TEST READING

READING PASSAGE 1

You should spend about 20 minutes on Questions 1-13. which are based on Reading Passage 1 below.

Sport Science in Australia

The professional career paths available to graduates from courses relating to human movement and sport science are as diverse as the graduate's imagination. However, undergraduate courses with this type of content, in Australia as well as in most other Western countries, were originally designed as preparation programmes for Physical Education (PE) teachers. The initial programmes commenced soon after the conclusion of World War II in the mid-1940s. One of the primary motives for these initiatives was the fact that, during the war effort, so many of the men who were assessed for military duty had been declared unfit. The government saw the solution in the providing of Physical Education programmes in schools, delivered by better prepared and specifically educated PE teachers.

Later, in the 1970s and early 1980s, the surplus of Australians graduating with a PE degree obliged institutions delivering this qualification to identify new employment opportunities for their graduates, resulting in the first appearance of degrees catering for recreation professionals. In many instances, this diversity of programme delivery merely led to degrees, delivered by physical educators, as a sideline activity to the production of PE teachers.

Whilst the need to produce Physical Education teachers remains a significant social need, and most developed societies demand the availability of quality leisure programmes for their citizens, the career options of graduates within this domain are still developing. The two most evident growth domains are in the area of the professional delivery of sport, and the role of a physical lifestyle for community health.

The sports industry is developing at an unprecedented rate of growth. From a business perspective, sport is now seen as an area with the potential for high returns. It is quite significant that the businessman Rupert Murdoch broadened his business base from media to sport, having purchased an American baseball team and an Australian Rugby League competition, as well as seeking opportunities to invest in an English football club. No business person of such international stature would see fit to invest in sport unless he was satisfied that this was a sound business venture with ideal revenue-generating opportunities.

These developments have confirmed sport as a business with professional management structures, marketing processes, and development strategies in place. They have indicated new and developing career paths for graduates of human movement science, sport science, exercise science and related degrees. Graduates can now visualise career paths extending into such diverse domains as sport management, sport marketing, event and facility management, government policy development pertaining to sport, sport journalism, sport psychology, and sport or athletic coaching. Business leaders will only continue their enthusiasm for sport if they receive returns for their money. Such returns will only be forthcoming if astute, enthusiastic and properly educated professionals are delivering the programs that earn appropriate financial returns. The successful universities of the 21st century will be those that have responded to this challenge by delivering such degrees.

A second professional growth area for this group of graduates is associated with community health. The increasing demand for government expenditure within health budgets is reaching the stage where most governments are simply unable to function in a manner that is satisfying their constituents. One of the primary reasons for this problem is the unhelpful emphasis on treatment in medical care programmes. Governments have traditionally given their senior health official the title of 'Minister for Health', when in fact this officer has functioned as 'Minister for Sickness and the Construction of Hospitals'. Government focus simply has to change. If the change is not brought about for philosophical reasons, it will occur naturally, because insufficient funding will be available to address the ever-increasing costs of medical support.

Graduates of human movement, exercise science and sport science have the potential to become major players in this shift in policy focus. It is these graduates who already have the skills, knowledge and understanding to initiate community health education programmes to reduce cardio-vascular disease, to reduce medical dependency upon diabetes, to improve workplace health leading to increased productivity, to initiate and promote programmes of activity for the elderly that reduce medical dependency, and to maintain an active lifestyle for the unemployed and disadvantaged groups in society. This is the graduate that governments will be calling upon to shift the community focus from medical dependency to healthy lifestyles in the decades ahead.

The career paths of these graduates are developing at a pace that is not evident in other professions. The contribution that these graduates can make to society, and the recognition of this contribution is at an unprecedented high, and all indications are that it will continue to grow.

PASSAGE 1: QUESTIONS 1-13 Questions 1-5

Complete the flow chart below. Choose NO MORE THAN TWO WORDS from the passage for each answer.

