Università degli Studi di Milano

TECNICHE ONLINE PER L'INDIVIDUAZIONE DI SPAM IN UN WEB CRAWLER

Relatore

Paolo Boldi

Correlatore

Sebastiano Vigna

Candidato

Antonio Luca

Il fenomeno del web spam

Le cause

Col crescere delle dimensioni del web, aumenta la difficoltà per i webmaster di far comparire una pagina tra i primi risultati di un motore di ricerca per una data query.

Il fenomeno del web spam

Le cause

Col crescere delle dimensioni del web, aumenta la difficoltà per i webmaster di far comparire una pagina tra i primi risultati di un motore di ricerca per una data query.

Conseguenze

- Sviluppo di meccanismi di spam per tentare di ingannare gli algoritmi dei motori di ricerca al fine di ottenere un rank maggiore per una data pagina web.
- Sviluppo di tecniche di spam detection.

Obbiettivo della tesi

Obbiettivo di questa tesi è stata l'analisi delle varie tecniche di spam detection descritte in letteratura al fine di valutarne il comportamento e vagliare la possibilità di utilizzo di tali tecniche online.

Obbiettivo della tesi

Obbiettivo di questa tesi è stata l'analisi delle varie tecniche di spam detection descritte in letteratura al fine di valutarne il comportamento e vagliare la possibilità di utilizzo di tali tecniche online.

Struttura della tesi

- Classificazione delle varie tecniche di spam detection sulla base dei segnali utilizzati.
- ► Analisi online (durante la fase di crawling) degli algoritmi offline.

Classificazione

Classificazione

► Tecniche basate sul contenuto;

Classificazione

- Tecniche basate sul contenuto;
- ► Tecniche basate sul grafo del web;

Classificazione

- Tecniche basate sul contenuto;
- ► Tecniche basate sul grafo del web;
- ▶ Tecniche basate su segnali eterogenei.

Tecniche basate sul contenuto

Un metodo per identificare lo spam basandosi sul contenuto di una pagina web è quello di analizzare alcune feature delle pagine spam e confrontarle con le medesime feature delle pagine non spam al fine di ottenere dei valori con cui stimare la natura della pagina web.

Tecniche basate sul contenuto

Un metodo per identificare lo spam basandosi sul contenuto di una pagina web è quello di analizzare alcune feature delle pagine spam e confrontarle con le medesime feature delle pagine non spam al fine di ottenere dei valori con cui stimare la natura della pagina web.

Esempi di feature

- Numero di parole all'interno della pagina (Keyword Stuffing);
- Numero di parole all'interno dei titoli delle pagine;
- Lunghezza media delle parole all'interno delle pagine;
- ▶ Lunghezza del testo all'interno dell'elemento < a >;
- Frazione di contenuto visibile;

Tecniche basate sul grafo

Tecniche base

- ▶ TrustRank
- ► Anti-trust Rank

Tecniche basate sul grafo

Tecniche base

- ► TrustRank
- Anti-trust Rank

Utilizzano una versione personalizzata di PageRank:

$$\alpha G + (1 - \alpha) \mathbf{1} v^t \tag{1}$$

TrustRank

TrustRank tenta di assegnare un valore di rank maggiore alle pagine non spam rispetto alle pagine spam.

TrustRank

TrustRank tenta di assegnare un valore di rank maggiore alle pagine non spam rispetto alle pagine spam.

Assunzione

- Per determinare le pagine non spam viene fatta un'assunzione empirica chiamata isolazione approssimata dell'insieme delle pagine buone, la quale afferma che le pagine non spam raramente punteranno a delle pagine spam.
- ▶ Gli sviluppatori di pagine web non spam non hanno interesse nel linkare pagine spam (a meno che vengano "ingannati" tramite l'uso di tecniche come honeypot).

TrustRank

▶ TrustRank quindi è una versione personalizzata di PageRank dove il vettore di preferenza *v* non rappresenta una distribuzione uniforme su tutte le pagine del grafo *G* ma una distribuzione personalizzata dalle pagine del seedset di partenza.

$$\alpha G + (1 - \alpha) \mathbf{1} v^t$$

Anti-trust Rank

- ▶ Parte dalla stessa intuizione dell'isolamento approssimato
- Utilizza un seedset iniziale composto da pagine spam
- Assume che una pagina spam (conosciuta) sia linkata solo da un'altra pagina spam
- Come per TrustRank, utilizza Pagerank personalizzato sul grafo trasposto (prendendo in considerazioni i link in entrata)
- Assegna un rank maggiore alle pagine spam

Tecniche eterogenee: Header HTTP

- Questo metodo utilizza le informazioni racchiuse all'interno degli header HTTP per determinare le pagine spam
- ▶ Può essere usato come supporto ad altri metodi descritti in precedenza e può essere utilizzato in modo dinamico durante la fase di download delle pagine

Tecniche eterogenee: Header HTTP

- Questo metodo utilizza le informazioni racchiuse all'interno degli header HTTP per determinare le pagine spam
- Può essere usato come supporto ad altri metodi descritti in precedenza e può essere utilizzato in modo dinamico durante la fase di download delle pagine

Funzionamento

- Dopo aver effettuato la richiesta HTTP al server di una pagina vengono interpretati solo gli header della riposta HTTP
- Successivamente viene azionato un classificatore per valutare gli header come spam o non spam
- ► Se gli header vengono classificati come non spam allora si continua con la lettura del resto della pagina.

