Vytěžování dat

Filip Železný

Katedra kybernetiky skupina Inteligentní Datové Analýzy (IDA)

13. října 2009

Strom lze převést na seznam pravidel ve tvaru

if
$$\langle podmínky \rangle$$
 then $\langle t \check{r} ida \rangle$

Strom lze převést na seznam pravidel ve tvaru

if
$$\langle podmínky \rangle$$
 then $\langle třída \rangle$

if teplota=horečka & bolest_svalů = ano
then chřipka
if teplota=horečka & bolest_svalů = ne

Strom lze převést na seznam pravidel ve tvaru

if
$$\langle podmínky \rangle$$
 then $\langle t \check{r} ida \rangle$

if teplota=horečka & bolest_svalů = ano
then chřipka
if teplota=horečka & bolest_svalů = ne
then nachlazení
if teplota=zvýšená then nachlazení

Strom lze převést na seznam pravidel ve tvaru

if
$$\langle podmínky \rangle$$
 then $\langle t \check{r} ida \rangle$

if teplota=horečka & bolest_svalů = ano
then chřipka
if teplota=horečka & bolest_svalů = ne
then nachlazení
if teplota=zvýšená then nachlazení
if teplota=normální then hypochondr

Pravidla lze ale hledat i přímo z dat.

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	M	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	M	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

 ${f if}$ příjem = vysoký & bydliště = Praha & pohlaví = M ${f then}$ splácí

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	M	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

 \mathbf{if} příjem = vysoký & $\frac{\mathsf{bydlište}}{\mathsf{e}} = \frac{\mathsf{Praha}}{\mathsf{e}}$ pohlaví = M \mathbf{then} splácí

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

if $p\check{r}(jem = vysok\acute{y} \& pohlav\acute{l} = M$ then $spl\acute{a}c\acute{l}$

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

if příjem = vysoký & pohlaví = M then splácí

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

 ${f if}$ příjem = vysoký ${f then}$ splácí

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	M	splácí

if příjem = vysoký then splácí

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	М	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	M	splácí

if příjem = vysoký then splácí

Chceme najít nejlepší pravidlo pro třídu splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

 ${f if}$ příjem = vysoký ${f then}$ splácí

Alternativa: specializace podmínek

Alternativa: specializace podmínek

Nemá smysl dále specializovat.

Specializace bez předem zvoleného příkladu

Specializace bez předem zvoleného příkladu

Specializace bez předem zvoleného příkladu

Mnohem větší prohledávací prostor, ale pravidlo může být nakonec lepší.

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

if příjem = vysoký then splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	M	splácí
nízký	Praha	М	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

if příjem = vysoký then splácí

		úvěr
Praha	М	splácí
Plzeň	M	splácí
Praha	М	nesplácí
Praha	Ž	splácí
Brno	М	splácí
	Plzeň Praha Praha	Plzeň M Praha M Praha Ž

- if příjem = vysoký then splácí
- if příjem = střední then splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	М	splácí
nízký	Praha	М	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

- if příjem = vysoký then splácí
- if příjem = střední then splácí

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	М	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

- if příjem = vysoký then splácí
- if příjem = střední then splácí

Pokrývací strategie

- Vygeneruj co nejobecnější konzistentní pravidlo a vymaž pokryté příklady.
- Opakuj krok 1, dokud jsou některé příklady nepokryté.

Tyto kroky postupně uplatní na každou třídu.

Algoritmus pro tvorbu seznamu rozhodovacích pravidel

```
AQ(D) /* by Richard Michalski */
Input: D trénovací data
SeznamPravidel = \emptyset
for každou třídu t do
    P = \text{instance třídy } t z D
    N = ostatní instance D
   repeat
        Najdi pravidlo R pokrývající nějaké instance z P a nepokrývající žádný
        příklad z N (konzistentní)
        Přidej R do SeznamPravidel
        Vymaž z P všechny instance pokryté pravidlem R
    until P = \emptyset:
end
```

Separace v prostoru dvou reálných příznaků

Zvolen jeden modrý příklad

Separace v prostoru dvou reálných příznaků

Zobecnění s použítím hraničních hodnot (předchozí diskretizace)

Separace v prostoru dvou reálných příznaků

Přidání dalšího pravidla

Separace v prostoru dvou reálných příznaků

Výsledek pokrývacího algoritmu

Neúplnost klasifikace podle pravidel

- Některé instance seznam pravidel nemusí rozhodnout!
- Narozdíl od rozhodovacího stromu

Neúplnost klasifikace podle pravidel

- Řeší se zavedením *implicitního* (default) pravidla **if** *true* **then** *většinová třída*
- které se použije, pokud podmínky žádného jiného pravidla neplatí.

