

Traffic Slowness Analysis Report

Project Title:

Analysis of Traffic Slowness in Brazil (Weekdays)

Dataset Summary:

The dataset contains traffic information recorded by hour across weekdays (Monday to Friday) with several contributing factors such as rain, accidents, vehicle breakdowns, and traffic slowness percentage.

Data Cleaning

- ✓ Converted 'Slowness in traffic (%)' from string (with commas) to float
- ✓ Removed irrelevant columns such as metadata
- ✓ Ensured consistency in datatypes for numerical analysis
- ✓ Verified data shape and structure (135 rows across 18 columns)

Exploratory Data Analysis (EDA)

- Distribution Analysis
 - o Visualized histogram of Slowness in traffic (%)
 - o Found skew toward lower slowness, with peaks during rush hours
- Incident Frequency
 - o Counted occurrences of incidents such as:
 - Accident #
 - Rain 🥽
 - Vehicle breakdown
 - Visualized using vertical and horizontal bar charts

Correlation Analysis

Computed Pearson correlation values

- Key positive correlations with Slowness in traffic (%):
 - o Road works
 - o # Accidents
 - o 🥯 Rain

These factors significantly impact traffic delays.

Weekday Analysis

- Split data by weekday using time-index mapping
- For each weekday (Monday–Friday), plotted:
 - o Traffic slowness vs. coded hour
 - o Identified peak congestion hours (typically early morning and late afternoon)

Key Insights:

- Accidents are the most impactful incident on traffic delay
- Fog and rain also contribute to moderate slowness
- Peak delays are observed between 7 AM 9 AM and 5 PM 7 PM
- Tuesday and Thursday showed higher overall congestion compared to other days

Conclusion

This analysis helps urban planners and traffic control authorities to prioritize infrastructure improvements and deploy emergency services effectively during high-risk hours and days.