Arquitetura e Organização de Computadores

Fundamentos de Sistemas Computacionais

Prof^a Me. Adriane Ap. Loper

- Unidade de Ensino: Arquitetura e Organização de Computadores
- Competência da Unidade: : Conhecer e compreender os princípios de arquitetura e organização de computadores
- Resumo: Apresentar os conceitos da Arquitetura de von Neumann e o conteúdo histórico da arquitetura e organização de computadores.
- Palavras-chave: : CPU, memória, E/S, Arquitetura de von Neumann
- Título da Teleaula: Fundamentos de Sistemas Computacionais
- Teleaula nº: 01

Contextualização

- Você participará de um processo seletivo em uma empresa de desenvolvimento de tecnologia para computadores de última geração que ampliará sua fábrica no Brasil, com o objetivo de desenvolver novas estruturas de placas-mãe (Mainboards ou Motherboards) de alta velocidade que serão usadas em servidores de dados de grandes instituições financeiras e bancos internacionais.
- Para isso, ela irá iniciar um processo seletivo para contratar profissionais com conhecimentos técnicos em arquitetura de computadores, o que será feito através de um treinamento interno com os candidatos a fim de que adquiram os conhecimentos específicos necessários.

Contextualização

- Ao final, serão aplicados vários testes e irão ser contratados os candidatos com maior nota, em número igual ao número de vagas disponíveis no momento da contratação.
- Assim, você resolverá os testes do processo seletivo ao longo das nossas aulas e se preparará e adquirirá os conhecimentos técnicos necessários para sua contratação.

Conceitos básicos de Arquitetura e Organização de Computadores

Sua missão

A sua primeira tarefa é fazer a resolução de testes de conhecimento sobre a arquitetura e organização dos computadores.

É necessário que você entenda que os computadores são organizados em quatro funções básicas, que dividem seus dispositivos em unidades.

Você foi levado a uma sala cheia de componentes e aparelhos de computadores diversos e agora precisa classificá-los de acordo com a função desses componentes em um computador.

Mas quais conhecimentos deverão ser estudados neste ponto? Quais os conceitos e funções básicos serão necessários para que você possa participar deste processo seletivo com maiores chances de aprovação?

Fonte: Shutterstock

Computador

Fonte: Shutterstock

Hardware como sendo toda parte física do computador, ou seja, tudo que você pode tocar do computador.

Software como sendo a parte lógica do computador, na qual por meio de códigos os programas são executados.

Arquitetura x Organização de Computadores

Arquitetura: Atributos de um sistema visíveis a um programador, com um impacto direto na execução de um programa, ou seja, todas os atributos lógicos para a execução de um programa. Exemplos de atributos arquiteturais: conjunto de instruções, número de bits usados para representar vários tipos de dados, mecanismos de entrada e saída, e técnicas de endereçamento de memória.

Organização : Refere-se às unidades operacionais e sua interconexão que realizam as especificações arquiteturais.

Exemplos de atributos organizacionais: detalhes de hardware transparentes ao programador, tais como sinais de controle, interface entre o computador e os periféricos, tecnologia de memória usada, etc.

Fonte: Shutterstock

Funções básicas/ Composição dos computadores

- Entrada de dados inserir/entrar com dados
- Processamento de dados Unidade Central de Processamento (CPU/UCP)
- Armazenamento de informações Memórias (RAM, HD, discos externos)
- Saída de informações visualizar dados

Fonte: Santos 2020, p.11

Fonte: (Stallings, 2003)

Entrada / Processamento de Dados

Entrada de dados:

Dispositivos que fornecem informação para serem processadas. É neste momento que acontece a interação entre o usuário e o computador.

DISPOSITIVOS DE ENTRADA

Fonte: Shutterstock

Processamento de dados (CPU ou UCP):

Responsável pela execução de instruções lógicas e matemáticas, operação de busca, de leitura e gravação de dados. A CPU é o canal direto com a memória principal do computador, proporcionando resultados dos processamentos para os usuários.

