

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/12, C07K 14/705, A61K 38/16, G01N 33/68, C07K 16/28		A1	(11) International Publication Number: WO 99/63087 (43) International Publication Date: 9 December 1999 (09.12.99)
(21) International Application Number: PCT/US99/12203		(81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 2 June 1999 (02.06.99)			
(30) Priority Data: 09/088,857 2 June 1998 (02.06.98) US			
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application US 09/088,857 (CON) Filed on 2 June 1998 (02.06.98)			
(71) Applicant (<i>for all designated States except US</i>): MILLENIUM PHARMACEUTICALS, INC. [US/US]; 238 Main Street, Cambridge, MA 02142-1017 (US).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors; and			
(75) Inventors/Applicants (<i>for US only</i>): GLUCKSMANN, Maria, Alexandra [AR/US]; 33 Summit Road, Lexington, MA 02173 (US). HODG, Martin, R. [US/US]; 39 Crawford Street, Arlington, MA 02474 (US).			
(74) Agents: BROWN, Anne et al.; Alston & Bird LLP, P.O. Drawer 34009, Charlotte, NC 28234-4009 (US).			

(54) Title: G-PROTEIN COUPLED RECEPTOR, NAMED 2871 RECEPTOR

(57) Abstract

The present invention relates to a newly identified G-protein-coupled receptor. The invention also relates to polynucleotides encoding the receptors. The invention further relates to methods using receptor polypeptides and polynucleotides for diagnosis and treatment in receptor-mediated disorders. The invention further relates to methods using the receptor polypeptides and polynucleotides to identify agonists and antagonists useful for diagnosis and treatment. The invention further encompasses agonists and antagonists based on the receptor polypeptides and polynucleotides. The invention further relates to procedures for producing the receptor polypeptides and polynucleotides by recombinant methods.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

G-PROTEIN COUPLED RECEPTOR, NAMED 2871 RECEPTOR**FIELD OF THE INVENTION**

The present invention relates to a newly identified member of the superfamily of G-protein-coupled receptors. The invention also relates to polynucleotides encoding the receptor. The invention further relates to methods using receptor polypeptides and polynucleotides, applicable to diagnosis and treatment in receptor-mediated disorders.

- 5 The invention further relates to drug-screening methods using the receptor polypeptides and polynucleotides, to identify agonists and antagonists, applicable to diagnosis and treatment. The invention further encompasses agonists, and antagonists based on the receptor polypeptides and polynucleotides. The invention further relates to procedures for producing the receptor polypeptides and polynucleotides by recombinant methods.

10

BACKGROUND OF THE INVENTION**G-protein coupled receptors**

G-protein coupled receptors (GPCRs) constitute a major class of proteins responsible for transducing a signal within a cell. GPCRs have seven transmembrane domains. Upon binding of a ligand to an extracellular portion of a GPCR, a signal is transduced within the cell that results in a change in a biological or physiological property of the cell. GPCRs, along with G-proteins and effectors (intracellular enzymes and channels modulated by G-proteins), are the components of a modular

-2-

signaling system that connects the state of intracellular second messengers to extracellular inputs.

5 GPCR genes and gene-products are potential causative agents of disease (Spiegel *et al.*, *J. Clin. Invest.* 92:1119-1125 (1993); McKusick *et al.*, *J. Med. Genet.* 30:1-26 (1993)). Specific defects in the rhodopsin gene and the V2 vasopressin receptor gene have been shown to cause various forms of retinitis pigmentosum (Nathans *et al.*, *Annu. Rev. Genet.* 26:403-424(1992)), nephrogenic diabetes insipidus (Holtzman *et al.*, *Hum. Mol. Genet.* 2:1201-1204 (1993)). These receptors are of critical importance to both the central nervous system and peripheral physiological processes. Evolutionary analyses suggest that the ancestor of these proteins originally developed in concert with complex body plans and nervous systems.

10 The GPCR protein superfamily can be divided into five families: Family I, receptors typified by rhodopsin and the beta2-adrenergic receptor and currently represented by over 200 unique members (Dohlman *et al.*, *Annu. Rev. Biochem.* 60:653-688 (1991)); Family II, the parathyroid hormone/calcitonin/secretin receptor family (Juppner *et al.*, *Science* 254:1024-1026 (1991); Lin *et al.*, *Science* 254:1022-1024 (1991)); Family III, the metabotropic glutamate receptor family (Nakanishi, *Science* 258 597:603 (1992)); Family IV, the CAMP receptor family, important in the chemotaxis and development of *D. discoideum* (Klein *et al.*, *Science* 241:1467-1472 (1988)); and Family V, the fungal mating pheromone receptors such as STE2 (Kurjan, *Annu. Rev. Biochem.* 61:1097-1129 (1992)).

15 There are also a small number of other proteins which present seven putative hydrophobic segments and appear to be unrelated to GPCRs; however, they have not been shown to couple to G-proteins. *Drosophila* expresses a photoreceptor-specific protein, bride of sevenless (boss), a seven-transmembrane-segment protein which has been extensively studied and does not show evidence of being a GPCR (Hart *et al.*, *Proc. Natl. Acad. Sci. USA* 90:5047-5051 (1993)). The gene *frizzled* (*fz*) in *Drosophila* is also thought to be a protein with seven transmembrane segments. Like boss, *fz* has not been shown to couple to G-proteins (Vinson *et al.*, *Nature* 338:263-264 (1989)).

20 G proteins represent a family of heterotrimeric proteins composed of α , β and

-3-

γ subunits, that bind guanine nucleotides. These proteins are usually linked to cell surface receptors, e.g., receptors containing seven transmembrane domains. Following ligand binding to the GPCR, a conformational change is transmitted to the G protein, which causes the α -subunit to exchange a bound GDP molecule for a GTP 5 molecule and to dissociate from the $\beta\gamma$ -subunits. The GTP-bound form of the α -subunit typically functions as an effector-modulating moiety, leading to the production of second messengers, such as cAMP (e.g., by activation of adenyl cyclase), diacylglycerol or inositol phosphates. Greater than 20 different types of α -subunits are known in humans. These subunits associate with a smaller pool of β and γ 10 subunits. Examples of mammalian G proteins include Gi, Go, Gq, Gs and Gt. G proteins are described extensively in Lodish *et al.*, *Molecular Cell Biology*, (Scientific American Books Inc., New York, N.Y., 1995), the contents of which are incorporated herein by reference.

15 GPCRs are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown GPCRs. The present invention advances the state of the art by providing a previously unidentified human GPCR.

SUMMARY OF THE INVENTION

20

It is an object of the invention to identify novel GPCR receptors.

It is a further object of the invention to provide novel GPCR receptor polypeptides that are useful as reagents or targets in receptor assays applicable to treatment and diagnosis of GPCR-mediated disorders.

25 It is a further object of the invention to provide polynucleotides corresponding to the novel GPCR receptor polypeptides that are useful as targets and reagents in receptor assays applicable to treatment and diagnosis of GPCR-mediated disorders and useful for producing novel receptor polypeptides by recombinant methods.

A specific object of the invention is to identify compounds that act as agonists 30 and antagonists and modulate the expression of the receptor.

A further specific object of the invention is to provide the compounds that modulate the expression of the receptor for treatment and diagnosis of GPCR related disorders.

The invention is thus based on the identification of a novel GPCR, designated 5 the 2871 receptor.

The invention provides isolated 2871 receptor polypeptides including a polypeptide having the amino acid sequence shown in SEQ ID NO 1, or the amino acid sequence encoded by the cDNA deposited as ATCC No. _____ on _____ ("the deposited cDNA").

10 The invention also provides isolated 2871 receptor nucleic acid molecules having the sequence shown in SEQ ID NO 2 or in the deposited cDNA.

The invention also provides variant polypeptides having an amino acid sequence that is substantially homologous to the amino acid sequence shown in SEQ ID NO 1 or encoded by the deposited cDNA.

15 The invention also provides variant nucleic acid sequences that are substantially homologous to the nucleotide sequence shown in SEQ ID NO 2 or in the deposited cDNA.

The invention also provides fragments of the polypeptide shown in SEQ ID NO 1 and nucleotide shown in SEQ ID NO 2, as well as substantially homologous 20 fragments of the polypeptide or nucleic acid.

The invention also provides vectors and host cells for expression of the receptor nucleic acid molecules and polypeptides and particularly recombinant vectors and host cells.

The invention also provides methods of making the vectors and host cells and 25 methods for using them to produce the receptor nucleic acid molecules and polypeptides.

The invention also provides antibodies that selectively bind the receptor polypeptides and fragments.

The invention also provides methods of screening for compounds that modulate 30 the activity of the receptor polypeptides. Modulation can be at the level of the

polypeptide receptor or at the level of controlling the expression of nucleic acid expressing the receptor polypeptide.

The invention also provides a process for modulating receptor polypeptide activity, especially using the screened compounds, including to treat conditions related
5 to expression of the receptor polypeptides.

The invention also provides diagnostic assays for determining the presence of and level of the receptor polypeptides or nucleic acid molecules in a biological sample.

The invention also provides diagnostic assays for determining the presence of a mutation in the receptor polypeptides or nucleic acid molecules.

10

DESCRIPTION OF THE DRAWINGS

Figure 1 shows the 2871 nucleotide sequence (SEQ ID NO 2) and the deduced
15 2871 amino acid sequence (SEQ ID NO 1). It is predicted that amino acids 1-42 constitute the extracellular domain, amino acids 43-318 constitute the transmembrane domain, and amino acids 319-359 constitute the intracellular domain.

Figure 2 shows a comparison of the 2871 receptor against the Prosite data base
20 of protein patterns, specifically showing a high score against the seven transmembrane domain rhodopsin family. The underlined area shows a GPCR signature. The most commonly conserved intracellular sequence is the aspartate, arginine, tyrosine (DRY) triplet adjacent to TM3. Arginine is invariant. Aspartate is conservatively placed in several GPCRs. DRY is implicated in signal transduction.

25

Figure 3 shows an analysis of the 2871 amino acid sequence: $\alpha\beta$ turn and coil regions; hydrophilicity; amphipathic regions; flexible regions; antigenic index; and surface probability.

30

Figure 4 shows a 2871 receptor hydrophobicity plot. The amino acids

correspond to 43-318 and show the seven transmembrane segments.

Figure 5 shows 2871 RNA expression in various tissues.

5

DETAILED DESCRIPTION OF THE INVENTION

Receptor function/signal pathway

The 2871 receptor protein is a GPCR that participates in signaling pathways. As used herein, a "signaling pathway" refers to the modulation (e.g., stimulation or inhibition) of a cellular function/activity upon the binding of a ligand to the GPCR (2871 protein). Examples of such functions include mobilization of intracellular molecules that participate in a signal transduction pathway, e.g., phosphatidylinositol 4,5-bisphosphate (PIP₂), inositol 1,4,5-triphosphate (IP₃) or adenylate cyclase; polarization of the plasma membrane; production or secretion of molecules; alteration in the structure of a cellular component; cell proliferation, e.g., synthesis of DNA; cell migration; cell differentiation; and cell survival. Since the 2871 receptor protein is expressed in prostate, uterus, placenta and other tissues such as those disclosed herein, cells participating in a 2871 receptor protein signaling pathway include, but are not limited to cells derived from these tissues.

Depending on the type of cell, the response mediated by the receptor protein may be different. For example, in some cells, binding of a ligand to the receptor protein may stimulate an activity such as release of compounds, gating of a channel, cellular adhesion, migration, differentiation, etc., through phosphatidylinositol or cyclic AMP metabolism and turnover while in other cells, the binding of the ligand will produce a different result. Regardless of the cellular activity/response modulated by the receptor protein, it is universal that the protein is a GPCR and interacts with G proteins to produce one or more secondary signals, in a variety of intracellular signal transduction pathways, e.g., through phosphatidylinositol or cyclic AMP metabolism and turnover, in a cell.

As used herein, "phosphatidylinositol turnover and metabolism" refers to the

molecules involved in the turnover and metabolism of phosphatidylinositol 4,5-bisphosphate (PIP₂) as well as to the activities of these molecules. PIP₂ is a phospholipid found in the cytosolic leaflet of the plasma membrane. Binding of ligand to the receptor activates, in some cells, the plasma-membrane enzyme phospholipase C that in turn can hydrolyze PIP₂ to produce 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP₃). Once formed IP₃ can diffuse to the endoplasmic reticulum surface where it can bind an IP₃ receptor, e.g., a calcium channel protein containing an IP₃ binding site. IP₃ binding can induce opening of the channel, allowing calcium ions to be released into the cytoplasm. IP₃ can also be phosphorylated by a specific kinase to form inositol 1,3,4,5-tetraphosphate (IP₄), a molecule which can cause calcium entry into the cytoplasm from the extracellular medium. IP₃ and IP₄ can subsequently be hydrolyzed very rapidly to the inactive products inositol 1,4-biphosphate (IP₂) and inositol 1,3,4-triphosphate, respectively. These inactive products can be recycled by the cell to synthesize PIP₂. The other second messenger produced by the hydrolysis of PIP₂, namely 1,2-diacylglycerol (DAG), remains in the cell membrane where it can serve to activate the enzyme protein kinase C. Protein kinase C is usually found soluble in the cytoplasm of the cell, but upon an increase in the intracellular calcium concentration, this enzyme can move to the plasma membrane where it can be activated by DAG. The activation of protein kinase C in different cells results in various cellular responses such as the phosphorylation of glycogen synthase, or the phosphorylation of various transcription factors, e.g., NF-kB. The language "phosphatidylinositol activity", as used herein, refers to an activity of PIP₂ or one of its metabolites.

Another signaling pathway the receptor may participate in is the cAMP turnover pathway. As used herein, "cyclic AMP turnover and metabolism" refers to the molecules involved in the turnover and metabolism of cyclic AMP (cAMP) as well as to the activities of these molecules. Cyclic AMP is a second messenger produced in response to ligand induced stimulation of certain G protein coupled receptors. In the cAMP signaling pathway, binding of a ligand to a GPCR can lead to the activation of the enzyme adenyl cyclase, which catalyzes the synthesis of cAMP. The newly synthesized cAMP can in turn activate a cAMP-dependent protein kinase. This activated kinase can phosphorylate a voltage-gated potassium channel protein, or an associated protein, and

-8-

lead to the inability of the potassium channel to open during an action potential. The inability of the potassium channel to open results in a decrease in the outward flow of potassium, which normally repolarizes the membrane of a neuron, leading to prolonged membrane depolarization.

5

Pharmacogenomics

Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (1996) *Clin. Exp. Pharmacol. Physiol.* 23(10-11):983-985 and Linder, M.W. (1997) *Clin. Chem.* 43(2):254-266. The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer.

25

Disorders/Cellular Functions
The present invention relates to methods and compositions for the modulation, diagnosis, and treatment of immune and respiratory disorders, especially T helper (Th) cell and Th cell-like related disorders. Such immune disorders include, but are not limited to, chronic inflammatory diseases and disorders, such as Crohn's disease, reactive arthritis, including Lyme disease, insulin-dependent diabetes, organ-specific autoimmunity, including multiple sclerosis, Hashimoto's thyroiditis and Grave's disease, contact dermatitis, psoriasis, graft rejection, graft versus host disease,

30

sarcoidosis, atopic conditions, such as asthma and allergy, including allergic rhinitis, gastrointestinal allergies, including food allergies, eosinophilia, conjunctivitis, glomerular nephritis, certain pathogen susceptibilities such as helminthic (e.g., leishmaniasis), certain viral infections, including HIV, and bacterial infections, 5 including tuberculosis and lepromatous leprosy.

Respiratory disorders include, but are not limited to, apnea, asthma, particularly bronchial asthma, berillium disease, bronchiectasis, bronchitis, bronchopneumonia, cystic fibrosis, diphtheria, dyspnea, emphysema, chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, pneumonia, 10 acute pulmonary edema, pertussis, pharyngitis, atelectasis, Wegener's granulomatosis, Legionnaires disease, pleurisy, rheumatic fever, and sinusitis.

As used interchangeably herein a "2871 activity", "biological activity of 2871" or "functional activity of 2871", refers to an activity exerted by a 2871 protein, polypeptide or nucleic acid molecule on a 2871 responsive cell as determined in vivo, 15 or in vitro, according to standard techniques. In one embodiment, a 2871 activity is a direct activity, such as an association with a target protein, preferably a 2871 target molecule (e.g., a G-protein alpha subunit or a 2871 ligand). In another embodiment, a 2871 activity is an indirect activity, such as inhibiting the synthesis or activity of a second protein (e.g., a protein of a signal transduction pathway). In a preferred 20 embodiment, a 2871 activity is at least one or more of the following activities: (i) interaction of a 2871 protein in the plasma membrane with a protein or other organic molecule secreted from the same cell which expresses the 2871 protein molecule (e.g., a 2871 ligand); (ii) interaction of a 2871 protein in the plasma membrane with a protein or other organic molecule secreted from a different cell from that which 25 contains the 2871 protein molecule (e.g., a 2871 ligand); (iii) complex formation between a 2871 protein and a secreted peptide, polypeptide, or small molecule; (iv) interaction of a 2871 protein with a target molecule in the extracellular milieu (e.g., a soluble target molecule); (v) interaction of the 2871 protein with an intracellular target molecule (e.g., interaction with an internalized or endocytosed ligand); and (vi) 30 complex formation with one, two, or more, intracellular target molecules.

-10-

In yet another preferred embodiment, a 2871 activity is at least one or more of the following activities: (1) modulating, for example, agonizing or antagonizing a signal transduction pathway (e.g., a 2871-dependent pathway); (2) modulating cytokine production and/or secretion (e.g., production and/or secretion of a 5 proinflammatory cytokine); (3) modulating lymphokine production and/or secretion; (4) modulating brain function; (5) modulating production of adhesion molecules and/or cellular adhesion; (6) modulating expression or activity of nuclear transcription factors; (7) modulating expression of IL-4, IL-5, or of other cytokines involved in T-cell function; (8) modulating cell proliferation, development or differentiation, for 10 example, helper T-cell differentiation to TH1 versus TH2 cells; (9) modulating cell proliferation, development or differentiation of bone marrow and/or megakaryocyte precursor cells; (10) modulating cellular immune responses; (11) modulating cytokine-mediated proinflammatory actions (e.g., inhibiting acute phase protein synthesis by hepatocytes, fever, and/or prostaglandin synthesis, for example PGE2 15 synthesis); and (12) promoting and/or potentiating wound healing.

Polypeptides

The invention is based on the discovery of a novel G-coupled protein receptor. Specifically, an expressed sequence tag (EST) was selected based on homology to G- 20 protein-coupled receptor sequences. This EST was used to design primers based on sequences that it contains and used to identify a cDNA from a prostate cDNA library. Positive clones were sequenced and the overlapping fragments were assembled. Analysis of the assembled sequence revealed that the cloned cDNA molecule encodes a G-protein coupled receptor.

25 The invention thus relates to a novel GPCR having the deduced amino acid sequence shown in Figure 1 (SEQ ID NO 1) or having the amino acid sequence encoded by the deposited cDNA, ATCC No. _____.

The deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms. The deposit is provided as 30 a convenience to those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112. The deposited sequence, as well as the polypeptide encoded by

the sequence, is incorporated herein by reference and controls in the event of any conflict, such as a sequencing error, with description in this application.

The "2871 receptor polypeptide" or "2871 receptor protein" refers to the polypeptide in SEQ ID NO 1 or encoded by the deposited cDNA. The term "receptor protein" or "receptor polypeptide", however, further includes the numerous variants described herein, as well as fragments derived from the full length 2871 polypeptide and variants.

The present invention thus provides an isolated or purified 2871 receptor polypeptide and variants and fragments thereof.

