מטלה 2 בחישוביות

הנחיות:

- ההגשה עד ה- 4.6 דרך המודל.
- ההגשה היא ביחידים. התייעצות עם אחרים מותרת (אם כי עדיף קודם לשבור את הראש לבד), אך חובה לכתוב את הפתרון לבד.
 - אם לא נאמר אחרת, הוכיחו את תשובותיכם. מותר להשתמש ללא הוכחה במשפטים שהוכחו בהרצאות, בתנאי שמצטטים את המשפט במדוייק.
 - $\Sigma = \{0,1\}, \Gamma = \{0,1,b\}$ אם לא נאמר אחרת, בכל השאלות •

שאלות

1. נזכיר, כי עבור מחלקת שפות $\mathcal C$, שפה L_1 היא שלמה ב $\mathcal C$, אם היא מוכלת ב $(L_2 \le L_1)$ ניתנת לרדוקציה ל $L_2 \in \mathcal C$ וכן לכל $\mathcal C$

הוכח או הפרך:

- $RE \cup coRE$ א. קיימת שפה שלמה ב
 - .coRE ב. קיימת שפה שלמה ב
- ג. הוכיחו כי קיימות זוג שפות L_1, L_2 לא טריוויאליות כך שאף אחת מהן ג. אינה נתנת לרדוקציה לשניה.
 - RE לכל שפה מהשפות הבאות, ענו האם היא בR והאם היא ב.

$$\{< M > | L(M) \in \mathrm{R} \}$$
 ... $\{< M > | M ext{ halts on all inputs} \}$... $\{< M > | L(M) \in \mathrm{coRE} \}$...

- L_1 בשאלה זו נגדיר סוג חדש של רדוקציות: רדוקציות טיורינג. נאמר ששפה 3 ניתנת לרדוקציית טיורינג לשפה L_2 , נסמן $L_2 \leq_T L_2$ אם קיימת מכונת טיורינג $M_{1.2}$ דו-סרטית מסוג מיוחד (יפורט בהמשך) במודל הבא:
 - ∘ למכונה יש סרט אחד רגיל וסרט "שאלות".
 - ∘ המכונה מתחילה את הריצה כמו מ"ט דו-סרטית רגילה.
- המחשב המכונה עוברת למצב q_{ask} כאשר המכונה עוברת למצב \circ

מבצע את הצעד הבא בצורה מיוחדת. באופן "קסום" מחושב האם תוכן הסרט השני (משמאל לראש) שייך ל L_2 או לא (ה"קסם" הוא שהדבר מובטח גם אם L_2 אינה כריעה!). אם כן, הוא עובר למצב (לא סופי) מיוחד מובטח גם אם L_2 אינה למצב מיוחד (לא סופי). בשאר המצבים, q_{no} אחרת, הוא עובר למצב מיוחד (לא סופי). בשאר המצבים, המכונה מתנהגת לפי טבלת המעברים שלה באופן רגיל.

 $.q_{rej}$ אם הקלט x שייך ל $.L_1$ אוצרת ב $M_{1,2}$ עוצרת ב $M_{1,2}$

הוכח או הפרך.

R. אם ב L_1 גם ב L_1 גם ב $L_2 \in R$ ו, $L_1 \leq_T L_2$ גם ב L_1 . אם ב $L_2 \in RE$ ו, גם ב $L_1 \leq_T L_2$ גם ב L_2

שאלת בונוס - שאלה זו תבדק במלואה (וכמובן לא הכרחי לפתור אותה כדי לקבל 100).

- 1. נזכיר כי הסדר הלקסיקוגרפי על Σ^* מקיים $x<_{lex}y$ אם"ם $x<_{lex}y$ אם $x<_{lex}y$ אם $x<_{lex}y$ אם $x<_{lex}y$ אך x קודם לx בסדר מילוני. נאמר שפונקציה $x>_{lex}y$ היא מונוטונית, אם $x<_{lex}y$ היא מונוטונית, אם $x<_{lex}y$ הוכח:
- 2. (3 נקודות) כל פונקציה מונוטונית שתמונתה מוכלת ב $\{0,1\}$ ניתנת לחישוב.
 - 3. (5 נקודות) לא כל פונקציה מונוטונית נתנת לחישוב. רמז: שיקולי ספירה.