Algèbre II Clément Chivet

TD2.2 : Extensions de corps

26/09/2023

Exercice 1:

Soit $K \hookrightarrow L$ une extension algébrique de corps et $Q \in L[X]$ un polynôme irréductible. Montrer qu'il existe un poynôme irréductible $P \in K[X]$ tel que Q divise P dans L[X].

Correction:

Soit L' un corps de rupture de Q sur L, et α une racine de Q dans L'. Alors α est algébrique sur K car α algébrique sur L et L/K algébrique. Alors le polynôme minimal de α sur K convient (car il annule α en tant que polynôme sur L donc est divisible par Q polynôme minimal de α sur L).

Exercice 2 : Extensions de degré 2

Soit L une extension d'un corps K de degré 2, de caractéristique différente de 2.

- **1.** Montrer qu'il existe $a \in K$ tel que $L \simeq K[X]/(X^2 a)$ (que l'on note par definition $K(\sqrt{a})$).
- **2.** A quelle condition deux extensions de cette forme sont K-isomorphes?
- **3.** Décrire les K automorphismes de $K(\sqrt{a})$.

Correction:

- **1.** Soit $x \in L \setminus K$. La famille 1, x est libre sur K donc $x^2 = bx + c$. En caractéristique différente de 2, on obtient $(x + b/2)^2 = c + b^2/4$. En posant $a = c + b^2/4$ et en envoyant X sur x + b/2, on obtient un morphisme $K[X]/(X^2 a) \to L$, qui est un isomorphisme car 1, x + b/2 forment une base de L sur K.
- **2.** Si $b \in K$ est un carré dans $K[X]/(X^2 a)$, alors $b = (c + d\sqrt{a})^2$, et donc 2cd = 0 et $b = c^2 + ad^2$. Donc soit b soit b/a est un carré dans k. Or si b est un carré $K[X]/(X^2 b)$ n'est pas un corps. Donc $K[X]/(X^2 a)$ et $K[X]/(X^2 b)$ sont isomorphes si et seulement si b/a est un carré.
- **3.** Notons y une racine de a dans L. Si σ est un automorphisme de L fixant K. On a $\sigma(y)^2 = \sigma(y^2) = \sigma(a) = a$ donc $\sigma(y)$ est y ou -y. Comme y engendre L, on obtient au plus deux automorphismes possibles. On vérifie facilement que $\sigma(e + fy) = e fy$ définit bien un automorphisme

Exercice 3: Une extension purement transcendante

Montrer que $k(x, \sqrt{1-x^2})$ est purement transcendante.

Correction:

Si la caractéristique de k est 2, on a directement que $k(x, \sqrt{1-x^2}) = k(x)$ car $(1+x)^2 = 1+x^2 = 1-x^2$. Si maintenant la caractéristique de k n'est pas 2, on considère l'extension $k\left(\frac{\sqrt{1-x^2}}{1+x}\right)$. Cette extension contient alors

$$\frac{1 - \left(\frac{\sqrt{1 - x^2}}{1 + x}\right)^2}{1 + \left(\frac{\sqrt{1 - x^2}}{1 + x}\right)^2} = \frac{(1 + x)^2 - (1 - x^2)}{(1 + x)^2 + (1 - x^2)} = x$$

Et donc elle contient aussi $\sqrt{1-x^2}$, et finalement $k(x,\sqrt{1-x^2})=k\left(\frac{\sqrt{1-x^2}}{1+x}\right)$ (et en regardant le degré de transcendance on voit que $\frac{\sqrt{1-x^2}}{1+x}$ est bien un élément transcendant, même si on aurait pu le montrer a la main.)

Exercice 4:

On veut montrer dans cet exercice que si $F \subset K \subset L$ est une tour d'extensions de corps, alors il est équivalent que :

Algèbre II Clément Chivet

- (i) K/F et L/K sont de type fini
- (ii) L/F est de type fini.
 - 1. Traiter les cas faciles et identifier la partie difficile.
 - 2. On va avoir ensuite besoin de quelques résultats sur les extensions transcendantes :
- a. Soit E/F et S une partie de E algébriquement indépendante sur F. Soit $\alpha \in E \setminus S$, alors $S \cup \{\alpha\}$ est algébriquement indépendante si et seulement si α est transcendant sur F(S).
- b. Une extension purement transcendante est totalement transcendante (c'est à dire que tout élément de $E \setminus F$ est transcendant).
- **3.** Soit E/F une extension et $S \subset E$ une partie algébriquement indépendante sur F. Soit $A \subset E$ une extension algébrique de F.
 - a. Montrer que S est algébriquement indépendante sur A.
 - b. Montrer que A est l'ensemble des éléments de A(S) algébriques sur F.
 - c. Montrer que $[E:F(S)] < \infty \Rightarrow [A:F] < \infty$.
 - 4. Conclure la preuve du théorème.

