

TEWA 1: Advanced Data Analysis

Lecture II

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

https://github.com/lei-zhang/tewa1_univie

Bayesian warm-up?

$$P(\Theta, \Phi \mid D) = \frac{P(D \mid \Theta, \Phi)P(\Theta, \Phi)}{P(D)} \propto P(D \mid \Theta)P(\Theta \mid \Phi)P(\Phi)$$

OPTIMIZING STAN CODES

cognitive model
statistics
computing

cognitive model

statistics

computing

Optimizing Stan Code

Preprocess data

run as many calculations as you can outside Stan

Specify a proper model

follow literature, supervision, experience, etc.

Vectorizing

vectorize Stan code whenever you can

Reparameterizing

reparameterize target parameter to simple distributions

cognitive model

computing

Preprocess Data

```
\overline{\text{height}} = \alpha + \beta 1 * \text{weight} + \beta 2 * \text{weight}^2
```

```
d$weight_sq <- d$weight^2</pre>
```

```
data {
  int<lower=0> N;
  vector<lower=0>[N] height;
  vector<lower=0>[N] weight;
  vector<lower=0>[N] weight_sq;
}
```

Specify a Proper Model

- Visualize your data
- Follow Literatures
- Start from simple and then build complexities
- Simulate data and run model recovery

```
A New Model

data{...}

parameters{...}

model{
 prior, likelihood, etc.
}
```

Vectorization

```
statistics computing
```

```
model {
  for (n in 1:N) {
    flip[n] ~ bernoulli(theta);
  }
}
model {
  flip ~ bernoulli(theta);
}
```

```
model {
 vector[N] mu;
 for (i in 1:N) {
   mu[i] = alpha + beta * weight[i];
   height[i] ~ normal(mu[i], sigma)
model {
 vector[N] mu;
 mu = alpha + beta * weight;
 height ~ normal(mu, sigma);
model {
 height ~ normal(alpha + beta * weight, sigma);
```

statistics

computing

Reparameterization

Neal's Funnel

```
p(y,x) = \text{Normal}(y|0,3) \times \prod_{n=1}^{9} \text{Normal}(x_n|0, \exp(y/2))
```

```
parameters {
  real y;
  vector[9] x;
}
model {
  y ~ normal(0,3);
  x ~ normal(0,exp(y/2));
}
```


Non-centered Reparameterization*

cognitive model

statistics

computing

statistics

computing

Reparameterization

Neal's Funnel

```
p(y,x) = \text{Normal}(y|0,3) \times \prod_{n=1}^{9} \text{Normal}(x_n|0, \exp(y/2))
```

```
parameters {
  real y;
  vector[9] x;
}
model {
  y ~ normal(0,3);
  x ~ normal(0,exp(y/2));
}
```



```
parameters {
 real y raw;
 vector[9] x raw;
transformed parameters {
 real y;
 vector[9] x;
 y = 3.0 * y raw;
 x = \exp(y/2) * x_{raw};
model
 y_raw ~ normal(0,1);
  x raw \sim normal(0,1);
```

computing

Stan Sampling Parameters

parameter	description	constraint	default
iterations	number of MCMC samples (per chain)	int, > 0	2000
delta: δ	target Metropolis acceptance rate	$\delta \in [0,1]$	0.80
stepsize: $arepsilon$	initial HMC step size	real, ε > 0	2.0

maximum HMC steps per iteration

Typical adjustments

Increase iterations

max treedepth: L

- Increase delta
- Decrease stepsize
- Might have to increase max_treedepth

10

int, L > 0

Neal's Funnel: Comparing Performance

statistics computing

	direct model	adjusted direct model	reparameterized model
Rhat (y)	1.22	1.1	1.0
n_eff (y)	18	42	3886
runtime [*]	48.50 sec	50.76 sec	50.12 sec
n_eff (y) / runtime	0.37 / sec	0.82 / sec	77.53 / sec
n_divergent	53	0	0
traceplot (y)	0 1000 1250 1500 1750 2000	5- 1000 1250 1500 1750 2000	10- 5- 0- 1000 1250 1500 1750 2000

^{*: 2} cores in parallel, including compiling time

statistics

How about Bounded Parameters?

