NASA TECHNICAL MEMORANDUM

NASA TM X-3013

SOME PROPULSION SYSTEM
NOISE DATA HANDLING CONVENTIONS
AND COMPUTER PROGRAMS USED
AT THE LEWIS RESEARCH CENTER

by Francis J. Montegani Lewis Research Center Cleveland, Ohio 44135

1. Report No.	2. Government Access	ion No.	3. Recipient's Catalog	No.
NASA TM X-3013 4. Title and Subtitle	L		5. Report Date	
SOME PROPULSION SYSTEM	NOISE DATA HAN	IDLING	March 197	4
CONVENTIONS AND COMPUT	ER PROGRAMS U	SED	6. Performing Organiz	ation Code
AT THE LEWIS RESEARCH CI	ENTER			
7. Author(s)			8. Performing Organiz	ation Report No.
Francis J. Montegani		<u> </u>	E-7609	
9. Performing Organization Name and Address			10. Work Unit No.	
Lewis Research Center		<u> </u>	501-24	
National Aeronautics and Space	Administration	į	11. Contract or Grant	No.
Cleveland, Ohio 44135		-	13. Type of Report ar	d Pariod Coursed
12. Sponsoring Agency Name and Address			Technical Me	ı
National Aeronautics and Space	Administration	-		
Washington, D.C. 20546		14. Spansoring Agency	Code	
15. Supplementary Notes				
vo. Supplementary Notes				
16. Abstract	a atoma boud noise	doto origination fo	ow the outdoor	
Methods of handling one-third-		- •		1
fan noise facility and the engine	-			- 1
sented. Procedures for standa are explained. Computer prog				
noise data analysis tasks. Thi	-			1
data from these facilities appear		_	_	
standardization.	aring in NASA Te	ports and can aid da	ta exchange by	promoting
Sumuai dizaçion.				
•				
		· · · · · · · · · · · · · · · · · · ·		
17. Key Words (Suggested by Author(s)) Acoustic data analysis; Noise	data analysis;	18. Distribution Statement Unclassified - u		
Propulsion system noise; Com	puter programs;			
Data handling				ľ
				Cat. 28
19. Security Classif, (of this report)	20. Security Classif. (c	of this page)	21. No. of Pages	22. Price*
Unclassified	1	assified	70	\$3.50
<u> </u>				L

SOME PROPULSION SYSTEM NOISE DATA HANDLING CONVENTIONS AND COMPUTER PROGRAMS USED AT THE

LEWIS RESEARCH CENTER

by Francis J. Montegani

Lewis Research Center

SUMMARY

Methods of handling one-third-octave band noise data originating from the outdoor full-scale fan noise facility and the engine acoustic facility at the Lewis Research Center are presented. Procedures for standardizing, retrieving, extrapolating, and reporting these data are explained. Computer programs are given which are used to accomplish these and other noise data analysis tasks. This information is useful as background for interpretation of data from these facilities appearing in NASA reports and can aid data exchange by promoting standardization.

INTRODUCTION .

The last several years have seen a rapid rise in the level of research relating to the noise of aircraft propulsion systems. Various companies, universities, and government agencies have been contributing to an increasing body of technical data. A significant volume among these data is comprised of the results of one-third-octave band analyses of the noise signatures of propulsion systems or components either from full-scale hardware or from models. Thorough analyses of these data are essential to the development of an understanding of the mechanisms of noise generation and, at the very least, to the development of noise prediction methods which are important to the proper evolution of quiet propulsion systems. Researchers using the full-scale fan and the engine acoustic facilities at the Lewis Research Center are among those generating and manipulating large volumes of one-third-octave band noise data. Several years ago, the generation of such quantities of data was anticipated, and data handling practices were established to facilitate the manipulation and analyses of these data at the user level. These practices center around a collection of computer programs which are used to process the data and

a philosophy of data standardization and storage. Extensive use of these methods has demonstrated their worth. Interest shown by others outside of NASA has indicated that these practices may be generally useful, particularly with regard to standardization and facilitation of more direct data exchange especially in computer-compatible form. In addition, considerable data from the full-scale fan facility and the engine acoustic facility are being published which are handled by the methods discussed herein. Typical of such publications is reference 1.

This report therefore sets forth the practices that are followed at the Lewis Research Center with regard to standardizing, retrieving, extrapolating, and reporting noise data from these facilities. The adjustments made to the data for standardization purposes and other practices are explained, and a collection of computer programs is given. It is hoped that these practices, which have proven useful at Lewis over the past several years, will be of use to others engaged in propulsion system noise research.

DATA ACQUISITION AND DOCUMENTATION

This section includes information on the manner in which collections of data are identified and manipulated. To assist in presenting this information, a block diagram is presented in figure 1. This diagram gives an overview of the major elements which are involved in the data handling system. It is pertinent to much of the discussion which follows.

Data Standardization

Measured array. - The kind of data under consideration in the context of this report are the results of one-third-octave band spectral analyses of the far-field radiated noise from axisymmetric sources. In general, measurements are made about the source at equal angle increments. Irrespective of the manner of testing, and whether one run is made or the data from a few runs are averaged, the net result is an array of data comprised of sound pressure levels in one-third-octave bands for a number of angles. This array is referred to herein as the 'Measured Array' and is the starting point for all further discussion. Effects of instrumentation frequency response are presumed to be removed.

A Measured Array is identified with an operating point of the source and consists of an NF×NM matrix of sound pressure levels, where NF is the number of frequency bands and NM is the number of microphones or angles. The usual range of frequencies is from 50 to 20 000 hertz. Microphones commonly are employed in 10^{0} increments over most of a 180^{0} arc.

Site effects. - The Measured Array, whether obtained indoors or out, in general possesses measurement anomalies which are attributable to the site and also to the ambient air conditions. Site-related anomalies such as ground plane reflections are the subject of continuing interest. A discussion of them exceeds the scope of this report. For full-scale fan and engine facilities, data are not adjusted routinely for site effects, but their inclusion is always implied, and it is intended that they be given consideration as the use of the data dictates.

Excess atmospheric attenuation. - Data are filed for use essentially as obtained except for standardization for atmospheric effects. Ambient air, of course, is known to cause excess sound attenuation (over and above inverse square law attenuation) which is a function of frequency, temperature, and humidity. Data to evaluate this effect are contained in reference 2.

Reference 2 was created in a framework of jet noise. And in addition to the air attenuation data contained therein, which are essentially continuous functions of frequency, guidelines are presented for applying those data to one-third-octave band spectra which are discontinuous. The guidelines specify the use of the band center frequency for determining the air attenuation for one-third-octave bands to 4000 hertz and for using the band lower limiting frequency above 4000 hertz. This procedure is biased for jet noise, which has a characteristic fall-off at high frequency. The theoretically correct attenuation which should be used must be the result of an integration which accounts for the combination of spectral and attenuation variations over a frequency band. When both these characteristics are relatively flat, the use of the attenuation at the band center frequency is appropriate. But when large changes occur in either characteristic over a frequency band, the band center frequency is not an adequate parameter. For jet noise, use of the band lower limiting frequency is satisfactory; but this is not true in general. The manner of determining atmospheric correction which is discussed in the next section uses the data of reference 2, but does so by an integration process over each frequency band. This integration cannot be done precisely with knowledge only of the onethird-octave band spectrum, but the spectrum shape is approximated conceptually by assuming a straight-line connection between sound pressure levels in adjacent frequency bands on a spectral plot with a logarithmic frequency scale.

Referred array. - The only adjustments which the Measured Array undergoes prior to use at the working level are removal of the effect of atmospheric absorption for the conditions that prevailed at the test site and adjustment to a standard radius for any microphones not on that standard radius for the test. The atmospheric attenuation for the test ambient temperature and relative humidity for each one-third-octave band spectrum is calculated as noted in the previous section. These results are added to the measured data for the appropriate propagation distance. And inverse square adjustments are made where necessary (fig. 1). The results are sound pressure levels that would exist at the microphones on a constant radius if the atmosphere were completely

nonattenuating. Therefore, these results are never to be expected in reality. It is from these data, however, that source acoustic power and directivity properties must be calculated. The array so adjusted is termed the "Referred Array," implying that it possesses acoustic properties that refer back to the source and are uninfluenced by the propagation properties of the medium except for inverse square attenuation.

It follows that a Referred Array may be extrapolated to any distance by using the inverse square law while preserving its intrinsic acoustic power and directivity properties. Conversely, when acoustic power and directivity properties of a source are known, a Referred Array can be constructed for any distance from the source (fig. 1), and by incorporating the effects of atmospheric absorption, far-field sound pressure levels may be constructed.

Working Data

From the Referred Array, the essential properties of the source acoustic emission are calculated. These properties consist of overall power level, normalized power spectrum, and directivity index for each frequency band. These data are useful directly in the characterization of the source acoustic emission and in understanding noise generating mechanisms. Further, they are independent of the original measurement distances.

It is these data, retained on punched cards, that constitute the heart of the retrieval system. The data in this form are called "Working Data."

These noise data so decomposed into fundamental emission properties can contribute to understanding of noise generating mechanisms through the development of improved prediction techniques, for which they are suited particularly well. Each of the three basic elements - power level, normalized spectrum, and directivity index - can be examined separately and independently. Power level is a single variable which, in general, can be expected to correlate simply with size, thrust, or mechanical power. Quite independently, normalized power spectrum (which embodies only the shape and frequency scale of the spectral emission) may be expected to correlate with such things as mechanical design and characteristic speed. And finally, directivity index may be isolated and separately investigated insofar as it pertains to questions of theoretical acoustic propagation, duct terminations, flow refraction, and so forth. The extent of understanding any one of these emission properties is not dependent necessarily on the understanding of any other.

This general independence of the emission properties is also particularly useful to meet short-term needs for noise predictions. State-of-the-art noise prediction methods rely heavily on an empirical data base. Working Data facilitate such predictions by permitting selective use of the appropriate emission properties from a variety of sources.

Although Working Data, at a glance, do not consist of familiar sound pressure levels, this is no obstacle to users desirous of data in that form. With a computer-oriented system such as this, it is a simple task to assemble the Working Data into a referred sound pressure level array. This array in turn can be extrapolated for any far-field conditions (fig. 1).

For the foregoing reasons, all noise data are decomposed into the source fundamental emission properties, punched into cards, and filed for use in this form at the working level. Appendix A contains a sample listing of Working Data, with complete explanation of the format. The retention of data in this form, in conjunction with a family of computer programs which are given herein, facilitates rapid dissemination and efficient utilization of the data. The manner in which Working Data are computed from the Referred Array is discussed in the next sections.

Acoustic power. - A general sound source emits acoustic energy radially to the far-field and nonuniformly with direction. The acoustic power emitted by the source can be obtained by integrating the far-field sound intensity over an enclosing surface. It is here presumed that the source and its associated sound field are axisymmetric so that the intensity field is a function of only two coordinates, radial distance r from the source and azimuth angle θ from the source axis. For far-field noise radiation, discounting excess atmospheric attenuation, the sound intensity varies inversely as the square of the distance from the source so that the functional dependence on r is known. Further, the sound intensity r is related to the rms acoustic pressure r, which is the usual measured quantity, according to

$$I = \frac{P^2}{\rho c} \tag{1}$$

where ρc is the characteristic impedance of the propagating medium. Under such conditions, the rms sound pressure may be determined at a constant radius R, from which the acoustic power W is obtained according to

$$W = \frac{1}{\rho c} \int_0^{\pi} P^2(\theta) dA$$
 (2)

where

$$dA = 2\pi R^2 d\theta (3)$$

is the elemental annulus area on an enclosing sphere.

In practice, a function $P^2(\theta)$ is not usually available, but rather, discrete values P_i^2 (i = 0, 1, . . . , n) are known from measurements corresponding to values of θ_i . Under these conditions, equation (2) must be approximated as a finite sum

$$W = \frac{1}{\rho c} \sum_{i=0}^{n} P_i^2 \Delta A_i$$
 (4)

where the ΔA_i are contiguous finite incremental areas on which the corresponding P_i^2 are presumed constant.

If the θ_i are taken to be equally spaced by an angle increment $\Delta\theta$, which therefore becomes also the arc width of any elemental area ΔA_i , and if the θ_i are written as $i\Delta\theta$, the incremental areas can be expressed as

$$\Delta A_i = 2\pi R^2 \sin\left(\frac{\Delta\theta}{2}\right) \tan\left(\frac{\Delta\theta}{4}\right) \quad i \Delta\theta = 0, \pi$$
 (5)

$$\Delta A_i = 4\pi R^2 \sin\left(\frac{\Delta \theta}{2}\right) \sin(i \Delta \theta) \qquad 0 < i \Delta \theta < \pi$$
 (6)

The geometry of the arrangement is shown in figure 2. When the azimuth angle i $\Delta\theta$ corresponds with a polar area on the sphere, equation (5) applies; otherwise equation (6) applies.

Combining equations (4) to (6) results in

$$W = \frac{4\pi R^2}{\rho c} \sin\left(\frac{\Delta \theta}{2}\right) \left[\frac{P_0^2}{2} \tan\left(\frac{\Delta \theta}{4}\right) + \sum_{i=1}^{n-1} P_i^2 \sin(i \Delta \theta) + \frac{P_n^2}{2} \tan\left(\frac{\Delta \theta}{4}\right) \right]$$
 (7)

where the subscripts 0 and n denote the polar areas.

Equation (7) is basically that used for acoustic power calculation as discussed herein. However, as written, it applies specifically to radiation in the absence of a ground
plane since a summation is taken with fully circular annuli. Most practical propulsion
system noise measurements are taken in an environment with a reflecting ground plane,
and the problems it presents must be considered.

In actual fact, the directly radiated instantaneous sound pressure and that reflected from the ground plane sum algebraically at the microphone. The resultant effects

depend on the geometry of the problem, the frequency of the radiation, the phase shifts and attenuations in the reflection process, and the bandwidth of the analysis technique, among other things. For one-third-octave band analysis, there usually result band-dominant signal reinforcement and cancellation effects in the low-frequency end of the spectrum which are highly dependent on the test arrangement. However, for any arrangement, many signal reinforcements and cancellations occur in any given one-third-octave band at the high-frequency end of the spectrum which, for hard reflecting surfaces, result in a theoretical doubling of intensity there. Since Lewis test sites use hard pavement reflecting surfaces for purposes of maintaining surface constancy, the doubling of intensity at high frequencies is taken to be the prevailing phenomenon. The acoustic power calculation therefore proceeds on the assumption that the acoustic intensities determined to exist in the presence of the ground plane are double what they would be in its absence. Thus, the intensities are halved for all frequency bands and summed over the entire sphere according to equation (7). No attempts are made to correct the data for ground interference effects at low frequencies.

The use of Working Data offers a convenient means of transmitting data to other users. It must be cautioned, however, that if the Referred Array is to be precisely reconstructed, the exact power calculation method which was used to generate the Working Data must be available and inverted; otherwise differences will result. The computer subroutine to compute acoustic power as given by equation (7) and the preceding discussion is called POWER and is given in appendix B. Where sound pressure level data are not available (e.g., near the source axis, where jet flow would impinge on the microphones), the associated areas are excluded from the summation process of the power calculation.

Directivity index. - Directivity index is a normalizing way of characterizing the directional property of far-field acoustic emission. It is defined as the difference, in decibels, between the existing sound pressure level at a point and the sound pressure level that would exist at the same point from a simple source emitting the same acoustic power. Directivity index is a function of direction only; and for an axisymmetric source, therefore, it is a function of azimuth angle θ . For discrete values of θ_i it is defined by

$$DI_{\theta_{i}} = SPL_{\theta_{i}} - SPL_{AV}$$
 (8)

where ${\rm SPL}_{ heta_i}$ denotes the existing sound pressure levels and ${\rm SPL}_{\rm AV}$ represents the simple-source sound pressure level. The simple-source sound pressure level can be shown to be exactly the area-weighted average sound pressure level of the existing ${\rm SPL}_{ heta_i}$. It is computed according to

$$SPL_{AV} = 10 \log_{10} \left(\frac{\sum_{i=0}^{n} \frac{SPL_{\theta_{i}}}{10}}{\sum_{i=0}^{n} \Delta A_{i}} \right)$$

$$(9)$$

where the ΔA_i are given by equations (5) and (6).

A subroutine AVSLR for computing the area-weighted sound pressure level is given in appendix B. As in the acoustic power calculation, where no data exist for angles at or near the axis, such angles are omitted from the summation process.

Extrapolation

Often, for practical purposes, the detailed properties of the source radiation such as directivity index are not needed, but rather the far-field sound pressure levels that result when the data are extrapolated to various distances are necessary. Usually, data of this kind are reported in the literature. To generate such data, it is only necessary to assemble a Referred Array from the Working Data and extrapolate it to the desired distances by using the inverse square law and excess atmospheric attenuation for the conditions desired, usually standard day (fig. 1). Other effects such as ground reflections or extra ground attenuation are given consideration by some investigators in extrapolation calculations. However, as in the case of measurement anomalies, other extrapolation phenomena are the subject of continuing research and exceed the scope of the discussion here. These phenomena are neglected in ordinary data extrapolations for reporting purposes or for data retention at the working level. Such a practice avoids the need for qualifying the data. Further, it permits any user to quickly deduce from the data the referred arrays which accurately reflect the original data which were measured and which he may modify to suit his needs considering test site or extrapolation anomalies.

COMPUTER PROGRAMS

Working Data Generation

The key to the efficient retrieval and use of noise data at the working level lies in maintaining a punched card file of Working Data sets and a family of programs and subroutines for manipulating those data. There exists, of course, archival storage of the raw measured data. But utilization of these data directly requires extensive computer interaction and program handling, particularly since the data to be so retrieved and processed consist of repeat runs which must be averaged, corrected for measurement instrumentation response when necessary, and adjusted to standard-day conditions. The use of Working Data, which is one level removed from the archival data, permits rapid data access by persons not necessarily skilled in computer usage.

The effort avoided by the routine use of Working Data in place of archival data is replaced by the one-time use of a computer program which generates the Working Data and which also generates other useful data listings. This program is called WODAG (for Working Data Generation), and an outline of the calculations it performs and the listings it generates are discussed next. WODAG is a subroutine whose principal input is a Measured Array. A main program which must provide suitable Measured Arrays and call the subroutine WODAG is the responsibility of the reader. The complete codes of the subroutine WODAG and of the subroutines which it calls are given in appendix B.

<u>Listings.</u> - A sample listing of the printed output generated by WODAG is presented in table I. Each page of output is somewhat self-explanatory, but they are reviewed briefly here. A summary of the pages by title is as follows:

- (1) Measured Array
- (2) Test-day excess atmospheric attenuation
- (3) Referred Array
- (4) Acoustic power computations
- (5) Normalized power spectrum (graph)
- (6) Directivity index
- (7) Atmospheric attenuation
- (8) Standard-day data excess atmospheric attenuation
- (9) Standard-day data
- (10 and following) Sideline extrapolated data

The Measured Array has been discussed. It is identifiable with a particular operating condition of the source and represents the actual measured data (or an average of data) from the test site with instrumentation frequency response characteristics removed. Variable microphone radii are permitted and appear in the listing. Atmospheric

conditions for the test are also listed. All test data as printed are adjusted to a constant radius for review purposes by using inverse square law only. For all subsequent calculations the proper atmospheric absorptions and distances are accurately accounted for.

The test-day excess atmospheric attenuation table gives the actual adjustments, based on test temperature, relative humidity, and actual measurement distances, used to generate the Referred Array.

The Referred Array is tabulated for a selected radius and, in addition, overall levels at each angle are listed. No perceived noise levels are presented since the referred data represent a condition that cannot be observed.

Results of acoustic power calculations which are listed include overall acoustic power, acoustic power spectrum, and normalized power spectrum. The normalized spectrum is obtained by subtracting the maximum band power level from the power spectrum. In addition, the simple-source sound pressure levels are listed. These are referred sound pressure levels created by a nondirectional source emitting the same acoustic power as the real source. Simple-source sound pressure levels (average sound pressure levels given by eq. (9)) are used to calculate directivity index according to equation (8). Directivity index is listed in a separate table for the sound pressure levels in each frequency band and for the overall levels.

Tables of standard-day excess atmospheric attenuation are given, the first of which is the attenuation per thousand feet of propagation distance. This table is computed from the Referred Array as discussed in the section Excess atmospheric attenuation and is used for all subsequent extrapolations. A second atmospheric attenuation table is given which lists the exact adjustments that were made to the referred array to generate the standard-day array for the same radius. The atmospheric adjustments vary from angle to angle because the spectral shapes are accounted for as previously discussed.

Subsequent tables provide data extrapolated to selected sidelines. The first of these sidelines is always at the same distance as the radius used for the standard-day data.

<u>Punched cards</u>. - In addition to the foregoing printed output, WODAG also punches data into cards in the Working Data format as discussed previously. These cards are intended for routine use at the user working level in conjunction with a family of programs and subroutines which are discussed next.

General Programs and Subroutines

A principal reason for the use of Working Data is to permit convenient access to data in all its detail. Since the card data format is standardized and contains control information, one set may be read into computer storage with a simple call to a subroutine. Similar calls to other subroutines will generate Referred Arrays, do extrapo-

lations, generate perceived noise levels, and so forth. This modular approach to programming for purposes of handling the data frees the user-programmer from concern over routine data handling tasks. The use of other main programs permits nonprogrammers also to conveniently access, extrapolate, and analyze data starting with Working Data (fig. 1). A number of programs used for these various purposes are discussed in this section.

Source codes written in FORTRAN IV for all the programs which are discussed in this report and other utility subroutines necessary to support them are given in appendix B alphabetically by name. All program listings contain information which makes them self-explanatory. Many of them have a general use to those engaged in noise work. Others, described as ''utility'' routines, are used solely to perform very specific and mundane calling program tasks.

Following is an alphabetical summary of all the programs in appendix B with descriptions of their functions:

Description Program name ANGLE (Utility) **APNDB** (Utility) Assembles one set of Working Data already in storage into a ASMBL Referred Array. Computes excess atmospheric attenuation in decibels for any temper-**ATMAT** ature, relative humidity, frequency, and distance. Uses empirical curve-fits of data contained in reference 2. Computes simple-source sound pressure level (area-weighted aver-AVLSR age sound pressure level) from directional data on an arc. Results used for directivity index calculations. **BASPAT** Computes excess atmospheric attenuation for all bands of a fractional octave band spectrum considering spectrum shape. Also extrapolates spectrum to a new distance, accounting for inverse square and atmospheric attenuation. DADIFF Used for thorough comparison of noise characteristics of two sources. Computes the differences between two sets of data. Differences include acoustic power (including front/rear power split arbitrarily divided at 900 to the source axis), Referred Arrays, and perceived noise levels and tone-corrected perceived noise levels for standardday data extrapolated to selected sidelines.

(Utility)

DBSUM

Danaman	ma ma a
Program	Hame

Description

FARDTA Extrapolates a Referred Array to any far-field radius or sideline,

accounting for inverse square and excess atmospheric attenuation.

GRAPH

(Utility)

LIST Reads and assembles sets of Working Data and prepares printed out-

put of the basic data and standard-day arc extrapolations including optional extrapolations to selected sideline distances. (Output iden-

tical with that of WODAG commencing with Referred Array.)

OASPL

(Utility)

PNDB Computes perceived noise level in PNdB in accordance with refer-

ence 3.

PNLT Computes tone-corrected perceived noise level (PNLT) for a one-

third-octave band sound spectrum in accordance with reference 4.

Also computes perceived noise level.

POWER Computes total acoustic power by incremental area summation for a

set of angles and referred sound pressure levels on an arc. Per-

fectly reflective gound plane assumed.

SIDLAT (Utility)

TABLE Prepares a compact one-page table of data in a format suitable for

reporting purposes. The output includes standard-day extrapolated data on an arc, total acoustic power, power spectrum, simple-source sound pressure levels (which, with nominal band atmospheric attenuation, permit quick evaluation of directivity index), and optional side-

line perceived noise levels.

TBLOP (Utility)

TITLE (Utility)

TITLE 2 (Utility)

WDATA Reads one set of Working Data from cards into storage.

WODAG As discussed herein, standardizes measured data, prepares data

listings, and punches Working Data.

Sample output from WODAG, TABLE, and DADIFF are given herein tables I, II, and III, respectively.

CONCLUDING REMARKS

Methods of data handling and computer programs have been presented which have proven useful for a wide variety of tasks with data from the full-scale fan and engine acoustic test facilities at the Lewis Research Center. These methods center on the use of immediately accessible data punched into cards as standard-format Working Data which include power level, normalized power spectrum, and directivity index. Working Data are useful in understanding mechanisms of generation, developing prediction methods, and executing empirical predictions. Working Data and the associated programs also simplify the problems of user-programmers and nonprogrammers in the tasks of accessing and manipulating the data and increase the productivity and quality of data analyses. It is hoped that these advantages, in addition to the information presented herein, will be of use to others and may lead ultimately to improvements in information exchange.

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, October 12, 1973,
501-24.

Ę

APPENDIX A

WORKING DATA CARD FORMAT

Working Data are normalized acoustic data arranged in a standard format and used for card input for a variety of data analysis programs. A single set of data is complete and self-contained and represents the acoustic emission properties for one operating condition of a sound source.

The data are arranged in five blocks. Block 1 consists always of four cards of identifying information. This information is not manipulated in any way but is read alphanumerically. Any or all of the four cards may be blank, and all 80 card columns may be used.

Block 2 consists of a single card providing control data and identification of the particular operating conditions for this data set. The data, location, and format on the block 2 card are as follows:

Card colum	n	1	5 ,	13	21	24	27		
Variable		NCONF	RPM	PCS	NF	NM	NB		
FORTRAN	format	14	F8.1	F8.1	13	13	13		
NCONF	configuration	n number							
RPM	speed, rpm		.				1		
PCS	percent spec	ed .		9 ² 1	ç ^r		ł		
NF	NF number of fractional-octave band filters employed, up to 27								
NM	number of e	qually spaced a	ngles for the	e data array,	up to 19				
NB	1/NB-octave	frequency ban	ds						

Obviously, where NCONF, RPM, and PCS as defined are inappropriate for the sound source, other operating variables may be used.

Block 3 consists of one, two, or three cards, depending on the value of NF. The first card is arranged in the following way:

Card column	1	7	13	19		67
Variable name	PWL	SUMN	PSM(1)	PSM(2)	• • •	PSM(10)
FORTRAN format	F6.1	F6.1	F6.1	F6.1		F6.1

PWL total acoustic power level, dB referenced to 10⁻¹³ W

SUMN antilogarithmic sum in decibels of the normalized power spectrum

PSM(I) normalized power spectrum, the power spectrum from which has been subtracted the maximum band level

Cards 2 and 3 of block 3, when they exist, are arranged as follows:

Card column	1	13	19	• • •	67
Variable	(Blank)	PSM(11)	PSM(12)	• • •	PSM(20)
FORTRAN format	12x	F6.1	F6.1	•••	F6, 1
Card column	1	13	19	• • •	49
Variable	(Blank)	PSM(21)	PSM(22)		PSM(27)
FORTRAN format	12x	F6.1	F6.1		F6, 1

The index of PSM(I) terminates with the value of NF.

Block 4 consists of at least one card having the increment angle DT followed by the actual microphone angles AI(J), continuing on to the first column of a second card if necessary. The format is 12F6.1/8F6.1. Not counting the increment angle, the number of angles agrees with the value of NM.

Block 5 cards contain the directivity index DI(I,J) for each frequency band denoted by both a band number I and the band center frequency NFIL(I). The subscript J denotes angle. Block 5 consists of NF sets of one or two cards each. The card formats for the I^{th} set are

Card column	1	7 .	13	19		67
Variable name	I	NFIL(I)	DI(I, 1)	DI(I, 2)	• • •	DI(I, 10)
FORTRAN format	16	16	F6.1	F6.1	• • •	F6.1
Card column	1	13	• • •	61	•••	
Variable name	(Blank)	DI(I, 11)		DI(I, 19)		
FORTRAN format	12x	F6.1		F6.1		

The index J of DI(I, J) terminates with the value of NM.

A listing of a typical set of working data is given in table IV. The maximum number of cards in a set is 64.

