Lecture (S:

$$X_n = 1(X_n = 0)$$
 (ind

 $Y_n = 1(X_n = 0)$ (ind

 $Y_n =$

Defu! Asympotically Efficient We say 0 is asymp. efficient for T(0) ê~ M(T(0), B(0)) $CRLB = \frac{\partial T}{\partial \theta} / IN(\theta)$ In prev. example, $e^{-x} \sim AN(e^{-x}, e^{-2x})$ what's the CRLB? $\rightarrow f(x) = \lambda e^{-\lambda}/x!$ $\Rightarrow \log f(x) = \chi \log(x) - \lambda - \log(x!)$ $\Rightarrow \frac{\partial}{\partial x} \left[- - \right] = \frac{x}{x} - 1$ $\frac{\partial^2}{\partial x^2} \left[\dots \right] = -\frac{\chi}{2}$ $T(x) = -E\left[\frac{\partial^2}{\partial x^2}\log f(x)\right] = \frac{1}{\lambda^2}E\left[X\right] = \frac{\lambda}{\lambda^2} = \frac{1}{\lambda^2}$

IN(X) =
$$\frac{1}{2}$$
; $\frac{1}{2}$; $\frac{1}{2}$ = $\frac{1}{2}$ =

	Hypothesis Testing
	O
Defi	n: Hypothesis
/	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	+ hypothesis is a statement about a
	paravetor
	Ω
	$H_0: \theta \in (-)_0 v. H_a: \theta \in (-)_a$
	null hypothesis
$\mathcal{C}_{\mathcal{C}}$	onstraint: (1) G, n Ga = Ø
	2) - o U - a = - oll possible params
	Parawe
X,_	let 0 he the true pct. of
	let 0 be the true pct. of defective items in a manufacturing
	procedure
	ρτο Φ ου το Τ
	$\begin{pmatrix} 1 \\ - \end{pmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix}$
	Ho: 0 ≤ 0.1 V. Ha! 0>0.1
	$\Theta = [0,0.1] \qquad \Theta_{\alpha} = (0.1,1]$
	$\mathcal{G}_{\alpha} = [0, 0.1] \qquad \mathcal{G}_{\alpha} = (0.1, 1]$

EX	pressure after treatement u/ a new drug.
	pressure after treatement w/ a new
	arus.
	Ho! 9=0 v. Ha! 9 ≠ 0
	G=R, G=503, Ga=R>50}
ı D	
17	0 is a 1-divil paraveter,
) test of form
	Ho: 0 = C V. Ha: 0 > C
	or Ho: 0>C V. Ha: 0 <c< th=""></c<>
	1/ ² 1/ ²
	called a one-sided test.
(2)) a test of the form
	Ho: 0=0 V. Hu! 0 +C
	(O
l	s called a two-sided test.

(3) A test of the form Ho: O= a v. Ha: O= b is called a simple text. Idea! want to collect data ad use to defermine unich is more plausible, Ho or Ha. Need to determine for which X its more plausible that OEGo V. for which more plausible that OEGa. If I is the support for X=(X, Xz, ...,) (typically X = R) A hypothesis testice procedure is simply a

rule flat partitions X into X = A u Reject region (reject Ho)

accept region (accept Ho)

Ex. Xn iid for w/ mean or Ho: 0>5 V. Ha: 0≤5 Let $T = \overline{X}$ and $D = (-\infty, 5)$ i.e. réject Ho if X < 5 Defu: Type I ad II errors Nulle 0 € Go correct

Type To deuxion Type To correct

ALL. 15 0 € Ga Type II correct

Arve error deixion } outcome of HT procedure accept reject Ho Ho Goal! make a procedure that minimizes the prob. I make a Type I/II Often, minimizing type I error increases
my type II error prob. and vice-versa

Defn: Power Function For any OEG the power function B is defined as $\beta(0) = P_{\alpha}(X \in \mathbb{R})$ l'if true param is 0, prob. I reject Ho For QE(-) [null is true] then B(0) is the prob of a type I error For 0 = (alt. is true) then B(0) is the prob. of correctly rejecting Ho egviv. 1-00) = P(x4R) = prob. of type IT error.

Ex.
$$X_1, ..., X_S$$
 $\stackrel{iid}{\sim}$ Bern (p)
 $Coepe 1$
 $Coepe 1$

So
$$\max_{\theta \in G, \beta(\theta)} \beta(\theta) = \max_{\theta \leq 1/2} \beta(\theta)$$

$$= \beta(1/2) = (\frac{1}{2})^{5}.$$