SIIM-ACR Pneumothorax Segmentation

Anuar Aimoldin

kaggle

Agenda

- 1. Background
- 2. Overview
- 3. Input Data
- 4. Model
- 5. Post Processing
- 6. Final Prediction
- 7. References

1. Background

GitHub github.com/sneddy/

kaggle kaggle.com/sneddy

Anuar Aimoldin

- Master of Science at Moscow State University
- AI Department Team Lead at BTSDigital
- Creator of community
 <u>Data Science Kazakhstan</u>
- No prior knowledge of medicine

#	∆pub	Team Name	Notebook	Team Members	Score @	Entries	Last
1	208	[dsmlkz] sneddy		25	0.8679	15	13h
2	a 114	X5		RUA 🥦 🕸 🙎 🕍	0.8665	3	6d
3	- 16	bestfitting			0.8651	7	10h
4	- 237	[ods.ai] amirassov		2	0.8644	2	2d
5	- 127	earhian			0.8643	5	7h
6	- 154	[vuno.ai] 4 Goose island		9999	0.8636	5	2h
7	- 38	xknife		S S S	0.8635	6	3h
8	▲ 236	APPA			0.8629	6	3h
9	8 7	lan & Felipe		<u>©</u>	0.8627	2	6d
10	-2	[ods.ai] Scizzzo		P	0.8625	11	2h
11	- 87	[ods.ai] Yury & Konstantin			0.8615	2	15h

2. Overview

- Aggressive Augmentation
- HorizontalFlip
- RandomContrast
- RandomGamma
- RandomBrightness
- ElasticTransform
- GridDistortion
- OpticalDistortion
- ShiftScaleRotate
- Resize

- Aggressive Augmentation
- HorizontalFlip
- RandomContrast
- RandomGamma
- RandomBrightness
- ElasticTransform
- GridDistortion
- OpticalDistortion
- ShiftScaleRotate
- Resize

800

- Aggressive Augmentation
- HorizontalFlip
- RandomContrast
- RandomGamma
- RandomBrightness
- ElasticTransform
- GridDistortion
- OpticalDistortion
- ShiftScaleRotate
- Resize

 Sliding Sample Rate

4. Model

- Model zoo
- Combo loss

Model Zoo:

- resnet34 (albunet)
- resnet50
- seresnext50 (seunet)

Combo loss:

I use combinations of BCE, dice and focal loss. In the best experiments the weights of (BCE, dice, focal), that I use are:

- (3,1,4) for albunet_valid and seunet
- (1,1,1) for albunet_public
- (2,1,2) for resnet50

Experiment name	Train info	Fold 0	Fold 1	Fold 2	Fold 3	Fold 4	Mean by folds	Submit Info	Public LB	Exist Pneumothorax
								best 'AREA_THRESHOLD': 1000, 'SCORE_THRESHOLD': 0.3,	0.8753	221
AlbunetPublic-512	TRAIN_TRANSFORMS: transforms/train_transforms_complex_512_old.json VALID_TRANSFORMS:	0.0500			0.0500	0.0400		top3 'AREA_THRESHOLD': 1000, 'SCORE THRESHOLD': 0.3.	0.0757	
	transforms/valid_transforms_512_old.json	0.8528	0.8503	0.8499	0.8533	0.8493	0.85112	AREA_THRESHOLD': 2250, 'SCORE_THRESHOLD': 0.45,	0.8757	231
AlbunetPublic	TRAIN_TRANSFORMS: transforms/train_transforms_complex_1024_old.json VALID_TRANSFORMS: transforms/valid_transforms_1024_old.json	0.857	0.856	0.857	0.8539	0.85551	0.8558	AREA_THRESHOLD: 600 TOP_SCORE_THRESHOLD: 0.75 BOTTOM_SCORE_THRESHOLD: 0.4	0.8871	251
SeUnet-512	TRAIN_TRANSFORMS': 'transforms/train_transforms_complex_512_old.json', 'VALID_TRANSFORMS':							AREA_THRESHOLD: 600 TOP_SCORE_THRESHOLD: 0.75 BOTTOM_SCORE_THRESHOLD: 0.4		
SeUnet-1024	'transforms/valid_transforms_512_old.json' TRAIN_TRANSFORMS: transforms/train_transforms_complex_1024_old.json VALID_TRANSFORMS: transforms/valid_transforms_1024_old.json	0.85391			0.85648	0.8511	0.853218	AREA_THRESHOLD: 600 TOP_SCORE_THRESHOLD: 0.75 BOTTOM_SCORE_THRESHOLD: 0.4	0.8777	252
AlbunetValid-512	transforms/train_transforms_complex_512_old.json'	0.8554	0.85334	0.852	0.85431	0.8507	0.85315			
AlbunetValid	transforms/train_transforms_complex_1024_old.json'	0.85771	0.8535	0.8591	0.86154	0.85718	0.857806	AREA_THRESHOLD: 600 TOP_SCORE_THRESHOLD: 0.75 BOTTOM_SCORE_THRESHOLD: 0.4	0.8842	254
Resnet50	train_transforms_complex_1024.json	0.85951	0.85674	0.85614	0.8583	0.86039	0.858216	AREA_THRESHOLD: 600 TOP_SCORE_THRESHOLD: 0.75 BOTTOM_SCORE_THRESHOLD: 0.4	0.8831	228