APPENDIX B

COMPUTER PROGRAMS

SUBROUTINE ANGLE (AI,NM)

C C C C C C C C C C C C C C C C C C C	* * * * * * * *	SUBROUTINE * * * * * * UTILITY RO AI NM * * * * * * DIMENSION WRITE (6,1) FORMAT (10) WRITE (6,2) FORMAT (/) RETURN END	/ANGLE - * * * * UTINE TO ANGLES NUMBER D * * * * AI(19)) (AI(I) X,5HANGL)	ANGLE * * * OUT PUT ANGLE * * *	* * * * ANGLE S * * *	* * *	* * * Y• * * *	* * *	* *	* 1	¢ ¢	* *		*	* * * * * * *		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17-
	* * * * * * * * * * * *	SUBROUTINE * * * * * * * UTILITY RO A NB NM PL CALLS * * * * * * DIMENSION DO 1 J=1, N CALL PNDB PL(J)=DB RETURN END	/APNDB - * * * * * DUTINE TO DATA ARR 1/NB-OCT NUMBER O PERCEIVE PNDB * * * * * A(27,19)	ARRAY * * * COMPUT AY AVE FRE F ANGLE D NOISE * * * ,PL(19)	PNDB/ * * * E PNDB QUENCY S LEVEL * *	BAND	S		* * * OF	A D	* * * ATA * *	* : ARI * :	* * * Y A Y	*	*****	•	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

```
SUBROUTINE ASMBL (R, SL)
                /ASMBL - ASSEMBLE DATA/
C
                                                                             2
C
            3
C
                                                                             4
   *
Ċ
   ÷
      ASSEMBLES ONE SET OF WORKING DATA FROM CUMMON BLOCK /WD/ INTO
                                                                             5
C
   *
      A REFERRED ARRAY.
                                                                      *
                                                                             6
C
   *
                                                                      *
                                                                             7
Č
                RADIUS FOR REFERRED ARRAY
                                                                             8
   *
                                                                      *
C
      SL
                REFERRED ARRAY
                                                                      *
                                                                             9
   *
                                                                            10
C
   #
    11
      DIMENSION SL(27,19)
                                                                            12
      COMMON /WD/A(20,4), NCONF, RPM, PCS, NF, NM, NB, PWL, SUMN, PSM(27), DT.
                                                                            13
     1 AI(19), NFIL(27), DI(27,19)
                                                                            14
   C
                                                                            15
C
                                                                            16
      VARIABLES IN COMMON BLOCK /WD/
C
                                                                      *
                                                                            17
C
                                                                      *
                                                                            18
C
   *
      A(20,4)
                FOUR CARDS OF ID (WORD LENGTH 4)
                                                                            19
                CONFIGURATION NUMBER
C
   *
      NCONF
                                                                      ×
                                                                            20
   *
      RPM
                SPEED IN RPM
                                                                      *
C
                                                                            21
   *
      PCS
                PERCENT SPEED
C
                                                                      *
                                                                            22
   *
      NF
C.
                NUMBER OF FREQUENCY BANDS
                                                                      *
                                                                            23
С
   *
      NM
                NUMBER OF ANGLES
                                                                      *
                                                                            24
C
   *
      NB
                1/NB-OCTAVE BANDS
                                                                      *
                                                                            25
   *
C
      PWL
                OVERALL ACOUSTIC POWER LEVEL
                                                                      *
                                                                            26
                DECIBEL SUM OF NORMALIZED POWER SPECTRUM
   *
      SUMN
C
                                                                      *
                                                                            27
   72
                NORMALIZED POWER SPECTRUM
C
      PSM(27)
                                                                            28
   $
С
      DT
                ANGLE INCREMENT
                                                                      *
                                                                            29
   *
                ANGLES
С
      AI(19)
                                                                            30
С
   *
      NFIL(27)
                BAND CENTER FREQUENCIES
                                                                      *
                                                                            31
   4
С
      DI(27,19) DIRECTIVITY INDEX
                                                                      *
                                                                            32
С
                                                                            33
C
   * * * * * * * * * * * * * * * * * *
                                                                            34
      F=3.1415927/180.3
                                                                            35
      RH0=0.0023769
                                                                            36
      C=1116.3975
                                                                            37
      CONST=2.6*59.141053*1.0E-15
                                                                            38
      SPHERE=4.0*3.1415927*R**2
                                                                            39
      NFT=1
                                                                            40
      NLT=NM
                                                                            41
      SUM=0.0
                                                                            42
      IF (AI(1).GT.0.0) GO TO 1
                                                                            43
      SUM=SUM+1.0
                                                                            44
      NFT=2
                                                                            45
      IF (AI(NM).LT.180.0) GO TO 2
1
                                                                            46
      SUM=SUM+1.0
                                                                            47
      NLT=NM-1
                                                                            48
                                                                            49 ′
      SUM=TAN(DT/4.0*F)/2.0*SUM
2
      DO 3 J=NFT,NLT
                                                                            5્ર
      SUM=SUM+SIN(AI(J)*F)
                                                                            51
3
      FAC=CONST/(RHO+C)+SPHERE+SIN(DT/2.9+F)+SUM
                                                                            52
      DELTA=130.0+10.0*ALOG10(FAC)
                                                                            53
      PPSUM=PWL-SUMN-DELTA
                                                                            54
      DC 4 I=1.NF
                                                                            55
      PSUM=PPSUM+PSM(I)
                                                                            56
      DO 4 J = 1.NM
                                                                            57
      SL(I,J)=PSUM+DI(I,J)
4
                                                                            58
      RETURN
                                                                            59
      END
                                                                            60-
```

```
1
     SUBROUTINE ATMAT (F.RH.DIST.FREG.ATT)
              /ATMAT '- ATMOSPHERIC ATTENUATION/
                                                                        2
           C
                                                                        3
                                                                  ±
C
  *
С
     COMPUTES EXCESS ATMOSPHERIC ATTENUATION IN DECIBELS FOR CIVEN
  #
C
     TEMPERATURE, RELATIVE HUMIDITY, DISTANCE, AND FREQUENCY.
                                                                        6
  ±
     USES EMPIRICAL CURVE-FITS OF DATA CONTAINED IN SOCIETY OF
С
  #
                                                                  *
                                                                        7
C
     AUTOMOTIVE ENGINEERS AEROSPACE RECOMMENDED PRACTICE NO. 866,
                                                                        8
  ¢
C
                                                                        9
  *
     AUGUST. 1964.
                                                                       10
C
  $
С
               TEMPERATURE (DEGREES FAHRENHEIT)
                                                                       11
  *
c
              RELATIVE HUMIDITY
                                                                       12
     RH
   #
С
     DIST
               DISTANCE (FEET)
                                                                       13
  *
Č
C
               FREQUENCY (HFRIZ)
                                                                       14
     FREQ
                                                                       15
   *
     ATT
               ATTENUATION (DECIBELS)
С
                                                                       16
   17
     DIMENSION A(22)
                                                                       18
     DATA A/0.870,0.750,0.652,0.570,0.505,0.452,0.406,0.369,0.335,
                                                                       19
    1 0.308,0.286,0.268,0.253,0.240,0.231,0.225,0.220,0.215,0.210,
                                                                       20
                                                                        21
    2 0.208.0.202.0.200/
     AC=(0.1*(FREQ/1000.0)**2.05)/(1.651-.00103*T)**2.05
                                                                       22
     23
                                                                       24
    110.0-T/5.0)**2)))
     HA=0.25*RH/10.0**(1.493-.01638*T-.02*SQRT(128.2-(10.0-T/5.00)**2))
                                                                        25
                                                                       26
     HMM=10.0**(0.4973*ALOG10(FREQ)-1.4894)
                                                                       27
     HH≈HA/HMM
                                                                       28
     IF (HH.GT.0.25) GO TO 1
                                                                       29
     AA=1.2*HH
                                                                       30
     8 OT -02
     IF (HH.GT.9.60) GO TO 2
                                                                        31
1
                                                                        32
     AA=1.543*HH-.086
     GO TO 8
                                                                        33
2
     IF (HH.GT.0.95) GD TO 3
                                                                        34
     AA=0.84+0.16*SIN(3.14159/2.0*(HH-0.6)/0.35)
                                                                        35
     GO TO 8
                                                                        36
3
     IF (HH.GT.1.25) GD TD 4
                                                                        37
     AA=0.87+0.13*COS(3.14159/2.0*(HH-0.95)/0.3)
                                                                        39
     GO TO 8
                                                                       40
     IF (HH.GT.6.5) GU TO 7
                                                                        41
     HTEST=1.25
                                                                        42
     D0 5 I = 2,22
     HTEST=HTEST+0.25
                                                                        43
     IF (HH.LE.HTEST) GO TO 6
                                                                        44
5
                                                                        45
     CONTINUE
6
     AA = A(I) + ((HTEST-HH)/0.25) * (A(I-1)-A(I))
                                                                        46
                                                                        47
     GO TO 8
7
     AA=0.2
                                                                        48
8
                                                                        49
     CONTINUE
     (C.CCOI\TZIG) + (DIST/1000.0)
                                                                       50
     RETURN
                                                                       51
     END
                                                                        52-
```

+		,	•	•	*, * ,	
:						11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ı					i i i i i i i i i i i i i i i i i i i	
	SUBROUTINE AVSER (SL,A	1.01.NM.SERI				• •
C	/AVSLR - AVE	RAGE SL UN A	N ARC/			
C	* * * * * * * * * * * * * * * * * * *			* * * * *		* * *
	* COMPUTES SIMPLE-SOURCE	SOUND PRESS	URE LEVE	E (AREA-W	EIGHTÉD	*
C.	★ AVERAGE SOUND PRESSURE	LEVEL) FROM	DIRECTI	ONAL DATA	UN. AN ARC	· *
C C	* RESULTS USED FOR DIRECT *	TIVITY INDEX	CALCULA	TION.		
_	* * SL REFERRED DATA	A ON AN ARC		· :	•	* . *
Č:	# AT CHRRESPONDING	G ANGLES .		:		*
-	* DT ANGLE INCREM	ENT				*
C C.	DT ANGLE INCREM NM NUMBER OF AND SLR AVERAGE SOUND	CFF2	CVCI		,	** *
č	* SER	D + NE3301.E E	EVEL			*
C .	* * * * * * * * * * * *				* * * * *	* * *
	DIMENSION SL(19);AI(19) F=3.1415927/180.0		٠			
	NFT=1	* *				
	NLT=NM	· · · · · · · · · · · · · · · · · · ·	٠.			•
	SUM=0.0	•			A 73.6	45.75
	SUMD≎J.Ö IF (AI(1).GT.D.D) GO T(7 1				
•	SUM=SUM+10.0**(SL(1)/10	5.5)				
•.	SUMD=SUMD+1.0					••
1	NFT=2	n t o 2			•	•
1	<pre>IF (AI(NM).LT.180.0) G(SUM=SUM+10.0**(SL(NM)/)</pre>					•
	SUMD=SUMD+1.0		f		4.5	
_	NLT=NM-1	~				
2	SUM=TAN(DT/4.0*F)/2.0*5 SUMD=TAN(DT/4.0*F)/2.0*			•		* *
	DO 3 J=NFT, NLT	7 0 0 1 1 5				
	SUM=SUM+10.0**(SL(J)/10		J)*F)			,
3	SUMD=SUMD+SIN(AI(J)*F) SLR=10.0*ALOG10(SUM/SUM					
	RETURN	107				
,*	END		-	1	. •	
•	,			/.		
			*	•	* *	
•						
•				•	•	
•						1 .
					-	
					÷ •	

```
SUBROUTINE BASPAT (A,RT,NF,NB,T,RH,TFA,R,ATA)
             /BASPAT - BAND SPECTRUM ATTENUATION/
C
       С
C
  *
C
  *
     COMPUTES FRACTIONAL-OCTAVE BAND EXCESS ATMOSPHERIC ATTENUATION
                                                                           5
C
   *
     CONSIDERING SPECTRUM SHAPE. EXTRAPOLATES SPECTRUM TO NEW
                                                                           6
C
     DISTANCE ACCOUNTING FOR INVERSE SQUARE, AND EXCESS ATMOSPHERIC
                                                                           7

C
   *
     ATTENUATION.
                                    8
                                                                           9
C
   *
                                                                    *
C
   *
               REFERRED SPECTRUM
                                                                    *
                                                                          10
               RT
C
   ±
                                                                    *
                                                                          11
C
   *
     NF
                                                                          12
C
   *
     NB
                                                                          13
               TEMPERATURE (DEGREES FAHRENHEIT)
                                                                    .*
C
   *
     Т
                                                                          14
C
   å
                                                                    *
                                                                          15
     RH
               RELATIVE HUMIDITY.
                                                                   . *
C
   *
     TFA
               ATTENUATION IN DECIBELS PER THOUSAND FEET
                                                                          16
               RADIUS FOR ATTENUATED SPECTRUM:
C
   #
     R
                                                                    *
                                                                          17
C
   *
     ATA
               ATTENUATED SPECTRUM AT R
                                                                          18
               (INVERSE SQUARE AND ATMOSPHERIC ATTENUATION)
C
  *
                                                                          19
C
                                                                          20
                                                                    *
C
  *
                                                                          21
                                                                          22
C
  *
    C
                                                                          23
     DIMENSION A(27), TFA(27), ATA(27)
                                                                          24
     REAL M(27,2)
                                                                          25
     NLS=NF-1
                                                                          26
     DO 1 I=1.NLS
                                                                          27
     M(I,2) = A(I+1) - A(I)
                                                                          28
     M(I+1,1)=M(I,2)
                                                                          29
1
     M(1,1) = M(1,2)
                                                                          30
     M(NF,2)=M(NF,1)
                                                                          31
     NS = 3 ·
                                                                          32
_ .
     S=NS
                                                                          33
     B=NB
                                                                          34
     F1=1.0
     BI=B*2.0*FLOAT(NS)
                                                                          35
                                                                          36
     IF (NB.EQ.1) F1=10.0**1.8
IF (NB.EQ.3) F1=10.0**1.7
                                                                          37
                                                                          38
     DO 3 I-1,NF
                                                                          39.
     FC=10.0**(0.3/B*FLOAT(I-1))*F1
                                                                          40
     CALL ATMAT (T,RH,1000.0,FC,AC)
                                                                          41
     SL=1.0
                                                                          42
                                                                          43
     SLA=10.0**(-AC/10.0)
     DO 2 K=1,NS
                                                                          44
     XL = -K
                                                                          45
     XR=K
                                                                          46
     EL=M(I,1)/2.0*XL/S
ER=M(I,2)/2.0*XR/S
                                                                          47
                                                                          48
     SL=SL+10.0**(EL/10.0)+10.0**(ER/10.0)
                                                                          49
     SL=SL+10.0++(LE/10.0) +FC
FL=10.0++(0.3/BI+XL)+FC
                                                                          50
                                                                          51
     FR=10.0**(0.3/BI*XR)*FC
     CALL ATMAT (T,RH,1000.0,FL,AL)
                                                                          52
                                                                          53
     CALL ATMAT (T,RH,1300.0,FR,AR)
      SLA=SLA+10.0**((EL-AL)/10.0)+10.0**((ER-AR)/10.0)
                                                                          54
2
      TFA(I)=10.0*ALOG10(SL)-10.0*ALOG10(SLA)
                                                                          55
                                                                          56
      ATA(I) = A(I) - TFA(I) + R/1000.0 - 20.0 + ALOG10(R/RT)
3
      RETURN
                                                                          57
                                                                          58-
      END
```

```
MAIN PRUGRAM DADIFF
                                                                                    1
C
                 /DADIFF - DATA DIFFERENCE/
                                                                                    2
C
                * * * * * * * * * * * * * * * * * *
                                                                                    3
C
С
                                                                                    5
      COMPUTES DIFFERENCES BETWEEN TWO SETS OF DATA, INCLUDING
C
                                                                            ±
C
      ACOUSTIC POWER, REFERRED ARRAY, AND EXTRAPOLATED DATA.
                                                                                    6
                                                                                    7
C
                  ASMBL, ATMAT, BASPAT,
   ±
      CALLS
                                          DBSUM,
                                                      PNDB.
                                                              PNLT,
                                                                                    8
C
                                                                                    9
                  POWER, TITLE2, WDATA
                                                                            *
C
                                                                                   10
C
         11
C
      COMMUN A(20,4,2),AI(19,2),NFIL(27,2),NCONF(2),RPM(2),PCS(2),
                                                                                   12
     1 NB(2), NF(2), NM(2), DT(2)
                                                                                   13
      COMMON /WD/AA(20,4), NCON, RP, PC, NNF, NNM, NNB, PW, SUMN, PS(27), DTT,
                                                                                   14
     1AAI(19),NFI(27),DII(27,19)
                                                                                   15
      DIMENSION DI(27,19,2), TSL(27,19,2), TBL(27,19,2)
                                                                                   16
      DIMENSION PSM(27,2), AF(19,2), AR(19,2), F(19,2), R(19,2), TW(27,2),
                                                                                   17
     1 TPWL(27,2), FPSM(27,2), RPSM(27,2), DIF(27,19)
                                                                                   18
                                                                                   19
      DIMENSION SUM(19,2), FW(27,2), RW(27,2)
      DIMENSION PWL(2), SOM(2), WF(27), WC(27), PWF(2), PWR(2),
                                                                                   20
                                                                                   21
     1 DELTF(27), DELTR(27), DIFF(29)
      DIMENSION PNL(19,2), DPNL(19), S(5), TFA(27), ATA(27,19,2), PNT(19,2),
                                                                                   22
     1DPNT(19)
                                                                                   23
      LOGICAL FTEST, ATEST, SPLIT(2)
                                                                                   24
                                                                                   25
      THREE=10.0*ALOG10(2.0)
                                                                                   26
٠٠ ش
      T=59.0
      RH=70.0
                                                                                   27
, i,
      WRITE (6,1)
                                                                                   28
      FORMAT (1H1)
                                                                                   29
\mathbf{P}_{\infty}
                                                                                   30.
C %
      READ (5,2) (S(I), I=1,5)
                                                                                   31
2
      FORMAT (5F6.0)
                                                                                   32
                                                                                   33
     * * * * * * * *
C.
                                                                                   34
C *
                                                                                   35
      INPUT DATA REQUIRED
C
   *
C : *
                                                                            *
                                                                                   36
                 ONE CARD WITH UP TO FIVE SIDELINE DISTANCES,
                                                                            *
                                                                                   37
С
   *
                 OR A BLANK CARD FOR NO SIDELINE EXTRAPOLATIONS.
                                                                                   38
С
   *
                                                                                   39
C
   ₾
                                                                                   40
C
      D0 3 I=1,5
                                                                                   41
      IF (S(I).LE.O.O) GO TO 4
                                                                                   42
                                                                                   43
      CONTINUE
3
                                                                                   44
      NS=5
      GO TO 5
                                                                                   45
      NS = I - 1
                                                                                   46
4 .
      CONTINUE
                                                                                   47
5 ..
      CONTINUE
                                                                                   48
6
                                                                                   49
C
                                                                                   50
          READ, ASSEMBLE TWO SETS OF DATA
С
                                                                                   51
C.
                                                                                   52
       DO 19 K=1,2
                                                                                   53
Ċ
                                                                                   54
       CALL WDATA
C
     * * * * * * * * * * * * * * * *
                                                                                   55
                                                                                   56
C
C
      INPUT DATA REQUIRED
                                                                                   57
                                                                                   58
   *
C
                 ONE OR MORE PAIR OF SETS OF WORKING DATA.
Č
                                                                                   59
   ¢
C
                 DIFFERENCES TAKEN USING SET TWO MINUS SET ONE.
                                                                                   60
C
                                                                                   61
                                                                                   62
```

```
63
      DC 7 J=1.4
                                                                                   64
      DO 7 I=1,20
                                                                                   65
      \Delta(I,J,K) \approx \Delta\Delta(I,J)
7
      NCONF(K)=NCON
                                                                                   66
                                                                                   67
      RPM(K) = RP
                                                                                   68
      PCS(K)=PC
                                                                                   69
      NF(K)=NNF
                                                                                   70
      NM(K)=NNM.
                                                                                   71
      NB(K)=NN8
                                                                                   72
      PWL (K) =PW
      DT(K)=DTT
                                                                                   73
                                                                                   74
      DO 8 J=1,NNM
                                                                                   75
      AI(J.K)=AAI(J)
8
                                                                                   76
      DO 9 I=1,NNF
                                                                                   77
      PSM([,K)≈PS(I)
                                                                                   78
      NFIL(I,K)=NFI(I)
                                                                                   79
      DO 9 J=1,NNM
                                                                                   80
9
      DI(I,J,K)=DII(I,J)
                                                                                   81
      CALL ASMBL (100.3, TSL(1,1,K))
                                                                                   82
10
      CONTINUE
                                                                                   83
      FTEST=.TRUE.
                                                                                   84
      ATEST=.TRUE.
                                                                                   85
      SPLIT(1) = . FALSE.
                                                                                   86
      SPLIT(2) = . FALSE .
                                                                                   87
      DO 22 K=1.2
                                                                                   88
      NMM=NM(K)
                                                                                   89
      DO 11 J=1,NMM
                                                                                   90
      IF (AI(J,K).EQ.90.0) GO TO 12
                                                                                   91
11
      CONTINUE
                                                                                   92
      GO TO 13
                                                                                   93
12
      SPLIT(K)≈.TRUE.
                                                                                   94
13
      CONTINUE
                                                                                   95
      JS=J
      NFF=NF(K)
                                                                                   96
                                                                                   97
      DO 14 I=1,NFF
                                                                                   98
      DO 14 J=1.NMM
                                                                                   99
14
      TBL(I,J,K)=TSL(I,J,K)
                                                                                  100
      DO 15 I=1,NFF
       TSL(I,JS,K)=TSL(I,JS,K)-THREE
15
       DO 16 J=1,JS
                                                                                   102
                                                                                   103
16
       AF(J,K)=AI(J,K)
      DO 17 J=JS,NMM
                                                                                   104.
                           1.5
                                                                                   105
       [=J-JS+1
                                                                                   106
17
       AR\{I,K\}=AI(J,K)
                                                                                   107
       NMF=JS
       NMR=NMM-JS+1
                                                                                   108
                                                                                   109
       00 20 I=1,NFF
                                                                                   110
       DO 18 J=1.JS
                                                                                   111
18
       F(J,K)=TSL(I,J,K)
                                                                                   112
       DO 19 J=JS,NMM
                                                                                   113
       JJ=J-JS+1
19
                                                                                   114
       R(JJ,K)=TSL(I,J,K)
       CALL POWER (F(1,K),100.0,AF(1,K),NMF,DT(K),59.0,29.92,FPSM(I,K),FW
                                                                                   115
                                                                                   116
       CALL POWER (R(1,K),100.0,AR(1,K),NMR,DT(K),59.0,29.92,RPSM(I,K),RW
                                                                                   117
      1([,K))
                                                                                   118
                                                                                   119
       TW(I,K)=FW(I,K)+RW(I,K)
       TPWL(I,K)=130.0+10.0+ALOGIG(TW(I,K))
                                                                                   120
20
       CONTINUE
                                                                                   121
       WF(K)=0.0
                                                                                   122
                                                                                   123
       W(K)=⊍.0
       WR(K)=0.0
                                                                                   124
```

