

# Wireless test report – 376028-2R1TRFWL

| Applicant: 6harmonics Inc.                                                                                                    |                                         |  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--|
| Product type: Television Band Device (TVBE                                                                                    | D)                                      |  |
| Model:<br>GWS-5000 Series                                                                                                     | Model variant: GWS-5002E                |  |
| FCC ID: 2AASTGWS-5002E                                                                                                        | IC Registration Number: 20750-GWS-5002E |  |
| Specifications:  ◆ FCC 47 CFR Part 15 Subpart Television Band Devices  ◆ RSS-222 February 5, 2015; White Space Devices (WSDs) | - ,                                     |  |
| Date of issue: November 7, 2019                                                                                               |                                         |  |
| Andrey Adelberg, Senior Wireless/EMC S                                                                                        | Specialist                              |  |
| Test engineer(s)                                                                                                              | Signature                               |  |
| Kevin Rose, Wireless/EMC Specialist                                                                                           | Signature                               |  |
| NEVIEWED DY                                                                                                                   | Signature                               |  |





### **Test location**

| Company name  | Nemko Canada Inc.                        |  |
|---------------|------------------------------------------|--|
| Facility Name | Ottawa                                   |  |
| Address       | 303 River Road                           |  |
| City          | Ottawa                                   |  |
| Province      | ON                                       |  |
| Postal code   | K1V 1H2                                  |  |
| Country       | Canada                                   |  |
| Telephone     | +1 613 737 9680                          |  |
| Facsimile     | +1 613 737 9691                          |  |
| Toll free     | +1 800 563 6336                          |  |
| Website       | www.nemko.com                            |  |
| Site number   | FCC: CA2040; (3 m semi anechoic chamber) |  |

#### Limits of responsibility

Note that the results contained in this report relate only to the items tested and were obtained in the period between the date of initial receipt of samples and the date of issue of the report.

This test report has been completed in accordance with the requirements of ISO/IEC 17025. All results contain in this report are within Nemko Canada's ISO/IEC 17025 accreditation.

#### Copyright notification

Nemko Canada Inc. authorizes the applicant to reproduce this report provided it is reproduced in its entirety and for use by the company's employees only. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. Nemko Canada Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. © Nemko Canada Inc.



# Table of contents

| Table of o | ontents                                                                                        | 3   |
|------------|------------------------------------------------------------------------------------------------|-----|
| Section 1. | Report summary                                                                                 | 4   |
| 1.1        | Applicant and manufacturer                                                                     | . 4 |
| 1.2        | Test specifications                                                                            | . 4 |
| 1.3        | Test procedures                                                                                | . 4 |
| 1.4        | Statement of compliance                                                                        | . 4 |
| 1.5        | Exclusions                                                                                     | . 4 |
| 1.6        | Test report revision history                                                                   | . 4 |
| Section 2  | Summary of test results                                                                        | 5   |
| 2.1        | FCC Part 15, general requirements test results                                                 | . 5 |
| 2.2        | FCC Part 15 Subpart H, test results                                                            |     |
| 2.3        | IC RSS-GEN, Issue 4, test results                                                              | . 5 |
| 2.4        | RSS-222, test results                                                                          | . 5 |
| Section 3  | Equipment under test (EUT) details                                                             | 6   |
| 3.1        | Sample information                                                                             | . 6 |
| 3.2        | EUT information                                                                                | . 6 |
| 3.3        | Technical information                                                                          | . 6 |
| 3.4        | Product description and theory of operation                                                    | . 7 |
| 3.5        | EUT exercise details                                                                           | . 7 |
| 3.6        | EUT setup diagram                                                                              | . 7 |
| Section 4  | . Engineering considerations                                                                   | 8   |
| 4.1        | Modifications incorporated in the EUT                                                          | . 8 |
| 4.2        | Technical judgment                                                                             | . 8 |
| 4.3        | Deviations from laboratory tests procedures                                                    | . 8 |
| Section 5  | Test conditions                                                                                | 9   |
| 5.1        | Atmospheric conditions                                                                         | . 9 |
| 5.2        | Power supply range                                                                             | . 9 |
| Section 6  | . Measurement uncertainty                                                                      | 10  |
| 6.1        | Uncertainty of measurement                                                                     | 10  |
| Section 7  | Test equipment                                                                                 | 11  |
| 7.1        | Test equipment list                                                                            | 11  |
| Section 8  | . Testing data                                                                                 | 12  |
| 8.1        | FCC 15.31(e) Variation of power source                                                         |     |
| 8.2        | FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies                                             | 13  |
| 8.3        | FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement                                        | 14  |
| 8.4        | FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits                         |     |
| 8.5        | RSS-Gen 6.7 Occupied (Emission) bandwidth                                                      | 18  |
| 8.6        | FCC 15.709(b)(ii) and RSS-222 6.2.1.2 Maximum conducted output power for fixed TVBDs           | 19  |
| 8.7        | FCC 15.709(b)(ii) and RSS-222 6.2.1.2 The power spectral density from the TVBD                 | 21  |
| 8.8        | FCC 15.709(d) and RSS-222 6.3 Transmitter band edge and adjacent channel power for fixed TVBDs | 23  |
| 8.9        | FCC 15.709(d)(2) and RSS-222 6.3.3 Radiated spurious emissions beyond the television channels  |     |
| 8.10       | RSS-222 6.4 Field Strength Emissions in the band 602–620 MHz                                   |     |
| Section 9  | · · · · · · · · · · · · · · · · · · ·                                                          |     |
| 9.1        | Radiated emissions set-up for frequencies below 1 GHz                                          | 37  |
| 9.2        | Radiated emissions set-up for frequencies above 1 GHz                                          | 38  |
| 9.3        | Conducted emissions set-up                                                                     | 38  |



# Section 1. Report summary

### 1.1 Applicant and manufacturer

| Company name    | 6harmonics Inc.              |
|-----------------|------------------------------|
| Address         | Suite 10 - 21 Concourse Gate |
| City            | Ottawa                       |
| Province/State  | ON                           |
| Postal/Zip code | K2E 7S4                      |
| Country         | Canada                       |

### 1.2 Test specifications

| FCC 47 CFR Part 15, Subpart H     | Television Band Devices    |
|-----------------------------------|----------------------------|
| RSS-222 February 5, 2015; Issue 1 | White Space Devices (WSDs) |

### 1.3 Test procedures

| 416721 D01 White Space Test | Certification Test Procedures for TV Band (White Space) Devices Authorized Under Subpart H of the Part 15 Rules |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Procedures v02              |                                                                                                                 |  |
| ANSI C63.10 v2013           | American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices                  |  |
| 367619 (June 2019) KDB      | KDB Submission to FCC for GWS5002 TVWS Device: 6harmonics Inc.                                                  |  |
| Submission                  |                                                                                                                 |  |

### 1.4 Statement of compliance

In the configuration tested, the EUT was found compliant.

Testing was performed against all relevant requirements of the test standard except as noted in section 1.5 below. Results obtained indicate that the product under test complies in full with the requirements tested. The test results relate only to the items tested.

See "Summary of test results" for full details.

### 1.5 Exclusions

None

### 1.6 Test report revision history

| Revision # | Date of issue      | Details of changes made to test report                                      |
|------------|--------------------|-----------------------------------------------------------------------------|
|            |                    |                                                                             |
| TRF        | September 30, 2019 | Original report issued                                                      |
| R1TRF      | November 7, 2019   | Updated antenna port results (removed 2 <sup>nd</sup> antenna port results) |



# Section 2. Summary of test results

### 2.1 FCC Part 15, general requirements test results

| Part       | Test description             | Verdict |
|------------|------------------------------|---------|
| §15.207(a) | Conducted limits             | Pass    |
| §15.31(e)  | Variation of power source    | Pass    |
| §15.31(m)  | Number of tested frequencies | Pass    |
| §15.203    | Antenna requirement          | Pass    |

Notes: EUT is an AC powered device.

