INSULATOR DEPARTMENT GENERAL ELECTRIC COMPANY

Technical Report No. LK-624-DR July 3, 1957

SUBJECT

INVESTIGATION OF EFFECT

OF

STEEP WAVE FRONT IMPULSES ON SUSPENSION INSULATORS

RESTRICTED TO INSULATOR DEPARTMENT USE ONLY

This report contains

- 12 Typewritten pages
- 6 Appendixes
- 2 Sketches
- 1 Drawing VRA-712-57

Joseph Jammskifr Approved Fre

I. INTRODUCTION

Reports of failures of a very serious nature on the systems of three important customers had been received. Investigations of failures occurring on one customer's system were carried on and reported in Technical Report No. 604. The above report in part oncluded that, "the most likely cause of failure seems to be steep wave front surges of high amplitude."

The above investigations, as well as others carried out by the high voltage laboratory, appeared to have demonstrated, even though to a limited extent, the prevailing conditions existing on a transmission line at the time of failure. Areas in which close correlation appeared to exist between field and laboratory are:

- 1) Presence of steep wave front impulses initiating the flashover of strings.
- 2) Puncture of insulators in strings under steep wave front impulses.
- 3) Presence of high energy currents causing insulators to blow aport or pull apart under tensile loads.
- 4) Evidence of shell doughnutting under steep wave front impulses.
- 5) Evidence of depreciation of dielectric strength under steep wave front impulses.

In view of these apparent similarities an extensive program aimed at greater comprehension of the nature and mechanism producing such failures was undertaken.

II. PROCEDURE

The accumulation of additional data was an essential step toward a better understanding of the problem. Therefore, the initial step in the investigation includes a program of comparative testing.

The following insulators from Insulator Dept., Ohio Brass, and Lapp were used:

OB #32440 - 15,000 lbs. - 5-3/4" spacing Lapp #8200 - 15,000 lbs. - 5-3/4" spacing Locke #1840 - 15,000 lbs. - 5-3/4" spacing Locke #18425 - 25,000 lbs. - 5-3/4" spacing *Locke #18254 - 25,000 lbs. - 5" spacing *Locke #18360 - 36,000 lbs. - 5-3/4" spacing

All steep wave front tests were made with the impulse generator having an energy input of 7000 watt seconds at 500-KV and an estimated surge current of approximately 7000 amps. The wave chapter as the strained 1/f = 100 microscond impulse with fleshover according on the front of the second approximately 350 to 450 kV is 0.5 microsconds. A tensile load of approximately 2000 lbs. was applied continuously to the insulator during the impulse flashover tests. (This above test method was used throughout the entire investigation.)

*Shells made from 304 high strength body. (18254 previously numbered 18251)

Appendix A represents a compilation of tests on the previously listed insulators. Locke catalog insulators were all made under standard manufacturing practices with standard component hardware. It should be noted that while not reported the influence of insulator spacing, ball bolt style or type of suspension cap had no influence on the outcome of results.

A 60 cycle puncture under oil test was made without prior impulse testing on each group of insulators except OB #32440. This is shown in the report as having received zero impulses. The first two columns indicate the number of impulses and quantity of insulators receiving those number of impulses. The number of units punctured on the specific frequency of impulses is shown as column 3. Tabulated under the Puncture Under Oil heading is the individual values obtained in subsequent puncture under oil tests. The average is determined by totalling the puncture under oil values and dividing by the total number of units tested. For instance, if a unit punctured under impulse, its puncture under oil value would be zero. A measure of the quality of performance is shown in the final column listing the percent failing below 110 KV.

A review of the data with its accompanying summary establishes quite clearly the inferiority of Locke units to those of its competitors. In addition, the extremely poor performance demonstrated by the 18254 units would tend to reflect rather poorly on the 304 body. However, the 18360, made from the 304 body, rather closely parallels the performance of 18425 (both having same shell design 77598).

Insulators failing under impulse by breaking or shattering often exhibited the appearance of "doughnutting." "Doughnutting" of insulator shells is often associated with sudden or high impact loads. It was reasonable to assume either the presence of mechanical impact or high electrical impact during the overvoltage conditions. A series of tests were made on shells for the purpose of establishing either the presence of mechanical or electrical impact. These are reported in Appendix B and although no proof of impact was established it is interesting to note in most tests made with either pin or electrode held tight within the pinhole the failure rate is very high. The pattern of high failure for pins held securely is only altered with the addition of distilled water, molten lead, and mercury. The addition of mercury provided the greatest measure of relief from failure.

Next, all factors and materials related to the insulator shell were critically examined. Insulators were then assembled with shells in stages of completion and under different conditions of firing. It was hoped that by the process of elimination some critical feature of the shell could be established. The shells were prepared as follows:

Group 1 - Fired without glaze and without sand.

Group 2 - Fired and glazed but without sand on head or in pinhole.

Group 3 - Fired and glazed with sand on head but not in pinhole.

Group 4 - Fired and glazed with sand on head and in pinhole except at the bottom of the pinhole.

Group 5 - Fired with glaze and sand on head: no glaze and sand in pinhole.

Group 6 - Fired and glazed with no sand on head but sand in pinhole.

Group 7 - Unglazed shell with sand on head and in pinhole (epoxy)

resin used to bond sand to shell.

Group 8 - Standard shell fired at bottom of Kiln No. 3.

Group 9 - Standard shell fired at top of Kiln No. 3
Group 10 - Standard shell fired in Kiln No. 2.
Group 11 - Standard shell fired in Kiln No. 1.

