

R-Switch-3 GateWay

Outline specifications

Document number: 0.50 Date of issue: 2025/02/18

- This document and contents shall be strictly managed for all document users and used for specific/limited purpose only, issued under NDA between Renesas Electronics and the company of this document holders
- Under development
- Preliminary document
 Specification in this document are tentative and subject to change
- Renesas Electronics Confidential issued under NDA

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published on Renesas Electronics home page.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of information of product data, diagrams, tables, programs, algorithms or application circuit example etc. described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the
- EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use

Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

- 10. Please note that Renesas Electronics shall not be responsible for any damage if products are not used as per the various conditions stated in this manual, due to resale by customer etc.
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of

Renesas Electronics.

- Note 1. "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- Note 2. "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General precautions for handling of product

The following notes are applicable to entire CBIC with CPU core. For detailed usage notes, refer to the relevant sections of the manual. If the description under General precautions and in the body of the manual differs from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
- The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flow internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses Access to reserved addresses is prohibited.
- The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Regarding Clock

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized. When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

Table of Contents

Fr	Front Cover					
Та	able of Co	ntents	4			
1.	[R-Sw	itch external] Overall specifications	6			
	1.1	Overall block diagram	6			
	1.2	Overall system	7			
2.	Overv	iew	13			
	2.1	Features	13			
	2.2	Performance	14			
	2.3	Block diagram	15			
3.	Param	neter list	17			
	3.1	GWCA i parameter (i=0RACE_PORT_GWCA_N)	26			
	3.2	TSNA i parameter (i=0RACE_PORT_TSNA_N)	28			
4.	Regist	er	30			
	4.1	Register mapping	30			
	4.2	Register attributes	31			
	4.3	Register list	32			
	4.4	Register detailed explanation	33			
	4.4.1	TOP Function registers	33			
5.	Regist	er utilization	52			
	5.1	Software flows	52			
	5.1.1	Software flow legend	52			
	5.1.2	Switch initialization flow	53			
	5.1.3	Switch disable flow	54			
	5.1.4	Switch reset flow	55			
	5.1.5	Switch emergency reset flow	56			
	5.1.6	Register writable without software flow	57			
6.	Functi	onal details	58			
	6.1	R-switch forwarding modes	58			
	6.1.1	Hub	58			
	6.1.2	Layer 2 switch	60			
	6.1.3	VLAN aware layer 2 switch	64			

	6.1.4	L3 switch	67
7.	Precau	autions	70
7	.1	Precautions	70
7	.2	Restrictions (Including known problems)	71
Bac	c Cover	т	72

1. [R-Switch external] Overall specifications

This chapter defines the system specifications for the R-switch.

1.1 Overall block diagram

R-Switch-3's Ethernet (XGMII/GMII) interface 0-4 is directly connected to external port 0-4 (SerDes0-4).

R-Switch-3's Ethernet (XGMII/GMII) interface 5-7 can be connected to external ports 5-7 (SerDes5-7). OR

R-Switch-3's Ethernet (GMII) interface 5-7 can be connected to TSN-ES 0-2. Refer [RMAC] for connection selector.

R-Switch-3's Ethernet (GMII) interface 8-12 is directly connected to TSN-ES 3-7.

R-Switch-3 and gPTP(R-Switch-3) are connected one-to-one. gPTP(R-Switch-3) timer value will be used for CAN, PCI-E and UCI-E.

TSN-ES 0 and gPTPb(TSN-ES 0) are connected one-to-one.

TSN-ES 1-7 and gPTPa(TSN-ES 1-7) are connected one-to-one.

[Notes]

Restriction: The upper limit of the transfer bandwidth with the CPU is 2.5Gbps per TSNA and TSN-ES. As a result, one-to-one communication between external Ethernet (XGMII10Gbps) and internal Ethernet (GMII 2.5Gbps with TSN-ES) is not possible. Share the bandwidth with multiple TSN-ES.

Fig 1.1: Wrapper connection diagram

1.2 Overall system

The above shows an example of system construction.

Example 1: 40Gbps total external 4 ports and 10Gbps total for internal 4 ports. This is the simplest configuration.

Example 2: 35Gbps total external 5 ports and 15Gbps total for internal 6 ports. Increased number of external ports and reduce total

bandwidth. Therefore, it is possible to increase the number of internal ports.

Example 3: To enable all internal ports, it is necessary to control the internal port bandwidth using CBS or the like.

Example 4: TSNA5-7 can change from internal port to external port.

Fig 1.2: Overall system example 1

Fig 1.3: Overall system example 2

Fig 1.4: Overall system example 3

Fig 1.5: Overall system example 4

1.3 Interrupt mapping

Output signal name	Source	Clock	Init value
race_wrap_mfwd_int	race_mfwd_error_int, race_mfwd_status_int [MFWD] FWEIS(0-8), FWMIS0	clk	0
race_wrap_race_int	race_race_error_int (Fix to 0), race_race_status_int [TOP] RSSIS	clk	0
race_wrap_coma_int	race_coma_error_int, race_coma_status_int [COMA] CAEIS0, CAEIS1, CAMIS0, CAMIS1	clk	0
race_wrap_gwca(0-1)_int	race_gwca(0-1)_error_int, race_gwca(0-1)_status_int (Fix to 0) [GWCA(0-1)] GWEISO(other TDFES), GWEIS1, GWEIS4, GWEIS5	clk	0
race_wrap_msc(0-7)_error_int	race_wrap_msc(0-7)_error_int [MACsec(0-7)] MSEISO-2, MSAESEISO-3, MSPNTIS, MSPNEIS	clk	0
race_wrap_aes_ecc1_error	OR [MACsec(0-7)] MSAESEIS4	clk	0
race_wrap_aes_ecc2_error	OR [MACsec(0-7)] MSAESEIS5	clk	0
race_wrap_etha(0-12)_int	race_etha(0-12)_error_int, race_etha(0-12)_status_int, race_rmac(0-12)_error_int, race_rmac(0-12)_status_int (Fix to 0), race_rmac(0-12)_mdio_int, race_rmac(0-12)_mp_int, race_rmac(0-12)_phy_int [TSNA(0-12)] EAEISO, EAEIS1, EAEIS2 [RMAC(0-12)] MEIS, MMISO, MMIS1, MMIS2	clk	0
race_wrap_gwca(0-1)_gwdis_int[7:0]	race_gwca(0-1)_core_int[7:0] Please refer [TOP] 7.4.1.1 Interrupt mapping function registers for details. [GWCA(0-1)] GWDIS, GWEIS2, GWEIS3, and other	clk	0
race_wrap_gwca(0-1)_gwtsdis_int[1:0]	race_gwca(0-1)_timer_int[1:0] Please refer [TOP] 7.4.1.1 Interrupt mapping function registers for details. [GWCA(0-1)] GWTSDIS, GWEISO.TDFES	clk	0
race_wrap_gptp_int	[GPTPa] PTPIS0, PTPIS1	clk	0
tes(0-7)_status_int *1	tes(0-7)_int_n, tes(0-7)_rx_fil_int_n, tes(0-7)_stream_fil_int_n, tes(0-7)_srst_int_n, tes(0-7)_lpi_start_int_n, tes(0-7)_lpi_stop_int_n, tes(0-7)_mode_int_n, tes(0-7)_mp_int_n, tes(0-7)_mdio_int_n	ACLK_tes(0-7)	0
tes(0-7)_tx_int *1	tes(0-7)_tds_int_n[TX_CHAIN_N:0]	ACLK_tes(0-7)	0

		T	1
tes(0-7)_rx_int	tes(0-7)_rds_int_n[RX_CHAIN_N:0]	ACLK_tes(0-	0
*1		7)	
tes(0-7)_ts_int	tes(0-7)_ts_int_n[TS_CHAIN_N:0]	ACLK_tes(0-	0
*1		7)	
tes(0-7)_error_int	tes(0-7)_tces_int_n[TX_CHAIN_N:0],	ACLK_tes(0-	0
*1	tes(0-7)_rfses_int_n[RX_CHAIN_N:0],	7)	
	tes(0-7)_rfes_int_n[RX_CHAIN_N:0],		
	tes(0-7)_rces_int_n[RX_CHAIN_N:0],		
	tes(0-7)_ridaoes_int_n[RX_INC_CHAIN_N:0],		
	tes(0-7)_tsfes_int_n[TS_CHAIN_N:0],		
	tes(0-7)_tsces_int_n[TS_CHAIN_N:0]		
tes(0-7)_gptp_int	[GPTPb] PTPIS0, PTPIS1, PTPIS2 of tes0	ACLK_tes(0-	0
	[GPTPa] PTPISO, PTPIS1 of tes(1-7)	7)	

^{*1 :} Please refer to "3.14 Interrupt" of 100a_RSW30_RTSNES_TOP_IPSpec_UM.

1.4 IO mapping

Signal name	Input/Output	Description	
race_wrap_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of R-Switch-3	
race_wrap_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of R-Switch-3	
race_wrap_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of R-Switch-3	
tes0_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007b_RSW30_gPTPb_IPspec_UM_0_40) of TSN-ES-0	
tes0_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007b_RSW30_gPTPb_IPspec_UM_0_40) of TSN-ES-0	
tes0_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007b_RSW30_gPTPb_IPspec_UM_0_40) of TSN-ES-0	
tes0_gptp[2-16]_capture	Input	Refer to MEDIA_IN[2-16] (007b_RSW30_gPTPb_IPspec_UM_0_40) of TSN-ES-0	
tes1_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-1	
tes1_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-1	
tes1_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-1	
tes2_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-2	
tes2_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-2	
tes2_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-2	
tes3_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-3	
tes3_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-3	
tes3_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-3	
tes4_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-4	
tes4_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-4	
tes4_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-4	
tes5_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-5	
tes5_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-5	
tes6_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-5	
tes6_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-6	
tes6_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-6	
tes6_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-6	
tes7_gptp[0-1]_capture	Input	Refer to MEDIA_IN[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-7	
tes7_gptp[0-1]_match	Output	Refer to MEDIA_OUT[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-7	
tes7_gptp[0-1]_pps	Output	Refer to PPS[0-1] (007a_RSW30_gPTPa_IPspec_UM_0_40) of TSN-ES-7	

Overview

The R-Switch 3 system consists on an ethernet switch with higher level routing capability and multi-protocol interface support. It allows autonomous frame routing within same and between different network interfaces protocols (for now only Ethernet) for optimized gateway applications.

An AMBA APB 3.0 [APB] slave allows configuration and an AMBA AXI3 [AXI] bus master DMA handles the data transfers. The R-Switch 3 system has also a three line interrupt signal for data transfer, monitoring and error handling.

2.1 Features

R-Switch 3 Features are described [MFWD] [GWCA] [TSNA] [RMAC].

2.2 Performance

Refer to the list below for details.

Overall bandwidth of the R-Switch fabric	Ethernet & CPU Total bandwidth	Latency *	
(Switching capacity)	(Ethernet & CPU capacity)		
Max 364.032 Gbps	Max total 50 Gbps	MII 10Mbps : 40,000 ~ 80,000 ns	
Restrictions: None.	Details: Total bandwidth of Ether and CPU ports	MII 100Mbps : 4,000 ~ 8,000 ns	
Min 101.92 Gbps	used for transmission and reception.	GMII 1Gbps : 830 ~ 1,630 ns	
Restrictions: Reception&Transmission	(Example : "Ether 10 Gbps 4 port" and	GMII 2.5Gbps or XGMII 10Gbps :	
Smallest frames From&To all ports.	"CPU 2.5 Gbps 4 port" *)	348 ~ 668 ns	
	* : GWCA can achieve specifications of up to	XGMII 2.5Gbps : 1,308 ~ 2,588 ns	
	50Gbps using the AXI. However, this is the	XGMII 5Gbps : 668 ~ 1,308 ns	
	instantaneous maximum value due to ACLK*	* : This is the value without MACsec. If using	
	GWCA[i]_AXI_DW. The worst spec is 12.5Gbps	MACsec, to add Delay_RX_MAC [MACsec] and	
	due to factors such as frame interval and descriptor	Delay_TX_MAC [MACsec]	
	control.		

[notes]: "Smallest frame" = DMAC(6), SMAC(6), Type(2), Data(46), FCS(4) = 64 byte (without MACsec)

Latency measurement conditions:

- From frame end (forwarding source port) to frame start (forwarding destination port)
- The forwarding (destination port) is not busy.
- L2 Forwarding unicast (1: 1 forwarding)

(Note 1) At the frame end (forwarding source port) -frame start (forwarding destination port). When measuring, there is no dependency on the payload length of the frame.

(Note 2) The frame start (forwarding destination port) is up to the point where the preamble starts to be output.

(Note 3) MAC sampling -> Local RAM 50~100 PHY clock cycle & Forwarding 20 R-Switch-3 clock cycle & Local RAM -> MAC transmitting 50~100 PHY clock cycle.

Restriction:

- MACsec has higher performance (lower latency) on RX(Decrypting) than TX(Encrypting). Therefore, when "Ethernet to Ethernet forwarding" using MACsec on "TX only" or "both TX and RX", wire rate transfer is not possible because RX has higher throughput. For example (MII or GMII), The IFG supported by RX is 12 bytes, but the IFG inserted by TX is 64-128 bytes.

