Álgebra Linear e Geometria Analítica

Agrupamento IV (ECT, EET, EI)

Capítulo 4

Espaços Vetoriais Reais

O conjunto \mathcal{V} , munido das operações \oplus (adição) e \odot (multiplicação por escalar real), é um espaço vetorial (e.v.) real se, $\forall X, Y, Z \in \mathcal{V}$ e $\forall \alpha, \beta \in \mathbb{R}$,

1. \mathcal{V} é fechado relativamente a \oplus

$$X \oplus Y \in \mathcal{V}$$

2. ⊕ é comutativa

$$X \oplus Y = Y \oplus X$$

3. ⊕ é associativa

$$(X \oplus Y) \oplus Z = X \oplus (Y \oplus Z)$$

4. existe (único) o el. neutro $0_{\mathcal{V}} \in \mathcal{V}$ (zero de \mathcal{V}) para \oplus

$$0_{\mathcal{V}} \oplus X = X$$

- 5. existe (único) o simétrico $\ominus X \in \mathcal{V}$ de X em relação a $\oplus \ominus X \oplus X = 0_{\mathcal{V}}$
- **6.** \mathcal{V} é fechado relativamente a \odot

$$\alpha \odot X \in \mathcal{V}$$

7. \odot é distributiva em relação a \oplus

$$\alpha \odot (X \oplus Y) = \alpha \odot X \oplus \alpha \odot Y$$

8. ⊙ é "distributiva" em relação a +

$$(\alpha + \beta) \odot X = \alpha \odot X \oplus \beta \odot X$$

- 9. os produtos (o de $\mathbb R$ e \odot) são "associativos" $(\alpha\beta)\odot X=\alpha\odot(\beta\odot X)$
- 10. o escalar 1 é o "elemento neutro" para ⊙

$$1 \odot X = X$$

- 1. \mathbb{R}^n munido das operações adição e multiplicação por escalar usuais.
- 2. \mathbb{R}^+ munido das operações:

$$x\oplus y=xy$$
 e $lpha\odot x=x^lpha, orall x,y\in\mathbb{R}^+, \ orall lpha\in\mathbb{R}.$

- 3. O conjunto $\mathbb{R}^{m \times n}$ das matrizes $m \times n$ munido das operações adição de matrizes e multiplicação de uma matriz por um escalar real.
- 4. O conjunto de todas as funções reais de variável real munido da adição de funções e multiplicação de uma função por um escalar real.
- 5. Os conjuntos \mathcal{P} de todos os polinómios (de qualquer grau) e \mathcal{P}_n dos polinómios de grau menor ou igual a n com as operações usuais.

 ${\it N\~ao}$ é e.v. o conjunto dos polinómios de grau n com as operações usuais.

Proposição: Seja ${\cal V}$ um e.v. real. Então

- (a) $0 \odot X = 0_{\mathcal{V}}$, $\forall X \in \mathcal{V}$;
- (b) $\alpha \odot 0_{\mathcal{V}} = 0_{\mathcal{V}}, \, \forall \, \alpha \in \mathbb{R};$
- (c) $\alpha \odot X = 0_{\mathcal{V}} \Rightarrow \alpha = 0$ ou $X = 0_{\mathcal{V}}$;
- (d) $(-1) \odot X = \ominus X$ é o simétrico de X em relação a \oplus , $\forall X \in \mathcal{V}$.

Daqui em diante, escreve-se:

- i. X+Y em vez de $X{\oplus}Y$, para $X,Y\in\mathcal{V}$;
- ii. lpha X em vez de $lpha \odot X$, para $lpha \in \mathbb{R}$ e $X \in \mathcal{V}$;
- iii. -X em vez de $\ominus\!\! X$, para $X\in \mathcal{V}$.

O subconjunto $S \subseteq V$ é um subespaço (vetorial) do e.v. real V se, munido das mesmas operações de V, for ele próprio um e.v. real.

Teorema: $S \subseteq V$ é um subespaço (vetorial) do e.v. real V se e só se

- 1. $\mathcal{S} \neq \emptyset$;
- 2. \mathcal{S} é fechado em relação à adição de \mathcal{V} ;
- 3. \mathcal{S} é fechado em relação à multiplicação por escalar de \mathcal{V} .

Proposição: Se \mathcal{S} é um subespaço de \mathcal{V} , então $0_{\mathcal{V}} \in \mathcal{S}$.

Corolário: Se $0_{\mathcal{V}} \not\in \mathcal{S}$, então \mathcal{S} <u>não</u> é um subespaço de \mathcal{V} .

Exemplos: • \mathcal{V} e $\{0_{\mathcal{V}}\}$ são os subespaços triviais de \mathcal{V} ;

- ullet $\{(0,y,z):\,y,z\in\mathbb{R}\}$ é um subespaço de \mathbb{R}^3 ;
- $\{(1,y):y\in\mathbb{R}\}$ não é subespaço de \mathbb{R}^2 ;
- $\mathcal{N}(A)$, o espaço nulo da matriz A $m \times n$, é subespaço de \mathbb{R}^n .

Seja $K = \{X_1, \ldots, X_k\} \subset \mathcal{V}$. Chama-se espaço gerado por K ao conjunto

$$\langle K \rangle = \langle X_1, \dots, X_k \rangle = \{X = \alpha_1 X_1 + \dots + \alpha_k X_k : \alpha_1, \dots, \alpha_k \in \mathbb{R}\}$$

formado por todas as combinações lineares de X_1, \ldots, X_k . Diz-se também que K gera $\mathcal S$ ou é um conjunto gerador de $\mathcal S$.

Exercício: Confirme que S é um subespaço vetorial de V.

Exemplo: Dados os vetores não colineares $X_1, X_2 \in \mathbb{R}^3 \setminus \{(0,0,0)\}$,

- 1. $\langle X_1 \rangle$ é a recta que passa pela origem e tem vetor director X_1 ;
- 2. $\langle X_1, X_2 \rangle$ é o plano que passa pela origem e que contém X_1 e X_2 .

A matriz
$$m imes n$$
 $A = egin{bmatrix} L_1^T \ dots \ L_n^T \end{bmatrix} = egin{bmatrix} C_1 & \cdots & C_m \end{bmatrix}$ tem linhas $L_1, \ldots, L_n \in \mathbb{R}^m$

e colunas $C_1,\ldots,C_m\!\in\!\mathbb{R}^n$. Logo, o espaço das linhas e o espaço das colunas de A são os subespaços de \mathbb{R}^m e, respetivamente, \mathbb{R}^n

$$\mathcal{C}(A) = \langle C_1, \ldots, C_n
angle \subseteq \mathbb{R}^m \quad \quad \mathsf{e} \quad \quad \mathcal{L}(A) = \langle L_1, \ldots, L_m
angle \subseteq \mathbb{R}^n.$$

Lema: Dados $X_1,\ldots,X_k\in\mathcal{V}$ e $i,j\in\{1,\ldots,k\}$, com $i\neq j$,

i.
$$\langle X_1,\ldots,X_i,\ldots,X_j,\ldots,X_k\rangle=\langle X_1,\ldots,X_j,\ldots,X_i,\ldots,X_k\rangle$$
;

ii.
$$\langle X_1,\ldots,X_i,\ldots,X_k
angle=\langle X_1,\ldots,lpha X_i,\ldots,X_k
angle$$
, $lpha\in\mathbb{R}\setminus\{0\}$;

iii.
$$\langle X_1,\ldots,X_i,\ldots,X_k
angle=\langle X_1,\ldots,X_i+eta X_j,\ldots,X_k
angle$$
, $eta\in\mathbb{R}$.

Teorema: Se as matrizes A e B são equivalentes por linhas, $\mathcal{L}(A) = \mathcal{L}(B)$.

