

CENTRAL SOUTH UNIVERSITY

FINAL WEEK PROJECT

机械设计基础课程设计说明书

Author:

欧宇恒

ID: Supervisor:

8212210728 周英

class:

交设 2105 班

目录

§ 1	运动]参数、动力参数的确定
	1.1	电动机型号选择
	1.2	运动参数与动力参数计算 4
§ 2	齿轮	设计计算方法 5
	2.1	选择材料及确定许用应力 5
	2.2	按齿面接触强度设计 6
	2.3	验算齿轮弯曲强度 7
	2.4	齿轮的圆周速度
	2.5	圆柱齿轮在装配图中的参数设计8
§ 3	带传	动设计计算方法
	3.1	求计算功率 P_c
	3.2	选 V 带型号
	3.3	求大、小带轮基准直径 d_2 、 d_1
	3.4	验算带速
	3.5	求 V 带基准长度 L_d 与中心距 a
	3.6	验算小带轮包角 α_1
	3.7	求 V 帯根数z
	3.8	求作用在带轮轴上的压力 F_Q
§ 4	轴的]]设计计算
	4.1	初算轴的最小直径 11
	4.2	带轮的选择 12
	4.3	联轴器的选择 12
	4.4	确定各轴段直径
	4.5	润滑方式选择
		4.5.1 轴承的润滑方式选择
		4.5.2 齿轮的润滑方式选择 14
	4.6	轴段长度确定
	4.7	键的选择 15
§ 5	减速	i器箱体设计 16
	5.1	铸铁减速器箱体结构尺寸 16

目录 2

	5.2	减速器零件的位置尺寸	17
§ 6	键的	校核	17
•	6.1	高速轴与齿轮轮毂连接键	17
	6.2	低速轴与齿轮轮毂连接键	17
	6.3	高速轴与带轮连接键	17
	6.4	低速轴与联轴器连接键	18
o –	+4.44	1÷1÷	10
§7	轴的		18
	7.1	高速轴的校核	18
		7.1.1 齿轮径向力与圆周力的计算	18
		7.1.2 带压轴力的计算	18
		7.1.3 高速轴的校核	18
		7.1.4 低速轴的校核	22
		7.1.5 齿轮径向力与圆周力的计算	22
		7.1.6 低速轴的校核	22
§ 8	轴承	的校核	24
Ü	8.1	高速轴轴承校核	24
	8.2	低速轴轴承校核	26
89	减速	器附件设计	27
30	9.1	轴承盖(及套杯)的选择	27
	9.2	密封圈参数选择	27
	9.3	起重螺钉的选择	28
	9.4	窥视孔及视孔盖的选择	28
	9.5	通气螺塞的选择	28
	9.6	油面指示器的选择	28
	9.7	油塞的选择	28
	9.7	起吊装置的选择	28
	9.9	各螺栓标准件选择	28
§ 1	0 装置	記零件汇总表	32
§ 1	1 参	考文献	34

§1 运动参数、动力参数的确定

1.1 电动机型号选择

根据所给题目要求,本小组已知参数为输送带的牵引力F=3.5kN,输送带的速度v=1.8m/s,输送带滚筒直径D=350mm,由此可以计算出工作机所需功率 (kW):

$$P_W = Fv = 33.5 \times 1.8 = 6.3$$
kW

其次,通过查表 [2]P7 表 2-4,可得齿轮、轴承、联轴器的传动效率,依据本题具体情况,取各传动效率如下:

表 1: 各传动构件传动效率

传动构建	效率
V带	0.96
滚动轴承	0.98
齿轮	0.96
联轴器	0.99

故可得总传动效率为:

$$\eta_{\dot{\mathbb{B}}} = \eta_{\ddot{\mathbb{B}}} \eta_{\ddot{\mathbb{B}}\ddot{\mathbb{A}}}^3 \eta_{\ddot{\mathbb{B}}\dot{\mathbb{B}}} \eta_{\ddot{\mathbb{B}}\ddot{\mathbb{B}}} = 0.96 \times 0.98^3 \times 0.96 \times 0.99 = 0.86$$

由此可以计算出电动机需要提供的输入功率:

$$P_d = \frac{P_W}{\eta_{K}} = \frac{6.3}{0.86} = 7.33 \text{kW}$$

本小组选取电动机转速为 1000 r/min,考虑到选择的电动机功率 $P_d' > P_d$,故通过查阅 [2]P196 表 20-1 得到应选取电动机型号为 Y160M-6,该型号电动机的额定满载转速为 $n_m = 970 \text{r/min}$ 。

对于输出卷筒而言, 计算其工作转速为:

$$n_W = \frac{60000v}{\pi D} = \frac{60000 \times 1.8}{\pi \times 350} = 98\text{r/min}$$

故可得减速器的总传动比为:

$$i_{\rm E} = \frac{n_m}{n_W} = \frac{970}{98} = 9.87$$

本课设中,选取齿轮传动比为 3.06,则此时带传动比为 3.23,均在要求范围之内。选取小齿轮齿数为 29,大齿轮齿数为 89,满足齿轮传动比要求,并且齿数互质,有较好的传动性能。

1.2 运动参数与动力参数计算

图 1: 各机构运动转速与工作功率示意图

各构件工作转速和工作功率如图1所示,通过传动比计算可得:

$$n_1 = \frac{n_m}{i_{\#}} = \frac{970}{3.23} = 301 \text{r/min}$$

$$n_2 = \frac{n_1}{i_{告 h}} = n_3 = n_W = 98\text{r/min}$$

各个轴的功率计算:

$$P_1 = P_d \eta_{\#} = 7.33 \times 0.96 = 7.04 kW$$

$$P_2 = P_1 \eta_{\text{Ha}} \eta_{\text{B}} = 7.04 \times 0.98 \times 0.96 = 6.62 kW$$

$$P_3 = P_2 \eta_{\text{High}} \eta_{\text{High}} = 6.62 \times 0.98 \times 0.99 = 6.43 kW$$

各轴上都是以该轴上的最大功率(即:输入功率)作为设计所用,故可以算出各轴上的传动力矩:

$$T_1 = 9550 \frac{P_1}{n_1} = 9.55 \times 10^6 \times \frac{7.04}{301} = 223672.1 \text{N} \cdot \text{mm}$$

§2 齿轮设计计算方法 5

$$T_2 = 9550 \frac{P_2}{n_2} = 9.55 \times 10^6 \times \frac{6.62}{98} = 643917.9 \text{N} \cdot \text{mm}$$

$$T_3 = 9550 \frac{P_3}{n_3} = 9.55 \times 10^6 \times \frac{6.43}{98} = 624729.2 \text{N} \cdot \text{mm}$$

