Theoretical Computer Science Tutorial Week 10

Prof. Andrey Frolov

nnoboria

Agenda

Non-determinism:

- Non-deterministic FSA (NDFSA)
- Examples
- NDFSA to DFSA

Regular Expressions (RegExp)

- Definition
- RegExp to (N)FSA
- FSA to RegExp

Non-deterministic Finite State Automata (NDFSA)

Definition: NDFSA

A NDFSA is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where Q, Σ, q_0, A are defined as in (D)FSA and the transition function is defined as

$$\delta: Q \times \Sigma \to \mathbb{P}(Q)$$

 ${\mathbb P}$ is the powerset function (i.e., the set of all possible subsets)

A NDFSA modifies the definition of a FSA to permit transitions at each stage to either zero, one, or more than one states.

Example

Maze analogy

NDFSA with ϵ

What about ϵ -transition???

NDFSA with ϵ

Could we add ϵ ?

Definition: NDFSA

A NDFSA is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where Q, Σ, q_0, A are defined as in (D)FSA and the transition function is defined as

$$\delta: Q \times \Sigma \cup \{\epsilon\}$$
??? $\rightarrow \mathbb{P}(Q)$

 ${\mathbb P}$ is the powerset function (i.e., the set of all possible subsets)

NDFSA with ϵ

Could we add ϵ ?

Definition: NDFSA

A NDFSA is a tuple $\langle Q, \Sigma, q_0, A, \delta \rangle$, where Q, Σ, q_0, A are defined as in (D)FSA and the transition function is defined as

$$\delta: Q \times \Sigma \cup \{\epsilon\}$$
??? $\rightarrow \mathbb{P}(Q)$

 ${\mathbb P}$ is the powerset function (i.e., the set of all possible subsets)

Yes, but it is not necessary!

Example with ϵ

Agenda

Non-determinism:

- Non-deterministic FSA (NDFSA)
- Examples
- NDFSA to DFSA

Regular Expressions (RegExp)

- Definition
- RegExp to (N)FSA
- FSA to RegExp

FSA vs NDFSA

The FSA and NDFSA accepting strings ending with 00

FSA vs NDFSA

The FSA and NDFSA accepting strings ending with 00

Example

The NDFSA accepting strings ending with 00 or 01

FSA vs NDFSA

Let Σ be the alphabet $\Sigma = \{a, b\}$

• $L = \{x \in \Sigma^* \mid x \text{ contains the substring } abbaab\};$

FSA vs NDFSA

Let Σ be the alphabet $\Sigma = \{a, b\}$

• $L = \{x \in \Sigma^* \mid x \text{ contains the substring } abbaab\};$

Agenda

Non-determinism:

- Non-deterministic FSA (NDFSA)
- Examples
- NDFSA to DFSA

Regular Expressions (RegExp)

- Definition
- RegExp to (N)FSA
- FSA to RegExp

First, we build the transition table of the NDFSA:

δ	0	1
$ ightarrow q_0$	$\{q_1,q_2\}$	$\{q_1\}$
*q_1	$\{q_3\}$	$\{q_1,q_3\}$
* q 2	Ø	$\{q_0\}$
q 3	$\{q_2\}$	$\{q_0\}$

|--|

δ	0	1
$ ightarrow q_0$	$\{q_1,q_2\}$	$\{q_1\}$

δ	0	1
$ o q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$*\{q_1, q_2\}$	{ <i>q</i> ₃ }	$\{q_0, q_1, q_3\}$

δ	0	1
$ o q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$*\{q_1, q_2\}$	{q ₃ }	$\{q_0, q_1, q_3\}$
$^*\{q_1\}$	$\{q_3\}$	$\{q_1,q_3\}$

δ	0	1
$ o q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$*\{q_1, q_2\}$	{q ₃ }	$\{q_0, q_1, q_3\}$
$^*\{q_1\}$	{ <i>q</i> ₃ }	$\{q_1,q_3\}$
$\{q_3\}$	$\{q_2\}$	$\{q_0\}$

