Memory

Infinite sequence of cells, contains w bits. Every cell has an address starting at 1

RAM Model _____

CPU

32 registers of width w bits. Operations _____

Set value to register (constant or from other register). Take two integers from other registers and store the result of; a+b, a-b, $a \cdot b$, a/b. Take two registers and compare them; a < b a = b, a > b. Read and write from memory.

Definitions _____

An algorithm is a set of atomic operations. It's cost is the number of atomic operations. A word is a sequence of w bits

Definitions

Worst-case

Worst-case cost of an algorithm is the longest possible running time of input size n

Random

RANDOM(x, y) returns an integer between x and y chosen uniformly at random

Data Structure

Data Structure describes how data is stored in memory.

Dictionary Search

let n be register 1, and v be register 2 register $left \rightarrow 1, right \rightarrow 1$ while $left \leq right$ register $mid \rightarrow (left + right)/2$ if the memory cell at address mid = v then return ves else if memory cell at address mid > v then

right = mid - 1

else

left = mid + 1

return no

Worst-case time: $f_2(n) = 2 + 6 \log_2 n$

Function Comparison _____

Big-O

We say that f(n) grows asymptotically no faster than g(n) if there is a constant $c_1 > 0$ such that $f(n) \leq c_1 \cdot g(n)$ and holds for all n at least a constant c_2 . This is denoted by f(n) = O(g(n)).

 $\lim_{n\to\infty}\frac{f(n)}{g(n)}=c$ for some constant c

Example _____

 $1000 \log_2 n = O(n),$ $n \neq O(10000 \log_2 n)$

 $\log_{b_1} n = O(\log_{b_2} n)$ for any constants $b_1 > 1$ and $b_2 > 1$. Therefore $f(n) = 2 + 6 \log_2 n$ can be represented; $f(n) = O(\log n)$

\mathbf{Big} - Ω

If g(n) = O(f(n)), then $f(n) = \Omega(g(n))$ to indicate that f(n) grows asymptotically no slower than g(n). We say that f(n) grows asymptotically no slower than g(n) if $c_1 > 0$ such $f(n) \geq c_1 \cdot g(n)$ for $n > c_2$; denoted by $f(n) = \Omega(g(n))$

Daniel Fitzmaurice

Big-⊖

If f(n)=O(g(n)) and $f(n)=\Omega(g(n))$, then $f(n)=\Theta(g(n))$ to indicate that f(n) grows asymptotically as fast as g(n)

Sort ____

Merge Sort

Divide the array into two parts, sort the individual arrays then combine the arrays together. $f(n) = O(n \log n)$.

This is the fastest sorting time possible (apart from $O(n \log \log n)$

Counting Sort

A set S of n integers and every integer is in the range [1, U]. (all integers are distinct)

Step 1: Let A be the array storing S. Create array B of length U. Set B to zero.

Step 2: For $i \in [1, n]$; Set x to A[i], Set B[x] = 1

Step 3: Clear A, For $x \in [1, U]$; If B[x] = 0 continue, otherwise append x to A

Analysis _____

Step 1 and 3 take O(U) time, while Step 2 O(n) time. Therefore running time is O(n + U) = O(U).

Data _____

LinkedList

Every node stores pointers to its succeeding and preceding nodes (if they exist). The first node is called the head and last called the tail. The space required for a linkedlist is O(n) memory cells. Starting at the head node, the time to enumerate over all the integers is O(n). Time for assertion and deletion is equal to O(1)

Stack

The stack has two operations; Push (Inserts a new element into the stack), Pop (Removes the most recently inserted element from the stack and returns it. Since a stack is just a linkedlist, push and pop use O(1) time.

Queue

The queue has two operations; En-queue (Inserts a new element into the queue), De-queue (Removes the least recently used element from the queue and returns it). Since a queue is just a linkedlist, push and pop use O(1) time.<Paste>

Dynamic Arrays _____

Naive Algorithm

insert(e): Increase n by 1, initial an array A'
of length n, copy all n-1 of A to A', Set A'[n]=e,
Destroy A.

This takes $O(n^2)$ time to do n insertions.

A Better Algorithm

insert(e): Append e to A and increase n by 1. If A is full; Create A' of length 2n, Copy A to A', Destroy A and replace with A' This takes O(n) time to do n insertions.

Hashing

The main idea of hashing is to divide the dataset S into a number m of disjoint subsets such that only one subset needs to be searched to answer any query.

Pre-processing

Create an array of linkedlist(L) from 1 to m and an array H of length m. Store the heads of L in H, for all $x \in S$; calculate hash value (h(x)), insert x into $L_{h(x)}$. We will always choose m = O(n), so O(n+m) = O(n)

Querying

Query with value v, calculate the hash value h(v), Look for v in $L_h(v)$. Query time: $O(\mid L_{h(v)}\mid)$

Hash Function

Pick a prime $p;\ p\geq m,\ p\geq \text{any}$ integer k. Choose α and β uniformly random from $1,\ldots,p-1$. Therefore: $h(k)=1+(((\alpha k+\beta) mod\ p)mod\ m)$

Any Possible Integer

The possible integers is finite under the RAM Model. Max: 2^w-1 . Therefore p exists between $[2^w,w^{w+1}]$.

Timing

Space: O(n), Preprocessing time: O(n), Query time: O(1) in expectation

Week 3 – Extra

When using 'Direction 1: Constant Finding' setting c_1 , always set it to match the coefficent on the LHS so that you can cancel.

When trying to get a contradiction, try and isolate an $x\cdot c_1$ on the RHS, where $x\in Z$, such that an expression that contains n is $x\cdot c_1$ Make judicious use of the max function when adding functions together If $f_1(n)+f_2(n)c_1\cdot g_1(n)+c_1'\cdot g_2(n)max\{c_1,c_1'\}\cdot (g_1(n)+g_2(n))$, for all $nmax\{c_2,c_2'\}$.

The Master Theorem

Theorem 1

$$n + \frac{n}{c} + \frac{n}{c^2} + \ldots + \frac{n}{c^h} = O(n)$$