Mission 1

Objectives

Understand the given data (basically plotting), and obtain Φ_{res} field from ω_{c_T} and $|\nabla c_T|$ fields. The most basic example code is given and mission is yours.

You will learn

- Get familiar with Google Colab make sure everyone can use it (Teach each other)
- Plotting of simulation data
- Some post-processing of data (thresholding)

Data explanation

- "wtemp-slice-B1-0000080000" is Q/c_p , where Q is a heat release rate and c_p is a specific heat capacity at constant pressure.
- "nablatemp-slice-B1-0000080000" is $|\nabla T|$, where T is a temperature.

"slice" means x - y plane at z = 5 mm, "B1" means case B1, "0000080000" means timestep= 80000 (basically a single timestep data of a simulation). $x \approx 0$ region might have crazy values due to boundary condition effect, you will see the effect when you plot.

Tasks

- 1. Start Google colab environment. (Open the given codes in google colab and upload the data into the google colab by your own research)
- 2. Make ω_{c_T} field, $\omega_{c_T} = Q/c_p/(T_b T_u)$, where $T_u = 1500.00$ K and $T_b = 1623.47$ K
- 3. Make $|\nabla c_T|$ field, $|\nabla c_T| = |\nabla T|/(T_b T_u)$
- 4. Plot the both ω_{c_T} and $|\nabla c_T|$ fields to check if they look good.
- 5. Make $\omega_{c_T}^*$ and $|\nabla c_T|^*$, where superscript "*" means $x^* = x/max(x)$ (so value of x becomes between 0 and 1). Maximum of each fields are (for case B1): $max(\omega_{c_T}) = 1996.8891$ and $max(|\nabla c_T|) = 3931.0113$. I will give you the unit of the fields later:)
- 6. Check $\omega_{c_T}^*$ and $|\nabla c_T|^*$ fields are between 0 to 1.
- 7. Use Equation 1 in the paper "Data driven analysis and ..." to obtain Φ_{res} , and plot it to compare with Fig.7.

If finished

- 1. Make the figure beautiful (important in later stage)
- 2. Try to write a Gaussian filter code for $\overline{\omega}_{c_T}$ for given filter size (as a parameter), and visualize it to see if it is working and have fun with it.
- 3. Report any mistake found in this document (just a list of corrections for improvement)