Appendix C is a tabulation of results for the above classifications. Under each classification the shell date and puncture value in KV, whether puncture occurred at base of cap or through the head, is shown. The pilot group are 60 cycle puncture tests made without the application of impulses. Under column heading KV and included in groups having received impulses, the letter "P" occasionally appears. This indicates the failure of the insulator occurred under the impulse test. Average KV and percent below 110-KV refer to only the units which have received prior impulse tests.

The significance of results achieved in this series of tests can be grasped almost immediately. A review of all the data focuses sharp attention to the effect sand, particularly its presence or absence in the pinhole, has on the impulse strength of the insulator. While removal of sand from the pinhole alleviates failures under steep wave front impulses it presents an impractical solution to the problem. The improvement shown by group 4, no sand in bottom of pinhole, when compared with groups 8, 9, 10, 11, 12 and the performance for the 1840 shown in Appendix A, provided material for further investigation.

In view of the exceedingly poor results obtained on 1840 shell style, 304 body 18254 insulators, it was of paramount importance to determine if the same factors were influencing both bodies. Five 1840-A3 shells (304 body) were taken from the Ceramic Lab. stock and fired. These were then assembled with component hardware and results are shown as Group 13 under Appendix D. Microscopic examination of fired 304 body particles indicated an abnormal amount of iron impurities. The chief source of this iron impurity was the alumina material used in the mix. Chemically pure alumina or alumina with very low iron content was purchased. Shells were made using chemically pure alumina in the body composition. Nothing else was changed and impulse tests on these insulators are shown as group 15 of Appendix D. In addition to the two aforementioned groups, group 14 standard 304 body and group 16 standard 304 body except without sand in the bottom of the pinhole are also shown.

Just as in the case of the 740 body, the presence or absence of sand in the pinhole was a decisive factor influencing the performance of the insulator under steep wave front impulses. Just by eliminating sand from the bottom of the pinhole the level of improvement when compared with 304 body insulators under Appendix A was as follows:

		Ave. KV %	Below 110-KV	
Appendix A (Appendix A ((18254 old)	49	93	
Appendix A	(18254 new)	57	100	
Appendix D		124	10	

The problem although isolated still provided many divergent paths which were not fully explored. Other questions which had to be resolved were:

1) The effect of acco-polymer or sand glaze additives used for adhesion of sand before firing. The possibility that some deleterious residues were forming after firing needed investigation.

- 2) Porosity of sand itself raised serious doubt since the addition of cement to an insulator provided a means whereby moisture might be absorbed into the sand, thereby providing highly conducting probes much in the manner of a needle point gap.
- 3) Laboratory examination of many kinds of sand seemingly indicated that certain characteristics might provide better grain structure and therefore each type must be more fully investigated.

Sand glaze and its adhesives covered in labove were tested and reported in Appendix E. Specific tests were made on:

Group 17 - Regular 7000 sand glaze in pinhole; sand on head and in pinhole.

Group 18 - Acço-polymer in pinhole; no sand in pinhole; sand on head. Group 19 - Standard unit with Karo and glycol instead of acco-polymer

in sand glaze.

Group 20 - Standard unit with 100% Karo in sand glaze.

Substituting Karo for acco-polymer does not benefit the insulator. Actually group 18 demonstrates that instead of acco-polymer accelerating failures, the absence of sand in the pinhole provides for an improvement in results.

To fully explore the effect of porosity and better grain structure in sand, a multiplicity of sands in the raw state, made from filter-pressed clays and prefired clays were prepared on shells and assembled into insulators and tested. Appendix F gives complete details and accompanying results with respect to these sands.

Several groups after initial testing gave indications of reasonably good results. Additional assemblies were made in the same manner and were subsequently tested and these same types did not come up to expectations. These groups were as follows:

	INITIAL.			REP	EAT	6
	Group No.	Ave.	of	Group No.	Ave.	%
Prefired #3 Sand	24	136	10	44	66	90
Prefired Zircon Sand	31	139	10	42	120	30
Prefired Zircon Feldspar	32	149	12.5	39	110	40
dry mix						

The sand exhibiting the most favorable qualities from the standpoint of steep wave front impulses was group 37, filter pressed zircon and feldspar combination. Also showing some promise was the prefired 317 clay and feldspar filter pressed body, group 36. Immediately following the impulse tests sufficient insulators were available to conduct M.&E. and Ultimate tests.

	Group 37	and a selection of the	Gr	oup 36
Sample	M.&E.	Ultimate	M.&E.	Ultimate
No.	Lbs.	Lbs.	Lbs.	Lbs.
11	15800	24800	14200	16800
12	13150	23500	14300	18750
13	14850	19050	13050	15500
14	15250	16550	14000	14150
15	17500	22900	14300	18400
16	13600	21350	15150	18200
17	17000	19750	15250	18800
18	15200	22650	12800	18700
19	17600	19750	14000	14900
20	15400	18800	13600	17650
Average	15535	20910	14065	18800
Percent Belo Percent M.&F	a man a m	40) 00) Group 37	80) 100) Gro	up 36

The poor performance of these sands on ${\tt M.\&E.}$ precluded making additional tests.

Attached to Appendix F is a summary by types of sand. The performance shown is very erratic and substantially the same as shown in Appendix A for standard insulators. It is apparent that modifications to type as well as to manufacturing methods has not provided the desirable results. Sand exhibiting favorable characteristics toward impulse show extremely poor performance on M.&E. and Ultimate tests.

