Precision Transfers 1 / 30

Interprecision Transfers in Iterative Refinement Making Half Precision on Desktops Less Painful

C. T. Kelley
NC State University
tim_kelley@ncsu.edu
Supported by DOE, NSF

XSDK-MULTIPRECISION, June 15, 2023

Precision Transfers 2 / 30

Outline

- 1 References
- 2 Two Precision Iterative Refinement
 - Interprecision transfers and IR
 - Cost of interprecision transfer
 - Consequences for IR
- 3 Norm and condition estimates: model problem
- 4 Half Precision is Slow, but getting faster

References

- CH18: E. Carson and N. J. Higham, <u>Accelerating the solution of linear</u> systems by iterative refinement in three precisions, SIAM Journal on Scientific Computing, 40 (2018), pp. A817–A847.
- H96: N. J. Higham, <u>Accuracy and Stability of Numerical Algorithms</u>, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.
- HPZ19: N. J. Higham, S. Pranesh, and M. Zounon, <u>Squeezing a matrix</u> into half precision, with an application to solving linear systems, SIAM J. Sci. Comp., 41 (2019), pp. A2536–A2551.
- CTK22P: C. T. Kelley, Newton's method in mixed precision, SIAM Review, 64 (2022), pp. 191–211.
- CTK22B: C. T. Kelley,
 Solving Nonlinear Equations with Iterative Methods:
 Solvers and Examples in Julia, no. 20 in Fundamentals of Algorithms,
 SIAM, Philadelphia, 2022.

IR from textbooks

```
 \begin{split} r &= b - Ax \\ \text{Factor A} &= \text{LU in low precision} \\ \textbf{while} & \| r \| \text{ too large } \textbf{do} \\ d &= U^{-1}L^{-1}r \\ x &\leftarrow x + d \\ r &= b - Ax \\ \textbf{end while} \\ \\ \text{Not clear what "factor in low precision" and } d = U^{-1}L^{-1}r \text{ mean} \end{split}
```

5/30

Interprecision transfers and IR

Interprecision transfers

- This is mostly a two-precision talk.
- \mathcal{F} = set of floats, u = unit roundoff, fl rounding operator
- $\blacksquare \mathcal{F}^N$, $\mathcal{F}^{N\times N}$ vectors and matrices
- High (working and residual) precision = FP64, \mathcal{F}_h , u_h , fl_h
- Low (factorization precision) = FP32 or FP16, \mathcal{F}_I , u_I , fl_I
- I_s^t interprecision transfer from source s to target t
- We will explicitly put the interprecision transfers in the algorithms.

Interprecision transfer is more than rounding

- Memory allocation
- Data movement
- This matters even within registers because $u_l \in \mathcal{F}_l$, $a, b \in \mathcal{F}_h$ implies

•
$$fl_h(u_I * a + b) = fl_h(I_I^h(u_I) * a + b)$$
 so

Promotion happens before binary operations.

Consider the triangular solve.

Begin with $A \in \mathcal{F}_h^{N \times N}$, $b \in \mathcal{F}_h^N$

- HPF: Factor A = LU
- LPF: Factor $I_h^I(A) = A_I = L_I U_I$
- Three triangular solves
 - HPS: (LU)⁻¹b
 - LPS: $(L_I U_I)^{-1} I_h^I(b)$
 - MPS: (L₁U₁)⁻¹b

Don't forget $fl_h(u_I * a + b) = fl_h(I_I^h(u_I) * a + b)$

Cost of interprecision transfer

Julia 1.9.0, OpenBLAS, A = rand(N, N)

Timings, 2023 Mac Mini; M2 Pro; Double-Single					
N	HPF	LPF	HPS	MPS	LPS
512	1.05e-03	9.77e-04	5.03e-05	1.00e-04	2.83e-05
1024	3.96e-03	2.98e-03	1.88e-04	4.31e-04	1.02e-04
2048	2.36e-02	1.46e-02	8.96e-04	3.70e-03	4.07e-04
4096	1.57e-01	8.61e-02	4.81e-03	1.47e-02	2.27e-03
8192	1.24e+00	6.13e-01	1.95e-02	5.88e-02	9.86e-03
Difference (MPS/LPS) a factor of 3-9. Performance problem in					
(CTK22	2B).				

MPS is even more costly than high precision triangular solves. This is not an issue in Matlab.

Precision Transfers 9 / 30

MPS vs LPS in IR

- Julia and LAPACK do MPS
 - will promote with each binary operation in MPS.
 - This is the pain point in the triangular solves.
- Fix for IR: Avoid $d = (L_I U_I)^{-1} r$ and use LPS
 - Scale and move r to the lower precision.
 - Do the solves and move back.
 - Remove the scaling.
 - So it's $d = ||r||I_l^h((L_lU_l)^{-1}I_h^l(r/||r||))$
- Matlab does $I_h^r(r)$ for you, so LPS is automatic.
- Most of you use LPS.

