الجداء السلمي في الفضاء و تطبيقاته

<u>I-الحداء السلمى</u>

1- تعرىف

. $ec{v}=\overrightarrow{AC}$ و $ec{u}=\overrightarrow{AB}$ حيث $ec{u}=\overrightarrow{AB}$ و $ec{u}$ و $ec{u}$ و $ec{u}$ نقط من الفضاء حيث $ec{u}$ و $ec{v}$

A و B و A و من النقط A و B يوجد على الاقل مستوى

 $ec{u}\cdotec{v}$ الجداء السلمي للمتجهتين $ec{v}$ في الفضاء هو الجداء السلمي المستوى (P) نرمز له ب

ملحوظة

جميع خاصيات الجداء السلمي في المستوى تمدد إلى الفضاء

<u>2- نتائج</u>

لتكن \vec{u} متجهتين من الفضاء، و A و B و تقط من الفضاء

$$\vec{u} \cdot \vec{v} = AB \times AC \times \cos \widehat{BAC}$$
 فان $\vec{u} \neq \vec{0}$ فان $\vec{v} \neq \vec{0}$ إذا كان $\vec{v} \neq \vec{0}$

$$\vec{u} \cdot \vec{v} = 0$$
 فان $\vec{v} = \vec{0}$ أو $\vec{v} = \vec{0}$ فان *

$$\vec{u} \cdot \vec{v} = \overrightarrow{AB} \cdot \overrightarrow{AC} = \overrightarrow{AB} \cdot \overrightarrow{AC}$$
 فان $\vec{u} \neq \vec{0}$ فان *

حيث'C المسقط العمودي لـ C على (AB)

$$\vec{u} \cdot \vec{v} = \frac{1}{2} (AB^2 + AC^2 - BC^2) *$$

 $(\vec{u} + \vec{v})^2 = \vec{u}^2 + \vec{v}^2 + 2\vec{u} \cdot \vec{v}$ متطابقات هامة

 $(\vec{u} - \vec{v})^2 = \vec{u}^2 + \vec{v}^2 - 2\vec{u} \cdot \vec{v}$

 $(\vec{u} + \vec{v})(\vec{u} - \vec{v}) = \vec{u}^2 - \vec{v}^2$

3- منظم متحهة

 $\overrightarrow{u} = \overrightarrow{AB}$ متجهة وB و B نقطتين من الفضاء حيث \overrightarrow{u}

 $ec{u}^2 = AB^2$ العدد الحقيقي $ec{u} \cdot ec{u}$ يسمى المربع السلمي ل

 $\|\vec{u}\| = \sqrt{\vec{u}^2}$ بنكتب \vec{u} نكتب ألعدد الحقيقي الموجب $\sqrt{\vec{u}^2}$ بسمى منظم المتجهة

<u>ملاحظة و كتابة</u>

$$\|\vec{u}\|^2 = \vec{u}^2 \quad *$$

 $\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{v}\| \cos\left(\widehat{\vec{u};\vec{v}}\right)$ فان $\vec{u} \neq \vec{0}$ و $\vec{v} \neq \vec{0}$ فان *

4- خاصيات

$$\forall (\vec{u}, \vec{v}, \vec{w}) \in V_3^3 \qquad \forall \alpha \in \mathbb{R}$$

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w} *$$

$$(\vec{v} + \vec{w}) \cdot \vec{u} = \vec{v} \cdot \vec{u} + \vec{w} \cdot \vec{u} *$$

$$\vec{u} \cdot \alpha \vec{v} = \alpha \vec{u} \cdot \vec{v} = \alpha \times (\vec{u} \cdot \vec{v})$$

<u>5- تعامد متحهتىن</u> :

تعريف

 $oldsymbol{V}_3$ لتكن $ec{v}$ متجهتين من الفضاء

 $\vec{u} \perp \vec{v}$ نکتب نکتب $\vec{u} \cdot \vec{v} = 0$ تکون $\vec{u} \cdot \vec{v} = 0$ نکتب زذا وفقط إذا کان

 V_3 ملاحظة المتجهة $ec{0}$ عمودية على أية متجهة من الفضاء

<u>تمرین</u>

a الذي طول حرفه $\overrightarrow{AG}.\overrightarrow{EB}$ و $\overrightarrow{AE}.\overrightarrow{AG}$ و $\overrightarrow{AE}.\overrightarrow{BG}$

II- صــــغ تحلىلىـــــة

<u>1- الأساس و المعلم المتعامدان الممنظمان</u>

تعريف

لتكن \vec{k} و \vec{V} ثلاث متجهات غير مستوائـــية من الفضاء \vec{V} و \vec{V} نقطة من الفضاء.