 $\mathcal{K}\!=\!\{X_1,\ldots,X_k\}\!\subseteq\!\mathcal{V}$ é linearmente independente (l.i.) no e.v. real \mathcal{V} se

$$\alpha_1 X_1 + \cdots + \alpha_k X_k = 0_{\mathcal{V}} \qquad \Rightarrow \quad \alpha_1 = \cdots = \alpha_k = 0.$$

Caso contrário, $\mathcal K$ é linearmente dependente (l.d.) em $\mathcal V$, ou seja,

existem $\alpha_1,\ldots,\alpha_k\in\mathbb{R}$ não todos nulos tais que $\alpha_1X_1+\cdots+\alpha_kX_k=0_{\mathcal{V}}$.

Nota: $0_{\mathcal{V}} \in \mathcal{K} \implies \mathcal{K}$ é linearmente dependente.

Exemplos:

- Dois vetores não nulos de \mathbb{R}^2 ou \mathbb{R}^3 são colineares se e só se são l.d.
- Três vetores não colineares de \mathbb{R}^3 definem um plano se e só se são l.d.

Sejam $\mathcal V$ um e.v. real, $\mathcal K=\{X_1,\ldots,X_k\}\subset \mathcal V$ e $\mathcal S=\langle K
angle$.

Lema: Seja $X \in \mathcal{K}$. Então, as duas afirmações são equivalentes:

- 1. X é combinação linear dos vetores de $\mathcal{K} \setminus \{X\}$;
- **2.** \mathcal{S} é gerado por $\mathcal{K} \setminus \{X\}$.

Teorema: K é um conjunto linearmente

- dependente \Leftrightarrow existe $X \in \mathcal{K}$ que satisfaz 1. ou 2. do lema anterior;
- independente \Leftrightarrow para cada $X \in \mathcal{V} \setminus \mathcal{S}$, o conjunto $\mathcal{K} \cup \{X\}$ é l.i.

Corolário:

- Se $\mathcal K$ gera $\mathcal V$ e não é l.i., o conjunto obtido retirando um oportuno elemento de $\mathcal K$ ainda é gerador de $\mathcal V$.
- Se $\mathcal K$ é l.i. e não gera $\mathcal V$, é possível acrescentar um oportuno elemento a $\mathcal K$ mantendo a independência linear.

Uma base de um e.v. $\mathcal{V} \neq \{0_{\mathcal{V}}\}$ é um conjunto (a) l.i. e (b) gerador de \mathcal{V} .

- Nota: Por convenção, o e.v. trivial $\{0_{\mathcal{V}}\}$ tem como base o conjunto vazio.
 - Um conjunto l.i. é base do espaço por ele gerado.

Exemplos:

- 1. Sejam $e_1=(1,0,\dots,0),\ e_2=(0,1,\dots,0),\dots,e_n=(0,\dots,0,1).$ Então $\mathfrak{C}_n=\{e_1,e_2,\dots,e_n\}$ é a base canónica de $\mathbb{R}^n.$
- 2. Seja E_{ij} a matriz $m \times n$ que tem a entrada (i,j) igual a 1 e todas as outras iguais a 0. Então $\mathfrak{C}_{m \times n} = \{E_{ij} : i = 1, \dots, m, j = 1, \dots, n\}$ é a base canónica de $\mathbb{R}^{m \times n}$.
- 3. A base canónica do e.v. \mathcal{P}_n dos polinómios na variável x de grau menor ou igual a n é $\mathcal{P}_n = \{1, x, \dots, x^n\}$. O e.v. \mathcal{P} de todos os polinómios não admite uma base com um número finito de elementos.

Teorema: \mathcal{V} tem uma base de n elementos e $\mathcal{K} \subset \mathcal{V}$ contém r vetores.

