Воздействие виброакустических факторов на организм человека

Воздействие виброакустических факторов на организм человека

К виброакустическим факторам относятся:

- 1) шум
- 2) инфразвук
- 3) ультразвук
- 4) вибрация (общая и локальная)

Классификация шумов по природе возникновения

ШУМ – нежелательный для человека звук

- ✓ Механический шум
- ✓ Аэродинамический и гидродинамический шум
- **У** Электромагнитный шум

Основные физические характеристики шума

Звук — упругие колебания, распространяющиеся волнообразно в твердой, жидкой или газообразной среде, если эти колебания лежат в диапазоне частот от 16 Гц до 20 кГц.

Звуковое поле — область пространства, в которой распространяются звуковые волны.

Интенсивность звука в данной точке - средний поток энергии в какой-либо точке среды в единицу времени, отнесенный к единице поверхности, нормальной к направлению распространения звуковой волны:

$$I = P^2/\rho c [BT/M^2],$$

где ρ - плотность среды, с — скорость распространения звуковой волны

Звуковое давление P, Па — разность между мгновенными значениями полного (при наличии источника шума) и среднего (при отсутствии источника шума) давлений.

Основные физические характеристики шума

Любой источник шума характеризуется, прежде всего, **звуковой мощностью W**, **Вт.**

Звуковая мощность — это общее количество звуковой энергии, излучаемой источником шума в окружающее пространство в единицу времени.

$$W = \int I dS$$

Источники шума часто излучают звуковую энергию неравномерно по всем направлениям, т.е. обладают определенной направленностью излучения.

Вводится понятие показателя направленности:

 $G=10 \lg \Phi=10 \lg I/Icp$,

где Φ — фактор направленности; Icp — интенсивность, которую развил бы в точке ненаправленный источник; I — интенсивность звука, создаваемая направленным источником в этой же точке.

Основные физические характеристики шума

Уровень интенсивности звука:

 L_{I} =10 lgI/I_{0} , дБ

где I_0 – интенсивность звука, соответствующая порогу слышимости (I_0 = 10^{-12} Вт/м 2 на частоте 1000 Γ ц).

Уровень звукового давления:

 $L_p = 10 lg P^2 / P_0^2$, дБ

где P_0 — звуковое давление, соответствующее порогу слышимости (P_0 = $2*10^{-5}$ Па на частоте 1000 Гц).

Уровень звуковой мощности:

 L_w = $10lg W/W_0$, дБ где W_0 = 10^{-12} Вт.

Бел (Б) – логарифмическая единица, отражающая десятикратную степень увеличения.

Если в расчетную точку попадает шум от нескольких источников, складывают их интенсивности, но не уровни

$$\mathbf{I}_{\Sigma} = \mathbf{I}_{1} + \mathbf{I}_{2} + \mathbf{I}_{3}$$
 $L_{\Sigma} = 10 \lg \left(\sum_{i=1}^{n} 10^{0,1} L_{i} \right),$

Производственный шум характеризуется спектром, который состоит из звуковых волн разных частот.

При исследовании шумов обычно слышимый диапазон 16 Гц - 20 кГц разбивают на полосы частот и определяют звуковое давление, интенсивность или звуковую мощность, приходящиеся на каждую полосу.

Как правило, спектр шума характеризуется уровнями названных величин, распределенными по октавным полосам частот.

Октавная полоса частот-диапазон частот, в котором верхняя граница вдвое больше нижней.

Октава характеризуется среднегеометрической частотой: $f_{cp} = \sqrt{(f_1 * f_2)}$ Стандартный ряд среднегеометрических частот-

$f_{ extsf{cr,}}$ Гц	$f_{\scriptscriptstyle 1}$, Гц	f_2 , Гц
16	11	22
31,5	22	44
63	44	88
125	88	177
250	177	355
500	355	710
1000	710	1420
2000	1420	2840
4000	2840	5680
8000	5680	11360

Классификации шумов

1. По частотной характеристике:

- низкочастотные до 350 Гц;
- среднечастотные 350-800 Гц;
- высокочастотные свыше 800 Гц.

2. по характеру спектра:

- широкополосные, с непрерывным спектром шириной более одной октавы;
- тональные имеются превышения уровня шума в одной полосе над соседними не менее чем на 10 дБ;

3. по временным характеристикам:

- постоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не более, чем на 5 дБ;
- непостоянные, уровень звука которых за 8-часовой рабочий день изменяется во времени не менее, чем на 5 дБ.

