CSE100: Design and Analysis of Algorithms Lecture 13 – Sorting Lower Bounds (wrap up) and Binary Search Trees

Mar 03rd 2022

O(n)-time sorting, Binary Search Trees and Red-Black Trees

Sorting Lower Bound (review)

• Theorem:

• Any deterministic comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps.

• Theorem:

• Any randomized comparison-based sorting algorithm must take $\Omega(n \log(n))$ steps in expectation.

BucketSort (review)

Original array:

	21	345	13	101	50	234	1
Next array is sorted by the first digit.							
	5 0	21	10 1	1	13	234	34 5

Next array is sorted by the first two digits.

101 0 3	1 13	21	2 34	3 45	50	
----------------	------	----	-------------	-------------	----	--

Next array is sorted by all three digits.

001 013 021 050 101 234 345

Sorted array

To prove this is correct...

What is the inductive hypothesis?

Original array:

Think-Pair-Share Terrapins

Sorted array

RadixSort is correct

- Inductive hypothesis:
 - After the k'th iteration, the array is sorted by the first k least-significant digits.
- Base case:
 - "Sorted by 0 least-significant digits" means not sorted, so the IH holds for k=0.
- Inductive step:
 - TO DO
- Conclusion:
 - The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it's sorted!

Inductive hypothesis:

After the k'th iteration, the array is sorted by the first k least-significant digits.

Inductive step

CSE 100 L13 6

- Need to show: if IH holds for k=i-1, then it holds for k=i.
 - Suppose that after the i-1'st iteration, the array is sorted by the first i-1 least-significant digits.
 - Need to show that after the i'th iteration, the array is sorted by the first i least-significant digits.

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

Want to show: this array is sorted by 1st and 2nd digits.

CSE 100 L13 8

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

• Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$

CSE 100 L13 9

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$

EXAMPLE: i=2

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.

Want to show: this array is sorted by 1st and 2nd digits.

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i

CSE 100 L13 11

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i

Want to show: this array is sorted by 1st and 2nd digits.

CSE 100 L13 12

EXAMPLE: i=2

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i

CSE 100 L13 13

x is in an earlier bucket than y.

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.

Want to show: this array is sorted by 1st and 2nd digits.

CSE 100 L13 14

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.

Want to show: this array is sorted by 1st and 2nd digits.

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.

Want to show: this array is sorted by 1st and 2nd digits.

CSE 100 L13 16

proof on next (skipped) slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.

Want to show: this array is sorted by 1st and 2nd digits.

CSE 100 L13 17

EXAMPLE: i=2

proof on next slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y so that $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i

EXAMPLE: i=2

• x is in an earlier bucket than y.

Aka, we want to show that for any x and y so that x belongs before y, we put x before y.

Want to show: this array is sorted by 1st and 2nd digits.

proof on next slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y so that $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.
- CASE 2: x_i=y_i

Aka, we want to show that for any x and y so that x belongs before y, we put x before y.

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EXAMPLE: i=2

proof on next slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y so that $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.
- CASE 2: x_i=y_i

EXAMPLE: i=2

Aka, we want to show that for any x and y so that x belongs before y, we put x before y.

Want to show: this array is sorted by 1st and 2nd digits.

proof on next slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

Aka, we want to show that for any x and y so

that x belongs before y, we put x before y.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y so that $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.
- CASE 2: x_i=y_i
 - x and y in same bucket, but x was put in the bucket first.

Want to show: this array is sorted by 1st and 2nd digits.

EXAMPLE: i=2

proof on next slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

Aka, we want to show that for any x and y so

that x belongs before y, we put x before y.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y so that $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.
- CASE 2: x_i=y_i
 - x and y in same bucket, but x was put in the bucket first.

Want to show: this array is sorted by 1st and 2nd digits.

proof on next slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

Aka, we want to show that for any x and y so

that x belongs before y, we put x before y.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y so that $[x_ix_{i-1}...x_2x_1] < [y_iy_{i-1}...y_2y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.
- CASE 2: x_i=y_i

CSE 100 L13 23

• x and y in same bucket, but x was put in the bucket first.

proof on next slide

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

Aka, we want to show that for any x and y so

that x belongs before y, we put x before y.

- Let $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$ be any x,y so that $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i
 - x is in an earlier bucket than y.
- CASE 2: x_i=y_i
 - x and y in same bucket, but x was put in the bucket first.

Want to show: this array is sorted by 1^{st} and 2^{nd} digits.

CSE 100 L13 24

Want to show: after the i'th iteration, the array is sorted by the first i least-significant digits.

- Write $x=[x_dx_{d-1}...x_2x_1]$ and $y=[y_dy_{d-1}...y_2y_1]$
- Suppose $[x_i x_{i-1} ... x_2 x_1] < [y_i y_{i-1} ... y_2 y_1].$
- Want to show that x appears before y at end of i'th iteration.
- CASE 1: x_i<y_i.
 - x appears in an earlier bucket than y, so x appears before y after the i'th iteration.
- CASE 2: x_i=y_i.
 - x and y end up in the same bucket.
 - In this case, $[x_{i-1}...x_2x_1] < [y_{i-1}...y_2y_1]$, so by the inductive hypothesis, x appeared before y after i-1'st iteration.
 - Then x was placed into the bucket before y was, so it also comes out of the bucket before y does.
 - Recall that the buckets are FIFO queues.
 - So x appears before y in the i'th iteration.

