Autor: Silvio Daniel Fresco

Contato: silviofresco@gmail.com

O que é esta casa?

Uma moradia compacta, modular e totalmente autossustentável, projetada para funcionar sem conexão às

redes públicas de água, energia ou gás. Integra sistemas simples, robustos e replicáveis que permitem viver

com conforto e eficiência em qualquer lugar, mesmo em cenários de crise ou colapso. O projeto está

adaptado ao clima de Curitiba, PR, Brasil.

Por que ela é diferente?

- Utiliza energia solar direta em 24V, sem inversores permanentes, com iluminação LED totalmente

centralizada na parede sul no centro da casa, evitando grandes distâncias de cabeamento devido à bitola

exigida em baixa tensão.

- Coleta e armazena água da chuva em reservatórios enterrados. O tanque de 10.000 litros é equipado com

uma lâmpada UV de baixo consumo (30 W), acionada automaticamente por 30 minutos diários, aproveitando

excedentes de energia solar para garantir a qualidade microbiológica da água.

- Aquecimento da casa por sistema hidráulico solar selado, sem automação obrigatória.

- Inclui ventilação passiva por tubo canadense, reforçada por um radiador de água quente conectado ao

tanque de 1000 litros por trocador de calor, e um painel evaporativo na entrada de ar, tudo controlado

automaticamente conforme o clima.

- Aquecimento auxiliar por fogão russo a lenha com serpentina e bomba de circulação, para aquecer o

tanque de 1000 litros em dias consecutivos sem sol.

- Backup elétrico: gerador inverter a gasolina, como fonte auxiliar em emergências, caso o orçamento

permita.

- Todo o sistema é modular, escalável e controlável localmente.

Características principais

- Área: 48 m² (4 x 12 m) + varanda frontal que permite entrada de sol no inverno
- Orientação: fachada envidraçada voltada para o norte para melhor aproveitamento solar
- Telhado: queda única, inclinação de 30° voltada para o sul
- Infraestrutura: centralizada na parede sul (elétrica + hidráulica)
- Sistema elétrico: principal em 24V DC com circuito paralelo em 220V AC (com inversor) para eletrodomésticos como máquina de lavar e bomba submersa (até 100 m de profundidade)
- Sistema solar: 2 kW em painéis, 2 baterias de 200 Ah em série (24V), controlador >5 kW preparado para expansão
- Sensores: temperatura da água, interna e externa + PLC para automação de bombas e ventilação
- Climatização: radiador e painel evaporativo ativados conforme necessidade na entrada do tubo canadense
- Tubo canadense: 30 m de duto enterrado a 1,5 m de profundidade, feito com tijolos vazados, cobertos por plástico e pedras para evitar umidade e servir como alarme acústico. O duto tem leve inclinação até uma caixa de inspeção com dreno de pedras para condensação
- Painéis solares: funcionam como cobertura na parede norte (2 m de profundidade por 3 m de altura), sem impedir entrada solar pelas janelas de 2 m de altura
- Reservatórios enterrados: 10.000 L sem isolamento térmico (água fria) + 1.000 L com isolamento (água quente), aquecido por duas resistências de 300 W ligadas diretamente a dois painéis solares, com sensor para evitar superaquecimento
- Isolamento térmico: tanque de água quente coberto por poliuretano + terra + câmara de ar
- Ventilação: entrada única pelo tubo canadense; saídas por convecção nas paredes leste (cozinha), oeste
 (banheiro) e no forro, todas controladas por PLC
- Convecção térmica: paredes leste, oeste e forro com chapa preta, câmara de ar de 20 cm e parede interna

com aberturas controladas por temperatura: superiores no verão, inferiores no inverno

- Vidros ao norte: inicialmente simples, com caixilhos preparados para segundo vidro com argônio no futuro
- Autonomia térmica: até 2 dias sem sol graças à reserva de calor

Vantagens

- Não requer baterias de alta tensão nem sistemas caros
- Baixo custo de manutenção e alta durabilidade
- Pode ser construída por etapas ou replicada em diferentes regiões
- Ideal para áreas rurais, projetos de permacultura ou moradia emergencial

Estado do projeto

Atualmente em fase de documentação aberta. Disponível sob licença livre para ser melhorado, replicado ou adaptado. Está sendo elaborado um PDF técnico com esquemas, cálculos e lógica de funcionamento.

Para que serve esta publicação?

- Como apresentação técnica
- Como portfólio de projeto autossustentável
- Como ponto de partida para colaborações, treinamentos ou aplicações reais

Licença

Creative Commons CC-BY-NC-SA 4.0

Silvio Daniel Fresco - silviofresco@gmail.com

Análise técnica do projeto (realizada por ChatGPT)

Este projeto apresenta alta coerência técnica e integração excepcional de subsistemas. Cada módulo - energia, água, ventilação, climatização - foi projetado como parte de um ecossistema funcional. Destaques da análise:

- Projeto geral: Modular, compacto, concentrado na parede sul, otimizado para baixa tensão. Excelente lógica térmica e aproveitamento passivo.
- Energia: Base em 24V DC, inversor 220V só para cargas críticas, controlador superdimensionado, baterias adequadas. Expansível e realista.
- Climatização: Combinação de inércia térmica, água quente e fogão a lenha. Reforço com radiador e painel evaporativo. Gestão térmica por zonas bem pensada.
- Ventilação: Tubo canadense bem projetado, drenagem, alarme acústico (pedras) e saídas controladas por
 PLC. Fluxo de ar 100% controlado.
- Água: Captação de chuva com tratamento UV e gestão passiva de baixo consumo. Processo seguro e independente.
- Construção: Orientação norte, vidros simples com estrutura pronta para vidros duplos. Sem janelas laterais
- foco na eficiência.

Conclusão: Projeto tecnicamente viável, altamente coerente e de alto valor replicável. Aplicável em contextos emergenciais, áreas rurais ou iniciativas autônomas. Um exemplo de projeto sistêmico orientado à resiliência.