Integer Linear Programming

Subhas C. Nandy (nandysc@isical.ac.in)

Advanced Computing and Microelectronics Unit Indian Statistical Institute Kolkata 700108, India.

Organization

Introduction

- 2 Linear Programming
- 3 Integer Programming

Linear Programming

A technique for optimizing a linear objective function, subject to a set of linear equality and linear inequality constraints.

Mathematically,

```
maximize c_1x_1 + c_2x_2 + \ldots + c_nx_n

Subject to: a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n \le b_1

a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n \le b_2

: : a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n \le b_m

x_i > 0 for all i = 1, 2, \ldots, n.
```

Linear Programming

```
In matrix notation,

maximize C^TX

Subject to:

AX \leq B

X \geq 0

where C is a n \times 1 vector — cost vector,

A is a m \times n matrix — coefficient matrix,

B is a m \times 1 vector — requirement vector, and

X is an n \times 1 vector of unknowns.
```

• The linear programming method was first developed by Leonid Kantorovich in 1937.

- The linear programming method was first developed by Leonid Kantorovich in 1937.
- He developed it during World War II as a way to plan expenditures and returns so as to reduce costs to the army and increase losses incurred by the enemy.

- The linear programming method was first developed by Leonid Kantorovich in 1937.
- He developed it during World War II as a way to plan expenditures and returns so as to reduce costs to the army and increase losses incurred by the enemy.
- The method was kept secret until 1947 when George B. Dantzig published the simplex method and John von Neumann developed the theory of duality as a linear optimization solution.

- The linear programming method was first developed by Leonid Kantorovich in 1937.
- He developed it during World War II as a way to plan expenditures and returns so as to reduce costs to the army and increase losses incurred by the enemy.
- The method was kept secret until 1947 when George B. Dantzig published the simplex method and John von Neumann developed the theory of duality as a linear optimization solution.
- Dantzig's original example was to find the best assignment of 70 people to 70 jobs subject to constraints.

- The linear programming method was first developed by Leonid Kantorovich in 1937.
- He developed it during World War II as a way to plan expenditures and returns so as to reduce costs to the army and increase losses incurred by the enemy.
- The method was kept secret until 1947 when George B. Dantzig published the simplex method and John von Neumann developed the theory of duality as a linear optimization solution.
- Dantzig's original example was to find the best assignment of 70 people to 70 jobs subject to constraints.
- The computing power required to test all the permutations to select the best assignment is vast.

- The linear programming method was first developed by Leonid Kantorovich in 1937.
- He developed it during World War II as a way to plan expenditures and returns so as to reduce costs to the army and increase losses incurred by the enemy.
- The method was kept secret until 1947 when George B. Dantzig published the simplex method and John von Neumann developed the theory of duality as a linear optimization solution.
- Dantzig's original example was to find the best assignment of 70 people to 70 jobs subject to constraints.
- The computing power required to test all the permutations to select the best assignment is vast.
- However, the theory behind linear programming drastically reduces the number of feasible solutions that must be checked for optimality.

- Linear-programming problem was first shown to be solvable in polynomial time by Leonid Khachiyan in 1979.
- Major breakthrough Narendra Karmarkar's method for solving LP (1984) using interior point method.

An Example

- ullet A farmer has a piece of farm land of area lpha square kilometers.
- Wanted to plant wheat and barley.
- The farmer has β unit of fertilizer and γ unit of pesticides in hand.
- (f_1, p_1) : The amount of fertilizer and pesticides needed for wheat per square kilometer.
- (f_2, p_2) : The amount of fertilizer and pesticides needed for barley per square kilometer.
- ullet Profit of wheat and barley per square kilometer is c_1 and c_2

The objective:

To decide x_1, x_2 , the area where wheat and barley needs to be planted.

The Problem

Objective function:

$$c_1x_1+c_2x_2$$

Constraints:

$$f_1x_1 + f_2x_2 \le \beta$$

$$p_1x_1+p_2x_2\leq \gamma$$

$$x_1+x_2\leq lpha$$
, and $x_1,x_2\geq 0$.

The Problem

Objective function:

$$c_1x_1+c_2x_2$$

Constraints:

$$f_1x_1+f_2x_2\leq\beta$$

$$p_1x_1+p_2x_2\leq \gamma$$

$$x_1 + x_2 \le \alpha$$
, and $x_1, x_2 \ge 0$.

