) of this compound affords dl-1-methylhistidine, isolated as the bis-3: 4-dichlorobenzenesulphonate, m.p. 251—252°, and identical with the product obtained by hydrolysis of anserine with Ba(OH)₂.

N-Desylarylamines in Leuckart's reaction. A. Novelli and J. C. Somaglino (Anal. Asoc. Quím. Argentina, 1943, 31, 147—152).—NHPh·CHPhBz reacts with RCO·NH₂ (R = H, Me, Et) to give the same glyoxaline derivatives as benzoin, NHPh being replaced by NH·COR. 4:4'-Dimethoxy-N-desylaniline, m.p. 115° (from anisoin and NH₂Ph at 140° in CO₂), with HCO·NH₂, and p-C₆H₄Me·NH·CHPhBz with NH₂Ac behave similarly. F. R. G.

Abnormal quaternary salts of bispyridinium derivatives of nicotinic acid. J.-A. Gautier and E. Leroi (Compt. rend., 1943, 216, 619–620).—Nicotinic acid and $[CH_2]_nHal_2$ (n=2 or 3) give monoacid salts, $(CO_2^{-1}\cdot C_5H_4N^{+1}\cdot [CH_2]_n\cdot N^{+}C_5H_4\cdot CO_2H)Hal^-$, whence AgNO₁ gives the dibetaines, $CO_2^{-1}\cdot C_5H_4N^{+1}\cdot [CH_2]_n\cdot N^{+}C_5H_4\cdot CO_2^-$. Diacid salts cannot be prepared in this series but are readily formed from pyridine-2- or -4-carboxylic acid.

R. S. C.

Synthetic amino-acids. Reactions of 2:5-diketo-3:6-di-β-chloroethylpiperazine. H. R. Snyder and M. E. Chiddix (J. Amer. Chem. Soc., 1944, 66, 1000—1002).—2:5-Diketo-3:6-di-β-chloroethylpiperazine (I) (A., 1943, II, 72) loses HCl with great ease. E.g., in boiling NaOH-EtOH it gives 2:0-diketo-3:6-divinylpiperazine (II) (62%), m.p. 192·5° (corr.) (instantaneous) or decomp. >240° (slow heating). Attempts to prepare the (CN·[CH₂]₂)₂ compound and to condense (I) with CH₂Ac·CO₂Et also led to (II), which was either isolated as such or identified after hydrolysis by conc. HCl as a amino-y-butyrolactone hydrochloride, m.p. 199—200°. However, some reactions of (I) occur normally. Thus, with morpholine or piperidine at 85°, rising to 125°, with KCNS-COMe₂ at room temp. and then the b.p. or CH₂Ph·SH-NaOEt-EtOH at the b.p. it gives 2:5-diketo-3:6-di-β-morpholino- (~40%), m.p. 229—232° (corr.), -piperidino-, m.p. 242—243° (corr.), -thiocarbamido- (~15%), m.p. 207—208° (corr.), or -benzylthiol- (~50%), m.p. 173—174° (corr.) (lit. 165°, 176°), -ethylpiperazine, respectively. R. S. C.

Non-Markovnikov addition in reactions of 2:5-diketo-3:6-divinylpiperazine. H. R. Snyder and M. E. Chiddix (J. Amer. Chem. Soc., 1944, 66, 1002—1004).—Non-Markovnikov addition of HCl and RSH occurs with 2:5-diketo-3:6-divinylpiperazine (I) (preceding abstract), probably owing to its ·CH(NH)·CO acting as a m-directing group. Thus, gaseous HCl or HBr in AcOH gives 2:5-diketo-3:6-di-β-chloroethyl- (II) and -3:6-di-β-bromoethyl-piperazine (III), m.p. 221° (decomp.) [reconverted into (I) by hot H₂O]. With MeSNa, (II) or (III) gives methionine anhydride and thence methionine [Bz derivative, m.p. 151—151·5° (lit. 143—145°)]. CH₂Ph·SNa and (II) give 2:5-diketo-3:6-di-β-benzylthiolethyl-piperazine, m.p. 177—178°, hydrolysed by boiling aq. HCl to CH₂Ph·S·[CH₂]₂·CH(NH₂)·CO₂H, m.p. 226—230° (decomp.) (lit. 190—191°). H₂S and (I) in EtOH containing a little AcOH at room temp. gives 2:5-diketo-3:6-di-β-thiolethylpiperazine, m.p. 185—186° (decomp.), whence hot conc. HCl yields homocysteinethiolactone hydrochloride. M.p. are corr.

Arylamino-heterocyclic compounds. I. Synthetic method. II. Arylaminopyrimidines. C. K. Banks (J. Amer. Chem. Soc., 1944, 66, 1127—1130, 1131).—I. Heterocyclic compounds containing nuclear "active" halogen react with aromatic amines in H₂O, fastest (5 examples) in 2N-HCl; the reaction is slower in more diaction of H₂O and addition of NaOH greatly decreases the rate.

Efficiency is $HCl>H_2SO_4>$ tartaric acid, but the differences are not large. An excess of HCl causes hydrolysis. An electronic mechanism is suggested. The reaction does not apply to compounds

containing N·C:C·Hal nor to aromatic or aliphatic halides.

containing N°C:C·Hal nor to aromatic or aliphatic halides.

II. The following are obtained from 4-chloro-2-aminopyrimidine in boiling very dil. HCl. 2-Amino-4-anilino-pyrimidine (I), m.p. 155—156° (Ac., m.p. 170°, and Ac. derivative, m.p. 176—178°; hydrochloride, m.p. 184—185°), and -6-methylpyrimidine, m.p. 170—172°; 2-amino-4-p-carboxyanilino-, m.p. 295—297° (decomp.) (diethylaminoethyle ester trihydrochloride and Na salt, m.p. >250°), -4-0- (dihydrochloride, m.p. indefinite, >200°), -4-m- (hydrochloride, m.p. 178—180°), and -4-p-hydroxyanilino-, m.p. 245—247° (decomp.) (hydrochloride, m.p. 275—277°), -4-2′: 6′-dihydroxyanilino- (dihydrochloride, m.p. 276—278°), -4-3′: 4′-dimethoxyanilino- (hydrochloride, m.p. 270°, -4-p-acetamidoanilino- (dihydrochloride, m.p. 299—300°), -4-p-acetylanilino- (hydrochloride, m.p. 275—276°), -4-m-2′-xylidino-, m.p. 186—187°, -4-p-, m.p. 193—195°, and -4-o-xenylamino-, m.p. 130—132°, -4-a-naphthylamino-, m.p. 133—134°, and -4-morpholino-, m.p. 157—161°, -pyrimidine. 4-Amino-2-anilino- (hydrochloride, m.p. 136—138° (hydrochloride, m.p. 194—195°), are similarly obtained. (I) has pressor action on anæsthetised dogs equal to that of benzedrine but should be supplied to the supplied of the supplied pressor action on anæsthetised dogs equal to that of benzedrine but of shorter duration.

Hydrogenation of basic nitriles in presence of Raney nickel. W. Huber (J. Amer. Chem. Soc., 1944, 66, 876—879).—Hydrogenation of basic heterocyclic nitriles in presence of Pd-ZrO₂, Pd-C, or PtO₂ in Ac₂O, HCl–EtOH, H₂SO₄–EtOH, HCl–AcOH, or H₂SO₄–AcOH at $^25-55^\circ/55-80$ lb. is slow and gives much sec.-amine. In presence of Raney Ni and 3—4 mols. of NH₃ in MeOH or, less well, EtOH, Pr^βOH, BuOH, dioxan, Bu^α₂O, or HCO·NH₂ at 60—200 lb. it is rapid (30—80 min. for 0.5 mol.) and gives excellent yields of primary with 0-5% of sec.-amine; vigorous shaking is essential; use of <2.5 mols. of NH₃ increases the amount of sec.-amine. Details are given for hydrogenation of 4-amino-2-methyl- and 2: 4-diaminopyrimidine-5-nitrile, 4-phenyl-1-benzylpiperidine-4-nitrile, pyridine-3-nitrile, 4-methyl-5-cyanomethylthiazole, NEt₂·[CH₂]₃·CN, and beintrie, 4-methyl-3-cyanomethyltmazole, NEL2*(CH₂)a*CN, and furan-3-nitrile. The following are incidentally described: 4-phenyl-1-benzyl-4-aminomethylpiperidine, m.p. 71—72°, b.p. 224—226°/1 mm. [dihydrochloride, m.p. 202—204° (decomp.)]; di-2-methyl-4-amino-5-pyrimidylmethylamine [tetrahydrochloride, m.p. 357° (decomp.)]; vhich, when formed in presence of NH₃-Ni, is often hydrolysed to 4-amino-2-methyl-5-hydrocymothylpyrimidine: di-3-ditablamization. amino-2-methyl-5-hydroxymethylpyrimidine; di-8-dielhylamino-butylamine, b.p. 125—126°/2 mm. (hygroscopic hydrochloride; tripicrate, m.p. 90-93°).

d-Ribobenziminazole. A correction. G. R. Barker, (Miss) K. R. Cooke, and J. M. Gulland (J.C.S., 1944, 339).—The properties of d-ribobenziminazole (cf. A., 1944, II, 85) are now shown to be in agreement with those described by Richtmeyer et al. (cf. A., 1942,

Some aminopyridoquinolines and their quaternary salts. R. D. Haworth and W. O. Sykes (J.C.S., 1944, 311—314),—8-Bromo-6-aminoquinoline, m.p. 148° [hydrochloride (+2H₂O), m.p. >275°; 6-aminoquinoline, m.p. 148° [hydrochloride (+2H₂O), m.p. >275°; Ac derivative, m.p. 199°], prep. by reduction (SnCl₂-HCl) of the NO₂-compound, with m-NO₂·C₆H₄·SO₃H (Skraup) gives 7-bromo-6:5-2':3'-pyridoquinoline, m.p. 147—149° (lit. 150°) [hydrochloride, m.p. >325°; monomethiodide, m.p. 305° (decomp.)], which with aq. NH₃ (sealed tube at 180—200°) affords the 7-NH₂-compound, m.p. 213—215° [methochloride (+H₂O), m.p. 272° (decomp.); Ac derivative, m.p. 188°, and its methiodide (+H₂O), m.p. 283° (decomp.)]. 4:1:3-C₆H₃Br(NH₂)₂ (improved prep. through the diformyl derivative, m.p. 179—180°) with m-NO₂·C₆H₄·SO₃H (Skraup) yields 8-bromo-5:6-2':3'-pyridoquinoline (monohydrochloride, m.p. 268—274°), aminated to the 8-NH₂-compound (I), [hydrochloride, m.p. 295° (decomp.)], also obtained from the 8-OH-compound [dihydrochloride, m.p. 315° (decomp.)], which is prepared from 5-amino-8-hydroxyquinoline sulphate (Skraup). The Ac derivative of (I), m.p. 198° (lit. 201°), is methylated with difficulty using p-C₆H₄Me·SO₃Me; after hydrolysis (HCl), 8-amino-5:6-2':3'-pyridoquinoline methochloride hydrochloride (+H₂O), m.p. 280° (decomp.), is obtained. (decomp.), is obtained.

Action of formamide on the arylacetonitriles. I. A. Novelli (Anal. Asoc. Quím. Argentina, 1943, 31, 23—31).—PhCN, heated with NH4HCO3 and HCO2H, yields NH2Bz. CH2Ph·CN similarly gives CH2Ph·CO·NH2, together with 2-benzyl-1:3:5-triazine, m.p. 155—156° [hydrochloride, blackens 220°, m.p. 225—226°; methiodide, softens 158°, m.p. 172°; mercurichloride, m.p. 185—187°; picrate, decomp. ~198°, m.p. 207° (decomp.)], which is oxidised (KMnO4) to BzOH. 1-C10H7·CH2·CN similarly gives 1-C10H7·CH2·CO·NH2 together with 2-a-naphthyl-1:3:0-triazine, softens 190°, m.p. 193—194·5° [methiodide, m.p. 282° (decomp.); mercurichloride, m.p. 195—197°; picrate, m.p. 205° (decomp.)]. F. R. G.

Hydantoins. H. Dihydantoins. A. Novelli (Anal. Asoc. Quím. Argentina, 1941, 29, 181—184).—(COPh·[CH₂]_n)₂ (n = 2 or 3) with

NaCN and NH₄HCO₃ yield a8-di-[5-(5-phenylhydantoinyl)]butane, m.p. $291-292\cdot5^{\circ}$, and a ζ -di-[5-(5-phenylhydantoinyl]hexane, m.p. $260-265^{\circ}$, which have no hypnotic action on rats. F. R. G.

Experiments on the synthesis of purine nucleosides. Coupling of pyrimidine derivatives with diazonium salts. Method for the preparation of 5-aminopyrimidines. B. Lythgoe, A. R. Todd, and A. Topham. VI. Synthesis of 9-d-xylosido-2-methyladenine and of A. Tophamino-2-methylpurine. J. Baddiley, B. Lythgoe, and A. R. Todd (J.C.S., 1944, 315—317, 318—322).—V. In order to introduce a 5-NH₂-group into 6-amino-4-glycosidaminopyrimidines which would preclude hydrolysis of the sugar linkage, 4: 6-diaminopyrimidines have been coupled with diazonium compounds, giving 5-azo-compounds; catalytic hydrogenation of these products yields 4:5:6-triaminopyrimidines. CH₂(CN)_a in EtOH-H₂O-NaOAc with 4:5:6-triaminopyrimidines. CH₂(CN)₂ in EtOH-H₂O-NaOAC with diazotised p-NO₂·C₆H₄·NH₂ gives p-nitrobenzeneazomalononitrile, m.p. 222° (decomp.); the p-Cl-compound (I), m.p. 188—190° (decomp.), is similarly prepared. 4:6-Diaminopyrimidine with diazotised p-NO₄·C₆H₄·NH₂ and aq. NaHCO₃ affords 4:6-diamino-5-p-nitrobenzeneazo-2-methylpyrimidine, m.p. >360°, reduced (H₂-Ni) to the 4:5:6-(NH₂)₃-compound (II), m.p. 252—254°, also obtained by reducing the 4:6-diamino-5-benzeneazo-derivative, m.p. 311° (decomp.) from benzeneazomalononitrile and acetamidine m.p. 311° (decomp.), from benzeneazomalononitrile and acetamidine m.p. 311° (decomp.), from benzeneazomalononitrile and acetamidine hydrochloride (III). 4:6-Diamino-6-methylpyrimidine with diazotised p-C₈H₄Cl·NH₂ yields 4:6-diamino-0-p-chlorobenzeneazo-2-methylpyrimidine, m.p. 340—342° (decomp.), also obtained from (I) and (III). 4:6-Diamino-5-p-chlorobenzeneazo-pyrimidine, m.p. 301—302° (decomp.), reduced to (II), and the -5-p-NO₂-compound, m.p. >360°, are similarly prepared. 4-Methyluracil is similarly converted into 2:6-dihydroxy-5-p-chlorobenzeneazo-4-methylpyrimidine, m.p. 235° (decomp.). The structural conditions governing the coupling of pyrimidine derivatives and their relation to those governing nitrosation are surveyed governing nitrosation are surveyed.

VI. Diazotised p-NO₂·C₆H₄·NH₂ in aq. NaHCO₃ with 6-amino-4-

d-xylosidamino-2-methylpyrimidine gives 6-amino-4-d-xylosidamino-5-p-nitrobenzeneazo-2-methylpyrimidine, m.p. 230° (decomp.), which on hydrogenation (H2-Ni) affords a mixture of the corresponding 5on hydrogenation (H₂-N₁) alfords a mixture of the corresponding 5-aminopyrimidine with p-C₈H₄(NH₂)₂. 6-Amino-4-d-xylosidamino-5-(2': 4'-dichlorobenzeneazo)-2-methylpyrimidine (IV) (+ 2.5H₂O), m.p. 218—219° (decomp.), similarly prepared with HCS₂Na following hydrogenation, yields the 6-amino-5-thioformanido-4-d-xylosidamino-derivative (+H₂O), m.p. 232° (decomp.), which gives only small amounts of purine. Acetylation (Ac₂O-C₈H₂N) of (IV) leads to 6-amino-4-triacetyl-d-xylosidamino-5-(2': 4'-dichlorobenzeneazo)-2-wethyloxyzividine, decomp. 230° which after hydrogenation and methylpyrimidine, decomp. ~230°, which after hydrogenation and treatment with HCS2H gives the 6-amino-5-thioformamido-4treatment with HCS₂H gives the 6-amino-5-thioformamido-4-triacetyl-d-xylosidamino-compound, m.p. 148° (decomp.); this with boiling C_5H_5N in N_2 affords (loss of H_5S) a mixture of 6-triacetyl-d-xylosidamino-2-methylpurine (+C₆H₅N), m.p. 204—205° [deacetyl-ated to 6-d-xylosidamino-2-methylpurine (\mathbf{V}), m.p. 218° (decomp.), [a] $_{1}^{19}$ —32° in H_2O], and 9-d-xylosidao-2-methyladenine (\mathbf{V} I), m.p. 288° (decomp.), [a] $_{1}^{19}$ 5° —26° in H_2O . (\mathbf{V}) could not be deaminated by HNO₂, but its hydrolysis (0·ln-H₂SO₄) product, 2-methyladenine (\mathbf{V} II), is deaminated to 2-methylhypoxanthine, m.p. >360°, indicating that in (\mathbf{V}) the xylose residue is present in a 6-xylosid-amino-group. Methylation (MeOH-NaOMe-MeI) of (\mathbf{V} II) affords 2:7-, m.p. 338° (decomp.), and 2:9-dimethyladenine (\mathbf{V} III), m.p. amino-group. Methylation (MeOH-NaOMe-MeI) of (VII) affords 2:7-, m.p. 338° (decomp.), and 2:9-dimethyladenine (VIII), m.p. 238°, required for purposes of comparison with (V). 6-Amino-4-methylamino-2-methylpyrimidine, m.p. 239—240°, obtained from the corresponding 4-Cl-compound and NH₂Me, with diazotised p-C₈H₂Cl-NH₂ gives the -5-p-chlorobenzeneazo-derivative, m.p. 207° (decomp.), which after hydrographical and transfer in the corresponding to the correspondin (decomp.), which after hydrogenation and treatment with HCS2Na leads to 6-amino-5-thioformamido-4-methylamino-2-methylpyrimidine, m.p. 189° (decomp.), cyclised to (VIII). Hydrolysis (N-H₂SO₄) of (VI) affords (VII) and a-xylose, and deamination (HNO₂) of it gives 9-d-xylosidamino-2-methylhypoxanthine ($+H_2O$), m.p. 203°. Ultraviolet absorption spectra of (V), (VI), (VII), and (VIII) and its 2:7analogue are compared.

Convenient preparation of synthetic xanthopterin. J. R. Totter (J. Biol. Chem., 1944, 154, 105—108).—Reduction (Na-Hg) of leucopterin gives Na dihydroxanthopterin, which with AgNO₃ affords xanthopterin and with HCl yields dihydroxanthopterin, both in good yield.

Pyrrole series. XII. Condensation of pyrroles with bromine. Self-oxidation and a new type of displacement reaction. A. H. Corwin and P. Viohl. XIII. Anomalous reaction of dipyrrylmethanes leading to a new class of heterocyclic compounds. A. H. Corwin and R. C. Ellingson. XIV. Formation of dipyrrolopyridones in the course of a proposed porphyrin synthesis. A. H. Corwin and S. R. Buc (J. Amer. Chem. Soc., 1944, 66, 1137—1146, 1146—1151, 1151—1156; cf. A., 1944, II, 276).—XII. Et 2:4-dimethylpyrrole-3-carboxylate (I) and Br in MeOH at -60° or, less well, KOH-MeOH at 0—10° give the 5-Br-derivative (II), which with Br [best (75·3%), 4 atoms] in AcOH at $10-15^\circ$ gives Et_2 3:5:4'-trinethyl-5'-bromodi-2-pyrrylmethene-4:3'-dicarboxylate hydrobromide (III), m.p. 153° (decomp.), also obtained from (I) by Br in Et₂O-AcOH at -5° to Bromination of (I) is much faster than that of (II). Contrary to Fischer's view, formation of (III) thus proceeds: (I) + 2Br ->

(II) + HBr; (II) + Br \rightarrow Et 2-bromo-3-methyl-5-bromomethyl-pyrrole-4-carboxylate (IV) + HBr; (II) + (IV) \rightarrow (III). Formation of (III) is limited by a HBr-catalysed self-oxidation of (II) to yield HBr and Et₂ 3:5:3':5'-tetramethyldi-2-pyrrylmethene-4:4'-dicarboxylate (V) [derived base (VI), decomp. 190°], so that the rate of evolution of HBr exceeds that of consumption of Br by (II); in accordance with this view, (II) contains active Br, liberating If from KI. Two reaction mechanisms are discussed, each being partly supported by the following reactions. Et 3:5:3':5'-tetramethyldi-2-pyrrylmethane-4:4'-dicarboxylate [obtained from (VI) by hydrogenation], m.p. 230° (slight decomp.), (II), and a little tetramethyldi-2-pyrrylmethane-4: 4'-dicarboxylate [obtained from (VI) by hydrogenation], m.p. 230° (slight decomp.), (II), and a little HBr in dioxan at room temp. give (VI). The free base from (III) with (I) in Et₂O at 0° gives Et₃ 5"-bromo-3: 5: 3': 5': 4"-pentamethyltri-2-pyrrylmethane-4: 4': 3"-tricarboxylate (VII) (95.5%), m.p. 210° (decomp.), whence HCl-Et₂O at 0° or HBr-AcOH at 40° and then aq. NH₃ regenerates the base from (III) (73% and 43%, respectively). Et 3-bromo-4-methyl-2-bromomethylpyrrole-5-carboxylate and (II) in AcOH at 40° give, after treatment with NH₃, Et 3'-bromo-2: 5: 4'-trimethyldi-2-pyrrylmethene-4: 5'-dicarboxylate, m.p. 135-136° (decomp.). However, Et₂ 3-methyl-5-bromomethylpyrrole-2: 4-dicarboxylate does not condense with (II). (III), (II), and a little HBr in AcOH at 50° give (V). H₂-Pd-C at 2 atm. reduces (VII) to Et₃ 3: 5: 3': 5': 4"-pentamethyltri-2-pyrrylmethane-4: 4': 3"-tricarboxylate, m.p. 224-225°. 3-Carbethoxy-4-methyl-pyrrole-5-carboxylic acid (prep. from the Et₂ ester by KOH in boiling 80% EtOH), m.p. ~230° (evolution of CO₂), in boiling glycerolyields Et 3-methyl- (46%), m.p. 73°, and thence Et 2-formyl-3-methyl-pyrrole-4-carboxylate, m.p. 122°, which with (I) and HCl in Et₂O at 0° and then aq. NH₃ yields Et₂ 3: 5: 3'-trimethyldi-2-pyrrylmethene-4: 4'-dicarboxylate (VIII), m.p. 147° (decomp.). The hydrobromide of (VIII) with Br-AcOH at 50° and then aq. NH₃ gives Et₂ 5'-bromo-3: 5: 3'-trimethyldi-2-pyrrylmethene-4: 4'-dicarboxylate, m.p. 151° (decomp.). (VIII), (I), and a trace of KHSO₄ in Et₂O give Et₃ 3: 5: 3': 5': 3''-pentamethyltri-2-pyrrylmethane-4: 4'-dicarboxylate, decomp.). (VIII), (I), and a trace of KHSO₄ in Et₂O give Et₃ 3: 5: 3': 5': 3''-pentamethyltri-2-pyrrylmethane-4: 4'-dicarboxylate, decomp. (SIII), (I), and a trace of KHSO₄ in Et₂O give Et₃ 3: 5: 3': 5': 3''-pentamethyltri-2-pyrrylmethane-4: 4'-dicarboxylate, decomp. (SIII), (I), and a trace of KHSO₄ in Et₂O give Et₃ 3: 5: 3': 5': 3''-pentamethyltri-

XIII. Treating 3-carbalkoxydi-2-pyrrylmethanes with alkali (Na; NaCPh₃ in dioxan; NaOAlk) gives 6-keto-1:2:3:6-tetrahydropyrrolo-2':3'-4:5-pyridino-1:2-1'':2''-pyrroles ['dipyrrolo-(1:2-a,2':3'-d)pyridinc-4(9)-one''; this numbering is as (A)], which fluoresce like lubricating oil. For this condensation the 1'-N

must be unsubstituted and at least as acidic as ; 1-N is the more acidic, the alkali reacts at this point and ring-closure of at this point and ring-closure of the 3-CO₂Alk with the 1'-N is impossible. Mixed m.p. in this

very facile, so that care is essential in identification. Structures assigned below are held to be proved by the reactions of the isoassigned below are held to be proved by the reactions of the isomerides. The compound, m.p. 204° , obtained (A., 1943, II, 72) from Et₃ 1:4:3':5'-tetramethyldi-2-pyrrylmethane-3:5:4'-ticarboxylate (IX) by Na, is Et_2 6-keto-1':4':3":5"-tetramethyl1:2:3:6-tetrahydropyrrolo-2':3'-4:5-pyridino-1:2-1":2"-pyrrole-5':4"-dicarboxylate (X). The violet-red colour formed in pyrrole-5': 4"-dicarboxylate (X). The violet-red colour formed in alkali is due to carbenium salt formation. (X) is unaffected by conc. H₂SO₄, HCl-EtOH at 0°, boiling H₂SO₄-AcOII-H₂O, or ketone reagents. 3-Carbomethoxy-5-carbethoxy-2: 4-dimethylpyrrole (prep. from CHMeAc·CO₂Me, OH·N·CAc·CO₂Et, Zn dust, and NaOAc in aq. AcOH at 90°, rising to 110°; 68% yield), m.p. 130—131°, with Na in PhMe at 98—110° and then Me₂SO₄ at 90° gives 3-Me 5-Et 1: 2: 4-trimethylpyrrole-3: 5-dicarboxylate (76%), m.p. 78—80°, whence SO₂Cl₂ yields 4-Me 2-Et 1: 3-dimethyl-5-chloromethylpyrrole-2: 4-dicarboxylate, m.p. 69—71° (and a by-product, m.p. 85—87°). With (I) in boiling MeOH this gives 3-Me 5: 4'-Et₂ 1: 4: 3': 5'-tetramethyldi-2-pyrrylmethane-3: 5: 4'-tricarboxylate (XI) (82%), m.p. 139°, whence NaCPh₃ in dioxan yields (X), m.p. 197—199° or, after longer reaction, 189—190°; the difference in m.p. is due to partial re-esterificreaction, 189-190°; the difference in m.p. is due to partial re-esterificreaction, 189—190°; the difference in m.p. is due to partial re-esterification and pure (X) is obtained by treating this product with NaOEt. Et₂ 1: 3-dimethyl-5-chloromethylpyrrole-2: 4-dicarboxylate and (I) in hot MeOH give 4'-Me 3: 5-Et₂ 1: 4: 2': 5'-tetramethyldi-2-pyrryl-methane-3: 5: 4'-tricarboxylate (84%), m.p. 134°, whence NaCPh₃ in dioxan gives 4''-Me 5'-Et 6-keto-1': 4': 3'': 5''-tetramethyl-1: 2: 3: 6-tetrahydropyrrole-2': 3'-4: 5-pyridino-1: 2-1'': 2''-pyrrole-5': 4''-di-carboxylate, m.p. 194°. OH·N:CAc-CO₂Me (prep. described) with CH₂Ac-CO₂Et etc. as above gives 5-carbomethoxy-3-carbethoxy-2: 4-dimethylpyrrole (54%), m.p. 164° and thence as above the CH₂Ac·CO₂Et etc. as above gives 5-carbomethoxy-3-carbethoxy-2: 4-dimethylpyrrole (54%), m.p. 164°, and thence as above the 1:2:4-Me₃ ester, m.p. 86—87°, and 2-Me 4-Et 1:3-dimethyl5-chloromethylpyrrole-2:4-dicarboxylate (82%), m.p. 99—100°. This with (I) in MeOH yields 5-Me 3:4'-Et₂ 1:4:3':5'-tetramethyldi-2-pyrrylmethane-3:5:4'-tricarboxylate (58%), m.p. 130—131°, which with NaCPh₃ in dioxan yields impure 5'-Me 3''-Et 6-keto-1':4':3'':5''-tetramethyl-1:2:3:6-tetrahydropyrrolo-2':3'-4:5-pyridino-1:2-1'':2''-pyrrole-5':3''-dicarboxylate (XII), m.p. 188—189°, obtained pure (m.p. 210—211°) by treatment with NaOMe. With NaOMe, (IX) or (XI) gives (X), and with NaOEt either gives pure (XII).

pure (XII).

XIV. Et, 4:4-dimethyldi-2-pyrrylmethane-3:5:3':5'-tetracarboxylate (XIII) with 1 mol. of NaOH in hot EtOH gives 58% of Na₁ and some Na₂ salt, separated by extraction with H₂O and fractional pptn. therefrom by NaCl; 2 mols. of NaOH lead to mainly the Na₂ salt. Et₃ 4:4'-dimethyldi-2-pyrrylmethane-3:5:3'-tricarboxylate-5'-carboxylic acid [with CHMeN₂ yields (XIII)] in glycerol + a little quinoline at 240° (or 285°) gives Et₃ 4:4'-dimethyldi-2-pyrrylmethane-3:5:3'-tricarboxylate (XIV) (86·5%), m.p. 187° (and? an isomeride, m.p. 184—185°), which with CH₂O-conc. HCl-EtOH at the b.p. gives the substance (XV), m.p. 216—217° (decomp.), whence NaOH yields no cryst. acid. With 1 mol. of NaOH in hot EtOH, (XIV) gives a small yield of an acid, m.p. >205°, which in hot glycerol yields a substance, m.p. >250°. With 0·05 mol. of NaOH in hot aq. EtOH, (XIV) gives Et₂ 6-keto-4':4"-dimethyl-1:2:3:6-tetra-hydropyrrolo-2':3'-4:5-pyridino-1:2-1":2"-pyrrole-5:3"-dicarboxylate (34%), darkens 235°, decomp. 245°. Condensation of Et₂ 4:4'-dimethyldi-2-pyrrylmethane-3:3'-dicarboxylate by NaOH (1 mol.) in boiling 60% EtOH and heating the product in glycerol gives 6-keto-4:4"-dimethyl-1:2:3:6-tetrahydropyrrolo-2':3'-4:5-pyridino-1:2-1":2"-pyrrole (poor yield), cryst. Partial hydrolysis of the Et₄ ester (XVI) gives the 3:3'-Et₂ and 3:3':5'-Et₃ ester of 1:4:1':4'-tetramethyldi-2-pyrrylmethane-3:5:3':5'-tetracarboxylic acid, both reconverted into (XV) by CHMeN₂ and converted

$$(XV.) (R = CO_2Et)$$

$$Me R R R R Me CH2
$$Me R R R R Me CH2
$$Me R R R R Me CH2$$

$$Me R R R R Me N NMe$$

$$(XV.) (R = CO_2Et)$$

$$(XIX.) (R = CO_2Et)$$$$$$

by heating in glycerol + a little quinoline into Et_2 1:4:1':4'-tetramethyldi-2-pyrrylmethane-3:3'-dicarboxylate (XVII), m.p. 164—165°, and Et_3 1:4:1':4'-tetramethyldi-2-pyrrylmethane-3:5:3'-tricarboxylate (XVIII), m.p. 127—129°, respectively. With paraformaldehyde and a little AcOH in boiling BuOH, (XVIII) yields the substance (XIX) (89%), m.p. 147—149°. Partial hydrolysis of (XVIII) gives an acid [reconverted into (XVIII) by CHMcN₂], decarboxylation of which gives (XVII).

