Regularization and cross-validation

How to control the Underfit and Overfit tradeoffs to find the perfect model?

Ans: Regularization in the loss function \rightarrow adds a term $\sum_{j=1}^{d} w^2_{j} \rightarrow$ making weight small \rightarrow for insignificant features

How does Regularization make weights small for insignificant features?

Ans: With the optimization algorithm, \rightarrow minimizes the values of w_i

$$TotalLoss = \min_{w_j} Loss function + \lambda \sum_{j=1}^{d} w_j^2$$

How to control Regularization?

Ans: By using regularization parameter λ :

- since too much regularization → makes the model underfit the data
- Too little regularization → makes the model overfit.

Thus $\Rightarrow \lambda$ becomes hyperparameter \rightarrow on tuning gives the overfit-underfit tradeoff

Is squaring of weights the only way for Regularization?

Ans: No, Regularization is majorly of three types:

- **A. L1 / Lasso Regularization:** Uses the term $\sum\limits_{j=1}^{d}|w_{j}|\to \text{has }\frac{d|w_{j}|}{w_{j}}=0$, when $w_{j}=0\to \text{making the weight vector sparse.}$
- **B.** L2/ Ridge Regularization: Uses the term $\sum_{j=1}^{d} w_j^2 \rightarrow$ have close to 0 values \rightarrow for insignificant features.

C. ElasticNet Regularization: Combination of both L1 and L2 Regularization \rightarrow with λ_1 and λ_2 as regularization parameters respectively.

$$TotalLoss \ = \ \min_{w_j} \ Loss function \ + \ \lambda_1 \sum_{j=1}^d w^2_{\ j} + \lambda_2 \sum_{j=1}^d |w_j|$$

How is data split?

Ans: Training, Validation, and testing dataset.

Why split data into a Validation dataset?

Ans: hyperparameter tuning \rightarrow done only on Validation data \rightarrow test data solely used for evaluating the model on unseen data.

What are the steps for a model building?

Ans: The steps are:

- Train model \rightarrow with some regularization parameter $\lambda \rightarrow$ on training data
- Measure the model performance → with different values of hyperparameters
- → on the Validation dataset
- Pick the hyperparameters of the best-performing model
- Measure the performance of the Best-performing model on Test data.

If the data is too small to have a validation dataset, what to do then? Ans: use k-Fold CV algorithm since:

- splits data into k smaller sets
- for each iteration, the model trained on k-1 folds
- validated on 1 fold
- performance is averaged over all the iterations.

Iteration 1	Test	Train	Train	Train
Iteration 2	Train	Test	Train	Train
Iteration 3	Train	Train	Test	Train
Iteration 4	Train	Train	Train	Test

Note: Though k-fold is a computationally expensive algorithm, it is useful when the dataset is small.