

IA BIG ATA

Mineração de Dados

Parte 2
Extração de Padrões
Agrupamento de Dados
Medidas de Proximidade

Prof. Ricardo M. Marcacini ricardo.marcacini@icmc.usp.br

Extração de Padrões

Identificação do problema

Pós-processamento

Utilização do Conhecimento

Fonte: Rezende, S. O. Sistemas inteligentes: fundamentos e aplicações. Editora Manole Ltda, 2003.

Utilização do Conhecimento

Identificação do problema

Aprendizado não Supervisionado

Tarefas Descritivas

Agrupamento de Dados

- Humanos se interessam por "organizar e agrupar"
 - Filmes: animação, dramas, comédias, terror, ...
 - Músicas: sertanejo, rock, funk, mpb, ...
 - O Biologia: Bacteria Archaea Eukaryota

- Humanos se interessam por "organizar e agrupar"
 - o Filmes: animação, dramas, comédias, terror, ...
 - Músicas: sertanejo, rock, funk, mpb, ...
 - Biologia: organização de espécies
 - Psicologia: organizar pessoas em perfis de personalidade
 - Medicina: organizar por tipos ou subtipos de doenças
 - Administração/Marketing: segmentação de clientes

- MBA IA BIG DAYA
- Humanos se interessam por "organizar e agrupar"
 - Análise Exploratória de Dados

- Humanos se interessam por "organizar e agrupar"
 - Análise Exploratória de Dados

- MBA IA BIG DAYA
- Humanos se interessam por "organizar e agrupar"
 - Análise Exploratória de Dados

• O que é um *cluster*?

Um *cluster* (grupo) é um conjunto de objetos semelhantes. Objetos alocados a diferentes *clusters* não são semelhantes.

- Homogeneidade: coesão interna
- Heterogeneidade: separação entre grupos

Desafio: Vamos agrupar os seguintes personagens...

Fonte do exemplo:

Keogh, E. A Gentle Introduction to Machine Learning and A Gentle Introduction to Machine Learning and Data Mining for the Database Community, SBBD 2003, Manaus.

Desafio: Vamos agrupar os seguintes personagens...

Solução #1

Família

Empregados da escola

Desafio: Vamos agrupar os seguintes personagens...

Solução #1

Empregados da escola

Mulheres

Homens

• O que é um *cluster*?

Um *cluster* (grupo) é um conjunto de objetos semelhantes. Objetos alocados a diferentes *clusters* não são semelhantes.

- Homogeneidade: coesão interna
- Heterogeneidade: separação entre grupos

• O que é um *cluster*?

Um *cluster* (grupo) é um conjunto de objetos <u>semelhantes</u>. Objetos alocados a diferentes *clusters* não são <u>semelhantes</u>.

- Homogeneidade: coesão interna
- Heterogeneidade: separação entre grupos

Cluster é um conceito subjetivo!

• O que é um *cluster*?

Um *cluster* (grupo) é um conjunto de objetos <u>semelhantes</u>. Objetos alocados a diferentes *clusters* não são <u>semelhantes</u>.

- Homogeneidade: coesão interna
- Heterogeneidade: separação entre grupos

Medidas de Similaridade e Dissimilaridade

Notação:

Denotemos por $X_{n \times d}$ uma <u>matriz atributo-valor</u> formada por n objetos da base de dados e d atributos.

Notação:

Por simplicidade, cada objeto será denotado por um vetor:

$$\mathbf{x}_i = [x_{i1} \cdots x_{id}]$$

Medidas de Proximidade

- Medida de proximidade será denotada por $d(\mathbf{x}_i, \mathbf{x}_j)$
 - Representa tanto uma similaridade quanto uma dissimilaridade (distância)

- Dissimilaridade: $d(\mathbf{x}_i, \mathbf{x}_i) = 0 \ \forall \mathbf{x}_i$
- Similaridade: $d(\mathbf{x}_i, \mathbf{x}_i) \ge \max_j d(\mathbf{x}_i, \mathbf{x}_j) \ \forall \mathbf{x}_i$

Medidas de Proximidade

- Medida de proximidade será denotada por $d(\mathbf{x}_i, \mathbf{x}_j)$
 - Representa tanto uma similaridade quanto uma dissimilaridade (distância)
- Propriedade desejáveis (para dissimilaridade)
 - \circ Simetria $d(\mathbf{x}_i, \mathbf{x}_j) = d(\mathbf{x}_j, \mathbf{x}_i) \ \forall \mathbf{x}_i, \mathbf{x}_j$
 - \circ Positividade $d(\mathbf{x}_i, \mathbf{x}_j) \geq 0 \ \forall \mathbf{x}_i, \mathbf{x}_j$
 - \circ Reflexividade $d(\mathbf{x}_i, \mathbf{x}_j) = 0$ se, e somente se, $\mathbf{x}_i = \mathbf{x}_j$
 - Desigualdade Triangular (nas próximas aulas)

