Impactos das mudanças climáticas: *Mismatches* e alterações na distribuição de plantas e morcegos polinizadores

Guilherme de Carvalho Chicarolli Guillermo Florez-Montero Simone Rodrigues de Freitas

22 de Março de 2021

Resumo

As mudanças climáticas em ocorrência no planeta são foco crescente de estudos na área ecológica. A modificação na distribuição geográfica das espécies é um dos inúmeros impactos que as alterações no clima podem causar nas comunidades de espécies, comprometendo o funcionamento de ecossistemas e interações ecológicas entre indivíduos. Dessa forma, como resposta às mudanças climáticas, as espécies tendem a adaptar sua distribuição a lugares mais adequados. Porém, se a adequação não for acompanhada também pela adaptação das outras espécies com os quais há relações ecológicas importantes, pode ocorrer o chamado mismatch espacial entre elas, que é dada pela não sobreposição geográfica das espécies. O presente projeto busca compreender como as mudanças climáticas podem impactar a distribuição geográfica da espécie de quiróptero Lonchophylla bokermanni e da bromélia Encholirium subsecundum, duas espécies que possuem relações ecológicas muito próximas, sendo L. bokermanni o único polinizador conhecido de E. subsecundum. Utilizando-se de Modelos de Distribuição de Espécies (MDEs) foram criados modelos de distribuição potencial das espécies em dois cenários climáticos projetados para 2070, de RCP 4.5 e 8.5.

Palavras chave: Mudanças climáticas, modelagem, distribuição e sobreposição de espécies.

Área do conhecimento: Ecologia.

Introdução

Figure 1: Gráfico das localidades de L. bokermanni (à esquerda) e E. subsecundum (à direita)

Métodos

Espécies

Ocorrências

Localidade Longitude Latitude Referência

Modelo de Distribuição

Dados ambientais

Para produzir os modelos de distribuição potencial das espécies utilizamos camadas ambientais obtidas do projeto WorldClim (FICK e HIJMANS, 2017), com resolução espacial de 2.5 arc-minutos (aproximadamente 4.5 km no equador) e representando o clima atual, correspondendo à média das observações de 1970 a 2000. As 19 variáveis bioclimáticas (Tabela 1) derivam de dados de temperatura e precipitação, repesentando tendências anuais, condições extremas e sazionalidade (FICK e HIJMANS, 2017).

Para as predições de distribuições futuras, utilizamos camadas projetadas do clima global para o ano de 2050 (média de 2041 a 2060) de acordo com o Quinto Relatório de Avaliação do Painel Intergovernamental sobre Mudanças Climáticas (AR5) do Painel Intergovernamental sobre Mudanças Climáticas (IPCC, 2013), obtidas também através do projeto WorldClim (FICK e HIJMANS, 2017). São camadas de 19 biovariáveis (Tabela 1) projetadas para o futuro e com resolução de 2.5 arc-minutos, representando dois cenários distintos de emissão de gases do efeito estufa conforme o Representative Concentration Pathways (RCPs), o de RCP 45 (cenário no qual as emissões de CO_2 começam a diminuir a partir de 2045) e de RCP 85 (as emissões de gases continuam a crescer ao longo do século 21) (VUUREN e colab., 2011).

Apêndice

Tabela 1: Descrição das variáveis bioclimáticas derivadas de valores da temperatura mensal e pluviosidade (FICK e HIJMANS, 2017)

Variáveis bioclimáticas	Descrição
Bio 1	Temperatura média anual
Bio 2	Intervalo médio diurno (Média mensal (máx. temp mín temp.))
Bio 3	Isotermalidade
Bio 4	Sazonalidade de Temperatura (desvio padrão *100)
Bio 5	Temperatura máxima do mês mais quente
Bio 6	Temperatura mínima do mês mais frio
Bio 7	Intervalo da temperatura anual
Bio 8	Média do quarto de ano mais úmido
Bio 9	Média do quarto de ano mais seco
Bio 10	Média do quarto de ano mais quente
Bio 11	Média do quarto de ano mais frio
Bio 12	Precipitação anual
Bio 13	Precipitação do mês mais frio
Bio 14	Precipitação do mês mais seco
Bio 15	Sazonalidade de precipitação (Coeficiente de variação)
Bio 16	Precipitação do quadrimestre mais úmido
Bio 17	Precipitação do quadrimestre mais seco
Bio 18	Precipitação do quadrimestre mais quente
Bio 19	Precipitação do quadrimestre mais frio

Referências

FICK, Stephen E. e HIJMANS, Robert J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, v. 37, n. 12, p. 4302–4315, 2017. Disponível em: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5086.

IPCC. Summary for Policymakers. STOCKER, T. F. e colab. (Org.). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom; New York, NY, USA: Cambridge University Press, 2013. p. 1–30.

 $\label{eq:VUUREN} VUUREN, Detlef P. \ Van e \ colab. \ \textbf{The representative concentration pathways: an overview}.$ Climatic Change, v. 109, 2011.