

UNIVERSIDADE FEDERAL DE PELOTAS INSTITUTO DE FÍSICA E MATEMÁTICA – IFM

Introdução ao ggplot2

FERRAMENTAS COMPUTACIONAIS

ANA RITA DE ASSUMPÇÃO MAZZINI
GISELDA MARIA PEREIRA
POLLYANE VIEIRA DA SILVA
ISADORA MOREIRA DA LUZ REAL
ANA LUIZA BARBOZA MERLIN
FERNANDO NEUGEBAUER REHBEIN DA CUNHA PENEDO
LUCAS DE AZEVEDO DE SOUZA

Introdução

O ggplot2 é um pacote de código aberto para a visualização gráfica de dados para a linguagem de programação R. Foi criada por Hadley Wickham em 2005 (Wickham 2016), sendo uma implementação do livro Grammar Graphics de Leland Wilkison também lançado em 2005 (Wilkinson 2011).

Ele aborda que visualização gráfica dos dados pode ser divida em componentes semânticos, como escalas e camadas.

Por que usar o ggplot2?

- 1. Alta costumização gráfica.
- 2. Alta diversidade de modelos de gráficos.
- 3. Integração com outros pacotes do tidyverse, como por exemplo dplyr (Wickham et al. 2023), forcats (Wickham 2023) e o plotly (Sievert 2020).
- Criação de gráficos a partir de camadas, podendo sobrepor diferentes gráficos.

Como instalar o ggplot2?

Instalando pacotes

```
#instalando pacote ggplot2
install.packages("ggplot2")
```

```
#instalando dplyr, forcats
# e patchwork
install.packages("dplyr")
install.packages("forcats")
install.packages("patchwork")
```

Carregando pacotes

```
#Carregando o pacote ggplot2
library(ggplot2)
```

#Carregando dplyr, forcats
#e patchwork
library(dplyr)
library(forcats)
library(patchwork)

Banco de dados iris

Para essa oficina será utilizado bancos de dados iris.

iris - é referente tamanho de pételas e sepalas de 3 espécies do gênero *Iris* do trabalho de Fisher em 1936 (*Iris setosa,Iris versicolor* e *Iris virginica*)

data(iris)

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa

Box-plot


```
iris%>%ggplot(aes(x=Species, y=Petal.Length))+
  geom_boxplot()
```


Gráfico violino

ggplot(iris, aes(x=Species,y=Sepal.Width, fill=Species))+
 geom_violin()

Histograma

Polígono


```
ggplot(iris,aes(x=Sepal.Width))+
  geom_freqpoly(bins=11, color="black")+
  labs(y="Frequência", x="Largura de Sépala")+
  scale_x_continuous(n.breaks = 11)
```


Gráfico de densidade


```
ggplot(iris,aes(x=Sepal.Width))+
  geom_density(color="black", fill="white")+
  labs(y="Frequência", x="Largura de Sépala")
```


Gráfico de barras de frequência


```
iris%>%ggplot(aes(x=Species))+
  geom_bar()
```



```
iris%>%group_by(Species)%>%
  summarise(count=n())%>%
  ggplot(aes(x=Species, fill=Species, y=count))+
  geom_col(color="black")
```


Gráfico de pizza


```
iris%>%group_by(Species)%>%
  summarise(count=n()/150*100)%>%
  ggplot(aes(x=" ", fill=Species, y=count))+
  geom_col(color="black")+
  coord_polar(theta="y")+
  theme_void()
                              Species
                                   setosa
                                   versicolor
                                   virginica
```



```
iris%>%group_by(Species)%>%
  summarise(count=round(n()/150*100, 2))\%
  ggplot(aes(x=" ", fill=Species, y=count))+
  geom_col(color="black")+
  coord_polar(theta="y")+
  geom_label(aes(label = count),
             position = position_stack(vjust = 0.5),
             show.legend = FALSE)+
  theme_void()
                             Species
    33.33
               33.33
                                  setosa
                                  versicolor
                                  virginica
         33.33
```

Gráfico de pontos


```
ggplot(iris,aes(x=Sepal.Length, y=Sepal.Width))+
geom_point()
```



```
geom_point()+
geom_smooth(se=FALSE, method="lm")+
coord_flip()
```


Gráfico de barras (média e desvio)


```
iris%>%group_by(Species)%>%
  summarise(mean=mean(Sepal.Length), sd=sd(Sepal.Length), se=sd(Sepal.Length), se
```



```
iris%>%group_by(Species)%>%
  summarise(mean=mean(Sepal.Length), sd=sd(Sepal.Length), se=sd(Sepal.Le
  ggplot(aes(x=Species, y=mean))+
  geom_linerange(aes(ymin=mean-sd,ymax=mean+sd))+
  labs(y="Comprimento da Sepala", x="Espécies")+
  theme_bw()+
  scale_y_continuous(limits=c(0,10))
```