IR with LPS: explicit interprecision transfers

$$r = b - Ax$$

Factor $I_h^I(A) = A_I = L_I U_I$
while $||r||$ too large do
 $(LPS) d = ||r||I_I^h((L_I U_I)^{-1}I_h^I(r/||r||))$
 $x \leftarrow x + d$
 $r = b - Ax$
end while

IR-LPS as a fixed point iteration

$$\mathsf{x} \leftarrow \mathsf{G}(\mathsf{x}) \equiv \mathsf{x} + \|\mathsf{r}\| I_I^h (\mathsf{L}_I \mathsf{U}_I)^{-1} I_h^I (\mathsf{r}/\|\mathsf{r}\|)$$

where r = b - Ax.

G is not only nonlinear, it is not even continuous.

This makes IR a pain to analyze, but is a pedantic worry.

IR with LPS

If all the scaling does is avoid underflow, then

$$G(x) \approx x + (L_I U_I)^{-1} r + \delta_r$$

So it's almost the same as IR-MPS. Difference is

$$\delta_{r} = (L_{I}U_{I})^{-1}(r - ||r||I_{h}^{I}(r/||r||))$$

and
$$\|\delta_{\mathbf{r}}\| \leq u_{I}\|(\mathsf{L}_{I}\mathsf{U}_{I})^{-1}\|\|\mathbf{r}\|.$$

Classic (H96 + refs) Estimates for MPS

IR-MPS is a stationary iterative method

$$x \leftarrow x + U_I^{-1}L_I^{-1}(b - Ax)$$

with iteration matrix

$$M = I - U_I^{-1}L_I^{-1}A = U_I^{-1}L_I^{-1}(L_IU_I - A)$$

What is $\Delta A = A - L_I U_I$?

The classic estimates ignore the interprecision transfers to get

$$|\Delta A| \le \gamma_{3N}^I |L_I| |U_I|$$

(see eq 7.1 of CH18)
But A_I is missing. Put it in to get

$$|\Delta A| = |A - A_I + A_I - L_I U_I| \le |A - A_I| + |A_I - L_I U_I|$$

 $\le u_I |A| + \gamma_{3N}^I |L_I| |U_I|$

 $u_I|A|$ is not likely to matter much, but it is there.

Precision Transfers 15 / 30

L Two Precision Iterative Refinement

Consequences for IR

Estimate ||M||

$$||M|| \leq |||U_{I}^{-1}||L_{I}^{-1}||\Delta A|||$$

$$\leq u_{I}(|||U_{I}^{-1}||L_{I}^{-1}||A||| + 3N|||U_{I}^{-1}||L_{I}^{-1}||L_{I}||U_{I}||)$$

$$\leq u_{I}||U_{I}^{-1}|||L_{I}^{-1}||(||A|| + ||L_{I}||||U_{I}||)$$

Precision Transfers 16 / 30

Effect on estimates in CH18

To get the convergence results from Section 7 in the case

- Factor in low precision
- do everything else in high

lf

$$\phi_1 \equiv u_I \| \mathsf{U}_I^{-1} \| \| \mathsf{L}_I^{-1} \| (\| \mathsf{A} \| + \| \mathsf{L}_I \| \| \mathsf{U}_I \|) << 1$$

then the bottom line from CH18 does not change.

Using $U_I^{-1}L_I^{-1}$ as a preconditioner

We just found that

$$\|\mathsf{U}_I^{-1}\mathsf{L}_I^{-1}\mathsf{A}\| \le 1 + \phi_1$$

Also

$$\|A^{-1}L_{I}U_{I}\| \le 1 + \|A^{-1}\| \|\Delta A\|$$

 $\le 1 + \|A^{-1}\| (\|A\| + \|L_{I}\| \|U_{I}\|) \equiv 1 + \phi_{2}$

So
$$\kappa(U_I^{-1}L_I^{-1}A) \leq (1+\phi_1)(1+\phi_2)$$
.

Solving in high precision for preconditioning (CH)

- LPS won't do the job.
- Must one return to MPS: $U_I^{-1}L_I^{-1}r$? Yes, but you can reformulate and trade storage for time.

Remember the assumption: true for Intel and Apple $M \times CPU$

Assumption: If

- \mathbf{x}_l is low precision,
- a and b are high precision

then computing $x_l * a + b$ returns

$$fl_h(I_l^h(x_l)*a+b)$$

So the low precision number is promoted before the operations begin.

Not true for the Apple Accelerator Framework on Mx chips.