10 The 2871 polypeptide is a 359 residue protein exhibiting three main structural domains. The extracellular domain is identified to be within residues 1 to about 42 in SEQ ID NO 1. The transmembrane domain is identified to be within residues from about 43 to about 318 in SEQ ID NO 1. The intracellular domain is identified to be within residues from about 319 to about 359 in SEQ ID NO 1. The transmembrane 15 domain includes a GPCR signal transduction signature, DRY, at residues 138-140.

As used herein, a polypeptide is said to be "isolated" or "purified" when it is substantially free of cellular material when it is isolated from recombinant and non-recombinant cells, or free of chemical precursors or other chemicals when it is chemically synthesized. A polypeptide, however, can be joined to another polypeptide 20 with which it is not normally associated in a cell and still be considered "isolated" or "purified."

The receptor polypeptides can be purified to homogeneity. It is understood, however, that preparations in which the polypeptide is not purified to homogeneity are useful and considered to contain an isolated form of the polypeptide. The critical feature 25 is that the preparation allows for the desired function of the polypeptide, even in the presence of considerable amounts of other components. Thus, the invention encompasses various degrees of purity.

In one embodiment, the language "substantially free of cellular material" includes preparations of the receptor polypeptide having less than about 30% (by dry 30 weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the

-12-

receptor polypeptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20%, less than about 10%, or less than about 5% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" 5 includes preparations of the receptor polypeptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the polypeptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other 10 chemicals, less than about 10% chemical precursors or other chemicals, or less than about 5% chemical precursors or other chemicals.

In one embodiment, the receptor polypeptide comprises the amino acid sequence shown in SEQ ID NO 1. However, the invention also encompasses sequence variants. Variants include a substantially homologous protein encoded by the same genetic locus 15 in an organism, i.e., an allelic variant. Variants also encompass proteins derived from other genetic loci in an organism, but having substantial homology to the 2871 receptor protein of SEQ ID NO 1. Variants also include proteins substantially homologous to the 2871 receptor protein but derived from another organism, i.e., an ortholog. Variants also include proteins that are substantially homologous to the 2871 receptor protein that are 20 produced by chemical synthesis. Variants also include proteins that are substantially homologous to the 2871 receptor protein that are produced by recombinant methods.

As used herein, two proteins (or a region of the proteins) are substantially homologous when the amino acid sequences are at least about 55-60%, typically at least about 70-75%, more typically at least about 80-85%, and most typically at least about 25 90-95% or more homologous. A substantially homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence hybridizing to the nucleic acid sequence, or portion thereof, of the sequence shown in SEQ ID NO 2 under stringent conditions as more fully described below.

To determine the percent homology of two amino acid sequences, or of two 30 nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with

the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence, then the molecules are homologous at that 5 position. As used herein, amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity". The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., per cent homology equals the number of identical positions/total number of positions times 100).

The invention also encompasses polypeptides having a lower degree of identity 10 but having sufficient similarity so as to perform one or more of the same functions performed by the 2871 polypeptide. Similarity is determined by conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Conservative substitutions are likely to be phenotypically silent. Typically seen as conservative substitutions are the 15 replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are 20 found in Bowie *et al.*, *Science* 247:1306-1310 (1990).

-14-

TABLE 1. Conservative Amino Acid Substitutions.

Aromatic	Phenylalanine Tryptophan Tyrosine
Hydrophobic	Leucine Isoleucine Valine
Polar	Glutamine Asparagine
Basic	Arginine Lysine Histidine
Acidic	Aspartic Acid Glutamic Acid
Small	Alanine Serine Threonine Methionine Glycine

Both identity and similarity can be readily calculated (*Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York, 1988; *Biocomputing: Informatics and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data, Part 1*, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; *Sequence Analysis in Molecular Biology*, von Heinje, G., Academic Press, 1987; and *Sequence Analysis Primer*, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991).

-15-

between two sequences include, but are not limited to, GCG program package (Devereux, J., et al., *Nucleic Acids Res.* 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., *J. Molec. Biol.* 215:403 (1990)).

A variant polypeptide can differ in amino acid sequence by one or more substitutions, deletions, insertions, inversions, fusions, and truncations or a combination of any of these.

Variant polypeptides can be fully functional or can lack function in one or more activities. Thus, in the present case, variations can effect the function, for example, of one or more of the regions corresponding to ligand binding, transmembrane association, 10 G-protein binding and signal transduction.

Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. Functional variants can also contain substitution of similar amino acids which result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively effect 15 function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

As indicated, variants can be naturally-occurring or can be made by recombinant 20 means or chemical synthesis to provide useful and novel characteristics for the receptor polypeptide. This includes preventing immunogenicity from pharmaceutical formulations by preventing protein aggregation.

Useful variations further include alteration of ligand binding characteristics. For example, one embodiment involves a variation at the binding site that results in binding 25 but not release of ligand. A further useful variation at the same sites can result in a higher affinity for ligand. Useful variations also include changes that provide for affinity for another ligand. Another useful variation includes one that allows binding but which prevents activation by the ligand. Another useful variation includes variation in the transmembrane G-protein-binding/signal transduction domain that provides for reduced 30 or increased binding by the appropriate G-protein or for binding by a different G-protein than the one with which the receptor is normally associated. Another useful variation

provides a fusion protein in which one or more domains is operationally fused to one or more domains from another G-protein coupled receptor.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis
5 (Cunningham *et al.*, *Science* 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or *in vitro*, or *in*
10 *vitro* proliferative activity. Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith *et al.*, *J. Mol. Biol.* 224:899-904 (1992); de Vos *et al.*
15 *Science* 255:306-312 (1992)).

The invention also includes polypeptide fragments of the 2871 receptor protein. Fragments can be derived from the amino acid sequence shown in SEQ ID NO 1. However, the invention also encompasses fragments of the variants of the 2871 receptor
15 protein as described herein.

As used herein, a fragment comprises at least 12 contiguous amino acids. Fragments retain one or more of the biological activities of the protein, for example the ability to bind to a G-protein or ligand, as well as fragments that can be used as an immunogen to generate receptor antibodies.

20 Biologically active fragments (peptides which are, for example, 12, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) can comprise a domain or motif, e.g., an extracellular domain, one or more transmembrane domains, G-protein binding domain, or GPCR signature.

25 Possible fragments include, but are not limited to: 1) soluble peptides comprising the entire extracellular domain from about amino acid 1 to about amino acid 42 of SEQ ID NO 1; 2) peptides comprising the intracellular domain from about amino acid 319 to about amino acid 359 of SEQ ID NO 1; 3) peptides comprising the entire transmembrane domain from about amino acid 43 to amino acid 318.

30 The invention also provides fragments with immunogenic properties. These contain an epitope-bearing portion of the 2871 receptor protein and variants. These epitope-bearing peptides are useful to raise antibodies that bind specifically to a receptor

polypeptide or region or fragment. These peptides can contain at least 12, at least 14, or between at least about 15 to about 30 amino acids.

Non-limiting examples of antigenic polypeptides that can be used to generate antibodies include peptides derived from the extracellular domain.

5 The epitope-bearing receptor and polypeptides may be produced by any conventional means (Houghten, R.A., *Proc. Natl. Acad. Sci. USA* 82:5131-5135 (1985)). Simultaneous multiple peptide synthesis is described in U.S. Patent No. 4,631,211.

10 Fragments can be discrete (not fused to other amino acids or polypeptides) or can be within a larger polypeptide. Further, several fragments can be comprised within a single larger polypeptide. In one embodiment a fragment designed for expression in a host can have heterologous pre- and pro-polypeptide regions fused to the amino terminus of the receptor fragment and an additional region fused to the carboxyl terminus of the fragment.

15 The invention thus provides chimeric or fusion proteins. These comprise a receptor protein operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the receptor protein. "Operatively linked" indicates that the receptor protein and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the receptor protein.

20 In one embodiment the fusion protein does not affect receptor function per se. For example, the fusion protein can be a GST-fusion protein in which the receptor sequences are fused to the C-terminus of the GST sequences. Other types of fusion proteins include, but are not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions and Ig fusions. 25 Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant receptor protein. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence. Therefore, in another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus.

30 EP-A-O 464 533 discloses fusion proteins comprising various portions of immunoglobulin constant regions. The Fc is useful in therapy and diagnosis and thus

results, for example, in improved pharmacokinetic properties (EP-A 0232 262). In drug discovery, for example, human proteins have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists. Bennett *et al.*, *Journal of Molecular Recognition* 8:52-58 (1995) and Johanson *et al.*, *The Journal of Biological Chemistry* 270,16:9459-9471 (1995). Thus, this invention also encompasses soluble fusion proteins containing a receptor polypeptide and various portions of the constant regions of heavy or light chains of immunoglobulins of various subclass (IgG, IgM, IgA, IgE). Preferred as immunoglobulin is the constant part of the heavy chain of human IgG, particularly IgG1, where fusion takes place at the hinge region. For some uses it is desirable to remove the Fc after the fusion protein has been used for its intended purpose, for example when the fusion protein is to be used as antigen for immunizations. In a particular embodiment, the Fc part can be removed in a simple way by a cleavage sequence which is also incorporated and can be cleaved with factor Xa.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel *et al.*, *Current Protocols in Molecular Biology*, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A receptor protein-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the receptor protein.

Another form of fusion protein is one that directly affects receptor functions. Accordingly, a receptor polypeptide encompassed by the present invention in which one or more of the receptor domains has been replaced by homologous domains from another G-protein coupled receptor or other type of receptor. Accordingly, various permutations are possible. The extracellular domain, or subregion thereof, (for example, ligand-binding) may be replaced with the domain or subregion from another ligand-

-19-

binding receptor protein. Alternatively, transmembrane regions, for example, G-protein-binding/signal transduction, may be replaced. Finally, the intracellular domain may be replaced. Thus, chimeric receptors can be formed in which one or more of the native domains or subregions has been replaced.

5 The isolated receptor protein can be purified from cells that naturally express it, such as from prostate, placenta, uterus and as shown in Figure 5, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods.

10 In one embodiment, the protein is produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the receptor polypeptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques.

15 Polypeptides often contain amino acids other than the 20 amino acids commonly referred to as the 20 naturally-occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in polypeptides are described in basic texts, detailed monographs, and the research literature, and they are well known to those of skill in the art.

20 Accordingly, the polypeptides also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example, polyethylene glycol), or in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence for purification of the mature polypeptide or a pro-protein sequence.

25 Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol,

-20-

cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, 5 prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well-known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of 10 glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as *Proteins - Structure and Molecular Properties*, 2nd Ed., T.E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., *Posttranslational Covalent Modification of Proteins*, B.C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter *et al.*, 15 *Meth. Enzymol.* 182: 626-646 (1990) and Rattan *et al.*, *Ann. N.Y. Acad. Sci.* 663:48-62 (1992).

As is also well known, polypeptides are not always entirely linear. For instance, 20 polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of post-translation events, including natural processing event and events brought about by human manipulation which do not occur naturally. Circular, branched and branched circular polypeptides may be synthesized by non-translational natural processes and by synthetic methods.

Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. Blockage of 25 the amino or carboxyl group in a polypeptide, or both, by a covalent modification, is common in naturally-occurring and synthetic polypeptides. For instance, the amino terminal residue of polypeptides made in *E. coli*, prior to proteolytic processing, almost invariably will be N-formylmethionine.

The modifications can be a function of how the protein is made. For 30 recombinant polypeptides, for example, the modifications will be determined by the host cell posttranslational modification capacity and the modification signals in the

polypeptide amino acid sequence. Accordingly, when glycosylation is desired, a polypeptide should be expressed in a glycosylating host, generally a eukaryotic cell. Insect cells often carry out the same posttranslational glycosylations as mammalian cells and, for this reason, insect cell expression systems have been developed to efficiently 5 express mammalian proteins having native patterns of glycosylation. Similar considerations apply to other modifications.

The same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain more than one type of modification.

10

Polypeptide uses

The receptor polypeptides are useful for producing antibodies specific for the 2871 receptor protein, regions, or fragments.

The receptor polypeptides are also useful in drug screening assays, in cell-based 15 or cell-free systems. Cell-based systems can be native i.e., cells that normally express the receptor protein, as a biopsy or expanded in cell culture, for example, in the cells disclosed herein. In one embodiment, however, cell-based assays involve recombinant host cells expressing the receptor protein.

The polypeptides can be used to identify compounds that modulate receptor 20 activity. Both 2871 protein and appropriate variants and fragments can be used in high throughput screens to assay candidate compounds for the ability to bind to the receptor. These compounds can be further screened against a functional receptor to determine the effect of the compound on the receptor activity. Compounds can be identified that activate (agonist) or inactivate (antagonist) the receptor to a desired degree.

The receptor polypeptides can be used to screen a compound for the ability to stimulate or inhibit interaction between the receptor protein and a target molecule that 25 normally interacts with the receptor protein. The target can be ligand or a component of the signal pathway with which the receptor protein normally interacts (for example, a G-protein or other interactor involved in cAMP or phosphatidylinositol turnover and/or 30 adenylate cyclase, or phospholipase C activation). The assay includes the steps of combining the receptor protein with a candidate compound under conditions that allow

the receptor protein or fragment to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the receptor protein and the target, such as any of the associated effects of signal transduction such as G-protein phosphorylation, cyclic AMP 5 or phosphatidylinositol turnover, and adenylate cyclase or phospholipase C activation.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam *et al.*, *Nature* 354:82-84 (1991); Houghten *et al.*, *Nature* 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L- configuration 10 amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang *et al.*, *Cell* 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., 15 molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble full-length receptor or fragment that competes for ligand binding. Other candidate compounds include mutant receptors or appropriate fragments containing mutations that affect receptor function and thus compete for ligand. Accordingly, a fragment that competes for ligand, for example with 20 a higher affinity, or a fragment that binds ligand but does not allow release, is encompassed by the invention.

The invention provides other end points to identify compounds that modulate (stimulate or inhibit) receptor activity. The assays typically involve an assay of events in the signal transduction pathway that indicate receptor activity. Thus, the expression of 25 genes that are up- or down-regulated in response to the receptor protein dependent signal cascade can be assayed. In one embodiment, the regulatory region of such genes can be operably linked to a marker that is easily detectable, such as luciferase. Alternatively, phosphorylation of the receptor protein, or a receptor protein target, could also be measured.

Binding and/or activating compounds can also be screened by using chimeric receptor proteins in which the extracellular domain, the transmembrane domain or

- subregions, and the intracellular domain can be replaced by heterologous domains. For example, a G-protein-binding region can be used that interacts with a different G-protein than that which is recognized by the native receptor. Accordingly, a different set of signal transduction components is available as an end-point assay for activation.
- 5 Alternatively, the transmembrane portion can be replaced with the transmembrane portion specific to a host cell that is different from the host cell from which the extracellular domain and/or the G-protein-binding region are derived. This allows for assays to be performed in other than the specific host cell from which the receptor is derived. Alternatively, the extracellular domain could be replaced by a domain binding
- 10 a different ligand, thus, enabling an assay for test compounds that interact with the heterologous extracellular domain but still cause signal transduction. Finally, activation can be detected by a reporter gene containing an easily detectable coding region operably linked to a transcriptional regulatory sequence that is part of the native signal transduction pathway.
- 15 The receptor polypeptides are also useful in competition binding assays in methods designed to discover compounds that interact with the receptor. Thus, a compound is exposed to a receptor polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble receptor polypeptide is also added to the mixture. If the test compound interacts with the soluble receptor polypeptide, it decreases the amount of complex formed or activity from the receptor target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the receptor. Thus, the soluble polypeptide that competes with the target receptor region is designed to contain peptide sequences corresponding to the region of interest.
- 20 To perform cell free drug screening assays, it is desirable to immobilize either the receptor protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.
- 25 Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-

transferase/flh385 fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., ³⁵S-labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of receptor-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a receptor-binding protein and a candidate compound are incubated in the receptor protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the receptor protein target molecule, or which are reactive with receptor protein and compete with the target molecule; as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Modulators of receptor protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the receptor pathway, including, but not limited to, those disclosed herein. These methods of treatment include the steps of administering the modulators of protein activity in a pharmaceutical composition as described herein, to a subject in need of such treatment.

The receptor polypeptides also are useful to provide a target for diagnosing a disease or predisposition to disease mediated by the receptor protein, such as those disclosed herein. Accordingly, methods are provided for detecting the presence, or levels of, the receptor protein in a cell, tissue, or organism. The method involves

-25-

contacting a biological sample with a compound capable of interacting with the receptor protein such that the interaction can be detected.

One agent for detecting receptor protein is an antibody capable of selectively binding to receptor protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The receptor protein also provides a target for diagnosing active disease, or predisposition to disease, in a patient having a variant receptor protein. Thus, receptor protein can be isolated from a biological sample, assayed for the presence of a genetic mutation that results in aberrant receptor protein. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered receptor activity in cell-based or cell-free assay, alteration in ligand or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein.

In vitro techniques for detection of receptor protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. Alternatively, the protein can be detected *in vivo* in a subject by introducing into the subject a labeled anti-receptor antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods which detect the allelic variant of a receptor protein expressed in a subject and methods which detect fragments of a receptor protein in a sample.

The receptor polypeptides are also useful in pharmacogenomic analysis. Accordingly, genetic polymorphism may lead to allelic protein variants of the receptor protein in which one or more of the receptor functions in one population is different from those in another population. The polypeptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, polymorphism may give rise to extracellular domains that are more or less active in ligand binding, and receptor activation. Accordingly, ligand dosage would necessarily be modified to maximize the therapeutic effect within a given population.

-26-

containing a polymorphism. As an alternative to genotyping, specific polymorphic polypeptides could be identified.

The receptor polypeptides are also useful for monitoring therapeutic effects during clinical trials and other treatment. Thus, the therapeutic effectiveness of an agent 5 that is designed to increase or decrease gene expression, protein levels or receptor activity can be monitored over the course of treatment using the receptor polypeptides as an end-point target.

The receptor polypeptides are also useful for treating a receptor-associated disorder, such as those disclosed herein. Accordingly, methods for treatment include the 10 use of soluble receptor or fragments of the receptor protein that compete for ligand binding. These receptors or fragments can have a higher affinity for the ligand so as to provide effective competition.

Antibodies

15 The invention also provides antibodies that selectively bind to the 2871 receptor protein and its variants and fragments. An antibody is considered to selectively bind, even if it also binds to other proteins that are not substantially homologous with the receptor protein. These other proteins share homology with a fragment or domain of the receptor protein. This conservation in specific regions gives rise to antibodies that bind 20 to both proteins by virtue of the homologous sequence. In this case, it would be understood that antibody binding to the receptor protein is still selective.

Antibodies can be polyclonal or monoclonal. An intact antibody, or a fragment thereof (e.g. Fab or F(ab')₂) can be used.

Detection can be facilitated by coupling (i.e., physically linking) the antibody to 25 a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, α -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; 30 examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl

chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ^{125}I , ^{131}I , ^{35}S or ^3H .

To generate antibodies, an isolated receptor polypeptide is used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. Either the full-length protein or antigenic peptide fragment can be used. An antigenic fragment will typically comprise at least 12 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 14 amino acid residues, at least 15 amino acid residues, at least 20 amino acid residues, or at least 30 amino acid residues. In one embodiment, fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions.

An appropriate immunogenic preparation can be derived from native, recombinantly expressed, protein or chemically synthesized peptides

15 Antibody Uses

The antibodies can be used to isolate a receptor protein by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural receptor protein from cells and recombinantly produced receptor protein expressed in host cells.

20 The antibodies are useful to detect the presence of receptor protein in cells or tissues to determine the pattern of expression of the receptor among various tissues in an organism and over the course of normal development.

