Departamento de Matemática Aplicada II Matemáticas I

Tema 1: Matrices

1. Sea la matriz

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}.$$

Halla todas las matrices cuadradas $B \in \mathcal{M}_2$ tales que $A \cdot B = \mathcal{O}$.

2. Sea la matriz

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}.$$

Halla todas las matrices cuadradas $B \in \mathcal{M}_2$ tales que $A \cdot B = \mathcal{O}$.

- 3. Halla todas las matrices $A \in \mathcal{M}_2$ cuyo cuadrado sea la matriz nula.
- 4. Dada la matriz

$$A = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix},$$

calcula todas las matrices X que verifiquen la condición AX = XA.

- 5. Calcula cuáles son las matrices triangulares inferiores de orden 2 que satisfacen $A^4 = I_2$.
- 6. Calcula el rango de las siguientes matrices en función del parámetro sin utilizar determinantes:

$$A = \begin{pmatrix} 1 & 1 & 1+a \\ a & a & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & 1-2a \\ a & 0 & 1 \\ 0 & a & 0 \end{pmatrix}$$

7. Calcula la inversa de cada una de las siguientes matrices por el método de Gauss-Jordan:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 4 & 0 & 3 \end{pmatrix} \qquad G = \begin{pmatrix} 1 & -1 \\ 3 & 1 \end{pmatrix}$$

$$B = \begin{pmatrix} 3 & 2 & 1 \\ -1 & 2 & -3 \\ 3 & -4 & 9 \end{pmatrix} \qquad E = \begin{pmatrix} 2 & 0 \\ 4 & -1 \end{pmatrix} \qquad H = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

$$C = \begin{pmatrix} 2 & 0 & 6 \\ -1 & 4 & 4 \\ 1 & -1 & 2 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & -2 & -1 \end{pmatrix}$$

8. Indica los valores de $\alpha \in \mathbb{R}$ para los que la siguiente matriz es invertible, sin utilizar determinantes:

$$A = \begin{pmatrix} 1 & -3 & 0 \\ 2 & 1 & \alpha \\ \alpha & 1 & 2 \end{pmatrix}$$

Calcula la inversa para $\alpha = 1$.

9. Sea
$$A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$
.

- a) Calcula α, β , tales que $A^2 + \alpha A + \beta I = \mathcal{O}$.
- b) Utilizando el apartado anterior, calcula A^{-1} .
- 10. Calcula la matriz X que verifica:

$$A \cdot X + B = C$$

siendo:

$$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \qquad \text{y} \qquad C = \begin{pmatrix} 3 & 2 \\ 0 & 5 \end{pmatrix}$$

11. Calcula la matriz X que verifica:

$$A^2 \cdot X - B = C$$

siendo:

$$A = \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -1 \\ 1 & 1 \end{pmatrix} \qquad y \qquad C = \begin{pmatrix} 3 & -12 \\ 0 & 5 \end{pmatrix}$$

12. Calcula la matriz X que verifica:

$$A \cdot X \cdot B = 4C$$

siendo:

$$A = \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 1 \\ -2 & 2 \end{pmatrix} \qquad \text{y} \qquad C = \begin{pmatrix} 1 & 1 \\ 0 & -4 \end{pmatrix}$$

13. Demuestra que la siguiente igualdad es cierta:

$$(A^{-1}B)^{\mathsf{T}}(A+B^{-1})^{\mathsf{T}} = B^{\mathsf{T}}(I+(AB)^{-1})^{\mathsf{T}}$$