Paradigmas de Solução de Problemas

Divisão e Conquista - Busca Binária e Busca Ternária

Prof. Edson Alves - UnB/FGA 2020

Sumário

- 1. Busca Binária
- 2. Busca Ternária

Busca Binária

Busca binária

- A busca binária utiliza o paradigma de divisão e conquista para, a cada etapa de uma busca, descartar uma parte significativa das possíveis localizações do elemento a ser identificado
- Para tal, é necessário que os elementos estejam dispostos em uma determinada ordenação
- Também é desejável, mas não estritamente necessário, que o acesso aleatório aos elementos seja eficiente
- A etapa de divisão escolhe o elemento m que esteja na posição central, ou próximo a ela, quando os elementos estão dispostos de acordo com a ordenação
- O conjunto de elemento então é dividido em 3 conjuntos disjuntos: os elementos que ficaram à esquerda de m (L), um conjunto unitário com o próprio m, e os elementos que estão à direita de m (R)

Busca binária

- A etapa de conquista acontece neste conjunto unitário
- ullet Caso o elemento desejado seja m, o algoritmo finalizada
- ullet Caso não seja, a busca continua em apenas um dos conjuntos L ou R, a depender da relação do elemento procurado com m
- Neste algoritmo, não há uma etapa de fusão
- A ordem de complexidade da busca binária é $O(\log N)$, desde que o acesso aleatório seja feito em O(1)

Busca binária em vetores

- \bullet A busca binária se vale da ordenação de um vetor de N elementos para acelerar o processo de busca
- Assuma que o vetor esteja em ordem crescente
- A busca binária identifica, primeiramente, o elemento m que está na posição central do intervalo [a,b] (m=(a+b)/2) e o elemento x a ser localizado
- Se x=m, a busca retorna verdadeiro; caso contrário, ela compara os valores de x e m
- Se x < m, a busca reinicia no intervalo à esquerda de m ([a, m-1]); se x > m, a busca continua no subvetor à direita da m ([m+1,b])
- Se b < a, a busca retorna falso

Visualização da busca binária

Elemento a ser encontrado: 34

Intervalo considerado: [0,8]

Elemento central: 4

12	28	34	40	51	67	77	80	95	
----	----	----	----	----	----	----	----	----	--

Visualização da busca binária

Elemento a ser encontrado: 34

Intervalo considerado: [0,3]

Elemento central: 1

12	28	34	40	51	67	77	80	95
----	----	----	----	----	----	----	----	----

Visualização da busca binária

Elemento a ser encontrado: 34

Intervalo considerado: [2,3]

Elemento central: 2

12	28	34	40	51	67	77	80	95	
----	----	----	----	----	----	----	----	----	--

Exemplo de implementação da busca binária

```
int binary_search(int x, const vector<int>& xs)
2 {
     int a = 0, b = xs.size() - 1;
3
     while (a <= b)
5
6
         auto m = a + (b - a)/2;
7
8
         if (xs[m] == x)
9
              return m;
10
         else if (xs[m] > x)
              b = m - 1:
         else
          a = m + 1;
14
15
16
      return -1;
18 }
```

Busca binária em C

- A função bsearch() da biblioteca stdlib.h do C implementa a busca binária
- A assinatura da função bsearch() é
 void * bsearch(const void *key, const void *base, size_t nmemb,
 size t size. int (*compar)(const void *. const void *)):
- O parâmetro key é um ponteiro para o valor a ser localizado no vetor base
- O número de elementos do vetor base é igual a nmemb, e cada um deste elementos ocupa size bytes em memória
- O parâmetro compar é um ponteiro para uma função que recebe dois ponteiros e retorna negativo, zero ou positivo se o primeiro ponteiro aponta para um valor menor, igual ou maior do que o valor apontado pelo segundo ponteiro, respectivamente

Busca binária em C++

- A biblioteca algorithm do C++ traz três funções associadas à busca binária
- A função binary_search() retorna verdadeiro se o elemento a ser encontrado está no intervalo indicado

bool

```
binary_search(ForwardIterator first, ForwardIterator last, const T& val);
```

 As funções lower_bound() e upper_bound() retornam um iterador para o primeiro elemento maior ou igual a x, ou estritamente maior do que x, respectivamente:

```
ForwardIterator
lower_bound(ForwardIterator first, ForwardIterator last, const T& val);
ForwardIterator
```

 ${\color{blue} \textbf{upper_bound}(ForwardIterator\ first,\ ForwardIterator\ last,\ \textbf{const}\ T\&\ val);}$

Exemplo de uso de busca binária em C e C++

```
1 #include <bits/stdc++ h>
3 using namespace std:
5 int compare(const void *a, const void *b)
6 {
      const int *x = (const int *) a. *v = (const int *) b:
      return *x == *y ? 0 : (*x < *y ? -1 : 1);
9 }
10
11 int main()
12 {
      int ns[] { 2, 18, 45, 67, 99, 99, 99, 112, 205 }, N = 9, n = 99;
13
      auto p = (int *) bsearch(&n, ns, N, sizeof(int), compare);
14
15
     if (p == NULL)
16
          cout << "Elemento " << n << " n\u00e3o encontrado\n":</pre>
      else
18
          cout << n << " encontrado na posição: " << p - ns << "\n":
19
20
      n = 100:
```