Heavy IR: I

- Factor $I_h^I A = A_I = L_I U_I$ in low precision
- Promote the factors to high precision to get

$$\hat{L} = I_I^h(L_I)$$
 and $\hat{U} = I_I^h(U_I)$

solve the correction equation in high precision via

$$\mathsf{d} = (\hat{\mathsf{L}}\hat{\mathsf{U}})^{-1}\mathsf{r}$$

with the promoted factors

This is equivalent to MPS. Look at the loops to see.

Heavy IR: II. New(?) version of MPS

$$r = b - Ax$$

Factor $I_h^I A$ to obtain L_I and U_I
Promote the factors to obtain \hat{L} and \hat{U} .
while $\|r\|$ too large **do**

$$d = (\hat{L}\hat{U})^{-1}r$$

$$x \leftarrow x + d$$

$$r = b - Ax$$
end while

22 / 30

Consequences for IR

Precision Transfers

Why do this?

Bad

- $\ \ \, \hat{A}=\hat{L}\hat{U}$ costs the same as A to store, so the storage burden is heavy
- Triangular solves are in high precision

Good

- Faster to do MPS this way for GMRES-IR.
 Avoid interprecision transfers within the iteration.
- Makes half precision experiments on desktops less painful eg: Use factorization for several nonlinear iterations
- Can reuse space for A_I for Krylov vectors . . .

Simple model problem

Composite midpoint discretization of

$$(\mathcal{A}u)(x) \equiv u(x) - \alpha \int_0^1 g(x, y)u(y) \, dy = f(x)$$

where g is the discretization of the Greens function for the negative Laplacian with homogeneous Dirichlet boundary conditions.

$$g(x,y) = \begin{cases} y(1-x) & \text{if } x > y \\ x(1-y) & \text{if } y \ge x \end{cases}$$

 \mathcal{A} is self-adjoint and positive definite if $\alpha < \pi^2$.

Experiments with $\alpha = 800$

- \mathcal{A} is singular if $\alpha = 9^2 \pi^2 \approx 799.4$ and hence ill-conditioned for $\alpha = 800$
- For $u_h = \text{FP64}$ and $u_l = \text{FP32}$ and FP16 we tabulate
 - Norm of iteration matrix $I \hat{A}^{-1}A$
 - Norm of $\hat{A}^{-1}(A A_I)$ to see if it matters
 - Condition number of $\hat{A}^{-1}A$

Precision Transfers

$$u_l = FP32, u_h = FP64, \alpha = 800$$

N	$\kappa(A)$	$\ \hat{A}^{-1}(A-A_I)\ _2$	$\ I - \hat{A}^{-1}A\ _2$	$\kappa(\hat{A}^{-1}A)$
2048	1.11e+05	7.45e-05	1.39e-03	1.00e+00
4096	1.13e + 05	5.81e-05	9.95e-03	1.01e+00
8192	1.14e + 05	3.90e-05	3.17e-03	1.00e+00

Norm and condition estimates: model problem

$$u_l = FP16, \ u_h = FP64, \ \alpha = 800$$

N	$\kappa(A)$	$\ \hat{A}^{-1}(A-A_I)\ _2$	$\ I - \hat{A}^{-1}A\ _2$	$\kappa(\hat{A}^{-1}A)$
2048	1.11e+05	8.19e-03	1.27e+00	1.34e+02
4096	1.13e + 05	2.65e-03	1.51e + 00	3.89e + 02
8192	1.14e + 05	2.89e-03	3.92e+00	1.54e + 03

And so . . .

- $\hat{A}^{-1}(A A_I)$ is negligible and was in every other experiment we did
- Conditioning for $u_I = FP16$ looks bad.
 - GMRES-IR does well anyway if you
 - \blacksquare make the GMRES tolerance very tight (10⁻⁶) and
 - allocate lots of room for Krylov vectors
 - There are many problem eigenvalues and they need many GMRES iterations.
- We tried scaling A and got no change in the results.

Half precision is slow, but getting better

LU timings: 8192x8192 Random

CPU	Double	Single	Half	T_{16}/T_{64}
Α	1.37e+00	6.07e-01	3.92e+02	287
В	1.10e+00	5.94e-01	1.16e+02	106
С	1.17e+00	6.10e-01	6.46e+01	55

A: 2019 8 core Intel iMac, Julia 1.8.5

B: 2023 M2 Pro, Julia 1.8.5 C: 2023 M2 Pro, Julia 1.9.1

BLAS and LAPACK not there, but ...

- Julia 1.9.1 using 8 threads
- 2023 M2 Pro, 8 performance cores
- Brute force A^T * B matrix multiply. N=8000.

Timings in seconds $T_{64} = 26$ $T_{32} = 10$ $T_{16} = 4.5$

Summary

- Interprecision transfers are costly.
 - Avoid on-the-fly transfers by synchronizing precision before matrix operations
 - You knew this already.
- Some consequences
 - Heavy IR
 - Heavy GMRES-IR