Introductory Course on Non-smooth Optimisation

Other operator splitting methods

Lecture 07

1 Three-operator splitting

2 Forward-Douglas-Rachford splitting

1 Three-operator splitting

2 Forward-Douglas-Rachford splitting

Sum of three operators

Problem

Find
$$x \in \mathbb{R}^n$$
 such that $0 \in A(x) + B(x) + C(x)$.

Assumptions

- $A, B : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ are maximal monotone
- $C: \mathbb{R}^n \to \mathbb{R}^n$ is β -cocoercive
- $\operatorname{zer}(A + B + C) \neq \emptyset$

I: Three-operator splitting 4/18

Solution characterisation

• given $x^* \in \operatorname{zer}(A + B + C)$, there exists $z^* \in \mathbb{R}^n$ such that

$$\begin{cases} x^{\star} - z^{\star} \in \gamma A(x^{\star}) + \gamma C(x^{\star}) \\ z^{\star} - x^{\star} \in \gamma B(x^{\star}) \end{cases} \implies \begin{cases} 2x^{\star} - z^{\star} - \gamma C(x^{\star}) \in x^{\star} + \gamma A(x^{\star}) \\ z^{\star} \in x^{\star} + \gamma B(x^{\star}) \end{cases}$$

· apply the resolvent

$$\begin{cases} x^* = \mathcal{J}_{\gamma A}(2x^* - z^* - \gamma C(x^*)) \\ x^* = \mathcal{J}_{\gamma B}(z^*) \end{cases}$$

equivalent formulation

$$\begin{cases} z^{\star} = z^{\star} + \mathcal{J}_{\gamma A}(2x^{\star} - z^{\star} - \gamma C(x^{\star})) - x^{\star} \\ x^{\star} = \mathcal{J}_{\gamma B}(z^{\star}) \end{cases}$$

iteration

$$\begin{cases} z_{k+1} = z_k + (\mathcal{J}_{\gamma A}(2x_k - z_k - \gamma C(x_k)) - x_k) \\ x_{k+1} = \mathcal{J}_{\gamma B}(z_{k+1}) \end{cases}$$

l: Three-operator splitting 5/18

Three-operator splitting

Three-operator splitting

Let
$$z_0 \in \mathbb{R}^n$$
, $\gamma \in]0, 2\beta[$ and $x_0 = \mathcal{J}_{\gamma B}(z_0)$, $\lambda \in]0, \frac{4\beta - \gamma}{2\beta}[$:
$$u_{k+1} = \mathcal{J}_{\gamma A}(2x_k - z_k - \gamma C(x_k))$$

$$z_{k+1} = (1 - \lambda)z_k + \lambda(z_k + u_{k+1} - x_k)$$

$$x_{k+1} = \mathcal{J}_{\gamma B}(z_{k+1})$$

- Recovers Douglas-Rachford when C=0
- Recovers Forward-Backward when B = 0

l: Three-operator splitting 6/18

Fixed-point characterisartion

Fixed-point formulation

- $u_{k+1} = \mathcal{J}_{\gamma A}(2x_k z_k \gamma C(x_k)) = \mathcal{J}_{\gamma A} \circ (2\mathcal{J}_{\gamma B} \operatorname{Id} \gamma C \circ \mathcal{J}_{\gamma B})(z_k)$
- For z_k ,

$$\begin{split} z_{k+1} &= (1-\lambda)z_k + \lambda \big(z_k + u_{k+1} - x_k\big) \\ &= (1-\lambda)z_k + \lambda \big(\mathsf{Id} - \mathcal{J}_{\gamma B} + \mathcal{J}_{\gamma A} \circ \big(2\mathcal{J}_{\gamma B} - \mathsf{Id} - \gamma C \circ \mathcal{J}_{\gamma B}\big)\big)(z_k) \end{split}$$

Property

• $\mathcal{T}_{\text{Tos}} \stackrel{\text{def}}{=} \operatorname{Id} - \mathcal{J}_{\gamma B} + \mathcal{J}_{\gamma A} \circ (2\mathcal{J}_{\gamma B} - \operatorname{Id} - \gamma C \circ \mathcal{J}_{\gamma B})$ is $\frac{2\beta}{4\beta - \gamma}$ -averaged

I: Three-operator splitting 7/18

1 Three-operator splitting

2 Forward-Douglas-Rachford splitting

Subspace constrained monotone inclusion

Problem

Find
$$x \in \mathbb{R}^n$$
 such that $0 \in A(x) + \mathcal{N}_V(x) + C(x)$.

