Theorem 8.2.3. *If* A *is a symmetric matrix, then eigenvectors from distinct eigenvalues are orthogonal.*

Theorems 8.2.3 and 7.3.11 imply we have the following algorithm for orthogonally diagonalizing a symmetric matrix.

Algorithm 8.2.4. *Let A be a symmetric matrix*.

- (i) Find a basis for each eigenspace of A
- (ii) For each eigenspace, use the Gram-Schmidt process to convert the given basis into an orthonormal basis
- (iii) Form the matrix P whose columns are the union of all the basis vectors found in (ii)

The matrix P will orthogonally diagonalize A, and the eigenvalues on the diagonal of $D = P^T A P$ will be in the same order as their corresponding eigenvectors in P.

E.g. suppose A has 3 district eigenvalues

Let
$$E_{\lambda_i}$$
 denote eigenspare of λ_i , $i=1,2,3$
 $E_{\lambda_i} \perp E_{\lambda_j}$ $\forall i \neq j$
 $P = \begin{bmatrix} x_1 & \dots & x_k \\ x_1 & \dots & x_k \end{bmatrix}$
 $E_{\lambda_i} = \{x_1, \dots x_k, x_1, \dots & x_k \}$
 $E_{\lambda_i} = \{x_1, \dots & x_k, x_k, \dots & x_k \}$

Porthonormal basis

Porthonormal basis

E.g. 8.2.5. Find an orthogonal matrix P that diagonalizes

$$A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$$

Since A is symmetric, it is onthogonally diagonalizable. det $(7J-A) = (7-4)(7-2) \implies \text{ eigenvalues are}$ 1=2,4

A basis for eigenspace of $\chi = 2$ is $\{\chi_1, \chi_2 = (\frac{1}{2})\}$ A basis for eigenspace of $\chi = 4$ is $\{\chi_2, \chi_2 = (\frac{1}{2})\}$

Setting $W_1 = \frac{Y_1}{|Y_1|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$, $w_2 = \frac{Y_2}{|X_2|} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

we obtain an anthonormal baris for R2 consisting of eigenvectors of A. Let

$$P = \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} & & D = \begin{pmatrix} 2 & 0 \\ 0 & 4 \end{pmatrix} & \text{then}$$

DMITTED

Theorem 8.2.6 (Spectral decomposition). Let A be a symmetric $n \times n$ matrix, let $\mathbf{u}_1, \dots, \mathbf{u}_n$ be an orthonormal basis of eigenvectors of A, and let $\lambda_1, \dots, \lambda_n$ be the corresponding eigenvalues. Then

where $P_i = \mathbf{u}_i \mathbf{u}_i^T$ is the matrix of orthogonal projection in the direction of \mathbf{u}_i .

Proof.

E.g. 8.2.7. Find a 2×2 matrix with eigenvalues $\lambda_1 = 3$ and $\lambda_2 = -2$ and corresponding eigenvectors $\mathbf{v}_1 = (3,4)$, $\mathbf{v}_2 = (-4,3)$.

8.3 Singular value decomposition (A&R §9.4)

Theorem 8.3.1. If A is an $m \times n$ matrix then:

- (a) A^TA is orthogonally diagonalizable.
- (b) The eigenvalues of A^TA are nonnegative.

Proof. (a) $(ATA)^T = A^T(AT)^T = A^TA \implies A^TA$ is symmetric \Rightarrow its onthogonally diagonalizable.

(6) Let $\{\chi_1,...,\chi_n\}$ be conthonormal eigenvectors of ATA with eigenvalues $\chi_1,...,\chi_n$.

Then $0 \le A_{X_i} \cdot A_{X_i} = (A_{X_i})^T (A_{X_i})$ $= y_i^T (A^T A) y_i$ $= y_i^T (A_i y_i)$ $= \lambda_i y_i^T y_i$ $= \lambda_i y_i^T y_i$ $= \lambda_i y_i^T y_i$ $= \lambda_i y_i^T y_i$ $= \lambda_i y_i^T y_i$

So 7:70.

Definition 8.3.2. If A is an $m \times n$ matrix, and if $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of $A^T A$, then the numbers

$$\sigma_1 = \sqrt{\lambda_1}, \quad \sigma_2 = \sqrt{\lambda_2}, \ldots, \quad \sigma_n = \sqrt{\lambda_n}$$

are the singular values of A.

Theorem 8.3.3. Let A be an $m \times n$ matrix with rank r. Then A has precisely r positive singular values.

Proof. $r = \operatorname{vank}(A) = \operatorname{vank}(A^TA) \Rightarrow$ $r = n - \dim(\operatorname{null}(A^TA)) \qquad \text{*}$

Now suppose A has precisely k positive singular values. $\sigma_1 > --- > \sigma_k > 0$. The nonzero eigenvalues of ATA are $\sigma_1^2 > --- > \sigma_k^2 > 0$.

The algebraic multiplicity of 2=0 for ATA is n-k

(Since ATA is diagonalizable)

The geometric multiplicity of $\lambda=0$ for ATA is n-k \Rightarrow dim (null(ATA)) = n-k

50 @ implies r= n-(n-k) = k.

E.g. 8.3.4. Find the singular values of

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

$$A^{T}A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

From E.g. 6.1.7 we know eigenvalues of ATA are 183 =

the singular values of 1 are 12 13.

Definition 8.3.5. Let A be an $m \times n$ matrix. A Singular Value **Decomposition**(SVD) of A is a factorization $A = U\Sigma V^T$, where U is an $m \times m$ orthogonal matrix, Σ is a diagonal $m \times n$ echelon matrix with nonnegative entries, and V is an orthogonal $n \times n$ matrix.

Theorem 8.3.6 (Singular value decomposition). Let A be an $m \times n$ matrix of rank r > 0. If $A = U\Sigma V^T$ is an SVD of A then:

- (a) The nonzero entries of Σ are $(\Sigma)_{ii} = \sigma_i$ for $1 \leq i \leq r$, where $\sigma_1, \ldots, \sigma_r$ are the nonzero singular values of A
- (b) For each $1 \le i \le n$, the ith column \mathbf{v}_i of V is an eigenvector of A^TA with eigenvalue σ_i^2 $A \lor c = \sigma_c \lor c$ A Xi = oi wi.
- (c) For each $1 \le i \le r$, the ith column of U is $\mathbf{u}_i = \frac{1}{\sigma_i} A \mathbf{v}_i$
- (d) The set $\{\mathbf{u}_1, \dots, \mathbf{u}_r\}$ is an orthonormal basis for $\operatorname{col}(A)$
- (e) If r < m, $\{\mathbf{u}_{r+1}, \dots, \mathbf{u}_m\}$ is an orthonormal basis for $\text{null}(A^T)$
- (f) If r < n, $\{\mathbf{v}_{r+1}, \dots, \mathbf{v}_n\}$ is an orthonormal basis for $\operatorname{null}(A)$ (g) The set $\{\mathbf{v}_1, \dots, \mathbf{v}_r\}$ is an orthonormal basis for $\operatorname{row}(A)$

Remark 8.3.7. One simple consequence of Theorem 8.3.3 is that if A has SVD $A = U\Sigma V^T$, then $rank(A) = rank(\Sigma)$.