Формула оценки: 0.25 дз + 0.3 контест + 0.15 кр + 0.3 экзамен + Бонус

Домашние задания: сдавать устно(раз в неделю ассисты устраивают доп пару, запись онлайн) или latex, дедлайн 10-21 день.

<u>Контесты</u>: Длинные(код ревью), короткие(раз в 2 недели), неточные, бонусные(идет к бонусу). Штрафов нет.

Контрольные работы: раз в модуль, тестовые вопросы.

Бонусы: бонусные контесты, АСМ, работа на семинаре.

Материалы:

- Кормен
- en.wikipedia
- викиконспекты
- e-maxx
- Корте-Фанен Коммбинаторная оптимизация

Теория вероятности. $(\Omega, 2^{\Omega}, P)$ - вероятностная пространство.

$$A \subset \Omega$$
, $P(A) = \sum_{w \in A} P(w)$.

 $\underline{\mathrm{Def}}$: A,B - события, P(B)>0. $\mathbf{P}(\mathbf{A}|\mathbf{B})$ - вероятность события A, если наступило событие B. Тогда

$$P(A|B) = \frac{\sum_{w \in A \cap B} P(w)}{\sum_{w \in B} P(w)} = \frac{P(A \cap B)}{P(B)}.$$

 $\underline{\mathrm{Def}}$: A и B независимые, если $\mathrm{P}(\mathrm{A}|\mathrm{B})=\mathrm{P}(\mathrm{A}).$

Тогда, если A и B независимые, то $P(A \cap B) = P(A) \cdot P(B)$.

 $\xi:\Omega \to \mathbb{R}$ - случайная величина. $\xi(w)$ - значение, $w\in \Omega$.

<u>Пример:</u> Есть 5 марок автомобиля, их стоимости и их количества. А - 1000 - 100; В - 2000 - 5; С - 3000 - 5; D - 2000 - 20;

$$\overline{\text{E} - 1500}$$
 - 30; Тогда нас интересуют $P(\xi = 1000) = \frac{100}{160}, P(\xi = 1500) = \frac{30}{160}, P(\xi = 2000) = \frac{25}{160}, P(\xi = 3000) = \frac{5}{160}$.

Матожидание
$$E(\xi) = \sum_{w \in \Omega} \xi(w) \cdot P(w) = \sum_{x} x \cdot P(\xi = x).$$

Индикаторная случайная величина:
$$I_A = \begin{cases} 1, w \in A \\ 0, w \notin A \end{cases}$$
 Тогда $E(I_A) = P(A)$.

Пусть есть 2 случайной величины
$$\xi_1$$
 и ξ_2 . Тогда $E(\alpha \xi_1 + \beta \xi_2) = \alpha E(\xi_1) + \beta E(\xi_2)$.
$$E(\alpha \xi_1 + \beta \xi_2) = \sum_{w \in \Omega} (\alpha \xi_1(w) \cdot P(w) + \beta \xi_2(w) \cdot P(w)) = \alpha \sum_{w \in \Omega} \xi_1(w) \cdot P(w) + \beta \sum_{w \in \Omega} \xi_2(w) \cdot P(w) = \alpha E(\xi_1) + \beta E(\xi_2)$$

Две случайные величины называются <u>независимые</u>, если $\forall x,y: P(\xi_1=x \text{ и } \xi_2=y)=P(\xi_1=x)\cdot P(\xi_2=y).$ n случайных величин называются <u>попарно независимыми</u>, если любые 2 величины независимы. независимы в совокупности - см семинар

$$\xi_1$$
 и ξ_2 - случайные независимые величины. Тогда $E(\xi_1\xi_2)=E(\xi_1)E(\xi_2)$. $E(\xi_1\xi_2)=\sum_{w\in\Omega}\xi_1(w)\xi_2(w)P(w)=\sum_x x\cdot P(\xi_1\xi_2=x)=\sum_{(u,v)}uv\cdot P(\xi_1=u)$ и $\xi_2=v)=[\xi_1$ и ξ_2 независимы] = $\sum_{(u,v)}uv\cdot P(\xi_1=u)\cdot P(\xi_2=v)=(\sum_u u\cdot P(\xi_1=u))\cdot (\sum_v v\cdot P(\xi_2=v))=E(\xi_1)E(\xi_2)$.

