Álgebra Lineal - Clase 12

Gabriela Jeronimo

FCEN-UBA

Segundo cuatrimestre 2020

Esquema de la clase

- Transformaciones lineales y matrices diagonalizables.
- Autovalores y autovectores.
- Semejanza.

Bibliografía recomendada.

G. Jeronimo, J. Sabia, S. Tesauri. *Algebra Lineal*. Cursos de Grado. Fascículo 2. Departamento de Matemática, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 2008.

Capítulo 6 (Sección 6.1).

Transformaciones lineales diagonalizables

Sea V un K-e.v. de dimensión n y sea $f:V\to V$ una transformación lineal (endomorfismo de V).

$$B = \{v_1, \dots, v_n\}$$
 base de $V \leadsto |f|_B \in K^{n \times n}$
 $\forall v \in V, (f(v))_B = |f|_B(v)_B$

Si $|f|_B$ es "simple", es "fácil" calcular f(v).

Por ejemplo, si
$$|f|_B = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$$

$$(v)_B = (a_1, \ldots, a_n) \Rightarrow (f(v))_B = (\lambda_1 a_1, \ldots, \lambda_n a_n).$$

Definición.

Se dice que f es diagonalizable si existe una base B de V tal que $|f|_B$ es diagonal.

Si $B = \{v_1, \ldots, v_n\}$ es una base de V tal que

$$|f|_{B} = \begin{pmatrix} \lambda_{1} & 0 & \dots & 0 \\ 0 & \lambda_{2} & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_{n} \end{pmatrix}, \text{ entonces } f(v_{i}) = \lambda_{i}v_{i} \ \forall 1 \leq i \leq n.$$

Recíprocamente, si $B = \{v_1, \ldots, v_n\}$ es una base de V tal que $f(v_i) = \lambda_i v_i$ con $\lambda_i \in K \ \forall 1 \leq i \leq n$, $|f|_B$ es diagonal como arriba.

Definición.

Sean V un K-e.v. y $f:V\to V$ una t.l.. Se dice que $v\in V$, $v\neq 0$, es un autovector de f si existe $\lambda\in K$ tal que $f(v)=\lambda.v$. $\lambda\in K$ se llama un autovalor de f. Decimos que v es un autovector asociado al autovalor λ .

Decimos que v es un autovector asociado ar auto

Proposición.

Sea V un K-e.v. de dimensión n y sea $f:V\to V$ una t.l. f es diagonalizable $\iff \exists \ B$ base de V formada por autovectores de f.

Matrices diagonalizables

 $A \in K^{n \times n} \leadsto f_A : K^n \to K^n$, $f_A(x) = A.x$ transformación lineal tal que $|f_A|_E = A$ $v \in K^n$, $v \neq 0$, es un autovector de f_A de autovalor λ si y sólo si $A.v = \lambda.v$.

Definición.

Se dice que $v \in K^n$, $v \neq 0$, es un autovector de $A \in K^{n \times n}$ si existe $\lambda \in K$ tal que $A \cdot v = \lambda \cdot v$.

 $\lambda \in K$ se llama un autovalor de A.

$$B = \{v_1, \dots, v_n\}$$
 base de K^n formada por autovectores de A
 $\Rightarrow A = |f_A|_E = C(B, E)|f_A|_BC(E, B) = C. D. C^{-1}$
con $C = C(B, E) \in GL(n, K)$ y $D \in K^{n \times n}$ diagonal.

Definición.

Una matriz $A \in K^{n \times n}$ se dice diagonalizable si existe una matriz $C \in GL(n, K)$ tal que $C^{-1}.A.C$ es una matriz diagonal.

Proposición.

 $A \in K^{n \times n}$ es diagonalizable $\iff \exists B$ base de K^n formada por autovectores de A.

Ejemplo.

Decidir si
$$A = \begin{pmatrix} 2 & 3 \\ 2 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$
 es diagonalizable.

