DTIC FILE COPY

DLA INFORMATION SYSTEMS PERFORMANCE REPORT

OCTOBER - DECEMBER 1989

834

DISTRIBUTION STATEMENT A

Approved for public release;
Distribution Unlimited

DEFENSE LOGISTICS AGENCY

ALEXANDRIA, VA. 22304-6100

90 02 07 095

05 January 1990

FROM: DLA-ZO

SUBJECT: DLA Information Systems Performance Report (DISPR)

The DISPR provides management-level statistics required to support the DLA Information Systems Capacity Management program. With the reorganization of DLA-Z responsibility for the Capacity Management program is in the Operations Division, DLA-ZO. Data is currently collected only for DLA IBM-architectured sites but will eventually include other DLA non IBM-architectured sites.

The Summary Statistics Charts in the Executive Summary may be used to identify potential problem areas or major workload differences between similar activities. An effective performance management and capacity planning program requires a continued awareness on the part of all concerned OTIS personnel to potential problems.

he standard quarterly utilization charts, trend charts and workload stratification charts for the period ending 31 December 1989 are included in this edition of the DISPR. A critical eye is being used on the system availability and downtime data reported from the Capacity Decision Support System software.

DSAC, Columbus has responsibility for publication of the DISPR and development of certain capacity management information on each DPI's performance. Readers should send comments and/or corrections on this publication to DSAC-TM via letter or message. The DSAC point of contact is Ms. Mary Eskridge, AUTOVON 850-9430.

IOHN E. ROBY

Chief

Operations Divison

Accession For

NTIS CRASI D
DTIC TAB CI
United and Ci
Justines

A-1

TABLE OF CONTENTS

1. DLA Information Systems Overview

- A. Major DLA Information Processing Sites
- B. Relative Computer Power
- C. Key ADP Hardware
- D. DLANET

2. ADP Capacity Management Data

- A. Executive Summary
- B. Definitions
- C. RMF Hours for All Sites
- D. Utilization Data for Quarter Ending Dec 89
- E. Workload Stratification Reports for Quarter Ending Dec 89
- F. TIS Performance Data for Quarter Ending Dec 89
- G. System Availability and Downtime Reports for Quarter Ending Dec 89
- H. INTERCOMM/SAMMSTEL Data for Quarter Ending Dec 89
- 1. Reliability Data for Quarter Ending Dec 89

3. Data Communications Capacity Management Data

- A. DLANET Profile
- B. DLANET Capacity as of Release 89-08 (20 Dec 89)
- C. COMTEN CPU Utilization
- 4. DLA DMINS Systems
- 5. DLA Capacity Management Roster

1. DLA INFORMATION SYSTEMS OVERVIEW

SITES MAJOR DLA INFORMATION PROCESSING

* ADP support provided by DPSC or DASC

DPAMS

⁽²⁾ Technical Report Data Base

⁽³⁾ Management Information Data Base

CPU POWER CHART

MSU's Per System

Key DLA ADP Hardware

SITE	<u> 1D</u>	MODEL	MEMORY	CHANNELS	Total DASD BYTES
DCSC	DCSC0 DCSC1	NAS 9080*	64 MB	32	45.58GB
DESC	DESCO DESC1	AMDAHL V8 AMDAHL V8	16 MB 16 MB	16 16	48.00GB
DGSC	DGSC0 DGSC1	AMDAHL 5870 AMDAHL V8	64 MB 16 MB	32 16	111.60GB
DISC	DISC1	NAS 9050	32 MB	16	30.00GB
DPSC	DPSC0 DPSC1 DPSC2 DPSC3	AMDAHL V8 AMDAHL 5860 AMDAHL V8 AMDAHL 5870	16 MB 32 MB 16 MB 64 MB	16 16 16 32	204.04GB
DDMP	DDMPO	IBM 4381	16 MB	12	24.09GB
DDMT	DDMT0 DDMT1	IBM 4381 IBM 4341	16 MB 8 MB	12 6	20.50GB
DDOU	DDOU0 DDOU1	IBM 4381 IBM 4341	16 MB 12 MB	12 6	26.59GB
DOTC	DDTC1	IBM 4381	16 MB	12	15.00GB
DATPC	DPC00	AMDAHL 5870	64 MB	32	139.00GB
DCASR ATL	DCRA0	AMDAHL V8	16 MB	16	24.20GB
DCASR BOS	DCRB0	AMDAHL 5870	64 MB	32	30.00GB
DCASR CHI	DCRIO	AMDAHL V8	16 MB	12	10.09GB
DCASR CLE	DCR00	AMDAHL V8	16 MB	12	22.70GB
DCASR DAL	DCRTO	AMDAHL V8	16 MB	16	17.74GB
DCASR LA	DCRL0	AMDAHL 5870	32 MB	32	34.11GB
DCASR NY	DCRNO	AMDAHL 5870	64 MB	32	23.81GB
DCASR PHIL	DPSC3	Included w	ith site DF	SC	
DCASR STL	DCRS0	AMDAHL V8	16 MB	12	17.74GB

SITE	<u>10</u>	MODEL	MEMORY	CHANNELS	Total DASD BYTES
DSAC	DSAC0 DSAC1	IBM 3084**	128 MB	48	113.46GB
DLSC	DLSC0 DLSC1	18M 4341 18M 4341	8 MB 8 MB	6 6	14.80GB
DASC	DASC0 DASC1	AMDAHL V8 AMDAHL V8	16 MB 16 MB	16 16	40.32GB
DTIC		UNISYS 1100/82 UNISYS 1100/61	9.4 MB 4.7 MB	1 2 5	12.8GB

Running in split image mode as two NAS 9060s (DCSC0 and DCSC1) Running in split image mode as two IBM 3081s (DSAC0 and DSAC1)

KAISERSLAUTERN WIESBADEN (DPDR-E) DPSC/DCRP/DISC (DSSF.K) DCRB ZWEIBRUCKEN (DSR E) DCRN DASC - DIS DGSC: DOMP (DCAS FT BUCHANAN) DCSC/DSAC DCRA' PUERTO RICO DCRO / DOMT DESC DCRI' DCRS' DLANET DCRT MCDN MARINE CORPS DATA NETWORK (MCDN) EXISTING NODE PLANNED NODE EXISTING CONNECTION PLANNED CONNECTION TERMINALS DOOG DCRLN DDTC HAWAII (NSC PEARL) **●** DSR-P

2. ADP CAPACITY MANAGEMENT DATA

YEARLY SUMMARY

1989 PLFA PERFORMANCE SUMMARY

CPU changes:

There were several CPU changes during the fourth quarter of 1989. A second CPU, an AMDAHL 5880 (DPCO1), was added at DAIPC. DCRN upgraded their AMDAHL 5850 to an AMDAHL 5870. DCRB upgraded their AMDAHL 5860 to an AMDAHL 5870. The DPSC3 machine at DPSC was upgraded from an AMDAHL 5860 to an AMDAHL 5870. The DCSC0 and DCSC1 machines at DCSC, formerly an AMDAHL V8 and AMDAHL V7, have been replaced with a NAS 9080.

All CPU changes for the year are summarized by quarter on the chart titled 1989 CPU CHANGES.

Additional charting:

During 1989, the following was added to the DISPR:

- -- MOTAM DWASP reports were added.
- -- MOTAM BOSS reports were added.
- -- TIS IRIS (formerly called DAISY) reports were added.

Charting changes:

- -- System Availability trends are no longer carried in the DISPR.
- -- The DCASR charts were modified to include the DLA Automated Information Processing Center (DAIPC).
- -- 'TIS' charts were changed to 'APPLICATION' charts.
- -- The Non-Standard workload is no longer broken down into the categories of Batch-Und, Unique, DORO, and Test.
- -- The method of computing TIS response times was altered for VTAM terminals. Network delay time is no longer counted in the output queue time.
- -- The CPU POWER CHART has been updated to provide the most current ratings available.

CPU utilization:

Notable decreases in CPU utilization were observed on all systems that were upgraded during this past quarter.

During the fourth quarter, several changes in the APCAPS workload were noted throughout the agency. At DGSC, APCAPS ran almost exclusively on the DGSCO machine. This shift occurred after the DGSCO machine was upgraded last quarter. Another APCAPS shift occurred at DPSC, where the APCAPS workload was shifted to the DPSC3 machine from DPSCO in mid-December. DCRN APCAPS was moved to DAIPC in early November, and will now be labeled DFC-EAST. DASC APCAPS was moved from DDMP to DAIPC in early December, and will be called DFC-TRAN.

