Homework 8

2024-10-15

Question 11.1 Using the crime data set uscrime.txt from Questions 8.2, 9.1, and 10.1, build a regression model using: 1. Stepwise regression 2. Lasso 3. Elastic net For Parts 2 and 3, remember to scale the data first – otherwise, the regression coefficients will be on different scales and the constraint won't have the desired effect. For Parts 2 and 3, use the glmnet function in R

Load Data

```
#housekeeping
library(pacman)
pacman::p_load(ggthemes, tidyverse, magrittr, TTR, tidyr, dplyr, lubridate,
ggplot2, plotly, fpp2, forecast, caTools, reshape2, psych, graphics, Matrix,
corrplot, mltools, fBasics, kableExtra, DMwR, caret, gridExtra, leaps, MASS,
glmnet, rio)
crime <- import("D:/.../uscrime.txt")</pre>
```

Data exploration and Simple visualization

			1.	3.						
	Mini	Maxim	Quartil	Quartil		Medi	Varianc		Skew	Kurt
	mum	um	e	e	Mean	an	e	Stdev	ness	osis
M	11.90	17.700	13.000	14.600	13.857	13.60	1.5794	1.256	0.821	0.377
	00	000	000	00	447	00	54e+00	763	917	753
So	0.000	1.0000	0.0000	1.0000	0.3404	0.000	2.2941	0.478	0.652	-
	0	00	00	0	26	0	70e-01	975	139	1.607
										569
Ed	8.700	12.200	9.7500	11.450	10.563	10.80	1.2514	1.118	-	-
	0	000	00	00	830	00	89e+00	700	0.318	1.149
									987	253
Po	4.500	16.600	6.2500	10.450	8.5000	7.800	8.8321	2.971	0.890	0.162
1	0	000	00	00	00	0	74e+00	897	124	309
Po	4.100	15.700	5.8500	9.7000	8.0234	7.300	7.8183	2.796	0.844	0.008

			1.	3.						
	Mini	Maxim	Quartil	Quartil		Medi	Varianc		Skew	Kurt
	mum	um	e	e	Mean	an	e	Stdev	ness	osis
2	0	000	00	0	04	0	53e+00	132	367	590
LF	0.480	0.6410	0.5305	0.5930	0.5611	0.560	1.6330	0.040	0.270	-
	0	00	00	0	91	0	00e-03	412	675	0.888 732
M.	93.40	107.10	96.450	99.200	98.302	97.70	8.6832	2.946	0.993	0.652
F	00	0000	000	00	128	00	56e+00	737	223	010
Po	3.000	168.00	10.000	41.500	36.617	25.00	1.4494	38.07	1.854	3.078
p	0	0000	000	00	021	00	15e+03	1188	230	936
N	0.200	42.300	2.4000	13.250	10.112	7.600	1.0573	10.28	1.379	1.077
W	0	000	00	00	766	0	77e+02	2882	966	648
U1	0.070	0.1420	0.0805	0.1040	0.0954	0.092	3.2500	0.018	0.774	-
	0	00	00	0	68	0	00e-04	029	876	0.131 208
U2	2.000	5.8000	2.7500	3.8500	3.3978	3.400	7.1325	0.844	0.542	0.173
	0	00	00	0	72	0	60e-01	545	264	800
We	2880.	6890.0	4595.0	5915.0	5253.8	5370.	9.3105	964.9	-	-
alt h	0000	00000	00000	0000	29787	0000	02e+05	09442	0.381 952	0.613 169
Ine	12.60	27.600	16.550	22.750	19.400	17.60	1.5916	3.989	0.367	-
q	00	000	000	00	000	00	96e+01	606	063	1.138 824
Pr	0.006	0.1198	0.0327	0.0544	0.0470	0.042	5.1700	0.022	0.883	0.749
ob	9	04	01	5	91	1	00e-04	737	336	579
Ti	12.19	44.000	21.600	30.450	26.597	25.80	5.0224	7.086	0.371	-
me	96	400	350	75	921	06	08e+01	895	275	0.413 474
Cri	342.0	1993.0	658.50	1057.5	905.08	831.0	1.4958	386.7	1.053	0.777
me	000	00000	0000	0000	5106	000	54e+05	62697	927	628

```
# Visualizations via Box plots
meltData <- melt(crime)

## No id variables; using all as measure variables

p <- ggplot(meltData, aes(factor(variable), value))
p + geom_boxplot() + facet_wrap(~variable,
scale="free")+theme_economist()+scale_colour_economist()</pre>
```



```
#density plots of original data
density <- crime %>%
  gather() %>%
  ggplot(aes(value)) +
    facet_wrap(~ key, scales = "free") +
    geom_density()+theme_economist()+scale_colour_economist()
density
```


Stepwise Regression

```
trControl = train.control,trace=F
)
#model accuracy
step.model$results

## parameter RMSE Rsquared MAE RMSESD RsquaredSD MAESD
## 1 none 285.9305 0.6092788 225.0695 105.3426 0.2387865 71.53864
```

