

WORD OPERATION DEFINABLE IN THE TYPED λ -CALCULUS

Marek ZAIONC *

*Department of Computer and Information Sciences, University of Alabama at Birmingham,
University Station, Birmingham, AL 35294, U.S.A.*

Communicated by G. Mirkowska

Received March 1985

Revised February 1987

Abstract. A λ -language over a simple type structure is considered. Type $B = (O \rightarrow O) \rightarrow ((O \rightarrow O) \rightarrow (O \rightarrow O))$ is called a binary word type because of the isomorphism between words over a binary alphabet and closed terms of this type. Therefore, any term of type $B \rightarrow (B \rightarrow \dots \rightarrow (B \rightarrow B) \dots)$ represents an n -ary word function. The problem is: what class of word functions are represented by the closed terms of the examined type. It is proved that there exists a finite base of word functions such that any λ -definable word function is some composition of functions from the base. The algorithm which, for every closed term, returns the function in the form of a composition of basic operations is given. The main result is proved for a binary alphabet only, but can be easily extended to any finite alphabet. This result is a natural extension of the Schwichtenberg theorem (see Schwichtenberg (1975) and Statman (1979)) which solves the same problem for the natural number type $N = (O \rightarrow O) \rightarrow (O \rightarrow O)$.

Notations

We denote by \mathbb{N} the set of nonnegative integers. The interval $\{1, 2, \dots, n\}$ is denoted by $[n]$ and the interval $\{0, 1, \dots, n\}$ by $[\overline{n}]$. Σ is a binary alphabet $\{a, b\}$. By Σ^* we mean the set of all words over Σ . The empty word is denoted by Λ . We will use the following notation: if $n \in \mathbb{N}$, then by (n) we mean the word $a \dots a$ with n occurrences of the letter a (with $(0) = \Lambda$). By $c(n, w)$ we denote the n -ary function $(\Sigma^*)^n \rightarrow \Sigma^*$ which maps onto the word w constantly. If w is a word, then $|w|$ is the number of letters in w (with $|\Lambda| = 0$). We have $|(n)| = n$ for any number $n \in \mathbb{N}$.

1. Typed λ -calculus

Our language is based on the Church's [13] simple theory of types. The set of types is introduced as follows; O is a type and if τ and μ are types, then $\tau \rightarrow \mu$ is a type. We will use the following notation; if $\tau_1, \dots, \tau_n, \tau$ are types, then by

* The research described in this paper was done while author was at Jagiellonian University, Krakow (Poland).

$\tau_1, \dots, \tau_n \rightarrow \tau$ we understand the type $\tau_1 \rightarrow (\tau_2 \rightarrow \dots \rightarrow (\tau_n \rightarrow \tau) \dots)$. By $\tau^n \rightarrow \mu$ we mean the type $\tau, \dots, \tau \rightarrow \mu$ with n occurrences of τ (with $\tau^0 \rightarrow \mu = \mu$). Therefore, every type τ has a form $\tau_1, \dots, \tau_n \rightarrow O$. The type τ_i is called the component of τ and is denoted by $\tau[i]$. By $\tau[i_1, \dots, i_k]$ we mean $\tau[i_1] \dots [i_k]$. For any type τ we define numbers $\text{arg}(\tau)$ and $\text{rank}(\tau)$ as follows: $\text{arg}(O) = \text{rank}(O) = 0$ and if $\tau = \tau[1], \dots, \tau[n] \rightarrow O$, then $\text{arg}(\tau) = n$ and $\text{rank}(\tau) = \max_{i=1, \dots, n} (\text{rank}(\tau[i])) + 1$. For any type τ a denumerable set of variables $V(\tau)$ is given. A set of terms is a minimal set containing variables and which is closed for application and abstraction rules; i.e., if T is a term of type $\tau \rightarrow \mu$ and S is a term of type τ , then TS is a term of type μ ; and if x is variable of type τ and T is a term of type μ , then $\lambda x. T$ is a term of type $\tau \rightarrow \mu$. If T is a term of type τ , we write $T \in \tau$. We shall use the notation $\lambda x_1 x_2 \dots x_n. T$ for term $\lambda x_1. (\lambda x_2. \dots (\lambda x_n. T) \dots)$ and $TS_1 S_2 \dots S_n$ for $(\dots ((TS_1) S_2) \dots S_n)$. If T is a term and x is a variable of the same type as a term S , then $T[x/S]$ denotes the term obtained by substitution of the term S for each free occurrence of x in T .

The axioms of equality between terms have the form of α , β , and η conversions (see [1, 3]) and the convertible terms will be written as $T =_{\beta\eta} S$. All terms are considered modulo α , β , and η conversions. By $\text{Cl}(\tau)$ we mean the set of all closed (without free variables) terms of type τ . If Y is a set of variables, then $\text{Cl}(\tau, Y)$ is the set of all terms of type τ with only free variables from Y . Obviously, $\text{Cl}(\tau, \emptyset) = \text{Cl}(\tau)$ and $\text{Cl}(\tau, \emptyset) \subseteq \text{Cl}(\tau, Y)$. Term T is in long normal form iff $T = \lambda x_1 \dots x_n. y T_1 \dots T_k$, where y is an x_i for $i \in [n]$ or y is a free variable, and T_j , for each $j \in [k]$, is in long normal form and $y T_1 \dots T_k$ is a term of type O . It is easy to prove that long normal forms exist and are unique for $\beta\eta$ conversions (compare [10] or Φ -normal form in [2]). Let us introduce a complexity measure π for closed terms. If T is a closed term written in normal form and $T = \lambda x_1 \dots x_n. x_i$, then $\pi(T) = 0$. If $T = \lambda x_1 \dots x_n. x_i T_1 \dots T_k$, then $\pi(T) = \max_{j=1, \dots, k} (\pi(\lambda x_1 \dots x_n. T_j)) + 1$. For a closed term S , $\pi(S)$ is defined as $\pi(T)$ for T in long normal form such that $S =_{\beta\eta} T$.

2. Term grammars

Let NT be a finite or denumerable set of variables (the elements of NT correspond to nonterminal elements in the classical grammars). A production is a pair (y, T) also denoted by $y \Rightarrow T$, where variable $y \in NT$, y and T have the common type τ , and $T \in \text{Cl}(\tau, NT)$. A grammar is a finite or denumerable set of productions. The relation of the indirect production \rightarrow in the grammar G is defined by induction as follows:

$$\text{if } y \Rightarrow T \in G, \text{ then } y \rightarrow T \text{ holds; } \quad \text{if } y \rightarrow T \text{ and } z \rightarrow S \text{ hold, then } y \rightarrow R,$$

where R is any term obtained from T by substitution of at most one free occurrence of z by S . By $L(G, y)$ we mean the set of all closed terms which are generated from

y by grammar G ; i.e., if $y \in \tau$, then $L(G, y) = \{T \in \text{Cl}(\tau) \mid y \Rightarrow T\}$. It is easy to notice that if $v \rightarrow T$ and $z \rightarrow S$ hold, then $y \Rightarrow T[z/S]$ holds. Let us assume that $y \Rightarrow T$ is a production and y_1, \dots, y_n are all free occurrences of nonterminal variables in the term T . Let $y \in \tau$, $y_1 \in \tau_1, \dots, y_n \in \tau_n$. We say that this production determines a function $\alpha : \text{Cl}(\tau_1) \times \text{Cl}(\tau_2) \times \dots \times \text{Cl}(\tau_n) \rightarrow \text{Cl}(\tau)$ defined by

$$\alpha(T_1, \dots, T_n) = T[y_1/T_1, \dots, y_n/T_n] \quad \text{for every closed term } T_i \in \text{Cl}(\tau_i), \\ \dots, T_n \in \text{Cl}(\tau_n).$$

If there are no nonterminal variables in the term T , then the production $y \Rightarrow T$ determines a 0-ary function (constant) T which belongs to $\text{Cl}(\tau)$.