Задача о назначениях. Есть n работников и n работ. Есть таблица, где a_{ij} - сколько і-ый работник берет за ј-ую работу. Нужно распределить работников по работам так, чтобы суммарная плата за все работы была миниальна. Оценим матожидание затрат при случайном решении. A_{ij} - событие, когда і-ый работник делает ј-ую работу. $\xi = \sum_{(i,j)} I_{A_{ij}} \cdot a_{ij}$. Тогда $E(\xi) = \sum_{(i,j)} E(I_{A_{ij}} = \sum_{(i,j)} a_{ij} P(A_{ij}) = \sum_{(i,j)} a_{ij} \cdot \frac{1}{n}$.

Найти максимальный разрез в неориентированном невзвешанном графе.

Будем строить случайный разрез(каждую вершину либо в A, либо в A). Тогда ξ - величина нашего разреза. $\xi = \sum_{e \in E(G)} I_{B_e}$, где B_e - событие, когда e лежит в разрезе. $P(e \in \text{разрез}) = \frac{1}{2}$. Тогда $E(\xi) = E(\sum_{e \in E(G)} I_{B_E}) = \sum E(I) = \frac{1}{2} |E(G)|$.

Есть перестановка $p_1 \dots p_n$. Алгоритм жадно набирает возрастающую подпоследовательность. Какое матожидание длины этой подпоследовательности?

Событие A_i - алгоритм возьмет p_i . $E(\xi) = E(\sum I_{A_i}) = \sum P(A_i)$. $P(A_i) = P(\forall j < i : p_j < p_i) = \frac{1}{i}$. Тогда $E(\xi) = \sum_{i=1}^{n} \frac{1}{i} = \Theta(\log n)$.

Дисперсия $D(\xi) = \sum_{w \in \Omega} P(w)(\xi(w) - E(\xi))^2$. Свойства:

- $D(\xi_1 + \xi_2) = D(\xi_1) + D(\xi_2)$, ξ_1 и ξ_2 независимы
- $D(\lambda \xi_1) = \lambda^2 D(\xi_1)$

 Неравенство Маркова.
$$\xi: \Omega \to \mathbb{R}_+$$
. $P(\xi(w) \ge E(\xi) \cdot k) \le \frac{1}{k}$.

Неравенство Чебышева.
$$\xi: \Omega \to \mathbb{R}$$
. $P(|\xi - E(\xi)| \le \alpha) \le \frac{D(\xi)}{\alpha^2}$.

Модели

RAM-модель (Random Access Machine) Вопросы, возникающие при создании модели

- 1. адресация
- 2. какие инструкции
- 3. рекурсия
- 4. где лежат инструкции
- 5. размер данных
- 6. кол-во памяти
- 7. случайность

Адресация Есть ячейки, в которых можно хранить целые числа (ограничения на MAXC разумные, и на них введена неявная адресация

Замечание. Явная адресация — при создании элемента получаем адрес и можем пользоваться только этим адресом. Неявно — можем получать адреса каким-то своим образом, к примеру, ptr + 20.

Кол-во памяти Неявное соглашение RAM — время работы не меньше памяти. По дефолту считаем, что мы его инициализируем мусором

Где инструкции Хранить инструкции можно в памяти и где-то снаружи. Мы будем хранить снаружи (внутри — RASP-модель). Иначе говоря, инструкции и данные отделены.

Какие инструкции В нашей модели есть инструкции следующих типов:

- работа с памятью
- ветвление
- \bullet передача управления (=goto),
- арифметика (at least $a+b, a-b, \frac{a}{b}, \cdot, mod, \lfloor \frac{a}{b} \rfloor$)
- сревнения (at least $a < b, a > b, a \le b, a \ge b, a = b, a \ne b$)
- логические (at least $\land, \lor, \oplus, \neg$)
- битовые операции (>>, <<, &, |, \sim , \oplus)
- математические функции (опять-таки, в рамках разумного)
- \bullet rand

Все инструкции работают от конечного разумного числа операндов (не умеем в векторные операции)

Размер данных $\exists C, k : C \cdot A^k \cdot n^k$ — верхнее ограничение на величины промежуточных вычислений.

