UNIT-II

FUNDAMENTAL OF AC CIRCUITS

Lecture 12
Prepared By:
Krishan Arora
Assistant Professor and Head

Inductors in an AC Circuit

Kirchhoff's loop rule can be applied and gives:

$$\Delta v + \Delta v_L = 0$$
, or

$$\Delta v - L \frac{di}{dt} = 0$$

$$\Delta V = L \frac{di}{dt} = \Delta V_{max} \sin \omega t$$

Current in an Inductor

The equation obtained from Kirchhoff's loop rule can be solved for the current

$$i_{L} = \frac{\Delta V_{\text{max}}}{L} \int \sin \omega t \, dt = -\frac{\Delta V_{\text{max}}}{\omega L} \cos \omega t$$

$$i_{L} = \frac{\Delta V_{\text{max}}}{\omega L} \sin \left(\omega t - \frac{\pi}{2}\right) \qquad I_{\text{max}} = \frac{\Delta V_{\text{max}}}{\omega L}$$

This shows that the instantaneous current i_L in the inductor and the instantaneous voltage Δv_L across the inductor are out of phase by $(\pi/2)$ rad = 90°.

Phase Relationship of Inductors in an AC Circuit

The current is a maximum when the voltage across the inductor is zero.

 The current is momentarily not changing

For a sinusoidal applied voltage, the current in an inductor always lags behind the voltage across the inductor by 90° ($\pi/2$).

Phasor Diagram for an Inductor

The phasors are at 90° with respect to each other.

This represents the phase difference between the current and voltage.

Specifically, the current lags behind the voltage by 90°.

The current and voltage phasors are at 90° to each other. Δv_L , i_L Δv_I

Inductive Reactance

The factor ωL has the same units as resistance and is related to current and voltage in the same way as resistance.

Because <u>wL</u> depends on the frequency, it reacts differently, in terms of offering resistance to current, for different frequencies.

The factor is the **inductive reactance** and is given by:

Inductive Reactance, cont.

Current can be expressed in terms of the inductive reactance:

$$I_{\text{max}} = \frac{\Delta V_{\text{max}}}{X_I} \text{ or } I_{\text{ms}} = \frac{\Delta V_{\text{ms}}}{X_I}$$

As the frequency increases, the inductive reactance increases

- This is consistent with Faraday's Law:
 - The larger the rate of change of the current in the inductor, the larger the back emf, giving an increase in the reactance and a decrease in the current.

Voltage Across the Inductor

The instantaneous voltage across the inductor is

$$\Delta v_{L} = -L \frac{di}{dt}$$

$$= -\Delta V_{\text{max}} \sin \omega t$$

$$= -I_{\text{max}} X_{L} \sin \omega t$$

Quick Quiz (Poll 1)

- The two quantities are said to be in phase with each other when
- a. the phase difference between two quantities is zero degree or radian
- b. each of them pass through zero values at the same instant and rise in the same direction
- c. each of them pass through zero values at the same instant but rises in the opposite directions
- d. Both (a) or (b)

Quick Quiz (Poll 2)

- The inductive reactance of a circuit
 with the increase in supply frequency
- a. increases
- b. decreases
- c. remains unchanged
- d. unpredictable

Capacitors in an AC Circuit

The circuit contains a capacitor and an AC source.

Kirchhoff's loop rule gives:

$$\Delta v + \Delta v_c = 0$$
 and so

$$\Delta v = \Delta v_C = \Delta V_{\text{max}} \sin \omega t$$

• Δv_c is the instantaneous voltage across the capacitor.

$$\Delta v = \Delta V_{\text{max}} \sin \omega t$$

Capacitors in an AC Circuit, cont.

The charge is $q = C\Delta V_{max} \sin \omega t$

The instantaneous current is given by

$$i_C = \frac{dq}{dt} = \omega C \Delta V_{\text{max}} \cos \omega t$$

or
$$i_C = \omega C \Delta V_{\text{max}} \sin \left(\omega t + \frac{\pi}{2} \right)$$

The current is $\pi/2$ rad = 90° out of phase with the voltage

More About Capacitors in an AC Circuit

The current reaches its maximum value one quarter of a cycle sooner than the voltage reaches its maximum value.

The current leads the voltage by 90°.

The current leads the voltage by one-fourth of a cycle. $\Delta v_C, i_C$ I_{max}

Phasor Diagram for Capacitor

The phasor diagram shows that for a sinusoidally applied voltage, the current always leads the voltage across a capacitor by 90°.

The current and voltage phasors are at 90° to each other.

Capacitive Reactance

The maximum current in the circuit occurs at $\cos \omega t = 1$ which gives

$$I_{\text{max}} = \omega C \Delta V_{\text{max}} = \frac{\Delta V_{\text{max}}}{(1/\omega C)}$$

The impeding effect of a capacitor on the current in an AC circuit is called the capacitive reactance and is given by

$$X_C \equiv \frac{1}{\omega C}$$
 which gives $I_{\text{max}} = \frac{\Delta V_{\text{max}}}{X_C}$

Voltage Across a Capacitor

The instantaneous voltage across the capacitor can be written as $\Delta v_C = \Delta V_{max} \sin \omega t = I_{max} X_C \sin \omega t$.

As the frequency of the voltage source increases, the capacitive reactance decreases and the maximum current increases.

As the frequency approaches zero, $X_{\mathbb{C}}$ approaches infinity and the current approaches zero.

 This would act like a DC voltage and the capacitor would act as an open circuit.

Quick Quiz (Poll 3)

In a pure capacitive circuit, the current will

- a. lag behind the voltage by 90 degree
- b. lead behind the voltage by 90 degree
- c. remains in phase with voltage
- d. none of the above

Quick Quiz (Poll 4)

- A phasor is a line which represents the
- a. rms value and phase of an alternating quantity
- b. average value and phase of an alternating quantity
- c. magnitude and direction of an alternating quantity
- d. none of the above