In matrix form:

Maximize

$$\begin{pmatrix} c_1 & c_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Subject to

$$\begin{pmatrix} 1 & 1 \\ f_1 & f_2 \\ p_1 & p_2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \leq \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}, \text{ and } x_1, x_2 \geq 0.$$

Linear Integer Programming

The Problem

Objective Function: Maximize $8x_1 + 11x_2 + 6x_3 + 4x_4$

Subject to: $5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$

 $7x_1 + 2x_3 + x_4 \le 10$

 $x_i \in \mathbb{Z}^+$ for all i = 1, 2, 3, 4

Linear Integer Programming

Types of integer programming problems

Pure Integer Programming Problem: All variables are required to be integer.

Mixed Integer Programming Problem: Some variables are restricted to be integers; the others can take any value.

Binary Integer Programming Problem: All variables are restricted to be 0 or 1.

Linear Integer Programming

Linear Relaxation

Objective Function: Maximize $z = 8x_1 + 11x_2 + 6x_3 + 4x_4$

Subject to: $5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$

 $x_i \in \{0,1\}$ for all i = 1,2,3,4

Relax it to:

Objective Function: Maximize $z = 8x_1 + 11x_2 + 6x_3 + 4x_4$

Subject to: $5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$

 $x_i \in [0,1]$ for all i = 1, 2, 3, 4

Non-optimality

Integrality relaxation: $x_1 = x_2 = 1$, $x_3 = 0.5$, $x_4 = 0$, and z = 22.

Rounding $x_3 = 0$: gives z = 19.

Rounding $x_3 = 1$: Infeasible.

Optimal integer solution: $x_1 = 0$, $x_2 = x_3 = x_4 = 1$, and z = 21.

Converting finite valued integer variables to binary

Assume that x_j can assume values in $\{p_1, p_2, \dots, p_k\}$.

To convert it to binary integer programming

Introduce variables $y_i^1, y_i^2, \dots y_i^k \in \{0, 1\}$, and

Substitute x_j with: $p_1y_j^1 + p_2y_j^2 + \ldots + p_ky_j^k$ in objective function and all the constraints, and

Introduce a new constraint: $y_j^1 + y_j^2 + \ldots + y_i^p = 1$

Converting finite valued integer variables to binary

Example

Objective Function: Maximize $z = 8x_1 + 11x_2 + 6x_3 + 4x_4$

Subject to: $5x_1 + 7x_2 + 4x_3 + 3x_4 \le 14$

 $x_1 \in \{1, 2, 3\}$ and $x_j \in \{0, 1\}$ for all i = 2, 3, 4

Converted Problem: substituting $x_1 = 1y_1^1 + 2y_1^2 + 3y_1^3$

Objective Function: Max $z = 8y_1^1 + 16y_1^2 + 24y_1^3 + 11x_2 + 6x_3 + 4x_4$

Subject to: $5y_1^1 + 10y_1^2 + 15y_1^3 + 7x_2 + 4x_3 + 3x_4 \le 14$

 $y_1^1 + y_1^2 + y_1^3 = 1$

 $y_1^1, y_1^2, y_1^3 \in \{0, 1\}$ and $x_j \in \{0, 1\}$ for all i = 2, 3, 4

Solution: $y_1^1 = 0$, $y_1^2 = 1$, $y_1^3 = 0$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, and z = 22.

Implying: $x_1 = 2$, $x_2 = 0$, $x_3 = 1$, $x_4 = 0$, and z = 22.

Vertex Cover Problem

Given a graph G = (V, E), find a subset of vertices $U \subseteq V$ such that each edge in E is incident to at least one vertex in U.

ILP Formulation:

Variables: $\{x_1, x_2, \dots x_n\}$ corresponding to each vertex in V.

Objective function: Min $\sum_{i=1}^{n} x_i$.

Constraints: For each member $e_{ij} = (v_i, v_j) \in E$, $x_i + x_j \ge 1$.

 $x_i \in \{0,1\}$ for all i = 1, 2, ..., n.

Set Cover Problem

Given a set of elements $U = \{1, 2, ..., M\}$, and a set S of subsets $\{S_1, S_2, ..., S_k\}$ with the elements of U.