### 2.2 FCC Part 15 Subpart H, test results

| Part           | Test description                               | Verdict |
|----------------|------------------------------------------------|---------|
| §15.709(b)(ii) | Maximum conducted output power for fixed TVBDs | Pass    |
| §15.709(b)(ii) | Power spectral density for fixed TVBDs         | Pass    |
| §15.709(d)     | Adjacent channel power for fixed TVBDs         | Pass    |
| §15.709(d)     | Radiated spurious emissions outside TV bands   | Pass    |
| §15.709(c)(4)  | Emissions in the band 602–620 MHz              | Pass    |
| §15.709(c)(5)  | AC power line conducted limits                 | Pass    |

Note: none

### 2.3 IC RSS-GEN, Issue 4, test results

| Part  | Test description                                                         | Verdict        |
|-------|--------------------------------------------------------------------------|----------------|
| 7.1.2 | Receiver radiated emission limits                                        | Not applicable |
| 7.1.3 | Receiver conducted emission limits                                       | Not applicable |
| 8.8   | Power Line Conducted Emissions Limits for Licence-Exempt Radio Apparatus | Pass           |

Notes: <sup>1</sup>According to sections 5.2 and 5.3 of RSS-Gen, Issue 4 the EUT does not have a stand-alone receiver neither scanner receiver, therefore exempt from receiver requirements.

### 2.4 RSS-222, test results

| Section | Test description                                        | Verdict |
|---------|---------------------------------------------------------|---------|
| 6.2.1.2 | Transmitter output power for Fixed WSDs                 | Pass    |
| 6.2.1.2 | Transmitter power spectral density (PSD) for Fixed WSDs | Pass    |
| 6.3.2   | Transmitter band edge and adjacent channel power limits | Pass    |
| 6.3.3   | Spurious emissions measurements and limits              | Pass    |
| 6.4     | Field strength emissions in the band 602–620 MHz        | Pass    |

Note: none



# Section 3. Equipment under test (EUT) details

### 3.1 Sample information

| Receipt date           | June 24, 2019 |
|------------------------|---------------|
| Nemko sample ID number | 1             |

### 3.2 EUT information

| Product name   | Television Band Device (TVBD) |
|----------------|-------------------------------|
| Model          | GWS-5000 Series               |
| Model variants | GWS-5002E (CPE)               |
| Serial number  | 520000047 (CPE)               |

### 3.3 Technical information

| Operating band       | 470–698 MHz (channels 14–51)                   |  |
|----------------------|------------------------------------------------|--|
| Operating frequency* | USA: 473–695 MHz                               |  |
| Operating frequency* | Canada: 473–599 MHz and 623–695 MHz            |  |
| Modulation type      | SPSK, QPSK, 16-QAM, and 64-QAM                 |  |
| Channel bandwidth    | 6, 12, 18, 24 MHz                              |  |
| Emission designator  | W7D                                            |  |
| Power requirements   | 120 V <sub>AC</sub> 60 Hz from PoE (see below) |  |

Note: \* see section 8.2 for detailed channel frequencies.

Table 3.3-1: Antenna information

| Antenna information                                                                         |
|---------------------------------------------------------------------------------------------|
| 9 dBi Dual Polarized LPDA KP Antennas PN: KP-TWDPLP9                                        |
| 9 dBi Dual Polarized LPDA Wireless Instruments PN: WiLPDA M0406-65-9X                       |
| 9 dBi Dual Polarized LPDA Wireless Instruments PN: WiLPDA M0608-65-9X                       |
| 8 dBi Single Polarized LPDA 6Harmonics PN: GWS-SL14174A                                     |
| 12 dBi Panel Dual Polarized Wireless Instruments SA MO4706-65-12 (Non-congested areas only) |
| 12 dBi Panel Dual Polarized KP Antennas PN: KP-TWDP65S-12 (Non-congested areas only)        |
| 12 dBi Panel Single Polarized KP Antennas PN: P-TWVP65S-12 (Non-congested areas only)       |
| 12 dBi Panel Single Polarized 6Harmonics PN: GWS-SL12948B (Non-congested areas only)        |
| 11 dBi Panel Dual Polarized MTI PN: MT006D11VH (Non-congested areas only)                   |
| 8 dBi Panel Dual Polarized Wireless Instruments PN: WiBOX PA M0407-8X                       |
| 9 dBi Panel Dual Polarized KP Antennas PN: KP-TWDPFP9                                       |
| 8 dBi Panel Dual Polarized Lanbowan PN: ANT0407D8Z-DP                                       |
| 7.5 dBi Panel Dual Polarized MTI PN:MT006D07VH                                              |
| 7 dBi Panel Single Polarized 6Harmonics PN: GWS-SL12948A                                    |
| 6 dBi Omni Vertical Polarization 6Harmonics PN: GWS-SL13304A                                |
| 2 dBi Omni Vertical Polarization 6Harmonics PN: GWS-SL13319A                                |

Table 3.3-2: Power supplies

| Antenna information                       |
|-------------------------------------------|
| Microsemi 9501 PoE                        |
| Ubiquiti PoE -54-80W                      |
| Netonix PoE switch configured to 48V 1.5A |
| Ubiquiti PoE -50-60W                      |



### 3.4 Product description and theory of operation

TV Whitespace wireless solution with industry leading throughput and range to meet the most demanding of deployment challenges. The GWS-5000 series is the most advanced TV whitespace solution available and is the 5<sup>th</sup> generation of TV Whitespace radio developed by 6Harmonics. Throughput with a 24 MHz and a single spatial stream Tx can achieve 72 Mbps UDP and 50 Mbps TCP/IP. Conducted transmit power up to 27.7 dBm/24 MHz per spatial stream is available in the USA. Radio receive sensitivity is –103 dBm/6 MHz. The radios can operate in a point-to-point or point-to-multi-point mode. With integrated GPS geolocation and the FCC approved Nominet TV Whitespace database, the radios are fully compliant for use in the USA.

Based upon the globally accepted robust Wi-Fi protocol, the GWS-5000 series radios are able to maintain NLOS data links in the most challenging of TVWS deployments when faced with in-band noise & interference, multipath fade, trees or other obstructions.

The radio is available in two different form factors, each having a different enclosure;

- The base station version contains the radio with two transmit chains i.e. MIMO transmit & receive.
- The client station version contains the radio with a single transmit chain and diversity receive i.e. SISO transmit and MIMO receive.

### 3.5 EUT exercise details

The EUT was powered from a PoE. During the tests a laptop was used to connect to the EUT and configure the device to transmit continuously with the desired modulation and power.

All conducted measurements were with the MIMO TX version as the worst case. EUT was tested with the appropriate antennas for spurious and conducted emissions to ensure the enclosure variation did not have impact.

### 3.6 EUT setup diagram



Figure 3.6-1: Setup diagram



# Section 4. Engineering considerations

### 4.1 Modifications incorporated in the EUT

There were no modifications performed to the EUT during this assessment.

### 4.2 Technical judgment

The GWS-5002 radio (BTS) has two transmit chains.

