Techniques fondamentales de calcul différentiel et intégral

Fonctions d'une variable réelle à valeurs réelles ou complexes $16 \ {\rm septembre} \ 2022$

Table des matières

1	Gér	néralités sur les fonctions	2
	1.1	Application et/ou fonction	2
	1.2	Fonctions particulières	2
	1.3	Image et antécédent	2
	1.4	Ensemble de définition d'une fonction	3
	1.5	Restriction d'une application	3
	1.6	Composée de deux fonctions	3
2	Cas	des fonctions d'une variable réelle à valeurs réelles ou com-	
	plex	kes	4
	2.1	Représentation graphique d'une fonction à valeurs réelles	4
	2.2	Somme, produit, quotient, composée de fonctions	4
	2.3	Fonctions paires, impaires, périodiques	5
	2.4	Ordre sur l'ensemble des fonctions à valeurs réelles	6
		2.4.1 Ordre sur $\mathbb{R}^{\mathbb{X}}$	6
		2.4.2 Ordre strict sur $\mathbb{R}^{\mathbb{X}}$	7
	2.5	Quelques fonctions particulières	7
	2.6	Les fonctions lipschitziennes	7
	2.7	Majorant, maximum, borne supérieure d'une fonction à valeurs	
		réelles	8
		2.7.1 Majorant, minorant d'une fonction	8
		2.7.2 Maximum, minimum d'une fonction	9
	2.8	Monotonie large et stricte d'une fonction à valeurs réelles	10
3	Bijection et bijection réciproque		
	3.1	Bijection, injection, surjection	10
	3.2	Bijection réciproque	11
	3.3	Propriétés	11
	3.4	Imparité de la réciproque d'une bijection impaire	12
	3.5	Stricte monotonie d'une bijection réciproque d'une bijection stric-	
		tement monotone	12
	3.6	Représentation graphique de la réciproque d'une bijection	12
	3.7	Théorème de la bijection	12
	3.8	Théorème de la bijection réciproque	13

1 Généralités sur les fonctions

Dans la suite, $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C$, $\mathbb X$ une partie non vide de $\mathbb R$

1.1 Application et/ou fonction

DÉFINITION:

Une application est définie par la donnée de 3 élements :

- 1. Un ensemble $\mathbb E$ non vide dit ensemble de départ
- 2. Un ensemble $\mathbb F$ non vide dit ensemble d'arrivée
- 3. Une correspondance qui a tout element de $\mathbb E$ associe un, <u>et un seul,</u> element de $\mathbb F$

DÉFINITION:

Une **fonction** est définie par la donnée de 3 élements :

- 1. Un ensemble $\mathbb E$ non vide dit $ensemble\ de\ d\acute{e}part$
- 2. Un ensemble $\mathbb F$ non vide dit $\mathit{ensemble}$ d'arrivée
- 3. Une correspondance qui a tout element de $\mathbb E$ associé <u>au plus</u> un element de $\mathbb F$

L'ensemble des applications et fonctions de $\mathbb E$ dans $\mathbb F$ se note $\mathbb F^{\mathbb E}$

1.2 Fonctions particulières

- (i) Fonctions nulles : $f: \mathbb{K} \to \mathbb{K}, x \mapsto 0$
- (ii) Fonctions constantes : $\exists a \in \mathbb{K}, f : \mathbb{K} \to \mathbb{K}, x \mapsto a$
- (iii) Fonctions affines: $\exists (a,b) \in \mathbb{K}^2, f : \mathbb{K} \to \mathbb{K}, x \mapsto ax + b$
- (iv) Fonctions homographiques :

$$\exists (a,b,c,d) \in \mathbb{K}^4 \left\{ \begin{array}{l} c \neq 0 \\ ad-bc \neq 0 \end{array} \right. , \ f: \mathbb{K} - \left\{ \frac{-c}{d} \right\} \rightarrow \mathbb{K}, \ x \mapsto \frac{ax+b}{cx+d}$$

