Multivariate Analysis (MATH5855)

Dr. Atefeh Zamani

Based on notes by **Prof. Spiridon Penev** and **Dr. Pavel Krivitsky**University of New South Wales
School of Mathematics & Statistics
Department of Statistics

Term 3, 2022

Section 2: The Multivariate Normal Distribution

Definition, Properties of multivariate normal, Tests for Multivariate

Normality, Software, Examples, Additional resources, Exercises

Definition of the Multivariate Normal Distribution

Generalising the Normal Distribution

- ▶ Generalisation of the univariate normal for $p \ge 2$ dimensions
- ► Consider replacing $\left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1}(x-\mu)$ in

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-[(x-\mu)/\sigma]^2/2}, \quad x \in \mathbb{R}$$
 (1)

by $(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})$.

- $\mu = E(x) \in \mathbb{R}^p$ the expected value of $x \in \mathbb{R}^p$
- covariance matrix

$$\Sigma = E(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^{\mathsf{T}} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1p} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{p1} & \sigma_{p2} & \cdots & \sigma_{pp} \end{pmatrix} \in \mathcal{M}_{p,p}$$
(2)

- \triangleright diagonal elements of Σ : variances of the p random variables
- $\sigma_{ij} = E[(X_i E(X_i))(X_j E(X_j))], i \neq j$ stands for the covariances between the *i*-th and *j*-th random variables
- $ightharpoonup \sigma_{ii} \equiv \sigma_i^2$
- Only makes sense if Σ is pos. def

Multivariate Normal Distribution density

If Σ is pos. def then density of X is

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{(\mathbf{x} - \boldsymbol{\mu})^T \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu})/2}, x_i \in \mathbb{R}, \ i = 1, \dots, p.$$
(3)

- \triangleright $EX = \mu$
- Notation: $N_p(\mu, \Sigma)$.

Cramer-Wold argument

- \blacktriangleright We also want MVN for singular Σ (nonneg. def.)
- Use Cramer–Wold argument:

The distribution of a p-dimensional random vector \boldsymbol{X} is completely characterised by the one-dimensional distributions of all linear transformations $\boldsymbol{t}^T\boldsymbol{X}$, $\boldsymbol{t}\in\mathbb{R}^p$ i.e., consider $E\left[\exp\{it\left(\boldsymbol{t}^T\boldsymbol{X}\right)\}\right]$, (assumed known for every $t\in\mathbb{R}$ and $\boldsymbol{t}\in\mathbb{R}^p$)

Substitute t=1 to get $E\left[\exp\{i\left(\boldsymbol{t}^{T}\boldsymbol{X}\right)\}\right]$, the cf of the vector \boldsymbol{X} .

Definition

The random vector $\mathbf{X} \in \mathbb{R}^p$ has a multivariate normal distribution if and only if (iff) any linear transformation $\mathbf{t}^T \mathbf{X}$, $\mathbf{t} \in \mathbb{R}^p$ has a univariate normal distribution.

Lemma

The characteristic function of the (univariate) standard normal random variable $X \sim N(0,1)$ is

$$\varphi_{\mathsf{X}}(t) = e^{-t^2/2}$$

Sketch of the Proof:

- $\varphi_X(t) = E\left(e^{itX}\right) = \int_{-\infty}^{\infty} e^{itX} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$
- Completing the square and factoring,

$$\varphi_{\mathsf{X}}(t) = e^{-t^2/2} \lim_{h \to \infty} \int_{-h+it}^{h+it} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} dz$$

▶ Use Cauchy's Theorem and contour integration to show that the complex integral above equals 1.

