UNCLASSIFIED

AD 403534

Reproduced by the

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION. ALEXANDRIA. VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

CATALOGY SE STIM

Firefly III, Sounding Rocket Launching Report

Launch Facility, Vehicles, and Data Reduction
(33 Vehicles Launched 15 October-15 December 1962)

by William K. Vickery

APGC Technical Documentary Report No. APGC-TDR-63-19 Vol 1

APRIL 1963 APGC Project No. 4984W1

DEPUTY FOR AEROSPACE SYSTEMS TEST

AIR PROVING GROUND CENTER

AIR FORCE SYSTEMS COMMAND . UNITED STATES AIR FORCE

EGLIN AIR FORCE BASE, FLORIDA

Qualified requesters may obtain copies from ASTIA. Orders will be expedited if placed through the librarian or other person designated to request documents from ASTIA.

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related government procurement operation, the government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Do not return this copy. Retain or destroy.

FOREWORD

This report, consisting of Volumes 1 and 2, describes the sounding rockets, ballistic computations, range support, and the launch and flight data obtained by the Air Proving Ground Center under APGC Project 4984W1, Firefly III. Thirty-three sounding rockets were launched in support of a basic research program directed by the Air Force Cambridge Research Laboratories. This project was conducted under the authority of AFCRL/AFOAR Form 613 for Project 4984, Atmospheric Chemical Physics (Firefly III).

Catalog cards may be found in the back of this document.

ABSTRACT

Thirty-three sounding rockets (15 Nike-Cajun, 4 Nike-Apache, 9 Honest John-Nike-Nike, and 5 Aerobee 150) were launched from the Aerospace Launching Facility, Eglin Gulf Test Range, Florida. These launchings were conducted in support of Project Firefly III, directed by the Geophysics Research Directorate, Air Force Cambridge Research Laboratories, Office of Aerospace Research.

The overall report, consisting of Volumes 1 and 2, describes the sounding rockets, ballistic computations, range support, and the launch and flight data obtained. Specifically, Volume 2 presents only the theoretical and empirical vehicle trajectory data tabulated at the Air Proving Ground Center.

Thirty-one rockets provided trajectories which were sufficient to meet the scientific requirements. Two Nike-Cajun flights were unsatisfactory.

The maximum altitude predictions averaged approximately 3 percent high for the Aerobee 150's, 6 percent high for the Honest John-Nike-Nike's, and 7 percent high for the Nike-Cajun's. The maximum altitude predictions were also satisfactory for the Nike-Apache rockets.

PUBLICATION REVIEW

This technical documentary report has been reviewed and is approved.

Brigadier General, USAF

Vice Commander

CONTENTS

Section		Page
1. 2.	INTRODUCTION SOUNDING ROCKETS, FIN SURVEY AND DATA REDUCTION, AND TRACKING AIDS Sounding Rockets Fin Survey and Data Reduction Tracking Aids	1 1 1 7 9
3.	BALLISTIC COMPUTATIONS Dispersion Studies Trajectory Predictions Impact Predictions Safe Impact Prediction Charts	11 11 11 18 18
4. 5.	LAUNCH FACILITIES EGTR TECHNICAL FACILITIES Aerobee 150 Honest John-Nike-Nike Nike-Apache Nike-Cajun	23 24 24 24 27 27
6 . 7 .	RANGE WEATHER SUPPORT DATA REDUCTION Phototheodolite Data Radar Data Tabular Data	27 28 28 28 28
8.	Plotted Data DISCUSSION Data Summary Vehicle Tracking Vehicle Performance Vehicle Performance Fredictions REFERENCES	29 41 41 41 42 43 163
	ILLUSTRATIONS AND TABLES	
Figure		Fage
1. 2.	Aerobee 150 Vehicle and Payload Configurations Honest John-Nike-Nike Vehicle and Fayload Configurations	3 5

Figure		Fage
3.	Nike-Apache Vehicle and Payload Configuration	6
4.	Nike-Cajun Vehicle and Payload Configurations	8
5.	Cajun Tabs	9
6.	Typical Flare Installation	10
7.	Aerobee 150 Range and Maximum Altitude vs. Launch	
•	Angle for Various Payload Weights	12
8.	Honest John-Nike-Nike Range and Maximum Altitude	
^	vs. Launch Angle for Various Payload Weights	13
9•	Nike-Apache Range and Maximum Altitude vs. Launch	14
10	Angle for Various Payload Weights	14
10.	Nike-Cajun Range and Maximum Altitude vs. Launch Angle for Various Payload Weights. (Small or no	
		15
11.	Tabs)	13
11.	Angle for Various Payload Weights (6-rps Tabs)	16
12.	Nike-Cajun Range and Maximum Altitude vs. Launch	10
1 40	Angle for Various Payload Weights (6-rps Tabs,	
	$K_D + 10\%$)	17
13.	Aerobee 150 - Predicted Safe Impact Area	19
14.	Honest John-Nike-Nike, Stage III, 300-lb Payload -	- /
•	Predicted Safe Impact Area	20
15.	Nike-Apache - Predicted Safe Impact Area	21
16.	Nike-Cajun with 6-rps Tabs - Fredicted Safe Impact	
Ţ	Area	22
17.	Aerospace Launching Facility	25
18.	EGTR, Technical Facilities - January 1963	26
19.	Sounding Rocket Actual Maximum Altitude Deviation	
	from Predicted Altitude	30
20.	AFCRL Chemical Release Positions vs. Wind-Weighted	
	Theoretical Trajectories. Aerobee 150 (Karen and	
	Laura)	31
21.	AFCRL Chemical Release Positions vs. Wind-Weighted	
	Theoretical Trajectories. Aerobee 150 (Fanny and	
	Gilda)	32
22.	AFCRL Chemical Release Positions vs. Wind-Weighted	
	Theoretical Trajectories. Honest John-Nike-Nike	
	(Mabel, Dinah, Eva, Netty, Olga, Lisa, and Patsy)	33
23.	AFCRL Chemical Release Positions vs. Wind-Weighted	
	Theoretical Trajectories. Nike-Apache. (Terry and	
	Sharon)	34

Figure		Fage
24.	AFCRL Chemical Release Fositions vs. Wind-Weighted Theoretical Trajectories. Nike-Apache (Ivy and	
25.	Esther)	35
·	Theoretical Trajectories. Nike-Cajun (Alice, Queenie, and Paula)	36
26.	AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Nike-Cajun. (Ruby, Sally,	30
27	and Beverly)	37
27.	AFCRL Chemical Release Fositions vs. Wind-Weighted Theoretical Trajectories. Nike-Cajun. (Bonny, Dag-	
28.	mar, Cindy and Enid)	38
	Kitty)	39
29.	Sign Convention for Spin Tab Installation	40
30.	Aerobee 150 (Karen) Altitude vs. Time (Entire Trajectory)	59
31.	Aerobee 150 (Karen) Range vs. Displacement (Entire	
32.	Trajectory)	60
	jectory)	61
33.	Aerobee 150 (Laura) Altitude vs. Time (Entire Tra- jectory)	62
34.	Aerobee 150 (Laura) Altitude vs. Time (Trajectory Through Burnout)	63
35.	Aerobee 150 (Laura) Range vs. Displacement (Entire	
36.	Trajectory)	64
27	jectory Through Burnout)	65
37.	Aerobee 150 (Laura) Velocity vs. Time (Entire Tra- jectory)	66
38.	Aerobee 150 (Laura) Velocity vs. Time (Trajectory Through Burnout)	67
39.	Aerobee 150 (Martha) Altitude vs. Time (Entire Tra-	
40.	jectory)	68
_	Through Burnout)	69
41.	Aerobee 150 (Martha) Range vs. Displacement (Entire	70

Figure		Fage
42.	Aerobee 150 (Martha) Range vs. Displacement (Trajectory Through Burnout)	71
43.	Aerobee 150 (Martha) Velocity vs. Time (Entire Tra- jectory)	72
44.	Aerobee 150 (Martha) Velocity vs. Time (Trajectory Through Burnout)	73
45.	Aerobee 150 (Fanny) Altitude vs. Time (Entire Trajectory)	74
46.	Aerobee 150 (Fanny) Range vs. Displacement (Entire	
47.	Trajectory)	75
48.	jectory)	76
49.	jectory)	77
50,	Trajectory)	78
-	jectory)	79
51.	Honest John-Nike-Nike (Ethel) Altitude vs. Time (Entire Trajectory)	80
52.	Honest John-Nike-Nike (Ethel) Altitude vs. Time (Tra- jectory Through Burnout)	81
53 .	Honest John-Nike-Nike (Ethel) Range vs. Displacement (Entire Trajectory)	82
54.	Honest John-Nike-Nike (Ethel) Range vs. Displacement Trajectory Through Burnout)	83
55•	Honest John-Nike-Nike (Ethel) Velocity vs. Time (Entire Trajectory)	84
56,	Honest John-Nike-Nike (Ethel) Velocity vs. Time (Tra-	
57.	jectory Through Burnout)	85
58.	tire Trajectory)	86
59.	jectory Through Burnout)	87
60.	(Entire Trajectory)	88
•	(Trajectory Through Burnout)	89
61.	Honest John-Nike-Nike (Dinah) Velocity vs. Time (Entire Trajectory)	90

Figure		Fage
62.	Honest John-Nike-Nike (Dinah) Velocity vs. Time (Tra- jectory Through Burnout)	91
63.	Honest John-Nike-Nike (Eva) Altitude vs. Time (En-	
64.	tire Trajectory)	92
65.	jectory Through Burnout)	93
	(Entire Trajectory)	94
66.	Honest John-Nike-Nike (Eva) Range vs. Displacement (Trajectory Through Burnout)	95
67.	Honest John-Nike-Nike (Eva) Velocity vs. Time (Entire Trajectory)	96
68.	Honest John-Nike-Nike (Eva) Velocity vs. Time (Tra-	70
69.	jectory Through Burnout)	97
70.	tire Trajectory)	98
-	jectory Through Burnout)	99
71.	Honest John-Nike-Nike (Netty) Range vs. Displacement (Entire Trajectory)	100
72.	Honest John-Nike-Nike (Netty) Range vs. Displacement (Trajectory Through Burnout)	101
73.	Honest John-Nike-Nike (Netty) Velocity vs. Time (En-	
74.	tire Trajectory)	102
75.	jectory Through Burnout)	103
-	tire Trajectory)	104
76.	Honest John-Nike-Nike (Olga) Altitude vs. Time (Tra- jectory Through Burnout)	105
77.	Honest John-Nike-Nike (Olga) Range vs. Displacement (Entire Trajectory)	106
78.	Honest John-Nike-Nike (Olga) Range vs. Displacement	
79.	(Trajectory Through Burnout)	107
80.	tire Trajectory)	108
-	jectory Through Burnout)	109
81.	Honest John-Nike-Nike (Lisa) Altitude vs. Time (Entire Trajectory)	110

Figure		Page
82.	Honest John-Nike-Nike (Lisa) Altitude vs. Time (Tra- jectory Through Burnout)	111
83.	Honest John-Nike-Nike (Lisa) Range vs. Displacement (Entire Trajectory)	112
84.	Honest John-Nike-Nike (Lisa) Range vs. Displacement (Trajectory Through Burnout)	113
85.	Honest John-Nike-Nike (Lisa) Velocity vs. Time (Entire Trajectory)	114
86.	Honest John-Nike-Nike (Lisa) Velocity vs. Time (Tra-	
87.	jectory Through Burnout)	115
88.	tire Trajectory)	116
89.	jectory Through Burnout)	117
90.	(Entire Trajectory) Honest John-Nike-Nike (Patsy) Range vs. Displacement	118
91.	(Trajectory Through Burnout) Honest John-Nike-Nike (Patsy) Velocity vs. Time (En-	119
92.	tire Trajectory)	120
93.	jectory Through Burnout)	121 ah
	Burnout)	122
94.	Nike-Cajun (Alice) Range vs. Displacement (Trajectory Through Burnout)	123
95.	Honest John-Nike-Nike (Alice) Velocity vs. Time (Trajectory Through Burnout)	124
96.	Nike-Cajun (Brenda) Altitude vs. Time (Trajectory Through Burnout)	125
97.	Nike-Cajun (Brenda) Range vs. Displacement (Trajectory Through Burnout)	126
98.	Nike-Cajun (Brenda) Velocity vs. Time (Trajectory Through Burnout)	127
99•	Nike-Cajun (Brenda) Velocity vs. Time (Entire Tra- jectory)	128
100.	Nike-Cajun (Ruby) Altitude vs. Time (Trajectory Through Burnout)	129
101.	Nike-Cajun (Ruby) Range vs. Displacement (Entire	130

Figure		Page
102.	Nike-Cajun (Ruby) Velocity vs. Time (Entire Tra-	
103.	jectory	131
	Through Burnout)	132
104.	Nike-Cajun (Sally) Altitude vs. Time (Trajectory Through Burnout)	133
105.	Nike-Cajun (Sally) Range vs. Displacement (Trajectory	
106.	Through Burnout)	134
106.	Nike-Cajun (Sally) Velocity vs. Time (Trajectory Through Burnout)	135
107.	Nike-Cajun (Beverly) Altitude vs. Time (Trajectory	
108.	Through Burnout)	136
100.	jectory Through Burnout)	137
109.	Nike-Cajun (Beverly) Velocity vs. Time (Trajectory	100
110.	Through Burnout)	138
-	Through Burnout)	139
111.	Nike-Cajun (Bonny) Range vs. Displacement (Tra- jectory Through Burnout)	140
112.	Nike-Cajun (Bonny) Velocity vs. Time (Trajectory	140
	Through Burnout)	141
113.	Nike-Cajun (Dagmar) Altitude vs. Time (Trajectory Through Burnout)	142
114.	Nike-Cajun (Dagmar) Range vs. Displacement (Tra-	
115.	jectory Through Burnout)	143
115.	Through Burnout)	144
116.	Nike-Cajun (Cindy) Altitude vs. Time (Trajectory	
117.	Through Burnout)	145
·	jectory Through Burnout)	146
118.	Nike-Cajun (Cindy) Velocity vs. Time (Trajectory	147
119.	Through Burnout)	141
	Through Burnout)	148
120.	Nike-Cajun (Louise) Range vs. Displacement (Tra- jectory Through Burnout)	149
121.	Nike-Cajun (Louise) Velocity vs. Time (Trajectory	/
	Through Burnout)	150

Figure		Fage
122.	Nike-Cajun (Kitty) Altitude vs. Time (Trajectory Through Burnout)	151
123.	Nike-Cajun (Kitty) Altitude vs. Time (Trajectory	1,71
124.	Through Burnout)	152
1240	Nike-Cajun (Kitty) Range vs. Displacement (Entire Trajectory)	153
125.	Nike-Cajun (Kitty) Range vs. Displacement (Tra-	
101	jectory Through Burnout)	154
126.	Nike-Cajun (Kitty) Velocity vs. Time (Entire Tra-	
127.	jectory) Nike-Cajun (Kitty) Velocity vs. Time (Trajectory	155
128.	Through Burnout)	1 56
	jectory)	157
129.	Nike-Cajun (Dana) Altitude vs. Time (Trajectory Through Burnout)	1 58
130.	Nike-Cajun (Dana) Range vs. Displacement (Entire	. 50
	Trajectory)	159
131.	Nike-Cajun (Dana) Range vs. Displacement (Tra-	
132.	jectory Through Burnout)	160
1720	jectory)	161
133.	Nike-Cajun (Dana) Velocity vs. Time (Trajectory	
,	Through Burnout)	162
Table		
1.	Vehicle and Flight Data for (1) Aerobee 150, (2) Honest John-Nike-Nike, (3) Nike-Apache, and (4) Nike-Cajun	44
2.	Aerobee 150 Physical and Aerodynamic Data, Stage I,	77
	Stage IA, and Stage II	48
3.	Honest John-Nike-Nike Fhysical and Aerodynamic	
_	Data, Stage I, Stage II, and Stage III	49
4.	Nike-Apache Physical and Aerodynamic Data, Stage	52
5.	I and Stage II Nike-Cajun Physical and Aerodynamic Data, Stage I	54
J	and Stage II	54
6.	Wind Data	56

SECTION 1 - INTRODUCTION

The Deputy for Aerospace Systems Test, APGC (Air Froving Ground Center), launched 33 sounding rockets from the Aerospace Launching Facility at Site A-11, EGTR (Eglin Gulf Test Range), on Santa Rosa Island, Florida, between 15 October 1962 and 15 December 1962. There were 5 Aerobee 150, 9 Honest John-Nike-Nike, 4 Nike-Apache, and 15 Nike-Cajun rockets launched in support of an AFCRL (Air Force Cambridge Research Laboratories) basic research program designed to provide controlled releases of various chemicals into the upper atmosphere. The support required of APGC was provided in accordance with the requirements and schedule set forth by AFRCL.

APGC support in this program consisted of providing rocket assembly, launch facilities, launch and support operations, optical and radar tracking instrumentation and telemetry receiving stations, ballistic services for vehicle trajectory and impact predictions, and trajectory data reduction and analysis. Other support services were provided which included fin survey data reduction, spin tab and fiberglass nose cone fabrication, and the assembly of certain payload subsystems.

This portion of the report, Vol 1, describes the support and presents the vehicle and flight data obtained. The flights are identified by the AFCRL assigned name. The information presented with regard to vehicle and flight data is generally grouped by rocket system, with these groups divided by payload configuration and subdivided by firing order. Volume 2 of this report contains the theoretical and empirical vehicle trajectory data tabulated at APGC.

SECTION 2 - SOUNDING ROCKETS, FIN SURVEY AND DATA REDUCTION, AND TRACKING AIDS

SOUNDING ROCKETS

Four sounding rocket systems were utilized during the series of launchings, the Aerobee 150, the Honest John Nike-Nike, the Nike-Apache, and the Nike-Cajun. These systems are briefly discussed in

the following paragraphs. The Atlantic Research Corporation was the primary AFCRL payload contractor, and furnished hardware for all but two of the payloads. The Geophysics Corporation of America furnished two payloads for NASA. Vehicle serial numbers, payload weights, fuel analysis, fin survey data, and other rocket physical data are recorded, where applicable, in Table 1.

AEROBEE 150. The Aerobee 150 is a liquid-propellant sounding rocket. It consists of a 2.5 KS 18,000 solid propellant JATO booster and the AJ 11-21 liquid propellant sustainer. See Fig. 1 for a sketch of the vehicle and payloads utilized, and Table 1 for additional vehicle data.

The sustainer carried a 10-in. range-safety extension which contained an AN/DPN-41 tracking beacon and an AN/DRW-11 command receiver. Three of the payloads, Karen, Laura, and Martha, were equipped with telemetry transmitters.