During a period when Manufacturing Engineering was experimenting with the automatic ball making machine and subsequently when automatic ball making equipment was in operation tests were made on shells produced under the experimental and final set ups with the following results:

PUNCTURE UNDER OIL AFTER 5 IMPUISES

Experimental	Ball Mal	ker-Group 46	Automatic Producti	on Ball Ma	ker-Group 17
Shell Date	KV	Location	Shell Date	KV	Location
02061 02061 02061 02061 02061	142 136 106 144 80	Н Н Н Н	05222 05222 05222 05222 05222	152 144 90 154	B.C. H H H
02061 02061 02061 02061 02061	153 88 140 150 82	H H H H	05222 05222 05222 05211 05211	145 120 124 140 88	H H H H
Average - Percent Below	122 110-KV	- 40Group 46	Average -	, 125 up 47	

Automatic ball making does not relieve the situation but it certainly is not adversely effecting the performance of the insulator under steep wave front impulses.

In Appendix B when shells only were subjected to test, improved performance had been exhibited on shells using mercury and molten lead to secure the pinhole. Assuming the large conducting area prevalent in these assemblies was influencing the results on shells, insulators using 740 body and 304 body were assembled after having sprayed the bottoms of the pinhole generously with copper metal spray. These shells were sprayed with sand remaining in and on the bottom of the pinhole and it was believed that a better electrical distribution would result, such that concentration of electrical stress at the bottom pinhole radius would be relieved.

COPPER SFRAY BOTTOM PINHOLE

740 E	ody - Grou	p 48	30	4 Body - 0	roup 49
Shell Date	KV	Location	Shell Date	KV	Location
04011 04011 04011 04011 04011	P 146 142 155 156	Н Н Н Н	04181 04181 04181 04181 04181	40 74 66 80 P	H H H
04011 04011 04011 04011 04011	162 152 150 P 156	Н Н Н	04181 04181 04181 04181 04181	P 72 134 60 86	Н Н Н
Average -	122		Average -	61	
Percent Belo	w llo-KV	- 20Group 48	90Group 4	9	

With the addition of copper metal spray to the bottom of the pinhole on the 740 body there appears to be some slight improvement in performance as compared to results in Appendix A. The improvement is not appreciable and the treatment is found ineffectual when results on the 304 body are taken into consideration.

Referring to Appendix C and D, results on assemblies without sand in the bottom of the pinhole provide material for further investigation. Therefore, shells of the 1840 style 740 body were made with the head thickness increased by approximately 1/16 of an inch and an absence of sand from the bottom of the pinhole. In addition to puncture under oil after impulse M.&E. and Ultimate tests were also made on these units.

NO SAND BOTTOM PINHOLE - INCREASED HEAD THICKNESS (Group 50)

Puncture	After Imp	ulse	M.&E.	and Ultimate (Po	unds)
Shell Date	ΚV	Location	Sample No.	M. & E.	Ultimate
02211 02211 02211 02211 02211	152 142 138 170 156	Н Н Н Н	1 2 3 4 5	19600 1 7 50 0 1580 0 13700 23850	22900 19000 15800 21100 23850
02211 02211 02211 02211 02211	170 200 150 109 85	Н Н В.С. Н Н	6 7 8 9 10	18950 18250 23000 15600 25700	18950 19350 23750 20800 25700
02211 02211 02211 02211 02211 02211 02211 02211	164 144 142 175 156 180 120 120	B.C. H H H H H		24550 23300 20250 14200 - 19590 Below 15,000 Failing M.&E	
Average -	167 149	Н			

Percent Below 110-KV - 10.5

The apparent improvement in puncture-impulse strength with the increased head thickness, no sand on bottom pinhole combination is offset by the relatively poor M.&E. results obtained on this lct of insulators. The high percentage of M.&E. failures preceeding mechanical failures can only be tolerated at the expense of a depreciation in the normal M.&E. and ultimate test level.

To seek some remedial measures for the disappointing M.&E. performance, it was conjectured that shells without sand in the bottom of the pinhole may be developing unusual voltage gradients at the bottom of the sand band and subsequently under the combined mechanical and electrical stress present electrical failures precipitated. It was thought that brushing sarco into the bottom of the pinhole might change the mechanical load distribution within the pinhole area and remove the high stress from the bottom of the pinhole. Assemblies with added head thickness, an absence of sand, and sarco brushed into the bottom of the pinhole, along with standard head thickness shells having no sand in the bottom of the pinhole, were tested and compared.

SHELLS INCREASED HEAD THICKNESS NO SAND BOTTOM PINHOLE SARCO BRUSHED BOTTOM PINHOLE

SHELLS STANDARD HEAD THICKNESS NO SAND AT BOTTOM OF PINHOLE

Sample No.	M.&E.	Ultimate	Sample No.	M. &E.	Ultimate
1 2 3 4 5	11300 12400 13300 14400 16000	11900 12400 13500 14400 16600	1 2 3 4 5	14050 26850 26950 14200 17550	15000 26850 26950 19300 18650
6 7 8 9 10	19550 17150 14150 15200 12000	19550 17150 14150 16200 12000	6 7 8	14900 16150 18200	21000 22000 18700
Average	- 14545	14785	Average	- 18606	21056
	Below 15,000 Failing M.&E.	- 60 - 40		Below 15,000 Failing M.&E.	- 38 - 75

Next, it was decided to make shells with the sand band on the outside below the plane of the sand band inside the pinhole (see sketch No. 1). Here again was an effort to redistribute stress away from the critical bottom of the pinhole. With the simultaneous ap lication of load on both cap and pin and the absence of sand at the bottom of the pinhole, it seems very likely that an unbalanced load condition would exist. This unbalance is thought to be a tensile stress applied at the juncture of insulator head and sidewalls and created by the application of load from the lip of the cap transmitted through the sand band and applied from the cobb end of the pin to the sand on the pinhole.

