# 第五章 特征值与特征向量

- § 5.1 方阵的特征值与特征向量
- § 5.2 相似矩阵
- § 5.3 实对称矩阵的对角化



# § 5.1 方阵的特征值与特征向量



### 特征值和特征向量的定义:

定义: 设A是n阶方阵, 若存在数 $\lambda$ 和非零向量x, 使得

$$Ax = \lambda x \qquad (x \neq 0)$$

则称 $\lambda$ 是A的一个特征值,

x为A的对应于特征值 $\lambda$ 的特征向量.



- 注:(1) 只有方阵才有特征值和特征向量;
  - (2)特征向量是非零列向量;
  - (3) 方阵的对应于同一个特征值的特征向量不唯一;
  - (4) 一个特征向量只能对应于一个特征值;
  - (5) 对应于同一个特征值的若干个特征向量的线性组合 仍是对应于该特征值的特征向量。

$$\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = 3 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 6 \\ 6 \end{pmatrix} = 6 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

注:如果n阶方阵A的各行元素之和为k,则数k一定是方阵 A的一个特征值,且对应的特征向量为  $(1,1,...,1)^T$ .

- 特征方程
- 特征多项式

$$|A-\lambda E|=0$$

$$|A-\lambda E|$$

## 特征值和特征向量的计算方法

- (1) 计算A的特征多项式  $f(\lambda) = |A \lambda E|$ ;
- (2) 求出特征方程  $f(\lambda) = |A \lambda E| = 0$  的全部根,即A的全部特征值(也称特征根);
- (3) 对每个特征值  $\lambda_i$  , 求解齐次线性方程组  $(A \lambda_i E)x = 0$

求出它的基础解系  $\xi_1,\xi_2,\dots,\xi_s$  ,则非零组合  $\xi=k_1\xi_1+k_2\xi_2+\dots+k_s\xi_s,k_i$  不全为 $\mathbf{0}$ 

即为A对应于特征值  $\lambda_i$  的全部特征向量。

例: 求矩阵 
$$A = \begin{pmatrix} a_1 & b & d \\ 0 & a_2 & c \\ 0 & 0 & a_3 \end{pmatrix}$$
 的特征值.

解: 
$$f(\lambda) = |A - \lambda E| = \begin{vmatrix} a_1 - \lambda & b & d \\ 0 & a_2 - \lambda & c \\ 0 & 0 & a_3 - \lambda \end{vmatrix}$$
$$= (a_1 - \lambda)(a_2 - \lambda)(a_3 - \lambda)$$

$$\lambda_1 = a_1, \lambda_2 = a_2, \lambda_3 = a_3.$$

注:上(下)三角方阵(含对角矩阵)的特征值即为主对角线上的元素。



例: 求矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
的特征值和特征向量.

解: 1、由矩阵A的特征方程,求出特征值.

$$\begin{vmatrix} A - \lambda E \end{vmatrix} = \begin{vmatrix} -1 - \lambda & 1 & 0 \\ -4 & 3 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix} = (2 - \lambda) \begin{vmatrix} -1 - \lambda & 1 \\ -4 & 3 - \lambda \end{vmatrix}$$
$$= (2 - \lambda)(\lambda - 1)^2 = 0$$

特征值为  $\lambda = 2, 1, 1$ 



2、把每个特征值  $\lambda$  代入线性方程组  $(A - \lambda E)x = 0$ , 求出基础解系.

当  $\lambda = 2$ 时,解线性方程组 (A - 2E)x = 0

$$A - 2E = \begin{pmatrix} -3 & 1 & 0 \\ -4 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \begin{cases} x_1 = 0 \\ x_2 = 0 \end{cases}$$

得基础解系: 
$$p_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 对应的所有特征向量为:  $kp_1(k \neq 0)$ 

当  $\lambda = 1$  时, 解线性方程组 (A - E)x = 0

$$A - E = \begin{pmatrix} -2 & 1 & 0 \\ -4 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}, \begin{cases} x_1 + x_3 = 0 \\ x_2 + 2x_3 = 0 \end{cases}$$

得基础解系 
$$p_2 = \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix}$$
 对应的所有特征向量为:  $kp_2(k \neq 0)$ 



例: 求矩阵 
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & 2 & 0 \\ -4 & 1 & 3 \end{pmatrix}$$
 的特征值和特征向量.

解: 
$$|A - \lambda E| = \begin{vmatrix} -2 - \lambda & 1 & 1 \\ 0 & 2 - \lambda & 0 \\ -4 & 1 & 3 - \lambda \end{vmatrix} = -(\lambda - 2)^2 (\lambda + 1)$$

特征值为  $\lambda = -1, 2, 2$ 

当  $\lambda = -1$ 时,解线性方程组 (A + E)x = 0

$$A + E = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & 0 \\ -4 & 1 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \begin{cases} x_1 - x_3 = 0 \\ x_2 = 0 \end{cases}$$

得基础解系: 
$$p_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 对应的所有特征向量为:  $kp_1(k \neq 0)$ 



当  $\lambda = 2$ 时,解线性方程组 (A - 2E)x = 0

$$A - 2E = \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ -4 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} -4 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, -4x_1 + x_2 + x_3 = 0$$

得基础解系: 
$$p_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
  $p_3 = \begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$ 

对应的所有特征向量为:  $k_2p_2 + k_3p_3(k_2,k_3$ **不全为**零).

注: 若 $\lambda$ 是A的k重特征值,则 $\lambda$ 对应的线性无关的特征向量最少1个,最多k个.

