1. Ne propunem să simulăm observații dintr-o populație $\mathcal{N}(0,1)$ folosindu-ne de observații repartizate Laplace de parametru $\lambda > 0$, i.e.

 $f_{\lambda}(x) = \frac{\lambda}{2}e^{-\lambda|x|}.$

- a) Determinați valoarea lui λ care permite minimizarea probabilității de respingere. Verificați că această valoare este aproximativ 0.24. b) Scrieți un cod R care să permită simularea unei variabile aleatoare X repartizată $\mathcal{N}(0,1)$ plecând de la repartiția Laplace de parametru λ .
- 2. Considerăm cuplul de variabile aleatoare (X,Y) care este repartizat cu densitatea de repartiție

$$f(x,y) = \frac{1}{\sqrt{8\pi}} e^{-\frac{y^2x}{2} - \sqrt{x}} \mathbf{1}_{x>0}.$$

- a) Determinați repartiția condiționată a lui Y la X=x
- b) Determinați repartiția lui \sqrt{X}
- c) Propuneți o metodă de simulare pentru o observație din densitatea f(x,y) și scrieți un cod R care să permită acest lucru.

Exercițiul 2

Numărul de clienți pe zi de la ghișeul unei bănci poate fi modelat ca o variabilă aleatoare $X \sim \mathcal{P}(\lambda)$. Pentru a îmbunătății serviciile oferite, banca vrea să estimeze parametrul λ atât prin metoda momentelor cât și prin metoda verosimilității maxime. Pentru aceasta dispune de următorul eșantion înregistrat pe parcursul a 3 săptămâni:

X: 16 23 23 18 24 19 26 19 19 13 22 26 21 19 25 18 22 19 22 21 25

- a) Determinați estimatorul obținut prin metoda momentelor $\tilde{\lambda}$ și estimatorul de verosimilitate maximă $\hat{\lambda}$ și verificați dacă aceștia sunt deplasați, consistenți și eficienți. Determinați repartiția lor limită.
- b) Găsiți estimatorul de verosimilitate maximă pentru $\mathbb{P}_{\lambda}(X_1 = 1 \mid X_1 > 0)$. Este acesta consistent?
- c) Verificați dacă estimatorul aflat la punctul b) este sau nu nedeplasat.

Exercițiul 3

Considerăm densitatea

10p

10p

$$f(y) = \frac{1}{2\sqrt{1-y}} \mathbf{1}_{[0,1]}(y)$$

unde folosim convenția $f(1) \neq +\infty$.

- 1. Dacă v.a. Y are densitatea f care este densitatea v.a. $X = \theta Y$ cu $\theta > 0$?
- 2. Fie X_1, X_2, \ldots, X_n un eșantion de talie n din X. Determinați estimatorul de verosimilitate maximă $\hat{\theta}_n$ a lui θ .
- 3. Determinați repartiția limită a lui $n\sqrt{\theta \hat{\theta}_n}$.
- 4. Determinați mediana repartiției v.a. X și deduceți un nou estimator $\tilde{\theta}_n$. Pe care dintre cei doi estimatori îl preferați?

Exercițiul 4

Fie X_1, X_2, \dots, X_n un eșantion de volum n din populația f_θ unde

$$f_{\theta}(x) = Axe^{-\theta x^2} \mathbf{1}_{\{x>0\}}$$

cu $\theta > 0$ parametru necunoscut și A o constantă (care depinde de θ).

- a) Determinați constanta A și calculați funcția de repartiție $F_{\theta}(x)$ a lui X_1 .
- b) În cazul în care $\theta = 5$ dorim să generăm 3 valori aleatoare din repartiția lui X. Pentru aceasta dispunem de trei valori rezultate din repartiția uniformă pe [0, 1]: $u_1 = 0.622$, $u_2 = 0.609$ și $u_3 = 0.623$. Descrieți procedura și scrieți un cod R care să permită acest lucru.
- c) Determinați mediana $x_{1/2}$ repartiției lui X_1 . Plecând de la aceasta deduceți un estimator $\tilde{\theta}_n$ a lui θ și

a promay.

Exercițiul 4 10p

Fie X_1, X_2, \dots, X_n un eșantion de volum n din populația f_θ unde

$$f_{\theta}(x) = Axe^{-\theta x^2} \mathbf{1}_{\{x>0\}}$$

cu $\theta > 0$ parametru necunoscut și A o constantă (care depinde de θ).

- a) Determinați constanta A și calculați funcția de repartiție $F_{\theta}(x)$ a lui X_1 .
- b) În cazul în care $\theta=5$ dorim să generăm 3 valori aleatoare din repartiția lui X. Pentru aceasta dispunem de trei valori rezultate din repartiția uniformă pe [0,1]: $u_1=0.622$, $u_2=0.609$ și $u_3=0.623$. Descrieți procedura și scrieți un cod $\mathbb R$ care să permită acest lucru.
- c) Determinați mediana $x_1/2$ repartiției lui X_1 . Plecând de la aceasta deduceți un estimator $\tilde{\theta}_n$ a lui θ și determinați repartiția limită a lui $\sqrt{n}(\tilde{\theta}_n \theta)$.
- d) Determinați estimatorul de verosimilitate maximă $\hat{\theta}_n$ a lui θ .
- e) Arătați că $X_1^2 \sim \text{Exp}(\theta)$ și calculați $\mathbb{E}[X_1^1]$ și $Var(X_1^2)$.
- f) Determinați repartiția limită a lui $\sqrt{n}(\hat{\theta}_n \theta)$.
- g) Calculați informația lui Fisher și verificați dacă $\hat{\theta}_n$ este asimptotic eficient.
- h) Pe care dintre cei doi estimatori îi preferați ? Ce puteți spune de estimatorul obținut prin metoda momentelor ?

Facon schimborea de variabilla $V = \frac{\sqrt{12}}{\sqrt{20}} \cdot e^{\frac{\sqrt{12}}{2}} \cdot e^{\frac{\sqrt{12}}{2}}$ $\frac{1}{\sqrt{20}} \cdot e^{-\frac{\sqrt{12}}{2}} \cdot e$

