Sampling from a quasi-stationary distribution

Divakar Kumar

OxWaSP, University of Warwick

October, 25, 2017

Overview

About my thesis

2 Where does the Blanchet's method fit?

3 An application

About my thesis

My work

- My work
 - Generating samples from an intractable distribution of the form

$$\pi(\theta) \propto \prod_{i=1}^{N} f_i(\theta)$$
 (1)

- Info on unbiased estimators of $\phi = \frac{||\nabla \log(\pi)||^2 + \nabla^\top \nabla \log(\pi)}{2} l$ is available .
- Application to big data problems (N >> 1).
- How do I approach ?
 - Realize that the quasi-stationary density of a Brownian motion which is killed at rate ϕ is given by π .
 - Employ an extension of Blanchet's approach to simulate QSD of Brownian motion.
 - We address the big data problem by employing sub-sampling approach on ϕ which leads to sub-linear cost with respect to data size.

In our last meeting

- \bullet Presented the ReScaLE method when the rate is kill function ϕ is bounded.
- Presented some examples built on artificial data.

Progress so far...

- The general version of the ReScaLE method is coded, which can be applied to an unbounded rate of kill (ϕ) . function. This uses
 - path space simulation of Brownian motion,
 - ullet an unbiased estimator of ϕ using sub-sampling.
- An application of the ReScaLE method which simulates according to the posterior distribution of parameters of a logistic regression applied on Menarche data.
- ullet A new Monte Carlo method to simulate the exit time of d-dimensional Brownian motion, which has lower computational cost.
 - ullet The new method simulates the exit time of d-dimensional Brownian motion, by directly using the density of exit time of d- dimensional Brownian motion.

Where does the Blanchet's method fit?

An application

An Example

We consider the data on age of menarche in Warsaw (MASS) consisting of 25 age groups :

An Example

We consider the data on age of menarche in Warsaw (MASS) consisting of $25\ \mathrm{age}$ groups :

> menarche

	Age	Total	Menarche
1	9.21	376	0
2	10.21	200	0
3	10.58	93	0
4	10.83	120	2
5	11.08	90	2
6	11 33	88	5

An Example

We consider the data on age of menarche in Warsaw (MASS) consisting of $25~{\rm age}$ groups :

> menarche

	Age	Total	Menarche
1	9.21	376	0
2	10.21	200	0
3	10.58	93	0
4	10.83	120	2
5	11.08	90	2
6	11.33	88	5

Aim is to sample from the posterior distribution

$$\pi(\alpha, \beta|...) \propto \prod_{i=1}^{25} p_i^{Menarche_i} (1 - p_i)^{Total_i - Menarche_i},$$
 (2)

$$p_i = 1/(1 + \exp(-\alpha - \beta A g e_i)). \tag{3}$$

Cost vs data size

Future works

- A new Monte Carlo method to simulate the exit times of multi-dimensional Brownian motion.
- Comparison of the run-time of old and new simulation method to simulate the exit time of multi-dimensional Brownian motion.
- A second application of the ReScaLE method to a high-dimensional posterior problem in the big data setting. We would specifically question
 - how does the cost vary with data size ?
 - how does the running cost vary with the dimensions ?
 - quality of the samples obtained using ReScaLE.
- Comparison of different rebirth strategies in a multi-dimensional setting which uses a general version of the ReScaLE method. Specifically we compare
 - run-time,
 - rate of convergence,
 - quality of simulation outputs.
- Comparison of the run-time, rate of convergence of the ReScaLE method with respect to dimensions.
- Comparison of simulation outputs between the ReScaLE method and Markov Chain.

Bibliography

- Beskos, A., & Roberts, G. O. 2005. Exact simulation of diffusions. *Annals of Applied Probability*, **15**(4), 2422–2444.
- Beskos, A., Papaspiliopoulos, Omiros, & Roberts, G. O. 2008. A factorisation of diffusion measure and finite sample path constructions. *Methodology and Computing in Applied Probability*, **10**(1), 85–104.
- Blanchet, Jose, Glynn, Peter, & Zheng, Shuheng. 2012. Empirical Analysis of a Stochastic Approximation Approach for Computing Quasi-stationary Distributions. *Evolve A bridge between Probability*, 19–37.