Norwegian University of Science and Technology

TTK4135 – Lecture 7 Active Set Method for Quadratic programming

Lecturer: Lars Imsland

Overview of lecture

- Quadratic programming used for control (MPC), in finance, ...
- Recap last time Equality-constrained QPs (EQPs)
- Active set method for solving QPs
 - For medium-sized problems for large problems, interior point methods may be faster (not part of this course)
- Example 16.4

Reference: N&W Ch.15.3-15.5, 16.1-2,4-5

Quadratic programming

Solving (convex) quadratic programs, QPs

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^\top G x + c^\top x \quad \text{subject to} \quad \begin{cases} a_i^\top x = b_i, & i \in \mathcal{E} \\ a_i^\top x \ge b_i, & i \in \mathcal{I} \end{cases}$$

- Feasible set convex (as for LPs)
- The QP is convex if $G \ge 0$ (strictly convex if G > 0)

Strictly convex $x^T P x = x_1^2 + x_2^2$

Non-convex $x^T P x = x_1^2 - x_2^2$

Equality-constrained QP (EQP)

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} x^\top G x + c^\top x$$

subject to $Ax = b, \quad A \in \mathbb{R}^{m \times n}$

Basic assumption: A full row rank

KKT-conditions (KKT system, KKT matrix):

$$\begin{pmatrix} G & -A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} x^* \\ \lambda^* \end{pmatrix} = \begin{pmatrix} -c \\ b \end{pmatrix} \quad \text{or, if we let } x^* = x + p, \quad \begin{pmatrix} G & A^{\top} \\ A & 0 \end{pmatrix} \begin{pmatrix} -p \\ \lambda^* \end{pmatrix} = \begin{pmatrix} c + Gx \\ Ax - b \end{pmatrix}$$

• Solvable when $Z^{\top}GZ > 0$ (columns of Z basis for nullspace of A):

$$Z^{\top}GZ > 0 \overset{\text{Lemma 16.1}}{\Rightarrow} K = \begin{pmatrix} G & A^{\top} \\ A & 0 \end{pmatrix} \text{ non-singular } \Rightarrow \begin{pmatrix} x^* = x + p \\ \lambda^* \end{pmatrix} \text{ unique solution of KKT system}$$

$$\overset{\text{Theorem 16.2}}{\Rightarrow} x^* \text{ is the unique solution to EQP}$$

- How to solve KKT system (KKT matrix indefinite, but symmetric):
 - Full-space: Symmetric indefinite (LDL) factorization: $P^{\top}KP = LBL^{\top}$
 - Reduced-space: Use Ax=b to eliminate m variables. Requires computation of Z, which can be costly. Reduced space method faster than full-space when many constraints (if $n-m \ll n$).

Active set method for QPs, simplified

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^\top G x + c^\top x \quad \text{subject to} \quad \begin{cases} a_i^\top x = b_i, & i \in \mathcal{E} \\ a_i^\top x \ge b_i, & i \in \mathcal{I} \end{cases}$$

- 1. Make a guess of which constraints are active at the optimal solution
- 2. Solve corresponding EQP
- Check KKT-conditions
 - IF KKT OK, then finished
 - 2. If not, update guess of active constraints in smart way, go to 2.

KKT Conditions (Thm 12.1)

$$\min_{x \in \mathbb{R}^n} f(x) \qquad \text{subject to} \quad \begin{aligned} c_i(x) &= 0, & i \in \mathcal{E}, \\ c_i(x) &\geq 0, & i \in \mathcal{I}. \end{aligned}$$

Lagrangian:
$$\mathcal{L}(x,\lambda) = f(x) - \sum_{i \in \mathcal{E} \cup \mathcal{T}} \lambda_i c_i(x)$$

KKT-conditions (First-order necessary conditions): If x^* is a local solution and LICQ holds, then there exist λ^* such that

KKT for QP

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} x^\top G x + c^\top x \quad \text{subject to} \quad \begin{cases} a_i^\top x = b_i, & i \in \mathcal{E} \\ a_i^\top x \ge b_i, & i \in \mathcal{I} \end{cases}$$

$$\begin{aligned}
\nabla_x \mathcal{L}(x^*, \lambda^*) &= 0, \\
c_i, & i \in \mathcal{I}
\end{aligned}$$

$$\begin{aligned}
c_i(x^*) &= 0, & \forall i \in \mathcal{E}, \\
c_i(x^*) &\geq 0, & \forall i \in \mathcal{I}, \\
\lambda_i^* &\geq 0, & \forall i \in \mathcal{I}, \\
\lambda_i^* c_i(x^*) &= 0, & \forall i \in \mathcal{E} \cup \mathcal{I}.
\end{aligned}$$

Theorem 16.4: If x^* satisfies KKT and $G \ge 0$, then x^* is a global solution.

