Presentation: Does Warm Glow Matters? Saving Behavior with Bequest Motivation University of Bonn WS 2018/19

Yan Luo, Kam Pui Tsang

17th December 2018

Table of Contents

- Motivations for the Project
- Most Closest Research Paper
- Theoretical Model
- Stationary Equilibrium
- Calibration
- Experiment 1
- Experiment 2
- Conclusion

- Based a most popular assumption in Economics, we are totally selfish.
- However, it's not always the case in the real world.
- For example, the existence of leaving a bequest.

- Saving behaviors cannot be fully explained by ordinary over-lapping generational model.
- Also the agent will leave nothing after death.

Median Net Worth by age and Net Worth in US,1984 (in thousands of dollars)

	Net W	Net Worth Quintile									
Age	20%	40%	60%	80%	100%						
Under 25	-1.3	0.2	2.2	5.6	18.1						
25-34	-0.6	1.7	8.1	23.1	65.6						
35-44	0	11.3	35.5	66.6	152.1						
45-54	0.5	23.3	56.4	97.8	205.3						
55-64	2.4	35.3	72.4	118.9	245.4						
65 and over	0.8	26.7	59.5	99.3	200.1						
65-74	0.8	29.0	62.0	103.8	209.6						
65-69	1.1	32.6	65.6	108.7	219.7						
70-74	0.5	24.4	59.4	96.5	197.6						
75 and over	0.7	24.0	54.6	92.5	181.1						
All ages	0	7.5	32.5	71.7	166.9						

Thus we try to use an OLG model with altruistic motivation to explain this:

- Agents still save during retirement and leave bequest.
- Different scale of bequest across different wealth quantiles.

Most Closest Research Paper

One closest research paper related to our project:

De Nardi, M. (2004). Wealth inequality and intergenerational links.

Most Closest Research Paper De Nardi's Study

Quick overview of De Nardi's research:

- Over-lapping generation model(OLG) with two intergenerational links:
 - productivity inheritance
 - intentional bequests
- Including these two links improves the performance of the model:
 - wealth inequality more consistent with data
 - save for intentional bequests

Most Closest Research Paper Simplification

We simplfied De Nardi's study in several ways:

- We exclude human capital transmission in our model: exogeneous initial distribution.
- We distributed voluntary bequests and accidental bequests equally to all living agents.
- All agents in our model receive transfer in all periods.

Theoretical Model Model Overview

Two periods

- Working period work with stochastic productivity
- After retirement stop working and starts facing a positive probability of dying

Theoretical Model

More ingredients

- Agents save for precautionary purpose and retirement
- All the assets left by the agents who die prematurely become accidental bequests
- Furthermore, we add warm glow saving motive: utility from leaving bequests

Theoretical Model Demographics

	t (n ^{generation})								
Generations	1	2	3	4		Т			
j	n_1^j	n_2^j	n_3^j	n_4^j		n_T^j	0		
j + 1		n_1^{j+1}	n_2^{j+1}	n_3^{j+1}		n_{T-1}^{j+1}	n_T^{j+1}		
j+2			n_1^{j+2}	n_2^{j+2}		n_{T-2}^{j+2}	n_{T-1}^{j+1}		
<i>j</i> + 3				n_1^{j+3}		n_{T-3}^{j+3}	n_{T-2}^{j+2}		

Theoretical Model Demographics

- One model period 1 year long
- During each period a continuum of agents are born
- T: terminal period
- n: constant population growth rate
- s_t : exogeneous survial rate for t+1 period note: for the jth generation $n_{t+1}^j = s_t * n_t^j$
- μ_t : constant fraction of the jth generation in the total population

Theoretical Model Demographics

In our model, we let agents:

- Enter the model at t = 1, when we assume he is of the age of 20
- Pay labor and capital taxes when they are in working period
- At t = 46 (age 65) retire, start to receive pensions and face a nonzero death probability
- (For simplify) Not die before t = 46 (age 65), but die for sure at t = 67 (age 86)

Theoretical Model Preferences and Technology

Two preferences:

- CRRA: $u(c) = c^{1-\sigma}/(1-\sigma)$
- warm glow: $\phi(a) = \phi_1(1 + \frac{a}{\phi_2})^{1-\sigma}$

 ϕ_1 : agent's overall concern of leaving intentional bequest

 ϕ_2 : the extent that agent treats intentional bequests as a luxury good

Theoretical Model Preferences and Technology

- CRRA: $u(c) = c^{1-\sigma}/1 \sigma$
- warm glow: $\phi(a) = \phi_1(1 + \frac{a}{\phi_2})^{1-\sigma}$

 ϕ_1 : agent's overall concern of leaving intentional bequest

 ϕ_2 : the extent that agent treats intentional bequests as a luxury good

We let $\phi_1 < 0$, $\phi_2 > 0$. Why?