Exemplo de uso de busca binária em C e C++

```
cout << "Elemento " << n << (binary_search(ns, ns + N, n) ?</pre>
          " " : " não ") << "encontrado\n":
24
      n = 99:
26
      auto it = lower bound(ns. ns + N. n):
28
      cout << "Cota inferior de " << n << ": " << it - ns << endl:</pre>
29
30
      auto jt = upper_bound(ns, ns + N, n);
31
      cout << "Cota superior de " << n << ": " << it - ns << endl:
32
      cout << "Número de aparições de " << n << ": " << jt - it << endl;</pre>
34
35
      return 0:
36
37 }
```

Método da bisecção

- O método da bisecção utiliza a busca binária para identificar uma raiz de uma função f(x) em um intervalo (a,b)
- Este método pode ser aplicado se f(x) for contínua em (a,b) e se f(a)f(b)<0
- Isto significa que os valores de f(x) nos extremos do intervalo tem sinais opostos
- Como f(x) é continua no intervalo, partindo de a, ela tem que atravessar, ao menos uma vez, o eixo-x para atingir o ponto b
- Seja c um ponto tal que f(c) = 0
- O método da bisecção tenta localizar tal c, buscando, inicialmente, o elemento central do intervalo

Método da bisecção

- Caso este elemento não seja igual a c, isto significa que $f(m) \neq 0$
- A partir das relações entre f(a), f(m) e f(b), a busca continua ou no intervalo (a,m) ou (b,m)
- O algoritmo deve ser interrompido quando f(m) = 0
- Porém, devido à aritmética de ponto flutuante, pode ser que ista condição jamais seja satisfeita
- Assim, pode-se adotar como critério de parada
 - 1. um limiar $\varepsilon > 0$ e parar o algoritmo quando $f(m) < \varepsilon$, ou
 - 2. um número fixo N de interações do algoritmo
- ullet Em ambos casos, a complexidade do algoritmo é $O(\log(b-a))$

Implementação da biseção com limiar

```
1 #include <bits/stdc++ h>
₃ using namespace std:
4 const double EPS { 1e-7 }, PI = acos(-1.0);
6 double bisection(const function<double(double)>& f, double a, double b)
7 {
     auto m = (a + b)/2.0, y = f(m);
9
     return fabs(y) < EPS ? m :</pre>
10
          (y*f(a) < \emptyset ? bisection(f, a, m) : bisection(f, m, b));
12 }
14 int main()
15 {
      auto f = [](double x) \{ return sin(x) - 0.8; \};
16
      cout << setprecision(8) << bisection(f, 0, PI/2) << '\n';</pre>
18
      return 0:
20
21 }
```

Busca binária na resposta

- ullet Seja função f(x) é monótona em um intervalo [a,b]
- Isto significa que f(x) é não-decrescente $(f(x) \le f(y)$, se $x \le y)$ ou não-crescente $(f(x) \ge f(y)$, se $x \le y)$ em [a,b]
- Assim, para uma sequência de valores $a \le x_1 < x_2 < \ldots < x_N \le b$, as imagens $y_i = f(x_i)$ formarão uma sequência também monótona
- Deste modo, interpretanto os valores x_i como os índices de um vetor cujos valores são y_i , é possível, por meio da busca binária, identificar um x_0 tal que $f(x_0) = y_0$ para um y_0 escolhido
- Esta técnica, denominada busca binária na resposta, é útil quando f(x) é uma função monótona que é difícil de computar ou que representa um processo elaborado, e se deseja encontrar um valor x_0 que atenda uma série de pré-requisitos ou condições

Exemplo de busca binária na resposta: Triângulo de Pascal

- Considere o seguinte problema: dado $M \leq 10^{18}$, determine o menor N tal que a N-ésima linha do Triângulo de Pascal contenha ao menos um coeficiente maior ou igual a M
- O Triângulo de Pascal é formado pela linha 0, que contém apenas o número 1, a linha 1, com dois números 1, e as demais linhas começam e terminam com 1, e os elementos intermediários são formados pela soma dos dois elementos imediatamente acima

Exemplo de busca binária na resposta: Triângulo de Pascal

• De fato, o i-ésimo coeficienta da linha n é dado por

$$C(n,i) = \binom{n}{i} = \frac{n!}{(n-i)!i!}$$

- Observe que o maior coeficiente da linha n ocupa a posição central
- Assim, se c_k é o coeficiente que ocupa a posição central da k-ésima linha, a sequência $\{c_1, c_2, \ldots, c_N\}$ é monótona, de modo que o problema pode ser resolvido por meio de busca binária na resposta
- Por inspeção, $c_0 = 1$ e $c_{64} = 1832624140942590534 > 10^{18}$
- ullet Assim, basta realizar a busca no intervalo [0,64]
- Como cada coeficiente pode ser computado em O(N), a complexidade da solução será $O(I\log I)$, onde I é o tamanho do intervalo de busca

