Enoncés

1

Équations différentielles linéaires vectorielles

Exponentielles

Exercice 1 [03135] [Correction]

Soit u un endomorphisme nilpotent d'un \mathbb{K} -espace vectoriel E de dimension finie. Établir

$$\ker(e^u - \operatorname{Id}_E) = \ker u \text{ et } \operatorname{Im}(e^u - \operatorname{Id}_E) = \operatorname{Im} u$$

Exercice 2 [02725] [Correction]

Si $A \in \mathcal{M}_n(\mathbb{C})$, montrer que det $e^A = e^{\operatorname{tr} A}$.

Exercice 3 [03011] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $e^A \in \mathbb{R}[A]$.

Exercice 4 [01185] [Correction]

Soit $A \in \mathcal{M}_p(\mathbb{K})$. Établir que

$$\lim_{n \to +\infty} \left(I + \frac{A}{n} \right)^n = \exp(A)$$

Exercice 5 [02416] [Correction]

Soient *A* et *B* dans $\mathcal{M}_p(\mathbb{R})$. Montrer que

$$\lim_{n \to +\infty} \left(\exp\left(\frac{A}{n}\right) \exp\left(\frac{B}{n}\right) \right)^n = \exp(A + B)$$

Exercice 6 [03094] [Correction]

On note

$$T = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} / a, b, c \in \mathbb{R} \right\}$$

et T^+ le sous-ensemble de T formé des matrices de coefficients diagonaux strictement positifs.

- (a) Soit $M \in T$. Déterminer les puissances de M. Calculer $\exp(M)$.
- (b) L'application exp: $T \to T^+$ est-elle injective? surjective?

Exercice 7 [03451] [Correction]

Sur $E = \mathbb{R}_n[X]$, on note D l'endomorphisme de dérivation et T l'endomorphisme de translation définis par

$$D(P) = P'(X)$$
 et $T(P(X)) = P(X + 1)$

Établir

$$\exp(D) = T$$

Exercice 8 [00340] [Correction]

Soit T une matrice réelle carrée d'ordre n antisymétrique. Établir que la matrice $\exp(T)$ est orthogonale.

Exercice 9 [02742] [Correction]

Soit *A* une matrice antisymétrique de $\mathcal{M}_n(\mathbb{R})$. Que peut-on dire de exp *A* ?

Calculs d'exponentielles de matrices

Exercice 10 [02710] [Correction]

On pose

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

Sans diagonaliser la matrice A, déterminer son polynôme caractéristique, son polynôme minimal et calculer A^k pour $k \in \mathbb{N}$. Évaluer $\exp(A)$.

Exercice 11 [02711] [Correction]

Soit

$$A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

dans $\mathcal{M}_3(\mathbb{R})$. Déterminer le polynôme caractéristique et le polynôme minimal de A. Calculer $\exp A$ et $\exp(A) \exp({}^t A)$.

Exercice 12 [02701] [Correction]

Soient $a \in \mathbb{R}^*$ et

$$A = \begin{pmatrix} 0 & a & a^2 \\ 1/a & 0 & a \\ 1/a^2 & 1/a & 0 \end{pmatrix}$$

- (a) Calculer le polynôme minimal de A.
- (b) La matrice A est-elle diagonalisable ? Si oui, la diagonaliser.
- (c) Calculer e^A .

Exercice 13 [02712] [Correction]

Soit

$$A = \begin{pmatrix} 1 & j & j^2 \\ j & j^2 & 1 \\ j^2 & 1 & j \end{pmatrix}$$

Étudier la diagonalisabilité de A, déterminer les polynômes minimal et caractéristique de A, calculer exp A. Proposer une généralisation en dimension n.

Exercice 14 [03215] [Correction]

Soit $A \in \mathcal{M}_3(\mathbb{R})$ telle que

$$\operatorname{Sp} A = \{-2, 1, 3\}$$

- (a) Exprimer A^n en fonction de A^2 , A et I_3 .
- (b) Calculer

$$ch(A) = \sum_{n=0}^{+\infty} \frac{A^{2n}}{(2n)!}$$

Exercice 15 [02709] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{K})$ avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} telle que $A^4 = I_n$. Déterminer $\exp(A)$.

Equation vectorielle d'ordre 1

Exercice 16 [00384] [Correction]

Soient $a, b \in \mathcal{L}(E)$ vérifiant $a \circ b = b \circ a$.

En considérant pour $x_0 \in E$, l'application $t \mapsto (\exp(ta) \circ \exp(tb))x_0$, établir

$$\exp(a+b) = \exp(a) \circ \exp(b)$$

Exercice 17 [02900] [Correction]

On munit \mathbb{R}^n de sa structure euclidienne canonique et on identifie $\mathcal{L}(\mathbb{R}^n)$ avec $\mathcal{M}_n(\mathbb{R})$. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que les assertions suivantes sont équivalentes :

- (i) la matrice A est antisymétrique;
- (ii) chaque solution Y du système différentiel Y' = AY est de norme constante.

Exercice 18 [01320] [Correction]

Soit $A \in \mathcal{M}_{2n}(\mathbb{R})$ une matrice vérifiant

$$A^2 + \mathbf{I}_{2n} = \mathbf{O}_{2n}$$

Exprimer la solution générale de l'équation matricielle

$$X'(t) = AX(t)$$

Exercice 19 [03670] [Correction]

Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice dont aucune valeur propre n'est élément de $2i\pi\mathbb{Z}$.

(a) Montrer que $e^A - I_n$ est inversible.

Soit $B: \mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{C})$ une fonction continue et 1-périodique.

(b) Montrer que l'équation

$$(E): X' = AX + B(t)$$

d'inconnue $X: \mathbb{R} \to \mathcal{M}_{n,1}(\mathbb{C})$ possède une unique solution 1-périodique.

Exercice 20 [03921] [Correction]

(a) Soit $N \in \mathcal{M}_n(\mathbb{C})$ nilpotente d'indice p. Montrer que $(I_n, N, N^2, \dots, N^{p-1})$ est une famille libre.

Exprimer

$$e^{t(\lambda I_n+N)}$$

(b) Soit $A \in \mathcal{M}_n(\mathbb{C})$ ayant pour unique valeur propre $\lambda \in \mathbb{C}$. Montrer que $N = A - \lambda I_n$ est nilpotente.

Montrer que les solutions du système différentiel X' = AX sont toutes bornées sur \mathbb{R} si, et seulement si, λ est imaginaire pur et $A = \lambda I_n$.

(c) Soit $A \in \mathcal{M}_n(\mathbb{C})$ de polynôme caractéristique

$$(X-\lambda_1)^{n_1}\dots(X-\lambda_m)^{n_m}$$

les λ_k étant deux à deux distincts. Soit f l'endomorphisme de \mathbb{C}^n canoniquement associé à A. Montrer que

$$\mathbb{C}^n = \bigoplus_{k=1}^m \ker(f - \lambda_k \operatorname{Id}_{\mathbb{C}^n})^{n_k}$$

En déduire l'existence d'une base de \mathbb{C}^n dans laquelle la matrice de f est diagonale par blocs.

- (d) Avec les notations de c). Montrer que les solutions de X' = AX sont bornées si, et seulement si, les λ_k sont imaginaires purs et que A est diagonalisable.
- (e) Montrer qu'une matrice antisymétrique réelle est diagonalisable.

