Petriho sítě

PES 2007/2008

Prof. RNDr. Milan Češka, CSc.

ceska@fit.vutbr.cz

Doc. Ing. Tomáš Vojnar, Ph.D.

vojnar@fit.vutbr.cz

Sazba: Ing. Petr Novosad, Doc. Ing. Tomáš Vojnar, Ph.D.

(verze 27.2.2008)

FIT, VUT v Brně, Božetěchova 2, CZ-612 66 Brno

C/E sítě (Condition/Event Nets)

1. Případy a kroky

- Základní sémantika C/E sítí:
 - prvky z množiny P označují booleovské podmínky (conditions)
 - prvky z množiny T označují události (events)
- **Definice 1.1**: Nechť N = (B, E, F) je C/E síť.
 - 1. Podmožina $c \subseteq B$ se nazývá *případ* (case)
 - 2. Nechť $e \in E$ a $c \subseteq B$. Událost e je proveditelná, přesněji c-proveditelná, jestliže

3. Nechť $e \in E$, $c \subseteq B$ a nechť e je c-proveditelná. Případ c'

$$c' = (c \setminus {}^{\bullet}e) \cup e^{\bullet}$$

se nazývá *následným případem* c (následníkem k c) při události e. Píšeme

$$c[e\rangle c'$$

Poznámka: Grafické vyznačení případu c: množina podmínek s tečkami (značkami)

* Příklad 1: Model změn ročních období

jaro léto začátek jara zima podzimu začátek zimy

* Příklad 2: Alternativní model příkladu 1

Příklad 3: Ilustrační příklad

$$\{b_1\}\ [e_1\rangle\ \{b_2,b_3\}\ [e_4\rangle\ \{b_2,b_5\}\ [e_3\rangle\ \{b_4,b_5\}\ [e_5\rangle\ \{b_1\}\$$

Různé typy závislostí událostí:

- e_1 předchází e_3 i e_4
- e_3, e_4 jsou alternativy k e_2
- e_3, e_4 mohou být sloučeny (kombinovány) do 1 kroku

Poznámka:

Situace, kdy $e \subseteq c \land e \Leftrightarrow c \neq \emptyset$ pro nějaké c a e, se nazývá *kontaktní situací*.

Proč vadí?

- 1. "proměnná s určitým obsahem je znovu načtena", avšak "začne podzim v případě, že je podzim"
- 2. nejednoznačnost

Předpokládejme, že připustíme

Potom v následující situaci, kdy události e_1 a e_2 provedeme právě jednou

bude záviset na pořadí jejich provedení a nevíme, zda výsledkem

bude případ

nebo případ

- **Definice 1.2**: Nechť N = (B, E, F) je síť.
 - 1. Množina událostí $G \subseteq E$ se nazývá *nezávislá* (detached), jestliže

$$\forall e_1, e_2 \in G \colon e_1 \neq e_2 \Rightarrow {}^{\bullet}e_1 \cap {}^{\bullet}e_2 = \emptyset = e_1^{\bullet} \cap e_2^{\bullet}$$

2. Nechť c,c' jsou případy N a nechť $G\subseteq E$ je nezávislá množina událostí. G se nazývá \emph{krokem} (step) z c do c' (notace $c[G\rangle c'$), jestliže každá událost $e\in G$ je c-proveditelná a

$$c' = (c \setminus {}^{\bullet}G) \cup G^{\bullet}$$

❖ Lemma 1.1:

$$c[G\rangle c' \Leftrightarrow c\backslash c' = {}^{\bullet}G \wedge c'\backslash c = G^{\bullet}$$

❖ Příklad 4:

Poznámka: Krok je důležitým pojmem pro popis procesů generovaných danou sítí (viz dále).

Lemma 1.2: Nechť N je síť, c, c' případy sítě N a nechť G je konečný krok z c do c'. Nechť (e_1, e_2, \ldots, e_n) je libovolné uspořádání událostí kroku $G = \{e_1, e_2, \ldots, e_n\}$. Pak existují případy c_0, c_1, \ldots, c_n takové, že

$$c=c_0,\ c'=c_n$$
 a $c_{i-1}[e_i
angle c_i$ pro $i=1,\ldots,n$

Důkaz: Nechť $e,e'\in G$ a nechť c je případ, ve kterém jsou proveditelné obě události e,e'. Pak ${}^{\bullet}e\cap {}^{\bullet}e'=\emptyset$ \wedge $e^{\bullet}\cap e'^{\bullet}=\emptyset$. Takže když $c[e\rangle c'$, pak ${}^{\bullet}e'\subseteq c'$. Analogicky platí $e'^{\bullet}\cap c'=\emptyset$, a tedy e' je proveditelná v c'. Zbytek indukce.

