Machine Learning

December 15, 2017

The Essence of Machine Learning

Learning from data

- A pattern exists.
- ▶ There seems to be no easy mathematical relationship.
- ▶ We have data on it.

This set of slides are based on Professor Yaser Abu-Mostafa's course *Learning from Data*. See http://work.caltech.edu/telecourse.html

Credit Approval

Applicant Information:

- age
- gender
- salary
- current debt
- years in job . . .

Credit Approval

Applicant Information:

- age
- gender
- salary
- current debt
- ▶ years in job . . .

Should we approve credit?

Data

Data on previous applications and their credit history.

Movie Ratings

Predict how a user would rate a movie.

Movie Ratings

Predict how a user would rate a movie.

Each user is modelled as a vector of attributes:

- ▶ likes comedy?
- ▶ likes block-busters?
- ▶ likes sci-fi?
- ▶ likes a specific actor?
- **...**

Movie Ratings

Predict how a user would rate a movie.

Each user is modelled as a vector of attributes:

- ▶ likes comedy?
- ▶ likes block-busters?
- ▶ likes sci-fi?
- ► likes a specific actor?
- **...**

How would the user rate a given movie on a scale from 1 to 10?

Data

Data on how other users rated the given movie.

Formalization

▶ **Input:** x (applicant information)

- ightharpoonup Input: x (applicant information)
- ightharpoonup Output: y (good/bad customer)

- ▶ **Input:** x (applicant information)
- Output: y (good/bad customer)
- ▶ **Target function:** $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)

- ▶ **Input:** x (applicant information)
- Output: y (good/bad customer)
- ▶ **Target function:** $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)
- ▶ Data: $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$ (historical records)

- ▶ **Input:** x (applicant information)
- ▶ Output: y (good/bad customer)
- ▶ **Target function:** $f: \mathcal{X} \to \mathcal{Y}$ (ideal credit approval formula)
- ▶ Data: $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$ (historical records)
- ▶ **Hypothesis:** $h: \mathcal{X} \to \mathcal{Y}$ (formula to be used)

The Learning Problem

Solution Components

Two solution components:

- ightharpoonup The Hypothesis Set ${\cal H}$
- ► The Learning Algorithm

Together, they are referred to as the **learning model**.

Solution Components

Two solution components:

- ightharpoonup The Hypothesis Set ${\cal H}$
- ► The Learning Algorithm

Together, they are referred to as the **learning model**.

Why specify a hypothesis set?

- ► This is what is generally done: you choose a linear model, or an SVM or a neural network
- Important for developing a theory of learning

Hypotheses Sets and Learning Algorithms

Examples

Hypothesis Set	Learning Algorithm
Linear Regression	Gradient Descent
Neural Networks	Back Propagation
SVM	Quadratic Programming
Mixture of Gaussians Model	EM Algorithm

For input $\mathbf{x} = (x_1, \dots, x_n)$, the customer attributes,

Approve credit if
$$\sum_{i=1}^n w_i x_i >$$
 threshold Deny credit if $\sum_{i=1}^n w_i x_i \leq$ threshold.

This linear formula $g \in \mathcal{H}$ can be written as :

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} w_i x_i - \operatorname{threshold}\right)$$

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} w_i x_i - \operatorname{threshold}\right)$$

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} w_i x_i + w_0\right)$$

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} w_i x_i + w_0\right)$$

Introduce an artificial coordinate $x_0 = 1$:

$$g(\mathbf{x}) = \operatorname{sign} \sum_{i=0}^{n} w_i x_i = \operatorname{sign}(\mathbf{w}^\mathsf{T} \cdot \mathbf{x})$$

$$g(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=1}^{n} w_i x_i + w_0\right)$$

Introduce an artificial coordinate $x_0 = 1$:

$$g(\mathbf{x}) = \operatorname{sign} \sum_{i=0}^{n} w_i x_i = \operatorname{sign}(\mathbf{w}^{\mathsf{T}} \cdot \mathbf{x})$$

The Perceptron Learning Algorithm (PLA)

The perceptron implements

$$g(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^\mathsf{T} \cdot \mathbf{x})$$

Given a training set:

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$$

pick a misclassified point:

$$\operatorname{sign}(\mathbf{w}^\mathsf{T}\mathbf{x}^{(k)}) \neq y^{(k)}$$

and update the weight vector:

$$\mathbf{w}_{\mathsf{new}} \leftarrow \mathbf{w}_{\mathsf{old}} + y^{(k)}\mathbf{x}^{(k)}$$

Iterations of PLA

One iteration of the PLA:

$$\mathbf{w}_{\mathsf{new}} \leftarrow \mathbf{w}_{\mathsf{old}} + y\mathbf{x}$$

where (\mathbf{x}, y) is a misclassified point.

▶ On iteration i = 1, 2, 3, ..., pick a misclassified point from

$$(\mathbf{x}^{(1)}, y^{(1)}), (\mathbf{x}^{(2)}, y^{(2)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$$

and run a PLA iteration on it.

Theorem (Convergence)

If the data is linearly separable then the PLA will find a set of weights \mathbf{w} that correctly classifies the training examples in a finite number of steps.

Types of Learning

- Supervised Learning
- Unsupervised Learning
- Reinforced Learning

Supervised Learning

Unsupervised Learning

Reinforced Learning

Instead of (input,correct output),
we get (input,some output,grade for this output)

The world champion was a neural network!

The Shape of Things to Come ...

- ightharpoonup 1 hr of practicals each week
- ▶ Next week we start with linear regression.