Système différentiel d'ordre 1

Exercice 21 [00385] [Correction]

Résoudre le système différentiel réel suivant

$$\begin{cases} x' = \cos(t)x + \sin(t)y \\ y' = -\sin(t)x + \cos(t)y \end{cases}$$

Exercice 22 [00386] [Correction]

Résoudre le système différentiel suivant

$$\begin{cases} x_1' = (2-t)x_1 + (t-1)x_2 \\ x_2' = 2(1-t)x_1 + (2t-1)x_2 \end{cases}$$

Exercice 23 [00387] [Correction]

Résoudre le système différentiel suivant :

$$\begin{cases} x_1' = (t+3)x_1 + 2x_2 \\ x_2' = -4x_1 + (t-3)x_2 \end{cases}$$

Exercice 24 [00388] [Correction]

Résoudre le système différentiel

$$\begin{cases} x_1' = (1+t)x_1 + tx_2 - e^t \\ x_2' = -tx_1 + (1-t)x_2 + e^t \end{cases}$$

Système différentiel d'ordre 1 à coefficients constants

Exercice 25 [00389] [Correction]

Résoudre le système différentiel suivant

$$\begin{cases} x' = 4x - 2y \\ y' = x + y \end{cases}$$

Exercice 26 [03490] [Correction]

Résoudre le système différentiel suivant

$$\begin{cases} x_1' = -x_1 + 3x_2 + e^t \\ x_2' = -2x_1 + 4x_2 \end{cases}$$

Exercice 27 [00390] [Correction]

Résoudre le système différentiel suivant

$$\begin{cases} x' = x + 8y + e^t \\ y' = 2x + y + e^{-3} \end{cases}$$

Exercice 28 [00391] [Correction]

Résoudre le système différentiel suivant

$$\begin{cases} x' = y + z \\ y' = x \\ z' = x + y + z \end{cases}$$

Exercice 29 [00392] [Correction]

Résoudre le système différentiel suivant

$$\begin{cases} x' = 2x - y + 2z \\ y' = 10x - 5y + 7z \\ z' = 4x - 2y + 2z \end{cases}$$

Exercice 30 [02902] [Correction]

Résoudre le système différentiel linéaire

$$\begin{cases} x' = x - z \\ y' = x + y + z \\ z' = -x - y + z \end{cases}$$

Exercice 31 [04101] [Correction]

On étudie le système différentiel

(S):
$$\begin{cases} x' = z - y \\ y' = x - z \\ z' = y - x \end{cases}$$

- (a) Ce système possède-t-il des solutions?
- (b) Sans résoudre le système, montrer que pour tout réel t, le point M(t) de coordonnées (x(t), y(t), z(t)) se situe à l'intersection d'un plan et d'une sphère.
- (c) Calculer A^3 et exprimer sous forme matricielle la solution générale du système (S).

Exercice 32 [04102] [Correction]

Soit A une matrice non inversible de $\mathcal{M}_n(\mathbb{R})$ et $t \mapsto X(t)$ une solution du système différentiel X' = AX. Montrer que les valeurs prises par la fonction $t \mapsto X(t)$ sont incluses dans un hyperplan affine.

Équations scalaires d'ordre n

Exercice 33 [04149] [Correction]

On étudie l'équation différentielle définie sur $\mathbb R$

(E):
$$y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y = 0$$

avec $a_0, a_1, \ldots, a_{n-1}$ des fonctions continues de \mathbb{R} dans \mathbb{R} .

Soit x_0 un réel. Montrer qu'il existe $\alpha > 0$ tel que les solutions non nulles de l'équation (E) s'annulent au plus n-1 fois dans l'intervalle $[x_0 - \alpha; x_0 + \alpha]$.

Corrections

Exercice 1: [énoncé]

Posons $n \in \mathbb{N}$ tel que $u^n = \tilde{0}$. On peut écrire

$$e^{u} = \sum_{k=0}^{n-1} \frac{1}{k!} u^{k}$$

Si $x \in \ker u$ alors

$$(e^{u})(x) = \sum_{k=0}^{n-1} \frac{1}{k!} u^{k}(x) = x + 0 = x$$

et donc

$$x \in \ker (e^u - \mathrm{Id}_E)$$

Inversement, supposons $x \in \ker (e^u - \mathrm{Id}_E)$. On a

$$\sum_{k=1}^{n} \frac{1}{k!} u^k(x) = 0$$

Si $u(x) \neq 0$ alors en posant $\ell \geq 1$ le plus grand entier tel que $u^{\ell}(x) \neq 0$ et en composant la relation précédente avec $u^{\ell-1}$ on obtient

$$u^{\ell}(x) = 0$$

ce qui est absurde.

On en déduit u(x) = 0 et donc $x \in \ker u$.

Ainsi

$$\ker (e^u - \mathrm{Id}_E) = \ker u$$

Puisque

$$e^{u} - Id_{E} = \sum_{k=1}^{n-1} \frac{1}{k!} u^{k} = u \circ \left(\sum_{k=1}^{n-1} \frac{1}{k!} u^{k-1} \right)$$

on a de façon immédiate

$$\operatorname{Im}(e^u - \operatorname{Id}_E) \subset \operatorname{Im} u$$

En vertu de l'égalité des noyaux et de la formule du rang, on peut affirmer

$$\dim \operatorname{Im} (e^{u} - \operatorname{Id}_{E}) = \dim \operatorname{Im} u$$

et donc conclure

$$\operatorname{Im}\left(\mathrm{e}^{u}-\operatorname{Id}_{E}\right)=\operatorname{Im}u$$

Exercice 2 : [énoncé]

A est semblable à une matrice triangulaire supérieure de la forme

$$\begin{pmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

 $\exp(A)$ est alors semblable à une matrice de la forme

$$\begin{pmatrix} \exp(\lambda_1) & *' \\ & \ddots & \\ 0 & \exp(\lambda_n) \end{pmatrix}$$

d'où la relation.

Exercice 3: [énoncé]

 $\mathbb{R}[A]$ est un sous-espace vectoriel de l'espace de dimension finie $\mathcal{M}_n(\mathbb{R})$, c'est donc un espace fermé. e^A étant la limite d'une suite d'éléments de $\mathbb{R}[A]$, on peut affirmer que $e^A \in \mathbb{R}[A]$.

Exercice 4: [énoncé]

On a

$$\left(I + \frac{A}{n}\right)^n = \sum_{k=0}^n \frac{n!}{(n-k)!n^k} \frac{A^k}{k!}$$

Posons $f_k : \mathbb{N} \to \mathcal{M}_p(\mathbb{K})$ définie par

$$f_k(n) = \frac{n!}{(n-k)!n^k} \frac{A^k}{k!}$$
 si $k \le n$ et $f_k(n) = 0$ sinon

On remarque que

$$\left(I + \frac{A}{n}\right)^n = \sum_{k=0}^{+\infty} f_k(n)$$

Or $\forall n \in \mathbb{N}$, $||f_k(n)|| \le \frac{||A||^k}{k!}$ donc $||f_k||_{\infty} \le \frac{||A||^k}{k!}$ qui est terme général d'une série convergente. Il en découle que $\sum f_k$ converge normalement sur \mathbb{N} . Or $\lim_{n \to +\infty} f_k(n) = \frac{A^k}{k!}$ donc par le théorème de la double limite :

$$\lim_{n\to+\infty} f_k(n) = \frac{1}{k!}$$
 done par le meorenie de la double minic

$$\lim_{n \to +\infty} \left(I + \frac{A}{n} \right)^n = \sum_{k=0}^{+\infty} \frac{A^k}{k!} = \exp(A)$$

Exercice 5 : [énoncé]