Příklad 5: Konflikt a zmatek (confusion)

Konflikt mezi e_1 a e_2 v podmínce b_2 .

Jestli se e_1 objeví před e_2 , pak nebude konflikt mezi e_1 a e_3 . Avšak jestli e_2 bude před e_1 , pak vzniká konflikt v podmínce b_1 .

Protože neexistuje specifikace pořadí e_1 a e_2 , je tato situace označována jako confusion.

2. C/E systémy

Omezuje se množina případů C:

- 1. C je "uzavřena"
- 2. C je "dostatečně" veliká
 - (a) Každé události přísluší případ
 - (b) Každá podmínka patří alespoň do jednoho případu, avšak ne do každého (to vylučuje smyčky a izolované prvky)
 - (c) Nepovolují se dvě podmínky (události), které mají shodné presety a postsety
- **Definice 2.1**: Čtveřice $\Sigma = (B, E, F, C)$ se nazývá $\emph{C/E}$ systém, jestliže:
 - 1. (B, E, F) je jednoduchá síť bez izolovaných prvků, $B \cup E \neq \emptyset$
 - 2. $C\subseteq 2^B$ je ekvivalenční třídou vzhledem k *relaci dosažitelnosti* $R_\Sigma=(r_\Sigma\cup r_\Sigma^{-1})^*$, kde $r_\Sigma\subseteq 2^B\times 2^B$ je dána vztahem

$$c_1 r_{\Sigma} c_2 \stackrel{def.}{\Longleftrightarrow} \exists G \subseteq E : c_1[G\rangle c_2$$

C se nazývá *případová třída* (case class) sítě Σ .

3. $\forall e \in E \ \exists c \in C \ \text{tak}$, že e je c-proveditelná

* Příklad 6: C/E systém

případová třída
$$C = \{\{b_1\}, \{b_2\}, \{b_3\}, \{b_4\}\}$$

❖ Poznámka: Případová třída C libovolného C/E systému je plně určena libovolným prvkem (případem) z C.

- **Tvrzení 2.1**: Nechť Σ je C/E systém.
 - 1. $B_{\Sigma} \neq \emptyset \wedge E_{\Sigma} \neq \emptyset \wedge F_{\Sigma} \neq \emptyset$
 - 2. Pro $c \in C_{\Sigma}$, $c' \subseteq B_{\Sigma}$ a $G \subseteq E_{\Sigma}$ $c[G\rangle c' \Rightarrow c' \in C_{\Sigma}$ $c'[G\rangle c \Rightarrow c' \in C_{\Sigma}$
 - 3. $\forall b \in B_{\Sigma} \; \exists c, c' \in C_{\Sigma} \; \text{tak, že} \; b \in c \; \land \; b \notin c'$
 - 4. Σ je čistá síť
- * Tvrzení 2.2: Nechť Σ je C/E systém a nechť $\hat{r} \subseteq 2^{B_{\Sigma}} \times 2^{B_{\Sigma}}$ je relace definována vztahem $c_1\hat{r}c_2 \overset{def.}{\Longleftrightarrow} \exists e \in E_{\Sigma} \colon c_1[e\rangle c_2$. Je-li E_{Σ} konečná množina, pak

$$R_{\Sigma} = (\hat{r} \cup \hat{r}^{-1})^*$$

Důkaz: Pro $\hat{R}=(\hat{r}\cup\hat{r}^{-1})^*$ platí triviálně $\hat{R}\subseteq R_\Sigma$. Protože E_Σ je konečná, každý krok sítě Σ je konečný, a proto z Lemma 1.2 plyne $r_\Sigma\subseteq\hat{r}^*$ a $r_\Sigma^{-1}\subseteq(\hat{r}^{-1})^*$. Z toho pak dostaneme $R_\Sigma\subseteq\hat{R}$.