- i. \mathcal{K} l.i. $\Rightarrow r \leq n$ (ou seja, $r > n \Rightarrow \mathcal{K}$ linearmente dependente) Neste caso, existe uma base de \mathcal{V} que contém \mathcal{K} .
- ii. \mathcal{K} gera $\mathcal{V} \Rightarrow r \geq n$ (ou seja, $r < n \Rightarrow \mathcal{K}$ não gera \mathcal{V})

 Neste caso, existe um subconjunto de \mathcal{K} que é uma base de \mathcal{V} .

Corolário: Duas bases de ${\cal V}$ possuem o mesmo número de elementos.

A dimensão de \mathcal{V} , dim \mathcal{V} , é o número de elementos de qualquer base dele.

Exemplos: $\dim\{0_{\mathcal{V}}\}=0$, $\dim\mathbb{R}^n=n$, $\dim\mathbb{R}^{m\times n}=mn$ e $\dim\mathcal{P}_n=n+1$.

Teorema: Se $\mathcal{K}=\{X_1,\ldots,X_n\}\subset \mathcal{V}$ e $\dim \mathcal{V}=n$, então

i. \mathcal{K} l.i. \Rightarrow \mathcal{K} é base de \mathcal{V} ; ii. \mathcal{K} gera \mathcal{V} \Rightarrow \mathcal{K} é base de \mathcal{V} .

Seja
$$A = egin{bmatrix} 1 & -2 & -4 & 3 \ 2 & -4 & -7 & 5 \ 1 & -2 & -3 & 2 \end{bmatrix} \sim A_e = egin{bmatrix} 1 & -2 & -4 & 3 \ 0 & 0 & 1 & -1 \ 0 & 0 & 0 & 0 \end{bmatrix} \sim A_r = egin{bmatrix} 1 & -2 & 0 & -1 \ 0 & 0 & 1 & -1 \ 0 & 0 & 0 & 0 \end{bmatrix}$$

sendo A_e e A_r as formas escalonada e, respetivamente, reduzida de A.

Teorema: As linhas não nulas de A_e e A_r formam bases de $\mathcal{L}(A)$.

Seja
$$X=(x_1,x_2,x_3,x_4)$$
. Então, $X\in\mathcal{N}(A)\Leftrightarrow AX=0\Leftrightarrow A_rX=0\Leftrightarrow$

$$\left\{egin{array}{lll} x_1 = 2x_2 + x_4 \ x_3 = x_4 \end{array}
ight. \Leftrightarrow X = \left[egin{array}{lll} 2x_2 + x_4 \ x_2 \ x_4 \ x_4 \end{array}
ight] = x_2 \left[egin{array}{lll} 2 \ 1 \ 0 \ 0 \end{array}
ight] + x_4 \left[egin{array}{lll} 1 \ 0 \ 1 \ 1 \end{array}
ight] = x_2 N_2 + x_4 N_4, \ x_2, x_4 \in \mathbb{R}. \end{array}$$

Teorema: Os vetores na combinação linear de X (N_2 e N_4) são uma base de $\mathcal{N}(A)$. Assim, $\dim \mathcal{N}(A) = \operatorname{nul}(A) = \operatorname{n.}^{\circ}$ de inc. livres do sistema AX = 0.

 $B = (a, b, c) \in \mathcal{C}(A) \Leftrightarrow o$ sistema AX = B é possível. Logo, sendo [A|B] =

$$egin{bmatrix} 1 & -2 & -4 & 3 & a \ 2 & -4 & -7 & 5 & b \ 1 & -2 & -3 & 2 & c \end{bmatrix} \sim egin{bmatrix} 1 & -2 & -4 & 3 & a \ 0 & 0 & 1 & -1 & b-a \ 0 & 0 & 0 & a-b+c \end{bmatrix}, \ B \in \mathcal{C}(A) \Leftrightarrow a-b+c=0.$$

A equação que define $\mathcal{C}(A)$ é um sistema homogéneo e pode aplicar-se o teorema anterior: $\mathcal{C}(A) = \mathcal{N}([1 - 1 1]) = \langle (1, 1, 0), (-1, 0, 1) \rangle$. Contudo,

Teorema: $\dim \mathcal{C}(A) = \dim \mathcal{L}(A)$ e as colunas de A que correspondem às colunas dos pivots da sua forma escalonada, formam uma base de $\mathcal{C}(A)$.