Fonte: Shutterstock

Processamento de Dados

Processamento de dados (CPU ou UCP)

A **CPU** é o principal componente do computador, pois fica em constante comunicação com todos os seus dispositivos. Universalmente conhecida, podemos caracterizar as três partes mais importantes da CPU:

- ✓ Unidade Aritmética e Lógica (ULA): executa as operações aritméticas do computador (soma, subtração, divisão e multiplicação, entre outras) e as operações lógicas (and, or, xor, not, entre outras).
- ✓ Unidade Controle(UC): apresenta uma alta complexidade em relação à CPU, pois controla todas as ações da ULA e instruções direcionadas para o processamento.
- ✓ Registradores: considerada a memória de maior relevância do computador, situada no core (núcleo) do computador, é a memória de mais veloz.

Fonte: Shutterstock

Armazenamento de Informações

Armazenamento de informações:

Memória principal: é um depositório temporário, em que os dados e instruções são armazenadas por um tempo determinado. Uma vez processadas as informações da memória, ela é liberada para novas informações e, por este motivo, é chamada de memórias voláteis. São exemplos de memória principal: memória RAM (memória de acesso aleatório) e memória cache.

a) Principal

b) Cache

Dispositivos de Armazenamento

• Dispositivos de armazenamento de informações:

São dispositivos que podem armazenar dados para serem recuperados quando necessário. As fontes de armazenamentos podem ser do tipo magnéticos, ópticos e por meios eletrônicos.

Fonte: Shutterstock a) HD

b) meios ópticos:CD-ROM c) meios eletrônicos: SSD e d) Pendrives e Cartão de memória

Saída de Informações

• Saída de informações:

Dispositivos que retornam tudo que foi processado pelo computador, pelos quais acontece a interação entre computador e usuário .

Fonte: Shutterstock a) Impressora

b)Desktop, notebook, tablet, smartphone

c) fones de ouvido sem fio

Medidas de tamanho do computador

- As medidas de tamanho usadas em um computador são baseadas em bytes, que são uma sequência de 8 bits.
- Um único bit pode ser representado pelos números 0 e 1.
- Esta medida é adotada por todas as áreas que envolvam processamento, envio e recebimento de dados e informações, sendo que cada byte representa um caractere de texto no computador. As medidas de bytes usadas são:

Medida	Sigla		Caracteres	
Byte		2º	1 (8 bits)	1 byte
Kilobyte	КВ	210	1.024	1.024 bytes
Megabyte	МВ	220	1.048.576	1.024 KBytes
Gigabyte	GB	230	1.073.741.824	1.024 MBytes
Terabyte	ТВ	240	1.099.511.627.776	1.024 GBytes
Pentabyte	PB	250	1.125.899.906.842.624	1.024 TBytes
Hexabyte	нв	260	1.152.921.504.606.846.976	1.024 PBytes
Yotabyte	YB	280	1.208.925.819.614.630.000.000.000	1.024 Hexabyte

Fonte: Autora

Classificação de componentes

Imagine que você seja levado a uma sala cheia de componentes e aparelhos de computadores diversos e tenha que os classificar de acordo com a **função** que têm em um computador.

Os componentes que você deverá classificar são:

Entrada de dados:

Teclado – selecionado o teclado com conexão *wireless*(sem fio).

Mouse – selecionado o mouse Gamer de 11 botões, wireless recarregável.

Monitor Touch Screen – 24" em Led.

Processamento de dados:

Foram selecionados dois processadores:

Ryzen 7 27003.2GHz de frequência. 8 núcleos com 16 threads. 16MB de memória cache. Suporte à memória DDR4.Soquete AM4.

Core i9 9900K3.6GHz de frequência. 8 núcleos com 16 threads. 16MB de memória cache. Suporte à memória DDR4. Soquete LGA 1151 v2.

Fonte: Shutterstock

Foi selecionada a seguinte memória para trabalhar em conjunto com os processadores apresentados:

Memória HyperX Fury, 16GB, 2400MHz, DDR4, CL15.

Armazenamento de informações:

Seguindo as unidades de armazenamento mais atuais:

Ssd 1.9Tb Sata 3 Intel 2.5 S4500.

HDD Seagate Barracuda 4 TB P/ Desktop.

