Docker Container-based Scalable Partitioning for Apache Spark Scale-Up Server Scalability

ABSTRACT

We propose a docker container-based scalable partitioning method to improve performance scalability for Apache Spark on a scale-up server through eliminating garge collection and remote socket access overheads by using an efficient partitining method for a NUMA-based manycore scale-up server. The proposed docker container based partitioning method is evaluated using representative benchmark programs, and evaluation revealed that our partitioning method showed performance improvement by ranging from 1.2x through 2.2x on a 120 core scale-up system.

CCS Concepts

•Computer systems organization → Embedded systems; *Redundancy*; Robotics; •Networks → Network reliability;

Keywords

ACM proceedings; LATEX; text tagging

1. INTRODUCTION

Popular big data analytics infrastructures(e.g, Spark [23], Hadoop [20]) have been developed for a cluster scale-out environment, which adds nodes to a cluster system. On the other hand, scale-up environment, which adds resources(e.g, cpu, memory) to a single node system, only special-purpose techniques exist. In science and machine learning fields, researchers commonly used scale-up server environments, and they now need big data analytics frameworks [9]. Moreover, hardware trends are beginning to change for the scale-up server; a scale-up server can now have substantial CPU, memory, and storage I/O resources [3]. Therefore, the big data analytics infrastructure on scale-up server is also important.

Spark is one of widely used big data analytics framework. However, Saprk has been reported that it does not scale on the single node scale-up server because of garbage collection(GC) overhead [2] [16] [14] and locality of memory accesses on Non-Uniform Memory Access(NUMA) architecture [8]. A.J. Awan et al. analysed GC time and compared state of the art garbage collectors by changing the GC. Moreover, in order to avoid high costs of remote

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

XXXXX 'XXXX', USA © 2016 ACM. ISBN XX...\$15.00 DOI: XX.XXX/XXX_X memory access, researchs have attempt to create a new NUMA balancing [12] [19], but these method also can not satisfactory compared to partitioning approach(see section 2).

Our goals is to reduce the GC and the memory access latency overheads that have been a major problem of spark scalability. To achieve our goal, this paper presents a new partitioning method that eliminates the GC and remote access overheads by applying docker container-based efficieny partitioning for Spark on scale-up server. Our basic key idea is that shared-memory system is dealt with as the distributed-system using partitioning approch in order to eliminate GC and memory access overheads. We used docker containers since the overhead of a Docker container is much smaller than a traditional virtual machine [15] and the container-based approach can easily combine existing container management solutions such as Google Borg [21] and Kubernets [1].

Our method make shared resource to small size group as much as possible(minimal partition value is per-socket) because prior work have showed that shared resource contention should be minimized by partitioning shared resource accesses [17]. Small size cpu groups can mitigate the thread serialized problem cased by GC pause time, and these group may only access to local NUMA memory. Moreover, partiting method can somewhat reduce the operating systems scalability problems(e.g, address space problem [10] [11], cache communication overhead [7] [13])

To evaluate our approach, we applied our paritioning method on 120 core scale-up server. A too small size partitioning may reduce GC overhead and remote memory access, but the benefits do not come for free because it may cause straggler tasks problem [16] [18]. Thus, this paper additionally describes performance scalability depending on partitioning size. Evaluation of the proposed best-fit partitioning on a 120 core system reveals that the execution times could be improved by 1.7x, 1.6x, 1.1x and 2.2x for Word Count, Naive Basian, Grep and K-means in BigDataBenchmark [22], respectively.

Contributions. Our research makes the following contributions:

- We analyzed Apache Spark performance scalability on 120 core scale-up server. The results of scalability was that parrlel GC can improve performance scalability up to 60 core, but then the GC flattens out after 60 core.
- We evaluated proposal partitioning approach on a manycore scale-up server thereby mitigating scale-up server scalability problems in BigDataBench. Our approach improved throughput and execution time from 1.5x through 2.7x on 120 core.

The rest of this paper is organized as follows. Section 2 describes the test-bed and spark scalability problem. Section 3 describes the our partitioning approach and Section 4 shows the results of the experimental evaluation. Section 5 describes related works. Finally,

section 6 concludes the paper.

