Concours National Commun Session 2016 Filière PSI

Épreuve de Mathématiques II : Un corrigé ¹

Problème 1

Partie I

1. (\Longrightarrow) Supposons que p est une projection sur F parallèlement à G.

Soient $x \in E$ et $(x_1, x_2) \in F \times G$ tels que $x = x_1 + x_2$. On a $p(x) = x_1$ et, comme $x_1 = x_1 + 0 \in F \oplus G$, alors $p(x_1) = x_1$, par suite p o $p(x) = p(x_1) = x_1 = p(x)$, dès lors p o p = p.

 (\Leftarrow) Supposons que p o p=p. Montrons d'abord que $E=\operatorname{Im} p \oplus \ker p$.

ightharpoonup Soit $x \in E$, on a

$$x \in \operatorname{Im}(p) \cap \ker(p) \iff x \in \operatorname{Im} p \text{ et } x \in \ker p$$

$$\iff \exists x' \in E : x = p(x') \text{ et } p(x) = 0$$

$$\iff \exists x' \in E : x = p(x') \text{ et } p(p(x')) = 0$$

$$\iff \exists x' \in E : x = p(x') \text{ et } p(x') = 0 \quad \operatorname{car} p \text{ o } p = p$$

$$\implies x = 0,$$

donc Im $p \cap \ker p = \{0\}.$

ightharpoonup Soit $x \in E$. On pose $x_1 = p(x)$ et $x_2 = x - p(x)$.

On a

$$- x_1 = p(x) \in \text{Im}(p),$$

$$- x_2 \in \ker(p), \quad \text{car } p(x_2) = p(x) - pop(x) = p(x) - p(x) = 0$$

$$- x = x_1 + x_2,$$

$$\text{donc } E = \text{Im}(p) + \ker(p).$$

Ainsi $E = \operatorname{Im}(p) \oplus \ker(p)$.

Reste à vérifier que p est une projection sur Im(p) parallèlement à $\ker(p)$. On vient de voir que

$$\forall x \in E, \ x = p(x) + (x - p(x)) \in \operatorname{Im}(p) \oplus \ker(p),$$

donc p est une projection sur F = Im(p) parallèlement à G = ker(p).

2. Notons $\mathcal{B} = (e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1))$ la base canonique de \mathbb{R}^3 . On a

$$\begin{aligned}
g(e_1) & g(e_2) & g(e_3) \\
\text{Mat}_{\mathcal{B}}(g) &= A = \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \end{pmatrix}$$

$$\operatorname{donc} g(e_1) = \frac{1}{2}(2e_1 + e_2 + e_3) = \frac{1}{2}(2, 1, 1), \ g(e_2) = \frac{1}{2}(e_2 - e_3) = \frac{1}{2}(0, 1, -1) \ \operatorname{et} \ g(e_3) = \frac{1}{2}(-e_2 + e_3) = \frac{1}{2}(0, -1, 1).$$

^{1.} Ce corrigé est proposé par Adham Elbekkali, professeur de mathématiques de la classe PCSI 2 au CPGE de Tanger

(a) On a $A^2 = A$, donc $\operatorname{Mat}_{\mathcal{B}}(g^2) = \operatorname{Mat}_{\mathcal{B}}(g)$ et par suite $g^2 = g$, ainsi, d'après la question **I.1**, g est une projection sur $F = \operatorname{Im}(g)$ parallèlement à $G = \ker(g)$.

On a

$$Im(g) = \{g(u) : u \in \mathbb{R}^3\}$$

$$= \{g(xe_1 + ye_2 + ze_3) : x, y, z \in \mathbb{R}\}$$

$$= \{xg(e_1) + yg(e_2) + zg(e_3) : x, y, z \in \mathbb{R}\}$$

$$= Vect(g(e_1), g(e_2), g(e_3))$$

$$= Vect\left(\frac{1}{2}(2, 1, 1), \frac{1}{2}(0, 1, -1), \frac{1}{2}(0, -1, 1)\right)$$

$$= Vect((2, 1, 1), (0, 1, -1))$$

$$= Vect(u, v),$$

avec u = (2, 1, 1) et v = (0, 1, -1).

Soient
$$u = (x, y, z) \in \mathbb{R}^3$$
 et $U = \operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. On a
$$u \in \ker(g) \iff g(u) = 0_{\mathbb{R}^3} \iff \operatorname{Mat}_{\mathcal{B}}(g(u)) = \operatorname{Mat}_{\mathcal{B}}(0_{\mathbb{R}^3}) \iff \operatorname{Mat}_{\mathcal{B}}(g) \operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{Mat}_{\mathcal{B}}(0_{\mathbb{R}^3}) \iff AU = 0$$
$$\iff \frac{1}{2} \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{cases} 2x = 0 \\ x + y - z = 0 \\ x - y + z = 0 \end{cases}$$
$$\iff \begin{cases} x = 0 \\ z = y \end{cases},$$

 $\mathrm{donc}\ \ker(g) = \{u = (x,y,z) \in \mathbb{R}^3\ :\ x = 0\ \mathrm{et}\ y = z\} = \{(0,y,y)\ :\ y \in \mathbb{R}\} = \mathrm{Vect}(w)\ \mathrm{avec}\ w = (0,1,1).$

- (b) Puisque g est une projection, alors $g^2 g = 0$, donc $P = X^2 X$ est un polynôme annulateur de g et, comme P = X(X 1) est scindé sur \mathbb{R} et à racines simples, alors g^2 g est diagonalisable.
- (c) On a F = Vect(u, v), donc la famille (u, v) est génératrice de F et, comme u et v ne sont pas colinéaires, alors elle libre, ainsi (u, v) est une base de F.
 - On a G = Vect(w), donc la famille (w) est génératrice de F et, comme w est non nul, alors elle libre, ainsi (w) est une base de G.
 - On vient de montrer que (u, v) est une base de F et (w) est une base de G et, comme $\mathbb{R}^3 = F \oplus G$, alors $\mathcal{B}' = (u, v, w)$ est une base de \mathbb{R}^3 .