constraint	reparameterization
$\theta \in (-\infty, +\infty)$	$\theta = \mu_{\theta} + \sigma_{\theta} \tilde{\theta}$
$\theta \in [0, N]$	$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times N$
$\theta \in [M,N]$	$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times (N-M) + M$
$\theta \in (0, +\infty)$	$\theta = exp(\mu_{\theta} + \sigma_{\theta}\tilde{\theta})$

cognitive model

statistics

computing

```
Apply to Our Hierarchical RL Model
```

```
parameters {
   real<lower=0,upper=1> lr_mu;
   real<lower=0,upper=3> tau_mu;

   real<lower=0> lr_sd;
   real<lower=0> tau_sd;

   real<lower=0,upper=1> lr[nSubjects];
   real<lower=0,upper=3> tau[nSubjects];
}
```

```
parameters {
 real lr mu raw;
 real tau mu raw;
 real<lower=0> lr sd raw;
 real<lower=0> tau sd raw;
 vector[nSubjects] lr raw;
 vector[nSubjects] tau raw;
transformed parameters {
 vector<lower=0,upper=1>[nSubjects] lr;
 vector<lower=0,upper=3>[nSubjects] tau;
 for (s in 1:nSubjects) {
   lr[s] = Phi_approx( lr_mu_raw + lr_sd_raw * lr_raw[s] );
   tau[s] = Phi approx( tau mu raw + tau sd raw * tau raw[s] ) * 3;
```

Apply to Our Hierarchical RL Model

```
model
 lr sd \sim cauchy(0,1);
 tau sd \sim cauchy(0,3);
        ~ normal(lr_mu, lr_sd);
        ~ normal(tau mu, tau sd) ;
 tau
 for (s in 1:nSubjects) {
   vector[2] v;
   real pe;
   v = initV;
   for (t in 1:nTrials) {
      choice[s,t] ~ categorical logit( tau[s] * v );
      pe = reward[s,t] - v[choice[s,t]];
      v[choice[s,t]] = v[choice[s,t]] + lr[s] * pe;
```

```
model {
    Ir_mu_raw ~ normal(0,1);
    tau_mu_raw ~ normal(0,1);
    Ir_sd_raw ~ cauchy(0,3);
    tau_sd_raw ~ cauchy(0,3);

    Ir_raw ~ normal(0,1);
    tau_raw ~ normal(0,1);

    for (s in 1:nSubjects) {
        ...
```

```
generated quantities {
  real<lower=0,upper=1> lr_mu;
  real<lower=0,upper=3> tau_mu;

lr_mu = Phi_approx(lr_mu_raw);
  tau_mu = Phi_approx(tau_mu_raw) * 3;
}
```

statistics

```
.../07.optm_rl/_scripts/reinforcement_learning_hrch_main.R
```

- TASK: (I) Complete the Matt Trick
- (2) fit the optimized hierarchical RL model

```
> source('_scripts/reinforcement_learning_hrch_main.R')
> fit_rl4 <- run_rl_mp2(optimized = TRUE)</pre>
```

Hierarchical Fitting – Optimized

statistics

computing

Posterior Means (hrch)

Posterior Means (hrch + optm)

cognitive model

Comparing with True Parameters

statistics

computing

Posterior Means (indv)

Posterior Means (hrch) Posterior Means (hrch+optm)

True Parameters

statistics

computing

constraint

reparameterization

$$\theta \in (-\infty, +\infty)$$
 $\theta = \mu_{\theta} + \sigma_{\theta} \tilde{\theta}$

$$\theta \in [0, N]$$

$$\theta \in [M, N]$$

$$\theta \in (0, +\infty)$$

$$\theta = \mu_{\theta} + \sigma_{\theta} \hat{\theta}$$

$$\theta \in [0, N]$$

$$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times N$$

$$\theta \in [M, N]$$

$$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times (N-M) + M$$

$$\theta \in (0, +\infty)$$
 $\theta = exp(\mu_{\theta} + \sigma_{\theta}\tilde{\theta})$

MODEL COMPARISON SATURN SATURN EARTH MERCURY MERCURY EÁRTH JUPITER MOON MARS-

cognitive model
statistics
computing

cognitive model statistics

computing

Which model provides the best fit?

Which model represents the best balance between model fit and model complexity?

Ockham's razor:

Models with fewer assumptions are to be preferred

- overfitting: learn too much from the data
- underfitting: learn too little from the data

Pitt & Miyung (2002) 25

statistics computing

Which model has the highest predictive power?

statistics

computing

Focusing on Predictive Accuracy

- Nothing prevents you from doing that in a Bayesian context but holding out data makes your posterior distribution more diffuse
- Bayesians usually condition on all the data and evaluate how well a model is expected to predict out of sample using "information criteria": model with the highest expected log predictive density (ELPD) for new data