Amino-ketones. II. Synthesis of αβ-diamines from α-amino-ketones. N. H. Cromwell and H. Hoeksema (J. Amer. Chem. Soc., ketones. N. H. Cromwell and H. Hoeksema (J. Amer. Chem. Soc., 1944, 66, 870—871; cf. A., 1943, II, 108).—ω-Morpholinoacto-phenoxime (prep. from the ketone by NH₂OH,HCl-KOH-H₂O-MeOH at 20°), m.p. 147—149°, with H₂-Raney Ni in EtOH at 50° (NH₃ inhibits reduction) gives 10%, with H₂-Pd-C-AcOH gives 15%, with H₂-Pd-C-HCl-AcOH gives 10%, or with Na-EtOH gives 26% of β-morpholino-α-phenylethylamine (I), b.p. 134°/2 mm. ω-Piperidinoacetophenoxime, forms, m.p. 117—118·5° and 136—138·5°, with Na-EtOH gives 24% of β-piperidino-α-phenylethylamine (II), b.p. 128°/3 mm. No diamine is obtained by catalytic hydrogenation of β-amino-ketoximes, probably owing to loss of the β-renation of β-amino-ketoximes, probably owing to loss of the β-renation of β-amino-ketoximes, probably owing to loss of the β-renation of β-amino-ketoximes, probably owing to loss of the β-renation of β-amino-ketoximes, probably owing to loss of the β-renation of β-amino-ketoximes, probably owing to loss of the β-renation of β-amino-ketoximes, probably owing to loss of the β-renation of β-amino-ketoximes, probably owing to loss of the β-renation of βgenation of β -amino-ketoximes, probably owing to loss of the β -amino-radical to give unsaturated oximes. Low yields of (I) and (II) by Na-EtOH are due partly to loss of NH₃ during distillation of the product. Bz derivatives, m.p. 143—144° and 135—136°, of (I) and (II), respectively, are potent local anæsthetics. R. S. C.

Phenylthiocarbamides. Contribution to the study of the triad -N·C·S-. XIII. Action of sulphur monochloride on N-phenyl-Nmethylthiocarbamide. Formation of thiodiazoles. R. Sahasra-budhey and H. Krall (J. Indian Chem. Soc., 1944, 21, 17—18).— The compound formed by the interaction of S₂Cl₂ with a CHCl₃ solution of NPhMe·CS·NH₂ is 2-imino-3-methyl-2: 3-dihydrobenzthiazole and not either of the compounds suggested by Dost (A., 1906, i, 351). NHPh·CS·NH₂ gives 2-aminobenzthiazole under the same conditions.

Vasosulpha compounds. W. F. Hamilton, M. F. George, jun., E. Simon, and F. M. Turnbull (J. Amer. Pharm. Assoc., 1944, 33, 142—145; cf. A., 1944, III, 756).—Dissolution of the appropriate cphedrine alkaloid and sulpha drug in warm, dil, aq. Na.SO₃, followed by cooling, yields ephedronium sulphathiazole, m.p. 208, and sulphadiazine, m.p. 192—193°, and deoxyephedronium sulphathiazole, m.p. 118—120°, and sulphadiazine, m.p. 187—189° (all m.p.

Organo-metallic derivatives of methylbenzthiazole. Magnesium compounds. C. Courtot and S. Tchelitcheff (Compt. rend., 1943, 217, 201—203).—The Mg compound from methylbenzthiazole with CO₂ gives benzthiazolylacetic acid, m.p. 112—113°, with COMe₁ forms benzthiazolylmethyldimethylcarbinol, m.p. 79°, with some benzthiazolylmethyl alcohol, and with COPh₂, diphenylbenzthiazolylmethylcarbinol, m.p. 194-195°, is obtained.

Organo-metallic derivatives of methylbenzthiazole and of benzthiazole. C. Courtot and S. Tchelitcheff (Compt. rend., 1943, 211, 231—233).—Methylbenzthiazole reacts with NaNH₂ to give the Na derivative, which with the appropriate reagent yields: 2-β-phenylethylbenzthiazole, with some dibenzylbenzthiazolylmethane ethylbenzthiazole, with some dibenzylbenzthiazolylmethane (CH₂PhCl); 2-n-amylbenzthiazole, b.p. 152—153°/15 mm., and methyldibutylbenzthiazole, b.p. 176°/15 mm. (Bu°Cl); methylsobutylbenzthiazole, b.p. 167°/15 mm. (Bu°Cl); cohexylbenzthiazole, b.p. 172—175°/25 mm. (C₂H₁₁Br); a-benzthiazolyl-Δ butene, b.p. 153°/15 mm., and δ-benzthiazolyl-Δ°ζ-heptadiene, b.p. 198°/15 mm., m.p. 126° (CH₂:CH·CH₂Br); and 2-p-nitro- and -amino-

phenylbenzthiazole (p-C₈H₄Cl·NO₂). The Li derivative of methylbenzthiazole with cyclohexyl chloride gives benzthiazolylcyclohexylmethane, b.p. 189—190°/15 mm. (picrate, m.p. 118°), and with C₂H₄Cl₂ yields αδ-dibenzthiazolylbutane, m.p. 87° (picrate, m.p. 92—93°).

F. R. S.

Derivatives of phenothiazine. H. Gilman and D. A. Shirley (J. Amer. Chem. Soc., 1944, 66, 888—893).—Phenothiazine (I), o-C₈H₄I·NO₂, Cu-bronze, and K₂CO₃ in boiling xylene give 10-o-nitro-(44%), m.p. 156—157°, reduced by Sn-HCl to 10-o-amino-phenyl-phenothiazine (95%), m.p. 139—139·5°, which with the hygroscopic hydrochloride, m.p. 64—68° (lit. 62—64°), of NEt₂·[CH₂]₃·Cl (prep. from the alcohol by SOCl₂-CHCl₃; b.p. 73—75°/20 mm.) at 130—140° gives 10-o-y-diethylamino-n-brobylaminobhenylbhenothiazine (49%). rom the alcohol by SOCl₂-CHCl₃; b.p. 73—75°/20 mm.) at 130—140° gives 10-o-y-diethylamino-n-propylaminophenylphenothiazine (49%), b.p. 215—230°/<0·5 mm. Similarly are prepared 10-3'-nitro-p-tolyl-, m.p. 179·5—180°, 10-3'-amino-p-tolyl-, m.p. 140—140·5', 10-3'-γ-diethylamino-n-propylamino-p-tolyl-, b.p. 270° (bath)/<0·5 mm., 10-3'-nitro-p-anisyl-, m.p. 184—186°, 10-3'-amino-p-anisyl-, m.p. 180—181°, 10-3'-γ-diethylamino-n-propylamino-p-anisyl-, b.p. 220—235°/<0·5 mm., 10-3'-nitro-o-anisyl-, m.p. 159—160°, 10-4'-chloro-2'-nitrophenyl-, m.p. 185—186·5°, 10-4'-chloro-2'-aminophenyl-, m.p. 125·5—126°, and 10-4'-chloro-2'-γ-diethylamino-n-propylamino-pthior-2-numerity, m.p. 180–180's, 10^{-4} -chioro-2-animophenyi, m.p. 125·5–126°, and 10^{-4} -chloro-2'-y-diethylamino-n-propylamino-phenyi, b.p. 270–280°/2 mm., -phenothiazine. With LiBur and then p-C₆H₄Me·SO₂·[CH₂]₂·Cl in Et₂O, (I) gives 10- β -chloroethylphenothiazine (47%), m.p. 96–97° (5-oxide, m.p. 154–155°), which with thiazine (47%), m.p. $96-97^\circ$ (5-oxide, m.p. $154-155^\circ$), which with the appropriate amine and Cu-bronze at the b.p. gives 10- β -dicthylamino- (67%), b.p. $161-165^\circ$ /<0.5 mm., 10- β -di-n-propylamino-, b.p. $225-230^\circ$ /1 mm., 10- β -morpholino-, m.p. 74-5-75- 5° , b.p. $198-201^\circ$ /<0.5 mm., and 10- β -di-enthoxy-8'-quinolylamino- [prep. by Cu powder at $140-150^\circ$ (N₂)], m.p. 118-5-119- 5° -ethylphenothiazine. 10- γ -Chloro-, m.p. 60° , 10- γ -diethylamino- (II), b.p. $170-182^\circ$ /<0.5 mm. (dipicrate, m.p. $103-104^\circ$), 10- γ -di-n-propylamino-, b.p. $257-265^\circ$ /1 -2 mm., 10- γ -distylamino-, b.p. $245-260^\circ$ /1 mm., and 10- γ -piperidino-, b.p. $255-265^\circ$ /1 -2 mm., -10-propylphenothiazine are similarly prepared. ρ -OMe·C₆H₄·NHPh (prep. from ρ -OMe·C₆H₄·NHAc by PhBr, Na₂CO₃, and Cu powder, followed by hydrolysis). m.p. 106° (lit. 105°), S, and a little I at $140-150^\circ$ and later 175° give 3-methoxyphenothiazine (45-51%), m.p. $168-150^\circ$ later 175° give 3-methoxyphenothiazine (45—51%), m.p. 158—159° (lit. 163°, 159°) (Ac derivative, m.p. 121—122.5°), which affords, as above, 3-methoxy-10-y-chloro-, an oil, -10-y-di-n-propylamino-, b.p. above, 3-methoxy-10- γ -chloro-, an oil, -10- γ -di-n-propylamino-, b.p. 250—265°/2 mm., and -10- γ -diethylamino-n-propylphenothiazine, b.p. 220—225°/<0.5 mm. p-C₆H₄Me·NHPh, S, and a little I at 280° give 3-methylphenothiazine, m.p. 166—168°. Conc. HNO₃ converts 10-acetyl- or 10-ethyl-phenothiazine in AcOH into 3:7-dinitro-10-acetyl-, m.p. 265—267° (cf. lit.), and 3-nitro-10-ethyl-phenothiazine 5-oxide, m.p. 204·5—205°, respectively. AlkBr, (I), Cu powder, and Na₂CO₃ in boiling C₆H₆ gives 10-allyl-, b.p. 187—195°/I mm., or at 170—180° 10-n-decyl-, b.p. 183—185°/<0.5 mm. (3-NO₂-derivative 5-oxide, m.p. 102·5—103°), and 10-n-octadecyl-phenothiazine, m.p. 53° (5-oxide, m.p. 98°). 10-Phenyl-, m.p. 170—171°, and 3-nitro-10-phenyl-phenothiazine 5-oxide, m.p. 223·5—224·5°, are also prepared. (I), its 10-alkylaminoalkyl and 10 other derivatives have no effect on avian malaria, except that (II) is doubtfully active in no effect on avian malaria, except that (II) is doubtfully active in 12.5-mg. doses. Phenothiazine derivatives have very slight toxicity to canaries.

Metallation of 10-phenyl- and 10-ethyl-phenothiazine. H. Gilman, P. R. Van Ess, and D. A. Shirley (J. Amer. Chem. Soc., 1944, 66, 1214—1216).—10-Ethylphenothiazine (I) (prep. from phenothiazine (II) and Et₂SO₄ in EtOH at 120—130°; 56% yield], m.p. 101—103°, with LiBu° in Et₂O-N₂ and then CO₂ gives 6% of 10-ethylphenothiazine-4- (or -2-)carboxylic acid, m.p. 178—179° (Me ester, m.p. 111—112°), converted by boiling, conc. HI into m-C₆H₄Ph·CO₂H, m.p. 138—139°, which is also obtained (m.p. 140°; 2·5% yield) from m-C₆H₄I·CO₂Me by K₂CO₃ and Cu-bronze in boiling NH₂Ph and then boiling 15% KOH-EtOH. The 3-Hg·OAc derivative, m.p. 151—153°, of (I) with aq. NaCl gives the HgCl derivative, which in I-KI-n₂O-CCl₄ gives 3-iodo-10-ethylphenothiazine (80%), m.p. 126—127°, 153°, of (I) with aq. NaCl gives the HgCl derivative, which in I-KI-n₂O-CCl₄ gives 3-iodo-10-ethylphenothiazine (80%), m.p. 126—127°, whence MgBu°Br-I and then CO₂ gives 10-ethylphenothiazine-3-carboxylic acid, m.p. 197·5—198·5°. 10-Phenylphenothiazine [prep. from (II) by PhI, Cu powder, and Na₂CO₃ at the b.p.], m.p. 94·5°, with LiBu° and then CO₂ gives 10-phenylphenothiazine-4-(or -2-)carboxylic acid (9·5%), m.p. 258—258·5° (Me ester, m.p. 133—134°), converted by boiling, conc. HI into m-CO₂H·C₅H₄·NPh₂. 10-p-, m.p. 221—221·5° (Me ester, m.p. 140·5—141·5°), and 10-m-carboxy-pnenylphenothiazine, m.p. 254—255° (Me ester, m.p. 98—99°), are also obtained from (II) by p- and m-C₆H₄I·CO₂Et, respectively, with Cu powder and K₂CO₃, followed by aq. NaOH or HCl-MeOH.

R. S. C.

Total synthesis of 2:3:4:5-tetrahydrobiotin. L. C. Cheney J. R. Piening (J. Amer. Chem. Soc., 1944, 66, 1040—1041).— L. C. Cheney and Immnary data are given for the following reactions. Cl·[CH2]3·Br +

Thinlary data are given for the following reactions. $Cl^*[CH_2]_3 \cdot Br + Cl^*[CH_2]_3 \cdot Ch^*[CO_2Et]_2 \rightarrow Cl^*[CH_2]_4 \cdot CO_2Et \rightarrow Cl^*[CH_2]_2 \cdot Cl^*[CH_2]_3 \cdot Br + CH_0(CO_2Et)_2$ Et_2 n-pentane-aay-tricarboxylate, b.p. $165-170^\circ/4$ mm. \rightarrow the tricarboxylic acid, m.p. $82^\circ \rightarrow (SOCl_*;$ decarboxylation) a-chloropimelic acid, m.p. $89-90^\circ \rightarrow (SH^*[CH_2]_2 \cdot CO_2H;$ esterific- β -carboxyethyl ae-dicarbethoxy-n-amyl sulphide, b.p. 210-13/3 mm. $\rightarrow (Dieckmann)$ Et_2 3-ketotetrahydrothiophen-4-carboxylate-2-valerate $\rightarrow oxime \rightarrow (dry \ HCl)$ Et_2 3-aminothiophen-4-carboxyl-

ate-2-valerate, m.p. 43-44° > 3-amino-4-carbethoxythiophen-2-valeric acid, m.p. $97-97.5^{\circ}$ \rightarrow the N-Bz derivative, m.p. $126.5-127.5^{\circ}$ \rightarrow the hydrazide, m.p. $140-141^{\circ}$ the azide, decomp. $99-100^{\circ}$ (boiling the azide, decomp. 99-100° ÉtOH) 3-benzamido-4-carbethoxyamino-2-thienylvaleric acid, m.p. 156.5—157.5° \rightarrow (hydrolysis; COCl.) 2'-keto-2': 3'-dihydroglyox-alino-4': 5'-1: 2-thiophen-4-valeric acid, m.p. 253—254° (decomp.), the absorption spectrum of which [max. at 260 m μ . (ϵ 17 \times 10- 3)] resembles those of 2'-keto-4-y-phenoxy-, m.p. 174—174.5°, -benzyloxy-, m.p. 127—127.5°, and -hydroxy-n-propyl-2': 3'-dihydroglyoxalino-4': 5'-1: 2-thiophen, m.p. 138—139°. R. S. C.

Hemicyanine dyes.—See B., 1944, II, 244.

VII.—ALKALOIDS.

Pyrolysis of nicotine to myosmine. C. F. Woodward, A. Eisner, and P. G. Haines (J. Amer. Chem. Soc., 1944, 66, 911—914).— Pyrolysis of nicotine over SiO₂ chips gives NH₃, NH₂Me, HcN, C_5H_5N , 3-methyl-, 3-ethyl-, and 3-vinyl-pyridine, 3:2'-nicotyrine, myosmine (I), and higher-boiling products. At 555—570° up to 18:1% of (I) is obtained, but the yield is much less at 700° or over activated Al O₂ at 500°. activated Al₂O₃ at 500°.

Erythrina alkaloids. XIV. Isolation and characterisation of erysothiovine and erysothiopine, new alkaloids containing sulphur. K. Folkers, F. Koniuszy, and J. Shavel, jun. (J. Amer. Chem. Soc., 1944, 66, 1083—1087; cf. A., 1943, II, 74).—After removal of free alkaloids, the light petroleum extract of E. glauca seeds in H_2O gradually yield erysothiovine (I), $C_{20}H_{23}O_7NS$, $+H_2O$ (lost at $140^\circ/\text{vac.}$), m.p. 187° , $[a]_D$, $+208^\circ$ in EtOH, and, more slowly at 0° , erysothiopine (II), $C_{10}H_{21}O_7NS$, $+H_2O$ (lost at $100^\circ/\text{vac.}$), m.p. $168-160^\circ$, $[a]_D^{25}$, $+194^\circ$ in EtOH. In hot 1-2% mineral acid, (I) gives erysovine (III) and $CO_2H\cdot CH_2\cdot SO_2H$ (IV) (NH₂Ph, m.p. $187-180^\circ$, and sulphapyridine salt, m.p. $162-163^\circ$). Hydrolysis of (II) similarly gives erysopine (V). The ester group of (I) and (II) contains the combined SO_3H of (IV), since the Ca and Ba salts of (IV) are insol. and those of (I) and (II) are sol. (I) is isolated also from E. pallida, Britton & Rose, and E. poeppigiana. No "thio" Erythrina alkaloids. XIV. Isolation and characterisation of from E. pallida, Britton & Rose, and E. poeppigiana. No "thio"-alkaloid is isolated from E. sandwicensis, Deg. Threshold doses for curare action (frog) are: erysonine 100, erysodine 15, (V) 4, (III) 3, (I) and (II) 1 mg. per kg. body wt.

Alkaloids of the Leguminosæ. VIII. Alkaloids of *Podalyria* ecies. IX. Isolation of β -phenylethylamine from *Acacia* species. X. Isolation of anagyrine from Cytisus linifolius Lam. XI. Alkaloids of the genera Cytisus and Genista. XII. Alkaloids of Calycotome spinosa (L.) Link. XIII. Isolation of tryptamine from some Acacia species. E. P. White (New Zealand J. Sci. Tech., 1944, 25, B, 137—138, 139—142, 143—146, 146—151, 152—157, 157—162).— VIII. Lupanines (I) are extracted (Soxhlet) from three species of *Podalyria*, determined by titration, the optical isomerides separated by hot hexane, and identified by m.p. of methiodides, perchlorates, and aurichlorides, alone and mixed with authentic specimens. sericea, R. Br., tops and seeds contain d-(I) with less dl-, P. buxifolia, Willd., dl- with a trace of l-, and P. calyptrata, Willd., pure l-, $[a]_D$ -79° in EtOH.

IX. The alkaloids are extracted in a Soxhlet apparatus, or by repeated soaking with 5% HCl with intermittent heating. tops of eight species forming a distinct morphological group (uninerval phyllodes and flowers in racemes) contain relatively high concns. of Ph·[CH₂]₂·NH₂ (II); their seeds contain only traces. The tops of three other species contain traces of (II) and small amounts of another alkaloid not yet purified. 20 other species are alkaloid-free. (II) is identified by m.p. of its hydrochloride, mercurichloride (165°) mercuri-iodide (182°), picrate, and aurichloride, alone and mixed with specimens synthesised from CH₂Ph·CN. Substances allied to (II) have previously only been found in low concns. (mainly in parasites and fungi), and are possible intermediates in the biogenesis of tetrahydroisoquinoline alkaloids.

X. Soxhlet extraction of the seeds of Cytisus linifolius, Lam., gives $\sim 1\%$ of cytisine (III), while the tops yield $\sim 1\%$ of anagyrine (IV), with $\sim 0.1\%$ of other bases. The alkaloids are identified by analysis and m.p. of their salts, alone and mixed with authentic specimens, and by slide reactions. (IV) gives slide reactions with KCdI₃, AuCl₃, HgCl₂, K₂HgI₄, AuBr₃, picric acid, KI₃, and KBiI₄.

XI. The genera *Cytisus* and *Genista* can be divided into six groups

according to their alkaloid contents: (i) sparteine (\mathbf{V}) only, (ii) mainly (\mathbf{I}), with or without some (\mathbf{V}), (iii) (a large group) (\mathbf{III}) or allied bases, with no (\mathbf{V}), (iv) (\mathbf{III}) or allied bases, with (\mathbf{V}), (v) calycotomine, sometimes with traces of other alkaloids, (vi) alkaloid-

XII. Soxhlet extraction of the seeds of Calycotome spinosa with 2% AcOH in 50% EtOH yields ~1% of bases; tops contain only traces. The chief component, named calycolomine (VI), 2% ACOH in 50% EtOH yields ~1% of bases; tops contain only traces. The chief component, named calycotomine (VI), $C_{10}H_9(\mathrm{OMe})_2(\mathrm{NH})(\mathrm{OH})$, m.p. 139—141°, $[a]_D^{20}+21^\circ$ in $H_2\mathrm{O}$, forms a hydrochloride, m.p. 193°, $[a]_D$ +15° in $H_2\mathrm{O}$, a picrate monohydrate, m.p. 163—166°, a perchlorate, m.p. 176—177°, a mercurichloride, m.p. 118—119°, a Bz_2 derivative, m.p. 120—122°, and a nitrosoamine. Methylation with CH₂O and HCO₂H gives the N-Me derivative (VII) (hydrochloride, m.p. 216°), with MeI, the hydriodide of (VII), m.p. 228—229°, and with Me₂SO₄ and NaOH, quaternary material. (VI) itself has no phenolic reactions, but demethylation gives an o-dihydric phenol (intense green colour with FeCl₃). (VI) gives characteristic slide reactions, particularly with AuBr₃, KI₃, picric acid, HgCl₃, and KCdI₃. It reacts negatively for C-Me and for indole, whilst KMnO₄—NaOH oxidation gives an insol. substance, C₁₁H₁₁O₄N, m.p. 316°, blue-fluorescent in EtOH, and two other fractions, all containing N and OMe. Traces of dl-(VI) (hydrochloride, m.p. 193°) are also present. Another trace alkaloid is named calycotamine (hydrochloride, C₁₁H_{15—17}O₃N,HCl, m.p. 206°, [a]_D +20° in H₂O); it has 2 OMe and no NMe, like (VI), but is distinct from it.

XIII. Acacia floribunda tops contain up to 0.2% of a mixture of (II) and tryptamine (3-ω-aminoethylindole) (VIII): flowers contain up to 1%, whilst A. pruinosa tops contain 0.04%. A. longifolia flowers and tops contain up to 0.2% of alkaloids, including (II), but not (VIII). (VIII) is identified by the reactions characteristic for 3-substituted indoles, by its m.p. and that of its hydrochloride and picrate (alone and mixed with specimens synthesised by reduction of the product from Mg indolyl iodide and CH₂Cl-CN), and by slide reactions (particularly with KBiI₄ and picric acid). It has not formerly been found in plants.

S. A. M.

Antiplasmodial action and chemical constitution. VII. Derivatives of quinine and isoquinine. T. S. Work (J.C.S., 1944, 334—335).—Reduction of crude quininal, obtained by ozonolysis of quinine, with H₂-Pd-C, gives quinonol, isolated as the dihydrobromide (monosulphate, m.p. 149°). Decomp. of the ozonide of β -isoquinine with H₂O affords 3-acetyl-6'-methoxyrubanol, m.p. 198—200°, reduced catalytically to the 3-OH-[CH₂]₂ derivative (dihydrobromide, m.p. 192—194° (decomp.)], which is a diastereoisomeride of the substance previously obtained (cf. Henry et al., A., 1937, II, 266). Although active, none of the compounds showed antiplasmodial action equal to that of quinine.

Quaternary salts of scopolamine.—See B., 1944, III, 169.

Ultra-violet absorption spectrum of ibogaine.—See A., 1944, I, 212.

Aconite alkaloids. XV. Nature of the ring system and character of the nitrogen atom. L. C. Craig, L. Michaelis, S. Granick, and W. A. Jacobs (J. Biol. Chem., 1944, 154, 293—304).—Hydrolysis (1.056N-NaOH) of delphinine gives delphonine (I) a resin, m.p. 76—78°; pyrodelphonine (II) and a-ketodelphonine (III) are similarly obtained. MeI and (I), followed by removal of I with Ag₂O, afford N-methyl-de-delphonine (IV). Aconine, (I), heteratisine, and tetrahydroatisine in solution as bases all show a strong absorption between 2200 and 2600 A, and it appears probable that the absorption must be due to a conjugated unsaturation of some kind, indicating that the ring structure of the aconite alkaloids, at least in the form of free bases, could be of tetracyclic character. The hydrochlorides of these bases absorb in a manner which could be ascribed possibly to a single double bond as modified by the N and OH groups present. (III) is a cyclic amide and shows at absorption spectrum very similar to that of (I) in alkaline solution. The absorption spectrum of (IV) indicates a new double bond but different in arrangement from that of (IV).

F. R. S.

Synthesis of ON-dimethylanalobme. L. Marion (J. Amer. Chem. Soc., 1944, 66, 1125—1127).—The following reactions are recorded. CHAr. CH·CO₂H (Ar = 3 · 4 · 1-CH₂O₂:C₆H₃) (electrolytic) Ar·[CH₂]·CO·H (65·2%) \rightarrow (PCl₃: aq. NH₃) Ar·[CH₂]·CO·NH₂ (use of SOCl₂ leads to β -x-chloro-3 · 4-methylenedioxyphenylpropionamide, m.p. 146°) \rightarrow Ar·[CH₂]·NH₂ (I) (51·3%) {picrate, m.p. 180·5° [lit. 174° (uncorr.)]}. m-Cresol \rightarrow 5 · 1 · 2-OH·C₆H₃Me·NO. \rightarrow 5 · 1 · 2-OMe·C₆H₃Me·NO₂ (18%) \rightarrow 2 · 5 · 1 · 2-OH·C₆H₃Me·NO. \rightarrow 5 · 1 · 2-OMe·C₆H₃(OMe)·CH₂·CO·CO₂H (78%), m.p. 137° \rightarrow (H₂O₂-NaOH) 2-nitro-5-methoxyphenylacetic acid, m.p. 178·5°. With PCl₅-CHCl₃ and then (I) in CHCl₃-aq. NaOH, this yields 2-nitro-5-methoxyphenylacet- β -3' · 4'-methylenedioxyphenylethylamide, m.p. 188°, converted by PCl₅ in CHCl₃ into 6 · 7-methylenedioxy-1-2'-nitro-5'-methoxybenzyl-3 · 4-dihydroisoquinoline, m.p. 168°, the methiodide, m.p. 205°, of which with Zn dust in hot aq. HCl gives 6 · 7-methylenedioxy-1-2'-amino-5'-methoxybenzyl-2-methyl-1 · 2 · 3 · 4-tetrahydroisoquinoline dihydrochloride (65—74%), m.p. 266° By diazotisation, heating, and then treating with Zn dust in hot HCl this gives dl-ON-dimethylanalobine, an oil [hydrochloride, m.p. 266° (decomp.); picrate, m.p. 226°], the methiodide, m.p. 241°, of which in hot alkali yields ON-dimethylanalobinemethine, m.p. 100° (picrate, m.p. 258°) (cf. Manske, A., 1938, II, 298).

Alkaloid $C_{17}H_{13-15}(OH)(OMe)N$, m.p. 238°, $[\alpha]_D^{24}-77\cdot47^\circ$ in CHCl₃ (benzoate, m.p. 124—125°), and alkaloid $C_{17}H_{13}(OMe)_4N,0.5H_2O$, m.p. 152·5—153°, $[\alpha]_D^{24}-214\cdot22^\circ$ in EtOH, —187·98° in CHCl, [picrate, m.p. 242—245°; styphnate, m.p. 247—249°; methiodide, m.p. 273—274° (decomp.)], from Argemone hispida.—See A., 1944, III, 707.

VIII.—ORGANO-METALLIC COMPOUNDS.

Aromatic mercury salts.—See B., 1944, III, 169.

Zinc alkyls from sec.-alkyl halides. H. Soroos and M. Morgana (J. Amer. Chem. Soc., 1944, 66, 893—894).—Adding 1:1 Pr $^{\beta}$ Br-Pr $^{\beta}$ I to Zn-Cu initially at 50° and later maintained at 20° gives an oil, (?) ZnPr $^{\beta}$ Hal, which at 90—200°/l mm. (liquid N₂ trap) gives 85% of ZnPr $^{\beta}$ 2, for which log $P=7\cdot987-1858/(t+230)$. A similar reaction, initiated at 60° and continued at 25°, gives 72% of Zn disec.-butyl, b.p. 56°/4 mm. The products inflame in air and decompose slowly in diffused light with deposition of Zn. R. S. C.

IX.—PROTEINS.

Electrophoretic evidence for complex formation in casein.—See A., 1944, III, 763.

Optical constants of zinc insulin crystals. G. L. Keenan (J. Amer. Pharm. Assoc., 1944, 33, 183—184).—Published data are reviewed. Standard reference samples of cryst. insulin showed a crystal habit of a cube or rhombohedron with twinning. Birefringence was positive and vals. of n were n_{ϵ} 1.562 and n_{ω} 1.550 (both ± 0.002). F. O. H.

Aromatic sulphonic acids as reagents for peptides. Partial hydrolysis of silk fibroin. W. H. Stein, S. Moore, and M. Bergmann (J. Biol. Chem., 1944, 154, 191—201).—By determining the approx solubilities of a no. of aromatic sulphonates of various peptides it was shown that these salts could be used to ppt. peptides selectively. The acid hydrolysis of silk fibroin was followed by the Van Slyke HNO2 and the ninhydrin methods, and after 40 hr. contained ~75% of dipeptides. From this mixture glycyl-alanine was pptd. as the 2:5-dibromobenzenesulphonate, and then l-alanylglycine as the 2:6-di-iodophenol-4-sulphonate. J. F. M.

Protein-formaldehyde reaction. I. Collagen. E. R. Theis. II. Wool. E. R. Theis and M. M. Lams (J. Biol. Chem., 1944, 154, 87—97, 99—103).—I. Collagen (I) and CH₂O were allowed to react in 0·1n-KCl, for 72 hr. at 20°, the pH being adjusted by addition of either HCI or NaOH. The mixture was then analysed for N content, for bound acid or base, and for fixed CH₂O. The results show that fixation of CH₂O with (I) in no way affects the acid-binding capacity of (I) but does affect the base-binding capacity. No shift in the isoionic point could be shown to be due to CH₂O fixation. Correlation between data for shrinkage temp. and CH₂O fixation is shown.

II. Purified wool keratin (II) was treated as in Part I (KOH in place of NaOH) with and without CH_{*}O. The acid- and base-binding capacity curve without CH₂O is similar to the titration curves obtained by other workers. The acid- and base-binding capacity of CH_{*}O-treated (II) shows no change in the acid zone or at the zero combination point. The CH₂O fixation by (II) is given and is somewhat similar to that obtained for (I). An interpretation of the data is given.

F. R. S.

Action of 1:2-epoxides on proteins. H. Fraenkel-Conrat $(J.\ Biol.\ Chem.,\ 1944,\ 154,\ 227-238)$.—Epoxides, such as $(CH_2)_2O$, propylene oxide, and epichlorohydrin, are suitable reagents for the esterification of protein CO_2H groups in aq. solution at room temp. Through treatment of cryst. egg-albumin and β -lactoglobulin with these compounds, preps. of modified protein have been obtained, which differ from the original material in that their isoelectric points are shifted as much as 3 pH units towards the alkaline side and they contain considerably fewer CO_2H , phenolic, NH_2 , and SH groups than the untreated proteins. The only property of the proteins not appreciably affected by the treatment is the no. of their total basic groups.

Chemical nature of blood-proteins. I—III.—See A., 1944, III.

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTÂNCES.

Esters of lignin derivatives. J. C. Clark and F. E. Brauns (Paper Trade J., 1944, 119, TAPPI Sect., 53—56).—Treatment with the acyl chloride in C₂H₅N at room temp. or 70—85° gives the benzoates and p-toluenesulphonates of alkali spruce lignin A (I), PhOH spruce lignin A (II), and PhOH Willstatter spruce lignin (III). The undecoate of (I) and propionate, butyrate, valerate, and 3:5-dinitrobenzoate of (III) are similarly prepared. Ac₂O-C₅H₅N gives the acetates. PhNCO in dioxan at the b.p. gives phenylurethanes. Analyses indicate introduction of 4—5 aliphatic but 4 aromatic (except 5 Bz) acyl groups into (I), 7—8 groups into (II), and 5 or groups into (III). An additional OH group may be formed from (I) by fission of an O-ring by alkali.

