

Reconstruction de trajectoires de vol de chauves-souris avec le logiciel Tadarida

Tutoriel 1/3 : calcul du TDOA Fabien CLAIREAU et Yves BAS

Contact: f.claireau@naturalia-environnement.fr et yves.bas@mnhn.fr

Pour quelles études ?

- Infrastructures linéaires de transports (ILT) :
 - Routes
 - Lignes ferroviaires, etc
 - A quels endroits ?
 - sans ouvrage
 - · passages à faune
 - ouvrages hydrauliques
 - hop-overs
 - chiroducs, etc
- Éolien

Quel intérêt?

- Pouvoir localiser une chauves-souris sur un plan
- Enregistrement sur toute la nuit
- Un complément indéniable aux observations visuelles
- Exemples :
 - Une chauve-souris s'est-elle engagée sur une ILT ?
 - Une chauve-souris reste-t-elle à haute altitude, à basse altitude ou bien les deux ?

▶ TDOA = Time Difference of Arrival Time

Sound speed=340m.s-1

▶ TDOA = Time Difference of Arrival Time

errival time of the call on mic. 2

Time difference of arrival=T2-T1

Mic. 1

Mic. 2

▶ TDOA = Time Difference of Arrival Time

Sound speed=340m.s-1

T1 = arrival time of the call on mic. 1

rrival time of the call on mic. 2

Time difference of arrival=T2-T1

▶ TDOA = Time Difference of Arrival Time

Sound speed=340m.s-1

T1 = arrival time of the call on mic. 1

rrival time of the call on mic. 2

Time difference of arrival=T2-T1

▶ TDOA = Time Difference of Arrival Time

Sound speed=340m.s-1

T1 = arrival time of the call on mic. 1

rrival time of the call on mic. 2

Time difference of arrival=T2-T1

Matériel nécessaire

- Enregistreurs acoustiques permettant la stéréo type Song Meter
- Utilisation de micros similaires
- Configuration des enregistreurs avec les config' Vigie-chiro sans les modifier :
 - http://vigienature.mnhn.fr/page/protocole-pointfixe
 - Téléchargement en bas de page
 - Utiliser la config « stereo »

Sur le terrain

- Adopter une règle de décision pour le placement des micros :
 - Pour les ILT :
 - micro canal de gauche (micro 0) toujours face à la route
 - micro canal de droite (micro 1) toujours face au milieu naturel
 - Pour l'éolien :
 - micro canal de gauche (micro 0) toujours en basse altitude
 - micro canal de droite (micro 1) toujours en haute altitude
- Noter l'espacement entre les micros
 - Pour les ILT : 4 m maximum
- De préférence dans une zone dégagée
 - Si concerné : au plus proche de l'ILT

Exemples plan échantillonnage ILT

<u>Exemples</u>: passages routiers inférieurs, ouvrages hydrauliques Avec 1 enregistreur et 2 micros

Exemples: sans ouvrage, passage à faune, chiroduc Avec 2 enregistreurs et 4 micros

Interprétation du TDOA (ILT)

Lecture du fichier csv de sortie

Interprétation du TDOA (ILT)

Lecture du fichier csv de sortie

Interprétation du TDOA (Éolien)

Lecture du fichier csv de sortie

Micro canal droit

TDOA > 0

TDOA < 0

Micro canal gauche

DecDeb et DecFin >0

DecDeb et DecFin < 0

Traitement des sons

- Utilisation du logiciel Tadarida en ligne :
 - Libre d'accès
 - Inscription : https://vigiechiro.herokuapp.com/#/accueil
 - Classificateur régulièrement mis à jour
 - Permet le stockage de vos données de façon illimité
 - Tutoriel d'utilisation (protocole point fixe) :
 <u>https://drive.google.com/file/d/0B5ZM90wrDzUOaUxKYTR</u>

 Hek91bWM/view

Traitement des sons - en pratique

- Renommer les sons (suivre tutoriel Vigie-chiro)
- Décompression avec Kaleidoscope (suivre tutoriel Vigie-chiro)

Traitement des sons - en pratique

- Générer les fichier .TA avec TadaridaL
 - Téléchargeable ici : https://github.com/YvesBas/Tadarida-
 L/releases/download/v1.0.2/install_TadaridaL.exe

Traitement des sons - en pratique

- Import des fichiers wav dans la base Tadarida :
 - Si bonne connexion : en ligne via le portail
 - Si mauvaise connexion : envoyer les fichiers wav au Muséum rangés par dossier (ayant le n° de participation)

Muséum national d'Histoire naturelle
Département Homme et Environnement
UMR 7204 CESCO
à l'attention de M. BAS Yves ou M.JULIEN Jean-François
43, rue Buffon
75 005 PARIS

Utilisation du script de calcul du TDOA

- Télécharger Rstudio
- Installer les packages suivants avec ces commandes :
 - install.packages("data.table")
 - install.packages("Hmisc")
- Remplir le fichier excel « ListPoint » et l'enregistrer sous format csv (séparateur: point-virgule) :
 - Pour le chemin total où se trouvent les TA : mettre des « / » et non des « \ »
 - dist_micro en mètres (mettre une virgule, ex : 3,5)

Utilisation du script de calcul du TDOA

- Ouvrir le script « new_pairing »
- Modifer les lignes suivantes :
 - Ligne 2 : chemin d'accès au répertoire de travail où se trouvent vos tables
 - Attention : mettre des « / » et non des « \ »
 - Ligne 7 : nom du fichier contenant vos observations dans les guillemets
 - Ligne 13 : SpeciesList dans être mis dans le dossier « table »
 - Ligne 11 : ListPoint (voir diap' précédente)
 - Ligne 163 à 167 : 5 fichiers csv exportés
 - Fich_Manq_G et Fich_Manq_D (TadaridaL n'a pas tourné sur l'ensemble de vos sons, ou erreur d'écriture de vos fichiers)
 - Part_Manq (elles n'ont pas été uploader sous le portail)
 - DirCriMauvais (erreur dans le chemin où se trouve les TA)
 - TrajTot (fichier contenant tous les TDOA, à utiliser uniquement si les 4 autres fichiers csv sont vides!)
 - DataTrajMono (fichier contenant tous les contacts obtenus soit sur le micro de gauche ou de droite)