Задача	1	2	3	4	5	6	Овщо
получени точки							
от максимално	20	20	30	20	20	20	100

Всички отговори трябва да бъдат обосновани подробно. За отлична оценка са достатъчни 100 точки. Ако получите повече от 100 точки, това е бонус, който не се губи.

 $3 {
m ag.} \, 1$ Нека р, q и r са съждения. Докажете с еквивалентни преобразувания, че

$$(p \land q \rightarrow r) \land (p \rightarrow r) \land (q \rightarrow r) \equiv p \lor q \rightarrow r$$

- **Зад. 2** Нека са дадени п прави в равнината, които са две по две различни и нито две от които не са успоредни. Професор Дълбоков твърди, че, както и да са разположени тези прави в равнината, съществува единствена точка, която е обща за всички тях. Професорът предлага следното доказателство по индукция по n на това твърдение.
 - Базата е n = 2. Наистина, ако две прави са различни и не са успоредни, те имат обща точка и тя е само една. Базата е истина.
 - Индуктивното предположение е, че за n = k твърдението е истина. С други думи, за всеки k прави, които са две по две различни и всеки две от които не са успоредни, е вярно, че съществува единствена точка, която е обща за всички.
 - В индуктивната стъпка разглеждаме k+1 прави $\ell_1,\,\ell_2,\,\ldots,\,\ell_k,\,\ell_{k+1},$ които са две по две различни и всеки две от които не са успоредни.

Да разгледаме само правите $\ell_1, \ell_2, \ldots, \ell_k$. Те са k на брой, две по две различни и всеки две от тях не са успоредни. Съгласно индуктивното предположение, съществува единствена точка X, която е обща за тях.

Да разгледаме само правите $\ell_2, \ldots, \ell_k, \ell_{k+1}$. Те са k на брой, две по две различни и всеки две от тях не са успоредни. Съгласно индуктивното предположение, съществува единствена точка Y, която е обща за тях.

Забелязваме, че X е обща точка за ℓ_2 и ℓ_k , но също така и Y е обща точка за ℓ_2 и ℓ_k . Но тогава X = Y, понеже ℓ_2 и ℓ_k не могат да имат повече от една обща точка, тъй като са различни прави.

Щом X = Y, заключаваме, че правите $\ell_1, \ell_2, \ldots, \ell_k, \ell_{k+1}$, имат обща точка, която е единствена. С което доказателството приключва.

Какво бихте казали за това доказателство?

- **Зад. 3** В тази задача се иска да докажете две тъждества, съдържащи биномни коефициенти. Използвайте какъвто метод за доказателство Ви е най-удобен.
- 1 т. Нека $r \in \mathbb{N}$ и $\ell \in \mathbb{N}^+$. Докажете, че

$$\begin{pmatrix} \mathbf{r} \\ \ell \end{pmatrix} = \frac{\mathbf{r}}{\ell} \begin{pmatrix} \mathbf{r} - 1 \\ \ell - 1 \end{pmatrix}$$

29 т. Нека $n \in \mathbb{N}^+$. Докажете, че

$$\sum_{k=0}^{n} k \binom{n+1}{k+1} \left(\frac{1}{n}\right)^{k+1} = 1$$

Упътване: представете множителя k като k+q-q и оттам представете цялата сума като разлика на две суми. Каква стойност на q е удачна, за да се получи максимално опростяване?