MODELO PAC GENERALIZADO Y PREDICTORES LINEALES PROBLEMAS

ESTUARDO A. DÍAZ H., 16110

• (Cap 3, Ejercicio 4) Notemos que nuestra clase de hipótesis consiste de todas las posibles conjunciones de d variables. Cada una de estas variables puede estar en la conjunción, estar negada en la conjunción o no estar en la conjunción. Por lo tanto, $|H| = 3^d$, i.e. |H| es finita. Ya demostramos en clase que todas las clases de hipótesis finitas son PAC aprendibles, por lo que H es PAC aprendible.

Ahora, el algoritmo propuesto es el siguiente: Seleccionamos los elementos $(x_i, y_i) \in S$ tales que $y_i = 1, 1 \le i \le m$. Luego, para cada variable $x_{*_j}, 1 \le j \le d$, revisamos si $x_{i_j} = 1, \forall i$ y se se cumple, entonces agregamos x_{*_j} en la conjunción. Notemos que a lo sumo, revisamos m elementos de la muestra, y como revisamos cada una de las d coordenadas, a lo sumo realizamos dm pasos.

• (Cap 3, Ejercicio 7)

Demostración. Recordemos la definición de Bayes.

$$f(x) = \begin{cases} 1 & \mathbb{P}(y = 1|x) \ge \frac{1}{2} \\ 0 & \mathbb{P}(y = 1|x) < \frac{1}{2} \end{cases}$$

A probar: $\forall g, g: X \to Y$, $L_D(f_D) \leq L_D(g)$. Sabemos que $L_D(h) = \underset{(x,y) \sim D^m}{\mathbb{P}} [h(x) \neq y] = D(\{(x,y): h(x) \neq y\}) = \mathbb{P}[h(x) \neq y|X = x]\mathbb{P}[X = x]$ Luego,

$$\mathbb{P}[h(x) \neq y | X = x] = \mathbb{P}[y = 1 | X = x] \mathbb{P}[h(x) = 0 | X = x] + \mathbb{P}[y = 0 | X = x] \mathbb{P}[h(x) = 1 | X = x]$$

Para Bayes,

$$\mathbb{P}[f_D(x) \neq y | X = x] = \mathbb{P}[y = 1 | X = x] \mathbb{P}[f_D(x) = 0 | X = x] + \mathbb{P}[y = 0 | X = x] \mathbb{P}[f_D(x) = 1 | X = x]$$
 entonces
$$\mathbb{P}[f_D(x) \neq y | X = x] = \min\{\mathbb{P}[y = 1 | X = x], 1 - \mathbb{P}[y = 1 | X = x]\}.$$
 Para cualquier otro predictor,

$$\begin{split} & \mathbb{P}[h(x) \neq y | X = x] \\ & = \mathbb{P}[y = 1 | X = x] \mathbb{P}[h(x) = 0 | X = x] + \mathbb{P}[y = 0 | X = x] \mathbb{P}[h(x) = 1 | X = x] \\ & \geq \min\{\mathbb{P}[y = 1 | X = x], 1 - \mathbb{P}[y = 1 | X = x]\}[\mathbb{P}[h(x) = 0 | X = x] + \mathbb{P}[h(x) = 1 | X = x]] \\ & = \min\{\mathbb{P}[y = 1 | X = x], 1 - \mathbb{P}[y = 1 | X = x]\} \\ & = L_D(f_d) \end{split}$$

- (Cap 4, Ejercicio 1) Dada una distribución D, y un algoritmo A, queremos demostrar que los siguientes son equivalentes:
 - 1. Dados $\epsilon, \delta > 0, \exists m(\epsilon, \delta) \ni \forall m > m(\epsilon, \delta),$

$$\mathbb{P}_{S \sim D^m}[L_D(A(S)) > \epsilon] < \delta$$

2.

$$\lim_{n \to \infty} \mathbb{E}_{S \sim D^m}[L_D(A(S))] = 0$$

 $\begin{aligned} Demostración. \ (\Longrightarrow) \ \underset{S \sim D^m}{\mathbb{E}} [L_D(A(S))] &= \underset{S \sim D^m}{\mathbb{P}} [L_D(A(S)) > \epsilon] \underset{S \sim D^m}{\mathbb{E}} [L_D(A(S))|L_D(A(S)) > \epsilon] + \\ & \underset{S \sim D^m}{\mathbb{P}} [L_D(A(S)) \leq \epsilon] \underset{S \sim D^m}{\mathbb{E}} [L_D(A(S))|L_D(A(S)) \leq \epsilon] \leq \epsilon + \delta \leq 2max\{\epsilon, \delta\}. \end{aligned}$

Dado $\epsilon' > 0$, tomamos $\epsilon = \delta = \epsilon'/2$. Entonces, $\exists m(\epsilon'/2, \epsilon'/2) \ni \text{si } m > m(\epsilon'/2, \epsilon'/2) \Longrightarrow$

$$\mathbb{E}_{S \sim D^m}[L_D(A(S))] < \epsilon'$$

 (\Leftarrow) Sean $\epsilon, \delta > 0$. Sea $\epsilon' = \epsilon \delta$. Entonces $\exists M \ni \text{si } m > M$,

$$\underset{S \sim D^m}{\mathbb{E}} [L_D(A(S))] < \epsilon \delta$$

Supongamos que $\underset{S \sim D^m}{\mathbb{P}}[L_D(A(S)) > \epsilon] > \delta$ entonces

$$\underset{S \sim D^m}{\mathbb{E}} [L_D(A(S))] > \epsilon \delta(\rightarrow \leftarrow)$$

- (Cap 9, Ejercicio 3) Perceptrones: Queremos demostrar que para cada $m \in \mathbb{Z}^+, \exists w * \in \mathbb{R}^d$ y una secuencia de ejemplos $\{(x_1, y_1), \dots (x_m, y_m)\}$ se cumple lo siguiente:
 - $R = max_i||x_i|| \le 1$
 - $||w*||^2 = m$ y para todo $i \le m, y_i < x_i, w* > \ge 1$.
 - \bullet Cuando realizamos el algoritmo del perceptron, en esta secuencia de ejemplos, se actualiza m veces.

Consideremos d=m y para cada i, sea $x_i=e_i$. Entonces $R=max_i||x_i||=max_i||e_i||=max_i\{1\}=1\leq 1$.

Luego, obtenemos w* de la siguienta manera: Sea $w*_0 = (e_1, \ldots, e_d)$, luego para cada $i = 1, \ldots, m$, si $y_i < x_i, w*_i >= -1$ entonces $w*_i$ es igual a $w*_{i-1}$ con la i-ésima coordenada reemplazada por $-e_i$. Entonces $||w*||^2 = < w*, w* >= 1 + \cdots + 1 = m$. Para $i \le m, y_i < x_i, w*_i >= 1 \ge 1$ por construcción. Entonces tenemos que $min\{||w|| : \forall i \in [m], y_i < w, x_i > \ge 1\} \le \sqrt{m}$. Finalmente, el algoritmo propuesto solo necesita m pasos para converger.