Choose the minimum number of subsets such that their union is U

Formulation:

Variables: $\{x_1, x_2, \dots x_k\}$ corresponding to $\{S_1, S_2, \dots, S_k\}$.

Objective function: Min $\sum_{i=1}^{k} x_i$.

Constraints: For each member $u_j \in U$, $\sum_{u_i \in S_i} x_i \ge 1$.

 $x_i \in \{0,1\}$ for all i = 1, 2, ..., k.

Maximum Clique Problem

A clique in a graph G = (V, E) is a subset $C \subseteq V$ such that the subgraph of G induced by those vertices is a complete graph. Objective is to choose the largest clique in G

Formulation:

Variables: $\{x_1, x_2, \dots x_n\}$ corresponding to every member of V.

Objective function: $\max \sum_{i=1}^{n} x_i$.

Constraints: $x_i + x_j \le 1$ for all $(v_i, v_j) \notin E$ and i < j.

 $x_i \in \{0,1\}$ for all i = 1, 2, ..., n.

Maximum Independent Set Problem

An independent set in a graph G = (V, E) is a subset $C \subseteq V$ such that there is no edge among any pair of vertices in C.

Objective is to choose the largest independent set in G

Formulation:

Variables: $\{x_1, x_2, \dots x_n\}$ corresponding to every member of V.

Objective function: $\max \sum_{i=1}^{n} x_i$.

Constraints: $x_i + x_j \le 1$ for all $(v_i, v_j) \in E$ and i < j.

 $x_i \in \{0,1\}$ for all i = 1, 2, ..., n.

Computational Status of ILP

Computational Status of ILP - NP-Hard

Proof:

$ILP \in NP$

Consider a 0-1 ILP, where each variable x_1, x_2, \ldots, x_n can assume values 0 or 1. The number of constraints is m.

Example:

Objective Function: Maximize $x_1 - x_2 + x_3 + x_4$

Subject to: $x_1 + x_2 - x_3 + x_4 \ge 0$

 $x_1 + x_3 - x_4 \ge 0$

 $x_i \in \mathbb{Z}^+$ for all i = 1, 2, 3, 4

We can choose all possible 2^n assignments of x_1, x_2, \ldots, x_n in non-deterministic manner.

Checking the feasibility of each assignment takes O(nm) time, and Computing the value of the objective function for each feasible assignment takes O(n) time.

Computational Status of ILP

ILP is NP-hard (Reduction from 3-SAT)

Given a 3-SAT expression with variables x_1, x_2, \dots, x_n

Example: $(x_1 \vee \overline{x}_2 \vee \overline{x}_3) \wedge (x_2 \vee \overline{x}_4 \vee x_5)$

Create an ILP instance with variables z_1, z_2, \ldots, z_n , where

Each clause is converted as an inequation as follows:

$$z_1 + (1 - z_2) + (1 - z_3) > 0$$

 $z_2 + (1 - z_4) + z_5 > 0$

$$z_i \in \{0, 1\}$$
 for all $i = 1, 2, \dots, 5$

Now, a feasible solution of this ILP indicates a satisfying truth assignent of the 3-SAT.

Conclusion: ILP is NP-hard since 3-SAT is NP-complete.

An important property of ILP

Important Result

- An $m \times n$ matrix is said to be unimodular if for every submatrix of size $m \times m$ the value of its determinant is 1, 0, or -1.
- A matrix is said to be *totally unimodular* (TUM) if its all possible square submatrices are unimodular.
- If the coefficient matrix of an integer linear program is a TUM, then it is polynomially solvable.

Polynomial Solvability of Unimodular ILP

Result

If the constraint matrix A in LP is totally unimodular and b is integer valued, then every vertex of the feasible region is integer valued.

Proof

Let $A_{m \times n}$ be unimodular, and m < n.

Let $B_{m \times m}$ be a basis, and $x_B = B^{-1}b$ be a basic solution.

