Automated assessment of residual plots with computer vision models

Weihao Li^a, Dianne Cook^a, Emi Tanaka^{b,c}, Susan VanderPlas^d, Klaus Ackermann^a

^aDepartment of Econometrics and Business Statistics, Monash University, Clayton, VIC,
Australia; ^bBiological Data Science Institute, Australian National University, Acton, ACT,
Australia; ^cResearch School of Finance, Actuarial Studies and Statistics, Australian National
University, Acton, ACT, Australia; ^dDepartment of Statistics, University of Nebraska,
Lincoln, Nebraska, USA

ARTICLE HISTORY

Compiled February 12, 2024

ABSTRACT

TBD.

KEYWORDS

 TBD

CONTACT Weihao Li. Email: weihao.li@monash.edu, Dianne Cook. Email: dicook@monash.edu, Emi Tanaka. Email: emi.tanaka@anu.edu.au, Susan VanderPlas. Email: susan.vanderplas@unl.edu, Klaus Ackermann. Email: Klaus.Ackermann@monash.edu

Contents

1 Introduction				
2	Met	thodol	\mathbf{ogy}	7
	2.1	Differe	ent possible configurations of the model formula	7
		2.1.1	Input formats	7
		2.1.2	Output formats	9
	2.2	Distar	ace from the good residual plots	9
		2.2.1	Residual distribution	10
		2.2.2	Kullback-Leibler divergence of P from Q	11
		2.2.3	Evaluation of Kullback-Leibler divergence for non-normal ${\cal P}$	12
		2.2.4	Approximation of the distance measure	14
	2.3	Statis	tical testing based on the approximated distance	15
		2.3.1	Null distribution of the approximated distance	15
		2.3.2	Estimation of quantiles of the null distribution	16
		2.3.3	Bootstrapping the approximated distance	16
	2.4	Gener	ation of training data	17
		2.4.1	Data generating process	17
		2.4.2	Computation of scagnostics	21
		2.4.3	Crafting a balanced training set	22
	2.5	Archit	secture of the computer vision model	23
	2.6	Traini	ng and hyperparameter tuning	25
	2.7	Model	evaluation methods	27
3	Ros	ults		28
J	3.1		nized hyperparameters	28
	3.2	_	performance	28
	3.3			
	5.5	_	arison with human visual inference	31
		3.3.1	Overview of the human subject experiment	31
	n 4	3.3.2	Model performance on the human data	32
	3.4	when	the model works	32

5	Con	clusion	38	
4	Dic	assion	38	
	3.6	Workflow: how one use this model? (small showcase)	38	
	3.5	When the model does not work	32	

1. Introduction

Plotting residuals is commonly regarded as a standard practice in linear regression diagnostics (see Cook and Weisberg 1982; Belsley, Kuh, and Welsch 1980). This visual assessment plays a crucial role in identifying deviations from model assumptions, such as linearity, homoscedasticity, and normality. It also helps in understanding the goodness of fit and various characteristics of the model.

Generating a residual plot in most statistical software is often as straightforward as executing a line of code or clicking a button. However, accurately interpreting a residual plot can be challenging. Consider Figure 1 as an example, the residuals display a triangular shape pointing to the left. While this might suggest heteroskedasticity, it is important to avoid over-interpreting this visual pattern. In this case, the fitted regression model is correctly specified, and the triangular shape is actually a result of the skewed distribution of the predictors, rather than indicating a flaw in the model.

A residual plot can exhibit various visual features, but it is crucial to recognize that some may arise from the characteristics of predictors and the inherent randomness of the error, rather than indicating a violation of model assumptions (Li et al. 2023). The concept of visual inference, as proposed by Buja et al. (2009), provides an inferential framework to assess whether residual plots indeed contain visual patterns inconsistent with the model assumptions. The fundamental idea involves testing whether the actual residual plot visually differs significantly from null plots, where null plots are plotted with residuals generated from the residual rotation distribution (Langsrud 2005), which is a distribution consistent with the null hypothesis H_0 that the linear regression model is correctly specified. Typically, the visual test is accomplished through the linear protocol, where the real residual plot is embedded within a linear alongside several null plots. If the real residual plot can be distinguished from the linear, it provides evidence for rejecting H_0 .

The practice of delivering a residual plot as a lineup is generally regarded as a valuable approach. Beyond its application in residual diagnostics, the lineup protocol has integrated into the analysis of diverse subjects. For instance, Loy and Hofmann (2013, 2014, 2015) illustrated its applicability in diagnosing hierarchical linear models.

Additionally, Widen et al. (2016) demonstrated its utility in geographical research, while Krishnan and Hofmann (2021) explored its effectiveness in forensic examinations.

However, as pointed out by Li et al. (2023), a primary limitation of the lineup protocol lies in its reliance on human judgments. Unlike conventional statistical tests that can be performed computationally in statistical software, the lineup protocol requires human evaluation of images. This characteristic makes it less suitable for large-scale applications, given the associated high labor costs and time requirements.

There is a substantial need to develop an approach that alleviates analysts' work-load by automating repetitive tasks and providing standardized results in a controlled environment. The large-scale evaluation of lineups is impractical without the use of technology and machines.

The utilization of computers to interpret data plots has a rich history, with early efforts such as "Scagnostics" by Tukey and Tukey (1985), focusing on scatterplot diagnostics. Wilkinson, Anand, and Grossman (2005) expanded on this work, introducing graph theoretic scagnostics, which encompassed computable measures applied to planar proximity graphs. These measures, including, but not limited to, "Outlying", "Skinny", "Stringy", "Straight", "Monotonic", "Skewed", "Clumpy", and "Striated" aimed to characterize outliers, shape, density, trend, coherence and other characteristics of the data. While this approach has been inspiring, there is a recognition (Buja et al. 2009) that it may not capture all the necessary visual features that differentiate actual residual plots from null plots. A more promising alternative entails enabling machines to learn the function for extracting visual features from residual plots. Essentially, this means empowering computers to discern the crucial visual features for residual diagnostics and determining the method to extract them.

Modern computer vision models are well-suited for addressing this challenge. They rely on deep neural networks with convolutional layers (Fukushima and Miyake 1982). These layers leverage hierarchical patterns in data, downsizing and transforming images by summarizing information in a small space. Numerous studies have demonstrated the efficacy of convolutional layers in addressing various vision tasks, including image recognition (Rawat and Wang 2017). Despite the widespread use of computer vision models in fields like computer-aided diagnosis (Lee and Chen 2015), pedestrian

detection (Brunetti et al. 2018), and facial recognition (Emami and Suciu 2012), their application in reading data plots remains limited. While some studies have explored the use of computer vision models for tasks such as reading recurrence plots for time series regression (Ojeda, Solano, and Peramo 2020), time series classification (Chu et al. 2019; Hailesilassie 2019; Hatami, Gavet, and Debayle 2018; Zhang et al. 2020), anomaly detection (Chen, Su, and Yang 2020), and pairwise causality analysis (Singh et al. 2017), the application of reading residual plots with computer vision models represents a relatively new field of study.

In this paper, we develop computer vision models and integrate them into the residual plots diagnostics workflow, filling the gap of.... The paper is structured as follows: ...

