

EXAMENUL DE BACALAUREAT – 2007

Proba scrisă la MATEMATICĂ PROBA D

Varianta047

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ profil\ Militar,\ specializarea:\ specializarea\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\ Militar,\ specializarea:\ specializarea\ profil\ profil\$

Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore. La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se determine $a \in \mathbb{R}$ pentru care dreptele $d_1: x+y-1=0$ și $d_2: 2x+ay+3=0$ sunt paralele.
- (4p) b) Să se determine numărul diagonalelor unui poligon convex cu 5 laturi.
- (4p) c) Să se calculeze modulul numărului complex $z = i + i^2 + i^3 + ... + i^7$.
- (4p) d) Să se calculeze raza cercului de ecuație $x^2 + y^2 2x = 3$.
- (2p) e) Să se calculeze suma $\sin \frac{\pi}{4} + \sin \frac{5\pi}{4}$.
- (2p) | f) Să se calculeze aria unui pătrat care are perimetrul egal cu 8.

SUBIECTUL II (30p)

- **1.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^2 3x + 2$ și se notează cu a, b rădăcinile ecuației f(x) = 0.
- (3p) | a) Să se determine valoarea minimă a funcției f.
- (3p) b) Să se calculeze valoarea sumei $\frac{1}{a} + \frac{1}{b}$.
- (3p) c) Să se determine numerele reale y pentru care $f(3^y) = 0$.
- (3p) d) Să se rezolve ecuația $f(\log_2 t) = 0$, $t \in (0, \infty)$.
- (3p) e) Să se calculeze determinatul $\begin{vmatrix} 3a & 2b \\ a & b \end{vmatrix}$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = \frac{1}{1+x^2}$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbf{R}$.
- (3p) b) Să se rezolve inecuația $f(x) \le \frac{1}{2}$, $x \in \mathbb{R}$.
- (3p) c) Să se determine ecuația asimptotei spre $+\infty$ la graficul funcției f.
- (3p) d) Să se calculeze $\lim_{n\to\infty} (n^2 \cdot f(n))^{2n}$.
- (3p) e) Să se calculeze $\int_{0}^{1} f(x) dx$.

Ministerul Educației și Cercetării - Serviciul Național de Evaluare și Examinare

SUBIECTUL III (20p)

Se consideră polinomul $f = X^3 + 2X + 2$.

- (4p) a) Să se arate că polinomul f nu are rădăcini raționale.
- (4p) $| \mathbf{b} |$ Să se arate că polinomul f are o singură rădăcină reală.

Notăm cu $a \in \mathbf{R}$ unica rădăcină reală a polinomului f și cu $\mathbf{Q}(a) = \{g(a) | g \in \mathbf{Q}[X]\}.$

- (4p) c) Să se verifice că $0 \in \mathbf{Q}(a)$ și $1 \in \mathbf{Q}(a)$.
- (2p) d) Să se arate că dacă $\alpha, \beta \in \mathbf{Q}(a)$, atunci $\alpha + \beta \in \mathbf{Q}(a)$ şi $\alpha \cdot \beta \in \mathbf{Q}(a)$.
- (2p) e) Să se arate că $\mathbf{Q}(a) = \{ p + qa + ra^2 \mid p, q, r \in \mathbf{Q} \}.$
- (2p) f) Să se arate că, dacă $p,q,r \in \mathbb{Q}$ şi $p+qa+ra^2=0$, atunci p=q=r=0.
- (2p) $| \mathbf{g} |$ Să se arate că $a^{2006} \in \mathbf{R} \setminus \mathbf{Q}$.

SUBIECTUL IV (20p)

Se consideră funcțiile $f_n: \mathbf{R} \to \mathbf{R}$, $f_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}$, $\forall n \in \mathbf{N}^*$, $\forall x \in \mathbf{R}$.

- (4p) a) Să se verifice că $f'_n(x) = f_{n-1}(x), \forall n \in \mathbb{N}, n \ge 2, \forall x \in \mathbb{R}$.
- (4p) b) Să se verifice că $f_{n+1}(x) = \frac{x^{n+1}}{(n+1)!} + f_n(x), \quad \forall n \in \mathbb{N}^*, \quad \forall x \in \mathbb{R}.$
- (4p) c) Să se arate că $f_2(x) \ge \frac{1}{2}$, $\forall x \in \mathbf{R}$.
- (2p) d) Să se verifice că $1 + \int_{0}^{x} f_{n}(t)dt = f_{n+1}(x), \forall n \in \mathbb{N}^{*}, \forall x \in \mathbb{R}$.
- (2p) e) Utilizând metoda inducției matematice, să se arate că $f_{2n}(x) > 0$, $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{N}^*$.
- (2p) $| \mathbf{f} |$ Să se arate că funcția f_{2007} este bijectivă.
- (2p) g) Să se arate că funcția f_{2006} este convexă pe ${\bf R}$.