Непостоянные шумы в свою очередь подразделяются на:

- о колеблющиеся во времени уровень звука во времени изменяется непрерывно;
- о прерывистые, уровень звука которых ступенчато изменяется (на 5 дБ и более), причем длительность интервалов, в течении которых уровень остается постоянным и превышающим уровень фонового шума, составляет 1 с и более;
- о импульсные, состоящие из одного или нескольких звуковых сигналов, каждый длительностью менее 1 с.

Воздействие шума на организм человека

 Частотная
 характеристика
 А

 характеристика,
 приближающаяся
 к

 частотной
 характеристике

 чувствительности человеческого уха

Уровни различных звуков в зависимости от источника шума и расстояния

Источник шума	Расстояние, м	Уровень шума, дБА
Жилая комната		35
Речь средней громкости	1	60
Металлорежущие	На рабочем месте	80-96
станки		
Дизельный грузовик	7	90
Пневмоперфоратор	1	100
Реактивный двигатель	25	140
Выстрел из	1-2	160-170
артиллерийского		
орудия		

Основные нормативные документы:

- ➤ СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания»)
- ➤ ГОСТ ССБТ 12.1.003 2014 "Шум. Общие требования безопасности"

1. Нормирование по предельному спектру

Предельный спектр — совокупность девяти допустимых уровней звукового давления

2. Нормирование звука в дБА

Частотная коррекция - разность между уровнем сигнала, показываемым на устройстве отображения шумомера, и соответствующим уровнем установившегося синусоидального (далее - синусоидального) входного сигнала с постоянной амплитудой как функция частоты

Стандартные значения поправок для частотной коррекции по шкале А

Частота, Гц	16	31,5	63	125	250	500	1000	2000	4000	8000
Коррекция ΔL_A , дБА	80	42	26,3	16,1	8,6	3,2	0	-1,2	-1,0	1,1

Корректированный по шкале А уровень звукового давления в дБА в і-й октавной полосе частот:

$$L_{pAi} = L_{pi} - DL_{Ai}$$
.

Акустический уровень шума (уровень звука), дБА - суммарный уровень шума (уровень громкости) со сложным спектральным составом L определяется по уровням звукового давления составляющих во всех октавных полосах частот по формуле: $L = \mathbf{10} \lg \left(\sum_{i=1}^n \mathbf{10}^{0,1L_{p\mathbb{A}i}} \right)$

$$L = 10 \lg \left[\sum_{i=1}^{n} 10^{0.1 L_{pAi}} \right]$$

Эквивалентный /по энергии/ уровень звука, $L_{A_{2K}}$, дБА, непостоянного шума уровень звука постоянного широкополосного шума, который в пределах установленного интервала времени Т имеет такое же среднеквадратичное звуковое давление, что и данный непостоянный шум в течение определенного интервала времени:

$$L_{\text{A}_{\text{3KBT}}} = 10 \cdot \lg \left[\frac{1}{t_2 - t_1} \cdot \int_{t_1}^{t_2} \frac{p(t)_A^2}{p_0^2} dt \right]$$

где t_1 и t_2 - начальный и конечный момент времени соответственно для временного интервала T; pA(t) - мгновенное значение звукового давления, скорректированного по шкале «А», Па.

Максимальный уровень звука, L_{pAmax} дБА - это наибольшая величина уровня звука, измеренная на заданном интервале времени со стандартной временной коррекцией

Пиковый корректированный по C уровень звука (уровень звука C), L_{pCpeak} , дБС - это десять десятичных логарифмов отношения квадрата пикового звукового давления, измеренного с использованием стандартизованной частотной коррекции, к квадрату опорного звукового давления

Нормируемыми показателями шума на рабочих местах являются:

- > эквивалентный уровень звука А за рабочую смену
- максимальные уровни звука А, измеренные с временными коррекциями S (1 c) и I (40 мс)
- пиковый уровень звука

Эквивалентные уровни звука на рабочих местах с учетом напряженности и тяжести трудового процесса

Категории напряженности			Категории тяжести трудового процесса				
трудового процесса			Легкая и	Тяжелый	Тяжелый		
			средняя	труд I	труд 2		
			физическая	степени	степени		
			нагрузка				
Напряженность	легкой	И	80	75	75		
средней степени							
Напряженный	труд	1	70	65	65		
степени							
Напряженный	труд	2	60	_	_		
степени							
Напряженный	труд	3	50	_	_		
степени							

Максимальные уровни звука A, измеренные с временными коррекциями S и I, не должны превышать 110 дБА и 125 дБА соответственно.