The CPE model variant GWS-5002E has one of the transmit chains removed, specifically the power amplifier module. In that sense the GWS-5002E is "less than" the GWS-5002. In addition, the GWS-5002E has a different enclosure. All antenna port measurements were performed on GWS-5002 model as a worst-case representative.

For the additional RSS-222 Section 6.4 Field Strength Emissions in the band 602-620 MHz requirement, - Channel-37 filter was used to achieve compliance.

### 4.3 Deviations from laboratory tests procedures

No deviations were made from laboratory procedures.



# **Section 5.** Test conditions

### 5.1 Atmospheric conditions

| Temperature       | 15–30 °C      |
|-------------------|---------------|
| Relative humidity | 20–75 %       |
| Air pressure      | 860–1060 mbar |

When it is impracticable to carry out tests under these conditions, a note to this effect stating the ambient temperature and relative humidity during the tests shall be recorded and stated.

### 5.2 Power supply range

The normal test voltage for equipment to be connected to the mains shall be the nominal mains voltage. For the purpose of the present document, the nominal voltage shall be the declared voltage, or any of the declared voltages ±5 %, for which the equipment was designed.



# Section 6. Measurement uncertainty

### 6.1 Uncertainty of measurement

Measurement uncertainty budgets for the tests are detailed below. Measurement uncertainty calculations assume a coverage factor of K = 2 with 95% certainty.

| Test name                         | Measurement uncertainty, dB |
|-----------------------------------|-----------------------------|
| All antenna port measurements     | 0.55                        |
| Conducted spurious emissions      | 1.13                        |
| Radiated spurious emissions       | 3.78                        |
| AC power line conducted emissions | 3.55                        |



# **Section 7.** Test equipment

# 7.1 Test equipment list

Table 7.1-1: Equipment list

| Equipment                  | Manufacturer    | Model no. | Asset no. | Cal cycle | Next cal.        |
|----------------------------|-----------------|-----------|-----------|-----------|------------------|
| 3 m EMI test chamber       | TDK             | SAC-3     | FA002047  | 1 year    | January 24, 2020 |
| Flush mount turntable      | Sunol           | FM2022    | FA002082  | _         | NCR              |
| Controller                 | Sunol           | SC104V    | FA002060  | _         | NCR              |
| Antenna mast               | Sunol           | TLT2      | FA002061  | _         | NCR              |
| 61505 AC source            | Chroma          | 61509     | FA003036  | _         | VOU              |
| Receiver/spectrum analyzer | Rohde & Schwarz | ESU 26    | FA002043  | 1 year    | May 8, 2020      |
| Spectrum analyzer          | Rohde & Schwarz | FSU       | FA001877  | 1 year    | October 26, 2019 |
| Horn (1–18 GHz)            | ETS Lindgren    | 3117      | FA002840  | 1 year    | January 16, 2020 |
| Preamp (1–18 GHz)          | ETS Lindgren    | 124334    | FA002873  | 1 year    | November 4, 2019 |
| Horn antenna (1–18 GHz)    | EMCO            | 3115      | FA000825  | 1 year    | October 8, 2019  |
| LISN                       | Rohde & Schwarz | ENV216    | FA002023  | 1 year    | August 13, 2019  |

Note: NCR - no calibration required, VOU - verify on use



Testing data

FCC 15 31(e) Variation

FCC 15.31(e) Variation of power source FCC Part 15 Subpart A

# Section 8. Testing data

| 8.1        | FCC 15.31(e) Variation of power source                                                                                                                                                                                                                                           |               |                |           |   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------|-----------|---|
|            |                                                                                                                                                                                                                                                                                  |               |                |           | _ |
| 8.1.1      | Definitions and limits                                                                                                                                                                                                                                                           |               |                |           |   |
| emission   | tional radiators, measurements of the variation of the input power or the radiated signal level of the , as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the no equipment, the equipment tests shall be performed using a new battery. |               | •              | •         |   |
| 8.1.2      | Test date                                                                                                                                                                                                                                                                        |               |                |           |   |
| Start date | June 24, 2019                                                                                                                                                                                                                                                                    |               |                |           |   |
| 8.1.3      | Observations, settings and special notes                                                                                                                                                                                                                                         |               |                |           |   |
| EUT inpu   | t is 48 $V_{\text{DC}}$ from the PoE power supply.                                                                                                                                                                                                                               |               |                |           |   |
| 8.1.4      | Test data                                                                                                                                                                                                                                                                        |               |                |           |   |
| EUT Pow    | er requirements:                                                                                                                                                                                                                                                                 | ⊠ AC          | □ DC           | ☐ Battery |   |
|            | If EUT is an AC or a DC powered, was the noticeable output power variation observed?                                                                                                                                                                                             | $\square$ YES | $\boxtimes$ NO | □ N/A     |   |
|            | If EUT is battery operated, was the testing performed using fresh batteries?                                                                                                                                                                                                     | $\square$ YES | $\square$ NO   | ⊠ N/A     |   |
|            | If EUT is rechargeable battery operated, was the testing performed using fully charged batteries?                                                                                                                                                                                | $\square$ YES | $\square$ NO   | ⊠ N/A     |   |



Testing data

FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies FCC Part 15 Subpart A and RSS-Gen, Issue 5

### 8.2 FCC 15.31(m) and RSS-Gen 6.9 Number of frequencies

#### 8.2.1 Definitions and limits

#### FCC:

Measurements on intentional radiators or receivers shall be performed and, if required, reported for each band in which the device can be operated with the device operating at the number of frequencies in each band specified in the following table.

#### ISFD:

Except where otherwise specified, measurements shall be performed for each frequency band of operation for which the radio apparatus is to be certified, with the device operating at the frequencies in each band of operation shown in table below. The frequencies selected for measurements shall be reported in the test report.

Table 8.2-1: Frequency Range of Operation

| Frequency range over which the device operates (in each band) | Number of test frequencies required | Location of measurement frequency inside the<br>operating frequency range |
|---------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------|
| 1 MHz or less                                                 | 1                                   | Center (middle of the band)                                               |
| 1–10 MHz                                                      | 2                                   | 1 near high end, 1 near low end                                           |
| Greater than 10 MHz                                           | 3                                   | 1 near high end, 1 near center and 1 near low end                         |

Note: "near" means as close as possible to or at the centre / low end / high end of the frequency range over which the device operates.

#### 8.2.2 Test date

Start date June 24, 2019

### 8.2.3 Observations, settings and special notes

None

#### 8.2.4 Test data

Table 8.2-2: Test channels frequencies selection

| Start of Frequency range, MHz | End of Frequency range, MHz | Frequency range bandwidth, MHz | Channel size, MHz | Low channel, MHz | Mid channel, MHz | High channel, MHz |
|-------------------------------|-----------------------------|--------------------------------|-------------------|------------------|------------------|-------------------|
|                               |                             | 228                            | 6                 | 473              | 587              | 695               |
| 470                           | 698                         |                                | 12                | 476              | 584              | 692               |
| 470                           | 098                         |                                | 18                | 479              | 587              | 689               |
|                               |                             |                                | 24                | 482              | 584              | 686               |



Testing data

FCC and RSS-Gen section 6.8 A

FCC and RSS-Gen, section 6.8 Antenna requirement FCC Part 15 Subpart C and RSS-Gen, Issue 5

### 8.3 FCC 15.203 and RSS-Gen, section 6.8 Antenna requirement

### 8.3.1 Definitions and limits

#### FCC:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

#### ISED:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report.

| 8.3.2      | Test da    | te                                             |       |              |       |  |  |
|------------|------------|------------------------------------------------|-------|--------------|-------|--|--|
| Start date |            | June 24, 2019                                  |       |              |       |  |  |
| 8.3.3      | Observ     | ations, settings and special notes             |       |              |       |  |  |
| None       |            |                                                |       |              |       |  |  |
| 8.3.4      | Test da    | ta                                             |       |              |       |  |  |
| Must the E | UT be pro  | fessionally installed?                         |       | □NO          |       |  |  |
| Does the E | UT have d  | etachable antenna(s)?                          |       | $\square$ NO |       |  |  |
|            | If detacha | ble, is the antenna connector(s) non-standard? | ☐ YES | ⊠ NO         | □ N/A |  |  |



Testing data

FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

FCC Part 15 Subpart C and RSS-Gen, Issue 5

### 8.4 FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

#### 8.4.1 Definitions and limits

#### FCC 15.709(c)(4):

White space devices connected to the AC power line are required to comply with the conducted limits set forth in §15.207.

