Accurate Unlexicalized Parsing

by Dan Klein and Christopher D. Manning (ACL 2003)

Presented by Ulrich Germann

Background

- Naïve PCFGs tend to perform poorly, because their assumptions of context-freeness are too strong.
- Previous work (Magerman (1995), Collins(1996,1999), Charniak (1997,2000,2001)) relies on *lexicalization* of the PCFGs to improve performance.

Performance on ser	up to 40	words	
system	Precision	Recall	F_1
baseline naïve PCFG			72.6%
Magerman (1995)	84.9%	84.6%	84.7%
Collins (1996)	86.3%	85.8%	86.0%
Charniak (1997)	87.4%	87.5%	87.4%
Collins (1999)	88.7%	88.6%	88.6%
Charniak (2001)	90.1%	90.1%	90.1%

Beyond and Apart from Lexicalization

- Johnson (1998): Annotating each node with the category of its parent category boosts performance from 73.5% to 80.0% on sequences of POS tags.
- Charniak (2001) also considers parent annotation in a ME framework.
- Collins (1997,1999,2003) uses subcategorization information in his model 2.
- Gildea (2001) shows that removing bilexical probabilities from Collins's model 1 has only a very small negative effect on parsing quality.

Daniel Gildea's Experiment (EMNLP '01)

Collins's Model 1: $P(w_i, T_i, t_i | T_p, T_h, w_h, t_h, \Delta)$ $= P(\mathbf{w_i}|T_i, t_i, T_p, T_h, \mathbf{w_h}, t_h, \Delta)$ $\times P(T_i, t_i | T_p, T_h, w_h, t_h, \Delta)$ S(bought, VBD) NP(week,NN) VP(bought, VBD) NP(IBM,NNP) NNP(IBM,NNP) VBD(bought, VBD) NP(Lotus, NNP) JJ(Last,JJ) NN(week,NN) **IBM** NNP(Lotus, NNP) Last bought week

Lotus

Daniel Gildea's Experiment (cont'd)

$$P(w_i|T_i,t_i,T_p,T_h,w_h,t_h,\Delta) \approx$$

$$\lambda_1 \bar{P}(w_i|T_i, t_i, T_p, T_h, w_h, t_h, \Delta)$$

+
$$(1 - \lambda_1) \left(\lambda_2 \bar{P}(w_i | T_i, t_i, T_p, T_h, t_h, \Delta) + (1 - \lambda_2) \bar{P}(w_i | t_i) \right)$$

Daniel Gildea's Experiment (cont'd)

$$P(w_i|T_i, t_i, T_p, T_h, w_h, t_h, \Delta) \approx$$

$$\sum_{i=1}^{n} \bar{P}(w_i | T_i, t_i, T_p, T_n, w_n, t_n, \Delta)$$

+
$$(1 \rightarrow \lambda_1)$$
 $(\lambda_2 \bar{P}(w_i|T_i, t_i, T_p, T_h, t_h, \Delta) + (1 - \lambda_2) \bar{P}(w_i|t_i))$

w/ higrams

w/o bigrams

		w bigians		W/O bigianis	
training set	test set	recall	prec.	recall	prec.
WSJ	WJS	86.1	86.6	85.6	86.2
WSJ	Brown	80.3	81.0	80.3	81.0
Brown	Brown	83.6	84.6	83.5	84.4
WSJ+Brown	Brown	83.9	84.8	83.4	84.3
WSJ+Brown	WSJ	86.3	86.9	85.7	86.4

WSJ: \sim 40k sentences/950k words; Brown: \sim 22k sentences/413k words

What the Paper is About ...

How far can we get without lexicalization?

Why bother?

- improved baseline for unlexicalized probabilistic parsing
- insights
- smaller grammars that are easier to reason about
- faster parsing $O(n^3)$ with lower grammar constant

What's Wrong with Naïve PCFGs?

Category symbols are too coarse; the probability distribution within the categories is not accounted for well.

Example: A subject-NP is 8.7 times more likely than an object-NP to expand just as a pronoun.

- Training data is too sparse for accurate occurrence counts of rare rules.
 - probability of seen rare events is overestimated
 - probability of unseen rare events is underestimated

Klein & Manning's Approach

- Vertical and horizontal "Markovization" of probabilistic estimates.
- Additional annotation of tags with information available from the trees.
- Linguistically (and empirically) motivated splitting of POS-level categories into subcategories.
- Selective splitting of categories based on information obtainable from the trees in the treebank.
- Expressly no smoothing except for POS tagging.

Markovization

Except for the root node, every node in a parse tree has

- a vertical history/context (parent, grandparent, etc.)
- a horizontal history/context

Traditional PCFGs use the full horizontal context and a vertical context of 1.