LOWERED EXTERNAL SAND BAND

Sample No.	M.&E. (Lbs.)	Ultimate (Lbs.)
1 2 3 4 5	17900 20700 18350 20800 19800	21000 21100 18350 21100 19800
6 7 8 9 10	14400 20650 21650 20950 13800	24650 20650 21650 20950 19150
Average	18900	20840
Percent Below Percent Failin		

Since 50 percent of the assemblies failed electrically prior to mechanical failure, the previous supposition could not be supported.

The thought, however, persisted that stress distribution remained the stigma to providing good M.&E. performance with the removal of sand from the bottom of the pinhole. The attempt through lubrication or uniform distribution by the addition of sarco and the alteration of the external sand band to balance combined pin and cap loads had both failed to accomplish the intended purpose, just as the attempt to redistribute electrical stress by applying conducting coatings to the bottom of the pinhole had essentially failed to improve puncture-impulse performance.

Next, it was reasoned that the rosition of the ball bolt at the bottom of the pinhole was very critical. If this were true, then by placing a washer at the bottom of the pinhole approximately equal to the thickness of the removed sand the relationship of cap, pin, and pinhole radius would remain unchanged and subsequently no electrical preceeding mechanical failures should result.

This idea was put to a test by assembling insulators without sand in the bottom of the pinhole and an asphalt treated felt washer, 1/16 inches thick, placed on the bottom of the pinhole before assembling the pin. A second group identical to the first were dipped in wax.

The results achieved were:

SHELLS, NO SAND BOTTOM PINHOLE ASPHALT WASHER BOTTOM PINHOLE

SHELLS, NO SAND BOTTOM PINHOLE ASPHALT WASHER BOTTOM PINHOLE HEADS WAXED

			CONTRACTOR OF THE PARTY OF THE		
Sample No.	M.&E. (Pounds)	Ultimate (Pounds)	Sample No.	M.&E. (Pounds)	Ultimate (Pounds)
1	19700	19700	1	19100	19100
2	23150	23150	2	20650	20650
3	21700	21700	3	19500	19500
4	21050	21050	4	21050	21050
5	20250	20250	5	21750	21750
6	21250	21250	6	21800	21800
7	21550	21550	7	19800	19800
8	21300	21300	8	21400	21400
9	21700	21700	9	22050	22050
10	22000	22000	10	21200	21200
Average	- 21365	21365	Average	- 20830	20830
% Below					
15,000	0	0		0	0
% M.&E.					
Failures	0	0		0	0

The addition of the asphalt washer has produced the desired result. Twenty assemblies tested without failure below 15,000 lbs. and without electrical failures preceding mechanical failures.

Further demonstration of proof by removing sand from the bottom of the pinhole and adding an asphalt washer to maintain M.&E. strength is shown by the following tests made on 304 body shells. Preceeding the M.&E. data is Puncture Under Oil After 5 Impulses for 18255 assemblies using the 304 body with no sand in the pinhole but an ashphalt washer at the bottom of the pinhole.

PUNCTURE UNDER OIL AFTER 5 IMPULSES

KV	Location	KV	Location
156	B.C.	130	H
85	\mathbf{H}	160	B.C.
140	B.C.	92	H
156	\mathbf{H}	162	B.C.
144	B.C.	85	H

Average - 131

Percent Below 110-KV - 30

18255 Assembly		18	8255 Assembly	
NO SAND BOTTOM PINHO NO ASPHALT WASHER	OLE	NO SAI ASPHA		
Sample M.&E. No. (Pounds)	Ultimate (Pounds)	Sample No.	M.&E. (Pounds	Ultimate (Pounds)
1 26650 2 27500 3 29600 4 32100 5 22450	32100 33700 29600 32100 33450	1 2 3 4 5	30100 26100 28100 27550 29850	30100 26100 28100 27550 29850
6 28850 7 30100 8 31250 9 26850 10 28250	28850 30100 31250 26850 28250	6 7 8 9	30700 27100 31850 30700 34500	30700 27100 31850 30700 34500
Average 28360	30625	Average	29655	29655
Percent Below 25,000 lbs. Percent M.&E. Failures	- 10 - 30		low 25,000 lbs. &E. Failures	- O - O

III. SUMMARY

Improvement in insulator performance under steep wave front impulses is substantial on insulators having sand removed from the bottom of the pinhole. This is particularly true on 1840 style shells made from the 304 body. For further evidence a resume of all puncture under oil tests after five impulses made during the investigation shows:

	1840 Sty	le 740 Body	1840 Style 304 Body		
	Standard <u>Assemblies</u>	Without sand bottom pinhole	Standard Assemblies	Without sand bottom pinhole	
Total tested Average KV % Below 110-KV	60 115 35	29 142 15	30 61 97	20 128 20	

It is to be noted that while improvement is in positive evidence, complete improvement has not been achieved. Many of the insulators which failed were examined critically; these examinations included porosity, specific gravity, and microscopic examinations. These examinations did not provide any evidence for establishing the pattern of failure. It was of interest to observe that the puncture path in units examined after puncture under oil tests and also in the units failing electrically prior to mechanical failure in the M.&E. test were in the same general area. The attached sketch No. 2 shows the location of these puncture paths. Examination of the sketch shows that the failure originates at the sharp edge of the cobb end of the pin and in the small internal radius at the bottom of the pinhole.

It is reasonable to assume that the small radius between the step of the head and sidewalls provide an area of high electrical field concentration. The same concentration will occur at the edge of the sharp corner of the ball bolt. The placement of pin in the pinhole as required in suspension insulator assemblies makes this area vulnerable to electrical field concentrations.

Similar concentrations of stress will occur through mechanical stress distribution of radii and sharp edges of ball bolts with the application of loads.