#### FCC 15.207(a):

Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a  $50 \mu H/50 \Omega$  line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

#### ISED:

A radio apparatus that is designed to be connected to the public utility (AC) power line shall ensure that the radio frequency voltage, which is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz, shall not exceed the limits in table below.

Unless the requirements applicable to a given device state otherwise, for any radio apparatus equipped to operate from the public utility AC power supply either directly or indirectly (such as with a battery charger), the radio frequency voltage of emissions conducted back onto the AC power lines in the frequency range of 0.15 MHz to 30 MHz shall not exceed the limits shown in table below. The more stringent limit applies at the frequency range boundaries.

Table 8.4-1: Conducted emissions limit

| Frequency of emission, | Conducto   | ed limit, dBμV |
|------------------------|------------|----------------|
| MHz                    | Quasi-peak | Average**      |
| 0.15–0.5               | 66 to 56*  | 56 to 46*      |
| 0.5–5                  | 56         | 46             |
| 5–30                   | 60         | 50             |

Note:

- \* The level decreases linearly with the logarithm of the frequency.
- \*\* A linear average detector is required.

### 8.4.2 Test date

Start date June 28, 2019

### 8.4.3 Observations, settings and special notes

The EUT was set up as tabletop configuration.

The spectral scan has been corrected with transducer factors (i.e. cable loss, LISN factors, and attenuators) for determination of compliance.

A preview measurement was generated with the receiver in continuous scan mode. Emissions detected within 6 dB or above limit were re-measured with the appropriate detector against the correlating limit and recorded as the final measurement.

Receiver settings:

|                      | Preview measurements | Final measurements     |
|----------------------|----------------------|------------------------|
| Resolution bandwidth | 9 kHz                | 9 kHz                  |
| Video bandwidth      | 30 kHz               | 30 kHz                 |
| Detector mode        | Peak and Average     | Quasi-Peak and Average |
| Trace mode           | Max Hold             | Max Hold               |
| Measurement time     | 1000 ms              | 1000 ms                |



Testing data

FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

FCC Part 15 Subpart C and RSS-Gen, Issue 5

### 8.4.4 Test data



Conducted emissions

Preview Result 2-AVG

Preview Result 1-PK+

CISPR 32 Mains Q-Peak Class B Limit

CISPR 32 Mains Average Class B Limit

Final\_Result CAV

Plot 8.4-1: Conducted emissions on phase line

Table 8.4-2: Average conducted emissions results on phase line

| Frequency, MHz | Average result, dBμV | Correction, | Margin, | Limit, |
|----------------|----------------------|-------------|---------|--------|
|                |                      | dB          | dB      | dΒμV   |
| 0.303000       | 45.24                | 9.7         | 4.92    | 50.16  |



Testing data

FCC 15.207(a) and RSS-Gen 8.8 AC power line conducted emissions limits

FCC Part 15 Subpart C and RSS-Gen, Issue 5



Conducted emissions
Preview Result 2-AVG
Preview Result 1-PK+
CISPR 32 Mains Q-Peak Class B Limit
CISPR 32 Mains Average Class B Limit

Final\_Result CAV

Plot 8.4-2: Conducted emissions on neutral line

Table 8.4-3: Average conducted emissions results on phase line

| Frequency, MHz | Average result, dBµV | Correction, | Margin, | Limit, |
|----------------|----------------------|-------------|---------|--------|
|                |                      | dB          | dB      | dBμV   |
| 0.305250       | 45.24                | 9.7         | 4.90    | 50.10  |



Testing data

RSS-Gen 6.7 Occupied (Emission) bandwidth

RSS-Gen, Issue 5

### 8.5 RSS-Gen 6.7 Occupied (Emission) bandwidth

### 8.5.1 Definitions and limits

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

### 8.5.2 Test date

Start date June 24, 2019

### 8.5.3 Observations, settings and special notes

Spectrum analyzer settings:

| Detector mode        | Peak     |
|----------------------|----------|
| Resolution bandwidth | 100 kHz  |
| Video bandwidth      | RBW × 3  |
| Trace mode           | Max Hold |

### 8.5.4 Test data

Table 8.5-1: 99% occupied bandwidth verification results

| Channel bandwidth, MHz | 99% occupied bandwidth, MHz |
|------------------------|-----------------------------|
| 6                      | 3.596                       |
| 12                     | 8.582                       |
| 18                     | 12.372                      |
| 24                     | 15.096                      |

 $Note: there is no 99\% \ occupied \ bandwidth \ limit in the \ standard's \ requirements, the \ measurement \ results \ provided \ for \ information \ purposes \ only.$ 



Testing data

FCC 15.709(b)(ii) and RSS-222 6.2.1.2 Maximum conducted output power for fixed TVBDs

FCC Part 15 Subpart H and RSS-222, Issue 1

### 8.6 FCC 15.709(b)(ii) and RSS-222 6.2.1.2 Maximum conducted output power for fixed TVBDs

#### 8.6.1 Definitions and limits

#### FCC:

For fixed TVBDs, the maximum power delivered to the transmitting antenna shall not exceed one watt per 6 megahertz of bandwidth on which the device operates. The power delivered to the transmitting antenna is the maximum conducted output power reduced by the signal loss experienced in the cable used to connect the transmitter to the transmit antenna. The maximum gain of the transmitting antenna used with a Fixed WSD must be declared by the manufacturer in the certification application. If the transmitting antenna gain exceeds 6 dBi for fixed white space device operating at up to 36 dBm EIRP, the conducted output power limit shall all be reduced by the amount in dB by which the gain exceeds 6 dBi.

#### ISED:

Fixed WSD conducted power level per 6 MHz of bandwidth on which the devices operate shall not exceed the level of 30 dBm (1 W) during any time of continuous transmission.

The maximum gain of the transmitting antenna used with a fixed WSD must be declared by the manufacturer in the certification application. If the transmitting antenna gain exceeds 6 dBi, the conducted output power limits shall all be reduced by the amount in decibels by which the gain exceeds 6 dBi.

