INTRODUÇÃO

Modelos Lineares Generalizados

Luan Fiorentin

12 de maio de 2021

Sumário

- ► Introdução
- ► Variável aleatória
- ► Função discreta de probabilidade
- ► Função de distribuição de probabilidade
- Função densidade de probabilidade
- Função de distribuição acumulada
- Considerações finais

Introdução

Introdução

▶ Inventário florestal envolve a coleta de informações quali- quantitativas de variáveis da floresta.

▶ Variáveis:

- ► Altura:
- ► Diâmetro:
- Presença de ataques de pragas;
- Número de árvores por unidade amostral:
- Entre outras.
- ► Fundamental reconhecer a **natureza** das variáveis.

Figura 1. Floresta. Imagem de Brandon Montrone no Pexels

Introdução

Figura 2. Principais tipos de variáveis.

INTRODUÇÃO

Luan Fioren

Variável aleatória

Variável aleatória

- **Espaço amostral** (Ω) é o conjunto de todos os resultados possíveis de um experimento aleatório.
- **Evento** é um subconjunto de resultados de um experimento aleatório.
- ► Definicão de **variável aleatória** (v.a.):
 - Descrição numérica do resultado de um experimento aleatório.
- ▶ **Notação**: *Y* denota a variável aleatória, enquanto *y* denota os valores realizados de uma variável aleatória.

O evento é o lançamento de duas moedas honestas de forma independente e $Y = n\hat{u}$ mero de resultados cara (C).

Figura 3. Variável aleatória definida sobre pontos do espaço amostral.

Variável aleatória

- ► Tipos de espaço amostral:
 - Espaço amostral discreto contêm apenas um número finito ou contável de elementos.
 - **Espaco amostral contínuo** contêm um número infinito de elementos.
- Tipos de variáveis aleatórias:
 - Variável aleatória é discreta se seu espaço amostral é discreto.
 - Variável aleatória é contínua se seu espaco amostral é contínuo.

- ightharpoonup Reta real: $O = \Re$
- Estritamente positivos: $\Omega = \Re_+$.
- ▶ Positivos com zeros: $\Omega = \Re_0 = [0, \infty)$.
- ▶ Proporcões: $\Omega = (0.1)$.
- ▶ Direções: $\Omega = [0, 2\pi)$.
- ► Contagem: $\Omega = \mathbb{N}_0 = \{0,1,2,\ldots\}.$
- ► Contagem limitada: $\Omega = \{0,1,2,\ldots,m\}$.

Função discreta de probabilidade

Função discreta de probabilidade

▶ A **função de probabilidade** (fp) da v.a. discreta Y, que assume os valores y_1, y_2, \ldots, y_n , é a função que atribui probabilidades a cada um dos possíveis valores: $\{y_i, p(y_i)\}, i = 1, 2, ...$, ou seja,

$$P(Y = y_i) = p(y_i) = p_i, i = 1, 2, ...$$

com as seguintes propriedades:

► A probabilidade de cada valor deve estar entre 0 e 1,

$$0 \le p(y_i) \le 1$$
, $\forall i = 1, 2, ...$

► A soma de todas as probabilidades é igual a 1

$$\sum_{i} p(y_i) = 1.$$

Seja o experimento de lançar duas moedas honestas e Y = número de resultados cara(C). Encontre a fp de Y.

- Propriedades da fp:
 - $ightharpoonup P(Y = y_i)$ estão entre 0 e 1.
 - ► Soma das probabilidades é igual a 1.
- ▶ Relembre que $\Omega = \{CC, KK, CK, KC\}$.

Y	Frequência	$P(Y = y_i)$	$P(Y \leq y_i)$
0	1	1/4	
1	2	2/4	
2	1	1/4	
Total	4	1	

Figura 4. Grafico de P(y).

Função de distribuição de probabilidade

Função de distribuição de probabilidade

- ▶ Em muitas situações, é útil calcular a probabilidade **acumulada** até um certo valor.
- ▶ Define-se a função de distribuição ou função acumulada de probabilidade de uma v.a. Y pela expressão

$$F(y) = P(Y \le y)$$

para qualquer número real y.

▶ Procedimento é análogo a distribuição de frequência acumulada.

Seja o experimento aleatório de lançar duas moedas honestas. Defina Y= número de resultados cara (C). Encontre a função de probabilidade de Y.

▶ Relembre que $\Omega = \{CC, KK, CK, KC\}.$

Y	Frequência	$P(Y = y_i)$	$P(Y \leq y_i)$
0	1	1/4	1/4
1	2	2/4	3/4
2	1	1/4	1
Total	4	1	

Figura 5. Grafico de F(y).