Assumptions

- $A: \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ are maximal monotone
- $V \subseteq \mathbb{R}^n$ is a closed subspace
- $C: \mathbb{R}^n \to \mathbb{R}^n$ is β -cocoercive
- $\operatorname{zer}(A + \mathcal{N}_V + C) \neq \emptyset$

Forward-Douglas-Rachford splitting

Forward-Douglas-Rachford splitting

Let
$$z_0 \in \mathbb{R}^n$$
, $\gamma \in]0, 2\beta[$ and $x_0 = \mathcal{J}_{\gamma B}(z_0)$, $\lambda \in]0, \frac{4\beta - \gamma}{2\beta}[$:
$$u_{k+1} = \mathcal{J}_{\gamma A}(2x_k - z_k - \gamma \mathcal{P}_V \circ C(x_k))$$

$$z_{k+1} = (1 - \lambda)z_k + \lambda(z_k + u_{k+1} - x_k)$$

$$x_{k+1} = \mathcal{P}_V(z_{k+1})$$

- FDR was proposed before TOS
- Recovers Douglas-Rachford when C = 0
- Recovers Forward–Backward when $V = \mathbb{R}^n$

Fixed-point characterisartion

Fixed-point formulation Denote $C_V = \mathcal{P}_V \circ C \circ \mathcal{P}_V$

• For u_{k+1} : $\mathcal{R}_V \circ C_V = (2\mathcal{P}_V - \operatorname{Id})C_V = C_V$ $u_{k+1} = \mathcal{J}_{\gamma A} \circ (2\mathcal{P}_V - \operatorname{Id} - \gamma C_V)(z_k)$ $= \mathcal{J}_{\gamma A} \circ \mathcal{R}_V \circ (\operatorname{Id} - \gamma C_V)(z_k)$

• For z_k ,

$$\begin{aligned} z_{k+1} &= (1-\lambda)z_k + \lambda(z_k + u_{k+1} - x_k) \\ &= (1-\lambda)z_k + \lambda(\mathcal{J}_{\gamma A} \circ \mathcal{R}_V \circ (\operatorname{Id} - \gamma C_V) + \operatorname{Id} - \mathcal{P}_V)(z_k) \\ &= (1-\lambda)z_k + \lambda \frac{1}{2}(\operatorname{Id} + \mathcal{R}_{\gamma R}\mathcal{R}_V)(\operatorname{Id} - \gamma C_V)(z_k) \end{aligned}$$
Hint:
$$\operatorname{Id} - \mathcal{P}_V &= \frac{1}{2}(\operatorname{Id} - \gamma C_V) - \mathcal{P}_V(\operatorname{Id} - \gamma C_V) + \frac{1}{2}(\operatorname{Id} - \gamma C_V)$$

Property

• $\mathcal{T}_{\scriptscriptstyle{\mathsf{FDR}}} \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \frac{1}{2} (\mathsf{Id} + \mathcal{R}_{\gamma R} \mathcal{R}_{\scriptscriptstyle{V}}) (\mathsf{Id} - \gamma C_{\scriptscriptstyle{V}})$ is $\frac{2\beta}{4\beta - \gamma}$ -averaged

1 Three-operator splitting

2 Forward-Douglas-Rachford splitting

A general monotone inclusion

Problem $r \ge 2$

Find
$$x \in \mathbb{R}^n$$
 such that $0 \in \sum_{i=1}^r A_i(x) + B(x)$.

Assumptions

- for each i, $A_i : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ is maximal monotone
- $B: \mathbb{R}^n \to \mathbb{R}^n$ is β -cocoercive
- $\operatorname{zer}(\sum_i A + B) \neq \emptyset$

Generalised Forward-Backward splitting

Let
$$(\omega_i)_i \in]0,1[^r \text{ s.t. } \sum_i \omega_i = 1, \gamma \in]0,2\beta[,\ \lambda \in]0, \frac{4\beta-\gamma}{2\beta}[.\ z_{i,0} \in \mathbb{R}^n \text{ and } x_0 = \sum_i \omega_i z_{i,0}]$$
 For $i \in \{1,\cdots,r\}$
$$\begin{vmatrix} u_{i,k+1} = \partial_{\frac{\gamma}{\omega_i}A_i}(2x_k - z_{i,k} - \gamma B(x_k)) \\ z_{i,k+1} = (1-\lambda)z_{i,k} + \lambda \big(z_{i,k} + u_{i,k+1} - x_k\big), \end{vmatrix}$$
 $x_{k+1} = \sum_i \omega_i z_{i,k+1}.$

- · Earliest of the three methods
- Recovers Douglas-Rachford in product space when B = 0
- Recovers Forward-Backward when r=1

Product space

• Let $\mathcal{H}=\mathbb{R}^n \times \cdots \times \mathbb{R}^n$ be the product space endowed with the scalar product and norm defined by

$$\forall \boldsymbol{x}, \boldsymbol{x}' \in \mathcal{H}, \ \langle \boldsymbol{x}, \boldsymbol{x}' \rangle = \sum_{i=1}^{r} \omega_i \langle \boldsymbol{x}_i, \, \boldsymbol{x}_i' \rangle, \ \|\boldsymbol{x}\| = \sqrt{\sum_{i=1}^{r} \omega_i \|\boldsymbol{x}_i\|^2}.$$

• Let $\mathcal{S} = \{ \mathbf{x} = (x_i)_i \in \mathcal{H} | x_1 = \dots = x_r \}$ and $\mathcal{S}^{\perp} = \{ \mathbf{x} = (x_i)_i \in \mathcal{H} | \sum_{i=1}^r \omega_i x_i = 0 \}$. Define the canonical isometry $\mathbf{C} : \mathcal{H} \to \mathcal{S}, \, x \mapsto (x, \dots, x)$, then

$$\mathcal{P}_{\mathcal{S}}(\mathbf{z}) \stackrel{\text{def}}{=} \mathbf{C}(\sum_{i=1}^{r} \omega_i \mathbf{z}_i), \ \forall \mathbf{z} \in \mathcal{H}.$$

