# Multiple Type-I Error Control in Response Adaptive Phase II/III Designs with Treatment Selection

Georg Gutjahr, Martin Posch, and Werner Brannath

Medical University of Vienna Department of Medical Statistics

March 12, 2010

Research supported by FWF P21763

#### TOPIC OF THIS TALK

Two stage design for comparing multiple treatments against a single control (e.g., Berry et al., 2001)

- 1. Response-adaptive randomization in stage 1
- 2. Treatment selection between stage 1 and stage 2
- Block randomization between selected treatment and control in stage 2

Controversial: selection of the critical values by simulation under global null hypothesis (Posch, Maurer, and Bretz, 2010)

Problem: control of the familywise error rate in the strong sense

#### Outline

• The design

```
A multi-armed trial ...
... with treatment selection ...
... and response-adaptive allocation
```

- Test that guarantees strong control of the FWE rate
- Simulation results

Comparison of two treatments versus a single control.

Treatment A Responses  $\sim \text{Normal} (\mu + \delta_A, 1)$ 

Treatment B Responses  $\sim \text{Normal}(\mu + \delta_B, 1)$ 

Control C Responses  $\sim Normal(\mu, 1)$ 

Comparison of two treatments versus a single control.

Treatment A Responses  $\sim \text{Normal}\,(\mu + \delta_{A},\, 1)$ 

Treatment B Responses  $\sim \text{Normal}(\mu + \delta_B, 1)$ 

Control C Responses  $\sim Normal(\mu, 1)$ 

Closure principle  $H_{AB}$ 

Comparison of two treatments versus a single control.

Treatment A Responses  $\sim$  Normal ( $\mu + \chi$ , 1)

Treatment B Responses  $\sim$  Normal ( $\mu + \frac{1}{2}$ , 1)

Control C Responses  $\sim Normal(\mu, 1)$ 

Closure principle



Comparison of two treatments versus a single control.

Treatment A Responses  $\sim$  Normal ( $\mu + \chi$ , 1)

Treatment B Responses  $\sim \text{Normal}(\mu + \delta_B, 1)$ 

Control C Responses  $\sim Normal(\mu, 1)$ 

Closure principle  $H_{AB}$   $H_{AB}$ 

Comparison of two treatments versus a single control.

Treatment A Responses  $\sim \text{Normal} (\mu + \delta_A, 1)$ 

Treatment B Responses  $\sim$  Normal ( $\mu + \frac{1}{2}$ , 1)

Control C Responses  $\sim Normal(\mu, 1)$ 



#### Outline

• The design

```
A multi-armed trial . . .
```

```
... with treatment selection ...
```

... and response-adaptive allocation

- Test that guarantees strong control of the FWE rate
- Simulation results

Treatment A

Treatment B

Control C

|             | K | * | * | * | Å | Å | Å | * | X | Å | Å | Å |
|-------------|---|---|---|---|---|---|---|---|---|---|---|---|
| Treatment A |   |   |   |   |   |   |   |   |   |   |   |   |
| Treatment B |   |   |   |   |   |   |   |   |   |   |   |   |
| Control C   |   |   |   |   |   |   |   |   |   |   |   |   |









































Pool observations











#### Outline

The design

```
A multi-armed trial ...
... with treatment selection ...
... and response-adaptive allocation
```

- Test that guarantees strong control of the FWE rate
- Simulation results

#### DESIGN WITH TREATMENT SELECTION



Treatment A

Treatment B

Control C

#### DESIGN WITH TREATMENT SELECTION

Treatment A

Treatment B

Control C



Treatment A

Treatment B



Treatment A

Treatment B



Treatment A

Treatment B



Treatment A

Treatment B

Treatment A

Treatment B



Treatment A

Treatment B



Treatment B

Treatment A

Treatment B

Treatment A

Treatment B





Treatment A

Treatment B



Treatment A

Treatment B

Control C



\$ \$ \$ \$ \$

Treatment A

1 1 11

Treatment B

Treatment A

*V V* 

Treatment B

Treatment A

o Kok

Treatment B

• Kok



\$ \$ \$ \$ \$ \$

Treatment A

Treatment B

\$ \$ \$ \$ \$ \$

Treatment A

Treatment B 🚶 🏌

\$ \$ \$ \$ \$ \$

Treatment A

Treatment B 🚶 🏌



















# Outline

• The design

```
A multi-armed trial . . . . . . . . with treatment selection . . . . . . . . and response-adaptive allocation
```

- Test that guarantees strong control of the FWE rate
- Simulation results



Treatment A

Treatment B



Treatment A

Treatment B

Treatment A

Treatment B

\$ \$ \$ \$ \$ \$

Treatment A 1

Treatment B

Control C 1









### Outline

• The design

```
A multi-armed trial ...
... with treatment selection ...
... and response-adaptive allocation
```

- Test that guarantees strong control of the FWE rate
- Simulation results

# CONSTRUCTION OF THE TEST (IDEA)

- For each hypothesis, we prespecify an hypothetical artificial auxiliary design with fixed-sample sizes.
- We view the actual response-adaptive design as a data-dependent modification of the auxiliary design.
- When we switch from stage 1 to stage 2, we change the sample sizes of the auxiliary designs by using the conditional invariance principle (Brannath et al., 2007).
- Complication: Conditional distributions depend on nuisance parameter—unknown mean  $\mu$  in control group.

