- · Name- Aditya Raj
- Reg. No- 12020440
- Roll No- 69

In [2]:

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

In [3]:

```
salary = pd.read_csv('data_cleaned_2021.csv')
salary.head()
```

Out[3]:

	index	Job Title	Salary Estimate	Job Description	Rating	Company Name	Location	Headq
0	0	Data Scientist	53 <i>K</i> -91K (Glassdoor est.)	Data Scientist\nLocation: Albuquerque, NM\nEdu	3.8	Tecolote Research\n3.8	Albuquerque, NM	Gol
1	1	Healthcare Data Scientist	63 <i>K</i> -112K (Glassdoor est.)	What You Will Do:\n\nI. General Summary\n\nThe	3.4	University of Maryland Medical System\n3.4	Linthicum, MD	Baltimo
2	2	Data Scientist	80K – 90K (Glassdoor est.)	KnowBe4, Inc. is a high growth information sec	4.8	KnowBe4\n4.8	Clearwater, FL	Clea
3	3	Data Scientist	56K-97K (Glassdoor est.)	*Organization and Job ID**\nJob ID: 310709\n\n	3.8	PNNL\n3.8	Richland, WA	Richla
4	4	Data Scientist	86K-143K (Glassdoor est.)	Data Scientist\nAffinity Solutions / Marketing	2.9	Affinity Solutions\n2.9	New York, NY	New Y

5 rows × 42 columns

In [4]:

```
# replacing all -1 with np.nan (the documentation said this is where web scraping failed)
salary = salary.replace(-1, np.nan)
# replacing all 'na' text with np.nan
salary = salary.replace('na$', np.nan, regex = True)
# first 5 rows of the dataset
print(salary.head())
                                                 Salary Estimate ∖
   index
                          Job Title
0
                    Data Scientist $53K-$91K (Glassdoor est.)
      a
         Healthcare Data Scientist $63K-$112K (Glassdoor est.)
1
2
       2
                    Data Scientist
                                      $80K-$90K (Glassdoor est.)
3
       3
                    Data Scientist
                                      $56K-$97K (Glassdoor est.)
                    Data Scientist $86K-$143K (Glassdoor est.)
Δ
       4
                                     Job Description Rating \
  Data Scientist\nLocation: Albuquerque, NM\nEdu...
                                                         3.8
0
1
  What You Will Do:\n\nI. General Summary\n\nThe...
                                                         3.4
2 KnowBe4, Inc. is a high growth information sec...
                                                         4.8
  *Organization and Job ID**\nJob ID: 310709\n\n...
                                                         3.8
4 Data Scientist\nAffinity Solutions / Marketing...
                                                         2.9
                                 Company Name
                                                      Location
                       Tecolote Research\n3.8 Albuquerque, NM
  University of Maryland Medical System\n3.4
1
                                                 Linthicum, MD
2
                                 KnowBe4\n4.8
                                               Clearwater, FL
3
                                   PNNL\n3.8
                                                  Richland, WA
```

In [5]:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 742 entries, 0 to 741
Data columns (total 42 columns):

#	Columns (total 42 c	Non-Null Count	Dtype
0	index	742 non-null	 int64
1	Job Title	742 non-null	object
2	Salary Estimate	742 non-null	object
3	Job Description	742 non-null	object
4	Rating	731 non-null	float64
5	Company Name	742 non-null	object
6	Location	742 non-null	object
7	Headquarters	741 non-null	object
8	Size	742 non-null	object
9	Founded	692 non-null	float64
10	Type of ownership	742 non-null	object
11	Industry	742 non-null	object
12	Sector	742 non-null	object
13	Revenue	742 non-null	object
14	Competitors	740 non-null	object
15	Hourly	742 non-null	int64
16	Employer provided	742 non-null	int64
17	Lower Salary	742 non-null	int64
18	Upper Salary	742 non-null	int64
19	Avg Salary(K)	742 non-null	float64
20	company_txt	738 non-null	object
21	Job Location	742 non-null	object
22	Age	692 non-null	float64
23	Python	742 non-null	int64
24	spark	742 non-null	int64
25	aws	742 non-null	int64
26	excel	742 non-null	int64
27	sql	742 non-null	int64
28	sas	742 non-null	int64
29	keras	742 non-null	int64
30	pytorch	742 non-null	int64
31	scikit	742 non-null	int64
32	tensor	742 non-null	int64
33	hadoop	742 non-null	int64
34	tableau	742 non-null	int64
35	bi	742 non-null	int64
36	flink	742 non-null	int64
37	mongo	742 non-null	int64
38	google_an	742 non-null	int64
39	<pre>job_title_sim</pre>	732 non-null	object
40	seniority_by_title		object
41	Degree	359 non-null	object
d+vn4	$as \cdot float64(4)$ into	1(21) object(17)

dtypes: float64(4), int64(21), object(17)

memory usage: 243.6+ KB

In [8]:

```
# names of all columns since they are truncated in the table above
salary.columns
salary.describe(include='all')
```

