Московский государственный технический университет имени Н.Э. Баумана

Факультет «Радиоэлектроника и лазерная техника» Кафедра «Радиоэлектронные системы и устройства»

Р.Ш. Загидуллин

Лабораторный практикум по курсу Электроника. Полупроводниковые диоды

Электронное учебное издание

Полупроводниковые диоды

Методические указания к выполнению лабораторного практикума по дисциплине «Электроника»

Часть 1 Исследование в Місгосар и лаборатории

Москва

(С) 2014 МГТУ им. Н.Э. БАУМАНА

$V\Pi K$	511	7 3
УДК	JΙ	1.3.

Pei	ензент.

Загидуллин Р.Ш.

Лабораторный практикум по курсу Электроника. Полупроводниковые диоды - М.: МГТУ имени Н.Э. Баумана, 2015. 69 с.

Электронное учебное издание

Загидуллин Равиль Шамильевич

Лабораторный практикум по курсу Электроника. Полупроводниковые диоды

© 2014 МГТУ имени Н.Э. Баумана

СОКРАЩЕНИЯ ТЕРМИНОВ, АББРЕВИАТУРЫ

ВАХ — вольтамперная характеристика;

ВФХ — вольтфарадная характеристика;

ЕСКД — единая система конструкторской документации;

MSxx — программная среда NI Multisim 10 или 12 версии;

MCxx — программная среда Multisim версии 7, 9 или 10;

Оглавление

СОКРАЩЕНИЯ ТЕРМИНОВ, АББРЕВИАТУРЫ
ЦЕЛЬ РАБОТЫ:
ЭКСПЕРИМЕНТ 17
ИССЛЕДОВАНИЕ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ7
ИССЛЕДОВАНИЕ ВФХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ8
ЭКСПЕРИМЕНТ 29
ИЗМЕРЕНИЕ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ СТЕНДА9
ЭКСПЕРИМЕНТ 310
измерение прямой ветви вах диодов из германия и кремния
ЭКСПЕРИМЕНТ 413
ИЗМЕРЕНИЕ ОБРАТНОЙ ВЕТВИ ВАХ ДИОДОВ ИЗ ГЕРМАНИЯ И КРЕМНИЯ НА ЛАБОРАТОРНОМ СТЕНДЕ13
ЭКСПЕРИМЕНТ 3
ОСОБЕННОСТИ ПОСТРОЕНИЯ ГРАФИКОВ РЕШЕНИЙ В MICROCAP16
ВЫВОД ДАННЫХ РЕШЕНИЯ МІСКОСАР В ТЕКСТОВЫЙ ФАЙЛ17
ДИОД ВАРИКАП20
ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ И ИХ СВОЙСТВА23
МАТЕМАТИЧЕСКИЕ МОДЕЛИ ПОЛУПРОВОДНИКОВОГО ДИОДА26
СТАТИЧЕСКАЯ ВАХ РЕАЛЬНОГО ДИОДА29
ЧТЕНИЕ ДАННЫХ ИЗ ТЕКСТОВОГО ФАЙЛА В ПРОГРАММУ MCAD31
ПОСТРОЕНИЕ ВАХ ЗАДАННОГО ТАБЛИЦЕЙ И ФУНКЦИОНАЛЬНОЙ
ЗАВИСИМОСТЬЮ НА ОДНОМ ГРАФИКЕ
РАСЧЕТ ПАРАМЕТРОВ МОДЕЛИ ПОЛУПРОВОДНИКОВОГО ДИОДА СРЕДСТВАМИ MCAD
РАСЧЕТ ПАРАМЕТРОВ МОДЕЛИ ПОЛУПРОВОДНИКОВОГО ДИОДА
МЕТОДОМ ТРЕХ ОРДИНАТ41

РАСЧЕТ ПАРАМЕТРОВ ЕМКОСТИ ДЛЯ МОДЕЛИ ДИОДА	4/
РАБОТА С ПРОГРАММОЙ MODEL ДЛЯ СОЗДАНИЯ МОДЕЛИ ДИОДА	54
ВКЛЮЧЕНИЕ МОДЕЛИ В БАЗУ ДАННЫХ	63
ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ОТЧЕТА	67
ЛИТЕРАТУРА. ОСНОВНАЯ	69
ЛИТЕРАТУРА ЛОПОЛНИТЕЛЬНАЯ	69

ВВЕДЕНИЕ

Методические указания содержит описания лабораторных практикумов по курсу Электроника. Лабораторный практикум может выполняться как на лабораторном стенде с использованием традиционных измерительных приборов, на персональном компьютере пользователя с использованием технологий компьютерных измерительных приборов. Предполагается, что пользователи знакомы с теоретическими положениями, относящимися к материалу лабораторных работ.

Контрольные мероприятия — предварительный контроль и контроль при защите после проведения лабораторных работ, осуществляется на интернет ресурсе http://e-learning.bmstu.ru/portal_rl1/ - среда MOODLE. Там же находятся и тестовые задания и хранятся результаты контрольных мероприятий.

ЦЕЛЬ РАБОТЫ:

Получение и исследование статических и динамических характеристик германиевого и кремниевого полупроводниковых диодов с целью определение по ним параметров модели полупроводниковых диодов, размещения моделей в базе данных программ схемотехнического анализа. Приобретение навыков в использовании базовых возможностей программ схемотехнического анализа для исследования статических и динамических характеристик полупроводниковых диодов с последующим расчетом параметров модели полупроводникового Приобретение диода. навыков экспериментальном полупроводниковых приборов. Освоение исследовании математических программ для расчета параметров модели полупроводниковых приборов на основе данных экспериментальных исследований.

ЭКСПЕРИМЕНТ 1

ИССЛЕДОВАНИЕ ВАХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

1) Для заданного варианта типа диода провести моделирование лабораторного стенда получения BAX диода в программе Microcap 9 demo как на прямой ветви, так и на обратной ветви по показанным ниже схемам.

Рисунок 1

Примечание:

- Номер варианта определяется номером в списке группы,
- Тип диода определяется номером диода по списку в файле библиотеки Rusd.Lib, причём, для группы 41 номера вариантов и номера диодов совпадают, для группы 42 номер диода и номер варианта соотносятся как (номер диода по списку) = (номер варианта)+25, для группы 43 тип

диода определяется номером диода по списку в файле библиотеки SovDiod.lib

- 2) Определить влияние сопротивлений измерительных приборов (милливольтметра и миллиамперметра, сопротивление которых может быть в пределах от 1000 Ом до 100000 Ом и от 0.1 до 10 Ом соответственно). Дать пояснения полученным результатам и рекомендации по использованию схем получения ВАХ.
- 3) Полученные данные ВАХ сохранить в виде текстового файла на жёстком диске.
- 4) Данные ВАХ передать в программу MCAD и определить параметры модели диода для постоянного тока: определить параметры модели диода RS. IS, Ft, N. Сравнить полученные данные с параметрами модели в библиотеки.
- 5) Проверить адекватность модели проверить по графику прямой ветви ВАХ, добившись совпадения ВАХ модели и ВАХ данных МС9demo с точностью до 10% по току для напряжения 1A Вольта на прямой ветви.

ИССЛЕДОВАНИЕ ВФХ ПОЛУПРОВОДНИКОВЫХ ДИОДОВ

1) Для заданного варианта типа диода (аналогично выбору в первой части работы) провести моделирование лабораторного стенда получения ВАХ диода в программе Microcap 9 demo как на прямой ветви, так и на обратной ветви по предложенной ниже схеме эксперимента для измерения амплитудно-частотной характеристики параллельного колебательного контура:

Рисунок 2

2) Провести моделирование схемы в программе Містосар 9 demo (анализ частотных характеристик) для не менее четырёх значений напряжения смещения. Полученные амплитудно-частотные характеристики использовать для расчёта барьерной ёмкости диода. Передать данные о резонансных частотах параллельного колебательного контура в программу МСАD и провести расчёт и построить

- вольтфарадную характеристики. Из неё определить параметры модели диода (CJO, M, VJ) с использованием программного средства МСАD.
- 3) Адекватность модели проверить по степени совпадения расчётных данных и данных модели в библиотеке. Оценить и объяснить полученные данные.

ЭКСПЕРИМЕНТ 2

ИЗМЕРЕНИЕ ХАРАКТЕРИСТИК ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ СТЕНДА

На лабораторном стенде провести определить характеристики измерительных приборов стенда, для этого:

1. Определите входные сопротивления измерительных приборов.

<u>Примечание:</u> Все реальные измерительные приборы имеют конечную величину входного внутреннего сопротивления: входное сопротивление вольтметров не равно бесконечности, входное сопротивление амперметров не равно нулю. Для того, чтобы исключить методические ошибки при измерениях подключение измерительных приборов следует производить с учётом их внутреннего сопротивления. В технических характеристиках на МЗ900 указано, что при работе в качестве вольтметра входное сопротивление на всех пределах не менее 10 Мом, а о входном сопротивлении при работе в качестве амперметра данные отсутствуют.