Degeneracy

Figure 16.2 in Nocedal & Wright.

- 1) Strict complementarity does not hold
- 2) Constraints linearly dependent at solution

If active set known, QP can be solved as EQP

One step of active set method for QP

One step of active set method for QP, cont'd

General QP problem

$$\min_{x} \frac{1}{2} x^{\top} G x + x^{\top} c$$
s.t. $a_i^{\top} x = b_i, \quad i \in \mathcal{E}$

$$a_i^{\top} x \ge b_i, \quad i \in \mathcal{I}$$

Lagrangian

$$\mathcal{L}(x^*, \lambda^*) = \frac{1}{2} x^\top G x + x^\top c - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i (a_i^\top x - b_i)$$

 KKT conditions General:

$$Gx^* + c - \sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_i^* a_i = 0$$

$$a_i^\top x^* = b_i, \qquad i \in \mathcal{E}$$

$$a_i^\top x^* \ge b_i, \qquad i \in \mathcal{I}$$

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{I}$$

$$\lambda_i^* (a_i^\top x^* - b_i) = 0, \qquad i \in \mathcal{E} \cup \mathcal{I}$$

Defined via active set:

$$\mathcal{A}(x^*) = \mathcal{E} \cup \left\{ i \in \mathcal{I} \middle| a_i^\top x^* = b_i \right\}$$

$$Gx^* + c - \sum_{i \in \mathcal{A}(x^*)} \lambda_i^* a_i = 0$$

$$a_i^\top x^* = b_i, \qquad i \in \mathcal{A}(x^*)$$

$$a_i^\top x^* \ge b_i, \qquad i \in \mathcal{I} \backslash \mathcal{A}(x^*)$$

$$\lambda_i^* \ge 0, \qquad i \in \mathcal{A}(x^*) \cap \mathcal{I}$$

One step of active set method for QP, cont'd

Active set method for convex QP

```
Algorithm 16.3 (Active-Set Method for Convex QP).
  Compute a feasible starting point x_0;
  Set W_0 to be a subset of the active constraints at x_0;
                                                                                                                                              \min_{p} \quad \frac{1}{2} p^T G p + g_k^T p
                                                                                                                                                                                                                  (16.39a)
  for k = 0, 1, 2, ...
            Solve (16.39) to find p_k;
                                                                                                                                      subject to a_i^T p = 0, i \in \mathcal{W}_k.
                                                                                                                                                                                                                  (16.39b)
            if p_k = 0
                      Compute Lagrange multipliers \hat{\lambda}_i that satisfy (16.42),
                                                                                                                                          \sum a_i \hat{\lambda}_i = g = G\hat{x} + c,
                                                                                                                                                                                                                  (16.42)
                                           with \hat{\mathcal{W}} = \mathcal{W}_{k};
                      if \hat{\lambda}_i > 0 for all i \in \mathcal{W}_k \cap \mathcal{I}
                                 stop with solution x^* = x_k;
                      else
                                j \leftarrow \arg\min_{i \in \mathcal{W}_k \cap \mathcal{I}} \hat{\lambda}_i;
                                x_{k+1} \leftarrow x_k; \ \mathcal{W}_{k+1} \leftarrow \mathcal{W}_k \setminus \{j\};
            else (* p_k \neq 0 *)
                                                                                                                                  \alpha_k \stackrel{\text{def}}{=} \min \left( 1, \min_{i \notin \mathcal{W}_k, a_i^T p_k < 0} \frac{b_i - a_i^T x_k}{a_i^T p_k} \right).
                      Compute \alpha_k from (16.41);
                                                                                                                                                                                                                  (16.41)
                      x_{k+1} \leftarrow x_k + \alpha_k p_k;
                      if there are blocking constraints
                                 Obtain W_{k+1} by adding one of the blocking
                                           constraints to W_k;
                       else
                                 \mathcal{W}_{k+1} \leftarrow \mathcal{W}_k;
  end (for)
```


$$\min_{x} q(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$

subject to $x_1 - 2x_2 + 2 \ge 0$

 $-x_1 - 2x_2 + 6 \ge 0$

 $-x_1 + 2x_2 + 2 \ge 0$

 $x_1 \ge 0$

 $x_2 \ge 0$

(2)