Medidas de Proximidade

- Medida de proximidade será denotada por $d(\mathbf{x}_i, \mathbf{x}_j)$
 - Representa tanto uma similaridade quanto uma dissimilaridade (distância)
- Propriedade desejáveis (para dissimilaridade)
 - \circ Simetria $d(\mathbf{x}_i, \mathbf{x}_j) = d(\mathbf{x}_j, \mathbf{x}_i) \ \forall \mathbf{x}_i, \mathbf{x}_j$ Métrica!
 - \circ Positividade $d(\mathbf{x}_i, \mathbf{x}_j) \geq 0 \ \forall \mathbf{x}_i, \mathbf{x}_j$
 - \circ Reflexividade $d(\mathbf{x}_i, \mathbf{x}_j) = 0$ se, e somente se, $\mathbf{x}_i = \mathbf{x}_j$
 - Desigualdade Triangular (nas próximas aulas)

- Dados contínuos
- Métrica (propriedades desejáveis)

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^E = \sqrt{\sum_{k=1}^d (x_{ik} - x_{jk})^2}$$

- Atenção!
 - Atributos com <u>maiores valores e variâncias</u> podem "dominar" os demais atributos

- Dados contínuos
- Métrica (propriedades desejáveis)

$$d_{(\mathbf{x}_{i},\mathbf{x}_{j})}^{E} = \sqrt{\sum_{k=1}^{d} (x_{ik} - x_{jk})^{2}}$$

Objeto	Atributo #1	Atributo #2	Atributo #3
x ₁	1	1,5	5055
x ₂	3	2,3	5943
x ₃	2	5,4	7100
X ₄	4	3,2	8590

- Atenção!
 - Atributos com <u>maiores valores e variâncias</u> podem "dominar" os demais atributos

- Dados contínuos
- Métrica (propriedades desejáveis)

$$d_{(\mathbf{x}_{i},\mathbf{x}_{j})}^{E} = \sqrt{\sum_{k=1}^{d} (x_{ik} - x_{jk})^{2}}$$

Objeto	Atributo #1	Atributo #2	Atributo #3
x ₁	1	1,5	5055
x ₂	3	2,3	5943
x ₃	2	5,4	7100
x ₄	4	3,2	8590

- Atenção!
 - Atributos com <u>maiores valores e variâncias</u> podem "dominar" os demais atributos

- Dados contínuos
- Métrica (propriedades desejáveis)

$$d_{(\mathbf{x}_i,\mathbf{x}_j)}^E = \sqrt{\sum_{k=1}^d (x_{ik} - x_{jk})^2}$$

Objeto	Atributo #1	Atributo #2	Atributo #3
x 1	1	1,5	0,6
x2	3	2,3	0,7
х3	2	5,4	0,8
x4	4	3,2	1,0

Normalizados

- Normalizar o atributo?
 - Assumimos que a importância do atributo é inversamente proporcional à variabilidade de seus valores!

Distância de Manhattan

IMBA IA BIGA DAYA

- Dados contínuos
- Métrica (propriedades desejáveis)
- Também conhecida como city block

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^M = \sum_{k=1}^d |x_{ik} - x_{jk}|$$

Distância Suprema

- Dados contínuos
- Métrica (propriedades desejáveis)
- Atributo com diferença máxima entre dois objetos

$$d_{(\mathbf{x}_i,\mathbf{x}_j)}^S = \max_{1 \le k \le d} |x_{ik} - x_{jk}|$$

Nota: Também conhecida como distância de Chebyshev

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^E = \sqrt{\sum_{k=1}^d (x_{ik} - x_{jk})^2}$$

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^M = \sum_{k=1}^d |x_{ik} - x_{jk}|$$

$$d_{(\mathbf{x}_i,\mathbf{x}_j)}^S = \max_{1 \le k \le d} |x_{ik} - x_{jk}|$$

Distância de Minkowski

- Para p=2: Distância Euclidiana
- Para p=1: Distância de Manhattan
- Para $p \rightarrow \infty$: Distância Suprema

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^p = \left(\sum_{k=1}^d |x_{ik} - x_{jk}|^p\right)^{\frac{1}{p}}$$

Distância de Minkowski

MBA IA BIG DATA

- Para p=2: Distância Euclidiana
- Para p=1: Distância de Manhattan
- Para $p \rightarrow \infty$: Distância Suprema

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^p = \left(\sum_{k=1}^d |x_{ik} - x_{jk}|^p\right)^{\frac{1}{p}}$$