Для определения входного сопротивления M3900 при использовании его в качестве вольтметра с пределами 2 В и 20 В, и определения его значения на каждом из диапазонов может быть использована схема, приведённая на рисунке 3.

Рисунок 3

В этой схеме один из мультиметров V работает в качестве вольтметра, для которого определяется внутреннее сопротивление,

второй A — амперметра, показания которого определяют потребляемый ток вольтметром. Отношение показания вольтметра к показанию амперметра определяет входное сопротивление вольтметра. При проведении эксперимента подавайте напряжение от источника питания «Марс» величиной близкой к установленному пределу измерения вольтметра. Предел измерения тока устанавливайте из условия получения максимальной точности измерения потребляемого тока (20 или 200 мкА). Результаты измерений занесите в рабочую тетрадь.

Для измерения входного сопротивления МЗ900 при использовании в качестве амперметра соберите схему согласно рис. Зб. В данной схеме один из мультиметров включён как амперметр А, входное сопротивление которого измеряется, а второй как вольтметр V, показания которого указывают на падение напряжения на входных клеммах амперметра, сопротивление R и величина напряжения, подаваемого от источника «Марс», определяют величину тока, при которой происходит измерение. Измерения проведите для амперметра на пределах 200 мА, 20 мА. 2мА и 200 мкА, где для каждого предела следует использовать свой номинал резистора. Напряжение, которое подаётся на вход схемы от источника необходимо подавать такой величины, чтобы показания амперметра соответствовали половине установленного предела. Результаты измерений занесите в виде таблицы в рабочую тетрадь.

Таблица №1

Предел	R	Показания U	Показания I	R _A =U/I
200 мА	620 Ом			
20 мА	3 кОм			
2 мА	3 кОм или 51 кОм			
200 мкА	100 кОм			

ЭКСПЕРИМЕНТ 3

ИЗМЕРЕНИЕ ПРЯМОЙ ВЕТВИ ВАХ ДИОДОВ ИЗ ГЕРМАНИЯ И КРЕМНИЯ

На каждом лабораторном макете расположено два диода (кремниевый и германиевый) с указанием их марок в верхнем правом угле макета. В приложении

методических указаний (выдаются в лабораторном зале) приведены паспортные данные на полупроводниковые приборы, выбранные для исследования в данном цикле лабораторных работ. Паспортные данные своих диодов необходимо привести в отчёте по лабораторной работе. В паспорте на каждый диод обязательно указывают максимальный прямой ток, максимальное обратное напряжение. Поэтому при проведении экспериментов следует руководствоваться правилом - токи и напряжения на диоде должны оставаться меньше предельных величин.

1. Определите диапазон изменений токов и напряжений, допустимый при экспериментальном измерении BAX полупроводникового диода.

При проведении экспериментов, как правило, приходится строить зависимость тока от напряжения. Лишь для немногих экспериментов удается правильно оценить точный объем экспериментальной работы. При слишком малом объеме экспериментальных данных может оказаться невозможным найти закон или функцию, исследователь может получить низкую точность постоянных величин или не заметить какой-либо слабый эффект, имеющий большое теоретическое значение. С другой стороны, при слишком большом объеме получаемых данных эксперимент длится очень долго, обработка данных затягивается до бесконечности и обходится очень дорого и даже затрудняется представление материала. В экспериментах чрезмерное количество данных препятствует обнаружению важных эффектов. План эксперимента оказывается компактным и эффективным, если заранее устанавливаются интервалы значениями переменных. В большинстве инженерных экспериментов исследователь обычно имеет хорошее представление об экспериментальной функции. Прямая ветвь ВАХ полупроводникового диода представляет собой быстро восходящую ветвь: начиная с некоторого прямого напряжения, малому его приращению соответствует быстрый рост прямого тока.

При экспериментальном измерении подобных характеристик Y=f(X) часто используют правило, позволяющее равномерно заполнить поле (YX) экспериментальными точками: в эксперименте задают ряд значений Yi с равными приращениями ΔY и фиксируют соответствующие изменения Xi.

Фактически использование данного метода для измерения прямой ветви ВАХ диода, необходим регулируемый источник тока с высоким выходным сопротивлением. В лабораторном оборудовании, как правило, есть регулируемые источники напряжения (в данном случаи лабораторный источник «Марс»).

Для превращения источника напряжения в источник тока в цепь питания последовательно включается сопротивление R. Величина этого сопротивления и максимальное выходное напряжение регулируемого источника напряжения определяют возможный максимальный ток в исследуемом приборе, ибо в первом приближении сопротивление диода при прямом смещении можно принять равным нулю. Так, если в схеме поставить резистор с номиналом R=620 Ом (минимальная величина сопротивления из магазина сопротивлений на лабораторном макете) и от источника «Марс» подать его максимальное напряжение Vmax=15 В, то в эксперименте максимальны ток через диод будет ограничен на уровне Imax≈Vmax/R≈24 мА.

Реально максимальный ток через диод будет несколько меньшей величины, так как при его вычислении не учитывалось падение напряжения на диоде. При постановке такого сопротивления появляется возможность плавно изменять прямой ток диода в пределах 1 – 20 мА, изменяя выходное напряжение источника напряжения «Марс», и гарантировать ограничение прямого тока ниже разрешённой по паспорту величины.

- 2. Собрав схему для измерения прямой ветви ВАХ диода на лабораторном макете, установите на М3900 пределы измерения амперметра и вольтметра. Исходя из того, что прямой ток может быть на уровне 24 мА, установите предел измерения постоянного тока 200 мА. Прямое напряжение на диоде при любых прямых токах никогда не превышает 1 2 В. Поэтому установите на М3900, выполняющем роль вольтметра, предел измерения постоянного напряжения 2 В. Далее обратитесь к учебно-техническому персоналу для проверки вашей схемы и получения разрешения на проведение эксперимента.
- 3. Включив приборы (источник питания, мультиметры), подайте на схему от источника «Марс» максимальное его выходное напряжение (15 В) и зафиксируйте ток через диод и падение напряжения на диоде.

 Далее с шагом порядка 2 мА изменяйте ток в диоде и фиксируйте соответствующие каждому току напряжения на диоде. Изменение тока через диод производится за счёт изменения выходного напряжения источника «Марс», у которого есть два регулятора «грубо» и «плавно». При измерении следите за установкой предела измерения тока. Так при уменьшении тока, допустим, до 18 мА следует поменять предел измерения амперметра с 200 мА на 20 мА и т.л.

При уменьшении прямого тока диода до 1 -2 мА поменяйте в схеме сопротивление с 620 Ом на 3 кОм (на макете они расположены рядом) и дальнейшее изменение тока от 1 мА и ниже проведите с шагом порядка 200 мкА. Все результаты занесите в виде таблицы в рабочую тетрадь.

- 4. Все результаты по измерению прямой ветви ВАХ диода необходимо занести в виде таблицы в рабочую тетрадь. По ряду выбранным экспериментальным точкам постройте измеренную прямую ветвь ВАХ диода, убедитесь, что в эксперименте не допущены ошибки (её вид должен соответствовать теории).
- 5. Замените в схеме диод на вторую марку, которая есть в макете (на каждом макете один диод кремниевый, другой германиевый). Повторите измерения прямой ветви ВАХ второго диода по методике, что и для первого диода. Помните, что рекомендуется проводить эксперимент с установки максимального тока и в дальнейшем его уменьшать. Поэтому при смене диода одновременно поменяйте сопротивление с 3 кОм на 620 ОМ.

Все результаты по измерению прямой ветви ВАХ второго диода занесите в виде таблицы в рабочую тетрадь. На графическом представлении прямой ветви ВАХ первого диода аналогично постройте прямую ветвь второго диода.

ЭКСПЕРИМЕНТ 4

ИЗМЕРЕНИЕ ОБРАТНОЙ ВЕТВИ ВАХ ДИОДОВ ИЗ ГЕРМАНИЯ И КРЕМНИЯ НА ЛАБОРАТОРНОМ СТЕНДЕ

Для измерения обратной ветви ВАХ диодов следует собрать схему согласно рисунку 4б. Расстановка измерительных приборов при проведении данного эксперимента учитывает, что сопротивление диодов при обратном смещении очень велико. Так если, например, в паспорте на диод указано, что при обратном напряжении V=10 В обратный ток не более 1 мкА (типичные величины для кремниевых диодов), то сопротивление диода при обратном смещении ≥10 Мом. Реально, как правило, обратные токи у диодов меньше паспортной величины. Этим вызвана перестановка вольтметра в схеме. В схеме по рис. 4б амперметр показывает истинный ток диода, а вольтметр фиксирует суммарное напряжение на диоде и амперметре.

После проведения модернизации схемы (поменять постановку вольтметра и изменить полярность подаваемого напряжения от источника «Марс») замените пределы измерения приборов: для вольтметра выберите предел 20 В, для амперметра – 20 мкА.

