

Circuitos Digitais I - 6878

Nardênio Almeida Martins

Universidade Estadual de Maringá Departamento de Informática

Bacharelado em Ciência da Computação

Aula de Hoje

- · Circuitos Sequenciais:
 - · Contadores de Módulo $\leq 2^N$
 - · Contadores Decrescentes
 - Exercícios

Contador de Módulo < 2^N

Obs.:

- 1. Contador com N FFs pode contar até 2^N
- 2. Contador pode ser modificado para contar até Módulo < 2^N

Exemplo: Contador de Módulo 6

Para contar até 6 são necessários 3 FFs:

1 FF conta até 2:

$$2^1 = 2$$

2 FFs contam até 4: $2^2 = 4$

$$2^2 = 4$$

3 FFs contam até 8: $2^3 = 8$

Contador de Módulo < 2^N

Sem considerar a porta NAND o contador conta de 0 até 7: 8 estados

- ·Enquanto a saída da NAND=1, o CLEAR não tem efeito sobre o contador
- ·Quando a saída da NAND=0, o CLEAR é ativado e "limpa" os FFs e a contagem é reinicializada (retorna para 000).

Quando a saída da NAND=0??? Quando as entradas forem 11

Quando o contador contar $Q_2=1$ $Q_1=1$ $Q_0=0$ (110₂=6₁₀)

Contador de Módulo < 2^N

Procedimento Geral

Procedimento para Projetar Contador de Módulo X

Para construir um contador que começa em 0 e tem módulo X:

- 1. Determine o número de FFs tal que $2^N > = X$ e conecte-os como um contador. Se $2^N = X$, então não execute os passos 2 e 3.
- 2. Conecte uma porta NAND nas entradas CLEAR de todos os FFs.
- 3. Determine quais FFs estarão no estado "ALTO" na contagem X, então conecte as saídas normais destes FFs às entradas da porta NAND.

Contadores Decrescentes

- Contadores decrescentes contam regressivamente
- Mesmo circuito que conta crescente, mas com *clocks* gerados pelas saídas dos terminais complementares
- $(\overline{Q}_0, \overline{Q}_1, \overline{Q}_2, \ldots, \overline{Q}_n)$
- Obs.: Figura no slide seguinte

Exercício: Contadores Decrescentes

Desenhe as formas de onda das saídas de cada Flip-Flop

Exercício

3. Projete um contador de módulo 10 que conte de 0 (0000) a 9 (1001).

3. Projete um contador de módulo 10 que conte de 0 (0000) a 9 (1001).

Solução:

- Para contar até 8 são necessários 3 FFs.
- Para contar acima de 8 são necessários 4 FFs.
- Como o contador deve contar até 1001, a NAND deve usar o valor imediatamente seguinte (1010) para reinicializar o contador.

Exercício

4. Projete um contador de módulo 24 que conte de 0 a 23, usando Flip-Flops tipo T.

4. Projete um contador de módulo 24 que conte de 0 a 23, usando Flip-Flops tipo T.

Para contar até 23 precisamos de 5 FFs, pois 2⁴=16 e 2⁵=32.

 23_{10} = 10111_2 é o último valor a ser contado pelo contador.

 24_{10} = 11000_2 não deve ser contado, e os bits Q_3 e Q_4 devem ser usados como entradas para a Porta NAND para "Resetar" os Flip-Flops reinicializando a contagem para 0.

- 4. Projete um contador de módulo 24 que conte de 0 a 23, usando Flip-Flops tipo T.
- 24₁₀ = 11000₂ bits Q₃ e Q₄ usados como entradas da Porta NAND.

Exercício

4. Determine o módulo do contador da figura a seguir

Resumo da Aula de Hoje

Tópicos mais importantes:

- Contadores de Módulo ≤ 2^N
- · Contadores Decrescentes

