

ASYMPTOTIC BEHAVIOUR OF ITERATES OF VOLTERRA OPERATORS ON $L^p(0, 1)$

S. P. EVESON

ABSTRACT. Given $k \in L^1(0, 1)$ satisfying certain smoothness and growth conditions at 0, we consider the Volterra convolution operator V_k defined on $L^p(0, 1)$ by

$$(V_k u)(t) = \int_0^t k(t-s)u(s) ds,$$

and its iterates $(V_k^n)_{n \in \mathbb{N}}$. We construct some much simpler sequences which, as $n \rightarrow \infty$, are asymptotically equal in the operator norm to V_k^n . This leads to a simple asymptotic formula for $\|V_k^n\|$ and to a simple ‘asymptotically extremal sequence’; that is, a sequence (u_n) in $L^p(0, 1)$ with $\|u_n\|_p = 1$ and $\|V_k^n u_n\| \sim \|V_k^n\|$ as $n \rightarrow \infty$. As an application, we derive a limit theorem for large deviations, which appears to be beyond the established theory.

1. INTRODUCTION

A number of authors have recently published results on the asymptotic behaviour of iterated Volterra operators on $L^2(0, 1)$. Lao and Whitley [4] established a number of estimates and provided numerical evidence for a conjecture about the operator norm of the Riemann-Liouville fractional integration operator which was subsequently proved by Kershaw [3] and by Little and Reade [5]. A somewhat stronger result was also independently established by Thorpe [7]. These results were generalised by the author to other Volterra convolution operators on $L^2(0, 1)$ and to some extent to other Schatten-von Neumann norms in [1].

We show here that analogues of most of these L^2 results also hold in L^p . The main result, Theorem 4.3, is that if $k(t) = t^r f(t)$ where $r > -1$ and f is differentiable at 0, and we define

$$(V_k u)(t) = \int_0^t k(t-s)u(s) ds,$$

then the asymptotic behaviour of V_k^n is the same as that of V_h^n where

$$h(t) = f(0)t^r e^{(k'(0)/k(0))t}.$$

The significance of this kernel is that there is a simple formula for its convolution powers, which leads to another asymptotically equivalent sequence of operators of rank 1 (Corollary 3.4), and an asymptotic formula for the operator norm:

$$\|V_k^n\| \sim \frac{C_p(|f(0)|\Gamma(r+1))^n e^{f'(0)/f(0)}}{\Gamma((r+1)n+1)}$$

as $n \rightarrow \infty$, where C_p is a constant depending only on p , defined below.

As an application of these results, we derive a limit theorem for large deviations (Section 5). The exact asymptotic formula for V_k^n may also have other applications: for example, it has recently been shown [2] that the Volterra operator V with kernel 1 is not supercyclic on any L^p space; since the proof depends on direct calculations on the iterates V^n , the results and techniques established below might lead to more general results on the same lines.

Date: September, 2004.

1991 *Mathematics Subject Classification.* 47G10.

Key words and phrases. Volterra operators.

2. NOTATION

The term ‘sequence’ will be applied equally to sequences indexed by natural numbers or to generalised sequences indexed by positive real numbers.

Throughout, p will denote a real number in the range $[1, \infty]$ and q its Hölder conjugate, so $1/p + 1/q = 1$ if $1 < p < \infty$ and 1 is conjugate to ∞ . We use $\|\cdot\|_p$ to denote the norm on L^p and the norm in the algebra of bounded operators acting on L^p . The duality pairing between $L^p(0, 1)$ on $L^q(0, 1)$ will be written using angle brackets: $\langle f, g \rangle = \int_0^1 fg$. We denote by C_p the constant

$$C_p = \begin{cases} \frac{1}{p^{1/p} q^{1/q}} & \text{if } 1 < p < \infty \\ 1 & \text{if } p = 1 \text{ or } p = \infty. \end{cases}$$

Convolution of suitable functions on $[0, 1]$ is defined by

$$(f * g)(t) = \int_0^t f(t-s)g(s) ds$$

for $t \in [0, 1]$ and the n -fold convolution power of f is denoted by f^{*n} . For $k \in L^1(0, 1)$, the Volterra convolution operator V_k associated with k is defined on $L^p(0, 1)$ by $V_k f = k * f$; it is well known that for any p , V_k is a bounded operator on $L^p(0, 1)$ with operator norm $\|V_k\|_p \leq \|k\|_1$.

