Learning

- Parameters
- ~ Structure

LEARNING PARAMETERS:

CPTs can also be estimated from medical records of previous patients							
Case	Cold?	Flu?	Tonsillitis?	Chilling?	Bodyache?	Sorethroat?	Fever?
1	true	false	?	true	false	false	false > Incomplete example
2	false	true	false	true	true	false	true
3	?	?	true	false	?	true	false 🍑
							complete example
:	·				•	•	40 0.16
	•	•	•	•	•	•	•

examples

Data: Complete, not complete

MAXIMUM LIKELIHOOD:

DOTASET Empirical
((complete) Distribution

(ANER OLITZONO) SEVAB)

Similarly for

H,E

$$\theta_{\overline{S}}(h) = R(\overline{S}(h)) = \frac{Pr(\overline{S},h)}{Pr(h)}$$

$$= \frac{\Pr_{D}(\overline{s}, h)}{\Pr_{D}(h)}$$

$$= \frac{(0/16)}{12/16} = \frac{5}{6}$$
PARAMETER

ESTIMATE.

WHAT IF INCOMPLETE DATA?

[MOETA SEM MAXIMEZATEON]

Re compute CPT

$$CPT_2 \rightarrow BN_2 \rightarrow Pr_2(.)$$

Converges

Likelihood never decreases.

Likelihood never decreases.

Likelihood never decreases.

Convergence Speed of 1

missing data

So θ , Inference θ_{2}

LEARNING STRUCTURE:

Choose What gives best score.

1. LOCAL SEAR CH METHODS:

Approximate

Fast

Add, remove reverse un edge

2. SYSTEMATIC SEARCH METHODS:

A* search

Guaranteed

Slover

WHY NOT USE MAXIMUM LIKELIHOOD?

Over fitting

x	γ	
1	1. (8 = ax +p
5	4.5) j
10	וו	Parameters
ιS	14.5	to fit perfectly, we need
20	22	4= 0x4+ px3+ cx2+qx+6
		OVERFITTING
		* Not generalizing

QUERY - ORIENTED LEARNING: MODEL - ORJENCED 25

Vosupervised Supervised Learning V labeled data Un-labeled νς

Model - Oriensed:

Learn Structure (can ansher any query)
[What we did till now]

Query - Orientes:

Specific to one givery.

P(QIE,,E2,,E3)

Query

QUERY - ORIENTED:

E, E, E, Q

+

weights

 \bigcup

NNF CTACULT

1

Convert NAF

circuit to AC

P -> Distribution on B (Query)

O - BN Parameters

$$A \qquad \lambda_{\alpha} \qquad \lambda_{\overline{\alpha}}$$

Evidence (Input)

$$\lambda_{\alpha} = 1$$

$$\lambda_{\alpha} = 0$$

- n vaviables
- d #values
- w tree width

0(0.0)

-abeled	ATA O	5.1.4	
1	nput	Output	
A	C	8	
Υ	Т	F	loss function
F	Т	F	(cross entropy)
	•		P(x) a(x)
•	•	,	\sim
			number (how close
7	Τ	۴	they are)

GRADIENT DESCENT is used to optimize loss function.

- * Tensor Flow
- * Pytorch

CROSS ENTROPY:

LOSS FUNCTION

BACKGROUND KNOWLEDDE:

A	B			
t	t	0	$\overline{)}$	
t	¢	1	5	Background
t	f	1		Knowledge
¢	+	0	7	

Rectangle:

Upper left: row, col

Height

Wibth

Label: Tall or hide

EVEDENCE:

row, row rown: True, False

col, , col ... col ; True / False

pixel,,

