

Final datasheet

EasyPACK™ 2B module with CoolSiC™ Trench MOSFET and PressFIT / NTC

Features

- · Electrical features
 - V_{DSS} = 2000 V
 - $I_{DN} = 160 \text{ A} / I_{DRM} = 320 \text{ A}$
 - Overload operation up to 175°C
 - Suitable Infineon gate drivers can be found under https://www.infineon.com/gdfinder
- Mechanical features
 - AlN substrate with low thermal resistance
 - High creepage and clearance distances
 - Integrated NTC temperature sensor
 - PressFIT contact technology

Potential applications

- EV charging
- Energy storage systems (ESS)
- Solar applications
- DC/DC converter

Product validation

• Qualified for industrial applications according to the relevant tests of IEC 60747, 60749 and 60068

Description

EasyPACK™ 2B module

Table of contents

	Description	1
	Features	1
	Potential applications	1
	Product validation	1
	Table of contents	2
1	Package	3
2	MOSFET, T1 / T2	3
3	Body diode (MOSFET, T1 / T2)	5
4	NTC-Thermistor	6
5	Characteristics diagrams	7
6	Circuit diagram	4
7	Package outlines	5
8	Module label code	6
	Revision history	7
	Disclaimer	8

EasyPACK™ 2B module

Package 1

Insulation coordination Table 1

Parameter	Symbol	Note or test condition	Values	Unit
Isolation test voltage	V _{ISOL}	RMS, f = 50 Hz, t = 1 min	3.2	kV
Isolation test voltage NTC	V _{ISOL(NTC)}	RMS, f = 50 Hz, t = 1 min	3.2	kV
Internal isolation		basic insulation (class 1, IEC 61140)	AlN	
Comparative tracking index	СТІ		> 200	
Relative thermal index (electrical)	RTI	housing	140	°C

Characteristic values Table 2

Parameter	Symbol	Note or test condition	Values			Unit
			Min.	Тур.	Max.	
Stray inductance module	L _{sCE}			9		nH
Module lead resistance, terminals - chip	R _{CC'+EE'}	T _H = 25 °C, per switch		1.3		mΩ
Storage temperature	$T_{\rm stg}$		-40		125	°C
Mounting force per clamp	F		40		80	N
Weight	G			39		g

The current under continuous operation is limited to 25 A RMS per connector pin. Note:

MOSFET, T1 / T2 2

Table 3 **Maximum rated values**

Parameter	Symbol	Note or test condition		Values	Unit
Drain-source voltage	V_{DSS}		T _{vj} = 25 °C	2000	V
Implemented drain current	I _{DN}			160	А
Continuous DC drain current	I _{DDC}	$T_{\rm vj}$ = 175 °C, $V_{\rm GS}$ = 18 V	T _H = 75 °C	160	А
Repetitive peak drain current	/ _{DRM}	verified by design, t _p limited by T _{vjmax}		320	А
Gate-source voltage, max. transient voltage	V_{GS}	D < 0.01		-10/23	V
Gate-source voltage, max. static voltage	V_{GS}			-7/20	V

EasyPACK™ 2B module

Table 4 **Recommended values**

Parameter	Symbol	Note or test condition	Values	Unit
On-state gate voltage	V _{GS(on)}		1518	V
Off-state gate voltage	V _{GS(off)}		-52	V

Table 5 **Characteristic values**

Parameter	Symbol	Note or test condition			Values		Unit
				Min. Typ. Max.		Max.	
Drain-source on-resistance	R _{DS(on)}	I _D = 160 A	V _{GS} = 18 V, T _{vj} = 25 °C		5.1	8.1	mΩ
	l	$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 125 ^{\circ}\text{C}$		10.9			
			$V_{\rm GS} = 18 \text{ V},$ $T_{\rm vj} = 175 ^{\circ}\text{C}$		15.4		
			$V_{\rm GS}$ = 15 V, $T_{\rm vj}$ = 25 °C		5.6		
Gate threshold voltage	V _{GS(th)}	I_D = 112 mA, V_{DS} = V_{GS} , (text) pulse at V_{GS} = +20 V), T_{Vj} =		3.45	4.3	5.15	V
Total gate charge	Q_{G}	$V_{\rm DD}$ = 1200 V, $V_{\rm GS}$ = -3 V, $T_{\rm v}$	_j = 25 °C		0.78		μC
Internal gate resistor	R _{Gint}	T _{vj} = 25 °C			1.8		Ω
Input capacitance	C _{ISS}	$f = 100 \text{ kHz}, V_{DS} = 1200 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		24.1		nF
Output capacitance	C _{OSS}	$f = 100 \text{ kHz}, V_{DS} = 1200 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.563		nF
Reverse transfer capacitance	C _{rss}	$f = 100 \text{ kHz}, V_{DS} = 1200 \text{ V},$ $V_{GS} = 0 \text{ V}$	T _{vj} = 25 °C		0.041		nF
C _{OSS} stored energy	Eoss	$V_{\rm DS}$ = 1200 V, $V_{\rm GS}$ = -3/18 V	, T _{vj} = 25 °C		508		μJ
Drain-source leakage current	I _{DSS}	$V_{\rm DS}$ = 2000 V, $V_{\rm GS}$ = -3 V	T _{vj} = 25 °C		0.04	378	μA
Gate-source leakage current	I _{GSS}	$V_{\rm DS}$ = 0 V, $T_{\rm vj}$ = 25 °C	V _{GS} = 20 V			400	nA
Turn-on delay time	t _{d on}	$I_{\rm D} = 160 \text{A}, R_{\rm Gon} = 1.8 \Omega,$	T _{vj} = 25 °C		65		ns
(inductive load)		$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V},$	T _{vj} = 125 °C		64		
		$t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		63		
Rise time (inductive load)	t _r	$I_{\rm D} = 160 \text{A}, R_{\rm Gon} = 1.8 \Omega,$	T _{vj} = 25 °C		53		ns
		$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V},$	T _{vj} = 125 °C		53		
		$t_{\text{dead}} = 1000 \text{ ns}$	T _{vi} = 175 °C		56		1