The effect of the presence or absence of sand in this area can then only lead to further supposition. It is conjectured that when sand particles of varying shapes and sizes are placed in this zone of high mechanical and electrical stress, the orientation of certain particles with respect to steep wave front impulses follows the behaviour of needle point electrodes promoting even greater electrical stress concentrations which subsequently lead to insulator breakdown.

The application of the above reasoning while explaining the cause of breakdown does not provide an explanation of why 304 body insulators with sand located at the bottom of the pinhole are more susceptible to breakdown under impulse than those of the 740 body. Referring back to Appendix B, it will be recalled that the pattern of breakdown was greatest on shells in which electrodes were held more rigidly in place. It may be possible that the adhesion of sand to the 304 body is somewhat greater than the adhesion of sand to the 740 body and hence the presence of a multiplicity of rigidly held electrodes provides the mechanism for promoting this higher degree of failure.

By removing the sand from the bottom of the pinhole and then subjecting insulators to combined mechanical and electrical tests, a higher percentage of electrical failures occurs. Improvement is immediate if a washer of thickness roughly comparable to the removed sand is placed in the bottom of the pinhole. This undoubtedly reflects on the sensitivity of the critical zone. Moving the pin toward the bottom of the pinhole places both greater mechanical and electrical stress in the vulnerable pinhole radius, and the subsequent application of load results in electrical failure.

Examination of insulators which failed impulse tests but are reported as having sand removed from bottom of pinhole always had clusters of sand particles adhering to a portion of the pinhole radius. More effective sand removal may have led to even greater improvement in performance.

IV. CONCLUSIONS

Immediate improvement in insulator performance under steep wave front impulse surges without detrimental effect when subjected to combined mechanical and electrical loads may be obtained by removing the sand from the bottom of the pinhole and adding a small asphalt washer. It is important to note that the removal of sand from the bottom of the pinhole includes removal of sand from the internal radius. This may be done by instructing glaze wheel operators to avoid brushing acco-polymer below a certain location within the pinhole and adjusting the squirt nozzle to prevent flushing the bottom of the pinhole with glaze. Also, when transporting shells to the kiln, glaze will tend to run down across the internal radius and sand particles shaken loose by vibration will become lodged in the radius. Kiln loaders should be instructed to upset shell and attempt to shake free sand loose. This method will not result in complete freedom from failure but will certainly lead to improved results.

From a long range standpoint much additional work needs to be carried out. For instance, a slight increase in head thickness (Group 50) elevated the individual puncture values in most cases to extremely high values. Lower concentration factors may be obtained by providing a larger radius at the bottom of the pinhole and some further improvement may be gained by increasing the radius of curvature at the top of the head. To further reduce the stress concentrations within the pinhole, it is believed desirable to increase the present radius at the edge of the cobb end of the ball bolt from the present 1/32" to 1/8".

A composite of all these recommended changes is shown on drawing VR-A-712-57.

JKaminski/cp 7/3/57

APPENDIX A Page 1 of 3

Percent Below 110-KV	0	0	10		15		22.2		55	0		70	10	10		15
Ave.	146	143	145		131		126		93	145	158	132	139	143		137
		165	160	138	98	140		132			170	180	160	155	150	170
		150 1	156	136	156	136		130			170	178	156	152	146	156
		150	155	136	156	136	156	128			160	160	154	150	140	156
1, KV		146	154	130	152	134	154	88			160	155	150	148	132	156
er Oil		746	153	126	150	132	150	81	156		156	152	148	971	120	156
e Under	150	145	150	120	148	126	150	8	156	156	156	120	971	146	110	156
Puncture	150	142	150	120	148	112	150	80	150	154	156	105	145	145	110	156
더	150	134	139	110	143	87	148	8	150	150	156	100	132	142	106	156
	146	130	138	107	142	80	140	80	146	136	156	8	112	140	85	154
	136	126	92	91	1,40	8	140	92	140	128	136	83	8	106	80	154
10 1																
Qty. Punctured	1	ı		į		Н		4						- 1		
Qty. Tested	2	10	10	20		19		20		5	10	10	10	10	50	
No. of Impulses	0	r-I	CV	m		7		5		0	Н	CU	m	4	10	
											ji .					
Insulator	0487									18425						
Ins	-									М						

e. Percent Below 110-KV	141 148 o	154 0	144 0 97 70 95 70	83 79 49 93
APPENDIX A Page 2 of 3 Ave. Functure Under Oil, KV	80 140 140 144 146 150 152 152 15 ⁴ 156 1 146 150 150		150 150 141 144 146 148 150 156 15 140 140 141 144 146 148 150 156 15 83 83 90 98 102 109 127 140 14 76 77 78 80 84 85 120 130 1 62 64 69 70 70 70 74 78 140 146	68 146
Insulator No. of Qty. Designation Impulses Tested Punctured AB #32440	2 - 3 - 3 0 Iapp #8200 0 3 0 3	2 3 3 4 18 0	18254 0 10 0 From Old 1 10 0 Stock 2 10 0 3 15 0	и 14 0 5 15 и