Alterando escalas, cores, fontes e temas

Ajustando escalas no ggplot

Ordenando variáveis ordinais no ggplot

Mudando cores de preenchimento no ggplo

iris%>%ggplot(aes(x=Species, y=Petal.Length, fill=Species))+
geom_boxplot()


```
iris%>%ggplot(aes(x=Species, y=Petal.Length))+
  geom_boxplot(fill=c("lightpink","lightgreen","lightblue"))
```


Mudando cores de contorno no ggplot

Alterando elementos textuais no ggplot

Os nomes dos eixos são alterados pela função labs, onde você indica qual elemento gráfico você quer renomear. Lembre-se: o nome que você quer renomear tem que estar entre aspas " ".

- **y** para alterar o título do eixo y.
- **x** para alterar o título do eixo x.
- title para alterar o título ou acrescentar um título.
- **subtitle** para alterar o subtítulo ou acrescentar um subtítulo.
- fill para alterar o título da legenda referente ao fator colocado no fill.
- color para alterar o título da legenda referente ao fator colocado no color.
- shape para alterar o título da legenda referente ao fator colocado no shape.
- size para alterar o título da legenda referente ao fator colocado no size.

Comparação de comprimento de pétalas

Alterando a fonte


```
# Instalando o pacote extrafont
install.packages("extrafont")

#Carregando o pacote extrafont
library(extrafont)

#Carregando as fontes presentes no computador
loadfonts(device="all")
```

R

Aqui alteramos as fontes através do comando theme() este comando altera elementos temáticos do gráfico, como por exemplo fontes, tamanhos, cor de fundo, entre outros. Neste exemplo colocamons o argumento text = element_text(). Dentro dele vai alguns argumentos:

- face é para definir se a fonte estará em itálico ("italic"), negrito ("bold") ou ambos ("italic.bold")
- ▶ family é para definir se o tipo de fonte. Esse argumento pode ter variações de acordo com sistema operacional do computador. Em sistema windows pode-se utilizar "TT Times New Roman", "Arial", etc. Enquanto em sistemas Linux e MacOS estarão "serif", "mono", etc.
- size é para definir se o tamanho da fonte.


```
iris%>%ggplot(aes(x=Species, y=Petal.Length, fill=Species))+
  geom_boxplot()+
  labs(y="Comprimento de pétala", x="Espécies")+
  theme(text = element_text(face = "bold.italic",
```



```
iris%>%ggplot(aes(x=Species, y=Petal.Length, fill=Species))+
  geom_boxplot()+
  labs(v="Comprimento de pétala" x="Espécies")+
```


labs(y="Comprimento de pétala", x="Espécies")+
theme(text = element_text(face="italic"))


```
iris%>%ggplot(aes(x=Species, y=Petal.Length, fill=Species))+
   geom_boxplot()+
```

R

labs(y="Comprimento de pétala", x="Espécies")+
theme(axis.text.x = element_text(face="italic"))


```
iris%>%ggplot(aes(x=Species, y=Petal.Length, fill=Species))+
  geom_boxplot()+
  labs(y="Comprimento de pétala", x="Espécies", fill="Espécies",
      title="Aqui é o título")+
 theme(axis.text.x = element_text(face="italic"),
       plot.title = element text(face="bold"))
```

Aqui é o título

Manipulação da legenda

Caso queremos tirar a legenda ou alterar a posição da legenda, utilizaremos o argumento legend.position =:

- "none" para tirar a legenda
- "top" para a legenda ficar em cima
- "bottom" para a legenda ficar em baixo
- "left" para a legenda ficar na esquerda
- "right" para a legenda ficar na direita

Aqui é o título

Aqui é o título


```
labs(y="Comprimento de pétala", x="Espécies", fill="Espécies"
    title="Aqui é o título")+
theme(axis.text.x = element_text(face="italic"),
    plot.title = element_text(face="bold"),
    legend.position = "left",
    legend.text = element_text(face="italic"))
```


Anotação em gráfico


```
iris%>%ggplot(aes(x=Species, y=Petal.Length, fill=Species))+
  geom_boxplot()+
labs(y="Comprimento de pétala", x="Espécies", fill="Espécies",
        title="Aqui é o título")+
  theme(axis.text.x = element_text(face="italic"),
        plot.title = element_text(face="bold"),
        legend.position = "left",
        legend.text = element_text(face="italic"))+
  geom_text(x = 2.5, y = 4, label = "Ponto importante",
        color = "red")+
  annotate("text", x = 1, y = 3.5, label = "outro ponto",
        color = "blue")
```


Temas (theme_*)