#### 8.6.2 Test date

| Start date | June 24, 2019 |  |
|------------|---------------|--|

#### 8.6.3 Observations, settings and special notes

The power integration was performed over 12 MHz, 18 MHz and 24 MHz channel bandwidth for information purposes only. Spectrum analyser settings for output power:

| Resolution bandwidth:  | 100 kHz                        |
|------------------------|--------------------------------|
| Video bandwidth:       | 300 kHz                        |
| Detector mode:         | RMS                            |
| Sweep time:            | 5s                             |
| Trace mode:            | Power Averaging over 10 traces |
| Integration bandwidth: | 6 MHz                          |

#### 8.6.4 Test data

Table 8.6-1: Conducted output power and EIRP measurements for 8 dBi antenna configuration

| (BW) Channel  | Frequency,<br>MHz | Power,<br>dBm/6 MHz | Power limit*,<br>dBm/6 MHz | Margin, dB | Antenna<br>gain*, dBi | EIRP, dBm | EIRP limit,<br>dBm | Margin, dB |
|---------------|-------------------|---------------------|----------------------------|------------|-----------------------|-----------|--------------------|------------|
| (6 MHz) Low   | 473               | 19.57               | 28.00                      | 8.43       | 8.00                  | 27.57     | 36.00              | 8.43       |
| (6 MHz) Mid   | 587               | 19.54               | 28.00                      | 8.46       | 8.00                  | 27.54     | 36.00              | 8.46       |
| (6 MHz) High  | 695               | 19.19               | 28.00                      | 8.81       | 8.00                  | 27.19     | 36.00              | 8.81       |
| (12 MHz) Low  | 476               | 23.03               | 28.00                      | 4.97       | 8.00                  | 31.03     | 36.00              | 4.97       |
| (12 MHz) Mid  | 584               | 21.75               | 28.00                      | 6.25       | 8.00                  | 29.75     | 36.00              | 6.25       |
| (12 MHz) High | 692               | 22.34               | 28.00                      | 5.66       | 8.00                  | 30.34     | 36.00              | 5.66       |
| (18 MHz) Low  | 479               | 24.05               | 28.00                      | 3.95       | 8.00                  | 32.05     | 36.00              | 3.95       |
| (18 MHz) Mid  | 587               | 22.38               | 28.00                      | 5.62       | 8.00                  | 30.38     | 36.00              | 5.62       |
| (18 MHz) High | 689               | 24.19               | 28.00                      | 3.81       | 8.00                  | 32.19     | 36.00              | 3.81       |
| (24 MHz) Low  | 482               | 24.38               | 28.00                      | 3.62       | 8.00                  | 32.38     | 36.00              | 3.62       |
| (24 MHz) Mid  | 584               | 24.94               | 28.00                      | 3.06       | 8.00                  | 32.94     | 36.00              | 3.06       |
| (24 MHz) High | 686               | 25.12               | 28.00                      | 2.88       | 8.00                  | 33.12     | 36.00              | 2.88       |

Note: \* Antenna gain is 9 dBi with 1 dB cable loss, the net gain is 8 dBi, therefore 2 dB reduction in output power limit was required.

Table 8.6-2: Conducted output power and EIRP measurements for 11 dBi antenna configuration (for less congested areas)

| (BW) Channel  | Frequency,<br>MHz | Power,<br>dBm/6 MHz | Power limit,<br>dBm/6 MHz | Margin, dB | Antenna<br>gain*, dBi | EIRP, dBm | EIRP limit,<br>dBm | Margin, dB |
|---------------|-------------------|---------------------|---------------------------|------------|-----------------------|-----------|--------------------|------------|
| (6 MHz) Low   | 473               | 19.57               | 29.00                     | 9.43       | 11.00                 | 30.57     | 40.00              | 9.43       |
| (6 MHz) Mid   | 587               | 19.54               | 29.00                     | 9.46       | 11.00                 | 30.54     | 40.00              | 9.46       |
| (6 MHz) High  | 695               | 19.19               | 29.00                     | 9.81       | 11.00                 | 30.19     | 40.00              | 9.81       |
| (12 MHz) Low  | 476               | 23.03               | 29.00                     | 5.97       | 11.00                 | 34.03     | 40.00              | 5.97       |
| (12 MHz) Mid  | 584               | 21.75               | 29.00                     | 7.25       | 11.00                 | 32.75     | 40.00              | 7.25       |
| (12 MHz) High | 692               | 22.34               | 29.00                     | 6.66       | 11.00                 | 33.34     | 40.00              | 6.66       |
| (18 MHz) Low  | 479               | 24.05               | 29.00                     | 4.95       | 11.00                 | 35.05     | 40.00              | 4.95       |
| (18 MHz) Mid  | 587               | 22.38               | 29.00                     | 6.62       | 11.00                 | 33.38     | 40.00              | 6.62       |
| (18 MHz) High | 689               | 24.19               | 29.00                     | 4.81       | 11.00                 | 35.19     | 40.00              | 4.81       |
| (24 MHz) Low  | 482               | 24.38               | 29.00                     | 4.62       | 11.00                 | 35.38     | 40.00              | 4.62       |
| (24 MHz) Mid  | 584               | 24.94               | 29.00                     | 4.06       | 11.00                 | 35.94     | 40.00              | 4.06       |
| (24 MHz) High | 686               | 25.12               | 29.00                     | 3.88       | 11.00                 | 36.12     | 40.00              | 3.88       |

Note: Antenna gain is 12 dBi with 1 dB cable loss, therefore net gain is 11 dBi, reduction of 1 dB is required for output power limit within less congested areas.

Table 8.6-3: Conducted total transmit output power

| (BW) Channel  | Frequency, MHz | Total Transmit Output Power, dBm |
|---------------|----------------|----------------------------------|
| (6 MHz) Low   | 473            | 19.57                            |
| (6 MHz) Mid   | 587            | 19.54                            |
| (6 MHz) High  | 695            | 19.19                            |
| (12 MHz) Low  | 476            | 23.86                            |
| (12 MHz) Mid  | 584            | 22.61                            |
| (12 MHz) High | 692            | 23.10                            |
| (18 MHz) Low  | 479            | 26.44                            |
| (18 MHz) Mid  | 587            | 25.61                            |
| (18 MHz) High | 689            | 26.29                            |
| (24 MHz) Low  | 482            | 26.53                            |
| (24 MHz) Mid  | 584            | 27.44                            |
| (24 MHz) High | 686            | 26.80                            |



Testing data

FCC 15.709(b)(ii) and RSS-222 6.2.1.2 The power spectral density from the TVBD

FCC Part 15 Subpart H and RSS-222, Issue 1

### 8.7 FCC 15.709(b)(ii) and RSS-222 6.2.1.2 The power spectral density from the TVBD

### 8.7.1 Definitions and limits

#### FCC:

The power spectral density from the TVBD shall not be greater than the following values when measured in any 100 kHz band during any time interval of continuous transmission:

Fixed devices with 36 dBm EIRP: 12.6 dBm/100 kHz conducted power density.

The PSD limits for fixed white space devices operating at up to 36 dBm (4000 milliwatts) are based on a maximum transmitting antenna gain of 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### ISED:

Fixed WSD conducted PSD per 100 kHz band within a 6 MHz wide channel shall not exceed the 12.6 dBm/100 kHz level during any time of continuous transmission.

The maximum gain of the transmitting antenna used with a fixed WSD must be declared by the manufacturer in the certification application. If the transmitting antenna gain exceeds 6 dBi, the power spectral density (PSD) limits shall all be reduced by the amount in decibels by which the gain exceeds 6 dBi.

