```
In [1]: import numpy as np
import torch as t
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline
from ipywidgets import FloatSlider, IntSlider, interact, interact_m
anual
```

Part 3: Overfitting, regularisation and cross-validation

Varieties of overfitting

Too little data

If we have too little data, then our inferences can be very wrong, even with a simple model.

```
In [2]: def bias(X):
        return t.cat([X, t.ones(X.shape[0], 1)], 1)
    def fit Wh(X, Y):
        return t.inverse(X.T @ X) @ X.T @ Y
    def plot():
        N
            = 3 # number of datapoints
             = 1 # dimension of datapoints
        sigma = 0.5 # output noise
              = t.tensor([[-0.1], [0], [0.1]])
            = bias(X)
        Wtrue = t.tensor([[2.], [-1]])
              = Xe @ Wtrue + sigma*t.randn(N, 1)
        Wh
              = fit Wh(Xe, Y)
        fig, ax = plt.subplots()
        ax.set xlabel("$x \lambda$")
        ax.set_ylabel("$y_\lambda$")
        ax.set xlim(-4, 4)
        ax.set ylim(-4, 4)
        ax.scatter(X, Y, label="data");
        xs = t.linspace(-4, 4, 100)[:, None]
        ax.plot(xs, bias(xs)@Wtrue, 'b', label="true line")
        ax.plot(xs, bias(xs)@Wh, 'r', label="fitted")
        ax.legend()
    interact manual(plot);
```

Too little data in some directions

```
In [4]: def plot():
              = 100 # number of datapoints
             = 2 # dimension of datapoints
        sigma = 0.5 # output noise
        rand = t.randn(N, 1)
              = t.cat([rand, -rand], 1) + 1E-3*t.randn(N, 2)
        Wtrue = t.tensor([[1.], [-1.]])
              = X @ Wtrue + sigma*t.randn(N, 1)
        Wh
              = fit Wh(X, Y)
        fig = plt.figure()
        ax = fig.add subplot(111, projection='3d')
        ax.set_xlabel("$x_{\lambda, 0}$")
        ax.set ylabel("$x_{\lambda, 1}$")
        ax.set zlabel("$y {\lambda, 0}$")
        ax.set xlim(-4, 4)
        ax.set ylim(-4, 4)
        ax.set zlim(-15, 15)
        ax.scatter(X[:, 0], X[:, 1], Y[:, 0])
        Xp = t.tensor([
            [-4., -4.],
            [-4., 4.],
            [4.,-4.],
            [4., 4.]
        ])
        ax.plot trisurf(
            np.array(Xp[:, 0]),
            np.array(Xp[:, 1]),
            np.array((Xp @ Wh)[:, 0]),
            color='r',
            alpha=0.3
        )
    interact manual(plot);
```

The function class is too complex

For the sake of argument, we consider "Chebyshev polynomials". These are defined on $-1 \le x \le 1$ and range from $-1 \le y \le 1$,

```
In [5]:
    def cheb(xs, c):
        # c is int
        coefs = c*[0] + [1]
        return np.polynomial.chebyshev.chebval(xs, coefs)
    xs = np.linspace(-1, 1, 100)
    fig, ax = plt.subplots()
    ax.set_xlabel("$x_\lambda$")
    ax.set ylabel("$y \lambda$")
    ax.set_xlim(-1, 1)
    ax.set_ylim(-1.2, 1.2)
    i = 0
    def add line():
        global i
        ax.plot(xs, cheb(xs, i))
        i += 1
    interact manual(add line);
```



```
In [6]: def chebX(X, order):
        assert (-1 \le X).all() and (X \le 1).all()
        xs = []
        for c in range(order):
            xs.append(cheb(X, c))
        return t.cat(xs, 1)
          = 10 # number of datapoints
          = 1 # dimension of datapoints
    sigma = 0.5 # output noise
    t.manual seed(0)
    rand = t.rand(N, 1)
         = 2*rand - 1
    Wtrue = t.tensor([[0.2], [0.5]])
          = chebX(X, 2) @ Wtrue + sigma*t.randn(N, 1)
    def plot(order):
        Хe
              = chebX(X, order)
              = fit Wh(Xe, Y)
        print(f"Wtrue = {Wtrue.T}")
        print(f"Wh = {Wh.T}")
        fig, ax = plt.subplots()
        ax.set xlabel("$x \lambda$")
        ax.set_ylabel("$y_\lambda$")
        ax.set xlim(-1, 1)
        ax.set ylim(-2, 2)
        ax.scatter(X, Y, label="data");
        xs = t.linspace(-1, 1, 1000)[:, None]
        ax.plot(xs, chebX(xs, order)@Wh, 'r', label="fitted")
        ax.legend()
    interact manual(plot, order=IntSlider(min=1, max=10));
```

Cross-validation

How can we measure overfitting?

The standard approach is cross-validation, where we split the data into "training" and "validation" sets. We train the model on the training set, then look at the residuals/errors on the validation set.