4. Model

- Reduce learning rate over time
- Reduce sample rate over time
- Uptrain from lower resolution dataset

Part 0

Train for 10-12 epoches from pretrained model with large learning rate (~1e-4), large sample rate (0.8) and ReduceLROnPlateau scheduler. The model can be pretrained on imagenet or on our dataset with lower resolution (512x512). The goal of this part: quickly get a good enough model with validation score about 0.835

Part 1

Uptrain the best model from the previous step with **normal learning rate** (~1e-5), large sample rate (0.6) and CosineAnnealingLR or CosineAnnealingWarmRestarts scheduler. Repeat until best convergence

Part 2

Uptrain the best model from the previous step with **normal learning rate** (~1e-5), small sample rate (0.4) and CosineAnnealingLR or CosineAnnealingWarmRestarts scheduler. Repeat until best convergence

Second stage

Simple uptrain with relatively **small learning rate(1e-5 or 1e-6)**, **small sample rate (0.5)** and CosineAnnealingLR or CosineAnnealingWarmRestarts scheduler.

5. Post processing:

• «Triplet» rule

Doublet

top_score_threshold, min_pneumo_area (0.5, 3)

0.8	0.5	0.6		1	1	1
0.1	0.1	0.9	→	0	0	1
0.1	0.2	0.1		0	0	0

We apply top_score_threshold. Sum is more than min_pneumo_area, therefore We keep it!

Second example:

Triplet

top_score_threshold, min_pneumo_area, bottom_score_threshold (0.7, 2, 0.3)

0.4	0.4	0.8		0	0	1
0.1	0.1	0.9	\longrightarrow	0	0	1
0.1	0.2	0.1		0	0	0

We apply top_score_threshold. Sum is more than min_pneumo_area, therefore We keep it!

After that we apply bottom_score_threshold to the source image

0.4	0.4	0.8		1	1	1
0.1	0.1	0.9	\longrightarrow	0	0	1
0.1	0.2	0.1		0	0	0

6. Final Prediction

Best experiments:

- albunet_public best model for Public Leaderboard
- albunet_valid best resnet34 model on validation
- seunet best seresnext50 model on validation
- resnet50 best resnet50 model on validation

Best triplet thresholds:

- on validation: (0.75, 2000, 0.4)
- on public leaderboard: (0.7, 600, 0.3)

For my final submissions I chose something in between these triplets

For the **final prediction**I use Top-3 best checkpoints from each fold from each experiment

7. References

Augmentations from albumentations [1]

Albunet from ternausnet [2]

ComboLoss from selim_sef SpaceNet 4 [3]

kaggle