903126680

Homework 1

Due 01/29/2018

Problem 1.

(a) We are looking to estimate $\mu = \int_a^b f(t)dt$, where a = -1, b = 3, $f(t) = \ln(1 + \sqrt{|t|})$. Apply change of variables t = a + (b - a)u = -1 + (3 - (-1))u = -1 + 4u. New integral is $\mu = \int_0^1 (3 - (-1))f[-1 + (3 - (-1))u]du = \int_0^1 4f[-1 + 4u]du = E[h(U)] \text{ where } U \sim Unif(0,1) \text{ and } h(u) \equiv (3 - (-1))f[-1 + (3 - (-1))u] = 4f[-1 + 4u] = 4\ln(1 + \sqrt{|-1 + 4u|}).$

Since
$$f(t) = \ln(1 + \sqrt{|t|})$$
, $f[-1 + 4u] = \ln(1 + \sqrt{|-1 + 4u|})$

We've generated a pseudorandom sample $U_i \forall i = 1, ..., 20$. Next, we compute $X_i = h(U_i)$ and find point estimate.

$$\overline{x_n} = \frac{1}{20} \sum_{i=1}^{20} X_i = 2.772628527$$

$$s_x^2 = \frac{1}{19} \sum_{i=1}^{20} (X_i - \overline{x_n})^2 = 0.8901038167 \implies s_x = 0.9434531344$$

Therefore, 95% Confidence Interval for µ is given by:

$$2.772628527 \pm t_{19,0.975} \frac{(0.9434531344)}{\sqrt{20}} = [2.331078869, 3.214178186].$$

(b)
$$\widehat{n} = \lceil n_0 \left(\frac{H(n_0, \alpha)}{h^*} \right)^2 \rceil$$
 where $n_0 = 20$, $H(n_0, \alpha) = 0.4415496587$, $h^* = 0.10$. Therefore, $\widehat{n} = 390$.

Problem 2.

From Wolfram Alpha, the actual value of μ = 2.7422. When recalculating 100 times, 94 of the repetitions' 95% confidence intervals contained μ . This means, in my experiment, 94% truly contained the mean, μ .

Problem 3.

M/G/1 Queue: Poisson Arrivals \Leftrightarrow Exponential Interarrival Times (A ~ Exp(0.5)), Gamma Service Times (S ~ Gamma(0.8,2)), 1 Server.

(a) Kingman's Formula implies that, in steady state,

$$E[w_q] \approx \left(\frac{\rho}{(1-\rho)}\right) \left(\frac{c_a^2 + c_s^2}{2}\right) E[S].$$

In this scenario, $\lambda = 0.5$ /per minute, $\rho = \frac{\lambda}{\mu} = \frac{0.5}{0.625} = 80\%$, $c_a^2 = \frac{Var(A)}{E[A]^2} = \frac{4}{(2)^2} = 1$, $c_s^2 = \frac{Var(S)}{E[S]^2} = \frac{3.2}{(1.6)^2} = 1.25$.

Therefore, in steady state, $E[w_q] = (\frac{0.8}{(1-0.8)}) (\frac{1+1.25}{2}) (1.6) = 7.2$ minutes

- (b) The 95% confidence interval for $E[\overline{x_i}] = [8.8650, 8.8700]$ minutes
- (c) Histogram for Avg_TIS

Cumulative Histogram for Avg_TIS

(d) The 95% confidence interval for 90th Quantile = [23.737448, 23.750429] minutes