

In [341	<pre>x=ScoreData.drop(['Avg_Math_Score','Avg_English_Score'],axis=1) x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42) model = LinearRegression().fit(x_train, y_train) r_sq = model.score(x_train, y_train) print('coefficient of determination training:', r_sq) r_sq = model.score(x_test, y_test) print('coefficient of determination testing:', r_sq)</pre> coefficient of determination training: 1.0
In [342 Out[342	<pre>coefficient of determination testing: -0.07755520757453449 coeff_df = pd.DataFrame(model.coef_, x.columns, columns=['Coefficient']) coeff_df Coefficient Total_Enrollment -0.170770 State_Debt 0.011005</pre>
	State_Debt 0.011005 State_Revenue -0.010249 Salaries 7.606103 Emp_Benefits 1.517856 Student_Support 0.823267 Inst_Staff_Support 1.817843 State_Alabama -15.091717 State_Alaska -4.901563
	State_Alaska -4.901563 State_Arizona -4.337565 State_Arkansas -0.000096 State_California -0.000417 State_Colorado 4.793808 State_Connecticut -0.000615 State_Delaware -3.272969 State_District of Columbia -0.000465
	State_District of Columbia -0.000465 State_Florida -2.935744 State_Georgia -4.930674 State_Hawaii -2.033930 State_Idaho -0.000214 State_Illinois -0.000457 State_Indiana 3.585774
	State_lowa -0.069170 State_Kansas 4.250715 State_Kentucky -0.000440 State_Louisiana -12.128351 State_Maine 2.679472 State_Maryland 1.370202 State_Massachusetts 14.967232
	State_Massachusetts 14.967232 State_Michigan -4.416959 State_Minnesota 9.498649 State_Mississippi -0.000018 State_Missouri -1.892877 State_Montana 3.918158 State_Nebraska -0.765796 State_Nevada -6.414091
	State_NewAda -6.414091 State_New Hampshire 9.592803 State_New Jersey 0.000000 State_New Mexico 0.000000 State_New York 0.000000 State_North Carolina 2.072648 State_North Dakota 4.745532 State_Ohio 4.888019
	State_Ohio 4.888019 State_Oklahoma 0.000000 State_Oregon -1.270887 State_Pennsylvania 3.784013 State_Rhode Island -2.635013 State_South Carolina 0.000000 State_South Dakota 2.042535
	State_South Dakota 2.042535 State_Tennessee -6.630785 State_Texas 0.000000 State_Utah 0.552916 State_Vermont 9.230271 State_Virginia 0.000000 State_Washington 0.000000 State_West Virginia -10.116302
In [378	State_Wisconsin 0.000000 State_Wyoming 1.868936 Model is getting Overfit Dropping some Redundant Columns we earlier marked for deletion can trying to fit model again y=ScoreData['Avg_Math_Score']
, 1111 1111 1111 1111 1111 1111 1111 11	y=ScoreData['Avg_Math_Score'] x=ScoreData[['Salaries','Emp_Benefits','Student_Support','Inst_Staff_Support']] x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.27, random_state=42) model = LinearRegression().fit(x_train, y_train) r_sq = model.score(x_train, y_train) print('coefficient of determination during training:', r_sq) r_sq = model.score(x_test, y_test) print('coefficient of determination during testing:', r_sq) y_pred=model.predict(x_test) print('Mean Absolute error during testing:',mean_absolute_error(y_test, y_pred)) coefficient of determination during training: 0.4025648056104084 coefficient of determination during testing: 0.43462324599957924 Mean Absolute error during testing: 5.005719973499936
In [379 Out[379	<pre>Mean Absolute error during testing: 5.005719973499936 coeff_df = pd.DataFrame(model.coef_, x.columns, columns=['Coefficient']) coeff_df</pre>
	Inst_Staff_Support -11.215740 Due to less data this might not be good fit, but as per this, the linear regression equation will be Avg_Math_Score = 83(Salaries) -53(Emp_Benefits) -20(Student_Support)-11(Inst_Staff_Support) Interpreting Permutation Importances The values towards the top are the most important features, and those towards the bottom matter least.