 V_3 أسا س للفضاء $(\vec{i}; \vec{j}; \vec{k})$

 \vec{k} و \vec{j} و \vec{i} المتجهات المتجهات \vec{i} و المعلم (\vec{i} \vec{j} و الأساس (\vec{i} \vec{j} و المعلم (\vec{i} و المعلم (\vec{i} و المعلم المتجهات أو المعلم متنى مثنى مثنى المتجهات أو المعلم المتجهات المتجهات أو المعلم المتجهات المتجهات أو المعلم المتجهات المتجهات أو المعلم المتجهات المتحهات المتحات المتحهات المتحهات المتحهات المتحات ا

يكون الأساس $(\vec{i}; \vec{j}; \vec{k})$ متعامد و ممنظم (أو المعلم $(\vec{i}; \vec{j}; \vec{k})$) تعامد وممنظم) إذا وفقط إذا كانت

 $\|\vec{i}\| = \|\vec{j}\| = \|\vec{k}\| = 1$ المتجهات \vec{i} و \vec{j} متعامدة مثنى مثنى و 1

2- الصبغة التجليلية للحداء السلمي

<u>أ- خاصىة</u>

 $(O;\vec{i}\;;\vec{j}\;;\vec{k}\;)$ الفضاء منسوب إلى معلم.م.م

 $\vec{u} \cdot \vec{v} = xx' + yy' + zz'$ فان $\vec{v}(x'; y'; z')$ $\mathfrak{su}^{-}(x; y; z)$ إذا كانت

ملاحظة إذا كانت $\vec{u}(x;y;z)$ بالنسبة للمعلم.م.م $\vec{u}(x;y;z)$ فان

 $\vec{u} \cdot \vec{i} = x$; $\vec{u} \cdot \vec{j} = y$; $\vec{u} \cdot \vec{k} = z$

ب-الصبغة التحليلية لمنظم متحهة والمسافة بين نقطتين

 $\|\vec{u}\| = \sqrt{x^2 + y^2 + z^2}$ فان $(o; \vec{i}; \vec{j}; \vec{k})$ بالنسبة للمعلم.م.م $(o; \vec{i}; \vec{j}; \vec{k})$ بالنسبة للمعلم.

 $(o;\vec{i};\vec{j};\vec{k})$ و $A(x_A;y_A;z_A)$ بالنسبة للمعلم.م.م $A(x_A;y_A;z_A)$ -*

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2 + (z_B - z_A)^2}$$
 فان

تمرين

$$C\left(-1;-1;-\sqrt{2}\right)$$
 و $B\left(\sqrt{2};-\sqrt{2};0\right)$ و $A\left(1;1;\sqrt{2}\right)$

بين أن ABC مثلث متساوي الساقين وقائم الزاوية

 $\overrightarrow{u}.\overrightarrow{MA}=k$ من الفضاء بحيث محموعة النقط M

لتكن u(a;b;c) نقطة من الفضاء لتكن u(a;b;c)

M(x; y; z)نعتبر

$$\overrightarrow{u}.\overrightarrow{MA} = k \Leftrightarrow \dots \Leftrightarrow ax + by + cz + d = 0$$

خاصىة

لتكن $\vec{u}(a;b;c)$ متجهة غير منعدمة و $\vec{u}(a;b;c)$

مجموعة النقط M من الفضاء بحيث $\vec{u}.\overrightarrow{MA}=k$ هي مستوى معادلته M من الفضاء بحيث عدد حقيقي

مثاك نقطة من الفضاء aig(1;-1;2ig) متجهة و $ec{u}ig(2;-1;1ig)$ نقطة من الفضاء

 $\vec{u}.\vec{MA} = -1$ حدد مجموعة النقط M من الفضاء بحيث

<u>III- تطبيقات الحداء السلمي في الفضاء</u>

<u>1- تعامد المستقيمات و المستويات في الفضاء</u>

<u>ا- تعامد مستقىمىن</u>

ليكن (D1) و (D2) مستقيمــين من الفضاء موجهين بالمتجهتين \vec{u}_1 و على التوالي $(D_1) \perp (D_2) \Leftrightarrow \vec{u_1} \cdot \vec{u_2} = 0$

۰- تعامد مستقیم و مستوی

<u>خاصىة</u>

 $\vec{u_3}$ ليكن (P) مستوى موجه بالمتجهتين $\vec{u_1}$ و $\vec{u_2}$ و $\vec{u_1}$ مستوى موجه بالمتجهة (P) ليكن (D) \perp (P) \Leftrightarrow $\vec{u_1} \perp \vec{u_3}$ و $\vec{u_2} \perp \vec{u_3}$

ج- ملاحظات واصطلاحات

- .(P) العمودي على مستوى (P) تسمى متجهة منظمية للمستوى (P) العمودي على مستوى $ec{u}$
 - (P) فان کل متجهة $ec{v}$ مستقيمية مع $ec{u}$ تكون منظمية للمستوى (P) اذا كانت $ec{u}$ منظمية للمستوى (P) فان كل متجهة
- '(P') (P') (P') وكانتا \vec{v} منظمية لمستوى (P') و \vec{v} منظمية لمستوى (P') وكانتا \vec{v} وكانتا \vec{v} اذا كانت \vec{v} منظمية لمستوى (P') و \vec{v} المستوى (P') وكانتا المستوى (P') وكان
 - $\vec{u} \perp \overrightarrow{AB}$ فان (P) فان $(A;B) \in (P)^2$ فان *

 $(O;\vec{i};\vec{j};\vec{k})$.م. معلم الفضاء المنسوب إلى معلم .م.