Figure 1. An example residual vs fitted values plot (red line indicates 0). The vertical spread of the data points varies with the fitted values. This often indicates the existence of heteroskedasticity.

2. Methodology

2.1. Different possible configurations of the model formula

There are various configurations of the computer vision model that can be used to assess residual plots. We discuss these configurations below based on two key components of the model formula: the input and the output format.

2.1.1. Input formats

Deep learning models are in general very sensitive to the input data. The quality and relevance of the input data greatly influence the model's capacity to generate insightful and meaningful results. There are several designs of the input format can be considered.

A straightforward design involves feeding a vector of residuals along with a vector of fitted values, essentially providing all the necessary information for creating a residuals vs fitted values plot. However, a drawback of this method is the dynamic input size, which changes based on the number of observations. For modern computer vision models implemented in mainstream software like TensorFlow (Abadi et al. 2016), the input shape is typically fixed. One solution is to pad the input vectors with leading or trailing zeros when the input tensor expects longer vectors, but it may fail if the input vector surpasses the designed length. Another strategy is to summarize the residuals and fitted values separately using histograms and utilize the counts as the input. By controlling the number of bins in the histograms, it becomes possible to provide fixed-length input vectors. Still, since histograms only capture the marginal distribution of residuals and fitted values respectively, they can not be used to differentiate visual patterns with same marginal distributions but different joint distributions.

Another design involves using an image as input. The primary advantage of this design, as opposed to the vector format, is the availability of the existing and sophisticated image processing architectures developed over the years, such as the VGG16 architecture proposed in Simonyan and Zisserman (2014). These architectures can effectively capture and summarize spatial information from nearby pixels, which is less straightforward with vector input. The main considerations are the image resolution

and the aesthetics of the residual plot. In general, higher resolution provides more information to the model but comes with the trade-off of increased complexity and greater difficulty in training. As for the aesthetics of the residual plot, a practical solution is to consistently present residual plots in the same style to the model. This implies that the model can not accept arbitrary images as input but requires the use of the same preprocessing pipeline to convert residuals and fitted values into a standardized-style residual plot.

Providing multiple residual plots to the model, such as a pair of plots, a triplet or a lineup is also a possible option. Chopra, Hadsell, and LeCun (2005) have shown that computer vision models designed for image comparison can assess whether a pair of images are similar or dissimilar. Applied to our specific problem, we can define null plots of a fitted regression model to be similar to each other, while considering actual residual plots to be distinct from null plots of any fitted regression model. A triplet constitutes a set of three images, denoted as $image_1$, $image_2$ and $image_3$. It is often used to predict whether $image_2$ or $image_3$ is more similar to $image_1$, proving particularly useful for establishing rankings between samples. For this setup, we can apply the same criteria to define similarity between images. However, it is important to note that these two approaches usually require additional considerations regarding the loss function and, at times, non-standard training processes due to shared weights between different convolutional blocks.

Presenting a lineup to a model aligns closely with the lineup protocol. However, as the number of residual plots in a lineup increases, the resolution of the input image grows rapidly, posing challenges in training the model. We experimented with this approach in a pilot study, but the performance of the trained model was sub-optimal.

We did not explore all the mentioned input formats due the considerable costs associated with data preparation and model training. Considering the implementation cost and the interpretability of the model, we settled on the single residual plot input format.

2.1.2. Output formats

Given that the input is a single residual plot represented as a fixed-resolution image, the output from the computer vision model can take one of two forms: binary or numeric. This choice determines whether the model belongs to a classification model or a regression model. The binary outcome encoded as 0 and 1 could be used to represent whether the input image is a null plot, or whether the input image would be rejected in a visual test conducted by humans. Training a model following the latter option requires data from prior human subject experiments, presenting difficulties in controlling the quality of data due to variations in experimental settings across different studies. Additionally, some visual inference experiments are unrelated to linear regression models or residual plot diagnostics, resulting in a limited amount of available training data.

Alternatively, the output could be a meaningful and interpretable numerical measure useful for assessing residual plots, such as the strength of suspicious visual patterns reflecting the extent of model violations and the difficulty index for identifying whether a residual plot has no issues. However, these numeric measures are often informally used in daily communication but are not typically formalized or rigorously defined. For the purpose of training a model, this numeric measure has to be quantifiable.

In this study, we chose to define and use a distance measure to quantify the difference between the residual plot and the null plots. Vo and Hays (2016) have also demonstrated that defining a proper distance between images can enhance the matching accuracy in image search compared to a binary outcome model.

2.2. Distance from the good residual plots

In a visual test, the observer will be asked to choose one or more plots that stand out as most distinct from others in a given lineup. To develop a computer vision model for assessing residual plots within the visual inference framework, it is important to precisely define a numerical measure of "difference" or "distance" between plots. This distance can take the form of a basic statistical operation on pixels, such as the sum of square differences. Alternatively, it could involve established image similarity metrics

like the Structural Similarity Index Measure (Wang et al. 2004). The challenge lies in the fact that metrics tailored for image comparison may not be suitable for evaluating data plots, where only essential plot elements require assessment (Chowdhury et al. 2018). Furthermore, scagnostics mentioned in Section 1 could be used to construct distance metrics for residual plots comparison, but the functional form still needs to be carefully refined to accurately reflect the extent of the violations.

2.2.1. Residual distribution

The distance measure proposed in this study takes into account the fact that we tried to measure how different a residual plot is from a good residual plot, or in other words, how different a given fitted regression model is from a correctly specified model. For the classical normal linear regression model, residuals e are derived from the fitted values \hat{y} and observed values y. Suppose the data generating process is known and the regression model is correctly specified, by the Frisch-Waugh-Lowell theorem (Frisch and Waugh 1933), residuals e can also be treated as random variables and written as a linear transformation of the error e formulated as e = Re, where e is the residual operator and an idempotent matrix, e is the design matrix, e is a e by e identity matrix, and e is the number of observations.

One of the assumptions of the classical normal linear regression model is the error ε follows a multivariate normal distribution with zero mean and constant variance, i.e., $\varepsilon \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$. It can be known that residuals \mathbf{e} also follow a certain probability distribution transformed from the multivariate normal distribution, which will be denoted as Q. This reference distribution Q summarizes what good residuals should follow given the design matrix \mathbf{X} is known and fixed.

In ordinary least square, the minimization of the sum of square residuals implies $\sum_{i=1}^{n} e_i = 0$, making any residual value to be a linear combination of the remaining n-1 residuals. This effectively means $\operatorname{rank}(\mathbf{R}) = n-1 < n$ and Q is a degenerate multivariate distribution. To capture the characteristics of Q, such as moments, we can simulate a large numbers of ε and transform it to e to get the empirical estimates. For simplicity, in this study, we replaced the variance-covariance matrix of residuals $\operatorname{cov}(e,e) = \mathbf{R}\sigma^2\mathbf{R}' = \mathbf{R}\sigma^2$ with a full-rank diagonal matrix $\operatorname{diag}(\mathbf{R}\sigma^2)$, where $\operatorname{diag}(.)$

sets the non-diagonal entries of a matrix to zeros. The resulting distribution for Q is $N(\mathbf{0}_n, \operatorname{diag}(\mathbf{R}\sigma^2))$.