Aside: We could use the moment generating function (mgf) instead:

$$M_X(t) = E(e^{tX}) = e^{-t^2/2}.$$

Theorem

Suppose that for a random vector $\mathbf{X} \in \mathbb{R}^p$ with a multivariate normal distribution, we have $E(\mathbf{X}) = \mu$ and

$$D(\boldsymbol{X}) = E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T = \Sigma, Then:$$

- ▶ For any fixed $\mathbf{t} \in \mathbb{R}^p$, $\mathbf{t}^T \mathbf{X} \sim N(\mathbf{t}^T \mu, \mathbf{t}^T \Sigma \mathbf{t})$.
- ightharpoonup The cf of $X \in \mathbb{R}^p$ is

$$\varphi_{\mathbf{X}}(t) = e^{it^{T}\mu - \frac{1}{2}t^{T}\Sigma t}$$
 (4)

Part (i) is obvious. For Part (ii),

- cf of the standard univariate normal random variable Z is $e^{-t^2/2}$.
- ▶ Any $U \sim N_1(\mu_1, \sigma_1^2)$ has a distribution that coincides with the distribution of $_1 + \sigma_1 Z$.
- ► Then,

$$arphi_U(t) = e^{it\mu_1} arphi_{\sigma_1 Z}(t) = e^{it\mu_1} E(e^{it\sigma_1 Z})$$

= $e^{it\mu_1} varphi_Z(\sigma_1 t) = e^{it\mu_1 - \frac{1}{2}t^2\sigma_1^2}$

So, for $m{t}^T m{X} \sim N_1(m{t}^T m{\mu}, m{t}^T m{\Sigma} m{t})$ (univariate), cf is $\varphi_{m{t}^T m{X}}(t) = e^{i m{t}^T m{\mu} - \frac{1}{2} t^2 m{t}^T m{\Sigma} m{t}}$

- \Rightarrow Given μ and Σ use cf formula (4) rather than the density formula (3).
 - ightharpoonup cf formula defined for singular Σ .
 - Still need to show density (3) for invertible Σ .

Theorem

Assume the matrix Σ in (4) is nonsingular. Then the density of the random vector $\mathbf{X} \in \mathbb{R}^p$ with cf as in (4) is given by (3).

- lacksquare Consider the vector $m{Y} = \Sigma^{-1/2}(m{X} m{\mu}) \in \mathbb{R}^p$.
- E(Y) = 0
- $D(Y) = E(YY^{T}) = \Sigma^{-1/2} E((X \mu)(X \mu)^{T}) \Sigma^{-1/2} = I$
 - \Rightarrow substitute to get the cf of $m{Y}: arphi_{m{Y}}(m{t}) = e^{-rac{1}{2}\sum_{i=1}^{p}t_{i}^{2}}$
 - This is cf of p independent N(0,1)
- $lackbr{
 ho}$ $oldsymbol{Y} = \Sigma^{-1/2} (oldsymbol{X} oldsymbol{\mu}) \Rightarrow oldsymbol{X} = oldsymbol{\mu} + \Sigma^{1/2} \, oldsymbol{Y}$
- ▶ Density of $Y: f_Y(y) = \frac{1}{(2\pi)^{p/2}} e^{-\frac{1}{2} \sum_{i=1}^p y_i^2}$
- Use density transformation:

$$f_{\mathbf{X}}(\mathbf{x}) = f_{\mathbf{Y}}(\mathbf{\Sigma}^{-1/2}(\mathbf{X} - \boldsymbol{\mu})^T)|J(x_1, \cdots, x_p)|$$

- By linearity: $|J(x_1, \dots, x_p)| = |\Sigma^{-1/2}| = |\Sigma^{1/2}|^{-1}$
- $\sum_{i=1}^{p} y_i^2 = \mathbf{y}^{T} \mathbf{y} = (\mathbf{X} \mathbf{\mu})^{T} \Sigma^{-1/2} \Sigma^{-1/2} (\mathbf{X} \mathbf{\mu}) = (\mathbf{X} \mathbf{\mu})^{T} \Sigma^{-1} (\mathbf{X} \mathbf{\mu})$
- \Rightarrow density formula (3) for $f_X(x)$

Properties of multivariate normal

If $\Sigma = D(X) = \Lambda$ is a diagonal matrix then the p components of X are independent.

- i.e., then $\varphi_{X}(t) = e^{i\sum_{j=1}^{p}t_{j}\mu_{j}-\frac{1}{2}t_{j}^{2}\sigma_{j}^{2}}$, decomposes into cf's of p independent components each distributed according to $N(\mu_{j}, \sigma_{j}^{2}), j = 1, \cdots, p$.
- "for a multivariate normal, if its components are uncorrelated they are also independent"
- converse (if independent, then uncorrelated) true for any distribution
- ➤ For the multivariate normal distribution, we can conclude that its components are independent if and only if they are uncorrelated!