حدد تمثيل بارامتري للمستقيم (D) المار من(D) المار من(P) و العمودي على المستوى (P) الموجه بالمتجهتين حدد $\vec{v}(2;1;1)$ و $\vec{u}(1;-1;1)$

<u>تمرين</u>

في الفضاء المنسوب إلى معلم .م. $(O;\vec{i}\;;\vec{j}\;;\vec{k}\;)$ نعتبر المستوى

$$\left\{ egin{array}{ll} x=2\ t \\ y=1+3\ t & t\in IR \\ z=-2+bt \end{array}
ight.$$
 (D) تمثيله بارامتري ax-2y+z-2=0 الذي معادلته

- 1- حدد متجهتین موجهتین للمستوی (P)
 - $(D)\bot(P)$ حدده وb محدد -2

د- <u>تعامد مستوسن</u>

تذكير يكون مستويان متعامدين اذا و فقط اذا اشتمل أحدهما على مستقيم عمودي على المستوى الآخر.

لیکن (P') و (P') مستویین من الفضاء و \vec{u} و \vec{v} متجهتین منظمیتین لهما علی التوالي $\vec{u} \perp \vec{v}$ اذا وفقط اذا کان $\vec{v} \perp \vec{v}$

2- <u>معادلة مستوى محدد بنقطة و متحهة منظمية عليه</u> a. <u>مستوى محدد بنقطة و متحهة منظمية عليه</u>

<u>سرسته</u>

التكن $ec{u}$ متجهة غير منعدمة و A نقطة من الفضاء

- $\overrightarrow{AM} \cdot \overrightarrow{u} = 0$ من الفضاء حيث A المستوى المار من A و المتجهة \overrightarrow{u} منظمية له هو مجموعة النقط
 - مجموعة النقط M من الفضاء حيث $\vec{u}=0$ المستوى المار من M منظمية له *

b. <u>معادلة مستوى محدد ىنقطة و متحهة منظمية عليه</u> خاصية

ax+by+cz+d=0 في الفضاء و $ar{u}(a;b;c)$ منظمية عليه يقبل معادلة ديكارتية من نوع (P) في الفضاء وax+by+cz+d=0 في ax+by+cz+d=0 في * كل معادلة ديكارتية من نوع ax+by+cz+d=0 حيث ax+by+cz+d=0 في الفضاء بحيث ax+by+cz+d=0 منظمية عليه

<u>تمرىن</u>

(D):
$$\begin{cases} x+y-2z+1=0 \\ x-y+z-2=0 \end{cases}$$
 (P): 2x-y+3z+1=0

- منظمیة علی (P) ونقطة منه. \vec{u} منظمیة علی (-1
- 2- حدد معادلة ديكارتية للمستوى المار من $\vec{n}(1,2,1)$ ه (2;0;3) منظمية عليه.
 - 3- حدد معادلة ديكارتية للمستوى المار من(2;0;3) A' (2;0;3) على (D)
 - 4- حدد معادلة ديكارتية للمستوى المار من(2;0;3) A و الموازي لـ (P) ـُ

<u>3- مسافة نقطة عن مستوى</u>

<u>1- تعریف و خاصیة</u>

الفضاء منسوب إلى معلم.م.م $(o;\vec{i}\,;\vec{j};k)$ مسافة نقطة A عن مستوى (P) هي المسافة AH

مساقة نقطة A عن مستوى (P) هي المساقة T1 حيثH المسقط العمودي لـ A على(P) نكتب

$$d(A;(P)) = AH = \frac{|\overrightarrow{AB} \cdot \overrightarrow{u}|}{\|\overrightarrow{u}\|}$$

(P) عنظمیة علی B \in (P) حیث

2- خاصىة

ليكن (P) مستوى معادلته
$$A\left(x_0;y_0;z_0\right)$$
 و $ax+by+cz+d=0$ نقطة من الفضاء

$$d(A;(P)) = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

<u>مثال</u>

A (1;2;0) مستوی مار من
$$B(2;1;3)$$
 و $\bar{u}(1;-1;\sqrt{2})$ مستوی مار من $B(2;1;3)$ مستوی مار من

$$d\left(A;\left(P\right)\right)$$
 حدد

في فضاء منسوب إلى معلم متعامد ممنظم .

نعتبر A(1;-1;1) و B(3;1;-1) و (P) المستوى ذا المعادلة 2x-3y+2z=0 و (D) المستقيم الممثل

$$\left\{ egin{aligned} x = 3t \ x = -2 - 3t \ z = 2 + 4t \end{aligned}
ight.$$
 $t \in \mathbb{R}$ بارا متریا ب

- (D) المار من A والعمودي على المستقيم (P) المار من A والعمودي على المستقيم (C) حدد معادلة ديكارتية للمستوى (A) المار من A و A والعمودي على المستوى (A)
 - 2- أحسب (A;(P)) و d(A;(P))
 - (P) المار من B و الموازي للمستوى (Q'') المار من B و الموازي للمستوى (Q'')

<u>مرين2</u>

في فضاء منسوب إلى معلم متعامد ممنظم.

