Sequence Modeling: Recurrent and Recursive Nets

Sargur Srihari srihari@buffalo.edu

- Recurrent Neural Networks
- 1. Unfolding Computational Graphs
- 2. Recurrent Neural Networks
- 3. Bidirectional RNNs
- 4. Encoder-Decoder Sequence-to-Sequence Architectures
- 5. Deep Recurrent Networks
- 6. Recursive Neural Networks
- 7. The Challenge of Long-Term Dependencies
- 8. Echo-State Networks
- 9. Leaky Units and Other Strategies for Multiple Time Scales
- 10. LSTM and Other Gated RNNs
- 11. Optimization for Long-Term Dependencies
- 12. Explicit Memory

RNNs process sequential data

- Recurrent Neural Networks are a family of neural networks for processing sequential data
- RNN and CNN are both specialized architectures
- Just as CNN is specialized for processing grid of values, e.g., image
 - RNN is specialized for processing a sequence of values $x^{(1)},...,x^{(\tau)}$
- Just as CNNs can readily scale images with large width/height and process variable size images
 - RNNs can scale to much longer sequences than would be practical for networks without sequence-based specialization
 - RNNs can also process variable-length sequences

Examples of Sequential Data and Tasks

- Sequence-to-sequence
 - Speech recognition
 - decompose sound waves into frequency and amplitude using Fourier transforms yielding a spectrogram shown

- Named Entity Recognition
 - Input: Jim bought 300 shares of Acme Corp. in 2006
 - NER: [Jim]_{Person} bought 300 shares of [Acme Corp.]_{Organization} in [2006]_{Time}
- Sequence-to-symbol
 - Sentiment
 - Speaker recognition

Neural network for 1-D convolution

Kernel g(t): [...0, w_1 , w_0 , 0...].

Equations for outputs of this network:

$$y_0 = \sigma(W_0 x_0 + W_1 x_1 - b)$$
 $y_1 = \sigma(W_0 x_1 + W_1 x_2 - b)$ etc. upto y_8

Note that kernel gets flipped in convolution

We can also write the equations in terms of elements of a general 8×8 weight matrix W as:

$$y_0 = \sigma(W_{0,0}x_0 + W_{0,1}x_1 + W_{0,2}x_2...)$$
$$y_1 = \sigma(W_{1,0}x_0 + W_{1,1}x_1 + W_{1,2}x_2...)$$

where
$$W = egin{bmatrix} w_0 & w_1 & 0 & 0 & \dots \\ 0 & w_0 & w_1 & 0 & \dots \\ 0 & 0 & w_0 & w_1 & \dots \\ 0 & 0 & 0 & w_0 & \dots \\ \dots & \dots & \dots & \dots \end{bmatrix}$$

Time Delay Neural Networks

- Time-delay neural networks perform convolution across 1-D temporal sequence
 - Convolution operation allows a network to share parameters across time, but is shallow
 - Each member of output is dependent upon a small no. of neighboring members of the input
 - Parameter sharing manifests in the application of the same convolutional kernel at each time step

A TDNN remembers the previous few training examples and uses them as input into the network.

The network then works like a feed-forward, back propagation network.

RNN vs. TDNN

- RNNs share parameters in a different way
 - Each member of output is a function of previous members of output
 - Each output produced using same update rule applied to previous outputs
 - This recurrent formulation results in sharing of parameters through a very deep computational graph
- An unrolled RNN

RNN as a network with cycles

- An RNN is a class of neural networks where connections between units form a directed cycle
- This creates an internal state of the network which allows it to exhibit dynamic temporal behavior
- The internal memory can be used to process arbitrary sequences of inputs

Three layer network with input \boldsymbol{x} , hidden layer \boldsymbol{z} and output \boldsymbol{y} Context units \boldsymbol{c} maintain a copy of the previous value of the hidden units

RNNs share same weights across Time Steps

- To go from multi-layer networks to RNNs:
 - Need to share parameters across different parts of a model
 - Separate parameters for each value of cannot generalize to sequence lengths not seen during training
 - Share statistical strength across different sequence lengths and across different positions in time
- Sharing important when information can occur at multiple positions in the sequence
 - Given "I went to Nepal in 1999" and "In 1999, I went to Nepal", an ML method to extract year, should extract 1999 whether in position 6 or 2
 - A feed-forward network that processes sentences of fixed length would have to learn all of the rules of language separately at each position
 - An RNN shares the same weights across several time steps

