

UNIVERSIDAD NACIONAL DE LA MATANZA INTELIGENCIA DE NEGOCIOS

Modelo Físico Técnicas de Modelado - Parte 1

Docentes: ING. LORENA R. MATTEO

Autores ppt orig.: Lic. Hugo M. Castro / Mg. Diego Basso

Fecha última actualización.: 29/04/2025

CICLO DE VIDA DE UN PROYECTO DE BI

MODELO FÍSICO

- A partir del modelo dimensional lógico debemos armar el modelo físico.
- Son las tablas en las que se van a guardar los datos en el Data Warehouse.
 - Soporte a las dimensiones y grupo de hechos del modelo dimensional.
 - Se compone de tablas, registros y columnas.
- O Diferentes técnicas de modelado, según la realidad del negocio.

ESTRUCTURA DE LAS TABLAS

ESTRUCTURA DE TABLAS

Tablas Look Up

- Son las tablas maestras donde se almacenan los elementos de un atributo descriptivo.
 - De tipo textual y discreto
 - Para seleccionar
 - Para agrupar
 - Para mostrar
- Se puede crear una tabla Look Up por cada atributo o una tabla por dimensión.
- No contiene valores que intervengan en cálculos.
- Valores numéricos categorizados.
- Tienen una columna por attribute form más una columna por cada padre del atributo.

EJEMPLO TABLA LOOK UP

- Provincia
 - ID_Provincia
 - Desc_Provincia

Attribute form

- 1, Buenos Aires
- 2, Córdoba
- 3, La Pampa

Elementos

LK_PROVINCIA

-		
ID_Provincia	Desc_Provincia	
1	Buenos Aires	Una fila por elemento
2	Córdoba ←	del atributo
3	La Pampa	deratributo
1	1	
Una columna poi	attribute form	

EJEMPLO TABLA LOOK UP

- Ciudad
 - ID_Ciudad
 - Desc_Ciudad

LK_CIUDAD

	_		
ID_Ciudad	Desc_Ciudad	ID_Provincia	
11	Junín	1	
12	Lobos	1	
23	La Falda	2	
35	Cosquín	2	
38	Santa Rosa	3	
Î			
Una columna por Una columna por attribute form cada padre			

ESTRUCTURA DE TABLAS

Tablas Relación

 Se utilizan cuando hay una relación muchos a muchos entre dos atributos.

Tabla de hechos (Fact table)

- Almacena los valores de las medidas de los hechos.
- Contiene una fila por cada acontecimiento que debe reflejar.
- Es la tabla de mayor cantidad de filas.
 - Ocupan más del 90% del Data Warehouse
- Tiene una columna por cada medida mas una columna por cada referencia a las dimensiones al cual se conocen los hechos.

ESTRUCTURA DE TABLAS

Tabla de hechos Base

- Almacena los valores de las medidas de los hechos al máximo nivel de detalle (Granularidad).
 - Esta tabla es imprescindible
- Sus filas se llenan a partir de los datos que provienen de los sistemas OLTP.

10

EJEMPLO DE TABLA DE HECHOS BASE

BT_VENTAS

ID_Fecha	ID_Empleado	ID_Producto	Unid_Vend	\$ Ventas
01/04/2020	111	17	20	\$ 400
01/04/2020	112	17	45	\$ 900
01/04/2020	113	18	30	\$ 450

Medidas

ESTRUCTURA DE TABLAS

Tabla de hechos Agregadas

- Se generan exclusivamente para reducir el tiempo de respuesta de las consultas.
- Su contenido se calcula a partir de la tabla de hechos base.
- Son prescindibles en términos de información.
 - No dicen nada que no sea dicho en la tabla de hechos base, pero lo dicen más rápido.
- En general, tienen pocas filas (respecto a la tabla de hechos base).

EJEMPLO DE TABLA DE HECHOS AGREGADA

BT_VENTAS

ID_Fecha	ID_Empleado	ID_Producto	Unid_Vend	\$ Ventas
01/04/2020	111	17	20	\$ 400
08/04/2020	112	17	45	\$ 900
15/04/2020	112	17	30	\$ 450
19/04/2020	111	18	15	\$ 300

AGG_VENTAS_EMP_MES

ID_Mes	ID_Empleado	Unid_Vend	\$ Ventas
202004	111	35	\$ 700
202004	112	75	\$ 1350

Contiene un atributo de alguna dimensión, por ejemplo TIEMPO

ESQUEMA ESTRELLA (STAR)

- o Una tabla por cada dimensión.
- Menor cantidad de tablas involucradas.
- La tabla de hechos está en 3FN.
 - No tiene filas repetidas.
- Las tablas de dimensión están en 2FN.
 - Todos los productos de una misma familia llevan como atributo el nombre de la familia.
- Mayor espacio de almacenamiento.
- Las consultas son más fáciles de construir.
 - Joins entre tabla de hechos con cada tabla de dimensiones.
- Mejor rendimiento en consultas.
 - Se necesita acceder a menos tablas.

