DATA 1010 In-class exercises Samuel S. Watson 03 October 2018

#### Problem 1

A problem on a test requires students to match molecule diagrams to their appropriate labels. Suppose there are three labels and three diagrams and that a student guesses a matching uniformly at random. Let *X* denote the number of diagrams the student correctly labels.

- (a) What is the probability mass function of the conditional distribution of *X* given the event  $X \ge 1$ ?
- (b) What is the probability mass function of the conditional distribution of *X* given the event that the student knows the first matching and has to guess at the other two?

### Solution

- (a) We set the 1/3 unit of mass at 0 to 0, since we know that none of the outcomes which X maps to that value occur, and we gross up the remaining masses by a factor of  $\frac{1}{2/3} = \frac{3}{2}$ . So we get a mass of  $\frac{3}{4}$  at 1 and a mass of  $\frac{1}{4}$  at 3.
  - Note that we could have applied the conditioning on the sample space side (zeroing out the probability masses of the two  $\omega$ 's that map to 0 under X). The distribution of X under this measure is the same distribution we got by applying the conditioning procedure directly to the distribution of X.
- (b) If one of the answers is known, then there are two equally likely ways to fill out the remaining two: correctly and incorrectly. Therefore, we get a probability mass of  $\frac{1}{2}$  at 1 and a probability mass of  $\frac{1}{2}$  at 3.
  - In probability space terms (assuming that the correct order is ABC), in (a) we are conditioning on the event {ACB, CBA, BAC}. Meanwhile, in (b) we are conditioning on the event {ABC, ACB}.

## Problem 2

Consider the following experiment: we roll a die, and if it shows 2 or less we select Urn A, and otherwise we select Urn B. Next, we draw a ball uniformly at random from the selected urn. Urn A contains one red and one blue ball, while urn B contains 3 blue balls and one red ball.

Find a probability space  $\Omega$  which models this experiment, find a pair of events E and F such that  $\mathbb{P}(E \mid F) = \frac{3}{4}$ .

## Solution

The four possible outcomes of this experiment are (A, blue), (A, red), (B, blue), and (B, red). So we let our probability space  $\Omega$  consist of those four outcomes.

The probability of the outcome (A, blue) is equal to the probability that Urn A is selected times the conditional probability of selecting a blue ball given that Urn A was selected. We interpret the information that Urn A contains an equal number of blue and red balls as a statement that this conditional probability should be  $\frac{1}{2}$ . Therefore, we assign the probability  $\frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6}$  to the event (A, blue).

Likewise, the probabilities we assign to the three other outcomes are  $\frac{1}{6}$ ,  $\frac{1}{2}$ , and  $\frac{1}{6}$ , respectively.



With probabilities thus assigned to the outcomes in  $\Omega$ , we should have  $\mathbb{P}(E \mid F) = \frac{3}{4}$  where E is the event that we

select a blue ball and *F* is the event that Urn B was selected. Let us check that this is indeed the case:

$$\frac{\mathbb{P}(E \cap F)}{\mathbb{P}(F)} = \frac{\frac{1}{2}}{\frac{2}{3}} = \frac{3}{4}.$$

We have arrived at an important insight: a probability space may alternatively by specified via a tree diagram showing conditional probabilities, or by the probability space  $\Omega$  consisting of the endpoints of the tree diagram. We can translate back and forth between these two representations by multiplying along branches to get from the tree's conditional probabilities to  $\Omega$ 's outcome probabilities or by calculating conditional probabilities to go from  $\Omega$  to the tree diagram.

#### Solution

We have already calculated the probability mass function, so we can calculate the expected value directly from that.

$$0 \cdot \frac{1}{16} + 1 \cdot \frac{2}{16} + 2 \cdot \frac{3}{16} + 3 \cdot \frac{4}{16} + 4 \cdot \frac{3}{16} + 5 \cdot \frac{2}{16} + 6 \cdot \frac{1}{16} = 3.$$

## Problem 3

Find the maximum possible value of  $\frac{|Ax|}{|x|}$  where  $x \in \mathbb{R}^3$  and

$$A = \left[ \begin{array}{ccc} 4 & 11 & 14 \\ 8 & 7 & -2 \end{array} \right].$$

## Solution

We find the norm of the leading left singular vector, which is  $6\sqrt{10} \approx 18.97$ .

#### Problem 4

Express the largest representable **Float64** in base-10 scientific notation, accurate to 3 decimal places. Express the smallest positive representable Float64 in base-10 scientific notation, accurate to 3 decimal places.

# Solution

The largest representable [Float64] is

```
2.0^{1023} + (2.0^{1023} - 2.0^{971})
```

which is  $1.798 \times 10^{308}$ , to four significant figures.

The least representable **Float64** is  $0.5^{1074}$ , which is  $4.941 \times 10^{-324}$  to four significant figures.

Note that we cannot find the first value by calculating  $2.0^{1074} - 2.0^{971}$ , because the first value overflows (that is, it becomes Inf). Similarly, we can't calculate the smallest float using  $1/2.0^{1074}$ , since the denominator evaluates to Inf).

### Problem 5

Suppose that A is a matrix with the property that each column has norm 3 and every pair of distinct columns has angle 60 degrees between them. Find A'A.

# Solution

The entries of A'A are the pairwise dot products of the columns of A. Therefore, every diagonal entry of A'A is equal to 9 if every column of A has norm 3.

Furthermore, if **a** and **b** have angle 60 degrees between them, then

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos 60^{\circ}$$

which is equal to 9/2 if **a** and **b** both have norm 3.

Therefore, A'A has 9's along the diagonal and 9/2's everywhere else.

## Problem 6

Find 
$$\lim_{n\to\infty}\begin{bmatrix} 81 & 80 & -440 \\ -20 & -19 & 110 \\ 11 & 11 & -\frac{119}{2} \end{bmatrix}^n$$
, given the diagonalization

$$\begin{bmatrix} 81 & 80 & -440 \\ -20 & -19 & 110 \\ 11 & 11 & -\frac{119}{2} \end{bmatrix} = \begin{bmatrix} -15 & -16 & 80 \\ 4 & 5 & -20 \\ -2 & -2 & 11 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} -15 & -16 & 80 \\ 4 & 5 & -20 \\ -2 & -2 & 11 \end{bmatrix},$$

## Solution

If  $A = V\Lambda V^{-1}$ , then  $A^n = V\Lambda^n V^{-1}$ . Taking  $n \to \infty$ , we get that

$$\Lambda^n \to \left[ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

Therefore,

$$A^{n} \rightarrow \left[ \begin{array}{cccc} -15 & -16 & 80 \\ 4 & 5 & -20 \\ -2 & -2 & 11 \end{array} \right] \left[ \begin{array}{cccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right] \left[ \begin{array}{cccc} -15 & -16 & 80 \\ 4 & 5 & -20 \\ -2 & -2 & 11 \end{array} \right] = \left[ \begin{array}{cccc} 161 & 160 & -880 \\ -40 & -39 & 220 \\ 22 & 22 & -120 \end{array} \right].$$