Рекурсия Рекурсия всегда линейна по памяити относительно глубины.

Случайность Мы считаем, что у нас есть абсолютно рандомная функция. Будем полагать, что у нас есть источник энтропии, выдающий случайности в промежутке [0,1].

Время работы.

- наихудшее $-t = \max_{input, random} t(input, random)$
- наилучшее $t = \max_{input} \min_{random} t(input, random)$
- ожидаемое $E \ t = \max_{input} Average_{random} t(input, random)$
- на случайных данных $t = Average_{input} Average_{random} t(input, random)$

Алгоритмы

Методы доказательства корректности алгоритма.

- 1. индукция
- 2. инвариант
- 3. от противного

Способы оценки времени работы:

- Прямой учет
- Рекурсивная оценка
- Амортизационный анализ

Прямой учет Время работы строчки — произведение верхних оценок по всем строчкам-предкам нашей.

К примеру

```
while (!is_sorted()) { // O(# inversions) = O(n^2)
    for (int i = 0; i + 1 < n; i++) { // O(n) * O(parent) = O(n^3)
        if (a[i] > a[i + 1]) {
            swap(a[i], a[i + 1]); // O(n^3)
        }
    }
}
```

Рекурсивная оценка Пример — сортировка слиянием

Нас интересует две вещи: инвариант и переход. Для оценки времени используем рекурренту вида

$$T(n) = O(f(n)) + \sum_{n' \in calls} T(n')$$

При этом если мы доказываем время работы, то показываем $T(n) \le c \cdot f(n)$, зная, что для $n' \exists c : T(n') < c \cdot f(n)$

Важно, что c глобальное и не должно увеличиваться в ходе доказательства

stable sort Делает сортировку, не меняя порядок равных элементов относительно исходной последовательности. Merge-sort стабилен.

inplace-algorithm Не требует дополнительной памяти и делает все прямо на данной памяти (у нас есть $\log n$ памяти на рекурсию). Quick-sort inplace.

Время работы qsort

$$T(n) = \max_{input} average_{rand}t(input, rand) = \max_{|input|=n} Et(input)$$

$$T(n) \leq \Theta(n) + \frac{1}{n} \sum_{k=0}^{n-1} (T(k+1) + T(n-k)) \leq \Theta(n) + \frac{2}{n} \cdot \sum_{k=1}^{n} T(k-1) \leq a \cdot n + \frac{2}{n} \sum_{k=1}^{n} c \cdot (k-1) \cdot \log(k-1) \leq a \cdot n + \frac{2}{n} \sum_{k=1}^{n} c \cdot (k-1) \cdot \log n - \frac{2}{n} \sum_{k=1}^{\frac{n}{2}} c \cdot (k-1) + \frac{2}{n} \sum_{k=\frac{n}{2}+1}^{n} c \cdot (k-1) \cdot \log n \leq a \cdot n + \frac{2}{n} \cdot n^{2} \cdot \log n - \frac{2c}{n} \cdot \frac{(n-2)^{2}}{4} \leq a \cdot n + cn \log n - \frac{c(n-2)}{4} \leq cn \log n$$

$$\frac{c(n-2)}{4} \ge a \cdot n$$

$$c \cdot n - 2c \ge 4 \cdot a \cdot n$$

$$c \ge \frac{4 \cdot a \cdot n}{(n-2)}$$

, что верно для достаточно больших n.

Ограничение на число сравнений в сортировке Бинарные сравнения на меньше.

