基于隐马尔可夫链 (HMM) 的 金融市场交易策略设计

蔡玮钦 516120910098

王奕能 516120910101

王振宇 5141619041

背景介绍

- Renaissance & Medallion (文艺复兴科技和大奖章)
- 由Simons带领一群物理学家和数学家碰撞在一起
- 1989年到2008年的年化收益达到35.6%。在全球金融危机的08年,大部分对冲基金都亏损,而大奖章的return高达80%。
- 成立初期的创始人中,鲍姆等人提出了广泛应用在语音识别等领域的 HMM模型和鲍姆-威尔士算法,用来确定不可确知的变量可能出现的概率。
- 人大的一位教授14年也写了一本书——解密复兴科技:基于隐蔽马尔科 夫模型的时序分析方法。

隐马尔可夫链 (HMM)

原理部分

隐马尔可夫模型 确定模型参数 确定最佳历史隐状态序列

- 隐马尔可夫模型
 - 基本假设
 - 决定参数
- 确定模型参数
 - Baum-Welch算法
- 确定最佳历史隐状态序列
 - Viterbi 算法

隐马尔可夫模型

• 定义:

• {Xn} 是一个普通的马尔可夫链,每当马尔可夫链进入状态 j 时,以概率 p(s|j)给出信号s,用 {Sn} 表示信号序列,如果隐状态Xn不可观测,而信号Sn可以被观测,则得到一个隐马尔可夫模型。

• 基本假设:

- Xn仅和 Xn-I 有关,即 P(Xn|Sn, Xn-I, Sn-I, ..., XI,SI)=P(Xn|Xn-I)
- S_n仅和 X_n 有关, 即 P(S_n|X_n,S_{n-1},X_{n-1},...,S₁,X₁)=P(S_n|X_n)

隐马尔可夫模型

• 参数:

• {Xn} 的初始状态概率分布 T

初始状态概率分布	状态 1	状态 2	•••••	状态 n	•••••
概率	π_1	π_2	•••••	π_n	•••••

• {Xn} 的转移矩阵 A和模型的观测矩阵 B

$$\begin{pmatrix} \alpha_{11} & \alpha_{12} & \dots & \alpha_{n1} \\ \alpha_{21} & \alpha_{22} & \dots & \alpha_{n2} \\ \dots & \dots & \dots & \dots \\ \alpha_{n1} & \alpha_{n2} & \dots & \alpha_{nn} \end{pmatrix}$$

$$\begin{pmatrix}
\beta_{11} & \beta_{12} & \dots & \beta_{n1} \\
\beta_{21} & \beta_{22} & \dots & \beta_{n2} \\
\dots & \dots & \dots & \dots \\
\beta_{n1} & \beta_{n2} & \dots & \beta_{nn}
\end{pmatrix}$$

α;表示状态i转移到状态j的概率

β;表示不可观测的状态处在 i 时给出可观测信号 j 的概率

确定模型参数

- 假设股票/期货市场存在着某些不可观测的隐状态,这些状态满足马尔可夫链构成{Xn}。每天可观测到的价格走势作为状态的信号 {Sn}。
- 该模型中,初始概率分布 π,转移矩阵 A,观测矩阵 B 都未知,仅可观测到信号。需要估计参数λ(π, A,B)。

确定模型参数

- Baum-Welch 算法:
 - 估计 λ 并使 P($\{Sn\}|\lambda$) 最大,采用对数极大似然估计。
 - $^{-}$ 为当前估计参数,计算机循环迭代得到使 Q 最大的 λ ,即最佳估计参数。

$$Q(\bar{\lambda}, \lambda) = \sum_{\{X_n\}} (ln(P(\{X_n\}, \{S_n\} | \lambda)) P(\{X_n\} | \{S_n\}, \bar{\lambda}))$$

VITERBI算法

- 最大化状态路径的概率:
 - $Max(P(Xn,Xn-1,...X1|\lambda,Sn,Sn-1,...S1))$
- · l初始化,对每个i
 - t=l 时, δ_{S_i} (i)= $\pi_i \beta_{jS_i}$
- 2递推(k>I),对每个i,j
 - $t=k \oplus j$, $\delta_{Sk}(i)=\max(\delta_{Sk-1}(j) \alpha_{ji} \beta_{iS_k})$
- 3终点
 - 取最大的δs_n(i)
- 4逆向找in

