第17课: 定积分概念与计算-可积函数的性质

第7章 函数的积分

- 内容:

第7.1节 定积分概念与初步计算

第7.2节 可积函数的性质

定积分概念

- 问题来源(几何物理背景)
- **实例1:** 曲边梯形的面积 设 $f \in C[a,b]$ 且 $f \ge 0$,如图记

$$D = \{(x, y) \mid 0 \le y \le f(x), a \le x \le b\}$$

这是xy平面上由4条曲(直)线

$$x=a, x=b, y=0, y=f(x)$$

围成的平面区域,称为曲边梯形 求D的面积A=?

- 实例1 (续): 曲边梯形的面积
- 方法: 分割为小长方形-将面积叠加-逼近
 - 1) 有限分割:将区间[a,b]任意有限分割,记为

$$T: a = x_0 < x_1 < x_2 < L < x_n = b$$

记 $||T|| = \max_{i=1,2,L,n} \Delta x_i, \ \Delta x_i = x_i - x_{i-1}$

2) D分割为子区域 ΔD_i , i=1,2,L, n

面积为 $\Delta A_i \approx f(c_i) \Delta x_i, c_i \in [x_{i-1}, x_i]$ 任取

求和得
$$A = \sum_{i=1}^{n} \Delta A_i \approx \sum_{i=1}^{n} f(c_i) \Delta x_i$$

y = f(x)

逼近准确值
$$A = \lim_{\|T\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i$$

- **实例2**: 变速直线运动物体的位移 设物体在t时刻运动速度为v(t), 求时段[a,b]内的总位移S=?
- 方法: 利用分段匀速运动的位移来逼近变速运动的位移
 - 1) 有限分割:将时段[a,b]任意有限分割,记为

$$T: \quad a = t_0 < t_1 < t_2 < L < t_n = b$$

记
$$\Delta t_i = t_i - t_{i-1}, i = 1, 2, L, n, ||T|| = \max_{i=1,2,L,n} \Delta t_i$$

2) 在时段[t_{i-1} , t_i]内物体位移 $\Delta S_i \approx v(\tau_i)\Delta t_i$, $\tau_i \in [t_{i-1},t_i]$ (任取)

求和得到
$$S = \sum_{i=1}^{n} \Delta S_i \approx \sum_{i=1}^{n} v(\tau_i) \Delta t_i$$

3) 分割越细, 误差越小: 令 ||T|| → 0 (分割无限加细)

逼近实际位移
$$S = \lim_{\|T\| \to 0} \sum_{i=1}^{n} v(\tau_i) \Delta t_i$$

- 抽象提升——归纳类似问题的处理方法, 抽象出新概念
- **积分:** 设 $f:[a,b] \to \mathbb{R}$, 如果 $\exists A \in \mathbb{R}$ 使得 $\forall \varepsilon > 0$, $\exists \delta > 0$, 对于区间[a,b]上任意有限分割

$$T: a = x_0 < x_1 < x_2 < L < x_n = b$$

记分割宽度 $||T||=\max_{i=1,2,L,n} \Delta x_i, \ \Delta x_i = x_i - x_{i-1}, \ i=1,2,L,n$ 只要 $||T||<\delta$,必有

$$|\sum_{i=1}^{n} f(c_i) \Delta x_i - A| < \varepsilon, \quad \sharp + c_i \in [x_{i-1}, x_i] \notin \mathbb{R}, \ i = 1, 2, L, n$$

这时称 f 在 [a,b]上Riemann可积, 记为 $f \in R[a,b]$, 并记

$$\lim_{\|T\| \to 0} \sum_{i=1}^{n} f(c_i) \Delta x_i = A = \int_a^b f(x) dx$$

称之为f 在[a,b]上的积分值,a—积分下限,b—积分上限

- 注2: 若f 在[a,b]上Riemann可积,则

—— 积分值与积分变量无关

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt$$

■ 几何意义: 曲边梯形的有向面积/代数面积

参见下图(不限制f的符号):

x轴上方部分围成面积为正

x轴下方部分围成面积为负

$$A = \int_{a}^{b} f(x) dx$$

▶ 物理意义:

变速直线运动物体位移 (分段匀速运动叠加逼近)

变力做功 (分段常力做功叠加逼近)

非均匀细棒的总质量 (分段均匀细棒质量叠加逼近)