Рассмотрим дерево переходов. Для перестановки есть хотя бы один лист — листьев котя бы n!

$$L(T) \le 2^x, d(T) \le x$$

, если x — ответ

$$L(T) \ge n!$$

$$d(T) \ge \log n! \ge \log \frac{n^{\frac{n}{2}}}{2} = \log 2^{(\log \frac{n}{2}) \cdot \frac{n}{2}} = \frac{n}{2} \cdot \log \frac{n}{2} = \Omega(n \log n)$$

1 Сортировки основанные на внутреннем виде данных

Имеем n чисел $[0, U-1], U=2^w$, числа укладываются в RAM-модель

Сортировка подсчетом Заводим массив cnt[U], $cnt[x] = |\{i: a_i = x\}|$. Дальше переводим $count \to pref$, pref[x] = pref[x-1] + count[x] O(n+U)

Поразрядная сортировка b_{ij} —j-й бит i-го числа. (Сортируем бинарные строки длины w)

Поочередно сортируем строки, разбивая их на классы эквивалентности по iter последним символам. После чего мы стабильно сортируем по (iter + 1)-му символу.

 $O(n \log U)$

Bucket sort Разбиваем множество на корзины, каждой корзине соответствует отрезок. В каждой корзине запускаемся рекурсивно.

 $O(n \log U)$

В продакшне используют первую пару итераций, чтобы сильно снизить размерность на реальных данных.

Пусть мы хотим отсортить равновероятные числа из [0,1]. В каждом бакете отсортируем за квадрат. Получим O(n).

$$t(n) \le \sum_{i=1}^{n} c \cdot (1 + E(cnt_i)^2) \le c \cdot n + c \cdot \sum_{i=1}^{n} E(cnt_i^2) =$$

$$= c \cdot n + c \cdot \sum_{i=1}^{n} \sum_{j=1}^{n} EI_{A_{ij}} = c \cdot n + c \cdot n^2 \cdot \frac{1}{n} \le 2 \cdot c \cdot n$$

2 Иерархия памяти

Нас интересует задержка (latency), пропускная способность (throughput). Подгрузка x данных занимает $l+\frac{x}{t}$

От долгой к быстрой

- $1. \ {\rm external} \ {\rm machine} \ / \ {\rm internet}$
- 2. HDD
- 3. SSD
- 4. RAM
- 5. L3
- 6. L2
- 7. L1
- 8. registers

3 Алгоритмы во внешней памяти

Mergesort во внешней памяти Обычный mergesort, но три типа событий в merge:

- 1. Кончился первый буфер подгружаем новый
- 2. Кончился второй аналогично
- 3. Кончился буфер для слияния выписываем обратно в RAM и сбрасываем

$$O(\frac{n}{B}\log n) o O(\frac{n}{B}\log \frac{n}{B}) o O(\frac{n}{B}\log \frac{m}{B} \frac{n}{B}) + 2$$
идеи:

- 1. Дошли до размера M явно посортим в RAM
- 2. Можем сливать сразу $\frac{M}{B}$ массивов

1 Простые структуры данных

Требования к структуре данных:

- От СД мы хотим обработку каких-то наших запросов.
- online-offline. Бывает, что мы знаем все запросы, бывает, что мы узнаем запрос только тогда, когда отвечаем на предыдущий
- При обсуждении времени работы отделяется время на препроцессинг и на последующие ответы на запросы (query).

1.1 Data structure / interface

Структура данных — это какой-то математический объект, который умеет отвечать на наши запросы конкретным способом. Красно-черное дерево — это структура данных.

Интерфейс — это объект, с которым может взаимодействовать пользователь, который каким-то образом умеет отвечать на наши запросы (пользователю все равно, как, его волнует только то, что интерфейс реализует, и за какое время(память) он это делает). std :: set — это интерфейс.

 $\mathit{Итератор}$ — это специальный объект, отвечающий непосредственно за ячейку в структуре данных. Для того, чтобы удалить элемент, мы должны иметь итератор на этот элемент. Т.е. удаление по ключу работает за O(erase), а удаление по значению за O(find) + O(erase)

list Списки бывают двусвязными, односвязными, циклическими. У каждого элемента есть ссылка на следующий (и иногда на предыдущий), а также есть отдельный глобальный указатель на начало списка.

stack Стек — структура данных, которая умеет делать добавление в конец, удаление из конца, взятие последнего элемента, за O(1).

queue Очередь — структура данных, которая умеет делать добавление в конец, удаление из начала, взятие первого элемента, за O(1).

deque Двусторонняя очередь — структура данных, которая умеет делать добавление, удаление и взятие элемента с любого конца последовательности, за O(1).

priority_queue Очередь с приоритетами ака куча — структура данных, которая умеет делать добавление, удаление, и быстрые операции с минимумом, представляющая из себя дерево с условием $parent(u) = v \rightarrow value(v) \leq value(u)$.