We will use the lower case Greek letters $\alpha, \beta, \gamma, \delta$ for the names of such functions. Let us define a grammar $G(\tau)$ for a given type τ . The construction of this grammar is analogous with the construction of the Huet matching-tree for the unification problem (see [4, Chapter 3.4, p. 37] with simplification for the $\beta\eta\lambda$ -calculus in Chapter 4.5, p. 51). Let y be a nonterminal variable of type τ . For the type O , grammar $G(O)$ is $y \Rightarrow y$. If $\tau = \tau[1], \dots, \tau[n] \rightarrow 0$, then the grammar contains all productions which are of the form:

- (i) $y \Rightarrow \lambda x_1 \dots x_n. x_i$ if $\text{arg}(\tau[i]) = 0$,
- (ii) $y \Rightarrow \lambda x_1 \dots x_n. x_i T_1 \dots T_k$ if $\text{arg}(\tau[i]) = k > 0$,

where $T_j \in \tau[i, j]$ for $j \leq k$ are as follows:

- (ii1) $T_j = yx_1 \dots x_n$ iff $\text{arg}(\tau[i, j]) = 0$,
- (ii2) $T_j = \lambda z_1 \dots z_p. y' x_1 \dots x_n z_1 \dots z_p$ iff $\text{arg}(\tau[i, j]) = p > 0$,

where y' is a new nonterminal variable of type $\tau[1], \dots, \tau[n] \rightarrow \tau[i, j]$ and $z_s \in \tau[i, j, s]$ for $s \leq p$.

This construction is repeated for all new nonterminal variables introduced in this step.

Example 2.1. Let τ be a following type $((O, O \rightarrow O) \rightarrow O) \rightarrow (O \rightarrow O)$. Let, as considered, the following grammar be over $\text{NT} = \{y\}$. Types of auxiliary variables are the following $p \in (O, O \rightarrow O) \rightarrow O$ and $x, v, z \in O$:

- (1): $y \Rightarrow \lambda p x. x,$
- (2): $y \Rightarrow \lambda p x. p(\lambda v z. y p x),$
- (3): $y \Rightarrow \lambda p x. p(\lambda v z. y p v),$
- (4): $y \Rightarrow \lambda p x. p(\lambda v z. y p z).$

Let $\alpha, \beta, \gamma, \delta$ be the functions determined by these productions respectively. The closed term of type τ

$$\lambda p x_1. p(\lambda x_2 x_3. p(\lambda x_4 x_5. p(\lambda x_6 x_7. x_4)))$$

can be obtained by means of productions (2), (3), (2), (1). This closed term can be presented as $\beta \circ \gamma \circ \beta \circ \alpha$. It is easy to prove that this grammar generates all closed terms of type τ (cf. [12]).

Theorem 2.2. *For every type τ the grammar $G(\tau)$ generates all closed terms of type τ .*

Proof. By induction on the complexity measure: Let T be a closed term of type τ . If T is a projection written in normal form, then T can be obtained by means of production (i). Let $T = \lambda x_1 \dots x_n. x_i T_1 \dots T_k$ where $\arg(\tau[i]) = k$ and $T_j \in \text{Cl}(\tau[i, j], \{x_1, \dots, x_n\})$ for $j \leq k$. Let S_j be the term $\lambda x_1 \dots x_n. T_j$ for $j \leq k$. Every term S_j belongs to $\text{Cl}(\tau[1], \dots, \tau[n] \rightarrow \tau[i, j])$ for $j \leq k$. The complexity measure $\pi(S_j)$ is less than $\pi(T)$ for every $j \leq k$. So, from the inductive assumption, every term S_j can be obtained by this grammar from the following nonterminal variables:

$$\text{if } \tau[i, j] = 0, \text{ then } y \rightarrow S_j \quad (\text{case (ii1)}),$$

$$\text{if } \tau[i, j] = \tau[i, j, 1], \dots, \tau[i, j, p] \rightarrow \mu, \text{ then } y' \rightarrow S_j \quad (\text{case (ii2)}).$$

Let α be the function determined by production (ii). Therefore, the term T can be obtained by means of production (ii) from the terms S_1, \dots, S_k and the condition $\alpha(S_1, \dots, S_k) = T$ holds. \square

Lemma 2.3. *For every type τ such that $\text{rank}(\tau) \leq 2$ there is a finite grammar which generates all closed terms of type τ .*

Proof. Let $\tau = \tau[1], \tau[2], \dots, \tau[n] \rightarrow 0$. We will prove that the grammar $G(\tau)$ is finite and according to Theorem 2.2 produces all closed term of type τ . The grammar contains all productions which are of the form:

$$y \Rightarrow \lambda x_1 \dots x_n. x_n \quad \text{if } \arg(\tau[i]) = 0,$$

$$y \Rightarrow \lambda x_1 \dots x_n. x_i T_1 \dots T_k \quad \text{if } \arg(\tau[i]) = k > 0, \text{ where}$$

$$T_j = yx_1 \dots x_n \text{ for } j \leq k.$$

Grammars described here can produce any free structure. \square

Theorem 2.4 (Zaionc [12]). *For every type τ such that $\text{rank}(\tau) \leq 3$ and $\arg(\tau[i]) \leq 1$ for every $i \leq \arg(\tau)$, there is a finite grammar which generates all closed terms of this type (compare the notion of regular grammar introduced in [12]).*

An illustration of this case is presented in Example 2.1.

3. Finitely generated sets

For a given type τ the set $\text{FUN}(\tau)$ is defined as $\bigcup_{i=1}^{\infty} \text{Cl}(\tau^i \rightarrow \tau)$. Two terms R and T from the set $\text{Cl}(\tau^i \rightarrow \tau)$ are strongly equivalent, $R \equiv T$, if, for every closed term $S_1, \dots, S_i \in \text{Cl}(\tau)$, $RS_1 \dots S_i =_{\beta\eta} TS_1 \dots S_i$. If F is a subset of $\text{FUN}(\tau)$, then by $\text{App}(F)$ we denote the set of all compositions of members of F ; i.e., $\text{App}(F)$ is

a minimal subset of $\text{FUN}(\tau)$ containing F , all projections $\lambda x_1 \dots x_n. x_i$ such that $x_j \in \tau$ for $j \in [n]$, and containing all constant functions from $\text{FUN}(\tau)$ of the form $\lambda x_1 \dots x_n. T$ where $x_i \in \tau$ and $T \in \text{Cl}(\tau)$ and closed for compositions. That is, if $T \in \text{App}(F)$ such that $T \in \text{Cl}(\tau^n \rightarrow \tau)$ and if $S_1, \dots, S_n \in \text{App}(F)$ such that $S_i \in \text{Cl}(\tau^{k_i} \rightarrow \tau)$ for $i \in [n]$ and $k_i \in \mathbb{N}$, then term $\lambda x_1 \dots x_n. T(S_1 x_{j_{1,1}} \dots x_{j_{1,k_1}}) \dots (S_n x_{j_{n,1}} \dots x_{j_{n,k_n}})$ belongs to $\text{App}(F)$ for every $j_{p,q} \in [n]$ such that $p \in [n]$ and $q \in [k_p]$.

