# Candy Bar Ads Campaign Analysis

# Background

#### What is it?

An online ads campaign to increase the sales of a candy bar

#### What kind of data are available?

- 1,048,575 observations
- Aggregated to household level
- Demographics (Age, Income, No. of Children, etc.)
- Cookies (online activities)
- Sales (5 quarters back in time 4 weeks following the campaign)

#### What is the question?

Did the ads campaign increase sales?

# Further Data Cleaning is Needed..

- Extreme values
  - o Cookies
  - o Sales
- Not Outliers



- Negative sales valueso Post campaign sales
- Dropped



- Missing values
  - Household Income
  - Age that does the purchasing
  - O Home value
- Imputed & Dropped



## No Household Has Consistently Extreme Sales Values

- Certain households experience sudden spikes in sales for one quarter
- Households with consistent high sales were not found
- Assumptions:
  - Spikes are due to seasonal effect, other campaigns
  - Extreme values are not outliers



### **Certain Households Were Extremely Active with Few Cookies**

| Some households have 1 cookie only, but were more active than the average |                |                    |               |  |
|---------------------------------------------------------------------------|----------------|--------------------|---------------|--|
|                                                                           | No. of Cookies | No. of Days Online | No. of Events |  |
| Average                                                                   | 3.54           | 16.48              | 102.22        |  |
| Household ID:<br>436609                                                   | 1              | 6.0                | 681           |  |

- Moderate positive correlation (0.38) between No. of Cookies and No. of Events
- Further investigation on events needed
- Assumption:
  - O These households are not anomalous

### Households with Negative Post-Campaign Sales are Dropped





|                | Count     |
|----------------|-----------|
| Original data  | 1,048,575 |
| Negative Sales | 95,122    |
| After Dropping | 953,453   |

- Post campaign sales range is inconsistent with pre campaign sales
- Sales values shouldn't be negative
- Assumption: negative values were made by errors

### Missing Values are Dropped or Imputed with KNN Imputation





- Large amount of missing data
- Dropping Home Value
- Imputation on Age and Household Income
  - O KNN Imputation based on 10% of original data
  - Faster computation
  - Not doing prediction
- Assumption: data were missing completely at random

#### The Diversity of Target Audience Represents National Demographic





Source: US Census Bureau

- Visual inspection
- statistical tests (e.g. chi-square)
- Assumption: campaign tried to target groups that are representative of national demographic

## **Assume the Campaign Reached All Intended Audiences**

- Exposed to Campaign vs. Actually saw the campaign
- More data needed
- Assumption: households who are exposed will have the treatment effect



#### **Perform Matching To Balance Covariates**

- Use continues variables to check for balance
- Perform propensity score-based matching

|                 |           | No. of Individuals | No. of Cookies | No. of Days Online | No. of Events |
|-----------------|-----------|--------------------|----------------|--------------------|---------------|
| Defeve Metabine | Unexposed | 10.52              | 3.60           | 16.98              | 108.17        |
| Before Matching | Exposed   | 10.45              | 3.07           | 13.03              | 61.49         |
| After Metabing  | Unexposed | 10.28              | 2.98           | 11.84              | 46.21         |
| After Matching  | Exposed   | 10.45              | 3.07           | 13.03              | 61.49         |

• Assumption: After Matching, Control and Treatment groups are reasonably balanced in their covariates.

#### **Exposed Households Are NOT Significantly Higher Post-Campaign**

Exposed and unexposed households do not show significant difference before the campaign

- Assumption: Sales refers to revenue, NOT number of items sold or people sold to
- Results of t-test

|           | Q1    | Post-campaign |
|-----------|-------|---------------|
| Unexposed | 0.106 | 0.188         |
| Exposed   | 0.103 | 0.205         |
| p-value   | 0.611 | 0.144         |

• Assumption: independence and normal distribution are met

#### Treatment Effect is Estimated with Difference-in-Difference Regression

Y=  $\beta$ 0 +  $\beta$ 1\*[Pre/Post] +  $\beta$ 2\*[Control/Treat] +  $\beta$ 3\*[Pre/Post\*Control/Treat] +  $\beta$ 4\*[Covariates]+ $\epsilon$ 

| Coefficient | Interpretation             |
|-------------|----------------------------|
| βΟ          | Baseline                   |
| β1          | Effect of time             |
| β2          | Effect of Exposure         |
| β3          | Treatment Effect           |
| β4          | Effect of other covariates |



- Sales from Q5 Q2 treated as covariates
- Assumption:
  - Regression assumptions are met (normality, linearity, equal variance, independence)
  - D-in-D assumptions are met (parallel trends, positivity, SUTVA)



Source: Columbia University

# No Evidence to Support the Campaign Increased Sales

Treatment effect (β3): 0.0212

o p-value: **0.122** 

- † sales during and after campaign
- $\uparrow$  sales in Q4 to Q2  $\Rightarrow \uparrow$  Sales
- Number of Children, Income, Age and states are NOT significantly associated with sales

| Baseline Sales = -0.0784       |             |         |  |  |
|--------------------------------|-------------|---------|--|--|
| Features                       | Coefficient | P-value |  |  |
| Number of Individuals          | 0.0005      | 0.486   |  |  |
| 1 children                     | 0.0110      | 0.290   |  |  |
| 2+ children                    | -0.0043     | 0.584   |  |  |
| Household Income: 51 – 100k    | -0.002      | 0.796   |  |  |
| Household Income: 101 – 150k   | 0.0119      | 0.325   |  |  |
| Household Income: 151k+        | -0.0128     | 0.545   |  |  |
| Purchaser Age: 20 - 29         | 0.0378      | 0.701   |  |  |
| Purchaser Age: 30 - 39         | 0.0506      | 0.608   |  |  |
| Purchaser Age: 40 - 49         | 0.0584      | 0.553   |  |  |
| Purchaser Age: 50 - 59         | 0.0597      | 0.545   |  |  |
| Purchaser Age: 60 - 64         | 0.0291      | 0.769   |  |  |
| Purchaser Age: 65 +            | 0.0512      | 0.606   |  |  |
| During and After Campaign (β1) | 0.0814      | < 0.000 |  |  |
| Q4 Sales                       | 0.0652      | < 0.000 |  |  |
| Q3 Sales                       | 0.2225      | < 0.000 |  |  |
| Q2 Sales                       | 0.0979      | < 0.000 |  |  |
| Exposed to Campaign (β2)       | -0.0051     | 0.599   |  |  |

# The Effect of the Campaign is Difficult to Capture

- There are other factors that can impact sales
- Sales increased after campaign started, but not due to campaign alone
- Further investigation needed
- β2 minimized through matching



#### **Limitations**

#### Limitation on Knowledge

- Were there other campaigns
- Negative post-campaign sales?
- Detailed break down of cookies (e.g. add-to-cart)

#### Limitation on Techniques

- Potential multicollinearity issue
- Computational power during imputation
- Imbalanced covariates
- Test assumptions were difficult to validate

### **Next Steps**

- Investigate abnormal and missing values
- Use the whole dataset for analysis
- Collect more features (e.g. breakdown of cookies)
- More feature engineering
- More thorough matching
- Explore historical campaigns

Keep practical significance (time & cost) in mind