δsk(i)表示第k步观测到Sk且处在状态i的最大路径概率

对j取max

ETF实证部分

数据来源

交易策略

策略表现

- 基于前述的模型,我们构建了相应的交易策略。
- 其中,在ETF上的应用不算成功,但在 期货价差上能有较好表现。主要在价差 部分介绍具体策略。

变量定义

50ETF (510050) 2010-2019年数据

变量名	定义
open, high, low, close	开/高/低/收盘价
retl	$close_t/close_{t-1} - 1$
ret5	$close_t/close_{t-5} - 1$
ATR	Average True Range
RSI	Relative Strength Index
OBV	On Balance Volume
MFI	Money Flow Index

 $ATR(n)_t = \frac{1}{n} \sum_{i=1}^n TR_{t-i+1}$

Source:Wind

样本内标注

- 首先对数据进行样本内标注,查看各个隐状态之间是否有区分度
- 取隐状态个数=6
- 例如:

Hidden state 0: 震荡

Hidden state 2: 熊市

Hidden state 3: 牛市

Hidden state 4: 熊市

样本外标注

- 样本外数据看似良好地延续了隐状态对应样本内的特征
- 例如:

Hidden state 3: 牛市

Hidden state 4: 熊市

• 将两者一对冲就可以用来交易? No

遇到的问题

- 尽管样本外各种隐状态有区分度,但实际交易中不可能预知未来的可观测序列。
- 因此,上述方法至多是一个伪回测
 - 中信期货《隐马尔可夫模型商品期货应用初探》一文很睿智地使用了上述方法。
 - 尝试使用其他策略但效果不佳

期货实证部分

数据来源 交易策略 回测表现

- 实证中我们发现股票类价格序列不平稳:
 - 其统计特征不易于延续
 - 隐马尔科夫模型相当依赖于统计特征
- 转而寻找较为平稳的时间序列:
 - 例如 高相关性期货品种价差序列
- 商品期货价差序列数据维度较小:
 - 一阶矩很容易获得
 - 但不存在直接的交易量等数据

• 选择豆一和豆粕两个相关系数较高的品种(近一年两者相关系数0.802)

豆一和豆粕合约价格走势图 (日频, 2005/01 - 2019/03)

• 以上数据均来自Wind数据库

变量定义

变量名	定义
close	豆粕close - 豆一close
ret l	$close_t/close_{t-1} - 1$
ret5	$close_t/close_{t-5} - 1$
ret I 0	$close_t/close_{t-10} - 1$
ret20	$close_t/close_{t-20} - 1$

数据初探

- 首先对数据进行样本内标注,查看各个 隐状态之间是否有区分度
- 利用 ret1, ret5, ret10 作为观测值对隐状态 标记的结果较好

交易策略

策略滚动回测流程示意图

交易策略

- 采用滚动回测方式: 使用过去M天的观测值序列进行参数估计,用最后一天的隐含状态来预测后N天的状态。
- 一个典型的 Embedded Markov Transition Matrix 如下。可以看到下一阶段 转移到别处的概率都较小,留在原处的概率最大。

	0	1	2	3	4	5
0	0.676906	0.14084	0.0159308	0.069996	0.00202478	0.094302
1	0.156863	0.599827	0.00189536	0.0403659	0.0237836	0.177265
2	0.0203786	0.0436632	0.719506	0.197854	8.60321e-17	0.0185988
3	0.180515	0.023688	2.9031e-06	0.750891	0.0397787	0.00512427
4	0.0251405	0.0254936	0.00777064	0.0297438	0.783649	0.128203
5	0.0264203	0.221896	0.0096795	0.0122587	0.0796568	0.650088

• 因此,根据状态转移矩阵预测到的下一期隐状态即为当期隐状态。

交易策略

- 隐状态对应含义不确定,且起始状态也不确定,无法直接判断在各个隐状态下应该如何交易。
- 需要借助样本内各个隐状态对应的收益 来判断交易策略。
- 例如,右图中程序可以自动判断在 hidden state 2 应当做多,在 hidden state 0 应当做空。
- 选取2013-2019年的数据做回测
- 交易频率较低,手续费可以忽略不计

急马尔可夫链(HMM)

策略表现

2013-2019年 M=2000 N=5

	ret5	ret I 0	ret20
总收益	9.42%	30.72%	15.40%
胜率	47.65%	55.46%	57.50%
最大回撤	-14.39%	-6.03%	-8.75%
夏普比率	0.31	0.91	0.47

总结与展望

具有稳定的收益 可以用于交易 模型解释能力不足

- · 实证结果表明HMM模型可以被应用于 交易策略的设计
 - 具有较稳定的收益
 - 独创性地应用于商品价差
- 但模型仍存在一些不足:
 - 属于机器学习一类的模型
 - 模型解释力不足
 - 需要非常大量的训练数据

隐马尔可夫链 (HMM)

