Lecture Notes

Advanced Discrete Structures
COT 4115.001 S15
2015-02-10

Recap

Simplified DES-like Algorithm

- Input: Plaintext L_0R_0 (12-bit), Key K (9-bit)

- Rounds: $L_i R_i \leftrightarrow L_{i+1} R_{i+1}$, Round keys K_i (8-bit)

- Feistel Function: $f: \mathbb{Z}_2^6 \times \mathbb{Z}_2^8 \to \mathbb{Z}_2^6$

• Expansion $E: \mathbb{Z}_2^6 \to \mathbb{Z}_2^8$

• Key Mixing $K_i: \mathbb{Z}_2^9 \times \mathbb{Z}_9 \to \mathbb{Z}_2^8,$ $\bigoplus: \mathbb{Z}_2^8 \times \mathbb{Z}_2^8 \to \mathbb{Z}_2^8$

• Substitution (S-boxes) $S: \mathbb{Z}_2^4 \times \mathbb{Z}_2^4 \to \mathbb{Z}_2^3 \times \mathbb{Z}_2^3$

Recap

Expansion function

$$E: \mathbb{Z}_2^6 \to \mathbb{Z}_2^8$$

S-boxes

$$S_1$$
 $\begin{bmatrix} 101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011 \end{bmatrix}$

$$S_2$$
 $\begin{bmatrix} 100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100 \end{bmatrix}$

Recap

• Encryption:

- $L_0R_0 \rightarrow L_1R_1 \rightarrow \cdots \rightarrow L_nR_n$ with keys K_1, K_2, \ldots, K_n using:
 - $[L_i]$ $[R_i]$ \rightarrow $[R_i]$ $[L_i \oplus f(R_i, K_{i+1})] = [L_{i+1}]$ $[R_{i+1}]$

<u>Decryption</u>:

- Swap the blocks L_n and R_n , and use the encryption algorithm with keys K_n, K_{n-1}, \dots, K_1
 - $[R_{i+1}]$ $[L_{i+1}] \rightarrow [L_{i+1}]$ $[R_{i+1} \oplus f(L_{i+1}, K_{i+1})] = [R_i]$ $[L_i]$
- When you get to $R_0 L_0$, swap the blocks back to get $L_0 R_0$

Message: 110011010101 Key: 010101110

i	K_i	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$
0		[110011] [010101]	

1 01010111

<u>Key</u>: 010101110 <u>Message</u>: 1100110101

Encryption (i = 0):

$$[L_0] = 110011$$
 $[R_0] = 010101$

Encryption (i = 1):

$$[L_1] [R_1] = [R_0] [L_0 \oplus f(R_0, K_1)]$$

$$K_1 = 01010111$$
 Just need $f(R_0, K_1)$

$$[R_0] = 010101$$
 and $K_1 = 01010111$

Compute $f(R_0, K_1)$:

- 1. Expansion: $E(R_0) = E(01\underline{01}01) = 01\underline{1010}01$ $(12\underline{34}56 \rightarrow 12\underline{4343}56)$
- 2. Key Mixing: $E(R_0) \oplus K_1$

$$= 01101001 \oplus 01010111$$

= 001111110

$$E(R_0) \oplus K_1 = 001111110 \implies 0011 \quad 1110$$

Substitution:

0011: First block $\rightarrow S_1$, **1110:** Second block $\rightarrow S_2$

First bit \rightarrow first row, First bit \rightarrow second row, Next 3 bits \rightarrow column 011 Next 3 bits \rightarrow column 110

$$S_1$$
 $\begin{bmatrix} 101 & 010 & 001 & 110 & 011 & 100 & 111 & 000 \\ 001 & 100 & 110 & 010 & 000 & 111 & 101 & 011 \end{bmatrix}$

$$S_2$$
 $\begin{bmatrix} 100 & 000 & 110 & 101 & 111 & 001 & 011 & 010 \\ 101 & 011 & 000 & 111 & 110 & 010 & 001 & 100 \end{bmatrix}$

$$0011 \ 1110 \implies 110 \ 001$$

$$f(R_0, K_1) = 110001$$

We Know:

$$[L_0] = 110011,$$
 $[R_0] = 010101,$ $f(R_0, K_1) = 110001$

Round i = 1:

$$[L_0]$$
 $[R_0]$ \to $[R_0]$ $[L_0 \oplus f(R_0, K_1)] = [L_1]$ $[R_1]$

$$[L_1] = 010101$$

 $[R_1] = L_0 \oplus f(R_0, K_1) = 110011 \oplus 110001 = 000010$

i	K_i	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$	
0		[110011] [010101]		
1	01010111	[010101] [000010]		
2	10101110			

$$i=2$$
 $[L_1] = 010101$ $[R_1] = 000010$ $K_2 = 10101110$

Rule: $[L_1]$ $[R_1]$ \rightarrow $[R_1]$ $[L_1 \oplus f(R_1, K_2)]$

Expansion: $E(R_1) = 00000010$

Key Mixing: $E(R_1) \oplus K_2 = 00000010 \oplus 10101110 = 10101100$

Substitution: $S_1: 1010 \rightarrow 110$ $S_2: 1100 \rightarrow 110$, $f(R_1, K_2) = 110110$

 $[L_2] = 000010$ $[R_2] = L_1 \oplus f(R_1, K_2) = 010101 \oplus 110110 = 100011$

i	K_{i}	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$	
0		[110011] [010101]		_
1	01010111	[010101] [000010]		
2	10101110	[000010] [100011]		
3	01011100			

$$i = 3$$
 $[L_2] = 000010$ $[R_2] = 100011$ $K_3 = 01011100$

Rule: $[L_2]$ $[R_2]$ \rightarrow $[R_2]$ $[L_2 \oplus f(R_2, K_3)]$

Expansion: $E(R_2) = 10000011$

Key Mixing: $E(R_2) \oplus K_3 = 10000011 \oplus 01011100 = 110111111$

Substitution: $S_1: 1101 \rightarrow 111$ $S_2: 1111 \rightarrow 100$, $f(R_1, K_2) = 111100$

