Calcular o valor, em função de x, as seguintes integrais, aplicando o método de substituição de variáveis:

>>> Para ver a solução, clique no botãozinho à esquerda da palavra **Solução** <<<

1)
$$I = \int \frac{1}{(3x-2)^2} dx ;$$

Solução

considerando u = 3x - 2 => du = 3dx => $\frac{1}{3} du = dx$ substituindo estes valores na integral, temos:

$$I = \frac{1}{3} \int \frac{1}{u^2} du = \frac{1}{3} \left(-\frac{1}{u} \right) + K = -\frac{1}{3u} + K$$

substituindo u por seu valor original, temos: $I = -\frac{1}{3(3x-2)} + K$

OBS: K é uma constante.

2)
$$I = \int x^3 \cos(x^4) dx$$
;

Solução

considerando $u = sen(x^4)$ => $du = 4x^3 cos(x^4) dx$ => $\frac{1}{4} du = x^3 cos(x^4) dx$ substituindo estes valores na integral, temos:

$$I = \int \frac{1}{4} du = \frac{1}{4} \int 1 du = \frac{u}{4} + K$$

substituindo u por seu valor original, temos: $I = \frac{1}{4} \operatorname{sen}(x^4) + K$

$$\mathbf{3)} \qquad \mathbf{I} = \int \mathbf{e}^x \sqrt{1 + \mathbf{e}^x} \, dx \, ;$$

Solução

considerando $u = 1 + e^x$ => $du = e^x dx$

substituindo estes valores na integral, temos:

$$I = \int \sqrt{u} \ du = \int u^{\left(\frac{1}{2}\right)} du = \frac{u^{\left(\frac{3}{2}\right)}}{\frac{3}{2}} + K = \frac{2\sqrt{u^3}}{3} + K$$

substituindo u por seu valor original, temos: $I = \frac{2\sqrt{(1+e^x)^3}}{3} + K = \frac{2\sqrt{1+e^x}^3}{3}$

4) I =
$$\int \frac{x}{(1+4x^2)^2} dx ;$$

Solução

considerando $u = 1 + 4x^2$ => du = 8xdx => $\frac{1}{8}du = xdx$

substituindo estes valores na integral, temos:

$$I = \frac{1}{8} \int \frac{1}{u^2} du = \frac{1}{8} \left(-\frac{1}{u} \right) + K = -\frac{1}{8u} + K$$

substituindo u por seu valor original, temos: $I = -\frac{1}{8(1+4x^2)} + K$

5)
$$I = \int x e^{(-x^2)} dx$$
;

Solução

considerando $u = -x^2$ => du = -2xdx => $-\frac{1}{2}du = xdx$

substituindo estes valores na integral, temos:

$$I = -\frac{1}{2} \int \mathbf{e}^u dx = -\frac{1}{2} \mathbf{e}^u + \mathbf{K}$$

substituindo u por seu valor original, temos: $I = -\frac{1}{2} e^{(-x^2)} + K$

$$\mathbf{6)} \quad \mathbf{I} = \int \frac{\operatorname{sen}(x)}{\cos(x)^2} \, dx \,;$$

Solução

considerando u = cos(x) => du = -sen(x)dx => -du = sen(x)dx substituindo estes valores na integral, temc $\frac{1}{Page}$ 3

$$I = -\int \frac{1}{u^2} du = -\left(-\frac{1}{u}\right) + K = \frac{1}{u} + K$$

substituindo u por seu valor original, temos: $I = \frac{1}{\cos(x)} + K$

7)
$$I = \int \sin(2x) \sqrt{5 + \sin(x)^2} dx$$
;

Solução

considerando
$$u = 5 + sen(x)^2 = 5 + \frac{1 - cos(2x)}{2} = 5 + \frac{1}{2} - \frac{cos(2x)}{2} =>$$

=> $du = sen(2x)dx$

substituindo estes valores na integral, temos:

$$I = \int \sqrt{u} \, dx = \int u^{\left(\frac{1}{2}\right)} du = \frac{u^{\left(\frac{3}{2}\right)}}{\frac{3}{2}} + K$$

substituindo u por seu valor original, temos: $I = \frac{2(5 + \text{sen}(x)^2)^{\left(\frac{2}{3}\right)}}{3}$

