Mean Sensitivity Proofs

March 9, 2020

Definition 1. The sample mean of database X of size n is

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

1 NEIGHBORING DEFINITION: CHANGE ONE

1.1 ℓ_1 -sensitivity

Theorem 1. Say database X has size n and is bounded above by M and bounded below by m. Then \bar{X} has ℓ_1 -sensitivity bounded above by

$$\frac{M-m}{n}$$
.

Proof. Say X and X' are neighboring databases which differ at data-point x_j . Then

$$\Delta \bar{X} = \max_{X,X'} \left| \bar{X} - \bar{X}' \right|$$

$$= \max_{X,X'} \frac{1}{n} \left| \left(\sum_{\{i \in [n] | i \neq j\}} x_i \right) + x_j - \left(\sum_{\{i \in [n] | i \neq j\}} x_i' \right) + x_j' \right|$$

$$= \max_{X,X'} \frac{1}{n} \left| x_j - x_j' \right|$$

$$\leq \frac{M - m}{n}.$$

•,• •,

1.2 ℓ_2 -sensitivity

2 NEIGHBORING DEFINITION: ADD/DROP ONE

2.1 ℓ_1 -sensitivity

Theorem 2. Say database X has size n and is bounded above by M and bounded below by m. Then \bar{X} has ℓ_1 -sensitivity bounded above by

$$\frac{M-m}{n}$$
.

Proof. WLOG assume point being added/subtracted is x_n . Adding a point: $X' = X \cup x$

$$|\bar{X} - \bar{X}'| = \left| \frac{1}{n} \sum_{i=1}^{n} x_i - \frac{1}{n+1} \sum_{i=1}^{n+1} x_i \right|$$

$$= \left| \left(\frac{1}{n} - \frac{1}{n+1} \right) \sum_{i=1}^{n} x_i - \frac{x}{n+1} \right|$$

$$= \frac{1}{n+1} \left| \frac{1}{n} \sum_{i=1}^{n} x_i - x \right|$$

$$\leq \frac{|M-m|}{n+1}$$

Taking a point away: $X' = X \setminus \{x\}$

$$|\bar{X} - \bar{X}'| = \left| \frac{1}{n-1} \sum_{i=1}^{n-1} x_i - \frac{1}{n} \sum_{i=1}^n x_i \right|$$

$$= \left| \left(\frac{1}{n-1} - \frac{1}{n} \right) \sum_{i=1}^{n-1} x_i - \frac{x}{n} \right|$$

$$= \frac{1}{n} \left| \frac{1}{n-1} \sum_{i=1}^{n-1} x_i - x \right|$$

$$\leq \frac{|M - m|}{n}$$

2.2 ℓ_2 -sensitivity