<u>Dashboard</u> / My courses / <u>04-ELECTRONICA-L-A3-S1-Mi-E</u> / <u>Examen</u> / <u>Examen 27.01.2023</u>

Started on Friday, 27 January 2023, 12:07 PM

State Finished

Completed on Friday, 27 January 2023, 1:13 PM

Time taken 1 hour 6 mins

Grade 49.00 out of 51.00 (96.08%)

Question 1

Correct

Mark 1.00 out of 1.00

Pierderile în conductoarele unei linii de transmisiune cu pierderi mici:

- o a. depind de proprietățile dielectricului dintre cele două conductoare
- b. depind de suprafaţa transversală a conductoarelor

 ✓
- c. sunt independente de frecvență
- od. scad cu creșterea frecvenței

Question ${\bf 2}$

Correct

Mark 3.00 out of 3.00

Calculați la frecvența 2.1 GHz pentru modul $H_{0,1}$ constanta de atenuare (în Np/m) în cazul unui ghid uniform de secțiune dreptunghiulară umplut cu aer având dimensiunile secțiunii transversale a=4.6 cm și b=2.2 cm.

Answer:

135.85

Question $\bf 3$

Correct

Mark 1.00 out of 1.00

Alegeți ecuația diferențială pentru care trecerea la forma integrală se poate face cu ajutorul teoremei lui Stokes:

- igcirc a. $abla imes \overline{E} = -rac{\partial \overline{B}}{\partial t} igcep$
- igcup b. $abla \overline{B} = 0$
- \bigcirc c. $rac{\partial
 ho}{\partial t} +
 abla \overline{J} = 0$
- \bigcirc d. $\nabla \overline{D} = \rho$

Question 4 Correct					
Mark 1.00 c	Mark 1.00 out of 1.00				
Viteza o	de grup poate fi interpretată ca:				
	o mărime direct proporțională cu derivata constantei de defazare în raport cu frecvența				
b.	viteza frontului de undă				
C.	viteza transportului de energie în lungul liniei de transmisiune❤				
O d.	viteza cu care se deplasează un semnal de bandă foarte largă în lungul liniei				
Question 5					
Correct Mark 1.00 c	nut of 1.00				
IVIAIR 1.00 C					
Un tron	son de linie de transmisiune fără pierderi de tip repetor de impedanță:				
a.	îndeplinește proprietatea de repetor de impedanță pentru un set discret de frecvențe❤				
O b.	are o lungime fizică egală cu $rac{\lambda}{4}$				
○ c.	are o lungime electrică egală cu $\frac{\pi}{2}$ rad				
O d.	îndeplinește în mod riguros proprietatea de repetor de impedanță într-o bandă largă de frecvențe				
Question 6					
Correct					
Mark 1.00 c	out of 1.00				
Pentru	calculul constantei de atenuare datorate pierderilor în pereții metalici ai unui ghid cu pierderi mici presupunem:				
О а.	componentele de câmp electric tangențiale pe pereții ghidului aproximativ egale cu cele din cazul ghidului fără pierderi				
b.	componentele de câmp magnetic tangențiale pe pereții ghidului aproximativ egale cu cele din cazul ghidului fără pierderi❤				
О с.	adâncimea de pătrundere a câmpului electromagnetic în metal egală cu zero				
O d.	o conductivitate infinită a metalului din care sunt realizați pereții ghidului				

Question **7**Correct
Mark 3.00 out of 3.00

Se consideră o linie de transmisiune fără pierderi, pentru care se prezintă cu linie albastră distribuția amplitudinii tensiunii în linie. Linia este terminată pe o sarcină complexă având parte reactivă capacitivă , iar raportul de undă staționară calculat pe linie este egal cu

6.14

Question **8**Correct

Mark 1.00 out of 1.00

Factorul de calitate al unui circuit rezonant RLC serie:

- o a. este egal cu raportul dintre puterea activă disipată de rezistor și puterea reactivă absorbită de inductor
- b. este invers proporțional cu energia medie stocată în capacitor
- oc. este egal cu raportul dintre banda circuitului rezonant și frecvența de rezonanță
- d. este invers proporțional cu banda circuitului rezonant
 ✓

Question **9**Correct

Mark 3.00 out of 3.00

Capacitatea lineică a unei linii de transmisiune fără pierderi având ca dielectric aerul este 124 pF/m. Determinați inductanța lineică a liniei (în nH/m).

