Math 137 Problem Set 2

Lev Kruglyak

March 29, 2022

I collaborated with AJ LaMotta and Eliot Hodges for this problem set.

Problem 1. Let A be an algebraic subset of K^n and let B be an algebraic subset of K^m . Show that the cartesian product $A \times B$ is an algebraic subset of $K^n \times K^m = K^{n+m}$.

Suppose A satisfies $f_1(x) = \cdots = f_n(x) = 0$ for $x = x_1, x_2, \ldots, x_n$ and B satisfies $g_1(y) = \cdots = g_m(y) = 0$ for $y = y_1, y_2, \ldots, y_m$. Define $\overline{f_i}(x, y) = f_i(x)$ and $\overline{g_i}(x, y) = g_i(y)$. Then clearly,

$$A \times B = \{(x,y) \in K^{n+m} \mid \overline{f_1}(x,y) = \dots = \overline{f_n}(x,y) = \overline{g_1}(x,y) = \dots = \overline{g_m}(x,y) = 0\}.$$

Thus $A \times B$ is an algebraic subset of K^{n+m} .

Problem 2. Show that $X = \{(t, e^t) \mid t \in \mathbb{R}\}$ is not an algebraic subset of \mathbb{R}^2 .

Suppose for the sake of contradiction that X were an algebraic set. Then there must be some finite set of nonzero polynomials $f_i \in \mathbb{R}[x,y]$ such that $X = \mathcal{V}(f_1, f_2, \dots, f_n)$, i.e. $f_i(t, e^t) = 0$ for all $t \in \mathbb{R}$. Pick any of the f_i , say $f_i = f$ and consider the function $f(t, e^t)$ as a polynomial in the formal symbol e^t with coefficients in $\mathbb{R}[t]$, so

$$f(t, e^t) = \sum_{k=0}^{N} g_k(t)(e^t)^k, \quad g_k(t) \in \mathbb{R}[t].$$

We'll now induct on the degree N to show that such a polynomial cannot exist. For the base case of N=0, this means that $f(t,e^t)=g_0(t)=0$ for all $t\in\mathbb{R}$, a contradiction since a nonzero real valued polynomial cannot vanish on all of \mathbb{R} .

Now suppose there cannot exist such a polynomial for all degrees less than N, and that $f(t, e^t)$ is of degree N. If $g_0(t) = 0$, since $e^t \neq 0$, we can factor out e^t from f and be left with a degree N-1 polynomial which still vanishes everywhere, completing the induction step. Otherwise,

let $M = \deg g_0(t)$ be the degree of the nonzero constant term of f. Then

$$f^{(M+1)}(t, e^t) = \sum_{k=1}^{N} \left(g_k(t)(e^t)^k \right)^{(M+1)} + g_0^{(M+1)}(t)$$

$$= \sum_{k=1}^{N} \sum_{j=0}^{M+1} {M+1 \choose j} g_k^{(M+1-j)}(t) k^j (e^t)^k$$

$$= \sum_{k=1}^{N} h_k(t) (e^t)^k$$

where $f^{(n)}$ denotes the *n*-th derivative with respect to t. Observe that $h_k(t)$ are nonzero if $g_k(t)$ was nonzero, and $f^{(M+1)}(t, e^t)$ has no constant term, so we can again factor out e^t to get a polynomial of degree N-1 which vanishes on \mathbb{R} . This completes the induction.

Problem 3. For each of the following ideals I of $\mathbb{C}[X,Y]$, is $1 \in I$? If so, show how to write 1 as a linear combination of the given generators.

a)
$$I = (X - Y, X^2 + XY - 2Y^2, X + Y - 2)$$

b)
$$I = (X^2 + Y^2 - 1, X + Y - 1, X - Y)$$

(a) Note that (1,1) is a root of every element of I, so $\mathcal{V}(I) \neq \emptyset$. However if $1 \in I$, then $I = \mathbb{C}[X,Y]$. This is a contradiction since the weak Nullstellensatz implies $\mathcal{V}(\mathbb{C}[X,Y]) = \emptyset$, so $1 \notin I$.

First we'll show that I=(X-1,Y-1). Clearly $(X-1,Y-1)\subset I$ because $X-1=\frac{1}{2}(X-Y)+\frac{1}{2}(X+Y-2)$. Similarly, Y-1=(X+Y-2)-(X-1). To prove the converse, note that

$$X - Y = (X - 1) - (Y - 1)$$

$$X^{2} + XY - 2Y^{2} = (X + Y + 1)(X - 1) - (2Y + 1)(Y - 1)$$

$$X + Y - 2 = (X - 1) + (Y - 1).$$

So I = (X-1, Y-1). Next we claim that $1 \notin I$. Suppose a(X,Y)(X-1) + b(X,Y)(Y-1) = 1 for some $a, b \in \mathbb{C}[X,Y]$. Then substituting X = Y, we get (a(X,Y) + b(X,Y))(X-1) = 1, however this is impossible because the only way (a(X,Y) + b(X,Y))(X-1) can have no non constant terms is if a(X,Y) + b(X,Y) = 0, which would also violate the equation. So $1 \notin I$.