If (a_n) and (b_n) are sequences of numbers, we shall say as usual that (a_n) and (b_n) are asymptotically equal, written $a_n \sim b_n$ as $n \rightarrow \infty$, if $a_n/b_n \rightarrow 1$ as $n \rightarrow \infty$.

Extending this idea to vectors, if (u_n) and (v_n) are sequences in a normed linear space, we shall say that $u_n \sim v_n$ as $n \rightarrow \infty$ if

$$\frac{\|u_n - v_n\|}{\|u_n\|} \rightarrow 0.$$

It is easy to check that this is an equivalence relation. If (T_n) is a sequence of bounded operators on a normed linear space and (u_n) a sequence of non-zero vectors, we shall call (u_n) *asymptotically extremal* for (T_n) if $\|T_n u_n\| \sim \|T_n\| \|u_n\|$ as $n \rightarrow \infty$. We shall make frequent use of the following simple facts:

2.1. Lemma.

- (1) If (u_n) and (v_n) are sequences in a normed space X and $u_n \sim v_n$ as $n \rightarrow \infty$, then $\|u_n\| \sim \|v_n\|$ as $n \rightarrow \infty$;
- (2) if in addition (S_n) and (T_n) are sequences of bounded linear operators on X such that $S_n \sim T_n$ as $n \rightarrow \infty$ and (u_n) is asymptotically extremal for (S_n) then (v_n) is asymptotically extremal for (T_n) .

For sequences of positive real numbers we also use the notation $a_n \lesssim b_n$ as $n \rightarrow \infty$ to mean that $\limsup_{n \rightarrow \infty} a_n/b_n \leq 1$, and $a_n \gtrsim b_n$ as $n \rightarrow \infty$ to mean that $\liminf_{n \rightarrow \infty} a_n/b_n \geq 1$.

3. KERNELS OF THE FORM $t^r e^{\mu t}$

It is easy to check using the Laplace transform that if $k(t) = t^r e^{\mu t}$ for some $r, \mu \in \mathbb{R}$ with $r > -1$, then the n -fold convolution power of k is given by

$$k^{*n}(t) = \frac{(\Gamma(r+1))^n}{\Gamma((r+1)n)} t^{(r+1)n-1} e^{\mu t}$$

and we can choose to make this the definition of k^{*n} for non-integer $n > 0$. For such kernels we can approximate k^{*n} by operators of rank 1 and thus obtain asymptotic results. In fact, we need only consider $k_0(t) = e^{\mu t}$, because

$$k_0^{*n}(t) = \frac{1}{\Gamma(n)} t^{n-1} e^{\mu t}$$

so $k^{*n} = (\Gamma(r+1))^n k_0^{*(r+1)n}$.

Throughout this section, S_λ and T_λ denote the operators on $L^p(0, 1)$ defined for any $\lambda \in \mathbb{R}$ by

$$(S_\lambda f)(t) = \int_0^1 e^{\lambda(t-s)} f(s) ds$$

$$(T_\lambda f)(t) = \int_0^t e^{\lambda(t-s)} f(s) ds.$$

We also write e_λ for the function $t \mapsto e^{\lambda t}$.

3.1. Lemma. *For any $p \in [1, \infty]$,*

$$\|S_\lambda\|_p \sim C_p \frac{e^\lambda}{\lambda}$$

as $\lambda \rightarrow \infty$ through \mathbb{R}^+ . (The constant C_p is defined in Section 2.) If f_λ is defined by

$$f_\lambda(t) = \begin{cases} e^{-g(\lambda)\lambda t} & \text{if } p = 1 \\ e^{-\lambda t/(p-1)} & \text{if } 1 < p < \infty \\ 1 & \text{if } p = \infty \end{cases}$$

where g is any function such that $g(\lambda) \rightarrow \infty$ as $\lambda \rightarrow \infty$, then (f_λ) is asymptotically extremal for (S_λ) .

Proof. We can write S_λ in the form

$$(S_\lambda f)(t) = e^{\lambda t} \int_0^1 e^{-\lambda s} f(s) ds = \langle f, e_{-\lambda} \rangle e_\lambda$$

from which we see immediately that $\|S_\lambda\| = \|e_\lambda\|_p \|e_{-\lambda}\|_q$ and an easy calculation leads to the asymptotic formula given above.

