DHBW MANHHEIM

2. Semester Cyber Security

Algorithmen und Komplexität

 $N.W. \ \mathcal{E} \ J.T$

Eigenschaften der Groß-O-Notation

- 1. Geben Sie die Definition der \mathcal{O} -Notation an.
- 2. Es seien $f, g \in \mathcal{O}(h)$. Zeigen Sie, dass $f + g \in \mathcal{O}(h)$.
- 3. Es sei $f \in \mathcal{O}(h_1)$ und $g \in \mathcal{O}(h_2)$. Zeigen Sie, dass $f \cdot g \in \mathcal{O}(h_1 \cdot h_2)$ gilt.
- 4. Beweisen Sie, dass für alle $f: \mathbb{N} \to \mathbb{R}_+$ gilt, dass $f \in \mathcal{O}(f)$.
- 5. Beweisen Sie, dass für $f, g : \mathbb{N} \to \mathbb{R}_+$ und $d \in \mathbb{R}_+$ gilt, dass $g \in \mathcal{O}(f) \to d \cdot g \in \mathcal{O}(f)$.
- 6. Beweisen Sie, dass für $f, g, h : \mathbb{N} \to \mathbb{R}_+$ gilt, dass $f \in \mathcal{O}(h) \land g \in \mathcal{O}(h) \to f + g \in \mathcal{O}(h)$.
- 7. Beweisen Sie, dass für $f, g, h : \mathbb{N} \to \mathbb{R}_+$ gilt, dass $f \in \mathcal{O}(g) \land g \in \mathcal{O}(h) \to f \in \mathcal{O}(h)$.
- 8. Angenommen $f, g, h: \mathbb{N} \to \mathbb{R}_+$. Außerdem wird angenommen, dass der Grenzwert von

$$\lim_{n \to \infty} \frac{f(n)}{g(n)}$$

existiert. Beweisen sie, dass dann auch $f \in \mathcal{O}(g)$ gilt.

9. Es seien $f, g \in \mathbb{R}_+$. Geben Sie die Definition $f \sim g$ an.

Groß-O-Notation

- 1. Zeigen Sie, dass $n^2 \in \mathcal{O}(2^n)$ ist.
- 2. Zeigen Sie auch, dass $n^3\mathcal{O}(2^n)$ gilt.
- 3. Zeigen Sie: $\log_2(n) \in \mathcal{O}(\ln(n+1))$
- 4. Zeigen Sie, dass $\ln^2(n) \in \mathcal{O}(\sqrt{n})$ gilt.
- 5. Versuchen Sie zu zeigen, dass $n^{\alpha} \in \mathcal{O}(2^n)$, wenn angenommen werden kann, dass $\alpha \in \mathbb{N}$ vorausgesetzt ist.

Rekurrenzgleichungen

Lösen Sie folgende Rekurrenzgleichungen:

- 1. $x_{n+2} = x_{n+1} + x_n$ für welche gilt: $x_0 = 0$ und $x_1 = 1$
- 2. $x_{n+2} = 4 \cdot x_{n+1} 4 \cdot x_n + 1$ für welche gilt: $x_0 = 1$ und $x_1 = 3$
- 3. $a_{n+2} = \frac{1}{6} \cdot a_{n+1} + \frac{1}{6} \cdot a_n$ für welche gilt: $a_0 = 0$ und $a_1 = \frac{5}{6}$
- 4. $a_{n+2} = -\frac{1}{2} \cdot a_{n+1} + \frac{1}{2} \cdot a_n$ für welche gilt: $a_0 = 2$ und $a_1 = 1$
- 5. $a_{n+2} = a_{n+1} + 2 \cdot a_n + 1$ für welche gilt: $a_0 = 0$ und $a_1 = -\frac{1}{2}$
- 6. $a_{n+2}=a_n+2$ für welche gilt: $a_0=2$ und $a_1=1$
- 7. $a_{n+2} = 2 \cdot a_n a_{n+1}$ für welche gilt: $a_0 = 0$ und $a_0 = 3$
- 8. $a_{n+2} = 7 \cdot a_{n+1} 10 \cdot a_n$ für welche gilt: $a_0 = 0$ und $a_0 = 3$
- 9. Stellen Sie mit dem Ansatz $a_k := f(2^k)$ eine Rekurrenzgleichung auf und lösen Sie diese.

$$f(n) = 2 \cdot f(n \setminus 2) + \log_2(n)$$

Es gelten folgende Anfangsbedingungen: $x_0 = 0$ und $x_1 = 1$

Master Theorem

- 1. Geben Sie die Definition des Master-Theorems an.
- 2. Schätzen Sie mit Hilfe des Master-Theorems die Komplexität von f
 ab. $f(n) = 2 \cdot f(n \backslash 2) + n$
- 3. Schätzen Sie $g(n) = 4 \cdot g(n/3) + (\frac{2}{3})^2 \cdot n$ mit Hilfe des Master-Theorems ab.
- 4. Schätzen Sie $g(n) = 4 \cdot g(n \setminus 5) + (\frac{3}{2})^3 \cdot n^2$ mit Hilfe des Master-Theorems ab.
- 5. Schätzen Sie $g(n) = 4 \cdot g(n \setminus 3) + 2 \cdot n^{\log_3(4)} + n$ mit Hilfe des Master-Theorems ab.