On a

$$\exp\left(\frac{A}{n}\right) = \sum_{k=0}^{+\infty} \frac{1}{k!} \frac{A^k}{n^k} = I_p + \frac{1}{n} A + o\left(\frac{1}{n}\right)$$

donc

$$\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right) = I + \frac{1}{n}(A+B) + o\left(\frac{1}{n}\right)$$

Ainsi

$$\left(\exp\left(\frac{A}{n}\right)\exp\left(\frac{B}{n}\right)\right)^n = \left(I + \frac{1}{n}(A+B) + o\left(\frac{1}{n}\right)\right)^n$$

Puisque I et $\frac{1}{n}(A+B) + o\left(\frac{1}{n}\right)$ commutent, on peut développer par la formule du binôme de Newton et obtenir :

$$\left(I + \frac{1}{n}(A+B) + o\left(\frac{1}{n}\right)\right)^n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} (A+B+o(1))^k$$

Posons $f_k : \mathbb{N}^* \mapsto \mathcal{M}_p(\mathbb{K})$ définie par

$$f_k(n) = \binom{n}{k} \frac{1}{n^k} (A + B + o(1))^k \text{ si } k \le n \text{ et } f_k(n) = 0 \text{ sinon}$$

On remarque que

$$\left(I + \frac{1}{n}(A+B) + o\left(\frac{1}{n}\right)\right)^n = \sum_{k=0}^{+\infty} f_k(n)$$

Montrons la convergence normale de la série des f_k .

Puisque $A + B + o(1) \to A + B$, la norme de A + B + o(1) est bornée par un certain M. On observe alors $||f_k||_{\infty} \le \frac{1}{k!}M^k$ en choisissant une norme multiplicative sur $\mathcal{M}_p(\mathbb{K})$. La série $\sum f_k$ converge normale sur \mathbb{N}^* , cela permet de permuter limite et somme infinie. Or, pour k fixé, $f_k(n) \to \frac{(A+B)^k}{k!}$ quand $n \to +\infty$, donc

$$\left(I + \frac{1}{n}(A+B) + o\left(\frac{1}{n}\right)\right)^n \underset{n \to +\infty}{\longrightarrow} \sum_{k=0}^{+\infty} \frac{1}{k!}(A+B)^k$$

Exercice 6: [énoncé]

(a) Cas a = c:

$$M = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, M^n = \begin{pmatrix} a^n & nba^{n-1} \\ 0 & a \end{pmatrix}$$
 et $\exp(M) = \begin{pmatrix} e^a & be^a \\ 0 & e^a \end{pmatrix}$

Cas $a \neq c$:

$$M^{n} = \begin{pmatrix} a^{n} & \alpha_{n} \\ 0 & c^{n} \end{pmatrix}$$
 avec $\alpha_{n} = b \left(a^{n-1} c^{0} + a^{n-2} c + \dots + a^{0} c^{n-1} \right) = b \frac{a^{n} - c^{n}}{a - c}$

et

$$\exp(M) = \begin{pmatrix} e^a & x \\ 0 & e^c \end{pmatrix} \text{ avec } x = \frac{b(e^a - e^c)}{a - c}$$

(b) Avec des notations immédiates, si $\exp(M) = \exp(M')$ alors par identification des coefficients diagonaux, on obtient a = a' et c = c'.

Dans le cas a = c, l'identification du coefficient d'indice (1, 2) donne

$$be^a = b'e^{a'}$$

d'où b = b'.

Dans le cas $a \neq c$, la même identification donne

$$\frac{b(e^{a} - e^{c})}{a - c} = \frac{b'(e^{a'} - e^{c'})}{a' - c'}$$

et à nouveau b = b'.

Ainsi l'application exp: $T \rightarrow T^+$ est injective.

Considérons maintenant

$$N = \begin{pmatrix} \alpha & \beta \\ 0 & \gamma \end{pmatrix} \in T^+$$

Si $\alpha = \gamma$ alors pour $a = \ln \alpha$ et $b = \beta/\alpha$, on obtient $M \in T$ vérifiant $\exp(M) = N$. Si $\alpha \neq \gamma$ alors pour $a = \ln \alpha$, $c = \ln \gamma$ et $b = \beta(a - c)/(\alpha - \gamma)$, on obtient $M \in T$ vérifiant $\exp(M) = N$.

Ainsi l'application exp: $T \to T^+$ est surjective.

Exercice 7: [énoncé]

Par la formule de Taylor adaptée aux polynômes

$$P(a+t) = \sum_{k=0}^{n} \frac{P^{(k)}(a)}{k!} t^{k}$$

En déduit que l'égalité polynomiale

$$P(X+1) = \sum_{k=0}^{n} \frac{P^{(k)}(X)}{k!} 1^{k}$$

car les deux polynômes sont égaux pour une infinité de valeurs *a*. On en déduit

$$\exp(D)(P) = \sum_{k=0}^{n} \frac{1}{k!} D^{k}(P) = \sum_{k=0}^{n} \frac{P^{(k)}(X)}{k!} = P(X+1)$$

Exercice 8: [énoncé]

Par continuité de l'application linéaire de transposition, on justifie

$$^{t} \exp(T) = \exp(^{t}T)$$

Par suite

$$^{t} \exp(T) \exp(T) = \exp(-T) \exp(T)$$

Or T et -T commutent donc

$$\exp(-T)\exp(T) = \exp(-T + T) = I_n$$

et on conclut.

Exercice 9 : [énoncé]

On a

$${}^{t}\left(\sum_{k=0}^{N}\frac{1}{k!}A^{k}\right) = \sum_{k=0}^{N}\frac{1}{k!}\left({}^{t}A\right)^{k}$$

En passant à la limite et par continuité de l'application de transposition, on a

$$^{t}(\exp A) = \exp(^{t}A)$$

Puisque les matrices A et -A commutent, on a

$$^{t}(\exp A)\exp A = \exp(-A)\exp(A) = \exp(-A + A) = \exp(O_n) = I_n$$

Ainsi la matrice $\exp A$ est orthogonale.

Exercice 10: [énoncé]

 $\chi_A = X^3 - 2X$, $\pi_A = \chi_A$. On a donc

$$A^3 = 2A$$
, $A^{2k+1} = 2^k A$ et $A^{2k+2} = 2^k A^2$ pour $k > 0$

avec

$$A^2 = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

On en déduit

$$\exp(A) = I_3 + \sum_{k=0}^{+\infty} \frac{2^k}{(2k+1)!} A + \sum_{k=1}^{+\infty} \frac{2^{k-1}}{(2k)!} A^2 = I_3 + \frac{\sinh(\sqrt{2})}{\sqrt{2}} A + \frac{1}{2} (\cosh(\sqrt{2}) - 1) A^2$$

Exercice 11: [énoncé]

 $\chi_A = X(X^2 + 1), \pi_A = X(X^2 + 1), \exp(A) \exp({}^tA) = \exp(A) \exp(-A) = I_3.$ En calculant A^2, A^3, \dots on obtient

$$\exp(A) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos 1 & -\sin 1 \\ 0 & \sin 1 & \cos 1 \end{pmatrix}$$

Exercice 12: [énoncé]

(a) $\chi_A = (X-2)(X+1)^2$,

$$E_2(A) = \operatorname{Vect} \begin{pmatrix} a^2 \\ a \\ 1 \end{pmatrix} \text{ et } E_{-1}(A) = \operatorname{Vect} \begin{pmatrix} -a^2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -a \\ 1 \\ 0 \end{pmatrix}$$

La matrice A est diagonalisable, $P^{-1}AP = D$ avec

$$P = \begin{pmatrix} a^2 & -a^2 & -a \\ a & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

On en déduit $\mu_A = (X - 2)(X + 1)$.

