Introduction to Deep Learning with Tensorflow

Yunhao (Robin) Tang Department of IEOR, Columbia University

February 12, 2018

Summary

What we will cover...

- Simple Example: Linear Regression with Tensorflow
- Intro to Deep Learning
- Deep Learning with Tensorflow
- Beyond

If time permits, we will also cover

- OpenAl Gym
- Implement basic DQN

Info about Tensorflow

- TF is an open source project formally supported by Google.
- Programming interface: Python, C++, C... Python is most well developed and documented.
- Latest version: 1.5. Commonly used version: 1.0. (depend on other dependencies)
- Can be installed via pip. Best supported on mac os and linux.

Simple Example: Linear Regression

- Linear Regression: N data points $\{x_i,y_i\}_{i=1}^N$, $x\in\mathbb{R}^k$, $y\in\mathbb{R}$
- Specify Architecture: Consider linear function for regression with parameter: slope $\theta \in \mathbb{R}$ and bias $\theta_0 \in \mathbb{R}$. The prediction is

$$\hat{y}_i = \theta^T x_i + \theta_0$$

- **Define Loss:** Loss function to minimize $J = \frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$
- Gradient Descent: $\theta \leftarrow \theta \alpha \nabla_{\theta} J, \theta_0 \leftarrow \theta_0 \alpha \nabla_{\theta_0} J$

Linear Regression: Data

```
# true parameters
true_theta = 2.
true_theta_0 = .5

# generate data
x = np.linspace(0,1,100)
y = true_theta * x + true_theta_0 + np.random.randn(x.size) * .3
```

(a) True Parameters

Linear Regression with Tensorflow

Let us just focus on defining architecture...

```
specify placeholders
X = tf.placeholder(tf.float32,[None])
Y = tf.placeholder(tf.float32,[None])
# specify models
theta = tf.Variable(tf.truncated_normal([1]))
theta_0 = tf.Variable(tf.truncated_normal([1]))
Y hat = tf.multiply(X,theta) + theta 0
loss = tf.reduce_mean(tf.square(Y_hat - Y))
```

(c) Linear regression tf code

Linear Regression with Tensorflow

We launch the training...

Intro to DL

- Consider data sets with complex relation $\{x_i, y_i\}_{i=1}^N$, linear regression will not work.
- MLP (Multi Layer Perceptron): stack multiple layers of linear transformations and nonlinear functions.
 - input $x \in \mathbb{R}^6$, first layer linear transformation $W_1x + b_1 \in \mathbb{R}^4$, then apply nonlinear function $h_1 = \sigma(W_1x + b_1) \in \mathbb{R}^4$. Nonlinear function applies elementwise.
 - second layer has W_2 , b_2 , transform as $h_2 = \sigma(W_2h_2 + b_2) \in \mathbb{R}^3$
 - final output $\hat{y} = W_3 \sigma(W_2 \sigma(W_1 x + b_1) + b_2) + b_3 \in \mathbb{R}$

(g) nonlinear functions

Intro to DL

- Architecture: define a complex input to output relation with stacked layers of linear transformations and nonlinear functions (activations).
 - Architectures are adapted to data structure at hand.
 - Input prior knowledge into modeling through architecture design.
 - MLP, CNN (image), RNN (sequence data, audio, language...
- Parameters: weights W_1 , W_2 , W_3 and bias b_1 , b_2 , b_3 .
 - ullet Linear regression: slope heta and bias $heta_0$

DL algorithm

- Specify Architecture: how many layers, how many hidden unit per layer? $\hat{y_i} = f_{\theta}(x_i)$ with generic parameters θ (weights and biases).
- **Define Loss:** Loss function to minimize $J = \frac{1}{N} \sum_{i=1}^{N} (y_i \hat{y}_i)^2$
- Gradient Descent: $\theta \leftarrow \theta \alpha \nabla_{\theta} J, \theta_0 \leftarrow \theta_0 \alpha \nabla_{\theta_0} J$

Algorithm 1 Generic DL regression

- 1: **Input:** model architecture, data $\{x_i, y_i\}$, learning rate α
- 2: **Initialize:** Model parameters $\theta = \{W_i, b_i\}$
- 3: **for** t=1,2,3...T **do**
- 4: Compute prediction $\hat{y}_i = f_{\theta}(x_i)$
- 5: Compute loss $J = \frac{1}{N} \sum_{i} (\hat{y}_i y_i)^2$
- 6: Gradient update $\theta \leftarrow \theta \alpha \nabla_{\theta} J$
- 7: end for

