Big Data Course

High Level Design & Course Details

Course Brief

Topic	Big Data Course
Course Schedule	Face-to-face 4 hours daily course: 3 months (total 240 hours)
	- Lecture & Exercise: 2 months (160 hours)
	- Capstone Project: 1 month (80 hours)
Learning	■ Classroom
Environment	- Projector, Microphone, Laser pointer, White board
	■ PC
	- Minimum: Windows10 64 Bit + CPU i5 + RAM 16GB
	- Recommended: Windows10 64 Bit + CPUi7-8700 3.19 GHz + RAM 32GB
Learning Objectives	Learn the entry level skills need to be a data engineer by understanding a set of processes for Big Data architecture, ingestion, storage, analysis, and visualization. Cultivate the practical skills through a series of hands-on exercises. Finally, combine the acquired skills by completing a capstone project.
	At the end of the course, students will be expected to: Understand the background and trends of Big data technology. Figure out how the Big data ecosystem is applied and operated in real use cases Ingest the data from the source and store it in the distributed storage system Analyze complex data elements and systems, data flow, dependencies, and relationships using analysis methods Design data models as well as process them against new datasets on distributed computing environments
	 Understand trends, outliers, and patterns of data with visualization tools
Course Prerequisites	 Required Basic understanding of program in at least one of these languages (e.g. Java, Python, Scala)
	 Recommendation Previous experience in Cloud Environment Basic knowledge of SQL and DBMS
Audience & Characteristics	 Target Youth (age 18~24), interested in pursuing a career in Big Data Engineering, who need the appropriate education for the career Official Target for SIC program will follow the given characteristic. However, actual participants will mainly consist of undergraduate students in STEM major and a few graduate students within the given age range because secondary school graduates will barely meet prerequisites given above Characteristics Educational background: successfully completed high school level STEM courses or higher education Level for understanding: possess basic knowledge in programming. Expectations: expects to obtain necessary knowledge and skills for entry-level job placement in Big Data field

SAMSUNG

► Lecture and Exercise (2 months, 160hours)

Course Contents	Duration
Chapter 1. Introduction to Big Data	4H (total)
- Unit 1. Big Data Overview and Background	2.5H
- Unit 2. Current Trends in Big Data	1H
- Quiz	0.5H
Chapter 2. Fundamentals of Big Data	9H (total)
- Unit 1. Big Data Processing	2H
- Unit 2. Hadoop Core & Eco system overview	2H
- Unit 3. Hadoop Architecture for Big Data	4H
- Quiz	1H
Chapter 3. Big Data Ingestion	26H (total)
- Unit 1. Data Migration from EDW	3H
- Unit 2. Streaming Real-Time Data Sources	3H
- Unit 3. Creating Data Pipelines with Apache NiFi	14H
- Unit 4. Apache Kafka	4H
- Quiz	2Н
Chapter 4. Big Data Storage	24H (total)
- Unit 1. Data Storage Alternatives	8H
- Unit 2. NoSQL	14H
- Quiz	2H
Chapter 5. Big Data Analytics	32H (total)
- Unit 1. Introduction to SQL	8H
- Unit 2. Basic Analytics	8H
- Unit 3. Advanced Analytics	8H
- Unit 4. Streaming Data Analysis Architecture	4H
- Quiz	4H
Chapter 6. Big Data Processing with Apache Spark	44H (total)
- Unit 1. Unstructured Data Processing	15H
- Unit 2. Structured Data Processing	13H
- Unit 3. Processing Streaming Data	7H
- Unit 4. Apache Spark Applications	5H

SAMSUNG

- Quiz	4Н
Chapter 7. Big Data Modeling and Al	14H (total)
- Unit 1. Machine Learning Models	9Н
- Unit 2. Apache Spark Machine Learning Library (MLlib)	4Н
- Quiz	1H
Chapter 8. Data Visualization	4H (total)
- Unit 1. Open Source Visualization Tools	2Н
- Unit 2. Commercial Visualization Tool	1H
- Quiz	1H
Chapter 9. Security and Access Control	3H (total)
- Unit 1. Secure Access to Cluster Services	1H
- Unit 2. Secure Access to Cluster Data	1H
- Quiz	1H
Total	160H

► Capstone Project (1 month, 80hours)

Course Contents	Duration
Capstone Project Overview	1H (total)
- Student Guide Explanation	0.5H
- Document Explanation	0.5H
Chapter 10. Starting a Big Data Project	3.5H (total)
- Project Preparation	0.5H
- Big Data Architecture Design	3.5H
Chapter 11. Big Data Capstone Project Tutorial	2.5H (total)
- Designing a data ingest pipeline.	1.5H
- Fundamentals of exploring and transforming data for ETL	1H
- Creating and presenting data analysis reports	0.5H
M During the capstone project, student's project activities take more time than lecture itself. Please expect up to 80 hours to complete the whole project	73H
Total	80H