By Cramer's rule, $B^{-1} = \frac{C^T}{\det(B)}$, where $C = ((c_{ij}))$ is the cofactor matrix of B.

$$c_{ij} = (-1)^{i+j} det \begin{pmatrix} b_{1,1} & \dots & b_{1,j-1} & X & b_{1,j+1} & \dots & b_{1,m} \\ \vdots & \vdots \\ b_{i-1,1} & \dots & b_{i-1,j-1} & X & b_{i-1,j+1} & \dots & b_{i-1,m} \\ X & X & X & X & X & X & X \\ b_{i+1,1} & \dots & b_{i+1,j-1} & X & b_{i+1,j+1} & \dots & b_{i+1,m} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ b_{m,1} & \dots & b_{m,j-1} & X & b_{m,j+1} & \dots & b_{m,m} \end{pmatrix}$$

Thus,

- Each element of the matrix B^{-1} is integer.
- Now, if the elements of the requirement vector b are integer, the basic feasible solution corresponding to the basis B is integer valued.
- The same is true for all possible basis of the matrix A.

Conclusion: Thus, if the coefficient matrix of an ILP is a TUM, then it can be solved in polynomial time.

Total unimodularity and bipartite graphs

Result

A graph is bipartite if and only if its incidence matrix is totally unimodular.

Proof:

If part: Let A be a TUM. Assume that G is not bipartite.

Then G contains an odd cycle. The submatrix of A which corresponds to the odd cycle has determinant 2. This contradicts the total unimodularity of the matrix A.

Only if part: Let G be bipartite. Consider a $t \times t$ submatrix of A. Proof is by induction on t. (t=1 follows from the definition of the incidence matrix.)

Konig Matching Theorem

Konig Matching Theorem

Let G be a bipartite graph. Cardinality of maximum matching = cardinality of minimum vertex cover $(\nu(G) = \tau(G))$.

Proof: We know that the matching number is given by $\nu(G) = \max\{1^T x | Ax \le 1, x \ge 0\}$, where $A \longrightarrow \text{vertex}$ edge incidence matrix, and x corresponds to the edges in G.

Its dual problem: $d^* = \min\{1^T y | y \ge 0, A^T y \ge 1\}$, where y corresponds to the vertices in G.

By LP duality, $d^* = \nu(G)$.

- Let y be the incidence vector of the minimum vertex cover. Then y is feasible in the dual problem with value of the objective function τ(G).
- Suppose y is a non-optimal solution of the dual problem.
- Then there is a (0-1) optimum solution y^* with $d^* < \tau(G)$.
- But, this (0-1) solution y* is also a feasible solution of the vertex cover problem.
- Indication y is not optimum for vertex cover problem Contradiction.

Conclusion:

Vertex cover problem is polynomially solvable for bipartite graph.

Incidence matrix of a directed graph

Let G = (V, E) be a directed graph

Define a $|V| \times |E|$ incidence matrix $A = ((a_{i,j}))$ as follows:

$$a_{v,e} = 1$$
 if e leaves v
= -1 if e enters v (1)
= 0 otherwise

Note: Every column of A has exactly one 1 and one -1, the other elements are all zeroes.

Total unimodularity and directed graphs

Result

The incidence matrix A of a directed graph G is totally unimodular.

Proof: Let B be a $t \times t$ square submatrix of A. Proof by induction on t.

- Case 0: t = 1. This case is trivial.
- Case 1: B has a zero column $\Longrightarrow det(B) = 0$.
- Case 2: B has a column with exactly one 1 (or -1). Calculate det(B) using this column and use the induction assumption. det(B) = 1 or -1 or 0
- Case 3: Every column of B has one 1 and one 1. The row vectors of B add up to the zero vector $\Longrightarrow det(B) = 0$.

Transportation Problem

The Problem

Given

- a set of m sources s_1, s_2, \ldots, s_m , and a set of destinations d_1, d_2, \ldots, d_n ,
- the costs c_{ij} of transporting from source s_i to destination d_j ,
- the supply a_i at source s_i for all $i=1,2,\ldots,m$,
- the requirement b_j at destination d_j for all $j=1,2,\ldots n$

The objective is to solve the LP

Minimize
$$z = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$$

Transportation Problem

Balanced Transportation

Here, $\sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$, and the constraints are eqalities.

Example of a balanced transportation problem

Consider the following problem with 2 factories and 3 warehouses:

	wirehouse 1	wirehouse 2	wirehouse 3	supply
Factory 1	$c_{11} = 2$	$c_{12} = 5$	$c_{13} = 7$	20
Factory 2	$c_{21} = 6$	$c_{22} = 4$	$c_{23} = 4$	10
Demand	7	10	13	

This is an LP, and can be solved in polynomial time.