- (b) Ci-dessus.
- (c) Par division euclidienne $X^n = (X + 1)(X 2)Q(X) + \alpha X + \beta$ avec

$$\alpha = \frac{2^n - (-1)^n}{3}$$
 et $\beta = \frac{2(-1)^n + 2^n}{3}$

donc

$$A^{n} = \frac{2^{n} - (-1)^{n}}{3}A + \frac{2(-1)^{n} + 2^{n}}{3}I_{3}$$

puis

$$e^A = \frac{e^2 - e^{-1}}{3}A + \frac{2e^{-1} + e^2}{3}I_3$$

Exercice 13 : [énoncé]

 $A^2 = O \text{ donc } Sp(A) = \{0\}.$

Puisque $A \neq 0$, A n'est pas diagonalisable. $\pi_A = X^2$ et $\chi_A = -X^3$.

$$\exp(A) = I + A$$

L'étude se généralise pour $n \ge 3$ avec $A = (\omega^{i+j-2})_{1 \le i,j \le n}$ et $\omega \in U_n \setminus \{1\}$.

Exercice 14: [énoncé]

(a) Puisque de taille 3 avec 3 valeurs propres distinctes, la matrice A est diagonalisable et son polynôme minimal est

$$\Pi_A = (X+2)(X-1)(X-3)$$

La division euclidienne de X^n par Π_A s'écrit

$$X^n = \Pi_A Q + R$$
 avec deg $R < 3$

Le polynôme R peut s'écrire

$$R(X) = a(X-1)(X-3) + b(X-3) + c$$

et l'évaluation de la relation division euclidienne en -2, 1 et 3 donne

$$\begin{cases} 15a - 5b + c = (-2)^n \\ 2b + c = 1 \\ c = 3^n \end{cases}$$

puis

$$\begin{cases} a = \frac{3^{n+1} - (-2)^{n+1} - 5}{30} \\ b = \frac{3^n - 1}{2} \\ c = 3^n \end{cases}$$

et enfin

$$R(X) = \frac{3^{n+1} - (-2)^{n+1} - 5}{30}X^2 + \frac{3^{n+1} + (-2)^{n+3} + 5}{30}X + -\frac{3^n - (-2)^n - 5}{5}$$

En évaluant la relation de division euclidienne en A, on obtient

$$A^{n} = R(A) = \frac{3^{n+1} - (-2)^{n+1} - 5}{30}A^{2} + \frac{3^{n+1} + (-2)^{n+3} + 5}{30}A + \frac{-3^{n} + (-2)^{n} + 5}{5}I_{3}$$

(b) En vertu de ce qui précède

$$ch A = \alpha A^2 + \beta A + \gamma I_3$$

avec

$$\alpha = \frac{1}{30} \left(3 \sum_{n=0}^{+\infty} \frac{3^{2n}}{(2n!)} + 2 \sum_{n=0}^{+\infty} \frac{2^{2n}}{(2n)!} - 5 \sum_{n=0}^{+\infty} \frac{1}{(2n)!} \right)$$

et donc

$$\alpha = \frac{3 \cosh 3 + 2 \cosh 2 - 5 \cosh 1}{30}$$

De même, on obtient

$$\beta = \frac{3 \cosh 3 - 8 \cosh 2 + 5 \cosh 1}{30} \text{ et } \gamma = \frac{5 \cosh 1 + \cosh 2 - \cosh 3}{5}$$

Exercice 15: [énoncé]

Par convergence absolue, on peut écrire

$$\exp(A) = \sum_{k=0}^{+\infty} \frac{1}{(4k)!} I_n + \sum_{k=0}^{+\infty} \frac{1}{(4k+1)!} A + \sum_{k=0}^{+\infty} \frac{1}{(4k+2)!} A^2 + \sum_{k=0}^{+\infty} \frac{1}{(4k+3)!} A^3$$

ce qui donne

$$\exp(A) = \frac{\cos(1) + \cosh(1)}{2} I_n + \frac{\sin(1) + \sin(1)}{2} A + \frac{\cosh(1) - \cos(1)}{2} A^2 + \frac{\sin(1) - \sin(1)}{2} A^3$$

Exercice 16: [énoncé]

 $\varphi: t \mapsto \exp(ta) \circ \exp(tb) x_0$ est dérivable et vérifie $\varphi'(t) = (a+b)\varphi(t)$. En effet

$$(\exp(ta) \circ \exp(tb))' = a \circ \exp(ta) \circ \exp(tb) + \exp(ta) \circ b \circ \exp(tb)$$

or $b \circ \exp(ta) = \exp(ta) \circ b$ car a et b commutent donc

$$(\exp(ta) \circ \exp(tb))' = (a+b) \circ \exp(ta) \circ \exp(tb)$$

De plus $\varphi(0) = x_0$ donc $\varphi(t) = \exp(t(a+b))x_0$. Puisque ceci vaut pour tout x_0 :

$$\exp(t(a+b)) = \exp(ta) \circ \exp(tb)$$

et pour t = 1 la relation demandée.

Exercice 17: [énoncé]

Soit Y une solution du système différentiel Y' = AY.

La norme de Y s'obtient en calculant tYY .

On a

$$(^{t}YY)' = {^{t}Y'Y} + {^{t}YY'} = {^{t}Y(^{t}A + A)Y}$$

Ainsi si A est antisymétrique, $({}^{t}YY)' = 0$ et donc Y est de norme constante. Inversement, si chaque solution du système différentiel est de norme constante alors pour

tout $Y_0 \in \mathbb{R}^n$,

$${}^tY_0({}^tA+A)Y_0=0$$

Par suite 0 est la seule valeur propre de l'endomorphisme symétrique ${}^{t}A + A$ et, puisque celui-ci est diagonalisable, on obtient

$$^{t}A + A = 0$$

La matrice A est donc antisymétrique.

Exercice 18: [énoncé]

L'équation étudiée est une équation différentielle linéaire d'ordre 1 à coefficient constant. Sa solution générale peut être exprimée par une exponentielle

$$X(t) = \exp(tA)X(0)$$

avec

$$\exp(tA) = \sum_{k=0}^{+\infty} \frac{t^k}{k!} A^k$$

Or $A^2 = -I_{2n}$ donc, en séparant les termes d'indices pairs de ceux d'indices impairs de cette série absolument convergente

$$\exp(tA) = \sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p)!} t^{2p} \mathbf{I}_{2n} + \sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)!} t^{2p+1} A = \cos(t) \mathbf{I}_{2n} + \sin(t) A$$

Ainsi la solution générale de l'équation étudiée est

$$X(t) = \cos(t)X(0) + \sin(t)AX(0)$$

Exercice 19: [énoncé]

(a) La matrice complexe A est assurément trigonalisable et on peut donc écrire $A = PTP^{-1}$ avec

$$P \in GL_n(\mathbb{C}) \text{ et } T = \begin{pmatrix} \lambda_1 & * \\ & \ddots & \\ (0) & & \lambda_n \end{pmatrix} \text{ où } \lambda_k \in \operatorname{Sp} A$$

On a alors

$$P^{-1}(e^A - I_n)P = e^T - I_n = \begin{pmatrix} e^{\lambda_1} - 1 & * \\ & \ddots & \\ (0) & & e^{\lambda_n} - 1 \end{pmatrix}$$

avec

$$\forall 1 \le k \le n, e^{\lambda_k} - 1 \ne 0 \text{ car } \lambda_k \notin 2i\pi \mathbb{Z}$$

On peut donc conclure $e^A - I_n \in GL_n(\mathbb{C})$.