ESQUEMA ESTRELLA (STAR)

- Producto
 Familia_Producto
 Tipo_Producto

 - Desc Producto
- ID_Producto
 ID_FamiliaProducto
 - Desc Familia

- - ID_TipoProducto
 - Desc TipoProducto

DIM_PRODUCTO

LK Producto ID Producto Desc Producto ID FamiliaProducto Desc FamiliaProducto ID TipoProducto Desc TipoProducto

EJEMPLO ESQUEMA ESTRELLA

ID_TipoProducto

Desc TipoProducto

CONSULTA SQL A UN MODELO ESTRELLA

- <u>Ejemplo</u>: Para cada producto de tipo bazar calcular el importe vendido en las sucursales de CABA en el mes de febrero de 2020
- O Dimensiones para:
 - Mostrar, filtrar, agrupar
- Medidas o Hechos para:
 - Calcular
- Join: Sólo entre tabla de hechos y tabla de dimensión

CONSULTA SQL A UN MODELO ESTRELLA


```
SELECT p.Desc_Producto, sum(v.Importe_vta) AS Importe
FROM
  BT Ventas v,
  LK Sucursal s,
  LK Producto p,
  LK Tiempo t
WHERE
  v.ID Fecha = t.ID Fecha and
  v.ID Sucursal = s.ID_Sucursal and
  v.ID Producto = p.ID Producto and
  s.Desc Provincia = 'CABA' and
  t.ID Mes = '022020' and
  p.Desc TipoProducto = 'Bazar'
GROUP BY p.Desc_Producto
```

ESQUEMA COPO DE NIEVE (SNOWFLAKE)

- Una tabla por atributo.
- o Todas las tablas (dimensiones y hechos) están en 3FN.
 - No tiene filas repetidas.
- Menor espacio de almacenamiento.
- Más fácil de entender para el usuario final.
- Más fáciles de llenar las tablas.
- Menor rendimiento de las consultas por los join.
- Aplicable para tablas de dimensiones con una gran cantidad de filas.
- o Ampliamente usado en implementaciones ROLAP.

ESQUEMA COPO DE NIEVE (SNOWFLAKE)

- Producto
 - Producto_ID
 - Desc_producto
- Familia_ProductoTipo_Producto
 - ID FamiliaProducto
 - Desc Familia

- - ID TipoProducto
 - Desc TipoProducto

29/4/2025 IN2025

ESQUEMAS **S**TAR VS **S**NOWFLAKE

Es posible pasar de este esquema **Copo de Nieve** ...

... a este en **Estrella** (desnormalizado) con todos los atributos del cubo entendiendo como relacionan las tablas a través de las **SKs.**

contract

Fuente: http://databrewery.org/cubes/doc/mapping.html#joins

IN2025

ESQUEMAS STAR VS SNOWFLAKE - ALIAS

- ¿Qué sucede si necesita unirse a la misma tabla dos o más veces?
 - Por ejemplo, tiene una lista de organizaciones y es necesario usarse como proveedor y consumidor de servicios.

Especificar Alias en los joins (pseudo):

```
"joins"
     "master" : "contratos.supplier id",
      "detalle" : "organizaciones.id",
      "alias" : "proveedores"
      "master" : "contratos.consumer id",
       "detalle" : "organizaciones.id" ,
       "alias" : "consumidores"
```

Usar el alias especificado en los joins, y no el nombre real de la tabla.

```
"asignaciones":
"proveedor.nombre" :
"proveedores.org nombre",
"consumidor.nombre":
"consumidores.org nombre"
```

NORMALIZACIÓN

- Completamente Normalizado
 - Las tablas Look Up tienen el ID propio, la descripción y el ID del padre.
 - Minimiza la redundancia.
 - Muchos joins para acceder a las tablas de más alto nivel.

