Problem 1. Let $\alpha: I \to \mathbb{R}^3$ and $\beta: I \to \mathbb{R}^3$ be two curves. Let $\alpha \cdot \beta: I \to \mathbb{R}$ be the function defined by $(\alpha \cdot \beta)(t) = \alpha(t) \cdot \beta(t)$ (dot product). Prove that

$$(\alpha \cdot \beta)'(t) = \alpha'(t) \cdot \beta(t) + \alpha(t) \cdot \beta'(t).$$

Solution.

$$(\alpha \cdot \beta)'(t) = \lim_{h \to 0} \frac{(\alpha \cdot \beta)(t+h) - (\alpha \cdot \beta)(t)}{h}$$

$$= \lim_{h \to 0} \frac{\alpha(t+h) \cdot \beta(t+h) - \alpha(t) \cdot \beta(t)}{h}$$

$$= \lim_{h \to 0} \frac{\alpha(t+h) \cdot \beta(t+h) - \alpha(t) \cdot \beta(t+h) + \alpha(t) \cdot \beta(t+h) - \alpha(t) \cdot \beta(t)}{h}$$

$$= \lim_{h \to 0} \beta(t+h) \cdot \frac{\alpha(t+h) - \alpha(t)}{h} + \lim_{h \to 0} \alpha(t) \cdot \frac{\beta(t+h) - \beta(t)}{h}$$

$$= \lim_{h \to 0} \beta(t+h) \cdot \lim_{h \to 0} \frac{\alpha(t+h) - \alpha(t)}{h} + \lim_{h \to 0} \alpha(t) \cdot \lim_{h \to 0} \frac{\beta(t+h) - \beta(t)}{h}$$

$$= \beta(t) \cdot \alpha'(t) + \alpha(t) \cdot \beta'(t)$$

Problem 1. Let $\alpha: I \to \mathbb{R}^3$ and $\beta: I \to \mathbb{R}^3$ be two curves. Let $\alpha \cdot \beta: I \to \mathbb{R}$ be the function defined by $(\alpha \cdot \beta)(t) = \alpha(t) \cdot \beta(t)$ (dot product). Prove that

$$(\alpha \cdot \beta)'(t) = \alpha'(t) \cdot \beta(t) + \alpha(t) \cdot \beta'(t).$$

Solution. We write $(\alpha \cdot \beta)(t) = x_{\alpha}(t)x_{\beta}(t) + y_{\alpha}(t)y_{\beta}(t) + z_{\alpha}(t)z_{\beta}(t)$. Now we can differentiate:

$$(\alpha \cdot \beta)'(t) = \frac{d}{dt} (x_{\alpha}(t)x_{\beta}(t) + y_{\alpha}(t)y_{\beta}(t) + z_{\alpha}(t)z_{\beta}(t))$$

$$= x'_{\alpha}(t)x_{\beta}(t) + x_{\alpha}(t)x'_{\beta}(t) + y'_{\alpha}(t)y_{\beta}(t) + y_{\alpha}(t)y'_{\beta}(t) + z'_{\alpha}(t)z_{\beta}(t) + z_{\alpha}(t)z'_{\beta}(t)$$

$$= \left(x'_{\alpha}(t)x_{\beta}(t) + y'_{\alpha}(t)y_{\beta}(t) + z'_{\alpha}(t)z_{\beta}(t)\right) + \left(x_{\alpha}(t)x'_{\beta}(t) + y_{\alpha}(t)y'_{\beta}(t) + z_{\alpha}(t)z'_{\beta}(t)\right)$$

$$= \alpha'(t) \cdot \beta(t) + \alpha(t) \cdot \beta'(t)$$

Problem 2. Let $\alpha: I \to \mathbb{R}^3$ be a curve. Prove that $|\alpha(t)|$ is constant if and only if $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$.

Solution. We clearly have that $|\alpha(t)|$ is constant iff $|\alpha(t)|^2 = \alpha(t) \cdot \alpha(t)$ is constant, and $\alpha(t) \cdot \alpha(t)$ is constant iff $(\alpha(t) \cdot \alpha(t))'$ is zero for all $t \in I$. By Problem 1, we have that $(\alpha(t) \cdot \alpha(t))' = \alpha(t) \cdot \alpha'(t) + \alpha(t)' \cdot \alpha(t) = 2\alpha(t) \cdot \alpha'(t)$. By the definition of the dot product, $2\alpha(t) \cdot \alpha'(t)$ is zero for all $t \in I$ iff $\alpha(t)$ is orthogonal to $\alpha'(t)$ for all $t \in I$. Following the chain of if and only if statements gives the desired statement.