The antibodies can be used to detect receptor protein *in situ*, *in vitro*, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression.

25 The antibodies can be used to assess abnormal tissue distribution or abnormal expression during development.

Antibody detection of circulating fragments of the full length receptor protein can be used to identify receptor turnover.

Further, the antibodies can be used to assess receptor expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to receptor function. When a disorder is caused by an inappropriate

tissue distribution, developmental expression, or level of expression of the receptor protein, the antibody can be prepared against the normal receptor protein. If a disorder is characterized by a specific mutation in the receptor protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant receptor
5 protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Antibodies can be developed against the whole receptor or portions of the receptor, for example, portions of the extracellular domain.

10 The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting receptor expression level or the presence of aberrant receptors and aberrant tissue distribution or developmental expression, antibodies directed against the receptor or relevant fragments can be used to monitor therapeutic efficacy.

15 Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic receptor proteins can be used to identify individuals that require modified treatment modalities.

20 The antibodies are also useful as diagnostic tools as an immunological marker for aberrant receptor protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Thus, where a specific receptor protein has been correlated with expression in a specific tissue, antibodies that are specific for this receptor protein can be used to identify a tissue type.

25 The antibodies are also useful in forensic identification. Accordingly, where an individual has been correlated with a specific genetic polymorphism resulting in a specific polymorphic protein, an antibody specific for the polymorphic protein can be used as an aid in identification.

The antibodies are also useful for inhibiting receptor function, for example, blocking ligand binding.

30 These uses can also be applied in a therapeutic context in which treatment involves inhibiting receptor function. An antibody can be used, for example, to block

ligand binding. Antibodies can be prepared against specific fragments containing sites required for function or against intact receptor associated with a cell. The invention also encompasses kits for using antibodies to detect the presence of a receptor protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable 5 antibody and a compound or agent for detecting receptor protein in a biological sample; means for determining the amount of receptor protein in the sample; and means for comparing the amount of receptor protein in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect receptor protein.

10

Polynucleotides

The nucleotide sequence in SEQ ID NO 2 was obtained by sequencing the deposited human full length cDNA. Accordingly, the sequence of the deposited clone is controlling as to any discrepancies between the two and any reference to the sequence of 15 SEQ ID NO 2 includes reference to the sequence of the deposited cDNA.

The specifically disclosed cDNA comprises the coding region, 5' and 3' untranslated sequences (SEQ ID NO 2). In one embodiment, the receptor nucleic acid comprises only the coding region.

20 The human 2871 receptor cDNA is approximately 1489 nucleotides in length and encodes a full length protein that is approximately 359 amino acid residues in length. The nucleic acid is expressed in prostate, uterus, and placenta. Structural analysis of the amino acid sequence of SEQ ID NO 1 is provided in Figure 3, a hydropathy plot. The figure shows the putative structure of the seven transmembrane domains, the extracellular domain and the intracellular domain. As used herein, the term 25 "transmembrane domain" refers to a structural amino acid motif which includes a hydrophobic helix that spans the plasma membrane.

30 The invention provides isolated polynucleotides encoding a 2871 receptor protein. The term "2871 polynucleotide" or "2871 nucleic acid" refers to the sequence shown in SEQ ID NO 2 or in the deposited cDNA. The term "receptor polynucleotide" or "receptor nucleic acid" further includes variants and fragments of the 2871 polynucleotide.

An "isolated" receptor nucleic acid is one that is separated from other nucleic acid present in the natural source of the receptor nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism 5 from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB. The important point is that the nucleic acid is isolated from flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the receptor nucleic acid sequences.

10 Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

15 For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid 20 molecules according to the present invention further include such molecules produced synthetically.

The receptor polynucleotides can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance). 25 Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in situ*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

30 The receptor polynucleotides include, but are not limited to, the sequence encoding the mature polypeptide alone, the sequence encoding the mature polypeptide

and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature polypeptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated 5 sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the polynucleotide may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Receptor polynucleotides can be in the form of RNA, such as mRNA, or in the 10 form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).

One receptor nucleic acid comprises the nucleotide sequence shown in SEQ ID 15 NO 2, corresponding to human prostate cDNA.

The invention further provides variant receptor polynucleotides, and fragments thereof, that differ from the nucleotide sequence shown in SEQ ID NO 2 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence shown in SEQ ID NO 2.

20 The invention also provides receptor nucleic acid molecules encoding the variant polypeptides described herein. Such polynucleotides may be naturally occurring, such as allelic variants (same locus), homologs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis 25 techniques, including those applied to polynucleotides, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions.

Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

30 Orthologs, homologs, and allelic variants can be identified using methods well known in the art. These variants comprise a nucleotide sequence encoding a receptor

-32-

that is at least about 55%, typically at least about 70-75%, more typically at least about 80-85%, and most typically at least about 90-95% or more homologous to the nucleotide sequence shown in SEQ ID NO 2 or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under stringent conditions, 5 to the nucleotide sequence shown in SEQ ID NO 2 or a fragment of the sequence. It is understood that stringent hybridization does not indicate substantial homology where it is due to general homology, such as poly A sequences, or sequences common to all or most proteins, all GPCRs, or all family I GPCRs.

As used herein, the term "hybridizes under stringent conditions" is intended to 10 describe conditions for hybridization and washing under which nucleotide sequences encoding a receptor at least 55% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 65%, at least about 70%, or at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art 15 and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. In one embodiment, an isolated receptor nucleic acid molecule that hybridizes under stringent conditions to the sequence of SEQ 20 ID NO 2 corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

Furthermore, the invention provides polynucleotides that comprise a fragment of 25 the full length receptor polynucleotides. The fragment can be single or double stranded and can comprise DNA or RNA. The fragment can be derived from either the coding or the non-coding sequence.

In one embodiment, an isolated receptor nucleic acid is at least 36 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO 2. In other embodiments, the nucleic acid is at 30 least 40, 50, 100, 250 or 500 nucleotides in length.

However, it is understood that a receptor fragment includes any nucleic acid

-33-

sequence that does not include the entire gene.

Receptor nucleic acid fragments include nucleic acid molecules encoding a polypeptide comprising the extracellular domain including amino acid residues from 1 to about 42, a polypeptide comprising the transmembrane domain (amino acid residues 5 from about 43 to about 318), a polypeptide comprising the intracellular domain (amino acid residues from about 318 to about 359), and a polypeptide encoding the G-protein receptor signature (DRY or surrounding amino acid residues from about 127 to about 143). Where the location of the domains have been predicted by computer analysis, one of ordinary skill would appreciate that the amino acid residues constituting these 10 domains can vary depending on the criteria used to define the domains.

The invention also provides receptor nucleic acid fragments that encode epitope bearing regions of the receptor proteins described herein.

The isolated receptor polynucleotide sequences, and especially fragments, are useful as DNA probes and primers.

15 For example, the coding region of a receptor gene can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of receptor genes.

20 A probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, typically about 25, more typically about 40, 50 or 75 consecutive nucleotides of SEQ ID NO 2 sense or anti-sense strand or other receptor polynucleotides. A probe further comprises a label, e.g., radioisotope, 25 fluorescent compound, enzyme, or enzyme co-factor.

Polynucleotide Uses

The receptor polynucleotides are useful as a hybridization probe for cDNA and genomic DNA to isolate a full-length cDNA and genomic clones encoding the 30 polypeptide described in SEQ ID NO 1 and to isolate cDNA and genomic clones that correspond to variants producing the same polypeptide shown in SEQ ID NO 1 or the

other variants described herein. Variants can be isolated from the same tissue and organism from which the polypeptide shown in SEQ ID NO 1 was isolated, different tissues from the same organism, or from different organisms. This method is useful for isolating genes and cDNA that are developmentally controlled and therefore may be
5 expressed in the same tissue at different points in the development of an organism.

The probe can correspond to any sequence along the entire length of the gene encoding the receptor. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions.

The nucleic acid probe can be, for example, the full-length cDNA of SEQ ID NO
10 1, or a fragment thereof, such as an oligonucleotide of at least 12, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to mRNA or DNA.

Fragments of the polynucleotides described herein are also useful to synthesize larger fragments or full-length polynucleotides described herein. For example, a
15 fragment can be hybridized to any portion of an mRNA and a larger or full-length cDNA can be produced.

The fragments are also useful to synthesize antisense molecules of desired length and sequence.

The receptor polynucleotides are also useful as primers for PCR to amplify any
20 given region of a receptor polynucleotide.

The receptor polynucleotides are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the receptor polypeptides. Vectors also include insertion vectors, used to integrate into another polynucleotide sequence, such as into the cellular genome, to alter *in situ* expression of receptor genes and gene products. For example, an endogenous receptor
25 coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The receptor polynucleotides are also useful as probes for determining the chromosomal positions of the receptor polynucleotides by means of *in situ* hybridization
30 methods.

The receptor polynucleotide probes are also useful to determine patterns of the

presence of the gene encoding the receptors and their variants with respect to tissue distribution, for example whether gene duplication has occurred and whether the duplication occurs in all or only a subset of tissues. The genes can be naturally occurring or can have been introduced into a cell, tissue, or organism exogenously. The receptor polynucleotides are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from genes encoding the polynucleotides described herein.

5 The receptor polynucleotides are also useful for constructing host cells expressing a part, or all, of the receptor polynucleotides and polypeptides.

10 The receptor polynucleotides are also useful for constructing transgenic animals expressing all, or a part, of the receptor polynucleotides and polypeptides.

The receptor polynucleotides are also useful for making vectors that express part, or all, of the receptor polypeptides.

15 The receptor polynucleotides are also useful as hybridization probes for determining the level of receptor nucleic acid expression. Accordingly, the probes can be used to detect the presence of, or to determine levels of, receptor nucleic acid in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the polypeptides described herein can be used to assess gene copy number in a given cell, tissue, or organism. This is particularly relevant in cases in which there has been an amplification of the receptor genes.

20 Alternatively, the probe can be used in an *in situ* hybridization context to assess the position of extra copies of the receptor genes, as on extrachromosomal elements or as integrated into chromosomes in which the receptor gene is not normally found, for example as a homogenously staining region.

25 These uses are relevant for diagnosis of disorders involving an increase or decrease in receptor expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and *in situ* hybridizations. *In vitro* techniques for detecting DNA includes Southern hybridizations and *in situ* hybridization.

30 Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a receptor protein, such as by measuring a level of a receptor-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or

determining if a receptor gene has been mutated.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate receptor nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the receptor gene, for example, those disclosed herein. The method typically includes assaying the ability of the compound to modulate the expression of the receptor nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired receptor nucleic acid expression.

10 The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the receptor nucleic acid, such as those disclosed herein, or recombinant cells genetically engineered to express specific nucleic acid sequences.

15 Alternatively, candidate compounds can be assayed *in vivo* in patients or in transgenic animals.

20 The assay for receptor nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway (such as cyclic AMP or phosphatidylinositol turnover). Further, the expression of genes that are up- or down-regulated in response to the receptor protein signal pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase. Thus, modulators of receptor gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of receptor mRNA in the presence of the candidate compound is compared to the level 25 of expression of receptor mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate 30 compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound

than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.

Accordingly, the invention provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to 5 modulate receptor nucleic acid expression, such as in the disorders disclosed herein. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) of nucleic acid expression.

Alternatively, a modulator for receptor nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the 10 drug or small molecule inhibits the receptor nucleic acid expression.

The receptor polynucleotides are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the receptor gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with 15 compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a 20 desirable level, administration of the compound could be commensurately decreased.

The receptor polynucleotides are also useful in diagnostic assays for qualitative changes in receptor nucleic acid, and particularly in qualitative changes that lead to pathology, such as in the disorders disclosed herein. The polynucleotides can be used to detect mutations in receptor genes and gene expression products such as mRNA. The 25 polynucleotides can be used as hybridization probes to detect naturally occurring genetic mutations in the receptor gene and thereby determining whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement such as inversion or transposition, modification of genomic DNA such as 30 aberrant methylation patterns or changes in gene copy number such as amplification. Detection of a mutated form of the receptor gene associated with a dysfunction provides

a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a receptor protein.

Individuals carrying mutations in the receptor gene can be detected at the nucleic acid level by a variety of techniques. Genomic DNA can be analysed directly or can be 5 amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way.

In certain embodiments, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran *et al.*, *Science* 241:1077-1080 (1988); and 10 Nakazawa *et al.*, *PNAS* 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya *et al.*, *Nucleic Acids Res.* 23:675-682 (1995)). This method can include the steps of collecting a sample of cells 15 from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the 20 amplified product compared to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a receptor gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Patent No. 5,498,531) can be used to 25 score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease 30 protection assays such as RNase and S1 protection or the chemical cleavage method.

Furthermore, sequence differences between a mutant receptor gene and a wild-

type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) *Biotechniques* 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen *et al.*, *Adv. Chromatogr.* 36:127-162 (1996); and Griffin *et al.*, *Appl. Biochem. Biotechnol.* 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers *et al.*, *Science* 230:1242 (1985)); Cotton *et al.*, *PNAS* 85:4397 (1988); Saleeba *et al.*, *Meth. Enzymol.* 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita *et al.*, *PNAS* 86:2766 (1989); Cotton *et al.*, *Mutat. Res.* 285:125-144 (1993); and Hayashi *et al.*, *Genet. Anal. Tech. Appl.* 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers *et al.*, *Nature* 313:495 (1985)). Examples of other techniques for detecting point mutations include, selective oligonucleotide hybridization, selective amplification, and selective primer extension.

The receptor polynucleotides are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the polynucleotides can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). In the present case, for example, a mutation in the receptor gene that results in altered affinity for ligand could result in an excessive or decreased drug effect with standard concentrations of ligand that activates the receptor. Accordingly, the receptor polynucleotides described herein can be used to assess the mutation content of the receptor gene in an individual in order to select an appropriate compound or dosage regimen for treatment.

Thus polynucleotides displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The receptor polynucleotides are also useful for chromosome identification when

the sequence is identified with an individual chromosome and to a particular location on the chromosome. First, the DNA sequence is matched to the chromosome by *in situ* or other chromosome-specific hybridization. Sequences can also be correlated to specific chromosomes by preparing PCR primers that can be used for PCR screening of somatic cell hybrids containing individual chromosomes from the desired species. Only hybrids containing the chromosome containing the gene homologous to the primer will yield an amplified fragment. Sublocalization can be achieved using chromosomal fragments. Other strategies include prescreening with labeled flow-sorted chromosomes and preselection by hybridization to chromosome-specific libraries. Further mapping strategies include fluorescence *in situ* hybridization which allows hybridization with probes shorter than those traditionally used. Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on the chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

The receptor polynucleotides can also be used to identify individuals from small biological samples. This can be done for example using restriction fragment-length polymorphism (RFLP) to identify an individual. Thus, the polynucleotides described herein are useful as DNA markers for RFLP (See U.S. Patent No. 5,272,057).

Furthermore, the receptor sequence can be used to provide an alternative technique which determines the actual DNA sequence of selected fragments in the genome of an individual. Thus, the receptor sequences described herein can be used to prepare two PCR primers from the 5N and 3N ends of the sequences. These primers can then be used to amplify DNA from an individual for subsequent sequencing.

Panels of corresponding DNA sequences from individuals prepared in this manner can provide unique individual identifications, as each individual will have a unique set of such DNA sequences. It is estimated that allelic variation in humans occurs with a frequency of about once per each 500 bases. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the

noncoding regions. The receptor sequences can be used to obtain such identification sequences from individuals and from tissue. The sequences represent unique fragments of the human genome. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for 5 identification purposes.

If a panel of reagents from the sequences is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue 10 samples.

The receptor polynucleotides can also be used in forensic identification procedures. PCR technology can be used to amplify DNA sequences taken from very small biological samples, such as a single hair follicle, body fluids (e.g. blood, saliva, or semen). The amplified sequence can then be compared to a standard allowing 15 identification of the origin of the sample.

The receptor polynucleotides can thus be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular 20 individual). As described above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to the noncoding region are particularly useful since greater polymorphism occurs in the noncoding regions, making it easier to differentiate individuals using this technique. Fragments are at least 12 bases.

25 The receptor polynucleotides can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an *in situ* hybridization technique, to identify a specific tissue. This is useful in cases in which a forensic pathologist is presented with a tissue of unknown origin. Panels of receptor probes can be used to identify tissue by species and/or by organ type. In a similar 30 fashion, these primers and probes can be used to screen tissue culture for contamination (i.e. screen for the presence of a mixture of different types of cells in a culture).

-42-

Alternatively, the receptor polynucleotides can be used directly to block transcription or translation of receptor gene expression by means of antisense or ribozyme constructs. Thus, in a disorder characterized by abnormally high or undesirable receptor gene expression, nucleic acids can be directly used for treatment.

The receptor polynucleotides are thus useful as antisense constructs to control receptor gene expression in cells, tissues, and organisms. A DNA antisense polynucleotide is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of receptor protein. An antisense RNA or DNA polynucleotide would hybridize to the mRNA and thus block translation of mRNA into receptor protein.

Examples of antisense molecules useful to inhibit nucleic acid expression include antisense molecules complementary to a fragment of the 5' untranslated region of SEQ ID NO 2 which also includes the start codon and antisense molecules which are complementary to a fragment of the 3_N untranslated region of SEQ ID NO 2.

Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of receptor nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired receptor nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the receptor protein.

The receptor polynucleotides also provide vectors for gene therapy in patients containing cells that are aberrant in receptor gene expression. Thus, recombinant cells, which include the patient's cells that have been engineered *ex vivo* and returned to the patient, are introduced into an individual where the cells produce the desired receptor protein to treat the individual.

The invention also encompasses kits for detecting the presence of a receptor nucleic acid in a biological sample. For example, the kit can comprise reagents such as a labeled or labelable nucleic acid or agent capable of detecting receptor nucleic acid in a biological sample; means for determining the amount of receptor nucleic acid in the

sample; and means for comparing the amount of receptor nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect receptor mRNA or DNA.

5 Vectors/host cells

The invention also provides vectors containing the receptor polynucleotides. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, that can transport the receptor polynucleotides. When the vector is a nucleic acid molecule, the receptor polynucleotides are covalently linked to the vector nucleic acid. With this 10 aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR-MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the receptor polynucleotides. 15 Alternatively, the vector may integrate into the host cell genome and produce additional copies of the receptor polynucleotides when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the receptor polynucleotides. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

20 Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the receptor polynucleotides such that transcription of the polynucleotides is allowed in a host cell. The polynucleotides can be introduced into the host cell with a separate polynucleotide capable of affecting transcription. Thus, the second polynucleotide may provide a trans-acting factor interacting with the cis- 25 regulatory control region to allow transcription of the receptor polynucleotides from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself.

It is understood, however, that in some embodiments, transcription and/or translation of the receptor polynucleotides can occur in a cell-free system.

30 The regulatory sequence to which the polynucleotides described herein can be operably linked include promoters for directing mRNA transcription. These include, but

are not limited to, the left promoter from bacteriophage λ , the lac, TRP, and TAC promoters from *E. coli*, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

5 In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

10 In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory 15 sequences are described, for example, in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

A variety of expression vectors can be used to express a receptor polynucleotide. Such vectors include chromosomal, episomal, and virus-derived vectors, for example 20 vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage 25 genetic elements, eg. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

The regulatory sequence may provide constitutive expression in one or more host 30 cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone

or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The receptor polynucleotides can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

The vector containing the appropriate polynucleotide can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, *E. coli*, *Streptomyces*, and *Salmonella typhimurium*. Eukaryotic cells include, but are not limited to, yeast, insect cells such as *Drosophila*, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the polypeptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the receptor polypeptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired polypeptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith *et al.* (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, *Gene* 69:301-315 (1988)) and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185:60-89 (1990)).