The set $\text{FUN}(\tau)$ is finitely generated iff there is a finite set $F \subset \text{FUN}(\tau)$ such that, for every $T \in \text{FUN}(\tau)$, there is an $S \in \text{App}(F)$ such that $T = S$.

Theorem 3.1 (Schwichtenberg [8] and Statman [9]). *Set $\text{FUN}(N)$ is finitely generated where $N = (O \rightarrow O) \rightarrow (O \rightarrow O)$. The set of closed terms of type N (Church's numerals) can be naturally interpreted as numbers; the set of generators consists of terms which represents addition, multiplication, sq and $\overline{\text{sq}}$ (see [5, p. 223]). Therefore, the set $\text{FUN}(N)$ represents the extended polynomials.*

Theorem 3.2 (cf. Statman [11, p. 24]). *Set $\text{FUN}(\tau_n)$, where τ_n is the type $O^n \rightarrow O$, is finitely generated for every $n \in \mathbb{N}$.*

Proof. From the functional completeness of n -valued propositional logic (cf., for example, [6] or [7]) and from the fact that there are exactly n closed terms of type τ_n , the above theorem easily follows; Let the number $i \in [n]$ be represented by the i th projection in the following way: $j = \lambda x_1 \dots x_k. x_i$. The term $T \in \text{Cl}(\tau_n^k \rightarrow \tau)$ represents the function $f: [n]^k \rightarrow [n]$ if, for all $n_1, \dots, n_i \in [n]$, $Tn_1 \dots n_i =_{\beta n} f(n_1, \dots, n_i)$. By induction on k we will prove that every function $f: [n]^k \rightarrow [n]$ is represented.

For $k = 1$, the term $\lambda c x_1 \dots x_n. cx_{f(1)} \dots x_{f(n)}$ represents the function $f: [n] \rightarrow [n]$. Now, suppose any k -ary function is represented. Let f be a $(k+1)$ -ary function. By f_1, \dots, f_n we denote the k -ary functions which are defined by

$$f_j(x_1, \dots, x_k) = f(x_1, \dots, x_k, j) \quad \text{for } j \in [n].$$

So there exist terms $T_1, \dots, T_n \in \text{Cl}(\tau_n^k \rightarrow \tau)$ which represent f_1, \dots, f_n respectively. Therefore, function f is represented by the term $\lambda c_1 \dots c_{k+1} x_1 \dots x_n. c_{k+1}(T_1 c_1 \dots c_k x_1 \dots x_n) \dots (T_n c_1 \dots c_k x_1 \dots x_n)$.

For every $n \geq 2$, n -valued propositional logic is functionally complete, i.e., there is a finite number of functions which generate any function. The set of representatives of those functions form the base for $\text{FUN}(\tau_n)$. For $n = 1$, the possible set of generators for $\text{FUN}(\tau_1)$ is $\lambda ux. x \in \text{Cl}(\tau_1 \rightarrow \tau_1)$. For $\text{FUN}(\tau_0)$, the set of generators is empty. \square

Example 3.3. $\text{FUN}(O, O \rightarrow O)$ is finitely generated. A possible set of generators is $\lambda pqxy. q(pyx)(pyy)$ and $\lambda pxy. pyx$ ($p, q \in (O, O \rightarrow O)$ and $x, y \in O$) if term $\lambda xy. x$ represent falsity and $\lambda. xy. y$ truth. The first term represents implication and the second negation in classical 2-valued propositional calculus.

4. Word functions

In this section the set of word functions $(\Sigma^*)^n \rightarrow \Sigma^*$ for $n \geq 1$ is investigated. Let us distinguish the following functions recursively definable in Manna manner [14]. The function $\text{app} : (\Sigma^*)^2 \rightarrow \Sigma$ is the usual concatenation inductively defined by

$$\text{app}(\Lambda, y) = y, \quad \text{app}(ax, y) = a \text{ app}(x, y), \quad \text{app}(bx, y) = b \text{ app}(x, y).$$

The function $\text{sub} : (\Sigma^*)^3 \rightarrow \Sigma$ is called ‘substitution’. The word $\text{sub}(x, y, z)$ is obtained from x by substituting for all occurrences of the letter a the word y and for all occurrences of the letter b the word z . The definition is as follows:

$$\begin{aligned} \text{sub}(\Lambda, y, z) &= \Lambda, & \text{sub}(ax, y, z) &= \text{app}(y, \text{sub}(x, y, z)), \\ \text{sub}(bx, y, z) &= \text{app}(z, \text{sub}(x, y, z)). \end{aligned}$$

The functions cut_a and cut_b , extract maximal prefixes of the form $a \dots a$ and $b \dots b$ respectively and are defined by

$$\begin{aligned} \text{cut}_a(\Lambda) &= \Lambda, & \text{cut}_a(ax) &= \text{app}(a, \text{cut}_a(x)), & \text{cut}_a(bx) &= \Lambda, \\ \text{cut}_b(\Lambda) &= \Lambda, & \text{cut}_b(ax) &= \Lambda, \\ \text{cut}_b(bx) &= \text{app}(b, \text{cut}_b(x)). \end{aligned}$$

The functions sq , $\overline{\text{sq}} : \Sigma^* \rightarrow \Sigma^*$ are emptiness and nonemptiness tests:

$$\begin{aligned} \text{sq}(\Lambda) &= (0), & \text{sq}(ax) &= (1), & \text{sq}(bx) &= (1), \\ \overline{\text{sq}}(\Lambda) &= (1), & \overline{\text{sq}}(ax) &= (0), & \overline{\text{sq}}(bx) &= (0). \end{aligned}$$

The functions occ_a , $\text{occ}_b : \Sigma^* \rightarrow \Sigma$ check if the letter a or b respectively occur in a given word x and are defined by

$$\begin{aligned} \text{occ}_a(\Lambda) &= (0), & \text{occ}_a(ax) &= (1), & \text{occ}_a(bx) &= \text{occ}_a(x), \\ \text{occ}_b(\Lambda) &= (0), & \text{occ}_b(ax) &= \text{occ}_b(x), & \text{occ}_b(bx) &= (1). \end{aligned}$$

The functions beg_a , $\text{beg}_b : \Sigma^* \rightarrow \Sigma^*$ which check if a given word begins with a or b respectively can be defined as

$$\text{beg}_a = \text{sq} \circ \text{cut}_a, \quad \text{beg}_b = \text{sq} \circ \text{cut}_b.$$

Let us now define the set λdef as a minimal set of word functions containing app , sub , cut_a , cut_b , sq , $\overline{\text{sq}}$, occ_a , occ_b , all projections, and all constant functions which are closed for compositions. By $\lambda\text{def}(n)$ we denote a subset of λdef which consists of all n -ary functions from λdef . The set TEST is a subset of $\lambda\text{def}(1)$ containing sq , $\overline{\text{sq}}$, beg_a , $\overline{\text{sq}} \circ \text{beg}_a$, beg_b , $\overline{\text{sq}} \circ \text{beg}_b$, occ_a , $\overline{\text{sq}} \circ \text{occ}_a$, occ_b , $\overline{\text{sq}} \circ \text{occ}_b$.