### CONDITIONAL INVARIANCE PRINCIPLE

Consider an interim analysis during a clinical trial.

- Data *D* before interim analysis (first stage data).
- Test statistic Z = X + Y with statistics X calculated from first stage data and Y calculated from second stage data.
- Data dependent design modification.

If we calculate from the modified second trial stage a statistic  $\tilde{Y}$  so that under the null hypothesis  $\tilde{Y}|D=Y|D$  in distribution, then in place of Z we can use the modified test statistic

$$\tilde{Z} = X + \tilde{Y}$$
.

.

Treatment A

Treatment B

Control C

|             | Å | * | Å | Å | Å | Ř | K | * | * | * | Å | * |
|-------------|---|---|---|---|---|---|---|---|---|---|---|---|
| Treatment A |   |   |   |   |   |   |   |   |   |   |   |   |
| Treatment B |   |   |   |   |   |   |   |   |   |   |   |   |
| Control C   |   |   |   |   |   |   |   |   |   |   |   |   |

|             | Å | X | * | * | Å | Å | Å | Å | * | Å | * |
|-------------|---|---|---|---|---|---|---|---|---|---|---|
| Treatment A |   |   |   |   |   |   |   |   |   |   |   |
| Treatment B |   |   |   |   |   |   |   |   |   |   |   |
| Control C   |   |   |   |   |   |   |   |   |   |   |   |

| 0 | 0 | 0 |   | 0  | 0 | 0 | 0 | 0             | 9 |
|---|---|---|---|----|---|---|---|---------------|---|
| ٨ | 1 | 1 | 1 | Λ. | * | Å | 1 | $\mathcal{M}$ | 1 |

- Treatment A 📫 🗆 🗆
- - Control C 📫 🗆 🗆

- Treatment A 📫 🗆 🗆
- - Control C 📫 📫 🗆 🗆

- Treatment A 📫 🗆 🗆
- - Control C 📫 📫 🗆 🗆

- Treatment A 🏌 🗘 🗆 🗆
- - Control C 📫 📫 🗆 🗆

- Treatment A 🕴 🕻 🗓
- - Control C 📫 📫 🗆 🗆





Always fill-up sample sizes



Always fill-up sample sizes Per-group sample sizes unchanged



Always fill-up sample sizes
Per-group sample sizes unchanged
Order of allocation does not change test statistic

Treatment A

Treatment B

Control C







Treatment A 🚺 🗆 🗆

Treatment B

Control C 📫 🗆 🗆



Treatment A 🚺 🗆 🗆

Treatment B

Control C 📫 📫 🗆 🗆



- Treatment A 📫 🗆 🗆
- Treatment B
  - Control C 🚺 🐧 🗆 🗆



Treatment A 📫 📫 🗆 🗆

Treatment B

Control C 📫 📫 🗆 🗆

\$ \$ \$ \$ \$ \$

Treatment A 📫 🕻 🗘 🗆

Treatment B

Control C 📫 📫 🗆 🗆



























#### TEST STATISTIC IN AUXILIARY DESIGN

Decomposition of auxiliary test statistic:

$$Z = \underbrace{\left(\frac{S_{T,1}}{w_T} - \frac{S_{C,1}}{w_C}\right)}_{X \text{ from first stage}} + \underbrace{\left(\frac{S_{T,2}}{w_T} - \frac{S_{C,2}}{w_C}\right)}_{Y \text{ from second stage}}.$$

#### with

- Sums S in treatment and control in first and second stage,
- Weights *w* that depend on auxiliary sample sizes.

#### AUXILIARY SECOND STAGE STATISTIC

We know the conditional null distribution given interim data

$$\frac{S_{T,2}}{w_T} - \frac{S_{C,2}}{w_C} \; \Big| \; \text{Interim data} \sim \text{Normal} \left( \frac{\mu}{w_T} \frac{n_T}{w_T} - \frac{\mu}{w_C} \frac{n_C}{w_C^2}, \; \; \frac{n_T}{w_T^2} + \frac{n_C}{w_C^2} \right)$$

with  $n_T$  and  $n_C$  the auxiliary second stage sample sizes.

#### **AUXILIARY SECOND STAGE STATISTIC**

We know the conditional null distribution given interim data

$$\frac{\mathcal{S}_{\mathcal{T},2}}{w_{\mathcal{T}}} - \frac{\mathcal{S}_{\mathcal{C},2}}{w_{\mathcal{C}}} \; \Big| \; \text{Interim data} \sim \text{Normal} \left( \frac{\mu}{w_{\mathcal{T}}} - \frac{n_{\mathcal{T}}}{w_{\mathcal{C}}}, \; \frac{n_{\mathcal{T}}}{w_{\mathcal{C}}^2} + \frac{n_{\mathcal{C}}}{w_{\mathcal{C}}^2} \right)$$

with  $n_T$  and  $n_C$  the auxiliary second stage sample sizes.