将以上结果汇总后,得到表2,列出了各个轴的输入功率、工作转速与传动扭矩,至此,课程设计的运动参数和动力参数确定完毕。

轴号	功率P/kW	转速N/(r/min)	扭矩T/N·mm	传动比i
电机轴	7.33	970	72264.95	$i_{\#} = 3.23$
I	$7.04 \\ 6.62$	301 98	$223672.1 \\ 643917.9$,,,
III	6.43	98	624729.2	i齿轮 = 3.06

表 2: 运动参数与动力参数汇总表

§2 齿轮设计计算方法

本课程设计选用闭式齿轮进行齿轮设计,设齿轮传动比 $i_{12}=3.1$,高速轴转速 $n_1=301$ r/min,传动功率P=7kW,考虑到该课程设计中的齿轮需有较好的接触疲劳强度,故采用软齿面设计,通过参考文献 [1]P179 提供的方法对齿轮进行设计。

2.1 选择材料及确定许用应力

小齿轮采用 45 号调质钢作为材料,并作调质热处理,齿面硬度为 197 ~ 286HBS,接触疲劳 极限为 $\sigma_{Hlim}=550\sim620$ MPa,弯曲疲劳极限 $\sigma_{FE}=410\sim480$ MPa,此时相应的疲劳强度取均值得, $\sigma_{Hlim1}=585$ MPa, $\sigma_{FE1}=445$ MPa,由于大小齿轮均为软齿面,考虑到小齿轮齿根较薄时,弯曲强度较低,受载次数多,故对大齿轮做正火热处理,使得小齿轮的弯曲疲劳极限稍高于大齿轮,大、小齿轮的弯曲强度近乎相近

故此时对大齿轮而言,齿面硬度为 156 ~ 217HBS,接触疲劳极限为 $\sigma_{Hlim}=350\sim400 {\rm MPa}$,弯曲疲劳极限 $\sigma_{FE}=280\sim340 {\rm MPa}$,此时相应的疲劳强度取均值得, $\sigma_{Hlim2}=375 {\rm MPa}$, $\sigma_{FE2}=310 {\rm MPa}$ (由 [1]P171 表 11-1 查得)。

又由 [1]P176 表 11-5,取一般可靠度,在失效概率 $\leq 1/100$ 时,最小安全系数取: $S_H=1$, $S_F=1.25$ 。

综上所述, 齿轮材料参数的设计见表3所示。

§2 齿轮设计计算方法 6

表 3: 齿轮材料设计参数

齿轮材料参数	硬度/HBS	接触疲劳强度	弯曲疲劳强度
		$\sigma_{Hlim1} = 550 \sim 620 \text{MPa}$ $\sigma_{Hlim2} = 350 \sim 400 \text{MPa}$	1 007701

表 4: 最小安全系数表

接触疲劳最小安全系数SH	弯曲疲劳最小安全系数 S_F
1	1.25

接下来可计算许用应力:

$$[\sigma_{H1}] = \frac{\sigma_{Hlim1}}{S_H} = \frac{585}{1} \text{MPa} = 585 \text{MPa}$$

$$[\sigma_{H2}] = \frac{\sigma_{Hlim2}}{S_H} = \frac{375}{1} \text{MPa} = 375 \text{MPa}$$

$$[\sigma_{F1}] = \frac{\sigma_{FE1}}{S_F} = \frac{445}{1.25} \text{MPa} = 356 \text{MPa}$$

$$[\sigma_{F2}] = \frac{\sigma_{FE2}}{S_F} = \frac{310}{1.25} \text{MPa} = 248 \text{MPa}$$

2.2 按齿面接触强度设计

本课程设计中齿轮按照 8 级精度设计,取载荷系数K=1.2(由 [1]P174 表 11-3 查得),齿宽系数 $\phi_d=1$ (由 [1]P179 表 11-6 查得),小齿轮上的转矩

$$T_1 = 2.18 \times 10^5 \text{N} \cdot \text{m}$$

取弹性系数 $Z_E=189.8\sqrt{\mathrm{MPa}}$ (由 [1]P175 表 11-4 查得), $u=i_{12}=3.06$,则:

§2 齿轮设计计算方法 7

$$d_1 \ge 2.32 \sqrt[3]{\frac{KT_1}{\phi_d} \frac{u+1}{u} \left(\frac{Z_E}{[\sigma_H]}\right)^2}$$

$$= 2.32 \sqrt[3]{\frac{1.2 \times 2.18 \times 10^5}{1} \frac{3.06 + 1}{3.06} \left(\frac{189.8}{375}\right)^2}$$

$$= 103.69mm$$

齿数取 $z_1 = 29$,则 $z_2 = 3.06 \times 29 \approx 89$,故:模数

$$m = \frac{d_1}{z_1} = \frac{103.69}{29}$$
mm = 3.57mm

按 [1]P58 表 4-1 取m=4mm,实际的 $d_1=zm=29\times 4=116$ mm, $d_2=89\times 4=356$ mm,则:

中心距

$$a = \frac{d_1 + d_2}{2} = 236$$
mm

大齿轮齿宽

$$b_2 = \phi_d d_1 = 1 \times 116 \text{mm} = 116 \text{mm}$$

圆整后取 $b_2 = 120$ mm。

小齿轮齿宽应设计的较大齿轮宽5~10mm,保证齿轮有足够的啮合宽度,故设:

$$b_1 = b_2 + 5 = 125$$
mm

2.3 验算齿轮弯曲强度

齿形系数由 [1]P177 图 11-8 得, $Y_{Fa1}=2.62, Y_{Fa2}=2.24$,由 [1]P178 图 11-9 得, $Y_{Sa1}=1.63, Y_{Sa2}=1.78$,由 [1]P177 式 11-5,

$$\sigma_{F1} = \frac{2KT_1Y_{Fa}Y_{Sa}}{bd_1m} = \frac{2\times1.2\times2.18\times10^5\times2.62\times2.24}{116\times116\times4} = 41.69 \leq [\sigma_{F1}] = 356\text{MPa}$$

$$\sigma_{F2} = \sigma_{F1} \frac{Y_{Fa2} Y_{Sa2}}{Y_{Fa1} Y_{Sa1}} = 41.69 \times \frac{2.24 \times 1.78}{2.62 \times 1.63} = 38.92 \text{MPa} \le [\sigma_{F2}] = 248 \text{MPa}$$

2.4 齿轮的圆周速度

$$v = \frac{\pi d_1 n_1}{60 \times 1000} = \frac{\pi \times 116 \times 301}{60 \times 1000} \text{m/s} = 1.82 \text{m/s}$$

