

Machine Learning for Business

Module 8: Survival analysis Day 4, 13.00 – 16.00

Asst. Prof. Dr. Santitham Prom-on

Department of Computer Engineering, Faculty of Engineering King Mongkut's University of Technology Thonburi

Logistic regression vs time

- In logistic regression, we were interested in studying how risk factors were associated with presence or absence of disease.
- Sometimes, we are interested in how a risk factor or treatment affects time to disease or some other event.
- In these cases, logistic regression is not appropriate.

Survival analysis

- Survival analysis is used to analyze data in which the time until the event is of interest.
- The response is often referred to as a failure time, survival time, or event time.

g-able

Example:

- Time until tumor recurrence
- Time until a machine part fails
- Time until mobile phone recharge
- Time until the next credit card usage

The survival time response

- Usually continuous
- May be incompletely determined for some subjects
 - For some subjects we may know that their survival time was at least equal to some time *t*.
 - Whereas, for other subjects, we will know their exact time of event.
- Incompletely observed responses are censored
- Is always≥0.

g_{*}able

g-able

Analysis issue

- If there is no censoring, standard linear regression procedures could be used.
- However, these may be inadequate because
 - Time to event is restricted to be positive and has a skewed distribution.
 - The probability of surviving past a certain point in time may be of more interest than the expected time of event.
 - The hazard function, used for regression in survival analysis, can lend more insight into the failure mechanism than linear regression.

Censoring

- Censoring is present when we have some information about a subject's event time, but we don't know the exact event time.
- For the analysis methods we will discuss to be valid, censoring mechanism must be independent of the survival mechanism.

Reasons censoring might occur

- A subject does not experience the event before the study ends
- A person is lost to follow-up during the study period
- A person withdraws from the study

These are all examples of right-censoring.

Terminology and notation

- T denotes the response variable, $T \ge 0$.
- The survival function is

$$S(t) = Pr(T > t) = 1 - F(t).$$

g-able

g-able

Survival function

- The survival function gives the probability that a subject will survive past time *t*.
- As t ranges from 0 to ∞ , the survival function has the following properties
 - It is non-increasing
 - At time t=0, S(t)=1. In other words, the probability of surviving past time 0 is 1.
 - At time $t=\infty$, $S(t)=S(\infty)=0$. As time goes to infinity, the survival curve goes to 0.
- In theory, the survival function is smooth.
- In practice, we observe events on a discrete time scale (days, weeks, etc.).

• The hazard function, h(t), is the instantaneous rate at which events occur, given no previous events.

$$h(t) = \lim_{\Delta t \to 0} \frac{Pr(t < T \le t + \Delta t | T > t)}{\Delta t} = \frac{f(t)}{S(t)}.$$

 \bullet The cumulative hazard describes the accumulated risk up to time t, $H(t)=\int_0^t h(u)du.$

g_{*}able

If we know any one of the functions S(t), H(t), or h(t), we can derive the other two functions.

$$h(t) = -\frac{\partial \log(S(t))}{\partial t}$$

$$H(t) = -\log(S(t))$$

$$S(t) = \exp(-H(t))$$

Survival data

How do we record and represent survival data with censoring?

- ullet T_i denotes the response for the ith subject.
- ullet Let C_i denote the censoring time for the ith subject
- ullet Let δ_i denote the event indicator

$$\delta_i = \left\{ \begin{array}{l} 1 \text{ if the event was observed } (T_i \leq C_i) \\ 0 \text{ if the response was censored } (T_i > C_i). \end{array} \right.$$

• The observed response is $Y_i = \min(T_i, C_i)$.

Example

	T_i	C_{i}	Y_i	δ_i
•	80	100	80	1
	40	80	40	1
	74+	74	74	0
	85+	85	85	0
	40	95	40	1

Termination of study

Estimating S(t) and H(t)

If we are assuming that every subject follows the same survival function (no covariates or other individual differences), we can easily estimate S(t).

- We can use nonparametric estimators like the Kaplan-Meier estimator
- We can estimate the survival distribution by making parametric assumptions
 - exponential
 - Weibull
 - Gamma
 - log-normal

Non-parametric estimation of S

- When no event times are censored, a non-parametric estimator of S(T) is $1 F_n(t)$, where $F_n(t)$ is the empirical cumulative distribution function.
- ullet When some observations are censored, we can estimate S(t) using the Kaplan-Meier product-limit estimator.

t	No. subjects	Deaths	Censored	Cumulative
	at risk			survival
59	26	1	0	25/26 = 0.962
115	25	1	0	$24/25 \times 0.962 = 0.923$
156	24	1	0	$23/24 \times 0.923 = 0.885$
268	23	1	0	$22/23 \times 0.885 = 0.846$
329	22	1	0	$21/23 \times 0.846 = 0.808$
353	21	1	0	$20/21 \times 0.808 = 0.769$
365	20	0	1	$20/20 \times 0.769 = 0.769$
377	19	0	1	$19/19 \times 0.769 = 0.769$
421	18	0	1	$18/18 \times 0.769 = 0.769$
431	17	1	0	$16/17 \times 0.769 = 0.688$
:				1
:				!

്ഷ് g₁able

R: Kaplan-Meier estimator Loading data

library(survival)
data(ovarian)
head(ovarian)

	futime	fustat	age	resid.ds	rx	ecog.ps
1	59	1	72.3315	2	1	1
2	115	1	74.4932	2	1	1
3	156	1	66.4658	2	1	2
4	421	0	53.3644	2	2	1
5	431	1	50.3397	2	1	1
6	448	0	56.4301	1	1	2

Survival object

?Surv

Arguments

for right censored data, this is the follow up time. For interval data, the first argument is the starting time for the interval.

