Operadores de Proyección

- 1. [Has13] Muestre que si \hat{P} es un operador de proyección, entonces:
 - a) $1 \hat{P}$ es un operador de proyección.
 - b) $\hat{U}^{\dagger}\hat{P}\hat{U}$ es un operador de proyección para cualquier operador unitario \hat{U} .
- 2. [Has13] Considere el espacio vectorial \mathbb{C}^4 con base estándar $\mathcal{B} = \{e_i\}_{i=1,\dots,4}$. Para el vector

$$|a\rangle \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\1\\-1\\0 \end{pmatrix}$$

- a) (a) Encuentre la matriz $[\hat{P}_a]_{\mathcal{B}}$.
- b) (b) Verifique directamente que la matriz $1 [\hat{P}_a]_{\mathcal{B}}$ también es un "operador" de proyección.
- 3. [Sak94] Considere el espacio de kets de una partícula de espín- $\frac{1}{2}$, \mathbb{C}^2 , con base $\mathcal{B} = \{|\uparrow\rangle, |\downarrow\rangle\}$. Utilice la ortonormalidad de $|\uparrow\rangle$ y $|\downarrow\rangle$ para probar que:

$$[\hat{S}_i, \hat{S}_j] = i\epsilon_{ijk}\hat{S}_k$$
 y $\{\hat{S}_i, \hat{S}_j\} = \frac{1}{2}\delta_{ij}$,

donde

$$\hat{S}_x \equiv \frac{1}{2} (|\uparrow\rangle\langle\downarrow| + |\downarrow\rangle\langle\uparrow|), \quad \hat{S}_y \equiv \frac{-i}{2} (|\uparrow\rangle\langle\downarrow| - |\downarrow\rangle\langle\uparrow|),$$

У

$$\hat{S}_z \equiv \frac{1}{2} (|\uparrow\rangle\langle\uparrow| - |\downarrow\rangle\langle\downarrow|).$$

4. [Sak94] El operador Hamiltoniano para un sistema de dos estados está dado por

$$\hat{H} = E(|1\rangle\langle 1| - |2\rangle\langle 2| + |1\rangle\langle 2| + |2\rangle\langle 1|),$$

donde E es una constante con dimensiones de energía. Encuentre:

- a) (a) los autovalores de energía.
- b) (b) los autoestados de energía correspondientes (como combinaciones lineales de $|1\rangle$ y $|2\rangle$).
- 5. [?] Sea $\mathcal{B}=\{|H\rangle,|V\rangle\}$ una base ortonormal de un espacio de Hilbert 2-dimensional. Defina los operadores:

$$\hat{P}_H \equiv |H\rangle\langle H|$$
 y $\hat{P}_V \equiv |V\rangle\langle V|$.

a) (a) Encuentre las representaciones matriciales de los operadores \hat{P}_H y \hat{P}_V : $[\hat{P}_H]_{\mathcal{B}'}$ y $[\hat{P}_V]_{\mathcal{B}'}$, donde $\mathcal{B}' = \{|\psi\rangle, |\phi\rangle\}$ es una base ortonormal con

$$|\psi\rangle \equiv \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle) \quad \text{y} \quad |\phi\rangle \equiv \frac{1}{\sqrt{2}}(|H\rangle - |V\rangle).$$

- b) (b) Utilice el resultado anterior y diga si los operadores \hat{P}_H y \hat{P}_V son ortogonales o no.
- c) (c) Verifique si se cumple o no la relación de completitud: $\hat{P}_H + \hat{P}_V = \hat{I}$.

6. [?] Considere un espacio de Hilbert 2-dimensional con base ortonormal $\mathcal{B}' = \{|e_1\rangle, |e_2\rangle\}$, donde

$$|e_1\rangle \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad |e_2\rangle \equiv \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

- a) (a) Encontrar las matrices que representan a los operadores de proyección asociados a cada uno de los vectores de la base \mathcal{B}' : $[\hat{P}_i]_{\mathcal{B}}$, donde \mathcal{B} es la base estándar.
- b) (b) Verifique las relaciones de completitud y de ortogonalidad de los operadores \hat{P}_i .