^{2.} Soient E un e.v. sur \mathbb{K} de dimension finie et u un endomorphisme de E. Si l'endomorphisme u possède un polynôme annulateur scindé sur \mathbb{K} et à racines simples, alors l'endomorphisme u est diagonalisable.

• Puisque g est une projection sur F parallèlement à G, $u,v \in F$ et $w \in G$, alors g(u) = u, g(v) = v et g(w) = 0, ainsi

$$D = \operatorname{Mat}_{\mathcal{B}'}(g) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \\ w \end{pmatrix}$$

finalement

$$A = \operatorname{Mat}_{\mathcal{B}}(g) = P_{\mathcal{B}}^{\mathcal{B}'} \operatorname{Mat}_{\mathcal{B}'}(g) P_{\mathcal{B}'}^{\mathcal{B}'} = PDP^{-1},$$

avec
$$P = P_{\mathcal{B}}^{\mathcal{B}'} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$$
.

3. (a) Soit $e = (x, y, z) \in \mathbb{R}^3$. On a

$$e \in F^{\perp} \iff e \in (\operatorname{Vect}(u, v))^{\perp}$$

$$\iff \langle e, u \rangle = \langle e, v \rangle = 0$$

$$\iff \begin{cases} 2x + y + z = 0 \\ y - z = 0 \end{cases}$$

$$\iff \begin{cases} x = -z \\ y = z \end{cases}$$

donc $F^{\perp} = \{(x, y, z) \in \mathbb{R}^3 : x = -z \text{ et } y = z\} = \{(-z, z, z) : z \in \mathbb{R}\} = \text{Vect}(a) \text{ avec } a = (-1, 1, 1). \text{ Ainsi } a \in F^{\perp} \text{ et } E = F \oplus F^{\perp} = F \oplus D, \text{ avec } D = \text{Vect}(a).$

(b) Soit $x \in \mathbb{R}^3$. On a $\mathbb{R}^3 = D \oplus D^{\perp}$, il existe donc un unique couple $(x_1, x_2) \in D \times D^{\perp}$ tel que $x = x_1 + x_2$ (\star) et $p_D(x) = x_1$. Comme $x_1 \in D$ et D = Vect(a), alors il existe $\lambda \in \mathbb{R}$ tel que $x_1 = \lambda a$. Donc la relation (\star) devient $x = \lambda a + x_2$, du coup

$$\langle a, x \rangle = \langle a, \lambda a + x_2 \rangle$$

 $= \lambda \langle a, a \rangle + \langle a, x_2 \rangle$
 $= \lambda ||a||^2, \quad \text{car } a \in D \text{ et } x_2 \in D^{\perp}$

d'où $\lambda = \frac{\langle a, x \rangle}{\|a\|^2}$ et en suite $p_D(x) = x_2 = \lambda a = \frac{\langle a, x \rangle}{\|a\|^2} a$.

(c) On a

$$\forall x \in \mathbb{R}^3, \quad x = p_D(x) + p_{D^{\perp}}(x),$$

donc, en vertu de la question précédente, on a

$$\forall x \in \mathbb{R}^3, \quad p_{D^{\perp}}(x) = x - p_D(x) = x - \frac{\langle a, x \rangle}{\|a\|^2} a.$$

(d) Soient $\alpha, \beta, \gamma \in \mathbb{R}$ tels que

$$w = \alpha u + \beta v + \gamma a$$
,

donc

$$\begin{cases} \langle u, \alpha u + \beta v + \gamma a \rangle &= \langle u, w \rangle \\ \langle v, \alpha u + \beta v + \gamma a \rangle &= \langle v, w \rangle \\ \langle a, \alpha u + \beta v + \gamma a \rangle &= \langle a, w \rangle \end{cases}$$

Or
$$\langle u, v \rangle = \langle u, a \rangle = \langle v, a \rangle = 0$$
, alors

$$\begin{cases} \alpha \|u\|^2 = \langle u, w \rangle \\ \beta \|v\|^2 = \langle v, w \rangle , \\ \gamma \|w\|^2 = \langle a, w \rangle \end{cases}$$

d'où $\alpha = \frac{1}{3}$, $\beta = 0$ et $\gamma = \frac{2}{3}$. Ainsi les coordonnées de w dans la base (u, v, w) sont $\left(\frac{1}{3}, 0, \frac{2}{3}\right)$.

Partie II

- 1. On a N(1)=0, donc 1 est une racine réelle de N et ensuite X-1 divise N. En effectuant la division euclidienne de N par X-1, on trouve $N=(X-1)(\underbrace{4X^2-2X+1}_Q)$. Comme le polynôme Q est de degré deux, à coefficient réels et à discriminant strictement négatif, alors il n'a aucune racine réelle, mais il possède deux racines complexes conjuguées : α et $\bar{\alpha}$. Il en découle que 1 est la seule racine réelle de N.
- 2. α et $\bar{\alpha}$ sont les racines du polynôme $Q=4x^2-2X+1$, donc, en utilisant les relations entre les racines et les coefficients d'un polynôme, on obtient

$$\alpha + \bar{\alpha} = \frac{2}{4} = \frac{1}{2}$$
 et $\alpha \bar{\alpha} = \frac{1}{4}$.