(v) Fonctions polynomiales:

$$P \in \mathbb{K}[X], \ f : \mathbb{K} \to \mathbb{K}, \ x \mapsto P(x) = \sum_{k=0}^{n} a_k x^k$$

(vi) Fonctions rationnelles:

$$P, Q \in \mathbb{K}[X], \ f : \mathbb{K} \to \mathbb{K}, \ x \mapsto \frac{P(x)}{Q(x)}$$

1.3 Image et antécédent

DÉFINITION:

Soit $\mathbb E$ et $\mathbb F$ deux ensembles non vides, f une application de $\mathbb F$

Soit x un element de $\mathbb E,$ la correspondance associée à f associe à x un, et un seul, élement de $\mathbb F$ appelée $\mathbf image$ de f

Soit $y \in \mathbb{F}$, on appelle <u>antécédent</u> de y par f, tout element dont l'image par f est y

1.4 Ensemble de définition d'une fonction

On appelle <u>ensemble de définition</u> de f l'ensemble des elements de \mathbb{E} qui ont une image dans \mathbb{F} par f, il est noté \mathcal{D}_f

DÉFINITION:

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides et $f: \mathbb{E} \to \mathbb{F}$ On appelle **graphe de** f l'ensemble

$$\{(x, f(x)), x \in \mathcal{D}_f\}$$

1.5 Restriction d'une application

Remarque:

Deux applications (ou fonctions) sont égales si et seulement si elles ont :

- un même ensemble de départ
- un même ensemble d'arrivée
- une même correspondance

DÉFINITION:

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides, $f:\mathbb{E}\to\mathbb{F},\,\mathbb{E}_1$ une partie non vide de \mathbb{E}

On appelle <u>restriction</u> de f à \mathbb{E}_1 la fonction notée $f_{|\mathbb{E}_1}:\mathbb{E}_1\to\mathbb{F}$ définie par

$$\forall x \in \mathbb{E}_1, \ f_{\mid \mathbb{E}_1}(x) = f(x)$$

1.6 Composée de deux fonctions

DÉFINITION:

Soit \mathbb{E} , \mathbb{F} , \mathbb{G} trois ensembles non vides, $f: \mathbb{E} \to \mathbb{F}$, $g: \mathbb{F} \to \mathbb{G}$ Nous pouvons définir une application de \mathbb{E} dans \mathbb{G} définie par

$$\forall x \in \mathbb{E}, \ (g \circ f)(x) = g(f(x))$$

DÉFINITION:

Soit $\mathbb E$ un ensemble non vide, nous pouvons définir <u>application identité</u> de $\mathbb E$ notée $id_{\mathbb E}$ par :

$$\forall x \in \mathbb{E}, id_{\mathbb{E}}(x) = x$$

Propriété:

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides, $f: \mathbb{E} \to \mathbb{F}$, alors :

$$\begin{cases} f \circ id_{\mathbb{E}} = f \\ id_{\mathbb{F}} \circ f = f \end{cases}$$

2 Cas des fonctions d'une variable réelle à valeurs réelles ou complexes

2.1 Représentation graphique d'une fonction à valeurs réelles

Soit f une fonction de $\mathbb X$ dans $\mathbb R.$ Nous munissons le plan usuel d'un repère orthonormé $(O,\overrightarrow{i},\overrightarrow{j})$

