

TEST REPORT

Test report no.: 1-7988/14-02-05-A

Testing Laboratory

CETECOM ICT Services GmbH

Untertuerkheimer Strasse 6 – 10
66117 Saarbruecken / Germany
Phone: + 49 681 5 98 - 0
Fax: + 49 681 5 98 - 9075
Internet: http://www.cetecom.com
e-mail: ict@cetecom.com

Accredited Testing Laboratory:

The testing laboratory (area of testing) is accredited according to DIN EN ISO/IEC 17025 (2005) by the Deutsche Akkreditierungsstelle GmbH (DAkkS)

The accreditation is valid for the scope of testing procedures as stated in the accreditation certificate with

the registration number: D-PL-12076-01-01

Area of Testing:

Radio Communications & EMC (RCE)

Applicant

SBO Hearing A/S

Kongebakken 9 2765 Smørum/DENMARK

Phone: +45 39 13 85 38

Contact: Jørgen Peter Hanuscheck

e-mail: <u>inp@oticon.dk</u>

Manufacturer

SBO Hearing A/S

Kongebakken 9

2765 Smørum/DENMARK

Test Standard/s

47 CFR Part 15 Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency

devices

RSS - 210 Issue 8 Spectrum Management and Telecommunications Radio Standards Specification -

Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

For further applied test standards please refer to section 3 of this test report.

Test Item

Kind of test item: Programming device for hearing aids

Model name: WLP Multi (e.g. FittingLINK WP-2)

FCC ID: 2ACAHWLP020 IC: 11936A-WLP020

Frequency [MHz]: ISM band 2400 MHz to 2483.5 MHz

(lowest channel 00 - 2402, highest channel 78 - 2480 MHz)

Technology tested: Bluetooth®+EDR
Antenna: Integrated PCB antenna
Power Supply: 3.70V DC by Li - Po battery

Temperature Range: 0°C to +40°C

Test report authorised:	Test performed:
p.o.	p.o.
Jörg Warken Professional	Tobias Wittenmeier Experienced

2014-07-21 Page 1 of 64

Table of contents

1	Table	of contents	2
2	Gener	al Information	3
	2.1 2.2	Notes and disclaimerApplication details	_
3	Test s	tandard/s	3
4	Test E	nvironment	4
5	Test it	em	4
	5.1	Referenced documents	4
6	Test la	aboratories sub-contracted	4
7	Summ	pary of measurement results	5
8	Descr	iption of the test setup	6
	8.1	Radiated measurements chamber F	
	8.2	Radiated measurements chamber C	
	8.3	Radiated measurements 12.75 GHz to 26 GHz	_
	8.4	AC conducted	
	8.5	Conducted Bluetooth test system	
	8.6	Additional comments	
9	Measu	rement results	12
	9.1	Antenna gain	
	9.2	Power spectral density	
	9.3	Carrier frequency separation	15
	9.4	Number of hopping channels	
	9.5	Time of occupancy (dwell time)	
	9.6	Spectrum bandwidth of a FHSS system – 99 % bandwidth	
	9.7	Maximum output power	
	9.8	Near band spurious emissions conducted	
	9.9 9.10	Band edge compliance radiated TX spurious emissions conducted	
	9.10	TX spurious emissions conducted	
	9.11	RX spurious emissions radiated	
	9.13	TX and RX spurious emissions radiated < 30 MHz	50 51
	9.14	TX and RX spurious emissions conducted < 30 MHz	56
	9.15	Statistical measurements	
10	Te	est equipment and ancillaries used for tests	61
11	0	bservations	62
Anr	nex A	Document history	63
Anr	nex B	Further information	63
Anr	nex C	Accreditation Certificate	

2 General Information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CETECOM ICT Services GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CETECOM ICT Services GmbH.

The testing service provided by CETECOM ICT Services GmbH has been rendered under the current "General Terms and Conditions for CETECOM ICT Services GmbH".

CETECOM ICT Services GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CETECOM ICT Services GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CETECOM ICT Services GmbH test report include or imply any product or service warranties from CETECOM ICT Services GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CETECOM ICT Services GmbH.

All rights and remedies regarding vendor's products and services for which CETECOM ICT Services GmbH has prepared this test report shall be provided by the party offering such products or services and not by CETECOM ICT Services GmbH.

In no case this test report can be considered as a Letter of Approval.

2.2 Application details

Date of receipt of order: 2014-05-13
Date of receipt of test item: 2014-06-16
Start of test: 2014-06-23
End of test: 2014-06-27

Person(s) present during the test: -/-

3 Test standard/s

Test Standard	Date	Test Standard Description
47 CFR Part 15	12.2010	Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices
RSS - 210 Issue 8	12.2010	Spectrum Management and Telecommunications Radio Standards Specification - Licence-exempt Radio Apparatus (All Frequency Bands): Category I Equipment

2014-07-21 Page 3 of 64

Test Environment

 $T_{\text{nom}} \\$ Temperature: +22 °C during room temperature tests

 T_{max} +40 °C during high temperature tests °C during low temperature tests $\mathsf{T}_{\mathsf{min}}$

Relative humidity: 55 %

not relevant for this kind of testing Air pressure:

 $V_{\text{nom}} \\$ Power supply: 3.70 V DC by Li - Po battery

4.10 V V_{max} 3.45 V V_{min}

5 **Test item**

Kind of test item :	Programming device for hearing aids			
Type identification :	WLP Multi (e.g. FittingLINK WP-2)			
S/N serial number :	Rad. 01901289 *)			
	Cond. 01901271 (BTADDR: 00198E3005F6) *)			
HW hardware status :	assembly rev 00 - PCB rev 03			
SW software status :	1.4.2 + Power table fix (limited to 4dBm; 8dBm line removed in PSKEY_LC_ENHANCED_POWER_TABLE)			
Frequency Band [MHz] :	ISM band 2400 MHz to 2483.5 MHz			
	(lowest channel 00 – 2402, highest channel 78 – 2480 MHz)			
Type of Modulation :	GFSK, Pi/4 DQPSK			
Number of channels :	79			
Antenna :	Integrated PCB antenna			
Power Supply :	3.70 V DC by Li - Po battery			
Temperature Range :	0°C to +40 °C			

^{*)} for multiple measurements, the used S/N's are explicitly mentioned in the test case.