Esperimenti

- Si è scelto di valutare l'efficacia di due algoritmi link based offline (TrustRank e Anti-trust Rank) durante l'operazione di crawling ovvero in modo online.
- ▶ Razionale di tale analisi è stato la valutazione dell'operabilità di tali algoritmi durante l'esecuzione online e il confronto delle prestazioni rispetto all'utilizzo convenzionale offline.

Esperimenti

- Si è scelto di valutare l'efficacia di due algoritmi link based offline (TrustRank e Anti-trust Rank) durante l'operazione di crawling ovvero in modo online.
- Razionale di tale analisi è stato la valutazione dell'operabilità di tali algoritmi durante l'esecuzione online e il confronto delle prestazioni rispetto all'utilizzo convenzionale offline.

Nota

La simulazione della fase di crawling è stata fatta tramite una visita in ampiezza su grafo.

Esperimento 1 (Confronto online/offline)

Calcolo della distanza, attraverso l'utilizzo della Tau di Kendall τ_t , tra il vettore t di TrustRank ricavato sull'intero grafo G e il vettore t_i di TrustRank calcolato sul grafo temporaneo G_v , ricavato ad ogni intervallo di nodi visitati lungo una visita in ampiezza v con nodo sorgente s.

Esperimento 1 (Confronto online/offline)

- ▶ Calcolo della distanza, attraverso l'utilizzo della Tau di Kendall τ_t , tra il vettore t di TrustRank ricavato sull'intero grafo G e il vettore t_i di TrustRank calcolato sul grafo temporaneo G_v , ricavato ad ogni intervallo di nodi visitati lungo una visita in ampiezza v con nodo sorgente s.

Esperimento 1 (Confronto online/offline): Grafici

Esperimento 2 (Confronto online/offline parziale)

Calcolo della distanza, attraverso l'utilizzo della Tau di Kendall τ_t , tra il vettore t di TrustRank ricavato sull'intero grafo G e il vettore t_i di TrustRank calcolato sul grafo temporaneo G_v , prendendo in considerazione i soli nodi spam.

Esperimento 2 (Confronto online/offline parziale)

- Calcolo della distanza, attraverso l'utilizzo della Tau di Kendall τ_t , tra il vettore t di TrustRank ricavato sull'intero grafo G e il vettore t_i di TrustRank calcolato sul grafo temporaneo G_v , prendendo in considerazione i soli nodi spam.
- Calcolo della distanza, attraverso l'utilizzo della Tau di Kendall τ_a , tra il vettore a di Anti-trust Rank ricavato sull'intero grafo G e il vettore a_i di Anti-trust Rank calcolato sul grafo temporaneo G_v , prendendo in considerazione i soli nodi non spam.

Esperimento 2 (Confronto online/offline parziale): Grafico TrustRank

Esperimento 2 (Confronto online/offline parziale): Grafico Anti-trust Rank

Esperimento 3 (Avversariale)

Si è simulata una situazione avversariale dove il seedset utilizzato dagli algoritmi sia formato da nodi al limite del grafo G.

Esperimento 4 (Avversariale con $\alpha = 0.005$)

Simile all'esperimento 3 ma il fattore di attenuazione α è impostato a 0.005.

Esperimento 5 (Separazione delle classi online)

▶ Dal vettore di TrustRank, calcolato sul grafo temporaneo, viene calcolata la differenza Δ_t tra la media Mb_t dei valori di TrustRank dei nodi non spam e la media Ms_t dei valori di TrustRank dei nodi spam.

$$\Delta_t = Mb_t - Ms_t \tag{2}$$

▶ Dal vettore di Anti-trust Rank, calcolato sul grafo temporaneo, viene calcolata la differenza Δ_a tra la media Mb_a dei valori di Anti-trust Rank dei nodi non spam e la media Ms_a dei valori di Anti-trust Rank dei nodi spam.

$$\Delta_a = Mb_a - Ms_a \tag{3}$$

Esperimento 5 (Separazione delle classi online): TrustRank

Esperimento 5 (Separazione delle classi online): Anti-trust Rank

Esperimento 6 (Separazione delle classi offline)

Il test è simile al esperimento 5 ma si utilizzano i valori ricavati da TrustRank e Anti-trust Rank calcolati sul grafo completo, invece di usare i valori temporanei di TrustRank e Anti-trust Rank per calcolare Δ_t e Δ_a durante la visita in ampiezza.

Esperimento 6 (Separazione delle classi offline): TrustRank

Esperimento 6 (Separazione delle classi offline): Anti-trust Rank

Conclusioni

- TrustRank e Anti-trust Rank possono essere usati in modo online in quanto approssimano abbastanza bene il loro comportamento offline.
- Confrontando i due algoritmi si è evinto che Anti-trust Rank approssima meglio il comportamento offline, per quasi tutta la durata del crawling, e quindi è più indicato per essere usato in modo online.

Sviluppi futuri

Sviluppo futuro di tale lavoro sarà la progettazione di un modulo di spam detection da inserire all'interno del web crawler BUbiNG.