• Let $\gamma = (\gamma_i)_i \in \left]0, +\infty\right[^r$. For $A_i, i = 1, ..., r$, define

$$\gamma \mathbf{A}: \mathcal{H} \rightrightarrows \mathcal{H}, \mathbf{x} = (\mathbf{x}_i)_i \mapsto \times_{i=1}^r \gamma_i A_i(\mathbf{x}_i)$$

For *B*, define

$$\boldsymbol{B}: \mathcal{H} \to \mathcal{H}, \, \boldsymbol{x} = (x_i)_i \mapsto (B(x_i))_i$$

• Define $\mathbf{B}_{\mathcal{S}} = \mathbf{B} \circ \mathcal{P}_{\mathcal{S}}$ and $\mathcal{J}_{\gamma \mathbf{A}} = (\mathcal{J}_{\gamma_i A_i})_i$.

Fixed-point characterisartion

Fixed-point formulation

• For u_{k+1} ,

$$\begin{aligned} \mathbf{u}_{k+1} &= \mathcal{J}_{\gamma \mathbf{A}} \big(2 \mathcal{P}_{\mathcal{S}}(\mathbf{z}_k) - \mathbf{z}_k - \gamma \mathbf{B}_{\mathcal{S}}(\mathbf{z}_k) \big) \\ &= \mathcal{J}_{\gamma \mathbf{A}} \circ \mathcal{R}_{\mathcal{S}} \circ (\mathbf{Id} - \gamma \mathbf{B}_{\mathcal{S}})(\mathbf{z}_k) \end{aligned}$$

- Identify: $\mathbf{Id} \mathcal{P}_{\mathcal{S}} = \frac{1}{2}(\mathbf{Id} \gamma \mathbf{B}_{\mathcal{S}}) \mathcal{P}_{\mathcal{S}}(\mathbf{Id} \gamma \mathbf{B}_{\mathcal{S}}) + \frac{1}{2}(\mathbf{Id} \gamma \mathbf{B}_{\mathcal{S}})$
- For z_k ,

$$\begin{split} & \boldsymbol{z}_{k+1} = (1-\lambda)\boldsymbol{z}_k + \left(\boldsymbol{z}_k + \boldsymbol{\beta}_{\gamma \mathbf{A}}(2\boldsymbol{\mathcal{P}}_{\boldsymbol{\mathcal{S}}}(\boldsymbol{z}_k) - \boldsymbol{z}_k - \gamma \boldsymbol{B}_{\boldsymbol{\mathcal{S}}}(\boldsymbol{z}_k)) - \boldsymbol{\mathcal{P}}_{\boldsymbol{\mathcal{S}}}(\boldsymbol{z}_k)\right) \\ & = (1-\lambda)\boldsymbol{z}_k + \left(\boldsymbol{\beta}_{\gamma \mathbf{A}} \circ \boldsymbol{\mathcal{R}}_{\boldsymbol{\mathcal{S}}} \circ (\mathbf{Id} - \gamma \boldsymbol{B}_{\boldsymbol{\mathcal{S}}})(\boldsymbol{z}_k) + (\mathbf{Id} - \boldsymbol{\mathcal{P}}_{\boldsymbol{\mathcal{S}}})(\boldsymbol{z}_k)\right) \\ & = (1-\lambda)\boldsymbol{z}_k + \lambda \frac{1}{2}(\mathbf{Id} + \boldsymbol{\mathcal{R}}_{\gamma \mathbf{A}}\boldsymbol{\mathcal{R}}_{\boldsymbol{\mathcal{S}}}) \circ (\mathbf{Id} - \gamma \boldsymbol{B}_{\boldsymbol{\mathcal{S}}})(\boldsymbol{z}_k). \end{split}$$

Property

•
$$\mathcal{T}_{\text{GFB}} \stackrel{\text{def}}{=} \frac{1}{2} (\mathbf{Id} + \mathcal{R}_{\gamma \mathbf{A}} \mathcal{R}_{\mathcal{S}}) \circ (\mathbf{Id} - \gamma \mathbf{B}_{\mathcal{S}})$$
 is $\frac{2\beta}{4\beta - \gamma}$ -averaged

Remarks

- Structure and splitting are the key to design first-order methods
- Convergence analysis via Krasnosel'skii-Mann iteration
- Most common structure for Krasnosel'skii-Mann operator: PPA and FB
- Acceleration in general difficult

Reference

- D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications. Set-Valued and Variational Analysis, 2017.
- L. M. Briceño-Arias. Forward-douglas—rachford splitting and forward-partial inverse method for solving monotone inclusions. Optimization, 64(5):1239–1261, 2015.
- H. Raguet, M. J. Fadili, and G. Peyré. Generalized forward-backward splitting.
 SIAM Journal on Imaging Sciences, 6(3):1199-1226, 2013.