

Lecture 4

Entity-Relationship Model (part 1)

ER模型 (第1部分)

Outline

The Entity/Relationship Model

Design Principles

Constraints in the E/R Model

Weak Entity Sets

Outline

The Entity/Relationship Model

- Design Principles
- Constraints in the E/R Model

Weak Entity Sets

Database Design Phase

The database modeling and implementation process

The Entity/Relationship Model

The Entity/Relationship Model 实体/联系 模型

E/R Model E/R 模型

E/R Diagram E/R 图

Entity sets实体集

- Attributes 属性

- Relationships 联系

[P.P.S. Chen. The Entity Relationship Model – Towards a Unified View of Data. ACM Transactions on Database Systems, 1(1):9–36, 1976]

空 Dr. Peter Chen 陈品山 博士 1976年发明了E/R模型

5

Entity Sets

- Entity
 - An abstract object of some sort
- Entity set
 - A collection of similar entities forms an entity set

E/R Model OO Programming

Entity Object

Entity set Class

Entity Sets

- Example (Movie-database)
 - Entity
 - A movie
 - A star
 - A studio
 - Entity set
 - The set of all movies
 - The set of all stars
 - The set of studios

Attributes

Attributes

属性

Entity sets have associated attributes,
 which are properties of the entities in that set.

Example

- The entity set Movies
 - Might be given attributes such as title and length

Assume

Attributes are of primitive types,
 such as strings, integers, or reals

Relationships

Relationships

联系

Connections among two or more entity sets

Example

- Two entity sets: *Movies* and *Stars*
- Relationship: *Stars-in* that connects movies and stars
- The intent
 - A movie entity *m* is related to a star entity *s* by the relationship *Stars-in* if *s* appears in movie *m*

Entity-Relationship Diagrams

E/R Diagram E/R图

 An E/R diagram is a graph representing entity sets, attributes, and relationships

Elements Nodes

Entity sets Rectangles 矩形

Attributes Ovals 椭圆

Relationships Diamonds 菱形

Edges

• Connect an entity set to its attributes and also connect a relationship to its entity sets.

Entity-Relationship Diagrams

• Example 4.2

Instances of an E/R Diagram

- Entity set E
 - A particular finite set of entities
- Relationship R
 - Relationship set of R

联系集

- Connects n entity sets $E_1, E_2, ..., E_n$
- "Instance": a finite set of tuples $(e_1, e_2, ..., e_n)$

$$e_i \in E_i$$

Instances of an E/R Diagram

Example

- An instance of the *Stars-in* relationship

Movies	Stars
Basic Instinct	Sharon Stone
Total Recall	Arnold Schwarzenegger
Total Recall	Sharon Stone

- Multiplicity of Binary Relationships
 - -R is a relationship connecting entity sets E and F
 - many-one 多对一
 - If each member of *E* can be connected by *R* to at most one member of *F*, then we say that *R* is *many-one* from *E* to *F*. (Note that in a many-one relationship from *E* to *F*, each entity in *F* can be connected to many members of *E*.)
 - If each member of F can be connected by R to at most one member of E, then we say that R is *many-one* from F to E. (or equivalently, *one-many* from E to F). $\neg \forall \mathcal{F}$

- Multiplicity of Binary Relationships
 - -R is a relationship connecting entity sets E and F

- Multiplicity of Binary Relationships
 - -R is a relationship connecting entity sets E and F
 - one-one 一对一
 - If R is both many-one from E to F and many-one from F to E, then we say that R is one-one.
 (In a one-one relationship an entity of either entity set can be connected to at most one entity of the other set.)

- Multiplicity of Binary Relationships
 - -R is a relationship connecting entity sets E and F
 - many-many

多对多

• If *R* is neither many-one from *E* to *F* or from *F* to *E*, then we say that *R* is *many-many*.

- Multiplicity of Binary Relationships
 - -R is a relationship connecting entity sets E and F
 - If a relationship is many-one from E to F,
 then we place an arrow entering F

- Example
 - A one-one relationship

Multiway Relationship

Multiway Relationship 多路联系

 In practice, ternary or higher-degree relationships are rare, but they occasionally are necessary to reflect the true state of affairs.

Example

A relationship Contracts

Multiway Relationship

Stars

Example

A relationship Contracts

• If we select one entity from each of the other entity sets in the relationship, those entities are related to at most one entity in *E*.