(b) We claim that $I = \mathbb{C}[X,Y]$. This is very easy to show; consider the linear combination:

$$-2 \cdot (X^2 + Y^2 - 1) + (1 + 2X) \cdot (X + Y - 1) + (1 - 2Y) \cdot (X - Y) = 1.$$

Since $1 \in I$, it follows that $I = \mathbb{C}[X, Y]$.

Problem 4. Let I be an ideal of a polynomial ring $K[X_1, \ldots, X_n]$ over a field K. Let $J = \sqrt{I}$ be its radical. Show that $J^n \subseteq I$ for some $n \ge 1$.

Let I be an ideal in $K[X_1, \ldots, X_n]$. Then \sqrt{I} is an ideal in $K[X_1, \ldots, X_n]$ so it is finitely generated by Hilbert's basis theorem, say $\sqrt{I} = (f_1, \ldots, f_m)$. For each of these generators

 $f_i^{e_i} \in I$ for some e_i . So write $\sqrt{I} = (f_1) + \cdots + (f_m)$. Then letting $e = e_1 + \cdots + e_m$,

$$\left(\sqrt{I}\right)^e = ((f_1) + \dots + (f_m))^e = \sum_{b_1 + \dots + b_m = e} (f_1^{b_1}) \cdot \dots \cdot (f_m^{b_m}).$$

Since for every choice of partition b_i , there will always be a term in the product such that $b_i \geq e_i$, it follows that $(\sqrt{I})^e \subset I$.

Problem 5. Let K be any field and let A and B be algebraic subsets of K^n . Show that there exists an integer $m \geq n$ and an algebraic subset C of K^m such that the image of C under the projection $K^m \to K^n$ sending (x_1, \ldots, x_m) to (x_1, \ldots, x_n) is the set difference A - B.

Suppose $A = \mathcal{V}(f_1, \ldots, f_a)$ and $B = \mathcal{V}(g_1, \ldots, g_b)$. We claim that the space K^{n+b} suffices. Construct polynomials

$$\overline{g_i}(x_1,\ldots,x_n,t_1,\ldots,t_b) = g_i(x_1,\ldots,x_n)t_i - 1,$$

$$\overline{f_i}(x_1,\ldots,x_n,t_1,\ldots,t_b) = f_i(x_1,\ldots,x_n).$$

Let $\pi: K^{n+b} \to K^n$ be the projection map. Then $\pi(\mathcal{V}(\overline{g_i})) = K^n - \mathcal{V}(g_i)$, since the only way $\overline{g_i}$ could be zero for a given point x_1, \ldots, x_n was if there exists some t_i such that $t_i = 1/g_i(x_1, \ldots, x_n)$, so $\pi(\mathcal{V}(\overline{g_i}))$ is precisely the set of points for which g_i is nonzero. Clearly $\pi(\mathcal{V}(\overline{f_i})) = \mathcal{V}(f_i)$, so if $C = \mathcal{V}(\overline{f_1}, \ldots, \overline{f_a}, \overline{g_1g_2} \cdots \overline{g_b})$,

$$\pi(C) = \bigcup_{i} (K^{n} - \mathcal{V}(g_{i})) \cap \bigcap_{i} \mathcal{V}(f_{i}) = (K^{n} - B) \cap A = A - B.$$

This concludes the proof.

Problem 6. Give an example of an algebraic field extension L of a field K that is not module-finite (i.e. not a finite-dimensional vector space)

Let $K = \mathbb{F}_p$ and $L = \overline{\mathbb{F}_p}$ be its algebraic closure. This is an algebraic extension by definition, however it isn't a finite extension because

$$\overline{\mathbb{F}_p} = \bigcup_{n \ge 1} \mathbb{F}_{p^n}.$$

Problem 7. Let K be an infinite field and let P_1, \ldots, P_m be m distinct nonzero points in K^n . Show that there is an invertible linear map $f: K^n \to K^n$ such that the $n \cdot m$ coordinates of the m points $f(P_1), \ldots, f(P_m)$ are distinct.

Consider the linear map f as a point in K^{n^2} . Then $\det(f)$ is a polynomial in $K[x_1, \ldots, x_{n^2}]$, so the set of invertible matrices is the complement of an algebraic set, namely $\det(f) = 0$. Now suppose we have a set of nonzero distinct points P_1, \ldots, P_m . Consider the polynomial $g \in K[x_1, \ldots, x_{n^2}]$ defined by

$$g(f) = \prod_{i < j} \prod_{a < b} (f(P_a)_i - f(P_b)_j).$$

Since each P_i has at least one nonzero coordinate, each $f(P_a)_i - f(P_b)_j$ is nonzero for some $f \in K^{n^2}$. So to find a linear map satisfying the conditions of the problem, it suffices to find some $f \in K^{n^2}$ such that $g(f) \neq 0$ and $\det(f) \neq 0$. If no such f exists, then $g \cdot \det$ vanishes on all of K^{n^2} , which is impossible by the Nichtnullstellensatz since K is infinite.