Все эти структуры реализуются как на массиве (храним последовательную память и указатели на начало/конец), так и на списках (что на самом деле является тем же самым, что и на массиве, просто ссылка вперед эквивалентна $a_i \to a_{i+1}$ в терминологии массивов, npum. aemopa).

Структура данных на массиве кратно быстрее аналогичной на ссылках, потому что массив проходится по кэшу и не требует дополнительной памяти.

data structure	add	delete	pop	find	top	build	\min	get by index
stack	O(1)	-	O(1)	-	O(1)	O(n)	O(n)	-
dynamic array	O(1)	O(n)	O(1)	O(n)	O(1)	O(n)	O(n)	O(1)
queue	O(1)	-	O(1)	-	O(1)	O(n)	O(n)	-
deque	O(1)	-	O(1)	-	O(1)	O(n)	O(n)	O(1)
linked list	O(1)	O(1)	O(1)	O(n)	O(1)	O(n)	O(n)	O(n)
sorted array	O(n)	O(n)	O(1)	$O(\log n)$	O(1)	$O(n \log n)$	O(1)	O(1)
priority_queue	$O(\log n)$	$O(\log n)$	$O(\log n)$	O(1)	O(n)	O(1)	-	

1.2 Двоичная куча

Реализация двоичной кучи на массиве — создаем массив размера sz, и создаем ребра $i \to 2 \cdot i, \ i \to 2 \cdot i + 1.$ От такой кучи мы хотим:

- insert(x)
- get_min()
- extract_min()
- erase
- change = {decrease key, increase key}

Для такой кучи мы реализуем $sift_up(x)$, $sift_down(x)$ — просеивание вниз и вверх. Процедура должна устранить конфликты с элементом x. Остальные операции умеют реализовываться через нее.

```
insert = add\_leaf + sift_up extract\_min = swap(root, last) + last - = 1 + sift_down(root) erase = decrease\_key(-\infty) + extract\_min
```

Отдельно отметим построение кучи за O(n) — sift _down поочередно для всех элементов $n, n-1, \ldots, 1$.

```
void sift_up(int v) { // v >> 1 <=> v / 2
    if (key[v] < key[v >> 1]) {
        swap(key[v], key[v >> 1]);
        sift_up(v >> 1);
    }
}

void sift_down(int v, int size) { // indexes [1, size]
    if (2 * v > size) {
        return;
    }
    int left = 2 * v;
    int right = 2 * v + 1;
    int argmin = v;
```

```
if (key[v] > key[left]) {
    argmin = left;
}
if (right <= size && key[right] < key[argmin]) {
    argmin = right;
}
if (argmin == v) {
    return;
}
swap(key[v], key[argmin]);
sift_down(argmin, size);
}</pre>
```

Какое-то сегодняшнее дополнение про бинарную кучу есть в прошлом конспекте

К-чная куча Куча на полном К-чном дереве. Эту кучу можно так же хранить в массиве, с 0-индексацией.

- sift up такой же, $O(\log_k n)$
- sift down ищет минимум среди k элементов на каждом шаге, поэтому работает за $O(k \cdot \log_k n)$.

	2 - heap	k - heap
insert	$O(\log n)$	$O(\log_k n)$
$extract_min$	$O(\log n)$	$O(k \log_k n)$
decrease key	$O(\log n)$	$O(\log_k n)$
increase key	$O(\log n)$	$O(k \log_k n)$

Дейкстра на K**-ной куче** Алгоритм Дейкстры достает минимум n раз, и улучшает ключ m раз

$$a \cdot \log_k n = b \cdot k \cdot \log_k n, a = m, b = n$$

Отсюда $k=\frac{a}{b}=\frac{m}{n}$ в случае Дейкстры. Еще отметим, что $k\geq 2.$

В случае когда $a=b^q$, q>1, то k-куча структура работает за O(1) (вроде бы этот факт мы докажем в домашке), причем с хорошей константой, поэтому применимо на практике (привет, фибоначчиева куча!).

