

Regressão Linear (Lab)

Regressão Linear

Caso: Como estimar a emissão de gases CO2 de um motor?

Empregue os dados da URL:

https://meusite.mackenzie.br/rogerio/TIC/FuelConsumptionCo2.csv

Neste Lab você vai estimar as emissões de CO2 de modelos de veículos a partir de suas características empregando modelos de regressão linear e avaliar esses modelos.

FuelConsumption.csv:

FuelConsumption.csv, contém informações do consumo de combustível, outras características dos modelos e as emissões de dióxido de carbono para vários novos veículos comerciais leves no Canadá.

- MODELYEAR ex. 2014
- MAKE ex. Acura
- MODEL ex. ILX
- VEHICLE CLASS ex. SUV
- ENGINE SIZE ex. 4.7
- CYLINDERS ex. 6
- TRANSMISSION ex. A6
- FUEL CONSUMPTION in CITY(L/100 km) ex. 9.9
- FUEL CONSUMPTION in HWY (L/100 km) ex. 8.9
- FUEL CONSUMPTION COMB (L/100 km) ex. 9.2
- CO2 EMISSIONS (g/km) ex. 182

Regressão Linear. Vamos lembrar?

Um modelo linear aproxima o valor de variável objetivo Y a partir de uma combinação linear das variáveis preditoras X.

$$\widehat{Y} = a_0 + a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

A cada variável preditora corresponde um coeficiente a_n , havendo um coeficiente independente que corresponte ao valor de \widehat{Y} para X=0 (intercept).

▼ Uma regressão linear simples

Vamos começar com uma regressão simples de valores aleatórios apenas para você se familiarizar com a construção do modelo.

```
import pandas
                                as pd
import numpy
                                as np
import matplotlib.pyplot
                                as plt
import seaborn
                                as sns
import statsmodels.formula.api as sm
import warnings
warnings.filterwarnings("ignore")
```

/usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarnir import pandas.util.testing as tm

Gerando uma amostra de 50 valores "aleatórios" a partir de uma função linear.

```
rng = np.random.RandomState(1)
x = 10 * rng.rand(50)
y = 2 * x - 5 + rng.randn(50)
sns.scatterplot(x, y)
```

<matplotlib.axes._subplots.AxesSubplot at 0x7f9d00d543c8>

Podemos ainda traçar uma linha de aproximação linear com a função sns.lmplot().

```
df = pd.DataFrame({'x':x,'y':y})
sns.lmplot('x','y',data=df)
plt.show()
print(df)
```


▼ Construindo o modelo linear, sm.ols(formula = , data=)

Um conjunto de dados é informado e o parâmetro formula indica as variáveis objetivo e preditoras.

formula = $'y \sim x'$

significa

$$u \leftarrow x$$

para um modelo

$$\hat{y} = a_0 + b_1 x$$

0.001144 -5.668959 $model = sm.ols(formula='y \sim x', data=df)$

1.862602 0.385006

result = model.fit() print(result.summary())

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Type	ns:	Least Squ ue, 20 Oct 19:2 nonro	2020 0:51 50 48 1	Adj. F-st Prob	uared: R-squared: atistic: (F-statistic): Likelihood:	:	0.979 0.979 2246. 5.71e-42 -65.935 135.9 139.7
=========	coef	std err	=====	===== t	P> t	[0.025	0.975]
Intercept x		0.239 0.043			0.000 0.000	-5.478 1.941	-4.519 2.113
Omnibus: Prob(Omnibus): Skew: Kurtosis:	======	0	===== .058 .971 .048 .865	Jarq Prob	======================================		1.590 0.057 0.972 10.4

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

E desse modo a aproximação linear é dada por:

$$y = -4.9986 + 2.0272x$$

Empregamos então o modelo para estimar os valores de y, isto é \bar{y} , a partir do modelo linear. Podemos então comparar os valores de y e \bar{y} (predicted).

```
df['predicted'] = result.predict(df.x)
sns.scatterplot('x','y',data=df)
sns.scatterplot('x','predicted',data=df)
sns.lineplot('x','predicted',data=df,color='red')
plt.show()
```


Caso: Como estimar a emissão de gases CO2 de um motor?