La représentation se note souvent C_f

2.2 Somme, produit, quotient, composée de fonctions

(i) Somme : Soit $f, g: \mathbb{X} \to \mathbb{K}$:

$$f + q : \mathbb{X} \to \mathbb{K}$$

$$\forall x \in \mathbb{X}, (f+g)(x) = f(x) + g(x)$$

(ii) Produit : Soit $f, g: \mathbb{X} \to \mathbb{K}$:

$$f \times q : \mathbb{X} \to \mathbb{K}$$

$$\forall x \in \mathbb{X}, \ (f \times g)(x) = f(x) \times g(x)$$

(iii) Produit par un réel : Soit $\lambda \in \mathbb{K}$:

$$\lambda \cdot f : \mathbb{X} \to \mathbb{K}$$

$$\forall x \in \mathbb{X}, \ (\lambda \cdot f)(x) = \lambda \times f(x)$$

(iv) Quotient : Soit $f, g: \mathbb{X} \to \mathbb{K}$ telles que nous pouvons définir la fonction quotient $\frac{f}{g}$ par :

$$\forall x \in \mathbb{X}, \ \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

(v) Composition de fonctions : Soit \mathbb{Y} une partie non vide de \mathbb{R} , $f: \mathbb{X} \to \mathbb{R}$, $g: \mathbb{Y} \to \mathbb{R}$ telles que :

$$\forall x \in \mathbb{X}, \ f(x) \in \mathbb{Y} \text{ ou } f(\mathbb{X}) \subset \mathbb{Y}$$

Nous pouvons définir la composée $(g \circ f)$ par :

$$\forall x \in \mathbb{X}, \ (g \circ f)(x) = g(f(x))$$

Propriété:

Le groupe commutatif $(\mathbb{K}^{\mathbb{X}}, +)$:

— L'addition est une loi de composition interne dans $\mathbb{K}^{\mathbb{X}}$, c'est-à-dire :

$$\forall f \in \mathbb{K}^{\mathbb{X}}, \ \forall g \in \mathbb{K}^{\mathbb{X}}, \ f + g \in \mathbb{K}^{\mathbb{X}}$$

— L'addition est <u>associative</u> dans $\mathbb{K}^{\mathbb{X}}$, c'est-à-dire :

$$\forall (f,g,h) \in (\mathbb{K}^3), \ f + (g+h) = (f+g) + h$$

- L'addition admet <u>un élement neutre</u> dans $\mathbb{K}^{\mathbb{X}}$
- Toute fonction $f: \mathbb{X} \to \mathbb{K}$ est <u>symétrisable</u> pour l'addition dans $\mathbb{K}^{\mathbb{X}}$, c'est-à-dire :

$$\forall f \in \mathbb{K}^{\mathbb{X}}, \ \exists g: \mathbb{X} \to \mathbb{K}, \ \text{tel que} \ f+g=g+f=0$$

Ces quatres points se résument en disant que ($\mathbb{K}^{\mathbb{X}}$, +) est un **groupe**

— L'addition est commutative dans $\mathbb{K}^{\mathbb{X}}$, c'est-à-dire :

$$\forall (f,g) \in (\mathbb{K}^{\mathbb{X}})^2, \ f+g=g+f$$

Ce dernier point permet d'ajouter que $\left(\mathbb{K}^{\mathbb{X}},\;+\right)$ est un \mathbf{groupe} $\mathbf{commutatif}$

L'anneau commutatif $(\mathbb{K}^{\mathbb{X}}, +, \times)$:

De plus, la multiplication est distributive par rapport à l'addition dans $\mathbb{K}^{\mathbb{X}}$ c'est-à-dire :

$$\forall (f, g, h) \in (\mathbb{K}^3),$$

$$\begin{cases} (f+g) \times h = (f \times h) + (g \times h) \\ f \times (g+h) = (f \times g) + (f \times h) \end{cases}$$

2.3 Fonctions paires, impaires, périodiques

DÉFINITION:

Soit $f: \mathbb{X} \to \mathbb{K}$

(i) On dit que f est **paire** $\underline{\text{si et seulement si}}$:

$$\left\{ \begin{array}{l} \forall x \in \mathbb{X}, \ -x \in \mathbb{X} \\ \forall x \in \mathbb{X}, \ f(-x) = f(x) \end{array} \right.$$

