academiadeimos.es

2. Sea $\alpha > 0$. Se define por recurrencia la sucesión (x_n) mediante $x_1 = \alpha$,

$$2x_{n+1} = \frac{1}{2} + x_n^2, \qquad n \in \mathbb{N}$$

academia@academiadeimos.es

Estudie la convergencia de la sucesión según los valores de α .

Este problema es el 16.8 del volumen 8 de Problemas de Oposiciones de Editorial Deimos y allí figura resuelto.

SOLUCIÓN: La función asociada a la recurrencia es la función $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = \frac{1}{4}(1+2x^2)$. Esta función es continua y derivable en \mathbb{R} , siendo

$$f'(x) = x,$$

por lo que f es estrictamente decreciente en el intervalo $(-\infty,0]$ y estrictamente creciente en el intervalo $[0,+\infty)$.

• $(x_n) \subset (0,+\infty)$, pues es evidente que $x_n > 0$ para todo $n \in \mathbb{N}^+$.

• Si la sucesión (x_n) fuese convergente hacia un límite $\ell \in \mathbb{R}$, al tomar límites en la recurrencia se tendría

$$\ell = f(\ell) \quad \Leftrightarrow \quad 2\ell = \frac{1}{2} + \ell^2 \quad \Leftrightarrow \quad 2\ell^2 - 4\ell + 1 = 0 \quad \Leftrightarrow \quad \ell = 1 \pm \frac{\sqrt{2}}{2}$$

Por tanto, en caso de convergencia, los únicos números reales aspirantes a límite de (x_n) son $\ell = 1 \pm \frac{\sqrt{2}}{2}$.

• (x_n) es estrictamente monótona por ser f estrictamente creciente en el intervalo $[0,+\infty)$. Dado que los dos primeros términos de la sucesión son $x_1 = \alpha$ y $x_2 = \frac{1+2\alpha^2}{4}$ y que, por tanto

$$x_2 - x_1 = \frac{1}{4} (2\alpha^2 - 4\alpha + 1) = \frac{1}{2} \left(\alpha - 1 - \frac{\sqrt{2}}{2} \right) \left(\alpha - 1 + \frac{\sqrt{2}}{2} \right), \tag{1}$$

distinguimos como sigue:

i) $0 < \alpha < 1 - \frac{\sqrt{2}}{2}$. Los dos paréntesis de (1) son negativos y $x_2 - x_1 > 0$, es decir, $x_2 > x_1$, luego (x_n) es estrictamente creciente. La sucesión (x_n) está además acotada superiormente por $1 - \frac{\sqrt{2}}{2}$. Razonando inductivamente, para n = 1 es $x_1 = \alpha < 1 - \frac{\sqrt{2}}{2}$ y si suponemos que $x_n < 1 - \frac{\sqrt{2}}{2}$, entonces por ser f estrictamente creciente

academiadeimos.es

$$x_{n+1} = f(x_n) < f\left(1 - \frac{\sqrt{2}}{2}\right) = 1 - \frac{\sqrt{2}}{2}$$

Por tanto, (x_n) es estrictamente creciente y acotada superiormente por $1-\frac{\sqrt{2}}{2}$, luego es convergente. Su límite es obligatoriamente $\ell=1-\frac{\sqrt{2}}{2}$.

ii) $\alpha = 1 - \frac{\sqrt{2}}{2}$. Entonces se deduce de (1) que $x_2 - x_1 = 0$, es decir, $x_2 = x_1$, luego (x_n) es la sucesión constante $x_n = 1 - \frac{\sqrt{2}}{2}$, que converge al número real $1 - \frac{\sqrt{2}}{2}$.

iii) $1-\frac{\sqrt{2}}{2}<\alpha<1+\frac{\sqrt{2}}{2}$. Resulta de (1) que $x_2-x_1<0$, es decir, $x_2< x_1$, y por lo ya comentado, (x_n) es estrictamente decreciente. Además, (x_n) está acotada inferiormente. Comprobamos por inducción que $x_n>1-\frac{\sqrt{2}}{2}$. Es cierto para n=1 y si $x_n>1-\frac{\sqrt{2}}{2}$ para algún $n\geq 1$, por el crecimiento estricto de f:

academiadeimos.es

academia@academiadeimos.es

Por ello, la sucesión (x_n) es convergente y su límite es $\ell = 1 - \frac{\sqrt{2}}{2}$.

iv) $\alpha = 1 + \frac{\sqrt{2}}{2}$. Ahora también deducimos de (1) $x_1 = x_2$ y (x_n) es la sucesión constante $x_n = 1 + \frac{\sqrt{2}}{2}$, cuyo límite es $1 + \frac{\sqrt{2}}{2}$.

v) $\alpha > 1 + \frac{\sqrt{2}}{2}$. Se obtiene inmediatamente de (1) que $x_2 - x_1 > 0$, es decir, $x_2 > x_1$ y por lo ya expuesto (x_n) es una sucesión estrictamente creciente. Si la sucesión fuese convergente hacia un límite real ℓ , dicho límite sería $\ell = 1 \pm \frac{\sqrt{2}}{2}$, pero esto es imposible puesto que el crecimiento estricto de (x_n) obliga a que sea $l > x_1 = \alpha > 1 + \frac{\sqrt{2}}{2}$. Por tanto, (x_n) es monótona divergente hacia $+\infty$.