If $p > 1$ then f_λ is taken directly from the extremal case of Hölder's inequality. If $p = 1$ then there is no exact extremal function for S_λ , but it is a simple calculation to check that f_1 is asymptotically extremal for any g tending to ∞ at ∞ . \square

3.2. Lemma. *For any $p \in [1, \infty]$, the sequences of operators (S_λ) and (T_λ) defined above are asymptotically equal as $\lambda \rightarrow \infty$ through \mathbb{R}^+ . In particular, $\|T_\lambda\|_p \sim C_p e^\lambda / \lambda$.*

Proof. Intuitively, S_λ and T_λ are close to each other for large λ because their kernels differ only in the region $s > t$, where $e^{\lambda(t-s)}$ is small when λ is large. We can estimate the rate of decay of $\|S_\lambda - T_\lambda\|$ as follows:

$$\begin{aligned} ((S_\lambda - T_\lambda)f)(t) &= \int_t^1 e^{\lambda(t-s)} f(s) ds \\ &= \int_0^{1-t} e^{\lambda(t-1+u)} f(1-u) du \\ &= \int_0^{1-t} e^{-\lambda(1-t-u)} f(1-u) du \\ &= (e_{-\lambda} * Rf)(1-t) \end{aligned}$$

where R is the operator on $L^p(0, 1)$ defined by $(Rf)(t) = f(1-t)$. We thus have that

$$S_\lambda - T_\lambda = RV_{e_{-\lambda}}R.$$

Now, R is an isometric bijection on $L^p(0, 1)$, so $\|S_\lambda - T_\lambda\|_p = \|V_{e_{-\lambda}}\|_p$. We can now use the standard estimate to see that

$$\|V_{e_{-\lambda}}\|_p \leq \int_0^1 e^{-\lambda t} dt = \frac{1 - e^{-\lambda}}{\lambda} \sim \frac{1}{\lambda}$$

so by Lemma 3.1, $\|S_\lambda - T_\lambda\|/\|S_\lambda\| \lesssim C_p^{-1} e^{-\lambda}$ as $\lambda \rightarrow \infty$. This shows that $S_\lambda \sim T_\lambda$ as $\lambda \rightarrow \infty$, so $\|T_\lambda\|_p \sim \|S_\lambda\|_p \sim C_p e^\lambda / \lambda$ by Lemma 3.1. \square

3.3. Lemma. For some fixed $\mu \in \mathbb{R}$ and $p \in [1, \infty]$, let $k(t) = e^{\mu t}$ and consider the Volterra operator V_k acting on $L^p(0, 1)$. Then

$$V_k^n \sim \frac{e^{-(n-1)}}{\Gamma(n)} S_{n-1+\mu}$$

and in particular

$$\|V_k^n\|_p \sim \frac{C_p e^\mu}{\Gamma(n+1)}$$

as $n \rightarrow \infty$ through \mathbb{R}^+ .

Proof. We have

$$\begin{aligned} \left\| \Gamma(n)V_k^n - e^{-(n-1)}T_{n-1+\mu} \right\|_p &\leq \int_0^1 |t^{n-1}e^{\mu t} - e^{-(n-1)}e^{(n-1+\mu)t}| dt \\ &= \int_0^1 e^{-(n-1)}e^{(n-1+\mu)t} - t^{n-1}e^{\mu t} dt \end{aligned}$$

(since $t^{n-1}e^{\mu t} \leq e^{-(n-1)}e^{(n-1+\mu)t}$ for $t \in [0, 1]$)

$$\begin{aligned} &\leq e^\mu \int_0^1 e^{(n-1)(t-1)} - t^{n-1} dt \\ &< e^\mu \left(\frac{1}{n-1} - \frac{1}{n} \right) \\ &= \frac{e^\mu}{n(n-1)} \end{aligned}$$

$$\frac{\|\Gamma(n)V_k^n - e^{-(n-1)}T_{n-1+\mu}\|_p}{\|e^{-(n-1)}T_{n-1+\mu}\|_p} \lesssim \frac{e^\mu/n(n-1)}{e^{-(n-1)}C_p e^{(n-1+\mu)/n}} = \frac{1}{C_p(n-1)} \rightarrow 0.$$

using Lemma 3.2. This shows that $\Gamma(n)V_k^n \sim e^{-(n-1)}T_{n-1+\mu}$ as $n \rightarrow \infty$. But $S_\lambda \sim T_\lambda$ as $\lambda \rightarrow \infty$ by Lemma 3.2, so

$$V_k^n \sim \frac{e^{-(n-1)}}{\Gamma(n)} S_{n-1+\mu}$$

as claimed. The asymptotic formula for $\|V_k^n\|$ now follows from Lemma 2.1 and Lemma 3.1. \square

