Ventilator Graphics: Optimizing Ventilator Settings

Lisa Moores PCCMS

Overview

- Graphical Assessment
- Calculating Loads
- PEEP
- Ventilator Dysynchrony

Graphical Displays

- Four Parameters commonly monitored
 - pressure
 - Ventilator circuit (Paw)
 - Esophagus (Pes) --pleural pressure
 - flow
 - volume
 - time
- Commonly plotted as pressure, flow, and volume over time

Breath Delivery

- Four phases of ventilatory cycle
 - trigger
 - flow delivery
 - cycle
 - expiratory phase
- Breaths described by what determines the above phases

Triggers

Flow

Cycling

Breath Types

	TRIGGER	TARGET/LIMIT	CYCLE
Volume control (VC)	time	flow	vol*
Volume assist (VA)	effort	flow	vol*
Pressure control (PC)	time	Pi**	time*
Pressure assist (PA)	effort	Pi**	time*
Pressure support (PS)	effort	Pi**	flow*
Pressure relief/release (PR)	time	Pi	time
Spontaneous (SP)	effort	Pi***	effort

Breath Types

- Graphical Assessment
- Calculating Loads
- PEEP
- Ventilator Dysynchrony

Plateau Pressure

- Lung "overstretch" has been linked to VILI
- An approximation of lung stretch is the "end inspiratory" pressure
- Must be measured in a "no flow" state

Plateau Pressure

Plateau Pressure

Measuring Loads

Measuring Loads

Measuring Loads

Overview

- Graphical Assessment
- Calculating Loads
- PEEP
- Ventilator Dysynchrony

PEEP and Compliance

PEEP Interaction Between Applied and Intrinsic

PEEPi and Flow Limitation

PEEPi and Flow Limitation

Overview

- Graphical Assessment
- Calculating Loads
- PEEP
- Ventilator Dysynchrony

Patient Related Factors

- Anxiety
- Pain
- Secretions
- Bronchospasm
- Pulmonary edema

- Dynamic hyperinflation
- Abnormal respiratory drive
- Drugs
- Nutrition

Ventilator Related Causes

- Ventilator disconnection
- System leak
- Circuit malfunction
- Inadequate FiO₂
- Inadequate ventilator support

Ventilator Support

- Minute ventilation has a quadratic relationship to work of breathing
- Patient with increased drive, asynchrony may result from:
 - overly sensitive trigger
 - inadequate peak flow or peak flow rate
 - prolonged inspiratory time
 - inadequate pressure support
 - inadequate expiratory time

Background

- Total vs partial support
- Interactive modes can be either synchronous or asynchronous with patient efforts
- Synchronizing is important to avoid "imposed" muscle loading

Overview

- Mechanical breath parameters
 - breath triggering (trigger criteria)
 - ventilator delivered flow pattern (target criteria)
 - ventilator flow termination (cycling criteria)
- Imposed expiratory loads (ET tube, PEEP valve)
- "Backup" ventilator breaths (if not timed appropriately with patient efforts)

Breath Triggering

- Ventilator must sense a spontaneous effort to initiate flow
 - sensitivity (trigger phase)
 - responsiveness (post-trigger phase)
- Inherent asynchrony
 - pleural pressure change dampened
 - avoid "autocycling"
 - demand valve delay

Breath Triggering Minimizing Asynchrony

- Microprocessor flow controls
- Inspiratory pressure support
- Sensors in the pleural space or on the phrenic nerve
- Does the type of triggering matter?
 - Pressure
 - Flow

Auto-PEEP and Triggering

- In the setting of PEEPi, the elevated alveolar pressure at end inspiration can serve as a significant triggering load
- The addition of extrinsic PEEP may help with triggering, but will not affect the degree of hyperinflation

Auto-PEEP and Triggering

PEEPi = 10

PEEPe = 0

PEEPi = 10

PEEPe = 10

PEEPnet = 12

PEEPe = 12

Effect of Delivered Flow

- Interactive breaths can be "assisted", "supported", or "unassisted"
- Ventilator breaths can meet one of three goals after triggering
 - fully unload the ventilatory muscles
 - partially unload the ventilatory muscles
 - not affect ventilatory muscle loads

Effect of Delivered Flow

- Inadequate flow rates may cause the patient to sense "air hunger" and lead to greater work of breathing
- Flow rates exceeding demand are also poorly tolerated and can lead to increased ventilatory drives and "double cycling"

Fully Unloaded Breaths

- Goal is to deliver adequate flow over the entire inspiratory effort to unload the contracting muscles
- Assess by comparing the pressure pattern of a patient and machine triggered breath

Fully Unloaded Breaths

- Synchrony requires careful selection of flow rate and pattern
- Patients with high respiratory drives often require high initial flow rates
- Pressure targeted breaths may be easier
 - high initial flows
 - flow is continuously adjusted

Fully Unloaded Breaths

- Problems with pressure targeting:
 - patients with lower drives require lower flows
 - pressure target is the proximal airway...
 thus there is inherent under-responsiveness
- Studies comparing pressure and flow targeted breaths are lacking
- Proportional assist may be an alternative in the future

Breaths to Partially Unload

- Intermittently shift work between patient and ventilator
- Patient triggers the breath and then "shares" the work of the breath
- Studies directly comparing the two methods are lacking....though IMV tends to increase overall work done by the patient

Flow Dysynchrony in a Volume Targeted Breath

Flow Dysynchrony in a Pressure Targeted Breath

Flow Termination: Cycling

- Cycling should be done in accordance with patient demand and adequate tidal volume
- Premature termination may lead to decreased tidal volume or inspiratory load
- Delayed termination may result in increased tidal volume or expiratory load

Flow Termination: Cycling

- With pressure targeted breaths, termination may be accomplished in several ways:
 - 25-30% of peak flow (duration and magnitude of patient effort can affect Ti)
 - PS level and rate of pressure rise can also affect Ti
 - Pressure assisted breaths....set Ti

Most Common Reasons for Dysynchrony

- ACV: Inappropriate flow settings
- IMV: Little breath-breath adaptation...as back-up rate decreases, WOB increases
- PSV: prolongation of inspiratory flow beyond patient's neural inspiratory time...this may also lead to PEEPi and triggering difficulty

- Patient comfort, synchrony with the ventilator is important to avoid imposed loads on the respiratory system
- Must consider trigger, flow, and cycling criteria when the patient "fights" the ventilator
- If problem unclear from the airway pressure tracing, consider placing an esophageal balloon

Overview

- Graphical Assessment
- Calculating Loads
- PEEP
- Ventilator Dysynchrony