Амортизационный анализ Идея в том, что мы хотим оценить суммарное число операций, а не на каждом шаге работы. То есть вполне может быть итерация алгоритма за O(n), но нам важно, что суммарное число $O(n \log n)$

Так что есть $t_{real} = t$, $t_{amortized} = \tilde{t}$.

Метод кредитов Элементам структуры сопоставляем сколько-то монет. Этими монетами элемент «расплачивается» за операции. Также мы накидываем сколько-то монет на операцию. Запрещаем отрицательное число монет. Начинаем с нулем везде.

Обозначим состояния структуры за S_0, S_1, \ldots, S_n . Каждый переход стоил $t_i, t_i \geq |operations|$, Где t_i — это сколько мы потратили. Также на i-м шаге мы вбрасываем в систему \tilde{t}_i монет. Тогда

$$\sum t_i \le \sum \tilde{t}_i \le A \to O(A)$$

Стек с минимумом

- min_stack
- push
- pop
- qet min

 $m_i = \min(m_{i-1}, a_i) -$ поддерживаем минимумы. Операции тривиальны

Очередь с минимумом на двух стеках Храним два стека с минимумом, один из которых мысленно наращиваем в одну сторону, а другой в другую, при этом очередь выглядит как бы как склеенные стеки. То есть мы добавляем элемент в первый стек, а извлекать хотим из второго.

$$X \to a_n, a_{n-1}, \dots, a_1, |, b_1, b_2, \dots, b_n \to Y$$

Тогда единственная сложная операция— если мы хотим извлечь минимум, а второй стек пустой. Тогда мы все элементы из первого перекинем во второй по очереди с помощью «извлеки-добавь»

Почему это работает за O(1) на операцию амортизированно? Представим каждому элементу при рождении 2 монеты, одну из которых мы потратим на добавление в первый стек, а вторую на удаление через второй.

set для бедных Хотим не делать erase, только insert, find, get_min . Храним $\log n$ массивов, $|a_i|=2^i$, каждый из которых по инварианту будет отсортирован. Тогда get_min рабтает за $O(\log n)$ — просто берем минимум по всем массивам. Аналогично find делается бинпоисками за $O(\log^2 n)$

А как добавлять за $\tilde{O}(\log n)$? Каждый элемент при добавлении в структуру получает $\log n$ монет. Когда мы добавляем элемент, мы создаем новый массив ранга 0. Если было два массива ранга 0, сольем их в новый массив ранга 1 за суммарный размер (и заберем монетку у всех элементов во время слияния), и так далее, пока не создадим уникальный массив для текущего ранга.

Метод потенциалов $\Phi(S_i)$ — потенциал, который зависит только от состояния структуры (**не от** последовательности действий, которая к такому состоянию привела).

Опять вводим t_i , $\sum t_i = O(f(n))$. Определим амортизированное время работы:

$$\tilde{t}_i = t_i + (\Phi(S_{i+1}) - \Phi(S_i))$$

$$t_i = \tilde{t}_i + \Phi(S_i) - \Phi(S_{i+1})$$

Пусть мы показали $\tilde{t}_i \leq f(n)$. Тогда

$$\sum t_i \le n \cdot f(n) + \Phi(0) - \Phi(n)$$

Нормальный потенциал — такой, что из неравенства выше все еще можно показать О-оценку на $\sum t_i = O(n \cdot f(n))$.

deque для богатых Хотим deque с поддержкой минимума.

Храним два стека как для обычной очереди. Все операции хорошо работают как на очереди, кроме перестройки структуры. В случае с очередью надо было переливать стеки только в одну сторону, а теперь иногда нужно туда-сюда.

