Extended Hierarchical Temporal Memory for Motion Anomaly Detection

Ilya Daylidyonok, Anastasiya Frolenkova, Alelsandr I. Panov

Federal Research Center "Computer Science and Control"
Russian Academy of Sciences (RAS)
Moscow Institute of Physics and Technolgy
Moscow

August 24 - BICA 2018

STRL Architecture

- Cognitive functions modeling and construction of models that explain psychological phenomena.
- Algorithm of synthesizing the plan of behavior (algorithms MAP, MultiMAP, GoalMAP).
- Solving symbol grounding and symbol anchoring problems.
- Reconstruction of sign based world model of the actor based on texts.
- Text generation based on specific world models (virtual assistants).
- Multi-level architectures of control (robotic systems).

Sign based world model

A component of knowledge representation is a sign:

- in sense of cultural-historical approach by L. Vygotsky,
- in sense of activity theory by A. Leontiev.

Sign based world model

A component of knowledge representation is a sign:

- in sense of cultural-historical approach by L. Vygotsky,
- in sense of activity theory by A. Leontiev.

Sign based world model

A component of knowledge representation is a sign:

- in sense of cultural-historical approach by L. Vygotsky,
- in sense of activity theory by A. Leontiev.

Supported ideas in psychology and biology:

- neurophysiological data (Edelman, Ivanitsky, Mountcastle etc.),
- two and three levels psychological theories (Stanovich, Kahneman).

Osipov, G. S., A. I. Panov, and N. V. Chudova. "Behavior Control as a Function of Consciousness. II. Synthesis of a Behavior Plan". *Journal of Computer and Systems Sciences International*. 2015.

 "Behavior control as a function of consciousness. I. World model and goal setting". Journal of Computer and Systems Sciences International, 2014.

Modeling of world model

Heterarchical causal network:

$$W_x = \langle V_x, E_x \rangle$$

$$v \to Z^{x}(s), x \in \{p, m, a\}$$

Panov, Aleksandr I. "Behavior Planning of Intelligent Agent with Sign World Model". Biologically Inspired Cognitive Architectures. 2017.

Osipov, Gennady S. "Signs-Based vs. Symbolic Models".

Advances in Artificial Intelligence and Soft Computing.

Sign world model

Semiotic network

$$\Omega = \langle W_p, W_m, W_a, R_n, \Theta \rangle$$

consisting of three causal network:

- $W_p = \langle 2^P, \mathfrak{R}_P \rangle$ causal network on the set of sign images,
- $W_a = \langle 2^A, \mathfrak{R}_A \rangle$ causal network on the set of sign meanings,
- $W_m = \langle 2^M, \mathfrak{R}_M \rangle$ causal network on the set of sign significances.

Sign world model

Formation of causal matrices

Formation of causal matrices

В Markov chains Markov chains $\alpha(c,g)$ $\beta(c,g)$ (1)Coincidence (4) Coincidence Pattern Matrix C Pattern Matrix C

Anomaly Detection: Dataset

- Carnegie Mellon University Motion Capture Database.
- 2235 videos of 144 people performing different actions: walking, running, jumping and so on.
- 41 markers were positioned on a different actors' body parts and their positions were recorded during the action performance.

Anomaly Detection: Types

- Frames from other videos were inserted to produce an anomaly.
- Type 1: the object quickly changed the position.
- Type 2: the movements were similar, but different actions were performed.

Schema of the processing

Preprocessing:

- Image loading.
- Algorithms which control the sensor's movement around the image.

Score computing:

$$score = \frac{\sum_{i=0}^{n} \left(ac_{expected}^{(i)} - ac_{real}^{(i)}\right)^{2}}{n}$$

Experimental results

_							
#	Original	# of	Anomaly	# of anoma-	# of detected	Score	Comments
	motion	frames	motion	lous frames	anomalous		
					frames		
1	walk	21	run	5	2	0.19	
2	walk	21	walk and	12	5	0.19	
			turn right				
3	walk	21	jump	17	15	0.08	
4	walk	21	gorilla	12	2	0.40	wrong frames
							marked as
							anomaly
5	walk back	136	scared	41	2	0.28	
	and forth		walk				
6	walk back	136	dance	31	2*	0.24	
	and forth						
7	walk back	136	bad leg	22	2*	0.14	anomaly starts
	and forth		walk				near the begin-
							ning
8	jump	30	walk back	15	16	0.03	motion and loca-
			and forth				tion change
9	walk back	136	walk back	-	2*	-	test for sudden
	and forth		and forth				location change

^{*} Only first and last frames of anomaly were detected

Experimental results

Extensions:

- A preprocessing step between layers: performing a convolution of temporal memory region's output with some function (kernel).
- Feedback: producing commands to a sensor's view which will move it
 accordingly, therefore focusing on different parts of the image. It will
 have an SDR of combined information as input: the output of higher
 level's temporal memory, the current frame of the video and reward.

Experimental results

Thank you for your attention!

panov.ai@mipt.ru