A ssignment -3 P roblem Statement-A balone A ge P rediction

A ssignment D ate	06 October 2022
Student Name	MissA runadevi A
Student R oll Number	620119106008
Maximum Marks	2 Marks

Question-1:

1.download the data set 2.load the dataset

import numpy as no import pandas as pd import seaborn as sns import matplotlibpyplot as plt import sklearn

data=pd.read_csv("abalone.csv")data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

A ge=1.5+data.R ingsdata["A ge"]=A gedata=data.rename(columns = {"Whole weight".'Whole_weight", 'Shucked weight". 'Shucked_weight', Viscera_weight', Viscera_weight',

'S hell weight': 'S hell_weight'})data=data.drop(columns=["R ings"],axis=1)data.head()

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

3.perform below visualizations

univariate analysis

Ans:

sns.displot(data["A ge"], color='red)

Out[4]:

<seabornaxisgrid.F acetG rid at 0x187953d26a0>

sns.histplot(y=data.A ge,color='blue')

Out[5]:

sns.histplot(x=data.A ge,color='yellow')

<AxesSubplot:xlabel='Age', ylabel='Count'>

I n[6]: sns.boxplot(x=data.A ge;color='green')

<AxesSubplot:xlabel='Age'>

sns.countplot(x=data,A ge)

<AxesSubplot:xlabel='Age', ylabel='count'>

bi - variate analysis

sns.barplot(x=data.H eight,y=data.A ge)

<AxesSubplot:xlabel='Height', ylabel='Age'>

sns.lineplot(x=data,A ge,y=data,H eight, color='orange')

<AxesSubplot:xlabel='Age', ylabel='Height'>

sns.scatterplot(x=data.A ge,y=data.H eight,color='black')

srs.pointplot(x=dataA ge, y=dataHeight, color='pirk')
 <AxesSubplot:xlabel='Age', ylabel='Height'>

sns.regplot(x=data.A ge,y=data.H eight,color='red')

multi - variate analysis

In [9]: sns.pairplot(data=data[["Height","Length","Diameter","Age","Whole_weight","Shucked_weight","Viscera_weight","Shell_weight",

4. descriptive statistics

data.describe(include='all')

	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
count	4177	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
unique	3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
top	М	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
freq	1528	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
mean	NaN	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	0.238831	11.433684
std	NaN	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	0.139203	3.224169
min	NaN	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	0.001500	2.500000
25%	NaN	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	0.130000	9.500000
50%	NaN	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	0.234000	10.500000
75 %	NaN	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	0.329000	12.500000
тах	NaN	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	1.005000	30.500000

5. Check for Missing values and deal with them

data.isnull().sum()	
Sex	0
Length	0
Diameter	0
Height	0
Whole_weight	0
Shucked_weight	0
Viscera_weight	0
Shell_weight	0
Age	0
dtype: int64	

6. Find the outliers and replace them outliers

In[18]:

outliers=data.quantile(q=(0.25,0.75))outliers

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	0.130	9.5
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	0.329	12.5

a = data.A gequantile(0.25)b = data.A gequantile(0.75)c = b - alover_limit = a - 1.5 * odata.median(numeric_only=True)

Length	0.5450	
Diameter	0.4250	
Height	0.1400	
Whole_weight	0 .7 995	
Shucked_weight	0.3360	
Viscera_weight	0.1710	
Shell_weight	0.2340	
Age	10.5000	
dtype: float64		

7. Check for Categorical columns and perform encoding

In[21]: data.head()

Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

from sklearnpreprocessing import L abelE nooder

 $lab = L abelE ncoder()data,S ex = lab.fit_transform(data,S ex) data.head()$

:	Sex	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

8. Split the data into dependent and independent variables

y = data["Sex"] y.head()

I n[24]:

x=data.drop(cdumns=["Sex"],axis=1)x.head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

9. Scale the independent variables

In[25]:

from sklearnpreprocessing import scale

 X_S caled = pdD ataF rame(scale(x), columns=x.columns)

X_S caled, head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
0	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16.5
1	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10.5
3	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11.5
4	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

10. Split the data into training and testing

In[26]:

from sklearnmodel_selection import train_test_split

 $X_Train, X_Test, Y_Train, Y_Test = train_test_split(X_S called, y, test_size=0.2, random_state=0)$ In [27]:

X_Train.shape,X_Test.shape

Output

((3341, 8), (836, 8))

Y_Train.shape,Y_Test.shape

cutput

((3341,), (836,))

In[29]:

X_Train.head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
3141	-2.864726	-2.750043	-1.423087	-1.622870	-1.553902	-1.583867	-1.644065	-1.543234
3521	-2.573250	-2.598876	-2.020857	-1.606554	-1.551650	-1.565619	-1.626104	-1.387181
883	1.132658	1.230689	0.728888	1.145672	1.041436	0.286552	1.538726	1.577830
3627	1.590691	1.180300	1.446213	2.164373	2.661269	2.330326	1.377072	0.017298
2106	0.591345	0.474853	0.370226	0.432887	0.255175	0.272866	0.906479	1.265723

X_Test.head()

	Length	Diameter	Height	Whole_weight	Shucked_weight	Viscera_weight	Shell_weight	Age
3141	-2.864726	-2.750043	-1.423087	-1.622870	-1.553902	-1.583867	-1.644065	-1.543234
3521	-2.573250	-2.598876	-2.020857	-1.606554	-1.551650	-1.565619	-1.626104	-1.387181
883	1.132658	1.230689	0.728888	1.145672	1.041436	0.286552	1.538726	1.577830
3627	1.590691	1.180300	1.446213	2.164373	2.661269	2.330326	1.377072	0.017298
2106	0.591345	0.474853	0.370226	0.432887	0.255175	0.272866	0.906479	1.265723

Y_Train.head()

```
3141 1
3521 1
883 2
3627 2
2106 2
Name: Sex, dtype: int32
```

Y_Test.head()

11. B uild the Model

I n[33]:

```
from sklearnensemble import R andomF crestClassifier
model = R andomF crestClassifier(n_estimators=10,criterion='entropy')
I n[34]:
model.fit(X_Train,Y_Train)
Output
R andomF crestClassifier(criterion='entropy', n_estimators=10)
```

12. Train the Model

```
from sklearnmetrics import accuracy_score;confusion_matrix,dassification_report In[38]:
print('Training accuracy: ',accuracy_score(Y_Trainy_predict_train))
Output
Training accuracy: 0.9817419934151451
```

13.Test the Model

```
In [39]:
print('T esting accuracy: ',accuracy_score(Y_T est,y_predict))
Output
T esting accuracy: 0.5322966507177034
```

14. Measure the performance using Metrics

```
In[40]:
pdcrosstab(Y_Test,y_predict)
```

col_0 0 1 2 Sex

0 116 29 104

1 37 216 38

2 125 58 113

 $print(dassification_report(Y_T est,y_predict))$

	precision	recall	f1-score	support	
0	0.42	0.47	0.44	249	
1	0.71	0.74	0.73	291	
2	0.44	0.38	0.41	296	
accurac y			0.53	836	
macro avg	0.52	0.53	0.53	836	
weighted avg	0.53	0.53	0.53	836	