Best Model # of Predictors Combo

```
# Final model coefficients
step.model$finalModel
##
## Call:
## lm(formula = .outcome \sim M + Ed + Po1 + M.F + U1 + U2 + Ineq +
##
       Prob, data = dat)
##
## Coefficients:
## (Intercept)
                           Μ
                                       Ed
                                                    Po1
                                                                 M.F
U1
                                                 98.34
                                                               27.00
##
      -6557.63
                      87.10
                                   173.41
7394.41
##
            U2
                                     Prob
                        Ineq
##
        206.41
                       56.57
                                 -3489.88
# Summary of the model
summary(step.model$finalModel)
##
## Call:
## lm(formula = .outcome \sim M + Ed + Po1 + M.F + U1 + U2 + Ineq +
##
       Prob, data = dat)
##
## Residuals:
                1Q Median
##
       Min
                                 3Q
                                        Max
## -439.19 -116.92 -4.76 127.15 474.12
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
                            1359.17 -4.825 3.09e-05 ***
## (Intercept) -6557.63
## M
                  87.10
                              34.76
                                      2.506 0.017312 *
## Ed
                 173.41
                              55.87
                                      3.104 0.003903 **
                              16.22
                                      6.064 7.99e-07 ***
## Po1
                  98.34
## M.F
                  27.00
                              15.20
                                      1.777 0.084851 .
## U1
               -7394.41
                            3702.00 -1.997 0.054080 .
## U2
                              77.94
                                      2.648 0.012312 *
                 206.41
## Ineq
                  56.57
                              15.02
                                      3.766 0.000651 ***
## Prob
               -3489.88
                            1578.65 -2.211 0.034100 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 200.7 on 33 degrees of freedom
## Multiple R-squared: 0.7873, Adjusted R-squared: 0.7358
## F-statistic: 15.27 on 8 and 33 DF, p-value: 4.342e-09
```

Evaluation on train model

```
#setting a "full model"
full.model \leftarrow 1m(Crime \sim M + Ed + Po1 + U2+M.F+U1+U2+ Ineq + Prob,data =
traindata) # on train data set
# Stepwise regression model- in both directions
stepfinal.model <- stepAIC(full.model, direction = "both",</pre>
                                                            trace = FALSE, k=2)
#model accuracy
summary(stepfinal.model)
##
## Call:
\#\# lm(formula = Crime \sim M + Ed + Po1 + U2 + M.F + U1 + U2 + Ineq + Ine
##
                   Prob, data = traindata)
##
## Residuals:
                   Min
                                            10 Median
                                                                                       30
                                                                                                           Max
## -439.19 -116.92 -4.76 127.15 474.12
##
## Coefficients:
                                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -6557.63
                                                                          1359.17 -4.825 3.09e-05 ***
## M
                                                 87.10
                                                                               34.76 2.506 0.017312 *
## Ed
                                              173.41
                                                                               55.87 3.104 0.003903 **
## Po1
                                                 98.34
                                                                               16.22 6.064 7.99e-07 ***
                                                                               77.94 2.648 0.012312 *
## U2
                                              206.41
## M.F
                                                27.00
                                                                               15.20 1.777 0.084851 .
                                                                          3702.00 -1.997 0.054080
## U1
                                         -7394.41
                                                                               15.02 3.766 0.000651 ***
## Ineq
                                                 56.57
## Prob
                                        -3489.88
                                                                          1578.65 -2.211 0.034100 *
## ---
                                                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 200.7 on 33 degrees of freedom
## Multiple R-squared: 0.7873, Adjusted R-squared: 0.7358
## F-statistic: 15.27 on 8 and 33 DF, p-value: 4.342e-09
```

lesser significant predictors

```
#model accuracy
summary(stepfinal1.model)
##
## Call:
## lm(formula = Crime ~ M + Ed + Po1 + Ineq + Prob, data = (traindata))
##
## Residuals:
##
      Min
               10 Median
                               3Q
                                      Max
## -520.80 -80.81 -9.98 156.62 511.52
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -3803.59
                           872.91 -4.357 0.000105 ***
## M
                 76.04
                            33.96 2.239 0.031423 *
                                    3.115 0.003604 **
## Ed
                146.12
                            46.92
                            14.76 8.122 1.18e-09 ***
## Po1
                119.88
                            15.61 4.135 0.000203 ***
## Ineq
                 64.54
## Prob
              -3622.43
                          1696.34 -2.135 0.039600 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 216.3 on 36 degrees of freedom
## Multiple R-squared: 0.7305, Adjusted R-squared:
## F-statistic: 19.51 on 5 and 36 DF, p-value: 2.303e-09
```

evaluating on train and test data

```
#create the evaluation metrics function
eval_metrics = function(model, crime, predictions, target){
    resids = crime[,target] - predictions
    resids2 = resids**2
    N = length(predictions)
    r2 = as.character(round(summary(model)$r.squared, 2))
    adj_r2 = as.character(round(summary(model)$adj.r.squared, 2))
    print(adj r2) #Adjusted R-squared
    print(as.character(round(sqrt(sum(resids2)/N), 2))) #RMSE
}
predictions.train = predict(stepfinal1.model, newdata = (traindata))
predictions.test = predict(stepfinal1.model, newdata = testdata)
#model accuracy
eval metrics(stepfinal1.model, traindata, predictions.train, target =
'Crime')
## [1] "0.69"
## [1] "200.27"
eval_metrics(stepfinal1.model, testdata, predictions.test, target = 'Crime')
## [1] "0.69"
## [1] "162.05"
```

