18.04 Recitation 2 Vishesh Jain

1.1. Show directly using the definition of the complex derivative that \bar{z} is not complex differentiable.

1.2. What are the values that $\lim_{z\to 0} \frac{\bar{z}}{z}$ can attain?

2.1. What are the real and imaginary parts of $\cos(z)$? Of $\sin(z)$? $\cot z$?

2.2. What are these real and imaginary parts for z = x + i0? What about for z = 0 + iy? 2.3. Is it true that $\cos(z)$ and $\sin(z)$ are bounded functions? 2.4. Is it true that $\cos^2 z + \sin^2 z = 1$? $\frac{1}{2}$ $\frac{1}{2}$

3.2. Use this to show that cos(z) and sin(z) are continuous as functions of z.,

3.3. Is \bar{z} continuous as a function of z? Is this consistent with Problem 1? $(\uparrow_0, \psi_0) \mid (\uparrow_0 - \psi_0) \mid \leq$

4.1. Express the following functions in the form f(z) = u(x, y) + iv(x, y): e^z , z^2 , $\cos(z)$ and $\sin(z)$ (see also Problem 2) $z^2 = (x^2 + y^2)^2 + (x^$

4.2. Compute the partial derivatives u_x , u_y , v_x , v_y for each of these functions. Do they satisfy the Cauchy-Riemann equations? $U_x = 2 / 4 \quad U_y = 2 / 4$

- 4.3. What is f'(z) in each of these cases?
- 4.3. Repeat this for \bar{z} . Is this consistent with Problem 1?

MIT OpenCourseWare https://ocw.mit.edu

18.04 Complex Variables with Applications Spring 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.