DO 21 I=1,NFF		
WF(K)=WF(K)+FW(I,K)		
W(K) = W(K) + TW(I,K)		
WR(K) = WR(K) + RW(I,K)		
PWF(K)=130.0+10.0*ALOG10(WF(K))		
PWL(K)=130.0+10.0*ALOG10(W(K))	•	-
PWR(K)=130.0+10.0*ALOG10(WR(K))		
		• • • • • • • • • • • • • • • • • • • •
CONTINUE		
DPWL=PWL(2)-PWL(1)		
NFF=MINU(NF(1),NF(2))		
00 23 I=1,NFF		•
<pre>IF (NFIL(I,1).NE.NFIL(I,2)) FTEST=.FALSE.</pre>	•	
CONTINUE		
SHIFT SPECTRUM ARRAYS TO GET FREQUENCY CORRESPONDE	ENCE	
•	,	
IF (NB(1).EQ.NB(2).ANDNOT.FTEST) GO TO 24		
GO TO 30	• •	
IF (NFIL(1,2).GT.NFIL(1,1)) GO TO 25		
LL=2		
LH=1		
		,
GO TO 26		•
LL=1		-
LH=2	·	
CONTINUE		
II=NF(LL)		•
00 27 [=1, [[-
IF (NFIL(1,LL).EQ.NFIL(1,1)) GO TO 28		
CONTINUE		
ID=I		
NF(LL)=NF(LL)-ID+1		
II=NF(LL)		
DO 29 I=1,II		
K=I+ID-1		
NFIL(I,LL)=NFIL(K,LL)		
JJ=NM(LL)		
DO 29 J=1,JJ		
TBL(I,J,LL)=TBL(K,J,LL)		
NFF=MINO(NF(1),NF(2))		
FTEST=.TRUE.	•	
	•	
SHIFT ANGLE ARRAYS TO GET ANGLE CORRESPONDENCE		
SHITT MIGEL MINALS TO GET MIGEL GOVINED CHOCKE		
CONTINUE		•
		•
NMM=MINO(NM(1),NM(2))		
IF (DT(1).EQ.DT(2)) GO TO 31		
ATEST=.FALSE.		
GO TO 37		
IF (AI'(1,2).GT.AI(1,1)) GO TO 32		
LL=2		
LH=1		•
GO TO 33		•
LL=1		
LH=2		Ģ
CONTINUE		
JJ=NM(LL)		
00 34 J=1,JJ		
IF (AI(J,LL).EQ.AI(1,LH)) GO TO 35		
CONTINUE		
GO TO 37		
JD=J		
$A(M / L L) = A(M / L + \lambda = -1) \pm 3$		

```
187
      JJ=NM(LL)
     DO 36 J=1,JJ
                                                                            188
                                                                           189
      K=J+JD-1
                                                                           190
      AI(J,LL)=AI(K,LL)
                                                                           191
      II=NF(LL)
                                                                           192
      DO 36 I=1,II
     TBL(I, J, LL) = TBL(I, K, LL)
                                                                           193
36
      NMM=MING(NM(1),NM(2))
                                                                           194
                                                                           195
      ATEST=. TRUE.
                                                                           196
C
         PAGE ONE DUTPUT
                                                                           197
C
                                                                           198
С
                                                                           199
37
     CONTINUE
     CALL TITLE2
                                                                            200
                                                                           201
     WRITE (6,38)
      FORMAT (1H ,40X,45HP O WER LEVEL DIFFERENCES//
38
                                                                            202
     147X,33H(DATA SET TWO MINUS DATA SET ONE)//)
                                                                            203
      IF (FTEST.AND.SPLIT(1).AND.SPLIT(2)) GO TO 45
                                                                           204
      WRITE (6,39) PWL(2), PWL(1), DPWL
                                                                           205
     FORMAT (1H ,22X,11HTOTAL POWER//15X,27HSET TWO SET ONE DELTA PWL
39
                                                                            206
     1//4X,8HUVERALL ,3F9.1)
                                                                            207
      IF (FTEST) GO TO 41
                                                                            208
      WRITE (6,40)
                                                                            209
      FORMAT (1H2,30X,83H(FREQUENCIES INCOMPATIBLE FOR COMPARISON, NO 90
40
                                                                           210
     1 DEGREE ANGLE TO PERMIT 90/90 SPLIT))
                                                                           211
      GO TO 54
                                                                           212
41
      WRITE (6.42)
                                                                            213
      FORMAT (1H ,3X,8HOVERALL ,3F9.1//15H BAND FREQUENCY)
42
                                                                            214
      DO 43 I≈1,NFF
                                                                            215
      DELTA=TPWL(I,2)-TPWL(I,1)
                                                                            216
43
      WRITE (6,44) I,NFIL(I,1),TPWL(I,2),TPWL(I,1),DELTA
                                                                            217
44
      FORMAT (1H ,13,18,3F9.1)
                                                                            218
     GO TO 54
                                                                            219
45 🚎
      WRITE (6,46)
                                                                            220
46
      FORMAT (1H ,22X,11HTOTAL POWER,45X,14HFRONT QUADRANT,19X,13HREAR Q
                                                                            221
     1UADRANT//15X,27HSET TWO SET ONE DELTA PWL,26X,2(5X,27HSET TWO S
                                                                           222
                                                                            223
     2ET ONE DELTA PWL)//)
     DPF=PWF(2)-PWF(1)
                                                                           224
     DPR=PWR(2)-PWR(1)
                                                                            225
      WRITE (6,47) PWL(2), PWL(1), DPWL, PWF(2), PWF(1), DPF, PWR(2), PWR(1), DP
                                                                            226
                                                                            227
47
      FORMAT (1H ,3X,8HOVERALL ,3F9.1,24X,8HOVERALL ,3F9.1,5X,3F9.1//)
                                                                           228
      IF (FTEST) GO TO 49
                                                                           229
     WRITE (6,48)
                                                                           230
      FORMAT (1H2,41H(FREQUENCIES INCOMPATIBLE FOR COMPARISON))
48
                                                                           231
      GO TO 54
                                                                           232
49
      WRITE (6,50)
                                                                            233
      FORMAT (1H ,15H BAND FREQUENCY,45X,14HBAND FREQUENCY)
50
                                                                           234
      DO 51 I=1,NFF
                                                                           235
      DELTF(I)=FPSM(I,2)-FPSM(I,1)
                                                                           236
51
      DELTR(I)=RPSM(I,2)-RPSM(I,1)
                                                                           237
      DO 52 I=1,NFF
                                                                           238
      DELTA=TPWL([,2)-TPWL([,1)
                                                                           239
      WRITE (6,53) I,NFIL(I,1),TPWL(I,2),TPWL(I,1),DELTA,I,NFIL(I,1),FPS
52
                                                                           240
     1M(I,2),FPSM(I,1),DELTF(I),RPSM(I,2),RPSM(I,1),DELTR(I)
                                                                           241
53
      FORMAT (1H ,13,18,3F9.1,21X,13,18,3F9.1,5X,3F9.1)
                                                                           242
                                                                           243
С
C
         PAGE TWO OUTPUT
                                                                           244
C
                                                                           245
54
      WRITE (6,1)
                                                                           246
      CALL TITLE2
                                                                           247
      WRITE (6,55)
                                                                           248
55
      FORMAT (1H ,32X,61HD I F F E R E N C'E S
                                                OF REFERRED
                                                                           249
```

```
//47X,33H(DATA SET TWO MINUS DATA SET ONE)//)
    1 D A T A
                                                                             250
      IF (ATEST) GO TO 57
                                                                             251
      WRITE (6.56)
                                                                             252
56
      FORMAT (1H2,45H(DATA SET ANGLES INCOMPATIBLE FOR COMPARISON))
                                                                             253
                                                                             254
57
      WRITE (6,58) (AI(J,1),J=1,NMM)
                                                                              255
      FORMAT (1H ,9X,5HANGLE,19F6.0)
                                                                              256
      WRITE (6,59)
                                                                              257
59 .
      FORMAT (//)
                                                                              258
      DO 60 K=1,2
                                                                              259
      DO 60 J=1.NMM
                                                                              260
      CALL DBSUM (TBL(1,J,K),NFF,SUM(J,K))
60
                                                                             261
     DO 61 J=1,NMM
                                                                             262
      DIFF(J) = SUM(J, 2) - SUM(J, 1)
61
                                                                             263
      WRITE (6,62) (DIFF(J), J=1, NMM)
                                                                              264
     . FORMAT (1H ,7X,7HOVERALL,19F6.1)
62
                                                                              265
      IF (FTEST) GO TO 64
                                                                             266
     - WRITE (6,63)
                                                                             267
      FORMAT (1H2,30X,50H(DATA SET FREQUENCIES INCOMPATIBLE FOR COMPARIS
63
                                                                             268
                                                                             269
      GO TO 69
64
      DO 65 I=1,NFF
                                                                             271
      DO 65 J=1.NMM.
                                                                             , 272
      D1F(I,J)=TBL(I,J,2)-TBL(I,J,1)
65 .
                                                                             273
      WRITE (6,66)
                                                                             274
      FORMAT (1H ,14HBAND FREQUENCY)
                                                                             275
      DO 67 I=1,NFF
                                                                             276
      WRITE (6,68) I, NFIL(I,1), (DIF(I,J),J=1,NMM)
                                                                             277
      FORMAT (1H ,13,18,3X,19F6.1)
48
                                                                             278
     CONTINUE
69
                                                                             279
C
                                                                             280
      PAGE THREE OUTPUT
С
                                                                            281
                                                                             282

    IF (NS.LE.O) GO TO 6
                                                                             283
    WRITE (6,1) ....
                                                                             284
      CALL TITLE2
                                                                             285
     : WRITE (6,70) T,RH
                                                                             286
      FORMAT (1H ,20x,83HPERCEIVED AND TONE-CORRECTED RERCEIVED NOISE LE
                                                                             287
     IVELS AND DIFFERENCES ALONG SIDELINES///50X,F5.1,3H F;,F5.1,11H PER
                                                                             288
     2CENT RH)
                                                                             289
     DO 81 KK=1,NS
                                                                             290
     IF (KK.EQ.3.OR.KK.EQ.5) WRITE (6.1)
                                                                             291
      IF (KK.EQ.3.CR.KK.EQ.5) CALL TITLE2
                                                                             292
    IF (KK.EQ.3.OR.KK.EQ.5) WRITE (6,70) T,RH
                                                                             293
   ... DO 71 K=1,2
                                                                             294
      NM1 = 1
                                                                             295
      IF (AI(1,K).LE.0.0) NM1=2
                                                                             296
     IF (AI(NMM,K).GE.180.0) NMM=NMM-1
                                                                             297
      DO 71 J=NM1,NMM
                                                                             298
      RDIST=S(KK)/SIN(AI(J,K)*3.1415927/180.0)
                                                                             299
      CALL BASPAT (TBL(1,J,K),100.0,NFF,NB,T,RH,TFA,RDIST,ATA(1,J,K))
                                                                             300
71
      CALL PALT (ATA(1,J,K),PAL(J,K),PAT(J,K))
                                                                             301
      DO 72 J=NM1,NMM
                                                                             302
      DPNL(J) = PNL(J,2) - PNL(J,1)
72
                                                                             303
      WRITE (6,73) S(KK),(AI(J,1),J=NM1,NMM)
                                                                             304
      FORMAT (///,11x,F6.0,12H FT SIDELINE//5x,5HANGLE,5x,19F6.0)
73
                                                                             305
      WRITE (6,74) (PNL(J,2),J=NM1,NMM)
                                                                             306
74 .
      FORMAT (1H0,1X,12HSET TWO PNDB,1X,19F6.1)
                                                                             307
      WRITE (6,75) (PNL(J,1),J=NM1,NMM)
                                                                            . 308
      FORMAT (1H ,1X,12HSET ONE PNDB,1X,19F6.1)
75
                                                                             309
      WRITE (6,76) (DPNL(J), J=NM1, NMM)
                                                                             310
     FORMAF (1H0,1X,10HDELTA PNDB,3X,19F6.1)
                                                                            311
      DO 77 J=NMI,NMM
                                                                             312
```

77		DPNT(J)=PNT(J,2)-PNT(J,1)	31
′ ′		WRITE $(6,78)$ (PNT $(J,2)$, J=NM1, NMM)	31
78		FORMAT (1H0.1X.12HSET TWO PNLT.1X.19F6.1)	31
10		WRITE $(6,79)$ (PNT(J,1),J=NM1,NMM)	31
79		FORMAT (1H .1X.12HSET ONE PNLT.1X.19F6.1)	31
(7		WRITE (6.83) (DPNT(J).J=NM1.NMM)	31
80		FORMAT (1H0,1X,19HDELTA PNLT,3X,19F6.1)	31
81		CONTINUE	32
01		WRITE (6.1)	32
		GO TO 5	32
		END	32
		END	
			•
		SUBROUTINE DESUM (A,N,SUM)	
С		/DBSUM - DECIBEL SUM/	
C`	*	* * * * * * * * * * * * * * * * * * * *	
С	*		
С	*	UTILITY ROUTINE TO COMPUTE A DECIBEL SUM (ANTILOGARITHMIC SUM) *	
С	*	FOR A NUMBER OF LEVELS. *	
С	*	* ** ** **	
С	*	A ARRAY OF DECIBEL VALUES *	
С	4	N NUMBER OF VALUES *	
С	*	SUM DECIBEL SUM *	1
С	*	*	1
С	*	* * * * * * * * * * * * * * * * * * * *	1
		DIMENSION A(27)	1
		SUM=0.0	1
		DO 1 I=1,N	1
1		SUM=SUM+10.0**(A(I)/10.0)	1
		SUM=10.0*ALOG10(SUM)	1
		RETURN	1
		END	1

```
SUBROUTINE FARDIA (SL,RT,NF,NB,NM,A1,T,RH,DIST,IC,FARSL)
C
               /FARDIA - FAR DATA/
             3
C
                                                                           4
C
     EXTRAPOLATES REFERRED ARRAY TOOA FAR FIELD RADIUS OR SIDELINE
                                                                           5
C
  *
      ACCOUNTING FOR INVERSE SQUARE AND EXCESS ATMOSPHERIC ATTEN-
                                                                           6
C
     UATION.
                                                                           7
C
C
C
     SL
               REFERRED ARKAY
               CURRESPONDING RADIUS
     RT
                                                                          10
С
               NUMBER OF FREQUENCY BANDS
     NF
                                                                          11
C
               1/NB-OCTAVE FREQUENCY BANDS
     NB
C
                                                                          12
               NUMBER OF ANGLES
     NM
                                                                          13
  z:
     ΑI
               ANGLES
               TEMPERATURE (DEGREES FAHRENHEIT)
C
               RELATIVE HUMIDITY
Ċ
  *
     RH
               DISTANCE FROM SOURCE FOR EXTRAPOLATION .
     DIST
                                                                          17
С
               CONTROL. IF IC EQUALS ZERO, DIST IS TAKEN AS A RADIUS ABOUT THE SOURCE. IF IC = 1, DIST IS TAKEN AS NORMAL DISTANCE TO A PARALLEL SIDELINE.
 . , *
Ċ
     IC
                                                                          18
                                                                          19
С
  *
  *
                                                                          20
               EXTRAPOLATED DATA ARRAY ON A RADIUS OR SIDELINE
С
  *
     FARSL
                                                                          21
C
                                                                          22
  *
     CALLS
               BASPAT .
                                                                          23
C .
                                                                          24
   25
     DIMENSION SL(27,19), AI(19), FARSL(27,19), TFA(27)
                                                                          26
     RDIST=DIST
                                                                          27
     F=3.1415927/180.0
     DO 6 J=1,NM
     IF (IC.EQ.0) GO TO 3
                           IF (IC.EQ.1) GO TO 2
     WRITE (6,1)
     FORMAT (62H SIDELINE OR RADIUS NOT CORRECTLY SPECIFIED, SUBROUTINE
                                                                          33
    1 FARDTA), games along the process of a control of the control of the
                                                                          34
                                               RETURN
                                                                          35
      ST=SIN(AI(J) *F)
                                                                          36
      IF (ST.LE.O.O) GO TO 4
                                                                          37
     RDIST=DIST/ST
                                                                          38
     CALL BASPAT (SL(1,J),RT,NF,NB,T,RH,TFA,RDIST,FARSL(1,J)):
                                                                          39
     GO TO 6
     DO 5 I=1,NF
     FARSL(I,J)=0.0
                                                                          42
     CONTINUE
                                                                          43
     RETURN
                                                                          44
     END
                                                                          45-
      SUBROUTINE GRAPH (SL,NF)
             /GRAPH - GRAPH UUTPUT ON PRINTER/
C
C
            * * * * * * * * * * * * * * *
C
     UTILITY ROUTINE TO PRINT GRAPH OF A NORMALIZED ARRAY.
  *
C
С
               NORMALIZED ARRAY
              NUMBER OF ELEMENTS OF ARRAY
C
                                                                           8
                                                                           9
   * * * * * * * * * * * * * * * * * *
                                                                          10
     DIMENSION SL(27), P(132), D(4)
                                                                          11
     DATA BLANK/1H /
                                                                          12
```

```
DATA X,PI,ZERO, SIGN,D/1HG,1HI,1H9,1H-,1H1,1H2,1H3,1H4/
                                                                              13
      WRITE (6,1)
                                                                              14
1
      FORMAT (50X, 34HNORMALIZED POWER SPECTRUM
                                                        1//) .
                                                                               15
      DO 2 I=1,NF
                                                                               16
2
      SL(I) = ABS(SL(I))
                                                                               17
      DO 9 L=1,41
                                                                               18
      DO 3 J=1,132
                                                                              19
3
      P(J)=BLANK
                                                                              20
      P(24) = PI
                                                                               21
      P(4*NF+23)=PI
                                                                               22
      IF (L.EQ.1) P(21)=ZERO
                                                                               23
      IF
        (L.EQ.11) GO TO 4
                                                                               24
        (L.EQ.21) GO TO 4
      ΙF
                                                                               25
        (L.EQ.31) GO TO 4
      ΙF
                                                                               26
      IF (L.EQ.41) GO TO 4
                                                                               27
      GO TO 7
                                                                               28
      P(20)=SIGN
                                                                               29
      P(22)=ZERO
                                                                               30
      K=L/10
                                                                               31
      P(21)=D(K)
                                                                               32
      IF (L.EQ.41) GO TO 5
                                                                               33
      GO TO 7
                                                                               34
5
      KK=4*NF+19
                                                                              35
      DO 6 K=25,KK
                                                                              36
6
      P(K)=SIGN
                                                                               37
7
      A=FLOAT(L-1)-0.5
                                                                              38
      B=FLGAT(L-1)+0.5
                                                                              39
      DO 8 [=1,NF
                                                                               40
      IF (SL(I).GE.A.AND.SL(I).LT.B) P(4*I+20)=X
                                                                               41
8.,
      CONTINUE
                                                                               42
      WRITE (6,10) (P(I), I=1,132)
Q
                                                                              43
10
      FORMAT (1H ,132A1)
                                                                              44
      WRITE (6,11) (I,I=1,NF)
                                                                               45
      FORMAT (/21X,2714)
11
                                                                              46
      RETURN
                                                                              47
      END
                                                                              48-
C
    MAIN PROGRAM LIST
                                                                                2
C
                /LIST - LIST DATA ON PRINTER/
               * * * * * * * * * * * * * * * * * *
                                                                                3
C
                                                                                4
C
      READS, ASSEMBLES SETS OF WORKING DATA AND PREPARES PRINTED
                                                                                5
C
      OUTPUT IDENTICAL WITH THAT OF WODAG COMMENCING WITH REFERRED
                                                                                6
C
                                                                         *
                                                                                7
С
      ARRAY.
C
                                                                         *
                                                                                8
                                                                                9
        COMMON /WD/A(20,4), NCONF, RPM, PCS, NF, NM, NB, PWL, SUMN, PSM(27), DT,
                                                                               10
```

1 AI(19), NFIL(27), DI(27,19)

11

```
С
                                                                                 12
C
                                                                                 13
      VARIABLES IN COMMON BLOCK /WD/
C
   *
                                                                                 14
                                                                                 15
C
   4:
                 FOUR CARDS OF ID (WORD LENGTH 4)
C
   ±
      A(26,4)
                                                                                 16
      NCGNE
                 CONFIGURATION NUMBER
C
   *
                                                                                 17
С

      RPM
                 SPEED IN RPM
                                                                                 18
      PC S
                 PERCENT SPEED
   *
                                                                                 19
                 NUMBER OF FREQUENCY BANDS
C
      NF
                                                                                 20
   £
                 NUMBER OF ANGLES
      NM
С
   ±
                                                                                 21
   *
      NB
                 1/NB-GCTAVE BANDS
C
                                                                                 22
                 OVERALL ACOUSTIC POWER LEVEL
С

      PWL
                                                                                 23
                 DECIBEL SUM OF NORMALIZED POWER SPECTRUM
                                                                                 24
C
   #
      SUMN
      PSM(27)
                 NORMALIZED POWER SPECTRUM
                                                                                 25
C
   #
                 ANGLE INCREMENT
С
   *
      DT
                                                                                 26
      AI(19)
                 ANGLES
                                                                                 27
С
   *
      NFIL(27)
                BAND CENTER FREQUENCIES
С
   *
                                                                                 28
      DI(27,19) DIRECTIVITY INDEX
C
                                                                                 29
С
                                                                                 30
     31
      DIMENSION BUF(27,19), TFA(27,19), SL(27,19)
                                                                                 32
      DIMENSION AM(19)
                                                                                 33
      DIMENSION B(27),C(27),D(27),E(27),SLR(27)
                                                                                 34
      DIMENSION DS(6).SD(5)
                                                                                 35
C
                                                                                 36
C
         DEFINE NUMBER OF SIDELINE DISTANCES
                                                                                 37
С
                                                                                 38
      READ (5,1) RSTD,(SD(I),I=1,5)
                                                                                 39
      FORMAT (6F6.0)
1
                                                                                 40
C
     * * * * * * * *
                                                                                 41
Ċ
                                                                                 42
      INPUT DATA REQUIRED
C
                                                                                 43
C
C
                 ONE CARD WITH UP TO FIVE SIDELINE DISTANCES,
                                                                                 45
C
                 OR A BLANK CARD FOR NO SIDELINE EXTRAPOLATIONS.
   *
                                                                                 46
C
                                                                                 47
C.
                                                                                 48
      00 \ 2 \ I=1.5
                                                                                 49
      IF (SD(I).LE.O.O) GO TO 3
                                                                                 50
      CONTINUE
                                                                                 51
2
      NR=5
                                                                                 52
      GO TO 4
                                                                                 53
      CONTINUE
                                                                                 54
3
      NR = I - 1
                                                                                 55
      CONTINUE
                                                                                 56
4
                                                                                 57
C
5
      CALL WDATA
C
   * * * * * * * * * * * * * * * *
                                                                                 59
      INPUT DATA REQUIRED
                                                                                 60
C
С
   ×
                                                                                 61
                 ONE OR MORE SETS OF WORKING DATA TO BE LISTED.
   *
                                                                                 62
C
C
                                                                                 63
                                                                                 64
C
      CALL ASMBL (RSTD, SL)
                                                                                 65
C
                                                                                 66
                                                                                 67
C
C
    TITLE PAGE
                                                                                 68
                                                                                 69
C
      WRITE (6,6)
                                                                                 70
      FORMAT (1H1)
                                                                                 71
      WRITE (6,7)
                                                                                 72
     FORMAT (1H4,46x,35HN O I S E D A T A
                                                 L I S T I N G////52X,26HC
                                                                                 73
     10MPUTED FROM WORKING DATA//64X, 2HUF///)
                                                                                 74
```

```
75
      UO 8 J=1.4
                                                                                76
      WRITE (6,9) (A(I,J),I=1,23)
8
                                                                                77
      FORMAT (30X, 20A4)
q
                                                                                78
      WRITE (6.10)
                                                                                79
      FORMAT (/)
10
      WRITE (6.11) NCONE.PCS.RPM.NF.NB.NFIL(1),NFIL(NF),NM,DT.AI(1),AI(N
                                                                                80
                                                                                81
     1M)
     FORMAT (1H ,31X,13HCONFIGURATION,14,10X,F5.1,14H PERCENT SPEED,15X
                                                                                82
11
     1,F8.C,4H RPM//43x,12,5H - 1/,I1,18H OCTAVE BANDS FROM, 15,3H TO,16,
                                                                                83
     26H HERTZ//42x,13,13H ANGLES EVERY, F4.0,13H DEGREES FROM, F5.0,3H TO
                                                                                84
     3,F5.0)
                                                                                85
                                                                                86
C
                                                                                87
С
         PAGE THREE
                                                                                88
C
           REFERRED ARRAY
                                                                                89
C
                                                                                90
      CALL TITLE (A, NCONF, RPM, PCS)
                                                                                91
      WRITE (6.12) RSTD
      FORMAT (52X,27HR E F E R R E D A R R A Y//38X,7HDATA AT, F6.1,42H
                                                                                92
12
     1 FT RADIUS WITH NO ATMOSPHERIC ATTENUATION/45X,40H(FOR POWER AND D
                                                                                93
                                                                                94
     2IRECTIVITY COMPUTATIONS)//)
                                                                                95
      CALL ANGLE (AI, NM)
                                                                                96
      WRITE (6,13) (E(I),I=1,NM)
                                                                                97
                                                                                98
13
      FORMAT (15H COMPUTED DASPL, 19F6.1)
                                                                                99
      WRITE (6.10)
                                                                               100
      CALL TBLOP (SL, NF, NFIL, NM, 1)
                                                                               101
С
                                                                               102
C
                                                                               103
C
         PAGE FOUR
           ACQUSTIC POWER
                                                                               104
C
                                                                               105
С
                                                                               106
         COMPUTE TOTAL POWER, WATTS
С
                                                                               107
C
                                                                               108
      W=1.0E-13*10.0**(PWL/10.0)
                                                                               109
      CALL AVSLR (E, AI, DT, NM, SLRO)
                                                                               110
C
         COMPUTE POWER SPECTRUM
                                                                               111
C
                                                                               112
C.
                                                                               113
      DO 14 I≈1,NF
                                                                               114
14
      C(I)=PWL-SUMN+PSM(I)
      DO 16 I≈1,NF
                                                                               115
      DO 15 J≈1,NM
                                                                               116
                                                                               117
15
      D(J) = SL(I,J)
      CALL AVSLR (D. AI, DT, NM, SLR(I))
                                                                               118
16
                                                                               119
      CALL TITLE (A.NCONF.RPM.PCS)
                                                                               120
      WRITE (6,17) RSTD
      FORMAT (40x,53HA C O U S T I C P O W E R C O M P U T A T I O N
                                                                               121
17
     1 S//,73X,10HNORMALIZED,10X,6HSIMPLE/29X,4HBAND,8X,9HFREQUENCY,4X,3
                                                                               122
     21HPOWER SPECTRUM POWER SPECTRUM, 5X, 15HSOURCE SPL, R =, F6.1, 3H FT
                                                                               123
                                                                               124
     3//1
      DO 18 I≈1.NF
                                                                               125
      WRITE (6,19) I, NFIL(I), C(I), PSM(I), SLR(I)
                                                                               126
18
                                                                               127
19
      FORMAT (30X,12,116,3F17.1)
                                                                               128
      WRITE (6,20) SUMN, SLRO
      FORMAT (/75X,F7.1,8H OVERALL,F9.1,8H OVERALL)
                                                                               129
20
      WRITE (6,21)
                                                                               130
      FORMAT (/,55X,20HTOTAL ACOUSTIC POWER/72X,3H-13)
                                                                               131
21
      WRITE (6.22) PWL.W
                                                                               132
      FORMAT (52X,5HPWL =,F6.1,16H DB RE 10 WATT//58X,3HW =,F7.1,6H WA
                                                                               133
22
                                                                               134.
     1TTS/)
                                                                               135
С
                                                                               136
C
С
         PAGE FIVE
                                                                               137
```

```
NORMALIZED POWER SPECTRUM (GRAPH)
С
                                                                             138
                                                                             139
C
      CALL TITLE (A, NCONF, RPM, PCS)
                                                                             140
      CALL GRAPH (PSM,NF)
                                                                             141
                                                                             142
C
                                                                             143
C
          PAGE SIX
C
                                                                             144
C
         . DIRECTIVITY INDEX
                                                                             145
                                                                             146
C
      CALL TITLE (A, NCONF, RPM, PCS)
                                                                             147
                                                                             148
      WRITE (6,23)
       FORMAT (50X, 33HD I R E C T I V I T Y
                                                                             149
23
       CALL ANGLE (AI, NM)
                                                                             150
       CALL TBLOP (DI, NF, NFIL, NM, 1)
                                                                             151
       CALL AVSLR (E, AI, DT, NM, DIU)
                                                                             152
       DO 24 J=1.NM
                                                                             153
 24
       E(J)=E(J)-DIO
                                                                             154
       WRITE (6,25) (E(J),J=1,NM)
                                                                             155
       FORMAT (8x,7HOVERALL,19F6.1)
 25
                                                                             156
                                                                             157
. С
·C
                                                                             158
          PAGE SEVEN
                                                                             159
:C
           ATMOSPHERIC ATTENUATION
                                                                             160
 С
                                                                             161
 С
          COMPUTE THOUSAND FOOT EXCESS ATTENUATION
                                                                             162
·C
                                                                             163
 С
                                                                             164
       DO 26 J=1,NM
       CALL BASPAT (SL(1, J), RSTD, NF, NB, 59.0, 70.0, TFA(1, J), RSTD, B)
 26
                                                                             165
, C
                                                                             166
       CALL TITLE (A, NCONF, RPM, PCS)
                                                                             167
       WRITE (6;27)
                                                                             168
       FORMAT (43X,45HA T M O S P H E R I C A T T E N U A T I D N//35X,
· 27
                                                                             169
      161HSTANDARD DAY EXCESS ATMOSPHERIC ATTENUATION PER THOUSAND FEET//
                                                                             170
      237X,56HCOMPUTED FROM REFERRED ARRAY CONSIDERING SPECTRUM SHAPES//)
                                                                             171
       CALL ANGLE (AI, NM)
                                                                             172
       CALL TBLOP (TFA,NF,NFIL,NM,1)
                                                                             173
                                                                             174
·C
                                                                             175
 C
          PAGE EIGHT
 C
                                                                             176
           STANDARD DAY DATA ATMOSPHERIC ABSORPTION
 C
                                                                             177
                                                                             178
C
       CALL TITLE (A, NCONF, RPM, PCS)
                                                                             179
       WRITE (6,28) RSTD
                                                                             180
      FORMAT (16X,95HS TANDARD DAY DATA EXCESS A
                                                                             181
      1 T M O S P H E R I C A T T E N U A T I O N//26X, 60HADJUSTMENTS T
                                                                             182
      20 REFERRED ARRAY TO OBTAIN STANDARD DAY DATA AT, F6.0, 10H FT RADIUS
                                                                             183
      3//)
      184
                                                                             185
                                                                             186
       BUF(I,J)=TFA(I,J)*RSTD/1000.0
... 29
                                                                             187
       CALL ANGLE (AI,NM)
                                                                             188
 _
       CALL TBLOP (BUF, NF, NFIL, NM, 1)
                                                                             189
C.
                                                                             190
, C .
                                                                             191
C :
          PAGE NINE
                                                                             192
           STANDARD DAY DATA
С
                                                                             193
C
                                                                             194
       CALL TITLE (A, NCONF, RPM, PCS)
                                                                             195
       WRITE (6,30) RSTD
                                                                             196
      FORMAT (46X, 33HS T A N D A R D D A Y D A T A//43X, 7HDATA AT, F6
..30
                                                                             197
      1.1,30H FT RADIUS ON 59F, 7CPC RH DAY//)
                                                                             198
      DO 31 J=1,NM
                                                                             199
       DO 31 I=1,NF
                                                                             200
```

```
8UF(I,J)=SL(I,J)-8UF(I,J)
                                                                                                                                                                            201
.31
             CALL ANGLE (AI,NM)
CALL UASPL (BUF,NM,NF,8)
WRITE (6,13) (B(I),I=1,NM)
                                                                                                                                                                            202
                                                                                                                                                                           2031
                                                                                                                                                                            204
                                                                                                                                                                            205
             WRITE (6,10)
             CALL TRLOP (BUF,NF,NFIL,NM,1)
                                                                                                                                                                            206
                                                                                                                                                                            207
             WRITE (6,10)
             WRITE (6,32) RSTD
                                                                                                                                                                            208
             FORMAT (44x.18HPERCEIVED NOISE ON.F8.1.17H FT RADIUS, PNDB//)
32
                                                                                                                                                                            209
                                                                                                                                                                            210
             CALL ANGLE (AI, NM)
             CALL APNOB (BUF, NB, NM, B)
                                                                                                                                                                            211
             CALL APNDB (BUF, NB, NM, D)

WRITE (6,33) (8(I), I=1,NM)

FORMAT (15X,19F6.1)

213

214

215
3.3
С
C.
                 PAGE TEN AND FOLLOWING
                PAGE TEN AND FOLLOWING

SIDELINE EXTRAPOLATED DATA

DELETE ON-AXIS DATA

M=NM

0 34 J=1,MM

M(J)=AI(J)

F. (AM(1)=GT=0.0) GO 10 36
С
C
C
C
             MM=NM
             D0 34 J=1,MM
AM(J)=AI(J)
34
             IF, (AM(1).GT.0.0) GO TO 36
                                                                                                                                                                           224
                                                                                                                                                       225
             MM=MM-1
                                                                                                     225
226
227
228
220
             DO 35 J=1,MM
             AM(J)=AM(J+1)
             DO 35 I=1.NF
             ∪∪ 30 1=1,NF
SL(I,J)=SL(I,J+1)
35.
             IF (AM(MM).LT.180.0) GO TO 37
                                                                                                                                                                           230
36
             MM=MM-1
                                                                                                                                                                           231
             CONTINUE
37.
                                                                                                                                                                           232
                                                                                                                                                                           233
C
             KK=NR+1
                                                                                                                                                                            234
             DO 38 I=2,KK
                                                                                                                                                                            235
38
             DS(I)=SD(I-1)
                                                                                                                                                                           236
             DS(1)=RSTD
                                                                                                                                                                           237
             DO 44 K=1,KK
                                                                                                                                                                           238
             DO 44 K=1,KK
CALL TITLE (A,NCONF,RPM,PCS)
                                                                                                                                                                           239
             WRITE (6,39) DS(K)
                                                                                                                                                                           240
             FORMAT (40X,52HS I D E L I N E E X T R A P D L A T E D D A T A
39
                                                                                                                                                                           241
            1 //23x, 20HSTANDARD DAY, DATA ON, F7.0, 59H FT SIDELINE, INCORPORATIN
                                                                                                                                                                           242
           2G EXCESS ATMOSPHERIC ATTENUATION//)
                                                                                                                                                                           243
             CALL SIDLAT (MM,AM,RSTD,DS(K),B,C)
DO 40 J=1,MM
DO 40 I=1,NF
BUF(I,J)=SL(I,J)-B(J)-TFA(I,J)*C(J)/1000.0
                                                                                                                                                                           244
                                                                                                                                                                           245
                                                                                                                                                                          246
40
             BUF(I,J)=SL(I,J)-B(J)-TFA(I,J)*C(J)/1000.0
                                                                                                                                                                           247
             CALL OASPL (BUF,MM,NF,C)
WRITE (6 12)
                                                                                                                                                                     248
                                                                                                                                                                           249 -
             WRITE (6,13) (C(I),I=1,MM)
WRITE (6,10)
CALL TBLOP (BUF,NF,NFIL,MM,0)
                                                                                                                                                                    250
                                                                                                                                                                           251
                                                                                                                                                                           252
             WRITE (6,10)
                                                                                                                                                                            253
              WRITE (6,41) DS(1),DS(K),(B(1),I=1,MM)
                                                                                                                                                                            254
41
              FORMAT (30X,35HINVERSE SQUARE LAW ATTENUATION, FROM, F7.0,14H FT RA 1 255%
           1DIUS TO, F7.0, 13H FT SIDELINE//15x, 19F6.1//)
WRITE (6,10)
CALL APNUB (BUF, NB, NM, B)
WRITE (6,42) DS(K)
                                                                                                                                                                           256
                                                                                                                                                                          257
                                                                                                                                                                           258
                                                                                                                                                                           259
             FORMAT (45X,18HPERCEIVED NOISE ON, F7.0, 19H FT SIDELINE, PNDB//)
CALL ANGLE (AM, MM)
WRITE (6,43) (B(1), I=1, MM)
42.
                                                                                                                                                                          260
                                                                                                                                                                           261
                                                                                                                                                                           262
             FORMAT (15X,19F6.1)
43
                                                                                   The second secon
                                                                                                                                                                       263
```