If $n, m \in \mathbb{N}$, then by $(n) \oplus (m)$ and $(n) \otimes (m)$ we understand the words $\text{app}((n), (m))$ and $\text{sub}((n), (m), \Lambda)$ respectively. Let us assume that $x_i \in \Sigma^*$ for $i \in \mathbb{N}$. The word $\Theta_{i=1}^k x_i$ is defined by induction as

$$\Theta_{i=1}^1 x_i = x_1, \quad \Theta_{i=1}^{k+1} x_i = \text{app}\left(x_{k+1}, \Theta_{i=1}^k x_i\right).$$

For all $n, m, n_1, \dots, n_k \in \mathbb{N}$ the following equalities hold:

$$(n) \oplus (m) = (n + m), \quad (n) \otimes (m) = (nm), \quad \bigoplus_{i=1}^k (n_i) = \left(\sum_{i=1}^k n_i \right).$$

The class $P(n, k)$ for $n, k \geq 1$ of n -ary functions $(\Sigma^*)^n \rightarrow \{(0), (1), \dots, (k-1)\}$ is defined as a minimal class which contains all constant functions $c(n, (j))$ for $j \in \overline{[k-1]}$ and is closed for the conditional choice rule; i.e., if $p, q \in P(n, k)$, $i \in [n]$ and $f \in \text{TEST}$, then the function s defined below belongs to $P(n, k)$.

$$s(x_1, \dots, x_n) = \begin{cases} p(x_1, \dots, x_n) & \text{iff } f(x_i) = (1), \\ q(x_1, \dots, x_n) & \text{iff } \overline{\text{sq}}(f(x_i)) = (1). \end{cases}$$

A function obtained by the conditional choice rule can also be defined as

$$s(x_1, \dots, x_n) = f(x_i) \otimes p(x_1, \dots, x_n) \oplus \overline{\text{sq}}(f(x_i)) \otimes q(x_1, \dots, x_n).$$

Lemma 4.1. $P(n, k) \subset \lambda \text{def}(n)$.

Proof. Inductively for the construction of $p \in P(n, k)$. For a constant function p it is obvious. If s is obtained from p, q by the conditional choice rule, then

$$s(x_1, \dots, x_n) = f(x_i) \otimes p(x_1, \dots, x_n) \oplus \overline{\text{sq}}(f(x_i)) \otimes q(x_1, \dots, x_n).$$

Therefore, s is a composition of basic functions and $s \in \lambda \text{def}(n)$. \square

Lemma 4.2. If $p, q, r \in P(n, k)$, then the function s defined below belongs to $P(n, k)$.

$$s(x_1, \dots, x_n) = \begin{cases} p(x_1, \dots, x_n) & \text{iff } \text{sq}(r(x_1, \dots, x_n)) = (1), \\ q(x_1, \dots, x_n) & \text{iff } \overline{\text{sq}}(r(x_1, \dots, x_n)) = (1). \end{cases}$$

Proof. By induction on the construction of the function r . If r is a constant function, then $s = p$ or $s = q$. Let us assume that the function r is constructed by means of r_1, r_2 from $P(n, k)$ and f from TEST. Therefore, r has a form

$$r(x_1, \dots, x_n) = f(x_i) \otimes r_1(x_1, \dots, x_n) \oplus \overline{\text{sq}}(f(x_i)) \otimes r_2(x_1, \dots, x_n).$$

Because of the inductive assumption we know that the functions s_1, s_2 defined by

$$\begin{aligned} s_1(x_1, \dots, x_n) &= \begin{cases} p(x_1, \dots, x_n) & \text{iff } \text{sq}(r_1(x_1, \dots, x_n)) = (1), \\ q(x_1, \dots, x_n) & \text{iff } \overline{\text{sq}}(r_1(x_1, \dots, x_n)) = (1); \end{cases} \\ s_2(x_1, \dots, x_n) &= \begin{cases} p(x_1, \dots, x_n) & \text{iff } \text{sq}(r_2(x_1, \dots, x_n)) = (1), \\ q(x_1, \dots, x_n) & \text{iff } \overline{\text{sq}}(r_2(x_1, \dots, x_n)) = (1) \end{cases} \end{aligned}$$

belong to $P(n, k)$. It is straightforward to verify that

$$s(x_1, \dots, x_n) = f(x_i) \otimes s_1(x_1, \dots, x_n) \oplus \overline{\text{sq}}(f(x_i)) \otimes s_2(x_1, \dots, x_n).$$

Then s belongs to $P(n, k)$. \square

Lemma 4.3. Let $s \in P(n, k)$. The function s' defined by $s'(x_1, \dots, x_n) = (i - 1)$ iff $s(x_1, \dots, x_n) = (i)$ (where $i - 1 = i - 1$ for $i > 0$ and 0 for $i = 0$) belongs to $P(n, k - 1)$.

Proof. Inductively for the construction of s . It is easy to notice this fact in the case when s is constant. Let

$$s(x_1, \dots, x_n) = f(x_i) \otimes p(x_1, \dots, x_n) \oplus \overline{sq}(f(x_i)) \otimes q(x_1, \dots, x_n).$$

Therefore,

$$s'(x_1, \dots, x_n) = f(x_i) \otimes p'(x_1, \dots, x_n) \oplus \overline{sq}(f(x_i)) \otimes q'(x_1, \dots, x_n) \quad \square$$

5. Representability

Type $B = (O \rightarrow O) \rightarrow ((O \rightarrow O) \rightarrow (O \rightarrow O))$ is called a binary word type because of the isomorphism between $\text{Cl}(B)$ and Σ^* . We define that a closed term of type B represents a word $w \in \Sigma^*$ by induction in the following way: Λ is represented by the term $\lambda uvx.x$. If $w \in \Sigma^*$ is represented by the term $W \in \text{Cl}(B)$, then words aw and bw are represented by terms $\lambda uvx.u(Wuvx)$ and $\lambda uvx.v(Wuvx)$ respectively. This constitutes a 1-1 correspondence between $\text{Cl}(B)$ and Σ^* . The term which represents the word w is denoted by w . If H is a closed term of type $B^n \rightarrow B$, then we call H a λ -word theoretic function. The function $h : (\Sigma^*)^n \rightarrow \Sigma^*$ is represented by the term $H \in \text{Cl}(B^n \rightarrow B)$ iff, for all $x_1, \dots, x_n \in \Sigma^*$, $H\underline{x}_1 \dots \underline{x}_n = h(\underline{x}_1, \dots, \underline{x}_n)$. The term which represents the function h is denoted by h .