### 8.7.2 Test date

| Start date June 24, 2019 |  |
|--------------------------|--|
|--------------------------|--|

### 8.7.3 Observations, settings and special notes

Spectrum analyser settings for PSD:

| Resolution bandwidth: | 100 kHz                        |
|-----------------------|--------------------------------|
| Video bandwidth:      | 300 kHz                        |
| Detector mode:        | RMS                            |
| Sweep time:           | 5 s                            |
| Trace mode:           | Power Averaging over 10 traces |



Testing data

FCC 15.709(b)(ii) and RSS-222 6.2.1.2 The power spectral density from the TVBD FCC Part 15 Subpart H and RSS-222, Issue 1

8.7.4 Test data

Table 8.7-1: Conducted PSD and EIRPSD measurements for 8 dBi antenna configuration

| (BW) Channel  | Frequency,<br>MHz | PSD, dBm/100<br>kHz | PSD limit,<br>dBm/100 kHz | Margin,<br>dB | Antenna<br>gain*, dBi | EIRP PSD,<br>dBm/100 kHz | EIRPSD limit,<br>dBm/100 kHz | Margin,<br>dB |
|---------------|-------------------|---------------------|---------------------------|---------------|-----------------------|--------------------------|------------------------------|---------------|
| (6 MHz) Low   | 473               | 5.30                | 10.60                     | 5.30          | 8.00                  | 13.30                    | 18.60                        | 5.30          |
| (6 MHz) Mid   | 587               | 5.19                | 10.60                     | 5.41          | 8.00                  | 13.19                    | 18.60                        | 5.41          |
| (6 MHz) High  | 695               | 4.83                | 10.60                     | 5.77          | 8.00                  | 12.83                    | 18.60                        | 5.77          |
| (12 MHz) Low  | 476               | 7.09                | 10.60                     | 3.51          | 8.00                  | 15.09                    | 18.60                        | 3.51          |
| (12 MHz) Mid  | 584               | 5.30                | 10.60                     | 5.30          | 8.00                  | 13.30                    | 18.60                        | 5.30          |
| (12 MHz) High | 692               | 6.73                | 10.60                     | 3.87          | 8.00                  | 14.73                    | 18.60                        | 3.87          |
| (18 MHz) Low  | 479               | 7.96                | 10.60                     | 2.64          | 8.00                  | 15.96                    | 18.60                        | 2.64          |
| (18 MHz) Mid  | 587               | 6.31                | 10.60                     | 4.29          | 8.00                  | 14.31                    | 18.60                        | 4.29          |
| (18 MHz) High | 689               | 8.39                | 10.60                     | 2.21          | 8.00                  | 16.39                    | 18.60                        | 2.21          |
| (24 MHz) Low  | 482               | 8.54                | 10.60                     | 2.06          | 8.00                  | 16.54                    | 18.60                        | 2.06          |
| (24 MHz) Mid  | 584               | 9.05                | 10.60                     | 1.55          | 8.00                  | 17.05                    | 18.60                        | 1.55          |
| (24 MHz) High | 686               | 9.27                | 10.60                     | 1.33          | 8.00                  | 17.27                    | 18.60                        | 1.33          |

Note: \* Antenna gain is 9 dBi with 1 dB cable loss, the net gain is 8 dBi, therefore 2 dB reduction in PSD limit was required.

 Table 8.7-2: Conducted PSD and EIRPSD measurements for 11 dBi antenna configuration (for less congested areas)

| (BW) Channel  | Frequency,<br>MHz | PSD, dBm/100<br>kHz | PSD limit,<br>dBm/100 kHz | Margin,<br>dB | Antenna<br>gain*, dBi | EIRP PSD,<br>dBm/100 kHz | EIRPSD limit,<br>dBm/100 kHz | Margin,<br>dB |
|---------------|-------------------|---------------------|---------------------------|---------------|-----------------------|--------------------------|------------------------------|---------------|
| (6 MHz) Low   | 473               | 5.30                | 11.60                     | 6.30          | 11.00                 | 16.30                    | 22.60                        | 6.30          |
| (6 MHz) Mid   | 587               | 5.19                | 11.60                     | 6.41          | 11.00                 | 16.19                    | 22.60                        | 6.41          |
| (6 MHz) High  | 695               | 4.83                | 11.60                     | 6.77          | 11.00                 | 15.83                    | 22.60                        | 6.77          |
| (12 MHz) Low  | 476               | 7.09                | 11.60                     | 4.51          | 11.00                 | 18.09                    | 22.60                        | 4.51          |
| (12 MHz) Mid  | 584               | 5.30                | 11.60                     | 6.30          | 11.00                 | 16.30                    | 22.60                        | 6.30          |
| (12 MHz) High | 692               | 6.73                | 11.60                     | 4.87          | 11.00                 | 17.73                    | 22.60                        | 4.87          |
| (18 MHz) Low  | 479               | 7.96                | 11.60                     | 3.64          | 11.00                 | 18.96                    | 22.60                        | 3.64          |
| (18 MHz) Mid  | 587               | 6.31                | 11.60                     | 5.29          | 11.00                 | 17.31                    | 22.60                        | 5.29          |
| (18 MHz) High | 689               | 8.39                | 11.60                     | 3.21          | 11.00                 | 19.39                    | 22.60                        | 3.21          |
| (24 MHz) Low  | 482               | 8.54                | 11.60                     | 3.06          | 11.00                 | 19.54                    | 22.60                        | 3.06          |
| (24 MHz) Mid  | 584               | 9.05                | 11.60                     | 2.55          | 11.00                 | 20.05                    | 22.60                        | 2.55          |
| (24 MHz) High | 686               | 9.27                | 11.60                     | 2.33          | 11.00                 | 20.27                    | 22.60                        | 2.33          |

Note: Antenna gain is 12 dBi with 1 dB cable loss, therefore net gain is 11 dBi, reduction of 1 dB is required for power density limit within less congested areas.



Testing data

FCC 15.709(d) and RSS-222 6.3 Transmitter band edge and adjacent channel power for fixed TVBDs FCC Part 15 Subpart H and RSS-222, Issue 1

### 8.8 FCC 15.709(d) and RSS-222 6.3 Transmitter band edge and adjacent channel power for fixed TVBDs

#### 8.8.1 Definitions and limits

#### FCC:

(1) The adjacent channel emission limits apply in the six-megahertz channel immediately adjacent to each white space channel or group of contiguous white space channels in which the white space device is operating.

Fixed devices with 36 dBm EIRP: -42.8 dBm/100 kHz conducted power.

- (2) At frequencies beyond the six-megahertz channel immediately adjacent to each white space channel or group of contiguous white space channels in which the white space device is operating the white space device shall meet the requirements of §15.209.
- (3) Emission measurements in the adjacent bands shall be performed using a minimum resolution bandwidth of 100 kHz with an average detector. A narrower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 100 kHz.

#### ISED:

#### 6.3.1.1 Band Edge Measurement

The band edge measurement must be performed relative to both the low (fL) and upper (fU) channel edge frequencies. The PSD is to be measured within a 100 kHz band segment relative to the channel edge (i.e. fL –100 kHz). The following steps provide the settings and procedures to follow to perform the band edge measurements.

#### 6.3.1.2 Adjacent Channel Measurement

The adjacent channel emission limit applies in any 100 kHz band segment within either the lower or upper 6 MHz frequency band relative to the operating channel (N±1, where N represents the channel of operation).

#### 6.3.2 Limits

Band edge and adjacent channel power level for Fixed WS shall not exceed the conducted levels of -42.8 dBm/100 kHz

#### 8.8.2 Test date

| rt date June |       |
|--------------|-------|
|              | <br>_ |

#### 8.8.3 Observations, settings and special notes

Adjacent channel is located 100 kHz away from the Band edge frequency and they both have the same limit, therefore 'Based edge level' reported in the tables below is the highest measured value between the two.

Based on the KDB submission guidance for testing of a multiple contiguous channel TV Whitespace device for 6Harmonics Inc., no reduction of adjacent channel power and band edge power for antennas greater than 6 dBi is required.