The yearly CPU utilization remained fairly consistent, with predictable decreases in utilization occurring at those sites that had CPU upgrades.

TIS:

TIS response times decreased slightly at most sites during the fourth quarter. During the past year, TIS APCAPS response times increased slightly overall, a change due at least partially to the implementation of electronic signature and TALE.

TIS response times for MOCAS, DIPEC and DISMS remained fairly consistent throughout this past year.

MOTAM:

DDMP and DDRV (processed at DCSC) BOSS systems were added to the DISPR this quarter. BOSS response times decreased slightly during the fourth quarter of 1989.

DWASP response times remained at or below 2 seconds during the fourth quarter. DDCO DWASP (run at DCSC) showed a marked drop, from 3.57 seconds to 0.98 seconds. This decrease may be due to the shifting of DCSC APCAPS to DAIPC.

Reliability reports:

During the fourth quarter of 1989, the DLA averages for CPU, Channel, and Core use per hardfail were generally better than the National averages. The DLA averages for DASD use per hardfail ere also better than the National averages for most devices. The two exceptions for DASD are the MEMOREX 33502, where the DLA average was drastically lower than the national average, and the MEMOREX 3350, where the DLA average was slightly lower than the National average.

The DLA averages for TAPE use per hardfail were also generally better than the National averages. The notable exceptions are the IBM 34203, and the IBM 34204, which rated lower than the National averages.

During 1989, the DLA averages for all Reliability reports were generally better than the National averages. The total amount of DASD storage capacity at the PLFAs increased by approximately 18% during 1989, largely due to the addition of DAIPC. The DASD changes and additions are summarized on the table titled R+ REPORTS - DASD STORAGE CAPACITY.

Summary statistics:

The following three tables summarize the key performance variables for the quarter for Centers, Depots, and DCASRs. The workload percentages represent that percent of the total CPU usage that was charged to the line item. The percent for each category sum to 100%.

SUMMARY STATISTICS -- CENTERS

Qtr Ending 31DEC89

	DC CPUØ	CPU1	DE: CPUØ		DGSC CPUØ CPU1		DISC CPU1	DP: CPUØ (
RMF HOURS %CPU BUSY %CPU PRIME %CPU > 85%	693 25 34 2	722 12 15 Ø	715 33 42 3	7 Ø7 18 28 Ø	72Ø 18 24 Ø	723 4Ø 66 26	695 39 52 2	7Ø2 43 62 7	698 41 52
% STANDARD APCAPS BOSS DISMS DWASP O-STD SAMMS	37 Ø 1 Ø 27 1 71	27 1 7 0 8 54 24 14	33 Ø Ø Ø Ø 100	31 6Ø 5 Ø Ø 31 4	20 27 2 0 20 20 49	3 81 81 Ø Ø 1	45 Ø Ø Ø 1	29 37 Ø Ø Ø 1 62	25 Ø 2 8Ø Ø 18 Ø
% NON-STANDARD	16	15	24	21	18_	8Ø	13	11	11
% ONLINE BOSS MISC SAMMS TIS-APCAP DWASP TIS-DISMS TSO	17 Ø 7 62 Ø Ø Ø	22 Ø 75 5 Ø Ø Ø Ø	16 Ø 3 66 Ø Ø Ø	18 3 1 Ø 78 Ø Ø 0	21 6 0 23 27 20 0	6 2 45 1 0 0 0	11 Ø Ø 71 Ø Ø Ø Ø	25 Ø Ø 25 53 Ø 2	23 17 0 0 0 65
X SUPPORT HSK STC	8 	11 Ø 1ØØ	9 16 84	12 14 86	11 21 79	5 31 69	11 14 86	16 27 73	22 36 64

SUMMARY STATISTICS--DEPOTS Outr Ending 31DEC89

	DDMP CPUØ	CPUØ	<u>T</u> CPU1	DDOU CPUØ	DDTC CPU1
RMF HOURS %CPU BUSY %CPU PRIME %CPU > 85%	723 44 69 9	726 46 65	718 25 27 1	723 51 67 10	671 41 53
% STANDARD APCAPS BOSS DIPEC DWASP 0-STD	2 Ø 24 11 0 56	28 64 5 Ø 28 3	2 Ø Ø Ø 1ØØ Ø	27 64 6 Ø 26 4	27 53 4 Ø 43
% NON-STANDARD	4	12	15	5	13
% ONLINE DWASP OL-MISC TIS-APCAP TSO	38 68 Ø 17	31 31 Ø 58	11 Ø 45 Ø 55	34 68 0 29	26 35 Ø 45 20
% SUPPORT HSK STC	19 50 50	11 10 90	24 Ø 1ØØ	15 6 94	13 40 60
% OVERHEAD	19	18	3Ø	19	21

SUMMARY STATISTICS--DCASRS

Qtr Ending 31DEC89

	DCRA CPUØ	DCRB CPUØ	DCR I CPUØ	DCRN CPUØ	DCRO CPUØ	DCRS CPUØ	DCRT CPUØ	DPC0 CPUØ	DPSC CPU3
RMF HOURS %CPU BUSY %CPU PRIME %CPU > 85%	472 41 54 2	493 22 32 Ø	494 34 48 Ø	521 17 27 Ø	510 43 58 1	467 37 49 1	443 43 58 3	697 40 58 4	676 18 33 Ø
% STANDARD APCAPS MOCAS	3 Ø 17 83	24 22 78	24 34 66	1 Ø 25 75	26 25 75	24 31 69	23 29 71	2Ø 54 46	8 100
% NON-STANDARD	7	7	5	7	10	16	5	24	16
% ONLINE TIS-APCAP TIS-MOCAS TSO	45 26 70 4	43 18 77 5	50 22 71 71	45 9 89 7	48 15 78	41 16 76	52 17 77 6	34 17 73 10	47 7 88
% SUPPORT HSK STC	6 35 65	7 24 76	7 34 66	9 0 100	4 0 1 Ø Ø	6 0 100	8 38 62	9 48 52	12 4 96
% OVERHEAD	12	19	14	29	12	13	12	13_	17

Yearly Summary - 1989

1989 CPU CHANGES

The CPU upgrades and additions that occurred in 1989 are summarized by quarter in the table below.

FIRST	QUARTER, 1989							
SITE	CPUID	FROM	TO					
DAIPC	DPC00		AMDAHL 5870					
SECOND	QUARTER, 1989							
no cha	no changes this quarter							
THIRD	QUARTER, 1989							
SITE	CPUID	FROM	TO					
DGSC DCRL	DGSCO DCRLO	AMDAHL V8 AMDAHL 5860	AMDAHL 5870 AMDAHL 5870					
FOURTH	QUARTER, 1989							
SITE	CPUID	FROM	TO					
DAIPC DCRN DPSC DCRB DCSC DCSC	DPCO1 DCRNO DPSC3 DCRBO DCSCO* DCSC1*	AMDAHL 5850 AMDAHL 5860 AMDAHL 5860 AMDAHL V8 AMDAHL V7	AMDAHL 5880 AMDAHL 5870 AMDAHL 5870 AMDAHL 5870 NAS 9080					

^{* --} Running in split image mode as two NAS 9060s (DCSC0 and DCSC1)

R+ Reports - DASD Storage Capacity

The following table displays the number of DASD devices added or removed from each site during 1989. It also shows the total number of gigabytes currently at each site, and the percentage of increase in DASD storage that has occurred during 1989.

SITE 4305	2314 3330-1	3330-11 3	350 3350-2	3380 3380E	TOT GB	Z INCR
DASC DSAC		+	24 +16	+20	40.32 113.46	n/c + 24%
DCSC DESC DISC DLSC DPSC		+	16 8 4 -32	+16	45.58 48.11 108.49 45.51 17.79 198.14	n/c - 2% n/c + 7% + 5%
DDMP DDMT DDOU DDTC					24.09 20.50 26.73 15.18	n/c n/c n/c n/c
DCRA DCRB DCRI DCRI		- 4			30.30 18.46 34.11	n/c n/c n/c
DCRM DCRO DCRS DCRT DCRT + 2			-12	+116	24.01 21.51 17.74 17.74 139.00	n/c - 15% n/c n/c +100%
**************************************	>>>>>> <pre></pre>	TOT	ALS ««««««««««	**************************************	»»»»»»»	»»»»»»»
TOTAL + 2		- 4	+ 4 -28	+152	1032.05	+ 18%

Feature Article

1989 A Year of Change

This quarter's feature article takes a look back at some of the significant changes which occurred in 1989. There are two charts which are included with this article. The first chart compares Direct Access Storage Device (DASD) growth in 1989 to 1988 and the second chart rates the power of DLA CPUs in 1989 to 1988. The charts are segregated by Centers, Depots, DCASRs, Others and DLA. The Others classification consists of sites DASC, DLSC and DSAC; the DLA classification is a combined total of the four groups.

