Midterm Examination

Statistics 200C

Ferguson Friday, May 9, 2008

- 1. Suppose that X_1, X_2, \ldots are i.i.d. random variables with the uniform distribution on the interval [0, +1] (density f(x) = I(0 < x < +1). Let $\overline{X}_n = (1/n) \sum_{1}^{n} X_j$ and $T_n = (1/n) \sum_{1}^{n} I(X_j < 1/2)$. Thus, T_n is the proportion of X_j 's that are less than 1/2.
- (a) Using the multivariate central limit theorem, find the joint asymptotic distribution of \overline{X}_n and T_n .
 - (b) What is the asymptotic distribution of \overline{X}_n/T_n ?
- 2. Let $X_1, X_2, ...$ be i.i.d. exponential random variables with mean 1 and variance 1 (density $f(x) = e^{-x} I(x > 0)$). Let $Y_j = \sqrt{i}(X_i 1)$ for all i.
- (a) Assuming the Lindeberg condition is satisfied for $S_n = \sum_{i=1}^n Y_i$, what is the asymptotic distribution of \overline{Y}_n ?
 - (b) Show that the Lindeberg condition is satisfied for S_n .
- 3. Consider a multinomial distribution with c cells, sample size n and probability vector $\mathbf{p} = (p_1, \dots, p_c)$. Let n_j denote the number of observations that fall in cell j for $j = 1, \dots, c$.
- (a) What is Pearson's chi-square for testing the hypothesis that the probability vector of the multinomial distribution is a fixed vector p? What is its asymptotic distribution under this hypothesis?
 - (b) Find the transformed chi-square that replaces each cell frequency by its logarithm.
- (c) What is the approximate large sample distribution of this transformed chi-square if the true value of p is q?
- 4. (a) Give an example of a sequence X_1, X_2, \ldots that is m-dependent (for some m) but not stationary.
- (b) Give an example of a sequence X_1, X_2, \ldots that is stationary but not m-dependent (for any m).
- (c) If Y_1, Y_2, \ldots are i.i.d. random variables with mean 0 and variance σ^2 , and if $X_i = Y_i \cdot Y_{i+1} + Y_{i+2}$, what is the asymptotic distribution of \overline{X}_n ?
- 5. Let X_1, \ldots, X_n be i.i.d. from a Pareto distribution on $(0, \infty)$, with $F(x) = x/(x+\theta)$ for x > 0, where $\theta > 0$ is a scale parameter.
 - (a) Find the asymptotic distribution of the median, $X_{(\lceil n/2 \rceil)}$.
- (b) Find the asymptotic joint distribution of $X_{(\lceil n/2 \rceil)}$ and $X_{(\lceil 3n/4 \rceil)}$, the median and the third quartile.

1. (a) $\mathrm{E}X_j = 1/2$, $\mathrm{EI}(X_j < 1/2) = 1/2$, $\mathrm{Var}(X_j) = 1/12$, $\mathrm{Var}(\mathrm{I}(X_j < 1/2)) = 1/4$, and $\mathrm{Cov}(X_j, \mathrm{I}(X_j < 1/2)) = \int_0^{1/2} x \, dx - (1/4) = (1/8) - (1/4) = -1/8$. So,

$$\sqrt{n} \begin{pmatrix} \overline{X}_n - 1/2 \\ T_n - 1/2 \end{pmatrix} \xrightarrow{\mathcal{L}} \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1/12 & -1/8 \\ -1/8 & 1/4 \end{pmatrix} \right)$$

(b)
$$g(x,y) = x/y$$
, so $\dot{g}(x,y) = (1/y, -x/y^2)$, and $\dot{g}(1/2, 1/2) = (2, -2)$. So

$$\sqrt{n}(\frac{\overline{X}_n}{T_n}-1) \xrightarrow{\mathcal{L}} \mathcal{N}(0,\frac{1}{3}+1+1) = \mathcal{N}(0,\frac{7}{3}).$$

2. (a) $\mathrm{E}Y_i = 0$ and $\mathrm{Var}(Y_i) = i$, so $B_n^2 = \sum_1^n i = n(n+1)/2$. If the Lindeberg condition holds, then $S_n/B_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$, where $S_n = \sum_i Y_i$. Since $B_n^2 \sim n^2/2$, we have $\overline{Y}_n \xrightarrow{\mathcal{L}} \mathcal{N}(0,1/2)$.

