МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа биологической и медицинской физики

Отчёт о выполнении лабораторной работы 3.6.1

Спектральный анализ электр. сигналов

Автор: Пискунова Ольга

Б06-205

1 Аннотация

Цель работы: изучить спектры сигналов различной формы и влияние параметров сигнала на вид соответствующих спектров; проверить справедливость соотношений неопределённостей; познакомиться с работой спектральных фильтров на примере RC-цепочки

В работе используются: генератор сигналов произвольной формы, цифровой осциллограф с функцией быстрого преобразования Фурье или цифровой USB-осциллограф, подключённый к персональному компьютеру.

2 Теоретическое введение

Разложение сложных сигналов на периодические колебания

Представление периодического сигнала в виде суммы гармонических сигналов называется разложением в ряд Фурье.

Пусть заданная функция f(t) периодически повторяется с частотой $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения. Ее разложение в ряд Фурье имеет вид

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(n\Omega_1 t) + b_n \sin(n\Omega_1 t)]$$
(1)

Здесь $\frac{a_0}{2}$ - среднее значение функции f(t),

$$a_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \cos(n\Omega_1 t) dt, \qquad (2)$$

$$b_n = \frac{2}{T} \int_{t_1}^{t_1+T} f(t) \sin(n\Omega_1 t) dt.$$
(3)

Рассмотрим периодические функции, которые исследуются в нашей работе.

1. Периодическая последовательность прямоугольных импульсов (рис. 1) с амплитудой V_0 , длительностью τ , частотой повторения $\Omega_1 = \frac{2\pi}{T}$, где T - период повторения импульсов. Найдем коэффициенты разложения ряда Фурье:

$$\frac{a_0}{2} = V_0 \frac{\tau}{T},$$

$$a_n = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_0 \cos(n\Omega_1 t) dt = 2V_0 \frac{\tau}{T} \frac{\sin(n\Omega_1 \frac{\tau}{2})}{n\Omega_1 \frac{\tau}{2}} \sim \frac{\sin x}{x}.$$
 (4)

Поскольку наша функция четная, все коэффициенты синусоидальных гармоник $b_n = 0$. Спектр a_n последовательности прямоугольных импульсов представлен на рис. 2 (изображен случай, когда T кратно τ).

Назовем шириной спектра $\Delta \omega$ расстояние от главного максимума ($\omega=0$) до первого нуля огибающей, возникающего при $n=\frac{2\pi}{\tau\Omega_1}$. При этом

 $\delta\nu$ 0 $\Delta\nu$ 0 $\Delta\nu$ $\Delta\nu$ $\Delta\nu$ $\Delta\nu$

Рис. 1: Прямоугольные импульсы

Рис. 2: Спектр последовательности прямоугольных импульсов

$$\Delta\omega\tau \simeq 2\pi$$

или

$$\Delta \nu \Delta t \simeq 1 \tag{5}$$

Полученное соотношение взаимной связи интервалов $\Delta \nu$ и Δt является частным случаем соотношения неопределенности в квантовой механике.

2. Периодическая последовательность цугов гармонического колебания $V_0 \cos(\omega_0 t)$ с длительностью цуга τ и периодом повторения T (рис. 3).

Функция f(t) снова является четной относительно t=0. Коэффициент при n-й гармонике равен

$$a_{n} = \frac{2}{T} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} V_{0} \cos(\omega_{0}t) \cos(n\Omega_{1}t) dt = V_{0} \frac{\tau}{T} \left(\frac{\sin[(\omega_{0} - n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} - n\Omega_{1})\frac{\tau}{2}} + \frac{\sin[(\omega_{0} + n\Omega_{1})\frac{\tau}{2}]}{(\omega_{0} + n\Omega_{1})\frac{\tau}{2}} \right)$$
(6)

Зависимость для случая, когда $\frac{T}{\tau}$ равно целому числу, представлена на рис. 4. Сравнивая спектр последовательности прямоугольных импульсов и цугов мы видим, что они аналогичны, но их максимумы сдвинуты по частоте на величину ω_0 .