NORMALIZACIÓN

- Moderadamente Normalizado
 - Las tablas Look Up tienen el ID propio, la descripción y todos los ID de sus ancestros.
 - Algo de redundancia.
 - Reduce significativamente los joins para consultar datos dentro de la jerarquía.

23

NORMALIZACIÓN

- Completamente Desnormalizado
 - Las tablas Look Up tienen el ID propio, la descripción y todos los ID y descripción de sus ancestros.
 - Mucha redundancia y espacio de almacenamiento.
 - Elimina los joins para consultar datos dentro de la jerarquía.

TIPOS DE MEDIDAS O HECHOS

- Aditivas
 - Se pueden sumar (SUM) por todas las dimensiones.
- Ejemplos
 - Importe de venta
 - Tiene sentido sumar el importe por producto, por sucursal, por fecha, por empleado.
 - Costo de venta
 - Ganancia o beneficio
 - Cantidad de ventas (en el día)
 - Cantidad de expedientes procesados (en una semana)
 - Cantidad de nacimientos (por mes)

TIPOS DE MEDIDAS O HECHOS

Semiaditivas

- Se pueden sumar en algunas dimensiones y en otras no.
- Carece de sentido sumarla en otras dimensiones.

Ejemplos

- Unidades Vendidas
 - o Tiene sentido sumar sólo si está la dimensión *Producto*.
- Unidades en Stock (o inventarios de cualquier tipo)
 - o Sólo se pueden sumar si son del mismo día, mes, año, etc.
 - No se puede sumar por producto ⇒ semánticamente incorrecto.
- Saldo de Cuentas
 - o Sólo se puede sumar si son del mismo día. Se obtiene el saldo x día.
 - o Normalmente se obtiene a nivel del último día del mes.
- Número de clientes
 - o No se puede sumar por *producto* ⇒ semánticamente incorrecto.

TIPOS DE MEDIDAS O HECHOS

No aditivas

- No tiene sentido sumarlas por ninguna dimensión.
- Usan otras formas de consolidación o agregación.

Ejemplos

- Precio Unitario
 - No tiene sentido si lo sumo por día, producto o sucursal.
- Margen o porcentaje de ganancia
 - No se puede sumarizar por ninguna dimensión.
 - Es una medida calculada obtenida con la herramienta OLAP.
- Temperatura
- Edad
- Notas de exámenes
- Tipo de cambio de moneda

FORMAS DE CONSOLIDACIÓN DE MEDIDAS

- Suma
- Promedio
- Máximo
- Mínimo
- Cantidad de casos
- Cantidad de casos distintos

¿Como se conecta la tabla de hechos a las de dimensión?

- Verificar integridad referencial entre la tabla de hechos y las tablas de dimensión.
- o En la tabla de dimensión:
 - La clave tiene que ser una clave primaria (PK)
- En la tabla de hechos:
 - Cada dimensión tiene su clave foránea (FK) que apunta a la fila que corresponde en la tabla de dimensión.
 - Todas las FK de las dimensiones forman la PK de la tabla de hechos.

Problemas con las claves

- Los sistemas fuentes utilizan sus propias claves (código de artículo, código de cliente, etc.), con un determinado formato y sentido para el negocio.
- Podrían cambiarse los formatos de las claves de los sistemas fuentes.
- Los datos de un DW vienen de fuentes heterogéneas.
- Las SK generan dentro del ámbito del DW una clave numérica única sin significado para el negocio.
 - Número entero asignado en forma secuencial.
- Aconsejable no usar como claves los códigos de los sistemas fuentes.

Se necesita crear una SK en un DW

- Los sistemas fuentes pueden cambiar la descripción de un producto o cliente, sin cambiar el código del DW que lo representa.
- Si se cambian los formatos de las claves en los sistemas fuentes, la clave SK no se altera.
- Los sistemas fuentes pueden reutilizar códigos que se habían depurado y aún existen en el DW.
- Rendimiento
 - Las claves de las tablas ocuparán menos espacio.
- Más fáciles de mantener.

Ventajas

- El DW se independiza de cambios en el manejo de claves de los sistemas fuente.
- Permite manejar dimensiones de cambio lento.

Desventajas

 Hay que manejar y administrar estas claves en el proceso de ETL.