Пиковый уровень звука С не должен превышать 137 дБС.

Акустический расчет

Акустический расчет включает:

- выявление источников шума и определение их шумовых характеристик;
- ullet выбор расчетных точек и определение допустимых уровней звукового давления $L_{\mathrm{доп}}$ для этих точек;
- расчет ожидаемых уровней звукового давления L_p в расчетных точках;
- расчет необходимого снижения шума в расчетных точках;
- разработка строительно-акустических мероприятий для обеспечения требуемого снижения шума или по защите от шума (с расчетом).

Акустический расчет выполняется в соответствии с методикой, предложенной СНиП 23-03-2003 и актуализированной СП 51.13330.2011 «Защита от шума» (введена в действие 20.05.2011 г.). Акустический расчет выполняется во всех расчетных точках для восьми октавных полос со среднегеометрическими частотами от 63 до 8000 Гц с точностью до десятых долей дБ.

Акустический расчет

Расчет ожидаемых октавных уровней звукового давления в помещении с одним источником шума:

а) в зоне прямого и отраженного звука:

$$L_p = L_W + 10\lg\left(\frac{\chi\Phi}{S} + \frac{4\psi}{B}\right)$$

б) в зоне прямого звука:

$$L_p = L_W + 10\lg\left(\frac{\chi\Phi}{S}\right)$$

в) в зоне отраженного звука:

$$L_W = L - 10 \lg B + 10 \lg \psi + 6$$

Акустический расчет

Расчет ожидаемых октавных уровней звукового давления в помещении с несколькими источником шума:

а) в зоне прямого и отраженного звука:

$$L_p = 10 \lg \left(\sum_{i=1}^{m} \frac{10^{0,1} L_W}{S_i} \chi_i \Phi_i + \frac{4\psi}{B} \sum_{i=1}^{n} 10^{0,1} L_{Wi} \right)$$

б) в зоне прямого звука:

$$L_p = L_W + 10 \lg \left(\sum_{i=1}^n \frac{1}{2\pi r_i^2} + \frac{4n}{B} \right)$$

в) в зоне отраженного звука:

$$L_p = 10\lg \sum_{i=1}^{n} 10^{0,1L_{Wi}} - 10\lg B + 10\lg \psi + 6$$

Методы борьбы с шумом

уменьшение шума машин в источнике
механические шумы: улучшение конструкций машин и механизмов, замена
металлических деталей на пластмассовые, замена ударных технологических
процессов на безударные, нанесение смазки на трущиеся детали и т.д.
аэродинамические и гидродинамические шумы: снижение скорости обтекания
препятствий, снижение скорости истечения газовой струи и уменьшение диаметра
отверстия, выбор оптимальных режимов работы насосов по перекачиванию
жидкостей и т.д.
электромагнитные шумы: тщательное уравновешивание вращающихся деталей
электромашин (ротор, подшипники), тщательная притирка щеток электродвигателей
и т.д.
применение технологических процессов, обеспечивающих ПДУ
строительно-акустические мероприятия (звукоизоляция строительных
конструкций, установка звукоизолирующих кожухов, рациональная планировка
помещений и размещения оборудования, экранирование, установка глушителей
шума в системах отопления, вентиляции, кондиционирования и т.д.)
применение дистанционного управления шумными машинами и механизмами
обязательное применение средств индивидуальной защиты при уровне шума на
р.м. более 85 дБА
организационные мероприятия (рациональный режим чередования труда и
отдыха, сокращенный рабочий день, неделя)

Вибрация — движение точки или механической системы, при котором происходит поочередное возрастание и убывание во времени значений, по крайней мере, одной координаты.

Классификации вибраций:

- 1. По способу передачи вибрации на человеческий организм:
- общая (через опорные поверхности, вызывает сотрясение всего организма)
- локальная (вовлекает в колебательные движения отдельные части тела)

2. По источнику возникновения вибраций:

- локальную вибрацию, передающуюся человеку от ручного механизированного инструмента (с двигателями), органов ручного управления машинами и оборудованием;
- локальную вибрацию, передающуюся человеку от ручного немеханизированного инструмента (например, рихтовочных молотков), приспособлений и обрабатываемых деталей;
- общую вибрацию 1 категории транспортную вибрацию, воздействующую на человека на рабочих местах подвижного состава железнодорожного транспорта, членов экипажей воздушных судов, самоходных и прицепных машин, транспортных средств при движении по местности, агрофонам и дорогам (трактора, экскаваторы, горные комбайны, бетоноукладчики).