Рис. 3: Последовательность цугов

Рис. 4: Спектр последовательности цугов

3. Амплитудно-модулированные колебания. Рассмотрим гармонические колебания высокой частоты ω_0 , амплитуда которых медленно меняется по гармоническому закону с частотой Ω ($\Omega \ll \omega_0$)) (рис. 5):

$$f(t) = A_0[1 + m\cos\Omega t]\cos\omega_0 t \tag{7}$$

Коэффициент m называют **глубиной модуляции**. При m < 1 амплитуда колебаний меняется от минимальной $A_{min} = A_0(1-m)$ до максимальной $A_{max} = A_0(1+m)$. Глубина модуляции может быть представлена в виде

$$m = \frac{A_{max} - A_{min}}{A_{max} + A_{min}} \tag{8}$$

Простым тригонометрическим преобразованием можно найти спектр амплитудно - модулированных колебаний:

$$f(t) = A_0 \cos(\omega_0 t) + \frac{A_0 m}{2} \cos(\omega_0 + \Omega)t + \frac{A_0 m}{2} \cos(\omega_0 - \Omega)t. \tag{9}$$

 a_{OCH} $a_{$

Рис. 5: Модулированные гармонические колебания

Рис. 6: Спектр модулированных гармонических колебаний

Спектр таких колебаний содержит три составляющих основную компоненту и две боковых (рис. 6). Первое слагаемое в правой части представляет собой исходное немодулированное колебание с основной (несущей) частотой ω_0 и амплитудой $a=A_0$. Второе и третье слагаемые соответствуют новым гармоническим колебаниям с частотами $\omega_0+\Omega$ и $\omega_0-\Omega$. Амплитуды этих двух колебаний одинаковы и составляют $\frac{m}{2}$ от амплитуды немодулиро-

ванного колебания: $a = \frac{A_0 m}{2}$. Начальные фазы всех трех колебаний одинаковы.

3 Экспериментальная установка

В работе изучаются спектры периодических электрических сигналов различной формы (последовательности прямоугольных импульсов и цугов, а также амплитудно- и фазо-модулированных гармонических колебаний). Спектры этих сигналов наблюдаются с помощью спектроанализатора, входящего в состав USB-осциллографа и сравниваются с рассчитанными теоретически.

Функциональный генератор WaveStation 2012 позволяет сформировать два различных электрических сигнала, которые выводятся на два независимых канала – "CH1"и "CH2". Сигнал с канала "CH1"подается на вход "A а сигнал с канала "CH2"— на вход "В"USB-осциллографа. Затем эти сигналы подаются на вход компьютера через USB-соединение. При работе USB-осциллографа в режиме осциллографа, на экране компьютера можно наблюдать каждый из сигналов в отдельности, а также их произведение. В режиме спектроанализатора можно наблюдать спектры этих сигналов. При включении функционального генератора, на его экране отображается информация о параметрах электрического сигнала.

4 Ход работы

А. Исследование спектра периодической последовательности прямоугольных импульсов и проверка соотношений неопределённости

- 1. Настраиваем генератор на прямоугольные импульсы с частотой повторения $\nu_{\text{повт}}=1~\text{к}\Gamma$ ц (период T=1~мc) и длительностью импульса $\tau=T/20=50~\text{мкc}$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.
 - а. Изменяем $\nu_{\text{повт}}$ при фиксированном $\tau = 50$ мкс и τ при $\nu = 1$ к Γ ц получаем:

 $u_{\mathrm{повт}} = 2 \ \mathrm{к}\Gamma$ ц, $au = 50 \ \mathrm{мкc}$

 $u_{\text{повт}} = 1 \ \text{к}\Gamma$ ц, $au = 100 \ \text{мкc}$

Рис. 7: Вид спектра при изменении параметров.

Как видно из графиков, при увеличении частоты повторения сигнала увеличивается расстояние между компонентами спектра, при увеличении длительности сигнала уменьшается ширина спектра.

3. Измерим амплитуды a_n и частоты ν_n спектральных гармоник при фиксированных $\nu_{\text{повт}}$ и τ .