- 积分的性质-1
- \triangleright 线性性质: 设 $f,g \in R[a,b], \alpha,\beta \in R$,则

$$\alpha f + \beta g \in R[a,b]$$

----R[a,b]构成线性空间

证: 任取[a,b]上有限分割T: $a = x_0 < x_1 < x_2 < L < x_n = b$

令
$$\Delta x_i = x_i - x_{i-1}$$
, $\forall c_i \in [x_{i-1}, x_i]$, $i = 1, L$, n , 考虑相应和式

$$\sum_{i=1}^{n} [\alpha f(c_i) + \beta g(c_i)] \Delta x_i = \alpha \sum_{i=1}^{n} f(c_i) \Delta x_i + \beta \sum_{i=1}^{n} g(c_i) \Delta x_i$$

所以左端有相同极限, 依照定义 $\alpha f + \beta g \in R[a,b]$ 且L W

- 积分的性质-2
- ightharpoonup 保号性质: 设 $f \in R[a,b]$, 且 $f \ge 0$, 则 $\int_a^b f(x) dx \ge 0$

本质上就是极限的保号性质,证明留作练习

推论1 (保序性质): 设 $f,g \in R[a,b]$, 且 $f \ge g$, 则 $\int_a^b f(x)dx \ge \int_a^b g(x)dx$

证: 线性性质+保号性质 (自己练习)

推论2: 设 $|f|, f \in R[a,b]$, 则 $|\int_a^b f(x)dx| \le \int_a^b |f(x)| dx$

证: 注意 ±*f* ≤| *f* |

- 积分的性质-3
- ightharpoonup 区间可加性质: 设 a < c < b, 则 $f \in R[a,b] \Leftrightarrow f \in R[a,c]$ 且 $f \in R[c,b]$
- 这时有 $\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$ (回忆几何意义) 证明留到下次。
- 规定: $\int_{a}^{a} f(x)dx = 0$, $\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$
- **推论1:** $\int_{a}^{b} f(x)dx + \int_{b}^{a} f(x)dx = \int_{a}^{a} f(x)dx$
- **推论2:** $\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$

注: 这说明区间可加等式与a,b,c大小无关,只要f可积

定积分的计算

- 初步计算方法: 先假设 $f \in R[a,b]$ (后面讨论如何判断)
 - 1) 利用定义:为简化计算通常取均匀分割

T:
$$\Delta x = \frac{b-a}{n}$$
, $x_i = a + i\Delta x$, $i = 0,1,L$, n

则

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$
 (比如取定**c**_i=**x**_i)

2) 借助几何意义

$$\int_{a}^{b} f(x)dx = A^{+} - A^{-}$$

其中A+表示y=f(x)在x轴上方围成的面积 A-表示y=f(x)在x轴下方围成的面积

夕 例1: $f_1(x) \equiv c, x \in [a,b]$

取[a,b]的均匀分割T: $\Delta x = \frac{b-a}{n}$, $x_i = a + i\Delta x$, i = 0,1,L, n则分割的宽度 $||T|| = \Delta x = \frac{b-a}{n}$, 所以 $||T|| \to 0 \Leftrightarrow n \to \infty$

考察这个分割下函数的和式

$$\sum_{i=1}^{n} f_1(x_i) \Delta x = \sum_{i=1}^{n} c \Delta x = c \sum_{i=1}^{n} \Delta x = c(b-a)$$

推论 (估值性质**):** 设 $f \in R[a,b]$ 且 $m \le f(x) \le M$,则 $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$

✓ **例2:** $f_2(x) \equiv x, x \in [a,b]$

仍然取均匀分割T同上, 注意 $x_i = a + i\Delta x$, i = 0,1,L, n 这时函数的和式

$$\sum_{i=1}^{n} f_2(x_i) \Delta x = \sum_{i=1}^{n} (a+i\Delta x) \Delta x = \sum_{i=1}^{n} a\Delta x + \sum_{i=1}^{n} i\Delta x^2$$

$$\stackrel{!}{\sharp} \Leftrightarrow \sum_{i=1}^{n} a\Delta x = a(b-a)$$

$$\sum_{i=1}^{n} i\Delta x^2 = (\frac{b-a}{n})^2 \frac{n(n+1)}{2} \to \frac{(b-a)^2}{2} \quad (n \to \infty)$$

$$\therefore \int_{a}^{b} f_2(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} (a+i\Delta x) \Delta x = a(b-a) + \frac{1}{2}(b-a)^2$$

$$\stackrel{!}{\sharp} \Leftrightarrow \int_{a}^{b} x dx = a(b-a) + \frac{1}{2}(b-a)^2 = \frac{1}{2}(b^2 - a^2)$$
W