The fins were set to provide a roll rate of 2 rps at sustainer burnout. No attempt was made to verify the roll rate.

HONEST JOHN-NIKE-NIKE. The Honest John-Nike-Nike is a three-stage solid-propellant sounding rocket. The first stage is an Honest John M-6 rocket motor and the second and third stages are Nike M-5 rocket motors. See Fig. 2 for a sketch of the vehicle and payloads utilized, and Table 1 for additional vehicle data.

Standard Honest John fins were used on the first stage. Variable incidence fins 1 with Inconel steel leading edge caps were used for the second and third stages. The fins were surveyed and set to provide a roll rate at burnout of each stage as follows:

Stage	Roll Rate
	(rps)
1	0.7
2	1.0
3	7.0

The exception was Patsy which had the same roll rates for the first and second stages, but a third-stage burnout roll rate of 0.65 rps. The roll rates of these vehicles could not be determined from the tracking film.

Second- and third-stage ignition was accomplished by ground igniting pyrotechnic delay igniters through a first-motion switch. Nominal ignition delays were launch plus 10 seconds for the second stage, and launch plus 25 seconds for the third stage.

¹Fins are manufactured by the Space Vehicle Division, Atlantic Research Corporation.

Fig. 1: Aerobee 150 Vehicle and Payload Configurations.

Fig. 2: Honest John-Nike-Nike Vehicle and Payload Configuration.

The first stage was separated by drag after burnout. The second stage was held to the third stage with a retractable pin until launch plus 20 seconds to prevent premature separation. After pin retraction the second stage was also separated by drag.

An AN/DPN-41 radar tracking beacon was flown on Ethel. All vehicles, except Hazel, carried tracking flares. The Ethel, Mabel, Dinah, Eva, Netty, and Olga payloads were equipped with telemetry transmitters.

NIKE-APACHE. The Nike-Apache is a two-stage solid-propellant vehicle. The first stage is a Nike M-5 rocket motor and the second stage an Apache TE-307 rocket motor.

Variable incidence fins were used on the first stage and Apache fins 2 were used on the second stage. The fins for these vehicles were surveyed and the first-stage fins canted to provide a roll rate of 1 1/2 rps at first-stage burnout. The blank tabs on the second-stage fins were milled flat. The residual burnout roll rates for the second stages are given in Table 3. Actual roll rates are not available.

Second-stage ignition was accomplished by ground igniting pyrotechnic delay igniters through a first-motion switch. The nominal delay time was launch plus 20 seconds. Actual times were not recorded, but were about 20 to 21 seconds on the four vehicles, as reported by observers. Flares or other tracking aids were not used.

The Nike-Apache and payload configurations are shown in Fig.3, and additional vehicle data are recorded in Table 1.

NIKE-CAJUN. The Nike-Cajun sounding rocket is a two-stage solid-propellant vehicle. The first stage is a Nike M-5 rocket motor, and the second stage is a Cajun TE-82 Mod 1 rocket motor.

Variable incidence fins were used on the first stage and fixed fins ³ on the second stage. All fins were surveyed, and the first-stage fins were canted to provide a roll rate of 1 1/2 rps at first-stage burnout. Some second-stage fins were flown without wedges, some with small wedges to provide approximately 1 rps at second-stage burnout, and some with larger wedges to provide a 6-rps burnout roll rate. Predicted roll rates are shown in Table 1. Actual roll rates could not be determined.

² Fins are manufactured by the Space Vehicle Division, Atlantic Research Corporation.

³ Fins are manufactured by the Aerolab Development Company.

Fig. 3: Nike-Apache Vehicle and Payload Configuration.

See Fig. 4 for a sketch of the vehicle and payload configurations flown, and refer to Table 1 for additional vehicle data. The spin tabs used for the 6-rps spin rate are shown in Fig. 5.

Second-stage ignition was accomplished by ground igniting pyrotechnic delay igniters through a first-motion switch. Two nominal delay times were used, 16 and 17 seconds. Ballistic predictions used a 17.88-second second-stage ignition time, a value which was derived from an examination of the ignition history of Cajuns previously launched at APGC. The average ignition delay for 11 recorded Cajun ignition times on this series was 18.73 seconds.

Tracking flares were flown on 12 of the 15 Nike-Cajuns. No tracking aids were used on Queenie, Paula, and Enid.

FIN SURVEY AND DATA REDUCTION

The fins were surveyed for the Honest John, Apache, and Cajun vehicles by assembling the fins to the motors, leveling, and surveying. A three-chord survey was performed on the Apache and Cajun fins, and a five-chord survey was performed on the Honest John fins. The Nike fins were mounted in a jig and a five-chord survey was accomplished.

The data from the surveys were reduced on an LGP-30 computer using a program written by APGC from theory provided by AFCRL. The program output provided the tab length for the Cajun spin tabs for a 6-rps roll rate, and the corresponding Nike fin cant angles for a 1 1/2-rps roll rate at Nike burnout. The Nike cant angles incorporated the effect of the 6-rps Cajun fin and tab. The program also provided the residual burnout roll rates for the Cajuns and Apaches without tabs, and the proper Nike cant angles for a 1 1/2-rps roll rate at first-stage burnout. The effect of the Cajun or Apache fin, and tab, if used, was neglected for low second-stage roll rates.

The Honest John fins were installed with the preset 30 minutes of cant. The roll rate was corrected by tabs to 0.7 rps at first-stage burnout. The computer output provided the proper tab length for the Honest John fins and the Nike cant angles for the second and third stages. The effects of the second- and third-stage fin cants were incorporated into the computation of the first-stage tab length and the effects of the third-stage fin cant included into the calculation of the second-stage fin-cant angle.

Fig. 4: Nike-Cajun Vehicle and Fayload Configurations.

Fig. 5: Cajun Tabs.

The Aerobee 150 fins were surveyed and canted in accordance with the Aerojet-General Field Test Procedure, AF TP-1121-019.

TRACKING AIDS

Flares were flown on 12 of the 15 Nike-Cajun vehicles and on 8 of the 9 Honest John-Nike-Nike vehicles. The flares were mounted on the fin shroud, between fins, and 180 degrees apart. A typical installation is shown in Fig. 6. The flares were U. S. Flare Division, Atlantic Research Corporation, Type 175C. The identification of the specific flares used is given in Table 1. The flares provided 30 seconds of light source as a tracking aid.

A flashing light was flown on Honest John-Nike-Nike Hazel. The light flashed at 1-second intervals until third-stage ignition, but was inadequate as a tracking aid.

Fig. 6: Typical Flare Installation.

SECTION 3 - BALLISTIC COMPUTATIONS

DISPERSION STUDIES

Dispersion studies have been published for the vehicles launched during this project. The studies are listed in the References section of this report.

TRAJECTORY PREDICTIONS

Vehicle trajectory calculations were based upon the input data shown on Tables 2 through 5. Table 2 applies to the Aerobee 150; Table 3 applies to the Honest John-Nike-Nike; Table 4 applies to the Nike-Apache; and Table 5 applies to the Nike-Cajun. The trajectory calculations were performed on an IBM 7090 computer using a six-degree-of-freedom ballistic program.

Theoretical trajectories based on the input data, the actual launcher settings, and the winds nearest the time of launch have been computed and are provided along with the tabulated flight data in Volume 2. These theoretical data are also plotted with the actual data in Figs. 30 through 133.

The drag of the tracking flares was not considered for either the Honest John-Nike-Nike or the Nike-Cajun vehicles, but an additional 3 lb for flare weight was added as payload for the Nike-Cajun. The drag of the 6-rps Cajun spin tabs was considered in the predictions, and 2 lb for tab weight were added as Cajun payload. The drag and weight of the small tabs was neglected.

Maximum altitude and range versus launch angle for various payload weights are shown for the Aerobee 150 (Fig. 7), Honest John-Nike-Nike (Fig. 8), Nike-Apache (Fig. 9), and the Nike-Cajun (Figs. 10, 11, and 12).

The predictions for Honest John-Nike-Nike Ethel were based upon the best information available prior to the flight. Ethel was flown as a vehicle flight test, and the flight performance was used as a basis for the prediction of the subsequent flights in the series.

The Nike-Apache predictions were based on a 10-degree half-angle nose cone. The physical configuration of the sodium flare payloads was not determined until shortly prior to the scheduled launch, and the lack

Fig. 7: Aerobee 150 Range and Maximum Altitude vs. Launch Angle for Various Payload Weights.

Fig. 8: Honest John-Nike-Nike Range and Maximum Altitude vs. Launch Angle for Various Payload Weights.

Fig. 9: Nike-Apache Range and Maximum Altitude vs. Launch Angle for Various Payload Weights.

Fig. 10: Nike-Cajun Range and Maximum Altitude vs. Launch Angle for Various Payload Weights. (Small or no Tabs.)

Fig. 11: Nike-Cajun Range and Maximum Altitude vs. Launch Angle for Various Payload Weights (6-rps Tabs.)

Fig. 12: Nike-Cajun Range and Maximum Altitude vs. Launch Angle for Various Payload Weights. (6-rps Tabs, $\rm K_D$ + 10%.)

of time prevented recomputing the ballistics for the 5 1/2-degree halfangle nose cone. The dispersion was arbitrarily increased to account for the variance.

The APGC maximum altitude predictions for the Nike-Cajun flights on Firefly II were examined and found to be high. The input data were revised for Firefly III and the predictions were again high. Fig. 10 was used for the prediction of the vehicles with small or no tabs, and Fig. 11 was used for those vehicles with the 6-rps tabs. However, the predictions would have closely approached the actual altitudes achieved if Fig. 11 had been used in the place of Fig. 10 and if a new prediction chart, shown as Fig. 12, had been used for Fig. 11. Fig. 12 is Fig. 11 modified by adding 10 percent to the drag coefficient.

IMPACT PREDICTIONS

The impact predictions for these vehicles were made on a Royal McBee Corporation LGF-30 computer. The prediction program utilized the raw pilot balloon and radiosonde data (provided in azimuth and elevation angles) and an approximation of the IBM 7090 ballistic trajectory program to compute the impact points. The pilot balloon data were obtained by the single-theodolite measurement technique. The predicted impact points are shown in Table 1. These values were checked by computing postlaunch wind-weighted theoretical trajectories on the IBM 7090 computer. The impact points were extracted from the theoretical trajectories and are listed in Table 1. Actual impact points, where available, are also listed.

In a few cases the prelaunch high-altitude winds used for impact predictions were forecast winds. These were provided by the range weather forecaster and were based on the latest available radiosonde and other meteorological data available to the forecaster at that time.

In other cases, the high-altitude winds could not be measured because of high wind velocities, although the direction was generally known. Estimates of velocity, when available from the forecaster, were used. Otherwise, the data from the nearest radiosonde release were used. This applied to either the prelaunch or postlaunch calculations.

SAFE IMPACT PREDICTION CHARTS

The charts shown as Figs. 13 through 16 define the maximum allowable impact area for the vehicles flown, and are for conditions under

Fig. 13: Aerobee 150 - Predicted Safe Impact Area.

Fig. 14: Honest John-Nike-Nike. Stage III, 300-lb Payload - Predicted Safe Impact Area.

Fig. 15: Nike-Apache - Predicted Safe Impact Area.

Fig. 16: Nike-Cajun with 6-rps Tabs - Predicted Safe Impact Area.

which the total water range is available. Warning Area 155, and a part thereof, Sector Alpha, is normally closed to probe operations during daylight hours. The entire area is open from sundown until sunrise, and Sector Alpha may be reserved during daylight hours with sufficient advance scheduling information. The charts are based upon the protection of land masses by 2 1/2 sigma. The numerical value for the 2 1/2 sigma is indicated on each chart. Of course, with changes in dispersion, the boundaries change accordingly.

Range safety permitted launching, provided that the impact point was within the chart boundaries (the maximum effective elevation permitted is governed by the dispersion), the booster impact azimuths were within the maximum launcher setting azimuths and downrange 2 1/2 sigma or more, and the launcher settings were within the limits described. Other governing considerations, not discussed here, concern boat and air traffic in the range.

SECTION 4 - LAUNCH FACILITIES

The launch site was the Aerospace Launching Facility on Santa Rosa Island, Florida. Three boom-type general-purpose launchers were used for launching the solid-propellant vehicles. The Aerobee 150 vehicles were tower launched. The locations of the launchers were as follows:

Fad	North Latitude	West Longitude	Elevation Above MSL (ft)
1	30° 23' 41, 398"	86° 42' 43, 222"	14,047
2	30° 23' 41, 385"	86* 42' 39, 970"	14.050
3	30° 23' 41, 469"	86° 42' 36, 962''	14.050
Tower	30° 23' 41, 154"	86° 42' 59. 544"	13.082

The Honest John-Nike-Nike vehicles were launched from the general-purpose launcher located on Pad 1. This launcher was modified and out-fitted with zero-launch fittings. The rocket was suspended at three points, i.e., front and rear lug positions on the Honest John motor and at the forward end of the second stage. The hangar attached to the second stage was of the retractable type.

The Nike-Cajun and Nike-Apache vehicles were launched from the

general-purpose launchers located on Pads 2 and 3. These launchers were equipped with rails designed to simultaneously release both first-stage launch tees after 200 in. of travel. The launcher pads used are indicated on Table 1.

The Aerobee vehicles were launched from the Aerobee tower which provides 156 ft 10 in. of travel.

The Aerospace Launching Facility is shown in Fig. 17.

SECTION 5 - EGTR TECHNICAL FACILITIES

Contraves phototheodolites located on Santa Rosa Island, an AN/FPS-16 radar at Site A-20, an AN/MPS-19 radar at Site A-3, a telemetry station at Site A-6, and an AN/FRW-2 command transmitter at Site A-3 were provided, as necessary, in support of the project. The radars are normally supported with an optical acquisition aid. In addition to the optical aid, the AN/FPS-16 radar can be equipped with an acquisition aid which uses the telemetry signal to direct the radar antenna. This system, known as the AGAVE, was scheduled for most of the telemetry transmitter equipped vehicles. See Fig. 18 for a map of the EGTR technical facilities.

The instrumentation scheduled for the various vehicles is discussed in the following paragraphs.

AEROBEE 150

One AN/MPS-19 radar was scheduled for beacon track on all flights, and one AN/FPS-16 radar was scheduled for skin track on all flights except Fanny. AN/MPS-19 data were recorded on all flights; however, the data were not reduced on Karen and Laura, in favor of the AN/FPS-16 data. AN/FPS-16 data were obtained on all flights for which the radars were scheduled. All the AN/FPS-16 data were reduced. One AN/FRW-2 was scheduled for range safety purposes. Contraves phototheodolites were not provided for these flights.

HONEST JOHN-NIKE-NIKE

One AN/FFS-16 was scheduled for skin track on all flights, and one

Fig. 17: Aerospace Launching Facility.

Fig. 18: EGTR, Technical Facilities - January 1963.

APGC-TDR-63-19

AN/MPS-19 was provided for beacon track on Ethel. The AN/FPS-16 data on Ethel were not reduced, in favor of the AN/MPS-19 data. AN/FPS-16 data were obtained on all flights except Hazel and Mabel. Contraves phototheodolites were scheduled on all flights except Mabel. Dinah and Eva. Hazel's flashing lights were inadequate as a tracking aid. Mabel carried flares and a telemetry transmitter, but the AGAVE was not scheduled for that flight.

NIKE-APACHE

Tracking aids were not flown on the Nike-Apache vehicles, and phototheodolites were not scheduled. An AN/FPS-16 radar was provided to skin track for three of the flights, but was unable to acquire the vehicles.

NIKE-CAJUN

Phototheodolites were scheduled on all flights. Data were obtained on all but Queenie, Paula, Carol, Beverly, and Enid. Flares were not flown on Queenie, Paula, and Enid, and the flares were not ignited on Carol. AN/FPS-16 radar skin track was scheduled on 9 flights, and data were obtained on 5 flights.

SECTION 6 - RANGE WEATHER SUPPORT

The 4th Weather Group provided weather forecasts, single-theodolite pilot balloon and radiosonde wind measurements, and weather observations at the time of launch. The wind measurements were taken by pilot balloon up to 10,000 ft, and by radiosonde to 60,000 ft. The wind data are shown in Table 6. The weather observations are listed in Table 1.

SECTION 7 - DATA REDUCTION

PHOTOTHEODOLITE DATA

The Davis least-squares method for an N-station solution (2 \leq N \leq 6) was used to compute phototheodolite space-position data on an IBM 7090 computer. This method is a true least-squares method which minimizes the deviation in azimuth and elevation readings and yields the best possible solution from the available data. The Bodwell 2-station solution is used for obtaining the trial point used in the N-station Davis solution. Standard deviations in space positions are derived from errors in azimuth and elevation readings from each station. The film was read at the rate of 10 data points per second and smoothed by a least-squares fit of a third-degree moving-arc polynomial using 21 points. Velocity and acceleration are obtained by evaluating the first and second derivatives of the polynomial.

RADAR DATA

Radar data were computed as the product of the slant range and direction cosines of the line of sight from the radar to the vehicle. The data were smoothed in the same manner as the phototheodolite data, except that 21 points were used through burnout, 99 points were used through the trajectory to approximately 90,000 ft on the descent, and 47 points were used from 90,000 ft to impact.

TABULAR DATA

The tabulated phototheodolite, radar, and theoretical data, grouped by vehicle, experiment, and launch order, are presented in Volume 2.

The data are reduced with reference to the applicable launcher and to the predicted impact azimuth of each particular flight. The predicted impact azimuths are given in Table 1, and are shown on the plots of range versus displacement. Negative signs in the displacement column indicate that the flight azimuth at that time is to the left of the predicted impact azimuth (as seen from the launch point). The values of the acceleration shown are absolute values. The acceleration is negative when the velocity is decreasing. The data that occur at discontinuties or near end points must be used with reservation, because of the possible effect of the smoothing routine. Ignition and burnout times may be displaced as much as 0.5 second, and velocities at end points tend to be distorted.

PLOTTED DATA

Chemical release position data, as provided by AFCRL, are plotted in part in Figs. 20 through 29. The release position as a function of altitude and time are plotted against the wind-weighted theoretical trajectory data. Some AFGC empirical data are shown for comparison. These chemical release position data are also listed in Table 1 under Event Times and Event Altitudes.

The data collected by APGC have been plotted, in part, and are shown in Figs. 30 through 133. The following data were plotted for each flight:

Altitude vs. Time Range vs. Displacement Velocity vs. Time

In some cases, there are two sets of plots for a flight; a set which covers through burnout of the last stage, and a set which covers the entire trajectory. The radar data obtained on Enid were not plotted, because of the small amount of data obtained.

