PORTFOLIO ANALYSIS AND OPTIMIZATION: A DATA-DRIVEN APPROACH

Ngoc Tran

DSA 5303 Financial Engineering Final Project

INTRODUCTION

- Modern Portfolio Theory Harry Markowitz (1952)
 - Efficient Frontier
 - Sharpe Ratio
 - Diversification
- Monte-Carlo simulation
- Future stock price diagnostic

MODERN PORTFOLIO THEORY (MPT)

• Assumptions:

- Investors are rational and avoid risk when possible
- Investors aim for maximum return for their investment
- All investors share the aim maximizing expected return
- Commission and taxes are not put into consideration
- All investors have access to same sources and level of all necessary information about decision
- Investors have unlimited access to borrow and lend at risk-free rate

EFFICIENT FRONTIER AND SHARPE RATIO

- Efficient set of portfolios
 - Highest expected return for certain risk
 - Lowest risk for a given expected return
- Adjust portfolio's past and expected future performances
 - High Sharpe ratio is good when compared to similar portfolios with lower returns
 - Normally distributed investment return

DIVERSIFICATION

- MPT advocates for diversification of securities and assets
- MPT extends the diversification concept that differentiate non-systematic risk (i.e. Proper diversification can dampen unsystematic risk)

MONTE-CARLO SIMULATIONS

- Most common approach for portfolio management
- Carrying out repeated trials by using randomly generated inputs (i.e. conducting numbers of iterations by using random weights) and observing the outcomes from complex scenarios based on probabilities of certain events occurring
- Higher iterations, higher optimization accuracy
- Use simulation to figure out allocation for each stock and visualize the returns of each stocks against volatility (risk) to establish shape of EF
- 10000 iterations ~ stock scenarios ~ numbers of stocks

LONG-TERM SHORT TERM MEMORY (LSTM) FOR PRICE PREDICTION

- Sequence prediction problems due to past storage capability
- 3-dimensional input data structures:
 - Batch-size
 - Time-steps
 - Numbers of features in one input sequence
- Model architectures in Keras:
 - Sequential -> invoke neural network
 - LSTM
 - Dropout rate

Input shape for LSTM network

EXPLORATORY DATA ANALYSIS

AAPL

• Start date: Jan 2014

• Stocks: Apple (APPL), IBM, Microsoft (MSFT), Goldman Sachs (GS), JP Morgan Chase (JPM), Walmart (WMT)

Adjusted close date

date						
2014-01-02	73.523423	168.112371	162.670896	52.761509	33.532800	71.343743
2014-01-03	71.908415	169.309847	163.644133	53.169389	33.307202	71.108673
2014-01-06	72.300536	170.469309	163.082988	53.477565	32.603338	70.710863
2014-01-07	71.783135	169.442900	166.335879	52.861213	32.856007	70.927850
2014-01-08	72.238063	169.585457	164.810264	53.359733	32.269454	70.367299

MSFT

WMT

EXPLORATORY DATA ANALYSIS

Prices of Stock Daily Return

Daily return =
$$\frac{new \ price - old \ price}{old \ price}$$

EXPLORATORY DATA ANALYSIS

INPUTS AND FORMULAS

- $Total\ Weights = w_1 + w_2 + w_3 + \ldots + w_6 = 1 \rightarrow constraints$
- $Mean(portfolio\ return) = \sum_{i=1}^{n} w_i r_i$
- $Variance(porfolio\ return) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i w_j \rho_{i,j} \sigma_i \sigma_j = w^T \times (cov \times w)$
- $Volatility = \sqrt{w^T \times (cov \times w)}$
- Sharpe Ratio = $\frac{R_p R_f}{\sigma_p}$
 - (Rp: return of portfolio, Rf: risk-free rate, σ_P : s.t.d of portfolio's excess return)
- Scipy's optimize function, method SLQP -> minimize negative Sharpe ratio $\frac{R_p R_f}{\sigma_p}$

RESULTS: INITIAL RANDOMLY SIMULATION

	Maximum Sharpe Ratio Portfolio Allocation	Minimum Volatility Portfolio Allocation
Return	0.22	0.1
Volatility	0.18	0.14

RESULTS: INITIAL RANDOMLY SIMULATION

Maximum Sharpe Ratio Portfolio Allocation

AAPL IBM **JPM MSFT WMT** allocation 18.46 1.75 0.14 31.79 45.85 2.01

Minimum Volatility Portfolio Allocation

AAPL IBM MSFT **WMT** GS allocation 14.66 6.72 26.74 8.45 8.67

RESULTS: OPTIMIZED SIMULATION

Stock	APPL	GS	IBM	JPM	MSFT	WMT
Risk	0.23	0.22	0.19	0.21	0.22	0.19

	Maximum Sharpe Ratio Portfolio Allocation	Minimum Volatility Portfolio Allocation
Return	0.24	0.1
Volatility	0.18	0.14

Portfolio Optimization based on Efficient Frontier with Individual Assets 0.35 efficient frontier Maximum Sharpe ratio 0.30 - 1.0 Minimum volatility **MSFT** 0.25 AAF -0.8 0.20 0.15 **JPM** -0.6 GS 0.10 WMT -0.4 0.05 IBM 0.00 0.14 0.16 0.18 0.20 0.22 volatility

Max Sharpe Ratio: 1.2

RESULTS: OPTIMIZED SIMULATION

Maximum Sharpe Ratio Portfolio Allocation

AAPL GS IBM JPM MSFT WMT allocation 28.425 0.0 0.0 23.63 47.945 0.0

- GS: high volatility and less return
- WMT and IBM: low covariance, low risk and less return, low value
- MSFT and APPL: higher risk, high return
- JPM: less risk than GS but higher return

LSTM APPLICATION ON HIGH-VALUE STOCK PREDICTION

- Inputs:
 - Using StandardScaler()
- The high value of current day depends on the trends in last 60 days
 - timestep = 60
 - X index: i to (i+timestep)
 - Y index: i+timestep
- Train/Test split 65%
 - Convert to 3D tensor

```
print(X_train.shape)
print(x_test.shape)
```

```
(631, 60, 1)
(312, 60, 1)
```

LSTW APPLICATION ON HIGH-VALUE STOCK

PREDICTION

Model: "sequential"

Layer (type)	Output Shape	Param #
lstm (LSTM)	(None, 60, 64)	16896
lstm_1 (LSTM)	(None, 60, 50)	23000
lstm_2 (LSTM)	(None, 60, 32)	10624
lstm_3 (LSTM)	(None, 50)	16600
dense (Dense)	(None, 1)	51

Total params: 67,171 Trainable params: 67,171 Non-trainable params: 0

from sklearn.metrics import mean_squared_error

loss = np.sqrt(mean_squared_error(y_test,y_pred))
loss

CONCLUSIONS

- Using MonteCarlo simulation, the optimal portfolio clarifies the efficient of diversification and confirms the improvement in the returns by having riskier stocks
- The portfolio allocation in this project allows the investors can predict the return of individual stocks that they invest
- The analysis of future stock price using LSTM is helpful to understand the impeding trend in future with the loss of 0.07
- Comprehensive studies in stock performance diagnostic using ML techniques

LINK TO PRESENTATION RECORD

• https://mymedia.ou.edu/media/DSA+5303+Final+Project+%28Updated%29+Ngoc+Tran/l sab5q44d

REFERENCES

- https://shiva-verma.medium.com/understanding-input-and-output-shape-in-lstm-keras-c501ee95c65e
- https://medium.com/python-data/effient-frontier-in-python-34b0c3043314