The status indicator, normally 0=alive, 1=dead. Other choices are TRUE/FALSE (TRUE = death) or 1/2 (2=death). For interval censored data, the status indicator is 0=right censored, 1=event at time, 2=left censored, 3=interval censored. Although unusual, the event indicator can be omitted, in which case all subjects are assumed to have an

event.

R: Kaplan-Meier estimator Loading data

S1 <- Surv(ovarian\$futime,ovarian\$fustat)
S1</pre>

```
[1]
       59
             115
                   156
                          421+
                                 431
                                       448+
                                              464
                                                     475
                                                            477+
[10]
      563
             638
                   744+
                          769+
                                 770+
                                       803+
                                              855+ 1040+ 1106+
[19] 1129+ 1206+ 1227+
                          268
                                 329
                                       353
                                              365
                                                     377 +
```


Fitting survival data

fit1 <- survfit(S1 ~ 1)
summary(fit1)</pre>

g-able

g_{*}able

Call: survfit(formula = S1 ~ 1)

```
time n.risk n.event survival std.err lower 95% CI upper 95% CI
  59
         26
                         0.962
                                                0.890
                   1
                                 0.0377
                                                              1.000
 115
         25
                   1
                         0.923
                                0.0523
                                                0.826
                                                              1.000
 156
         24
                   1
                         0.885
                                 0.0627
                                                0.770
                                                              1.000
 268
         23
                   1
                         0.846
                                 0.0708
                                                0.718
                                                              0.997
 329
         22
                   1
                         0.808
                                 0.0773
                                                0.670
                                                              0.974
 353
         21
                         0.769
                                 0.0826
                                                0.623
                                                              0.949
                   1
 365
         20
                   1
                         0.731
                                0.0870
                                                0.579
                                                              0.923
 431
         17
                   1
                         0.688
                                0.0919
                                                0.529
                                                              0.894
 464
         15
                   1
                         0.642
                                0.0965
                                                0.478
                                                              0.862
 475
         14
                   1
                         0.596
                                0.0999
                                                0.429
                                                              0.828
 563
         12
                   1
                         0.546
                                0.1032
                                                0.377
                                                              0.791
 638
         11
                   1
                         0.497
                                0.1051
                                                0.328
                                                              0.752
```


g-able

g_{*}able

Parametric survival functions

- The Kaplan-Meier estimator is a very useful tool for estimating survival functions.
- Sometimes, we may want to make more assumptions that allow us to model the data in more detail.

Benefit of using parametric survival functions

By specifying a parametric form for S(t), we can

- easily compute selected quantiles of the distribution
- estimate the expected failure time
- derive a concise equation and smooth function for estimating S(t),H(t) and h(t)
- estimate S(t) more precisely than KM assuming the parametric form is correct!

∰ g₁able

∰ g_∗able

Suitable distribution for survival analysis

- Weibull
- Exponential
- log-normal (log(T) has a normal distribution)
- log-logistic

Weibull distribution

∰ g_{*}able

്ണ് g₁able

Exponential distribution

Estimation for parametric S(t)

We will use maximum likelihood estimation to estimate the unknown parameters of the parametric distributions.

- ullet If Y_i is uncensored, the ith subject contributes $f(Y_i)$ to the likelihood
- If Y_i is censored, the *i*th subject contributes $Pr(y > Y_i)$ to the likelihood.

The joint likelihood for all n subjects is

$$L = \prod_{i:\delta_i=1}^n f(Y_i) \prod_{i:\delta_i=0}^n S(Y_i).$$

g-able

The log-likelihood can be written as

$$\log L = \sum_{i:\delta_i=1}^{n} \log(h(Y_i)) - \sum_{i=1}^{n} H(Y_i).$$

Example

- Let's look at the ovarian data set in the survival library in R.
- Suppose we assume the time-to-event follows an exponential distribution, where

$$h(t) = \lambda$$

and

$$S(t) = \exp(-\lambda t).$$

g-able

R: parametric survival function

summary(s2)

Interpreting parameter

In the R output,

$$\lambda = \exp(-(Intercept))$$

= $\exp(-7.17)$

Therefore,

$$S(t) = \exp(-\exp(-7.17)t).$$

Survival analysis with covariate

• If we assumes that "rx", may affect the survival function, we may put it in as a factor

fit3 <- survfit(Surv(futime, fustat) ~ rx, data = ovarian)
summary(fit3)</pre>

Call: survfit(formula = Surv(futime, fustat) ~ factor(rx), data = ovarian)

factor(rx)=1								
time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
59	13	1	0.923	0.0739		0.789		1.000
115	12	1	0.846	0.1001		0.671		1.000
156	11	1	0.769	0.1169		0.571		1.000
268	10	1	0.692	0.1280		0.482		0.995
329	9	1	0.615	0.1349		0.400		0.946
431	8	1	0.538	0.1383		0.326		0.891
638	5	1	0.431	0.1467		0.221		0.840
factor(rx)=2								
time	n.risk	n.event	survival	std.err	lower	95% CI	upper	95% CI
353	13	1	0.923	0.0739		0.789		1.000
365	12	1	0.846	0.1001		0.671		1.000
464	9	1	0.752	0.1256		0.542		1.000
475	8	1	0.658	0.1407		0.433		1.000
563	7	1	0.564	0.1488		0.336		0.946

g-able

∰ g_{*}able

plot(fit3,xlab="t", ylab=expression(hat(S)*"(t)"),col=1:2)

Thank you Question?