2.3 Block diagram

Fig 2.1 shows R-Switch 3 block diagram.

Fig 2.1: R-Switch 3 Block diagram

Table 2-1 R-Switch 3 Functional Blocks

Block name	Function
R-Switch 3	TOP
MFWD	Forwarding engine
	This module receives descriptor from different interface and aims at forwarding these descriptors
	to other interfaces based on MAC destination address and VLAN.
	This module also handles the R-ACE local memory pointers and PSFP [PSFP] ingress port
	filtering.
MFAB	Fabric
	It is a bus system connecting MFWD, Agents and local RAM.
ETHA	Ethernet TSN Agent
	The Ethernet Agent includes an Ethernet controller (MAC) conformed to the definition of MAC
	(Media Access Control) layer for Ethernet in the IEEE 802.3 standard. When connected with a
	physical-layer LSI chip (PHY-LSI) that complies with the standard, MAC is able to transmit and
	receive Ethernet (IEEE 802.3) frames. MAC has a single MAC layer interface.
GWCA	Gateway CPU Agent

	The GWCA consists of, a CPU sub-system executing the SW controlling R-ACE and, an agent
	interface module to allow communication within the R-ACE system. It handles the data exchange
	between the Rswitch (R-ACE GW engine) and the GWCPU subsystem.
COMA	Common Agent
	The COMA consists of, APB IF and Buffer pointer control for reject path and error descriptor.
gPTP	gPTP timer module
	External IP "uciapgptp030"

3. Parameter list

R-switch 3 global parameter list is shown in Table 3-1.

R-switch 3 local parameter list is shown in Table 3-2.

GWCA specific parameters are described in section 3.1.

TSNA specific parameters are described in section 3.2.

Table 3-1 Global parameter list

Table 3-1 Global parameter list				
Parameter Name	R-Switch-3.0	Explanation		
r dramotor Name	Values	Explanation		
SFRs				
DAGE DADDD NDD EIND		Number of addresses used by Forwarding Engine SFRs [FWD] divided by		
RACE_PADDR_NBR_FWD	110592/4	4 (bytes)		
RACE_PADDR_NBR_FAB	4096/4	Number of addresses used by Fabric SFRs [FAB] divided by 4 (bytes)		
DAGE DADDD AIDD COMA	4000/4	Number of addresses used by Common Agent SFRs [COMA] divided by 4		
RACE_PADDR_NBR_COMA	4096/4	(bytes)		
RACE_PADDR_NBR_TSNA	8192/4	Number of addresses used by TSNA SFRs [TSNA] divided by 4 (bytes)		
RACE_PADDR_NBR_GWCA	8192/4	Number of addresses used by GWCA SFRs [GWCA] divided by 4 (bytes)		
RACE_PADDR_NBR_ACPA	8192/4	Number of addresses used by ACPA SFRs [ACPA] divided by 4 (bytes)		
AXI master				
RACE_AXI_CHAIN_N	128	AXI Descriptor Chain number per GWCA [GWCA]		
Port Number				
		TSN Agent Number [TSNA]		
RACE_PORT_TSNA_N	13	Because of product rule restrictions, this parameter does not work.		
		Changing this parameter will require RTL modification.		
		CPU Agent Number [GWCA]		
RACE_PORT_GWCA_N	2	Because of product rule restrictions, this parameter does not work.		
		Changing this parameter will require RTL modification.		
Local RAM				
RACE_LCL_RAM_SZ	1024	Local RAM size in Kbytes		
D4.05 0 D4M D07	400	Local RAM block size (A pointer will always link to a LOCAL_RAM_BSZ		
RACE_LCL_RAM_BSZ	128	byte block size in the local RAM)		
RACE_LCL_RAM_DW	512	Local RAM data bit size		
DACE LOL DAM COOR N		Local RAM ECC error recovery number. Number of ECC error losing		
RACE_LCL_RAM_ECCR_N	8	A (bytes) Number of addresses used by Fabric SFRs [FAB] divided by 4 (bytes) Number of addresses used by Common Agent SFRs [COMA] divided by 4 (bytes) Number of addresses used by TSNA SFRs [TSNA] divided by 4 (bytes) Number of addresses used by GWCA SFRs [GWCA] divided by 4 (bytes) Number of addresses used by ACPA SFRs [ACPA] divided by 4 (bytes) AXI Descriptor Chain number per GWCA [GWCA] TSN Agent Number [TSNA] Because of product rule restrictions, this parameter does not work. Changing this parameter will require RTL modification. CPU Agent Number [GWCA] Because of product rule restrictions, this parameter does not work. Changing this parameter will require RTL modification. Local RAM size in Kbytes Local RAM block size (A pointer will always link to a LOCAL_RAM_BSZ byte block size in the local RAM) Local RAM ECC error recovery number. Number of ECC error losing pointer allowed in the Buffer pool. Frame TPL (Total payload length) Width Frame VLAN control width		
Frame				
RACE_FRM_TPL_W	16	Frame TPL (Total payload length) Width		
RACE_FRM_VCTRL_W	3	Frame VLAN control width		
Layer 3 forwarding/routing				
RACE_LTH_STREAM_N	1024	L3 stream number		
RACE_LTH_RRULE_N	2048	L3 rule number (routing rule)		
RACE_LTH_REMAP_N	32	L3 rule remapping number		
RACE_LTH_SEQGN_N	32	L3 sequence generation rule number		
RACE_LTH_RSLICE_WR_N	0	L3 hash write register slice number		

	R-Switch-3.0	
Parameter Name	Values	Explanation
RACE_LTH_RSLICE_RD_N	1	L3 hash read register slice number
gPTP timer		
RACE_PTP_TN	2	gPTP timer number connected to the switch
Cut-through		
RACE_CT_CRULE_N	8	Cut-through rule number
Perfect filter		
RACE_PFL_TWBF_N	512	Two-byte filter number
RACE_PFL_THBF_N	128	Three-byte filter number
RACE_PFL_FOBF_N	512	Four-byte filter number
RACE_PFL_RAGF_N	128	Range-byte filter number
RACE_PFL_CADF_N	512	Cascade filter number
RACE_PFL_CFMF_N	7	Cascade filter mapped filter number
RACE_PFL_SID_W	7 + 128	Cascade filter stream ID width
PSFP[802.1Qci]		
RACE_PSFP_MSDU_N	16	PSFP MSDU filer number
RACE_PSFP_GATE_N	8	PSFP gate number
RACE_PSFP_DMTR_N	104	PSFP double bucket meter number
RACE_PSFP_SMTR_N	1	PSFP single bucket meter number
ATS[802.1Qcr]		
RACE_ATS_DESCR_N	16	Descriptor queue depth per meter in ATS table
FRER[802.1CB]		
RACE_FRER_RECE_N	128	FRER recovery entry number
RACE_FRER_HIST_LEN	14	FRER history length
RACE_FRER_RSLICE_WR_N	0	FRER write register slice number
RACE_FRER_RSLICE_RD_N	1	FRER read register slice number
Layer 2 forwarding		
RACE_MAC_ENTRY_N	2048	MAC table entry number
RACE_MAC_RSLICE_WR_N	0	MAC hash write register slice number
RACE_MAC_RSLICE_RD_N	1	MAC hash read register slice number
DACE MAC HW I DN N	0	MAC hardware leaning number (Number of MAC addresses that can be
RACE_MAC_HW_LRN_N	8	stored for HW learning before failing)
RACE_VLAN_RSLICE_WR_N	0	VLAN table write register slice number
RACE_VLAN_RSLICE_RD_N	1	VLAN table read register slice number
Counter		
RACE_COUNT_LOW_W	32	Low size Counter width
RACE_COUNT_MED_W	32	Medium size Counter width
RACE_COUNT_HIGH_W	64	High size Counter width
Pause frame		
RACE_PAS_LVL_N	2	Pause level number
Gate filter [802.1Qci]		
RACE_GATE_RAM_DP	256	PSFP gate filter RAM depth
CPU core		
RACE_CPU_CORE_N	8	CPU core number (defines the number of interrupt line)

Parameter Name	R-Switch-3.0 Values	Explanation
TCAM/CAM		
MFWD_FRM_PRIO_N	8	MFWD frame priority
MFWD_INTG_ETYPE_N	8	MFWD integrity check ether-type number
MFWD_INTG_FILT_SIPA_N	1	MFWD integrity check Source IP number
RACE_TCAM_DATA_W	135	L3 table TCAM data wisth
RACE_CAM_DATA_W	48	MAC table CAM data wisth

Table 3-2 Local parameter list

Parameter Name R-Switch- 3.0 SFRS RACE_PADDR_NBR_FWD_W 15 RACE_PADDR_NBR_FWD_W RACE_PADDR_NBR_FAB_W 10 RACE_PADDR_NBR_FAB_W 11 RACE_PADDR_NBR_COMA_W 12 RACE_PADDR_NBR_GOMA_W 13 RACE_PADDR_NBR_GOMA_W 14 RACE_PADDR_NBR_GWCA_W 15 RACE_PADDR_NBR_GWCA_W 16 RACE_PADDR_NBR_TSNA_W 17 RACE_PADDR_NBR_TSNA_W 18 RACE_PADDR_NBR_TSNA_W 19 RACE_PADDR_NBR_TSNA_W 10 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 12 RACE_PADDR_NBR_TSNA_W 13 RACE_PADDR_NBR_TSNA_W 14 RACE_PADDR_NBR_TSNA_W 15 RACE_PADDR_NBR_TSNA_W 16 RACE_PADDR_NBR_TSNA_W PORT_GWCA_NPADDR_N BR_TSNA+ PORT_GWCA_NPADDR_N BR_ACPA+ PORT_GWCA_NPADDR_N BR_ACPA+ PORT_GWCA_NPADDR_NBR_COMA+ PADDR_NBR_FAB) AXI master RACE_AXI_CHAIN_W 7 RACE_AXI_CHAIN_N Port Number RACE_AXI_CHAIN_N AXI descriptor chain width			Table 3-2 Local parameter	list
RACE_PADDR_NBR_FWD_W 15 Sclog2(PADDR_NBR_FWD) SFRs bus width[FWD] RACE_PADDR_NBR_FAB_W 10 Sclog2(PADDR_NBR_FAB) Number of addresses used by Fabric SFRs bus width[FAB] RACE_PADDR_NBR_COMA_W 10 Sclog2(PADDR_NBR_COM_A) Number of addresses used by Common Agent SFRs bus width RACE_PADDR_NBR_GWCA_W 11 Sclog2(PADDR_NBR_GWC_A) Number of addresses used by GWCA SFRs bus width[GWCA] RACE_PADDR_NBR_GWCA_W 11 Sclog2(PADDR_NBR_TSNA_B) Number of addresses used by GWCA SFRs bus width[GWCA] RACE_PADDR_NBR_TSNA_W 11 Sclog2(PADDR_NBR_TSNA_B) Number of addresses used by TSN Agent SFRs bus width[TSN]	Parameter Name		Equation/Value	Explanation
RACE_PADDR_NBR_FWD_W RACE_PADDR_NBR_FAB_W 10 Sclog2(PADDR_NBR_FAB) RACE_PADDR_NBR_COMA_W 10 RACE_PADDR_NBR_COMA_W 11 RACE_PADDR_NBR_GWCA_W 11 RACE_PADDR_NBR_GWCA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 12 RACE_PADDR_NBR_TSNA_W 13 RACE_PADDR_NBR_TSNA_W 14 RACE_PADDR_NBR_TSNA_W 15 RACE_PADDR_NBR_TSNA_W 16 RACE_PADDR_NBR_TSNA_W 17 RACE_PADDR_NBR_TSNA_W 18 RACE_PADDR_NBR_TSNA_W 19 RACE_PADDR_NBR_TSNA_W 19 RACE_PADDR_NBR_TSNA_W 10 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 11 RACE_PADDR_NBR_TSNA_W 12 RACE_PADDR_NBR_TSNA_W 13 RACE_PADDR_NBR_TSNA_W 14 RACE_PADDR_NBR_TSNA_W 15 RACE_PADDR_NBR_TSNA_W 16 RACE_PADDR_NBR_TSNA_W 17 RACE_PADDR_NBR_TSNA_W 18 RACE_PADDR_NBR_TSNA_W 19 RACE_PADDR_NBR_TSNA_W APB address bus width (the two APB unused bits are not taken in account) RACE_COMA+ PADDR_NBR_FAB) AXI master RACE_AXI_CHAIN_W 7 RACE_AXI_CHAIN_N AXI descriptor chain width	SFRs			
RACE_PADDR_NBR_FAB_W 10 \$clog2(PADDR_NBR_FAB) = RACE_PADDR_NBR_COMA_W 10 \$clog2(PADDR_NBR_COM A) = RACE_PADDR_NBR_GWCA_W 11 \$clog2(PADDR_NBR_GWC A) = Number of addresses used by Common Agent SFRs bus width [GWCA] = RACE_PADDR_NBR_GWCA_W 11 \$clog2(PADDR_NBR_GWC A) = Number of addresses used by GWCA SFRs bus width[GWCA] Number of addresses used by TSN Agent SFRs bus width[TSN] Sclog2(PADDR_NBR_TSNA A) Number of addresses used by TSN Agent SFRs bus width[TSN] Sclog2(PADDR_NBR_TSNA A) PORT_TSNA_N*PADDR_N BR_TSNA+ PORT_ACPA_N*PADDR_N BR_ACPA+ PORT_GWCA_N*PADDR_N BR_ACPA+ PORT_GWCA_N*PADDR_N BR_ACPA+ PORT_GWCA_N*PADDR_N BR_ACPA+ PORT_GWCA_N*PADDR_NBR_COMA+ PADDR_NBR_FAB) AXI master RACE_AXI_CHAIN_W 7 Sclog2 RACE_AXI_CHAIN_N AXI descriptor chain width	RACE_PADDR_NBR_FWD_W	15		
RACE_PADDR_NBR_COMA_W 10 \$clog2(PADDR_NBR_COM A) = Number of addresses used by Common Agent SFRs bus width = Number of addresses used by GWCA SFRs bus width [GWCA] = RACE_PADDR_NBR_GWCA_W 11 \$clog2(PADDR_NBR_GWC A) = Number of addresses used by GWCA SFRs bus width [GWCA] = Number of addresses used by TSN Agent SFRs bus width[TSN] = \$clog2(PADDR_NBR_TSNA A) PORT_TSNA_N*PADDR_N BR_TSNA APB address bus width (the two APB unused bits are not taken in account) AXI master	RACE_PADDR_NBR_FAB_W	10		·
RACE_PADDR_NBR_GWCA_W 11 \$clog2(PADDR_NBR_GWC A) = RACE_PADDR_NBR_TSNA_W 11 \$clog2(PADDR_NBR_TSNA	RACE_PADDR_NBR_COMA_W	10	\$clog2(PADDR_NBR_COM	
RACE_PADDR_NBR_TSNA_W 11 \$clog2(PADDR_NBR_TSNA Number of addresses used by TSN Agent SFRs bus width[TSN] = \$clog2(PADDR_NBR_FWD + PORT_TSNA_N*PADDR_N BR_TSNA+ PORT_ACPA_N*PADDR_N BR_ACPA+ PORT_GWCA_N*PADDR_N RR_GWCA+PADDR_NBR_FWD NBR_GWCA+PADDR_NBR COMA+ PADDR_NBR_FAB) AXI master = \$clog2 (RACE_AXI_CHAIN_W 7 AXI descriptor chain width)	RACE_PADDR_NBR_GWCA_W	11	\$clog2(PADDR_NBR_GWC	•
\$clog2(PADDR_NBR_FWD + PORT_TSNA_N*PADDR_N BR_TSNA+ APB address bus width 16 PORT_ACPA_N*PADDR_N BR_ACPA+ PORT_GWCA_N*PADDR_N NBR_GWCA+PADDR_NBR_COMA+ PADDR_NBR_FAB) AXI master RACE_AXI_CHAIN_W 7 \$\begin{array}{c} \$\scale \cdot \c	RACE_PADDR_NBR_TSNA_W	11		, ,
RACE_AXI_CHAIN_W 7 = \$clog2 AXI descriptor chain width (RACE_AXI_CHAIN_N)	RACE_PADDR_AW	16	\$clog2(PADDR_NBR_FWD + PORT_TSNA_N*PADDR_N BR_TSNA+ PORT_ACPA_N*PADDR_N BR_ACPA+ PORT_GWCA_N*PADDR_ NBR_GWCA+PADDR_NBR _COMA+	
RACE_AXI_CHAIN_W 7 = \$clog2 AXI descriptor chain width (RACE_AXI_CHAIN_N)	AXI master		_ ,	
Port Number		7	_	AXI descriptor chain width
	Port Number			