(ii) On dit que f est $\underline{\mathbf{impaire}}$ $\underline{\mathbf{si}}$ et seulement $\underline{\mathbf{si}}$:

$$\left\{ \begin{array}{l} \forall x \in \mathbb{X}, \ -x \in \mathbb{X} \\ \forall x \in \mathbb{X}, f(-x) = -f(x) \end{array} \right.$$

Propriété:

Soit \mathbb{Y} une partie non vide de \mathbb{R} , $f: \mathbb{X} \to \mathbb{R}$, $g: \mathbb{Y} \to \mathbb{K}$ tel que $f(x) \subset \mathbb{Y}$

- (i) en supposant f paire, alors $g \circ f$ est paire
- (ii) en supposant f et g impaires, alors $g\circ f$ est impaire
- (iii) en supposant f impaire et g paire alors $g \circ f$ est paire

DÉFINITION:

Soit $f: \mathbb{X} \to \mathbb{K}, T \in \mathbb{R}_+^*$

On dit que f est **périodique** de période T <u>si et seulement si</u> :

$$\left\{ \begin{array}{l} \forall x \in \mathbb{X}, \ \forall k \in \mathbb{Z}, \ x + kT \in \mathbb{X} \\ \forall x \in \mathbb{X}, f(x+T) = f(x) \end{array} \right.$$

2.4 Ordre sur l'ensemble des fonctions à valeurs réelles

2.4.1 Ordre sur $\mathbb{R}^{\mathbb{X}}$

DÉFINITION:

Soit $f, g : \mathbb{X} \to \mathbb{R}$, alors :

$$f \leq g \iff \forall x \in \mathbb{X}, \ f(x) \leq g(x)$$

Propriété :

- (i) Soit $f: \mathbb{X} \to \mathbb{R}$, alors $f \leq f$ On dit que \leq est **reflexive** dans $\mathbb{R}^{\mathbb{X}}$
- (ii) Soit $f, g : \mathbb{X} \to \mathbb{R}$, alors :

$$\left\{\begin{array}{ll} f \leq g \\ g \leq f \end{array} \iff f = g\right.$$

On dit que \leq est **anti-symétrique** sur $\mathbb{R}^{\mathbb{X}}$

(iii) Soit $f, g, h : \mathbb{X} \to \mathbb{R}$ alors :

$$\left. \begin{array}{c} f \leq g \\ g \leq h \end{array} \right\} \implies f \leq h$$

On dit que \leq est **transitif** sur $\mathbb{R}^{\mathbb{X}}$

(iv) Ces 3 points se résument en disant que \leq est une $\underline{\bf relation\ d'ordre}$ sur ${\mathbb R}^{\mathbb X}$

Remarque:

Nous avons cependant une différence entre la relation $\le \sup \mathbb{R}$ et la relation $\le \sup \mathbb{R}^{\mathbb{X}}$

- (i) Soit 2 réels a et b, soit $(a \le b)$ soit $(b \le a)$ La relation est dite **totale**
- (ii) Soit 2 fonctions $f,g: \mathbb{X} \to \mathbb{R}$, on a pas forcément $f \leq g$ ou $f \geq g$ La relation \leq est dite **partielle** sur $\mathbb{R}^{\mathbb{X}}$
- (iii) Etant donné x réel, la discussion $x \leq 0$ et $x \geq 0$ est exhaustive. Et du fait de l'ordre partiel sur $\mathbb{R}^{\mathbb{X}}$, étant donné $f: \mathbb{X} \to \mathbb{R}$ la discussion $f \leq 0$ et $f \geq 0$ ne traite pas tous les cas

2.4.2 Ordre strict sur $\mathbb{R}^{\mathbb{X}}$

DÉFINITION:

Soit $f, g: \mathbb{X} \to \mathbb{R}$, alors

$$f < g \iff \forall x \in \mathbb{X}, \ f(x) < g(x)$$

2.5 Quelques fonctions particulières

(i) Soit $f: \mathbb{X} \to \mathbb{R}$, nous définissions les fonctions :

$$|f|: \mathbb{X} \to \mathbb{R}, \ x \mapsto (|f|)(x) = |f(x)|$$

$$f^+: \mathbb{X} \to \mathbb{R}, \ x \mapsto f^+(x) = \begin{cases} f(x) \text{ si } f(x) \ge 0\\ 0 \text{ sinon} \end{cases}$$

$$f^-: \mathbb{X} \to \mathbb{R}, \ x \mapsto f^-(x) = \begin{cases} -f(x) \text{ si } f(x) \le 0\\ 0 \text{ sinon} \end{cases}$$

(ii) Soit $f, g: \mathbb{X} \to \mathbb{R}$

$$max(f,g): \mathbb{X} \to \mathbb{R}, \ x \mapsto max(f(x),g(x))$$

$$\min(f,g): \mathbb{X} \to \mathbb{R}, \ x \mapsto \min(f(x),g(x))$$

Alors $\max(f,g) \geq f \geq \min(f,g)$ et

$$max(f,g) + min(f,g) = f + g$$

$$max(f,g) + min(f,g) = |f - g|$$

Donc
$$max(f,g) = \frac{f+g+|f-g|}{2}$$
 et $min(f,g) = \frac{f+g-|f-g|}{2}$

2.6 Les fonctions lipschitziennes

DÉFINITION:

Soit $f: \mathbb{X}: \mathbb{K}, k \in \mathbb{R}_+$, on dit que f est <u>lipschitzienne</u> sur \mathbb{X} de rapport k si et seulement si :

$$\forall (x_1, x_2) \in \mathbb{X}^2, |f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

REMARQUE:

Soit $k \in \mathbb{R}_+, \ f: \mathbb{X} \to \mathbb{R}, \ k$ -lipschitzienne sur $\mathbb{X},$ alors :

$$\left| \frac{f(x_1) - f(x_2)}{x_1 - x_2} \right| \le k$$

Propriété:

Soit $k, l \in \mathbb{R}^+, f, g : \mathbb{X} \to \mathbb{K}$ tel que :

$$\begin{cases} f \text{ est } k\text{-lipschitzienne sur } \mathbb{X} \\ g \text{ est } l\text{-lipschitzienne sur } \mathbb{X} \end{cases}$$

- (i) Alors f+g est (k+l)-lipschitzienne sur $\mathbb X$
- (ii) Soit $\lambda \in \mathbb{K},$ alors $\lambda \cdot f$ est $|\lambda| k$ -lipschitzienne sur \mathbb{X}
- (iii) Soit \mathbb{X}_1 une partie non vide de \mathbb{X} alors $f_{|\mathbb{X}_1}$

DÉFINITION:

Soit $f: \mathbb{X} \to \mathbb{K}$:

On dit que f est <u>contractante</u> sur \mathbb{X} <u>si et seulement si</u> il existe $k \in [0; 1[$ tel que f soit k-litschitzienne sur \mathbb{X} , c'est à dire :

$$\exists k \in [0; 1[, \forall (x_1, x_2) \in \mathbb{X}^2, |f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

2.7 Majorant, maximum, borne supérieure d'une fonction à valeurs réelles

2.7.1 Majorant, minorant d'une fonction

DÉFINITION:

(i) On appelle **majorant** de f sur \mathbb{X} , tout réel M tel que :

$$\forall x \in \mathbb{X}, \ f(x) \leq M$$

(ii) On appelle $\underline{\mathbf{minorant}}$ de f sur $\mathbb{X},$ tout réel m tel que :

$$\forall x \in \mathbb{X}, \ m \le f(x)$$

DÉFINITION:

Soit $f: \mathbb{X} \to \mathbb{R}$

(i) On dit que f est <u>majorée</u> sur \mathbb{X} <u>si et seulement si</u> f admet un majorant sur \mathbb{X} , c'est à dire :

$$(\exists M \in \mathbb{R})(\forall x \in \mathbb{X})(f(x) \le M)$$

(ii) On dit que f est <u>manorée</u> sur \mathbb{X} <u>si et seulement si</u> f admet un minorant sur \mathbb{X} , c'est à dire :

$$(\exists m \in \mathbb{R})(\forall x \in \mathbb{X})(f(x) \ge m)$$

(iii) On dit que f est **bornée** sur \mathbb{X} si et seulement si f est majorée et minorée sur \mathbb{X} , c'est à dire :

$$\exists (m, M) \in \mathbb{R}^2, \ \forall x \in \mathbb{X}, \ m \le f(x) \le M$$

2.7.2 Maximum, minimum d'une fonction

DÉFINITION:

Soit $f: \mathbb{X} \to \mathbb{R}$, a un point de \mathbb{X}

(i) On dit que f présente un $\underline{\mathbf{maximum}}$ en a $\underline{\mathbf{si}}$ et seulement $\underline{\mathbf{si}}$:

$$\forall x \in \mathbb{X}, \ f(x) \le f(a)$$

(ii) On dit que f présente un $\underline{\mathbf{minimum}}$ en a $\underline{\mathbf{si}}$ et seulement $\underline{\mathbf{si}}$:

$$\forall x \in \mathbb{X}, \ f(x) \ge f(a)$$

(iii) On dit que f présente un <u>extremum</u> en en a <u>si et seulement si</u> f présente un maximum ou un minimum en a

DÉFINITION:

Soit $f: \mathbb{X} \to \mathbb{R}$, a un point de \mathbb{X} en lequel f présente un maximum, alors :

- (i) f(a) est un **majorant** de f sur X
- (ii) f(a) est appellée le maximum de f sur $\mathbb X$ et se note $\max_{x\in\mathbb X}f$ ou $\max_{x\in\mathbb X}f(x)$

DÉFINITION:

Soit $f: \mathbb{X} \to \mathbb{R}$, a un point de \mathbb{X} en lequel f présente un minimum, alors :

- (i) f(a) est un **minorant** de f sur X
- (ii) f(a) est appellée le minimum de f sur $\mathbb X$ et se note $\min_{\mathbb X} f$ ou $\min_{x \in \mathbb X} f(x)$

2.8 Monotonie large et stricte d'une fonction à valeurs réelles

Définition:

Soit $f: \mathbb{X} \to \mathbb{R}$

(i) On dit que f est **croissante** sur \mathbb{X} si et seulement si :

$$\forall (x_1, x_2) \in \mathbb{X}^2, \ x_1 \le x_2 \implies f(x_1) \le f(x_2)$$

(ii) On dit que f est $\underline{\mathbf{d\acute{e}croissante}}$ sur $\mathbb X$ $\underline{\mathrm{si}}$ et seulement $\underline{\mathrm{si}}$:

$$\forall (x_1, x_2) \in \mathbb{X}^2, \ x_1 \le x_2 \implies f(x_1) \ge f(x_2)$$

(iii) On dit que f est $\underline{\bf monotone}$ sur $\mathbb X$ si et seulement si f est croissante ou décroissante sur $\mathbb X$

Définition:

Soit $f: \mathbb{X} \to \mathbb{R}$

(i) On dit que f est **strictement croissante** sur $\mathbb X$ si et seulement si :

$$\forall (x_1, x_2) \in \mathbb{X}^2, \ x_1 < x_2 \implies f(x_1) < f(x_2)$$

(ii) On dit que f est <u>strictement décroissante</u> sur $\mathbb X$ <u>si et seulement si</u> :

$$\forall (x_1, x_2) \in \mathbb{X}^2, \ x_1 < x_2 \implies f(x_1) > f(x_2)$$

(iii) On dit que f est <u>strictement monotone</u> sur $\mathbb X$ <u>si et seulement si</u> f est strictement croissante ou strictement décroissante sur $\mathbb X$

