Задача 1

Найти длины векторов \mathbf{x} и \mathbf{y} , их скалярное произведение и угол между ними, если их координаты в некотором ортонормированном базисе имеют вид:

- 1. $\mathbf{x} = \{1,0,1,0\}, \ \mathbf{y} = \{0,-1,0,1\}.$
- 2. $\mathbf{x} = \{1,1,1,1\}, \ \mathbf{y} = \{2,2,2,2\}.$
- 3. $\mathbf{x} = \{1, 1, 1, 1\}, \ \mathbf{y} = \{1, 0, 0, 0\}.$

Ответ:

- 1. $\|\mathbf{x}\| = \sqrt{2}$, $\|\mathbf{y}\| = \sqrt{2}$, $(\mathbf{x}, \mathbf{y}) = 0$, $\cos(\varphi) = 0$, векторы \mathbf{x} и \mathbf{y} ортогональны.
- 2. $\|\mathbf{x}\| = 2$, $\|\mathbf{y}\| = 4$, $(\mathbf{x}, \mathbf{y}) = 8$, $\cos(\varphi) = 1$, векторы \mathbf{x} и \mathbf{y} коллинеарны.
- 3. $\|\mathbf{x}\| = 2$, $\|\mathbf{y}\| = 1$, $(\mathbf{x}, \mathbf{y}) = 1$, $\cos(\varphi) = 1/2$, угол между векторами \mathbf{x} и \mathbf{y} равен $\pi/6$.

Задача 2 (*)

Пусть $\{\mathbf{f}\} = \{\mathbf{f}_1, \mathbf{f}_2, \mathbf{f}_3\}$ – некоторый базис евклидова пространства.

Используя процедуру ортогонализации Грама-Шмидта, построить ортонормированный базис, если координаты векторов $\{\mathbf{f}\}$ в некотором ортонормированном базисе имеют вид:

- 1. $\mathbf{f}_1 = \{0,1,1\}, \ \mathbf{f}_2 = \{1,1,0\} \ \text{if } \mathbf{f}_3 = \{1,0,1\}.$
- 2. $\mathbf{f}_1 = \{-1,0,1\}, \ \mathbf{f}_2 = \{1,2,0\} \ \text{и} \ \mathbf{f}_3 = \{-1,0,0\}.$
- 3. $\mathbf{f}_1 = \{-1, 2, -1\}, \ \mathbf{f}_2 = \{2, -1, 2\} \ \text{if } \mathbf{f}_3 = \{0, -2, -1\}.$

Ответ:

1.
$$\mathbf{e}_1 = \frac{1}{\sqrt{2}} \{0,1,1\}, \ \mathbf{e}_2 = \frac{1}{\sqrt{6}} \{2,1,-1\} \ \text{if } \mathbf{e}_3 = \frac{1}{\sqrt{3}} \{1,-1,1\}.$$

2.
$$\mathbf{e}_1 = \frac{1}{\sqrt{2}} \{-1,0,1\}, \ \mathbf{e}_2 = \frac{1}{\sqrt{6}} \{1,4,1\} \ \text{if } \mathbf{e}_3 = \frac{1}{3} \{-2,1,-2\}.$$

3.
$$\mathbf{e}_1 = \frac{1}{\sqrt{6}} \{-1, 2, -1\}, \ \mathbf{e}_2 = \frac{1}{\sqrt{3}} \{1, 1, 1\} \ \text{if } \mathbf{e}_3 = \frac{1}{\sqrt{2}} \{1, 0, -1\}.$$

Задача 3 (*)

Доказать, что:

- 1. Функция $\|\mathbf{x}\| = \sqrt{(\mathbf{x}, \mathbf{x})}$ может быть использована для определения длины вектора \mathbf{x} , т.к. удовлетворяет определению нормы вектора.
- 2. Функция $\rho(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} \mathbf{y}\|$ может быть использована для определения расстояния между векторами \mathbf{x} и \mathbf{y} , т.к. удовлетворяет определению метрики.
- 3. Отношение

$$\frac{(\mathbf{x},\mathbf{y})}{\|\mathbf{x}\|\|\mathbf{y}\|}$$

может быть использована для определения косинуса угла между векторами ${\bf x}$ и ${\bf y}$, т.к. не превосходит по модулю единицы; дать геометрическую интерпретацию ситуации, когда модуль отношения равен единице.

Задача 4 (*)

Доказать, что имеют место следующие неравенства:

- 1. $\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|$.
- 2. $\|\mathbf{x} + \mathbf{y}\| \ge \|\mathbf{x}\| \|\mathbf{y}\|$.

11.03.2018 20:59:55