	- 1
	- 1
	- 1
_	-
	-11
	1
	50
	-
	[1]
	6-3
	1
	CLA
	0.3
	1
	<□
	-4
	- 1
	- 1

Page 3 of 3

Insulator Designation	No. of Impulses	Qty. Tested	Qty. Punctured			년	Puncture Under	e Und	er Oil,	I, KV			11.	Ave. KV	Percent Below 110-KV
18254	0	2	0	777	144	144	144	148						145	0
rrom New Stock	H	10	0	8	82	88	89	110	122	130 1	132 1	140 15	150	123	04
	N	10	0	61	77	77	79	62	81	81	06	112 1	150	89	80
	c	10	0	78	78	82	8	26	102	142	142 1	150 15	153	111	09
	-	10	-	89	78	80	80	80	84	48	86 1	146		62	06
· · · · · · · · · · · · · · · · · · ·	5	10	CV	9	62	4	70	47	92	78	8			57	100
18360	0	5	0	132	1.36	150	150	150						143	0
	Н	10	Н	8	101	106	108	126	134	134]	142 1	142	•	108	040
	N	10	0	80	80	82	112	130	134	144	150 1	150 1	156	122	30
	m	10	0	8	82	87	128	130	130	138	146 1	148 1	154	122	30
	7	10	0	48	92	110	120	142	146	150	150 1	156 1	170	132	20
	10	10	0	82	85	120	124	140	1747	146	150 1	150 1	150	129	50
						Summary	ary								
			1840	H1	18425	0	OB #3244c		Lapp	#8200	. CH	19254 (0	(019)	18254 (new	18360
Average Puncture (KV) Under Oil after 5 imp	cture (KV) fter 5 imp	KV) impulses	93		137		141		Н	154		64		57	129
Percent Below 110-KV after 5 impulses	Below 110-KV impulses		55		15		10			0		93		100	50

APPENDIX B

1840 SHELLS (UNLESS OTHERWISE NOTED)

Sample No.	Pin set in molten lead in pinhole	77598 shell with pin set loosely in pinhole (92674 pin)	Fin set in pinhole with mercury added	18400 shell with pin loosely set in pinhole and faschine dye added
	Number of i	Number of impulses applied to failure (Limit	- 20 impulses)	
しろりれらって	20 20 20 20 5	6 4 5 11 11 15 1.5	800 800 800 800 800 800	A 10 A 10 A 10 A 10 A 10
Sample No.	18400 shell pin set loosely in pinhole, zyglo added	77598 shell with 18425-P Ly pin set loosely in pinhole	18400 shell with 73991-1 pin set in pinhole with zyglo added	Pin set in pinhole with zinc metalspray added to pinhole
	Number of i	Number of impulses applied to failure (Limit - 20 impulses	- 20 impulses)	
10m4r	В 10 В В 8 В 22	C 10 C 10 C 10 C 7 C 10	D 20 D D 10	日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日

A - No dye penetration
B - Possibly slight penetration of zyglo
C - No penetration of zyglo
ABCDE - Maximum number of impulses - 10

APPENDIX C

ALL SHELLS 1840 STVLE 740 BODY

in pinhole,					
GROUP h id on head, sand bottom of pinhol	Location	щ m m m m			
sar	K	150 138 148 152 150	160 102 140 160 150	140 145 156 150	135
Glazed, no sand	Shell Date	02052 02052 02052 02052 02052	02082 02082 02082 02082 02082	02082 02082 02082 02082	
P 3, sand on d in pinhole	Location	о о о о о о о о о о о	n m m m	ပံ ပံ ပံ ပံ က က က က က	
GROUP 3 glazed, s no sand 1	KV	168 170 146 178 165	168 150 154 165	164 160 165 148	144
Shell head,	She 11 Date	02052 02052 02052 02052 02052	02052 02052 02052 02056 02056	02052 02052 02052 02052 02052	
UP 2 , no sand on pinhole	Location	0 0 0 0 0 m m m m	ပ္ ပ ပ ပ ပ က က က က က	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	
GRO laze	KV	165 144 150 152 148	142 148 155 156	155 150 152 160 140	152
Shell ghead or	Shell Date	02052 02052 02051 02051 02051	02052 02052 02052 02052	02052 02052 02052 02052 02052	
no sand,	Location	В.С. В.С. В.С.	В.С. В.С. В.С.	В.С. В н н	
GROUP shell,	K	165 152 156 160	156 178 160 160 165	168 160 135 170 165	162
GE Plain she no glaze	Shell Date	Group Group Group Group	Under Oil Myder Oil Myder Oil		Ave. KV % Below 110-KV

APPENDIX C

Page 2 of 3

ALL SHELLS 1840 SIYLE 740 BODY

GROUP 8 Standard shell fired Bottom Kiln No. 3			9 4 н 6 в.с.	В .C. В н н н н н н н н н н н н н н н н н н н	m 0
GRC Standard she	X		01201 79 01201 155 01201 144 01201 156	150 142 142 142 142 142 142 142	123
Sta			90000	01242 01242 01242 01242 01242	
7 on head	Location	нппп,			
GROUP 7 sed, sand or		11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	4 6 6 6 6	ρ	100
Unglazed,		02132 02132 02132 02132	02130 02130 02130 02130 02130	02130	
UP 6 sand on head, hole	Location	н В В С	н н н g	пп,п,	
GRO no	K	164 146 150 145 150	142 142 152 156	98 95 96 97	72
Glazed, Sand in	Shell Date	02052 02052 02052 02052	02052 02052 02052 02052 02052	02052 02052 02052 02052 02052	
5 1 sanded, ed, unsanded	Location	B.C. B.C. B.C.	В.С. В.С. Н Н	H H B.C.	
GROUP 5 glazed and	1	145 150 142 150	144 150 160 174 152	142 158 140 140	150
Head gl	Shell Date	Pilot Group ON OO OO ON OO OO OO OO ON OO OO OO OO OO ON OO OO OO OO OO OO ON OO O	Inder Oil	Puncture Large to the Large to So	Ave. KV % Below 110-KV