5.1 **Referenced documents**

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup- and EUT-photos are included in test report: 1-7988/14-02-01_AnnexA

1-7988/14-02-01 AnnexB 1-7988/14-02-01_AnnexD

6 Test laboratories sub-contracted

None

2014-07-21 Page 4 of 64

7	Summ	ary of measurement results
	\boxtimes	No deviations from the technical specifications were ascertained
		There were deviations from the technical specifications ascertained

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS 210, Issue 8, Annex 8	Passed	2014-07-21	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	Pass	Fail	NA	NP	Remark
§15.247(b)(4) RSS 210 / A8.4(2)	Antenna gain	Nominal	Nominal	GFSK	\boxtimes				complies
§15.247(e) RSS 210 / A8.2(b)	Power spectral density	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					Not applicable for FHSS!
§15.247(a)(1) RSS 210 / A8.1(b)	Carrier frequency separation	Nominal	Nominal	GFSK	\boxtimes				complies
§15.247(a)(1) RSS 210 / A8.1(d)	Number of hopping channels	Nominal	Nominal	GFSK					complies
§15.247(a)(1) (iii) RSS 210 / A8.3(1)	Time of occupancy (dwell time)	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK	\boxtimes				complies
§15.247(a)(1) RSS 210 / A8.2(a)	Spectrum bandwidth of a FHSS system 20dB bandwidth	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(b)(1) RSS-210 / A8.4(2)	Maximum output power	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(d) RSS-210 / A8.5	Near band spurious emissions	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.205 RSS-210 / A8.5	Band edge compliance radiated	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(d) RSS-210 / A8.5	TX spurious emissions conducted	Nominal	Nominal	GFSK Pi/4 DQPSK 8 DPSK					complies
§15.247(d) RSS-210 / A8.5	TX spurious emissions radiated	Nominal	Nominal	GFSK	\boxtimes				complies
§15.109 RSS-Gen	RX spurious emissions radiated	Nominal	Nominal	-/-	\boxtimes				complies
§15.209(a) RSS-Gen	TX spurious emissions radiated < 30 MHz	Nominal	Nominal	GFSK	\boxtimes				complies
§15.107(a) §15.207	Conducted emissions < 30 MHz	Nominal	Nominal	GFSK					complies

Note: NA = Not Applicable; NP = Not Performed

2014-07-21 Page 5 of 64

8 Description of the test setup

8.1 Radiated measurements chamber F

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 9 kHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are confirmed with specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analysers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
Software	EMC32 V. 9.12.05	R&S	-/-	-/-
Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368
DC power supply, 60Vdc, 50A, 1200 W	6032A	HP Meßtechnik	2920A04466	300000580
EMI Test Receiver	ESCI 3	R&S	100083	300003312
Amplifier	JS42-00502650-28-5A	MITEQ	1084532	300003379
Antenna Tower	Model 2175	ETS-LINDGREN	64762	300003745
Positioning Controller	Model 2090	ETS-LINDGREN	64672	300003746
Turntable Interface-Box	Model 105637	ETS-LINDGREN	44583	300003747
TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	295	300003787
CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35, CBT- B55, CBT-K55	R&S	100313	300003516

2014-07-21 Page 6 of 64

8.2 Radiated measurements chamber C

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405
TRILOG Broadband Test- Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck	371	300003854
Band Reject filter	WRCG2400/2483- 2375/2505-50/10SS	Wainwright	11	300003351
Highpass Filter	WHKX7.0/18G-8SS	Wainwright	18	300003789
Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032
Active Loop Antenna	6502	EMCO	8905-2342	300000256
Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996
Switch / Control Unit	3488A	HP Meßtechnik	*	300000199
Switch / Control Unit	3488A	HP Meßtechnik	2719A15013	300001156
Isolating Transformer	MPL IEC625 Bus Regeltrenntravo	Erfi	91350	300001155
Three-Way Power Splitter, 50 Ohm	11850C	HP Meßtechnik		300000997
Amplifier	js42-00502650-28-5a	Parzich GMBH	928979	300003143
CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35, CBT- B55, CBT-K55	R&S	100313	300003516

2014-07-21 Page 7 of 64

8.3 Radiated measurements 12.75 GHz to 26 GHz

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
Std. Gain Horn Antenna 12.4 to 18.0 GHz	639	Narda	8402	300000787
Std. Gain Horn Antenna 18.0 to 26.5 GHz	638	Narda	8205	300002442
Microwave System Amplifier, 0.5-26.5 GHz	83017A	HP Meßtechnik	00419	300002268
Signal Analyzer 40 GHz	FSV40	R&S	101042	300004517
CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35, CBT- B55, CBT-K55	R&S	100313	300003516

2014-07-21 Page 8 of 64

8.4 AC conducted

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologies	MY51210197	300004405
Isolating Transformer	MPL IEC625 Bus Regeltrenntravo	Erfi	91350	300001155
Switch / Control Unit	3488A	HP Meßtechnik	*	300000199
Switch / Control Unit	3488A	HP Meßtechnik	2719A15013	300001168
Artificial Mains 9 kHz to 30 MHz	ESH3-Z5	R&S	828576/020	300001210
CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35, CBT- B55, CBT-K55	R&S	100313	300003516

2014-07-21 Page 9 of 64

8.5 Conducted Bluetooth test system

Equipment table:

Equipment	Туре	Manufacturer	Serial No.	INV. No Cetecom
Power Supply DC	NGPE 40/40	R&S	388	40000078
Switch / Control Unit	SSCU	R&S	338864/003	300002681-0006
Precision Step Attenuator 50 Ohms, 0 - 2700MHz	RSP	R&S	834500/010	300002681-0007
Frequency Standard (Rubidium Frequency Standard)	MFS (Rubidium)	R&S (Datum)	002	300002681-0009
Directional Coupler	101020010	Krytar	70215	300002840
DC-Blocker	8143	Inmet Corp.	none	300002842
Powersplitter	6005-3	Inmet Corp.		300002841
Temperature Test Chamber	VT 4002	Heraeus Voetsch	58566046820010	300003019
CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000K35	R&S	100185	300003416
Spectrum Analyzer 9kHz to 30GHz -140+30dBm	FSP30	R&S	100886	300003575

2014-07-21 Page 10 of 64

8.6 Additional comments

The Bluetooth $^{\$}$ word mark and logos are owned by the Bluetooth SIG Inc. and any use of such marks by Cetecom ICT Services GmbH is under license.

Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	paylo	ests: were performed with x-DH5 packets and static PRBS pattern pad. standby tests: BT test mode enabled, scan enabled, TX Idle
Test mode:	\boxtimes	Bluetooth Test mode loop back enabled (EUT is controlled over CBT/CMU)
		Special software is used. FUT is transmitting pseudo random data by itself

2014-07-21 Page 11 of 64

9 Measurement results

9.1 Antenna gain

Measurement:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module. For normal Bluetooth $^{\tiny (8)}$ devices, the GFSK modulation is used.

Measurement parameters:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	3 MHz	
Resolution bandwidth:	3 MHz	
Span:	5 MHz	
Trace-Mode:	Max hold	

Limits:

FCC	IC	
Antenna Gain		
6 dBi		

2014-07-21 Page 12 of 64

Results:

Note: For the purpose of additional information the average antenna gain was calculated based on the EIRP of three similar devices.

	lowest channel 2402 MHz	mid channel 2441 MHz	highest channel 2480 MHz
Conducted peak power [dBm] GFSK (measured)*	2.9	3.1	3.1
Radiated peak power [dBm] GFSK EIRP (measured) ⁾¹	5.2	4.5	3.5
Radiated peak power [dBm] GFSK EIRP (measured) ²²	3.3	5.0	4.9
Radiated peak power [dBm] GFSK EIRP (measured) ⁾³	6.3	5.4	5.4
Max. Gain [dBi] calculated	3.4	2.3	2.3
Average. Gain [dBi] calculated	2.0	2.0	1.5

Result: Passed

2014-07-21 Page 13 of 64

^{)&}lt;sup>1</sup>Test sample 1 (SN:01901263))²Test sample 2 (SN:01901266))³Test sample 3 (SN:01901289)

9.2 Power spectral density

Description:

Measurement of the power spectral density of a digital modulated system. This requirement is only valid for digitally modulated systems without hopping functionality.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	500 s	
Video bandwidth:	3 kHz	
Resolution bandwidth:	3 kHz	
Span:	150 kHz	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
Power Spectral Density		
For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna		

For digitally modulated systems the transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission or over 1.0 second if the transmission exceeds 1.0-second duration.

Results:

Modulation	Power spectral density [dBm/3kHz]		
Frequency	2412 MHz	2437 MHz	2462 MHz
GFSK			
Pi/4 DQPSK	Not required for hopping systems!		
8DPSK			
Measurement uncertainty		± 1.5 dB	

2014-07-21 Page 14 of 64

9.3 Carrier frequency separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	100 kHz	
Resolution bandwidth:	100 kHz	
Span:	4 MHz	
Trace-Mode:	Max Hold	

Limits:

FCC	IC	
Carrier Frequency Separation		
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater.		

Result:

Carrier frequency separation	~ 1 MHz
------------------------------	---------

Result: Passed

2014-07-21 Page 15 of 64

Plot:

Plot 1: Carrier frequency separation (GFSK modulation)

2014-07-21 Page 16 of 64

9.4 Number of hopping channels

Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use GFSK-modulation to show compliance. EUT in hopping mode.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	500 kHz		
Resolution bandwidth:	500 kHz		
Span:	Plot 1: 2400 – 2445 MHz Plot 2: 2445 – 2485 MHz		
Trace-Mode:	Max Hold		

Limits:

FCC	IC	
Number of hopping channels		
At least 15 non overlapping hopping channels		

Result:

Number of hopping channels	79
----------------------------	----

Result: Passed

2014-07-21 Page 17 of 64

Plots:

Plot 1: Number of hopping channels (GFSK modulation)

Plot 2: Number of hopping channels (GFSK modulation)

2014-07-21 Page 18 of 64

9.5 Time of occupancy (dwell time)

Measurement:

For Bluetooth[®] devices no measurements mandatory depending on the fixed requirements according to the Bluetooth[®] Core Specifications!

For Bluetooth® devices:

The channel staying time of 0.4 s within a 31.6 second period in data mode is constant for Bluetooth[®] devices and independent from the packet type (packet length). The calculation for a 31.6 second period is a follows:

Channel staying time = time slot length * hop rate / number of hopping channels * 31.6 s

Example for a DH1 packet (with a maximum length of one time slot) Channel staying time = $625 \mu s * 1600*1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

For multi-slot packets the hopping is reduced according to the length of the packet.

Example for a DH3 packet (with a maximum length of three time slots) Channel staying time = $3 * 625 \mu s * 1600/3 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

Example for a DH5 packet (with a maximum length of five time slots) Channel staying time = $5 * 625 \mu s * 1600/5 *1/s / 79 * 31.6 s = 0.4 s$ (in a 31.6 s period)

This is according the Bluetooth® Core Specification V2.1 & V3.0 & V4.0& V4.1 for all Bluetooth® devices and all modulations.

The following table shows the relations:

Packet Size	Pulse Width [ms] *	Max. number of transmissions per channel in 31.6 sec
DH1	0.366	640
DH3	1.622	214
DH5	2.870	128

^{*} according Bluetooth® specification

Results:

		Max. number of	Dwell time
Packet Size	Pulse Width [ms]*	transmissions	[Pulse width * Number of
		in 31.6 sec	transmissions]
DH1	0.366	640	234.2 ms
DH3	1.622	214	347.1 ms
DH5	2.870	128	367.4 ms

Limits:

FCC	IC
Time of occupancy (dwell time)	
T1 () () () () ()	

The frequency hopping operation shall have an average time of occupancy on any frequency not exceeding 0.4 seconds within a duration in seconds equal to the number of hopping frequencies multiplied by 0.4.

