Notes de Cours

Intro:

- david.bouchet.paris5@gmail.com
- Support: www.debug-pro.com/paris5/archi/index.html

Cours 1:

- 2 parties dans l'elec :
 - Analogique
 - Numerique
- Un Micro-Processeur (= processueur en miniature)est programmable, c'est presque le seul qui l'est
 - Fait le lien entre le materiel entre le logiciel, sans le micro-processeur, il n'y aurait pas de logiciels
 - Utilise un langage : langage assembleur / langage machine (langage de bas niveau)
 - Tous les langages de prog passent par du langage machine
- Les Circuits Combinatoires
 - Contient des entrees et des sorties (appeles files)
 - Si on a 3 entrees : on a 2³ sorties possibles
 - Portes Logiques:
 - Tout circuit combinatoires est constitue uniquement de portes
 - 7 portes logiques
 - 2 symboles par porte
 - Symbole à forme rectangulaire
 - Symbole à forme distincte
- Connaitre les 2 premiers theoremes
- En logique combinatoires, on exprime les sorties uniquement en fonction des entrees
- Particularite du code Gray, un seul bit change a chaque ligne
 - On l'utilisera en majorite sur 2 bits
 - Les tableaux de Karnaugh sont la pour nous simplifier la vie
 - Table de verite => table de Karnaugh
 - · Table de Karnaugh:
 - On cherche la valeur V (= a)
 - On met les valeurs possibles de bc (Code Gray : 11 est en 3^e position avec ce code =/ binaire classique)
 - on remplit le tableau en fonction des entrees de la table de verite
 - Qq regles:
 - il ne faut pas encercler de 0
 - il faut moins de bulles possible
 - une bulle doit etre la plus grande possible
 - le nombre de cases dans un cercle doit etre une puissance de deux
 - il faut voir le tableau de Karnaugh comme un cylindre
 - Expressions :

- si une valeur ne change pas \rightarrow ex : b(barre). c(barre)
- sinon on ne met pas de barre
- Puis on dessine l'expression en circuit :
- Principaux circuits combinatoires : (completer avec le resume de cours)
 - Additionnaire binaire parallele :
 - On prend les bits de chaque valeurs + Cin et on fait une addition
 - Decodeur:

•

- Comparateur:
 - Affiche 1 si la comparaison est vrai
- Multiplexeur:
 - Il fait des connexions entre les valeurs en fonction des bits de S
- Demultiplexeur:
 - Semblable au decodeur
- Circuits sequentiels :
 - Chronogramme:
 - Front montant => etat haut
 - front montant + etat haut = impulsion positive
 - pareil pour front descendant, etat bas et impulsion negative
 - Bascules:
 - Bascules asynchrones :
 - Les sorties peuvent changer a tout instant
 - Pas d'entree de synchronisation => on peut les changer a tous moments
 - Bascule RS:
 - Etat memoire : valeur de A juste avant le passage de la bascule dans l'état memoire
 - Mise a 1 (Set) : valeur de q = 1
 - Mise a 0 (Reset) : valeur de q = 0
 - Etat interdit : Q(barre)
 - Puis : Q(barre) = oppose dans Q
 - Bascules synchrones :
 - Les sorties changent uniquement en fonction d'une entree de synchronisation
 - Une entree de synchronisation : l'horloge
 - Bascule D synchrone
- Les Memoires :
- On s'occupe en archi de la ram et non de la memoire de masse (disque dur, etc) Definitions :
 - 8 cases l'une sur l'autre (de 0 a 7), une case c'est 16 bits, contenant des adresses
 - nombre d'adresses = Profondeur
 - taille d'une case/donnee = Largeur
 - Capacite en bits = L * P
 - Capacite en octets = (L * P) / 8
 - Les Categories de memoire :
 - ROM (Read Only Memory):

- non volatile
- lecture seule
- plusieurs types de ROM :
 - PROM
 - EPROM
 - UVEPROM
 - EEPROM
 - Flach
- RAM (Random Access Memory) :
 - volatile (quand on coupe l'alimentation de l'ordinateur, le contenu de la RAM se supprimer)
 - lecture et ecriture
 - RAM Statique (SRAM): + rapide et tant qu'on ne coupe pas le courant on garde les donnees
 - RAM Dynamique (DRAM): rapide et elle perd les donnees meme quand on ne coupe pas le courant, il faut la rafrachir manuellement. Elle est bcp moins chere
 - $SDRAM \rightarrow DRAM$
- Les Bus (groupe de files):
 - Case memoire avec un Bus d'adresse, un bus de donnee et un bus de contrôle
 - Profondeur = 2^{nbre de fila d'adresse}
 - Largeur = Nombre de fils du bus de donnee
 - Bus de contrôle :
 - CS (Chip Select) : il sert a activer ou desactiver le bus de contrôle (sur ROM ou RAM)
 - WE (Write Enable): il permet d'ecrire si il est a 1 ou de lire si il est a 0
- L'Assemblage de memoires :
 - L'assemblage en parallele :
 - L'assemblage en serie :