CONTINUE WRITE (6		265 266 267 268
END		269-
* * * * * * * * UTILITY * FOR ALL * A * NM * NF * OA * CALLS * * * * * * * DIMENSIO * DO 1 J=1 CALL DBS	/OASPL - ARRAY OVERALL SOUND PRESSURE LEVELS/ * * * * * * * * * * * * * * * * * * *	1 2 4 3 4 4 5 5 4 6 7 7 8 8 4 9 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
* * * * * * * * COMPUTES * SOCIETY	/PNDB - PERCEIVED NOTSE DECIBELS/ * * * * * * * * * * * * * * * * * * *	1 2 * 3 * 4 * 5 * 6 * 7 * 8 * * 10 * 11 * 12 * 13 * 14 * 15 * 16 * 17 * 18 * 20 * 21 * 22
	CONTINUE WRITE (6 GO TO 5 END SUBROUTI * * * * * UTILITY FOR ALL A NM NF CALLS * DIMENSIO CALL DBS OA(J)=SU RETURN END SUBROUTI * * * * * COMPUTES * SOCIETY NO * 3654 * NB LB * PNL * NC * *	WRITE (6,6) GO TO 5 END SUBROUTINE DASPL (A,NM,NF,OA) A DASPL - ARRAY OVERALL SOUND PRESSURE LEVELS/ A ****************************** FOR ALL ANGLES OF A DATA ARRAY. A DATA ARRAY A DATA ARRAY NM NUMBER OF ANGLES NF NUMBER OF FREQUENCY BANDS OA OVERALL SPLS FOR ALL ANGLES CALLS DBSUM ***********************************

```
25
      REAL LB(27), NOY(24), K, NMAX, NBAR, MJ, LK
                                                                                26
      REAL L(24,5),M(24,4)
                                                                                27
      DATA L/49.0,44.0,39.0,34.0,30.0,27.0,24.0,21.0,18.0,5*16.0,15.0,
     112.0,9.0,5.0,4.0,5.0,6.0,10.0,17.0,21.0,55.0,51.0,46.0,42.0,39.0,
                                                                                2.8
     236.0,33.0,30.0,27.0,5*25.0,23.0,21.0,18.0,15.0,2*14.0,15.0,17.0,
                                                                                29
     323.0,29.0,64.0,60.0,56.0,53.0,51.0,48.0,46.0,44.0,42.0,5*40.3,
                                                                                30
     438.0,34.0,32.0,30.0,2*29.0,30.0,31.0,37.0,41.0,52.0,51.0,49.0,
                                                                                31
     547.0,46.0,45.0,43.0,42.0,41.0,5*40.0,38.0, 34.0,32.0,30.0,
                                                                                32
     62*29.0,30.0,31.0,34.0,37.0,91.01,85.88,87.32,79.85,79.76,75.96,
                                                                                33
     773.96,74.91,94.63,13*100.00,44.29,50.72/
                                                                                34
      DATA M/0.079520,2*c.068160,0.059640,10*0.053013,0.059640,
                                                                                35
     12*0.053013,2*0.047712,2*0.053013,0.068160,0.079520,0.0596401,
                                                                                .36
     22*0.058098,0.052288,0.047534,2*0.043573,0.040221,0.037349,
                                                                                37
     37*0.034859,0.040221,0.037349,4*0.034859,2*0.037349,0.043573,
                                                                                38
     40.043478,0.040570,2*0.036831,0.035336,2*0.033333,0.032051,
                                                                                39
     50.030675,6*0.030103,7*0.029960,2*0.042285,15*0.030103,9*0.029960/
                                                                                40
      IF (NB.EQ.1) GO TO 2
                                                                                41
      IF (N8.EQ.3) GO TO 3
                                                                                42
      WRITE (6.1)
                                                                                43
1
      FORMAT (1HO, 23HPNDB SUBROUTINE MESSAGE/41H FREQUENCY BANDWIDTH IMP
                                                                                44
     1ROPERLY SPECIFIED/47H RETURN TO CALLING PROGRAM WITH PNDB EQUAL ZE
                                                                                45
     2RO//)
                                                                                46
      PNL = 0.0
                                                                                47
      RETURN
                                                                                48
2
      NF = 8
                                                                                49
      K=0.3
                                                                                50
                                                                                51
      MM = 3
                                                                                52
      LL=1
                                                                                53
      GO TO 4
                                                                                54
3
      NF = 24
                                                                                55
      K=0.15
                                                                                56
      MM=1
                                                                                57
      LL=0
                                                                                58
      CONTINUE
      U. C=XAMM
      SUMN=0.0
                                                                                61
      DO 12 I=1.NF
                                                                                62
      J=MM*I-LL
                                                                                63
      IF (LB(I).LT.L(J.1)) GO TO 6
                                                                                64
      IF (L(J,1).LE.LB(I).AND.LB(I).LT.L(J,2)) GO TO 7
                                                                                65
      IF (L(J,2).LE.LB(I).AND.LB(I).LT.L(J,3)) GO TO 8
      IF (L(J,3).LE.LB(I).AND.LB(I).LT.L(J,5)) GO TO 9
                                                                                66
      IF (L(J,5).LE.LB(I).AND.LB(I).LT.150.0) GO TO 10
                                                                                67
      IF (LB(I).EQ.150.0) GO TO 10
                                                                                68
                                                                                69
      WRITE (6,5) LB(I)
      FORMAT (30H PNDB SUBROUTINE ERROR MESSAGE//F6.1,68H DB EXCEEDS RAN
                                                                                70
5
     IGE FOR VALID PNDB CALCULATION. RETURN WITH PNDB = 0.)
                                                                                71
                                                                                72
      PNL=0.0
                                                                                73
      RETURN
                                                                                74
6
      NOY(I)=0.0
                                                                                75
      GO TO 12
7
                                                                                76
      MJ=M(J,1)
                                                                                77
      LK=L(J,1)
      4=0.1
                                                                                78
      GO TO 11
                                                                                79
8
      MJ=M(J,2)
                                                                                80
                                                                                81
      LK=L(J.3)
                                                                                82
      A=1.0
                                                                                83
      GO TO 11
                                                                                84
      MJ=M(J,3)
      LK=L(J,3)
                                                                                85
      A=1.0
```

GO TO	11			
L)M=UM	, 4)			
14-161	4.1		and the second second second	, · · · · · · ·
A-1 ·	=A#10.0##(MJ#(EB(I)			
A=1.J	4413 044441.44644	7. 3. 3. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	Carried State of the Control of	
MOAGET	=A+10.0**(MJ*(LB(I)) Y(I).GT.NMAX) NMAX=I JMI+NOY(I) JE MAX+K*(SUMN-I:MAX) .U+33.22*ALOG10(NBAI .EQ.0) RETURN (6,13) (1H0,22HPNDH SUBROI	-LK]]		
IF:(NO	Y(I) • GT• NMAX) NMAX=1	NOY(L)		•
SUMN=S	ĴM##NOY(fI) ·		2.	
CONTIN	IE 6 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
ND AD - N	JAVEN + (CIIIIA) AMAVA	gradient in the state of the state of		
MHAR=N	MAX+K+(SUMN-IMAX)	in the second second	and the second	
PNL =40	.U+33.22*ALOG15(NBAI	R)		
IF (NC	.EQ.O) RETURN			
WRITE	(6.13)			· · · · · · · · · · · · · · · · · · ·
TODAL T	A LUD (22 LIGNO A CHORO)	OT THE PURPLE		
FURMAI	(1H0,22HPNDH SUBRO (15,22,20),NO (6,16) (I,I=1,NF) (6,16) (I,I=1,NF) (1H0,5H BAND,16,11	OLINE OOLDOLL		·
60 TO	(15,22,20),NB			
WRITE	(6.16) (I.I=1.NE)	• • • • • • • • • • • • • • • • • • • •		
WINT TE	14 141 41 TE NEN	a a fighter of the property of		 A state of the sta
WRITE	(0,10) (1,1-1,Nr.)			
FORMAT	(1H0,5H BAND,16,11	17)	in the second second	
WRITE	(6,17) (LB(I),I=1,N	F)		
	(1H ,5HLEVEL,12F7.			
				•
WRITE	(6,18) PNL			
FORMAT	(6,18) PNL (1H+,92X,F6.1,5H P)	NDB)		
WRITE	(6,19) (NOY(T), I=I,	NF)		. 1
	(1H ,5H NOYS,12F7.			
	(III) JII NUTS TELL	4.1		
RETURN				
	LE.12) GC TO 14			
WRITE	(6,16) (I,I=1,12)			
	(6,17) (LB(I), [=1,1.	2)		
	(6.19) (NOY(I).I=I.			
		141	•	-
WRITE	•			a section
FORMAT	(/)			
_	(6,16) (I,I=13,NF)	•		4 × 5 × 5 ×
	(6,17) (LB(I), I=13,	NE I		* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	• • • •	HF)		
	(6,18) PNL			
WRITE	(6,19) $(NOY(1),1=13)$,NF)		
RETURN				
END				
C.14D	•			
			, -	
			• • • •	
			. 3	
		•	しがい はも おとと げんしょ	· • • •
			The same of the same of the	t ; * , - ;
				<u>.</u>
CHDDC	TINE PNLT (SL, PDB, D	DT1		
208K00	TIME PALT (SE, PDB, D	BEV	• • •	
	/PNLT - JUNE-CO	RRECIED PERCEIVED	NOISE LEVEL/	
* * * * *	* * * * * * * * *	* * * * * * * * *	* * * * * * * *	* * * *
*			स्त्राच्या कर्मा कर्मा कर्मा कर्मा कर्मा कर्मा संस्था	
	DE TONE CORRECTOR R	EBCETHER NOTCE : 5		· 平
* COMPUT	ES TONE-CORRECTED P	EKCEIVED NOISE LE	VEL (PNLT) FOR A	*
* 1/3-OC	TAVE BAND SOUND SPE	CTRUM IN ACCORDAN	CE WITH FEDERAL :	* 1
* AVIATI	ON REGULATIONS, VOL	. III. PART 36 -	NOISE STANDARDS.	*
	FT TYPE CERTIFICATI			
				*
	OMPUTES PERCEIVED N	DIZE FFAET.		*
*				*
* SL	1/3-OCTAVE BAND	SOUND SPECTRUM	Ŧ	*
* PDB	PERCEIVED NOISE			•
				*
≠ DBT	TONE-CORRECTED	PERCEIVED NOISE L	EVEL, PNLT	*
*	•			· *
* CALLS	PNDB			
* CACES				
				*
	* * * * * * * * *		* * * * * * * * *	* * * *
DIMENS	ION SL(24),SLP(24),	F(24)		•
	IUN SBAR (25)	•		
			. •.	
REAL M			• •	
10010	N(24)			

```
INTEGER FREQ(24) .
      DATA FREQ/50,63,80,100,125,160,200,250,315,400,500,630,8 0,1000,0
                                                                                23
     1 1250,1600,2000,2500,3150,4000,5000,6300,8000,10000/
                                                                                24
                                                                                25
      DO 1 I=1,24
      IF (SL(I).LT.0.0) SL(I)=0.0
                                                                                26
                                                                                27
1
      N(I)=.FALSE.
                                                                                28
      D0 2 I=4,24
2
      M(I)=SL(I)=SL(I-1)
      DO 3 I=5,24
                                                                                30
      IF (ABS(M(I)-M(I-1)).LE.5.0) GO.TO 3
                                                                                31
      IF (M(I).GT.O.O.AND.M(I).GT.M(I-1)) N(I)=.TRUE.
                                                                                32
      IF (M(I).LE.O.O.AND.M(I-1).GT.O.O) N(I-1)=.TRUE:
                                                                                33
                                                                                3.4
3
      CONTINUE
                                                                                35
      DO 6 I=1,24
      IF (.NOT.N(I)) GO TO 4
                                                                                36
      IF (I.EQ.24) GO TO 5
                                                                                37
      SLP(I) = (SL(I+1) + SL(I+1))/2.0
                                                                                38
                                                                                39
      GO TO 6
                                                                                40
      SLP(I)=SL(I)
      GO TO 6
                                                                                41
5
      SLP(24)=SL(23)+M(24)
                                                                                42
                                                                                43
.6
      CONTINUE
                                                                                44
      DO 7 1=4,24
                                                                                45
7
      M(I) = SLP(I) - SLP(I-1)
                                                                                46
      M(3) = M(4)
                                                                                47
      M(25) = M(24)
                                                                                48
      DO 8 I=3,23
                                                                                49
8
      SBAR(I) = (M(I) + M(I+1) + M(I+2))/3.0
      SLP(3)=SL(3)
                                                                                50
      DO 9 I=4.24
                                                                                51
9
      SLP(I) = SLP(I-1) + SBAR(I-1)
                                                                                52
                                                                                53
      O.G=XAMT
                                                                                54
      C \cdot C = T
                                                                                55
      00 14 I=3,24
                                                                                56
      F(I)=SL(I)-SLP(I)
      IF (F(I).LE.0.0) GB TO 14
                                                                                57
      IF (50.LE.FREQ(I).AND.FREQ(I).LT.500) GO TO 10
                                                                                58 -
      IF (5000.LE.FREQ(I).AND.FREQ(I).LE.10000) GD TO 10
                                                                                59
                                                                                60
      GO TO 11
10
      1 F
        (F(I).LT.3.0) T=0.0
                                                                                61
         (3.0.LE.F(I).AND.F(I).LT.20.0) T=F(I)/6.0
                                                                                62
         (20.0.LE.F(I)) T=3.0+1.0/3.0
                                                                                63
      GO TO 13
                                                                                64
         (500.LE.FREQ(I).AND.FREQ(I).LE.5000) GO TO 12
                                                                                65
11
      IF
      GO TO 14
                                                                                66
      IF (F(I).LT.3.0) T=0.0
                                                                                67
12
      IF (3.0.LE.F(I).AND.F(I).LT.20.0). T=F(I)/3.0
                                                                                68
                                                                                69
      IF (20.0.LE.F(I)) T=6.0+2.0/3.0
13
      IF (T.GE.TMAX) TMAX=T
                                                                                70
14
      CONTINUE
                                                                                71
      CALL PNDB (3,SL,PDB,O)
                                                                                72
                                                                                73
      DBT=PDB+TMAX
                                                                                74
      RETURN
      END
                                                                                75-
```

```
SUBROUTINE POWER (A,R,AI,NM,DT,T,BAR,PWL,W)
                /POWER - TOTAL ACOUSTIC POWER/
           3
C
                                                                      *
                                                                             4
C
   *
Č;
   *
      COMPUTES TOTAL ACOUSTIC POWER BY INCREMENTAL AREA SUMMATION
                                                                             5
      FOR A SET OF ANGLES AND REFERRED SOUND PRESSURE LEVELS ON AN
C.
   *
                                                                             6
c.
   *
      ARC. PRESENCE OF PERFECTLY REFLECTIVE GROUND PLANE ASSUMED.
                                                                             7
Ċ
                                                                            8
   #
                ARRAY OF REFERRED SPL DATA ON AN ARC
C
   *
                                                                            9
                ARC RADIUS
C
   #
                                                                            10
                CONSECUTIVE ANGLES CORRESPONDING WITH ELEMENTS OF A
C.
   *
      ΔI
                                                                            11
                                                     $ 1 m
C
   *
      NM
                NUMBER OF ANGLES
                                                                            12
                ANGLE INCREMENT
C.
   *
      DΤ
                                                                            13
C
   *
      Т
                TEMPERATURE (DEGREES FAHRENHEIT)
                                                                            14
C
   *
      BAR
                BARDMETER (INCHES HG)
                                                                            15
C
   ±
      PWL
                POWER LEVEL RE 0.1 PICOWATT ...
                                                                            16
С
   *
                ACOUSTIC POWER, WATTS
                                                                            17
C
                                                                            18
С
   19
      DIMENSION A(27), AI(19)
                                                                            20
5:
      CONST=2.0*59.141053*1.0E-15
                                                                            21
      SPHERE=4.0*3.1415927*R**2
                                                                            22
                                                                            23
      C=49.02*SQRT(T+459.67)
      RHO=0.0023769*518.688/(T+459.67)*BAR/29.92
                                                                            24
ε, 4
                                                                            25
      F=3.1415927/180.0
      NFT=1
                                                                            26
      NLT=NM
                                                                            27
      SUM=0.0
                                                                            28
      IF (AI(1).GT.O.0) GO TO 1
                                                                            29
      SUM=SUM+10.0**(A(1)/10.G)
                                                                            30
      NFT=2
                                                                            31
      IF (AI(NM).LT.180.0) GO TO 2
                                                                            32
1
      SUM=SUM+10.0**(A(NM)/10.0)
                                                                            33
                                                                            34
      NLT = NM - 1
2
      SUM=TAN(DT/4.0*F)*SUM/2.0
                                                                            35
      DO 3 J=NFT, NLT
36
      SUM=SUM+10.0**(A(J)/10.0)*SIN(AI(J)*F)
                                                                            37
3
      W=CONST/(RHO*C)*SPHERE*SIN(DT/2.0*F)*SUM
                                                                            38
\wp_{\gamma}^{(2)}
      PWL=130.0+10.0*ALOG10(W)
                                                                            39
, **
      RETURN
                                                                            40
      END
                                                                            41-
      SUBROUTINE SIDLAT (NM, AI, RSTD, SIDIST, SINAT, RADIST)
                                                                             1
                                                                           . 2
          /SIDLAT - SIDLINE ATTENUATION/
С
               * * * * * * * * * * * * * * * * * *
C
С
   *
C
   *
      UTILITY ROUTINE TO COMPUTE SIDELINE RADIAL DISTANCES AND
                                                                             5
C
   *
      ATTENUATIONS FOR ALL ANGLES.
                                                                             6
С
   *
                                                                           . 7
8
   *
                NUMBER OF ANGLES
C
      NM
   *
                ANGLES
                                                                            9
C
      AΙ
·C
   #
      RSTD
                ARC RADIUS ABOUT SOURCE
                                                                            10
                NORMAL DISTANCE, SOURCE CENTERLINE TO PARALLEL
   *
C
      SIDIST
                                                                            11
C
                SIDELINE
                                                                            12
                INVERSE SQUARE ATTENUATIONS IN DECIBELS.
C
   *
      SINAT
                                                                            13
С
                ARC TO SIDELINE
                                                                            14
                RADIAL DISTANCES, SOURCE TO SIDELINE
С
      RADIST
                                                                            15
. C
                                                                            16
 C
                                                                            17
```

		* AI(1777) 27/190 - N						•	
	F=3.141592 RSQ=20.0*/		154/121d	(0)		•	•	•	
	00 2 J=1.1		. 0131/631	, , ,					
	ST=SIN(AL								
	IF (ST.LE.		·TO 1	* - * - * * * * * * * * * * * * * * * *	•	<i>7</i> .	•	•	
	SINAT(J)≈F			ST)					
	RADIST(J)						٠.,	• . •	٠. •
	GO TO 2								
	SINAT(J)=(0.0							
	RADIST(J)=								
	CONTINUE		*						:
	RETURN								
	END						. •		
								• •	
					•				
						:			
	SUBROUTIN	E TABLE	(RSTD,SD)					
				OF DATA FO					
*	* * * * *	* * * * *	* * * * *	* * * * *	* * * *	* * * * *	. * * * *	* * * *	*
*	05405 05-					VOICE 2:-		. 1	ţ.
*				EPARES A T				•	* ·
*	_			TING PURPO				•	*
*				AND AND OV					 ‡
*				POWER LEV CE SOUND P					*
*									*
*	OFTIONAL	PERCEIVEL	ו 127 ו	LEVELS ON	SELECTED	SIDELINE	3.		* *
*	NOTE						•		-
*		LOGIC AN	UN ENDMA	T STATEMEN	TS CODED	EOR NA =	3. AND		*
*	NM = 16			E REVISED				. *	
*	20	• 0501	, ,,05, ,,	LINEVISED	· ok ome	, COMBITI	0.131		Œ
*	RSTD	RADIUS F	FOR WHICH	H DATA TO	BE PREPA	RED			*
*	SD			NE DISTANC			NOISE		* '
*									. .
*	CALLS .	ASMBL,	AVSLR,	DBSUM, F.	ARDTA,	PNDB, W	DATA	*	¢
*									.
*	* * * * * :	* * * * *	* * ,* , * *	* * * * *	* * * *	* * * * *	* * * :	* * * *	Ģ.
-	COMMON AND	D/A(20,4)		RPM,PCS,NF	,NM,NB,P	WL,SUMÑ,P	SM (27) ,	DT.	•
•		-	11117 In).					
	1 AI(19),N	FIL(27),0						*	
*		FIL(27),0			* * * * .	* * * * *	* * * *, *	* * * *	#
*	1 AI(19),N	FIL(27),[* * * * *	* * * * *	* * * * *	· * * * * .	* * * * *	* * * *	* * * *	# #
* *	1 AI(19),N	FIL(27),[* * * * *	* * * * *	* * * * *	· * * * * .	* * * * *	* * * *	* * * * *	\$ \$ *
* * * *	1 AI(19),NI * * * * * VARIABLES	FIL(27),0 * * * * * IN COMMO	* * * * * ON BLOCK	* * * * * /WD/	* * * * .	* * * * *	* * * 1	* * * * * *	# # #
* * * * *	1 AI(19),NI * * * * * * * * * * * * * * * * * * *	FIL(27), C * * * * * IN COMMO	* * * * * ON BLOCK RDS OF II	* * * * * /WD/ D (WORD LE	* * * * . NGTH 4)	* * * * *	* * * *	1	¢ ¢
****	1 AI(19),NI * * * * * VARIABLES A(20,4) NCCNF	FIL(27),C * * * * * IN COMMO FOUR CAR CONFIGUR	* * * * * ON BLOCK RDS OF II RATION NU	* * * * * /WD/ D (WORD LE	* * * * NGTH 4)	* * * *	* * * * *	د * ا * ا * ا	*
*****	1 AI(19),NI * * * * * VARIABLES A(20,4) NCCNF RPM	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN	* * * * * * ON BLOCK RDS OF IL RATION NU N RPM	* * * * * /WD/ D (WORD LE	* * * * * NGTH 4)	* * * * *	* * * 1	د * ا * ا * ا	¢ ¢
*****	1 AI(19),NI * * * * * VARIABLES A(20,4) NCCNF RPM PCS	FIL(27), E * * * * * IN COMMO FOUR CAF CONFIGUR SPEED IN PERCENT	* * * * * ON BLOCK RDS OF II RATION NU N RPM SPEED	* * * * * /WD/ D (WORD LE	* * * * NGTH 4)	* * * * *	* * * 1	1	* * * * * *
******	1 AI(19),NI * * * * * VARIABLES A(20,4) NCCNF RPM PCS NF	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER C	* * * * * ON BLOCK RUS OF II RATION NO N RPM SPEED OF FREQUI	* * * * * /WD/ D (WORD LE) JMBER ENCY BANDS	* * * * NGTH 4)	* * * * *	* * * 1	1	***
*******	1 AI(19),NI * * * * * * VARIABLES A(20,4) NCCNF RPM PCS NF NM	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER C NUMBER C	* * * * * ON BLOCK RDS OF II RATION NO N RPM SPEED OF FREQUE OF ANGLE:	* * * * * /WD/ D (WORD LE) JMBER ENCY BANDS S	* * * * NGTH 4)	* * * *	* * * 1	्र _ा ्राह्म 	***
******	1 AI(19),NI * * * * * * VARIABLES A(20,4) NCCNF RPM PCS NF NM NB	FIL(27), E * * * * * IN COMMO FOUR CAF CONFIGUE SPEED IN PERCENT NUMBER C NUMBER C 1/NB-OCT	* * * * * ON BLOCK RDS OF II RATION NU N RPM SPEED OF FREQUE OF ANGLE: TAVE BANI	* * * * * /WD/ D (WORD LE) JMBER ENCY BANDS S DS		* * * *	* * * 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	***
*******	1 AI(19),NI * * * * * VARIABLES A(20,4) NCCNF RPM PCS NF NM NB PWL	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER C NUMBER C 1/NB-OCT OVERALL	* * * * * ON BLOCK RDS OF II RATION NO N RPM SPEED OF FREQUE OF ANGLE: TAVE`BANI ACOUSTIO	* * * * * /WD/ D (WORD LE) JMBER ENCY BANDS S DS C POWER LE	VEL	* * * * *	* * * 1	**************************************	* * * * * * * * * *
*****	1 AI(19),NI * * * * * * * * * * * * * * * * * * *	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER C NUMBER C 1/NB-OCT OVERALL DECIBEL	* * * * * ON BLOCK RDS OF II RATION NU N RPM SPEED OF FREQUE TAVE`BANI SUM OF I	* * * * * /WD/ D (WORD LE JMBER ENCY BANDS S S C POWER LE NORMALIZED	VEL POWER S	* * * * * PECTRUM	* * * *	**************************************	* * * * * * * * * * *
******	1 AI(19),NI * * * * * * VARIABLES A(20,4) NCCNF RPM PCS NF NM NB PWL SUMN PSM(27)	FIL(27), C * * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER C NUMBER C 1/NB-OCT OVERALL DECIBEL NORMALIZ	* * * * * ON BLOCK RDS OF II RATION NO N RPM SPEED OF FREQUE OF ANGLE: TAVE BANI ACOUSTIC SUM OF II	* * * * * /WD/ D (WORD LE) JMBER ENCY BANDS S DS C POWER LE	VEL POWER S	* * * * * PECTRUM	* * *	**************************************	***
*******	1 AI(19),NI * * * * * * * * * * * * * * * * * * *	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER CONUMBER CONUM	* * * * * * * * * * * * * * * * * * *	* * * * * /WD/ D (WORD LE JMBER ENCY BANDS S S C POWER LE NORMALIZED	VEL POWER S	* * * * * PECTRUM	* * *	**************************************	***
******	1 AI(19),NI * * * * * * * * * * * * * * * * * * *	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER CO NUMBER CO 1/MB-OCI OVERALL DECIBEL NORMALIZ ANGLE IN ANGLES	* * * * * * ON BLOCK RATION NO N RPM SPEED OF FREQUE TAVE BANG ACOUSTIC SUM OF E VED POWER NCREMENT	* * * * /WD/ D (WORD LE JMBER ENCY BANDS S DS C POWER LE NORMALIZED R SPECTRUM	VEL POWER S	* * * * * PECTRUM	* * *	**************************************	***
*********	1 AI(19),NI * * * * * * * * * * * * * * * * * * *	FIL(27), C * * * * * IN COMMO FOUR CAR CONFIGUR SPEED IN PERCENT NUMBER C NUMBER C 1/NB-OCT OVER ALL DECIBEL NORMALIZ ANGLE IN ANGLES BAND CEN	* * * * * * * * * * * * * * * * * * *	* * * * /WD/ D (WORD LE JMBER ENCY BANDS S S C C C C C C C C C C C C C C C C C	VEL POWER S	* * * * * PECTRUM	* * * 1	** ** ** ** ** ** ** ** ** ** ** ** **	***

```
DIMENSION SL(27,19), OASPL(19), SLR(27,19), PW(27), AVSPL(27),
     1SLS(27,19),PNL(19),B(19),OASL(19)
                                                                                 45
      DIMENSION IAI(19),SD(5)
c'
                                                                                 47
      CALL WDATA
c -
                                                                                 48
                                                                                 49
Ċ
   #
                                                                                 50
С
       INPUT DATA REQUIRED
C·
                 ONE SET OF WORKING DATA FOR EACH SUBROUTINE CALL.
                                                                                 53
C 🤄 🛊
C . *
     55
      CALL ASMBL (RSTD, SL)
                                                                                  56
      DO 2 I=1,NF
                                                                                  57
      DO 1 J=1,NM
      B(J)=SL(I,J)
                                                                                  59
1
2
      CALL AVSLR (B, AI, DT, NM, AVSPL(I))
                                                                                  60
      DO 3 J=1,NM
                                                                                 61.
3
      CALL DBSUM (SL(1,J),NF,OASL(J))
CALL AVSLR (OASL,AI,DT,NM,AVGDA)
       CALL DBSUM (SL'(1,J),NF,OASL(J))
                                                                                 62
                                                                                 63
      CALL FARDTA (SL,RSTD,NF,NB,NM,AI,59.0,70.0;RSTD,0,SLR)
DO 4 J=1,NM
CALL DRSUM (SLR(1,J),NF,OASPL(J))
DO 5 1=1.NF
     DO 5 1=1,NF
PW(I)=PWL-SUMN+PSM(I)
WRITE (6,6)
FORMAT (1HO,23X,87HDATA ADJUSTED TO STANDARD DAY OF 15 DEGREES C,
70
170 PERCENT RELATIVE HUMIDITY
WRITE (6,7)
FORMAT (1H .35X.20HSPI RE .00002 N/SO M 10X 101011 07
5
6
      FORMAT (1H ,35X,20HSPL RE .00002 N/SQ M,10X,18HPWL RE .1 PICOWATT)
                                                                              73
7 :
      DO 8 I=1,NM
                                                                                 74
      IAI(I)=AI(I)
WRITE (6,9)
                                                                                 75
8
      FORMAT (1H0;1X,9HFREQUENCY,46X,1DHANGLE, DEG,45X,6HSIMPLE,2X,5HPOW
ģ
     1ER/112X,6HSOURCE,2X,5HLEVEL)
                                                                                 78
      WRITE (6,10) (IAI(I),I=1,NM)
                                                                               . 79
      FORMAT (1H ,10X,1716)
                                                                                 80
10
      RMETER=RSTD*0.3948
                                                                                 81
      WRITE (6,11) RMETER
;- ;
                                                                               . 82
      FORMAT (1H+,113X,3HSPL,3X,5H(PWL)//30X,46H1/3-OCTAVE BAND SOUND PR
11
     1ESSURE LEVELS (SPL) ON, F6.1, 13H METER RADIUS//)
DO 13 I=1, NF
                                                                                 84
                                                                                 85
      WRITE (6,12) NFIL(1), (SLR(I,J), J=1,NM), AVSPL(I), PW(I)
                                                                                87
12
      FORMAT (1H ,1X,18,2X,16F6.1,1X,2F8.1)
1.3
      IF (MOD(1,3).EQ.0) WRITE (6,14)
      FORMAT (1H )
WRITE (6,15) (DASPL(J),J=1,NM),AVGOA,PWL
FORMAT (1H ,3X,7HOVERALL,1X,16F6.1,1X,2F8.1)
DO 16 I=1,5
IF (SU(I).LE.O.O) GO TO 17
CONTINUE
IS=5
GO TO 18
IS=I-1
IF (IS.LE.O) RETURN
CONTINUE
WRITE (6,19)
FORMAT (1HC.2X.8HDISTANCE.35X.31HSIDELINE PERCEIVED NOISE LEVELS//
      FORMAT (1H )
14
15
                                                                                 93
                                                                             . 94
16
                                                                                 95
f- .
                                                                                 96
17
                                                                                 97
                                                                                 98
18
                                                                                100
ĩ9
       FORMAT (1HG,2X,8HDISTANCE,35X,31HSIDELINE PERCEIVED NOISE LEVELS//
                                                                                101
      00 21 I=1,IS
                                                                                102
 ٠,٠
                                                                                103
       CALL FARDTA (SL,RSTD,NF,NB,NM,AI,59.0,70.0,SD(I),1,SLS)
 : 1
                                                                                104
       DO 2 J=1,NM
                                                                             105
```