The amount of DASD space available at the Centers and Depots remained the same in 1989 as it was in 1988. In 1989 there was a 65% increase in DASD space at the DCASRs and a 25% increase at "Others". The increase at the DCASRs is largely attributable to the formation of DAIPC which became fully operational in 1989. DLA as a whole has the capacity to store over one trillion bytes of data with the Centers (43%) and the DCASRs (32%) accounting for the majority of DASD space.

One of the ways to measure CPU processing power is through a metric known as Millions of Instructions Per Second (MiPS). This metric measures the number of CPU instruction per second that can be executed by a processor complex. These MIPS ratings are known for all of the DLA IBM and IBM compatible systems. By examining these ratings, DLA's computer power can be determined. While other, more sophisticated measures are used for detailed capacity planning, the MIPS ratings can still be useful for such comparisons as are presented here. There were no CPU upgrades at the Depots or Others in 1989. Their total MIPS capability has remained at 13.4 and 44.1 respectively. On the other hand the DCASRs experienced many CPU upgrades in 1989 and the Centers had two. With all the upgrades at the DCASRs their combined CPU power increased over 100% in 1989. The least powerful CPUs in DLA are located at the Depots while the processors at the DCASRs possess over 44% of all of DLA's computer power.

Other highlights in 1989

Computer Associates comprehensive storage management systems ASM2 was installed at all DSAC supported DLA sites. Site personnel received hands on training at DSAC and have begun to use ASM2's report generator, RSVP, and archival functions to free up DASD space. A greatly enhanced version of ASM2 is expected to be released sometime in 1990.

Computer Associates' LOOK/MVS performance measurement software has been fielded to all PLFAs and training was provided by the vendor. LOOK/MVS will replace Boole and Babbage's RESOLVE/MVS as the standard performance monitor within DLA. LOOK/MVS consists of three major components:

(1) Real Time Monitor (RTM) which allows site personnel to find out what is happening on their computer system at the current moment.

- (2) TRACKS exception monitor which looks at user defined criteria and issues warnings if the established thresholds have been exceeded.
- (3) Extended Performance Analyzer (EPA) which allows site personnel to produce trending reports of captured LOOK and TRACKS information.

IBM's MVS/XA Operating System has been installed at one DLA site (DAIPC) and is anticipated to be released to other PLFAs in the future.

DISTRIBUTION OF INSTALLED DASD - 1989 BY CLASS OF SITE

NOTE: SCALE CHANGES AT 25

DISTRIBUTION OF CPU POWER - 1989 BY CLASS OF SITE

DEFINITIONS

Resource management facility (RMF) hours shows the number of hours of RMF data accumulated for each month during the last 6 months. A high number of RMF hours indicates that utilization data is based on a statistically sound sample.

CPU BUSY Percentage of time during the 1-hr sampling intervals that the CPU was busy. Peak hours shows percentage of time during the RMF sampling period that a CPU busy rate of 85 percent or more was sustained for at least one full hour during the current month. High shows the highest quarterly average CPU busy during the past 12 months, and low, the lowest. Average values show the past 12 months' quarterly CPU busy rate. Current is an average taken from the current quarter's data. Generally, 85 percent busy is considered a dangerous level to sustain for any considerable amount of time. A 65 percent busy average is considered high because one quarter's data may contain many lulls.

<u>DASD RATE PER SECOND *</u> Activity per second for direct access storage devices. Activity is defined as successful start IO'S (SIO'S).

<u>DEMAND PAGING PER SECOND</u> * Number of demand paging requests per second during sampling interval. For on—line systems, paging rates above 35 pages per second could impact response times. However, larger systems can sustain relatively high demand paging rates.

* Peak values show the percent of time that the CPU was greater than 85% busy. High shows the highest quarterly value attained during the past 12 months and low, the lowest. Average values show the 12 months' overall quarterly average. Current represents an average taken from the current quarter's data.

RMF (Resource Management Facility) Hours for All Sites

CHART OF RMF HOURS FOR LAST 6 MONTHS MONTH ENDING DEC 1989 SITE=CENTER

CHART OF RMF HOURS

FOR LAST 6 MONTHS
MONTH ENDING DEC 1989
SITE = DEPOT

CHART OF RMF HOURS FOR LAST 6 MONTHS MONTH ENDING DEC 1989 SITE = DCASR

CHART OF RMF HOURS FOR LAST 6 MONTHS MONTH ENDING DEC 1989 SITE = OTHER

Utilization Data Reports for Quarter Ending Dec 89

CHART OF CPU BUSY YEAR ENDING DEC 89- BY QUARTERS

SITE = CENTER VAR = CPU_BSY

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -QTR -HOUR

NOTE: PEAK HOUR IS THE % OF HOURS THAT CPU BUSY WAS >= 85% FOR THE CURRENT QUARTER

CHART OF CPU BUSY PRIME SHIFT MON - FRI YEAR ENDING DEC 89- BY QUARTERS

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -QTR -HOUR

NOTE: PEAK HOUR IS THE % OF HOURS THAT CPU BUSY WAS >= 85% FOR THE CURRENT QUARTER

CHART OF CPU BUSY YEAR ENDING DEC 89- BY QUARTERS

SITE = DEPOT VAR = CPU_BSY

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -HOUR

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -QTR -HOUR

CHART OF CPU BUSY YEAR ENDING DEC 89- BY QUARTERS

SITE = DCASR VAR = CPU_BSY

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -QTR -HOUR

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -QTR -HOUR

CHART OF CPU BUSY YEAR ENDING DEC 89- BY QUARTERS

SITE = OTHER VAR = CPU_B5Y

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -QTR -HOUR

CHART OF CPU BUSY PRIME SHIFT MON - FRI

YEAR ENDING DEC 89- BY QUARTERS SITE = OTHER VAR = CPU_BSY

AVG-CUR-HIGH-LOW-PEAK QTR -QTR - QTR -HOUR

Workload Stratification Reports Quarter Ending Dec 89 Workload Stratification Reports are produced at two levels. Level-One Reports show workload breakout by broad, summary-level classifications; i.e., Standard and Non-Standard Systems, On-Line, Support and Multi-Virtual Storage (MVS) overhead. Level-Two charts, which are scaled to 100 percent, show detailed breakouts of Level-One classifications. For example, the Level-Two Report shows Standard Systems by major AISs.

'DLA Overview - Percent of CPU Busy by Major Workload.'
CPU busy means the percent of CPU resources encumbered by current workload. This Report shows the actual percent of CPU busy and that portion used by each major workload, rolled up by Supply Centers, Defense Depots, DCASRs and the overall DLA average. Major workload classifications are defined as follows:

- (1) STANDARD: SAIS batch jobs (i.e., Standard Automated Materiel Management Systems, Automated Payroll Cost and Personnel Systems, Mechanization of Contract Administration Services, Defense Industrial Plant Equipment Center, etc.). O-STD means other SAISs such as Factory.
 - (2) NON-STD: Non-Standard AIS batch jobs.
- (3) ONLINE: The category 'online' refers to online applications such as database management systems, Total Information System (TIS), or the teleprocessing monitor, Time Sharing Option (TSO).
- (4) SUPPORT: Work required to support the system (i.e., Job Entry Subsystem (JES) Telecommunications Access Method (TCAM), Virtual Telecommunications Access Method (VTAM), Housekeeping (HSK), etc.). STC means system-started tasks such as JES, TCAM, and Chained Job Scheduler. HSK includes dumps and all general housekeeping tasks.
- (5) MVS-OH: Operating system overhead (i.e., used to perform system functions and not charged to any specific workload).

'DLA Overview - Distribution of CPU Used by Major Workload.'
This Report shows, on a chart scaled to 100 percent, the portion of CPU services used by each major workload, rolled up by Supply Center, Defense Depots, DCASRs, and the overall DLA average.

QUARTERLY WORKLOAD STRATIFICATION DLA OVERVIEW PERCENT OF CPU BUSY BY MAJOR WORKLOAD

PERCENT OF CPU BUST BY MAJOR WOR.

QUARTER ENDING DEC 1989

QUARTERLY WORKLOAD STRATIFICATION DLA OVERVIEW DISTRIBUTION OF CPU BUSY BY MAJOR WORKLOAD QUARTER ENDING DEC 1989

TIS Performance Data for Quarter Ending Dec 89

Description for APPLICATION AVERAGE RESPONSE TIME

This graph depicts the average response times for TIS and MOTAM applications running at all sites.