Problem 4. The curve $\alpha(t) = (e^{-t}\cos(t), e^{-t}\sin(t))$ for $t \in [0, \infty)$ is called the logarithmic spiral. Sketch this curve, and compute its length.

Solution. To sketch the curve, notice that $\alpha(t)$ parametrizes the circle with radius e^{-t} centered at (0,0). As t increases, the radius decreases, so the curve spirals in toward the origin.

To compute the length of the curve, we must compute $\int_0^\infty |\alpha'(t)| dt$.

$$\alpha'(t) = \langle -e^{-t}\cos(t) - e^{-t}\sin(t), -e^{-t}\sin(t) + e^{-t}\cos(t) \rangle. \text{ Thus, } |\alpha'(t)| = \sqrt{2e^{-2t}(\cos^2(t) + \sin^2(t))} = \sqrt{2e^{-2t}} = \sqrt{2}e^{-t}.$$

Thus, $\int_0^\infty |\alpha'(t)| dt = \sqrt{2} \int_0^\infty e^{-t} dt = \sqrt{2} e^{-t} \Big|_0^\infty = \sqrt{2}$. The logarithmic spiral described has length $\sqrt{2}$.

Problem 5. Let $\alpha:[a,b]\to\mathbb{R}^3$ be a curve. Let v be a unit vector. Prove that

$$(\alpha(b) - \alpha(a)) \cdot v = \int_a^b \alpha'(t) \cdot v \, dt \le \int_a^b |\alpha'(t)| \, dt.$$

Choose v appropriately to deduce that the shortest path between any two points is a straight line.

Solution. As v is independent of t, we have v'=0 and thus $\alpha(t) \cdot v'=0$. This yields

$$(\alpha(b) - \alpha(a)) \cdot v = \alpha(t) \cdot v \Big|_a^b = \int_a^b (\alpha \cdot v)'(t) dt = \int_a^b (\alpha'(t) \cdot v + \alpha(t) \cdot v') dt = \int_a^b \alpha'(t) \cdot v dt,$$

where the second equality comes from the fundamental theorem of calculus and the third equality comes from **Problem 1**. To prove the inequality, note that |v| = 1 and therefore

$$\int_{a}^{b} \alpha'(t) \cdot v \, dt \le \left| \int_{a}^{b} \alpha'(t) \cdot v \, dt \right| \le \int_{a}^{b} \left| \alpha'(t) \cdot v \right| \, dt \le \int_{a}^{b} \left| \alpha'(t) \right| \left| v \right| \, dt = \int_{a}^{b} \left| \alpha'(t) \right| \, dt, \quad (3)$$

where the second inequality comes the triangle inequality and the third comes from the Cauchy-Schwarz inequality.

If $\alpha(b) - \alpha(a) = 0$, then the distance between these two points is zero. Thus suppose $\alpha(b) - \alpha(a) \neq 0$ and let v be given by

$$v = \frac{\alpha(b) - \alpha(a)}{|\alpha(b) - \alpha(a)|}.$$

This gives

$$(\alpha(b) - \alpha(a)) \cdot \frac{\alpha(b) - \alpha(a)}{|\alpha(b) - \alpha(a)|} = |\alpha(b) - \alpha(a)| \le \int_a^b |\alpha'(t)| \ dt,$$

implying that the line segment that connects $\alpha(a)$ to $\alpha(b)$ is the shortest possible path.

Problem 6. Fix a curve $\alpha: I \to \mathbb{R}^3$ and fix $[a,b] \subset I$. For a partition

$$P = \{a = t_0 < t_1 < \dots < t_n = b\},\$$

we defined $L(\alpha, P) = \sum |\alpha(t_{i+1}) - \alpha(t_i)|$ and $|P| = \max(t_{i+1} - t_i)$. Prove that for each $\epsilon > 0$, there exists $\delta > 0$ so that if $|P| < \delta$, then

$$\left| \int_{a}^{b} |\alpha'(t)| \, dt - L(\alpha, P) \right| < \epsilon.$$

2 3

Solution. We want to show that for any partition P with $|P| < \delta$ for some $\delta > 0$, we have that

$$\left| \int_{a}^{b} |\alpha'(t)| \, dt - L(\alpha, P) \right| < \epsilon$$

To do so, it suffices to show that we can find a δ such that

$$\left| \int_a^b |\alpha'(t)| \, dt - \sum_P |\alpha'(t_n)| (t_{n+1} - t_n) \right| < \frac{\epsilon}{2}$$

$$\left| \sum_{P} |\alpha'(t_n)|(t_{n+1} - t_n) - \sum_{P} |\alpha(t_{n+1}) - \alpha(t_n)| \right| < \frac{\epsilon}{2}$$