Theoretical Model

Preferences and Technology

•
$$\phi(a) = \phi_1(1 + \frac{a}{\phi_2})^{1-\sigma}$$

 ϕ_1 : agent's overall concern of leaving intentional bequest

 ϕ_2 : the extent that agent treats intentional bequests as a luxury good

According to our intuition, we expect:

$$D_{\phi_1}\phi = (1 + a/\phi_2)^{1-\sigma} > 0$$

$$D_{\phi_2}\phi = -(1 - \sigma)\phi_1(1 + a/\phi_2)^{-\sigma}(a/\phi_2^2) < 0$$

But in our later setting, $\sigma>1!$ Why $\phi_2>0$? $D_a\phi=\phi_1(1-\sigma)(1+a/\phi_2)^{-\sigma}(1/\phi_2)>0$

Theoretical Model Preferences and Technology

Agents labor endowments:

- ullet $\{\epsilon_t\}$: exogeneous age-efficiency profile
- Z: finite shock space, with shock $z \in Z$
- Q: transition matrix, derived from a Markov process $\{z_t\}$ In our model the agents face the same Markov process and transition matrix
- $\epsilon_t z_t$: Agent's labor endowment at time t
- w: endogeneous agent's wage

Theoretical Model Preferences and Technology

Investments and Aggregation Production Function

- Agent can only invest in physical capital, a
- r: endogeneous net return
- δ : exogeneous depreciation rate $r + \delta$ is gross-of-depreciation rate
- Agents cannot own negative capital stocks at any time.
- aggregation production function: $F(K, L) = AK^{\alpha}L^{1-\alpha}$

Theoretical Model

Government collects tax:

- \bullet au_a : exogeneous constant capital income tax
- \bullet au_I : endogeneous labor income tax to balance the government budget constraint

Government uses tax to pay:

- p: pensions to retirees until the agents die
- (We imagine) Government helps to allocate the accedental bequests equally as transfer:
 - T: lump-sum transfer, all agents can receive at each period.

Furthermore, we assume that the total government expenditure is 18% of the total output, that is:

•
$$g \equiv 0.18 * (r * K + w * L)$$

- In each period a t-years old agent chooses consumption c in the current period and investment in risk-free asset holdings a' for the next period.
- A individual state at a point in time is denoted by x = (a, z)
- Optimal decision rules: c(x, t) and a(x, t) solve the dynamic programming problem faced by agents.

From
$$t = 1$$
 to $t = 44$ (Age 20 to 63)

$$V(t,a,z) = \textit{max}_{c,a'} \{ \textit{u}(c) + \beta \textit{E}_t V(t+1,a',z') \}$$
 subject to

$$a' + c = (1 - \tau_I)w\epsilon z + (1 + (r - \tau_a))a + T$$

 $a' \ge 0, c \ge 0$

$$t = 45$$
 (Age 64)

$$V(t, a, z) = \max_{c, a'} \{ u(c) + s_t \beta E_t W(t + 1, a', z') + (1 - s_t) \phi(a') \}$$
 subject to

$$a' + c = (1 - \tau_I)w\epsilon z + (1 + (r - \tau_a))a + T$$

 $a' > 0, c > 0$

From t = 46 to t = 66 (Age 65 to 85)

$$W(t, a, z) = \max_{c, a'} \{u(c) + s_t \beta E_t W(t+1, a', z') + (1-s_t) \phi(a')\}$$
 subject to
$$a' + c = (1 + (r-\tau_a))a + T + p$$

$$a' \ge 0, c \ge 0$$

Terminal period T = 67 (Age 86)

$$W(T, a, z) = \phi(a)$$

Distributions of Individual States Across Agents

For convenience, we use some concepts in probability theory:

- $X = [0, \infty) \times Z$: sample space, or state space
- $ullet \psi_t$: a probability measure
- $\mathcal{B}(X)$: Borel σ -algebra of state space X note: $\mathcal{B}(X)$ can be understood as a particular collection of subsets of X, similar as power set
- $\psi_t(B)$: can be seen as the fraction of age t agents whose individual state lies in $B \in \mathcal{B}(X)$
- $(X, \mathcal{B}(X), \psi_t)$: the probability space we are interested in

Distributions of Individual States Across Agents

Define the distribution of indivual states across agents, recrusively:

- Initial distribution ψ_1 is taken as exogeneous.
- For t = 2, 3, ..., T:

$$\psi_t(B) = \int\limits_X P(x, t-1, B) d\psi_{t-1} \qquad \forall B \in \mathscr{B}(X)$$

- P(x, t-1, B) is the transition function which gives the probability that an age t-1 agent transits to the set B next period given the agent's current state x.
- P(x, t-1, B) is determined by the optimal decision rule we derived from dynamic programming (see our example next slide).