3. Montrons que la famille (L_1, L_2, L_3) est libre. Soient $a, b, c \in \mathbb{C}$. on a

$$aL_{1} + bL_{2} + cL_{3} = 0 \implies \begin{cases} aL_{1}(1) + bL_{2}(1) + cL_{3}(1) &= 0 \\ aL_{1}(\alpha) + bL_{2}(\alpha) + cL_{3}(\alpha) &= 0 \\ aL_{1}(\bar{\alpha}) + bL_{2}(\bar{\alpha}) + cL_{3}(\bar{\alpha}) &= 0 \end{cases}$$

$$\iff \begin{cases} (1 - \alpha)^{2}c &= 0 \\ (\alpha - 1)(\alpha - \bar{\alpha})b &= 0 \\ (\bar{\alpha} - 1)(\bar{\alpha} - \alpha)a &= 0 &= 0 \end{cases}$$

$$\iff a = b = c = 0,$$

d'où la liberté de la famille (L_1, L_2, L_3) de $\mathbb{C}_2[X]$ et, comme $\operatorname{Card}(L_1, L_2, L_3) = \dim \mathbb{C}_2[X] = 3$, alors la famille (L_1, L_2, L_3) est une base de $\mathbb{C}_2[X]$.

4. (a) Montrons que ψ est linéaire. Soient $P_1, P_2 \in \mathbb{C}[X]$ et $\lambda \in \mathbb{C}$. Notons Q_1 (resp. Q_2) le reste de la division euclidienne de P_1 (resp. P_2) par N et, comme $\psi(P_1)$ (resp. $\psi(P_1)$) est le reste de la division euclidienne de P_1 (resp. P_2) par N, alors

$$\begin{cases} P_1 = Q_1 N + \psi(P_1) \\ \deg \psi(P_1) < \deg N \end{cases} \text{ et } \begin{cases} P_2 = Q_1 N + \psi(P_2) \\ \deg \psi(P_2) < \deg N \end{cases},$$

donc

$$\begin{cases} \lambda P_1 + P_2 = (\lambda Q_1 + Q_2)N + (\lambda \psi(P_1) + \psi(P_2)) \\ \deg(\lambda \psi(P_1) + \psi(P_2)) \le \max(\deg \psi(P_1), \psi(P_2)) < \deg N \end{cases}.$$

Ceci implique que $\lambda \psi(P_1) + \psi(P_2)$ est le reste de la division euclidienne de $\lambda P_1 + P_2$ par N, c.à.d. $\psi(\lambda P_1 + P_2) = \lambda \psi(P_1) + \psi(P_2)$, d'où la linéarité de ψ .

(b) Soit $P \in \mathbb{C}[X]$, on a

$$P \in \ker \psi \iff \psi(P) = 0$$
 $\iff \text{le reste de la division enclidienne de } P \text{ par } N \text{ est nul}$
 $\iff N \text{ divise } P$
 $\iff \exists Q \in \mathbb{C}[X] : P = NQ,$

donc $\ker \psi = \{NQ : Q \in \mathbb{C}[X]\}$. Comme $\ker \psi \neq \{0\}$, alors l'endomorphisme ψ n'est pas injectif.

- (c) Pour tout $P \in \mathbb{C}[X]$, on a, par définition de ψ , $\deg \psi(P) < \deg N = 3$, donc $\operatorname{Im} \psi \subset \mathbb{C}_2[X]$ et ensuite $\operatorname{Im} \psi \neq \mathbb{C}[X]$, du coup ψ n'est pas surjectif.
- **5.** (a) Soit $n \in \mathbb{N}$. On a $\deg \psi(X^n) < \deg N$ et $\deg N = 3$, donc $\psi(X^n) \in \mathbb{C}_2[X]$ et, comme (L_1, L_2, L_3) est une base de $\mathbb{C}_2[X]$ d'après la question II.3, alors il existe un unique triplet $(a_n, b_n, c_n) \in \mathbb{C}^3$ tel que $\psi(X^n) = a_n L_1 + b_n L_2 + c_n L_3$.
 - (b) Soit $n \in \mathbb{N}$. On a $X^n = QN + \psi(X^n)$, où Q est le quotient de la division euclidienne de X^n par N, donc, en vertu de la question précédente, on a

$$X^{n} = Q(X)N(X) + a_{n}L_{1}(X) + b_{n}L_{2}(X) + c_{n}L_{3}(X).$$

▶ En évaluant l'égalité \spadesuit en 1, on obtient $1 = c_n(1 - \alpha)(1 - \bar{\alpha})$, donc, en vertu de la question II.2, on a

$$c_n = \frac{1}{(1-\alpha)(1-\bar{\alpha})} = \frac{1}{1-(\alpha+\bar{\alpha})+\alpha\bar{\alpha}} = \frac{4}{3}.$$

