09.03. Під час роботи над завданням програміст змінював свою програму 15 разів. Він допускає хоча б 1 помилку з ймовірністю 0.4. Яка ймовірність того, що програма буде компілюватись успішно: а) не менше 6 разів; б) не більше 2 разів; в) всі 15 разів.

Розв'язок:

Ймовірність появи події k разів у n випробуваннях (при чому для кожного випробування ймовірність появи події постійна) у цій задачі обчислюється за формулою Бернуллі, оскільки n достатньо мале.

$$P_n(k) = C_n^k p^k q^{n-k},$$

де $P_n(k)$ — ймовірність появи події k разів у n незалежних випробуваннях, p — ймовірність появи події в одному випробуванні, q — ймовірність не появи події в 1 випробуванні.

n = 15

р = 0.6 – ймовірність успішного компілювання програми

q = 0.4 – ймовірність хоча б 1 помилки

$$*0.000042 - 3003 * 0.07776 * 0.000105 \approx 0.966$$

б)
$$P_{15}(k \le 2) = \sum_{i=0}^{2} C_{15}^{i} p^{i} q^{15-i} = C_{15}^{0} p^{0} q^{15} + C_{15}^{1} p q^{14} + C_{15}^{2} p^{2} q^{13} =$$

$$= 0.000001 + 15 * 0.6 * 0.000003 + 105 * 0.36 * 0.000007 \approx 0.0003$$

B)
$$P_{15}(15) = C_{15}^{15} p^{15} q^0 = 0.6^{15} \approx 0.0005$$

 $Bi\partial noвi\partial b$: a) $P_{15}(k \ge 6) \approx 0.966$

6)
$$P_{15}(k \le 2) \approx 0.0003$$

$$B) P_{15}(15) \approx 0.0005$$

10.03. Наведені дані - кількість запитів на сервер в секунду за 30 секунд. Поділити їх на класи, побудувати згрупований розподіл щільності частоти, щільності відносної частоти, гістограму відносної частоти та полігон частоти.

112	135	128	105	112
112	109	99	113	147
168	151	145	143	110
98	87	103	126	137
152	149	154	162	143
135	124	111	90	102

Розв'язок:

Побудуємо варіаційний ряд:

87	90	98	99	102
103	105	109	110	111
112	112	112	113	124
126	128	135	135	137
143	143	145	147	149
151	152	154	162	168

$$X_{\text{max}} = 168$$

$$X_{min} = 87$$

Звідси розмах $R = X_{max} - X_{min} = 168 - 87 = 81$.

Оскільки кількість варіант менше 100, поділимо їх на ${\bf k}=7$ класів.

Визначимо ширину класу:

$$h = \frac{R}{k} = \frac{81}{7} \approx 12$$

Граничні значення будемо відносити до наступного класу.

Отже згрупований розподіл щільності частоти (n_i/h) і щільності відносної частоти (w_i/h) має вигляд (побудуємо також згрупований розподіл частоти (n_i) і

відносної частоти (w_i) для спрощення розрахунків і подальшого створення гістограми):

$X_k - X_{k+1}$	n_i	Wi	n _i /h	w _i /h
87 — 99	3	0.1	0.25	0.008
99 — 111	6	0.2	0.5	0.017
111 — 123	5	0.17	0.4	0.014
123 — 135	3	0.1	0.25	0.008
135 — 147	6	0.2	0.5	0.017
147 — 159	5	0.17	0.4	0.014
159 — 171	2	0.07	0.2	0.006

Побудуємо розподіл частоти, щоб створити полігон частот:

Xi	87	90	98	99	102	103	105	109	110	111	112	113	124
n_i	1	1	1	1	1	1	1	1	1	1	3	1	1
Xi	126	128	135	137	143	145	147	149	151	152	154	162	168
n _i	1	1	2	1	2	1	1	1	1	1	1	1	1

