4105Computer Vision

Lecture 1 Dr. Shaimaa Othman

What is the difference between Computer Vision and Image Processing?

• Computer Vision:

- Is the use of seen as a major input that governs actions.
- Includes Image processing
- In other words, make it more useful, extract data, and/or learn something from image.

Image Processing

- Image processing means to perform objective operations on the images.
- Includes: acquisition and digitization, enhancement, restoration, segmentation, detection, representation, description, recognition, encoding, steganography, watermarking,

What is the objective of Digital image processing/ Computer vision?

- The ultimate goal of digital Image processing/computer vision is building up
 - "Digital image processing-based system"
 - "Computer vision system"
- Systems that uses digital Image as a major input with possible other inputs.
- Such systems enabled due to
 - Advances in acquisition systems as well as,
 - Processing platforms
 - Researchers' efforts in computer visions: open-source libraries (such as openCV, matlab)

Sample systems: Computer vision/Image processing

- Smart bombs: Those store the target picture and have the maneuver ability to hit the target precisely.
- Smart missiles: The missiles that use in its terminal phase guidance based on pre-stored images to correct any minor deviations from the destination target.
- Security systems (face recognition, fingerprints)
- Material analysis (using Image processing ease the identification of deformation or cracks in metal alloy)
- Machine Control or quality control (visual inspection)

Sample Systems: Computer Vison/Image Processing cont

- Medical (X-ray, Sonar)
- Auto-Drive
- Robotics
- Motion Detection
- Smart Cities
- Remote sensing
- Law enforcement
- Data Encoding (send a coded information within a photo)

Digital Image processing based /Computer vision systems

Fig 1: Image processing based systems

Basic Elements of the system

- Acquisition
- Enhancement
- Restoration
- Segmentation
- Description
- Feature extraction
- Detection
- Recognition
- Encoding/Decoding

1) Image Acquisition/Image Digitation

- Computers stores and process Numbers
- Computer memory is of finite size
- Processing Power has ceiling

Images

- •Images in General
 - Infinite positions in x
 - Infinite positions in Y
 - Infinite Possible Colors

So, images has to be turned to numbers of finite sizes to be able to store and process: SAMPLING AND QUANTIZATION

Sampling and Quantization

• Image process step done during acquisition to digitize an image

• Sampling:

- Divide the image into samples: "N" in "x" and "M" in "y" as result we will have "M x N" picture elements (image elements or pels) which is called pixels.
- The pixels are the intersection of x-axis samples with y-axis samples.
- The outcome is an image grid over the Image.

Quantization

- group interval of greys/colors into single value to form finite number of colors/grays
- Quantization done on the output of the sensors set per pixel
- The outcome is color/gray index within the range.
- Sensors could be gray that produce a reading per pixel or 3 readings (RED, GREEN, BLUE)
- Quantization levels counts or quantization bits q is directly linked to colors/gray resolutions
- Number of possible colors/grays are 2^q
- Image resolution is :MxNxq

Samples and Quantization cont

Fine sampling

Good image

Precise description

High memory requirements

Processing power needed is very big

Transmit require high bandwidth channels

Coarse Sampling

poor image

false contouring

low memory requirements

low processing power

low bandwidth sufficient

Image Resolution

- Directly points to the quality, memory requirements, processing powers, and transmit time.
- Quantization Levels does any level counts make a sense?
 - L = 1,2,3,4,5,6,7,8,....?
- In General, Digital Image Processing perspective
 - Is an Image matrix which is finite matrix of integer values or
 - 3 image matrices for color images
- Color Images quantizes to 24 bit are called true color images
- Color images resolutions nowadays are over eye resolutions