Buscamos autovectores de A, es decir, vectores $x=(x_1,x_2) \in \mathbb{R}^2$ tales que $x \neq (0,0)$ y $A.x = \lambda.x$.

$$A.x = \lambda.x \iff (\lambda I_2 - A).x = 0$$

$$\iff \begin{pmatrix} \lambda - 2 & -3 \\ -2 & \lambda - 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Este sistema homogéneo tiene solución no trivial \iff $\det \begin{pmatrix} \lambda-2 & -3 \\ -2 & \lambda-1 \end{pmatrix} = 0 \iff \lambda^2-3\lambda-4=0.$ \Rightarrow los autovalores de A son $\lambda=-1$ y $\lambda=4$.

Buscamos los autovectores asociados:

Para
$$\lambda = -1$$
:

$$\left(\begin{array}{cc} -3 & -3 \\ -2 & -2 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

 \Rightarrow el conjunto de autovectores asociados a $\lambda = -1$ es $< (1, -1) > -\{(0, 0)\}.$

Para $\lambda = 4$:

$$\left(\begin{array}{cc} 2 & -3 \\ -2 & 3 \end{array}\right) \left(\begin{array}{c} x_1 \\ x_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

 \Rightarrow el conjunto de autovectores asociados a $\lambda = 4$ es $< (3, 2) > -\{(0, 0)\}.$

 $B = \{(1, -1), (3, 2)\}$ base de \mathbb{R}^2 formada por autovectores de A.

⇒ A es diagonalizable:
$$A = C.D.C^{-1}$$

con $C = C(B, E) = \begin{pmatrix} 1 & 3 \\ -1 & 2 \end{pmatrix}$ y $D = \begin{pmatrix} -1 & 0 \\ 0 & 4 \end{pmatrix}$.

Polinomio característico y autovalores

Sea $A \in K^{n \times n}$ y sea $\lambda \in K$.

 λ es autovalor de A

$$\iff \exists x \in K^n - \{0\} \text{ tal que } A.x = \lambda.x.$$

 \iff El sistema $A.x = \lambda.x$ tiene solución no trivial.

 \iff El sistema $(\lambda . I_n - A).x = 0$ tiene solución no trivial.

$$\iff \det(\lambda.I_n - A) = 0.$$

Definición.

Sea $A \in K^{n \times n}$. Se llama polinomio característico de A, y se nota \mathcal{X}_A , al polinomio $\mathcal{X}_A = \det(X.I_n - A) \in K[X]$.

Si $A \in K^{n \times n}$, \mathcal{X}_A es un polinomio mónico de grado n.

Proposición.

Sea $A \in K^{n \times n}$ y sea $\lambda \in K$. Entonces:

 λ es autovalor de $A \iff \lambda$ es raíz de \mathcal{X}_A .

Ejemplo.

Decidir si $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ es diagonalizable en $\mathbb{R}^{2 \times 2}$ y $\mathbb{C}^{2 \times 2}$.

$$\mathcal{X}_A = \det \left(egin{array}{cc} X & -1 \ 1 & X \end{array}
ight) = X^2 + 1.$$

 \mathcal{X}_A no tiene raíces en $\mathbb{R} \Rightarrow A$ no tiene autovalores en $\mathbb{R} \Rightarrow A$ no es diagonalizable en $\mathbb{R}^{2\times 2}$.

Los autovalores de $A \in \mathbb{C}^{2 \times 2}$ son las raíces \mathcal{X}_A en \mathbb{C} : i y -i.

- Para $\lambda = i$: $i I_2 - A = \begin{pmatrix} i & -1 \\ 1 & i \end{pmatrix}$
- \Rightarrow los autovectores asociados son < $(1,i) > {(0,0)}$
- Para $\lambda = -i$: $(-i)I_2 - A = \begin{pmatrix} -i & -1 \\ 1 & -i \end{pmatrix}$
- \Rightarrow los autovectores asociados son $<(1,-i)>-\{(0,0)\}.$

 $B = \{(1, i), (1, -i)\}$ es una base de \mathbb{C}^2 formada por autovectores de $A \Rightarrow A$ es diagonalizable en $\mathbb{C}^{2 \times 2}$.

