

Johana M. Guevara M.

Instituto de Errores Innatos del Metabolismo

4 nucleótidos

20 aminoácidos

The Nobel Prize in Physiology or Medicine 1968

Photo from the Nobel Foundation archive.

Robert W. Holley

Photo from the Nobel Foundation archive.

Har Gobind Khorana

Photo from the Nobel Foundation archive.

Marshall W. Nirenberg

The Nobel Prize in Chemistry 2009

© The Nobel Foundation. Photo: U. Montan Venkatraman

Ramakrishnan Prize share: 1/3

© The Nobel Foundation. Photo: U. Montan Thomas A. Steitz

Prize share: 1/3

© The Nobel Foundation. Photo: U. Montan

Ada E. Yonath

Prize share: 1/3

"La información contenida en el ARNm se agrupa en paquetes de tres nucleótidos"

• 3 nt **→** 1 a.a

$$4 X 4 X 4 = 64$$

George Gamov (1954)

Marshall Nirenberg y Heinrich Matthaei (1961)

Primera Letra

Código Genético

Segunda Letra

	U		С		Α		G		
	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U
U	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys	С
U	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP	Α
	UUG	Leu	UCG	Ser	UAG	STOP	UGG	Try	G
	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	U
С	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg	С
C	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	Α
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G
	AUU	Iso	ACU	Thr	AAU	Asn	AGU	Ser	U
Α	AUC	Iso	ACC	Thr	AAC	Asn	AGC	Ser	С
~	AUA	Iso	ACA	Thr	AAA	Lys	AGA	Arg	Α
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G
	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	U
G	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly	С
0	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Α
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly	G

@BIOINNOVA

Tercera Letra

Código genético Universal

Código genético degenerado

(Un amino ácido puede ser codificado por más de un codón)

Lectura del código

Segunda Letra

	U		С		Α		G		
	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U
U	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys	С
U	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP	Α
	UUG	Leu	UCG	Ser	UAG	STOP	UGG	Try	G
	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	U
С	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg	С
C	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	Α
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G
	AUU	Iso	ACU	Thr	AAU	Asn	AGU	Ser	U
Α	AUC	Iso	ACC	Thr	AAC	Asn	AGC	Ser	С
A	AUA	Iso	ACA	Thr	AAA	Lys	AGA	Arg	Α
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G
	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	U
G	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly	С
G	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Α
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly	G

Tercera Letra

Primera Letra

@BIOINNOV/

ARNm maduro

Interpretando el código (La maquinaria)

ARNt

Y: Pirimidida R:Purina ^{\$\psi\$}:Pseudouridina

Molécula ARN (73 - 93nt)

Aminoacil-ARNt

Interpretando el código (La maquinaria)

Proteína

RIBOSOMAS

- Complejo catalítico formado por protéinas y ARNr
- Función y diseño conservado en procariotas y eucariotas

Procariota Eucariota 80S **70S** MW 2,500,000 MW 4,200,000 60S **40S 50S** 30S MW 2,800,000 MW 1,600,000 MW 900,000 MW 1,400,000 5S rRNA 28S rRNA 5.8S rRNA 18S rRNA 23S rRNA 16S rRNA 5S rRNA 120 160 120 1900 nucleotides nucleotides 1540 nucleotides 2900 nucleotides nucleotides nucleotides 4700 nucleotides ~33 proteins 34 proteins 21 proteins ~49 proteins

Interpretando el código (La maquinaria)

5'-GCATGCTATATGAAACCATTCATCCTTTAACCC-3'

Primera Letra

5'-GCAUGCUAUAUGAAACCAUUCAUCCUUUAACCC-3'

Tercera Letra

5'-GCATGCTATATGAAACCATTCATCCTTTAACCC-3'

ARNm

Primera Letra

5'-GCAUGCUAUAUGAAACCAUUCAUCCUUUAACCC-3'

