Final Exam 'Advanced Multivariate Analysis'

Pedro Delicado

2024-01-08

Algerian forest fires

The dataset firesAlg_tr (contained in firesAlg.Rdata) includes 183 instances that regroup a data of two regions of Algeria, namely the Bejaia region located in the northeast of Algeria and the Sidi Bel-abbes region located in the northwest of Algeria. Each instance corresponds to a different day in one of the two regions.

The dataset includes 10 explanatory attributes and 2 output attributes:

- 1. temp: temperature noon (temperature max) in Celsius degrees: 22 to 42
- 2. RH: Relative Humidity in %: 21 to 89
- 3. wind: Wind speed in km/h: 6 to 29
- 4. rain: total day in mm: 0 to 16.8 FWI Components
- 5. Fine Fuel Moisture Code (FFMC) index from the Fire Weather Index (FWI) system: 28.6 to 96
- 6. Duff Moisture Code (DMC) index from the FWI system: 0.7 to 65.9
- 7. Drought Code (DC) index from the FWI system: 6.9 to 220.4
- 8. Initial Spread Index (ISI) index from the FWI system: 0 to 19
- 9. Buildup Index (BUI) index from the FWI system: 1.1 to 68
- 10. Fire Weather Index (FWI) Index: 0 to 31.1
- 11. fire: (output) 0 for "not Fire", 1 for "Fire"
- 12. region: (output) 0 for Bejaia, 1 for Sidi Bel-abbes

The dataset firesAlg_test_blinded (also contained in firesAlg.Rdata) has similar structure as firesAlg_tr but it does not contain the output variables. There are 61 instances in firesAlg_test_blinded.

```
load("firesAlg.Rdata")
ls()
```

[1] "firesAlg_test_blind" "firesAlg_tr"

Second part of the course (5.4 points)

1. (2.8 points) Generalized additive model for a binary variable.

1.1 (1.8 points)

Use firesAlg_tr to fit a generalized additive model with response the variable region and explanatory variables chosen among the first 10 columns of firesAlg_tr.

- Justify the steps you do in the model choice process.
- Indicate clearly which is your finally chosen model.

1.2 (1 point)

To evaluate the performance of your chosen model, I will take use the following quantity:

$$C = G_{\text{test}} - \max\{0, G_{\text{tr}} - G_{\text{test}}\},\$$

where G_{tr} is the proportion of good classified instances in the training sample, and G_{test} is the proportion of good classified instances in the blinded test sample (I will compute this quantity later, when grading your exam).

The quantity C will be large when both G_{tr} and G_{test} are large and they are similar to each other. In an overfitted model G_{tr} would be much larger that G_{test} and then C would not be so large.

(Info: C is equal to 0.82 for the generalized linear model including all 10 explanatory variables. I've been able to fit a model for which C = 0.88.)

Your grade at this item will be

$$\min\left\{1, \max\left\{\frac{C - 0.82}{0.88 - 0.82}, 0\right\}\right\}.$$

2. (1.8 points) Interpretable machine learning.

Consider the dataset obtained by joining 6 of the 10 columns that are common in firesAlg_tr and firesAlg_test_blinded:

```
cols<- c(1,2,3,7,9,10)
firesAlg_6 <- rbind(firesAlg_tr[,cols],firesAlg_test_blind[,cols])</pre>
```

Fit a random forest (with library ranger) to explain FWI as a function of the other variables in firesAlg_6. At the same time, compute the

- a. Compute the *Variable Importance* by the reduction of the **impurity** at the splits defined by each variable. (*Hint: Use set.seed(1234) before calling the function ranger*). Plot the results and comment on them.
- b. Compute the Variable Importance by out-of-bag random permutations. (*Hint: Use set.seed(1234) before calling the function ranger*. This way you fit the same random forest as before). Plot the results and comment on them.
- c. Compute the Variable Importance of each variable by Shapley Values. Plot the results and comment on them.
- d. Use the DALEX library to do the Local (or Conditional) Dependence Plot for each explanatory variable.

3. (0.8 points) Your own Local (or Conditional) Dependence Plot.

Construct your own Local (or Conditional) Dependence Plot for the explanatory variable BUI.

• For doing that, consider the pairs of variables

$$x={\tt BUI},\ y=\widehat{\tt FWI},$$

where $\widehat{\mathsf{FWI}}$ are the predicted values of FWI using the random forest, and use the smoother of your preference.

- Indicate how the required smoothing parameters have been chosen.
- Plot the resulting Local (or Conditional) Dependence Plot over the scatterplot of (x,y).
- Add to the previous plot the Local (or Conditional) Dependence Plot for the explanatory variable BUI obtained by DALEX.

First part of the course: Unsupervised learning (3.6 points)

4. (0.9 points) Mixed Gaussian Model.

Consider the dataset firesAlg_6. Do a model based clustering of these data assuming a Gaussian Mixture Model, allowing varying volume, shape, and orientation for different components in the mixture. Choose k_{BIC} , the best number of clusters $k \in \{2, ..., 6\}$ according to BIC. Plot the resulting object from Mclust (do 4 different graphics: BIC, classification, uncertainty and density).

5. (0.9 points) DBCAN.

Use DBSCAN to find clusters (and outliers) in the data set firesALG_6, after centering and scaling the variables. Use $\varepsilon = 1$ and minPts = 8. How many clusters have you obtained? How many outliers? Do a pairs plot of firesALG_6 coloring the points according to the results of DBSCAN.

6. (1.8 points) Nonlinear dimensionality reduction.

Use a nonlinear dimensionality reduction method at your choice to obtain a 2-dimensional configuration for the data in firesAlg_6, after centering and scaling the variables.

- Specify how you choose the required tuning parameters.
- Provide graphical representation of the output. In particular, show how the 6 original variables are related with the new 2 dimensions.
- Try to give an interpretation to the new 2 dimensions.