The graph is divided into six separate groups, on each for APCAPS,

DAISY, DIPEC, DISMS, DWASP, and MOCAS. If a site has more than one TIS

application running (i.e., DCRA runs both APCAPS and MOCAS) the bars

representing the response times will be of the same pattern.

The actual numeric average response time is shown to the right of each bar, and is calculated by averaging the response times documented during the hours of 0700-1700.

APPLICATION AVERAGE RESPONSE QTR ENDING 31DEC89 AUG RESPONSE 2.85 APCAPS DCRA DCRB 2.18 2.97 DCRI DCRN 1.63 DCRO 4.25 DCRS 2.88 DCRT 2.49 4.91 DDMT 4.81 DDQU DDTC 2.95 1.73 DESC 2.26 DESC-DCA 0.86 DFC-CENT DFC-EAST 1.32 DFC-MIDW 0.80 DFC-TRAN 1.03 0.73 DFC-WEST DGSC 1.06 DPSC 4.15 BOSS DDMP 2.65 3.27 DDQU **DDRV** 1.05 1.25 DESC DLSC 4.00 DPSC 2.29 DIPEC 3.15 DDMT 3.29 DISMS DPSC DWASP 0.98 DDCQ 2.08 DOMP DDMT 1.00 DDQU 1.24 DDTC 1.05 IRIS 3.29 DLSC 2.06 MOCAS DCRA 1.34 **DCRB** DCRI 2.09 DCRN 1.13 2.06 DCRO 2.52 DCRS 1.25 DCRT 2.02 DFC-WEST DPSC 1.45 2 3 5 6 7 50 0 4 AVG RESPONSE

Description for APPLICATION PEAK HOUR & HOURLY AVERAGE

The following set of graphs represents the **peak hour** transactions and the **average hourly** transactions for <u>TIS</u> and <u>MOTAM</u> applications running at the **CENTERS**, **DEPOTS**, and **DCASRS**. The graphs are grouped by application and site (i.e., **APCAPS**—**CENTERS**).

For each site there are six bars. Following is a definition of each.

- A_RESP: the average response time for one hour observed during the core hours of 0700-1700.
- A_STAT: the average number of stations active per hour during the core hours.
- A_TRAN: the average number of transactions processed per hour during the core hours.
- P_RESP: the response time that corresponds with the peak number of transactions.
- P_STAT: the number of stations that corresponds with the peak number of transactions.
- P_TRAN: the peak number of transactions that was observed for any one hour during the quarter.

The actual numeric value of each bar is shown directly to the right of the graph. The horizontal axis has been scaled to allow each value to be displayed as clearly as possible.

TIS--APCAPS--CENTERS PEAK HOUR & HOURLY AVERAGE QTR ENDING 31DEC89

TIS--DISMS PEAK HOUR & HOURLY AVERAGE QTR ENDING 31DEC89

TIS--APCAPS--DEPOTS PEAK HOUR & HOURLY AVERAGE QTR ENDING 31DEC89

TIS--DIPEC PEAK HOUR & HOURLY AVERAGE QTR ENDING 31DEC89

MOTAM -- DWASP PEAK HOUR & HOURLY AVERAGE QTR ENDING 31 DEC89

TIS--APCAPS--DCASRS PEAK HOUR & HOURLY AVERAGE QTR ENDING 31DEC89

TIS--MOCAS--DCASRS PEAK HOUR & HOURLY AVERAGE QTR ENDING 31DEC89

MOTAM -- BOSS PEAK HOUR & HOURLY AVERAGE QTR ENDING 31DEC89

TIS--IRIS PEAK HOUR & HOURLY AVERAGE QTR ENDING 31 DEC89

System Availability and Downtime Reports for Quarter Ending Dec 89

ONLINE APPLICATIONS AVAILABILITY

The Online Applications Availability charts are separated by teleprocessing monitor name, i.e., TIS and OTHER. Each chart shows the percent of the window (by cpuid) that the application was online. The timeframe for the window is Monday through Friday, 0700 - 1700.

ONLINE APPLICATIONS AVAILABILITY

FOR APPLICATIONS UNDER TP MONITOR TIS QUARTER ENDING DEC 1989

ONLINE APPLICATIONS AVAILABILITY FOR APPLICATIONS UNDER TP MONITOR OTHERS QUARTER ENDING DEC 1989

WINDOW = 7:00 - 17:00MONDAY-FRIDAY

SYSTEM AVAILABILITY

The System Availability graphs are separated into four groups; CENTERS, DCASRs, DEPOTS, and SERVICE CENTERS.

The graphs display the following:

SYSTEM --- the reporting system, by cpuid. (ex. DCSC has two reporting systems, CSC0 and CSC1).

% AVAIL -- the percentage of hours in the quarter that the system
 was available. The calculation is as follows:

A = (T-D)/T+100

Where: A = % System Availability.

T = Total number of hours in the reporting period. Holidays are included for all sites; weekends are excluded for DCASRs

only.

D = Total hours the system was down during the report period, based upon SMF records.

7

HOURS ---- the actual number of hours that a system was reported as available.

DOWNTIME CLASSIFICATIONS

The Downtime Classification charts are also separated by CENTERS, DCASRs, DEPOTS, and SERVICE CENTERS.

The downtime reports are scaled to 100%, to show detailed breakouts of the following categories:

ADMIN: Administrative activities (ex. holidays, weekends)

MISC: Downtime that cannot be put into another single category.

(ex. operations error)

ENV: Environmental downtime (ex. air conditioning problems).

SOFT: Software problems.

HARD: Hardware problems.

TEST: System down due to testing.

MAINT: System down due to maintenance.

UNDET: System down due to unidentified reasons.

QUARTERLY SYSTEM AVAILABILITY

CENTERS QUARTER ENDING DEC 1989

QUARTERLY SYSTEM AVAILABILITY

QUARTER ENDING DEC 1989

QUARTERLY SYSTEM AVAILABILITY DCASRS

QUARTER ENDING DEC 1989

HOURS

WEEKENDS EXCLUDED

QUARTERLY DOWNTIME CLASSIFICATIONS PCT 100 90 80 70 60 60 40 30 20 10 TYPE ADMIN ENV HARD MAINT MISC SOFT TEST UNDET

QUARTERLY SYSTEM AVAILABILITY OTHERS QUARTER ENDING DEC 1989

ABEND CHARTS

The following charts depict the total number of abends occurring during the quarter on each system. The abends have been evaluated, and found to be those occurring most often. The categories will be re-evaluated periodically to ensure that all abends occurring frequently are featured in the proper groups. The general group descriptions, and specific abends included in each group are located below.

DASD SPACE - The primary causes for this type of abend are that sufficient DASD (Direct Access Storage Device) space was not available, or that the user did not request enough space. This category includes the following abend codes:

SOB37 - all space on volume used -ordata set at 16 extents

SOD37 - no secondary space requested

SOE37 - PDS out of space

50814 - no space in directory

PROGRAM ERROR - Programmer errors in data manipulation usually cause this type of abend. The codes included in this category are SOOCx.

CONTROL ERROR - These abends are typically caused by incorrect JCL (Job Control Language) or DCB (Data Control Block) parameters. This category includes the following abend codes:

50013 - open error

50806 - load module not found

50813 - open error on magnetic tape

50213 - I/O error - requested dataset not found on volume indicated by cat or DD

SO30A - GETMAIN error

\$0913 - security violation

50522 - wait time exceeded specified maximum

SOSOA - GETMAIN error

OPERATOR CANCEL ~ These abends are caused when an operator cancels a job, and the category consists of the following codes:

S0122 - cancel with a dump

50222 - cancel without a dump

I/O MEDIA - These abends typically consist of I/O errors, and are often caused by incorrect user code. The codes included in this category are as follows:

S0001 - physical (media) -or- logical (get after EOF or recsize conflict)

SOB13 - open error on UCS printer

USER SPECIFIED - These abend codes are specified by the programmer or program procedures. The codes included in this category are Uxxxx.

MISCELLANEOUS - all other abends.

CENTER ABENDS MONTH ENDING DEC 89

DASD SPACE CONTROL ERROR I/O MEDIA MISCELLANEOUS

DEPOT ABENDS MONTH ENDING DEC 89

DASD SPACE CONTROL ERROR I/O MEDIA MISCELLANEOUS

DCASR ABENDS MONTH ENDING DEC 89

DASD SPACE CONTROL ERROR I/O MEDIA MISCELLANEOUS

OTHER ABENDS MONTH ENDING DEC 89

DASD SPACE CONTROL ERROR I/O MEDIA MISCELLANEOUS

YSTEM ABENDS BY CPUID

The System Abends by CPUID charts are separated by CENTERS, DCASRs, DEPOTS, and SERVICE CENTERS. The charts show the total number of abends reported for the quarter by cpuid.