2. SCALE-UP SERVER SCALALBILITY

2.1 Test-bed and Benchmark

Apache Spark. Apache Spark is a framework for large scale distributed computation. RDD(Resilient Distributed Datasets) is a collection of partitions of records, and the RDD is managed as LRU(Least Recently Used), so when there is not enough memory, Spark evits the least recently used RDD. Spark may has a substantial performance when dataset can fit in memory.

Test-bed. We use a machine to evaluate on real hardware: an 120-core (8 sockets \times 15 cores) Intel Xeon E7-8870 (the same machine used for evaluation in chapter X) and, to show that our conclusions generalize. Hyper-Threading is disabled, and Linux kernel 4.5-rc6.

Figure 3: Test-bed intel xeon archtecture.

Benchmark. 벤치마크와 워크로드에 대한 BigData Benchmark를 사용하였다.

- Word Count. We have developed a novel lightweight logbased structures with efficient log management implementation
- **Grep.** We applied the in Linux kernel to two reverse mapping(anonymous, file) on Our design improved throughput

and execution time from 1.5x through 2.7x on 120 core.

- Naive Basian. We applied the in Linux kernel to two reverse mapping(anonymous, file) on Our design improved throughput and execution time from 1.5x through 2.7x on 120 core.
- **K-means.** We applied the in Linux kernel to two reverse mapping(anonymous, file) on Our design improved throughput and execution time from 1.5x through 2.7x on 120 core.

2.2 Spark Scalability Problem

Figure 1 shows the spark scalability of five workloads with G1 and Parallel Scavenge GC(PS). Up to 60 core, The five workloads scales linealy and then GC pause become bottlenecks. The word count flattens out after 60 core, but other benchmarks slightly go down because not only GC overhead but also NUMA effects. To evalute state of the art GC, we used G1 and PS GC. The result of impact of chainging the GC are PS GC results in 3.3x better performance than G1 GC on 120 core. However, although we used the scalable GC, the Spark performance scalability is still limited by GC and NUMA effects.

Figure 2 shows the job's CPU utilization. Our goal is high cpu utilization, Thy-axis is the percentage of time spent in kernel-space code(sys), user-space code(user), and idle time(idle). When core counts increase, all benchmarks increase idle time due to GC pasue that means

2.3 Benefit of JVM Partitioning

Spark and Hadoop ramework use JAVA and it needs java virtual machine, so understanding the partitioning effect on JVM is importance. To preliminarily analysis the JVM partitioning effect, we conducted benchamrk using SPECjbb2013, which a state of the art benchmark for JVM performance. We used two different experiment settings. First, we used per-socket JVM partitioning using the numa control application(numactl). Second, we set maxium available memory to JVM heap size and threads are scheduled by the OS in order to migrate any core, and we enable automatic NUMA balancing feature in the Linux kernel.

The results all core shows that partitioning approach outperforms than non-partitioning approach by Xx on 120 core. In manycore scale-up server, partiting approach has best performance scalability.

Figure 4: Test-bed Intel xeon archtecture.

3. PARTITIONING FOR SPARK

The reason for requiring partitioning method is that spark library and runtime engine can be bottlenect by GC and memory latency because Spark have not been considers scale-up environment. Thus, we use the docker container-based partitioning method to eliminate GC and memory latency overheads. This section explains design aspects of our docker container-based partitioning method to solve GC and memory latency.

3.1 Design Consideration

The major problem of Spark scalability is GC, so partitioning approch is needed. Indeed, GC leads to many of the advantages of high-level languages becuase of an increase in productivity, while it is a double-edged sword because GC pauses can cause serilizaed operation and requests to take unacceptable long times. Thus, reducing GC pause time may lead to high performance scalability, and minialized CPU counts can mitigate GC pause time[]. Therefore, the first design consideration of scale partitioning is to minimize GC pause times.