نعتبر المستوى(P) ذا المعادلة 3x+2y-z-5=0 و (D) المستقيم المعرف بـ

$$\begin{cases} x - 2y + z - 3 = 0 \\ x - y - z + 2 = 0 \end{cases}$$

1- حدد تمثيلا بارا متريا للمستقيم (D)

حدد معادلة ديكارتية للمستوى (P') الذي يتضمن (D) و العمودي على (P)

<u>IV- معادلة فلكة</u>

 $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;
ight)$ الفضاء منسوب إلى معلم متعامد ممنظم

- <u>معادلة فلكة معرفة بمركزها وشعاعها</u>

لتكن $S(\Omega;r)$ نقطة من الفضاء (Ε) و (Ε) نقطة $\Omega(a;b;c)$ الفلكة Γ الفلكة Γ و شعاعها Γ

$$(x-a)^2+(y-b)^2+(z-c)^2=r^2 \Leftrightarrow \Omega M=r \Leftrightarrow M \in S(\Omega;r)$$

مىرھنة

. $(o;\vec{i};\vec{j};\vec{k})$ الفضاء المنسوب إلى معلم متعامد ممنظم

r معادلة ديكارتية للفلكة $S(\Omega;r)$ التي مركزها $\Omega(a;b;c)$ و شعاعها

(x-a)²+(y-b)²+(z-c)²=r²

ملاحظات و اصطلاحات

* إذا كان A و B نقطتين من الفلكة $S(\Omega;r)$ حيث Ω منتصف S(B) فان S(B) قطرا للفلكة

r=1/2 AB و شعاعها [A;B] مركزها Ω منتصف [A;B] و شعاعها pprox

δو β و β و α حيث α حيث β معادلة ديكارتية من شكل β α معادلة ديكارتية من شكل β β و β و β و β الفلكة β معادلة ديكارتية من شكل β

 $x^2+y^2+z^2=r^2$ الفلكة S(O; r) حيث S(O; r) اصل المعلم

r و شعاعها $\Omega(a;b,c)$ و الكرة $S(\Omega;r)$ و فلكة التي مركزها $\Omega(a;b,c)$

M(x;y;z) التي مركزها $\Omega(a;b;c)$ و شعاعها $\Omega(\alpha;b;c)$ الكرة $B(\Omega;r)$ التي مركزها $\Omega(a;b;c)$

 $(x-a)^2 + (y-b)^2 + (z-c)^2 \le r^2$ حيث

<u>2- معادلة فلكة معرفة بأحد أقطارها</u>

S فلكة أحد اقطارها [A;B]

 $\overrightarrow{AM} \cdot \overrightarrow{BM} = 0 \Leftrightarrow \mathsf{M} = \mathsf{B}$ أو $\mathsf{M} = \mathsf{B}$ زاوية قائمة أو $\mathsf{M} = \mathsf{A}$

مىرھنة

A و B نقطتان مختلفان في الفضاء

[A;B] في الفضاء مجموعة النقط M التي تحقق $\overline{AM} \cdot \overline{BM} = 0$ هي فلكة التي أحد اقطارها

خاصىة

اذا كانت $A(x_A;y_A;z_B)$ و $B(x_B;y_B;z_B)$ نقطتين مختلفتين فان معادلة الفلكة التي أحد اقطارها $A(x_A;y_A;z_A)$ اذا كانت $A(x_A;y_A;z_A)$ و $A(x_A;y_A;z_A)$ نقطتين مختلفتين فان معادلة الفلكة التي أحد اقطارها $A(x_A;y_A;z_A)$ في

<u>تمرين</u>

قي الفضاء المنسوب إلى معلم متعامد ممنظم $(O;\vec{i};\vec{j};\vec{k})$ ، نعتبر (1;2;-1) و (2;1;2) و (4;1;2) و

A و المار من Ω التي مركزها Ω و المار من Ω

2- حدد معادلة ديكارتية للفلكة 'S التي قطرها [A;B]

(1): x²+y²+z²-2ax-2by-2cz+d=0 دراسة المعادلة -3

لتكن E مجموعة النقط (x;y;z التي تحقق المعادلة (1)

 $(x-a)^2 + (y-b)^2 + (z-c)^2 = a^2 + b^2 + c^2 - d \Leftrightarrow M \in E$ $\Omega(a;b;c)$ لتكن

 $E = \emptyset$ فان $a^2 + b^2 + c^2 - d < 0$ فان -*

 $\alpha^2+b^2+c^2-d=0$ فات $E=\{\Omega\}$ فات $a^2+b^2+c^2-d=0$ فات $a^2+b^2+c^2-d=0$ فات $a^2+b^2+c^2-d=0$ خيث $a^2+b^2+c^2-d=0$ فات $a^2+b^2+c^2-d=0$

برهنة

a و b و d و b أعداد حقيقية

تكون مجموعة النقط M(x;y;z) التي تحقق المعادلة x²+y²+z²-2ax-2by-2cz+d=0 فلكة

اذا وفقط اذا كان 20 ≥0 a²+b²+c²-d

<u>تمرين</u> نعتبر E مجموعة النقط (x²+y²+z²+4x-2y -6z+5=0 التي تحقق المعادلة M(x;y;z) مجموعة النقط

بين إن E فلكة محددا عناصرها المميزة

<u>تمرين</u> حدد مجموعة النقط M التي تحقق 16=2MA²+3MB² حيث (1-;1;-1) و (1-;1;1-

<u>II – تقاطع مستوی و فلکة</u>

(P) و المستوى (S(Ω ;r) و المستوى -1

و المستوى (P) و النقطة Η المسقط العمودي لـ Ω على المستوى (P) و النقطة Η في الفضاء $S(\Omega;r)$ على المستوى (P) في الفضاء $d(\Omega;(P)) = H\Omega = d$ نضع

5

خاصية

ليكن (P) مستوى في الفضاء و S فلكة مركزها Ω و شعاعها r و H المسقط العمودي لـ Ω على المستوى(P) يكون تقاطع (P) و S :

 $d(\Omega;(P))$ < r دائرة مركزها $d(\Omega;(P))$ و شعاعها $\sqrt{r^2-d^2\left(\Omega;(P)\right)}$ اذا كان *