The plots are grouped by vehicle, experiment, and launch order. The order of vehicle arrangement is Aerobee 150, Honest John-Nike-Nike, and Nike-Cajun. No data were obtained for the Nike-Apache vehicles.

Fig. 19: Sounding Rocket Actual Maximum Altitude Deviation from Predicted Altitude.

Fig. 20: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Aerobee 150. (Karen and Laura).

Fig. 21: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Aerobee 150 (Fanny and Gilda).

Fig. 22: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Honest John-Nike-Nike (Mabel, Dinah, Eva, Netty, Olga Lisa. and Patsy).

Fig. 23: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Nike-Apache. (Terry and Sharon).

Fig. 24: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Nike-Apache (Ivy and Esther).

Fig. 25: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Nike-Cajun (Alice, Queenie, and Paula).

Fig. 26: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Nike-Cajun. (Ruby, Sally, and Beverly).

Fig. 27: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Nike-Cajun. (Bonny, Dagmar, Cindy and Enid).

Fig. 28: AFCRL Chemical Release Positions vs. Wind-Weighted Theoretical Trajectories. Nike-Cajun. (Louise and Kitty).

Fig. 29: Sign Convention for Spin Tab Installation.

SECTION 8 - DISCUSSION

DATA SUMMARY

Vehicle physical data, launch conditions, and highlights of the vehicle trajectories have been assembled in Table 1. The following remarks are for clarification of some of the data given.

Launch times given are taken from a lift-off switch. These values were compared with phototheodolite frame-of-first-fire times and differed in the third decimal place. Lift-off times were not recorded for four flights, and the data for these flights were reduced to the nearest minutes shown. Launch times are CST (Central Standard Time) and are equal to Greenwich Mean Time minus 6 hours.

Two values are shown for payload weight, a predicted weight used for the ballistic impact predictions and the actual weight.

The flight data shown have two values, a theoretical and an actual. The theoretical represents the performance from the wind-weighted theoretical trajectories. The actual values are measured and the data source is indicated.

The event times and altitudes were chemical release position data provided by AFCRL.

The impact azimuths derived from AFCRL chemical release data may deviate from the actual impact azimuth by ±5 degrees.

The direction of vehicle roll was clockwise (as viewed from the aft), except those shown with negative roll rates. The fin tabs were applied in accordance with the sign convention shown in Fig. 29.

VEHICLE TRACKING

Two vehicles were launched during the day, Ethel and Martha. All others were launched at twilight (about one-half hour before local sunrise or after sunset), or at night.

Optical tracking was a requirement, and tracking flares were provided as indicated in other sections of this report. In several cases, flare burnout times were so close to final-stage burnout times that the reduced trajectory data end at or prior to burnout. The flares were

consistant in reaching a burning time of approximately 30 seconds. (See Table 1 for the predicted burning times.)

Radar skin tracking was set forth as a requirement after the launch series began, and became APGC's first large scale effort to provide AN/FPS-16 skin track of high-acceleration multi-stage sounding rockets. All factors considered, this first effort was deemed to have been very satisfactory. If the flare burning times had extended to the predicted values, the radars would have provided even more data.

Some factors influencing radar tracking, in addition to flare burning time, were:

- l. The third stage of the Honest John-Nike-Nike had a tendency at ignition to break lock on automatic track.
- 2. The AGAVE was used on four Honest John-Nike-Nike flights, and definitely enhanced the AN/FPS-16 radar acquisition capability.
- 3. The return signal on the third stage of the Honest John-Nike-Nike faded into the noise on five flights at approximately 475,000 ft altitude. The same thing happened on the Aerobee vehicles at an altitude of 700,000 ft. This is a result of the effect of the attitude of the vehicle and slant range on the radar cross-section. On three of the Honest John-Nike-Nike flights and one Aerobee flight acquisition aids tracked throughout the trajectory and the targets were reacquired on the descent.

AN/FPS-16 radar skin track data were acquired on 7 of the 9 Honest John-Nike-Nike flights and on 2 flights tracked throughout the trajectory. On the four Aerobee flights which were skin tracked the data acquired prior to loss of signal were better than the AN/MPS-19 beacon track. AN/FPS-16 radar skin tracking for the Nike-Cajuns was hampered by the flare burning time, a faster vehicle, and a smaller target. Yet, the radars acquired shortly after lift-off (on vehicles with flares) on 3 of 6 flights, and acquired some data on 5 of 9 (3 without flares) flights.

VEHICLE FERFORMANCE

Thirty-three vehicles were launched. Thirty-one vehicles achieved altitudes which satisfied the scientific requirements. There were two Nike-Cajun failures, one because a malfunction occurred during second-stage burning and one because an error resulted in no second-stage

ignition. One each Aerobee 150, Honest John-Nike-Nike, and Nike-Cajun provided flights which were much lower than would have normally been expected. There are insufficient data to explicitly define the causes of the low flights.

VEHICLE PERFORMANCE PREDICTIONS

Fig. 19 is a presentation of the percentage the maximum altitude is known, or is estimated from known portions of the trajectory, to have deviated from the APGC predicted maximum altitude. The following percentages are derived from the best data available, either tracking data, AFCRL chemical release position data, or as further defined. The Aerobee predictions, discounting Martha, were about 3 percent high. The Honest John-Nike-Nike predictions were based upon the performance of Ethel, which may have been slightly above optimum. The predictions for these vehicles, discounting Ethel, Hazel, and Patsy, averaged about 6 percent high. The Nike-Cajun predictions averaged about 7 percent high. The Nike Apache predictions were also satisfactory. No numerical value is assigned, because two payload configurations differed slightly from that upon which the predictions were based.

TABLE 1. VEHICLE AND FLIGHT DATA FOR (1) AEROBEE 150, (2) HONEST JOHN-NIKE-NIKE, (3) NIKE-APACHE, AND (4) NIKE-CAJUN,

AEROBEE 150 - AFCRL Name	Karen	Laura	Martha	Page	Gilda
Antonia de Cara de Antonia de Cara de					
Vehicle No.	AC 3. 449	AC 3. 450	AC 3. 451	AC 3. 452	AC 3. 453
Launch Date	15 Nov 62	7 Dec 62	15 Dec 62		13 Nov 62
Launch Time (CST)	1926:00, 570	1908:00.415	1130:00, 284	2	1730:00,090
Vebicle Model No.	AJ 11-21	AJ 11-21	A 11-21		AJ 11-21
Booster Model No.	-80	AJ 60-80	AJ 60-80	AJ 60-80	AJ 60-80
Booster Serial No.		A-80	A-92	A-65	A-82
Sectioner Fin Serial No.	A-62	A-50	A-84	A-53	A-62
Booster Fin Serial No.	R 1959	A 146, 149, 150 R 1959	R 1959	R 2031	R 2031
Predicted/Actual Payload Weight (1b)	153/153.5	150/150.5	150/154	120/117.5	120/119
Lauscher Azimuth (deg T)	2 .	98.	145	25.	177
Launch Lievation (deg) Predicted Effective Elevation (deg)	3.00	82.9	96	64.8	86.4
Theoretical/Actual Burnout Time (sec)	51,4/53,13	51,4/52,63	51, 4/51, 83	51,4/53,74	51, 4/52, 74
Theoretical/Actual Burnout Altitude (ft)	130, 882/135, 275 3	128, 849/128, 877 3	132, 049/127, 780 3	137, 061/139, 630*	137, 684/138, 162*
Theoretical/Actual Burnout vetocity (ips)	2/NA	2/NA	2/NA	2/NA	2/NA
Theoretical/Actual Zenith Time (sec)	263, 2/NA	258,7/NA	266, 4/253 4	279/275, 54	280. 5/NA
Theoretical/Predicted/Actual Zenith (nm)	132, 3/138/NA	127.4/130/NA	135,7/138/1214	149, 7/142, 5/143, 54	151.4/148/NA
Actual Event Times (sec)	90, 102, 215, 335	82, 94, 215	274	108, 120, 184, 319	108, 120, 213, 340
Actual Event Altitudes (Krn)	10/46, 123, 5, 234, 225 498/NA	92, 108, 7, 219	504/4163	139, 15' 6, 229, 5, 20d	537, 155, 255, 256
Predict Impact Point (As, deg/range, nm)					
Booster	153/2300	152/3400	147/3000	150/3300	177/3700
Sustainer	175/83	197/142	178/83	175/115	182/82
Theoretical Sustainer Impact Foint (Az, deg/range, nm)	187 10 / N.A.	191/148 184 10/NA	174/744	187/81	186770
Sustainer Fin Settings (nm)					
Fin 1	15, 25	15,05	14,75	15.0	15, 10
Fin 2	16,60	16.00	8.	16,5	15.00
Fin 5 Robert Fin Septimes (dec)	60.61	05.50	14. 25		20.00
Fin J	2,5	7.5	2.5	2.5	2.5
Fin 2	2,5	5,5	2,5	2,5	2,5
Fin 3	2,5	2,5	2, 50	2,5	2.5
Vehicle Gross Left-off Weight (1b)	0.2051	1498.3	1486.8	1465,3	1466, 3
Durnout Co (m. trom up)	2		130.7		1 0001
Oxidizer (nigric acid)	88, 77	11.06	87.91	89, 52	87.90
Hydrofluric Acid	0,71	0.74	0.68	99.0	0.72
Nitrogen Dioxide	9.44	8,36	8,38	8.43 	9.85
Metal Nitrates	0.04	0.02	0.02	0.02	0.04
Specific Gravity (at 60°F)	1, 560	1, 557	1, 560	1, 552	1, 563
Date Sampled	:	29 Nov 62	12 Dec 62	31 Oct 62	15 Nov 62
Kunning rue! (%)	0.25	0.25	1.0	4.0	***
Solids	2, 30	2,30	1, 56	1, 36	1,36
Specific Gravity (at 80° F)	1,062	1,062	1,06	1,058	1,058
Causing Sine (4)	1	14 Nov 62	12 Dec 62	71 OCE 82	79 390 15
Water	1,5	0.1	1,20		1.0
Sotide		2.9	2, 10		2, 56
Specific Gravity (at 80°F)	1,096	1, 097 20 Nov 62	1, 0% 1, Dec 62	1.0%	31 04 62
Leunch Weather	1		-		
Temp., Dry Bulb CO		*	*	13	9;
Clear Cover (%) & Altitude	76 140 Sctd, Hi Sctd	25 Sctd	Clear	Clear	Clear
Wind Direction (deg T)	35	190	9	262	325
Sarface Velocity (kt)	7.	23	. 00	• -	2 0
Data Obtained					,
Phototheodolite Radar AN/MPS-19, Beacon Track (sec)	Not Scheduled Not reduced	Not Scheduled Not reduced	Not Scheduled 3,0-516,0	Not Schoduled 3, 1-329, 5	Not Scheduled
Radar AN/FPS-16, Skin Track (sec)		8.8-206.5	7,0-720,0	Not Schodulod	62, 5-147, 5,508, 5-532, 0

TABLE 1. (Continued)

ONEST JOHN-NIKE-NIKE - AFCRL Name	Ethel	Mabel	Dinah	Eva	Netty	Olga
Chicle No.	AC 20, 463	AC 20, 454	AC 20, 455	AC 20, 461	AC 20, 456	AC 20,458
Experiment No.	Flight Test	2	2	2] 3	3
aunch Date	23 Oct 62	27 Nov 62	3 Dec 62	6 Dec 62	12 Dec 62	14 Dec 62
aunch Time (CST)	1309:59.622	1759: 59, 895	2245:00, 147	0421:	1745:59, 928	1752:00, 165
aunch Pad	11	1 1	1	1] 1	1
ionest John SN	1514	2048	1210	2131	1639	2049
like Second Stage SN	29017	28963	28970	28977	28989	440 36
like Third Stage SN	28120	28971	28972	28966	7752	20990
ionest John Igniter Lot & SN	RAD-1-30-50	RAD-1-13-NA	RAD-1-28-43	RAD-1-13-NA	RAD-1-28-47	RAD-1-13-NA
like Second Stage Igniter SN	17	14	16	18	19	15
like Third Stage Igniter SN	21	25	23	24	26	22
ionest John Fin SN	1514	6	4	5	3	8
like Second Stage Fin Survey No.	1	7	5	6	4	9
like Third Stage Fin Survey No. '	10	16] 14	15	13	18
lare SN	12 & 15	4 & 5	1 & 12	11 & 19	9 & 14	5 ♣ 8
Predicted Flare Burning Time (sec)	80	130	65	65	65	65
Tayload Design	R 2030	R 1938	R 1938	R 1938	R 2117	R 2117
redicted/Actual Payload Weight (lb)	343/325	300/299	300/301	300/334	325/327	425/328
auncher Azimuth (deg T)	159	171	167	143	175	156
auncher Azimush (deg 1) auncher Elevation (deg)	77,6	78.0	80, 8	77	76.8	78.4
auncher Elevation (deg) Predicted Effective Elevation (deg)	80	81	80	82, 5	80	80
	4513/4345 2	4118/NA	4117/NA	4115/NA	4089/4544 ²	4103/4494 ²
Predicted/Actual Honest John Burnout Altitude (ft)	1889/1808 2	1811/NA	1810/NA	1812/NA	1805/1760 2	1787/1767 2
redicted/Actual Honest John Burnout Velocity (fps)			4,8/NA	4.8/NA	4.8/4.92	4.8/5.02
redicted/Actual Honest John Burnout Time (sec)	4.8/4.72	4.8/NA	0.7/NA	4.8/NA 0.7/NA	0.7/NA	0.7/NA
redicted/Actual Honest John Roll Rate (rps)	0.7/NA	0,7/NA	0,7/NA 10/NA	0,7/NA 10/NA	10/9.82	10/9,12
redicted/Actual Nike Second Stage Ignition Time (sec)	10/8.62	10/ 10 9		18, 327/19, 410 ³	18, 150/19, 850 ²	18, 192/19, 029
redicted/Actual Nike Second Stage Burnout Altitude (ft)	19083/18783 ²	18272/NA	18, 219/19, 883 ³	2931/2909 3	2915/2837 2	2916/28752
redicted/Actual Nike Second Stage Burnout Velocity (fp.) 2987/2964 ² ,	2935/NA	2934/2955 3			
redicted/Actual Nike Second Stage Burnout Time (sec)	12.87/12.42	12.87/NA	12.87/13.0	12,87/13,03	12, 87/13, 7 2	12,87/12,9 ²
redicted Nike Second Stage Roll Rate (rps)	1/NA	1/NA	1/NA	1/NA	1/NA	1/NA 25/23 ₈ 8 ²
redicted/Actual Nike Third Stage Ignition Time (sec)	25/23,7001	25/223 9	25/23.43	25/23,63	25/26.6 ²	
redicted/Actual Nike Third Stage Burnout Altitude (ft)	57,977/59, 599 ²	59, 309/NA	58, 958/62, 915 ³	59, 797/64, 922	58, 667/64, 030	58, 929/NA
redicted/Actual Nike Third Stage Burnout Velocity (fps	5585/58442	5910/NA	5908/58233	5906/5690 3	5815/56442	5821/NA
redicted/Actual Nike Third Stage Burnout Time (sec)	27, 87/27, 3 2	27.87/NA	27, 87/28, 8 3	27.87/29.83	27.87/31.02	27.87/NA
Predicted Nike Third Stage Roll Rate (rps)	7/NA	7/NA	7/NA	7/NA	7/NA	7/NA
Predicted/Actual Nike Third Stage Zenith (nm)	72.7/86.54	92, 1/NA	90/NA	93.6/NA	87, 5/NA	89. 4/NA
Predicted/Actual Nike Third Stage Time to Zenith (sec)	186/208 ⁴	209/NA	206/NA	210/NA	203/NA	205/NA
Actual Event Times (sec)	121	80, 119, 147	80	79.2	96	80 .
Actual Event Altitudes (Km)	137	92. 3	90, 127, 145	88,6	101, 2	
Predicted/Actual Impact Time (sec)	359/ 396 4	401/NA	397/w392 3	404/NA	391/378 ³	395/383 ³
Predicted Impact Point (Az, deg/range, ft)	1	1	1		1	ľ
First Stage	159/15, 400	163/13, 500	168/15,000	139/16, 400	156/14, 400	158/16, 400
Second Stage	158/28,000	155/29, 000	171/29,000	139/29,000	158/26, 400	154/32,600
Third Stage	170/88	165/91	170/100	170/76	190/97	170/97
Theoretical Impact Point (Az, deg/range, ft)	1	1027 / 1			1	
Third Stage	164/97	168/96	183/107	168/85	196/102	177/94
	104/7/	1007 70	1 .037	1	.,.,	• • •
Actual Impact Point (Az, deg/range, ft)	164, 5/ 80 4	157 10/NA	177/w90 3	155 3-8/NA	193/91,53	165, 5/76 ³
Third Stage	104. 5/ 10	197 /146	111,750,75	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1,37,71	
irst Stage Fin Tab Length (in.)	1.0.344		+7, 445	+12, 274	-6, 48	+17.73
Fin 1	+9. 366	+7, 375	-23.441	-28, 595	-14, 965	-19.758
Fin 2	+5, 561	+9,600	+11,810	+10,930	+6, 56	+13, 23
Fin 3	+8, 570	+5. 425		-30,000	-15,00	0 23
Fin 4	+16, 225	-10,000	-10.000	- 50,000	-17.00	ľ
lecond Stage Fin Cant (milliradians)	1	1	1		-6, 70	-5, 87
Fin 1	-5, 76	-2.68	-4, 40	-5.48		
Fin 2	-4.61	-2,78	-2. 49	-8. 26	-7.76	-5.91
Fin 3	-4,05	-2.0Z	-2, 15	-5, 40	-3, 11	-5,72
Fin 4	- 5, 20	-1,92	-4.05	-2.61	-2.61	-5,68
hird Stage Fin Cant (milliradians)	1	1 .	1	1	1	1
Fin 1	+13.0	+13.66	+14, 57	+11,99	+13, 43	+14, 23
Fin 2	+13, 1	+13,83	+14,96	+14,77	+13, 72	+12, 58
Fin 3	+13, 1	+14, 25	+15, 25	+15,00	+13.89	+12, 56
Fin 4	+13, 1	+14,08	+14,85	+12, 21	+13,59	+14, 22
aunch Weather	1	1	ı	I	1	i
Temp., Dry Bulb (°C)	112	12	111	5	14	8
Relative Humidity (%)	36	42	98	59	89	87
Claud Course (C. 6. Ale)	Clear	Hi Sctd	Hi Thin Setd	Clear	Middle Ovc	25 Sctd
Cloud Cover (% & Alt)	360	020	Calm	300	340	280
Wind Direction (deg T)	10	9	Calm	14	17	12
Surface Velocity (kt)	1.0	1 7	7	1;"	6 in Hare	1 7
Visibility (nm)	I.o.	1'	['	l '	[· / /	l .
Data Obtained	1	1	Nas Sahadulad	New Contraductor	2,0-33,0	1.0-27.1
Phototheodolite (sec)	1.0 - 28.8	Not Scheduled	Not Scheduled	Not Scheduled		NA
	4.0-384.0	l na	NA .	NA .	NA NA	
Radar AN/MPS-19 Beacon Track (sec) Radar AN/FPS-16 Skin Track (sec)	Not reduced	None	11.0-148.5,301-347	9,6-123,0	39-145.5,319-377.5	11, 8-33, 4;