Assim, as colunas 1 e 3 de A são l.i. e $\mathcal{C}(A) = \langle (1,2,1), (-4,-7,-3) \rangle$.

Corolários:

- A caraterística de uma matriz é o máximo número de linhas (colunas) I.i.
- Uma matriz é invertível se e só se o conjunto das suas linhas (colunas) é l.i.

Seja $\mathfrak{B}=(X_1,\ldots,X_n)$ uma base ordenada de um e.v. \mathcal{V} .

Teorema: Cada vetor $X \in \mathcal{V}$ escreve-se de forma única como combinação linear dos elementos de \mathcal{B} , ou seja, existem $a_1,\ldots,a_n \in \mathbb{R}$, tais que

$$X = a_1 X_1 + \cdots + a_n X_1.$$

Estes coeficientes a_1, \ldots, a_n dizem-se as coordenadas de X na base \mathfrak{B} .

O vetor das coordenadas de X na base $\mathfrak B$ é $[X]_{\mathfrak B}=\left[egin{array}{c} a_1 \\ \vdots \\ a_n \end{array}\right].$

Exemplo: Verifique que, relativamente à base $\mathfrak{B}=ig((1,1),(1,2)ig)$,

$$[(0,1)]_{\mathcal{B}}=egin{bmatrix} -1\ 1 \end{bmatrix} \qquad \mathsf{e} \qquad [(1,-1)]_{\mathcal{B}}=egin{bmatrix} 3\ -2 \end{bmatrix}.$$

Nota: Para $Y_1,\ldots,Y_r\in\mathcal{V}$, S base ordenada de \mathcal{V} e $a_1,\ldots,a_r\in\mathbb{R}$, $[a_1Y_1+\cdots+a_rY_r]_{\mathbb{S}}=a_1[Y_1]_{\mathbb{S}}+\cdots+a_r[Y_r]_{\mathbb{S}}.$

Sejam S, $\mathfrak{T}=(Y_1,\ldots,Y_n)$ duas bases ordenadas de \mathcal{V} e $X\in\mathcal{V}$. Qual a relação entre $[X]_S$ e $[X]_{\mathfrak{T}}$?

$$[X]_{\mathfrak{J}} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \quad \Rightarrow \quad X = a_1 Y_1 + \dots + a_n Y_n$$

$$\Rightarrow \quad [X]_{\mathfrak{S}} = a_1 [Y_1]_{\mathfrak{S}} + \dots + a_n [Y_n]_{\mathfrak{S}}$$

$$= \underbrace{[Y_1]_{\mathfrak{S}} \quad \dots \quad [Y_n]_{\mathfrak{S}}}_{M_{\mathfrak{S} \leftarrow \mathfrak{I}}} \underbrace{\begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}}_{[X]_{\mathfrak{T}}}$$

Teorema: Sejam S e $\mathfrak{T}=(Y_1,\ldots,Y_n)$ duas bases ordenadas de \mathcal{V} .

Para cada
$$X \in \mathcal{V}$$
,

Para cada
$$X \in \mathcal{V}$$
, $[X]_{\mathbb{S}} = M_{\mathbb{S} \leftarrow \mathfrak{T}}[X]_{\mathfrak{T}}$

onde

$$M_{\mathbb{S}\leftarrow\mathfrak{I}}=\left[\,[Y_1]_{\mathbb{S}}\,\,\cdots\,\,[Y_n]_{\mathbb{S}}\,\,
ight]$$

é a Matriz de mudança de base de T para S

cujas colunas são os vetores das

coordenadas na base S dos elementos da base $\mathfrak T$

Sejam $\mathbb{S}=ig((1,1),(1,2)ig)$ e $\mathbb{T}=ig((0,1),(1,-1)ig)$ bases ordenadas de \mathbb{R}^2 .