BRITISH CHEMICAL AND PHYSIOLOGICAL ABSTRACTS

A II-Organic Chemistry.

DECEMBER, 1944.

I.—ALIPHATIC.

Physical properties of aliphatic compounds.—See A., 1944, I, 242. Free radicals in polymerisation processes.—See A., 1944, I, 287.

Catalytic aromatisation of branched-chain aliphatic hydrocarbons. V. I. Komarewsky and W. C. Shand (J. Amer. Chem. Soc., 1944, 66, 1118—1119).—Aliphatic hydrocarbons containing a quaternary C, which does not permit direct aromatisation, are dehydrocycliscd in presence of $\rm Cr_2O_3$ -Al $_2\rm O_3$ catalysts to aromatic hydrocarbons, indicating that isomerisation occurs during dehydrocyclisation. Dehydrocyclisation of aliphatic hydrocarbons having a structure which allows cyclisation in > one way takes place by a mechanism permitting their direct formation. W. R. A.

Properties of synthetic lubricants. I. Synthesis and properties of λ -n-decyldocosane. S. Klos, E. Neuman-Piljat, and S. Piljat (J. Appl. Chem. Russ., 1940, 13, 1369—1374).— λ -n-Decyldocosane, b.p. 233—235°/1 mm., is obtained by reduction (H₂-Ni at 240—245°) of the alcohol derived from Et laurate and n-C₁₀H₂₁-MgBr. J. J. B.

Application of infra-red absorption spectra to determination of structure of aliphatic ethylenic hydrocarbons.—See A., 1944, I, 236.

Thermal polymerisation and cyclic dimerisation of isobutylene. J. B. McKinley (Univ. Pittsburgh Bull., 1944, 40, 185—194).—Polymerisation of isobutene at 365—430°/1280—5350 lb. per sq. in. gives a liquid (yield up to 81%) from which a cyclic dimer, 1:1:3-irimethylcyclopentane (I), b.p. 105-0° (yield up to 23%), is obtained on fractionation. 1-Hydroxy-1:3-dimethylcyclopentane (from 2-methylcyclopentanene) with dry HCl at 2° gives 1-chloro-1:3-dimethylcyclopentane, b.p. 33·2°/15 mm., which with ZnMe₂ or MgMeI yields (I) for comparison. The effect of variables on the polymerisation and its mechanism are discussed.

D. G.

a-Bromo-Δβ-heptene. R. Delaby and J. Hubert (Bull. Soc. chim., 1943, [v], 10, 573—575; cf. A., 1937, I, 282).—On fractionating the product obtained from vinylbutylcarbinol, PBr₃, and C_5H_5N , pure CHBu^a:CH·CH₂Br (I) (trans), b.p. 73—74°/19 mm., is isolable, and fractions of b.p. ~60—63°/19 mm. contain some CHBu^aBr·CH:CH₂; Raman spectra of the fractions are examined. (I) and Na–Et₂O yield Δ"-tetradecadiene, b.p. 111—114°/15 mm. (liquid bromide) (cf. Prevost et al., A., 1932, 40).

Co-polymerisation of acetylene and butylene in silent electric discharge. A. D. Petrov and D. N. Andreev (J. Appl. Chem. Russ., 1940, 13, 1341—1347).— Δ^a -Octene and branched $C_{12}H_{26}$ to $C_{16}H_{34}$ are found in the polymerisate of Δ^a -butene (I). Co-polymerisation of C_2H_2 and (I) gives 30% of hydrocarbons boiling at <130° and containing acetylenic hydrocarbons, and 70% of higher-boiling hydrocarbons which at 200° are transformed into a porous rubber-like mass.

Aliphatic nitro-compounds. XV. Nitrations with nitryl chloride. W. Steinkopf and M. Kühnel (Ber., 1942, 75, [B], 1323—1330).— The action of NO₂Cl on a variety of unsaturated compounds is described. C₂H₄ and NO₂Cl give only C₂H₄Cl₂ and NO₂. Slow addition of NO₂Cl to well-cooled CH₂:CHBr yields a-chloro-a-bromo-β-mitroethane, b.p. 76—77°/15 mm. (:CHCl)₂ at 100° yields aaβ-trichloro-β-nitroethane, b.p. 63°/13 mm. (yield 65%); similarly CU₂:CHCl and C₂Cl₄ afford aaaβ-tetrachloro-, b.p. 76°/18 mm., and caaββ-pentachloro-, m.p. 192° (sealed capillary), -β-nitroethane. Styrene affords a-chloro-β-nitro-β-phenylethane, b.p. 78°/13 mm., in small yield in C₈H₆ whereas in Et₂O it gives styrene d-nitrosite, m.p. 133° (lit 129°). Similarly (CHPh:)₂ in C₈H₆ yields a-chloro-β-nitro-αβ-diphenylethane, m.p. 220° (decomp.), in C₈H₆ but in Et₂O gives (CHPhCl)₂, m.p. 189—193°. a-Chloro-β-nitro-β-phenyletro-pionic acid, m.p. 162—163°, is formed from CHPh:CH·CO₂H and NO₂Cl in CCl₄ at 100°. CPh:CH is transformed by NO₂Cl in dry 1 mto unstable, non-cryst. a-chloro-β-nitro-β-phenylethylene, vince cannot be distilled unchanged under 12 mm.; in the absence of solvent the reactants explode very violently. Alternate passage 1 keten and NO₂Cl into well-cooled Et₂O leads to CH₂Cl-COCl and mall amounts of nitroacetyl chloride, b.p. 68°/12 mm., m.p. ~35° (prolonged distillation casily leads to explosions); on exposure to air 1s transformed into MeNO₂, HCl, and CO₂ and is transformed by NH₃ in Et₂O into NO₂·CH₂·CO·NH₂, m.p. 102—103°. C₄H₆ at 20 is converted into 1-chloro-2-nitrocyclohexadiene, b.p. 21°/12 mm., 357

O (A., II.)

m.p. ~-30°, which passes into PhNO₂ when exposed to air. In Et₂O cyclohexene adds NO₂Cl vigorously, giving 1-chloro-2-nitro-cyclohexane, b.p. 122°/9 mm. CH₂Cl·NO₃, b.p. 122--123°, is obtained from CH₂N₂ and NO₂Cl in Et₂O at 0°. Et chloronitroacetate, b.p. 88°/0-04 mm., is obtained in small yield with CH₂Cl·NO₂ from CHN₂·CO₂Et in well-cooled Et₂O. NO₂·CH₂·CO₂K is smoothly transformed by Cl₂ in H₂O into dichloronitromethane, b.p. 106--107°. Gradual addition of saturated K₂CO₃ to a mixture of CH₂O and CH₂Cl·NO₃ in H₂O affords NO₂·CHCl·CH₂·OH, converted by PCl₃ into aβ-dichloro-a-nitroethane, b.p. 124°/10 mm., and by SOCl₂ into di-β-chloro-β-nitroethyl sulphite, b.p. 147°/10 mm. CCl₃·CO₂H and CH₂Cl·CN at 135° yield trichloroacetylchloroacetamide, m.p. 96°. PhOH and NO₂Cl in cold Et₂O give only o-NO₂·C₆H₄·OH whereas at room temp, the product is 2:4:6:1-NO₂·C₆H₂Cl₂·OH. PhOMe and NO₂Cl afford a very unstable adduct, b.p. 32°/12 mm., which loses Cl and N, leaving PhOMe. Solid C₁₀H₈ reacts very vigorously with NO₂Cl, giving a mixture of 1-C₁₀H₇·Cl and 1-C₁₀H₇·NO₂.

Electrochemical oxidation of *n*-butyl alcohol.—Sec A., 1944, I, 289.

Preparation of silicon tetrachloride and its use as a basis for obtaining silicic acid esters.—See A., 1944, I, 291.

Action of chromia catalyst on aliphatic iso-alcohols and -aldehydes. V. I. Komarewsky and L. G. Smith (J. Amer. Chem. Soc., 1944, 66, 1116—1117).—At atm. pressure in presence of Cr_2O_2 iso- $\text{C}_5\text{H}_{11}\text{·OH}$ forms COBu^β_2 by a condensation-dehydrogenation (c-d) process. isoAlcohols, having an a-substituted C, give no (c-d) reactions but are dehydrogenated to the corresponding aldehydes which remain unaffected at even relatively high pressures. BußCHO at higher pressure is converted into $\beta\zeta$ -dimethyl- Δ^γ -heptene and at atm. pressure into COBu^β_2 in presence of Cr_2O_3 . These results support the aldol mechanism. W. R. A.

Substituted acetylenes. XLVII. Acetylenic alcohols from abunsaturated aldehydes and ketones. G. F. Hennion and D. J. Lieb (J. Amer. Chem. Soc., 1944, 66, 1289—1290; cf. A., 1944, II, 29).—1:2-Addition of CH-CNa to compounds containing C:C-CO (cf. Jones et al., A., 1943, II, 53) occurs in Et₂O-liquid NH₃ at -60°, yielding CHMe:CH-CH(OH)-C:CH (I) (46%), b.p. 66°/20 mm., ymethyl-\Delta^b-penten-\Delta^c-inen-y-ol (21%), b.p. 58—59°/60 mm., y-methyl-(27%), b.p. 61—62°/25 mm., and ye-dimethyl-\Delta^b-n-hexen-\Delta^a-inen-y-ol (24%), b.p. 65—66°/17 mm., and \text{e-phenyl-y-methyl-\Delta^b-penten-\Delta^a-inen-y-ol (20%), m.p. 50—51°, b.p. 114—116°/4 mm. With HgO and a little BF₃ in MeOH, (I) gives 2:5-dimethoxy-2:5-dimethyl-3:6-dipropenyl-1:4-dioxan (22%), m.p. 119—120°. n and d for the products are recorded.

[Ethylene] glycol complexes of the light transition metals. R. Gomer and G. N. Tyson, jun. (J. Amer. Chem. Soc., 1944, 66, 1331—1333).—The under-mentioned compounds of metal salts with (CH₂·OH)₂ (I) are prepared. Magnetic data, which are recorded, show that all are ionic. Colours of Co^{II} compounds are independent of the geometric form. The no. of unpaired electrons is indicated by UE below. CuSO₄.(I) and CuSO₄.2(I), light blue (UE 1); FeSO₄,(I), +2H₂O, light yellow (UE 4); X,2(I), +H₂O, where X = NiSO₄, light green (UE 2), CoCl₂, dark blue (UE 3), or MnCl₂, pale rose (UE 5); FeSO₄,3(I), light yellow (UE 4); CoCl₂,3(I), dark blue; X,3(I), +H₂O, where X = NiSO₄, light green (UE 2), CoCl₂, pink (UE 3), or FeSO₄, yellowish-green; NiSO₄,4(I), light green (UE 2). R. S. C.

Halogen derivatives of cineole.—See A., 1944, II, 374.

Dihydroxypropyl bismuthate, m.p. 240—245° (decomp.).—See A., 1944, III, 684.

ay: $\beta\delta$ -Dimethylene- and $\beta\delta$ -methylene-D-epirhamnitol. A. T. Ness, R. M. Hann, and C. S. Hudson (f. Amer. Chem. Soc., 1941, 66, 1235—1237).—ay: $\beta\delta$ -Dimethylene-D-sorbitol with p-C₆H₄Me·SO₃H in C₅H₅N at 0° and later 23° gives the ζ -p-toluenesulphonate (82%), m.p. $160-161^\circ$, $[a]_D -10\cdot0^\circ$ in CHCl₃, converted by NaI in, best (90%), COMe₂ at 100° into the ζ -iodide, m.p. $177-179^\circ$, $[a]_D^{20}-21\cdot7^\circ$ in CHCl₃, whence H₂-Raney Ni in aq. NaOH at slightly >1 atm. gives ay: $\beta\delta$ -dimethylene-D-epirhamnitol (I) (89%), m.p. $182-183^\circ$, $[a]_D^{20}-40\cdot9^\circ$ in H₂O. D-epirhamnitol (prep. from methyl- β -D-epirhamnoside), conc. HCl, and 37% CH₂O at room temp. (4 days) over NaOH-H₄SO₄ give (I), $[a]_D^0$ $-40\cdot6^\circ$ in H₂O. Ac₂O-

AcOH-H₂SO₄ at 0° converts (I) into γ-acetoxymethyl-βδ-methylene-Depirhamnitol ae-diacetate (87%), m.p. 116—117°, [a] $_{10}^{29}$ +5·3° in CHCl₃, converted by NaOMe-CHCl₃-MeOH into βδ-methylene-D-epirhamnitol (100%), m.p. 176—177°, [a] $_{10}^{29}$ -20·2° in H₂O, which is stable to aq. HIO₄ at 25° and in Ac₂O-C₅H₅N at 25° (3 days) yields the aγε-triacetate, m.p. 149—150°, [a] $_{10}^{9}$ —0·6° in CHCl₃, —1·8° in COMe₂. Structures are proved by the reactions described. M.p. are corr R. S. C. are corr.

are corr.

Carbohydrate C-nitro-alcohols. a-Nitro-a-deoxy-D-manniol. J. C. Sowden and H. O. L. Fischer (J. Amer. Chem. Soc., 1944, 66, 1312—1314).—4: 6-Benzylideneglucose with NH₂OH-EtOH at 70° gives the oxime (83%), m.p. 195° (decomp.), [a]₂² - 72° in C₅H₅N, converted by Ac₄O-NaOAc at 120—125° into 4: 6-benzylidenegluconitrile 2: 3: 5-triacetate, m.p. 135·5—136°, [a]₂² + 44° in CHCl₃, which with MeNO₂ and NaOMe in MeOH at ~5° (42 hr.) yields a-nitro-8\(\xi\)benzylidene-a-deoxy-D-mannitol (I) (31%), m.p. 146—147°, [a]₂² - 70·4° in H₂O (cf. Pictet et al., A., 1922, i, 4), the corresponding sorbitol derivative being sol. In 0·1N-H₂SO₄ at 70° (I) gives a-nitro-a-deoxy-D-mannitol (78%), m.p. 134·5—135°, [a]_D - 7·0° in H₂O, which gives a red colour in the Griess-Ilosvay test and reduces hot Fehling's solution. H₃-Raney Ni reduces (I) at room temp. to hot Fehling's solution. H2-Raney Ni reduces (I) at room temp. to not remine 3 solution: H_2 -Raney R1 reduces (1) at 100m tempt to a-amino- $\delta\zeta$ -benzylidenc-a-deoxymannitol [oxalate, m.p. 208° (decomp.), $[a]_0^0 - 37^\circ$ in H_2O], whence dil. H_2SO_4 at 70° yields a-amino-a-deoxymannitol [oxalate, m.p. 183—184° (decomp.), $[a]_D + 5\cdot 0^\circ$ in H_2O]. \sim 8% H_2SO_4 at 35—40° converts (I) into mannose, which is isolated as phenyl- or phenyl-a-methyl-hydrazone. R. S. C.

Peroxidation of ethyl ether. R. Viallard (Bull. Soc. chim., 1943, [v], 10, 512—516).—Analysis of the products formed from Et₂O and O_3 indicates the formation of dihydroperoxydiethyl oxide ozonide (I) and O_3 :O(CHMe·O₂H)₂; (I) would yield MeCHO thus: O_3 :O(CHMe·O₂H)₂ \rightarrow OH·O(:O₃)·CHMe·O₂H + MeCHO. A. T. P.

[Oxidation of dissopropyl ether.] G. Wittig (Ber., 1942, 75, [B], 1301).—In reply to the statement that "monomeric ketone peroxides" have not yet been discovered (Rieche et al., A., 1943, II, 79) it is pointed out that monomeric fluorenone peroxide has been described by Wittig et al. (A., 1942, II, 49).

Acetyl phosphate: chemistry, determination, and synthesis. F. Lipmann and L. C. Tuttle (J. Biol. Chem., 1944, 153, 571—582).—
The synthesis of AcH_2PO_4 (I) (cf. Lynen, A., 1943, II, 250) is simplified. $Ag_3PO_4+2H_3PO_4$ and $AcCl-Et_2O$ give a product which is treated with aq. Na_2CO_3 (to pH 3—3·5); AcOH is removed by Et_2O , aq. NaOH added (to pH 7), and Na_3PO_4 frozen out and filtered off from (I) at $\Rightarrow -5^\circ$. The Ag_2 salt is prepared (cf. loc. cit.), and similarly the Ag_2 salts $COEt\cdot O\cdot PO(OAg)$, and $COPr\cdot O\cdot PO(OAg)_2$. From $(CH_2\cdot COCl)_2$ and $Ag_3PO_4-H_3PO_4$ [removing $(CH_2\cdot CO_2H)_2$ by EtOAcl, a mixture of succinvl phosphate (40%) and diphosphate EtOAc], a mixture of succinyl phosphate (40%) and diphosphate (60%) is similarly obtained. The rate of decomp. of (I) is studied under various conditions. Max. stability is at pH 5—6. The hydrolysis of (I) by 0.0N-HCl is very greatly accelerated by (NH₄)₆Mo₇O₂₄; rates are identical for (I) prepared as above or from AcCO₂H and B. delbrückii (cf. A., 1940, II, 266). Methods of determining (I), depending on MoO₄" colorimetry and on the solubility of AcCaPO₄ are described (cf. C., 1945, Part 1). E. W. W.

Inhibition of catalysed oxidations by hæmins.—See A., 1944, III, 838.

Preparation of glucose 1-phosphate. J. B. Sumner and G. F. Somers (Arch. Biochem., 1944, 4, 11—13).—A modification of the procedure of Green and Stumpf (A., 1942, III, 419), in which a preliminary digestion of dextrins with pancreatic amylase is introduced, is given.

Action of ozone on thioethers. H. Bohme and Harriet Fischer (Ber., 1942, 75, [B], 1310—1311).—The sulphide, dissolved in abs. (Ber., 1942, 73, [B], 1310—1311).—The sulpinde, dissolved in abs. CHCl₃, is saturated with O₂-O₃ at 0° and the solvent is removed in vac. at room temp. or 0°. Thus are obtained: Me₂SO₂, Et₂SO₂, (Cl-[CH₃]₂)₂SO₂, PhMeSO₂, CH₂Ph·SO₂Et, and (CH₂Ph)₂SO₂. The isolation of (CH₂Ph)₂SO by use of an insufficiency of O₃ indicates the intermediate production of sulphoxides. CH₂Cl Et sulphoxide has b.p. 70°/0.2 mm.

New synthesis of β -keto-esters of the type, $COR\cdot CH_2\cdot CO_0\cdot Et$. D. S. Breslow, E. Baumgarten, and C. R. Hauser (J. Amer. Chem. Soc., 1944. 66, 1286—1288).—Treating $CO_2Et\cdot CH_2\cdot CO_2Bu^{\nu}$ (I) with Mg turnings and a little CCl_4 in boiling EtOH or with $Mg(OEt)_2-Et_2O$ and then RCOCl gives $COR\cdot CH(CO_2Et)\cdot CO_2Bu^{\nu}$, which with a little β -C₆+ ℓ_4 Me·SO₂H in boiling C_6H_6 gives $CMe_2\cdot CH_2$ and $COR\cdot CH_2\cdot CO_2Et$ (cf. A., 1944, II, 320). Decomp. of $CHB_2(CO_2Et)_2$ in steam gives only a poor yield of $CH_2\cdot RCOR_2\cdot COR_2\cdot COR_2\cdot$ only a poor yield of CH2Bz·CO2Et (cf. Bernhard, A., 1895, i, 93) only a poor yield of $CH_2D2\text{-}CO_2\text{-}Et$ (cf. Bermard, A., 1898), 1, 1893, 1, 1893, 1, 1893, 1, 1893, 1, 1893, 1, 1894, 1895, 19 105°/15 mm. (Cu salt, m.p. 159°). CHBu^a(CO₂Et)₂ yields CO₂Et·CHBu^a·COCl, b.p. 90—107°/9·5 mm., and thence CO₂Et·CHBu^a·CO₂Bu^y, b.p. 126—128°/15 mm., which, as above, gives Et a-benzoyl-n-hexoate, b.p. 157—161°/5 mm. (derived amide,

m.p. 153-154°). R. S. C.

Synthesis, some derivatives, and metabolism of $\alpha\beta$ -diketo-octoic acid — See A., 1944, II, 379.

Autoxidation of oxygen-active acids. VII. Action of molecular oxygen on methyl licanate. W. Treibs (Ber., 1942, 75, [B], 1373— 1376).—The conjugated triene system of Me licanate [γ -keto- $\Delta^{\theta_{\kappa\mu}}$ octatrienoate] (I) is responsible for the reaction between the ester and mol. O_2 whereas the CO group takes no direct part but merely acts as an accelerating catalyst. The course of the reaction is identical with that of elæostearic esters. (I) boils unchanged at $240-242^{\circ}/20$ mm. but after long heating at 280° shows signs of incipient cyclisation and simultaneous dimerisation. It can be kept unchanged for months at 20° in sealed vessels under N₄. The viscosity of (I) increases very greatly after absorption of a little O2, showing immediate mol. enlargement. The absorption of O1 by (I) and Mc claostearate (II) when spread on glass plates is found gravimetrically to be closely similar and different from that of esters with isolated double linkings. The autoxidative similarity of (I) and (II) is shown particularly by the alteration of n and d in the products. Similar results are obtained by periodic examination of the autoxidation products with MeMeI. Licanic acid and boiling Ac2O give a polyfunctional material as a dry, very hard film in place of the expected acetate.

Production of succinic acid.—See B., 1944, II, 303.

Synthesis of a-bromo-aldehydes. P. Z. Bedoukian (J. Amer. Chem. Soc., 1944, 66, 1325—1327).—Converting aldehydes by boiling Ac₂O-KOAc into the enol acetates (35—80%) and adding to these in CCl₄ Br (1 mol.) and then an excess of MeOH gives CHRBr CH(OMe)₂ (75—80%), which are stable when pure but are very sensitive to acidic impurities and in hot acid (HCI or 50%) citric acid) give 25—95% of CHRBr·CHO. Thus are obtained the enol acetates of Pr\$CHO, b.p. 124—126°, n-C₆H₁₃·CHO, b.p. 88—90³/17 mm., and PhCHO, b.p. 113—115°/10 mm., CMe₂Br·CHO, b.p. 113—115° (2: 4-dinitrophenyldrazone, m.p. 116°; Me₂ acetal, b.p. 5°—54°/10 mm.), n-C₅H₁₁·CHBr·CHO, b.p. 90°/17 mm. (2: 4-dinitrophenyldrazone, m.p. 116°; Me₃ acetal, b.p. 117—119°/17 mm. nitrophenylhydrazone, m.p. 106° ; Me_2 acetal, b.p. $117-119^\circ/17$ mm., and a-bromophenylacetaldehyde, b.p. $108-109^\circ/10$ mm. (2:4-dinitrophenylhydrazone, m.p. 139° ; Me_2 acetal, b.p. $133-135^\circ/10$ mm.).

Action of ammonia on crotonaldehyde.—See A., 1944, II, 380. Preparation of unsaturated ketones.—See B., 1944, II, 303.

Triacetone dialcohol and its dehydration products. E. E. Connolly (J.C.S., 1944, 338—339).—The vac.-still residues from large-scale production of diacetone alcohol (I) contain s-triacetone dialcohol (\$\beta\$). production of diacetone alcohol (I) contain s-triacetone dialcohol (βt-dimethylheptane-βζ-diol-δ-one) (II) (cf. Leopold et al., G.P. 481,290), m.p. 56-4°, b.p. 128°/15 mm. When distilled with syrupy H₃PO, (II) gives "semiphorone" (βζ-dimethyl-Δ^c-hepten-β-ol-δ-one) (III) (cf. Grignard et al., A., 1929, 396). When heated with a little conc. H₂SO₄, (II) gives phorone (IV) [H₂O which is also formed is carried away by CHAc:CMc₂ (V) derived from CH₂Ac-CMe₂·OH in crude (II), or by excess of C₅H₈, which is added when cryst. (II) is used. Cryst. (II) when heated under reflux with dil. H₂SO₄ gives (IV), 2:2:6:6-tetramethyltetrahydro-1:4-pyrone (VI), m.p. 12·8°, b.p. 2:2:6:6:6-tetramethyltetrahydro-1:4-pyrone (VI), m.p. 12·8°, b.p. 70°/15 mm. (oxime, m.p. 101°), and (III). (VI) is dehydrated to (IV). With 2:4:1-C₆H₃(NO₂)₂·NH·NH₂, (I) and (V) give the same product, m.p. 197—198°, whilst (II), (III), and (VI) give a second product, m.p. 171—173°, different from that, m.p. 118—188·5°. obtained from (IV).

Reductione and vitamin-C. J. G. A. Griffiths (Nature, 1943, 152, 163).—(CHO)₂ may be obtained from O₃, H₂O, and C₂H₂, and reductone from (CHO)₂, by irradiation with ultra-violet light. E, R. R.

New reagent for primary and sec. amines.—See A., 1944, II, 372.

Complex compounds of cupric azide. III. Non-electrolytes with organic bases.—See A., 1944, I, 290.

Preparation, resolution, and optical properties of β -amino-n-octane. F. G. Mann and J. W. G. Porter (J.C.S., 1944, 456–461).—CrO₁ oxidation of n-octan-β-ol gives ~95% yield of COMc·C₈H₁₃-n, the oxime of which is reduced with Na and EtOH to pure β-amino-n-octane in 70% yield (Bz derivative, m.p. 73—74°; hydrochloride, m.p. 91—92°; phenylhydrazone, b.p. 119—120°/0-05 mm.). Inc l-amine is prepared by repeated recrystallisation of the dl-amine H d-tartrate from MeOH; similarly the H l-tartrate gives the damine. The rotations of the pure amine and its C₆H₆ solution are similar and that of the EtOH solution, which is unaffected by The d- and 1-amine hydrochlorides, m.p. 90-91°, are the concn. freely sol, in ionising and in non-ionising solvents, in which they are associated. They show a pronounced "acid effect," e.g., the families by drouble idea in a solvent solv amine hydrochloride gives strongly dextrorotatory solutions in ionising solvents, e.g., H₂O, MeOH, EtOH, HCO·NH₂, the rotation in FtOH heigh classical strongers. in EtOH being almost independent of concn.; in non-ionising solvents, as the concn. is progressively increased, the laworotation decreases to zero, e.g., in PhMe or dioxan saturated at room temps, and becomes a dextrorotation at moderately high concns., e.g., in CHO. CH3Cl2, C3H4Cl3, CHCl3, C6H6. The d-camphorsulphonate, m.p.

162-165°, MB +49.5°, and d-a-bromocamphorsulphonate, m.p. 180-185°, of the di-amine are unsuitable for resolution.

Production of β -aminopropionic acid.—See B., 1944, II, 303.

Hydroxyleucines. H. D. Dakin (J. Biol. Chem., 1944, 154, 549—555).—isoButene oxide (excess) and NHAc·CH(CO₂Et)₂ in dioxan with NaOMe, followed by hydrolysis (HCl), give y-hydroxyleucine (I), m.p. 226—228°, purified through the flavianate, m.p. 272—273°. (I) is apparently not identical with the small amount of NH₂-acid, C₆H₁₂NO₃, m.p. 248—250°, obtained from casein. Glycine flavianate has m.p. 244—245° (efferv.). F. R. S.

ε-Diethylaminoamyl β-dithiocarbamate, m.p. 136—138°.—See C., 1944, 167.

Preparation of nitrourea.—See B., 1944, II, 304.

Manufacture of cyanohydrins.—See B., 1944, II, 304.

Ethylenic nitriles; Δα- and Δβ-octenonitrile. R. Delaby and J. Hubert (Bull. Soc. chim., 1943, [v], 10, 576—580).—CHBuα:CH·CH₂Br (I) or mixtures of (I) and CHBuαBr·CH:CH₂, heated slowly with cuCN to 100—105°, then at 100° for 1 hr., give trans-Δβ-octenonitrile (II), b.p. 93—95°/20 mm., and some Δα-octenonitrile. Raman spectra of the various fractions are examined. Hydrogenation (Raney Ni-EtOH) of (II) gives C₈H₁₇·NH₂. (II) is transformed into cis-, b.p. 78—80°/15 mm. and trans-Δα-octenonitrile (III), b.p. 88—90°/15 mm. by adding to PhOH-Na₂CO₃ (previously heated at 150°) at 150° for 2 hr. HCl is introduced into (II) or (III) (mixture of cis- and trans-) and SH·CH₂·CO₂H in Et₂O for 5 hr. (method: Condo et al., A., 1937, II, 139) to yield 40—50% of the respective adduct, e.g., RCN CO₂H·CH₂·S·CR:NH,HCl. The reaction is much more rapid in the cases of CHMe:CH·CN and CH₂:CH:CH₂·CN. With such nitriles, fixation of Br is the slower the greater is the mol. wt.

II.—SUGARS AND GLUCOSIDES.

Existence and significance of sugar-triose equilibrium. C. Enders and S. Sigurdsson (Naturwiss., 1943, 31, 92—93).—Determinations of the AcCHO contents of distillates from 0.2 and 2.0% solutions of sugars are used as basis for calculating the consts. of the thermodynamic equilibria which exist between sucrose (I), maltose, galactose, mannose, glucose, fructose (II), arabinose, and xylose, on the one hand, and the primary product of hydrolysis, a triose which readily (e.g., by heating) changes into AcCHO. The vals. obtained form a series decreasing in the order named, from (I) to (II), the position of the equilibria being dependent on temp., pH, and the nature of any acid present. The existence of the triose, which is possibly a hydrated form of glyceraldehyde, provides an explanation of many problems of carbohydrate chemistry. W. McC.

Analysis of mixtures of 2:3:4:6-tetramethylglucose with 2:3:6-trimethyl- and dimethyl-glucoses by partition on a silica water column: small-scale method for investigating structures of glucopolysaccharides. D. J. Bell (J.C.S., 1944, 473—476).—Abs. separation of 50—200 mg. of 2:3:4:6-tetramethyl- from 2:3:6-trimethyl-glucose (I) (1—200 mols.) and dimethylglucoses is achieved by partition of a CHCl₂ extract of the aq. solution on a SiO₂-H₂O column; further extraction of the aq. solution with CHCl₃-BuOH (9:1) and partition of the extract on the same column gives (I) free from dimethylglucoses, which can be eluted with COMe₂. High recoveries of analytically pure sugars are obtained in both separations. The method is applied to determine the average length of unit chain in methylated derivatives of cellobiose, glycogen, and whole starch.

Enzymically synthesised crystalline sucrose. W. Z. Hassid, M. Doudoroff, and H. A. Barker (J. Amer. Chem. Soc., 1944, 66, 1416—1419).—The phosphorylase, freed from invertase, of Pseudomonas saccharophila is kept with K glucose 1-phosphate, fructose, and Ba(OAC)₂ in H₂O at 37° and pH 6.85 for 12 hr. and then at 29° for a further 12 hr. Cooling, filtration, removal of electrolytes by chromatography and of monosaccharides by washed cells of Torula monosa, concn., and treatment with EtOH gives sucrose, [a]_D +66.5° in H₂O (cf. Doudoroff et al., A., 1943, III, 599; 1944, III, -88), identified by its osazone, X-ray spectrum, crystallo-optical properties, hydrolysis, and by its octa-acetate, m.p. 69—70°, [a]_D +60° in CHCl₃. The synthesis supports the view that glucose exists in sucrose in the a-form.

Separation of methylated methylglycosides by adsorption on alumina. New method for end-group determinations in methylated polysaccharides. J. K. N. Jones (J.C.S., 1944, 333—334).—Tetramethylmethylglucoside (I), mixed with excess of trimethylmethylglucoside, in Et₂O—light petroleum (also used for elution) is separated 14 %) chromatographically on activated $\text{Al}_{2}\text{O}_{3}$, which also effects some separation between the a- and (less strongly adsorbed) β -forms. Rice starch (II) (Hirst et al., A., 1939, II, 495) treated with MeOH–HCl and $\text{Ag}_{2}\text{CO}_{3}$ and chromatographed gives (I) and trimethyl- β -methylglucoside; the proportion of (I) in the mixed methylglucosides obtained indicates that there are 33 glucose residues in the repeating

unit of (II). Banana starch (Hawkins et al., A., 1940, II, 207), similarly treated, gives (I) in proportion indicating 26 residues per unit (cf loc. cit.), with trimethyl-\$\beta\$-methylglucopyranoside. Methylated danson gum hydrolysed by MeOH-HCl gives a mixture of glucosides containing a const.-boiling mixture separated chromatographically into fractions which are hydrolysed by 0.5n-HCl to 2:3:4-trimethyl-d-xylose and 2:3:5-trimethyl-i-arabofuranose; it thus contains trimethylmethyl-1-arabofuranoside and -d-xylopyranoside. E. W. W.

