(3) The housing of an electric motor is free to rotate about -axis, which passes through the centroid of the armature, which is spinning at a constant rate , as shown. The radius of gyration of the armature about -axis is κ and that about -axis is κ . Determine $\ddot{\psi}$ when a torque γ is applied as shown. Assume $\dot{\gamma} = \dot{\psi} = 0$.

Solution to #3, Tutorial 11

Recall Mu following equations from Lecture 17, Part 1:

$$M_1 = I_1 \dot{\omega}_1 - (I_2 - I_3) \dot{\omega}_2 \dot{\omega}_3$$
 $M_2 = I_2 \dot{\omega}_2 - (I_3 - I_1) \dot{\omega}_1 \dot{\omega}_3$
 $M_3 = I_3 \dot{\omega}_3 - (I_1 - I_2) \dot{\omega}_1 \dot{\omega}_2$

Hun, $\omega_1 = ie sin \theta sin \psi + \theta co \psi$ $\omega_2 = ie sin \theta co \psi - \theta sin \psi$ $\omega_3 = ie co \theta + \psi$

Various terms have meanings as discussed in the herhure.

We have a symmetric body here, such that $I_1 = I_2$. Moreover, as discussed in the Lecture 17(p1), y plays no role and is taken as Y=0 (but 4770). with this we get $\omega_1 = \dot{\theta}$, $\omega_2 = \dot{\omega} \sin \theta$, $\omega_3 = \dot{\omega} \cos \theta + \dot{\psi}$ and $\dot{w}_1 = \dot{\theta} + \dot{Q} \sin \theta + \dot{Q} \sin \theta + \dot{Q} \cos \theta$ Substituting these back into the Eiler Equations, we get: M, = I, (8 - Le Sint Cot) + I3 Le Sint W3 2 M2 = I, (ÜSin9 + 2 ÜP 600) - I3 P W3 These are the equations that we will use

For Mu present problem, we have:

$$\theta = \pi/2 - \gamma$$
, $i\varrho = 0$, $ir = p$ (const.)

 $\dot{\theta} = 0$, $\dot{\theta} = 0$, $i\dot{\varrho} = to be determined?

 $T_1 = m \kappa_x^2$, $T_3 = m \kappa_z^2$
 $M_1 = 0$
 $M_2 = F_2 b$
 $M_3 = -F_9 b$

Substituting these in (3) , (3) , (4) we have

 (4) $(4)$$