

## UNIVERSIDAD DEL PACÍFICO

Departamento Académico de Economía Matemáticas III (130233) - Sección A Segundo Semestre 2017

**Profesor Diego Winkelried** 

## 3 | Complex numbers

- Imaginary unit.  $i^2 = -1$  or  $i = \sqrt{-1}$ .
- Powers of the imaginary unit. The powers of i repeat in a cycle 1, i, -1, -i:

$$i^{0} = 1 i^{4} = i^{3}i = -i^{2} = 1 i^{8} = (i^{4})^{2} = 1$$

$$i^{1} = i i^{5} = (i^{4})i = i i^{9} = (i^{4})^{2}i = i = i$$

$$i^{2} = -1 i^{6} = (i^{4})i^{2} = -1 i^{10} = (i^{4})^{2}i^{2} = -1$$

$$i^{3} = i^{2}i = -i i^{7} = (i^{4})i^{3} = -i i^{11} = (i^{4})^{2}i^{3} = -i$$

It follows that  $i^{4k} = 1$  for  $k \ge 0$ .

With this, any power of *i* can be easily computed. For instance,  $i^{31} = i^{28}i^3 = (i^4)^7i^3 = 1^7i^3 = -i$ . Also,  $i^{100} = (i^4)^{25} = 1^{25} = 1$ .

- Complex number. A number formed by a real part and an imaginary part: z = p + qi, where  $p \in \mathbb{R}$  and  $q \in \mathbb{R}$ . p is the *real part* of the complex number, whereas q is the *imaginary part*. When q = 0, the complex number is a real number; when p = 0, the complex number is a purely imaginary number.
- Addition. If  $z_1 = p_1 + q_1 i$  and  $z_2 = p_2 + q_2 i$ , then  $z_1 \pm z_2 = (p_1 \pm p_2) + (q_1 \pm q_2) i$ .
- Multiplication. If  $z_1 = p_1 + q_1 i$  and  $z_2 = p_2 \pm q_2 i$ , then

$$z_1z_2 = (p_1+q_1i)(p_2\pm q_2i) = p_1p_2 + (p_2q_1\pm p_1q_2)i \pm q_1q_2i^2 = (p_1p_2\mp q_1q_2) + (p_2q_1\pm p_1q_2)i.$$

• **Division.** If  $z_1 = p_1 + q_1 i$  and  $z_2 = p_2 + q_2 i$ , then

$$\frac{z_1}{z_2} = \frac{p_1 + q_1 i}{p_2 + q_2 i} \left( \frac{p_2 - q_2 i}{p_2 - q_2 i} \right) = \frac{(p_1 p_2 + q_1 q_2) + (p_2 q_1 - p_1 q_2) i}{p_2^2 - q_2^2 i^2} = \frac{p_1 p_2 + q_1 q_2}{p_2^2 + q_2^2} + \left( \frac{p_2 q_1 - p_1 q_2}{p_2^2 + q_2^2} \right) i.$$

- Complex conjugate. If z = p + qi, its conjugate is  $\bar{z} = p qi$ . Note that  $z + \bar{z} = 2p \in \mathbb{R}$  and  $z\bar{z} = p^2 + q^2 \in \mathbb{R}$ .
- Roots. Let  $P(x) = ax^2 + bx + c$ . The roots of this polynomial satisfy P(z) = 0 and  $P(\bar{z}) = 0$ :

$$z = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{and} \quad \bar{z} = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

If  $b^2 > 4ac$ , z and  $\bar{z}$  are real and different. If  $b^2 = 4ac$ ,  $z = \bar{z} \in \mathbb{R}$ . Finally, if  $b^2 < 4ac$ 

$$z = p + qi$$
 and  $z = p - qi$ ,

are complex conjugate, with p = -b/(2a) and  $q = \sqrt{4ac - b^2}/(2a)$ .