(table continues...)

EasyPACK™ 2B module

3 Body diode (MOSFET, T1 / T2)

Table 5 (continued) Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Turn-off delay time	$t_{ m doff}$	$I_{\rm D} = 160 \text{A}, R_{\rm Goff} = 0.51 \Omega,$	T _{vj} = 25 °C		105		ns
(inductive load)	$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		117			
		VGS3/10 V	T _{vj} = 175 °C		117		
Fall time (inductive load)	t _f	$I_{\rm D} = 160 \text{ A}, R_{\rm Goff} = 0.51 \Omega,$	T _{vj} = 25 °C		23		ns
		$V_{DD} = 1200 \text{ V},$ $V_{GS} = -3/18 \text{ V}$	T _{vj} = 125 °C		25		
		VGS - 3/10 V	T _{vj} = 175 °C		25		
Turn-on energy loss per	Eon		T _{vj} = 25 °C		8		mJ
pulse	$L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V}$ $R_{Gon} = 1.8 \Omega, \text{ di/dt} =$	T _{vj} = 125 °C		10.6			
		$t_{\text{Gon}} = 1.8 \Omega$, $t_{\text{u}} = 175 \text{ °C}$), $t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		12.9		
Turn-on energy loss per	0,0	$L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Gon,o} = 0.51 \Omega, \text{ di/dt} =$	T _{vj} = 25 °C		5.8		mJ
pulse, optimized			T _{vj} = 125 °C		6.2		
			T _{vj} = 175 °C		6.4		
Turn-off energy loss per	E _{off}	$I_{\rm D}$ = 160 A, $V_{\rm DD}$ = 1200 V,	T _{vj} = 25 °C		1.8		mJ
pulse		$L_{\sigma} = 15 \text{ nH}, V_{GS} = -3/18 \text{ V},$ $R_{Goff} = 0.51 \Omega, \text{ dv/dt} =$	T _{vj} = 125 °C		2		
		$R_{Goff} = 0.51 \Omega$, $dV/dt = 38.4 \text{ kV/}\mu\text{s} (T_{Vi} = 175 ^{\circ}\text{C})$	T _{vj} = 175 °C		2.1		
Thermal resistance, junction to heat sink	R _{thJH}	per MOSFET, $\lambda_{\text{grease}} = 5 \text{ W/(m·K)}$			0.152		K/W
Temperature under switching conditions	T _{vj op}			-40		175	°C

Note:

The selection of positive and negative gate-source voltages impacts losses and the long-term behavior of the MOSFET and body diode. The design guidelines described in Application Notes AN 2018-09 and AN 2021-13 must be considered to ensure sound operation of the device over the planned lifetime.

 $T_{\rm vj\,op}$ > 150 °C is allowed for operation at overload conditions. For detailed specifications, please refer to AN 2018-14.