2C	CALL PNDB (NB, SLS(1, J), PNL(J), 0) SDM=SU(1) *0.3048	
2.1	WRITE (6,22) SDM, (PNL(J), J=1, NM)	
22	FORMAT (1H ,F6.1,2H M, 3X,19F6.1)	
	RETURN	
• •	END	the facilities of the second of the second
, .		in the control of the property of the state of
	A Control of the Cont	
		Company of the State of the Assessment
; ;		and the second of the second o
	-	the state of the s
	SUBROUTINE TBEOP (A, NF, NFIL, NM, NE	
C	/TBLOP - TABLE OUTPUT/	
•	* * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * *
	*	*
	* UTILITY ROUTINE TO OUTPUT DATA AF	RRAY. *
	*	*
	≠ Λ DATA ARR∧Y	*
	NF NUMBER OF FREQUENCY BANGE	ADS *
	* NFIL BAND CENTER FREQUENCIES	\$
C	* NM NUMBER OF ANGLES	- - Annual Annual - Annual A
C :	* NEG OUTPUT CONTROL. IF NEG	G EQUALS ZERO, ALL NEGATIVE *
		BE REPLACED WITH ZERO FOR * *
C	# EASE OF READING. IF NO	EG IS OTHER THAN ZERO, ARRAY *
C	* / IS UNAFFECTED. par pa	い おうけい カラス ひょう かけっぱい 7 🍎 🖯
C :	*	*
.c	* * * * * * * * * * * * * * * * * * * *	
	DIMENSION A(27,19)	Carlos de la Arragante de Lorente de la Arragante de
	DIMENSION NEIL(27)	
	DIMENSION NFIL(27) IF (NEG.NE.O) GO TO 2	
	DO 1 J≠1.NM	and the season by the applications
	DO 1 I=1,NF	
1	IF $(A(1,J).LT.G.0)$ $A(1,J)=G.0$	**************************************
1	CONTINUE	the first of the second of
2	WRITE (6,3)	
3,	FORMAT (15H BAND FREQUENCY)	
٠,	00 4 I = 1,NF	the second secon
4	WRITE. (6,5) · I,NFIL(I),(A(I,J),J=1	LANM)
5 [.]	FORMAT (1H ,13,18,3X,19F6.1)	L # 14/14
•	WRITE (6,6)	
6		
	DETIIDA	
:	END	
•	LIND	
		The second secon
	and the first term of the second and the	· · · · · · · · · · · · · · · · · · ·
	SUSTAINE TITLE AL NOOME DOM DE	· ·
_	SUBROUTINE TITLE (A, NCONF, RPM, PC	٥ <i>١</i>
C	/TITLE - TITLE OUTPUT/	
C		* * * * * * * * * * * * * * * * * * * *
	*	*
-	* UTILITY ROUTINE TO OUTPUT ID INFO	UKMATIUN. *
С	*	• • • • • • • • • • • • • • • • • • •
-	‡ A FOUR ID CARDS	*
С	* NCCNF CONFIGURATION NUMBER	• • • • • • • • • • • • • • • • • • •
	* RPM SPEED IN RPM	* *
_	* PCS PERCENT SPEED	≠
_	#	*
L	* * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * *
.C	* * * * * * * * * * * * * * * * * * *	
_		

```
13
       DIMENSION A(20,4)
       WRITE (6,1)
                                                                              14
       FORMAT (1H1)
                                                                              15
 1
       FORMAT (1H , 20 A4)
 2
                                                                              16
       WRITE (6,3) (A(J,1),J=1,2J),NCONF
                                                                              17
_ ,3
       FORMAT (1H ,20A4,17X,16HCONFIGURATION NO,15)
                                                                              18
       WRITE (6,4) (A(J,2),J=1,20),RPM
                                                                              19
       FORMAT (1H ,20A4,17X,7HSPEED =,F6.3,4H RPM)
                                                                              20
 4
       WRITE (6,5) (A(J,3),J=1,20),PCS
                                                                              21
       FORMAT (1H ,20 A4,17X,15HPERCENT SPEED =,F6.1)
                                                                              22
 5
      . WRITE (6,2) (A(J,4),J=1,20)
                                                                              23
       WRITE (6,6)
                                                                              24
                                                                              25
       FORMAT (//)
 6
       RETURN
                                                                              26
                                                                              27-
       END
       SUBROUTINE TITLE2
 00000
                  /TITLE2 - TITLE OUTPUT/
                                                                               3
                                                                               4
                                                                               5
    *
       UTILITY ROUTINE TO OUTPUT ID INFORMATION.
                                                                               6
 C
     7
       COMMON A(20,4,2),AI(19,2),NFIL(27,2),NCONF(2),RPM(2),PCS(2),
                                                                               8
       1 NB(2),NF(2),NM(2),DT(2)
                                                                               9
                                                                              10
       DIMENSION SET(2), AIL(2), IFIL(2)
       DATA SET(1), SET(2)/3HONE, 3HTWO/
                                                                              11
```

```
DO 1 K=1,2
                                                                                    12
      J=NF(K)
                                                                                    13
      IFIL(K)=NFIL(J,K)
                                                                                    14
                                                                                    15
      J=KM(K)
1
      AIL(K) = AI(J,K)
                                                                                    16
                                                                                    17
      WRITE (6,2)
      FÖRMAT (1H ,36X,53HC O M P A R I S O N
                                                   0 F
                                                                   DATA
                                                                                    18
2
                                                          T W \Omega
                                                                                    19
     1 E T S////)
      DO 3 K=1,2
                                                                                    20
      WRITE (6,4) SET(K),(A(I,1,K),I=1,20),(A(I,2,K),I=1,20),NCDNF(K),PC
3
                                                                                    21
     1S(K), RPM(K), (A(I,3,K), I=1,20), NF(K), NB(K), NFIL(1,K), IFIL(K), (A(I,4
                                                                                    22
                                                                                    23
     2,K),I=1,20),NM(K),DT(K),AI(1,K),AIL(K)
      FORMAT (10H DATA SET , A3,/1H , 20A4, 5X, 38HCONFIGURATION
                                                                                    24
                 RPM/1H ,20A4, I12, F20.1, F13.0/1H ,20A4, I7, 5H - 1/, I1, 18H
                                                                                    25
     20CTAVE BANDS FROM, 15, 3H TO, 16, 6H HERTZ/1H , 20A4, 17, 13H ANGLES. EVER
                                                                                    26
     3Y,F4.0,13H DEGREES FROM,F5.0,3H TO,F5.0//)
                                                                                    27
      RETURN
                                                                                    28
      END
                                                                                    29-
```

```
SUBROUTINE WDATA
                                                                                     1
C
C
C.
                 /WDATA - WORKING DATA/
                                                                                     2
                * * * * * * * * * * * * * * * *
                                                                                     3
                                                                              *
                                                                                     4
C
   *
      READS ONE SET OF WORKING DATA FROM CARDS INTO STORAGE
                                                                                     5
                                                                              *
   *
      COMMON BLOCK /WD/.
                                                                                     6
                                                                                     7
```

```
COMMON /WD/A(20,4), NCONF, RPM, PCS, NF, NM, NB, PWL, SUMN, PSM(27), DT,
    1 AI(19), NFIL(27), DI(27,19)
                                                                       10
    C
                                                                       11
С
  4
                                                                       12
C
  *
     VARIABLES RESULTING IN COMMON BLOCK /WD/
                                                                       1.3
C
                                                                       14
C
                                                                       15
  *
              FOUR CARUS OF ID (WORD LENGTH 4)
     A(20,4)
              CONFIGURATION NUMBER
C
  #
     NCCNF
                                                                       16
C
  *
     RPM
              SPEED IN RPM
                                                                       17
              PERCENT SPEED
C
  *
     PC.S
                                                                       18
С
  ź.
              NUMBER OF FREQUENCY BANDS
                                                                  *
                                                                       19
     ME
C
              NUMBER OF ANGLES
  *
                                                                       20
     NM
C
  *
              1/NB-OCTAVE BANDS
                                                                       21
     NB
              OVERALL ACOUSTIC POWER LEVEL
C
     PWL
                                                                       22
              DECIBEL SUM OF NORMALIZED POWER SPECTRUM
C
     SUMN
                                                                       23
                                                                  * ...
С
  *
     PSM(27)
              NORMALIZED POWER SPECTRUM
                                                                       24
              ANGLE INCREMENT
                                                                  *
                                                                       25
C
  *
     DT
C
                                                                  *
  *
     AI(19)
              ANGLES
                                                                       26
     NFIL(27) BAND CENTER FREQUENCIES
DI(27,19) DIRECTIVITY INDEX
C
  *
                                                                       27
C
  *
                                                                       28
C
                                                                       29
C
                                                                       30
                                                                       31
     DO 1 J=1,4
     READ (5,2) (A(I,J),I=1,20)
1
                                                                       32
                                                                       33
2
     FORMAT (20A4)
     READ (5,3) NCONF, RPM, PCS, NF, NM, NB
                                                                       34
     FORMAT (14,2F8.1,313)
IF (NF.EQ.10) GO TO 5
3
                                                                       35
                                                                       36
     READ (5,4) PWL; SUMN, (PSM(I), I=1,NF)
                                                                       37
                                                                       38
     FORMAT (12F6.1/(12X,10F6.1))
4
                                                                       39
     GO TO 7
     READ (5,6) PWL, SUM, (PSM(I), I=1, NF)
5
                                                                       40
     FORMAT (12F6:1)
                                                                       41
6
     READ (5,6) DT, (AI(J),J=1,NM)
                                                                       42
     DO 11 I=1.NF
                                                                       43
     IF (NM.EQ.10) GO TO 9
                                                                       44
                                                                       45
     READ (5,8) NFIL(I),(DI(I,J),J=1,NM)
     FORMAT (6X,16,10F6.1/(12X,10F6.1))
                                                                       46
R.
                                                                       47
     GO TO 11
9
     READ (5,16) NFIL(I),(DI(I,J),J=1,NM)
                                                                       48
     FORMAT (6X,16,10F6.1)
                                                                       49
10
                                                                       50
11
     CONT INUE
                                                                       51
     RETURN
                                                                       52-
     END
     SUBROUTINE WODAG
C
              /WODAG - WORKING DATA GENERATION/
C
    C
   #
С
   *
     STANDARDIZES MEASURED DATA. PREPARES DATA LISTINGS. PUNCHES
C
   ☆
     WORKING DATA.
                                                                        6
C
   ±
                                                                        7
C.
   ŧ
                ANGLE, APNDB, AVSLR, BASPAT, DBSUM, GRAPH,
                                                                        8
C
   *
               UASPL, POWER, SIDLAT, TBLOP, TITLE
                                                                        9
C
                                                                       10
    1 Ì
     COMMON /WODA/A(20,4),NCONF,RPM,PCS,SL(27,19),T,RH,BAR,AO,DT,R(19),
                                                                       12
    INM.NF.NB.RSTD.SD(5)
                                                                       13
```

```
C
                                                                                                                                                                                                                                                                                                                                                 14
  C
                                                                                                                                                                                                                                                                                                                                                 15
                             VARIABLES NECESSARY IN COMMON BLOCK /WODA/
  C
                *
                                                                                                                                                                                                                                                                                                                                                 16
  Ċ
                *
                                                                                                                                                                                                                                                                                                                                                  17
                                                                         FOUR CARDS OF ID (WORD LENGTH 4)
  Ċ
                *
                             A(20,4)
                                                                                                                                                                                                                                                                                                                                                 18
                                                                         CONFIGURATION NUMBER
                *
                             NCCNF
  C :
                                                                                                                                                                                                                                                                                                                                                 19
                             RPM
                                                                         SPEED IN RPM :
                *
  C
                                                                                                                                                                                                                                                                                                                                                 20
  C,
                *
                             PCS
                                                                         PERCENT SPEED
                                                                                                                                                                                                                                                                                                                                                 21
                             SL(27,19) MEASURED ARRAY (TEST DAY SOUND PRESSURE LEVELS)
                                                                                                                                                                                                                                                                                                                                        - 22
                ‡
  Ċ
                                                                       TEST TEMPERATURE (DEGREES FAHRENHEIT)
  C :
               #
                                                                                                                                                                                                                                                                                                                                                 23
                                                                        TEST RELATIVE HUMIDITY
TEST BAROMETER (INCHES HG)
  C:
               #
                            RH
                                                                                                                                                                                                                                                                                                                                                 24
                            BAR
  C.
               *
                                                                                                                                                                                                                                                                                                                                                 25
                                                                         FIRST MICROPHONE ANGLE
  C
               *
                             AO
                                                                                                                                                                                                                                                                                                                                                 26
  Č
                                                                         MICROPHONE ANGLE INCREMENT
               *
                            DT
                                                                                                                                                                                                                                                                                                                                         - 27
                                                                       MICROPHONE RADII
NUMBER OF MICROPHONES
NUMBER OF FREQUENCY BANDS
  C.
               ±
                            R(19)
                                                                                                                                                                                                                                                                                                                                                 28
                            NM
  C
               *
                                                                                                                                                                                                                                                                                                                                                 29
  C'-
               *
                            NF
                                                                                                                                                                                                                                                                                                                                                 30
                                                                        KIND OF FRACTIONAL-OCTAVE BANDS (1 OR 3)
STANDARD RADIUS FOR DATA LISTINGS
  C
               *
                             NB
                                                                                                                                                                                                                                                                                                                                                 31
               *
                             RSTD
  C-
                                                                                                                                                                                                                                                                                                                                                 32
                                                                         OPTIONAL SIDELINE DISTANCES FOR DATA EXTRAPOLATIONS
  C
                *
                             SD(5)
                                                                                                                                                                                                                                                                                                                                                 33
 Ċ.
                                                                                                                                                                                                                                                                                                                                                 34
 C.
               DIMENSION BUF(27,19), TFA(27,19)
                                                                                                                                                                                                                                                                                                                                                 35
                                                                                                                                                                                                                                                                                                                                                 36
                                                                                                                                                                                                                                                                                                                                                 3.7
                            DIMENSION B(27),C(27),D(27),E(27),NFIL(27),SLR(27)
                                                                                                                                   DIMENSION DS(6)
                             INTEGER FREQ(27)
                                                                                                                                                                                                                                                                                                                                                  40
                            DATA FREQ/50,63,80,100,125,160,200,250,315,400,500,630,800,1000,
                                                                                                                                                                                                                                                                                                                                                 41
                        1 1250,1600,2000,2500,3150,4000,5000,6300,8000,10000,12500,16000,...
                                                                                                                                                                                                                                                                                                                                                 42
                                                                                                                                     A Company of the Comp
                        2 20000/
                                                                                                                                                                                                                                                                                                                                                 43
  C--
                                          DEFINE NUMBER OF SIDELINE DISTANCES: A PART OF THE CONTROL OF THE 
 C
                                                                                                                                                                                                                                                                                                                                                  45
  C
                                                                                                                                                                                                                                                                                                                                                 46
                                                                                                                                                                                                           the constraint of the factor of the constraint o
                            DO 1 I=1,5
                                                                                                                                                                                                                                                                                                                                                 47
 ٠,٠
                            IF (SD(I).LE.O.O) GO TO 2
                                                                                                                                                                                                                                                                                                                                                 48
  1
                            CONTINUE
                                                                                                                                                                                                                                                                                                                                                 49
                            NR = 5
                                                                                                                                                                                                                                                                                                                                                 50
 1980
                                                                                                                                                                                                                                                                                                                                                  51
                              GO TO 3
                                                                                                                                                                                                                                                                                                                                                  52
   2
                             CONTINUE
                                                                                                                                                                                                                                                                                                                                                  53
                             NR = I - 1
                                                                                                                                                                                                                                                                                                                                                54
                             CONTINUE
   3
                                                                                                                                                                                                                                                                                                                                                  55
  C
                                          DEFINE BAND CENTER FREQUENCIES
                                                                                                                                                                                                                                                                                                                                                   56
 ,C
                                                                                                                                                                                                                                                                                                                                                  57
  Ċ
                             DO 4 I=1,NF
                                                                                                                                                                                                                                                                                                                                                  58
                              J= I
                                                                                                                                                                                                                                                                                                                                                  59
                              IF (NB.EQ.1) J=3*I-1
                                                                                                                                                                                                                                                                                                                                                  60
                              NFIL(I)=FREQ(J)
                                                                                                                                                                                                                                                                                                                                                 61
   4
   C
                                                                                                                                                                                                                                                                                                                                                 62
                                           DEFINE MICROPHONE ANGLES
  C
                                                                                                                                                                                                                                                                                                                                                  63
 C
                                                                                                                                                                                                                                                                                                                                                  64
                             DO 5 I=1,NM
                                                                                                                                                                                                                                                                                                                                                  65
                             AI(I)=AO+DT*FLOAT(I-1)
 5
                                                                                                                                                                                                                                                                                                                                                  66
 ------
                                                                                                                                                                                                                                                                                                                                                 67
                                           SIMPLY ADJUST TO CONSTANT RADIUS FOR REVIEW ONLY
  C
                                                                                                                                                                                                                                                                                                                                                 68
  C
                                                                                                                                                                                                                                                                                                                                                 69
                             DO 6 J=1,NM
DL=20.0*ALOG10(R(J)/RSTD)
                                                                                                                                                                                                                                                                                                                                                 70
                                                                                                                                                                                                                                                                                                                                                 71 -
                              DO 6 I=1,NF-
                                                                                                                                                                                                                                                                                                                                                  72
                             73
                                                                                                                                                                                                                                                                                                                                                 74
  C
C
                                                                                                                                                                                                                                                                                                                                                  75
```

```
77
C
          MEASURED ARRAY
                                                                             78
C
                                                                             79
     WRITE (6.7)
     FURMAT (1H1)
7
                                                                             80
     DO 9 J=1,4
                                                                             81
                                                                             82
8
     WRITE (6,9) (A(I,J),I=1,20)
     FURMAT (26X,20A4//)
                                                                             83
Q
                                                                             84.
     WRITE (6.10) NCONF, RPM, PCS
    -FORMAT (16X,16HCONFIGURATION NO, 15, 10X, 7HSPEED =, F6. J, 4H RPM, 10X, 1
                                                                             85
     15HPERCENT SPEED =, F6.1//)
                                                                             86
     WRITE (6,11) T,RH, BAR
                                                                             87
     FORMAT (10X,17HTEST CONDITIONS -,7X,13HTEMPERATURE =,F5.1,2H F,6X,
11
                                                                             88
     119HRELATIVE HUMIDITY =,F5.1,3H-PC,6X,11HBAROMETER =,F6.2,6H IN HG/
                                                                             89
                                                                             90
     2//1
                                                                             91
      WRITE (6,12) RSTD
      FORMAT (52X,27HM E A S U R E D A R R A Y,//37X,41HMEASURED DATA ...
                                                                             92
12
                                                                             93
     1SIMPLY ADJUSTED TO CONSTANT, F6.1, 10H FT KADIUS//)
                                                                             94
     CALL ANGLE (AI, NM)
     CALL UASPL (SL, NM, NF, B)
WRITE (6,13) (B(I), I=1, NM)
                                                                             95
     CALL UASPL (SL, NM, NF, B)
                                                                             9,6
                                                                             97
      FORMAT (15H COMPUTED DASPL, 19F6.1)
13
                                                                             98
      WRITE (6,14)
                                                                             99
      FORMAT (/)
14
                                                                            100
      CALL TBLOP (SL, NF, NFIL, NM, 1)
                                                                            101
      WRITE (6,15) (R(I),I=1,NM)
      FORMAT (48X,31HORIGINAL MICROPHONE RADII, FEET//15X,19F6.1)
                                                                            102
15
                                                                            103
C
                                                                            104
C
С
         PAGE TWO -
                                                                            105
           TEST DAY ATMOSPHERIC ABSORPTION
C
                                                                            106
C
                                                                            107
      CALL FITLE (A, NCONF, RPM, PCS)
                                                                            108
                                                                            109
      DO 15 J=1,NM
      CALL BASPAT (SL(1,J),RSTD,NF,NB,T,RH,B,RSTD,C)
                                                                            110
      DO 16 I=1,NF
                                                                            111
      BUF(I,J)=B(I)*R(J)/1000.0
                                                                            112
      SL(I,J)=SL(I,J)+BUF(I,J)
                                                                           113
16
      WRITE (6,17) T,RH
                                                                            114
      FORMAT (27X, 77HT EST DAY EXCESS ATMOSPHERI
                                                                            115
17 -
     1 C A T T E N U A T I O N//34X,62HADDITIONS TO UNADJUSTED MEASURE
                                                                            116
     2D DATA TO OBTAIN REFERRED ARRAY//49X,33HTEMPERATURE RELATIVE H
                                                                            117
     3UMIDITY/46X,F10.0,2H F,12X,F5.1,3H PC//)
                                                                            118
      CALL ANGLE (AI, NM)
                                                                            119
      CALL TBLOP (BUF, NF, NFIL, NM, 1)
                                                                            120
C
                                                                            121
                                                                            122
C
                                                                            123
         PAGE THREE
C
                                                                            124
C
          REFERRED ARRAY
C
      CALL TITLE (A, NCONF, RPM, PCS)
                                                                            126
                                                                            127
      WRITE (6,18) RSTD
     FORMAT (52X,27HR E F E R R E D A R R A Y//38X,7HDATA AT,F6.1,42H
                                                                            128
18
     1 FT RADIUS WITH NO ATMOSPHERIC ATTENUATION/45X,40H(FOR POWER AND.D.
                                                                            129
                                                                            139
     2 IRECTIVITY COMPUTATIONS )//)
                                                                            131
      CALL ANGLE (AI, NM)
                                                                            132
      CALL DASPL (SL,NM,NF,E)
                                                                            133
      WRITE (6,13) (E(I),I=1,NM)
                                                                            134
      WRITE (6,14)
      CALL TBLOP (SL, NF, NFIL, NM, 1)
                                                                            135
                                                                            136
C
                                                                            137
C
                                                                            133
C
         PAGE FOUR
                                                                            139
          ACCUUSTIC POWER COMPUTATIONS
C
```

•	COMPUTE TOTAL POWER	
	CALL POWER (E, RSTD, A1, NM, DT, T, BAR, PWL,)	ń)
	CALL AVSLR (E, AI, DT, NM, SLRO)	• •
	COMPLETE BONICA CRECTRUM	•
	COMPUTE POWER SPECTRUM	
	22 22 1-1 15	
	00 20 I=1,NF	•
_	DO 19 J=1,NM	· · · · · · · · · · · · · · · · · · ·
9	8(J)=SL(I,J)	
	CALL POWER (B, RSTD, AI, NM, DT, T, BAR, PW, D	
Q.	C(I)=PW	
	CW4X=0.0	•
:	DO 21 I=1,NF	And the second of the second o
	IF (C(I).GE.CMAX) CMAX=C(I)	 Marketter State of the Company of the Company
1 .	CONTINUE	
	00 22 I=1.NF	我们是我们的人,但是一个人的人。
2,-	B(I) = C(I) - CMAX	184 to 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	CALL DBSUM (B, NF, SUM)	
	DO 24 I=1.NF	\$,
	DO 23 J=1,NM	•
3	$D(J) = \tilde{\zeta}L(I,J)$	
4	CALL AVSLR (D, AI, DT, NM, SLR(I))	
	CALL TITLE (A, NCONF, RPM, PCS)	
	WRITE (6,25) RSTD	•
5	FORMAT (40X,53HA C O U S T I C P O W	
-	1 S//,73X,10HNORMALIZED,10X,6HSIMPLE/29	
	21HPOWER SPECTRUM POWER SPECTRUM, 5x, 1	5HSOURCE SPL, R =,F6.1,3H FT
٠.	3//1	
	00 26 I=1,NF	
6	WRITE (6,27) I, NFIL(1), C(1), B(1), SLR(1)
7.	FORMAT (30X, 12, 116, 3F17.1)	
	WRITE (6,28) SUM, SLRO	
8	FORMAT (/75x,F7.1,8H OVERALL,F9.1,8H O	VERALL)
	WRITE (6,29)	
9	FORMAT (/,55x,20HTOTAL ACOUSTIC POWER/	72X,3H-13)
<u>'</u> ; .	WRITE (6,30) PWL,W	
). 	FORMAT (52X,5HPWL =, F6.1,16H DB RF 10	WATT//58X,3HW = F7.1,6H WA
	1TT\$/D	
٠.	211121 115125 1112 22150 2151	
	PUNCH HEADER AND POWER DATA	h_{ij}
	21 1 1 /	
	DO 31 J=1,4	
l	PUNCH 32, (A(I,J),I=1,20)	
2	FORMAT (20A4)	
	PUNCH 33, NCONF, RPM, PCS, NF, NM, NB	
3	FORMAT (14,2F8.1,313)	•
	IF (NF.EQ.10) GC TO 35	
	PUNCH 34, PWL, SUM, (B(I), I≈1, NF)	
٠,	FORMAT (12F6.1/(12X,10F6.1))	
	GO TO 36	
5	PUNCH 41, PWL, SUM, (B'(1), I≈1, NF)	
•	CONTINUE	· ·
		S. A. W. C.
	· PAGE FIVE	
	NORMALIZED PONER SPECTRUM (GRAPH)	
		•
	CALL TITLE (A, NCONF, RPM, PCS)	
	CALL GRAPH (B.NF)	

