Quantum applications of ion trapping

Hartmut Häffner, UC Berkeley

- 1. Introduction to ion trapping
- 2. Quantum computing
- 3. Sources of decoherence
- 4. Scaling and quantum simulation
- 5. Applications of QIP to precision measurements

Plan

- Lecture #1: Introduction
- Paul traps
- Laser ion-interaction
- Lecture #2: Quantum computing
- Quantum gates
- Quantum state tomography
- Lecture #3: Decoherence
- Qubit decoherence
- Scaling
- Lecture #4: Scaling and quantum simulation
- Scaling and anomalous heating
- Quantum simulation
- Lecture #5: Applications
- Decoherence-free subspaces
- Michelson-Morley experiment

The DiVincenczo criteria for quantum computing

- I. Scalable physical system, well characterized qubits \vee
- II. Ability to initialize the state of the qubits with sufficient fidelity \checkmark
- III. Long relevant coherence times, much longer than gate operation time \bigvee
- IV. "Universal" set of quantum gates with sufficient fidelity ($\sqrt{}$)
- $ec{\mathsf{V}}$. Qubit-specific measurement capability with sufficient fidelity $\sqrt{}$

ENIAC, 1950

Quantum computer, 2005

ENIAC, 1950

Quantum computer, 2009

Problems:

 Coupling strength between internal and motional states of a N-ion string decreases as

$$\eta \propto rac{1}{\sqrt{N}}$$

(momentum transfer from photon to ion string becomes more difficult)

- -> Gate operation speed slows down
- More vibrational modes increase risk of spurious excitation of unwanted modes
- Distance between neighbouring ions decreases -> addressing more difficult

-> Use flexible trap potentials to split long ion string into smaller segments and perform operations on these smaller strings

Scaling ion trap quantum computers D. Leibfried, D. Wineland et al., NIST

Scaling ion trap quantum computers processor unit memory D. Leibfried, D. Wineland et al., NIST

"Architecture for a large-scale ion-trap quantum computer", D. Kielpinski et al., Nature **417**, 709 (2002).

Coherent transport through junctions

All ingredients for this approach have been shown to work together!

=> Home *et al.*, "Complete methods set for scalable ion trap quantum information processing," Science 325, 1227 (2009).

Blakestad, et al., arXiv:0901.0533v1

Scalable traps

Surface traps

Microfabricated surface traps

Microfabricated surface traps

NIST, Amini et al., NJP 2010

Sandia National Labs

Georgia Tech Research Institute

Ion trap quantum computing

Speed ~ 1/*d:*

Wineland (1998)

Decoherence due to ion motion

Excessive heating in ion traps

What is causing "the" anomalous heating?

- fluctuating patch potentials, ad-atom diffusion (Wineland 1998)

- independently fluctuating dipoles (Daniilidis 2010)

- fluctuating strength of dipoles (Safavi-Naini 2011, 2013)

Auger spectra of a Cu-Al surface

Heating rates

Excessive heating in ion traps

Plan

- Lecture #1: Introduction
- Paul traps
- Laser ion-interaction
- Lecture #2: Quantum computing
- Quantum gates
- Quantum state tomography
- Lecture #3: Decoherence
- Qubit decoherence
- Scaling
- Lecture #4: Scaling and quantum simulation
- Scaling and anomalous heating
- Quantum simulation
- Lecture #5: Applications
- Decoherence-free subspaces
- Michelson-Morley experiment

Information content

$$|\Psi\rangle_{\text{reg}} = \alpha_0 |000\rangle + \alpha_1 |001\rangle + \alpha_2 |010\rangle + \alpha_3 |011\rangle + \alpha_4 |100\rangle + \alpha_5 |101\rangle + \alpha_6 |110\rangle + \alpha_7 |111\rangle$$