Согласно теории, изменение обратного тока от изменения напряжения следует ожидать при изменении последнего от 0 до 15 -100 мВ. При последующем увеличении обратного напряжения (по модулю) обратный ток изменяется крайне мало. Поэтому рекомендуется проводить измерение обратной ветви ВАХ диода, начиная с подачи на него максимального разрешённого напряжения V_{max} и фиксируя при этом ток через диод. Затем, выбрав шаг изменения обратного напряжения, последовательно его уменьшать и фиксировать токи. На отрезке изменения обратного напряжения от до 1 В шаг изменения может составлять несколько вольт, менее 1 В — шаг должен быть менее 10 мВ, чтобы корректно провести измерения.

При работе с источником «Марс» в эксперименте возможно подать на диод обратное напряжение величиной 15 В, что значительно ниже паспортных максимальных обратных напряжений для всех диодов, расположенных на лабораторном макете. Поскольку по паспорту напряжение на выходе источника «Марс» регулируется в пределах 1 – 15 В, то с его помощью получать изменения выходного напряжения от 0 до 1 В с шагом 10 мВ является нештатным режимом работы. Поэтому данный участок обратной характеристики в данной работе не исследуется.

1. Включите приборы (источник напряжения «Марс» и мультиметры) и подайте на схему напряжение 15 В, зафиксируйте для данного напряжения обратный ток через диод. Если амперметр способен измерить данный ток (для некоторых диодов ток может оказаться меньшей величины, способной быть измеренной прибором М3900), то проведите измерения обратного тока при последовательном уменьшении обратного напряжения до 10, 5 и 1 В. Все результаты занесите в виде таблицы в рабочую тетрадь и постройте обратную ветвь ВАХ диода.

В том случаи, когда при обратном напряжении 15 В показания амперметра отсутствуют, сделайте вывод, что обратный ток диода менее 1 мкА и его измерить мультиметром М3900 не представляется возможным.

2. Для экспериментального измерения прямой ветви ВАХ диода соберите на лабораторном макете схему для измерения прямой и обратной ветви ВАХ диодов, представленную на рисунке. 4а. с одним из диодов, имеющихся на лабораторном макете. (R=620 Ом)

Рисунок 4

<u>Примечание:</u> при расстановке приборов согласно схемы рис. 4а учтено, что сопротивление вольтметра V1 значительно больше сопротивления базы диода R6, а сопротивлений амперметра A1 соизмеримо с ним. Показания вольтметра соответствуют истинному падению напряжения на диоде, а показания амперметра определяют суммарный ток через диод и вольтметр. Так как сопротивление вольтметра значительно больше сопротивления R6 диода при прямом токе ($R_V \cong 10 \text{ Мом}$, $R6 \sim 1 - 100 \text{ Ом}$), то ошибка в измерении тока через диод незначительна (менее 10^{-3}).

При установке приборов, как показано на рис. 46, амперметр A2 точно показывает ток через диод, а вольтметр V2 — суммарное падение напряжения на диоде и амперметре.

ЭКСПЕРИМЕНТ 3

1. Использовать полученные данные экспериментов на модели стенда и данные физического эксперимента провести расчет параметров модели диода. Занести данные расчета в файл модели (файл с расширением *.LIB) и включить описание полученной модели в состав базы данных программы Місгосар.

Для расчетов параметров моделей, по указанию преподавателя, использовать программу MCAD или же программу MODEL. Показать содержимое файлов модели и содержимое файла NOM.LIB для утверждения преподавателю, включить в отчет по работе распечатку этих файлов. Для проверки правильности расчета параметров модели провести контроль вида ВАХ модели и экспериментальных данных (данных физического эксперимента и модельного эксперимента) на прямой ветви ВАХ. При необходимости провести варьирование параметров модели для получения одинаковых, с требуемой точностью результатов.

ОСОБЕННОСТИ ПОСТРОЕНИЯ ГРАФИКОВ РЕШЕНИЙ В MICROCAP

Місгосар позволяет строить графики с использованием формульных выражений в полях осей графика.

Рисунок 5

Формула для определения значений по оси X учитывает, что для построения графика, зависящего от напряжения на диоде необходимо учесть падение напряжения на милливольтметре. В конкретном случае сопротивление милливольтметра определено как 10 Ом, поэтому истинное напряжение на диоде и будет определяться выражением:

DCINPUT1-I(RMA)*10.

Ток через миллиамперметр определяется суммой двух токов – тока через диод и тока через милливольтметр. Поэтому для построения графика, связывающего ток диода (по оси Y) с напряжением на диоде (по оси X) используется выражение

I(RMA)-I(RMV).

ВЫВОД ДАННЫХ РЕШЕНИЯ МІСКОСАР В ТЕКСТОВЫЙ ФАЙЛ

Вывод данных в тестовый файл из программы Місгосар возможен только при нажатой экранной кнопкой, определяющей вывод в текстовый файл расчета:

Рисунок 6

По умолчанию сформированный файл имеет имя, определенное именем схемы, но расширение этого файла будет, при использовании анализа по постоянному току "DNO".

Рисунок 7

В этот файл будет выведена полная информация о задаче, версии программы и многое другое, информация о таблице значений будет размещена в самом конце этого файла. При взаимодействии с программой MCAD необходимо обеспечить только численную информацию в выведенном файле. Это возможно при простом редактировании

этого файла, но это будет требоваться каждый раз, когда будет получено решение (новые данные запишутся поверх отредактированной). Для удобства использования численного вывода можно рекомендовать установить опцию только численного расчета. Для этого в диалоговом окне свойств графика (вызывается двойным щелчком в поле графика) в закладке Numeric Output отмечаются только флажки для появления данных без заголовков.

Рисунок 8

Но при этом остаются проблемы восприятия, чтения данных из файла, сформированного в Numeric Output программами математической обработки данных. Місгосар использует формат вывода численных данных с буквенными множителями (m –

мили, множитель 10-3). На закладке Scales and Formats диалогового окна свойств графика можно исправить этот формат на читаемый MCAD-ом десятичный. Вызывается это окно свойств двойным щелчком в поле графика. Здесь изменяется формат Scale и Cursor как для оси X так и для оси Y

Рисунок 9

ДИОД ВАРИКАП

Полупроводниковый диод, действие которого основано на использовании зависимости барьерной емкости Сбар от значения приложенного обратного напряжения называется варикапом. Это позволяет применить варикап в качестве элемента с электрически управляемой емкостью.

Основной характеристикой варикапа является вольтфарадная характеристика - зависимость барьерной емкости от значения приложенного обратного напряжения. Схематическое изображение варикапа, пример его конструкции и его вольтфарадная характеристика приведены на рисунке.

Рисунок 10

В кристалл кремния 5 с одной его стороны вплавлен в вакууме алюминиевый столбик 4 для получения pn-перехода, а с другой стороны - сплав золото - сурьма для получения омического контакта 6. Эта структура вплавляется в вакууме в коваровый золоченый кристаллодержатель 7, К алюминиевому столбику прикреплен внутренний вывод 2, Соединение кристаллодержателя с баллоном 3 и выводом 1 осуществляется сплавлением в водороде.

В выпускаемых промышленностью варикапах значение емкости может изменяться от единиц до сотен пикофарад. Основными параметрами варикапа являются:

Номинальная емкость Сном — емкость между выводами варикапа при номинальном напряжении смещения; Максимальная емкость Смах — емкость варикапа

при заданном минимальном напряжении смещения; Минимальная емкость Стіп — емкость варикапа при заданном максимальном напряжении смещения; Коэффициент перекрытия Кс — отношение максимальной емкости диода к минимальной; Добротность Q — отношение реактивного сопротивления варикапа к полному сопротивлению потерь, измеренное на номинальной частоте при температуре 20° С; Максимально допустимое напряжение Umax — максимальное мгновенное значение переменного напряжения, обеспечивающее заданную надежность при длительной работе; Температурный коэффициент емкости (ТКЕ) — отношение относительного изменения емкости при заданном напряжении к вызвавшему его абсолютному изменению температуры окружающей среды; Максимально допустимая мощность Ртах — максимальное значение мощности, рассеиваемой на варикапе, при котором обеспечивается заданная надежность при длительной работе.

В упражнении определяется вольтфарадная характеристика полупроводникового диода, полученная при экспериментальном исследовании резонансных характеристик параллельного колебательного контура к которому параллельно подсоединён полупроводниковый диод. При изменении управляющего напряжения от источника постоянного тока меняется барьерная ёмкость полупроводникового диода, что вызывает изменение резонансной частоты собственно контура. Фиксируя эти изменения и зная параметры колебательного контура можно рассчитать величину барьерной ёмкости диода, которая вызывает смещение резонансной частоты, и построить вольтфарадную характеристику барьерной компоненты ёмкости диода.

В теории доказывается, что образование p-n перехода связано с возникновением объёмных зарядов Q, создаваемых неподвижными ионизованными атомами примесей. Приложенное к переходу внешнее напряжение изменяет величину объёмного заряда в переходе.