Matrices semejantes

Dadas $f: K^n \to K^n$ t.l. y B_1 y B_2 bases de K^n , se tiene que:

$$|f|_{B_1} = C(B_2, B_1)|f|_{B_2}C(B_1, B_2) = C(B_2, B_1)|f|_{B_2}C(B_2, B_1)^{-1}.$$

$$\Rightarrow C = C(B_2, B_1) \in GL(n, K) \text{ cumple } |f|_{B_1} = C. |f|_{B_2}. C^{-1}.$$

Recíprocamente, si $A, B \in K^{n \times n}$ y existe $C \in GL(n, K)$ tal que $A = C.B.C^{-1}$, definiendo $f : K^n \to K^n$ como f(x) = A.x, con $B_1 = E$ la base canónica de K^n y B_2 la base de K^n formada por las columnas de C, resulta que

$$A = |f|_{B_1}$$
 y $B = C^{-1}.A.C = C(E, B_2)|f|_E C(B_2, E) = |f|_{B_2}.$

Definición.

Sean $A, B \in K^{n \times n}$. Se dice que A y B son semejantes, y se nota $A \sim B$, si $\exists C \in GL(n, K)$ tal que $A = C.B.C^{-1}$.

Proposición.

Sean $A, B \in K^{n \times n}$.

$$A \sim B \iff \exists f : K^n \to K^n \text{ transformación lineal y bases } B_1 \text{ y } B_2$$
 de K^n tales que $|f|_{B_1} = A \text{ y } |f|_{B_2} = B$.

Observaciones.

- 1. $A \in K^{n \times n}$ diagonalizable $\iff \exists D \in K^{n \times n}$ diagonal tal que $A \sim D$.
- 2. \sim es una relación de equivalencia en $K^{n \times n}$.

Proposición.

Sea V un K-e.v. de dimensión finita y sea $f: V \to V$ una t.l. f es diagonalizable $\iff |f|_B$ es diagonalizable $\forall B$ base de V.

Proposición.

Sean $A, B \in K^{n \times n}$ tales que $A \sim B$. Entonces $\mathcal{X}_A = \mathcal{X}_B$.

Demostración.

Si $A = C.B.C^{-1}$ con $C \in GL(n, K)$, entonces:

$$\mathcal{X}_A = \mathcal{X}_{C.B.C^{-1}} = \det(X.I_n - C.B.C^{-1}) =$$

$$= \det(X.C.C^{-1} - C.B.C^{-1}) = \det(C.(X.I_n - B).C^{-1}) =$$

$$= \det(C) \det(X.I_n - B) \det(C)^{-1} = \det(X.I_n - B) = \mathcal{X}_B$$

Definición.

Sea V un K-e.v. de dimensión finita, y sea $f:V\to V$ una t.l. Se define el polinomio característico de f como $\mathcal{X}_f=\mathcal{X}_{|f|_B}$, donde B es una base cualquiera de V.

$$\lambda \in K$$
 es autovalor de $f \iff \lambda \in K$ es raíz de \mathcal{X}_f .

Ejemplo.

Sea $f: \mathbb{R}_2[t] \to \mathbb{R}_2[t]$, f(P) = P'. Decidir si f es diagonalizable.

Consideramos $B = \{1, t, t^2\}$ base de $\mathbb{R}_2[t]$,

$$A = |f|_B = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{array}\right)$$

$$\mathcal{X}_f = \mathcal{X}_A = \det(X.I_3 - A) = \det \left(egin{array}{ccc} X & -1 & 0 \\ 0 & X & -2 \\ 0 & 0 & X \end{array}
ight) = X^3$$

 \Rightarrow el único autovalor de f es $\lambda = 0$.

f no es diagonalizable: si lo fuera,

$$A = C \mathbb{O}_{3\times 3} C^{-1}$$
, con $\mathbb{O}_{3\times 3}$ la matriz nula $\Rightarrow A = \mathbb{O}_{3\times 3}$. Abs!

