A DATA-DRIVEN REGION DETECTOR FOR STRUCTURED IMAGE SCENES

Elena Ranguelova

Netherlands eScience Center Amsterdam, The Netherlands

ABSTRACT

1. INTRODUCTION

2. DATA-DRIVEN MORPHOLOGY SALIENT REGIONS DETECTION

MSER and MSSR decompose a gray-scale image into binary cross-sections and evaluate the stability of the connected components (CCs) or accumulate saliency masks. DMSR starts with a data-driven binarization, producing one binary image and thus transforming the problem into a binary saliency.

2.1. Binary Salient Regions Detection

We claim that the perceptual saliency in a binary image of a structured scene $\mathbf{B}:\mathcal{D}\subset\mathcal{Z}^2\to\{0,1\}$ (1-white, 0-black) is only due to the spatial layout of the image regions [1]. We have defined four types of salient regions called holes, islands, indentations and protrusions. The two types of inner salient structures (ISS) are holes - set of connected black pixels entirely surrounded by white pixels, and islands – set of connected white pixels surrounded by black ones, i.e. inverse of holes. A significant connected component \mathcal{B}^1 is defined as a CC with area proportional to the image area by Λ . The radius of the morphological structuring element is r and the area opening parameter for noise filtering is λ . In addition, the two boundary salient structures (BSS) are protrusionsset of white pixels on the border of a significant CC, which if pinched off from the CC, will increase its boundary with no more than $2\pi r$, and the *indentations*– inverse protrusions.

These four types are also valid for the MSSR detector. The regions are obtained from the binary image ${\bf B}$ by morphological operations: hole filling, top hat and area opening, for details see [2, 1]. The ISS are similar to the definition of the MSER+ and MSER- regions [3]. In this paper, detectors using only ISS, i.e., directly comparable to MSER, are denoted by DMSR/MSSR, while DMSRA/MSSRA are detectors using all region types. These definitions are summarized in Table 1 and the exact shaped regions from a synthetic 100×100 binary image with parameters $\Lambda = 100$, r = 5 and $\lambda = 10$ are shown on Fig. 1.

ISS	$A CC S_{fb}^{i} = \{ \mathbf{p} \in \mathcal{D}, \forall \mathbf{p} = foreground, $
	$\forall \mathbf{q} \in \partial \mathring{S}_{fb}^{i}, \mathbf{q} = background, \mathbf{q} \notin \partial \mathbf{B} \},$
2 types	S_{10}^{i} (islands), S_{01}^{i} (holes); $\mathbf{S}^{i} = S_{01}^{i} \cup S_{10}^{i}$
BSS	$S_{fb}^b: \{\mathbf{p} \in S_{fb}^b \subset \mathcal{B}^f, \forall \mathbf{p} = foreground, \}$
	$\mathbf{q} \in \partial S_{fb}^b \subset \partial \mathcal{B}^f, \forall \mathbf{q} = background\},$
	$ \partial \mathcal{B}^f - \partial (\mathcal{B}^f \setminus S^b_{fb}) < 2\pi r$
2 types	S_{10}^b (protr.), S_{01}^b (indent.); $\mathbf{S}^b = S_{01}^b \cup S_{10}^b$
Regions	$\mathbf{S} = \mathbf{S}^i \text{ (DMSR)}; \mathbf{S} = \mathbf{S}^i \cup \mathbf{S}^b \text{ (DMSRA)}$

Table 1. Binary saliency definitions used in Section 2.1.

Fig. 1. Binary salient regions detection. Color coding: holesblue, islands- yellow, indentations - green, protrusions- red.

2.2. Data-driven binarization

Any gray-scale image $\mathbf{I}: \mathcal{D} \subset \mathcal{Z}^2 \to \mathcal{T}$, where $\mathcal{T} = \{0,1,\dots,t_{max}\}$ and $t_{max} = 2^n-1 = 255$ is the maximum gray value encoded by n=8 bits, can be decomposed into cross-sections at every possible level $t\colon \mathbf{I} = \sum_{t\in\mathcal{T}} CS_t(\mathbf{I})$. Obtaining a section at level t is equivalent to thresholding the image at threshold $t\colon CS_t(\mathbf{I}) = 1.(\mathbf{I}>t) + 0.(\mathbf{I}<t)$ is a binary image. Three sets of connected components in $CS_t(\mathbf{I})$ are defined: \mathcal{A}_{t^-} all, \mathcal{L}_{t^-} the large and \mathcal{V}_{t^-} the very large CCs. The size of each CC category is defined by $\Lambda_{\mathcal{L}}$ and $\Lambda_{\mathcal{V}}$ fraction of the image area $A_{\mathbf{I}}$. Let us denote the normalized number of elements in a set $(|\cdot|)$ by $|\cdot| = |\cdot|/\max_{t\in\mathcal{T}} |\cdot|$. Finding the optimal threshold t_{opt} is then defined as:

$$t_{opt} = \underset{t \in \mathcal{T}}{\operatorname{arg\,max}} (w^{\mathcal{A}} \| \mathcal{A}_t \| + w^{\mathcal{L}} \| \mathcal{L}_t \| + w^{\mathcal{V}} \| \mathcal{V}_t \|),$$

where w^{\cdot} are the weights per set of CCs.

The standard Otsu thresholding does not select a single stable CS, while choosing t_{opt} ensures stable number of regions across transformations (see Figs. 2 and 3 for lighting).

Fig. 2. Finding the optimal threshold for two images from the 'Leuven' sequence (Oxford dataset, lighting): the base image-solid black line, the forth image - dotted blue line.

Fig. 3. Binarization of two images of the 'Leuven' sequence (lighting). Top row- base image, bottom row- forth image; (a) gray scale; (b) Otsu binarization, (c) proposed binarization.

After the data-driven binarization, the DMSR detector finds the set of affine-covariant regions ${\bf S}$ from the single binary image CS_{topt} as was described in Section 2.1 and [2, 1]. DMSR produces fewer non-overlapping and perceptually salient regions (visualized by their equivalent ellipses, not exact shapes) compared to MSER (see Figures 4 and 5).

3. PERFORMANCE EVALUATION

performance evaluation here...

Fig. 4. Region detectors on the base image of the 'Graffiti' sequence, Oxford dataset. Left: MSER, right: DMSR

4. REFERENCES

[1] E. B. Ranguelova and E. J. Pauwels, "Saliency Detection and Matching for Photo-Identification of Humpback

Fig. 5. Salient region detectors on microscopy wood images. Left: MSER (every second region is shown), right: DMSR

Whales," International Journal on Graphics, Vision and Image Processing, 2006.

- [2] E. B. Ranguelova and E. J. Pauwels, "Morphology-Based Stable Salient Regions Detector," in *Proceedings of International Conference on Image and Vision Computing* New Zealand, 2006, pp. 97 – 102.
- [3] J. Matas, O. Chum, M. Urban, and T. Pajdla, "Robust Wide Baseline Stereo from Maximally Stable Extremal Regions," in *Proceedings BMVC*, 2002, pp. 36.1–36.10.