23. FULL ADDER

EXP.NO: 23

AIM: To design and implement the full adder using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 3 inputs into the canvas.
- 3) Connect the inputs to the XOR gate, AND gate and OR gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inputs			Outputs	
Α	В	Cin	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $Sum=(A \oplus B) \oplus Cin$

Carry=A.B+ (A ⊕B)

Logical Diagram:

Full adder using NAND Gates:

Full adder using NOR Gates:

OUTPUT

RESULT: Thus full adder has been designed and implemented successfully using logisim simulator.