Introducción al análisis en \mathbb{R}^d

Jhon Alfredo Huarachi Galvez

September 15, 2017

Contents

1	\mathbf{Esp}	pacios Cartesianos												3			
	1.1	Bases	Bases de el espacio vectorial \mathbb{R}^d							4							
	1.2	\mathbb{R}^d con									4						
	1.3	Unas c	uantas desig	ualdades l	básic	cas											4
		1.3.1	Un caso gen	eral													4
		1.3.2	Desigualdad	de Young	g.												4
		1.3.3	Desigualdad	de Holde	er.												Ę
			Desigualdad														

Introducción

Notas de Emalca setiembre 2017

Chapter 1

Espacios Cartesianos

Sea $d \geq 1$ natural, $\mathbb{R}^d := \mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}$ un conjunto (El Producto Cartesiano) sobre el cual se establece una relación de igualdad entre sus elementos. $x = (x_1, x_2, ..., x_d), \ y = (y_1, y_2, ..., y_d) \in \mathbb{R}^d$

Se define una operación binaria '+' llamada suma,

$$+: \mathbb{R}^d \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$$

 $(x,y) \longmapsto x + y$

con $x + y = (x_i + y_i)_{i=1}^d$ dicha operación binaria $(\mathbb{R}^d, +)$ toma una estructura de *Grupo Abeliano*, sobre este conjunto se presenta la *Acción* de \mathbb{R} (\mathbb{R}^* con su estructura de Grupo Multiplicativo) como sigue:

$$: \mathbb{R} \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$$

$$(\alpha, x) \longmapsto \alpha x$$

es decir $1_{\mathbb{R}}x = x$, $\alpha(\beta x) = (\alpha \beta)x$. Estas operaciones interactuan entre si $\alpha(x+y) = \alpha x + \alpha y$, $(\alpha + \beta)x = \alpha x + \beta x$. Cuando esto ocurre se menciona que $(\mathbb{R}^d, +, \cdot)$ es un *Espacio Vectorial*. ¿Multiplicación Canónica? **Teorema de Frobenius**

Ejercicio. 1.1 Verificar que para $x, y \in \mathbb{R}^d$

$$x \otimes y = (x_i y_i)_{i=1}^d$$

no es un producto. ¿Qué es un Producto?

1.1 Bases de el espacio vectorial \mathbb{R}^d

Ejercicio. 1.2 Si $x^1,...,x^d$ es base de \mathbb{R}^d y $z \in \mathbb{R}^d$, entonces existe una única sucesión $\{\alpha_i\}_{i=1}^d \subset \mathbb{R}$ tal que $z = \sum_{i=1}^d \alpha_i x^i$.

Los vectores $e_i \in \mathbb{R}^d$,

$$\begin{array}{rcl} e_1 & = & (1,0,...,0) \\ e_2 & = & (0,1,...,0) \\ & \vdots & \\ e_d & = & (0,0,...,1) \end{array}$$

engendran todo \mathbb{R}^d , además en caso extraigamos uno de ellos esto (engendrar todo el espacio \mathbb{R}^d) no ocurre más.

Con lo mencionado arriba comentamos que $e_1, e_2, ..., e_d$ es llamada la base canónica.

Ejercicio. 1.3 Sean $\{\alpha_i\}_{i=2}^d \subset \mathbb{R}$. Definamos

$$v_d = e_d, v_i = e_i + \alpha_{i+1} e_{i+1}, \ \forall i \in I_{d-1}$$

Probar que $v_1, v_2, ..., v_d$ es una base de \mathbb{R}^d .

1.2 \mathbb{R}^d con una noción de distancia

$$d:\mathbb{R}^d\times\mathbb{R}^d\longrightarrow [0,\infty[$$

Sea $p \in [1, \infty[$,

$$d_p(x,y) = ||x - y||_p := \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{\frac{1}{p}}$$

$$d_{\infty}(x,y) = ||x - y||_{\infty} := \sup_{1 < i < d} |x_i - y_i|$$

casos importantes p = 1, p = 2 y $p = \infty$.

Ejercicio. 1.4 Verifique lo siguiente:

$$\lim_{y \to \infty} ||x - y|| = ||x - y||_{\infty}.$$

1.3 Unas cuantas desigualdades básicas

1.3.1 Un caso general

Ejercicio. 1.5 Verifique que para todo a > 0 se cumple,

$$1 \le \frac{a^p}{p} + \frac{1}{qa^q}$$

donde $p \in]1,\infty[$ y $q=\frac{p}{p-1}.$ Además, existe $\alpha \in]0,\infty[$ para el que la igualdad vale.

1.3.2 Desigualdad de Young

Ejercicio. 1.6

1.3.3 Desigualdad de Holder

Ejercicio. 1.7

1.3.4 Desigualdad de Minkoski

Ejercicio. 1.8