Let us define the following terms with $c, d, e \in B$, $u, v \in (O \rightarrow O)$, $x, y \in O$:

$$\begin{array}{ll} APP = \lambda cdvux.cuv(duvx), & SUB = \lambda cdeuvx.c(\lambda y.duvy)(\lambda y.euvy)x, \\ CUT_a = \lambda cuvx.cu(\lambda y.x)x, & CUT_b = \lambda cuvx.c(\lambda y.x)vx, \\ SQ = \lambda cuvx.c(\lambda y.ux)(\lambda y.ux)x, & \overline{SQ} = \lambda cuvx.(\lambda y.x)(\lambda y.x)(ux), \\ BEG_a = \lambda cuvx.c(\lambda y.ux)(\lambda y.x)x, & BEG_b = \lambda cuvx.c(\lambda y.x)(\lambda y.ux)x, \\ OCC_a = \lambda cuvx.c(\lambda y.ux)(\lambda y.y)x, & OCC_b = \lambda cuvx.c(\lambda y.y)(\lambda y.ux)x. \end{array}$$

It is easy to verify that these terms represent the functions app, sub, cut_a, cut_b, sq, \overline{sq} , beg_a, beg_b, occ_a and occ_b respectively.

Lemma 5.1. Every function $h \in \lambda \text{def}(n)$ is represented by some λ -word theoretic function $H \in \text{Cl}(B^n \rightarrow B)$ and, for $x_1, \dots, x_n \in \Sigma^*$, the following condition holds: $H\underline{x}_1 \dots \underline{x}_n = h(\underline{x}_1, \dots, \underline{x}_n)$.

Proof. Basical functions are represented. If a function $g : (\Sigma^*)^n \rightarrow \Sigma^*$ is represented by a term $G \in \text{Cl}(B^n \rightarrow B)$ and functions $f_1, \dots, f_n : (\Sigma^*)^p \rightarrow \Sigma$ are represented by terms F_1, \dots, F_n respectively, then the composition, i.e. the function $(x_1, \dots, x_p) \rightarrow g(f_1(x_1, \dots, x_p), \dots, f_n(x_1, \dots, x_p))$ is represented by the term $\lambda c_1 \dots c_p.G(F_1c_1 \dots c_p) \dots (F_nc_1 \dots c_p)$. Therefore, all functions from λdef are represented. \square

Let us define a type $\tau(n, k)$ where $n, k \geq 1$ by B^n , $(O \rightarrow O)$, $(O \rightarrow O)$, $O^k \rightarrow O$. Let f be a function $(\Sigma^*)^n \rightarrow \Sigma^*$ and let p be a function $(\Sigma^*)^n \rightarrow \{(0), \dots, (k-1)\}$. We say that the pair (f, p) is represented by a term $T \in \text{Cl}(\tau(n, k))$ if, for all $w_1, \dots, w_n, w \in \Sigma^*$ and for every $i \in \overline{[k-1]}$, the following condition holds:

$$f(w_1, \dots, w_n) = w \text{ and } p(w_1, \dots, w_n) = (i)$$

$$\text{iff } T\underline{w_1} \dots \underline{w_n} =_{\beta\eta} \lambda uvx_{k-1} \dots x_0. wuvx_i.$$

This condition can also be written as

$$Tw_1 \dots w_n =_{\beta\eta} \lambda uvx_{k-1} \dots x_0. (f(w_1, \dots, w_n))uvx_{[p(w_1, \dots, w_n)]}.$$

For $k=1$, the type $\tau(n, k)$ is equal to $B^n \rightarrow B$. Therefore, this definition of representability is a generalization of the previous one in the type $B^n \rightarrow B$.

Lemma 5.2. *For every function $p \in P(n, k)$ there is a term $T \in \text{Cl}(\tau(n, k))$ which represents the pair $(c(n, \Lambda), p)$.*

Proof. Inductively for the construction of p . If p is a constant function such that $p(w_1, \dots, w_n) = (i)$ for every $w_1, \dots, w_n \in \Sigma^*$ and $i \in \overline{[k-1]}$, then the pair $(c(n, \Lambda), p)$ is represented by the term $\lambda w_1 \dots w_n uvx_{k-1} \dots x_0. x_i$. Let us assume that pairs $(c(n, \Lambda), p)$ and $(c(n, \Lambda), q)$ are represented by terms $P, Q \in \text{Cl}(\tau(n, k))$ respectively. Let $i \in [n]$ and $f \in \text{TEST}$. The function f is represented by $F \in \text{Cl}(B \rightarrow B)$ (see Lemma 5.1). Then the pair $(c(n, \Lambda), s)$, where s is defined by the conditional choice rule

$$s(x_1, \dots, x_n) = f(x_i) \otimes p(x_1, \dots, x_n) \oplus \overline{\text{sq}}(f(x_i)) \otimes q(x_1, \dots, x_n)$$

is represented by the term

$$\begin{aligned} & \lambda w_1 \dots w_n uvx_{k-1} \dots x_0. Fw_i(\lambda y. Pw_1 \dots w_n uvx_{k-1} \dots x_0) \\ & (\lambda y. Pw_1 \dots w_n uvx_{k-1} \dots x_0) (Qw_1 \dots w_n uvx_{k-1} \dots x_0). \end{aligned} \quad \square$$

Lemma 5.3. *For every $p \in P(n, 1)$ there is a term $P \in \text{Cl}(\tau(n, 1))$ such that the pair $(p, c(1, \Lambda))$ is represented by term P .*

Proof. Since function p belongs to $\lambda \text{def}(n)$ (see Lemma 4.1), p has a representation (see Lemma 5.1). \square

Theorem 5.4 (soundness). *For every pair (w, p) such that $w \in \lambda \text{def}(n)$ and $p \in P(n, k)$ there is a term $T \in \text{Cl}(\tau(n, k))$ which represents (w, p) .*

Proof. Let \bar{p} be a representative of the pair $(c(n, \Lambda), p)$ (see Lemma 5.2) and \bar{w} be a representative of the function w in type $B^n \rightarrow B$ (see Lemma 5.1). The pair (w, p)

is represented by the term

$$\lambda c_1 \dots c_n u v x_{k-1} \dots x_0. \underline{w} c_1 \dots c_n u v (\bar{p} c_1 \dots c_n u v x_{k-1} \dots x_0). \quad \square$$

Theorem 5.5 (completeness). *Every closed term $T \in \text{Cl}(\tau(n, k))$ represents some pair (w, p) where $w \in \lambda \text{def}(n)$ and $p \in P(n, k)$.*