3. Cyklické a živé systémy

Definice 3.1: C/E systém Σ se nazývá *cyklický*, jestliže

$$\forall c_1, c_2 \in C_{\Sigma} \colon c_1 r_{\Sigma}^* c_2$$

- **Tvrzení 3.1**: Nechť Σ je cyklický C/E systém a nechť $c \in C_{\Sigma}$. Pak $C_{\Sigma} = \{c' | c r_{\Sigma}^* c'\}$.
- ❖ **Definice 3.2**: C/E systém Σ je $\check{z}iv\acute{y}$, jestliže $\forall c \in C_{\Sigma} \ \forall e \in E_{\Sigma} \ \exists c' \in C_{\Sigma}$ takový, že $c \, r_{\Sigma}^* c'$ a e je c'-proveditelná.
- Tvrzení 3.2: Každý cyklický C/E systém je živý.

Důkaz: Nechť $c \in C_{\Sigma}$ a $e \in E_{\Sigma}$. Podle Definice 2.1 existuje $c' \in C_{\Sigma}$ takový, že e je c'-proveditelná. Podle Definice 3.1 platí $c \, r_{\Sigma}^* c'$.

П

* Příklad 7: C/E systém, který je živý, ale není cyklický

Případ $\{b_5, b_6\}$ není reprodukovatelný.

4. Ekvivalence C/E systémů

- **Definice 4.1**: Nechť Σ a Σ' jsou C/E systémy.
 - 1. Jsou-li dány bijekce $\gamma\colon C_\Sigma\to C_{\Sigma'}$ a $\epsilon\colon E_\Sigma\to E_{\Sigma'}$, pak systémy Σ a Σ' nazýváme (γ,ϵ) -ekvivalentní, jestliže pro všechny případy $c_1,c_2\in C_\Sigma$ a všechny množiny událostí $G\subseteq E_\Sigma$ platí:

$$c_1[G\rangle c_2 \Leftrightarrow \gamma(c_1) [\epsilon(G)\rangle \gamma(c_2)$$

2. Σ a Σ' jsou *izomorfní* , jestliže sítě $(B_{\Sigma}, E_{\Sigma}, F_{\Sigma})$ a $(B_{\Sigma'}, E_{\Sigma'}, F_{\Sigma'})$ jsou izomorfní při bijekci β a jestliže

$$c \in C_{\Sigma} \iff \{\beta(b) \mid b \in c\} \in C_{\Sigma'}$$

- **Notace**: $\Sigma \sim \Sigma'$ jsou-li Σ a Σ' ekvivalentní
- ❖ Tvrzení 4.1: ~ je relace ekvivalence

❖ Tvrzení 4.2: Ekvivalentní C/E systémy mají vždy stejný počet případů, událostí a kroků. Mohou se lišit v mohutnosti množin podmínek.

❖ Příklad 8: C/E systém ekvivalentní se systémem z příkladu 1 a 2

$$\{b_1,b_2\} \equiv \{\mathsf{jaro}\}$$

 $\{b_1,b_3\} \equiv \{\mathsf{l\'eto}\}$
 $\{b_2,b_3\} \equiv \{\mathsf{podzim}\}$
 $\emptyset \equiv \{\mathsf{zima}\}$

- **Tvrzení 4.3**: Nechť Σ a Σ' jsou ekvivalentní C/E systémy.
 - 1. Σ je cyklický \iff Σ' je cyklický
 - 2. Σ je živý $\Longleftrightarrow \Sigma'$ je živý
- **Lemma 4.1**: Nechť Σ a Σ' jsou C/E systémy, pro které platí $\forall c \in C_{\Sigma} \cup C_{\Sigma'} \colon |c| = 1$. Σ a Σ' jsou ekvivalentní, právě když jsou izomorfní.

