

ANALYSIS OF CARBON MARKET CONTRIBUTIONS TO ACHIEVE CLIMATE GOALS ANALITICO2

TEAM 74

What exactly are carbon credits?

01

One carbon-credit represents

1 tonne

of carbon dioxide (CO2)

They are generated by

Reducing or removing emissions from the atmosphere: to store carbon in trees using planting

activities

» 03 To achieve

- Corporate Social Responsibility (CSR) objectives
- 'neutral footprint'

» 02 Issued to

- Governments
- Industry
- To whoever wants it

The Market

Regulatory

Generate Certified Emissions Reductions (CERs)

Voluntary

International credit accounting standards and generate Verified Emission Reductions (VERs)

Analysis of voluntary market

Goal: Demonstrate corporate social responsibility and commitment to offsetting their emissions

What do we want to find out?

How will we find it out?

To perform an Exploratory Data Analysis from trusted sources.

To propose and generate a mathematical model to predict the trend of CO2 emissions

To propose next steps to reduce CO2 emissions using carbon credits or propose other actions and alternatives

The data

Voluntary Registry Offsets Database. Version 4 (2021): American Carbon Registry (ACR), Climate Action Reserve (CAR), Gold Standard, and Verra (VCS)

CO2 emissions: total Greenhouse gasses emitted by country, since 1970 to 2018

Top 3 countries with more CO2 emitted by year

1.CHINA

169414160

2.USA

153534870

3.RUSSIA

46892050

USA

Total CO2 emitted by year

Analysis: CO2 emitted increases every year. The main points where there was an improvement are correlated with the years that other environmental agreements were made.

1. CNN LSTM

To predict the total CO2 emitted yearly

2. SVR

To predict the reduction of CO2 emitted

- 1 Why did we use this model? To implement neural networks to predict time series.
- How was it made?
 Sequence: 4 periods
 Subsequence: 2 periods
 Feature: CO2 emitted

Used Keras sequential model adding

each layer.
Parameters:

- Adam optimizer
- MSE loss function
- RMSE metric to compare with other models
- validation split of 10% (Due to the reduced amount of data available).

Model structure

ANALITICO2

3 Results

Greenpeace and WWF have a budget of 350 billions tons of accumulated CO2 left, IPCC and The Word Resource Institute have a budget of 485 billion tons left. If the projection is correct it be reach in 2024 and 2027 respectively.

Global projection

ANALITICO2

Colombia vs global

Support Vector Regressor

- 1 Why did we use this model? The SVR is a kind of support vector machine that creates an hyperplane to predict the target.
- **2** How was it made? The results?

First we try to predict the reduction of CO2 with the amount of credits issued, but the correlation between these values was almost zero, then we use the variation of the % of fossil energies to predict the variation of the % of CO2 emitted.

Even after over 20 years of the beginning of the credit market, there is no evidence of decreasing projection in terms of minimizing the impact of the emission levels generated and projected in the following 3 years

Main Conclusion

3rd Analysis

Simulate future trends using the existing data of emissions observed (1992 - 2018)

Conclusions

Cases

United States, China and Ukraine

of Carbon Credits

economic variables

Conclusions

Our Team

Alexander Pinzon

Msc. of Computer science and
Software Engineer

Katherin parra

Mechatronic Engineer. Specialist in Commercial Mgmt.

Mateo Orozco

Manager Engineer. Specialist in Al.

Laura Goyeneche
Telecommunications Engineer

Luis Villareal

Ivan Hernandez
Processes and Operations
Engineer

Esteban Salamanca
Control Engineer

Special thanks to our TA's Diego and Nicolas and to all our teachers and team from DS4A. IT WAS AMAZING!

