Mg not like Be or the rest of the group. It is intermediate between purely ionic and purely covalent.

Mg²⁺ is highly polarizing and therefore does form some non-ionic compounds in addition to ionic compounds

Mg(OH)₂ like Be(OH)₂ is more covalent than the other M(OH)₂ compounds which dissolve readily in H₂O to give basic solutions (ionic oxides are basic whereas covalent oxides, if they dissolve, are acidic)

(actually Be²⁺ and Mg²⁺ form amphoteric oxides)

Calcium, Strontium, Barium and Radium

These form a rather close-knit group with properties that vary gradually with increasing size $Ca \rightarrow Ra$

- electropositive nature increases
- hydration energies of the salts increase
- insolubility of most salts increase
- larger cations tend to stabilize larger anions O_2^{2-} , O_2^{-} , I_3^{-}

Binary Compounds of Group IIA

Oxides

MO white, high-melting crystalline materials NaCl fcc structures

most important member is:

$$CaCO_3 \rightarrow CaO + CO_{2(g)}$$

 $\Delta H = 178.1 \text{ kJ/mol}$

CaO is made on a vast scale for the cement industry (from limestone)

except for Mg^{2+} the following is true: $MO + H_2O \rightarrow M(OH)_2 + \text{heat}$ $\underline{\text{strong bases!}}$ $\underline{Mg(OH)_2 \text{ is a weak base}}$

<u>Halides</u> all are ionic

 MX_2 can be made from dehydration of hydrates $MX_2 \cdot xH_2O$ (X can vary)

Solubilities of MX_2 decrease as you go down the group except for MF_2 compounds which are more soluble for: $Ba^{2+} > Sr^{2+} > Ca^{2+} > Mg^{2+}$

Q Why?

<u>A</u> Mg²⁺ is rather small so contact with F⁻ is good in the crystal packing → stabilizes the crystal giving a high lattice energy & Ba²⁺ is large, does not make good contact with F⁻ in a crystal

Summary

Periodic Chemical Properties as developed in Chapter 8 are evident in Alkaline Earths, Group IIA

<u>Be</u>

- 1. covalent even with electronegative elements e.g. BeF₂, [BeF₄]²⁻, [Be(OH₂]²⁺
- 2. forms no simple Be²⁺ ionic compounds
- 3. forms four-coordinate compounds
- 4. forms covalent Be-C bonds as in BeR_2 (R = alkyl)
- 5. oxide BeO and Be(OH)₂ are amphoteric
- 6. halides $[BeX_2]_n$ are covalent polymers
- 7. hydride $[BeH_2]_n$ is also a covalent polymer

Mg

- 1. forms ionic substances that have partial ionic character
- 2. forms many ionic compounds with uncomplexed Mg²⁺
- 3. MgO is basic and the hydroxide is only weakly basic
- 4. forms ionic MgX₂ halides
- 5. MgH₂ is only partially covalent

Ca, Sr, Ba

- 1. form only ionic substances
- 2. do not form covalent bonds
- 3. MO are basic and the $M(OH)_2$ are strong bases with increasing solubilities with larger cations
- 4. MH₂ are strongly H⁻ based, ionic compounds

Carbon

Allotropes (two main ones)

- 1. graphite $C_{(s)}$
- 2. diamond $C_{(s)}$
- Graphite sheets of carbon atoms linked in hexagon shapes

This is a sheet, held together by C-C bonds

- Rings of carbon atoms "lock" together; this allows them to conduct electricity in the sheet
- The next sheet or layer on top is held only by weak van der Waals forces

2. Diamond

- each carbon is tetrahedral (sp³)
- the network is threedimensional
- hard to break the C-C bonds so diamond is hardest substance known
- diamond is used as an abrasive (cutting tools)

Other forms of Carbon

3. <u>Charcoal</u> is mostly graphitic carbon but it is prepared by heating wood without oxygen

cellulose (C, H, O)
$$\xrightarrow{\Lambda}$$
 C + H₂O

Finely powdered charcoal is <u>activated</u> <u>charcoal</u>. It absorbs a variety of molecules from air and water so it is used in filters.