The second design consideration is locality issues because of NUMA archtecture DRAM access latency. For example, threads are scheduled by the OS to execute on any core. When the thread is migrated to different memory area, the thread may accesse remote memory. Partitioning aprroach can prevent to migrate other socket's core. Indeed, the modern operating systems(Linux) has a NUMA balancing feature for enhancement of memory locality, but partitioning method can more superial performance regarding the large scale-up server(8 socket)[](see section 2).

In addition to GC and NUMA effect, operating systems noise can pose scalability bottlenct because it designed for shared-memory system; therefore, the next design consideration is to avoid operating system noise. For example, Single address sapce sharing problem[][][][] between multi-thread applications on JVM, scheduer bottlenct by load balancer[][], and cache comunication bottlenct[][] are major problems in manycore scale-up server operating system. This problem cause by sharing resource, so our approach can solve from these resource contention by using partitiong approch.

To satisfy these factors such as GC, NUMA and operating system bottlenct cause by shared-memory system, Spark on scale-up server should work as distributed system concept. Therefore, we use partitioning approch for shared-memory system and it is dealt with as the distributed-system big data analytics frameworks thereby eliminating GC and memory access overheads. We make shared resource to small size group as much as possible; as result of, the small size cpu groups can mitigate the thread serialized problem cased by GC pause time, and these group may only access to local NUMA memory.

The final design consideration is straggler tasks problem. If too

small size partitioning may reduce GC and NUMA remote access, its benefit does not come for free because it may cause straggler tasks problem [16] [18]. Thus, in order to scale Spark performance scalability, depending on partitioning size.

3.2 Towards a Container-based Framework

Figure 5: Overview of the docker contrainer-based partitioning

This section describes our vision that will accommodate the previous mentioned design consideration. Our proposed scaleble partitiong framework is figure 5 with the necessary features. The left side of figure shows our proposed framework, and the right side of figure shows isolated docker containers and per-socket cpu with memory.

Decision engine is one of the most important features since every partitioning regarding Spark system workers are based on our decision engine compnent. Our simplified algorithm of the decision engine is that if available cores are less than pre-defined thrashhold, then a job works on the native CPUs because Spark system scales leanerly up to low cores(see section 2). If not, the decision engine compares heap size with input data size, then it decides whether or not running on the partitioned docker. If heap size is bigger than input data size, then a job works on the native CPUs since the Spark has a substantial performance scalability when the dataset can fit in memory(see section 2).

4. EVALUATION

In this section we discuss the docker container-based partitioning on the scale-up server described in Section 3. We ran the four benchmarks on Linux 4.5-rc4 with stock Linux. All experiments were performed on a 120 core machine with 8-socket, 15-core Intel E7-8870 chips equipped with 792 GB DDR3 DRAM. We used ram file system for HDFS due to the eliminating the HDFS bottlenect.

We used four different experiment settings. First, we used non-partitioning method as Figure section 2 graph and we set heap size(4G). Second we used fine-grained partitiong that is per-socket(15 core) partitiong because it can make maximize locality. We allocated heap size by modifing heap size is that we divide 4G of number of partitining. Finaly, we used corese-grained partitiong that is per-socket(30 core) partitiong since it can mitegrate the straggler tasks problem.

The results for Word Count are shown in Figure 6(a), and the result shows the thoughput of BigDataBench with our four different settings. Up to 60 core, the PS GC version of non-partiting approach scales linearly and then it flattens out. However, up to

60 core, our per-socket partitioning outperform non-partitioning since it can remove GC and NUMA latency overheads, and then the straggler tasks problem become bottlenecks. our corese-grained partitiong outperforms non-partitioning by 1.5x and per-socket partiting by 1.5x on 120 core. The results(Figure ??(b)) for Naive Basian is similar to Word Count workload. Our per-socket partitining outperform non-partitioning by 1.5x and per-socket partidfa by 1.5. on 120 core. Furthermore, the non-partitiong approach has the highest idle time(xx%) since GC becomes bottlenect(see figure 7).

The results for Grep are shown in Figure 6(c). After to 60 core, the 30 core partitioning approach scales linearly, but the others throughput goes down after to 60 core because non-partiting version suffers from GC. The per-socet partintining approach suffers from the straggler tasks problem. Therefore, although the per-socet partintining approach eliminate the GC and NUMA latency, its cpu utilization is low than 30 core partitining.