Distribution Q is derived from the correctly specified model. However, if the model is misspecified, then the actual distribution of residuals denoted as P, will be different from Q. For example, if the data generating process contains variables correlated with any column of X but not included in X, causing an omitted variable problem, P will be different from Q because the residual operator obtained from the fitted regression model will not be the same as R. Besides, if the ε follows a non-normal distribution such as a multivariate lognormal distribution, P will usually be skewed and has a long tail.

2.2.2. Kullback-Leibler divergence of P from Q

Define a proper distance between distributions is usually easier than define a proper distance between data plots. Given the actual residual distribution Q and the reference residual distribution P, we used a distance measure based on Kullback-Leibler divergence (Kullback and Leibler 1951) to quantify the difference between two distributions

$$D = \log\left(1 + D_{KL}\right),\tag{1}$$

$$D_{KL} = \int_{\mathbb{R}^n} \log \frac{p(e)}{q(e)} p(e) de, \qquad (2)$$

where p(.) is the probability density function for distribution P, and q(.) is the probability density function for distribution Q.

This distance measure was first proposed in Li et al. (2023). It was mainly designed for measuring the effect size of non-linearity and heteroskedasticity in a residual plot. Li et al. (2023) have showed that, for a classical normal linear regression model that omits a necessary higher-order predictors \mathbf{Z} , and incorrectly assumes $\boldsymbol{\varepsilon} \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$ while in fact $\boldsymbol{\varepsilon} \sim N(\mathbf{0}_n, \mathbf{V})$ with \mathbf{V} being an arbitrary symmetric positive semi-definite matrix, Q can be represented as $N(\mathbf{R}\mathbf{Z}\boldsymbol{\beta}_z, \operatorname{diag}(\mathbf{R}\mathbf{V}\mathbf{R}))$. Note that the variance-covariance matrix is replaced with the diagonal matrix to ensure it is a full-rank

matrix.

Since both P and Q are adjusted to be multivariate normal distributions, equation 2 can be further expanded to

$$D_{KL} = \frac{1}{2} \left(\log \frac{|\operatorname{diag}(\boldsymbol{W})|}{|\operatorname{diag}(\boldsymbol{R}\sigma^2)|} - n + \operatorname{tr}(\operatorname{diag}(\boldsymbol{W})^{-1} \operatorname{diag}(\boldsymbol{R}\sigma^2)) + \boldsymbol{\mu}_z' (\operatorname{diag}(\boldsymbol{W}))^{-1} \boldsymbol{\mu}_z \right),$$
(3)

where $\mu_z = RZ\beta_z$, and W = RVR. The assumed error variance σ^2 is set to be tr(V)/n, which is the expectation of the estimated variance.

2.2.3. Evaluation of Kullback-Leibler divergence for non-normal P

For non-normal error ε , the actual residual distribution P is unlikely to be a multivariate normal distribution. Thus, equation 3 given in Li et al. (2023) will not be applicable to models violating the normality assumption.

To evaluate the Kullback-Leibler divergence of non-normal P from Q, the fallback is to solve equation 2 numerically. However, since e is a linear transformation of non-normal random variables, it is very common that the general form of P is unknown, meaning that we can not easily compute p(e) using a well-known probability density function. Additionally, even if p(e) can be calculated for any $e \in \mathbb{R}^n$, it will be very difficult to do numerical integration over the n dimensional space, because n could be potentially very large.

In order to approximate D_{KL} in a practically computable manner, the elements of e are assumed to be independent of each other. This assumption solves both of the issues mentioned above. First, we no longer need to integrate over n random variables. The result of equation 2 is now the sum of the Kullback-Leibler divergence evaluated for each individual residual thanks for the independence assumption. Second, it is not required to know the joint probability density p(e) any more. Instead, the evaluation of Kullback-Leibler divergence for an individual residual relies on the knowledge of the marginal density $p_i(e_i)$, where e_i is the i-th residual for i = 1, ..., n. This is much easier to approximate through simulation. It is also worth mentioning that this independence

assumption generally will not hold, since $cov(e_i, e_j) \neq 0$ if $\mathbf{R}_{ij} \neq 0$ for any $1 \leq i < j \leq n$, but its existence is essential for reducing the computational cost.

Given X and β , the algorithm for approximating equation 2 starts from simulating m sets of observed values y according to the data generating process. The observed values are stored in a matrix A with n rows and m columns, where each column of A is a set of observed values. Then, we can get m sets of realized values of e stored in the matrix B by applying the residual operator B = RA. Furthermore, kernel density estimation (KDE) with Gaussian kernel and optimal bandwidth selected by the Silverman's rule of thumb (Silverman 2018) is applied on each row of B to estimate $p_i(e_i)$ for i = 1, ..., n. The KDE computation can be done by the density function in R.

Since the Kullback-Leibler divergence can be viewed as the expectation of the loglikelihood ratio between distribution P and distribution Q evaluated on distribution P, we can reuse the simulated residuals in matrix \mathbf{B} to estimate the expectation by the sample mean. With the independence assumption, for non-normal P, D_{KL} can be approximated by

$$D_{KL} \approx \sum_{i=1}^{n} \hat{D}_{KL}^{(i)},\tag{4}$$

$$\hat{D}_{KL}^{(i)} = \frac{1}{m} \sum_{j=1}^{m} log \frac{\hat{p}_i(B_{ij})}{q(B_{ij})},\tag{5}$$

where $\hat{D}_{KL}^{(i)}$ is the estimator of the Kullback-Leibler divergence for an individual residual e_i , B_{ij} is the *i*-th row and *j*-th column entry of the matrix B, $\hat{p}_i(.)$ is the kernel density estimator of $p_i(.)$, q(.) is the normal density function with mean zero and an assumed variance estimated as $\widehat{\sigma^2} = \sum_{b \in vec(B)} (b - \sum_{b \in vec(B)} b/nm)^2/(nm - 1)$, and vec(.) is the vectorization operator which turns a $n \times m$ matrix into a $nm \times 1$ column vector by stacking the columns of the matrix on top of each other.

2.2.4. Approximation of the distance measure

In the previous sections, we have defined a distance measure given in equation 1 for quantifying the difference between the actual residual distribution P and an ideal reference distribution Q. You may have noticed that this distance measure can only be computed when the data generating process is known. In reality, we often have no knowledge about the data generating process, otherwise we do not need to fit a linear regression model in the first place.

We tried to train a computer vision model to approximate this distance measure with a residual plot. Let D be the result of equation 1 indicating the extent of the model violations, and our estimator \hat{D} is formulated as

$$\hat{D} = f_{CV}(V_{h \times w}(\boldsymbol{e}, \hat{\boldsymbol{y}})), \tag{6}$$

where $V_{h\times w}(.)$ is a plotting function that saves a residuals vs fitted values plot with fixed aesthetic as an image with $h\times w$ pixels and three colour channels, $f_{CV}(.)$ is a computer vision model which takes an $h\times w$ image as input and predicts the distance in the domain $[0, +\infty)$.

With the approximated distance \hat{D} , we will be able to know how different the underlying distribution of the residuals is from a good residual distribution. It also provides information for the strength of the visual signal embedded in the residual plot.