Cartão de Memória MicroSDXC 400GB.

Pen drive USB 3.0 – 1TB.

Saída de informações:

Relacionadas as unidades de saída mais atuais do momento:

Monitor: Tamanho: 24.5 polegadas. Tipo: TN. Resolução: Full HD (1920 x 1080). Frequência: 240Hz. Tempo de resposta: 1ms.

Impressora: Laser 20 ppm 1200 x 1200 DPI A4 Wi-fi — Multifuncional.

Fone de ouvido: Conectividade: Bluetooth 4.0. Autonomia de bateria: 12 horas. Função Fast Fuel para recarregamento rápido. Função Remote Talk para comandos de voz. Resistência a suor e água.

Desenvolvimento Histórico

Sua missão:

- A sua segunda tarefa é classificar de acordo com a sua geração.
- Você será levado a uma sala cheia de computadores de diversas épocas e os computadores que você classificará por geração são:
- Um lote de computadores com gabinete, teclado, mouse, monitor e kit multimídia.
- Um computador desmontado, com placas quadradas grandes, como se fossem quadros de madeira, e cheias de válvulas.
- Um computador parecido com um grande armário, na parte frontal um compartimento formando uma caixa, com porta de vidro; dentro, dois grandes rolos de fita magnética.
- Um computador IBM/PC antigo, com a inscrição PX/XT.
- Um notebook com wi-fi e bluetooth, 16GB de RAM e HD de 2 TB.
- Um tablet com o símbolo Android e IOS.

Gerações dos Computadores

Os computadores modernos foram classificados em gerações, de acordo com sua tecnologia e desempenho:

- ✓ Geração 0 (zero) 3.000 a.C até meados de 1900
- ✓ 1ª Geração entre 1946 e 1954 válvulas.
- ✓ 2ª Geração entre 1955 e 1964 transistores.
- √ 3ª Geração entre 1964 e 1977 circuitos integrados.
- √ 4ª Geração entre 1977 e 1991 microchips (8 e 16 bits).
- ✓ 5ª Geração entre 1991 até os dias atuais microchips (>16 bits), multimídia, rede.

Geração 0 - Máquinas de Cálculo Mecânicas

- Ábaco: faz cálculo mecânico. O seu funcionamento é através das bolas de madeiras sistematicamente colocadas em uma estrutura, o qual pode-se executar cálculos aritméticos.
- Rodas dentadas de Pascal: Utilizava uma estrutura mecânica de engrenagens, foi projetada para realizar as quatro operações matemáticas, porém, realizava automaticamente as operações de soma e subtração, e realizava as operações de multiplicação e divisão através de um processo de repetição

Fonte: Wikimedia

a) Ábaco

b) Rodas dentadas de Pascal

Primeira Geração de Computadores (1946 a 1954)

- Funcionavam a válvula (tubo de vidro, similar a uma lâmpada fechada sem ar em seu interior);
- O ENIAC pesava 30 toneladas, ocupava 140m² e possuía 18 mil válvulas;
- O ENIAC era uma máquina decimal e não uma máquina binária;

Em 1946, ainda na primeira geração, Von Neumann, entre

outros cientistas de Princeton, deram início a um novo projeto chamado de IAS utilizando os mesmos princípios do EDVAC.

Fonte: Tangon e Santos 2016 p. 35

Segunda Geração de Computadores (1955 a 1964)

- Substituição das válvulas pelos transistores;
- Utilizavam a linguagem Assembly que substituiu a linguagem de máquina e em seguida Fortran e Pascal;
- Armazenamento em disco e fita magnética;
- O primeiro a ter visor.

Fonte: Shutterstock

Fonte: Shutterstock

Terceira Geração de Computadores (1964 a 1977)

- Circuitos Integrados

 máquinas menores;
- Aumento da capacidade de processamento;
- Uso da linguagem de alto nível (Fortran e Cobol);
- Chamados microchips : dezenas de transistores em um único chip;
- Um dos grandes destaques desta geração foi o IBM's System/360, direcionado para área cientifica e comercial. Suas principais características eram a facilidade de substituição e integração entre seus componentes.