Marco de lectura

Segunda Letra

	U		С		Α		G		
	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U
U	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys	С
U	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP	Α
	UUG	Leu	UCG	Ser	UAG	STOP	UGG	Try	G
	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	U
С	CUC	Leu	CCC	Pro	CAC	His	CGC	Arg	С
C	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	Α
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G
	AUU	Iso	ACU	Thr	AAU	Asn	AGU	Ser	U
Α	AUC	Iso	ACC	Thr	AAC	Asn	AGC	Ser	С
	AUA	Iso	ACA	Thr	AAA	Lys	AGA	Arg	Α
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G
	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	U
G	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly	С
G	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Α
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Gly	G

Tercera Letra

@BIOINNOVA

5'-GCATGCTATATGAAACCATTCATCCTTTAACCC-3'

ARNm

Primera Letra

5'-GCAUGCUAUAUGAAACCAUUCAUCCUUUAACCC-3'

MARCO ABIERTO DE LECTURA (ORF)

	U		С		Α		G		
	UUU	Phe	UCU	Ser	UAU	Tyr	UGU	Cys	U
U	UUC	Phe	UCC	Ser	UAC	Tyr	UGC	Cys	С
U	UUA	Leu	UCA	Ser	UAA	STOP	UGA	STOP	Α
	UUG	Leu	UCG	Ser	UAG	STOP	UGG	Try	G
	CUU	Leu	CCU	Pro	CAU	His	CGU	Arg	U
С	CUC	Leu	ccc	Pro	CAC	His	CGC	Arg	С
C	CUA	Leu	CCA	Pro	CAA	Gln	CGA	Arg	Α
	CUG	Leu	CCG	Pro	CAG	Gln	CGG	Arg	G
	AUU	Iso	ACU	Thr	AAU	Asn	AGU	Ser	U
Α	AUC	Iso	ACC	Thr	AAC	Asn	AGC	Ser	С
	AUA	Iso	ACA	Thr	AAA	Lys	AGA	Arg	Α
	AUG	Met	ACG	Thr	AAG	Lys	AGG	Arg	G
	GUU	Val	GCU	Ala	GAU	Asp	GGU	Gly	U
G	GUC	Val	GCC	Ala	GAC	Asp	GGC	Gly	С
G	GUA	Val	GCA	Ala	GAA	Glu	GGA	Gly	Α
	GUG	Val	GCG	Ala	GAG	Glu	GGG	Glv	G

Tercera Letra

El proceso de traducción

ARNt, ribosomas y ARNm Reconocimiento Síntesis Polipéptido Codón Inicio Ensamblaje Terminación Ribosomas-ARNm-**ARNt** Elongación Iniciación

Liberación del péptido,

El proceso de traducción

Reconocimiento Codón Inicio Ensamblaje Ribosomas-ARNm-ARNt

Iniciación

Liberación del péptido, ARNt, ribosomas y ARNm

Síntesis Polipéptido

Elongación

Terminación

INICIACIÓN

- 1. Subunidad menor reconoce el ARNm (Factores de Iniciación)
- 2. Codón inicio (AUG) en el sitio P
- 3. Primer ARNt se une al sitio P
- 4. Ensamblaje subunidad mayor del ribosoma

INICIACIÓN PROCARIOTES

UTR = Untranslated Region RBS = Ribosome Binding Site

INICIACIÓN PROCARIOTES

INICIACIÓN PROCARIOTES

- Reconocimiento secuencia Shine-Dalgarno
- Factores de iniciación (IF1,IF2, IF3) – Complejo pre-iniciación
- 3. Unión subunidad mayor y liberación factores iniciación

INICIACIÓN EUCARIOTES

1. Reconocimiento Cap5'

- Factores de iniciación (elFs) –
 Complejo pre-iniciación
- 3. Unión subunidad mayor y liberación factores iniciación

INICIACIÓN EUCARIOTES

- 1. Reconocimiento Cap5'
- Factores de iniciación (elFs) –
 Complejo pre-iniciación
- 3. Unión subunidad mayor y liberación factores iniciación

INICIACIÓN EUCARIOTES

- 1. Reconocimiento Cap5'
- Factores de iniciación (eIFs) –
 Complejo pre-iniciación
- 3. Unión subunidad mayor y liberación factores iniciación

