PATVIRTINTA

Nacionalinės švietimo agentūros direktoriaus 2021 m. birželio 23 d. įsakymu Nr. VK-350

MATEMATIKOS VALSTYBINIO BRANDOS EGZAMINO KANDIDATŲ DARBŲ VERTINIMO INSTRUKCIJA

Pagrindinė sesija

I dalis

Užd. Nr.	1	2	3	4	5	6	7	8	9	10
Ats.	C	D	C	A	A	D	В	C	В	C

II dalis

11.1	12.
11.2	15π.
11.3	18.
12	6 val. (arba 6 h, arba 6).
13.1	$60^{\circ} \left(\text{arba } \frac{\pi}{3} \right).$
13.2	$-\vec{a} - \vec{b}$ (arba $-\vec{b} - \vec{a}$).
14.1	$\frac{1}{36}$ (arba 0,02(7)).
14.2	$\frac{15}{16}$ (arba 0,9375).
15	23.
16	9.
17	30 dB (arba 30).
18	$g(-1) = 4 - \sqrt{3}$ (arba $4 - \sqrt{3}$).

 $^{^{\}scriptsize{\textcircled{\scriptsize{0}}}}$ Nacionalinė švietimo agentūra, 2021 m.

III dalis

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
19		4	
19.1		1	
	$120 \cdot 1,05 = 126$ (Eur).		
	Ats.: 126 Eur.	1	Už teisingą atsakymą.
19.2		2	
	$126 \cdot 1,05 = 132,30$ (Eur),	1	Už teisingai apskaičiuotą trečio mėnesio pabaigoje grąžina mą
			sumą.
	120+126+132,30 = 378,30 (Eur).	1	Už gautą teisingą atsakymą.
	Ats.: 378,30 Eur.		
19.3		1	
	Pagal geometrinės progresijos pirmųjų <i>n</i> narių sumos formulę:		
	$\frac{120 \cdot (1,05^n - 1)}{1,05 - 1} = 2400(1,05^n - 1).$	1	Už gautą teisingą atsakymą.
	Ats.: $2400(1,05^n-1)$.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
20		8	
20.1		1	
	Ats.: $f'(x) = 12x^2 - 18x + 6$.	1	Už teisingą atsakymą.
20.2		2	
	$12x^2 - 18x + 6 = 0,$	1	Už teisingai pasirinktą sprendimo
	$2x^2 - 3x + 1 = 0,$		būdą.
	$x_1 = 0.5,$		
	$x_2 = 1$.		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	Už gautą teisingą atsakymą.
	Ats.: $x \in (-\infty, 0, 5), (1, +\infty)$.		
20.3		2	
	f'(x) = -1,		
	$12x^2 - 18x + 6 = -1,$	1	Už teisingai sudarytą kvadratinę
	$12x^2 - 18x + 7 = 0,$	1	lygtį.
	D = -12.		
	Lygtis sprendinių neturi, todėl neegzistuoja toks taškas, kuriame duotosios funkcijos grafikui nubrėžtos liestinės krypties koeficientas lygus –1.	1	Už teisingą pagrindimą.

