Praca domowa - ćwiczenia P.Mat

Gracjan Barski

October 10, 2023

zadanie 26: Sprawdzić, czy dla **dowolnych** zbiorów A,B,C zachodzą podane równości.

a) $(A \cup B \cup C) - (A \cup B) = C$

Nie zachodzi; Kontrprzykład: Weźmy takie A, B, C:

$$A = \{1\}$$

$$B = \{2\}$$

$$C = \{1\}$$

Wtedy lewa strona równa jest: \emptyset , a prawa strona równa jest $\{1\}$.

b) $A = (A \cap B) \cup (A - B)$

Zachodzi, dowód: Weźmy dowolne zbiory A,B,C. Aby to udowodnić, udowodnię inkluzję w obie strony. Zacznę od inkluzji w prawo.

- (\subseteq) Weźmy dowolnego x, takiego że $x \in A$. Teraz mamy dwa przypadki:
- 1. $x \in B$

Jeśli $x \in A$ i $x \in B$, to z definicji $x \in A \cap B$.

Jeśli $x \in A \cap B$, to z definicji sumy zbiorów $x \in (A \cap B) \cup (A - B)$.

2. $x \notin B$

Z definicji różnicy zbiorów $x \in A-B$, co implikuje że $x \in (A \cap B) \cup (A-B)$.

W każdym z przypadków mamy $x \in (A \cap B) \cup (A - B)$, co dowodzi inkluzję.

- (\supseteq) Weźmy dowolnego x,takiego że $x\in (A\cap B)\cup (A-B).$ Wtedy z definicji mamy dwa dwa przypadki:
- 1. $x \in A \cap B$

z definicji iloczynu zbiorów, $x \in A$.

 $2. x \in A - B$

z definicji różnicy zbiorów: $x \in A$.

Mogą zajść oba przypadki jednocześnie, jednak nic to nie zmienia w rozumowaniu.

W każdym przypadku mamy $x \in A$, co dowodzi inkluzję.

Dowiedliśmy inkluzji zbiorów w obie strony, co z definicji równości zbiorów oznacza, że równość podana w zadaniu zachodzi.

c) $A - (A - B) = A \cap B$

Zachodzi, dowód: Aby to udowodnić, wykonam szereg równoważnych przekształceń logicznych.

Weźmy dowolnego x, takiego że $x \in A - (A - B)$.

Z definicji różnicy zbiorów mamy: $x \in A - (A - B) \iff x \in A \land x \notin A - B$. Otrzymany warunek można zapisać równoważnie:

$$x \in A \land \neg (x \in A \land x \notin B) \Longleftrightarrow \tag{1}$$

$$x \in A \land (x \notin A \lor x \in B) \iff$$
 (2)

$$(x \in A \land x \notin A) \lor (x \in A \land x \in B) \tag{3}$$

Równoważność z (1) do (2) wynika z prawa De Morgana, a równoważność z (2) do (3) wynika z rozdzielności koniunkcji względem alternatywy. Lewa część alternatywy w (3) jest sprzecznością, gdyż oba wykluczające się wzajemnie warunki nie mogą zachodzić jednocześnie. To oznacza, że prawa część alternatywy jest prawdziwa, czyli zachodzi $(x \in A \land x \in B)$.

Z definicji $(x \in A \land x \in B) \iff x \in A \cap B$. To oznacza, że dowolny x, którego wzięliśmy na początku, należy do $A \cap B$. W dowodzie zastosowane były tylko równoważności, więc równość faktycznie jest dowiedziona. \square

d) $A \cup (A \cap B) = A$

Zachodzi, dowód: analogicznie jak w b), Weźmy dowolne zbiory A,B,C. Inkluzja w lewo:

- (⊇) Weźmy dowolnego x, takiego że $x \in A$. Wtedy z definicji sumy zbiorów mamy $x \in A \cup (A \cap B)$.
- (⊆) Weźmy dowolnego x, takiego że $x \in A \cup (A \cap B)$. Wtedy z definicji sumy zbiorów mamy:

$$(x \in A) \lor (x \in A \land x \in B) \Longleftrightarrow \tag{1}$$

$$(x \in A \lor x \in A) \land (x \in A \lor x \in B) \Longleftrightarrow \tag{2}$$

$$(x \in A) \land (x \in A \lor x \in B) \tag{3}$$

Gdzie przejście z (1) do (2) wynika z rozdzielności alternatywy względem koniunkcji, a przejście z (2) do (3) wynika z własności alternatywy $(q \lor q = q$ dla dowolnego q).

(3) w szczególności oznacza, że $x \in A$, co udowadnia inkluzję.

Dowiedliśmy inkluzji zbiorów w obie strony, co z definicji równości zbiorów oznacza, że równość podana w zadaniu zachodzi.

e)
$$(A \cup B) - C = (A - C) \cup (B - C)$$

Zachodzi, dowód: Aby to udowodnić, wykonam szereg równoważnych przekształceń logicznych Weźmy dowolne zbiory A, B, C. Weźmy dowolnego x, takiego że $x \in (A \cup B) - C$. Wtedy z definicji mamy:

$$x \in (A \cup B) - C \Longleftrightarrow \tag{1}$$

$$(x \in A \lor x \in B) \land x \notin C \iff (2)$$

$$(x \in A \land x \notin C) \lor (x \in B \land x \notin C) \Longleftrightarrow \tag{3}$$

$$x \in (A - C) \cup (B - C) \tag{4}$$

Gdzie przejście z (1) do (2) wynika z definicji sumy i różnicy zbiorów, przejście z (2) do (3) wynika z rozdzielności koniunkcji względem alternatywy, a przejście z (3) do (4) wynika z definicji operacji sumy i różnicy zbiorów. To oznacza, że dowolny x, którego wzięliśmy na początku, należy do $(A-C) \cup (B-C)$. W dowodzie zastosowane były tylko równoważności, więc równość faktycznie jest dowiedziona.