Distância de Minkowski

MBA IA BIG DATA

- Para p=2: Distância Euclidiana
- Para p=1: Distância de Manhattan-
- Para $p \rightarrow \infty$: Distância Suprema

$$d_{(\mathbf{x}_{i},\mathbf{x}_{j})}^{p} = \left(\sum_{k=1}^{d} |x_{ik} - x_{jk}|^{p}\right)^{\frac{1}{p}}$$

Distância de Mahalanobis

Considera o grau de interdependência entre atributos

$$d_{(\mathbf{x}_i,\mathbf{x}_j)}^C = (\mathbf{x}_i - \mathbf{x}_j)^\top \mathbf{C}^{-1} (\mathbf{x}_i - \mathbf{x}_j)$$

- Permite capturar clusters de formatos mais variados
- Alto custo computacional:
 - Cálculo da matriz de covariância
 - Cálculo da inversa da matriz de covariância

Distância de Mahalanobis

Considera o grau de interdependência entre atributos

$$d_{(\mathbf{x}_i,\mathbf{x}_j)}^C = (\mathbf{x}_i - \mathbf{x}_j)^\top \mathbf{C}^{-1} (\mathbf{x}_i - \mathbf{x}_j)$$

- Permite capturar *clusters* de <u>formatos mais variados</u>
- Alto custo computacional:
 - Cálculo da matriz de covariância
 - Cálculo da inversa da matriz de covariância

- Medida de correlação
- Muito comum em dados de bioinformática e textos

Objeto	Atributo: rede	Atributo: computador
X ₁	2	0
x ₂	0	2
x ₃	1	1
x ₄	4	4

- Medida de correlação
- Muito comum em dados de bioinformática e textos

Objeto	Atributo: rede	Atributo: computador
x ₁	2	0
X ₂	0	2
x ₃	1	1
X ₄	4	4

- Medida de correlação
- Muito comum em dados de bioinformática e textos

Objeto	Atributo: rede	Atributo: computador
x ₁	2	0
x ₂	0	2
x ₃	1	1
X ₄	4	4

$$cos_{(\mathbf{x}_i, \mathbf{x}_j)} = \frac{\mathbf{x}_i^\top \cdot \mathbf{x}_j}{\|\mathbf{x}_i\| \|\mathbf{x}_j\|}$$

- Medida de correlação
- Muito comum em dados de bioinformática e textos

Objeto	Atributo: rede	Atributo: computador
x ₁	2	0
X ₂	0	2
x ₃	1	1
X ₄	4	4

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^{cos} = 1 - cos_{(\mathbf{x}_i, \mathbf{x}_j)}$$

 Motivação: dados nominais podem ser transformados para binários (binarização)

Instância	País Estado Civi	
x ₁	Brasil	Casado
x ₂	Brasil	Solteiro
x ₃	França	Solteiro
X ₄	França	Casado

Instância	País:Brasil	País:França	Estado Civil: Casado	Estado Civil: Solteiro
x ₁	1	0	1	0
X ₂	1	0	0	1
X ₃	0	1	0	1
X ₄	0	1	1	0

Considere dois objetos com atributos binários:

$$\begin{array}{ll} \circ & \mathbf{x}_{i} = [1 \ 1 \ 0 \ 1 \ 1 \ 0] \\ \circ & \mathbf{x}_{i} = [0 \ 1 \ 0 \ 1 \ 0 \ 1] \end{array}$$

Primeiro, vamos calcular uma tabela de contingência:

objeto
$$x_j$$

objeto x_i
 $1 \quad 0$

objeto x_i
 $0 \quad n_{01} \quad n_{00}$

$$n_{II} = 2$$
 $x_{i} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 \\ x_{j} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$

$$n_{10} = 2$$
 $x_{i} = [\underline{1} \ 1 \ 0 \ 1 \ \underline{1} \ 0]$
 $x_{j} = [\underline{0} \ 1 \ 0 \ 1 \ \underline{0} \ 1]$

Considere dois objetos com atributos binários:

$$\begin{array}{ll} \circ & \mathbf{x}_{i} = [1 \ 1 \ 0 \ 1 \ 1 \ 0] \\ \circ & \mathbf{x}_{i} = [0 \ 1 \ 0 \ 1 \ 0 \ 1] \end{array}$$

Primeiro, vamos calcular uma tabela de contingência:

objeto
$$x_{i}$$

1 0

objeto x_{i}

0 n_{01} n_{00}

$$n_{01} = 1$$
 $x_{i} = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & \underline{0} \\ x_{j} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 & \underline{1} \end{bmatrix}$

$$n_{00} = 1$$
 $x_{i} = \begin{bmatrix} 1 & 1 & \underline{0} & 1 & 1 & 0 \\ x_{j} = \begin{bmatrix} 0 & 1 & \underline{0} & 1 & 0 & 1 \end{bmatrix}$

Considere dois objetos com atributos binários:

$$\begin{array}{ll} \circ & x_i = [1 \ 1 \ 0 \ 1 \ 1 \ 0] \\ \circ & x_j = [0 \ 1 \ 0 \ 1 \ 0 \ 1] \end{array}$$

objeto x.