# bits	classical	quantum mechanical
1	1	0.5208 + 0.7059i, 0.3014 + 0.3736i
2	01	0.2044 + 0.4911i , 0.1732 + 0.3855i, 0.2040 + 0.4890i, 0.3193 + 0.3947i
3	001	0.2583 + 0.2704i , 0.2310 + 0.1150i, 0.2956 + 0.3118i , 0.3558 + 0.2113i , 0.1943 + 0.1377i 0.3273 + 0.2613i , 0.0643 + 0.2033i, 0.3643 + 0.1654i
4	1010	$0.1691 + 0.0891i 0.1096 + 0.0828i 0.1420 + 0.2873i 0.0741 + 0.2419i 0.1902 + 0.0448i 0.2495 + 0.0039i 0.1738 + 0.2933i 0.2102 + 0.0653i 0.0686 + 0.0980i 0.1246 + 0.2170i \\ 0.2570 + 0.0933i 0.2234 + 0.1540i 0.1513 + 0.0213i 0.1863 + 0.3243i 0.2606 + 0.1912i 0.0194 + 0.1390i \\$
5	10001	0.1060 + 0.1416i $0.0103 + 0.0118i$ $0.0064 + 0.0976i$ $0.0734 + 0.0716i$ $0.0030 + 0.2054i$ $0.0902 + 0.0035i$ $0.1605 + 0.1804i$ $0.0218 + 0.2280i$ $0.0083 + 0.2326i$ $0.1438 + 0.1853i$ $0.1429 + 0.1030i$ $0.0037 + 0.1171i$ $0.0038 + 0.0503i$ $0.0446 + 0.1512i$ $0.1379 + 0.0752i$ $0.0135 + 0.2255i$ $0.0863 + 0.1707i$ $0.1483 + 0.0968i$ $0.1686 + 0.1749i$ $0.1627 + 0.0629i$ $0.0197 + 0.1033i$ $0.1067 + 0.2192i$ $0.1038 + 0.1605i$ $0.0830 + 0.0499i$ $0.0361 + 0.1971i$ $0.1587 + 0.1477i$ $0.1642 + 0.0314i$ $0.1709 + 0.0487i$ $0.1124 + 0.1426i$ $0.1303 + 0.1480i$ $0.0284 + 0.0870i$ $0.1059 + 0.1351i$
6	110101	$0.0595 + 0.1064 \\ 0.0295 + 0.1327 \\ 0.0284 + 0.1254 \\ 0.1345 + 0.0258 \\ 0.0288 + 0.1254 \\ 0.1345 + 0.0258 \\ 0.0846 + 0.0254 \\ 0.0399 + 0.1478 \\ 0.0399 + 0.1478 \\ 0.0389 + 0.1278 \\ 0.0590 + 0.0882 \\ 0.0615 + 0.0284 \\ 0.0590 + 0.0882 \\ 0.0615 + 0.1293 \\ 0.0274 + 0.1380 \\ 0.0274 + 0.1293 \\ 0.0274 + 0.1380 \\ 0.0274 + 0.0381 \\ 0.0274 + 0.0381 \\ 0.0590 + 0.0882 \\ 0.0615 + 0.0273 \\ 0.0874 + 0.0487 \\ 0.0898 + 0.0247 \\ 0.0884 + 0.0231 \\ 0.0884 + 0.0231 \\ 0.0884 + 0.0231 \\ 0.0884 + 0.0231 \\ 0.0884 + 0.0231 \\ 0.0884 + 0.0231 \\ 0.0884 + 0.0231 \\ 0.0884 + 0.0081 \\ 0.0884 + 0.0081 \\ 0.0884 + 0.0081 \\ 0.0884 + 0.0081 \\ 0.0888 + 0.0081 \\ 0.0884 + 0.0081 \\ 0.0884 + 0.0081 \\ 0.0884 + 0.0081 \\ 0.0888 + 0.0081 \\ 0.0888 + 0.0081 \\ 0.0889 + 0.0081 \\ 0.0899 + 0.0081 \\ 0.0899 + 0.0081 \\ 0.0889 + 0.0081 \\ 0.0889 + 0.0081 \\ 0.0899 + 0.0081 \\ 0.0899 + 0.0081 \\ 0.0889 + 0.0081 \\ 0.0889 + 0.0081 \\ 0.0899 + 0.0081 \\ 0.0899 + 0.0081 \\ 0.0889 + 0.0081 \\ 0.0889 + 0.0081 \\ 0.0899 + 0$
