

NEST

Nurturing Excellence, Strengthening Talent.

TEAM ECORP

IIT KANPUR

Divyansh Mittal Khush Gandhi Utkarsh Kumar

Problem Statement – #2

PREDICTING ACTUAL ENROLLMENT DURATION OF CLINICAL STUDIES WITH EXPLAINABILITY

Approach & methodology

Methodology

DATA COLLECTION

use_case_2_.csv eligibility.txt withdrawals.txt facilities.txt

NUMERICAL AND CATEGORICAL FEATURES

- Handled erroneous values
- Aggregated statistical & mode values (locations, withdrawals)
- Removed redundant correlated features

TEXTUAL FEATURES

- Handled erroneous values
- Generated word embeddings (12 text columns)
- Enriched embeddings using autoencoders.
- Extracted text insights with TF-IDF.
- Reduced dimensionality of features.

DERIVED FEATURES

- -Inclusion/exclusion criteria
- -Unique clinical centers: city, state, country
- -Frequency bins (locations, periods, reasons, counts of withdrawals)

FEATURE SELECTION

Study summary Location frequency bin Outcomes Study design

Criteria Enrollment numbers
Condition Interventions etc

Framework / tools used

NumPy MatplotLib
Pandas XgBoost
Pytorch Shap
ScikitLearn

Model choice & setup

Model Selection

THE NEED

- Handling High-dimensional text features (~10,000)
- Handling Mixed data types (text and numerical)
- **Preserving predictive information** during feature reduction

KEY ADVANTAGES

- Learned compression vs. statistical methods (e.g., PCA)
- Automated Task-specific **feature selection**
- Reconstruction loss ensures meaningful compression
- L1 regularization for sparse representations
- Dynamic loss weighting balances objectives
- Better new data handling with latent space
- Transferable Approach

Model Training & Evaluation

Evaluation Metrics

Models	Train			Testing		
	RMSE	R2 Score	Adj. R2	RMSE	R2 Score	Adj. R2
XGBoost	10.3523	0.5903	0.5880	12.5457	0.4120	0.3988
Neural Network	5.812	0.8901	0.8872	12.6918	0.3990	0.3891
Predictor (Baseline)	11.5962	0.5015	0.4987	12.6559	0.4024	0.3900

ANN Training Process

- Dynamic Loss and Learning Rate using Lr_scheduler
- Early Stopping (min-delta: 1e-4)
- Metrics used for validation: RMSE and R2 Score
- Batch size: 32 and epoch count: 50
- weight decay and gradient clipping to avoid overfitting

XGBoost Training Process

- Hyperparameter Tuning resulted **28% increase** in R2 Score
- K-fold cross validation and with Optuna
- max-depth: 6 | learning rate: 0.0082 | gamma: 1.5
- n_estimators:2440 | child_weight:5 | subsample:0.87

Reimagining Medicine

Results and visualization

Explainability and Model Outcomes

Feature Beeswarm Plot

Numbers represent the derived 256 textual features

Waterfall Plots

Key Findings

- Predictions are primarily influenced by textual data, along with some numerical and categorical features
- Key interpretations:
 - Higher enrollment numbers correspond to longer enrollment durations
- Non-industry funders are associated with shorter enrollment durations
- Phase 1 trials tend to take more months to complete
- Trials conducted across multiple countries result in longer enrollment periods

Challenges & Next Steps

Practical Applications

Model Deployment:

- Reduced feature space for efficient storage
- Faster inference with compressed representations
- Interpretable latent space

Business Impact:

- Better enrollment time predictions
- Resource allocation optimization
- Trial planning improvements

Limitations

- R2 Score plateaus around 0.42
- Model susceptible to overfitting
- Text embedding vectors demands high computation

Future Enhancement

Feature Engineering:

- Additional text preprocessing features
- Domain-specific text filters to reduce computational cost
- Feature importance analysis

Training:

- Ensemble approaches for multi-model systems
- Active and Curriculum Learning

Thank you!