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - り Q (C)

Pravidlo pro modrou třídu

Potom pravidlo pro zelenou třídu. Překrytí - konflikt!

11 / 1

Jak seznamem klasifikovat novou instanci?

Modře, protože modré pravidlo je v seznamu dřív.

11 / 1

Modře, protože modré pravidlo je v seznamu dřív.

Při obráceném pořadí pravidel klasifikujeme instanci zeleně.

Na pořadí pravidel záleží!

Důsledek: implicitní pravidlo

if true then většinová třída

vždy na konec seznamu.

Rozhodovací pravidla a asociace

 Hledání nejlepších podmínek rozhodovacího pravidla je vlastně hledání častých asociací v dané třídě instancí.

- Asociace ≈ konjunkce současně platných podmínek
- Chceme, aby platila v co nejvíce instancích dané třídy a žádné instanci ostatních tříd.
- Co kdybychom jako třídu chápali všechny instance v datech?
- Cíl se zjednoduší: chceme asociace platné v co nejvíce instancích dat.

Asociace

- Chceme najít asociace platné v co nejvíce instancích dat.
- Nejlepší řešení je triviální: prázdná konjuknce podmínek, tj. true.
- Platí ve všech instancích, ale není ničím zajímavá!
- Rozšiřme tedy zadání: chceme všechny asociace platné alespoň v p% instancí.
- Veličina p: tzv. podpora (support)

Podpora: podíl instancí, v nichž asociace platí, mezi všemi instancemi

příjem	bydliště	pohlaví	úvěr
vysoký	Praha	М	splácí
vysoký	Plzeň	М	splácí
nízký	Praha	M	nesplácí
vysoký	Praha	Ž	splácí
střední	Brno	М	splácí

• Asociace A =

$$\mbox{příjem} = \mbox{vysoký} \ \& \ \mbox{bydliště} = \mbox{Praha}$$
 má podporu $2/5 = 0.4.$

Zapisujeme

$$podp(A) = 0.4$$

příjem	bydliště	
vysoký	Praha	
vysoký	Plzeň	
nízký	Praha	
vysoký	Praha	
střední	Brno	

příjem	bydliště
vysoký	Praha
vysoký	Plzeň
nízký	Praha
vysoký	Praha
střední	Brno
	Brno

příjem	bydliště	
vysoký	Praha	
vysoký	Plzeň	
nízký	Praha	
vysoký	Praha	
střední	Brno	

- true
- příjem = vysoký

bydliště	
Praha	
Plzeň	
Praha	
Praha	
Brno	

- true
- příjem = vysoký
- bydliště = Praha

příjem	bydliště	
vysoký	Praha	
vysoký	Plzeň	
nízký	Praha	
vysoký	Praha	
střední	Brno	

- true
- příjem = vysoký
- bydliště = Praha
- příjem = vysokýbydliště = Praha

Všechny asociace s podporou alespoň 0.4

příjem	bydliště	
vysoký	Praha	
vysoký	Plzeň	
nízký	Praha	
vysoký	Praha	
střední	Brno	

- true
- příjem = vysoký
- bydliště = Praha
- příjem = vysokýbydliště = Praha

• Asociace, které mají požadovanou podporu, se nazývají časté.

Analýza transakcí

- Hledání asociací se uplatňuje zejm. v "analýze transakcí" ("analýze nákupních košíků")
- Příznaky: položky sortimentu. Instance: obsah nákupního košíku.
 Hodnoty příznaků {ano, ne}.

pivo	párky	horčice	pleny
ano	ne	ne	ano
ne	ano	ano	ne

• Zde místo např.

• zapisujeme (a chápeme) asociaci jako množinu položek, např.