Course Details

Chapter	Details	Duration
1	Chapter 1. Introduction to Big Data	
	Objective: Understand the role of data in the human evolution. Gain insight to	
	the major changes in how data is generated and how savvy businesses are	4H
	taking advantage of it to gain valuable insight. Understand how existing	(Total)
	technology and platforms failed in the face of changing data landscape and	(IOtal)
	what new requirements were incorporated into Hadoop to meet these	
	challenges.	
	Unit 0. Course Roadmap	0.5H
	Unit 1. Big Data Overview and Background	
	Background of the emergence of big data	
	Big data definition	
	The difference between traditional data analysis and big data analysis	2H
	Key elements and characteristics of big data	211
	The evolution of processing and organizing data	
	Changing hardware landscape - availability and cost	
	Cost-effective scalable and fault-tolerant architecture	
	Unit 2: Current Trends in Big Data	
	Role of public cloud based services	
	XOps - hype or real?	1H
	Edge Computing to Artificial Intelligence	
	Citizen Data Scientists and Citizen Data Engineers	
	Quiz (Written)	0.5H
2	Chapter 2. Fundamentals of Big Data	9H
	Objective: Gain insight to the objectives and goals of Big Data processing	(Total)
	through examining some use-case scenarios. Understand the fundamentals of	
	a distributed parallel cluster architecture and how enterprises deploy Big Data	
	platforms, either on-premise or through the use of public cloud services.	
	Understand how on-premise platforms, such as Hadoop, provide storage and	
	computing for large scale data. Gain an overview to the data pipeline as data	
	travels from its source to its final destination and the transformations that	
	occurs within. Review Hadoop ecosystem tools and how Apache Spark has	
	changed the landscape with the advent of in-memory processing.	
	Unit 1. Big Data Processing	2H
	Big Data use case for industry	(Demo
	Public Cloud Introduction (Amazon AWS, Microsoft Azure)	0.5)
	Instructor Demo	

	Unit 2. Hadoop Core & Eco system overview	2H
	Apache Hadoop & Spark platform overview	
	Data ingest / storage / processing / BI introduction	
	Unit 3. Hadoop Architecture for Big Data	4H
	HDFS Storage	(Exercise
	YARN resource manager and compute architecture	2H)
	Exercise - Setting up our VirtualBox environment	,
	Exercise - HDFS and Running applications through Yarn	
	Quiz (Written & Hands-on)	1H
3	Chapter 3. Big Data Ingestion	26H
	Objective: Acquire detailed knowledge in the tools available in the Hadoop	(Total)
	Ecosystem for data ingestion. Learn how to migrate data from EDW data silos.	
	Create data pipelines for capturing streaming real-time data. Learn how NiFi	
	allows user to create data pipelines that include data transformations using a	
	browser based GUI. Finally, understand why Kafka has become such an	
	integral tool in a big data ingestion architecture.	
	Unit 1. Data Migration from EDW	3H
	Apache Sqoop	(Exercise
	Exercise - Sqoop	1H)
	Unit 2. Streaming Real-Time Data Sources	3H
	Apache Flume	(Exercise
	Micro-batch based tools (Apache Spark Streaming)	1H)
	Event-driven tools (Apache Flink)	
	Exercise - Flume	
	Unit 3. Creating Data Pipelines with Apache NiFi	14H
	Processors, Connections, Dataflows and Process Groups	(Exercise
	Exercise - NiFi	8H)
	Unit 4. Apache Kafka	4H
	Apache Kafka Fundamentals	(Exercise
	Producers and Consumers	1H)
	Exercise - Kafka on console	
	Quiz (Written + Hands-on)	2H
4	Chapter 4. Big Data Storage	24H
	Objective: Understand the various options available for Big Data Storage and	(Total)
	their pros and cons. Understand how data storage for analysis has evolved	
	overtime from flat-file based to database to 3NF relational databases. Gain	
	insight to why relational databases do not fit to processing massive amount of	
	data and how NoSQL has evolved to meet these new challenges.	
	Unit 1. Data Storage Alternatives	8H