				٠.		
•						
•	PAGE SIX					
;	DIRECTIVITY INDEX,					d
•				• •	i., 17	
	CALL TITLE (A, NCONF, RPM, PCS)					
_	WRITE (6,37)	• •	<u>.</u>			
17	FORMAT (5-X,33HD I R E C T I V I T Y	IND	E X//)		
	CALL ANGLE (AI,NM) DO 38 I=1,NF				·· :	٠,
					• .	
	DO 38 J=1,NM					
3	BUF(I,J)=SL(I,J)-SLR(I)					
	BUF(I,J)=SL(I,J)-SLR(I) CALL TBLOP (BUF,NF,NFIL,NM,1) CALL AVSLR (E,AI,DT,NM,DID)					. : .
	· · · · · · · · · · · · · · · · · · ·					
	DO 39 J=1,NM					
•	E(J) = E(J) - DIO				•	
	WRITE (6,40) (E(J),J=1,NM)					. th. 1
)	FORMAT (8X,7HOVERALL,19F6.1)	•			٠	
					-2, 1,	- ;
	PUNCH ANGLES, DIRECTIVITY INDEX			,		
				1.5	1. N	
	PUNCH 41, DT, (AI(J), J=1, NM)			17 .		
	FORMAT (12F6.1)					
	00 45 I=1,NF				·	
	IF (NM.EQ.10) GO TO 43				• •	
	PUNCH 42, I, NFIL(I), (BUF(I, J), J=1, NM)					
	FURMAT (216,10F6.1/12X,10F6.1)					
	GO TN 45			1		
	PUNCH 44, I,NFIL(I),(BUF(I,J),J=1,NM)			-		;
	FORMAT (216,10F6.1)					
	CONTINUE			·		· ;
	PAGE SEVEN					
	ATMOSPHERIC ATTENUATION					;
					. :	7
ï.	COMPUTE THOUSAND FOOT EXCESS ATTEN	UATION				
	DO 46 J=1,NM					
	CALL BASPAT (SL(1,J),RSTD,NF,NB,59.0,	70.0,TFA	(1,J)	,RSTD,	8)	
				٠,	:	
•	CALL TITLE (A, NCONF, RPM, PCS)					
	WRITE (6,47)					
	FORMAT (43X,45HA T M U S P H E R I C					
	161HSTANDARD DAY EXCESS ATMOSPHERIC AT	TENUATIO	N PER	THOUS	AND FEE	T//
	237x,56HCOMPUTED FROM REFERRED ARRAY C	DNSIDERI	MG 25	ECTRUM	SHAPES	//)
	CALL ANGLE (AI, NM)				• .	3
	CALL TBLOP (TFA,NF,NFIL,NM,1)					
	•		•			3
	PAGE EIGHT					
	STANDARD DAY DATA ATMOSPHERIC AB	SORPTION				
-	CALL TITLE (A, NCONF, RPM, PCS)					. ;
	WRITE (6,48) RSTD	y .				;
4	FORMAT (16X,95HS T A N D A R D D A	Y DA	TA	EXC	E S ·S	Δ 2
	1 TMG SPHERIC ATTENUA	TION/	/26X,	60HADJ	USTMENT	ST.
	20 REFERRED ARRAY TO OBTAIN STANDARD D	AY DATA	AT,F6	.0,10H	FT RAD	IUS :
-			•			
	DO 49 J=1,NM					
	DO 49 I=1,NF					
•	BUF([,J]=TFA([,J)*RSTD/1000.0					
	CALL ANGLE (AI.NM)					

	CALL TBLOP (BUF, NF, NFIL, NM, 1)	
· -		
		٠
	PAGE NINE	
:	STANDARD DAY BATA	
	CALL TITLE (A.NCONF.RPM.PCS)	•
	WRITE (6,50) RSTD	•
50		D A Y D A T A//43X,7HDATA AT,F6
	1.1,30H FT KADIUS ON 59F, 70PC RH	DAY//)
	DO 51 J=1,NM	
	DO 51 I=1,NF	•
1	BUF(I,J)=SL(I,J)-BUF(I,J)	
	CALL ANGLE (AI, NM)	•
	CALL DASPL (BUF, NM, NF, B)	
	WRITE $(6,13)$ $(B(I),I=1,NM)$	
٠.	WRITE (6,14)	, ·
٠.	CALL TBLOP (BUF, NF, NFIL, NM, 1)	
	WRITE (6,14)	
	WRITE (6,52) RSTD	
2	FORMAT (44X, 18HPERCEIVED NOISE OF	N, F8.1, 17H FI RADIUS, PNDB//)
-	CALL ANGLE (AI,NM)	
	CALL APNOB (BUF, NB, NM, 8) WRITE (6,53) (B(I), I=1, NM)	
-	FORMAT (15X,19F6.1)	
3	LOKWAL (174)12LO+11	the state of the s
		Secretary to the training of the
	PAGE TEN AND FOLLOWING	• • • • •
	SIDELINE EXTRAPOLATED DATA	the state of the s
. :	JIDECINE EXTRA CERTED DATA	
	DELETE ON-AXIS DATA	· · · · · · · · · · · · · · · · · · ·
	DECETE ON MAID ONTH	
<i>i.</i> :	MM=NM	
.);	DO 54 J=1,MM	
4	AM(J) = AI(J)	
	IF (AM(1).GT.0.0) GD TO 56	
	MM=MM-1	
 	00 55 J=1,MM	,
4.5	AMI IN-AMI IAIN	
	DO 55 I=1.NF	
5	SL(I,J)=SL(I,J+1)	
6	IF (AM(MM).LT.180.0) GO TO 57	
·	MM=MM-1	
7	CONTINUE	
* *		
e in General	KK=NR+1	
	DO 58 I=2,KK	
8	DS(I) = SD(I-1)	
	DS(1)=RSTD	
	DO 64 K=1,KK	
	CALL TITLE (A, NCONF, RPM, PCS)	
<u>.</u> .	WRITE (6,59) DS(K)	
9	FORMAT (40X,52HS I D E L I N E	EXTRAPOLATED DATA
	1 //23X,20HSTANDARD DAY DATA ON,F	7.0,59H FT SIDELINE, INCORPORATIN
•	26 EXCESS ATMOSPHERIC ATTENUATION	
	CALL SIDLAT (MM, AM, RSTD, DS(K), B,	C)
	00 60 J=1,MM	
	DO 60 I=1,NF	
0	BUF(I,J)=SL(I,J)-B(J)-TFA(I,J)*C	(J)/1000.0
	CALL ANGLE (AM, MM)	
	CALL DASPL (BUF, MM, NF, C)	
· :	WRITE (6,13) (C(I),I=1,MM)	•
	WRITE (6.14)	

CALL TBLOP (BUF, NF, NFIL, MM, O)	327
(1) WRITE (16,14) おいせん されい でいてがらまったがにからいみます。	- 1:3 · 4-44 · 65 · 1:07 328 b
WRITE (6,61) DS(1),DS(K),(B(1),F=1,MM) 61° FORMAT (30x,35HINVERSE SQUARE LAW ATTENUATION FRO	M, F7.0, 14H FT RA 330
1DIUS TO, F7. J, 13H FT SIDELINE//15X, 19F6:1//)	331
WRITE (6,14)	332
CALL APROB (BUF, NB, NM, B)	333
WRITE (6,62) DS(K)	334
62 FORMAT (45X,18HPERCEIVED NOISE ON, F7.0, 19H FT SI	DELINE, PNDB//) : 335
CALL ANGLE (AM, MM)	336
WRITE (6,63) (8(1),I=1,MM)	337
63 FORMAT (15X,19F6.1)	338 339
IF (NR.LE.O) GO TO 65	339
64 CONTINUE	340
65 WRITE (6,7) .	341
C	342
RETURN	343
END	344-

REFERENCES

- 1. Montegani, Francis J.: Noise Generated by Quiet Engine Fans. I Fan B. NASA TM X-2528, 1972.
- 2. Anon.: Standard Values of Atmospheric Absorption as a Function of Temperature and Humidity for Use in Evaluating Aircraft Flyover Noise. Aerospace Recommended Practice No. 866, SAE, Aug. 1964.
- 3. Anon.: Definitions and Procedures for Computing the Perceived Noise Level of Aircraft Noise. Aerospace Recommended Practice No. 865A, SAE, Aug. 1969.
- 4. Anon.: Federal Aviation Regulations. Vol. III, pt. 36 Noise Standards: Aircraft Type Certification.

TABLE I. - SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

NATIGNAL AERUNAUTICS AND SPACE ADMINISTRATION

LENIS RESEARCH CENTER

PROPULSION SYSTEMS ACCUSTICS BRANCH

SAMPLE NOISE CATA

BAROMETER = 30.00 IN HG PERCENT SPEED # 75.0 RELATIVE HUMIDITY = 60.0 PC SPEED = 1800. RPM TEMPERATURE = 50.0 F CONFIGURATION NO 100 TEST CONDITIONS -

MEASURED ARRAY

	160.	1.16		6.7	0.0	13.3	13.6	0.5	.8.0	6.8	7.9	.6.2	.4.5	3.3	1.8	12.7	2.6	2.3	9.0	1.4.7	1.0	75.4	7.4	4.2	3.1	3.4	3.0	71.5	.0.5	6.0
		-		•																										
	150.	93.6		77.	79.	83.	84.	83.	81.	80.	81.	79.	78.	77.	75.	76.	76.	75.	74.	77.	74.	75.	80.	78	77.	78.	79.	77.7	76.	76.
	140.	94.0		74.4	76.1	79.3	81.9	81.0	19.6	19.4	80.0	79.3	1.61	77.9	76.7	77.0	77.9	11.1	75.5	19.1	16.9	7.8.1	84.6	85.0	80.6	91.5	81.8	80.4	19.2	19.0
RADIUS	130.	95.3		73.1	74.1	77.0	9.62	19.1	77.8	78.2	78.6	78.5	78.3	77.6	77.0	77.7	78.0	17.2	78.5	83.1	79.4	82.3	86.7	84.4	83.4	84.7	84.3	82.7	81.9	81.4
F	120.	94.8		70.6	71.4	74.0	77.5	78.1	76.5	75.8	77.4	16.6	6.92	76.0	75.6	76.1	76.8	76.1	11.1	93.7	80.0	85.8	86.0	83.0	83.4	84.4	84.7	82.3	81.8	1.18
NT 100.0	110.	93.7		9.69	69.3	72.8	75.2	76.5	75.1	14.1	15.8	75.1	1.51	14.7	14.9	15.4	15.1	4.9	76.5	84.6	78.9	80.8	85.4	81.0	82.3	83.4	82.6	80.4	19.1	19.5
CONSTANT	100	95.6		68.7	8.99	70.3	74.7	75.3	74.8	72.2	74.3	73.8	73.8	73.9	13.9	75.0	74.5	15.2	15.4	80.1	16.9	79.3	85.2	80.2	81.3	83.9	81.6	19.4	79.2	78.3
	•06	91.8		4.99	66.3	68.5	71.9	74.1	74.3	71.4	72.8	73.3	72.8	72.9	73.4	73.7	73.7	14.2	14.0	81.7	10.4	78.5	85.1	19.2	81.9	81.2	79.9	41.9	17.9	16.5
ACJUSTED TO	80°	89.0		68.89	66.1	8.99	11.6	73.3	73.3	70.1	71.8	72.0	71.3	11.9	72.4	74.4	73.0	74.4	73.0	18.9	4.9	76.3	4.61	77.2	11.1	78.4	76.1	15.6	74.2	13.5
SIMPLY	70.	89.2		67.2	65.8	65.1	9.02	15.1	13.1	1.69	9.02	11.1	8.07	70.9	71.9	13.0	14.4	15.1	13.4	81.6	14.4	15.6	60.2	16.4	16.9	17.5	16.6	15.1	24.0	15.4
DATA S	•09	89.8		9.19	65.0	65.3	68.4	11.6	72.8	9.69	19.1	71.0	11.8	71.2	71.5	72.2	14.4	75.5	14.2	84.2	16.4	16.8	19.4	16.7	11.11	11.4	16.6	14.9	14.0	13.9
REASURED	50.	61.6		9.89	65.0	8.40	6.89	1002	12.5	70.1	9.69	20.5	70.5	72.7	12.4	15.2	78.5	77.0	15.1	86.1	11.9	18.1	618	19.5	78.7	19.0	17.9	11.1	16.5	76.5
MEA	* 0 *	93.8		6.59	63.8	1.49	10.6	9.69	71.5	70.5	8.69	71.3	71.0	71.9	13.2	77.5	15.5	18.1	15.9	88.4	15.4	80.1	83.7	80.7	83.4	81.8	81°4	80.2	19.1	78.0
	30.	52.0		6.49	. 1 • 5 9	64.0	69.2	1.69	71.0	70.4	9.69	10.6	70.0	11.4	11.7	73.5	76.2	11.6	15.9	£7.8	19.5	19.3	85.1	19.1	80°8	90.08	19.0	78.4	78.4	11.9
	20.	52.1		1.99	65.0	65.8	69.5	69.5	71.0	10.0	8.59	E • 59	6.59	75.5	70.7	74.0	14.0	11.2	1.97	87.4	78.9	18.6	82.1	19.1	73.7	19.5	78.8	11.1	16.9	16.9
	10.	6.36		0.69	£ 4+3	65.3	1.89	70.3	70.0	1.59	69.3	0.59	68.5	7:17	9.69	14.8	15.0	15.7	15.6	86.3	6.77	11.0	60.5	78.5	77.5	17.4	11.4	16.9	15.2	15.6
	ANGLE	CCMPLTED CASPL	AND FRECUENCY	50	63	08	100	125	160	200	250	315	400	205	630	800	0001	1250	0091	2000	2500	3150	4000	2000	900	900H	00001	12500	16000	20000
		CCMPLI	PAND	-	^	m	4	s	¢	!~	£	7	2	=	2	<u>e</u>	<u> </u>	51	9	7.	#	<u>.</u>	ر د	7	22	en N	4.4	52	92	77

ORIGINAL MICROPHONE RADII, FEET

100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

TABLE I. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

NATICNAL AERONAUTICS AND SPACE ADMINISTRATION FEMIS RESEARCH CENTER PROPULSIEN SYSTEMS ACCUSTICS BRANCH SAMPIE NOISE DATA

CONFIGURATION NO 100 SPEED # 1800. RPM PERCENT SPEED # 75.0

TEST DAY EXCESS ATMOSPHERIC ATTENUATION
ADDITIONS TO UNADJUSTED MEASURED DATA TO OBTAIN REFERRED ARRAY

	•						TEN	TEMPERATURE 50. F	S.E.	RELAT	RELATIVE HUMIDITY 60.0 PC	M IOITY PC					•
	ANGLE	10.	. 20.	30.	÷0.	20.	•09	70.	80.	•06	100	110.	120.	130.	140.	150.	160.
BANE	FRECUENCY												•				
-	90	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
^	63	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0
M	80	0.0	0.0	o••	0.0	o•0	0.0	0.0	0.0	0	0.0	0	0	0.0	0.0	0.0	0
4	001	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0	0.0
2	125	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0
c	160	o. 0	O.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0
7	200	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0	0.0	0	0.0
æ	250	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
ዏ	315	0.0	0.0	0.0	0.0	o•0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
2	400	1.0	1.0	0.1	0.1	7.0	7.0	0.1	7.0	0.1	0.1	7.0	0.1	0.1	0.1	1.0	1.0
=	206	7.0	7.0	0.1	7.0	7.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1	0.1	0.1
2	630	C• 1	••	0.1	7.0	1.0	1.0	0.1	1.0	0.1	0.1	0.1	7.0	0.1	0.1	•	0.1
<u>~</u>	600	0.1	0.1	7.0	7.0	0.1	0.1	0•1	0.1	0.1	1.0	0.1		0.1	0.1	7.0	••
14	1000	٠ ٠		0.1	1.0	7.0	 -	0.1	7.0	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
5	1250	0.2	0.5	0.5	0.5	0.5	3.5	0.5	0.2	0.5	0.2	2.0	0.5	0.5	0.5	0.2	0.2
£	1600	0.3	0.3	0.3	6.0		0•3	0.3	6.0	0.3	0.3	0.3	0.3	0.3	0•3	0.3	0.3
1.1	2000	5. 0	0.	7. 0	7 • 7	4.0	4.0	9. 4	4.0	0.4	7. 0	4.0	••0	4.0	4.0	4.0	4.0
£	7500	0.5	<u>چ</u>	0.5	0.5	0.5	J.5	0.5	0.5	0.5	o.5	0.5	0.5	0.5	0.5	0.5	0.5
<u>.</u>	3150	0.8	8.0	8.0	P•0	8.0	0.8	8.0	0.8	0.8	8.0	8.0	0.8	0.8	0.8	0.8	0.8
2	4000	1.1	<u>:</u> \	1.1	1.1	-:	1:1	1.1	1.1	1.1	1.1	1:1	1:1	1.2	1.2	1.2	1:1
Ξ.	2000	J.6	1:0	9.1	1.6	1.6	9.1	J.•6	9.1	1.6	9•1	1.6	1.6	7.6	9•1	1.6	1.6
2	906 9	2.3	. 2 • 5	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3	2.3
73	8000	3.7	3.5	3.2	3.2	3.5	3.2	3.2	3.2	3.2	en en	3.3	3.3	3.3	3.3	3.3	3.2
7.	00001	4.0	4.5	. 4.5	*.	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.6	4.5
2	12500	6.3	6•3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3	6.3
ţ	16000	£•3	8.8	9 9	D • 8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8	8.8
~	20000	12.2	12.2	17.1	17.1	12.2	12.1	12.2	12.1	12.1	12.1	12.1	12.1	12.1	12.1	12.2	12.2

TABLE I. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

CONFIGURATION NO 100 SPEED # 1800. RPM PERCENT SPEED = 75.0 NATICNAL AERCNAUTICS AND SPACE ACMINISTRATION LEWIS RESEARCH CENTER FROPULSION SYSTEMS ACOUSTICS BRANCH SAMPLE NCISE CATA

REFERRED

971.09 989.00 777.9 883.0.0 981.0.0 981.0.0 981.0.0 981.0.0 981.0.0 981.0.0 981.0.0 981.0.0 981.0.0 981.0.0 140 97.3 74.4 776.1 776.1 776.1 779.6 779.6 777.1 777 83.6 84.8 86.7 88.0 91.1 130. 99.3 73.1 779.1 779.1 770.0 770.0 770.0 770.0 770.1 700.1 700.1 700.1 700.1 700.1 700.1 700.1 700.1 700.1 700.1 7 DATA AT 100.0 FT RADIUS WITH NO ATMOSPHERIC ATTENUATION (FCR PCWER AND DIRECTIVITY COMPUTATIONS) 0.66 90. 100. 110. 120. 74.0 77.5 78.1 76.5 76.6 76.9 76.9 78.0 84.1 80.5 76.1 89.2 85.7 91.5 86.5 84.6 86.7 87.1 96.5 95.3 84.2 86.7 88.6 92.3 80. 95.8 67.2 65.8 65.1 70.6 72.1 73.1 70.6 71.1 70.9 71.0 72.0 73.1 74.5 73.7 75.3 75.3 76.9 10. 61.3 78.0 79.2 80.7 90. 92.7 67.6 65.0 65.3 68.4 71.6 72.8 71.0 71.6 72.3 74.5 74.5 74.5 74.6 70.6 80.5 80.5 80.6 70.1 94.8 50. . 1.16 65.6 63.6 64.1 70.5 70.2 71.3 71.3 71.3 73.3 77.0 75.6 78.9 76.2 89.2 79.9 80.9 82.3 84.8 85.0 0.95 30. 6655.9 6657.0 66 655.2 657.2 657.2 657.2 657.2 657.3 657.3 81.5 81.5 82.4 95.2 84.0 64.0 76.9 75.1 75.9 75.9 86.7 77.8 81.6 669.0 669.3 669.3 669.3 669.3 669.3 669.3 669.3 8.51 CCMPLIED DASPL

TABLE I. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

	I O N S SIMPLE SOURCE SPL, R = 100.0 FT	71.1.1 71.1.7 74.0.0 75.0.0 75.0.0 75.0.0 75.0.0 75.0.0 86.0 881.0 881.0 885.0 90.0	OVERALL 96.2 DVERALL
	C D M P D T A T NORMALIZED POWER SPECTRUM	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6.1
	I C POWER POWER SPECTRUM	118.5 119.1 122.2 122.2 122.3 122.3 122.3 123.3	TOTAL ACOUSTIC POWER
NISTRATION	A C O U S T	56 83 110 110 125 125 250 250 315 400 630 630 630 630 630 630 630 630 630 6	
SPACE ADMI ICS BRANCH	BAND		
	•		
NATICNAL AERCNAUTICS AND LEWIS RESEARCH CENTER FROPULSICN SYSTEMS ACOUST SAMPLE NCISE CATA			

