Matrizes Inversas

MAP 2110 - Diurno

IME USP

12 de maio

Problema da Inversão

 $I_n = [\delta_{ij}]$ é a matriz identidade $n \times n$. Ela tem a seguinte propriedade importante: para toda matriz A de dimensão $m \times n$ vale:

$$I_m A = A e A I_n = A$$

ou seja, ela é um elemento neutro na multiplicação de matrizes. O problema que podemos colocar é será que para esta matriz A existe uma matriz B de dimensão $n \times m$ tal que

$$A.B = I_m \ e \ B.A = I_n \ (?)$$

Exemplo

Vamos achar uma solução para

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\begin{vmatrix} 1 & 0 & 1 & 1 & 0 \\ 1 & -1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & -1 & 1 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & -1 & 0 & -1 & 1 \\ 0 & 1 & 0 & 1 & -1 \end{vmatrix} \Longrightarrow B = \begin{bmatrix} 1 - t & -s \\ 1 & -1 \\ t & s \end{bmatrix}$$

Agora vamos verificar se

$$\begin{bmatrix} -s \\ -1 \\ s \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} = I_3$$

 $\begin{bmatrix} 1-t-s & s & 1-t-s \\ 0 & 1 & 0 \\ t+s & -s & t+s \end{bmatrix} = I_3 \text{ não é possível}$

$$\begin{bmatrix} 1-t & -s \\ 1 & -1 \\ t & s \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} = I_3$$

Definição da matriz inversa

De forma geral não é possível definir uma inversa para matrizes $m \times n$ se $m \neq n$. Vamos definir então para matrizes quadradas $n \times n$:

Uma matriz A é invertível se existe uma matriz B de mesma dimensão (claro) tal que:

$$AB = BA = I_n$$

Uma matriz B que satisfaz esta condição chamaremos de inversa de A e denotaremos por A^{-1}

Unicidade da inversa

É importante que a inversa seja única. Então: Se B e C são duas matrizes satisfazendo as condições da inversa de A então temos

$$C = CI_n = C(AB) = (CA)B = I_nB = B$$

Exemplo

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}$$
 então $A^{-1} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 0 & 1 \\ 0 & -2 \end{bmatrix}$ então não existe A^{-1}

nem todas as matrizes têm inversas

Como tentar achar a inversa de uma matriz

Achar a matriz inversa de

$$A = \begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

Eliminação de Gauss (e Jordan)

$$\begin{vmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 1 & 1 & 0 & 1 & 0 & L_2 - 2L_1 \\ -1 & 0 & 0 & 0 & 0 & 1 & L_3 + L_1 \end{vmatrix} \rightarrow$$

Como antes

$$\begin{vmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & -2 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 & 1 & L_3 + \frac{2}{3}L_2 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & -3 & 1 & -2 & 1 & 0 & -1/3L_2 & \rightarrow \\ 0 & 0 & 2/3 & -1/3 & 2/3 & 1 & 3/2L_3 \end{vmatrix} \rightarrow \begin{vmatrix} 1 & 2 & 0 & 1 & 0 & 0 \\ 0 & 1 & -1/3 & 2/3 & -1/3 & 0 & L_2 + 1/3L_3 & \rightarrow \\ 0 & 0 & 1 & -1/2 & 1 & 3/2 \end{vmatrix}$$

Agora a parte pra achar a escalonada reduzida

$$\begin{vmatrix} 1 & 2 & 0 & 1 & 0 & 0 & | L_1 - 2L_2 \\ 0 & 1 & 0 & 1/2 & 0 & 1/2 & | & & & \rightarrow \\ 0 & 0 & 1 & | & -1/2 & 1 & 3/2 & | & & & \rightarrow \\ \begin{vmatrix} 1 & 0 & 0 & 0 & 0 & -1 & | & & & \\ 0 & 1 & 0 & 1/2 & 0 & 1/2 & | & & \rightarrow \\ 0 & 0 & 1 & | & -1/2 & 1 & 3/2 & | & & & \\ A^{-1} & = \frac{1}{2} \begin{bmatrix} 0 & 0 & -2 \\ 1 & 0 & 1 \\ -1 & 2 & 3 & | & & \\ \end{bmatrix}$$

teste

			0	0	-2
		$\frac{1}{2} \times$	1	0	1
		_	-1	2	3
1	2	0	1	0	0
2	1	1	0	1	0
-1	0	0	0	0	1

Falso ou Verdadeiro

1

Uma matriz A de dimensão $n \times n$ é invertível se e somente se a forma escalonada reduzida é a identidade.

Verdadeiro, basta estudar o exemplo acima. Só não haverá inversa quando a forma escalonada tiver uma linha de zeros

Lista das operações elementares que fizemos acima:

$$\blacktriangleright L_2 - 2L_1$$

$$L_3 + 3/2L_2$$

$$L_3 + 3/2L_2$$

 $-1/3L_2$

►
$$L_3 + 3/2L_2$$

► $-1/3L_2$

 $L_2 + 1/3L_3$ ► $L_1 - L_2$

▶ 3/2*L*₃

correspondem às matrizes elementares

$$1 - \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 2 - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} 3 - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3/2 & 1 \end{pmatrix}$$

$$4 - \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/3 & 0 \\ 0 & 0 & 1 \end{pmatrix} 5 - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3/2 \end{pmatrix} 6 - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1/3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$7 - \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Inversa de uma matriz 2×2

Se
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 é uma matriz vamos chamar de $\det(A) = ad - cb$.
Se $\det(A) \neq 0$

$$A^{-1} = \frac{1}{\det(A)} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Se A e B são duas matrizes invertíveis de dimensão $n \times n$ então $(AB)^{-1} = A^{-1}B^{-1}$ Falso. A fórmula correta é $(AB)^{-1} = B^{-1}A^{-1}$

Matrizes Elementares são invertíveis

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

qual é a inversa de A

Matrizes Elementares são invertíveis

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

qual \acute{e} a inversa de A

$$A = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3

Se A é uma matriz $n \times n$ invertível então a equação

$$A\mathbf{x} = \mathbf{b}$$

tem uma única solução para qualquer ${\bf b}$ de dimensão $n \times 1$, ou seja, um vetor né?

Verdadeiro: $x = A^{-1}b$ um tipo de lei do cancelamento.

Se A é uma matriz $m \times n$, então $A.A^T$ é uma matriz quadrada Verdadeiro. Se você não entendeu por quê, leia novamente a primeira seção do capítulo 2 do Nicholson

5 Se A é uma matriz 2×2 e $A^2 = -I_2$ então A tem algum elemento complexo.

Falso. A matriz $A=\begin{pmatrix}0&1\\-1&0\end{pmatrix}$ satisfaz essa propriedade embora só tenha elementos reais.