Inductive hypothesis:

After the k'th iteration, the array is sorted by the first k least-significant digits.

Inductive step

- Need to show: if IH holds for k=i-1, then it holds for k=i.
 - Suppose that after the i-1'st iteration, the array is sorted by the first i-1 least-significant digits.

 Need to show that after the i'th iteration, the array is sorted by the first i least-significant digits.

IH: this array is sorted by first digit.

Want to show: this array is sorted by 1st and 2nd digits.

EXAMPLE: i=2

RadixSort is correct

- Inductive hypothesis:
 - After the k'th iteration, the array is sorted by the first k least-significant digits.
- Base case:
 - "Sorted by 0 least-significant digits" means not sorted, so the IH holds for k=0.
- Inductive step:
 - TO DO
- Conclusion:
 - The inductive hypothesis holds for all k, so after the last iteration, the array is sorted by all the digits. Hence, it's sorted!

What is the running time?

for RadixSorting numbers base-10.

• Suppose we are sorting n d-digit numbers (in base 10). e.g., n=7, d=3:

- 1. How many iterations are there?
- 2. How long does each iteration take?

3. What is the total running time?

What is the running time? for RadixSorting numbers base-10.

• Suppose we are sorting n d-digit numbers (in base 10). e.g., n=7, d=3:

021 345 013	101 050	234 001
-------------	---------	---------

- 1. How many iterations are there?
 - d iterations
- 2. How long does each iteration take?
 - Time to initialize 10 buckets, plus time to put n numbers in 10 buckets. O(n).
- 3. What is the total running time?

O(nd)

This doesn't seem so great

- To sort n integers, each of which is in {1,2,...,n}...
- $d = \lfloor \log_{10}(n) \rfloor + 1$
 - For example:
 - n = 1234
 - $\lfloor \log_{10}(1234) \rfloor + 1 = 4$
 - More explanation on next slide.

Aside: why $d = [\log_{10}(n)] + 1$?

• When we write a number $\mathbf{x} = [\mathbf{x_d} \mathbf{x_{d-1}} \dots \mathbf{x_1}]$ base 10, that means: $x = x_1 + x_2 \cdot 10 + \dots + x_{d-1} \cdot 10^{d-2} + x_d \cdot 10^{d-1}$ where $x_i \in \{0,1,\dots,9\}$

- Suppose that $x_d \neq 0$. Then we have
 - $x \ge x_d \cdot 10^{d-1}$
 - $\log_{10}(x) + 1 \log_{10}(x_d) \ge d$
 - $\log_{10}(x) + 1 > d$
 - $[\log_{10}(n)] + 1 \ge d$ •
- On the other hand, we also have
 - $x < (x_d + 1) \cdot 10^{d-1}$
 - $\log_{10}(x) + 1 \log_{10}(x_d + 1) < d$
 - $\log_{10}(x) < d$
 - $\lfloor \log_{10}(n) \rfloor + 1 \leq d$

Since x is bigger than just the last term in that sum!

(take logs₁₀ of both sides and rearrange)

$$\log_{10}(x_d) > 0 \text{ since } x_d > 0$$

Since d is an integer

Since if
$$x \ge (x_d + 1) \cdot 10^{d-1}$$

then the d'th digit would have
been $x_d + 1$ instead of x_d

(take logs₁₀ of both sides and rearrange)

$$-\log_{10}(x_d+1) \le 1$$
 since $x_d < 10$

Since d is an integer

This doesn't seem so great

- To sort n integers, each of which is in {1,2,...,n}...
- $d = \lfloor \log_{10}(n) \rfloor + 1$
 - For example:
 - n = 1234
 - $\lfloor \log_{10}(1234) \rfloor + 1 = 4$
- Time = $O(nd) = O(n \log(n))$.
 - Same as MergeSort!

Can we do better?

- RadixSort base 10 doesn't seem to be such a good idea...
- But what if we change the base? (Let's say base r)
- We will see there's a trade-off:
 - Bigger r means more buckets
 - Bigger r means fewer digits

Example: base 100

Original array:

21 345	13	101	50	234	1
--------	----	-----	----	-----	---

Example: base 100

Original array:

0021 0345 0013	0101	0050	0234	0001
----------------	------	------	------	------

Example: base 100

Original array:

Original array:

100 buckets:

Original array:

100 buckets:

Sorted!

Original array

VS.

Sorted array

Base 100:

- d=2, so only 2 iterations.
- 100 buckets

Base 10:

- d=3, so 3 iterations.
- 10 buckets

Bigger base means more buckets but fewer iterations.

