Foundations of Machine Learning CentraleSupélec — Fall 2016

5. Linear & logistic regressions

Chloé-Agathe Azencott

Centre for Computational Biology, Mines ParisTech chloe-agathe.azencott@mines-paristech.fr

Practical matters

• L'apprentissage artificiel. Concepts et algorithmes. Antoine Cornuéjols et Laurent Miclet.

Learning objectives

- Define parametric methods.
- Define the maximum likelihood estimator and compute it for Bernouilli, multinomial and Gaussian densities.
- Define the Bayes estimator and compute it for normal priors.
- Compute the maximum likelihood estimator / least-square fit solution for linear regression.
- Compute the maximum likelihood estimator for logistic regression.

Parametric methods

Parametric methods

$$\bullet \quad \mathcal{X} = \{\boldsymbol{x}^i\}_{i=1,...,n}$$

$$\boldsymbol{x}^i \sim p(\boldsymbol{x}|\theta)$$

- Parametric estimation:
 - assume a form for $p(x|\theta)$

E.g.
$$p(x_j|\theta_j) \sim \mathcal{N}(\mu_j, \sigma_j^2)$$
 $\theta = \{\mu_1, \sigma_1, \dots, \mu_p, \sigma_p\}$

$$\theta = \{\mu_1, \sigma_1, \dots, \mu_p, \sigma_p\}$$

- Goal: estimate θ using X
- usually assume that x^i independent and identically distributed (iid)

Maximum likelihood estimation

- Find θ such that X is the most likely to be drawn.
- Likelihood of θ given the i.i.d. sample X:

$$\ell(\theta|\mathcal{X}) = p(\mathcal{X}|\theta) = p(\mathbf{x}^1|\theta)p(\mathbf{x}^2|\theta)\dots p(\mathbf{x}^n|\theta)$$

• Log likelihood:

$$\mathcal{L}(\theta|\mathcal{X}) = \log \ell(\theta|\mathcal{X}) = \log p(\mathbf{x}^1|\theta) + \dots + \log p(\mathbf{x}^n|\theta)$$

Maximum likelihood estimation (MLE):

$$\theta^* = \arg\max_{\theta} \mathcal{L}(\theta|\mathcal{X})$$

• Two states: failure / success

$$x \in \{0, 1\}$$

 $P(X = x | p_0) = p_0^x (1 - p_0)^{(1-x)}$

$$\mathcal{X} = \{x^i\}_{i=1,\dots,n}$$

What is the MLE estimate of p_0 ?

• Two states: failure / success

$$x \in \{0, 1\}$$

 $P(X = x | p_0) = p_0^x (1 - p_0)^{(1-x)}$

$$\mathcal{X} = \{x^i\}_{i=1,\dots,n}$$

What is the MLE estimate of p_0 ?

• Log likelihood:

Two states: failure / success

$$x \in \{0, 1\}$$

 $P(X = x | p_0) = p_0^x (1 - p_0)^{(1-x)}$

$$\mathcal{X} = \{x^i\}_{i=1,\dots,n}$$

What is the MLE estimate of p_0 ?

• Log likelihood:

$$L(p_0|\mathcal{X}) = \log P(\mathcal{X}|p_0) = \sum_{i=1}^{n} (x^i \log p_0 + (1 - x^i) \log(1 - p_0))$$

• To maximize the likelihood: set its gradient to 0.

Two states: failure / success

$$x \in \{0, 1\}$$

 $P(X = x | p_0) = p_0^x (1 - p_0)^{(1-x)}$

$$\mathcal{X} = \{x^i\}_{i=1,\dots,n}$$

What is the MLE estimate of p_0 ?