Let  $\tilde{n}_T$  and  $\tilde{n}_C$  denote the modified second stage sample sizes, and  $\tilde{S}_{T,2}$  and  $\tilde{S}_{C,2}$  the corresponding sums.

### **AUXILIARY SECOND STAGE STATISTIC**

We know the conditional null distribution given interim data

$$\frac{S_{T,2}}{w_T} - \frac{S_{C,2}}{w_C} \; \Big| \; \text{Interim data} \sim \text{Normal} \left( \frac{\mu}{w_T} \frac{n_T}{w_T} - \frac{\mu}{w_C} \frac{n_C}{w_C}, \; \; \frac{n_T}{w_T^2} + \frac{n_C}{w_C^2} \right)$$

with  $n_T$  and  $n_C$  the auxiliary second stage sample sizes.

Let  $\tilde{n}_T$  and  $\tilde{n}_C$  denote the modified second stage sample sizes, and  $\tilde{S}_{T,2}$  and  $\tilde{S}_{C,2}$  the corresponding sums.

**Idea**: Find the right weights  $\tilde{w}_T$  and  $\tilde{w}_C$  to match cond distribution:

$$\frac{\tilde{S}_{T,2}}{\tilde{w}_T} - \frac{\tilde{S}_{C,2}}{\tilde{w}_C} \; \Big| \; \text{Interim data} \sim \text{Normal} \left( \mu \frac{\tilde{n}_T}{\tilde{w}_T} - \mu \frac{\tilde{n}_C}{\tilde{w}_C}, \; \; \frac{\tilde{n}_T}{\tilde{w}_T^2} + \frac{\tilde{n}_C}{\tilde{w}_C^2} \right)$$

## CONDITIONS FOR THE WEIGHTS

• To match the mean:

$$\frac{\tilde{n}_T}{\tilde{w}_T} - \frac{\tilde{n}_C}{\tilde{w}_C} = \frac{n_T}{w_T} - \frac{n_C}{w_C}$$

• To match the variance:

$$\frac{\tilde{n}_T}{\tilde{w}_T^2} + \frac{\tilde{n}_C}{\tilde{w}_C^2} = \frac{n_T}{w_T^2} + \frac{n_C}{w_C^2}$$

#### SOLUTION

$$\tilde{w}_{T} = \frac{\tilde{n}_{T} + \tilde{n}_{C}}{n_{T}w_{T} - n_{C}w_{C} + \sqrt{\frac{\tilde{n}_{C}}{\tilde{n}_{T}}\left((\tilde{n}_{T} + \tilde{n}_{C})(n_{T}w_{T}^{2} + n_{C}w_{C}^{2}) - (n_{T}w_{T} - n_{C}w_{C})^{2}\right)}}$$

$$\tilde{W}_{C} = \frac{\tilde{n}_{T} + \tilde{n}_{C}}{n_{C}w_{C} - n_{T}w_{T} + \sqrt{\frac{\tilde{n}_{T}}{\tilde{n}_{C}}((\tilde{n}_{T} + \tilde{n}_{C})(n_{T}w_{T}^{2} + n_{C}w_{C}^{2}) - (n_{T}w_{T} - n_{C}w_{C})^{2})}}$$

#### **PROPERTIES**

#### It is easy to show that

- if stage 1 is not larger than stage 2, then weights are always positive.
- power of the test does not depend on the nuisance parameter.

### Outline

• The design

```
A multi-armed trial ...
... with treatment selection ...
... and response-adaptive allocation
```

- Test that guarantees strong control of the FWE rate
- Simulation results

#### SIMULATION

- Simulation for 2 and 4 treatments against single control
- Sample sizes chosen so that 0.8 power for most effective treatment against control with z-test
- Bayesian response-adaptive randomization rule between treatments
- Block randomization between treatments and control (no response-adaptive randomization for control)
- 10<sup>4</sup> replications

## TWO TREATMENTS AGAINST CONTROL



# TWO TREATMENTS AGAINST CONTROL

|                        | Power |     |     |
|------------------------|-------|-----|-----|
|                        |       | o o | 0-0 |
| Weak FWE by simulation | .82   | .83 | .90 |
| Strong FWE control     | .79   | .83 | .91 |

# TWO TREATMENTS AGAINST CONTROL

|                            | Power |     |     |
|----------------------------|-------|-----|-----|
|                            | 2     |     | o—o |
| Weak FWE by simulation     | .82   | .83 | .90 |
| Strong FWE control         | .79   | .83 | .91 |
| Strong FWE control & naive | .79   | .83 | .91 |

## FOUR TREATMENTS AGAINST CONTROL



## SUMMARY

#### The design

• Response-adaptive design with treatment selection

#### The test

- Closure principle—test each intersection hypothesis before rejecting an elementary hypothesis
- For each hypothesis, prespecify an auxiliary design
- Modify sample sizes of the auxiliary designs when switching from stage 1 to stage 2
- To modify sample sizes, match conditional distributions for every value of the nuisance parameter