MA 573 - Linear Algebra

Homework 5

Problem 1 [20pts] Find the line y = C + Dx that best fits the data $(x, y) = \{(-2, 4), (-1, 2), (0, -1), (1, 0), (2, 0)\}.$

 $\bf Problem~2~[20pts]$ Use the Gram-Schmidt method to find orthonormal vec-

tors
$$A, B, C$$
 from $a = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$, $b = \begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}$ and $c = \begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \end{bmatrix}$.

Problem 3 [20pts] Suppose Q_1, Q_2 are square $n \times n$ matrices that are orthonormal. Show that their product Q_1Q_2 is an orthonormal square matrix.

Problem 4 [20pts] Let A,B,C,D be 2×2 matrices. Does the following equality always hold? (If yes prove why, if not find a counterexample)

$$det(\left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{array}\right]) = det(A) \cdot det(D) - det(C) \cdot det(B)$$

Problem 5 [20pts] Reduce $A=\begin{bmatrix}1&1&1\\1&2&2\\1&2&3\end{bmatrix}$ to U and find the determinant of A as a product of pivots.