

NAME DES DOZENTEN: BJÖRN-HELGE BUSCH

KLAUSUR 1140 AUTOMATENTHEORIE UND FORMALE SPRACHEN

QUARTAL: (Q2/2013)

Name des Prüflings:	Matrik	elnummer:	Zenturie:
Dauer : 90 Min.	Seiten ohne De	eckblatt: 8	Datum: 2013-04-15
Hilfsmittel: Bemerkungen:	 Formelsammlung Bitte kontrollieren Sie Ihr Klausurheft zu Beginn der Prüfung auf Vollständigkeit. 		
	Punkte für Aufgaben		
	Aufgabe 1		von 10
	Aufgabe 2		von 18
	Aufgabe 3		
	Aufgabe 4		von 34
	Insgesamt		von 90
Datum:	Note:	Ergänzungs	prüfung:
Unterschrift:			
Termin für Klausur	einsicht:	Ort:	

Aufgabe 1 Wortmengen und Wortfunktionen (jeweils 2 Punkte)		
	a) Erläutern Sie den Begriff Alphabet in 1-2 Sätzen.	
	b) Erläutern Sie den Begriff <u>Kleene-Stern-Produkt</u> in 1-2 Sätzen.	
	c) Was versteht man unter einer formalen Sprache L?	
	d) Aus welchen <u>Bestandteilen</u> ist ein Wort w einer formalen Sprache L aufgebaut?	
	e) Nennen Sie <u>zwei Operationen</u> zur Modifikation oder Erzeugung von Wörtern w und erläutern Sie diese jeweils anhand eines Beispiels.	

Aufgabe 2 Deterministische Endliche Automaten

a) Erläutern Sie den Begriff Endlicher Automat in 1-2 Sätzen (2 Punkte).

b) Gegeben sind folgende Sprachen

a.
$$L_1 = \{w \in \Sigma^* | w = uv, u \in \{11,00\}, v \in \{aa,bb\}\}$$

b. $L_2 = \{w \in \Sigma^* | w = uvk, u \in \{c\}^+, v \in \{a,b\}^*, k \in \{d\}^+\}$

Konstruieren Sie einen (nicht verallgemeinerten) DEA A_3 , der ausschließlich die Sprache $L_3=L_1{}^{\circ}L_2$ akzeptiert. Geben Sie die graphische Repräsentation und die formale Beschreibung von A_3 inklusive der Aufschlüsselung der enthaltenen Mengen an. Auf eine Darstellung von δ_3 kann verzichtet werden (12 Punkte).

c)	Gegeben ist das Wort $w_1 = 11aacccc$. Gilt $w_1 \in L_3$? Begründen Sie Ihre Antwort. (2 Punkte)
d)	Gegeben ist der in b) konstruierte Automat A_3 . Geben Sie für die Eingabe $w_2=11aac$ die Konfigurationssequenz an. Zu Beginn der Verarbeitung befindet sich der in b) konstruierte Automat A_3 im Startzustand. (2 Punkte)
Αu	fgabe 3 Nichtdeterministische Endliche Automaten
a)	Gegeben ist die Sprache $L_4=\{w\in\Sigma^* w=uvk,u\in\{aa,ab\},v\in\{a,b,c\}^*,k\in\{bb,cc\}^+\}$. Konstruieren Sie einen nicht verallgemeinerten NEA A_4 , der ausschließlich diese Sprache akzeptiert. Die graphische Repräsentation genügt; auf eine formale Beschreibung kann verzichtet werden. (6 Punkte)

d) Erläutern Sie den Unterschied zwischen DEA und NEA. (2 Punkte)

e) Gegeben ist nachfolgend graphisch dargestellter Epsilon-Automat A_5 . Transformieren Sie diesen wahlweise in einen äquivalenten NEA oder DEA. Geben Sie die Sprache L_5 an, die dieser Automat akzeptiert. Die graphische Repräsentation des äquivalenten NEA oder DEA genügt (10 Punkte).

Aufgabe 4 Grammatiken

a)	Welche drei Konzepte zur Definition von Typ-3 Sprachen sind Ihnen bekannt? (2 Punkte)
LA	
b)	Skizzieren Sie die Chomsky-Hierarchie und erläutern Sie die Unterschiede anhand der Ausdrucksmächtigkeit der klassifizierten Grammatiken (Hinweis: <i>F</i> enthält Regeln unterschiedlichen Typs zur Worterzeugung). (8 Punkte)

c) Gegeben ist folgende Grammatik $G_1 = \{\Sigma_1, N_1, P_1, S\}$ mit $\Sigma_1 = \{a, b, c, d\}$,

$$N_{1} = \{S, A, B, C, D\} \text{ und } P = \begin{cases} S \rightarrow aA, S \rightarrow bB, S \rightarrow cS, S \rightarrow cD \\ A \rightarrow aA, A \rightarrow cC, A \rightarrow a, A \rightarrow \varepsilon \\ B \rightarrow cS, B \rightarrow bB, B \rightarrow cC, B \rightarrow b \\ C \rightarrow dC, C \rightarrow d, D \rightarrow S \end{cases}$$

Um welchen Grammatiktyp handelt es sich bei G_1 . Begründen Sie Ihre Antwort. (2 Punkte)

d) Vereinfachen Sie die Grammatik G_1 und konstruieren Sie den zu G_1 äquivalenten Automaten (wahlweise DEA oder NEA). Geben Sie dabei die umgeformte Grammatik an. Auf eine formale Repräsentation des Automaten kann verzichtet werden.(9 Punkte)

e) Leiten Sie ein Wort w Ihrer Wahl mit der Länge |w|=5 ab und geben Sie das Ableitungsstück und den dazugehörigen Syntaxbaum an. Was versteht man unter einer mehrdeutigen Grammatik? (4 Punkte)

- f) Gegeben sind die Sprachen
 - a. $L_5 = \{ w \in \Sigma^* | w = uv, u \in \{a, b\}, v \in \{ccdd\}^+ \}$
 - b. $L_6 = \{ w \in \Sigma^* | w = uvk, u \in \{a, b\}^*, v = d^i e^i, k = ccc \}, i \ge 0$
 - c. $L_7 = \{ w \in \Sigma^* | w = vkl, v = c^j e^i, k = 11, l = d^i e^j \}, i \ge 2, j \ge 1$

Ordnen Sie die Sprachen gemäß der Chomsky-Hierarchie. Benutzen Sie für die Zuordnung das Pumping-Lemma, Automatenskizzen oder beispielhafte Regelmengen P. (9 Punkte)