Após calcular a tabela de contingência:

		<i>J</i>	J
		1	0
objeto x _i	1	n_{11}	n_{10}
	0	n_{01}	n_{00}

 Coeficiente de Casamento Simples (Similaridade)

$$sm(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11} + n_{00}}{n_{11} + n_{00} + n_{10} + n_{01}}$$

(Transformação para Dissimilaridade)

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^{sm} = 1 - sm(\mathbf{x}_i, \mathbf{x}_j)$$

- Coeficiente de Casamento Simples é uma medida para atributos simétricos: <u>presença e ausência têm a mesma</u> <u>importância</u>!
- Em alguns problemas, a presença é mais importante que a ausência. Exemplo: sintomas de doenças.

$$\begin{array}{ll}
\circ & \mathbf{x}_1 = [1 \ 1 \ 0 \ 0 \ 0 \ 0] \\
\circ & \mathbf{x}_2 = [1 \ 1 \ 0 \ 0 \ 0 \ 1] \\
\circ & \mathbf{x}_3 = [0 \ 0 \ 0 \ 0 \ 0 \ 0]
\end{array}$$

Note que o Coeficiente de Casamento Simples irá falhar nesse exemplo, considerando 3 objetos que apresentam (1) ou não (0) seis sintomas para uma determinada doença.

- Coeficiente de Casamento Simples é uma medida para atributos simétricos: <u>presença e ausência têm a mesma</u> <u>importância</u>!
- Em alguns problemas, a presença é mais importante que a ausência. Exemplo: sintomas de doenças.

$$\begin{array}{ll} \circ & \mathbf{x}_1 = [1 \ 1 \ 0 \ 0 \ 0 \ 0] \\ \circ & \mathbf{x}_2 = [1 \ 1 \ 0 \ 0 \ 0 \ 1] \\ \circ & \mathbf{x}_3 = [0 \ 0 \ 0 \ 0 \ 0 \ 0] \end{array}$$

Note que o Coeficiente de Casamento Simples irá falhar nesse exemplo, considerando 3 objetos que apresentam (1) ou não (0) seis sintomas para uma determinada doença.

Precisamos de uma medida para atributos assimétricos!

MBA IA BIG DAYA

- Coeficiente de *Jaccard* (assimétrico)
- Foco nos casamentos do tipo 1-1
- Desconsidera casamentos do tipo 0-0

objeto x_j objeto x_i $1 \quad 0$ objeto x_i $0 \quad n_{01} \quad n_{00}$

(Similaridade)

$$jac(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_{11}}{n_{11} + n_{10} + n_{01}}$$

(Transformação para Dissimilaridade)

$$d_{(\mathbf{x}_i, \mathbf{x}_j)}^{jac} = 1 - jac(\mathbf{x}_i, \mathbf{x}_j)$$

Medidas de Proximidade

- Estudamos diferentes medidas de proximidade
- Como selecionar a medida mais apropriada?
 - Primeiro, verificar seu tipo de dados!
 - Mesmo assim, ainda são muitas opções de medidas!
 - Não há uma resposta definitiva para essa pergunta :(

Lembre-se! *Cluster* é um conceito subjetivo. Difícil definir a noção de <u>semelhança</u>.

Medidas de Proximidade

- Estudamos diferentes medidas de proximidade
- Como selecionar a medida mais apropriada?
 - Primeiro, verificar seu tipo de dados!
 - Mesmo assim, ainda são muitas opções de medidas!
 - Não há uma resposta definitiva para essa pergunta :(

"A escolha da medida de dis(similaridade) é importante para aplicações, e a melhor escolha é freqüentemente obtida via uma combinação de experiência, habilidade, conhecimento e sorte!"

Gan, G., Ma, C., Wu, J., Data Clustering: Theory, Algorithms, and Applications, SIAM Series on Statistics and Applied Probability, 2007.

Medidas de Proximidade

- Estudamos diferentes medidas de proximidade
- Como selecionar a medida mais apropriada?
 - Primeiro, verificar seu tipo de dados!
 - Mesmo assim, ainda são muitas opções de medidas!
 - Não há uma resposta definitiva para essa pergunta :(

Tarefa Descritiva

Análise Exploratória de Dados

Gan, G., Ma, C., Wu, J., Data Clustering: Theory, Algorithms, and Applications, SIAM Series on Statistics and Applied Probability, 2007.

Bibliografia

Rezende, S. O. (2003). Sistemas inteligentes: fundamentos e aplicações. Editora Manole Ltda.

Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. (2016). *Introduction to Data Mining (2nd Edition)*. Pearson.