20.4		3	
	$\int_{-1}^{a} (4x^3 - 9x^2 + 6x) dx = -3a^3 - 7,$		
	$\left (x^4 - 3x^3 + 3x^2) \right _{-1}^a = -3a^3 - 7,$	1	Už teisingai gautą pirmykštę funkciją.
	$a^{4} - 3a^{3} + 3a^{2} - (1+3+3) = -3a^{3} - 7,$ $a^{4} - 3a^{3} + 3a^{2} - 7 = -3a^{3} - 7,$	1	Už teisingai įstatytus rėžius.
	$a^{4} + 3a^{2} = 0,$ $a^{2}(a^{2} + 3) = 0,$		
	$a^2 = 0$ arba $a^2 + 3 = 0$, a = 0 sprendinių nėra. Ats.: $a = 0$.	1	Už teisingai išspręstą lygtį.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
21		7	
21.1		2	
	$\log_2(9 - x^2) = 3,$ 9 - x ² = 8,	1	Už teisingai pritaikytą logarit mo apibrėžimą.
	$x^2 = 1$, x = -1 arba $x = 1$. Ats.: $x = -1$ arba $x = 1$.	1	Už gautą teisingą atsakymą.
21.2		2	
	I būdas $2 \sin x = 1$, kai $x \in (90^{\circ}; 180^{\circ})$, $\sin x = \frac{1}{2}$, $x = (-1)^{k} \arcsin\left(\frac{1}{2}\right) + \pi k, k \in \mathbb{Z}$, $x = (-1)^{k} \frac{\pi}{6} + \pi k \text{ (arba } x = (-1)^{k} \cdot 30^{\circ} + 180^{\circ} k \text{)}$.	1	Už teisingai pasirinktą lygties sprendimo būdą.
	Kai $k=0$, tai $x=\frac{\pi}{6}$ (arba $x=30^\circ$) nepriklauso duotajam intervalui. Kai $k=1$, tai $x=\frac{5\pi}{6}$ (arba $x=150^\circ$) priklauso duotajam intervalui. Kai $k=2$, tai $x=\frac{13\pi}{6}$ (arba $x=390^\circ$) nepriklauso duotajam intervalui. $Ats.: x=150^\circ$ (arba $x=\frac{5\pi}{6}$).	1	Už teisingai pasirinktą sprendinį, priklausantį duotajam intervalui.

4		
II būdas $2 \sin x = 1$, kai $x \in (90^{\circ}; 180^{\circ})$, $\sin x = \frac{1}{2}$, $x = \frac{\pi}{6}$ (arba $x = 30^{\circ}$).	1	Už teisingai pasirinktą sprendimo būdą (iš trigonometrinių funkcijų reikšmių lentelės teisingai pasirinktą <i>x</i> reikšmę).
Kadangi $\sin(\pi - \alpha) = \sin \alpha$, tai $x = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$ (arba $\sin(180^{\circ} - \alpha) = \sin \alpha$, tai $x = 180^{\circ} - 30^{\circ} = 150^{\circ}$). Ats.: $x = 150^{\circ}$ (arba $x = \frac{5\pi}{6}$).	1	Už teisingai panaudotą redukcijos formulę.
arba y -0.5 0.6 30° 90° 180° x	1	Už teisingai pasirinktą sprendimo būdą.
arba $x = 150^{\circ} \text{ (arba } x = \frac{5\pi}{6} \text{)}.$	1	Už teisingai pasirinktą sprendin priklausantį duotajam intervalui.

21.3	-	3	
	I būdas $\sqrt{2-x} = \sqrt{x} - 2,$ $2-x = x - 4\sqrt{x} + 4,$	1	Už teisingai atliktus pertvarkymus, abi lygties puses pakėlus kvadratu.
	$4\sqrt{x} = 2x + 2,$ $2\sqrt{x} = x + 1,$ $x^2 - 2x + 1 = 0,$	1	Už teisingai gautą kvadratinę lygtį.
	$x=1$. Patikriname: $\sqrt{1} = \sqrt{1} - 2$. Gauname neteisingą lygybę. $Ats.:$ Sprendinių nėra (arba Ø).	1	Už gautą teisingą atsakymą.
	II būdas Lygties $\sqrt{2-x} = \sqrt{x} - 2$ sprendiniai turi tenkinti šias sąlygas: $\begin{cases} 2-x \ge 0, \\ x \ge 0, \\ \sqrt{x} - 2 \ge 0; \end{cases}$	1	Už teisingai sudarytą nelygybių sistemą.
	$\begin{cases} x \le 2, \\ x \ge 0, \\ x \ge 4. \end{cases}$	1	Už teisingai išspręstas nelygybes.
	Nelygybių sistema sprendinių neturi, todėl ir lygtis neturi sprendinių, nes lygybė nėra teisinga su jokia x reikšme. Ats.: Sprendinių nėra (arba Ø).	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
22		4	
22.1		1	
	$\mathbf{P}(R) = \frac{1 - \frac{1}{5}}{2} = \frac{2}{5} = 0,4.$ Ats.: 0,4.	1	Už teisingą atsakymą.
22.2.1		1	
	$\mathbf{P}(MM) = \mathbf{P}(M) \cdot \mathbf{P}(M) = \frac{1}{5} \cdot \frac{1}{5} = \frac{1}{25} = 0.04.$	1	Už gautą teisingą atsakymą.
	Ats.: 0,04.		
22.2.2		2	
	I būdas		
	Skaičiuojame įvykio A – ištraukti kamuoliuka i		
	yra vienodos spalvos – tikimybę:		
	$\mathbf{P}(A) = \left(\frac{2}{5}\right)^2 + \left(\frac{2}{5}\right)^2 + \left(\frac{1}{5}\right)^2 = \frac{9}{25},$	1	Už teisingai apskaičiuotą įvykio A tikimybę.
	$\mathbf{P}(\overline{A}) = 1 - \mathbf{P}(A) = 1 - \frac{9}{25} = \frac{16}{25} = 0,64.$	1	Už gautą teisingą atsakymą.
	Ats.: 0,64.		

