CS-235: Computer Organization & Assembly Language

CPU Memory Management

Topic # 03

Fall 2020

Outlines

- General Concepts of CPU Architectures
- Internal Registers
- Floating Point Unit
- IA-32 Modes of Operation
- IA-32 Memory Management

Real Addressing Mode

Protected Mode

System Management Mode

Virtual 8086 Mode

Real Address Mode

- Can access only 1MB Memory (beyond 80236)
- For MS-DOS
- One task at a time (Single-Tasking)
- Programs can access Shared Memory Locations (Problem???)

Real Address Mode

- Can access only 1MB Memory (beyond 80236)
- For MS-DOS
- One task at a time (Single-Tasking)
- Programs can access Shared Memory Locations

Protected Mode

- Can access only 4GB RAM
- For Windows, Linux
- Allows multi-tasking
- Memory Reservation for each Program

System Management Mode

- Implementing Functions: Power Management & System Security
- Usually implemented by **Computer Manufacturers**

Virtual 8086 Mode

Being in Protected Mode:

 the processor can directly execute a program in Real Mode

IA-32 Memory Management

Segmented Memory Model

- Real Mode
- Segmented Memory

Flat Memory Model

Protected Mode

Segmented Memory Model

• Intel 8088/8086 is a so-called 16-bit Machine

- Each Register has 16 Bits
- $2^16 = 65536 = 64K$

• But we want to use more memory (640K, 1M)...

Segmented Memory Model

- 1MB Total Memory (Real Mode)
 - Base Address
- Divided into 64KB called Segments
 - Offset Address

- Linear Address: resultant of 16-bits Base
 - Address and 16 bits Offset Address

Segmented memory model

Segmented Memory Model

- For Code Segment: CS:IP or CS:EIP
- For Stack Segment: SS:SP or SS: ESP

1000h:5000h calculate linear address?

Linear Address Calculations:

Left shift Segment Address by 4 locations

New Seg. Address 10000h

Add offset into new Address

Offset Address 5000h

Linear Address =

Linear Address

15000h

[11]

Segmented Memory Model

Segment: Offset

- Segment: one of CS, DS, SS, ES
- Real address = Segment * 16 + Offset
- Overlapping Segments. For example: 0000:01F0 = 0001:01E0 = 0010:00F0

Linear Address Calculation

Activity

CS: 1200h IP: F000h

Calculate Linear Address?

Linear Address : 21000h

Real Mode Operation

FIGURE 2-5 An application program containing a code, data, and stack segment loaded into a DOS system memory.

[15]

Segment & Offset Combination

Segment	Offset	Special Purpose
CS	IP	Instruction address
SS	SP or BP	Stack address
DS	BX, DI, SI, an 8- or 16-bit number	Data address
ES	DI for string instructions	String destination address

Protected Mode Memory Model

In place of the segment address, the segment register contains a selector that selects a descriptor from a descriptor table.

The descriptor describes the memory segment's location, length, and access rights.

Global descriptor table

 segment definitions that apply to all programs

<u>Local descriptor table</u>

• segment definitions unique to a program.

Protected Mode Memory Model

- Segment descriptor tables
- Program structure
 - code, data, and stack areas
 - CS, DS, SS segment descriptors
 - global descriptor table (GDT)
- MASM Programs use the Microsoft flat memory model

Protected Mode Memory Model

Descriptor Table

- Each descriptor table contains 8192 Descriptors
- A total of **16,384 Descriptors** are available to an application at any time
- Max Memory 4G X 16383 = 4TB

31	80286					0	
	0000 0000 0000 0000		Access Rights	B23	Base	B16	4
B15	Base	В0	Limit L0		0		

Offset

[20]

Descriptor Table: 80286

Offset

- Base Address: 24 bits
- Limit Address (Offset): 16 bits
- Each Descriptor is of 8-bytes
- An 80286 can access Memory Segments that are between 1 and 64K bytes in length

Descriptor Format: 80386

Offset

- **Base Address:** 32 bits
- Limit Address (offset): 20 bits
- The 80386 and above access memory segments that are between 1 and 1M byte, or 4K and 4G bytes in length.

Descriptor Table

Granularity Bit:

- If G=0, segment limit of 00000H to FFFFFH.
- If G=1. multiplied by 4K bytes (appended with FFFH). The limit is then 00000FFFFH to FFFFFFFH.

CS-235 Computer organization & assembly language

Protected Mode Memory Management

The segment selector points to a **segment descriptor**, which contains the **base address of a memory segment**.

The 32-bit offset from the logical address is added to the segment's base address, generating a 32-bit linear address

Example

Paging

- Virtual Memory uses disk as part of the memory, thus allowing sum of all Programs can be larger than Physical Memory
- Only part of a **Program must be kept in Memory**, while the remaining parts are kept on disk
- The Memory used by the Program is divided into small units called Pages (4096-byte)
- As the Program runs, the Processor selectively unloads inactive pages from memory and loads other pages that are immediately required

Paging

- OS maintains Page Directory and Page Tables
- **Page Translation:** CPU converts the Linear Address into a Physical Address
- **Page Fault:** occurs when a needed page is not in memory, and the CPU interrupts the program
- Virtual Memory Manager (VMM) OS utility that manages the loading and unloading of pages
- OS copies the page into memory, program resumes execution

Paging

Chunk of Program:

Page

Chunk of Memory:

Frame

(a) Before

(b) After

[28]

Page Translation

A linear address is divided into a page directory field, page table field, and page frame offset. The CPU uses all three to calculate the physical address.

Page Translation

[30]

Figure 8.16 Logical and Physical Addresses

CISC vs RISC

CISC – Complex Instruction Set

large instruction set

high-level operations

requires microcode interpreter

examples: Intel 80x86 family

• Mult 2,3

CISC vs RISC

RISC – Reduced Instruction Set

- Simple instruction formats
- Small instruction set
- Directly executed by hardware

Examples:

ARM (Advanced RISC Machines)

Questions?

THANK YOU!