relações binárias

definições básicas

Definição. Dados os conjuntos A e B, não necessariamente distintos, chama-se *relação binária de* A *em* B a qualquer subconjunto R do produto cartesiano $A \times B$.

Se A = B, R diz-se uma relação binária em A.

Se $(a,b) \in R$, diz-se que a está R relacionado com b e escreve-se

a R b.

Definição. Duas relações binárias R e R' de A em B dizem-se *iguais* se os subconjuntos R e R' de $A \times B$ são iguais.

Exemplos.

- 1. Sejam $A = \{1, 2, 3, 4\}$ e $B = \{a, b, c, d\}$. Então, $R = \{(1, a), (1, b), (2, b), (3, d)\}$ é uma relação binária de A em B.O conjunto $S = \{(1, a), (2, b), (2, e)\}$ não é uma relação binária de A em B pois $S \nsubseteq A \times B$, já que $(2, e) \in S$ e $(2, e) \notin A \times B$.
- 2. Sejam $A = \{1, 2, 3, 4\}$, $B = \{1, 3, 4, 8, 9\}$ e $R = \{(1, 1), (2, 4), (3, 9)\}$ é uma relação binária de A em B que pode ser definida por

$$a R b \Leftrightarrow b = a^2$$
 $(a \in A, b \in B).$

- 3. Sejam A e B dois conjuntos quaisquer. Então $A \times B$ e \emptyset são relações binárias de A em B.
- 4. Seja A um conjunto qualquer. Então,

$$id_A = \{(x, x) : x \in A\} \ e \ \omega_A = A^2 = \{(x, y) : x, y \in A\}$$

são relações binárias em A. A id_A chamamos relação identidade em A e a ω_A chamamos relação universal em A.

5. A relação binária R definida em $\mathbb N$ por

$$m R n \Leftrightarrow m \in \text{divisor de } n$$

é o conjunto

$$R = \{(m, n) : \exists k \in \mathbb{N} : n = mk\}.$$

Definição. Se R é uma relação binária de A em B chama-se:

1. domínio de R ao conjunto

$$D_R = \{x \in A : (x, y) \in R \text{ para algum } y \in B\};$$

2. contradomínio de R ao conjunto

$$D'_R = \{ y \in B : \exists x \in A : (x,y) \in R \}.$$

Exemplos.

1. Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{2, 3, 4, 5, 6\}$. O conjunto $R = \{(1, 2), (1, 6), (2, 2), (3, 5), (3, 6)\}$ é uma relação binária de A em B tal que $D_R = \{1, 2, 3\}$ e $D_R' = \{2, 5, 6\}$.

2. Sejam $A=\{1,2,3,4,5\}$ e $B=\{2,4,6,8,10,12,14,16,18,20\}$. Seja R a relação binária de A em B definida por

$$x R y \Leftrightarrow y = x^2 \text{ ou } y = 5x.$$

Então,
$$D_R = \{2,4\}$$
 e $D_R' = \{4,10,16,20\}$.

3. O conjunto $\mathbb N$ é o domínio e o contradomínio da relação R definida em $\mathbb N$ por

 $m R n \Leftrightarrow m \text{ \'e divisor de } n$.

Observação. Se R=R' então $D_R=D_{R'}$ e $D_R'=D_{R'}'$. O recíproco não é necessariamente verdadeiro. Os domínios e os contradomínios de duas relações binárias podem ser iguais e as relações não serem a mesma.

Exemplo. Sejam $R = \{(1,2), (1,3), (2,2), (3,2)\}$ e $R' = \{(1,3), (2,2), (3,3)\}$ duas relações de $A = \{1,2,3,4\}$ em $B = \{2,3,4,5\}$. Então,

$$D_R = \{1, 2, 3\} = D_{R'} \text{ e } D'_R = \{2, 3\} = D'_{R'}.$$

No entanto, $R \neq R'$.

relação inversa

Definição. Se R é uma relação binária de A em B, chama-se relação binária inversa de R, e representa-se por R^{-1} , ao subconjunto de $B \times A$ definido por

$$R^{-1} = \{(y, x) \in B \times A : (x, y) \in R\}.$$

Exemplos.

1. Sejam
$$A=\{1,2,3,4,5\},\ B=\{3,5,7,9\}$$
 e
$$R=\{(1,3),(1,5),(2,3),(4,7),(3,3)\}\subseteq A\times B. \text{ Então,}$$

$$R^{-1}=\{(3,1),(5,1),(3,2),(7,4),(3,3)\}.$$

2. Seja R a relação binária definida em $\mathbb R$ por

$$x R y \Leftrightarrow y = x^2$$
.

