Dempster-Shafer Theory

Jonathan Lawry

Department of Engineering Mathematics University of Bristol

Introduction

- In DS theory uncertainty is quantified by using two uncertainty measures.
- Belief $Bel: 2^W \to [0,1]$ is a measure of the total amount of evidence in favour of a proposition.
- Plausibility $Pl: 2^W \rightarrow [0,1]$ is a measure of the total amount of evidence not against a proposition.
- $\forall A \subseteq W \ Bel(A) \le Pl(A)$ and Pl(A) Bel(A) provides a direct measure of ignorance about the proposition A.

Pictorial Representation

- $Bel(A) + Bel(A^c) \le 1$.
- Bel(A) is the level of belief in favour of proposition A.
- $PI(A) = 1 Bel(A^c)$ is 1 minus the total belief in favour of A^c .
- PI(A) BeI(A) is the level of ignorance concerning A.

	Belief in favour	Uncertainty/Ignorance	Belief Against
() Bel	(A) F	PI(A) :

Mass Assignments

Mass Assignments (basic probability assignments): Shafer-Dempster belief functions are defined by a probability distribution on the power set of W.

$$m: 2^W \to [0,1], \ m(\emptyset) = 0, \ \sum_{A \subseteq W} m(A) = 1$$

- m(A) quantifies the total belief exactly for A i.e. For A but not for any $B \subset A$.
- Belief: $Bel(A) = \sum_{B \subseteq A} m(B)$
- Plausibility: $PI(A) = \sum_{B:B \cap A \neq \emptyset} m(B)$

Example

■ It is know that a patient is either healthy (h) or has one of two diseases d_1 or d_2 . So $W = \{d_1, d_2, h\}$.

Example: 2

- What should be our belief that our patient is suffering from either d_1 or d_2 (i.e. that he is not healthy)?
- $Bel({d_1, d_2})$ = sum of evidence that directly supports the patient not being healthy.
- $= m(\{d_1, d_2\}) + m(\{d_2\}) + m(\{d_1\})$
- What should be the plausibility of this proposition?
- $PI(\{d_1, d_2\})$ = sum of the evidence which is consistent with the patient not being healthy.
- $= m(\{d_1, d_2\}) + m(\{d_2\}) + m(\{d_1\}) + m(\{d_1, h\}) + m(\{d_2, h\}) + m(\{d_1, d_2, h\})$

Generalising Probability

■ If m is a mass assignment such that for $W = \{w_1, \dots, w_n\}$

$$\sum_{i=1}^n m(\{w_i\}) = 1$$

■ Then Bel(A) = Pl(A) = P(A) where

$$P(A) = \sum_{w_i \in A} m(\{w_i\})$$

■ In other words, $m(\{w_i\})$ is a probability distribution.

Axioms for DS-Belief

- Bel(W) = 1 and $Bel(\emptyset) = 0$
- $Bel(\bigcup_{i=1}^n A_i) \ge \sum_{\emptyset \ne S \subseteq \{A_1,...,A_n\}} (-1)^{|S|-1} Bel(\bigcap_{A_i \in S} A_i)$
- This is a general version of super-additivity i.e. for n=2 $Bel(A_1 \cup A_2) \geq Bel(A_1) + Bel(A_2) Bel(A_1 \cap A_2)$
- Similarly, PI(W) = 1 and $PI(\emptyset) = 0$
- $PI(\bigcup_{i=1}^{n} A_i) \le \sum_{\emptyset \ne S \subseteq \{A_1,...,A_n\}} (-1)^{|S|-1} PI(\bigcap_{A_i \in S} A_i)$
- For n = 2 $PI(A_1 \cup A_2) \le PI(A_1) + PI(A_2) PI(A_1 \cap A_2)$

Belief Inversion

- We have seen how belief and plausibility is obtained from the mass assignment.
- However, it is also possible to determine the mass assignment from the belief function or from the plausibility function.
- From belief the inversion formula is:

$$m(A) = \sum_{B \subseteq A} (-1)^{|A-B|} Bel(B)$$

From plausibiliy the inversion formula is:

$$m(A) = \sum_{B \subseteq A} (-1)^{|A-B|} (1 - PI(B^c))$$

Inversion Example

- Let $W = \{w_1, w_2, w_3\}$ and Bel be defined by: $Bel(\{w_1, w_2, w_3\}) = 1$, $Bel(\{w_1, w_2\}) = 0.5$, $Bel(\{w_1, w_3\}) = 0.2$, $Bel(\{w_2, w_3\}) = 0.3$, $Bel(\{w_1\}) = 0$, $Bel(\{w_2\}) = 0.3$, $Bel(\{w_3\}) = 0$
- Sets with 1 element: $m(\{w_1\}) = Bel(\{w_1\}) = 0$, $m(\{w_2\}) = Bel(\{w_2\}) = 0.3$, $m(\{w_3\}) = Bel(\{w_3\}) = 0$
- Sets with 2 elements: $m(\{w_2, w_3\}) =$ $Bel(\{w_2, w_3\}) - m(\{w_2\}) - m(\{w_3\}) = 0.3 - 0.3 - 0 = 0,$ similarly $m(\{w_1, w_3\}) = 0.2$ and $m(\{w_1, w_2\}) = 0.2$
- Sets with 3 elements: $m(\{w_1, w_2, w_3\}) = Bel(\{w_1, w_2, w_3\}) - m(\{w_1, w_2\}) - m(\{w_1, w_3\}) - m(\{w_1, w_3\}) - m(\{w_1\}) - m(\{w_2\}) - m(\{w_3\}) = 1 - 0 - 0.3 - 0 - 0 - 0.2 - 0.2 = 0.3$

Lower and Upper Probabilities

- Instead of defining a single belief measure the agent defines two measures, a lower probability $\underline{P}: 2^W \to [0,1]$ and an upper probability $\overline{P}: 2^W \to [0,1]$ where $\forall A \subseteq W$ $\underline{P}(A) \leq \overline{P}(A)$
- The measures \underline{P} and \overline{P} are coherent if $\forall A \subseteq W$ $\overline{P}(A^c) = 1 \underline{P}(A)$
- One way of defining lower and upper probabilities is as upper and lower envelopes.
- Let \mathcal{P} be a set of probability measures on 2^{W} . Then define:

$$\underline{P}(A) = \inf\{P(A) : P \in \mathcal{P}\} \text{ and } \underline{P}(A) = \sup\{P(A) : P \in \mathcal{P}\}\$$

Example

- Let $W = \{w_1, w_2, w_3\}$ and let \mathcal{P} be the following set of probability distributions: $\mathcal{P} = \{P_1, P_2, P_3\}$ defined according to the following probability distributions respectively:
- P_1 : $p_1(w_1) = 0.2$, $p_1(w_2) = 0.3$, $p_1(w_3) = 0.5$, P_2 : $p_2(w_1) = 0.8$, $p_2(w_2) = 0.1$, $p_2(w_3) = 0.1$, P_3 : $p_3(w_1) = 0.15$, $p_3(w_2) = 0.6$, $p_3(w_3) = 0.25$
- $\underline{P}(\{w_1, w_3\}) = \min\{P_1(\{w_1, w_3\}), P_2(\{w_1, w_3\}), P_3(\{w_1, w_3\})\} = 0.4$
- $\overline{P}(\{w_1, w_3\}) = \max\{P_1(\{w_1, w_3\}), P_2(\{w_1, w_3\}), P_3(\{w_1, w_3\})\} = 0.9$

DS as Lower and Upper Probabilities

- Bel is a lower probability measure and Pl is an upper probability measure.
- For any belief and plausibility measures *Bel* and *Pl* there is a set of probability measures on $2^W \mathcal{P}$ such that for all $A \subseteq W$

$$Bel(A) = \inf\{P(A) : P \in \mathcal{P}\}\$$

$$Pl(A) = \sup\{P(A) : P \in \mathcal{P}\}\$$

Where we define

$$\mathcal{P} = \{P : \forall A \subseteq W \ P(A) \ge Bel(A)\}$$

DS as Lower and Upper Probabilities

- We show that $\forall P \in \mathcal{P}$, $\forall A \subseteq W \ \textit{Bel}(A) \leq P(A) \leq P(A)$ and
- For all $A \subseteq W$ there exists $P \in \mathcal{P}$ such that P(A) = Bel(A).
- Notice that since $\forall P \in \mathcal{P} \ Bel(A^c) \leq P(A^c)$ we have that $1 P(A^c) \leq 1 Bel(A^c)$ and hence $P(A) \leq Pl(A)$.
- The second part is a bit harder...
- For every $B \subseteq W$ pick a single $w_B \in B$ such that if $B \not\subseteq A$ then $w_B \in A^c$.
- Define the probability distribution p such that $p(w) = \sum_{B:w_B=w} m(B)$