The history of sports and physical science in Australia

A lot of people identified as being 1
Introduction of PE to 2
Special training programmes for 3
of PE graduates
Identification of alternative 5
Diversification of course delivery

Questions 6-13

given in Reading Passage 1 ? Write			
TRUE if the statement is true			
FALSE if the statement is false			
NOT GIVEN if the information is not given in the passage			
Sport is generally regarded as a			
profitable area for investment.			
7 Rupert Murdoch has a personal			
as well as a business interest in sport.			
The range of career opportunities			
available to sport graduates is increasing.			
9 The interests of business and the			
interests of universities are linked.			
Governments have been focusing			
too much attention on preventative medicine.			
11 It is inevitable that government			
priorities for health spending will change.			
12 Existing degree courses are			
unsuitable for careers in community health.			
13 Funding for sport science and			
related degrees has been increased considerably			

READING PASSAGE 2

You should spend about 20 minutes on Questions 14-26, which are based on Reading Passage 2 below: An assessment of micro-wind turbines

A In terms of micro-renewable energy sources suitable for private use, a 15-kilowatt (kW) turbine is at the biggest end of the spectrum. With a nine metre diameter and a pole as high as a four-storey house, this is the most efficient form of wind microturbine, and the sort of thing you could install only if you had plenty of space and money. According to one estimate, a 15-kW micro-turbine (that's one with the maximum output), costing £41,000 to purchase and a further £9,000 to install, is capable of delivering 25,000 kilowatt-hours (kWh)' of electricity each year if placed on a suitably windy site.

B I don't know of any credible studies of the greenhouse gas emissions involved in producing and installing turbines, so my estimates here are going to be even more broad than usual. However, it is worth trying. If turbine manufacture is about as carbon intensive per pound sterling of product as other generators and electrical motors, which seems a reasonable assumption, the carbon intensity of manufacture will be around 640 kilograms (kg) per £1,000 of value. Installation is probably about as carbon intensive as typical construction, at around 380 kg per £1,000. That makes the carbon footprint (the total amount of greenhouse gases that installing a turbine creates) 30 tonnes.

C The carbon savings from wind-powered electricity generation depend on the carbon intensity of the electricity that you're replacing. Let's assume that your generation replaces the coal-fuelled part of the country's energy mix. In other words, if you live in the UK, let's say that rather than replacing typical grid electricity, which comes from a mix of coal, gas, oil and renewable energy sources, the effect of your turbine is to reduce the use of coal-fired power stations. That's reasonable, because coal is the least preferable source in the electricity mix. In this case the carbon saving is roughly one kilogram per kWh, so you save 25 tonnes per year and pay back the embodied carbon in just 14 months - a great start.

D The UK government has recently introduced a subsidy for renewable energy that pays individual producers 24p per energy unit on top of all the money they save on their own fuel bill, and on selling surplus electricity back to the grid at approximately 5p per unit. With all this taken into account, individuals would get back £7,250 per year on their investment. That pays back the costs in about six years. It makes good financial sense and, for people who care about the carbon savings for their own sake, it looks like a fantastic move. The carbon investment pays back in just over a year, and every year after that is a 25-tonne carbon saving. (It's important to remember that all these sums rely on a wind turbine having a favourable location)

E So, at face value, the turbine looks like a great idea environmentally, and a fairly good long-term investment economically for the person installing it. However, there is a crucial perspective missing from the analysis so far. Has the government spent its money wisely? It has invested 24p per unit into each micro-turbine. That works out at a massive £250 per tonne of carbon saved. My calculations tell me that had the government invested its money in offshore wind farms, instead of subsidising smaller domestic turbines, they would have broken even after eight years. In other words, the micro-turbine works out as a good investment for individuals, but only because the government spends, and arguably wastes, so much money subsidising it. Carbon savings are far lower too.

F Nevertheless, although the micro-wind turbine subsidy doesn't look like the very best way of spending government resources on climate change mitigation, we are talking about investing only about 0.075 percent per year of the nation's GDP to get a one percent reduction in carbon emissions, which is a worthwhile benefit. In other words, it could be much better, but it could be worse. In addition, such investment helps to promote and sustain developing technology.

G There is one extra favourable way of looking at the micro-wind turbine, even if it is not the single best way of investing money in cutting carbon. Input- output modelling has told us that it is actually quite difficult to spend money without having a negative carbon impact. So if the subsidy encourages people to spend their money on a carbon-reducing technology such as a wind turbine, rather than on carbon-producing goods like cars, and services such as overseas holidays, then the reductions in emissions will be greater than my simple sums above have suggested.