• **Degree** n. In general, a polynomial  $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0$  (with *real coefficients*) has n roots. If z is one such root, P(z) = 0, its conjugate will also be a root,  $P(\bar{z}) = 0$ . In other words, complex roots appear always as pairs with their corresponding conjugates.

It follows that if n is odd, P(x) must have at least one real root.

• Modulus. The "size" or "magnitude" (i.e., the distance from zero) of the complex number. It is the generalization of the notion of an absolute value. If z = p + qi, then

$$|z| = \sqrt{p^2 + q^2}.$$

- Properties of the modulus.
  - (1) If z is a real number (p = 0), |z| = Absolute value(z).
  - (2)  $|z| = |\bar{z}|$ , where  $\bar{z}$  is the conjugate of z.
  - (3)  $|z|^2 = z \cdot \bar{z}$ .
  - (4) For any two complex numbers  $z_1$  and  $z_2$ ,  $|z_1z_2| = |z_1| \cdot |z_2|$ .
  - (5) For any two complex numbers  $z_1$  and  $z_2$ ,  $|z_1 \div z_2| = |z_1| \div |z_2|$ .
- **Polar form.** The form z = p + qi is the cartesian representation of z (the x-axis represents the real numbers, whereas the y-axis represents the purely imaginary numbers). An alternative representation, in *polar coordinates*, is the following

$$z = p + qi = r[\cos(\theta) + i\sin(\theta)] \quad \text{where} \quad r = \sqrt{p^2 + q^2} \text{ (modulus)}$$
 
$$\text{and } \theta = \arctan\left(\frac{q}{p}\right) = \arccos\left(\frac{p}{r}\right) = \arcsin\left(\frac{q}{r}\right) \text{ (argument)}.$$

• Polar of the conjugate. The modulus of  $\bar{z}$  is the same of z, but the argument is  $-\theta$ . Thus,

$$\bar{z} = p - qi = r[\cos(-\theta) + i\sin(-\theta)] = r[\cos(\theta) - i\sin(\theta)].$$

• Trigonometric identities. Recall that

$$\cos(\theta_1 \pm \theta_2) = \cos(\theta_1)\cos(\theta_2) \mp \sin(\theta_1)\sin(\theta_2),$$
  

$$\sin(\theta_1 \pm \theta_2) = \sin(\theta_1)\cos(\theta_2) \pm \cos(\theta_1)\sin(\theta_2).$$

• Multiplication, polar form. Let  $z_i = r_i [\cos(\theta_i) + i\sin(\theta_i)]$  for  $j = \{1, 2\}$ . Then,

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1) + i \sin(\theta_1)] [\cos(\theta_2) + i \sin(\theta_2)]$$

$$= r_1 r_2 {\cos(\theta_1) \cos(\theta_2) - \sin(\theta_1) \sin(\theta_2) + [\sin(\theta_1) \cos(\theta_2) + \cos(\theta_1) \sin(\theta_2)] i}$$

$$z_1 z_2 = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$$

• **Division, polar form.** Let  $z_j = r_j [\cos(\theta_j) + i\sin(\theta_j)]$  for  $j = \{1, 2\}$ . Then,

$$\begin{split} \frac{z_1}{z_2} &= \frac{r_1}{r_2} \frac{\left[\cos(\theta_1) + i\sin(\theta_1)\right]}{\left[\cos(\theta_2) + i\sin(\theta_2)\right]} = \frac{r_1}{r_2} \frac{\left[\cos(\theta_1) + i\sin(\theta_1)\right]}{\left[\cos(\theta_2) + i\sin(\theta_2)\right]} \frac{\left[\cos(\theta_2) - i\sin(\theta_2)\right]}{\left[\cos(\theta_2) - i\sin(\theta_2)\right]} \\ &= \frac{r_1}{r_2} \frac{\cos(\theta_1)\cos(\theta_2) + \sin(\theta_1)\sin(\theta_2) + \left[\sin(\theta_1)\cos(\theta_2) - \cos(\theta_1)\sin(\theta_2)\right]i}{\cos(\theta_2)^2 + \sin(\theta_2)^2} \\ \frac{z_1}{z_2} &= \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i\sin(\theta_1 - \theta_2)\right]. \end{split}$$