Следовательно, p-n переход ведёт себя как своеобразный плоский конденсатор. Обкладками конденсатора служат проводящие области n и p, а изолятором обеднённый носителями слой объёмного заряда, имеющий большое сопротивление. В зависимости от физической природы изменяющегося заряда различают емкости зарядную (барьерную) и диффузионную.

Зарядная (барьерная) емкость определяется изменением не скомпенсированного заряда ионов при изменении ширины запирающего слоя под воздействием внешнего обратного напряжения. Поэтому идеальный электронно-дырочный переход можно рассматривать как плоский конденсатор, емкость которого определяется соотношением

$$C_{
m sap}= {\it \epsilon}\Pi/{\it \delta}$$
, где $\Pi,\ \delta$ - соответственно площадь и толщина p-n-перехода.

Из этого соотношения можно записать выражение для емкости (a), в общем случае зависимость зарядной емкости от приложенного к p-n-переходу обратного напряжения выражается формулой:

$$C_{\text{3ap}} = \Pi \sqrt{\frac{\varepsilon q N_{\text{a}} N_{\text{m}}}{2(U_{\text{K}} + |U_{\text{o6p}}|)(N_{\text{a}} + N_{\text{m}})}}$$
 $C_{\text{3ap}} = \frac{C_0}{(1 + |U_{\text{o6p}}|/U_{\text{K}})^{\gamma}}$,

где Co - емкость p--перехода при Uобр = 0; γ - коэффициент, зависящий от типа p-n-перехода (для резких p-n-переходов γ = 1/2, а для плавных γ = 1/3).

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ И ИХ СВОЙСТВА

Полупроводниковым диодом называют прибор с одним p-n-переходом, имеющим два вывода: анод A и катод K. Теоретическая вольтамперная характеристика p-n-перехода и отличие реальной ВАХ диода (кривая 2) от теоретической (кривая 1) показаны ниже на рисунке

Рисунок 11

При обратном включении p-n-перехода отличия обусловлены генерацией носителей зарядов и пробоем p-n-перехода. Количество генерируемых носителей пропорционально объему запирающего слоя, который зависит от ширины p-n-перехода. Поскольку ширина запирающего слоя пропорциональна приложенному обратному напряжению, то ток генерации будет расти при его увеличении. На реальной характеристике при увеличении обратного напряжения до определенного значения наблюдается небольшой рост обратного тока. Возрастанию обратного тока способствуют также токи утечки.

При некотором обратном напряжении наблюдается резкое возрастание обратного тока. Это явление называют пробоем p-n-перехода. Существуют три вида пробоя: туннельный, лавинный и тепловой. Туннельный и лавинный пробои представляют собой разновидности электрического пробоя и связаны с увеличением напряженности электрического поля в переходе. Тепловой пробой определяется перегревом перехода.

Туннельный пробой обусловлен прямым переходом электронов из валентной зоны одного полупроводника в зону проводимости другого, что становится возможным, если напряженность электрического поля в p-n-переходе из кремния достигает значения 4 10⁵ Полупроводниковые диоды. Місгосар Оглавление

Загидуллин Р.Ш.

В/см, а из германия 2 10^5 В/см. Такая большая напряженность электрического поля возможна при высокой концентрации примесей в р- и п-областях, когда толщина р-п-перехода становится весьма малой. Под действием сильного электрического поля валентные электроны вырываются из связей. При этом образуются парные заряды электрон-дырка, увеличивающие обратный ток через переход. На рисунке кривая 5 представляет собой обратную ветвь вольт-амперной характеристики перехода, соответствующую туннельному пробою.

широких р-п-переходах, образованных полупроводниками с меньшей концентрацией примесей, вероятность туннельного просачивания электронов уменьшается и более вероятным становится лавинный пробой. Он возникает тогда, когда длина свободного пробега электрона в полупроводнике значительно меньше толщины p-nперехода. Если за время свободного пробега электроны накапливают кинетическую энергию, достаточную для ионизации атомов в р-п-переходе, наступает ударная ионизация, сопровождающаяся лавинным размножением носителей зарядов. Образовавшиеся в результате ударной ионизации свободные носители зарядов увеличивают обратный ток перехода.

Тепловой пробой обусловлен значительным ростом количества носителей зарядов в p-n-переходе за счет нарушения теплового режима. Подводимая к p-n-переходу мощность расходуется на его нагрев. При плохих условиях отвода теплоты от перехода возможен его разогрев до температуры, при которой происходит тепловая ионизация атомов. Образующиеся при этом носители заряда увеличивают обратный ток, что приводит к дальнейшему разогреву перехода. В результате такого нарастающего процесса p-л-переход недопустимо разогревается и возникает тепловой пробой, характеризующийся разрушением кристалла (кривая 3 на приведенном выше рисунке).

Из ВАХ диода следует, что он обладает неодинаковой электрической проводимостью в прямом и обратном направлениях его включения. Поэтому полупроводниковые диоды используют в схемах выпрямления переменного тока.

Так как напряжение на полностью открытом диоде не превышает 0,5...0,7 В, то для приближенных расчетов диод рассматривают как вентиль: открыт — закрыт, имеющий ВАХ, изображенную на рисунке

Рисунок 12

Анализ типовых ВАХ диодов показывает, что при одинаковых значениях прямого тока Іпр прямое напряжение Unp на германиевом диоде почти в два раза меньше, чем на кремниевом. Обратный ток Іобр кремниевого диода значительно меньше обратного тока германиевого при одинаковых обратных напряжениях Uo6p. К тому же, германиевый диод начинает проводить ток при ничтожно малом прямом напряжении Unp, а кремниевый — только при Unp = 0,4...0,5 В.

Исходя из этих свойств, германиевые диоды применяют как в схемах выпрямления переменного тока, так и для обработки сигналов малой амплитуды (до 0,3 В), а кремниевые, наиболее распространённые — как в схемах выпрямления, так и в схемах устройств, в которых обратный ток недопустим или должен быть ничтожно мал. К тому же, кремниевые диоды сохраняют работоспособность до температуры окружающей среды 125... 150 °C, тогда как германиевые могут работать только до 70 °C.

математические модели полупроводникового диода

Математическую модель элемента можно рассматривать как некоторый оператор F; ставящий в соответствие системе внутренних параметров компонента или схемы X=x1, x2,...xn совокупность связанных с ними внешних параметров Y=y1, y2,...yn.

Содержание внутренних и внешних параметров, их физический смысл меняется в зависимости от назначения модели. Математические модели технических устройств быть классифицированы по ряду признаков:

По характеру отображаемых процессов выделяют статические и динамические модели. По способу представления модели различают аналитические, графические и табличные. Аналитические модели определяют прибор или компонент в виде уравнений, описывающих его ВАХ или в форме дифференциальных уравнений, описывающих переходные процессы в моделируемой схеме и характеризующие инерционность элемента.

Графические модели позволяют представить компоненты в виде графиков BAX или в виде эквивалентных схем замещения.

Табличные модели позволяют представить схему или элемент в виде цифровых таблиц, полученных в ходе экспериментального исследования объекта моделирования и соответствующих графикам экспериментальных ВАХ. Табличные модели используют обычно в том случае; если аналитическую модель построить трудно вследствие сложной зависимости.

Модель полупроводникового диода в программе Місгосар имеет следующий вид:

Эквивалентная схема модели диода

Рисунок 13

Математическая модель (вариант модели PSPICE) диода задаётся параметрами, перечисленными в таблице.

Таблица

Обозначение	Параметр модели	
IS	Ток насыщения при температуре 27°C	
RS	Объемное сопротивление	
N	Коэффициент эмиссии (не идеальности)	
ISR	Параметр тока рекомбинации	
NR	Коэффициент эмиссии (не идеальности) для тока ISR	
IKF	Предельный ток при высоком уровне инжекции	
TT	Время переноса заряда	
CJO	Барьерная емкость при нулевом смещении	
VJ	Контактная разность потенциалов	
M	Коэффициент плавности p-n перехода (1/2 — для резкого, 1/3 — плавного)	
EG	Ширина запрещенной зоны	
FC	Коэффициент нелинейности барьерной емкости прямо смещённого перехода	
BV	Обратное напряжение пробоя (положительная величина)	
IBV	Начальный ток пробоя, соответствующий напряжению BV (положительная величина)	
NBV	Коэффициент не идеальности на участке пробоя	
IBVL	Начальный ток пробоя низкого уровня	
NBVL	Коэффициент не идеальности на участке пробоя низкого уровня	
XTI	Температурный коэффициент тока насыщения IS	
TIKF	Линейный температурный коэффициент IKF	
TBV1	Линейный температурный коэффициент BV	
TBV2	Квадратичный температурный коэффициент BV	
TRS1	Линейный температурный коэффициент RS	
TRS2	Квадратичный температурный коэффициент RS	
KF	Коэффициент фликкер-шума	
AF	Показатель степени в формуле фликкер-шума	
RL	Сопротивление утечки перехода	

Параметры модели диода, отвечающие за его частотные свойства, определены как:

ОБОЗНАЧЕНИЕ	Параметр модели		
TT	Время переноса заряда		
CJO	Барьерная ёмкость при нулевом смещении		
VJ	Контактная разность потенциалов		
М	Коэффициент плавности p-n перехода (1/2 — для резкого, 1/3 — плавного)		
EG	Ширина запрещённой зоны		
FC	Коэффициент нелинейности барьерной ёмкости прямо смещённого перехода		

СТАТИЧЕСКАЯ ВАХ РЕАЛЬНОГО ДИОДА

Статические характеристики электронных приборов обычно описывают нелинейными функциями.