(b)
$$\frac{1}{B_n^2} \sum_{i=1}^n \mathrm{E}(Y_i^2 \mathrm{I}(|Y_i| > B_n \epsilon)) = \frac{1}{B_n^2} \sum_{i=1}^n i \mathrm{E}((X_i - 1)^2 \mathrm{I}((X_i - 1)^2 > \frac{B_n^2 \epsilon^2}{i}))$$

$$\leq \frac{1}{B_n^2} \sum_{i=1}^n i \mathrm{E}((X_i - 1)^2 \mathrm{I}((X_i - 1)^2 > \frac{B_n^2 \epsilon^2}{n}))$$

$$= \mathrm{E}((X_1 - 1)^2 \mathrm{I}((X_1 - 1)^2 > \frac{(n+1)\epsilon^2}{2})).$$

since the X_i are identically distributed. This tends to zero as $n \to \infty$ since the second moment of X_1 is finite. Thus, the Lindeberg condition holds.

- 3. (a) $\chi_{\rm P}^2 = n \sum_1^c (\hat{p}_j p_j)^2 / p_j$, where $\hat{p}_j = n_j / n$. $\chi_{\rm P}^2 \xrightarrow{\mathcal{L}} \chi_{c-1}^2$, the chi-square distribution with c-1 degrees of freedom.
 - (b) With $g(p) = \log(p)$ and g'(p) = 1/p, the transformed chi-square becomes

$$\chi_{\mathrm{T}}^2 = n \sum_{1}^{c} \frac{(\log(\hat{p}_j) - \log(p_j))^2}{g'(p_j)^2 p_j} = n \sum_{1}^{c} p_j (\log(\hat{p}_j) - \log(p_j))^2.$$

- (c) $\chi^2_{\rm T} \sim \chi^2_{c-1}(\gamma^2)$, the non-central chi-square distribution with c-1 degrees of freedom and noncentrality parameter $\gamma^2 = n \sum_1^c p_j (\log(q_j) \log(p_j))^2$ (or $\gamma^2 = n \sum_1^c (q_j p_j)^2/p_j$).
- 4. (a) If $X_j \in \mathcal{N}(j, \sigma^2)$ are independent, then X_1, X_2, \ldots are 0-dependent, but not stationary.
- (b) Let Y_i be i.i.d. and let $X_j = \sum_{i=0}^{\infty} \beta^i Y_{j-i}$. Then X_1, X_2, \ldots are stationary but not m-dependent for any m.

(c) The X_i are 2-dependent and stationary, with $\mathrm{E}X_i=0$, $\sigma_{00}=\mathrm{Var}(X_1)=\mathrm{Var}(Y_1Y_2)+\mathrm{Var}(Y_3)=\sigma^4+\sigma^2$, $\sigma_{01}=\mathrm{Cov}(X_1,X_2)=0$, and $\sigma_{02}=\mathrm{Cov}(X_1,X_3)=0$. Therefore,

$$\sqrt{n}(\overline{X}_n - 0) \xrightarrow{\mathcal{L}} \mathcal{N}(0, \sigma_{00} + 2\sigma_{01} + 2\sigma_{02}) = \mathcal{N}(0, \sigma^4 + \sigma^2).$$

- 5. (a) The median satisfies $x/(x+\theta)=1/2$ and so is $x_{1/2}=\theta$. The density is $f(x)=F'(x)=\theta/(x+\theta)^2$, so $f(x_{1/2})=f(\theta)=1/(4\theta)$. Therefore, $\sqrt{n}(X_{\lceil n/2\rceil}-\theta)\stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0,(1/4)/(1/(4\theta))^2)=\mathcal{N}(0,4\theta^2)$.
- (b) The third quartile satisfies $x/(x+\theta)=3/4$ and so is $x_{3/4}=3\theta$. Since $f(3\theta)=1/(16\theta)$, we have

$$\sqrt{n} \left(\begin{pmatrix} X_{\lceil n/2 \rceil} - \theta \\ X_{\lceil 3n/4 \rceil} - 3\theta \end{pmatrix} \right) \xrightarrow{\mathcal{L}} \mathcal{N} \left(\begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4\theta^2 & 8\theta^2 \\ 8\theta^2 & 48\theta^2 \end{pmatrix} \right)$$