The approximated distance \hat{D} is not expected to be the same as the original distance D. This is largely because information contained in a single residual plot is limited and it may not be able to summarise all the important characteristics of the residual distribution. For a given residual distribution P, we can generate many different residual plots. Some of them share similar visual patterns, but some of them could be visually very different from the rest, especially for regression models with small n. This suggests the error of the approximation will vary depends on whether the observed residual plot is representative or not.

2.3. Statistical testing based on the approximated distance

2.3.1. Null distribution of the approximated distance

Theoretically, the distance D for a correctly specified model is 0, because P will be the same as Q. However, the computer vision model may not necessary predict 0 for a null plot. Using Figure 1 as an example, it contains a visual pattern which is an indication of heteroskedasticity. We would not expect the model to be able to magically tell if the suspicious pattern is caused by the skewed distribution of the fitted values or the existence of heteroskedasticity. Additionally, some null plots could have outliers or strong visual patterns due to randomness, and a reasonable model will try to summarise those information into the prediction, resulting in $\hat{D} > 0$.

This property is not an issue if $\hat{D} \gg 0$ for which the visual signal of the residual plot is very strong, and we usually do not need any further examination of the significance of the result. However, if the visual pattern is weak or moderate, having \hat{D} will not be sufficient to determine if H_0 should be rejected.

To solve this issue while aligning with the principle of visual inference, \hat{D} can be viewed as a test statistic. And the null distribution of this statistic can be approximated by the empirical distribution of \hat{D}_{null} , where \hat{D}_{null} is the approximated distance for a null plot simulated from the fitted regression model. The approximation of the distribution involves applying the residual rotation technique (Buja et al. 2009) on the fitted regression model to obtain null residuals. The null residuals are then used to make null plots and fed into the computer vision model to get predictions. The empirical distribution is constructed with the approximated distance.

There are two types of error associated with the approximation of the null distribution. These include the sampling error and the estimation error for model parameters. Increasing the number of null plots within the distribution approximation can effectively reduce sampling error. However, the estimation error for model parameters remains irreducible. The residual rotation technique operates under the assumption of a correct fitted model, using the estimated variance instead of the unknown true variance to rescale rotated residuals. Consequently, under H_0 , the true distribution of \hat{D}_{null} will slightly deviate from the approximated null distribution.

2.3.2. Estimation of quantiles of the null distribution

Let $\hat{D}_{null}^{(i)}$ be the approximated distance of the *i*-th null plots, where $i=1,...,n_{null}$ and $n_{null} \in \mathbb{N}^+$ is a sufficiently large number. Quantiles of the null distribution can then be estimated using the sample quantiles available in statistical software such as R. The details of the sample quantile computation can be found in Hyndman and Fan (1996). In statistical testing, analysts often care about certain quantiles of the null distribution, such as the 90% quantile, the 95% quantile and the 99% quantile. These quantiles are used as critical values to decide if H_0 needs to be rejected. For example, if \hat{D} is greater than and equal to the 95% sample quantile $Q_{null}(0.95)$, we could say the approximated distance for the actual residual plot is significantly different from the approximated distance for null plots with 95% significance level. Based on our experience, in order to get a stable estimate of the 95% quantile, n_{null} usually needs to be at least 100. And if the null distribution has a long tail, more null plots will be needed. Alternatively, a p-value can be used to represents the probability of observing an event equally or more extreme than the given event under H_0 , and it can be estimated by $1/m \sum_{i=1}^{n_{null}} I\left(\hat{D}_{null}^{(i)} \ge \hat{D}\right)$.

If precision in sample quantiles is not the main priority, using a pre-calculated table of quantiles is an available option. Such a table offers pre-determined quantiles for a specified number of observations. It is generated by assessing numerous null plots derived from various simulated regression models and averaging them. Essentially, this shifts the computational burden from the user to the developer.

2.3.3. Bootstrapping the approximated distance

Bootstrap is often employed in linear regression when conducting inference for estimated parameters. It is typically done by sampling individual cases with replacement and refitting the regression model. If the observed data accurately reflects the true distribution of the population, the bootstrapped estimates can be used to measure the variability of the parameter estimate without making strong distributional assumptions about the data generating process.

Similarly, bootstrap can be applied on the approximated distance \hat{D} . For each refitted model $M_{boot}^{(i)}$, there will be an associated residual plot $V_{boot}^{(i)}$ which can be fed

into the computer vision model to obtain $\hat{D}_{boot}^{(i)}$, where $i=1,...,n_{boot}$, and n_{boot} is the number of bootstrapped samples. If we are interested in the variation of \hat{D} , we can use $\hat{D}_{boot}^{(i)}$ to estimate a confidence interval.

Alternatively, since each $M_{boot}^{(i)}$ has a set of estimated coefficients $\hat{\beta}_{boot}^{(i)}$ and an estimated variance $\hat{\sigma}^2_{boot}^{(i)}$, a new approximated null distribution can be construed and the corresponding 95% sample quantile $Q_{boot}^{(i)}(0.95)$ can be computed. Then, if $\hat{D}_{boot}^{(i)} \geq Q_{boot}^{(i)}(0.95)$, H_0 will be rejected for $M_{boot}^{(i)}$. The ratio of rejected $M_{boot}^{(i)}$ among all the refitted models provides an indication of how often the assumed regression model are considered to be incorrect if the data can be obtained repetitively from the same data generating process. But this approach is computationally very expensive because it requires $n_{boot} \times n_{null}$ times of residual plot assessment. In practice, $Q_{null}(0.95)$ can be used to replace $Q_{boot}^{(i)}(0.95)$ in the computation.

2.4. Generation of training data

2.4.1. Data generating process

While observational data is frequently employed in training models for real-world applications, the data generating process of observational data often remains unknown, making computation for our target variable D unattainable. Consequently, the computer vision models developed in this study were trained using synthetic data. This approach provided us with precise label annotations. Additionally, it ensured a large and diverse training dataset, as we had control over the data generating process, and the simulation of the training data was relatively cost-effective.

We have incorporated three types of residual departures of linear regression model in the training data, including non-linearity, heteroskedasticity and non-normality. All three departures can be summarised by the data generating process formulated as

Table 1. Factors used in the data generating process for synthetic data simulation. Factor j and a controls the non-linearity shape and the heteroskedasticity shape respectively. Factor b, σ_{ε} and n control the signal strength. Factor $\mathrm{dist}_{\varepsilon}$, dist_{x1} and dist_{x2} specifies the distribution of ε , X_1 and X_2 respectively.