Example (Random variables that are marginally normal and uncorrelated but not independent).

Consider two variables $Z_1 = (2W - 1)Y$ and $Z_2 = Y$, where $Y \sim N_1(0,1)$ and, independently, $W \sim Binomial(1,1/2)$ (so 2W - 1 takes -1 and +1 with equal probability).

If $m{X} \sim N_p(m{\mu}, \Sigma)$ and $C \in \mathcal{M}_{q,p}$ is an arbitrary matrix of real numbers then

$$\mathbf{Y} = C\mathbf{X} \sim N_q(C\boldsymbol{\mu}, C\Sigma C)$$

ightharpoonup for any $oldsymbol{s}\in\mathbb{R}^q,$

$$\varphi_{\mathbf{Y}}(\mathbf{s}) = \varphi_{\mathbf{X}}(C^{\mathsf{T}}\mathbf{s}) = e^{i\mathbf{s}^{\mathsf{T}}C\mu - \frac{1}{2}\mathbf{s}^{\mathsf{T}}C\Sigma C\mathbf{s}}$$

$$\Rightarrow$$
 Y = $\sim N_q(C\mu, C\Sigma C)$

▶ C is full rank and if $rk(\Sigma) = p$ then the rank of $C\Sigma C$ is also full, which means that the distribution of Y would **not** be **degenerate** in this case.

Assume the vector $\pmb{X} \in \mathbb{R}^p$ is divided into subvectors $\pmb{X} = \begin{pmatrix} \pmb{X}_{(1)} \\ \pmb{X}_{(2)} \end{pmatrix}$ and according to this subdivision the vector means are $\pmb{\mu} = \begin{pmatrix} \pmb{\mu}_{(1)} \\ \pmb{\mu}_{(2)} \end{pmatrix}$ and the covariance matrix $\pmb{\Sigma}$ has been subdivided into $\pmb{\Sigma} = \begin{pmatrix} \pmb{\Sigma}_{11} & \pmb{\Sigma}_{12} \\ \pmb{\Sigma}_{21} & \pmb{\Sigma}_{22} \end{pmatrix}$. Then the vectors $\pmb{X}_{(1)}$ and $\pmb{X}_{(1)}$ are independent iff $\pmb{\Sigma}_{12} = 0$. Proof. (Exercise)

Let the vector $\mathbf{X} \in \mathbb{R}^p$ be divided into subvectors $\mathbf{X} = \begin{pmatrix} \mathbf{X}_{(1)} \\ \mathbf{X}_{(2)} \end{pmatrix}$, $\mathbf{X}_{(1)} \in \mathbb{R}^r$, r < p, $\mathbf{X}_{(2)} \in \mathbb{R}^{p-r}$, and according to this subdivision the vector means are $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_{(1)} \\ \boldsymbol{\mu}_{(2)} \end{pmatrix}$ and the covariance matrix $\boldsymbol{\Sigma}$ has been subdivided into $\boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}$. Assume for simplicity that the rank of $\boldsymbol{\Sigma}_{22}$ is full. Then the conditional density of $\mathbf{X}_{(1)}$ given that $\mathbf{X}_{(2)} = \mathbf{x}_{(2)}$ is

$$N_r(\mu_{(1)} + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_{(2)} - \mu_{(2)}), \Sigma_{11} - \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21})$$
 (5

