

	Term Test.	1 (DSGT)	Shasvad Shah	
			60004220126	
			Comps	
		Assignment		
1	$A = \{1, 4, 7, 13\}$			
	R = { {1,43, {4,79, {7,43, {1,139}}			
	Find transition	e dosure using a	washells algorithm.	
		1 4 7 13	•	
	Mr = 1	0 1 0 1		
i	4	0 0 1 0		
	7	0 1 0 0		
	13	0 0 0 0		
		1 4 7 13		
	Let $\omega_0 = 1$	0 1 0 1	,	
	4	0 0 1 0		
	7	00100		
√	13	0 0 0 0		
			Select column 1, row 1	
	1	1 4 7 13	C,= { } R,= {4,13}	
	w ₁ = 1 e	0 1 0 1	C, x R, = \$ (no new addition)	
	4 0	0 0 1 0		
		0 0 0		
	13 0	0 0 0		
	1		C2 = {1,7} R2 = {7}	
		1 4 7 13		
	W ₂ = 1	0 81 1		
	t _t	0 0 1 0		
	7	0 1 1 0		
Sundaram	3	0 0 0 0		
(Junuarani)	FOR EDUCATIONAL USE			
l	II		l de la companya de	

	$C_3 = \{1, 4, 7, 3, R_3 = \{4, 7, 7, 3, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$
	$C_3 \times R_3 = \{ (1,4), (1,7), (4,4), (4,7), (7,4), (7,7) \}$
	Pair (4,4) does not exist therefore needs to be added, in W3
	1 4 7 13_
	$\omega_3 = 1 $
	4 0 1 1 0
	7 0 1 1 0
	13 0 0 0 0
	$Cu = \begin{cases} 3 & R_4 = \begin{cases} 1 & \emptyset \end{cases} \end{cases}$
	Cux Ry = \$ (no new pair added
	1 4 7 13
	$\omega_4 = 1 0 1 1 1$
	4 0 1 1 0
	7 0 1 1 0
	13 0 0 0 0
	Thus the reflect transitive closure of R =
	$R = \{ (1, u) (1, 7) (1, 13) (4, 4) (4, 7) (7, 4) (7, 7) \}$
2	Define reflexine and symmetric closure of a relation.
	$A = \{1, 2, 3, 4\}$
	$R = \frac{1}{2} \left((1,1) \left(1,2 \right) \left(1,4 \right) \left(2,4 \right) \left(3,1 \right) \left(3,2 \right) \left(4,2 \right) \left(4,3 \right) \left(4,4 \right) \frac{2}{3}$
	Reflexine closure - If R is a relation defined on A which
	is not replexive, and if Δ denotes equality relation Δ on A then $R_1 = RU\Delta$ is the replexive closure of a relation
(Sundaram)	FOR EDUCATIONAL USE

	Ron A is obtained by adding (a,a) to R for each (2) EA
	Symmetric Closure - If R is a relation defined on A which is not symmetric than R = RUR' is the symmetric closure of R. The symmetric closure of R is obtained by adding (b, a) to R for each (a, b) ER.
	Reflexine dosure of R $\Delta = \left((1,1), (2,2), (3,3), (4,4) \right)$ $R_1 = RU\Delta$
1	$R_{1} = \{ (1,1), (1,2), (1,4), (2,2), (2,4), (3,1), (3,2), (3,3), (4,2), (4,3), (4,4) \}$
	retric closure of R $R = \{(1,1), (1,2), (1,4), (2,4), (2,2), (2,2), (3,2), (4,2), (2,2), (4,$
	$R = \{(1,1)(1,2)(1,4)(2,4)(3,1)(3,2)(4,2)(4,3)(4,4)\}$ $R^{-1} = \{(1,1)(2,1)(4,1)(4,2)(1,3)(2,3)(2,4)(30,39)(4,4)\}$ $RUR^{-1} = R,$
	$R_{,} = \{(1,1)(1,2)(2,1)(1,4)(4,1)(2,4)(4,2)(3,1)(1,3)(3,2)(2,3) $ $(4,3)(3,4)(4,4)$
3	$A = \{1, 2, 3, 4, 5\}$ A relation R is defined on A if A aRb if a Compute R² and R°
<u>Sundaram</u> ®	$R = \left\{ (1,2) (1,3) (1,4) (1_{6},5) (2,3) (2,4) (2,5) (3,4) (3,5) (4,5) \right\}$ FOR EDUCATIONAL USE

	0
	From the given digraph we
	(4) can conclude
	IR ² 3 since IR2 and 2R3
	10211
	1R4 since 1R3 and 3R4 1R25 since 1R4 and 4R5
	2 R ² 5 since 2 R 4 and 4 R 5
	2R24 since 2R3 and 3R4
	3R25 since BR4 and 4R5
	$R^2 = \{(1,3)(1,4)(1,5)(2,5)(2,4)(3,5)\}.$
	R_2
	(4) (3)
- 11	
	IR [®] 2 since IR2
	1 R 3 since 1R3
	$1R^{\infty} 4 \qquad \text{since} \qquad 1R4$ $1R^{\infty} 5 \qquad \text{since} \qquad 1R^{\infty}$
	0.08
	2 R 5 Sin 205
	$3 R^{\infty} 4$, since $3 R 4$
Sundaram	4 R S Since 4 P FOR EDUCATIONAL USE
1	11 3 R° 5 Since 3R5

	(5)
,	
	R ∞
	(2)
4	Construct truth table and check: (P > Q) (>Q > NP)
	P Q $\sim P$ $\sim Q$ $P \rightarrow Q$ $\sim Q \rightarrow \sim P$
-	TTFTT
	TIFFTF
	FTTFT
	FFTTT
-	
	$(p \Rightarrow a) \leftrightarrow (na \Rightarrow nb)$
	T So from the truth table we
	T can say that it is a tautlogy
	T
	T
5	Find the number of integers between 1 to 60 which are
	not divisible by 2, nor by 3, nor 5.
	n(A) = numbers divisible by 2 = 60 = 30
	2
	n(B) = numbers divisible by 3 = 60 = 20
-	3
-	n(c) = numbers divisible by 5 = 60 = 12
	5
	n(AnB) = no. divisible by 223 = 60 = 10
	2×3
(Sundaram)	FOR EDUCATIONAL USE

|AUBUC| = |AI + |BI + |CI + |ANB nc| + - |ANB| - |ANC) - 1Bnc1 n(Anc) = no. divisible by 285 = 60 = 400 6 n(BNC) = no.decishle by 315 = 60 = 4n (Anbnc) = no. divisble by 2,3,5 = 60 = 2 2x3x5 : [AUBUC] = 30+20+12-6-4-10+ [ANBAC] 60-42 = 1ABBAC] 18-2 = | AUBUC] 16 = No.s not divistale by 2,3 & 5. (Sundaram) FOR EDUCATIONAL USE