Assignment Problem

Assignment Problem

- Here, the cost of doing a job j by a machine i is $c_{ij} \ge 0$. If $c_{ij} = \infty$, then machine i can not be used for job job j.
- m = n
- ullet $a_i=1$ for all $i=1,2,\ldots,m$, and
- $b_j = 1$ for all j = 1, 2, ..., n.
- $x_{ij} = 0 \text{ or } 1$

This is an ILP, where the constraints can be written as

$$\sum_{j=1}^{n} x_{ij} = 1 \quad \forall \quad i = 1, 2, \dots n$$

-\sum_{i=1}^{m} x_{ij} = -1 \quad \forall \quad j = 1, 2, \dots n
x_{ij} = 0 \text{ or } 1 \quad \forall \quad i = 1(1)n, \quad j = 1(1)n

and the objective function remains same as the transportation problem

Minimize $z = \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} c_{ij}$

Min-Cost Bipartite Matching

Since, each column of the coefficient matrix has an 1 and a -1, the matrix is unimodular.

Thus, the assignment problem can be solved in polynomial time.

Problems on Interval Graph

An interval matrix has 0 1 entries and each row is of the form

$$(0,\ldots,0,1,\ldots\ldots,1,0,\ldots,0)$$

Result

Each interval matrix A is totally unimodular.

Proof: Let B be a $t \times t$ submatrix of A, and let.

$$N = \left(egin{array}{ccccccc} 1 & -1 & 0 & \dots & 0 & 0 \\ 0 & 1 & -1 & \dots & 0 & 0 \\ dots & dots & dots & \dots & dots & dots \\ 0 & 0 & 0 & \dots & 1 & -1 \\ 0 & 0 & 0 & \dots & 0 & 1 \end{array}
ight)$$

Note that, det(N) = 1. Now, NB^T is a submatrix of the incidence matrix of some directed graph. Thus, NB^T is totally unimodular, and hence $det(B) \in \{0, +1, -1\}$.

Clique of Interval Graph

Maximum Clique Problem

A clique in a graph G = (V, E) is a subset $C \subseteq V$ such that the subgraph of G induced by those vertices is a complete graph. Objective is to choose the largest clique in G

Formulation:

Variables: $\{x_1, x_2, \dots x_n\}$ corresponding to every member of V.

Objective function: $\max \sum_{i=1}^{n} x_i$.

Constraints: $x_i + x_j \le 1$ for all $(v_i, v_j) \notin E$ and i < j.

 $x_i \in \{0,1\}$ for all i = 1, 2, ..., n.

Clique of Interval Graph

The corresponding matrix

$$\begin{bmatrix} & 1 & 1 & 1 & 0 & 0 & 0 \\ & & 1 & 0 & 0 & 0 & 0 \\ & & & 1 & 1 & 1 & 0 \\ & & & & 1 & 1 & 0 \\ & & & & & 0 & 0 \\ & & & & & 1 \end{bmatrix}$$

Observation

As the consecutive 1 property is satisfied by the coefficient matrix, the clique problem for interval graph can be solved in polynomial time.

Clique Cover Problem for Interval Graph

The corresponding matrix

	I_1	I_2	I_3	I_4	I 5	I_6	I_7	I 8	l 9	I_{10}	/11	I_{12}
<i>X</i> ₁	1	1	1	0	0	0	0	0	0	0	0	0
<i>X</i> 2	0	1	1	0	0	0	0	0	0	0	0	0
<i>X</i> 3	0	0	1	1	1	0	0	0	0	0	0	0
<i>X</i> ₄	0	0	0	1	1	1	0	0	0	0	0	0
<i>X</i> ₅	0	0	0	0	1	1	1	1	0	0	0	0
<i>X</i> ₆	0	0	0	0	0	1	1	1	1	0	0	0
<i>X</i> 7	0	0	0	0	0	0	1	1	1	0	0	0
<i>X</i> ₈	0	0	0	0	0	0	1	1	0	1	0	0
<i>X</i> 9	0	0	0	0	0	0	1	0	0	1	1	0
<i>X</i> ₁₀	0	0	0	0	0	0	0	0	0	0	1	1
X11	n	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	0	1

Clique Cover Problem for Interval Graph

Minimum Clique Cover

Minimize $\sum_{i=1}^{n} x_i$ subject to $\sum_{i \in I_i} x_i \ge 1$ for all intervals I_i .