4. <u>Coke</u> is similar to charcoal but it is made by heating soft (bituminous) coal. Coke is used to reduce oxides to metals.

coal (C, H)
$$\xrightarrow{\Delta}$$
 C + small chain hydrocarbons

5. <u>Carbon black</u> is finely divided carbon made by heating hydrocarbons or paraffins (wax).

ex.
$$CH_4 + O_{2(g)} \rightarrow C_{(s)} + 2H_2O$$
 limited supply only

6. <u>Fullerenes</u> C₆₀, C₇₀

Buckminsterfullerene "Bucky-Balls"

"Bucky-Balls", C₆₀, look like soccer balls. Their shapes have 60 vertices and 32 faces with 20 hexagons and 12 pentagons

 C_{70} is similar but is "pinched" around the middle and is larger than C_{60}

Oxides of Carbon

A. CO carbon monoxide

B. CO₂ carbon dioxide

A. Carbon monoxide CO

- Preparation:

impure CO is found wherever fuels are burned – it is mixed with CO₂ and sometimes other hydrocarbons

- Used as a fuel in the "water gas" reaction

$$C_{(s)} + H_2O_{(g)} \xrightarrow{1000 \text{ °C}} \boxed{CO_{(g)} + H_{2(g)}}$$
"water gas"

$$\begin{vmatrix} fuel \\ CO_{(g)} + H_{2(g)} \end{vmatrix} + O_{2(g)} \xrightarrow{burn} CO_2 + H_2O$$

- Used as a reducing agent. CO is used to reduce metal oxides to metals.

ex. FeO + CO
$$\xrightarrow{\Delta}$$
 Fe + CO₂

- poisonous to red-blooded animals. Why? because CO is very poisonous to our respiratory cycle. It binds to the Fe²⁺ (heme) ion in hemoglobin and blocks it from carrying O₂ to the cells.

- B. Carbon dioxide CO₂
- Preparations: (small-scale)

(a)
$$2CO_{(g)} + O_{2(g)} \xrightarrow{\Delta} 2CO_{2(g)}$$
 (burning of CO in air)

(b)
$$2C_8H_{18} + 25 O_2 \rightarrow 16CO_2 + 18H_2O$$

(formed by complete combustion of hydrocarbons)

Industrial Production:
 CO₂ is a <u>by-product</u> of the Haber-Bosch process. A by-product is not a <u>major product</u> but a <u>minor one</u>.

<u>CO</u>₂ is used to make <u>urea</u> Reaction of CO₂ to make urea:

$$CO_{2(g)} + 2NH_{3(g)} \xrightarrow{200 \text{ atm}} (NH_2)_2CO + H_2O$$
(urea)

Structure

$$H_2N = H_2N$$
Use of week

Use of urea:

Urea is a solid, unlike NH₃. It can be easily shipped into agricultural areas and mixed into the soil. It then slowly reacts with H₂O to give back NH₃ and CO₂. $(NH_2)_2CO + H_2O \rightarrow CO_2 + 2NH_3$

- Other Sources of CO_2 by heating metal carbonates $CaCO_{3(s)} \xrightarrow{\Delta} CaO_{(s)} + CO_{2(g)}$ (limestone) (lime) <u>lime</u> or <u>CaO</u> (<u>limestone is CaCO</u>₃) is <u>calcium oxide</u> which is an important chemical

16-18 million tons of lime are produced annually in the U.S.

What is it used for?

- metallurgical industry
- chemical industry
- waste water treatment
- "scrubbing" SO₂ from smoke stack gases
- making <u>cement</u>

<u>Cement</u> – Portland ceme	ent
lime powder (CaO)	
+ sand (SiO ₂)	
+ clay (SiO ₂ · Al ₂ O ₃ oxio	des)
	heat
Portland Cement	_
C-Si-O-Si-O-Si	strong bonds