DL Regression: Data

Generate data using $y = x^3 + x^2 + \sin(10x) +$ **noise**. Linear regression will fail.

```
# generate data
x = np.linspace(-1,1,1000)
y = x**3 + x**2 * 2 + np.sin(10 * x) + np.random.randn(x.size) * .6
```

(h) data generation

DL Regression with Tensorflow

Specify the **Architecture**, **Loss** using Tensorflow syntax just like linear regression.

```
X = tf.placeholder(tf.float32,[None,1])
Y = tf.placeholder(tf.float32.[None.1])
W1 = tf.Variable(tf.truncated normal([1,10]))
b1 = tf.Variable(tf.truncated normal([10]))
W2 = tf.Variable(tf.truncated_normal([10,10]))
                                                # laver 2
b2 = tf.Variable(tf.truncated normal([10]))
W3 = tf.Variable(tf.truncated normal([10.1]))
b3 = tf.Variable(tf.truncated normal([1]))
h1 = tf.nn.relu(tf.matmul(X,W1) + b1)
h2 = tf.nn.relu(tf.matmul(h1,W2) + b2)
Y_hat = tf.matmul(h2,W3) + b3
loss = tf.reduce mean(tf.square(Y hat - Y))
```

- (i) Linear regression tf code
- train the model just like linear regression

DL Regression with Tensorflow

We launch the training...

(I) fitted line

Batch training

- When data set is large, can only compute gradients on mini-batches.
- \bullet Sample a batch of data \to Compute gradient on the batch \to Update parameters.
- Batch size: too small: high variance in data stream, unstable training; too large: too costly to compute gradients.

Auto-differentiation

- Taking gradients in linear model is easy.
- Question: how to take gradients for MLP? $\nabla_{W_1}J$ is not straightforward as in linear regression.

$$J = \frac{1}{N} \sum_{i} (y_i - \hat{y}_i)^2, \hat{y}_i = W_3 \sigma(W_2 \sigma(W_1 x_i + b_1) + b_2) + b_3$$

Auto-differentiation

- Tensorflow entails automatic differentiation (autodiff), i.e. automatic gradient computation. Users specify forward computation $y = f_{\theta}(x)$, the program will internally specify a way to compute $\nabla_{\theta} y$. Not symbolic computation, not finite difference
- Example: start with a, b, compute e: $c = a + b, d = b + 1, e = c \cdot d$. Consider

$$\frac{\partial e}{\partial a} = \frac{\partial e}{\partial d} \frac{\partial d}{\partial a} + \frac{\partial e}{\partial c} \frac{\partial c}{\partial a}$$

(m) computation graph

DL with Tensorflow

- High level idea: computation graph. Forward computation specifies local operations that connect locally related variables. Local gradients can be computed.
- \bullet forward computation \to local forward ops \to local gradient \to long range gradients.
- Just like error back-propagating from output to inputs and params, back-propagation.
- Useful link: http://deeplearning.stanford.edu/wiki/index.php/UFLDL_Tutorial

DL with Tensorflow

What we have covered from the code...

- Placeholder: tf objects that specify users' inputs into the graph, as literally placeholders for data.
- Variable: tf objects that represent parameters that can be updated through autodiff. Embedded inside the graph.
- All expressions computed from primitive variables and placeholders are vertices in the graph.

DL with Tensorflow

What we have not yet covered from the code... how to launch the training? how to use the gradients computed by Tensorflow to update parameters?

- **TF** expression: python objects that define how to update the graph (variables in the graph) in a single step.
- Optimizer: python objects that can specify gradient updates of variables.
- Session: python objects that launch the training.
- And many more...