Distributions of Individual States Across Agents

In our Matlab implementation:

- $X = A \times Z$, where A is capital space and Z is labor productivity shock space. Both discrete.
- $\mathscr{B}(X) = \mathscr{P}(A) \times \mathscr{P}(Z)$

•

$$P(x, t-1, B) = \mathbb{1}_{\{a_t \in B_A\}} \sum_{z_t \in B_Z} \pi(z_{t-1}, z_t)$$

where

 a_t : optimal saving policy $B_A = \{a \in A | (a(x, t), z') \in B\}$ $B_Z = \{z' \in Z | (a(x, t), z') \in B\}$ $\pi(z_{t-1}, z_t)$: transition probability ((t-1, t) element in transition matrix Q)

Definition of the Stationary Equilibrium

$$\left\{c(x,t),a(x,t),w,r,L,K,T,g,\tau_{I},\tau_{a},b\right\} \text{ and } \left(\psi_{1},\psi_{2},...,\psi_{T}\right)$$

- c(x, t) and a(x, t) are optimal decision rules.
- Factor prices are equal to marginal products: $w = F_L(L, K), r = F_K(L, K) \delta$.

Definition of the Stationary Equilibrium

(cont.)

All markets clear:

•
$$\sum_{t=1}^{T} \mu_t \int_{x} a(x, t) d\psi_t = K$$
•
$$\sum_{t=1}^{T} \mu_t \int_{x} (\epsilon_t z_t) d\psi_t = L$$

$$\bullet \sum_{t=1}^{T} \mu_t \int_{X} (\epsilon_t z_t) d\psi_t = L$$

•
$$\psi_t(B) = \int_X P(x, t-1, B) d\psi_{t-1} \qquad \forall B \in \mathcal{B}(X)$$

•
$$g + p(\sum_{t=46}^{T} \mu_t) = \tau_I L + \tau_k r K$$

where
$$g \equiv 0.18 * (r * K + w * L)$$

Definition of the Stationary Equilibrium

(cont.)

Lump-sum transfer equals to accidental bequests T equals

$$\left[\sum_{t=1}^{T} \mu_t (1 - s_{t+1}) \int_{X} a(x, t) (1 + r(1 - \tau_k)) d\psi_t \right] / (1 - n)$$

note:
$$1 - n = 1 + \frac{N_t - N_{t+1}}{N_t}$$
 denotes all living agents

Aggregation Transfer Wealth

More about transfer wealth:

- Like *K* and *L*, we want to compute the transfer aggregation in this model economy.
- Aggregate wealth = life-cycle wealth + transfer
- How? Just rewrite the budget constraint recursively.

$$\begin{aligned} a_{t+1} &= a_t (1 + r(1 - \tau_a)) + (1 - \tau_l) \epsilon_t z_t w + p_t - c_t + T \\ &= \sum_{j=0}^{t-1} \{ (1 - \tau_l) \epsilon_{t-j} z_{t-j} w + p_{t-j} - c_{t-j} \} (1 + r(1 - \tau_a))^j \\ &+ \sum_{j=0}^{t-1} T (1 + r(1 - \tau_a))^j \end{aligned}$$

• Aggregate transfer wealth = $\sum_{t} \mu_{t} \sum_{i=0}^{t-1} T(1 + r(1 - \tau_{a}))^{j}$

U.S. Calibration

Parameter	Value	Description
A	0.895	Technological level
β	0.95 - 0.97	Discount factor
r	endogenous = 0.06	Interest rate of capital
w	endogenous = 1	Wage rate
n	0.012	Annual population growth rate
g	0.18	Government expenditure to GDP
τ_a	0.2	Capital income tax
α	0.36	Capital share
δ	0.06	Depreciation rate
σ	1.5	Risk aversion
р	0.4	Pensions
s _t	Vector	Survival probabilities of people born in 1965 (Source: Bell, Wade and Goss (1992))
ϵ_t	Vector	Age-efficiency profile (Source: Hansen (1993))
ρ_{Y}	0.96	AR(1) persistence of logarithm of the productivity process
σ_{er}^2	0.045	AR(1) variance of logarithm of the productivity process
$ \rho_{y} \\ \sigma_{er}^{2} \\ \sigma_{y1}^{2} \\ \phi_{1} \\ \phi_{2} $	0.38	Variance of log earnings of age 1 agents
ϕ_1	-9.6	Concern about bequests
φ2	11.6	Degree to which bequest is considered as a luxury good