Então, R^{-1} é a relação binária definida em $\mathbb R$ por

$$x R^{-1} y \Leftrightarrow x = y^2$$
.

3. Se R é a relação binária definida em $\mathbb N$ por

$$m R n \Leftrightarrow m \text{ \'e divisor de } n$$
,

então, R^{-1} é a relação binária em $\mathbb N$ definida por

$$m R^{-1} n \Leftrightarrow m \text{ \'e m\'ultiplo de } n.$$

propriedades

Sejam A e B dois conjuntos quaisquer e R e S relações binárias de A em B. Então,

- 1. Se $R \subseteq S$ então $R^{-1} \subseteq S^{-1}$.
- 2. $(R^{-1})^{-1} = R$.
- 3. $D_{R^{-1}} = D'_R$ e $D'_{R^{-1}} = D_R$.

Demonstração.

1. Sabendo que $R\subseteq S$ queremos provar que $R^{-1}\subseteq S^{-1}$, i.e., que $x\ R^{-1}\ y\Longrightarrow x\ S^{-1}\ y$. De facto,

$$x R^{-1} y \implies y R x$$
 (por def. de R^{-1})
 $\implies y S x$ (porque $R \subseteq S$)
 $\implies x S^{-1} y$. (por def. de S^{-1})

2. Sejam $x, y \in A$. Então,

$$x\;(R^{-1})^{-1}\;y\Leftrightarrow y\;R^{-1}\;x\Leftrightarrow x\;R\;y,$$
 pelo que $(R^{-1})^{-1}=R.$

3. A primeira igualdade resulta de termos que

$$x \in D_{R^{-1}} \Leftrightarrow x \in B \land (\exists y \in A) : (x, y) \in R^{-1}$$

 $\Leftrightarrow x \in B \land (\exists y \in A) : (y, x) \in R$
 $\Leftrightarrow x \in D'_{R}.$

A segunda igualdade resulta da primeira por 2.

composição de relações binárias

Definição. Sejam R uma relação binária de A em B e S uma relação binária de C em D. Chama-se relação binária composta de R com S, e representa-se por $S \circ R$, à relação binária de A em D definida por

$$x\ S\circ R\ y\Leftrightarrow \exists z\in B\cap C: x\ R\ z\in z\ S\ y.$$

Observação. Se
$$B \cap C = \emptyset$$
 então $S \circ R = \emptyset$

Exemplos:

1. Sejam

$$A = \{1, 2, 3, 4\},$$
 $B = \{4, 5, 6\},$ $C = \{1, 2, 7\},$ $D = \{4, 5, 6, 7, 8\},$ $R = \{(1, 4), (2, 4), (2, 5), (3, 5), (4, 6)\} \subseteq A \times B$

е

$$S = \{(1,4), (1,5), (2,5), (2,8), (7,8)\} \subseteq C \times D$$

Então, como $B \cap C = \emptyset$, temos que $S \circ R = \emptyset$.

2. Sejam

$$A = \{1,2,3,4\}, \ B = \{4,5,6\}, \ C = \{5,6,7\}, \ D = \{4,5,6,7,8\},$$

$$R = \{(1,4),(2,4),(2,5),(3,5),(4,6)\} \subseteq A \times B,$$

$$S = \{(5,4),(5,5),(6,5),(7,8),(6,8)\} \subseteq C \times D$$
 Então, $S \circ R = \{(2,4),(2,5),(3,4),(3,5),(4,5),(4,8)\}.$

De facto, temos
$$B \cap C = \{5,6\}$$
 e $(2,5) \in R \land (5,4) \in S \Rightarrow (2,4) \in S \circ R$ $(2,5) \in R \land (5,5) \in S \Rightarrow (2,5) \in S \circ R$ $(3,5) \in R \land (5,4) \in S \Rightarrow (3,4) \in S \circ R$ $(3,5) \in R \land (5,5) \in S \Rightarrow (3,5) \in S \circ R$ $(4,6) \in R \land (6,5) \in S \Rightarrow (4,5) \in S \circ R$ $(4,6) \in R \land (6,8) \in S \Rightarrow (4,8) \in S \circ R$

3. Se R e S são as relações binárias definidas em $\mathbb N$ por

$$n R m \Leftrightarrow n \in \text{divisor de } m$$
,

е

$$n S m \Leftrightarrow n = m^2$$

respetivamente, então,

$$n \ (S \circ R) \ m \Leftrightarrow \exists p \in \mathbb{N} : n \ R \ p \land p \ S \ m$$

