МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №8 по дисциплине «Машинное обучение»

Тема: Классификация (линейный дискриминантный анализ, метод опорных векторов)

Студент гр. 6304	Виноградов К.А
Преподаватель	Жангиров Т.Р.

Санкт-Петербург 2020

Загрузка данных.

Датасет загружен в датафрейм. Выделены данные и их метки, тексты меток преобразованы к числам. Выборка разбита на обучающую и тестовую train_test_split.

Линейный дискриминантный анализ.

Проведена классификация наблюдений с помощью LinearDiscriminantAnalysis. Выявлено 3 неправильно классифицированных наблюдения. Параметры классификатора представлены в табл. 1. Атрибуты классификатора представлены в табл.2.

Таблица 1 – Параметры LinearDiscriminantAnalysis

Параметр	Описание	
solver	 «svd»: Разложение по сингулярным числам. Не вычисляет ковариационную матрицу, поэтому рекомендуется для данных с большим количеством признаков. «lsqr»: Решение наименьших квадратов, можно комбинировать с параметром shrinkage. «eigen»: Разложение на собственные значения, можно комбинировать с параметром shrinkage. 	
shrinkage	 «аuto»: Автоматическое сжатие по лемме Ледуа-Вольфа. float from [0, 1] Класс априорных вероятностей. По умолчанию пропорции классов выводятся из данных обучения. 	

n_components	Количество компонентов (<= min (n_classes - 1, n_features))	
	для уменьшения размерности. Если None, будет	
	установлено значение min (n_classes - 1, n_features). Этот	
	параметр влияет только на метод преобразования	
	transform.	
store_covariance	Если True, явно вычислить взвешенную ковариационную	
	матрицу внутри класса, когда решатель – «svd». Матрица	
	всегда вычисляется и сохраняется для других решателей.	

Таблица 2 — Атрибуты $\it Linear Discriminant Analysis$

Атрибут	Описание	
coef_	Весовые вектора.	
intercept_	Массив прерывания.	
covariance_	Взвешенная внутриклассовая ковариационная	
	матрица.	
explained_variance_ratio_	Процент дисперсии, объясняемой каждым из	
	выбранных компонентов. Если n_components не	
	задано, то все компоненты сохраняются, а сумма	
	объясненных дисперсий равна 1,0. Доступно	
	только при использовании собственного	
	решателя или «svd».	
means_	Средние в классах.	
priors_	Вероятности классов.	
scalings_	Масштабирование объектов в пространстве,	
	охватываемом центроидами классов. Доступно	
	только для решателей «svd» и «eigen».	
xbar_	Общее среднее. Присутствует, только если	
	решатель - «svd».	
classes_	Уникальные метки классов.	
2		

Точность классификации с помощью LDA составляет 96%.

Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. График представлен на рис. 1.

Рисунок 1 – Классификация LDA

Функция transform проецирует данные для максимизации разбиения классов. LDA пытается определить атрибуты, на которые приходится наибольшая разница между классами. В частности, LDA, в отличие от PCA, является контролируемым методом, использующим известные метки классов. Сравнение LDA и PCA представлно на рис. 2 и 3.

Рисунок 2 – Сокращение РСА

Рисунок 3 – Сокращение LDA

Работа классификатора исследована при различных параметрах solver, shrinkage. Результаты представлены на рис. 4-6.

Рисунок 4 – Тест параметра Solver

Рисунок 5 – Тест параметра Shrinkage: lsqr solver

Рисунок 6 – Тест параметра Shrinkage: eigen solver

Заданы собственные значения априорных вероятностей классов, результаты представлены на рис. 7.

Рисунок 7 — Тест с предустановленным параметром prior = [0.15, 0.7, 0.15]

Метод опорных векторов.

Проведена классификация наблюдений с помощью метода опорных векторов на тех же данных. Выявлено 4 неправильно классифицированных наблюдения.

Точность классификации составляет 95%.

Атрибут support_ хранит индексы опорных векторов, support_vectors_ – сами опорные вектора, n_support_ – количество опорных векторов для каждого класса.

Построен график зависимости неправильно классифицированных наблюдений и точности классификации от размера тестовой выборки. График представлен на рис. 8.

Рисунок 8 – Классификация SVC

Исследована работа метода опорных векторов при различных значениях параметров kernel, degree, max_iter. Результаты представлены на рис. 9 – 11.

Рисунок 9 – Тест параметра kernel

Рисунок 10 – Тест параметра degree

Рисунок 11 – Тест параметра max_iter

NuSVC подобен SVC, но использует параметр для управления количеством опорных векторов.

LinearSVC аналогично SVC с линейным ядром, но лучше масштабируется для большого числа выборок.

Классификация методами NuSVC и LinearSVC представлены на рис. 12 – 13.

Рисунок 12 – Классификация NuSVC

Рисунок 12 – Классификация LinearSVC

Выводы

В ходе лабораторной работы рассмотрены такие методы классификации модуля Sklearn, как LinearDiscriminantAnalysis, SVC, NuSVC и LinearSVC.