Масиви 2

Сортиране Многомерни масиви

https://digitalrazgrad.org

https://digitaltargovishte.org

Планът за днес

- 1. Преговор
- 2. Многомерни масиви

Определение за масив

Масивите са структура, представляваща наредена последователност от елементи от един и същ тип, към които можем да се обръщаме посредством общо име

Защо за ни нужни масивите?

Вместо да декларираме много променливи от един тип поотделно, понякога ни се налага да декларираме много променливи наведнъж и да ги групираме, за да имаме по-лесен достъп до тях.

Декларация

<pre>String[] cars = new String[2];</pre>	String[] cars = {"Volvo", "BMW"};
- знаем само броя на елементите	- знаем стойностите на елементите
- декларираме масив от тип String, който искаме да съдържа два елемента	- декларираме масив от тип String, който искаме да съдържа низовете "Volvo" и "BMW"
- операторът new заделя памет за масива	- така с декларацията директно се случва и въвеждането на стойност
- масивът в момента не съдържа конкретни стойности, които сме задали ние, а елементите му са тези по подразбиране (за String e null, за int e 0 и т.н.)	- масивът сам определя с каква дължина да е - броят на елементите в къдравите скоби, не е нужно да го посочваме ние изрично

Индекси

Елементите в масива са **индексирани** и можем да достъпваме произволен елемент спрямо позицията му в масива. **Индексирането започва от 0**, а **последният елемент се намира на позиция length – 1**.

Bзимаме дължината на масива

System.out.println(numbers[0]);

int length = numbers.length;

System.out.println(numbers[length - 1]);

Принтира 2 на конзолата
Принтира 5 на конзолата

Многомерни масиви

Масивите, с които се занимавахме досега, представят един ред обекти от някакъв тип. Често обаче ни се налага да представяме данните под формата на таблици (напр., таблица с оценки за всеки студент, в която всеки ред е даден студент, а всяка колона - оценка по даден предмет.).

Многомерен масив - декларация

Многомерните масиви са масив от масиви. Могат да имат n на брой измерения, но рядко в практиката се използват повече от 2.

```
int[][] twoDimentionalArray;
int[][][] threeDimentionalArray;
int[][] intMatrix = new int[3][4];
float[][] floatMatrix = new float[8][2];
String[][][] stringCube = new String[5][5][5];
```


Многомерен масив - инициализация

Инициализираме многомерните масиви по подобен начин на едномерните

Достъп до елементите на многомерен масив

Както при едномерните масиви, можем да достъпваме елементите и на многомерен масив. За да вземем даден елемент, трябва да посочим номер на ред и номер на колона:

Размер на матрица

За да намерим броя на редовете на една матрица, използваме метода . length. Тъй като матрицата е просто масив от едномерни масиви, length ни дава размера на този масив:

int rows = matrix.length; // 3

За да намерим броя на колоните, прилагаме length върху някой от редовете, например:

int columns = matrix[0].length; // 4

Обхождане на матрица

Обхождаме матриците по същия начин, както и едномерните масиви, само че тук трябва да използваме вложени цикли (съответно за да минем през всеки ред и всяка колона):

```
int[][] matrix = {
       {3, 5, 9, 6},
       {9, 4, 3, 9},
       {5, 3, 7, 6}
};
for (int i = 0; i < matrix.length; i++) {
   for (int j = 0; j < matrix[0].length; <math>j++) {
       System.out.print(matrix[i][j]);
   System.out.println();
```


Примерна задача

Имате 3 критици, всеки от които е дал оценка за 4 филма. Оценките са представени чрез следната таблица:

Представете данните по подходящ начин (запишете данните в двумерен масив). Изведете на екрана данните от таблицата.

- б)Намерете каква е средната стойност на оценките, дадени от рецензент #2
- в) Намерете броя на оценките над 6 в цялата матрица.

Самостоятелни задачи

задачи за упражнение

Въпроси?

ΔА ЭТВОРИМ КРЪГА

Trainings @ Digital Razgrad & Digital Targovishte

- Digital Razgrad
 - https://digitalrazgrad.org
 - https://facebook.com/digitalrazgrad.org
 - digitalrazgrad.slack.com

- Digital Targovishte
 - https://digitaltargovishte.org
 - https://facebook.com/digitaltargovishte.org
 - digitaltargovishte.slack.com