• Log likelihood:

$$L(p_0|\mathcal{X}) = \log P(\mathcal{X}|p_0) = \sum_{i=1}^{n} (x^i \log p_0 + (1 - x^i) \log(1 - p_0))$$

• To maximize the likelihood: set its gradient to 0.

$$\hat{p_0} = \frac{1}{n} \sum_{i=1}^n x^i$$

Multinomial density

- Consider K mutually exclusive and exhaustive classes
 - Each class occurs with probability p_k $\sum_{k=1}^{K} p_k = 1$
 - x_1 , x_2 , ..., x_K indicator variables: x_1 =1 if the outcome is class k and 0 otherwise

$$P(x_1, x_2, \dots, x_K) = \prod_{k=1}^K p_k^{x_i}$$

• The MLE of p_k is

$$\hat{p}_k = \frac{1}{n} \sum_{i=1}^n x_k^i$$

Gaussian distribution

Gaussian distribution = normal distribution

$$x \sim \mathcal{N}(\mu, \sigma^2)$$

Compute the MLE estimates of μ and σ .

Gaussian distribution

Gaussian distribution = normal distribution

$$x \sim \mathcal{N}(\mu, \sigma^2)$$

Compute the MLE estimates of μ and σ .

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$$

$$\hat{\sigma}^{2} = \frac{1}{n} \sum_{i=1}^{n} (x^{i} - \hat{\mu})^{2}$$

Bias-variance tradeoff

Mean squared error of the estimator:

$$MSE(\hat{\theta}) = \mathbb{E}[(\hat{\theta} - \theta_0)^2]$$
$$= Var(\hat{\theta}) + Bias^2(\hat{\theta})$$

A biased estimator may achieve better MSE than an unbiased one.

Bayes estimator

$$P(C|\boldsymbol{x}) = P(C)p(\boldsymbol{x}|C)$$
 evidence

- Treat θ as a random variable with prior p(θ)
- Bayes rule:

$$p(\theta|\mathcal{X}) = \frac{p(\boldsymbol{x}|\theta)p(\theta)}{p(\mathcal{X})}$$

Density estimation at x:

$$p(\boldsymbol{x}|\mathcal{X}) = \int p(\boldsymbol{x}, \theta|\mathcal{X}) d\theta = \int p(\boldsymbol{x}|\theta) p(\theta|\mathcal{X}) d\theta.$$

Bayes estimator

- Treat θ as a random variable with prior p(θ)
- Bayes rule:

$$p(\theta|\mathcal{X}) = \frac{p(\boldsymbol{x}|\theta)p(\theta)}{p(\mathcal{X})}$$

Density estimation

$$p(\boldsymbol{x}|\mathcal{X}) = \int p(\boldsymbol{x}, \theta|\mathcal{X}) d\theta = \int p(\boldsymbol{x}|\theta) p(\theta|\mathcal{X}) d\theta.$$

• Maximum a posteriori (MAP) estimate:

$$\theta_{\text{MAP}} = \arg \max_{\theta} p(\theta|\mathcal{X})$$

Maximum likelihood estimate (MLE):

$$\theta_{\text{MLE}} = \arg \max_{\theta} p(\mathcal{X}|\theta)$$

Bayes estimate:

$$\theta_{\text{Bayes}} = \mathbb{E}[\theta|\mathcal{X}] = \int \theta p(\theta|\mathcal{X}) d\theta$$

• n data points (iid) $x^i \sim \mathcal{N}(\theta, \sigma_0^2)$

$$\theta \sim \mathcal{N}(\mu, \sigma^2)$$

• MLE of θ : $\hat{\theta}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$

Compute the Bayes estimator of θ

- n data points (iid) $x^i \sim \mathcal{N}(\theta, \sigma_0^2)$

$$\theta \sim \mathcal{N}(\mu, \sigma^2)$$

• MLE of θ : $\hat{\theta}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$

Compute the Bayes estimator of θ θ Bayes $= \mathbb{E}[\theta|\mathcal{X}]$

$$p(u|m,s) = \frac{1}{\sqrt{2\pi s}} \exp\left[-\frac{(u-m)^2}{2s^2}\right]$$

Hint:

Compute $p(\theta | X)$ and show that it follows a normal distribution

• n data points (iid) $x^i \sim \mathcal{N}(\theta, \sigma_0^2)$

$$\theta \sim \mathcal{N}(\mu, \sigma^2)$$

• MLE of θ : $\hat{\theta}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$

Compute the Bayes estimator of θ θ Bayes $= \mathbb{E}[\theta|\mathcal{X}]$

 $p(\theta | X)$ follows a normal distribution with

mean

$$\frac{n\hat{\theta}_{\text{MLE}}\sigma^2 + \mu\sigma_0^2}{n\sigma^2 + \sigma_0^2} = \frac{1/\sigma_0^2}{1/\sigma_0^2 + 1/n\sigma^2}\hat{\theta}_{\text{MLE}} + \frac{1/\sigma^2}{n/\sigma_0^2 + 1/\sigma^2}\mu$$

- variance $\frac{\sigma^2 \sigma_0^2}{n\sigma^2 + \sigma_0^2}$

$$p(\theta|\mathcal{X}) = \frac{1}{\sqrt{2\pi}s} \exp\left[-\frac{(\theta-m)^2}{2s^2}\right]$$

• n data points (iid) $x^i \sim \mathcal{N}(\theta, \sigma_0^2)$

$$\theta \sim \mathcal{N}(\mu, \sigma^2)$$

• MLE of θ : $\hat{\theta}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$

Compute the Bayes estimator of θ $\theta_{\text{Bayes}} = \mathbb{E}[\theta|\mathcal{X}]$

$$\theta_{\text{Bayes}} = \mathbb{E}[\theta|\mathcal{X}]$$

 $p(\theta | X)$ follows a normal distribution with

mean

$$\frac{n\hat{\theta}_{\text{MLE}}\sigma^2 + \mu\sigma_0^2}{n\sigma^2 + \sigma_0^2} = \frac{1/\sigma_0^2}{1/\sigma_0^2 + 1/n\sigma^2}\hat{\theta}_{\text{MLE}} + \frac{1/\sigma^2}{n/\sigma_0^2 + 1/\sigma^2}\mu$$

- variance $\frac{\sigma^2 \sigma_0^2}{n\sigma^2 + \sigma_0^2}$

$$p(\theta|\mathcal{X}) = \frac{1}{\sqrt{2\pi}s} \exp\left[-\frac{(\theta - m)^2}{2s^2}\right]$$

- n data points (iid) $x^i \sim \mathcal{N}(\theta, \sigma_0^2)$ $\theta \sim \mathcal{N}(\mu, \sigma^2)$
- MLE of θ : $\hat{\theta}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$
- Bayes estimator:

- n data points (iid) $x^i \sim \mathcal{N}(\theta, \sigma_0^2)$ $\theta \sim \mathcal{N}(\mu, \sigma^2)$
- MLE of θ : $\hat{\theta}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$
- Bayes estimator:

- n data points (iid) $x^i \sim \mathcal{N}(\theta, \sigma_0^2)$ $\theta \sim \mathcal{N}(\mu, \sigma^2)$
- MLE of θ : $\hat{\theta}_{\text{MLE}} = \frac{1}{n} \sum_{i=1}^{n} x^{i}$
- Bayes estimator:

$$\theta_{\text{Bayes}} = \frac{n/\sigma_0^2}{n/\sigma_0^2 + 1/\sigma^2} \hat{\theta}_{\text{MLE}} + \frac{1/\sigma^2}{n/\sigma_0^2 + 1/\sigma^2} \mu$$

- When n \nearrow : θ_{Bayes} gets closer to the sample average (uses information from the sample).
- When σ is small, θ_{Bayes} gets closer to μ (little uncertainty about the prior).

