

Investigação de técnicas de otimização para algoritmos de aprendizado de máquina

Orientador: Prof. Dr. João Paulo Papa

Co-orientador: Prof. Dr. Alexandro José Baldassin

Aluno: André Libório

andre.lb.ferraz@unesp.br

Sumário

- 1. Introdução
- 2. Fundamentação Teórica
- 3. Ferramentas
- 4. Vetorização
- 5. OPF
- 6. Galois
- 7. Conclusão

Introdução

Algoritmos de aprendizado de máquina demandam bastante poder computacional

Para tornar essas tecnologias mais acessíveis, este trabalho busca melhorar o desempenho por meio do uso de tecnologias de vetorização e paralelismo

Fundamentação Teórica

Principal métrica para comparar desempenho entre processadores de mesmo período nas últimas décadas é seu número de núcleos

São necessárias otimizações no código para tirar vantagem dos múltiplos núcleos

Principais dificuldades:

- Balanceamento de cargas entre as threads
- Sincronização e controle de concorrência

Para a paralelização, geralmente são utilizados facilitadores, como a API OpenMP

Fundamentação Teórica Vetorização

Vetorização ou instruções SIMD (Single Instruction Multiple Data)

Aqui são utilizadas as recentes tecnologias AVX*:

- AVX2 (256 bits)
- AVX-512 (512 bits)

Fonte: Science Direct - Single Instruction Multiple
Data¹

^{*}Advanced Vector Extensions

¹ Disponível em: https://www.sciencedirect.com/topics/computer-science/single-instruction-multiple-data. Acesso em: 11 mai. 2022.

Fundamentação Teórica Aprendizado de Máquina

Se beneficia dos avanços tecnológicos, viabilizando algoritmos mais complexos

Destaque para algoritmos baseados em grafos, como o OPF (*Optimum-Path Forest*), que são capazes de resolver problemas que visam a classificação dos elementos por meio de classes não separáveis com formas arbitrárias

Aqui será utilizado como base para o trabalho o *Parallel* OPF (POPF), vindo do trabalho realizado por Culquicondor et al. (2020)

Ferramentas

- Bash Script
 - Linguagem do terminal Linux
 - Utilizada para automação de processos
 - Execução
 - Tratamento de resultados
- Linguagem C
 - O Permite otimizações em nível de *hardware*
 - Vetorização utilizando AVX2 e AVX-512 (Intel Intrinsics)
 - Uso de APIs para paralelização como o OpenMP
- Linguagem Python
 - Produção de gráficos utilizando o matplotlib

Metodologia

Sistema principal utilizado:

- 2x Intel Xeon Gold 5220 (36c/72t)
- Sistema Operacional CentOS 7.7
- GCC 7.3.1

Vetorização Suporte AVX-512

Processadores Intel x86 possuem suporte para AVX-512

- Presente desde o lançamento nas linhas dedicadas a servidores
 (2016)
- Retirou suporte na última revisão da 12ª geração Intel Core

Processadores AMD x86 até então só possuíam suporte para AVX2

 Confirmado que a partir de sua próxima arquitetura Zen 4, haverá suporte para a tecnologia em todas suas linhas de processadores

Vetorização Implementação

Antes de realizar a implementação no OPF:

- Verificar o desempenho da tecnologia
- Conferir o funcionamento e resultados

Para isso, fora utilizado o cálculo de multiplicação matricial pois possui:

- Código simples, portanto diagnóstico simples
- Alta capacidade de paralelização (OpenMP) e vetorização (AVX)

Vetorização Implementação

Utilizando matrizes de dimensões 4000x4000:

- O uso matriz transposta no cálculo melhora o tempo de execução e speedup
 - \bigcirc 72t AVX-512 vs 1t AVX2 = 76,22x \rightarrow 104,40x
 - 72t AVX-512 vs 1t OpenMP = $115,45x \rightarrow 142,82x$

Apresentou resultados corretos e bom desempenho!

Um artigo foi desenvolvido com esse trecho do trabalho e foi apresentado no workshop de iniciação científica ERAD-SP 2022 em abril

OPF (Optimum-Path Forest) Introdução

Algoritmo de aprendizado de máquina baseado em grafos

 Os nodos de um grafo s\u00e3o representados por um vetor de caracter\u00edstica

Para calcular a semelhança entre os nodos, uma função para cálculo da distância entre cada par é utilizada, neste caso, o cálculo da distância Euclidiana

Esse cálculo demanda um grande tempo de computação

Pode ser interessante realizar sua otimização!

OPF (Optimum-Path Forest) Introdução

Equação do cálculo da distância Euclidiana utilizado:

$$d(u,v) = D * log(1 + ||u - v||^2) = D * log(1 + \sum_{n=1}^{f} (ui - vi)^2)$$

onde D é uma constante, f o número de características, e ui e vi representam o i-ésimo componente dos vetores u e v, respectivamente

A somatória realizada no final da equação é uma operação realizada com vetores e pode se beneficiar da vetorização!