性质: 
$$f(\lambda) = |A - \lambda E|$$

$$= \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

$$= (-\lambda)^{n} + (a_{11} + a_{22} + \dots + a_{nn})(-\lambda)^{n-1} + \dots + |A|$$

设  $f(\lambda) = 0$ ,它的n个根为  $\lambda_1, \lambda_2, \dots, \lambda_n$ ,即A的n个特征值则

$$\begin{cases} \lambda_1 + \lambda_2 + \dots + \lambda_n = a_{11} + a_{22} + \dots + a_{nn} = tr(A) \\ \lambda_1 \lambda_2 \cdots \lambda_n = |A| \end{cases}$$



性质: 若  $\lambda$  是 A 的特征值,即  $Ax=\lambda x$   $(x\neq 0)$ ,则

| 矩阵   | $\boldsymbol{A}$ | kA | $A^m$       | f(A)             | $A^{-1}$ | $A^*$             | $A^{\mathrm{T}}$ | P-1AP     |
|------|------------------|----|-------------|------------------|----------|-------------------|------------------|-----------|
| 特征值  | λ                | kλ | $\lambda^m$ | $f(\lambda)$     | λ-1      | $\lambda^{-1}/A/$ | λ                | λ         |
| 特征向量 | x                | x  | x           | $\boldsymbol{x}$ | x        | x                 | 未必x              | $P^{-1}x$ |

#### 并且有

- (1) 方阵A可逆 ⇔A的特征值  $\lambda$  均非零;
- $(2) f(A) = 0 \Rightarrow f(\lambda) = 0$
- (3) AB=kB,  $B\neq O$  \$\iff B\$的列向量为(A-kE)x=0的解向量;
  - ⇔ A有一个特征值为k;
  - $\Leftrightarrow B$ 的非零列向量为A特征值k的特征向量。



#### 例:设A是三阶矩阵,特征值为2,3,3,则

2A的特征值为\_\_\_\_\_\_

 $A^2$ 的特征值为\_\_\_\_\_\_

 $A^2$ -2A+E的特征值为\_\_\_\_\_\_

A-1的特征值为\_\_\_\_\_\_

 $A^{\mathrm{T}}$ 的特征值为\_\_\_\_\_\_

 $A^*$ 的特征值为\_\_\_\_\_\_



例: 已知三阶方阵A满足

$$|A| = -6$$
,  $|A - E| = 0$ ,  $AB = 2B$ ,  $B \neq 0$ 

求  $|A^2-2A^*+E|$  及其主对角元素的和。

定理:设 $\lambda_1, \lambda_2, ..., \lambda_m$ 是方阵A的特征值, $p_1, p_2, ..., p_m$ 依次是与之对应的特征向量,如果 $\lambda_1, \lambda_2, ..., \lambda_m$ 各不相同,则 $p_1, p_2, ..., p_m$ 线性无关.

注1: 方阵属于不同特征值的特征向量线性无关

注2:  $\lambda_1$ 对应线性无关的特征向量为 $p_1$ ,  $\lambda_2$ 对应线性无关的特征向量为 $p_2$ ,  $p_3$ . 若 $\lambda_1$ ,  $\lambda_2$ 不相同,则 $p_1$ ,  $p_2$ ,  $p_3$  也线性无关.



证明: 设常数  $x_1, x_2, \dots, x_m$  使得

$$x_1 p_1 + x_2 p_2 + \dots + x_m p_m = 0$$

则

$$A(x_1p_1 + x_2p_2 + \cdots + x_mp_m) = 0$$

$$\lambda_1 x_1 p_1 + \lambda_2 x_2 p_2 + \dots + \lambda_m x_m p_m = 0$$

类推之,有

$$\lambda_1^k x_1 p_1 + \lambda_2^k x_2 p_2 + \dots + \lambda_m^k x_m p_m = 0 \quad (k = 1, 2, \dots, m-1)$$

把上述各式合写成矩阵形式,得

$$(x_1p_1, x_2p_2 \cdots, x_mp_m) \begin{pmatrix} 1 & \lambda_1 & \cdots & \lambda_1^{m-1} \\ 1 & \lambda_2 & \cdots & \lambda_2^{m-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_m & \cdots & \lambda_m^{m-1} \end{pmatrix} = \mathbf{0}$$



等号左边的矩阵当1,各不相同时是可逆的。

等号两边同时右乘它的逆矩阵, 有

$$(x_1p_1, x_2p_2, \dots, x_mp_m) = 0$$

即

$$x_j p_j = 0 \quad (j = 1, 2, \dots, m)$$

又因为 $p_j$ 为特征向量, $p_j \neq 0$ ,所以 $x_j = 0$ .

因此  $p_1, p_2, \dots, p_m$  线性无关.

例:设 $\lambda_1, \lambda_2$ 是矩阵A的两个不同特征值,对应的特征向量依次为 $p_1, p_2$ ,证明:

- (1)  $p_1 p_2$  不是A的特征向量;
- (2)  $p_1, p_1 p_2$  线性无关.



例:证明正交实矩阵A的特征值为1或-1.

证明:设p是A的对应于特征值 2 的特征向量,则

$$Ap = \lambda p, p^T A^T = \lambda p^T$$

将以上两式相乘,并由 $A^TA=E(BA)$ 正交矩阵),得

$$p^T A^T A p = \lambda^2 p^T p, \quad p^T p = \lambda^2 p^T p$$

又 $p\neq 0$ ,故 $p^Tp>0$ ,于是 $\lambda^2=1$ .得证.