Out[8]:

	index	Job Title	Salary Estimate	Job Description	Rating	Company Name	Loca
count	742.000000	742	742	742	731.000000	742	
unique	NaN	264	416	463	NaN	343	
top	NaN	Data Scientist	49 <i>K</i> – 113K (Glassdoor est.)	Description\nMedical Laboratory Scientist - Te	NaN	MassMutual\n3.6	York
freq	NaN	131	6	4	NaN	14	
mean	469.129380	NaN	NaN	NaN	3.688372	NaN	
std	279.793117	NaN	NaN	NaN	0.570353	NaN	
min	0.000000	NaN	NaN	NaN	1.900000	NaN	
25%	221.500000	NaN	NaN	NaN	3.300000	NaN	
50%	472.500000	NaN	NaN	NaN	3.700000	NaN	
75%	707.750000	NaN	NaN	NaN	4.000000	NaN	
max	955.000000	NaN	NaN	NaN	5.000000	NaN	

11 rows × 42 columns

→

In [9]:

In [10]:

```
salary.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 742 entries, 0 to 741 Data columns (total 33 columns):

Data #	Columns (total 33 c	Olumns): Non-Null Count	Dtype
0	Rating	731 non-null	float64
1	Headquarters	741 non-null	object
2	Size	742 non-null	object
3	Founded	692 non-null	float64
4	Type of ownership	742 non-null	object
5	Industry	742 non-null	object
6	Sector	742 non-null	object
7	Revenue	742 non-null	object
8	Lower Salary	742 non-null	int64
9	Upper Salary	742 non-null	int64
10	Avg Salary(K)	742 non-null	float64
11	company_txt	738 non-null	object
12	Job Location	742 non-null	object
13	Age	692 non-null	float64
14	Python	742 non-null	int64
15	spark	742 non-null	int64
16	aws	742 non-null	int64
17	excel	742 non-null	int64
18	sql	742 non-null	int64
19	sas	742 non-null	int64
20	keras	742 non-null	int64
21	pytorch	742 non-null	int64
22	scikit	742 non-null	int64
23	tensor	742 non-null	int64
24	hadoop	742 non-null	int64
25	tableau	742 non-null	int64
26	bi	742 non-null	int64
27	flink	742 non-null	int64
28	mongo	742 non-null	int64
29	google_an	742 non-null	int64
30	job_title_sim	732 non-null	object
31	seniority_by_title	223 non-null	object
32	Degree	359 non-null	object
dtype	es: float64(4), int6	4(18), object(11	•
	404 4 1/0		

memory usage: 191.4+ KB

In [11]:

```
salary.shape
```

Out[11]:

(742, 33)

In [12]:

```
# what type of data is in each column salary.dtypes
```

Out[12]:

float64 Rating object Headquarters Size object float64 Founded Type of ownership object Industry object Sector object object Revenue Lower Salary int64 int64 Upper Salary Avg Salary(K) float64 company_txt object Job Location object float64 Age int64 Python spark int64 aws int64 int64 excel int64 sql int64 sas keras int64 pytorch int64 scikit int64 tensor int64 hadoop int64 tableau int64 int64 bi flink int64 mongo int64 google_an int64 job_title_sim object seniority_by_title object object Degree

dtype: object

localhost:8888/notebooks/Desktop/DS/INT353/ca3.ipynb

In [13]:

```
#shows which columns have any null values
salary.isnull().any()
```

Out[13]:

Degree

dtype: bool

Rating True Headquarters True Size False Founded True Type of ownership False Industry False Sector False Revenue False Lower Salary False Upper Salary False Avg Salary(K) False company_txt True Job Location False Age True Python False spark False False aws excel False False sql sas False False keras pytorch False scikit False tensor False hadoop False tableau False bi False flink False mongo False google_an False job_title_sim True seniority_by_title True

True

In [14]:

```
# what proportion of data is missing from each column
salary.isna().sum()/len(salary)
```

Out[14]:

Rating 0.014825 Headquarters 0.001348 Size 0.000000 Founded 0.067385 Type of ownership 0.000000 Industry 0.000000 Sector 0.000000 Revenue 0.000000 Lower Salary 0.000000 Upper Salary 0.000000 Avg Salary(K) 0.000000 company_txt 0.005391 Job Location 0.000000 0.067385 Age Python 0.000000 spark 0.000000 aws 0.000000 excel 0.000000 sql 0.000000 0.000000 sas keras 0.000000 pytorch 0.000000 scikit 0.000000 tensor 0.000000 hadoop 0.000000 tableau 0.000000 bi 0.000000 flink 0.000000 mongo 0.000000 google_an 0.000000 job_title_sim 0.013477 seniority_by_title 0.699461

0.516173

dtype: float64

Degree

In [15]:

```
#anothe way of finding Null record count along with their percentages
total = salary.isnull().sum().sort_values(ascending = False)
percent =(salary.isnull().sum()/len(salary)).sort_values(ascending=False)
missing_data = pd.concat([total, percent], axis =1, keys=['Total', 'Percent'])
missing_data.head(10)
```

Out[15]:

	Total	Percent
seniority_by_title	519	0.699461
Degree	383	0.516173
Age	50	0.067385
Founded	50	0.067385
Rating	11	0.014825
job_title_sim	10	0.013477
company_txt	4	0.005391
Headquarters	1	0.001348
Industry	0	0.000000
keras	0	0.000000

In [16]:

