

A Tensorized Transformer for Language Modeling

Tianjin University

Xindian Ma, Peng Zhang, Shuai Zhang, Nan Duan, Yuexian Hou, Dawei Song, Ming Zhou

NeurIPS 2019

Background

- Transformer has led to breakthroughs in natural language processing tasks.
- Transformer, and its variant model BERT, limit the effective deployment of the model to limited resource setting.
- Some compression methods have been proved.
 - TT-embedding
 - BTRNN
 - Tensorizing Neural Networks

Some Compression Methods

- TT-Embedding [1]
 - Tensor-Train decomposition is used to compress the embedding layer (look-up table).
- BTRNN [2]
 - Block-term tensor decomposition is used to compress the input layers in LSTM
- Tensorizing Neural Networks [3]
 - Tensor Train format is used to compress the fully-connected layers.
- [1] Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan Oseledets. Tensorized embedding layers for efficient model compression. arXiv preprint arXiv:1901.10787, 2019
- [2] Jinmian Ye, Linnan Wang, Guangxi Li, Di Chen, Shandian Zhe, Xinqi Chu, and Zenglin Xu. Learning compact recurrent neural networks with block-term tensor decomposition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 9378–9387, 2018.
- [3] Novikov A, Podoprikhin D, Osokin A, et al. Tensorizing neural networks[C]//Advances in neural information processing systems. 2015: 442-450.

Compressed Transformer

Transformer

model for state-of-the-art results in NLP:

- neural machine translation
- Q&A
- NER
- POS-tagging

Up to 213×10⁶ parameters

221≈ 2×106 parameters in one Feed Forward block!

Output

Methods

Explicit structure:

Tensor- train SVD + finetune

Problem Formulation

- The goals are:
 - To linearly represent a self-attention by a group of basic vectors
 - To compress multi-head attention in Transformer
 - After compressing, it can be directly integrated into the encoder and decoder framework of Transformer

Methods

Basic Ideas

- Low-rank decomposition
- Parameters sharing

Using Tucker decomposition formulation is to construct Single-block attention

Using Block-term decomposition + Parameters sharing formulation is to construct multi-head mechanisms(Multi-linear attention)

Transformer Language Modeling

Scaled Dot Production Attention

• Attention(Q, K, V) =
$$softmax\left(\frac{QK^T}{\sqrt{d}}\right)V$$

Multi-head Attention

Multi-group parameters

• $MultiHeadAttention(Q, K, V) = Concat(head_1, \cdots, head_k)W^o$ $where \ head_i = Attention(QW_i^Q, KW_i^K, VW_i^V)$

Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[C]//Advances in neural information processing systems. 2017: 5998-6008.

Linear Representation

• **Theorem:** "Scaled Dot Production Attention" can be represented by a linear combination of a set of basis vectors.

$$Attention(Q, K, V) = (e_1, \dots, e_n)M$$

• where $M \in \mathbb{R}^{n \times d}$ is a coeffcient matrix.

Tucker Decomposition

Single-Block Attention

• is the outer product.

$$Attention_{\text{TD}}(\mathcal{G}; Q, K, V) = \mathcal{G} \cdot_{1} Q \cdot_{2} K \cdot_{3} V$$

$$= \sum_{i=1}^{I} \sum_{j=1}^{J} \sum_{m=1}^{M} \mathcal{G}_{ijm} Q_{i} \circ K_{j} \circ V_{m}$$

Single-Block Attention in Transformer

Lower-Rank Decomposition

The Core-tensor *G* is defined as follows.

•
$$G_{ijm} = \begin{cases} rand(0,1), & i = j = m \\ 0 & otherwise \end{cases}$$

- In this case, it can be set as I = J = M = R
- R is the Rank.

The time complexity of Single-block attention is $\mathcal{O}(N^3)$.

The time complexity of Scaled dot production attention is $O(N^2d)$.

Reconstruction for Scaled dot product attention

 Corollary: Scaled dot product attention can be reconstructed by Single block attention

• Attention
$$(Q, K, V)_{i,m} = \sum_{j=1}^{J} Attention_{TD}(\mathcal{G}; Q, K, V)_{i,j,m}$$

• where i, j and m are the indices of the single – block attention's ouput.

