TD n°3 : Espaces vectoriels

Exercice 1: Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels de \mathbb{R}^3 ?

$$E_{1} = \{(x, y, z) \in \mathbb{R}^{3} \mid -4x + 7y = -2z\}$$

$$E_{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid y(x - z) = 0\}$$

$$E_{3} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} - 4y = 0\}$$

$$E_{4} = \{(x, y, z) \in \mathbb{R}^{3} \mid 2x + 2y + 2z - 2 = 0\}$$

$$E_{5} = \{(x, y, z) \in \mathbb{R}^{3} \mid x < 4\}$$

$$E_{6} = \{(x, y, z) \in \mathbb{R}^{3} \mid x - y - z = x + 5z = 0\}$$

Exercice 2: On se place dans l'espace vectoriel $\mathcal{F}[0,1]$ des fonctions définies de [0,1] dans \mathbb{R} .

a) Les ensembles suivants sont-ils des sev de $\mathcal{F}[0,1]$?

$$A = \{ f \in \mathcal{F}[0, 1] \mid f(1/2) = 0 \}$$

$$B = \{ f \in \mathcal{F}[0, 1] \mid f(0) \ge 0 \}$$

$$C = \{ f \in \mathcal{F}[0, 1] \mid f(0) = 2 \}$$

b) Trouver un exemple de sev U et V de $\mathcal{F}[0,1]$ tels que $U \cup V$ n'est pas un sev.

Exercice 3 : On se place dans l'espace vectoriel $\mathbb{R}[X]$ des polynômes à coefficients dans \mathbb{R} .

- a) Montrer que $\mathbb{R}_n[X] = \{P \in \mathbb{R}[X] \mid \deg P \leq n\}$ est un sev de $\mathbb{R}[X]$ pour tout $n \geq 0$.
- b) L'ensemble des polynômes de degré exactement égal à un est-il un sev de $\mathbb{R}[X]$?
- c) $\{P \in \mathbb{R}[X] \mid P(2) = P(0) = 0\}$ est-il un sev de $\mathbb{R}[X]$?

Exercice 4 : On considère les ensembles U et V suivants :

$$U = \{(x, y, z) \in \mathbb{R}^3 \mid 2x - 2z = 0\}$$

$$V = \{(x, y, z) \in \mathbb{R}^3 \mid x + \frac{1}{2}y = 0\}$$

- a) U et V sont-ils des sev de \mathbb{R}^3 ?
- b) A-t-on $\mathbb{R}^3 = U \oplus V$?
- c) Donner un supplémentaire de U. Même question pour V.

Exercice 5: Soit les vecteurs $v_1 = (1, -1, 0), v_2 = (2, 1, 0), v_3 = (0, 1, 1)$ et $v_4 = (1, 0, 0)$ de \mathbb{R}^3 . Parmi les affirmations suivantes, lesquelles sont justes?

- a) $\mathbb{R}^3 = \operatorname{Vect}(v_1, v_2) \oplus \operatorname{Vect}(v_3)$.
- b) $\mathbb{R}^3 = \operatorname{Vect}(v_1, v_2, v_4) \oplus \operatorname{Vect}(v_3)$.
- c) $\mathbb{R}^3 = \text{Vect}(v_1, v_4) \oplus \text{Vect}(v_2, v_3)$.

Exercice 6: Soit les vecteurs $v_1 = (1, 0, 0, 1)$, $v_2 = (0, 0, 1, 0)$, $v_3 = (0, 1, 0, 0)$, $v_4 = (0, 0, 0, 1)$ et $v_5 = (0, 1, 0, 1)$ de \mathbb{R}^4 . Parmi les affirmations suivantes, lesquelles sont justes?

- a) $\mathbb{R}^4 = \operatorname{Vect}(v_1, v_2) \oplus \operatorname{Vect}(v_3)$.
- b) $\mathbb{R}^4 = \operatorname{Vect}(v_1, v_2) \oplus \operatorname{Vect}(v_4, v_5)$.
- c) $\mathbb{R}^4 = \operatorname{Vect}(v_1, v_3, v_4) \oplus \operatorname{Vect}(v_2, v_5)$.
- d) $\mathbb{R}^4 = \operatorname{Vect}(v_1, v_4) \oplus \operatorname{Vect}(v_3, v_5)$.