Proposition: Let (Xn)n=1 be a sequence of random variables. Let $X(x) = \lim_{n \to \infty} X_n(x)$ for $x \in \Omega$. and assume that the limit exists $\forall x$. Then X is a RV. Proof: Fix teIR, and consider {x: X(x) ≤ t}. That is, for every E>0, there exists NEIN such that Xn(x)=t+E $\forall n \ge N$. Then take $\varepsilon = \frac{1}{m}$. Then $\forall m \in \mathbb{N}$, $\exists N \in \mathbb{N}$ such that $(n(x) \le t + \frac{1}{m})$. In particular, $\bigcap_{m=1}^{\infty} \bigcup_{N=1}^{\infty} \{X_n \leq t + \frac{1}{m} \forall n \geq N \} = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{n=1}^{\infty} \{x : X_n(x) \leq t + \frac{1}{m} \}.$ Because each Xn is a random variable, the Set {X: Xn(x) ≤ t+ m b ∈ 子, which would then show that $\{x: X(x) \leq t\} = \bigcap_{m=1}^{\infty} \bigcup_{n=1}^{\infty} \bigcap_{n=N}^{\infty} \{x: X_n(x) \leq t + \frac{1}{m}\}$ is in F, so X is a RV. Remark: The proof above holds if (xn) n=1 is a sequence of RV, then limsup In is a RV. Proposition: Let X be a RV, let h: IR → IR be a continuous function. Then h(x) is a RV. Proof: Let X be a RV on (12,7, P). If V is an open subset of V, because h is a continuous function, then $h^{-1}(V)$ is also open. By Lemma 3.1, $h^{-1}(V)$ is a Borel set for every Borel set V. In particular, h-1((-0,1]) is a Borel

set for every $t \in \mathbb{R}$. Then, $(h(X))^{-1}((-\infty,t))$

= $X^{-1}(h^{-1}((-\omega_1t_3)))$, and because $h^{-1}((-\omega_1t_3))$ is a B-set, it follows that X^{-1} of a B-set is a B-set, so $X^{-1}(h^{-1}((-\omega_1t_3))) \in \mathcal{F}$, so h(X) is a RV.

More generally, it suffices to assume that h is a B-measurable function (Borel measurable), that is $h^{-1}(V) \in \mathcal{B}(IR)$ $\forall V \in \mathcal{B}(IR)$.

Example: Let $h: 112 \rightarrow 112$ be defined by $h(x) = \begin{cases} \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

Then h is B-measurable. So if X is a RV s,t. $X(x) \neq 0 \ \forall x$, then $h(x) = \frac{1}{X}$ is a RV.

Example: Let $\Omega_* = \{H, T3^{1N} = \{x = (x_n)_{n=1}^{\infty} : x_n \in \{H, T3\}.$ Let $E_k = \{x : x_k = H3, let \mathcal{F}_4 = \sigma(E_1, E_2, E_3, E_4),$

let $X_{k}(x) = \begin{cases} 1 & \text{if } X_{k} = H \\ 0 & \text{if } X_{k} = T \end{cases} = 1_{E_{k}}(x)$. Then X_{3} is a RV on $(\Omega_{k}, \mathcal{F}_{u}, P)$ because $E_{3} \in \mathcal{F}_{4}$. However, X_{5} is not a RV bec. $E_{5} \notin \mathcal{F}_{4}$.

Generally, for n > N, Xn is not measurable with respect to $\sigma(E_1, ..., E_N)$.

Independence

Definition: Let (1, F, P) be a PS.

- (i) Two events A, B are independent if $P(A' \cap B) = P(A) P(B)$.
- (ii) A collection $(A_i)_{i \in I}$ is independent if $\forall F \in I$ finite,

$$P(\bigcap_{i \in F} A_i) = \prod_{i \in F} P(A_i)$$

More generally, we could reindex so that for every finite $F = \{1, 2, ..., n\} = \{i_1, ..., i_n\}$, then $P(\bigcap_{k=1}^{n} A_{i_k}) = \prod_{k=1}^{n} P(A_{i_k})$.

- (iii) Two collections A, B are independent if A and B are independent for all $A \in A$ and $B \in B$.
- (iv) Two RVs X, Y are independent if $P(X \in A, Y \in B) = P(X \in A) P(Y \in B)$ $\forall X, Y \in \mathcal{B}(IR)$.

Equivalently, the σ -algebras $\{X^{-1}(A): A \in \mathcal{B}(\mathbb{R})\}$

```
and \{Y^{-1}(B): B \in \mathcal{B}(IR)\} are independent, Thus,
   P(X^{-1}(A) \cap Y^{-1}(B)) = P(X^{-1}(A)) P(Y^{-1}(B))
   (u) A collection of RVs (Xi)reI are independent if
    VFCT finite,
       P(X; e A; VieF) = T P(X; e A;).
Proposition: Let X, Y be ind. RVs on (1, F, P) PS,
 Let f: IR→IR, g: IR→IR be B-measurable functions.
 Then f(x) and g(Y) are ind RVs.
 Proof: (see notes)
Proposition: Let X, Y be RVs on (2, F, P) PS. TFAE:
    (a) X and Y are independent.
    (b) \forall s,t \in \mathbb{R}, P(X \leq s, Y \leq t) = P(X \leq s)P(Y \leq t).
Proof: (a) \Rightarrow (b) easy; by definition.
 Claim: Let P; Q be prob, measures on (IR, 33(IR)).
 Assume P((-\infty,t]) = Q((-\infty,t]) \forall t \in \mathbb{R}. Then P = Q.
 i.e. P(A) = Q(A) \(\forall A \in 3\)(1R).
  (b) \Rightarrow (a) Assume that (b) holds, Fix t \in \mathbb{R}. Define
   \mu(A) = P(x \in A). Then \mu is a prob, measure on
   罗(R), Define
         P_{t}(A) = \frac{P(X \in A, Y \leq t)}{P(Y \leq t)}
  for A \in \mathcal{B}(\mathbb{R}). Then P_{t}((-\infty,s]) = \frac{P(X \in (-\infty,s],Y \leq t)}{P(Y \leq t)}
  (b) P(X \in (-\infty, S]) (\forall s \in IR.) = \mu((-\infty, S]). Thus,
```

 $P_t = \mu$, i.e. $\forall A \in \mathcal{B}(IR)$, $P_t(A) = \mu(A)$. Moreover, $P(XeA, Y \leq t) = P(XeA) P(Y \leq t)$ for all $A \in \mathcal{B}(IR)$ and $t \in IR$. Now fix $B \in \mathcal{B}(IR)$ Use same argument $P(X \le s, Y \in B) = P(X \le s)P(Y \in B)$.