Készítette: Mikolics Réka Szilvia (KD5XYP)

Sniffer

(TCP, UDP, ICMP)

A program célja:

Olyan csomagok információinak kinyerése, amelyek TCP, UDP vagy ICMP protokollt használnak.

Bevezetés:

Az Ethernet szint:

Sajnos az Ethernetnek megvan a saját címzési módszere, mivel a létrehozók biztosítani akarták, hogy semelyik két gépnek se legyen ugyanaz az Ethernet címe. Azt is el akarták érni, hogy a felhasználónak ne kelljen a címek hozzárendelésével foglalkozni, ezért minden Ethernet vezérlő gyárilag beégetett címmel rendelkezik.

Minden Ethernet csomagnak egy 14 oktetes fejléce van, amely a forrás- és a célgép címét, valamint egy típuskódot tartalmaz. A hálózaton lévő gépek csak az olyan csomagokat figyelik, amelyek célmezőjében a saját Ethernet címüket találjak.

~~
+-
Célgép Ethernet címe (első 32 bit)
+-
Ethernet cél (utolsó 16 bit) Ethernet forrás (első 16 bit)
+-
Forrásgép Ethernet címe (utolsó 32 bit)
+-
Típuskód
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
IF legied, for legied, major a templeges adatok
adatok vége
+-
Ethernet ellenőrzőösszeg
+-

Ha az Ethernet fejlécet E-vel, az ellenőrzőösszeget pedig C-vel jelöljük, akkor az eredeti állományunk így néz ki:

EIT....C EIT....C EIT....C EIT....C EIT....C EIT....C

A csomagok megérkezésekor persze a fenti fejlécek mindegyikét leszedi a megfelelő protokoll. Az Ethernet interfész az Ethernet fejlécet és az Ethernet ellenőrzőösszeget szedi le. Ezekután ellenőrzi a típuskódot. Mivel az az IP-re mutat, ezért a datagrammot átadja az IP-nek, amely a Protokoll mező tartalmát ellenőrzi. Itt azt találja, hogy TCP, ezért a

datagrammot a TCP-nek adja át. A TCP a Sorszám mező tartalma és egyéb információk alapján állítja össze az eredeti állományt.

Következő az IP:

Version	Header Length		Type of Service	Total Length	
Identification				IP Flags	Fragment Offset
Time to Live		Protocol	Header Checksum		
Source Address					
Destination Address					
IP Option					

Ezt követően a protokoll száma alapján el kell döntenünk, hogy a kiolvasott csomag milyen protokollt használt.

Decimal Protocol Number	Keyword	Protocol	
1	ICMP	Internet Control Message Protocol (ICMP)	
6	ТСР	Transmission Control Protocol (TCP)	
17	UDP	User Datagram Protocol (UDP	
50	ESP	Encapsulating Security Payload (ESP)	
51	AH	Authentication Header (AH)	

A különböző protokollok különböző felépítéssel rendelkeznek. Ezek alapján tudjuk kiolvasni őket.

Ezeket a python socket.socket(self, family, type, protocol) kérjük le:

socket.socket(socket.AF_PACKET, socket.SOCK_RAW, socket.ntohs(0x0003))

Így minden kimenő és bejövő forgamat figyelni tudunk (*socket.ntohs*(0x0003)) és az ethernet fejlécet is megkapjuk (*socket.AF_PACKET*).

A program:

Áll egy switcherből, eldönthetjük, hogy milyen protokollt akarunk leghallgatni és egy filewriterből, a kapott adatokat kiírja egy fájlba.

A teszteléshez Pakcet Sendert használtam (https://packetsender.com/) amellyel UDP és TCP protokollos csomagokat lehet küldözgetni Linuxon is. Az ICMP protokoll teszteléséhez a ping 8.8.8-at használtam, mivel a Linux pingelése ICMP protokollt használ. Képek a futásról:

Packet Sender használata:

