ALGEBRAIC GELFAND COMPACTNESS

FRANK MURPHY-HERNANDEZ

Abstract.

Introduction

In this paper the rings are associative but we do not ask them to have unit.

1. Preliminaries

[2]

If A and B are commutative C^* -algebras, and $f: A \longrightarrow B$ is an *-algebra morphism such that the linear span of $\{f(a)b \mid a \in A, b \in B\}$ is dense in B, then f is called non-degenerate We denote by C^* the category of commutative C^* -algebras and non-degenerate morphisms.

If X and Y are topological spaces and $\alpha\colon X\longrightarrow Y$ is a continuous map such that the inverse image of compact subsets of Y are compact subsets of X, then we call α a proper map. We denote by $\mathcal T$ the category of Hausdorff locally compact topological spaces and proper continuous maps. If $\alpha\colon X\longrightarrow \mathbb C$ is a continuous map such that for every $\epsilon>0$ there is K_ϵ compact subset of X with $|\alpha(x)|<\epsilon$ for all $x\in X\setminus K_\epsilon$, then we say that α vanishes at infinity.

Proposition 1.1 (Non-unital Gelfand Duality). There is an equivalence of categories: $\mathcal{T}^{op} \cong \mathcal{C}^*$.

[1]

2. Rings with local units

Definition 2.1. Let R be a ring. We say that R is a ring with local units, if for any finitely many $x_1, \ldots, x_n \in R$ there is an idempotent $e \in R$ with $a_1, \ldots, a_n \in eRe$.

3. Rings with local units

Definition 3.1. Let R be a ring. We say that R has enough idempotents, if there exists a family $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ of pairwise orthogonal idempotents of elements in R with $R=\bigoplus_{{\lambda}\in\Lambda}Re_{\lambda}=\bigoplus_{{\lambda}\in\Lambda}e_{\lambda}R$. In this case $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ is called a complete family of idempotents in R.

4. Rings with local units

Definition 4.1. Let R be a ring. We say that R is a s-unital ring, if for any finitely many $x_1, \ldots, x_n \in R$ there is $y \in R$ with $x_i y = x_i = y x_i$ for $i = 1, \ldots, n$.

Date: October 15, 2019.

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \text{Primary ****},\ ****; \ \text{Secondary ****},\ ****.$

Key words and phrases. "

5. Rings with local units

Definition 5.1. Let R be a ring. We say that R is a firm ring, if the canonical morphism $\mu \colon R \otimes_R R \longrightarrow R$ given by $\mu(r \otimes s) = rs$ is an isomorphism.

6. Rings with local units

Definition 6.1. Let R be a ring. We say that R is idempotent, if $R^2 = R$, that is, that for any $x \in R$ there are $x_1, \ldots, x_n, y_1, \ldots, y_n \in R$ such that $x = \sum_{i=1}^n x_i y_i$.

7. Compact Dimension

Definition 7.1. Let A be a commutative C^* -algebra, and $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ a directed family of self adjoint elements of A. We say that $\{e_{\lambda}\}_{{\lambda}\in\Lambda}$ is an approximate identity, if $xe_{\lambda} \to x$, for all $x \in A$.

It is well know that any commutative C^* -algebra has an approximate identity. In fact there is a canonical approximate identity given by the family of all positive self adjoint elements with norm less or equal than one with its natural order.

Definition 7.2. Let A be a commutative C^* -algebra. We define the compact dimension of A as the least cardinality of an approximate unit of A. We denote this cardinal by $\dim_{C}(A)$

As any commutative C^* -algebra has an approximate identity, the compact dimension is well defined. Also we have that a commutative C^* -algebra has unit if and only if $dim_C(A) = 1$.

Proposition 7.1. Let A be non-unital commutative C^* -algebra. Then $dim_C(A)$ is a limit cardinal.

Proof. \Box

References

- [1] Gerald J Murphy. C^* -algebras and operator theory. Academic press, 2014.
- [2] Robert Wisbauer. Foundations of module and ring theory. Routledge, 2018.

FACULTAD DE CIENCIAS, UNAM, MEXICO CITY Email address: murphy@ciencias.unam.mx