Launch the training

- Define loss and optimizers: which specifies how to update model parameters during training.
- Define session to launch the training
- Initialize variables
- Feed data into the computation graph

```
# define loss
loss = tf.reduce_mean(tf.square(Y_hat - Y))
# use optimizers to define update operations
optimizer = tf.train.AdamOptimizer(1e-2)
opt = optimizer.minimize(loss)
# initialize sessiont to run update
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer()) # initialize all variables
ldict = [] # a list that records loss
    for _ in range(1000):
        l,_ = sess.run([loss,opt],feed_dict={X:x,Y:y}) # one step gradient update
        ldict.append(l) # record loss
```

(n) launch the training

Training: whole landscape

```
X = tf.placeholder(tf.float32,[None,1])
Y = tf.placeholder(tf.float32.[None.1])
W1 = tf.Variable(tf.truncated_normal([1,10])) # layer 1
b1 = tf.Variable(tf.truncated_normal([10]))
W2 = tf.Variable(tf.truncated_normal([10,10])) # layer 2
b2 = tf.Variable(tf.truncated_normal([10]))
W3 = tf.Variable(tf.truncated normal([10,1])) # layer 3
b3 = tf.Variable(tf.truncated normal([1]))
h1 = tf.nn.relu(tf.matmul(X.W1) + b1)
h2 = tf.nn.relu(tf.matmul(h1.W2) + b2)
Y_hat = tf.matmul(h2,W3) + b3
loss = tf.reduce_mean(tf.square(Y_hat - Y))
optimizer = tf.train.AdamOptimizer(1e-3)
opt = optimizer.minimize(loss)
  th tf.Session() as sess:
    sess.run(tf.global variables initializer())
    ldict = []
    x = np.expand dims(x.1)
    y = np.expand_dims(y,1)
        l,_ = sess.run([loss,opt],feed_dict={X:x,Y:y})
        ldict.append(l)
```

(o) launch the training

Beyond Regression

- Classification: regression on probability (image classification)
- Structured Prediction: regression on high dimensional objects (autoencoders)
- Reinforcement Learning: DQN, policy gradients...
 - DQN is an analogy to regression
 - PG is an analogy to classification

Hyper-parameters

Get a DL model to work involves a lot of hyper-parameters.

- Optimization: optimization subroutines that update parameters with gradients.
 - beyond simple sgd, there are rmsprop, adam, adagrad... adam is popular.
 - learning rate
- Architectures: number of layers, hidden units per layers
- Nonlinear function: sigmoid, relu, tanh...
- Initialization: initialization of variables W, b.
 - arbitrary initializations will fail.
 - xavier initialization, truncated normal...
- Need hand tuning or cross validation to select good hyper-parameters.
- Other topics: batch-normalization, dropout, stochastic layers...

Beyond Tensorflow

- Other autodiff softwares: Pytorch/Chainer/Theano/Caffe
 - pytorch and chainer allow for dynamic graph building
 - others use static graph building
 - strengths/weaknesses: gpu, distributed computing, model building flexibility, debug...
- High level interface: Keras
 - use tf and theano as backend
 - specify model architecture more easily
- High level interface: stick with Tensorflow
 - tensorflow.contrib

Beyond Tensorflow

```
import tensorflow as tf
x = tf.placeholder(tf.float32, [None,10])
# build laver
W1 = tf.Variable(tf.truncated_normal([3,10]))
b1 = tf.Variable(tf.truncated normal([3]))
y = tf.nn.relu(tf.matmul(X,W1) + b1)
# =====
# =====
import tensorflow.contrib as tc
# z is the new output
z = tf.layers.dense(x, 3, # 3 is the output dimension
    kernel_initializer=tf.random_uniform_initializer(minval=-3e-3, maxval=3e-3)
```

(p) low level vs. high level

Additional Resources

- TF official website: https://www.tensorflow.org/
- TF Basic tutorial: https://www.tensorflow.org/tutorials/
- Keras doc: https://keras.io/
- TF tutorials: https://github.com/aymericdamien/TensorFlow-Examples

OpenAl Gym - very brief intro

OpenAl Gym - very brief intro

- Gym is a testbed for RL algorithms. Doc: https://github.com/openai/gym
- make an environment: env = gym.make("CartPole-v0")
- initialize: obs = env.reset()
 - first obs. we take the first action based on this
- take a step: obs, reward, done, info = env.step(action)
 - based on obs, we make choices on which action to take
 - reward is the reward collected during this one step transition
 - done is True or False, to indicate if the episode terminates
 - info additional info about the env, normally empty dictionary
- display state: env.render(). Only display current state, need to render in a loop to display consecutive states.