Empregue os dados da URL:

https://meusite.mackenzie.br/rogerio/TIC/FuelConsumptionCo2.csv

Exercício. Explorando os dados.

Acesse e explore os dados FuelConsumptionCo2.csv. Você pode querer verificar os imports, mas eles já devem estar feitos se você executou os código anteriores. Caso contrário refaça aqui.

```
# Insira aqui seu código
```

```
import pandas
                                as pd
import numpy
                                as np
import matplotlib.pyplot
                                as plt
import seaborn
                                as sns
import statsmodels.formula.api as sm
```

import warnings

warnings.filterwarnings("ignore")

df = pd.read_csv("https://meusite.mackenzie.br/rogerio/TIC/FuelConsumptionCo2.csv") df.head()

	MODELYEAR	MAKE	MODEL	VEHICLECLASS	ENGINESIZE	CYLINDERS	TRANSMISSION
0	2014	ACURA	ILX	COMPACT	2.0	4	AS5
1	2014	ACURA	ILX	COMPACT	2.4	4	M6
2	2014	ACURA	ILX HYBRID	COMPACT	1.5	4	AV7
3	2014	ACURA	MDX 4WD	SUV - SMALL	3.5	6	AS6

▼ Exercício. CO2EMISSIONS

Explore a relação das demais variáveis com CO2EMISSIONS

DICA:

Embora o sns.scatterplot(x,y) possa ser usado para verificar a relação de cada par de variáveis, o sns.pairplot(df) permite você criar vários scatterplots simultâneos.

```
# Insira aqui seu código
sns.pairplot(df)
```


Exercício. FUELCONSUMPTION_COM X CO2EMISSIONS

Explore a relação de FUELCONSUMPTION_COM com CO2EMISSIONS

DICA:

Embora o sns.scatterplot(x,y) possa ser usado para verificar a relação de cada par de variáveis, o sns.lmplot('x','y',data=df) vai ainda permitir você visualizar a linha de tendência dos dados.

```
# Insira aqui seu código
sns.lmplot('FUELCONSUMPTION_COMB', 'CO2EMISSIONS', data=df)
plt.xlabel("FUELCONSUMPTION_COMB")
plt.ylabel("Emission")
plt.show()
```


▼ Exercício. Regressão Simples

Crie um modelo regressão para obter CO2EMISSIONS a partir de FUELCONSUMPTION_COMB

DICA:

```
Lembre-se
```

```
model = sm.ols(formula='y ~ x', data=df)
# Insira aqui seu código
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB', data=df)
```

Exercício. Resultados

Verifique os resultados do modelo obtido

DICA:

Lembre-se

```
result = model.fit()
 print(result.summary())
# Insira aqui seu código
result = model.fit()
print(result.summary())
```

OLS Regression Results

============	:==========:		==========
Dep. Variable:	CO2EMISSIONS	R-squared:	0.796
Model:	OLS	Adj. R-squared:	0.796
Method:	Least Squares	F-statistic:	4153.
Date:	Tue, 20 Oct 2020	<pre>Prob (F-statistic):</pre>	0.00
Time:	19:40:20	Log-Likelihood:	-5092.7
No. Observations:	1067	AIC:	1.019e+04
Df Residuals:	1065	BIC:	1.020e+04
Df Model:	1		
Covariance Type:	nonrobust		

=======================================	=========		=========	========	=========	
	coef	std err	t	P> t	[0.025	0.9
Intercept FUELCONSUMPTION_COMB	68.3871 16.2200	3.044 0.252	22.467 64.443	0.000 0.000	62.414 15.726	74 16
=======================================	========		========	========	========	
Omnibus:	152	.161 Dur	bin-Watson:		2.195	
<pre>Prob(Omnibus):</pre>	0	.000 Jar	que-Bera (JB):	240.073	
Skew:	-0.	.954 Pro	b(JB):		7.39e-53	
Kurtosis:	4	.325 Con	ıd. No.		42.2	
=======================================	========		:========	=======	========	