Recombinant protein expression can be maximized in a host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., *Gene Expression*

Technology: *Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Alternatively, the sequence of the polynucleotide of interest can be altered to provide preferential codon usage for a specific host cell, for example *E. coli*. (Wada *et al.*, *Nucleic Acids Res.* 20:2111-2118 (1992)).

5 The receptor polynucleotides can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., *S. cerevisiae* include pYEPSec1 (Baldari, *et al.*, *EMBO J.* 6:229-234 (1987)), pMFa (Kurjan *et al.*, *Cell* 30:933-943(1982)), pJRY88 (Schultz *et al.*, *Gene* 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, CA).

10 The receptor polynucleotides can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf-9 cells) include the pAc series (Smith *et al.*, *Mol. Cell Biol.* 3:2156-2165 (1983)) and the pVL series (Lucklow *et al.*, *Virology* 170:31-39 (1989)).

15 In certain embodiments of the invention, the polynucleotides described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. *Nature* 329:840(1987)) and pMT2PC (Kaufman *et al.*, *EMBO J.* 6:187-195 (1987)).

20 The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the receptor polynucleotides. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the polynucleotides described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring 25 Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

30 The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the polynucleotide sequences described herein, including both coding and non-coding regions. Expression of this

antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, *et al.* (*Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the receptor polynucleotides can be introduced either alone or with other polynucleotides that are not related to the receptor polynucleotides such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the receptor polynucleotide vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction.

25 Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the polynucleotides described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes

for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells,
5 and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the polypeptide is desired, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the receptor
10 polypeptides or heterologous to these polypeptides.

Where the polypeptide is not secreted into the medium, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The polypeptide can then be recovered and purified by well-known purification methods including
15 ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production
20 of the polypeptides described herein, the polypeptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the polypeptides may include an initial modified methionine in some cases as a result of a host-mediated process.

25 Uses of vectors and host cells

The host cells expressing the polypeptides described herein, and particularly recombinant host cells, have a variety of uses. First, the cells are useful for producing receptor proteins or polypeptides that can be further purified to produce desired amounts of receptor protein or fragments. Thus, host cells containing expression vectors are
30 useful for polypeptide production.

Host cells are also useful for conducting cell-based assays involving the receptor

or receptor fragments. Thus, a recombinant host cell expressing a native receptor is useful to assay for compounds that stimulate or inhibit receptor function. This includes ligand binding, gene expression at the level of transcription or translation, G-protein interaction, and components of the signal transduction pathway.

5 Host cells are also useful for identifying receptor mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant receptor (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native receptor.

10 Recombinant host cells are also useful for expressing the chimeric polypeptides described herein to assess compounds that activate or suppress activation by means of a heterologous extracellular domain. Alternatively, a heterologous transmembrane domain can be used to assess the effect of a desired extracellular domain on any given host cell. In this embodiment, a transmembrane domain compatible with the specific 15 host cell is used to make the chimeric vector. Alternatively, a heterologous intracellular, e.g., signal transduction, domain can be introduced into the host cell.

Further, mutant receptors can be designed in which one or more of the various 20 functions is engineered to be increased or decreased (i.e., ligand binding or G-protein binding) and used to augment or replace receptor proteins in an individual. Thus, host cells can provide a therapeutic benefit by replacing an aberrant receptor or providing an aberrant receptor that provides a therapeutic result. In one embodiment, the cells provide receptors that are abnormally active.

In another embodiment, the cells provide receptors that are abnormally inactive. These receptors can compete with endogenous receptors in the individual. In another 25 embodiment, cells expressing receptors that cannot be activated, are introduced into an individual in order to compete with endogenous receptors for ligand. For example, in the case in which excessive ligand is part of a treatment modality, it may be necessary to inactivate this ligand at a specific point in treatment. Providing cells that compete for the ligand, but which cannot be affected by receptor activation would be beneficial.

30 Homologously recombinant host cells can also be produced that allow the *in situ* alteration of endogenous receptor polynucleotide sequences in a host cell genome. This

-50-

technology is more fully described in WO 93/09222, WO 91/12650 and U.S. 5,641,670. Briefly, specific polynucleotide sequences corresponding to the receptor polynucleotides or sequences proximal or distal to a receptor gene are allowed to integrate into a host cell genome by homologous recombination where expression of the gene can be affected. In 5 one embodiment, regulatory sequences are introduced that either increase or decrease expression of an endogenous sequence. Accordingly, a receptor protein can be produced in a cell not normally producing it, or increased expression of receptor protein can result in a cell normally producing the protein at a specific level. Alternatively, the entire gene can be deleted. Still further, specific mutations can be introduced into any desired region 10 of the gene to produce mutant receptor proteins. Such mutations could be introduced, for example, into the specific functional regions such as the ligand-binding site or the G-protein-binding-site.

In one embodiment, the host cell can be a fertilized oocyte or embryonic stem cell that can be used to produce a transgenic animal containing the altered receptor gene. 15 Alternatively, the host cell can be a stem cell or other early tissue precursor that gives rise to a specific subset of cells and can be used to produce transgenic tissues in an animal. See also Thomas *et al.*, *Cell* 51:503 (1987) for a description of homologous recombination vectors. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced gene has homologously 20 recombined with the endogenous receptor gene is selected (see e.g., Li, E. *et al.*, *Cell* 69:915 (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see e.g., Bradley, A. in *Teratocarcinomas and Embryonic Stem Cells: A Practical Approach*, E.J. Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant 25 female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, A. 30 (1991) *Current Opinion in Biotechnology* 2:823-829 and in PCT International Publication Nos. WO 90/11354; WO 91/01140; and WO 93/04169.

The genetically engineered host cells can be used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell 5 from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a receptor protein and identifying and evaluating modulators of receptor protein activity.

Other examples of transgenic animals include non-human primates, sheep, dogs, 10 cows, goats, chickens, and amphibians.

In one embodiment, a host cell is a fertilized oocyte or an embryonic stem cell into which receptor polynucleotide sequences have been introduced.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing 15 the oocyte to develop in a pseudopregnant female foster animal. Any of the receptor nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation 20 signals, if not already included. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the receptor protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, both by 25 Leder *et al.*, U.S. Patent No. 4,873,191 by Wagner *et al.* and in Hogan, B., *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A 30 transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to

other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which 5 contain selected systems which allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, see, e.g., Lakso *et al. PNAS* 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of *S. cerevisiae* (O'Gorman *et al. Science* 251:1351-1355 (1991)).
10 If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the *Cre* recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
15

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. *et al. Nature* 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and 20 induced to exit the growth cycle and enter G₀ phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring borne of this 25 female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the polypeptides described herein are useful to conduct the assays described herein in an *in vivo* context. Accordingly, the various physiological factors that are present *in vivo* and 30 that could effect ligand binding, receptor activation, and signal transduction, may not be evident from *in vitro* cell-free or cell-based assays. Accordingly, it is useful to

provide non-human transgenic animals to assay *in vivo* receptor function, including ligand interaction, the effect of specific mutant receptors on receptor function and ligand interaction, and the effect of chimeric receptors. It is also possible to assess the effect of null mutations, that is mutations that substantially or completely eliminate 5 one or more receptor functions.

Pharmaceutical compositions

The receptor nucleic acid molecules, protein (particularly fragments such as the extracellular domain), modulators of the protein, and antibodies (also referred to 10 herein as "active compounds") can be incorporated into pharmaceutical compositions suitable for administration to a subject, e.g., a human. Such compositions typically comprise the nucleic acid molecule, protein, modulator, or antibody and a pharmaceutically acceptable carrier.

As used herein the language "pharmaceutically acceptable carrier" is intended 15 to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, such media 20 can be used in the compositions of the invention. Supplementary active compounds can also be incorporated into the compositions. A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, 25 and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; 30 chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium

chloride or dextrose. PH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELJ (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethyleneglycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a receptor protein or anti-receptor antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a

powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For oral administration, the agent can be contained in enteric forms to survive the stomach or further coated or mixed to be released in a particular region of the GI tract by known methods. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.

For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with

conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled 5 release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and 10 Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

15 It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the 20 invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

25 The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. 5,328,470) or by stereotactic injection (see e.g., Chen *et al.*, *PNAS* 91:3054-3057 (1994)). The pharmaceutical preparation of the gene therapy vector can include the gene therapy 30 vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery

-57-

vector can be produced intact from recombinant cells, e.g. retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or
5 dispenser together with instructions for administration.

This invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will fully convey the invention to those skilled in the art. Many modifications and other embodiments of the invention will come to mind in one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing description. Although specific terms are employed, they are used as in the art unless otherwise indicated.

EXAMPLE

Gene Expression Study by TaqMan Quantitative Polymerase Chain Reaction

Total RNA from various tissues was extracted using a single step method according to the manufacturer instructions (RNA STAT-60 TelTest, Inc). Each RNA preparation was treated with DNase I (Ambion) at 37°C for 1 hour. After phenol extraction the sample was subjected to reverse transcription using the Superscript kit according to the manufacturer instructions (GibcoBRL). A negative control sample which contains RNA but without reverse transcriptase was carried out simultaneously. Mock reverse transcribed samples generated in the absence of reverse transcriptase were run for each RNA/cDNA sample to make sure the DNase I treatment was complete. The integrity of the RNA samples following DNase I treatment was checked by agarose gel electrophoresis and ethidium bromide staining. Samples are determined to have complete DNase I treatment if at least 38 amplification cycles are required to reach threshold levels of fluorescence using the internal reference amplicon β -2 microglobulin.

30 Probes are designed by PrimerExpress software from PE Biosystems using
consensus sequence. The primer and probe sequences for RNA expression analysis of

-58-

gene 2871 is as following:

TaqMan Probe/Primer Data					
Forward Primer					
ATCGTGTTCTGGGCTGAT					
Tm = 58	%GC = 50	Start =	713	Length =	20
Reverse Primer					
TCCGAGAGTCCTTAAATGG					
Tm = 59	%GC = 58	Start =	782	Length =	19
TaqMan Probe					
AGCATTGATCGCTATCTGAAGGTGGTCAA					
Tm = 68	%GC = 45	Start =	734	Length =	29

5 The target probe gene 2871 is labeled using 6-carboxyfluorescein (FAM).
 The internal reference amplicon for β 2-microglobulin is labeled using VIC. In this
 way levels of the target gene and internal reference gene can be measured in the same
 tube by multiplex PCR. Forward and reverse primers and the probes for both the
 internal reference gene and target gene are added to the TaqMan Universal PCR
 10 Master Mix (PE Applied Biosystems). Although final concentrations of primer and
 probe may vary they are internally consistent within a given experiment. A typical
 experiment contains 200nM forward and reverse primers plus 100nM probe for β -2
 microglobulin and 600nM forward and reverse primers plus 200nM probe for the
 target gene. TaqMan matrix experiments are carried out on ABI PRISM 7700
 15 Sequence Detection System (PE Applied Biosystems). The thermal cycler condition
 is as follows: hold 2 min at 50°C and 10 min at 95°C, followed by two step PCR for
 40 cycles, melt at 95°C for 15 sec and anneal/extend at 60°C 1 min.

RNA from a variety of tissues and cell types were purified and converted to
 cDNA using reverse transcriptase. The cells and tissues used to analyse 2871 include
 20 the following: Various organs, including lymph node, spleen, thymus, heart, brain,
 liver, fetal liver, and fibrotic liver; *in vitro* differentiated helper T cell populations
 that were stimulated with antibodies to the CD3 subunit of the T cell receptor (CD3
 stimulation) for 0 or 24 hours; resting and CD3 stimulated *ex vivo* purified CD3 T
 cells from peripheral blood; other cells purified from peripheral blood, including
 25 granulocytes, CD4 and CD8 positive cells, B cells purified with anti-CD19

-59-

antibodies and stimulated with LPS for 24 hours, peripheral blood mononuclear cells (PBMC), resting or stimulated with phytohemagglutinin. Other cells analysed in this experiment include CD34 positive and negative (CD34+ and CD34-) cells or leukocytes purified from the peripheral blood (mPB) or bone marrow (mBM) of patients treated with G-CSF. CD34+ and CD34- cells were also purified from normal adult bone marrow (ABM) or cord blood (CB). Megakaryocytes the peripheral blood (mPB) or bone marrow (mBM) of patients treated with G-CSF were also examined. Erythroblasts from normal bone marrow were also examined. Transformed cell lines include erythroleukemia cells K562 and the acute promyelocytic leukemia cell line HL-60 and Hep3b hepatocellular liver carcinoma cells cultured in normal or reduced oxygen tension.

A comparative Ct method is used for relative quantitation of gene expression. The threshold cycle or Ct value is the cycle at which a statistically significant increase in ΔR_n is detected. A lower Ct value indicates a higher concentration of the mRNA for the gene corresponding to the target probe sequence. The Ct value for the target gene is normalized relative to the internal reference gene Ct value to generate a delta Ct value using the following formula: $\Delta Ct = Ct_{target} - Ct_{reference}$. To generate values for relative expression, a cDNA sample with a relatively low expression level in the matrix is chosen as a calibrator sample. The ΔCt value for the calibrator tissue is then subtracted from the ΔCt for each according to the following formula: $\Delta\Delta Ct = \Delta Ct_{sample} - \Delta Ct_{calibrator}$. A value used for relative expression is calculated using the arithmetic formula given by $2^{-\Delta\Delta Ct}$. This value is then used to graph the relative expression of a the target gene in the multiple tissues in the study.

THAT WHICH IS CLAIMED:

1. An isolated polypeptide having an amino acid sequence selected from the
5 group consisting of:
 - (a) The amino acid sequence shown in SEQ ID NO 1;
 - (b) The amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ____;
 - (c) The amino acid sequence of an allelic variant of the amino acid
10 sequence shown in SEQ ID NO 1;
 - (d) The amino acid sequence of an allelic variant of the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ____;
 - (e) The amino acid sequence of a sequence variant of the amino acid sequence shown in SEQ ID NO 1, wherein the sequence variant is encoded by a
15 nucleic acid molecule hybridizing to the nucleic acid molecule shown in SEQ ID NO 2 under stringent conditions;
 - (f) The amino acid sequence of a sequence variant of the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. ___, wherein
20 the sequence variant is encoded by a nucleic acid molecule hybridizing under stringent conditions to the cDNA contained in ATCC Deposit No. ____;
 - (g) A fragment of the amino acid sequence shown in SEQ ID NO 1,
wherein the fragment comprises at least 12 contiguous amino acids;
 - (h) A fragment of the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ___, wherein the fragment comprises at least 12
25 contiguous amino acids;
 - (i) The amino acid sequence of the mature receptor polypeptide from about amino acid 6 to about amino acid 359, shown in SEQ ID NO 1;
 - (j) The amino acid sequence of the mature polypeptide from about amino acid 6 to about amino acid 359, encoded by the cDNA clone contained in ATCC
30 Deposit No. ____;

-61-

- (k) The amino acid sequence of the transmembrane domain of the polypeptide shown in SEQ ID NO 1, from about amino acid 43 to about amino acid 318;
- (l) The amino acid sequence of the transmembrane domain from about 5 amino acid 43 to about amino acid 318 in the polypeptide encoded by the cDNA contained in ATCC Deposit No. ____;
- (m) The amino acid sequence of an epitope bearing region of any one of the polypeptides of (a)-(l).
- 10 2. An isolated antibody that selectively binds to a polypeptide of claim 1, (a)-(m).
-
3. An isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
- 15 (a) The nucleotide sequence shown in SEQ ID NO 2;
- (b) The nucleotide sequence in the cDNA contained in ATCC Deposit No. ____;
- (c) A nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO 1;
- 20 (d) A nucleotide sequence encoding the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ____; and
- (e) A nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), or (d).
- 25 4. An isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
- (a) A nucleotide sequence encoding an amino acid sequence of a sequence variant of the amino acid sequence shown in SEQ ID NO 1 that hybridizes to the nucleotide sequence shown in SEQ ID NO 2 under stringent conditions;
- 30 (b) A nucleotide sequence encoding the amino acid sequence of a sequence variant of the amino acid sequence encoded by the cDNA contained in

-62-

ATCC Deposit No. _____, the nucleic acid sequence of the sequence variant hybridizing to the cDNA contained in ATCC Deposit No. _____ under stringent conditions; and

(c) A nucleotide sequence complementary to either of the nucleotide sequences in (a) or (b).

5. An isolated nucleic acid molecule a polynucleotide having a nucleotide sequence selected from the group consisting of:

(a) A nucleotide sequence encoding a fragment of the amino acid sequence shown in SEQ ID NO 1, wherein the fragment comprises at least 12 contiguous amino acids;

(b) A nucleotide sequence encoding a fragment of the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. _____, wherein the fragment comprises at least 12 contiguous amino acids;

15 (c) A nucleotide sequence complementary to either of the nucleotide sequences in (a) or (b).

6. A nucleic acid vector comprising the nucleic acid sequences in any of claims
3-5.

20

7. A host cell containing the vector of claim 6.

8. A method for producing any of the polypeptides in claim 1 comprising introducing a nucleotide sequence encoding any of the polypeptide sequences in (a)-(m) into a host cell, and culturing the host cell under conditions in which the proteins are expressed from the nucleic acid.

9. A method for detecting the presence of any of the polypeptides in claim 1 in a sample, said method comprising contacting said sample with an agent that specifically allows detection of the presence of the polypeptide in the sample and then detecting the presence of the polypeptide.

10. The method of claim 9, wherein said agent is capable of selective physical association with said polypeptide.
- 5 11. The method of claim 10, wherein said agent binds to said polypeptide.
12. The method of claim 11, wherein said agent is an antibody.
13. The method of claim 11, wherein said agent is a ligand.
- 10 14. A kit comprising reagents used for the method of claim 9, wherein the reagents comprise an agent that specifically binds to said polypeptide.
15. A method for detecting the presence of any of the nucleic acid sequences in any of claims 3-5 in a sample, the method comprising contacting the sample with an oligonucleotide that hybridizes to the nucleic acid sequences under stringent conditions and determining whether the oligonucleotide binds to the nucleic acid sequence in the sample.
- 20 16. The method of claim 15, wherein the nucleic acid, whose presence is detected, is mRNA.
17. A kit comprising reagents used for the method of claim 15, wherein the reagents comprise a compound that hybridizes under stringent conditions to any of the 25 nucleic acid molecules.
18. A method for identifying an agent that binds to any of the polypeptides in claim 1, said method comprising contacting the polypeptide with an agent that binds to the polypeptide and assaying the complex formed with the agent bound to the 30 polypeptide.