ABENDS BY MAJOR WORKLOAD

The Abends by Major Workload charts are separated by CENTERS, DCASRs, DEPOTS, and SERVICE CENTERS.

The abends by workload are scaled to a 100% chart. Of the total number of system abends, the abends are subdivided by the major workload that was executing at the time that the abend occurred. The five major workloads are as follows:

NON-STANDARD: Non-Standard AIS batch jobs.

STANDARD: SAIS batch jobs (i.e., Standard Automated Materiel

Systems, Automated Payroll Cost and Personnel Systems, Mechanization of Contract Administration Services,

Defense Industrial Plant Equipment Center, etc.).

O-STD means other SAISs such as Factory.

ONLINE: Refers to "online" applications (i.e. database

management systems, Total Information System (TIS), or the teleprocessing monitor, Time Sharing Option

(TSO)).

SUPPORT: Work required to support the system (i.e., Job Entry

Subsystem (JES), Telecommunications Access Method (TCAM), Virtual Telecommunications Access Method (VTAM), Housekeeping (HSK), etc.). STC means

system-started tasks such as JES, TCAM, and Chained Job Scheduler. HSK includes dumps and all general

housekeeping tasks.

TOTAL ABENDS BY CPUID QUARTER ENDING DEC 1989 SITE = CENTER

TOTAL ABENDS BY CPUID QUARTER ENDING DEC 1989 SITE= DEPOT

TOTAL ABENDS BY CPUID QUARTER ENDING DEC 1989 SITE= DCASR

TOTAL ABENDS BY CPUID QUARTER ENDING DEC 1989 SITE= OTHER

ABENDS BY MAJOR WORKLOAD

INTERCONN/SAMMSTEL Data for Quarter Ending Dec 89

Description for INTERCOMM/SAMMSTEL.

Top two charts: AVERAGE TRANSACTIONS

These charts plot the estimated hourly transaction average by day for the quarter for each SAMMS site. A transaction is defined as a logical unit of work to the INTERCOMM monitor.

Lower left: TRANSACTIONS

This graph depicts the estimated hourly average of transactions per day, along with the maximum number of transactions observed for an hour during the quarter. Please note the sliding scale along the vertical axis labeled '# TRANS'.

Lower right: USERS

This graph depicts the average of the number of users observed during each five minute sampling interval for the quarter. It also shows the maximum number of users observed for any five minute interval in the quarter.

*** WEEKENDS AND HOLIDAYS ARE EXCLUDED ON ALL CHARTS ***

2.H.2

Reliability Data for Quarter Ending Dec 89

These reports show the use per hardfail by device type and vendor for each DLA DPI utilizing the device type charted and represent the statistical data depicted in the Reliability Plus (R+) reports whose input is the SYS1.LOGREC from each DPI.

DEFINITIONS

- A. Each bar represents a DPI's use per hard fail for a specific device. The DPI/SITE ID appears below each bar. 'NONE' in place of a bar indicates no hard fails.
- B. The 'Y' axis represents the unit of measurement for device use defined as follows:
 - 1. Power on hours for CPU, CHANNEL, CORE.
- 2. ACTUATOR MONTHS, the total quantity of actuators multiplied by the number of months in the time period, for DASD. (Except for SSD STK, which is SEEKS (multiplied by 1,666)). This is the only activity for DASD that is recorded in RPLUS.
- 3. SIOs (Start inputs/outputs) (Multiplied by 1,866) for tape. This count does not include SIOs for error recovery.
- C. DLA AVG the average use per hardfail for all DLA DPIs, calculated by dividing the total use by the total number of hardfails for the device type.
- D. NAT AVE the national average use per hardfail as recorded in the R+ National Database maintained by Computer Associated, Irving, Tx. There are over 1,600 subscribers to the R+ system. This average represents those subscribers using the device type reported.
- E. The device type/model number is the IBM equivalent. For example, a Memorex 3675 DASD is an IBM 3336-11 equivalent and is depicted on the chart as MEM 3336-11.
- F. The following vendor abbreviations are used:
 - 1. AMD AMDAHL.
 - 2. IBM International Business Machines.
 - 3. IPL IPL Systems.
 - 4. MEM Memorex.
 - 5. MAS Wational Advanced Systems.
 - 6. STK Storage Technology Corporation.

QTR ENDING NOV, 1989 DASD USE PER HARDFAIL

DASD USE PER HARDFAIL E N D I N GNOV, 1989

2.I.7

QTR ENDING NOV, 1989 DASD USE PER HARDFAIL

3350 AMD

3350 IBM

QTR ENDING NOV, 1989 TAPE USE PER HARDFAIL

QTRENDING NOV, 1989 TAPE USE PER HARDFAIL 34203 34203 IBM STK 400 2000 1100 DUR TAM SIO 300 SIO 700 500 X DUR TAN 1 200 0 0 0 DLA AVG 400 1000 300 100 200 DLA AVG 100 DORI ロいだし ZAOD DORO DGSC DURS 0150 DESC 34204 3266 MEM I BM 4000 1000 DUR TAK 2000 900 S 1100 I O 700 800 700 DLA AVE 600 500 1000 500 1000 400 400 300 300 DLA AVG 200 200 100 100 D C R B DURL DORS DORT DSAC DCRI 2200 0200 DPSC

QTR ENDING NOV, 1989 TAPE USE PER HARDFAIL

2.I.11

3. DATA COMMUNICATIONS CAPACITY MANAGEMENT DATA

DLANET PROFILE

This table provides configuration data for the DLANET. The following is helpful in understanding the column titles:

- 1. Group. Type of Primary Level Field Activity (PLFA). Note that two Depots (DDCO and DDRV) are actually provided support by Supply Centers (DCSC and DGSC, respectively).
- 2. Site. Self explanatory, the name of the PLFA.
- 3. Attached Devices. The number of terminals and printers connected to the Comten at the identified site. They may be physically located on the SLF4 or located off-site and connected via communications directions.
- 4. Remote Devices. The number of terminal and printers connected at a Comten at another site that have access to the host(s), supported by the Comten at the identified site.
- Total. Total number of terminals plus printers.

NOTE: The number of devices on the DLANET is actually the grand total of the attached devices.

Since the last DISPR (OCT-DEC 89) was released, the device occulence the DLANET has increased by 5.01%.

DLANET PROFILE INFORMATION AS OF 20 DEC 89 -- RELEASE 8911

ROUP	SITE		ATTACHED PRINTERS		REMOTE TERMINALS		TOTAL
CASR	DCRA	603			491	128	
	DCRB				424		523
	DCRI				457		361
	DCRL	632	425	1057	425	91	516
	DCRN	610	164 121	774 461	442	103	545
	DCRO	340	121	461	561	165	726
	DCRP	724		1029	371	113	
	DCRS		145		669		
	DERT	553	293	846	491	130	621
	SUBTOTAL	4952	2315	7267	4333	1155	5428
UPPLY	DCSC-R	851	372	1223	2309	371	3180
	DCSC-L	54	22	76	ø	ø	ø
	JESC	928	208	1136	1970	760	2730
	DGSC	975	427	1402	1751	741 711	2492
	orsc	812	223	1040	1540	711	2251
	DPSC	529	223 349	877	2099	829	2928
	SUSTOTAL	4148	1606	5754	7669	3912	13581
ERVICE	DASC	1465	330	1795	777	293	1070
	DAIPC	128	64	192	701	4 4. C)	1 1 97.1
, Gast 9 / Saul 1	DLSC	201	38	2.59	1205	744	1949
	DRMS	378	138	516	1148	376	1524
	DSAC-L	666	71	737	36	11	47
	DSAC-R	182	110		1316	260	1575
	SUBTOTAL	. 2892	687	3579	4482	1684	5156
EPOT	DDMP	755	540	1295	1214	295	1509
,	DDMT			1125			974
	DDOU	967		1474		156	ద75
	DDTC	792		1450	555	154	709
	SUBTOTAL	. 3207	2138	5345	2074	813	3887
THER	AFLC	6	5	12	338	179	517
, , , , , , , , , , , , , , , , , , ,	DIS	32	8	40	232	46	278
	DLAS	85	42	127	Q	ø	Q
	DSRP	182	92	274	166	54	220
	SUBTOTAL	. ಶಂಕ	148	453	736	279	1015
TOTAL (CU	RRENT DISPR)	15504	6894	22398			
'OTAL (PR	IOR DISPR)	15198	6775	21973			
JHANGE FR	OM PRIOR DISPR	: JU6	119	425			
PERCENT C	HANGE	5.11%	4.86%	5.01%			

DLANET MEMORY CAPACITY CHARTS

Four megabytes is the maximum memory supported by an NCR Comten 3690 Communications Processor (CP). The CPs in the DLANET each have four megabytes of memory. Of this available memory, 14.5% (represented by the top line on the graphs) is required to insure an adequate buffer pool. A 5% reserve of the remaining memory is represented by the middle line on the graphs and should not be exceeded as there will be a danger of causing the CPs to go into Slow Down. The 50% line on the graphs is included for ease of comparison only.

