<110> Evans, Ronald M Blumberg, Bruce

<120> NOVEL STEROID-ACTIVATED NUCLEAR RECEPTORS AND USES THEREFOR

<130> SALK2270-2

<140> 09/458,366

<141> 1999-12-09

<150> 09/005,286

<151> 1998-01-09

<160> 39

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 2068

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (583)...(1884)

<223> N is selected from A, C, T/U or G

<400> 1

ggcacgagga	gatctaggtt	caaattaatg	ttgcccctag	tggtaaagga	cagagaccct	60
cagactgatg	aaatgcgctc	agaattactt	agacaaagcg	gatatttgcc	actctcttcc	120
ccttttcctg	tgtttttgta	gtgaagagac	ctgaaagaaa	aaagtaggga	gaacataatg	180
agaacaaata	cggtaatctc	ttcatttgct	agttcaagtg	ctggacttgg	gacttaggag	240
gggcaatgga	gccgcttagt	gcctacatct	gacttggact	gaaatatagg	tgagagacaa	300
gattgtctca	tatccgggga	aatcataacc	tatgactagg	acgggaagag	gaagcactgc	360
ctttacttca	gtgggaatct	cggcctcagc	ctgcaagcca	agtgttcaca	gtgagaaaag	420
caagagaata	agctaatact	cctgtcctga	acaaggcagc	ggctccttgg	taaagctact	480
ccttgatcga	tcctttgcac	cggattgttc	aaagtggacc	ccaggggaga	agtcggagca	540
aagaacttac	caccaagcag	tccaagaggc	ccagaagcaa	ac ctg gag	gtg aga	594
				Leu Glu	Val Arg	
				1		

ccc aaa gaa agc tgg aac cat gct gac ttt gta cac tgt gag gac aca
Pro Lys Glu Ser Trp Asn His Ala Asp Phe Val His Cys Glu Asp Thr

gag tot gtt cot gga aag coo agt gto aac goa gat gag gaa gto gga 690 Glu Ser Val Pro Gly Lys Pro Ser Val Asn Ala Asp Glu Glu Val Gly

ggt ccc caa atc tgc cgt gta tgt ggg gac aag gcc act ggc tat cac

738
Gly Pro Gln Ile Cys Arg Val Cys Gly Asp Lys Ala Thr Gly Tyr His

40

45

50

ttc aat gtc atg aca tgt gaa gga tgc aag ggc ttt ttc agg agg gcc 786
Phe Asn Val Met Thr Cys Glu Gly Cys Lys Gly Phe Phe Arg Arg Ala

 α^{\prime}

		55					60					65				
														gcc Ala		834
														ctg Leu		882
														gac Asp 115		930
														gaa Glu		978
														cag Gln		1026
														gac Asp		1074
														agc Ser		1122
														gaa Glu 195		1170
														gtc Val		1218
														acn Xaa		1266
														atg Met		1314
														aaa Lys		1362
														ctg Leu 275		1410
														gtg Val		1458
aac Asn	gcg Ala	gag Glu	act Thr	gga Gly	acc Thr	tgg Trp	gag Glu	tgt Cys	ggc Gly	cgg Arg	ctg Leu	tcc Ser	tac Tyr	tgc Cys	ttg Leu	1506