 $[L_3] = 000010$ $[R_3] = L_2 \oplus f(R_2, K_3) = 000010 \oplus 111100 = 111110$

i	K_{i}	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$	
0		[110011] [010101]		
1	01010111	[010101] [000010]		
2	10101110	[000010] [100011]		
3	01011100	[100011] [111110]		

i	K_{i}	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$
0		[110011] [010101]	
1	01010111	[010101] [000010]	
2	10101110	[000010] [100011]	
3	01011100	[100011] [111110]	(111110) [100011]

$$i = 3$$
 $[L_3] = 100011$ $[R_3] = 111110$ $K_3 = 01011100$

Rule: $[R_3]$ $[L_3]$ \rightarrow $[L_3]$ $[R_3 \oplus f(L_3, K_3)]$

Expansion: $E(L_3) = 10\underline{0000}11$

Key Mixing: $E(L_3) \oplus K_3 = 10000011 \oplus 01011100 = 110111111$

Substitution: $S_1: 1101 \rightarrow 111$ $S_2: 1111 \rightarrow 100$, $f(R_1, K_2) = 111100$

 $[R_2] = 100011$ $[L_2] = R_3 \oplus f(L_3, K_3) = 111110 \oplus 111100 = 000010$

i	K_{i}	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$
0		[110011] [010101]	
1	01010111	[010101] [000010]	
2	10101110	[000010] [100011]	[100011] [000010]
3	01011100	[100011] [111110]	[111110] [100011]

i	K_i	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$
0		[110011] [010101]	[010101] [110011]
1	01010111	[010101] [000010]	[000010] [010101]
2	10101110	[000010] [100011]	[100011] [000010]
3	01011100	[100011] [111110]	[111110] [100011]

i	K_i	$[L_i]$ $[R_i]$	$[R_i]$ $[L_i]$
0		[110011] [010101]	[010101] [110011]
1	01010111	[010101] [000010]	[000010] [010101]
2	10101110	[000010] [100011]	[100011] [000010]
3	01011100	[100011] [111110]	[111110] [100011]

Basic Number Theory - Section 3.5

MODULAR EXPONENTIATION

Computing

$$x^a \pmod{n}$$

Options:

- 1. Compute x^a then consider mod n
 - x^a may be huge (too big to store)
- 2. Represent $x^a = x^{b_1+b_2+\cdots+b_m} = x^{b_1}x^{b_2} \dots x^{b_m}$ and evaluate each $x^{b_i} \pmod{n}$ individually. Multiply the results together to recover $x^a \pmod{n}$
 - If m is big, too many numbers $b_1, b_2, ..., b_m$

Note that

$$x^{b^e}=x^{b\cdot b^{e-1}}=\left(x^{b^{e-1}}\right)^b,$$
 so if $x^{b^{e-1}}$ is known, then x^{b^e} is easy to compute

• For $x^a \pmod{n}$, represent a in some smaller base system, i.e.,

$$a=c_nb^n+c_{n-1}b^{n-1}+\cdots+c_1b+c_0,$$
 and compute each $x^{b^e}(\operatorname{mod} n)$ from $x^{b^{e-1}}(\operatorname{mod} n)$

• Typical to use binary, i.e., b=2 and each $c_0 \in \mathbb{Z}_2$.

Example:

- 1. Represent 45 in binary, $45_{10} = 101101_2$, so $123^{45} = 123^{2^5+2^3+2^2+2^0}$ $= (123^{2^5})(123^{2^3})(123^{2^2})(123^{2^0})$
- 2. Compute $123^{2^e} \pmod{67}$ from $123^{2^{e-1}} \pmod{67}$

Example:

$$123^{2^{0}} = 123^{1} \equiv 56 \pmod{67}$$

$$123^{2^{1}} = (123^{2^{0}})^{2} \equiv 56^{2} = 3,136 \equiv 54 \pmod{67}$$

$$123^{2^{2}} = (123^{2^{1}})^{2} \equiv 54^{2} = 2,916 \equiv 35 \pmod{67}$$

$$123^{2^{3}} = (123^{2^{2}})^{2} \equiv 35^{2} = 1,225 \equiv 19 \pmod{67}$$

$$123^{2^{4}} = (123^{2^{3}})^{2} \equiv 19^{2} = 361 \equiv 26 \pmod{67}$$

$$123^{2^{5}} = (123^{2^{4}})^{2} \equiv 26^{2} = 676 \equiv 6 \pmod{67}$$

Example:

```
123^{45} \equiv 123^{2^5}123^{2^3}123^{2^2}123^{2^0} \pmod{67}

\equiv (6) (19) (35) (56) \pmod{67}

\equiv 62 \pmod{67}
```

```
123^{2^0} \equiv 56 \pmod{67}

123^{2^1} \equiv 54 \pmod{67}

123^{2^2} \equiv 35 \pmod{67}

123^{2^3} \equiv 19 \pmod{67}

123^{2^4} \equiv 26 \pmod{67}

123^{2^5} \equiv 6 \pmod{67}
```

Even though

```
123^{45} =
11,110,408,185,131,956,285,910,
790,587,176,451,918,559,153,212,
268,021,823,629,073,199,866,111,
001,242,743,283,966,127,048,043
```

we never computed a number bigger than $66^2 = 4,356$ and only used 8 multiplications.