II būdas Skaičiuojame įvykio B – ištraukti kamuoliukai yra skirtingos spalvos – tikimybę: $\mathbf{P}(B) = \mathbf{P}(MR) + \mathbf{P}(RM) + \mathbf{P}(M\check{Z}) + \mathbf{P}(\check{Z}M) + \mathbf{P}(\check{Z}R) + \mathbf{P}(\check{Z}R) = \mathbf{P}(R\check{Z}R)$	1	Už bent vieną teisinga i apskaičiuotą tikimybę, kai ištrauktų kamuoliukų spalvos skiriasi.
$= 2\left(\frac{1}{5} \cdot \frac{2}{5} + \frac{1}{5} \cdot \frac{2}{5} + \frac{2}{5} \cdot \frac{2}{5}\right) = \frac{16}{25} = 0,64.$ Ats.: 0,64.	1	Už gautą teisingą atsakymą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas	
23		5		
23.1		1		
	$S_{\text{pav.}} = 4S_{\Delta} = 4 \cdot \frac{6^2 \sqrt{3}}{4} = 36\sqrt{3}.$ $Ats.: S_{\text{pav.}} = 36\sqrt{3}.$	1	Už gautą teisingą atsakymą.	
	$Ats.: S_{pav.} = 36\sqrt{3}.$			
23.2		2		
	$B \leftarrow $			
	I būdas $S_{\triangle ABC} = \frac{1}{2}BA \cdot EC = 9\sqrt{3},$			
	$EC = 3\sqrt{3},$ $OC = \frac{2}{3}EC = 2\sqrt{3}.$	1	Už teisingai apskaičiuotą <i>OC</i> ilgį.	
	Iš stačiojo trikampio DOC : $\cos \angle DCO = \frac{OC}{DC} = \frac{2\sqrt{3}}{6} = \frac{\sqrt{3}}{3}.$	1	Už gautą teisingą atsakymą.	
	Ats.: $\cos \angle DCO = \frac{\sqrt{3}}{3}$.			
	II būdas Pagal kosinusų teoremą trikampyje DEC : $DE^2 = DC^2 + EC^2 - 2DC \cdot EC \cos \angle DCE,$	1	Už teisingai pasirinktą sprendimo būdą (pvz., kosinusų teoremos taikymas).	
	$S_{\Delta ABC} = \frac{1}{2}BA \cdot EC = 9\sqrt{3},$			
	$EC = ED = 3\sqrt{3},$ $\cos \angle DCE = \frac{27 - 27 - 36}{-2 \cdot 6 \cdot 3\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}.$	1	Už gautą teisingą atsakymą.	
	Ats.: $\cos \angle DCE = \frac{\sqrt{3}}{3}$.			

22.2	/ 	1	
23.3		1	
	I būdas		
	Irodome, kad $EF \perp AB$.		
	Sujungę tašką F su tetraedro viršūnėmis B ir A , gauname trikampį ABF , kuris yra lygiašo nis, nes $BF = AF$ yra kaip lygių lygiakraščių trikampių ACD ir BCD pusiaukraštinės. Todėl lygiašonio trikampio AFB pusiaukraštinė EF	1	Už teisingą įrodymą.
	i pagrinda AB yra ir šio trikampio aukštinė, t. y.		
	$EF \perp AB$.		
	II būdas		
	Irodome, kad $EF \perp AB$.		
	$B \leftarrow \begin{array}{c} D \\ \downarrow \\ \downarrow \\ E \end{array}$		
	Sujungę tašką E su tetraedro viršūnėmis D ir C , gauname, kad $AB \perp DE$ ir $AB \perp EC$ (lygiak raščio trikampio pusiauk raštinė sutampa su aukštine). Todėl AB yra statmena plokštuma i DEC , todėl ir bet kuriai tos plokštumos tiesei, t. y. $EF \perp AB$.	1	Už teisingą įrodymą.
23.4		1	
	Analogiškai įrodome, kad EF yra lygiašonio trikampio CED pusiaukraštinė, todėl $EF \perp CD$. Kadangi $EF \perp AB$ ir $EF \perp DC$, tai atkarpos EF ilgis lygus atstumui tarp prasilenkia nč ių	1	Už teisingą įrodymą.
	tiesių.		