- ► En évaluant l'égalité ♠ en α , on obtient $\alpha^n = b_n(\alpha 1)(\alpha \bar{\alpha})$, donc $b_n = \frac{\alpha^n}{(\alpha 1)(\alpha \bar{\alpha})}$.
- ► En évaluant l'égalité ♠ en $\bar{\alpha}$, on obtient $\bar{\alpha}^n = a_n(\bar{\alpha} 1)(\bar{\alpha} \alpha)$, donc $a_n = \frac{\bar{\alpha}^n}{(\bar{\alpha} 1)(\bar{\alpha} \alpha)}$.
- (c) D'après \spadesuit ci-dessus, on a

$$X^{n} = Q(X)N(X) + a_{n}L_{1}(X) + b_{n}L_{2}(X) + c_{n}L_{3}(X),$$

donc en évaluant en f, on obtient

$$f^{n} = Q(f)N(f) + a_{n}L_{1}(f) + b_{n}L_{2}(f) + c_{n}L_{3}(f),$$

et, comme par hypothèse N(f) = 0, il vient

$$f^{n} = a_{n}L_{1}(f) + b_{n}L_{2}(f) + c_{n}L_{3}(f).$$

(d) On $|\alpha|^2 = \alpha \bar{\alpha} = \frac{1}{4}$, donc $|\alpha| = \frac{1}{2}$, ainsi

$$|a_n| = \left| \frac{\bar{\alpha}^n}{(\bar{\alpha} - 1)(\bar{\alpha} - \alpha)} \right| = \frac{|\alpha|^n}{|\bar{\alpha} - 1||\bar{\alpha} - \alpha|} \xrightarrow[n \to +\infty]{} 0$$

 et

$$|b_n| = \left| \frac{\alpha^n}{(\alpha - 1)(\alpha - \bar{\alpha})} \right| = \frac{|\alpha|^n}{|\alpha - 1| |\alpha - \bar{\alpha}|} \xrightarrow[n \to +\infty]{} 0,$$

finalement a = b = 0 et $c = \frac{4}{3}$.

- **6.** (a) On a a = b = 0 et $c = \frac{4}{3}$, donc $h = aL_1(f) + bL_2(f) + cL_3(f) = \frac{4}{3}L_3(f)$ et par ailleurs $L_3(X) = (X \alpha)(X \bar{\alpha}) = X^2 (\alpha + \bar{\alpha})X + \alpha\bar{\alpha} = X^2 \frac{1}{2}X + \frac{1}{4}$, (d'après la question II.2) donc $h = \frac{4}{3}\left[f^2 \frac{1}{2}f + \frac{1}{4}\mathrm{id}_E\right] = \frac{1}{3}\left[4f^2 2f + \mathrm{id}_E\right]$.
 - (b) D'après la question précédente, on a $h = \frac{1}{3} \left[4f^2 2f + \mathrm{id}_E \right] = \frac{1}{3} P(f)$, avec $P = 4X^2 2X + 1$. En effectuant la division euclidienne de P^2 par N, on trouve $P^2(X) = (4X + 2)N(X) + 12X^2 6X + 3$, donc, puisque N est un polynôme annulateur de f, on a

$$h^2 = \frac{1}{9}P^2(f) = \frac{1}{9}\left[(4f + 2\operatorname{Id}_E)N(f) + 12f^2 - 6f + 3\operatorname{Id}_E\right] = \frac{1}{3}\left[4f^2 - 2f + \operatorname{id}_E\right] = h,$$

ainsi h est une projection.

Problème 2

Partie I

Etude de quelques propriétés de l'application trace

1. (a) Soient $A = (a_{i,j})_{1 \le i,j \le n}$, $B = (b_{i,j})_{1 \le i,j \le n} \in E$ et $\lambda \in \mathbb{R}$. On a $\lambda A + B = (\lambda a_{i,j} + b_{i,j})_{1 \le i,j \le n}$, donc

$$Tr(\lambda a + b) = \sum_{k=1}^{n} (\lambda a_{k,k} + b_{k,k}) = \lambda \sum_{k=1}^{n} a_{k,k} + \sum_{k=1}^{n} b_{k,k} = \lambda Tr(A) + Tr(B),$$

d'où la linéarité de Tr.

(b) Soient $A = (a_{i,j})_{1 \le i,j \le n}, B = (b_{i,j})_{1 \le i,j \le n} \in E$. On a $AB = (c_{i,j})_{1 \le i,j \le n}$ et $BA = (d_{i,j})_{1 \le i,j \le n}$ avec $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$ et $d_{i,j} = \sum_{k=1}^{n} b_{i,k} a_{k,j}$, donc

$$\operatorname{Tr}(AB) = \sum_{i=1}^{n} c_{i,i} = \sum_{i=1}^{n} \sum_{k=1}^{n} a_{i,k} b_{k,i}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} a_{i,k} b_{k,i} \quad \text{d'après le théorème de Fubini}$$

$$= \sum_{k=1}^{n} \sum_{i=1}^{n} b_{k,i} a_{i,k}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n} b_{i,k} a_{k,i} \quad \text{on a échangé les rôles des indices } i \text{ et } j$$

$$= \sum_{i=1}^{n} d_{i,i} = \operatorname{Tr}(BA).$$

- (c) D'après la question I.1, Tr est une forme linéaire sur E et, comme elle non nulle (car $\text{Tr}(I_n) = n \neq 0$), alors ker Tr est un hyperplan de E, ainsi dim ker Tr = dim $E 1 = n^2 1$.
- (d) Soit $M \in E$, on a

$$M \in \ker \operatorname{Tr} \cap \operatorname{Vect}(I_n) \iff M \in \operatorname{Vect}(I_n) \text{ et } M \in \ker \operatorname{Tr}$$

$$\iff \exists \lambda \in \mathbb{R} : M = \lambda I_n \text{ et } \operatorname{Tr}(M) = 0$$

$$\iff \exists \lambda \in \mathbb{R} : M = \lambda I_n \text{ et } \operatorname{Tr}(\lambda I_n) = 0$$

$$\iff \exists \lambda \in \mathbb{R} : M = \lambda I_n \text{ et } \lambda n = 0$$

$$\iff \exists \lambda \in \mathbb{R} : M = \lambda I_n \text{ et } \lambda = 0$$

$$\iff M = 0,$$

donc $\ker \operatorname{Tr} \cap \operatorname{Vect}(I_n) = \{0\}$. Or $\dim \ker \operatorname{Tr} + \dim \operatorname{Vect}(I_n) = \dim E$, alors $E = \ker \operatorname{Tr} \oplus \operatorname{Vect}(I_n)$.