-64-

19. A method for modulating the activity of any of the polypeptides in claim 1, the method comprising contacting any of the polypeptides of claim 1 with an agent under conditions that allow the agent to modulate the activity of the polypeptide.
 - 5 20. The method of claim 19 wherein the activity is modulated in a subject with an inflammatory disorder.
-

CCACCGCGTCCGGAGAATTGAAAGGGTCCCCAAAGGACAATCTCAAAGGCTAAGGGAGATAACCTACCTGTCTGGT

AGGGAGATGTTCTGTTCATGCTTACCAAGAAAATCCACTCCCTGCCGACCTAGTTCAAAGCTTATTCTTAATT

AGAGACAAGAACCTGTTCAACTGAAAGACACCGTATGAGGTGAATGGACAGCCAGCCACAAATGAAAGAAATCAA

ACCAAGAATAACCTATGCTGAACCCACGCCCTCAATCGTCCCCAAGTGTTCTGACACGCATTTGCTTACAGTCAT

M G F N L T L A K L P N N E L H	16
CACAACTGAAGA ATG GGG TTC AAC TTG ACG CTT GCA AAA TTA CCA ATT AAC GAG CTG CAC	48
G Q E S H N S G N R S D G P G K N T T L	36
GGC CAA GAG AGT CAC ATT TCA GGC AAC AGG AGC GAC GGG CCA GGA AAG AAC ACC ACC CTT	108
H N E F D T I V L P V L Y L I I F V A S	56
CAC ATT GAA TTT GAC ACA ATT GTC TTG CCG GTG CTT TAT CTC ATT ATA TTT GTG GCA AGC	168
I L L N G L A V W I F F H I R N K T S F	76
ATC TTG CTG AAT GGT TTA GCA GTG TGG ATC TTC CAC ATT AGG AAT AAA ACC AGC TTC	228
I F Y L K N I V V A D L I M T L T F P F	96
ATA TTC TAT CTC AAA AAC ATA GTG GTT GCA GAC CTC ATA ATG ACG CTG ACA TTT CCA TTT	288
R I V H D A G F G P W Y F K F I L C R Y	116
CGA ATA GTC CAT GAT GCA GGA TTT GGA CCT TGG TAC TTC AAG TTT ATT CTC TGC AGA TAC	348
T S V L F Y A N M Y T S I V F L G L I S	136
ACT TCA GTT TTG TTT TAT GCA AAC ATG TAT ACT TCC ATC GTG TTC CTT GGG CTG ATA ACC	408
I D R Y L K V V K P F G D S R M Y S I T	156
ATT GAT CGC TAT CTG AAG GTG GTC AAG CCA TTT GGG GAC TCT CGG ATG TAC AGC ATA ACC	468
F T K V L S V C V W V I M A V L S L P N	176
TTC ACG AAG GTT TTA TCT GTT TGT TGG GTG ATC ATG GCT GTT TTG TCT TTG CCA AAC	528
I I L T N G Q P T E D N I H D C S K L K	196
ATC ATC CTG ACA ATT CGT CAG CCA ACA GAG GAC ATT ATC CAT GAC TGC TCA AAA CTT AAA	588
S F L G V K W H T A V T Y V N S C L F V	216
AGT CCT TTG GGG GTC AAA TGG CAT ACG GCA GTC ACC TAT GTG AAC AGC TGC TTG TTT GTG	648
A V L V I P I G C Y I A I S R Y I H K S	236
GCC GTG CTG CTG ATT CTG ATC CGA TGT TAC ATA GCC ATA TCC AGG TAC ATC CAC AAA TCC	708
S R Q F I S Q S S R K R K H N Q S I R V	256
ACC AGG CAA TTC ATA AGT CAG TCA AGC CGA AAG CGA AAA CAT AAC CAG AGC ATC AGG GTT	768
V V A V F F T C F L P Y H L C R I P F T	276
GTT GTG GCT GTG TTT TTT ACC TGC TTT CTA CCA TAT CAC TTG TGC AGA ATT CCT TTT ACT	828
F S H L D R L L D E S A Q K I L Y Y C K	296
TTT AGT CAC TTA GAC AGG CTT TTA GAT GAA TCT GCA CAA AAA ATC CTA TAT TAC TGC AAA	888
E I T L F L S A C N V C L D P I I Y F F	315
GAA ATT ACA CTT TTC TTG TCT GCG TGT AAT GTT TGC CTG GAT CCA ATA ATT TAC TTT TTC	948
M C R S F S R R L F K K S N I R T R S E	336
ATG TGT AGG TCA TTT TCA AGA AGG CTG TTC AAA AAA TCA ATT ATC AGA ACC AGG AGT GAA	1008
S I R S L Q S V R R S E V R I Y Y D V T	356
AGC ATC AGA TCA CTG CAA AGT GTG AGA AGA TCG GAA GTT CGC ATA TAT TAT GAT TAC ACT	1068
D V *	359
GAT GTG TAG	1077
GCCTTTATGTTGTTGGAATCGATATGTACPAGTGTAAATAATGTTCTTTCTTAAATAAAGAAAAAA	
AAAAAG	

FIG 1

2/5

Score: 131.33 Seq: 59 314 Model: 1 269
 *GNILVIWVICRYRPMRTPMNYFIVNLAVALLFS1fcMPFWMIVYyvMcG
 N+L +W++ R +T++ +++ N VADL+- ++T+PF +V+ + G
 flh2871 59 LNGLAVWIFPHIRN-KTSFIFYLKNIEVVADLM-TLTFFPRIVHDAGFG 105

RWPFGdEMCrIWMYFDYMMYASIFILTcISIDRYLWAICHPMzYmRNMT
 W+F ++CR ++ ++Y NMV+SI FL +ISIDRYL --+P+ R+ -
 flh2871 106 PWYFKFILCRYTSVLFYANMYTSIVFLGLISIDRYL-KVVKPFGDSRMYS 154

D2HRAWVMIIiIWVMSF1ISMPPFLMPWscyrDENeWNmTWCMIyDWPe
 +++ ++V+++ +WV++++S+P + ++ - + ++ E-N- C+ - P
 flh2871 155 ITF-TKVLSCVCWVIVNAVLSLP-N-II-LTNGQP-TEDNIKDCSKIKSP1 199

.WVW-WYVILMciimqPYIPMiIM1FCYWRIVRtaRIWMPMIPswQrRRe
 - W - V--- + P+ - I - CY I R ---+R- S--
 flh2871 200 GVXWHTAVTVVNS-CLFVAVLVLIGCYIAISRYIHKSSRQFISQES--- 245

mSMRrERRIVKMIIiIMVVFIICW1PYFIVmfmDTLM.WWWPCefC.Iwt
 R+R- - --- VF+ C+LPY++ + T- - -
 flh2871 246 ---RKRKHNSIRVVVAFFTCAFLPYHLCRIPFTFSKIDRLD-ESACK 290

=lwM.Y.IfewLaYvNCpCINPIIY*
 +L++ I++L+ +N C++PIIY
 flh2871 291 ILYYCKEITLFLSACNV-CLDPIIY 314

FIG2

FIG 3

FIG4

5/5

2871 Expression

2871 EXP 1.4

Section One 1-13019

5/1/99

FIG 5

SEQUENCE LISTING

<110> Glucksmann, Maria A.

Hodg, Martin R.

<120> 2871 RECEPTOR, A NOVEL G-PROTEIN COUPLED RECEPTOR

<130> 2871 RECEPTOR

<140> US 09/088,857

<141> 1998-06-02

<160> 6

<170> PatentIn Ver. 2.0

<210> 1

<211> 358

<212> PRT

<213> Homo sapiens

<400> 1

Met Gly Phe Asn Leu Thr Leu Ala Lys Leu Pro Asn Asn Glu Leu His
1 5 10 15

Gly Gln Glu Ser His Asn Ser Gly Asn Arg Ser Asp Gly Pro Gly Lys
20 25 30

Asn Thr Thr Leu His Asn Glu Phe Asp Thr Ile Val Leu Pro Val Leu
35 40 45

Tyr Leu Ile Ile Phe Val Ala Ser Ile Leu Leu Asn Gly Leu Ala Val
50 55 60

Trp Ile Phe Phe His Ile Arg Asn Lys Thr Ser Phe Ile Phe Tyr Leu
65 70 75 80

Lys Asn Ile Val Val Ala Asp Leu Ile Met Thr Leu Thr Phe Pro Phe
85 90 95

Arg Ile Val His Asp Ala Gly Phe Gly Pro Trp Tyr Phe Lys Phe Ile
100 105 110

Leu Cys Arg Tyr Thr Ser Val Leu Phe Tyr Ala Asn Met Tyr Thr Ser
115 120 125

Ile Val Phe Leu Gly Leu Ile Ser Ile Asp Arg Tyr Leu Lys Val Val
130 135 140

Lys Pro Phe Gly Asp Ser Arg Met Tyr Ser Ile Thr Phe Thr Lys Val
 145 150 155 160

Leu Ser Val Cys Val Trp Val Ile Met Ala Val Leu Ser Leu Pro Asn
 165 170 175

Ile Ile Leu Thr Asn Gly Gln Pro Thr Glu Asp Asn Ile His Asp Cys
 180 185 190

Ser Lys Leu Lys Ser Pro Leu Gly Val Lys Trp His Thr Ala Val Thr
 195 200 205

Tyr Val Asn Ser Cys Leu Phe Val Ala Val Leu Val Ile Leu Ile Gly
 210 215 220

Cys Tyr Ile Ala Ile Ser Arg Tyr Ile His Lys Ser Ser Arg Gln Phe
 225 230 235 240

Ile Ser Gln Ser Ser Arg Lys Arg Lys His Asn Gln Ser Ile Arg Val
 245 250 255

Val Val Ala Val Phe Phe Thr Cys Phe Leu Pro Tyr His Leu Cys Arg
 260 265 270

Ile Pro Phe Thr Phe Ser His Leu Asp Arg Leu Leu Asp Glu Ser Ala
 275 280 285

Gln Lys Ile Leu Tyr Tyr Cys Lys Glu Ile Thr Leu Phe Leu Ser Ala
 290 295 300

Cys Asn Val Cys Leu Asp Pro Ile Ile Tyr Phe Phe Met Cys Arg Ser
 305 310 315 320

Phe Ser Arg Arg Leu Phe Lys Lys Ser Asn Ile Arg Thr Arg Ser Glu
 325 330 335

Ser Ile Arg Ser Leu Gln Ser Val Arg Arg Ser Glu Val Arg Ile Tyr
 340 345 350

Tyr Asp Tyr Thr Asp Val
 355

<210> 2
 <211> 1489
 <212> DNA
 <213> Homo sapiens

<400> 2

ccacgcgtcc ggagaatttg aaagggtgcc ccaaaggaca atctctaaag gggtaaggga~60
 gatacctacc ttgtctggta ggggagatgt ttcgtttca tgcttacca gaaaatccac 120
 ttccctgccc accttagttt caaagcttat tcttaattag agacaagaaa cctgttcaa 180
 cttaagaca ccgtatgagg tgaatggaca gccagccacc acaatgaaag aaatcaaacc 240
 aggaataacc tatgctgaac ccacgcctca atcgccccca agtggcttct gacacgcac 300
 tttgcttaca gtgcacatcaca actgaagaat ggggttcaac ttgacgcttgc caaaattacc 360
 aaataacgag ctgcacggcc aagagagtca caattcaggc aacaggagcg acggggccagg 420
 aaagaacacc acccttcaca atgaatttga cacaattgtc ttgcccgtgc tttatctcat 480
 tatatttgtg gcaagcatct tgctgaatgg tttagcagtg tggatcttct tccacattag 540
 gaataaaaacc agcttcatat tctatctcaa aaacatagtg gttgcagacc tcataatgac 600
 gctgacattt ccatttcgaa tagtccatga tgcaggattt ggaccttgggt acttcaagtt 660
 tattctctgc agatacacattt cagttttgtt ttatgcaaac atgtataactt ccacgtgtt 720
 ccttgggctg ataagcattt atcgctatct gaaggtggc aagccattt gggactctcg 780
 gatgtacagc ataacccctca cgaagggtttt atctgtttgt gtttgggtga tcatggctgt 840
 tttgtcttgc ccaaacatca tcctgacaaa tggtcagcca acagaggaca atatccatga 900
 ctgctcaaaa cttaaaaagtc ctggggggt caaatggcat acggcagtca cctatgtgaa 960
 cagctgcttgc tttgtggccg tgctggtgat tctgatcgga tgttacatag ccataccag 1020
 gtacatccac aaatccagca ggcaattcat aagtcaagtca agccgaaagc gaaaacataa 1080
 ccagagcatc agggttgttggctgtt ttttacctgc tttctaccat atcaacttgt 1140
 cagaattcct tttacttttgcactttaga caggcttttgcacttgc gatgaatctg cacaaaaaat 1200
 cctatattac tgcaaaagaaa ttacactttt cttgtctgc tgtaatgtt gcctggatcc 1260
 aataatttac ttttcatgt tgtaggtcatt ttcaagaagg ctgttcaaaa aatcaaatat 1320
 cagaaccagg agtggaaagca tcagatcaact gcaaaagtgtg agaagatcgg aagttcgcatt 1380
 atattatgat tacactgtatg tgtaggcatt ttattgttttgc ttggaatcga tatgtacaaa 1440
 gtgtaaataa atgtttcttt tcattaataa aamaaaaaaaaa aaaaaaaaaag 1489

<210> 3
<211> 269
<212> PRT
<213> Unknown

<220>
<223> Description of Unknown Organism: Seven
transmembrane segment domain of the rhodopsin
family

<400> 3

Gly	Asn	Ile	Leu	Val	Ile	Trp	Val	Ile	Cys	Arg	Tyr	Arg	Arg	Met	Arg
1								10						15	

Thr	Pro	Met	Asn	Tyr	Phe	Ile	Val	Asn	Leu	Ala	Val	Ala	Asp	Leu	Leu
									20				25		30

Phe	Ser	Leu	Phe	Thr	Met	Pro	Phe	Trp	Met	Val	Tyr	Tyr	Val	Met	Gln
									35				40		45

Gly Arg Trp Pro Phe Gly Asp Phe Met Cys Arg Ile Trp Met Tyr Phe

50	55	60
Asp Tyr Met Asn Met Tyr Ala Ser Ile Phe Phe Leu Thr Cys Ile Ser		
65	70	75
Ile Asp Arg Tyr Leu Trp Ala Ile Cys His Pro Met Arg Tyr Met Arg		
85	90	95
Trp Met Thr Pro Arg His Arg Ala Trp Val Met Ile Ile Ile Trp		
100	105	110
Val Met Ser Phe Leu Ile Ser Met Pro Pro Phe Leu Met Phe Arg Trp		
115	120	125
Ser Thr Tyr Arg Asp Glu Asn Glu Trp Asn Met Thr Trp Cys Met Ile		
130	135	140
Tyr Asp Trp Pro Glu Trp Met Trp Arg Trp Tyr Val Ile Leu Met Thr		
145	150	155
Ile Ile Met Gly Phe Tyr Ile Pro Met Ile Ile Met Leu Phe Cys Tyr		
165	170	175
Trp Arg Ile Tyr Arg Ile Ala Arg Leu Trp Met Arg Met Ile Pro Ser		
180	185	190
Trp Gln Arg Arg Arg Met Ser Met Arg Arg Glu Arg Arg Ile Val		
195	200	205
Lys Met Leu Ile Ile Ile Met Val Val Phe Ile Ile Cys Trp Leu Pro		
210	215	220
Tyr Phe Ile Val Met Phe Met Asp Thr Leu Met Met Trp Trp Phe Cys		
225	230	235
Glu Phe Cys Ile Trp Arg Arg Leu Trp Met Tyr Ile Phe Glu Trp Leu		
245	250	255
Ala Tyr Val Asn Cys Pro Cys Ile Asn Pro Ile Ile Tyr		
260	265	

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide primer

<400> 4

atcggttcc ttgggctgat

20

<210> 5

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide primer

<400> 5

tccgagagtc cccaaatgg

19

<210> 6

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide probe

<400> 6

agcattgatc gctatctgaa ggtggtaa

29

INTERNATIONAL SEARCH REPORT

Inte
National Application No
PCT/US 99/12203

A. CLASSIFICATION OF SUBJECT MATTER		
IPC 6 C12N15/12 C07K14/705 A61K38/16 G01N33/68 C07K16/28		
According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
Electronic data base consulted during the international search (name of data base and, where practical, search terms used)		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 99 29849 A (INCYTE PHARMA INC ; YUE HENRY (US); BANDMAN OLGA (US); LAL PREETI () 17 June 1999 (1999-06-17) SEQ IDs NO 3 & 4 claims 1-21 -----	1-20
<input type="checkbox"/> Further documents are listed in the continuation of box C.		<input checked="" type="checkbox"/> Patent family members are listed in annex.
* Special categories of cited documents :		
"A" document defining the general state of the art which is not considered to be of particular relevance		
"E" earlier document but published on or after the international filing date		
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)		
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		
"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention		
"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone		
"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.		
"&" document member of the same patent family		
Date of the actual completion of the international search		Date of mailing of the international search report
30 September 1999		12/10/1999
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016		Authorized officer
		Nauche, S

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US 99/ 12203

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

Remark: Although claim 20 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.

2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:

3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/12203

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9929849 A	17-06-1999	AU 1620199 A	28-06-1999

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12N 15/12, C07K 14/705, A61K 38/16, G01N 33/68, C07K 16/28		A1	(11) International Publication Number: WO 99/63087 (43) International Publication Date: 9 December 1999 (09.12.99)
(21) International Application Number: PCT/US99/12203		(81) Designated States: AE, AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 2 June 1999 (02.06.99)			
(30) Priority Data: 09/088,857 2 June 1998 (02.06.98) US			
(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Application US 09/088,857 (CON) Filed on 2 June 1998 (02.06.98)			
(71) Applicant (for all designated States except US): MILLENIUM PHARMACEUTICALS, INC. [US/US]; 238 Main Street, Cambridge, MA 02142-1017 (US).		Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i>	
(72) Inventors; and			
(75) Inventors/Applicants (for US only): GLUCKSMANN, Maria, Alexandra [AR/US]; 33 Summit Road, Lexington, MA 02173 (US). HODG, Martin, R. [US/US]; 39 Crawford Street, Arlington, MA 02474 (US).			
(74) Agents: BROWN, Anne et al.; Alston & Bird LLP, P.O. Drawer 34009, Charlotte, NC 28234-4009 (US).			
(54) Title: G-PROTEIN COUPLED RECEPTOR, NAMED 2871 RECEPTOR			
(57) Abstract			

The present invention relates to a newly identified G-protein-coupled receptor. The invention also relates to polynucleotides encoding the receptors. The invention further relates to methods using receptor polypeptides and polynucleotides for diagnosis and treatment in receptor-mediated disorders. The invention further relates to methods using the receptor polypeptides and polynucleotides to identify agonists and antagonists useful for diagnosis and treatment. The invention further encompasses agonists and antagonists based on the receptor polypeptides and polynucleotides. The invention further relates to procedures for producing the receptor polypeptides and polynucleotides by recombinant methods.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

G-PROTEIN COUPLED RECEPTOR, NAMED 2871 RECEPTOR**FIELD OF THE INVENTION**

5 The present invention relates to a newly identified member of the superfamily of G-protein-coupled receptors. The invention also relates to polynucleotides encoding the receptor. The invention further relates to methods using receptor polypeptides and polynucleotides, applicable to diagnosis and treatment in receptor-mediated disorders. The invention further relates to drug-screening methods using the receptor polypeptides
10 and polynucleotides, to identify agonists and antagonists, applicable to diagnosis and treatment. The invention further encompasses agonists, and antagonists based on the receptor polypeptides and polynucleotides. The invention further relates to procedures for producing the receptor polypeptides and polynucleotides by recombinant methods.

15

BACKGROUND OF THE INVENTION**G-protein coupled receptors**

20 G-protein coupled receptors (GPCRs) constitute a major class of proteins responsible for transducing a signal within a cell. GPCRs have seven transmembrane domains. Upon binding of a ligand to an extracellular portion of a GPCR, a signal is transduced within the cell that results in a change in a biological or physiological property of the cell. GPCRs, along with G-proteins and effectors (intracellular enzymes and channels modulated by G-proteins), are the components of a modular

-2-

signaling system that connects the state of intracellular second messengers to extracellular inputs.

5 GPCR genes and gene-products are potential causative agents of disease (Spiegel *et al.*, *J. Clin. Invest.* 92:1119-1125 (1993); McKusick *et al.*, *J. Med. Genet.* 30:1-26 (1993)). Specific defects in the rhodopsin gene and the V2 vasopressin receptor gene have been shown to cause various forms of retinitis pigmentosum (Nathans *et al.*, *Annu. Rev. Genet.* 26:403-424(1992)), nephrogenic diabetes insipidus (Holtzman *et al.*, *Hum. Mol. Genet.* 2:1201-1204 (1993)). These receptors are of critical importance to both the central nervous system and peripheral physiological processes. Evolutionary analyses suggest that the ancestor of these proteins originally developed in concert with complex body plans and nervous systems.