3.4. Corollary. Fix $\mu, r \in \mathbb{R}$ with $r > -1$, let $k(t) = t^r e^{\mu t}$ and consider the Volterra operator V_k acting on $L^p(0, 1)$ where $1 \leq p \leq \infty$. Then

$$V_k^n \sim \frac{\Gamma(r+1)^n e^{-((r+1)n-1)}}{\Gamma((r+1)n)} S_{(r+1)n-1+\mu}$$

and in particular

$$\|V_k^n\|_p \sim \frac{C_p e^\mu (\Gamma(r+1))^n}{\Gamma((r+1)n+1)}$$

as $n \rightarrow \infty$ through \mathbb{R}^+ .

Proof. As remarked at the beginning of the section, if we define $k_0(t) = e^{\mu t}$ then we have $k^{*n} = (\Gamma(r+1))^n k_0^{*(r+1)n}$. The result is now immediate from Lemma 3.3. \square

4. MORE GENERAL KERNELS

It is easy to see that if $h, k \in L^1(0, 1)$ with $0 \leq h \leq k$ then $\|V_h\|_p \leq \|V_k\|_p$ for any $p \in [1, \infty]$. This simple fact, in combination with the results from the previous section, allows us to deduce asymptotic results for a large class of kernels.

4.1. Lemma. Suppose k is a measurable function on $[0, 1]$ and there exist real constants c, μ, ν, r with $c > 0$ and $r > 1$ such that

$$ct^r e^{\mu t} \leq k(t) \leq ct^r e^{\nu t}$$

for $t \in [0, 1]$. Then for any $\delta \in (0, 1)$, any $j \in \mathbb{N}$ and any polynomial P ,

$$\frac{P(n) \int_0^{1-\delta} k^{*(n-j)}}{\|V_k^n\|_p} \rightarrow 0$$

as $n \rightarrow \infty$.

Proof. Taking the $(n - j)$ -fold convolution power of the right-hand inequality gives

$$k^{*(n-j)}(t) \leq \frac{(c\Gamma(r+1))^n}{\Gamma((r+1)(n-j))} t^{(r+1)(n-j)-1} e^{\nu t}$$

Using the estimate $e^{\nu t} \leq \max(1, e^\nu)$, we have if $(r+1)(n-j) > 1$,

$$\begin{aligned} \int_0^{1-\delta} k^{*(n-j)} &= \frac{(c\Gamma(r+1))^{n-j}}{\Gamma((r+1)(n-j))} \int_0^{1-\delta} t^{(r+1)(n-j)-1} e^{\nu t} dt \\ &\leq \frac{(c\Gamma(r+1))^{n-j}}{\Gamma((r+1)(n-j))} \frac{(1-\delta)^{(r+1)(n-j)} \max(1, e^\nu)}{(r+1)(n-j)}. \end{aligned}$$

We can also see from the n -fold convolution power of the left-hand inequality and Corollary 3.4 that

$$\|V_k^n\|_p \gtrsim \frac{C_p e^\mu (c\Gamma(r+1))^n}{\Gamma((r+1)n+1)}.$$

Combining these gives

$$\frac{P(n) \int_0^{1-\delta} k^{*(n-j)}}{\|V_k^n\|_p} \lesssim \frac{P(n) \max(1, e^\nu) \Gamma((r+1)n+1) (1-\delta)^{(r+1)(n-j)}}{C_p e^\mu (c\Gamma(r+1))^j \Gamma((r+1)(n-j)) (r+1)(n-j)}.$$

It is an immediate consequence of Stirling's formula that $\Gamma(n+s)/\Gamma(n) \sim n^s$ as $n \rightarrow \infty$ for any s , from which it follows that the right-hand side tends to zero as $n \rightarrow \infty$. \square

We can now establish a localisation result: for a wide range of kernels, the asymptotic behaviour of V_k^n is determined by the values of k in any neighbourhood of 0.