PASSAGE 2: QUESTIONS 14-26

Questions 21-22 They can produce more energy than a Choose TWO letters, A-E. household needs. The list below contains some possible statements Questions 23-26 about micro wind-turbines. Complete the sentences below. Which TWO of these statements are made by the Choose NO MORE THAN THREE WORDS from the writer of the passage? passage for each answer. A In certain areas, permission is required to 23 would be a more effective target for government investment than micro-turbines. B Their exact energy output depends on their An indirect benefit of subsidising micro-turbines is the position. support it provides for 24 C They probably take less energy to make than Most spending has a 25 effect on the other engines. environment. The UK government contributes towards their If people buy a micro-turbine, they have less money purchase cost. to spend on things like foreign holidays and 26

READING PASSAGE 3

You should spend about 20 minutes on Questions 27-40, which are based on Reading Passage 3 below. Pottery production in ancient Akrotiri

Excavations at the site of prehistoric Akrotiri, on the coast of the Aegean Sea, have revealed much about the technical aspects of pottery manufacture, indisputably one of the basic industries of this Greek city. However, considerably less is known about the socio-economic context and the way production was organised.

The bulk of pottery found at Akrotiri is locally made, and dates from the late fifteenth century BC. It clearly fulfilled a vast range of the settlement's requirements: more than fifty different types of pots can be distinguished. The pottery found includes a wide variety of functional types like storage jars, smaller containers, pouring vessels, cooking pots, drinking vessels and so on, which all relate to specific activities and which would have been made and distributed with those activities in mind. Given the large number of shapes produced and the relatively high degree of standardisation, it has generally been assumed that most, if not all, of Akrotiri pottery was produced by specialised craftsmen in a nondomestic context. Unfortunately neither the potters' workshops nor kilns have been found within the excavated area. The reason may be that the ceramic workshops were located on the periphery of the site, which has not yet been excavated. In any event, the ubiquity of the pottery, and the consistent repetition of the same types in different sizes, suggests production on an industrial scale.

The Akrotirian potters seem to have responded to pressures beyond their households, namely to the increasing complexity of regional distribution and exchange systems. We can imagine them as fulltime craftsmen working permanently in a high production-rate craft such as pottery manufacture, and supporting themselves entirely from the proceeds of their craft. In view of the above, one can begin to speak in terms of mass-produced pottery and the existence of organised workshops of craftsmen during the period 1550-1500 BC. Yet, how pottery production was organised at Akrotiri remains an open question, as there is no real documentary evidence. Our entire knowledge comes from the ceramic material itself, and the tentative conclusions which can be drawn from it.

The invention of units of quantity and of a numerical system to count them was of capital importance for an exchange-geared society such as that of Akrotiri. In spite of the absence of any written records, the archaeological evidence reveals that concepts of measurements, both of weight and number, had been formulated. Standard measures may already have been in operation, such as those evidenced by a graduated series of lead weights - made in disc form - found at the site. The existence of units of capacity in Late Bronze Age times is also evidenced by the notation of units of a liquid measure for wine on excavated containers.

It must be recognised that the function of pottery vessels plays a very important role in determining their characteristics. The intended function affects the choice of clay, the production technique, and the shape and the size of the pots. For example, large storage jars (pithoi) would be needed to store commodities, whereas smaller containers would be used for transport. In fact, the length of a man's arm limits the size of a smaller pot to a capacity of about twenty litres; that is also the maximum a man can comfortably carry.

The various sizes of container would thus represent standard quantities of a commodity, which is a fundamental element in the function of exchange. Akrotirian merchants handling a commodity such as wine would have been able to determine easily the amount of wine they were transporting from the number of containers they carried in their ships, since the capacity of each container was known to be 14-18 litres. (We could draw a parallel here with the current practice in Greece of selling oil in 17 kilogram tins)

We may therefore assume that the shape, capacity, and, sometimes decoration of vessels are indicative of the commodity contained by them. Since individual transactions would normally involve different quantities of a given commodity, a range of 'standardised' types of vessel would be needed to meet traders' requirements. In trying to reconstruct systems of capacity by measuring the volume of excavated pottery, a rather generous range of tolerances must be allowed. It seems possible that the potters of that time had specific sizes of vessel in mind, and tried to reproduce them using a specific type and amount of clay. However, it would be quite difficult for them to achieve the exact size required every time, without any mechanical means of regulating symmetry and wall thickness, and some potters would be more skilled than others. In addition, variations in the repetition of types and size may also occur because of unforeseen circumstances during the throwing process. For instance, instead of destroying the entire pot if the clay in the rim contained a piece of grit, a potter might produce a smaller pot by simply cutting off the rim. Even where there is no noticeable external difference between pots meant to contain the same quantity of a commodity, differences in their capacity can actually reach one or two litres. In one case the deviation from the required size appears to be as much as 10-20 percent.