Parameter Name	R-Switch-	Equation/Value	Explanation
RACE_PORT_N	15	= RACE_PORT_TSNA_N + RACE_PORT_GWCA_N	Port number on the switch
RACE_PORT_W	4	= \$clog2 (RACE_PORT_N)	Port number on the switch bus width
RACE_PORT_W1	5	= \$clog2 (RACE_PORT_N+1)	Port number on the switch +1 bus width
RACE_PORT_TIME_N	13	= RACE_PORT_TSNA_N	Number of time critical ports on the switch (plugged to the Fabric time arbiter [FAB])
RACE_PORT_TIME_W	4	= \$clog2 (RACE_PORT_TIME_N)	Time critical port number on the switch bus width
RACE_PORT_SLOW_N	3	= RACE_PORT_GWCA_N + RACE_PORT_ACOP_N	Number of non-time critical ports on the switch (plugged to the Fabric LRU arbiter [FAB])
RACE_PORT_SLOW_W	2	= \$clog2 (RACE_PORT_SLOW_N)	Non-time critical port number on the switch bus width
RACE_PORT_SLOW_2W	3	= \$clog2 (2* RACE_PORT_SLOW_N)	Non-time critical port number *2 on the switch bus width
RACE_PORT_TSNA_W	4	= \$clog2 (RACE_PORT_TSNA_N)	Number of ether TSN ports on the switch bus width
RACE_PORT_GWCA_W	1	= \$clog2 (RACE_PORT_GWCA_N)	Number of GWCA ports on the switch bus width
RACE_PORT_FSRC_N	29	= RACE_PORT_N+ RACE_PORT_TIME_N	Forwarding source number
RACE_PORT_FSRC_W	5	= \$clog2 (RACE_PORT_FSRC_N)	Forwarding source number bus width
RACE_PORT_FTSRC_N	26	= 2* RACE_PORT_TIME_N	Forwarding time-critical source number
RACE_PORT_FTSRC_W	5	= \$clog2(RACE_PORT_FTSR C_N)	Forwarding time-critical source number bus width
Local RAM			
RACE_LCL_PTR_N	8192	= RACE_LCL_RAM_SZ * 1024 / RACE_LCL_RAM_BSZ	Pointer number to address local RAM
RACE_LCL_PTR_W	13	= \$clog2(RACE_LCL_PTR_N)	Pointer width
RACE_LCL_PTR_W1	14	= \$clog2(RACE_LCL_PTR_N +1)	Pointer+1 width
RACE_LCL_RAM_ECCR_W	3	= \$clog2(RACE_LCL_RAM_E CCR_N)	Local RAM ECC error recovery bus width

Parameter Name	R-Switch-	Equation/Value	Explanation
RACE_LCL_RAM_ECCR_W1	4	= \$clog2(RACE_LCL_RAM_E CCR_N+1)	Local RAM ECC error recovery +1 bus width
Frame			
RACE_FRM_MTN_W	5	= \$clog2(RACE_PORT_N+5)	Port number on the switch bus width
RACE_FRM_TIME_W	26	= \$clog2((2**RACE_FRM_TP L_W)*8*100)	Frame time in ns bus width
Layer 3 forwarding/routing			
RACE_LTH_STREAM_W	10	= \$clog2(RACE_LTH_STREA M_N)	L3 stream number bus width
RACE_LTH_RRULE_W	11	= \$clog2(RACE_LTH_RRULE _N)	L3 rule number (routing rule) bus width
gPTP timer			
RACE_PTP_TN_W	1	= \$clog2(RACE_PTP_TN)	gPTP timer number connected to the switch bus width
Cut-through			
RACE_CT_CRULE_W	3	= \$clog2(RACE_CT_CRULE_ N)	Cut-through rule number bus width
RACE_CT_MTN_N	18	= RACE_PORT_N+1+1	Cut-through multicast number
RACE_CT_MTN_W	5	= \$clog2(RACE_CT_MTN_N)	Cut-through multicast number bus width
Perfect filter			
RACE_PFL_CADF_W	9	= \$clog2(RACE_PFL_CADF_ N)	Cascade filter number bus width
RACE_PFL_TFIL_N	2560	= 2*(RACE_PFL_TWBF_N+ RACE_PFL_THBF_N+ RACE_PFL_FOBF_N+ RACE_PFL_RAGF_N)	Total filter number
RACE_PFL_TFIL_W	12	= \$clog2(RACE_PFL_TFIL_N)	Total filter number bus width
PSFP[802.1Qci]			
RACE_PSFP_MSDU_W	4	= \$clog2(RACE_PSFP_MSDU _N)	PSFP MSDU filer number bus width

Parameter Name	R-Switch-	Equation/Value	Explanation
RACE_PSFP_GATE_W	3	= \$clog2(RACE_PSFP_GATE _N)	PSFP gate number bus width
RACE_PSFP_MTR_N	105	= RACE_PSFP_DMTR_N+ RACE_PSFP_SMTR_N	PSFP meter number
RACE_PSFP_MTR_W	7	= \$clog2(RACE_PSFP_MTR_ N)	PSFP meter number bus width
RACE_PSFP_GENTRY_N	16	= RACE_GATE_RAM_DP/ RACE_PSFP_GATE_N/2	Maximum entry number for a gate for a running schedule
RACE_PSFP_GENTRY_W	4	= \$clog2(RACE_PSFP_GENT RY_N)	Maximum entry number for a gate for a running schedule bus width
RACE_PSFP_GENTRY_W1	5	= \$clog2(RACE_PSFP_GENT RY_N+1)	Maximum entry number for a gate for a running schedule +1 bus width
ATS[802.1Qcr]			
RACE_ATS_DESCR_W	4	= \$clog2(RACE_ATS_DESCR _N)	Descriptor queue depth per meter in ATS table bus width
RACE_ATS_DESCR_W1	5	= \$clog2(RACE_ATS_DESCR _N+1)	Descriptor queue depth per meter in ATS table +1 bus width
FRER[802.1CB]			
RACE_FRER_RECE_W	7	= \$clog2(RACE_FRER_RECE _N)	FRER recovery entry number bus width
RACE_FRER_HIST_LEN1	15	= RACE_FRER_HIST_LEN+1	FRER history length + 1
RACE_FRER_HIST_LEN_W	4	= \$clog2(RACE_FRER_HIST_ LEN)	FRER history length bus width
RACE_FRER_HIST_LEN_W1	4	= \$clog2(RACE_FRER_HIST_ LEN+1)	FRER history length + 1 bus width
RAMs			
RACE_LCL_RAM_DW	512	128-512	Local RAM data bus width
RACE_LCL_RAM_AW	14	\$clog2(RACE_LCL_RAM_S Z*1024/RACE_LCL_RAM_D W*8)	Local RAM address bus width

Parameter Name	R-Switch-	Equation/Value	Explanation
RACE_LCL_DATA_SIZE	6	\$clog2(RACE_LCL_RAM_D W/8)	Local RAM data size width
RACE_BPR_RAM_DW	16	RACE_FRM_MTN_W+ RACE_LCL_PTR_W	Buffer pool RAM data bus width
RACE_RJT_RAM_DW	43	RACE_PORT_W+RACE_F RM_TPL_W+RACE_LCL_P TR_W+RACE_FRM_MTN_ W+RACE_FRM_MTN_W	Reject RAM data bus width
RACE_LTH_META_INFO_W	74	0+0+1+1+RACE_PSFP_MS DU_W+1+RACE_PSFP_GA TE_W+ 1+RACE_PSFP_MTR_W+1 +RACE_FRER_RECE_W+1 +RACE_LTH_RRULE_W+0 + RACE_PORT_N+RACE_PO RT_GWCA_N*RACE_AXI_ CHAIN_W+1+1+1+3	Layer 3 meta info data width
RACE_LTH_RAM_DW	97	RACE_PORT_N+RACE_LT H_META_INFO_W+4+4+1+ 0+0+0+0,	Layer 3 RAM data width
RACE_ATS_RAM_DW	199	3+1+RACE_AXI_CHAIN_W* RACE_PORT_GWCA_N+R ACE_PORT_W+RACE_LCL _PTR_W+RACE_PORT_N+ 1+1+1+1+1+1+1+24+24+24+1 +RACE_FRER_RECE_W+1 +RACE_LTH_RRULE_W+R ACE_FRM_VCTRL_W+1+1 6+1+1+1+RACE_FRM_MT N_W+1+RACE_FRM_TPL_W	ATS RAM data width
RACE_ATS_RAM_AW	11	\$clog2(RACE_ATS_DESCR _N*RACE_PSFP_MTR_N)	ATS RAM address width
RACE_FRER_RAM_DW	8	RACE_FRER_HIST_LEN_ W+RACE_FRER_HIST_LE N1+16+1+1+RACE_FRER_ RECE_W+10+10	FRER RAM data width
RACE_GATE_RAM_AW	6	\$clog2(RACE_GATE_RAM_ DP)	PSFP gate filter RAM address width
Layer 2 forwarding			

