WHAT IS CLAIMED IS:

- 1 \mathcal{L} . Apparatus for printing a desired image on a printing
- 2 medium, based upon input image data, by construction from
- 3 individual marks formed in a pixel grid; said apparatus
- 4 comprising:
- 5 at least one multielement incremental-printing array
- 6 that is subject to colorant-deposition error;
- 7 means for measuring such colorant-deposition error of
- 8 the at least one array;
- 9 means for modifying a multicolumn, multirow numerical
- 10 tabulation that forms a mapping between such input image
- 11 data and such marks, to compensate for the measured col-
- 12 orant-deposition error; and
- means for printing using the modified mapping.
 - 1 2. The apparatus of claim 1, wherein the mapping is
 - 2 selected from the group consisting of:
 - 3 an optical-density transformation of the image data
- 4 to such construction from individual marks; and
- 5 a spatial-resolution relationship between the image
- 6 data and such pixel grid.
- 1 3. The apparatus of claim 2, wherein:
- 2 the optical-density transformation comprises a half-
- 3 toning matrix; and
- 4 the spatial-resolution relationship comprises a scal-
- 5 ing of the image data to such pixel grid.

1	4. The apparatus of claim 1, wherein:
2	said at least one multielement incremental-printing
3	array comprises a plurality of multielement printing
4	arrays that print in a corresponding plurality of differ-
5	ent colors or color dilutions, each multielement printing
6	array being subject to a respective colorant-deposition
7	error; and
8	the measuring means and the mapping-modifying means
9	each operate with respect to each one of the plurality of
10	multielement printing arrays respectively.

5. The apparatus of claim 4, wherein:

for at least one of the plurality of multielement printing arrays, the colorant-deposition error comprises a respective pattern of printing-density defects; and wherein:

the measuring means comprise means for measuring the pattern of printing-density defects for each multielement printing array respectively; and

the modifying means comprising means for applying the respective pattern of defects, for at least one of the multielement printing arrays, to modify a respective said mapping.

1	6. The apparatus of claim 4, wherein:			
2	for at least one of the plurality of multielement			
3	printing arrays, the colorant-deposition error comprises			
4	swath-height error;			
5	the measuring means comprise means for measuring the			
6	swath-height error for each multielement printing array			
7	respectively; and			
8	the modifying means comprise means for applying the			
9	respective swath-height error, for at least one of the			
10	multielement printing arrays, to modify a respective said			
11	mapping.			
1	7. The apparatus of claim 1, wherein:			
2	the colorant-deposition error comprises a pattern of			
3	printing-density defects;			
4	the measuring means comprise means for measuring the			
5	pattern of printing-density defects;			
6	the modifying means comprise:			
7				
8	means for deriving a correction pattern from			
9	the measured pattern of printing-density			
10	defects, and			
11				
12	means for applying the correction pattern to			
13	modify a halftone thresholding process; and			
14				
15	the printing means comprise means for printing such			
16	image using the modified halftone thresholding process.			

1	8. The apparatus of claim 1, wherein:
2	the colorant-deposition error comprises a swath-
3	height error or otherwise corresponds to a optimum dis-
4	tance of printing-medium advance;
5	the measuring means comprise means for measuring the
6	swath-height error or determining the optimum distance;
7	the modifying means comprise:
8	
9	means for deriving a correction pattern from the
10	measured swath-height error or determined
11	optimum distance, and
12	
13	means for applying the correction pattern to
14	modify a halftone thresholding process; and
15	
16	the printing means comprise means for printing such
17	image using the modified halftone thresholding process.
1	A method of printing a desired image, by construction
2	from individual marks formed in a pixel grid by at least
3	one multielement printing array that is subject to a pat-
4	tern of printing-density defects; said method comprising
5	the steps of:
6	measuring such pattern of printing-density defects;
7	deriving a correction pattern from the measured pat-
8	tern of printing-density defects;
9	applying the correction pattern to modify a halftone
10	thresholding process; and
11	printing such image using the modified halftone
12	thresholding process.

7

8

9

10

11

- 1 10. The method of claim 9, for use with a printmask in 2 plural-pass printing, and further comprising the steps of, 3 before or as a part of the applying step:
- using such printmask to determine a relationship between the halftone matrix and the multielement array; and
 employing the relationship in the applying step to
 control application of the correction pattern to the halftone matrix.
- 1 11. The method of claim 9, wherein:
 2 the printing step comprises single-pass printing.
- 1 12. The method of claim 9, for use with said at least one 2 multielement incremental-printing array that comprises a 3 plurality of scanning multielement printing arrays that 4 print in a corresponding plurality of different colors or 5 color dilutions, each multielement printing array being 6 subject to a respective swath-height error; and wherein:

the measuring, deriving, applying and printing steps are employed to modify swath height of at least one of the scanning multielement printing arrays, for accommodating any swath-height error present in each multielement printing array respectively.

