(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 21. April 2005 (21.04.2005)

(10) Internationale Veröffentlichungsnummer WO 2005/036655 A1

- (51) Internationale Patentklassifikation7: 31/0352, 31/07
- H01L 31/18,
- (21) Internationales Aktenzeichen:
- PCT/DE2004/002228
- (22) Internationales Anmeldedatum:
 - 5. Oktober 2004 (05.10.2004)
- (25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität:

103 47 401.3

9. Oktober 2003 (09.10.2003) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): HAHN-MEITNER-INSTITUT BERLIN GMBH [DE/DE]; Glienicker Str. 100, 14109 Berlin (DE).

- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): LEWERENZ, Hans-Joachim [DE/DE]; Am Kleinen Wannsee 12K, 14109 Berlin (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,

[Fortsetzung auf der nächsten Seite]

(54) Title: PHOTOVOLTAIC SOLAR CELLS COMPRISING METAL NANOEMITTERS AND METHOD FOR THE PRODUC-TION THEREOF

(54) Bezeichnung: PHOTOVOTAISCHE SOLARZELLE MIT METALLISCHEN NANOEMITTERN UND VERFAHREN ZUR HERSTELLUNG

be carried out continuously using a humid or electro or photoelectrochemical technique, thereby conserving energy and reducing costs in the low temperature range, especially when producing large, flat solar cells.

3

WO 2005/036655 A1

- (84) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).
- vor Ablauf der f\u00fcr \u00e4nderungen der Anspr\u00fcche geltenden Frist; Ver\u00f6ffentlichung wird wiederholt, falls \u00e4nderungen eintreffen

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

Veröffentlicht:

mit internationalem Recherchenbericht

(57) Zusammenfassung: Zur Verbesserung der Umsetzungseffizienz von Solarenergie in elektrischen Strom ist es für eine FestkörperSolarzelle bekannt, den durchgängigen metallischen Emitterfilm in eine Vielzahl von Nanoemittern aufzuteilen, um Beschattungs- und Rekombinationsverluste zu verringern. Die Nanoemitter, die jeweils eine Raumladungszone der Ausdehnung win der Halbleiterschicht ausbilden, zu der die Minoritätsladungsträger über eine Diffusionslänge Limigrieren, sind jedoch punktförmig an der Oberfläche der absorbierenden Halbleiterschicht angeordnet. Zur weiteren Effizienzverbesserung ist bei der erfindungsgemäßen photovoltaischen Solarzelle (SZ) vorgesehen, dass die Nanoemitter (NE) nadel- oder rippenförmig ausgebildet sind und einen gleichmäßigen Abstand $D \le \sqrt{2}L$ zueinander sowie eine Eindringtiefe $T \ge d_{HL}$ - L/2 + w in die Halbleiterschicht (HL) aufweisen. Durch die genaue 2 Dimensionierung der metallischen Nanoemitter (NE) und ihre Ausbreitung in die Halbleiterschicht (HL) zur vollständigen Sammlung der lichtinduzierten Ladungsträger können Abschattung, Rekombinationen und Materialeinsatz bei gleichzeitigem Einsatz qualitativ geringerwertigem Halbleitermaterial minimiert und damit die Effizienz optimiert werden. Ein bevorzugtes Herstellungs verfahren kann durchgängig nass- oder elektro- oder photoelektrochemisch und damit im Niedertemperaturbereich energie- und kostensparend, insbesondere auch zur Herstellung großflächiger Solarzellen, durchgeführt werden.