	Ethel	Mabel	Dinch	Eva	Netty	Olga	Hasel	Lies	Patay
	AC 20, 463	AC 20, 454	AC 20, 455	AC 20, 461	AC 20, 456	AC 20, 458	AC 20, 461	AC 20, 462	AC 20, 460
	Flight Test	2	2	2	3	3	4.4	44	4.4
	23 Oct 62	27 Nov 62	3 Dec 62	6 Dec 62	12 Dec 62	14 Dec 62	31 Oct 62	1 Nov 62	4 Dec 62
	1309: 59, 622	1759:59, 895	2245:00, 147	0421:	1745:59, 928	1752:00, 165	1732:00, 160	2227:59, 135	1951:00, 115
l	1514	2048	1 1210	2131	1639	2049	1 1593	1287	2134
	29017	28963	28970	28977	28989	2049 44036	850	44039	44049
	28120	28971	28972	28966	7752	20990	7969	28969	28987
	RAD-1-30-50	RAD-1-13-NA	RAD-1-28-43	RAD-1-13-NA	RAD-1-28-47	RAD-1-13-NA	RAD-1-21-61	RAD-1-27-47	RAD-1-13-NA
	17	14	16	18	19	15	12	11	13
	21	25	23	24	26	22	28	27	20
	1514	6	14	5	3	6	ī	1 2	7
	1	7	1 5	6	4	9	2A	l 3	•
	10	16] 14	15	13	18	11	12	17
	12 & 15	4 & 5	1 & 12	11 & 19	9 k 14	5 & 8	None	1 % 6	7 & 10
	80	130	65	65	65	65	None	130	65
	R 2030	R 1938	R 1938	R 1938	R 2117	R 2117	R 2030	R 2030	R 2030
	343/325	300/299	300/301	300/334	325/327	425/328	335, 5/317	325/319	325/327
	159	171	167	143	175	156	169	162	160
	77.6 80	78.0	80, 8	77	76, 8 80	78, 4	73. 3	82,2	79, 5 80
	4513/4345 ²	81 4118/NA	80 4117/NA	82, 5 4115/NA	4089/4544 ²	80 4103/4494 ²	80 4018/NA	82, 2 4146/4271 ²	4110/4496 ²
	1889/1808 Z	1811/NA	1810/NA	1812/NA	1805/1760 ²	1787/1767 2	1804/NA	1803/17932	1804/1804 2
n (sec)	4.8/4.72	4,8/NA	4. A/NA	4.8/NA	4.8/4.92	48/5,02	4.8/NA	4.8/4.62	4.8/4.92
	0.7/NA	0,7/NA	0.7/NA	0.7/NA	0.7/NA	0,7/NA	0,7/NA	0.7/NA	0,7/NA
	10/8.62	10/ 109	10/NA	10/NA	10/9, 8 ²	10/9, 12	10/NA	10/5, 2 2	10/9, 858
	19083/187832	18272/NA	18, 219/19, 883 3	18, 327/19, 410 3	18, 150/19, 850 ²	18, 192/19, 029 2	17, 837/NA	18, 394/14, 3152	1822/19, 808 2
# Velocity (fps)	2987/2964 ²	2935/NA	2934/2955 3	2931/2909 ³	2915/2837 ²	2916/28752	2913/NA	2913/3160 ²	2915/2938 ²
# Time (sec)	12,87/12,4 ²	12.87/NA	12,87/13,03	12,87/13,03	12,87/13,72	12,87/12,92	12, 67/NA	12,87/8,92	12, 67/13, 3 2
)	I/NA	1/NA	1 1/NA	1/NA	1 1/NA	1/NA	1/NA	1/NA	1/NA
Time (sec)	25/23,700 ¹	25/223 9	25/23, 43	25/23.6 ³	25/26,62	25/23,8 ²	25/NA	25/23, 1 2	25/22,82
Altitude (ft)	57,977/59, 599 ²	59, 309/NA	58, 958/62, 915 3	59, 797/64, 922	58, 667/64, 030	58, 929/NA	57, 534/NA	59, 708/61, 346 4-9	58, 983/58, 598 ²
	5585/5844 ²	5910/NA	5908/5823 3	5906/5690 ³	5815/56442	5821/NA	5791/NA	5814/5663 2-8	5817/5845 ²
	27, 87/27, 3 ²	27,87/NA	27, 87/28, 8 3	27, 87/29, 8 3	27, 87/31, 0 2	27, 87/NA	27. 87/NA	27, 87/26, 8 2-8	27,87/27,02
	7/NA	7/NA	7/NA	7/NA	7/NA	7/NA	7/NA	7/NA	0.65/NA
	72, 7/86, 5 ⁴ 186/208 ⁴	92.1/NA 209/NA	90/NA 206/NA	93,6/NA 210/NA	87, 5/NA 203/NA	89, 4/NA	83. 4/NA 199/NA	93/89, 5 3 208/203 3	88, 9/3 92/73, 3 205/203 ³
Zenith (sec)	186/208	80, 119, 147	80 A	79. 2	203/NA 96	205/NA 80	None	208/203 3 None	None
	137	92. 3	90, 127, 145	88.6	101.2	l °°	None	None	None
	359/ 396 ⁴	401/NA	397 /w392 3	404/NA	391/378 ³	395/383 ³ .	382/NA	401/4213	394/3723
	159/15, 400	163/13, 500	168/15,000	139/16, 400	156/14, 400	158/16, 400	169/18, 900	156/9000	170/14, 200
ı 1	158/28,000	155/29, 000	171/29,000	139/29, 000	158/26, 400	154/32, 600	167/32, 400	154/22, 000	170/28, 500
i i	170/88	165/91	170/100	170/76	190/97	170/97	172/110	170/65	170/97
ע	110/00	103/71	1107.00	110710	170771	110777	112/110	110765	110/91
"	164/97	168/96	183/107	168/85	196/102	177/94	175/119	164, 5/73	185/96
	164,5/ 80 4	157 ¹⁰ /NA	177/w90 ³	155 ³⁻⁸ /NA	193/91, 5 3	165, 5/76 ³	. NA	166/493	178/663
ı]	+9, 366	+7. 375	+7, 445	+12, 274	-6, 48	+17.73	+6. 217	+9, 10	+17, 68
	+5, 561	+9,600	-23, 441	-28, 595	-14, 965	-19,758	-16, 104	-14, 11	-24, 88
	+8, 570	+5, 425	+11,810	+10, 930	+6, 56	+13, 23	+12, 411	18, 44	+9, 69
	+16, 225	-10,000	-19,000	-30,000	-15,00	0	-10.00	-15,00	-30,00
i		1	1		1				
Į	-5, 76	-2, 68	-4, 40	-5. 48	-6, 70	-5, 87	-4, 81	-2,06	46, 35
İ	-4,61	-2.78	-2, 49	-8, 26	-7.76	-5, 91	-5, 36	-2,60	+8, 42
1	-4,05	-2,02	-2, 15	-5, 40	-3, 11	-5,72	-6, 49	-1,93	+9. 52
ı	- 5, 20	-1.92	-4.05	-2,61	-2, 61	-5, 68	-5, 94	-1, 39	+9, 46
	+13.0	+13.66	+14, 57	+11,99	+13, 43	+14, 23	+13, 97	+15,05	+2, 99
	+13, 1	+13, 83	+14.96	+14.77	+13,72	+12, 58	+13, 88	+13, 99	+2, 49
	+13, 1	+14, 25	+15, 25	+15,00	+13.89	+12, 56	+14, 15	+13, 64	+2. 89
1	+13, 1	+14,08	+14, 85	+12, 21	+13, 59	+14, 22	+14, 24	+14,71	+3, 39
1		İ	1				. ,		
	12	12	11	5	14	8	15,5	11	15
	36	42	98	59	89	87	25	96	98
	Clear	Hi Sctd	Hi Thin Setd	Clear	Middle Ovc	25 Setd	Clear	Clear	Clear
1	360	020	Caim	300	340	280	360	015	270
	10 8	9 7	Calm 7	14 7	17 6 in Haze	12 7	12 · .	10 10	7 7
	1, 0 - 28, 8	Not Scheduled	Not Scheduled	Not Scheduled	2.0-33.0	1.0-27.1	None	2, 0-26, 8	2, 5-27, 3
1	4, 0-384, 0	NA	NA NA	NA Serwagied	NA	NA	NA	NA	NA NA
1			4 ****						
1	Not reduced	Nune	11,0-148,5,301-347	9, 6-123, 0	39-145, 5,319-377, 5	11,8-33,4;	None	13,0-30,0,51,5-421	11,0-372

TABLE 1. (Continued)

NIKE-APACHE - AFCRL Name	Terry	Sharon	Ivy	Esther
Vehicle No.	AC 5,465	AC 5, 468	AC S, 466	AC S. 467
Experiment No.	Sodium Flare	Sodium Flare	Cesium Ion	Centum lon
Launch Date	1 Dec 62	3 Dec 62	3 Dec 62	3 Dec 62
Launch Time (CST)	1720:00, 120	1720:00,022	1801:	2145
Launch Pad	2	2		
Nike SN	34766	25052	34849	06107
Apacine Siv	DF 13-013-4	BF 13-033-3	9-79-61-9	BF 15-021-5
INTRE IGNITER LOT # 50	KAU-2-146-74	KAD-2-140-8/	KAU-5-5/-9	KAD-5-37-26
Apache igniter Lot # >	1 £ D- £-13-34	150-5-13-3/	151-404-1-2	15.0 401-2-8
Nike Fin Survey No.	· -	<u> </u>	`	٠.
Design Design	• ()		7111	, ,
raytord Design	Y	\$25	\$777 W	K 2224
Payload Weight (16)	10/69,75	70/69,75	90/88.25	90/88,25
	101	121	791	600
Launcher Elevation (deg) Predicted Effective Flavorics (des)	, , , , , , , , , , , , , , , , , , ,	0.10	70.6	2 00
Predicted Lincoln City Burnous Altitude (ft)	479 5 (NA	4N/6264	V. 2017	4104/NA
Predicted Actual Nike Burnout Velocity (fuel	\$300/NA	4799/NA	1248/NA	3248/NA
Predicted/Actual Nike Burnout Time (sec)	2.87/NA	2.87/NA	2.87/NA	2.87/NA
Predicted/Actual Nike Burnout Roll Rate (rps)	1.5/NA	1.5/NA	1, 5/NA	1, 5/NA
Predicted/Actual Apache Ignition Time (sec)	20,0/w21,5	20/NA	20.0/NA	20.07NA
Predicted/Actual Apache Burnout Altitude (ft)	60, 074/NA	59, 682/NA	58373/NA	58, 468/NA
Predicted/Actual Apache Burnout Velocity (fps)	6282/NA	6273/NA	5875/NA	5874/NA
Predicted/Actual Apache Burnout Time (sec)	25.4/NA	25.4/NA	25, 4/NA	25, 4/NA
Predicted/Actual Apache Burnout Roll Rate (rps)	-0.145/NA	+0, 11/NA	+0,018/NA	+0.003/NA
Predicted/Actual Apache ? enith (nm)	49.6/NA	97.4/NA	84, 3/NA	84.5/NA
Predicted/Actual Time to Zenith (sec)	214/NA	212/NA	197. I/NA	197. 3/NA
Predicted/Actual Event Times (sec)	40/40	:	93/121-158	:
Predicted/Actual Event Times (Km)	/42,3	128-188/103-188	/126-149	:
Predicted/Actual Impact Time (sec)	417/NA	413/NA	384/NA	385/NA
Predicted Impact Point (Az, deg/range, nm)				
Nike	162/1.6	158/1.4	168/1,7	171/179
Apache	171/81	170/83	170/83	170/83
Theoretical Apache Impact Foint (Az, deg/range, nm)	168.4/77	174.5/89.3	177/94	180/92.5
Actual Apache Impact Point (Az. deg/range, nm)	4N/	4×/	YN/	VN/
Nike Fin Cant (milliradians)	•			
F18 1	+5. Z/	45.67	+4. 19	÷* 72
7 III 7	01.6+	+2.03	15, 31	ć
ara s	+6,34	+3.09	17.64	5.0
Find the section of t	.6.01	67.64	20.4	ŕ
Tame Destroy	-	71	71	:
n training but (C)	77	0 0	0 1	
Cloud Cover (* A Alexander	Hi Thin Britis	Hi Thin Seed	Hi Thu Scot	Hi Thin Sadd
Wind Discount (Les 7)	1 10 mm	106	100	111 1 1111 3CM
Sinface Valority (be)	2 2	1,73	000	: ¿
Variability (nm)	٠, :	, 0	, 0	7
Data Obtained			1	
Phototheodolite	Not Scheduled	Not Scheduled	Not Scheduled	Not Scheduled
Radar AN/FPS-16 Skin Track	Not Scheduled	None	None	None

TABLE 1. (Continued)

ike-Cajun - AfCRL Name	Alice	Brenda	Queenie	Paula	Ruby	Carol	Sa
ehicle No.	AC 6, 434	AC 6, 435	AC 6, 438	AC 6, 437	AC 6. 439	AC 6, 436	AC
xperiment No.	5	5	5	5	5	5	5
aunch Date	16 Oct 62	17 Oct 62	19 Oct 62	25 Oct 62	1 Nov 62	2 Nov 62	5.1
aunch Time (CST)	515:00.090	1900:00, 132	0517:00, 124	0521:00.035	0525,00,035	0525:	05
aunch Pad	2	2	2	3	2	2	2
ike SN	28947	34745	28128	28114	29023	34764	28
Jun SN	PV-16-120-9	FV-16-8-18	PV-16-163-2	PV-16-8-13	I'V-16-120-7	FV-16-163-8	PV
ike Igniter Lot & SN	RAD-2-146-56	RAD-2-146	RAD-2-146-35	RAD-2-146-17	RAD-2-146-117	NA 494	R/
Lajun Igniter Lot & SN	NA/-295	TED-5-2-3-430	NA/-2	TED-3-2-9	TED-9-1-11	TED-001-1-2	TE
like Fin Survey No.	10B	3	13	12	14	16	1 15
ajun Fin SN	C-1019	C-1013	C-1009	C-1004	C-1036	C-1037	c.
lare SN	2 4 3	2 & 5	None	None	17 & 14	11 & 16	6
	130	80	NA NA	NA NA	80	80	65
redicted Flare Burning Time (sec)			R 1689		R 1689	R 1689	l R
'ayload Design	R 1689	R 1689		R 1689			
'ayload Weight (lb)	90/92.5	90/92, 25	85/88	85/90	90/90	90/90	90
auncher Azimuth (deg T)	191	164	205	194	186	196	14
auncher Elevation (deg)	84.8	86.8	85, 5	84, 2	83, 2	84, 2	82
redicted Effective Elevation (deg)	85,4	82.9	86.7	86,6	86.7	85, 5	85
redicted/Actual Nike Burnout Altitude (ft)	4275/58397	4253/6036 ²	4273/NA	4289/NA	4276/5809 ²	4278/NA	42
redicted/Actual Nike Burnout Velocity (fps)	3279/3088 ⁷	3287/3135 ²	3266/NA	3279/NA	3268/3114 ²	3269/NA	32
redicted/Actual Nike Burnout Time (sec)	2,87/3,57	2, 87/3, 6 ²	Z. 87/NA	2,87/NA	2.87/3.5 ²	2.87/NA	l z.
redicted/Actual Nike Burnout Roll Rate (rps)	1.5/NA	1.5/NA	1.5/NA	1,5/NA	1, 5/NA	1.5/NA	1 -1
redicted/Actual Cajun Ignition Time (sec)	17/20,110	16/16, 102	16/NA	16/ 18	17/22.365	16/None	17
redicted/Actual Cajun Burnout Altitude (ft)	48, 574/49, 109 ²	48, 261/41, 776 2	47, 124/NA	47, 199/NA	50, 518/57, 199 3	50, 469/NA	50
'redicted/Actual Cajun Burnout Velocity (fpe)	5016/47342	5009/2462 ²	4886/NA	4949/NA	5184/4967.3	5178/NA	51
'redicted/Actual Cajun Burnout Time (sec)	20,6/23,62	19.6/19.2*	19. 6/NA	19.6/NA	20, 6/26, 2 3	19.6/NA	20
redicted/Actual Cajun Burnout Roll Rate (rps)	6/NA	6/NA	6/NA	6/NA	1/NA	1/NA	- A
redicted/Actual Cajun Zenith (nm)	61/NA	60, 3/NA	56.4/NA	57, 3/NA	67.7/NA	67. 5/NA	67
	165/NA	163/NA					
'redicted/Actual Time to Zenith (sec)			158, 3/NA	160/NA	174/NA	172/NA	17
ctual Event Times (sec)	N. R., 115, 140, 145	None	100, 8, 110, 6,	121, 3, 131, 5,	101.8, 118, 7,	None	10
	1 1		125, 136, 8	146, 5, 166, 8	132, 153, 4		
Actual Event Altitudes (Km)	N. R., 93, 101, 2,	None	90. 7, 95. 7,	95, 98, 100, 4, 100, 4	96, 109, 113, 117, 2	None	96
	101,5		101, 9, 106	100, 4	l		111
'redicted/Actual Impact Time (sec)	326/NA	323/NA	315/NA	318/NA	346/NA	344/NA	34
Predicted Impact Point (As, deg/range, nm)	1			1			1
Nike	162/4400	160/8850	158/4800	135/5000	152/7160	138/3800	14
Cajun	172/25	164/37.5	174/17,5	190/18	166, 19, 5	190/27	17
Cajun Theoretical Impact Point (Az, deg/range, nm)	178/26. 2	162/38	189/15.2	197/19	167/18	198/25	17
Cajun Actual Impact Point (Ax, deg/range, nm)	N186/NA	NA/NA	№250 10/NA	A/214 10/NA	207/ 293	NA/NA	N 1
Nike Fin Cant (milliradians)	1 .0.00,	ini, wa	10230 7.114	1 7.00	2017 27	1111/1111	1
Fin 1	1	1,04	1	1, 99			1 -4
	1.92		3, 73		3, 45	5, 14	1.5
Fin 2	1,65	1, 44	2, 60	2. 46	5, 20	4, 12	
Fin 3	2,74	0, 92	0,89	1. 19	4, 76	3, 40	1 -1
Fin 4	3,01	0, 52	2,03	0,72	3,01	4, 40 ²	- 3
Sajun Fin Tab Length (in.)	1						
Fin 1	[4,88	4, 96	5, 69	5, 27	2 (Two Tabs)	2 (Two Tabe)	2
Fin 2	4,73	4.76	4.76	4.71	tabs	tabs	ta.
Fin 3	6.05	6, 48	4, 53	5.15	180°	180°	18
Fin 4	5.00	6, 27	5, 64	6, 91	Apart	Apart	As
aunch Weather			1	1	· ·		1 '
Temp., Dry Bulb (*C)	7	9, 5	18	6.8	5, 5	8	6.
Relative Humidity (%)	87	66	84	69	60	79	67
Cloud Cover (% & Altitude)	Clear	Clear	Clear	Clear	Clear	Hi Thin Setd	Ci
Wind Direction (deg T)	038	310	030	010	010	015	30
Surface Velocity (kt)	8	4	6	12	8		130
Visibility (nm)						11	1 2
] 7	7	15	10	10	7	17
Pata Obtained	1		1	1			1
hototheodolite (sec)	3, 5-29, 6	2, 1-81, 4	None	None	1, 6-26, 0	None	0,
Radar AN/FPS-16 (sec)	Not Scheduled	Not Scheduled	Not Scheduled	None	10, 6-107, 4 296, 1-335, 3	None	No
MAGAY MM/F P3-10 (SEC)	1104 06:36 44:42	***************************************					

NA - Not applicable or not available.

