第三章 线性方程组 练习题

一 填空题

1. 已知
$$5(1,0,-1)-3\alpha-(1,0,2)=(2,-3,-1)$$
 ,则 $\alpha=$ ______.

2. 判断向量组的线性相关性:

(1)
$$(1,2,3,4),(4,3,2,1),(0,0,0,0)$$
. (2) $(a,b,c),(b,c,d),(c,d,e),(d,e,f)$.

(3)
$$(a,1,b,0,0),(c,0,d,2,3),(e,4,f,5,6)$$
.

3. 若任意一个3维向量都可由
$$\alpha_1 = (1,0,1), \alpha_2 = (1,-2,3), \alpha_3 = (a,1,2)$$
线性表出,则 a 满足_____.

4. 向量组
$$\alpha_1 = (1,0,1,2), \alpha_2 = (1,1,3,1), \alpha_3 = (2,-1,a+1,5)$$
线性相关,则 $a =$ ______.

5. 向量组
$$\alpha_1 = (1,0,1), \alpha_2 = (2,2,3), \alpha_3 = (1,3,t)$$
线性无关,则 t 满足_____.

6. 向量组
$$\alpha_1 = (1,-1,3,0), \alpha_2 = (-2,1,a,1), \alpha_3 = (1,1,-5,-2)$$
 的秩为 2 ,则 $a =$ ______.

7. 设
$$r(\alpha_1, \dots, \alpha_s) = r(\alpha_1, \dots, \alpha_s, \beta) = r, r(\alpha_1, \dots, \alpha_s, \gamma) = r + 1, 则 r(\alpha_1, \dots, \alpha_s, \beta, \gamma) = \underline{\hspace{1cm}}$$

- 8. 设一个齐次线性方程组的系数矩阵是n阶方阵A,
 - (I) 若 A 的各行元素之和均为0,且 r(A) = n-1,则此方程组的通解为______
 - (II) 若每个n维向量都是此方程组的解,则 $r(A) = _____.$
- 9. 设非齐次方程组的系数矩阵是 $A = (\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,其中 $\alpha_2, \alpha_3, \alpha_4$ 线性无关,且 $\alpha_1 = \alpha_2 + \alpha_3 + \alpha_4$,若常 数项组成的列向量 $\beta = \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4$,则此方程组的通解为_______.

11. 已知方程组
$$\begin{cases} x_1 + 2x_2 + x_3 = 1 \\ 2x_1 + 3x_2 + (a+2)x_3 = 3 \text{ 无解,则 } a = \underline{\hspace{1cm}} \\ x_1 + ax_2 - 2x_3 = 0 \end{cases}$$

12. 设一线性方程组的增广矩阵经过初等行变换化为矩阵
$$\begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & \lambda(\lambda-1) & \lambda \end{pmatrix}$$
,则当 $\lambda=$ ____时,方程组

无解;当 $\lambda = ___$ 时,方程组有无穷多解.

- 13. 设一齐次线性方程组的系数矩阵 *A* 是 4×3 矩阵,则当______时,此方程组只有零解,当且仅当_____ 时,方程组有非零解,此时自由未知量的个数等于_____.
- 14. 设 $A \in m \times n$ 矩阵,以A为系数矩阵的非齐次线性方程组有无穷多解的充要条件是

15. 若齐次线性方程组
$$\begin{cases} \lambda x_1 + x_2 + x_3 = 0 \\ x_1 + \lambda x_2 + x_3 = 0 \ \text{只有零解,则} \, \lambda \, 应满足_____. \\ x_1 + x_2 + x_3 = 0 \end{cases}$$

16. 方程组
$$\begin{cases} x_1 + x_2 - x_3 = a_1 \\ -x_1 + x_2 - x_3 + x_4 = a_2 \text{ 有解的充要条件是} \\ -2x_2 + 2x_3 - x_4 = a_3 \end{cases}$$

17. 设
$$A = \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & a \\ a & 1 & 3 \end{pmatrix}$$
,若 A 经过初等变换化为 $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$,则 $r(A) = \underline{\qquad}$, $a = \underline{\qquad}$.

- 18. 设 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 为一个线性无关的n维向量组,则n与m的大小关系为______.
- 19. 设A为5阶矩阵,且|A|=1,则r(A)=_____.

20. 设
$$A = \begin{pmatrix} 1 & -2 & 3k \\ -1 & 2k & -3 \\ k & -2 & 3 \end{pmatrix}$$
,已知 $r(A) = 1$,则 $k =$ _______.