Result: Passed

2014-07-21 Page 19 of 64

9.6 Spectrum bandwidth of a FHSS system - 99 % bandwidth

Description:

Measurement of the 20dB bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement:

Measurement parameter	
Detector:	Peak
Sweep time:	Auto
Video bandwidth:	30 kHz
Resolution bandwidth:	10 kHz
Span:	6 MHz
Trace-Mode:	Max Hold

Limits:

FCC	IC
Spectrum bandwidth of a FHSS system – 99% bandwidth	
GFSK < 1500 kHz Pi/4 DQPSK < 1500 kHz 8DPSK < 1500 kHz	

Results:

Modulation		99 % bandwidth [kHz]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	938	920	938
Pi/4 DQPSK	1244	1263	1263
Measurement uncertainty		± 10 kHz	

Result: Passed

2014-07-21 Page 20 of 64

Plots:

Plot 1: lowest channel – 2402 MHz, GFSK modulation

Plot 2: middle channel - 2441 MHz, GFSK modulation

2014-07-21 Page 21 of 64

Plot 3: highest channel – 2480 MHz, GFSK modulation

Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

2014-07-21 Page 22 of 64

Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation

2014-07-21 Page 23 of 64

9.7 Maximum output power

Description:

Measurement of the maximum output power conducted and radiated. EUT in single channel mode.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	3 MHz	
Resolution bandwidth:	3 MHz	
Span:	5 MHz	
Trace-Mode:	Max Hold	

Limits:

FCC	IC
Maximum o	output power
[Conducted: 0.125 W – antenna gain max. 6 dBi] Systems using more than 75 hopping channels: Conducted: 1.0 W – antenna gain max. 6 dBi	

2014-07-21 Page 24 of 64

Results:

Modulation	Maximum (output power conduc	cted [dBm]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK	2.9	3.1	3.1
Pi/4 DQPSK	2.1	2.4	2.2
Measurement uncertainty		± 1 dB	

Result: Passed

Results:

Modulation	Maximum ou	tput power radiated -	· EIRP [dBm]
Frequency	2402 MHz	2441 MHz	2480 MHz
GFSK *)	4.9	5.1	4.6
Pi/4 DQPSK *)	4.1	4.4	3.7
Measurement uncertainty		± 3 dB	

^{*) -} Values calculated with antenna gain

Result: Passed

2014-07-21 Page 25 of 64

9.8 Near band spurious emissions conducted

Description:

EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Video bandwidth:	100 kHz	
Resolution bandwidth:	100 kHz	
Span:	Lower Band Edge: 2395 – 2405 MHz higher Band Edge: 2478 – 2489 MHz	
Trace-Mode:	Max Hold	

Limits:

FCC	IC				
Near band spurious emissions conducted					

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required.

Results:

Scenario	Near band spurious emissions conducted [dB]		
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower band edge – hopping off	> 20 dB	> 20 dB	-/-
Lower band edge – hopping on	> 20 dB	> 20 dB	-/-
Upper band edge – hopping off	> 20 dB	> 20 dB	-/-
Upper band edge – hopping on	> 20 dB	> 20 dB	-/-
Measurement uncertainty	± 1.5 dB		

Result: Passed

2014-07-21 Page 26 of 64

Plots:

Plot 1: Lower band edge – hopping on, GFSK modulation

Plot 2: Upper band edge - hopping on, GFSK modulation

2014-07-21 Page 27 of 64

Plot 3: Lower band edge – hopping off, GFSK modulation

Plot 4: Upper band edge - hopping off, GFSK modulation

2014-07-21 Page 28 of 64

Plot 5: Lower band edge – hopping on, Pi/4 DQPSK modulation

Plot 6: Upper band edge – hopping on, Pi/4 DQPSK modulation

2014-07-21 Page 29 of 64

Plot 7: Lower band edge – hopping off, Pi/4 DQPSK modulation

Plot 8: Upper band edge – hopping off, Pi/4 DQPSK modulation

2014-07-21 Page 30 of 64

9.9 Band edge compliance radiated

Description:

Measurement of the radiated band edge compliance. The EUT is turned in the position that results in the maximum level at the band edge. Then a sweep over the corresponding restricted band is performed. The EUT is set to single channel mode and the transmit channel is channel 00 for the lower restricted band and channel 78 for the upper restricted band. The measurement is repeated for all modulations. Measurement distance is 3m.

Measurement:

Measurement parameter				
Detector:	Peak			
Sweep time:	Auto			
Video bandwidth:	1 MHz Peak / 10 Hz AVG			
Resolution bandwidth:	1 MHz			
Span:	Lower Band: 2370 – 2400 MHz higher Band: 2480 – 2500 MHz			
Trace-Mode:	Max Hold			

Limits:

FCC	IC				
Band edge compliance radiated					
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 5.205(c)).					
54 dBμV/m AVG 74 dBμV/m Peak					

Results:

Scenario	Band edge compliance radiated [dBµV/m]		
Modulation	GFSK	Pi/4 DQPSK	8DPSK
Lower restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	-/-
Upper restricted band	< 54 AVG / < 74 PP	< 54 AVG / < 74 PP	-/-
Measurement uncertainty	± 3 dB		

Result: Passed

2014-07-21 Page 31 of 64

Plots:

Plot 1: Lower band edge, GFSK modulation, vertical & horizontal polarization

Plot 2: Upper band edge, GFSK modulation, vertical & horizontal polarization

2014-07-21 Page 32 of 64

Plot 3: Lower band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization

Plot 4: Upper band edge, Pi/4 DQPSK modulation, vertical & horizontal polarization

2014-07-21 Page 33 of 64

9.10 TX spurious emissions conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is repeated for all modulations.

Measurement:

Measurement parameter						
Detector:	Peak					
Sweep time:	Auto					
Video bandwidth:	F < 1 GHz: 500 kHz F > 1 GHz: 500 kHz					
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz					
Span:	9 kHz to 25 GHz					
Trace-Mode:	Max Hold					