24			3	
	$f'(x) = \frac{1 - \ln x}{x^2},$		1	Už teisingai rastą išvestinę.
	$\frac{1-\ln x}{x^2} = 0,$ $1-\ln x = 0,$ $\ln x = 1,$ $x = e.$		1	Už teisingai rastą kritinį tašką.
	I būdas $ \begin{array}{cccccccccccccccccccccccccccccccccc$	II būdas Apskaičiuojame funkcijos reikšmes intervalo galuose ir kritiniame taške bei jas palyginame: $f\left(\frac{1}{e}\right) = -e,$ $f(e) = \frac{1}{e},$ $f(e^3) = \frac{3}{e^3}.$ Kadangi $f\left(\frac{1}{e}\right) < f(e^3) < f(e), \text{ tai}$ taške $x = e$ funkcija igyja didžiausią reikšmę. $Ats.: x = e.$	1	Už teisingą pagrindimą.

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
25		3	
	I būdas		
	B		
	/20		
	$A \stackrel{2\alpha}{\swarrow} C$		
	Tegul $AB = a$. Tai $BC = ka$.		
	Pagal sinusų teoremą:	1	Už teisingai pritaikytą
			sinusų teoremą.
	$\frac{a}{\sin\alpha} = \frac{ka}{\sin 2\alpha},$		
	$\frac{1}{\sin\alpha} = \frac{k}{\sin 2\alpha},$		
	1 _ k	1	Už teisingai panaudotą
	$\frac{1}{\sin\alpha} = \frac{k}{2\sin\alpha\cos\alpha},$		dvigubo kampo sinuso
	$1 = \frac{k}{2\cos\alpha},$		formulę ir teisingą
	$1-\frac{1}{2\cos\alpha}$,		pagrindimą.
	$\cos\alpha = \frac{k}{2}$.		
	Kai $0 < \alpha < \frac{\pi}{3}$, tai $\frac{1}{2} < \cos \alpha < 1$, todėl		
	3, 2		
	$\frac{1}{k} < \frac{k}{k} < 1$	1	Už teisingai nustatytas
	$\left \frac{1}{2} < \frac{k}{2} < 1, \right $		k reikšmes.
	1 < k < 2.		
	Ats.: $1 < k < 2$.		
	II būdas		
	B		
	2α		
	$A \stackrel{\square}{\longrightarrow} C$		
	Dui-žiomo ovležtino DD	1	Už teisingai pasirinktą
	Brėžiame aukštinę BD . Iš stačiojo $\triangle ABD$, $BD = \sin 2\alpha \cdot AB$		sprendimo būdą (abi
	Iš stačiojo $\triangle BCD$, $BD = \sin 2\alpha \cdot AB$		teisingas aukštinės
	Is stactojo $\triangle BCD$, $BD = SIII \cdot C \cdot AB \cdot K$		išraiškas per kampo
	PD 2sing again	<u> </u>	sinusą).
	$\frac{BD}{BD} = \frac{2\sin\alpha\cos\alpha}{\sin\alpha \cdot k}, \cos\alpha = \frac{k}{2}.$	1	Už teisingą
			pagrindimą.
	Kai $0 < \alpha < \frac{\pi}{3}$, tai $\frac{1}{2} < \cos \alpha < 1$, todėl		
		1	Už teisingai nustatytas
	$\left \frac{1}{2} < \frac{k}{2} < 1, \right 1 < k < 2.$	_	k reikšmes.
	Ats.: 1 < k < 2.		

