

Es un método para ver geométricamente la solución. Este modo presupone un conocimiento de la gráfica de f.

• Dibujo la gráfica.

- Dibujo la gráfica.
- Marco el punto x_0 .

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x_1 .

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x_1 .
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.

- Dibujo la gráfica.
- Marco el punto x_0 .
- Calculo $x_1 = f(x_0)$.
- Dibujo la diagonal.
- Reflejo en la diagonal el punto x₁.
- Mismo procedimiento para x₂.
- Mismo procedimiento para x₃.
- Así sucesivamente...

Vamos a estudiar geométricamente el comportamiento de las soluciones de

$$x_{n+1} = 0.6x_n + 1$$
,

para ello en papel de cuadritos dibuja la función f(x) = 0.6x + 1 en el intervalo [0,3]. Usa valores iniciales tales como $x_0 = 0.7$ y $x_0 = 3$.

Sea $f : \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 1.5$$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 1.5$$
 b) $x_0 = 1.9$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 1.5$$
 b) $x_0 = 1.9$ c) $x_0 = 2.1$

b)
$$x_0 = 1.9$$

c)
$$x_0 = 2.1$$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 1.5$$
 b) $x_0 = 1.9$ c) $x_0 = 2.1$ d) $x_0 = 2$

b)
$$x_0 = 1.9$$

c)
$$x_0 = 2.1$$

d)
$$x_0 = 2$$

Dado f(x) = 3.6 - 0.8x, estudia geométricamente el comportamiento de la solución $x_{n+1} = f(x_n)$ para el dato inicial $x_0 = 1$. Para ello usa papel de cuadritos y dibuja la función f(x) = 3.6 - 0.8x en el intervalo [0,3].

Fg: 8(x) = 3,6 - 0,8 x x = 1

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 0.7$$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 0.7$$
 b) $x_0 = 1$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 0.7$$
 b) $x_0 = 1$ c) $x_0 = 2$

b)
$$x_0 = 1$$

c)
$$x_0 = 2$$

Sea $f: \mathbb{R} \to \mathbb{R}$ la función de la gráfica:

Estudia geométricamente el comportamiento de las soluciones de $x_{n+1} = f(x_n)$ para los siguentes datos iniciales:

a)
$$x_0 = 0.7$$

b)
$$x_0 = 1$$

c)
$$x_0 = 2$$

a)
$$x_0 = 0.7$$
 b) $x_0 = 1$ c) $x_0 = 2$ d) $x_0 = 1.8$