

Universidade Federal de Campina Grande Centro de Ciências e Tecnologia Unidade Acadêmica de Matemática Disciplina: Álgebra Linear I – 2021.2

Lista 3 – Determinante e Matriz Inversa

1. Dadas as matrizes
$$A=\left[\begin{array}{cc} 1 & 2 \\ 1 & 0 \end{array}\right]$$
 e $B=\left[\begin{array}{cc} 3 & -1 \\ 0 & 1 \end{array}\right]$, calcule

- (a) $\det A + \det B$.
- (b) $\det(A+B)$.
- 2. Encontre todos os valores de $t \in \mathbb{R}$ tais que det A = 0, onde:

(a)
$$A = \begin{bmatrix} t-7 & t-7 \\ 5 & t \end{bmatrix}$$
.

(b)
$$A = \begin{bmatrix} t - 1 & 5 \\ 3 & t + 1 \end{bmatrix}$$
.

(c)
$$A = \begin{bmatrix} t-2 & 5 & 9 \\ 0 & t+3 & -6 \\ 0 & 0 & t-5 \end{bmatrix}$$
.

3. Dada a matriz
$$A = \begin{bmatrix} 2 & 3 & 1 & -2 \\ 5 & 3 & 1 & 4 \\ 0 & 1 & 2 & 2 \\ 3 & -1 & -2 & 4 \end{bmatrix}$$
 calcule:

- (a) A_{23} .
- (b) $|A_{23}|$.
- (c) \triangle_{23} .
- (d) $\det A$.
- 4. Calcule $\det A$, onde

(a)
$$A = \begin{bmatrix} 3 & -1 & 5 & 0 \\ 0 & 2 & 0 & 1 \\ 2 & 0 & -1 & 3 \\ 1 & 1 & 2 & 0 \end{bmatrix}$$
.

(b)
$$A = \begin{bmatrix} 3 & 0 & 0 & 0 & 0 \\ 19 & 18 & 0 & 0 & 0 \\ -6 & \pi & -5 & 0 & 0 \\ 4 & \sqrt{2} & \sqrt{3} & 0 & 0 \\ 8 & 3 & 5 & 6 & -1 \end{bmatrix}$$
.

- 5. Dada a matriz $A = \begin{bmatrix} 2 & 1 & -3 \\ 0 & 2 & 1 \\ 5 & 1 & 3 \end{bmatrix}$ calcule:
 - (a) $\operatorname{adj} A$.
 - (b) $\det A$.
 - (c) A^{-1} .
- 6. Dadas as matrizes $A=\begin{bmatrix}t&0&1\\0&1&5\\3&0&1\end{bmatrix}$ e $B=\begin{bmatrix}2&2&2\\0&s&2\\1&1&2\end{bmatrix}$, com $t,s\in\mathbb{R}$ fixados tais que $t\neq 3$ e $s\neq 0$, calcule o determinante de:
 - (a) $A^{-1}B^{T}$.
 - (b) $B^{-1}A^2$.
- 7. Considere $A=\begin{bmatrix}1&0&0\\1&-1&0\\1&0&1\end{bmatrix}$. Existe A^{-1} ? Justifique sua resposta. Em caso afirmativo, determine A^{-1} .
- 8. Calcule o determinante da matriz

$$A = \left[\begin{array}{cccc} 0 & 2 & -1 & 3 \\ 1 & 0 & 2 & 2 \\ 0 & -1 & 1 & 1 \\ 1 & 2 & 1 & 5 \end{array} \right].$$

- 9. Seja $a \in \mathbb{R}$ de modo que a matriz $A = \begin{bmatrix} 3 & 2 & 2 \\ 1 & 2 & a \\ 0 & 1 & 4 \end{bmatrix}$ não seja invertível. Então o valor de a é:
 - (a) -18.
 - (b) 18.
 - (c) 6.
 - (d) -6.

10. Seja
$$A=\begin{bmatrix}2&5&0\\2&2&1\\2&a&4\end{bmatrix}$$
. Para quais valores de $a\in\mathbb{R}$ a matriz A é invertível?

- (a) Para todo $a \in \mathbb{R}$ diferente de -7.
- (b) a = -7, apenas.
- (c) a = -14, apenas.
- (d) Para todo $a \in \mathbb{R}$ diferente de -14.
- (e) Não existe $a \in \mathbb{R}$ com essa propriedade.
- 11. Resolva os sistemas de equações lineares abaixo, usando a Regra de Cramer:

(a)
$$\begin{cases} x - 2y + z = 1 \\ 2x + y = 3 \\ y - 5z = 4 \end{cases}$$

(a)
$$\begin{cases} x - 2y + z = 1 \\ 2x + y = 3 \\ y - 5z = 4 \end{cases}$$
(b)
$$\begin{cases} x + 2y + 3z = 2 \\ 2x + 3y - z = -2 \\ 3x + 2y + z = 2 \end{cases}$$

(c)
$$\begin{cases} x + y + z = 1 \\ x + 2y + 4z = 4 \\ x + 3y + 9z = 9 \end{cases}$$

(d)
$$\begin{cases} 2x + 3y = z + 1 \\ 3x + 2z = 8 - 5y \\ 3z - 1 = x - 2y \end{cases}$$

12. Considere o sistema de equações lineares abaixo:

$$\begin{cases} x + 3y + 4z = -5 \\ 3x + 2y + z = 8 \\ 2x + 4y + 3z = 4 \end{cases}$$

Resolva-o:

- (a) Usando operações elementares.
- (b) Usando o Método de Gauss.
- (c) Usando a Regra de Cramer.
- 13. Considere o sistema de equações lineares abaixo:

$$\begin{cases} kx + y + z = 1 \\ x + ky + z = 1 \\ x + y + kz = 1 \end{cases}$$

Encontre os valores de $k \in \mathbb{R}$ tais que o sistema seja

- (a) Possível e determinado.
- (b) Possível e indeterminado.
- (c) Impossível.

14. Seja
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Encontre A^{-1} :

- (a) Usando a matriz dos cofatores.
- (b) Usando operações elementares.
- 15. Usando operações elementares, encontre A^{-1} , onde:

(a)
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8 \end{bmatrix}$$
.

(b)
$$A = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & 3 \end{bmatrix}$$
.

(c)
$$A = \begin{bmatrix} 4 & -1 & 2 & -2 \\ 3 & -1 & 0 & 0 \\ 2 & 3 & 1 & 0 \\ 0 & 7 & 1 & 1 \end{bmatrix}$$
.