PREDICTION OF HEART ATTACKS

Joan Akibode Sanaa Mouzahir Minh Nguyen Gloria Hwoang Andrea Lin

FALL 2021 • MECE 4520 • PROF. CHANGYAO CHEN

Introduction

With the given dataset, explore various models that can sufficiently predict if a person is prone to heart attack or not.

Data Sample:

	age	sex	Chest Pain	Resting BP	chol	Fasting Blood Sug	Resting Elec Result	Max Heart Rate	Exercise	Previous Peak	slp	caa	thall	Heart Attack
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	0.8	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1

Data Dictionary

age	Age of the patient
sex	Sex of the patient
Chest Pain	Chest pain type ~ 0 = Typical Angina, 1 = Atypical Angina, 2 = Non-anginal Pain, 3 = Asymptomatic
Resting BP	Resting blood pressure (in mm Hg)
chol	Cholestoral in mg/dl fetched via BMI sensor
Fasting Blood Sug	(fasting blood sugar > 120 mg/dl) ~ 1 = True, 0 = False
Resting Elec Result	Resting electrocardiographic results ~ 0 = Normal, 1 = ST-T wave normality, 2 = Left ventricular hypertrophy
Max Heart Rate	Maximum heart rate achieved
Previous Peak	Previous peak
slp	Slope
саа	Number of major vessels
thall	Thalium Stress Test result ~ (0,3)
Exercise	Exercise induced angina ~ 1 = Yes, 0 = No
output	Target variable (Heart Attack Classification)

Exploratory Data Analysis

Categorical Variables:

Continuous Variables:

Correlations

Preprocessing

Removed Features

Exercise Sex

Slone

Resting Electrocardiographic Results

Preprocessing

Selected Features

Age

Chest Pain

Resting Blood Pressure

Cholesterol

Fasting Blood Sugar

Max Heart Rate

Previous Peak Number of Major Vessels

Thalium Stress Test Result

Why did we choose the specific features?

When multiple features were correlated between each others, we eliminated the features that were the least correlated with "Heart Attack".

If they were equally correlated to "Heart Attack", we chose the the feature that was the most telling.

Example:

- sex and thall are highly correlated: we kept thall because it is more correlated to heart attack than sex
- slp and peak are highly correlated : we kept peak because it is the most telling feature

Conclusions from EDA

No features can singlehandly explain Heart attacks

The features the most correlated to heart attacks are Chest pain, Max heart rate, exercise (inversty correlated to Max heart rate) and Thalium Stress Test Result

The importance of some features were expected, such as Chest pain.

In contrary to our expectations, age is very slighly correlated to Heart Attack

Method of Analysis

Logistic Regression

Why?

- Logistic regression is used in classification problems.
- Binary output
- Clear threshold

Hyper Parameters

- Penalty
- · Max-Number of Iterations
- · # of Bootstrap Samples

Hyper Parameters

- Linear Kernel
- Regularization Term "C"

Why?

- Binary output
- Data is separable.
- Works well on low dimensional data.

Random Forest

Why?

- Decreases variance
- · Increases robustness
- Easy to determine feature importance

Hyper Parameters

- Max Depth
- · Number of Trees
- Number of Features to Split

Results

Logistic Regression Model

Accuracy Score of :

87%

SVM - Support Vector Machines

Accuracy Score of : 85%

Random Forest

5

Accuracy Score of :

82%

Discussion

Logistic
Regression

The Outcomes

Larger dataset preferred

Possible overfitting

Possible Improvements

Collect more data

Tune parameter C to control complexity

Use other classification methods...

SVM

SVM allows for a larger margin and greater versatility if kernels are taken advantage of, but we only produced a model using the linear kernel

Conduct a search for optimal hyperparameters and tune accordingly

Random Forest

Possible increased bias

Incomplete tuning of parameters

Conduct a more thorough optimization of parameters

Conclusion

How can we take the project further?

We can use these models to predict cases of other health related issues.

Improve results of the SVM and Decision
Tree models as they have many tunable parameters

Focus on life-style related features, such as diet, average sleep hours, etc.

Obtain more features
to see other
correlations that may
exist, such as weights
(of people), family
health history, etc.

Improve the model to have an accuracy prediction of over 90%?

References

MECE 4520 Lecture Slides

Text book:

Data-Driven Science and Engineering (Link)

Data science

- An Introduction to Statistical Learning (<u>Link</u>)
- The Elements of Statistical Learning (Link)
- Python for Data Analysis (Link)
- · Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (Link)

https://www.kaggle.com/namanmanchanda/heart-attack-eda-prediction-90-accuracy/data

