

1. Consider the Runge function as before, $f(x) = \frac{1}{1+25x^2}$, where $x \in [-1,1]$. Approximate it using Chebyshev function and cubic splines using $\{5,9,17,33,65,129,257\}$ equally spaced nodes. Define the error due to interpolation as

$$e_n = \max_{x \in [-1,1]} ||f(x) - \tilde{f}_n(x)||$$

where $\tilde{f}_n(x)$ is the approximation using the n nodes. To obtain e_n evaluate $||f(x) - \tilde{f}_n(x)||$ at 100,000 equi-spaced points on [-1,1] and take the maximum value. Tabulate and plot these errors. In the plot, let the X axis be number of nodes and Y axis be $\log(e_n)$. Comment on the behavior of the error as a function of n and which interpolant converges faster. What happens when you change the function to 1 - |x|? Again, comment on the behavior of the error and convergence of both interpolants.

- 2. The electric potential due to a unit charge is given by 1/R, where R is the distance from the charge.
 - If the point charge is located at (0,0,a), compute the potential at a point (r,θ,ϕ) given in spherical coordinates.
 - Show that the potential can be written as $\frac{1}{r}\sum_{k=0}^{\infty} \left(\frac{a}{r}\right)^k Q_k(\cos(\theta))$, where Q_k is the k^{th} Legendre polynomial and a/r < 1.
 - For r > 2a, how many terms in the expansion do we need to attain machine epsilon in double precision arithmetic, i.e., 2^{-53} ?
- 3. Let P_n be the set of all polynomials of degree not exceeding n. Show that the polynomial $p \in P_n$ that minimizes

$$\int_{-1}^{1} (x^{n+1} - p(x))^2 dx$$

is $p(x) = x^{n+1} - q_{n+1}(x)$, where $q_{n+1}(x)$ is the Legendre polynomial Q_{n+1} scaled so that it has leading coefficient unity.