

2022 FCSM Research & Policy Conference Session C-6: Lifting the Fog: Editing and Imputation 2022-10-25

Young-Jun Kweon
Bureau of Transportation Statistics

Disclaimer

This study was performed under the sponsorship of the Department of Transportation in the interest of information exchange. The U.S. Government assumes no liability for its contents or use thereof.

Outline

- INTRODUCTION
 NCFO / Imputation Study
- DATA
 Questionnaire / Released Tables
- METHODS
 Prep ADS / MI Models / Comparison Metrics / Model Estimation
- RESULTS
- CONCLUSIONS

INTRODUCTION

National Census of Ferry Operators

INTRODUCTION

- The Safe, Accountable, Flexible Efficient, Transportation Equity Act—A Legacy for Users (SAFETEA-LU) of 2005 (P.L. 114-94) requires BTS to maintain a national ferry database.
- BTS conducts a biennial census of all ferry operators in the U.S. and its territories.
- Who should be included?
 - Ferry operators providing itinerant, fixed route, common carrier passenger/vehicle rollon, roll-off (RoRo) ferry service, and railroad car float operations
- Who should NOT be included?
 - Non-itinerant operations (e.g., cruise-to-nowhere services)
 - Excursion (e.g., whale watches, casino boats, dinner cruises, etc.)
 - Passenger only water taxi services not operating on a fixed route
 - LoLo (Lift-on/Lift-off) freight/auto carrier services
 - Long distance passenger only cruise ship services

2018 NCFO Imputation Study

INTRODUCTION

Background

- ✓ About 5% are missing in passenger and vehicle boarding counts.
- ✓ With the missing data, trend analysis is challenging.

Purpose:

✓ To impute missing annual boarding counts

2018 NCFO

- √ 238 operators invited (frame)
- √ 181 operators participated

DATA

DATA

2018 NCFO Questionnaire

• 5 Sections: (1) Operator Info, (2) Vessel Info, (3) Terminal Info, (4) Segment Info, and (5) Funding Info.

2018 NCFO Data Release

DATA

5 Tables	Operator	Operator-Segment	Segment	Terminal	Vessel	
155 Variables	47	48	7	19	34	

METHODS

Prep Analysis Data Set

METHODS

5 NCFO tables + State Population

METHODS

6 Combinations of Methods/Restrictions & 8 Variable Sets: A total of 48 Model Specifications

Model 322

- FCS method with Variable Set 3 (12 variables)
- Box-Cox transformation for all continuous variables
- No min/max/round imposed on categorical variables

Comparison Metrics & Simulated Data

METHODS

• Root Mean Squared Error (RMSE) = $\sqrt{\frac{\sum (Actual - Imputed)^2}{N}}$

Model Estimation

METHODS

 Among 48 models, 21 models were estimated and included for model comparison

RESULTS

Results: All 30 Data Sets

RESULTS

• RMSE(Passenger) =
$$\sqrt{\frac{\sum (PASS_{Actual} - PASS_{Imputed})^2}{47 \times 30}}$$

Top 10 Models: All 30 Data Sets

Rank	Model	RMSE
1	121	294,912
2	111	297,203
3	712	299,134
4	812	305,134
5	623	310,022
6	512	312,194
7	622	314,309
8	624	314,309
9	522	315,487
10	524	315,487

Average of Passengers in 2018 NCFO: 131,204 persons per segment

Results: By Data Set

RESULTS

• RMSE(Passenger) =
$$\sqrt{\frac{\sum (PASS_{Actual} - PASS_{Imputed})^2}{47}}$$

Top 5 Models by Data Set

	Data 1			Data 2			Data 3			Data 4	·
Rank	Model	RMSE									
1	812	116,687	1	712	133,719	1	111	336,627	1	111	470,599
2	712	120,990	2	121	134,371	2	712	342,691	2	121	487,447
3	322	124,631	3	812	135,959	3	121	351,350	3	812	505,332
4	324	124,631	4	622	138,663	4	812	356,842	4	412	516,106
5	622	125,002	5	624	138,663	5	622	359,865	5	712	516,111

	Data 5		Data 6				
Rank	Model	RMSE	Rank	Model	RMSE		
1	121	424,625	1	712	210,778		
2	623	443,567	2	111	212,953		
3	522	451,134	3	622	215,804		
4	524	451,134	4	624	215,804		

451,662

512

5

121

219,367

Rank	Model	RMSE			
1	111	239,243			
2	323	246,124			
3	522	248,447			
4	524	248,447			
5	412	251,256			

Data 30

Comparison: Quasi-Nat's Total

RESULTS

- Quasi-Nat'l Obs. Total = $\sum_{All, Cases} PASS_{Actual}$
- **2** Quasi-Nat'l Est. Total = $\sum_{Non-Missing} PASS_{Actual} + \sum_{Forced\ Missing} PASS_{Imputed}$

Results: Quasi-Nat'l Total

RESULTS

Observed Total vs. 2 Estimated Total

Results: % Error in Nat'l Total

RESULTS

Percent Error % =
$$\frac{(Est. Total - Obs. Total)}{Obs. Total} \times 100\%$$

CONCLUSIONS

Conclusions

CONCLUSIONS

- MI models developed are not acceptable for boarding count imputation at an individual segment level.
- They may be acceptable for estimating national total boarding count.
 - ✓ An individual model would be not appropriate. Instead, several MI models and averaging should be used for estimating national total.

Moving Forward

CONCLUSIONS

- Analyzing 2020 & 2018 NCFO together
- Applying logical imputation on cases where statistical imputation is not likely to work
- Employing ML methods (e.g., random forest and Ensemble)
- Estimating boarding counts of operators nonresponding to both 2020 and 2018 censuses

Acknowledgement

- Aubrey Nguyen, IT Auditor, U.S. Government Accountability Office (GAO)
 ORISE Fellow, USDOT (Formerly)
- Clara Reschovsky, NCFO Program Manager/Survey Statistician, USDOT

U.S. Department of Transportation

Contact

Young-Jun Kweon

young-jun.kweon@dot.gov

NCFO

ferry@dot.gov

Questions?

