Оглавление

1	Пол	иномы	2
	1.1	Факториальное кольцо (продолжение)	2
	1.2	§5. Евклидовы кольца	2
	1.3	$\S 6$. Разложение многоленов нал $\mathbb R$ и $\mathbb C$	4

Глава 1

Полиномы

1.1 Факториальное кольцо (продолжение)

Примеры.

1. K – поле $\implies K[x]$ факториально (доказательство потом) Примеры разложений:

•
$$x^2 - 1 = 1 \cdot (x - 1)(x + 1) = \frac{1}{6}(2x - 3)(3x + 3)$$

2. Кольцо тригонометриеских многочленов не факториально:

$$\sum_{i,j\geq 0} a_{ij} (\sin x)^i (\cos x)^j$$

1.2 §5. Евклидовы кольца

Определение 1. A – область целостности с 1. Кольцо A называется евклидовым, если существует отображение

$$\delta: A \setminus \{0\} \to \mathbb{N} \setminus \{0\}: \begin{cases} \delta(ab) \geq \delta(a) & \forall a,b \in A \setminus \{0\} \\ \forall a,b \in A, \ b \neq 0 \ \exists q,r: \begin{cases} a = bq + r \\ \delta(r) < \delta(b) \end{cases}$$

Отображение δ называется евклидовой нормой

Пример. 1. \mathbb{Z} , $\delta(a) = |a|$

$$a = -17, \ b = -3$$

$$-17 = (-5) \cdot \frac{3}{q} + (-2) \quad |-2| < |-5|$$

2. K[x], где K – поле $\delta(P) = \deg P$

3. $\mathbb{Z}[i] = \{\, a + bi \mid a,b \in \mathbb{Z} \,\}$ – кольцо Гауссовых чисел

$$\delta(a+bi) = a^2 + b^2$$

Свойства. A — евклидово кольцо, δ — евклидова норма, $a \neq 0, \, b \neq 0$

1. $a : b \implies \delta(a) \ge \delta(b)$

2. a и b ассоц. \Longrightarrow $\delta(a) = \delta(b)$

3. a = bc, c не обр. $\Longrightarrow \delta(a) > \delta(b)$

Доказательство.

- 1. a = bc, $\delta(a) = \delta(bc) \ge \delta(b)$
- 2. Из 1): $\delta(a) \geq \delta(b), \ \delta(b) \geq \delta(a) \implies \delta(a) = \delta(b)$
- 3. Докажем, что $b \not | a$. Пусть $b = ad \implies a = bc = adc \implies dc = 1 \implies c$ обратимо

$$\exists q,r:b=aq+r,\ \delta(r)<\delta(a)$$
 или $r=0$

$$r \neq 0$$
, т. к. $b \not | a$

$$r = b - ad \implies r : b \Longrightarrow \delta(r) \ge \delta(b)$$

$$\delta(a) > \delta(r) \ge \delta(b)$$

Теорема 1 (НОД в евклидовом кольце). Пусть A — евклидово, $a,b \in A, a \neq 0$ или $b \neq 0$ (не оба нули). Тогда:

- 1. Существует HOД(a, b)
- 2. Пусть d явл. НОД (a,b). Тогда $\exists x,y \in A: d=ax+by$

Доказательство. Положим $M=\{au+bv\mid u,v\in A\}$. Пусть $M=\min\left\{\delta(c)\middle|c\in M\right\}$, пусть $d_0:d_0\in M,\ \delta(d_0)=m$. Докажем, что d_0 – общий делитель a,b. Пусть $a\not\mid d$

$$\exists q, r : a = dq + r, \ r \neq 0, \ \delta(r) < \delta(d_0)$$

$$r = a - d_0q = a - (ax + by)q = a(1 - qx) + b(-qy) \in M$$

$$\delta(r) < \delta(d_0) = m$$
 4

Докажем, что если k – общий делитель a и b, то $d_0 \\\vdots \\ k$

$$\begin{cases} a : k \\ b : k \end{cases} \implies \begin{cases} ax : k \\ by : k \end{cases} \implies d_0 = ax + by : k$$

Докажем, что d_0 явл. НОД $(a,b) \implies$ НОД (a,b) существует:

$$d, d_0 - \text{HOД}(a, b) \implies d = t \cdot d_0, \ t - \text{обр.} \implies d = a(tx) + b(ty)$$

Свойство (Взаимная простота с произведением). A – евклидово кольцо. $a_1, a_2, ..., a_k, b \in A$ $(a_i, b) = 1 \ \forall i.$ Тогда $(a_1 a_2 ... a_k, b) = 1$

Свойство (Взаимная простота и делимость). A — евклидово кольцо.