H في هذه الحالة نقول (P) مماس للفلكة $d(\Omega;(P))=r$ نقطة اذا كان *

 \Leftrightarrow

* المجموعة الفارغة اذا كان d(Ω;(P))>r*

2- <u>مستوى مماس لفلكة في أحد نقطها</u>

<u> عرىف</u>

 $S(\Omega;r)$ نقطة من الفلكة A

نقول إن المستوى (P) مماس للفلكة S عند النقطة A اذا كان (P) عمودي على (ΩA) في A

<u>خاصىة</u>

 $S(\Omega;r)$ لتكن A نقطة من الفلكة

$$\forall M \in (P) \qquad \overrightarrow{\Omega A} \cdot \overrightarrow{AM} = 0$$

(P) مماس على S(Ω;r) في A

تمرين في فضاء منسوب إلى معلم متعامد ممنظم $(O; \vec{i}; \vec{j}; \vec{k})$ ، نعتبر S_1 الفلكة التي معادلتها

1- تِأْكِد أَن (P) و S_1 يتقاطعان وفق دائرة محددا عناصرها المميزة.

2- أدرس تقاطع (P´) و S₂ .

A(1;1;3) عند النقطة S_1 عند المماس عادلة المستوى المماس للفلكة -3

<u>3-- تقاطع مستقىم و فلكة</u>

(Δ) و النقطة H المسقط العمودي لـ Ω على المستقيم (Δ) و النقطة H المسقط العمودي لـ Ω على المستقيم (Δ) و النقطة $\mathrm{d}(\Omega;(\Delta)) = \mathrm{H}\Omega = \mathrm{d}$ نضع

d > r

المستقيم (Δ) يخترق الفلكة في نقطتين مختلفتين

المستقيم (Δ) الفلكة المستقاطعان في النقطة

Sتقاطع المستقيم (Δ) الفلكة هو المجموعة الفارغة

عواسجسوت العارف هدلان

 $S: x^2+y^2+z^2-2y+4z+4=0$

$$(D_3): \begin{cases} x = \frac{-1}{2} + 2t \\ y = \frac{1}{3} + 3t \\ z = -2 \end{cases} \quad t \in \mathbb{R} \quad (D_2): \begin{cases} x = 3t \\ y = 2 \\ z = -2 + t \end{cases} \quad t \in \mathbb{R} \quad (D_1): \begin{cases} x = 1 + 2t \\ y = 1 + t \\ z = -3 + t \end{cases}$$

 (D_3) و (D_2) و (D_1) حدد تقاطع S مع کل من

تمارين

تمرين1

 $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;
ight)$ في فضاء منسوب إلى معلم متعامد ممنظم

 $\vec{u}(-1;2;1)$ و المار من C(0;-1;1) و المستقيم (D) و المستقيم (B(0;0;1) و B(0;0;1) و الموجه

- 1- بين أن مجموعة النقط M حيث MA=MB=MC مستقيم وحدد تمثيلا بارا متريا له
 - 2- حُدد معادلة ديكارتية للمستوى (P) العمودي على (D) في C
 - 3- استنتج معادلة ديكارتية للفلكة S المارة من Aو B و المماسة لـ (D) في C

<u>تمرين2</u>

 $\mathsf{C}(1;5;-3)$ و $\mathsf{B}(0;7;-3)$ و $\mathsf{A}(0;3;-5)$ نعتبر $\mathsf{A}(0;3;-5)$ و $\mathsf{C}(1;5;-3)$ و $\mathsf{C}(1;5;-3)$

- 1- أعط معادلة ديكارتية للمستوى (ABC)
- عليه معادلة ديكارتية للمستوى (Q) المار من A حيث $\vec{u}(-1;2;1)$ منظمية عليه -2
 - x+y+z=0 المستوى المحدد بالمعادلة (P) المستوى المحدد
 - أ- تأكد أن (P)و (ABC) يتقاطعان وفق مسنقيم (D)
 - ب- حدد تمثیلا بارا متریا لـ (D)
 - $\begin{cases} x^2 + z^2 + 10z + 9 = 0 \\ y = 0 \end{cases}$ نعتبر في الفضاء الدائرة (C) التي المحددة بـ -4
 - أ- حدد معادلة للفكة S التي تتضمن الدائرة (C) و ينتمي مركزها إلى (ABC) ب حدد تقاطع S و (AC)

<u>تمرين3</u>

في فضاء منسوب إلى معلم متعامد ممنظم مباشر نعتبر (1;1;1) و ((P) (P) المستوى ذا

$$\begin{cases} x=3t \\ x=-2-3t & t\in\mathbb{R} \end{cases}$$
 المعادلة (D) 2x-3y+2z=0 المعادلة $z=2+4t$

- 1- حدد معادلة ديكارتية للمستوى (Q) المار من A و B والعمودي على المستقيم (D)
- (P) إلمار من A و B والعمودي على المستوى (Q') إلمار من A حدد معادلة ديكارتية للمستوى
 - 3- أحسب ((A;(P)) و d(A;(P)
 - 4- حدد معادلة ديكارتية لُلُمستوى (′′Q) المار من B و الموازي للمستوى (P)

<u>نمرين4</u>

في فضاء منسوب إلى معلم متعامد ممنظم نعتبر المستوى (P) ذا المعادلة 3x+2y-z-5=0

$$\begin{cases} x - 2y + z - 3 = 0 \\ x - y - z + 2 = 0 \end{cases}$$
 و (D) المستقيم المعرف بـ

- 1- حدد تمثيلا بارا متربا للمستقيم (D)
- 2- حدد معادلة ديكارتيّة للمستوى (P) الذي يتضمن (D) و العمودي على (P).

