Experiment no. 8 Date:

Aim:

To design and implement multiplexer and demultiplexer using logic gates.

SOFTWARE REQUIRED: LTspice software

THEORY:

MULTIPLEXER:

Multiplexer doe the function of transmitting a large number of information units over a smaller number of channels or lines. A digital multiplexer is a combinational circuit that selects binary information from one of many input lines and directs it to a single output line. The selection of a particular input line is controlled by a set of selection lines. Normally there are 2n input line and n selection lines whose bit combination determine which input is selected.

DEMULTIPLEXER:

The function of Demultiplexer is in contrast to multiplexer function. It takes information from one line and distributes it to a given number of output lines. For this reason, the demultiplexer is also known as a data distributor. Decoder can also be used as demultiplexer.

In the 1: 4 demultiplexer circuit, the data input line goes to all of the AND gates. The data select lines enable only one gate at a time and the data on the data input line will pass through the selected gate to the associated data output line.

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER

FUNCTION TABLE:

S1	S0	INPUTS Y
0	0	D0 → D0 S1' S0'
0	1	D1 → D1 S1' S0
1	0	D2 → D2 S1 S0'
1	1	D3 → D3 S1 S0

Y = D0 S1' S0' + D1 S1' S0 + D2 S1 S0' + D3 S1 S0

CIRCUIT DIAGRAM FOR MULTIPLEXER:

TRUTH TABLE

S1	S0	Y = OUTPUT
0	0	D0
0	1	D1
1	0	D2
1	1	D3

BLOCK DIAGRAM FOR 1:4 DEMULTIPLEXER:

FUNCTION TABLE:

S1	S0	INPUT
0	0	$X \rightarrow D0 = X S1' S0'$
0	1	$X \rightarrow D1 = X S1' S0$
1	0	$X \rightarrow D2 = X S1 S0'$
1	1	$X \rightarrow D3 = X S1 S0$

$$Y = X S1' S0' + X S1' S0 + X S1 S0' + X S1 S0$$

LOGIC DIAGRAM FOR DEMULTIPLEXER:

TRUTH TABLE:

INPUT			OUTPUT			
S1	S0	I/P	D 0	D1	D2	D3
0	0	0	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	0
1	0	0	0	0	0	0
1	0	1	0	0	1	0
1	1	0	0	0	0	0
1	1	1	0	0	0	1

SIMULATION PROCEDURE:

1. Open LTspice. Go to File - New Schematic.

2. On the File Menu, click on Edit Component.

3. **a. For Multiplexer**: Place the voltage sources, NOT gate, AND gate, and OR gate on to schematic and make necessary connections as shown in the Figure.

b.For Demultiplexer:

4<u>.</u>a. Connect the voltage sources as shown Figure for multiplexer.

b. Connect the voltage sources as shown Figure for Demultiplexer.

5.For Multiplexer:

Right click on the voltage sources V6 and then Enter DC Value 1 and then click OK option. Right click on the voltage sources V5 and then Enter DC Value 0 and then click OK option. Right click on the voltage sources V4 and then Enter DC Value 0 and then click OK option.

Right click on the voltage sources V3 and then Enter DC Value 0 and then click OK option. Right click on the voltage sources V2 and then Enter DC Value 1 and then click OK option. Right click on the voltage sources V1 and then Enter DC Value 1 and then click OK option

For Demultiplexer:

Right click on the voltage sources V3 (I/P)and then Enter DC Value 1 and then click OK option. Right click on the voltage sources V2 (S1)and then Enter DC Value 1 and then click OK option. Right click on the voltage sources V1(S0) and then Enter DC Value 1 and then click OK option

6. Go to Edit \rightarrow SPICE analysis.

For both Decoder and Encoder: Select "DC op pnt" tab and Click "OK" and Press run symbol on menu bar.

Result for Multiplexer:

```
* C:\Users\gkani\Documents\LTspiceXVII\Draft11.asc
         --- Operating Point ---
V(n003):
V(n004):
V(d0):
V(n005):
                                       voltage
                    0
                                      voltage
                                      voltage
voltage
                    0
V(n001):
                                       voltage
V(d1):
                    0
                                       voltage
V(n006):
                    0
                                       voltage
V(n002):
V(d2):
V(n009):
                    1
                                       voltage
                    ō
                                       voltage
                    0
                                       voltage
V(d3):
                                       voltage
V(n010):
                                       voltage
V(n007):
V(n008):
V(y):
I(V4):
                    0
                                       voltage
                    1
                                      voltage
                                       voltage
                                       device current
I(V6):
                    0
                                       device_current
I(V5):
                    0
                                       device_current
                    0
I(V3):
                                       device_current
I (V2):
                    0
                                       device_current
I (V1):
                    0
                                      device current
I8(A9):
                    -0
                                       device_current
I6(A9):
                    0
                                       device_current
                    -0
I8(A8):
                                       device_current
I6(A8):
I8(A7):
                    0
                                       device_current
                    -0
                                      device_current
device_current
device_current
I7(A7):
                    0
I8 (A6):
                     -0
```

Result for Demultiplexer:

6. Similarly, Verify the Multiplexer and Demultiplexer Circuits for all other cases of truth table and present the results.

Result

Thus, the multiplexer and demultiplexer were implemented and verified using logic gates in LT spice software.