Ejemplo comparación de resultados predictores in sillico

Cambio de estudio EPAS1 c.2401C>A (chr2:46382538 C/A, rs1265031766 o NM_001430.5: c.2401C>A)

Exón 15 e intrones adyacentes:

El cambio se encuentra en la segunda fila del exón 15 (la ${\bf c}$ en color rojo y subrayada en amarillo).

Se va a obtener los resultados que produce analizar esta variable con los diferente predictores y ver cuál de ellos es más preciso.

NetGene2

	pos 5'->3'	phase	strand	confidence	5' exon intron 3'					-		
	323	0	+	0.71	AGCCCACAAG^GTGTCAGGTG		pos	5'->3'	phase	strand	confidence	5' exon intron
	330	1	+	0.94	AAGGTGTCAG^GTGGGTGTGC H			323	0	+	0.71	AGCCCACAAG^GTGTCAGGTG
								330	1	+	0.94	AAGGTGTCAG^GTGGGTGTGC
nor splice	sites, comple	ement st	rand									
No depend	ite prediction	one abou	o thros	hold		Donor splice s	ites,	, comple	ment st	trand		
NO donor S	ite prediction	JIIS ADOV	e tilles	noiu.								
centor soli	ce sites, di	ect str	rand			No donor si	te pr	redictio	ns abov	/e thres	hold.	
								42				
	pos 5'->3'	phase	strand	confidence	5' intron exon 3'	Acceptor splic	e s11	tes, air	ect sti	rand		
	117	2	+	0.69	CCTCCCTCAG^GCCAATGCTA			E! \2!	nhaco	ctood	confidence	5' intron exon
	220	0	+	0.25	GCTGCCACAG^CCTCCATCTG		pos	117	2	+	0.69	CCTCCCTCAG^GCCAATGCTA
	237	2	+	0.34	CTGCCATCAG^TCCCGGGGAG			220	0	+	0.31	GCTGCCACAG^CCTCCATCTG
	247	0	+	0.32	TCCCGGGGAG^AACAGCAAGA			237	2	+	0.42	CTGCCATCAG^TCCCGGGGAG
	252	2	+	0.20	GGGAGAACAG^CAAGAGCAGG				9			
	256	0	+	0.19	GAACAGCAAG^AGCAGGTTCC			247	•	+	0.34	TCCCGGGGAG^AACAGCAAGA
	258	2	+	0.19	ACAGCAAGAG^CAGGTTCCCC			252	2	+	0.20	GGGAGAACAG^CAAGAGCAGG
	261	2	+	0.18	GCAAGAGCAG^GTTCCCCCCA			258	-	+	a 19	ACAGCAAGAG^CAGGTTCCCC
	274	0	+	0.14	CCCCCACAG^TGCTACGCCA			261	2	+	0.18	GCAAGAGCAG^GTTCCCCACA
	364	0	+	0.27	CCCATCCCAG^GATTCGATGC			364	0	+	0.27	CCCATCCCAG^GATTCGATGC
	405	0	+	0.71	TTTTTTCCAG^CGTCTGCACA			405	0	+	0.71	TTTTTTCCAG^CGTCTGCACA
	416	2	+	0.00	GTCTGCACAG^TGCCAGGCAC			416	2	+	0.00	GTCTGCACAG^TGCCAGGCAC
ceptor spli	ce sites, cor	nplement	strand			Acceptor splic	e sit	tes, com	plement	t strand		
	ce sites, cor pos 5'->3'				5' intron exon 3'							5' intron exon
66	444		-		TTTATAAAAG^GTGCTCAGAG	66		444		-		TTTATAAAAG^GTGCTCAGA

Desaparece el sitio *acceptor* (en rojo) en la secuencia mutante, mientras que el otro sitio aceptor (en verde) se modifica por la presencia de la mutación, pero su confianza no se ve alterado por lo que no se tendrá en cuenta. El sitio *acceptor* que se pierde no corresponde al sitio *acceptor* de *splicing* normal para este exón, por lo que perderlo no debería suponer ningún efecto para el *splicing*.

Splice Site Prediction by Neural Network (NNSplice)

Donor site predictions for 10.42.2.148.573458.0:

Donor site predictions for 10.42.3.123.573470.0:

Start	End	Score	Exon Intron	Start	End	Score	Exon Intron
29	43	0.51	cctgaag gt tggctg	29	43	0.51	cctgaag gt tggctg
			gtgtcag gt gggtgt	323	337	0.81	gtgtcag gt gggtgt
426	440	0.41	cagggag gt gcttga	426	440	0.41	cagggag gt gcttga

Acceptor site predictions for 10.42.2.148.573458.0:

Acceptor site predictions for 10.42.3.123.573470.0:

Start	End	Score	Intron	Exon	Start	End	Score	Intron	Exon
97	137	0.98	ctggcctctcccct	ccctc ag gccaatgctaccgtcactct	97	137	0.98	ctggcctctcccctccct	: ag gccaatgctaccgtcactct
135	175	0.92	tctctgactttggt	ctttc ag ataagttcacccaaaacccc	135	175	0.92	tctctgactttggtctttd	: ag ataagttcacccaaaacccc
344	384	0.62	gatctgtcaccccc	atccc ag gattcgatgccaggggaagc	344	384	0.62	gatctgtcacccccatcc	: ag gattcgatgccaggggaagc
385	425	0.97	ccacgtctacttt	tttcc ag cgtctgcacagtgccaggca	385	425	0.97	ccacgtctacttttttcc	: ag cgtctgcacagtgccaggca
462	502	0.68	ctcaggtctccttg	gattt ag ggaacctcctcacaagttcc	462	502	0.68	ctcaggtctccttggatt	: ag ggaacctcctcacaagttcc

Spliceman

Point mutation	Wildtype (wt)	Mutation (mt)	L1 distance	Ranking (L1
tcccc(c/a)cacag	ccccc	ccccac	35700	71%

CRYP-SKIP

Parece que hay un sitio críptico de *splicing* dentro del propio exón, pero el cambio de interés (la primera **a** en minúsculas detrás de las mayúsculas, que indican el exón) no lo toma en consideración, por lo que no debe considerar que tenga algún efecto en el *splicing*.

Human Splicing Finder

No significant impact on splicing signals.

No significant impact on splicing signals.

SVM-BPfinder

seq_id	agez	ss_dis	t bp_seq bp_scr	y_cont ppt_off	ppt_len ppt_scr	svm_scr			
wt	15	86	tcgtcagcc	-1.26850401419	0.506172839506	33	17	26	-1.7780551
wt	15	71	gtgtcaggt	-2.47290537021	0.515151515152	18	17	26	-1.2972604
wt	15	47	ctgtcaccc	0.675520099689	0.547619047619	1	10	17	0.93821187
mut	15	86	tcgtcagcc	-1.26850401419	0.506172839506	33	17	26	-1.7780551
mut	15	71	gtgtcaggt	-2.47290537021	0.515151515152	18	17	26	-1.2972604
mut	15	47	ctgtcaccc	0.675520099689	0.547619047619	1	10	17	0.93821187

Variant Effect Predictor tool

ENST00000263734.4:c.2401C>A 2:46382538- A	missense_variant	EPAS1	ENSG00000116016	Transcript	ENST00000263734.5	protein_coding	15/16	2906	2401	801	P/T	CCA/ACA	rs1265031766
40302330													
ENST00000263734.4:c.2401C>A <u>2:46382538-</u> A <u>46382538</u>	downstream_gene_variant	EPAS1	ENSG00000116016	Transcript	ENST00000465318.5	retained_intron	-	-	-	-	-	-	rs1265031766
ENST00000263734.4:c.2401C>A <u>2:46382538-</u> A <u>46382538-</u>	non coding transcript exon varian	EPAS1	ENSG00000116016	Transcript	ENST00000466465.5	retained_intron	4/5	1374	-	-	-	-	rs1265031766
ENST00000263734.4:c.2401C>A <u>2:46382538-</u> A <u>46382538-</u>	non_coding_transcript_exon_varian	EPAS1	ENSG00000116016	Transcript	ENST00000468530.1	processed_transcript	3/4	317	-	-	-	-	rs1265031766
ENST00000263734.4:c.2401C>A <u>2:46382538-</u> A <u>46382538</u>	downstream_gene_variant	EPAS1	ENSG00000116016	Transcript	ENST00000483692.1	retained_intron	-	-	-	-	-	-	rs1265031766
ENST00000263734.4:c.2401C>A 2:46382538- A	regulatory_region_variant	-	-	RegulatoryFeature	ENSR00000604776	CTCF_binding_site	-	-	-	-	-	-	rs1265031766

ESEfinder

Se encuentran 2 predicciones que tienen puntuación positiva para las matrices 5' (247, 259) y una predicción que tiene puntuación positiva para las matrices 3' (260).

247 (-263)	GAACAGCAAGAGCAGGTTCCCCCCACAGTG	2.15740	247 GAACAGCAAGAGCAGGTTCCCCCCACAGTG	-2.26920	247 (-263)	GAACAGCAAGAGCAGGTTCCCCCCACAG	STG 2.3523	0 (-2	247 63) GAACAGCAAGAGCAGGTTCCCCCCACA	AGTG -3.05080
259 (-251)	CAGGTTCCCCCCACAGTGCTACGCCACCCA (0.14410	259 CAGGTTCCCCCCACAGTGCTACGCCACCCA -:	23.53210 (259 -251)	AGGTTCCCCCCACAGTGCTACGCCACCCA	-0.01110	259 (-251)	CAGGTTCCCCCCACAGTGCTACGCCACCCA	-25.03860
260 (-250)	AGGTTCCCCCCACAGTGCTACGCCACCCAG -3	0.00190	260 (-250) AGGTTCCCCCCACAGTGCTACGCCACCCAG	7.61880 (260 -250) AG	GGTTCCCCCCACAGTGCTACGCCACCCAG	-28.51450	260 (-250)	AGGTTCCCCCCACAGTGCTACGCCACCCAG	7.89490

Si comparamos estas puntuaciones con las equivalentes en la secuencia mutante comprobamos que para las matrices 5' han descendido las puntuaciones ligeramente, mientras que para 260 las puntuaciones han bajado más de 2 puntos.

