- Función exponencial Las funciones de las forma $f(x) = a^x$ donde la base a es una constante positiva y $a \ne 1$ se llaman funciones exponenciales. Dom(f) = R y Rec $(f) = R^+$.
 - $a^x \neq 0 \ \forall x$
 - $a^0 = 1 \forall a$
 - $a^1=a$
 - En particular si a=e, tenemos $f(x)=e^x$.
 - Son funciones crecientes si a > 1 y decrecientes si 0 < a < 1.

El número e, conocido como número de Euler o constante de Napier:

El número de Euler puede definirse de distintas formas, una de ellas es mediante la serie ("suma infinita")

$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = \frac{1}{0!} + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots = 1 + 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

Este valor es aproximadamente 2,718281828459045. El número e es irracional. Más aún, es un número trascendente, i.e. no es solución de ninguna ecuación algebraica a coeficientes racionales. Observemos que, por ejemplo, el número $\sqrt{2}$ es irracional pero no es trascendente, ya que es solución de la ecuación $e^2-2=0$. Para la lectura de una demostración de la trascendencia de e recomendamos la lectura del capítulo 20 del libro Cálculo Infinitesimal, segunda edición, de Michael Spivak.

Función logarítmica Son funciones de la forma $f(x) = \log_a x$ donde la base a es una constante positiva y $a \ne 1$. Se trata de las funciones *inversas* de las exponenciales (las estudiaremos en detalle más adelante). En cada caso $Dom(f) = R^+$ y Rec(f) = R

$$\log_a x = y \iff a^y = x$$

En particular, $f(a) = \log_a a = 1$ pues $a^1 = a$.

Además
$$f(1) = \log_a 1 = y \Leftrightarrow a^y = 1 \Leftrightarrow y = 0$$
 pues $a \neq 1$

Cuando a = e notamos $\log_e x = \ln x$ y lo llamamos *logaritmo natural de x*.

Son funciones crecientes si a > 1 y decrecientes si 0 < a < 1.

Función logaritmo y exponencial: Si a > 0 y $a \ne 1$ la función exponencial $f(x) = a^x$ es creciente o decreciente, luego es inyectiva, entonces para cada $y \in R^+ = \text{Re } c(f)$ hay una función inversa $f^{-1}(y) = \log_a y = x \Leftrightarrow f(x) = a^x = y$ llamada función logaritmo en base a.

$$Dom(log_a x) = Rec(a^x) = R^+$$
 y $Rec(log_a x) = Dom(a^x) = R$

La composición de logaritmo y la exponencial nos da la identidad, tenemos:

$$\log_a a^x = x \quad \forall x \in R$$
$$a^{\log_a x} = x \quad \forall x \in R^+$$

En particular cuando a=e

Página 22

Propiedades: Si a > 1, la funciones $\log_a x$ y a^x son inyectivas y crecientes, entonces:

i)
$$\log_a(xy) = \log_a x + \log_a y \quad \forall x \in R^+ \quad y \quad a^x a^y = a^{x+y} \quad \forall x \in R$$

ii)
$$\log_a(\frac{x}{y}) = \log_a x - \log_a y \quad \forall x \in R^+ \quad y \quad \frac{a^x}{a^y} = a^{x-y} \quad \forall x \in R$$

iii)
$$\log_a(x^y) = y \log_a x \ \forall x \in R^+ \ y \ (a^x)^y = a^{xy} \ \forall x \in R$$

Función potencia x^a , $a \in R$

A partir de $\ln(x^y) = y \ln x \quad \forall x \in R^+$, podemos definir $x^a = e^{\ln(x^a)} = e^{a \ln x} \quad \forall x \in R^+$

> Funciones trigonométricas inversas

Las funciones trigonométricas son periódicas por lo tanto no son inyectivas, pero si restringimos el dominio a un conjunto donde sean inyectivas podemos definir sus respectivas funciones inversas.

• Inversa del seno:

$$\arcsin x = \sin^{-1}(x) = y \iff \sin y = x \text{ para } -\frac{\pi}{2} \le y \le \frac{\pi}{2}$$

Así, si $x \in [-1,1] = \text{Rec}(\text{sen } x)$, arcsen $x = \text{sen}^{-1}(x)$ es el número y entre $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$ cuyo seno es x.

A partir de esta restricción:

$$Dom(sen x) = Rec(arcsen x) = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] y \quad Rec(sen x) = Dom(arcsen x) = [-1,1]$$

Inversa del coseno:

arccos $x=\cos^{-1}(x)=y \Leftrightarrow \cos y=x \text{ para } 0 \leq y \leq \pi$ Así, si $x \in [-1,1]=\text{Rec}(\cos)$, arccos $x=\cos^{-1}(x)$ es el número y entre $0 \leq y \leq \pi$ cuyo coseno es x. A partir de esta restricción:

 $\mathsf{Dom}(\cos\,x) = \mathsf{Rec}(\arccos\,x) = [0,\pi] \quad \text{y} \quad \mathsf{Rec}(\cos\,x) = \mathsf{Dom}(\arccos\,x) = [-1,1]$

Inversa de la tangente:

$$\arctan x = \tan^{-1}(x) = y \iff \tan y = x \text{ para } -\frac{\pi}{2} < y < \frac{\pi}{2}$$

Así, si $x \in R = \text{Rec}(\tan x)$, $\arctan x = \tan^{-1}(x)$ es el número y entre $-\frac{\pi}{2} < y < \frac{\pi}{2}$ cuya tangente es x. A partir de esta restricción:

 $\operatorname{Dom}(\tan x) = \operatorname{Rec}(\arctan x) = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \quad \text{y} \quad \operatorname{Rec}(\tan x) = \operatorname{Dom}(\arctan x) = R$

Funciones hiperbólicas.

Definiciones: Para $x \in R$ definimos las funciones seno hiperbólico, coseno hiperbólico y tangente hiperbólica de x como

$$\operatorname{senh} x = \frac{e^x - e^{-x}}{2} \quad \cosh x = \frac{e^x + e^{-x}}{2} \quad \tanh x = \frac{\operatorname{senh} x}{\cosh x}$$

FIGURA 1

Funciones Reales Página 24