IDS Lecture 19: Entailment of Constraints 2

Keys, candidate keys and prime candidate

Let R be a relation with set of attributes U and FDs F. $X \in U$ is a **key** for R if $F \models X \to U$. Equivalently, X is a key if $C_F(X) = U$ as $C_F(X) = U \iff \{A \mid F \models X \to A\}$.

Candidate Key (minimal set of attributes) X such that $\forall Y \subset X$, Y is not a key.

Prime attribute an attribute of a candidate key.

Computing all Candidate Keys

Algorithm CandidateKeys($U : \{Attribute\}, F : \{FD\}) \rightarrow CK : \{\{Attribute\}\}$

```
1. ck:=\emptyset
2. G(V,E):=V=\{v\,|\,v\in\mathcal{P}(U)\},\,E=\{\overrightarrow{XY}\,|\,X\in v,\,Y\in V,\,X-Y=\{A\}\}
3. while G is not empty:
```

- 4. v := node without children
- 5. **if** $C_F(X) = U$:
- $6. ck := ck \cup \{X\}$
- 7. $G := G (X + X_{ancestors})$
- 8. **else**:
- 9. G := G X
- more optimal variant in the tutorial (lazy expansion of graph)

Implication of Inclusion Dependencies (INDs)

Inclusion Dependency Every X is a Y, such as in a foreign key constraint. *Example:* every manager is an employee.

Axiomatisation

Reflexivity $R[X] \subseteq R[X]$

Transitivity $R[X] \subseteq S[Y] \land S[Y] \subseteq T[Z] \Rightarrow R[X] \subseteq R[Z]$

Projection $R[X,Y] \subseteq S[W,Z]$ with $|X| = |W| \Rightarrow R[X] \subseteq S[W]$

Permutation $R[A_1,...,A_n] \subseteq S[B_1,...,B_n] \Rightarrow R[A_{i_1},...,A_{i_n}]S[B_{i_1},...,B_{i_n}]$ where $i_1,...i_n$ is a permutation of 1,...,n.

FDs and INDs Together

We have shown,

- 1. Given a set F of FDs and an FD f we can decide whether $F \models f$
- 2. Given a set G of INDs and an INDs g we can decide whether $G \models g$

Implication Problem: Asking $F \cup G \models f$ or $F \cup G \models g$ is UNDECIDABLE, no algorithm exists can always solve it. This holds for the case of keys and foreign keys .