Preparation of N-d-ribityl-o-4-xylidine. M. Tishler, N. L. Wendler, K. Ladenburg, and J. W. Wellman (f. Amer. Chem. Soc., 1944, 66, 1328—1330).—d-Ribolactone, o-4-xylidine (I), and a trace of quinol at 100° give d-ribono-o-4-xylidide, m.p. 164—165° (slight decomp.), converted by $\text{Ac}_2\text{O}-\text{C}_5\text{H}_5\text{N}$ at $\Rightarrow 45$ ° into the letra-acetale (II), m.p. 114—115°, $[a]_D$ $+16\pm1$ ° in CHCl $_3$, whence PCl $_5$ in CHCl $_3$ at room temp. yields the chloro-imide tetra-acetale (III), m.p. 68—70° [reconverted into (II) by H_2O]. H_2 -Pd-BaCO $_3$ or -CaCO $_3$ in EtOAc or dioxan at 50—55°/15—30 lb. reduces (III) to N-d-ribityl-o-4-xylidine tetra-acetate, m.p. 94—95° (cf. B.P. 550, 169, 114, 111, B. 111, 111, 111, 111, also obtained (m.p. 111) 1110°, also obtained (m.p. 111) 1110°, by hydrogenating (Pd-C) d-ribonitrile tetra-acetate and (I) in MeOH-AcOH-H $_2$ O at 5—10 lb. and hydrolysed by Ba(OMe) $_2$ or NaOMe in boiling MeOH to N-d-ribityl-o-4-xylidine, m.p. 1110°, and 1111° R. S. C.

Synthesis of asebotin. G. Zemplén and L. Mester (Ber., 1942, 75, [B], 1298—1301).—Phloracetophenone 4-Me ether and acetobromoglucose in aq. COMe₂ containing a small amount of NaOH give 2-glucosidophloracetophenone 4-Me ether tetra-acetate, m.p. 187-5°, [a] $_{10}^{25}$ —46·3° in C₅H₅N, which is condensed with p-OH·C₆H₄·CHO by conc. KOH to 2-glucosidonafingenin 4'-Mc ether. This is hydrogenated (Pd-C in 96% EtOH) to asebotin, m.p. 148° after softening, [a] $_{10}^{2}$ —52·1° in 55% EtOH, —46·2° in abs. EtOH, hydrolysed by 2·5% HCl at 100° to phloretin 4'-Mc ether, m.p. 158° and 167·5° (triacetate, m.p. 78—79°, softens at 76°).

Glucosides of 4-hydroxycoumarins.—See A., 1944, II, 345.

Gum tragacanth. S. P. James and F. Smith (Biochem. J., 1944, 38, Proc., xix).—Gum tragacanth consists of tragacanthic acid, a neutral polysaccharide, and a sterol glucoside. Hydrolysis of methylated tragacanthic acid with MeOH—HCl yields 2:3:4-trimethyl-a-methyl-l-fucoside, 2:3:4-trimethyl-, and 3:4-dimethyl-methyl-d-xyloside, Me ester of 2:3-dimethylmethylgalactofuronoside, and methyl-β-methylgalactopyranoside. The acid is essentially a chain of galacturonic acid residues joined by 1:4-a linkings. Hydrolysis of the methylated polysaccharide by MeOH—HCl yields 2:3:5-trimethylmethyl-l-arabofuranoside; 2:3-dimethylmethyl-l-arabopyranoside, β-methyl-l-arabopyranoside, and a dimethyl-k-arabopyranoside. The ease of hydrolysis and the high negative val. of [a] indicate the presence of arabinose units of the furanose type in the polysaccharide, which, however, is not a simple araban. P. G. M.

Water-soluble mannan from seeds of Daubentonia drummondii.—See A., 1944, III, 856.

III.—HOMOCYCLIC.

Preparation of benzene by Kolbe's synthesis. Electrolysis of trans-1:2-dihydrophthalic acid. E. A. Pasquinelli (Anal. Asoc. Quim. Argentina, 1943, 31, 181—190).—Electrolysis (10 v., 5 amp.) of trans-1:2-dihydrophthalic acid yields C_6H_6 . F. R. G.

Nitration of toluene. Continuous partial-pressure process using nitric acid alone.—See B., 1944, II, 301.

Nitrations with nitryl chloride.—See A., 1944, II, 357.

Hydrogen chloride as a condensing agent. J. H. Simons and H. Hart (J. Amer. Chem. Soc., 1944, 68, 1309—1312).—Anhyd. HCl resembles HF as catalyst for alkylation of aromatic hydrocarbons; it yields only p-compounds. PhMe with Bu°Cl, PreCl, or Bu°Cl and HCl at 235°/200 atm. (apparatus: C, 1944, 197) gives p-C₆H₄MeBu° (88%), p-C₆H₄MePr $^{\beta}$ (67%) + C₆H₃MePr $^{\beta}$, (16%), and p-C₆H₄MeBu° (15%), respectively. C₆H₆ yields similarly at 150° PhBu° (45·5%) + p-C₆H₄Bu°₂ (24%), at 235° PhPr $^{\beta}$ (48%) + p-C₆H₄Pr $^{\beta}$ ₂ (44%), and at 195° PhBu° (30%) + p-C₆H₄Bu°₂ (60%). C₆H₆, cyclohexcne (I), and HCl at 208° give cyclohexylbenzene (37%), cyclohexyl chloride (II) (27%), and some polymer. C₆H₆, AcCl, and HCl give no COPhMe, but BzCl at 200° leads to 4·4% of COPh₂. PhBu°, PhOH, and HCl do not give C₆H₆ + p-C₆H₄Bu°·OH (III). PhOH, Bu°Cl, and HCl at 75°/200 atm. give 90% of (II) but 67% is obtained by merely boiling PhOH and Bu°Cl without a catalyst; catalytic effect of HCl in the general reaction is shown by failure of PhMe and Bu°Cl to condense at 235°/575 lb. (N₂). PhOH, tert.-C₅H₁₁Cl, and HCl at 90—160° give 72% of p-tert.-C₅H₁₁·C₆H₄·OH. 180-C₅H₁₂Cl, and HCl at 200—220° give 30% of (II), 40% of polymer, and 4% of a saturated hydrocarbon, b.p. 195—200°.

Catalytic aromatisation of branched-chain aliphatic hydrocarbons.—See A., 1944, II, 357.

Thermal polymerisation and cyclic dimerisation of isobutylene.— Sec A., 1944, II, 357.

Synthesis of polyenes. IV. M. S. Kharasch, W. Nudenberg, and E. K. Fields (J. Amer. Chem. Soc., 1944, 66, 1276—1279; cf. A., 1943, II, 159).—Condensation of CH₂RHal by NaNH, in liquid NH₃ to (CHR.), proceeds by way of CH2R. CHRHal and depends on R being strongly electronegative and not containing reactive substituents and on the high dielectric const. of the solvent. A detailed reaction mechanism is propounded. CH₂Ph·NH₂,HCl (5%) is obtained from CH₂PhCl by KOH, NaOEt, or CHO·NHNa in liquid NH₃, or (15%) by NaNH₂ in Et₂O; CHO·NHNa in HCO·NH₂ gives CHO·N(CH₂Ph)₂ (55%); NaNH₂ in light petroleum is without effect, but in liquid NH₃ gives 100% of (CHPh:)₂. With NaNH₂ in liquid NH₃, CH₂BzBr gives (CHBz:)₂ (42%), m.p. 111°; (CH₂Br-CH:)₂ gives a polymer, CH₂Br-[CH:CH]₃r-CH₂Br (100%); CHPh:CH-CH₂Cl gives a \$\(\frac{1}{2} \) diphenylhexatriene (10%), form, softens 150—160°, m.p. 165°, but an excess of NaNH₂ leads to polymeric products; (o-CH₂Br-C₆H₄)₂ gives 80% of phenanthrene; CH₂PhCl+CH₂:CH·CH₂Cl gives CHPh:CH-CH:CH₂ (14%), styrene, hexatriene, and polymers; CH₂PhCl+CH₂CH²CMe·CH₂Cl gives CHPh:CH-CH₂CH₂CMe·CH₂Cl gives CHPh:CMe·CH₂Cl₂ (23%), styrene (13%), (CH₂*CMe·CH:)₂ (35%), and polymers (29%); geranyl chloride gives 35% of geranyl-amine. 6-Phenyl-4-methyl-, m.p. 194° (decomp.) (anhydride, m.p. 90—91°), and 6-phenyl-, m.p. 200—203° (decomp.; rapid heating), -1:2:3:6-tetrahydrophthalic acid are prepared. being strongly electronegative and not containing reactive substit--1:2:3:6-tetrahydrophthalic acid are prepared.

-1:2:3:6-tetrahydrophthalic acid are prepared.

R. S. C.

Preparation of substituted styrenes. L. A. Brooks (J. Amer. Chem. Soc., 1944, 66, 1295—1297).—o-C₆H₄Cl·CHO with MgMeBr-Et₂O gives α-o-chlorophenylethyl alcohol (76%), b.p. 109°/7 mm., converted by ≯1% of KHSO₄ afid a little quinol at 200—210°/110—130 mm. into o-chlorostyrene (70%), b.p. 60—61°/4 mm. Similarly are prepared α-m-, b.p. 102—104°/3 mm., and α-p-chlorophenyl-, b.p. 87—89°/2 mm., α-o-, b.p. 117—118°/40 mm., α-m-, b.p. 120—121°/45 mm., and α-p-fluorophenyl-, b.p. 122—123°/45 mm., and α-2:5-dichlorophenyl-ethyl alcohol, m.p. 63—64°, b.p. 107—109°/2 mm., and thence m-, b.p. 62—63°/6 mm., and p-chlorophenyl-singlethyl alcohol, m.p. 3:4:1-C₆H₃Cl₂·COMe yields α-3:4-dichlorophenyl-ethyl alcohol (91%), b.p. 127—128°/2 mm., and thence 3:4-dichlorophenyl-ethyl alcohol (91%), b.p. 127—128°/2 mm., and thence 3:4-dichlorostyrene, b.p. 69—70°/4 mm. The styrenes are less stable when purified. Relative stabilities of CHAr.CH₂ are Ar=C₆H₄F > C₆H₄Cl > C₆H₃Cl₂.

Reactivity of 2-chloro-3: 5-dinitrodiphenyl. C. K. Bradsher and S. T. Amore (J. Amer. Chem. Soc., 1944, 66, 1283—1284).—
1:2:3:5-C₆H₂PhCl(NO₂)₂ (I), best obtained (m.p. 115—116°; cf. Borsche et al., A., 1917, i, 390) from 3:5:1:2-(NO₂)₂C₆H₂Ph·NH₂ by NO·SO₃H and then aq. CuCl-HCl, differs from 1:2:4-C₆H₃Cl(NO₂)₂ owing to steric hindrance by the Ph. In boiling NaOR-ROH, (I) gives 3:5-dinitro-2-ethoxy-(II) (93%), m.p. 114—115°, and -2-methoxy-diphenyl, m.p. 113·5—114°, in boiling piperidine gives 3:5-dinitro-2-piperidinodiphenyl, m.p. 184·5—185°, and with Cu powder at 215° and then 190° gives 4:6:4': -tetravitrowith Cu powder at 215° and then 190° gives 4: 6: 4': -tetranitro-2: 2'-diphenyldiphenyl, m.p. 248—249°. CH₂(CO₂Et)₂ or CH₂Ac·CO₄Et does not react with (I); CH₂(CO₂Et)₂ in NaOEt-R. S. C. EtOH gives only (II).

Bond system and stereochemistry of cumulenes.—See A., 1944, I, 268.

Dicyclohexadienes and the strain theory.—See A., 1944, I, 267.

Aromatic cyclodehydration. XVI. Phenanthrene hydrocarbons from unsymmetrical ketones. C. K. Bradsher and S. T. Amore. XVII. 9- and 10-Methyl-1:2:3:4-dibenzphenanthrene. C. K. Bradsher and L. Rapoport (J. Amer. Chem. Soc., 1944, 66, 1280, 1281—1282; cf. A., 1944, II, 130).—XVI. o-C₆H₄Ph·MgI with COR·CH₂R' and then KHSO₄ gives α-phenyl-α-2-diphenylyl-Δα-n-pentene (85%), m.p. 78—79°, b.p. 207—208°/8 mm., and -Δ undecene (60%), b.p. 242—254°/5 mm., β-2-diphenyl-Δβ-n-butene (36%), b.p. 132—140°/9 mm., and -Δα-n-heptene (51%), b.p. 140—160°/8 mm., and thence by oxidation and cyclisation 9-bhenyl-10-160°/8 mm., and thence by oxidation and cyclisation 9-phenyl-10n-propyl- (64%), m.p. 148·5—149·5°, 9-phenyl-10-n-decyl- (39%), m.p. 99—100°, 9:10-dimethyl- (39%), m.p. 142·5—143° (lit. 139°) (picrate, m.p. 193—194°), and 9-n-amyl-phenanthrene (31%), m.p. 69—70°.

XVII. 1-Keto-4-methyl-1:2:3:4-tetrahydronaphthalene and o-XVII. 1-Keto-4-methyl-1: 2: 3: 4-tetrahydronaphthalene and o-C₈H₄Ph-L₁ in boiling Et₂O give 4-2'-diphenylyl-1-methyl-1: 2-dihydronaphthalene (64·5%), b.p. 215—218°/6—7 mm., converted by o-CO₂H·C₈H₄·CO₃H and then HBr-AcOH-H₂O into 9-methyl-9: 10-dihydro-1: 2: 3: 4-dibenzphenanthrene (89·5%), an oil (picrate, m.p. 170·5—171°), whence 30% Pd-C in CO₂ at 310—350° yields 9-methyl-1: 2: 3: 4-dibenzphenanthrene (I) (64%), m.p. 150·5—151·5° (picrate, m.p. 207·5—208·5°). Na₂Cr₂O₇-AcOH oxidises (I) to 1: 2: 3: 4-dibenzphenanthraquinone (proof of structure). (I) absorbs O₂ fairly rapidly in air. 1-Keto-3-methyl-1: 2: 3: 4-tetraabsorbs O2 fairly rapidly in air. 1-Keto-3-methyl-1:2:3:4-tetraabsolus O_2 lathy lapling in all. 1-Neto-3-methyl-1: 2: 3: 4-tetrahydronaphthalene leads similarly to 4-2'-diphenylyl-2-methyl-1: 2-dihydronaphthalene (65%), m.p. 77—78°, 10-methyl-9: 10-dihydro(73%), m.p. 151—152° [unstable picrate, m.p. 117.5—119°; s- $C_0H_3(NO_2)_2$ compound, m.p. 138·5—139·5° after softening], and 1

methyl-1:2:3:4-dibenzphenanthrene (70%), m.p. 163.5-164° [unstable picrate, m.p. 150.5—151.5°; s-C₆H₃(NO₂)₂ compound, m.p. 161—162°]. l-Keto-3: 4-dimethyl-1: 2: 3: 4-tetrahydronaphthalene gives 4-2'-diphenylyl-1: 2-dimethyl-1: 2-dihydronaphthalene, m.p. 78—79.5°, b.p. 217—218°/8 mm., and 9:10-dimethyl-9:10-dihydro-1: 2: 3: 4-dibenzphenanthrene, a resin (picrate, m.p. 154—154.5°), which is a replaced by a bloomy in the Pd. C.O. which is unchanged by chloranil and with Pd-C-CO₂ at 310-350° or S at 250° yields only (I). R. S. C.

Aromatic hydrocarbons. XXXIV. New synthesis of hexacene. E. Clar (Ber., 1942, 75, [B], 1283—1287; cf. A., 1940, II, 75).— o-C₆H₄(CO)₂O is condensed with o-xylene to o-3: 4-dimethylbenzoylene. benzoic acid, which is oxidised by KMnO₄ in alkaline solution to benzophenone-2': 3: 4-tricarboxylic acid. This passes at ~240° benzophenone-2': 3: 4-tricarboxylic acid. This passes at ~240° into the anhydride, m.p. 185—186° (lit. 175°), which is condensed with tetrahydronaphthalene by AlCl₃ in C₂H₂Cl₄ at 90° to p-o'-carboxybenzoyl-o-5: 6: 7: 8-tetrahydro-2-naphthoylbenzoic acid, which could not be obtained cryst. It is reduced by Cu–Zn in alkaline solution to p-o'-carboxybenzyl-o-5: 6:7:8-tetrahydronaphthyl-2methylbenzoic acid, transformed by Zn dust, NaCl, and ZnCl, at 340° into a mixture from which 5: 16-dihydrohezacene (I) is isolated by fractional sublimation in CO_2/I mm. Its constitution is deduced from its orange-red colour, its absorption spectrum in C_6H_6 , and great reactivity towards (:CH·CO)₂O. In boiling xylene (I) passes into 6: 15-dihydrohexacene (II), which is pale yellow in colour, reacts more difficultly with (:CH·CO)2O, and shows the absorption spectrum of a $C_{10}H_8$ and an anthracene complex united by $2 CH_2$. (I) and (II) have m.p. 357-370° (vac.), ill-defined by reason of thermal transformability. Dehydrogenation of (I) or (II) gives hexacene. Pure (II) is oxidised in boiling PhNO₂ by SeO₂ to hexacene-6:15-quinone, m.p. (indef.) 295-310°, possibly containing the -5: 16-isomeride.

Complex compounds of cupric azide. III. Non-electrolytes with organic bases.—See A., 1944, I, 290.

Photochemical investigation of dark-coloured aniline.—See A., 1944, I, 289.

Influence of alkyl groups on reaction velocities in solution. V. Formation of phenyltrialkylammonium iodides in methyl alcohol.—See A., 1944, I, 286.

Phenylthiocarbimide from phenyl azide. W. Borsche (Ber., 1942, 75, [B], 1312—1313).—PhN₃ and AlCl₃ in PhNO₂ give N₂ and a dark resin from which no definite compound could be isolated. In CS₂ the products are PhNCS and "phenylthiocarbimide sulphide," CS S-C:NPh, m.p. 155°. The first products are therefore Na and PhN.

And PhN.

Preparation and properties of derivatives of sulphamide. K. W. Wheeler [with E. F. Degering] (J. Amer. Chem. Soc., 1944, 66, 1242—1243).—SO₂(NH₂)₂ and CO₂H·CH₂·COCl in Et₂O give H malonylsulphamide, CO₂H·CH₂·CO·NH·SO₂·NH₂, m.p. 147° (decomp.; uncorr.), which in EtOH-H₂SO₄ gives (?) the Et ester, m.p. 84—85° (uncorr.). SO₂Cl₂ (2 mols.) and NHMe₂,HCl (1 mol.) at 60° give HCl and NMe₂·SO₂Cl (80%). NAlk₃·SO₂Cl with NH₂R or NHR₂ alone (exothermally) or in boiling C₆H₆ or Et₂O yields N-0-, m.p. 64·6—65·2°, and N-m-tolyl-, m.p. 47·4-48°, N-m-4-xylyl-, m.p. 74·7—75°, N-0-chlorophenyl-, m.p. 49·4—49·7°, and N-p-anisyl-, m.p. 56·3—56·8°, -N'N'-diethylsulphamide; N-phenyl-NN'N'-trimethylsulphamide, m.p. 45·5—46°, and -N'N'-dimethyl-N-ethylsulphamide, m.p. 31·5—32°; N-0-, m.p. 104·8—105·2°, and N-m-tolyl-, m.p. 80·5—81°, N-m-4-xylyl-, m.p. 132—132·5°, N-0-, m.p. 76·5—76°, N-m-, m.p. 88·2—88·7°, and N-p-chlorophenyl-, m.p. 56·5—57·1°, N-p-bromophenyl-, m.p. 78·8—79·3°, N-p-iodophenyl-, m.p. 83·6—84·2°, N-m-nitrophenyl-, m.p. 126·7—127°, N-p-dimethylamnophenyl-, m.p. 108·6—109·3°, N-p-anisyl-, m.p. 55·6—56·2°, N-p-carbethoxyphenyl-, m.p. 125—125·4°, N-α-, m.p. 107·3—107·7°, and N-β-naphthyl-, m.p. 110—110·4°, N-pentamethylene-, m.p. 55·6—56·2°, and N-2-pyridyl-, m.p. 130·7—131·2°, -N'N'-dimethylsulphamide. NHPh·SO₂·NMe, and AcCl give the N-Ac derivative, m.p. 92·3—92·7°. These products are more stable than SO₂(NH₂)₂. They are sol. without decomp. in cold, conc. H₂SO₄. Those containing at least one H attached to N are sol. in dil. alkali. With the exceptions noted, m.p. are corr.

N. M. Shlarasenbamic extern. exceptions noted, m.p. are corr. R. S. C.

N-Chlorocarbamic esters. P. Chabrier (Ann. Chim., 1942, [xi] 17, 353—370).—Partly an account of work previously abstracted (A., 1943, II, 82). NN-Dichlorocarbamates, NCl₂·CO₂R, are prepared from NH₂·CO₂R, NaOCl, and aq. H₂SO₄ or AcOH; thus prepared is β-chloroethyl NN-dichlorocarbamate (I), m.p. 38°. NCl₂·CO.Et (II) and styrene in C₆H₆ afford Et N-chloro-β-chloro-β-phenylethyl-carbamate, a liquid (not distillable), reduced by NaHSO₃ to Et N-β-chloro-β-phenylethylcarbamate, m.p. 50° convertible by NaCO. or chloro-β-phenylethylcarbamate, m.p. 50°, convertible by Na₂CO₃ or AgNO₃ in aq. EtOH into the corresponding β-OH-ester m.p. 85°, or by Zn-aq. NH₃ into Ph·[CH₂]₃·NH·CO₂Et. Similarly prepared are Et N·chloro-N-β-chloro-β-m-anisyl-, and -β-methylenedioxyphenyl-a-methylethylcarbamate, and Et N-β-chloro-β-m-anisyl- and -β-methylenedioxyphenyl-g-methylethylcarbamate, and Et N-β-chloro-β-m-anisyl- and -β-methylenedioxyphenyl-g-methylethylcarbamate, m.p. 72° and 114° -correctively. dioxyphenyl-a-methylethylcarbamate, m.p. 76° and 114°, respectively. NCl₂·CO₂Me (III) and (C₂H₄Cl)₂S in C₆H₆ give tetrachlorodiethyl sulphide, b.p. 115°/15 mm., which decomposes to HCl and

CH₂Cl·CHCl·S·CH:CHCl. Carbazole and (III) in AcOH give tetra-chlorocarbazole, m.p. 212°; CH₂Ph·CO·NH₂ in H₂O yields phenylacetchloroamide, m.p. 120°; 3:5-diketo-6-alkyl-1:2:4-triazine in alkali affords 2:4-dichloro-3:5-diketo-6-benzyl-, m.p. 119° (explodes at 150°) and 6-heavyl-thyl 1:2:4-triazine m. 120° (explodes at 150°) and 6-heavyl-thyl 1:2:4-triazine m. 120° (explodes at 150°) and 6-heavyl-thyl 1:2:4-triazine m. 120° (explodes at 150°). at 150°), and -6-phenylethyl-1: 2: 4-triazine, m.p. 130° (explodes at 165°); similarly prepared is 2-chloro-3: 5-diheto-4: 6-dibenzyl-1: 2: 4-triazine, m.p. 153°; 1: 3-dichloro-5: 5-diphenylhydantoin, 1:2:4-triazine, m.p. 153°; 1:3-dichloro-5:5-diphenylhydantoin, m.p. 166°, is obtained from diphenylhydantoin; indole-2-carboxylic acid or its Me ester in AcOH yields probably 2:3:(?)5-trichloro-2:3-oxido-2:3-dihydroindole, m.p. 188° [Zn-AcOH give (?)5-chloro-2:3-oxido-2:3-dihydroindole, m.p. 192°], or Me 2:3:(?)5-trichloro-3-hydroxy-2:3-dihydroindole-2-carboxylate, m.p. 184°, respectively. (II) and aq. glycine give CH₂(NH-CO₂Et)₂, readily decomposed to CH₂O. NCl₂·CO₂R and NH₂·CO₂R give NHCl·CO₂R, which with NaOEt-EtOH-Et₂O afford NNaCl·CO₂R. Na Et N-chloro-carbamate, deflagrates at 140°, is prepared. NNaCl·CO₂Me and AsPh₃ in C₆H₆ give N-triphenylarsine Me carbamate, CO₂Me·N:AsPh₃, m.p. 84°, readily hydrolysed to NH₂·CO₂Me and AsPh₃O. Also m.p. 84°, readily hydrolysed to NH2 CO2Me and AsPh3O. Also prepared (method: loc. cit.) are N-carbethoxy-N-3-pyridylcarbamide, m.p. 200°, N-carbomethoxy-, m.p. 100°, and N-carbethoxy-, m.p. 40°, and N-carbethoxy-, m.p. 40°, and N-carbon-β-chloroethoxy-N'-a-ethylpropyl-, m.p. 108·5°, and N-carbomethoxy-, m.p. 133·5°, and N-carbothoxy-N'-benzyl-carbamide, m.p. 23° Also prepared one thought the strength of t carbonethoxy-, m.p. 133.5°, and N-carbethoxy-N'-benzyt-carbannae, m.p. 93°. Also prepared are ethoxymethyl-, m.p. 132° (CHPh: derivative, m.p. 167°), benzyl-, m.p. 171° (semicarbazones from COMe₂, m.p. 151°, PhCHO, m.p. 194°, p-OMe·C₆H₄·CHO, m.p. 192°, p-C₆H₄Prβ·COHO, m.p. 174°, and CH₂Ph·CO·CO₂H, m.p. 204°), and phenyl-carbanylsemicarbazide (IV), m.p. 228° (semicarbazones from COMe₂, m.p. 214°, PhCHO, m.p. 233°, p-OMe·C₆H₄·CHO, m.p. 215°, and COPhMe, m.p. 212°). Prolonged action of N₂H₄ on NHPh·CO·NH·CO₂Me liberates NH₂Ph. Derivatives of (IV) are converted by Na-He into (probably) a bis(bhenylcarbanylsemicarbacony) converted by Na-Hg into (probably) a bis(phenylcarbanylsemicarbazide), (NHPh·CO·NH·CO·NH·NH)₂, m.p. 263°, which does not combine with RCHO. NNaCl·CO₂Me and CO₂Na·CR:N·NH·CO·NH₂ in H2O yield ketotriazoles, CR NH-CO

Copper complexes of sulphanilamide and sulphathiazole. W. R. Todd (Arch. Biochem., 1944, 4, 343-346).—Cryst. complexes of Cu and sulphanilamide or sulphathiazole are prepared by the action of glucose and an alkaline Cu reagent. Both complexes are stable in alkaline solution, but are insol. and unstable in org. solvents and H₂O. Mineral acid decomposes the complexes producing Cu_2O . The sulphanilamide *complex*, $(C_6H_8O_2N_2S)_2Cu_3(OH)_2$, decomp. ~200°, darkens on drying; the sulphathiazole *complex*, $(C_9H_9O_2N_2S)_2Cu_3(OH)_2$, decomp. ~300°, remains white, and can be obtained by white sulphathiazole complexes the complexes of the com in white, yellow or orange crystals, identical microscopically. E. R. S.

Bacterial chemotherapy. IV. Synthesis of N¹: N⁴-diacylsulphanilamides. S. Rajagopalan (Proc. Indian Acad. Sci., 1944, 19, A, 343-350).—Sulphanilamide or its N⁴-acyl derivative with the appro-343—350).—Sulphanilamide or its N⁴-acyl derivative with the appropriate acid chloride in C₅H₅N gives N¹-acetyl-, m.p. 166—169° decomp.), N¹-n-butyryl-, m.p. 164—168°, N¹-n-heptoyl-, m.p. 148—152°, N¹-palmityl-, m.p. 123—126°, N¹-stearyl-, m.p. 127—130°, N-benzoyl-, m.p. 180—183°, N¹-hexahydrobenzoyl-, m.p. 185—187°, N¹-cinnamoyl-, m.p. 228—231°, N¹-a-naphthoyl-, m.p. 154—157°, -m-nitrobenzoyl-, m.p. 173—178°, and N¹-p-nitrobenzoyl-N⁴-hexoyl-, m.p. 222—230°, and N¹: N⁴-dihexoyl-, m.p. 164—172°, -di-n-butyryl-, m.p. 217—220°, -di-n-heptoyl-, m.p. 131—134°, -dibenzoyl, m.p. 239—240, -dihexahydrobenzoyl-, m.p. 248—250°, -dicinnamoyl-, m.p. -16 218°, -di-p-nitrobenzoyl-, m.p. 251 (decomp.), and di-furoyl-sulphanilamide, m.p. 250° (decomp.), and N¹: N⁴-di-p-nitrobenzoyl-sulphapyridine, m.p. 232—234° (decomp.). The mechanism of the action of the sulphonamides is discussed. action of the sulphonamides is discussed.

N-Sulphanilylcarbamides.—See B., 1944, II, 304.

N¹-Sulphanilylisothiocarbamides. P. C. Guha, P. L. N. Rao, and V. Mahadevan (Current Sci., 1943, 12, 325—326).—pNHAc-C₆H₄·SO₂Cl and NH₂·C(SR):NH,HCl (or HBr), after hydrowith 8—10% aq. HCl, yield N¹-sulphanilyl-propyl-, m.p. 133—
1-4 (Ac derivative, m.p. 174°), -butyl-, m.p. 116° (Ac derivative, m.p. 157°), and -allyl-isothiocarbamide, m.p. 170° (Ac derivative, m.p. 173—174°). The Et analogue, m.p. 155—156° (Ac derivative, m.p. 180—181°), is prepared similarly (cf. Winnck et al., A., 1942, 11, 400), but p-acetamidobenzenesulphonylbenzylisothiocarbamide, m.p. 171—173°, is hydrolysed to p-NH₂·C₆H₄·SO₃H and CH₂Ph·SH. A. T. P.

Sulphanilylguanidine.—See B., 1944, III, 237.

Guanidine derivatives.—See B., 1944, II, 305.