<u>تمرين5</u>

x+y+z+1=0 في فضاء منسوب إلى معلم متعامد ممنظم نعتبر المستوى (P) ذا المعادلة 2x-2y-5=0 و المستوى (Q) ذا المعادلة 2x-2y-5=0

- $x^2+y^2+z^2-2x+4y+6z+11=0$ و (S) مجموعة النقط M(x;y;z) التي تحقق
 - 1- بين أن (S) فلكة محددا مركزها و شعاعها
 - 2- تأكد أن (P) مماس للفلكة و حدد تقاطعهما
- 3- حدد تمثيلا بارامتريا للمستقيم (D) المار من (C;1;2) و العمودي على (P)
 - (Q) و(P) و أعط تمثيلا بارامتريا للمستقيم (P) $\pm (Q)$ و أعط تمثيلا بارامتريا المستقيم (P) و(P) و(D')

تمرین6

في فضاء منسوب إلى معلم متعامد ممنظم نعتبر النقطة (3;3;4) A(-2;3;4) المستوى (P) ذا المعادلة (S) x+2y-2z+15 التيتحقق

$$\begin{cases} x^2 + y^2 - 2x - 8 = 0 \\ z = 0 \end{cases}$$
 و (C) الدائرة التي معادلتها x2+y2+z2-2x+6y+10z-26=0

- 1- بين أِن (S) فلكة محددا عناصرها المميزة
- 2- بین أن (P) و (S) یتقاطعان وفق دائرة کبری (C') و حددها
- 3- حدد معادلتي المستوين المماسين للفلكة (S) و الموازيين لـ (P)
 - 4- أكتب معادلة الفلكة (S') المار من A المتضمن للدائرة (C)

الحداء المتحهي

I- توجيه الفضاء

1- مُعلم موجه في الفضاء

 $\left(O;\vec{i};\vec{j};\vec{k}\right)$ ننسب الفضاء E إلى معلم

 $\overrightarrow{OK} = \overrightarrow{k}$ $\overrightarrow{OJ} = \overrightarrow{j}$ $\overrightarrow{OI} = \overrightarrow{i}$ کتکن I و J و I لتکن

« رجل أمبير » للمعلم $\left(O;ec{i}\;;ec{j}\;;ec{k}\;
ight)$ هو رجل خيالي رأسه في النقطة K قدماه على النقطة $\left(O;ec{i}\;;ec{j}\;;ec{k}\;
ight)$

إلى I

,النقطة J إما توجد على يمين« رجل أمبير » أو على يساره .

 $\overrightarrow{OJ}=\overrightarrow{j}$ $\overrightarrow{OI}=\overrightarrow{i}$ حيث نقط حيث . $\left(O;\overrightarrow{i};\overrightarrow{j};\overrightarrow{k}\right)$ الفضاء منسوب إلى معلم « رجل أمبير (رجل أمبير (خان العلى يسار $(O;\vec{i}\,;\vec{j}\,;\vec{k}\,)$ *: نقول إن « معلم غیر مباشر إذا وجدت التا علی یمین $(O;\vec{i};\vec{j};\vec{k})$ معلم عیر مباشر ا

> نعتبر $\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;\right)$ معلم مباشر <u>مثلة</u>

معلم غیر مباشر $\left(O;\vec{i};\vec{j};-\vec{k}\right)$ معلم غیر مباشر معلم غیر مباشر معلم مباشر $\left(O\,; \vec{j}\,; \vec{k}\,; \vec{i}\,
ight)$

ABCDEFGH مكعب طول حرفه 1

معلمان مباشران ; $\left(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE}\right)$; $\left(B; \overrightarrow{BC}; \overrightarrow{BA}; \overrightarrow{BF}\right)$ معلمان غیر مباشرین $\left(A; \overrightarrow{AD}; \overrightarrow{AB}; \overrightarrow{AE}\right)$, $\left(E; \overrightarrow{EA}; \overrightarrow{EF}; \overrightarrow{EH}\right)$

<u>2- الأسرة المباش</u>

يمكننا توجيه الفضاء V_3 , اذا وجهنا جميع أساساته

O م.م.م. مباشر مهما كانت النقطة $\left(\vec{i}\,;\vec{j};\vec{k}\,
ight)$ مرم.م.م.مباشر مهما كانت النقطة من الفضاء

3- توجيه المستو<u>ي</u>

(P) مستوى في الفضاء و $ec{k}$ متجهة واحدية و منظمية على (P) , و O نقطة من المستوى (P) ليكن (P) م.م.م للمستوى $(O;\vec{i};\vec{j})$

E معلم متعامد ممنظم للفضاء $(O;\vec{i};\vec{j};\vec{k})$

يكون المعلم المتعامد الممنظم $\left(O;ec{i}\;;ec{j}
ight)$ في المستوى (P) معلما مباشرا اذا كان المعلم المتعامد

الممنظم
$$\left(O;\vec{i}\;;\vec{j}\;;\vec{k}\;\right)$$
 مباشرا

' يتم توجيه مستو ي (P) بتوجيه متجهة منظمية عليه.