Problem of Long-Term Dependencies

- Easy to predict last word in "the clouds are in the sky,"
 - When gap between relevant information and place that it's needed is small, RNNs can learn to use the past information

- "I grew up in France... I speak fluent French."
 - We need the context of France, from further back.
 - Large gap between relevant information and point where it is needed

- In principle RNNs can handle it, but fail in practice
 - LSTMs offer a solution

RNN operating on a sequence

- RNNs operate on a sequence that contain vector $\mathbf{x}^{(t)}$ with time step index t, ranging from 1 to τ
 - Sequence: $x^{(1)},...,x^{(\tau)}$
 - RNNs operate on minibatches of sequences of length τ
- Some remarks about sequences
 - The steps need not refer to passage of time in the real world
 - RNNs can be applied in two-dimensions across spatial data such as image
 - Even when applied to time sequences, network may have connections going backwards in time, provided entire sequence is observed before it is provided to network

Computational Graphs for RNNs

- We extend computational graphs to include cycles
 - Cycles represent the influence of the present value of a variable on its own value at a future time step
 - In a Computational graph nodes are variables/operations
 - RNN to map input sequence of x values to output sequence of o values
 - Loss L measures how far each output o is from the training target y

Forward propagation is given as follows:

For each time step t, t=1 to $t=\tau$ Apply the following equations

$$o^{(t)} = c + V h^{(t)}$$

$$\boldsymbol{h}^{(\mathrm{t})} = \mathrm{tanh}(\boldsymbol{a}^{(\mathrm{t})})$$

$$\boldsymbol{a}^{(t)} = \boldsymbol{b} + W\boldsymbol{h}^{(t-1)} + U\boldsymbol{x}^{(t)}$$

Srihari

Summary of Neural Sequential Models

Recurrent Neural Network

RNN

y_t h x_t

Unrolled RNN

Definition

inputs: $x = (x_1, x_2, ..., x_T), x_i \in \mathbb{R}^I$ hidden units: $h = (h_1, h_2, ..., h_T), h_i \in \mathbb{R}^J$ outputs: $y = (y_1, y_2, ..., y_T), y_i \in \mathbb{R}^K$

nonlinearity: \mathcal{H}

Activation Functions

$$h_t = \mathcal{H}(W_{xh}x_t + W_{hh}h_{t-1} + b_h)$$

$$y_t = W_{hy}h_t + b_y$$

Bidirectional RNN

inputs : $x=(x_1,x_2,...,x_T), x_i \in \mathbb{R}^I$

hidden units: \overrightarrow{h} and \overleftarrow{h}

outputs : $y = (y_1, y_2, ..., y_T), y_i \in \mathbb{R}^K$

 $nonlinearity: \mathcal{H}$

$\overrightarrow{h}_t =$	$\mathcal{H}(W_{x\overrightarrow{h}}x_t + W_{\overrightarrow{h}\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}})$
$\overleftarrow{h}_t =$	$ \mathcal{H}(W_{x\overrightarrow{h}}x_t + W_{\overrightarrow{h}\overrightarrow{h}}\overrightarrow{h}\overrightarrow{h}_{t-1} + b_{\overrightarrow{h}}) $ $ \mathcal{H}(W_{x\overleftarrow{h}}x_t + W_{\overleftarrow{h}\overleftarrow{h}}\overleftarrow{h}_{t-1} + b_{\overleftarrow{h}}) $
$y_t =$	$W_{\overleftarrow{h} y} \overleftarrow{h}_t + W_{\overrightarrow{h} y} \overrightarrow{h}_t + b_y$

Deep Bidirectional RNN

LSTM

Deep Learning and Graphical Models

- In deep learning:
 - Tasks of interest:
 - Classification
 - Feature learning
 - Method of learning
 - Backpropagation and gradient descent
- In graphical models:
 - Tasks of interest:
 - Transfer learning
 - Latent variable inference
 - Methods of learning
 - Parameter learning methods
 - Structure learning methods
- Hybrid graphical models combine the two types of models
 - They are trained using backpropagation

Hybrid Graphical Models and Neural Networks

Hybrid NN and HMM

Hybrid RNN+HMM

Hybrid CNN+CRF