7	1001010	0.0880 + 0.0466i 0.1054 + 0.0684i 0.0239 + 0.0866i 0.0759 + 0.0090i 0.0563 + 0.1020i 0.1066 + 0.0988i 0.0769 + 0.0649i 0.0246 + 0.0273i 0.0485 + 0.0942i 0.0186 + 0.0554i 0.1045 + 0.0790i 0.0384 + 0.0455i 0.0053 + 0.1037i 0.0815 + 0.0077i 0.0086i 0.0985 + 0.0597i 0.0399 + 0.0315i 0.0271 + 0.0925i 0.1046 + 0.0262i 0.1041 + 0.0734i 0.1015 + 0.0058i 0.0757 + 0.0385i 0.0914 + 0.0537i 0.0226 + 0.0488i 0.0491 + 0.0607i 0.0087 + 0.0686i 0.0981 + 0.087ii 0.0981 + 0.087ii 0.0684 + 0.087ii 0.0285 + 0.088ii 0.087i + 0.047ii 0.0884 + 0.087ii 0.0285 + 0.087ii 0.0285 + 0.087ii 0.0285 + 0.087ii 0.0285 + 0.087ii 0.0884 + 0.087ii 0.0285 + 0.087ii 0.0884 + 0.087ii 0
8	10101011	$0.0199 + 0.0027i 0.0033 + 0.0063i 0.0005 + 0.0656i 0.0443 + 0.0262i 0.0573 + 0.0359i 0.0622 + 0.0704i 0.0491 + 0.0176i 0.0194 + 0.0664i 0.0111 + 0.0506i 0.0502 + 0.0687i 0.0729 + 0.0376i 0.0629 + 0.0765i 0.0717 + 0.0288i \\ 0.0239 + 0.0410i 0.0207 + 0.0140i 0.0413 + 0.0337i 0.0126 + 0.0327i 0.0163 + 0.0599i 0.0167 + 0.0519i 0.0502 + 0.0738i 0.0041 + 0.0148i 0.0517 + 0.0086i 0.0514 + 0.0436i 0.0240 + 0.0747i 0.0226 + 0.0018i 0.0555 + 0.0671i \\ 0.0736 + 0.0021i 0.0101 + 0.0400i 0.0053 + 0.0148i 0.0997 + 0.0552i 0.0128 + 0.0193i 0.0702 + 0.0702i 0.0105 + 0.0106i 0.0476 + 0.0402i 0.0207 + 0.0690i 0.0170 + 0.0726i 0.0589i 0.0236 + 0.0337i 0.0726 + 0.0333i \\ 0.0254 + 0.015i 0.0543 + 0.015i 0.0577 + 0.0140i 0.0448 + 0.0559i 0.0678 + 0.0376i 0.0578 + 0.0276i 0.0293 + 0.0220i 0.0559 + 0.0670i 0.0125 + 0.0438i 0.0737 + 0.0186i 0.0151 + 0.0737i 0.0598 + 0.0494i 0.0473 + 0.0177i \\ 0.0125 + 0.0575i 0.0024 + 0.0513i 0.0224 + 0.0151i 0.0224 + 0.0107i 0.0733 + 0.0207i 0.0733 + 0.0090i 0.0733 + 0.0090i 0.0733 + 0.0090i 0.0739 + 0.0090i 0.0090i 0.0090i 0.0090i 0.0090i 0.0090i 0.0090i 0.0090i 0.0090i $

