Warm-up sessions

Copernicus Master on Digital Earth

Linear Algebra and probabilities for data science

Prof. Nicolas Courty ncourty@irisa.fr

Linear Algebra

Set of mathematical tools operating in the continuous domain (by opposition to discrete mathematics) essential to understanding machine learning tools.

We will discuss among other things:

- scalar values, vector matrices, tensors
- basic operations between these quantities (addition, products)
- Vector spaces generated by a base, independence
- diagonalization, factorization

Quantities

Scalar variables: denoted by a lowercase letter

- e.g. $x \in \mathbb{R}$ is the slope of a straight line
- ullet e.g. $n\in\mathbb{N}$ is the number of elements in a set

Vector variables: array of ordered values, denoted in lowercase bold

- $oldsymbol{v} \in \mathbb{R}^{256}$: point in a real space at 256 dimensions
- $\mathbf{v}^T = [v_1v_2\dots v_i\dots v_n]$, every value of the table is indexed by an integer $i\in\{1,n\}$.
- the values v_i are the coordinates along each axis of the space

Matrix variables: two-dimensional (2D) array of ordinate values, written uppercase BOLD

- $\mathbf{A} \in \mathbb{R}^{3 imes 3}$: matrix expressing a application of $\mathbb{R}^3 o \mathbb{R}^3$
- these values are indexed by i (line number) and j (line number): $A_{i,j}$

3/19

Tensors

Sometimes extra dimensions are needed to translate complex relationships between several elements

• e.g. multispectral image

tensors: n-dimensional (n-d) array of ordered values (based on an regular grid), upper-case denoted ${f BOLD}$

- $\mathbf{T} \in \mathbb{R}^{28 \times 28}$: tensor of $\mathbb{R}^{28 \times 28 \times 28}$
- these values are indexed by $i,j,k,\ldots : T_{i,j,k}$ in the previous case

Operations

Addition/multiplication of matrices

If ${f A}$ and ${f B}$ are the same size (e.g. m imes n)

- $\mathbf{C} = \mathbf{A} + \mathbf{B} \equiv \mathbf{C}_{ij} = \mathbf{A}_{ij} + \mathbf{B}_{ij}, \forall i, j$
- addition/multiplication by a scalar : ${\bf C}=e{\bf A}+f\equiv {\bf C}_{ij}=e{\bf A}_{ij}+f$
- addition of a vector (non-standard notation): ${f C}={f A}+{f v}\equiv{f C}_{ij}={f A}_{ij}+{f v}_j$
- also called broadcasting in English

Operations

If \mathbf{v} and \mathbf{u} are the same size \mathbf{m} then

- ullet we note $oldsymbol{v^T} oldsymbol{u}$ the scalar product between these two vectors
- $\mathbf{v^T}\mathbf{u} = \sum_{k=1}^m \mathbf{v}_k \mathbf{u}_k$

If ${f A}$ and ${f B}$ are m imes r and r imes n then

- $\mathbf{C} = \mathbf{AB}$ is of size $m \times n$
- $\mathbf{C}_{ij} = \sum_{k=1}^{r} \mathbf{A}_{ik} + \mathbf{B}_{kj}$
- C_{ij} is the scalar product between line i of A and column j of B

Operations

Matrix Product Properties

- Distributivity versus addition : C(A + B) = CA + CB.
- ullet Associativity: $\mathbf{C}(\mathbf{A}\mathbf{B}) = (\mathbf{C}\mathbf{A})\mathbf{B}$
- ullet Non-commutating: generally ${f AB}
 eq {f BA}$
- $\bullet \ \ \text{but the scalar product is} : \boldsymbol{v^T}\boldsymbol{u} = \boldsymbol{u^T}\boldsymbol{v}$
- transposed from a product: $(\mathbf{A}\mathbf{B})^{\mathrm{T}} = \mathbf{B}^{\mathrm{T}}\,\mathbf{A}^{\mathrm{T}}$

Linear systems

$$Ax = b$$

.

- If ${f A}$ is of size $m \times n$, ${f x}$ and ${f b}$ from sizes n, we have a system with m equations and n unknown
- $\bullet \;$ case where m=n. Then the system solution, if it exists, is given by:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$$

.

- \mathbf{A}^{-1} is the inverse of \mathbf{A} , i.e. such that $\mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n$

resolution of linear systems

Gauss Pivot

- many other methods exist (LU, decomposition of Cholesky, with additional constraints on the shape of **A**)
- ${\bf A}^{-1}$ does not depend on ${\bf b}$, and can be used to solve several problems
- however in practice ${\bf A}^{-1}$ is never really calculated as is $(o(n^3))$ operations) and we use the value of ${\bf b}$ in the resolution (looking for example at the difference between ${\bf b}$ and ${\bf A}{\bf x}$ at a given iteration

$$\underset{\mathbf{x}}{\operatorname{arg\,min}} ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2$$

Vector space

Space generated by a set of vectors

The space generated by a set of vectors $\{v_1, v_2, \ldots, v_n\}$ is the set of points formed by all linear combinations of these vectors, i.e. $\mathbf{p} = \sum_i \alpha_i \mathbf{v}_i$

- to know if $\mathbf{A}\mathbf{x}=\mathbf{b}$ admits a solution amounts to to know if \mathbf{b} is in the space generated by \mathbf{A}
- if $\bf A$ is of size $\bf n \times \bf n$, then $\bf A$ must be formed of linearly independent vectors
- $rang(\mathbf{A}) = n$.

