Matemática Discreta II

Mauro Polenta Mora

Ejercicio 6

Consigna

Sean $a, b, c, d \in \mathbb{N}$. Probar o refutar (dando contraejemplos) las siguientes afirmaciones:

- 1. Si $a \mid b \ y \ c \mid d$ entonces $ac \mid bd$
- 2. Si $a \mid b$ entonces $ac \mid bc$
- 3. Si $a \nmid bc$ entonces $a \nmid b$ y $a \nmid c$
- 4. Si $ac \mid bc$ entonces $a \mid b$
- 5. Si $a \mid bc$ entonces $a \mid b$ o $a \mid c$
- 6. Si $a \mid c$ y $b \mid c$ entonces $ab \mid c$
- 7. Si $4 \mid a^2$ entonces $2 \mid a$
- 8. Si 9 | b + c entonces 9 | b o 9 | c
- 9. Si $a + c \mid b + c$ entonces $a \mid b$

Resolución

Parte 1

• Si $a \mid b \ge c \mid d$ entonces $ac \mid bd$

Por el teorema de la división entera, tenemos que:

- 1. $a \mid b \to b = aq \text{ con } q \in \mathbb{Z} \quad (*_1)$
- 2. $c \mid d \to d = cq' \operatorname{con} q' \in \mathbb{Z} (*_2)$

Queremos probar que:

- $ac \mid bd$, que es equivalente a decir que:
- $bd = acq'' \operatorname{con} q'' \in \mathbb{Z}$

Por las hipótesis $(*_1), (*_2)$

$$bd = acq''$$
 \iff (sustituyendo por las hipótesis)
 $aqcq' = acq''$
 \iff (operatoria)
 $qq' = q''$

Como $q'' \in \mathbb{Z}$ (pues es el producto de dos enteros), queda demostrado que $ac \mid bd$ Por lo tanto esta afirmación es VERDADERA.

Parte 2

• Si $a \mid b$ entonces $ac \mid bc$

Por el teorema de la división entera, tenemos que:

1.
$$a \mid b \to b = aq \text{ con } q \in \mathbb{Z} \quad (*_1)$$

Queremos probar que:

- $ac \mid bc$, que es equivalente a decir que:
- $bc = acq' \text{ con } q' \in \mathbb{Z}$

Por la hipótesis $(*_1)$ tenemos que:

$$bc = acq'$$
 \iff (sustituyendo por la hipótesis)
 $aqc = acq'$
 \iff (operatoria)
 $q = q'$

Como $q' \in \mathbb{Z}$, queda demostrado que $ac \mid bc$.

Por lo tanto esta afirmación es VERDADERA.

Parte 3

• Si $a \nmid bc$ entonces $a \nmid b$ y $a \nmid c$

Para esta parte, asumimos la hipótesis, y suponemos que $a \mid b$. Por el teorema de la división entera tenemos que:

• $a \mid b \to b = aq \operatorname{con} q \in \mathbb{Z}$

A partir de esto tenemos que:

$$b = aq$$

$$\iff$$

$$bc = aqc$$

Donde considerando $q' = qc \in \mathbb{Z}$, tenemos que $a \mid bc$, lo cual es ABSURDO.

Por lo tanto esta afirmación es VERDADERA.

Parte 4

• Si $ac \mid bc$ entonces $a \mid b$

Por el teorema de la división entera, tenemos que:

1.
$$ac \mid bc \rightarrow bc = acq \text{ con } q \in \mathbb{Z} \quad (*_1)$$

Queremos probar que:

- $a \mid b$, que es equivalente a decir que:
- $b = aq' \operatorname{con} q' \in \mathbb{Z}$

Por la hipótesis $(*_1)$ tenemos que:

$$bc = acq$$
 \iff (considerando $c \neq 0$)
 $b = aq$

Entonces en este caso, considerando $q'=q\in\mathbb{Z}$, tenemos que la propiedad es verdadera.

Faltaría verificar el caso en el que c=0, pero este es trivial, pues el antecedente sería falso:

• $a0 \nmid b0$ pues 0 no divide a ningún número.

Por lo tanto esta afirmación es VERDADERA.

Parte 5

• Si $a \mid bc$ entonces $a \mid b$ o $a \mid c$

Consideremos a = 6, b = 3, c = 4. Entonces:

- 6 | 12, pero:
- 6 ∤ 3 ni
- 6 ∤ 4

Por lo que esta afirmación es FALSA.

Parte 6

• Si $a \mid c \neq b \mid c$ entonces $ab \mid c$

Consideremos a = 4, b = 2, c = 4. Entonces:

- 4 | 4 y 2 | 4, pero
- 8 ∤ 4

Por lo que esta afirmación es FALSA.