Spectrum analyser settings for adjacent channel power and band edge power:

| Resolution bandwidth: | 100 kHz                        |
|-----------------------|--------------------------------|
| Video bandwidth:      | 300 kHz                        |
| Detector mode:        | RMS                            |
| Sweep time:           | 5 s                            |
| Trace mode:           | Power Averaging over 10 traces |



Testing data

FCC 15.709(d) and RSS-222 6.3 Transmitter band edge and adjacent channel power for fixed TVBDs FCC Part 15 Subpart H and RSS-222, Issue 1

#### 8.8.4 Test data



Date: 24.JUN.2019 10:07:06

Figure 8.8-1: Conducted band edge and adjacent channel emissions

Bandwidth: 6 MHz Channel: Low Frequency: 473 MHz



Date: 24.JUN.2019 10:12:34

Figure 8.8-3: Conducted band edge and adjacent channel emissions

Bandwidth: 6 MHz Channel: High Frequency: 695 MHz



Date: 24.JUN.2019 10:11:19

Figure 8.8-2: Conducted band edge and adjacent channel emissions

Bandwidth: 6 MHz Channel: Mid Frequency: 587 MHz



Date: 24.JUN.2019 10:53:35

Figure 8.8-4: Conducted band edge and adjacent channel emissions

Bandwidth: 12 MHz
Channel: Low
Frequency: 476 MHz



Testing data

FCC 15.709(d) and RSS-222 6.3 Transmitter band edge and adjacent channel power for fixed TVBDs FCC Part 15 Subpart H and RSS-222, Issue 1



Date: 24.JUN.2019 10:48:55

Figure 8.8-5: Conducted band edge and adjacent channel emissions

Bandwidth: 12 MHz Channel: Mid Frequency: 584 MHz



Date: 24.JUN.2019 12:03:22

Figure 8.8-7: Conducted band edge and adjacent channel emissions

Bandwidth: 18 MHz Channel: Low Frequency: 479 MHz



Date: 24.JUN.2019 10:47:11

Figure 8.8-6: Conducted band edge and adjacent channel emissions

Bandwidth: 12 MHz Channel: High Frequency: 692 MHz



Date: 24.JUN.2019 11:37:57

Figure 8.8-8: Conducted band edge and adjacent channel emissions

Bandwidth: 18 MHz Channel: Mid Frequency: 587 MHz



Testing data

FCC 15.709(d) and RSS-222 6.3 Transmitter band edge and adjacent channel power for fixed TVBDs FCC Part 15 Subpart H and RSS-222, Issue 1



Date: 24.JUN.2019 11:21:56

Figure 8.8-9: Conducted band edge and adjacent channel emissions

Bandwidth: 18 MHz Channel: High Frequency: 689 MHz



Date: 25.JUN.2019 09:37:37

Figure 8.8-11: Conducted band edge and adjacent channel emissions

Bandwidth: 24 MHz Channel: Mid Frequency: 584 MHz



Date: 25.JUN.2019 09:47:57

Figure 8.8-10: Conducted band edge and adjacent channel emissions

Bandwidth: 24 MHz Channel: Low Frequency: 482 MHz



Date: 25.JUN.2019 09:35:03

Figure 8.8-12: Conducted band edge and adjacent channel emissions

Bandwidth: 24 MHz Channel: High Frequency: 686 MHz



Testing data

FCC 15.709(d) and RSS-222 6.3 Transmitter band edge and adjacent channel power for fixed TVBDs

FCC Part 15 Subpart H and RSS-222, Issue 1

**Table 8.8-1:** Band edge measurements for 6 MHz channel

| Channel | Frequency, MHz | Band edge level, dBm/100 kHz | Band edge limit, dBm/100 kHz | Margin, dB |
|---------|----------------|------------------------------|------------------------------|------------|
| Low     | 470.0          | -44.57                       | -42.80                       | 1.77       |
| Low     | 476.0          | -43.95                       | -42.80                       | 1.15       |
| Mid     | 584.0          | -43.55                       | -42.80                       | 0.75       |
| Mid     | 590.0          | -44.33                       | -42.80                       | 1.53       |
| High    | 692.0          | -45.45                       | -42.80                       | 2.65       |
| High    | 698.0          | -45.47                       | -42.80                       | 2.67       |

#### **Table 8.8-2:** Band edge measurements for 12 MHz channel

| Channel | Frequency, MHz | Band edge level, dBm/100 kHz | Band edge limit, dBm/100 kHz | Margin, dB |
|---------|----------------|------------------------------|------------------------------|------------|
| Low     | 469.9          | -44.55                       | -42.80                       | 1.75       |
| Low     | 482.0          | -45.03                       | -42.80                       | 2.23       |
| Mid     | 577.9          | -45.21                       | -42.80                       | 2.41       |
| Mid     | 590.1          | -44.67                       | -42.80                       | 1.87       |
| High    | 685.9          | -45.20                       | -42.80                       | 2.40       |
| High    | 698.0          | -48.89                       | -42.80                       | 6.09       |

### **Table 8.8-3:** Band edge measurements for 18 MHz channel

| Channel | Frequency, MHz | Band edge level, dBm/100 kHz | Band edge limit, dBm/100 kHz | Margin, dB |
|---------|----------------|------------------------------|------------------------------|------------|
| Low     | 470.0          | -43.60                       | -42.80                       | 0.80       |
| Low     | 488.0          | -45.16                       | -42.80                       | 2.36       |
| Mid     | 578.0          | -43.63                       | -42.80                       | 0.83       |
| Mid     | 596.0          | -44.43                       | -42.80                       | 1.63       |
| High    | 680.0          | -43.59                       | -42.80                       | 0.79       |
| High    | 698.0          | -44.14                       | -42.80                       | 1.34       |

### Table 8.8-4: Band edge measurements for 24 MHz channel

| Channel | Frequency, MHz | Band edge level, dBm/100 kHz | Band edge limit, dBm/100 kHz | Margin, dB |
|---------|----------------|------------------------------|------------------------------|------------|
| Low     | 469.9          | -49.13                       | -42.80                       | 6.33       |
| Low     | 494.1          | -46.70                       | -42.80                       | 3.90       |
| Mid     | 571.9          | -44.90                       | -42.80                       | 2.10       |
| Mid     | 596.1          | -45.21                       | -42.80                       | 2.41       |
| High    | 673.9          | -55.57                       | -42.80                       | 12.77      |
| High    | 698.1          | -51.02                       | -42.80                       | 8.22       |



Testing data

FCC 15.709(c)(3) and RSS-222 6.3.3 Radiated spurious emissions beyond the television channels

FCC Part 15 Subpart H and RSS-222, Issue 1

### 8.9 FCC 15.709(d)(2) and RSS-222 6.3.3 Radiated spurious emissions beyond the television channels

### 8.9.1 Definitions and limits

#### FCC:

At frequencies beyond the television channels immediately adjacent to the channel in which the TVBD is operating, the radiated emissions from TVBDs shall meet the requirements of § 15.209.

#### ISED:

Beyond the adjacent channel emissions, the emission limits of RSS-Gen apply. See RSS-Gen for guidance on performing those measurements

Table 8.9-1: FCC §15.209 and RSS-Gen Radiated emission limits

| Frequency, | Field strengt | h of emissions | Measurement distance |
|------------|---------------|----------------|----------------------|
| MHz        | μV/m          | dBμV/m         | m                    |
| 30–88      | 100           | 40.0           | 3                    |
| 88–216     | 150           | 43.5           | 3                    |
| 216–960    | 200           | 46.0           | 3                    |
| above 960  | 500           | 54.0           | 3                    |

Notes: In the emission table above, the tighter limit applies at the band edges.