Užd.	Sprendimas ir atsakymas	Taškai	Vertinimas
26		4	
	I būdas		
	(b-a=c-b;	1	Už bent vieną teisingai sudarytą lygybę.
		1	
	$\left(\frac{c}{b} = \frac{a}{c}\right)$.		
	(2b = a + c;		
	$\int \frac{2c}{a+c} = \frac{a}{c}.$		**************************************
	Iš antros lygybės:	1	Už teisingai gautą
	$2c^2 = a^2 + ac,$		lygybę su dviem
	$c^2 - a^2 = ac - c^2$,		nežino maisiais.
	(c-a)(c+a) = c(a-c),		
	(c-a)(c+a) = c(a-c), Kadangi $a \neq c$, tai	1	Už teisingai gautą <i>a</i> išraišką per <i>c</i> (arba atvirkščiai).
	Raddigi $a \neq c$, tal $c+a=-c$,		
	a = -2c.		
	$q = \frac{a}{c} = \frac{-2c}{c} = -2.$	1	Už gautą teisingą
	Ats.: $q = -2$.		atsakymą.
	II būdas		
	b-a=c-b,	1	Už bent vieną teisingai sudarytą lygybę.
	$\begin{cases} \frac{c}{b} = \frac{a}{c}; \end{cases}$		
	(<i>b c</i> '		
	a = 2b - c,		
	$\left\{ \frac{c}{b} = \frac{2b - c}{c} \right\}.$		
	Iš antros lygybės:	1	Už teisingai gautą
	$\frac{c}{b} = \frac{2b}{c} - 1,$		lygybę su dviem
			nežinomaisiais.
	$q = \frac{2}{q} - 1,$	1	Už teisingai sudarytą
			lygtį geometrinės
	$q^2 + q - 2 = 0,$		progresijos vardikliui q apskaičiuoti.
	$q = -2$ arba $q = 1$ (netenkina sąlygos $a \neq b$).	1	Už gautą teisingą
	Ats.: $q = -2$.		atsakymą.

11		
III būdas Jei b, c, a – iš eilės einantys geometrinės progresijos nariai, tai $c = bq$, $a = bq^2$, tuomet	1	Už teisingai pritaikytą geometrinės progresijos bendrojo nario formulę.
bq^2 , b , bq — iš eilės einantys aritmetinės progresijos nariai, tai $b-bq^2=bq-b$,	1	Už teisingai pritaikytą aritmetinės progresijos apibrėžtį.
$bq^{2} + bq - 2b = 0 :b \neq 0,$ $q^{2} + q - 2 = 0,$	1	Už teisingai gautą kvadratinę lygtį.
$q_1 = -2$, $q_2 = 1$ (netenkina sąlygos $a \neq b$). Ats.: q = -2.	1	Už gautą teisingą atsakymą.
IV būdas $\begin{cases} b - a = c - b; \\ \frac{c}{b} = \frac{a}{c}. \end{cases}$	1	Už bent vieną teisinga i sudarytą lygybę.
$\begin{cases} c = 2b - a; \\ \frac{2b - a}{b} = \frac{a}{2b - a}. \end{cases}$	1	Už teisingai gautą lygybę su dviem nežino maisiais.
Iš antros lygybės $(2b-a)^{2} = ab,$ $4b^{2} - 5ab + a^{2} = 0,$ $\frac{a^{2}}{b^{2}} - 5\frac{a}{b} + 4 = 0,$ $q^{4} - 5q^{2} + 4 = 0,$	1	Už teisingai sudarytą lygtį geometrinės progresijos q^2 apskaičiuoti.
$q^2 = 4$ arba $q^2 = 1$, $q = -1$ arba $q = 1$ – netenkina sąlygos $a \neq b$, $q = 2$ arba $q = -2$, $q = 2$ – netinka, nes jei aritmetinės progresijos $a < b < c$, tai geometrinės progresijos $b < c > a$, ir atitinkamai jei aritmetinės progresijos $a > b > c$, tai geometrinės progresijos $b > c < a$. Tai įmanoma tada ir tik tada, kai $q < 0$. $Ats.: q = -2$.	1	Už gautą teisingą atsakymą.

Pastaba. Taškai skiriami ir už bet kurį kitą teisingą sprendimą, atsakymą.