Quarta Geração de Computadores (1977 a 1991)

- Processador que é um chip dotado de unidade central de processamento;
- Linguagens como Smalltalk, C e C++ foram desenvolvidas;
- Discos rígidos, impressoras e teclados com os modelos atuais, foram criados;
- Computadores pessoais (PC);
- Sistemas operacionais: Unix, o MS-DOS e o Apple Macintosh.

Fonte: Shutterstock

Quinta Geração de Computadores (1991 a ...)

- Processadores de 64 bits;
- Discos rígidos de grande capacidade;
- Memória de processamento cada vez maior;
- Conexão com a internet;

Lei de Moore

- Criada em 1965 por Gordon Moore;
- O poder de processamento dos computadores dobraria a cada 18 meses;
- Essa Lei se manteve até meados de 2010;
- Limitações tecnológicas e elevação dos custos.

Fonte: Shutterstock

Geração de Computadores

Classifique os componentes em gerações:

- 1) Um lote de computadores com gabinete, teclado, mouse, monitor e kit multimídia.
- 5º geração, pois os computadores da quarta geração não tinham ainda recursos de multimídia.
- 2) Um computador desmontado, com placas quadradas grandes, como se fossem quadros de madeira e cheios de válvulas.
- 1º geração é um computador pois funcionava com válvulas.
- 3) Um computador parecido com um grande armário; na parte frontal, um compartimento formando uma caixa, com porta de vidro, e dentro dois grandes rolos de fita magnética.
- 2º geração, pois tem uma unidade de gravação de dados com fita magnética.

- 4) Um computador IBM/PC antigo, com a inscrição PX/XT.
- 4º geração, microcomputador com processador abaixo de 64 bits, no caso o PC/XT tem apenas 16 bits.
- 5) Um notebook com Wi-Fi e BlueTooth, 4 GB de RAM e HD de 500 GB.
- 5ª geração, pois apenas nesta geração surgiram Wi-Fi, BlueTooth e grandes capacidades de memória e disco.
- 6) Um tablet com o símbolo Android.
- 5º geração, pois apenas nesta geração surgiram computadores móveis, como é o caso do tablet.

Compreenderam a evolução dos computadores?

Fonte: https://gifer.com/en/XIOL9

A estrutura básica de um computador

Sua missão

A sua terceira tarefa é conhecer de Arquitetura de von Neumann pois tais conhecimentos serão necessários para que você seja bem-sucedido no processo seletivo e lembre-se: serão contratados os candidatos com maior nota no processo seletivo.

Você deverá elaborar um relatório com as principais configurações de computadores que serão adquiridos pela empresa.

Processador; Memória; Placa mãe e Periféricos de entrada e saída.

Faça uma análise das interconexões dos dispositivos selecionados por você.

Fonte: Shutterstock

Arquitetura de von Neumann

- A arquitetura dos computadores é resultado da evolução de vários equipamentos inventados com a finalidade de facilitar a execução de cálculos matemáticos.
- Os conceitos de máquinas mecânicas de cálculo foram usados em parte na teoria das máquinas universais, por Alan Turing.
- A Arquitetura de von Neumann prevê a possibilidade de uma máquina digital armazenar os programas e os dados no mesmo espaço de memória, e estes serão processados por uma unidade de processamento central (CPU) composta pela unidade de controle(UC), memória e a unidade aritmética e lógica (ULA). Os dados são fornecidos por meio de dispositivos de entrada e retornados por dispositivos de saída.

Arquitetura de von Neumann

Fonte: Tangon e Santos 2016 p.48

Fonte: Shutterstock

Unidade Central de Processamento (CPU)

- A CPU (Central Processor Unit, ou Unidade Central de Processamento) é composta por uma Unidade Lógica Aritmética (ULA), a Unidade de Controle (UC), que controla as unidades de memória e os dispositivos de entrada e saída do computador.
- Ela é responsável também por carregar e executar os programas (SOUZA FILHO; ALEXANDRE, 2014).
- 1945 ENIAC não possuía CPU. Era programado manualmente cada vez que fosse executar uma nova tarefa. Cabos e chaves deveriam ser reposicionados até que um novo programa fosse carregado e só depois o computador processava as informações recebidas pela programação.

