CREDIT RISK MODELING

Problem Statement

- Credit Risk refers to the chance that a customer/borrower will not to be able to make their payments on time.
- This can be modeled using various Data Models which train Machine Learning Algorithms using the data acquired from the lender.
- The main objective of these models is to predict the probability that a loan will be repaid
- Problem Statement: "If given data about a borrower, how likely is it that the loan taken will be repaid?"

Data Preparation:

- Column names were cleaned
- Missing data was replaced with median values of each column
- Outliers were dealt with by looking at the value counts of each value in that column using the 'Counter' function

- The importance of a feature in a model is found using the RandomForestClassifier.
- This gives us how importance each feature is in predicting the credit risk

Modeling:

- The following Machine Learning Algorithms will be used to model the data:
 - Logistic Regression
 - K Nearest Neighbor Classifier
 - AdaBoost Classifier
 - Gradient Boosting Classifier
 - Random Forest Classifier

We initally split the dataset into training and testing data.

For each model we create a model object, fit the training data and calculate the ROC accuracy score using the testing data

Cross Validation:

I/NIaiabbauaClassifiau/

'RandomForestClassifier'

5 –fold cross validation was done on each model and here are the mean of the score values

0.7788445044392653

KNeighborsClassifier	0.5939900230598207
'LogisticRegression'	0.8488884520514048
'AdaBoostClassifier'	0.858608168711411
'GradientBoostingClassifier'	0.8639698351489564

AdaBoost Classifier and Gradient Boosting Classifier seem to have the highest accuracy score among the other classifiers.

Best Hyper parameters

- To obtain the best hyper parameters for the above selected classifiers we use RandomizedSearchCV.
- For Ada boost the best params are {'n_estimators': 100} and the score is 0.86036
- For Gradient Boosting Classifier the best params are:
 {'loss': 'exponential', 'max_depth': 3, 'n_estimators': 205} and score is 0.864906

Final Model

- To aviod skewed results, the features can be transformed using a logarithmic function.
- Finally VotingClassifier was used to get the best model