{pivo, pleny}

Princip monotonicity

pivo	párky	horčice	pleny
ano	ne	ne	ano
ano	ne	ano	ano
ne	ano	ano	ne
ano	ano	ano	ne
ano	ano	ano	ano

Princip monotonicity

pivo	párky	horčice	pleny
ano	ne	ne	ano
ano	ne	ano	ano
ne	ano	ano	ne
ano	ano	ano	ne
ano	ano	ano	ano

Pozorování:

ullet Není-li množina položek častá, pro p=0.5 např.

 $\{\mathsf{pivo}, \mathsf{párky}, \mathsf{hořčice}\}$

Princip monotonicity

pivo	párky	horčice	pleny
ano	ne	ne	ano
ano	ne	ano	ano
ne	ano	ano	ne
ano	ano	ano	ne
ano	ano	ano	ano

Pozorování:

• Není-li množina položek častá, pro p=0.5 např.

{pivo, párky, hořčice}

není časté ani jakékoliv její rozšíření, např.

{pivo, párky, hořčice, pleny}

Postupujeme s vyšších pater do nižších (specializace).

Prázdná množina je vždy častá. Kandidáti o patro níž: $\{A\}, \{B\}, \{C\}, \{D\}.$

40 > 40 > 42 > 42 > 2 > 2 000

Postupujeme s vyšších pater do nižších (specializace).

V databázi zjistíme, že $\{B\}$ není časté, ostatní kandidáti ano.

18 / 1

Postupujeme s vyšších pater do nižších (specializace).

 $\{AB\}, \{BC\}, \{BC\}$ nemohou být časté (monotonicita). Zbývají kandidáti $\{AC\}, \{AD\}, \{CD\}$.

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ かなで

Postupujeme s vyšších pater do nižších (specializace).

V databázi zjistíme, že jsou všichni kandidáti častí.

Postupujeme s vyšších pater do nižších (specializace).

V dalším patře už pouze kandidát $\{ACD\}$.

Postupujeme s vyšších pater do nižších (specializace).

V databázi zjistíme, že kandidát není častý. Žádné další časté množiny nejsou.

Asociační pravidlo

Pravidlo ve tvaru

if Ant then Suc

kde *Ant* a *Suc* jsou množiny položek nazývané *antecedent* resp. *sukcedent*. Pravidlo též zapisujeme jako

$$Ant \rightarrow Suc$$

Podpora asociačního pravidla R definována jako

$$podp(Ant \rightarrow Suc) = podp(Ant \cup Suc)$$

• Spolehlivost (confidence) asociačního pravidla R definována jako

$$spol(Ant \rightarrow Suc) = \frac{podp(Ant \cup Suc)}{podp(Ant)}$$

◆ロト ◆卸 ト ◆差 ト ◆差 ト ・ 差 ・ か Q (*)

Asociační pravidlo

Hledání asociačních pravidel algoritmem APRIORI

- Hledáme pravidla Ant → Suc, která jsou častá (tj. s podporou alespoň p) a spolehlivá (tj. se spolehlivostí alespoň s).
- Je-li pravidlo $Ant \rightarrow Suc$ časté, tak množina položek (asociace) $Ant \cup Suc$ je častá.
- Nejprve tedy najdeme všechny časté množiny položek.
- Pro každou častou množinu položek X a každou její neprázdnou vlastní podmnožinu $M\subset X$ zkusíme, zda

$$\frac{podp(X)}{podp(M)} \ge p$$

Pokud ano, tak pravidlo

$$M \to M \setminus X$$

je časté a spolehlivé.

Hledání asociačních pravidel: příklad

 Hledáme asociační pravidla s podporou alespoň 0.1 a spolehlivostí alespoň 0.6. Právě 13% nákupních košíků obsahuje každou položku z množiny

 Množina je tedy častá. Vyberme nějakou její vlastní neprázdnou podmnožinu, např.

$$\{\mathsf{p\'arky}, \mathsf{ho\'r\'cice}\}$$

Pravidlo

$$\{párky, hořčice\} \rightarrow \{pivo, otvírák\}$$

má podporu 13%. Pokud navíc právě 19% nákupních košíků obsahuje párky i horčici, má pravidlo spolehlivost

$$\frac{13}{19} > 0.6$$

a je tedy časté i spolehlivé.