22.5 WATTS

TABLE 1. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		NGRPALIZED POWER SPECTRUM	CTRUM			
	0			٠,		
	0		•			
	0				٠	
			•	· .		
					c	
		·		o)
~~~~~	0		:	: . *.	<b>5</b> .	
	. 0.		•	. •	0	
	0		•		-	
		•	•		•	
	0 0	0 0 0	o .			
		0				
20 0				٠		
				•		•
	-			-		-
				•		
-						
		•				
<b></b>						
	£ .				•	
					•	
		- - - - - -				.•
				÷		

TABLE I. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

NATIGNAL AERGNAUTIUS AND IEMIS RESEARCE CENTER ERUPULSIEN SYSTEMS ACCUSTSAMFIE NG ISE GATA	EMLNAL ARCH ( SYSTI SE CAT	JICS CENTER	_	SPACE ACMINISTRATION ICS EKANGE	KINIST	R A 1 1 0 N	1								2 N M	NFIGUR EED # RCENT	CONFIGURATION NO SPEED = 1800. RI PERCENT SPEED =	NO 100 RPM = 75.0
		٠.						- RE	1 1 2	1 >	<b>-</b> -	N O	×					
ব	ANGLE.	10.	20.	30.	40.	50.	•09	70.	8 O •	.06	100	110.	120.	130.	140.	150.	160.	
PANL FRECUENCY	FNCY		;		i								1					
		1./-	- 5°C	-6.2	15.2	12.5	5.6-	-3.9	-2.2	-4.7	4.2-	-1.5	20-0	2.0	W 4	6.8	8.8	
	38	ć • 5 <del>-</del>	ം	- 1u · 8	-10.1	-10.0	- C - C	-9.7	0.8-	10	-4.5	-2.0	-0 8•0-	2.7	4 . 5	8	8.5	
001	0	- Q - 3	-7.0	P-1-	ţ.0-	1-8-	J . 8 -	-6.4	4.5-	-5.1	-2.3	8-1-	0.5	2.6	6.4	7.4	9.9	
	5	-6.7	•	0.1-	-/-1	0.0-	-5.1	0.4-	-3.4	-2.0	-1.4	-0.5	1.4	7.4	4.3	6.9	3.8	Ś
	0	-5.6	0.4-		-4.3	-3.1	-2.d	-2.5	-2.3	-1.3	8.0-	-0.5	6.0	2.5	4••	5.5	2.4	)
	C	r.7-	7.4-	7.4-	4.4-	14.5	0.3-	6.41	-4.5	-3.5	-2.4	-0.5	1.2	3.6	4.8	6.3	2.2	
R 250	<b>つ</b>	1.5-	0.5-	5.8°	0.6-	4.4-	-5-3	8.4-	-3.0	-2.6	-1:1	4.0	7.0	3.2	4.6	5.6	2.5	
	2	4.6-	0.6-	14.3	0.6-	7.4.	43.4	9 · £ -	6.7-	9-1-	-1:1	0.5	1.7	3.6	4.4	4.6	1.3	
	c	-6.2	- 5.2	1.4-1	-3.7	7.4-	-2.9	6.f-	13.4	-1.9	6.0-	4.0	2 • 5	3.6	4.4	7.5	-0.2	
	ت	7.3.5	-2.1	6.7-	4.7-	9.1-	7.5	-3.4	4.7-	-1.4	<b>-0</b>	7.0	1.7		3.6	3.3	-1.0	
	c ·	4.41	£ • £ •	-2.3	B.O.	-1.0	-2.5	-2.1	9-1-	9.0-	-0-1	6.0	1.6	3.0	2.1	1.7	-2.2	
	9	<b>5.0-</b>	~-!-	-1.	7	္	.3.	-2.2	8.0-	-1.5	-0.2	0.2	٠ <u>٠</u>	2.5	8•	0.8	-2.5	
0091 +1	o (	æ :	~	•	e.o.	2.1	<b>7.7</b>	+-1-4	9.7	1.7-	-1.3		0.1	2.2	7.7	9.0	-3.2	
-	•		٠ -	*	7.5	р. О	J. 1.		-1 • 8	0.7-	) · [ -	0.7	0.5	0:1	6.0	-0-3	-3.9	
	<b>c</b> .	-0	٠ • •	4.	ナ つ	4.0	-1.3	-2.1	5.2	-1.5	7:	٠ <del>.</del>	7.7	0.5	0.0	-1-3	-4.7	
	<b>5</b> *	4		or m	۲.۶	7.7	E .O.	-2.3		-2.5	-13 -8	0	-0.5	9.0	8 .	-9-1	-9.2	
2500	<b>3</b> (	<b>1</b> :	₹. -	•	70 : - 1		-1.2	-3.2	-2.7	7.5	~ ·	F - 3	7.7	8 .	-0-1	-2.7	9.9-	
		7.7	٠.	• •	) ) (	 - -	<b>**</b> 7-	9 0	6.7		- ·	•	9 6	<b>1</b> (		**	: 0 0	
21 4650	<b>3</b> =	7 - 7	0 4	0 4	) ·	2	7	0 0 1 1	1 - 1 1 - 1	*	C	- r	2.5	) - 1		9.5		
	•				) r	) c	0 0			7 - 7	1	• •	7 :	•		• •	• •	
24 80.00	<b>,</b>	0 - 7	0 1	1 4	0 Y	1 .	7 - 7 - 7 -	V • 0 •	0 7	7 - 7	0.0	0	0.0	0.7	7 0	ָרָ קַּיָּרְ		
-	· .	7	-2.1	1	9 5	1		6.4-	-4-	0	α . • • •	0	7.0		-	3	-7.B	
25 12560	. 0	-7.2	7.	7.0-	1.1	-1.4	-4.2	0.4-	3.5	-1.2	0.0	· π	3.5	3.6	1.3	-1.4	-7.6	
76 16000	0	-3.2	-1.5	0.0	1.3	6.I-	4.4-	7.4-	7.4-	-0.5	0.8	1.3	3.4	3.5	0.8	-2.2	6-1-	
77 . 20000	0	-2.3	⊃• -	0.0	1.0	-1.4	0.4-	-2.4	4.4-	-1.4	7.0	1.6	3.2	3.5	1.1	-1.7	-7.0	
•																		
CVE	CVERALL	-2.2	6.0-	1.0-	ر. د.	-1.3	-3.5	-3.4	-3.9	9.0-	0.4	1.3	2.8	3.1	1.1	4.0-	-3.8	

TABLE I. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

NATIONAL AFRICALLICS AND SPACE AGMINISTRATION
FEATS RESEARCH CENTER
FRIELISTOR SYSTERS ACTUSTICS BRANCH
SAMPLE NELSE LATA

CONFIGURATION NO 100 SPEED = 1800. RPM PERCENT SPEED = 75.0

ATROSPHERIC ATTENUATION

STANDARD DAY EXCESS ATMUSPHERIC ATTENUATION PER THOUSAND FEET

CUMPLIED FRUM REFERRED ARRAY CONSIDERING SPECTRUM SHAPES

														1			
	ANGLE	• 0.7	• o.v	٠٥،	, ,	.05	•0•	76.	80°	•06	100.	110.	120.	130.	140.	150.	160.
DN.	FRF LUFNLY									•			-				-
-	ņç	7.0	1.0	- - -	~~?	, ,	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1		0.1
^	6.0	- c	1.0	٠ ن	~·``		0.1	7.0	7.0	7.0	7.0	1.0	1.0	0.1	3.1		0.1
₹.	e.c	ر. د	<u>.</u> ن	c•1	7.0	0.1.	0.1	1.0	0.1	1.0	1.0	0.1	0.1	0.1	0.1	0.1	0.1
4	160	7.0	1.0	7.0	٦ • •	 -	0.1.	1.0	0.1	0.1	0.1	7.0	1.0	0.1	0.1		0.1
ۍ.	1.55	7.3	\.	?•;	7.0	0.2	3.5	9.5	3.4	0.2	9.5	3.2	3.2	0.2	).2		0.2
Ç	160	× 5	\.	7.0	7.0	0.2	0.2	0.5	0.2	7.0	0.5	0.5	0.2	0.2	0.2		0.2
~	200	6.3	0.3	E • 0	0.5	e.0	0.3	0.3	E.0	0.0	0.3	0.3	0•3	0.3	0.3		0.3
c	250	; ;	ر. د.		·.0	4.0	4.0	<b>7.</b> 0	7.0	3.4	7.6	4.0	4.0	4.0	4.0		9.0
7	315	ر. د.ع	(:)	0.5	ر. د	0.5	6.0	0.5	0.5		0.5	0.5	0.5	0.5	C.5		0.5
2	400	9.0	0.6	9.0	0•0	٠	9.0	0.0	0.0	9.0	9.0	9.0	9.0	9.0	9.0		9.0
=	500	Ċ•7	C•3	6.7	~:	7.0	7.0	0.7	0	0.7	7.0	0.7	0.7	0.1	7.0		7.0
2	6.30	ۍ. ن	6.0°	5.0	y•0	6.0	v.5	6.0	٠. د.	v.0	6.0	0.9	6.0	6.0	. 6.0		6.0
<u>-</u>	. FOC	?:-	~:	7.1	7.7	7.1	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2		1.2
<u>*</u>	1000	· .	<u>.</u>	1.5	1 • 5	1.5	5.1	1.5	٤٠١	1.5	1.5	1.5	1.5	1.5	1.5		1.5
<del>ر</del>	1.250	7.	7.	7.7	7. 7	1.9	6•1	1.9	1.9	6.1	6.1	1.9	1.9	1.9	1.9		1.9
=	1600	, , 5 5	٠, ٠,٠	7.5	2.5	5.5	5.2	5.4	5.4	2.5	7.7	5.5	5.4	2.4	5.4		2.4
۲.	2000	٦٠٢	3•1	3.1	3.1	3.1	3.1	3.1	7.5	3.1	3.1	3.1	3.1	3.1	3.1		3.1
ĭ	7500	٠,٠	4.0	4.	7.4	4.0	, · · ·	7 . 4	7 • 5	7.5	4 2	7.,	4.2	4.5	7.4		4.1
<u></u>	3150	2.5	5.7	7.5	5.7	5.7	5.7	5.0	2.7	5.8	5.8	5.8	5.8	5.8	5.8		5.8
3	0007	₹.	7.0	۱•۵	e. /	7.8	7.8	7.8	7.8	1.8	7.8	7.8	7.8	7.8	7.9		7.8
Ξ,	5000	o • o −	2.0	10.0	11.	10.8	4.01	13.8	10.9	10.8	8.01	10.8	10.9	10.8	8.01	_	10.8
?	6300	15.7	7 - 5 - 7	X • 1	15.8	15.7	15.8	15.8	8.57	F.5.	16.0	15.9	15.9	15.8	15.7	_	15.7
23	300%	1111	12.1	57.6	22.5	22.0	22.7	22.7	22.0	22.5	22.8	22.7	25.8	22.8	22.8	. •	22.7
5,	10000	37.0	32.4	34.4	32.4	32.4	32.3	32.3	34.5	35.5	35.0	32.3	32.4	32.4	35.5		32.4
ç,	17500	46.5	46.3	40.4	40.3	40.5	7.94	40.5	40.4	40.3	46.2	46.1	46.1	46.2	46.2	4	46.2
ž.	16000	0.99	7.09	c6 • 3	0.99	1.09	66.1	60.4	65.69	66.1	66.2	66.2	66.1	1 • 99	0.99	۳	66.2
~	70000	× + + ;	64.7	53.7	93.1	64.0	63.9	84.8	93.6	63.3	93.5	63.9	93.6	93.7	63.6	0.	94.2

TABLE I. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

NAT (1 1 Fw [: FROPI SAMF!	NATITNAL AERINALITUS AND FFWIS RESEARCE CENTER FROPLESION SYSTEMS ACCUST SAMFLE NEISE FATA	LITICS A CENTER Ems aco Ta		SPACF ACMINISTRATION ICS BRANCH	11 N 1 S T R .H		<i> </i>			• '					SPE	CONFIGURATION SPEED = 1800• PERCENT SPEED	ATION NO 100 1800. RPM SPEED = 75.0	0 0
	·.	N A J S	£ A	3 y	<b>∀</b>	D A T	ш «	X	s	A T	0 S P	T W	) <b>1</b>	T 4	Э 2 ш	T & -	z o	
			AD.	ABJUSTMENTS TU	is to	REFERRED		AY T0	ARRAY TO OBTAIN		STANCARD DAY	Y DATA	ΑŢ	100. FT	RADIUS	SI		
	ANG! E	10.	, U.	.3 C	.04	. •05	00	70.	80°	• 06	100	110.	120.	130.	. •051	•051.	.091	
FANL	FREGUENCY								-									
-	50	0.0	0.0	0.0	0.0	0.0	0.0	0.0	J. J	0.0	0.0	ပ• ဂ	0.0	0.0	0.0	0.0	0.0	
^	£9 .	0.0	<b>9.</b> 0	0.0	0.0	o•0	0.0	0.0	٥. د	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
æ	a C	0.0	0.0	0.0	0•0	0.0	ି. ପ•୍ଧ	် ()	် •	0.0	o•0	္ (	O.	္ • ၀	0.0	0.0	0.0	
4	001	0.0	0.0	o•0	o•0	٠ •	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0	0.0	0.0	
ť	125	0.0	0.0	o. o	7	0.0	0.0	0.0	o•0	o•	0	0.0	0.0	0.0	0.0	0.0	0.0	
£	160	0.0	ာ• ၀	o•0	0.0	o.	0.0	ن. ن	٠. ن	် ၁	?•	٠ •	· · ·	O•0	· ·	0.0	0.0	
~	00%	n•9	o•0	0.0	J.	0:0	0.0	0.0	ာ •	ာ•	0.0	o.	0.0	0	0	0.0	0.0	
æ	250	0.0	o. o	o•0	o•0	o. 0	o •	ာ ဝ	o .	0	0	0	0.0	0	0	0.0	0.0	
J	315	0.0	0	ت ت	0•0	0.0	0.	က က	က •	် က	ر ن	· ·	٠. د	0.0	ر د .	٠ •	0.0	
Ξ:	907	0•1		7 ·	0.1	 	0.1		 	<b>7</b> :	٦. ت:	7.0	~		•	7.0	7.0	
=	200	<b>c.</b> 5	٠. ت	0.1	- -	7.0		7.0	7.0	7.0	1.0		0.1	•	0.1	•	0.1	
<u>~</u>	630	ر د	1.0	7.0	٦. ن	ر. م	7.7	7.	J•1	7.	7.	7.0	0.1	3.1	1.0	 	0.1	
	300	۔ ن ن	•		- - -		- - -		j.		 	<b>-</b>	 	•			1.0	
<u> </u>	1750		. ~		. 0		7.0	1 7	7.0	•		7.0	7.0		2.0	• •	7.0	
-	1600	0.0	0.2	0.2	7.0	0.5	-0.2	0.2	7.0	0.2	0.2	0.2	7.0	0.5	0.2	2.0	0.2	
7	2000	£.0	0.3	0.3	0.0	6.0	e.0	6.0	٠ ن ن	6.0	0.3	0.3	0,3	0.3	0.3	0.3	0.3	
٤	2500	<b>6.4</b>	Ç • 4	ر. 4	4.0	4.0	<b>*•</b> 0	4.0	÷.	4.0	4.0	7.6	4.0	4.0	4.0	<b>7.</b> ¢	<b>0.</b> 4	
<u> </u>	5150	0.0	0.0	0	0.0	9•0	9•0	.0	o•0	0.0	9.0	9.0	9.0	9.0	9.0	9.0	9•0	
2	4000	8 · O	£.0	χ •	D•3	υ• &	χ. •	ж Э	ο Ο	8.0	ж Э	а Э	8.0	0.8	8.0	0.8	8.0	
₹	2000	· · ·	=	1:1	1.1	1.1	1•1	7:1	7 • 7	1.1	1:1	1:1	1.1	1:1	1.1	<b>:</b>	1.1	
2	6360	٠٠	۱•٥	9.1	••	9.7	7•6	9•1	1.6	7.6	۰٠	9•1	9.7	7.0	9•1	1.6	9•1	
57	2003	e. 5	2.3	m.	7.7	2.3	2.3	2.3	2 • 3	7.5	2.3	ج 3	£.2	2•3	2•3	2•3	2•3.	
₹	10001	3 • 3	3.5	3.2	3.4	3.2	3.5	3.5	3.2	3.5	3.5	3.2	3.2	3.2	e. E.	3•3	3.2	
52	12500	4.6	4.0	4.6	0.4	4.6	4.6	4.0	4.0	4.0	4.6	4.6	4.6	4.6	4.6	4.6	4.6	
?	1600.0	9.3	<b>c.</b> 0	<b>0. 0</b>	0.0	0.0	9.0	<b>0.0</b>	0.0	0.0	9.0	9•0	9.9	9.9	9.9	9.9	9.9	
7.7	20000	<b>5.</b> 5	7.5	4.0	4.5	4.5	4.4	9.5	4.7	6.5	4.6	<b>5.6</b>	4.6	4.6	4.6	9.4	<b>6.</b> 4	

TABLE I. - Continued. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

	4 4 4 4 5 4 5 4 5 6 6 6 6 6 6 6 6 6 6 6													7 <u>n</u>	PERCENT	SPEED =	15.0
						5 7	N	A C	D A Y	0	ATA						
					UATA	ΑT	100.0 FT	RADIUS	Š	59F, 70	70PC RH	DAY					
ANGLE	.61	20.	36.	•0•	50°	•00	10.	80.	•06	100.	110.	120.	130.	140.	150.	160.	
TMPLTED GASPL	4.1.5	85.0	53.2	4.45	55.5	50.3	8.68	9.68	95.5	93.4	4.46	95.6	1.96	94.5	93.9	91.3	
FANE FRECUFNCY																	
'n	0.69	1.00	6.43	6.50	0.83	67.6	67.2	6.89	4000	2.89	9.69	40.67	73.1	14.4	11.9	17.9	
60 T	64.3	S A	t 5 . 1	8.69	65.0	65.0	65.8	1.00	66.3	80.0	69.3	71.4	74.1	76.1	79.0	80.0	
	7 ~ P	7 7	2.59	70.07	0.00	4.00	70.6	71.6	000	74.7	75.2	77.5	70.6	70	9.00	83.5	
	76.0	6.59	1.59	9.69	70.1	71.6	72.1	73.3	74.1	75.3	76.5	78.1	1.67	0.18	83.6	80.5	
	0.07	71.0	0.17	71.3	72.5	12.8	73.1	75.3	74.3	74.8	75.1	76.5	11.8	9.61	81.1	78.0	
0000	7 . 5 0	0.07	4.07	7.07	7.07	40.6	7.69	7.9.7.	71.4	72.2	74.1	75.8	78.2	79.4	690	76.8	
	0.59	69.3	10.6	71.3	70.5	71.0	11.1	72.0	73.3	73.8	75.1	76.6	78.5	79.3	25.57	76.2	
	6 d • 5	63.5	70.0	71.0	70.5	71.8	10.8	71.3	72.8	13.8	75.1	4.91	78.3	79.1	78.8	74.5	
	71.1	72.2	71.4	71.9	72.7	71.2	6.07	6.17	72.9	73.9	74.7	76.0	17.6	11.9	11.6	73•3	
2009	0.4.	7.07	73.5	73.5	75.2	72.5	73.0	74.4	73.4	73.9	75.6	75.6	77.0	76.7	75.7	71.8	
-	75.0	14.6	76.2	75.5	78.5	74.4	74.4	73.0	73.7	74.5	75.7	76.8	78.0	17.9	76.4	72.6	
	15.1	17.2	17.6	18.7	77.0	75.2	15.1	14.4	74.2	75.2	76.9	76.7	77.2	1.1.1	15.9	72.3	
<b>-</b> ·	15.0	76.1	6.5	75.4 2.6	12.1	74.5	73.4	73.0	74.0	75.4	76.5	77.7	78.5	15.5	14.2	70.8	
0040	20.00	200	70.0	200	86.2	24.3	91.6	0.67	81.8	80.7	7.07	83.0	83.2	79.2	77.3	74.8	
	77.2	F-9/	79.5	80.3	78.3	0.77	15.8	20.0	78.7	29.5	81.0	83.0	82.5	78.3	76.0	72.6	
50 40CO	40.4	87.5	£3.1	64.1	82.3	19.8	90.08	8.61	85.5	85.6	85.8	86.4	87.1	85.0	80.5	77.8	
	78.7	8C.2	£0.5	81.2	0.08	77.5	76.9	77.7	19.1	80.7	81.5	83.5	84.9	82.5	79.5	74.7	
00000	7 · · · · · · · · · · · · · · · · · · ·	<b>.</b>	9 6	40	<b>7.67</b>	B	9.7.	8. 6	82.6	82.0	63.0	84.1	84.1	8.9	78.4	73-8	
-	7.07	\ - - - - - -	0.10	20.79	20.0	1.7.0	77.0	4.67	2.78		4.4.4	4.0	7.58	62.5	7.67	4.4	
٠	, R	7.5	7	7	70.4	7	76.8	77.3	70.07	8 - 1	2.5	84.0	9.79	82.1	70.7	73.3	
_	17.4	7.5.1	9.09	6.49	78.7	76.2	76.2	76.4	80.1	91.8	81.9	84.0	84.1	9.18	78.4	72.7	
27 20000	78.3	18.1	60.7	80.8	79.5	16.7	18.1	76.3	79.3	81.1	82.3	83.9	84.2	81.8	78.9	73.6	
					PER	<b>ERCEIVED</b>	S 1 0N	E ON	100.0	FT RI	RADIUS.	PNOB					
ANGL F	10	20.	.06	•0•	50.	•0•	70.	80.	•06	100	110.	120.	130	140.	150.	160.	
													,	,	, , ,		

### SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG TABLE I. - Continued.

NATIONAL AFRENALTICS AND SPACE AUMINISTRATION LEWIS RESPARCH CENTER PRIDULSTON SYSTEMS ACCUSTICS BRANCH SAMPLE NCISE FATA

CONFIGURATION NO 100 SPEED = 1800. RPM PERCENT SPEED = 75.0

66.8 63.8 62.3 63.1 63.0 62.6 61.1 64.9 66.9 63.3 61.5 60.7 68.5 SIDELINE. INCORPORATING EXCESS ATMOSPHERIC ATTENUATION SIDELINE 150. 87.2 71.9 73.0 77.0 78.4 77.6 75.1 74.9 73.4 72.7 71.5 69.6 68.0 70.9 68.6 69.4 73.7 70.8 70.9 71.0 70.2 72.1 89.9 140. 523 77.1 75.7 75.5 76.1 75.2 4.0 73.2 71.6 9.9 14.2 3.0 80.7 8.1 100. FT 130. 76.3 76.2 76.0 75.3 93.1 77.3 76.8 75.5 74.8 76.1 9.41 15.3 75.6 80.1 84.5 82.3 81.3 82.7 80.8 77.1 82.3 80.7 DATA 120. 0.46 75.3 75.6 74.7 74.3 74.3 775.5 775.5 775.5 775.6 882.5 882.5 881.7 72.7 76.2 76.8 76.8 74.5 82.1 83.8 RADIUS TO EXTRAPOLATED 110 93.7 69.1 68.8 72.3 74.7 76.0 2000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 82.4 83.7 83.1 81.2 80.9 81.1 100 130. FT 93.2 70.274.675.2 73.8 73.8 74.4 775.3 75.3 76.9 80.6 80.9 74.2 81.1 73.7 12.1 •06 95.5 68.5 71.9 74.1 74.3 74.2 74.0 81.8 76.5 78.7 85.5 66.3 72.8 73.3 72.8 82.2 81.2 79.6 73.4 13.7 73.7 82.6 INVERSE SOUARE LAN ATTENUATION FROM 69.4 72.9 74.3 72.9 78.8 74.9 76.4 80. 73.2 73.2 71.8 12.3 74.3 17.6 19.2 66.7 70. 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 700.0 1.68 66.7 65.3 64.6 70.1 71.6 72.6 69.2 60.0 15.9 70.1 76.3 0.17 77.1 m SIDELIN 100. FT .8.83 ٥٥. 64.0 67.1 70.3 71.5 8.89 69.7 66.3 62.7 62.5 66.6 67.8 70.4 70.0 722.8 722.1 722.1 833.8 833.8 735.6 775.8 775.8 776.6 50. 89.4 67.8 68.2 5.89 17.0 STANDARD CAY DATA CN 85.7 •0• 3.6 8.51 0.09 65.9 0.89 69.3 73.5 6.91 5.5 60.3 66.8 66.3 16.2 65.7 65.9 65.6 (5.0 72.9 30. 63.5 65.3 70.0 71.4 76.3 63.2 64.3 64.5 63.9 67.4 81.5 13.1 74.0 56.5 59.9 66.1 61.0 62.7 61.2 64.4 65.0 61.5 77.0 4.39 50.d 50.3 4.00 55.4 68.0 01.0 66.5 64.5 2 60.1 13.1 9 0.84 41.3 ANGLE. CEMPLIED CASPI FANC FRECUENCY 16000 10000 12500

9.3 90.9 160. 0.9 150. 58.1 90. 100. 110. 120. 130. 140. 3.8 59.5 103.0 102.5 162.0 162.2 102.4 105.2 106.6 106.9 107.1 106.5 103.1 2.3 100. FT SIDELINE, PNDB 1.2 0.5 0.1 ှ 0.1 PERCEIVEL NOISE ON a.O. 9.0 70. 2.3 1.2 •09 ુ જ 3.8 40. 0.9 30. 5.3 2.65 . 0.2 15.2 8.0ª <u>.</u> ANGLE

# TABLE I. - Continued, SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

NATICAL AFRENALTICS AND SPACE ADMINISTRATION LEWIS RESFACE CENTER PROPULSTEN SYSTEMS ACCUSTICS HEANCH SARIE NOTSE FATA

CONFIGURATION NO 100 SPEED = 1800. RPM PERCENT SPEED = 75.0

						ה ר י	z u	F ×	А Р	0 L A	T E 0	4	<b>∀</b>			
		Stand	STANDARD CA	Y UATA	N C	370. FT	SIU	ELINE.	INCOR	GRPORATIN	G EXC	ESS ATI	MOSPHER	2	ATTENUAT ION	NO1
ANIST E	10.	70.	30.	÷0.	50.	•09	.01	30°	•06	100	110.	120.	130.	140.	150.	160.
CCMPLIFO CASPI	51.5	4.09	11.7	15.5	15.6	75.2	15.3	75.5	78.1	78.5	79.3	79.3	78.7	76.5	14.9	5.69
FANG FREGLENCY																
1 50	4.7.3	45.3	•	50.7	;	•	55.3	57.4	95.0	51.2	57.7	•	6	59.2	6.)	57.1
	37.5	44.8	1.1.5	0. R.	<b>-</b>	•	ا الله الله الله	54.0	54.9	55.3	57.4	•	0	0	61.	59.2
2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2	2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	40.5	4 d • d	1.10	52.6	53.	55.9	57.1	58. 18. 18.	6.00	61.3	69	0.49	65.5	62.5
5 125	1.6.	46.6	51.6		50.0		60.1	9.10	$\sim$	63.8				ეაი	99	59.6
	43.0	50.1	53.5	50.0	26.7		1-19	01.7	6.70	63.2	63.1	63.8	; ;	1 3	63	57.1
00%	47.5	3.44	57.0	54.9	50.3	٠o	57.7	56.55	0.03	9.00	62.1	63.1	4.49	64.1	63.	55.8
	42.0	48.8	52.0	54.4	55.k	51.4	58.0	2.00	61.3	62.7	63.B	1.49	;	9.49	63.	56.9
	4 1 • 5	7 · 3	2) ( 2) ( 3) (	n 1	26.0	59.5	-63	4.00	61·8	02.2	63.1	63.8	9.49	•	61.8	55.1
004	100	1 0 u	7.70	U 4	0.00	, a	ה ה ה ה ה	9.0	7 -	1.29	0.50	1.40	4.4	•	61.0	53.2
	7	2 7		5.00	1.00 1.00 1.00 1.00	1.00 H	60.0	, co	7 · 1 · 9	2.70	0.70	1.00	0.50		57.7	60.09
	45.8	57.1	55.3	61.7	1.10	5.66	2.09	62.6	0.20	5.50	0.50	0.30	63.6		57.9	5.0.6
-	45.4	52.4	51.8	59.0	2.40	61.9	62.1	61.1	6119	02.6	63.4	63.7	63.8	62.0	58.1	50.5
	42+3	24.7	54.0	95.79	65.0	62.0	62.7	62.4	6.79	03.2	64.5	63.5	62.8	•	57.3	8.64
	2.4.0	53.0	57.0	59.0	60.5	8.00	8.U9	60.9	62.0	63.3	63.9	64.3	63.9	•	55.3	47.8
	15.30	63.7	66.5	12.2	71.3	13.6	68.4	9.99	9.60	67.8	11.9	1.07	68.3	•	51.9	21.0
	43.3	†	4.66	02.4	8.79	65.0	¢1.4	2	1.49	64.4	6.59	2.99	64.3	•	92.0	40.4
0616	35.	52.6	58.5	4.70	6.79	6.2.0	02.5	7	9.50	•	67.4	68.5	9.99	•	22.0	46.3
	38.4	1.40	~ .09	65.2	65.0	•	4.99	1.99	72.0	71.9	71.6	71.2		•	58.1	٠
	10.	7.07	υ. Ω.	ρ· () ()	7.70		8.19	03.5	តំ !	66.5	9009	67.3		•	54.9	•
	× .	4.5		4.10	7.00	•	61.1	0.79	:	1.90	66.5	66.3		•	51.0	•
000001		7	7.64	000	0 -	200	4.44	01.0	<b>†</b> -	7.00	65.es	5.00		٠	7.14	•
		7	33.0	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	10.4	- 0	) ·	2 6	• • u	0.70	6.70	0.70		•	•	•
- 0	ċ	•	20.4 20.4	35.3	- J		44.8	46.7	50.0	51.6	50.5	7.64			18.8	
27 20000	•	ပံ	£ • Ł	21.3	29.6	53.3	38.4	38.9	$\sim$	43.8	45.8	40.0	34.6	•	•	•
			0 11 71 71	ų.	n 0 4 11.75		401 1 401 401 140	X ( ) ( ) ( )	•	<u> </u>	2	۰			:	
			2	u n		-	1 1 1 1 1 1				20104	2			U S.L. I N.E.	
	76.6	26.7	17.4	15.2	13.7	12.0	11.9	11.5	11.4	11.5	11.9	12.6	13.7	15.2	17.4	20.7
					ď	ERCE I VE	EC NO 1S	SE ON	370.	FT S	I DEL INI	E, PND	89			
ANIAL E.	16.	20.	30.	•0•	50.	90.	70.	*0°	•06	100	110.	120.	130.	140.	150.	160.
	1.04		4	ų a	٠ د د	2	,			~		-	,	c		
	0.40	•	0.00	0 7 .	7.60	600		60.7	1.76	0.66	43.5	43.5	46.5	200	7 • 6 8	8.

TABLE I. - Concluded. SAMPLE OUTPUT FROM WORKING DATA GENERATION SUBROUTINE WODAG

NATICNAL AFACNAUTICS TEWIS RESFARCE CENTE PRIDEULSICM SYSTEMS A SAMMIF NGISE LATA	SKEF C. SYSTER	20	χ. -	тí ж	ADMINISTRATION Anch	RATION	٠	:	••	:			•		S S S	CONFIGURA SPEED = 1 PERCENT S	TTION NO 1800. PPM SPEED = 7	100
						•	•	٠.										
					- •	0 1 8	E L .	ш	EXT	RAPO	) L A ]	r E U	0 A	۷ _				
			STAND	NDARD LEAY	γ υρτά	CS	1000. FT	SIC	EL I NE •	INCORPORATIN	ORATIO	G EXC	ESS AT!	TMO SPHERIC		ATTENUAT 10N	10N	
	ANGL E	10.	50.	36.	, 0,	. 20	000	70.	80.	•06	100.	110.	120.	130.	140.	153.	160.	
CEMPLIFD DA	04840	. 1.4.1	53.5	4.55	63.0	64.3	. 64.3	64.4	64.8	9.99	0.79	68.0	68.1	67.8	66.5	65.5	60.2	