5. Bezkontaktní C/E systémy

- **Definice 5.1**: Nechť Σ je C/E systém a nechť $b, b' \in B_{\Sigma}$.
 - 1. b' se nazývá *komplement* b, jestliže b' = b' a b' = b'
 - 2. Σ se nazývá *úplný*, jestliže každý prvek $b \in B_{\Sigma}$ má komplement $b' \in B_{\Sigma}$
- **Lemma 5.1**: Nechť Σ je C/E systém a nechť $b \in B_{\Sigma}$.
 - ullet b má nejvýše jeden komplement; označme jej \widehat{b}

Jestliže b má komplement \widehat{b} , pak

- \widehat{b} má komplement a $\widehat{\widehat{b}} = b$
- $\forall c \in C_{\Sigma} \colon b \in c \lor \widehat{b} \in c$

Je-li Σ úplný C/E systém, pak

- $\forall e \in E_{\Sigma} \colon | {}^{\bullet}e | = |e^{\bullet}|$
- $\forall c \in C_{\Sigma} \colon |c| = \frac{1}{2}|B_{\Sigma}|$

Příklad 9: Podmínka b a její komplement \hat{b}

❖ **Definice 5.2**: Nechť Σ je C/E systém a nechť $B\subseteq B_\Sigma$ je množina podmínek, které nemají komplement v B_Σ . Pro každé $b\in B$ nechť \widehat{b} označuje nový prvek. Položme $F=\{(e,\widehat{b})|\ (b,e)\in F_\Sigma \ \land \ b\in B\} \ \cup \ \{(\widehat{b},e)|\ (e,b)\in F_\Sigma \ \land \ b\in B\}$. Pro $c\in C_\Sigma$ nechť $\varphi(c)=c\ \cup \ \{\widehat{b}|\ b\in B\ \land \ b\notin c\}$. Pak C/E systém $\widehat{\Sigma}=(B_\Sigma\ \cup \ \{\widehat{b}|\ b\in B\}, E_\Sigma, F_\Sigma\ \cup \ F, \varphi(C_\Sigma))$ je komplementací systému $\Sigma.\ \varphi(c)$ je komplementací c.

Příklad 10: C/E systém Σ a jeho komplementace $\widehat{\Sigma}$

Tvrzení 5.1: Nechť Σ je C/E systém a $c \in C_{\Sigma}$.

1.
$$\widehat{\widehat{\Sigma}} = \widehat{\Sigma}$$

2.
$$\forall b \in B_{\Sigma} \ \forall c \in C_{\Sigma} \colon \ b \in \varphi(c) \iff \widehat{b} \notin \varphi(c)$$

3.
$$c = \varphi(c) \cap B_{\Sigma}$$

Notace: Nechť Σ je C/E systém a nechť $e \in E_{\Sigma}$. Označme ^-e , resp. e^- preset resp. postset události e v $\widehat{\Sigma}$ (na rozdíl od $^{\bullet}e$, e^{\bullet} v Σ).

Tvrzení 5.2: Nechť Σ je C/E systém a nechť $G\subseteq E_\Sigma$ a B je množina podmínek, které nemají komplement.

1.
$${}^-G = {}^{\bullet}G \cup \{\widehat{b} | b \in B \land b \in G^{\bullet}\}$$

 $G^- = G^{\bullet} \cup \{\widehat{b} | b \in B \land b \in {}^{\bullet}G\}$

2.
$${}^{\bullet}G = {}^{-}G \cap B_{\Sigma}, G^{\bullet} = G^{-} \cap B_{\Sigma}$$

Theorem 5.1: Je-li $\widehat{\Sigma}$ komplementací systému Σ , pak $\widehat{\Sigma}$ a Σ jsou ekvivalentní.

Důkaz.

Definice 5.3: Nechť Σ je C/E systém. Σ se nazývá *bezkontaktní*, jestliže pro každé $e \in E_{\Sigma}$ a každé $c \in C_{\Sigma}$ platí:

(1)
$$e \subseteq c \Rightarrow e \subseteq B_{\Sigma} \setminus c$$

(2) $e \subseteq c \Rightarrow e \subseteq B_{\Sigma} \setminus c$

$$(2) e^{\bullet} \subseteq c \implies {}^{\bullet}e \subseteq B_{\Sigma} \backslash c$$

Poznámka: Podmínka (2) neplyne vždy s (1). Prověř

❖ Theorem 5.2:

- 1. Každý úplný C/E systém je bezkontaktní
- 2. Pro každý C/E systém existuje ekvivalentní bezkontaktní systém
- 3. Je-li Σ bezkontaktní, pak $\forall e \in E_{\Sigma} : \ ^{\bullet}e \neq \emptyset \ \land \ e^{\bullet} \neq \emptyset$

6. Případové grafy (Case Graphs)

Základní sémantika:

- uzly reprezentují případy
- hrany reprezentují kroky
- **Definice 6.1**: Nechť Σ je C/E systém, γ nechť je množina všech kroků systému Σ a nechť H je množina

$$H = \{(c_1, G, c_2) \in C_{\Sigma} \times \gamma \times C_{\Sigma} | c_1[G\rangle c_2\}$$

Pak graf $\Phi_{\Sigma}=(C_{\Sigma},H)$ se nazývá *případový graf* (case graph) C/E systému Σ .