Preparation of p-substituted aromatic ethylene derivatives. R. o (Chem.-Zig., 1943, 67, 81).—Heating aromatic ketones or aldehydes with MgMeBr (prep. in Et₂O, subsequently removed) in C.H. sives good yields of olefine. Details are given for (p-Me₂·C₆H₄)₂C:CH₂. R. S. C

Ethylenediamine derivatives having trypanocidal action. A. Funke, and Montezin [with, in part, Viaud and Horclois] (Ann. Inst. Pasteur, 1943, 69, 358-371).—CH₂PhCl (1 mol.; 12 g.) and

(CH₂·NH₂)₂,H₂O (4 mols.) in EtOH at 120° give CH₂Ph·NH·[CH₂]₂·NH₂ (1945 F) (6 g.), b.p. 125—130°/10 mm. (dihydrochloride, m.p. ~255°), and (CH₂Ph·NH·CH₂)₂, b.p. ~190°/10 mm. Similar preps., best at room temp., lead to N-p-methyl-(2156 F), b.p. 140°/13 mm. (dihydrochloride, m.p. ~205°), N-p-ethyl- (2440 RP) [dihydrochloride, m.p. 216—218° (decomp.)], N-p-n- (1986 F), b.p. 145—150°/8 mm., and N-p-iso-propyl- (I) (1921 F) (65—70%), b.p. 145—150°/8 mm. [dihydrochloride, m.p. ~235° (decomp.)], N-p-sec.-butyl- (2463 RP), b.p. 130—135°/1'3 mm., N-p-benzyl- (2160 F), b.p. 200—202°/2·5 mm. (dihydrochloride, m.p. ~230°), N-p-β-phenylethyl- (2162 F), b.p. 228—235°/10 mm., N-p-cyclopentyl- (1971 F), b.p. 180—196°/14 mm., N-p-cyclohexyl- (II) (1955 F), b.p. 187—190°/7 mm., N-2:5- (2152 F), b.p. 155—160°/16 mm. [dihydrochloride, m.p. 255° (decomp.)], and N-2:4-dimethyl- (2157 F), b.p. 150—154°/13 mm., N-2:4:6-trimethyl- (2163 F), b.p. 160—164°/12 mm., N-2-methyl-5-isopropyl- (1988 F), b.p. 165°/10 mm., N-4-methoxy-2-methyl-0-isopropyl- (1997 F), b.p. 160—195°/12 mm., N-2-nitro-4-isopropyl- (III) (2172 F) [dihydrochloride, m.p. ~170° (decomp.)], N-2-amino-4-isopropyl- (2083 F) [prep. from (III) (2172 F) [dipydrochloride, m.p. ~2070°/do 195°/12 mm., N-2-nitro-4-isopropyl- (111) (2172 F) [dihydrochloride, m.p. ~170° (decomp.)], N-2-amino-4-isopropyl- (2083 F) [prep. from (111) by H₂-Raney Ni in aq. EtOH] [dihydrochloride, m.p. 220° (decomp.)], N-p-nitro- [dihydrochloride (2170 F), m.p. ~218°], and thence N-p-amino- [dihydrochloride (2075 F), m.p. 200—235°], N-p-cyano- (2097 F), b.p. 160—170°/1·6 mm. (dihydrochloride, m.p. ~260°), and N-p-chloro- (2115 F), b.p. 135°/2 mm., -benzylethylenediamine. Similarly are prepared N-p-xenylmethyl- (2462 RP) [dihydrochloride, m.p. ~295° (block)] N-tetrahydro-8-naphthylmethyl- (1993 F) b.p. Similarly are prepared N-p-xenylmethyl- (2462 RF) [dihydrochloride, m.p. ~295° (block)], N-tetrahydro-β-naphthylmethyl- (1993 F), b.p. 170–175°/0·8 mm., N-a-naphthylmethyl- (1990 F), b.p. 200°/14 mm., N-4-isopropyl-1-naphthylmethyl- (1999 F), b.p. 187°/6 mm., N-citronellyl- (2015 F), b.p. 156—160°/24 mm., and N-β-p-isopropyl-phenylethyl- (2146 F), b.p. 170°/18 mm., -ethylenediamine. p-C₆H₄Prβ-CH₂CI (1 mol.) and NH₂-[CH₂]₂-NEt₂ (2 mols.) give exothermally N-p-isopropylbenzyl-N'N'-diethylethylenediamine (1964 F), b.p. 155°/8 mm. The appropriate di(chloromethyl) compound leads to 2:5-di-(β-aminoethylaminomethyl)-p-xylene (2154 F), b.p. 190—192°/0·7 mm., 4:6-di-(β-aminoethylaminomethyl)-m-xylene (2158 F), b.p. 200—205°/1·52 mm., di-(x-β-aminoethylaminomethyl-phenyl)methane (2159 F), b.p. 250—260°/0·6 mm., and aβ-di-(x-β-aminoethylaminomethyl-phenyl)ethane (2161 F), b.p. 255—268°/0·8 mm. CH, ArCl and the appropriate diamine give δ-p-isopropylbenzylmm. CH₂ArCl and the appropriate diamine give δ-p-isopropylbenzylamino-n-pentane (1989 F) (prep. at 130°), b.p. 170 amino-a-diethylamino-n-pentane (1989 F) (prep. at 130), b.p. 170—172°/8 mm. (hygroscopic dihydrochloride), 1-p-isopropylbenzyl-piperazine (1966 F), b.p. 165°/13 mm., and N-p-isopropylbenzylhexamethylenediamine (1994 F), b.p. 190°/1·2 mm. Heating OH·CH(CH₂Cl)₂ (1 mol.) and CH₂Ar·NH₂ (4 mols.) slowly to ~150° gives ay-dibenzylamino- (2079 F), b.p. 217—220°/8 mm., ay-di-p-isophrables millenning (2080 F) and ay-di-p-cyclohezylbenzylaminogives ay-dibenzylamino- (2079 F), b.p. 217—220°/8 mm., ay-di-p-isopropylbenzylamino- (2080 F), and ay-di-p-cyclohezylbenzylamino-propan-β-ol (2081 F). As by-products are obtained NN'-di-p-idihydrochloride (1987 F)] and NN'-di-p-iso-propylbenzyl- (1943 F), b.p. 230—240°/8 mm. (dihydrochloride), NN'-di-2:5-dimethyl-benzyl- (2153 F), NN'-di-2-nitro-4-iso-propylbenzyl- [dihydrochloride (2173 F), m.p. 210° (decomp.)], NN'-di-p-nitrobenzyl- [dihydrochloride (2171 F), m.p. ~260° (decomp.)], NN'-di-p-chlorobenzyl-(2116 F), m.p. 120°, and NN'-di(tetrahydro-β-naphthylmethyl)-, b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -ethylenediamine and NN'-di-p-isopropylbenzylhexamethylenediamine (1995 F), b.p. b.p. 240—250°/0·8 mm. [dihydrochloride (2001 F)], -ethylenediamine and NN'-di-p-isopropylbenzylhexamethylenediamine (1995 F), b.p. 250—260°/2 mm. Treating (I) with, successively, PhCHO, Na₂CO₃—Et₂O-BzCl (later at the b.p.), and 0·1n-HCl gives N-benzoyl-N-p-isopropylbenzylethylenediamine hydrochloride, m.p. 166°. BzCl and (I) in C₆H₆ give the Bz₂ derivative, m.p. 121°. With CHEt₂·CHO and then Na-C₅H₁₁·OH, (I) gives N-p-isopropylbenzyl-N'-β-ethyl-n-butylethylenediamine [dihydrochloride (1947 F), m.p. ~255° (decomp.)]. Boiling the dihydrochloride (f) (II) with CN-NH (f) in a comp.)]. Boiling the dihydrochloride of (II) with CN.NH2 (? in a solvent) gives β -p-cyclohexylbenzylaminoethylguanidine dihydrochloride (1968 F), cryst. For pharmacological data see A., 1944,

366

p-Diazonium tertiary amines.—See B., 1944, II, 304.

Phenol synthesis and catalyst.—See B., 1944, II, 305.

Thymol and isopropyl-m-cresols obtained from m-cresol by con-Thymol and isopropyl-m-cresols obtained from m-cresol by condensation reactions. A. E. Tschitchibabin [with C. Barkovsky] (Ann. Chim., 1942, [xi], 17, 316-334).-m-Cresol (I) and $Pr^{\beta}OH-H_3PO_4$ (d 1·8) at $50-60^{\circ}$ or $65-75^{\circ}$ for 20 or 14 hr., respectively, then at 18° for 36 hr., give 1:4:3- (thymol) (II), 1:6:3- (p-thymol) (III), m.p. 114° , and 1:2:3-C₆H₃MePr $^{\beta}$ ·OH (o-thymol) (IV), m.p. 69° [NO-derivative, m.p. 178° (block)]. (I) and H_2SO_4 (d 1·84) at $120-125^{\circ}$ for 2-3 hr., followed by Pr $^{\beta}OH$ at $70-85^{\circ}$, give (III) + (IV); the use of 100° H₂SO₄ or 35° 0 oleum at $^{\sim}80^{\circ}$ yields (II) + (III); C₆H₂MePr $^{\beta}_2$ ·OH (V) are also formed. Many experiments under varying conditions are recorded. The isomerides obtained under varying conditions are recorded. The isomerides obtained depends on the relative amounts of m-cresolsulphonic acids formed, depends on the relative amounts of m-cresolsulphonic acids formed, the concn. of $H_2\mathrm{SO}_4$, and duration of heating. (II) and (III) are isolable from (I)-Pr $^B\mathrm{OH}$ and $H_2\mathrm{SO}_4$ -Na $_2\mathrm{S}_2\mathrm{O}_7$ at $60-70^\circ$. 3:1:4-OH·C $_8\mathrm{H}_3\mathrm{Me}\text{-SO}_3\mathrm{H}$ (A., 1942, II, 223) and Pr $^B\mathrm{OH}$ -100% $H_2\mathrm{SO}_4$ at $65-70^\circ$ for $3\cdot5$ hr. afford 10% of (IV), 13% of (III), and (V); $3:1:6\text{-OH·C}_6\mathrm{H}_3\mathrm{Me}\text{-SO}_3\mathrm{H}$ gives 25% of (II), 12% of (III), and (V), and the 4:6-disulphonic acid yields some (II), (III), and (IV); in all cases, neutral products are also formed. (I)-Pr $^B\mathrm{Cl-AlCl}_3$ -C $_2\mathrm{H}_4\mathrm{Cl}_2$ at -11° to -13° gives (II), (III), and a little 1:3:5 $C_eH_3\text{MePr}\beta\cdot\text{OH}$ (*m*-thymol) (VI), m.p. 51°; (VI) increases in amount as the temp. of reaction rises, and is the main product at room temp. The most stable $C_eH_3\text{MePr}\beta\cdot\text{OH}$ is (VI), which can be obtained from the other isomerides and AlCl_3 at 30°. (III) [and (VI)] is unchanged on heating at 350—400°, but in presence of ZnCl_2 -fuller's earth at the same temp., conversion into (VI) occurs.

Condensation of tert.-butyl chloride with m-cresol and of iso propyl chloride with m-4-xylenol. A. Tschitchibabin and C. Barkovsky $(Ann.\ Chim.,\ 1942,\ [xi],\ 17,\ 349-352).-Bu^{\gamma}Cl,\ m$ -cresol (I), and $AlCl_3$ in $C_3H_4Cl_2$ at -13° (7 hr.), then at room temp. (15 hr.), yield (probably) 5-tert.-butyl-m-cresol, m.p. 50°, b.p. $128^\circ/13$ mm.; with H_3PO_4 -Bu^{\gamma}OH, (I) yields 1:4:3- $C_6H_3MePr^{\beta}$ -OH, m.p. 23° (cf. A., 1936, 602), and a small amount of an isomeride, probably 1:6:3- $C_6H_3MeBu^{\gamma}$ -OH. m-4-Xylenol and $Pr^{\beta}Cl$ - $AlCl_3$ - $C_2H_4Cl_2$ at 9- 12° give (?)5-isopropyl-, m.p. 46- 47° , and a disopropyl-m-4-xylenol, m.p. 99° .

cycloHexyl sulphite.—See A., 1944, II, 318.

Nitration of p-diphenylyl acetate. S. E. Hazlet, D. A. Stauffer, L. C. Hensley, and H. O. Van Orden (J. Amer. Chem. Soc., 1944, 66, 1245—1247).—p-C₀H₄Ph·OAc (I) is more difficult to nitrate than p-C₀H₄Ph·OH. With conc. HNO₃ in AcOH at 100° (6 hr.) and then room temp. (2 days) it gives some 4:3:5:10H·C₀H₄(NO₂)₂·C₀H₄·NO₃-¢ (II), and other conditions usually give only (II). Adding (I) to HNO₃ (d·1·479) in AcOH at 100° gives (II) and a small amount of 4-nitro-4'-acetoxydiphenyl; m.p. 138—139°. Steric effects are responsible for these results and the difference from bromination. 3-Nitro-, m.p. 85—86°, 3:5-, m.p. 129—130°, and 3:4'-dinitro-, m.p. 137—138°, and 3:5:4'-trinitro-, m.p. 148—149°, -4-acetoxydiphenyl are obtained from the phenols by boiling Ac₂O-NaOAc. R. S. C.

Action of hydriodic acid on phenolic pinacols and pinacolins. Synthesis of estrogenic compounds. E. Adler, H. von Euler, and G. Gie (Arkiv Kemi, Min., Geol., 1944, 18, A. No. 1, 21 pp.).—[OH·C₆H₄·CMe(OH)]₂ is converted by red P and HI (d 1·96) at 135—140° in presence or absence of AcOH into PhOH, meso-βγ-4: 4'-dihydroxydiphenylbutane (I), m.p. 231—233° (diacetate, m.p. 138—140°; sparingly sol. Na salt), a compound (II), C₁₈H₁₈₍₁₈₎O₂, m.p. 174—175° (diacetate, m.p. 117—118·5°; dibenzoate, m.p. 151—161·5°), and r-βγ-4: 4'-dihydroxydiphenylbutane (III), m.p. 139—139·5° (also + CHCl₃) (dibenzoate, m.p. 144—145°). These compounds are also prepared similarly from γγ-di-p-hydroxyphenylbutan-β-one (IV), m.p. 130°, which therefore represents the first step in the change. The next step is not γγ-di-p-hydroxyphenylbutan-β-ol, m.p. 147—148° (obstinately retains solvent of crystallisation; dibenzoate, m.p. 163—164°), obtained by reducing (IV) with Na and C₈H₁₁·OH at 140°, since this does not give (I), (II), or (III) with P-HI. Reduction of (p-OH·C₆H₄·CMe.)₂ (V) gives mainly resin from which (I) can be isolated in very small amount. The smooth production of (III) from (V) and H₂-Pd in AcOH establishes the constitution of the former. [p-OH·C₆H₄·CEt(OH)]₂ with red P and HI affords PhOH, δ-p-hydroxyphenylhexan-γ-one, m.p. 67—68° [monobenzoate, m.p. 66—67°; oxime (? mixture of forms), m.p. 84—86°, softens at 74°], and a substance, C₁₈H₂₀₍₂₂₎O₂, m.p. 226—227° (slight decomp.) (diacetate, m.p. 102—104°, softens at 101°). The mechanism of the reactions is discussed (see also A., 1944, III, 810).

Rearrangement of isodialkylstilbæstrols to dialkylstilbæstrols.—See B., 1944, III, 216.

(A) Mechanism of the cleavage of ethers of the anisole type by Grignard mixtures. (B) Action of Grignard solutions on a-bromo-ketones. A. Schonberg and R. Moubasher (J.C.S., 1944, 462—463).—(A) PhOMe and related substances undergo fission with Et₂O-Mg halides, resembling that with Grignard mixtures: PhOMe + MgHal₂ → [MgHal·OPhMe]+Hal- → PhO·MgHal + MeHal. Et₂O-MgI₂ is more effective than Et₂O-MgBr₂ at 200—220°. PhO·CH₂·CH:CH₂ with Et₂O-MgBr₂ at 95° (in CO₂) similarly gives PhOH and CH₂:CH·CH₂Br.

(B) COPh·CPh,Br with MgI₂ (not MgBr₂) in boiling Et₂O, or MgBr₂ in warm PhOMe, gives COPh·CHPh₂. Analogous reactions with a-Br-ketones and Grignard mixtures is attributed to the MgHal₂ present.

P. T. C.

Reduction by dissolving metals. I. A. J. Birch (J.C.S., 1944, 431—436).—Mcthoxyalkyl- (A) and alkyl-benzenes with Na in liquid NH₂ in presence of MeOH, EtOH, or tert.- C_6H_{11} *OH as proton source undergo a 1:4-addition of 2 H [the products from (A) being converted into Δ^2 -cyclohexenones with dil. acid and determined with 2:4:1-(NO₂)₂C₆H₃*NH·NH₂ or NH₂*CO·NH·NH₂]. (A) also give ~10% of the phenol by demethylation. a-C₁₀H₇*ONa with tert.- C_5H_{11} *OH thus gives 5:8-dihydro-a-naphthol, m.p. 74°; Na alone gives little reduction. β -C₁₀H₇*ONa gives 2-keto-1:2:3:4-tetrahydronaphthalene, b.p. $140^\circ/13$ —14 mm.; in absence of alcohol some of an ar-dihydro-2-methoxynaphthalene, b.p. 145— $150^\circ/14$ mm., is obtained after methylation (Me₂SO₂) of the alkali-sol. product. a-C₁₀H₇*CO₂Na is readily reduced in absence of alcohol to 1:4-m.p. 75°, and, after treatment with 20% NaOH at 100° (bath), 3:4-dihydro-a-naphthoic acid, m.p. 112°.

Reducing m-C₆H₄Me·OMe (I) in presence of MeOH yields 1-methyl- Δ^1 -cyclohexene and 3-methyl- Δ^2 -cyclohexenone, b.p. 170—171°, characterised as 3-methyl- Δ^2 -cyclohexenone [semicarbazido-semicarbazone, m.p. 210° (decomp.); 2:4-dinitrophenylhydrazone, m.p. 173°]; in absence of MeOH ~50% of (I) is converted into m-C₈H₄Me·ONa. 6-Methoxy-1:2:3:4-tetrahydronaphthalene gives 2-keto- Δ^1 :9-octahydronaphthalene, but no ketonic product was obtained from the 6-methoxy-5-methyl derivative. Amongst other compounds similarly prepared, the following are new: 2:6-, m.p. 210—211°, 4:6-, m.p. 175°, and (?) 3:4-dimethyl- Δ^2 -cyclohexenone-semicarbazone, m.p. 193°; (?) 3:6-dimethyl- Δ^2 -cyclohexenone-semicarbazone, m.p. 214° (decomp.) and -2:4-dinitrophenyl-hydrazone, m.p. 124°; 6-methyl- Δ^2 -cyclohexenone-2:4-dinitrophenyl-hydrazone, m.p. 122—126°;5-keto- Δ^4 :9-tetrahydrohydrindene-semicarbazone, m.p. 228—230°, and -2:4-dinitrophenylhydrazone, m.p. 197—198°. With EtOH, reduction converts m-xylenc into 2:5-dihydro-m-xylenc (ozonolysis yielding CH₂Ac₂) [nitrosochloride, m.p. 123° (decomp.); m-trolpiperidine, m.p. 137°], p-xylene (nitrosochloride, m.p. 98°; nitropiperidine, m.p. 133°), tetrahydronaphthalene into 1:2:3:4:5:8-hexahydronaphthalene (m-trosochloride, m.p. 91°), and p-cymene into a product (25—30%) containing p-terpinene (m-trosochloride, m.p. 110°; nitrolpiperidine, m.p. 144°). A rule correlating reduction products with the position of substituents is stated.

Oxidation [of dienes].-See A., 1944, II, 317.

Photochemical properties of 1:4-dimethoxy-9:10-diphenylanthracene.—See A., 1944, I, 290.

Colchicine and related compounds. Synthesis of 2:3:4:5-, 2:3:4:6-, and 2:3:4:7-tetramethoxy-9-methylphenanthrene.
—See A., 1944, II, 314.

o-p'-Nitrobenzamidophenol: a correction. L. C. Raiford and N. N. Crounse (J. Amer. Chem. Soc., 1944, 66, 1240—1241).—o-NH₂·C₆H₄·OH and p-NO₂·C₆H₄·COCl (I) in dioxan—NPhMe₂ (cooling) give o-p'-nitrobenzamidophenol (II) (77%), m.p. 202—203°, converted by (I) in CHCl₃-C₅H₆N exothermally into o-p'-nitrobenzamidophenyl p-nitrobenzaate (III), m.p. 219°. The compound, m.p. 219—220°, supposed by Tingle et al. (A., 1907, i, 209) to be (II) was (III), but the mother-liquors obtained by their method contain some (II), m.p. 203—204°. o-NH₂·C₅H₄·OMe and (I) in C₅H₅N-dioxan give o-p'-nitrobenzamidoanisole, m.p. 145·5—146°, also obtained from (II) by NaOMe-MeI-MeOH.

Structure and properties of $azo-\beta$ -naphthol dyes. V. N. Ufimtzev (Compt. rend. Acad. Sci. U.R.S.S., 1943, 39, 351—353).—Absorption curves are compared for the azo- and hydrazone forms of 4:1-NPh.N-C₁₀H₈·OH and 1-p-sulphobenzeneazo- β -naphthol (Na and Na₂ salt, +2H₂O), and 1-m-sulphobenzeneazo-2-naphthol-3-carboxy-anilide (Na, +H₂O, and Na₂ salt, +1·5H₂O). The Na and Na₂ salts are formed in neutral aq. solution and EtOH-NaOEt, respectively; in dil. aq. or EtOH alkali the Na and Na₂ salts are in equilibrium. The difference in structure of o- and p-azonaphthol dyes is apparent from the shift of the absorption max. which occurs on salt formation and ionisation. With p-azo-dyes, the shift is towards the long-wave side; with o-azo-dyes it is to the opposite side in accordance with a chelate structure.

Bacterial chemotherapy. V. Synthesis of phenolic azo-dyes derived from sulphonamides. S. Rajagopalan (Proc. Indian Acad. Sci., 1944, 19, A, 351—356).—The following are prepared from p-NHR·SO₂·C_aH₄·N₂Cl and the appropriate phenol: mono- and dip-sulphamylbenzeneazoresorcinol; p-sulphamylbenzeneazo-thymon-phloroglucinol, -a-naphthol, and -3-phenanthrol; 2:4-dihydroxy-4'guanidinosulphonyl-, -4'-2''-pyridyl-, -4'-2''-thiazolyl-, and -4'-2'-thiazolinyl-sulphamylazobenzene; 8-hydroxy-5-p-2'-thiazolylsulphamylbenzeneazoquinoline. F. R. S.

Azo-compounds from o-nitrothiophenol and its methyl ether. C. Simons and L. G. Ratner $(J.C.S...1944, 421-422)...-o-NO_2\cdot C_6H_4\cdot Sn$ (I) with $n-C_6H_{11}\cdot ONa$ in $C_6H_{11}\cdot OH$ at 130° gives Na_2 azobenzene-2:2'-disulphinate (II), which gives a pink free acid [dimorphous (probably) Me_2 esters, m.p. 135° and 195° , with CH_2N_2]. Acid or alkaline reduction of (II) or the Me esters failed to give o- $NH_2\cdot C_6H_4\cdot SO_2H$. $o-NO_2\cdot C_6H_4\cdot SMe$ (III) with $C_5H_{11}\cdot ONa$ similarly gives no sulphone but 2:2'-di(methylthiol)-azobenzene, m.p. $153-155^\circ$, and -azoxybenzene, m.p. $78-80^\circ$ (separated by chromatographic analysis), with some $o-NH_2\cdot C_6H_4\cdot SMe$. Enclisation of the NO_2 group of (I) may occur; this cannot occur with (III).

Sulphones.-See B., 1944, III, 238.

Vinyl alcohols. XI. β-Phenyl-β-mesitylvinyl alcohol. R. C. Fuson, N. Rabjohn, and D. J. Byers. XII. Oxidation of an-diarylethylenes. R. C. Fuson, M. D. Armstrong, W. E. Wallace, and J. W. Kneisley (J. Amer. Chem. Soc., 1944, 66, 1272—1274, 1274—1276).—XI. β-Phenyl-β-mesitylvinyl alcohol (I) resembles CMes₂:CH·OH (Mes = mesityl here and below). α-Phenyl-β-mesitylethylene glycol (cf. Weinstock, Thesis, 1936), m.p. 144—146. is obtained from COPh·COMes by H₂-Cu ehromite in EtOH at 150°/2200 lb. or from COPh·COMes or COMes·CHPh·OH by H₂-PtO₂;

with H₂SO₄-AcOH it gives CH₂Mes·COPh but with boiling conc. HCl-AcOH yields (I), m.p. 114—115°. (I) is unchanged at 175°, in conc. aq. NH₃ at 100° gives di-β-phenyl-β-mesitylvinyl ether, m.p. 172—174°, is not affected by O₂ in Et₂O or light petroleum (23 hr.), P-I, or hot KOH-MeOH, but slowly decomposes in air; with MgMel it yields 0·87 CH₄. With HCl-EtOH or -MeOH it gives the Et, b.p. 169—170°/2 mm., or Me ether, m.p. 44—45°, b.p. 144—145°/0·1 mm. (oxidised by SeO₂ in boiling dioxan to COPh·COMes), respectively. In Ac₂O-C₅H₅N at room temp. (I) gives the acetate (II), m.p. 91—92°, with BzCl-C₅H₅N-CHCl₂ at the b.p. and then room temp. gives the benzoate, m.p. 117—117·5°, and with H₂-Raney Ni in EtOH at 150°/1700 lb. yields β-phenyl-β-mesitylethyl alcohol, b.p. 170—173°/4 mm. (p-nitrobenzoate, m.p. 124—125°). (I) is oxidised by O₃ in CHCl₃ to CHPhMes·CO₂H falso obtained similarly from (II)] and COPh·CHMes·OH, by KMnO₄-COMe₂ to a saturated compound, C₃₈H₃₄O₂, m.p. 152—153° (decomp.), by NaOCl to COPh·COMes, by H₂ 2-NaOH-MeOH-H₂O to COPhMes, and by CrO₃ to an oil and small amounts of a compound, (C₁₂H₁₂O)_x, m.p. 204—206° (decomp.), and COPh·COMes. (I) has absorption max. at 2·76 and 2·84 μ. due to the OH.

XII. O₃ converts some sterically hindered CAr₂:CH₂ into CAr₂:CH·OH. Thus, CPhMes:CH₂ gives (I), m.p. 114—115° (corr.), and small amounts of COPh-COMes and CHPhMes:CO₂H, and α-isodurylstilbene gives β-phenyl-β-isodurylvinyl alcohol (III) (20%), m.p. 121·5—122°, and phenylisodurylacetic acid (IV), m.p. 198—198·5°. With Ac₂O-C₅H₅N, (III) gives the acetate, m.p. 93—93·5°, with MgMcl gives 1 CH₄, and with H₂-Raney Ni in EtOH at 50°/1000 lb. gives β-phenyl-β-isodurylethyl alcohol, m.p. 72—73°. (IV) is also obtained from isodurene (V) by OH·CHPh·CO₂H and SnCl₄ or, by way of its Et ester, m.p. 57·5—58°, b.p. 188—189°/6 mm., by CHPhBr·CO₂H etc. O₃ converts ρ-C₆H₄Me·CMes:CH₂ into p-tolylmesitylacetic acid, m.p. 211—212°, but no vinyl alcohol is obtained. CH₂Ph·COCl-AlCl₃ converts (V) into isoduryl CH₂Ph hetone, m.p. 60·5—61° [and (?) di(phenylacetyl)isodurene, m.p. 137—137·6°], oxidised by SeO₂ and a little H₂O in boiling dioxan to syn- and anti-Ph isoduryl diketone, m.p. (VI) 65—66° (oxime, m.p. 87—87·5°) and 63—63·5° (oxime, m.p. 129·5—130°) or vice versa. isoDurylglyoxal, C₆H₆, and AlCl₃ at room temp. give 2:3:4:6-tetramethylbenzoin, m.p. 92—93° (dibenzoate, m.p. 133—135°, of the enediol), oxidised by I-NaOMe in boiling MeOH to (VI). H₂-Raney Ni in EtOH at 150—175°/2000 lb. reduces (VI) to a-phenyl-β-isodurylethylethene glycol, m.p. 131·5—132°, whence boiling, conc. HCl-AcOH yields (III).

Acyloxyaralkyl nitriles.—See B., 1944, II, 305.

Antibacterial action of derivatives and analogues of p-aminobenzoic acid. O. H. Johnson, D. E. Green, and R. Pauli (J. Biol. Chem., 1944, 153, 37—47).—See A., 1944, III, 830. The following are stated to be new (analyses given) but no details of prep. are recorded: 4-amino-2-acetamidobenzoic acid, m.p. 205°; p-acetamidomethylbenzoic acid, m.p. 191°; 2-p-aminobenzamidothiazole, m.p. 257—258°; p-aminobenzoyl-1-glutamic acid; 5-nitrothiophen-2-carboxylamide, m.p. 191°; 5-aminothiophen-2-carboxylamide hydrochloride; 5-acetamido-2-thienyl Me ketone, m.p. 279°; 2-aminothiazole-5-carboxylic acid, m.p. 191°. M.p. are corr. E. C. W.

Preparation and catalytic reduction of γ -nitro- β -butyl p-nitro-benzoate.—See A., 1944, II, 317.

Oxidation of aromatic amino-acids, tyrosine, tryptophan, and phenylalanine. B. B. Drake and C. V. Smythe (Arch. Biochem., 1944, 4, 255—263).—Phenylalanine is not oxidised by KMnO₄ or cerox (Ce^{III} NH₄ sulphate). Tryptophan shows no end-point with 4 equivs. of either oxidant. Tyrosine shows an end-point with 3 equivs. of cerox; the impure oxidation product was isolated, some of its properties are described, and an oxidation mechanism is suggested.

Mono-iodotyrosine. C. R. Harington and (Mrs.) R. V. Pitt Rivers (Biochem. J., 1944, 38, 320—321).—Diazotisation [Ba(NO₂)₂ in dil. H₂SO₄] of 3-amino-l-tyrosine and treatment with KI and Cubronze gives 3-iodo-l-tyrosine, m.p. 204—206° (decomp.), [a] $^{20}_{0}$ —44° in N-HCl. 3-Nitro-dl-tyrosine, m.p. 214—215° (decomp.) (prep. from at-tyrosine and dil. HNO₃ at <25°), is reduced to the NH₂-compound, m.p. 288° (decomp.), and converted into the I-derivative (+H₂O), m.p. 200—201° (decomp.), which appears to be identical with the compound obtained by Ludwig et al. (A., 1939, II, 369). That isolated by Herriott (A., 1942, III, 172) is not identical with either of the compounds.

In-vitro formation of thyroxine from di-iodotyrosine.—See A., 1944, III, 728.

Acetolysis of esters. S. G. Cohen (J. Amer. Chem. Soc., 1944, 66, 500—1397).—After boiling in AcOH-Ac₂O (35:2 by vol.) for 20 nr. 17% of BuYOBz was recovered, 87% of the remainder was isolated as BzOH but only 8.5% of BuYOAc was formed. After keeping for 2 days with a little p-C₆H₄Me·SO₃H (I) in Ac₂O-AcOH com temp. only 25% of BuYOBz is recovered, and of the remainder sign is obtained as BuYOAc, 61% as BzOH, and 6.5% as CMe₂·CH₂; acetolysis is rapid at the b.p. (76% in 2.5 hr.) but no BuYOAc is obtained. With (I) in boiling Ac₂O-AcOH for 24 hr. 69.7% of

PrβOBz is unchanged and of the remainder 57% appears as BzOH and 58% as PrβOAc; EtOBz and MeOBz are substantially (88%) unchanged under these conditions and no ROAc or BzOH is obtained. Pr^aCO₂Et is unchanged by KOAc in boiling Ac₂O-AcOH, but only 55% of CCl₃·CO₂Bu is recovered after similar treatment, 65% of the remainder being obtained as BuOAc. CCl₃·CO₂Bu is unaffected by (I) in ΛcOH at 115°. Reaction mechanisms are discussed.

Derivatives of dialkoxyphthalides. R. H. F. Manske and A. E. Ledingham (Canad. J. Res., 1944, 22. B. 115—124).—2:3:1-(OMe)₂C₈H₃·CO₂H, HCl, and 40% CH₂O yield 3:4-dimethoxy-6-chloromethylphthalide (CO=2) (I), m.p. 106°, di-(4:5-dimethoxy-3-carboxy-2-hydroxymethylbenzyl) ether dilactone, m.p. 213°, and a little meconine. Reduction (Zn-HCl-EtOH) of (I) affords 3:4-dimethoxy-6-methylphthalide, m.p. 127°, also prepared from 2:3:5:1-(OMe)₂C₆H₃Me·CO₂H, CH₃O, and HCl. 3:2:1-OMe·C₆H₃(OEt)·CO₂H with CH₂O-HCl yields 4-methoxy-3-ethoxy-6-chloromethylphthalide (II), m.p. 130°, hydrolysed (H₂O) to the 6-chloromethylphthalide (II), m.p. 130°, hydrolysed (H₂O) to the 4-methoxy-3-ethoxy-6-cyanomethylphthalide, b.p. 145°/2 mm., m.p. 132°, which is hydrolysed (NaOH) to 4-methoxy-3-ethoxy-6-carboxy-methylphthalide, m.p. 151°. Reduction of (II) with Zn-HCl-EtOH gives 4-methoxy-3-ethoxy-6-methylphthalide (III), m.p. 119°. 2:5:3:1-OH·C₆H₂Me(OMe)·CHO (IV), m.p. 77° (improved prep.; lit., an oil) (oxime, m.p. 165°), is methylated (Me₂SO₄-NaOH) to 2:3-dimethoxy-5-methylbenzaldehyde, m.p. 40° (oxime, m.p. 99°), which with CH₂(CO₂H)₂, C₅H₅N, and piperidine gives 2:3-dimethoxy-5-methylcinnamic acid, m.p. 188°, reduced (Na-Hg) to β-2:3-dimethoxy-5-methylphenylpropionic acid, m.p. 63°. 3-Methoxy-2-ethoxy-5-methylcinnamic acid, m.p. 168°, prepared by ethylation of (IV) followed by CH₂(CO₂H)₂, ct, is reduced (Na-Hg) to β-3-methoxy-2-ethoxy-5-methylbenzoic acid, m.p. 168°, which with CH₂O-HCl yields (III). Creosol acetate with AlCl₃ in PhNO₂ at 80° gives 3-hydroxy-4-methoxy-6-methylacetophenone, m.p. 120°. This yields ox-4-methoxy-6-methylacetophenone, m.p. 120°. This yields ox-4-methoxy-6-methylacetophenone, m.p. 120°. This yields ox-4-dimethoxy-6-methylacetophenone, m.p. 152°. If hydrolysed (NaOH) to 3:4:6:1-(OMe)₂C₆H₂Me·CO₂H. The following are also described; 3-methoxy-2-ethoxy-benylpropionic acid, m.p. 166°. 2-methoxy-2-methylphenylpropionic acid, m.p. 166°. 2-methoxy-3-

Iodinated acyltaurines.—See B., 1944, III, 237.