Parameter Name	R-Switch-	Equation/Value	Explanation						
		=							
RACE_MAC_ENTRY_W	11	\$clog2(RACE_MAC_ENTR	MAC table entry number bus width						
		Y_N)	·						
		0+0+1+1+RACE_PSFP_MS							
		DU_W+1+RACE_PSFP_GA							
		TE_W+1+RACE_PSFP_MT							
		R_W+1+RACE_FRER_REC							
RACE_MAC_META_INFO_W	78	E_W+0+0+RACE_PORT_N	MAC meta info width						
		+RACE_PORT_N+RACE_P							
		ORT_GWCA_N*RACE_AXI							
		_CHAIN_W+1+1+1+3,							
		RACE_PORT_N+0+1+1+R							
		ACE_PSFP_MSDU_W+1+R							
		ACE_PSFP_GATE_W+1+R							
		ACE_PSFP_MTR_W+1+RA							
RACE_VLAN_META_INFO_W	90	CE_FRER_RECE_W+1+RA	VLAN meta info width						
		CE_LTH_RRULE_W							
		+0+RACE_PORT_N+RACE							
		_PORT_GWCA_N*RACE_A							
		XI_CHAIN_W+1+1+1+3,							
		= 1 + 1 + 1 +							
		RACE_MAC_ENTRY_W +							
		48 + 1 + 1 + 1 + 1 +							
		RACE_PORT_N +							
RACE_MAC_RAM_DW	106	RACE_PORT_N +	MAC table data width						
			RACE_PORT_N +						
		RACE_AXI_CHAIN_W + 1 +							
		1+1+3							
		= 1 + 1 + PORT_N + 1 +							
DACE VI ANI DAM DW	117	PORT_N +	VLAN table data width						
RACE_VLAN_RAM_DW	117	PORT_GWCA_N*AXI_CHAI	VLAN table data width						
		N_W + 1 + 1 + 1 + 3							
		RACE_PORT_N+1+1+1+1+							
RACE_L23U_RAM_DW	110	1+1+1+1+1+3+2+48+12+3+	L23U data width						
		1+12+3+1,							
RACE_CPU_CORE_W	3	\$clog2(RACE_CPU_CORE_	CPU core number width						
TAOL_OF O_CONL_W	3	N)	Of O core number with						

Parameter Name	R-Switch-	Equation/Value	Explanation
RACE_PFL_META_INFO_W	90	1+1+RACE_PSFP_MSDU_ W+1+RACE_PSFP_GATE_ W+1+RACE_PSFP_MTR_ W+1+RACE_FRER_RECE_ W+1+RACE_LTH_RRULE_ W+RACE_PORT_N+RACE _PORT_GWCA_N*RACE_A XI_CHAIN_W+1+1+1+3,	
RACE_PFL_RAM_DW	116	RACE_PORT_N+RACE_PF L_META_INFO_W+4+4+1+ 0+0+1	

3.1 GWCA i parameter (i=0..RACE_PORT_GWCA_N)

GWCA i global parameter list is shown in Table 3-3.

GWCA i local parameter list is shown in Table 3-4.

Table 3-3: GWCA i global parameter list

Parameter Name	R-Switch-3.0 Values	Explanation
My port number		
GWCA[i]_MY_PORT_N	RACE_PORT_TSNA_N+i	My port number Refer to Fabric specification to know an agent port number [FAB].
AXI master		
GWCA[i]_AXI_RINC_N	8	RX incremental descriptor Chain number.
GWCA[i]_AXI_TLIM_N	32	TX rate limiter number.
GWCA[i]_AXI_DW	128	AXI bus Data width
GWCA[i]_AXI_AW	40	AXI bus address width
GWCA[i]_AXI_BST_SZ	256	AXI burst size. Restrictions:
		- AXI_BST_SZ maximum value is AXI_DW*2.
GWCA[i]_AXI_RD_OUT_N	16	AXI read outstanding number Also equal to the number of read IDs.
GWCA[i]_AXI_WR_OUT_N	16	AXI write outstanding number. Also equal to the number of write IDs.
GWCA[i]_AXI_RD_BUF_DP	128	Read data bus buffer depth
GWCA[i]_AXI_WR_BUF_DP	128	Write data bus buffer depth
GWCA[i]_AXI_RX_DESCR_PRE_N	4	RX descriptor prefetch number
GWCA[i]_AXI_TX_DESCR_PRE_N	4	TX descriptor prefetch number
Frame		
GWCA[i]_FRM_PRIO_N	8	Priority number handled by GWCA
Descriptor RAM		
GWCA[i]_DES_RAM_DP	2048	Descriptor RAM depth
Timestamp RAM		
GWCA[i]_TS_RAM_DP	256	Timestamp RAM depth

Table 3-4: GWCA i local parameter list

Parameter Name	R-Switch-3.0	Explanation
AXI master		
GWCA[i]_AXI_RINC_W	3	AXI RX incremental chain width
GWCA[i]_AXI_STRB_W	16	AXI strobe width
GWCA[i]_AXI_STRB_WW	4	AXI strobe width width
GWCA[i]_AXI_RD_OUT_W	4	AXI read outstanding number width
GWCA[i]_AXI_RD_OUT_W1	5	AXI read outstanding number +1 width
GWCA[i]_AXI_WR_OUT_W	4	AXI write outstanding number width
GWCA[i]_AXI_WR_OUT_W1	5	AXI write outstanding number +1 width
GWCA[i]_AXI_BST_SZ_W	8	AXI burst size width
Frame		
GWCA[i]_FRM_PRIO_W	3	Priority width
Descriptor RAM		
GWCA[i]_DES_RAM_AW	11	Descriptor RAM address width
GWCA[i]_DES_RAM_AW1	12	Descriptor RAM address width
GWCA[i]_DES_RAM_DW	104	Descriptor RAM Data Width
Multicast RAM		
GWCA[i]_RMS_RAM_DW	22	RX multicast RAM Data Width
Timestamp RAM		
GWCA[i]_TS_RAM_DW	79	Timestamp RAM data width
GWCA[i]_TS_RAM_AW	8	Timestamp RAM address width
GWCA[i]_TS_RAM_AW1	9	Timestamp RAM address + 1 width

3.2 TSNA i parameter (i=0..RACE_PORT_TSNA_N)

TSN agent i global parameter list is shown in Table 3-5.

TSN agent i local parameter list is shown in Table 3-6.

Table 3-5 TSNA i global parameter list

Parameter Name	R-Switch-3.0 Values	Explanation
My port number		
		My port number
ETHA[i]_MY_PORT_N	i	Refer to Fabric specification to know an agent port number
		[FAB].
Frame		
ETHA[i]_FRM_PRIO_N	8	Priority number handled by TSNA
Cut-through		
ETHA[i]_CT_DESCR_N	8	Cut-through descriptor number
Descriptor RAM		
ETHA[i]_DES_RAM_DP	2048	Descriptor RAM depth
TAS RAM		
ETHA[i]_TAS_RAM_DP	256	TAS RAM depth

Table 3-6 TSNA i local parameter list

Parameter Name	R-Switch-3.0	Explanation
Frame		
ETHA[i]_FRM_PRIO_W	3	Priority width
ETHA[i]_FRM_TPRIO_N	9	Number of priorities including cut-through
ETHA[i]_FRM_TPRIO_W	4	Number of priorities including cut-through bus width
Cut-through		
ETHA[i]_CT_DESCR_W1	4	Cut-through descriptor number +1 bus width
Descriptor RAM		
ETHA[i]_DES_RAM_AW	11	Descriptor RAM address width
ETHA[i]_DES_RAM_AW1	12	Descriptor RAM address width
ETHA[i]_DES_RAM_DW	72	Descriptor RAM Data Width
TAS RAM		
ETHA[i]_TAS_RAM_AW	8	Timestamp RAM address width

4. Register

4.1 Register mapping

The R-Switch 3 register map is described in Table 4-1. This table is only an example of address mapping based on the switch default parameters. For the parameter dependant mapping, refer to common agent specification [COMA].

Access Mode:

- Any: Register can be accessed in any mode.

Note:

- All registers can be read in any mode.
- "Clear conditions" is having the higher priority than "Set conditions".

Table 4-1: R-Switch 3 register map

Address range	Offset while reding specification documents	Register name
0_0000H-1_AFFFH	FWRO offset	[MFWD] registers
		[MFAB] registers
1 B000H-1 BFFFH	TPRO offset	In this version, fabric register address range is used for
1_000011-1_0111111	IFRO diiset	interrupt controller registers described in this document
		because fabric has no registers.
1_C000H-1_CFFFH	CARO offset	[COMA] registers
4 0000114 555511	TARO offset of TSNA0, RMRO offset RMAC0	IETHAL accietans (nort 0) IDMACL accietans (nort 0)
1_D000H-1_EFFFH	(TSNA have 1000H, RMAC have 1000H)	[ETHA] registers (port 0), [RMAC] registers (port 0)
1_F000H-2_0FFFH	TARO offset of TSNA1, RMRO offset RMAC1	[ETHA] registers (port 1), [RMAC] registers (port 1)
2_1000H-2_2FFFH	TARO offset of TSNA2, RMRO offset RMAC2	[ETHA] registers (port 2), [RMAC] registers (port 2)
2_3000H-2_4FFFH	TARO offset of TSNA3, RMRO offset RMAC3	[ETHA] registers (port 3), [RMAC] registers (port 3)
2_5000H-2_6FFFH	TARO offset of TSNA4, RMRO offset RMAC4	[ETHA] registers (port 4), [RMAC] registers (port 4)
2_7000H-2_8FFFH	TARO offset of TSNA5, RMRO offset RMAC5	[ETHA] registers (port 5), [RMAC] registers (port 5)
2_9000H-2_AFFFH	TARO offset of TSNA6, RMRO offset RMAC6	[ETHA] registers (port 6), [RMAC] registers (port 6)
2_B000H-2_CFFFH	TARO offset of TSNA7, RMRO offset RMAC7	[ETHA] registers (port 7), [RMAC] registers (port 7)
2_D000H-2_EFFFH	TARO offset of TSNA8, RMRO offset RMAC8	[ETHA] registers (port 8), [RMAC] registers (port 8)
2_F000H-3_0FFFH	TARO offset of TSNA9, RMRO offset RMAC9	[ETHA] registers (port 9), [RMAC] registers (port 9)
3_1000H-3_2FFFH	TARO offset of TSNA10, RMRO offset RMAC10	[ETHA] registers (port 10), [RMAC] registers (port 10)
3_3000H-3_4FFFH	TARO offset of TSNA11, RMRO offset RMAC11	[ETHA] registers (port 11), [RMAC] registers (port 11)
3_5000H-3_6FFFH	TARO offset of TSNA12, RMRO offset RMAC12	[ETHA] registers (port 12), [RMAC] registers (port 12)
3_7000H-3_8FFFH	GWRO offset of GWCA0	[GWCA] registers (port 13)
3_9000H-3_AFFFH	GWRO offset of GWCA1	[GWCA] registers (port 14)

4.2 Register attributes

The register attribute defines what kind of access a register supports. Per one register, there are always two attributes, a register access attribute which define what kind of accesses a register supports and, a register security attribute which define what accesses can perform the unsecure APB [APB] in the register access attribute depending on the security setting in security registers.

"Representation of register access attributes " describes register access attributes and "Representation of register security attributes" describes register security attributes. Attributes are given to a register field in Register detailed explanation section by specifying the attribute symbols in the R/W-P column.

Table 4-2: Register access attributes

		Impact on accesses		
Symbol	Meaning	Write access	Read access	
RW	Read write	Write value is written	Written value is read	
R!=W	Read different than write	Write access happens	Read value differs from written value	
R	Read only	Write value is ignored	Read access happens	
R0	Only Read 0	Write value is ignored	Always read '0'	
R1	Only Read 1	Write value is ignored	Always read '1'	
R0W	Read 0 write	Write access happens	Always read as '0'	
R1W	Read 1 write	Write access happens	Always read as '1'	
P.C	RC Read clear	Read clear Write value is ignored	Read access happens	
RC			Read access clears the register	

Table 4-3: Register security attributes

		Impact on	accesses				
Symbol	Meaning	Write access	Read access				
U	Unprotected	Write access happens for unsecure APB	Read access happens for unsecure APB				
В	Drotootod	A security register should be set to authorize write	A security register should be set to authorize read				
Р	Protected	access by the unsecure APB	access by the unsecure APB				
RU	Read-Unprotected	Write value ignored for unsecure APB	Read access happens for unsecure APB				
RP	Dood protected	Write value impered for unacquire ADD	A security register should be set to authorize read				
RP	Read protected	Write value ignored for unsecure APB	access by the unsecure APB				
D	Dunlingtod	Write access happens for unsecure APB to a	Read access happens for unsecure APB to a				
D	Duplicated	duplicated and independent register	duplicated and independent register				
F	Forbidden	Write value ignored for unsecure APB	Read value ignored for unsecure APB				
		A security register should be set to authorize write					
S	Switch	access by the unsecure APB.	A security register should be set to authorize read				
5	Switch	A security register should be set to unauthorize	access by the unsecure APB				
		write access by the secure APB.					

4.3 Register list

The TOP module register list is described in Table 4-1. TPRO (TOP Register Offset) indicates base address of address space allocated to TOP module by the system. All registers representations are done with the default values of the section 3. If the TOP module is not use with default parameters, it should be taken in account by the user while reading the SFR representation.

Notes:

- A register can have two addresses. The address preceded by "E:" correspond to an emulation address which allows to read a register without modifying its content.