FANT FREGLEN	ENCY																	
, ć	0	33.4		38.7	42.0	40.2	40.3	46.6	3O I	46.3	48.5	0.64	49.3	50.7	50.5	51.7	48.4	
n .c	<b>~</b> ر	3.87	36.0	37.8	2 × 2 × 2	47.0	43.0	42.4	45.4	7.04	50.1	52.1	1.0c	54.5	55.3	56.8	53.7	
		32.7		6.24	46.5	40.4	47.0	6.64	51.3	51.8	54.4	54.5	56.1	57.1	57.8	58.1	53.9	
	•	33•B		1.5.25	40.5	41.0	50.5	51.4	53.0	53.9	55.0	55.8	56.1	9.95	56.9	51.2	20.7	
		33.5		44.0	47.1	6.54	51.3	52.3	53.0	54.1	54.5	54.3	55.0	55.2	55.4	54.6	48.0	
0000		7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		2 ° 7 ° 7	2 4 2 5 4 2 4	4 · · · · ·	0 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 · 8 ·	5 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 · 0 ·	47. 7.	52.5	2. K.	5.4°	55.4	55.55	55.6	56.3	40.1	
		31.2		43.7	46 · 8	47.6	49.3	50.1	5.15	52.9	53.2	54.1	5,40	55.6	54.8	52.6	45.6	
		30.0		45.9	46.3	47.5	6.65	49.7	50.6	52.3	53.1	54.0	55.0	55.3	54.4	51.7	43.6	
		31.7		74.0	47.0	49.5		9.65	51.1	52.2	53.1	53.4	54.0	54.4	53.0	50.5	41.9	
		1.50		43.9	6.84	0.64		50.5	51.4	52.6	55.9	53.5	53.4	53.6	51.5	47.9	39.9	
•		J • (M)	•	5.6	5.15 5.15	51.4		51.3	53.5	52.6	53.8	53.7	53.6	54.0	51.4	47.7	40.1	
15 1000		\$		48.0	52.0	10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00	52.0	52.4 52.8	52.6	52.5	53.3	54.6	53.5	53.9	50.6	47.6	39-1	
		76.4		45.2	44.0	8.64		50.5	50.7	51.8	53.1	53.6	53.9	53.3	48.2	43.7	34.7	
		33.5		55.9	60.5	60.1		58.1	56.0	59.0	57.2	61.1	59.5	57.1	50.8	45.3	36.7	
		20.1	•	45.1	8.64	50.8		20.1	51.1	52.8	53.1	54.5	54.5	52.2	47.1	41.1	30.1	
		0		42.7	7.84	1 • 5 •		1.64	51.2	53.5	54.1	54.9	55.7	53.2	46.0	39.1	27.0	
20 4000	~ ~			42.2	7.07	50.5		55.5	52.5	58.0	58.0	57.7	56.9	55.3	40.6	39.5	26.3	
	<b>1</b> (1	• •		75.60	37.2	7.8.4		4.0.4	4.4	0.00 0.00 0.00 0.00	47.7	67.1	2000	47.7 47.E	36.56	22.5	7.0	
. 2				12.1	20.5	30.4		36-1	38.5	6.14	43.9	41.9	0.04	35.9	25.4	9.6	•	
-		·°	• •	္	11.6	17.8	9	26.2	21.8	32.2	33.4	32.3	30.6	24.2	6.11	•	•0	
~		ċ	•	ċ	ှံ	1:1	9.0	11.7	14.7	17.9	18.7	17.1	14.1	<b>9. 4</b>	•	ċ	·	
27 20600			• ၁ ဂ	• •	• •	• • •	• •	• • •	• •	9.0 0	٠.٠ د د د	• •	• •	• •	• •	• •	• •	
						•		•		•		;		•	;	,	;	
				INVERSE		SUUARE L	LAM ATTE	ATTENUATICN FRUM	CA FROM	.001 P	). FT	RADIUS	10	1000.	FT SI	SIDELINE		
		35.2	58.3	26.0	23.8	22 • 3	21.2	20.5	23.1	20.0	23.1	20.5	21.2	22.3	23.8	26.0	29.3	
				•		а. ,	ERCEI VE	EC NOTS	SE ON	1000	FT S	IDEL IN	E, PND	80				
4	ANGLE	10.	20.	30.	40.	50.	60.	10.	80.	•06	100	110.	120.	130.	140.	150.	160.	
	*	49.5	65.0	11.7	16.4	76.9	70.9	16.6	70.2	18.1	6.61	80.3	19.8	78.6	74.3	69.2	60.3	

## TABLE II. - SAMPLE OUTPUT FROM SUBROUTINE TABLE

DATA ADJUSTED TO STANDARD DAY CF 15 DEGREES C, 70 PERCENT RELATIVE HUMIDITY SPL RE .00002 N/SQ M PWL RE .1 PICOMATT

				Λ 	אר אל ה	. 0000	2 \ \	E	3	Ā Ā	. 1 2100	PICOMATT						
FREQUENCY								ANGL	E, DEG								SIMPLE	POWER
	10	20	30	9 6	20	9	. 70	80	90	100	110	120	130	140	150	160	SPL	(PML)
			1	/3-CC T	AVE BA	OS ON	UND PRE	ESSURE	LEVELS	(SPL)	GN 30	.5 MET	ER RA	ם והצ				
50	65.0	66.1	6.49	65.9	68.6	•	•	₽ 4	4.99	ω,	•	70.6	73.1	•	77.9	9.77	71-1	118.5
88		9 6	64.0	64.1	64.8	າທ	65.1	8.99	68.5	70.3	72.8	74.0	77.0	75.3	83.0	83.3	74.8	122.2
100	48.7	69.2	69.2	10.6	æ	4.89	70.6	-	71.9	4	75.2		19.6	_	4	83.6	77.0	124.4
125	0.0	69.5	1.69	9.69	70. I	-	72.1	73.3	74.1	75.3	76.5	78.1	19.1	81.0	83.6	80.5	7.97	124.1
091	0.0	0.17	11.0	71.3	2.	72.8	73.1	m	74.3	4	75.1	÷	17.6	S	=	78.0	75.6	123.0
200	1.63	70.6	4.07	10.2	ပံ	9.69	1.69	1.07		2	•	ų,	æ	15.4	80.9	16.8	•	22.
250	6.0	69	9.69	65.8	9.59	1.02	9.	71.8	72.8	74.3	75.8	4.77	78.6	80.0	81.0	77.9	75.4	122-8
616	0.60	6.40	2	6.1	:	0.1	1.1	0.27		<b>*</b>	Ω		Z)	6.67	19.5	76.2	•	22.
400	68.4	S	6.69		္ပံ	71.7		71.2		6	•	÷	78.2			74.4		122.1
200	71.0	72.1	71.3	71.8	72.6	71.1	8.07	71.8	72.8	73.8	74.6	15.5	5.11	17.8	17.5	73.2	74.3	121.7
9	65.6	0	11.7		÷	71.5	•	72.4		3	•	S.	0.77	•	•	71.8		121.5
800	14.8	74.0	73.5	•	75.2		•	4	73.7	S	75.4	76.1	17.71	17.0	•	•	ŝ	2
1000	0.5	74.6	76.1	75.5	78.5	74.4	74.4	73.0	73.7	74.5	75.7	16.8	78.0	6.17	76.4	72.6	75.9	123.3
1250		11.2	11.6	•	77.0	•	•	4	74.2	ŝ	76.9	16.7	17.2	17.1	•		ė	ë
1600	75.7	76.2	76.0	76.0	ŝ	•	73.5	•	74.1	75.5	3.91	۲.	8		6	10.9	75.8	
2000	÷	87.5	87.9	88.0	86.2	84.3	81.7	79.0	81.8	80.2	84.7	83.8	£3 • 2	15.2	17.3	74.8	84.3	131.7
2500	au .	79.0	19.3	•	ထံ	•	74.5	2	76.5	77.0	19.0		σ	•	0	11.17	8	•
3150	•	•	79.5	80.3	78.3	17.0	•	76.5	78.7	6		61	82.5	8		•	80.0	127.4
4000	80.8	82.4	83.0	84.0	82.2	79.7	80.5	19.7	85.4	85.5	85.7	86.3	67.0	84.9	80.4	77.7	84.8	132.2
0006	•	0	80.2	81.2	80.0	11.2		77.7	19.1	0	•	r)	64.5			•	81.9	129.3
6300	76.2	19.9	81.6		ç	17.8	77.6	77.8		~	(C)	4	4		78.4		ě	130.5
10000	78.9	80.1	80.9 80.9	82.8 82.7	75.9	78.3	78.4	79.3	82.2 81.2	84.8 82.9	84°3	85.3 86.0	85.6 85.6	82.4 83.0	79.1 80.2	74.3	84.7 85.3	132.1
12500	78.6	79.4	80.1		Š	76.6		77.3		_	82.1	•	4	14				132.8
16000	4.1.	19.1	•	81.9	78.7	76.2	76.2	76.4	80.1	81.4	81.9	84.0	84.1	81.4	78.4	72.7	87.2	134.6
20000	16.3	19.6	80.6	•	ċ	76.6	•	76.2		~	82.2	Θ.	4	~	•	•	ċ	137.4
OVER AL L	\$1.4	95.6	93.2	54.4	92.1	90.3	89.8	9.68	92.5	93.3	54.3	55.6	0.95	54.5	93.9	91.3	96.2	143.5
CISTANCE						SID	DELI NE	PERCEIN	VED NO	ISE LEV	/ELS							
112.8 M	69.3	80.1	85.3	89.3	89.2	88.9	88.6	88.9	92.7	93.0	93.3	93.2	\$2.4	68.6	63.1	74.8		
	44.0			•	ů		0	٥		6.6	•		18.6	•	2.69	60.3		

### TABLE III. - SAMPLE OUTPUT FROM SUBROUTINE DADIFF

### MPARISEN OF TWE CATA SET

HERTZ 160.	) HERTZ				DELTA PWL	-11.8		-12.4		-14.0	<b>(1)</b>	-13.4	-13.5	-13.4	-13.0	-12.2	6.6-	9.9-	7		-2.4	1.4-	۳. د و ا	***	2.01-	.15.3	-16.8	-19.7	-23.2
RPH 1800. 20000 10. TO	RPM 1200. 120000			CUACRANT		~		.+ 10	. 0.	σ·	m i			~!	0	~ ~		vo 1	~ 0	. 00	. 80	.+	ın:	ν.	+ u	٠.	, <b>.</b>	5	7
SPEED 0 50 TO S FRGM	FED SC TO FRC# 1			REAR CUA	SE 1 CNE	141.		117.	121.	1,23.	123.	121.	122.	121.	121.	119.	120	120.	120	126.	122.	125.	130	777	1 40	131,	131.	132.	ŝ
PERCENT 75. BAND S FROM 10. DEGREË	PERCENT SP 50.C BAND S FROM 10. DEGREES			A.	SET TWO	130.0		105.0	107.9	109.9	1 69.9	108.3	108.5	1C7.8	108.0	108.0	110.4	114.0	116.5	118.5	120.4	121.3	121.1	1.021	117.8	115.9	114.3	113.2	112.4
CONFIGURATION 10C 27 ~ 1/2 OCTAVE 16 ANGLES EVERY	CONFIGURATION 101 27 - 1/3 OCTAVE 16 ANGLES EVERY			PN T	CELTA PAL	6.1-		- 11.5	-10.9	-12.2	-10.9	-11.	- 10.8	-10.5	5.6-	-9.6 -8.9	-8.2	15.9	۲۰۶۱	-12.1	-2.2	-2.0	-5.5	- <del></del> -	5.9-		2.6-	-11.5	-14.2
. CONF	CON F 27 - 16 Al	CES		FRONT CUACRANT	SET ONE	136.5		112.0	116.2	114.7	116.1	114.6		41	٠.,	116.3	L.	119.5	116.6	·	•	•	٠.	÷.	126.5				434
		EREN	S'ET ONE)	FR(	SET TWO	131.0		1000.00	66	02	•	103.1	104.3	105.2	105.6	106.6	110.7	114.0		117.9	120.0	121.0	121.8	120.5	120-0	119.2			œ
		0 1 F F	S CATA			OVERALL	D FRECUEN	50	80	100	125	700	250	315	400	200 630	800	1000	1600	2000	2500	3150	4000	0000	8000	10000	12500	16000	20000
·		د د	ThO MINU			Ъ	B AND	1 2	6	<b>.</b>	ı,	0 ~	· co	6	01	11	13	<b>.</b>	. 12	17	18	16	20	17	23	24	25	56	27
I CN	NO I	0 N E R L E	(DATA SET																										
E ADMINI STRATION BRANCH	ADPINISTRATION ANCH.	a.		œ	DELTA PWL	-10.C		-12.3	•	•	•			_				-6.3									-12.7		
SP AC IC S	S AND SPACE ADMIN FR ACOUSTICS BRANCH SECOND SET			TOTAL POWER	SET ONE	143.6		118.5	122.2	124.4	124.1	122.0	122.8	122.3	122.1	121.5	122.7	123.3	123.2	131.7	125.5	127.4	132.2		132.1	132.7	132.8	134.6	
DATA SET CNE NATICNAL AERONALTICS AND SPAC LEWIS RESEARCE GENTER PRCPULSION SYSTEMS ACOUSTICS SAMPLE NDISE LATA	ATE SET THO ATTICHAL AERCHAUTICS AND SPACE ADMI EWIS RESEARCH CENTER RCPULSION SYSTEMS ACOUSTICS BRANCH				SET TWO	133.5	: خ	106.2	108.5	110.6	2111.2	108.7	109.9	169.7	110.0	111.0	113.6	117.0	121.0	121.2	123.2	124.2	124.5	123.2	122.0	120.5	120.1	119.4	119.4
A SET CNE ICNAL AERO IS RESEARC PULSION SY PLE NOISE	CATE SET THO NATICNAL BERCHAUTICS LEWIS RESEARCE CENTER PREPULSION SYSTEMS AC			·		C V ER AL L	FRECUEN	5,50	56	. 100	571	200	250	315	004	630	3CC	0001	1600	2000	25C0	3150	4000	9300	3358	10000	12500	16000	2000
DATA NATI LEWI PRCPI SARP	CATE NATI PREWI SAMP					Ü	EANC	- ~	C I	<b>4</b> 1	n v	υ <b>:~</b>	w	σ:	) .	15	13	14	1 9	-	16	61	20	2.0	2.5	54	25	26	27

## TABLE III. - Continued. SAMPLE OUTPUT FROM SUBROUTINE DADIFF

## CCMPARISEN OF TWE CATA SETS

CONFIGURATION PERCENT SPEED RPM 10C 10C 15.0 1800. 27 - 1/2 OCTAVE BANDS FROM 5C TO 20000 HERTZ 16 ANGLES EVERY 10. DEGREES FRCM 10. TO 160.	CONFIGURATION PERCENT SPEED RPM 101 50.C 1200. 27 - 1/3 OCTAVE BAND S FRC# 5C TO 20000 HERTZ 16 ANGLES EVERY 10. DEGREES FRCM 10. TO 160.	REFERREC CATA	INUS CATA SET ONE!	). 90. 100. 11C. 12C. 130. 14C. 150. 160.	.5 -12.5 -12.5 -12.3 -11.5 -10.5 -10.5 -12.4 -12.8	-10.2 -11.0 -11.5 -5.6 -11.4 -12.2 -13.7 -1	-11.3 -11.6 -12.4 -11.2	-10.7 -12.5 -12.2 -12.6 -13.4 -15.1 -15.1 -1	-11.5 -11.5 -11.5 -12.5 -13.1 -14.9 -15.0 -1	-12.3 -12.1 -11.5 -12.6 -13.1 -14.6 -13 -12.2 -12.0 -12.4 -12.7 -12.7 -15.1 -14.	-11.8 -12.1 -13.C -12.6 -13.3 -14.7 -14.5 -1	-11.9 -12.4 -12.7 -12.6 -12.6 -14.4 -14.5 -1	-11.8 -11.5 -11.5 -12.4 -12.3 -14 -11.6 -11.4 -11.4 -11 5 -12 3 -13	-11.5 -10.4 -11.2 -11.6 -11.6 -12.3 -12.5 -12.5 -12.	-9.5 -9.8 -9.7 -9.6 -9.6 -10.1 -11.3 -11.	; ;	-4.2 -3.5 -2.9 -2.6 -2.2 -2.6 -5.6 -5.	-11.6 -8.5 -11.4 -8.5 -6.2 -4.5 -6.6 -	-3.6 -2.6 -3.5 -2.6 -0.5 -1.2 -3.1 -3.		-8.4 -8.5 -7.5 -6.5 -7.2 -6.7 -7.9	-13.5 -11.7 -11.6 -10.7 -8.5 -7.7 -8.8 -1	-14.3 -15.6 -13.8 -13.3 -11.3 -9.8 -1C.5 -1	-16.2 -16.5 -16.C -16.4 -14.4 -13.2 -13.7	-17.9 -17.9 -17.E -17.2 -16.2 -15.2 -1	.9 -21.0 -20.4 -21.2 -21.4 -12.5 -11.5 -11.5 -11.5 -18.5 .4 -24.6 -23.2 -24.3 -22.3 -22.4 -22.1 -21.6 -22.8	075 C015 T075 C075 C075 C075 C075 C075
		ESOF	TA SET THO M	70. 80	.1 -11.4 -11.	7 -11.5 -12.4	-11:1	-12.9	-10.8		3 -11-8	-10.9	1 -11.1 -11.6 4 -11.1 -10.8	-11.2	-9.3	8 -8.5 -7.3	-3.6	-12.9		-9.8	-8.1	-11.2 -1	-13.3	3 -14.	13.3	- @	
VI STRATION	VI STRATI ON	FFERENC	( DA 14	40. 50. 60	6.6 -7.3 -9.	1.2 -13.6 -11.7	7 -10.8	3 -12.4	2 - 1 1 - 1	4 -12.3	1 -10.1	1-01-6	1 - 2 -	3 -5.3 -1	. 5.5 +		8-0- 4	7 12.7 1	-1.1 -2.3 -3.8 -1.6 -1.5 -3.7	7 -4.5 -	5 -3.0	- 9.4- 7	2 -5.6 -8	9 - 6 - 6	7 - 8 - 0 - 1T	3.2 -1	,
ND SPACE ADPINI JSTICS BRANCH	UD SPACE ADMINI JSTICS BRANCH IND SET	0 1		20. 30.	5.6 -6.5 +	-12.4 -16.5 -11.	5 -11-1	7 -12.5	-6.7 -8.8 -10.	5.8 - 11.4	4.6-	7.1 -8.7	-5.6 -7.6 -1 -7.1 -7.3 -	-5.6		7.5 - 3.5 - 4.	1.4	1.0 -11.4 -1	0.7 - 7.0	2.7 -3.3	-3.1 -	- 6.5 -	: 6.4- 3.4	5.5 -6.3 -	- 5 - 7 - 7 - 7	1.8 - 12.3 -1	
AUTICS AU Center Tems acou	AUTICS AN CENTER TEMS ACOI ATA, SECO			10.	-6.2 -	-13.1 -			-10.2		- 63				_		. 61			-3.5	- 5.9		1.50 1.00 1.00		o a	1.9 -	
DATA SET CNE NATICNAL AERCNAUTICS AND SP LEWIS RESEARCH CENTER PRCPULSION SYSTEMS ACOUSTIC SAMPLE NOISE (ATA	DATA SET TWO NATICNAL AERCNAUTICS AND SPA LEWIS RESEARCY CENTER PRCPULSION SYSTEMS ACOUSTICS SAMPLE NOISE CATA, SECOND SE			AN GL E	OVERALL BANC FREQUENCY	1 50													au or	ں ،		2	· (•			. ~	

## TABLE III. - Concluded. SAMPLE OUTPUT FROM SUBROUTINE DADIFF

### CCMPARISON OF TWO DATA SET

UPLA SEL CIVE			
NATICNAL BERCHAUTICS AND SPACE ADMINISTRATION	ATION	٥	RPH
LEWIS RESEARCH CENTER			1800.
PRCPULSION SYSTEMS ACOUSTICS BRANCH	27 - 1/3 OCTAVE BAND	DS FROM 5C TO	1 20000 HERTZ
SAMPLE NOISE CATA	16 ANGLES EVERY 10. DEGREES FROM 10. TO 160.	DEGREES FROM	10. TO 160.
CATA SET TWO			
NATICNAL PERGNAUTICS AND SPACE ADMINISTRATION	CONFIGURATION PE	PERCENT SPEED	Z C X
LEWIS RESEARCH CENTER		50.0	1200.
PRCFULSION SYSTEMS ACOUSTICS BRANCH	27 - 1/3 OCTAVE BANDS FROM 50 TO 20000 HERTZ	DS FROM 5C TO	1 20000 HERTZ
SAMPLE NOTSE CATA. SECOND SET	16 ANGLES EVERY 10.	DEGREES FROM	10, TO 160,

PERCEIVED, AND TONE-CORRECTED RERCEIVEC NOISE LEVELS AND CIFFERENCES ALONG SIDELINES

### 59.0 F, 70.0 PERCENT RH

37C. FT SIDELINE

160.	65.3	-5.5	65.3 76.3	-11.0		160.	48.3 60.3	-12.0	48.3	-13.4
150.	74.4	- 8.7	74.48	- 5.8		150.	55.8	<b>7.</b> 5 -	55.8 70.4	-10.6
140.	8C.5 88.6	- 7.E	8C.5	15.3		146.	5.99	-7.4	66.9 76.0	- 5.1
136.	85. ( 92.4	- 7.5	85.C 93.5	- E . C		130.	71.7	-6.8	7.1.7 E0.C	1 1
120.	85.1 92.2	-6.1	85.1	-5.1		120.	72.4 75.E	4.6-	72.4	1.5-
10. 20. 30. 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 150. 160.	62.6 74.7 79.5 83.C 82.7 80.8 79.2 80.2 82.7 83.7 84.0 85.1 E5.( 8C.5 69.3 80.1 85.3 89.3 89.2 88.9 88.6 88.9 92.7 93.C 93.2 92.2 52.4 88.6	-6.7 -5.4 -5.8 -6.4 -6.6 -8.1 -9.4 -8.7 -10.0 -9.2 -5.3 -8.1 -7.5 -7.8 -8.7 -5.5	62.6 74.7 75.5 83.C 82.7 80.8 79.2 80.2 82.7 83.7 84.C 85.1 85.C 8C.5 74.4 65.3 72.6 83.4 88.8 93.C 92.5 91.9 91.2 90.6 94.9 94.6 95.6 94.5 53.5 90.2 84.2 76.3	10.0 -8.7 -9.2 -10.1 -5.8 -11.1 -12.0 -10.3 -12.2 -10.5 -11.6 -5.7 -6.5 -5.3 -5.8 -11.0		10. 26. 30. 46. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	41.0 58.3 64.4 68.7 69.1 67.9 66.7 68.1 70.1 71.4 71.4 72.4 71.7 66.5 55.8 48.3 49.5 65.0 71.7 76.4 76.9 76.9 76.6 76.2 79.7 79.5 80.3 75.6 76.6 74.2 65.2 66.3	-8.5 -6.7 -7.3 -7.8 -7.8 -9.0 -9.9 ~8.0 -9.6 -8.5 -8.5 -7.4 -6.8 -7.4 -5.4 -12.0	41.0 58.3 64.4 68.7 69.1 67.9 66.7 68.1 70.1 71.4 71.4 72.4 71.7 66.5 55.8 48.3 52.5 68.4 75.2 80.2 80.2 79.9 79.2 77.9 81.9 81.6 82.6 81.4 EG.C 76.C 76.4 61.7	11.5 -10.1 -16.8 -11.5 -11.1 -12.1 -12.5 -9.7 -11.8 -10.3 -11.2 -5.1 -6.3 -5.1 -16.6 -13.4
100.	83.7 93.0	-9.2	83.7	-10.9		100.	71.4	8.8	71.4	-10.3
. 90	82.7 92.7	-10.0	82.7 94.9	-12.2		90.	70.1	9.6-	70.1	-11.8
80.	80.2	-8.7	80.2 90.6	-10.3		80.	68.1 76.2	~8.0	68.1 77.9	1-6-
70•	79.2 88.6	4.6-	79.2 91.2	-12.0		70.	66.7 76.6	6.6-	66.7 79.2	-12.5
•09	80.8	-8.1	80.8 91.9	-11.1		.09	67.9	0.6-	67.9 79.9	-12.1
50.	82.7 85.2	9.9-	82.7 92.5	8 . 5		50.	69.1 76.9	-7.8	65.1 80.2	-11.1
40.	83. C	-6.4	83. C 93. C	-10.1		40.	76.4	-7.8	68.7 80.2	-11.5
30.	79.5 85.3	۵۰ ۱۳۱	75.5 88.8	-9.2	ш	30.	64.4	-7.3	64.4	- 10.8
20.	74.7 80.1	15.4	74.7	-8.7	FT SIDELINE	20.	58.3	-6.7	58.3	-10.1
10.	62.6	-6.7	62.6 72.6	-10.C		10.	41.0	-8.5	41.0	-11.5
ANGLE	SET TWO PNCE SET ONE PNCE	CELTA PNEB	SET TWO PNLT	CELTA PNLT	1000	ANGLE	SET TWO PNCB SET ONE PNCB	DELTA PNC8	SET TWO PNL1 SET ONE PNLT	CELTA PNLT

TABLE IV. - LISTING OF TYPICAL SET OF WORKING DATA

NATIONAL AFRONAUTICS AND SPACE ACMINISTRATION LEWIS RESEARCH CENTER FAGRULSIEN SYSTEMS ACULSTICS ERANCH SAMPLE NOISE DATA 100 18CU+C 75.0 27 16 6.1 -16.9 -18.5 -15.2 -15.0 -13.3 -14.4 -15.4 -14.6 -15.1 -15.3 -15.7 -15.5 -14.7 -14.1 -13.6 -14.2 -5.7 -11.9 -10.0 -5.2 143.5 0. -8.1 -0.5 -545 -4.7 -4.0 -2.8 10.0 10 ⋅ € 50.0 73.0 20.0 30 · C 40.0 60.0 80.0 93.0 103.3 113.3 120.0 130.C 140.0 150.C 16C.C -2.1 -5.C -2.5 -3.5 -3.9 -4.7 -2.4 20 -c . 2 -5.2 -1.5 -C.5 2 • C 3.3 6.8 6.8 -7.4 -7.5 -6.7 -5.9 -5.4 -4.9 -6.7 -5.0 63 -6.1 - t . 6 -2.4 -110.5 2.4 4 . 4 7.3 8.3 3 ât -9.5 -9.0 -10.d -10.7 -10-0 -5.5 -9.7 -8.0 -6.3 -4.5 -2.0 -0.8 2.2 4.5 8.2 8.5 100 -8.3 -1.0 -7.8 -6.4 -0.1 -8.6 -6.4 -2.4 -5.1 -2.3 -1.8 0.5 2.6 4.5 7.4 6.6 125 -6.1 -1.6 -7.1 -5.1 -7.2 -6.6 3.8 -0.2 2.4 4.3 6.9 1.4 -4.3 -2.8 -5.6 -2.5 -2.3-0.8 160 -4.0 -4.ó -3.1 2.2 5.5 -0.5 C . 9 4 . C 2.4 -2.4 -5.0 200 -4.9 -4.0 -4.2 ---4 -4.5 -4.5 -3.2 -0.5 1.2 3.6 4.8 0.3 2 - 2 × 250 -6.1 -5.6 -5.8 -5.6 -5.8 -5.3 -4.8 -3.6 -2.6 -1.1 0.4 2.0 3.2 4.6 5.6 2.5 4 -3.9 -5.9 -5.6 -4.3 - d • 6 -4.4 0.2 1.7 3.6 4.4 4.6 1.3 400 -5.2 -3.7 -4.2 -2.9 -3.9 -0.9 -4.7 -0.2 2.2 4.4 -0.2 0.4 3.6 4.1 11 500 -3-1 -3.4 -0.4 -3.2 -2.1 -2.9 -2.4 -1.6 -2.4 0.4 1.7 3.3 3.6 ذ • دُ -1.012 6.HU -4.4 -3.3 -2.3 -0.8 -1.0 -2.5 -2.1 -1.6 -0.6 -0.1 0.9 1.6 3.0 2.7 1.7 -2.2 -1.7 13 800 -0.4 2.3 0.0 -3.0 -2.2 -0.8 -0.2 -1.2 0.2 0.8 -2.5 0.9 2.5 1.8 1000 -1.4 -0.8 -1.2 د ۰۵-4.7 -1.5 6.4 -2.8 0.6 -3.2 -0.1 1.0 2.2 2.1 1250 15 -0.5 2.5 0.8 -1-0 -1-1 -1.8 -< · 0 -1.0 1.0 1.4 -3.9 C . 7 0.0 1.0 0.5 -0-3 16 1600 0.1 0.6 0.4 0.4 -0.4 - i • 3 -2.1 -2.5 -0.11.0 2.2 3.0 -u.c -1-3 -4.7 17 2000 7.4 3.5 3.9 4.9 2.4 0.3 -2.3 -2.2 -3.8 -6.7 0.7 -0.2 -0.d -4.6 -9.2 2500 0.3 -1.2 -0.7 18 0.3 1.3 1.6 1.8 -3.2 -6.6 1.3 1.8 -0.7 -2.7 7.4 -1.1 -2.9 19 3150 -0.6 J.1 0.9 -2.4 -3.6 -0.7 0.1 -2.2 -3.4 -1.1 -0.8 1.6 3.6 4.1 20 4000 0.0 -1.6 -4.3 -3.5 -4.3 1.4 1.5 -3.2 -1.6 -1.0-6.3 1.7 2.3 3.€ 0.9 -3.6 -0-1 21 5000 -2.1 -0.6 -0.6 0.4 -0.6 -3.0 -3.9 - 1 - 1 -1.1 0.7 2.7 4.1 1.7 -1.0 -6.1 22 EBOJ -1.6 0.1 2.0 -2.1 -3.7 ~3.9 0.5 -3.5 1.5 2.0 2.6 -0.2 -3.1 -7.7 8000 -2.5 -4.1 -4.0 -0.3 2.4 -1.5 0.3 -4.1 -7.3 2.9 -8.1 1.9 3.0 -3.3 3.2 24 16000 -4.7 -0.9 0.8 -3.4 -2.C -1.2 U . u -2.9 -4.2 -4.2 1.8 3.9 3.5 1.0 -1.0 -7.8 -4.) 25 12500 -2.7 -1.4 -6.7 1 - 1 -1.4 -4.2 -3.5 -1.2 0.3 . 3.2 1.3 -1.4 -7.6 3.0 1.3 16310 -3.2 -1.5 3.0 1.3 -1.9 -0.5 -4.4 -4.4 -4.2 0.8 1.3 3.5 -7.5 1 - 4 u . 0 -2.2 27 200aa -2.1 -1-C U.C 0.1 -1.4 -4.0 -2.4 -1.4 0.4 1.0 3.2 3.5 1.1 -1.7 -7.0



Figure I. - Major elements of data handling system.



Figure 2. - Geometry of enclosing sphere for far-field acoustic measurements, showing elemental areas without ground plane.

NASA-Langley, 1974 **E-7609** 69

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE \$300

### SPECIAL FOURTH-CLASS RATE BOOK

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION
451

POSTMASTER:

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

### NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

### TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546