

EE/CSCI 451: Parallel and Distributed Computation

Lecture #7

9/8/2020

Viktor Prasanna

prasanna@usc.edu

ceng.usc.edu/~prasanna

University of Southern California

Announcement

- Midterm 1 date: 9/25
 - Discussion session 2hours

- HW2 due 9/10 (upcoming Thu.)
- PHW2 due 9/14 (+3 free late-days)
- HW1 and PHW1 grades are out

PHW1 Statistics	
Average	93.51
Median	98.00
Standard Deviation	18.86

HW1 Statistics	
Average	91.10
Median	96.00
Standard Deviation	15.39

Announcement: Midterm1 Logistics

Online Proctored Exam:

- Time: Week 6 discussion session 2 hours: 3:30-5:30PM (Los Angeles time)
- Format: Open-book, open-notes [Attendence is required, no make-up given]
- Proctoring: 2 proctors watching different subgroups of students in separate Zoom meetings, links will be sent to students in advance
 - Require camera-enabled device
- Receiving and returning your exam:
 - Exam will be released on Piazza under resource page at/around 3:26 PM
 - You will submit the completed exam on Blackboard (a submission portal will be created in advance)
- Completing your exam:
 - Download the assignment pages (exam pages) as pdf files on to your tablet and annotate it with your answers. Only hand-annotated pdf files are acceptable.
 - Require a writable tablet device
- Coverage: Week 1-Week 5 contents (Week 6 contents analytical modeling & communication primitives not covered)
- Special note 1: Important discussion attendance is required on Week 5 (Sept 18)!
 - 10-min midterm trial run to make sure all students are prepared for and comfortable with the exam process
- Special note 2:
 - We have created a Piazza poll [link] to collect info regarding your available resources/capabilities to complete the exam with writable tablet. Everyone is **required to participate in the poll**

Announcement

• Lecture slides will be released **before** each class for your reference

- Occasionally, lecture slides will be updated after the lecture
 - The updated slides will over raid the slides released before the class

 Lecture slides are available at https://piazza.com/usc/fall2020/eecsci451/resources

Outline

- From last class
 - Message Passing Programming Model
 - Asynchronous/Loosely Synchronous/SPMD
 - Send/Receive
 - Blocking/Non-blocking
 - Cannon's Algorithm for Matrix Multiplication
- Today
 - Interconnection networks (Chap. 2.4.3-2.4.5)
 - Crossbar network
 - Shuffle exchange network
 - Multistage network

Interconnection Networks

Data communication among processors and memory

Static (direct) networks

Direct connections (fixed)

Network Topologies

Examples:

Bus-based Network

- Distance: O(1)
- Low cost
- Scalable?
- Bandwidth = bus width (bits) \times clock rate (independent of n)
- Traffic on the bus can be reduced by using a cache in each node

One transaction at

any time

Crossbar Network

- $p \times p$ crossbar: $cost \sim O(p^2)$ Number of switches
- To make a connection from P_i to M_j (permutation on p items): P_i broadcast $j \to \text{switch } (i, j) \to \text{close connection}$

Shuffle Network

Perfect Shuffle (PS) connection

A link exists between input i and output j if:

Shuffle Exchange Network

Perfect Shuffle (Shuffle) for n = 8

 $\begin{array}{ccccc}
0 & \rightarrow & 0 \\
1 & \rightarrow & 2 \\
2 & \rightarrow & 4 \\
3 & \rightarrow & 6 \\
4 & \rightarrow & 1 \\
5 & \rightarrow & 3 \\
6 & \rightarrow & 5 \\
7 & \rightarrow & 7
\end{array}$

$i \rightarrow 2i \mod n$	$0 \le i < \frac{n}{2}$
$i \rightarrow (2i+1) \mod n$	$\frac{n}{2} \le i < n$
$2i \leftrightarrow 2i + 1$	$0 \le i < \frac{n}{2}$

Exchange

Shuffle Connection

Example: n=8 3 bit index

- $100 \rightarrow 001$
- Exchange connection
- Diameter:(discussed later)

Circular left shift

$$(4 \rightarrow 1)$$

$$2i \leftrightarrow 2i + 1$$

Complement lsb

$$O(\log n)$$
 $n = 2^k$

Routing in Shuffle Exchange Network (1)


```
Source x = x_{k-1} \cdots x_0 \longrightarrow Destination d = d_{k-1} \cdots d_0
                                        Source x
y \leftarrow x {current location}
                                                                        Destination d
i \leftarrow 1
While i \leq k
                                                  Intermediate nodes
     Shuffle y {Rotate left}
     Compare LSB of y with bit (k - i) of destination (d)
      If bits are the same, then do not Exchange;
     else Exchange (Complement y_0)
      i \leftarrow i + 1
End
               Total # of hops \leq 2k \ (2\log_2 n)
```

Routing in Shuffle Exchange Network (2)

Source
$$x_2 x_1 x_0$$
 (000)

$$\rightarrow$$

Destination $d_2d_1d_0$ (110) k=3

Example: i = 1

Shuffle

$$000 \leftarrow 000$$

Compare LSB of y with bit 2 of destination

$$y_0 = d_2$$
?

Same as

$$x_2 = d_2$$
?