Answer: 89.60 **✓**

.01.2023, 1	5:10 Examen 27.01.2023: Attempt review
Question 10	0
Correct	
Mark 1.00 o	ut of 1.00
Pe <u>diag</u>	rama Smith, un cerc de reactanță constantă:
a.	trece prin punctul de coordonate (w_r = 1, w_i = 0) 🗸
O b.	cuprinde toate valorile posibile ale coeficientului de reflexie în tensiune obținute pentru sarcini având aceeași parte reală
O c.	este practic o dreaptă pentru $x=\pm 1$
O d.	are întotdeauna centrul în interiorul diagramei Smith
Question 1	
Correct	
Mark 1.00 o	ut of 1.00
Parame	trii lineici ai liniei de transmisiune:
a.	pot depinde de poziția pe linie și de frecvență♥
O b.	sunt mărimi adimensionale
○ c.	sunt întotdeauna constanți în lungul liniei
O d.	sunt independenți de frecvență
Question 12	2
Correct	
Mark 1.00 o	ut of 1.00
Matrice	a de repartiție a unui multiport reciproc:
О а.	este întotdeauna o matrice unitate
O b.	este simetrică în raport cu diagonala secundară
C.	este simetrică în raport cu diagonala principală ✓
O d	are toate elementele penule

,	
Question 1	3
Correct	
Mark 1.00 o	ut of 1.00
La inter	fața dintre două materiale cu parametrii electromagnetici diferiți se conservă întotdeauna:
a.	componenta tangențială a intensității câmpului electric♥
O b.	componenta normală a intensității câmpului electric
O c.	componenta normală a intensității câmpului magnetic
O d.	componenta tangențială a intensității câmpului magnetic
Question 1	4
Correct	
Mark 1.00 o	ut of 1.00
În cazul	liniei de transmisiune cu pierderi mici:
О а.	constanta de propagare este imaginară
O b.	constanta de defazare este independentă de frecvență
c.	constanta de atenuare depinde de toţi cei 4 parametrii lineici❤
O d.	viteza de fază depinde liniar de frecvență
Question 1	5
Correct	
Mark 1.00 o	ut of 1.00
În cazul	modurilor de propagare de tip E într-un ghid metalic uniform de secțiune dreptunghiulară:
cazai	
a.	componenta axială a câmpului electric are amplitudinea maximă în centrul ghidului pentru modul $E_{1,1}$
O b.	numărul de undă critic depinde de dielectricul cu care este umplut ghidul
O c.	componenta axială a câmpului magnetic are amplitudinea maximă în centrul ghidului pentru modul $E_{1,1}$
O d.	prima frecvență critică superioară este $f_{c1,2}$

Question 16
Incorrect
Mark 0.00 out of 1.00
Coeficientul de reflexie în tensiune:
 ■ a. depinde de puterea injectată pe linia de transmisiune
○ b. este egal cu 1 în cazul în care linia de transmisiune este terminată în scurtcircuit
c. este o mărime complexă dependentă de frecvență
od. este egal cu 0 când linia de transmisiune este terminată pe o sarcină pur reactivă
Question 17
Correct Mark 1.00 out of 1.00
Mark 1.50 Oct of 1.50
Impedanța de intrare a unei linii cu lungimea fizică $rac{\lambda}{8}$ (la o anumită frecvență) este reală:
 a. dacă impedanţa caracteristică a liniei de transmisiune este egală cu modulul impedanţei de sarcină ✓
○ b. dacă linia este terminată în scurtcircuit
 d. dacă partea reactivă a impedanței de sarcină este nulă
Question 18
Correct
Mark 1.00 out of 1.00
În cazul unei unde plane uniforme ce se propagă într-un mediu fără pierderi:
in cazar and ande plane annonne ce se propaga intra an media tara personi.
a. viteza de fază depinde de intensitatea câmpului magnetic
○ b. impedanța de undă este imaginară
⊚ c. intensitatea câmpului electric este aceeași în orice punct de pe frontul de undă❤
d. vectorul intensitate câmp electric și vectorul intensitate câmp magnetic sunt în antifază
2 In 12222 In 1222 In

