Пространство параметров модели для аппроксимация фазовой траектории

М. Е. Христолюбов

khristolyubov@phystech.edu

Hаучный руководитель: д.ф.-м.н. В.В. Стрижов strijov@phystech.edu

Москва, Московский физико-технический институт

Москва 2022

Цель: аппроксимация фазовой траектории временного ряда

Проблема

Временные ряды — объекты сложной структуры, неизвестна размерность многообразия фазовой траектории.

Метод решения

Устанавливается связь между фазовой траекторией и многообразием. С помощью математического понятия согласованного атласа для многообразия вводится определение согласованного атласа моделей для фазовой траектории. Предлагается метод построения атласа и способ проверки атласа на гладкую согласованность.

Основная литература

- Исаченко Р.В., Стрижов В.В. *Снижение размерности пространства в задачах декодирования сигналов.* 2021.
- F. Takens Detecting strange attractors in turbulence. 1981.
- Albert Gu, Karan Goel, Christopher R'e Efficiently Modeling Long Sequences with Structured State Spaces 2021
- **а** А.В. Чернавский *Многообразия*. 2010.

Фазовая траектория и модель временного ряда

▶ Точка фазовой траектории ряда $[s(t_1), \dots s(t_m)], t_i \in \mathcal{T}, s(t_1) \in \mathbb{S}$ в момент времени t_i является предысторией длины N временного ряда:

$$\mathbf{x}_i^{(N)} = \boldsymbol{\eta}(t_i) = [s_{i-N+1}, \ldots, s_i] \in \mathbb{X}.$$

▶ Модель временного ряда — это параметризованная скалярная функция $f(t, \mathbf{w})$. Существует значения параметра \mathbf{w}_0 минимизирующее $L(\mathbf{x}, f(t, \mathbf{w}))$, такое что ряд $[f(t_i, \mathbf{w}_0)]_{i=N+1}^i$ аппроксимирует исходный ряд $[x_i]_{i=N+1}^i$.

М

Фазовая траектория, состоящая из предысторий в каждый момент времени $\mathbf{x}_i^{(N)} = [s_{i-N+1}, \dots, s_i]$

Латентное представление фазовой траектории

Отображение $\phi: \mathbb{W} \to \mathbb{X}$ восстанавливает точки фазовой траектории из скрытого пространства:

$$\phi(\mathbf{w}) = [f(t_i, \mathbf{w})]_{i=0}^N$$

Отображение $\pmb{\xi}:\mathbb{X} \to \mathbb{W}$ называется вложением в скрытое пространство:

$$\boldsymbol{\xi}(\mathbf{x}) = \operatorname*{arg\,min}_{\mathbf{w}} L(\mathbf{x}, \phi(\mathbf{w})).$$

Аппроксимацией точки \mathbf{x} фазовой траектории называется композиция $\boldsymbol{\xi} \circ \boldsymbol{\phi}$ вложения точки фазовой траектории в скрытое пространство $\boldsymbol{\xi}: \mathbb{X} \hookrightarrow \mathbb{W}$ и восстановления $\boldsymbol{\phi}: \mathbb{W} \hookrightarrow \mathbb{X}$.

Многообразие, аппроксимирующее фазовую траекторию

▶ Гладким n-мерным многообразием M называется множество, для которого задана система подмножеств X_i и взаимно однозначные отображения на них $\phi_i: W_i \to X_i$ открытых подмножеств W_i аффинного пространства \mathbb{R}^n , причем 1) $M = \cup X_i$, 2) для каждой пары ϕ_i, ϕ_i прообразы $X_i \cap X_i$ — множества

$$W_{ij}=\phi_i^{-1}(X_i\cap X_j)$$
 и $W_{ji}=\phi_j^{-1}(X_i\cap X_j)$ открытые,

- 3) $\phi_{ij} = \phi_j^{-1} \circ \phi_i$ диффеоморфизм $W_{ij} = \phi_i^{-1}(X_i \cap X_j)$ на $W_{ji} = \phi_j^{-1}(X_i \cap X_j)$.
- Взаимнооднозначное отображение: $\phi: W \to X$, $X \subset M$, называется локальной параметризацией, картой или локальной координатной системой. Две карты гладко согласованны, если для них выполнено условие 3).
- Совокупность карт $\{\phi_i\}$ называется атласом, если области X_i покрывают M. Если выполнены три условия определения 3, то говорят, что данный атлас является гладко согласованным.