For frequencies above 1 GHz the limit on peak RF emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test

#### 8.9.2 Test date

| Start date | July 5, 2019 |  |
|------------|--------------|--|
|------------|--------------|--|

### 8.9.3 Observations, settings and special notes

The spectrum was searched from 30 MHz to the 7 GHz. Radiated measurements were performed at a distance of 3 m.

Spectrum analyser settings for radiated measurements below 1 GHz:

| Resolution bandwidth: | 120 kHz            |
|-----------------------|--------------------|
| Video bandwidth:      | 300 kHz            |
| Detector mode:        | Peak or Quasi-peak |
| Trace mode:           | Max Hold           |

Spectrum analyser settings for peak radiated measurements above 1 GHz:

| Resolution bandwidth: | 1 MHz    |
|-----------------------|----------|
| Video bandwidth:      | 3 MHz    |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |

Spectrum analyser settings for average radiated measurements above 1 GHz:

| Resolution bandwidth: | 1 MHz    |
|-----------------------|----------|
| Video bandwidth:      | 3 MHz    |
| Detector mode:        | Average  |
| Trace mode:           | Max Hold |



### 8.9.4 Test data



Figure 8.9-1: Radiated spurious emissions within 30–464 MHz for low channel for LPDA antenna



Figure 8.9-2: Radiated spurious emissions within 500–1000 MHz for low channel for LPDA antenna



Figure 8.9-3: Radiated spurious emissions within 30–566 MHz for mid channel for LPDA antenna



Figure 8.9-4: Radiated spurious emissions within 602–1000 MHz for mid channel for LPDA antenna



**Figure 8.9-5:** Radiated spurious emissions within 30–668 MHz for high channel for LPDA antenna



Figure 8.9-6: Radiated spurious emissions within 704–1000 MHz for high channel for LPDA antenna





Figure 8.9-7: Radiated spurious emissions within 30–464 MHz for low channel for Panel antenna



Figure 8.9-8: Radiated spurious emissions within 500–1000 MHz for low channel for Panel antenna



Figure 8.9-9: Radiated spurious emissions within 30–566 MHz for mid channel for Panel antenna



Figure 8.9-10: Radiated spurious emissions within 602–1000 MHz for mid channel for Panel antenna



**Figure 8.9-11:** Radiated spurious emissions within 30–668 MHz for high channel for Panel antenna



Figure 8.9-12: Radiated spurious emissions within 704–1000 MHz for high channel for Panel antenna



Figure 8.9-13: Radiated spurious emissions within 30–464 MHz for low channel for Omnidirectional antenna



Figure 8.9-14: Radiated spurious emissions within 500–1000 MHz for low channel for Omnidirectional antenna



Figure 8.9-15: Radiated spurious emissions within 30–566 MHz for mid channel for Omnidirectional antenna



Figure 8.9-16: Radiated spurious emissions within 602–1000 MHz for mid channel for Omnidirectional antenna



**Figure 8.9-17:** Radiated spurious emissions within 30–668 MHz for high channel for Omnidirectional antenna



**Figure 8.9-18:** Radiated spurious emissions within 704–1000 MHz for high channel for Omnidirectional antenna

FCC 15.709(c)(3) and RSS-222 6.3.3 Radiated spurious emissions beyond the television channels FCC Part 15 Subpart H and RSS-222, Issue 1



Figure 8.9-19: Radiated spurious emissions within 1–7 GHz for low channel for LPDA antenna



Figure 8.9-20: Radiated spurious emissions within 1–7 GHz for mid channel for LPDA antenna



Figure 8.9-21: Radiated spurious emissions within 1–7 GHz for high channel for LPDA antenna



Figure 8.9-22: Radiated spurious emissions within 1–7 GHz for low channel for Panel antenna



Figure 8.9-23: Radiated spurious emissions within 1–7 GHz for mid channel for Panel antenna



Figure 8.9-24: Radiated spurious emissions within 1–7 GHz for high channel for Panel antenna



Testing data

FCC 15.709(c)(3) and RSS-222 6.3.3 Radiated spurious emissions beyond the television channels FCC Part 15 Subpart H and RSS-222, Issue 1





FOC PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 11 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Level

TO PM 12 and ICE - Class B Inhose Le

**Figure 8.9-25:** Radiated spurious emissions within 1–7 GHz for low channel for Omnidirectional antenna

Figure 8.9-26: Radiated spurious emissions within 1–7 GHz for mid channel for Omnidirectional antenna



Figure 8.9-27: Radiated spurious emissions within 1–7 GHz for high channel for Omnidirectional antenna

Section 8 Testing data

Test name RSS-222 6.4 Field Strength Emissions in the band 602–620 MHz

Specification RSS-222, Issue 1



### 8.10 RSS-222 6.4 Field Strength Emissions in the band 602–620 MHz

### 8.10.1 Definitions and limits

Transmitter field strength emissions must comply with the following field strength limits at a distance of one metre.

Table 8.10-1: 602-620 MHz band field strength limits

| Frequency, MHz | Field strength, dBμV/m/120 kHz at 1 m distance |
|----------------|------------------------------------------------|
| 602–607        | 120 – 5 × (F – 602)                            |
| 607–608        | 95                                             |
| 608–614        | 30                                             |
| 614–615        | 95                                             |
| 615–620        | 120 – 5 × (620 – F)                            |

Notes: F is frequency in MHz

### 8.10.2 Test date

| Start date | July 10, 2019 |
|------------|---------------|
| Start date | July 10, 2019 |

### 8.10.3 Observations, settings and special notes

The spectrum was searched from 602 MHz to the 620 MHz. Radiated measurements were performed at a distance of 1 m.

Spectrum analyser settings:

| Resolution bandwidth: | 120 kHz  |
|-----------------------|----------|
| Video bandwidth:      | 300 kHz  |
| Detector mode:        | Peak     |
| Trace mode:           | Max Hold |



### 8.10.4 Test data





Date: 10.JUL.2019 13:31:46

Figure 8.10-1: Radiated spurious emissions within 602–620 MHz for lower adjacent channel to the restricted band, LPDA antenna



Figure 8.10-2: Radiated spurious emissions within 602–620 MHz for upper adjacent channel to the restricted band, LPDA antenna





Date: 10.JUL.2019 12:57:15

Date: 10.JUL.2019 13:02:03

Figure 8.10-3: Radiated spurious emissions within 602–620 MHz for lower adjacent channel to the restricted band, Panel antenna

Figure 8.10-4: Radiated spurious emissions within 602–620 MHz for upper adjacent channel to the restricted band, Panel antenna

Section 8 Testing data
Test name RSS-222 6.4 Fig.

Test name RSS-222 6.4 Field Strength Emissions in the band 602–620 MHz Specification RSS-222, Issue 1







Date: 10.JUL.2019 13:42:38

Figure 8.10-5: Radiated spurious emissions within 602–620 MHz for lower adjacent channel to the restricted band, Omnidirectional antenna

Figure 8.10-6: Radiated spurious emissions within 602–620 MHz for upper adjacent channel to the restricted band, Omnidirectional antenna

Date: 10.JUL.2019 13:44:09



# **Section 9.** Block diagrams and photos of test set-ups

### 9.1 Radiated emissions set-up for frequencies below 1 GHz





### 9.2 Radiated emissions set-up for frequencies above 1 GHz



### 9.3 Conducted emissions set-up