By the triangle inequality, this will give us the desired overall bound. By definition, we know that

$$\lim_{|P| \to 0} \sum_{P} |\alpha'(t_n)| (t_{n+1} - t_n) = \int_a^b |\alpha'(t)| \, dt$$

By the definition of limit, this means there is some δ_1 such that $|P| < \delta_1$ gives us the first required bound. Now we want to find a δ_2 which gives us the second bound, and then let $\delta = \min(\delta_1, \delta_2)$. Consider the second expression:

$$\left| \sum_{P} |\alpha'(t_n)|(t_{n+1} - t_n) - \sum_{P} |\alpha(t_{n+1}) - \alpha(t_n)| \right| = \left| \sum_{P} |\alpha'(t_n)|(t_{n+1} - t_n) - |\alpha(t_{n+1}) - \alpha(t_n)| \right|$$

$$= \sum_{P} (t_{n+1} - t_n) \left[|\alpha'(t_n)| - \frac{|\alpha(t_{n+1}) - \alpha(t_n)|}{t_{n+1} - t_n} \right]$$

Using the reverse triangle inequality, we can bound this term:

$$\leq \sum_{P} (t_{n+1} - t_n) \left| \alpha'(t_n) - \frac{\alpha(t_{n+1}) - \alpha(t_n)}{t_{n+1} - t_n} \right|$$

²Suggestion: First replace $\int_a^b |\alpha'(t)| dt$ by a Riemann sum, and compare the Riemann sum to $L(\alpha, P)$. For the latter, it may help to use the mean value theorem for vector-valued functions (you will need to figure out which function to apply it to).

³This problem is probably harder than most HW problems for the course. Please ask questions if you are stuck.

$$= \sum_{n} (t_{n+1} - t_n) \left| \frac{\alpha'(t_n)(t_{n+1} - t_n)}{t_{n+1} - t_n} - \frac{\alpha(t_{n+1}) - \alpha(t_n)}{t_{n+1} - t_n} \right|$$

Let $f_n(t) = \alpha'(t_n)t - \alpha(t)$. We can rewrite the numerator:

$$= \sum_{P} (t_{n+1} - t_n) \left| \frac{f(t_{n+1}) - f(t_n)}{t_{n+1} - t_n} \right|$$

By the multivariate mean value theorem, we can bound this again, with $t_n^* \in (t_n, t_{n+1})$ given by the mean value theorem:

$$\leq \sum_{p} (t_{n+1} - t_n) \left| f_n'(t_n^*) \right|$$

Recall that $f(t) = \alpha'(t_n)t - \alpha(t)$, so $f'(t) = \alpha'(t_n) - \alpha'(t)$. Plugging this in, we see that:

$$\leq \sum_{P} (t_{n+1} - t_n) \left| \alpha'(t_n) - \alpha'(t_n^*) \right|$$

At this point we shift gears for a moment. First, we note that α is smooth so in particular, α' is continuous. Further, I = [a, b] is compact, which means that $\alpha' : I \to \mathbb{R}^3$ is uniformly continuous. That means that there exists some δ_2 such that $|t_n^* - t_n| < \delta_2$ implies that $|\alpha'(t_n) - \alpha'(t_n^*)| < \frac{\epsilon}{2(b-a)}$. Thus, if $|P| < \delta_2$, we can again bound:

$$<\sum_{P}(t_{n+1}-t_n)\frac{\epsilon}{2(b-a)}$$

$$= \frac{\epsilon}{2(b-a)} \sum_{P} (t_{n+1} - t_n)$$

Observe that the sum is telescoping and evaluates to b-a. Putting all the inequalities together, we get that

$$\left| \sum_{P} |\alpha'(t_n)|(t_{n+1} - t_n) - \sum_{P} |\alpha(t_{n+1}) - \alpha(t_n)| \right| < \frac{\epsilon}{2}$$

when $|P| < \delta_2$. As noted before, taking $\delta = \min(\delta_1, \delta_2)$ gives us the desired inequality (via triangle inequality).