Теперь мы будем перекидывать только половину элементов. Тогда нам понадобитсяя 3 стека, один из которых будет вспомогательным для перестройки (там иначе стеки развернуты).

$$\Phi(S_i) = |Size_1 - Size_2|$$

Больше куч!

	binaryheap	binomial heap	fibonacciheap
insert	$O(\log n)$	$O(\log n)$	O(1)
$extract_min$	$O(\log n)$	$O(\log n)$	$\tilde{O}(\log n)$
$decrease_key$	$O(\log n)$	$O(\log n)$	$ ilde{O}(1)$
$increase_key$	$O(\log n)$	$O(\log n)$	$\tilde{O}(\log n)$
merge	$\tilde{O}(\log^2 n)$	$O(\log n)$	O(1)
get_min	$O(\log n)$ or $O(1)$	O(1)	

Биномиальная куча

Храним биномиальные деревья. Каждому дереву сопоставим ранг. Ранг дерева полностью определяет его структуру. Дерево ранга 0 — одна вершина. Дерево ранга 1 — одно ребро. В общем случае, дерево ранга n содержит корень и полное двоичное дерево размера 2^{n-1} . Дерево ранга n+1 — это два слитых вместе дерева ранга n — корень второго указывает на корень первого, а корень первого теперь будет указывать на оба бинарных дерева.

Биномиальная куча — это набор из логарифма биномиальных куч.

Слияние двух деревьев мы научились делать за O(1) — меньшая вершина по ключу становится новым корнем, а дальше перекидываем указатели.

Слияние двух куч — это алгоритм сложения двоичных чисел — при сливании двух деревьев ранга n мы «переносим» прибавление кучи ранга n+1

Как добавлять элемент? Создать кучу на 0 элементов и слить их вместе.

Уменьшение ключа — напишем sift~up на нашей новой куче

Удаление минимума — Заметим, что если в правом дереве пройти по правым детям и обозначим их за корни, а их левых детей за полные бинарные деревья, то мы получим набор деревьев рангов $0,1,\ldots,n-1$. Обозначим их за новую кучу, и сольем все вместе.

Увеличение ключа — удалим соответствующий элемент и добавим другой.

Фибоначчиева куча

Хотим сделать биномиальную кучу с послаблаблениями— делать операции в самый последний момент, менее четкую структуру, etc

Есть деревья, их корни храним в двусвязном закольцованном списке.

Всех детей для всех вершин храним в двусвязном закольцованном списке.

Новый ранг — это количество вершин в списке детей.

На каждом дереве выполнена куча, а также поддерживаем глобальный минимум.

Улучшение ключа делается так — удаляем вершину из своего списка, вместе с поддеревом. Добавляем в корневой список. Если мы удалили уже вторую вершину в поддереве родителя, то делаем каскадное вырезание — прыгаем по предкам с mark=1, и вырезаем их в корневой список, причем все вырезания делаются по очереди.

Удаление делается так — мы приписываем всех детей к корневому списку, а потом вызываем *compact*, которая должна спасти наше дерево и навести порядок.

Псевдокод тупых операций:

```
struct Node{
    Node *child;
    Node *left;
    Node *right;
    Node *parent;
    int rank;
    bool mark;
    int value;
}
list<Node *> roots;
void insert(int x) {
    Node *node = new Node(x);
    roots.insert(node);
}
void merge(list<Node *> a, list<Node *> b) {
    merge(a, b); // O(1) haha super easy
}
int getmin() {
    return argmin->value;
}
```

compact

- Сбрасываем пометки корневого списка в 0
- Переводим дерево в состояние, где все ранги разлиичны
- Храним ранги, мерджим одинаковые
- Как мерджим? Берем меньший корень, и записываем в его детей второй корень

Обозначим $R = \max rank$, $t(H) = root \ list \ size$, $m(H) = \sum_{v} mark(v)$ compact работает за O(R + t(H)).

Анализ времени работы $extract_min \& increase_key - \tilde{O}(R)$.

$$\Phi(H) = t(H) + 2m(H) < 3n$$

Пусть каскадное вырезание сделало t_i действий. $m: 1 \to 0, t: +1$. Тогда $\Phi'(H) = \Phi(H) - 1$ за каждое вырезание. Тогда амортизированно вырезание работает за O(1).

