DSD Final Project Presentation

GROUP 8

MEMBER: 陳柏帆 洪鈺萌 林志皓

Contents

- MIPS pipeline (baseline)
- Cache design
- Extention1 -- Branch Prediction
- Extention2 -- Tow Level Cache
- Extention3 -- Multiplication & Division

MIPS Pipeline

structure

Hand-drawn by 柏帆

Instruction Fetch

- Select next Instruction address
- (jump/ branch/ PC+4)
- When next address is not
 PC+4, we set a "FLUSH"

(32'b0 for instruction)

Instruction Decode

- Control unit
- Forwarding Unit
- Determine whether Branch or not

EX, MEM, WB

- Select the data to be forward in MEM stage (from ALU or memory)
 - → Simplified forwarding unit

Cache

Structure

- Direct-map(4 words * 8 block)
- Write-back
- Valid bit (no dirty bit)

Valid bit	Tag	DATA 1	DATA 2	DATA 3	DATA 4
1 bit	25 bits	32 bits	32 bits	32 bits	32 bits

A block

Finite State Machine

- Only 3 states!
- If hit, processor can get data from cache in the cycle of request
 - → Reduce total cycle

Baseline Performance

• Cell Area: 284158

• Execution Time : 9960.75 (ns)

• AT rate: **2830426799**

Extention – Branch Prediction

Finite State Machine

- Initially, the IDLE state is Strongly Not Taken
- If prediction wrongly two times in a row, the state will go to Taken

Overall Circuit

Result

Cannot predict two successive branch instructions effectively

• 1234568

Extention – Two Level Cache

Implementation Details

- Separate 2 L2 caches for I cache & D cache
- Direct Map
- 4 words/block, total 64 blocks(entries)
- FSM: 3 state

Valid	Tag	Data
1 bit	22 bits	128 bits

Result

Extention – Multiplication & Division

Implementation Details

- Iterative, stall 32 cycles for each Multiplication/Division Instruction
- Record the position of Add/Subtract with Counter,
- Thus determine when to stop "stalling"
- Correctness Verification :
- Check data in D cache with monitoring nWave
- Add some negative number for testing

Result