1 - Contraves Phototheodolite film data.

 ^{2 -} Contraves Phototheodolite tabulated data,
 3 - AN/FPS-16 skin track tabulated data,

^{4 -} AN/MFS-19 beacon track tabulated data, 5 - AN/FFS-16 skin track pen plot,

^{6 -} AN/MPS-7 - First date

1	Sally	Beverly	Bonny	Dagmar	Cindy	Enid	Louise	Kitty	Dana.
. 436	AC 6. 440	AC 6, 445	AC 6. 441	AC 6.443	AC 6.442	AC 6, 444	AC 6, 448	AC 6, 446	AC 6, 447
	12	5	6	6] 6	Special	7	7	Special
v 62	5 Nov 62	6 Nov 62	15 Oct 62	16 Oct 62	7 Oct 62	25 Oct 62	22 Oct 62	23 Oct 62	10 Dec 62
	0529:00,005	0200:00.135	0515:00,795	1840:00.055	0516:00.097	0030:00,065	9519:00, 133	0519:00, 100	1929: 59. 06
	2	2	2	Z	l z	3	2	3	3
4	2H9H2	28140	34740	29015	28974	23985	34746	28983	929
6-161-8	1'V-16-120-8	PV-18-120-15	PV-16-120-12	PV-16-10-15	PV-16-120-10	PV-16-124-12	PV-16-124-13	PV-16-8-14	FV-16-120
14	RAD-2-146-71	RAD-2-146-123	RAD-2-146-116	RAD-2-146-52	RAD-2-146-369	RAD-2-146-70	RAD-2-146-54	RAD-2-146-18	RAD-1-41-
001-1-2	TED-6-1-5	TED-9-1-8	TED-6-1-3-241	TED-5-1-3-257	TED-6-1-4-236	TED-001-1-3-415			
	115	13	10A	A	4	1 CD-001-1-3-415	TED-5-2-4-258		TED-9-1-1
37	C+1038	C-1001		•		,	6	7	None
18			C-1020	C-1018	C-1006	C-1007	C-1016	C-1017	C-1021
18	6 & 20	2 & 4	13 k 16 "	9 & 16	3 & 10	None	1 & 7	4 & 8	3 6 15
	65	65	80	80	80	 .	80	80	65
(9	R 1689	R 1689	R 2250	R 2250	R 2250	2/3 R 2250	R 1874	R 1874	
)	90/89	90/89	90/90	90/92	90/92.5	67/65, 5	70/73	75/71	60/59.5
	114	197	184	165	175	183	167	169	162
	82.2	82.6	82.0	82, 4	78.6	82.6	76.5	17.4	
	85	84.6	82,2	81,8	81.7	86	61		84.8
'NA	4260/5751 2	/NA	4239/5730	4244/NA	4225/5740 Z			80	82.8
'NA	3269/3084 ²	/NA	3270/3122 ²	3270/NA	3271/3116 ²	4342/NA	4261/5758 Z	4271/5710 2	4362/6155
'NA	2.87/3.52	/NA				3329/NA	3315/3168 ²	3316/31352	3348/3113
			2, 88/3, 52	2.88/NA	2,88/3,52	2,88/NA	2,87/3,5 ²	2,87/3,52	2,87/3,62
iΑ	-1.5/NA	-1.5/NA	1.5/NA	1.5/NA	1.5/NA	1.5/NA	1.5/NA	1,5/NA	1,5/NA
one	17/18,862	17/22, 465	17/17,605	16/15, 911	17/17, 436 1	16/NA	16/16.8	16/16, 935 []]	17/21.47
9/NA	50, 277/50/045 ²	50, 270/57, 395 3	8 د 49, 821/48, 52	49, 917/45, 522 ²	49,655/47,003 ²	51,016/NA	49, 844/46, 795 2	50, 020/46591 ²	51, 084/55
NA	5182/5039	5179/46943	5176/53008	5177/5105 ²	5176/50752	5551/NA	5432/53722	5439/5330 Z	5676/5385
NA	20,6/22,42	20, 6/27, 53	20, 6/21, 18	19.6/19.32	20,6/20,62	19,6/NA	19.6/20.2 2	19,6/20,42	20,6/25,4
Α	W-1/NA	N-1/NA	-0.04/NA	+U, 146/NA	+0.799/NA	+0.99/NA	+0.59/NA	-0. 23/NA	+0.61/NA
NA	67.0/NA	66.6/NA	65. 5/NA	65, Z/NA	64, 2/NA	76/725			
IA.	172/NA	172/NA					68. Z/NA	69. 2/63 ⁵	77, 2/71, 3
17		1/2/NA	170/NA	170/NA	169/NA	183/ 180 ⁵	175/NA	176/NA	185/181.5
	105, 115, 6, 127, 141, 2		95-	88,8-		81-	100, 4	122	109
	96.7, 102. S, 107. 6,	89, 1, 93, 7, N, R., 101, 7	91, 2	88. 8, 106	84. 2	88.6, 112	96, 7	108	108, 1
NA.	343/NA	341/NA	340/	340/	33A/ (368/548 ³	351/NA	353/708	368/469
800	143/10, 200	143/7900	166/8600	167/6300	172/9300	169/4200	142/9700	157/11,000	136/11, 300
7	170/29	178/31	168/44	169/47	170/47 6		170/57		
5	176.5/32	186/33				170/27		169/61	213/49
	N187 10/		169. 5/47	168/46	171/53	191/28.4	173/64	172/59	209/39
A	NIN/ 1-7	₩226 ¹⁰ /	w182, 5 10/NA	w181 10/NA	480, 5 10/NA	202/28.53	~187 10/NA	1/1/163	208/36, 5 3
	-4. 49	-4, 97	+5, 54	+119	+4.81	+6, 2	4.06	3, 20	4,0
	- 5. 19 ⁵	-4, 46	+6.56	+3, 63	+4.81	+7.8	3.78	4,76	4,0
	-4, 38	-4, 17	+5.90	+2,40	+3,69	+6, 1	4, 59	4.58	4,0
2	-3.792	-4,68	+4.89	+3, 96	+3,68	+4.5	4, 86	3,02	4.0
	i				[
o Tabs)	2 (Two Tabs)	2 (Two Tabs)	None	None	None .	None	None	None	None
	tabs	tabs	None	None	None	None	None	None	None
	180*	180*	None	None	None	None	None	None	None
t	Apart	Apart	None	None	None	None	None	None	Nune
	l.,	, , l	f		[
	6.7	6, 6	20.5	9	6	10,5	18] ~1	- 6
	67	88	89	f-2	87	86	94	80	21
in Setd	Clear	Hi Sctd	Clear	Clear	Clear	Clear	Clear	Clear	Clear
	300	045	072	053	360	010	350	350	280
*] 6	10	13	4	12	- 10	12	10	12
	7	7	7	7	7	7	i"	.6	7
	0, 1-27, 2	None	1.2-21.1	4, 1-21, 2	1. 4-26-2	None	0.4-26.0	0,6-23,3	2,7-25.4
	None	12.5-32.7	Not Scheduled	Not Scheduled	Not Scheduled	136, 5-184, 0	None	289, 7-705, 7	16, 6-46H.
	1			oen omes	Schedure	232.0-251.5		2074 1010 34 1	100 0 - 40B.
		į	ſ		į į	522. 5-547. 5	i	' I	
			l l		I	July 3- 34 1 5			

TABLE 2. AEROBEE 150 FHYSICAL AND AERODYNAMIC DATA, STAGE I, STAGE IA, AND STAGE II.

L			00	CET PRINT	74 A0	DEXET PHYSICAL AID ARBOTHAMIC BATA	MC DATA			r	BAYE	31 October 1962	1962
	Market Lary and	Γ	PREPELLINY C.S. PROPE	Γ	KABINE OF	KADHUL OF EVRAPION OF	TRAMBA	TRAMBURINE (R _b) FT	NO TE	HOEFLE ENIT AMEA (Ag)		STABL NO.	
1.6148	: 3		3, 250		\$. 40	.721	12	, - k	71, 136		I	
907AL	TOTAL MOTOR Sept Laborate		DIAMETER IN PT		Perime IT _B 1 sec	7e) mcc	PLOST .	FLIGHT THE (T _p) sec	1	LEMETH OF STABE WOMES	-	MOTOR ISSETTIFICATION	WICATION
9300			1, 25		. 5		0	- 2, 5		350, 34		2, 5 KS - 18000	18000
	40000			THE PASS CO. 1 S. AM.	١,		CA 2000 7/4. (b.) 57	Ц		332	3 4 1	ers or treaths	
					+			7	AMAL (Ap) S. 886 - FT?	- 1			
	150		65,0454	•		12,05		-	17.00			2750	
į	Tressor	L	Ē	Liene		9	11.0	3	3		4	J	9
¥	1	1	•	•	•	2	THE TAL		8	ŧ	,		
•	18, 600	٥				0	7.03	10.64	. 189				
ş	18, 600	9											
						£1.	6, 78	10,99	189				
		\perp	1		\downarrow		6.61	10.64	189				
		L											
						2	6,82	28.8	. 191				
		\perp	1			٥	11.4	15 91	230				
		L				,	448						
					Ц	1-1	4. 28	11,98	.317				
												\int	
		Ш											
			+										

	 		NO S	ET PHYSIC	DCKET PHYSICAL AND AERODYNAMIC DATA	ERODTHAN	IC DATA			DATE	31 October 1962	er 19	62
7.803	7.803	E .	PROPELLANT C.G. PROM TAM. Nep.) PT		RABIUS OF EVRATION OF PROP AXIAL (R _A) PT	VRATION OF (R _A) PT	THAMOVERGE (R _B) FT	1 (a) a	10231.8 E	WOZZŁE EXIT AREA (Ag.) 57ARE WO. 1922 71, 136 IA	A1	ġ	
TOTAL	TOTAL MPULEE Ny) LE-sec DIANETER (D) FT	20	METER (0) FT		Summed (T _B) spc) 98c	PLIBIT TH	PLIBIT THE (T _p) SEC	150 34	LEMATH OF STARE MICHES MOTOR INSETTITEATION	IS SECTION	ALL	CATION
41300	9	4	1.55		0,5 - 6,9						_		
	PATCAL		TOTAL B.	TOTAL BASS (Mg) SANS	2	C.S. PREST	C.C. PRIN TAR. (q.) PT	ANA	ANA. (Ag) S. 866 PT ²	H			Mary Same ord
35			63, 4306	2									
	•												
Į	To age	ŧ		3		ID##	EB	3	9				100000
¥		2	4	•	•	\$	PROB TAL				-		
ē,	05902	o	7°51	0552	12, 53								
0.24	.024 20650	0					SAME AP STATE	SIAIE					

	3	144	74.6.17				-			1	****	-		
7, 803	33					•					71, 136		≾	
1014	TOTAL SEPTEMBER By) LA-	T	BLASSETURE ESS FT		-	se (T _B) sec	2	PLABUT TIME (Tp.) SEC	(Tr) sec	1	LEMENTH OF STABE WICHES	-	STORE SEE	TPICATION
41300	8		1, 25		0.5-	- 2.5		.5 -	5 - 2.5	350, 34				
	PATCAS		TOTAL &	TOTAL MASS (M.) SLIKES	š	CA 78	C.C. PREM TAL. (Q.) PT	4 3	MOCA	ABAL (4 ₀) 8.866 – pr ²		1 4 E	CONTRACTOR (INC.)	That printers (IL) SLIBBL PT
35			63, 4306	9										
					1									
į	1788	Ī		1,000		1043	8	-	,	9		,	٠	
¥	3	2	_	•	•	2	PROB TAR.	7		į	į	ď	F	
106	05902	9	15.2	0652	12.53	<u> </u>	<u> </u>	T						
1024	20650	9	Lı				3	SAME AS STATE	TATE					
-	20650	12, 566	61 14, 2	2550	13, 53	2								
		1				+	1	REEFA	FREEFALL DRAG	و				
		1	+		\downarrow			-	125	Ţ				
		\downarrow			\downarrow	-	1	-	200					-
			L			0.			0.186					
		Ц				8			.0186					
			- - -		\downarrow	4	4	7	.0367					
		1	1		1	2	1	1	6040	Ī	1			
		L			L	-		\dagger						
					ŀ			-						
					Ц			H						
		1						-						
		L			ig	 -		\dagger						
		L			L		-							
								$\ $						
		\downarrow			1	$\frac{1}{1}$	1	+						
		Ц			Ц		Ц	H						
			98	BOCKET PHYSICAL AND ABBORNAMIC DATA	7	Wester.	Table D	V.				DAYE.	31 October 1962	sr 1962
	PRESENTANT MADE	-	HEPELLANT E.A. PROM	A. FROM	A AMERICA	RAMME OF SPRINTER OF		TRAMBVERSE (R _B) PT	14 (%)	TE SEE	HORILE CHIT AMEA (Ag)	3	STABE NO.	
, <u></u>	31, 513	<u> </u>	4, 375		7 °	0. 4				1	42, 768		=	
101	TOTAL MOTOR CALL	T	SAMETER SE PT		į	Me (Te) mec	۴	PLIENT TIME (T _p) sac	TR. J. BEC	1	LENSTH OF STARK MONES		SETTOR SEE	TOPELATION
82	200, 490		1, 25		2.5 -51.4	51.4		2.5 - IMPACT	APACT	272.3	e .		AJ 11 - 21	21
		-					-	-						

.

																			٠.												
r 1962			PPEATER	21		į.																									
31 October 1962	STABE NO.	=	PLACE INCIDENTAL PROPERTY OF THE PROPERTY OF T	AJ 11 - 21		}			4	P																					
PATE	() Y		S MONES		11 SF EE			_		ď																					
	HOTTLE ENTY MASA (Ag)	42,768	LENSTH OF STARE MONES	.3	Æ	팀				1		165		. 350		. 252	. 211	187		997	4	7	ğ	2							
	# 1	Ì	1	272.3		AMAL Challenge - FTB			•	ŀ		961	. 138	312	. 258	. 232	. 196	175		557	3	501	ê	980							Ī
	140,01		I (Tp) mac	MPACT		7			j	,	7,62	8.02	6, 88	9, 17	9,69	8, 20	6, 19	5.07		44	3	3.15	2 80	2 69							
DATA	Thisphane (ng.) PT		PLIBAT THE (T _{p.)} sec	2.5 - IMPACT	1				E 8	*		H	2, 60	.51	1.26	7.6	2.84	.67		443	\$ 76	66.93	7 84	8, 33							1
BOCKET PHYSICAL AND ABBODYNAMIC DATA					TAL BL				9	E	25	05	Ц					2, 50 3	-	4	4 00	1	4 00 7	L							4
1	RABBO OF SVRATION	0.4	me (T _B) and	-51,4	1				-	_	L	Ц	Н					Н	4	7	7	7	۲	۲	Н	3	0	8	3	+	+
3	RABBOR OF STRATEGE OF	°		2,5						•	9.40	9,32	92.56	9, 22	9, 20	9.1	9.18	22 8	9.25	7	2	2	02	6	10, 19	10.53	10.90	111.38	11.63	_	
ET PHYS	. PROM				POTAL RANK (Ma.) SLINE				1	•	1029	1009	995	826	973	956	948	940		22	8	273	878	837	8 10	782	754	726	208		
8	PREPERTANT C.S. PROM. TASL SEPJ FF	4, 375	Bisherten im fr	1, 25	2 74.0		45, 060 1			•	1:1	10,8	10. \$	10.2	9.9	9.3	9.0	4.4		4	-	*	8 9	6.5	6.2	5.9	3.6	5.3	3		
	!	٦	T	-		1			8	-	12, 5664	1.822		2, 2934			3, 3301		4.0087			\$ 9067		7. 4016		9, 2991		11, 6867	2.5664	1	
	***	13	POTAL MOUNTE By LA-	061	978.64		0		1	_	4100											Ī							4100		
	A 1.000	31, 513	TOTAL III	200, 490			150		1	¥	2,5	2.0	7.5	0.0	5.5	2.5	。 。	42	9	3	-			0.0	12.0	0 5	5-1	0.0		1	T

,)

TABLE 3. HONEST JOHN-NIKE-NIKE FHYSICAL AND AERODYNAMIC DATA, STAGE I, STAGE IA, AND STAGE II.