Time complexity

Thus, the minimum clique cover corresponds to minimum number of vertical line that stab all the segments.

As the coefficient matrix satisfies consecutive 1 property, and can be solved in polynomial time.

Solving ILP - Cutting plane method

ILP Problem

Minimize c'xSubject to Ax = b $x \ge 0$, x integer.

- x* is a basic feasible solution of the LP.
- The greedy strategy is that choose the nearest integer of x* as the solution of ILP.
- But, such a solution may not be feasible.

Corresponding LP Problem

Minimize c'xSubject to Ax = bx > 0.

Solving ILP - Cutting Plane method

Theme of the Algorithm

- Step 1: Solve the LP relaxation of the ILP problem.
- Step 2: If the solution is not an integer then add a new constraint, called a cutting plane, that does not exclude any feasible integer solution of the LP problem.
- Step 3: Go to Step 1

Getting a Cutting Plane - Gomory's technique

Recall the simplex tableau

			<i>c</i> ₁	c ₂			Cj			Cn
XB	C B	<i>y</i> ₀	<i>y</i> ₁	y ₂			Уj			Уn
x_{B_1}	c_{B_1}	<i>y</i> ₁₀	<i>y</i> ₁₁	<i>y</i> ₁₂			<i>y</i> 1 <i>j</i>			y_{1n}
XB_2	CB ₂	y 20	y 21	y 22			y 2j			y 2n
:	:	:	:	•	:		:	:	:	<u> </u>
:	:	:	:	:	:	:	:	:	:	:
X _{Bi}	c_{B_i}	y _{i0}	y _{i1}	y _{i2}			Уij			Yin
:	:	:	:	•	:	:	:	:	:	:
:	:	:	:	:	:		:	:	:	:
XB _m	C _{B_m}	y _m 0	y _{m1}	y _{m2}			Утj			y _{mn}

Consider a typical equation (for some $i \in [0, 1, ..., m]$) of the tableau

$$x_{B(i)} + \sum_{j \notin B} y_{ij} x_j = y_{i0} \dots (*)$$

Getting a Cutting Plane - Gomory's technique

Consider a typical equation (for some $i \in [0,1,\ldots,m]$) of the tableau

$$x_{B(i)} + \sum_{j \notin B} y_{ij} x_j = y_{i0} \dots (*)$$

We also have

$$\sum_{j\in B} \lfloor y_{ij} \rfloor x_j \le \sum_{j\in B} y_{ij} x_j$$

Thus, we have

$$x_{B(i)} + \sum_{i \notin B} \lfloor y_{ij} \rfloor x_j \le y_{i0}$$

Since the LHS is an integer, we can replace the constraint as

$$x_{B(i)} + \sum_{i \notin B} \lfloor y_{ij} \rfloor x_j \leq \lfloor y_{i0} \rfloor \ldots (*)$$

Subtracting (**) from (*), we have

Getting a Cutting Plane - Gomory's technique

We have,

$$\sum_{j \notin B} (y_{ij} - \lfloor y_{ij} \rfloor) x_j \ge y_{i0} - \lfloor y_{i0} \rfloor$$

Taking $f_{ij} = y_{ij} - \lfloor y_{ij} \rfloor$ for all i = 0, 1, ..., m, we have

$$\sum_{j\notin B}f_{ij}x_j\geq f_{i0}$$

Adding slack variable

$$-\sum_{j\not\in B}f_{ij}x_j+s=-f_{i0}$$

Example

ILP Problem

Maximize x_2 Subject to $3x_1 + 2x_2 \le 6$

 $x_1, x_2 \ge 0$, x integer.

Initial Tableau

X _b	Cb	y 0	<i>y</i> ₁	y 2	<i>y</i> 3	<i>y</i> ₄
Сј	-	-	0	1	0	0
<i>X</i> ₃	0	6	3	2	1	0
X4	0	0	-3	2	0	1
$z_j - c_j$	-	0	0	-1	0	0

Final Tableau

x_b	Cb	y 0	<i>y</i> ₁	y 2	<i>y</i> 3	<i>y</i> 4
Cj	-	-	0	1	0	0
<i>X</i> ₁	0	1	1	0	$\frac{1}{6}$	$-\frac{1}{6}$
<i>X</i> ₂	1	$\frac{3}{2}$	0	1	$\frac{1}{4}$	$\frac{1}{4}$
$z_j - c_j$	-	$\frac{3}{2}$	0	0	$\frac{1}{4}$	$\frac{1}{4}$