Since the last DISPR (OCT-DEC 89), memory usage over the entire DLANET has increased by 1.90%. The increase is due to the addition of new devices and accesses to the DLANET as well as a new release of Comten Software.

COMTEN CPU UTILIZATION

The following charts show the average Central Processing Unit (CPU) utilization of the DLANET Comtens for the most recent month. They depict the percentage of the available CPU cycles that are being used by the system. When the percentage of utilization is very high, certain low priority tasks are delayed and overall performance of the processor is adversely impacted. The value of the statistics is questionable as utilization is averaged over peak and non-peak periods. The statistics are also lost when a comten is reloaded.

DLA DMINS Systems

DMINS SYSTEM RESOURCE UTILIZATION SUMMARY: LEGEND

NUMBER OF HOURS REPORTED: number of hours taken from the data base to produce the statistics. These figures are taken for prime time during the period, 0700 to 1659. When number of hours reported is 0, no data is transmitted from indicated site.

- * NO. USER: average number of users logged on per hour during the period of 0700 to 1659.
- * CPU%BUSY: average percent of time the CPU was busy during the period of 0700 to 1659. Figured by taking 100 cpu%idle.

PROC RUNQ: average number of ready processes waiting for CPU per hour during the period of 0700 to 1659.

DISKS TR/S: average amount of disk I/O in transactions/sec. to all disks during the period of 0700 to 1659.

* These averages may not add up to 100 due to rounding.

NOTE: The following NP1 sites have the DISK TR/S field commented out(***), because the validity of this statistic is questionable—deacng1,dsacg4,discg5,descg4,ddoug2,dgscg2,dlag2,dcscg3,dpscg3

DMINS SYSTEMS RESOURCE UTILIZATION AVERAGES FOR FOURTH QUARTER 1989 DMINS RANKINGS ORDERED BY:

RANK	NO. USER		PROC RUNQ		DISK TR/S		CPU% BUSY		NO. HOURS	
1	discg5	59.7	discg1	5.7	dsacg1	47.7	dcrpg1	78.3	marst1	647
2	dd tcg1		dcrpg1	5.7	d iscg1	45.4	d i sog3	72.4	dpscg2	640
3	discg3	47.8	dlscg2	5.5	discg4	42.2	dgscg1	72.1	dsacg2	624
4	discgi	44.2	discg3	5.4	dcrag1	41.4	discgi	70.2	dpscg3	620
5	dsacg2		dsacg1	4.4	discg3	37.7	dpscg1	69.6	ddmpg1	620
6	ddmtg1	43.3	dd tcg1	4.4	ddtcg1	36.5	dlscg2	69.4	dersgi	619
7	d!scg1	40.2	ddmtg2	4.3	discg2	33.6	dsacg1	69.2	derigi	618
8	dfscg1		drmreg1	3.8	dcscg1	33.6	dd tcg1	67.0	dortgi	617
9	dsacg1		dpscg1	3.8	dgscg1	33.0	dcrng1	66 .5	descg2	616
10	discg2		discg4	3.6	dcrpg1	31.4	descg1	66.0	dcrng1	615
11	ddoug1		dgsog1	3.6	descg1	30.8	ddmtg2	65.8	dpscg1	611
12	dlagi		dcra g 1	3.6	dpscg1	29.5	der tg2	62.6	dcscg1	610
13	dcscg1		desog1	3.5	_	29.4	dcscg1	61.2	ddoug1	609
14	dsachg1		dortg2	3.3	ddmtg3	29.4	ddmtg1	60.4	dsacng1	600
15	dpscg1		dsachg1	3.0	_	27.6	dcrag1	60.1	diag1	599
16	dcrag1		ddmtg1	3.0	_	24.5	dsacg2	59.1	dgscg2	596
17	descg3		dortgi	3.0	dpscg2	23.3	dor tg1	59.1	dcrpg1	594
18	descg1		ddmpg1	2.9	ddmtg1	22.5	discg4	59.0	descg1	593
19	dgscg1		dsacg2	2.8	derbgi	21.3	der i g 1	56.8	discg2	591
20	ddmtg2		dcscg1	2.8	dsacg2	20.8	dorbg1	53.4	descg3	589
21	dsacg3		discgi	2.7	dlag1	19.8	discg5	53.2	dlag2	584
22	derpg1		dorng1	2.7	dortgi	18.7	derog1	53.2	dsachg1	583
23	der I g4		dsacg3	2.6	discg1	18.4	dlag1	53.0	dsacg3	583
24	dsacng1		ddoug1	2.6	dcscg2	18.2	d lacg1	52.9	drmrpg1	583
25	derbg1		derog1	2.4	ddoug1	16.4	ddoug1	51.3	dsacg4	582
26 27	der I g3		der i g5	2.4	ddmtg2	16.2	dpscg2	47.1	discg1	581
27 28	dertg1		ddmtg3	2.3	derig3	15.5	dsachg1	46.9 45.6	discg4	580
29	_	19.9	discg2	2.2	derig5	15.2 15.1	der I g5 der I g1	44.4	discg2	579 579
30	derig1 diseg4		derig2 derbg1	2.1	dertg2 derlg1	13.4	dfscg1	43.9	dorlg3	578 578
31	derigi		der lig1	1.9	dfrigi dfscg1	12.0	ddmtg3	43.2	discg3 derog1	577
32	der ig1		dlag1	1.8	_	11.3	dsacg3	42.2	der bg 1	575
33	drmregi		discg5	1.8	der lg2	11.0	descg3	40.2	derbgi	575
34	der tg2		dcreg1	1.7	marst2	10.9	der i g3	39.9	der lg2	574
35	ddmtg3		drmrpg1	1.5	der 1 g4	10.6	der i g4	37.5	dlscg3	572
36	_	14.7	dpscg2	1.5	ddmpg1	10.5	dlag2	36.6	der i g5	572
37	dcscg3		descg2	1.4	derigi	10.5	dcscg2	34.9	der 193	563
38	_	14.2	derigi	1.4	der sg1	10.2	marst2	33.0	marst2	560
39		11.8	dfscg1		dsachg1	7.9	dersg1	32.3	dsacg1	560
40	derngi	9.9	descg3	1.1	dorngi	7.4	ddmpg1	⁴ 31.8	dcscg2	558
41	deragi	9.8	dor I g3	1.1	dticgi	7.2	der i g2	31.7	dcstg2	556
42	descg2	8.7	der I g4	1.0	dlacg3	6.5	dsacng1	30.1	dcscg3	553
43	dpscg2	7.4	dlag2	0.9	descg2	5.9	discg2	24.6	dticgi	551
44	descg4	7.1	dcscg2	0.8	dcrbg2	5.5	descg2	24.5	ddmtg1	551

DMINS SYSTEMS RESOURCE UTILIZATION AVERAGES FOR FOURTH QUARTER 1989 DMINS RANKINGS ORDERED BY:

RANK	NO. USER		PROC RUNQ		DISK TR/S		CPU% BUSY		NO. HOURS	
								~~~~		a,
45	deseg2	6.4	marst2	0.7	drmreg1	5.4	dticg1	23.7	discgi	547
46	dsacg4	6.3	dsacng1	0.7	marst1	3.4	drmreg1	20.7	ddmtg3	542
47	dlag2	5.5	dpscg3	0.6	drmrpg1	2.7	d I scg3	19.5	dcrigi	540
48	dgscg2	3.5	dticg1	0.5	dsacng1	***	dsacg4	17.9	descg4	539
49	ddoug2	3.4	dsacg4	0.5	dsacg4	***	marst1	15.6	dgscg1	533
50	dlacg3	2.3	ddoug2	0.4	dpscg3	***	dpscg3	13.9	dortg2	527
51	marst2	2.0	d1scg3	0.3	dlag2	***	dgscg2	11.3	ddmtg2	525
52	discg2	2.0	dcrbg2	0.3	discg5	***	ddoug2	11.3	ddtcg1	510
53	drmrpg1	1.6	marsti	0.2	dgscg2	***	dcscg3	9.5	discg5	490
54	marsti	1.5	dgscg2	0.2		***	descg4	9.1	dfscg1	480
55	dcrbg2	1.2	descg4	0.2	ddoug2	***	dcrbg2	8.9	ddoug2	412
56	dpscg3	1.1	dcscg3	0.2	-	***	drmrpg1	5.8	drmreg1	119
57	dmarsd1	0.0	dmarsd1	0.0	-	0.0	dmarsd1	0.0	dmarsd1	0
58	dmarsd2	0.0	dmarsd2	0.0	_	0.0	dmarsd2	0.0	dmarsd2	0
59	dmarsd3	0.0	dmarsd3	0.0		0.0	dmarsd3	0.0	dmarsd3	0