APPENDIX C Page 3 of 3

ALL SHELLS 1840 STYLE 740 BODY

	Location		
GROUP 12 Standard shell Sponged pinhole	145 145 153 152	78 110 110 136 136 80 90 60 138	
GROUP 12 Standard shell Sponged pinhol	Shell Date 02051 02051 02051 02051	02051 02051 02051 02051 02051 02051 02051 02051	
1 fired	Location	пппп ппппп	
GROUP 11 Standard shell In Kilm No. 1		128 120 186 1160 150 176 178 119	
GE Standard In Kiln	Shell Date	02041 02041 01242 01312 02042 02042 02041 01301	
10 . fired	Location	о́о́ шшшшш шшшшш	
GROUP d shell No.2	M	133 68 150 146 146 140 122 122 123 123 123 123	
GROUP Standard shell In Kiln No.2	Shell Date	02052 02052 02052 02052 02052 02052 02052	
9 1 fired 3	Location	о° ппппп пппп	
Shel No.	N IIII	130 140 120 150 150 152 152 152 152 152 152 152 152 152 153	
Standard Top Kiln	Pilot Group Group	Puncture Under Oil302 after 5 impulses o11302 Oil302 Oil302 Oil302 NV Below	

A PPENDIX E

Page 1 of 1

ALL SHELLS 1840 SIYLE 740 BODY

0	sand glaze	Location	о° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0° 0°	пнн н	ппппп	
GROUP 20	and	Ž.	123 128 140 151	80 150 149 P	116 45 73 112	95
	100% Karo	Shell Date	02132 02132 02132 02132 02132	02132 02132 02132 02132	02132 02132 02132 02132 02132	
	Standard unit with Karo and Glycol sand glaze	Location	о́ п п п п п п	п н н н п г	шшш • •	
GROUP 19	d unit wo	KV	4444 1444 1540 1540	134 156 126 150	146 100 100 100	97.5
	Standard u and Glycol	Shell	02151 02151 02151 02151 02152	02151 02151 02151 02151 02151	02151 02151 02151 02151 02151	
18	Acco-polymer in pinhole No sand in pinhole	Location	បំ បំ បំ បំ បំ ៣ ៣ ៣ ៣ ៣	о о о о о о о о о о о о о о	о о о о н м н м м	
GROUP]	olymer i	K	140 138 156 148	152 80 152 135 143	146 145 109 150 146	136
	Acco-po No sand	Shell Date	02192 02192 02192 02192	02192 02192 2192 02192 02192	02192 02192 02192 02192 02192	
17	Standard with regular 7000 glaze in pinhole	Location	ပ္ပံ့ ပံ့ မ	о° В н н н	о п н н н н н н н н	
GROUP 17	lard with glaze in	R	108	105 147 100 156 121	144 75 140 73 P	106
	Standar 7000 gl	Shell Date	Pilot Group OPIBP OPIB OPIB	inder Oil	Puncture I grant of the Punctu	Ave. KV % Below 110-KV

APPENDIX F

Page 1 of 6

ALL SHELLS 1840 SIYLE 740 BODY

1 sand	Locatio	1 1 1 1	ппппп	E HHH	
GROUP 25 ired 740-	KV	1 1 1 1	136	79 61 114 145	06 09
GROUP 25 Prefired 740-1 in pinhole	Shell Date	0 0 0 0	02281 02281 02281 02281	02281 02281 02281 02281	
sand in on head	Location	ပံ့ ပံ့ யயயமம	о° о° м м н н н	о п н н н п	
#3 #3	KV	140 153 136 150 144	150 152 154 86	152	136
GROU Frefired pinhole	Shell Date	02182 02201 02201 02201 02201	02202 02202 02202 02202	02205 02202 02202 02202 02202	• 1 1
No. 2	Location	о́ о́ шашша	шш і п	пппп •	
GROUP 23 mina Sand pinhole	KV	136 126 126 142 144	138 154 P	69 134 73	72
GROU Alumina in pinho	Shell	02182 02182 02182 02182 02182	02182 02182 02182 02182 02182	02182 02182 02182 02182 02182	
ad in	Location	о° В н н н н	шш • шш	г п п п п п	
GROUP 22 elain sar ole	M	136 140 121 145 145	140 130 P 115 104	150	102
GROUP 22 Porcelain sand pinhole	Shell Date	02182 02182 02182 02182 02182	02182 02182 02182 02182 02182	02182 02182 02182 02182 02182	
sand	Location	ппппп	ппппп	ΰϋ н й й н н	
GROUP 21 1 Zircon sand pinhole	KV	145 150 123 146 143	1149 1116 1140 80 150	156 165 165 150	30
GR(No. 1 Z in pinh	Shell. Date	Group Group	npulses	Puncture Usiter 5 in OCI31	Ave. KV % Below