对照 [1]P172 表 11-2 可知选用 8 级精度是合适的,至此齿轮设计完毕。

2.5 圆柱齿轮在装配图中的参数设计

查 [2]P66 表 9-2,可得圆柱齿轮在装配图中的各项参数取值。本设计中采取模锻齿轮的腹板式结构,通过计算并取圆整后,圆柱齿轮上的设计如表5所示。

参数	计算方法	尺寸值/mm
d	轴孔直径	67
d_a	齿顶圆直径	364
m	模数	4
d_f	齿根圆直径	346
\mathring{B}	齿宽	116
n	n = 0.5m	2
d_1	$d_1 = 1.6d$	110
D_0	$D_0 = 0.5(D_1 + d_1)$	217
δ_0	$\delta_0 = (2.5 \sim 4) m \ge 10$	12
D_1	$D_1 = d_f - 2\delta_0$	322
d_0	$d_1 = 0.25(D_1 - d_1)$	53
r	r = 5	5
C	C = 0.3B	36
C_1	$C_1 = (0.2 \sim 0.3)B$	32

表 5: 圆柱齿轮在装配图中的参数设计值

§3 带传动设计计算方法

本课程设计需要设计一 V 带传动,选用异步电动机为驱动,电动机型号选取为: Y160M-6,电动机满载转速为: $n_1=970$ r/min,V 带大轮转速为 $n_2=301$ r/min,因此可以计算出传动比为: $i_{12}=n_1/n_2=3.22$,V 带输入功率为P=7.5kW,设计为两班制工作。

3.1 求计算功率 P_c

考虑到本课程设计使用的 V 带,载荷平稳,用于小批量生产,为载荷变动很小的轻负荷输送机,由 [1]P222 表 13-9 查得,在两班制工作状态下,选取工作情况系数 $K_A=1.2$,故计算功率 $P_c=K_AP=9$ kW。

3.2 选 V 带型号

本课程设计选用普通 V 带,根据 $P_c=9$ kW, $n_1=970$ r/min,由 [1]P223 图 13-15 查得此坐标点落在 B 型区域,故选用 B 型进行计算。

3.3 求大、小带轮基准直径 d_2 、 d_1

由 [1]P223 图 13-15 得到, $d_1 = 125 \sim 140$ mm,因传动比不大, d_1 可取较大值而不会使 d_2 过大,先取 $d_1 = 140$ mm,取弹性传动比 $\varepsilon = 0.02$,由 [1]P215 式 13-8 得到:

$$d_2 = \frac{n_1}{n_2} d_1 (1 - \varepsilon) = \frac{970}{301} \times 140 \times (1 - 0.02) \text{mm} = 442.14 \text{mm}$$

由 [1]P224 表 13-10 查得,取 $d_2 = 450$ mm(虽使得 n_2 有所减小,但是误差在 5%以内,允许)。

3.4 验算带速

$$v = \frac{\pi d_1 n_1}{60 \times 1000} = \frac{\pi \times 140 \times 970}{60 \times 1000} \text{m/s} = 7.11 \text{m/s}$$

带速在 $5\sim30$ m/s 范围内, 合适。

3.5 求 V 带基准长度 L_d 与中心距a

初步选取中心距 $a_0 = 1.5(d_1 + d_2) = 1.5 \times (140 + 450) = 885$ mm,取 $a_0 = 900$ 此时,由 [1]P209 式 13-2 带长

$$L_0 = 2a_0 + \frac{\pi}{2}(d_1 + d_2) + \frac{(d_2 - d_1)^2}{4a_0}$$

$$= \left[2 \times 900 + \frac{\pi}{2} \times (140 + 450) + \frac{(450 - 140)^2}{4 \times 900}\right]$$

$$= 2753.46 \text{mm}$$

由 [1]P216 表 13-2 查得,B 型 V 带选用 $L_d=2700$ mm,带长修正系数 $K_L=1.04$,再由 [1]P224 式 13-15 计算实际中心距:

$$a \approx a_0 + \frac{L_d - L_0}{2} = 900 + \frac{2700 - 2753.46}{2} \text{mm} = 873.27 \text{mm}$$

3.6 验算小带轮包角 α_1

由[1]P209式13-1得到,

$$\alpha_1 = 180^{\circ} - \frac{d_2 - d_1}{a} \times 57.3^{\circ} = 159.66^{\circ} > 120^{\circ}$$

合适。

3.7 求 V 带根数z

由 [1]P222 表 13-8 查得,在包角 $\alpha_1=159.66^\circ$ 时,包角修正系数 $K_\alpha=0.95$,由 [1]P219 表 13-4 查得,普通 V 带的基本额定功率 $P_0=2.08$ kW,此时传动比由 [1]P215 式 13-8 得到:

$$i_{12} = \frac{d_2}{d_1(1-\varepsilon)} = \frac{450}{140 \times (1-0.02)} = 3.28$$

误差在 5%,可以允许。

又由 [1]P221 表 13-6 查得,额定功率增量 $\Delta P_0 = 0.30 \text{kW}$ 可由 [1]P223 式 13-14 得:

$$z = \frac{P_c}{[P_0]} = \frac{P_c}{(P_0 + \Delta P_0)K_{\alpha}K_L} = \frac{9}{(2.08 + 0.3) \times 0.95 \times 1.04} = 3.81$$

取4根。

3.8 求作用在带轮轴上的压力 F_O

由 [1]P216 表 13-1 查得,单位长度质量q=0.170kg/m,故由 [1]P225 式 13-16 得单根 V 带的初拉力为:

§4 轴的设计计算 11

$$F_0 = \frac{500P_c}{zv} \left(\frac{2.5}{K_\alpha} - 1\right) + qv^2$$

$$= \left[\frac{500 \times 9}{4 \times 7.11} \times \left(\frac{2.5}{0.95} - 1\right) + 0.17 \times 7.11^2\right] \text{N}$$

$$= 266.74 \text{N}$$

作用在轴上的压力:

$$F_Q = 2zF_0\sin\frac{\alpha_1}{2} = 2 \times 4 \times 266.74 \times \sin(\frac{160^\circ}{2})$$
N = 2100.38N

至此 V 带设计完毕。

§4 轴的设计计算

4.1 初算轴的最小直径

由于本课程设计中齿轮与轴的材料选取同一种材料,高速齿轮轴材料为 45 号调质钢,低速齿轮轴材料为 45 号钢采用正火处理,轴的最小直径估算公式为:

$$d_{min} = C\sqrt[3]{\frac{P}{n}}$$

其中,P为轴的输入功率,n为轴的转速,C由轴的材料和承载情况确定,依据 [1]P250 表 14-2,初步暂定C=110,则有

$$d_{min,1} = 110 \times \sqrt[3]{\frac{7.04}{301}} = 31.46$$
mm

$$d_{min,2} = 110 \times \sqrt[3]{\frac{6.62}{98}} = 44.78$$
mm

此时定出的轴径为最小直径,但是由于轴伸处需要切开键槽,需要额外加粗 5%的轴径,加粗后的轴径为:

$$d_{min,1,plus} = d_{min,1} \times 105\% = 33.03$$
mm

$$d_{min,2.plus} = d_{min,2} \times 105\% = 47.01$$
mm

*§*4 轴的设计计算 12

图 2: 轴连接示意图

由图2可以看出,高速轴和低速轴连接的为带轮和联轴器,需要根据标准选择基准直径。高速轴的轴伸连接 V 带轮,需要根据 V 带轮的标准直径选取,查 [3]P227 表 8-15,选取高速轴的基准直径为 35mm;低速轴的轴伸连接联轴器,根据联轴器的标准选取,查 [2]P162 表 17-2,选取低速轴的基准直径为 50mm。

