### Machine Learning for Engineers (ME644, hello.iitk.ac.in)

© Malay K. Das, 210 Southern Lab, mkdas@iitk.ac.in

Office hours: W 1030-1130, SL-210 Previously:

Introduction, course policy, kNN

Today: review, kNN

Lecture notes are copyrighted; do NOT share without written permission from the instructor; check the course website everyday for notes/resources/assignments. Please read the 'course outcome' to see if this course is right for you.

If you have already taken a ML course from another department, please drop this course; otherwise, you will be deregistrared from this course; auditing this course is not permitted, you may credit in S/X mode.

1

# Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

Machine learning predicts using data; used when mechanistic models are not available

Input data are described by features (usually a feature vector); output is called label
(usually a scalar, integer or real)

Machine learning

Supervised learning: prediction without a mechanistic model

regression classification

Other paradigms of machine
learning are beyond the scope of this course

clustering dimensionality reduction

# Example: Should I registrar for the machine learning course or not model input: you ?? solution algorithm prediction: yes or no Inputs are described by features Outputs are known as labels Output: student's perceived grade B or higher yes (take the course) label = 1 No, otherwise label = -1 Inputs (features): Current CPI, hours of sleep the night before exam 2D vector (a point in a 2Dplane, called feature space)

Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in



3

### 'Distance' in kNN

In general, distance between two mD vectors, may be defined as  $d_i = \|\mathbf{x}_i - \mathbf{x}_{\star}\|_p$ 

Consider a 2D feature space 
$$\mathbf{x}_i = \begin{bmatrix} x_{i1} & x_{i2} \end{bmatrix}^T$$
 
$$= \left( \sum_{j=1}^m \left| x_{ij} - x_{\star j} \right|^p \right)^{\frac{1}{p}}$$
 
$$p \geq 1 \quad p \in \mathbb{R}$$

for kNN, and in many other ML algorithms, we commonly use p=2

Thus 
$$d_i = \|\mathbf{x}_i - \mathbf{x}_\star\|_2 = \sqrt{(x_{i1} - x_{\star 1})^2 + (x_{i2} - x_{\star 2})^2}$$
 called 2-norm or  $l_2$  norm or Euclidian norm If  $(x_{i1} - x_{\star 1})$  and  $(x_{i2} - x_{\star 2})$  or Euclidian distance

are of different order, one feature may unphysically dominate over other

for instance 
$$(x_{i1} - x_{\star 1}) \sim \mathcal{O}\left(.01\right), (x_{i2} - x_{\star 2}) \sim \mathcal{O}\left(100\right) \Rightarrow d_i \sim (O)\left(x_{i2} - x_{\star 2}\right)$$

5

# Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

Scaling (Feature normalization)  $\mathbf{x}_i = \begin{bmatrix} x_{i1} & x_{i2} \end{bmatrix}^T$   $x_{i1} \leftarrow \frac{x_{i1} - x_{1,\min}}{x_{1,\max} - x_{1,\min}} \qquad i = 1, 2, \cdots, n$  n: no. of training data

$$x_{i2} \leftarrow \frac{x_{i2} - x_{2,\min}}{x_{2,\max} - x_{2,\min}}$$

another popular option is to create zero mean, unit standard deviation data

$$x_{i1} \leftarrow \frac{x_{i1} - \overline{x}_1}{\sigma_1}$$
  $\overline{x}_1 = \frac{1}{n} \sum_{i=1}^n x_{i1}$   $\sigma_1^2 = \frac{1}{n} \sum_{i=1}^n (x_{i1} - \overline{x}_1)^2$ 

**Balancing** All classes must have comparable representations nos. of red and green dots should be close to each other



### **Outlier removal**

red point surrounded by green (or vice versa) is an outlier

### **Decision boundary**

Compute labels for various test data

We get a contour of labels, known as decision boundary

Prediction is quicker, once we have the decision boundary, until we change the training set



Computing decision boundaries with various k values provides more insight about the physical problem

Weighted kNN (an important variation of kNN)

Standard **kNN** decides label of test data based on what majority of neighbors votes weighted **kNN** puts more weightage on the close neighbors' votes

7

# Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in





Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

Visualizing **kNN** we find k-nearest neighbors, and if  $\sum_{i}^{k} y_{i} \geq 0$  then  $\widehat{y}_{\star}(\mathbf{x}_{\star}) = 1$   $y_{i} = \{-1, 1\}$  else  $\widehat{y}_{\star}(\mathbf{x}_{\star}) = -1$   $z = \sum_{i}^{k} y_{i} \qquad \varphi(z) = \begin{cases} +1 & z \geq 0 \\ -1 & \text{otherwise} \end{cases}$  generally  $w_{0} = w_{1} = \cdots = w_{k} = 1$  unless we are using weighted **kNN** 

network of such Artificial Neurons (called artificial neural network, ANN) will be

discussed later

Recall the definition of machine learning

A **computer program** is said to **learn** from experience E with respect to some class of task T and performance measure P, if its performance at task T, as measured by P, improves with experience E

kNN doesn't learn the fitting parameter (k) until we intervene

the learning process in kNN is called lazy learning

In **lazy learning**, learning starts when a test data is given

such parameters are known as hyperparameter hyperparameter controls the learning process, learning doesn't determine hyperparameter

The opposite is eager learning, where learning is input-independent

Lazy learning, while efficiently handles new data, usually requires more memory/computation

11

Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in

### **Supervised Learning**

Given a set of discrete data points  $\mathcal{T} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$  we wish to estimate  $\widehat{y}_{\star}\left(\mathbf{x}_{\star}\right)$ 

'hat' sign indicates estimation (prediction)

**NOT** exact

**Training data** 

$$\mathcal{T} = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$$
  $\mathbf{x}_\star$  test data (unseen data) feature label

If the label is categorial  $y_i \in \mathbb{Z}$  (integer) called classification problems

Conversely, we may have regression problems where label is numerical  $y_i \in \mathbb{R}$  (real)

Regression, Classification together constitute Supervised Learning

### Summary: week 01

Course policy and outcome

Machine learning: definitions, comparison with mechanistic modeling framework k-nearest neighbors

Remember the following terms/phrases/ideas: Feature, label, hyperparameter supervised/unsupervised learning, lazy/eager learning, regression, classification, artificial neural network, decision boundary, k-nearest neighbors, K-fold cross-validation

Think: kNN is not very effective for high-dimensional feature space, why?

### Coming up in week 02

Review of linear algebra, regression

13

Malay K. Das, ME, IIT Kanpur, mkdas@iitk.ac.in