CampusX Deep Learning for Computer Vision(DLCV) Course Syllabus

1. Introduction to Computer Vision and Visual Cortex

- * Overview of computer vision and its applications
- * Understanding the human visual system
- * Key historical milestones in the field of computer vision

2. What Are Images and Pixels?

- * Fundamentals of digital images
- * Understanding pixels and color models (RGB, Grayscale)
- * Image types and formats explained

3. Convolution and Edge Detection Techniques

- * Introduction to convolution operations
- * Edge detection filters (Sobel, Canny, Prewitt)
- * Practical examples in Python using OpenCV

4. Padding, Strides, and Spatial Arrangement in Convolution

- * Definitions and purposes of padding and strides
- * How convolution changes spatial dimensions
- * Implementation tips in deep learning frameworks

5. Working with Convolution on RGB Images

- * Handling multiple channels in convolutions
- * Challenges and considerations for RGB data
- * Case studies of RGB image processing

6. Understanding and Building Convolutional Layers

- * Anatomy of convolutional layers
- * Designing convolutional layers in deep learning models
- * Hands-on coding session with TensorFlow/Keras

7. Pooling Mechanisms: Max and Average Pooling

- * The role of pooling in feature reduction
- * Comparative analysis of max pooling vs. average pooling
- * Implementing pooling layers in neural networks

8. Optimizing CNN Training: Techniques and Practices

- * Effective strategies to improve CNN training
- * Batch normalization and dropout techniques
- * Using callback functions and checkpoints

9. Case Study: LeNet Architecture (1998)

- * In-depth review of LeNet's design and impact
- * Step-by-step walkthrough of the architecture
- * Implementation of LeNet in a modern framework

10. Diving into Large Scale Image Recognition with ImageNet

- * Challenges and solutions in large-scale image datasets
- * Key achievements and lessons from ImageNet competitions
- * Impact on the advancement of deep learning

11. Techniques in Data Augmentation for Vision Models

- * Importance of data augmentation in training robust models
- * Various data augmentation techniques and their implementations
- * Case study: Improving model performance using augmented datasets

12. Implementing Convolutional Layers with Keras

- * Basic to advanced convolutional network constructions using Keras
- * Tips for optimizing model architecture
- * Practical coding session

13. Breakthrough with AlexNet: Architecture and Innovations

- * Analysis of AlexNet and its groundbreaking performance
- * Key innovations introduced with AlexNet
- * AlexNet vs. previous models: a comparative study

14. Deep Dive into VGGNet Architecture

- * Exploration of VGGNet design and functionality
- * Hands-on session: Building VGGNet from scratch
- * Discussion on the scalability and adaptability of VGGNet

15. Introduction to Residual Networks (ResNet)

- * Understanding the concept of residual learning
- * ResNet architecture and variants
- * Practical applications and performance analysis

Advanced Topics Sessions

16. Transfer Learning and Applications

- * Fundamentals of transfer learning
- * Practical demonstrations using pre-trained models
- * Applications in real-world scenarios

17. Introduction to Object Detection: From R-CNN to YOLO

- * Evolution of object detection frameworks
- * Comparative study: R-CNN, Fast R-CNN, Faster R-CNN, and YOLO
- * Implementing YOLO for real-time object detection

18. Semantic and Instance Segmentation: Techniques and Applications

- * Distinction between semantic and instance segmentation
- * Review of leading methods like Mask R-CNN
- * Application cases in autonomous vehicles and medical imaging

19. Advanced Topics: GANs for Image Synthesis and Editing

- * Introduction to Generative Adversarial Networks (GANs)
- * Use cases in image generation and photo editing
- * Hands-on GAN training session

20. Special Topics: Recent Breakthroughs and Research Directions

- * Latest innovations and research in computer vision
- * Emerging technologies and their potential impacts
- * Future directions and career opportunities in computer vision

21. Project: Building Blocks of a Self-Driving Car - Vision-Based Navigation Systems

- * Design and implementation of computer vision systems for self-driving cars
- * Focus on real-time object detection, lane tracking, and traffic sign recognition
- * Final presentation of a simulated autonomous driving scenario