2. (a) Soient $M, N \in E$ et $\lambda \in \mathbb{R}$. Puisque Tr est linéaire selon la question I.1, alors

$$\varphi(\lambda M + N) = (\lambda M + N) + \operatorname{Tr}(\lambda M + N) = (\lambda M + N) + (\lambda \operatorname{Tr}(M) + \operatorname{Tr}(N))$$
$$= \lambda(M + \operatorname{Tr}(M)) + (N + \operatorname{Tr}(N)) = \lambda \varphi(M) + \varphi(N),$$

donc φ est un endomorphisme de E.

Soient $M \in E$ et $\lambda = \text{Tr}(M)$. On a

$$M \in \ker \varphi \iff \varphi(M) = 0$$

$$\iff M + \lambda I_n = 0$$

$$\iff \begin{cases} M = -\lambda I_n \\ \operatorname{Tr}(M) = \operatorname{Tr}(-\lambda I_n) \end{cases}$$

$$\iff \begin{cases} M = -\lambda I_n \\ \lambda = -n\lambda \end{cases}$$

$$\iff \begin{cases} M = -\lambda I_n \\ \lambda = 0 \end{cases}$$

$$\iff M = 0,$$

donc $\ker \varphi = \{0\}$, dès lors φ est un endomorphisme injectif de E et, comme E est un espace vectoriel de dimension finie, alors φ est un automorphisme de E.

(b) i) Soit $M \in E$. On a

$$M \in E_1(\varphi) \iff \varphi(M) = M$$
 $\iff M + \operatorname{Tr}(M)I_n = M$
 $\iff \operatorname{Tr}(M)I_n = 0$
 $\iff \operatorname{Tr}(M) = 0$
 $\iff M \in \ker \operatorname{Tr},$

donc $E_n(\varphi) = \ker \operatorname{Tr}$.

ii) Soit $M \in E$. Ona

$$M \in E_{n+1}(\varphi) \iff \varphi(M) = (n+1)M$$

 $\iff M + \operatorname{Tr}(M)I_n = M$
 $\iff M = \lambda I_n, \quad (\text{avec } \lambda = \frac{\operatorname{Tr}(M)}{n})$

donc $E_{n+1}(\varphi) = \{\lambda I_n : \lambda \in \mathbb{R}\} = \text{Vect}(I_n).$

- iii) D'après la question **II.1.d**, on a $E = \ker \operatorname{Tr} \oplus \operatorname{Vect}(I_n)$ et, comme $E_1(\varphi) = \ker \operatorname{Tr} \operatorname{et} E_{n+1}(\varphi) = \operatorname{Vect}(I_n)$, alors $E = E_1(\varphi) \oplus E_{n+1}(\varphi)$, dès lors φ est diagonalisable.
- **3.** (a) On a $X^2 2X + 1 = (X 1)^2$, donc $\phi^2 2\phi + \mathrm{Id}_E = (\phi \mathrm{Id}_E)^2$, alors, pour tout $M \in E$, on a

$$(\psi^{2} - 2\psi + \operatorname{Id}_{E})(M) = (\psi - \operatorname{Id}_{E})^{2}(M) = (\psi - \operatorname{Id}_{E}) \circ (\psi - \operatorname{Id}_{E})(M)$$

$$= (\psi - \operatorname{Id}_{E})(\psi(M) - M) = (\psi - \operatorname{Id}_{E})((M + \lambda J) - M) \quad (\text{ avec } \lambda = \operatorname{Tr}(M))$$

$$= (\psi - \operatorname{Id}_{E})(\lambda J) = \lambda(\psi - \operatorname{Id}_{E})(J)$$

$$= \lambda(\psi(J) - J) = \lambda((J + \operatorname{Tr}(J)J - J)$$

$$= 0, \quad (\operatorname{car} \operatorname{Tr}(J) = 0)$$

du coup $X^2 - 2X + 1$ est un polynôme annulateur de ψ .

(b) On a $\psi(J) = J$ et $J \neq 0$, donc $1 \in \operatorname{Sp}(\psi)$. Réciproquement, soit $\lambda \in \operatorname{Sp}(\psi)$, alors il existe $M \in E \setminus \{0\}$ tel que $\psi(M) = \lambda M$, donc

$$(\psi^2 - 2\psi + \mathrm{Id}_E)(M) = \psi(\psi(M)) - 2\psi(M) + M)$$
$$= \psi(\lambda M) - 2\lambda M + M$$
$$= \lambda^2 M - 2\lambda M + M = (\lambda - 1)^2 M$$

et, comme $\psi^2 - 2\psi + \mathrm{Id}_E = 0$ d'après la question précédente, alors $(\lambda - 1)^2 M = 0$, dès lors $\lambda = 1$ puisque $M \neq 0$. On conclut que $\mathrm{Sp}(\psi) = \{1\}$.

