南京工业大学 高等数学 A-2 试题 (A)卷 试题标准答案

2013 -- 2014 学年第 2 学期 使用班级 江浦大一学生

一、选择题(本大题共5小题,每小题3分,总计15分)

$$1$$
、 (A) 2 、 (D) 3 、 (B)

二、填空题(本大题共5小题,每小题3分,总计15分)

1.
$$(1,1,2)$$
 2. $y''-4y'+4y=0$ 3. 4π 4. $\sum_{n=0}^{\infty} \frac{(-1)^n}{2^{n+1}} (x-2)^n$ $(0 < x < 4)$ 5. 0

三、解答下列各题(本大题共 4 小题,每小题 7 分,总计 28 分,每题要有必要的解题步骤)

1、**解:**
$$gradf = \{2x - 4, 4y - 6, 6z - 8\};$$
 $gradf|_{(2,1,2)} = \{0, -2, 4\}$ 4 分

 $|gradf|_{(2,1,2)}|=2\sqrt{5}$, 函数 f(x,y,z) 在点 (2,1,2) 处方向导数的最大值为 $2\sqrt{5}$ 3 分

2、解: 等式两边分别对
$$x$$
 求偏导,得 $\frac{\partial z}{\partial x} = \frac{z}{x+z}$ 2 分

等式两边分别对
$$y$$
 求偏导,得 $\frac{\partial z}{\partial y} = \frac{z^2}{y(x+z)}$ 2 分

故
$$dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy = \frac{z}{x+z} dx + \frac{z^2}{y(x+z)} dy$$
3 分

3、解:

$$\iint_{D} x \, dx \, dy = \iint_{D} r \cos \theta \cdot r \, dr \, d\theta$$

$$= \int_{0}^{\frac{\pi}{4}} d\theta \int_{2}^{\frac{3}{\cos \theta}} r^{2} \cos \theta \, dr$$

$$= \int_{0}^{\frac{\pi}{4}} \left(\frac{9}{\cos^{2} \theta} - \frac{8}{3} \cos \theta \right) d\theta$$

$$= \left[9 \tan \theta - \frac{8}{3} \sin \theta \right]_{0}^{\frac{\pi}{4}} = 9 - \frac{4\sqrt{2}}{3}.$$

(本题也可先计算大的三角形区域积分,采用直角坐标,再计算扇形区域积分,采用极坐标, 两者相减更简单)

4. **AP:**
$$P = 2xy - 2y$$
, $Q = x^2 - 4x$, $\frac{\partial Q}{\partial x} = 2x - 4$, $\frac{\partial P}{\partial y} = 2x - 2$ 2 $\frac{\partial Q}{\partial y} = 2x - 2$

由格林公式
$$\oint_L (2xy - 2y)dx + (x^2 - 4x)dy = \iint_D (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})dxdy$$
2 分

$$= \iint_{D} (-2)dxdy = (-2) \cdot 9\pi = -18\pi \qquad3 \text{ fi}$$

四、解答下列各题(本大题共 4 小题,每小题 7 分,总计 28 分,每题要有必要的解题步骤)

1、**解:** 由条件可知
$$\frac{dy}{dx} = 2x + y$$
,且 $y(0) = 0$ 2 分

其通解为
$$y = e^{\int dx} \left[\int 2x e^{-\int dx} dx + c \right] = e^x \left[2 \int x e^{-x} dx + c \right] = ce^x - 2x - 2$$
4 分

将
$$y(0) = 0$$
 代入通解中,得 $c = 2$,故所求曲线方程为 $y = 2e^x - 2x - 2$ 1 分

2、**解**:
$$f_x = 2x$$
, $f_y = 8y$; 令
$$\begin{cases} f_x = 0 \\ f_y = 0 \end{cases}$$
 解得驻点: $(0,0)$, 在区域内 $f(0,0) = 9$ 2 分 在边界上 $x^2 = 4 - y^2$ 代入, 得 $f = 3y^2 + 13$ ($-2 \le y \le 2$)

令
$$\frac{df}{dy} = 0$$
 得 $y = 0$, 这时 $x = \pm 2$;

$$f(2,0) = 13, f(-2,0) = 13, f(0,-2) = f(0,2) = 25$$
3 $\%$

比较得最大值:
$$f(0,-2) = f(0,2) = 25$$
, 最小值: $f(0,0) = 9$ 2分

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{3^n \cdot n}{3^{n+1} \cdot (n+1)} = \frac{1}{3} < 1 \quad , \text{ 故原级数绝对收敛;} \qquad3 分$$

记
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n} x^n$$
 , 易知收敛半径 $R = 1$, 当 $-1 < x < 1$ 时,

$$S'(x) = \sum_{n=1}^{\infty} x^{n-1} = \frac{1}{1-x}$$
, $\neq \mathbb{E} S(x) = \int_0^x \frac{1}{1-x} dx = -\ln(1-x)$;3 \Rightarrow

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{3^n \cdot n} = S(-\frac{1}{3}) = -\ln \frac{4}{3} . \qquad \dots \dots 1$$

4. #:
$$P = (y - z)x$$
, $Q = 0$, $R = x - y$, $\frac{\partial P}{\partial x} = y - z$, $\frac{\partial Q}{\partial y} = 0$, $\frac{\partial R}{\partial z} = 0$ 2 \mathcal{H}

由高斯公式 $\bigoplus_{y} (x-y)dxdy + (y-z)xdydz$

$$= \iiint_{\Omega} (y-z)dxdydz \qquad \dots 3 \, \mathcal{T}$$

$$= \iiint\limits_{\Omega} (-z)dxdydz = -\frac{9}{2}\pi \qquad \dots \dots 2 \, \mathcal{H}$$

(计算积分 $\iiint_{\Omega} (-z) dx dy dz$ 可以采用截面法或柱坐标)

五、应用题(本题8分)

五、解:记此均匀薄片的质心坐标为 $\mathbf{M}(x,y)$,由对称性知x=0,1分

$$\overline{y} = \frac{\iint\limits_{D} y dx dy}{\iint\limits_{D} dx dy} = \frac{2 \int_{0}^{1} dx \int_{0}^{a(1-x^{2})} y dy}{2 \int_{0}^{1} a(1-x^{2}) dx} = \frac{2}{5} a \qquad3 \, \%$$

即质心坐标为 $\mathbf{M}(0,\frac{2}{5}a)$;

由条件可知,
$$\frac{2}{5}a=1$$
,得 $a=\frac{5}{2}$ 。4 分

(问题等价于: 当转 45° 时 \mathbf{M} 在 (1,0) 点的正上方,也就是此时 $\mathbf{OM} \perp x$ 轴,即转之前 \mathbf{OM} 与 x 轴也是夹角 45°)

六、证明题(本题6分)

证明: 由题目条件可知 f'(0) = 0, 将 f(x) 在 x = 0 的小邻域内泰勒展开, 得

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + o(x^2)$$

将 $x = \frac{1}{n}$ 代入上式,得

$$f(\frac{1}{n}) = f(0) + f'(0)\frac{1}{n} + \frac{f''(0)}{2!}\frac{1}{n^2} + o(\frac{1}{n^2})$$
$$f(\frac{1}{n}) - 1 = \frac{1}{n^2} + o(\frac{1}{n^2})$$

即当
$$n \to \infty$$
时, $f(\frac{1}{n})-1>0$ 且与 $\frac{1}{n^2}$ 为等价无穷小;4分

又因为级数
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 收敛,所以级数 $\sum_{n=1}^{\infty} [f(\frac{1}{n}) - 1]$ 也收敛。2 分