#### DMINS SYSTEM RESOURCE UTILIZATION AVERAGES FOR FOURTH QUARTER 1989 [SORTED BY SITE] (RANK)

SITE	NO. USER	PROC RUNQ	DISK TR/S	CPU% BUSY	NO. HOURS
dcrag1	30.0 (16)	3.6 (12)	41.4 (4)	60.1 (15)	563 (37)
derbg1	20.7 (25)	2.1 (30)	21.3 (19)	53.4 (20)	575 (33)
derbg2	1.2 (55)	0.3 (52)	5.5 (44)	8.9 (55)	<b>5</b> 75 (32)
der i g1	17.9 (31)	1.9 (31)	10.5 (37)	56.8 (19)	540 (47)
der I g 1	19.4 (29)	1.4 (38)	13.4 (30)	44.4 (29)	618 (7)
dor I g2	16.4 (32)	2.1 (29)	11.0 (33)	31.7 (41)	574 (34)
der i g3	20.5 (28)	1.1 (41)	15.5 (27)	39.9 (34)	579 (29)
der I g4	21.4 (23)	1.0 (42)	10.6 (35)	37.5 (35)	556 (41)
der I g5	14.2 (38)	2.4 (26)	15.2 (28)	45.6 (28)	572 (36)
derng1	9.9 (40)	2.7 (22)	7.4 (40)	66.5 (9)	615 (10)
derogi	11.8 (39)	2.4 (25)	11.3 (32)	53.2 (22)	577 (31)
derpg1	21.7 (22)	5.7 (2)	31.4 (10)	78.3 (1)	594 (17)
dorsg1	9.8 (41)	1.7 (34)	10.2 (38)	32.3 (39)	619 (6)
dertg1	20.2 (27)	3.0 (17)	18.7 (22)	59.1 (17)	617 (8)
dertg2	16.0 (34)	3.3 (14)	15.1 (29)	62.6 (12)	527 (50)
deseg1	32.4 (13)	2.8 (20)	33.6 (8)	61.2 (73)	610 (12)
dcscg2	6.4 (45)	0.8 (44)	18.2 (24)	34.9 (37)	558 (40) 558 (40)
dcscg3	14.4 (37)	0.2 (56)	**** (56) 10.5 (36)	9.5 (53) 31.8 (40)	553 (42) 620 (5)
ddmpg1	14.7 (36)	2.9 (18) 3.0 (16)	22.5 (18)	60.4 (14)	551 (44)
ddmtg1	43.3 (6) 27.9 (20)	4.3 (7)	16.2 (26)	65.8 (11)	525 (51)
ddmtg2	15.7 (35)	2.3 (27)	29.4 (14)	43.2 (31)	542 (46)
ddmtg3 ddoug1	33.6 (11)	2.6 (24)	16.4 (25)	51.3 (25)	609 (13)
ddoug2	3.4 (49)	0.4 (50)	**** (55)	11.3 (52)	412 (55)
dd tog1	49.0 (2)	4.4 (6)	36.5 (6)	67.0 (8)	510 (52)
descg1	28.9 (18)	3.5 (13)	30.8 (11)	66.0 (10)	593 (18)
descg2	8.7. (42)	1.4 (37)	5.9 (43)	24.5 (44)	616 (9)
descg3	29.2 (17)	1.1 (40)	27.6 (15)	40.2 (33)	589 (20)
descg4	7.1 (44)	0.2 (55)	**** (54)	9.1 (54)	539 (48)
dfscg1	36.1 (8)	1.2 (39)	12.0 (31)	43.9 (30)	480 (54)
dgscg1	28.7 (19)	3.8 (11)	33.0 (9)	72.1 (3)	533 (49)
dgscg2	3.5 (48)	0.2 (54)	**** (53)	11.3 (51)	<b>596</b> (16)
d iscg1	44.2 (4)	5.7 (1)	45.4 (2)	70.2 (4)	581 (26)
discg2	2.0 (52)	2.2 (28)	29.4 (13)	24.6 (43)	591 (19)
discg3	47.8 (3)	5.4 (4)	37.7 (5)	72.4 (2)	578 (30)
discg4	18.8 (30)	3.6 (10)	42.2 (3)	59.0 (18)	580 (27)
discg5	59.7 (1)	1.8 (33)	**** ( <b>52</b> )	53.2 (21)	490 (53)
dlag1	32.9 (12)	1.8 (32)	19.8 (21)	53.0 (23)	599 (15)
dlag2	5.5 (47)	0.9 (43)	**** (51)	36.6 (36)	584 (21)
discgi	40.2 (7)	2.7 (21)	18.4 (23)	52.9 (24)	547 (45)
dlscg2	34.5 (10)	5.5 (3)	33.6 (7)	69.4 (6)	<b>579 (28)</b>
dlscg3	2.3 (50)	0.3 (51)	6.5 (42)	19.5 (47)	572 (35)
dmarsd1	0.0 (57)	0.0 (57)	0.0 (57)	0.0 (57)	0 (57)
dmarsd2	0.0 (58)	0.0 (58)	0.0 (58)	0.0 (58)	0 (58)
dmarsd3	0.0 (59)	0.0 (59)	0.0 (59)	0.0 (59)	0 (59)
dpscg1	30.1 (15)	3.8 (9)	29.5 (12)	69.6 (5)	611 (11)

#### DMINS SYSTEM RESOURCE UTILIZATION AVERAGES FOR FOURTH QUARTER 1989 [SORTED BY SITE] (RANK)

SITE	NO. USER		PROC RUNQ	DISK TR/S		CPU% Büsy		NO. HOUF	RS
dpscg2	7.4	(43)	1.5 (3	6) 23.3	(17)	47.1	(26)	640	(2)
dpscg3	1.1	(56)	0.6 (4)	7) ****	(50)	13.9	(50)	620	(4)
drmreg1	16.3	(33)	3.8 (	8) 5.4	(45)	20.7	(46)	119	(56)
drmrpg1	1.6	(53)	1.5 (3	5) 2.7	(47)	5.8	(56)	583	(24)
dsacg1	35.3	(9)	4.4 (	5) 47.7	(1)	69.2	(7)	560	(39)
dsacg2	43.8	(5)	2.8 (19	9) 20.8	(20)	59.1	(16)	624	(3)
dsacg3	25.0	(21)	2.6 (2	3) 24.5	(16)	42.2	(32)	583	(23)
dsacg4	6.3	(46)	0.5 (4	9) ****	(49)	17.9	(48)	582	(25)
dsachgi	31.8	(14)	3.0 (1	5) 7.9	(39)	46.9	(27)	583	(22)
dsacng1	20.9	(24)	0.7 (4)	6) ***	(48)	30.1	(42)	600	(14)
dticg1	19.9	(28)	0.5 (4	8) 7.2	(41)	23.7	(45)	551	(43)
marst1	1.5	(54)	0.2 (5	3) 3.4	(46)	15.6	(49)	647	(1)
marst2	2.0	(51)	0.7 (4	5) 10.9	(34)	<b>33.</b> 0	<b>(38)</b> .	560	(38)