(c) Supposons par l'absurde que ψ est diagonalisable, donc $E=\bigoplus_{\lambda\in \mathrm{Sp}(\psi)}E_{\lambda}(\psi)$ et, comme $\mathrm{Sp}(\psi)=\{1\}$, alors $E=E_1(\psi)$, c.à.d.

$$\forall M \in E, \ \psi(M) = M,$$

ce qui est absurde puisque $\psi(I_n) = I_n + nJ_n \neq I_n$. Ainsi ψ n'est pas diagonalisable.

Partie II

Un résultat préliminaire

1. • Pour tous $x, y \in F_1$ et $\lambda \in \mathbb{R}$, on a

$$v(\lambda x + y) = u(\lambda x + y) = \lambda u(x) + u(y) = \lambda v(x) + v(y),$$

donc v est linéaire.

• On a

$$\ker(v) = \{x \in F_1 : v(x) = 0\} = \{x \in F_1 : u(x) = 0\} = \{x \in F_1 : x \in \ker(u)\} = F_1 \cap \ker(u) = \{0\},\$$

donc v est injective.

- Soit $y \in \text{Im}(u)$, il existe donc $x \in E$ tel que y = u(x). Comme $E = F_1 \oplus \ker(u)$, il existe $x_1 \in F_1$ et $x_2 \in \ker u$ tels que $x = x_1 + x_2$, par suite $y = u(x_1 + x_2) = u(x_1) + u(x_2) = u(x_1) = v(x_1)$, d'où la surjectivité de v.
- \bullet Conclusion : v est un isomorphisme.
- **2.** (a) Soient $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$. On a

$$\lambda_{1}\varepsilon_{1} + \dots + \lambda_{r}\varepsilon_{r} = 0 \iff \lambda_{1}v(e_{1}) + \dots + \lambda_{r}v(e_{r}) = 0$$

$$\iff \lambda_{1}u(e_{1}) + \dots + \lambda_{r}u(e_{r}) = 0$$

$$\iff u(\lambda_{1}e_{1} + \dots + \lambda_{r}e_{r}) = 0$$

$$\iff \lambda_{1}e_{1} + \dots + \lambda_{r}e_{r} \in \ker(u)$$

$$\iff \lambda_{1}e_{1} + \dots + \lambda_{r}e_{r} \in \ker(u) \cap F_{1} \quad \text{car } (e_{1}, \dots, e_{r}) \text{ est une base de } F_{1}$$

$$\iff \lambda_{1}e_{1} + \dots + \lambda_{r}e_{r} = 0 \quad \text{car } \ker(u) \cap F_{1} = \{0\}$$

$$\iff \lambda_{1}e_{1} + \dots + \lambda_{r}e_{r} = 0, \quad \text{car } (e_{1}, \dots, e_{r}) \text{ est une base de } F_{1}$$

donc $(\varepsilon_1, \ldots, \varepsilon_r)$ est une famille libre de G, qui est de dimension finie, alors, d'après le théorème de la base incomplète, on peut la compléter à une base de G, c.à.d. il existe une famille $(\varepsilon_{r+1}, \ldots, \varepsilon_m)$ de G constituée de m-r vecteurs telle que la famille $C=(\varepsilon_1, \ldots, \varepsilon_r, \varepsilon_{r+1}, \ldots, \varepsilon_m)$ soit une base de G.

(b) On a
$$u(e_1) = \varepsilon_1, \dots, u(e_r) = \varepsilon_r$$
 et $u(e_{r+1}) = \dots = u(e_p) = 0$, donc

$$\mathrm{Mat}_{B,C}(u) = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & \cdots & 0 \\ 0 & 1 & \ddots & \vdots & \vdots & & & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots & & & \vdots \\ 0 & \cdots & 0 & 1 & 0 & \cdots & 0 \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & & \vdots & \vdots & & & \vdots \\ 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix} = J_{m,p,r}.$$

3. On pose $F = \mathbb{R}^p$ et $G = \mathbb{R}^m$, et on note B' la base canonique de F et C' la base canonique de G. Soient $M \in \mathcal{M}_{m,p}(\mathbb{R})$ et u l'application linéaire canoniquement associée à la matrice M, c.à.d. l'unique application linéaire $u: F \longrightarrow G$ telle que $M = \operatorname{Mat}_{B',C'}(u)$.

Puisque $0 < \operatorname{rg}(u) = \operatorname{rg}(M) < \min(p, m)$, alors, d'après la question **II.2**, il existe une base B de F et une base C de G telles que $\operatorname{Mat}_{B,C}(u) = J_{m,p,r}$. Or $\operatorname{Mat}_{B',C'}(u) = P_{C'}^C \operatorname{Mat}_{B,C}(u) P_B^{B'}$, alors $M = SJ_{m,p,r}T^{-1}$ avec $S = P_{C'}^C$ et $T = P_{B'}^B$.

- **4.** ightharpoonup Si 0 < r = p < m, alors $J_{m,p,r} = \begin{pmatrix} I_p & 0 \end{pmatrix}$.
 - ▶ Si 0 < r = m < p, alors $J_{m,p,r} = \begin{pmatrix} I_m \\ 0 \end{pmatrix}$.
 - ightharpoonup Si 0 < r = m = p, alors $J_{m,p,r} = I_m$.