Linear regression

Linear regression

$$\boldsymbol{x} \in \mathbb{R}^p, y \in \mathbb{R}$$

$$\mathcal{D} = \{\boldsymbol{x}^i, y^i\}_{i=1,\dots,n}$$

Linear regression: MLE

Assume error is Gaussian distributed

$$y = g(\mathbf{x}) + \epsilon \quad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

 $y=g(\pmb x)+\epsilon \quad \epsilon\sim \mathcal N(0,\sigma^2)$ • Replace g with its estimator f $f(\pmb x|\beta)=\sum^p \beta_j x_j+\beta_0$

$$p(y|\mathbf{x}) \sim \mathcal{N}(f(\mathbf{x}|\beta), \sigma^2)$$

MLE under Gaussian noise

Maximize (log) likelihood

$$\mathcal{D} = \{\boldsymbol{x}^i, y^i\}_{i=1,\dots,n}$$

$$\mathcal{L}(\beta|\mathcal{D}) = \log \prod_{i=1}^{n} p(y^{i}|\boldsymbol{x}^{i}) p(\boldsymbol{x}^{i})$$

$$= \log \prod_{i=1}^{n} p(y^{i}|\boldsymbol{x}^{i}) + \log \prod_{i=1}^{n} p(\boldsymbol{x}^{i})$$

$$p(y|\boldsymbol{x}) \sim \mathcal{N}(f(\boldsymbol{x}|\beta), \sigma^{2}) \qquad \text{independent of } \boldsymbol{\beta}$$

$$\mathcal{L}(\beta|\mathcal{D}) = \log \left(\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(y^{i} - f(\boldsymbol{x}^{i}|\beta))^{2}}{2\sigma^{2}}\right] + \text{Cte}\right)$$

$$= \text{Cte} - \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (y^{i} - f(\boldsymbol{x}^{i}|\beta))^{2}$$

 Assuming Gaussian error, maximizing the likelihood is equivalent to minimizing the sum of squared residuals.

Minimize the residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y^{i} - f(\boldsymbol{x}^{i}))^{2}$$

$$= \sum_{i=1}^{n} (y^{i} - \beta_{0} - \sum_{j=1}^{p} x_{j}^{i} \beta_{j})^{2}$$

$$= (y - X\beta)^{\top} (y - X\beta)$$

$$X = \begin{pmatrix} 1 & x_1^1 & x_2^1 & \cdots & x_p^1 \\ 1 & x_1^2 & x_2^2 & \cdots & x_p^2 \\ \vdots & \vdots & \cdots & \vdots \\ 1 & x_1^n & x_2^n & \cdots & x_p^n \end{pmatrix}$$

Minimize the residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y^{i} - f(\boldsymbol{x}^{i}))^{2}$$

$$= \sum_{i=1}^{n} (y^{i} - \beta_{0} - \sum_{j=1}^{p} x_{j}^{i} \beta_{j})^{2}$$

$$= (y - X\beta)^{\top} (y - X\beta)$$

Historically:

- Carl Friedrich Gauss (to predict the location of Ceres)
- Adrien Marie Legendre

Minimize the residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y^{i} - f(\boldsymbol{x}^{i}))^{2}$$

$$= \sum_{i=1}^{n} (y^{i} - \beta_{0} - \sum_{j=1}^{p} x_{j}^{i} \beta_{j})^{2}$$

$$= (y - X\beta)^{\top} (y - X\beta)$$

Estimate β. Under which condition is your estimate unique?

Minimize the residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y^{i} - f(\boldsymbol{x}^{i}))^{2}$$

$$= \sum_{i=1}^{n} (y^{i} - \beta_{0} - \sum_{j=1}^{p} x_{j}^{i} \beta_{j})^{2}$$

$$= (y - X\beta)^{\top} (y - X\beta)$$

• Assuming X has full column rank (and hence X^TX invertible): $\hat{\beta} = (X^{T}X)^{-1}X^{T}y$

Minimize the residual sum of squares

$$RSS(\beta) = \sum_{i=1}^{n} (y^{i} - f(\boldsymbol{x}^{i}))^{2}$$

$$= \sum_{i=1}^{n} (y^{i} - \beta_{0} - \sum_{j=1}^{p} x_{j}^{i} \beta_{j})^{2}$$

$$= (y - X\beta)^{\top} (y - X\beta)$$

- Assuming X has full column rank (and hence X^TX invertible): $\hat{\beta} = (X^{T}X)^{-1}X^{T}y$
- If X is rank-deficient, use a pseudo-inverse.