 $\Leftrightarrow \exists p \in \mathbb{N} : n \ \text{\'e} \ \text{divisor de} \ p \land p = m^2$
 $\Leftrightarrow n \ \text{\'e} \ \text{divisor de} \ m^2$

propriedades

Sejam A, B, C, D, E e F conjuntos, $R \subseteq A \times B$, $S \subseteq C \times D$ e $T \subseteq E \times F$. Então,

- 1. $D_{S \circ R} \subseteq D_R$ e $D'_{S \circ R} \subseteq D'_S$.
- 2. No geral, $S \circ R \neq R \circ S$.
- 3. $T \circ (S \circ R) = (T \circ S) \circ R$.
- 4. $(S \circ R)^{-1} = R^{-1} \circ S^{-1}$.

Demonstração.

1.

$$x \in D_{S \circ R}$$
 $\Rightarrow \exists y \in D : (x, y) \in S \circ R$
 $\Rightarrow \exists y \in D : \exists z \in B \cap C : (x, z) \in R \land (z, y) \in S$
 $\Rightarrow \exists z \in (x, z) \in R$
 $\Rightarrow x \in D_R$

pelo que $D_{S \circ R} \subseteq D_R$. A outra inclusão prova-se de modo análogo.

2. Contraexemplo para $S \circ R = R \circ S$: Sejam $A = \{1,2\}$ um conjunto e $R = \{(1,1)\}, S = \{(1,2)\} \subseteq A \times A$. Então,

$$S \circ R = \{(1,2)\} \neq \emptyset = R \circ S.$$

3.
$$\times T \circ (S \circ R) y$$

$$\Leftrightarrow \exists z \in D \cap E: \ x \ \big(S \circ R\big) \ z \wedge z \ T \ y$$

$$\Leftrightarrow \exists z \in D \cap E : \exists w \in B \cap C : (x R w \land w S z) \land z T y$$

$$\Leftrightarrow \exists z \in D \cap E : \exists w \in B \cap C : x R w \wedge (w S z \wedge z T y)$$

$$\Leftrightarrow \exists w \in B \cap C : x R w \wedge (w T \circ S y)$$

$$\Leftrightarrow x (T \circ S) \circ R y$$

pelo que
$$T \circ (S \circ R) = (T \circ S) \circ R$$
.

4.

$$x (S \circ R)^{-1} y \Leftrightarrow y (S \circ R) x$$

$$\Leftrightarrow \exists z \in B \cap C : (y, z) \in R \land (z, x) \in S$$

$$\Leftrightarrow \exists z \in B \cap C : (z, y) \in R^{-1} \land (x, z) \in S^{-1}$$

$$\Leftrightarrow x R^{-1} \circ S^{-1} y$$

pelo que
$$(S \circ R)^{-1} = R^{-1} \circ S^{-1}$$
.

imagem de um conjunto por uma relação binária

Definição. Sejam A e B conjuntos, R uma relação binária de A em B e $X \subseteq A$. Chama-se imagem de X por R ao conjunto

$$R(X) = \{b \in B : \exists a \in X : (a, b) \in R\}.$$

Observação. Se R é uma relação de A em B, como $A \subseteq A$, podemos falar na imagem de A por R, R(A). Facilmente se conclui que $R(A) = D'_R$.

Exemplo. Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 3, 5, 7, 8\}$ e $R = \{(1, 1), (1, 3), (2, 5), (4, 5), (4, 7)\} \subseteq A \times B$. Se $X = \{1, 5\}$, temos que $R(X) = \{1, 3\}$.

imagem completa inversa de um conjunto por uma relação binária

Definição. Sejam A e B conjuntos, R uma relação binária de A em B e $Y \subseteq B$. Chama-se imagem completa inversa de Y por R ao conjunto

$$R^{\leftarrow}(Y) = \{ a \in A : \exists b \in Y : (a, b) \in R \}.$$

Observação. Se R é uma relação de A em B, como $B \subseteq B$, podemos falar na imagem completa inversa de B por R, $R^{\leftarrow}(B)$. Facilmente se conclui que $R^{\leftarrow}(B) = D_R$.

Exemplo. Sejam $A = \{1, 2, 3, 4, 5\}$ e $B = \{1, 3, 5, 7, 8\}$ e $R = \{(1, 1), (1, 3), (2, 5), (4, 5), (4, 7)\} \subseteq A \times B$. Se $Y = \{1, 5, 8\}$, temos que $R \leftarrow (Y) = \{1, 2, 4\}$.