```
# show unique values in particular column and Count of unique values
salary['Job Location'].nunique()
salary['Job Location'].unique()
```

Out[16]:

```
array(['NM', 'MD', 'FL', 'WA', 'NY', 'TX', 'CA', 'VA', 'MA', 'NJ', 'CO', 'IL', 'KY', 'OR', 'CT', 'MI', 'DC', 'OH', 'AL', 'MO', 'PA', 'GA', 'IN', 'LA', 'WI', 'NC', 'AZ', 'NE', 'MN', 'UT', 'TN', 'DE', 'ID', 'RI', 'IA', 'SC', 'KS'], dtype=object)
```

In [17]:

show descriptive statistics for quantitative columns
salary.describe(include = np.number)

Out[17]:

	Rating	Founded	Lower Salary	Upper Salary	Avg Salary(K)	Age	Python	
coun	731.000000	692.000000	742.000000	742.000000	742.000000	692.000000	742.000000	7
mear	3.688372	1969.969653	74.754717	128.214286	101.484501	51.030347	0.528302	
sto	0.570353	54.089762	30.945892	45.128650	37.482449	54.089762	0.499535	
mir	1.900000	1744.000000	15.000000	16.000000	15.500000	2.000000	0.000000	
25%	3.300000	1958.000000	52.000000	96.000000	73.500000	14.000000	0.000000	
50%	3.700000	1992.000000	69.500000	124.000000	97.500000	29.000000	1.000000	
75%	4.000000	2007.000000	91.000000	155.000000	122.500000	63.000000	1.000000	
max	5.000000	2019.000000	202.000000	306.000000	254.000000	277.000000	1.000000	

8 rows × 22 columns

In [18]:

#show descriptive statistics for qualitiative columns
salary.describe(include = object)

Out[18]:

	Headquarters	Size	Type of ownership	Industry	Sector	Revenue	company_txt	L
count	741	742	742	742	742	742	738	
unique	197	8	9	60	25	13	342	
top	New York, NY	1001 - 5000	Company - Private	Biotech & Pharmaceuticals	Information Technology	Unknown / Non- Applicable	MassMutual	
freq	52	150	410	112	180	204	14	
4								>

In [19]:

```
# find number of values for each unique entry in each qualitative column
for i in salary.select_dtypes(include = object):
    print(salary[i].value_counts())
New York, NY
                         52
San Francisco, CA
                         42
Chicago, IL
                         30
Cambridge, MA
                         20
Springfield, MA
                         14
                         . .
West Hills, CA
                          1
Fort Worth, TX
                          1
Kansas City, MO
                          1
Santa Fe Springs, CA
                          1
Centennial, CO
                          1
Name: Headquarters, Length: 197, dtype: int64
1001 - 5000
                 150
501 - 1000
                 134
10000+
                 130
                 117
201 - 500
51 - 200
                  94
5001 - 10000
                   76
1 - 50
                   31
```

In [20]:

```
# example of a histplot to visualize quantitative data
sns.set_style("whitegrid")
sns.histplot(data = salary, x = 'Avg Salary(K)', bins = 20)
plt.title('Average salary for data scientist jobs in the United States')
# draw vertical line at average
plt.axvline(x = salary['Avg Salary(K)'].mean(), color = 'black')
```

Out[20]:

<matplotlib.lines.Line2D at 0x22fdea94c10>

In [21]:

```
# example of a count plot to visualize qualitative data
sns.countplot(x = 'Size', data = salary)
plt.title('Sizes of companies hiring data scientists in the United States')
plt.xticks(rotation = 'vertical')
```

Out[21]:

```
(array([0, 1, 2, 3, 4, 5, 6, 7]),
[Text(0, 0, '501 - 1000 '),
  Text(1, 0, '10000+ '),
  Text(2, 0, '1001 - 5000 '),
  Text(3, 0, '51 - 200 '),
  Text(4, 0, '201 - 500 '),
  Text(5, 0, '5001 - 10000 '),
  Text(6, 0, '1 - 50 '),
  Text(7, 0, 'unknown')])
```

Sizes of companies hiring data scientists in the United States

In [22]:

```
salary['job_title_sim'].value_counts(normalize=True).plot.pie(y ='Job title', title = 'Brea
```

Out[22]:

<AxesSubplot:title={'center':'Break down by Job title'}, ylabel='job_title_s
im'>

Break down by Job title

In [23]:

salary.head(1)

Out[23]:

	Rating	Headquarters	Size	Founded	Type of ownership	Industry	Sector	Revenue	Lower Salary	ا 3
0	3.8	Goleta, CA	501 - 1000	1973.0		Aerospace & Defense		50to100 million (USD)	53	

1 rows × 33 columns

→

In [24]:

salary['job_title_sim'].value_counts(normalize=True).plot.pie(y ='Job title', title = 'Br
sns.boxplot(x='Upper Salary',y='Size',data=salary)
plt.show()

In []:

In []:

In []:

In []:

In []:			