Dado
$$X \in \mathbb{R}^2$$
 tal que $[X]_{\mathfrak{I}} = \left[egin{array}{c} a \ b \end{array}
ight]$, tem-se que

$$X = a(0,1) + b(1,-1).$$

Logo, $[X]_{\mathbb{S}} = a[(0,1)]_{\mathbb{S}} + b[(1,-1)]_{\mathbb{S}}$. Pelo exemplo anterior,

$$[(0,1)]_{\mathbb{S}}=egin{bmatrix} -1\ 1 \end{bmatrix} \qquad \mathbf{e} \qquad [(1,-1)]_{\mathbb{S}}=egin{bmatrix} 3\ -2 \end{bmatrix}.$$

então

$$[X]_{\mathbb{S}} = a egin{bmatrix} -1 \ 1 \end{bmatrix} + b egin{bmatrix} 3 \ -2 \end{bmatrix} = egin{bmatrix} -1 & 3 \ 1 & -2 \end{bmatrix} egin{bmatrix} a \ b \end{bmatrix}.$$

Teorema: Sejam S e T duas bases de \mathcal{V} . Então $M_{\mathcal{S}\leftarrow\mathcal{T}}$ é invertível e

$$M_{\mathbb{S}\leftarrow\mathcal{I}}^{-1}=M_{\mathfrak{I}\leftarrow\mathbb{S}}.$$

Demonstração: Sejam $M=M_{\mathcal{S}\leftarrow\mathcal{I}}$, $\dim\mathcal{V}=n$ e $Y\in\mathbb{R}^n$ tal que MY = 0. Existe $X \in \mathcal{V}$ tal que $Y = [X]_{\mathcal{T}}$. Então

$$[X]_{\mathbb{S}} = M[X]_{\mathfrak{T}} = MY = 0 \quad \Rightarrow \quad X = 0_{\mathcal{V}} \quad \Rightarrow \quad Y = 0.$$

Mostrámos que o sistema homogéneo MY=0 possui apenas a solução trivial, ou seja, que M é invertível. Para cada $X \in \mathcal{V}$, tem-se

$$[X]_{\mathcal{S}} = M [X]_{\mathcal{T}} \quad \Rightarrow \quad [X]_{\mathcal{T}} = M^{-1} [X]_{\mathcal{S}},$$

pelo que $M^{-1}=M_{\mathfrak{I}\leftarrow\mathfrak{S}}$.

S, \mathfrak{I} : bases de \mathbb{R}^n

 \mathbb{C} : base canónica de \mathbb{R}^n

 $M_{{\mathfrak C}\leftarrow {\mathbb S}}:$ matriz cujas colunas são os vectores da base ${\mathbb S}$

 $M_{\mathfrak{C} \leftarrow \mathfrak{I}}$: matriz cujas colunas são os vectores da base \mathfrak{I}

$$M_{\mathbb{S}\leftarrow\mathcal{T}} = M_{\mathbb{S}\leftarrow\mathbb{C}} \ M_{\mathbb{C}\leftarrow\mathcal{T}} = M_{\mathbb{C}\leftarrow\mathbb{S}}^{-1} \ M_{\mathbb{C}\leftarrow\mathcal{T}}$$