- Expression $\mu_{(1)} + \Sigma_{12}\Sigma_{22}^{-1}(\mathbf{x}_{(2)} \mu_{(2)})$ is a function of $\mathbf{x}_{(2)}$; denote is as $g(\mathbf{x}_{(2)})$. Construct r.v. $\mathbf{Z} = \mathbf{X}_{(1)} g(\mathbf{X}_{(2)})$ and $\mathbf{Y} = \mathbf{X}_{(2)} \mu_{(2)}$. Observe $E\mathbf{Z} = 0$ and $E\mathbf{Y} = 0$.
- $\begin{array}{c} \blacktriangleright \left(\begin{array}{c} \textbf{\textit{Z}} \\ \textbf{\textit{Y}} \end{array} \right) = \left(\begin{array}{cc} \textbf{\textit{I}}_r & -\Sigma_{12}\Sigma_{22}^{-1} \\ 0 & \textbf{\textit{I}}_{p-r} \end{array} \right) (\textbf{\textit{X}} \boldsymbol{\mu}) \Rightarrow \mathsf{Normal} \; (\mathsf{Property} \; 2).$
- $Var\begin{pmatrix} \mathbf{Z} \\ \mathbf{Y} \end{pmatrix} = A\Sigma A^{T} = \begin{pmatrix} \Sigma_{11} \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} & -0 \\ 0 & \Sigma_{22} \end{pmatrix} \text{ block}$ multiplication
 - \Rightarrow **Z** and **Y** uncorr. Normal \Rightarrow independent (Property 3).
 - ▶ Y is a linear transformation of $X_{(2)} \Rightarrow Z$ and $X_{(2)}$ indep. ⇒ Conditional density of Z given $X_{(2)} = x_{(2)}$ will **not** depend on $x_{(2)}$ and coincides with the unconditional density of Z.
 - \Rightarrow **Z** normal with $Cov(\mathbf{Z}) = \Sigma_{11} \Sigma_{12}\Sigma_{22}^{-1}\Sigma_{21} := \Sigma_{1|2}$ \Rightarrow $\mathbf{X}_{(1)} - g(\mathbf{x}_{(2)}) \sim N(0, \Sigma_{1|2})$

Example

As an immediate consequence of Property 4 we see that if p=2 and r=1, then for a two-dimensional normal vector

$$\left(\begin{array}{c} \textbf{X}_1 \\ \textbf{X}_2 \end{array}\right) \sim \textbf{N} \left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right), \left(\begin{array}{cc} \sigma_1^2 & \sigma_{12} \\ \sigma_{12} & \sigma_2^2 \end{array}\right) \right),$$

its conditional density $f(x_1|x_2)$ is

$$N(\mu_1 + \frac{\sigma_{12}}{\sigma_2^2}(x_2 - \mu_2), \sigma_1^2 - \frac{\sigma_{12}^2}{\sigma_2^2}.$$

As an exercise, try to derive the above result by direct calculations starting from the joint density $f(x_1, x_2)$, going over to the marginal $f(x_2)$ by integration and finally getting $f(x_1|x_2) = \frac{f(x_1, x_2)}{f(x_2)}$.

If $oldsymbol{X} \sim \mathcal{N}_{p}(oldsymbol{\mu}, \Sigma)$ and Σ is nonsingular then

$$(\boldsymbol{X} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) \sim \chi_p^2$$

where χ_p^2 denotes the chi-square distribution with p degrees of freedom.

Proof.

It suffices to use the fact that the vector $\boldsymbol{Y} \in \mathbb{R}^p$ defined as $\boldsymbol{Y} = \Sigma^{-1/2}(\boldsymbol{X} - \boldsymbol{\mu}) \sim \mathcal{N}(0, \boldsymbol{I}_p)$, i.e. it has p independent standard normal components. Then

$$(\boldsymbol{X} - \boldsymbol{\mu})^T \Sigma^{-1} (\boldsymbol{X} - \boldsymbol{\mu}) = \boldsymbol{Y}^T \boldsymbol{Y} = \sum_{i=1}^p Y_i^2 \sim \chi_p^2$$

according to the definition of χ_p^2 as a distribution of the sum of squares of p independent standard normals.

Prediction: "Best Predictor"

- A corollary of Property 4
- Predict Y from p predictors $X = (X_1 \ X_2 \ \cdots \ X_p)$ by choosing $g(\cdot)$ to minimise $E_Y([Y g(X)]^2 | g(X))$ s.t. $Eg(X)^2 < \infty$
- ▶ Optimal $g^*(x) = E(Y|X = x)$: regression function

