

DATA SHEET

(DOC No. ISM028-03M0098-DS)

^{>>}ISM028-03M0098

WiseEye™ Module
Preliminary version 01 November, 2023

Himax Technologies, Inc.奇景光電股份有限公司

文件發行及參考文件

Date: 2024.01.31 To :產品中心五

DOCUMENT CONTROL CENTER

Himax Technology, Inc. http://www.himax.com.tw

WiseEye™ Module

Revision History

November, 2023

Version	Date	Description of changes
01	2023/11/13	New setup.

List of Contents

November, 2023

1.	General Description	6
2.	Block Diagram	7
3.	Pin Assignment	8
4.	DC Characteristics	10
	4.1. Recommended operating conditions	10
	4.1.1. GPIO	10
	4.1.2. Power consumption	10
5.	Power On Sequence	11
6.	Image Input/Output Specification	12
	6.1. Image input specification	12
	6.2. Image output specification	12
7.	Optical Specification (With Lens)	13
8.	Parts and Functions	14
	8.1. 4-layer PCB (top view)	14
	8.2. 4-layer PCB (bottom view)	14
9.	Mechanical Drawing	

WiseEye™ Module

List of Figures

November, 2023

Figure 2.1: ISM028-03M0098 block diagram	7
Figure 5.1: Power on sequence & timing	
Figure 7.1: View angle & lens optical specification	
Figure 9.1: ISM028-03M0098 mechanical drawing	

WiseEye™ Module

Important Notice

November, 2023

Disclaimer

Himax reserves the right to modify this documentation without prior notice. The information appearing in this publication is believed to be accurate and reliable. However, Himax makes no warranty for any errors which may appear in this document. Contact Himax to obtain the latest version of product specifications before placing your order. No responsibility is assumed by Himax Group for any infringement of patent or other rights of third parties which may result from its use. Products described herein are intended for use in normal commercial applications. Please note that application circuits illustrated in this document are for reference purposed only.

All Rights Reserved

The following are trademarks of Himax Group: Himax, WiseEye™, the Himax logo symbol. The use of any trademark, trade name, or service mark found in this document without the owner's express written consent is strictly prohibited.

WiseEye™ Module

Preliminary Version 01

November, 2023

1. General Description

The ISM028-03M0098 WiseEye[™] Module based on WiseEye[™] Al accelerator-embedded platform is an easy use and development platform. It includes HM0360-MWB AoS sensor and HX6538-A(QFN-88) WE-2.

The HM0360 is an ultra-low power, Back Side Illuminated (BSI) CMOS image sensor designed for energy efficient smart version applications. It consists of full pixel array of 656 x 496. The sensor maximum active resolution is 640 x 480 which include 16 border pixels. The HM0360 Always on Sensor architecture delivers a target current consumption of 256µA in AoS monitor mode and 8.6mA in VGA 60 frames per second read out mode. In order to reduce host process loading, camara latency and system power consumption, the HM0360 features on-chip oscillator with automatic external reference clock detection, automatic frame mode switch, fast sensor initialization <2ms frame trigger time, context switching and instant frame update. The sensor offers several monitoring options with programmable interrupt thereby allowing the host processor to be placed in low power standby until notified by the sensor.

The HX6538-A is embedded with a powerful dual ARM Cortex-M55 processors with Helium vector and floating-point extensions and an ARM Ethos-U55 microNPU core to accelerate convolution operation of neural network model. There are internal 2.5MB Ultra-Low Leakage (ULL) SRAMs for system and program usage. With the benefit of Ethos-U55 microNPU and Helium vector extended Cortex-M55 architecture, the HX6538-A provides maximum computing capability with the lowest power consumption and latency.

Himax Confidential

This information contained herein is the exclusive property of Himax and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Himax.

2. Block Diagram

The diagram below shows the functional modules in ISM028-03M0098.

