Quantum Optics, Exercise

March 19, 2025

Problem 1

Consider a Mach-Zender interferometer, as shown in Fig. 1. The interferometer consists of two perfect mirrors and two beamsplitters. Both beamsplitters have an intensity reflection coefficient of $\varepsilon_1 = \varepsilon_4 = 1/2$. The matrix describing the beamsplitter transformation is

$$\mathbf{M} = \begin{pmatrix} \sqrt{\varepsilon} & i\sqrt{1-\varepsilon} \\ i\sqrt{1-\varepsilon} & \sqrt{\varepsilon} \end{pmatrix}. \tag{1}$$

Figure 1: A Mach-Zender interferometer. The input modes correspond to anihilation operators \hat{a}_{in} and \hat{a}_{u} , the modes propagating inside the interferometer correspond to \hat{a}_{I} and \hat{a}_{II} , and finally the output modes are \hat{a}_{1} and \hat{a}_{2} .

- (a) Express the anihilation operators corresponding to the modes inside the interferometer $\hat{a}_{\rm I}$ and $\hat{a}_{\rm II}$ in terms of the input operators $\hat{a}_{\rm in}$ and $\hat{a}_{\rm u}$.
- (b) Express the anihilation operators corresponding to the output modes of the interferometer \hat{a}_1 and \hat{a}_2 in terms of the input operators \hat{a}_{in} and \hat{a}_{u} and the phase difference between the interferometer arms $\Delta \phi$.
- (c) Show that the operator describing the number of photons entering the interferometer and the operator describing the number of photons exiting the interferometer are identical, in other words, prove that $\hat{n}_{\rm in} + \hat{n}_{\rm u} = \hat{n}_1 + \hat{n}_2$.

Let us now consider the following input state $\frac{1}{\sqrt{2}}(|2\rangle_{in}|0\rangle_{u} - |0\rangle_{in}|2\rangle_{u})$.

- (d) Find the quantum state of the electric field inside the interferometer. Comment on the result.
- (e) Find the quantum state of the electric field after the second beam splitter (at the output) as a function of phase difference between the interferometer arms $\Delta \phi$.

.