247 (-263)	GAACAGCAAGAGCAGGTTCCCCACACAGTG	1.75260	24 (-263	7 GAACAGCAAGAGCAGGTTCCCCACACAG	TG -2.316	80 (-26	GAACAGCAAGAGCAGGTTCCCCACACA	AGTG 1.88	490 (-	247 263) GAACAGCAAGAGCAGGTTCCCCACAC	AGTG -3.12
259 (-251)	CAGGTTCCCCACACAGTGCTACGCCACCCA	0.07570	259 (-251)	CAGGTTCCCCACACAGTGCTACGCCACCCA	-25.64020	259 (-251)	CAGGTTCCCCACACAGTGCTACGCCACCCA	-0.04030	259 (-251)	CAGGTTCCCCACACAGTGCTACGCCACCCA	-27.29920
260 (-250)	AGGTTCCCCACACAGTGCTACGCCACCCAG		260 (-250)	AGGTTCCCCACACAGTGCTACGCCACCCAG		260 (-250)	AGGTTCCCCACACAGTGCTACGCCACCCAG	-28.54260	260 (-250)	AGGTTCCCCACACAGTGCTACGCCACCCAG	5.49020

Por lo tanto, lo más probable es que se estuviera debilitando un sitio acceptor, que podría tener efecto en el splicing.

En cuanto a los sitios ESE, se ven algunos cambios entre ambas secuencies:

263	-3.26185	263	263	263
(-247)		(-247) TTCCCCC -1.61290	(-247) TTCCCCCC 0.84973	(-247) TTCCCCC 0.73156
264	-3.86478	264	264	264
(-246) TCCCCCC		(-246) TCCCCCC -1.86168	(-246) TCCCCCCA 1.27160	(-246) TCCCCCC 1.04362
265	1.29235	265	265	265
(-245)		(-245) CCCCCCA 2.66776	(-245) CCCCCCAC -0.89621	(-245) CCCCCCA -0.85218
266	-0.91429	266	266	266
(-244)		(-244) CCCCCAC 1.11102	(-244) CCCCCACA 0.01593	(-244) CCCCCAC 0.42471
267	-1.23138	267	267	267
(-243)		(-243) CCCCACA 0.75345	(-243) CCCCACAG 0.89154	(-243) CCCCACA 0.88480
268	1.55911	268	268	268
(-242)		(-242) CCCACAG 2.50585	(-242) CCCACAGT -6.16804	(-242) CCCACAG -0.30167
269	-1.31690	269	269	269
(-241)		(-241) CCACAGT 0.40803	(-241) CCACAGTG -0.01134	(-241) CCACAGT 3.58597
263	-1.05521	263	263	263
(-247)		(-247) TTCCCCA -0.18851	(-247) TTCCCCAC 0.47106	(-247) TTCCCCA -0.80754
264	-3.86478	264	264	264
(-246) TCCCCAC		(-246) TCCCCAC -1.99403	(-246) TCCCCACA -0.00520	(-246) TCCCCAC 0.78141
265	-1.23138	265	265	265
(-245)		(-245) CCCCACA 0.75345	(-245) CCCCACAC -1.36863	(-245) CCCCACA 0.88480
266	0.07926	266	266	266
(-244)		(-244) CCCACAC 1.51683	(-244) CCCACACA -2.68221	(-244) CCCACAC -1.14431
267 CCACACA (-243)	-3.54139	267 (-243) CCACACA -1.01157	267 (-243) CCACACAG -0.11914	267 (-243) CCACACA 3.28035
268	3.28457	268	268	268
(-242) CACACAG		(-242) CACACAG 3.18589	(-242) CACACAGT -4.49282	(-242) CACACAG -2.56839
269	-3.82208	269	269	269
ACACAGI		ACACAGT -2.72771	ACACAGTG 0.26510	ACACAGT 2.89305

EX-SKIP

Seq	PESS (count)	FAS-ESS hex2 (count)	FAS-ESS hex3 (count)	IIE (count)	IIE (sum)	NI-ESS trusted (count)	NI-ESS all (sum)	PESE (count)	RESCUE -ESE (count)	EIE (count)	EIE (sum)	NI-ESE trusted (count)	NI-ESE all (sum)	ESS (total)	ESE (total)	ESS/ESE (ratio)
wt	1	3	2	15	158.4084	3	-8.3122	13	9	58	691.6558	62	86.3690	24	142	0.17
mut	1	3	2	15	158.4084	4	-9.3122	13	9	56	670.2345	62	86.7054	25	140	0.18

Allele mut has a higher chance of exon skipping than allele wt.

HOT-SKIP