OPF (Optimum-Path Forest) Experimentos

Antes de iniciar a implementação no POPF, foi criada uma versão isolada para verificar a corretude dos resultados

- Sem vetorização
- AVX2
- AVX-512

```
inicio
       //carrega os dados do vetor1 e vetor2 em respectivos vetores AVX-512
       vetor1avx = _mm512_load_pd(&vetor1[i]);
       vetor2avx = _mm512_load_pd(&vetor2[i]);
       //realiza as operacoes de subtracao, multiplicacao e incremento
           final
       vetorAux = mm512 sub pd(vetor1avx, vetor2avx);
       vetormul = _mm512_mul_pd(vetorAux, vetorAux);
       vetFinalAvx = _mm512_add_pd(vetormul, vetormul);
10
11
       //armazena os valores finais presentes no vetor AVX—512 vetFinalAvx
          em vetorFinal
       _mm512_storeu_pd(&vetorFinal[i], vetFinalAvx);
12
13 fim
```

Pseudo-código utilizando AVX-512

OPF (Optimum-Path Forest) **Intrinsics**

Intrinsic utilizada para carregar 512-bits da memória para um vetor AVX-512:

Outros exemplos de *Intrinsics* utilizadas nos experimentos:

```
mm512 sub pd(vet1avx, vet2avx) → subtração de vetores AVX-512
mm512 mul pd(vetorAux, vetorAux) → multiplicação de vetores de AVX-512
mm256 hadd ps(vetAvx, vetAvx) → soma horizontal de vetores AVX2
mm512 storeu pd(&vetor[i], vetAvx) → armazena de vetores AVX-512 na memória
```

OPF (Optimum-Path Forest)

Implementação

Para realizar a implementação no POPF, foram necessárias modificações, para manter a estrutura já existente de entrada/saída do código

Em AVX-512, são carregados 16 elementos por vez (float \rightarrow 512/(4*8)=16)

OPF (Optimum-Path Forest) Implementação

```
//processo de reducao e armazenamento do resultado
13
       __m256 low = _mm512_castps512_ps256(vetAccAvx);
       _{m256} high = _{mm256} castpd_ps(_{mm512} extractf64x4_pd (
14
           _mm512_castps_pd(vetAccAvx),1));
       vetAvxFinal = _mm256_add_ps(low, high);
15
       __m256 tmp = _mm256_permute2f128_ps(vetAvxFinal, vetAvxFinal, 0x1);
16
       vetAvxFinal = mm256 add ps(vetAvxFinal, tmp);
17
       vetAvxFinal = _mm256_hadd_ps(vetAvxFinal, vetAvxFinal);
18
       vetAvxFinal = _mm256_hadd_ps(vetAvxFinal, vetAvxFinal);
19
20
       float tmp2[8] __attribute__((aligned(32)));
21
       _mm256_store_ps(tmp2, vetAvxFinal);
23
        dist += tmp2[0]:
24 fim
```

Parte 2 da implementação otimizada no POPF

OPF (Optimum-Path Forest) Implementação

O código anterior apresentou resultados corretos e com desempenho razoável

Mas ainda é possível reduzir o tempo de execução!

- Por meio de uma implementação híbrida
 - Utiliza AVX2 e AVX-512, de maneira a melhor utilizar a quantidade de features, ou tamanho do vetor de características do dataset
 - AVX-512 \rightarrow 16 ou mais elementos float
 - AVX2 \rightarrow 8 ou mais elementos float

OPF (Optimum-Path Forest) Implementação

Os datasets utilizados são advindos do trabalho de Culquicondor et al.

(2020)

Dataset	Instâncias	Características
MiniBooNE	130.064	50
SDD	58.509	48
Letter	20.000	16

Dentre os apresentados, apenas os 3 datasets abaixo são de interesse:

Características ≥ 16 ⇒ pode se beneficiar da vetorização com AVX-

512

 $(featuresDataset*tamanhoDado)/tamanhoVetorAVXEmBytes \ge 1$

Dados obtidos utilizando os 3 *datasets* com apenas 1 *thread* (em segundos):

Dataset	Caract.	NoVect	AVX2	AVX-512	NoVect/AVX-512	AVX2/AVX-512
MiniBooNE	50	1348,50	1011,60	927,68	45,36%	9,05%
SDD	48	120,84	90,78	73,49	64,43%	23,53%
Letter	16	15,75	16,15	13,10	20,23%	23,28%

Resultados:

- Apresentam ganhos generalizados
- Destaque para o SDD
 - 64,43% de ganho sobre NoVect
 - 23,53% de ganho sobre AVX2

OPF (Optimum-Path Forest) Análise dos Resultados

Os resultados com AVX-512 são positivos!

Ganho com a vetorização se torna menos relevante conforme o número de *threads* aumenta

 Paralelização apresenta um bom ganho, reduzindo impacto da vetorização

Também apresenta um bom desempenho com auto-vetorização do OpenMP

Seria esse comportamento presente apenas na máquina utilizada para testes?