Horizontal Markovization

- Also used by Collins (1997,1999).
- Always takes the head into account (not by definition, but as used by Collins and K&M).
- Markov assumption:

$$P(L_{i}|P, H, L_{1}, ..., L_{i-n+1}, ..., L_{i-1})$$

$$= P(L_{i}|P, H, L_{i-n+1}, ..., L_{i-1})$$

$$P(R_{i}|P, H, R_{1}, ..., R_{i-n+1}, ..., R_{i-1})$$

$$= P(R_{i}|P, H, R_{i-n+1}, ..., R_{i-1})$$

VBZ

VP

Amounts to tree binarization:

$$\Rightarrow \langle \mathsf{VP}:[\mathsf{VBZ}] \rangle \qquad \to \quad \mathsf{VBZ}$$

$$\langle \mathsf{VP}:[\mathsf{VBZ}] \dots \mathsf{NP} \rangle \qquad \to \quad \langle \mathsf{VP}:[\mathsf{VBZ}] \rangle \; \mathsf{NP}$$

$$\langle \mathsf{VP}:[\mathsf{VBZ}] \dots \mathsf{PP} \rangle \qquad \to \quad \langle \mathsf{VP}:[\mathsf{VBZ}] \dots \mathsf{NP} \rangle \; \mathsf{PP}$$

Vertical Markovization

generalization of parent annotation

```
S \rightarrow NP VP S \rightarrow NP^*S VP^*S NP \rightarrow NN \Rightarrow NP^*S \rightarrow NN NP^*S \rightarrow NN
```

On a marginal note: K&M treat POS tags as terminals and discuss parent-annotation of POS-tags separately.

Markovization: Results

		Horizontal Markov Order				
Vertical Order		h=0	h = 1	$h \leq 2$	h = 2	$h = \infty$
v=1	No annotation	71.27	72.5	73.46	72.96	72.62
		(854)	(3119)	(3863)	(6207)	(9657)
$v \leq 2$	Sel. Parents	74.75	77.42	77.77	77.50	76.91
		(2285)	(6564)	(7619)	(11398)	(14247)
v=2	All Parents	74.68	77.42	77.81	77.50	76.81
		(2984)	(7312)	(8367)	(12132)	(14666)
$v \leq 3$	Sel. GParents	76.50	78.59	79.07	78.97	78.54
		(4943)	(12374)	(13627)	(19545)	(20123)
v=3	All GParents	76.74	79.18	79.74	79.07	78.72
		(7797)	(15740)	(16994)	(22886)	(22002)

Figure 2: Markovizations: F₁ and grammar size.

Markup of Unary Nodes

- 'U (external unary) "I am the only child."
- -U (internal unary) "I have only one child."
 - Roughly the same performance in isolation; in combination with other features "internal unary" is better.
 - On the preterminal level (POS → word), external unary mark-up helps with
 - demonstratives (that, this) vs. articles (a, the)
 - both labeled as DT in Penn TreeBank
 - adverbs (e.g., also vs. as well).
 - "Beyond these cases, unary tag marking was detrimental."

Benefits of Unary Markup: Example

Figure 4: An error which can be resolved with the UNARY-INTERNAL annotation (incorrect baseline parse shown).

Tag Splitting

- Parent annotation also for preterminal tags.
- Splitting of IN tags into 6 linguistically motivated groups (prepositions vs. conjunctions vs. complementizers; noun-modifying vs. primarily verb-modifying prepositions (of vs. as)).
- Distinction between auxiliaries have and be.
- Special conjunction class containing but/But and &.
- % gets its own tag.

Benefits of TAG-PA/SPLIT-IN

Figure 5: An error resolved with the TAG-PA annotation (of the IN tag): (a) the incorrect baseline parse and (b) the correct TAG-PA parse. SPLIT-IN also resolves this error.

Annotations already in the treebank

- generally hurt, with two exceptions
 - mark-up of temporal NPs (NP-TMP)
 - mark-up of sentences with a gap (GAPPED-S)

Figure 6: An error resolved with the TMP-NP annotation: (a) the incorrect baseline parse and (b) the correct TMP-NP parse.

Head Annotation

- propagates information from the head to the parent
- 2 mark-ups found particularly useful:
 - Mark-up of possessive NPs (POSS-NP).
 - Distinction between finite and non-finite VPs (SPLIT-VP).

Tackling Attachment Ambiguities

Three features found useful:

- mark-up of plain base NPs (NP → NN)
- mark-up of nodes that dominate a verb
- mark-up of NPs that contain another NP in their right periphery

Results

	Cumulative			Indiv.
Annotation	Size	F_1	ΔF_1	ΔF_1
Baseline $(v \le 2, h \le 2)$	7619	77.77	_	_
UNARY-INTERNAL	8065	78.32	0.55	0.55
UNARY-DT	8066	78.48	0.71	0.17
UNARY-RB	8069	78.86	1.09	0.43
TAG-PA	8520	80.62	2.85	2.52
SPLIT-IN	8541	81.19	3.42	2.12
SPLIT-AUX	9034	81.66	3.89	0.57
SPLIT-CC	9190	81.69	3.92	0.12
SPLIT-%	9255	81.81	4.04	0.15
TMP-NP	9594	82.25	4.48	1.07
GAPPED-S	9741	82.28	4.51	0.17
POSS-NP	9820	83.06	5.29	0.28
SPLIT-VP	10499	85.72	7.95	1.36
BASE-NP	11660	86.04	8.27	0.73
DOMINATES-V	14097	86.91	9.14	1.42
RIGHT-REC-NP	15276	87.04	9.27	1.94

Figure from Klein & Manning (2003)

Conclusions

- K&M significantly raise the baseline on unlexicalized parsing.
- Their work shows that one can recover from over-generalizations in the treebank ...
- ... and that it's worth the effort.
- Better modeling is based on linguistic analysis.
- Raises some interesting questions . . .

Questions

- What do the learning curves for unlexicalized vs. lexicalized parsing look like?
- How do the different parsers perform on out-of-domain data?
- What are the confidence intervals for the results?
- What dow the parsers still struggle with? (According to Collins (2003), coordination structures are a big problem.)