			2	(ET PHYSI	ROCKET PHYSICAL AND AERODYNAMIC DATA	ERODYNA	MC DATA			٦	DATE: 28 N	28 November 1962	1962
PROPELLANT HAS	NA8	2	PROPELLANT C.G. FROM	3. FROM	RADIUS OF GYRATION OF	TRATION OF	TRANSVE	TRANSVERSE (R _b) FT	HOZZE	HOZZLE EXIT AREA (A _E)	100	STAGE I	
63, 716			9, 258	***	. 687	7	4. 19	6	3	363,74			
TAL BEPLE	34 Pr 14	-860	TOTAL MIPULSE (IT) LE-SEC DIAMETER (D) FT		BURNING (T _B) SEC) 3EC	PLIBIT T	PLISHT THE (Tp.) SEC	LEMET	LENGTH OF STAGE INCHES	-	MOTOR IDENTIFICATION	PPCATION
383,837	ı		1, 907		0 - 4.8		0	4.8	9	618, 55		HONES	HONEST JOHN
1	446			Three Mace (M.) of these	_		C.G. SECHI TAR (A.) ST			MOMEN	TS OF IME	MOMENTS OF INTERTIA	
		1			+			N N	AXIAL (Ag) SLUGS - FT?	2 L L L L		WERSE CR.	27.
400			222, 70			18, 36			110,2		_	33,034	
375			221,92			18,34			8,601			32, 934	
350			221, 14			18, 31			109, 4			32, 834	
300			219, 59			18, 26		ı	108,63			32, 605	
Ŀ	Teamort	ŧ		Lique		MACH	£ 8	3	9			J	0
	5	(RAB/SEQ	٧	•	9	£	FROM TAR.	1	1	1	ď	•	
0 79	79, 966	0				0			197				
+	996,	4, 40				5	15,88	13, 43	261				
+						,	15 51	130.95	917	1			
+						, ,	15,40	15.07	450	1			
l							15,00	15, 45					
						1,5	15, 21	13, 73	. 538				
						2.0	15, 47	10, 70	. 423				
+						2.5	16.47	8-80	355				
+						90	17, 27	7.61	2330,	TO TELETIFICACIONE			
+							THOME	Kr. d2/N	1774	7			
L						0		01132					
						.5		.01132					
						1.0		.02404					
_						1,5		03606					
						2.0		.02920					
						2.5		02281					
						3.0		02106					
4						3.5		01990		1			
1						40		.01891		1			
+										+			
	1												

TABLE 3. (Continued)

			1	TES BUYER	1	ATAC DIMARKAGES AND INDICASE TRYCOS	VALUE DAY.			40	ت		
		i				MERCO IN	W. W. D.				28 N	28 November 1962	1962
PROPELLANT MASS	HT MASS	<u></u>	PROPELLANT C.G. FROM TAIL (G _D) PT	S. FROM	PROP AXI	RABIUS OF GYRATION OF PROP AXIAL (N.) FT		TRANSVERSE (R _B) FT	HOZZ	HOZZLE EXIT AREA (A _E)	(¥	STAGE II	
22,94			6, 58			. 47	7	2, 48	_	210			
TOTAL NA	17 (4) 287A	-sed	TOTAL MPULSE (IT) LB-SEC DIAMETER (D) FT		BURNING (T _B) SEC	Te) SEC	FLIGHT	PLIGHT TIME (Tp.) SEC		LENGTH OF STAGE INCHES		MOTOR IDENTIFICATION	IFICATION
131,645	45	_	1,375		10.00	10.00 - 12.88	4.8	4.8 - 12.88		416,99		NIKE	
•		1			<u> </u>					MOMENT	OF ME	MOMENTS OF INCRETA	
	PATLOAD		TOTAL &	TOTAL MASS (Mg) 3LUGS			CIG. PROM TAIL (G _O) PT	Ц	AXAL (Ag) SLUGS - FT2	86 <u>- 6</u> 72	TRA	SVERSE (B _D) :	LUGGERT
400			93, 40			14, 11			35.0			5761	
375			92.62			14.06			34.8			5833	
350			91.84			14,00			34,6			5907	
300		!	90° 29			13,89			34, 2			6053	
III.	THEUST	II St		Liquid		MACH	4 1	3	9		2	.3	19.00
2 8 C		RAD/SI	ro A	•	•	£	FROM TAIL		98	OFF	,		
\Box	45, 710	3, 45	45			6•	62.6	14,45	162	. 294			
12,88	45, 710	9	82		_		9.43	,	428	570			
1			1			7-	96.6	14, 54	;				
						202	10,65	8. 98	244	305			
						2.5	11.29	7,39	. 234	282			
						3.0	11,88	6, 40	177	.213			
						4.0	12,98	5, 14	165	180			
						5.0	13,95	4, 38	.151	• 166			
							NIKE FR	NIKE FREEFALL DRAG R	DRAG K	d2/M			
				i		0			.0413				
						• 5			.0413				
					-	٥,			-0465				
					\downarrow				0581				
						7 0			0454		İ		
						3.0			0430				
						4.0			.0424				
								-					

TABLE 3. (Continued)

			ī		\	T	Ī	Τ		Π	<u> </u>	П		T	Г	П					Τ	П	П	T	Τ	Γ	1
7961			FIFTCATIO		1						# ************************************																
DATE: 28 November 1962	STAGE III		MOTOR IDENTIFICATION	NIKE	MOMBITS OF INCESTIA	1779	1709	1679	1609		<i>3</i>																
28 No	۷ (اورا		_		TS OF BREE						ď																
٦	MOZZLE EXIT AREA (Ag)	210	LENSTH OF STAGE INCHES	280, 63	HORES						# L		ì	071	.212	1	017	. 181	134	2	100	104	860.	290	750.	.053	
	MOZZL	<u> </u>	LEMBT	280	1000 E (V) IV IV	9	4		0	ď	ž ž		Ť			9,	<u> </u>	122	260.	020	,	071	.059	150	4	.045	
	1	į) sec	PACT	1	22.6	22.4	21.8	21.0	1			\dagger	+			+	7,46	5,43	+	7. 17	3,96	3,28	+	Н	20	-
	TRANSVERSE (R _B) FT	2, 48	PLIGHT TIME (Tp) SEC	12.88 - IMPACT	┞	<u> </u>	-			Ľ		\prod	-	+		4	+	7	-2	ļ	-	<u></u>	3.	^	7	2,	
IC DATA	TRANS		PLIEN	12, 8	JE (G ₀) FI					5	PROB TAL							3, 11	3.97	70 1	000	5 40	6, 30	7.08	7.65	8, 18	
DOTNAM	THOM OF		21	. 88	C.C. FROM TAR. (q ₀) FT	9.83	9, 50	9, 17	8, 51	1044			-	-	q	 -	+	1.5	2.0			3.0	4.0	5.0	6.0	7.0	
NO AER	RADNUS OF BYRATION OF PROP AXIAL (R.) FT	. 47	BURNING (T _B) SEC	25,00-27,88	٥	l °	°	6	8		Π		1				+								H		-
וכד א	BRIOL I		-	25,	ş						Ľ		1	_		+	-		_	4	-				\prod		
ROCKET PHYSICAL AND AERODYNAMIC DATA	. FROM				TOTAL MASS (Mg.) SLUES					Liquid	•																
ED CK	PROPELLANT C.6. FROM TAIL (6p) PT	6, 58	TER (D) FT	5	TOTAL M.	52,84	52.06	51, 28	49.73		~														\prod		
	TAR.		-840 DIAME	1,375						ž	RAB/SEO	19, 54	43.07	.,		1										+	
	HAM.				PAYLOAD					THEUST	A.8.0	91.7	45 710											1	П	1	
	m _p) sluce Propellant HASS	22.94	TOTAL MPVLSE (14) LB-SEC DIAMETER (0) FT	13, 645	*	400	375	350	300	_	2	12.88 0	┿	+			-						\prod		H	1	_

TABLE 4. NIKE-APACHE PHYSICAL AND AERODYNAMIC DATA, STAGE I AND STAGE II,

			100	CET PHYS	CAL AND	AERODYN	ROCKET PHYSICAL AND AERODYNAMIC DATA				OATE: 1 N	November 1962	1962
PROPELLANT HASS (Mp) SLUGS 22, 938	AT MASS	# <u>+</u>	PROPELLANT C.G. PROM TAL (Gp) PT 6, 33	3. PROM	PROP AXIAL (RA) FT	PROP AXIAL (RA) FT		TRANSVERSE (Mg) FT	19.2	NOZZLE EXIT AREA (Ag)		STAGE I	
TOTAL H	שחרפע נוליו דו	-8EG DI	TOTAL MPULSE (IT) LB-SEC DIAMETER (D) FT		BURNING (T _B) SEC	78 (B	PLIGHT	FLIGHT TIME (Tp) SEC		LENGTH OF STAGE INCHES	E INCHES	MOTOR IDENTIFICATION	IFICATION
131, 645	545		1, 375		0 - 2.88	88		0 - 2.88		323, 94	323.94	NIKE	
	PATLOAD		TOTAL M	TOTAL MASS (Mg) SLUGS		C.G. PRO	C.G. FROM TAIL (G ₀) FT		1084 6-2 2011 (A.) 14 (A.)	NON .	TEA	F MERTIA TRANSVERSE (B.) 41 MGC_FT ²	a the FT
S			50. 506			8. 76		-	18.3		-	1799	
84			50,320			8.67			18.3			17 50	
70			49,884			8, 51			18, 2			1626	
09		·	49, 574			8.40			18. 1		,	1620	
Jame L	THRUST	1		Liquio		MACH	8	3		اه	KD d 7	ا ا	9
ž	5	(RAD/SEQ	•	•	Ŀ	£	FROM TAIL		8		٠	F	7
0	45,710	0				0	5, 33	7.62	.1175		.042		
†	45, 710	٥			-	2	5.20	7.62	1125		.042		
	45, (10	775 -5			-	15	4 8 2	8-42	1675		062		
						1, 50	6, 16	7, 56	1460		0.52		
						2,00	6,65	5, 79	1313		.045		
						250	6.95	4.96	1200				
					-	3-00	7.20	4-44			040		
					-	9	7.46	3.78	0945		037		
									\sqcup				
1					1	+			1				
					-				1				
									_				
									+				
						1		1	+				
						-			-				
		Ш							H				
					_			_					

TABLE 4. (Continued)

			20	ET PHYSIC	ROCKET PHYSICAL AND AERODYNAMIC DATA	ERODYNA	WC DATA			r	ATE: 16	DATE: 16 November 1962	. 1962
PROPELLANT HASS	NY HAIR	-	PROPELLANT C.G. FROM TAN. (G) PT		RADIUS OF GYRATION OF	YRATION OF	TRANSVEA	TRANSVERSE (Rg) FT	ZZON Z	HOZZLE EXIT AREA (AE)	(%)	STAGE II	
4.14			4,46		. 17	7 × 1	2,29	6	Ē.	35,81			
TOTAL ME	TOTAL MEDULSE (I _T) LB-SEC	10 D38-1	DIAMETER (0) PT		BURNING (T _B) SEC) SEC	FLIGHT TO	PLIGHT THE (Tp.) SEC	1	LENGTH OF STAGE INCHES	•	MOTOR IDENTIFICATION	FICATION
32, 115	15		. 542		20,00	20.00 - 25.40	2,88	2.88 - IMPACT		174, 21		APACHE	三
	PATLOAD		TOTAL M	TOTAL MASS (Mp.) SEUGS	- <u>:</u>	Ce. PROM	C.G. FIBOR TAIL (Gp.) FT			MONEN	MOMENTS OF INERTIA	ITTA	
							•	VIIV	AMAL (40) & UGS - PTZ	55 - FTZ		I KANSVEKSE (UD) SLUGS-FT-	114-0
	06		9, 557			6.07			. 26	:		220	
	84		9, 371			5,85			• 26			218	
	70		8, 935			5, 73			. 25			210	
	09		8.625			2, 60			. 25			205	
	Trement.	3		Lique		707	ŧ		¥ o				
ä	(LBS)	(RAD/SEQ	·	•		9	FROM TAIL	ř	5 2 2 3 3	ž t	ď	j	3.3
88	0	9, 422	2			1,5	1.93	12.90	. 347	. 425			
						2.0	2,09	10,41	306	370			
0.02	6160	9				2, 5	2, 30	8.84	. 274	.335			
20.1	6160					3.0	2, 53	7.76	. 248	962 •			
20.2	6213					3.5	2,75	7.26	. 226	1.72			
20, 4	6053					4.0	2,94	6,64	602	. 245			
8 09	5788					5.0	3,33	5, 53	184	. 213			
21.2	5629					6.0	3,68	4.19	• 174	. 193			
917	5576					6.5	3.87	4, 42	174	• 193			
22.0	5576												
22.4	5629												
23.7	5947												
9.52	9929												
24.0	6584												
24.4	7009												
24.8	7487									-			
25.0	7646												
25.2	3186												
25.4	296	O Wi	O Without wedges	sas									
										-			

TABLE 5. NIKE. CAJUN PHYSICAL AND AERODYNAMIC DATA, STAGE I AND STAGE II.

			2	CKET PHYS	3	ROCKET PHYSICAL AND AFRODYNAMIC DATA	MIC DATA		'	-	DATE: 2 Oc	2 October 1962	.62
PROPELLAS	PROPELLANT MASS	٢	PROPELLANT C.G. FROM TAIL (GB) PT	C.G. FROM	PROP AXI	RADIUS OF GYRATION OF PROP AXIAL (R.) FT		TRANSVERSE (R _B) FT	ZZON	HOZZLE EXIT AREA (A _E)	!	STAGE I	
22, 938	88		5,63		•	. 47	2,	2, 48		210			
TOTAL B	TOTAL MPULSE (It) LB-SEC DIAMETER (D) PT	-860	DIAMETER (0)	t	BURNING (T _B) SEC	T _B) SEC	FLIGHT	PLIGHT THE (Tp) SEC		LENGTH OF STAGE INCHES		MOTOR IDENTIFICATION	IFICATION
131,645	145		1, 375		0 - 2.	2,88	•	- 2,88	,	323,94		NIKE	
	4.6			1	- 		1 1 1 1 1			MORRE	MOMENTS OF INCENTA	ща	
	PATCOAD		101	TOTAL MAIN UP, AUGO		-	14 (On) 1991 and 1891 b.1		AMAL (Ap) SLUGS - PT?	66 - FT ²	78	TRANSVERSE (B _O) SLUGS-FT ²	-
	06		49,962			8,76			18, 3			1799	
	84		49,776	٠		8,67			18, 3			17 50	
	70		49, 341			8, 51			18, 2			1626	
	09		49,030	-		8. 40			18, 1				
	Treatment	Š	Г	Cletto		NAG.	8	3	7	П	FREEF	B	
ä	3	(RAB/SEQ	8	•		g	PROM TAR.	F	E 8	E è	Kpd2/M	7	**************************************
0	45,710	0				0	5, 33	7.62	. 1175		. 042		
61.	45,710	٦	 - -			250	5,62	7, 62	1125		.042		
88 97	45, (10	774 16	7	1	+		50.0	0. 42		1	1		
Ī			+	1		1 50	4.06	7.56	1460		052		
					-	2,00	6.65	5.79	1313		.045		
						2, 50	6, 95	4, 96	1200				
						3.00	7.20	4, 44	1100		040		
						4.00	7.46	3, 78	.0945		.037		
			$\frac{1}{1}$		1				\downarrow				
			+	+	1	1			-				
			+	-									
			-		L				L				
			_								-		
						,							
			+			1							
					1								
												ľ	

54

TABLE 5. (Continued)

		ROCKET PI	HYSICAL A	ROCKET PHYSICAL AND AERODYNAMIC DATA	AIC DATA			0	٥ 2	DATE: 2 October 1962	2
PROPELLANT MASS	11	PROPELLANT C.G. FROM Tail (Gp) PT		PROP AXIAL (R _A) FT	TRANSVER	TRANSVERSE (R _B) FT	IN ZZLE	₹	[a [y	STAGE II	
3,67		4, 46		. 17	2, 29	6	37	37, 11			
TOTAL MIPULSE (1) LB-SEC DIAMETER (D) FT	D35-61	AMETER (0) FT	BURNE	BURNING (T _B) SEC	FLIGHT TI	PLIGHT THE (Tp.) SEC	LEMOTH	LENGTH OF STAGE INCHES		MOTOR IDENTIFICATION	PICATION
25, 990		. 542	17.	17.88 - 21,48	2.88 -	2.88 - impact	-1	174,21		CAJUN	
PATLOAD		TOTAL MASS (Mg.) SLUES) SLUES	C.S. PROM 7	C.C. PROM TAR. (4 ₀) FT	7004	A YOAL (An) or the c	17	OF BRE	MOMENTS OF INTERTIA	21.0-S001
06		9.076		6.07		97.	9	i]		215	
84		8,889		5,85		.2	26			213	
70		8, 454		5,73		. 2	25			205	,
09		8, 143		2, 60		. 2				200	
TRUST THRUST	š	ridna	9	MACH	E B	L`	اوا			٤	
	(RAB/SEQ	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	•	2	FROM TAIL		ă		اي	F	
2,88 0	9.422	2		1.5	1,93	12,90	347	425			
_	0			2 2	2003	10 41 8 84	27.0	335	į		
1				3.0	2,53	7.76	1	962			
_1				3,5	2,75	7, 26	H	172	NO	No wedges	
18, 28 7800				4.0	2, 94	6.64	209	245			
18, 48 7700		1		5.0	3-33	5.53	184	213			
18 88 8200	1		-	0 0	3.68	679	471	193			
						7,20		-		6-ros wedges	does
										$K_{P_1} + 10$,
					6-rps	WEDGES:				Fower	Power
		-	+	,			1			on	off
20 00 0000				1,5		1	426	504		469	554
_				2.5			321	382		353	420
1				3.0			282	330		310	. 363
				3,5			253	862		278	328
				4.0			232	892		. 255	295
1	\downarrow			5.0			707	230		• 223	. 253
21.28 400	3	hant medees		0 2 7		1	187	206		907	\$226
ı	37 68	37 688 With wadges						5			. 273
				-				1	l		

TABLE 6. WIND DATA.