Basic DQN [Mnih, 2013]

- MDP with state action space S, A
- Instant reward r
- Policy $\pi: S \mapsto A$
- Maximize cumulative reward $E_{\pi}[\sum_{t=0}^{\infty} r_t \gamma^t]$
- Action value function $Q^{\pi}(s, a)$ for state s, action a, under policy π .
- Bellman error

$$E[(Q^{\pi}(s_t, a_t) - \max_{a} E[r_t + \gamma Q^{\pi}(s_{t+1}, a))^2]$$

• Bellman error is zero iff optimal policy $Q^*(s, a)$

Basic DQN: Conventional Q learning

- Start with any Q vector Q⁽⁰⁾
- Contractive operator T defined as

$$TQ(s_t, a_t) =_{def} \max_{s} E[r_t + \gamma Q(s_{t+1}, a)]$$

Apply contractive operator

$$Q^{(t+1)} \leftarrow TQ^{(t)}$$

• WIII converge under mild conditions. Converge to the fixed point

$$Q = TQ$$

which gives zero bellman error.

- Approximate using neural net $Q_{\theta}(s, a) \approx Q^{\pi}(s, a)$ with parameter θ .
- Discrete action space $|A| < \infty$: input state s, output |A| values, the ith value represents the approximate action-value function for the ith action.
- Continuous action space $|A| = \infty$: input state s and action a, output one value which represents $Q^{\pi}(s,a)$. Not our focus here.
- Minimize Bellman error

$$E_{\pi}[(Q_{\theta}(s_i,a_i)-r_i-\max_{a}Q_{\theta}(s_i',a))^2]$$

• Sample based, given tuples $\{(s_i, a_i, r_i, s_i')\}_{i=1}^N$

$$\min_{\theta} \sum_{i=1}^{N} \frac{1}{N} (Q_{\theta}(s_i, a_i) - r_i - \max_{a} Q_{\theta}(s_i', a))^2$$

Instablity in optimizing

$$\min_{\theta} \sum_{i=1}^{N} \frac{1}{N} (Q_{\theta}(s_i, a_i) - r_i - \max_{a} Q_{\theta}(s_i', a))^2$$

- Two techniques to alleviate instability: experience replay and target network.
- Experience Replay: store experience tuple $\{s_i, a_i, r_i, s_i'\}$ into replay buffer B, when training, sample batches of experience $\{s_i, a_i, r_i, s_i'\}_{i=1}^b$ from B and update parameters using SGD
- Target Network: the training target $r_i + \max_a Q_{\theta}(s_i', a)$ is non-stationary. Make it stationary by introducing a slowly updated target net θ^- and compute target as $r_i + \max_a Q_{\theta^-}(s_i', a)$

Basic DQN

- Naive exploration ϵ -greedy
 - \bullet in state s, with prob ϵ take action randomly; with prob $1-\epsilon$ take greedy action

$$\operatorname{arg\,max}_{a} Q_{\theta}(s, a)$$

- More advanced exploration: noisy net, parameter space noise, bayesian updates...
- Learning rate: constant $\alpha = .001$ for example, not RM scheme.

Algorithm 1 DQN

- 1: INPUT: target network update period τ , total number of episodes E, initial time steps before update init, learning rate α , exploration prob ϵ , batchsize for training N
- 2: INITIALIZE: DQN principal network $Q_{\theta}(s, a)$ with parameters θ , target network $Q_{\theta^-}(s, a)$ with parameters θ^- , time steps counter counter $\leftarrow 0$, empty buffer $R \leftarrow \{\}$
- 3: for e = 1, 2, 3...E do
- 4: while episode not terminated do
- 5: Execute actions
- 6: $counter \leftarrow counter + 1$
- 7: Given state s_t , for prob ϵ , take action uniformly random; otherwise, take action by being greedy $a_t \leftarrow \arg\max_a Q_{\theta}(s_t, a)$
- 8: Save experience tuple $\{s_t, a_t, r_t, s_{t+1}\}$ to buffer R
- 9: Training θ by gradients
- 0: Sample N tuples $\{s_i, a_i, r_i, s_i'\}$ from replay buffer R (uniformly)
- 1: Compute target $d_j = r_j + \max_{a'} Q_{\theta_j^-}(s_j', a')$ for $1 \leq j \leq N$
- 2: Compute empirical loss

$$L=rac{1}{N}\sum_{j=1}^N(Q_ heta(s_j,a_j)-d_j)^2$$

- 3: Update $\theta \leftarrow \theta \alpha \nabla_{\theta} L$
- 4: Update target network θ^-
- 5: if counter mod $\tau = 0$ then
- 6: Update target parameter $\theta^- \leftarrow \theta$

(t) dqn pseudocode

End

Thanks!