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

Exercício. Modelo final

...insira no texto abaixo os coeficientes obtidos.

$$CO2E\widehat{MIS}SIONS = 68.38 + 16.22 \times FUELCONSUMPTIONCOMB$$

▼ Exercício. Predição

A partir do seu modelo empregue a função result.predict(x) para estimar a emissão de gases por veículos novos que apresentam consumo de combustível no valor de 4 e 28, e que não existem nos dados originais.

DICA:

A entrada x deve ser um dataframe no mesmo formato e nome dos atributos de entrada no modelo.

```
x = pd.DataFrame({'FUELCONSUMPTION_COMB': [4,28]})
result.predict(x)
          133,267015
          522.546301
     dtype: float64
```

▼ Exercício. Verificação Visual (RESOLVIDO)

```
df['predicted'] = result.predict()
sns.scatterplot('FUELCONSUMPTION_COMB', 'CO2EMISSIONS', data=df)
sns.lineplot('FUELCONSUMPTION_COMB', 'predicted', data=df, color='red')
plt.xlabel("FUELCONSUMPTION_COMB")
plt.ylabel("Emission")
plt.show()
```


▼ Exercício. Tudo junto...

Coloque todo o código empregado para estimar as emissões de FUELCONSUMPTION_COMB aqui.

```
# Insira aqui seu código
# explora a relação linear (ou outra) dos dados
sns.lmplot('FUELCONSUMPTION_COMB', 'CO2EMISSIONS', data=df)
plt.xlabel("FUELCONSUMPTION COMB")
plt.ylabel("Emission")
plt.show()
# define o modelo
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB', data=df)
# calcula o modelo e mostra os resultados
result = model.fit()
print(result.summary())
# faz uma previsão
x = pd.DataFrame({'FUELCONSUMPTION_COMB': [4,28]})
print(result.predict(x))
```


OLS Regression Results

			=========
Dep. Variable:	CO2EMISSIONS	R-squared:	0.796
Model:	OLS	Adj. R-squared:	0.796
Method:	Least Squares	F-statistic:	4153.
Date:	Tue, 20 Oct 2020	<pre>Prob (F-statistic):</pre>	0.00
Time:	19:43:24	Log-Likelihood:	-5092.7
No. Observations:	1067	AIC:	1.019e+04
Df Residuals:	1065	BIC:	1.020e+04
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	
Intercept FUELCONSUMPTION_COMB	68.3871 16.2200	3.044 0.252	22.467 64.443	0.000 0.000	62.414 15.726	
Omnibus: Prob(Omnibus):	152. 0.		======= in-Watson: ue-Bera (JB)	:	2.195 240.073	
Skew: Kurtosis:			(JB): . No.		7.39e-53 42.2	

[1] Standard Errors assume that the covariance matrix of the errors is correctly s

133.267015 522.546301 dtype: float64

▼ Exercício. Regressão Múltipla

Faça agora um modelo de regressão múltipla para estimar as emissões de CO2 a partir de FUELCONSUMPTION_COMB e ENGINESIZE.

