Aprendizado de Máquina II

Regressão Linear

Prof^a. Renata De Paris

Especialização em Ciência de Dados

Roteiro da Aula

- Definição
- Regressão Linear
- Avaliação do desempenho
- Prática
- Atividade

Regressão

- Prever um valor para uma dada variável contínua, baseado nos valores de outras variáveis, assumindo um modelo de dependência linear ou não linear.
- Busca minimizar os erros quadráticos.
- Muito estudada em estatística, redes neurais, etc.
- Exemplos:
 - Prever vendas de um novo produto, baseado nos gastos com propaganda.
 - Prever velocidade do vento como uma função da temperatura, umidade, pressão do ar, etc.
 - Previsão de séries temporais para índices em mercados de ações.

Regressão – Exemplo Aplicação

Qual é o valor de preço de venda da minha casa?

Tabela 1. Valores da casa para o modelo de regressão

9669

3529	9191	6	0	0	\$205,000
3247	10061	5	1	1	\$224,900
4032	10150	5	0	1	\$197,900
2397	14156	4	1	0	\$189,900
2200	9600	4	0	1`	\$195,000
3536	19994	6	1	1	\$325,000
2983	9365	5	0	1	\$230,000

Tamanho da casa (pés quadrados) Tamanho do lote Quartos Granito Banheiro reformado? Preco de venda

$$X_1 + X_2 + X_3 + X_4 + X_5 = y$$

- Utiliza pesos/coeficientes para aprender uma representação que se aproxime ao máximo dos dados do treino.
- Os pesos são atualizados conforme a função que minimiza os erros.
- Predição supervisionada/preditiva.
- Por exemplo:
 - Features (entradas):
 - $X_1 + X_2 + X_3 + X_4 + X_5$
 - Pesos:
 - $p_0 + p_1 + p_2 + p_3 + p_4 + p_5$
 - Aplicação dos pesos:
 - $p_0 + p_1^* x_1 + p_2^* x_2 + p_3^* x_3 + p_4^* x_4 + p_5^* x_5 = y_i$
- O resultado de saída (yi predição) é então comparado ao valor real de Y.

O resultado da regressão linear seria uma reta

Intercept

Representa o ponto y quando x=0

Slope

Representa a inclinação da reta para mais ou para menos

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

$$\hat{f}(x) = 1.5 + 0x$$

$$\hat{f}(x) = 0 + 0.5x$$
 $\hat{f}(x) = 1 + 0.5x$

$$\hat{f}(x) = 1 + 0.5x$$

Regressão Univariada

$$\hat{f}(x) = \theta_0 + \theta_1 x$$

Regressão Multi-variada

$$\hat{f}(\mathbf{x}) = \theta_0 + \theta_1 x^1 + \theta_2 x^2 + \dots + \theta_m x^m$$

$$\hat{f}(\mathbf{x}) = \theta_0 + \sum_{i=1}^m \theta_i x^i$$

- Exemplo: Cotações Diárias da Petrobrás
 - Usar regressão linear para prever o valor de fechamento da ação da Petrobras em um dia específico
 - Qual será a cotação da ação para os seguintes valores:

Abertura: 12.30

Máxima: 12.35

Mínima: 12.20

Fechamento: ?

- A regressão linear aplica os pesos nos dados.
- Digamos que o regressor definiu os seguintes pesos:
 - P0 = 1
 - P1 = 0.7
 - P2 = 0.06
 - P3 = 0.08

- Exemplo: Cotações Diárias da Petrobrás
 - Abertura: 12.30
 - Máxima: 12.35
 - Mínima: 12.20
 - Fechamento: ?