- 21. 若一个线性方程组系数矩阵的秩为r.则其增广矩阵的秩为
- 22. 一个齐次线性方程组含有n个未知量,一组基础解系含r个解,则该方程组系数矩阵的秩为.
- 24. 若齐次线性方程组系数矩阵 $A \in \mathbb{R}$ $B \in \mathbb{R}$ 24. 若齐次线性方程组系数矩阵 $B \in \mathbb{R}$ $B \in \mathbb{R}$ 24. 若齐次线性方程组系数矩阵 $B \in \mathbb{R}$ $B \in \mathbb{R}$ 35.
- 25. 如果向量 β 可由列向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 唯一线性表出,则矩阵 $(\alpha_1, \alpha_2, \dots, \alpha_s)$ 的秩为_____.
- 二 计算题
- 1. 设 $\alpha = (2,1,-2), \beta = (-4,2,3), \gamma = (-8,8,5)$.问 γ 能否由 α,β 线性表出,若能, α,β 线性表出 γ .
- 2. 求向量组 α_1 = (1,0,-1,0), α_2 = (-1,2,0,1), α_3 = (-1,4,-1,2), α_4 = (0,0,7,7), α_5 = (0,1,1,2) 的一个极大线性无关组.
- 3. 设向量组 $\alpha_1=(1,1,0,2), \alpha_2=(-1,1,2,4), \alpha_3=(2,3,a,7), \alpha_4=(-1,5,-3,a+6)$, $\beta=(1,0,2,b)$,求 a,b 的取值,使得
 - (I) β 不能由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表出;
 - (II) β 能由 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 线性表出,且表出法唯一;
 - (III) β 能由 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性表出,且表出法不唯一,并写出此时表达式.

4. 问
$$\lambda$$
 取何值时,线性方程组
$$\begin{cases} \lambda x_1 - x_2 - x_3 = 1 \\ -x_1 + \lambda x_2 - x_3 = -\lambda \text{ 有唯一解?没有解?有无穷多解?有解时并求解.} \\ -x_1 - x_2 + \lambda x_3 = \lambda^2 \end{cases}$$

5. 设线性方程组为 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ x_1 + \lambda x_2 + x_3 + x_4 = 2 \\ x_1 + x_2 + \lambda x_3 + x_4 = 3 \end{cases}$,讨论 λ 为何值时,该线性方程组有唯一解?无解?有无穷多 $\begin{cases} x_1 + x_2 + x_3 + (\lambda - 1)x_4 = 1 \end{cases}$

解?并在有无穷多解时求通解表达式.

- 6. 已知非齐次线性方程组 $\begin{cases} x_1 + x_2 + x_3 + x_4 = 1 \\ 4x_1 + 3x_2 + 5x_3 x_4 = -1 有三个线性无关的解,求 a,b 的值及方程组的通解. \\ ax_1 + x_2 + 3x_3 + bx_4 = -3 \end{cases}$
- 7. 求齐次线性方程组 $\begin{cases} x_1 + 3x_2 + 3x_3 2x_4 + x_5 = 0 \\ 2x_1 + 6x_2 + x_3 3x_4 = 0 \\ x_1 + 3x_2 2x_3 x_4 x_5 = 0 \end{cases}$ 的一组基础解系. $3x_1 + 9x_2 + 4x_3 5x_4 + x_5 = 0$
- 8. 求线性方程组 $\begin{cases} x_1 x_2 + x_3 + 2x_4 x_5 = -1 \\ 2x_1 + x_2 + 2x_3 x_4 + x_5 = 2 \text{ 的通解} \\ 4x_1 x_2 + 4x_3 + 3x_4 x_5 = 0 \end{cases}$
- 9. 有两个线性方程组(I) $\begin{cases} x_1 + x_2 x_4 = -6 \\ 4x_1 x_2 x_3 x_4 = 1 \\ 3x_1 x_2 x_3 = 3 \end{cases}$ $\begin{cases} x_1 + ax_2 x_3 + 2x_4 = -5 \\ bx_2 x_3 + 3x_4 = -11, 问当参数 a,b,c 为何值 \\ 3x_3 9x_4 = c \end{cases}$

时, (I)和(II)同解.