Faça então uma predição de emissões para um veículo com FUELCONSUMPTION COMB = 10 e ENGINESIZE = 2.

```
# Insira aqui seu código
# define o modelo
model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB + ENGINESIZE', data=df)
# calcula o modelo e mostra os resultados
result = model.fit()
print(result.summary())
# faz uma previsão
x = pd.DataFrame({'FUELCONSUMPTION COMB': [10], 'ENGINESIZE': [2]})
print(result.predict(x))
                                                                   OLS Regression Results
          _____
          Dep. Variable: CO2EMISSIONS R-squared:
                                                                                                                                                                0.858
          Model:

Method:
Date:
Date:
Time:

Date:
D
                                                                                                                                                                0.858
                                                                                                                                                                 3220.
                                                                                                                                                    -4898.4
-2903.
          No. Observations:
                                                                               1067 AIC:
                                                                                                                                                                 9803.
                                                                               1064 BIC:
          Df Residuals:
                                                                                                                                                                   9818.
          Df Model:
          Covariance Type: nonrobust
          ______
                                                                coef std err t P>|t| [0.025 0.9]
          -----
          Intercept 78.3068 2.579 30.360 0.000 73.246
FUELCONSUMPTION_COMB 9.7300 0.366 26.569 0.000 9.011
ENGINESIZE 19.4963 0.902 21.626 0.000 17.727
                                                                                                                                                                                   83
                                                                                                                                                                                      10
                                                                                                                                                                                      21
          ______
                                                                        60.372 Durbin-Watson:
          Omnibus:
                                                                                                                                                                 1.740
                                                                          0.000 Jarque-Bera (JB):
          Prob(Omnibus):
                                                                                                                                                        1.18e-20
44.9
                                                                                                                                                              91.765
                                                                         -0.462 Prob(JB):
          Skew:
                                                                            4.101 Cond. No.
          ______
          Warnings:
          [1] Standard Errors assume that the covariance matrix of the errors is correctly spec
                     214.598964
```

Solução: O modelo obtido é

dtype: float64

 $CO2EMISSIONS = 78.30 + 19.49 \times ENGINESIZE + 9.73 \times FUELCONSUM$

E apresenta Coeficiente de Determinação e p-values

$$R^2=0.858 \ p-values < 0.05$$

melhor que os modelos unidimensionais.

Exercício. Regressão com Atributos Categóricos

Faça agora um modelo de Regressão Múltipla empregando o atributo categórico VEHICLECLASS. Sendo um atributo categórico você deve fazer o hot encode antes.

DICA: (IMPORTANTE) ajuste o nome das colunas, não são aceitos para fórmula do statsmodel atributos com ' ' (brancos) no nome das colunas.

```
pd_dummies = pd.get_dummies(df['VEHICLECLASS'], prefix='VEHICLECLASS')
df = pd.concat([df,pd_dummies],axis=1)
df.iloc[0]
     MODELYEAR
                                                  2014
     MAKE
                                                 ACURA
     MODEL
                                                   ILX
                                               COMPACT
     VEHICLECLASS
     ENGINESIZE
                                                     4
     CYLINDERS
     TRANSMISSION
                                                   AS5
     FUELTYPE
                                                     Ζ
     FUELCONSUMPTION_CITY
                                                   9.9
     FUELCONSUMPTION_HWY
                                                   6.7
     FUELCONSUMPTION_COMB
                                                   8.5
     FUELCONSUMPTION COMB MPG
                                                    33
     CO2EMISSIONS
                                                   196
     VEHICLECLASS_COMPACT
     VEHICLECLASS_FULL-SIZE
                                                     0
     VEHICLECLASS_MID-SIZE
     VEHICLECLASS MINICOMPACT
     VEHICLECLASS MINIVAN
                                                     0
     VEHICLECLASS PICKUP TRUCK - SMALL
     VEHICLECLASS_PICKUP TRUCK - STANDARD
                                                     0
     VEHICLECLASS_SPECIAL PURPOSE VEHICLE
                                                     0
     VEHICLECLASS_STATION WAGON - MID-SIZE
                                                     0
     VEHICLECLASS STATION WAGON - SMALL
     VEHICLECLASS SUBCOMPACT
                                                     0
     VEHICLECLASS_SUV - SMALL
     VEHICLECLASS_SUV - STANDARD
     VEHICLECLASS_TWO-SEATER
     VEHICLECLASS VAN - CARGO
                                                     0
     VEHICLECLASS_VAN - PASSENGER
     Name: 0, dtype: object
df.columns = df.columns.str.replace("-", "_")
df.columns = df.columns.str.replace(" ", "")
formula = 'CO2EMISSIONS ~ FUELCONSUMPTION COMB + ENGINESIZE'
```

for c in [x for x in df.columns if x.find('VEHICLECLASS_') >= 0]:

```
tormula = tormula + ' + ' + c
print(formula)
```

