INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4006B MSI

18-stage static shift register

Product specification
File under Integrated Circuits, IC04

January 1995

18-stage static shift register

HEF4006B MSI

DESCRIPTION

The HEF4006B is an 18-stage shift register arranged as two 4-stage and two 5-stage shift registers with a common clock input (\overline{CP}) . The two 4-stage shift registers each have a data input (D_A, D_B) and a data output (O_{3A}, O_{3B}) ; the two

O3A 13 SHIFT REGISTER 4-BITS D_B 5 O_{3B} 10 SHIFT REGISTER 4-BITS DC 4 O_{4C} |12 SHIFT REGISTER 5-BITS ^O3C <u>| 11</u> D_D 6 O_{4D} SHIFT REGISTER 5-BITS O3D | 8 3 СP 7273675.2 Fig.1 Functional diagram.

5-stage shift registers each have a data input (D_C, D_D) and data outputs from the fourth and fifth stages (O_{3C}, O_{4C}, O_{3D}, O_{4D}).

The registers can be operated in parallel or interconnected to form a single shift register of up to 18 bits. Data are shifted into the first register position of each register from the data inputs (D_A to D_D) and all the data in each register are shifted one position to the right on the HIGH to LOW transition of \overline{CP} .

HEF4006BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4006BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4006BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

FUNCTION TABLE

D _n	CP	O _n ⁽⁵⁾
D ₁	_	D_1
X		no change

Notes

1. X = state is immaterial

2. ____ = positive-going transition

3. = negative-going transition

4. D_1 = either HIGH or LOW

5. The moment D_1 appears at O depends on the register length.

PINNING

 $\frac{D_A}{CP}$ to D_D data inputs clock input

(HIGH to LOW; edge-triggered)

 O_{3A} to O_{3D} ; O_{4C} ; O_{4D} data outputs

FAMILY DATA, I_{DD} LIMITS category MSI

See Family Specifications

18-stage static shift register

HEF4006B MSI

Philips Semiconductors Product specification

18-stage static shift register

HEF4006B MSI

AC CHARACTERISTICS

 V_{SS} = 0 V; T_{amb} = 25 °C; C_L = 50 pF; input transition times \leq 20 ns

	V _{DD}	SYMBOL	MIN	TYP	MAX		TYPICAL EXTRAPOLATION FORMULA
Propagation delays							
$\overline{CP} \to O_n$	5			90	180	ns	63 ns + (0,55 ns/pF) C _L
HIGH to LOW	10	t _{PHL}		40	80	ns	29 ns + (0,23 ns/pF) C _L
	15			30	60	ns	22 ns + (0,16 ns/pF) C _L
	5			90	180	ns	63 ns + (0,55 ns/pF) C _L
LOW to HIGH	10	t _{PLH}		40	85	ns	29 ns + (0,23 ns/pF) C _L
	15			35	70	ns	27 ns + (0,16 ns/pF) C _L
Output transition times	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
HIGH to LOW	10	t _{THL}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
	5			60	120	ns	10 ns + (1,0 ns/pF) C _L
LOW to HIGH	10	t _{TLH}		30	60	ns	9 ns + (0,42 ns/pF) C _L
	15			20	40	ns	6 ns + (0,28 ns/pF) C _L
Minimum clock	5		60	30		ns	
pulse width; HIGH	10	t _{WCPH}	40	20		ns	
	15		30	15		ns	
Set-up time	5		20	10		ns	
$D_n \rightarrow \overline{CP}$	10	t _{su}	10	5		ns	
	15		5	0		ns	see also waveforms Fig.4
Hold time	5		5	-5		ns	see also wavelolilis Fig.4
$D_n \rightarrow \overline{CP}$	10	t _{hold}	5	0		ns	
	15		5	0		ns	
Maximum clock	5		9	18		MHz	
pulse frequency	10	f _{max}	15	30		MHz	
	15		18	36		MHz	

	V _{DD} V	TYPICAL FORMULA FOR P (μW)	
Dynamic power	5	$600 \text{ f}_{i} + \sum (f_{o}C_{L}) \times V_{DD}^{2}$	where
dissipation per	10	3200 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _i = input freq. (MHz)
package (P)	15	11 600 $f_i + \sum (f_o C_L) \times V_{DD}^2$	f _o = output freq. (MHz)
			C _L = load capacitance (pF)
			$\sum (f_o C_L) = \text{sum of outputs}$
			V _{DD} = supply voltage (V)

Philips Semiconductors Product specification

18-stage static shift register

HEF4006B MSI

Fig.4 Waveforms showing minimum clock pulse width, and set-up and hold-times for $\overline{\text{CP}}$. Set-up and hold times are shown as positive values but may be specified as negative values.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.