Вольтамперная характеристика, т. е. зависимость тока, протекающего через p-n-переход, от значения и полярности приложенного к нему напряжения U, достаточно хорошо соответствует выражению

$$I = I_0(e^{\frac{q_e U}{kT}} - 1) = I_0(e^{U/\varphi_T} - 1),$$

Рисунок 21

где Іо — ток насыщения; к — постоянная Больцмана; Т — абсолютная температура; $\varphi_T = (T/11600)$ — температурный потенциал электрона, равный при i=20 °C,

$$\varphi_T = \frac{273 + 20}{11600} \approx 0,025 \,\mathrm{B} = 25 \,\mathrm{mB}.$$

При отрицательном (обратном) напряжении от десятых вольта и выше слагаемым $e^{-U_{oбp}/0,025}$

можно пренебречь по сравнению с единицей, и ток оказывается равным

$$I = I_{o\delta p}$$
,

не зависящим от приложенного напряжения. При прямом приложенном напряжении в десятые доли вольта и выше можно пренебречь единицей по сравнению со слагаемым

$$e^{-U_{o6p}/0.025}$$

и, следовательно, ВАХ оказывается близкой к экспоненте.

Реальный диод можно рассматривать как последовательное соединение идеального диода (идеальный генератор тока) и объёмного сопротивления области базы. Существует несколько численных способов решить задачу определения параметров модели полупроводникового диода. Уравнение для модели диода с учётом объёмного сопротивления области базы может быть записано как

$$Id = Io * (\exp(\frac{Ud - Id * Rb}{N * Ft}) - 1)$$

Разрешая это уравнение относительно напряжения (например, используя возможности символьных решение в MCAD) можно получить выражение напряжения ка некую функцию тока:

$$Ud = Id * Rb + N * Ft * \ln(\frac{Id + Io}{Io})$$

ЧТЕНИЕ ДАННЫХ ИЗ ТЕКСТОВОГО ФАЙЛА В ПРОГРАММУ MCAD

В результате моделирования был сформирован файл Diod_mA.DAT. Он был сохранен по адресу в каталоге C:\MC9\DATA. В MCAD задана переменная VAX, которой и был назначен результат чтения. Формально была считана матрица из двух столбцов. Каждый из столбцов матрицы был определен как переменная по осям графика. Вид графика представлен на листинге программы

Рисунок 14

Такое формирование исходных данных позволяет обратиться к любой элементу вектора и использовать его численные данные.

При использовании программы MCAD расчёт параметров модели может быть выполнен в самой программе. Для расчета необходимы экспериментальные данные, которые могут быть занесены вручную или же считаны из текстовых файлов.

Рисунок 15

Полученные вектора данных можно использовать и для построения графиков

Рисунок 16

Ниже показано как производится считывание таблицы значений ВАХ из текстового файла за счёт использования функции READPRN и построение самого графика ВАХ:

VAX := READPRN("d:\Diod_mA.dat")

Рисунок 17

Можно определить размер введённой таблицы и обратиться к любому элементу таблицы, как к значениям тока, так и значениям напряжения.

$$Id3 := \max(\text{VAX}^{\langle 1 \rangle})$$

$$Id3 = 0.023$$

$$\text{nMax} := \operatorname{match}(\text{Id3}, \text{VAX}^{\langle 1 \rangle})$$

$$\text{nMax} = (50)$$

$$3\text{начение максимального напряжения для максимального тока}$$

$$Ud3 := \left(\text{VAX}^{\langle 0 \rangle}\right)_{50} \quad Ud3 = 0.772$$

$$\text{nId1} := \operatorname{match}\left(\frac{\text{Id3}}{4}, \text{VAX}^{\langle 1 \rangle}\right)$$

$$\text{nId2} := \operatorname{match}\left(\frac{\text{Id3}}{2}, \text{VAX}^{\langle 1 \rangle}\right)$$

$$\text{nId2} := \left(\frac{37}{38}\right)$$

$$\text{nId2} = \left(\frac{42}{43}\right)$$

Рисунок 18

Плотность данных (число точек) полученных в процессе эксперимента может не удовлетворить расчёт, поэтому может потребоваться интерполяция между узловыми точками графика для определения значений токов в расчёте. Это может быть сделано за счёт построения графика и интерполяции между точками 37 и 38 исходных данных для получения значения Ud3 и Id3.

Рисунок 19

Дополнительно можно ввести на график маркеры, то есть линии для значений интересующих токов. Таким образом, можно получить данные по напряжению и току точек:

Рисунок 20

Ud1 := 0.69735

Больший интерес представляется вычисление значений интерполированных точек с использованием встроенных функций MCAD.

Рисунок 21

ПОСТРОЕНИЕ ВАХ ЗАДАННОГО ТАБЛИЦЕЙ И ФУНКЦИОНАЛЬНОЙ ЗАВИСИМОСТЬЮ НА ОДНОМ ГРАФИКЕ

Адекватность модели, то проверку на «одинаковость» графиков модели и эксперимента, можно провести, построив на одном графике ВАХ экспериментальную и ВАХ модельную.

ПОСТРОЕНИЕ ГРАФИКА ВАХ МОДЕЛИ И ИСХОДНЫХ ДАННЫХ:

Ud1 = 0.69623 Id1 = 0.00575 Ud2 = 0.71965 Id2 = 0.01150 Ud3 = 0.74883 Id3 = 0.02300

Rb = 1.00000 NFt = 0.02550 Is0 = 10.00000E-015

Рисунок 22

Для реализации проверки должен быть построен график, на котором будут присутствовать две кривые – исходная и модельная ВАХ. На графике, таким образом, должны совместиться исходная кривая, представленная матрицей данных и график

определенной формулой. Но можно использовать и другой подход, листинг которого показан на рисунке ниже:

 $MCxxin := READPRN("DIOD_F.dat")$ - данные из MCxx demo, массив данных

		0	1	2
	0	0	0	0
MCxxin =	1	1.10-5	1-10-5	2.14·10 ⁻¹⁴
	2	2·10-5	2·10-5	4.282·10 ⁻¹⁴
	3	3·10-5	3·10 ⁻⁵	

$$_{\text{\tiny LM}}$$
:= length $\left(\text{MCxxin}^{\left<2\right>}\right)$ - число точек массива MCxx demo $L=1.009\times10^3$

$$\Delta I := \left(\frac{\max\left(MCxxin^{\left<2\right>}\right) - \min\left(MCxxin^{\left<2\right>}\right)}{L}\right) \text{ - шаг графика массива MCxx demo}$$

$$\Delta I = 3.231 \times 10^{-5}$$

$$I := \min\left(MCxxin^{\langle 2 \rangle}\right), \min\left(MCxxin^{\langle 2 \rangle}\right) + \Delta I ... \max\left(MCxxin^{\langle 2 \rangle}\right)$$

$$Rs := 3 \cdot Rs$$

$$U(I) := I \cdot Rs + \text{ln} \Bigg(\frac{I + Is}{Is} \Bigg) \cdot N \cdot Ft \ \text{-- модельная характеристика с параметрами модели,} \\ \text{полученными в процессе расчета по исходным} \\ \text{данным MCxx}$$

Рисунок 23

При правильном расчете модельных параметров эти кривые должны совпасть с требуемой точностью:

Рисунок 24

<u>Примечание:</u> при визуализации тока Is0 могут возникнуть трудности . По умолчанию MCAD все значения менее 10^{-15} будет считать нулём. Для отображения меньших значений можно использовать возможности форматирования полученного результата установив нулевой порог отображения числа

Рисунок 25

РАСЧЕТ ПАРАМЕТРОВ МОДЕЛИ ПОЛУПРОВОДНИКОВОГО ДИОДА СРЕДСТВАМИ MCAD

Решение систем линейных и нелинейных уравнений и неравенств возможно с помощью вычислительного блока Given который ограничивается функциями Find, Minerr, Maximize, Minimize. Построение решения осуществляется по правилам:

ОПРЕДЕЛЕНИЕ ПАРАМЕТРОВ УРАВНЕНИЯ МОДЕЛИ. МЕТОД given minerr

ПОСТРОЕНИЕ ГРАФИКА ВАХ ДИОДА ПО ФОРМУЛЕ:

Rb:= 1 NFt:=
$$0.0255$$
 IS:= 10^{-14}

Idiod:= 0.10^{-5} ... 0.023

Udiod(Idiod):= Idiod·Rb + NFt·ln $\left(\frac{\text{Idiod} + \text{Is0}}{\text{Is0}}\right)$

Given

$$0.52845 = 1e-005 \cdot Rb + ln \left[\frac{(IS + 1e-005)}{IS} \right] \cdot NFt$$

$$0.68493 = 0.00396 \cdot Rb + ln \left[\frac{(IS + 0.00396)}{IS} \right] \cdot NFt$$

$$0.6146 = 0.00029 - 1 \cdot Rb + ln \left[\frac{(IS + 0.00029)}{IS} \right] \cdot NFt$$

$$Diod_P := Miner(IS, Rb, NFt)$$

Diod
$$P = \begin{pmatrix} 0.00000 \\ 0.00223 \end{pmatrix}$$

Рисунок 26

Для того, чтобы ввести жирный знак равно, внутри блока, требуется нажать клавиши [CTRL +=]. Ограничительные условия здесь обычно задаются в виде неравенств или равенств, которые должны удовлетворяться физическим условиям.