The results for K-means are shown in Figure 6(d), The K-means workload extremly suffers from GC [2];therefore, per-socket partiting apporach extremly better performance scalability up to 60 core. However, then it collaps after 60 core since it extremly suffers frome the straggler tasks problem. Thus, per-socket partitiong approach has low(XX%) idle time. On the other hand, 30 core partiting relativey less suffers from the straggler tasks problem.

5. RELATED WORK

Apache Spark Scalability. To improve the Spark scalability, Scale out Vs Scale Up researchers have attempted to create new operating or have attempted to optimize existing operating Our research belongs to optimizing existing operating systems in order to solve the Linux fork scalability problem. However, previous research did not deal with the anonymous reverse mapping, which is one of the fork scalability bottleneck.

Manycore Scale-up Server Scalability. To improve the scalability, researchers have attempted to create new operating systems [5] [4] or have attempted to optimize existing operating systems [6] [10] Our research belongs to optimizing existing operating systems in order to solve the Linux fork scalability problem. However, previous research did not deal with the anonymous reverse mapping, which is one of the fork scalability bottleneck.

6. CONCLUSION AND FUTURE WORKS

We propose a docker container-based partitioning method for Apache Spark scalability on scale-up server. To eliminate GC and NUMA effect, we divide per-socket and best-fit partitioning using the docker container. Evaluation results using the wordcount, navi-basian, grep and k-means reveal that our method better performance up to 1.5 times compared to existing solutions.

Future Directions. To achieve our goal, this paper only focused on the manual docker container-based partitioning, and our future directions are:

- Solving the straggler tasks problem. straggler tasks significantly extend job completion times. To mitigate this problem, we may use dynamic resource allocation solution in dockers to maximized cpu utilization for the straggler tasks by using our new resource hand-over solution.
- Auto-tuned partitioning. In this paper, only support manualy partition using docker containner. However, many of sicentity or big data acaldld may reuse simillar workload, so training phase for finding the best-fit partitiong can be superior solution than manulay partiion simillay way of compiler-based auto-tuner[].

7. REFERENCES

- [1] Kubernetes. http://kubernetes.io/.
- [2] AHSAN JAVED AWAN, MATS BRORSSON, V. V. E. A. How data volume affects spark based data analytics on a scale-up server. In *Big Data Benchmarks, Performance Optimization,* and Emerging Hardware (2016), Springer, Lecture Notes in Computer Science.
- [3] APPUSWAMY, R., GKANTSIDIS, C., NARAYANAN, D., HODSON, O., AND ROWSTRON, A. Scale-up vs scale-out for hadoop: Time to rethink? In *Proceedings of the 4th Annual Symposium on Cloud Computing* (2013), SOCC '13.
- [4] BAUMANN, A., BARHAM, P., DAGAND, P.-E., HARRIS, T., ISAACS, R., PETER, S., ROSCOE, T., SCHÜPBACH, A., AND SINGHANIA, A. The Multikernel: A New OS Architecture for Scalable Multicore Systems. In *Proceedings*