The model with the smallest cross-validation error wins!

```
In [7]: X train = X[:7]
    X \text{ test} = X[7:]
    Y_{train} = Y[:7]
    Y \text{ test} = Y[7:]
    def plot(order):
               = fit Wh(chebX(X train, order), Y train)
        Yh test = chebX(X test, order) @ Wh
        cross validation error = ((Y test - Yh_test)**2).mean()
        print(f"cross validation error: {cross validation error}")
        fig, ax = plt.subplots()
        ax.set xlabel("$x \lambda$")
        ax.set_ylabel("$y_\lambda$")
        ax.set xlim(-1, 1)
        ax.set_ylim(-2, 2)
        ax.scatter(X train, Y train, label="training data");
        ax.scatter(X_test, Y_test, label="validation data");
        ax.vlines(X test, Y test, Yh test, label="test residuals")
        xs = t.linspace(-1, 1, 1000)[:, None]
        ax.plot(xs, chebX(xs, order)@Wh, 'r', label="fitted")
        ax.legend()
    interact manual(plot, order=IntSlider(min=1, max=10));
```

k-fold cross-validation

If you have relatively little data (as here), one thing you can do is to split your data up into train/validation sets in multiple different ways.

Regularisation

Cross-validation is great, but what if you've got lots of noise, and you can't control for that by just using a simple linear model?

Then, you don't want to give up on using the more complex basis functions to capture non-linearities.

Instead, we can penalise the weights, in particular,

$$\mathcal{L}(\mathbf{w}) = \log P(\mathbf{y}|\mathbf{X}, \mathbf{w}) - \frac{1}{2}\mathbf{w}^{T} \mathbf{\Lambda} \mathbf{w}$$

where we could (if we wanted) penalise different weights differently, using the diagonal matrix, Λ .

As an exercise (in problem sheet), the solution of the corresponding optimization problem is,

$$\hat{\mathbf{W}} = \left(\left(\mathbf{X}^T \mathbf{X} \right)^{-1} + \sigma^2 \mathbf{\Lambda} \right)^{-1} \mathbf{X} \mathbf{y}$$

```
In [8]:
          = 30 # number of datapoints
          = 1
                # dimension of datapoints
    sigma = 0.2 # output noise
    t.manual seed(0)
    rand = t.rand(N, 1)
          = 2*rand - 1
    Wtrue = t.tensor([[0.], [0.], [0.], [0.], [0.3]])
          = chebX(X, 5) @ Wtrue + sigma*t.randn(N, 1)
    fig, ax = plt.subplots()
    ax.set xlabel("$x \lambda$")
    ax.set ylabel("$y \lambda$")
    ax.set xlim(-1, 1)
    ax.set ylim(-2, 2)
    ax.scatter(X, Y);
```



```
In [9]: X train = X[:20]
    X \text{ test} = X[20:]
    Y train = Y[:20]
    Y \text{ test} = Y[20:]
    def fit reg Wh(X, Y, reg):
        # req = sigma**2 * Lambda
        return t.inverse(X.T @ X + reg*t.eye(X.shape[1])) @ X.T @ Y
    def plot(order, reg):
              = fit reg Wh(chebX(X train, order), Y train, reg)
        Yh test = chebX(X test, order) @ Wh
        cross validation error = ((Y test - Yh test)**2).mean()
        print(f"cross validation error: {cross_validation_error}")
        print(f"Wh: {Wh.T}")
        fig, ax = plt.subplots()
        ax.set xlabel("$x \lambda$")
        ax.set ylabel("$y \lambda$")
        ax.set xlim(-1, 1)
        ax.set_ylim(-2, 2)
        ax.scatter(X_train, Y_train, label="training data");
        ax.scatter(X test, Y test, label="validation data");
        ax.vlines(X test, Y test, Yh test, label="test residuals")
        xs = t.linspace(-1, 1, 1000)[:, None]
        ax.plot(xs, chebX(xs, order)@Wh, 'r', label="fitted")
        ax.legend()
    interact manual(plot, order=IntSlider(min=1, max=12), reg=FloatSlid
    er(min=0, max=2));
```

Note that in this example, the corollary of overfitting is the estimated weights getting really big.

Regularisation explicitly penalises large weights, and gives more sensible solutions.

Automatic selection of the regulariser using cross-validation

Now things are even worse. Before, we just had to choose the "function complexity", which was a smallish integer. Now we have to choose a regulariser, and we don't even know what type of size the regulariser should be.

The only thing we can do is to use cross-validation!

Now we can select the regulariser with the lowest cross-validation error.

```
In [11]: best_reg = regs[np.argmin(cv_errors)]
plot(order=10, reg=best_reg)
```


Limits of cross-validation

There's a bunch of issues with cross-validation:

- Parameter sweeps can be numerically costly.
- Splitting your data gives you less data for training, which is very problematic with smaller amounts of data.
- Scales poorly if you want to cross-validate many different parameters.