<u>Примечание</u>: Следует помнить, что система уравнений или неравенств должна быть записана после или правее ключевого слова Given. Кроме этого, Блок Given не рекомендуется использовать для поиска индексированных переменных.

Признаком окончания системы служит кодовое слово Find, если необходимо найти точное решение системы, или же слово Minerr для получения решения с заданной точностью.

Решение задачи для определения параметров модели полупроводникового диода GIVEN MINERR показано ниже на листингах.

Рисунок 27

<u>Примечание</u> Minerr рекомендуется использовать, если система не может быть решена точно и следует найти наилучшее приближение, которое обеспечивает минимальную погрешность. Функции Find, Minerr должны иметь столько же или меньше аргументов, сколько уравнений и неравенств содержит блок Given (максимальное число уравнений доведено до 200 в последних версиях MCAD). Если окажется, что блок содержит слишком мало уравнений или неравенств, то блок может быть дополнен тождествами или повторяющимися выражениями.

На рисунке представлена часть листинга программы по определению параметров модели полупроводникового диода с использованием директив Given Minerr

Собственно, пример решение системы нелинейных уравнений, показан ниже:

$$x := 10^{-0}$$
 $F(x) := x \cdot Rb + ln \left[\frac{(IS + x)}{IS} \right] \cdot m \cdot Ft$ $Rb = 1$ $IS = 1 \times 10^{-10}$ $m = 2$
 $F(x) = 2.174$ $Ft = 0.026$

Rb = 1 IS =
$$1 \times 10^{-10}$$
 m = 2

Given открывает блок решения системы

$$0.823 = 10^{-3} \cdot \mathrm{Rb} + \ln \left[\frac{\left(\mathrm{IS} + 10^{-3}\right)}{\mathrm{IS}} \right] \cdot \mathrm{m} \cdot \mathrm{Ft}$$
 первая точка ВАХ, заданная током и напряжением

$$0.949 = 10^{-2} \cdot \text{Rb} + \ln \left[\frac{\left(\text{IS} + 10^{-2} \right)}{\text{IS}} \right] \cdot \text{m} \cdot \text{Ft}$$
 вторая точка ВАХ, заданная током и напряжением

$$1.157 = 10^{-1} \cdot \text{Rb} + \ln \left[\frac{\left(\text{IS} + 10^{-1} \right)}{\text{IS}} \right] \cdot \text{m} \cdot \text{Ft}$$
 претья точка ВАХ, заданная током и напряжением

$$2.174 = 10^{-0} \cdot \text{Rb} + \ln \left[\frac{\left(\text{IS} + 10^{-0} \right)}{\text{IS}} \right] \cdot \text{m-Ft}$$
 четвертая точка ВАХ, заданная током и напряжением

Diod P := Minerr(IS, Rb, m, Ft)

$$Diod_P = \begin{pmatrix} 1.013 \times 10^{-10} \\ 1 \\ 1.972 \\ 0.026 \end{pmatrix}$$

$$Diod_{P_0} = 1.013 \times 10^{-10}$$
 $Diod_{P_1} = 1$ $Diod_{P_2} = 1.972$ $Diod_{P_3} = 0.026$

Проверка решения:

$$Id := 10^{-3}$$

$$F(Id) := Id \cdot Diod_{P_1} + In \left[\frac{\left(Diod_{P_0} + Id \right)}{Diod_{P_0}} \right] \cdot Diod_{P_2} \cdot Diod_{P_3}$$

$$F(Id) = 0.823$$

Рисунок 28

Важным моментом расчета является процедура проверки полученного решения.

РАСЧЕТ ПАРАМЕТРОВ МОДЕЛИ ПОЛУПРОВОДНИКОВОГО ДИОДА МЕТОДОМ ТРЕХ ОРДИНАТ

Уравнение для модели диода с учётом объёмного сопротивления области базы

$$Id = Io * (\exp(\frac{Ud - Id * Rb}{N * Ft}) - 1)$$

Решая это уравнение относительно напряжения (например, используя символьное решение в MCAD) можно получить выражение относительно напряжения:

$$Ud = Id * Rb + N * Ft * \ln(\frac{Id + Io}{Io})$$

Для определения трёх неизвестных Rb, N*Ft и Io следует составить по трём отсчётам статической характеристики и решить систему из трёх нелинейных уравнений. Для упрощения решения при выборе отсчётов Id(Ud) целесообразно обеспечить неравенство Id'>>Io. Это позволит заменить уравнение для напряжения упрощёнными

$$\begin{cases} Ud1' = Rb*Id1' + N*Ft*\ln(\frac{I1'}{Io}) \\ Ud2' = 2*Rb*Id1' + N*Ft*\ln(\frac{2*I1'}{Io}) \\ Ud3' = 4*Rb*Id1' + N*Ft*\ln(\frac{4*I1'}{Io}) \end{cases}$$

и даст возможность получить решение в виде:

$$\begin{cases} Rb = \frac{(Ud1' - 2*Ud2' + Ud3')}{Id'} \\ N*Ft = \frac{(3*Ud2' - 2*Ud1' - Ud3')}{\ln(2)} \\ Io = Id1'*exp(\frac{-(2*Ud2' - Ud3')}{N*Ft}) \end{cases}$$

В рассмотренном примере требуется достаточно точное определение значений Udi', которое не всегда удаётся обеспечить. Это требование можно ослабить при выборе для параметра (N*Ft) его теоретического значения, зависящего от материала и свойств полупроводника.

$$N*Ft = \frac{kT}{a} = \frac{273 + T^0C}{11608}$$

В этом случае остальные параметры Rb и Io определяются по двум точкам характеристики Id1' и 2*Id1', что соответствует системе уравнений:

$$\begin{cases} Ud1' = Rb*Id1' + N*Ft*ln(\frac{I1'}{Io}) \\ Ud2' = 2*Rb*Id1' + N*Ft*ln(\frac{2*I1'}{Io}) \end{cases}$$

С решением:

$$\begin{cases} Rb = \frac{(Ud1' - 2*Ud2' + Ud3')}{Id'} \\ Io = Id1'* \exp(\frac{(Ud2' - 2*Ud1')}{N*Ft}) \end{cases}$$

При использовании программы MCAD расчёт параметров модели по трем отсчетам в экспериментальной BAX может быть выполнен в соответствии с текстом программы MCAD показанной ниже.

В программе производится считывание таблицы значений ВАХ из текстового файла за счёт использования функции READPRN, строится график ВАХ и рассматривается введённая таблица данных:

Рисунок 29

Здесь же определяется длина введённой таблицы и показывается возможность обращения к любому элементу таблицы, как к значениям тока, так и значениям напряжения.

$$Id3 := \max(VAX^{\langle 1 \rangle})$$

$$3$$
Значение индекса максимального тока
$$nMax := \operatorname{match}(Id3, VAX^{\langle 1 \rangle})$$

$$nMax = (50)$$
Значение максимального напряжения для максимального тока
$$Ud3 := \left(VAX^{\langle 0 \rangle}\right)_{50} \quad Ud3 = 0.772$$

$$nId1 := \operatorname{match}\left(\frac{Id3}{4}, VAX^{\langle 1 \rangle}\right)$$

$$nId2 := \operatorname{match}\left(\frac{Id3}{2}, VAX^{\langle 1 \rangle}\right)$$

$$nId2 = \begin{pmatrix} 42\\43 \end{pmatrix}$$

Рисунок 30

После чего рассчитываются параметры модели. Плотность данных (число точек) полученных в процессе эксперимента может не удовлетворить расчёт, поэтому может потребоваться интерполяция между узловыми точками графика для определения значений токов в расчёте. Это может быть сделано за счёт построения графика и интерполяции между точками 37 и 38 исходных данных для получения значения Ud3 и Id3.

