LAB 5: Simulated Annealing Algorithm

Observation book:

7		Page Page
		LAB-5
		Algorithm:
*		choose an inHal solution - state Set an inHal temperature. Define the cooling vate where 0 <a<1. iterations.<="" maximum="" number="" of="" specify="" td="" the=""></a<1.>
	*	Pefine the objective function: Create a function that evaluates the quality of a solution. Ex: $f(x) = x = x = 3x$
Y		Four each iteration furom 1 to maximum number of iterations: generate a new candidate solution by slightly changing the current solution.
*		Evaluate the objective function at the new 30144ion.
	+	Calculate the enange in energy $\Delta E = f(\text{ new solution}) - f(\text{ euryent solution})$
	a	new solution is better ($\Delta E < 0$) then eccept. Update engine solution = new solution. $\Delta E > 0$, then accept solution with purbability iven by : $P(accept) = e^{-\Delta E} e^{-(\Delta E/I)}$
*	Decrease the temperature accounding to the explicitly schedule. ($T = T \times \infty$)	
*	Sko	ap when maximum number of itexations is suched our temperature is sufficiently long.

temp * = evol- wate purint (f" HEYAHON & HEYAHON +1 3: Curyent State = { current state : 4 },

Current value = { current : 4 } },

Rest state = { best state : 4 } } Best value = ? best - val : . 4 f } Wetwen best state best values îf_name_ == " main_ ": initial_ 8 = Handom. uniform (-10,10) intial t = 100 enol-49te = 1880 0.95 emax itns = 0000 100 best state best val = size annealing (inhal s, intial t, cool yate man itns) puint (f"In Best State found: & best state: 46, Best Value: & best - val: 473") Output: Iteration 1: Current state = -1.6967, Current Value = 9.8789, Best State =-1-3766 Best Value = 1.8950 HEXAHON 2: Current stale= - 2.1096, current value -2.8.799 4.4503, Best State = 1.3766, Current value = 1.8959.

Output:

```
Enter the initial state (starting point): 10
Enter the initial temperature: 12
Enter the cooling rate (between 0 and 1): 0.3
Enter the number of iterations: 5
Iteration 1: Current State = 9.2863, Current Energy = 86.2355, Temperature = 3.6 000
Iteration 2: Current State = 9.0532, Current Energy = 81.9601, Temperature = 1.0 800
Iteration 3: Current State = 8.8327, Current Energy = 78.0164, Temperature = 0.3 240
Iteration 4: Current State = 8.8327, Current Energy = 78.0164, Temperature = 0.0 972
Iteration 5: Current State = 8.8327, Current Energy = 78.0164, Temperature = 0.0 292
Best State: 8.8327, Best Energy: 78.0164
NAvya 1BM22CS175
```