Information content

# bits	classical	quantum mechanical
1	1	0.5208 + 0.7059i, 0.3014 + 0.3736i
2	01	0.2044 + 0.4911i , 0.1732 + 0.3855i, 0.2040 + 0.4890i, 0.3193 + 0.3947i
3	001	0.2583 + 0.2704i , 0.2310 + 0.1150i, 0.2956 + 0.3118i , 0.3558 + 0.2113i , 0.1943 + 0.1377i 0.3273 + 0.2613i , 0.0643 + 0.2033i, 0.3643 + 0.1654i
4	1010	$0.1691 + 0.0891i 0.1096 + 0.0828i 0.1420 + 0.2873i 0.0741 + 0.2419i 0.1902 + 0.0448i 0.2495 + 0.0039i 0.1738 + 0.2933i 0.2102 + 0.0653i 0.0686 + 0.0980i 0.1246 + 0.2170i \\ 0.2570 + 0.0933i 0.2234 + 0.1540i 0.1513 + 0.0213i 0.1863 + 0.3243i 0.2606 + 0.1912i 0.0194 + 0.1390i \\$
5	10001	0.1060 + 0.1416i $0.0103 + 0.0118i$ $0.0064 + 0.0976i$ $0.0734 + 0.0716i$ $0.0030 + 0.2054i$ $0.0902 + 0.0035i$ $0.1605 + 0.1804i$ $0.0218 + 0.2280i$ $0.0083 + 0.2326i$ $0.1438 + 0.1853i$ $0.1429 + 0.1030i$ $0.0037 + 0.1171i$ $0.0038 + 0.0503i$ $0.0446 + 0.1512i$ $0.1379 + 0.0752i$ $0.0135 + 0.2255i$ $0.0863 + 0.1707i$ $0.1483 + 0.0968i$ $0.1686 + 0.1749i$ $0.1627 + 0.0629i$ $0.0197 + 0.1033i$ $0.1067 + 0.2192i$ $0.1038 + 0.1605i$ $0.0830 + 0.0499i$ $0.0361 + 0.1971i$ $0.1587 + 0.1477i$ $0.1642 + 0.0314i$ $0.1709 + 0.0487i$ $0.1124 + 0.1426i$ $0.1303 + 0.1480i$ $0.0284 + 0.0870i$ $0.1059 + 0.1351i$
6	110101	$0.0595 + 0.1064 \\ 0.0295 + 0.1327 \\ 0.0284 + 0.0284 \\ 0.0285 + 0.1223 \\ 0.0288 + 0.1254 \\ 0.0345 + 0.0258 \\ 0.0846 + 0.0254 \\ 0.0839 + 0.1478 \\ 0.0595 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0284 \\ 0.0849 + 0.0844 \\ 0.0849 + 0.0844 \\ 0.0849 + 0.0844 \\ 0.0849 + 0.0844 \\ 0.0849 + 0.0844 \\ 0.0849 + 0.0844 \\ 0.0888 + 0.0247 \\ 0.0888 + 0.0247 \\ 0.0888 + 0.0281 \\ 0.0889 + 0.0281 \\ 0.0889 + 0.0849 \\ 0.0849 + 0.0073 \\ 0.0849 + 0$
7	1001010	0.0880 + 0.0466i 0.1054 + 0.0684i 0.0239 + 0.0866i 0.0759 + 0.0090i 0.0563 + 0.1020i 0.1006 + 0.0988i 0.0769 + 0.0649i 0.0246 + 0.0273i 0.0485 + 0.0942i 0.0186 + 0.0554i 0.1045 + 0.0790i 0.0384 + 0.0455i 0.0053 + 0.1037i 0.0215 + 0.0077i 0.0381 + 0.01057i 0.0265 + 0.0587i 0.0295 + 0.0587i 0.0226 + 0.0488i 0.0491 + 0.0867i 0.0411 + 0.0723i 0.0995 + 0.0411 + 0.0577i 0.0218 + 0.0412i 0.0563 + 0.0086i 0.0126 + 0.0683i 0.0335 + 0.0878i 0.0411 + 0.0723i 0.0995 + 0.0177i 0.0218 + 0.0224i 0.0053 + 0.0678i 0.0611 + 0.0537i 0.0226 + 0.0686i 0.0546 + 0.0687i 0.0687i + 0.0687i 0.0687
8	10101011	0.0199 + 0.0027i 0.0033 + 0.0063i 0.0005 + 0.0656i 0.0443 + 0.0262i 0.0573 + 0.0359i 0.0622 + 0.0704i 0.0491 + 0.0176i 0.0194 + 0.0664i 0.0111 + 0.0506i 0.0502 + 0.0876i 0.0729 + 0.0376i 0.0629 + 0.0756i 0.0717 + 0.0288i 0.0239 + 0.0410i 0.0207 + 0.0140i 0.0413 + 0.0337i 0.0126 + 0.0327i 0.0163 + 0.0509i 0.0167 + 0.0193i 0.0702 + 0.0720i 0.0165 + 0.0186i 0.0177 + 0.0086i 0.0514 + 0.0436i 0.0249 + 0.0376i 0.0525 + 0.0671i 0.0729 + 0.0376i 0.0240 + 0.0736i 0.0097 + 0.0555i 0.0128 + 0.0193i 0.0702 + 0.0720i 0.0165 + 0.0166i 0.0477 + 0.0040i 0.0177 + 0.0086i 0.0543 + 0.0177 i 0.0555 + 0.0671i 0.0727 + 0.0410i 0.0448 + 0.0559i 0.0128 + 0.0193i 0.0702 + 0.0720i 0.0165 + 0.0166i 0.0729 + 0.0657i 0.0177 + 0.0186i 0.0543 + 0.0186i 0.0543 + 0.0186i 0.0737 + 0.0186i 0.0737 + 0.0186i 0.0737 + 0.0186i 0.0737 + 0.0222i 0.0176 + 0.090i 0.0739 + 0.0030i 0.0559 + 0.0670i 0.0125 + 0.0483i 0.0737 + 0.0186i 0.0154 + 0.0187i 0.0598 + 0.0494i 0.0473 + 0.0177i 0.00214i 0.00685i 0.0044 + 0.0186i 0.0023 + 0.0053i 0.0524 + 0.0657i 0.0042 + 0.0138i 0.0737 + 0.0186i 0.01659 + 0.0494i 0.0473 + 0.0177i 0.00214i 0.00685i 0.0144 + 0.036ii 0.0239 + 0.0255i 0.0128 + 0.0458i 0.0129 + 0.0566i 0.0234 + 0.036i 0.0234 + 0.0256i 0.0128 + 0.0566i 0.0128 + 0.0566i 0.0128 + 0.0555i 0.0124 + 0.0458i 0.0124 + 0.0566i 0.0234 + 0.0566i 0.0234 + 0.036i 0.0364 + 0.036i 0.0364 + 0.036i

