

Laboratório de Arquitetura de Computadores	Data 02/09/19
Relatório de Experimentos	Módulo: 1

Nome: Giovanne Prestes Dias RA 171029

Título: Multiplexador, decodificador e máquina de estado utilizando software Quartus II.

Objetivos:

- Adquirir conhecimentos em dispositivos de lógica programável;
- Estudo dos circuitos MUX e decodificador;
- Compreensão de uma máquina de estado.

Material Utilizado:

- Software Quartus II (versão 13).

Relatório:

1) Introdução;

Neste experimento desenvolveremos os conhecimentos em circuitos MUX e decodificador, aprenderemos como fazer um circuito a partir de um mapa de Karnaugh fornecido pela máquina de estados

- 2) Dois projetos a serem desenvolvidos:
 - a. Construir um circuito decodificador 3x8 no programa Quartus II;

Figura 1: Circuito do decodificador.

Data 02/09/19

Relatório de Experimentos

Módulo: 1

Figura 2: Decodificador 3x8.

- b. Construir uma máquina de "estados da água" com FF tipo D:
 - i. S=sólido, L=líquido e G=gasoso;
 - ii. entrada = temperatura = T, em que 0 diminui e 1 aumenta;
 - iii. Passo 1 Levantamento (número de bits p. repres. Estados, entradas, saídas); Entrada -> temperatura (0 ou 1)

Estados ->

(00) - Solido

(01) - Liquido

(10) – Gasoso

Saída -> 0 ou 1 - Temperatura

iv. Passo 2 – Geração de uma tabela verdade;

Т	В	Α	DB	DA
0	0	0	0	0
0	0	1	0	0
0	1	0	0	1
0	1	1	0	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	0	0

Tabela 1: Tabela verdade

v. Passo 3 – Montagem de um Mapa de Karnaugh;

DB							
T BA	00	01	11	10			
0	0	0	0	0			
1	0	1	0	1			

Tabela 2: geração mapa de Karnaugh DB = T . ($A \oplus B$).

DA							
T BA	00	01	11	10			
0	0	0	0	1			
1	1	0	0	0			

Tabela 3: geração mapa de Karnaugh DA = \overline{A} . ($\overline{T} \oplus B$).

Data 02/09/19

Relatório de Experimentos

Módulo: 1

vi. Passo 4 – Desenhar o circuito.

Figura 3: Circuito feito a partir do mapa de Karnaugh.

- 3) Definição do circuito no software;
- 4) Procedimento experimental executado;
- 5) Demonstração com forma de onda na execução do circuito;
- 6) Usar modelo de simulação funcional;
- 7) Análise da forma de onda;

Com a temperatura em 1, o sólido (00) tem que passar para o líquido (01), depois para o gasoso (10) e permanecer no gasoso;

Figura 4: Estado sólido.

Data 02/09/19

Relatório de Experimentos

Módulo: 1

Figura 5: Transição da Figura 4 (sólido) para o líquido.

Figura 6: Transição da Figura 5 (líquido) para o gasoso.

Com a temperatura em 0, do gasoso (10) tem que passar para o líquido (01) e depois para o sólido (00) e permanecer no sólido.

Figura 7: T=0.

Data 02/09/19

Relatório de Experimentos

Módulo: 1

Figura 8: Transição da Figura 7 (gasoso) para o líquido.

Figura 9: Transição da Figura 8 (líquido) para o sólido.

8) Conclusão.

Vimos como descrever, interpretar, implementar e qual o funcionamento de uma máquina de estados.