Práctico 3 - Autómatas Finitos y Traductores

Ejercicio 1.

Cuando sea posible, dar un autómata finito para los lenguajes de los ejercicios 1, 2, 3, 4 y 5 de la práctica 2.

1a) a*b+ | cd(cdcd)+

1b) a(aa)+ . ((c*d*) | (ab)+)

1c) (01)+ . (c*d+)

1d) (ab)+ . c . d*

1e) a . a* . b* . c+.

1f) 0(0)+.1

1g) (000 . 1* . 0*)+

1h) aa(aa)* . (bbb)*

1i) (ab)+ . c . ba(baba)*

2c)

2e)

2f)

3a) (a(bc)*)+.

3b) (aaa)*

3c) (b|c) . (a|b|c)*

3d) (aaab)*

4a) 0 . 0 . (0 / 1)*

4b) ((0 . 1) | 1)*

4c) (a / b)* . (a . a / b . b)

11412 - Teoria de la Computación 1 - UNLu Nicolas Cavasin

4d) a . a / (a <u>.</u> a)*

5a) ((0-2)(1-9)) | 3 (0-1) guión 0(1-9) | 1(0-2) guión (0-9)(0-9)(0-9)(0-9)

5b) (0|1)(0-9) | 2(0-3) guión (0-5)(0-9) guión (0-5)(0-9)

a) AF original y AFD

b) AF original y AFD

Minimizarlos siguientes autómatas finitos. Probar en JFlap

a) AFD1= <{p, q, r, s, t, u}, {a, b}, p, δ_1 , {q, r}>

 δ_1 definida por la siguiente tabla:

δ_1	а	b
Р	q	р
Q	r	S
R	q	t
S	t	u
Т	S	u
U	q	u

b) AFD2= <{e0, e1, e2, e3, e4, e5, e6, e7}, {a, b}, e0, δ_2 , {e2, e3, e5}> δ_2 definida por el siguiente diagrama:

c) AFND3= $\langle p, q, r, s \rangle$, $\{a, b\}$, p, δ_3 , $\{s\} \rangle$ δ_3 definida por la siguiente tabla:

δ_3	а	b
р	{q, r, s}	{p, q, r, s}
q	-	{p, q, r, s}
r	-	{p, q, r, s}
S	S	{q, r, s}

d) AFND4= $\{$ q0, q1, q2, q3, q4, q5 $\}$, {a, b, c}, q0, δ_4 , {q2, q5}> δ_4 definida como:

$$\begin{array}{lll} \delta_4(q_0,\,a) = \{q_0,\,q_3\} & \delta_4(q_2,\,c) = \{q_4\} \\ \delta_4(q_0,\,b) = \{q_2\} & \delta_4(q_3,\,a) = \{q_0\} \\ \delta_4(q_0,\,c) = \{q_5\} & \delta_4(q_3,\,b) = \{q_5\} \\ \delta_4(q_1,\,a) = \{q_3\} & \delta_4(q_3,\,c) = \{q_2,\,q_5\} \\ \delta_4(q_1,\,b) = \{q_2,\,q_5\} & \delta_4(q_4,\,c) = \{q_5\} \\ \delta_4(q_1,\,c) = \{q_2\} & \delta_4(q_5,\,a) = \{q_2\} \\ \delta_4(q_2,\,a) = \{q_2\} & \delta_4(q_5,\,b) = \{q_4\} \\ \delta_4(q_2,\,b) = \{q_1,\,q_4\} & \delta_4(q_5,\,c) = \{q_1,\,q_4\} \end{array}$$

Obtener utilizando JFlap el autómata determinístico y el autómata de estados mínimos para los siguientes autómatas:

a)
$$A_1 = (Q = \{q_0, q_1, q_2, q_3, \}, \sum = \{a, b\}, F = \{q_3\}, \delta_1)$$

b) $A_2 = (Q = \{0, 1, 2, 3, 4, 5, 6\}, \sum = \{a, b\}, F = \{6\}, \delta_2)$

Con el alfabeto Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} encontrar un autómata determinístico que genere números múltiplos de tres de cualquier cantidad de cifras.

Tener en cuenta que podemos subdividir el conjunto Σ en tres subconjuntos: S1 = { 0, 3, 6, 9}, S2 = { 2, 5, 8 }, S3 = { 1,4,7}.

Entonces:

- Los números que se forman con la combinación de los dígitos de S1 son múltiplos de 3 (369, 66, 960).
- Los números que se forman con la combinación de los dígitos de S2 y S3 en igual proporción son múltiplos de 3 (1125, 4287).
- Los números que se forman con la combinación de los dígitos de S2 y S3 en igual proporción, y con cualquier número de dígitos de S1 son múltiplos de 3 (3021, 21567).

0,3,6,9 0369 99 36

2,5,8 y 1,4,7 => 2,1; 2,2,1,1; 2,4; 5,1; 2,5,1,4; 1,1,2,5; 4,2,8,7; 2,2,2; 1,4,1

2,1,3,6,9;2,4,6,6;

Construí un autómata finito determinístico que traduzca cada cadena del lenguaje $L = \{ (ab)^n c (ba)^{2m+1} / n \ge 1, m \ge 0 \}$ en la cadena d^{2n} . eee . $(abc)^m$.

 $(ab)^n c (ba)^{2m+1}$ $d^{2n} \cdot eee \cdot (abc)^m$.

 ab+
 dd+

 c
 eee

 ba(baba)*
 abc*

Ejercicio 7

Se da como entrada un texto que contiene solamente letras minúsculas y los caracteres especiales \$ y _.

Diseñá un AFDT que devuelva el texto con el siguiente formato:

- a) La primera letra después de un \$, se convierte a mayúscula.
- b) Dos ocurrencias consecutivas de \$ se transforman en un salto de línea.
- c) El caracter _ se reemplaza por dos espacios en blanco.
- d) En el texto de entrada no pueden darse más de dos ocurrencias consecutivas del \$, excepto una secuencia de tres \$ que indica el fin de la cadena.
- e) El signo \$ y el _ no deben aparecer en el texto de salida.

$$\sum = \{a, b, c, ..., z, \$, _\}.$$

hola\$como_va\$\$\$ => holaComo va. \$hola_\$como_\$va\$\$\$ => Hola Como Va. \$hola_\$como_\$va\$\$bien_\$vos\$\$bien_\$chau\$\$\$ => Hola Como Va bien Vos bien Chau.

Dada la siguiente codificación de caracteres:

- a) blanco = 111.
- b) a = 101.
- c) e = 100.
- d) I = 00.
- e) n = 110.
- f) s = 01.

Por ejemplo, el mensaje *ana sale* se codifica como 1011101011110100100. Construí un autómata finito que dado un mensaje codificado lo devuelva decodificado.

11412 - Teoria de la Computación 1 - UNLu Nicolas Cavasin

Ejercicio 9

Se desea modelar el comportamiento de una máquina expendedora de boletos de colectivo.

- a) El precio de cada boleto es \$1.
- b) La máquina acepta monedas de \$0.25 y \$0.50; y devuelve el cambio necesario.
- c) Para comprar un boleto se deben introducir las monedas, y luego apretar el botón B para solicitarlo.