Fonte: (Stallings, 2003)

Unidade Central de Processamento (CPU)

- Responsável por carregar e executar programas;
- Controla unidades de memória;
- Controla unidades e E/S;
- ENIAC evoluiu para o EDVAC com armazenamento;
- 1960-1970 surgiram as CPUs em Cis.
- Processador dos PCs Intel 8086 com 8 bits.
- No final 1990 a 2000, os processadores de 32 bits com 4 GB de memória RAM; AMD – 64 bits; Multicore.
- Os barramentos são os caminhos que a informação percorre desde a entrada dos dados no computador, passando pelo processamento e memórias até serem retornados pelos dispositivos de saída.

Fonte: (Stallings, 2003)

Memória Principal

- Memória RAM (Random Access Memory)
- Possibilita aos processadores endereçar dados divididos em regiões distintas, usadas pelo sistema operacional da máquina, verificar informações de dispositivos de entrada e saída, de programas do usuário e dados gerados por esses programas.
- Memória de leitura e escrita;
- Volátil;
- Mecanismo de escrita e de apagar os dados: Eletricamente;
- RAM Dinâmicas: células que armazenam dados com cargas de capacitores;
- RAM Estáticas: os valores binários são armazenados utilizando flip-flops com portas lógicas;

Registradores e Cache

- Registradores são circuitos lógicos que fazem parte da CPU (processador), são memórias que armazenam e destinam todas as informações binárias que chegam para serem processadas (calculadas). Voláteis.
- Para intermediar os registradores e as memórias RAM encontramos as Memórias Cache, que ficam próximas à CPU.
- Extremamente mais rápidas que as memorias RAM, as memórias cache foram desenvolvidas para armazenar e distribuir rapidamente os dados para o registrador, e devolvêlos com maior velocidade.

RAM - Fonte: Intel(2020)

Entrada e Saída

 As operações de E/S são realizadas por meio de uma grande variedade de dispositivos externos, que oferecem um meio de trocar dados entre o ambiente externo e o computador. Um dispositivo externo conecta-se ao computador por uma conexão com um módulo de E/S.

 São os barramentos que permitem a transmissão de dado entre E/S e a CPU;

Fonte: Stallings (2017, p. 194).

Interconexão

Para ter comunicação entre os componentes do computador (processador, memória e E/S) será necessária a interconexão entre eles. Segundo Stallings (2017), a estrutura de interconexão deve admitir os seguintes tipos de transferências:

- Memória para processador: o processador lê uma instrução ou uma unidade de dados da memória.
- Processador para memória: o processador escreve uma unidade de dados na memória.
- E/S para processador: o processador lê dados de um dispositivo de E/S por meio de um módulo de E/S.
- Processador para E/S: o processador envia dados para o dispositivo de E/S.
- E/S de ou para a memória: para esses dois casos, um módulo de E/S tem permissão para trocar dados diretamente com a memória, sem passar pelo processador, usando o DMA.

Fonte: Shutterstock

Equipamentos

Você está se preparando para participar de um processo seletivo que aplicará testes de conhecimento sobre arquitetura e organização dos computadores.

Será necessário que você conheça a arquitetura dos computadores, seus processadores, como estes administram a quantidade de memória do computador, os dispositivos de entrada e saída e como se conectam a uma rede.

Agora, faça um relatório das principais configurações de computadores que deverão ser adquiridos pela empresa.

Exemplo:

- Processador Intel Core i7
- •Memória RAM de 16 GB
- •HD de 1 TB
- •SSD de 8 GB

- •Placa de vídeo GeForce GTX 1060 de 6 GB
- •Sistema Operacional Windows 10
- Periféricos de entrada e saída: teclado e mouse wireless, impressora a laser, fone wireless.

A hierarquia de níveis de computador

Sua missão

A sua quarta tarefa é conhecer mais profundamente Arquitetura de von Neumann. Em especial a Unidade Central de Processamento (CPU) e suas unidades principais, a unidade de controle e a unidade lógica aritmética, suas memórias e também as unidades de entrada e saída.