- 三 证明题
- 1. 证明: $r(\alpha_1, \alpha_2, \dots, \alpha_s) = r(\alpha_1, \alpha_2, \dots, \alpha_s, \beta) \Leftrightarrow \beta$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表出.
- 2. $\alpha_1,\alpha_2,\cdots,\alpha_n$ 是n个线性无关的n维向量, $\alpha_{n+1}=k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n$,且 k_i ($i=1,2,\cdots,n$)全不为零.证明: $\alpha_1,\alpha_2,\cdots,\alpha_n,\alpha_{n+1}$ 中任意n个向量均线性无关.

3. 设两个线性方程组:(I)
$$\begin{cases} a_{11}y_1 + a_{12}y_2 + \cdots a_{1n}y_n = b_1 \\ a_{21}y_1 + a_{22}y_2 + \cdots a_{2n}y_n = b_2 \\ \cdots & \cdots \\ a_{m1}y_1 + a_{m2}y_2 + \cdots a_{mn}y_n = b_m \end{cases} , (II) \begin{cases} a_{11}x_1 + a_{21}x_2 + \cdots + a_{m1}x_m = 0 \\ a_{12}x_1 + a_{22}x_2 + \cdots + a_{m2}x_m = 0 \\ \cdots \\ a_{1n}x_1 + a_{2n}x_2 + \cdots + a_{mn}x_m = 0 \\ b_1x_1 + b_2x_2 + \cdots + b_mx_m = 1 \end{cases}$$

证明: (I)有解当且仅当(II)无解.

- 4. 已知 A 是 n 阶方阵,以 A 为系数矩阵的齐次线性方程组的一个基础解系为 $\alpha_1,\alpha_2,\cdots,\alpha_t$,若 β 不是此方程组的解,证明向量组 $\beta,\alpha_1+\beta,\alpha_2+\beta,\cdots,\alpha_t+\beta$ 线性无关.
- 5. 向量 β 可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r$ 线性表出,但是不能由 $\alpha_1,\alpha_2,\cdots,\alpha_{r-1}$ 线性表出,证明: α_r 可由

 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}, \beta$ 线性表出.

- 6. 已知向量组(I) $\alpha_1,\alpha_2,\alpha_3$; (II) $\alpha_1,\alpha_2,\alpha_3,\alpha_4$; (III) $\alpha_1,\alpha_2,\alpha_3,\alpha_5$,若各向量组的秩分别为r(I)=r(II)=3, r(III)=4,证明向量组(IV) $\alpha_1,\alpha_2,\alpha_3,\alpha_5-\alpha_4$ 的秩为 4.
- 7. 证明 n 维向量组 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性相关当且仅当任一由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出的向量的表示法是不唯一的.
- 8. 已知向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 是一个齐次线性方程组的一个基础解系,令

$$\beta_1 = \alpha_1, \beta_2 = \alpha_1 + \alpha_2, \beta_3 = \alpha_1 + \alpha_2 + \alpha_3, \dots, \beta_m = \alpha_1 + \alpha_2 + \dots + \alpha_m$$

证明: 向量组 $\beta_1,\beta_2,\cdots,\beta_m$ 也是此方程组的一个基础解系.

- 9. 设向量组 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关,而向量组 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性相关,且 $\beta\neq 0$,证明:向量组 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_m$ 中有且仅有一个向量 $\alpha_i(1\leq j\leq m)$ 可由其前面的向量 $\beta,\alpha_1,\alpha_2,\cdots,\alpha_{i-1}$ 线性表出.
- 10. 设 $\alpha_1, \alpha_2, \cdots, \alpha_n \in \mathbb{R}^m$ 是 $n \land m$ 维列向量,其中 $\alpha_1, \alpha_2, \cdots, \alpha_{n-1}$ 线性相关, $\alpha_2, \alpha_3, \cdots, \alpha_n$ 线性无关,又 $\beta = \alpha_1 + \alpha_2 + \cdots + \alpha_n, A = (\alpha_1, \alpha_2, \cdots, \alpha_n).$ 对线性方程组 $x_1\alpha_1 + x_1\alpha_2 + \cdots + x_1\alpha_n = \beta$,证明:
 - (1) 此方程组必有无穷多个解.
 - (2) 记 $X = (x_1, x_2, \dots, x_n)^T$ 为此方程组的任一解,则必有 $x_n = 1$.
- 11. 设向量组 $\beta_1,\beta_2,\cdots,\beta_m$ 线性无关,且可由向量组 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性表出,证明存在向量 α_k ($1 \le k \le n$),使 得 $\alpha_k,\beta_2,\cdots,\beta_m$ 线性无关.