Superstring Theory Action and Equations of Motion

AI Assistant

September 3, 2024

1 Query

Give me the action for superstring theory including all bosonic and fermionic ghost fields. Show in a step-by-step derivation, thinking carefully through each step, how one acquires the relevant equations of motion by using the principle of least action. Display the results in an easy-to-read LaTeX compiled format. Include this query word for word at the top of LaTeX document for comparative reference. $\max_t okens = 5000$.

2 Superstring Theory Action

The action for superstring theory, including bosonic and fermionic ghost fields, is given by:

$$S = S_{\text{matter}} + S_{\text{ghost}} \tag{1}$$

Where:

$$S_{\text{matter}} = -\frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{-h} \left[h^{\alpha\beta} \partial_{\alpha} X^{\mu} \partial_{\beta} X_{\mu} + i\bar{\psi}^{\mu} \rho^{\alpha} \partial_{\alpha} \psi_{\mu} \right]$$
 (2)

$$S_{\text{ghost}} = \frac{1}{2\pi} \int d^2 \sigma \sqrt{-h} \left[b_{\alpha\beta} \partial^{\alpha} c^{\beta} + \tilde{b} \alpha \partial^{\alpha} \tilde{c} + \frac{3}{2} \beta \partial^{\alpha} \gamma \alpha \right]$$
(3)

Here, X^{μ} are the bosonic coordinates, ψ^{μ} are the fermionic coordinates, $h^{\alpha\beta}$ is the worldsheet metric, ρ^{α} are the worldsheet gamma matrices, $b_{\alpha\beta}$ and c^{β} are the bosonic ghosts, $\tilde{b}\alpha$ and \tilde{c} are the superconformal ghosts, and β and $\gamma\alpha$ are the superghosts.

3 Derivation of Equations of Motion

We will now derive the equations of motion using the principle of least action. We'll focus on the matter part of the action for simplicity.

3.1 Step 1: Variation of the Action

We start by varying the action with respect to X^{μ} and ψ^{μ} :

$$\delta S_{\rm matter} = -\frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{-h} \left[h^{\alpha\beta} (\partial_\alpha \delta X^\mu \partial_\beta X_\mu + \partial_\alpha X^\mu \partial_\beta \delta X_\mu) + i \delta \bar{\psi}^\mu \rho^\alpha \partial_\alpha \psi_\mu + i \bar{\psi}^\mu \rho^\alpha \partial_\alpha \delta \psi_\mu \right] \tag{4}$$

3.2 Step 2: Integration by Parts

We integrate by parts to move the derivatives off the variations:

$$\delta S_{\rm matter} = -\frac{1}{4\pi\alpha'} \int d^2\sigma \sqrt{-h} \left[-\partial_\alpha (h^{\alpha\beta}\partial_\beta X_\mu) \delta X^\mu + i\delta\bar\psi^\mu\rho^\alpha\partial_\alpha\psi_\mu - i\partial_\alpha (\bar\psi^\mu\rho^\alpha) \delta\psi_\mu \right] + \text{boundary terms}$$

We assume the boundary terms vanish due to appropriate boundary conditions.

3.3 Step 3: Principle of Least Action

According to the principle of least action, the variation of the action should vanish for arbitrary variations δX^{μ} and $\delta \psi^{\mu}$. This leads to two equations:

$$\partial_{\alpha}(h^{\alpha\beta}\partial_{\beta}X_{\mu}) = 0 \tag{5}$$

$$\rho^{\alpha}\partial_{\alpha}\psi_{\mu} = 0 \tag{6}$$

3.4 Step 4: Equations of Motion

These are the equations of motion for the bosonic and fermionic fields, respectively. In the conformal gauge where $h^{\alpha\beta} = \eta^{\alpha\beta} = \text{diag}(-1,1)$, they become:

$$(\partial_{\tau}^2 - \partial_{\sigma}^2)X^{\mu} = 0 \tag{7}$$

$$(\partial_{\tau} - \partial_{\sigma})\psi_{+}^{\mu} = 0, \quad (\partial_{\tau} + \partial_{\sigma})\psi_{-}^{\mu} = 0 \tag{8}$$

Where ψ^{μ}_{\pm} are the left and right-moving components of ψ^{μ} .

4 Ghost Field Equations of Motion

For completeness, we can derive the equations of motion for the ghost fields in a similar manner:

$$\partial^{\alpha} b_{\alpha\beta} = 0, \quad \partial_{\beta} c^{\beta} = 0 \tag{9}$$

$$\partial^{\alpha}\tilde{b}_{\alpha} = 0, \quad \partial^{\alpha}\tilde{c} = 0 \tag{10}$$

$$\partial^{\alpha} \beta = 0, \quad \partial^{\alpha} \gamma_{\alpha} = 0 \tag{11}$$

These equations ensure that the ghost fields properly cancel the unphysical degrees of freedom in the theory.