6	Chapter 6. Big Data Processing with Apache Spark	44H
	Quiz (Written & Hands-on)	4H
	Exercise - Experimenting with Lambda Architecture	
	Kappa Architecture	2H)
	Lambda Architecture	(Exercise
	Unit 4. Streaming Data Analysis Architecture	4H
	Exercise - HiveQL advanced and Impala basics	
	Complex Data and Relational Data Analysis with Hive and Impala	4H)
	Hive and Impala Data Management for Data storage and Performance	(Exercise
	Unit 3. Advanced Analytics	8H
	Exercise - HiveQL basics	
	Basic Querying with Apache Hive and Impala	4H)
	Data preprocessing and Basic data analysis with Apache Pig	(Exercise
	Unit 2. Basic Analytics	8H
	Exercise - SQL Basics	
	Query data with SQL	
	Modify table properties with DML	4H)
	Creating tables using DDL	(Exercise
	Unit 1. Introduction to SQL	8H
	analyze and compare historical data with current streaming data.	
	enhanced tools. Learn how to work with batch data and streaming data to	
	interactive ad-hoc queries to working with petabytes of data on thruput	
	the use cases of currently available big data analytic tools from latency sensitive	
	data can be organized to increase performance of the operations. Understand	
	and scripts to create, modify and analyze big data tables. Gain insight to how	
	Reduce evolved to meet these challenges. Learn to use SQL based queries	
	relational databases. Understand how new ecosystem tools based on Map	
	Objective: Understand how analyzing massive amount of data differ from typical	(Total)
5	Chapter 5. Big Data Analytics	32H
	Quiz (Written & Hands-on)	2H
	Exercise - HBase and Cassandra	
	MongoDB	
	Apache Cassandra	011)
	Apache HBase	6H)
	NoSQL Basics	(Exercise
	Unit 2. NoSQL	14H
	 Public Cloud Storage - S3, Glacier, BLOB Exercise - AWS S3 and Glacier 	4H)
	On-premise Storage - HDFS, HDFS EC, Kudu Public Cloud Storage - C3, Closier BLOB	(Exercise

	Objective: Understand why Apache Spark has become one of the most popular tools in big data. Learn to work with the various APIs in Spark and the different use cases for each. Use Apache Spark Core API to analyze and transform unstructured and semi-structured data. Use Dataframe API to work with structured data and incorporate the catalyst optimizer for maximum performance. Use DStream API for unstructured/semi-structured streaming data and Structured Streaming API for structured streaming data. Understand the Spark architecture and learn the basic steps for application optimization. Unit 1. Unstructured Data Processing • Introduction to Apache Spark	(Total) 15H (Exercise
	 Python Basics Data Transformation with Core API Working with Pair RDDs Exercise - Spark Core API 	7H)
	 Unit 2. Structured Data Processing Introduction to Spark SQL Spark SQL Operations Interoperation RDDs and DataFrames Exercise - Spark Dataframe API 	13H (Exercise 7H)
	 Unit 3. Processing Streaming Data Introduction to Spark Streaming Working with Unstructured Streaming Data Working with Structured Streaming Data Exercise - Spark DStream and Structured streaming API 	7H (Exercise 3H)
	Unit 4. Apache Spark Applications • Spark Application • Distributed Processing • Persistence • Exercise - Apache Spark applications	5H (Exercise 1H)
7	Quiz (Written & Hands-on) Chapter 7. Big Data Modeling and Al Objective: Understand how to use tools learned in previous chapters to preprocess and transform datasets in preparation for machine learning. Learn how to create Apache Spark ML/MLlib Transformers, Estimators and Pipelines and utilize standardized machine learning algorithms provided within the API to create data models. Gain insight to how classification is performed using regression based algorithms. Understand the basic algorithms behind collaborative filtering and use them to create models. Unit 1. Machine Learning Models	4H 14H (Total) 9H
	OTHE 1. MICHINE LEGITHING MICHEIS	ווכ

SAMSUNG

	Mark's Land's Dad's	(5
	Machine Learning Basic	(Exercise
	Machine Learning on Public Cloud	2H)
	Apache Spark ML	
	Exercise - Machine Learning on Public Cloud	
	Unit 2. Apache Spark Machine Learning Library (MLlib)	4H
	Creating Spark MLlib Pipelines	(Exercise
	Classification and Regression	2H)
	Clustering and Collaborative Filtering	
	Exercise - Spark ML Models	
	Quiz (Written & Hands-on)	1H
8	Chapter 8. Data Visualization	4H
	Objective: Understand the importance of good data visualization in clearly	(Total)
	communicating the result of a data analysis. Learn to use Notebook based	
	tools to combine code, presentation and visualizations. Gain insight to current	
	popular data visualization tools.	
	Unit 1. Open Source Visualization Tools	2H
	Data Visualization Basics	(Exercise
	Introduction to Apache Hue and Jupyter	1H)
	Exercise – Simple BI using Hue	
	Unit 2. Commercial Visualization Tool	1H
	Introduction to Power BI	(Exercise
	Exercise – Power BI	0.5H)
	Quiz (Written & Hands-on)	1H
9	Chapter 9. Security and Access Control	3H
	Objective: Understand the basics of security including the concepts of	(Total)
	authentication, authorization, and encryption. Learn to use Kerberos to control	
	authentication and Apache Ranger to control access to objects. Understand	
	how to use Apache Atlas with Ranger to create tags, associate objects with tags	
	and control low-level access with them.	
	Unit 1. Secure Access to Cluster Services	1H
	Kerberize a Hadoop Custer	
	Unit 2. Secure Access to Cluster Data	1H
	ACL with Apache Ranger and Atlas	
	Quiz (Written & Hands-on)	1H