Factor	Domain
$\begin{matrix} \mathbf{j} \\ \mathbf{a} \\ \mathbf{b} \\ \beta_1 \\ \beta_2 \end{matrix}$	{2, 3,, 18} [-1, 1] [0, 100] 0, 1 0, 1
$\operatorname{dist}_{arepsilon}$ dist_{x1} dist_{x2} $\sigma_{arepsilon}$ σ_{X1} σ_{X2} n	{discrete, uniform, normal, lognormal} {discrete, uniform, normal, lognormal} {discrete, uniform, normal, lognormal} [0.0625, 9] [0.3, 0.6] [0.3, 0.6] [50, 500]

$$y = 1_n + x_1 + \beta_1 x_2 + \beta_2 (z + \beta_1 w) + k \odot \varepsilon, \tag{7}$$

$$z = \operatorname{He}_{j}(g(x_{1}, 2)), \tag{8}$$

$$\boldsymbol{w} = \operatorname{He}_{i}(g(\boldsymbol{x}_{2}, 2)), \tag{9}$$

$$\mathbf{k} = \sqrt{\mathbf{1}_n + b(2 - |a|)(\mathbf{x}_1 + \beta_1 \mathbf{x}_2 - a\mathbf{1}_n)^2},$$
 (10)

where y, x_1 , x_2 , z, w, k and ε are vectors of size n, $\mathbf{1}_n$ is a vector of ones of size n, x_1 and x_2 are two independent predictors, $\text{He}_j(.)$ is the jth-order probabilist's Hermite polynomials (Hermite 1864), the $\sqrt{(.)}$ and $(.)^2$ operators are element-wise operators, \odot is the Hadamard product, and g(.,k) is a scaling function to enforce the support of the random vector to be $[-k,k]^n$ defined as

$$g(\boldsymbol{x},k) = 2k \cdot \frac{\boldsymbol{x} - x_{min} \mathbf{1}_n}{x_{max} - x_{min}} - k \mathbf{1}_n, \text{ for } k > 0,$$

where $x_{min} = \min_{i \in \{1,\dots,n\}} x_i, \ x_{max} = \max_{i \in \{1,\dots,n\}} x_i$ and x_i is the i-th entry of \boldsymbol{x} .

The residuals and fitted values of the fitted model were obtained by regressing y

on x_1 . If $\beta_1 \neq 0$, x_2 was also included in the design matrix. This data generation process was adapted from Li et al. (2023), where it was utilized to simulate residual plots exhibiting non-linearity and heteroskedasticity visual patterns for human subject experiments. A summary of the factors utilized in Equation 7 is provided in Table 1.

In Equation 7, z and w represent higher-order terms of x_1 and x_2 , respectively. If $\beta_2 \neq 0$, the regression model will encounter non-linearity issues. Parameter j serves as a shape parameter that controls the number of tuning points in the non-linear pattern. Typically, higher values of j lead to an increase in the number of tuning points, as illustrated in Figure 2.

Figure 2. Non-linearity forms generated for the synthetic data simulation. The 17 shapes are generated by varying the order of polynomial given by j in $He_j(.)$.

Additionally, Scaling factor k directly affects the error distribution and it is correlated with x_1 and x_2 . If $b \neq 0$ and $\varepsilon \sim N(\mathbf{0}_n, \sigma^2 \mathbf{I}_n)$, the constant variance assumption will be violated. Parameter a is a shape parameter controlling the location of the smallest variance in a residual plot as shown in Figure 3.

Non-normality violations arise from specifying a non-normal distribution for ε . In

Figure 3. Heteroskedasticity forms generated for the synthetic data simulation. Different shapes are controlled by the continuous factor a between -1 and 1. For a = -1, the residual plot exhibits a "left-triangle" shape. And for a = 1, the residual plot exhibits a "right-triangle" shape.

the synthetic data simulation, four distinct error distributions are considered, including discrete, uniform, normal, and lognormal distributions, as presented in Figure 4. Each distribution imparts unique characteristics to the residuals. The discrete error distribution introduces discreteness in residuals, while the lognormal distribution typically yields outliers. Uniform error distribution may result in residuals filling the entire space of the residual plot. All of these distributions exhibit visual distinctions from the normal error distribution.

Equation 7 accommodates the incorporation of the second predictor x_2 . Introducing it into the data generation process by setting $\beta_1 = 1$ significantly enhances the complexity of the shapes, as illustrated in Figure 5. In comparison to Figure 2, Fig-

Figure 4. Non-normality forms generated for the synthetic data simulation. Four different error distributions including discrete, lognormal, normal and uniform are considered.

ure 5 demonstrates that the non-linear shape resembles a surface rather than a single curve. This augmentation can facilitate the computer vision model in learning visual patterns from residual plots of the multiple linear regression model.

In real-world analysis, it's not uncommon to encounter instances where multiple model violations coexist. In such cases, the residual plots often exhibit a mixed pattern of visual anomalies corresponding to different types of model violations. Figure 6 and 7 show the visual patterns of models with multiple model violations.

2.4.2. Computation of scagnostics

In Section 1, we mentioned that scagnostics consist of a set of manually designed visual feature extraction functions. While our computer vision model will learn its own feature extraction function during training, leveraging additional information from scagnostics can enhance the model's predictive accuracy.

For each generated residual plot, we computed four scagnostics – "Monotonic,"

Figure 5. Residual plots of multiple linear regression models with non-linearity issues. The 17 shapes are generated by varying the order of polynomial given by j in $He_j(.)$. A second predictor x_2 is introduced to the regression model to create complex shapes.

"Sparse," "Splines," and "Striped" – using the cassowaryr R package (Mason et al. 2022). These computed measures, along with the number of observations from the fitted model, were provided as the second input for the computer vision model. Although other scagnostics are informative, they are currently unavailable due to a fatal bug in the compiled C program of the interp R package (Gebhardt, Bivand, and Sinclair 2023), which may unpredictably crash the process. For reproducibility, we excluded these scagnostics from the training data.

2.4.3. Crafting a balanced training set

To train a robust computer vision model, we deliberately controlled the distribution of the target variable D in the training data. We ensured that it followed a uniform distribution between 0 and 7. This was achieved by organizing 50 buckets, each exclusively accepting training samples with D falling within the range [7(i-1)/49, 7i/49) for i < 50, where i represents the index of the i-th bucket. For the 50-th bucket, any

Figure 6. Residual plots of models violating both the non-linearity and the heteroskedasticity assumptions. The 17 shapes are generated by varying the order of polynomial given by j in $He_j(.)$, and the "left-triangle" shape is introduced by setting a = -1.

training samples with $D \ge 7$ were accepted.

With 80000 training images prepared, each bucket accommodated a maximum of $80000 \div 50 = 1600$ training samples. The simulator iteratively sampled parameter values from the parameter space, generated residuals and fitted values using the data generation process, computed the distance, and checked if the sample fitted within the corresponding bucket. This process continued until all buckets were filled.

Similarly, we adopted the same methodology to prepare 8000 test images for performance evaluation and model diagnostics.

2.5. Architecture of the computer vision model

The architecture of the computer vision model is adapted from a well-established architecture known as VGG16, which has demonstrated high performance in image classification (Simonyan and Zisserman 2014).

Figure 7. Residual plots of models violating both the non-normality and the heteroskedasticity assumptions. The four shapes are generated by using four different error distributions including discrete, lognormal, normal and uniform, and the "left-triangle" shape is introduced by setting a = -1.

The model begins with an input layer of shape $n \times h \times w \times 3$, capable of handling n RGB images. This is followed by a grayscale conversion layer utilizing the luma formula under the Rec. 601 standard, which converts the color image to grayscale. Grayscale suffices for our task since data points are plotted in black. We experiment with three combinations of h and w: 32×32 , 64×64 , and 128×128 , aiming to achieve sufficiently high image resolution for the problem at hand.