		3 8 8	270 19	ž 2	2, 9	02.2 08	8 2	97	250	797 11	27.1	\$2.2 7.2	95 C	19	310	ž ž	ž 2	£ 3	0 7 2	2 2	270	£ %	2 z	₹ ≂
	ĺ	8 8	31	2 2	2 9	022 05	92 \$	2 9	09	192	30	34 560	250	245	ğ≍	32	2 2	% <u>~</u>	8 5	ž ž	2 3	₹ 3	82 F	\$ =
		8	270 32	€ \$	92.9	270	8 S	9.29 2.39	250	95	32.	592 44	35	97	% g	06 Q	252	\$ 3	on 20 20 00 00 00 00 00 00 00 00 00 00 00 00 0	7 8	2 2	8.8	250	* *
	1	45,000 5	290	7 F	270 87	270 87	08 09	273 65	258	29 62	259	43	33	182	7 7 7 7	622	246 85	5 =	8 S	105	8 =	3 E	280	2 2
	ſ	ŝ	330	ž Ç	270	255 95	280	277 76	250	543 60	254	892	250	249	301	287	255 90	05 gg	92 01	110	120	8 ≅.	280	84.3
		35,00040	330	300	270	563 86	280	112	260	248 57	268 32	270 39	31	31	187	95 96	267 85	85.29 2.29	120	120	270 120	2 2	9,6	275 107
		30, 000	35	06 ¥	270	255 97	280	55 062	270	38	284	37	250	259	314	262	26	256	780	140	270 120	270 120	280	93
	П	25, 000	8 8 8	33	072	254 83	8 %	296	310	31	311	306 32	260	52 25	291	273 8	257 53	82	140	2 % 1 4 0	171	121	280	275
		20,00	25	87 87	270	257	250	387	00 82	24.0	342	333	072 20	259	318	3.0	39	3, 5,	082	140	272	873	36	275
		15,000	000		280	1 !		28.	20,2		100 014	2021 343	270 18			258 5		ž 2.	,	118	2 271 = 8,3		262 14 14	28 287 28 35
		10, 10,	5 ° °	263 13.3 😤	24 ±	30.2	2 98 2 98 2 98	201 25° 6 25° 6	308	306 21.5			349	332 32.8 E	320 8	ω .° æ .α. Σογι	262	265 27.6 1704	2 % 230052	276 62.8 0090	287	8 807.1	23,5	19.5
	1 .	000	230	-	246	283 28. 7	303	286	31.6	313	41.9	27.1	350	34.2	110	2.1	26.4	266	5 28	595	287	\$ 5. 8.	27.5	28 28 28 38
	:	8000	210	226 15.8	243	283	567	15. 4	32,	312 20.5	6 03	37.1	353	330	102	3.6	263	265	262	53.2	289	297 40.0	288 19, 7	19.9
	1	2000	200	13	254	28.1	292	18.1	319	309 20.8	36.4	030 37	354	328	12,7	089 8.7	267	07 592	967 G 967 G	266	295	306		
true)		9009	00 I	14,8	29. 2	25.2	289	290 17.8	32.1	311	021 32.3	932 37.1	002	328	15, 1	082 14. 2	269 14, 9	997 70	288 34. 9		310 36	317	009i	324 18, (
Direction (deg true) Speed (kt)	Altisude (ft)	9009	189		233	257	285	300	F8327	320	028 35.7	031 39	9901 13.6	331 27	07.4 14.1	085 16.9	241	254 15. 5	283	38.9	330	336 27.3		1
Direc	٧	4000	188	194	211	223	287	312	321	322	920	39	19.8		076 16,6	20.3	202	187	36 36	300	346 29	356	336 18	339 17, 5
		3000	200	196 13.6	215	210	862	322	313	305	0.26	32.2	338		16.9	23.4	170	199	305 35,3	307 32. 4	600 355	19.9	339	326 12.6
		05.22	214	15, 1	516	19.0	262	312	916	10.4	220	30.8	333	317	20.9	050 25.6	120	140	309	39.4	354	15.7	331	311
		2500	907	196	222	19,6	200	7.7	308	2,36	022	30,0	33.5	. 3 2. 3	0.52 16	22.6	87 T	166 6.1	309	310	700	360	329	9.1
		2250	192	13.6	708 228	20 °C	333		e :	282	1636	27.9	348	317 7.8	1620	044 22, 4	149	183	304 35, 1	308 22, 4	353 15.8	354 17. 4	335	315
		2000	192	17.0	208	20.7 20.7	£ :	2.5 2.5	33	. 6. 9. 6	2002	% % 6.6	ž.	9 *	9.5 8.5	041 21.8	8 -	214 8.1	% %	307 27. S	35.	350 17.4	330	9.0
		1730	183	1.90 17.9	516	23.5	862		Ę.	295 8.7	7 7	ž č.	ž. 6	ž :	£ 5		2.2	219 8.1	36.3		359		323	£ 9
		1500	191	₹ <u>₹</u>	22.	25.5 25.5	672	23	80.7	9.6	00 ×	36.2 36.2	3.7	¥ ;	8 5	2 2	5 ° °	225 8.1	36.4	317	357	357	313	ž
		1250	161	189	22	2 2 2	274	2.0 5.8 5.8	275	2.87 4.8	603	3. c.	ž	¥ 5	026	e = 3	2 4.8 4.4	£. 5.	35.4	30.9	<u>ي</u> د		304	ž :
		1000	185	191	223	22.33	285	214	27.0	280	8 8	36.7	332	2.3	191	970 07	232	1	302	316		35.2	692	
		3,50	\$.	1	1 —	2 2	195	5 2. 6 7.	172	2 2 3	100	<u>s</u> *	327		015	024 22.8	022	10,2	301	910 92	ž =	L	25.6	2 2
		\$90	179	E 3				6, 7 6, 7		5 t =	359	<u> </u>	ã	7 9°5		 	2	207	30.2	307 22.8	3 =	┺-	65.2	
		2.50	202	1881	2001 2001	912 01	990		27.5	906	356	75 355 20. 1	222 02, 5	969	9141	2081 10.7	2 3 3180	205 6.3 200 200 200 200 200 200 200 200 200 20	© 2 0000	292 38 15. 5	\$241	99/1	697 S	2000
Rocket	914	F	Karen e	ģ	Laura	ŏ	Martha	ě	Fanny e	٥ ٥ ٩	•	Š	Ethel	Ost Ost	Mabel	ě Ž	Dimah	ă	•	O G G G	Notty	ă	• • • •	14 Dec
Ŀ			1	<u>*</u>	13	1.	į	<u> </u>	15	2	Cilds	=	ដី	73	1 3	23	ä	-	å	35	ž	2	ਰ	<u>-</u>

TABLE 6. (Continued)

	_							, ,																
		60,000	057	273 90	9 K	230	35	240 27	270	22	238	95.7 **	238	557 54	238	552 44	950	0.57 1.2	3 200	9 4 .2	274	325	280 32	16.2 9.6 1.6.2
		55,000	270	61 1 <i>2</i> 7	240	241 36	09 097	\$ \$	270	8 2£2	242	15 957	242	256 51	242	15 957	310	ž =	92	322	11	29]	35	\$£
		50, 000	900	787 87	250	240 55	260	265 72	255	254 26	252	257 65	252 65	257 65	252 65	257 65	300	318	300	288	439	266	250	36
		5, 000	280	280	250	247 65	270	260	270	258 35	249	16	249 85	253 91	249 85	253 91	310	284	330	300	257 10	266 15	\$ \$	957 052
		40, 000 45, 000	2 0	301	250	245	95	122	280	260	552	25.3		88	255 90	88 052	280	254	010	a.	275 13	22	250	252
		35, 000	8 8	337	07.5	255 58	_	265 120	_	264 54	267	29E	267 85	791 162	267 85	29 852	260 17	≱1 282	010 36	19	81	303	260	$\overline{}$
		30, 000	330	345	240	246 47.0	280	101	300	292 41	192	957	261	61.1 96.7	260	119	11.0	16,0	020	17	268 19	212	260	192
		25, 000 3	330	3.40	08.2	245 37	067	276 81	310	262 32	557	259 82	752 53	259 82	257 53	259 82	280	16	080	0.0	262	96.	39	311
		000	320	339	9 9	239	290	182	-	256 14	39	37	257 39	37	257	37	240	269	360	355	8 g	288 18	35	30
		000 20		ž :	9 %	234		33	2 067	7		3 24	238	£ ::	238	¥ ;;	280	900 9	360	13	\$ º	Ш	280	23.7
		00 15.	0011	0071	0021	5300	80∷	5300	9011	00/1	0011	10021	9011	10/1	270 21.12	1041	3300e co co	0090 2 2	0011	9041	,006S		*0062 32 25	0090 °
		10,000		320	Q =	Н	_	282		26. (182	281	<u> </u>		\vdash	7.8	-	018	- 6	356			-
		0006	2.26	328	270	3.6		275	-	13.5		15,2	277	5.41	277 14.9	<u> </u>	10.5		20.6	020 16	8 =		295	
		8000		336	ŏ. •	319 4.8	294		087	134	_		265		277	~	069 10.6		3 20.1	-	11.3	358 13.3	303	
_		7000	356	359 16.7	090	1 1	312	18.30	23.	19, 2	265	10	262	97 ~	267	<u> </u>	16.6	-	<u> </u>	17	60 27		310	_
deg true) (kt)	(tr)	9009		35.2	₹,	6.9	¥ 323	328 18,8	53 027 23, 2	21.	264 8.6	584 6.0	284 6.0	9.6	26.6 26.6	14.0	£ 2 0220	10.	9471 010 16.	1 260	5 E	100	315 0980	314 20.
Direction (deg Speed (kt)	Altıtude	2000	8181 35.2	010 30.6	9º .	8.8 8.8	326	323 20	25.2	072 22.4	27.4 5.7	360	360	7. 7 4. 2	255 5,4	7.4	125	7.8	003 17,3	360	357	346 7.9	307	322 22.9
Dır		4000		31.7	ē.,	165	322	13	20, 1	20.8	284	360	360	074 2.7	2112	202 7	<u> </u>	122	002	380 16	356	344 7.1	274 3.1	i I
		3000	356	33.9	080	6.1	318	310 12, 1	030	048 18,6	351	316	316	087 1,6	101	9.40	106	099 8.9	7181 5 00 5	12 13 14 14	036	7.6	25W0 5.5 6.5	5.0
		05.22	357	34.1	070	083 4.6	319	340 17.3	030	26.2	334	283	283 4.6	3.2	\$00€ 2, = 5	7.9	093 8,5	9.7	360 12, 1	100	970 12,	956	1°6 3°1	3,3
		2500	356	360	070	087	316	9.1	025	046 18.9	349	290	290	7.7	38	128 8.1	0830 12.3	9.2	356	12.3	020	058 11,7	023	316
		2250	355	359 35.6	050	091 5.4	10.60	246	1625 16.7	357	1645 4.4	283 5, 2	283	16,1	162	÷ -;	8 . I	9.8	356	13.8	052	11,3	9.2	355
		2000	356 E 28.5	359	020	080	298	262	19,5	18.9	319	294 10,8	294	285	11.9	06. °,	123	142	200	13.1	10.2	10.7	027	023 5.8
		1750	-	34.8	360	082	298	285 15.9	19.9	032 19.8	284	292	292	5.7 5.7	1.5	217	125	11.4	10.7	12.8	081	079 8.6	13, 3	7.4
		1500		358 28	8,	986	80.5	6.7	18.4	81	258	10,1	232	5.7	5.2	2.5	13.6	105	12.9	13.2	800	088 8.3	031	9.4
		1250	356	356	8,	, s	ž ,	290	15.4	18,2	261	216	216	258	24.2	8.4	127	15.2	900	13.00	060	9.6	039	8 ÷
		1000	354	354	₹.	7.1	167	8.9	023	20.1	268	13.4	248	12.9	223	232	2 2	13.3	013	E 🕏	14.4	11.9	13, 4	11.9
		750	353	25.1	82.	1982	£ 3	270	020	030	346	8 °.	230	12.2	222	220 8.9	98,91	107	016	210	17.7	098 15	055	15, 2
		909	353	353 16. 5	oz.	. 37		18.2		028 18.6		11.3	# E	202	205	E 🐍	14.2	10.5	012	12,3	080	14. 4	050 16	14.3
		250	12.6	351	9	7 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	20 ×	100 T	90.00	857.1 2.2.2.	\$226	8241 02 01 10 01	1 0 0 92/1	9091	9 °	2 5 20 2 5 20 3 1 20	25 0 26 0 26 0	0820 0.055	329	906i	29090	090	\$2027 \$16.7	
Po	120	Date P.	Hazel	3 Oct	1	Now -	•	ž	Terry	ğ	Sharon			Ž Ž	Esther	ě	Alice	15 Oct	Brenda	oct 1.	Oueenie	19 Oct	Paula	25 Oct
		Δ	Ŧ	<u> </u>	1		Patey	+	٤	-	S.	3 Dec	I ⁴		ŭ		[]	- ÷	É	2	å	÷ ÷	4	ε τ

TABLE 6. (Continued)

Rocket	pć											ı	Direct	Direction (deg true) Speed (kt)	(Line)													
	130,												7	Altitude (ft)														
è	3,	906	3	1000	1250	1500	0 <u>7</u> 7	0002	2250	7500	05.22	3000	0000	9005	0009	2000	0009	9000 10	ş	15, 000 20	20, 000 25, 000	000 30	30, 000 35, 000 40,	000	.000 45,000	8	000 55, 000	66, 606
Ì	02 05 02 05 04 13	7	3,	ş	77 8	935	243	040	039	,	770 G	—	00 - 91 - 91	13.8		_	├	_	320 22, 3		330	330			_	μ,		
\$ 00 E	\$2000 20000	\$ % \$ %	9 % 7 %	L	21.6	22.4	19.6	25.3	030	9.6	19.7	19.9	16, 5	8 = 8 =	¥ <u>7</u>	319 3	2 *	316 2	324 20.5	3.34	339	340 43.6	345	337	10 K	287 5E	142 2	5,23
Carol.	9910	3	3	17.5	30.5	3 :	8.7	1	2000			╁	├	0600 7.7	269	289 2	290		0 °	1	55.82	22	<u> </u>	<u> </u>	<u> </u>	_	L_	╙
2 Kor	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1	2 =		E 2	% <u>=</u>	2 E	10.8	10.2	999 8.8	6.3	990	2.6	9.0 6.0	₹ :	_		-	304	122	23.5	232	39	239 2	248 248	247 239 48 52	35	2 ×
Sally	62 0190		3 :	<u> </u>	294	7.62	301	, X	305	Γ.	Π.	Η-	<u> </u>	\$1M0 \$2.00	× 7	_	31.9		297 297 29065	300		0.3						_
s Nov	0630 012.5	2 S	€ ≈	76 28	295	27.2	26.3	Š 2	28.1	313	316	314	315	305	289 2	3 28	-	47.5	4 5 5 0030	5 5	ê ‡	300	88 84	285 2	283 27 51 54	277 278 52 41	172	\$2 857
Beverly	9810 9810		8 5		22.3	070	19.7	\$ <u></u>	0000	Г	0.52	├	5565	329	326	328	328	26.92	3. 5. 6. 4.			<u> </u>	22.5					
6 Nov	0020	26.1	07.0 4.08	25.6		22.7	98.	16.2	25.			4.2	12.7	336	-	_	-	_	015 15.5	262	31.	277	272	270 2 58 6	26 8 27 69 62	270 26 62 45	269 257 45 37	25. 25.
Bonny	2000	15.5	20 %		128	3 5	139	¥ 5	8540 5.7.	133		9,51	151	25. 0.01	151	148 1	139	14.3	13.5 gg	360	290	290		320 3		330 310	910	
	0620	15, 5	112	136	145	138	134	128	126		137		Н	127	120	-	\vdash	-	3,7	340	962	762 762	81.0	ı			9 02	
Dagmar	77.75 900	82	£ ;	3.7	133	6.4	14.4	06.2 10.1							_				007 10.3		310	0,0	00 20 00 20		97 0	38	8 -	
15 Oct	22 S	3.9	g ?;	\$ <u>.</u> .	6.3	11.0	ç • •	10.5	12.4	075 13.6	14	13.5	13.9	14.4	14.5		042 12, 1	13,2	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	800	1.0	16	16 31	232 2		284 31	316	12
Clandy	1840 8 2	° .	÷ =		926	10,5	27.71	21.6	1210 1210	10,4	1	_	025 10,4	600	110	020	979	030 0	2300.	348	359	020	250	029 12 8	610		316 29	296 070 12 10
: 1 0 0 2 0 0 2 0 0	100 100 100 100 100 100 100 100 100 100		11.8	9 :- 9 :-	11,1	12.6	11.8	660	050 8. 5.		2.11	_	028 10.6	11.8	F 5		Н	037 0	16 16	1 1	353	320 10	270		318 37	3 20 2		
Eaid	1023 1023	025	829 21.5		15,7	036	16,9		25 P. 13. 9			016	328 9.8	328	318	311 3	307	295 2	292 262	33	255	250	245	249 2	255 2	2 052 052	255 25 34 34	2 × × × × × × × × × × × × × × × × × × ×
2 0 2 0 3 0 0 3 0 0	9000 2.5		7 72 710	19,7	032 17.2	14,9	12,3	13,3	036	038 10, 2			328	325			308 :8. 2		\$300 2.00	23,	2 % 2 %		2 62		_	_		
Louise	0000				24.6	389	13.1	_	326 8 10	324		_	288	15.8	_	272 2	259 22	255 2	2000	220 37	230	230	2,30	220 240		240 27	23 02 27 27	240 240 27
22 Oct	\$ = 0	21.2	¥ 4	¥ ::	7,47	00 - 0 - 5	10.1	12.4	14. 1	302 14.6	301	304 14.8	300	-	13, 1		1.6		21.1		152	526 49			_			
Klany	0190	I	<u> </u>		900	359	360		500 5	015		-	_	332 256	330	_	327	327	2300	61 097	255	20	268	256 245 24 32		237 23	237 24	25 25 24 15
2 00 22 2 00 00 00 00 00 00 00 00 00 00 00 00 00	8580 5.17.5	§ 5	21	19.2	15.4	14.1	1.5	 00 01	357 10, 1		350	8.8	335	345	13, 5	15,3	1.4	-	16.4 000		273 19	560				\Box		
1	22.03				251	254	258		2 270 13.6	270				323 %			111	302	301	290	280	113	280	270 260 150 140		250	250	242 245
10 Dec	9 7 7 0981	15.9	22.21	11.5	16.6	11,2	9 ?	10.9	13, 6		8 '71 17' 8	15.4	19.9	25.4	34.6	123 3	315		38.6		284	585			_			
	D. Post	 Prelameth winds Postlameth winds 	11																									

Fig. 30: Aerobee 150 (Karen) Altitude vs. Time (Entire Trajectory).

Fig. 31: Aerobee 150 (Karen) Range vs. Displacement (Entire Trajectory).

Fig. 32: Aerobee 150 (Karen) Velocity vs. Time (Entire Trajectory).

Fig. 33: Aerobee 150 (Laura) Altitude vs. Time (Entire Trajectory).

Fig. 34: Aerobee 150 (Laura) Altitude vs. Time (Trajectory Through Burnout).

Fig. 35: Aerobee 150 (Laura) Range vs. Displacement (Entire Trajectory).

