TD0.1 Introduction

- Grandeur à estimer : VA $\theta = x(t + \Delta t), \Delta t > 0$.
- Information a priori : x(t) SA réel, scalaire, centré $(\forall t \in \mathbb{R}, E[x(t)] = 0)$, stationnaire $(E[x(t)] = m_x(t) = m_x)$.
- Observations / mesures : dans la partie II, Y = x(t) et dans la partie III, $\mathbf{Y} = \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix}$
- Choix de l'estimateur : estimateur linéaire : $\hat{\theta} = \mathbf{HY}$
 - Partie II : $\hat{\theta} = \hat{x}(t + \Delta t) = Hx(t)$
 - Partie III : $\hat{\theta} = \hat{x}(t + \Delta t) = \mathbf{H} \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = ax(t) + bx'(t)$
- Calcul des caractéristiques statistiques de l'estimateur
 - $\tilde{\theta} = \hat{x}(t + \Delta t) x(t + \Delta t)$
 - $E[\theta] = biais(moyen)$
 - $E[\tilde{\theta}^2] = P_{\tilde{\theta}} = E[(\hat{\theta} \theta)^2] = \text{erreur quadratique moyenne (puissance de l'erreur)}$

Objectif : Minimiser $P_{\tilde{\theta}}$

- Variations lentes : $x(t + \Delta t) \approx x(t)$. $\hat{x}(t + \Delta t) = x(t) = 1.x(t)$. L'erreur d'estimation vient de celle de $x(t + \Delta t) \approx x(t)$. $\hat{x}(t + \Delta t) = 1.x't + \Delta t x'(t)$
- Fortement corrélé : $\gamma_{xx}(\Delta t) \approx \gamma_{xx}(0)$. On obtient les mêmes expressions que précédemment pour $\hat{x}(t + \Delta t)$.
- Faiblement corrélé : la fonction d'autocorrélation est "plus étroite" : $\gamma_{xx}(\Delta t) \approx 0$ $\hat{x}(t+\Delta t)=0$ i.e. a=0,b=0
- Signal sinusoïdal $\hat{x}(t + \Delta t) = \frac{x_1(t + \Delta t) + x_2(t + \Delta t)}{2}$ si on a seulement accès à x(t) $\hat{x}(t + \Delta t) = x(t + \Delta t)$ si on a accès à x(t) et x'(t).

TD0.2 Estimateur à partir de x(t)

On utilise l'estimateur suivant :

$$\hat{x}(t + \Delta t) = a.x(t)$$

1. Calculons l'erreur moyenne :

$$\begin{split} E[\tilde{x}(t+\Delta t)] &= E[\hat{x}(t+\Delta t) - x(t+\Delta t)] \\ &= E[a.x(t) - x(t+\Delta t)] \\ &= aE[x(t)] - E[x(t+\Delta t)] \\ &= 0 \text{ car le signal est centré} \end{split}$$

L'estimateur est non biaisé car la moyenne de l'estimateur est égale à la moyenne du signal.

2. Calculons l'erreur quadratique :

$$P_{\tilde{\theta}} = E[\tilde{x}(t + \Delta t)^2]$$

$$= E[(ax(t) - x(t + \Delta t))^2]$$

$$P_{\tilde{\theta}}(a) = a^2 \gamma_{xx}(0) - 2a\gamma_{xx}(\Delta t) + \gamma_{xx}(0)$$

 $P_{\tilde{\theta}}(a)$ est une parabole et $\gamma_{xx}(a) > 0$ donc on a la CNS de maximum :

$$\frac{dP_{\tilde{\theta}}(a)}{da}|_{a_{opt}} = 0 \Leftrightarrow a_{opt} = \frac{\gamma_{xx}(\Delta t)}{\gamma_{xx}(0)} \in [-1, 1]$$

On en déduit l'erreur quadratique minimale :

$$P_{min} = P_{\bar{\theta}}(a_{opt}) = \gamma_{xx}(0) - \frac{\gamma_{xx}^2(\Delta t)}{\gamma_{xx}(0)} = \gamma_{xx}(0)(1 - (\frac{\gamma_{xx}(\Delta t)}{\gamma_{xx}(0)})^2)$$

Calculons l'erreur moyenne de $\tilde{x}(t + \Delta t)x(t)$:

$$E[\tilde{x}(t+\Delta t)x(t)] = E[(ax(t) - x(t+\Delta t))x(t)]$$

= $a\gamma_{xx}(0) - \gamma_{xx}(\Delta t)$

Pour $a = a_{opt}$,

$$E[\tilde{x}(t+\Delta t)x(t)] = 0$$
 (principe d'orthogonalité)

On peut réécrire ce résultat :

$$E[\tilde{x}(t+\Delta t)x(t)] = \gamma_{r\tilde{x}}(\Delta t) = 0$$

Autrement dit, il ne reste plus d'information commune entre $\tilde{x}(t+\Delta)$ et x(t). On a extrait ce qu'on pouvait. Si on ne l'avait pas fait $(\gamma_{x\tilde{x}}(\Delta t) \neq 0)$, on pourrait trouver un meilleur estimateur.