4.2. Lemma. Suppose $h, k \in L^1(0, 1)$, that h and k are equal on the interval $[0, \delta]$ for some $\delta \in (0, 1)$ and that there exist real constants c, μ, ν, r with $c > 0$ and $r > 1$ such that

$$ct^r e^{\mu t} \leq h(t) \leq ct^r e^{\nu t}$$

for $t \in [0, 1]$. Then for any $p \in [1, \infty]$, $V_h^n \sim V_k^n$ on $L^p(0, 1)$ as $n \rightarrow \infty$.

Proof. Let $g = k - h$, so $k = h + g$ and g is zero on $[0, \delta]$. We can use the binomial theorem in the convolution algebra $L^1(0, 1)$ to write

$$k^{*n} = (h+g)^{*n} = h^{*n} + g^{*n} + \sum_{j=1}^{n-1} \binom{n}{j} g^{*j} * h^{*(n-j)}.$$

Now, if we were working on the whole of \mathbb{R} , then g^{*n} would be supported on $[n\delta, n]$ and $g^{*j} * h^{*(n-j)}$ would be supported on $[j\delta, n]$. But we are working in $L^1(0, 1)$, so if we choose $N > 1/\delta$ then for $n \geq N$ we have

$$k^{*n} = h^{*n} + \sum_{j=1}^{N-1} \binom{n}{j} g^{*j} * h^{*(n-j)}.$$

Moreover, since g^{*j} is supported to the right of $j\delta$, we have

$$g^{*j} * h^{*(n-j)} = g^{*j} * (h^{*(n-j)} \chi_{[0, 1-j\delta]})$$

and hence

$$k^{*n} - h^{*n} = \sum_{j=1}^{N-1} \binom{n}{j} g^{*j} * (h^{*(n-j)} \chi_{[0, 1-j\delta]}).$$

We can therefore estimate

$$\frac{\|V_k^n - V_h^n\|_p}{\|V_h^n\|_p} \leq \sum_{j=1}^N \binom{n}{j} \frac{\left(\int_0^1 |g^{*j}|\right) \left(\int_0^{1-j\delta} h^{*(n-j)}\right)}{\|V_h^n\|_p}.$$

This is a finite sum of terms, all of which tend to zero by Lemma 4.1, so we can conclude that $V_h^n \sim V_k^n$ as $n \rightarrow \infty$. \square

We are now in a position to prove the main result.

4.3. Theorem. Suppose $k \in L^1(0, 1)$ is such that $k(t) = t^r f(t)$ where $r > -1$, $f(0) \neq 0$ and $f'(0)$ exists, and let

$$h(t) = f(0)t^r e^{(f'(0)/f(0))t}.$$

Then for any $p \in [1, \infty]$, $V_k^n \sim V_h^n$ on $L^p(0, 1)$. It follows that V_k^n is also asymptotically equivalent to the sequence of rank 1 operators described in Corollary 3.4; in particular:

$$\|V_k^n\|_p \sim \frac{C_p(|f(0)|\Gamma(r+1))^n e^{f'(0)/f(0)}}{\Gamma((r+1)n+1)}$$

and if

$$f_n(t) = \begin{cases} e^{-g(n)nt} & \text{if } p = 1 \\ e^{-((r+1)n-1+k'(0)/k(0))t/(p-1)} & \text{if } 1 < p < \infty \\ 1 & \text{if } p = \infty \end{cases}$$

where g is any function such that $g(n) \rightarrow \infty$ as $n \rightarrow \infty$, then (f_n) is asymptotically extremal for (V_k^n) .