4.2 带轮的选择

考虑到本设计选用 B 型带轮,依据大带轮基准直径,通过查 [2]P64 表 9-1,可得带轮的一系列参数如表6所示。

参数	尺寸值
V 带型号	В 型
d_d	450

70

35

轮毂长度1

孔径d

表 6: 大带轮选用型号及参数

4.3 联轴器的选择

本设计中低速轴与工作机轴相连接,可采用常见的凸缘联轴器,根据公称扭矩,查 [2]P162 表 17-2,主动端选择 J 型轴孔,从动端选择 J1 型轴孔,主从动端轴伸均选用 C 型键槽,因此可选用联轴器型号为:

YL11 联轴器
$$\frac{JC50 \times 84}{J_1C55 \times 84}GB5843 - 86$$

84 轴的设计计算 13

可以得到联轴器各项参数如表7所示。

	 参数值
主动端轴孔长度	84
从动端轴孔长度	84
L_0	173
D	160
D_1	130
螺栓数量	4* (铰制孔连接)
螺栓直径	M12

表 7: 联轴器参数

4.4 确定各轴段直径

接下来需要确定各轴段直径,各轴段序号标注如图3所示:

图 3: 轴段序号标注示意图

其中, 轴段 1 的直径为前期计算已经确定的最小基准轴径;

轴段 2 则根据密封圈标准件的基准直径确定,且要求 D2 较 D1 大于 $6\sim10$ mm 通过查表 [2] P158 表 16-9 可得;

轴段 3 的直径较 D2 大于 $1 \sim 5$ mm且需要为 5 的倍数,以此匹配轴承的需要;

轴段 4 的直径较 D3 大于1 \sim 5mm,需要与大齿轮匹配,需要查 [2]P117 表 11-2 查出大齿轮的基准直径:

轴段 5 有定位要求,需要较 D4 大 6~10mm;由于同一根轴上的两轴承内外径大小一致;

轴段 6 与轴段 3 直径相等,但同时需要满足轴承安装高度的要求(如表8所示),考虑到在高速轴中,轴承安装高度与 D5 矛盾,需要将 D5 设计成两段阶梯的轴肩,设计出的各轴段直径设计尺寸如表9所示。

查轴承的安装尺寸,查 [2]P144 表 15-3,得到高速轴与低速轴选用轴承与相关参数,汇总如表8所示,。

§4 轴的设计计算 14

型号及参数	高速轴	低速轴
轴承型号	6309 (新标准)	6313 (新标准)
内径 d/mm	45	65
外径 D/mm	100	140
安装尺寸/mm	54	77
轴承宽度/mm	25	33
径向基本额定动载荷 C_r/kN	40.8	72.2

表 8: 轴承选用型号及参数

表 9: 各轴段直径设计尺寸

直径	高速轴	低速轴
D1/mm	35	55
D2/mm	42	60
D3/mm	45	65
D4/mm	50	67
D5/mm	54(左), 56(右)	75
D6/mm	45	65

4.5 润滑方式选择

4.5.1 轴承的润滑方式选择

本设计通过速度因数dn值对轴承润滑方式选择,根据 [1]P289 图 16-11 选择润滑方式。通过计算,本设计中各个轴承的dn值如表10所示:

表 10: 各轴承速度因数值

轴	轴承内径/mm	转速/(r/min)	速度因数/(r·mm/min)
高速轴	45	301	13545
低速轴	65	98	6370

由于高速轴和低速轴的速度因数均< $(2\sim3)\times10^5$ mm·r/min, 故均选用脂润滑。

4.5.2 齿轮的润滑方式选择

由于本设计中齿轮的轮系速度v < 12m/s, 故齿轮的润滑方式选择油润滑。

*§*4 轴的设计计算 15

图 4: 脂润滑轴段设计参考

4.6 轴段长度确定

本项目中采取脂润滑的轴承,参考 [2]P26 图 4-3 进行设计,如图4所示。各个轴段长度需要根据画图确定,各段长度确定方法确定如下。

- 1. 优先确定 d_3 处的轴段,因其右端与齿轮轮毂齐平,左端只需要根据大齿轮轮毂宽减去 $1 \sim 2 \text{mm}$ 即可;
- 2. 接下来可以确定 d_5 处轴段长,其右端与轴承端面齐平,左端与封油盘齐平,封油盘参数见 [2]P30 图 4-10;
- 3. 在d3左端确定好定位之后, d2的轴段长度也已经确定;
- 4. 再确定d的轴段长,该轴段长根据轴伸配合的带轮或联轴器的轮毂长度确定,在之前的"带轮的选择"与"联轴器的选择"两节中已确定;
- 5. 现剩下 d_1 长度无法确定,该轴段需要留出一个 Md_3 螺钉的距离,以便在不拆下带轮的情况下,拆卸轴承端盖,因此,需要在轴承端盖凸缘外再加一个 Md_3 螺栓长度与一定余量(5~8mm),螺栓长度可根据下式计算:

$$L = k + e + (1.25 \sim 1.5)d_3$$

其中,e为轴承端盖厚度,k为螺帽厚度, d_3 为螺栓公称直径,可由 [2]P130 表 13-7 查得。

4.7 键的选择

本项目中高低速轴与齿轮轮毂连接处选用 A 型平键作为键连接方式,轴伸与带轮、联轴器连接处选用 C 型平键作为键连接方式,根据轴的直径,查 [2]P140 表 14-1 可得键的型号见表11所示。

*§*5 减速器箱体设计 16

轴段	键的类型	键的公称尺寸	键长/mm
高速轴与齿轮轮毂连接	A 型	14×9 20×12 10×8 14×9	110
低速轴与齿轮轮毂连接	A 型		90
高速轴与带轮连接	C 型		56
低速轴与联轴器连接	C 型		70

表 11: 各个轴段选取的键连接型号

§5 减速器箱体设计

5.1 铸铁减速器箱体结构尺寸

查阅 [2]P17 表 3-1 对减速器的箱体结构尺寸进行设计,其中螺纹直径查 [2]P126 表 13-1,并且统一两轴承端盖尺寸,计算出发现高速轴与低速轴所需轴承盖尺寸不同,统一换为较大者,表格为调整后结果。