Proof. First we will construct the grammar $G(\tau(n, k))$ which generates all closed terms of type $\tau(n, k)$ (see Theorem 2.2) and then we will prove, by induction on the grammar construction of the term T , that T represents some pair. Let n be fixed. By y^k we understand the variable of type $\tau(n, k)$. Let $\text{NT} = \{y^k \mid k \geq 1\}$. We build up the productions in accordance with Theorem 2.2. Such a grammar consists of a denumerable set of productions which can be assembled in the four production schemas. We will prove by induction that if T represents some pair, then a new term obtained from T by some production also represents another pair. The grammar for type $\tau(n, k)$ is as follows:

$$\begin{aligned} \alpha_i^k & y^k \Rightarrow \lambda c_1 \dots c_n u v x_{k-1} \dots x_0. x_i, \\ \beta^k & y^k \Rightarrow \lambda c_1 \dots c_n u v x_{k-1} \dots x_0. u(y^k c_1 \dots c_n u v x_{k-1} \dots x_0), \\ \gamma^k & y^k \Rightarrow \lambda c_1 \dots c_n u v x_{k-1} \dots x_0. v(y^k c_1 \dots c_n u v x_{k-1} \dots x_0), \\ \delta_j^k & y^k \Rightarrow \lambda c_1 \dots c_n u v x_{k-1} \dots x_0. c_j(\lambda z. y^{k+1} c_1 \dots c_n u v x_{k-1} \dots x_0 z) \\ & (\lambda z. y^{k+1} c_1 \dots c_n u v x_{k-1} \dots x_0 z)(y^k c_1 \dots c_n u v x_{k-1} \dots x_0). \end{aligned}$$

α_i^k is an element of $\text{Cl}(\tau(n, k))$. β^k is a function from $\text{Cl}(\tau(n, k))$ to $\text{Cl}(\tau(n, k))$, γ^k is a function from $\text{Cl}(\tau(n, k))$ to $\text{Cl}(\tau(n, k))$, and δ_j^k is a function from $\text{Cl}(\tau(n, k+1)) \times \text{Cl}(\tau(n, k+1)) \times \text{Cl}(\tau(n, k))$ to $\text{Cl}(\tau(n, k))$. Now we will show that every term from $\text{Cl}(\tau(n, k))$ represents some pair (w, p) . Element α_i^k represents a pair $(c(n, \Lambda), c(n, (i)))$. If the term $T \in \text{Cl}(\tau(n, k))$ represents a pair (w, p) , then $\beta^k(T)$ and $\gamma^k(T)$ represent pairs $(\text{app}(a, w), p)$ and $(\text{app}(b, w), p)$ respectively.

The main part of this theorem will be the proof of the following fact: If $E, F \in \text{Cl}(\tau(n, k+1))$ and $G \in \text{Cl}(\tau(n, k))$ represent some pairs, then the term $\delta_j^k(E, F, G)$ is also representative of a certain pair. The next part of this proof will be a construction of a pair for $\delta_j^k(E, F, G)$ by means of word functions which are represented by E, F and G . Suppose we have three pairs of functions represented respectively by E, F and G . E represents pair (w_e, e) , F represents pair (w_f, f) and G represents (w_g, g) . Functions w_e, w_f , and w_g are elements of the space $\lambda \text{def}(n)$ and functions $e, f \in P(n, k+1)$ and $g \in P(n, k)$. Let us define a pair (w, p) as follows:

$$w(c_1, \dots, c_n) = \Theta_{i=1}^8 \text{sub}(A_i(c_1, \dots, c_n), w_i(c_1, \dots, c_n), \Lambda),$$

$$p_i(c_1, \dots, c_n) = \Theta_{i=1}^8 [A_i(c_1, \dots, c_n) \otimes p_i(c_1, \dots, c_n)],$$

where $p_1 = g$, $p_2 = g$, $p_3 = g$, $p_4 = f'$, $p_5 = g$, $p_6 = e'$, $p_7 = e'$, and $p_8 = f'$. Further,

$$\begin{aligned} w_1(c_1, \dots, c_n) &= w_g(c_1, \dots, c_n), \\ w_2(c_1, \dots, c_n) &= \text{app}(\text{sub}(c_j, w_e(c_1, \dots, c_n), w_f(c_1, \dots, c_n)), \\ &\quad w_g(c_1, \dots, c_n)), \\ w_3(c_1, \dots, c_n) &= \text{app}(\text{sub}(c_j, w_e(c_1, \dots, c_n), \Lambda), w_g(c_1, \dots, c_n)), \\ w_4(c_1, \dots, c_n) &= \text{app}(\text{sub}(\text{cut}_a(c_j), w_e(c_1, \dots, c_n), \Lambda), w_f(c_1, \dots, c_n)), \\ w_5(c_1, \dots, c_n) &= \text{app}(\text{sub}(c_j, \Lambda, w_f(c_1, \dots, c_n)), w_g(c_1, \dots, c_n)), \\ w_6(c_1, \dots, c_n) &= \text{app}(\text{sub}(\text{cut}_b(c_j), \Lambda, w_f(c_1, \dots, c_n)), w_e(c_1, \dots, c_n)), \\ w_7(c_1, \dots, c_n) &= w_e(c_1, \dots, c_n), \quad w_8(c_1, \dots, c_n) = w_f(c_1, \dots, c_n). \end{aligned}$$

The A_i 's are defined as follows:

$$\begin{aligned} A_1(c_1, \dots, c_n) &= \overline{\text{sq}}(c_j), \\ A_2(c_1, \dots, c_n) &= \text{sq}(c_j) \otimes \overline{\text{sq}}(e(c_1, \dots, c_n)) \otimes \overline{\text{sq}}(f(c_1, \dots, c_n)), \\ A_3(c_1, \dots, c_n) &= \text{sq}(c_j) \otimes \overline{\text{sq}}(e(c_1, \dots, c_n)) \otimes \text{sq}(f(c_1, \dots, c_n)) \\ &\quad \otimes \overline{\text{sq}}(\text{occ}_b(c_j)), \\ A_4(c_1, \dots, c_n) &= \text{sq}(c_j) \otimes \overline{\text{sq}}(e(c_1, \dots, c_n)) \otimes \text{sq}(f(c_1, \dots, c_n)) \otimes \text{occ}_b(c_j), \\ A_5(c_1, \dots, c_n) &= \text{sq}(c_j) \otimes \text{sq}(e(c_1, \dots, c_n)) \otimes \overline{\text{sq}}(f(c_1, \dots, c_n)) \\ &\quad \otimes \overline{\text{sq}}(\text{occ}_a(c_j)), \\ A_6(c_1, \dots, c_n) &= \text{sq}(c_j) \otimes \text{sq}(e(c_1, \dots, c_n)) \otimes \overline{\text{sq}}(f(c_1, \dots, c_n)) \otimes \text{occ}_a(c_j), \\ A_7(c_1, \dots, c_n) &= \text{sq}(c_j) \otimes \text{sq}(e(c_1, \dots, c_n)) \otimes \text{sq}(f(c_1, \dots, c_n)) \otimes \text{beg}_a(c_j), \\ A_8(c_1, \dots, c_n) &= \text{sq}(c_j) \otimes \text{sq}(e(c_1, \dots, c_n)) \otimes \text{sq}(f(c_1, \dots, c_n)) \otimes \text{beg}_b(c_j). \end{aligned}$$

The functions A_i for $i \in [8]$ describe complete and consistent set of conditions. It means that, for every c_1, \dots, c_n , there is exactly one i such that $A_i(c_1, \dots, c_n) = (1)$ and, for $j \neq i$, $A_j(c_1, \dots, c_n) = (0)$. For example, $A_6(c_1, \dots, c_n) = (1)$ means that c_j is not empty, word $e(c_1, \dots, c_n)$ is also not empty, word $f(c_1, \dots, c_n)$ is empty, and a occurs in c_j . Functions p_1, \dots, p_8 belong to $P(n, k)$ (see Lemma 4.3). Function p is obtained from functions in $P(n, k)$ by multiple application of Lemma 4.2; therefore, $p \in P(n, k)$. It is easy to notice that $w \in \lambda \text{def}(n)$ (see Lemma 5.1).