Correction:

1. Si L/F est de type fini, $L = F(a_1, \ldots, a_n)$, alors L/K aussi car $L = K(a_1, \ldots, a_n)$.

Si les deux sont de type fini, $L = K(a_1, \ldots, a_n)$ et $K = F(b_1, \ldots, b_m)$, alors L/F aussi car $L = F(b_1, \ldots, b_m, a_1, \ldots, a_n)$. Il reste à montrer que L/F de type fini implique K/F de type fini.

2.

a. Voir le cours.

b. On suppose $E = F(\mathcal{X})$, avec \mathcal{X} un ensemble algébriquement indépendent over F. Soit $\beta \in E$ algébrique sur F. L'objectif est de montrer que $\beta \in F$. Tout d'abord β est un quotient de deux polynômes en \mathcal{X} à coefficients dans F, et donc est dans $F(\mathcal{X}_0)$, où $\mathcal{X}_0 \subset \mathcal{X}$ est fini. On peut donc supposer que \mathcal{X} est fini, et on montre par récurrence sur $n = |\mathcal{X}|$ que $\beta \in F$.

Si n=0, alors E=F et la propriété est vraie.

Supposons n > 0, et soit $\alpha \in \mathcal{X}$. On note $\mathcal{X}' = \mathcal{X} - \{\alpha\}$ et $K = F(\mathcal{X}')$, de sorte que $E = K(\alpha)$ et que α soit transcendant sur K par la question 2.a. (car $\mathcal{X}' \cup \{\alpha\} = \mathcal{X}$ is independent over F.)

Alors $\beta \in E = K(\alpha)$ est algébrique sur K, et donc par l'exercice 4 de la feuille précédente, $\beta \in K = F(\mathcal{X}')$. L'hypothèse de récurrence permet alors de conclure que $\beta \in F$.

3.

a. On peut supposer que $|S|=n<\infty$ (car une relation algébrique ne ferait intervenir qu'un nombre fini d'éléments de S), et soit $m=\max\{|S'|,S'\subset S,S' \text{ algébriquement indépendant sur }A\}$. Alors d'une part $m=\operatorname{degtr}_A(A(S))$, et $\operatorname{degtr}_F(A(S))=\underbrace{\operatorname{degtr}_F(A)}+\operatorname{degtr}_A(A(S))=m$.

D'autre part,

$$\operatorname{degtr}_{F}(A(S)) = \underbrace{\operatorname{degtr}_{F}(F(S))}_{=n} + \operatorname{degtr}_{F(S)}(A(S))$$

On obtient alors $m \ge n$, mais par définition de m, $m \le n$, et finalement S' = S et on obtient que S est algébriquement indépendant sur A.

- b. Par 3.a, A(S) est purement transcendante, donc totalement transcendante par question 2.b. Alors si $\gamma \in A(S)$ est algébrique sur F, γ est aussi algébrique sur A et donc est dans A. L'autre inclusion fient du fait que A est algébrique sur F.
- c. Nous allons montrer la contraposée. Si $|A:F|=\infty$, comme A est algébrique sur F, on a $A>F(\beta_1,\beta_2,\ldots,\beta_r)$ pour toute famille finie $\beta_1,\beta_2,\ldots,\beta_r$ d'élements de A.

On peut alors construire une suite strictement croissante $F = A_0 < A_1 < \cdots$ de sous-extensions de A/F, et en notant $L_i = A_i(S)$, On a $F(S) = L_0 \subseteq L_1 \subseteq \cdots$ et tous les L_i sont dans E. Or toutes ces

Algèbre II Clément Chivet

inclusions sont en fait strictes : en effet par 3.b appliquée à A_i , on sait que $L_i \cap A = A_i$, donc $L_i = L_j$ implique $A_i = A_j$ et donc i = j.

On a donc une suite infinie strictement croissante de sous-extensions de E/F(S), d'où $|E:F(S)|=\infty$.

