Approximation Algorithm

NP-complete! What's next?

- Lots of practical applications generate problems that are NP-complete
- We can't afford to give up
- Three workarounds
 - 1. For small inputs, write an exponential algorithm
 - Isolate important special cases that are solvable in polynomial time
 - 3. Find near optimal solutions in polynomial time, if you can guarantee the bound of near optimality, it's an Approximation Algorithm, without provable bound we will call it heuristic

Approximation Ratio

An algo for a problem has an approximation ratio of p(n), if for any input size n, the cost C of the solution produced by the algo is within a factor of p(n) of the cost C^* of an optimal solution, i.e.,

Contd.

- We call this a p(n)-approximation problem
- So, p(n) > 1 always
- A 1-approximation algo is the optimal solution
- For some problems, constantapproximation exists, for some others p(n) is a function of n
 - -Eg: For set cover problem, p(n) is $\log_2 n$

Approximation Algorithms

- Some NP-complete problems allow poly-time approximation algorithms to achieve increasingly smaller approximation ratios using more and more time
- An Approximation Scheme for an opt. problem is an approximation algorithm that takes as input, an instance of the problem as well as a value $\varepsilon > 0$, such that for any fixed ε , the scheme is a $(1 + \varepsilon)$ -approximation algorithm
- It is called a poly-time approx. scheme if for any fixed ε >
 0, the scheme runs in time polynomial in n
 - Eg: Sometimes the running time can rise very fast with ε like $O(n^{\frac{2}{\epsilon}})$

Contd.

- We would like it to be polynomial in $\frac{1}{\epsilon}$ as well as in n
- We call the approx. scheme fully polynomial time if it's running time is polynomial in both $\frac{1}{\epsilon}$ and n
 - Eg: $O\left(\left(\frac{1}{\varepsilon}\right)^2 n^3\right)$ a constant factor decrease is possible by a constant factor increase in running time

Algorithm 1: Approx-Vertex-Cover(G)

```
1 begin
      C \leftarrow \phi
      E' \leftarrow E[G]
3
      while E' \neq \phi do
          let (u,v) be an arbitrary edge of E'
5
          C \leftarrow C \cup \{(u,v)\}
6
          remove from E' every edge incident on either u or v
      end
8
      return C
```

Running time O(V + E)

10 end

Theorem: The algo is 2-approximation algo

Set C is a Vertex-Cover as it is verified till E' is null. Let A denote the set of edges picked in line 5. No two edges in A share an endpoint.

So, lower bound
$$|C^*| \ge |A|$$

$$|C| = 2 |A|$$

$$\therefore |C| \le 2 |C^*|$$
Hence, $\frac{|C|}{|C^*|} \le 2$

Approximation Algorithm for 0/1 Knapsack Problem

Consider the following heuristic

Assume that the objects are in non-increasing order of $\frac{p_i}{w_i}$. If object i fits, then set $x_i = 1$, else set $x_i = 0$.

- Suppose (p1, p2) = (100, 20), (w1, w2) = (4, 1) and M = 4.
- Since $\frac{100}{4} > \frac{20}{1}$, consider objects in the order of 1, 2
- The result is (x1, x2) = (1, 0), which is also optimal.

However, consider another instance.

- n = 2, (p1, p2) = (2, r), (w1, w2) = (1, r) and M = r.
- When r > 2, the optimal solution is (x1, x2) = (0, 1).
- Its value $F^*(I) = r$, and it should be actually (x1, x2) = (0, 1), but our algorithm generates (1, 0), so F(I) = 2

Contd.

- Recall, $F^*(I) = r$ and F(I) = 2
- This is a maximization problem, so

$$p(n) = \frac{F^*(I)}{F(I)} = \frac{r}{2}$$

Since r can be anything, this doesn't guarantee any approximation bound. Hence the earlier algorithm for selecting items in *non-increasing* order of $\frac{p_i}{w_i}$, was only a heuristic, not an approximation algorithm

Approx. Scheme for 0/1 Knapsack

Order is k – For higher the value of k, it runs for more time but can give better profit. Note that Algo 2 tries all combinations and hence slow, but Algo 3 is is single-pass and hence is fast but cannot guarantee quality.

```
Algorithm 2: Epsilon-Approx(p, W, M, n, k)
```

```
k defines the order of algorithm, k>0
    //M is the size of knapsack
   begin
       p_{max} \leftarrow 0
       forall combinations I of size \leq k and weight \leq M do
 5
           p_I \leftarrow \sum p_i
 6
           p_{max} \leftarrow max(p_{max}, p_I + LBound(I, p, W, M, n))
       end
       return p_{max}
10 end
```

Algorithm 3: LBound(I, p, W, M, n)

1 begin $s \leftarrow 0$ $t \leftarrow m - \sum W_i$ 3 for $i \leftarrow 1$ to n do 4 if $i \notin I$ AND $W[i] \leq t$ then 5 $\begin{array}{c} s \leftarrow s + p[i] \\ t \leftarrow t - W[i] \end{array}$ 6 end

- 9 end
- 10 return s
- 11 end

Traveling Salesman Problem

Given a complete undirected graph G = (V, E) that has a cost c(u, v), $c(u, v) \in Z^+$ for each edge $(u, v) \in E$, we have to find a *Hamiltonian* cycle of G with min. cost.

 Let C(A) denote the total cost of the edges in the subset A ⊆ E.

$$C(A) = \sum_{(u,v)\in A} c(u,v)$$

- If $c(u, w) \le c(u, v) + c(v, w) \not\vdash u, v, w \in V$, we say the TSP satisfies *Triangle Inequality*.
- If the vertices are geometrical points on a plane, then Eucledian distance as cost obeys the triangle inequality

Approx Algo for TSP

- The general TSP doesn't have a constant approx algo
- But the TSP with triangle inequality has a 2-approx algo

Algorithm 4: Approx-TSP-Tour(G, c)

6 end

```
1 begin
2 Select a vertex r \in V[G] to be the root vertex
3 Compute a minimum spanning tree T for G from root r using
MST-PRIM(G, c, r)
4 Let L be the list of vertices visited in a preorder tree walk of T
```

return the Hamiltonian cycle H that visits in order of L

Example of the relation between C(H) and C(preorder Walk)

Considering the graph obeys triangle inequality,

ra+re>ae eb+ec>bc ec+ed>cd

ed+ef>df re+rf>ef

implies, ed+re+rf>df

fg+rf>rg

adding ra+eb+fg on both side, We get the Hamiltonian cycle,

and on left we have every edge on the graph concerned traversed twiced.

Proof of 2-approx. for Δ TSP

- C(MST) < C(H*)
- C(W_{preorder}) = 2C(MST)
- Let the walk W_{preorder} be rarebecederfgr
- Delete the 2nd visit to vertices to get the Hamiltonian cycle H from the W_{preorder}
- So H = raebcdfgr
- By Δ inequality C(H) ≤ C(W_{preorder}) = 2C(MST) < 2C(H*) (see the diagram)
- Hence $C(H)/C(H^*) \le 2$