Now, let us check that the term $\delta_j^k(E, F, G)$ represents the pair (w, p) . Let c_1, \dots, c_n be fixed words of Σ^* . We count out the application of the term $\delta_j^k(E, F, G)$ to the arguments $\underline{c}_1, \dots, \underline{c}_n$:

$$\begin{aligned} \delta_j^k(E, F, G) \underline{c}_1 \dots \underline{c}_n &=_{\beta\eta} \lambda uvx_{k-1} \dots x_0. \underline{c}_j (\lambda z. Ec_1 \dots \underline{c}_n uvx_{k-1} \dots x_0 z) \\ &\quad (\lambda z. F \underline{c}_1 \dots \underline{c}_n uvx_{k-1} \dots x_0 z) (G \underline{c}_1 \dots \underline{c}_n uvx_{k-1} \dots x_0) \end{aligned}$$

now we make an α -conversion which changes x_i to x_{i+1} for $i \in [k-1]$ and variable z to x_0 , and we obtain

$$=_{\beta\eta} \lambda u v x_k \dots x_1 . \underline{c_j} (\lambda x_0 . E \underline{c_1} \dots \underline{c_n} u v x_k \dots x_1 x_0) (\lambda x_0 . F \underline{c_1} \dots \underline{c_n} u v x_k \dots x_1 x_0) \\ (G \underline{c_1} \dots \underline{c_n} u v x_k \dots x_1)$$

from the inductive assumption that E, F, G represents pairs $(w_e, e), (w_f, f)$, and (w_g, g) respectively we obtain

$$=_{\beta\eta} \lambda u v x_k \dots x_1 . \underline{c_j} (\lambda x_0 . \underline{w_e(c_1, \dots, c_n)} u v x_{[e(c_1, \dots, c_n)]}) \\ (\lambda x_0 . \underline{w_f(c_1, \dots, c_n)} u v x_{[f(c_1, \dots, c_n)]}) (\underline{w_g(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]+1})$$

then, according to the conditions described by the A_i functions, we have

$$=_{\beta\eta} \begin{cases} \lambda u v x_k \dots x_1 . \underline{w_1(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]+1} & \text{iff } A_1(c_1, \dots, c_n) = 1, \\ \lambda u v x_k \dots x_1 . \underline{w_2(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]+1} & \text{iff } A_2(c_1, \dots, c_n) = 1, \\ \lambda u v x_k \dots x_1 . \underline{w_3(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]+1} & \text{iff } A_3(c_1, \dots, c_n) = 1, \\ \lambda u v x_k \dots x_1 . \underline{w_4(c_1, \dots, c_n)} u v x_{[f(c_1, \dots, c_n)]} & \text{iff } A_4(c_1, \dots, c_n) = 1, \\ \lambda u v x_k \dots x_1 . \underline{w_5(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]+1} & \text{iff } A_5(c_1, \dots, c_n) = 1, \\ \lambda u v x_k \dots x_1 . \underline{w_6(c_1, \dots, c_n)} u v x_{[e(c_1, \dots, c_n)]} & \text{iff } A_6(c_1, \dots, c_n) = 1, \\ \lambda u v x_k \dots x_1 . \underline{w_7(c_1, \dots, c_n)} u v x_{[e(c_1, \dots, c_n)]} & \text{iff } A_7(c_1, \dots, c_n) = 1, \\ \lambda u v x_k \dots x_1 . \underline{w_8(c_1, \dots, c_n)} u v x_{[f(c_1, \dots, c_n)]} & \text{iff } A_8(c_1, \dots, c_n) = 1 \end{cases}$$

after parallel α -conversion which changes x_{i+1} to x_i for $i \in [k]$, we obtain functions w_i, p_i and A_i such as defined above

$$=_{\beta\eta} \begin{cases} \lambda u v x_{k-1} \dots x_0 . \underline{w_1(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]} & \text{iff } A_1(c_1, \dots, c_n) = 1, \\ \lambda u v x_{k-1} \dots x_0 . \underline{w_2(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]} & \text{iff } A_2(c_1, \dots, c_n) = 1, \\ \lambda u v x_{k-1} \dots x_0 . \underline{w_3(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]} & \text{iff } A_3(c_1, \dots, c_n) = 1, \\ \lambda u v x_{k-1} \dots x_0 . \underline{w_4(c_1, \dots, c_n)} u v x_{[f(c_1, \dots, c_n)]} & \text{iff } A_4(c_1, \dots, c_n) = 1, \\ \lambda u v x_{k-1} \dots x_0 . \underline{w_5(c_1, \dots, c_n)} u v x_{[g(c_1, \dots, c_n)]} & \text{iff } A_5(c_1, \dots, c_n) = 1, \\ \lambda u v x_{k-1} \dots x_0 . \underline{w_6(c_1, \dots, c_n)} u v x_{[e'(c_1, \dots, c_n)]} & \text{iff } A_6(c_1, \dots, c_n) = 1, \\ \lambda u v x_{k-1} \dots x_0 . \underline{w_7(c_1, \dots, c_n)} u v x_{[e'(c_1, \dots, c_n)]} & \text{iff } A_7(c_1, \dots, c_n) = 1, \\ \lambda u v x_{k-1} \dots x_0 . \underline{w_8(c_1, \dots, c_n)} u v x_{[f'(c_1, \dots, c_n)]} & \text{iff } A_8(c_1, \dots, c_n) = 1 \end{cases}$$

finally, according to the definitions of w and p , we get

$$=_{\beta\eta} \lambda u v x_{k-1} \dots x_1 . \underline{w(c_1, \dots, c_n)} u v x_{[p(c_1, \dots, c_n)]}. \quad \square$$

Theorem 5.6. Every term $T \in \text{Cl}(B^n \rightarrow B)$ represents some function from the set λdef .

Proof. This theorem is only a special case of Theorem 5.5. Type $B^n \rightarrow B$ is equal to $\tau(n, 1)$ so that term T represents some pair (w, p) , where $w \in \lambda\text{def}(n)$ and $p \in P(n, 1)$ (see Theorem 5.5). The set $P(n, 1)$ consists of one function only, namely $c(n, \Lambda)$. Therefore, T represents a pair $(w, c(n, \Lambda))$ in type $\tau(n, 1)$, but this is equivalent with T representing w in $B^n \rightarrow B$. \square

Theorem 5.7. $\text{FUN}(\mathcal{B})$ is finitely generated.

