

Fuzzy Logic & Neural Networks (CS-514)

Dr. Sudeep Sharma

IIIT Surat

sudeep.sharma@iiitsurat.ac.in

Simple example to learn how the backpropagation algorithm works:

 \triangleright 2 inputs (X₁ and X₂), Weights W₁, W₂ and bias b

Assume that output layer uses the sigmoid activation function:

where

$$s=X_1*W_1+X_2*W_2+b$$

> Forward Pass:

where

$$s=X_1*W_1+X_2*W_2+b$$

Loss Calculations:

$$e_i = (y_i - \hat{y}_i)$$

Backward Pass

Gradient Calculations:

$$Loss = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$\frac{\partial Loss}{\partial \hat{y}_i} = -\frac{(y_i - \hat{y}_i)}{N}$$

Gradient Calculations:

$$Loss = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$\frac{\partial Loss}{\partial \hat{y}_i} = -\frac{(y_i - \hat{y}_i)}{N}$$

$$X_1$$

$$W_1$$

$$W_2$$
In Out

$$\frac{\partial \hat{y}_i}{\partial s} = \frac{\partial}{\partial s} \hat{y}_i = \frac{\partial}{\partial s} \frac{1}{(1 + e^{-s})} = \hat{y}_i (1 - \hat{y}_i)$$

Gradient Calculations:

Loss =
$$\frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$

$$\frac{\partial Loss}{\partial \hat{y}_i} = -\frac{(y_i - \hat{y}_i)}{N}$$
 X_1

$$X_2$$

$$W_2$$

$$W_2$$

$$\frac{\partial \hat{y}_i}{\partial s} = \frac{\partial}{\partial s} \hat{y}_i = \frac{\partial}{\partial s} \frac{1}{(1 + e^{-s})} = \hat{y}_i (1 - \hat{y}_i)$$

$$\frac{\partial s}{\partial w_1} = \frac{\partial}{\partial w_1} (X_1 w_1 + X_2 w_2 + b) = X_1$$

 W_1

In | Out

Gradient Calculations:

$$\frac{\partial Loss}{\partial \hat{y}_i} = -\frac{(y_i - \hat{y}_i)}{N}$$

$$\frac{\partial \hat{y}_i}{\partial s} = \frac{\partial}{\partial s} \hat{y}_i = \frac{\partial}{\partial s} \frac{1}{(1 + e^{-s})} = \hat{y}_i (1 - \hat{y}_i)$$

$$\frac{\partial s}{\partial w_1} = \frac{\partial}{\partial w_1} \left(X_1 w_1 + X_2 w_2 + b \right) = X_1$$

$$\frac{\partial Loss}{\partial w_1} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial w_1} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) X_1$$

> Gradient Calculations:

$$\frac{\partial Loss}{\partial \hat{y}_i} = -\frac{(y_i - \hat{y}_i)}{N}$$

$$\frac{\partial \hat{y}_i}{\partial s} = \frac{\partial}{\partial s} \hat{y}_i = \frac{\partial}{\partial s} \frac{1}{(1 + e^{-s})} = \hat{y}_i (1 - \hat{y}_i)$$

$$\frac{\partial s}{\partial w_2} = \frac{\partial}{\partial w_2} (X_1 w_1 + X_2 w_2 + b) = X_2$$

$$\frac{\partial Loss}{\partial w_2} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial w_2} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) X_2$$

> Gradient Calculations:

$$\frac{\partial Loss}{\partial \hat{y}_i} = -\frac{(y_i - \hat{y}_i)}{N}$$

$$\frac{\partial \hat{y}_i}{\partial s} = \frac{\partial}{\partial s} \hat{y}_i = \frac{\partial}{\partial s} \frac{1}{(1 + e^{-s})} = \hat{y}_i (1 - \hat{y}_i)$$

$$\frac{\partial s}{\partial b} = \frac{\partial}{\partial b} (X_1 w_1 + X_2 w_2 + b) = 1$$

$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial b} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i)$$

> Weights Update Rule:

$$w(new) = w(old) - \eta \frac{\partial Loss}{\partial w}$$

 η is the learning rate

$$w_1(new) = w_1(old) - \eta \frac{\partial Loss}{\partial w_1}$$

$$w_2(new) = w_2(old) - \eta \frac{\partial Loss}{\partial w_2}$$

$$b(new) = b(old) - \eta \frac{\partial Loss}{\partial b}$$

To make things simple, a single training sample is used in this example:

X1	X2	Desired Output
0.1	0.3	0.1

W1	W2	b
0.5	0.2	1.83

Iteration 1

Forward Pass using the given values:

s=1.94

Iteration 1

Loss Calculations:

$$Loss = \frac{1}{2N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 = 0.299$$

Iteration 1

➤ Backward Pass Gradient Calculations:

$$\frac{\partial Loss}{\partial \hat{y}_i} = -\frac{(y_i - \hat{y}_i)}{N} = 0.774$$

$$\frac{\partial \hat{y}_i}{\partial s} = \frac{\partial}{\partial s} \hat{y}_i = \frac{\partial}{\partial s} \frac{1}{(1 + e^{-s})} = \hat{y}_i (1 - \hat{y}_i) = 0.11$$

$$\frac{\partial S}{\partial w_1} = \frac{\partial}{\partial w_1} (X_1 w_1 + X_2 w_2 + b) = X_1 = 0.1$$

Iteration 1

> Gradient Calculations:

$$\frac{\partial Loss}{\partial w_1} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial w_1} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) X_1 = 0.0085$$

Iteration 1

> Gradient Calculations:

$$\frac{\partial Loss}{\partial w_2} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial w_2} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) X_2 = 0.0255$$

Iteration 1

Gradient Calculations:

$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial b} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) = 0.085$$

Iteration 1

➤ Weights Update: Take learning rate as 0.5

$$w_1(new) = w_1(old) - \eta \frac{\partial Loss}{\partial w_1} = 0.5 - 0.5(0.0085) = 0.49575$$

$$w_2(new) = w_2(old) - \eta \frac{\partial Loss}{\partial w_2} = 0.2 - 0.5(0.0255) = 0.18725$$

$$b(new) = b(old) - \eta \frac{\partial Loss}{\partial b} = 1.83 - 0.5(0.085) = 1.7875$$

Iteration 2

Forward Pass using the given values:

where

$$s=X_1*W_1+X_2*W_2+b$$

 $s=0.1*0.496+0.3*0.187+1.788$
 $s=1.894$

Iteration 2

Loss Calculations:

Iteration 2

Backward Pass:

$$\frac{\partial Loss}{\partial w_1} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial w_1} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) X_1 = 0.0088$$

$$\frac{\partial Loss}{\partial w_2} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial w_2} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) X_2 = 0.026$$

$$\frac{\partial Loss}{\partial b} = \frac{\partial Loss}{\partial \hat{y}_i} \frac{\partial \hat{y}_i}{\partial s} \frac{\partial s}{\partial b} = -\frac{(y_i - \hat{y}_i)}{N} \hat{y}_i (1 - \hat{y}_i) = 0.088$$

Iteration 2

➤ Weights Update: Take learning rate as 0.5

$$w_1(new) = w_1(old) - \eta \frac{\partial Loss}{\partial w_1} = 0.496 - 0.5(0.0088) = 0.492$$

$$w_2(new) = w_2(old) - \eta \frac{\partial Loss}{\partial w_2} = 0.187 - 0.5(0.026) = 0.174$$

$$b(new) = b(old) - \eta \frac{\partial Loss}{\partial b} = 1.79 - 0.5(0.088) = 1.746$$