Figure 2.1: ISM028-03M0098 block diagram

Himax Confidential

3. Pin Assignment

Pin Types: I=Input, O=Output, P=Power, G=Ground

Pin name	Pin no.	Туре	Pad	Description
N.C.	1,10,13,15, 16,17,18,34	-	-	No connection pin. It should be floating.
VCC28	2,3	Р	2.8V	AVDD (Sensor).
VCC18	4,5	Р	1.8V	ADC_AVDD18, SIF_IOVDD, FLASH_VDD, IOVDD (Sensor).
GND	6,21,36,39, 42,45	G	Ground	Ground.
PA0 PA1	7 8	I/O	-	General-purpose IO, group A.
BOOT_OPT0	9	I/O	-	Boot option selection pin0.
TESTMODE	11	I/O	-	Test Mode enable pin.
RST_N	12	[-	Reset pin.
VCCIO	14	Р	1.8V/3.3V ⁽¹⁾	PIF IO power.
PA2	19	I/O	-	I2CS0_SCL/I3CS0_SCL.
PA3	20	I/O	-	I2CS0_SDA/I3CS0_SDA.
PB0	22	I/O	-	UART_RX.
PB1	23	I/O	-	UART_TX.
PB2	24	I/O	- <	I2CM_SDA/SD_DAT1.
PB3	25	I/O	(12CM_SCLK /SD_DAT0.
PB4	26	I/O		SPI_CLK/SD_DAT2.
PB5	27	I/O	(-2)//	SPI_CS0/SD_DAT3.
PB6	28	I/O	(4)	SPI_DIO1 /SD_CMD.
PB7	29	I/O	()-\V	SPI_DIO0/SD_CLK.
PB8	30	I/O		GPIO/PWM2.
PB9	31	I/O	\\\ -	PDM_CLK.
PB10	32	J/O	<i>))</i> - '	PDM_DATA0.
PB11	33	1/0	-/>>	GPIO.
STROBE	35	(VO	- 2/	Sensor strobe.
MIPI_DN0	37	I/O		MIPI data lane 0 negative output.
MIPI_DP0	38	1/0	$\langle (\bigcirc) \rangle$	MIPI data lane 0 positive output.
MIPI_CP	40 <	J/O		MIPI clock positive output.
MIPI_CN	41	1/0	→ -	MIPI clock negative output.
MIPI_DN1	43//	I/O	-	MIPI data lane 1 negative output.
MIPI_DP1	44	I/O	-	MIPI data lane 1 positive output.

Note: (1) According to the host controller's I/O voltage.

4. DC Characteristics

4.1. Recommended operating conditions

Doromotor	Symbol	Spec.			l lmi4
Parameter	Symbol	Min.	Тур.	Max.	Unit
	VCC18	1.7	1.8	1.9	V
Cumply voltage	VCC28	2.6	2.8	3.0	V
Supply voltage	VCCIO(1)	1.7	1.8	1.9	V
	VCCIO(1)	3.1	3.3	3.5	V
Operating temperature	T _A	-10	25	85	°C

Note: (1) According to the host controller's I/O voltage.

4.1.1. GPIO

Doromotor	Cumbal	Condition		Spec.	l lmi4		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	
High level input voltage	V _{IH}	-	0.7VCC ⁽¹⁾	-	$VCC^{(1)} + 0.3$	V	
Low level input voltage	V_{IL}	-	GND-0.3	- ^	0.3VCC ⁽¹⁾	V	
High level output voltage	V _{OH}	I _{OH} =-2mA	0.8VCC(1)	١/ ټ	-	V	
Low level output voltage	V_{OL}	$I_{OL}=2mA$			0.2VCC ⁽¹⁾	V	

Note: (1) VCC dependent on GPIO belongs to VCCIO.

4.1.2. Power consumption

Parameter	Symbol	Condition Spec.			Unit	
Farameter	Syllibol	Condition	Min.	Тур.	Max.	Offic
	I _{VCC18} (VCC18=1.8V)			9.14	1	mA
Power consumption	l _{VCC28} (VCC28=2.8V)	Note ⁽¹⁾	-	2.08	-	mA
	(VCCIO=3.3V)		-	24.32	-	mA

Note: (1) Test condition is under ambient temperature and Standard Demo FW (BD + FD + Head-Pose).

5. Power On Sequence

Davamatar	Symbol Condition		Spec.		l lm!4	
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Delta time of power ramp up	$\Delta t_{\sf PWR}$	VCCIO=3.3V	0 <	7	-	ms
Delta time of sensor AVDD to IOVDD	Δt_{AIO}		0		8	S
Reset time	Δt_{RST}		3	-	-	ms

Figure 5.1: Power on sequence & timing

6. Image Input/Output Specification

6.1. Image input specification

Parameter	Spec.
Detection resolution	640x480
Horizontal detection range (angle of view)	98.1°
Vertical detection range (angle of view)	73.2°

6.2. Image output specification

Parameter	Spec.
Output image resolution	640x480
Image format	8-bit RAW

7. Optical Specification (With Lens)

View Angle	Horizontal (deg)	98.1	deg
	Vertical (deg)	73.2	deg
	Diagonal (deg)	129.4	deg

Figure 7.1: View angle & lens optical specification

8. Parts and Functions

8.1. 4-layer PCB (top view)

8.2. 4-layer PCB (bottom view)

9. Mechanical Drawing

Note: (1) Compatible connector: 45 pins,0.3mm pitch Golden finger (Top Contact / Molex 5025984593 or equivalent).

