Gabarito da Segunda Lista de Geometria Analítica - 29/01/2020

1. São LI,
$$\vec{t} = \vec{u} + 2\vec{v} + \vec{w}$$
.

2. a)
$$m = 0$$
 ou $m = 1$

b)
$$m = 0$$
 ou $m = 2$

3. a)
$$\frac{\pi}{2}$$

$$\mathbf{b)} \ \frac{\pi}{4}$$

c)
$$\frac{\pi}{3}$$

4.
$$(1,0,2)$$
 ou $(-1,0,-2)$

5.
$$\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1\right)$$
 ou $\left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, -1\right)$

6.
$$(1, -5, 4)$$

7.
$$\sqrt{62}$$

8. a)
$$r: \begin{cases} x = 2 - 5\lambda \\ y = 4\lambda \\ z = -3 + 6\lambda \end{cases}$$

b)
$$r: \begin{cases} x = 2 + \lambda \\ y = \lambda \\ z = -3 - \lambda \end{cases}$$

b)
$$r:$$

$$\begin{cases}
x = 2 + \lambda \\
y = \lambda \\
z = -3 - \lambda
\end{cases}$$
c) $r:$

$$\begin{cases}
x = 2 - 2\lambda \\
y = \lambda \\
z = -3 - \lambda
\end{cases}$$

9.
$$r: X = (3,3,3) + \lambda(-2,-1,-1), r: \begin{cases} x = 3 - 2\lambda \\ y = 3 - \lambda \\ z = 3 - \lambda \end{cases}, \frac{x-3}{-2} = -y+3 = -z+3$$

11. a)
$$\pi: X = (1,1,0) + \lambda(0,2,1) + \mu(2,1,0)$$

- b) Os três pontos são colineares; não está determinado o plano π
- 12. -x + 2y 4z 1 = 0; o do item (b) não existe.
- **13.** x y 1 = 0
- **14.** x 2z = 0
- **15.** a) (2,0,0)
 - **b)** -2x + 2 = 0
- 16. a) reversas
 - b) concorrentes em P = (-2, 6, -6)
- 17. a) r fura π no ponto P = (1, 0, -1)
 - **b)** r é paralela a π
- **18.** Não existe $m \in \mathbb{R}$. Para $m = -\frac{5}{2}$, $\pi_1 = \pi_2$.
- **19** π_1 é transversal a π_2
- **20.** x 2y + 1 = 0
- **21** x + y + z 8 = 0
- **22** $m = \frac{2}{3}$, concorrentes no ponto P = (-9, -5, -13).