Рисунок 31

Дополнительно можно ввести на график маркеры, то есть линии для значений интересующих токов. Таким образом, можно получить данные по напряжению и току точек:

Рисунок 32

Больший интерес представляется вычисление значений интерполированных точек с использованием встроенных функций MCAD.

Рисунок 33

Полученный результат требует проверки, а поскольку главной целью построения модели является адекватность модели, то проверку можно провести, построив на одном графике BAX экспериментальную и BAX модельную.

Необходимо только обеспечить равенство масштабов по осям токов и напряжений. Пример проверки показан на рисунке.

$$Ltab := length (VAX^{\langle 1 \rangle}) \qquad min (VAX^{\langle 1 \rangle}) = 0 \qquad max (VAX^{\langle 1 \rangle}) = 0.023$$

$$\Delta I := \left(\frac{max(VAX^{\langle 1 \rangle}) - min(VAX^{\langle 1 \rangle})}{Ltab}\right) \qquad \Delta I = 4.474 \times 10^{-4}$$

$$I := min(VAX^{\langle 1 \rangle}), (min(VAX^{\langle 1 \rangle}) + \Delta I)...max(VAX^{\langle 1 \rangle})$$

$$Rb = 0.414$$

$$U(I) := I \cdot Rb + ln \left[\frac{(I + Is0)}{(Is0)}\right] \cdot NFt$$

$$0.03$$

$$0.02$$

$$\frac{I}{VAX^{\langle 1 \rangle}}$$

$$0.01$$

$$0.02$$

$$U(I), VAX^{\langle 0 \rangle}$$

Рисунок 34

При определении тока Is0 могут возникнуть трудности в визуализации этого тока. По умолчанию MCAD все значения менее 10^{-15} будет считать нулём. Для отображения меньших значений можно использовать возможности форматирования полученного результата установив нулевой порог отображения числа

Рисунок 35

РАСЧЕТ ПАРАМЕТРОВ ЕМКОСТИ ДЛЯ МОДЕЛИ ДИОДА

Определить параметры барьерной емкости можно из эксперимента изменения резонансной частоты колебательного контура к которому подключен полупроводниковый диод – управляемая емкость (диод варикап).

Схема эксперимента для программы Місгосар показана ниже на рисунке:

Ре зо на нен ая ча сто та кон тур а 503.292121К

PI= 3.141592653589795

Рисунок 36

Особенности схемы состоят в том, что прямое подключение диода к колебательному контуру, при управлении от источника Vvar невозможно. Малое внутреннее сопротивление источника управления резко снизит добротность контура

Резонансная частота колебательного контура может быть подсчитана внутри программы Microcap – встроенным калькулятором.

Рисунок 37

При проведении частотного анализа диалоговое окно пределов анализа определяет основные параметры анализа

Рисунок 38

Frequency Range – задает пределы анализа по форме Fmax, Fmin, и, в зависимости от метода изменения частоты (Auto, Linear) задаются пределы изменения выходной функции (Maximum Change %) от точки к точке, или же число точек в сеансе расчета (Number of Points). Пределы анализа должны быть выбраны так, чтобы резонансная частота контура лежала бы в пределах от Fmax до Fmin. Вид полученного решения показан ниже на рисунке:

Рисунок 39

Задавая значение напряжения источника управления Vvar можно получить зависимость резонансной частоты от значения напряжения. Иногда выгодно включить многовариантный режим анализа, используя возможности режима Stepping...(доступ к режиму возможен либо через меню AC анализа, или за счет нажатия экранной кнопки Stepping, или горячей клавиши F11.

Рисунок 40

В диалоге задается параметр изменяемого компонента (Step What), границы изменения параметра (From, To, Step Value). В результате решения будут получены несколько резонансных кривых, соответствующих указанным значениям напряжения управления.

Рисунок 41

В режиме работы с курсорами в заголовке окна результата можно будет увидеть значение напряжения Vvar, и, установив курсор в максимум кривой, получить значение резонансной частоты. Имя значения резонансной частоты и значения напряжения смещения можно рассчитать вольтфарадную характеристику.

Поскольку резонансная частота определяется по формуле Томпсона, из этой формулы можно вычислить значение емкости диода для напряжения управления и

построить вольтфарадную характеристику. Вид фрагмента программы *MCAD* показан ниже на рисунке:

Рисунок 42

0 30

Расчёт параметров барьерной ёмкости можно провести с использованием возможностей MCAD — решение системы нелинейных уравнений с использованием вычислительного блока Given-Find или Given-Minerr. Вычислительный блок в MCAD Полупроводниковые диоды. Місгосар <u>Оглавление</u>

Загидуллин Р.Ш.

Vvar_i

- 10

4

- 20

называется система из вводного слова Given и функции той или иной математической операции, например, Find – решение системы уравнений или Minerr – поиск точки минимальной невязки системы. Для решения системы уравнений с помощью вычислительного блока необходимо выполнить следующую последовательность действий.

- Задать начальные приближения корней уравнения.
- Набрать вводное слово Given
- Строго под вводным словом задать систему уравнений.

B качестве знаков равенства следует использовать логическое равенство (Ctrl+=) – жирный знак =.

• Ввести функцию решения систем уравнений find(x1,x2,...) или Miner(x1,x2,...)). В скобках через запятую задать переменные в том порядке, в котором должны быть расположены в ответе соответствующие им корни.

В качестве примера можно предложить решение системы, для которой предварительно была построена вольтфарадная характеристика по известным заранее параметрам модели. В примере можно сравнить полученные в результате расчёта данные и исходные значения параметров модели.

Рисунок 43 Собственно, решение системы будет выглядеть так:

Given Given

Рисунок 44

Контактная разность потенциалов $\varphi_{\text{кон}}$ (VJ) (потенциальный барьер) зависит от материала диода. Если материал кремний, тс VJ = (0.7...0.8) 3, если материал германий, то VJ = (0.1...0.5) B.

Параметр модели EG - ширина запрещённой зоны зависит от материала диода: для кремния EG = 1.1 Θ B; для германия EG = 0.67 Θ B.

Время переноса заряда ТТ (среднее время жизни носителей) можно определить следующими способами: Для диода, изготовленного по сплавной технологии:

$$TT = 4 \cdot T_{eoc} \cdot (1 + \ln \frac{I_{np}}{I_{oob}})$$

Где I_{soc} - время восстановления обратного сопротивления, $I_{oбp}$ - обратный, постоянный ток, I_{np} - значение прямого тока, при котором было измерено время восстановления.

Если диод изготовлен по диффузионной технологии, то $TT=1.6 \cdot T_{_{60C}}$.

При известной максимальной частоте выпрямления $f_{\text{макс}}$ время переноса заряда $TT = \frac{1}{2 \cdot \pi \cdot f_{\text{макc}}}$

Если в справочнике приведена величина заряда переключения $Q_{n\kappa}$ и значение постоянного тока перед моментом переключения I_{np} , то постоянная времени может быть рассчитана по формуле

$$TT = \frac{Q_{n\kappa}}{I_{np}}$$

РАБОТА С ПРОГРАММОЙ MODEL ДЛЯ СОЗДАНИЯ МОДЕЛИ ДИОДА

Для ранних версий программы Містосар была доступна программа расчета параметров модели активных приборов по экспериментальным данным — программа MODEL. Вызов программы мог быть осуществлен непосредственно как из меню программы, так и запустив на выполнение файл model.exe. Исполняемый файл можно найти в каталоге программы на жестком диске.

Рисунок 45

После выбора пункта New... в окне New File Name производится выбор типа прибора для ввода данных с целью получения параметров модели. В этом же окне задаётся и путь до файла с расширением MDL – файла программы MODEL.

После этих действий программа представлять собой набор окон (их четыре для полупроводникового диода), которые должны быть заполнены экспериментальными данными и здесь же будут показаны результаты расчетов параметров модели. Для того, чтобы перейти в многооконный вид работы с программой расчета в пункте меню View необходимо выбрать All Graphs

Рисунок 47

Тип расчета параметров определяет подчеркнутое название окна расчета:

Рисунок 48 Основные компоненты любого окна MODEL следующие:

	Part 1	DIODE
T1	D100MyDiod	
T2	Практикум по Электронике	
Т3	Diod_In	
Τ4	Работа с программой Model	

Рисунок 49

Текстовые поля: имеются четыре поля текстовые поля: 'T1', 'T2', 'T3', и 'T4'.

'T1' и 'T3' импортируются в библиотеки модели МС7. Поле 'T1' определяет название компонента и используется в библиотеке. Другие текстовые поля служат только как дополнительная документация.

Числовые поля данных: имеют от одного до трех полей данных, в зависимости от Типа устройства и исходных графиков. В поле данных может быть введено от одной до пятидесяти позиций. Данные обычно получаются по ВАХ прибора. Если ВАХ нет, то может быть использована единственная пара значений, найденная в справочниках. Если же и в справочниках нет данных, то параметры модели задаются по умолчанию.

