Orbitopes

Volker Kaibel

Zuse Institute Berlin TU Berlin

Joint work with Marc Pfetsch (ZIB)

10th Workshop on Combinatorial Optimization, Aussois, January 2006

Vertex Coloring

$$\sum_{c=1}^{C_{\text{max}}} y_c$$

Symmetric group operates with constant objective function value on orbits.

Two problems

Unnecessarily large search space (Branch-and-cut)

Useless LP-bounds

$$\min \qquad \sum_{c=1}^{C_{\max}} y_c$$

s.t.
$$\sum_{c} x_{v,c} = 1 \quad \forall v$$

$$x_{v,c} + x_{w,c} \leq 1 \quad \forall c \, \forall \{v,w\} \in E$$

$$x_{v,c} \leq y_{c} \quad \forall v \, \forall c$$

$$x_{v,c} \in [0,1] \quad \forall v \, \forall c$$

- Criterion: {3,5} is lexicographically minimal in its orbit
- Decision uses a suitable generating system of the symmetry group (Schreier-Sims table)
- [Margot 2002+]

This talk:

An optimal way to cut off unnecessary parts of the orbits (for certain types of IPs).

Orbitope O(n,r):

Conversingly of kill Assign map to yariable with

- (a) Exactly one (1, per row) $x_{i,j} = 1$ (b) Lex-decreasing-sorted columns

The inequalities

describe the 0/1-points in the orbitope (cf. Diaz et al. 01).

But: They do not provide a complete description.

Shifted-column inequalities

Crucial step: For a point X^{\star} we can compute in O(nr) steps X^{\star} -maximum shiftings of all columns.

The separation problem for SCIs can be solved in linear time.

Ideal description of orbitopes

Theorem (K & Pfetsch, 2005)

The orbitope $\mathrm{O}(n,r)$ equals the polytope Q(n,r) that is described by the following constraints:

- (i) nonnegativity constraints
- (ii) row-sum equations
- (iii) shifted-column inequalities

The description is irredundant up to:

Let X^* be a vertex of Q(n,r).

Let \mathcal{B}^* be a basis of X^* with all row-sum and as many as possible nonnegativity constraints.

If no SCI: X^* is a 0/1-vector

Otherwise:

Modify \mathcal{B}^* and show that there is another solution.

Contradiction

Configurations to exclude:

$$X^{\star}(A) \le X^{\star}(C) \le X^{\star}(C) + X^{\star}(b) = X^{\star}(A)$$

Thus: $X^{\star}(b) = 0$ and $X^{\star}(A) = X^{\star}(C)$

Replace:

by

Ensuring (4)

$$X^{*}(A) - (X^{*}(D) + X^{*}(e) + X^{*}C) = 0$$
$$X^{*}(B) + X^{*}(e) - X^{*}(F) = 0$$
$$(X^{*}(A) - (X^{*}(D) + X^{*}(F)) + (X^{*}(B) - (X^{*}(C)) = 0$$

Thus (since X^* satisfies all SCIs):

$$X^{\star}(A) - (X^{\star}(D) + X^{\star}(F)) = 0$$
 and
$$X^{\star}(B) - X^{\star}(C) = 0$$

Ensuring (4) ctd.

Lemma: If $\lim(\mathcal{L} \cup \{v, w\}) = \mathbb{R}^q$ and $v + w = \tilde{v} + \tilde{w}$ (thus $v = \tilde{v} + \tilde{w} - w$), then there are $u_1, u_2 \in \{w, \tilde{v}, \tilde{w}\}$ such that $\lim(\mathcal{L} \cup \{u_1, u_2\}) = \mathbb{R}^q$ holds.

Thus there are two inequalities among II, III, and IV, by which we can replace I and II.

I. Modify X^{\star} to \tilde{X} :

- 2. Using (Ia), (Ib), (2), (3), (4): \tilde{X} satisfies the equation system corresponding to $\tilde{\mathcal{B}}$.
- 3. BUT: If any modification in 1. was done (i.e., $\tilde{\mathcal{B}}$ contains some SCI), then $\tilde{X} \neq X^{\star}$: contradiction.

- Full-, packing, and covering-orbitopes
- Other group operations (e.g., cyclic groups)
- Interplay of orbitopes with special polyhedra
- "Academic applications" (Coloring, k-partitioning, etc.)
- Real-world IP-models
- Combination with Margot's method

Thank you for your attention.