The establishment of regular trade routes within the Aegean led to increased movement of goods; consequently a regular exchange of local, luxury and surplus goods, including metals, would have become feasible as a result of the advances in transport technology. The increased demand for standardised exchanges, inextricably linked to commercial transactions, might have been one of the main factors which led to the standardisation of pottery production. Thus, the whole network of ceramic production and exchange would have depended on specific regional economic conditions, and would reflect the socio-economic structure of prehistoric Akrotiri.

PASSAGE 3: QUESTIONS 27-40 Questions 27-28

Choose the correct letter, A, B, C or D.

27 What does the writer say about items of pottery excavated at Akrotiri?

A There was very little duplication.

B C They would have met a big variety of needs.

C Most of them had been imported from other places.

D The intended purpose of each piece was unclear.

28 The assumption that pottery from Akrotiri was produced by specialists is partly based on

A the discovery of kilns.

B the central location of workshops.

the sophistication of decorative patterns.

the wide range of shapes represented.

Questions 29-32	36 It would have been hard for
Complete each sentence with the correct	merchants to calculate how much wine was on their
ending, A-F, below.	ships.
Write the correct letter, A-F.	
The assumption that standard units of	The capacity of containers intended to hold the same amounts differed by up to
weight were in use could be based on	20 percent.
Evidence of the use of standard units	Regular trading of goods around
of volume is provided by	the Aegean would have led to the general
The size of certain types of containers would have been restricted by	standardisation of quantities.
	Questions 39-40
32 Attempts to identify the intended	Choose the correct letter, A, B, C or D.
capacity of containers are complicated by	39 What does the writer say about the standardisation
A the discovery of a collection of metal discs.	of container sizes?
B the size and type of the sailing ships in use.	
C variations in the exact shape and thickness of similar contains. Description:	A Containers which looked the same from the outside often varied in capacity.
D the physical characteristics of workmen.	
E marks found on wine containers.	B The instruments used to control container size
F the variety of commodities for which they would have been u	were unreliable.
	C The unsystematic use of different types of clay
Questions 33-38	resulted in size variations.
Do the following statements agree with the views of the writer in Reading Passage 3? Write	D Potters usually discarded containers which
YES if the statement agrees with the views of the writ	were of a non-standard size.
<u> </u>	940 What is probably the main purpose of Reading
NOT GIVEN if it is impossible to say what the writer thinks ab	or@alstaisege 3?
There are plans to excavate	A To evaluate the quality of pottery containers
new areas of the archaeological site in the near	found in prehistoric Akrotiri.
future.	pro .
	B To suggest how features of pottery production
	at Akrotiri reflected other developments in the region.
concerning pottery production in ancient Akrotiri	C To outline the development of pottery-making
comes from written records.	skills in ancient Greece.
Pots for transporting liquids	D To describe methods for storing and
would have held no more than about 20 litres.	transporting household goods in prehistoric societies.

TEST READING Answer Keys:

- 1 unfit
- 2 schools
- 3 PE teachers
- 4 surplus
- 5 employment opportunities/careers/routes
- 6 TRUE
- 7 NOT GIVEN
- 8 TRUE
- 9 TRUE
- 10 FALSE
- 11 TRUE
- 12 FALSE
- 13 NOT GIVEN
- 14 v
- 15 ii
- 16 iv
- 17 ix
- 18 i
- 19 vi
- 20 viii
- 21 22 B,E
- 23 offshore wind farms
- 24 developing technology
- 25 negative
- 26 cars
- 27 B
- 28 D
- 29 A
- 30 E
- 31 D
- 32 C
- 33 NOT GIVEN
- 34 NO
- **35 YES**
- 36 NO
- **37 YES**
- **38 YES**
- 39 A
- 40 B

Vocab

Reading- Sport Science in Australia

- 1. Path- way
- 2. Perspective- view
- 3. Initiatives- step to start
- 4. Indisputably- unquestionable
- 5. Periphery- edge
- 6. Craftsmen- who makes craft/art
- 7. Evidence- proof