Para isso, fora utilizado um *ultrabook* com suporte a AVX-512 para realizar os mesmos testes:

- Intel Core i7 1065G7 (4c/8t)
- Sistema Operacional Pop_OS 22.04
- GCC 11.2.0

Dados obtidos utilizando os 3 *datasets* com apenas 1 *thread* (em segundos):

Dataset	Caract.	NoVect	AVX2	AVX-512	NoVect/AVX-512	AVX2/AVX-512
MiniBooNE	50	861,63	640,05	611,26	40,96%	4,71%
SDD	48	56,23	32,52	26,42	112,83%	23,09%
Letter	16	6,03	6,38	5,07	18,93%	25,84%

Resultados apresentam ganhos distintos, mas ainda apresentando ganhos!

Tais discrepâncias podem se dar à diferente arquitetura do

processador!

Resultados:

Resultados com vários threads utilizando o dataset SDD

OPF (Optimum-Path Forest)

Confirmação de Desempenho

Resultados com vários threads utilizando o dataset Letter

Resultados com vários threads utilizando o dataset MiniBooNE

Galois Introdução

É um arcabouço computacional que permite explorar o paralelismo de dados amorfos em algoritmos irregulares na linguagem C++ sem a necessidade de uma programação paralela explícita

- Foi escolhido pelo seu bom desempenho em algoritmos baseados em grafos!
- Pelo funcionamento do OPF, essa implementação pode trazer benefícios!

Galois Introdução

Como a maior parte do trabalho foi voltado para a vetorização:

- Não foi possível realizar toda a reimplementação do OPF
- Os testes aqui realizados consideram apenas a aplicação em MST* e não abordam Djikstra
- O estudo teve o foco em avaliar a viabilidade de implementação no OPF

A verificação de desempenho foi feita utilizando o algoritmo de MST Boruvka

Galois Metodologia

- Valores de tempo obtidos por meio do próprio Galois
- Dados são relativos a média de 3 execuções realizadas.
 - Foram apresentados apenas os valores médios devido a baixa variabilidade
- Speedup foi obtido dividindo-se o tempo de execução sequencial de cada configuração pelos tempos com diferentes números de threads.

Foram utilizados *dataset*s fornecidos como parte do repositório público do Galois

R-MAT e Epinions

Apresenta uma melhora de desempenho com até 16 threads

Após essa marca, o desempenho tende a ter uma leve piora e estabilizar

Com até 8 threads:

- Comportamento esperado, mas com speedup global limitado entre 3x e
 4x
 - Longe do 8x teórico

Ambos datasets atingem o maior desempenho com 16 threads:

- Epinions apresenta melhor desempenho (até 6x)
- R-MAT possui menor desempenho:
 - rmat15 com 3,25x
 - rmatSG15 com 5,25x

Os dados apresentados, apesar das limitações, apresentam resultados promissores

Especialmente se considerarmos outros trabalhos da mesma natureza:

- Mariano et al. (2015) por exemplo:
 - Utiliza também um sistema Intel para os testes
 - Obtém bons resultados com o dataset road-network com Galois
 - Speedup de 6,06x com 8 threads

Uma possibilidade é que seu desempenho seja bastante dependente do *dataset*

Conclusão

A implementação de AVX-512 no POPF gerou bons resultados com 1 *thread*:

- Ganhos entre 20,23% e 64,43% sobre a implementação não vetorizada
- Ganhos entre 9,05% e 23,53% sobre a implementação com AVX2

E até mesmo na configuração *ultrabook* com 1 *thread*:

- Ganhos entre 19,93% e 112,83% sobre a implementação não vetorizada
- Ganhos entre 4,71% e 26,84% sobre a implementação com AVX2

Conclusão

É possível concluir que a implementação encontrou sucesso, com um ganho bastante significativo de desempenho global com a implementação AVX-512

Um artigo também fora submetido contendo os resultados aqui apresentados para o *workshop* de iniciação científica WSCAD-WIC 2022 que ocorrerá em outubro

Conclusão

Por fim, o estudo com Galois apresentou resultados razoáveis com até 16 threads

O estudo por Mariano et al. (2015) indica que é possível obter melhor desempenho

Existe potencial para uma reimplementação no POPF!

Seria de interesse para trabalhos futuros realizar a implementação do Galois para outros algoritmos de grafos baseados no OPF e analisar os ganhos obtidos.

Referências Bibliográficas

CULQUICONDOR, A.; BALDASSIN, A.; CASTELO-FERNÁNDEZ, C.; CARVALHO, J. P. de; PAPA, J. P. An efficient parallel implementation for training supervised optimum-path forest classifiers. Neurocomputing, Elsevier, v. 393, p. 259–268, 2020.

MARIANO, A.; PROENCA, A.; SOUSA, C. D. S. A generic and highly efficient parallel variant of boruvka's algorithm. In: 2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing. [S.l.: s.n.], 2015. p. 610–617.

Obrigado pela atenção!