For each of the linear operators T in questions 1-7:

- (a) I claim that p(T) = 0 for some non-zero polynomial $p(z) \in \mathcal{P}_2(\mathbb{R})$ of degree at most 2. Find such a polynomial p(z).
- (b) Factor p(z) into linear factors over \mathbb{R} if possible.
- (c) If p(z) does factor into linear factors $p(z) = c(z \lambda_1)(z \lambda_2)$ for $c, \lambda_1, \lambda_2 \in \mathbb{R}$, then we argued in class that one of λ_1, λ_2 must be an eigenvalue of T. Identify which one(s) of λ_1, λ_2 are in fact eigenvalues of T, in accordance with your answers in Review Sheet 12.

Problem §1 $T: \mathbb{R}^2 \to \mathbb{R}^2$ reflection across the line y = x.

Solution: Let $p(z) = z^2 - 1$. Then $p(T) = T^2 - I = 0$. We can factor p(z) = (z+1)(z-1), where both $\lambda_1 = 1, \lambda_2 = -1$ are eigenvalues of T.

Problem §2 $T: \mathbb{R}^2 \to \mathbb{R}^2$ a 180° rotation about the origin.

Solution: Let p(z) = z + 1. Then p(T) = T + I = 0. p(z) trivially factors into z + 1, where $\lambda_1 = -1$ is an eigenvalue of T.

Problem §3 $T: \mathbb{R}^2 \to \mathbb{R}^2$ a 60° counter-clockwise rotation about the origin.

Solution: Let $p(z) = z^2 - z + 1$. Then $p(T) = T^2 - T + I = 0$ (since flipping a vector rotated 60° gives a vector rotated -120°, which will then cancel out the vector rotated 120°). p(x) has no real roots, which aligns with our answer that T has no eigenvalues.

Problem §4 $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x,y) = (x+y,x+y).

Solution: Let $p(z) = z^2 - 2z$. Then $p(T) = T^2 - 2T = 0$. p(z) factors into (x - 0)(x - 2), where $\lambda_1 = 0$, $\lambda_2 = 2$ are both eigenvalues of T.

Problem §5 $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(x,y) = (x,x).

Solution: Let $p(z) = z^2 - z$. Then $p(T) = T^2 - T = 0$. p(z) factors into (z - 0)(z - 1), where $\lambda_1 = 0$, $\lambda_2 = 1$ are eigenvalues of T.

Problem §6 $T: \mathbb{R}^3 \to \mathbb{R}^3$ projection to xy-plane; T(x, y, z) = (x, y, 0).

Solution: Let $p(z) = z^2 - z$. Then $p(T) = T^2 - T = 0$. p(z) factors into (z - 0)(z - 1), where $\lambda_1 = 0$, $\lambda_2 = 1$ are eigenvalues of T.

Problem §7 $T: \mathbb{R}^3 \to \mathbb{R}^3$ rotation by 180° about the x-axis.

Solution: Let $p(z) = z^2 - 1$. Then $p(T) = T^2 - I = 0$. p(z) factors into (z - 1)(z + 1), where $\lambda_1 = 1$, $\lambda_2 = -1$ are eigenvalues of T.