	The first number in each row shows how much model performance decreased with a random shuffling (in this case, using "accuracy" as the performance metric). Like most things in data science, there is some randomness to the exact performance change from a shuffling a column. We measure the amount of randomness in our permutation importance calculation by repeating the process with multiple shuffles. The number after the ± measures how performance varied from one-reshuffling to the next. You'll occasionally see negative values for permutation importances. In those cases, the predictions on the shuffled (or noisy) data happened to be more accurate than the real data. This happens when the feature didn't matter (should have had an importance close to 0), but random chance caused the predictions on shuffled data to be more accurate. This is more common with small datasets, like the one in this example, because there is
In [380 Out[380	In our example, the most important feature was Salaries. That seems sensible perm = PermutationImportance(model, random_state=1).fit(x_train, y_train) eli5.show_weights(perm, feature_names = x_train.columns.tolist()) Weight Feature
In [381 Out[381	<pre>0.0346 ± 0.0420</pre>
	1.3267 ± 0.6398 Salaries 0.2076 ± 0.1325 Emp_Benefits 0.0278 ± 0.0332 Inst_Staff_Support 0.0103 ± 0.0166 Student_Support According to the concept of permutation Feature the following is order of imponce of feature 1. Salaries 2. Emp_Benefits 3. Inst_Staff_Support 4. Student_Support
In [382	Finding Feature Importance by adding Feature one by one and Checking r2 score initial_r_sq=0 def linearregrun(x,y): global initial_r_sq x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) model = LinearRegression().fit(x_train, y_train) r_sq = model.score(x_train, y_train) print('coefficient of determination during training:', r_sq)
In [383	<pre>r_sq = model.score(x_test, y_test) print('coefficient of determination during testing:', r_sq) y_pred=model.predict(x_test) print('Mean Absolute error during testing:', mean_absolute_error(y_test, y_pred)) if initial_r_sq!=0: print('Percentage Improvement in r2 square ', (r_sq-initial_r_sq)*100/initial_r_sq) initial_r_sq=r_sq Using Only Inst_Staff_Support y=ScoreData['Avg_Math_Score']</pre>
In [384	<pre>x=ScoreData[['Inst_Staff_Support']] linearregrun(x,y) coefficient of determination during training: 0.006627860444701872 coefficient of determination during testing: -0.016407464472375954 Mean Absolute error during testing: 5.797814639019603 Using Only Inst_Staff_Support and Emp_Benefits</pre>
In [385	<pre>linearregrum(x,y) coefficient of determination during training: 0.09332896800014145 coefficient of determination during testing: -0.003961804123792545 Mean Absolute error during testing: 6.0084224583251595 Percentage Improvement in r2 square -75.85364801208166 y=ScoreData['Avg_Math_Score'] x=ScoreData[['Inst_Staff_Support', 'Emp_Benefits', 'Student_Support']] linearregrum(x,y)</pre>
In [386	<pre>x=ScoreData[['Inst_Staff_Support','Emp_Benefits','Student_Support','Salaries']] linearregrun(x,y) coefficient of determination during training: 0.46461423428855964 coefficient of determination during testing: 0.27270492811177816 Mean Absolute error during testing: 4.823957267797926</pre>
In [387	Mean Absolute error during testing: 4.823957267797926 Percentage Improvement in r2 square 2362.771969715587 y=ScoreData['Avg_Math_Score'] x=ScoreData[['Inst_Staff_Support', 'Emp_Benefits', 'Student_Support', 'Salaries', 'Total_Enrollment']] linearregrun(x,y) coefficient of determination during training: 0.4646142342885611 coefficient of determination during testing: 0.27270492811177804 Mean Absolute error during testing: 4.823957267797916 Percentage Improvement in r2 square -4.071151307431052e-14
In [388 In [354	x=ScoreData[['Inst_Staff_Support','Emp_Benefits','Student_Support','Salaries','State_Debt']] linearregrun(x,y) coefficient of determination during training: 0.47619189473874457 coefficient of determination during testing: 0.23494984354169723 Mean Absolute error during testing: 5.096402360341312 Percentage Improvement in r2 square -13.844665306013654
In [355 In [389	<pre>x=ScoreData[['Inst_Staff_Support', 'Emp_Benefits', 'Student_Support', 'Salaries', 'State_Revenue']] linearregrun(x,y) coefficient of determination during training: 0.46570490543070786 coefficient of determination during testing: 0.2666569509848099 Mean Absolute error during testing: 4.830097775028445 Percentage Improvement in r2 square 13.495266464174307 ScoreData['Total_Benefit']=ScoreData['Emp_Benefits']+ScoreData['Salaries'] 'y=ScoreData['Avg_Math_Score']</pre>
	<pre>y=ScoreData['Avg_Math_Score'] x=ScoreData[['Inst_Staff_Support','Student_Support','Total_Benefit']] linearregrun(x,y) coefficient of determination during training: 0.30722784609259013 coefficient of determination during testing: 0.17115263778109346 Mean Absolute error during testing: 4.838842276518836 Percentage Improvement in r2 square -27.15354255993854 Using Different Methods of relating 'Inst_Staff_Support','Emp_Benefits','Student_Support','Salaries' to Avg_Math_Score, I observed that:</pre>
	1) Salaries is highest positively Correlared to Avg_Math_Score which means increase in salaries increase the Avg_Math_Score most. 2) When Tried to create a equation relating all 4 budget sections to the Avg_Math_Score, using linear regression fit, I arrived at equation Avg_Math_Score = 83(Salaries) -53(Emp_Benefits) -20(Student_Support)-11(Inst_Staff_Support) This equation also says increasing salary will increase Avg Math score the most while increase in other variables as per this equation won't necessarily increase salary.
	 3) Using the concept of Permutation Importance, when we tried to put random shuffled variable in place of each column and checked if output is affected, the output was effected most by Salaries establishing the importance of salaries. 4) Method of estimating importance of features by adding features one by one and checking if r2 score increases also shows an improvement of 2000% when salary column gets added in feature slit. Therefore, An increase in Salaries is most likely to cause highest increase in the average Math score of the students, therefore If I am given 1000 dollars, I will invest that in salaries