APPENDIX F

Page 2 of 6

ALL SHELLS 1840 STYLE 740 BODY

5	GROUP 26	9	GR	GROUP 27		GROUP 28	3 (1840	GROUP 28 (18400 Shells)	GRO	GROUP 29		GRC	GROUP 30	
Raw N in pi	No. 317	317 WG2 sand	Raw Zi	Zircon sa	sand	Raw Beryl pinhole	yl sand	l in	Raw Zir spar mi	Zircon and mixed in p	nd Feld-	Prefired 3	ed 317	sand
Shell Date	B	Location	Shell Date	KV	Location	Shell Date	K	Location	Shell Date	KV	Location	Shell Date	N	Location
	1 1	1 1	03021	136	шш	03081	136	шш	03081	170	E E	03051	120	田田
ino.		1	02031	132	田片	03081	136	I III F	03081	146	I III f	03051	133	田田
	1 1	l I	03031	174	дш	03081	115	T H ;	03081	148	្លំ ប្ ធ ៣	03051	156	耳耳
02281	150	н	03031	ц.,	. 1	03081	8	Ħ	03081	80	þ.	03051	ρ	1
E			03031	8	0	03081	J d		03081	3768	田田	03051	142	ш
395	30 m		03031	117	1	03081	Ct (0	03081	50,00		03051	78	田
Tno	L)O	4 !	03031	140	1 (10020	э ₄ р	4 (03081	707	m r	03051	מי ה	ر 1 م
		þ	10000	8		COCC	4 [בן ו	10000	1 0	4 1	1000	1 1	0
5 .		i H	03031	382		03081	72	= E	03081	165	4 12	03051	128	日日
	148		03031	152	1	03081	77	日	03081	150	Н	03051	110	田
ls			03031	152	ı	03081	477	Щ	03081	8	H	03051	Д.	ı
102201		TI .	03031	108	1	03081	07	H	03081	130	田	03051	14	Щ
Ave. KV	125			100			147			125			81	
% Below	Ċ			9						(1	
AV-OTT	N			00			2			7			20	

APPENDIX F

Page 3 of 6

ALL SHELLS 1840 STYLE 740 BODY

Pref in p	GROUP 31 Prefired Zircon in pinhole	1. rcon sand	GROU Prefired spar dry	GROUP 32 Prefired Zircon spar dry mix in	con Feld- in pinhole	GROU Prefired in pinho	GROUP 33 fired Beryl pinhole	yl sand	GRO Beryl p pressed	GROUP 34 1 prefired sed sand i	ed filter in pinhole	GROU#3 sand	UP 3 pre	.5 fired,filt pinhole
Shell Date	Z I	Location	Shell Date	KV	Location	Shell Date	M	Location	Shell Date	K	Location	Shell Date	K	Location
Pilot	154 154 132 156 156	о п н н п п					1 1 1 1 1							1 (1.1.1
Under Uil seslingulses OCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOC	150 150 150 150 150 150 150 150 150 150	о п ш п п н п н	03122 03122 03122 03122 03122	165	ů ш m ш ш ш	03122 03122 03122 03122 03122	168 142 80 80 80	ппппп	04012 04012 04012 04012	88 138 P	нппп .	04012 04012 04012 04012	80 79 67 67	нпппп
Puncture Safter 5 Safter 6 Safter 6 Safter 6 Safter 7 Safter 6 Safter 6 Safter 7 Saf	130	ннннн	03122 03122 03122 03122	156	т v v v	03122 03122 03122 03122 03122	136 83 84 146 165	нннн	04012 04012 04012 04012	101 165 80	וחחוד	04012 04012 04012 04012 04012	122 144 98 50 140	в в с с с с с с с с с с с с с с с с с с
Ave. KV % Below	139			149			124			72			96	
110-KV	10			12.5			70			80°			02	

APPENDIX F

Page 4 of 6

ALL SHELLS 1840 STYLE 740 BODY

GROUP 36	GROUP 37	GROUP 38	GROUP 39	GROUP 40
317 and Feldspar prefired and filter pressed in pinhole	Zircon and Feldspar filter pressed in pinhole	Prefired 45% Beryl Porcelain in pinhole, dry mix	317 Zircon and Feldspar prefired, dry mix, in pinhole	45% Raw Beryl por- celain in pinhole
Shell Date KV Location	Shell Date KV Location	Shell Date KV Location	Shell KV Location	Shell Date KV Location

No Pilot Groups

о 	шчн		
135 140 125	P 76	78	09
03281 03281 03281 03281 03281	03281 03281 03281 03281		
пппппп	шшіш		
1578	126	110	7†0
03281 03281 03281 03281 03281	03281 03281 03281 03281		
нинин н	田1田1		
156 119 80 78 78	P 86	73	80
03201 03201 03201 03201 03201	03201 03201 03201 03201		
ပံ ပံ	ပံ		
р, р, шни шн	дфпп		
12111701170	177	144	10
03281 03281 03281 03281 03281	03281 03281 03281 03281		
о В ш ш ш ш н н н г	пннн		
170 69 69 69 69 69 69 69 69 69 69 69 69 69	132	133	20
5 impulses 04012		We. KV Below	LO-KV
ure Under Oil		4 80	-1

APPENDIX F (SUMMARY)

Page 6 of 6

	Quantity Tested	No. of Failures	Percent	Average KV		
		No. 3 Sand				
Prefired Prefired Prefired, Filter Pressed Filter Pressed	10 10 10 10	1 9 7 6	10% 90% 70% 60%	66 96 86		
		Beryl Co	Beryl Compositions			
Raw Prefired Prefired, Filter Pressed 45% Beryl Porcelain, Dry Mix 45% Beryl Porcelain, Raw 45% Beryl Porcelain, Raw Dry Mix	10 10 10 10 10	9 4 8 8 6 10	90% 40% 80% 80% 60%	47 124 72 73 78 67		
		317 Comp	ositions			
Raw WG2 Prefired 317 and Feldspar, Prefired, Filt. Pressed 317 and Feldspar, Filter Pressed 317 and Feldspar, Prefired, Dry Mix	10 10 10 10* 10*	2 5 2 1 4	20% 50% 20% 10% 40%	125 81 133 144 110		
		Zircon Compositions				
Raw Raw Zircon and Feldspar Prefired Prefired Zircon and Feldspar Prefired No. 1 Zircon and Feldspar, Filter Pressed	10 10 10 8 10 10	6 1 1 3 3	60% 40% 10% 12.5% 30% 30%	100 125 139 149 120 125		

^{*}Same group of insulators

Normal sand band focution

Sund band relocation

Internal # sond band focution

Most frequent convence of puncture 1 drs on implies and MaE fullive occur in critic I zone