Tensores Simétricos y Antisimétricos

- 1. [MTT+73] Sea $A_{\mu\nu}$ un tensor antisimétrico y $S^{\mu\nu}$ un tensor simétrico. Muestre que:
 - a) $A_{\mu\nu}S^{\mu\nu} = -A_{\nu\mu}S^{\nu\mu} = -A_{\mu\nu}S^{\nu\mu} = 0.$
 - b) $A_{\mu\nu} = \frac{1}{2}(V_{\mu\nu} V_{\nu\mu})A_{\mu\nu}$ y $V^{\mu\nu}S_{\mu\nu} = \frac{1}{2}(V^{\mu\nu} + V^{\nu\mu})S_{\mu\nu}$, donde $V^{\mu\nu}$ es un tensor arbitrario.
- 2. [MTT+73] Sea $V_{\mu\nu}$ un tensor arbitrario. Muestre que:

$$V_{\mu\nu} = V_{(\mu\nu)} + V_{[\mu\nu]},$$

donde

$$V_{(\mu\nu)} \equiv \frac{1}{2}(V_{\mu\nu} + V_{\nu\mu}) \quad \rightarrow \quad \text{simetrización de } V_{\mu\nu}$$

у

$$V_{[\mu\nu]} \equiv \frac{1}{2}(V_{\mu\nu} - V_{\nu\mu}) \rightarrow \text{antisimetrización de } V_{\mu\nu}.$$

- 3. [MTT+73] Sea $V_{\alpha\beta}$ un tensor arbitrario. Defina, análogamente, $V_{(\alpha\beta)}$ y $V_{[\alpha\beta]}$.
- 4. $[\mathrm{MTT}{+}73]$ Muestre que el tensor de campo electromagnético satisface:
 - a) (a) $F_{(\mu\nu)} = 0$.
 - b) (b) $F^{\mu\nu} = F_{[\mu\nu]}$.
- 5. [MTT+73] Muestre que las ecuaciones de Maxwell homogéneas se pueden escribir como $F_{[\alpha,\beta]}=0$, donde $V_{\mu}\equiv\partial_{\mu}V$.
- 6. [Arf12] El dual de un tensor B de tipo (0;2) se define como el tensor *B de tipo (2;0)

2

$$*B^{\mu\nu} \equiv \frac{1}{2!} \epsilon^{\mu\nu\lambda\rho} B_{\lambda\rho}.$$

Muestre que *B transforma como:

- a) (a) un tensor bajo rotación.
- b) (b) un pseudotensor bajo inversión espacial.

Grupos Discretos

- 1. [Tun85] El grupo D_3 es el grupo de las transformaciones que dejan *invariante* al triángulo equilátero con el origen en el centro tal como se indica en la figura.
 - a) (a) Describa cada uno de los elementos del grupo D_3 . ¿Cuál es el orden del grupo?
 - b) (b) Encuentre la tabla de multiplicación del grupo D_3 .
 - c) (c) Encuentre la representación matricial de los elementos del grupo D_3 en la base estándar de \mathbb{R}^2 .

Figura 1: Triángulo equilátero con el origen en el centro

Respuesta:

$$D(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad D(g_1) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \quad D(g_2) = \begin{pmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix},$$

$$D(g_3) = \begin{pmatrix} -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \quad D(g_4) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad D(g_5) = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}.$$

- 2. [Tun85] El grupo D_4 es el grupo de las transformaciones que dejan *invariante* al cuadrado con el origen en el centro tal como se indica en la figura.
 - a) (a) Describa cada uno de los elementos del grupo D_4 . ¿Cuál es el orden del grupo?
 - b) (b) Encuentre la tabla de multiplicación del grupo D_4 .
 - c) (c) Encuentre la representación matricial de los elementos del grupo D_4 en la base estándar de \mathbb{R}^2 .