 名称	符号	尺寸计算公式	设计尺寸/mm
箱座壁厚	δ	$\delta = \max\{0.025a + 1, 8\}$	8
箱盖壁厚	δ_1	$\delta_1 = \max\{0.02a + 1, 8\}$	8
	箱座b	$b = 1.5\delta$	12
箱体凸缘厚度	箱盖 b_1	_	12
	箱底座 b_2	=	20
加强肋厚	箱座加	$m = 0.85\delta$	7
	箱盖 m_1	$m_1 = 0.85\delta_1$	7
地脚螺钉直径	d_f	$d_f = 0.036a + 12$	20
轴承旁联接螺栓直径	d_1	$d_1 = 0.75d_f$	18
箱盖、箱座联接螺栓直径	d_2	$d_2 = (0.5 \sim 0.6)d_f$	12
轴承盖螺钉直径	d_3	查 [2]P77 表 9-9	10
轴承盖螺钉数目	n		6
轴承盖(轴承座端面)外径	D_2	$D_2 = D + 5d_3$	190
轴承两侧联接螺栓间距离	s	$s \approx D_2$	190
观察孔盖螺钉直径	d_4	$d_2 = (0.3 \sim 0.4)d_f$	8
d_f 至箱外壁距离	$C_{1,min}$		30
d_f 至凸缘外缘距离	$C_{2,min}$		26
d_1 至箱外壁距离	$C_{1,min}$	查 [2]P17 表 3-1	24
d_1 至凸缘外缘距离	$C_{2,min}$	브 [4]1 11 1 1 1 1 1 1 1	22
d_2 至箱外壁距离	$C_{1,min}$		18
d ₂ 至凸缘外缘距离	$C_{2,min}$		16

表 12: 减速器箱体结构设计尺寸

§6 键的校核 17

5.2 减速器零件的位置尺寸

接下来根据 [2]P24 表 4-1 对减速器零件的位置尺寸进行确定, 经过计算后得到的结果如表13所示。

名称	符号	设计尺寸/mm
齿轮顶圆至箱体内壁的距离	Δ_1	10
齿轮端面至箱体内壁的距离	Δ_2	10
轴承端面至箱体内壁的距离	Δ_3	11
齿轮顶圆至轴表面距离	Δ_5	12
大齿轮齿顶圆至箱体内壁的距离	Δ_6	42
箱底至箱底内壁的距离	Δ_7	20
减速器中心高	H	240
箱体内壁至轴承座孔端面的距离	L_1	60
抽承端盖凸缘厚度	e	12 (轴 2)

表 13: 减速器零件的位置设计尺寸

§6 键的校核

键的材料采用强度极限 $\sigma_B \geq 600 \text{MPa}$ 的碳钢,通常用 45 钢,根据 [1]P163 表 10-11 查得,连接键挤压许用应力 $[\sigma_p] = 125 \sim 150 \text{MPa}$,键的截面尺寸按轴径选取后如表11所示,接下来对键进行强度校核。

6.1 高速轴与齿轮轮毂连接键

$$\sigma_p = \frac{4T}{dhl} = \frac{4 \times 219198}{50 \times 9 \times 96} = 20.29 \text{MPa} \le 125 \text{MPa}$$

6.2 低速轴与齿轮轮毂连接键

$$\sigma_p = \frac{4T}{dhl} = \frac{4 \times 643917}{67 \times 12 \times 70} = 45.76 \text{MPa} \le 125 \text{MPa}$$

6.3 高速轴与带轮连接键

$$\sigma_p = \frac{4T}{dhl} = \frac{4 \times 223672}{35 \times 8 \times 46} = 69.46 \text{MPa} \le 125 \text{MPa}$$

§7 轴的校核 18

6.4 低速轴与联轴器连接键

$$\sigma_p = \frac{4T}{dhl} = \frac{4 \times 643917}{50 \times 9 \times 56} = 102.20 \text{MPa} \le 125 \text{MPa}$$

综上所述,各连接键均能通过校核。

§7 轴的校核

7.1 高速轴的校核

7.1.1 齿轮径向力与圆周力的计算

取载荷系数 $K_d = 1.2$,依据 [1]P173 式 (11-1),可得圆周力与径向力:

$$F_t = K_d \frac{2T_1}{d_1} = 1.2 \times \frac{2 \times 219198.6}{116} = 4535.16$$
N

$$F_r = F_t \tan \alpha = 4535.16 \times \tan(20) = 1650.7$$
N

7.1.2 带压轴力的计算

由带轮设计计算中可以得到,带的压轴力为:

$$F = 2zF_0 \sin \frac{\alpha_1}{2} = 2100.38$$
N

7.1.3 高速轴的校核

已知作用在齿轮上的圆周力 $F_t = 4535.16$ N,径向力为 $F_r = 1650.7$ N,小齿轮分度圆直径 $d_1 = 116$ mm,作用在轴左端带轮上的外力F = 2100.38N(方向未定),L = 192mm, K = 124.5mm(如图5(a) 所示)。

(1) 求垂直面的支承力(如图5(b) 所示)

$$F_{1V} = \frac{F_r \frac{L}{2}}{I} = \frac{F_r}{2} = 825.3$$
N

$$F_{2V} = F_r - F_{1v} = 825.3$$
N

(2) 求水平面的支承力(如图5(c) 所示)

$$F_{1H} = F_{2H} = \frac{F_t}{2} = \frac{4535.16}{2}$$
N = 2267.6N

(3) F在支点产生反力(如图5(d)所示)

$$F_{2F} = \frac{FK}{L} = \frac{2100.38 \times 124.5}{192} = 1361.97$$
N

$$F_{1F} = F + F_{1F} = 3462.35$$
N

外力*F*作用方向与带传动的布置有关,在具体布置尚未确定之前,可按照最不利的情况考虑。

(4) 绘制垂直面的弯矩图 (如图5(b) 所示)

$$M_{aV} = F_{1V} \frac{L}{2} = 79.23 \text{N} \cdot \text{m}$$

(5) 绘制水平面的弯矩图(如图5(c) 所示)

$$M_{aH} = F_{1H} \frac{L}{2} = 217.69 \text{N} \cdot \text{m}$$

(6) F力产生的弯矩图(如图5(d) 所示)

$$M_{1F} = FK = 261.49 \text{N} \cdot \text{m}$$

a-a平面处F产生的弯矩为

$$M_{aF} = F_{2F} \frac{L}{2} = 332.39 \text{N} \cdot \text{m}$$

(7) 求合成弯矩图 (如图5(e) 所示)