Observation #1:

Cross-validation to filter out unwanted predictors and fed that into our Stepwise (both directions) on training data

The R-squares for both training and test data is the same while RSME was surprisingly better in test set than training

Lasso:

```
#scale data set
xtrain<-scale(as.matrix(traindata)[,-16], center = TRUE, scale = TRUE)
ytrain<-scale(as.matrix(traindata)[,16], center = TRUE, scale = TRUE)
xtest<-scale(as.matrix(testdata)[,-16], center = TRUE, scale = TRUE)
ytest<-scale(as.matrix(testdata)[,16], center = TRUE, scale = TRUE)</pre>
```

defining the model

```
lasso_cv <- cv.glmnet(xtrain, ytrain, family="gaussian", alpha=1)
plot(lasso cv)#plot Lasso cv</pre>
```



```
## Ed
                 1.902793e-01
## Po1
                 7.972784e-01
## Po2
## LF
                 3.783644e-02
## M.F
                 1.205711e-01
## Pop
## NW
## U1
## U2
                 6.527132e-02
## Wealth
                 3.319624e-01
## Ineq
## Prob
                -1.857967e-01
## Time
best_lambda <- lasso_cv$lambda.min</pre>
cat(best_lambda)
## 0.01844124
```

Model using best lambda:

```
lasso_mod = glmnet(xtrain, ytrain, family = "gaussian", alpha = 1, lambda =
best lambda)
coef(lasso mod)
## 16 x 1 sparse Matrix of class "dgCMatrix"
## (Intercept) -1.732407e-16
## M
                2.248093e-01
## So
                9.661256e-02
## Ed
                3.637371e-01
                7.720783e-01
## Po1
## Po2
## LF
                2.177071e-02
## M.F
                1.563956e-01
## Pop
## NW
                5.887326e-03
## U1
               -1.563660e-01
## U2
                2.607918e-01
## Wealth
                3.499338e-02
                4.674476e-01
## Inea
## Prob
               -2.103825e-01
## Time
```

Prediction and evaluations (LASSO)

```
# Compute R^2 from true and predicted values
eval_results <- function(true, predicted, crime) {
   SSE <- sum((predicted - true)^2)
   SST <- sum((true - mean(true))^2)
   R_square <- 1 - SSE / SST</pre>
```

```
RMSE = sqrt(SSE/nrow(crime))
  # Model performance metrics
data.frame(
  RMSE = RMSE,
  Rsquare = R_square
)
}
# Prediction and evaluation on train data
yhat.train = predict(lasso_mod, xtrain)
eval_results(ytrain, yhat.train, traindata)
##
          RMSE
                 Rsquare
## 1 0.4634677 0.7799586
# Prediction and evaluation on test data
yhat.test = predict(lasso_mod, xtest)
eval_results(ytest, yhat.test, testdata)
##
          RMSE Rsquare
## 1 0.4510459 0.745697
```

Plot of lasso prediction

Observation #2:

The optimal lambda was 0.02221254 from the plot

RSME and R squares were fairly similar for both training and testing data sets and very comparable to linear regression

Because Stepwise was done w/o scaling, the RSME metric cannot be compared with Lasso as its scaled. So we will be using R's as the metric of comparison going forward. As expected Lasso's R-square saw improvement

Elastic Net:

Prediction and evaluation (elastic net)

```
# Make predictions on training set
predictions_train <- predict(elastic_reg, xtrain)
eval_results(ytrain, predictions_train, as.matrix(traindata))

## RMSE Rsquare
## 1 0.477752 0.766186

# Make predictions on test set
predictions_test <- predict(elastic_reg, xtest)
eval_results(ytest, predictions_test, as.matrix(testdata))

## RMSE Rsquare
## 1 0.5595539 0.6086243</pre>
```

Plot of elastic Net predition

Observation 3:

Since there's no definite alpha for Elastic net, using the argument tuneLength specifies that 10 different combinations of values for alpha and lambda are to be tested

Based on the above iterations and output, best tuned alpha & best tuned lambda were listed above

Note: Potentially better results (or worst) would've been gotten if I had tried out different tune length

From a quality perspective, regularized R-square dropped slightly from training to test set like it should

Overall, all the models performed well with decent R-squared and stable RMSE values. Strangely enough for this data set, witnessed improvements going from traditional Linear Regression to regularization models in terms of R squares