Figura 2: Cuadrado con el origen en el centro

Respuesta:

$$D(e) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad D(g_1) = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad D(g_2) = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \quad D(g_3) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$D(g_4) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad D(g_5) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad D(g_6) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad D(g_7) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$$

3. [Arf12] En general, las representaciones matriciales de los elementos del grupo D_n (n = 2, 3, ...) se pueden escribir de la forma

$$S^a \times R^b \left(\frac{2\pi}{n}\right),$$

donde las potencias a y b toman los valores $a=0,1; b=0,1,\ldots,n-1,$ $R\left(\frac{2\pi}{n}\right)$ representa una rotación de $\frac{2\pi}{n}$ en el plano (alrededor del origen) y S está definida como $S\equiv\begin{pmatrix}-1&0\\0&1\end{pmatrix}$. Encuentre las representaciones matriciales de los elementos de los grupos:

- a) (a) D_2 .
- b) (b) D_3 .
- c) (c) D_4 .
- d) (d) D_5 .
- 4. [Tun85] El grupo D_3 también se puede ver como el grupo de permutaciones (S_3) de tres objetos (1, 2, 3). Por ejemplo, uno de los elementos de D_3 mueve el vértice 1 al vértice 3, mientras que el vértice 2 se mueve al vértice 1 (ver Fig. 1). En términos de permutaciones esto corresponde a la permutación $(123) \rightarrow (231)$. En la base estándar de \mathbb{R}^3 :

$$\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$$

Encuentre las representaciones matriciales (3 x 3) para los demás elementos del grupo $D_3(\simeq S_3)$.

Respuesta:

$$D(e) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D(g_1) = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, \quad D(g_2) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix},$$

$$D(g_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad D(g_4) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D(g_5) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

5. [Geo99] Encuentre la representación suma directa de los elementos del grupo S_3 .

Respuesta:

$$D(e) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad D(g_1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix}, \quad D(g_2) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & -\frac{1}{2} \end{pmatrix},$$

$$D(g_3) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}, \quad D(g_4) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad D(g_5) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}.$$

6. [Tun85] Enumere y describa cada uno de los elementos del grupo de transformaciones que dejan *invariante* al tetraedro regular.

Sugerencia: Tome como referencia a los grupos S_3 y S_4 .

Grupos Continuos

7. [Tun85] Muestre que la representación 2 dimensional de las rotaciones en el plano dada por $D(\phi) = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix}$ se puede descomponer en dos representaciones (complejas) 1 dimensionales. Sugerencia: Diagonalizar $D(\phi)$.

Respuesta:

$$D'(\phi) = \begin{pmatrix} e^{i\phi} & 0\\ 0 & e^{-i\phi} \end{pmatrix}.$$

8. [Geo99] Muestre que:

$$e^{i\vec{r}\cdot\vec{\sigma}} = \cos(r) \mathbb{1} + i\sin(r)(\hat{r}\cdot\vec{\sigma}),$$

donde \vec{r} es el vector posición en coordenadas esféricas y $\vec{\sigma} \equiv (\sigma_1, \sigma_2, \sigma_3)$ son las matrices de Pauli.

Sugerencia: En coordenadas esféricas $\vec{r} = r\hat{r}$.

9. [Gri08] Muestre que:

$$e^{-i(\vec{\theta}\cdot\vec{\sigma})/2} = \cos\left(\frac{\theta}{2}\right) \mathbb{1} - i\sin\left(\frac{\theta}{2}\right)(\hat{\theta}\cdot\vec{\sigma}),$$

donde $\hat{\theta} = \frac{\vec{\theta}}{\theta}$.

Sugerencia: $(\vec{\sigma} \cdot \vec{a})(\vec{\sigma} \cdot \vec{b}) = \vec{a} \cdot \vec{b} + i \vec{\sigma} \cdot (\vec{a} \times \vec{b})$.

- 10. [CL84] Sean \hat{J}_1, \hat{J}_2 y \hat{J}_3 los generadores del grupo SU(2).
 - a) (a) Encuentre la representación j=1 de los generadores del grupo.
 - b) (b) Utilice el resultado anterior y calcule los conmutadores: $[\hat{J}_1, \hat{J}_2]$, $[\hat{J}_2, \hat{J}_3]$ y $[\hat{J}_3, \hat{J}_1]$.
- 11. [Geo99] La representación adjunta de los generadores del grupo SU(2) se define como:

$$[\hat{T}_a]_{bc} \equiv -i\epsilon_{abc}; \quad a, b, c = 1, 2, 3.$$

Muestre que la representación j=1 y la representación adjunta son equivalentes, es decir existe A (no singular) tal que:

$$[J] = A[\hat{T}]A^{-1}.$$

12. [Jee
11] El operador de momentum angular total de espín \vec{S} de un sistema de dos partículas está dado por:

$$\vec{S} \equiv \vec{S}^{(1)} \otimes \hat{\mathbb{I}} + \hat{\mathbb{I}} \otimes \vec{S}^{(2)}.$$

