trodução Metodologia Resultados Conclusão 00 00 000000 000000

Trabalho 02 - Otimização Heurística N-rainhas com Busca Tabu

Cristyan Lisbôa

PPGEE - UFRGS

01/12/2022

- 1 Introdução
- 2 Metodologia
- 3 Resultados
- 4 Conclusão

1 Introdução

Introdução •00

- 2 Metodologia
- 4 Conclusão

Introdução

Descrição do problema

Problema de interesse:

Objetivos:

- Mecanismos essenciais
- Mecanismo de diversificação e função objetivo

Descrição:

- É um problema combinatorial com restrições
- Modelos por variáveis binárias
- Modelo combinatorial
- N variáveis com $P_N = N!$ possibilidades

$$S_k \begin{bmatrix} 3 & 1 & 4 & 8 & 5 & 7 & 2 & 6 \end{bmatrix}$$

Column da 2^a rainha

Cristvan Lisbôa Trabalho 02 - Otimização Heurística

4 / 18

Introdução

Características da Busca Tabu (TS)

- "TS is an iterative, memory-based neighborhood-search method" (Glover, 89).
- Solução única que pode escapar de mínimos locais, critério de aspiração

Algoritmo

- Inicialização
- Vizinhanca
- Seleção do melhor
- Atualização S_k
- Critério de parada

Comportamento

- Introdução
- 2 Metodologia
- Resultados
- 4 Conclusão

Modificações propostas

A abordagem proposta conta com as seguintes características:

- duração dos tabus variável
- mecanismo de diversificação
- parada por **número de iterações** ou **valor** da fo
- 2 formas de geração da população inicial
- 2 funções objetivo
- código modular na forma de funções
- é um problema escalável

$$T = egin{bmatrix} T_{ ext{abus}} & T_{ ext{abus}} & T_{ ext{visitados}} & T_{ ext{i},j)} & T_{ ext{i},j)} & T_{ ext{j},i)} & T_{ ext{j},i} & T_{ ext{j},i)} & T_{ ext{j},i} & T_{ ext{j},i)} & T_{ ext{j},i} & T_{ ext{j},i} & T_{ ext{j},i)} & T_{ ext{j},i} & T_{ ext{j}$$

ntrodução Metodologia Resultados Conclusão 000 00● 0000000 000

Modificações propostas

Mecanismo de diversificação

- Espaço de solução
- Regiões visitadas
- Solução do problema
- Movimentos não executados

Cálculo da função objetivo

• Número de ataques $0 \le f(S_*) \le C_2^N$

Movimentos executados são outros

Critério de aspiração ($0, 8 < \alpha \le 1$)

• Movimento é aceito se $\alpha f(S_k) < f_{inc}$

◆ロ > ◆回 > ◆ 差 > ◆ 差 > 一差 の へ ②

- Introdução
- 2 Metodologia
- 3 Resultados
- 4 Conclusão

Comparação com algoritmo básico

Iterações do método

\mathbf{k}	$\mathbf{f_1}(\mathbf{S}_k)$	$\mathbf{f_1}(\mathbf{S_{inc}})$	$\mathbf{f_2}(\mathbf{S_k})$	$\mathbf{f_2}(\mathbf{S_{inc}})$
0	8	8	9	9
1	5	5	8	8
:	÷	÷	÷	÷
7	1	1	2	2
8	1	1	0	0
9	1	1	_	_
10	0	0		

•
$$N = 21$$

Iterações do método

k	$\mathbf{f_1}(\mathbf{S_k})$	$\mathbf{f_1}(\mathbf{S_{inc}})$	$\mathbf{f_2}(\mathbf{S_k})$	$\mathbf{f_2}(\mathbf{S_{inc}})$
0	33	33	40	40
1	29	29	33	33
:	:	:	:	:
•	•	•	•	•
15	1	1	1	1
16	1	1	0	0
23	1	1	_	_
24	0	0		

•
$$N = 70$$

Cristyan Lisbôa

ntrodução Metodologia Resultados Conclusão 200 00 00000 000000

Evolução da função objetivo

Número médio de iterações

\mathbf{N}	$\mathbf{f_1}$	$\mathbf{f_2}$
10	8	8
20	9	10
30	11	12
40	13	14

- 100 repetições
- Tempo em minutos
- Aumenta iterações
- Evita ciclagem

Todos

• Até o melhor

◆ロト ◆問 ト ◆ 臣 ト ◆ 臣 ・ 夕 Q ○

odologia Resultados 000•000

Inicialização aleatória

Parâmetros

- N = 30 para 100 repetições
- Variação de 9 até 35 iterações
- Vizinhos não visitados n=3
- Estagnação $n_{est} = 5$

Metodologia Resultados Conclusão

○○○ ○○○○●○○ ○○○

Influência dos movimentos não executados

Parâmetros

- N = 30 para 100 repetições
- Variação de 10 até 38 iterações
- Vizinhos não visitados n = 10
- Estagnação $n_{est} = 5$

 Metodologia
 Resultados
 Conclusão

 000
 00000●0
 000

Influência do número de estagnação

Parâmetros

- N = 30 para 100 repetições
- Variação de 9 até 35 iterações
- Vizinhos não visitados n=3
- Estagnação $n_{est} = 6$