Table 4-4: List of TOP module registers

Offset/Address	Register name	Abbreviation						
TPRO + 0000H	TOP module Error and Monitoring Interrupt Mapping Configuration 0	TPEMIMC0						
TPRO + 0004H	TOP module Error and Monitoring Interrupt Mapping Configuration 1	TPEMIMC1						
TPRO + 0010H + 4*t	+ 0010H + 4*t TOP module GWCA Error and Monitoring Interrupt Mapping Configuration t							
	(t=0RACE_PORT_GWCA_N-1)							
TPRO + 0050H + 4*t	TOP module ETHA Error and Monitoring Interrupt Mapping Configuration t	TPEEMIMCt						
	(t=0RACE_PORT_TSNA_N-1)							
TPRO + 0090H + 4*t	TOP module GWCA Timestamp Error and Monitoring Interrupt Mapping Configuration t	TPTEMIMCt						
	(t=0 RACE_PTP_TN-1)							
TPRO + 0100H + 4*t	TOP module GWCA Data Error and Monitoring Interrupt Mapping Configuration t	TPDEMIMCt						
	(t=0RACE_AXI_CHAIN_N-1)							
TPRO + 0900H	TOP module Switch Interrupt Mirroring	TSIM						
TPRO + 0904H	TOP module Agent Interrupt Mirroring	TAIM						
TPRO + 0908H	TOP module Forwarding engine Interrupt Mirroring	TFIM						
TPRO + 090CH	TOP module COMA Interrupt Mirroring	TCIM						
TPRO + 0910H + 4*t	TOP module GWCA Interrupt Mirroring t (t=0RACE_PORT_GWCA_N-1)	TGIMt						
TPRO + 0950H + 4*t	TOP module ETHA Interrupt Mirroring t (t=0RACE_PORT_TSNA_N-1)	TEIMt						

4.4 Register detailed explanation

This section describes SFR details.

4.4.1 TOP Function registers

4.4.1.1 Interrupt mapping function registers

(1) TPEMIMC0

TOP module Error and Monitoring Interrupt Mapping Configuration 0

B31	30	29	28	28 27 26 25 24 23 22 21 20							20	19	18	17	16			
	SSI	CM1		RS	V / SSIG	M1	SSIM1	SSICM0				RS	SSIM0					
[R/	ACE_CPU_	CORE_W-1	:0]	[RACE_P	ORT_GWC	A_W-1:0]	SSINI	[RACE_CPU_CORE_W-1:0]				[RACE_PORT_GWCA_W-1:0]			SSIIVIO			
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	DCV																	
	RSV																	

Bits	Bit name	RW-P	Initial value	Function description
RACE_CPU_CORE_W+27: 28	SSICM1	RW-F	ОН	Switch Status Interrupt Core Mapping 1 Functions: - Used to decide to which pin Switch Status Interrupt 1 are mapped when mapped to a GWCA.
27:RACE_PORT_GWCA_W +25	RSV	R0-U	ОН	Reserved area. On read, 0 will be returned.
RACE_PORT_GWCA_W+24 :25	SSIGM1	RW-F	он	Switch Status Interrupt GWCA Mapping 1 Values: When TPEMIMCO.SSIM1 is set to 1'b1, Switch Status Interrupt 1 are mapped to following pins. - 0: mapped to race_gwca0_core_int[TPEMIMCO.SSICM1] - 1: mapped to race_gwca1_core_int[TPEMIMCO.SSICM1]
24	SSIM1	RW-F	ОН	Switch Status Interrupt Mapping 1 Values: - 1'b0: Switch Status Interrupt 1 are mapped to race_race_status_int - 1'b1: Switch Status Interrupt 1 are mapped to a specific core depending on TPEMIMCO.SSIGM1 register Switch Status Interrupt 1 contain the following interrupts: - RSSIS.NSSSISi (i=07) [COMA].
RACE_CPU_CORE_W+19: 20	SSICM0	RW-F	он	Switch Status Interrupt Core Mapping 0 Functions: - Used to decide to which pin Switch Status Interrupt 0 are mapped when mapped to a GWCA.
19:RACE_PORT_GWCA_W +17	RSV	R0-U	ОН	Reserved area. On read, 0 will be returned.

				Switch Status Interrupt GWCA Mapping 0				
				Values:				
RACE_PORT_GWCA_W+16	0010140	DW 5	011	When TPEMIMC0.SSIM0 is set to 1'b1, Switch Status Interrupt 0 are mapped to				
:17	SSIGM0	RW-F	0H	following pins.				
				- 0: mapped to race_gwca0_core_int[TPEMIMC0.SSICM0]				
				- 1: mapped to race_gwca1_core_int[TPEMIMC0.SSICM0]				
		RW-F	ОН	Switch Status Interrupt Mapping 0				
				Values:				
				- 1'b0: Switch Status Interrupt 0 are mapped to race_race_status_int				
16	SSIM0			- 1'b1: Switch Status Interrupt 0 are mapped to a specific core depending on				
				TPEMIMC0.SSIGM0 register				
				Switch Status Interrupt 0 contain the following interrupts:				
				- RSSIS.SNSSISi (i=07) [COMA].				
15:0	RSV	R0-U	0H	- Reserved area. On read, 0 will be returned.				

(2) TPEMIMC1

TOP module Error and Monitoring Interrupt Mapping Configuration 1

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[R/	CSI ACE_CPU_	CM CORE_W-1	:0]		SV / CSIC		CSIM	CEICM [RACE_CPU_CORE_W-1:0]				RSV / CEIGM [RACE_PORT_GWCA_W -1:0]			CEIM
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[R/	FSICM RSV / FSIGM FSIM FSIM [RACE CPU CORE W-1:0] [RACE PORT GWCA W-1:0] [RACE CPU CORE W-1:0]						:0]		SV / FEIC		FEIM				

Bits	Bit name	RW-P	Initial value	Function description				
RACE_CPU_CORE_W+27 : 28	CSICM	RW-F	ОН	Common Status Interrupt Core Mapping Functions: - Used to decide to which pin Common Status Interrupt are mapped when mapped to a GWCA. - Refer to TPEMIMC1.CSIGM				
27:RACE_PORT_GWCA_W+2 5	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.				
RACE_PORT_GWCA_W+ 24:25	CSIGM	RW-F	ОН	Common Status Interrupt GWCA Mapping Values: When TPEMIMC1.CSIM is set to 1'b1, Common Status Interrupt are mapped to following pins. - 0: mapped to race_gwca0_core_int[TPEMIMC1.CSICM] - 1: mapped to race_gwca1_core_int[TPEMIMC1.CSICM]				
24	CSIM	RW-F	ОН	Common Status Interrupt Mapping Values: - 1'b0: Common Status Interrupt are mapped to race_coma_status_int - 1'b1: Common Status Interrupt are mapped to a specific core depending on TPEMIMC1.CSIGM register Common Status Interrupt contain the following interrupts: - CAMISO [COMA] - CAMIS1 [COMA]				
RACE_CPU_CORE_W+19:20	CEICM	RW-F	ОН	Common Error Interrupt Core Mapping Functions: - Used to decide to which pin Common Error Interrupt are mapped when mapped to a GWCA.				
19:RACE_PORT_GWCA_W+1	RSV	R0-U	0Н	Reserved area. On read, 0 will be returned.				
RACE_PORT_GWCA_W+ 16:17	CEIGM	RW-F	ОН	Common Error Interrupt GWCA Mapping Values: When TPEMIMC1.CEIM is set to 1'b1, Common Error Interrupt are mapped to following pins. - 0: mapped to race_gwca0_core_int[TPEMIMC1.CEICM] - 1: mapped to race_gwca1_core_int[TPEMIMC1.CEICM]				

				<u></u>
16	CEIM	RW-F	он	Common Error Interrupt Mapping Values: - 1'b0: Common Error Interrupt are mapped to race_coma_error_int - 1'b1: Common Error Interrupt are mapped to a specific core depending on TPEMIMC1.CEIGM register Common Error Interrupt contain the following interrupts: - CAEIS0 [COMA] - CAEIS1 [COMA]
RACE_CPU_CORE_W+11	FSICM	RW-F	ОН	Forwarding Status Interrupt Core Mapping Functions: - Used to decide to which pin Forwarding Status Interrupt are mapped when mapped to a GWCA.
11:RACE_PORT_GWCA_W+9	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
RACE_PORT_GWCA_W+ 8:9	FSIGM	RW-F	ОН	Forwarding Status Interrupt GWCA Mapping Values: When TPEMIMC1.FSIM is set to 1'b1, Forwarding Status Interrupt are mapped to following pins. - 0: mapped to race_gwca0_core_int[TPEMIMC1.FSICM] - 1: mapped to race_gwca1_core_int[TPEMIMC1.FSICM]
8	FSIM	RW-F	он	Forwarding Status Interrupt Mapping Values: - 1'b0: Forwarding Status Interrupt are mapped to race_mfwd_status_int - 1'b1: Forwarding Status Interrupt are mapped to a specific core depending on TPEMIMC1.FSIGM register Forwarding Status Interrupt contain the following interrupts: - FWMIS0 [FWD]
RACE_CPU_CORE_W+3:	FEICM	RW-F	он	Forwarding Error Interrupt Core Mapping Functions: - Used to decide to which pin Forwarding Error Interrupt are mapped when mapped to a GWCA.
3:RACE_PORT_GWCA_W+1	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
RACE_PORT_GWCA_W:1	FEIGM	RW-F	ОН	Forwarding Error Interrupt GWCA Mapping Values: When TPEMIMC1.FEIM is set to 1'b1, Forwarding Error Interrupt are mapped to following pins. - 0: mapped to race_gwca0_core_int[TPEMIMC1.FEICM] - 1: mapped to race_gwca1_core_int[TPEMIMC1.FEICM]

				Forwarding Error Interrupt Mapping Values: - 1'b0: Forwarding Error Interrupt are mapped to race_mfwd_error_int - 1'b1: Forwarding Error Interrupt are mapped to a specific core depending
0	FEIM	RW-F	ОН	on TPEMIMC1.FEIGM register Forwarding Error Interrupt contain the following interrupts: - FWEIS0 [FWD] - FWEIS1 [FWD] - FWEIS2 [FWD] - FWEIS3 [FWD] - FWEIS5 [FWD] - FWEIS5 [FWD] - FWEIS5 [FWD]
				- FWEIS8 [FWD]

(3) TPGEMIMCt (t=0..RACE_PORT_GWCA_N-1)

TOP module GWCA Error and Monitoring Interrupt Mapping Configuration t

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				RS	SV										
												ı		ı	
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			D.	2)./					GEI	CMt		RS	V / GEIG	SMt	OFINA
			RS	5 V				[R	ACE_CPU_	CORE_W-1	:0]	[RACE_P	ORT_GWC	A_W -1:0]	GEIMt

Bits	Bit name	RW-P	Initial value	Function description
31:18	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
RACE_CPU_CORE_W+3:4	GEICMt	RW-F	он	GWCAt Error Interrupt Core Mapping Functions: - Used to decide to which pin GWCAt Error Interrupt are mapped when mapped to a GWCA.
3:RACE_PORT_GWCA_W+1	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
RACE_PORT_GWCA_W:1	GEIGMt	RW-F	ОН	GWCAt Error Interrupt GWCA Mapping Values: When TPGEMIMCt.GEIMt is set to 1'b1, GWCAt Error Interrupt are mapped to following pins. - 0: mapped to race_gwca0_core_int[TPGEMIMCt.GEICMt] - 1: mapped to race_gwca1_core_int[TPGEMIMCt.GEICMt]
0	GEIMt	RW-F	ОН	GWCAt Error Interrupt Mapping Values: - 1'b0: GWCAt Error Interrupt are mapped to race_ gwca[t]_error_int - 1'b1: GWCAt Error Interrupt are mapped to a specific core depending on TPGEMIMCt.GEIGMt register GWCAt Error Interrupt contain the following interrupts: - GWEIS0 except GWEIS0.TDFES for GWCAt [GWCA] - GWEIS1 for GWCAt [GWCA] - GWEIS4 for GWCAt [GWCA] - GWEIS5 for GWCAt [GWCA]

(4) TPEEMIMCt (t=0..RACE_PORT_TSNA_N-1)

TOP module ETHA Error and Monitoring Interrupt Mapping Configuration t

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	EMSI	EICMt		RSV	/ EMSE	IGMt	EMSEI		RSV							
[R/	ACE_CPU_	CORE_W-1	1:0]	[RACE_P	[RACE_PORT_GWCA_W -1:0]				KSV							
B15	14	13	12	11	10	9	8	7	7 6 5 4 3 2 1							
	ESI	CMt		RS	V / ESIG	SMt	ESIMt		EEICMt RSV / I					SMt	EEIMt	
[R/	ACE_CPU_	CORE_W-1	1:0]	[RACE_P	ORT_GWC	A_W -1:0]		[RACE_CPU_CORE_W-1:0] [RACE_PORT_GWCA_W -1				A_W -1:0]	EEIIVIL			

Bits	Bit name	RW-P	Initial value	Function description
RACE_CPU_CORE_W+27:2 8	EMSEIC Mt	RW-F	он	ETHAt MSEC Error Interrupt Core Mapping Functions: Used to decide to which pin ETHAt MSEC Error Interrupt are mapped when mapped to a GWCA. This register valid only t = 0-7.
27:RACE_PORT_GWCA_W+25	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
RACE_PORT_GWCA_W+24 :25	EMSEIG Mt	RW-F	он	ETHAt MSEC Error Interrupt GWCA Mapping Values: When TPEEMIMCt.EMSEIMt is set to 1'b1, ETHAt MSEC Error Interrupt are mapped to following pins. - 0: mapped to race_gwca0_core_int[TPEEMIMCt.EMSEICMt] - 1: mapped to race_gwca1_core_int[TPEEMIMCt.EMSEICMt] This register valid only t = 0-7.
24	EMSIMt	RW-F	ОН	Values: - 1'b0: ETHAt MSEC Error Interrupt are mapped to race_msc[t]_error_int - 1'b1: ETHAt MSEC Error Interrupt are mapped to a specific core depending on TPEEMIMCt.EMSEIGMt register ETHA0 MSEC Error Interrupt contain the following interrupts: - MSEIS0-2 for ETHAt [MSEC] - MSAESEIS0-3 for ETHAt [MSEC] - MSPNTIS for ETHAt [MSEC] - MSPNEIS for ETHAt [MSEC] This register valid only t = 0-7.
23:16	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
RACE_CPU_CORE_W+11: 12	CE_CPU_CORE_W+11: ESICMt RW-F 0H		ОН	ETHAt Status Interrupt Core Mapping Functions: - Used to decide to which pin ETHAt Status Interrupt are mapped when mapped to a GWCA.
11:RACE_PORT_GWCA_W+9	RSV	R0-U	0Η	Reserved area. On read, 0 will be returned.