(b) La solution générale de l'équation (E) est de la forme

$$X(t) = e^{tA}X_0 + \tilde{X}(t)$$

avec \tilde{X} solution particulière et $X_0 \in \mathcal{M}_{n,1}(\mathbb{C})$ colonne quelconque.

Analyse:

Soit *X* une solution 1-périodique. On a X(1) = X(0) et donc après résolution

$$X_0 = (e^A - I_n)^{-1} (\tilde{X}(0) - \tilde{X}(1))$$

ce qui détermine entièrement la solution X.

Synthèse:

Considérons la fonction définie comme au terme de l'analyse ci-dessus. Elle est solution de l'équation (E) et vérifie X(1) = X(0).

Considérons alors la fonction donnée par Y(t) = X(t + 1).

On vérifie que Y est encore solution de (E) (car la fonction B est périodique) et puisque Y(0) = X(1) = X(0), les fonctions X et Y sont égales car solutions d'un même problème de Cauchy.

Finalement, la fonction X est périodique.

Exercice 20 : [énoncé]

(a) Supposons

$$\lambda_0 I_n + \lambda_1 N + \dots + \lambda_{p-1} N^{p-1} = O_n$$

En multipliant par N^{p-1} on obtient $\lambda_0 N^{p-1} = O_n$ car $N^p = O_n$. Or $N^{p-1} \neq O_n$ donc $\lambda_0 = 0$.

On montre de même successivement que $\lambda_1 = 0, \dots, \lambda_{p-1} = 0$.

On conclut que la famille $(I_n, N, N^2, \dots, N^{p-1})$ est libre.

Puisque λI_n et N commutent, on a

$$e^{t(\lambda I_n + N)} = e^{t\lambda I_n} e^{tN} = e^{\lambda t} \left(I_n + \frac{t}{1!} N + \frac{t^2}{2!} N^2 + \dots + \frac{t^{p-1}}{(p-1)!} N^{p-1} \right)$$

(b) Le polynôme caractéristique de A est scindé dans $\mathbb{C}[X]$ et possède une unique racine λ , on a donc

$$\chi_A(X) = (X - \lambda)^n$$

En vertu du théorème de Cayley Hamilton

$$N^n = (A - \lambda I_n)^n = O_n$$

La matrice *N* s'avère donc nilpotente.

Les solutions du système différentiel X' = AX sont les fonctions

$$t \mapsto X(t) = e^{tA}X(0) = e^{\lambda t} \cdot e^{tN}X(0)$$

Si N est nulle et $\lambda \in i\mathbb{R}$, il est clair que toutes les solutions sont bornées.

Inversement, supposons les solutions toutes bornées. En choisissant $X(0) \in \ker N \setminus \{O_n\}$, la solution

$$t \mapsto e^{tA}X(0) = e^{\lambda t}X(0)$$

est bornée sur \mathbb{R} et nécessairement $\lambda \in i\mathbb{R}$.

Notons p l'indice de nilpotence de N et choisissons $X(0) \notin \ker N^{p-1}$. La solution

$$t \mapsto e^{\lambda t} \cdot e^{tN} X(0)$$

devant être bornée avec $|e^{\lambda t}| = 1$, la fonction

$$t \mapsto X(0) + tNX(0) + \dots + \frac{t^{p-1}}{(p-1)}N^{p-1}X(0)$$

est elle aussi bornée. Or $N^{p-1}X(0) \neq 0$ et donc cette solution ne peut pas être bornée si p-1>0.

On en déduit p = 1 puis $N = O_n$.

(c) Les polynômes $(X - \lambda_k)^{n_k}$ sont deux à deux premiers entre eux. Par le théorème de Cayley Hamilton et le lemme de décomposition des noyaux, on obtient

$$\mathbb{C}^n = \bigoplus_{k=1}^m \ker(f - \lambda_k \operatorname{Id}_{\mathbb{C}^n})^{n_k}$$

Une base adaptée à cette décomposition fournit une représentation matricielle Δ de f diagonale par blocs. Plus précisément, les blocs diagonaux sont de la forme

$$\lambda_k \operatorname{Id}_{n_k} + N_k \operatorname{avec} N_k^{n_k} = O_{n_k}$$

(d) La matrice A est semblable à Δ et on peut donc écrire

$$A = P\Delta P^{-1}$$
 avec P inversible

Les solutions de l'équation X' = AX correspondent aux solutions de l'équation $Y' = \Delta Y$ via $Y = P^{-1}X$.

Les solutions de X' = AX seront bornées si, et seulement si, celles de $Y' = \Delta Y$ le sont. En raisonnant par blocs et en exploitant le résultat du b), on peut affirmer que les solutions de X' = AX sont bornées sur \mathbb{R} si, et seulement si, les λ_k sont imaginaires purs et les N_k tous nuls (ce qui revient à dire que A est diagonalisable).

(e) Supposons A antisymétrique réelle. Puisque A et ^tA commutent

$$t\overline{(\mathbf{e}^{tA})}\,\mathbf{e}^{tA}=\mathbf{e}^{t^tA+tA}=\mathbf{e}^{O_n}=I_n$$

Soit $X: t \mapsto e^{tA}.X(0)$ une solution de l'équation X' = AX. On a

$$||X(t)||^2 = {}^t\overline{X(t)}X(t) = {}^t\overline{X(0)}{}^t\overline{(e^{tA})}e^{tA}X(0) = ||X(0)||^2$$

Les solutions sont toutes bornées et donc *A* est diagonalisable à valeurs propres imaginaires pures.

Exercice 21 : [énoncé]

Soit (x, y) solution sur \mathbb{R} .

On pose z = x + iy, on a $z'(t) = e^{-it}z(t)$ donc $z(t) = C e^{i e^{-it}} = C e^{i \cos t + \sin t}$ avec $C \in \mathbb{C}$. En écrivant C = A + iB avec $A, B \in \mathbb{R}$ on peut conclure

$$x(t) = e^{\sin(t)} (A\cos(\cos(t)) - B\sin(\cos(t))$$

et

$$y(t) = e^{\sin(t)} (B\cos(\cos(t)) + A\sin(\cos(t)))$$

Vérification : il suffit de remonter les calculs.

Exercice 22: [énoncé]

C'est un système différentiel linéaire d'ordre 1 homogène défini sur \mathbb{R} d'équation matricielle X' = A(t)X avec

$$A(t) = \begin{pmatrix} 2 - t & t - 1 \\ 2(1 - t) & 2t - 1 \end{pmatrix} \text{ et } X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}$$

 $\chi_{A(t)} = X^2 - (t+1)X + t.$

 $Sp(A(t)) = \{1, t\}.$

Si $t \neq 1$,

$$E_1(A(t)) = \text{Vect}\begin{pmatrix} 1\\1 \end{pmatrix} \text{ et } E_t(A(t)) = \text{Vect}\begin{pmatrix} 1\\2 \end{pmatrix}$$

Pour $P = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$ indépendant de t, $A(t) = PD(t)P^{-1}$ avec $D(t) = \begin{pmatrix} 1 & 0 \\ 0 & t \end{pmatrix}$ et cette relation est aussi vraie pour t = 1.