Implementação do exemplo em Python

```
1 from math import factorial as f
3 def binom(n, m):
     return f(n) // (f(n - m) * f(m))
6 def min_row(M):
  a = 0
  b = 64
   N = 64
     while a <= b:
12
         m = (a + b) // 2
14
          if binom(m, m // 2) >= M:
15
             N = m
16
             b = m - 1
         else:
18
              a = m + 1
19
20
      return N
```

Busca Ternária

Motivação

- A busca ternária também utiliza a divisão e conquista para reduzir significativamente o espaço de busca a cada iteração do algoritmo
- ullet Ela pode ser utilizada para localizar o valor máximo ou mínimo de uma função unimodal em um intervalo [a,b]
- - 1. f'(x) > 0 se $x \in [a, c)$, f'(c) = 0 e f'(x) < 0 se $x \in (c, b]$; ou 2. f'(x) < 0 se $x \in [a, c)$, f'(c) = 0 e f'(x) > 0 se $x \in (c, b]$
- Observe que a busca binária não é capaz de localizar tal máximo diretamente neste cenário

Exemplos de funções unimodais

Exemplos de funções unimodais

Algoritmo

- Seja f(x) uma função unimodal no intervalo I=[a,b] e $m_1,m_2 \in I$ tais que $a < m_1 < m_2 < b$, com um valor máximo no ponto $c \in I$
- Os valores $f(m_1)$ e $f(m_2)$ se relacionam de uma das três maneiras seguintes:
 - 1. $f(m_1) < f(m_2)$
 - 2. $f(m_1) > f(m_2)$
 - 3. $f(m_1) = f(m_2)$
- No primeiro caso, o máximo não pode estar no intervalo $[a,m_1]$, pois área de crescimento da função está à direita de m_1
- Assim $c > m_1$ e a busca deve prosseguir no intervalo $[m_1, b]$
- O segundo caso é simétrico ao primeiro: a região de decrescimento está à esquerda de m_2 , logo c está no intervalo $[a,m_2]$

Algoritmo

- No terceiro caso ocorre ou quando $m_1=m_2$ ou se m_1 está na área de crescimento e m_2 na área de decrescimento, ou vice-versa
- Assim, $c \in [m_1, m_2]$
- Para simplificar o algoritmo, o terceiro caso pode ser reduzido a um dos dois primeiros
- Se m₁ e m₂ dividirem [a, b] em três regiões iguais, a cada etapa o intervalo de busca é reduzido em um terço de seu tamanho
- Para esta divisão os valores a serem escolhidos são

$$m_1 = a + \left(\frac{b-a}{3}\right)$$
$$m_2 = b - \left(\frac{b-a}{3}\right)$$

Exemplos de busca ternária em função unimodal

Exemplos de busca ternária em funções unimodais

Exemplos de busca ternária em funções unimodais

Exemplos de busca ternária em funções unimodais

Implementação iterativa da busca ternária

```
1 #include <bits/stdc++.h>
2
3 double f(double x)
4 {
     return -(x - 1)*(x - 1) + 2*(x - 1) + 3;
5
6 }
8 double ternary_search(double a, double b, int runs = 50)
9 {
      while (runs--)
10
          auto m1 = a + (b - a)/3.0:
12
          auto m2 = b - (b - a)/3.0;
14
          f(m1) < f(m2) ? a = m1 : b = m2;
15
16
      return f(a + (b - a)/2.0);
1.8
19 }
```

Implementação recursiva da busca ternária

```
1 #include <bits/stdc++ h>
3 double f(double x)
4 {
     return -(x - 1)*(x - 1) + 2*(x - 1) + 3:
5
6 }
& double ternary_search(double a, double b, double eps = 1e-6)
9 {
     if (fabs(b - a) < eps)
          return f(a + (b - a)/2.0):
     auto m1 = a + (b - a)/3.0:
     auto m2 = b - (b - a)/3.0;
14
15
     if (f(m1) < f(m2))
16
          return ternary_search(m1, b, eps);
      else
18
          return ternary_search(a, m2, eps);
19
20 }
```

Referências

- 1. C Man Pages¹.
- 2. CP Algorithms. Ternary Search, acesso em 31/05/2019.
- 3. C++ Reference².
- 4. Hacker Earth. Ternary Search, acesso em 31/05/2019.
- HALIM, Steve; HALIM, Felix. Competitive Programming 3, Lulu, 2013.
- 6. **LAARKSONEN**, Antti. *Competitive Programmer's Handbook*, 2017.
- 7. Wikipédia. Ternary Search, acesso em 31/05/2019.

¹Comando man no Linux.

²https://en.cppreference.com/w/