- 1 13. The method of claim 9, for use with said at least one
- 2 multielement incremental-printing array that comprises a
- 3 plurality of multielement printing arrays that print in a
- 4 corresponding plurality of different colors or color dilu-
- 5 tions, each multielement printing array being subject to a
- 6 respective pattern of printing-density defects; and where-
- 7 in:
- 8 the measuring, deriving, applying and printing steps
- 9 are each performed with respect to each multielement
- 10 printing array respectively.
 - 1 14. The method of claim 13, for use with such plurality
 - 2 of multielement incremental-printing arrays that are also
 - 3 each subject to a respective swath-height error; and
 - 4 wherein:
 - 5 the measuring, deriving, applying and printing steps
 - 6 are also employed to modify swath height of at least one
 - 7 of the multielement printing arrays, for accommodating any
 - 8 swath-height error present in each multielement printing
 - 9 array respectively.
 - 1 15. The method of claim 9, wherein:
 - 2 the halftone thresholding process comprises defini-
 - 3 tion of a halftone matrix.
 - 1 16. The method of claim 9, wherein:
 - 2 the halftone thresholding process comprises an error-
 - 3 diffusion protocol.

- 1 17. The method of claim 16, wherein the error-diffusion
- 2 protocol comprises at least one of:
- 3 a progressive error-distribution allocation protocol
- 4 of such error-diffusion halftoning; and
- 5 a decisional protocol for determining whether to mark
- 6 a particular pixel.
- 1 18. The method of claim 9, wherein:
- the applying step comprises replacing values above or
- 3 below a threshold value.
- 1 19. The method of claim 9, wherein:
- 2 the applying step comprises multiplying values by a
- 3 linear factor.
- 1 20. The method of claim 9, wherein:
- 2 the applying step comprises applying a gamma cor-
- 3 rection function to values.
- 1 21. The method of claim 9, wherein the modifying step
- 2 comprises a combination of at least two of:
- 3 replacing values above or below a threshold value;
- 4 multiplying each values by a linear factor; and
- 5 applying a gamma correction function to values.

- 1 22. The method of claim 9, wherein:
- for each of the plurality of multielement arrays, the
- measuring, deriving and applying steps are each performed
- 4 at most only one time for a full image.
- 1 23. The method of claim 9, wherein:
- 2 the applying step comprises modifying the darkness of
- 3 substantially each mark printed by an individual printing
- 4 element whose density is defective.
- 1 24. The method of claim 9, wherein:
- 2 the applying step comprises modifying the average
- number of dots printed by an individual printing element
- 4 whose density is defective.
- 1 25. A method of printing a desired image, based on input
- 2 image data, by construction from individual marks formed
- 3 in a pixel grid by at least one scanning multielement
- 4 printing array; said printing being subject to print-qual-
- 5 ity defects due to departure of printing-medium advance
- 6 from an optimum value; said method comprising the steps
- 7 of:
- 8 measuring a parameter related to such print-quality
- 9 defects;
- 10 based on the measured parameter, scaling such input
- 11 image data to compensate for said departure; and
- 12 printing such image using the scaled input image
- 13 data.

3

1	26.	The method of claim 25, wherein:
2		the parameter comprises such print-quality defects;
3	and	
4		the measuring step comprises measuring such print-
5	qual	ity defects.
1	27.	The method of claim 26, wherein:
2		the defects comprise swath-height error; and
3		the measuring step comprises measuring swath-height
4	erro	r.
1	28.	The method of claim 26, wherein:
2		the defects comprise area-fill nonuniformity; and
3		the measuring step comprises:
4		
5		using a sensing system to measure area-fill non-
6		uniformity for plural printing-medium ad-
7		vance values, and
8		
9		selecting a printing-medium advance value that
10		corresponds to minimum area-fill non-
11		uniformity.
1	29.	The method of claim 25, wherein:
2		the parameter comprises such optimum value; and

the measuring step comprises determining such optimum

value.

- 1 30. The method of claim 25, for use with said at least
- one scanning multielement printing array that comprises a
- 3 plurality of multielement printing arrays that print in a
- 4 corresponding plurality of different colors or color dilu-
- 5 tions, each multielement printing array being subject to a
- 6 respective swath-height error; wherein:
- 7 the measuring, scaling and printing steps are each
- 8 performed with respect to each multielement printing array
- 9 respectively.
- 1 31. The method of claim 30, wherein the printing step
- 2 comprises:
- 3 comparing optimum advance values or swath-height
- 4 values measured for the plurality of multielement printing
- 5 arrays respectively, to find the smallest of said values;
- 6 selecting a particular multielement printing array
- 7 whose said value is substantially the smallest;
- 8 using, in common for the plurality of printing ar-
- 9 rays, substantially said selected smallest value; and
- 10 for substantially each array other than the particu-
- 11 lar array, operating with a respective reduced number of
- 12 printing elements and with rescaled data, to match an ac-
- 13 tual effective swath height of the particular array.
 - 1 32. The method of claim 31, wherein:
 - 2 said smallest of said values is determined taking in-
 - 3 to account the maximum available number of printing ele-
 - 4 ments in the corresponding array.

- 1 33. The method of claim 25, further comprising the step
- 2 **of**:
- 3 after the scaling step, iterating the measuring and
- 4 scaling steps to allow for nonlinearity in such print-
- 5 quality defects.