Partie III

Un deuxième résultat préliminaire

1. Soient $\lambda_1, \ldots, \lambda_s \in \mathbb{R}$. On a

$$\lambda_{1}l_{1}^{*} + \dots + \lambda_{s}l_{s}^{*} = 0 \iff \forall j \in [1, s], \left(\lambda_{1}l_{1}^{*} + \dots + \lambda_{j}l_{j}^{*} + \dots + \lambda_{s}l_{s}^{*}\right)(l_{j}) = 0$$

$$\iff \forall j \in [1, s], \lambda_{1}l_{1}^{*}(l_{j}) + \dots + \lambda_{j}l_{j}^{*}(l_{j}) + \dots + \lambda_{s}l_{s}^{*}(l_{j}) = 0$$

$$\iff \forall j \in [1, s], \lambda_{j} = 0,$$

donc la famille B^* est libre.

2. Soit $j \in [1, s]$. On a

$$l_i^*(x) = l_i^*(x_1 l_1 + \dots + x_j l_j + \dots + x_s l_s) = x_1 l_i^*(l_1) + \dots + x_j l_i^*(l_j) + \dots + x_s l_i^*(l_s) = x_j.$$

3. Soit $l^* \in L^*$. Pour tout $x = x_1 l_1 + \cdots + x_s l_s \in L$, on a

$$l^*(x) = l^*(x_1l_1 + \dots + x_sl_s)$$

$$= x_1l^*(l_1) + \dots + x_sl^*(l_s)$$

$$= \lambda_1x_1 + \dots + \lambda_sx_s \quad \text{avec } \lambda_i = l^*(l_i) \in \mathbb{R}$$

$$= \lambda_1l_1^*(x) + \dots + \lambda_sl_s^*(x) \quad \text{d'après la question II.2}$$

$$= (\lambda_1l_1^* + \dots + \lambda_sl_s^*)(x),$$

donc $l^* = \lambda_1 l_1^* + \dots + \lambda_s l_s^*$. Ainsi la famille B^* est génératrice de L^* .

4. D'après les questions III.1 et III.3 la famille B^* est à la fois libre et génératrice de L^* , donc c'est une base de L^* . Ainsi dim $L^* = \text{Card}(B^*) = s = \dim L$.

Partie IV

Une caractérisation d'une forme linéaire sur E

1. Pour tous $M, N \in E$ et $\lambda \in \mathbb{R}$, on a

$$\phi_A(\lambda M+N) = \operatorname{Tr}(A(\lambda M+N)) = \operatorname{Tr}(\lambda AM+AN)$$

= $\lambda \operatorname{Tr}(AM) + \operatorname{Tr}(AN)$ car Tr est linéaire d'après la question **I.1.a**
= $\lambda \phi_A(M) + \phi_A(N)$,

donc ϕ_A est une forme linéaire sur E.

2. (a) Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
. On a $AM = \begin{pmatrix} a+c & b+d \\ a+c & b+d \end{pmatrix}$ et

$$M \in \ker \phi_A \iff \phi_A(M) = 0 \iff \operatorname{Tr}(AM) = 0 \iff a+b+c+d=0$$

donc
$$\ker \phi_A = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E : a+b+c+d=0 \right\} = \operatorname{Vect}(I,J,K), \text{ avec } I = E_{11} - E_{22}, J = E_{12} - E_{22}$$
 et $K = E_{21} - E_{22}$, d'où (I,J,K) est une famille génératrice de $\ker \phi_A$.

Pour tout $a, b, c \in \mathbb{R}$, on a

$$aI + bJ + cK = 0 \iff a \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 1 & -1 \end{pmatrix} = 0$$
$$\iff \begin{pmatrix} a & b \\ c & -(a+b+c) \end{pmatrix} = 0$$
$$\iff a = b = c = 0$$

donc la famille (I, J, k) est libre et par conséquent c'est une base ker ϕ_A .

- (b) I est une matrice de ker ϕ_A qui est inversible puisque $\det(I) = -1$.
- **3.** (a) Soient $A, B \in E$ et $\lambda \in \mathbb{R}$. On a

$$\forall M \in E, \ h(\lambda A + B)(M) = \phi_{\lambda A + B}(M) = \text{Tr}((\lambda A + B)M)$$

$$= \text{Tr}(\lambda AM + BM) = \lambda \text{Tr}(AM) + \text{Tr}(BM)$$

$$= \lambda \phi_A(M) + \phi_B(M) = (\lambda \phi_A + \phi_B)(M)$$

$$= (\lambda h(A) + h(B))(M),$$

donc $h(\lambda A + B) = \lambda h(A) + h(B)$, d'où la linéarité de h.

(b) i) On a $AE_{ij} = (c_{kl})_{1 \leq k,l \leq n}$, avec

$$\forall k, l \in [1, n], \ c_{kl} = \sum_{r=1}^{n} a_{kr} \delta_r^i \delta_l^j = \sum_{\substack{r=1 \\ r \neq i}}^{n} a_{kr} \delta_r^i \delta_l^i + a_{ki} \delta_i^i \delta_l^j = a_{ki} \delta_l^j,$$

dès lors

$$\phi_A(E_{ij}) = \text{Tr}(AE_{ij}) = \sum_{k=1}^n c_{kk} = \sum_{k=1}^n a_{ki} \delta_k^j = \sum_{\substack{k=1\\k \neq j}}^n a_{ki} \delta_k^j + a_{ji} \delta_j^j = a_{ji}.$$

ii) Soient $A = (a_{kl})_{1 \leq k, l \leq n} \in \mathcal{M}_n(\mathbb{R})$, on a

$$\begin{split} A \in \ker h &\iff h(A) = 0 \\ &\iff \phi_A = 0 \\ &\iff \forall i,j \in \llbracket 1,n \rrbracket, \; \phi_A(E_{ij}) = 0 \\ &\iff \forall i,j \in \llbracket 1,n \rrbracket, \; a_{ji} = 0 \quad \text{d'après la question précédente} \\ &\iff A = 0, \end{split}$$

donc h est injective.