Sulphamide-amidines. I. p-Sulphamylbenzamidine and related compounds. R. Delaby and J.V. Harispe (Bull. Soc. chim., 1943, [v], 10, 580—584).—p-CN°C₈H₄·SO₂·NH₂ and HCl in abs. EtOH at 0° give the hydrochloride, m.p. ~174° (freshly prepared; loses HCl when kept and melts at 182—183°), of the imino Et ether, m.p. 157°, converted by NH₃ in abs. EtOH into p-sulphamylbenzamidine, m.p. 251° (hydrochloride, m.p. 242°).

A. T. P.

Theory of biogenesis of lichen depsides and depsidones. T. R. Seshadri ($Proc.\ Indian\ Acad.\ Sci.,\ 1944,\ 20.\ A,\ 1-14)$.—Lichen depsides and depsidones are considered to arise from a common source, 2:3:5:1-CHO·C₈H₂(OH)₂·CH₂·OH, which originates from aldol condensation between a hexose and a biose with elimination of H₂O. Oxidation and reduction lead to various modifications of this unit and increase in the length of the side-chain arises from condensation with simple sugars and reduction. Depsides are formed by the combination of two of these units. β -Orcinol derivatives are obtained by nuclear methylation by CH₂O and this reaction in general takes place prior to depside formation, though the other possibility is not altogether excluded as far as the left half of the mol. is concerned. Depsidones come last in the evolution; they are based on depsides and require oxidation or dehydrogenation involving C₍₅₎ which is para to the activating OH. Nuclear oxidation also occurs without leading to depsidone formation; either C₍₃₎ or C₍₅₎ is involved and meta-depsides result. Oxidation involving the left half is also possible and is represented by diploschistesic acid. The occurrence of orcinol and psoromic acid is attributed to decarboxylation occurring in the plant.

Preparation of homophthalyl and 4-aminohomophthalyl cyclic hydrazides. W. F. Whitmore and R. C. Cooney (J. Amer. Chem. Soc., 1944, 66, 1237—1240).—o-CO₂H·C₈H₄·CH₂·CŌ₂H (I), readily obtained in 58% yield from indene by $K_2\text{Cr}_2\text{O}_7$ – $H_2\text{SO}_4$ – $H_2\text{O}$ at the b.p., with AcCl or, better, Ac₂O gives the anhydride (II), which with $N_2\text{H}_4$, $H_2\text{O}$ in boiling EtOH vields cyclic homophthalhydrazide (III) (80%), m.p. 298—300°. (III) could not be obtained from the Me₂ ester or imide of (I) and the diacid chloride of (I) could not be prepared. (III) behaves as a monoenol towards aq. NaOH (phenolphthalein); it gives no Ac derivative but in boiling AcOH gives

N-aminohomophthalimide, m.p. 147—148° (N'-Ac derivative, m.p. 239—240°), which is also obtained from (II) by N₂H₄,H₂O in boiling AcOH. 2:4:1-CO₂H-C₆H₃(NO₂)·CH₂·CO₂H [obtained from (I) by fuming HNO₃ or, better, KNO₃-H₂SO₄] in boiling AcCl gives the anihydride. (70%), m.p. 154—155°, which with N₂H₄,H₂O in AcOH at 100° gives cyclic 4-nitrohomophthalhydrazide (70%), amorphous, m.p. 248—250° (decomp.), reduced by H₂-Raney Ni in aq. NaOH to cyclic 4-aminohomophthalhydrazide, m.p. 210—212° (decomp.; rapid heating) or decomp. ~200—320° (slow heating) (N⁴-Ac derivative, m.p. >320°). With H₂O₂-NaOH the cyclic hydrazides are much less luminescent than is phthalhydrazide. R. S. C.

Nitrones. III. Condensation of 2:4:6-trinitrotoluene with arylnitroso-compounds. I. Tanasescu and I. Nanu (Ber., 1942, 75, [B], 1287—1292; cf. A., 1939, II, 323).—Contrary to Radulescu et al. (A., 1939, II, 537), nitrones and not additive NH₂OH compounds are formed from 1:2:4:6-C₈H₂Me(NO₂)₃ (I) and o-C₈H₄Me·NO in boiling EtOH containing Na₂CO₃ or piperidine or in C₈H₄N containing I at 40—50° afford 2:4:6-trinitrophenyl-N-o-tolylnitrone, m.p. 147—148° (explosion), the constitution of which follows from its behaviour when heated, its partial hydrolysis by HClto 2:4:6:1-(NO₂)₃C₆H₂·CHO (III), and its isomerisation by AcCl in hot COMe₂ to 2:4:6-trinitrobenz-o-toluidide, m.p. 259° (decomp.) (Ac derivative, m.p. 200°), identical with the product obtained from 2:4:6:1-(NO₂)₃C₆H₂·COCl and o-toluidine in boiling C₆H₆. 2:4:6-Trinitrophenyl-N-m-tolylnitrone, m.p. 157° (explosion), obtained similarly, is isomerised to 2:4:6-trinitrobenz-m-toluidide, m.p. 209·5° (Ac derivative, m.p. 185°). Similarly 2:4:6-trinitrophenyl-N-p-tolylnitrone, m.p. 151° (explosion), is isomerised to 2:4:6-trinitrobenz-toluidide, m.p. 217° (Ac derivative, m.p. 210°). With NHPh·NH₂ in acid solution all these nitrones afford 2:4:6:1-(NO₂)₃C₆H₂·CH:N-NHPh in small yield. Hydrolysis is accompanied by a marked phenolic odour. (I) and (II) gives the somewhat unstable 2:4:6-trinitrophenyl-N-p-dimethylaminophenylnitrone, characterised by its tendency towards explosion and hydrolysis to (III) and p-NH₂·C₆H₄·NMe₂.

Synthesis of aromatic amino-aldehydes and amino-ketones. W. Hao-Tsing (J. Amer. Chem. Soc., 1944, 66, 1421—1422).—When NH₀Ph is gently heated with HCN-HCl-Et₂O, a brown oil is pptd., which, when further heated at 250—300° and then boiled in aq. KOH, gives p-NH₂·C₀H₄·CHO. NH₂Ph with MeCN-HCl-Et₂O similarly gives p-NH₂·C₀H₄·COMe. Reagents and conditions must be anhyd. The oily intermediates are probably NH:CR·NHPh, rearranged by heat to p-NH₂·C₀H₄·CR:NH, which is hydrolysed by the KOH. The reaction may be general. R. S. C.

Structure of o-hydroxybenzaldazines. H. von Euler, E. Adler, and J. Ettlinger (Arhiv Kemi, Min., Geol., 1944, 17, A. No. 16, 15 pp.).—1:4:2:6-OH-C₀H₂Me(CHO)₂ (I) and COEt-NH·NH₂ or (CO·NH·NH₂)₂ in dil. EtOH give respectively hydroxyuvitinaldehydedi(propionylhydrazone) (II), m.p. 239—241° (also +2AcOH), and amorphous polyhydroxyuvitinaldehydedi(oxalylhydrazone) (III), no definite m.p. (II) is converted readily by boiling dil. mineral acid into hydroxyuvitinaldazine (IV), m.p. 278—280°, best obtained by the gradual addition of N₂H₄,2HCl in 50% EtOH to (I) in the same solvent. Under similar conditions (III) affords polyhydroxyuvitinaldazine (V), decomp. >360°, also obtained from (I) and N₂H₄,H₂O in EtOH or, preferably, in presence of AcOH; it has pronounced indicator properties. (IV) is sparingly sol. in dil. NaOH, freely in KOH; it cannot be methylated by CH₂N₂ or KOH-Me₂SO₄ and does not give an Ac derivative. The stability of (IV) and (V) towards dil. mineral acids suggests the possibility of a quinonoid structure, which, however, is less probable for (V). This hypothesis is strengthened by the less intense colour of methoxyuvitinaldazine (VI), m.p. 234—235°, and the amorphous polymethoxyuvitinaldazine for osme extent by the hydrochloride of osmethoxybenzaldazine but not by those of (IV), (VI), (VII), (VII), salicylaldazine, and benzaldazine but not by those of (IV), (VI), (VII), salicylaldazine, and benzaldazine but not by those of cid shows no difference in stability between hydroxy- and methoxy-aldazines. Since only the aldazine structure is possible for the latter compounds there appears no reason to assume a peculiar (quinoid) constitution for the former subs

2:3:5:8-Tetramethoxy-6:7-dimethyl-1-naphthaldehyde. R. Adams and Z. W. Wicks (J. Amer. Chem. Soc., 1944, 66, 1315—1316).—Attempts to prepare OH-naphthaldehydes having the properties of gossypol failed. Pure o-xyloquinone and $[CH_2:C(OMe)]_2$ at 140° give 6:7-dimethoxy-2:3-dimethyl-1:4-naphthaquinone (I) (77—82.5%), m.p. 248—249° (lit. 241—242°), which by hydrogen-

ation ($\rm H_2$ -Raney Ni; MeOH; 50°/1500 lb.) and thereafter immediate methylation ($\rm Me_2SO_4$ -KOH- $\rm H_2O$ -Na $_2S_2O_4$) yields 1:4:6:7-tetramethoxy-2:3-dimethylnaphthalene (73%), m.p. 151—152°. With HCO·NPhMe and POCl $_3$ at the b.p. this gives 2:3:5:8-tetramethoxy-6:7-dimethyl-1-naphthaldehyde (67%), m.p. 135—136°, which yields normally a phenylhydrazone, m.p. 156—157°, and oxime, m.p. 155—156° (with boiling $\rm Ac_2O$ yields 2:3:5:8-tetramethoxy-6:7-dimethyl-1-naphthonitrile, m.p. 122·5—123°). Reductive acetylation of (I) gives 1:4-diacetoxy-6:7-dimethoxy-2:3-dimethylnaphthalene (91%), m.p. 180·5—181°. No cryst. phenols could be obtained from the OMe-products. M.p. are corr.

Cinnamylideneacetone tetrabromide. P. Duquénois and Z. Sezer (Rev. Fac. Sci. Islanbul, 1943, 8, A, 158—159).—
CHPh:CH:CH:COMe and Br in Et₂O give a red oil from which cinnamylideneacetone tetrabromide, m.p. 173.5° (slight decomp.) (cf. Diehl et al., A., 1885, 1221), is isolated by repeated crystallisation from EtOH.

H. W.

Synthesis of model substances for the ligninsulphonic acids. Synthesis of α-phenylacetone-α-sulphonic acid and propioveratrone-α-sulphonic acid. A. von Wacek, K. Kratzl, and A. von Bezard (Ber., 1942, 75, [B], 1348—1357).—CHPhAcBr, from CH₂PhAc and Br in anhyd. Et₂O, is converted by KCNS in EtOH into α-thiocyano-α-phenylacetone (I), m.p. 51—52°, and by KSAc and KSBz in EtOH into α-acetylthiol- (II), b.p. 157—158°/12 mm., m.p. 31°, and α-benzoylthiol-, m.p. 58°, -α-phenylacetone, respectively. (II) is smoothly hydrolysed by alkali (but not by acid) to α-thiol-α-phenylacetone (III), m.p. 108—110° (Hg derivative, m.p. 124—126°). Chlorination of an aq. suspension of (I) gives, in proportion varying with the experimental conditions, CHPhAcCl, unchanged material, and an α-thiocyano-α-chlorophenylacetone, m.p. 56·5°. Similar treatment of (II) affords CHPhAcCl and somewhat impure (?) αα-dichloro-α-phenylacetone, m.p. 120—125° (oxidation gives BzOH). Oxidation of (III) with NaOCl in C₆H₆-Et₂O-H₂O gives the disulphide, m.p. 108°, and a residue converted into an unidentified benzylthiuronium salt, m.p. 164°. Similar treatment of (II) appears to give no disulphide; mixtures of benzylthiuronium salts which cannot be separated are obtained. A well-stirred mixture of CHPhAcBr and boiling aq. Na₂SO₃ gives Na a-phenylacetone-α-sulphonate, m.p. 204—206°, isolated through the benzylthiuronium salt, m.p. 140—141°. Similarly bromopropioveratrone affords Na propioveratrone-α-sulphonate (corresponding benzylthiuronium salt, m.p. 153°).

New reagent for primary and secondary amines. A. J. Birch (J.C.S., 1944, 314-315).—cycloHexene nitrosochloride warmed with C_5H_5N gives $1-(2'-oximinocyclohexyl)pyridinium chloride <math>(+H_10)$, m.p. 125° , which when heated in 10% Na $_2$ CO $_3$ with the hydrochloride of the base gives 2-oximinocyclohexyl derivatives (m.p. in parentheses) of the following: NHMc. (120°) , NH $_2$ Pr a (72°) , NH $_3$ Bu a (81°) , NH $_2$ Bu b (73°) , NH $_2$ Bu y (91°) , NHEt $_2$ (63°) , morpholine (118°) , and n-C $_7$ H $_{15}$ NH $_2$ (66°) . The derivative from piperidine has new m.p. 116° (lit. 119°). cycloHexylamine gives 2-oximinodicyclohexylamine, m.p. 145° . E. W. W.

Synthesis of possible degradation products of metathebainone. II. H. L. Holmes and L. W. Trevoy (Canad. J. Res., 1944, 22, B, 109—114; cf. A., 1944, 11, 281).—(CH₂·CO)₂O and veratrole yield (method: Fieser et al., A., 1937, II, 20) β -3: 4-dimethoxy- (I) and some β -4-hydroxy-3-methoxy-benzoylpropionic acid (II), m.p. 131—131·5°, reduced (Clemmensen) to γ -4-hydroxy-3-methoxy-phenylbutyric acid, m.p. 114—116°. (II) with KOH-Et₂SO₄ gives β -3-methoxy-4-ethoxy-benzoylpropionic acid, m.p. 139—140° (lit. 136—137°), the orientation of which is proved by oxidation (KMnO₄) of the Et ester to 3:4:1-OMe·C₅H₃(OEt)·CO₂H, also prepared from vanillin. Prepof (I) is modified to give 83%. M.p. are corr. J. D. R.

Stereochemistry of cyclanes. XII. Polybenzylcyclohexanones; isolation of four o-dibenzylcyclohexanones of which three are almost certainly 2:6-derivatives. R. Cornubert, P. Anziani, M. Andre, M. de Demo, and G. Morelle (Bull. Soc. chim., 1943, [v], 10, 561–565; cf. A., 1939, II, 164).—The 2:6-dibenzylcyclohexanone (Il. new m.p. 105° (oxime, m.p. 123°; semicarbazone, m.p. 164—165°) (cf. A., 1939, II, 324), prepared by benzylation of 2-benzylcyclohexanone, could not be obtained by hydrogenating dibenzylcyclonexanone, the latter method affords isomerides, m.p. 122° and 55°, of (I) (cf. A., 1934, 279), convertible by CH. PhCl-NaNH₂-Et₂0 into 2:2:6-tribenzyl-, m.p. 61—62°, and 2:2:6:6-tetrabenzylcyclohexanone (II), m.p. 174°. (II) is also obtained by dibenzylating (I) or the 2:2-isomeride, m.p. 69—70° (cf. A., 1932, 161). (I) is not isomerised by HCl. With Na-EtOH, (I) yields probably an impure sec. alcohol, but with H₂-PtO₂-Et₂O it gives probably a 2:6-dihexahydrobenzylcyclohexanol (phenylurethane, m.p. 132—134°).

Synthesis of compounds related to santonin. (Miss) K. D. Paranjape, N. L. Phalnikar, B. V. Bhide, and K. S. Nargund (*Proc. Indian Acad. Sci.*, 1944, 19, A, 381—384).—α-(2-Hydroxy-4-formyl-3-keto-yelo-hexyl) propiolactone, COMe₂, and EtOH-NaOEt give α-1-hydroxy-i-keto-Δ⁵·⁸-hexahydro-2-naphthylpropiolactone, m.p. 91°; COMeEt similarly affords the corresponding 8-Me derivative, m.p. 111. α-(2-Hydroxy-4-formyl-3-keto-4-methylcyclohexyl) propiolactone

condenses similarly with COMe $_2$ to a-1-hydroxy-7-heto-10-methyl- Δ^5 :*hexahydro-2-naphthylpropiolactone, m.p. 141° (semicarbazone, m.p. 201°). F. R. S.

3:4-Benzfluorenones. I. Effect of groups on their formation and their fission with alkali. F. G. Baddar and M. Gindy (J.C.S., 1944, 450—452).—Factors governing the point of cleavage of 3:4-benzfluorenones and mode of cyclisation of 1-phenylnaphthalene-2'-carboxylic acids are of polar, and not steric, origin. 4:2-C₁₀H₆I·OMe (I) and o-C₆H₄I·CO₂Me with Cu-bronze at 200—210° give 3-methoxy-1-phenylnaphthalene-2'-carboxylic acid, m.p. 191—192°, cyclised (P₂O₅-C₆H₆) to 1-methoxy-3:4-benzfluorenone, m.p. 148—150°, and 2-methoxymesobenzanthrone (little). 3:1:2-C₆H₃I(CO₂Et)₂ with 1-C₁₀H₇I and Cu-bronze at 210° (bath) gives 1-phenylnaphthalene-2':3'-dicarboxylic acid, m.p. 178—179° (slow), 1°C-193° (rapid heating) [Me₂ ester, m.p. 133—134°; anhydride (II), m.p. 179—180°]. Cyclisation of (II) (CS₂-AlCl₃) yields 3:4-benzfluorenone-8-carboxylic acid (III), m.p. 262—263° (litt. 254—255°) (Me ester, m.p. 173·5—174·5°). 1-Phenylnaphthalene-2:4'-dicarboxylic acid (IV), m.p. 265—266° (from p-C₆H₄I·CO₂Me and 1:2-C₁₀H₆Br·CO₂Me), gives on ring-closure (chloride with AlCl₃-CS₂) only 3:4-benzfluorenone-7-carboxylic acid (V), m.p. 323—324°. (III) with KOH at 225—230° gives 1-phenylnaphthalene-2:3'-dicarboxylic acid, m.p. 255—256°, whilst (V) gives a mixture of (IV) and (probably) 1-phenylnaphthalene-2':4'-dicarboxylic acid. (IV) sobtained (diazo-method) in poor yield from 4:2-NH₂·C₁₀H₆·OMe (Ac derivative, m.p. 179°); 2-hydroxy-1:4-naphthaquinone (which may arise from 1:4-C₁₀H₆(OH)₂] is isolable from the many byproducts. Et 3-p-toluenesulphonamidophthalate has m.p. 147—148°.

2-Methyl-2-phytyl-2:3-dihydro-1:4-naphthaquinone.—See B., 1944, III, 218.

Hydrolysis of quinoneoximes. W. T. Sumerford and D. N. Dalton ($J.\ Amer.\ Chem.\ Soc.$, 1944, 66, 1330—1331).—Hydrolysis of quinone mono-oximes by Cu₂O (1 mol.) in boiling HCl-COMe₂-H₂O-methylcellosolve or in HCl-COMe₂-H₂O at room temp. gives good yields (55—92% in 9 out of 11 examples) of the parent quinone. The methods of Karrer et al. (A., 1939, II, 335) and Tseng et al. (A., 1934, 1005; 1944, II, 166) are less satisfactory. R. S. C.

Molecular compounds of the quinhydrone type in solution. Michaelis and S. Granick (J. Amer. Chem. Soc., 1944, 66, 1023—1030).—The absorption of light (λ 300—550 m μ .) by solutions containing mixtures of a quinone (Q) with a benzenoid substance (B) that solutions is a substance (B) that solutions are substance (B) that solutions are substance (B) that solutions are substantially substanti that combine to form a compound of the quinhydrone type is due almost entirely to the compound, and has been used to detect and obtain a relative measure of the extent of such combination with various pairs of components. It is assumed that the concn. m of the compound is always small compared with that of the components, so that the association const. k=m/[Q][B] can be taken to refer to the initial concus. of Q and B. The measured optical absorption $[(I_0 - I)/I_0]$, after correction (often negligible) for the components, is divided by the known val. of [Q][B] to obtain ϵ_{st} , which is related to the mol. extinction coeff. $\varepsilon_{\text{mol.}}$ for the compound by $\varepsilon_{\text{st}} = k\varepsilon_{\text{mol.}}$; the vals. of ε_{nt} are then ∞ m, although the abs. val. of m is not known. The following pairs of substances were studied in EtOH and, sometimes, in C₆H₆, light petroleum, or 0.05N-HCl: (a) p-O:C₆H₄:O (I)-quinol, (I)-resorcinol, p-O:C₆Cl₄:O-C₆Me₆, duroquinone-duroquinol, (I)-resorcinol, b-O:C₆Cl₄:O-C₆Me₈, duroquinone-duroquinol; (b) (I)-PhOH, (I)-p-OH·C₆H₄·OMc; (c) (I)-s-C₆H₃(OH)₃; (d) (I)-PhOR, (I)-p-C₆H₄(OR)₂ (R = Me, Et). Combination occurs in all the mixtures, and is α both [Q] and [B]; hence the compound formed is in every case QB. Since the substances in groups (a), (b) and (c) ferrolled quinol, (I)-resorcinol, quinol; (b) (I)-PhOH, (b), and (c) form solid compounds QB, QB₂, and Q₂B respectively, whilst those in (d) form no solid compounds, it appears that the structure of the compounds formed in solution differs from that of the solids. H linkings are not necessary, and the affinity of (I) for a phenol is approx. the same as for its ethers. It is suggested that combination in solution involves a planar superposition of the rings. F. L. U.

Naphthaquinone 2:3-oxides.—See B., 1944, II, 305.

Dithymoqninone. L. I. Smith and R. W. H. Tess (J. Amer. Chem. Soc., 1944, 66, 1323—1325).—Dithymoquinone (prep. described) is probably (I). It is unchanged by H₂SO₄ (little) in Ac₂O, by AcCl or PCl₃ at room temp, H₂SO₄-MeOH, or FeCl₃-EtOH at the b.p. It is resinified by HBr-AcOH and converted by Na₂S₂O₄ slowly into thymoquinol. It has no characteristic absorption. R. S. C.

IV.—STEROLS AND STEROID SAPOGENINS.

Steroids and specificity of the Pettenkofer reaction. I. Qualitative studies. G. W. Kerr and W. M. Hoehn (Arch. Biochem., 1944, "5—158).—The Schmidt modification (A., 1942, III, 755) of Pettenkofer's reaction was applied to 43 steroids; 12 give a positive result. All steroids with OH at C(7), or a group easily converted into

OH, give a positive result as well as Δ^3 -, Δ^5 -, and Δ^8 -monocholenic acids and their esters. a β -Unsaturated ketones gave a negative result. Dehydro-trans-androsterone gave a positive result. E. R. S.

Preparation and properties of ergosteryl iodide. A. Jendrassik (Biochem. Z., 1941—1942, 311, 402—407).—Ergosterol with I powder in a little CHCl₃ at room temp. gives a stable iodide, $C_{28}H_{44}OI_2$ (+ H_2O), m.p. 92° (absorption max. at 370 and 298 m μ .), which has no antirachitic power (daily dose 2 μ g.) even after irradiation, and is converted by Na₂S-CHCl₃-0·ln-HCl (little) into an I-free compound, m.p. 127° [not pptd. by digitonin; absorption max. at 275 m μ .; no antirachitic power (daily dose 2 μ g.) even after irradiation].

Bile acid derivatives.—See B., 1944, III, 216.

V.—TERPENES AND TRITERPENOID SAPOGENINS.

Halogen derivatives of 1:8-cineole. R. Delaby and A. Billuart (Bull. Soc. chim., 1943, [v], 10, 567—573).—Cineole (I) is chlorinated by Cl₂-CCl₄-aq. CaCO₃ in sunlight or artificial light (cf. Gandini, A., 1933, 830; 1937, II, 295). Raman spectra of resulting fractions, b.p. (a) 118—121°, (b) 121—123°, (c) 123—125°, (d) 125—127°, and (e) 127—129°, all at 50 mm., are examined; (a) and (b) and some of (c) probably contain cis- and trans-2-chlorocineole, and (d) and (e) the 3-isomeride, but no definite conclusions are reached. Dehalogenation is difficult, but prolonged boiling (90 hr.) with AcOH and AgOAc or KOAc gives some OAc-derivative, b.p. 118—123°/50 mm., hydrolysed by boiling NaOH-MeOH to cineolic alcohol, b.p. 108—111°/9 mm. (allophanate, m.p. 169°; two phenylurethanes, m.p. 140° and 188°, corresponding probably to the cis- and trans-2-bronocineole, b.p. 93—95°/4 mm. Oxidation of l-pinene or d-apinene by BzO₂H-CHCl₃ gives the respective oxides. Similarly prepared is aβ-oxidoheptan-y-ol, b.p. 86—89°/10 mm., m.p. 53·5°. Similarly, vinylisobutylcarbinol (allophanate, m.p. 147·5°) affords the oxide, b.p. 93—97°/20 mm., hydrolysed to isobutylglycerol, b.p. 173—174°/16 mm.

Rearrangement of santenonequinone. R. N. Chakravarti (Current Sci., 1944, 13, 158).—dl-Santenonequinone with conc. H_2SO_4 gives 2:3-dimethylcyclohexan-1-one-4-carboxylic acid (I), m.p. 132° (semicarbazone, m.p. 191°), which is oxidised (HNO₃) to a-methylbutane-aβ8-tricarboxylic acid, m.p. 181— 182° , also obtained by condensing Cl·[CH₂]₂·CO₂Et with CO₂Et-CHMe·CH(CN)·CO₂Et followed by hydrolysis. Et aβ-dimethylacrylate with CN·CH₂·CO₂Et and NaOEt affords a Na salt, which with Cl·[CH₂]₂·COEt yields Et y-cyano-aβ-dimethylfentane-aye-tricarboxylate, b.p. 200— 204° /6 mm. This on hydrolysis and subsequent esterification gives Et aβ-dimethylpentane-aye-tricarboxylate, b.p. 178° /7 mm., which is cyclised (Na) to Et 2:3-dimethylcyclohexan-1-one-4:6-dicarboxylate, b.p. 170° /8 mm., hydrolysed to (I).

Sesquiterpenes. LXIV. Addition of acetylenedicarboxylic ester, azodicarboxylic ester, and maleic anhydride to caryophyllene. P. A. Plattner and L. Werner [with, in part, N. Clauson-Kaas] (Helv. Chim. Acta, 1944, 27, 1010—1016).—Adducts of the type A (R - N(CO₂Et)·NH·CO₂Et, ·C(CO₂Me):CH·CO₂Me, or ·CH<

described. Caryophyllene B (I) and (*C·CO₂Me)₂ at 180° according to experimental conditions give varying amounts of polymeric compounds, possibly owing to the non-homogeneity of (I). A mixture of stereoisomerides is probably present in the

or stereoisomerides is probably present in the monomeric condensation product, which gives the dicarboxylic acid (II), C₁₉H₂₆O₄, m.p. 122—123°, [a] +77·2° in CHCl₃, in only 25% yield. (II) affords a non-cryst. Me₂ ester, b.p. 180—190°/1 mm., [a]_D +79·3° in CHCl₃, which gives a yellow colour with C(NO₂)₄. (II) is hydrogenated to a non-cryst. H₆-acid, the Me₂ ester, b.p. ~180°/1 mm., a_D —11°, of which is converted by Mg, MeI, and NH₂Ph into the dianilide, m.p. 228° (vac.), [a]_D +39° in COMe₂, identical with the trans-tetrahydrodicarboxyanilide obtained from (I) and (CH·CO)₂O. The adducts from (I) and (:C·CO₂Me)₂ or (:CH·CO)₂O therefore have the same C skeleton and must be produced by a similar reaction scheme. (I) and (:N·CO₂Et)₂ react rapidly at room temp. but only ~15% of the product could be isolated as the cryst. adduct, C₂₁H₃₄O₄N₂, m.p. 139°, [a]_D +39° in CHCl₃; this evolves 2 CO₂ when hydrolysed by acid but does not yield cryst. products. The behaviour of (:N·CO₂Et)₂ indicates the presence of C:C·C in (I). Unknown catalytic influences appear to affect the reaction between (I) and (:CH·CO)₂O; the yield of additive product is increased by prolongation of the change and by use of an increased proportion of anhydride, but the quantities of polymeride are also thereby increased. Unchanged (I) resembles the original material in d and n but [a]_D is appreciably lower. Feebly dextrorotatory fractions may be obtained from it by distillation. M.p. are corr.

Triterpenes, LXXXVIII. Friedelin and cerin. L. Ruzicka, O. Jeger, and P. Ringnes (Helv. Chim. Acta, 1944, 27, 972—988; cf. Drake, A., 1936, 1386).—The presence of the group ·CH.·CH.·CO·CH·CH< in friedelin (I) and cerin (II) which is now established shows that the structure of the terminal ring in these established shows that the structure of the terminal ring in these compounds differs from that of the oleanolic scries. The isolation of (I), m.p. $248-250^\circ$ (open capillary), $264-265^\circ$ (vac.), $\lceil a \rceil_D - 27.8^\circ$, and of (II), m.p. $250-254^\circ$ (open capillary), $\lceil a \rceil_D - 41.2^\circ$, from cork is described. *enol*Friedelin benzoate (III) has m.p. $246-249^\circ$ (open capillary), $265-266^\circ$ (high vac.), $\lceil a \rceil_D + 64.1^\circ$. (I) is reduced by N₂H₄,H₂O-NaOEt in EtOH at $200-220^\circ$ to friedelan, m.p. $243-244^\circ$, $\lceil a \rceil_D + 41.8^\circ$, saturated towards $C(NO_2)_4$ and identical with the compound obtained by Clemmensen's method. Under 243—244°, $[a]_D$ +41·8°, saturated towards $C(NO_2)_4$ and identical with the compound obtained by Clemmensen's method. Under different conditions, oxidation of (I) by CrO₃ in AcOH gives varied proportions of friedelonic acid (IV) (Me ester, m.p. 153—154·5°, $[a]_D$ +11·8°) and friedelindicarboxylic acid (V), $C_{30}H_{50}O_4$, m.p. 288° (decomp.), $[a]_D$ +21·4° [Me₂ ester, m.p. 174—176°, $[a]_D$ +9·8°; anhydride (VI), m.p. 264—265° (decomp.), $[a]_D$ +74·6°]. (II) is oxidised by CrO₃ (=6 O) in AcOH-CCl₄ at room temp. to (V) and enolfriedelandione, $C_{30}H_{48}O_2$, m.p. 265—267°, $[a]_D$ +18·5° (acetate, m.p. 283—285°, $[a]_D$ +3°; benzoate, m.p. 301—303°, $[a]_D$ +25·7°; autoxyaline derivative, m.p. 244—246°), which gives a dark brown quinoxaline derivative, m.p. 244-246°), which gives a dark brown colour with FeCl₃ and a feebly positive test with $C(NO_2)_4$. (III) is oxidised by CrO_3 in AcOH at 100° to (IV) and enolfriedelandione benzoate, m.p. $302-304^\circ$ (decomp.), $[a]_D + 24\cdot 1^\circ$. Thermal decomp. of (VI) leads to an amorphous norfriedelanone (VII) and a fraction, m.p. $231-232^\circ$, $[a]_D -83\cdot 7^\circ$, also obtained by subliming (VI) at 210° /high vac., showing that CO of (I) lies in a terminal ring of the skeletor. of the skeleton. SeO₂ in boiling AcOH oxidises (VII) to norfriedelenone, C₂₀H₄₆O, m.p. 260—261°, [a]_D —108°, reduced (Clemmensen) to (VII), whereas in dioxan at 200° the oxidation product is norfriedelenedione (VIII), $C_{20}H_{44}O_2$, m.p. $269-270^\circ$, $[a]_D+241^\circ$ (quinoxaline derivative, m.p. $240-240.5^\circ$), which is saturated towards $C(NO_2)_4$, does not give a colour with $FeCl_3$, cannot be acetylated, and is greatly decomposed by KOH-MeOH. (III) is oxidised by SeO₂ in dioxan at 170° to (VIII), also obtained by the similar oxidation of enolfriedelandione benzoate. Pb(OAc)₄ or H₂O at 80° oxidises (VIII) to a compound, C₂₉H₄₄O₃, m.p. 236·5—237°, [a]_D -40·9°, which does not give a colour reaction with C(NO₂)₄ or FeCl₃ and is unaffected by 5% KOH-EtOH at 100°. (VIII) is transformed by Br in AcOH into nordibromofriedelenone, m.p. 197° (decomp.), [a]_D +63.6°, transformed by boiling KOH-MeOH to enolnor-friedelenedione, m.p. 260-261°, [a]_D +179.5° [acetate, m.p. \sim 256° (decomp.), [a]_D +208°]. M.p. arc corr. [a]_D are in CHCl₃. H. W.