Dadas as bases de \mathbb{R}^n $\mathbb{S}=(X_1,\ldots,X_n)$, $\mathbb{T}=(Y_1,\ldots,Y_n)$ e \mathbb{C} canónica,

$$\begin{bmatrix} M_{\mathfrak{C}\leftarrow\mathfrak{S}} & M_{\mathfrak{C}\leftarrow\mathfrak{T}} \end{bmatrix} = \begin{bmatrix} X_1 & \cdots & X_n & Y_1 & \cdots & Y_n \end{bmatrix} \sim \begin{bmatrix} I_n & M_{\mathfrak{S}\leftarrow\mathfrak{T}} \end{bmatrix}$$

método de eliminação de Gauss-Jordan

Exemplo: Para obtermos a matriz $M_{\mathbb{S}\leftarrow \mathcal{T}}$ de mudança da base

 $\mathfrak{T}=ig((0,1),(1,-1)ig)$ para a base $\mathbb{S}=ig((1,1),(1,2)ig)$, temos de calcular

$$[(0,1)]_{\mathbb{S}} = \left[egin{array}{c} lpha_1 \ lpha_2 \end{array}
ight] \qquad \Rightarrow \qquad (0,1) \, = \, lpha_1 \, (1,1) \, + \, lpha_2 \, (1,2),$$

$$[(1,-1)]_{\mathbb{S}}=\left[egin{array}{c}eta_1\eta_2\end{array}
ight] \qquad\Rightarrow \qquad (1,-1)\,=\,eta_1\,(1,1)\,+\,eta_2\,(1,2).$$

Matriz de mudança de base – Caso particular de \mathbb{R}^n (exemplo) [4-20]

Tal conduz a dois sistemas

$$\left[egin{array}{ccc} 1 & 1 \ 1 & 2 \end{array}
ight] \left[egin{array}{ccc} lpha_1 \ lpha_2 \end{array}
ight] = \left[egin{array}{cccc} 0 \ 1 \end{array}
ight] & \mathbf{e} & \left[egin{array}{cccc} 1 & 1 \ 1 & 2 \end{array}
ight] \left[eta_1 \ eta_2 \end{array}
ight] = \left[egin{array}{cccc} 1 \ -1 \end{array}
ight]$$

com a mesma matriz dos coeficientes (cujas colunas são os vectores de S).

Os sistemas anteriores podem-se resolver em simultâneo, formando a matriz ampliada:

$$M_{\mathbb{S}\leftarrow \mathfrak{T}} = \left[egin{array}{ccc} lpha_1 & eta_1 \ lpha_2 & eta_2 \end{array}
ight] = \left[egin{array}{ccc} -1 & 3 \ 1 & -2 \end{array}
ight].$$

Um conjunto $\{X_1,\ldots,X_k\}$ de vetores de \mathbb{R}^n diz-se ortogonal se

$$X_i \cdot X_j = 0, \qquad i \neq j, \qquad i, j = 1, \dots, n,$$

e diz-se ortonormado (o.n.) se é ortogonal e também se verifica

$$X_i \cdot X_i = 1, \qquad i = 1, \ldots, n.$$

Exemplo: 1.
$$\{(1,1,0),(2,-2,1)\}$$
 é ortogonal;
2. $\{\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2},0\right),\left(\frac{2}{3},-\frac{2}{3},\frac{1}{3}\right)\}$ é o.n.

Teorema: Todo o conjunto ortogonal de vetores não nulos é l.i.

Corolário: Todo o conjunto o.n. é l.i.

Uma base ortogonal/o.n. é uma base que é um conjunto ortogonal/o.n.

Nota: Todo o conjunto o.n. de n vetores de \mathbb{R}^n é uma base de \mathbb{R}^n .

Teorema: Seja $X \in \mathbb{R}^n$ e $\mathfrak{B} = (X_1, \ldots, X_n)$ uma base o.n. de \mathbb{R}^n . Então

$$[X]_{\mathcal{B}} = egin{bmatrix} X \cdot X_1 \ dots \ X \cdot X_n \end{bmatrix},$$

isto é, $X = a_1 X_1 + \cdots + a_n X_n$, sendo $a_i = X \cdot X_i$, $i = 1, \ldots, n$.