* Příklad 11: Případový graf odpovídající systému z Příkladu 3

Theorem 6.1: C/E systém Σ je cyklický, právě když je jeho případový graf silně souvislý.

Důkaz: Σ je cyklický

- $\Leftrightarrow \forall c, c' \in C_{\Sigma} \colon (c \, r_{\Sigma}^* c')$
- $\Leftrightarrow \forall c, c' \in C_{\Sigma} \ \exists G_1, \dots, G_n \in \gamma \ \exists c_0, \dots, c_n \in C_{\Sigma} \colon c_0[G_1\rangle c_1 \dots [G_n\rangle c_n \land c_0 = c \land c_n = c'$
- $\Leftrightarrow \Phi_{\Sigma}$ je silně souvislý
- **Theorem 6.2**: C/E systém Σ je živý, když a jen když pro každé $c_0 \in C_{\Sigma}$ a pro každé $e \in E_{\Sigma}$ existuje cesta v Φ_{Σ} : $c_0 h_1 c_1 \dots c_{n-1} h_n c_n$, kde $h_n = \{e\}$.

Důkaz: Σ je živý $\Leftrightarrow \forall c_0 \in C_\Sigma \ \forall e \in E_\Sigma \ \exists c, c' \in C_\Sigma \colon c_0 r_\Sigma^* c \ \land \ c[e\rangle c' \ \Leftrightarrow$ v Φ existuje cesta $c_0 h_1 \dots c_{n-1} h_n c_n$, kde $c_{n-1} = c$, $h_n = \{e\}$ a $c_n = c'$

* Theorem 6.3: Dva C/E systémy jsou ekvivalentní, právě když jsou jejich případové grafy izomorfní.

Důkaz.

* Příklad 12: Ne každý graf je případovým grafem C/E systému

Například graf v příkladu 12 není případovým grafem žádného C/E systému:

- ullet V případě c_1 jsou proveditelné události e_1 a e_2
- Jestliže existuje konflikt mezi e_1 a e_2 , pak e_2 není c_2 -proveditelná a graf nesmí mít hranu $(c_2,\{e_2\},c_4)$
- Jestliže tento konflikt neexistuje, pak e_1 je proveditelná také v c_3 a tudíž chybí hrana $(c_3, \{e_1\}, c_4)$

V "silně" paralelních systémech se případový graf stává velmi složitým. Například krok, který obsahuje n událostí generuje 2^n-1 hran v případovém grafu.

- *** Theorem 6.4**: Nechť Σ je C/E systém, $c_1, c_2, c_3 \in C_{\Sigma}$ a $G_1, G_2 \subseteq E_{\Sigma}$.
 - 1. Jestli $c_1G_1c_2G_2c_3$ je cesta v Φ_{Σ} , pak $G_1 \cap G_2 = \emptyset$
 - 2. Nechť $G_1 \cap G_2 = \emptyset$. Jestli $c_1(G_1 \cup G_2)c_3$ je hrana v Φ_{Σ} , pak existuje $c \in C_{\Sigma}$ tak, že $c_1G_1cG_2c_3$ je také cesta v Φ_{Σ} .

Důkaz:

- 1. $e \in G_1 \implies c_2 \cap {}^{\bullet}\!e = \emptyset \implies e \ \mathsf{neni} \ c_2$ -proveditelná $\implies e \notin G_2$
- 2. $c_1(G_1 \cup G_2)c_2$ je hrana $\Phi_{\Sigma} \Rightarrow c_1[G_1 \cup G_2\rangle c_2 \Rightarrow c_1[G_1\rangle c \wedge c[G_2\rangle c_2$, kde $c = (c_1 \setminus {}^{\bullet}G_1) \cup G_1^{\bullet}$