IN2025

LAS 10 REGLAS ESENCIALES DEL MODELADO

"10 Mandamientos de Kimball"

- Regla #1: Cargar los datos atómicos en estructuras dimensionales
- Regla #2: Estructura de los modelos dimensionales en función de los procesos de negocio
- Regla #3: Asegurarse de que cada tabla de hechos tiene una tabla de dimensión tiempo asociada
- Regla #4: Asegurarse de que todos los hechos de la tabla de hechos tienen el mismo nivel de detalle
- Regla #5: Resolver correspondencias muchos a muchos en tablas de hechos
- Rule #6: Resolver correspondencias muchos a muchos en tablas de dimensiones
- Regla #7: Almacenar las descripciones en las tablas de dimensión
- Regla #8: Asegurarse de que las tablas dimensionales usan claves subrogadas
- Regla #9: Crear dimensiones conformadas para integrar los datos de toda la empresa
- Regla #10: Valora constantemente los requerimientos y las realidades para proporcionar una solución DW/BI que sea aceptada por los usuarios de negocios y que apoye su proceso de decisiones

IN2025

Consejos Nombres de Objetos DWH

deben estar orientados a los usuarios de negocios, no al personal técnico.

- Regla #1. Sigue la convención de nomenclatura.
- Regla #2: Cada objeto tiene un nombre.
- Regla #3: Los nombres de los objetos son descriptivos.
- Regla #4: No se recomiendan abreviaciones y acrónimos.
- Regla #5: Los nombres de los objetos son atractivos.
- Rule #6: Los nombres de los objetos son únicos.
- Regla #7: Nombres de objetos no demasiado largos.
- Regla #8: Considera anteponer a las columnas de nombre, una tabla abreviada del nombre.
- Regla #9: Cambia los nombres en la capa de visualización si es necesario.
- Regla #10: ¡Se constante!

35

DIMENSIONAMIENTO DE UN MODELO EJEMPLO

Dimensión	
Tiempo	2 Años x 365 días = 730 días
Sucursal	300 sucursales Informan ventas x día
Producto	30000 en cada sucursal, 4000 vendidos x día en todas las sucursales
Empleado	Solo 1 empleado x sucursal x día

Número Base de Registros en las Fact Tables

730 x 300 x 4000 x 1 = **876 Millones de registros**

Número de los Campos Indices = 4

Número de los campos de la Fact Table = 4

Total de Campos = 8

Tamaño Base de la Fact Table

876 Millones x 8 Campos x 4 bytes (*) = **28 Gb**

(*) caso hipotético en que todos ocupen 4bytes.

TP Caso Estudio: Plataforma Streaming SoundWave Entrega Opcional (*)

- Listar las posibles dimensiones a partir de las necesidades de información enunciadas.
- o Identificar los hechos con las medidas básicas y calculadas.
- o Identificar el proceso de negocio a modelar.
- Construir el modelo dimensional conceptual.
- o Identificar atributos y jerarquías para cada dimensión.
- o Construir el modelo dimensional lógico.
- Construir el modelo físico (en esquema Estrella y Copo de Nieve).

(*)

- Los TPs Opcionales sirven para afianzar conceptos necesarios para realizar los TPs de Aplicación, serán corregidos en clase y/o mediante Autoevaluación.
- Los TPs de Aplicación tiene una Fecha Límite de Entrega que deberá ser cumplida sin excepción, serán corregidos en detalle por los docentes.
- Ver documentos: "Condiciones de Cursada en MIeL sección: Plazos y condiciones de Entrega Trabajos Prácticos y Casos de Estudio" + "Circuito Entrega TPs Teams/MIeL"

TRABAJO PRÁCTICO DE APLICACIÓN ENTREGA PRÓXIMA CLASE (*)

Parte 1 (Modelo Dimensional)

- o Definir el contexto de la empresa.
- Listar dimensiones, hechos con medidas (básicas y calculadas), atributos y jerarquías.
- Construir los modelos dimensional conceptual y lógico.
- Buscar nuevas preguntas de negocio que podría responder el modelo construido.

Parte 2 (Modelo Físico) (Próxima clase + 1)

 Construir el modelo físico (en esquema Estrella y Copo de Nieve) + identificar cada dimensión del modelo dimensional.

(*) Cada trabajo práctico tiene una Fecha Límite de Entrega que deberá ser cumplida sin excepción. (Ver Condiciones de Cursada en MIeL – Sección: "Plazos y condiciones de Entrega Trabajos Prácticos y Casos de Estudio")

RESUMEN TEMA 3 PARTE 1