ort Cont 295 300 305

		2,7,3					300					505				
gaa Glu	gac Asp 310	act Thr	gca Ala	ggt Gly	ggc Gly	ttc Phe 315	cag Gln	caa Gln	ctt Leu	cta Leu	ctg Leu 320	gag Glu	ccc Pro	atg Met	ctg Leu	1554
				_	_	_	_	_		_				gag Glu		1602
														ggt Gly 355		1650
ctg Leu	cag Gln	cac His	cgc Arg 360	gtg Val	gtg Val	gac Asp	cag Gln	ctg Leu 365	cag Gln	gag Glu	caa Gln	ttc Phe	gcc Ala 370	att Ile	act Thr	1698
														agg Arg		1746
														atc Ile		1794
gct Ala 405	cag Gln	cac His	acc Thr	cag Gln	cgg Arg 410	ctg Leu	ctg Leu	cgc Arg	atc Ile	cag Gln 415	gac Asp	ata Ile	cac His	ccc Pro	ttt Phe 420	1842
					cag Gln											1884
gcac	ctac	gg g	gccaa	agaca	ag at	ggad	cacto	g cca	agag	gccg	acaa	atgco	cct g	gctgg	gageeg geetgt ggggtg	1944 2004 2064 2068
<212	.> 43 !> PF		sapie	ens												
<220 <223		na is	s thi	reoni	ine									•		
<400 Leu		Val	Arg	Pro	Lys	Glu	Ser	Trp	Asn	His	Ala	Asp	Phe	Val	His	
1 Cys	Glu	Asp	Thr	5 Glu	Ser	Val	Pro	Gly	10 Lys	Pro	Ser	Val	Asn	15 Ala	Asp	
Glu	Glu		20 Gly	Gly	Pro	Gln		25 Cys	Arg	Val	Cys		30 Asp	Lys	Ala	
Thr		35 Tyr	His	Phe	Asn		40 Met	Thr	Cys	Glu		45 Cys	Lys	Gly	Phe	
	50 Arg	Arg	Ala	Met		55 Arg	Asn	Ala	Arg		60 Arg	Cys	Pro	Phe		
65 Lys	Gly	Ala	Cys	Glu 85	70 Ile	Thr	Arg	Lys	Thr 90	75 Arg	Arg	Gln	Cys	Gln 95	80 Ala	

Cont.

4

```
Cys Arg Leu Arg Lys Cys Leu Glu Ser Gly Met Lys Lys Glu Met Ile
                                105
Met Ser Asp Glu Ala Val Glu Glu Arg Arg Ala Leu Ile Lys Arg Lys
                           120
Lys Ser Glu Arg Thr Gly Thr Gln Pro Leu Gly Val Gln Gly Leu Thr
                                           140
                       135
Glu Glu Gln Arg Met Met Ile Arg Glu Leu Met Asp Ala Gln Met Lys
                    150
                                        155
Thr Phe Asp Thr Thr Phe Ser His Phe Lys Asn Phe Arg Leu Pro Gly
               165
                                   170
Val Leu Ser Ser Gly Cys Glu Leu Pro Glu Pro Leu Gln Ala Pro Ser
                                185
Arg Glu Glu Ala Ala Lys Trp Ser Gln Val Arg Lys Asp Leu Cys Ser
                           200
Leu Lys Val Ser Leu Gln Ala Ala Gly Gly Gly Trp Gln Cys Leu Glu
                                            220
                       215
Leu Gln Xaa Pro Ser Arg Gln Trp Arg Lys Glu Ile Phe Ser Leu Leu
                   230
                                       235
Pro His Met Ala Asp Met Ser Thr Tyr Met Phe Lys Gly Ile Ile Ser
                                   250
                245
Phe Ala Lys Val Ile Ser Tyr Phe Arg Asp Leu Pro Ile Glu Asp Gln
                                265
Ile Ser Leu Leu Lys Gly Ala Ala Phe Glu Leu Cys Gln Leu Arg Phe
                            280
Asn Thr Val Phe Asn Ala Glu Thr Gly Thr Trp Glu Cys Gly Arg Leu
                                            300
                        295
Ser Tyr Cys Leu Glu Asp Thr Ala Gly Gly Phe Gln Gln Leu Leu
                    310
Glu Pro Met Leu Lys Phe His Tyr Met Leu Lys Lys Leu Gln Leu His
                                    330
               325
Glu Glu Glu Tyr Val Leu Met Gln Ala Ile Ser Leu Phe Ser Pro Asp
                                345
           340
Arg Pro Gly Val Leu Gln His Arg Val Val Asp Gln Leu Gln Glu Gln
                            360
                                                365
Phe Ala Ile Thr Leu Lys Ser Tyr Ile Glu Cys Asn Arg Pro Gln Pro
                       375
                                            380
Ala His Arg Phe Leu Phe Leu Lys Ile Met Ala Met Leu Thr Glu Leu
                                       395
                   390
Arg Ser Ile Asn Ala Gln His Thr Gln Arg Leu Leu Arg Ile Gln Asp
               405
                                   410
Ile His Pro Phe Ala Thr Pro Leu Met Gln Glu Leu Phe Gly Ile Thr
                                425
           420
Gly Ser
<210> 3
```