Many-body physics

Oscillator chain of ions

Oscillator chain of ions

Many-body physics

Oscillator chain of ions

$$H = \hbar \sum \Delta_{\mathsf{ion}} \sigma_i^z + \hbar \sum \omega_{\mathsf{r},i} a_i^{\dagger} a_i + \sum t_{ij} \left(a_i^{\dagger} a_j + a_i a_j^{\dagger} \right)$$
$$+ \sum \lambda_i (\sigma_i^- a_i e^{-i\delta t} + \sigma_i^+ a_i^{\dagger} e^{i\delta t}) + \sum \mu_i (\sigma_i^- e^{-i\varphi} + \sigma_i^+ e^{i\varphi})$$

Choose detuning such that the motion is not excited:

$$H = \hbar \sum_{ij} \lambda_i \lambda_j \sum_{m} \underbrace{\frac{b_{i,m}b_{j,m}}{\nu^2 - \omega_m^2} \sigma_i^x \sigma_j^x + \sum_{j} \mu_i (\sigma_i^- e^{-i\varphi} + \sigma_i^+ e^{i\varphi})}_{\text{projection of the local mode } j$$

detuning from normal mode *m*

$$= \hbar \sum_{ij} J_{ij} \sigma_i^x \sigma_j^x + \sum_i B_i^x \sigma_i^x + B_i^y \sigma_i^y$$

Transverse Ising model

Magnetic field controlled by carrier excitations

$$\sum_{i} B_i^x \sigma_i^x + B_i^y \sigma_i^y$$

Adjustable, long range spin-spin coupling via quantum gates:

$$\hbar \sum_{ij} J_{ij} \sigma_i^x \sigma_j^x + \sum_i B_i^x \sigma_i^x + B_i^y \sigma_i^y$$

Adjustable, long range spin-spin coupling via quantum gates:

Procedure:

Initialize in the known ground state

Switch on the Hamiltonian adiabatically

Measure desired expectation value

Initialize in the known ground state

Switch on the Hamiltonian adiabatically

Measure desired expectation value

Procedure:

Initialize in the known ground state

Switch on the Hamiltonian adiabatically

Measure desired expectation value

Simulation of a quantum magnet

A. Friedenauer, et al., Nature Physics **4**, 757 (2008)

Onset of a quantum phase transition

Quasiparticle engineering

- Watching quasi particles (spin excitations) propagate
- Testing Lieb-Robison bounds

Plan

- Lecture #1: Introduction
- Paul traps
- Laser ion-interaction
- Lecture #2: Quantum computing
- Quantum gates
- Quantum state tomography
- Lecture #3: Decoherence
- Qubit decoherence
- Scaling
- Lecture #4: Scaling and quantum simulation
- Scaling and anomalous heating
- Quantum simulation
- Lecture #5: Applications
- Decoherence-free subspaces
- Michelson-Morley experiment