Position at the end of first iteration: 001

• End of i^{th} iteration: $y = x_{k-1-i}...x_0 d_{k-1}...d_{k-i}$

$$x = 000$$
 $d = 110$

$$i = 1 \begin{array}{ccc} 000 & S & & \\ 001 & E & \\ \hline i = 2 \begin{array}{ccc} 010 & S & \\ 011 & E & \\ \hline i = 3 \begin{array}{ccc} 110 & S & \\ 110 & No E \\ \end{array}$$

Routing in Shuffle Exchange Network (3)

Source $x_2x_1x_0$ (000) \rightarrow Destination $d_2d_1d_0$ (110) k=3

Routing in Shuffle Exchange Network (4)

• Theorem: In a shuffle exchange network with $n=2^k$ nodes, data from any source to any destination can be routed in at most $2\log_2 n$ steps.

Multistage Network (1)

Can realize rich set of connecting patterns from input to output

- Dynamic networks
- Multiple stages of switches and connections

Multistage Network (2)

Connecting Pattern (Data Communication Pattern)

n inputs / n outputs

For each i, $0 \le i < n$, connecting pattern specifies output(s) j to which data from i is to be routed to

- Example:
 - Connecting Pattern is a permutation
 - Given n inputs and n outputs,

total # of connecting patterns = n!

Multistage Network (3)

Building Blocks

Multistage Network (4)

Multistage network

- k stages, $k \ge 1$
- $\frac{n}{2}$ switches in each stage
- delay = k

Performance of a Multistage Network

1 Switch = unit cost unit delay

• Cost of a network: Total no. of 2×2 and 2×1 switches

Note: Wiring cost ignored

- Traditional metric
- Important metric
- Delay = Total # of stages

Note: Wire delay ignored

All n! permutations can be realized

Example Multistage Network (2) Example implementation using MUX

Total Number of Nodes in a Complete Binary Tree

$$4 + 2 + 1 = 7 = 2 \cdot n - 1$$

= 2 \cdot(# of leaf nodes)-1

$$T(n) = 2T\left(\frac{n}{2}\right) + 1 = 15$$

Routing (1)

Example of Multistage Network

• Cost = No. of switches
=
$$\frac{n}{2} \times \text{(number of stages)}$$

= 2 × 3

Permutation

 $0 \rightarrow 2$

 $1 \rightarrow 3$

 $2 \rightarrow 1$

 $3 \rightarrow 0$

2⁶ combinations of switch settings

Note: All 4!
Permutations can be realized by this network

Routing (2)

k stage, n input network

- Total number of switches: $\frac{n}{2} \cdot k$
- Total number of control bits: $\frac{n}{2} \cdot k$
 - Control bits specify a configuration of the network
 - Configuration → permutation from input to output
- Total number of permutations that can be realized: $\leq 2^{nk/2}$
- If we want all n! permutations to be realized: $2^{nk/2} \ge n!$

 $k = no. of stages = \Omega(\log n)$

Omega Network (1)

- p inputs, p outputs
- $\log_2 p$ stages, each stage having $\frac{p}{2}$ 2 × 2 switches

Multistage network

Omega network properties

- Cost = $\frac{P}{2}\log_2 p$ (number of switches)
- Note: in actual hardware design, routing cost dominates!
- Omega network can do $2^{(\frac{p}{2}\log_2 p)} < p!$ Permutations
 - \rightarrow All p! permutations can not be realized
- Unique (only one) path from any input to any output

Omega Network (3)

Example of Blocking

• one of the messages (010 to 111 or 110 to 100) is blocked at link AB

Blocking: To realize a given connecting pattern, two inputs to a switch need to go through the same output port of the switch

Omega Network and Shuffle Exchange Network

Specify $\frac{n}{2}$ bits for each exchange step

Omega network with n inputs

(We can pipeline here)

(Both networks realize the same set of permutations)

Congestion in a Network (1)

Given a routing protocol and data communication pattern (ex. a permutation)

Congestion at a node = Max. { # of paths passing through the node}

Congestion in a Network (2)

Interconnection Network = Graph + Routing algorithm

Assume the routing algorithm provides unique (exactly one path) communication from source i to destination j for all i, j

For a given permutation:

• Congestion at node k = # of paths (based on the routing protocol) that pass through k

Congestion in a Network (3)

• Congestion for a given $= \max \{ \# \text{ of paths that pass through } k \}$ permutation in the network over nodes k

• Congestion in the network = Max {congestion in the network all permutations for a given permutation}

Example Computation of Congestion (1)

2-D Mesh Architecture

 $n \times n$ mesh

Data A(i,j) in PE(i,j), $0 \le i,j < n$

Example Computation of Congestion (2)

Permutation: Matrix Transpose

Data in
$$PE(i,j)$$
 $[A(i,j)] \rightarrow PE(j,i)$ $0 \le i,j < n$

Row
$$i \to \text{Col } i$$
 $0 \le i < n$

Example Computation of Congestion (3)

Routing

- Dimension ordered routing
- Widely used technique

For any permutation $(i,j) \rightarrow (d_i,d_j)$ $0 \le i,j < n$

- 1) Go along row i to destination column $d_i \leftarrow \text{dimension 0}$
- 2) Go along column d_i to destination row $d_i \leftarrow$ dimension 1

Example Computation of Congestion (4)

Row $0 \rightarrow Col 0$

$$(0,0) \to (0,0)$$

$$(0,1) \to (1,0)$$

$$n = 4$$

$$(0,2) \to (2,0)$$

$$(0,3) \to (3,0)$$

Example Computation of Congestion (5)

Using dimension ordered routing, n imes n mesh

- For any permutation
 - Congestion at any node $\leq n$

- Matrix Transpose results in worst case congestion
 - Congestion at $PE(i,i) = n, 0 \le i < n$
 - Congestion in the network = n

Summary

- Interconnection networks
 - Static/Dynamic network
 - Shuffle exchange network
 - Multistage network
 - Routing
 - Congestion