Saponins and sapogenins. XXV. Norechino- and isonorechinocystenedione, J. F. Carson, D. B. Cosulich, and C. R. Noller. cystenedione. J. F. Carson, D. B. Cosulich, and C. R. Noller. XXVI. Conversion of echinocystic acid into oleanolic acid. D. Frazier and C. R. Noller. XXVII. Structure of triterpenoids. C. R. Noller (J. Amer. Chem. Soc., 1944, 66, 1265—1267, 1267—1268, 1269—1271; cf. A., 1944, II, 343).—XXV. isoNorechinocystenedione (I) is unchanged by hot $Ac_2O-C_5H_5N$ and, except for a little tar-formation, by MeI-Ag₂O, but with boiling $Ac_2O-KOAc$ or HCI-MeOH or -EtOH gives norechinocystenedione (II), m.p. $203-205^{\circ}$, $[a]_D^{29}-94\cdot2^{\circ}$, $[a]_{2460}^{29}-113^{\circ}$ in dioxan [dioxime, m.p. $246-249^{\circ}$ (decomp.; bath preheated at 225°), $[a]_D^{23}-127^{\circ}$ to -128° , $[a]_{3460}-136^{\circ}$ in dioxan]. With BuSH-HCl (but not either alone) in hot EtOH. (I) gives a conjugated, isomeric dione (III), m.p. 236in hot EtOH, (I) gives a conjugated, isomeric dione (III), m.p. 236—242°, $[a]_5^{20} + 45 \cdot 3^\circ$, $[a]_{540}^{20} + 56 \cdot 1^\circ$ in CHCl₃ $[oxime, m.p. 269 - 271^\circ]$ (decomp.; bath preheated at 200°), $[a]_5^{20} - 23 \cdot 4^\circ$ in dioxan], having absorption max. at 252 m μ . (log ϵ 4·10). Purification of (II) gives a product having a single absorption max. at 294 m μ . (log ϵ 1·98) (cf. A., 1939, II, 517); the impurity is not (III), since prolonged treatment of (II) with alkali yields only a small amount of (I). The change, (I) \leftarrow (II), is thus reversible.

XXVI. Me echinocystate acetate, in which the OH β to the CO₂H is free, with MeSO₂Cl-C₅H₅N gives Me echinocystate acetate methanesulphonate (**W**), decomp. ~165°, which with NaI in COMe₂ at 100° gives Me anhydroechinocystate acetate (\mathbf{V}), m.p. 192—193°, [a]_D +19·5°, [a]₅₄₆₀ +22·2° in CHCl₃, hydrolysed by hot, conc. HCl–MeOH to Me anhydroechinocystate (\mathbf{VI}), m.p. 177°, resolidifies, remelts at 192—193°, or, after drying at 110°, m.p. 192—193°, [a]³³ +18·3°, also obtained directly from (\mathbf{IV}) by MeOH at 140°. Hydrogenation (PtO₂; AcOH) of (VI) or (V) gives Me oleanolate, m.p. $199-200^{\circ}$, $[a]_{5}^{15}+73\cdot2^{\circ}$, $[a]_{5}^{24}\epsilon_{6}+86\cdot7^{\circ}$ in CHCl₃, and the acetate thereof, m.p. $219-220^{\circ}$, $[a]_{5}^{24}+69\cdot7^{\circ}$, $[a]_{460}^{24}+84\cdot7^{\circ}$ in CHCl₃, respectively. Thus echinocystic acid (VII) differs from oleanolic acid only in containing an OH B to the CO, H.

XXVII. Current formulæ for the triterpenoids of the β-amyrin

series are inadequate for (II), (VII), and various absorption spectra. Absorption max. at 258, 248, and 241 m μ . (log ϵ 4·31, 4·47, and 4·42, respectively) are recorded for the Me keto-ester, $C_{31}H_{46}O_{3}$, derived from (VII).

VI.—HETEROCYCLIC.

Crossed Cannizzaro reactions—benzaldehyde and furfuraldehyde. S. E. Hazlet and R. B. Callison (J. Amer. Chem. Soc., 1944, 66, 1248—1250).—Shaking 1 mol. each of PhCHO and furfuraldehyde

with aq. NaOH gives a ~5:3 mixture of CH2PhOH and furfuryl alcohol and a mixture (~3:5) of BzOH and 2-furoic acid. For analysis see C., 1945, Part 1.

Antibacterial substance from Aspergillus clavatus. F. Bergel, A. L. Morrison, A. R. Moss, and H. Rinderknecht (J.C.S., 1944, 415—421).—An antibacterial substance, clavatin (I), m.p. 109.5— 110.5°, has been isolated from A. clavatus metabolism solution, and is identical with claviformin and most probably with patulin. Additional evidence is presented for its structure which confirms the formulæ advanced by Raistrick et al. (cf. A., 1944, III, 219). The results of oxidative and other degradations suggest the existence of predominant tautomeric forms such as anhydro-4-hydroxy-5-hydroxymethyl- and -5:6-dihydro-1:2-pyran-6-carboxylic acid. (I) is acylated and etherified under unusually mild conditions, forming a monoacetate, monobenzoate, m.p. 143.5—144.5°, and Me₂ ether, m.p. 69—71°; (I) forms an oxime, m.p. 152—153° (decomp.) (monoacetate, m.p. 82—84°). Hydrogenation (=3—4 H₂) (H₂-Pd-C) of (I) in EtOH-H₂O gives a lactone (?) and other products. With HBr the crude hydrogenation product yields a small amount of a lactone monobromide, $C_7H_{11}O_2Br$, b.p. $175-180^\circ/15$ mm. (piperidino hydriodide, $C_{12}H_{22}O_2NI$, m.p. $170-171^\circ$), hydrogenated β-(a'-bromo-n-propyl)butyrolactone, which affords a phenylhydraside identical with that from β -n-propylbutyrolactone. Ozonolysis of (I) gives HCO_2H and glyoxal and traces of $\text{H}_2\text{C}_2\text{O}_4$. HCl (dry) with (I) in EtOH at -10° affords an oil, $\text{C}_{11}\text{H}_{17}\text{O}_3\text{Cl}$, b.p. $114-116^\circ/0.15$ mm. [2: 4-dinifrophenylhydrazones (from EtOH), m.p. $168-170^\circ$ (decomp.), and (from MeOH), m.p. $164-160^\circ$ (decomp.) (not identical)], hydrolysed with dil. acid to 3-chloromethyleneletrahydro-y-pyrone-2-carboxylic acid, m.p. 129—130° (2: 4-dinitrophenyl-hydrazone, m.p. 189—190°). This acid with HI yields z-iodo-y-ketohexoic acid and on hydrogenation (H2-Pd-C) gives 3-methyltetrahydro-γ-pyrone-2-carboxylic acid (S-benzylthiuronium salt, m.p. 149-150°; p-phenylphenacyl ester, m.p. 125—127°; 2:4-dinitrophenyl-hydrazone, m.p. 197—199°). The latter acid with HI forms α-di-iodo-γ-keto-β-methylhexoic acid, m.p. 103—105°, hydrogenated to γ-keto-β-methyl-n-hexoic acid (S-benzylthiuronium salt, m.p. 1445—145.5°).

Triacetone alcohol and its dehydration products.—See A., 1944, II, 360.

4-Hydroxy-3-methylcoumarin oxime, m.p. 95°.—See A., 1944, III,

Optically active tocols and degradation products of phytol and phytadiene. P. Karrer, A. Kugler, and H. Simon (Helv. Chim. Acta, 1944, 27, 1006—1009).—Slight dextrorotation of en-dimethyltocol acetate in EtOH and of the eθ-compound in substance is observed but the activity of the $\eta\theta$ -derivative remains uncertain; the substances are derived from natural phytol. Oxidation (Na₂Cr₂O₇-50% H₂SO₄) of Me $\delta\theta\mu$ -trimethyltridecyl ketone (obtained by ozonolysis of natural d-phytol) affords $d-\delta\theta\mu$ -trimethyltridecoic acid (I), b.p. 138—144° (bath)/high vac. (p-bromophenacyl ester, m.p. 53°; p-xenylamide, m.p. 99—100°). Phytadiene is ozonised to (I), CH.O, and small amounts of MeCHO; it therefore consists mainly of $Bu^{\beta} \cdot [CH_2]_2 \cdot CHMe \cdot [CH_2]_3 \cdot CHMe \cdot [CH_2]_3 \cdot CH \cdot CMe \cdot CH \cdot CH_2$, small proportion of $Bu^{\beta} \cdot [CH_2]_2 \cdot CHMe \cdot [CH_2]_3 \cdot CHMe \cdot CH_2 \cdot CH \cdot CH \cdot CMe \cdot CHMe$.

Reaction between quinones and metal enclates. XIX. of diduroquinone. L. I. Smith, R. W. H. Tess, and G. E. Ullyot (J. Amer. Chem. Soc., 1944, 66, 1320—1323; cf. A., 1944, II, 103).—Diduroquinone (I), m.p. 207-5—208°, obtained from duroquinone by a little KOH in 95% EtOH at room temp. (cf. Rugheimer et al., A., 1896, i, 68), is probably 7-hydroxy-2:3:5:6:8:4a:9a-hepta-nethyl-4a:9a-dihydroxanthen-1:4-quinone. With MgMeI it gives 0.81 CH, and 2.05 mols, are added, but this is unreliable since its 0-81 CH₄ and 2-05 mols, are added, but this is unreliable since 15 Et ether (prep. by EtBr-KOH in boiling EtOH), m.p. 130—131, adds 1-84 MgMeI and gives 0-52 CH₄. With hot Ac₂O, (I) gives an acetate (II), +xEtOH, m.p. (dried at 100°) 132—133°. FeCl₃ in boiling EtOH oxidises (I) to 6-hydroxy-5-3′: 4′: 6′-trimethyl-2′: Denzquinon 1′-ylmethyl-2: 3-dimethyl-5: 6-dihydro-p-benzquinone (III), m.p. ~132—138°, reduced by Na₂S₂O₄ to 6-hydroxy-0-3′: 6′-dihydroxy-2′: 4′: 5′-trimethylbenzyl-2: 3-dimethyl-5: 6-dihydrorp-benzquinone (IV), m.p. ~144—149°, whence H₂SO₄-MeOH at room temp. regenerates (I). M.p. of (III) and (IV) are approx. and varable owing either to decomp. or steric isomerism. SOCl₂ at the b.p. converts (I) into substances. m.p. 153—155° and 136—138°. (I) converts (I) into substances, m.p. 153—155° and 136—138°. gives no oxime or dinitrophenylhydrazone, is resinified by boiling KOH-EtOH or conc. H₂SO₄ at 60—65°, is unaffected by HCl-AcOH or HBr-AcOH, and in HI-AcOH gives duroquinol, which is also obtained by H₂-Cu chromite in EtOH, Zn-AcOH, Zn-HCl, or (?) Na-Hg-EtOH (not by Na₂S₂O₄) and from (III) by Zn-AcOH. (I) has an absorption max. at \sim 290 m μ . ($\epsilon \sim$ 3000). R. S. C.

4:4-Dimethyl-5-ethoxymethyl-m-dioxan.—See B., 1944, II, 306.

Synthesis of cantharidin and deoxycantharidin. (Miss) K. Paranjape, N. L. Phalnikar, B. V. Bhide, and K. S. Nargund (Proc. Indian Acad. Sci., 1944, 19, A, 385-388).—(CMeAc·CO₂Et). (from CNaMeAc·CO₂Et and I in C₄H₂) with Br in CS₂-AlCl₃ (trace) gives El_{\imath} aa'-di-(bromoacetyl)-aa'-dimethylsuccinate, m.p. 55°, which with Ag at 120—150° gives Et₂ 3:6-diketo-I:2-dimethylcyclohexane-1:2-dicarboxylate (I) (di-p-nitrophenylhydrazone, m.p. 143°). Reduction (Zn-Hg) of (I) followed by hydrolysis and steam-distillation affords I:2-dimethylcyclohexane-1:2-dicarboxylic anhydride [de-oxycantharidin]. Reduction of (I) with Al(OPrβ)₃ yields Et₂ 3:6-dihydroxy-1:2-dimethylcyclohexane-1:2-dicarboxylate (acid, m.p. 99°), which with conc. H₂SO₄ gives 3:6-oxido-1:2-dimethylcyclohexane-1:2-dicarboxylic anhydride (separated by sublimation), identical with an authentic specimen of cantharidin. F. R. S.

Pyrrolidines and piperidines.—See B., 1944, II, 306.

Preparation of derivatives of pyrrole and pyridine by hydrogenation. H. A. Adkins, I. A. Wolff, A. Pavlic, and E. Hutchinson (J. Amer. Chem. Soc., 1944, 66, 1293—1295).—Hydrogenolysis of C-NH4 occurs readily when β , but not when γ , to the N of pyrrole or C_5H_5N . Pyrrole with MgEtBr and then AcCl in Et₂O gives 2-acetylpyrrole, m.p. 88—89°, the oxime, m.p. 144—145°, of which with H₂-Raney Ni in dioxan or EtOH at 130 5 /200 atm. gives 2-a-aminoethylpyrrole (56%), which decomposes when distilled and is isolated as Bz derivative, m.p. 149—150°. 3-a-Oximinoethylpyridine at 100° gives similarly 3-a-aminoethylpyridine (74%), b.p. 112—113°/12 mm., 223°/740 mm. [phenylthiocarbamide derivative, m.p. 139—140°; picrate, m.p. 204—205°; platinichloride, m.p. 280° (decomp.)], and di-(a-3-pyridylethyl)amine (11%), b.p. 152—153°/1 mm. [platinichloride, m.p. 292° and 161—163°; picrate, m.p. 205° (decomp.)]. The oxime, m.p. 197—198°, of Et 3-acetyl-2:4-dimethylpyrrole-5-carboxylate (I) (prep. from CH₂Ac₂, OH-Ni-CAc-CO₂Et, and Zn dust in AcOH) with H₂-Raney Ni at 130°/200 atm. gives Et 2:4-dimethyl-3-a-aminoethylpyrrole-5-carboxylate (80%), isolated as Bz derivative, m.p. 179—180°, and converted by distillation into Et 2:4-dimethyl-3-vinylpyrrole-5-carboxylate (80%), isolated as Bz derivative, m.p. 179—180°, and converted by distillation into Et 2:4-dimethyl-3-vinylpyrrole-5-carboxylate, m.p. 110·5—112°, b.p. 145—148°/3 mm. 3:5-Diacetyl-2:4-dimethylpyrrole gives the 5-mono-oxime, m.p. 240° (decomp.), hydrogenated at 140—150° to 3-acetyl-2:4-dimethyl-5-ethylpyrrole (30—36%), m.p. 159—160° (7106—107°). Hydrogenation of (I) at 170° gives Et 2:4-dimethyl-5-ethylpyrrole (30—36%), m.p. 169—160° (7106—107°). Hydrogenation of (I) at 170° gives Et 2:4-dimethyl-5-ethylpyrrole (30—36%), m.p. 169—169°), of Et 5-acetyl-2:4-dimethyl-5-ethylpyrrole-3-carboxylate (94%), m.p. 169—169°), b.p. 112°/18 mm. [picrate, m.p. 210—211° (decomp.); dihydrochloride, m.p. 222°; p-nitrobenzoyl derivative, m.p. 188—189°], and di-3-pyridylmeth

Absorption spectra of pyrrole-blue A and B.—See A., 1944, I, 265.

Chemistry of bivalent and tervalent rhodium. VI. Pyridine complexes of rhodous halides. F. P. Dwyer and R. S. Nyholm (J. Proc. Roy. Soc. New South Wales, 1942, 76, 275—280).—RhCl₃ with KBr and C₅H₅N followed by H₃PO₂ at 100° gives hexakis-pyridine rhodous bromide, converted by HBr at 0° into the bromo-pentakis compound (iodide), which with aq. HBr affords dibromo-tetrakis-pyridine rhodium. EtOH-HBr with the latter compound yields dibromo-hexakis-pyridine \(\mu \) dibromodirhodium, which on long boiling with EtOH-HBr is converted into a mixture of bis-pyridinium-tetrabromo-tetrakis-pyridine \(\mu \) dibromodirhodium and tetrakis-pyridinium-hexabromobis-pyridine dibromodirhodium (both red-brown) and a highly H₂O-sol. compound hexakis-pyridinium-octabromodibromodirhodium. The hexakis compounds are yellow. In the chloride and iodide series certain of the compounds could not be isolated. Hexakis-and chloropentakis-pyridine rhodous chloride, bis-pyridinium tetrathlorotetrakis- and tetrakis-pyridinium hexachlorobis-pyridine \(\mu \) dichlorodirhodium, and hexakis- and iodopentakis-pyridine rhodous iodide are described.

Co-ordination compounds derived from nicotinylacetone. F. Lions, B. S. Morris, and E. Ritchie (J. Proc. Roy. Soc. New South 1942, 76, 294—303).—Nicotinylacetone (I) (picrate, m.p. 155°) forms a methiodide, m.p. 184°, which with NaOct gives a betaine. (CH₂·NH₂)₂ with (I) yields ββ'-ethylenediaminobis(propenyl-3-pyridyl ketone), m.p. 170°. The following complexes are described: Cu nicotinylacetonate, chars at >320°, bisnicotinylacetonae Cu chloride, m.p. 190°, and sulphate chars at ~280°, Cu bisnicotinylacetone a-bromocamphor-π-sulphonate (which could not be resolved), Zn nicotinylacetonate, chars at >300°, bisnicotinylacetonae Zn chloride, m.p. 140°, and sulphate, m.p. >300°, Zn bisnicotinylacetonate a-bromocamphor-π-sulphonate (non-resolvable), Ni bisnicotinylacetonate a-bromocamphor-π-sulphonate (non-resolvable), Ni bisnicotinylacetonate, chars at >300°, bisnicotinylacetonate, bisnicotinylacetone Co chloride, oisnicotinylacetone Ag nitrate, m.p. 121°, FeIII nicotinylacetonate, n.p. >300°, bisnicotinylacetone FeIII chloride, m.p. >300° (ml. wt. abnormal), trisnicotinylacetone CrIII chloride, m.p. >300° (ml. wt. abnormal), trisnicotinylacetone CrIII chloride, (+4H₂O), m.p. 105°, Cu bisnicotinylacetonate methiodide (+4H₂O), m.p. 188° [Zn (+6H₂O), m.p. 146°, and Be complexes, m.p. 214°], Cu ethylenediamine bisnicotinylacetonate (+H₂O), m.p. 167° (dihydrochloride, m.p. 200°),

and Zn, m.p. 228° (dihydrochloride, m.p. 253°), Ni (+H₂O), m.p. 258° (dihydrochloride, m.p. 276°), and Co (+6H₂O) complexes, m.p. 165° [dihydrochloride, m.p. 242° (decomp.)]. F. R. S.

Pyridine-3-acetic esters and quaternary compounds.—See B., 1944, II, 306.

Biochemical and bacteriostatic actions of salicylic acid and salicylnicotinylamide. H. von Euler and B. Hogberg [with H. Hasselquist] (Arkiv Kemi, Min., Geol., 1944, 17, B, No. 14, 8 pp.).— Salicylnicotinylamide, m.p. 205°, is obtained in 35% yield by the interaction of σ -OH·C₆H₄·CO·NH₂ and nicotinyl chloride hydrochloride in C₅H₅N at 110° (see A., 1944, III, 844). H. W.

Preparation of pyridine-2:5-dicarboxylic acid. T. O. Soine (f. Amer. Pharm. Assoc., 1944, 33, 223—224).—Quinaldine (20 c.c.) in conc. H_2SO_4 (40 c.c.) is oxidised by cautious addition of HNO_3 (~300 c.c.) with ultimate heating to $230-240^\circ$; 7—8 hr. are required. The crude dicarboxylic acid (14.5 g.) is pptd. by addition of 50% NaOH almost to complete neutralisation and cooling to room temp. Decolorising with C and crystallising from H_2O gives the pure acid, m.p. 238° [Me₂ ester, m.p. $161-163^\circ$; diamide, m.p. $310-313^\circ$ (decomp.)].

Aminosulphanilamidopyridines.—See B., 1944, III, 186.

Catalytic hydrogenation of hydroxy-pyridines and -quinolines and their esters. C. J. Cavallito and T. H. Haskell (J. Amer. Chem. Soc., 1944, 66, 1166—1171).—Aroyl esters of 2- and 4-hydroxypyridine and -quinoline are more readily hydrolysed than those of the other OH-bases. The 4-acyloxy-compounds must be prepared under anhyd. conditions. The ester linkage of 2-acyloxyquinoline is weakened by 4-Me. Esters described below are prepared from ArCOCl with the OH-compound at 150° or in C₅H₅N at 100° or with the Na derivative thereof in Et₂O. Hydrogenation (Pd; dioxan or, the Na derivative thereof in Et₂O. Hydrogenation (Pd; dioxan or, sometimes, EtOH; 55°) of alcohols and esters of these series is reported; its course is various. 2-Hydroxypyridine gives 2-piperidone (I), but 3- (II) and 4-hydroxypyridine are unaffected. 1-Hydroxyisoquinoline gives 1-keto-1:2:3:4-tetrahydroisoquinoline (III), m.p. 73° (lit. 71°). 3-, 5- (IV), 6-, 7-, and 8-Hydroxyquinolines give the corresponding hydroxy-1:2:3:4-tetrahydroquinolines (the 3-OH-compound has m.p. 93°), but 2-hydroxyquinoline gives 2-keto-1:2:3:4-tetrahydroquinoline (V), and 4-hydroxy-(VII). 2-hydroxy-4-methyl- (VII), and 4-hydroxy-2-methyl- $1:3:4:5-C_6H_2$ Me(OR) $_3$ (R = H and Ac, respectively). 8-p-Benzyloxybenzoyloxyquinoline, m.p. 163°, gives 8-hydroxy-1-phydroxybenzoyl-1:2:3:4-tetrahydroquinoline, m.p. 161°. 2-Hydroxy-8-benzoyloxyquinoline, m.p. 208°, gives 2-keto-8-benzoyloxy-1:2:3:4-tetrahydroquinoline, m.p. 167°, also obtained with PhMe from 2:8terranyaroquinoline, m.p. 101, also obtained with PhMe from 2: 8-dibenzoyloxyquinoline, m.p. 108°. 1-Benzoyl-8-benzoyloxy-1: 2: 3: 4-tetrahydroquinoline, m.p. 146°, is also described. (II) is obtained from 3-aminopyridine by NaNO₂ in conc. H₂SO₄, later warm. NH₂Ph (1) and CO₂Et·CO·CH₂·CO₂Et (1 mol.) at 40—50° and then room temp. give an anil, which in mineral oil at 250° gives Et kynnyagate (~60°), whence hydrolysis (40° as NoCH crives the kynurenate (~60%), whence hydrolysis (4% aq. NaOH; gives the acid, m.p. 280°) and decarboxylation (mineral oil; 270°) gives (VI). (IV) is obtained from the NH₂-compound by a diazo-reaction. (VIII) is obtained by condensing NH₂Ph with CH₂Ac·CO₂Et and heating the product in oil at 250—260°. R. S. C.

Synthesis of oxindole. F. J. Di Carlo (J. Amer. Chem. Soc., 1944, 66, 1420).—o-NO₂·C₀H₄·CH₂·CO·CO₂H (prep. from o-C₀H₄Me·NO₂ by Et₂C₂O₄-NaOEt in hot EtOH and then hot aq. EtOH), m.p. 119—120°, with H₂O₂ gives o-NO₂·C₀H₄·CH₂·CO₂H, hydrogenation of which (AcOH; 50 lb.; PtO₂) gives oxindole (I) (88%) or (less PtO₂) 75% of (I) and some 1:2-dioxindole, o-C₀H₄ CH₂·N·OH (II), m.p. 198—199° (brucine salt, m.p. 223°). (II) is unaffected by H₂-PtO₂; thus, the intermediate is o-OH·NH·C₀H₄·CH₂·CO₂H, which

suffers either ring-closure to (II) or further hydrogenation to (I).

Dialkylaminoalkyl derivatives of substituted quinolines and quin-A. M. Van Arendonk and H. A. Shonle (J. Amer. Chem. Soc., 1944, 66, 1284-1285).-4-Chloro-6-methoxyquinoline and the appropriate diamine in boiling p-cymene yield 4-β-diethylaminoethylamino-, +H₂O, m.p. 77—78° (hygroscopic dihydrochloride), 4-β-diethylaminoethylamino- (dihydrochloride, m.p. 250—252°), 4-γ-diethylamino-n-propylamino-, +2H₂O, m.p. 165—170°, 4-δ-diethylamino-a-methyl-n-butylamino- (dihydrochloride; picrate, m.p. 180—182°), 4-δ-N-methyl-N-butylamino-a-methyl-n-butylamino-dihydrochloride; +2H₂O m.p. 100 01°) 4-δ-N-methyl-N-butylamino-a-methyl-n-butylamin (dihydrochloride, +xH₂O, m.p. 90—91°), 4-8-N-isopropyl-N-isobutylamino-a-methyl-n-butylamino- (dihydrochloride, m.p. 157—160°), 4-8-diisobutylamino-a-methyl-n-butylamino- (dihydrochloride, +xH₂O, m.p. 104—106°), 4-γ-piperidino-, m.p. 134—135°, and 4-γ-2'-pipecolino-n-propylamino-, m.p. 135—137°, -6-methoxyquinoline. Boiling 40% HBr then yields 4-β-diethylaminoethylamino-, m.p. 245—246°, 4- β -ditsobutylaminocthylamino-(dihydrochloride, +2H₂O, m.p. 138—140°), 4- δ -diethylamino-a-methyl-n-butylamino-(dihydrothe first of the f similarly prepared.

Substituted quinolines. II. 2-Arylquinolines. HI. 2-Arylquinolines from fluoranthene and thionaphthen. N. P. Buu-Hoi and P. Cagniant (*Rec. trav. chim.*, 1943, 62, 713—718, 719—722).—II. Condensation in boiling alcoholic KOH of isatin (I) with the corresponddensation in boiling alcoholic KOH of isatin (I) with the corresponding aryl Me ketone (prep. from hydrocarbon, AcCl, and AlCl₃) gives 2-(p-cyclohexylphenyl)-, m.p. 279—280°, 2-a-naphthyl-, m.p. 214°, 2-β-naphthyl-, m.p. 240°, 2-β-anthryl-, m.p. 291—292° (decomp.), 2-(3'-pyrenyl-)-, decomp. >300°, and 2-(2'-chrysenyl-)-, decomp. > 262°, -cinchonic acid. These on decarboxylation by fusion in vac. yield 2-(p-cyclohexylphenyl)- (II), m.p. 135° (picrate, m.p. 162°), 2-a-naphthyl-, b.p. 210°/0·1 mm., m.p. 90—91° (picrate, m.p. 187°), 2-β-naphthyl-, m.p. 164° (picrate, m.p. 176—177°), 2-β-anthryl-, m.p. 180°, 2-(3'-pyrenyl)-, m.p. 145° (picrate, m.p. 260° (decomp.), and 2-(2'-chrysenyl)-, m.p. 185° (picrate, m.p. 225°), -quinoline. (II) with Se at 350° affords 2-diphenylylquinoline; 2-(5'-acenaphthyl)quinoline, m.p. 122° (picrate, m.p. 231—232°), is described.

III. Fluoranthene with AcCl and AlCl₃ in CS₂ gives 12-acetyl-

m.p. 122° (picrate, m.p. 231—232°), is described.

III. Fluoranthene with AcCl and AlCl₃ in CS₂ gives 12-acetylfluoranthene (III), b.p. 210°/0·1 mm., m.p. 68° (semicarbazone, m.p.
240°; oxime, m.p. 166°, giving 12-acetamidofluoranthene by Beckmann transformation). (III) with (I) affords 2-(12'-fluoranthyl)cinchonic acid, m.p. >310°, decarboxylated to 2-(12'-fluoranthyl)quinoline, b.p. 280°/0·1 mm., m.p. 136° (picrate, m.p. 242°). 3-Acetylthionaphthen (modified prep.) with (I) gives 2-(3'-thionaphthenyl)thionaphthen (modified prep.) with (I) gives 2-(3'-thionaphthenyl)-cinchonic acid, m.p. 229—230° (decomp.), and thence 2-(3'-thionaphthenyl)quinoline, b.p. 290°/15 mm., m.p. 186° (picrate, m.p.

Complex compounds of cupric azide. III. Non-electrolytes with organic bases.—See A., 1944, I, 290.

Hydroacridones. Synthesis and dehydrogenation. R. A. Reed (J.C.S., 1944, 425—426).—cycloHexanone with o-NH₂·C₆H₄·CO₂H (I) gives 1:2:3:4-tetrahydroacridone, m.p. 370° (lit. 358°), whilst with the appropriate methylanthranilic acid, 9-, m.p. 346°, 8-, m.p. 378° (bicrate m.p. 208—208°) 7- m.p. 374° 6- m.p. 355° (bicrate 378° (picrate, m.p. 208—209°), 7-, m.p. 374°, 6-, m.p. 355° (picrate, m.p. 165—185°), and 10-methyl-1:2:3:4-tetrahydroacridone, m.p. 170—172° (picrate, m.p. 209—210°), are obtained. The methyl-tetrahydroacridones are dehydrogenated with Cu in air at 360° to the corresponding methylacridones. 3-Methylcyclohexanone with (I) affords 2-methyl-1:2:3:4-tetrahydroacridone [photology, m.p. 212° (decomp.)] (cf. Perkin et al., A., 1925, i, 64), the constitution being proved by dehydrogenation; 2-methylcyclohexanone with (I) yields the 1-Me compound, m.p. 305° (picrate, m.p. 183—184°). F. R. S.