Updating Probabilities

- Suppose we have a prior probability measure P as characterised by probability distribution p.
- Further suppose that our evidence about the true state of the world is given by mass assignment *m*.
- In other words, its as if we are not certain what set we could be conditioning on but rather that we should give the answer $P(\bullet|B)$ with probability m(B).
- To get a single probability measure we could then take the expected value so that:

$$P(\bullet|m) = \sum_{B \subseteq W} P(\bullet|B)m(B)$$

Updating Probabilities

■ For any probability measure P on 2^W such that P(B) > 0 if m(B) > 0, $P(\bullet|m) \in \mathcal{P}$

$$\forall A \subseteq W \ P(A|m) = \sum_{B \subseteq W} P(A|B)m(B)$$
$$= \sum_{B \subseteq A} P(A|B)m(B) + \sum_{B \not\subseteq A} P(A|B)m(B)$$
$$= \sum_{B \subseteq A} m(B) + \sum_{B \not\subseteq A} P(A|B)m(B) \ge \sum_{B \subseteq A} m(B) = Bel(A)$$

■ **Pignistic Distribution:** Take *P* to be the uniform measure so that

$$P_u(A|m) = \sum_{B \subseteq W} \frac{|A \cap B|}{|B|} m(B)$$

Pignistic Distribution

Suppose we have the following mass assignment:

$$m(\{w_1, w_2, w_3\}) = 0.3, \ m(\{w_1, w_2\}) = 0.2,$$

 $m(\{w_1, w_3\}) = 0.2, \ m(\{w_2\}) = 0.3$

From this the Pignistic Distribution is given by:

$$p_{u}(w_{1}|m) = \frac{1}{3}m(\{w_{1}, w_{2}, w_{3}\}) + \frac{1}{2}m(\{w_{1}, w_{2}\}) + \frac{1}{2}m(\{w_{1}, w_{3}\})$$

$$= \frac{0.3}{3} + \frac{0.2}{2} + \frac{0.2}{2} = 0.3$$

$$p_{u}(w_{2}|m) = \frac{0.3}{3} + \frac{0.2}{2} + 0.3 = 0.5$$

$$p_{u}(w_{3}|m) = \frac{0.3}{3} + \frac{0.2}{2} = 0.2$$

Lower Probabilities not Always Beliefs

Consider the following lower probability measure:

$$\underline{P}(\{w_1\}) = 0, \ \underline{P}(\{w_2\}) = 0, \ \underline{P}(\{w_3\}) = 0$$

$$\underline{P}(\{w_1, w_2\}) = 0.4, \ \underline{P}(\{w_1, w_3\}) = 0.4, \ \underline{P}(\{w_2, w_3\}) = 0.4$$

$$\underline{P}(\{w_1, w_2, w_3\}) = 1$$

■ Suppose that $\underline{P} = Bel$ for some belief function. Then we should be able to use inversion to find m. This gives:

$$m(\{w_1\}) = m(\{w_2\}) = m(\{w_3\}) = 0$$

 $m(\{w_1, w_2\}) = m(\{w_1, w_3\}) = m(\{w_2, w_3\}) = 0.4$
 $m(\{w_1, w_2, w_3\}) = -0.2$

Nested Evidence

- In some cases the underlying evidence for a DS belief function forms a nested hierarchy:
- In other words, there exists $F_1 \subseteq F_2 \subseteq ... \subseteq F_n \subseteq W$ such that $\sum_{i=1}^n m(F_i) = 1$.
- $F_1 \subseteq F_2 \subseteq ... \subseteq F_n \subseteq W$ are called the *focal sets* of m.
- Recall example $W = \{d_1, d_2, h\}$.
- Suppose all doctors agree that the patient may have disease d_2 , a subset of doctors think that he may have disease d_1 , of that subset some doctors also believe it is possible that he is healthy.
- All mass would then be allocated to the sets $\{d_2\} \subseteq \{d_1, d_2\} \subseteq \{d_1, d_2, h\}$

Possibility and Necessity Measures

- For a nested mass assignment the corresponding belief measure is called a necessity measure and the plausibility measure is called a possibility measure.
- Let F_j be the largest focal set for which $F_j \subseteq A$ then:

$$Bel(A) = Nec(A) = \sum_{B \subseteq A} m(B) = \sum_{i=1}^{j} m(F_i)$$

■ Let F_k be the smallest focal set for which $A \cap F_k \neq \emptyset$ then:

$$PI(A) = Pos(A) = \sum_{B:B\cap A\neq\emptyset} m(B) = \sum_{i=k}^{n} m(F_k)$$

Min-Max Rules

- Suppose F_k is the smallest focal set for which $A \cap F_k \neq \emptyset$.
- Suppose $F_{k'}$ is the smallest focal set for which $B \cap F_{k'} \neq \emptyset$.
- Suppose, w.l.o.g that $F_k \subseteq F_{k'}$ so that $Pos(A) \ge Pos(B)$.
- Clearly, F_k is the smallest focal set for which $(A \cup B) \cap F_k \neq \emptyset$. Therefore,