A pseudo-inverse of A is a matrix G s. t. AGA = A

• Under the assumption that $\epsilon \sim \mathcal{N}(0, \sigma^2)$

the least-squares estimator of β is its (unique) best linear unbiased estimator.

- Under the assumption that $\epsilon \sim \mathcal{N}(0, \sigma^2)$
 - the least-squares estimator of β is its (unique) best linear unbiased estimator.
- Best Linear Unbiased Estimator (BLUE):

 $Var(\hat{\beta}) < Var(\beta^*)$ for any β^* that is a linear unbiased estimator of β

- Under the assumption that $\epsilon \sim \mathcal{N}(0, \sigma^2)$
 - the least-squares estimator of β is its (unique) best linear unbiased estimator.
- Best Linear Unbiased Estimator (BLUE):

 $Var(\hat{\beta}) < Var(\beta^*)$ for any β^* that is a linear unbiased estimator of β

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} y$$

• Under the assumption that $\epsilon \sim \mathcal{N}(0, \sigma^2)$

the least-squares estimator of β is its (unique) best linear unbiased estimator.

Best Linear Unbiased Estimator (BLUE):

 $Var(\hat{\beta}) < Var(\beta^*)$ for any β^* that is a linear unbiased estimator of β

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} y$$

$$\mathbb{E}[\hat{\beta}] = \mathbb{E}[(X^{\top}X)^{-1}X^{\top}(X\beta + \epsilon)]$$
$$= \beta$$

 $\mathbb{E}[\beta^*] = \beta$

Gauss-Markov Theorem

• Under the assumption that $\epsilon \sim \mathcal{N}(0, \sigma^2)$

the least-squares estimator of β is its (unique) best linear unbiased estimator.

Best Linear Unbiased Estimator (BLUE):

 $Var(\hat{\beta}) < Var(\beta^*)$ for any β^* that is a linear unbiased estimator of β

$$\hat{\beta} = (X^\top X)^{-1} X^\top y \qquad Var(\hat{\beta}) = \mathbb{E}[(X^\top X)^{-1} X^\top \epsilon \epsilon^\top X (X^\top X)^{-1}] \\ = (X^\top X)^{-1} X^\top \sigma^2 I X (X^\top X)^{-1} \\ = \sigma^2 (X^\top X)^{-1}$$

$$= \sigma^2 (X^\top X)^{-1}$$

$$Var(\beta^*) = \sigma^2 DD^\top + Var(\hat{\beta})$$

$$D = A - (X^\top X)^{-1} X^\top \qquad \text{psd and minimal for } D=0$$

Correlated variables

- If the variables are decorrelated:
 - Each coefficient can be estimated separately;
 - Interpretation is easy:

"A change of 1 in x_j is associated with a change of β in Y, while everything else stays the same."

- Correlations between variables cause problems:
 - The variance of all coefficients tend to increase;
 - Interpretation is much harder
 when x_i changes, so does everything else.

Logistic regression

What about classification?

What about classification?

Model Pr(Y=1|X) as a linear function?
 Problems?

What about classification?

- Model P(Y=1|x) as a linear function?
 - Problem: P(Y=1|x) must be between 0 and 1.
 - Non-linearity:
 - If P(Y=1|x) close to +1 or 0, x must change a lot for y to change;
 - If P(Y=1|x) close to 0.5, that's not the case.
 - Hence: use a logit transformation

$$\log \frac{P(y=1|\boldsymbol{x})}{1-P(y=1|\boldsymbol{x})} = \beta^{\top} \boldsymbol{x} + \beta_0$$

Compute the log likelihood for n observations

$$\mathcal{D} = \{\boldsymbol{x}^i, y^i\}_{i=1,\dots,n}$$

$$\log \frac{P(y=1|\boldsymbol{x})}{1-P(y=1|\boldsymbol{x})} = \beta^{\top} \boldsymbol{x} + \beta_0$$