				ETHAt Status Interrupt GWCA Mapping
				Values:
RACE_PORT_GWCA_W+8:				
	ESIGMt	RW-F	0H	When TPEEMIMCt.ESIMt is set to 1'b1, ETHAt Status Interrupt are mapped to
9				following pins.
				- 0: mapped to race_gwca0_core_int[TPEEMIMCt.ESICMt]
				- 1: mapped to race_gwca1_core_int[TPEEMIMCt.ESICMt]
				ETHAt Status Interrupt Mapping
				Values:
				1'b0: ETHAt Status Interrupt are mapped to race_etha[t]_status_int
8	ESIMt	RW-F	0H	- 1'b1: ETHAt Status Interrupt are mapped to a specific core depending on
				TPEEMIMCt.ESIGMt register
				ETHA1 Status Interrupt contain the following interrupts:
				- MMIS0 for RMACt [RMAC]
				ETHAt Error Interrupt Core Mapping
D. 05 00 00 00 00 00 00 00 00 00 00 00 00	==:0.4:	RW-F		Functions:
RACE_CPU_CORE_W+3:4	EEICMt		0H	- Used to decide to which pin ETHAt Error Interrupt are mapped when
				mapped to a GWCA.
3:RACE_PORT_GWCA_W+1	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
				ETHAt Error Interrupt GWCA Mapping
				Values:
DACE DODE CWCA WA	EEION#	RW-F	011	When TPEEMIMCt.EEIMt is set to 1'b1, ETHAt Error Interrupt are mapped to
RACE_PORT_GWCA_W:1	EEIGMt	KVV-F	0H	following pins.
				- 0: mapped to race_gwca0_core_int[TPEEMIMCt.EEICMt]
				- 1: mapped to race_gwca1_core_int[TPEEMIMCt.EEICMt]
				ETHAt Error Interrupt Mapping
				Values:
				- 1'b0: ETHAt Error Interrupt are mapped to race_etha[t]_error_int
				- 1'b1: ETHAt Error Interrupt are mapped to a specific core depending on
0	EEIMt	RW-F	он	TPEEMIMCt.EEIGMt register
	LLIIVIL	LVV-L	JULI	ETHA0 Error Interrupt contain the following interrupts:
				- EAEIS0 for ETHAt [TSNA]
				- EAEIS1 for ETHAt [TSNA]
				- EAEIS2 for ETHAt [TSNA]
				- MEIS for RMACt [RMAC]
	l	1		manage of the second

(5) TPTEMIMCt (t=0..RACE_PTP_TN-1)

TOP module GWCA Timestamp Error and Monitoring Interrupt Mapping Configuration t

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RSV														
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GTSICM1t [RACE_CPU_CORE_W-1]						GTSIM1t		RSV		ID A	GTSI			GTSIM0t	

Bits	Bit name	RW-P	Initial value	Function description
31:9+RACE_CPU_CORE_ W	RSV	R0-U	он	Reserved area. On read, 0 will be returned.
RACE_CPU_CORE_W+8:	GTSICM1	RW-F	ОΗ	GWCA1 TimeStamp Interrupt Core Mapping timer t Functions: - Map GWCA1 TimeStamp Interrupts t to Race_gwca1_core_int[TPTEMIMCt.GTSICM1t] when TPTEMIMCt.GTSIM1t is set.
8	GTSIM1t	RW-F	он	GWCA1 TimeStamp Interrupt Mapping timer t Values: - 1'b0: GWCA1 TimeStamp Interrupt t are mapped to race_gwca1_timer_int[t] - 1'b1: GWCA1 TimeStamp Interrupt t are mapped to race_gwca1_core_int depending on TPTEMIMCt.GTSICM1t setting GWCA1 TimeStamp Interrupt contain the following interrupts: - GWTDIS.TSDIS[t] for GWCA1 [GWCA] - GWEIS0.TDFES[t] for GWCA1 [GWCA]
7:1+RACE_CPU_CORE_ W	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
RACE_CPU_CORE_W:1	GTSICM0	RW-F	ОН	GWCA0 TimeStamp Interrupt Core Mapping timer t Functions: - Map GWCA0 TimeStamp Interrupts t to race_gwca0_core_int[TPTEMIMCt.GTSICM0t] when TPTEMIMCt.GTSIM0t is set.
0	GTSIM0t	RW-F	он	GWCA0 TimeStamp Interrupt Mapping timer t Values: - 1'b0: GWCA0 TimeStamp Interrupt t are mapped to race_gwca0_timer_int[t] - 1'b1: GWCA0 TimeStamp Interrupt t are mapped to race_gwca0_core_int depending on TPTEMIMCt.GTSICM0t setting GWCA0 TimeStamp Interrupt contain the following interrupts: - GWTDIS.TSDIS[t] for GWCA0 [GWCA] - GWEIS0.TDFES[t] for GWCA0 [GWCA]

(6) TPDEMIMCt (t=0..RACE_AXI_CHAIN_N-1)

TOP module GWCA Data Error and Monitoring Interrupt Mapping Configuration t

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RSV														
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSV								GDICM1t GDICM0t						
Kov								[RACE_CPU_CORE_W-1] [RACE_CPU_CORE_W-1]					V-1]		

Bits	Bit name	RW-P	Initial value	Function description
31:8	RSV	R0-U	0H	- Reserved area. On read, 0 will be returned.
				GWCA1 Data Interrupt Core Mapping t
				Functions:
	GDICM1t			- Map GWCA1 Data Interrupts t to
RACE_CPU_CORE_W+3:		RW-F	011	race_gwca1_core_int[TPDEMIMCt. GDICM1t]
4		KVV-F	0H	GWCA1 Data Interrupt contain the following interrupts:
				- GWDISi.DISt for GWCA1 [GWCA]
				- GWEIS2i.DFESt for GWCA1 [GWCA]
				- GWEIS3.IAOES[t] for t=0 RACE_AXI_RINC_N for GWCA1 [GWCA]
				GWCA0 Data Interrupt Core Mapping t
				Functions:
				- Map GWCA0 Data Interrupts t to
RACE_CPU_CORE_W-1:	ODIOMO	DW 5	011	race_gwca0_core_int[TPDEMIMCt. GDICM0t]
0	GDICM0t	RW-F	0H	GWCA0 Data Interrupt contain the following interrupts:
				- GWDISi.DISt for GWCA0 [GWCA]
				- GWEIS2i.DFESt for GWCA0 [GWCA]
				- GWEIS3.IAOES[t] for t=0 RACE_AXI_RINC_N for GWCA0 [GWCA]

4.4.1.2 Interrupt mirroring registers

(1) TSIM

TOP module Switch Interrupt Mirroring

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RSV														
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSV									CIM	FIM				

Bits	Bit name	RW-P	Initial value	Function description
31:2	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
				Common Interrupt Mirroring
				Values:
1	CIM	R-U	0H	- 1'b0: No interrupt is set in common agent
				- 1'b1: An interrupt is set in common agent
				CAMIS* or CAEIS* or RSSIS*
				Forwarding engine Interrupt Mirroring
				Values:
0	FWM	R-U	0H	- 1'b0: No interrupt is set in forwarding engine
				- 1'b1: An interrupt is set in forwarding engine
				FWMIS* or FWEIS*

(2) TAIM

TOP module Agent Interrupt Mirroring

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RSV / GIM[RACE_PORT_GWCA_N-1:0]														
	TOV / GIM[I O IOL_I O IVI_O IVI_O I														
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RSV / EIM[RACE_PORT_TSNA_N-1:0]														

Bits	Bit name	RW-P	Initial value	Function description
RACE_P ORT_G WCA_N +15:16	GIM	R-U	ОΗ	GWCAt Interrupt Monitoring Values: - Bit [t] 1'b0: No interrupt is set in GWCAt - Bit [t] 1'b1: An interrupt is set in GWCAt GWEIS* or GWTSDIS or GWDIS
RACE_P ORT_TS NA_N- 1:0	EIM	R-U	он	ETHAt Interrupt Monitoring Values: - Bit [t] 1'b0: No interrupt is set in ETHAt - Bit [t] 1'b1: An interrupt is set in That MMIS or MEIS or EAEIS* or MSEIS0-2 or MSAESEIS0-3 or MSPNTIS or MSPNEIS

(3) TFIM

TOP module Forwarding engine Interrupt Mirroring

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							D	SV							
							K.	5 V							
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		RS	2) /			FWMISI	FWEISI								
	MO	M8	M7	M6	M5	M4	МЗ	M2	M1	M0					

Bits	Bit name	RW-P	Initial value	Function description
31:10	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
9	FWMISIM0	R-U	он	FWMIS0 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWMIS0 register - 1'b1: An interrupt is set in forwarding engine FWMIS0 register
8	FWEISIM8	R-U	он	FWEIS8 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS8 register - 1'b1: An interrupt is set in forwarding engine FWEIS8 register
7	FWEISIM7	R-U	ОН	FWEIS7 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS7 register - 1'b1: An interrupt is set in forwarding engine FWEIS7 register
6	FWEISIM6	R-U	ОН	FWEIS6 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS6 register - 1'b1: An interrupt is set in forwarding engine FWEIS6 register
5	FWEISIM5	R-U	ОН	FWEIS5 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS5 register - 1'b1: An interrupt is set in forwarding engine FWEIS5 register
4	FWEISIM4	R-U	ОН	FWEIS4 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS4 register - 1'b1: An interrupt is set in forwarding engine FWEIS4 register
3	FWEISIM3	R-U	ОН	FWEIS3 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS3 register - 1'b1: An interrupt is set in forwarding engine FWEIS3 register
2	FWEISIM2	R-U	ОН	FWEIS2 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS2 register - 1'b1: An interrupt is set in forwarding engine FWEIS2 register

1	FWEISIM1	R-U	ОΗ	FWEIS1 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS1 register - 1'b1: An interrupt is set in forwarding engine FWEIS1 register
0	FWEISIM0	R-U	он	FWEIS0 Interrupt Mirroring Values: - 1'b0: No interrupt is set in forwarding engine FWEIS0 register - 1'b1: An interrupt is set in forwarding engine FWEIS0 register

(4) TCIM

TOP module COMA Interrupt Mirroring

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							RS	SV							
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					501						CAMISI	CAMISI	CAEISI	CAEISI	RSSISI
					RSV						M1	MO	M1	MO	М

Bits	Bit name	RW-P	Initial value	Function description
31:5	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
				CAMIS1 Interrupt Mirroring
4	CAMISIM1	R-U	0H	Values:
4	CAIVIISIIVI I	K-U	UH	- 1'b0: No interrupt is set in Common agent CAMIS1 register
				- 1'b1: An interrupt is set in Common agent CAMIS1 register
				CAMIS0 Interrupt Mirroring
3	CAMISIMO	R-U	ОH	Values:
3	CAIVIISIIVIU	K-U	UH	- 1'b0: No interrupt is set in Common agent CAMIS0 register
				- 1'b1: An interrupt is set in Common agent CAMIS0 register
				CAEIS1 Interrupt Mirroring
2	CAFISIM1	R-U	0H	Values:
_	OALIGINIT	IV-0	011	- 1'b0: No interrupt is set in Common agent CAEIS1 register
				- 1'b1: An interrupt is set in Common agent CAEIS1 register
				CAEIS0 Interrupt Mirroring
1	CAEISIM0	R-U	0H	Values:
	O/ (E/Olivio	10		- 1'b0: No interrupt is set in Common agent CAEIS0 register
				- 1'b1: An interrupt is set in Common agent CAEIS0 register
				RSSIS Interrupt Mirroring
0) RSSISIM	R-U	ОH	Values:
	1 TOO TO THE	R-U (0H	- 1'b0: No interrupt is set in Common agent RSSIS register
				- 1'b1: An interrupt is set in Common agent RSSIS register

