MAT 444 Homework Assignments

Prob. 21 Let $\omega \in A^{r}(M)$, write

 $W = a_{i_1 \dots i_r} (x^i, \dots, x^n) dx^{k_i} \wedge \dots \wedge dx^{i_r}$

where (x',...,x'') are local coordinates of an n-dimensional differentiable manifold M. Show that

 $d\omega = (da_{i_1...i_r}) \wedge dx^{i_1} \wedge ... \wedge dx^{i_r}. \quad -(*)$

Assume the following property: Suppose $\omega_1 \in A^r(M)$. Then, for any $\omega_2 \in A(M)$,

 $d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^r \omega_1 \wedge d\omega_2$

(This is the "product rule" for exteriors differentiation.

Prob. 22 Use Markata the result (*) in Prob. 21 to verify the "product rule" (stated in that problem), when both $W_1 \in A^*(M)$ and $W_2 \in A^*(M)$ are monomials, that is, when

W, = adx'' 1... Adx'r; Wz = bdx'' 1... Adx's, Where a and b one both smooth functions on M.

Prob. 23 Use Eq (*) in Prob. 21 to show that, for $f \in A^{\circ}(M)$ (f is a function m M), $d^{2}f = 0$.

Frob. 24 The Lie Derivative of a tangent vector field Y with respect to such tangent vector field X La the Lie Bracket of the tangent vector freldo X and Y] is defined by $L_{\vec{x}}\vec{y} = [\vec{x}, \vec{y}] = \vec{X}\vec{y} - \vec{y}\vec{X}$ where XY means the composition of the actions of the tangent vector fields y followed by X in succession on a smooth function on M. a) Show that the lie bracket of two tangent vector field. b) It $\vec{X} = X'\partial_i$ and $\vec{y} = y''\partial_i$, Show that - $(\vec{x}, \vec{y})^i = (L_{\vec{x}} \vec{y})^i = \chi^{\hat{x}} \partial_{\hat{y}} \chi^{\hat{x}} - \chi^{\hat{x}} \partial_{\hat{y}} \chi^{\hat{x}} .$ Prot. 25 For a monomial $\omega \in A^r(N)$ [dim N = n], that is $w = b_{i_1...i_r}(y_1,...,y_n) dy^{i_1} \wedge ... \wedge dy^{i_r}$, (f*od) w = (d·f*) w. WEALN), This result actually holds for all