For matrices of size $m \times n$, the rank of $\bf A$ is at better m. Other methods of inversion exist for this type of problem.

- Example: Moore Penrose's inverse nickname **A**⁺
- if $rank(\mathbf{A}) = m$, $\mathbf{A}^+ = \mathbf{A}^T (\mathbf{A} \mathbf{A}^T)^{-1}$
- if $\operatorname{rank}(\mathbf{A}) = n$, $\mathbf{A}^+ = (\mathbf{A}^T \, \mathbf{A})^{-1} \mathbf{A}^T$

10/19

Norms

A norm is a function f used to measure the length of a vector. It respects the 3 following conditions:

- $f(\mathbf{v}) = 0 \implies \mathbf{v} = 0$.
- $f(\mathbf{x} + \mathbf{y}) \le f(\mathbf{x}) + f(\mathbf{y})$ (triangular inequality)
- $f(\alpha \mathbf{x}) = |\alpha| f(\mathbf{x})$ (homogeneity)

Examples: L^p norm: $||\mathbf{x}||_p = \sqrt[p]{\sum_i |\mathbf{x}_i|^p}$.

- p=2. Euclidean norm, also note that $||\mathbf{x}||_2^2=\mathbf{x}^T\,\mathbf{x}$.
- p = 1 useful to differentiate values close to 0
- $p = \infty \max_i |\mathbf{x}_i|$

Special cases of matrices

- Diagonal Matrix: non-zero entries only on the diagonal. One notes ${f V}={
 m diag}({f v})$
- Symmetrical Matrix: $\mathbf{A} = \mathbf{A}^{\mathrm{T}}$
- Orthogonal matrix: $\mathbf{A}^{-1} = \mathbf{A}^T$. All columns $\mathbf{a_{\bullet i}}$ are orthogonal to each other, i.e. $\forall i,j|i \neq j, \mathbf{a_{\bullet i}}^T \mathbf{a_{\bullet j}} = 0$

Matrix decomposition

Matrices can be decomposed into factors (product of matrices) to gain understanding of their structures.

- Spectral decomposition, also called decomposition into eigen values/vectors
- an eigenvector \mathbf{v} of a matrix \mathbf{A} is such that it exists a scalar λ such as

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

.

- \circ λ is the eigenvalue associated with \mathbf{v} .
- \circ all multiples of \mathbf{v} (i.e. for $\mathbf{s} \in \mathbb{R}$, we form $\mathbf{s}\mathbf{v}$) are considered to be eigenvectors of \mathbf{A}

- finding the eigenvalues is equivalent to solving $\det(\mathbf{A}-\lambda\mathbf{I})=0.$
- the roots of this polynomial are the eigenvalues of **A**.
- example with

$$\mathbf{A} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$$

Eigenvector decomposition (Eigendecomposition)

If ${f A}$ has ${f n}$ independent eigenvectors then it can be written as follows

$$\mathbf{A} = \mathbf{V} \mathrm{diag}(\lambda) \mathbf{V}^{-1}$$

- \mathbf{V} : eigenvector matrix
- λ : eigenvalue vector

Case of a symmetrical matrix **S**:

$$\mathbf{S} = \mathbf{V} \operatorname{diag}(\lambda) \mathbf{Q}^{\mathrm{T}}$$

- ullet Q is an orthogonal matrix
- λ : eigenvalue vector

Useful properties of eigenvalue decomposition

- A matrix is singular if at least one of its eigenvalue is zero
- the rank of a matrix is equal to the number of non null eigenvalues
- the eigenvalue decomposition is useful to solve some optimization problems
- ullet ex: $f(\mathbf{x}) = \mathbf{x}^T \mathbf{A} \mathbf{x}$ with $|||\mathbf{x}||_2 = 1$
 - quadratic form
 - \circ if **x** is an eigenvector, then $f(\mathbf{x})$ is the corresponding eigenvalue
 - $\min f = \min \lambda, \max f = \max \lambda$.
- all strictly positive eigenvalues: positive matrix
 - \circ guarantees that $\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} \geq 0$
- all eigenvalues positive or null: matrix Positive Semi-Definite (PSD)

SVD decomposition

The SVD decomposition (Singular Values Decomposition) is a more general decomposition that fits to the rectangular matrices:

$$A = UDV^{T}$$

.

- If ${\bf A}$ is size $m \times n$, then $dim({\bf U})=m \times m$, $dim({\bf D})=m \times n$ and $dim({\bf V})=n \times n$
- ullet the elements of $oldsymbol{D}$ are called singular values
- the vectors of U and V are respectively vectors right and left singulars (resp. eigenvectors of AA^T and A^TA)
- practical aspect: pseudo-inverse calculation with SVD: $\mathbf{A}^+ = \mathbf{V}\mathbf{D}^+\mathbf{U}^\mathrm{T}$, where \mathbf{D}^+ is formed with the reciprocal of the non-zero elements of \mathbf{D} .

Practical session

Let's practice now:

- Numpy, scipy and matplotlib for manipulating data matrices
- Notebooks

The end.