Proyecto Integrador

 ${\bf BMJIvan}$

August 2021

1. Definiciones

Mecatronics journal	1991 M, E	Balance óptimo de estructuras mecánicas y control
IEEE/ASME	1996 M, E, C	Integración sinérgica, diseño y manufactura de producto y procesos
Bishop	2002 M, E, I	Proceso en evolución, integración, sinérgica
Amerogen	2003 M, E	Diseño como un todo
Iserman	2005 M, E, I, C	Integrar sistemas, diseño simultaneo, balance óptimo entre estructuras, actuadores, sensores, información y control
Bolton	2008 M, E, C	Completa integración
De Silva	2008 M, E, I, C	Sinergia y diseño integrado, sistemas electromecánicos, grado de inteligencia, más preciso, exacto, seguro, flexible, funcional y mecánicamente menos complejo
Sheltty y Kolk	2011 M, E, I	Diseño óptimo, productos electromecánicos, concurrencia y sinergia
Merzouki	2013 M, E, C	Mejorar sistemas mecánicos con control inteligente. Remplazar componentes mecánicos con electrónica
Cetinkowt	2015 M, E, I	Integración sinérgica, nivel de sistemas. Diseño simultaneo para obtener un diseño óptimo

Tabla 1: Definiciones

Figura 1: Ogata: Sistema control industrial

Figura 2: Bishop: Sistema mecatrónico

Figura 3: Shetty: Sistema mecatrónico

2. Proyectos

- Proyecto: Conjunto de actividades temporales para obtener un producto o un servicio.
- PMBOK: Project Management Body of Knowledge (PMP)
- Hito: Resultado medible atemporal

Figura 4: Ciclo de vida de proyecto

Figura 5: Triangulo de hierro

3. Ingeniería concurrente y de sistemas

1. Ingeniería concurrente (CE): Es un enfoque sistematizado para el diseño concurrente de productos y procesos, considerando desde el inicio todos los elementos que componen el ciclo de vida del producto.

Principales objetivos Incrementar la calidad del producto, la reducción general del gasto y la reducción del tiempo de desarrollo. Principales características

- Mejor definición del problema de diseño
- Implementación de herramientas de manufactura y ensamble en la etapa de diseño
- Mejora de la estimación del costo
- Reducción de problemas entre los procesos de diseño y manufactura
- 2. Ingeniería de sistemas: Consiste en el desarrollo de sistemas que sean capaces de satisfacer requerimientos dentro de un conjunto de restricciones bien definidas.

Sistema: Es un conjunto o colección de diferentes elementos que en conjunto producen resultados que no se podrían obtener de forma independiente. Modelo TTDSE (Traditional Top-Down System Engineering) Se compone de dos etapas principales

- S1: Análisis de necesidades, definición del sistema, definición de subsistemas, definición de componentes y definición de configuración de componentes.
- S2: Verificación desde la configuración de componentes al sistema final, validación y aprobando los resultados obtenidos. (modelo V)

Figura 6: Modelo V

Modelo espiral: Consiste de cuatro procesos

■ Planificación: investigación

Análisis y evaluación de riesgos: diseño y prototipo

Desarrollo y pruebas

• Aprobación: mantenimiento, retroalimentación

Figura 7: Modelo en espiral

Existen tres tipos de arquitecturas para sistemas

- A1: Arquitectura funcional-lógica
 Define que es lo que el sistema debe hacer, las acciones o funciones del sistema. Incluye modelos de información, procesos y el comportamiento inicial. (Modos de operación)
- A2: Arquitectura física Define los componentes, ensambles y elementos físicos que se requieren para el cumplimiento de las funciones, también representa las conexiones físicas entre componentes, sistemas, subsistemas y elementos.
- A3: Arquitectura de asignación Es el mapeo o relación de funciones y recursos necesarios. Se define el modelo final de comportamiento del sistema.

Figura 8: Arquitectura de asignación

Figura 9: Sistema de funciones