The processed image is used as the input for the first convolutional block. The model comprises at most five consecutive convolutional blocks, mirroring the original VGG16 architecture. Within each block, there are two 2D convolutional layers followed by two activation layers, respectively. Subsequently, a 2D max-pooling layer follows the second activation layer. The 2D convolutional layer convolves the input with a fixed number of 3×3 convolution filters, while the 2D max-pooling layer downsamples the input along its spatial dimensions by taking the maximum value over a 2×2 window for each channel of the input. The activation layer employs the rectified linear unit

(ReLU) activation function, a standard practice in deep learning, which introduces a non-linear transformation of the output of the 2D convolutional layer. Additionally, to regularize training, a batch normalization layer is added after each 2D convolutional layer and before the activation layer. Finally, a dropout layer is appended at the end of each convolutional block to randomly set some inputs to zero during training, further aiding in regularization.

The output of the last convolutional block is summarized by either a global max pooling layer or a global average pooling layer, resulting in a two-dimensional tensor. To leverage the information contained in scagnostics, this tensor is concatenated with an additional $n \times 5$ tensor, which contains the "Monotonic," "Sparse," "Splines," and "Striped" measures, along with the number of observations for n residual plots.

The concatenated tensor is then fed into the final prediction block. This block consists of two fully-connected layers. The first layer contains at least 128 units, followed by a dropout layer. Occasionally, a batch normalization layer is inserted between the fully-connected layer and the dropout layer for regularization purposes. The second fully-connected layer consists of only one unit, serving as the output of the model.

The model weights θ were randomly initialized and they were optimized by the Adam optimizer with the mean square error loss function

$$\hat{\boldsymbol{\theta}} = \underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{n_{train}} \sum_{i=1}^{n_{train}} (D_i - f_{\boldsymbol{\theta}}(V_i, S_i))^2,$$

where n_{train} is the number of training samples, V_i is the *i*-th residual plot and S_i is the additional information about the *i*-th residual plot including four scagnostics and the number of observations.

2.6. Training and hyperparameter tuning

To achieve an optimal deep learning model, hyperparameters like the learning rate often need to be fine-tuned using a tuner. In our study, we utilized the Bayesian optimization tuner from the KerasTuner Python library (O'Malley et al. 2019) for

this purpose. A comprehensive list of hyperparameters is provided in Table 2.

The "number of base filters" determines the number of filters for the first 2D convolutional layer. In the VGG16 architecture, the number of filters for the 2D convolutional layer in a block is typically twice the number in the previous block, except for the last block, which maintains the same number of convolution filters as the previous one. This hyperparameter aids in controlling the complexity of the computer vision model. Higher numbers of base filters result in more trainable parameters. Likewise, the "number of units for the fully-connected layer" determines the complexity of the final prediction block. Increasing the number of units enhances model complexity, resulting in more trainable parameters.

The dropout rate and batch normalization are flexible hyperparameters that work in conjunction with other parameters to facilitate smooth training. A higher dropout rate is necessary when the model tends to overfit the training dataset by learning too much noise. Conversely, a lower dropout rate is preferred when the model is complex and challenging to converge. Batch normalization, on the other hand, addresses the internal covariate shift problem arising from the randomness in weight initialization and input data. It helps stabilize and accelerate the training process by normalizing the activations of each layer.

Additionally, incorporating additional inputs such as scagnostics and the number of observations can potentially enhance prediction accuracy. Therefore, we allowed the tuner to determine whether these inputs were necessary for optimal model performance.

The learning rate is a crucial hyperparameter, as it dictates the step size of the optimization algorithm. A high learning rate can help the model avoid local minima but risks overshooting and missing the global minimum. Conversely, a low learning rate smoothens the training process but makes the convergence time longer and increases the likelihood of getting trapped in local minima.

Our model was trained on the M3 high-performance computing platform, using TensorFlow and Keras. During training, 80% of the training data was utilized for actual training, while the remaining 20% was used as validation data. The Bayesian optimization tuner conducted 100 trials to identify the best hyperparameter values

Table 2. Name of hyperparameters and their correspoding domain for the computer vision model.

Hyperparameter	Domain
Number of base filters Dropout rate for convolutional blocks Batch normalization for convolutional blocks Type of global pooling Ignore additional inputs	{4, 8, 16, 32, 64} [0.1, 0.6] {false, true} {max, average} {false, true}
Number of units for the fully-connected layer Batch normalization for the fully-connected layer Dropout rate for the fully-connected layer Learning rate	{128, 256, 512, 1024, 2048} {false, true} [0.1, 0.6] [1e-8, 1e-1]

based on validation root mean square error. The tuner then restored the best epoch of the best model from the trials. Additionally, we applied early stopping, terminating the training process if the validation root mean square error fails to improve for 50 epochs. The maximum allowed epochs was set at 2000, although no models reached this threshold.

2.7. Model evaluation methods

- RMSE for the test set
- R²
- Mean bias deviation to understand the overall bias
- quantile loss to understand how well the model captures the entire distribution of D
- Percentage of predictions within a tolerance interval (like 0.1)
- comparison with human visual inference
- ullet overview of the human subject experiment
- metrics
- agreement rate
- check cases that are aggreed
- check cases that are disaggreed

Table 3. Hyperparameters values for the optimized computer vision models with different input sizes.

Hyperparameter	32×32	64×64	128×128
Number of base filters Dropout rate for convolutional blocks Batch normalization for convolutional blocks Type of global pooling Ignore additional inputs	32	64	64
	0.4	0.3	0.4
	true	true	true
	max	average	average
	false	false	false
Number of units for the fully-connected layer	256	256	256
Batch normalization for the fully-connected layer	false	true	true
Dropout rate for the fully-connected layer	0.2	0.4	0.1
Learning rate	0.0003	0.0006	0.0052

3. Results

3.1. Optimized hyperparameters

Based on the tuning process described in Section 2.6, the optimized hyperparameter values are presented in Table 3. It was observable that a minimum of 32 base filters was necessary, with the preferable choice being 64 base filters for both the 64×64 and 128×128 models, mirroring the original VGG16 architecture. The optimized dropout rate for convolutional blocks hovered around 0.4, and incorporating batch normalization for convolutional blocks proved beneficial for performance.

All optimized models chose to retain the additional inputs, contributing to the reduction of validation error. The number of units required for the fully-connected layer was 256, a relatively modest number compared to the VGG16 classifier, suggesting that the problem at hand was relatively straightforward. The optimized learning rates were typically smaller than the default value recommended by Keras, which is 0.001.

3.2. Model performance

The training and test performance for the optimized models with three different input sizes are summarized in Table 4. Among these models, the 64×64 model and the 32×32 model consistently exhibited the best training and test performance, respectively. The mean absolute error indicated that the difference between \hat{D} and D was approximately 0.43 on the test set, a negligible deviation considering the normal range of D typically

falls between 0 and 7. The high R^2 values also suggested that the predictions were largely linearly correlated with the target.

Figure 8 presents a hexagonal heatmap for $D - \hat{D}$ versus \hat{D} . The red smoothing curves, fitted by generalized additive models (Hastie 2017), demonstrate that all the optimized models perform admirably on both the training and test sets. No structural issues are noticeable in Figure 8, but some minor issues regarding over-prediction and under-prediction are observed.