(c) D'après les questions IV.3.a et IV.3.b.ii l'application $h: E \longrightarrow E^*$ est linéaire et injective et, comme $\dim E = \dim E^*$ selon la question III.3, alors h est un isomorphisme.

Partie V

Tout hyperplan de E contient au moins une matrice inversible

- 1. Soit A une matrice non nulle de E qui n'appartient pas H. Montrons que $E = H \oplus \operatorname{Vect}(A)$. Soit $M \in H \cap \operatorname{Vect}(A)$, donc $M \in H$ et $M \in \operatorname{Vect}(A)$, d'où il existe $\lambda \in \mathbb{R}$ tel que $M = \lambda A$. Si $\lambda \neq 0$, on aurait $A = \frac{1}{\lambda}M \in H$ puisque $M \in H$, ce qui contredirait le fait que $A \notin H$, du coup $\lambda = 0$ et M = 0. Ainsi $H \cap \operatorname{Vect}(A) = \{0\}$ et, comme dim $H + \dim \operatorname{Vect}(A) = (\dim E - 1) + 1 = \dim E$, alors $E = H \oplus \operatorname{Vect}(A)$.
- 2. H est un hyperplan de E, donc, il existe $l \in E^*$ tel que $H = \ker l$. D'après la question IV.3.c l'application $h: E \longrightarrow E^*$ est un isomorphisme, dès lors il existe $B \in E$ tel que $l = h(B) = \phi_B$. Finalement $H = \ker \phi_B$.
- 3. (a) En développant le determinant de la matrice P_1 par rapport à la première ligne, on obtient $\det P_1 = (-1)^{n+1} \det I_{n-1} = (-1)^{n+1} \neq 0$, du coup P_1 est une matrice inversible.
 - (b) On a $R_r = J_{n,n,r} = \begin{pmatrix} I_r & 0 \\ \hline 0 & 0 \end{pmatrix}$ et décomposons P_1 en 4 blocs $P_{11}, P_{12}, P_{21}, P_{22}$ de mêmes tailles que les blocs de $R_r : P_1 = \begin{pmatrix} P_{11} & P_{12} \\ \hline P_{21} & P_{22} \end{pmatrix}$, donc

$$R_{r}P_{1} = \left(\begin{array}{c|c|c} I_{r} & 0 \\ \hline 0 & 0 \end{array}\right) \left(\begin{array}{c|c|c} P_{11} & P_{12} \\ \hline P_{21} & P_{22} \end{array}\right) = \left(\begin{array}{c|c|c} P_{11} & P_{12} \\ \hline 0 & 0 \end{array}\right) = \left(\begin{array}{c|c|c} 0 & 0 & \cdots & \cdots & 0 & 0 & \cdots & 0 & 1 \\ \hline 1 & \ddots & & \vdots & \vdots & & \vdots & \vdots & \vdots \\ \hline 0 & \ddots & \ddots & \vdots & \vdots & & \vdots & \vdots \\ \hline 0 & \cdots & 0 & 1 & 0 & 0 & \cdots & 0 & 0 \\ \hline 0 & \cdots & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \\ \vdots & & & & \vdots & \vdots & & & \vdots \\ \hline 0 & \cdots & \cdots & \cdots & 0 & 0 & \cdots & \cdots & 0 \end{array}\right),$$

dès lors $\phi_{R_r}(P_1) = \text{Tr}(R_r P_1) = 0$ et par suite $P_1 \in \ker \phi_{R_r}$.

4. Soit H un hyperplan de E. D'après la question V.2, il existe une matrice $B \in E$ the que $H = \ker \phi_B$. Notons $r = \operatorname{rg}(B)$, si r = 0, on aurait B = 0 puis $\phi_B = 0$ et $H = \ker \phi_B = E$, ce qui contredirait le fait que H est un hyperplan de E, du coup $0 < r \le n$. Maintenant, on va distinguer deux cas:

▶ Premier cas : 0 < r < n.

Puisque 0 < r < n, alors, d'après la question II.3, il existe deux matrices inversibles $S, T \in \mathcal{M}_n(\mathbb{R})$ telles que $B = SJ_{n,n,r}T^{-1} = SR_rT^{-1}$ ou encore $R_r = S^{-1}BT(\star)$. Par ailleurs, on a

$$\phi_{R_1}(P_1) = \operatorname{Tr}(R_r P_1)$$

$$= \operatorname{Tr}(S^{-1}BTP_1) \quad \text{d'après } (\star) \text{ ci-dessus}$$

$$= \operatorname{Tr}(B(S^{-1}TP_1)) \quad \text{d'après la quesyion } \mathbf{I.1.a}$$

$$= \phi_B(S^{-1}TP_1),$$

or, d'après la question **V.3.b**, on a $\phi_{R_1}(P_1) = 0$, alors $\phi_B(S^{-1}TP_1) = 0$, par conséquent la matrice inversible $S^{-1}TP_1$ appartient à $H = \ker \phi_B$.

▶ Deuxième cas : r = n. Puisque rg(B) = n, alors B est inversible, donc

$$0 = \text{Tr}(P_1) = \text{Tr}(B(B^{-1}P_1)) = \phi_B(B^{-1}P_1),$$

par conséquent la matrice inversible P_1B^{-1} appartient $H = \ker \phi_B$.

Conclusion : Dans les deux cas il existe une matrice inversible qui appartient à H.