Muestre que

a) (a)
$$\left[\hat{S}_i^{(1)} \otimes \hat{\mathbb{I}} + \hat{\mathbb{I}} \otimes \hat{S}_i^{(2)}, \hat{S}_j^{(1)} \otimes \hat{\mathbb{I}} + \hat{\mathbb{I}} \otimes \hat{S}_j^{(2)}\right] = i\epsilon_{ijk}(\hat{S}_k^{(1)} \otimes \hat{\mathbb{I}} + \hat{\mathbb{I}} \otimes \hat{S}_k^{(2)}).$$

b) (b)
$$\vec{S}^2 = \vec{S}^{(1)2} \otimes \hat{\mathbb{I}} + \hat{\mathbb{I}} \otimes \vec{S}^{(2)2} + 2\vec{S}^{(1)} \otimes \vec{S}^{(2)}$$
.

13. [CL84] Utilice la tabla de coeficientes de Clebsch-Gordan y calcule la representación producto $|j_1, m_1\rangle \otimes |j_2, m_2\rangle$, con $j_1 = 1$ y $j_2 = \frac{1}{2}$.

5

Tensores en Relatividad General

- 1. Calcular las derivadas covariantes: $g_{\mu\nu;\lambda}, g^{\mu\nu}_{;\lambda}$ y $\delta^{\mu}_{\nu;\lambda}$.
- 2. Muestre que: $(g^{\mu\nu}V_{\nu})_{;\lambda} = g^{\mu\nu}V_{\nu;\lambda}$.
- 3. Derivar las siguientes relaciones:
 - a) (a) $\Gamma^{\mu}_{\mu\lambda} = \partial_{\lambda} \ln(\sqrt{g})$.
 - b) (b) $V^{\mu}_{;\mu} = \frac{1}{\sqrt{g}} \partial_{\mu} (\sqrt{g} V^{\mu}).$
 - c) (c) $T^{\mu\nu}_{;\mu} = \frac{1}{\sqrt{g}} \partial_{\mu} (\sqrt{g} T^{\mu\nu}) + \Gamma^{\nu}_{\mu\lambda} T^{\mu\lambda}$.
 - d) (d) $A^{\mu\nu}_{;\mu} = \frac{1}{\sqrt{g}} \partial_{\mu} (\sqrt{g} A^{\mu\nu})$, donde A es antisimétrico.
 - e) (e) $A_{\mu\nu;\lambda} + A_{\lambda\mu;\nu} + A_{\nu\lambda;\mu} = \partial_{\lambda}A_{\mu\nu} + \partial_{\nu}A_{\lambda\mu} + \partial_{\mu}A_{\nu\lambda}$, donde A es antisimétrico.
- 4. Muestre que: $R_{\alpha\beta} \equiv R^{\lambda}{}_{\alpha\lambda\beta} = \frac{1}{\sqrt{g}} \partial_{\mu} (\sqrt{g} \Gamma^{\mu}{}_{\alpha\beta}) \partial_{\beta} \partial_{\alpha} \ln(\sqrt{g}) \Gamma^{\mu}{}_{\alpha\lambda} \Gamma^{\lambda}{}_{\beta\mu}$.
- 5. Considere la métrica 2-dimensional: $dl^2=a^2[d\chi^2+\sinh^2\chi d\xi^2]$, donde a es constante. Calcular:
 - a) (a) los coeficientes de conexión: Γ_{jk}^i .
 - b) (b) las componentes del tensor de Riemann: R^{i}_{jkl} .
 - c) (c) las componentes del tensor de Ricci: R_{ij} .
 - d) (d) el escalar de curvatura: $R \equiv R^{i}_{i}$.
- 6. Muestre que:
 - a) (a) $R_{\lambda\mu\nu\rho} = R_{\nu\rho\lambda\mu}$.
 - b) (b) $R_{\lambda\mu\nu\rho} = -R_{\mu\lambda\nu\rho} = -R_{\lambda\mu\rho\nu} = R_{\nu\rho\lambda\mu}$.
 - c) (c) $R_{\lambda\mu\nu\rho} + R_{\lambda\nu\rho\mu} + R_{\lambda\rho\mu\nu} = 0$.