3 Body diode (MOSFET, T1 / T2)

Table 6 Maximum rated values

Parameter	Symbol	Note or test condition		Values	Unit
DC body diode forward current	I _{SD}	$T_{\rm vj} = 175 {\rm ^{\circ}C}, V_{\rm GS} = -3 {\rm V}$	T _H = 65 °C	140	A

EasyPACK™ 2B module

Table 7 Characteristic values

Parameter	Symbol	Note or test condition			Values		Unit
				Min.	Тур.	Max.	
Forward voltage	V _{SD}	$I_{SD} = 160 \text{ A}, V_{GS} = -3 \text{ V}$	T _{vj} = 25 °C		4.4	5.95	V
			T _{vj} = 125 °C		4		
			T _{vj} = 175 °C		3.85		
Peak reverse recovery	/ _{rrm}	I _{SD} = 160 A, di _s /dt =	T _{vj} = 25 °C		148		А
current		12 kA/ μ s, V_{DD} = 1200 V,	T _{vj} = 125 °C		227		
		$V_{\rm GS}$ = -3 V, $t_{\rm dead}$ = 1000 ns	T _{vj} = 175 °C		283		
Recovered charge	$12 \text{ kA/}\mu\text{s}, V_{DD} = 12$	$I_{SD} = 160 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		3.4		μC
		12 kA/ μ s, V_{DD} = 1200 V, V_{GS} = -3 V, t_{dead} = 1000 ns	T _{vj} = 125 °C		6.7		
			T _{vj} = 175 °C		9.3		
Reverse recovery energy	E _{rec}	$I_{SD} = 160 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		2		mJ
		12 kA/ μ s (T _{vj} = 175 °C), V_{DD} = 1200 V, V_{GS} = -3 V,	T _{vj} = 125 °C		2.8		
		$t_{\text{dead}} = 1000 \text{ ns}$	T _{vj} = 175 °C		3.8		
Reverse recovery energy,	$E_{\rm rec,o}$	$I_{SD} = 160 \text{ A, di}_{s}/\text{dt} =$	T _{vj} = 25 °C		0.89		mJ
optimized		15.4 kA/ μ s (T_{vj} = 175 °C),	T _{vj} = 125 °C		0.89		
		$V_{DD} = 1200 \text{ V}, V_{GS} = -3 \text{ V},$ $t_{dead} = 100 \text{ ns}$	T _{vj} = 175 °C		0.91		

4 NTC-Thermistor

Table 8 Characteristic values

Parameter	Symbol	Symbol Note or test condition		Values		
			Min.	Тур.	Max.	
Rated resistance	R ₂₅	T _{NTC} = 25 °C		5		kΩ
Deviation of R ₁₀₀	∆R/R	$T_{\rm NTC} = 100 {}^{\circ}{\rm C}$, $R_{100} = 493 \Omega$	-5		5	%
Power dissipation	P ₂₅	T _{NTC} = 25 °C			20	mW
B-value	B _{25/50}	$R_2 = R_{25} \exp[B_{25/50}(1/T_2-1/(298,15 \text{ K}))]$		3375		K
B-value	B _{25/80}	$R_2 = R_{25} \exp[B_{25/80}(1/T_2-1/(298,15 \text{ K}))]$		3411		К
B-value	B _{25/100}	$R_2 = R_{25} \exp[B_{25/100}(1/T_2-1/(298,15 \text{ K}))]$		3433		K

Note: For an analytical description of the NTC characteristics please refer to AN2009-10, chapter 4

5 Characteristics diagrams

5 Characteristics diagrams

Output characteristic (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

 $V_{GS} = 18 V$

Output characteristic field (typical), MOSFET, T1 / T2

 $I_D = f(V_{DS})$

T_{vj} = 175 °C

Drain source on-resistance (typical), MOSFET, T1 / T2

 $R_{DS(on)} = f(T_{vj})$

 $V_{GS} = 18 V$

Transfer characteristic (typical), MOSFET, T1 / T2

 $I_D = f(V_{GS})$

 $V_{DS} = 20 V$

EasyPACK™ 2B module

Gate-source threshold voltage (typical), MOSFET, T1 /

 $V_{GS(th)} = f(T_{vj})$ $I_D = 112 \text{ mA}, V_{GS} = V_{DS}$

Gate charge characteristic (typical), MOSFET, T1 / T2

$$V_{GS} = f(Q_G)$$

 $I_D = 160 \text{ A}, T_{vj} = 25 \text{ °C}$

Capacity characteristic (typical), MOSFET, T1 / T2

$$C = f(V_{DS})$$

f = 100 kHz, T_{vi} = 25 °C, V_{GS} = 0 V

Switching times (typical), MOSFET, T1 / T2

 $t = f(I_D)$

 V_{DD} = 1200 V, R_{Gon} = 1.8 Ω , $R_{Gon,o}$ = 0.51 Ω , T_{vj} = 175 °C, V_{GS} = -3/18 V

EasyPACK™ 2B module

Switching times (typical), MOSFET, T1 / T2

 $t = f(I_D)$

 $R_{Goff} = 0.51 \Omega$, $V_{DD} = 1200 V$, $T_{vi} = 175 °C$, $V_{GS} = -3/18 V$

Switching times (typical), MOSFET, T1 / T2

 $t = f(R_G)$

 V_{DD} = 1200 V, t_{dead} = 1000 ns, I_{D} = 160 A, T_{vj} = 175 °C, V_{GS} = -3/18 V