• Solution of the LP: $x = (1, \frac{3}{2})$

 $-3x_1 + 2x_2 < 0$

• Cost: $x_2 = \frac{3}{2}$

Example

The second row of the tableau says that

$$x_2 + \frac{1}{4}x_3 + \frac{1}{4}x_4 = \frac{3}{2}$$

Substituting the maximum integeral solution (i.e., $x_2 = 1$), we have

$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2}$$

Implies a new constraint $\dots x_2 \le 1$.

Another Iteration

Initial Tableau Final Tableau										
X _b	Cb	<i>y</i> ₀	<i>y</i> ₁	y ₂	<i>y</i> ₃	<i>y</i> ₄	X _b	Cb	<i>y</i> ₀	J
Cj	-	-	0	1	0	0	Сј	-	-	
<i>X</i> ₁	0	1	1	0	$\frac{1}{6}$	$-\frac{1}{6}$	<i>x</i> ₁	0	$\frac{2}{3}$	
<i>X</i> ₂	1	3 2	0	1	$\frac{1}{4}$	1/4	<i>X</i> ₂	1	1	
X _{s1}	0	$-\frac{1}{2}$	0	0	$-\frac{1}{4}$	$-\frac{1}{4}$	<i>X</i> 3	0	2	
$z_j - c_j$	-	$\frac{3}{2}$	0	0	1/4	$\frac{1}{4}$	$z_j - c_j$	-	1	

_								
	X_b	Cb	<i>y</i> ₀	y_1	<i>y</i> ₂	<i>y</i> ₃	<i>y</i> ₄	s ₁
	Сј	-	-	0	1	0	0	0
	<i>X</i> ₁	0	$\frac{2}{3}$	1	0	0	$-\frac{1}{3}$	2 3
	<i>X</i> ₂	1	1	0	1	0	0	1
	<i>X</i> 3	0	2	0	0	1	1	-4
	$z_j - c_j$	-	1	0	0	0	0	1
_								

Obtained solution $x = (\frac{2}{3}, 1) \longrightarrow \text{still not an integer solution.}$

The first row of the tableau says that $x_1 + (\frac{2}{3} - 1)x_4 + \frac{2}{3}x_{s1} = \frac{2}{3}$

Implying $x_1 - x_4 \le \frac{2}{3}$

Since x_1, x_4 are both integers, we have $x_1 - x_4 \le 0$

In other words, $\frac{2}{3}x_4 + \frac{2}{3}x_{s1} \ge \frac{2}{3}$

Combining Eq. 2, we have another constraint $x_1 \ge x_2$

Explanation of last step

We have the followings:

1.
$$\frac{2}{3}x_4 + \frac{2}{3}x_{s1} \ge \frac{2}{3} \Longrightarrow x_4 + x_{s1} \ge 1$$
.

2.
$$\frac{1}{4}x_3 + \frac{1}{4}x_4 \ge \frac{1}{2} \Longrightarrow \frac{1}{4}x_3 + \frac{1}{4}x_4 + x_{s1} = \frac{1}{2}$$

3.
$$3x_1 + 2x_2 + x_3 = 6$$

4.
$$-3x_1 + 2x_2 + x_4 = 0$$

Substituting x_{s1} from (2) in (1), we have $x_4 + (\frac{1}{2} + \frac{1}{4}x_3 + \frac{1}{4}x_4) \ge 1$

Implying, $5x_4 + x_3 \ge 6$

Putting x_3 and x_4 from (3) and (4) respectively, we have $x_1 \ge x_2$.

Example

Combining Eq. 2, we have another constraint $x_1 \ge x_2$

Finally, we have the solution: $x_1 = 1$ and $x_2 = 1$.

Questions !!!

Questions !!!

• The number of iterations is finite, but may be exponential in the number of variables and constraints.

An information

Result → Eisenbrand and Rote, 2001

A two variable integer programming defined by m linear constraints where each coefficient is represented using s bits can be solved in $O(m+s\log m)$ arithmetic , or $O(m+\log s\log m)M(s)$ bit operations, where M(s) is the time needed for multiplying two integers of s bits.