10 The GPCR protein superfamily can be divided into five families: Family I, receptors typified by rhodopsin and the beta2-adrenergic receptor and currently represented by over 200 unique members (Dohlman *et al.*, *Annu. Rev. Biochem.* 60:653-688 (1991)); Family II, the parathyroid hormone/calcitonin/secretin receptor family (Juppner *et al.*, *Science* 254:1024-1026 (1991); Lin *et al.*, *Science* 254:1022-1024 (1991)); Family III, the metabotropic glutamate receptor family (Nakanishi, *Science* 258 597:603 (1992)); Family IV, the CAMP receptor family, important in the chemotaxis and development of *D. discoideum* (Klein *et al.*, *Science* 241:1467-1472 (1988)); and Family V, the fungal mating pheromone receptors such as STE2 (Kurjan, *Annu. Rev. Biochem.* 61:1097-1129 (1992)).

15 There are also a small number of other proteins which present seven putative hydrophobic segments and appear to be unrelated to GPCRs; however, they have not been shown to couple to G-proteins. *Drosophila* expresses a photoreceptor-specific protein, bride of sevenless (boss), a seven-transmembrane-segment protein which has been extensively studied and does not show evidence of being a GPCR (Hart *et al.*, *Proc. Natl. Acad. Sci. USA* 90:5047-5051 (1993)). The gene *frizzled* (fz) in *Drosophila* is also thought to be a protein with seven transmembrane segments. Like boss, fz has not been shown to couple to G-proteins (Vinson *et al.*, *Nature* 338:263-264 (1989)).

20 30 G proteins represent a family of heterotrimeric proteins composed of α , β and

-3-

γ subunits, that bind guanine nucleotides. These proteins are usually linked to cell surface receptors, e.g., receptors containing seven transmembrane domains. Following ligand binding to the GPCR, a conformational change is transmitted to the G protein, which causes the α -subunit to exchange a bound GDP molecule for a GTP molecule and to dissociate from the $\beta\gamma$ -subunits. The GTP-bound form of the α -subunit typically functions as an effector-modulating moiety, leading to the production of second messengers, such as cAMP (e.g., by activation of adenyl cyclase), diacylglycerol or inositol phosphates. Greater than 20 different types of α -subunits are known in humans. These subunits associate with a smaller pool of β and γ subunits. Examples of mammalian G proteins include Gi, Go, Gq, Gs and Gt. G proteins are described extensively in Lodish *et al.*, *Molecular Cell Biology*, (Scientific American Books Inc., New York, N.Y., 1995), the contents of which are incorporated herein by reference.

15 GPCRs are a major target for drug action and development. Accordingly, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown GPCRs. The present invention advances the state of the art by providing a previously unidentified human GPCR.

SUMMARY OF THE INVENTION

20

It is an object of the invention to identify novel GPCR receptors.

It is a further object of the invention to provide novel GPCR receptor polypeptides that are useful as reagents or targets in receptor assays applicable to treatment and diagnosis of GPCR-mediated disorders.

25 It is a further object of the invention to provide polynucleotides corresponding to the novel GPCR receptor polypeptides that are useful as targets and reagents in receptor assays applicable to treatment and diagnosis of GPCR-mediated disorders and useful for producing novel receptor polypeptides by recombinant methods.

A specific object of the invention is to identify compounds that act as agonists
30 and antagonists and modulate the expression of the receptor.

-4-

A further specific object of the invention is to provide the compounds that modulate the expression of the receptor for treatment and diagnosis of GPCR related disorders.

The invention is thus based on the identification of a novel GPCR, designated 5 the 2871 receptor.

The invention provides isolated 2871 receptor polypeptides including a polypeptide having the amino acid sequence shown in SEQ ID NO 1, or the amino acid sequence encoded by the cDNA deposited as ATCC No. _____ on _____ ("the deposited cDNA").

10 The invention also provides isolated 2871 receptor nucleic acid molecules having the sequence shown in SEQ ID NO 2 or in the deposited cDNA.

The invention also provides variant polypeptides having an amino acid sequence that is substantially homologous to the amino acid sequence shown in SEQ ID NO 1 or encoded by the deposited cDNA.

15 The invention also provides variant nucleic acid sequences that are substantially homologous to the nucleotide sequence shown in SEQ ID NO 2 or in the deposited cDNA.

The invention also provides fragments of the polypeptide shown in SEQ ID NO 1 and nucleotide shown in SEQ ID NO 2, as well as substantially homologous 20 fragments of the polypeptide or nucleic acid.

The invention also provides vectors and host cells for expression of the receptor nucleic acid molecules and polypeptides and particularly recombinant vectors and host cells.

25 The invention also provides methods of making the vectors and host cells and methods for using them to produce the receptor nucleic acid molecules and polypeptides.

The invention also provides antibodies that selectively bind the receptor polypeptides and fragments.

30 The invention also provides methods of screening for compounds that modulate the activity of the receptor polypeptides. Modulation can be at the level of the

-5-

polypeptide receptor or at the level of controlling the expression of nucleic acid expressing the receptor polypeptide.

The invention also provides a process for modulating receptor polypeptide activity, especially using the screened compounds, including to treat conditions related
5 to expression of the receptor polypeptides.

The invention also provides diagnostic assays for determining the presence of and level of the receptor polypeptides or nucleic acid molecules in a biological sample.

The invention also provides diagnostic assays for determining the presence of a mutation in the receptor polypeptides or nucleic acid molecules.

10

DESCRIPTION OF THE DRAWINGS

Figure 1 shows the 2871 nucleotide sequence (SEQ ID NO 2) and the deduced
15 2871 amino acid sequence (SEQ ID NO 1). It is predicted that amino acids 1-42 constitute the extracellular domain, amino acids 43-318 constitute the transmembrane domain, and amino acids 319-359 constitute the intracellular domain.

Figure 2 shows a comparison of the 2871 receptor against the Prosite data base
20 of protein patterns, specifically showing a high score against the seven transmembrane domain rhodopsin family. The underlined area shows a GPCR signature. The most commonly conserved intracellular sequence is the aspartate, arginine, tyrosine (DRY) triplet adjacent to TM3. Arginine is invariant. Aspartate is conservatively placed in several GPCRs. DRY is implicated in signal transduction.

25

Figure 3 shows an analysis of the 2871 amino acid sequence: $\alpha\beta$ turn and coil regions; hydrophilicity; amphipathic regions; flexible regions; antigenic index; and surface probability.

30

Figure 4 shows a 2871 receptor hydrophobicity plot. The amino acids

-6-

correspond to 43-318 and show the seven transmembrane segments.

Figure 5 shows 2871 RNA expression in various tissues.

5

DETAILED DESCRIPTION OF THE INVENTION

Receptor function/signal pathway

The 2871 receptor protein is a GPCR that participates in signaling pathways. As used herein, a "signaling pathway" refers to the modulation (e.g., stimulation or inhibition) of a cellular function/activity upon the binding of a ligand to the GPCR (2871 protein). Examples of such functions include mobilization of intracellular molecules that participate in a signal transduction pathway, e.g., phosphatidylinositol 4,5-bisphosphate (PIP₂), inositol 1,4,5-triphosphate (IP₃) or adenylate cyclase; polarization of the plasma membrane; production or secretion of molecules; alteration in the structure of a cellular component; cell proliferation, e.g., synthesis of DNA; cell migration; cell differentiation; and cell survival. Since the 2871 receptor protein is expressed in prostate, uterus, placenta and other tissues such as those disclosed herein, cells participating in a 2871 receptor protein signaling pathway include, but are not limited to cells derived from these tissues.

20

Depending on the type of cell, the response mediated by the receptor protein may be different. For example, in some cells, binding of a ligand to the receptor protein may stimulate an activity such as release of compounds, gating of a channel, cellular adhesion, migration, differentiation, etc., through phosphatidylinositol or cyclic AMP metabolism and turnover while in other cells, the binding of the ligand will produce a different result. Regardless of the cellular activity/response modulated by the receptor protein, it is universal that the protein is a GPCR and interacts with G proteins to produce one or more secondary signals, in a variety of intracellular signal transduction pathways, e.g., through phosphatidylinositol or cyclic AMP metabolism and turnover, in a cell.

25

As used herein, "phosphatidylinositol turnover and metabolism" refers to the

molecules involved in the turnover and metabolism of phosphatidylinositol 4,5-bisphosphate (PIP₂) as well as to the activities of these molecules. PIP₂ is a phospholipid found in the cytosolic leaflet of the plasma membrane. Binding of ligand to the receptor activates, in some cells, the plasma-membrane enzyme phospholipase C that in turn can hydrolyze PIP₂ to produce 1,2-diacylglycerol (DAG) and inositol 1,4,5-triphosphate (IP₃). Once formed IP₃ can diffuse to the endoplasmic reticulum surface where it can bind an IP₃ receptor, e.g., a calcium channel protein containing an IP₃ binding site. IP₃ binding can induce opening of the channel, allowing calcium ions to be released into the cytoplasm. IP₃ can also be phosphorylated by a specific kinase to form inositol 1,3,4,5-tetraphosphate (IP₄), a molecule which can cause calcium entry into the cytoplasm from the extracellular medium. IP₃ and IP₄ can subsequently be hydrolyzed very rapidly to the inactive products inositol 1,4-biphosphate (IP₂) and inositol 1,3,4-triphosphate, respectively. These inactive products can be recycled by the cell to synthesize PIP₂. The other second messenger produced by the hydrolysis of PIP₂, namely 1,2-diacylglycerol (DAG), remains in the cell membrane where it can serve to activate the enzyme protein kinase C. Protein kinase C is usually found soluble in the cytoplasm of the cell, but upon an increase in the intracellular calcium concentration, this enzyme can move to the plasma membrane where it can be activated by DAG. The activation of protein kinase C in different cells results in various cellular responses such as the phosphorylation of glycogen synthase, or the phosphorylation of various transcription factors, e.g., NF- κ B. The language "phosphatidylinositol activity", as used herein, refers to an activity of PIP₂ or one of its metabolites.

Another signaling pathway the receptor may participate in is the cAMP turnover pathway. As used herein, "cyclic AMP turnover and metabolism" refers to the molecules involved in the turnover and metabolism of cyclic AMP (cAMP) as well as to the activities of these molecules. Cyclic AMP is a second messenger produced in response to ligand induced stimulation of certain G protein coupled receptors. In the cAMP signaling pathway, binding of a ligand to a GPCR can lead to the activation of the enzyme adenyl cyclase, which catalyzes the synthesis of cAMP. The newly synthesized cAMP can in turn activate a cAMP-dependent protein kinase. This activated kinase can phosphorylate a voltage-gated potassium channel protein, or an associated protein, and

-8-

lead to the inability of the potassium channel to open during an action potential. The inability of the potassium channel to open results in a decrease in the outward flow of potassium, which normally repolarizes the membrane of a neuron, leading to prolonged membrane depolarization.

5

Pharmacogenomics

Pharmacogenomics deal with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, e.g., Eichelbaum, M. (1996) *Clin. Exp. Pharmacol. Physiol.* 23(10-11) 10 :983-985 and Linder, M.W. (1997) *Clin. Chem.* 43(2):254-266. The clinical outcomes of these variations result in severe toxicity of therapeutic drugs in certain individuals or therapeutic failure of drugs in certain individuals as a result of individual variation in metabolism. Thus, the genotype of the individual can determine the way a therapeutic compound acts on the body or the way the body metabolizes the compound. Further, the 15 activity of drug metabolizing enzymes effects both the intensity and duration of drug action. Thus, the pharmacogenomics of the individual permit the selection of effective compounds and effective dosages of such compounds for prophylactic or therapeutic treatment based on the individual's genotype. The discovery of genetic polymorphisms in some drug metabolizing enzymes has explained why some patients do not obtain the 20 expected drug effects, show an exaggerated drug effect, or experience serious toxicity from standard drug dosages. Polymorphisms can be expressed in the phenotype of the extensive metabolizer and the phenotype of the poor metabolizer.

Disorders/Cellular Functions

25 The present invention relates to methods and compositions for the modulation, diagnosis, and treatment of immune and respiratory disorders, especially T helper (Th) cell and Th cell-like related disorders. Such immune disorders include, but are not limited to, chronic inflammatory diseases and disorders, such as Crohn's disease, reactive arthritis, including Lyme disease, insulin-dependent diabetes, organ-specific 30 autoimmunity, including multiple sclerosis, Hashimoto's thyroiditis and Grave's disease, contact dermatitis, psoriasis, graft rejection, graft versus host disease,

sarcoidosis, atopic conditions, such as asthma and allergy, including allergic rhinitis, gastrointestinal allergies, including food allergies, eosinophilia, conjunctivitis, glomerular nephritis, certain pathogen susceptibilities such as helminthic (e.g., leishmaniasis), certain viral infections, including HIV, and bacterial infections,
5 including tuberculosis and lepromatous leprosy.

Respiratory disorders include, but are not limited to, apnea, asthma, particularly bronchial asthma, berillium disease, bronchiectasis, bronchitis, bronchopneumonia, cystic fibrosis, diphtheria, dyspnea, emphysema, chronic obstructive pulmonary disease, allergic bronchopulmonary aspergillosis, pneumonia,
10 acute pulmonary edema, pertussis, pharyngitis, atelectasis, Wegener's granulomatosis, Legionnaires disease, pleurisy, rheumatic fever, and sinusitis.

As used interchangeably herein a "2871 activity", "biological activity of 2871" or "functional activity of 2871", refers to an activity exerted by a 2871 protein, polypeptide or nucleic acid molecule on a 2871 responsive cell as determined in vivo, or in vitro, according to standard techniques. In one embodiment, a 2871 activity is a direct activity, such as an association with a target protein, preferably a 2871 target molecule (e.g., a G-protein alpha subunit or a 2871 ligand). In another embodiment, a 2871 activity is an indirect activity, such as inhibiting the synthesis or activity of a second protein (e.g., a protein of a signal transduction pathway). In a preferred
15 embodiment, a 2871 activity is at least one or more of the following activities: (i) interaction of a 2871 protein in the plasma membrane with a protein or other organic molecule secreted from the same cell which expresses the 2871 protein molecule (e.g., a 2871 ligand); (ii) interaction of a 2871 protein in the plasma membrane with a protein or other organic molecule secreted from a different cell from that which
20 contains the 2871 protein molecule (e.g., a 2871 ligand); (iii) complex formation between a 2871 protein and a secreted peptide, polypeptide, or small molecule; (iv) interaction of a 2871 protein with a target molecule in the extracellular milieu (e.g., a soluble target molecule); (v) interaction of the 2871 protein with an intracellular target molecule (e.g., interaction with an internalized or endocytosed ligand); and (vi)
25 (vi) complex formation with one, two, or more, intracellular target molecules.
30

-10-

In yet another preferred embodiment, a 2871 activity is at least one or more of the following activities: (1) modulating, for example, agonizing or antagonizing a signal transduction pathway (e.g., a 2871-dependent pathway); (2) modulating cytokine production and/or secretion (e.g., production and/or secretion of a proinflammatory cytokine); (3) modulating lymphokine production and/or secretion; (4) modulating brain function; (5) modulating production of adhesion molecules and/or cellular adhesion; (6) modulating expression or activity of nuclear transcription factors; (7) modulating expression of IL-4, IL-5, or of other cytokines involved in T-cell function; (8) modulating cell proliferation, development or differentiation, for example, helper T-cell differentiation to TH1 versus TH2 cells; (9) modulating cell proliferation, development or differentiation of bone marrow and/or megakaryocyte precursor cells; (10) modulating cellular immune responses; (11) modulating cytokine-mediated proinflammatory actions (e.g., inhibiting acute phase protein synthesis by hepatocytes, fever, and/or prostaglandin synthesis, for example PGE2 synthesis); and (12) promoting and/or potentiating wound healing.

Polypeptides

The invention is based on the discovery of a novel G-coupled protein receptor. Specifically, an expressed sequence tag (EST) was selected based on homology to G-protein-coupled receptor sequences. This EST was used to design primers based on sequences that it contains and used to identify a cDNA from a prostate cDNA library. Positive clones were sequenced and the overlapping fragments were assembled. Analysis of the assembled sequence revealed that the cloned cDNA molecule encodes a G-protein coupled receptor.

The invention thus relates to a novel GPCR having the deduced amino acid sequence shown in Figure 1 (SEQ ID NO 1) or having the amino acid sequence encoded by the deposited cDNA, ATCC No. _____.

The deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms. The deposit is provided as a convenience to those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. §112. The deposited sequence, as well as the polypeptide encoded by

-11-

the sequence, is incorporated herein by reference and controls in the event of any conflict, such as a sequencing error, with description in this application.

The "2871 receptor polypeptide" or "2871 receptor protein" refers to the polypeptide in SEQ ID NO 1 or encoded by the deposited cDNA. The term "receptor protein" or "receptor polypeptide", however, further includes the numerous variants described herein, as well as fragments derived from the full length 2871 polypeptide and variants.

The present invention thus provides an isolated or purified 2871 receptor polypeptide and variants and fragments thereof.

10 The 2871 polypeptide is a 359 residue protein exhibiting three main structural domains. The extracellular domain is identified to be within residues 1 to about 42 in SEQ ID NO 1. The transmembrane domain is identified to be within residues from about 43 to about 318 in SEQ ID NO 1. The intracellular domain is identified to be within residues from about 319 to about 359 in SEQ ID NO 1. The transmembrane 15 domain includes a GPCR signal transduction signature, DRY, at residues 138-140.

As used herein, a polypeptide is said to be "isolated" or "purified" when it is substantially free of cellular material when it is isolated from recombinant and non-recombinant cells, or free of chemical precursors or other chemicals when it is chemically synthesized. A polypeptide, however, can be joined to another polypeptide 20 with which it is not normally associated in a cell and still be considered "isolated" or "purified."

The receptor polypeptides can be purified to homogeneity. It is understood, however, that preparations in which the polypeptide is not purified to homogeneity are useful and considered to contain an isolated form of the polypeptide. The critical feature 25 is that the preparation allows for the desired function of the polypeptide, even in the presence of considerable amounts of other components. Thus, the invention encompasses various degrees of purity.

In one embodiment, the language "substantially free of cellular material" includes preparations of the receptor polypeptide having less than about 30% (by dry 30 weight) other proteins (i.e., contaminating protein), less than about 20% other proteins, less than about 10% other proteins, or less than about 5% other proteins. When the

receptor polypeptide is recombinantly produced, it can also be substantially free of culture medium, i.e., culture medium represents less than about 20%, less than about 10%, or less than about 5% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" 5 includes preparations of the receptor polypeptide in which it is separated from chemical precursors or other chemicals that are involved in its synthesis. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of the polypeptide having less than about 30% (by dry weight) chemical precursors or other chemicals, less than about 20% chemical precursors or other chemicals, less than about 10% chemical precursors or other chemicals, or less than 10 about 5% chemical precursors or other chemicals.

In one embodiment, the receptor polypeptide comprises the amino acid sequence shown in SEQ ID NO 1. However, the invention also encompasses sequence variants. Variants include a substantially homologous protein encoded by the same genetic locus 15 in an organism, i.e., an allelic variant. Variants also encompass proteins derived from other genetic loci in an organism, but having substantial homology to the 2871 receptor protein of SEQ ID NO 1. Variants also include proteins substantially homologous to the 2871 receptor protein but derived from another organism, i.e., an ortholog. Variants also include proteins that are substantially homologous to the 2871 receptor protein that are 20 produced by chemical synthesis. Variants also include proteins that are substantially homologous to the 2871 receptor protein that are produced by recombinant methods.