✓ 例3:
$$\int_{-3}^{0} (2x + \sqrt{9 - x^2}) dx = ?$$

解:假设被积函数是可积的,则可以利用积分线性性质以及例2结果和积分的几何意义

$$\int_{-3}^{0} (2x + \sqrt{9 - x^2}) dx$$

$$= 2 \int_{-3}^{0} x dx + \int_{-3}^{0} \sqrt{9 - x^2} dx \quad (\text{DPS})$$

$$= [0^2 - (-3)^2] + \frac{1}{4} \pi 3^2$$

$$= -9 + \frac{9}{4} \pi \qquad W$$

✓ 例4:
$$f_4(x) = \begin{cases} 3, & x < 3 \\ 4x, & x \ge 3 \end{cases}$$
 计算 $\int_0^5 f_4(x) dx = ?$

解:根据区间可加性质, $f_4(x)$ 在区间[0,5]上可积当且仅当在[0,3]上和[3,5]上都可积,这时有

$$\int_{0}^{5} f_{4}(x)dx = \int_{0}^{3} f_{4}(x)dx + \int_{3}^{5} f_{4}(x)dx$$

$$= \int_{0}^{3} 3dx + \int_{3}^{5} 4xdx \ [] \pm]$$

$$= 3 \cdot 3 + 2(5^{2} - 3^{2}) = 41$$
 W

- 注: 虽然 $f_4(3)=12\neq 3$,但不影响积分结果
- 一般而言, 函数改变个别点的值, 不会影响区间上积分的值

▶ Newton-Leibniz公式

设 $f \in R[a,b]$ 且在(a,b)上有原函数 $F \in C[a,b]$,则 $\int_a^b f(x)dx = F(b) - F(a) = F(x)\Big|_a^b$

• 注: 不定积分包含了所有原函数, 所以公式也可写成 $\int_a^b f(x)dx = \int f(x)dx \Big|_a^b$

由此可以看出定积分与不定积分的联系

N-L公式 (另一种表述) 设 $F \in C[a,b]$ 在(a,b)内可导, 且导函数在[a,b]上可积, 则 $\int_{a}^{b} F'(x) dx = \int_{a}^{b} dF(x) = F(x) \Big|_{a}^{b}$

N-L公式的证明:

取[
$$a,b$$
]上均匀分割 T : $a = x_0 < x_1 < x_2 < L < x_n = b$

其中
$$x_i = a + i\Delta x, i = 0,1,L,n, \Delta x = \frac{b-a}{n}$$

这时
$$F(b)-F(a) = \sum_{i=1}^{n} [F(x_i)-F(x_{i-1})]$$

在每个区间[x_{i-1},x_i]上应用Lagrange中值公式得

$$F(x_i) - F(x_{i-1}) = F'(c_i)\Delta x, c_i \in (x_{i-1}, x_i)$$

己知 $F' = f \in R[a,b]$

$$\therefore \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x = \int_{a}^{b} f(x) dx$$

这说明
$$F(b)-F(a) = \int_a^b f(x)dx$$
 W

解:
$$p \neq -1$$
, $b > a > 0$ 时 $(p \in \mathbb{N})$ 时 a, b 可以任意)

$$\int_{a}^{b} x^{p} dx = \int x^{p} dx \Big|_{a}^{b} = \frac{1}{p+1} x^{p+1} \Big|_{a}^{b} = \frac{1}{p+1} (b^{p+1} - a^{p+1})$$

$$p = -1$$
, $ab > 0$ 时

$$\int_{a}^{b} \frac{dx}{x} = \int \frac{dx}{x} \Big|_{a}^{b} = \ln|x| \Big|_{a}^{b} = \ln|\frac{b}{a}| \qquad W$$

特例:
$$p=1$$
, $\int_a^b x dx = \frac{1}{2}(b^2 - a^2)$ (与例2 结果一致)

可积函数的性质

- 目的: 找出可积函数的特性,确定何种函数是可积的
- ightharpoonup 有界性 (必要条件): 若 $f \in R[a,b]$, 则 f 在[a,b]上有界

论证: 令
$$\int_a^b f(x)dx = A$$
, 根据积分定义, 存在均匀分割

T:
$$x_i = a + i\Delta x$$
, $i = 0, 1, L$, n , $\Delta x = \frac{b - a}{n}$

由此导出

$$|\sum_{i=1}^{n} f(c_i) \Delta x| < |\sum_{i=1}^{n} f(c_i) \Delta x - A| + |A| < 1 + |A|$$

