MACM 101 Chapter 1.4

Alexander Ng

September 18, 2024

1 Quantifiers

1.1 Universal vs. Existential Quantifiers

- The Universal Quantifier, \forall , reads: $\forall x P(x)$ for all x, P(x) is true
- \bullet The Existential Quantifier \exists
- \bullet *u* is the universal discourse

1.2 The Problem

Free Variables are bad

Bound variables are good

A predicate is a function that maps variables to truth values, allowing one to go beyond atomic propositions.

Quantifiers are things that allow us to bind variables to a domain.

Predicates are not propositions, unless we replace the free variable with a logical constant, or bind it's variables with a quantifier.

Going from a generalization to an instance is called instantiation, which is very important for acting on quantified predicates using the rules of inference and the laws of logic.

1.2.1 P and Q

Let P(x) and Q(x) be open statements defined for **u**. These two statements are logically equivalent, written

$$\forall x [P(x) \Leftrightarrow Q(x)]$$

when $P(a) \leftrightarrow Q(a) \forall a \in \mathbf{u}$.

*State the contrapositive, converse and inverse. (exercise)

 $\forall x P(x) | x \in \mathbb{R} \implies something \text{ how to specify the domain of a quantifier}$

Quantifiers have higher precedence than all logical connectives

Don't mix quantifiers unless they are the same kind

1.2.2 Arguing with Quantified Statements

1. $\exists m \in \mathbb{Z}^+ \forall n \in \mathbb{Z}^+ (m \le n)$

$$2. \ \forall x \in \mathbb{R}^+ \exists y \in R^+ (x \le y)$$