As used herein, two proteins (or a region of the proteins) are substantially homologous when the amino acid sequences are at least about 55-60%, typically at least about 70-75%, more typically at least about 80-85%, and most typically at least about 25 90-95% or more homologous. A substantially homologous amino acid sequence, according to the present invention, will be encoded by a nucleic acid sequence hybridizing to the nucleic acid sequence, or portion thereof, of the sequence shown in SEQ ID NO 2 under stringent conditions as more fully described below.

To determine the percent homology of two amino acid sequences, or of two 30 nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of one protein or nucleic acid for optimal alignment with

-13-

the other protein or nucleic acid). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in one sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the other sequence, then the molecules are homologous at that 5 position. As used herein, amino acid or nucleic acid "homology" is equivalent to amino acid or nucleic acid "identity". The percent homology between the two sequences is a function of the number of identical positions shared by the sequences (i.e., per cent homology equals the number of identical positions/total number of positions times 100).

The invention also encompasses polypeptides having a lower degree of identity 10 but having sufficient similarity so as to perform one or more of the same functions performed by the 2871 polypeptide. Similarity is determined by conserved amino acid substitution. Such substitutions are those that substitute a given amino acid in a polypeptide by another amino acid of like characteristics. Conservative substitutions are likely to be phenotypically silent. Typically seen as conservative substitutions are the 15 replacements, one for another, among the aliphatic amino acids Ala, Val, Leu, and Ile; interchange of the hydroxyl residues Ser and Thr, exchange of the acidic residues Asp and Glu, substitution between the amide residues Asn and Gln, exchange of the basic residues Lys and Arg and replacements among the aromatic residues Phe, Tyr. Guidance concerning which amino acid changes are likely to be phenotypically silent are 20 found in Bowie *et al.*, *Science* 247:1306-1310 (1990).

-14-

TABLE 1. Conservative Amino Acid Substitutions.

Aromatic	Phenylalanine Tryptophan Tyrosine
Hydrophobic	Leucine Isoleucine Valine
Polar	Glutamine Asparagine
Basic	Arginine Lysine Histidine
Acidic	Aspartic Acid Glutamic Acid
Small	Alanine Serine Threonine Methionine Glycine

Both identity and similarity can be readily calculated (*Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York, 1988; *Biocomputing: Informatics and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data, Part 1*, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, 1994; *Sequence Analysis in Molecular Biology*, von Heinje, G., Academic Press, 1987; and *Sequence Analysis Primer*, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991).

10 Preferred computer program methods to determine identify and similarity

-15-

between two sequences include, but are not limited to, GCG program package (Devereux, J., et al., *Nucleic Acids Res.* 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., *J. Molec. Biol.* 215:403 (1990)).

A variant polypeptide can differ in amino acid sequence by one or more substitutions, deletions, insertions, inversions, fusions, and truncations or a combination of any of these.

Variant polypeptides can be fully functional or can lack function in one or more activities. Thus, in the present case, variations can effect the function, for example, of one or more of the regions corresponding to ligand binding, transmembrane association, 10 G-protein binding and signal transduction.

Fully functional variants typically contain only conservative variation or variation in non-critical residues or in non-critical regions. Functional variants can also contain substitution of similar amino acids which result in no change or an insignificant change in function. Alternatively, such substitutions may positively or negatively effect 15 function to some degree.

Non-functional variants typically contain one or more non-conservative amino acid substitutions, deletions, insertions, inversions, or truncation or a substitution, insertion, inversion, or deletion in a critical residue or critical region.

As indicated, variants can be naturally-occurring or can be made by recombinant 20 means or chemical synthesis to provide useful and novel characteristics for the receptor polypeptide. This includes preventing immunogenicity from pharmaceutical formulations by preventing protein aggregation.

Useful variations further include alteration of ligand binding characteristics. For example, one embodiment involves a variation at the binding site that results in binding 25 but not release of ligand. A further useful variation at the same sites can result in a higher affinity for ligand. Useful variations also include changes that provide for affinity for another ligand. Another useful variation includes one that allows binding but which prevents activation by the ligand. Another useful variation includes variation in the transmembrane G-protein-binding/signal transduction domain that provides for reduced 30 or increased binding by the appropriate G-protein or for binding by a different G-protein than the one with which the receptor is normally associated. Another useful variation

provides a fusion protein in which one or more domains is operationally fused to one or more domains from another G-protein coupled receptor.

Amino acids that are essential for function can be identified by methods known in the art, such as site-directed mutagenesis or alanine-scanning mutagenesis
5 (Cunningham *et al.*, *Science* 244:1081-1085 (1989)). The latter procedure introduces single alanine mutations at every residue in the molecule. The resulting mutant molecules are then tested for biological activity such as receptor binding or *in vitro*, or *in*
10 *vitro* proliferative activity. Sites that are critical for ligand-receptor binding can also be determined by structural analysis such as crystallization, nuclear magnetic resonance or photoaffinity labeling (Smith *et al.*, *J. Mol. Biol.* 224:899-904 (1992); de Vos *et al.*
15 *Science* 255:306-312 (1992)).

The invention also includes polypeptide fragments of the 2871 receptor protein.
Fragments can be derived from the amino acid sequence shown in SEQ ID NO 1.
However, the invention also encompasses fragments of the variants of the 2871 receptor
15 protein as described herein.

As used herein, a fragment comprises at least 12 contiguous amino acids.
Fragments retain one or more of the biological activities of the protein, for example the ability to bind to a G-protein or ligand, as well as fragments that can be used as an immunogen to generate receptor antibodies.

20 Biologically active fragments (peptides which are, for example, 12, 15, 20, 30, 35, 36, 37, 38, 39, 40, 50, 100 or more amino acids in length) can comprise a domain or motif, e.g., an extracellular domain, one or more transmembrane domains, G-protein binding domain, or GPCR signature.

Possible fragments include, but are not limited to: 1) soluble peptides comprising
25 the entire extracellular domain from about amino acid 1 to about amino acid 42 of SEQ ID NO 1; 2) peptides comprising the intracellular domain from about amino acid 319 to about amino acid 359 of SEQ ID NO 1; 3) peptides comprising the entire transmembrane domain from about amino acid 43 to amino acid 318.

30 The invention also provides fragments with immunogenic properties. These contain an epitope-bearing portion of the 2871 receptor protein and variants. These epitope-bearing peptides are useful to raise antibodies that bind specifically to a receptor

polypeptide or region or fragment. These peptides can contain at least 12, at least 14, or between at least about 15 to about 30 amino acids.

Non-limiting examples of antigenic polypeptides that can be used to generate antibodies include peptides derived from the extracellular domain.

5 The epitope-bearing receptor and polypeptides may be produced by any conventional means (Houghten, R.A., *Proc. Natl. Acad. Sci. USA* 82:5131-5135 (1985)). Simultaneous multiple peptide synthesis is described in U.S. Patent No. 4,631,211.

10 Fragments can be discrete (not fused to other amino acids or polypeptides) or can be within a larger polypeptide. Further, several fragments can be comprised within a single larger polypeptide. In one embodiment a fragment designed for expression in a host can have heterologous pre- and pro-polypeptide regions fused to the amino terminus of the receptor fragment and an additional region fused to the carboxyl terminus of the fragment.

15 The invention thus provides chimeric or fusion proteins. These comprise a receptor protein operatively linked to a heterologous protein having an amino acid sequence not substantially homologous to the receptor protein. "Operatively linked" indicates that the receptor protein and the heterologous protein are fused in-frame. The heterologous protein can be fused to the N-terminus or C-terminus of the receptor protein.

20 In one embodiment the fusion protein does not affect receptor function per se. For example, the fusion protein can be a GST-fusion protein in which the receptor sequences are fused to the C-terminus of the GST sequences. Other types of fusion proteins include, but are not limited to, enzymatic fusion proteins, for example beta-galactosidase fusions, yeast two-hybrid GAL fusions, poly-His fusions and Ig fusions.

25 Such fusion proteins, particularly poly-His fusions, can facilitate the purification of recombinant receptor protein. In certain host cells (e.g., mammalian host cells), expression and/or secretion of a protein can be increased by using a heterologous signal sequence. Therefore, in another embodiment, the fusion protein contains a heterologous signal sequence at its N-terminus.

30 EP-A-O 464 533 discloses fusion proteins comprising various portions of immunoglobulin constant regions. The Fc is useful in therapy and diagnosis and thus

results, for example, in improved pharmacokinetic properties (EP-A 0232 262). In drug discovery, for example, human proteins have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists. Bennett *et al.*, *Journal of Molecular Recognition* 8:52-58 (1995) and Johanson *et al.*, *The Journal of Biological Chemistry* 270,16:9459-9471 (1995). Thus, this invention also encompasses soluble fusion proteins containing a receptor polypeptide and various portions of the constant regions of heavy or light chains of immunoglobulins of various subclass (IgG, IgM, IgA, IgE). Preferred as immunoglobulin is the constant part of the heavy chain of human IgG, particularly IgG1, where fusion takes place at the hinge region. For some uses it is desirable to remove the Fc after the fusion protein has been used for its intended purpose, for example when the fusion protein is to be used as antigen for immunizations. In a particular embodiment, the Fc part can be removed in a simple way by a cleavage sequence which is also incorporated and can be cleaved with factor Xa.

A chimeric or fusion protein can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different protein sequences are ligated together in-frame in accordance with conventional techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see Ausubel *et al.*, *Current Protocols in Molecular Biology*, 1992). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST protein). A receptor protein-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the receptor protein.

Another form of fusion protein is one that directly affects receptor functions. Accordingly, a receptor polypeptide encompassed by the present invention in which one or more of the receptor domains has been replaced by homologous domains from another G-protein coupled receptor or other type of receptor. Accordingly, various permutations are possible. The extracellular domain, or subregion thereof, (for example, ligand-binding) may be replaced with the domain or subregion from another ligand-

binding receptor protein. Alternatively, transmembrane regions, for example, G-protein-binding/signal transduction, may be replaced. Finally, the intracellular domain may be replaced. Thus, chimeric receptors can be formed in which one or more of the native domains or subregions has been replaced.

5 The isolated receptor protein can be purified from cells that naturally express it, such as from prostate, placenta, uterus and as shown in Figure 5, purified from cells that have been altered to express it (recombinant), or synthesized using known protein synthesis methods.

In one embodiment, the protein is produced by recombinant DNA techniques.
10 For example, a nucleic acid molecule encoding the receptor polypeptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques.

Polypeptides often contain amino acids other than the 20 amino acids commonly
15 referred to as the 20 naturally-occurring amino acids. Further, many amino acids, including the terminal amino acids, may be modified by natural processes, such as processing and other post-translational modifications, or by chemical modification techniques well known in the art. Common modifications that occur naturally in polypeptides are described in basic texts, detailed monographs, and the research
20 literature, and they are well known to those of skill in the art.

Accordingly, the polypeptides also encompass derivatives or analogs in which a substituted amino acid residue is not one encoded by the genetic code, in which a substituent group is included, in which the mature polypeptide is fused with another compound, such as a compound to increase the half-life of the polypeptide (for example,
25 polyethylene glycol), or in which the additional amino acids are fused to the mature polypeptide, such as a leader or secretory sequence or a sequence for purification of the mature polypeptide or a pro-protein sequence.

Known modifications include, but are not limited to, acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphatidylinositol,

-20-

cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent crosslinks, formation of cystine, formation of pyroglutamate, formylation, gamma carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, proteolytic processing, phosphorylation, 5 prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.

Such modifications are well-known to those of skill in the art and have been described in great detail in the scientific literature. Several particularly common modifications, glycosylation, lipid attachment, sulfation, gamma-carboxylation of 10 glutamic acid residues, hydroxylation and ADP-ribosylation, for instance, are described in most basic texts, such as *Proteins - Structure and Molecular Properties*, 2nd Ed., T.E. Creighton, W. H. Freeman and Company, New York (1993). Many detailed reviews are available on this subject, such as by Wold, F., *Posttranslational Covalent Modification of Proteins*, B.C. Johnson, Ed., Academic Press, New York 1-12 (1983); Seifter *et al.*, 15 *Meth. Enzymol.* 182: 626-646 (1990) and Rattan *et al.*, *Ann. N.Y. Acad. Sci.* 663:48-62 (1992).

As is also well known, polypeptides are not always entirely linear. For instance, polypeptides may be branched as a result of ubiquitination, and they may be circular, with or without branching, generally as a result of post-translation events, including 20 natural processing event and events brought about by human manipulation which do not occur naturally. Circular, branched and branched circular polypeptides may be synthesized by non-translational natural processes and by synthetic methods.

Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. Blockage of 25 the amino or carboxyl group in a polypeptide, or both, by a covalent modification, is common in naturally-occurring and synthetic polypeptides. For instance, the amino terminal residue of polypeptides made in *E. coli*, prior to proteolytic processing, almost invariably will be N-formylmethionine.

The modifications can be a function of how the protein is made. For 30 recombinant polypeptides, for example, the modifications will be determined by the host cell posttranslational modification capacity and the modification signals in the

polypeptide amino acid sequence. Accordingly, when glycosylation is desired, a polypeptide should be expressed in a glycosylating host, generally a eukaryotic cell. Insect cells often carry out the same posttranslational glycosylations as mammalian cells and, for this reason, insect cell expression systems have been developed to efficiently 5 express mammalian proteins having native patterns of glycosylation. Similar considerations apply to other modifications.

The same type of modification may be present in the same or varying degree at several sites in a given polypeptide. Also, a given polypeptide may contain more than one type of modification.

10

Polypeptide uses

The receptor polypeptides are useful for producing antibodies specific for the 2871 receptor protein, regions, or fragments.

15

The receptor polypeptides are also useful in drug screening assays, in cell-based or cell-free systems. Cell-based systems can be native i.e., cells that normally express the receptor protein, as a biopsy or expanded in cell culture, for example, in the cells disclosed herein. In one embodiment, however, cell-based assays involve recombinant host cells expressing the receptor protein.

20

The polypeptides can be used to identify compounds that modulate receptor activity. Both 2871 protein and appropriate variants and fragments can be used in high throughput screens to assay candidate compounds for the ability to bind to the receptor. These compounds can be further screened against a functional receptor to determine the effect of the compound on the receptor activity. Compounds can be identified that activate (agonist) or inactivate (antagonist) the receptor to a desired degree.

25

The receptor polypeptides can be used to screen a compound for the ability to stimulate or inhibit interaction between the receptor protein and a target molecule that normally interacts with the receptor protein. The target can be ligand or a component of the signal pathway with which the receptor protein normally interacts (for example, a G-protein or other interactor involved in cAMP or phosphatidylinositol turnover and/or 30 adenylate cyclase, or phospholipase C activation). The assay includes the steps of combining the receptor protein with a candidate compound under conditions that allow

the receptor protein or fragment to interact with the target molecule, and to detect the formation of a complex between the protein and the target or to detect the biochemical consequence of the interaction with the receptor protein and the target, such as any of the associated effects of signal transduction such as G-protein phosphorylation, cyclic AMP 5 or phosphatidylinositol turnover, and adenylate cyclase or phospholipase C activation.

Candidate compounds include, for example, 1) peptides such as soluble peptides, including Ig-tailed fusion peptides and members of random peptide libraries (see, e.g., Lam *et al.*, *Nature* 354:82-84 (1991); Houghten *et al.*, *Nature* 354:84-86 (1991)) and combinatorial chemistry-derived molecular libraries made of D- and/or L- configuration 10 amino acids; 2) phosphopeptides (e.g., members of random and partially degenerate, directed phosphopeptide libraries, see, e.g., Songyang *et al.*, *Cell* 72:767-778 (1993)); 3) antibodies (e.g., polyclonal, monoclonal, humanized, anti-idiotypic, chimeric, and single 15 chain antibodies as well as Fab, F(ab')₂, Fab expression library fragments, and epitope-binding fragments of antibodies); and 4) small organic and inorganic molecules (e.g., molecules obtained from combinatorial and natural product libraries).

One candidate compound is a soluble full-length receptor or fragment that competes for ligand binding. Other candidate compounds include mutant receptors or appropriate fragments containing mutations that affect receptor function and thus compete for ligand. Accordingly, a fragment that competes for ligand, for example with 20 a higher affinity, or a fragment that binds ligand but does not allow release, is encompassed by the invention.

The invention provides other end points to identify compounds that modulate (stimulate or inhibit) receptor activity. The assays typically involve an assay of events in the signal transduction pathway that indicate receptor activity. Thus, the expression of 25 genes that are up- or down-regulated in response to the receptor protein dependent signal cascade can be assayed. In one embodiment, the regulatory region of such genes can be operably linked to a marker that is easily detectable, such as luciferase. Alternatively, phosphorylation of the receptor protein, or a receptor protein target, could also be measured.

Binding and/or activating compounds can also be screened by using chimeric receptor proteins in which the extracellular domain, the transmembrane domain or

-23-

subregions, and the intracellular domain can be replaced by heterologous domains. For example, a G-protein-binding region can be used that interacts with a different G-protein than that which is recognized by the native receptor. Accordingly, a different set of signal transduction components is available as an end-point assay for activation.

5 Alternatively, the transmembrane portion can be replaced with the transmembrane portion specific to a host cell that is different from the host cell from which the extracellular domain and/or the G-protein-binding region are derived. This allows for assays to be performed in other than the specific host cell from which the receptor is derived. Alternatively, the extracellular domain could be replaced by a domain binding

10 a different ligand, thus, enabling an assay for test compounds that interact with the heterologous extracellular domain but still cause signal transduction. Finally, activation can be detected by a reporter gene containing an easily detectable coding region operably linked to a transcriptional regulatory sequence that is part of the native signal transduction pathway.

15 The receptor polypeptides are also useful in competition binding assays in methods designed to discover compounds that interact with the receptor. Thus, a compound is exposed to a receptor polypeptide under conditions that allow the compound to bind or to otherwise interact with the polypeptide. Soluble receptor polypeptide is also added to the mixture. If the test compound interacts with the soluble receptor polypeptide, it decreases the amount of complex formed or activity from the receptor target. This type of assay is particularly useful in cases in which compounds are sought that interact with specific regions of the receptor. Thus, the soluble polypeptide that competes with the target receptor region is designed to contain peptide sequences corresponding to the region of interest.

20

25 To perform cell free drug screening assays, it is desirable to immobilize either the receptor protein, or fragment, or its target molecule to facilitate separation of complexes from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay.

30 Techniques for immobilizing proteins on matrices can be used in the drug screening assays. In one embodiment, a fusion protein can be provided which adds a domain that allows the protein to be bound to a matrix. For example, glutathione-S-

transferase/flh385 fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or glutathione derivatized microtitre plates, which are then combined with the cell lysates (e.g., ³⁵S-labeled) and the candidate compound, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads are washed to remove any unbound label, and the matrix immobilized and radiolabel determined directly, or in the supernatant after the complexes are dissociated. Alternatively, the complexes can be dissociated from the matrix, separated by SDS-PAGE, and the level of receptor-binding protein found in the bead fraction quantitated from the gel using standard electrophoretic techniques. For example, either the polypeptide or its target molecule can be immobilized utilizing conjugation of biotin and streptavidin using techniques well known in the art. Alternatively, antibodies reactive with the protein but which do not interfere with binding of the protein to its target molecule can be derivatized to the wells of the plate, and the protein trapped in the wells by antibody conjugation. Preparations of a receptor-binding protein and a candidate compound are incubated in the receptor protein-presenting wells and the amount of complex trapped in the well can be quantitated. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the receptor protein target molecule, or which are reactive with receptor protein and compete with the target molecule; as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the target molecule.

