PRESENT

Project: เครื่องยิง ลูกสควอช กลุ่ม 3

การเคลื่อนที่แบบโพรเจกไทล์

การเคลื่อนที่แบบโพรเจกไทล์นั้นคือการเคลื่อนที่ที่
ประกอบด้วย 2 แนว คือแนวดิ่ง และแนวระนาบ โดยเราจะ
พิจารณาที่แนวดิ่งเพื่อใช้หาระยะเวลาที่วัตถุเคลื่อนที่ ส่วนในแนว
ระนาบเราจะใช้พิจารณาระยะทางที่วัตถุเคลื่อนที่ไปได้ แล้วเรา
จะนำเวลาที่ได้ไปพิจารณาการเคลื่อนที่แบบวงกลมเพื่อหาองศา
เป้าหมายที่เปลี่ยนไป และเราจะใช้โปรแกรมในการประมาณค่า
องศาที่ใช้ในการยิงลูกสควอช

รูปที่ 1: แสดงการเคลื่อนที่แบบโพรเจกไทล์

รูปที่ 2: แสดงการเคลื่อนที่แบบวงกลมบนแพลทฟอร์ม

การออกแบบเครื่องยิง

ลักษณะโดยรวมของเครื่องยิง

กลไกการปรับองศาในแนวระดับ

ฐานยิงรูปทรงค<mark>รึ่งวงกลม</mark>

กลไกการปลดสลักโดยใช้มอเตอร์

ทฤษฎีที่เกี่ยวข้อง

การเคลื่อนที่แบบโพรเจกไทล์ เป็นการเคลื่อนที่ที่ประกอบไปด้วย 2 แกน คือแนวดิ่ง และแนวระนาบ[2] โดยแนวดิ่งจะสามารถหาเวลาได้จากการพิจารณาวัตถุเป็นการ เคลื่อนที่แบบดิ่งเสริดังสมการที่(2)

$$Sy = usin\Theta t - \frac{1}{2}gt^2 \tag{1}$$

จากสมาการที่ (1) จัดรูปสมาการเพื่อหาเวลาจะได้

$$t = \frac{-u\sin\theta \pm \sqrt{u\sin\theta^2 - 2gSy}}{g} \tag{2}$$

และสามารถหาระยะทางที่วัตถุเคลื่อนที่ในแนวระนาบได้ดังนี้

$$Sx = ucoset$$
 (3)

การเคลื่อนที่แบบวงกลมเป็นการเคลื่อนที่ที่มีความเร็วคงที่ โดยจะมีแรงกระทำต่อวัตถุใน ทิศเข้าสู่จุดศูนย์กลางและทิศตั้งฉากกับวัตถุสม่ำเสมอ[1] และสามารถหาความเร็วเชิงมุมได้ ดังนี้

$$\omega = 2\pi f \tag{4}$$

จากสมาการที่(2)และ(4)สามารถหามุมที่เป้าหมายเปลี่ยนไปดังนี้

$$\alpha = \omega t$$
 (5)

จากรูปที่ 2 มุมที่ใช้ในยิงลูกสควอชในแนวระนาบคือมุม $\frac{\alpha}{2}$ และสามารถหาระยะกระจัดจากเป้าหมายถึงจุดที่ยิงลูกสควอชได้จากกฎของ \cosine ดังนี้

$$S^2 = R_1^2 + R_2^2 - 2R_1R_2\cos(180 - \alpha)$$
 (6)

แผนผังการทำงานของโปรแกรม

วิธีการทดลอง

เราจะสามารถประมาณค่าองศาที่ใช้ยิงลูกสควอชได้จากการเปรียบเทียบค่าของ Sx และ S ที่มุม Θ ต่างๆ โดยเราจะใช้โปรแกรมในการหาค่า Sx และ S ที่ใกล้เคียงกัน ซึ่ง โปรแกรมจะทำงาน โดยหาค่าของ Sx และ S จากสมาการที่ (3) และ (6) ตั้งแต่มุม Θ 1 องศา ไปจนถึง 89 องศา โดยโปรแกรมจะทำการแสดงผลเฉพาะองศา Θ ที่มีค่าของ Sx และ S ใกล้เคียงกัน ดังนั้นมุมเงยที่ใช้ในการยิงคือ มุม Θ และมุมในแนวระนาบที่ใช้ในการยิงคือมุม $\alpha/2$ และจะทำการทดลองยิงลูก สควอชตามค่าของมุมที่ได้จากการใช้โปรแกรม โดยใช้ กล้องถ่ายวีดีโอที่สามารถถ่าย $Slow\ motion$