总结与展望

更多品种的金融资产 配合期权策略 利用时间序列模型

- 由于时间有限,我们的模型还有很多 有待拓展的地方:
 - 配合期权交易策略:

有些隐状态对应于市场震荡,此时卖出 Strangle/Straddle期权组合会有效提高收 益和资金利用率

• 配合时间序列模型:

事实上用GARCH一类的模型来预测平 稳的时间序列很有优势,可以用多个隐 状态同时构建多个GARCH,依据隐状 态来选择时间序列模型。

总结与展望

输入数据的处理 交易策略

- 由于时间有限,我们的模型还有很多 有待拓展的地方:
 - 输入数据:

可以加入机构持仓量

遇到高维数据可以采用PCA方法降维

- 交易策略上:
 - 尝试更多频率
 - 尝试止损止盈

THANKS

APPENDIX

急马尔可夫链(HMM)

另一种交易策略方法

- 利用确定的模型参数 (π,A,B) ,和窗口的观测信号 {Sn} , 求窗口后一天的信号的分布 。
- 直接根据估计的信号制定交易策略。
 - 如估计下一天的信号为上涨[3%,5%],买入股票。

另一种交易策略方法(续)

• 前向概率: $F_n(j) = P(S^n = s^n, X_j)$

 S^n 表示前 n 个信号的随机向量, S^n 表示某个信号向量。

Fn(j) 可以由以下递推得到:

$$F_1(j) = \pi_j \beta_{js_1}, F_n(j) = \beta_{js_n} \sum_i F_{n-1}(i) \alpha_{ij}$$

• 窗口最后一天的隐状态概率分布:

$$P(X_n = j | S^N = s_n) = \frac{P(X_n = j, S^N = s_n)}{P(X_n = j)} = \frac{F_n(j)}{\sum_j F_n(j)}$$

- 预测第n+l天的隐状态分布,取条件于 Xn $P(X_{n+1} = j | s^n) = \sum_i \alpha_{ij} P(X_n = i | s_n)$
- 预测第n+l 天的收益率分布, 取条件于Xn+l
- $P(S_{n+1} = j | s^n) = \sum_i \beta_{ij} P(X_{n+1} = i)$

参数敏感性测试 - 总收益率

多最好的一个隐状态,空最差的一个隐状态

	M=1000	M=2000	M=3000
N=I	7.36%	5.76%	-4.68%
N=5	0.00%	30.72%	21.56%

多最好的两个隐状态,空最差的一个隐状态

	M=1000	M=2000	M=3000	
N=I	1.76%	13.55%	8.39%	
N=5	-9.89%	21.79%	-18.25%	•

隐马尔可夫链(HMM)

HMM程序

```
# 选取全样本前半部分作为训练集,后半部分作为测试集
# 对于可观测序列进行隐马尔科夫链建模

trainX = A[: 3000]

testX = A[3000:]

model = GMMHMM(n_components=6, n_iter=2000).fit(trainX)

hidden_states = model.predict(testX)
```

隐马尔可夫链(HMM)

状态标注作图程序

```
#%% ax0: 样本内的隐状态标注,ax1: 样本内各个隐状态对应的收益曲线
_, axes = plt.subplots(2,1,figsize=(11,12))
for i in range(model.n_components):
    pos = (hidden_states==i)
    axes[0].plot(data.iloc[pos]['close'],'o', label='hidden state %d'%i,lw=2)
    axes[1].plot(data['ret1'].shift(-1).iloc[pos].apply(np.exp).cumprod(),
        label='hidden state %d'%i,lw=2) # 复合收益率

axes[0].legend(); axes[1].legend() # 添加图例
```

隐马尔可夫链(HMM)

ETF实证部分 - 滚动回测

- · 将期货实证部分的策略运用于 ETF序列上,发现HMM模型完 全没有头绪地在进行交易。
- 我们将其归因为数据不平稳。

参考文献

- S. Ross, Introduction to Probability Models
- 朱民等,解密复兴科技:基于隐蔽马尔科夫模型的时序分析方法。
- 中信期货, 隐马尔可夫模型商品期货应用初探
- 兴业证券,股指期货交易策略系列报告之三: 基于隐马尔科夫链的交易策略
- 唐灵儿,基于HMM-GARCH 模型的期权定价研究
- Lawrence R. Rabiner "A tutorial on hidden Markov models and selected applications in speech recognition", Proceedings of the IEEE 77.2, pp. 257-286, 1989.
- Jeff A. Bilmes, "A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models.", 1998.

隐马尔可夫链 (HMM)

成员分工

- 蔡玮钦、王振宇
 - HMM模型部分(数学原理和算法)
- 王奕能
 - 实证部分(程序和回测)