Nature Reviews | Molecular Cell Biology

Fin Iniciación -> Elongación

https://www.youtube.com/watch?v=YoyFpumWtHo

https://www.youtube.com/watch?v=9OZKLAbLino

Lectura del ARNm = 5' → 3' Síntesis proteína = Amino terminal → carboxilo terminal

ELONGACIÓN

- Nuevo aminoacil-ARNt entra al sitio A
- Se forma el enlace peptídico entre los aminoácidos
- El ribosoma se trasloca dejando el ARNt que carga el péptido en el sitio P y el ARNt libre en el sitio E
- 4. Liberación del ARNt del sitio E y queda libre el sitio A para volver a iniciar

Sitio E: Salida del ARNt Sitio P: ARNt unido al péptido naciente libre (procariotas) Sitio A: Entrada del Met nuevo aminoacil-ARNt Phe AUGAAA

TRADUCCIÓN

https://www.youtube.com/watch?v=9OZKLAbLino

https://www.youtube.com/watch?v=YoyFpumWtHo

Costo energético

https://i.stack.imgur.com/Zsxg0.png

TERMINACIÓN

Tres codones de terminación:

UAG UAA UGA

Etapas

- 1. Liberación del péptido
- Liberación de ARNt, ribosomas y ARNm

Y LOS POLICISTRÓNICOS

Cada cistron dentro de un operon tiene su propio **RBS**

Regulación Traducción

- Bloqueo traducción
 - Unión de proteínas a región no traducida 5' (5'-UTR).
- Estabilidad del mRNA
 - Poliadenilación
- Actividad de factores
 - Regulación actividad de factores de iniciación y elongación

Inhibidores de Traducción (Antibióticos)

Compuesto		Mecanismo de acción
Tetraciclina	Bacteria	Bloquea la unión del Aminoacil-ARNt al sitio A del ribosoma
Estreptomicina	Bacteria	Evita el paso de iniciación a elongación
Cloranfenicol	Bacteria	Bloquea la acción de la peptidil-transferasa
Eritromicina	Bacteria	Se une al canal de salida del péptido en el ribosoma evitando la elongación
Puromicina	Bacteria y eucariotes	Causa liberación temprana del péptido naciente
Ciclohexamida	Eucariotes	Bloquea la translocación
Anisomicina	Eucariotes	Bloquea la acción de la peptidil-transferasa

Para llevar a casa...

TRADUCCIÓN

- ARN → Proteína
- Intervienen ARNm (<u>mensaje</u>), ARNt(<u>traductor</u>), Ribosomas (<u>catalizador</u>)
- Proceso consta de 3 fases (iniciación-elongación y terminación)
- La lectura del ARNm 5' → 3' por tripletas CODONES
- La equivalencia entre tripletas de nucleótidos y aminoácidos se denomina CÓDIGO GENÉTICO

Para llevar a casa...

TRADUCCIÓN

- Intervienen ARNm (<u>mensaje</u>),
 ARNt(<u>traductor</u>), Ribosomas (<u>catalizador</u>),
 Factores proteicos <u>ayudadores</u> (IFs, EFs y TFs)
- La síntesis del péptido N-terminal → C-Terminal
- Fases iniciación-elongación-terminación
- Diferencias procariotas-eucariotas en eventos específicos (iniciación)

Material de Apoyo Recomendado

- Alvarez Rodríguez BA, Gómez Meda BC, Vera Cruz JM. Traducción. 2016.
 En: Salazar Montes A.M., Sandoval Rodríguez A.S., Amendáriz Borunda J.S. Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud. Segunda Edición. Ed. McGraw-Hill Interamericana Editores. https://www.youtube.com/watch?v=90ZKLAbLino
- Karp JI, Wallace M. El dogma central: del DNA al RNA a la proteína. 2019. En: Biología celular y molecular conceptos y experimentos. Octava Edición. McGraw-Hill Interamericana Editores. Capítulos 11.
- Watson JD, Baker TA, Bell SP, Gann A, Levine M, Losick R. 2016.
 Traducción. En: Biología Molecular del Gen. Séptima Edición. Editorial Médica Panamericana. Capítulo 15.
- https://www.youtube.com/watch?v=9OZKLAbLino
- https://www.youtube.com/watch?v=YoyFpumWtHo