* كُلُ المستويات الموازية لـ(P) له نفس توجيه المستوى (P)

II – الحداء المتحهى

<u>1- تعرىف</u>

 $\vec{u}=\overrightarrow{OA}$ $\vec{v}=\overrightarrow{OB}$ بحيث E بحيث B و B و V3 و V3 و $\vec{v}=0$ متجهتين من الفضاء $\vec{v}=0$ و D3 و D3 و $\vec{v}=0$ بحيث المعرفة كما يلي الجداء المتجهي للمتجهتين $\vec{v}=0$ في هدا الترتيب ,هو المتجهة التي لها ب

. $\vec{u} \wedge \vec{v} = \vec{o}$ فان \vec{v} و \vec{v} مستقیمیتین *

: أَذَا كَانَتَا \vec{v} وَ \vec{v} غير مستقيميتين فان \vec{v} هي المتجهة التي تحقق*

 \vec{v} و \vec{u} مودي على كل من $\vec{u} \wedge \vec{v}$ -

. أساس مباشر $(ec u\,;ec v\,;ec u\,\wedge\,ec v)$ -

 $\boxed{\widehat{AOB}}$ حيث heta قياس الزاوية $\|ec{u}\wedgeec{v}\| = \|ec{u}\|\|ec{v}\|\sin heta$ -

معلم متعامد ممنظم مباشر $\left(O;ec{i}\;;ec{j}\;;ec{k}
ight)$ معلم متعامد ممنظم

$$\vec{i} \wedge \vec{i} = \vec{j} \wedge \vec{j} = \vec{k} \wedge \vec{k} = \vec{0}$$

$$\vec{i} \wedge \vec{j} = \vec{k} \qquad \vec{j} \wedge \vec{k} = \vec{i} \qquad \vec{k} \wedge \vec{i} = \vec{j}$$

$$\vec{j} \wedge \vec{i} = -\vec{k} \qquad \vec{k} \wedge \vec{j} = -\vec{i} \qquad \vec{i} \wedge \vec{k} = -\vec{j}$$

. إذا كان $ec{u}$ و $ec{v}$ متجهتين واحديتين و متعامدتين فان $(ec{u}; ec{v}; ec{u} \wedge ec{v})$ أساس مباشر

 $\|\vec{u}\| = 5$ $\|\vec{v}\| = 2$ $\vec{u} \cdot \vec{v} = -5$ $(\overline{\vec{u}}; \overline{\vec{v}}) = \theta$ $\theta \in]0; \pi[$ نحسب $\|\vec{u} \wedge \vec{v}\|$ علما أن

-----2- <u>خاصيات</u>

على (AB)

<u>أ- خاصىة</u>

(ABC) منظمية على المستوى (CBC) إذا كانت $\overrightarrow{AB} \wedge \overrightarrow{AC}$ منظمية على المستوى

C لتكن AوB وC ثلاث نقط غير مستقيمية من الفضاء heta قياس الزاوية H , $\left[\widehat{\mathit{CAB}}
ight]$ المسقط العمودي لـ B

9

$$\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = AB \cdot AC \cdot \sin \theta$$
 $HC = AC \sin \theta$
 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\| = AB \times HC$

خاصية

 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$ هو نصف ABC مساحة المثلث

<u>نتىحة</u>

 $\|\overrightarrow{AB} \wedge \overrightarrow{AC}\|$ هي الأضلاع ABDC مساحة متوازي الأضلاع

<u>د- خاصىة</u>

لتكن $ec{v}$ و $ec{v}$ متجهتين من الفضاء

یکون $ec{v} \wedge ec{v}$ منعدما أداو فقط کان $ec{u}$ و $ec{v}$ مستقیمیتین

<u>البرهان</u> *⇒(بديهي – التعريف-) * *–*

$$\vec{u} \wedge \vec{v} = \vec{0} \Leftrightarrow \|\vec{u} \wedge \vec{v}\|$$

$$\Rightarrow \|\vec{u}\| \|\vec{v}\| \sin \theta = 0$$

$$\Leftrightarrow \|\vec{u}\| = 0 \quad \lor \quad \|\vec{v}\| = 0 \quad \lor \quad \sin \theta = 0$$

$$\Leftrightarrow \vec{u} = \vec{0} \quad \lor \quad \vec{v} = \vec{0} \quad \lor \quad \vec{u}et\vec{v} \quad sont \ li\acute{e}s$$

$$\overrightarrow{AB} \wedge \overrightarrow{AC} = \vec{0} \quad \Leftrightarrow \quad \ddot{a}$$

<u>ج- الحداء المتحهى والعمليات(نقبل)</u>

$$\forall (\vec{u}; \vec{v}; \vec{w}) \in V_3^3 \qquad \forall \alpha \in \mathbb{R} \qquad (\vec{u} + \vec{v}) \land \vec{w} = \vec{u} \land \vec{w} + \vec{v} \land \vec{w}$$
$$(\alpha \vec{u}) \land \vec{v} = \alpha (\vec{u} \land \vec{v})$$
$$\vec{u} \land \vec{v} = -(\vec{v} \land \vec{u})$$
$$\vec{u} \land \vec{u} = \vec{0} \land \vec{u} = \vec{u} \land \vec{0} = \vec{0}$$