考虑最不利情况,将 M_{aF} 与 $\sqrt{M_{aH}^2 + M_{aV}^2}$ 直接相加求和,则:

$$M_a = \sqrt{M_{aV}^2 + M_{aH}^2} + M_{aF}$$
$$= (\sqrt{79.23^2 + 217.69^2} + 332.39) \text{N·m}$$
$$= 564.05 \text{N·m}$$

(8) 求轴传递的转矩(如图5(f) 所示)

§7 轴的校核

$$T = F_t \frac{d_1}{2} = 4535.16 \times \frac{0.116}{2} = 263.03 \text{N} \cdot \text{m}$$

(9) 求危险截面的当量弯矩

易从图5(g) 中看出, a-a截面最危险, 其当量弯矩为

$$M_e = \sqrt{M_a^2 + (\alpha T)^2}$$

如认为轴的扭切应力是脉动循环变应力,取折合系数 $\alpha = 0.6$,代入上式可得

$$M_e = \sqrt{564.05^2 + (0.6 \times 263.03)^2}$$
N·m = 585.71N·m

(10) 计算危险截面处轴的直径

轴的材料选用 45 钢,调质处理,由 [1]P246 表 14-1 查得 $\sigma_B=650$ MPa,由 [1]P251 表 14-3 查得 $[\sigma_{-1b}]=65$ MPa,则有

$$d \ge \sqrt[3]{\frac{M_e}{0.1[\sigma_{-1b}]}} = \sqrt[3]{\frac{585.71 \times 10^3}{0.1 \times 65}}$$
mm = 44.83mm

考虑键槽对轴的削弱,将d值加大5%,故:

$$d = 1.05 \times 44.83$$
mm = 47.07mm

在本设计中,a-a截面的轴径设计为50mm ≥ 47.07 mm,故高速轴通过校核检验。

(11) 其余轴段直径校核

如图5所示定义A,B,C,D四个截面,其中a-a与B平面一致,步骤(10)中已校核。对A平面,

$$M_A = \sqrt{M_{AV}^2 + M_{AH}^2} + M_{1F} = 261.49 \text{N} \cdot \text{m}$$

$$M_{Ae} = \sqrt{M_A^2 + (\alpha T)^2} = \sqrt{261.49^2 + (0.6 \times 263.03)^2} \text{N} \cdot \text{m} = 305.42 \text{N} \cdot \text{m}$$

$$d_A \ge \sqrt[3]{\frac{M_{Ae}}{0.1[\sigma_{-1b}]}} = \sqrt[3]{\frac{305.42 \times 10^3}{0.1 \times 65}} = 36.09 \text{mm}$$

考虑键槽对轴的削弱,将d值加大5%,故:

$$d = 1.05 \times 36.09$$
mm = 37.88mm

图 5: 高速轴校核弯矩图

§7 轴的校核 22

此时A截面轴径设计为45mm > 37.88mm,符合设计要求。

对C平面,作用在轴上的弯矩为0,故不需要校核。

对D平面,作用在轴上的弯矩为

$$M_{De} = \alpha T = 157.82 \text{N} \cdot \text{m}$$

$$d_D \ge \sqrt[3]{\frac{M_{Ae}}{0.1[\sigma_{-1b}]}} = \sqrt[3]{\frac{157.82 \times 10^3}{0.1 \times 65}} = 28.95$$
mm

考虑键槽对轴的削弱,将d值加大5%,故:

$$d = 1.05 \times 28.95$$
mm = 30.40mm

此时D截面轴径设计为35mm > 30.40mm,符合设计要求,综上所述,高速轴通过校核,符合强度要求。

7.1.4 低速轴的校核

7.1.5 齿轮径向力与圆周力的计算

取载荷系数 $K_d = 1.2$,依据 [1]P173 式 (11-1),可得圆周力与径向力:

$$F_t = K_d \frac{2T_1}{d_1} = 1.2 \times \frac{2 \times 643917.9}{356} = 4341.01$$
N

$$F_r = F_t \tan \alpha = 4341.01 \times \tan(20) = 1580.00$$
N

7.1.6 低速轴的校核

已知作用在齿轮上的圆周力 $F_t=4341.01$ N,径向力为 $F_r=1580.00$ N,大齿轮分度圆直径 $d_2=356$ mm,L=200mm,K=137mm(如图5(a) 所示)。

(1) 求垂直面的支承力(如图6(b) 所示)

$$F_{1V} = F_{2V} = \frac{F_r}{2} = \frac{1580}{2}$$
N = 790N

(2) 求水平面的支承力(如图6(c) 所示)

$$F_{1H} = F_{2H} = \frac{F_t}{2} = \frac{4341.01}{2}$$
N = 2170.51N

(3) 绘制垂直面的弯矩图(如图6(b) 所示)

$$M_{aV} = F_{1V} \frac{L}{2} = 790 \times \frac{0.200}{2} = 79.00 \text{N} \cdot \text{m}$$

(4) 绘制水平面的弯矩图(如图6(c) 所示)

$$M_{aH} = F_{1H} \frac{L}{2} = 2170.51 \times \frac{0.200}{2} = 217.01 \text{N} \cdot \text{m}$$

(5) 求合成弯矩图(如图6(d)所示)

$$M_{a2} = \sqrt{M_{aV}^2 + M_{aH}^2} = \sqrt{79.00^2 + 217.01^2} = 230.94$$
N·m

$$M_{a1} = \sqrt{M_{aV}^2 + M_{aH}^2} = \sqrt{79.00^2 + 217.01^2} = 230.94$$
N·m

(6) 求轴传递的扭矩图 (如图6(e) 所示)

$$T = F_t \frac{d_2}{2} = 4341.01 \times \frac{0.356}{2} = 772.69 \text{N} \cdot \text{m}$$

(7) 求危险截面的当量弯矩(如图6(f) 所示) 能从图中看出,a-a截面为危险截面,其当量弯矩为

$$M_e = \sqrt{M_a^2 + (\alpha T)^2}$$

认为轴的扭切应力是脉动循环变应力,取折合系数 $\alpha = 0.6$,代入上式可得

$$M_e = \sqrt{230.94^2 + (0.6 \times 772.69)^2} \text{N} \cdot \text{m} = 517.94 \text{N} \cdot \text{m}$$

(8) 校核危险截面直径

由于轴的材料选择 45 钢,正火处理,由 [1]P246 表 14-1 查得 $\sigma_B=600$ MPa,由 [1]P251 表 14-3 查得 $[\sigma_{-1b}]=65$ MPa,则危险截面的直径满足

$$d_a \ge \sqrt[3]{\frac{M_e}{0.1[\sigma_{-1b}]}} = \sqrt[3]{\frac{517.94 \times 10^3}{0.1 \times 65}} = 43.03$$
mm