- 1. $ab \vdots c$, $(a, c) = 1 \implies b \vdots c$
- 2. a : b, a : c, $(b, c) = 1 \implies a : bc$

Теорема 2. Любое евклидово кольцо факториально

Доказательство.

1. ∃

Докажем, что любой ненулевой элемент можно представить в виде произведения неразложимых элементов и обратимого элемента:

Пусть a не представляется, и $\delta(a)$ – наименьшее возможное. a не обратим, т. к. иначе a=a – нужное представление. a не неразложимый, т. к. иначе $a=1\cdot a$ – нужное представление.

$$\exists b, c: a = bc, \ b, c$$
 не обратимы

$$\delta(b) < \delta(a), \ \delta(c) < \delta(a)$$

b и c можно представить в виде произведения неразлодимых элементов и обратимого элемента. Пусть $b=up_1...p_k \atop c=vq_1...q_m$ \Longrightarrow $a=(uv)p_1...p_kq_1...q_m$ \nleq

2.!

Докажем, что представление единственно с точностью до перестановки сомножителей и замены сомножителей на ассоциированные:

Пусть не для всех элементов единственно. Пусть a — такой, что для него не единственно, и $\delta(a)$ — наименьшая возможная.

$$a=up_1...p_k,\quad a=vq_1...q_n$$
 $vq_1...q_m$: p_1 $v
eq p_1$ p_1 q_i : p_q или $(q_i,p_1)=1$ $\forall i$ $(v,p_1)=1$

Если
$$(q_i, p_1) = 1 \ \forall i \implies (vq_1...q_m, p_1) = 1 \implies vq_1...q_m \not \mid p_1 \implies a \not \mid p_1 \not \sqsubseteq$$

$$\exists i: q_i \vdots p_q \implies q_i \text{ accou. c } p_1$$

Переставим сомножители и будем считать, что q_1 ассоц. с p_1 . Пусть $q_1=wp_1,\ w$ обратимо

$$\begin{cases} a = up_1...p_k \\ a = v(wp_1)q_2...q_m \end{cases}$$

Пусть
$$b: bp_1 = a \implies \begin{cases} b = up_2...p_k \\ b = (vw)q_2...q_m \end{cases}$$

$$\delta(b) < \delta(a)$$

Произведение $up_2...p_k$ и $(vw)q_2...q_m$ совпадают с точностью до перестановки сомножителей и замены сомножителей на ассоциированные $\implies up_1p_2...p_k$ и $vq_1q_2...q_m$ совпадают с точностью до перестановки сомножителей и замены сомножителей на ассоциированные

Следствие. Пусть K – поле. Тогда [k] факториально

1.3 §6. Разложение многоленов над $\mathbb R$ и $\mathbb C$

Определение 2. Пусть K – поле, $P \in K[x]$, c – корень P(x) Показателем кратности корня c называется такое число k, что P(x) : $(x-c)^k$, $(x-c)^{k+1}$

- Если P(x) : x-c, $f(x-c)^2$, то c называется простым корнем
- Если P(x) : $(x-c)^2$, то c называется кратным корнем

Теорема 3 (Основная теорема алгебры). Любой многочлен с комплексными коэффициентами, отличный от константы имеет корень в $\mathbb C$

Следствие. Пусть $P \in \mathbb{C}[x], \ \deg P = n.$ Тогда P(x) имеет n корней с учётом кратности, P можно представить в виде

$$P(x) = a(x - x_1)(x - x_2)...(x - x_n)$$
 $a, x_i \in \mathbb{C}$

Доказательство. Индукция