- Não podemos atribuir probabilidades à valores específicos, pois há uma quantidade **não enumerável** (infinita) de valores em um ponto.
- Atribuimos probabilidades à intervalos de valores, por meio de uma **função**. Portanto, as probabilidades são representadas por áreas.

Figura 6. Histrograma com suavização.

► A **função densidade de probabilidade** (fdp) atribui probabilidades à intervalos de valores do tipo (*a*,*b*), e é definida por

$$P(a < Y < b) = \int_{a}^{b} f(y) dy$$

com as seguintes propriedades:

▶ É uma função não negativa

$$f(y) \geq 0$$
.

► A área total sob a curva deve ser igual a 1

$$\int_{-\infty}^{+\infty} f(y)dy = 1.$$

- \triangleright Qualguer **função** $f(\cdot)$ que seja **não negativa** e cuja **área total** sob a curva seja igual à uma unidade caracterizará uma v.a. contínua.
- $\rightarrow f(y)$ não representa a probabilidade de ocorrência de algum evento. A área sob a curva entre dois pontos é que fornecerá a probabilidade.
- Note aue
 - ightharpoonup P(a < Y < b) = P(a < Y < b) = P(a < Y < b) = P(a < Y < b).
 - ▶ P(Y = u) = 0.

Função de distribuição acumulada

Função de distribuição acumulada

▶ Definição: a **função de distribuição acumulada** F(y) de uma v.a. contínua Y com densidade f(y) é

$$F(y) = P(Y \le y) = \int_{-\infty}^{y} f(t)dt$$
, para $-\infty < y < \infty$.

▶ De imediato, tem-se

$$P(a < Y < b) = F(b) - F(a) \quad e \quad f(y) = \frac{dF(y)}{dy},$$

desde que a derivada exista.

Seja a função

$$f(y) = \begin{cases} \frac{3}{2}y^2, & \text{se } -1 \le y \le 1\\ 0, & \text{caso contrário.} \end{cases}$$

- Mostre que é uma fdp.
- ► Calcule:
 - 1. P(Y > 0).
 - 2. P(Y > 0.5).
 - 3. $P(-0.5 \le Y \le 0.5)$.
 - 4. $P(Y \le 1)$.
 - 5. P(Y < 0.5).
 - 6. $P(Y < 0 \cup Y > 0.5)$.

Figura 7. Gráfico da fdp.

- ▶ Para mostrar que é fdp, temos que verificar:
 - ▶ $f(y) \ge 0$ (trivial).

$$f(y_i) \ge 0 \quad \forall \quad i = \{-1, +1\}.$$

$$\int_{-\infty}^{+\infty} f(y)dy = \int_{-1}^{1} \frac{3}{2}y^2 dy = \frac{3}{2} \left[\frac{y^3}{3} \right]_{-1}^{1} = \frac{3}{2} \left[\frac{1^3}{3} - \frac{(-1)^3}{3} \right] = \frac{3}{2} \left[\frac{2}{3} \right] = 1.$$

▶ Para calcular as probabilidades, vamos primeiro obter a distribuição acumulada.

$$F(y) = \int_{-\infty}^{y} f(t)dt = \int_{-1}^{y} \frac{3}{2}t^{2}dt = \frac{3}{2} \left[\frac{t^{3}}{3} \right]_{-1}^{y} = \frac{3}{2} \left[\frac{y^{3}}{3} - \frac{(-1)^{3}}{3} \right] = \frac{3y^{3}}{6} + \frac{3}{6} = 0.5y^{3} + 0.5.$$

Relembre que $F(y) = 0.5y^3 + 0.5$.

1.
$$P(Y > 0) = 1 - P(Y \le 0) = 1 - F(0) = 0.5000$$
.

2.
$$P(Y > 0.5) = 1 - P(Y \le 0.5) = 1 - F(0.5) = 1 - 0.5625 = 0.4375$$
.

3.
$$P(-0.5 \le Y \le 0.5) = F(0.5) - F(-0.5) = 0.5625 - 0.4375 = 0.1250.$$

4.
$$P(Y < 1) = P(Y \le 1) = 1$$
.

5.
$$P(Y < 0.5) = F(0.5) = 0.5625$$
.

6.
$$P(Y < 0 \cup Y > 0.5) = F(0) + (1 - F(0.5)) = 0.5 + 0.4375 = 0.9375.$$

Figura 8. Gráficos da fdp com áreas indicando as probabilidades.

Considerações finais

Considerações finais

- ► É importante entender qual a **natureza** da variável
- Há funções específicas para calcular probabilidades para cada tipo de variável.
- Probabilidade forma a base teórica dos modelos que descrevem o comportamento probabilístico de variáveis aleatórias

Figura 9. Fórmulas. Imagem de Nothing Ahead no Pexels