由于键会对轴有削弱作用,需要将轴的直径提高5%,故

$$d_a = 43.03 \times 1.05 = 45.18$$
mm

该处设计直径67mm > 45.18mm, 故a - a截面校核通过。

§8 轴承的校核 24

(9) 其余轴段直径校核

如图6所示定义A, B, C, D四个截面,其中a-a与A平面一致,步骤(8)中已校核。对C平面,轴上的弯矩载荷为 0,故不需要载荷。

D, B平面,

$$M_{e1} = M_{e2} = \alpha T = 0.6 \times 772.69 \text{N} \cdot \text{m} = 463.61 \text{N} \cdot \text{m}$$

则该平面上的直径满足

$$d_B \ge \sqrt[3]{\frac{M_{e1}}{0.1[\sigma_{-1b}]}} = \sqrt[3]{\frac{463.61 \times 10^3}{0.1 \times 65}} = 41.47$$
mm

由于键会对轴有削弱作用,需要将轴的直径提高5%,故

$$d_a = 41.47 \times 1.05 = 43.54$$
mm

该处轴段设计直径为50mm > 43.54mm, 故校核通过。

§8 轴承的校核

据题目要求,两班制工作,轴承每日工作时间为 16 小时,使用年限为 10 年,则轴承寿命要求为 $L_0 = 16 \times 365 \times 10 \text{h} = 58400 \text{h}$ 。

8.1 高速轴轴承校核

由于本设计中采取深沟球轴承,故深沟球轴承的当量载荷与其所受径向力相等,即 $P = F_r$,深沟球轴承的各项参数如表8所示。由轴的校核可知,小齿轮径向力产生的垂直面的径向支承力:

$$F_{1V} = F_{2V} = \frac{F_r \frac{L}{2}}{L} = \frac{F_r}{2} = 825.3$$
N

小齿轮圆周力产生的水平面的径向支承力:

$$F_{1H} = F_{2H} = \frac{F_t}{2} = \frac{4535.16}{2}$$
N = 2267.6N

由带轮压轴力产生的垂直面内的径向支承力:

$$F_{2F} = \frac{FK}{L} = \frac{2100.38 \times 124.5}{192} = 1361.97$$
N

§8 轴承的校核 25

图 6: 低速轴校核弯矩图

$$F_{1F} = F + F_{2F} = 3462.35$$
N

则两轴承的径向合成力为:

$$F_{r1} = \sqrt{F_{1H}^2 + (F_{1F} + F_{1V})^2}$$

$$= \sqrt{2267.6^2 + (3462.35 + 825.3)^2} N$$

$$= 4850.36N$$

$$F_{r2} = \sqrt{F_{2H}^2 + (F_{2V} - F_{2F})^2}$$

$$= \sqrt{2267.6^2 + (825.3 - 1361.97)^2} N$$

$$= 2330.24N$$

$$L_1 = \frac{10^6}{60n_1} \left(\frac{C_{r1}}{P_1}\right)^{\varepsilon} = \frac{10^6}{60 \times 301} \left(\frac{40.8 \times 10^3}{4850.36}\right)^3 = 32956.5 \text{h} < L_0$$

$$L_2 = \frac{10^6}{60n_2} \left(\frac{C_{r2}}{P_2}\right)^{\varepsilon} = \frac{10^6}{60 \times 301} \left(\frac{40.8 \times 10^3}{2330.24}\right)^3 = 297208.14 \text{h} > L_0$$

通过检验,发现 1 号轴承不满足寿命要求,需要更换,修正后的轴承见表14,经过修正后, 1 号轴承寿命为:

$$L_1 = \frac{10^6}{60n_1} \left(\frac{C_{r1}}{P_1}\right)^{\varepsilon} = \frac{10^6}{60 \times 301} \left(\frac{59.5 \times 10^3}{4850.36}\right)^3 = 102214.20 \text{h} > L_0$$

8.2 低速轴轴承校核

由轴的校核可知,大齿轮径向力产生的垂直面的径向支承力:

$$F_{1V} = F_{2V} = \frac{F_r}{2} = \frac{1580}{2}$$
N = 790N

大齿轮圆周力产生的水平面的径向支承力:

$$F_{1H} = F_{2H} = \frac{F_t}{2} = \frac{4341.01}{2}$$
N = 2170.51N

§9 减速器附件设计 27

则两轴承的径向合成力为:

$$F_{r1} = F_{r2} = \sqrt{F_{1H}^2 + F_{1V}^2}$$
$$= \sqrt{2170.51^2 + 790^2} \text{N}$$
$$= 2309.8 \text{N}$$

$$L_1 = L_2 = \frac{10^6}{60n_1} \left(\frac{C_{r1}}{P_1}\right)^{\varepsilon} = \frac{10^6}{60 \times 98} \left(\frac{72.2 \times 10^3}{2309.8}\right)^3 = 5194109 \text{h} > L_0$$

由于此时轴承寿命超出题设工作寿命过多,可以考虑将轴承换成特轻直径系列轴承,经过调整后轴承参数如表14所示。

型号及参数	 高速轴	 低速轴
·		
轴承型号 内径 d/mm	6409(新标准) 45	6213(新标准) 65
外径D/mm	120	120
安装尺寸/mm	55	74
轴承宽度/mm	29	23
径向基本额定动载荷 C_r/kN	59.5	44.0

表 14: 修正后轴承选用型号及参数

对轴承进行修正后,再次计算寿命可得:

$$L_1' = L_2' = \frac{10^6}{60n_1} \left(\frac{C_{r1}}{P_1}\right)^{\varepsilon} = \frac{10^6}{60 \times 98} \left(\frac{44.0 \times 10^3}{2309.8}\right)^3 = 1175594 \text{h} > L_0$$

因此, 低速轴轴承可通过校验。

§9 减速器附件设计

9.1 轴承盖(及套杯)的选择

本设计采用凸缘式轴承盖,查[2]P77表9-9,计算得到各参数如表15所示。

9.2 密封圈参数选择

通过查表 [2] P158 表 16-9 可得, 高速轴与低速轴的密封圈选择参数如下表16所示。

§9 减速器附件设计 28

9.3 起重螺钉的选择

查 [2]P80 表 9-21 可得起重螺栓的相关参数,本设计中取M20用作起重螺栓,计算可得相关参数如表17所示。

9.4 窥视孔及视孔盖的选择

本设计选用板结构视孔盖,查[2]P80表 9-18可得其参数如表18所示。

9.5 通气螺塞的选择

本设计选用无过滤装置的通气螺塞,查[2]P76表 9-6可得其参数如表19所示。

9.6 油面指示器的选择

本设计选用压配式圆形油标,查[2]P78表 9-12可得其参数如表20所示。

9.7 油塞的选择

本设计选用外六角油塞,查[2]P79表 9-16可得其参数如表21所示。

9.8 起吊装置的选择

起吊装置可通过查 [2] P80 表 9-20 得到, 见表22,23,24所示。

9.9 各螺栓标准件选择

各螺栓标准件的选择如表25所示。

参数名称	计算方法	高速轴尺寸/mm	低速轴尺寸/mm
D	轴承外径	120	120
d_0	$d_0 = d_3 + 1$	11	11
D_0	$D_0 = D + 2.5d_3$	145	145
D_2	$D_2 = D_0 + 2.5d_3$	170	170
e	$e = 1.2d_3$	12	12
D_4	$D_4 = D - (10 \sim 15)$	110	110
D_5	$D_5 = D_0 - 3d_3$	115	115