• De Moivre's formula for powers. It follows from the workings of multiplication. For any integer n > 0,

$$z^n = r^n [\cos(\theta) + i\sin(\theta)]^n = r^n [\cos(n\theta) + i\sin(n\theta)].$$

De Moivre's formula also applies to negative powers. For any integer n > 0, recall that  $r^2 = z \cdot \bar{z}$ . Then,

$$z^{-n} = \frac{\bar{z}^n}{r^{2n}} = \frac{r^n}{r^{2n}} [\cos(\theta) - i\sin(\theta)]^n = r^{-n} [\cos(-\theta) + i\sin(-\theta)]^n = r^{-n} [\cos(-n\theta) + i\sin(-n\theta)].$$

• Roots of a complex number. Let w be a complex number such that  $w^n = z$ . Alternatively,  $w = z^{1/n}$ . Consider the polar form of each of these numbers:

$$z = r[\cos(\theta) + i\sin(\theta)]$$
 and  $w = \rho[\cos(\alpha) + i\sin(\alpha)]$ .

Using De Moivre's formula to determine  $w^n$ , it follows that

$$\rho^n = r \to \rho = r^{1/n},$$

$$\cos(n\alpha) = \cos(\theta) \to \alpha = \frac{\theta}{n} + \frac{2\pi k}{n} \text{ for } k = 0, 1, \dots, n-1.$$

Therefore,

$$z^{1/n} = r^{1/n} \left[ \cos \left( \frac{\theta}{n} + \frac{2\pi k}{n} \right) + i \sin \left( \frac{\theta}{n} + \frac{2\pi k}{n} \right) \right] \quad \text{for} \quad k = 0, 1, \dots, n - 1.$$

• Euler's formula. Famous result (that we shall prove later in the course):

$$e^{xi} = \cos(x) + i\sin(x).$$

It follows that

$$e^{-xi} = \cos(x) - i\sin(x).$$

- Special cases.  $e^{\frac{1}{2}\pi i} = i$ ,  $e^{\pi i} = -1$ ,  $e^{\frac{3}{2}\pi i} = -i$  and  $e^{2\pi i} = 1$ .
- Polar form, compact. Using Euler's formula,

$$p \pm qi = r[\cos(\theta) \pm i\sin(\theta)] \equiv re^{\pm\theta i}$$
.

• Multiplication and division, easier. Using the exponential polar form,

$$z_1 z_2 = \left( r_1 e^{\theta_1 i} \right) \left( r_2 e^{\theta_2 i} \right) = r_1 r_2 e^{(\theta_1 + \theta_2) i} = r_1 r_2 [\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)].$$

$$\frac{z_1}{z_2} = \frac{r_1 e^{\theta_1 i}}{r_2 e^{\theta_2 i}} = \frac{r_1}{r_2} e^{(\theta_1 - \theta_2) i} = \frac{r_1}{r_2} [\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2)].$$

• Roots of a complex number, compact. We have obtained a result for  $z^{1/n}$ . Using the exponential form,

$$z^{1/n} = r^{1/n} e^{(\theta/n + 2\pi k/n)i} \equiv r^{1/n} e^{\theta i/n} e^{2\pi ki/n}$$
 for  $k = 0, 1, \dots, n-1$ .

The term  $r^{1/n}e^{\theta i/n}$  is called the *primitive root*. Each of the remaining n-1 roots is obtained by multiplying this primitive by  $e^{2\pi ki/n}$  for  $k=1,2\ldots,n-1$ . The term  $e^{2\pi ki/n}$  is often known as *root of unity*.