Prediction: Best Predictor for MVN

- ▶ In general, $g^*(x) = E(Y|X = x)$ can be complicated.
- For MVN, much simpler.
- If $\begin{pmatrix} Y \\ X \end{pmatrix} \in \mathbb{R}^{1+\rho}$ is normal, apply Property 4 $\Rightarrow g^*(\mathbf{x}) = b + \sigma_0^T C^{-1} \mathbf{x}$ for $b = E(Y) \sigma_0^T C^{-1} E(X)$, C = Cov(X), and $\sigma_0 = Cov(X, Y)$
- ▶ i.e.,

$$g^*(\mathbf{x}) = E(Y) + \sigma_0^T C^{-1}(\mathbf{x} - E(\mathbf{X}))$$

- In case of joint normality, prediction turns out linear.
- $ightharpoonup C^{-1}\sigma_0\in\mathbb{R}^p$ is the vector of the regression coefficients.
 - results in variance $Var(Y) \sigma_0^T C^{-1} \sigma_0$

Tests for Multivariate Normality

Graphical diagnostics

- Normality makes things easier.
- Is also sometimes an important assumption.
- ► Since margins and linear combinations of MVN are normal,
 - check marginal distributions (e.g., Q-Q plots, the Shapiro-Wilk test);
 - 2. check scatterplots of pairs of observations;
 - 3. note outliers.
- Only good for bivariate normality.

Mardia's Multivarate Skewness and Kurtosis

Multivariate skewness: For \boldsymbol{Y} independent of \boldsymbol{X} but with the same distribution,

$$\beta_{1,p} = E[(\mathbf{Y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})]^3$$
 (6)

Multivariate kurtosis:

$$\beta_{2,p} = E[(\mathbf{Y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu})]^2$$
 (7)

- ► Assuming these expectations exist.
- For $N_p(\mu, \Sigma)$, $\beta_{1,p} = 0$ and $\beta_{2,p} = p(p+2)$.
- $p = 1 \Rightarrow \beta_{1,1} = \left(\frac{E(X-\mu)^3}{\sigma^3}\right)^2, \ \beta_{2,1} = \frac{E(X-\mu)^4}{\sigma^4}$
- ► Estimated as

$$\hat{\beta}_{1,p} = \frac{1}{n^2} \sum_{i=1}^n \sum_{i=1}^n g_{ij}^3, \ \hat{\beta}_{2,p} = \frac{1}{n} \sum_{i=1}^n g_i^2,$$

where
$$g_{ij} = (\pmb{x} - ar{\pmb{x}})^T \pmb{S}_n^{-1} (\pmb{x} - ar{\pmb{x}})$$

Mardia's test statistics

- $ightharpoonup \hat{eta}_{1,p} \geq 0$, and $\hat{eta}_{2,p} \geq 0$
- ▶ For MVN, $\hat{\beta}_{1,p} \approx 0$, and $\hat{\beta}_{2,p} \approx p(p+2)$, respectively.
- Asymptotically, $k_1 = n\hat{\beta}_{1,p}/6 \sim \chi_{p(p+1))p+2)/6}$ and

$$k_2 = [\hat{\beta}_{2,p} - p(p+2)]/[8p(p+2)/n]^{1/2} \sim N(0,1)$$

 \Rightarrow Use k_1 and k_2 to test the null hypothesis of multivariate normality.

- ► If neither hypothesis is rejected MVN assumption is in reasonable agreement with the data.
- Mardia's multivariate kurtosis can also be used to detect outliers.

Caveat: Overreliance on tests

- Shapiro-Wilk, Mardia, etc.
 H₀: population is (multivariate) normal
- ▶ Any deviation from normality then $Pr(reject H_0) \stackrel{n\to\infty}{\to} 1$
- \triangleright CLT: $\bar{X} \stackrel{n \to \infty}{\to}$ MNV regardless of population distribution
 - ► S too, but much more slowly ⇒ As n increases,
 - more likely for test to conclude population non-normality.
 - ▶ need population normality less in the first place. ⇒ Particularly for large datasets, don't overrely on tests.

Software

SAS Use CALIS procedure. The quantity k2 is called Normalised Multivariate Kurtosis there, whereas $\hat{\beta}_{2,p}-p(p+2)$ bears the name Mardia's Multivariate Kurtosis.

R MVN::mvn, psych::mardia

Examples

Example

Testing multivariate normality of microwave oven radioactivity measurements (JW).

Additional resources

JW Sec. 4.1–4.2, 4.6.