表 15: 凸缘式轴承盖参数设计

表 16: 密封圈参数设计

参数名称	计算方法	高速轴尺寸/mm	低速轴尺寸/mm
d_0	轴径	42	60
d_1	凸缘式轴承盖孔径	43	61
D_1	密封圈外径	55	77
b_1	密封圈外径宽	4	5
b_2	密封圈内径宽	5.5	7.1

表 17: 起重螺钉参数设计

参数名称	尺寸值/mm
起重螺钉型号	AM16 GB2225-80
d	M16
D	35
L	62
s	27
d_1	16
l	32
l_1	8
l_2	4
l_3	2
C	2
允许负荷	$1.9 \mathrm{kN}$
d_2	22
h	6
$C_{1,min} \ C_{2,min}$	22
$C_{2,min}$	20

注: $C_{1,min}$, $C_{2,min}$ 为扳手空间。

表 18: 板结构视孔盖参数设计

参数名称	计算方法	尺寸值/mm
\overline{A}	-	100
d_4	螺栓直径	8
A_1	$A_1 = A + (5 \sim 6)d_4$	140
A_0	$A_0 = 0.5(A + A_1)$	120
B_1	$B_1 = 箱体宽度 - (15 \sim 20)$	142
B	$B = B_1 - (5 \sim 6)d_4$	102
B_0	$B_0 = 0.5(B + B_1)$	122
h	铸铁选用 5	5

表 19: 通气螺塞参数设计

参数名称	尺寸值/mm
\overline{d}	$M16 \times 1.5$
D	22
D_1	19.6
S	17
L	23
l	12
a	2
d_1	5

表 20: 油面指示器参数设计

参数名称	尺寸值/mm
型号	油标 A32GB1160.1-89
d	32
D	48
d_1	35
d_3	45
H	18
O 型密封圈	38.7×3.55

表 21: 油塞参数设计

参数名称	尺寸值/mm
\overline{d}	$M16 \times 1.5$
D_0	26
e	19.6
L	23
l	12
a	3
S	17
d_1	17
H	2

表 22: 箱盖吊耳参数设计

参数名称	计算方法	尺寸值/mm
d	$d = (1.8 \sim 2.5)\delta_1$	20
R	$R = (1 \sim 1.2)d$	20
e	$R = (0.8 \sim 1)d$	16
b	$b=2\delta_1$	16

表 23: 高速轴左侧箱座吊耳参数设计

参数名称	计算方法	尺寸值/mm
B	$B = C_1 + C_2$	47
H	H = 0.8B	40
h	h = 0.5H	20
r_2	$r_2 = 0.25B$	12
b	$b=2\delta$	16

表 24: 低速轴右侧箱座吊耳参数设计

参数名称	计算方法	尺寸值/mm
B	$B = C_1 + C_2$	34
H	H = 0.8B	28
h	h = 0.5H	14
r_2	$r_2 = 0.25B$	10
b	$b=2\delta$	16

表 25: 螺栓与圆锥销国标型号

螺栓	国标
Md ₁ 六角形螺栓	GB5782-86 M20×150
Md_1 弹簧垫圈	GB93-87 20
Md_1 螺母	GB6170-86 M20
Md_2 六角形螺栓	GB5783-86 M12 \times 45
Md_2 弹簧垫圈	GB93-87 12
Md_2 螺母	GB6170-86 M12
Md_3 六角形螺栓	GB5783-86 $M8 \times 20$
Md_4 六角形螺栓	GB5783-86 $M10 \times 25$
销	销 GB117-86 A6×28

§10 装配零件汇总表

表 26: 装配零件代号、数量、材料汇总表

序号	代号	名称	数量	材料
1	$M12 \times 25$	起盖螺钉	1	Q235
2		箱盖	1	HT200
3	GB5783-86 M8 \times 20	螺钉	4	Q235
4	$M16\times1.5$	通气螺塞	1	Q235
5	GB5782-86 M20 \times 150	螺栓	6	Q235
6	垫圈 GB93-87 20	弹簧垫圈	6	$65\mathrm{Mn}$
7	GB6170-86 M20	螺母	6	Q235
8		视孔盖	1	HT200
9		垫片	1	软钢纸板
10	销 GB119-86 A6×28	圆锥销	2	35
11	GB5783-86 M12× 45	螺栓	2	Q235
12	垫圈 GB93-87 12	弹簧垫圈	2	$65\mathrm{Mn}$
13	GB6170-86 M12	螺母	2	Q235
14	A32GB1160.1-89	压配式圆形油标	1	组合件
15		封油垫	1	耐油橡胶、工业用革
16	$M16 \times 1.5$	油塞	1	Q235
17		轴承盖	1	HT200
18		调整垫片	2	08F
19		封油盘	2	Q235A
20	键 C10×56GB1096-79	键	1	45
21		低速轴	1	45
22	毡圈 42FZ/T92010-91	毡圈	1	半粗羊毛毡
23		轴承盖	1	HT200
24		调整垫片	2	08F
25	键 20×90 GB1096-79	键	1	45
26	6213 GB276-89	深沟球轴承	2	
27		封油盘	2	Q235A
28		大齿轮	1	45

续表26: 装配零件代号、数量、材料汇总续表

序号	代号	名称	数量	材料
29		箱座	2	HT200
30		轴承盖	1	HT200
31	毡圈 60FZ/T92010-91	毡圈	1	半粗羊毛毡
32	键 C14×70GB1096-79	键	1	45
33		高速轴	1	45
34	GB5783-86 M10 \times 25	螺钉	24	Q235
35	6409 GB276-89	深沟球轴承	2	
36	键 14×110GB1096-79	键	1	45
37		轴承盖	1	HT200
38		小齿轮	1	45

34

§11 参考文献

- [1] 杨可桢,程光蕴。机械设计基础。6 版。北京:高等教育出版社,1979.
- [2] 王昆。机械设计基础课程设计。北京: 高等教育出版社, 1995.
- [3] 唐金松。简明机械设计手册。3 版。上海:上海科学技术出版社,1992.