Graphing of Reconstruction

Figure 1: Tensor \mathcal{A} is a 3-order tensor, which represents the Single-block attention in the left. $\mathcal{A}_{i,j,k}$ is the entry of the tensor \mathcal{A} . In the right, the graph represents that the summing of tensor slices which is from the tensor splitting in index j.

How to Get Richer Representation

- Tensor Split
- Matrices Concat

Tensor Split

Matrices Concat

Multi-linear Attention by Block-term Decomposition

- It is important to constructed the multi-head mechanism for modeling long-range dependency.
- How to design the model with higher compression ratios?
 - 1) Block-term decomposition (method)
 - 2) Parameters sharing (idea)

Block-term Decomposition

Chen Y, Jin X, Kang B, et al. Sharing Residual Units Through Collective Tensor Factorization To Improve Deep Neural Networks[C]//IJCAI. 2018: 635-641.

Multi-linear Attention by Block-term Decomposition

In order to construct the multi-head mechanism, Multi-linear attention can be formulated as follows:

$$MultiLinearAttention(\mathcal{G};Q,K,V) = SplitConcat\left(\frac{1}{h}*(T_1+\cdots+T_h)\right)W^O$$

$$where T_j = Attention_{TD}(\mathcal{G}_j;QW^q,KW^K,VW^V)$$

Parameters Sharing

Multi-Linear Attention

Experimental Results in Language Modeling

One-Billion

Model	Params	Test PPL	
RNN-1024+9 Gram [4]	20B	51.3	
LSTM-2018-512 [17]	0.83B	43.7	
GCNN-14 bottleneck [8]	_	31.9	
LSTM-8192-1024+CNN Input [17]	1.04B	30.0	
High-Budget MoE [31]	5B	28.0	
LSTM+Mos [36]	113M	37.10	
Transformer+adaptive input [1]	0.46B	23.7	
Transformer-XL Base [7]	0.46B	23.5	
Transformer-XL Large [7]	0.8B	21.8	
Tensorized Transformer core-1	0.16B	20.5	
Tensorized Transformer core-2	0.16B	19.5	

Model	PTB			WikiText-103			
	Params	Val PPL	Test PPL	Params	Val PPL	Test PPL	
LSTM+augmented loss [15]	24M	75.7	48.7	_	_	48.7	
Variational RHN [38]	23M	67.9	65.4	_	_	45.2	
4-layer QRNN [21]	_	_	_	151M	_	33.0	
AWD-LSTM-MoS [36]	22M	58.08	55.97	_	29.0	29.2	
Transformer+adaptive input [1]	24M	59.1	57	247M	19.8	20.5	
Transformer-XL [7]	24M	56.72	54.52	151M	23.1	24.0	
Transformer-XL+TT [18]	18 M	57.9*	55.4*	130M	23.61*	25.70*	
Tensorized Transformer core-1	12M	60.5	57.9	80.5M	22.7	20.9	
Tensorized Transformer core-2	12M	54.25	49.8	86.5M	19.7	18.9	

PTB

WikiText-103

Experimental Results in Language Modeling

WMT-16 English-to-German

Model	Params	BLEU
Base-line [30]	_	26.8
Linguistic Input Featurec [29]	_	28.4
Attentional encoder-decoder + BPE [30]	_	34.2
Transformer [34]	52M	34.5*
Tensorized Transformer core-1	21M	34.10
Tensorized Transformer core-2	21.2M	34.91

Rico Sennrich, Barry Haddow, and Alexandra Birch. Edinburgh neural machine translation systems for wmt 16.arXiv preprint arXiv:1606.02891, 2016.

Conclusion

- We provided a novel self-attention method, namely Multi-linear attention.
- The Tensorized Transformer model combines two compression ideas, parameters sharing and low-rank decomposition.
- Our methods achieve higher compression ratio and better experimental results in language modeling.
- The Tensorized Transformer model can be implied to more NLP tasks with limited resources through further optimization

Thanks!