Homework 3 - Statistical modelling and inference

October 29, 2015

Student ID
73539
125593
125604

1 Homework lecture 5

1.1 Excercise 1

To show: $f(\mu) = (\mu - a) + \lambda |\mu|$ is minimised at $f(a - \frac{\lambda}{2})$ for $\mu > 0$

Starting from the equation, which is by definition a piecewise function:

$$f(\mu) = (\mu - a) + \lambda |\mu| = \begin{cases} (\mu - a) + \lambda \mu \\ (\mu - a) - \lambda \mu \end{cases}$$

Since we should find the minimum in the positive area, we ignore the negative part and take the derivative of the positive side and set it to zero:

$$\frac{\partial f(\mu)}{\partial \mu} = 0$$

$$2(\mu - a) + \lambda = 0$$

$$2(\mu - a) = -\lambda$$

$$\mu = (-\frac{\lambda}{2} + a)$$

Take the second derivative to indentify the character of the extremum:

$$\frac{\partial^2 f(\mu)}{\partial \mu^2} = 2$$

The second derivative is greater than zero which implies a **minimum**.

1.2 Excercise 2

To show: Closed form of w_{MAP} for $t_n \sim N(w, q^{-1}I)$ with prior $p(w) \propto exp\{-(\delta/2)\}\sum_i |w_i|$

Prerquisite remarks:

• The letter c denotes a constant (see line 5 and 6)

Excercise:

$$\begin{split} & \boldsymbol{w}_{MAP} = \arg\max\log p(w|t) \\ & = \arg\max\log p(t|w) + \log p(w) \\ & = \arg\max\log\prod_n p(t_n|w) + \log\exp\{-(\delta/2)\sum_i |w_i|\} \\ & = \arg\max\sum_n \log N(w_n, q^{-1}\boldsymbol{I}) + \log\exp\{-(\delta/2)\sum_i |w_i|\} \\ & = \arg\max\sum_n c\log\exp\{-\frac{1}{2}q(t_n-w)^T(t-w)\} + \log\exp\{-(\delta/2)\sum_i |w_i|\} \\ & = \arg\max\sum_n -\frac{c}{2}q(t_n-w)^T(t_n-w) - (\delta/2)\sum_i |w_i| \\ & \propto \min\sum_n q(t_n-w)^T(t_n-w) + \delta\sum_i |w_i| \\ & = \min q\sum_n \sum_i (t_{ni}-w_i)^2 + \delta\sum_i |w_i| \end{split}$$

Minimise that function by setting the deriviative to zero:

$$\frac{\partial}{\partial w} = 0$$

$$= -2q \sum_{n} (t_{ni} - w_i) + \delta \frac{w_i}{|w_i|} = 0$$

Note that we will only consider the positive side of the absolute part. Therefore $\frac{w_i}{|w_i|}$ simplyfies to (+)1 and the equation becomes:

$$= -2q \sum_{n} (t_{ni} - w_i) + \delta = 0$$

$$\sum_{n} (t_{ni} - w_i) = \frac{\delta}{2} q^{-1}$$

$$-Nw_i + \sum_{n} t_{ni} = \frac{\delta}{2} q^{-1}$$

$$Nw_i + \frac{\delta}{2} q^{-1} = \sum_{n} t_{ni}$$

$$w_i = (\sum_{n} t_{ni} - \frac{\delta}{2} q^{-1}) \frac{1}{N}$$

1.3 Excercises in R

Ancillary remarks on results (see page 4 - 6):

1.3.1 Learn g from the data

At first we want to learn g from the data. Note that we also have a second parameter δ . Both g and δ are not independent from each other and interact somehow (see lecture slides).

Procedure to find stable g:

- 1. Fix a value for δ
- 2. Define a starting value for g
- 3. Compute the predictive mean using those inputs
- 4. Compute the precision of the residuals
- 5. Start again from step 2 using this new precision
- 6. Break in case of a stable value

Results:

- Since we are starting from the pure data as the only information, the first idea was to start with the precision of t (implying predictive mean of zero)
- Quick development towards a stable value ($g \approx 103.13, for \delta = 1$) after approx. 13 iterations (c.f. Figure 1 (a),(b), (c))
- Starting point seem irrelevant based on two abitrary chosen starting points (c.f. Figure 1 (b), (c))
- For increasing δ the stable value of g decreases (c.f. Figure 1 (d))

1.3.2 Sensitivity of δ

Results:

- Low values for δ leads towards overfitting (c.f Figure 2 (a),(b), (c),(d))
- Low values for δ result in a broader range of posterior draws (c.f Figure 3 (a))
- Increasing δ result in closer posterior draws (c.f Figure 3 (a), (b), (c),(d))

Figure 1: Find stable value for g

Figure 2: Different level of delta

Figure 3: Posterior draws for different levels of δ