2. По источнику возникновения вибраций:

- общую вибрацию 2 категории транспортно-технологическую вибрацию, воздействующую на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений, промышленных площадок, горных выработок. К источникам транспортно-технологической вибрации относят: экскаваторы (в том числе роторные), краны промышленные и строительные, машины для загрузки (завалочные) мартеновских печей в металлургическом производстве; горные комбайны, шахтные погрузочные машины, самоходные бурильные каретки; путевые машины, бетоноукладчики, напольный производственный транспорт
- общую вибрацию 3 категории технологическую вибрацию, воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации. К источникам технологической вибрации относят: станки металло- и деревообрабатывающие, кузнечнооборудование, литейные прессовое машины, электрические машины. стационарные электрические и энергетические установки, насосные агрегаты и вентиляторы, оборудование для бурения скважин, буровые станки, машины для животноводства, очистки и сортировки зерна (в том числе сушилки), оборудование промышленности стройматериалов (кроме бетоноукладчиков), нефтехимической промышленности химической оборудование.

3. По характеру спектра:

- узкополосные вибрации, у которых контролируемые параметры в одной третьоктавной полосе частот более чем на 15 дБ превышает значения в соседних третьоктавных полосах
- *широкополосные вибрации* с непрерывным спектром шириной более одной октавы

4. По частотному составу:

- *низкочаствотные вибрации* с преобладанием максимальных уровней в октавных полосах частот от 1 до 4 Гц для общих вибраций, от 8 до 16 Гц для локальных вибраций
- *среднечаствотные вибрации* с преобладанием максимальных уровней в октавных полосах частот от 8 до 16 Гц для общих вибраций, от 31.5до 63 Гц для локальных вибраций
- *высокочастотные вибрации* с преобладанием максимальных уровней в октавных полосах частот от 31.5 до 63 Гц для общих вибраций, от 125 до 1000 Гц для локальных вибраций

5. По временным характеристикам:

- *постоянные вибрации*, для которых величина нормируемых параметров изменяется не более чем в 2 раза (на 6 дБ) за время наблюдения
- **непостоянные вибрации**, для которых величина нормируемых параметров изменяется не менее чем в 2 раза (на 6 дБ) за время наблюдения не менее 10 минут при измерении с постоянной времени 1 с, в том числе:
- а) колеблющиеся во времени вибрации, для которых величина нормируемых параметров непрерывно изменяется во времени
- b) *прерывистые вибрации*, когда контакт человека с вибрацией прерывается, причем длительность интервалов, в течение которых имеет место контакт, составляет более 1c
- с) импульсные вибрации, состоящие из одного или нескольких вибрационных воздействий (например, ударов), каждый длительностью менее 1 с

Гигиеническое нормирование вибраций

Уровень виброускорения:

La=
$$10lg \frac{a^2}{{a_0}^2}$$
,

где a — среднее квадратическое значение виброускорения, m/c^2 ; $a_0 = 1 \cdot 10^{-6}$ - опорная величина виброускорения, m/c^2 .

Нормируемым параметром при гигиенической оценке вибрации является:

Эквивалентный корректированный уровень виброускорения за рабочую смену:

$$L_{A(8)} = 10 \cdot lg(\frac{1}{T_0} \sum T_i \cdot 10^{0,1 \cdot La_i})$$

 T_i - продолжительность і-го интервала воздействия вибрации, ч; La_i - уровни виброускорения, действующие в течение времени T_i , дБ.

Методы снижения вибраций машин и оборудования

снижение вибраций воздействием на источник возбуждения
(посредством снижения возбуждающих сил) (замена ковки, штамповки –
прессованием; ударной правки – вальцовкой; пневматической клепки и
чеканки – гидравлической клепкой и сваркой)
отстройка от режима резонанса путем рационального выбора массы или
жесткости колеблющейся системы
вибродемпфирование – процесс уменьшения уровня вибраций
защищаемого объекта путем превращения энергии механических
колебаний системы в тепловую энергию (установка на защищаемый
объект защитного устройства – упругодемпфирующего элемента,
состоящего из элемента упругости и элемента демпфирования,
соединенных параллельно)
динамическое гашение колебаний – присоединение к защищаемому
объекту системы, реакции которой уменьшают размах вибраций объекта в
точках присоединения системы
изменение конструктивных элементов машин и строительных
конструкций