#### DLA DMINS SYSTEMS AND ADMINISTRATORS

SITE	LOCATION	COMPUTER TYPE	HOST NAME	SYSTEM ADMIN	AUTOVON
SUPPLY	CENTERS:				
DCSC	Columbus OH	9050 NP1	dcscg1,2 dcscg3	Stella Stiles* David Smith*	850-3183 850-3183
DESC	Dayton OH	9050 9050 NP1	descg1,2 descg3 descg4	Diana Poppaw Fred Brothers Tom Darakis	986-8514 986-6457 986-8515
DGSC	Richmond VA	9050 NP1	dgscg1 dgscg2	Charles Hall James Childs	695-3739 695-3739
DISC	Phil. PA	9050 NP1	discg1,2,3,4 discg5	Pat Tyson* Ray Matrone*	442-6768 442-6769
DPSC	Phil. PA	9050 9050 NP1	dpscg1 dpscg2 dpscg3	Jim Dotsey* Tony Travla* Darlene LaMastra*	444-4668 444-4669 444-4667
DFSC	Cameron Station VA	9050 NP1	dfscg1 dfscg2	Ruth Tyrrell Becky Boutz	284-7780 284-7780
DEPOTS	:		•		
DDOU	Ogden UT	9050 NP1	ddoug1 ddoug2	Richard Bell Allen Adams	790-7101 790-7503
DOMP	Mechan. PA	9050	ddmpg1	Shawn Holtzappie Eric Peiffer	430-6155 430-7489
DDMT	Memphis TN	9050	ddmtg1,2,3	Howard Nash*	683-4111
DDTC	Tracy CA	9050	ddtcg1 ddtcg1	Peggy Kelly Terri Reichmuth	462-9187 462-9200
DCASRS	•		-		
DCASR	Atlanta GA	9050	dcragi	Gail Fredricks Dennis Cumberland	697-6849 697-6496
DCASR	Boston MA	9050	dcrbg1,2	JoAnn Rondelli*	955-4473
DCASR	Chicago IL	9050	dcrig1	Sylvia Centracchio Betty Blaszinski	930-6526 930-6528

SITE	LOCATION	COMPUTER TYPE	HOST NAME	SYSTEM ADMIN	AUTOVON
DCASR	Clev. OH	9050	dcrog1	Ted Lentz	580-6550
DCASR	Dallas TX	9050	dcrtg1,2	Carolyn Gramm* Rick Holland*	940-1624 940-1667
DCASR (Van Ni	LA. CA 1ys)	9050	der i g 1	Ben Richardson	972-4136
DCASR (Santa	LA. CA Anna)	9050	der i g2	Diana Griffins	873-2721
DCASR (Region	LA. CA	9050	dorig3,4	Ben Richardson	972-4136
DCASR (San Fi	LA. CA rancisco)	9050	der I g5	Jim Feinstein (41	5)876-0909
DCASR	NY. NY	9050	derng1	Calvin Bass	994-3396
DÇASR	Phil. PA	9050	dcrpg1	Sob Hull Joe Rabuck	444-4570 444-4122
DCASR	St. Louis MO.	9050 9050	dcrsg1 dcrsg2	Jim Vines Bud Davis	555-5253 555-5256

## DSAC SATELLITE OFFICES:

DSAC-N	Battle Creek Mi	NP1	dsacng1	Kathy DeGraaf Howard Carson	932-5117 932-5089
DSAC-H	Ogden UT	9050	dsachg1	Ramona Lower	790-7838

#### DEFENSE REUTILIZATION & MARKETING REGIONS:

DRMR	Germany	9050	drmreg1	Pam Jacques	314-339-3069
DRMRP	Hawa i i	9050	drmrpg1	Thomas Lunsford Juli Kalawe	808-474-6879 808-474-6878

NOTE: To call Germany, call the DGSC operator at AV 695-1110 to place call.

NOTE: To call Hawaii autovan, dial 315 before the 7 digit number.

SITE	LOCATION	COMPUTER TYPE	HOST NAME	SYSTEM ADMIN	AUTOVON				
HQ DL	HQ DLA:								
DLA	Cameron Station VA	9050	dlag1	Dorian Deane John Neese Wayne Southard	284-7101 284-7101 284-7101				
		NP1	dlag2	Dorian Deane Joan Johnson	284-7101 284-7101				
DAASO	OFFICES:								
DAASO	Dayton OH	9050	dmarsd1,2,3	Mark Metzner*	986-8242				
DAASO	Tracy CA	9050	marst1,2	Larry Bacca*	462-9391				
SERVI	CE CENTERS:	٠.	·						
DSAC	Columbus OH	9050 NP1	dsacg1,2,3 dsacg4	Chuck Cameron Ray Ford	850-9055 850-5803				
DLSC	Battle Creek MI	9050 9050	discg1 (DRMS) discg2,3	Steve Plotas* Steve Plotas*	932-4144 932-4144				
DTIC	Cameron Station VA	9050	dticg1	Sylvia Sewell Niki Markhelm	284-6855 284-6855				

NOTE: To send mail to another location use the "HOST NAME" for that location.

^{*} System administrator for each DMINS system installed at that site

# DLA Capacity Management Roster

#### DLA CAPACITY MANAGEMENT ROSTER

#### DLA CAPACITY MANAGEMENT STEERING GROUP MEMBERS

Chairman:	Mr. John Roby, DLA-	-ZO AV	284-8113
Alternate:	Mr. Jerry Rowzie, I	DLA-ZO AV	284-5385
Exec. Secretary:	Mr. Ved Aggarwai, (	DLA-ZOT AV	284-5385 *
DLA-ZO Member:	Mr. Charles Lamey	AV	284-5385
DLA-ZI Member:	Mr. Robert Knez	AV	284-7506
DLA-ZR Member:	Mr. Larry Stocks	AV	284-6371
DSMO Member:	Ms. Elsie Benson	AV	284-5392
DACO Member:	Mr. James Johnson	AV	284-5351
DSAC Member:	Mr. Tom Donovan	AV	850-9289

#### * HQ DLA Points-of-Contact

Capacity Management Committee Chairpersons/Technical Representatives (Names of PLFA Committee Representatives Will Be Added As Received)

#### SUPPLY CENTERS

Mr.	R. N. Norris	DCSC-Z	Chairman	AV 850-2141
Mr.	Jerry Pulley	DCSC-ZW	Tech Rep	AV 850-3183
Mr.	Don Greene	DESC-ZW	Tech Rep	AV 986-6455
Mr.	William Finefield	DGSC-Z	Director	AV 695-4721
Mr.	Dudley Bolbat	DISC-ZP	Chairman	AV 442-3623
Mr.	Joseph Amabile	DISC-ZWC	Tech Rep	AV 442-3288
Mr.	Bill Bevin	DPSC-ZW	Chairman	AV 444-4670
Ms.	Rose Marie Badame	DPSC-ZWC	Tech Rep	AV 444-4310

#### **DCASRS**

Mr. Donald Drake	ATL-Z	Chairman	AV 697-6300
Mr. Dennis Cumberland	ATL-ZW	Tech Rep	AV 697-6496
Mr. P. O'Keeffe	BOS-Z	Chairman	AV 955-4467
Mr. Robert Foley	BOS-ZW	Tech Rep	AV 955-3057
Mr. Beryl Jacobsen	CHI-Z	Chairman	AV 930-6520
Mr. Robert Brown	CHI-ZW	Tech Rep	AV 930-6524
MAJ Eric Helgesen, USA	CLE-Z	Director	AV 580-5470
Mr. Tom Conlon	DAL-Z	Chairman	AV 940-1368
Mr. Fred McKenzie	DAL-ZW	Tech Rep	AV 940-1365
CDR. Phil Benefiel, SC, USN	LA-Z	Chairman	AV 972-4100
Mr. Donald Reed	LA-ZW	Tech Rep	AV 972-4132
Major Curtis Young, USAF	NY-Z	Director	AV 944-3522
Mr. Paul Sheehan	PHI-Z	Chairman	AV 444-3346
Mr. John Brinton	STL-Z	Chairman	AV 555-5242

## DEPOTS

Mr. Floyd Harris Ms. Gail Major LTC W. R. Lanouette, USA Mr. Jeff McCollum Mr. Quinn Andelin Ms. Judy Takara Mr. Paul Moore	DDMP~ZW DDMP~ZW DDOU~ZW DDOU~ZW DDTC~Z	Tech Rep Chairman Tech Rep Chairman Tech Rep Chairman	AV 683-6386 AV 683-6406 AV 430-2491 AV 430-7768 AV 790-7225 AV 790-7969 AV 462-9167
Ms. Mable Alleman		Tech Rep	AV 462-9186

#### SERVICE CENTERS

Ms. Pat Russell	DASC-ZS Chairman	AV 284-7101
Mr. Wayne Southard	DASC-ZW Tech Rep	AV 284-7101
Mr. G. Vander Lugt	DLSC-ZBB Tech Rep	AV 369-6820
Mr. John Bechtol	DRMS-LD DRMS POC	AV 932-7259
Mr. David Willford	DTIC-Z Chairman	AV 284-6935
Mr. Lawrence Jenkins	DTIC-ZW Tech Rep	AV 284-6858