ELE 435/535 - Machine Learning and Pattern Recognition

Fall 2018

HOMEWORK 9: Theory

ELE 435: do questions 1-3; ELE 535: do all questions.

Q1 Kernels:

- (a) Let \mathcal{A} be a finite set and for each subset $\mathcal{U}\subseteq\mathcal{A}$ let $|\mathcal{U}|$ denote the number of elements in \mathcal{U} . For $\mathcal{U},\mathcal{V}\subset\mathcal{A}$, let $k(\mathcal{U},\mathcal{V})=|\mathcal{U}\cap\mathcal{V}|$. By finding a suitable feature map, show that $k(\cdot,\cdot)$ is a kernel on the power set $\mathcal{P}(\mathcal{A})$ of all subsets of \mathcal{A} .
- (b) Show that $k(x, z) = \sum_{i=1}^{n} \cos^2(x_i z_i)$ is a kernel on \mathbb{R}^n .
- (b) Let $P \in \mathbb{R}^{n \times n}$ be symmetric PSD. Show that $k(x,z) = e^{-\frac{1}{2}(x-z)^T P(x-z)}$ is a kernel on \mathbb{R}^n .
- (c) $k(x,y) = h_t(Ax)^T h_t(Ay)$ where $A \in \mathbb{R}^{n \times n}$ and h_t is a thresholding function that maps $z = [z_i]$ to $h_t(z) = [\tilde{z}_i]$ with $\tilde{z}_i = z_i$ if $|z_i| > t$ and 0 otherwise.
- Q2 Let k_j be a kernel on \mathcal{X} with feature map $\phi_j \colon \mathcal{X} \to \mathbb{R}^q$, j = 1, 2. In each part below, find a simple feature map for the kernel k in terms of feature maps for the kernels k_j . By this means, give an interpretation for the new kernel k.
 - (a) $k(x,z) = k_1(x,z) + k_2(x,z)$
 - (b) $k(x,z) = k_1(x,z)k_2(x,z)$
 - (c) $k(x,z) = k_1(x,z)/\sqrt{k_1(x,x)k_1(z,z)}$
- Q3 A binary labelled set of data in \mathbb{R}^2 is used to learn a SVM using the homogeneous quadratic kernel. By writing the equation for the decision boundary in terms of a quadratic form, reason about the types of decision boundaries that are possible in \mathbb{R}^2 . In each case, give a neat sketch.
- Q4 Consider the definite integral¹

$$\int_0^\infty e^{-(ax^2 + \frac{b}{x^2})} dx = \frac{1}{2} \sqrt{\frac{\pi}{a}} e^{-2\sqrt{ab}}.$$
 (1)

Show that (1) can be rewritten as

$$\frac{\alpha}{\sqrt{\pi}} \int_0^\infty e^{-\frac{s}{t^2}} e^{-\left(\frac{\alpha t}{2}\right)^2} dt = e^{-\alpha\sqrt{s}}, \quad \alpha > 0.$$

Now use the above results to show that $k(x,z) = e^{-\alpha ||x-z||_2}$ is a kernel.

Q5 Let a>0 and $L_2[0,a]$ denote the set of real valued square integrable functions on the interval [0,a]. $L_2[0,a]$ is a Hilbert space under the inner product $\langle g,h\rangle=\int_0^a g(s)h(s)ds$. For $f\in L_2[0,a]$, let $g(t)=\int_0^t f^2(s)ds$ and $h(t)=\int_t^a f^2(s)ds$, where $t\in [0,a]$.

Show that for each a > 0,

- (a) $k(x, z) = \min(x, z)$ is a kernel on [0, a]
- (b) $k(x, z) = a \max(x, z)$ is a kernel on [0, a]
- (c) $k(x,z) = e^{-(\max(x,z) \min(x,z))}$ is a kernel on [0,a]. Plot the function $\max(x,z) \min(x,z)$ and use this to simplify the result further.
- (d) for each a>0, and $\gamma\geq 0$, $k(x,z)=e^{-\gamma|x-z|}$ is a kernel on [-a,a]
- (e) for each $\gamma \geq 0$, $k(x, z) = e^{-\gamma |x-z|}$ is a kernel on \mathbb{R} .

¹http://www.sosmath.com/tables/integral/integ38/integ38.html