Fig. 36: Aerobee 150 (Laura) Range vs. Displacement (Trajectory Through Burnout).

Fig. 37: Aerobee 150 (Laura) Velocity vs. Time (Entire Trajectory).

Fig. 38: Aerobee 150 (Laura) Velocity vs. Time (Trajectory Through Burnout).

Fig. 39: Aerobee 150 (Martha) Altitude vs. Time (Entire Trajectory).

Fig. 40: Aerobee 150 (Martha) Altitude vs. Time (Trajectory Through Burnout).

Fig. 41: Aerobee 150 (Martha) Range vs. Displacement (Entire Trajectory).

Fig. 42: Aerobee 150 (Martha) Range vs. Displacement (Trajectory Through Burnout).

Fig. 43: Aerobee 150 (Martha) Velocity vs. Time (Entire Trajectory).

Fig. 44: Aerobee 150 (Martha) Velocity vs. Time (Trajectory Through Burnout).

Fig. 45: Aerobee 150 (Fanny) Altitude vs. Time (Entire Trajectory).

Fig. 46: Aerobee 150 (Fanny) Range vs. Displacement (Entire Trajectory).

Fig. 47: Aerobee 150 (Fanny) Velocity vs. Time (Entire Trajectory).

Fig. 48: Aerobee 150 (Gilda) Altitude vs. Time (Entire Trajectory).

Fig. 49: Aerobee 150 (Gilda) Range vs. Displacement (Entire Trajectory).

Fig. 50: Aerobee 150 (Gilda) Velocity vs. Time (Entire Trajectory).

Fig. 51: Honest John-Nike-Nike (Ethel) Altitude vs. Time (Entire Trajectory).

Fig. 52: Honest John-Nike-Nike (Ethel) Altitude vs. Time (Trajectory Through Burnout).

Fig. 53: Honest John-Nike-Nike (Ethel) Range vs. Displacement (Entire Trajectory).

Fig. 54: Honest John-Nike-Nike (Ethel) Range vs. Displacement Trajectory Through Burnout).

Fig. 55: Honest John-Nike-Nike (Ethel) Velocity vs. Time (Entire Trajectory).

Fig. 56: Honest John-Nike-Nike (Ethel) Velocity vs. Time (Trajectory Through Burnout).

Fig. 57: Honest John-Nike-Nike (Dinah) Altitude vs. Time (Entire Trajectory).

Fig. 58: Honest John-Nike-Nike (Dinah) Altitude vs. Time (Trajectory Through Burnout).

Fig. 59: Honest John-Nike-Nike (Dinah) Range vs. Displacement (Entire Trajectory).

Fig. 60: Honest John-Nike-Nike(Dinah) Range vs. Displacement (Trajectory Through Burnout).

Fig. 61: Honest John-Nike-Nike (Dinah) Velocity vs. Time (Entire Trajectory).

Fig. 62: Honest John-Nike-Nike (Dinah) Velocity vs. Time (Trajectory Through Burnout).

Fig. 63: Honest John-Nike-Nike (Eva) Altitude vs. Time (Entire Trajectory).

Fig. 64: Honest John-Nike-Nike (Eva) Altitude vs. Time (Trajectory Through Burnout).

Fig. 65: Honest John-Nike-Nike (Eva) Range vs. Displacement (Entire Trajectory).

Fig. 66: Honest John-Nike-Nike (Eva) Range vs. Displacement (Trajectory Through Burnout).

Fig. 67: Honest John-Nike-Nike (Eva) Velocity vs. Time (Entire Trajectory)

Fig. 68: Honest John-Nike-Nike (Eva) Velocity vs. Time (Trajectory Through Burnout).

Fig. 69: Honest John-Nike-Nike (Netty) Altitude vs. Time (Entire Trajectory).

Fig. 70: Honest John-Nike-Nike (Netty) Altitude vs. Time (Trajectory Through Burnout).

Fig. 71: Honest John-Nike-Nike (Netty) Range vs. Displacement (Entire Trajectory).

Fig. 72: Honest John-Nike-Nike (Netty) Range vs. Displacement (Trajectory Through Burnout).

Fig. 73: Honest John-Nike-Nike (Netty) Velocity vs. Time (Entire Trajectory).

Fig. 74: Honest John-Nike-Nike (Netty) Velocity vs. Time (Trajectory Through Burnout).

Fig. 75: Honest John-Nike-Nike (Olga) Altitude vs. Time (Entire Trajectory).

Fig. 76: Honest John-Nike-Nike (Olga) Altitude vs. Time (Trajectory Through Burnout).

Fig. 77: Honest John-Nike-Nike (Olga) Range vs. Displacement (Entire Trajectory).

Fig 78: Honest John-Nike-Nike (Olga) Range vs. Displacement (Trajectory Through Burnout).

Fig. 79: Honest John-Nike-Nike (Olga) Velocity vs. Time (Entire Trajectory).

Fig. 80: Honest John-Nike-Nike (Olga) Velocity vs. Time (Trajectory Through Burnout).

Fig. 81: Honest John-Nike-Nike (Lisa) Altitude vs Time (Entire Trajectory)

Fig. 82: Honest John-Nike-Nike (Lisa) Altitude vs. Time (Trajectory Through Burnout).

Fig 83: Honest John-Nike-Nike (Lisa) Range vs. Displacement (Entire Trajectory)

Fig. 84: Honest John-Nike-Nike (Lisa) Range vs. Displacement (Trajectory Through Burnout).

Fig. 85: Honest John-Nike-Nike (Lisa) Velocity vs. Time (Entire Trajectory).

Fig. 86: Honest John-Nike-Nike (Lisa) Velocity vs. Time (Trajectory Through Burnout).

Fig. 87: Honest John-Nike-Nike (Patsy) Altitude vs. Time (Entire Trajectory).

Fig. 88: Honest John-Nike-Nike (Patsy) Altitude vs. Time (Trajectory Through Burnout).

Fig. 89: Honest John-Nike-Nike (Patsy) Range vs. Displacement (Entire Trajectory).

Fig. 90: Honest John-Nike-Nike (Patsy) Range vs. Displacement (Trajectory Through Burnout).

Fig. 91: Honest John-Nike-Nike (Patsy) Velocity vs. Time (Entire Trajectory).

Fig. 92: Honest John-Nike-Nike (Patsy) Velocity vs. Time (Trajectory Through Burnout).

Fig. 93: Nike-Cajun (Alice) Altitude vs. Time (Trajectory Through Burnout).

Fig. 94: Nike-Cajun (Alice) Range vs. Displacement (Trajectory Through Burnout).

Fig. 95: Honest John-Nike-Nike (Alice) Velocity vs. Time (Trajectory Through Burnout).

Fig. 96: Nike-Cajun (Brenda) Altitude vs. Time (Trajectory Through Burnout).

Fig. 97: Nike-Cajun (Brenda) Range vs. Displacement (Trajectory Through Burnout).

Fig. 98: Nike-Cajun (Brenda) Velocity vs. Time (Trajectory Through Burnout).

Fig. 99: Nike-Cajun (Ruby) Velocity vs. Time (Entire Trajectory).

Fig. 100: Nike-Cajun (Ruby) Altitude vs. Time (Trajectory Through Burnout).

Fig. 101: Nike-Cajun (Ruby) Range vs. Displacement (Entire Trajectory).

Fig. 102: Nike-Cajun (Ruby) Velocity vs. Time (Entire Trajectory.

Fig. 103: Nike-Cajun (Ruby) Velocity vs. Time (Trajectory Through Burnout).

Fig. 104: Nike-Cajun (Sally) Altitude vs. Time (Trajectory Through Burnout).

Fig. 105: Nike-Cajun (Sally) Range vs. Displacement (Trajectory Through Burnout).

Fig. 106: Nike-Cajun (Sally) Velocity vs. Time (Trajectory Through Burnout).

Fig. 107: Nike-Cajun (Beverly) Altitude vs. Time (Trajectory Through Burnout).

Fig. 108: Nike-Cajun (Beverly) Range vs. Displacement (Trajectory Through Burnout).

Fig. 109: Nike-Cajun (Beverly) Velocity vs. Time (Trajectory Through Burnout).

Fig. 110: Nike-Cajun (Bonny) Altitude vs. Time (Trajectory Through Burnout).

Fig. 111: Nike-Cajun (Bonny) Range vs. Displacement (Trajectory Through Burnout).

Fig. 112: Nike-Cajun (Bonny) Velocity vs. Time (Trajectory Through Burnout).

Fig. 113: Nike-Cajun (Dagmar) Altitude vs. Time (Trajectory Through Burnout).

Fig. 114: Nike-Cajun (Dagmar) Range vs. Displacement (Trajectory Through Burnout).

Fig. 115: Nike-Cajun (Dagmar) Velocity vs. Time (Trajectory Through Burnout).

144

Fig. 117: Nike-Cajun (Cindy) Range vs. Displacement (Trajectory Through Burnout).

Fig. 118: Nike-Cajun (Cindy) Velocity vs. Time (Trajectory Through Burnout).

Fig. 119: Nike-Cajun (Louise) Altitude vs. Time (Trajectory Through Burnout).

Fig. 120: Nike-Cajun (Louise) Range vs. Displacement (Trajectory Through Burnout).

Fig. 121: Nike-Cajun (Louise) Velocity vs. Time (Trajectory Through Burnout).

Fig. 122: Nike-Cajun (Kitty) Altitude vs. Time (Trajectory Through Burnout).

Fig. 123: Nike-Cajun (Kitty) Altitude vs. Time (Entire Trajectory).

Fig. 124: Nike-Cajun (Kitty) Range vs. Displacement (Entire Trajectory).

Fig. 125: Nike-Cajun (Kitty) Range vs. Displacement (Trajectory Through Burnout).

Fig. 126: Nike-Cajun (Kitty) Velocity vs. Time (Entire Trajectory).

Fig. 127: Nike-Cajun (Kitty) Velocity vs. Time (Trajectory Through Burnout).

Fig. 128: Nike-Cajun (Dana) Altitude vs. Time (Entire Trajectory).

Fig. 129: Nike-Cajun (Dana) Altitude vs. Time (Trajectory Through Burnout).

Fig. 130: Nike-Cajun (Dana) Range vs. Displacement (Entire Trajectory).

Fig. 131: Nike-Cajun (Dana) Range vs. Displacement (Trajectory Through Burnout).

Fig. 132: Nike-Cajun (Dana) Velocity vs. Time (Entire Trajectory).

Fig. 133: Nike-Cajun (Dana) Velocity vs. Time (Trajectory Through Burnout).

REFERENCES

- 1. APGC-AIDR-62-29, <u>Dispersion Study for the Honest John-Nike-Nike</u>, unclassified report, dated December 1962.
- 2. APGC-AIDR-62-31, <u>Dispersion Study for the Aerobee 150</u>, unclassified report, dated December 1962.
- 3. APGC-AIDR-63-7, Dispersion Study for the Nike-Cajun, unclassified report, dated January 1963.
- 4. APGC-AIDR-63-18, Dispersion Study for the Nike-Apache, unclassified report, dated February 1963.

INITIAL DISTRIBUTION

- 6 AFCRL (CRZER)
- 10 AFCRL (CRZAC)
- 1 NASA (GSFC)
- 2 USASRDC
- 1 Aerojet-General Corporation, Ft. Walton Beach, Florida
- 1 Aerojet-General Corporation, Azusa, California
- 1 Space-General Corporation, El Monte, California
- 1 Space-General Corporation, Almagordo, New Mexico
- 2 Atlantic Research Corporation, El Monte, California
- 2 Atlantic Research Corporation, Alexandria, Virginia
- 1 Chance-Vought Corporation, Astronautics Division
- 1 Geophysics Corporation of America, Physics Research Division
- 1 Thiokol, Elkton Division
- 1 Device Development Corporation
- 1 Armour Research Foundation, Physical Chemistry Research
- l Oklahoma State University, Research Foundation
- 1 Georgia Institute of Technology
- 1 University of Georgia, Department of Physics
- 1 University of Michigan
- 30 ASTIA (TIPCR)

APGC

- 15 PGWHP
- 1 PGWRR
- 1 PGWT
- 1 PGWF
- 1 PGOPW
- 1 FGOOS
- 1 PGOOC
- 1 PGVMS-6
- 1 FGAPT
- 3 PGAFI
- 3 PGEH

1. Sounding rockets 2. Rocket trajectories 4. Necket Friefly III 4. Nike-Cajan 5. Nike-Apach 6. Honer John-Nike-Nike 7. Arrobes 11. Arrobes 11. Vickery, William K. III, in ASTIA collection	UNCLASSIFIED	UNCLASSITED Souding rockets Rocket trajectories Project Firefly III Nike-Cajun Nike-Apache Nike-Apache Arroket John-Nike-Nike Arroket John-Nike-Nike Arroket John-Nike-Nike Arroket John-Nike-Nike Nike-Apache Arroket John-Nike-Nike Arroket John-N	
Air Froving Ground Center Eglin Air Force Base, Florida Rpt. No. APCG-TDR-63-19, FIREFLY III, SOUNDING ROCKET LAUNCH, ING REFORT 13) Vehicles Launched 15 October - 15 December 1962, Vol. I Launch, Vehicles, and Data Reduction, Final report, April 1963, 164 p. incl. illus., tables. Unclassified report, April 1965, John-Nike-Nike and S. Aerobee 150, were launched from the Acrospace Launching Facility. Eglin Gulf Test Range. Florida. These launchings were conducted in support of Froiest Firefy III, directed by the Geophysics Research Directorate, Air Force Cambridge Research Laborraper cortex, Office of Aerospace Research. The overall report, consisting of Volumes 1 and 2, describes the sounding rockets, ballistic computations, range support, and the launch and flight data obtained. Specifically, Volume 2 presents only the theoretical and empirical vehicle trajectory data tabulated at the Air Proving Ground Center. Thirty-one rocks provided trajectory and the Air Proving Ground Center. Thirty-one rocks provided trajectory and the Air Proving Ground Center. Thirty-one rocks provided trajectory and the Air Proving Ground Center. Thirty-one rockets provided trajectory and the Nike-Cajuw's. The maximum altitude predictions were also satisfactory for the Nike-Cajuw's. The maximum altitude predictions were also satisfactory.	0	Air Froving Ground Center Eglin Air Force Base, Florida Rpt, No. APOC-TDR-63-19, FIRETLY III, SONNDING ROCKET LAUNCH, NIG REFORT (13) Vehicles, Launched 15 October. 15 December 1962), Nol. I Launch, Vehicles, and Data Reduction, Final report, April 1963, 164 p. incl. illuss, tables, Thirty-three sounding rockets (15 Nike-Ca jun, Wike-Apache, 9 Honest Onba-Nike-Nike, and 5 Archoeb 199, were launched from the Arcopace Launching Facility, Eglin Gulf Test Range. Florida, These launchings were conducted in support of Froject Firelly III, directed by the Geo- physics Research Directorate, Air Force Camplinge Research Labora- portes, Office of Arrapace Research. The overall report, consisting of Volume 1 and 2, describes the sounding rockets, ballistic computations, range support, and the launch and flight data obtained. Specifically, Vol- ume 2 presents only the theoretical and empirical vehicle trajectory data traper support, and the launch and flight data obtained. Specifically, Vol- ume 2 presents only the theoretical and empirical vehicle trajectory data traper support, and the launch and flight data obtained. The Nike-Capun flights were sustainfactory. The maximum altitude the Nike-Capun's. The maximum altitude predictions were also satsfactory for the Nike-Capun's. The maximum altitude predictions were also satsfactory	0
UNCLASSIFED UNCLASSIFED Nochat trajectories Nochat trajectories Nike-Cajun Nike-Apache Nike-Apache Nike-Apache L AFSO Froject 4984 II, Vichery, William K. III, In ASTIA collection	UNCLASSIFIED	UNCLASSIFED 1. Sounding rockets 2. Rocket trajectories 3. Froject Firefly III 4. Nike-Cajun 5. Nike-Apache 6. Honest John Nike-Nike 7. Aerobee 1. AFSC Project 4984 11. Vickery, William K, 111, in ASTIA collection	
Air Froring Ground Center Eglin Air Force Base, Florida Re, No. APCC.TDR.63.19, FIREELY III, SOUNDING ROCKET LAUNCH, ING REPORT (1) a Vehicles Launched 15 October - 15 December 1962), vol. I Launch, Vehicles, and Data Reduction, Final report, April 1963, 164 p. incl. illua., tables. Unclassified report Thirty-three sounding rockets (15 Nike-Cajun, 4 Nike-Apache, 9 Honest John-Nike-Nike, and 5 Aerobee 150, were Launched from the Aeropace John-Nike-Nike, and 5 Aerobee 150, were Launched from the Aeropace Johnstee, Air Force Cambridge Research Labors. Borise, Office of Aerospace Persarch, The overall report, consisting of Volume 1 and 2, describes the sounding rockets, abilistic computations, vange support, and the launch and flight data obtained, Specifically, Vol- ume 2 presents only the theoretical and empirical vehicle trajectory data are predictions averaged approximately 3 percent high for the Aerobee 150*, 6 percent high for the Honest John-Nike-Nike's, and 7 percent high for the Nike-Cajun's. The maximum altitude predictions were also satisfactory	0	Air Froving Ground Center Egin Air Force Base, Florida Rpt, No. APGC-TDR-63-19, FIREELY III, SOUNDING ROCKET LAUNCH, ING REPORT 13 Vehicles, and Data Reduction, Final report, April 1063, 164 p. incl., Illus, Bables. Unclassified report Thirty-three sounding rockets (15 Nike-Cajun, 4 Nike-Apache, 9 Honest John-Nike-Nike, and 5 Archbee 150, were launched from the Acropace John-Nike-Nike, and 5 Archbee 150, were launched from the Acropace John-Nike-Nike, and 5 Archbee 150, were launched from the Acropace John-Nike-Nike, and 5 Archbee 150, were launched from the Acropace John-Nike-Nike, and 5 Archbee 150, were Launched from the Acropace John-Nike-Nike, and 5 Archbee 150, were allowed the Gro- physics Research Directors, Air Force Lambrings were conducted in support of Froset Firefly III, directed by the Gro- physics Research Directors has be sounding rockets, abilistic computations, vange support, and the launch and flight data obtained. Specifically, Vol- usume 2 presents only the theoretical and empirical vehicle trajectory data tabulated at the AP Foreing Ground Center. Thirty-one rockets provided trajectoric which were sufficient to meet the scientific requirements. Two Nike-Cajun's. The maximum altitude predictions were also satisfactory the Nike-Cajun's. The maximum altitude predictions were also satisfactory	0

ŧ