Observación.

Para la matriz A del ejemplo vale $\mathcal{X}_A = X^3 = \mathcal{X}_{\mathbb{O}_{3\times 3}}$ y $A \nsim \mathbb{O}_{3\times 3}$.

Espacios de autovectores

Definición.

Sea $A \in K^{n \times n}$ y sea $\lambda \in K$ un autovalor de A.

Llamamos autoespacio asociado a λ a

$$E_{\lambda} = \{ v \in K^n / A.v = \lambda.v \} = \{ v \in K^n / (\lambda I_n - A).v = 0 \},$$
 el subespacio de K^n formado por el vector nulo y los autovectores de A asociados al autovalor λ .

Ejemplo.

Sean
$$A_1 = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ -1 & 3 & 2 \end{pmatrix}$$
 y $A_2 = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$.

$$\det \begin{pmatrix} X-1 & -3 & 0 \\ -1 & X+1 & 0 \\ 1 & * & X-2 \end{pmatrix} = (X-2)(X^2-4)$$

$$\mathcal{X}_{A_1} = \mathcal{X}_{A_2} = (X-2)^2(X+2) \Rightarrow \text{Autovalores: 2 y } -2.$$

1. Autoespacios de
$$A_1 = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ -1 & 3 & 2 \end{pmatrix}$$
:

Para $\lambda = 2$:

Para
$$\lambda = 2$$
:
$$\begin{pmatrix}
1 & -3 & 0 \\
1 & -3 & 0
\end{pmatrix}$$

Para
$$\lambda = 2$$
:
$$2I_3 - A_1 = \begin{pmatrix} 1 & -3 & 0 \\ -1 & 3 & 0 \\ 1 & -3 & 0 \end{pmatrix} \Rightarrow E_2 = \langle (3, 1, 0), (0, 0, 1) \rangle$$

Para
$$\lambda = -2$$
:
$$\begin{pmatrix}
1 & -3 & 0 \\
-3 & -3 & 0 \\
-1 & -1 & 0
\end{pmatrix} \Rightarrow E_{-2} = \langle (1, -1, -1) \rangle$$

$$-2I_3 - A_1 = \begin{pmatrix} -3 & -3 & 0 \\ -1 & -1 & 0 \\ 1 & -3 & -4 \end{pmatrix} \Rightarrow E_{-2} = \langle (1, -1, 1) \rangle$$
 $B = \{(3, 1, 0), (0, 0, 1), (1, -1, 1)\}$ base de \mathbb{R}^3 formada por autovectores de A_1

$$B = \{(3,1,0), (0,0,1), (1,-1,1)\}$$
 base de \mathbb{R}^3 formada por autovectores de A_1 .
 $\Rightarrow A_1 = CDC^{-1}$ con $C = C(B,E)$ y $D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$

autovectores de
$$A_1$$
.
 $\Rightarrow A_1 = C D C^{-1} \text{ con } C = C(B, E) \text{ y } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$

- 2. Autoespacios de $A_2 = \begin{pmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 2 \end{pmatrix}$:

 - Para $\lambda = 2$: $2I_3 - A_2 = \begin{pmatrix} 1 & -3 & 0 \\ -1 & 3 & 0 \\ 1 & -1 & 0 \end{pmatrix} \Rightarrow E_2 = \langle (0,0,1) \rangle$
 - Para $\lambda = -2$:

autovectores I.i.).

 \Rightarrow A_2 no es diagonalizable.

- - $-2I_3 A_2 = \begin{pmatrix} -3 & -3 & 0 \\ -1 & -1 & 0 \\ 1 & -1 & -4 \end{pmatrix} \Rightarrow E_{-2} = \langle (2, -2, 1) \rangle$

B base de \mathbb{R}^3 formada por autovectores de A_2 (no hay 3