(5) TGIMt (t=0..RACE_PORT_GWCA_N-1)

TOP module GWCA Interrupt Mirroring t

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							D	SV							
							K	3 v							
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				2) (GWEISI	GWEISI	GWEISI	GWEISI	GWEISI	GWEISI	GWTSD	GWDISI
			RS	S V				M5	M4	МЗ	M2	M1	MO	ISIM	М

Bits	Bit name	RW-P	Initial value	Function description
31:8	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
				GWEIS5 Interrupt Mirroring
7	GWEISIM5	R-U	ОН	Values:
•	OWEIGHNO	10	011	- 1'b0: No interrupt is set in GWCAt GWEIS5 register
				- 1'b1: An interrupt is set in GWCAt GWEIS5 register
				GWEIS4 Interrupt Mirroring
6	GWEISIM4	R-U	0H	Values:
				- 1'b0: No interrupt is set in GWCAt GWEIS4 register
				- 1'b1: An interrupt is set in GWCAt GWEIS4 register
				GWEIS3 Interrupt Mirroring
5	GWEISIM3	R-U	0H	Values:
				1'b0: No interrupt is set in GWCAt GWEIS3 register 1'b1: An interrupt is set in GWCAt GWEIS3 register
				- 1'b1: An interrupt is set in GWCAt GWEIS3 register GWEIS2 Interrupt Mirroring
	GWEISIM2 R-		он	Values:
4		R-U		- 1'b0: No interrupt is set in GWCAt GWEIS2 register
				- 1'b1: An interrupt is set in GWCAt GWEIS2 register
				GWEIS1 Interrupt Mirroring
				Values:
3	GWEISIM1	R-U	0H	- 1'b0: No interrupt is set in GWCAt GWEIS1 register
				- 1'b1: An interrupt is set in GWCAt GWEIS1 register
				GWEIS0 Interrupt Mirroring
2	CWEIGIMO	R-U	ОН	Values:
2	GWEISIM0	K-U	UH	- 1'b0: No interrupt is set in GWCAt GWEIS0 register
				- 1'b1: An interrupt is set in GWCAt GWEIS0 register
				GWTSDIS Interrupt Mirroring
1	GWTSDISI	R-U	ОН	Values:
•	1 M			- 1'b0: No interrupt is set in GWCAt GWTSDIS register
				- 1'b1: An interrupt is set in GWCAt GWTSDIS register
				GWDIS Interrupt Mirroring
0	GWDISIM R	R-U	0H	Values:
		R-U		- 1'b0: No interrupt is set in GWCAt GWDIS register
				- 1'b1: An interrupt is set in GWCAt GWDIS register

(6) TEIMt (t=0..RACE_PORT_TSNA_N-1)

TOP module ETHA Interrupt Mirroring t

B31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	RSV														
	1	ı		ı						ı		ı	1		
B15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
D		MSPNE	MSPNT	MSAES	MSAES	MSAES	MSAES	MSEISI	MSEISI				EAEISI	EAEISI	EAEISI
R	RSV		ISIM	EISIM3	EISIM2	EISIM1	EISIM0	M2	M1	MO	MMISIM MEISIM		M2	M1	M0

Bits	Bit name	RW-P	Initial value	Function description
31:14	RSV	R0-U	0H	Reserved area. On read, 0 will be returned.
				MSPNEIS Interrupt Mirroring
	MSPNEISI			Values:
13	M	R-U	он	- 1'b0: No interrupt is set in ETHAt MSEC MSPNEIS register
	IVI			- 1'b1: An interrupt is set in ETHAt MSEC MSPNEIS register
				This register exist only t = 0-7.
				MSPNTIS Interrupt Mirroring
	MSPNTISI			Values:
12	M	R-U	ОН	- 1'b0: No interrupt is set in ETHAt MSEC MSPNTIS register
	"			- 1'b1: An interrupt is set in ETHAt MSEC MSPNTIS register
				This register exist only t = 0-7.
				MSAESEIS3 Interrupt Mirroring
	MSAESEIS			Values:
11	IM3	R-U	ОН	- 1'b0: No interrupt is set in ETHAt MSEC MSAESEIS3 register
				- 1'b1: An interrupt is set in ETHAt MSEC MSAESEIS3 register
				This register exist only t = 0-7.
				MSAESEIS2 Interrupt Mirroring
	MSAESEIS			Values:
10	IM2	R-U	ОН	- 1'b0: No interrupt is set in ETHAt MSEC MSAESEIS2 register
				- 1'b1: An interrupt is set in ETHAt MSEC MSAESEIS2 register
				This register exist only t = 0-7.
				MSAESEIS1 Interrupt Mirroring
	MSAESEIS			Values:
9	IM1	R-U	ОН	- 1'b0: No interrupt is set in ETHAt MSEC MSAESEIS1 register
				- 1'b1: An interrupt is set in ETHAt MSEC MSAESEIS1 register
				This register exist only t = 0-7.
				MSAESEIS0 Interrupt Mirroring
	MSAESEIS	.		Values:
8	IMO	R-U	0H	- 1'b0: No interrupt is set in ETHAt MSEC MSAESEIS0 register
				- 1'b1: An interrupt is set in ETHAt MSEC MSAESEIS0 register
				This register exist only t = 0-7.
				MSEIS2 Interrupt Mirroring
7	MCEICIMO	DII	OLI	Values:
7	MSEISIM2	R-U	0H	- 1'b0: No interrupt is set in ETHAt MSEC MSEIS2 register
				- 1'b1: An interrupt is set in ETHAt MSEC MSEIS2 register
				This register exist only t = 0-7.

				MSEIS1 Interrupt Mirroring
				Values:
	MODIOINA	D	01.1	
6	MSEISIM1	R-U	0H	- 1'b0: No interrupt is set in ETHAt MSEC MSEIS1 register
				- 1'b1: An interrupt is set in ETHAt MSEC MSEIS1 register
				This register exist only t = 0-7.
				MSEIS0 Interrupt Mirroring
				Values:
5	MSEISIM0	R-U	0H	- 1'b0: No interrupt is set in ETHAt MSEC MSEIS0 register
				- 1'b1: An interrupt is set in ETHAt MSEC MSEIS0 register
				This register exist only t = 0-7.
				MMIS0 Interrupt Mirroring
	NANAIOINA	D. 1.1	он	Values:
4	MMISIM	R-U		- 1'b0: No interrupt is set in ETHAt RMAC MMIS0 register
				- 1'b1: An interrupt is set in ETHAt RMAC MMIS0 register
				MEIS Interrupt Mirroring
				Values:
3	MEISIM	R-U	0H	- 1'b0: No interrupt is set in ETHAt RMAC MEIS register
				- 1'b1: An interrupt is set in ETHAt RMAC MEIS register
				EAEIS2 Interrupt Mirroring
				Values:
2	EAEISIM2	R-U	0H	- 1'b0: No interrupt is set in ETHAt EAEIS2 register
				- 1'b1: An interrupt is set in ETHAt EAEIS2 register
				EAEIS1 Interrupt Mirroring
				Values:
1	EAEISIM1	R-U	0H	- 1'b0: No interrupt is set in ETHAt EAEIS1 register
				- 1'b1: An interrupt is set in ETHAt EAEIS1 register
				EAEISO Interrupt Mirroring
	D EAEISIMO F			Values:
0		R-U	он	- 1'b0: No interrupt is set in ETHAt EAEIS0 register
				- 1'b1: An interrupt is set in ETHAt EAEIS0 register

5. Register utilization

5.1 Software flows

Restrictions:

SW: Please follow to the flow in this section.

5.1.1 Software flow legend

Software flow legend is described in Fig 5.1.

Fig 5.1: Software flow legend

5.1.2 Switch initialization flow

Switch initialization flow is described in Fig 5.2.

Fig 5.2: Switch initialization flow

5.1.3 Switch disable flow

Switch reset flow is described in Fig 5.3.

Fig 5.3: Switch disable flow

5.1.4 Switch reset flow

Switch reset flow is described in Fig 5.4.

Fig 5.4: Switch reset flow

5.1.5 Switch emergency reset flow

Switch emergency reset flow is described in Fig 5.5.

This is used when [TSNA] locked.

For example, in the case of MII, if an error occurs in the PHY and the MII PHY TX clock stops, the Switch cannot send data and cannot release the pointer (locked on [TSNA] Operation mode). The state disappears when the MII PHY TX clock is restarted, but use emergency reset if required.

Fig 5.5: Switch emergency reset flow

5.1.6 Register writable without software flow

This section describes registers that have not been described so far. These registers can be changed dynamically. (However, it is necessary that the initial settings such as the clock enabling have been completed.)

6. Functional details

6.1 R-switch forwarding modes

6.1.1 Hub

6.1.1.1 Background

A Hub is an ethernet network interconnection system (OSI) which only works on Layer 1. It does not consider any kind of addressing and, consequently, is not aware of the kind of traffic which goes through it and can create security issues.

Hub operation is described in Fig 6.1.

Fig 6.1: Hub operation

Notes:

- In hub mode, the internal port [GWCA] behaves like an ethernet port. In the following configuration, the internal port will receive all frames by AXI descriptor queue number 0 and transmit all frames by AXI descriptor queue number 1.

6.1.1.2 Settings

The setting required to set R-switch 3 in Hub mode are described in Table 6-1. This setting should be done by using the Switch initialization flow described in section 5.1.2. Any register not mentioned in the table should be kept to its initial value, so it does not need to be set. After using the Switch initialization flow, any used port should be moved to OPERATION mode when required.

Table 6-1 Hub settings

Register name	Table 6-1 He	Explanation	
Forwarding engine [FWD]			
FWPBFC0i.DVi	All1 except for FWPBFC0i.DVi[i]	All ports are set to send their incoming frames to all ports	
	which is set to 1'b0	except themself	
FWPBFC0i.PBSLi	All1	All ports are set to secure port for using.	
Ethernet agent [TSNA]			
EAIRC	32'b0	All frames are directed to descriptor queue 0	
EATDQDCq.DQDq	If q=0, set to DES_RAM_DP Else set to 0	There is no QoS, so all frames are stored in priority 0 queue. As a result, all the output descriptor queue memory is reserved for queue 0.	
EAVCC.VEM	3'b011	Allows SC-Tagged frames and C-tagged frames to go through transparently.	
EATTFC.UT	1'b0	Allows any TAG formats to go through even the unsupported ones.	
RMAC [RMAC]			
MPIC.PIS	User defined	Set the PHY interface type	
MPIC.LSC	User defined	Set the PHY speed	
MRAFC	03C703C7H	Set MAC reception in promiscuous mode	
GWCA [GWCA]			
GWIRC	32'b0	All frames are directed to descriptor queue 0	
GWRDQDCq.DQDq	If q=0, set to DES_RAM_DP Else set to 0	There is no QoS, so all frames are stored in priority 0 queue. As a result, all the output descriptor queue memory is reserved for queue 0.	
GWVCC.VEM	3'b011	Allows SC-Tagged frames and C-tagged frames to go through transparently.	
GWTTFC.UT	1'b0	Allows any TAG formats to go through even the unsupported ones.	
GWDCBAC0/1	User defined	Set the LINKFIX table base address	
GWDCCi	For i = 1: Set DQTi to 1'b1 Set OSIDi to user defined. Else: Set OSIDi to user defined.	Queue 0 is used for data reception and queue 1 is used for data transmission. All other queues are not used.	

6.1.2 Layer 2 switch

6.1.2.1 Background

A Layer 2 switch is an ethernet network interconnection system (OSI) which only works on Layer 2 using MAC addresses. MAC addresses are used to filter and forward messages. A layer 2 switch has three main functions:

- Address learning: A switch can learn MAC addresses by looking at received frame source MAC addresses.
- Address aging: A switch can suppress a MAC address if a frame from the corresponding source has not been received since a given period (Usually 5 minutes).
- Frame forward/filter: A switch can decide to forward or filter a frame based on its destination MAC address. Layer 2 switch operation is described in Fig 6.2.

Fig 6.2: Layer 2 switch operation

6.1.2.2 Settings

The setting required to set R-switch 3 in Layer 2 switch mode are described in Table 6-2. This setting should be done through using the Switch initialization flow described in section 5.1.2. Any register not mentioned in the table should be kept to its initial value, so it does not need to be set. After using the Switch initialization flow, any used port should be moved to OPERATION mode when required.