Experiment 1

Capital-output	Transfer wealth	Wealth Percentage wealth in the top						Percentage with	
ratio	ratio	Gini	1%	5%	20%	40%	60%	zero wealth	
(1) U.S. data									
3.0	0.6	0.78	29	53	80	93	98	5.8 - 15	
(2) Only producti	vity shock								
3.0	-	0.70	9	32	72	92	99	14	
(3) Accidental be	(3) Accidental bequests to all $(\phi_1) = 0$								
3.0	0.73	0.70	9	32	71	92	99	14	
(4) Both accidental and voluntary bequests to all ($\phi_1 = -9.5$, $\phi_2 = 11.6$)									
3.0	0.9	0.71	9	33	73	93	99	16	

Experiment 1

Capital-output	Transfer wealth	Wealth	Р	Percentage with					
ratio	ratio	Gini	1%	5%	20%	40%	60%	zero wealth	
(1) U.S. data									
3.0	0.6	0.78	29	53	80	93	98	5.8 - 15	
(2) Only producti	(2) Only productivity shock								
3.0	-	0.70	9	32	72	92	99	14	
(3) Accidental be	(3) Accidental bequests to all $(\phi_1) = 0$								
3.0	0.73	0.70	9	32	71	92	99	14	
(4) Both accidental and voluntary bequests to all $(\phi_1=-9.5$, $\phi_2=11.6$)									
3.0	0.9	0.71	9	33	73	93	99	16	

- Including accidental bequests cannot generate a better match with data.
 - Upper tail is too thin and lower tail is too fat.
 - 2 High fraction of population with zero wealth.
 - 4 High transfer-wealth ratio.

Experiment 1

Capital-output	Transfer wealth	Wealth	Р	Percentage with					
ratio	ratio	Gini	1%	5%	20%	40%	60%	zero wealth	
(1) U.S. data									
3.0	0.6	0.78	29	53	80	93	98	5.8 - 15	
(2) Only producti	(2) Only productivity shock								
3.0	=	0.70	9	32	72	92	99	14	
(3) Accidental be	(3) Accidental bequests to all $(\phi_1) = 0$								
3.0	0.73	0.70	9	32	71	92	99	14	
(4) Both accidental and voluntary bequests to all ($\phi_1 = -9.5$, $\phi_2 = 11.6$)									
3.0	0.9	0.71	9	33	73	93	99	16	

- Including voluntary bequests does not improve much...
 - Contradict with the results of De Nardi.
 - Equal redistribution of bequests to all living agents matters!

Accidental bequests to all.

U.S. wealth 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 quantiles, by age.

- Households in all quantiles dis-save rapidly during the retirement period.
- They do not leave any voluntary bequests at the terminal period.
- They save totally for retirement.

Accidental and voluntary bequests to all.

U.S. wealth 0.1 , 0.3 , 0.5 , 0.7 , 0.9 , 0.95 quantiles, by age.

- Households in bottom quantiles still save totally for retirement.
- Households in top 10 % and top 5 % are also driven by bequests motive.
 - They maintain a substantial amount of savings to leave bequests.
 - At the terminal period, they leave around 10% and 20% of pre-retirement savings as bequests.

Experiment 2 - Manipulate ϕ_1

Capital-output	Transfer wealth	Wealth	Р	Percentage with				
ratio	ratio	Gini	1%	5%	20%	40%	60%	zero wealth
(1) U.S. data								
3.0	0.6	0.78	29	53	80	93	98	5.8 - 15
(2) $\phi_1 = 0$: Accid	dental bequests to a	ıll						
3.0	0.73	0.70	9	32	71	82	99	14
(3) $\phi_1 = -9.5$, ϕ	$b_2 = 11.6$							
3.0	0.9	0.71	9	33	73	93	99	16
(4) $\phi_1 = -4.75$,	$\phi_2 = 11.6$							
3.0	1.17	0.70	9	33	72	92	99	15
(5) $\phi_1 = -19$, $\phi_2 = 11.6$								
3.0	1.19	0.72	9	34	75	94	99	18

• Line(3) to line(5) show that change in values of ϕ_1 do not help our model to match better with the data ...

Manipulate ϕ_1 : Weighted average wealth profiles.

