BM20A9200 Mathematics A – Exercise set 2

To be done by 18.–22.9.2022

Exercise 1. Let U be a set and let \mathcal{F}_1 and \mathcal{F}_2 be nonempty families of subsets of U such that $\mathcal{F}_1 \subseteq \mathcal{F}_2$. Show (=prove) that the following inclusions hold:

- (a) $\bigcup \mathcal{F}_1 \subseteq \bigcup \mathcal{F}_2$
- (b) $\bigcap \mathcal{F}_1 \supseteq \bigcap \mathcal{F}_2$

Exercise 2. Let U be a set and let $\emptyset \neq \mathcal{F} \subseteq \mathcal{P}(U)$ be a nonempty family of subsets of U. Prove the following equalities:

(a)
$$(\bigcap \mathcal{F})^C = \bigcup \{A^C \mid A \in \mathcal{F}\}\$$

(b)
$$(\bigcup \mathcal{F})^C = \bigcap \{A^C \mid A \in \mathcal{F}\}$$

Recall that the complement of any $X \subseteq U$ is defined by $X^C = U \setminus X$.

Exercise 3. The courses taken by John, Mary, Paul and Sally are listed below:

John: MATH 212, CSIT 121, MATH 220 Mary: MATH 230, CSIT 121, MATH 211 Paul: CSIT 120, MATH 211, MATH 230

Sally: MATH 211, CSIT 120

Give a graphical representation of the relation R defined as aRb if student a is taking bourse b.

Exercise 4. Write the set of ordered pairs for the relation represented by the following directed graph:

Exercise 5. Let R be a binary relation on the set $\mathcal{P}(\{a,b\})$ with $a \neq b$ defined so that $(A,B) \in R$ holds if $A \Delta B = \emptyset$. Write out the relation R.

1

Exercise 6. Let A, B, C be sets. Prove the following equalities:

(a)
$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

(b)
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$