ant cont

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> putative SXR response element from the steroid hydoxylase, rCYP3A1

<400> 3

tagacagttc atgaagttca tctac

<210> 4

<211> 25

<212> DNA

	\mathcal{J}	
<213>	Artificial Sequence	
<220> <223>	putative SXR response element from the steroid hydoxylase, rCYP3A2	
<400> taagc	4 agttc ataaagttca tctac	25
<210><211><212><212><213>	25	
<220> <223>	putative SXR response element from the steroid hydoxylase, rUGT1A6	
<400> actgta	5 agttc ataaagttca catgg	25
<210><211><211><212><213>	26	
<220> <223>	putative SXR response element from the steroid hydoxylase, rbCYP2C1	
<400> caatca	6 agttc aacagggttc accaat	26
<210><211><212><212><213>	33	
	putative SXR response element from the steroid hydoxylase, rP450R	
<400> cacago	7 gtgag ctgaggccag cagcaggtcg aaa	33
<210><211><211><212><213>	27	
<220> <223>	putative SXR response element from the steroid hydoxylase, rCYP2A1	
<400> gtgcag	8 ggttc aactggaggt caacatg	27
<210><211><211>	27	

	6	
<213>	Artificial Sequence	
<220>	2 - 1 - 6 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
<223>	putative SXR response element from the steroid	
	hydoxylase, rCYP2A2	
.400.		
<400>		27
gracia	ggttc aactggaggt cagtatg	2,
<210>	10	
<211>		
<212>		
	Artificial Sequence	
12137		
<220>		
<223>	putative SXR response element from the steroid	
	hydoxylase, rCYP2C6	
<400>	10	
agtcta	agttc agtgggggtt cagtctt	27
<210>	11	
<211>	27	
<212>		
<213>	Artificial Sequence	
<220>	and the CVP are a second from the stored	
	putative SXR response element from the steroid	
	hydoxylase, hCYP2E1	
<400>	11	
	ggttc aaggaagggt cattaac	27
343465	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
<210>	12	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	direct repeat with spacer of 0 nucleotides	
<400>		20
catagt	cagg tcaaggtcag atcaac	26
-210-	12	
<210><211>		
<211>		
	Artificial Sequence	
<220>		
<223>	direct repeat with spacer of 1 nucleotides	
	-	
<400>	13	
catagt	cagg tcataggtca gatcaac	27
<210>		
<211>		
<212>	DINA	

<213> Artificial Sequence

<220> <223> direct repeat with spacer of 2 nucleotides	
<400> 14 catagtcagg tcaataggtc agatcaac	28
<210> 15 <211> 29 <212> DNA <213> Artificial Sequence	
<220> <223> direct repeat with spacer of 3 nucleotides	
<400> 15 catagtcagg tcatataggt cagatcaac	29
<210> 16 <211> 30 <212> DNA <213> Artificial Sequence	
<220> <223> direct repeat with spacer of 4 nucleotides	
<400> 16 catagtcagg tcatataagg tcagatcaac	30
<210> 17 <211> 31 <212> DNA <213> Artificial Sequence	
<220> <223> direct repeat with spacer of 5 nucleotides	
<400> 17 catagtcagg tcatatatag gtcagatcaa c	31
<210> 18 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> direct repeat with spacer of 6 nucleotides	
<400> 18 catagtcagg tcatatataa ggtcaagatc aac	33
<210> 19 <211> 33 <212> DNA <213> Artificial Sequence	
<220> <223> direct repeat with spacer of 7 nucleotides	
<400> 19 catagtcagg tcatatatat aggtcagatc aac	33