Resultados

Execução do algoritmo

Iteração	Solução	fo	Incumbente	fo
0	141973161520291221111386154181710	20	141973161520291221111386154181710	20
1	191473161520291221111386154181710	16	191473161520291221111386154181710	16
2	161473191520291221111386154181710	15	161473191520291221111386154181710	15
3	714163191520291221111386154181710	14	714163191520291221111386154181710	14
4	314167191520291221111386154181710	13	314167191520291221111386154181710	13
5	191416731520291221111386154181710	12	191416731520291221111386154181710	12
6	121416731520291921111386154181710	10	121416731520291921111386154181710	10
7	214167315201291921111386154181710	9	214167315201291921111386154181710	9
8	241673152012919211113861514181710	8	241673152012919211113861514181710	8
9	249731520121619211113861514181710	6	249731520121619211113861514181710	6
10	217973152012161921111386151418410	5	217973152012161921111386151418410	5
11	217157392012161921111386151418410	4	217157392012161921111386151418410	4
12	217151039201216192111138615141847	3	217151039201216192111138615141847	3
13	217151039201216211911138615141847	2	217151039201216211911138615141847	2
14	211151039201216211917138615141847	1	211151039201216211917138615141847	1
15	311151029201216211917138615141847	1	211151039201216211917138615141847	1
16	113151029201216211917138615141847	1	211151039201216211917138615141847	1
17	112115102920121631917138615141847	1	211151039201216211917138615141847	1
18	112151029201216319171386115141847	1	211151039201216211917138615141847	1
19	112151029201216318178761151419413	7	211151039201216211917138615141847	1
20	112151029201273181781661151419413	5	211151039201216211917138615141847	1
21	112151029201273151781661181419413	3	211151039201216211917138615141847	1
22	112115102920127351781661181419413	2	211151039201216211917138615141847	1
23	112115102920127351781641181419613	1	211151039201216211917138615141847	1
24	112015102921127351781641181419613	1	211151039201216211917138615141847	1
25	112015102921121835178164171419613	0	112015102921121835178164171419613	0

Solução: 11 20 15 10 2 9 21 12 18 3 5 17 8 16 4 1 7 14 19 6 13

- Introdução
- 2 Metodologia
- 4 Conclusão

MetodologiaResultados
oo0Conclusão00000000000000

Conclusão

- O trabalho permitiu mapear a influência dos parâmetros na solução do problema (critério de diversificação);
- Em alguns cenários, a função objetivo f_2 apresenta **desempenho superior** a função objetivo f_1 ;
- Foram exploradas duas técnicas de geração de vizinhos.

Trabalhos futuros

- Mecanismo de intensificação
- Métodos para soluções distintas
- Realizar análise estatística

- Técnicas na geração de vizinhança
- Comparações com outros algoritmos
- Outra técnica de diversificação

Cristvan Lisbôa

PPGEE - LIERGS

MetodologiaResultadosConclusão0000000000 ● 0

Conclusão

- O trabalho permitiu mapear a influência dos parâmetros na solução do problema (critério de diversificação);
- Em alguns cenários, a função objetivo f_2 apresenta **desempenho superior** a função objetivo f_1 ;
- Foram exploradas duas técnicas de geração de vizinhos.

Trabalhos futuros

- Mecanismo de intensificação
- Métodos para soluções distintas
- Realizar análise estatística

- Técnicas na geração de vizinhança
- Comparações com outros algoritmos
- Outra técnica de diversificação

Cristvan Lisbôa

PPGEE - HERGS

 Metodologia
 Resultados
 Conclusão

 000
 0000000
 0●0

Conclusão

- O trabalho permitiu mapear a influência dos parâmetros na solução do problema (critério de diversificação);
- Em alguns cenários, a função objetivo f_2 apresenta **desempenho superior** a função objetivo f_1 ;
- Foram exploradas duas técnicas de **geração de vizinhos**.

Trabalhos futuros

- Mecanismo de intensificação
- Métodos para soluções distintas
- Realizar análise estatística

- Técnicas na geração de vizinhança
- Comparações com outros algoritmos
- Outra técnica de diversificação

Cristyan Lisbôa

Trabalho 02 - Otimização Heurística

Conclusão Resultados

Conclusão

- O trabalho permitiu mapear a influência dos parâmetros na solução do problema (critério de diversificação):
- Em alguns cenários, a função objetivo f_2 apresenta desempenho superior a função objetivo f_1 ;
- Foram exploradas duas técnicas de geração de vizinhos.

Trabalhos futuros

- Mecanismo de intensificação
- Métodos para solucões distintas
- Realizar análise estatística

- Técnicas na geração de vizinhança
- Comparações com outros algoritmos
- Outra técnica de diversificação

PPGEE - HERGS

- 1 H. M. F. de Souza, "Algoritmo eficiente para validação de soluções para o problema de N-rainhas", Monografia, UFA, 2019.
- 2 I. Martinjak and M. Golub, "Comparison of Heuristic Algorithms for the N-Queen Problem", in 29^{th} ICITI, 2007, pp. 759–764.
- 3 C. Moreira Oliveira e A. Pozo, "Resolução para o problema n-rainhas utilizando ACO", in ENIAC, 2014, pp. 353–358.
- 4 S. Gudal et al., "N-Queens Solving Algorithm by Sets and Backtracking", in SC, 2016, pp. 1–8.
- 5 S. Sharma and V. Jain, "Solving N-Queen Problem by Genetic Algorithm using Novel Mutation Operator", in IOP MSE, vol. 1116, 2021.
- 6 E.-G. Talbi, "Metaheuristics From Design to Implementation", ser. Wiley Series on Parallel and Distributed Computing. Wiley, 2009.
- 7 F. Glover, "Tabu Search—Part I", ORSA Journal on Computing, vol. 1, no. 3, pp. 190–206, 1989.
- 8 M. Laguna, "A Guide to Implementing Tabu Search", Investigación Operativa, vol. 4, no. 1, pp. 5–25, 1994.

1, pp. 3-23, 1994.

Cristvan Lisbôa

PPGEE - LIERGS