Homework 4

Due Tuesday, September 28 at 10am. Please upload a legible copy to bCourses.

You may work together, but the solutions must be written up in your own words. Show all work and justify all answers.

- 1. For a-d, the metric space is \mathbb{R} . For e the metric space is \mathbb{R}^2 . Prove that
 - a) (0,1) is open and not closed.
 - b) [0,1] is closed and not open.
 - c) $\{0\} \cup \{1, 1/2, 1/3, ..., 1/n, ...\}$ is closed and not open.
 - d) \mathbb{Q} is neither open nor closed.
 - e) $\{x \in \mathbb{R}^2 | d(x, (0, 0)) < 1\} \subset \mathbb{R}^2$ is open and not closed.
- 2. Let S be a metric space with distance function d.
 - a) Let U be the union of a collection of open sets. Prove that U is open. (in more detail: Let A be some set, finite or infinite. Suppose that for each $\alpha \in A$, there exists an open subset of S called U_{α} . Show that

$$U = \bigcup_{\alpha \in A} U_{\alpha} = \{ s \in S | s \in U_{\alpha} \text{ for some } \alpha \in A \}$$

is open.)

- b) Let $U_1,...,U_k$ be a finite collection of open sets. Prove that $V=U_1\cap U_2\cap...\cap U_k$ is open.
- c) Find an infinite collection of sets $U_1, U_2, ..., U_n, ...$, each $U_n \subset \mathbb{R}$, such that the intersection of all of the U_n is NOT open.

(In Problems 3 and 4, you will prove the following theorem: a set $E \subset S$ is closed if and only if every convergent sequence in E converges to an element of E. Therefore, do not use that theorem in problems 3 and 4. Use only the definition of a closed set as the complement of an open set.)

3. Let S be a metric space with distance function d. Let $E \subset S$ and let (s_n) be a sequence in E. Assume that $s_n \to s$ and $s \notin E$. Prove that E is not closed.

(Hint: Show that for every r > 0, there exists an n such that $d(s_n, s) < r$.)

4. Let S be a metric space with distance function d. Assume that $E \subseteq S$ is not closed. Prove that there exists a sequence (s_n) in E such that $s_n \to s$ and $s \notin E$.

(Hint: Prove that there exists $s \in S \setminus E$ which violates the definition of an open set. Use that violation to construct a sequence converging to s.)

- 5. Let S be a metric space with distance function d. Let E be a sequentially compact subset of S and let F be a closed subset of S such that $F \subseteq E$. Prove that F is sequentially compact.
- 6. Let $a_n \in \mathbb{R}$, $a_n > 0$ for all $n \in \mathbb{N}$. Consider the sequence $\left(\frac{a_{n+1}}{a_n}\right)$. Let $C \in \mathbb{R}$ such that

$$\limsup \frac{a_{n+1}}{a_n} < C.$$

Prove that there exists $N \in \mathbb{N}$ such that for n > N,

$$a_n < C^{n-N} a_N.$$

(see next page for problem 7)

- 7. Consider the series $\sum \frac{k^2}{3^k}$.
 - a) Use the ratio test to show the series converges.
 - b) Use the root test to show the series converges. (You can use the fact that $\lim n^{1/n} = 1$ without proof. See Ross Theorem 9.7)
 - c) Use the limit comparison test to show the series converges (Hint: Compare to a geometric series. You might need to consider only large k.)