Quanto mais você conhecer sobre essa estrutura, mais entenderá como os computadores são montados e como funcionam.

Nesta etapa, você terá que identificar, de forma comparativa, as vantagens e as desvantagens da Arquitetura de von Neumann.

Fonte: Shutterstock

Sua missão

Deverá listar quais as unidades previstas por essa arquitetura e qual a função delas.

Deverá ainda citar outros tipos de arquiteturas de computação.

Organize uma pequena planilha com esses pontos e demonstre, dessa forma, seus conhecimentos sobre a arquitetura dos computadores.

O entendimento desses conceitos é de extrema importância e será usado por você no processo seletivo da empresa de desenvolvimento de tecnologia para computadores de última geração, que vai ampliar sua fábrica no Brasil.

Fonte: Shutterstock

Arquitetura de von Neumann

Fonte: Tangon e Santos 2016 p.48

Fonte: Shutterstock

CPU, Memórias, E/S e Barramentos

Fonte: Tangon e Santos 2016 p.47

ULA – Unidade Lógica e Aritmética

ULA: responsável por executar os cálculos matemáticos utilizados para processar os dados dentro do computador.

Fonte: Tangon e Santos 2016 p.49

UC - Unidade de Controle

Unidade de Controle: Controla a operação da CPU e , portanto, a do computador .

Fonte: Tangon e Santos 2016 p.49

Hierarquia de Níveis

- Para que programas e dados sejam processados, foi criada uma organização em uma hierarquia de níveis de forma hipotética e foi pensada para poder classificar as etapas do processamento que acontece dentro de um computador.
- Nessa hierarquia temos o nível mais alto, que é percebido pelo usuário e no qual são mostrados os programas e os dados, e os demais são executados internamente pelo computador (NULL; LOBUR, 2011).

Nível 6 – Usuário.	Programas executáveis.		
Nível 5 – Linguagem de alto nível.	C++, Java, FORTRAN etc.		
Nível 4 – Linguagem do montador.	Assembler.		
Nível 3 – Sistema operacional.	Sistemas de comandos ou de janelas.		
Nível 2 – Arquitetura do conjunto de instruções.	Arquitetura do conjunto de instruções.		
Nível 1 – Microarquitetura.	Microcódigo implementado em hardware.		
Nível 0 – Lógica digital.	Circuitos e barramentos, entre outros.		

Fonte: adaptado de Null e Lobur (2011).

Máquinas com arq. diferentes da arquitetura de Von Neumann

- Embora os computadores tenham seguido a arquitetura proposta por von Neumann, existem máquinas que computam dados e que não foram construídas usando essa arquitetura.
- Entre essas máquinas encontramos computadores analógicos, computadores com múltiplos processadores funcionando em paralelo e executando programas de forma cooperativa

Vantagens/Desvanta gens da Arquitetura de Von Neumann

Vantagens

Esta arquitetura prevê a possibilidade de uma máquina digital armazenar os programas e os dados no mesmo espaço de memória e que sejam processados por uma unidade de processamento central (CPU), composta por uma unidade de controle e uma unidade aritmética e lógica (ULA). Os dados são fornecidos através de dispositivos de entrada e retornados através dos dispositivos de saída.

Desvantagem

A via de transmissão de dados entre a CPU e a memória limita de certa forma a velocidade do processamento de um computador. Os barramentos têm esta função e a troca de dados entre o processador e a memória fia limitada pela taxa de transferência de dados que estes barramentos são capazes de proporcionar.

Gargalo de von Neumann

A via de transmissão de dados entre a CPU e a memória limita de certa forma a velocidade do processamento de um computador.

Os barramentos têm esta função e a troca de dados entre o processador e a memória fia limitada pela taxa de transferência de dados que esses barramentos são capazes

de proporcionar.

Fonte: Shutterstock

Entenderam a composição de computadores atuais?

Fonte: https://gifer.com/en/XIOL9

Recapitulando

- ✓ Conceitos básicos de arquitetura e organização de computadores;
- ✓ Desenvolvimento histórico;
- ✓ A estrutura básica de um computador;
- ✓ A hierarquia de níveis de computador.