$$Pos(A \cup B) = \sum_{i=k}^{n} m(F_i) = Pos(A) = \max(Pos(A), Pos(B))$$

■ Similarly, $Nec(A \cap B) = min(Nec(A), Nec(B))$

Possibility and Necessity Axioms

- **Pos1:** Pos(W) = 1, $Pos(\emptyset) = 0$.
- **Pos2:** $Pos(A \cup B) = max(Pos(A), Pos(B))$.
- **Nec1:** Nec(W) = 1, $Nec(\emptyset) = 0$.
- Nec2: $Nec(A \cap B) = min(Nec(A), Nec(B))$.
- Consequences: $\forall A \subseteq W \ Pos(A) = 1 \ \text{or} \ Pos(A^c) = 1$.
- $\forall A \subseteq W \ \textit{Nec}(A) = 0 \ \textit{or} \ \textit{Nec}(A^c) = 0$
- If Nec(A) > 0 then Pos(A) = 1
- If Pos(A) < 1 then Nec(A) = 0
- Either [Nec(A), Pos(A)] = [x, 1] or = [0, y] where $0 < x \le 1$ and $0 \le y < 1$.

Possibility Distributions

- For any $A \subseteq W$ $Pos(A) = max{Pos({w_i}) : w_i \in A}$
- Let $Pos(\{w_i\}) = \pi(w_i)$ then π is the possibility measure generating Pos.
- Analogy with probability distributions but with sum replaced by max.
- Also, notice that $max\{\pi(w_i): w_i \in W\} = 1$
- Number of values required to specify a possibility measures is n-1 compared to 2^n-1 .
- Lotfi Zadeh orginally introduced possibility measures in terms of possibility distributions rather than seeing them as special cases of plausibility measures.

Hans Eats Eggs

- Consider the number of eggs that Hans could eat for breakfast. So $W = \{1, 2, 3, 4, 5, 6, 7, 8\}$.
- **Possibility:** $\pi(w) =$ the degree of ease with which Hans can eat w eggs.
- **Probability:** p(w) = the probability that Hans will *actually* eat w eggs.

W	1	2	3	4	5	6	7	8
$\pi(w)$	1	1	1	1	0.8	0.6	0.4	0.2
p(w)	0.1	8.0	0.1	0	0	0	0	0

■ Probability/possibility consistency: $p(w) \le \pi(w)$

Possibilistic Inversion

- The mapping from *Pos* to the mass assignment *m* is much simpler than the general mapping from plausibility to mass assignment.
- In fact m can be determined from π as follows:
- Suppose $W = \{w_1, \dots, w_n\}$ ordered such that $1 = \pi(w_1) \ge \pi(w_2) \ge \dots \ge \pi(w_n)$ then:

$$m(\{w_1, \dots, w_n\}) = \pi(w_n)$$

$$m(\{w_1, \dots, w_{n-1}\}) = \pi(w_{n-1}) - \pi(w_n)$$

$$\vdots$$

$$m(\{w_1, \dots, w_i\}) = \pi(w_i) - \pi(w_{i+1})$$

$$\vdots$$

$$m(\{w_1\}) = 1 - \pi(w_2)$$

Dempster's Rule of Combination

- Suppose we have two mass assignments (or belief functions) provided by two independent sources of evidence (perhaps two different agent's).
- Dempster's rule provides a method to combine these to give one single mass assignment.
- Suppose that m_1 and m_2 are two mass assignments then:

$$\forall A \subseteq W \ m_1 \oplus m_2(A) = \frac{\sum_{(B,C):B \cap C = A} m_1(B) m_2(C)}{1 - \sum_{(B,C):B \cap C = \emptyset} m_1(B) m_2(C)}$$

Example: Dempster's Rule

- $m_1(\{w_1, w_2, w_3\}) = 0.3$, $m_1(\{w_1, w_2\}) = 0.2$, $m_1(\{w_1, w_3\}) = 0.2$, $m_1(\{w_2\}) = 0.3$.
- $m_2(\{w_1, w_2, w_3\}) = 0.4$, $m_2(\{w_1, w_2\}) = 0.1$, $m_2(\{w_2, w_3\}) = 0.25$, $m_2(\{w_3\}) = 0.25$.