ผลการทดลอง และวิจารณ์ผลการทดลอง

F	R1	R2	θ	α/2	S	Sx(m)		
(รอบ/นาที)	(m)	(m)	(องศา)	(องศา)	(m)	ครั้งที่ 1	ครั้งที่ 2	ครั้งที่ 3
0	1.00	1.00	38	0	2.00	1.95	2.03	1.98
16	1.00	1.00	38	35	1.91	1.12	1.25	1.18
16	1.00	1.00	30	35	1.91	1.53	1.59	1.48
16	1.00	1.00	25	35	1.91	1.67	1.65	1.73
16	1.00	0.60	45	20	1.36	0.80	0.91	0.85
16	1.00	0.60	25	20	1.36	1.30	1.28	1.41

รูปที่ 8 ตารางแสดงผลการทดลองยิงลูกสควอชบนแพลทฟอร์มที่ระยะทางต่างๆด้วยมุมที่โปรแกรมคำนวณ

The Coriolis Effect

MIT Department of Physics Technical Services Group

Coriolis effect

ปรากฏการณ์ที่เกี่ยวข้องกับแรงโคริออลิส

แรงโคริออลิสเป็นแรงชนิดหนึ่งที่"ไม่มีจริง" (ไม่มีจริงในความหมายที่ว่ามันไม่ใช่แรงในบรรคา แรงทั้งสี่ในฟิสิกส์) ถ้าเราอยู่ในกรอบอ้างอิงเลื่อยธรรมคาๆ เราก็จะไม่มีทางเจอแรงโคริออลิส แต่ใน กรอบอ้างอิงที่มีความเร่ง(โดยเฉพาะกรอบอ้างอิงที่หมุนอยู่) การจะอธิบายปรากฎการณ์ทางฟิสิกส์ใน กรอบอ้างอิงนี้จำเป็นจะต้องมโนแรงโคริออลิสขึ้นมา"เสมือนว่า"มันมีแรงนี้อยู่

อย่างในคลิปข้างต้น คนสองคนโยนลูกบอลไปมาบนม้าหมุน ถ้าเรายืนอยู่ดูข้างนอกอยู่เฉยๆ กับที่ เวลาที่คนนึงโยนลูกบอลไปหาอีกคนนึง ลูกบอลมันก็จะเคลื่อนที่ไปในทิศทางปกติตามที่มันถูกโยน ไปไม่มีอะไรพิศดาร แต่พอมองในมุมมองของคนที่อยู่บนม้าหมุนเท่านั้นแหละ เราก็จะพบว่าลูกบอลมัน เบี่ยงออกนอกเส้นทางที่มันถูกโยนเสมือนว่ามันมีแรงปริศนาผลักมันออก ซึ่งแรงปริศนานี้นี่แหละมีชื่อ ว่า"แรงโคริออลิส" พบได้เฉพาะในกรอบอ้างอิงที่มีความเร่ง(หมุนอยู่)เท่านั้น

เนื่องจากโลกหมุนรอบตัวเองและเราหมุนตามโลก เราจึงอยู่ในกรอบอ้างอิงที่หมุนอยู่ คังนั้น ปรากฏการณ์หลายๆอย่าง(เช่นเฮอร์ริเคน)จำเป็นจะต้องเอาแรงโคริออลิสมาอธิบาย ซึ่งถ้าหากคนที่อยู่ นอกโลก(ไม่ได้หมุนตามโลก)เห็นก็จะพบว่าปรากฏการณ์นั้นเกิดขึ้นปกติโดยไม่ต้องมโนแรงโคริออลิสขึ้นมาแต่อย่างใด

สรุปผลการทดลอง

จากผลการทดลองพบว่ามุมที่คำนวณได้จากโปรแกรมจะเป็นจริงเมื่อทำการยิงลูกสควอชบน แพลทฟอร์มที่หยุดนิ่ง และจะไม่เป็นจริงเมื่อทำการยิงลูกสควอชบนแพลทฟอร์มที่กำลังเคลื่อนที่

สรุปผลการทำโปรเจค

กลุ่มของเราสามารถสร้างเครื่องยิงลูกสควอชได้สำเร็จสามารถยิงลูกสควอชได้ด้วยอัตราเร็ว 4.48 เมตร/วินาที แต่ไม่สามารถคำนวณและวิเคราะห์สมาการทางฟิสิกส์เพื่อให้ค่าขององศาที่ใช้ ในการยิงลูกสควอชให้ตรงกับตำแหน่งเป้าหมายบนแพลทฟอร์มที่กำลังเคลื่อนที่อยู่ได้

สิ่งที่ได้เรียนรู้จากการทำโปรเจค

สิ่งที่ได้เรียนรู้คือการออกแบบการทดลองเพื่อใช้ในการแก้ปัญหา การนำประโยชน์ของ

programming มาประยุกต์ใช้กับสมการทางฟิสิกส์เพื่อช่วยในการหาค่าต่างๆได้อย่างรวดเร็ว ได้เรียนรู้การ
วางแผนการทำงานเป็นทีมและการแบ่งหน้าที่ในการทำงาน