(3)

(4)

(5)

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

$$\min_{x} q(x) = (x_1 - 1)^2 + (x_2 - 2.5)^2$$

$$-x_1 - 2x_2 + 6 \ge 0 \tag{2}$$

$$-x_1 + 2x_2 + 2 \ge 0 \tag{3}$$

$$x_1 \ge 0 \tag{4}$$

$$x_2 \ge 0 \tag{5}$$

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad c = \begin{bmatrix} -2 \\ -5 \end{bmatrix}$$

$$a_1 = \begin{bmatrix} 1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_1 = -2$$

$$a_2 = \begin{bmatrix} -1 & -2 \end{bmatrix}^\mathsf{T}, \quad b_2 = -6$$

$$a_3 = \begin{bmatrix} -1 & 2 \end{bmatrix}^\mathsf{T}, \quad b_3 = -2$$

$$a_4 = \begin{bmatrix} 1 & 0 \end{bmatrix}^\mathsf{T}, \quad b_4 = 0$$

$$a_5 = \begin{bmatrix} 0 & 1 \end{bmatrix}^\mathsf{T}, \quad b_5 = 0$$

Another example (N. Gould)

$$\min(x_1 - 1)^2 + (x_2 - 0.5)^2$$
subject to $x_1 + x_2 \le 1$

$$3x_1 + x_2 \le 1.5$$

$$(x_1, x_2) \ge 0$$

- 0. Starting point
- 0'. Unconstrained minimizer
- 1. Encounter constraint A
- 1'. Minimizer on constraint A
- 2. Encounter constraint B, move off constraint A
- 3. Minimizer on constraint B = required solution

How to find feasible initial point?

- Same way as for LP:
 - Phase I: Define a LP with known feasible initial point, where solution is feasible for original QP.
 - Phase II: Solve original QP.

- Alternative method: "Big M"
 - Relax all constraints; penalize constraint violations in objective

Initialization methods

Phase 1

$$\min_{(x,z)} e^{T} z$$
subject to $a_{i}^{T} x + \gamma_{i} z_{i} = b_{i}, \quad i \in \mathcal{E},$

$$a_{i}^{T} x + \gamma_{i} z_{i} \geq b_{i}, \quad i \in \mathcal{I},$$

$$z \geq 0,$$

$$e = (1, 1, ..., 1)^{T}, \gamma_{i} = -\operatorname{sign}(a_{i}^{T} \tilde{x} - b_{i}) \text{ for } i \in \mathcal{E}$$

$$\gamma_{i} = 1 \text{ for } i \in \mathcal{I}$$

Feasible initial guess for LP problem:

$$x = \tilde{x}$$

$$z_i = |a_i^T \tilde{x} - b_i| \ (i \in \mathcal{E})$$

$$z_i = \max(b_i - a_i^T \tilde{x}, 0) \ (i \in \mathcal{I})$$

Big M

$$\min_{(x,\eta)} \frac{1}{2} x^T G x + x^T c + M \eta,$$
subject to
$$(a_i^T x - b_i) \le \eta, \quad i \in \mathcal{E},$$

$$-(a_i^T x - b_i) \le \eta, \quad i \in \mathcal{E},$$

$$b_i - a_i^T x \le \eta, \quad i \in \mathcal{I},$$

$$0 \le \eta,$$

- Feasible initial guess for Big M: Whatever.
- η nonzero? Increase M and try again.

Concluding remarks

- Solves similar EQPs iteratively: recalculate only what's needed
- Active set method: Potentially slow, but with good initial guess will be FAST
- Alternative to Active Set: Interior Point (not curriculum)

Figure 16.1 in Nocedal & Wright.