Section 3.3 Properties of Functions

1 Determine Even and Odd Functions from a Graph

DEFINITION

A function f is **even** if, for every number x in its domain, the number -x is also in the domain and

$$f(-x) = f(x)$$

For an **even** function, for every point (x, y) on the graph, the point (-x, y) is also on the graph.

DEFINITION

A function f is **odd** if, for every number x in its domain, the number -x is also in the domain and

$$f(-x) = -f(x)$$

So for an **odd** function, for every point (x, y) on the graph, the point (-x, -y) is also on the graph.

Theorem

A function is even if and only if its graph is symmetric with respect to the *y*-axis.

A function is odd if and only if its graph is symmetric with respect to the origin.

Determining Even and Odd Functions from the Graph

Determine whether each graph given is an even function, an odd function, or a function that is neither even nor odd.

Even function because it is symmetric with respect to the *y*-axis

Neither even nor odd because no symmetry with respect to the *y*-axis or the origin

Odd function because it is symmetric with respect to the origin

Identifying Even and Odd Functions Algebraically

Determine whether each of the following functions is even, odd, or neither. Then determine whether the graph is symmetric with respect to the *y*-axis or with respect to the origin.

a)
$$f(x) = x^3 + 5x$$
 $f(-x) = (-x)^3 + 5(-x) = -x^3 - 5x$
Odd function symmetric with $= -(x^3 + 5x) = -f(x)$
respect to the origin

b)
$$g(x) = 2x^2 - 3$$
 $g(-x) = 2(-x)^2 - 3 = 2x^2 - 3 = g(x)$

Even function symmetric with respect to the *y*-axis

c)
$$h(x) = -4x^3 + 1$$
 $h(-x) = -4(-x)^3 + 1 = 4x^3 + 1$

Since the resulting function does not equal h(x) nor -h(x) this function is neither even nor odd and is not symmetric with respect to the *y*-axis or the origin.

3 Use a Graph to Determine Where a Function Is Increasing, Decreasing, or Constant

INCREASING.

DECREASING

CONSTANT

Determining Where a Function Is Increasing, Decreasing, or Constant from Its Graph

Where is the function increasing?

$$-4 < x < 0$$
 $(-4, 0)$

Determining Where a Function Is Increasing, Decreasing, or Constant from Its Graph

Where is the function decreasing?

$$-6 < x < -4$$
 $(-6, -4)$

$$3 < x < 6$$
 (3, 6)

Determining Where a Function Is Increasing, Decreasing, or Constant from Its Graph

Where is the function constant?

$$0 < x < 3$$
 $(0, 3)$

DEFINITIONS

A function f is **increasing** on an open interval I if, for any choice of x_1 and x_2 in I, with $x_1 < x_2$, we have $f(x_1) < f(x_2)$.

A function f is **decreasing** on an open interval I if, for any choice of x_1 and x_2 in I, with $x_1 < x_2$, we have $f(x_1) > f(x_2)$.

A function f is **constant** on an interval I if, for all choices of x in I, the values f(x) are equal.

f are equal; f is constant on /

4 Use a Graph to Locate Local Maxima and Local Minima

CAL MATIS

2 AY WINING

increasing decreasing

The local maximum is f(c) and occurs at x = c.

decreasing increasing

The local minimum is f(c) and occurs at x = c.

DEFINITIONS

A function f has a **local maximum** at c if there is an open interval I containing c so that, for all $x \neq c$ in I, $f(x) \leq f(c)$. We call f(c) a **local maximum of** f.

A function f has a **local minimum** at c if there is an open interval I containing c so that, for all $x \neq c$ in I, $f(x) \geq f(c)$. We call f(c) a **local minimum of** f.

Finding Local Maxima and Local Minima from the Graph of a Function and Determining Where the Function Is Increasing, Decreasing, or Constant

- (a) At what number(s), if any, does f have a local maximum? There is a local maximum when x = 1.
 - (b) What are the local maxima? The local maximum value is 2.

Finding Local Maxima and Local Minima from the Graph of a Function and Determining Where the Function Is Increasing, Decreasing, or Constant

- (c) At what number(s), if any, does f have a local minimum? There is a local minimum when x = -1 and x = 3.
- (d) What are the local minima?

The local minima values are 1 and 0.

Finding Local Maxima and Local Minima from the Graph of a Function and Determining Where the Function Is Increasing, Decreasing, or Constant

- (e) List the intervals on which f is **increasing**. (-1,1) and $(3,\infty)$
- (f) List the intervals on which f is **decreasing**. $(-\infty, -1)$ and (1, 3)

DEFINITION Let f denote a function defined on some interval I. If there is a number u in I for which $f(x) \le f(u)$ for all x in I, then f(u) is the **absolute** maximum of f on I and we say the absolute maximum of f occurs at u.