<u>تمرين</u>

. معلم متعامد ممنظم مباشر $(o; \vec{i}; \vec{j}; \vec{k})$

$$(2\vec{i}-\vec{j})\wedge(3\vec{i}+4\vec{j})$$
 $(\vec{i}+\vec{j}-2\vec{k})\wedge\vec{k}$ $(\vec{i}+2\vec{k})\wedge\vec{j}$ $\vec{i}\wedge3\vec{j}$

 $\vec{a} \wedge \vec{c} = \vec{b} \wedge \vec{d}$; $\vec{a} \wedge \vec{b} = \vec{c} \wedge \vec{d}$

بین إن $\vec{d} - \vec{c}$ و $\vec{d} - \vec{d}$ مستقیمیتان

3- الصبغة التحليلية للحداء المتجهى في م.م.م مياش

معلم متعامد ممنظم مباشر $\left(o;\vec{i};\vec{j};\vec{k}\right)$

$$\vec{u}(x; y; z) \qquad \vec{v}(x'; y'; z')$$

$$\vec{u} \wedge \vec{v} = (x\vec{i} + y\vec{j} + z\vec{k}) \wedge (x'\vec{i} + y'\vec{j} + z'\vec{k})$$

$$= (yz' - zy')\vec{i} + (zx' - xz')\vec{j} + (xy' - yx')\vec{k}$$

الفضاء E منسوب إلى معلم متعامد ممنظم مباشر $\vec{v}\left(x(;y';z')\right)$ و $\vec{u}\left(x;y;z\right)$ و متجهتان

من۷3

حيث (X;Y;Z) عو $\left(\vec{i}\,;\vec{j}\,;\vec{k}\,\right)$ حيث إحداثيات الجداء المتجهي بالنسبة للأساس

$$X = yz' - zy'$$
 $Y = zx' - xz'$ $Z = xy' - yx'$

 $\vec{v}(-2;-1;1)$ نعتبر

 $\vec{u} \wedge \vec{v}$ حدد

أحسب مساحة المثلث (ABC)

III – تطبيقات الحداء المتحو

1- معادلة مستوى معرف ىثلاث نقط غير مستقيمية

لتكن AوB وC ثلاث نقط غير مستقيمية من فضاء منسوب الى معلم متعامد ممنظم مباشر $M \in (ABC) \Leftrightarrow (AB \land AC) \cdot AM$

نعتبر (1;2;3) و (1;-1;1) و (C(2;1;2) حدد معادلة المستوى (ABC)

2- تقاطع مستوسن

نعتبر في فضاء منسوب الى معلم متعامد ممنظم مباشر

(P) :
$$ax+by+cz+d=0$$

$$(P')$$
: $a'x+b'y+c'z+d'=0$

$$(P')$$
 لدينا $\vec{n}'(a';b';c')$ و (P) و منظممية لـ $\vec{n}(a;b;c)$ منظممية لـ

- $\vec{n} \wedge \vec{n}$ ' موجه بـ (P') و(P) و(P') اذا كان (P) ادا كان (P) متقاطعين فان المستقيم
 - $\vec{n} \wedge \vec{n}'$ فان (P') و(P') متقاطعان وفق مستقیم موجه بـ *

<u>3- مسافة نقطة عن مستق</u>

(D) مستقيم مار من Aو موجه بـ \vec{u} بقطة من الفضاء و A مسقطها العمودي على (D) مستقيم مار من $\overrightarrow{AM} \wedge \overrightarrow{u} = \left(\overrightarrow{AH} + \overrightarrow{HM}\right) \wedge \overrightarrow{u} = \overrightarrow{HM} \wedge \overrightarrow{u}$

$$\|\overrightarrow{AM} \wedge \overrightarrow{u}\| = \|\overrightarrow{HM} \wedge \overrightarrow{u}\| = HM. \|\overrightarrow{u}\| \sin \frac{\pi}{2} = HM. \|\overrightarrow{u}\|$$

$$\|\overrightarrow{AM} \wedge \overrightarrow{u}\|$$

$$HM = \frac{\left\| AM \wedge \vec{u} \right\|}{\left\| \vec{u} \right\|}$$

في الفضاء (D) مستقيم مار من Aو موجه بـ \vec{u} , نقطة من الفضاء.

$$d\left(M;\left(D
ight)
ight)=rac{\left\|\overrightarrow{AM}\wedge\overrightarrow{u}
ight\|}{\left\|\overrightarrow{u}
ight\|}$$
 هي (D) مسافة النقطة M عن المستقيم

<u>تمرىن</u>

$$d(A;(D)) = ? (D): \begin{cases} x = 2 - t \\ y = 2t \\ z = 1 + t \end{cases} A(3;2;-1)$$

تمرين

في فضاء منسوب إلى معلم متعامد ممنظم مباشر نعتبر (1;2;1) و (D) المستقيم الذي

$$\begin{cases} x - 2y + z - 3 = 0 \\ 2x + 3y - z - 1 = 0 \end{cases}$$

معادلته

- (OAB) حدد $\overrightarrow{OA} \wedge \overrightarrow{OB}$ ثم حدد معادلة ديكارتية للمستوى $\overrightarrow{OA} \wedge \overrightarrow{OB}$
 - d(A;(D)) حدد
- 3- أعط مُعُادلُهُ أُديكارتية للفلكة (S)التي مركزها A و مماسة المستقيم (D)