The figure highlights that most under-predictions occurred when $\hat{D} < 3$, while over-predictions occurred predominantly when $3 < \hat{D} < 6$. To comprehend the reasons behind these deviations, we conducted a meta-analysis on $D - \hat{D}$ for all factors used in the data generating process. A regression tree was constructed using the rpart R package (Therneau and Atkinson 2022). The results of the regression tree are provided in the Appendix.

The meta-analysis revealed that most issues arose from non-linearity problems and the presence of a second predictor in the regression model. When the error distribution had a very small variance, all computer vision models tended to under-predict the distance. Conversely, when the error distribution had a large variance, all models tended to over-predict the distance. Therefore, Additionally, for input images representing null plots, it was expected that the models will over-predict the distance, as explained in Section 2.3.1.

Since most of the deviation stemmed from the presence of non-linearity violations, to further investigate this, we split the test set and re-evaluated the performance, as detailed in Table 5. It was evident that metrics for null plots were notably worse compared to other categories. Furthermore, residual plots solely exhibiting non-normality issues were the easiest to predict, with very low test root mean square error (RMSE) around 0.3, very low mean absolute error (MAE) around 0.2, and very high R^2 around 0.94. Residual plots with non-linearity issues were more challenging to assess than those with heteroskedasticity or non-normality issues. Assessing residual plots with heteroskedasticity was not as difficult as assessing those with non-linearity issues. When multiple violations were introduced to a residual plot, the performance metrics typically lay between the metrics for each individual violation.

Table 4. The training and test performance of three optimized models with different input sizes. The best metrics are colored in red.

	RMSE	R^2	MAE	Huber loss
Training set	t			
32×32	0.531	0.937	0.364	0.126
64×64	0.405	0.963	0.260	0.072
128×128	0.432	0.959	0.290	0.084
Test set				
32×32	0.660	0.901	0.434	0.181
64×64	0.674	0.897	0.438	0.186
128×128	0.692	0.892	0.460	0.199

Based on the model performance metrics, we will only use the best-performing model evaluated on the test set, namely the 32×32 model, for the subsequent analysis.

Figure 8. Hexagonal heatmap for residuals vs predicted distance on training and test data for three optimized models with different input sizes. The red lines are smoothing curves produced by fitting gnealized additive models. The area over the zero line in light pink indicates under-prediction, and the area under the zero line in light green indicates over-prediction.

Table 5. The training and test performance of the 32×32 model presented with different model violations. The best metrics are colored in red.

Violations	#samples	RMSE	R^2	MAE	Huber loss
Training set					
no violations	1546	1.149		1.080	0.592
non-linearity	22184	0.625	0.851	0.474	0.177
heteroskedasticity	10826	0.528	0.942	0.407	0.133
non-linearity + heteroskedasticity	10221	0.593	0.920	0.439	0.158
non-normality	10797	0.279	0.955	0.177	0.038
non-linearity + non-normality	8835	0.472	0.923	0.274	0.090
heteroskedasticity + non-normality	7870	0.354	0.905	0.211	0.052
non-linearity + heteroskedasticity + non-normality	7721	0.432	0.874	0.261	0.078
Test set					
no violations	155	1.267		1.174	0.685
non-linearity	2218	0.787	0.771	0.578	0.257
heteroskedasticity	1067	0.602	0.922	0.461	0.170
non-linearity + heteroskedasticity	985	0.751	0.868	0.541	0.236
non-normality	1111	0.320	0.942	0.194	0.049
non-linearity + non-normality	928	0.600	0.879	0.335	0.133
heteroskedasticity + non-normality	819	0.489	0.832	0.267	0.093
non-linearity + heteroskedasticity + non-normality	717	0.620	0.762	0.339	0.140

3.3. Comparison with human visual inference

3.3.1. Overview of the human subject experiment

In order to check the validity of the proposed computer vision model, residual plots presented in the human subject experiment conducted by Li et al. (2023) will be assessed. This study has collected 7974 human responses to 1152 lineups. Each lineup contains one randomly placed actual residual plot and 19 null plots. Among the 1152 lineups, 24 are attention check lineups in which the visual patterns are designed to be extremely obvious and very different from the corresponding to null plots, 36 are null lineups where all the lineups consist of only null plots, 279 are lineups with uniform predictor distribution evaluated by 11 participants, and the remaining 813 are lineups with discrete, skewed or normal predictor distribution evaluated by 5 participants. Attention check lineups and null lineups will not be assessed in the following analysis.

In Li et al. (2023), the residual plots are simulated from a data generating process which is a special case of Equation 7. The main characteristic is the model violations are introduced separately, meaning non-linearity and heteroskedasticity will not coexist in one linear but assigned uniformly to all linearity. Additionally, non-normality and multiple predictors are not considered in their experimental design.

Table 6. The performance of the 32×32 model on the data used in the human subject experiment.

Voilation	RMSE	R^2	MAE	Huber loss
heteroskedasticity non-linearity	0.721 0.738		$0.553 \\ 0.566$	

3.3.2. Model performance on the human data

For each linear used in Li et al. (2023), there are one actual residual plot and 19 null plots. While the distance D for the actual residual plot depends on the underlying data generating process, the distance D for the null plots are zeros. We have used our optimized computer vision model to predict \hat{D} for both the actual residual plots and the null plots.

The performance metrics of \hat{D} for actual residual plots are provided in Table 6. It can be observed that all the performance metrics are slightly worse than the metrics evaluated on the test data. Still, the mean absolute error remains at a low level, and the linearly correlation between the prediction and the true value is still very high. Linearly with non-linearity issues are more difficult to be predicted than those with heteroskedasticity issues.

For null plots, a histogram of the prediction is provided in Figure 9. In most cases, \hat{D} will be predicted at around 1. And as \hat{D} increases, the number of predictions decreases. There are some outliers with $\hat{D} > 5$.

3.4. When the model works

- simple examples (non-linearity, heteroskedasticity, ...)
- datasaurus

3.5. When the model does not work

- human detect but model does not
- cartoon residuals?

Figure 9. Histogram of predicted distance on null plots used in the human subject experiment. Sample quantiles are drawn in different colors.

Figure 10. A weighted detection rate vs $\delta\text{-differnence}$ plot.

Figure 11. A weighted detection rate vs γ -number of extreme nulls plot.

Figure 12. A weighted detection rate vs δ -difference plot for lineups evaluated by 11 people.

Figure 13. A weighted detection rate vs γ -number of extreme nulls plot for lineups evaluated by 11 people.

3.6. Workflow: how one use this model? (small showcase)

4. Dicussion

There are other kinds of residual departures like autocorrelation that are not considered in this study. The primary goal of this study is to establish a new way of evaluating residual plot and conducting visual test with computer vision models. Building computer vision models for other model violations and other types of diagnostic plots could be future directions of this field.

5. Conclusion

- Summary of findings
- Contributions to the field
- Future directions for research

References

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S Corrado, et al. 2016. "Tensorflow: Large-scale machine learning on heterogeneous distributed systems." arXiv preprint arXiv:1603.04467.

Belsley, David A, Edwin Kuh, and Roy E Welsch. 1980. Regression diagnostics: Identifying influential data and sources of collinearity. John Wiley & Sons.

