Unit-I		GROUP THEORY
	GROUP THEORY COURSE-BCA Subject- Discrete Mathematics Unit-I RAI UNIVERSITY, AHMEDABAD	
	RAI U	NIVERSITY, AHMEDABAD

GROUP THEORY

***** Binary Operations:

A binary operation f(x, y) is an operation that applies to two quantities or expressions x and y.

A binary operation on a nonempty set A is a map $f: A \times A \rightarrow A$ such that

- 1. f is defined for every pair of elements in A, and
- 2. f uniquely associates each pair of elements in A to some element of A.

Examples of binary operation on A from $A \times A$ to A include addition (+), subtraction (-), multiplication (\times) and division (\div).

* Group:

If G is a nonempty set, a binary operation μ on G is a function μ : $G \times G \to G$.

For example:

- + is a binary operation defined on the integers Z. Instead of writing +(3, 5) = 8 we instead write 3 + 5 = 8. Indeed the binary operation μ is usually thought of as *multiplication* and instead of μ (a, b).
- we use notation such as ab, a + b, $a \circ b$ and a * b. If the set G is a finite set of n elements we can present the binary operation, say *, by an n by n array called the *multiplication table*. If $a, b \in G$, then the (a, b)-entry of this table is a * b.

Here is an example of a multiplication table for a binary operation * on the set $G = \{a, b, c, d\}$.

*	a	b	c	d
a	a	b	c	a
b	a	c	d	d
c	a	b	d	c
d	d	a	c	b

Note that
$$(a * b) * c = b * c = d$$
 but $a * (b * c) = a * d = a$.

Example 1: The set of complex numbers $G = \{1, i, -1, -i\}$ under multiplication. Draw the multiplication table for this group.

Solution:

*		i	-1	-i
1	1	i -1 -i 1	-1	-i
i	i	-1	-i	1
-1	-1	-i	1	i
-i	-i	1	i	-1

Note:

- 1. A binary operation * on set G is associative if (a * b) * c = a * (b * c), for all a, b, $c \in G$.
- 2. If G is a group and $a \in G$, then a * a = a implies a = e.
- 3. Let G be a group. The unique element e ∈ G satisfying e * a = a for all a ∈ G is called the **identity** for the group G.
 If a ∈ G, the unique element b ∈ G such that b * a = e is called the **inverse** of a and we denote it by b = a⁻¹

Abelian Group:

A group G is abelian if a * b = b * a for all elements $a, b \in G$.

Subgroup:

A nonempty subset S of the group G is a *subgroup* of G if S a group under binary operation of G. We use the notation $S \le G$ to indicate that S is a subgroup of G.

• If S is a subgroup then 1 is the identity for G and also for S.

Statement of some important theorems:

Theorem1: A subset S of the group G is a subgroup of G if and only if

- (i) $1 \in S$;
- (ii) $a \in S \Rightarrow a^{-1} \in S$:
- (iii) $a, b \in S \Rightarrow ab \in S$.

<u>Theorem 2</u>: If S is a subset of the group G, then S is a subgroup of G if and only if S is nonempty and whenever a, b \in S, then $ab^{-1} \in$ S.

<u>Theorem 3</u>: If S is a subset of the finite group G, then S is a subgroup of G if and only if S is nonempty and whenever $a, b \in S$, then $ab \in S$.

For example:

1. If a is an element of the group G, then

$$\langle a \rangle = \{ \dots, a^{-3}, a^{-2}, a^{-1}, 1, a, a^2, a^3, a^4, \dots \}$$

are all the powers of a. This is a subgroup.

2. Both {1} and G are subgroups of the group G. Any other subgroup is said to be a proper subgroup.

The subgroup {1} consisting of the identity alone is often called the trivial subgroup.

Order of a Group:

The number of elements in the finite group G is called the order of G and is denoted by |G|.

Note:

- 1. If $x \in G$ and G is finite, the order of x is $|x| = |\langle x \rangle|$.
- 2. If $x \in G$ and G is finite, then |x| divides |G|.

Lagrange's Theorem: (without proof)

If S is a subgroup of the finite group G, then

$$|G:S| = \frac{|G|}{|S|}$$

Thus the order of S divides the order of G.

Cyclic Group:

Among the first mathematics algorithms we learn is the division algorithm for integers. It says given an integer m and an positive integer divisor d there exists a quotient q and a remainder r < d such that

$$\frac{m}{d} = q + \frac{r}{d}$$

Some important theorem:

<u>Theorem1</u>: Given integers m and d > 0, there are uniquely determined integers d and r satisfying

$$m = dq + r \quad and \quad 0 \le r < d$$

Theorem 2: Every subgroup of a cyclic group is cyclic.

For example:

The subgroup lattice of the cyclic group $G = \langle a \rangle$ of order 12 is

Permutation group:

The product of two permutations α and β is function composition read from left to right. Thus

$$x^{\alpha\beta} = (x^{\alpha})^{\beta}$$

For example:

$$(1, 2, 3, 4)(5, 6)$$
 $(1, 2, 3, 4, 5) = (1, 3, 5, 6)(2, 4)$

The product of permutations α and β .

Note:

- 1. A permutation β of the form (a, b) is called a transposition.
- 2. Every permutation can be written as the product of transposition.

***** Exercise:

1. The set of matrices

$$G = \left\{ e = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, a = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, c = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \right\}$$
 under matrix multiplication. Draw multiplication table for this group.

- 2. Let G be a group in which the square of every element is the identity. Show that G is abelian.
- 3. Prove that a group G is abelian if and only if $f: G \to G$ defined by $f(x) = X^{-1}$ is a homomorphism.
- 4. Write the permutation that results from the product

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 11 & 2 & 4 & 1 & 6 & 5 & 8 & 9 & 7 & 10 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 3 & 6 & 4 & 11 & 9 & 7 & 8 & 10 & 5 & 2 & 1 \end{pmatrix}$$

in cycle notation.

- 5. If S and T are subgroups of the group G, then $S \cap T$ is a subgroup of G.
- 6. Draw the subgroup lattice for a cyclic group of order 30.
- 7. If G/Z(G) is cyclic, then G is abelian.

* Reference Book:

1. http://www.math.mtu.edu/~kreher/ABOUTME/syllabus/GTN.pdf