Information Criteria

cognitive model

statistics

computing

AIC – Akaike information criterion

DIC - Deviance Information Criterion

WAIC – Widely Applicable Information Criterion

finding the model that has the highest out-of-sample predictive accuracy

approximation to LOO

BIC – Bayesian Information Criterion

finding the "true" model

Compute WAIC from Likelihood

cognitive model

statistics

computing

$$WAIC = -2 \widehat{elpd}_{waic}$$

expected log pointwise predictive density

estimated effective number of parameters

$$\widehat{\text{elpd}}_{\text{waic}} = \widehat{\text{lpd}} - \widehat{p}_{\text{waic}}$$

 \widehat{lpd} = computed log pointwise predictive density

$$= \sum_{i=1}^{n} \log \left(\frac{1}{S} \sum_{s=1}^{S} p(y_i | \theta^s) \right).$$

 $\widehat{p}_{\text{waic}} = \sum_{s=1}^{\infty} V_{s=1}^{S} \left(\log p(y_i | \theta^s) \right)$

lpd <- log(colMeans(exp(log_lik)))</pre>

p_waic <- colVars(log_lik)</pre>

*IC comparisons

cognitive model

statistics

computing

		No	Complete	Hierarchical
		pooling	$\operatorname{pooling}$	model
		$(\tau = \infty)$	$(\tau = 0)$	$(\tau \text{ estimated})$
AIC	$-2\operatorname{lpd} = -2\log p(y \hat{\theta}_{\mathrm{mle}})$	54.6	59.4	
	k	8.0	1.0	
	$AIC = -2 \widehat{\text{elpd}}_{AIC}$	70.6	61.4	
DIC	$-2 \operatorname{lpd} = -2 \log p(y \hat{\theta}_{\mathrm{Bayes}})$	54.6	59.4	57.4
	$p_{ m DIC}$	8.0	1.0	2.8
	$DIC = -2 \widehat{\text{elpd}}_{DIC}$	70.6	61.4	63.0
WAIC	$-2 \operatorname{lppd} = -2 \sum_{i} \log p_{\operatorname{post}}(y_i)$	60.2	59.8	59.2
	$p_{\mathrm{WAIC 1}}$	2.5	0.6	1.0
	$p_{\mathrm{WAIC}2}$	4.0	0.7	1.3
	$WAIC = -2 \widehat{elppd}_{WAIC 2}$	68.2	61.2	61.8
LOO-CV	$-2 \operatorname{lppd}$		59.8	59.2
	$p_{ m loo-cv}$		0.5	1.8
	$-2 \operatorname{lppd}_{loo-cv}$		60.8	62.8

cognitive model

Recording the Log-Likelihood in Stan

computing

```
generated quantities {
 real log lik[nSubjects];
 { # local section, this saves time and space
   for (s in 1:nSubjects) {
     vector[2] v;
     real pe;
     log_lik[s] = 0;
     v = initV;
     for (t in 1:nTrials) {
       log_lik[s] = log_lik[s] + categorical_logit_lpmf(choice[s,t] | tau[s] * v);
       pe = reward[s,t] - v[choice[s,t]];
       v[choice[s,t]] = v[choice[s,t]] + lr[s] * pe;
```

cognitive model statistics

computing

```
> library(loo)
> LL1     <- extract_log_lik(stanfit)
> loo1     <- loo(LL1)  # PSIS leave-one-out
> waic1 <- waic(LL1)  # WAIC</pre>
```

Computed from 4000 by 20 log-likelihood matrix

Pareto Smoothed Importance Sampling

	Estimate	SE
elpd_loo	-29.5	3.3
p_loo	2.7	1.0
looic	58.9	6.7

Vehtari et al. (2015)

Reversal Learning Task

statistics computing

Fictitious RL (Counterfactual RL)

Value update:

$$V_{t+1}^{c} = V_{t}^{c} + \alpha^* PE$$

$$V_{t+1}^{nc} = V_{t}^{nc} + \alpha^* PEnc$$

Prediction error:

$$PE = R_t - V_t^c$$

$$PEnc = -R_t - V_t^{nc}$$

trial

statistics computing

More on Fictitious RL


```
.../08.compare_models/_scripts/compare_models_main.R
```

TASK: (I) complete the fictitious RL model (model2, loglik)

(2) fit and compare the 2 models

cognitive model

statistics

computing

Exercise XIII – output

```
> LL1 <- extract_log_lik(fit_rl1)</pre>
> ( loo1 <- loo(LL1) )</pre>
Computed from 4000 by 10 log-likelihood matrix
         Estimate SE
elpd loo -389.8 15.4
p loo
              3.8 0.8
looic
        779.5 30.9
> ( loo2 <- loo(LL2) )</pre>
Computed from 4000 by 10 log-likelihood matrix
         Estimate SE
elpd_loo -281.3 17.5
p loo
              3.4 0.5
looic
            562.6 35.0
```

statistics

computing

AN JEST 101

Happy Computing!