Current slope (typical), MOSFET, T1 / T2

 $di/dt = f(R_G)$

 V_{DD} = 1200 V, I_{D} = 160 A, V_{GS} = -3/18 V

Voltage slope (typical), MOSFET, T1 / T2

 $dv/dt = f(R_G)$

 V_{DD} = 1200 V, I_{D} = 160 A, V_{GS} = -3/18 V

EasyPACK™ 2B module

Switching losses (typical), MOSFET, T1 / T2

 $E_{on} = f(I_D)$

 V_{DD} = 1200 V, R_{Gon} = 1.8 Ω , $R_{Gon,o}$ = 0.51 Ω , V_{GS} = -3/18 V

Switching losses (typical), MOSFET, T1 / T2

 $E_{off} = f(I_D)$

 $R_{Goff} = 0.51 \Omega$, $V_{DD} = 1200 V$, $V_{GS} = -3/18 V$

Switching losses (typical), MOSFET, T1 / T2

 $E = f(R_G)$

 $V_{DD} = 1200 \text{ V}, t_{dead} = 1000 \text{ ns}, I_D = 160 \text{ A}, V_{GS} = -3/18 \text{ V}$

Switching losses (typical), MOSFET, T1 / T2

 $\mathsf{E}_{\mathsf{on}} = \mathsf{f}(\mathsf{V}_{\mathsf{GS}(\mathsf{off})})$

 R_{Goff} = 0.51 Ω , V_{DD} = 1200 V, R_{Gon} = 1.8 Ω , $V_{GS(on)}$ = 18 V, I_D = 160 A, $R_{Gon,o}$ = 0.51 Ω, T_{vj} = 175 °C

EasyPACK™ 2B module

Switching losses (typical), MOSFET, T1 / T2

$$E_{on} = f(t_{dead})$$

$$R_{Gon} = 1.8 \Omega$$
, $I_D = 160 A$, $V_{DD} = 1200 V$, $V_{GS} = -3/18 V$

Reverse bias safe operating area (RBSOA), MOSFET, T1/T2

$$I_D = f(V_{DS})$$

$$R_{Goff} = 0.51 \Omega$$
, $T_{vi} = 175 °C$, $V_{GS} = -3/18 V$

Transient thermal impedance, MOSFET, T1 / T2

$Z_{th} = f(t)$

Forward characteristic body diode (typical), MOSFET, T1 / T2 $\,$

$$I_{SD} = f(V_{SD})$$

$$T_{vi} = 25 \,^{\circ}C$$

EasyPACK™ 2B module

Switching losses body diode (typical), MOSFET, T1 / T2

 $E_{rec} = f(I_{SD})$

$$R_{Gon} = 1.8 \Omega$$
, $R_{Gon,o} = 0.51 \Omega$, $V_{DD} = 1200 V$

Switching losses body diode (typical), MOSFET, T1 / T2

 $E_{rec} = f(R_G)$

$$t_{dead}$$
 = 1000 ns, I_{SD} = 160 A, V_{DD} = 1200 V

Switching losses body diode (typical), MOSFET, T1 / T2

 $E_{rec} = f(V_{GS(off)})$

$$R_{Goff} = 0.51 \Omega$$
, $R_{Gon} = 1.8 \Omega$, $V_{GS(on)} = 18 V$, $I_{SD} = 160 A$,

 $R_{Gon,o} = 0.51 \Omega$, $V_{DD} = 1200 V$, $T_{vj} = 175 °C$

Switching losses body diode (typical), MOSFET, T1 / T2

 $E_{rec} = f(t_{dead})$

$$R_{Gon} = 1.8 \Omega$$
, $I_D = 160 A$, $V_{DD} = 1200 V$, $V_{GS} = -3/18 V$

EasyPACK™ 2B module

5 Characteristics diagrams

13

6 Circuit diagram

6 Circuit diagram

Figure 1

7 Package outlines

7 Package outlines

Figure 2

8 Module label code

8 Module label code

Code format	Data Matrix		Barcode 0	Code128
Encoding	ASCII text		Code Set	A
Symbol size	16x16		23 digits	
Standard	IEC24720 and IEC16022		IEC8859-1	
Code content	Content Module serial number Module material number Production order number Date code (production year) Date code (production week)	Digit 1-5 6-11 12-19 20-21 22-23		Example 71549 142846 55054991 15 30
Example	71549142846550549911530			16550549911530

Figure 3

EasyPACK™ 2B module

Revision history

Document revision	Date of release	Description of changes
0.10	2024-03-18	Initial version
1.00	2024-08-23	Final datasheet
1.10	2024-10-17	Final datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2024-10-17 Published by Infineon Technologies AG 81726 Munich, Germany

© 2024 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-ABJ901-003

Important notice

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.