

Rechnernetze Fallstudio: Web Request

Prof. Dr. Wolfgang Mühlbauer

Fakultät für Informatik

wolfgang.muehlbauer@th-rosenheim.de

Wintersemester 2021/22

Slides are based on:

J. Kurose, K. Ross: Computer Networks - A Top-Down Approach

Fallstudie: Web Request

- Reise entlang des TCP/IP Schichtenmodells
 - Application, Transport, Network, Link Layer

Ziel

 Alle Protokolle verstehen, die in einem vermeintlich einfachen Szenario beteiligt sind

Szenario

- Student verbindet seinen Laptop mit dem Netz per Ethernet-Stecker
- Student geht auf die Webseite von www.google.com

Fallstudie: Web Request

Verbinden mit dem Internet

- Laptop erhält per DHCP
 - IP Adresse für sich selbst
 - IP Adresse des Gateways
 - IP Adresse des DNS Servers
- Aufbau des DHCP Pakets:
 - UDP

 - 802.3 Ethernet
- DHCP arbeitet mit Ethernet Broadcasts.

Verbinden mit dem Internet

DHCP Server sendet DHCP ACK Nachricht mit

- IP Adresse f
 ür Client
- IP des Gateways
- IP des DNS Servers

DNS

Laptop kennt jetzt MAC Adresse des Gateway und kann DNS Anfrage senden

- Vor dem Senden des HTTP
 Requests wird die IP Adresse von www.google.com benötigt: DNS
- DNS Paket
 - UDP
 - o IP
 - Ethernet
- Um Paket zum Router/Gateway zu senden wird MAC Adresse des Router Interfaces benötigt: ARP
 - ARP Query Broadcast wird von Laptop gesendet
 - Router/Gateway antwortet mit ARP Reply.
- Laptop kennt jetzt MAC Adresse des Gateway und kann DNS Anfragen senden

DNS

(DHCP Resolver)

- IP Datagramm mit DNS Query wird über Switch zum Gateway weitergeleitet
- IP Datagramm wird vom Heimnetz in das Netz des ISPs und zum DNS Server weitergeleitet
- DNS Server antwortet mit IP Adresse von www.google.com

TCP Verbindungsaufbau

HTTP Request / Reply

Zusammenfassung TCP/IP

- □ Heutige Computer und Anwendungen undenkbar ohne Internet
 →Verständnis des TCP/IP Stacks elementar
- Im Hintergrund arbeiten viele Protokolle auf verschiedenen Schichten zusammen, meist unbemerkt
- Ziel der "Rechnernetze" Vorlesung: Grundlagen
- Vertiefungsvorlesungen
 - Bachelor: Trends der drahtlosen Kommunikation (TdK)
 - WLAN, Mobilfunk, Bluetooth, RFID, NFC, ePayment, LoRa, Mesh, ...
 - Master: Vertiefung Rechnernetze (xRN)
 - Z.B.: IPv6, SNMP, VLAN, SDN, Darknet, Routing, Firewalls, Traffic Shaping

Zusammenfassung - Inhalte

- Einführung
 - Aufbau des Internets, Schichtenmodell, Delay, Throughput, ...
- Physical Layer
 - Übertragungsmedien, nachrichtentechnische Grundlagen, Modulation,
- Link Layer
 - Rahmenbildung, Switches, Vielfachzugriff
- Network Layer
 - IP Adressen, Subnetting, Longest Prefix Matching, ARP, DHCP, ICMP
 - IPv6, Routing
- Transport Layer
 - Port Multiplexing, UDP, zuverlässige Datenübertragung, TCP, Verbindungsaufbau, Flow Control, Congestion Control, NAT
- Application Layer
 - DNS, HTTP