8)
$$I = \int tg(x)^3 \sec(x)^2 dx ;$$

Soloção

considerando $u = tg(x) => du = sec(x)^2 dx$ substituindo estes valores na integral, temos:

$$I = \int u^3 du = \frac{u^4}{4} + K$$

substituindo u por seu valor original, temos: $I = \frac{\operatorname{tg}(x)^4}{4} + K = \left(\frac{\operatorname{sen}(x)}{4 \cos(x)}\right)^4 + K$

K

9)
$$I = \int \operatorname{sen}(x) \operatorname{sec}(x)^2 dx ;$$

Solução

$$I = \int \frac{\sin(x)}{\cos(x)^2} dx$$

considerando u = cos(x) => du = -sen(x)dx => -du = sen(x)dx substituindo estes valores na integral, temos:

$$I = -\int \frac{1}{u^2} du = -\left(-\frac{1}{u}\right) + K = \frac{1}{u} + K$$

substituindo u por seu valor original, temos: $I = \frac{1}{\cos(x)} + K$

10)
$$I = \int \frac{\sec(x)^2}{3 + 2 \lg(x)} dx$$
;

■ Solução

considerando u = 3 + 2 tg(x) => $du = 2 sec(x)^2 dx$ => $\frac{1}{2} du = sec(x)^2 dx$ substituindo estes valores na integral, temos:

$$I = \frac{1}{2} \int \frac{1}{u} du = \frac{1}{2} \ln(|u|) + K$$

substituindo u por seu valor original, temos: $I = \frac{1}{2} \ln(|3 + tg(x)|) + K$

$$\mathbf{11}) \quad \mathbf{I} = \int \frac{x+2}{x-1} \, dx \quad ;$$

Solução

$$I = \int \frac{x+2}{x-1} dx = \int \frac{x-1+3}{x-1} dx = \int 1 + \frac{3}{x-1} dx$$

considerando u = x - 1 => du = dx substituindo estes valores na integral, temos:

$$I = \int 1 + \frac{3}{u} du = \int 1 du + 3 \int \frac{1}{u} du = u + 3 \ln(|u|) + K$$

substituindo u por seu valor original, temos: $I = x-1 + 3 \ln(|x-1|) + K = x + 3 \ln(|x-1|)$

$$x-1|) + K$$

$$12) \qquad I = \int \frac{x^2}{x+1} dx \; ;$$

Solução

considerando u = x + 1 => du = dxx = u - 1

substituindo estes valores na integral, temos:

$$I = \int \frac{(u-1)^2}{u} du = \int \frac{u^2 - 2u + 1}{u} du = \int u - 2 + \frac{1}{u} du = \int u du - \int 2 du + \int 1 du$$

$$\int \frac{1}{u} du =$$

$$= \frac{u^2}{2} - 2u + \ln(|u|) + K$$

substituindo u por seu valor original, temos: $I = \frac{1}{2}(x+1)^2 - 2(x+1) + \ln(|x+1|) + \ln(|x+1|)$

K =

$$= \frac{1}{2}(x^2 + 2x + 1) - 2x - 2 + \ln(|x + 1|) +$$

K =

$$=\frac{1}{2}x^2 - x + \ln(|x+1|) + K$$

13)
$$I = \int \frac{2}{5 + (x+2)^2} dx ;$$

💻 Solução

considerando $\sqrt{5}$ u = x + 2 => $\sqrt{5}$ du = dx substituindo estes valores na integral, temos:

$$I = \int \frac{2\sqrt{5}}{5 + (\sqrt{5}u)^2} du = \int \frac{2\sqrt{5}}{5 + 5u^2} du = \int \frac{2\sqrt{5}}{5(1 + u^2)} du = \frac{2\sqrt{5}}{5} \int \frac{1}{1 + u^2} du =$$

$$= \frac{2\sqrt{5}}{5} \operatorname{arctg}(u) + K$$

substituindo u por seu valor original, temos: $I = \frac{2\sqrt{5}}{5} \arctan\left(\frac{x+2}{\sqrt{5}}\right) + K = \frac{2\sqrt{5}}{5} \arctan\left(\frac{\sqrt{5}(x+2)}{5}\right) + K$

