Comparative Report: QAE vs QSVM vs QNN on IEEE-CIS, SECOM, and NSL-KDD Datasets

Introduction

Quantum Machine Learning (QML) is emerging as a powerful approach to learning from complex, high-dimensional data by leveraging quantum information processing. In this study, three different QML architectures are evaluated:

- QAE Quantum Autoencoder for representation learning and compression
- QSVM Quantum-enhanced Support Vector Machine using quantum kernels
- QNN Quantum Neural Network leveraging variational quantum circuits

Each model is tested on three real-world datasets representing distinct application domains:

- IEEE-CIS Fraud detection in online transactions
- **SECOM** Quality prediction in semiconductor manufacturing
- NSL-KDD Intrusion detection in network traffic data

The goal is to understand how different quantum models perform on varying data structures and learning tasks.

Dataset Overview

1. IEEE-CIS Fraud Detection

- **Domain**: Finance / Cybersecurity
- **Objective**: Binary classification of transactions as fraudulent or legitimate
- Samples used: 1,000 to 10,000
- Features: Transaction amount, card data, derived numerical stats
- Challenge: Imbalanced dataset with subtle patterns

2. SECOM Manufacturing

- Domain: Industrial Engineering
- **Objective**: Predict pass/fail status based on 590+ sensor readings
- Samples used: 1,536 (filtered for completeness)
- Features: Sensor voltages, flows, and temporal signals
- Challenge: Noisy, high-dimensional data with weak signals

3. NSL-KDD Intrusion Detection

- **Domain**: Network Security
- Objective: Classify connections as normal or an attack
- Samples used: 100-10,000
- Features: Rates of errors, host metrics, TCP-level flags

• Challenge: Structured, well-separated classes

Quantum Model Summary

Model	Core Idea	Strengths	Typical Usage
QAE	Compresses input data to latent space and reconstructs	Captures structure, useful for dimensionality reduction	Preprocessing, anomaly detection
QSVM	Replaces kernel function with quantum feature space	Good at non-linear separations	Binary classification
QNN	Hybrid model combining classical + quantum layers	Flexible, expressive	Classification, multi- task learning

Performance Comparison

1. IEEE-CIS (Fraud Detection)

Model	Accuracy	Notes
QAE (Latent SVM)	83.50%	Learned meaningful compressed representations
QSVM	96.00%	Best performing; quantum kernel effective in detecting fraud patterns
QNN	96.49%	Strong performance, nearly matching QSVM

2. SECOM (Manufacturing Quality)

Model	Accuracy	Notes
QAE (Latent SVM)	82.00%	Effective reconstruction and separation
QSVM	94.00%	Well-suited for noisy industrial data
QNN	93.51%	Robust and stable over training, competitive with QSVM

3. NSL-KDD (Intrusion Detection)

Model	Accuracy	Notes
QAE (Latent SVM)	80.00%	Performed reasonably despite small latent space
QSVM	87.50%	Outperformed other quantum models on structured data
QNN	74.27%	Struggled with rigid patterns, lower generalization

Comparative Insights

Representation & Learning Ability

- **QAE** excels in uncovering low-dimensional structures, particularly useful in unsupervised settings or when interpretability of latent features is crucial.
- **QSVM** stands out in binary classification tasks, especially on complex, noisy, or imbalanced datasets. It is especially effective when the class boundary is non-linear.
- **QNN** offers a flexible architecture capable of adapting to a wide range of data types. Its performance is close to or better than QSVM in many scenarios, though it may require more fine-tuning.

Computational Considerations

- **QAE** is the most resource-intensive due to the encoding/decoding of full samples and repeated quantum circuit evaluations.
- **QSVM** is relatively efficient with fewer parameters and faster convergence on small datasets.
- **QNN** benefits from batch training via PyTorch and integrates seamlessly with existing ML pipelines, though training is slower due to variational quantum circuit evaluations per sample.

Strengths vs. Weaknesses

Model	Strengths	Weaknesses	
QAE	Excellent for compression, captures structure	Reconstruction-focused, not optimized for classification	
QSVM	Best classification accuracy, robust to noise	ation accuracy, robust to Less scalable to multi-class problems	
QNN	Flexible, end-to-end, adaptive	Training complexity, performance sensitive to architecture choices	

Conclusion

Each quantum model exhibits distinct strengths:

- **QSVM** is the top performer for **classification**, showing superior results in fraud detection and network intrusion tasks.
- **QAE** is most suitable for **data compression and feature extraction**, useful when interpretability of data representations is important.
- **QNN** is an excellent **general-purpose model**, delivering strong results in diverse domains, especially with deeper learning capacity.

In conclusion, the choice of quantum model should be guided by the task:

- **QSVM** for high-accuracy classification
- QAE for unsupervised feature learning
- QNN for hybrid applications requiring flexibility