Introdution

-We are

--What are we going to talk about

- Elements of wining:
 - Build Order
 - Information Gathering
 - Macro
 - Micro

- Terran Tactics
 - Timing Attack
 - Pushing
 - Harassment

- Unit analysis
 - Marine
 - Vulture
 - Wraiths

Baysian Networks

Baysian Network

- Choice of decision model
 - Bayesian Networks
 - Decision Trees

Baysian Network

Spawn Prediction

Baysian Network

Threat level prediction – tvt

Potential Fields

Potential Field In General

Attractive behavior

$$Attractive = \begin{cases} f * c & \text{if } d > s \\ 0 & \text{else} \end{cases}$$

•

- Repulsive behavior
- Repulsive beliavior

 From vector to number

$$Repulsive = \begin{cases} -f * c & \text{if } d > s \\ 0 & \text{else} \end{cases}$$

Our Potential Field Function

- Behavior is determined by + or –
- due vs de
- (2de due)

$$\label{eq:maximumDistancePositioning} MaximumDistancePositioning = \begin{cases} f_{MDP} \times (2de - due) & \text{if } de < sr \\ 0 & \text{if } de > sr \end{cases}$$

Changed When Implementing Potential Field

- All forces are positive
- Forces are learned

Reinforcement Learning

Generalization of Q-Learning

Environment Variables

A State is defined as the combination of all the following characteristics:

•	Distance t	o Ally

Distance from Current Tile to Ally
Distance to Center of Squad
Distance from Current Tile to Center of Squad Number of units

Health Lost

Damage Dealt

Distance to Enemy
Distance from Current Tile to Enemy
Distance to Cliff or Edge
Distance from Current Tile to Cliff or Edge Number of Units

Time

Weapon's Cool Down

Shooting Range

Reinforcement Learning

Generalization Formulas

Q-Approximation

•

$$\hat{Q}_f = f_{MDP}(2de - due) + f_{AU}(2da - dua) + f_{EAC}(2dc - duc) + f_S(2ds - dsv) + f_{CD}(2de - due)$$

Reward

 $R(s) = C_1 number Of Units - C_2 health Lost + C_3 damage Dealt + C_4 number Of Kills - C_5 time$

Updating Rules

Maximum Distance Positioning

$$f_{MDP} \leftarrow f_{MDP} + \alpha [R(s) + \gamma (max(\hat{Q}_f(a', s'))) - \hat{Q}_f(a, s)](2de - due)$$

Ally Units

$$f_{AU} \leftarrow f_{AU} + \alpha [R(s) + \gamma (max(\hat{Q}_f(a', s'))) - \hat{Q}_f(a, s)](2da - dua)$$

Edges and Cliffs

$$f_{EAC} \leftarrow f_{EAC} + \alpha [R(s) + \gamma (max(\hat{Q}_f(a', s'))) - \hat{Q}_f(a, s)](2dc - duc)$$

Squad

$$f_S \leftarrow f_S + \alpha [R(s) + \gamma (max(\hat{Q}_f(a', s'))) - \hat{Q}_f(a, s)](2ds - dsv)$$

Cooldown

$$f_{CD} \leftarrow f_{CD} + \alpha [R(s) + \gamma (max(\hat{Q}_f(a', s'))) - \hat{Q}_f(a, s)](2de - due)$$

Algorithm

Image that i'm still doing

TEST

Building a test

Base case

 Testing without Reinforcement learning, and potential fields

Test results from first map

Players	Produced units	Killed units	Lost units
Player with vultures	5	9	5
Player with Zerglings	30	5	5

Test results from second map

Players	Produced units	Killed units	Lost units
Player with vultures	5	5	5
Player with marines	20	5	5

Base case

 Testing with potential fields, but not reinforcement learning

Test results from second map

Players	Produced units	Killed units	Lost units
Player with vultures	5	30	0
Player with Zerglings	30	0	30

Test results from second map

Players	Produced units	Killed units	Lost units
Player with vultures	5	6	5
Player with marines	20	5	6

- Which Alpha and Gamma values?
- How many iterations is needed?

Running tests with different values

Values Alpha 0,2 and Gamma 0,9 (30852)

Values Alpha 0,4 and Gamma 0,6 (135936)

Conclusion