Exemplo: Determinar as coordenadas do vetor (1,5) na base o.n. de \mathbb{R}^2

$$\left(\left(\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right),\left(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}\right)\right)$$
.

 $Y \in \mathbb{R}^n$ é ortogonal ao subespaço \mathcal{W} de \mathbb{R}^n se $Y \cdot Z = 0$ para cada $Z \in \mathcal{W}$.

Teorema: Seja $Y \in \mathbb{R}^n$ e \mathcal{B} uma base de um subespaço \mathcal{W} de \mathbb{R}^n . Então, Y é ortogonal a \mathcal{W} se e só se Y é ortogonal a cada vetor de \mathcal{B} .

A projeção ortogonal de $X\in\mathbb{R}^n$ sobre o subespaço \mathcal{W} de \mathbb{R}^n é o vetor $Z=\mathrm{proj}_{\mathcal{W}}X\in\mathcal{W}$ tal que X=Y+Z, sendo Y ortogonal a \mathcal{W} .

Exemplo: Sejam $\mathcal{W} = \langle X_1 \rangle$ uma reta, com $\|X_1\| = 1$ (base o.n.) e $X = \overrightarrow{OP}$. Logo, $Z = \operatorname{proj}_{\mathcal{W}} X = \alpha X_1$ e $Y \cdot X_1 = 0$. Então, se $X = Y + Z = Y + \alpha X_1$, $X \cdot X_1 = Y \cdot X_1 + \alpha X_1 \cdot X_1 = \alpha$. Portanto, $\operatorname{proj}_{\mathcal{W}} X = (X \cdot X_1) X_1$.

Exemplo: Sejam \mathcal{W} um plano gerado pela base o.n. $\{X_1, X_2\}$ e $X = \overrightarrow{OP} = Z + Y$. $\operatorname{com} Z = \operatorname{proj}_{\mathcal{W}} X = \alpha_1 X_1 + \alpha_2 X_2 e$ $Y \cdot X_1 = Y \cdot X_2 = 0$. Então, sendo $X = Y + Z = Y + \alpha_1 X_1 + \alpha_2 X_2$

 $X \cdot X_1 = \alpha_1 e X \cdot X_2 = \alpha_2$

Logo, $\text{proj}_{W}X = (X \cdot X_{1})X_{1} + (X \cdot X_{2})X_{2}$.

$$\|\mathbf{Y}\| = \operatorname{dist}(P, \mathbf{W})$$

Teorema: A projeção ortogonal de $X \in \mathbb{R}^n$ sobre o subespaço \mathcal{W} de \mathbb{R}^n é $\operatorname{proj}_{\mathcal{W}} X = (X \cdot X_1) X_1 + \dots + (X \cdot X_k) X_k \in \mathcal{W},$

em que $\{X_1, \ldots, X_k\}$ é uma base o.n. de \mathcal{W} .

Teorema: Todo o subespaço $\mathcal{W}
eq \{0\}$ de \mathbb{R}^n possui uma base o.n.

Demonstração:

Dada $\{X_1,\ldots,X_m\}$ uma base de $\mathcal W$, sejam $rac{m Y_1}{\|X_1\|}$, $\mathcal Z_1=\langle Y_1
angle$ e

$$X_k' = X_k - \operatorname{proj}_{\mathcal{Z}_{k-1}} X_k, \qquad Y_k = rac{X_k'}{\|X_k'\|}, \qquad \mathcal{Z}_k = \langle Y_1, \dots, Y_k
angle,$$

para $k=2,\ldots,m$. Então $\mathfrak{B}=\{Y_1,\ldots,Y_m\}$ é um conjunto o.n., logo l.i. em \mathcal{W} . Sendo $\dim\mathcal{W}=m$, conclui-se que \mathfrak{B} é uma base o.n. de \mathcal{W} .

Exemplo:

Determinar uma base o.n. de ((1,1,1,1),(1,2,-1,3),(2,1,-2,2)).