14) I =
$$\int \frac{2}{x^2 + 2x + 2} dx;$$

= Solução

$$x^{2} + 2x + 2 = x^{2} + 2x + 1 + 1 = (x+1)^{2} + 1 =$$
 => I = $\int \frac{2}{1 + (x+1)^{2}} dx$

considerando u = x + 1 => du = dxsubstituindo estes valores na integral, temos:

$$I = 2 \int \frac{1}{1 + u^2} du = 2 \operatorname{arctg}(u) + K$$

substituindo u por seu valor original, temos: $I = 2 \arctan(x+1) + K$

$$15) \qquad I = \int \frac{1}{x \ln(x)^2} dx \; ;$$

Solução

considerando $u = ln(x) => du = \frac{1}{x} dx => x du = dx$ substituindo estes valores na integral, temos:

$$I = \int \frac{x}{x u^2} du = \int \frac{1}{u^2} du = -\frac{1}{u} + K$$

substituindo u por seu valor original, temos: $I = -\frac{1}{\ln(x)} + k$

16) I =
$$\int 6 x^2 e^{(-x^3)} dx$$
;

Solução

considerando $u = -x^3$ => $du = -3x^2 dx$ => $-\frac{1}{3} du = x^2 dx$ substituindo estes valores na integral, temos:

$$I = -6 \int \frac{\mathbf{e}^u}{3} du = -2 \int \mathbf{e}^u du = -2 \mathbf{e}^u + \mathbf{K}$$

substituindo u por seu valor original, temos: $I = -2 e^{(-x^3)} + K$

17)
$$I = \int \frac{x^4}{\cos(1 - x^5)^2} dx ;$$

Solução

considerando $u = 1 - x^5$ => $du = -5 x^4 dx$ => $-\frac{1}{5} du = x^4 dx$ substituindo estes valores na integral, temos:

$$I = -\frac{1}{5} \int \frac{1}{\cos(u)^2} du = -\frac{1}{5} \int \sec(u)^2 du = -\frac{1}{5} \operatorname{tg}(u) + K$$

substituindo u por seu valor original, temos: $I = -\frac{1}{5} \operatorname{tg}(1 - x^5) + K$

18)
$$I = \int \frac{\sin(\sqrt{x})}{\sqrt{x}} dx ;$$

Solução

considerando
$$u = \sqrt{x} = x^{\left(\frac{1}{2}\right)}$$
 => $du = \frac{1}{2}x^{\left(-\frac{1}{2}\right)}dx = \frac{1}{2\sqrt{x}}dx$ => $2 du =$

$$\frac{1}{\sqrt{x}} dx$$

substituindo estes valores na integral, temos:

$$I = 2 \int \operatorname{sen}(u) du = -2 \cos(u) + k$$

substituindo u por seu valor original, temos: $I = -2\cos(\sqrt{x}) + K$

19) I =
$$\int \frac{\ln(x)}{x(1 + \ln(x)^2)} dx ;$$

Solução

considerando $u = ln(x) => du = \frac{1}{x} dx => x du = dx$ substituindo estes valores na integral, temos:

$$I = \int \frac{x u}{x (1 + u^2)} du = \int \frac{u}{1 + u^2} du$$

considerando $w = 1 + u^2 \implies dw = 2u du \implies \frac{1}{2} dw = u du$ substituindo estes valores na última integral, temos:

$$I = \frac{1}{2} \int \frac{1}{w} dw = \frac{1}{2} \ln(w) + K$$

como $u = \ln(x) = w = 1 + \ln(x)^2$

substituindo w na última expressão, temos: $I = \frac{1}{2} \ln(1 + \ln(x)^2) + K$

20) I =
$$\int \frac{\mathbf{e}^x}{1 + \mathbf{e}^{(2x)}} dx$$
;

Solução

$$I = \int \frac{\mathbf{e}^x}{1 + \mathbf{e}^{(2x)}} du = \int \frac{\mathbf{e}^x}{1 + (\mathbf{e}^x)^2} du$$

considerando $u = e^x$ => $du = e^x dx$ substituindo estes valores na integral, temos:

$$I = \int \frac{1}{1+u^2} du = \arctan(u) + K$$

substituindo u por seu valor original, temos: $I = arctg(e^x) + K$

Jailson Marinho Cardoso Aluno do curso de Matemática Universidade Federal da Paraíba

Campus I 15/07/2000