CO2EMISSIONS ~ FUELCONSUMPTION COMB + ENGINESIZE + VEHICLECLASS COMPACT + VEHICLECLAS

model = sm.ols(formula='CO2EMISSIONS ~ FUELCONSUMPTION_COMB + ENGINESIZE + VEHICLECLASS', result = model.fit() print(result.summary())

OLS Regression Results

==============	:===========		==========
Dep. Variable:	CO2EMISSIONS	R-squared:	0.870
Model:	OLS	Adj. R-squared:	0.868
Method:	Least Squares	F-statistic:	414.5
Date:	Tue, 20 Oct 2020	<pre>Prob (F-statistic):</pre>	0.00
Time:	20:02:26	Log-Likelihood:	-4850.3
No. Observations:	1067	AIC:	9737.
Df Residuals:	1049	BIC:	9826.
Df Model:	17		

Covariance Type: nonrobust

=======================================	========	========	========	========
	coef	std err	t	P> t
Intercept	85.1547	3.314	25.694	0.000
VEHICLECLASS[T.FULL-SIZE]	-1.1773	3.158	-0.373	0.709
VEHICLECLASS[T.MID-SIZE]	-4.5891	2.482	-1.849	0.065
VEHICLECLASS[T.MINICOMPACT]	0.7377	3.801	0.194	0.846
VEHICLECLASS[T.MINIVAN]	0.8707	6.444	0.135	0.893
VEHICLECLASS[T.PICKUP TRUCK - SMALL]	27.1642	6.916	3.928	0.000
VEHICLECLASS[T.PICKUP TRUCK - STANDARD]		3.745	0.398	0.691
VEHICLECLASS[T.SPECIAL PURPOSE VEHICLE]		8.881	2.040	0.042
VEHICLECLASS[T.STATION WAGON - MID-SIZE		9.569	-0.609	0.543
VEHICLECLASS[T.STATION WAGON - MID-312E	7.4700	4.217	1.771	0.077
VEHICLECLASS[T.SUBCOMPACT]	7.6220	3.381	2.255	0.024
VEHICLECLASS[T.SUV - SMALL]	11.4515	2.580	4.439	0.024
VEHICLECLASS[T.SUV - STANDARD]	9.9109	3.148	3.148	0.002
VEHICLECLASS[T.TWO-SEATER]	10.3299	3.306	3.125	0.002
VEHICLECLASS[T.VAN - CARGO]	13.0886	5.854	2.236	0.026
VEHICLECLASS[T.VAN - PASSENGER]	33.0287	5.860	5.636	0.000
FUELCONSUMPTION_COMB	8.0833	0.435	18.600	0.000
ENGINESIZE	21.7192	0.924	23.495	0.000
	========	=======	=======	====
Omnibus: 44.735	Durbin-Watso			.679
Prob(Omnibus): 0.000	Jarque-Bera	(JB):		.488
Skew: -0.408	Prob(JB):		1.21	e-13

Warnings:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

Cond. No.

Exercício. Atributos Categóricos diretos

3.820

180.

A biblioteca statsmodel permite empregar atributos categóricos diretamente para a regressão linear. Ela faz internamente o hot encode. Faça a regressão linear anterior informando o atributo VEHICLECLASS diretamente, sem o hot encode. Existe diferenças com relação ao resultado anterior? Qual?

```
model = sm.ols(formula=formula, data=df)
result = model.fit()
print(result.summary())
```

O modelo é o mesmo, mas emprega uma atributo 'hot encode' a menos (veja que isso faz sentido, o atributos sexo (M e F) pode ser representado com um único hot encode, uma a menos do que os valores do atributo).