Compute the log likelihood for n observations

$$g = P(y = 1 | \boldsymbol{x}) = \frac{1}{1 + e^{-(\beta^{\top} \boldsymbol{x})}} \qquad \qquad \begin{matrix} \boldsymbol{x} & \leftarrow & [1, x_1, \dots, x_p] \\ \beta & \leftarrow & [\beta_0, \beta_1, \dots, \beta_p] \end{matrix}$$

$$\mathcal{L}(\beta | \mathcal{D}) = \sum_{i=1}^{n} \log P(y^i | \boldsymbol{x}^i) + \text{Cte}$$

$$= \sum_{i=1}^{n} \left(y^i \log g^i + (1 - y^i) \log(1 - g^i) \right)$$

$$\mathcal{L}(\beta|\mathcal{D}) = \sum_{i=1}^{n} \left(y^{i} \log g^{i} + (1 - y^{i}) \log(1 - g^{i}) \right)$$
$$g = P(y = 1|\mathbf{x}) = \frac{1}{1 + e^{-(\beta^{\top}\mathbf{x})}} \qquad \qquad \mathbf{x} \leftarrow \begin{bmatrix} 1, x_{1}, \dots, x_{p} \\ \beta \leftarrow \begin{bmatrix} \beta_{0}, \beta_{1}, \dots, \beta_{p} \end{bmatrix}$$

• Compute the gradient of the log likelihood $\nabla_{\beta}\mathcal{L}$

$$\mathcal{L}(\beta|\mathcal{D}) = \sum_{i=1}^{n} \left(y^{i} \log g^{i} + (1 - y^{i}) \log(1 - g^{i}) \right)$$

$$g = P(y = 1|\mathbf{x}) = \frac{1}{1 + e^{-(\beta^{\top}\mathbf{x})}}$$

$$\mathbf{x} \leftarrow \begin{bmatrix} 1, x_{1}, \dots, x_{p} \\ \beta \leftarrow \begin{bmatrix} \beta_{0}, \beta_{1}, \dots, \beta_{p} \end{bmatrix}$$

• Compute the gradient of the log likelihood $\nabla_{\beta}\mathcal{L}$

$$\nabla_{\beta}g^{i} = \boldsymbol{x}^{i}g^{i}(1-g^{i})$$

$$\nabla_{\beta}\mathcal{L} = \sum_{i=1}(y^{i}-g^{i})\boldsymbol{x}^{i}$$

- To maximize the likelihood:
 - set the gradient to 0 $\sum_{i=1}^n \left(y^i \frac{1}{1 + e^{-\beta^\top x^i}} \right) x^i = 0$
 - cannot be solved analytically
 - L concave so we can use gradient ascent (no local minima)

Gradient ascent

- J concave in β
- Update rule:

$$\beta^{(t+1)} \leftarrow \beta^{(t)} + \eta \nabla_{\beta} J(\beta^{(t)})$$

- Iterate until change < ε
- Other methods
 - Newton methods, conjugate gradient ascent, IRLS.

Summary

MAP estimate:

$$\theta_{\text{MAP}} = \arg \max_{\theta} p(\theta|\mathcal{X})$$

MLE:

$$\theta_{\text{MLE}} = \arg \max_{\theta} p(\mathcal{X}|\theta)$$

• Bayes estimate:

$$\theta_{\text{Bayes}} = \mathbb{E}[\theta|\mathcal{X}] = \int \theta p(\theta|\mathcal{X}) d\theta$$

- Assuming Gaussian error, maximizing the likelihood is equivalent to minimizing the RSS.
- Linear regression MLE:

$$\hat{\beta} = (X^{\top} X)^{-1} X^{\top} y$$

• Logistic regression MLE: solve with gradient ascent.

kaggle challenge project

How Many Bikes? Challenge

https://www.kaggle.com/c/how-many-bikes

- Predict the number of shared bikes that are rented in an American city
 - Regression
 - From weather, holiday, date & time.
- Evaluation on
 - Insights learned
 - Prediction performance.

Evaluation

Kaggle project (30 pts)

December 16, 2016

- Written report (25 pts)
 - Evaluate methods from 5 families (cross-validation / leaderboard)
 - Features pre-processing
 - Choice of final models
 - Additional insights, models, ideas
- Position in the leaderboard (5pts)