Brunetti, Antonio, Domenico Buongiorno, Gianpaolo Francesco Trotta, and Vitoantonio Bevilacqua. 2018. "Computer vision and deep learning techniques for pedestrian detection and tracking: A survey." *Neurocomputing* 300: 17–33.

Buja, Andreas, Dianne Cook, Heike Hofmann, Michael Lawrence, Eun-Kyung Lee, Deborah F Swayne, and Hadley Wickham. 2009. "Statistical inference for exploratory data analysis and model diagnostics." *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences* 367 (1906): 4361–4383.

Chen, Yun, Shijie Su, and Hui Yang. 2020. "Convolutional neural network analysis of recurrence plots for anomaly detection." *International Journal of Bifurcation and Chaos* 30 (01): 2050002.

Chopra, Sumit, Raia Hadsell, and Yann LeCun. 2005. "Learning a similarity metric discrim-

- inatively, with application to face verification." In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), Vol. 1, 539–546. IEEE.
- Chowdhury, Niladri Roy, Dianne Cook, Heike Hofmann, and Mahbubul Majumder. 2018. "Measuring lineup difficulty by matching distance metrics with subject choices in crowd-sourced data." *Journal of Computational and Graphical Statistics* 27 (1): 132–145.
- Chu, Hongyang, Xinwei Liao, Peng Dong, Zhiming Chen, Xiaoliang Zhao, and Jiandong Zou. 2019. "An automatic classification method of well testing plot based on convolutional neural network (CNN)." Energies 12 (15): 2846.
- Cook, R Dennis, and Sanford Weisberg. 1982. Residuals and influence in regression. New York: Chapman and Hall.
- Emami, Shervin, and Valentin Petrut Suciu. 2012. "Facial recognition using OpenCV." Journal of Mobile, Embedded and Distributed Systems 4 (1): 38–43.
- Frisch, Ragnar, and Frederick V Waugh. 1933. "Partial time regressions as compared with individual trends." *Econometrica: Journal of the Econometric Society* 387–401.
- Fukushima, Kunihiko, and Sei Miyake. 1982. "Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position." *Pattern recognition* 15 (6): 455–469.
- Gebhardt, Albrecht, Roger Bivand, and David Sinclair. 2023. interp: Interpolation Methods.

 R package version 1.1-5, https://CRAN.R-project.org/package=interp.
- Hailesilassie, Tameru. 2019. "Financial Market Prediction Using Recurrence Plot and Convolutional Neural Network." .
- Hastie, Trevor J. 2017. "Generalized additive models." In *Statistical models in S*, 249–307. Routledge.
- Hatami, Nima, Yann Gavet, and Johan Debayle. 2018. "Classification of time-series images using deep convolutional neural networks." In *Tenth international conference on machine vision (ICMV 2017)*, Vol. 10696, 242–249. SPIE.
- Hermite, M. 1864. Sur un nouveau développement en série des fonctions. Imprimerie de Gauthier-Villars.
- Hyndman, Rob J, and Yanan Fan. 1996. "Sample quantiles in statistical packages." *The American Statistician* 50 (4): 361–365.
- Krishnan, Ganesh, and Heike Hofmann. 2021. "Hierarchical Decision Ensembles-An inferential framework for uncertain Human-AI collaboration in forensic examinations." $arXiv\ preprint$ arXiv:2111.01131.

- Kullback, Solomon, and Richard A Leibler. 1951. "On information and sufficiency." *The Annals of Mathematical Statistics* 22 (1): 79–86.
- Langsrud, Øyvind. 2005. "Rotation tests." Statistics and computing 15: 53–60.
- Lee, Howard, and Yi-Ping Phoebe Chen. 2015. "Image based computer aided diagnosis system for cancer detection." Expert Systems with Applications 42 (12): 5356–5365.
- Li, Weihao, Dianne Cook, Emi Tanaka, and Susan VanderPlas. 2023. "A Plot is Worth a Thousand Tests: Assessing Residual Diagnostics with the Lineup Protocol." arXiv preprint arXiv:2308.05964.
- Loy, Adam, and Heike Hofmann. 2013. "Diagnostic tools for hierarchical linear models." Wiley Interdisciplinary Reviews: Computational Statistics 5 (1): 48–61.
- Loy, Adam, and Heike Hofmann. 2014. "HLMdiag: A suite of diagnostics for hierarchical linear models in R." *Journal of Statistical Software* 56: 1–28.
- Loy, Adam, and Heike Hofmann. 2015. "Are you normal? The problem of confounded residual structures in hierarchical linear models." *Journal of Computational and Graphical Statistics* 24 (4): 1191–1209.
- Mason, Harriet, Stuart Lee, Ursula Laa, and Dianne Cook. 2022. cassowaryr: Compute Scagnostics on Pairs of Numeric Variables in a Data Set. R package version 2.0.0, https://CRAN.R-project.org/package=cassowary.
- Ojeda, Sun Arthur A, Geoffrey A Solano, and Elmer C Peramo. 2020. "Multivariate time series imaging for short-term precipitation forecasting using convolutional neural networks." In 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 33–38. IEEE.
- O'Malley, Tom, Elie Bursztein, James Long, François Chollet, Haifeng Jin, Luca Invernizzi, et al. 2019. "Keras Tuner." https://github.com/keras-team/keras-tuner.
- Rawat, Waseem, and Zenghui Wang. 2017. "Deep convolutional neural networks for image classification: A comprehensive review." *Neural computation* 29 (9): 2352–2449.
- Silverman, Bernard W. 2018. Density estimation for statistics and data analysis. Routledge.
- Simonyan, Karen, and Andrew Zisserman. 2014. "Very deep convolutional networks for large-scale image recognition." $arXiv\ preprint\ arXiv:1409.1556$.
- Singh, Karamjit, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. 2017. "Deep convolutional neural networks for pairwise causality." arXiv preprint arXiv:1701.00597.
- Therneau, Terry, and Beth Atkinson. 2022. rpart: Recursive Partitioning and Regression Trees.

- R package version 4.1.19, https://CRAN.R-project.org/package=rpart.
- Tukey, John W, and Paul A Tukey. 1985. "Computer graphics and exploratory data analysis: An introduction." In Proceedings of the sixth annual conference and exposition: computer graphics, Vol. 85, 773–785.
- Vo, Nam N, and James Hays. 2016. "Localizing and orienting street views using overhead imagery." In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, 494–509. Springer.
- Wang, Zhou, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. "Image quality assessment: from error visibility to structural similarity." *IEEE transactions on image processing* 13 (4): 600–612.
- Widen, Holly M, James B Elsner, Stephanie Pau, and Christopher K Uejio. 2016. "Graphical inference in geographical research." *Geographical Analysis* 48 (2): 115–131.
- Wilkinson, Leland, Anushka Anand, and Robert Grossman. 2005. "Graph-theoretic scagnostics." In *Information Visualization*, *IEEE Symposium on*, 21–21. IEEE Computer Society.
- Zhang, Ye, Yi Hou, Shilin Zhou, and Kewei Ouyang. 2020. "Encoding time series as multiscale signed recurrence plots for classification using fully convolutional networks." Sensors 20 (14): 3818.