Limits:

FCC	IC			
TX spurious emissions conducted				

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required

2014-07-21 Page 34 of 64

Results:

	TX spurious emissions conducted					
	GFSK - mode					
f [MHz]		amplit emis [dE		limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		See	plot	30 dBm		Operating frequency
No	traceable peaks	detected				complies
				-20 dBc		
2441		See plot		30 dBm		Operating frequency
No	No traceable peaks detected				complies	
			-20 dBc			
2480		See plot		30 dBm		Operating frequency
No	No traceable peaks detected				complies	
				-20 dBc		
Measu	Measurement uncertainty				± 3 dB	

Result: Passed

Results:

	TX spurious emissions conducted					
	Pi/4-DQPSK - mode					
f [MHz]		amplit emis [dB		limit max. allowed emission power	actual attenuation below frequency of operation [dB]	results
2402		See	plot	30 dBm		Operating frequency
No	No traceable peaks detected				complies	
				-20 dBc		
2441		See plot		30 dBm		Operating frequency
No	No traceable peaks detected				complies	
			-20 dBc			
2480		See plot		30 dBm		Operating frequency
No	No traceable peaks detected				complies	
				-20 dBc		
Measu	Measurement uncertainty				± 3dB	

Result: Passed

2014-07-21 Page 35 of 64

Plots:

Plot 1: lowest channel – 2402 MHz, GFSK modulation

Plot 2: middle channel - 2441 MHz, GFSK modulation

2014-07-21 Page 36 of 64

Plot 3: highest channel – 2480 MHz, GFSK modulation

Plot 4: lowest channel – 2402 MHz, Pi / DQPSK modulation

2014-07-21 Page 37 of 64

Plot 5: middle channel – 2441 MHz, Pi / DQPSK modulation

Plot 6: highest channel – 2480 MHz, Pi / DQPSK modulation

2014-07-21 Page 38 of 64

9.11 TX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in transmit mode. The EUT is set to single channel mode and the transmit channel is channel 00, channel 39 and channel 78. The measurement is performed in the mode with the highest output power.

Measurement:

Measurement parameter									
Detector:	Peak / Quasi Peak								
Sweep time:	Auto								
Video bandwidth:	3 x RBW Remeasurement: 10 Hz								
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz								
Span:	30 MHz to 25 GHz								
Trace-Mode:	Max Hold								
Measured Modulation:	☐ GFSK ☐ Pi/4 DQPSK ☐ 8DPSK								

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

FCC			IC						
TX spurious emissions radiated									
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).									
	§15.	209							
Frequency (MHz)	Field streng	th (dBµV/m)	Measurement distance						
30 - 88	30	0.0	10						
88 – 216	33	5.5	10						
216 – 960	36	5.0	10						
Above 960	54	.0	3						

2014-07-21 Page 39 of 64

Results:

	TX spurious emissions radiated [dBμV/m]									
2402 MHz				2441 MHz		2480 MHz				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
	ons below 1 (ns below 1 G		For emissions below 1 GHz, please				
take a lool	k at the table	below the 1	take a look at the table below the 1			take a look at the table below the 1				
	GHz plot.		GHz plot.			GHz plot.				
	d peak emissi		All detected peak emissions above 1			All detected peak emissions above 1				
GHz are	below the ave	erage limit!	GHz are below the average limit!			GHz are below the average limit!				
Measurement uncertainty					± 3	dB	1	1 11		

Result: Passed

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

2014-07-21 Page 40 of 64

Plots:

Plot 1: 30 MHz to 1 GHz, TX mode, channel 00, vertical & horizontal polarization

Final_Result

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
38.189400	9.90	30.00	20.10	1000.0	120.000	400.0	٧	222	14.0
45.433500	9.79	30.00	20.21	1000.0	120.000	400.0	٧	-7	13.8
110.883600	7.02	33.50	26.48	1000.0	120.000	200.0	٧	110	11.0
342.025200	12.15	36.00	23.85	1000.0	120.000	193.0	٧	266	15.8
771.692100	19.54	36.00	16.46	1000.0	120.000	200.0	Н	262	22.7
944.293500	21.02	36.00	14.98	1000.0	120.000	400.0	Н	72	24.2

2014-07-21 Page 41 of 64

Plot 2: 1 GHz to 12.75 GHz, TX mode, channel 00, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 3: 12.75 GHz to 18 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 17.JUN.2014 13:51:20

2014-07-21 Page 42 of 64

Plot 4: 18 GHz to 26 GHz, TX mode, channel 00, vertical & horizontal polarization

Date: 17.JUN.2014 13:58:40

2014-07-21 Page 43 of 64

Plot 5: 30 MHz to 1 GHz, TX mode, channel 39, vertical & horizontal polarization

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
62.990400	7.77	30.00	22.23	1000.0	120.000	400.0	٧	174	10.9
131.238000	5.31	33.50	28.19	1000.0	120.000	200.0	٧	131	9.3
213.414450	7.89	33.50	25.61	1000.0	120.000	200.0	٧	145	12.2
357.754350	12.40	36.00	23.60	1000.0	120.000	200.0	Н	-50	16.2
727.052850	19.05	36.00	16.95	1000.0	120.000	171.0	Н	304	22.2
887.345850	20.92	36.00	15.08	1000.0	120.000	200.0	٧	24	23.9

2014-07-21 Page 44 of 64

Plot 6: 1 GHz to 12.75 GHz, TX mode, channel 39, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 7: 12.75 GHz to 18 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 17.JUN.2014 13:52:20

2014-07-21 Page 45 of 64

Plot 8: 18 GHz to 26 GHz, TX mode, channel 39, vertical & horizontal polarization

Date: 17.JUN.2014 13:59:25

2014-07-21 Page 46 of 64

Plot 9: 30 MHz to 1 GHz, TX mode, channel 78, vertical & horizontal polarization

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
35.490000	10.48	30.00	19.52	1000.0	120.000	220.0	٧	101	13.8
47.018400	10.84	30.00	19.16	1000.0	120.000	152.0	٧	195	13.8
68.854650	6.44	30.00	23.56	1000.0	120.000	141.0	٧	320	9.7
110.731650	7.12	33.50	26.38	1000.0	120.000	148.0	Н	121	11.0
495.159150	14.95	36.00	21.05	1000.0	120.000	136.0	٧	188	18.6
757.977750	19.52	36.00	16.48	1000.0	120.000	210.0	Н	105	22.7

2014-07-21 Page 47 of 64

Plot 10: 1 GHz to 12.75 GHz, TX mode, channel 78, vertical & horizontal polarization

The carrier signal is notched with a 2.4 GHz band rejection filter.