3 Bijection et bijection réciproque

3.1 Bijection, injection, surjection

DÉFINITION:

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides, $f: \mathbb{E} \to \mathbb{F}$

(i) On dit que f est **bijective** si et seulement si tout element de $\mathbb F$ admet un unique antécédent par f dans $\mathbb E$, c'est à dire :

$$\forall y \in \mathbb{F}, \ \exists ! x \in \mathbb{E}, \ y = f(x)$$

(ii) On dit que f est surjective si et seulement si tout element de \mathbb{F} admet au moins un antécédent par f dans \mathbb{E} , c'est à dire :

$$\forall y \in \mathbb{F}, \ \exists x \in \mathbb{E}, \ y = f(x)$$

(iii) On dit que f est **injective** si et seulement si tout element de \mathbb{F} admet au plus un antécédent par f dans \mathbb{E} , c'est à dire :

$$(\forall y \in \mathbb{F}) \left(\exists (x_1, x_2) \in \mathbb{E}^2, \; \left\{ \begin{array}{l} y = f(x_1) \\ y = f(x_2) \end{array} \right) \implies (y = f(x))$$

Bijection réciproque 3.2

DÉFINITION:

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides, f une bijection de \mathbb{E} dans \mathbb{F} alors la correspondance qui a tout element de $\mathbb F$ associe son unique antécédent dans \mathbb{E} nous défini une application de \mathbb{E} dans \mathbb{F} notée f^{-1} appelée bijection réciproque de \boldsymbol{f}

$$\forall x \in \mathbb{E}, \ y \in \mathbb{F}, \ x = f^{-1}(y) \iff y = f(x)$$

Propriété:

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides, $f: \mathbb{E} \to \mathbb{F}$, alors :

$$f^{-1} \circ f = id_{\mathbb{E}}, \ f \circ f^{-1} = id_{\mathbb{F}}$$

3.3 **Propriétés**

Propriété

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides, $f: \mathbb{E} \to \mathbb{F}$ bijective, alors $f^{-1}: \mathbb{F} \to \mathbb{E}$ est bijective et $(f^{-1})^{-1} = f$

Propriété

Soit \mathbb{E} , \mathbb{F} , \mathbb{G} trois ensembles non vides, f une bijective de \mathbb{E} dans \mathbb{F} , g une bijective de $\mathbb F$ dans $\mathbb G$

Alors $g \circ f$ réalise une bijection de $\mathbb E$ dans $\mathbb G$ et $(g \circ f) = f^{-1} \circ g^{-1}$

Propriété

Soit \mathbb{E} , \mathbb{F} deux ensembles non vides, $f:\mathbb{E}\to\mathbb{F}$. Les assertions suivantes sont equivalentes

$$\begin{cases} g \circ f = id_{\mathbb{E}} \\ f \circ g = id_{\mathbb{F}} \end{cases}$$

3.4 Imparité de la réciproque d'une bijection impaire

Propriété:

Soit $\mathbb {Y}$ une partie non vide de $\mathbb {R},\, f:\mathbb {X}\to \mathbb {Y}$ bijective et impaire Alors f^{-1} impaire

3.5 Stricte monotonie d'une bijection réciproque d'une bijection strictement monotone

Propriété:

Soit $\mathbb {Y}$ une partie non vide de $\mathbb {R},$ alors $f:\mathbb {X}\to \mathbb {Y}$ bijective et strictement monotone sur $\mathbb {X}$

Alors, f' est strictement monotone sur $\mathbb Y$ et de même sens de variation

3.6 Représentation graphique de la réciproque d'une bijection

 $\mathcal{C}_{f^{-1}}$ est le symétrique de \mathcal{C}_f par rapport à la droite d'équation y=x