a' cont

```
<210> 20
<211> 36
<212> DNA
<213> Artificial Sequence
<223> direct repeat with spacer of 10 nucleotides
<400> 20
catagtcagg tcatatatat ataaggtcag atcaac
                                                                         36
<210> 21
<211> 41
<212> DNA
<213> Artificial Sequence
<220>
<223> direct repeat with spacer of 15 nucleotides
<400> 21
catagtcagg tcatagtagt agtagtagag gtcagatcaa c
                                                                         41
<210> 22
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<221> repeat_unit
<222> (7)...(7)
<223> N is a nucleotide spacer of 3, 4 or 5 nucleotides,
      wherein each N is independently selected from A,
      T, C or G
<223> example of a response element suitable for
      practice of the invention method
<400> 22
                                                                         13
agttcantga act
<210> 23
<211> 13
<212> DNA
<213> Artificial Sequence
<220>
<221> repeat unit
<222> (7)...(7)
<223> N is a nucleotide spacer of 6 nucleotides, wherein
      each N is independently selected from A, T, C or G
<223> example of a response element suitable for
      practice of the invention method
<400> 23
tgaactnagg tca
                                                                       . 13
<210> 24
<211> 18
```

Ont Ont

	9	
<212> <213>	DNA Artificial Sequence	
<220> <223>	inverted repeat with 6 nucleotide spacer found in CYP3A4	
<400> tgaact	24 ccaaa ggaggtca	18
<210><211><212><213>	18	
<220> <223>	inverted repeat response element with spacer of 0 nucleotides	
<400>	25 aggtc atgaccta	18
<210><211><211><212>	26 19	
<220> <223>	inverted repeat response element with spacer of 1 nucleotides	
<400> agctta	26 aggtc agtgaccta	19
<210><211><212><212><213>	20	
<220> <223>	inverted repeat response element with spacer of 2 nucleotides	
<400> agctta	27 aggtc acgtgaccta	20
<210><211><212><213>	21	
	inverted repeat response element with spacer of 3 nucleotides	
<400> agctta	28 Iggtc acagtgacct a	21
<210> <211>		

-2125	DMA	
<212> <213>	Artificial Sequence	
<220> <223>	inverted repeat response element with spacer of 4 nucleotides	
<400> agctta	29 aggtc acatgtgacc ta	22
<210><211><212><213>	23	
<220> <223>	inverted repeat response element with spacer of 5 nucleotides	
<400> agctta	30 aggtc acactgtgac cta	23
<210><211><212><212><213>	23	
<220> <223>	inverted repeat response element with spacer of 6 nucleotides	
<400> agcttt	31 gaac tcaaaggagg tca	23
<210><211><212><213>	18	
<220> <223>	IR-M	
<400> agctta	32 acgtc atgacgta	18
<210><211><212><213>	33	
<220> <223>	CYP3A oligonucleotide, CYP3A4, tested for binding	
<400> tagaat	33 atga actcaaagga ggtcagtgag tgg	33
<210><211><211><212>	33	

ty

<220> <223> CYP3A oligonucleotide, CYP3A5, tested for binding	
<400> 34 tagaatatga actcaaagga ggtaagcaaa ggg	33
<210> 35 <211> 32 <212> DNA <213> Artificial Sequence	
<220> <223> CYP3A oligonucleotide, CYP3A7, tested for binding	
<400> 35 tagaatatta actcaatgga ggcagtgagt gg	32
<210> 36 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
<400> 36 gagcaattcg ccattactct gaagt	25
<210> 37 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
<400> 37 gtccttgggg tcttctacct ttctc	25
<210> 38 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
<400> 38 gacgatttgg atctggacat gttgg	25
<210> 39 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> oligonucleotide for PCR	
-100 > 20	

at.