Plot 11: 12.75 GHz to 18 GHz, TX mode, channel 78, vertical & horizontal polarization

Date: 17.JUN.2014 13:53:21

2014-07-21 Page 48 of 64

Plot 12: 18 GHz to 26 GHz, TX mode, channel 78, vertical & horizontal polarization

Date: 17.JUN.2014 14:00:42

2014-07-21 Page 49 of 64

9.12 RX spurious emissions radiated

Description:

Measurement of the radiated spurious emissions in idle/receive mode. The EUT is detached so all oscillators are active.

Measurement:

Measurement parameter								
Detector:	Peak / Quasi peak							
Sweep time:	Auto							
Video bandwidth:	3 x RBW Remeasurement: 10 Hz							
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 1 MHz							
Span:	30 MHz to 25 GHz							
Trace-Mode:	Max Hold							

Limits:

FCC			IC						
	RX Spurious Emissions Radiated								
Frequency (MHz)	Field strength (dBµV/m)		Measurement distance						
30 - 88	30.0		10						
88 – 216	33	3.5	10						
216 – 960	36.0		10						
Above 960	54	1.0	3						

Results:

RX spurious emissions radiated [dBµV/m]							
F [MHz] Detector Level [dBµV/m]							
For emissions below	For emissions below 1 GHz, please take a look at the table below the 1 GHz plot.						
All detected pe	All detected peak emissions above 1 GHz are below the average limit!						
Measurement uncertainty ±3 dB							

Note: The limit was recalculated with 20 dB / decade (Part 15.31) for all radiated spurious emissions 30 MHz to 1 GHz from 3 meter limit to a 10 meter distance. (40dB/decade for emissions < 30MHz)

Result: Passed

2014-07-21 Page 50 of 64

Plots:

Plot 1: 30 MHz to 1 GHz, RX mode, vertical & horizontal polarization

Final_Result:

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
36.780450	11.04	30.00	18.96	1000.0	120.000	140.0	٧	269	13.9
41.367150	10.74	30.00	19.26	1000.0	120.000	220.0	Н	10	14.0
44.835150	9.47	30.00	20.53	1000.0	120.000	158.0	Н	294	13.9
267.989700	9.62	36.00	26.38	1000.0	120.000	215.0	Н	320	13.8
557.942550	16.35	36.00	19.65	1000.0	120.000	220.0	Н	196	19.5
632.393700	17.87	36.00	18.13	1000.0	120.000	194.0	V	213	21.0

2014-07-21 Page 51 of 64

Plot 2: 1 GHz to 12.75 GHz, RX mode, vertical & horizontal polarization

Plot 3: 12.75 GHz to 18 GHz, RX mode, vertical & horizontal polarization

Date: 17.JUN.2014 13:54:40

2014-07-21 Page 52 of 64

Plot 4: 18 GHz to 26 GHz, RX mode, vertical & horizontal polarization

Date: 17.JUN.2014 13:57:38

2014-07-21 Page 53 of 64

9.13 TX and RX spurious emissions radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m with 40 dB/decade according CFR Part 2.

Measurement:

Measurement parameter									
Detector:	Peak / Quasi peak								
Sweep time:	Auto								
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz								
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz								
Span:	9 kHz to 30 MHz								
Trace-Mode:	Max Hold								

Limits:

FCC			IC					
TX spurious emissions radiated < 30 MHz								
Frequency (MHz)	Field strength (dBµV/m)		Measurement dist	tance				
0.009 – 0.490	2400/I	2400/F(kHz)						
0.490 – 1.705	24000/F(kHz)		30					
1.705 – 30.0	3	0	30					

Results:

TX spurious emissions radiated < 30 MHz [dBμV/m]						
F [MHz]	F [MHz] Detector Level [dBµV/m]					
	No peaks detected.					
Measurement uncertainty ± 3 dB						

Result: Passed

2014-07-21 Page 54 of 64

Plots:

Plot 1: 9 kHz to 30 MHz, TX mode

Plot 4: 9 kHz to 30 MHz, RX mode

2014-07-21 Page 55 of 64

9.14 TX and RX spurious emissions conducted < 30 MHz

Description:

Measurement of the conducted spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channel is channel 39. This measurement is representative for all channels and modes. If critical peaks are found channel 00 and channel 78 will be measured too. The measurement is performed in the mode with the highest output power. Both power lines, phase and neutral line, are measured. Found peaks are remeasured with average and quasi peak detection to show compliance to the limits.

Measurement:

Measurement parameter					
Detector:	Peak - Quasi peak / average				
Sweep time:	Auto				
Video bandwidth:	F < 150 kHz: 200 Hz F > 150 kHz: 9 kHz				
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz				
Span:	9 kHz to 30 MHz				
Trace-Mode:	Max Hold				

Limits:

FCC		IC			
TX spurious emissions conducted < 30 MHz					
Frequency (MHz)	Quasi-peal	κ (dBμV/m)	Average (dBμV/m)		
0.15 – 0.5	66 to 56*		56 to 46*		
0.5 – 5	56		46		
5 – 30.0	6	0	50		

^{*}Decreases with the logarithm of the frequency

Results:

TX spurious emissions conducted < 30 MHz [dBµV/m]						
F [MHz]	F [MHz] Detector Level [dBµV/m]					
	No peaks detected.					
Measurement uncertainty	Measurement uncertainty ± 3 dB					

Result: Passed

2014-07-21 Page 56 of 64

Plots:

Plot 1: 150 kHz to 30 MHz, TX mode, phase line

Plot 2: 150 kHz to 30 MHz, TX mode, neutral line

2014-07-21 Page 57 of 64

Plot 3: 150 kHz to 30 MHz, RX mode, phase line

Plot 4: 150 kHz to 30 MHz, RX mode, neutral line

2014-07-21 Page 58 of 64

9.15 Statistical measurements

Radiated peak power: GFSK

	lowest channel 2402 MHz	mid channel 2441 MHz	highest channel 2480 MHz
Sample SN:01901263 [dbm]	5.2	4.5	3.5
Sample SN:01901266 [dbm]	3.3	5.0	4.9
Sample SN:01901289 [dbm]	6.3	5.4	5.4

Conducted peak power: GFSK

	lowest channel 2402 MHz	mid channel 2441 MHz	highest channel 2480 MHz
Sample SN:01901271 [dbm]	2.9	3.1	3.1
Sample SN:01901275 [dbm]	2.4	2.0	1.6
Sample SN:01901279 [dbm]	0.7	1.5	2.1

Conducted 20dB bandwidth: GFSK

	lowest channel 2402 MHz	mid channel 2441 MHz	highest channel 2480 MHz
Sample SN:01901271 [kHz]	938	920	938
Sample SN:01901275 [kHz]	938	938	938
Sample SN:01901279 [kHz]	938	938	938

2014-07-21 Page 59 of 64

Conducted 20dB bandwidth: Pi/4 DQPSK

	lowest channel 2402 MHz	mid channel 2441 MHz	highest channel 2480 MHz
Sample SN:01901271 [kHz]	1244	1263	1263
Sample SN:01901275 [kHz]	1263	1244	1244
Sample SN:01901279 [kHz]	1263	1263	1244

2014-07-21 Page 60 of 64

10 Test equipment and ancillaries used for tests

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, rf-generating and signalling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

No.	Lab / Item	Equipment	Туре	Manufact.	Serial No.	INV. No Cetecom	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Switch / Control Unit	3488A	HP Meßtechnik		300001691	ne		
2	n. a.	Power Supply DC	NGPE 40/40	R&S	388	40000078	vIKI!	21.08.2012	21.08.2014
3	n. a.	Power Sensor 50 Ohms, 10 MHz - 18 GHz, 1 nW - 20 mW	NRV-Z1	R&S	833894/011	300002681- 0010	k	22.08.2012	22.08.2014
4	n. a.	Hygro- Thermometer	-/-, 5-45°C, 20-100%rF	Thies Clima	-/-	400000080	izw	29.10.2013	29.10.2015
5	n. a.	Vector Signal Generator, 300 kHz to 2.2 GHz	SMIQ03B	R&S	835541/055	300002681- 0001	k	18.08.2011	18.08.2014
7	n. a.	Signal Generator 0.01/2 - 20 GHz, Frequ. Resol. 0.1Hz	SMP02	R&S	835133/011	300002681- 0003	k	12.08.2011	12.08.2014
8	n. a.	Dual Channel Power Meter	NRVD	R&S	835430/044	300002681- 0004	k	22.08.2012	22.08.2014
9	n. a.	Switch / Control Unit	SSCU	R&S	338864/003	300002681- 0006	ne		
10	n. a.	Precision Step Attenuator 50 Ohms, 0 - 2700MHz	RSP	R&S	834500/010	300002681- 0007	NK!	26.08.2008	
11	n.a.	Frequency Standard (Rubidium Frequency Standard)	MFS (Rubidium)	R&S (Datum)	002	300002681- 0009	Ve	21.08.2012	21.08.2014
12	n. a.	Power Sensor 50 Ohms, 10 MHz - 18 GHz, 1 nW - 20 mW	NRV-Z1	R&S	833894/012	300002681- 0013	NK!	26.08.2008	
13	n. a.	Directional Coupler	101020010	Krytar	70215	300002840	ev		
14	n. a.	DC-Blocker	8143	Inmet Corp.	none	300002842	ne		
15	n. a.	Powersplitter	6005-3	Inmet Corp.		300002841	ev		
16	n. a.	Temperature Test Chamber	VT 4002	Heraeus Voetsch	58566046820 010	300003019	Ve	26.09.2013	26.09.2015
17	n. a.	CBT (Bluetooth Tester + EDR Signalling)	CBT 1153.9000 K35	R&S	100185	300003416	vIKI!	21.08.2012	21.08.2014
18	n. a.	Spectrum Analyzer 9kHz to 30GHz - 140+30dBm	FSP30	R&S	100886	300003575	k	22.08.2012	22.08.2014
19	n. a.	CBT-K57 Software-Option for CBT/CBT32	CBT-K57	R&S	101051	300003910	ne		
20	45	Switch-Unit	3488A	HP Meßtechnik	2719A14505	300000368	g		
21	n. a.	software	SPS_PHE 1.4f	Spitzberger & Spieß	B5981; 5D1081;B597 9	300000210	ne		
22	n. a.	EMI Test Receiver	ESCI 3	R&S	100083	300003312	k	27.01.2014	27.01.2015
23	n. a.	Amplifier	JS42- 00502650- 28-5A	MITEQ	1084532	300003379	ev		
24	n. a.	Antenna Tower	Model 2175	ETS- LINDGREN	64762	300003745	izw		