因此

$$|\sum_{i=1}^{n} f(c_i)| \le (1+|A|)/\Delta x$$

- 注:有界是可积的必要条件,但不是充分条件 f在[a,b]上有界未必有 f \in R[a,b]
- **实例**: Dirichlet函数D(x)在[0,1]上有界 任取[0,1]上分割 T: $0 = x_0 < x_1 < x_2 < L < x_n = 1$
 - 1) 选取 $c_i \in [x_{i-1}, x_i]$ 为有理数, i = 1, 2, L, n

$$\sum_{i=1}^{n} D(c_i) \Delta x_i = \sum_{i=1}^{n} \Delta x_i = 1$$

2) 选取 $c_i \in [x_{i-1}, x_i]$ 为无理数, i = 1, 2, L, n

$$\sum_{i=1}^{n} D(c_i) \Delta x_i = \sum_{i=1}^{n} 0 \Delta x_i = 0$$

综上不可能 $\exists A \in \mathbb{R}$ 使得 $|\sum_{i=1}^{n} D(c_i) \Delta x_i - A| < \varepsilon \le \frac{1}{2}$ W

- **▶ 连续性 (**充分条件**)**: $C[a,b] \subset R[a,b]$ ——连续函数是可积的(证明稍后)
- **▶ 推论 (**积分中值定理**)**: 设 $f,g \in C[a,b]$, 且 g(x) 不变号,则 $\exists c \in [a,b]$ 使得 $\int_{a}^{b} f(x)g(x)dx = f(c)\int_{a}^{b} g(x)dx$
- **特例:** 设 $f \in C[a,b]$, 则 $\exists c_0 \in [a,b]$ 使得 $f(c_0) = \frac{1}{b-a} \int_a^b f(x) dx$

称为函数f在区间[a,b]上的平均值

■ **积分中值定理证明**: 不妨设 $g(x) \ge 0$, 由保号性 $\int_a^b g(x)dx \ge 0$ 已知 $f \in C[a,b]$, 据最值性质有 $m = \min_{a \le x \le b} f(x)$, $M = \max_{a \le x \le b} f(x)$ 这导出 $mg(x) \le f(x)g(x) \le Mg(x)$, $x \in [a,b]$

应用积分保序性质和线性性质得到

$$m\int_{a}^{b} g(x)dx \le \int_{a}^{b} f(x)g(x)dx \le M\int_{a}^{b} g(x)dx$$

不妨令 $\int_a^b g(x)dx > 0$,则上式导出

$$m \le \int_a^b f(x)g(x)dx / \int_a^b g(x)dx \le M$$

由连续函数介值性质 $\exists c \in [a,b]$ 使得

$$f(c) = \int_{a}^{b} f(x)g(x)dx / \int_{a}^{b} g(x)dx$$
 W

✓ 例题 (Cauchy不等式): 设 $f,g \in C[a,b]$,

求证
$$\left[\int_{a}^{b} f(x)g(x)dx\right]^{2} \le \int_{a}^{b} \left[f(x)\right]^{2} dx \int_{a}^{b} \left[g(x)\right]^{2} dx$$

证明: 考虑 $\forall \lambda \in \mathbb{R}, \int_a^b [f(x) + \lambda g(x)]^2 dx \ge 0$

应用积分线性性质得到

$$\int_{a}^{b} [f(x)]^{2} dx + 2\lambda \int_{a}^{b} f(x)g(x)dx + \lambda^{2} \int_{a}^{b} [g(x)]^{2} dx \ge 0$$

$$\exists A = \int_a^b [f(x)]^2 dx, \ B = \int_a^b f(x)g(x)dx, \ C = \int_a^b [g(x)]^2 dx$$

则有 $\forall \lambda \in \mathbb{R}, A + 2B\lambda + C\lambda^2 \geq 0$

所以.....

第17课: 定积分概念与计算-可积函数的性质

■ 预习 (下次课内容):

第7.3节 微积分基本定理

第7.4节 定积分计算-换元法与分部积分

▶ 作业 (本次课):

练习题7.1: 2*(均匀分割取极限), 4(1,3), 5(2), 6(2-4),

7(3-4, 5*提示: 转化为定积分), 8, 9(1).

练习题7.2: 2, 4[自己练习], 5, 8, 9*.