3. Dans le cas du bruit blanc $\gamma_{xx}(\Delta t) = 0$ donc $a_{opt} = 0$.

Dans le cas du faiblement corrélé, $\gamma_{xx}(\Delta t) = 0$.

Fortement corrélé : $\gamma_{xx}(\Delta t) \approx \gamma_{xx}(0)$ donc $a_{opt} \approx 1$

TD0.3 Estimateur à partir de x(t) et x'(t)

On considère l'estimateur :

$$\hat{x}(t + \Delta t) = ax(t) + bx'(t)$$

Hypothèses:

- $\tau \to \gamma_{xx}(\tau)$ est dérivable 2 fois
- $\bullet \ \gamma'_{xx}(0) = 0$
- $\gamma''_{xx}(0) < 0$

1. Biais de l'estimateur?

$$E[\tilde{x}(t+\Delta t)] = E[(\hat{x}(t+\Delta t) - x(t-\Delta t))]$$

$$= E[ax(t) + bx'(t) - x(t+\Delta t)]$$

$$= aE[x(t)] + bE[x'(t)] - E[x(t+\Delta t)]$$

$$= 0$$

L'estimateur est non biaisé, et e $\forall a, b \in \mathbb{R}^2$.

2. Erreur quadratique moyenne de l'estimateur?

$$\begin{split} P_{\tilde{\theta}} &= E[\tilde{x}(t+\Delta)^2] \\ &= E[(ax(t) + bx'(t) - x(t+\Delta t))^2] \\ &= a^2 E[x(t)^2] + b^2 E[x'(t)^2] + E[x(t+\Delta t)^2] + 2abE[x(t)x'(t)] \\ &- 2aE[x(t)x(t+\Delta t) - 2bE[x'(t)x(t+\Delta t)] \end{split}$$

D'après les résultats démontrés au TD précédent (via formule des interférences) :

$$P_{\tilde{\theta}} = a^2 \gamma_{xx}(0) - b^2 \gamma_{xx}''(0) + \gamma_{xx}(0) - 2ab\gamma_{xx}'(0) - 2a\gamma_{xx}(\Delta t) + 2b\gamma_{xx}'(\Delta t)$$

= $(1 + a^2)\gamma_{xx}(0) - b^2\gamma_{xx}''(0) - 2a\gamma_{xx}(\Delta t) + 2b\gamma_{xx}'(\Delta t)$

Ceci définit sans conteste un fantastique paraboloïde tourné ver le haut! En effet, les coefficients de vant a^2 et b^2 ont le bon goût d'être positifs (car $gxx(0) = P_x > 0$ et $\gamma''_{xx}(0) < 0$ (puissance maximum en 0)).

Tout ça pour ne pas minimiser la belle fonction à deux variables, car on a maintenant une CNS de minimum de l'erreur quadratique :

$$\frac{\partial P_{\tilde{\theta}}}{\partial a}|_{a=a_{opt}} = 0$$
 et $\frac{\partial P_{\tilde{\theta}}}{\partial b}|_{b=b_{opt}}$

On en déduit donc :

$$a_{opt} = \frac{\gamma_{xx}(\Delta t)}{\gamma_{xx}(0)}$$
 et $b_{opt} = \frac{\gamma'_{xx}(\Delta t)}{\gamma''_{xx}(0)}$

puis

$$P_{\tilde{\theta}}(a_{opt}, b_{opt}) = \gamma_{xx}(0) - \frac{\gamma_{xx}^2(\Delta t)}{\gamma_{xx}(0)} + \frac{\gamma_{xx}'^2(\Delta t)}{\gamma_{xx}''(0)}$$

On compare les 2 estimateurs :

$$P_{min,2} = \gamma_{xx}(0)\left[1 - \left(\frac{\gamma_{xx}(\Delta t)}{\gamma_{xx}(0)}\right)^{2}\right] + \frac{\gamma_{xx}'^{2}(\Delta)}{\gamma_{xx}''(0)} = P_{min,1} + \frac{\gamma_{xx}'^{2}(\Delta)}{\gamma_{xx}''(0)}$$

Or, $\frac{\gamma_{xx}'(\Delta)}{\gamma_{xx}''(0)} < 0$ donc $P_{min,2} < P_{min,1}$

$$E[\tilde{x}(t + \Delta t)x(t)] = E[(ax(t) + bx'(t) - x(t + \Delta t))x(t)$$

$$= a\gamma_{xx}(0) - b\gamma'_{xx}(0) - \gamma_{xx}(\Delta t)$$

$$= a\gamma_{xx}(0) - \gamma_{xx}(\Delta t)$$

$$= 0 \quad \text{avec} \quad a = a_{opt}$$

$$E[\tilde{x}(t+\Delta t)x(t)] = E[(ax(t) + bx'(t) - x(t+\Delta t))x'(t)]$$

$$= a\gamma'_{xx}(0) - b\gamma''_{xx}(0) + \gamma'_{xx}(\Delta t)$$

$$= -b\gamma''_{xx}(0) + \gamma'_{xx}(\Delta t)$$

$$= 0 \quad \text{avec} \quad b = b_{opt}$$

On aurait pu utiliser ce résultat (principe d'orthogonalité) pour trouver les valeurs de a_{opt} et b_{opt} .