п гармоники	1	2	3	4	5	6	7	8
$\nu_n^{\text{эксп}}$, к Γ ц	1.047	2.016	3.026	3.995	5.005	6.014	7.024	7.993
ν_n^{reop} , к Γ ц	1	2	3	4	5	6	7	8
$ a_n ^{\mathfrak{s}_{\mathrm{KCII}}}$, мВ	279.6	273.8	270.2	262.0	252.6	239.7	227.9	211.5
$ a_n/a_1 _{\mathfrak{S}KC\Pi}$	1	0.979	0.966	0.937	0.903	0.857	0.815	0.756
$ a_n/a_1 _{\text{reop}}$	1	0.988	0.967	0.939	0.904	0.863	0.816	0.751

Здесь $a_1 = 279.6$ мВ.

$$\nu_n^{\text{Teop}} = \frac{n}{T}$$
$$|a_n|_{\text{Teop}} = \frac{|\sin\frac{\pi n\tau}{T}|}{\pi n}$$

4. Зафиксируем период повторения прямоугольного сигнала T=1мс, $\nu_{\text{повт}}=1$ к Γ ц. Изменяя длительность импульса τ в диапазоне от $\tau=T/50$ до $\tau=T/5$, измерим полную ширину спектра сигнала $\Delta\nu$ — от центра спектра ($\nu=0$) до гармоники с нулевой амплитудой $a_n\approx 0$ и установим зависимость между $\Delta\nu$ и τ , полученную из формулы 5.

τ , MKC	20	33	50	100	150	200
$\Delta \nu$, к Γ ц	48.02	31.03	19.99	10.01	6.98	5.01
$1/\tau \cdot 10^3$, c ⁻¹	50	30.3	20	10	7	5

Таблица 1: Исследование зависимости $\Delta \nu$ и τ

Построим график $\Delta\nu\left(\frac{1}{\tau}\right)$. Используя МНК, получим $k=0.965\pm0.075$, откуда с хорошей точностью можем заключить, что $\Delta\nu\frac{1}{\tau}=1$, что экспериментально доказывает соотношение неопределённостей.

Рис. 8: Зависимость $\Delta \nu$ от $1/\tau$

5. Зафиксируем длительность импульса прямоугольного сигнала $\tau=100$ мкс. Изменяя период повторения T в диапазоне от 2τ до 50τ измерим расстояния $\delta\nu=\nu_{n+1}-\nu_n$ между соседними гармониками спектра.

$1/T, c^{-1}$	4	2	1	0.67	0.5	0.4
$\delta \nu$, к Γ ц	3.998	2.019	1.009	0.686	0.484	0.404

Таблица 2: Зависимость $\delta \nu$ от 1/T

Рис. 9: Зависимость $\delta \nu$ от 1/T

Построим график $\delta \nu \left(\frac{1}{T}\right)$. Используя МНК, получим $k=1.000\pm0.032$, что экспериментально доказывает соотношение неопределённостей.

Б. Наблюдение спектра периодической последовательности цугов

- 1. Настраиваем генератор на периодичные импульсы синусоидальной формы (цугов) с несущей частотой $\nu_0 = 50$ к Γ ц, частотой повторения $\nu_{\text{повт}} = 1$ к Γ ц, число периодов синусоиды в одном импульсе N = 5 (что соответствует длительности импульса $\tau = N/\nu_o = 100$ мкс).
- **2.** Получаем на экране спектр (Преобразование Фурье) сигнала. Изменяем параметры сигнала:

N=5,
$$T=1$$
 мс, $\nu_0=50$ к Γ ц

N=10, T=2 мс, $\nu_0=50$ к Γ ц

Рис. 10: Вид спектра при изменении параметров.

Видим, что спектр остаётся симметричным относительно одной и той же точки, однако "сжимается" к ней при увеличении N. При варьировании ν_0 спектр не меняет свою форму, однако его центр смещается в соответсвии с изменением частоты несущей.