3.7 Théorème de la bijection

THÉORÈME

Théorème de la bijection:

Soit $\mathbb I$ un intervalle de $\mathbb R$ contenant au moins 2 points différents, $f:\mathbb I\to\mathbb R$ continue sur $\mathbb I$ et strictement monotone sur $\mathbb I$

Alors $\mathbb{J}=f(\mathbb{I})$ est un intervalle de \mathbb{R} et f réalise une bijection de \mathbb{I} dans \mathbb{J} :

$$\forall y \in \mathbb{J}, \ \exists! x \in \mathbb{I}, \ y = f(x)$$

REMARQUE

Soit $f: \mathbb{I} \to \mathbb{R}$, continue et strictement monotone sur \mathbb{I}

- (i) La continuité de f assure le fait que $\mathbb J$ soit un intervalle de $\mathbb R$
- (ii) le fait de considérer f all ant de $\mathbb I$ dans $\mathbb J=f(\mathbb I)$ assure la surjectivité de f
- (iii) La stricte monotonie de f sur $\mathbb I$ assure l'injectivité de f

Remarque:

$$\left.\begin{array}{l} f \text{ continue sur } \mathbb{I} \\ f \text{ strictement monotone} \\ \mathbb{J} = f(\mathbb{I}) \end{array}\right\} \implies f \text{ r\'ealise une bijection de } \mathbb{I} \text{ dans } \mathbb{J}$$

Les conditions sont <u>suffisantes</u> pour amener la conclusion

THÉORÈME:

Théorème des valeurs intermédiaires

Soit I un intervalle de \mathbb{R} contenant au moins deux 2 points distincts, $f: \mathbb{I} \to \mathbb{R}$ continue sur \mathbb{I} , $a,b \in \mathbb{I}$ Alors, pour tout réel d compris entre f(a) et f(b), il existe un réel c

compris entre a et b tel que d = f(c)

3.8 Théorème de la bijection réciproque

THÉORÈME:

Théorème de la bijection réciproque

Soit I un intervalle de R contenant au moins deux 2 points distincts et fréalise une bijection de $\mathbb I$ dans $\mathbb J$

- (i) Alors J = f(I)
 (ii) f⁻¹ est une bijection de J dans I
 si f est impaire, alors f⁻¹
 f⁻¹ est strictement monotone sur J et de même sens de variation que f sur I
 C_f et C_{f⁻¹} sont symétriques par rapport à la droite d'équation y = x
 Soit a un point de I ou une extrémité éventuellement infinie de I, b

 - un point de $\mathbb J$ ou une extrémité eventuellement infinie tel que :

$$f(x) \underset{x \to a}{\longrightarrow} b \text{ alors, } f^{-1}(y) \underset{y \to b}{\longrightarrow} a$$

— f^{-1} est continue sur \mathbb{J}

Théorème:

Soit I un intervalle de \mathbb{R} contenant au moins 2 points distincts $f: \mathbb{I} \to \mathbb{R}$ dérivable sur $\mathbb I$ est strictement monotone sur $\mathbb I$, alors :

- (i) $\mathbb{J}=f(\mathbb{I})$ est une inervalle de \mathbb{R} contenant au moins deux points distincts et f réalise une bijection de \mathbb{I} dans \mathbb{J} (ii) f^{-1} est dérivable sur tout point $y_0\in\mathbb{J}$ tel que $f'\left(f^{-1}(y_0)\right)\neq 0$: $(f^{-1})(y_0)=\frac{1}{f'\left(f^{-1}(y_0)\right)}$

$$(f^{-1})(y_0) = \frac{1}{f'(f^{-1}(y_0))}$$

Remarque:

Avec les notations du théorème, dans le cas où f' ne s'annule pas sur \mathbb{I} , alors $\forall y \in \mathbb{J}, \ f'\left(f^{-1}(0)\right) \implies f^{-1}$ dérivable sur \mathbb{J}