Примечание: Удалить данные из таблицы можно за счёт нажатия горячих клавиш CTRL/D, или через пункт меню Edit – Delete Data, предварительно выбрав строчку данных

Начало работы с программой: первое окно расчёта параметров модели полупроводникового диода.

В полях **Model Parameters** расположены значения модельных параметров. Они могут быть исправлены пользователем по экспертным значениям. Поля Условий эксперимента **Measurement Condition**: здесь приводят значение условия проведения эксперимента в процессе получения исходных данных.

Рисунок 50

Примечание: Начальные, по умолчанию параметры задаются в окне Model Default Editor

Рисунок 51

Расчет параметров модели происходит после последовательного выбора в пункте меню Run пунктов Initialize и Optimize

Рисунок 52

В первом окне расчета производится определение параметров расчета исходя из данных на прямой ветви

Рисунок 53

Вводить данные можно как в таблицу, так и графически (щелчком мыши на графике).

Второй экран посвящен расчету параметров из вольтфарадной характеристики.

Рисунок 54

Третий экран программы обрабатывает данные, полученные при изучении обратной ветви ВАХ диода.

Рисунок 55

В этом расчете параметр BV – напряжение пробоя для диода. Он может быть выбрана по справочным данным из предельно допустимого напряжения, может задаваться как 1.2 Umax.

Четвертый экран рассчитывает время жизни неосновных носителей из данных о времени восстановления обратного сопротивления диода Числовая характеристика процесса восстановления равновесной концентрации определяется значением постоянной времени (обозначается как ТТ) для диода (среднее время жизни носителей). Это время можно определить следующими способами:

- В общем случае постоянная времени для диода может быть определено: TT=tвоc(1+ln(Iпp/Iобр)
- Постоянная времени для диода при сплавной технологии может быть определено как

```
TT=4 \operatorname{tBoc}(1+\ln(\operatorname{Imp/Iofp})) -- [ 4 \operatorname{Trr}*(1+\ln(\operatorname{Irr/If}))].
```

где — tвос время восстановления обратного сопротивления, Inp - значение прямого тока при котором было измерено значение времени восстановления обратного сопротивления (если данный параметр не указан в ТУ на диод, то вместо вводим значение постоянного прямого тока), Iofp - постоянный обратный ток. При диффузионной технологии можно положить TT = 1.6 tвос.

• При известной максимальной частоте выпрямления f max можно оценить время постоянную времени как $TT = [1/(2*\pi \text{ f max})].$

Обработка экспериментальных данных может быть проведена в программе МСАD:

Рисунок 56

Примечание: программа предоставляет возможность изучить влияние вариации отдельных параметров на вид различных характеристик через пункт меню Step Model Parameters

Рисунок 57

После нажатия экранной кнопки ОК программа будет готова к расчёту исходного графика с заданными пределами изменения параметра модели. Изменение параметра модели и перестроение графика произойдёт сразу после нажатия любой клавиши. Одновременно в окне Model Parameters будет указано значение этого параметра для перестроенного графика.

После расчёта параметров модели можно сохранить данные в форматах:

- В формате SPICE (файл с расширением LIB) и
- в формате упакованного файла для MC7 (расширение LBR).
- Соответственно пункты меню для этих расчетов Create SPICE File и Create Model Library

Рисунок 58

При сохранении файла библиотеки рекомендуется задавать расширение файла явно.

ВКЛЮЧЕНИЕ МОДЕЛИ В БАЗУ ДАННЫХ

Для включения модель в базу данных программы Microcap CAПР используются файлы специальных форматов. Один из самых распространённых форматов - формат PSPICE. Расширение файла с описанием модели в этом формате - «LIB». Текстовый файл может быть прочитан и отредактирован любым текстовым редактором и средствами Microcap. Для открытия файла в среде Microcap используется меню Open

Рисунок 59

Строка в файле, где в первой позиция расположен символ звездочка «*» означает, что это строка комментариев и не принимается в расчёт для описания модели. Первая позиция строки со символом точка «.» означает начало описания модели. Первой в этой строке идёт служебная директива «.model» и указание на имя модели. После имени модели идёт символ «D», указывающий на то, что это модель диода. В скобках идёт описание параметров: параметр и его значение. Символ «+» в первой позиции следующей строки означает продолжение предыдущей.

Вид фрагмента текстового файла с описанием модели диода в простом текстовом редакторе и текстовом редакторе Microcap показан на рисунке

Рисунок 60

Если в описание модели будут отсутствовать какие-либо параметры, то программа Місгосар сама дополнит модель значением этого параметра по «умолчанию». Поэтому даже если описание будет содержать только статические параметры, то модель считается рабочей и будет воспринята программой.

Рисунок 61

Далее модель должна быть подсоединена к базе данных программ. Для программы Місгосар это осуществляется указанием имени файла и пути до него в файле «NOM.lib». Другими словами, в файл NOM.LIB дописывается информация о файле, причем, если этот файл расположен в папке LIBRARY, то указывается только имя файла, если же файл расположен в другом месте, то прописывается полный путь до файла. Этого достаточно для начала работы с моделью.

Существует возможность указать Microcap на модель не вписывая ее в «NOM.lib», а используя следующий прием. Описание модели диода из файла копируется в буфер обмена, а затем вставляется на закладку Техt главного окна Microcap, после чего модель диода становиться доступной для использования в программе Microcap (но только при использовании этого файла описания схемы).

Рисунок 62

На закладке Text можно указать ссылку на файл библиотеку.

Рисунок 63

Такой прием позволит иметь доступ ко всем элементам библиотеки, но, опять же только при использовании этого файла описания схемы.

ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ ОТЧЕТА

В отчете следует привести цель и задачи работы, краткую методику проведения экспериментов, как при моделировании, так и при работе на физическом стенде.

Экспериментальные прямые ветви ВАХ для двух диодов (кремневый и германиевый диоды) приводятся как с линейным масштабом для напряжения и тока, так и с полулогарифмическим (линейный для напряжения и логарифмический для тока). Построение экспериментальных ВАХ и определение по ним параметров диода, с помощью которых строятся его эквивалентные схемы, рекомендуется проводить с использованием математического пакета МСАD. Получение ВФХ желательно снабдить пояснением работы МСАD в режиме аналитических вычислений. Выбор методов численного решения остается за студентом, желательно этот выбор пояснить.

Проверка адекватности результатов построения модели осуществляется по сравнению ВАХ модельной и экспериментальной. Для модели диода, взятой из существующей базы данных программы Місгосар и модели, полученной в результате расчета необходимо выполнить условие — при напряжении 1 Вольт разница между током диода исходной модели и током диода модели построенной в результате расчета, не должна превышать 10%. К параметрам модели диода динамическим (барьерная и диффузионная компоненты) особых требований по точности не предъявляется.

В отчете должно присутствовать содержимое файлов библиотеки созданных моделей диода в формате *.LIB.

В общем случае последовательность действий, при формировании отчета по практикуму должно соответствовать диаграмме:

Рисунок 64

ЛИТЕРАТУРА. ОСНОВНАЯ.

- 1. Загидуллин Р.Ш. Лабораторный практикум по курсам «Дополнительные главы Информатики», «Основы Электроники». Часть 1. 1 Введение в работу с программой МСАD. МГТУ им. Н.Э. Баумана. 2012. 73 с. ил
- Марченко А. Л. Основы электроники. Учебное пособие для вузов/А. Л. Марченко. М.: ДМК Пресс. 2008. 296 с. ил. Табл. 25. Ил. 252. Библиогр. 26 назв. ISBN 978-5-94074-432-0
- 1. Амелина М.А., Амелин С.А. Программа схемотехнического моделирования Місго-Сар. Версии 9, 10. Смоленск, Смоленский филиал НИУ МЭИ, 2012. -617 с, ил.
- 2. Хоровнц П., Хилл У. Искусство схемотехники. В 2-х томах. Пер. с англ.-М.: Мир, 1983. т. 1. 598 с: ил.
- 3. Хоровнц П., Хилл У. Искусство схемотехники. В 2-х томах. Пер. с англ.-М.: Мир, 1983. -т.2. 590 с: ил.
- 4. Гурский Д. А. Турбина Е. С. Вычисления а MCAD 12. СПб.: Питер. 2006. 544 с.: ил. ISBN 5-469-00639-6
- Хернитер Марк К. Multisim 7: Современная система компьютерного моделирования и анализа схем электронных устройств. (Пер. с англ.) / Пер. с англ. Осипов А.И. - М.; Издательский дом ДМК-пресс, 2006. 488 с: ил..

ЛИТЕРАТУРА. ДОПОЛНИТЕЛЬНАЯ

- 6. Разевиг В.Д. Применение программ P-CAD и PSPICE для схемотехнического моделирования на ПЭВМ, В 4 выпусках. М.: Радио и связь, 1992год.
- MCAD 6.0 PLUS Финансовые, инженерные и научные расчеты в среде Windows-95. Перевод с англ. - М.: Информационно-издательский дом «Фи-линь», 1996. -712 с.