δ	0	1
$ o q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$^{*}\{q_{1},q_{2}\}$	$\{q_3\}$	$\{q_0, q_1, q_3\}$
$^*\{q_1\}$	$\{q_3\}$	$\{q_1,q_3\}$
$\{q_3\}$	$\{q_2\}$	$\{q_0\}$
$^*\{q_0, q_1, q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_0,q_1,q_3\}$

δ	0	1
$ o q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$^*\{q_1,q_2\}$	$\{q_3\}$	$\{q_0,q_1,q_3\}$
$^*\{q_1\}$	$\{q_3\}$	$\{q_1,q_3\}$
$\{q_3\}$	$\{q_2\}$	$\{q_0\}$
$^*\{q_0, q_1, q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_0,q_1,q_3\}$
$^*\{q_1,q_3\}$	$\{q_2,q_3\}$	$\{q_0,q_1,q_3\}$

δ	0	1
$ o q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$^{*}\{q_{1},q_{2}\}$	$\{q_3\}$	$\{q_0, q_1, q_3\}$
$^*\{q_1\}$	$\{q_3\}$	$\{q_1,q_3\}$
$\{q_3\}$	$\{q_2\}$	$\{q_0\}$
$^*\{q_0, q_1, q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_0,q_1,q_3\}$
$^*\{q_1,q_3\}$	$\{q_2,q_3\}$	$\{q_0, q_1, q_3\}$
$^{*}\{q_{2}\}$	Ø	$\{q_0\}$

δ	0	1
$ o q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$^{*}\{q_{1},q_{2}\}$	$\{q_3\}$	$\{q_0,q_1,q_3\}$
$^*\{q_1\}$	$\{q_3\}$	$\{q_1,q_3\}$
$\{q_3\}$	$\{q_2\}$	$\{q_0\}$
$*\{q_0, q_1, q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_0,q_1,q_3\}$
$^{*}\{q_{1},q_{3}\}$	$\{q_2,q_3\}$	$\{q_0,q_1,q_3\}$
*{q ₂ }	Ø	$\{q_0\}$
$*\{q_1, q_2, q_3\}$	$\{q_2,q_3\}$	$\{q_0,q_1,q_3\}$

δ	0	1
$ ightarrow q_0$	$\{q_1,q_2\}$	$\{q_1\}$
$^*\{q_1,q_2\}$	$\{q_3\}$	$\{q_0,q_1,q_3\}$
$^*\{q_1\}$	$\{q_3\}$	$\{q_1,q_3\}$
$\{q_3\}$	$\{q_2\}$	$\{q_0\}$
$^*\{q_0,q_1,q_3\}$	$\{q_1,q_2,q_3\}$	$\{q_0,q_1,q_3\}$
$^*\{q_1,q_3\}$	$\{q_2,q_3\}$	$\{q_0,q_1,q_3\}$
$^{*}\{q_{2}\}$	Ø	$\{q_0\}$
$^*\{q_1, q_2, q_3\}$	$\{q_2,q_3\}$	$\{q_0,q_1,q_3\}$
$^{*}\{q_{2},q_{3}\}$	$\{q_2\}$	$\{q_0\}$

δ	0	1
	q12	q1
*q12	q3	q013
*q1	q3	q13
q3	q2	q0
*q013	q123	q013
*q13	q23	q013
*q2	Ø	q0
*q123	q23	q013
*q23	q2	q0

Finally, we can build the resulting DFSA:

Algorithm for NDFSA to DFSA

- Oreate state table from the given NDFA
- 2 Create a blank state table under possible input alphabets for the equivalent DFA
- **3** Mark the start state of the DFA by $\{q_0\}$ (the same as the NDFA)
- Find out the combination of States $q_0, q_1, ..., q_n$ for each possible input alphabet
- Seach time we generate a new DFA state under the input alphabet columns, we have to apply step 4 again, otherwise go to step 6
- The states which contain any of the accepting states of the NDFA are the accepting states of the equivalent DFA

Agenda

Non-determinism:

- Non-deterministic FSA (NDFSA)
- NDFSA to DFSA

Regular Expressions (RegExp)