	$\{w_1, w_2, w_3\}$	$\{w_1, w_2\}$	$\{w_1, w_3\}$	$\{w_2\}$
$m_1 \oplus m_2$	$m_1 \oplus m_2$ 0.3		0.2	0.3
$\{w_1, w_2, w_3\}$	$\{w_1, w_2, w_3\}$	$\{w_1, w_2\}$	$\{w_1, w_3\}$	{ w ₂ }
0.4	0.4 0.12		0.08	0.12
$\{w_1, w_2\}$	$\{w_1, w_2\}$ $\{w_1, w_2\}$		$\{w_1\}$	{ w ₂ }
0.1	0.1 0.03		0.02	0.03
$\{w_2, w_3\}$	$\{w_2, w_3\} \qquad \{w_2, w_3\}$		{ w ₃ }	{ w ₂ }
0.25	0.075	0.05	0.05	0.075
{ w ₃ }	$\{w_3\}$ $\{w_3\}$		$\{w_3\}$	Ø
0.25	0.075	0.05	0.05	0.075

Example: Dempster's Rule

■
$$1 - \sum_{(B,C):B \cap C = \emptyset} m_1(B)m_2(C) = 1 - m_1(\{w_1, w_2\})m_2(\{w_3\}) - m_1(\{w_2\})m_2(\{w_3\}) = 1 - 0.05 - 0.075 = 0.875.$$

$$m_1 \oplus m_2(\{w_1, w_2\}) = \frac{1}{0.875}(m_1(\{w_1, w_2\})m_2(\{w_1, w_2, w_3\}) + m_1(\{w_1, w_2, w_3\})m_2(\{w_1, w_2\}) + m_1(\{w_1, w_2\})m_2(\{w_1, w_2\})) = \frac{1}{0.875}(0.08 + 0.03 + 0.02) = \frac{0.13}{0.875} = 0.1486$$

Zadeh's Criticism

- Suppose a patient has one of three possible diseases: meningitis, concussion, tumor so that $W = \{m, c, t\}$
- Two independent doctors give the following diagnosis:
- **Doctor 1:** 'I am 99% sure it's meningitis, but there is a small 1% chance that it's concussion'.
- **Doctor 2:** 'I am 99% sure it's a tumor, but there is a small 1% chance that it's concussion'.
- $m_1(\{m\}) = 0.99$, $m_1(\{c\}) = 0.01$ and $m_2(\{t\}) = 0.99$, $m_2(\{c\}) = 0.01$
- $m_1 \oplus m_2(\{c\}) = 1$
- But both doctors agree that concussion is very unlikely!

Normalising and Inconsistency

- The problem seems to be a result of normalising out the combinations of focal sets which intersect to give \emptyset .
- If we don't normalise then we obtain the follow combined mass assignment:
- $m_1 \oplus' m_2(\emptyset) = 0.9999, m_1 \oplus' m_2(\{c\}) = 0.0001$
- This clearly indicates that the two sources of evidence are highly inconsistent.
- Normalisation in Dempster's rule can lead to counter intuitive results when the sources of evidence are highly inconsistent.

Conditional Belief Functions

- Let Bel be a prior belief function with mass assignment m_1 .
- Let m_2 be the mass function defined such that $m_2(B) = 1$.
- Then define $Bel(A|B) = \sum_{S \subset A} m_1 \oplus m_2(S)$
- This is equivalent to:

$$Bel(A|B) = \frac{Bel(A \cup B^c) - Bel(B^c)}{1 - Bel(B^c)}$$

Example: Conditional Belief

- Suppose that for Bel the mass assignment is:
- $m_1(\{w_1, w_2, w_3\}) = 0.3$, $m_1(\{w_1, w_2\}) = 0.2$, $m_1(\{w_1, w_3\}) = 0.2$, $m_1(\{w_2\}) = 0.3$
- In this case what is $Bel(\{w_1, w_3\} | \{w_1, w_2\})$?
- Define $m_2(\{w_1, w_2\}) = 1$:

$m_1 \oplus m_2$	$\{w_1, w_2, w_3\}$	$\{w_1, w_2\}$	$\{w_1, w_3\}$	$\{w_2\}$ 0.3
$ \begin{cases} w_1, w_2 \\ 1 \end{cases} $	$\{w_1, w_2\}$ 0.3	$\{w_1, w_2\}$ 0.2	$\{w_1\}$ 0.2	$\{w_2\}$ 0.3

- $m_1 \oplus m_2(\{w_1, w_2\}) = 0.5, \ m_1 \oplus m_2(\{w_1\}) = 0.2, \ m_1 \oplus m_2(\{w_2\}) = 0.3$
- $Bel(\{w_1, w_3\}|\{w_1, w_2\}) = m_1 \oplus m_2(\{w_1\}) = 0.2$