Number Theory Definitions

Based on lectures by Professor Henri Johnston Notes taken by James Arthur

These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures. They are nowhere near accurate representations of what was actually lectured, and in particular, all errors are almost surely mine (especially the typos!).

Contents

Definition (Well Ordering Principle). Every non-empty subset of \mathbb{N}_0 contains a least element

Definition (Divisible). We say that some $a \in \mathbb{Z}$ is divisible by some $b \in \mathbb{Z}$ if and only is,

$$\exists n \in \mathbb{Z}$$
, such that $b = na$

and denote it, $a \mid b$

Definition (Greatest Common Divisor). Let $a, b \in \mathbb{Z}$. Them d of the previous corollary is just the greatest common divisor of a and b, written gcd(a, b). Also sometimes seen as hcf(a, b).

Definition (Prime). A number $p \in \mathbb{N}_1$ with p > 1 is prime if and only if it's only divisors are 1 and p, i.e.

$$n \mid p \implies n = 1 \text{ or } n = p$$

Definition (Composite Numbers). A number $n \in \mathbb{N}_1$ with n > 1 is composite if and only if it is not prime, i.e.

$$n = ab$$
 $1 < a, b \in \mathbb{N}$

Definition. Let $n \in \mathbb{N}_1$ and p be a prime. Then,

$$v_p(n) := \max\{k \in \mathbb{N} \cup \{0\} : p^k \mid n\}$$

In other words, k is the unique non-negative integer such that $p^k \mid n$ but $p^{k+1} \mid n$. Equivalently, $v_p(n) = k$ if and only if $n = p^k n'$ where $n' \in \mathbb{N}$ and $p \nmid n'$.

Definition. Suppose $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}_1$. We write $a \equiv b \mod n$, and say 'a is congruent to b mod n', if and only if $n \mid (a - b)$. If $n \nmid (a - b)$ we say that a and b are incongruent mod n.

Definition (Residue Class). Consider $n \in \mathbb{N}$, then $a \in \mathbb{Z}$ we write $[a]_n$ for an equivalence class $a \mod n$. Thus,

$$[a]_n = \{x \in \mathbb{Z} : x \equiv a \mod n\} = \{a + qn : q \in \mathbb{Z}\}\$$

This is called the residue class of a modulo n

Definition (Complete Residue System). Let $n \in \mathbb{N}_1$. If S is a subset of \mathbb{Z} containing exctly one element of each residue class modulo n we say that S is a complete residue system modulo n.

Definition. Let $n \in \mathbb{N}$. We write $\mathbb{Z}/n\mathbb{Z} = \{[a]_n : 0 \le a \le n-1\}$ (such that $|\mathbb{Z}/n\mathbb{Z}| = n$). We set $[a]_n + [b]_n := [a+b]_n$ and $[a]_n[b]_n := [ab]_n$. (We have showed that both of these are well defined).

Definition. Let $n \in \mathbb{N}$. Let $(\mathbb{Z}/n\mathbb{Z})^{\times}$ denote the group of units of the ring $\mathbb{Z}/n\mathbb{Z}$. Explicitly, we have

$$(\mathbb{Z}/n\mathbb{Z})^{\times} = \{[a]_n \in \mathbb{Z}/n\mathbb{Z} : \exists [b]_n \in \mathbb{Z}/n\mathbb{Z} \text{ such that } [a]_n[b]_n = 1\}$$

Definition (Multiplicative inverse). Let $n \in \mathbb{N}$ and let $a \in \mathbb{Z}$ such that gcd(a, n) = 1. Then the unique solution to $ax \equiv 1 \mod n$ is called the multiplicative inverse of $a \mod n$ and is denoted $[a]_n^{-1}$ or $a^{-1} \mod n$

Definition (Euler Phi Function). For $n \in \mathbb{N}$ we define the φ function as,

$$\varphi(n) = \#\{a \in \mathbb{N} : 1 \le a \le n, \gcd(a, n) = 1\}$$

Definition (Order). Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ and suppose gcd(a, n) = 1. Then the least $d \in \mathbb{N}$ such that $a^d \equiv 1 \mod n$ is called the order of $a \mod n$ and is written $ord_n(a)$

Definition (Reduced Residue System). Let $n \in \mathbb{N}$. A subset $R \subseteq \mathbb{Z}$ is said to be a reduced residue system mod n if

- R contains $\varphi(n)$ elements
- no two elements of R are congruent $\mod n$ and,
- $\forall r \in R, \gcd(r, n) = 1$

Definition (Primitive Root). Let $n \in \mathbb{N}$, we say $a \in \mathbb{Z}$ is a primitive root $\mod n$ if and only if $\gcd(a, n) = 1$ and $\operatorname{ord}_n(a) = \phi(n)$.

Definition (Quadratic Residue). Let p be an odd prime and $a \in \mathbb{Z}$ such that $p \nmid a$. Then a is a Quadratic Residue mod p if $\exists x \in \mathbb{Z}$ such that $x^2 \equiv a \mod p$ and a is a Quadratic Non-Residue if not.

Definition (Legendre Symbol). Let p be an odd prime. For any $a \in \mathbb{Z}$, we define the Legendre Symbol to be,

$$\left(\frac{a}{p}\right) = \begin{cases} +1 & p \nmid a \text{ and } a \text{ is a quadratic residue mod } p \\ -1 & p \nmid a \text{ and } a \text{ is not a quadratic residue mod } p \\ 0 & p \mid a \end{cases}$$

Definition. Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$. We write $\lambda(a, n)$ for the unique integer such that $a \equiv \lambda(a, n) \mod n$ and $0 \le \lambda(a, n) < n$, ie. $\lambda(a, n)$ is the remainder of the division algorithm applied to a and n.

Definition (Floor Function). For any $x \in \mathbb{R}$ we set $|x| := \max\{n \in \mathbb{Z}\}\$

Definition (Jacobi Symbol). Let n be an odd positive integer with prime factorisation $n = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$. Then for any $a \in \mathbb{Z}$ we define the Jacobi symbol $\left(\frac{a}{n}\right)$ by,

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{r} \left(\frac{a}{p_i}\right)^{e_i}$$

where the symbols on the right are Legendre symbols. We als define $\left(\frac{a}{1}\right) = 1$.

Definition (Pythagorean Triple). A pythagorean triple (x, y, z) is a triple of positive integers satisfying

$$x^2 + y^2 = z^2$$

If gcd(x, y, z) = 1 then (x, y, z) is called a primitive Pythagorean triple.

Definition (S_k) . For $k \in \mathbb{N}$ we let,

$$S_k = \{a_1^2 + a_2^2 + \dots + a_k^2 : a_1, \dots, a_k \in \mathbb{Z}\}$$

be the set of k squares. Note we allow zero.

2 James Arthur