Table 6-2 Layer 2 switch settings

Pogistor nama	· · · · · · · · · · · · · · · · · · ·	switch settings	
Register name	Setting value	Explanation	
Forwarding engine [FWD]			
FWPBFC0i.DVi	All1 except for FWPBFCi.DVi[i]	All ports are set to send their incoming frames to all ports	
EMBOS: MA OBOA:	which is set to 1'b0	except themself	
FWPC0i.MACDSAi	1'b1	MAC destination search happens for all ports	
FWPC0i.MACSAi	1'b1	MAC source search happens for all ports	
FWPC0i.MACHLAi	1'b1	MAC source hardware learning is enabled for all ports	
FWPC0i.MACHMAi	1'b1	MAC source hardware migration is enabled for all ports	
FWCLPRC.USMACLF	User define	Unknown source MAC addresses can be sent to CPU for learning monitoring	
FWCLPTC.LPCSD	2	Set the learning path queue number to 2	
			
FWCLPTC.LPCS FWMACTEC0.MACTU	User define	Select which CPU will be used for learning monitoring	
	User define	Set the dynamic entry upper limit with upper up	
ENC FWMACHWLC*	Oser define	Set the dynamic entry upper limit with unsecure entry	
Ethernet agent [TSNA]			
EAIRC	32'b0	All frames are directed to descriptor queue 0	
EAIRC	32 00	' '	
EATDODG DODg	If q=0, set to DES_RAM_DP	There is no QoS, so all frames are stored in priority 0 queue.	
EATDQDCq.DQDq	Else set to 0	As a result, all the output descriptor queue memory is	
		reserved for queue 0.	
EAVCC.VEM	3'b011	Allows SC-Tagged frames and C-tagged frames to go through transparently.	
		Allows any TAG formats to go through even the unsupported	
EATTFC.UT	1'b0	ones.	
RMAC [RMAC]		ories.	
MPIC.PIS	User defined	Set the PHY interface type	
MPIC.LSC	User defined	Set the PHY speed	
MRAFC	03C703C7H	Set MAC reception in promiscuous mode	
GWCA [GWCA]	3007000711	200 marto recognieri in promiscoucus moue	
GWIRC	32'b0	All frames are directed to descriptor queue 0	
Jiiii	02 D0	There is no QoS, so all frames are stored in priority 0 queue.	
GWRDQDCq.DQDq	If q=0, set to DES_RAM_DP Else set to 0	As a result, all the output descriptor queue memory is	
Office about Dabd		reserved for queue 0.	
		Allows SC-Tagged frames and C-tagged frames to go	
GWVCC.VEM	3'b011	through transparently.	
		Allows any TAG formats to go through even the unsupported	
GWTTFC.UT	1'b0	ones.	
GWDCBAC0/1	User defined	Set the LINKFIX table base address	

Register name	Setting value	Explanation
GWDCCi	For i = 1: - Set DQTi to 1'b1 - Set OSIDi to user defined. Else: - Set OSIDi to user defined.	Queue 0 is used for data reception, queue 1 is used for data transmission and queue 2 is used for learning monitoring. All other queues are not used. Notes: - For learning monitoring, extended descriptors should be used.

Notes:

- Any MAC address learnt by HW coming from an internal port [GWCA] will always be learnt along with AXI descriptor queue 0. As a result, AXI descriptor queue 0 should always be reserved for hardware learnt MAC addresses corresponding frames reception queue.

6.1.3 VLAN aware layer 2 switch

6.1.3.1 Background

A VLAN aware Layer 2 switch is an ethernet network interconnection system (OSI) which works on Layer 2 using MAC addresses and which can reduce its broadcast domains in sub-domains using VLAN IDs. A VLAN aware layer 2 switch has the same functions has a Layer 2 switch but is also able to handle VLANs.

VLAN aware layer 2 switch operation is described in Fig 6.2.

Fig 6.3: VLAN aware layer 2 switch operation

6.1.3.2 Settings

The setting required to set R-switch 3 in VLAN aware layer 2 switch mode are described in Table 6-3. This setting should be done through using the Switch initialization flow described in section 5.1.2. Any register not mentioned in the table should be kept to its initial value, so it does not need to be set. After using the Switch initialization flow, any used port should be moved to OPERATION mode when required.

Table 6-3 VLAN aware layer 2 switch settings

Register name	Setting value	Explanation
,	Forwarding en	·
FWGC.SVM	2'b01	Set Rswitch in C-TAG mode
	All1 except for FWPBFCi.DVi[i]	All ports are set to send their incoming frames to all ports
FWPBFC0i.DVi	which is set to 1'b0	except themself
FWPC0i.MACDSAi	1'b1	MAC destination search happens for all ports
FWPC0i.MACSAi	1'b1	MAC source search happens for all ports
FWPC0i.MACHLAi	1'b1	MAC source hardware learning is enabled for all ports
FWPC0i.MACHMAi	1'b1	MAC source hardware migration is enabled for all ports
FWPC0i.VLANSAi	1'b1	VLAN search happens for all ports
FWPC0i.VLANRUi	1'b1	Unknown VLANs are rejected.
FWCLPRC.USMACLF	User define	Unknown source MAC addresses can be sent to CPU for
FWCLFRC.USWIACLF	Oser define	learning monitoring
FWCLPRC.UVLANLF	User define	Unknown VLANs can be sent to CPU for learning
FWCLPTC.LPCSD	2	Set the learning path queue number to 2
FWCLPTC.LPCS	User define	Select which CPU will be used for learning monitoring
FWVLANTL0-7	User define	New VLANs can be added to the VLAN table
TWVEANTEO-7	Oser define	For details, refer to Table 6-4
Ethernet agent [TSNA]		
EATDQDCq.DQDq	User defines	The number of descriptors in descriptor queues can be set
EAVCC.VEM	3'b011	Allows SC-Tagged frames and C-tagged frames to go
2,1100112	0.0011	through transparently.
EAVTC.CTV	12'b1	Set the default VLAN value to 1
EATTFC.UT	1'b0	Allows any TAG formats to go through even the unsupported
		ones.
RMAC [RMAC]		
MPIC.PIS	User defined	Set the PHY interface type
MPIC.LSC	User defined	Set the PHY speed
MRAFC	03C703C7H	Set MAC reception in promiscuous mode
GWCA [GWCA]		
GWRDQDCq.DQDq	User defines	The number of descriptors in descriptor queues can be set
GWVCC.VEM	3'b011	Allows SC-Tagged frames and C-tagged frames to go
		through transparently.
GWVTC.CTV	12'b1	Set the default VLAN value to 1
GWTTFC.UT	1'b0	Allows any TAG formats to go through even the unsupported
		ones.
GWDCBAC0/1	User defined	Set the LINKFIX table base address

Register name	Setting value	Explanation
GWDCCi	For i = 1: - Set DQTi to 1'b1 - Set OSIDi to user defined. Else: - Set OSIDi to user defined.	Queue 0 is used for data reception, queue 1 is used for data transmission and queue 2 is used for learning monitoring. All other queues are not used. Notes: - For learning monitoring, extended descriptors should be used.

Table 6-4 VLAN learning in VLAN table

Field name VLAN.	Setting value	Explanation
SL	1'b0	No secure entry used
HLD	1'b0	Hardware learning for MAC addresses not disabled for any VLAN
SLV	Set to 1'b1 for ports included in VLAN	Only authorize to receive corresponding VLAN from ports included in this VLAN
DV	Set to 1'b1 for ports included in VLAN	Only authorize to send corresponding VLAN to ports included in this VLAN
CSD	0	Frames received by CPUs on sub-destination 0
СМЕ	1'b0	No mirroring
EME	1'b0	No mirroring
IPU	1'b0	No frame priority update
IPV	3'b0	No frame priority update

Notes:

- When both VLAN and destination MAC addresses are found in forwarding tables and corresponding frame is forwarded to an internal port, the AXI descriptor queue (CPU sub-destination) chosen for forwarding is the one set in the MAC table. In this example, because both are set to 0, it raises no issue but, when AXI descriptor queue are used for virtualization it should be taken in account during system design.

6.1.4 L3 switch

6.1.4.1 Background

A Layer 3 switch is an ethernet network interconnection system (OSI) which works on Layer 3 using IP addresses. Because R-switch 3 is only able to perform perfect matches by Stream forwarding, when developing a Layer3 switch, it is recommended to use perfect filters IFWDI.

Layer 3 switch operation is described in Fig 6.2.

Fig 6.4: Layer 3 switch operation

6.1.4.2 Settings

The setting required to set R-switch 3 in Layer 3 switch mode are described in Table 6-3. This setting should be done through using the Switch initialization flow described in section 5.1.2. Any register not mentioned in the table should be kept to its initial value, so it does not need to be set. After using the Switch initialization flow, any used port should be moved to OPERATION mode when required.

Table 6-5 Layer 3 switch settings

Register name	Setting value	Explanation	
Forwarding engine [FWD]			
FWGC.SVM	2'b01	Set Rswitch in C-TAG mode	
	All1 except for FWPBFCi.Dvi[i]	All ports are set to send their incoming frames to all ports	
FWPBFC0i.DVi	which is set to 1'b0	except themselves	
FWPC0i.MACDSAi	1'b1	MAC destination search happens for all ports	
FWPC0i.MACSAi	1'b1	MAC source search happens for all ports	
FWPC0i.MACHLAi	1'b1	MAC source hardware learning is enabled for all ports	
FWPC0i.MACHMAi	1'b1	MAC source hardware migration is enabled for all ports	
FWPC0i.VLANSAi	1'b1	VLAN search happens for all ports	
EWOLDBO LISMACLE	Lloor define	Unknown source MAC addresses can be sent to CPU for	
FWCLPRC.USMACLF	User define	learning monitoring	
FWCLPRC.UVLANLF	1'b1	Unknown VLANs are sent to CPU for learning	
FWCLPTC.LPCSD	2	Set the learning path queue number to 2	
FWCLPTC.LPCS	User define	Select which CPU will be used for learning monitoring	
FWVLANTL0-7	User define	New VLANs can be added to the VLAN table	
FWVLANTLU-7	Osei dellile	For details, refer to Table 6-4	
Ethernet agent [TSNA]			
EATDQDCq.DQDq	User defines	The number of descriptors in descriptor queues can be set	
EAVCC.VEM	3'b011	Allows SC-Tagged frames and C-tagged frames to go	
MIV CO. V LIVI	0.0011	through transparently.	
EAVTC.CTV	12'b1	Set the default VLAN value to 1	
EATTFC.UT	1'b0	Allows any TAG formats to go through even the unsupported	
2211 11 010 1		ones.	
RMAC [RMAC]			
MPIC.PIS	User defined	Set the PHY interface type	
MPIC.LSC	User defined	Set the PHY speed	
MRAFC	03C703C7H	Set MAC reception in promiscuous mode	
GWCA [GWCA]			
GWRDQDCq.DQDq	User defines	The number of descriptors in descriptor queues can be set	
GWVCC.VEM	3'b011	Allows SC-Tagged frames and C-tagged frames to go	
		through transparently.	
GWVTC.CTV	12'b1	Set the default VLAN value to 1	
GWTTFC.UT	1'b0	Allows any TAG formats to go through even the unsupported	
		ones.	
GWDCBAC0/1	User defined	Set the LINKFIX table base address	

Register name	Setting value	Explanation
GWDCCi	For i = 1: - Set DQTi to 1'b1 - Set OSIDi to user defined. Else: - Set OSIDi to user defined.	Queue 0 is used for data reception, queue 1 is used for data transmission and queue 2 is used for learning monitoring. All other queues are not used. Notes: - For learning monitoring, extended descriptors should be used.

Table 6-6 VLAN learning in VLAN table

Field name VLAN.	Setting value	Explanation
SL	1'b0	No secure entry used
HLD	1'b0	Hardware learning for MAC addresses not disabled for any VLAN
SLV	Set to 1'b1 for ports included in VLAN	Only authorize to receive corresponding VLAN from ports included in this VLAN
DV	Set to 1'b1 for ports included in VLAN	Only authorize to send corresponding VLAN to ports included in this VLAN
CSD	0	Frames received by CPUs on sub-destination 0
CME	1'b0	No mirroring
ЕМЕ	1'b0	No mirroring
IPU	1'b0	No frame priority update
IPV	3'b0	No frame priority update

7. Precautions

7.1 Precautions

- R-Switch can support min [64 bytes] frame size (Example : DMAC 6 bytes + SMAC 6 bytes + EtherType 2 bytes + Payload 46 bytes + FCS 4 bytes).
- R-Switch can support max ["63488 bytes" or "(([Unused pointer number]*128) / RACE_PORT_N) bytes"] frame (supported maximum frame size). if try to transmit frames of size more than that, then Buffer overflow will happen. [Unused pointer number] = RACE_LCL_PTR_N (Activated port number * 6).
 - > Set to [RMAC] MRFSCE.EMXS or MRFSCP.PMXS smaller than maximum frame size for Ethernet ports.
 - Don't transmit bigger than maximum frame size for CPU ports.
- When using Cut through, use it so as not to cause a buffer overflow. The following usage is recommended.
 - > Only use from-one-to-one communication.
 - (Example of prohibition : Multicast forwarding, To Ethernet Mirroring, Loopback forwarding)
 - Prohibition of the function to stop transmission. Please flow control on reception port.
 - (Example of prohibition: TX queue pause, TAS)

7.2 Restrictions (Including known problems)

- "Do not select RSW3_PPS function before power on RSW3 domain" The debug test terminals (as PPS and GATE) will not work at "pseudo power off". (Outputs indefinite X.)

Published by	Renesas Electronics Corporation
	© 2024 Renesas Electronics Corporation. All rights reserved