En posant $Y = P^{-1}X$,

$$X' = A(t)X \iff Y' = D(t)Y$$

En écrivant

$$Y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$$

on a

$$Y' = D(t)Y \iff \begin{cases} y_1' = y_1 \\ y_2' = ty_2 \end{cases} \iff \begin{cases} y_1(t) = \lambda e^t \\ y_2(t) = \mu e^{t^2/2} \end{cases} \text{ avec } \lambda, \mu \in \mathbb{R}$$

Puisque

$$X = PY = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

on obtient

$$X' = A(t)X \iff X(t) = \lambda \begin{pmatrix} e^t \\ e^t \end{pmatrix} + \mu \begin{pmatrix} e^{t^2/2} \\ 2e^{t^2/2} \end{pmatrix} \text{ avec } \lambda, \mu \in \mathbb{R}$$

Exercice 23: [énoncé]

C'est un système différentiel linéaire d'ordre 1 homogène défini sur R d'équation matricielle X' = A(t)X avec

$$A(t) = \begin{pmatrix} t+3 & 2 \\ -4 & t-3 \end{pmatrix} \text{ et } X(t) = \begin{pmatrix} x_1(t) \\ x_2(t) \end{pmatrix}.$$

$$\chi_{A(t)} = X^2 - 2tX + (t^2 - 1), \text{ Sp}(A) = \{t + 1, t - 1\}.$$

 $E_{t+1}(A) = \text{Vect} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \text{ et } E_{t-1}(A) = \text{Vect} \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$

$$E_{t+1}(A) = \operatorname{Vect} \begin{pmatrix} 1 \\ -1 \end{pmatrix} \operatorname{et} E_{t-1}(A) = \operatorname{Vect} \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

Pour
$$P = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix}$$
 indépendante de t , $A(t) = PD(t)P^{-1}$ avec $D(t) = \begin{pmatrix} t+1 & 0 \\ 0 & t-1 \end{pmatrix}$.

En posant $Y = P^{-1}X$, $X' = A(t)X \iff Y' = D(t)Y$

En écrivant
$$Y(t) = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$$
, $Y' = D(t)Y \iff \begin{cases} y'_1 = (t+1)y_1 \\ y'_2 = (t-1)y_2 \end{cases} \iff \begin{cases} y_1 = \lambda e^{(t^2+2t)/2} \\ y_2 = \mu e^{(t^2-2t)/2} \end{cases}$ avec

$$X = PY = \begin{pmatrix} 1 & 1 \\ -1 & -2 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}, X' = A(t)X \iff X(t) = \lambda \begin{pmatrix} e^{(t^2 + 2t)/2} \\ -e^{(t^2 + 2t)/2} \end{pmatrix} + \mu \begin{pmatrix} e^{(t^2 - 2t)/2} \\ -2e^{(t^2 - 2t)/2} \end{pmatrix} \text{ avec}$$

$$\lambda, \mu \in \mathbb{R}.$$

Exercice 24: [énoncé]

C'est un système différentiel linéaire d'ordre 1 défini sur R d'équation matricielle X' = A(t)X + B(t) avec

$$A(t) = \begin{pmatrix} 1+t & t \\ -t & 1-t \end{pmatrix} \text{ et } B(t) = \begin{pmatrix} -e^t \\ e^t \end{pmatrix}$$

Commençons par résoudre l'équation homogène X' = A(t)X.

$$\chi_{A(t)} = (X-1)^2$$
.

$$E_1(A(t)) = \operatorname{Vect} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

Pour
$$P = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}$$
 indépendante de t , $A(t) = PT(t)P^{-1}$ avec $T(t) = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}$.

En posant $Y = P^{-1}X$.

$$X' = A(t)X \iff Y' = T(t)Y$$

En écrivant
$$Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$
, $Y' = T(t)Y \iff \begin{cases} y_1' = y_1 + ty_2 \\ y_2' = y_2 \end{cases} \iff \begin{cases} y_1 = \mu e^t + \frac{\lambda}{2}t^2 e^t \\ y_2 = \lambda e^t \end{cases}$ avec $\lambda, \mu \in \mathbb{K}$.

Puisque

$$X = PY = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$$

on obtient

$$X' = A(t)X \iff X(t) = \lambda \begin{pmatrix} (t^2/2) e^t \\ (1 - t^2/2) e^t \end{pmatrix} + \mu \begin{pmatrix} e^t \\ -e^t \end{pmatrix}$$

La famille (X_1, X_2) forme un système fondamental de solutions de l'équation homogène. Cherchons une solution particulière.

 $X(t) = \lambda(t)X_1(t) + \mu(t)X_2(t)$ avec λ et μ fonctions dérivables.

$$X' = A(t)X + B(t) \iff \lambda'(t) \begin{pmatrix} (t^2/2) e^t \\ (1 - t^2/2) e^t \end{pmatrix} + \mu'(t) \begin{pmatrix} e^t \\ -e^t \end{pmatrix} = \begin{pmatrix} -e^t \\ e^t \end{pmatrix}$$

 $\lambda(t) = 0$ et $\mu(t) = -t$ conviennent

 $X(t) = \begin{pmatrix} -t e^t \\ t e^t \end{pmatrix}$ est solution particulière.

Solution générale :

$$X(t) = \lambda \begin{pmatrix} (t^2/2) e^t \\ (1 - t^2/2) e^t \end{pmatrix} + \mu \begin{pmatrix} e^t \\ -e^t \end{pmatrix} + \begin{pmatrix} -t e^t \\ t e^t \end{pmatrix}$$

Exercice 25: [énoncé]

C'est un système différentiel linéaire d'ordre 1 homogène d'équation matricielle X' = AXavec

$$A = \begin{pmatrix} 4 & -2 \\ 1 & 1 \end{pmatrix} \text{ et } X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

 $Sp(A) = \{2, 3\}$ et

$$E_2(A) = \text{Vect}\begin{pmatrix} 1\\1 \end{pmatrix}, E_3(A) = \text{Vect}\begin{pmatrix} 2\\1 \end{pmatrix}$$

On a $A = PDP^{-1}$ avec

$$P = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \text{ et } D = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}$$

Pour $Y = P^{-1}X$,

$$X' = AX \iff Y' = DY$$

et

$$Y' = DY \iff Y = \begin{pmatrix} \lambda e^{2t} \\ \mu e^{3t} \end{pmatrix} \text{ avec } \lambda, \mu \in \mathbb{K}$$

Finalement

$$X' = AX \iff X(t) = \lambda \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix} + \mu \begin{pmatrix} 2 e^{3t} \\ e^{3t} \end{pmatrix} \text{ avec } \lambda, \mu \in \mathbb{K}$$

Exercice 26: [énoncé]

C'est un système différentiel de taille 2 linéaire à coefficients constant d'équation matricielle X' = AX + B(t) avec

$$X = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, A = \begin{pmatrix} -1 & 3 \\ -2 & 4 \end{pmatrix}$$
 et $B(t) = \begin{pmatrix} e^t \\ 0 \end{pmatrix}$

Equation homogène : X' = AX.

$$\chi_A = (X - 1)(X - 2), \operatorname{Sp}(A) = \{1, 2\}, E_1(A) = \operatorname{Vect}\begin{pmatrix} 3 \\ 2 \end{pmatrix} \operatorname{et} E_2(A) = \operatorname{Vect}\begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

On a

$$A = PDP^{-1}$$
 avec $P = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$

et donc

$$X' = AX \iff X' = PDP^{-1}X \iff P^{-1}X' = DP^{-1}X$$

Posons $Y = P^{-1}X$. On a $Y' = P^{-1}X'$ et donc $X' = AX \iff Y' = DY$. Posons $Y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$.