Proof. Let us show that the set of representatives of the distinguished word functions (see Section 4) is a base for $\text{FUN}(\mathcal{B})$. Suppose $T \in \text{FUN}(\mathcal{B})$. Term T represents some $w \in \lambda \text{def}$ (Theorem 5.6). If function w is a composition of functions from the base, then w is a combination of terms from the base. It is easy to check by induction on the construction of w that $T \equiv w$. \square

Example 5.8. This example is designed to show the algorithm introduced in Theorem 5.5 which, for a given term of type $\tau(n, k)$, returns the pair of word functions represented by this term. The special case of type $\tau(n, k)$ is the type $\mathcal{B}^n \rightarrow \mathcal{B}$ when $k = 1$. Let $T \in \mathcal{B} \rightarrow \mathcal{B}$ be the term $\lambda cuvx.c(\lambda z.ux)(\lambda z.z)(vx)$ where $c \in \mathcal{B}$, $u, v \in (O \rightarrow O)$ and $x, z \in O$. The problem is to find the function $\Sigma^* \rightarrow \Sigma^*$ represented by this term. We can decompose the term using the grammar technique and obtain $T = \delta_1^1(\beta^2(\alpha_1^2), \alpha_0^2, \gamma^1(\alpha_0^1))$. Term α_1^2 is $\lambda cuvx_1x_0.x_1$ which represents pair $(c(1, \Lambda), c(1, (1)))$. Term $\alpha_0^2 = \lambda cuvx_1x_0.x_0$ represents pair $(c(1, \Lambda), c(1, (0)))$. Term $\alpha_0^1 = \lambda cuvx_0.x_0$ represents pair $(c(1, \Lambda), c(1, (0)))$. Using Theorem 5.5 we can easily find the representation for $\beta^2(\alpha_1^2)$. This term represents pair $(c(1, a), c(1, (1)))$. Term $\gamma^1(\alpha_0^1)$ represents pair $(c(1, b), c(1, (0)))$.

The main part is the construction of a representative for $\delta_1^1(\beta^2(\alpha_1^2), \alpha_0^2, \gamma^1(\alpha_0^1))$ by means of representatives of previous terms. We have three pairs $w_f = c(1, \Lambda)$, $f = c(1, (0))$; $w_e = c(1, a)$, $e = c(1, (1))$; $w_g = c(1, b)$, $g = c(1, (0))$ such that (w_e, e) is represented by $\beta^2(\alpha_1^2)$, (w_f, f) is represented by α_0^2 , and (w_g, g) is represented by $\gamma^1(\alpha_0^1)$. According to the construction in Theorem 5.5, the pair (w, p) is defined as

$$w(c) = \bigoplus_{i=1}^8 \text{sub}(A_i(c), w_i(c), \Lambda), \quad p(c) = \bigoplus_{i=1}^8 [A_i(c) \otimes p_i(c)],$$

where the functions

$$A_1(c) = \overline{\text{sq}}(c), \quad A_2(c) = A_3(c) = A_4(c) = A_7(c) = A_8(c) = (0),$$

$$A_5(c) = \text{sq}(c) \otimes \overline{\text{sq}}(\text{occ}_a(c)) \quad \text{and} \quad A_6(c) = \text{sq}(c) \otimes \text{occ}_a(c).$$

It is sufficient to find p_i and w_i only for this i which has $A_i(c) \neq (0)$. Therefore,

$$w_1(c) = w_g(c) = b,$$

$$w_5(c) = \text{app}(\text{sub}(c, \Lambda, w_f(c)), w_g(c)) = \text{app}(\text{sub}(c, \Lambda, \Lambda), b) = b,$$

$$w_6(c) = \text{app}(\text{sub}(\text{cut}_b(c), \Lambda, w_f(c)), w_e(c)) = \text{app}(\text{sub}(\text{cut}_b(c), \Lambda, \Lambda), a) = a.$$

Functions p_i are

$$p_1(c) = g(c) = \Lambda, \quad p_5(c) = g(c) = (0), \quad p_6(c) = e'(c) = (0)$$

so that the function w is as follows:

$$w(c) = \text{app}(\text{sub}(\overline{\text{sq}}(c), b, \Lambda), \text{app}(\text{sub}(\text{sq}(c) \otimes \overline{\text{sq}}(\text{occ}_a(c)), b, \Lambda), \\ \text{sub}(\text{sq}(c) \otimes \text{occ}_a(c), a, \Lambda))).$$

Roughly speaking, the function w can be described as:

$$w(c) = \begin{cases} b & \text{iff } c = \Lambda, \\ a & \text{iff } c \neq \Lambda \text{ and } c \text{ includes the letter } a, \\ b & \text{iff } c \neq \Lambda \text{ and } c \text{ does not include the letter } a. \end{cases}$$

Acknowledgment

I would like to thank the anonymous referee for many helpful suggestions and valuable comments.

References

- [1] H.P. Barendregt, *The Lambda Calculus*, Studies in Logic and the Foundations of Mathematics (North-Holland, Amsterdam, 1981).
- [2] H.B. Curry and R. Feys, *Combinatory Logic Vol 1* (North-Holland Amsterdam 1968).
- [3] H. Friedman, *Equality between Functionals*, in: Lecture Notes in Mathematics 453 (Springer, Berlin, 1975) 22–37.
- [4] G. Huet, A unification algorithm for typed λ -calculus, *Theoret. Comput. Sci.* 1 (1975) 27–58.
- [5] S.L. Kleene, *Introduction to Mathematics* (Van Nostrand, New York, 1952).
- [6] I. Rosenberg, The ramification of Slupecki criterion in many-valued logic, *Proc. 24th Conf. on the History of Logic*, Cracow, April 1978.
- [7] J.B. Rosser and A.R. Turquette, *Many-valued Logics* (North-Holland, Amsterdam, 1958).
- [8] H. Schwichtenberg, Definierbare Funktionen in λ -Kalkuli mit Typen, *Arch. Math. Logik Grundlagenforsch.* 17 (1975/76) 113–114.
- [9] R. Statman, The typed λ -calculus is not elementary recursive, *Theoret. Comput. Sci.* 9 (1979) 73–81.
- [10] R. Statman, On the existence of closed terms in the typed λ -calculus I, in: R. Hindley and J. Seldin, eds, *Combinatory Logic, Lambda Calculus, and Formalism* (Academic Press, New York, 1980).
- [11] R. Statman, λ -Definable functionals and $\beta\eta$ conversion, *Arch. Math. Logik Grundlagenforsch.* 23 (1983) 21–26.
- [12] M. Zaionc, The set of unifiers in typed λ -calculus as regular expression, in: Lecture Notes in Computer Science 202 (Springer, Berlin, 1985) 430–440.
- [13] A. Church, *The Calculi of Lambda-Conversion* (Princeton University Press, Princeton, NY, 1941).
- [14] Z. Manna, *Mathematical Theory of Computation* (McGraw-Hill, New York, 1974).