ADVANCED BURN-RATE MODELING AND COMBUSTION DIAGNOSTICS FOR NEW, ROCKET-MISSILE AND GUN PROPELLANTS

R.C. Sausa*, W.R. Anderson, and M. Miller U.S. Army Research Laboratory, AMSRL-WM-BD Aberdeen Proving Ground, MD 21005-5066

> A. Fontijn Department of Chemical Engineering Rensselaer Polytechnic Institute Troy, NY 12180-3590

J. Neidert
US Army Aviation and Missile Research, Development, and Engineering Center
Redstone Arsenal, AL 35898-5000

SUMMARY

Advanced, burn-rate, propellant modeling is critical for developing new rocket-missile and gun propellants for Future Combat Systems and for providing a fundamental screening tool that can result in substantial cost savings compared to missile and gun firings. In this summary, we report the detailed chemical kinetics and burn rate prediction of hexahydro-1,3,5-hexanitro-1,3,5-triazine (RDX) and selected high-energetic binders and nitrate esters.

Figure 1 shows a burning strand of RDX composite at ~15 atm (left) and a depiction of the molecular nature of the burning propellant with thermochemical and physical processes that illustrate the complexity of the overall process (right). We modeled the gas phase at a high level of detail and finessed the condensed phase by a semi-empirical approach. Our chemical mechanism consists of ~400 elementary reactions involving 100 species that we obtained from a critical literature review. We tested this mechanism with our burner flame apparatus: i.e. H₂, NH₃/N₂O, NO₂ flames for the N-H-O chemistry. Flame temperatures, as well as stable and radical species concentrations were measured by laser spectroscopy and molecular beam mass spectrometry, and then compared to those obtained with the SANDIA PREMIX flame code containing subsets of the detailed chemical mechanism. We also measured the rates of questionable reactions with our hightemperature kinetics apparatus or calculated them with quantum mechanic-based programs. The NH+H₂ and NH+CO₂ rates in the 400-1200Ktemperature range will be presented at the meeting.

Fig 1. Burning RDX: Photograph (left) and molecular depiction (right).

The output of our burn-rate predictor is shown in Figures 2 and 3. Figure 2, which was generated with our in-house postprocessing program, shows a chemical pathway diagram focusing on the nitrogenous species of RDX burning at 1 atm. It reveals the decomposition channels of RDX and the intermediate and final products produced. All of the major and minor species, as well as most of the radical intermediates, are observed experimentally. Figure 3 shows the burning rate of RDX in the 1-100 atm range. Our model predicts well the observed

maintaining the data needed, and of including suggestions for reducing	election of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding arome control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis I	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 00 DEC 2004		2. REPORT TYPE N/A	3. DATES COVERED -		RED	
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Advanced Burn-Rate Modeling and Combustion Diagnostics for New, Rocket-Missile and Gun Propellants				5b. GRANT NUMBER		
Rocket-Missile and Gun I Topenants				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Research Laboratory, AMSRL-WM-BD Aberdeen Proving Ground, MD 21005-5066; Department of Chemical Engineering Rensselaer Polytechnic Institute Troy, NY 12180-3590 8. PERFORMING ORGANIZATION REPORT NUMBER						
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited						
13. SUPPLEMENTARY NOTES See also ADM001736, Proceedings for the Army Science Conference (24th) Held on 29 November - 2 December 2005 in Orlando, Florida., The original document contains color images.						
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF: 17. LI				18. NUMBER	19a. NAME OF	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 2	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Fig. 2. RDX chemical pathway diagram obtained with our burn rate predictor.

experimental data, as well as the modeled data by Liau and Yang.

Our advanced experimental and modeling capabilities provide the necessary tools for characterizing low-signature, insensitive, rocket-missile and gun propellants for energy-managed, military systems that require greater range and flexibility. We have developed a burn-rate model with detailed chemical kinetics for solid propellants, and presented our results for RDX. Our work on high-energy binder and nitrate esters is ongoing.

Fig. 3. Observed and calculated burn rate of RDX.