$$Y' = DY \iff \begin{cases} y_1' = y_1 \\ y_2' = 2y_2 \end{cases} \quad iff \begin{cases} y_1(t) = \lambda_1 e^t \\ y_2(t) = \lambda_2 e^{2t} \end{cases} \quad avec \ \lambda_1, \lambda_2 \in \mathbb{K}$$

$$X = PY = \begin{pmatrix} 3 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \text{donc}$$

$$X' = AX \iff X(t) = \begin{pmatrix} 3\lambda_1 e^t + \lambda_2 e^{2t} \\ 2\lambda_1 e^t + \lambda_2 e^{2t} \end{pmatrix} = \lambda_1 \begin{pmatrix} 3 e^t \\ 2 e^t \end{pmatrix} + \lambda_2 \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}$$

 $X_1(t) = \begin{pmatrix} 3 e^t \\ 2 e^t \end{pmatrix}$ et $X_2(t) = \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix}$ définissent un système fondamental de solutions. Solution particulière :

 $X(t) = \lambda_1(t)X_1(t) + \lambda_2(t)X_2(t)$ avec λ_1, λ_2 fonctions dérivables.

$$X' = AX + B(t) \iff \lambda'_1(t)X_1(t) + \lambda'_2(t)X_2(t) = B(t)$$

donc

$$X' = AX + B(t) \iff \begin{cases} 3\lambda_1'(t) e^t + \lambda_2'(t) e^{2t} = e^t \\ 2\lambda_1'(t) e^t + \lambda_2'(t) e^{2t} = 0 \end{cases} \iff \begin{cases} \lambda_1'(t) = 1 \\ \lambda_2'(t) = -2 e^{-t} \end{cases}$$

 $\lambda_1(t) = t$ et $\lambda_2(t) = 2 e^{-t}$ conviennent

 $X(t) = \begin{pmatrix} (3t+2)e^{t} \\ (2t+2)e^{t} \end{pmatrix}$ est solution particulière.

Solution générale

$$X(t) = \lambda_1 \begin{pmatrix} 3 e^t \\ 2 e^t \end{pmatrix} + \lambda_2 \begin{pmatrix} e^{2t} \\ e^{2t} \end{pmatrix} + \begin{pmatrix} (3t+2) e^t \\ (2t+2) e^t \end{pmatrix} \text{ avec } \lambda_1, \lambda_2 \in \mathbb{R}$$

i.e.

$$\begin{cases} x_1(t) = 3\lambda_1 e^t + \lambda_2 e^{2t} + (3t+2) e^t \\ x_2(t) = 2\lambda_1 e^t + \lambda_2 e^{2t} + (2t+2) e^t \end{cases} \text{ avec } \lambda_1, \lambda_2 \in \mathbb{R}$$

Exercice 27: [énoncé]

C'est un système différentiel linéaire d'ordre 1 d'équation matricielle X' = AX + B(t) avec

$$A = \begin{pmatrix} 1 & 8 \\ 2 & 1 \end{pmatrix}, B(t) = \begin{pmatrix} e^t \\ e^{-3t} \end{pmatrix} \text{ et } X(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

 $Sp(A) = \{5, -3\}, E_5(A) = Vect \binom{2}{1} \text{ et } E_{-3}(A) = Vect \binom{-2}{1}.$ $A = PDP^{-1} \text{ avec}$

$$P = \begin{pmatrix} 2 & -2 \\ 1 & 1 \end{pmatrix}, P^{-1} = \frac{1}{4} \begin{pmatrix} 1 & 2 \\ -1 & 2 \end{pmatrix} \text{ et } D = \begin{pmatrix} 5 & 0 \\ 0 & -3 \end{pmatrix}$$

Pour $Y = P^{-1}X$ est solution de Y' = DY + C(t) avec

$$C(t) = P^{-1}B(t) = \frac{1}{4} \begin{pmatrix} e^t + 2e^{-3t} \\ -e^t + 2e^{-3t} \end{pmatrix}$$

Après résolution, on obtient

$$Y' = DY + C(t) \iff Y(t) = \begin{pmatrix} \lambda e^{5t} - \frac{1}{16} e^{t} - \frac{1}{16} e^{-3t} \\ \mu e^{-3t} - \frac{1}{16} e^{t} + \frac{1}{2} t e^{-3t} \end{pmatrix}$$

puis

$$X' = AX + B(t) \iff X(t) = \lambda \begin{pmatrix} 2 e^{5t} \\ e^{5t} \end{pmatrix} + \mu \begin{pmatrix} -2 e^{-3t} \\ e^{-3t} \end{pmatrix} + \begin{pmatrix} -t e^{-3t} - \frac{1}{8} e^{-3t} \\ -\frac{1}{8} e^{t} + \frac{1}{2} t e^{-3t} - \frac{1}{16} e^{-3t} \end{pmatrix}$$

On peut aussi procéder par variation des constantes après résolution séparée de l'équation homogène.

Exercice 28 : [énoncé]

C'est un système différentiel linéaire d'ordre 1 homogène d'équation matricielle X' = AX avec

$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \text{ et } X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

 $Sp(A) = \{-1, 2, 0\},\$

$$E_{-1}(A) = \operatorname{Vect}\begin{pmatrix} -1\\1\\0 \end{pmatrix}, E_2(A) = \operatorname{Vect}\begin{pmatrix} 2\\1\\3 \end{pmatrix}, E_0(A) = \operatorname{Vect}\begin{pmatrix} 0\\1\\-1 \end{pmatrix}$$

On a $A = PDP^{-1}$ avec

$$P = \begin{pmatrix} -1 & 2 & 0 \\ 1 & 1 & 1 \\ 0 & 3 & -1 \end{pmatrix} \text{ et } D = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

En posant $Y = P^{-1}X$, on obtient

$$X' = AX \iff Y' = DY$$

or

$$Y' = DY \iff Y(t) = \begin{pmatrix} \lambda e^{-t} \\ \mu e^{2t} \\ \nu \end{pmatrix} \text{ avec } \lambda, \mu, \nu \in \mathbb{K}$$

donc

$$X' = AX \iff X(t) = \lambda \begin{pmatrix} -e^{-t} \\ e^{-t} \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2e^{2t} \\ e^{2t} \\ 3e^{2t} \end{pmatrix} + \nu \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \text{ avec } \lambda, \mu, \nu \in \mathbb{K}$$

Exercice 29 : [énoncé]

C'est un système différentiel linéaire d'ordre 1 homogène d'équation matricielle X' = AXavec

$$A = \begin{pmatrix} 2 & -1 & 2 \\ 10 & -5 & 7 \\ 4 & -2 & 2 \end{pmatrix} \text{ et } X(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix}$$

 $\chi_A(X) = -X^2(X+1).$

Après triangularisation, on a $A = PTP^{-1}$ pour

$$P = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 2 & 1 \\ 2 & 0 & 1 \end{pmatrix} \text{ et } T = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Pour $Y = P^{-1}X$, $X' = AX \iff Y' = TY$.

$$Y' = TY \iff Y = \begin{pmatrix} \lambda e^{-t} \\ \mu t + \nu \\ \mu \end{pmatrix} \text{ avec } \lambda, \mu, \nu \in \mathbb{K}$$

La solution générale du système est donc

$$X(t) = \lambda \begin{pmatrix} -e^{-t} \\ e^{-t} \\ 2e^{-t} \end{pmatrix} + \mu \begin{pmatrix} t \\ 2t+1 \\ 1 \end{pmatrix} + \nu \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} \text{ avec } \lambda, \mu, \nu \in \mathbb{K}$$

Exercice 30 : [énoncé]

Exercise 30: [enonce]
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 1 \\ -1 & -1 & 1 \end{pmatrix}, \chi_A = -(X-2)(X^2 - X + 1).$$

La résolution complexe est alors facile puisque la matrice A est diagonalisable.