.01.2023, 15.10	Examen 27.01.2025. Attempt review
Question 19 Correct Mark 1.00 out of 1.00	
Constanta de propagare a	unei linii de transmisiune:
a. este o mărime ind	dependentă de frecvență
ob. este o mărime ad	imensională
c. poate avea parte	a reală negativă
d. are faza cuprinsă	între 0° și 90°❤
Question 20	
Correct Mark 3.00 out of 3.00	
	liniar de microunde tensiunea este $U=$ 1.6 V, iar curentul este $I=$ 0.6 A. Impedanța de normare este $Z_0=$ 83 Ω . \S (în W) ce traversează planul considerat.
Question 21 Incorrect Mark 0.00 out of 1.00	
Impedanța de intrare într-	o linie de transmisiune fără pierderi terminată în scurtcircuit:
a. prezintă rezonanț	țe paralel la multiplii pari ai primei frecvențe de rezonanță paralel
b. prezintă rezonanț	țe paralel la multiplii impari ai primei frecvențe de rezonanță paralel
c. prezintă rezonanț	țe serie la multiplii impari ai primei frecvențe de rezonanță paralel ื
O d. prezintă rezonanț	țe la frecvențe care nu se află în raport armonic

Question 22

Correct

Mark 1.00 out of 1.00

Care dintre următoarele relații corespunde unei ecuații Maxwell în absența surselor de câmp și pentru care componentele sunt reprezentate fazorial?

- lacksquare a. $abla imes \overline{H} = j\omega arepsilon \overline{E}$
- igcup b. $abla imes \overline{H} = j\omega \overline{D} + \overline{J}$
- \bigcirc c. $\nabla \overline{D} = \rho$
- igcup d. $abla imes \overline{E} = -rac{\partial \overline{B}}{\partial t}$

Question 23

Correct

Mark 1.00 out of 1.00

Banda unui circuit de adaptare înseamnă intervalul de frecvențe în care:

- a. adaptarea se menține la același nivel
- O b. modulul raportului de undă staționară este mai mare decât o valoare minimă impusă
- od. raportul de undă staționară este subunitar

Question 24

Correct

Mark 3.00 out of 3.00

O linie de transmisiune fără pierderi având impedanța caracteristică 50 Ω și lungimea 5 cm este terminată pe o sarcină de impedanță 37 + 28j $[\Omega]$. Lungimea de undă este 20 cm. Calculați modulul impedanței de intrare (în Ω) în linia de transmisiune.

Answer:

53.87

Question 25				
Correct				
Mark 1.00 out of	f 1.00			
Lungimea o	de undă critică a modurilor de tip E ce se propagă într-un ghid metalic uniform de secțiune dreptunghiulară:			
a. est	te invers proporțională cu frecvența de lucru			
Ob. est	te direct proporțională cu frecvența critică			
c. de	pinde de dimensiunile ghidului❤			
O d. de	pinde de dielectricul cu care este umplut ghidul			
Question 26				
Correct				
Mark 1.00 out of	f 1.00			
Referitor la	caracterizarea unui multiport cu ajutorul parametrilor S, Z și Y se poate afirma că:			
O a. de	terminarea parametrilor Z presupune terminarea porților în scurtcircuit			
b. exi	istă multiporți pentru care nu se pot determina parametrii Y❤			
С. ра	rametrii Y sunt preferați pentru caracterizarea rețelelor de microunde			
O d. pa	rametrii Z depind de impedanțele de normare			
Question 27				
Correct				
Mark 1.00 out of	f 1.00			
Alegeți afir	mația corectă referitoare la modul fundamental de propagare într-un cablu coaxial.			
a. rot	torul componentelor de câmp din plan transversal este nenul			
O b. lin	iile de câmp magnetic au o orientare radială			
O c. im	pedanța caracteristică a cablului este egală cu impedanța de undă a dielectricului			
⊚ d. nu	mărul de undă critic este egal cu zero❤			

