# Statistical Computing Project 1

 $Mario\ Ibanez$ 

January 23, 2016

```
N <- 10
library(knitr)
```

```
# Generates n values from standard uniform with seed x0
uniform_generator <- function(n, seed, sorted=TRUE){</pre>
  # assignments to save time
  a < -7^5
  mod <- 2^31 - 1
  # initialize vector of 0's
  vector <- c(rep(0, times=n))</pre>
  # assign seed
  vector[1] <- seed %% mod</pre>
  # calculate rest of the values
  for(i in 2:n){
    vector[i] <- (a * vector[i-1]) %% mod</pre>
  # divide by the mod value
  vector <- vector/mod</pre>
  # return value, default is sorted
  if(sorted==FALSE){
    return (vector)
  } else{
    return (sort(vector))
}
```

| random_nums | low_y | high_y | low_diff  | high_diff |
|-------------|-------|--------|-----------|-----------|
| 0.0931323   | 0.0   | 0.1    | 0.0931323 | 0.0068677 |
| 0.1673224   | 0.1   | 0.2    | 0.0673224 | 0.0326776 |
| 0.2428972   | 0.2   | 0.3    | 0.0428972 | 0.0571028 |
| 0.2656181   | 0.3   | 0.4    | 0.0343819 | 0.1343819 |
| 0.2738519   | 0.4   | 0.5    | 0.1261481 | 0.2261481 |
| 0.3736638   | 0.5   | 0.6    | 0.1263362 | 0.2263362 |
| 0.3846899   | 0.6   | 0.7    | 0.2153101 | 0.3153101 |
| 0.4390066   | 0.7   | 0.8    | 0.2609934 | 0.3609934 |
| 0.4824338   | 0.8   | 0.9    | 0.3175662 | 0.4175662 |
| 0.6286332   | 0.9   | 1.0    | 0.2713668 | 0.3713668 |
|             |       |        |           |           |

```
supx <- max(max(func_values$low_diff), max(func_values$high_diff))
supx</pre>
```

#### ## [1] 0.4175662

```
## this may or may not make sense to put into the k test, or make
## the k test call this and put this in some other function

plot(snx_y_values ~ random_nums, type="s", xlim=c(0,1), ylim=c(0,1))
points(random_nums, snx_y_values)
abline(0,1)
```



```
## notes: need to add (0,0) to this plot?
# add labels, legend, colors, and filled in and open points
```

```
# K test for uniform
kTest <- function(random_numbers){
   random_numbers <- sort(random_numbers)

if(){
   return (TRUE)
} else {
   return (FALSE)
}
</pre>
```

# plot histograms to show distribution of random numbers, look for gaps
hist(uniform\_generator(1000, 2), breaks=seq.int(0,1000)/1000)

### Histogram of uniform\_generator(1000, 2)



hist(uniform\_generator(1000, 3), breaks=seq.int(0,1000)/1000)

## Histogram of uniform\_generator(1000, 3)



hist(uniform\_generator(1000, 4), breaks=seq.int(0,1000)/1000)

### Histogram of uniform\_generator(1000, 4)



```
hist(uniform_generator(1000, 5), breaks=seq.int(0,1000)/1000)
hist(uniform_generator(1000, 6), breaks=seq.int(0,1000)/1000)
hist(uniform_generator(1000, 7), breaks=seq.int(0,1000)/1000)
```

#### part 2

• what percentage of the 2 billion seeds fail the test when n=1000? (take a random (as large as possible) sample and make a confidence inteval for this percentage)