08/06/2018

14:00

Examinations and Graduation Office Old Mutual Sports Hall

SCHOOL OF MATHEMATICS

MULTIVARIABLE CALCULUS

MATH2021

STUDENT NO.	Date	8 June 2018
ID/PASSPORT NO.	Venue	
SIGNATURE	Row & Seat	

Internal examiner: Prof. Y. Hardy (x76248)

External examiner: Prof. R. Brits

Instructions to Candidates:

- Complete the information above.
- Check that this paper has a cover page and 10 pages.
- Please do not write in red ink.
- Work done in pencil or altered will not be remarked.
- Show all working, which must be legible.
- Approximate marks are indicated.
- No cell phones or other electronic devices are allowed

 they may be confiscated and further action taken.
- If you need extra space to answer a question, write on the back of the page, and indicate clearly that you have done so.
- Time allowed for this exam is 2 hours.

	Markers only	
Question	Mark	
1	,	25
2		14
3	/	17
4		10
5	/	9
6	/	17
7	/	10
8	/	18
Total	/	120

Figure 1: The region D, i.e. inside and on the circle of radius 2 with centre (0,0) restricted to the first quadrant, for questions 1 and 2.

[25 marks]

(a) Let $f: D \to \mathbb{R}$ be given by $f(x,y) = 2x - \sqrt{4 - y^2}$. Evaluate $\iint_D f(x,y) \, dx \, dy$ using Fubini's (8) theorem.

(b) Evaluate
$$\int_{\partial D} \mathbf{F} \cdot d\mathbf{r}$$
 where $\mathbf{F}(x,y) = (0, x^2 - x\sqrt{4 - y^2})$ and $\partial D = \Gamma_1 + \Gamma_2 + \Gamma_3$. (11) Given: $\int_{\Gamma_2} \mathbf{F} \cdot d\mathbf{r}_2 = \int_{\Gamma_3} \mathbf{F} \cdot d\mathbf{r}_3 = 0$.

(c) State Green's theorem.

(5)

(d) Given that $\nabla \times \mathbf{F} = (0, 0, f(x, y))$, where $f(x, y) = 2x - \sqrt{4 - y^2}$, verify that Green's theorem holds by comparing your answer to (b) with your answer to (a).

[14 marks]

Let
$$f: D \to \mathbb{R}$$
 be given by $f(x,y) = 2x - \sqrt{4 - y^2}$. Consider the polar form $(x,y) = (u\cos v, u\sin v)$.
(a) Find D^* such that $\mathbf{T}(D^*) = D$, where $\mathbf{T}(u,v) = (u\cos v, u\sin v)$.

(b) Express
$$\iint_D f(x,y) dx dy$$
 as a double integral over D^* .

Do not integrate. Leave your answer as a double integral.

[17 marks]

(a) State and prove the Fundamental Theorem of Vector Calculus.

(12)

(b) Determine whether $\mathbf{F}(x,y)=(2xy,x^2+1)$ a gradient vector field on \mathbb{R}^2

(5)

[10 marks]

(a) State the definition of the Scalar Surface Integral.

(5)

(b) Prove or disprove: Let S be a parametric surface in \mathbb{R}^3 , defined on $D \subset \mathbb{R}^2$, with unit normal vector $\mathbf{n}(u,v)$ for $(u,v) \in D$. For every $f: S \to \mathbb{R}$, there exists an $\mathbb{F}: \mathbb{S} \to \mathbb{R}^3$ such that

$$\iint_S f \, da = \iint_S \mathbf{F} \cdot d\mathbf{a}.$$

[9 marks]

Let $\mathbf{F}(x,y,z)=(0,0,x)$ and let S be the portion of the paraboloid $z=1-x^2-y^2$ above and including the x-y plane with normal pointing upwards (i.e. non-negative z-coordinate).

Find a parametrisation of the surface S with normal pointing upwards.

[17 marks]

$$\text{Let } \mathbf{F}(x,y,z) = (2x,z,y)^T \text{ Calculate } \iint_S \mathbf{F} \cdot d\mathbf{a} \text{ where } S = \left\{ \begin{pmatrix} uv \\ v \\ u \end{pmatrix} \, : \, u \in [0,1], \, v \in [0,u] \, \right\}$$

[10 marks]

Let $\mathbf{F}(x,y,z)=(0,0,x)$ and let S be the portion of the paraboloid $z=1-x^2-y^2$ above and including the x-y plane with normal pointing upwards (i.e. non-negative z-coordinate).

(a) Show that the boundary of S is the circle
$$x^2 + y^2 = 1$$
, $z = 0$.

(b) Use Stokes' theorem and the parametrisation

(7)

$$\partial S = \left\{ egin{pmatrix} \cos t \ \sin t \ 0 \end{pmatrix} : 0 \leq t \leq 2\pi \
ight\}$$
 ,

to calculate $\iint_S \mathbf{F} \cdot d\mathbf{a}$.

Given:
$$\nabla \times (0, \frac{1}{2}x^2, 0) = (0, 0, x) \text{ and } \int_0^{2\pi} \cos^3 \theta \, d\theta = 0.$$

[18 marks]

(a) Use Gauss' divergence theorem to calculate

$$\iint_{S} \mathbf{F} \cdot d\mathbf{a},$$

where $\mathbf{F}(x,y,z)=(0,0,x)$ and S is the surface bounding the volume above the z=0 plane (positive z coordinate) and below the paraboloid $z=1-x^2-y^2$.

- (b) Give the integration bounds for x (in terms of y and z), y (in terms of z) and z for the triple integral over the volume B (bounded by S).
- (c) Give a parametrisation of S, and state why the parametrisation is appropriate for Gauss' theorem.

(Extra space.)