- of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (2009), SOSP '09, pp. 29–44.
- [5] BOYD-WICKIZER, S., CHEN, H., CHEN, R., MAO, Y., KAASHOEK, F., MORRIS, R., PESTEREV, A., STEIN, L., WU, M., DAI, Y., ZHANG, Y., AND ZHANG, Z. Corey: An Operating System for Many Cores. In *Proceedings of the 8th* USENIX Conference on Operating Systems Design and Implementation (2008), OSDI'08, pp. 43–57.
- [6] BOYD-WICKIZER, S., CLEMENTS, A. T., MAO, Y., PESTEREV, A., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. An Analysis of Linux Scalability to Many Cores. In Proceedings of the 9th USENIX Conference on Operating Systems Design and Implementation (2010), OSDI'10, pp. 1–16.
- [7] BOYD-WICKIZER, S., KAASHOEK, M. F., MORRIS, R., AND ZELDOVICH, N. OpLog: a library for scaling update-heavy data structures. In *Technical Report MIT-CSAIL-TR2014-019* (2014).
- [8] CAO, X., PANCHPUTRE, K. K., AND DU, D. H.-C. Accelerating data shuffling in mapreduce framework with a scale-up numa computing architecture. In *Proceedings of the* 24th High Performance Computing Symposium (2016), HPC '16, pp. 17:1–17:8.
- [9] CHAIMOV, N., MALONY, A., CANON, S., IANCU, C., IBRAHIM, K. Z., AND SRINIVASAN, J. Scaling spark on hpc systems. In *Proceedings of the 25th ACM International Symposium on High-Performance Parallel and Distributed Computing* (2016), HPDC '16, pp. 97–110.
- [10] CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N. Scalable Address Spaces Using RCU Balanced Trees. In Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems (2012), ASPLOS XVII, pp. 199–210.
- [11] CLEMENTS, A. T., KAASHOEK, M. F., AND ZELDOVICH, N. A. RadixVM: Scalable Address Spaces for Multithreaded Applications. In *Proceedings of the 8th ACM European Conference on Computer Systems* (2013), EuroSys '13, pp. 211–224.
- [12] DASHTI, M., FEDOROVA, A., FUNSTON, J., GAUD, F., LACHAIZE, R., LEPERS, B., QUEMA, V., AND ROTH, M. Traffic management: A holistic approach to memory placement on numa systems. In Proceedings of the Eighteenth International Conference on Architectural Support for Programming Languages and Operating Systems (2013), ASPLOS '13.
- [13] HENDLER, D., INCZE, I., SHAVIT, N., AND TZAFRIR, M. Flat Combining and the Synchronization-parallelism Tradeoff. SPAA '10, pp. 355–364.
- [14] MAAS, M., ASANOVIĆ, K., HARRIS, T., AND KUBIATOWICZ, J. Taurus: A Holistic Language Runtime System for Coordinating Distributed Managed-Language Applications. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages and Operating Systems (2016), ASPLOS '16, pp. 457–471.
- [15] MERKEL, D. Docker: Lightweight linux containers for consistent development and deployment. *Linux J.* 2014 (2014)
- [16] OUSTERHOUT, K., RASTI, R., RATNASAMY, S., SHENKER, S., AND CHUN, B.-G. Making sense of performance in data analytics frameworks. In *Proceedings of the 12th USENIX Conference on Networked Systems Design*

- and Implementation (2015), NSDI'15.
- [17] QURESHI, M. K., AND PATT, Y. N. Utility-based cache partitioning: A low-overhead, high-performance, runtime mechanism to partition shared caches. In *Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture* (2006), MICRO 39, pp. 423–432.
- [18] REN, X., ANANTHANARAYANAN, G., WIERMAN, A., AND YU, M. Hopper: Decentralized Speculation-aware Cluster Scheduling at Scale. In *Proceedings of the 2015 ACM* Conference on Special Interest Group on Data Communication (2015), SIGCOMM '15, pp. 379–392.
- [19] RIK VAN RIEL, V. C. Automatic numa balancing. https://www.linux-kvm.org/images/7/75/01x07b-NumaAutobalancing.pdf.
- [20] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The hadoop distributed file system. In *Proceedings of the* 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST) (2010), MSST '10.
- [21] VERMA, A., PEDROSA, L., KORUPOLU, M. R., OPPENHEIMER, D., TUNE, E., AND WILKES, J. Large-scale cluster management at Google with Borg. In *Proceedings of the European Conference on Computer Systems (EuroSys)* (Bordeaux, France, 2015).
- [22] WANG, L., ZHAN, J., LUO, C., ZHU, Y., YANG, Q., HE, Y., GAO, W., JIA, Z., SHI, Y., ZHANG, S., ET AL. Bigdatabench: A big data benchmark suite from internet services. In 2014 IEEE 20th International Symposium on High Performance Computer Architecture (HPCA) (2014), IEEE, pp. 488–499.
- [23] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J., MCCAULEY, M., FRANKLIN, M. J., SHENKER, S., AND STOICA, I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In *Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation* (2012), NSDI'12.