2023-2024春季学期天文与空间学院流体力学期末试卷(戴煜)

整理者:某科铃兰 御条当琴

— 、	(20分)填空题	
	1.流体力学基本假设	
	2.描述流体力学运动的两种数学方法中,	, ‡
眼于	空间点,形成(流形/轨迹).	
	3.涡旋保持的前提条件是、、、	
	4.长波理论的假设是,波速表达式为	
二、	(20分)流场由 $u = x + t, v = t - y, w = 0$ 确定,求	
	(1)经过 $x = -1, y = -1$ 的流线方程	
	(2)在 $t = 0$ 经过 $x = -1.y = -1$ 的流体质点的轨迹	
	(3)加速度.	
三、	(20分)定常流动由 $u = Ax + By, v = Cx + Dy, w = 0$ 确定, A, B, C, D 均为实常数	
	(1)若流动不可压缩,满足什么条件?	
	(2)若流动无旋,满足什么条件?	
	(3)若流动既不可压缩又无旋,求复势.	

四、(20分)已知内外半径分别为a,b(b>a)的固体共轴圆筒,粘性系数为 μ 的流体在筒间沿轴向不可压缩 定常流动,相距L的A,B截面压强分别 p_A,p_B ,试求速度分布.

五、(20分)写出气体动力学的基本方程组,并根据方程组推导均匀大气小扰动的传播速度(即音速).