Résumé: dans le cadre d'un estimateur linéaire:

$$\hat{\theta} = \hat{x}(t + \Delta t) = \mathbf{H} \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} x(t) \\ x'(t) \end{bmatrix} = ax(t) + bx'(t)$$

- 1ère méthode : exprimer $P_{\tilde{\theta}} = E[\tilde{\theta}^2]$, chercher le $\mathbf{H}_{opt} = [a_{opt} \quad b_{opt}]$ tel que $P_{\tilde{\theta}}$ est minimale. On en déduit $\hat{\theta} = \mathbf{H}_{opt}\mathbf{Y}$.
- 2ème méthode : Principe d'orthogonalité, revient à chercher \mathbf{H} tel que $E[\tilde{\theta}\mathbf{Y}^T] = 0$.

$$E[\tilde{\theta}\mathbf{Y}^T] = 0 \Leftrightarrow \text{Chercher } P_{\tilde{\theta}}min + \text{ estimateur lin.}$$

Remarque: Innovation = l'erreur $\tilde{x}(t+\Delta t)$ dans le cas où l'estimateur minimise $P_{\tilde{\theta}}$

TD0.4 Comparaison

- 1. Les deux estimateurs sont non biaisés.
 - $P_{min,2} \leq P_{min,1}$: le 2ème est cool!
- 2. On suppose Δt "petit". Au début du TD, on avait alors intuité que

$$\hat{x}(t + \Delta t) = 1.x't + \Delta t x'(t)$$

soit $a_{opt} = 1$ et $b_{opt} = \Delta t$.

$$a_{opt} = \frac{\gamma_{xx}(\Delta t)}{\gamma_{xx}(0)} \approx \frac{\gamma_{xx}(0) + \Delta t \gamma'_{xx}(0)}{\gamma_{xx}(0)} = 1$$

$$b_{opt} = \frac{\gamma'_{xx}(\Delta t)}{\gamma''_{xx}(0)} \approx \frac{\gamma'_{xx}(0) + \Delta t \gamma''_{xx}(0)}{\gamma''_{xx}(0)} = \Delta t$$

WIRKLICH WUNDERBAR!

TD0.5 Application

On s'intéresse maintenant au signal :

$$x(t) = E_0 \sin(2\pi f_0 t + \phi)$$

où Φ est une VA uniformément répartie sur $[0, 2\pi]$

On a montré dans un TD précédent que ce signal est stationnaire et ergodique (à l'ordre 2).

1. $\underline{E[x(t)]}=0$ car Φ est une VA uniforme. Par ergodicité et stationnarité au 1er ordre, $\overline{x(t)}=E[x(t)]=0$.

On calcule la fonction d'autocorrélation et comme on l'a déjà vu :

$$\gamma_{xx}(\tau) = \frac{E_0^2}{2}\cos(2\pi f_0 t)$$

- 2. $\gamma_{xx}(\tau) = \frac{E_0^2}{2}\cos(2\pi f_0 t)$ a sensiblement l'air périodique, d'amplitude $\frac{E_0^2}{2}$ et de fréquence f_0 .
- 3. 1er estimateur : $\hat{x}_1(t + \Delta t) = a_{opt}x(t)$. Or, $a_{opt} = \frac{\gamma_{xx}(\Delta t)}{\gamma_{xx}(0)} = \cos(2\pi f_0 \Delta t)$, donc $\hat{x}_1(t + \Delta t) = E_0 \cos(2\pi f_0 \Delta t)x(t) = E_0 \cos(2\pi f_0 \Delta t)\sin(2\pi f_0 t + \phi)$
- 4. 2ème estimateur : $\hat{x}_2(t + \Delta t) = a_{opt}x(t) + b_{opt}x'(t)$. Or, $a_{opt} = \frac{\gamma_{xx}(\Delta t)}{\gamma_{xx}(0)} = \cos(2\pi f_0 \Delta t)$ et $b_{opt} = \frac{\gamma'_{xx}(\Delta t)}{\gamma''_{xx}(0)} = \frac{\sin(2\pi f_0 \Delta t)}{2\pi f_0}$, donc $\hat{x}_2(t + \Delta t) = E_0 \cos(2\pi f_0 \Delta t) \sin(2\pi f_0 t + \phi) + E_0 \frac{\sin(2\pi f_0 \Delta t)}{2\pi f_0} (2\pi f_0 \cos(2\pi f_0 t + \phi))$ $\hat{x}_2(t + \Delta t) = E_0 \sin(2\pi f_0 (t + \Delta t) + \phi) = x(t + \Delta t)$