Algorithm Homework 6 NP

Jingwei Zhang 201528013229095

2015-1-7

1 Problem 1

proof: Integer-programming is NPC.

Firstly, by checking $Ax \geq b$, we can verify this problem in polynomial time (matrix multiplication takes $O(mn^2)$ and comparison takes O(m)). Thus, Integer-programming problem is a NP problem.

Secondly, we will prove that 3SAT problem, a known NPC problem, is reducible to Integer-programming problem in polynomial time. For any instance I of 3SAT problem (its formula is ϕ), which contains m variables $x_i (i = 1, ..., m)$ and n clauses, we construct a instance I_i of Integer-programming as follows:

$$y_i \ge 0 \quad \text{for all } i = 1, \dots, m$$
 (1)

$$y_i \le 1 \quad \text{for all } i = 1, \dots, m$$
 (2)

$$T_i + T_j + T_k \ge 1$$
 for all clause $(X_i \lor X_j \lor X_k)$ (3)

where

$$T_i = \begin{cases} y_i & \text{if } X_i = x_i \\ 1 - y_i & \text{if } X_i = \neg x_i \end{cases} \tag{4}$$

The inequalities above is equivalent to $Ax \ge b$ since every inequality can be changed to $\sum_j a_{ij} x_j \ge b_i$. $y_i = 1$ is equivalent to $x_i = true$ and $y_i = 0$ is equivalent to $x_i = false$. Then, we will prove these inequalities (or this Integer-programming problem) is equivalent to 3SAT problem.

- Suppose there exits an assignment of variables $x_i (i = 1, ..., m)$ such that ϕ is true. We assign y_i with rules mentioned above. It is obvious that inequalities (1) and (2) are satisfied. Note that (3) holds iff at least one of X_i, X_j, X_k is true. Thus, all constrains will hold.
- Suppose there exits an assignment of variables $y_i (i = 1, ..., m)$ such that inequalities (1), (2) and (3) hold. It is obvious that y_i equals to 0 or 1. We assign y_i with rules mentioned above. Note that (3) holds iff at least one of X_i, X_j, X_k is true. Thus, ϕ is true.

Thus, Integer-programming problem is NPC.

2 Problem 3

proof: Half-3SAT is NPC.

Firstly, by substituting the variables with the given assignment, then checking whether half of its clauses is true and half is false, we can verify this problem in polynomial time. Thus, Half-3SAT problem is a NP problem.

Secondly, we will prove that 3SAT problem, a known NPC problem, is reducible to Half-3SAT problem in polynomial time. For any instance I of 3SAT problem, which contains m variables $x_i (i = 1, ..., m)$ and n clauses, we construct a instance I_h of Half-3SAT as follows:

$$\phi_{Ih} = \phi_I \wedge T \wedge D \wedge \cdots \wedge D \text{ (D is repeated for } n+1 \text{ times)}$$
 (5)

$$D = (x_{m+1} \lor x_{m+2} \lor x_{m+3}) \tag{6}$$

$$T = (x_{m+1} \lor x_{m+2} \lor \neg x_{m+2}) \tag{7}$$

 ϕ_I represents the CNF of I. I_h contains 2n+2 clauses and m+3 variables. Note that clause $T=x_{m+1}\lor x_{m+2}\lor \neg x_{m+2}$ is always true. Then, we will prove I and I_h are equivalent.

- Suppose there exits an assignment of variables $x_i (i = 1, ..., m)$ such that ϕ_I is true. If we assign $x_{m+1} = x_{m+2} = x_{m+3} = false$, which leads to D = false, ϕ_{Ih} will be separated into n+1 false clauses(all D) and n+1 true clauses (n clauses of ϕ_I and T). Thus, there exists an assignment such that exactly half the clauses of ϕ_{Ih} evaluate to false and exactly half the clauses of ϕ_{Ih} evaluate to true.
- Suppose there exists an assignment such that exactly n+1 clauses of ϕ_{Ih} evaluate to false and exactly n+1 clauses of ϕ_{Ih} evaluate to true. Since T is always true, if D=true, there are at least n+2>n+1 clauses with value true. This assignment is not possible under previous assumption. If D=false, there are 1 true clause(T) and n+1 false clause. Thus, the remaining n clauses of ϕ_{I} must be true.

Thus, Half-3SAT problem is NPC.