La résolution réelle est en revanche plus délicate à obtenir, détaillons-la :

 $X_1 = {}^{t}(1,0,-1)$ est vecteur propre de A, complétons-le avec deux vecteurs d'un plan stable.

Les plans stables s'obtiennent en étudiant les éléments propres de tA .

 $Sp(^{t}A) = Sp A = \{2\} \text{ et } E_{2}(^{t}A) = \text{Vect}^{t}(2, 1, -1). \text{ Ainsi le plan d'équation } 2x + y - z = 0$ est stable par ${}^{t}A$.

Prenons
$$X_2 = {}^t(0, 1, 1)$$
 et $X_3 = AX_2 = {}^t(-1, 2, 0)$. On vérifie $AX_3 = X_3 - X_2$.
Ainsi pour $P = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ -1 & 1 & 0 \end{pmatrix}$, on a $P^{-1}AP = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 1 \end{pmatrix} = B$.

Pour $X = {}^{t}(x, y, z)$ et $Y = {}^{t}(y_1, y_2, y_3) = P^{-1}X$, on a $X' = AX \iff Y' = BY$.

Ceci nous conduit à la résolution suivante :

$$\begin{cases} y_1' = 2y_1 \\ y_2' = -y_3 \\ y_3' = y_2 + y_3 \end{cases} \iff \begin{cases} y_1' = 2y_1 \\ y_2' = -y_3 \\ y_2'' - y_2' + y_2 = 0 \end{cases} \iff \begin{cases} y_1(t) = \alpha e^{2t} \\ y_2(t) = e^{\frac{1}{2}t} (\lambda \cos \frac{\sqrt{3}}{2}t + \mu \sin \frac{\sqrt{3}}{2}t) \\ y_3(t) = -y_2'(t) \end{cases}$$

Et on peut conclure via X =

Exercice 31: [énoncé]

- (a) (S) est un système différentiel linéaire homogène de taille 3, l'ensemble de ses solutions est un espace vectoriel de dimension 3.
- (b) Posons m(t) = x(t) + y(t) + z(t). On constate m'(t) = 0 et donc le point M évolue sur un plan d'équation x + y + z = a. Posons $d(t) = x^2(t) + y^2(t) + z^2(t)$. On constate d'(t) = 0 et donc le point M évolue sur une sphère d'équation $x^2 + y^2 + z^2 = R^2$.
- (c) Le système s'écrit X' = AX avec

$$A = \begin{pmatrix} 0 & -1 & 1 \\ 1 & 0 & -1 \\ -1 & 1 & 0 \end{pmatrix}$$

On vérifie $A^3 = -3A$ et on en déduit $A^{2n+1} = (-3)^n A$ et $A^{2n+2} = (-3)A^2$ puis

$$\exp(t.A) = I_n + \sum_{n=0}^{+\infty} \frac{(-3)^n t^{2n+1}}{(2n+1)!} A + \sum_{n=1}^{+\infty} \frac{(-3)^n t^{2n+2}}{(2n+2)!} A^2$$

Ainsi

$$\exp(t.A) = I_n + \frac{1}{\sqrt{3}}\sin(\sqrt{3}t)A + \frac{1}{3}(1 - \cos(\sqrt{3}t))A^2$$

et la solution générale du système est

$$X(t) = X_0 + \frac{1}{\sqrt{3}} \sin(\sqrt{3}t) A X_0 + \frac{1}{3} (1 - \cos(\sqrt{3}t)) A^2 X_0$$

Exercice 32: [énoncé]

Puisque la matrice A n'est pas inversible, son rang est strictement inférieur à n et il existe donc un hyperplan H contenant l'image de A. Soit $a_1x_1 + \cdots + a_nx_n = 0$ une équation de cet hyperplan. Puisque les vecteurX'(t) sont des valeurs prises par A, celles-ci appartiennent à l'hyperplan précédent et donc

$$a_1x_1'(t) + \dots + a_nx_n'(t) = 0$$

On en déduit

$$(a_1x_1(t) + \cdots + a_nx_n(t))' = 0$$

et donc

$$a_1x_1(t) + \dots + a_nx_n(t) = C^{te}$$

Exercice 33: [énoncé]

Par l'absurde, supposons qu'au contraire un tel α n'existe pas. En prenant $\alpha = 1/p > 0$ avec $p \in \mathbb{N}^*$, on peut introduire une fonction y_p non nulle, solution de l'équation (E) et s'annulant au moins n fois dans l'intervalle $I_p = [x_0 - 1/p; x_0 + 1/p]$. Notons S l'espace des solutions de l'équation (E). C'est un espace de dimension finie que l'on peut normer, par exemple, par la norme N définie sur S par

$$N(f) = \sup_{[x_0 - 1; x_0 + 1]} |f| + \sup_{[x_0 - 1; x_0 + 1]} |f'| + \dots + \sup_{[x_0 - 1; x_0 + 1]} |f^{(n-1)}|$$

Cette norme a pour intérêt de traduire sur le segment $[x_0 - 1; x_0 + 1]$ la convergence uniforme d'une suite de fonctions ainsi que de la suite des dérivées jusqu'à l'ordre n - 1. Quitte à considérer la fonction $y_p/N(y_p)$ au lieu de y_p , on peut supposer les fonctions y_p toutes de norme 1. La suite des fonctions (y_p) est alors une suite bornée de l'espace de dimension finie S. Par le théorème de Bolzano-Weierstrass, on peut en extraire une suite convergente $(y_{\varphi(p)})$. La limite de celle-ci est une fonction y_{∞} , non nulle et solution de (E). De plus, par construction, la suite de fonctions $(y_{\varphi(p)})$ converge uniformément vers y_{∞} ainsi que ses dérivées jusqu'à l'ordre n-1 vers les dérivées respectives de y_{∞} . Par les annulations des fonctions $(y_{\varphi(p)})$, on peut introduire une suite $(x_{\varphi(p)})$ convergeant vers x_0 avec $y_{\varphi(p)}(x_{\varphi(p)}) = 0$. Par convergence uniforme, on obtient à la limite $y_{\infty}(x_0) = 0$. Par application du théorème de Rolle, la fonction $y'_{\varphi(p)}$ s'annule au moins n-2 fois sur l'intervalle $I_{\varphi(p)}$. On peut reprendre le raisonnement au-dessus et affirmer aussi $y'_{\infty}(x_0) = 0$.

Plus généralement, pour $k \in [1; n-1]$, la fonction $y_{\varphi(p)}^{(k)}$ s'annule au moins n-k fois sur l'intervalle $I_{\varphi(p)}$ ce qui permet d'obtenir $y_{\infty}'(x_0) = 0$.

La fonction y_{∞} est alors solution du problème de Cauchy constitué de l'équation (E) et des conditions initiales

$$y(x_0) = y'(x_0) = \dots = y^{(n-1)}(x_0) = 0$$

Or la fonction nulle est la seule solution de ce problème de Cauchy. C'est absurde car y_{∞} n'est pas la fonction nulle.