Contracts

Studios

• Functional Dependency

All the other entity sets $\rightarrow E$

Movies

Roles in Relationships

- Roles in Relationships 联系中的角色
 - Each line to the entity set represents a different role that the entity set plays in the relationship
 - Label the edges by names, "roles"

Roles in Relationships

Example

Both a multiway Studio
 relationship and an entity
 set with multiple roles

(studio1, studio2, star, movie)

studio2 contracts with
 studio1 for the use of
 studio1's star by studio2
 for the movie

Attributes on Relationships

Example

 Sometimes it is convenient, or even essential, to associate attributes with a relationship

Attributes on Relationships

Converting Multiway Relationships to Binary

Example

Any multiway
 relationship can be
 converted to a collection
 of binary, many-one
 relationships

Subclasses in the E/R Model

- Subclasses 子类
 - Special-case entity sets,
 or subclasses, each with
 its own special attributes
 and/or relationships
 - isa relationship
 - A one-one relationship
 - Although not draw the two arrows

Outline

The Entity/Relationship Model

Design Principles

Constraints in the E/R Model

Weak Entity Sets

- Faithfulness 忠实性
 - The design should be faithful to the specifications of the application

- Avoiding Redundancy 避免冗余
 - We should be careful to say everything once only

- For instance
 - We have used a relationship *Owns* between movies and studios
 - We might also choose to have an attribute *studioName* of entity set *Movies*

- Simplicity Counts 简单性
 - Avoid introducing more elements into your design than is absolutely necessary
- Example
 - A poor design with an unnecessary entity set

Choosing the Right Relationship

Choosing the Right Relationship

- Picking the Right Kind of Element 选择正确的元素种类
 - Many of these choices are between
 - using attributes
 - using entity set / relationship combinations
 - In general
 - an attribute is simpler to implement
 - However,
 - making everything an attribute will usually get us into trouble

- Picking the Right Kind of Element
 选择正确的元素种类
 - Conditions under which
 we prefer to use an attribute instead of an entity set
 Suppose E is an entity set
 - 1. E must be the "one" is many-one relationships
 - 2. The only key for *E* is all its attributes
 - 3. No relationship involves *E* more than once

Outline

The Entity/Relationship Model

Design Principles

Constraints in the E/R Model

Weak Entity Sets

Constraints in the E/R Model

Constraints

Keys

键

- Functional dependencies 函数依赖

Referential-integrity

参照完整性

Keys in the E/R Model

Key

- Every entity set must have a key
- There can be more than one possible key for an entity set. It is customary to pick one key as the "primary key"
- When an entity set is involved in an isa-hierarchy,
 we require that the root entity set have all the
 attributes needed for a key

Representing Keys in the E/R Model

Example

Underline the attributes belonging to a key

Referential Integrity

Notation

- Suppose R is a relationship from E to F
- A rounded arrow-head pointing to F indicates
 - not only that the relationship is many-one from *E* to *F*,
 - but that the entity of set *F* related to a given entity of set *E* is required to exist

Degree Constraints

Notation

Attach a bounding number to the edges

Example

 A movie entity cannot be connected by relationship Stars-in to more than 10 star entities

Outline

The Entity/Relationship Model

- Design Principles
- Constraints in the E/R Model

Weak Entity Sets

Weak Entity Sets

- Weak entity set 弱实体集
 - An entity set's key is composed of attributes, some or all of which belong to another entity set

Two principal reasons

- First

If entities of set E are subunits of entities in set F, then it is possible that the names of E-entities are not unique until we take into account the name of the F-entity to which the E entity is subordinate.

Example

Two principal reasons

- First

If entities of set E are subunits of entities in set F, then it is possible that the names of E-entities are not unique until we take into account the name of the F-entity to which the E entity is subordinate.

Example

Two principal reasons

Second

The connecting entity sets that are introduced as a way to eliminate a multiway relationship. These entity sets often have no attributes of their own. Their key is formed from the attributes that are the key attributes for the entity sets they connect.

Requirements for Weak Entity Sets

- Key attributes for a weak entity set E
 - 1. Zero or more of its own attributes, and
 - 2. Key attributes from entity sets that are reached by certain many-one relationships from *E* to other entity sets
 - These many-one relationships are called supporting relationships for E, and 支持联系
 - the entity sets reached from *E* are *supporting entity sets* 支持实体集

Requirements for Weak Entity Sets

- R to be a supporting relationship for E
 - The following conditions must be obeyed:
 - a) R must be a binary, many-one relationship from E to F
 - b) R must have referential integrity from E to F
 - c) The attributes that *F* supplies for the key of *E* must be key attributes of *F*
 - d) If *F* is itself weak, then some of the key attributes of *F* supplied to *E* will be key attributes of the entity set *G* to which *F* is connected by a supporting relationship (Recursively)

Requirements for Weak Entity Sets

- R to be a supporting relationship for E
 - The following conditions must be obeyed:
 - e) If there are several different supporting relationships from *E* to the same entity set *F*, then each relationship is used to supply a copy of the key attributes of *F* to help form the key of *E*.

Note that an entity e from E may be related to different entities in F through different supporting relationships from F. Thus, the keys of several different entities from F may appear in the key values identifying a particular entity e from E.

Weak Entity Sets Notation

Notations

- 1. If an entity set is weak, it will be shown as a rectangle with a double border
- 2. Its supporting many-one relationship will be shown as diamonds with a double border
- 3. If an entity set supplies any attributes for its own key, then those attributes will be underlined

Weak Entity Sets Notation

The following rule

Whenever we use an entity set *E* with a double border, it is weak. The key for *E* is whatever attributes of *E* are underlined plus the key attributes of those entity sets to which *E* is connected by many-one relationships with a double border.