10 Traffic Network Control

金力 Li Jin li.jin@sjtu.edu.cn

上海交通大学密西根学院 Shanghai Jiao Tong University UM Joint Institute

Recap

- Smart highways
 - Sensing technology
 - Control technology
- Traffic flow model
 - Flow-density relation
 - Cell transmission model
- Ramp metering
 - Flow stabilization
 - Throughput maximization
 - Delay minimization

Outline

- Network systems
 - Transportation
 - Electricity
 - Communications
- Min-cost flow problem
 - Formulation
 - Solution
- Further applications
 - Shortest path problem
 - Max flow problem

Transportation: Planning

- Transportation planning is the process of defining future policies, goals, investments, and spatial planning designs to prepare for future needs to move people and goods to destinations.
 - Should we build a bridge here?
 - Should we build a shopping mall here?
 - Should we build subway here?
- To do the planning, we need to predict and optimize the consequent traffic flow.

Transportation: Traffic control

- During morning/evening peak hours, traffic managers may need to intervene people's route choice.
 - Navigation tool
 - Traveler information
 - Congestion pricing
- Objective: distribute traffic flow to minimize congestion

Transportation: Logistics

- Logistic companies receive packages at stations.
- Packages flow between stations.
- Limited/costly resource for package transportation.
 - How to allocate delivery trucks?
 - How to allocate station capacities?
 - Road or rail or air?

Electricity distribution

- Power stations generate electricity
- Transformers adjust voltage
- Distribution lines transmit power
- Consumers receive power
- Flow of power/current

Communications network

- Flow of data packets between terminals
- Cabled or wireless connectivity
- Routers distribute data flow between terminals
- Latency, bandwidth

Min-cost flow problem

- Formulation
- Solution

Min-cost flow problem

- Data:
 - Demand
 - Cost function
 - Capacity
- Decision variables:
 - Link flows
- Constraints:
 - Mass conservation
 - Link capacity
- Objective:
 - Minimize total flow cost

Network model

- Consider a network with nodes N and links E
 - Network also called graph
 - Nodes also called vertices (singular: vertex)
 - Links also called edges/arcs
- We use integers to label nodes
 - Node 1, 2,...
- We use pairs of integers to label links
 - Link (1,2), (2,3),...
- Directed link (i,j)
- Undirected link (i,j)

Demand & flow

- ullet Each node i is associated with demand b_i
 - $b_i > 0$: traffic flows in (origin)
 - $b_i < 0$: traffic flows out (destination)
 - $b_i = 0$: traffic flows through (transmission)
- Each link (i,j) is associated with flow f_{ij}
 - $f_{ij} > 0$: flow from i to j
 - f_{ij} < 0: flow from j to i
- Mass conservation: inflow = outflow

$$b_i + \sum_{j \in In(i)} f_{ji} = \sum_{j \in Out(i)} f_{ij}$$

Cost: linear

- When we assign flows, some patterns are better than the others.
- Let's start with the simplest case: linear cost
- Suppose that link (i,j) has a flow of f_{ij}
- Then, the cost on link (i,j) is $c_{ij}f_{ij}$, where $c_{ij}>0$ is the cost per unit flow
- This is a rather simplistic model that ignores any congestion effect.

Cost: nonlinear

• Let $C_{ij}(f_{ij})$ be the cost function

$$C_{ij}(f_{ij}) = \frac{c_{ij}}{\bar{f}_{ij} - f_{ij}}$$

- \bar{f}_{ij} = link capacity
- $C_{ij}(f_{ij}) \to \infty$ as $f_{ij} \to \bar{f}_{ij}$
- This is a more realistic cost function, since high inflow leads to congestion and deterioration of travel time

Capacity

• Sometimes we impose an upper bound on flows $f_{ij} \leq \bar{f}_{ij}$

- Capacity \bar{f}_{ij} depends on
 - Road: # of lanes, type of surface, weather
 - Electricity: transmission link capacity
 - Communications: bandwidth
- $\bar{f}_{ij} < \infty$: capacitated problem (harder)
- $\bar{f}_{ij} = \infty$: uncapacitated problem (easier)

Math: linear cost

- min $\sum_{(i,j)\in E} c_{ij} f_{ij}$ s.t. $b_i + \sum_{j\in In(i)} f_{ji} = \sum_{j\in Out(i)} f_{ij} \text{ for all } i\in N$ $0 \le f_{ij} \le \bar{f}_{ij} \text{ for all } (i,j) \in E$
- Linear programming!
- Can be solved very efficiently
- If $\bar{f}_{ij} = \infty$ for each link (i,j), i.e. if the problem is uncapacitated, we simply allocate demands to the "nearest" destinations. #

Solution: linear cost*

- For uncapacitated problems, min-cost flow problem is essentially finding the shortest paths between origins and destinations.
- Thus, all flows concentrate on the shortest paths.
- For capacitated problems, there is interaction between multiple origin-destination (OD) pairs.
- More sophisticated algorithms are needed, e.g. network simplex method.

Math: nonlinear cost

• min
$$\sum_{(i,j)\in E} C_{ij}(f_{ij})$$
• s.t.
$$b_i + \sum_{j\in In(i)} f_{ji} = \sum_{j\in Out(i)} f_{ij} \text{ for all } i\in N$$

$$0 \le f_{ij} \le \bar{f}_{ij} \text{ for all } (i,j) \in E$$

- Nonlinear optimization problem
- But typically convex
- Requires nonlinear solver
- A simple illustration: two parallel routes #

Further applications

- Shortest path problem
- Max flow problem

Shortest path problem

- Shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.
- Can be formulated as a min-cost flow problem with unit demand and unit cost

Max flow problem

- Finding a feasible flow through a flow network that obtains the maximum possible flow rate.
- Single origin, single destination

Summary

- Network systems
 - Transportation
 - Electricity
 - Communications
- Min-cost flow problem
 - Formulation
 - Solution
- Further applications
 - Shortest path problem
 - Max flow problem

Next time

• Quiz 1