Reaction between histidine and formaldehyde. A. Neuberger (Biochem. J., 1944, 38, 309—314).—Histidine (I) with 2 or more mols. of CH₂O at 37° gives 1(?1')-hydroxymethyl-1':2':5':6'-tetra-hydropyrido-4':3'.4:5-glyoxaline-6'-carboxylic acid (+H₃O), insol. in H₂O, m.p. 210—215° (decomp.), [a]p—84.6° in NaOH (1·ln.), which with HCl gives CH₂O and the unmethylolated acid (+2H₂O), m.p. 277°, [a]p—122·4° in N-NaOH, also obtained from (I) and 1 mol. of CH₂O, and decarboxylated to 1':2':5':6'-tetrahydropyrido-4':3'-4:5-glyoxaline, which with NaOH-BzCl affords 3:4-dibenzamido-N-benzoyl-1.2:5:6-tetrahydropyridine, m.p. 215°. The dissociation consts. of the two compounds have been measured The dissociation consts. of the two compounds have been measured and compared with those of (I). The kinetics of the reaction are examined and the CH₂O titration of (I) is discussed.

Glyoxalines.—See B., 1944, III, 217.

Synthesis, some derivatives, and metabolism of ay-diketo-n-octoic acid. A. L. Lehninger (J. Biol. Chem., 1944, 153, 561-570).— COMeBua (I) and $\text{Et}_2\text{C}_2\text{O}_4$ in NaOEt-EtOH at the b.p., followed by H_2SO_4 , give the Et ester (II), b.p. $138-139^\circ/13$ mm., of ay-diketo-octoic acid (III), liquid (Ba salt). The structure of (II) is established by condensation with NHPh-NH₂ to the Et ester of an acid oxidised to 1-phenylpyrazole-3: 5-dicarboxylic acid. In 2N-NaOH at the

b.p., (III) gives (I) and $H_2C_2O_4$. In EtOH with aq. Cu(OAc)₂, (II) gives a chelated Cu derivative, $C_{20}H_{30}O_8Cu$, m.p. $135-137^\circ$. With $2:4-(NO_2)_2C_8H_3:NH\cdot NH_2$ and conc. HCl, (II) gives the Et ester, m.p. $186-187^\circ$, of $1-(2':4'dinitrophenyl)-5(3)-butylpyrazole-3(5)-carboxylic acid, m.p. <math>204^\circ$ (decomp. from 185°), which is similarly obtained from (III). With semicarbazide hydrochloride, the Na solt (IV) of (III) gives 1 are headly 1 and 1 and 1 are the similar 1salt (IV) of (III) gives 1-carboxylamido-5(3)-butylpyrazole-3(5)-carboxylic acid, decomp. from 80—82° (clear melt at 160—165°), hydrolysed by boiling H₂O to 5-butylpyrazole-3-carboxylic acid, m.p. 166—167°, also obtained from (III) and N₂H₄. Intestinal absorption of aq. (IV) by rats is small. (IV) does not affect the O₂ uptake of surviving rat tissue slices in PO₄"—saline buffer, possibly owing to low diffusability, since it causes a slight increase in O2-uptake by minced or homogenised liver. (III) is decarboxylated only very slowly by yeast decarboxylase, and inhibits the yeast decarboxylation of AcCO₂H. Hexadecan- β -one condenses with Et₂C₂O₄ to give a C₂₀-diketo-ester. a C₂₀-diketo-ester.

Production of riboflavin deficiency with phenazine analogues of riboflavin. D. W. Woolley (J. Biol. Chem., 1944, 154, 31—37).—Amino-5-ribitylamino-o-xylene with picryl chloride and NaOAc in aq. EtOH at room temp. gives 2': 4': 6'-trinitro-2-ribitylamino-4: 5-trinitro-triple and temp. gives 2': 4': 6'-trinitro-2-ribitylamino-4: 5-triple and the statement of the dimethyldiphenylamine, which on boiling with NaOAc in EtOH yields 1:3-dinitro-7:8-dimethyl-5-ribityl-5:10-dihydrophenazine, m.p. $218-220^\circ$ (decomp.), reduced (Sn-20% HCl or autoclaving in presence of reduced Fe) to the corresponding $(NH_2)_2$ -compound. The diamino- and, to a smaller extent, the dinitro-phenazine derivative produce riboflavin deficiency in bacteria and mice, respectively (cf. A., 1944, III, 752).

N-Chlorocarbamic esters.—See A., 1944, II, 364.

Guanamine derivatives.—See B., 1944, II, 249.

5-Sulphanilamidotetrazole. K. A. Jensen and O. R. Hansen (Rec. trav. chim., 1943, 62, 658—660; cf. Veldstra and Wiardi, ibid., (Rec. trav. chim., 1943, 62, 658—600; ci. veiastra and whard, iona., 627).—The compound, m.p. 170°, obtained from 5-aminotetrazole (I) and p-NHAc·C₆H₄·SO₂Cl (II) in C₆H₅N gives AcOH, p-NH₂·C₆H₄·SO₃H, CO(NH₂)₂, and N₃H with aq. NaOH, and is claimed to be 5-acetylsulphanilamidotetrazole (III). The compound, m.p. 202°, from (I) and (II) in aq. Na₂CO₃, which with aq. NaOH affords p-NHAc·C₆H₄·SO₃H and (I), is considered to be 1- or 2-acetylsulphanilyl-5-aminotetrazole. (I) with p-NHAc·C₆H₄·SO₂F in C.H.N does not yield (III). C₅H₅N does not yield (III).

Sulphanilamide derivatives. II. 5-Sulphanilamidotetrazole. H. Veldstra and P. W. Wiardi (Rec. trav. chim., 1943, 62, 661—671).— In reply to the preceding abstract the authors claim that 5-acetylsulphanilamidotetrazole exists in three tautomeric forms. 5-Aminotetrazole (I) with p-NHAc·C₆H₄·SO₂Cl (II) in C₅H₅N gives tetrazoloneacetylsulphanilylimide(-5) (III), m.p. 166° (170° on rapid heating), which behaves like a monobasic acid on titration. In aq-Na₂CO₃ (I) and (II) yield β -5-acetylsulphanilamidotetrazole monohydrate (IV), m.p. 202° (on further purification 207°). (III) with aq. NaOH affords α -5-acetylsulphanilamidotetrazole monohydrate (V), m.p. 207°. (IV) and (V) show no depression for mixed m.p., and both react as dibasic acids, but are differentiated by electrometric titration curves and ultra-violet absorption spectra. lysis of (IV) and (V) (aq. NaOH) gives the same (mixed m.p.) 5-sulph-anilamidotetrazole, m.p. 202—203°; (III) yields N₃H and NH₂·C₆H₄·SO₂·NH·CN (?).

(A) Action of ammonia on crotonaldehyde. (B) Salts and deriv-(a) Action of ammonia on crotonaldehyde. (B) Salts and denyatives of tricrotonylidenetetramines. M. Delépine (Compt. rend., 1943, 216, 649—652, 697—701).—(A) At only slightly >0° CHMe:CH-CHO (210) and 22% aq. NH₃ (350 g.) give a syrup with only small amounts of crystal, but subsequent keeping at room temp. and then heating at 100° gives tricrotonylidenetetramine-a, C₁₂H₂₄N₄, +6H₂O (I) (50—60 g.), m.p. ~70°, resolidifies, and an isomeride-b (II) (160—170 g.), (from H₂O) +6H₂O or (from COMe₂) +4H₂O, m.p. ~65° (instantaneous). b.p. 150°/3 mm. (cf. Wurtz. A. 14H₂O, m.p. ~65° (instantaneous), b.p. 150°/3 mm. (cf. Wurtz, A., 1879, 780; Combes, A., 1883, 1079). They are separated by crystallisation or by the extreme insolubility of the hydrochloride of (I) in HCl. Over $\rm H_2SO_4$ in vac., (I) and (II) give anhyd. forms, m.p. 102° , and an oil, respectively, which are rapidly reconverted into hydrates in air.

(B) (I) and (II) give ppts. with Zn, Cd, Hg, Cu, Fe, Co, Al, Cr, Pb, and Sn salts. The following salts and derivatives prove the tribasicity of the compounds (cf. Kudernatsch, A., 1900, i, 337): tribasicity of the compounds (cf. Kudernatsch, A., 1900, i, 337): (I),2AgNO₃.+3H₂O; (II),2AgNO₃.+2H₂O; (I) trihydrochloride, insol.; (II) dihydrochloride, sol.; 2(I),3H₂SO₄.+12H₂O [the sulphate of (II) is a glass]; 2(I),3H₂FCO₄.+12H₂O, sol.; 2(II),3H₂FtCl₆.+12H₂O, insol.; 2(II),3H₂IrCl₆.+12H₂O, insol.; 4(II),3H₄Fe(CN)₆.+28H₂O; (I),H₃Fe(CN)₆.+32H₂O, insol.; 4(II),3H₄Fe(CN)₆.+28H₂O; (II),H₃Fe(CN)₆.+4H₂O; (II),H₃Fe(CN)₆.+4H₂O; m.p. ~152° (block)] and of (II) [+3H₂O; m.p. 145—152° (block)]; (NO)₃-derivative, m.p. ~240° (block) or (in a tube) deflagrates at ~210°, of (I) [that of (II) is amorphous]; N-Cl₃-derivative, m.p. ~76° (tube) or deflagrates

at 70° (instantaneous), of (I) and amorphous, deflagrates at ~40°, of (II).

Constitution of tricrotonylidenetetramines. M. Delepine (Compt. rend., 1943, 216, 785-789).-A mechanism is proposed for the formation of tricrotonylidenetetramines (I) from CHMe:CH·CHO,

whereby the latter (3 mols.) and NH3 give an aminotriol, [CHMc:CH·CH(OH)]aN, converted by saturation of the double linkings into an intermediate, which then loses H2O. Oxidation of (I) (a form) (+6H₂O) with aq. KMnO₄-KOH at ~0° gives an anhydride (II) (trimeric) of NH₂-CHMe-CH₂-CO₂H (III), sublimes without melting, stable to boiling aq. NaOH-EtOH, and convertible by HCl at 130° for 1.2 hr. into the hydrochloride of

(III); Mg₂O, followed by H₂S, then gives (III), m.p. 190°. (I) (β form) does not similarly give (III). (I), heated progressively from 160° to 250—280°, loses NH₃ and ~10% of 2-methyl-5-ethylpyridine is obtained. The a and β forms of (I) probably have the 3 Me groups in different positions.

Synthesis of purine nucleosides. VII. Further observations on the synthesis of pyrimidines from esters and malondiamidine. G. A. Howard, B. Lythgoe, and A. R. Todd (J.C.S., 1944, 476-477). The pyrimidine synthesis from esters and malondiamidine (I) (cf. Kenner et al., A., 1944, II, 59) has limited val. since no pyrimidine formation occurs with (I) and Et n-butyrate, malonate, pyruvate, and urethane, and N-acetyl-, phenyl-, and NN-dimethyl-urethane. EtOBz and (I) give 4:6-diamino-2-phenylpyrimidine, m.p. 195—196°; Et₂CO₃ gives 4:6-diamino-2-hydroxypyrimidine; CICO₂Et yields 4: 6-diamino-2-hydroxypyrimidine hydrochloride, and Et₂C₂O₄, 4:6-diaminopyrimidine-2-carboxylic acid, m.p. >360°. NaOAc and 4: 6-diaminopyrimidine-2-carboxylic acia, m.p. >000.
AciO convert (I) into 4: 6-diacetamido-2-methylpyrimidine (+H₂O),
F. R. S.

Bile pigments. XXXI. Intermediate products in the conversion of hæmins into bile pigments. E. Stier [with, in part, (Miss) K. Gangl] (Z. physiol. Chem., 1942, 272, 239—272).—Coproverdohæmin ester is catalytically hydrogenated (Pd in anhyd. HCO₂H at 70— 75°) to coproporphyrin I Me, ester, identified spectroscopically; the main product is coproglaucobilin ester (I), m.p. 202°. The non-homogeneous course of the oxidation of the copro-ester pyridinehamochromogen (II) is shown by the isolation of (I) from the HCl-MeOH mother-liquors of hydroxycopro-ester chlorohæmin by means of Et₂O. Oxidation of (II) with H_2O_2 at 55—60° and then with O_2 followed by treatment with HCl-MeOH gives a very complex mixture of pigments which does not contain (I); a pigment is present which gives a Zn salt which is spectroscopically identical with the In salt of dimethoxyætioglaucobilin, but could not be isolated. Similar results are recorded with the meso-ester pyridinehæmochromogen. Successive treatments of the meso-Me, ester pyridinehamochromogen in C-H₅N with H₂O₂ at 55—60° and BzCl, after removal of Fe by Fe(OAc)₂-HCl and treatment with Et₂O, gives benzoyloxymesoporphyrin Me₂ ester (III), m.p. (indef.) 197—199°, softens at 175°, which is probably a mixture of four isomerides. It is identical spectroscopically with benzoyloxycoproporphyrin. With $Zn(OAc)_2$ in boiling $COMe_2$ -MeOH it affords the complex $C_{43}H_{44}O_6N_4Zn$, m.p. 232°. Catalytic hydrogenation in AcOH followed by re-oxidation gives only initial material whereas in hot HCO₂H mesoporphyrin and hydroxymesoporphyrin are also produced in small amount. (III) is stable towards HCl-MeOH but readily hydrolysed by NaOMe under N₂; esterification of the product with CH₂N₂ causes complete decomp. but use of HCl-MeOH leads to a hydroxymesoporphyrin Me₂ ester (IV) (not-isolated), spectroscopically identical with hydroxycoproporphyrin ester. The ethereal solution of (IV) is evaporated to dryness and the residue is treated with Fe(OAc)₂-NaCl at 100° for 30 sec., thus giving the hydroxymesophymic Me actor which could not be obtained cryst. hydroxymesohæmin Me, ester, which could not be obtained cryst.; spectroscopically it is identical with hydroxycoprohæmin ester. It is transformed by air in C₅H₅N at room temp, followed by boiling HCl-MeOH into glaucobilin ester which could not be obtained cryst. or as the Zn salt; the yield is very small and a mixture of much red-violet pigments also results. Protohæmin Mc, ester and N₂H₄ in aq. C. H. N at 60° give non-cryst. protohamochromogen-pyridine-Mez. ester, from which Fe is removed by dissolution in AcOH-HCl (1:1) and which is free from meso- or hæmato-porphyrin. converted by the successive actions of H₂O₂ and BzCl in C₅H₅N into benzoyloxyprotoporphyrin Me₂ ester, m.p. 219°, softens at 195°, catalytically hydrogenated (Pd in dioxan) to benzoyloxymesoporphyrin Me, ester and hydrolysed by NaOMe in MeOH-dioxan under N₂ at 70° to hydroxyprotoporphyrin Me₂ ester, which could only be obtained in a latin the state of the amount of the state of the stat obtained in solution. It is transformed into the amorphous hydroxy-protohamin Me₂ ester (yield 25—35%), converted by O₂ in C₂H₆N followed by HCl-MeOH into (?) tetramethylhæmatoglaucobilin, which could not be obtained cryst. in verv poor yield. Rhodo-hæmin Me_2 ester and N_2H_4 , H_2O in C_5H_5N at 80° afford rhodopyridine-hæmochromogen Me_2 ester $(+2C_5H_5N)$, m.p. 195° , softens at 182° , transformed by H_2O_2 followed by BzCl into benzoyloxyrhodoporphyrin

 Me_2 ester, m.p. 205°, softens at 200°, which resembles chloroper-phyrin e_4 and in spectrum. Phyllohæmin Me ester gives successions. phyrin e, and sively the pyridinehamochromogen and benzoyloxyphylloporphyrin Me ester, m.p. 224° (indef.), softens at 210°, the spectrum of which is displaced somewhat towards the red in comparison with those of phyllo- and dibenzoyloxycopro-porphyrin and identical in type with that of the last substance; it is hydrolysed to hydroxyphylloporphyrin Me ester, sol. in Et2O to a blue solution and giving an ill-defined spectrum. Benzoyloxycoproporphyrin ester is transformed by spectrum. Behzoyloxycoproporphyrm ester is transformed by $Fe(OAc)_2$ and NaCl into the chlorohæmin, $C_{47}H_{48}O_{10}N_4ClFe$, m.p. 222° , transformed by N_2H_4 , H_2O in C_5H_6N at 60° into a henzoyloxy-copro I ester hæm, m.p. $120-125^\circ$. The corresponding pyridine-hæmochromogen is converted by H_2O_2 in C_5H_6N followed by $Fe(OAc)_2$ and HCl into dibenzoyloxycoproporphyrin I Me. ester, m.p. 266°, softens at 200°.

Ætioxanthoporphinogen is transformed by HBr-AcOH at 140—150° into hydroxyætioporphyrin I, decomp. 255°. Similarly, mesoxanthoporphinogen is converted into hydroxymesoporphyrin IX, m.p. 265—256°, which with HCl-MeOH at room temp. yields the Me₂ ester, m.p. 171°. It is therefore possible to obtain a-hydroxyporphyrins and bile pigments from xanthoporphinogens and hence the presence of O attached to the a-CH in the xantho-compounds is confirmed.

Helix pomatia hæmocyanin.—See A., 1944, III, 838.

Analgesics derived from oxazolidine-2: 4-dione. M. A. Spielman Analgesics derived from oxazolidine-2:4-dione. M. A. Spielman (J. Amer. Chem. Soc., 1944, 66, 1244—1245).—Oxazolidine-2:4-dione with Me₂SO₄-aq. NaOH (not p-C₆H₄Me·SO₃Me) at <40° gives 3-methyloxazolidine-2:4-dione, m.p. 128°. 3:5-Dimethyl-, b.p. 140—144°/50 mm., 3:5:5-trimethyl-(I), m.p. 46°, b.p. 78—80°/5 mm., 3:5-dimethyl-5-ethyl-, b.p. 101—102°/11 mm., 3-methyl-3:5-diethyl-, b.p. 105—108°/11 mm., 3-methyl-3:5-diethyl-, b.p. 105—105°/4 mm., and 5:5-pentamethylene-3-methyl-oxazolidine-2:4-dione, m.p. 95°, are similarly obtained. Use of EtI and the Ag salt in Et.O at room temp. (3 days) gives 5:5-dimethyl-2-athyl-Ag salt in Et₂O at room temp. (3 days) gives 5: 5-dimethyl-3-ethyloxazolidine-2: 4-dione, m.p. 61°. These products are analgesic but not hypnotic, notably (I), which is comparable with aspirin and has very low toxicity. 3:5:5-Trimethylhydantoin (similarly prepared), m.p. 149°, has no pharmacological action, and 3:5:5-trimethylthiazolidine-2: 4-dione (similarly prepared), m.p. 49-51°, is weakly hypnotic. (I) is monoacidic to NaOH (phenolphthalein), weakly hypnotic. (I) is monoacidic to Maon (photospho

Amino-alcohols. 3-Piperidyl derivatives. A. Burger, R. W. Alfriend, and A. J. Deinet (*J. Amer. Chem. Soc.*, 1944, 66, 1327—1328).—Pyridine-3-carboxyl chloride, b.p. 75—77°/7 mm. (readily hydrolysed in moist air), with CH₂N₂-Et₂O and then 48% HBr gives cryst. 3-bromoacetylpyridine hydrobromide (82%), which with morpholine (3 mols.) in Et.O yields 3-morpholinoacetylpyridine (83%), m.p. $64-68^{\circ}$ (dihydrochloride, m.p. $197-198^{\circ}$; dipicrate, m.p. $158-162^{\circ}$). Al(OPr $^{\beta}$)₃ then yields β -morpholino-a-3-pyridylethyl alcohol (25%) (dihydrochloride, m.p. 211°; dipicrate, m.p. 166°), hydrogenated (PtO₂; EtOH) to β -morpholino-a-3-piperidylethyl alcohol (45%) (dihydrochloride, m.p. 256—257°). R. S. C.

Sulphonamidothiazoles.—See B., 1944, III, 218.

Methine and cyanine colouring matters.—See B., 1944, II, 308,

Fluorocyanine, blue pigment from Cypridina scales.—See A., 1944, III, 745.

Resynthesis of dethiobiotin from diaminopelargonic acid. D. B. Melville (J. Amer. Chem. Soc., 1944, 66, 1422).—Passing COCl, into ζη-diamino-n-nonoic acid sulphate (I), micro-m.p. 245-246°, in 10% aq. Na₂CO₃ gives 66% of dethiobiotin (II), micro-m.p. 156—158°, which is fully active in promoting the growth of yeast. (I) is approx. one tenth as active as (II).

Structure-chemical investigations. XI. Reactive behaviour of dithioamides towards tribromotriacetylbenzene. G. Bischoff, O. Weber, and H. Erlenmeyer (Helv. Chim. Acta, 1944, 27, 947—948).

—C₄Ac₃Br₃ and PhCS·NH₂ in EtOH at 100° afford 1: 3: 5-tri-(4-phenyl-2-thiazolyl)benzene, m.p. 195°. Complex compounds, becoming discoloured at ~230° or ~250° (decomp.), are obtained from C₆Ac₃Br₃ and adip- or oxal-dithioamide.

H. W.

Structure-chemical investigations. XII. Thiazole derivatives Structure-chemical investigations. All Imazoie derivatives from terephthaldithioamide. H. Erlenmeyer, W. Büchler, and H. Lehr (Helv. Chim. Acta, 1944, 27, 969—970).—p-C₆H₄(CS·NH₂)₂ with boiling CH₂AcCl gives 1: 4-di-(4'-methyl-2'-thiazolyl)benzene, m.p. 166° (picrate, m.p. 212°), and with COPh-CH₂Br in PhNO₂ at 200° affords 1: 4-di-(4'-phenyl-2'-thiazolyl)benzene, m.p. 225°. (CO-CH₂Br)₂ in PhNO₂ appears to give a complex product, m.p.

VII.—ALKALOIDS.

Cleavage of trigonelline. J. Weijlard, M. Tishler, and J. P. Messerly (J. Amer. Chem. Soc., 1944, 66, 1319—1320).—Trigonelline is unaffected by inorg. sulphides, sulphites, or thiosulphates, BrCN, HNO₂, CrO₃, HNO₃, HClO₄, or heating at 290°, but with conc. HCl at 250° (cf. Jahns, A., 1888, 166) or C₅H₅N,HCl at 200—204° gives 83% of nicotinic acid. Use of C₅H₆N,HCl leads also to methylpyridinium chloride. Quinoline hydrochloride is also effective. R. S. C.

Alkaloids of Duboisia leichhardtii. W. Mitchell (J.C.S., 1944, 480—482).—D. leichhardtii contains l-hyoscyamine (1.97%), l-hyoscine (0.06%), dl-hyoscine (0.05%), norhyoscyamine (0.01%), and "base D" (0.06%), isolated as the hydrobromide (I), C₁₃H₂₃O₂N, HBr, m.p. 231° (corr.) (mixture of isomerides). iso-Valeryltropeine hydrobromide, m.p. 225—227° (corr.), is not identical with (I). Probably at least two distinct types of Duboisia have appeared in commerce.

F. R. S.

Mode of action of quinine and quinidine. II. Synthesis of 9-hydroxy-6'-methoxyrubans. P. Rabe and W. Schuler (Ber., 1943, 76, [B], 318—321).—(++)(--)-6'-Methoxyruban-9-ol (I) exists as hexahydrate and in forms, $+2H_2O$, m.p. $94-95^\circ$, and anhyd., m.p. 172°, and gives a very insol. mono-, $+6H_2O$, m.p. $\sim 120^\circ$, resolidifies, remelts at $\sim 240^\circ$ (decomp.), and a more sol. di-hydrochloride, $+5H_2O$, m.p. $\sim 242^\circ$, and sulphate, $+45H_2O$, m.p. 192° (decomp.). The (+-)(-+)-compound (II), a glass, gives a sulphate, $+6H_2O$, m.p. $86-87^\circ$ (foams), but its hydrochloride is sol. The isomerides are thus separable. KOH converts (II) in boiling C_5H_{11} OH into (I). Reports in the literature are confirmed that (I) is active in canary malaria, whereas the (++)- and (--)-compounds are inactive.

Structure of a new metabolic derivative of quinine. J. Mead and J. B. Koepfii (J. Biol. Chem., 1944, 154, 507—515).—The cryst. metabolic product (I), m.p. $247\cdot5-248\cdot5^\circ$, [a] $_2^{85}-65\cdot5^\circ$ in EtOH, derived from quinine (cf. Kelsey et al., A., 1944, III, 680) is probably l-2'-hydroxy-6'-methoxy-3-vinylruban-9-ol. Potentiometric titration and absorption spectra for (I) and quinine are given. Hydrogenation (H₂-PtO₂) indicates one olefinic linking, and ozonisation affords CH₂O. (I) forms a monomethiodide, m.p. 276—277° (decomp.), and a benzenesulphonyl derivative, $C_{58}H_{68}O_{18}N_4S_3$, m.p. 180—181°, reconverted into (I) after mild acid hydrolysis. Attempts at oxidation have afforded no recognisable product. The evidence in favour of the constitution of (I) is discussed. M.p. are corr.

[Alkaloids of] Mahonia nepalensis DC. (Berberis nepalensis, Spreng). R. Chatterjee (J. Amer. Pharm. Assoc., 1944, 33, 210—212; cf. A., 1944, III, 856).—The root contains 0.48% of umbellatine and 0.02% of nepratine (I), C₁₉H₂₁O₄N, decomp. >200° without melting [hydrochloride; platinichloride (decomp. without melting)]. Colour reactions for (I) with alkaloidal reagents are tabulated.

Synthesis of l-roemerine. L. Marion and V. Grassie (J. Amer. Chem. Soc., 1944, 66, 1290—1292).—o-C₆H₄Me·NO₂, Et₂C₂O₄, and NaOEt in EtOH-Et₂O give o-NO₂·C₆H₄·CH₂·CO·CO₂Et, oxidised by H₂O₂-NaOH, later at 50°, to o-NO₂·C₆H₄·CH₂·CO₂H (38·6%), m.p. 139—140°. The derived chloride and 3:4:1-CH₂O₂·C₆H₃·[CH₂]₂·NH₂ (modified prep.) give o-nitrophenylacet-β-3:4-methylenedioxyphenylethylamide (74·4%), m.p. 120°, converted by PCl₅ in CHCl₃ at room temp. into 6:7-methylenedioxy-1-o-nitrobenzyl-3:4-dihydroisoquinoline, m.p. 164·5°, the methiodide, m.p. 262°, of which with Zn dust in hot aq. HCl gives 6:7-methylenedioxy-1-o-nitrobenzyl-2-methyl-1:2:3:4-tetrahydroisoquinoline · dihydrochloride (55·4%), m.p. 283—284°. With NaNO₂ in 2N-H₂SO₄ at room temp. and then 100° this gives dl-roemerine [dl-5:6-methylenedioxyaporphine] (I), m.p. 85—87° (hydrochloride, m.p. 274°; picrate, m.p. 197°) (and a by-product, C₁₈H₁₈O₃N, m.p. 133·5°). The methiodide, m.p. 221°, of (I) with boiling KOH-MeOH gives the dl-methine, m.p. 81° (methiodide, m.p. 280°). d- and then l-tartaric acid yield successively l-, forms, m.p. 87° and (stable) 102°, [a]_D −79·9° in EtOH [d-tartrate, m.p. 264·5° (decomp.); methiodide, m.p. 224·5°], and d-roemerine, m.p. 102°, [a]_D +80·2° in EtOH [l-tartrate, m.p. 264·5° (decomp.); methiodide, m.p. 224·5°] (cf. A., 1940, II, 197). M.p. are corr.

Isolation of hypaphorine from Argentine species of Erythrina.—See A., 1944, III, 856.

VIII.—ORGANO-METALLIC COMPOUNDS.

Arsanilic acids.—See B., 1944, III, 186.

Some new ethyl and phenyl silicon fluorides. H. J. Emeleus and C. J. Wilkins (J.C.S., 1944, 454—456).—Ethyltri-, b.p. -4-4°/760 mm., diethyldi.- b.p. 60-9°/760 mm., phenyltri-, b.p. 101-8°/760 mm., and diphenyldi-fluorosilane, b.p. 242-8°/603 mm., are prepared from

 ZnF_2 and the corresponding chlorides, or from HF and the oxycompounds. Vals. of d and v.p. are given; the latent heats of vaporisation of the first three are 6181, 7623, and 8750 g.-cal. per mol., respectively. The resistance of the compounds to hydrolysis rises rapidly with increase in the no. of org. groups. F. R. S.

IX.—PROTEINS.

Conversion of some spheroproteins into linear proteins by deamination. III. B. Jirgensons (J. pr. Chem., 1943, [ii], 162, 224—236). —Proteins (I) (casein, albumin, edestin, hæmoglobin) are treated with aq. $AcOH-NaNO_2$ and the products dissolved in 0.05N-NaOH (II). The η of the solutions is 10-100 times that of (I). At low conen. (c), with excess of (II), Z_{η} [= $(\eta-1)/c$] decreases with increasing c. With excess of (II), η decreases with time, but only slowly when c is low. All the degraded proteins have approx. equal Z_{η} , and behave similarly, suggesting that (I) have been degraded into units of approx. equal chain-length.

E. W. W.

Viscosity measurements of solutions of deaminated proteins. B. Jirgensons (J. pr. Chem., 1943, [ii], 162, 237—244).—Serum-albumin and -globulin and gliadin arc deaminated and η of solutions in 0.02×NaOH determined. Z_{η} of the products are similar to those of other deaminated proteins (see preceding abstract). Z_{η} of the product of deaminating gelatin (I) is $< Z_{\eta}$ of (I), but approx. equals that of the other products, which have much greater aminodicarboxylic acid content. Thus Z_{η} depends on the unit length of the deamination products rather than on their CO₂H content. E. W. W.

Neglected constituent of proteins, a-amino-n-butyric acid. W. C. Tobie (Nature, 1943, 152, 249).—Preliminary work suggests that a-amino-n-butyric acid (''quadrine'') may occur widely in proteins. Prolonged acid hydrolysis liberates N from the synthetic material, and protein hydrolysis must be enzymic. The name'' ** **soquadrine'' is suggested for a-amino** sobutyric acid.

Elucidation of structure of proteins. E. Husemann (Chem.-Zig., 1943, 67, 24—28).—A review. W. McC.

Physical and chemical properties of casein from various animal species. E. Kovács (Biochem. Z., 1940, 306, 74—76; cf. Gróh, A., 1934, 1119).—Examination of caseins from the milk of cow, sheep, goat, horse, and ass shows that the tyrosine, tryptophan, P, and S contents, $[a]_{0}^{0}$, and max. and min. absorption of ultra-violet light are subject to species variations of sufficient magnitude to permit identification of unmixed specimens. The magnitude is not sufficient to permit detection or determination of one casein in admixture with another or others or to detect adulteration in curds.

W. McC.

Composition of casein in milk.—See A., 1944, III, 818.

Cleavability of keratins treated with hot β -naphthol by proteinases.—See A., 1944, III, 840.

Structure and reactivity of wool keratin. XIII. Keratin fibres shortened by heat.—See A., 1944, III, 818.

Chromosomin, a protein constituent of chromosomes.—See A., 1944, III, 819.

Analysis of a partial hydrolysate of gramicidin by partition chromatography with starch. R. L. M. Synge (Biochem. J., 1944, 38, 285—294).—Specimens of gramicidin (I) from two different sources have been compared in respect of a no. of properties and further information has been obtained about the ultimate hydrolysis products. Preliminary data are provided on the use of raw potato starch as a medium for partition chromatography of free NH₂-acids and peptides. Analysis by this method of a partial hydrolysate of (I) has given alanine and l-vallylglycine, the latter in a yield embodying > half of the glycine of (I). The optical form of the valine residues of (I) is discussed in the light of new evidence and it is probable that d-valine residues will be discovered to be structural components of (I).

X.—MISCELLANEOUS UNCLASSIFIABLE SUBSTANCES.

Phenol groups in lignin, K. Freudenberg and H. Walch (Ber. 1943, 76, [B], 305—308).—Aryl toluenesulphonates are converted by N₂H₄ into p-C₆H₄Me·SO₂·NH·NH₂ and thence into N₂H₄ p-toluenesulphonate, which is determined by addition of the derived acid to CO(CH:CHPh)₂. This method shows the following contents of phenolic OH in the named varieties of lignin: cuproxam-1·5, HCl-1·8, technical HCl-lignin 1·9, lignin of ligninsulphonic acid 2·5, and deacetylated AcOH-lignin 3·0. R. S. C.

Substance, m.p. 260—270° (acetyl derivative, m.p. 192—194°), from black currants.—See A., 1944, III, 783.