Project Summary: Loan Approval Prediction using Machine Learning

1. Understanding the Dataset

- Load the data: We start by reading the training dataset into a DataFrame using pandas.
- Shape and basic info: Check how many rows and columns the dataset has (shape), and inspect its general structure (info()).
- **Statistics**: Use describe() to get insights like mean, median, and standard deviation for numerical columns.

2. Exploratory Data Analysis (EDA)

- Categorical relationships: Use crosstab() to see how variables like Credit_History relate to Loan_Status.
- Boxplots and Histograms:
 - Boxplots help visualize income ranges and detect outliers for columns like ApplicantIncome and LoanAmount.
 - Histograms display the distribution of values.

3. Data Cleaning and Missing Value Handling

- Use isnull().sum() to check missing values.
- Fill missing values:
 - Categorical variables are filled with their mode (most frequent value).
 - Numerical variables like LoanAmount are filled with their mean.
- Transform skewed numerical data:
 - Use np.log() to reduce skewness in columns like LoanAmount.

4. Feature Engineering

- Combine ApplicantIncome and CoapplicantIncome into TotalIncome for better predictive power.
- Apply logarithmic transformation (TotalIncome_log) to normalize the data.

5. Preparing Data for Machine Learning

- **Feature Selection**: Extract relevant columns (independent variables x and dependent variable y).
- Encoding Categorical Variables: Use LabelEncoder to convert text categories into numbers.

• **Splitting Data**: Divide data into training and testing sets with train_test_split().

6. Data Standardization

• Use StandardScaler to standardize features (scale them to have a mean of 0 and a standard deviation of 1) for better model performance.

7. Machine Learning Models

- Decision Tree Classifier:
 - Train a decision tree model on the training data.
 - Evaluate its accuracy on the test data.
- Naive Bayes Classifier:
 - o Train a Naive Bayes model.
 - Evaluate its accuracy on the test data.

8. Making Predictions on Test Data

- Clean and preprocess the test dataset (similar to training data).
- Make predictions using the trained Naive Bayes model.