Unindo vários gráficos em uma imagem só


```
#Criando gaplots
barra<-Escolaridade%>%
 mutate(Escolaridade=fct_relevel(Escolaridade, "Fundamental", "Médio", "
  ggplot(aes(x=Escolaridade))+
  geom bar()+
  labs(y="Frequência", x="Escolaridade")
polígono<-iris%>%
  ggplot(aes(x=Sepal.Length))+
  geom freqpolv()+
  labs(y="Frequência",x="Comprimento de Sépala")
boxplot<-iris%>%
  ggplot(aes(y=Sepal.Length, x=Species))+
  geom_boxplot()+
  labs(y="Comprimento de Sépala", x="Espécies")
```



```
pontos<-iris%>%
   ggplot(aes(x=Sepal.Length,y=Sepal.Width, color=Species))+
   geom_point()+
   labs(x="Comprimento de Sépala", y="Largura de Sépala", color="Espécie")
```

barra + polígono + boxplot + pontos

3. Também é possível utilizar diferêntes conformações utilizan o elementos matemáticos, como / e ().

Extra

Mapas


```
#instalando o pacote raster e sf
install.packages("raster")
install.packages("sf")

#carregando o pacote raster e sf
library(raster)
library(sf)
```



```
# Importando dados
prec<-raster("pelprec.tiff")</pre>
pel<-read_sf("Pelotas/Pelotas.shp")</pre>
# Convertendo raster para data frame para o gaplot processar o dado
prec_df<-as.data.frame(prec, xy = TRUE, na.rm = TRUE)</pre>
head(prec_df)
                           y pelprec
14 -52.49583 -31.32917
                                   120
```

	02:1000	01.0201.	
15	-52.48750	-31.32917	121
16	-52.47917	-31.32917	121
17	-52.47083	-31.32917	120
18	-52.46250	-31.32917	120
19	-52.45417	-31.32917	120

ggplot(prec_df,aes(x=x,y=y,fill=pelprec))+ geom_raster()


```
# Cores padrão
ggplot()+
  geom_raster(data=prec_df,aes(x=x,y=y,fill=pelprec))+
  geom_sf(data=pel,fill=NA, color="gray",linewidth=2, alpha=.01)+
  labs(title="Mapa da média anual da precipitação \n
        em Pelotas-RS entre 1970-2000",
        y="Latitude",
        x="Longitude",
        fill="Precipitação (mm)")+
  theme_bw()
```


Precipitação (mm)


```
ggplot()+
  geom_raster(data=prec_df,aes(x=x,y=y,fill=pelprec))+
  geom_sf(data=pel,fill=NA, color="gray",linewidth=2, alpha=.01)+
  labs(title="Mapa da média anual da precipitação \n
        em Pelotas-RS entre 1970-2000",
        y="Latitude",
        x="Longitude",
        fill="Precipitação (mm)")+
  theme_bw()+
  scale_fill_gradient(low="gray",high="blue")
```


52.4°W

52.6°W

52.5°W

52.3°W

Longitude

52.2°W

52.1°W

52.0°W

52.3°W

Longitude

52.2°W

52.1°W

52.0°W

52.4°W

52.6°W

52.5°W

Paleta de cores para daltônicos


```
#intalando pacote viridis
install.packages("viridis")
#carregando pacote viridis
library(viridis)
ggplot()+
  geom_raster(data=prec_df,aes(x=x,y=y,fill=pelprec))+
  geom_sf(data=pel,fill=NA, color="gray",linewidth=2, alpha=.01)+
  labs(title="Mapa da média anual da precipitação \n
       em Pelotas-RS entre 1970-2000",
       y="Latitude",
       x="Longitude",
       fill="Precipitação (mm)")+
  theme_bw()+
  scale_fill_viridis()
```


52.3°W

Longitude

52.2°W

52.1°W

52.0°W

52.4°W

52.6°W

52.5°W

Temas divertidos

Referências

- Sievert, Carson. 2020. *Interactive Web-Based Data Visualization with r, Plotly, and Shiny*. Chapman; Hall/CRC. https://plotly-r.com.
- Wickham, Hadley. 2016. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. https://ggplot2.tidyverse.org.
- ———. 2023. Forcats: Tools for Working with Categorical Variables (Factors). https://forcats.tidyverse.org/.
- Wickham, Hadley, Romain François, Lionel Henry, Kirill Müller, and Davis Vaughan. 2023. *Dplyr: A Grammar of Data Manipulation*. https://dplyr.tidyverse.org.
- Wilkinson, Leland. 2011. "The Grammar of Graphics." In Handbook of Computational Statistics: Concepts and Methods, 375–414. Springer.

Agrdeço atenção!

Agrdeço atenção!

Para mais informções

https://ggplot2.tidyverse.org/reference/index.html

Documentação desta oficina com maior detalhe

https://izzyreal18.github.io/oficinaggplotufpel.github.io/