Compact:

$$t(H) \le R, \, t'(H) = t(H) - R$$

Амортизациованно работает за 2R+1

Хотим показать $R = O(\log n)$.

$$\forall v \in H \ sz(v) > A^{rank(v)}, \ A > 1$$

Тогда

$$r(v) \le \log_A s(v) \le c \log n$$

Возьмем

$$s(v) > \phi^{rank(v)-2}$$

 $<\!O\!\phi\!\phi\!mon$ про числа Φ ибоначчи>

1.
$$F_n = F_{n-1} + F_{n-2}$$
, $F_0 = F_1 = 1$

2.
$$F_n > \phi^{n-2}$$

3.
$$\forall i \geq 2$$
: $F_i = \sum_{j=0}^{i-2} F_j + 1$

</Oф ϕ mon про числа Φ ибоначчи>

Почему инвариант на размеры сохраняется? Возьмем вершину v с k детьми. Рассмотрим детей в том порядке, в котором их склеивал компакт. Тогда на момент добавления i-й вершины в структуру, ее ранг совпадал с рангом v. Тогда из условия на удаление не более чем одного сына (mark) следует, что $rank(i) \ge i-1$. Тогда мы доказываем по индукции, что у нас все размеры — хотя бы числа фибоначчи,

соответствующие рангу. Тогда
$$s(v) = \sum_{u \in g(v)} s(u) + 1 \ge \sum_{u \in g(v)} F_r ank(u) + 1 \ge \sum_{i=0}^{\infty} F_i + 1 \ge F_{rank(v)-2}$$

Хэширование Есть задача сравнения объектов:

$$U = \{objects\}, \ u, v \in U: \ u \neq v?$$

Введем функцию $h:\ U\to \mathbb{Z}_m$, такую что $\forall\ u,v\in U:\ u\sim v\to h(v)=h(u).$ Обычно $m\ll |U|.$ Зачем юзать хэши, а не наивное сравнение?

- Бывает много сравнений, и мы не хотим дублировать вычисления
- Безопасность
- Для некоторых хешей верно, что h(f(v,u)) = g(h(v),h(u)). То есть можно вычислить хэш от некоего объекта, пользуясь уже посчитанными хэшами для других объектов.
- Иногда мы сравниваем объекты не на равенство, а на изоморфность.
- Сравнивать объекты бывает дорого

Требования к хэшу:

- вычислим за линейное время
- детерменирован
- семейство хэш-функций Н (и можем взять сколько угодно оттуда)
- равномерность $\forall_{v\neq u}v,\ u:\ p_{h\in\mathbb{H}}(h(u)=h(v))\simeq \frac{1}{m}$
- масштабируемость
- необратимость
- (optional) лавинный эффект (при маленьком изменении объекта хэш меняется сильно)

Важно, что мы хотим брать случайную функцию из семейства Ш на момент старта программы, потому что псевдослучайная функция на самом деле нам дает детерменированный алгоритм, который неверен.

Идеальная хэш-функция Так как объектов счетно, то отсортируем их, далее для каждого объекта запомним случайную величину от 1 до m (или даже можем запоминать ее лениво!).

Полиномиальный хэш Сводим объекты к строкам и хэшируем строки:

$$s = c_0 c_2 c_3 \dots c_{n-1}, \ c_i > 0$$

$$h_b(s) = \sum_{i=0}^{n-1} c_i \cdot b^i \pmod{m}$$

$$p_b(h_b(s_1) = h_b(s_2)) \le \frac{n}{m}$$
 для фиксированного m

Доказательство: Рассмотрим функцию как многочлен, теперь для равных функций смотрим на то, равна ли разность многочленов нулю для какого-то b. У многочлена от b степень равна n, а вероятность попасть в конкретный модуль $\frac{1}{m}$.

$$h(s_1 + s_2) = h(s_1) + h(s_2) \cdot b^{|s_1|}$$