Согласованность атласа

Теорема. Дана функция

$$\xi(\mathbf{x}) = \underset{\mathbf{w}}{\operatorname{arg min}} L(\mathbf{x}, \phi(\mathbf{w})).$$

Если $L(\mathbf{x}, \phi(\mathbf{w}))$ — выпуклая функция, а $\phi(\mathbf{w})$ — линейная функция, тогда $\xi(\mathbf{x})$ — гладко дифференцируемая функция.

Таким образом, в модели ARIMA ξ является гладко дифференцируемой в соответствии с доказанной теоремой, так как L — квадратичная функция ошибки, а f линейно зависит от своих параметров.

Модели аппроксимаций физической активности

Анализ сингулярного спектра Гусеница:

$$\mathbf{X}_{i}^{(N)} = \mathbf{U}(\mathbf{h})\mathbf{V} = \sum_{j=1}^{N/2} h_{j} \mathbf{u}_{j} \mathbf{v}_{j}^{\mathsf{T}}. \tag{1}$$

► Автоэнкодер LSTM:

$$\begin{aligned} \mathbf{f}_t &= \sigma_g(\mathbf{W}_f \mathbf{x}_t + \mathbf{U}_f \mathbf{h}_{t-1} + \mathbf{b}_f) \\ \mathbf{i}_t &= \sigma_g(\mathbf{W}_i \mathbf{x}_t + \mathbf{U}_i \mathbf{h}_{t-1} + \mathbf{b}_i), & \mathbf{o}_t &= \sigma_g(\mathbf{W}_o \mathbf{x}_t + \mathbf{U}_o \mathbf{h}_{t-1} + \mathbf{b}_o) \\ \mathbf{c}_t &= \mathbf{f}_t \circ \mathbf{c}_{t-1} + \mathbf{i}_t \circ \sigma_c(\mathbf{W}_c \mathbf{x}_t + \mathbf{U}_c \mathbf{h}_{t-1} + \mathbf{b}_c), & \mathbf{h}_t &= \mathbf{o}_t \circ \sigma_h(\mathbf{c}_t). \end{aligned}$$

Нейронные обыкновенные дифференциальные уравнения:

$$s(t) = s(t_0) + \int_{t_0}^t g(s(t), w) dt.$$

Модель S4.

Модель S4

Модель S4 задается системой уравнений, $s(t_0), y(t_0) \in \mathbb{R}, \boldsymbol{w}(t_0) \in \mathbb{R}^h$:

$$\mathbf{w}'(t) = \mathbf{A}\mathbf{w}(t) + \mathbf{B}s(t),$$

$$y(t) = \mathbf{C}\mathbf{w}(t) + \mathbf{D}s(t).$$

Матрица **А** иницилизируется следующим образом:

$$A_{nk} = - egin{cases} (2n+1)^{rac{1}{2}}(2k+1)^{rac{1}{2}} & ext{при } n > k, \ n+1 & ext{при } n = k, \ 0 & ext{при } n < k, \end{cases}$$

и представляется в виде

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^* - \mathbf{P} \mathbf{Q}^*,$$

где $V \in \mathbb{C}^{h \times h}$, Λ диагональная и $P, Q \in \mathbb{R}^{h \times 1}$. Обучаемые параметры модели - диагонаяльная матрица Λ и векторы P, Q, B, C, D.

Сравнение моделей аппроксимации

В вычислительном эксперименте сравниваются качество аппроксимации и липшицевость отображения в пространство параметров моделей.

Синтетическая выборка:

Модель	Std	Размерность СП	MeanStabError	MaxStabError	max L
SSA	2.12	2	2.06	3.98	0.35
LSTM	4.21	2	1.80	3.63	0.51
S4	3.93	2	1.20	3.52	0.44

Данные акселерометра мобильного устройства:

Модель	Std	Размерность СП	MeanStabError	MaxStabError	max L
SSA	30.0	10	1.80	5.22	0.64
LSTM	44.2	10	3.08	7,88	1,04
S4	33.1	10	2,14	6,33	0,98

Визуализация липшицевости отображения в пространство параметров

Представление фазовой траектории в пространстве параметров модели изменяется непрерывно:

Результаты, выносимые на защиту

- Показано, что для фазовой траектории временного ряда применима математическая теория многообразий.
- Предложен метод построения атласа многообразия фазовой траектории ряда.
- Проведено сравнение моделей аппроксимации.
- Проведен эксперимент по проверке атласа на согласованность.