Proof. For $\eta \in \mathbb{R}$, let

$$h_\eta(t) = f(0)t^r e^{(f'(0)/f(0)+\eta)t}.$$

We can assume without loss of generality that $f(0) > 0$, so $\log f$ is differentiable at 0 and hence for any $\eta > 0$ there exists $\delta_\eta \in (0, 1)$ such that if $0 < t \leq \delta_\eta$ then

$$(\log f)'(0) - \eta \leq \frac{\log f(t) - \log f(0)}{t} \leq (\log f)'(0) + \eta$$

or equivalently

$$f(0)t^r e^{(f'(0)/f(0)-\eta)t} \leq k(t) \leq f(0)t^r e^{(f'(0)/f(0)+\eta)t}.$$

Now let

$$k_\eta(t) = \begin{cases} k(t) & \text{if } 0 \leq t \leq \delta_\eta \\ h(t) & \text{if } \delta_\eta < t \leq 1 \end{cases}$$

so $h_{-\eta} \leq k_\eta \leq h_\eta$ and $h_{-\eta} \leq h \leq h_\eta$. Because all the functions involved are non-negative, we can take the n -fold convolution power of these inequalities to give $h_{-\eta}^{*n} \leq k_\eta^{*n} \leq h_\eta^{*n}$ and $h_{-\eta}^{*n} \leq h^{*n} \leq h_\eta^{*n}$. It follows that $|k_\eta^{*n} - h^{*n}| \leq h_\eta^{*n} - h_{-\eta}^{*n}$ and we can integrate to give, abbreviating $f'(0)/f(0)$ to μ ,

$$\begin{aligned} \|V_{k_\eta}^n - V_h^n\|_p &\leq \frac{(f(0)\Gamma(r+1))^n}{\Gamma((r+1)n)} \int_0^1 t^{(r+1)n-1} (e^{(\mu+\eta)t} - e^{(\mu-\eta)t}) dt \\ &\leq \frac{(f(0)\Gamma(r+1))^n}{\Gamma((r+1)n)} (e^{\mu+\eta} - e^{\mu-\eta}) \int_0^1 t^{(r+1)n-1} dt \\ &= \frac{(f(0)\Gamma(r+1))^n}{\Gamma((r+1)n)} \frac{1}{(r+1)n} (e^{\mu+\eta} - e^{\mu-\eta}) \\ &\leq \frac{K_1(f(0)\Gamma(r+1))^n \eta}{\Gamma((r+1)n+1)} \end{aligned}$$

for all $n \in \mathbb{N}$ and all $\eta \in [0, 1]$, say, where K_1 is a constant independent of n and η . We also have

$$k_\eta^{*n} \geq h_{-\eta}^{*n} \geq e^{-\eta} h^{*n}$$

so $\|V_{k_\eta}^n\|_p \geq e^{-\eta} \|V_h^n\|_p$. But

$$\|V_h^n\|_p \sim \frac{C_p(f(0)\Gamma(r+1))^n e^\mu}{\Gamma((r+1)n+1)}$$

so in particular

$$\|V_h^n\|_p \geq \frac{K_2(f(0)\Gamma(r+1))^n e^\mu}{\Gamma((r+1)n+1)}$$

for all $n \in \mathbb{N}$, where K_2 is independent of n . Combining all these, we see that

$$\frac{\|V_{k_\eta}^n - V_h^n\|_p}{\|V_{k_\eta}^n\|_p} \leq K_3 \eta e^\eta$$

for all $n \in \mathbb{N}$ and all $\eta \in [0, 1]$, where K_3 is independent of n and η .

Now, for any $\varepsilon > 0$ we can find $\eta \in (0, 1)$ such that

$$\frac{\|V_{k_\eta}^n - V_h^n\|}{\|V_{k_\eta}^n\|} < \frac{\varepsilon}{2e}$$

for all $n \in \mathbb{N}$. We can also use Lemma 4.2 to find $N \in \mathbb{N}$ such that if $n > N$ then

$$\frac{\|V_k^n - V_{k_\eta}^n\|_p}{\|V_{k_\eta}^n\|_p} < \frac{\varepsilon}{2e}$$

and hence

$$\frac{\|V_k^n - V_h^n\|_p}{\|V_h^n\|_p} < \frac{\varepsilon}{e}.$$

But $k_\eta^{*n} \leq h_\eta^{*n} \leq e^\eta h^{*n} \leq e h^{*n}$ since $\eta \in (0, 1)$. We therefore have $\|V_{k_\eta}^n\| \leq e \|V_h^n\|$, so for $n > N$ we have

$$\frac{\|V_k^n - V_h^n\|_p}{\|V_h^n\|_p} < \varepsilon$$

showing that (V_k^n) and (V_h^n) are asymptotically equal. Their norms are thus also asymptotically equal so we have