Соотношение неопределённостей (1): $T\delta\nu=1\cdot0.97\approx1$ $2\Delta\nu\cdot\frac{N}{\nu_0}=20\cdot0.1\approx2$

Соотношение неопределённостей (2): $T\delta\nu=1\cdot 1.05\approx 1$ $2\Delta\nu\cdot\frac{N}{\nu_0}=10.04\cdot 0.2\approx 2$

Соотношение неопределённостей (3): $T\delta\nu=2\cdot0.56\approx1$ $2\Delta\nu\cdot\frac{N}{\nu_0}=10.12\cdot0.2\approx2$

Г. Наблюдение спектра амплитудно-модулированного сигнала

- 1. Настраиваем генератор в режим модулированного по амплитуде синусоидального сигнала с несущей частотой $\nu_0=50$ к Γ ц, частотой модуляции $\nu_{\rm мод}=2$ к Γ ц и глубиной модуляции m=0.5.
- **2.** Получаем на экране спектр (Преобразование Фурье) сигнала. Из спектра получим $A_{max}=1.237{\rm B}$ и $A_{min}=415.7{\rm mB}$ и убедимся в справедливости соотношения

$$m = \frac{A_{\text{max}} - A_{\text{min}}}{A_{\text{max}} + A_{\text{min}}} = \frac{0.858}{1.688} \approx 0.5$$

Мы установили глубину модуляции на 0.5, из расчета у нас получилось 0,497, это доказывает, что формула 8 верна.

3. Изменяя на генераторе глубину модуляции m в диапазоне от 10 % до 100 % (всего 6-8 точек), измерим отношение амплитуд боковой и основной спектральных линий $a_{\rm бок}/a_{\rm осн}$. Построим график зависимости $a_{\rm бок}/a_{\rm осн}$ от m и проверим, совпадает ли результат с теоретическим.

m, %	10	20	40	50	70	100
$a_{\text{бок}}/a_{\text{осн}}$	0.047	0.096	0.201	0.251	0.347	0.497

Таблица 3. Исследование зависимости $a_{\text{бок}}/a_{\text{осн}}$ от m.

Рис. 11: Зависимость $a_{\text{бок}}/a_{\text{осн}}$ от m

Построим график $\frac{a_{60\text{K}}}{a_{\text{осн}}}(m)$. Используя МНК, получим $k=0.500\pm0,004$, что подтверждает $\frac{a_{60\text{K}}}{a_{\text{осн}}}=\frac{m}{2}$, т.е. совпадает с теоретическим предсказанием.

Е. Изучение фильтрации сигналов

- 1. Подключаем RC цепочку с сопротивлением R=3 кОм и ёмкостью C=1000 пФ. Получаем характерное время $\tau_{RC}=RC=3$ мкс. Подаём на вход RC-цепочки последовательность прямоугольных импульсов с периодом повторения $T\sim \tau_{RC}$.
- 2. Получаем на экране спектр (Преобразование Фурье) сигнала.

Спектр при T = 10 мкс

Спектр при T=20 мкс

Рис. 12: Вид спектра при изменении параметров.

3. При фиксированном периоде T=300 мкс проведем измерения отношений амплитуд соответствующих спектральных гармоник (для 7–9 гармоник) фильтрованного и исходного сигналов: $K_n = |a_n^{\Phi}|/|a_n^0|$. Для измерения амплитуд a_n^0 спектра исходного сигнала переподключим генератор к осциллографу напрямую.

ν, Гц	50	100	150	200	250	300
a_n^{Φ} , мВ	35.16	15.88	10.34	5.67	3.4	3.4
a_n^0 , мВ	205.3	200.7	183.7	162.2	146.3	128.2
$K_n = a_n^{\Phi} / a_n^0 $	0.171	0.079	0.056	0.035	0.023	0.027

Таблица 3: Данные измерения коэффициента фильтрации

Построим график зависимости амплитудного коэффициента фильтрации $K(\nu)$ от частоты $\nu = n\nu_0$.

Рис. 13: Зависимость $K(\nu)$

Проверим, что экспериментальная зависимость совпадает с теоретической $K = \frac{1}{\tau_{\rm RC}} \int_0^t f(t') dt'$. Т.к. мы подаём последовательность прямоугольных импульсов, то права часть зависит линейно от t, т.е. обратно пропорционально ν . График соответствует этой зависимости

5 Обсуждение результатов и выводы

В данной работе исследовали спектральный состав периодических электрических сигналов, а точнее прямоугольных импульсов, цугов гармонических колебаний, гауссиан, гармонических сигналов, модулированных по амплитуде и частоте, а также проанализировали фильтрацию сигналов при прохождении их через RC контур. Проверили частный случай выполнения соотношения неопределённости.