Computabilità e Algoritmi (Computabilità) 1 Settembre 2016

(con bozza di soluzione)

Esercizio 1

Enunciare e dimostrare il secondo teorema di ricorsione.

Esercizio 2

Dire se è calcolabile la funzione $f: \mathbb{N} \to \mathbb{N}$ definita da

$$f(x) = \begin{cases} 2x + 1 & \text{se } \varphi_x(x) \downarrow \\ 2x - 1 & \text{altrimenti} \end{cases}$$

Motivare adeguatamente la risposta.

Soluzione: La funzione non è calcolabile, dato che possiamo scrivere

$$\chi_K(x) = sg(f(x) - 2x).$$

Se f fosse calcolabile, dedurremmo che anche χ_K lo è, mentre sappiamo che K non è ricorsivo, ovvero χ_K non è calcolabile.

Esercizio 3

Sia f una funzione calcolabile totale tale che $img(f) = \{f(x) : x \in \mathbb{N}\}$ sia infinito. Studiare la ricorsività dell'insieme

$$A = \{x : \exists y \in W_x. \ x < f(y)\},\$$

ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Soluzione: L'insieme A non è ricorsivo dato che $K \leq_m A$. Infatti, si consideri la funzione

$$g(x,y) = \begin{cases} 1 & x \in K \\ \uparrow & \text{otherwise} \end{cases}$$

è calcolabile. Dunque per il teorema smn esiste $s: \mathbb{N} \to \mathbb{N}$, calcolabile totale, tale che $g(x,y) = \varphi_{s(x)}(y)$, e la funzione s è funzione di riduzione.

Infatti, se $x \in K$, si ha che $\varphi_{s(x)}(y) = g(x,y) = 1$ per ogni y. Quindi $W_{s(x)} = \mathbb{N}$, e pertanto $f(W_{s(x)}) = f(\mathbb{N}) = img(f)$, che è infinita per ipotesi. Pertanto certamente esiste $z \in f(W_{s(x)})$ tale che x < z, ovvero esiste $y \in W_{s(x)}$ tale che s(x) < f(y). Dunque $s(x) \in A$.

Se invece $x \notin K$, si ha che $\varphi_{s(x)}(y) = g(x,y) \uparrow$ per ogni y. Quindi $W_{s(x)} = \emptyset$, e pertanto, certamente non esiste $y \in W_{s(x)}$ tale che s(x) < f(y). Dunque $s(x) \notin A$.

L'insieme A è r.e., infatti

$$sc_A(x) = \mu w.(H(x,(w)_1,(w)_2) \land x < f((w)_1))$$

Pertanto, \bar{A} non r.e.

Esercizio 4

Detto $A = \{x \mid \varphi_x \text{ è totale}\}$, dimostrare che $\bar{K} \leq_m A$.

Soluzione: Si definisce

$$g(x,y) = \begin{cases} y & \text{se } \neg H(x,x,y) \\ \uparrow & \text{altrimenti} \end{cases}$$

Per il teorema smn, si ottiene una funzione $s : \mathbb{N} \to \mathbb{N}$ calcolabile totale, tale che $g(x, y) = \varphi_{s(x)}(y)$ ed è facile vedere che s può essere la funzione di riduzione.

Esercizio 5

Esiste una funzione calcolabile $f: \mathbb{N} \to \mathbb{N}$ calcolabile tale che dom(f) = K e $cod(f) = \mathbb{N}$? Motivare adeguatamente la risposta.

Soluzione: Si esiste, ad esempio si puó considerare $f(x) = \varphi_x(x)$. Chiaramente dom(f) = K. Inoltre, per ogni $k \in N$, se si considera un indice e della funzione costante k si ha che $f(e) = \varphi_e(e) = k$. Quindi $cod(f) = \mathbb{N}$.

Alternativamente si può definire

$$f(x) = (\mu t. H(x, x, t)) - 1$$

Chiaramente dom(f) = K poiché $f(x) \downarrow$ sse esiste t tale che H(x, x, t), i.e., sse $x \in K$. Inoltre, per ogni $x \in \mathbb{N}$ basta prendere il programma Z_k che consiste di Z(1) ripetuto x volte. Sull'indice corrispondente $y = \gamma(Z_k)$ avremo f(y) = k-1, che mostra che $cod(f) = \mathbb{N}$.

Nota: Correzione, risultati e visione dei compiti: Mercoledì 7 Settembre, ore 9:30, 1BC/45