- An increase in $|\phi_1|$ shifts the profiles upward.
- Doubling the value of $|\phi_1|$, the mean households leave the bequests at the terminal period by more than double.
- Decreasing $|\phi_1|$ value by a half, profiles of mean households become indifferent to the profiles as in the case of no bequests motive.

Manipulate ϕ_1 : Wealth profiles of 0.5 and 0.95 quantiles.

- Change the value of ϕ_1 does not have significant impact on profiles of median households.
 - No changes in the luxury good nature of bequests ...
 Thou says totally for retirement
 - They save totally for retirement.
- The top richest households' are greatly influenced by ϕ_1 .
 - They are greatly driven by the bequests motive.
 - At the terminal period, they leave near a half of their preretirement assets as bequests.

Experiment 2 - Manipulate ϕ_2

Capital-output	Transfer wealth	Wealth	Percentage with						
ratio	ratio	Gini	1%	5%	20%	40%	60%	zero wealth	
(1) U.S. data									
3.0	0.6	0.78	29	53	80	93	98	5.8 - 15	
(2) $\phi_1 = 0$: Accid	(2) $\phi_1 = 0$: Accidental beguests to all								
3.0	0.73	0.70	9	32	71	82	99	14	
(3) $\phi_1 = -19$, ϕ_2	$_2 = 11.6$								
3.0	1.19	0.72	9	34	75	94	99	18	
(4) $\phi_1 = -19$, ϕ_2	(4) $\phi_1 = -19$, $\phi_2 = 23.2$								
3.0	1.03	0.72	9	34	74	93	99	17	
(5) $\phi_1 = -19$, ϕ_2	(5) $\phi_1 = -19$, $\phi_2 = 5.8$								
3.0	1.30	0.72	9	33	74	94	99	19	

- Note: In order to amplifier the effect of ϕ_2 , the default value of ϕ_1 set at -19.
- ullet As usual, line(3) to line(5) show that change in values of ϕ_2 do not help our model to match better with the data ...

Manipulate ϕ_2 : Weighted average wealth profiles.

- Decrease in value of ϕ_2 shifts the entire wealth profiles upward.
- Marginal effect of change in ϕ_2 is decreasing in the value of ϕ_2 .
 - Decreases ϕ_2 from 23.2 to 11.6, the mean households increase the bequests at the terminal period by 1.1 units.
 - However, decreases ϕ_2 from 11.6 to 5.8, they only increase the bequests by 0.9 units.

Manipulate ϕ_2 : Wealth profiles of 0.5 and 0.95 quantiles.

- For the top affluent households, change in ϕ_2 does not affect their saving behaviors.
 - Even we double the value of ϕ_2 , the wealth profiles of the top 5 % households do not change.
 - They are rich and have already saved a lot. Nature of bequest is not a matter.

Manipulate ϕ_2 : Wealth profiles of 0.5 and 0.95 quantiles. (cont.)

- The median households are very sensitive to the value of ϕ_2 .
 - They will not be driven by bequest motive if they consider bequest as a luxury good (i.e. high value of ϕ_2).
 - If they treat bequest as necessity, they change their saving behaviors.
 - They leave about one-fourth of their pre-retirement savings at the terminal period.

Conclusion

- Including bequest motive can influence household's saving behaviors.
 - $\uparrow |\phi_1| / \downarrow \phi_2 \rightarrow \uparrow$ Savings
 - $\downarrow |\phi_1| / \uparrow \phi_2 \rightarrow \downarrow$ Savings
- ullet Change in ϕ_1 and change in ϕ_2 have different implications.
 - ullet Change in ϕ_1 has greater impact on the richest.
 - Change in ϕ_2 has greater impact on the less affluent.
- Introducing voluntary bequests is not necessarily improve wealth inequality measurements.
 - How to redistribute bequests matters!

References

- Bell, F. C., Wade, A. H., & Gross, S. C. (1992). Life tables for the us social security area: 1900–2080. *Actuarial Study, 107.*
- De Nardi, M. (2004). Wealth inequality and intergenerational links. *The Review of Economic Studies*, 71(3), 743–768.
- Hanse, G. D. (1993). The cyclical and secular behaviour of the labour input: Comparing efficiency units and hours worked. *Journal of Applied Econometrics*, 8(1), 71–80.
- Huggett, M. (1996). Wealth distribution in life-cycle economies. *Journal of Monetary Economics*, 38(3), 469–494.
- Tauchen, G. (1986). Finite state markov-chain approximations to univariate and vector autoregressions. *Economics letters*, 20(2), 177–181.