- P0 = 1
- P1 = 0.7
- P2 = 0.06
- P3 = 0.08

- Aplicando os valores teríamos a seguinte equação:
 - Y = p0+p1*x1+p2*x2+p3*x3
 - Y = 1+0.7*12.30+0.06*12.35+0.08*12.20
 - Y =1+8.61+0.74+0.97 = 11.32
- Valor predito: 11.32

- Exemplo: Cotações Diárias da Petrobrás
 - Usar regressão linear para prever o valor de fechamento da ação da Petrobras em um dia específico
 - O valor predito pelo regressor foi de 11.32
 - Qual é a acurácia desse valor?
 - Levando em consideração que o valor real é de 12.33, temos que calcular o erro e ajustar novamente os pesos
 - Erro absoluto: 11.32-12.33 = -1,01

- Como minimizar o erro?
 - Gradiente Descendente
 - Algoritmo usado para minimizar o erro dos pesos do modelo
 - Utiliza o erro médio quadrático entre o valor predito e o valor real
 - Utiliza todos os dados de treinamento de forma interativa até o menor erro possível
 - É preciso parametrizar o valor da taxa de aprendizado (learning rate).
 - Controlar o nível de aprendizado a cada iteração do algoritmo

MSE =
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \tilde{y}_i)^2$$

- Gradiente Descendente
 - Exemplo
 - p0=1, p1=0.9, x1=12.30
 - Y = 12.33 (valor real)
 - Aplicando os valores na equação:
 - Yi = 1+0.9*12.30
 - Yi = 12.07
 - Calculando o erro a partir do valor predito:
 - $\mathbf{\epsilon} = 12.07 12.33$
 - $\mathbf{E} = -0.26$

- Gradiente Descendente Atualização de pesos
 - O objetivo é calcular o novo valor dos pesos p0 e p1
 - Valores originais: p0=1, p1=0.9, x1=12.30
 - A taxa de aprendizado é chamada de alpha (α)
 - \square Para $\alpha = 0.01$ temos
 - $p0 = p0 \alpha * \epsilon$
 - p0 = 1 0.01*-0.26
 - p0 = 1,0026
 - O valor de p1 deve ter influência no valor da feature associada a ele.
 - p1 = p1-α * ε * x1
 - p1 = 0.9 0.01*-0.26*12.30
 - p1 = 0.96198

- Gradiente Descendente Atualização de pesos
 - Gradiente Descente repete esse processo a cada instância do treino até que os pesos se ajustem com o mínimo de erro (bolinhas vermelhas).
 - Época = cada ciclo completo
 - Após várias épocas é possível chegar ao ponto mínimo de erro.

- Gradiente Descendente Atualização de pesos
 - Função de custo do erro quadrático é convexa
 - Função tem único mínimo
 - Formato de bacia (bowl shaped)

- Gradiente Descendente
 - Deve reduzir a função de custo a cada iteração.
 - Quando parar de executar?
 - Quando convergir
 - A execução do algoritmo deve parar quando duas iterações consecutivas for menor que o limiar ε.

Regressão Linear – Prática

Dataset: Bolsa de Ações da Petrobras

Atividade

- A partir do dataset escolhido para trabalhar com os métodos supervisionados e utilizando a biblioteca scikitlearn da linguagem de programação Python, realize as seguintes tarefas:
 - Escolha 2 ou mais atributos contínuos do dataset, sendo 1 deles o atributo classe.
 - Execute o algoritmo de regressão linear com cross-validation e depois hold-out, escolhendo as divisões mais adequadas para ambos os métodos conforme o tamanho do dataset.
 - 3. Avalie o desempenho do algoritmo por meio do erro médio absoluto (MAE).
 - 4. Aumente ou diminua a quantidade de atributos/features para tentar melhorar a acurácia do resultado.

Referências

- Breiman, L., Freidman, J., Olshen, R. e Stone, C. (1984). Classification and Regression Trees. Wadsworth International Group., USA.
- Faceli, K.; Lorena, A.C.; Gama, J.; de Carvalho, A.C.P.L.F. Inteligência Artificial: Uma abordagem de aprendizado de máquina. LTC, Rio de Janeiro, 2011.
- Quilan, R. (1979). Discovering rules by induction from large collections of examples. In: Michie, D. (Ed.) Expert Systems in the Microelectronic Age, p. 168-201. Edinburgh University Press.
- Quilan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., San Mateo, CA, USA.
- TAN, P-N; STEINBACH, M.; KUMAR, V. Introduction to Data Mining. Pearson, 2006.