If there is a number v in I for which $f(x) \ge f(v)$ for all x in I, then f(v) is the **absolute minimum of f** on I and we say **the absolute minimum of f occurs at v.**

Finding the Absolute Maximum and the Absolute Minimum from the Graph of a Function

Find the absolute maximum and the absolute minimum, if they exist.

The absolute maximum of 6 occurs when x = 3.

The **absolute minimum** of 1 occurs when x = 0.

Finding the Absolute Maximum and the Absolute Minimum from the Graph of a Function

Find the absolute maximum and the absolute minimum, if they exist.

The absolute maximum of 3 occurs when x = 5.

There is no **absolute minimum** because of the "hole" at x = 3.

Finding the Absolute Maximum and the Absolute Minimum from the Graph of a Function

Find the absolute maximum and the absolute minimum, if they exist.

The absolute maximum of 4 occurs when x = 5.

The **absolute minimum** of 1 occurs on the interval [1,2].

Finding the Absolute Maximum and the Absolute Minimum from the Graph of a Function

Find the absolute maximum and the absolute minimum, if they exist.

There is no absolute maximum.

The absolute minimum of 0 occurs when x = 0.

Finding the Absolute Maximum and the Absolute Minimum from the Graph of a Function

Find the absolute maximum and the absolute minimum, if they exist.

There is no absolute maximum.

There is no absolute minimum.

THEOREM

Extreme Value Theorem

If f is a continuous function* whose domain is a closed interval [a, b], then f has an absolute maximum and an absolute minimum on [a, b].

* Although it requires calculus for a precise definition, we'll agree for now that a continuous function is one whose graph has no gaps or holes and can be traced without lifting the pencil from the paper.

6 Use a Graphing Utility to Approximate Local Maxima and Local Minima and to Determine Where a Function Is Increasing or Decreasing

Using a Graphing Utility to Approximate Local Maxima and Minima and to Determine Where a Function Is Increasing or Decreasing

Use a graphing utility to graph $f(x) = 2x^3 - 3x + 1$ for -2 < x < 2. Approximate where f has any local maxima or local minima.

Using a Graphing Utility to Approximate Local Maxima and Minima and to Determine Where a Function Is Increasing or Decreasing

Use a graphing utility to graph $f(x) = 2x^3 - 3x + 1$ for -2 < x < 2.

Determine where f is increasing and where it is decreasing.

DEFINITION

If a and b, $a \neq b$, are in the domain of a function y = f(x), the average rate of change of f from a to b is defined as

Average rate of change
$$=\frac{\Delta y}{\Delta x} = \frac{f(b) - f(a)}{b - a}$$
 $a \neq b$ (1)

Finding the Average Rate of Change

Find the average rate of change of $f(x) = 3x^2$:

a) From 1 to 3

$$\frac{\Delta y}{\Delta x} = \frac{f(3) - f(1)}{3 - 1} = \frac{27 - 3}{3 - 1} = \frac{24}{2} = 12$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x) - f(c)}{x - c}$$

Finding the Average Rate of Change

Find the average rate of change of $f(x) = 3x^2$:

b) From 1 to 5

$$\frac{\Delta y}{\Delta x} = \frac{f(5) - f(1)}{5 - 1} = \frac{75 - 3}{5 - 1} = \frac{72}{4} = 18$$

$$\frac{\Delta y}{\Delta x} = \frac{f(x) - f(c)}{x - c}$$

Copyright © 2012 Pearson Education, Inc. Publishing as Prentice Hall.

Finding the Average Rate of Change

Find the average rate of change of $f(x) = 3x^2$:

c) From 1 to 7

$$\frac{\Delta y}{\Delta x} = \frac{f(x) - f(c)}{x - c}$$

The Secant Line

$$m_{\rm sec} = \frac{f(x) - f(c)}{x - c}$$

Theorem

Slope of the Secant Line

The average rate of change of a function from a to b equals the slope of the secant line containing the two points (a, f(a)) and (b, f(b)) on its graph.

Finding the Equation of a Secant Line

Suppose that
$$g(x) = -2x^2 + 4x - 3$$
.

- (a) Find the average rate of change of g from -2 to 1.
- (b) Find an equation of the secant line containing (-2, g(-2)) and (1, g(1)).
- (c) Using a graphing utility, draw the graph of g and the secant line obtained in part (b) on the same screen.

(a)
$$\frac{\Delta y}{\Delta x} = \frac{-2(1)^2 + 4(1) - 3 - \left(-2(-2)^2 + 4(-2) - 3\right)}{1 - \left(-2\right)} = \frac{18}{3} = 6$$

$$y - y_1 = m_{\text{sec}}(x - x_1)$$

(b)
$$y-(-19)=6(x-(-2))$$

$$y + 19 = 6x + 12$$

$$y = 6x - 7$$