4. Comme L est de type fini sur F, on a $\operatorname{degtr}_F(L) < \infty$, et donc $\operatorname{degtr}_F(E) < \infty$ car $\operatorname{degtr}_F(L) = \operatorname{degtr}_F(E) + \operatorname{degtr}_E(L)$. Soit S une base de transcendance (donc S fini) de E/F, et notons K = F(S). Rappelons que l'on veut montrer que E/F est de type fini, il reste donc à montrer que E/K est de type fini. Or comme E/K est algébrique, cela revient à montrer que cette extension est finie.

Pour cela, soit \mathcal{X} une base de transcendance de L sur K, alors comme $L/K(\mathcal{X})$ est algébrique et de type finie, elle est finie et $[L:K(\mathcal{X})] < \infty$. Mais la question 3.c s'applique dans ce cas et on obtient $[E:K] < \infty$, ce qui conclut.

Exercice 5: Un contre-exemple

Soit $K = \mathbb{Q}(T)$, et deux sous corps $K_1 = \mathbb{Q}(T^2)$ et $K_2 = \mathbb{Q}(T^2 - T)$. Montrer que K est algébrique sur K_1 et K_2 mais pas sur $K_1 \cap K_2$.

Correction:

Comme T est racine des polynômes $X^2-T^2\in K_1(X)$ et $X^2-X-T^2+T\in K_2(X)$, le corps K est algébrique sur K_1 et K_2 . Montrons que $K_1\cap K_2=\mathbb{Q}$. Soient $F_1\in \mathbb{Q}(T)$ et $F_2\in \mathbb{Q}(T)$ telles que $F_1\left(T^2-T\right)=F_2\left(T^2\right)=:F$. Comme $F_1\left(T-T^2\right)$ est invariante par $T\mapsto 1-T$ et $F_2\left(T^2\right)$ est invariante par $T\mapsto -T,F$ est invariante par $T\mapsto T+1$. Mais alors, les zéros et les pôles de F dans $\overline{\mathbb{Q}}$ sont invariants par $t\mapsto t+1$. Comme F ne peut avoir qu'un nombre fini de zéros et de pôles, on en déduit que F n'a pas zéros ni de pôles. Par conséquent, $F\in \mathbb{Q}$ et $K_1\cap K_2=\mathbb{Q}$.

Exercice 6: Théorème de Lüroth

- 1. On admet le résultat suivant, que l'on verra plus tard dans le cours : Soit A un anneau factoriel $(K[X_i]_i$ est factoriel) de corps des fractions F. Si $f \in A[X] \setminus \{0\}$ s'écrit f = gh avec g et h dans F[X], alors il existe $g_0 = \alpha g \in A[X]$ et $h_0 = \beta h \in A[X]$ tel que $f = g_0 h_0$.
- a. Soient $P, Q \in F[X]$ premiers entre eux et $U, V \in F[Y]$ premiers entre eux, et on suppose que U et V ne sont pas tous deux constants. Notons f(X,Y) = U(Y)P(X) V(Y)Q(X). Supposons que f = gh avec $g \in F[X,Y]$ et $h \in F[X]$. Montrer que h est constant.
- b. Soient $P, Q \in F[X]$ premiers entre eux et notons $d = \max(\deg P, \deg Q)$. Soit $E = F(\beta)$ où β est transcendant, et soit $f = p \beta q \in E[X]$. Montrer que $\deg(f) = d$ et f est irréductible si d > 0.
- **2.** On veut montrer le théorème de Lüroth : Soit $L = F(\alpha)$, avec α transcendant sur F. Soit E une extension intermédiaire L/E/F. Alors $E = F(\beta)$ pour un certain $\beta \in E$.
- a. Soit $\beta \in E \setminus F$. Montrer que $d(\beta) \stackrel{\text{def}}{=} [L:F(\beta)] < \infty$, puis que $n \stackrel{\text{def}}{=} [L:E] < \infty$, puis conclure qu'il suffit de trouver un β tel que $d(\beta) = n$.
 - b. Soit $g = \min_{E}(\alpha)$. Quel est le degré de g, et est-ce que $g \in F[X]$?
- c. Soit β un coefficient de g dans $E \setminus F$. Montrer que β convient. On pourra partir de $q(\alpha)p(X) p(\alpha)q(X) = g(X)h(X)$ dans L[X), où $\beta = \frac{p(\alpha)}{q(\alpha)}$, puis remplacer α par Y, et enfin remarquer que le degré en Y du terme à gauche est d, alors que le degré en X du terme à droite est n.