$$\|V_k^n\|_p \sim \frac{C_p(f(0)\Gamma(r+1))^n e^\mu}{\Gamma((r+1)n+1)}$$

by Corollary 3.4, as claimed. We also know from Corollary 3.4 that

$$V_h^n \sim \frac{\Gamma(r+1)^n e^{-((r+1)n-1)}}{\Gamma((r+1)n)} S_{(r+1)n-1+\mu}$$

as $n \rightarrow \infty$, where S_λ and T_λ is as defined in Section 3, so we have

$$V_k^n \sim \frac{\Gamma(r+1)^n e^{-((r+1)n-1)}}{\Gamma((r+1)n)} S_{(r+1)n-1+\mu}.$$

By Lemma 2.1, these two sequences of operators have the same asymptotically extremal sequences of vectors. An appropriate sequence for (S_λ) was identified in Lemma 3.1; substituting $\lambda = (r+1)n-1+k'(0)/k(0)$ gives the sequence in the statement of the theorem. \square

5. FURTHER REMARKS ON THE CASE $p = 1$: A PROBABILISTIC INTERPRETATION

In the case $p = 1$, the estimate used throughout is in fact exact: $\|V_k\|_1 = \|k\|_1$ (consider the action of V_k on an approximate identity). Theorem 4.3 thus gives the following result about powers of elements of the Volterra algebra $L^1(0, 1)$:

5.1. Corollary. *Suppose $k \in L^1(0, 1)$ is such that $k(t) = t^r f(t)$ where $r > -1$, $f(0) \neq 0$ and $f'(0)$ exists. Then*

$$\|k^{*n}\|_1 \sim \frac{(|f(0)|\Gamma(r+1))^n e^{f'(0)/f(0)}}{\Gamma((r+1)n+1)}$$

as $n \rightarrow \infty$.

If $k \in L^1(0, \infty)$, $k \geq 0$ a.e. and $\int_0^\infty k = 1$ then we can interpret k as the probability density of a random variable and k^{*n} as the density of the sum of n independent random variables with density k . The L^1 norm of the restriction to $(0, 1)$ of k^{*n} is then the probability that this sum is no larger than 1.

5.2. Corollary. Suppose $k \in L^1(0, \infty)$ is a probability density function and that $k(t) = t^r f(t)$ where $r > -1$, $f(0) \neq 0$ and $f'(0)$ exists. Let (X_n) be a sequence of independent random variables with this density, and let $S_n = X_1 + X_2 + \cdots + X_n$. Then

$$\mathbf{P}(S_n \leq 1) \sim \frac{(f(0)\Gamma(r+1))^n e^{f'(0)/f(0)}}{\Gamma((r+1)n+1)}$$

as $n \rightarrow \infty$.

This limit theorem seems to go beyond the scope of known results on such sums, such as those in Petrov [6, Section 5.8]. In the notation of that section, we have $x = O(n^{1/2})$ but not $x = o(n^{1/2})$ which, as explicitly noted, is not sufficient for the results there to apply.

REFERENCES

- [1] S. P. Eveson, *Norms of iterates of Volterra operators on L^2* , Journal of Operator Theory (2003), no. 2, 369–386.
- [2] Eva A. Gallardo-Gutiérrez and Alfonso Montes-Rodríguez, *The Volterra operator is not supercyclic*, Integral Equations and Operator Theory (to appear).
- [3] D. Kershaw, *Operator norms of powers of the Volterra operator*, Journal of Integral Equations and Applications **11** (1999), no. 3, 351–362.
- [4] Norman Lao and Robert Whitley, *Norms of powers of the Volterra operator*, Integral Equations and Operator Theory **27** (1997), 419–425.
- [5] G. Little and J. B. Reade, *Estimates for the norm of the nth indefinite integral*, Bull. London Math. Soc. **30** (1998), no. 5, 539–542.
- [6] Valentin V. Petrov, *Limit theorems of probability theory*, Oxford Studies in Probability, vol. 4, Oxford University Press, 1995.
- [7] B. Thorpe, *The norm of powers of the indefinite integral operator on $(0, 1)$* , Bull. London. Math. Soc **30** (1998), no. 5, 543–548.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF YORK, HESLINGTON, YORK YO10 5DD, ENGLAND

E-mail address: spe1@york.ac.uk