

ESCUELA SUPERIOR PÓLITECNICA DEL LITORAL

WORKSHOP ABOUT EMPIRICAL SOFTWARE TESTING AUTORES:

- AGUILAR MORA OSWALDO
- BERMUDEZ MOREIRA KAREN
- BERNAL MOREIRA GUILLERMO
 - ORTIZ HOLGUIN EDUARDO
 - WONG PAVON HUGO

MATERIA: ING. SOFTWARE II

TUTOR: DR. MERA CARLOS

ENTREGA: 2020/06/11

1. Resumen

El presente documento contiene el reporte técnico correspondiente al primer taller grupal de nombre "WORKSHOP ABOUT EMPIRICAL SOFTWARE TESTING" del GRUPO#4 perteneciente al curso de INGENIERIA DE SOFTWARE II del PAO I.

El reporte contiene una descripción del taller, el pseudocódigo, el planteamiento de las pruebas, la implementación en JAVA y el resultado de las pruebas.

2. Descripción

Se presenta la problemática de triángulo junto a un pseudocódigo que da solución a la identificación del tipo de triangulo, o si los valores ingresados no forman dicha figura, con sus respectivas validación, se nos pide en este taller implementar el pseudocódigo, diseñar los casos de pruebas que se consideren necesarios y finalmente ejecutar dichos casos de prueba.

2.1. Problema del triángulo

Es uno de los problemas más usados para la enseñanza de **pruebas de software**, consiste en un programa que debe tomar como entrada tres valores numéricos enteros que corresponden a los lados de un triángulo, debe evaluar las condiciones necesarias y finalmente determinar si los valores ingresados corresponden a un triángulo **escaleno**, a uno **equilátero**, uno **isósceles** o en última instancia los valores no forman un triángulo.

Desigualdad

Para determinarlo se tienen las siguientes condiciones:

- Los valores ingresados deben estar en el rango de [1,200]
- Los valores deben cumplir con la desigualdad triangular.
- La igualdad de los lados determina si son equiláteros, escalenos o isósceles.

a + b > c b + c > a a + b = c b + c > a

del triángulo

Gráfico 1.- Desiauldad

2.2. Implementación

Se pide realizarla implementación usando como lenguaje **JAVA** adicionalmente emplear alguna herramienta para realizar los test y la herramienta de desarrollo colaborativo **Git**.

3. Pseudocódigo

```
Program triangle'
Dim a, b, c As Integer
Dim c1, c2, c3, IsATriangle As Boolean
'Step 1: Get Input
Do
    Output("Enter 3 integers which are sides of a triangle")
    Input(a, b, c)
    c1 = (1 \le a) \text{ AND } (a \le 200)
    c2 = (1 \le b) AND (b \le 200)
    c3 = (1 \le c) AND (c \le 200)
    If NOT(c1)
         Then Output("Value of a is not in the range of permitted values")
    EndIf
    If NOT(c2)
         Then Output("Value of b is not in the range of permitted values")
    EndIf
    If NOT(c3)
         ThenOutput("Value of c is not in the range of permitted values")
    EndIf
Until c1 AND c2 AND c3
Output("Side A is",a)
Output("Side B is",b)
Output("Side C is",c)
'Step 2: Is A Triangle?
If (a < b + c) AND (b < a + c) AND (c < a + b)
    Then IsATriangle = True
    Else IsATriangle = False
EndIf
'Step 3: Determine Triangle Type
If IsATriangle
    Then If (a = b) AND (b = c)
         Then Output ("Equilateral")
         Else If (a \neq b) AND (a \neq c) AND (b \neq c)
              Then Output ("Scalene")
              Else Output ("Isosceles")
         EndIf
    EndIf
    Else Output("Not a Triangle")
EndIf
End triangle
```

Gráfico 2.- Pseudocódigo Problematica Triangulo

4. Diseño de Casos de Pruebas

Se ha decidido dividir las pruebas en las siguientes categorías:

- Pruebas de Tipo de Datos
- Pruebas de Rango de Valores
- Pruebas de Resultados

4.1. Pruebas de Tipo de Datos

En estas pruebas se evaluará la **robustez** del programa, es decir si no se cae debido a los valores ingresados y si notifica al usuario del error. Se probarán con valores no enteros ya sean de punto flotante o cadenas de texto.

4.2. Pruebas de Rango de Valores

En estas pruebas se evaluará la correcta validación de las variables, si se encuentran en el rango designado entre **1 a 200**, si muestran los mensajes correctos.

4.3. Pruebas de Resultados

En estas pruebas se evaluará los resultados finales luego de pasar las validaciones previas, se usarán valores correctos y se verificarán los resultados entre los 4 casos posibles (**Equilátero**, **Escaleno**, **Isósceles**, **No-Triangulo**).

4.4. Detalle de Casos de pruebas planteados

# Caso	Comentario	а	b	С	Resultado			
Pruebas de Tipo de Datos								
1	String	30	b	2	Error 1			
2	String	sk	1	Sd	Error 1			
3	Decimales	21	5	3,4	Error 1			
4	Decimales	5,4	2,1	199,2	Error 1			
5	Mezcla	4	7,5	abc	Error 1			
Pruebas de Rango de Valores								
6	Excedente a	274	12	97	Error 2			
7	Excedente b	76	599	3	Error 2			
8	Excedente c	55	55	201	Error 2			
9	Insuficiente a	0	2	2	Error 2			
10	Insuficiente b	12	-45	90	Error 2			
11	Insuficiente c	124	125	-1	Error 2			
12	Mezcla 1	156	500	-12	Error 2			
13	Mezcla 2	0	-999	999	Error 2			

Pruebas de Resultados							
14	Equilátero 1	5	5	5	Equilátero		
15	Equilátero 2	200	200	200	Equilátero		
16	Escaleno 1	5	3	7	Escaleno		
17	Escaleno 2	70	120	170	Escaleno		
18	Isósceles 1	6	3	6	Isósceles		
19	Isósceles 2	132	132	140	Isósceles		
20	No triangulo 1	6	13	6	No triangulo		
21	No triangulo 2	40	24	199	No triangulo		
22	No triangulo 3	1	2	3	No triangulo		

5. Código Fuente

5.1. Repositorio

Se uso **Github** como herramienta de colaboración para el desarrollo del taller, el vínculo es el siguiente:

• https://github.com/kbermude/Taller1 Software

5.2. Consideraciones de Desarrollo

Para el desarrollo de la actividad y su implementación se agregaron los siguientes puntos:

- Punto 1
- Punto 2

6. Testeo y Resultados

7. Conclusiones