CSE 100 L13 40

General running time of RadixSort

- Say we want to sort:
 - n integers,
 - maximum size M,
 - in base r.
- Number of iterations of RadixSort:
 - Same as number of digits, base r, of an integer x of max size M.
 - That is $d = \lfloor \log_r(M) \rfloor + 1$
- Time per iteration:
 - Initialize r buckets, put n items into them
 - O(n+r) total time.
- Total time:

• $O(d \cdot (n+r)) = O((\lfloor \log_r(M) \rfloor + 1) \cdot (n+r))$

Siggi the Studious Stork

Convince yourself that

this is the right formula

for d.

Running time:
$$O((\lfloor \log_r(M) \rfloor + 1) \cdot (n+r))$$

Trade-offs

- Given n, M, how should we choose r?
- Looks like there's some sweet spot:

A reasonable choice: r=n

Running time:

$$O((\lfloor \log_r(M)\rfloor + 1) \cdot (n+r))$$

Intuition: balance n and r here.

Choose n=r:

$$O(n \cdot (\lfloor \log_n(M) \rfloor + 1))$$

Choosing r = n is pretty good. What choice of r optimizes the asymptotic running time? What if I also care about space?

Running time of RadixSort with r=n

To sort n integers of size at most M, time is

$$O(n \cdot (\lfloor \log_n(M) \rfloor + 1))$$

- So the running time (in terms of n) depends on how big
 M is in terms of n:
 - If $M \le n^c$ for some constant c, then this is O(n).
 - If $M = 2^n$, then this is $O\left(\frac{n^2}{\log(n)}\right)$
- The number of buckets needed is r=n.

What have we learned?

You can put any constant here instead of 100.

- RadixSort can sort n integers of size at most n¹⁰⁰ in time O(n), and needs enough space to store O(n) integers.
- If your integers have size much much bigger than n (like 2ⁿ), maybe you shouldn't use RadixSort.
- It matters how we pick the base.

Recap

- How difficult sorting is depends on the model of computation.
- How reasonable a model of computation is is up for debate.
- Comparison-based sorting model
 - This includes MergeSort, QuickSort, InsertionSort
 - Any algorithm in this model must use at least $\Omega(n \log(n))$ operations. \odot

- But it can handle arbitrary comparable objects. ©
- If we are sorting small integers (or other reasonable data):
 - BucketSort and RadixSort
 - Both run in time O(n) ©
 - Might take more space and/or be slower if integers get too big 🕾

Next Part

- Binary search trees!
- Balanced binary search trees!

Today (part 2)

- Begin a brief foray into data structures!
- Binary search trees
 - You may remember these from CSE 30
 - They are better when they're balanced.

this will lead us to...

- Self-Balancing Binary Search Trees
 - Red-Black trees.

Some data structures for storing objects like [5] (aka, nodes with keys)

(Sorted) arrays:

• (UnSorted) linked lists:

Some basic operations:

INSERT, DELETE, SEARCH

1 2 3 4 5 7 8

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

1 2 3 4 5 7 8

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

1 2 3 4 5 7 8

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

1 2 3 4 5 7 8

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

1 2 3 4 5 7 8

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

• O(log(n)) SEARCH:

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

• O(log(n)) SEARCH:

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

• O(log(n)) SEARCH:

eg, insert 4.5

eg, Binary search to see if 3 is in A.

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

• O(log(n)) SEARCH:

CSE 100 L13 62

eg, insert 4.5

eg, Binary search to see if 3 is in A.

- O(n) INSERT/DELETE:
 - First, find the relevant element (time O(log(n)) as below), and then move a bunch elements in the array:

• O(log(n)) SEARCH:

UNSorted linked lists

• O(1) INSERT:

• O(n) SEARCH/DELETE:

eg, search for 1 (and then you could delete it by manipulating pointers).

Motivation for Binary Search Trees

TODAY!

	Sorted Arrays	Linked Lists	Binary Search Trees*
Search	O(log(n))	O(n)	O(log(n))
Delete	O(n)	O(n) 😬	O(log(n))
Insert	O(n)	O(1)	O(log(n))

CSE 100 L13 65

This is a node.

Binary tree terminology

Each node has two children.

The left child of 3 is 2

The right child of 3 is 4

The parent of 3 is 5

2 is a descendant of 5

Each node has a pointer to its left child, right child, and parent.

Both children of 1 are NIL. (We won't usually draw them).

The height of this tree is 3. (Max number of edges from the root to a leaf).

CSE 100 L13 66

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.
- Example of building a binary search tree:

Aside: this should look familiar

kinda like QuickSort

CSE 100 L13 77

Aside: this should look familiar kinda like QuickSort

Which of these is a BST?

- A BST is a binary tree so that:
 - Every LEFT descendant of a node has key less than that node.
 - Every RIGHT descendant of a node has key larger than that node.

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4 5

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

2 3 4 5 7

Output all the elements in sorted order!

- inOrderTraversal(x):
 - if x!= NIL:
 - inOrderTraversal(x.left)
 - print(x.key)
 - inOrderTraversal(x.right)

Runs in time O(n).

2 3 4 5 7 Sorted!

Back to the goal

Fast SEARCH/INSERT/DELETE

Can we do these?