Question 28

Correct

Mark 1.00 out of 1.00

Impedanța de ieșire a unui circuit de adaptare este egală cu:

- a. impedanța de sarcină pentru orice tip de sarcină
- b. impedanța caracteristică a liniei de acces
- c. impedanța de sarcină în cazul sarcinilor rezistive
- O d. media geometrică dintre impedanța liniei de acces și impedanța de sarcină

Question 29

Correct

Mark 3.00 out of 3.00

Calculați $\left|S_{11}\right|^2+\left|S_{21}\right|^2$ pentru diportul din figura de mai jos. X= 27 Ω .

Answer: 1.00

Question **30**Correct

Mark 3.00 out of 3.00

Fie circuitul din figură. R = 41 Ω , $I_0=0.04$ A. Determinați amplitudinea tensiunii (în V) de la intrarea circuitului $|U_{in}|$.

Question 31

Correct

Mark 1.00 out of 1.00

Lungimea de undă se poate calcula în felul următor:

- a. distanța între două puncte oarecare de pe linia de transmisiune caracterizate de aceeași fază a oscilației
- c. distanța străbătută de frontul undei într-o secundă
- Od. înmulțind viteza de fază cu frecvența undei

Question 32

Correct

Mark 1.00 out of 1.00

În cazul unui mod de propagare de tip H care se propagă într-un ghid de undă fără pierderi:

- a. constanta de propagare este reală
- b. numărul de undă critic este nul
- c. câmpul electric este nenul doar în plan transversal
- od. câmpul magnetic este nul în lungul axei ghidului

Question 33

Correct

Mark 1.00 out of 1.00

În cazul în care o linie de transmisiune este terminată pe o sarcină rezistivă $R>Z_C$:

- \bigcirc a. Raportul de undă staționară este egal cu $\frac{Z_C}{R}$
- O b. Distribuția amplitudinii tensiunii totale începe cu un minim în planul sarcinii
- o. Minimele distribuției amplitudinii tensiunii sunt nule
- Ø d. Distribuția amplitudinii curentului total începe cu un minim în planul sarcinii

Question 34

Correct

Mark 1.00 out of 1.00

Banda unimod a unui ghid metalic uniform de secțiune dreptunghiulară (de dimensiuni a și b, a>b) este maximă când:

- \bigcirc a. a < 2b
- b. a = 3b
- ⊚ c. a = 2b
- \bigcirc d. a > 2b

Question 35

Correct

Mark 1.00 out of 1.00

Considerăm următoarea ecuație Maxwell de evoluție în care componentele de câmp sunt separate în componente transversale și componente axiale:

$$\nabla_T \times \overline{H}_{pT} + \nabla_T \times H_{pz} \bar{e}_z - \gamma \bar{e}_z \times \overline{H}_{pT} = j\omega \varepsilon \left(\bar{E}_{pT} + E_{pz} \bar{e}_z \right)$$

Alegeți dintre variantele de mai jos termenul care semnifică o componentă axială.

- igcup a. $-\gammaar{e}_z imes\overline{H}_{pT}$
- \odot b. $j\omegaarepsilon \overline{E}_{pT}$
- \bigcirc c. $abla_T imes H_{pz}ar{e}_z$
- lacksquare d. $abla_T imes \overline{H}_{pT}$

Question 36
Correct
Mark 1.00 out of 1.00
Modul fundamental de propagare pentru o linie strip este:
Modul fulldamental de propagare pentru o linie strip este.
a. transversal magnetic
○ b. transversal electric
c. cvasi-transversal electromagnetic
 ■ d. transversal electromagnetic
Question 37
Correct
Mark 1.00 out of 1.00
Undele generalizate de putere a și b :
ondele generalizate de pareire à și b.
a. se calculează ca o combinație neliniară între tensiune și curent
○ b. se măsoară în W
c. sunt mărimi reale
🍥 d. sunt direct proporționale cu fazorii undelor de tensiune dacă impedanța de normare este egală cu impedanța caracteristică a 💙
liniei de transmisiune
▼ Test seminar
Jump to

Punctaj Laborator + Seminar -