2014-07-21 Page 61 of 64

25	n. a.	Positioning Controller	Model 2090	ETS- LINDGREN	64672	300003746	izw		
26	n. a.	Turntable Interface-Box	Model 105637	ETS- LINDGREN	44583	300003747	izw		
27	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbe ck	295	300003787	k	22.04.2014	22.04.2016
28	n. a.	Spectrum- Analyzer	FSU26	R&S	200809	300003874	k	22.01.2014	22.01.2015
29	n. a.	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3088	300001032	vlKl!	08.05.2013	08.05.2015
30	n. a.	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev		
31	n. a.	Switch / Control Unit	3488A	HP Meßtechnik	*	300000199	ne		
32	90	Active Loop Antenna 10 kHz to 30 MHz	6502	Kontron Psychotech	8905-2342	300000256	k	13.06.2013	13.06.2015
33	n. a.	Amplifier	js42- 00502650- 28-5a	Parzich GMBH	928979	300003143	ne		
34	n. a.	Band Reject filter	WRCG185 5/1910- 1835/1925- 40/8SS	Wainwright	7	300003350	ev		
35	n. a.	Band Reject filter	WRCG240 0/2483- 2375/2505- 50/10SS	Wainwright	11	300003351	ev		
36	n. a.	Highpass Filter	WHKX7.0/1 8G-8SS	Wainwright	18	300003789	ne		
37	n. a.	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbe ck	371	300003854	vlKl!	14.10.2011	14.10.2014
38	n. a.	MXE EMI Receiver 20 Hz bis 26,5 GHz	N9038A	Agilent Technologi es	MY51210197	300004405	k	13.03.2014	13.03.2015
39	n. a.	4U RF Switch Platform	L4491A	Agilent Technologi es	MY50000037	300004509	ne		

Agenda: Kind of Calibration

k calibration / calibrated EK limited calibration

ne not required (k, ev, izw, zw not required) zw cyclical maintenance (external cyclical maintenance)

ev periodic self verification izw internal cyclical maintenance Ve long-term stability recognized g blocked for accredited testing

vlkl! Attention: extended calibration interval
NK! Attention: not calibrated *) next calibration ordered / currently in progress

11 Observations

No observations exceeding those reported with the single test cases have been made.

2014-07-21 Page 62 of 64

Annex A Document history

Version	Applied changes	Date of release
	Initial release	2014-07-17
А	Editorial changes (product name) Corrected output power calculation	2014-07-21

Annex B Further information

Glossary

AVG - Average

DUT - Device under test

EMC - Electromagnetic Compatibility

EN - European Standard
EUT - Equipment under test

ETSI - European Telecommunications Standard Institute

FCC - Federal Communication Commission

FCC ID - Company Identifier at FCC

HW - Hardware

IC - Industry Canada
Inv. No. - Inventory number
N/A - Not applicable
PP - Positive peak
QP - Quasi peak
S/N - Serial number
SW - Software

2014-07-21 Page 63 of 64

Accreditation Certificate Annex C

Front side of certificate

Back side of certificate

(DAkkS

Deutsche Akkreditierungsstelle GmbH

Beliehene gemäß § 8 Absatz 1 AkkStelleG i.v.m. § 1 Absatz 1 AkkStelleGBV Unterzeichnerin der Multilateralen Abkommen von EA, II.AC und IAF zur gegenseitigen Anerkennung

Akkreditierung

Die Deutsche Akkreditierungsstelle GmbH bestätigt hiermit, dass das Prüflaboratorium

CETECOM ICT Services GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken

die Kampetenz nach DIN EN ISO/IEC 17025:2005 besitzt, Prüfungen in folgenden Bereichen durchzuführen:

Drahtgebundene Kommunikation einschließlich xDSL VoIP und DECT Akustik Alustik
Fonk einschließlich WLAN
Mobilfunk (SöM) / DCS, Over the Air (OTA) Performance
Elektromagnetische Verträglichkeit (EMV) einschließlich Automotive
Forduktsicherheit
SAR und Hearing Aid Compatibility (HAC)
Umweltsimulation
Smart Card Terminals
Bluetooth
Wi-Fi- Services

Die Akkreditierungsurkunde gilt nur in Verbindung mit dem Bescheld vom 07.03.2014 mit der Akkreditierungsummer D-PL-12076-01 uns ist giltig 17.01.2018. Sie besteht aus diesem Deckblatt, der Rückseite des Deckbluks und der fülgenden Anlage mit nagesam 7.5 eiten.

Registrierungsnummer der Urkunde: D-PL-12076-01-00

Frankfurt am Main, 07.03.2014

Deutsche Akkreditierungsstelle GmbH

Standort Frankfurt am Main Gartenstra 3e 6 60594 Frankfurt am Main

Standort Braunschwe Bundesallee 100 38116 Braunschweig

Die auszugsweise Veröffentlichung der Akkreditierungsurkunde bedanf der verherigen schrißlichen Zusämmung der Deutsche Akkreditierungsstelle Gribb (EalkS). Ausgenammen diesen ist die separate Weitzrerereitung des Deckhattes durch die umseitig genennte Kunformittlichewertungszielle in unwei dietert Form.

Es darf nicht der Anschein erweckt werden, dass sich die Akkreditierung auch auf Bereichs erstreed, die über den durch die DAkkS bestätigten Akkreditierungsbereich hinausgehen.

Die Akkreditierung erfolgte gemöß des Gruches über die Akkreditierungsstalls (AkstelleG) wur 31 Juli 2009 (RoBii I. S. 2023) sewie der Verordnung (KG) Nr. 7657-2028 des Europäischen Parlamett und des Retes vom S. 1ul 2008 (Bereit die Verschriffun Gried des Akkreditierung une Markfelberwehung 1m Zusammenhang mit der Vermanktung von Produkten (Abl. 1.18 von 9. 1ul 2008, S. 10). Die DAkk Sist Utterser übersi der Waltfallschallen Akkremman ung gegenst beigen Areitherung der European ers operation for Auszeitstein (EA), des International Accreditation form (IAV) und der International Labeschurg Auszeitstein (EA), des International Accreditation form (IAV) und der International Labeschurg Auszeitstein (EA), des International Accreditation form (IAV) und der International Labeschurg Auszeitstein Cooperation (IAAC). Die Unterseichner eiseen Abkommen erkennen ihre Akkreditierungen gegensteilig an.

Der aktus in Stand der Mitgliedschaft kann folgenden Webseiten entnommen werden: Filt- wewerenropmen accreditation.org II.S.C. www.chicong II.S.C. www.chicong

Note:

The current certificate including annex is published on our website (see link below) or may be received from CETECOM ICT Services on request.

http://www.cetecom.com/eu/de/cetecom-group/europa/deutschland-saarbruecken/akkreditierungen.html

2014-07-21 Page 64 of 64