- Definition
- RegExp to (N)FSA
- FSA to RegExp

Singletons

$$\epsilon = \{\epsilon\}$$

$$0 = \{0\}$$

$$1 = \{1\}$$

Union

$$S_1 \mid S_2 = S_1 \cup S_2 = \{ s \mid s \in S_1 \lor s \in S_2 \}$$

Examples

$$\epsilon \mid a = \{\epsilon, a\}$$

$$0 \mid 1 = \{0, 1\}$$

Concatenation

$$S_1 \cdot S_2 = \{s_1.s_2 \mid s_1 \in S_1 \& s_2 \in S_2\}$$

Examples

$$\epsilon . a = \{a\}$$

$$0.1 = \{01\}$$

$$(0\mid 1).(\epsilon\mid 0)=\{0,1\}.\{\epsilon,0\}=\{0,1,00,10\}$$

Kleene star

$$S^* = \{s_1.s_2.\cdots.s_n \mid s_i \in S \& n \in \mathbb{N}\}$$

Example

$$\{00, 11\}^* =$$

 $= \{\epsilon, 00, 11, 0000, 0011, 1100, 1111, 000000, 000011, 001100, \ldots\}$

Regular Expressions (RegExp): Definition

Inductive definition of RegExps over an alphabet *A*: Basis.

- Ø is a regular expression;
- The empty string $\{\epsilon\}$ is a RegExp;
- Each symbol $a \in A$ is a RegExp.

Induction. Let r and s be two RegExps, then

- (r.s) is a RegExp;
- (r|s) is a RegExp;
- $(r)^*$ is a RegExp.

$$((0.(0|1))^* | ((0|1)^*).0)$$

- It is a regular expression over the alphabet $\{0,1\}$
 - Strings that start with 0 (left part)
 - Strings that end with 0 (right part)

Priority of operations

Priority of operations from higher to lower:

- * (Kleene star)
- (Concatination)
- **③** | (Union)

Example:

• $(\epsilon \mid a^*.b)$ is equivalent to $(\epsilon \mid ((a)^*.b))$

Agenda

Non-determinism:

- Non-deterministic FSA (NDFSA)
- NDFSA to DFSA

Regular Expressions (RegExp)

- Definition
- RegExp to (N)FSA
- FSA to RegExp

Rules

For
$$x \in A \cup \{\epsilon\}$$
,

Examples

start
$$\rightarrow q \xrightarrow{a} f$$

Rule: Concatenation Expression

The concatenation expression s.t

Rules

Example for a.b

Rule: Union Expression

The union expression s|t

Rule: Kleene Star Expression

The Kleene star expression s^* is converted to

N(s) is the (N)FSA of the subexpression s.

Build a (N)FSA for $(1 \mid 01)^*$

Build a (N)FSA for $(1 \mid 01)^*$ start \longrightarrow q_1 $\xrightarrow{f_1}$ f_1

Build a (N)FSA for $(1 \mid 01)^*$ $N_{(1)} \qquad \text{start} \longrightarrow \boxed{q_1 \qquad 1} \qquad \boxed{f_1}$ $N_{(0)} \qquad \text{start} \longrightarrow \boxed{q_0 \qquad 0} \qquad \boxed{f_0}$

Build a (N)FSA for $(1 \mid 01)^*$ $N_{(1)} \qquad \text{start} \longrightarrow \boxed{q_1 \qquad 1} \qquad \boxed{f_1}$ $N_{(0)} \qquad \text{start} \longrightarrow \boxed{q_0 \qquad 0} \qquad \boxed{f_0}$ $N_{(01)} \qquad \text{start} \longrightarrow \boxed{q_0 \qquad 0} \qquad \boxed{f_0 q_1} \qquad \boxed{1} \qquad \boxed{f_1}$

Build a (N)FSA for $(1 \mid 01)^*$

Build a (N)FSA for $(1 \mid 01)^*$ $N_{(1\mid 01)^*}$

Agenda

Non-determinism:

- Non-deterministic FSA (NDFSA)
- NDFSA to DFSA

Regular Expressions (RegExp)

- Definition
- RegExp to (N)FSA
- FSA to RegExp

$$L = (0 \mid 1) \cdot (0 \mid 1)^* = \{(0 \mid 1) \cdot s \mid s \in \{0, 1\}^*\} = \{s \in \{0, 1\}^* \mid s \neq \epsilon\}$$

Thank you for your attention!