LA FONCTION CARRÉ E06

EXERCICE N°2 (Le corrigé)

Résoudre les inéquations suivantes et donner l'ensemble des solutions sous la forme d'un intervalle ou d'une réunion d'intervalle.

1)
$$x(2x+1)+x(3x-4) \ge 0$$

2)
$$(2x+1)(x-3)+(2x+1)(3x+4) < 0$$

3)
$$4x^2-(x+1)^2 \le 0$$

4)
$$(2x+3)^2-(4x-5)^2>0$$

5)
$$\frac{(2x+1)(x-3)+(2x+1)(3x+4)}{(2x+3)^2-(4x-5)^2} < 0 \quad \text{(ici, deux façons possibles : observateur ou pas)}$$

1)

Pour tout réel x,

$$x(2x+1)+x(3x-4) = x[(2x+1)+(3x-4)] = x(5x-3)$$

On en déduit que $x(2x+1)+x(3x-4) \ge 0 \Leftrightarrow x(5x-3) \ge 0$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes).

• $x > 0 \Leftrightarrow x > 0$ (élémentaire mon cher Watson...)

■
$$5x-3 > 0 \Leftrightarrow 5x > 3 \Leftrightarrow x > \frac{3}{5} = 0.6$$

x	$-\infty$		0		0,6		+∞
x		_	0	+		+	
5x-3		_		_	0	+	
x(5x-3)		+	0	_	0	+	

On en déduit que $x(2x+1)+x(3x-4) \ge 0$ admet comme ensemble des solutions : $[-\infty; 0] \cup [0,6; +\infty[$

2)

Pour tout réel x,

$$(2x+1)(x-3)+(2x+1)(3x+4) = (2x+1)[(x-3)+(3x+4)] = (2x+1)(4x+1)$$

On en déduit que $x(2x+1)+x(3x-4) < 0 \Leftrightarrow (2x+1)(4x+1) < 0$

Et on va résoudre cette dernière inéquation (qui possède les même solutions que la première puisqu'elles sont équivalentes).

$$2x+1 > 0 \Leftrightarrow 2x > -1 \Leftrightarrow x > -\frac{1}{2}$$

$$4x+1 > 0 \Leftrightarrow 4x > -1 \Leftrightarrow x > -\frac{1}{4}$$

x	$-\infty$		$-\frac{1}{2}$		$-\frac{1}{4}$		+∞
2x+1		-	0	+		+	
4 <i>x</i> +1		_		_	0	+	
(2x+1)(4x+1)		+	0	_	0	+	

On en déduit que (2x+1)(x-3)+(2x+1)(3x+4) < 0 admet comme ensemble des solutions :

$$\left] -\frac{1}{2} ; -\frac{1}{4} \right[$$