Modulators of receptor protein activity identified according to these drug screening assays can be used to treat a subject with a disorder mediated by the receptor pathway, including, but not limited to, those disclosed herein. These methods of treatment include the steps of administering the modulators of protein activity in a pharmaceutical composition as described herein, to a subject in need of such treatment.

The receptor polypeptides also are useful to provide a target for diagnosing a disease or predisposition to disease mediated by the receptor protein, such as those disclosed herein. Accordingly, methods are provided for detecting the presence, or levels of, the receptor protein in a cell, tissue, or organism. The method involves

contacting a biological sample with a compound capable of interacting with the receptor protein such that the interaction can be detected.

One agent for detecting receptor protein is an antibody capable of selectively binding to receptor protein. A biological sample includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject.

The receptor protein also provides a target for diagnosing active disease, or predisposition to disease, in a patient having a variant receptor protein. Thus, receptor protein can be isolated from a biological sample, assayed for the presence of a genetic mutation that results in aberrant receptor protein. This includes amino acid substitution, deletion, insertion, rearrangement, (as the result of aberrant splicing events), and inappropriate post-translational modification. Analytic methods include altered electrophoretic mobility, altered tryptic peptide digest, altered receptor activity in cell-based or cell-free assay, alteration in ligand or antibody-binding pattern, altered isoelectric point, direct amino acid sequencing, and any other of the known assay techniques useful for detecting mutations in a protein.

In vitro techniques for detection of receptor protein include enzyme linked immunosorbent assays (ELISAs), Western blots, immunoprecipitations and immunofluorescence. Alternatively, the protein can be detected *in vivo* in a subject by introducing into the subject a labeled anti-receptor antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. Particularly useful are methods which detect the allelic variant of a receptor protein expressed in a subject and methods which detect fragments of a receptor protein in a sample.

The receptor polypeptides are also useful in pharmacogenomic analysis. Accordingly, genetic polymorphism may lead to allelic protein variants of the receptor protein in which one or more of the receptor functions in one population is different from those in another population. The polypeptides thus allow a target to ascertain a genetic predisposition that can affect treatment modality. Thus, in a ligand-based treatment, polymorphism may give rise to extracellular domains that are more or less active in ligand binding, and receptor activation. Accordingly, ligand dosage would necessarily be modified to maximize the therapeutic effect within a given population.

-26-

containing a polymorphism. As an alternative to genotyping, specific polymorphic polypeptides could be identified.

The receptor polypeptides are also useful for monitoring therapeutic effects during clinical trials and other treatment. Thus, the therapeutic effectiveness of an agent 5 that is designed to increase or decrease gene expression, protein levels or receptor activity can be monitored over the course of treatment using the receptor polypeptides as an end-point target.

The receptor polypeptides are also useful for treating a receptor-associated disorder, such as those disclosed herein. Accordingly, methods for treatment include the 10 use of soluble receptor or fragments of the receptor protein that compete for ligand binding. These receptors or fragments can have a higher affinity for the ligand so as to provide effective competition.

Antibodies

15 The invention also provides antibodies that selectively bind to the 2871 receptor protein and its variants and fragments. An antibody is considered to selectively bind, even if it also binds to other proteins that are not substantially homologous with the receptor protein. These other proteins share homology with a fragment or domain of the receptor protein. This conservation in specific regions gives rise to antibodies that bind 20 to both proteins by virtue of the homologous sequence. In this case, it would be understood that antibody binding to the receptor protein is still selective.

Antibodies can be polyclonal or monoclonal. An intact antibody, or a fragment thereof (e.g. Fab or F(ab')₂) can be used.

25 Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, α -galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; 30 examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl

chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include ¹²⁵I, ¹³¹I, ³⁵S or ³H.

To generate antibodies, an isolated receptor polypeptide is used as an immunogen to generate antibodies using standard techniques for polyclonal and monoclonal antibody preparation. Either the full-length protein or antigenic peptide fragment can be used. An antigenic fragment will typically comprise at least 12 contiguous amino acid residues. The antigenic peptide can comprise, however, at least 14 amino acid residues, at least 15 amino acid residues, at least 20 amino acid residues, or at least 30 amino acid residues. In one embodiment, fragments correspond to regions that are located on the surface of the protein, e.g., hydrophilic regions.

An appropriate immunogenic preparation can be derived from native, recombinantly expressed, protein or chemically synthesized peptides.

15 Antibody Uses

The antibodies can be used to isolate a receptor protein by standard techniques, such as affinity chromatography or immunoprecipitation. The antibodies can facilitate the purification of the natural receptor protein from cells and recombinantly produced receptor protein expressed in host cells.

20 The antibodies are useful to detect the presence of receptor protein in cells or tissues to determine the pattern of expression of the receptor among various tissues in an organism and over the course of normal development.

The antibodies can be used to detect receptor protein *in situ*, *in vitro*, or in a cell lysate or supernatant in order to evaluate the abundance and pattern of expression.

25 The antibodies can be used to assess abnormal tissue distribution or abnormal expression during development.

Antibody detection of circulating fragments of the full length receptor protein can be used to identify receptor turnover.

Further, the antibodies can be used to assess receptor expression in disease states such as in active stages of the disease or in an individual with a predisposition toward disease related to receptor function. When a disorder is caused by an inappropriate

-28-

tissue distribution, developmental expression, or level of expression of the receptor protein, the antibody can be prepared against the normal receptor protein. If a disorder is characterized by a specific mutation in the receptor protein, antibodies specific for this mutant protein can be used to assay for the presence of the specific mutant receptor
5 protein.

The antibodies can also be used to assess normal and aberrant subcellular localization of cells in the various tissues in an organism. Antibodies can be developed against the whole receptor or portions of the receptor, for example, portions of the extracellular domain.

10 The diagnostic uses can be applied, not only in genetic testing, but also in monitoring a treatment modality. Accordingly, where treatment is ultimately aimed at correcting receptor expression level or the presence of aberrant receptors and aberrant tissue distribution or developmental expression, antibodies directed against the receptor or relevant fragments can be used to monitor therapeutic efficacy.

15 Additionally, antibodies are useful in pharmacogenomic analysis. Thus, antibodies prepared against polymorphic receptor proteins can be used to identify individuals that require modified treatment modalities.

20 The antibodies are also useful as diagnostic tools as an immunological marker for aberrant receptor protein analyzed by electrophoretic mobility, isoelectric point, tryptic peptide digest, and other physical assays known to those in the art.

The antibodies are also useful for tissue typing. Thus, where a specific receptor protein has been correlated with expression in a specific tissue, antibodies that are specific for this receptor protein can be used to identify a tissue type.

25 The antibodies are also useful in forensic identification. Accordingly, where an individual has been correlated with a specific genetic polymorphism resulting in a specific polymorphic protein, an antibody specific for the polymorphic protein can be used as an aid in identification.

The antibodies are also useful for inhibiting receptor function, for example, blocking ligand binding.

30 These uses can also be applied in a therapeutic context in which treatment involves inhibiting receptor function. An antibody can be used, for example, to block

ligand binding. Antibodies can be prepared against specific fragments containing sites required for function or against intact receptor associated with a cell. The invention also encompasses kits for using antibodies to detect the presence of a receptor protein in a biological sample. The kit can comprise antibodies such as a labeled or labelable 5 antibody and a compound or agent for detecting receptor protein in a biological sample; means for determining the amount of receptor protein in the sample; and means for comparing the amount of receptor protein in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect receptor protein.

10

Polynucleotides

The nucleotide sequence in SEQ ID NO 2 was obtained by sequencing the deposited human full length cDNA. Accordingly, the sequence of the deposited clone is controlling as to any discrepancies between the two and any reference to the sequence of 15 SEQ ID NO 2 includes reference to the sequence of the deposited cDNA.

The specifically disclosed cDNA comprises the coding region, 5' and 3' untranslated sequences (SEQ ID NO 2). In one embodiment, the receptor nucleic acid comprises only the coding region.

The human 2871 receptor cDNA is approximately 1489 nucleotides in length 20 and encodes a full length protein that is approximately 359 amino acid residues in length. The nucleic acid is expressed in prostate, uterus, and placenta. Structural analysis of the amino acid sequence of SEQ ID NO 1 is provided in Figure 3, a hydropathy plot. The figure shows the putative structure of the seven transmembrane domains, the extracellular domain and the intracellular domain. As used herein, the term 25 "transmembrane domain" refers to a structural amino acid motif which includes a hydrophobic helix that spans the plasma membrane.

The invention provides isolated polynucleotides encoding a 2871 receptor protein. The term "2871 polynucleotide" or "2871 nucleic acid" refers to the sequence shown in SEQ ID NO 2 or in the deposited cDNA. The term "receptor polynucleotide" 30 or "receptor nucleic acid" further includes variants and fragments of the 2871 polynucleotide.

-30-

An "isolated" receptor nucleic acid is one that is separated from other nucleic acid present in the natural source of the receptor nucleic acid. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism
5 from which the nucleic acid is derived. However, there can be some flanking nucleotide sequences, for example up to about 5KB. The important point is that the nucleic acid is isolated from flanking sequences such that it can be subjected to the specific manipulations described herein such as recombinant expression, preparation of probes and primers, and other uses specific to the receptor nucleic acid sequences.

10 Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or chemical precursors or other chemicals when chemically synthesized. However, the nucleic acid molecule can be fused to other coding or regulatory sequences and still be considered isolated.

15 For example, recombinant DNA molecules contained in a vector are considered isolated. Further examples of isolated DNA molecules include recombinant DNA molecules maintained in heterologous host cells or purified (partially or substantially) DNA molecules in solution. Isolated RNA molecules include *in vivo* or *in vitro* RNA transcripts of the isolated DNA molecules of the present invention. Isolated nucleic acid
20 molecules according to the present invention further include such molecules produced synthetically.

The receptor polynucleotides can encode the mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids interior to the mature polypeptide (when the mature form has more than one polypeptide chain, for instance).
25 Such sequences may play a role in processing of a protein from precursor to a mature form, facilitate protein trafficking, prolong or shorten protein half-life or facilitate manipulation of a protein for assay or production, among other things. As generally is the case *in situ*, the additional amino acids may be processed away from the mature protein by cellular enzymes.

30 The receptor polynucleotides include, but are not limited to, the sequence encoding the mature polypeptide alone, the sequence encoding the mature polypeptide

-31-

and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature polypeptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5' and 3' sequences such as transcribed but non-translated 5 sequences that play a role in transcription, mRNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the polynucleotide may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.

Receptor polynucleotides can be in the form of RNA, such as mRNA, or in the 10 form DNA, including cDNA and genomic DNA obtained by cloning or produced by chemical synthetic techniques or by a combination thereof. The nucleic acid, especially DNA, can be double-stranded or single-stranded. Single-stranded nucleic acid can be the coding strand (sense strand) or the non-coding strand (anti-sense strand).

One receptor nucleic acid comprises the nucleotide sequence shown in SEQ ID 15 NO 2, corresponding to human prostate cDNA.

The invention further provides variant receptor polynucleotides, and fragments thereof, that differ from the nucleotide sequence shown in SEQ ID NO 2 due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence shown in SEQ ID NO 2.

20 The invention also provides receptor nucleic acid molecules encoding the variant polypeptides described herein. Such polynucleotides may be naturally occurring, such as allelic variants (same locus), homologs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis 25 techniques, including those applied to polynucleotides, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, inversions and insertions.

Variation can occur in either or both the coding and non-coding regions. The variations can produce both conservative and non-conservative amino acid substitutions.

30 Orthologs, homologs, and allelic variants can be identified using methods well known in the art. These variants comprise a nucleotide sequence encoding a receptor

-32-

that is at least about 55%, typically at least about 70-75%, more typically at least about 80-85%, and most typically at least about 90-95% or more homologous to the nucleotide sequence shown in SEQ ID NO 2 or a fragment of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under stringent conditions,
5 to the nucleotide sequence shown in SEQ ID NO 2 or a fragment of the sequence. It is understood that stringent hybridization does not indicate substantial homology where it is due to general homology, such as poly A sequences, or sequences common to all or most proteins, all GPCRs, or all family I GPCRs.

As used herein, the term "hybridizes under stringent conditions" is intended to
10 describe conditions for hybridization and washing under which nucleotide sequences encoding a receptor at least 55% homologous to each other typically remain hybridized to each other. The conditions can be such that sequences at least about 65%, at least about 70%, or at least about 75% or more homologous to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art
15 and can be found in *Current Protocols in Molecular Biology*, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. One example of stringent hybridization conditions are hybridization in 6X sodium chloride/sodium citrate (SSC) at about 45°C, followed by one or more washes in 0.2 X SSC, 0.1% SDS at 50-65°C. In one embodiment, an isolated receptor nucleic acid molecule that hybridizes under stringent conditions to the sequence of SEQ
20 ID NO 2 corresponds to a naturally-occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

Furthermore, the invention provides polynucleotides that comprise a fragment of the full length receptor polynucleotides. The fragment can be single or double stranded
25 and can comprise DNA or RNA. The fragment can be derived from either the coding or the non-coding sequence.

In one embodiment, an isolated receptor nucleic acid is at least 36 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO 2. In other embodiments, the nucleic acid is at
30 least 40, 50, 100, 250 or 500 nucleotides in length.

However, it is understood that a receptor fragment includes any nucleic acid

sequence that does not include the entire gene.

Receptor nucleic acid fragments include nucleic acid molecules encoding a polypeptide comprising the extracellular domain including amino acid residues from 1 to about 42, a polypeptide comprising the transmembrane domain (amino acid residues from about 43 to about 318), a polypeptide comprising the intracellular domain (amino acid residues from about 318 to about 359), and a polypeptide encoding the G-protein receptor signature (DRY or surrounding amino acid residues from about 127 to about 143). Where the location of the domains have been predicted by computer analysis, one of ordinary skill would appreciate that the amino acid residues constituting these domains can vary depending on the criteria used to define the domains.

The invention also provides receptor nucleic acid fragments that encode epitope bearing regions of the receptor proteins described herein.

The isolated receptor polynucleotide sequences, and especially fragments, are useful as DNA probes and primers.

For example, the coding region of a receptor gene can be isolated using the known nucleotide sequence to synthesize an oligonucleotide probe. A labeled probe can then be used to screen a cDNA library, genomic DNA library, or mRNA to isolate nucleic acid corresponding to the coding region. Further, primers can be used in PCR reactions to clone specific regions of receptor genes.

A probe/primer typically comprises substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, typically about 25, more typically about 40, 50 or 75 consecutive nucleotides of SEQ ID NO 2 sense or anti-sense strand or other receptor polynucleotides. A probe further comprises a label, e.g., radioisotope, fluorescent compound, enzyme, or enzyme co-factor.

Polynucleotide Uses

The receptor polynucleotides are useful as a hybridization probe for cDNA and genomic DNA to isolate a full-length cDNA and genomic clones encoding the polypeptide described in SEQ ID NO 1 and to isolate cDNA and genomic clones that correspond to variants producing the same polypeptide shown in SEQ ID NO 1 or the

other variants described herein. Variants can be isolated from the same tissue and organism from which the polypeptide shown in SEQ ID NO 1 was isolated, different tissues from the same organism, or from different organisms. This method is useful for isolating genes and cDNA that are developmentally controlled and therefore may be
5 expressed in the same tissue at different points in the development of an organism.

The probe can correspond to any sequence along the entire length of the gene encoding the receptor. Accordingly, it could be derived from 5' noncoding regions, the coding region, and 3' noncoding regions.

The nucleic acid probe can be, for example, the full-length cDNA of SEQ ID NO
10 1, or a fragment thereof, such as an oligonucleotide of at least 12, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to mRNA or DNA.

Fragments of the polynucleotides described herein are also useful to synthesize larger fragments or full-length polynucleotides described herein. For example, a
15 fragment can be hybridized to any portion of an mRNA and a larger or full-length cDNA can be produced.

The fragments are also useful to synthesize antisense molecules of desired length and sequence.

The receptor polynucleotides are also useful as primers for PCR to amplify any
20 given region of a receptor polynucleotide.

The receptor polynucleotides are also useful for constructing recombinant vectors. Such vectors include expression vectors that express a portion of, or all of, the receptor polypeptides. Vectors also include insertion vectors, used to integrate into another polynucleotide sequence, such as into the cellular genome, to alter *in situ* expression of receptor genes and gene products. For example, an endogenous receptor
25 coding sequence can be replaced via homologous recombination with all or part of the coding region containing one or more specifically introduced mutations.

The receptor polynucleotides are also useful as probes for determining the chromosomal positions of the receptor polynucleotides by means of *in situ* hybridization
30 methods.

The receptor polynucleotide probes are also useful to determine patterns of the

presence of the gene encoding the receptors and their variants with respect to tissue distribution, for example whether gene duplication has occurred and whether the duplication occurs in all or only a subset of tissues. The genes can be naturally occurring or can have been introduced into a cell, tissue, or organism exogenously. The receptor 5 polynucleotides are also useful for designing ribozymes corresponding to all, or a part, of the mRNA produced from genes encoding the polynucleotides described herein.

The receptor polynucleotides are also useful for constructing host cells expressing a part, or all, of the receptor polynucleotides and polypeptides.

10 The receptor polynucleotides are also useful for constructing transgenic animals expressing all, or a part, of the receptor polynucleotides and polypeptides.

The receptor polynucleotides are also useful for making vectors that express part, or all, of the receptor polypeptides.

15 The receptor polynucleotides are also useful as hybridization probes for determining the level of receptor nucleic acid expression. Accordingly, the probes can be used to detect the presence of, or to determine levels of, receptor nucleic acid in cells, tissues, and in organisms. The nucleic acid whose level is determined can be DNA or RNA. Accordingly, probes corresponding to the polypeptides described herein can be used to assess gene copy number in a given cell, tissue, or organism. This is particularly relevant in cases in which there has been an amplification of the receptor genes.

20 Alternatively, the probe can be used in an *in situ* hybridization context to assess the position of extra copies of the receptor genes, as on extrachromosomal elements or as integrated into chromosomes in which the receptor gene is not normally found, for example as a homogenously staining region.

25 These uses are relevant for diagnosis of disorders involving an increase or decrease in receptor expression relative to normal results.

In vitro techniques for detection of mRNA include Northern hybridizations and *in situ* hybridizations. *In vitro* techniques for detecting DNA includes Southern hybridizations and *in situ* hybridization.

30 Probes can be used as a part of a diagnostic test kit for identifying cells or tissues that express a receptor protein, such as by measuring a level of a receptor-encoding nucleic acid in a sample of cells from a subject e.g., mRNA or genomic DNA, or

determining if a receptor gene has been mutated.

Nucleic acid expression assays are useful for drug screening to identify compounds that modulate receptor nucleic acid expression.

The invention thus provides a method for identifying a compound that can be used to treat a disorder associated with nucleic acid expression of the receptor gene, for example, those disclosed herein. The method typically includes assaying the ability of the compound to modulate the expression of the receptor nucleic acid and thus identifying a compound that can be used to treat a disorder characterized by undesired receptor nucleic acid expression.

10 The assays can be performed in cell-based and cell-free systems. Cell-based assays include cells naturally expressing the receptor nucleic acid, such as those disclosed herein, or recombinant cells genetically engineered to express specific nucleic acid sequences.

15 Alternatively, candidate compounds can be assayed *in vivo* in patients or in transgenic animals.

10 The assay for receptor nucleic acid expression can involve direct assay of nucleic acid levels, such as mRNA levels, or on collateral compounds involved in the signal pathway (such as cyclic AMP or phosphatidylinositol turnover). Further, the expression of genes that are up- or down-regulated in response to the receptor protein signal 20 pathway can also be assayed. In this embodiment the regulatory regions of these genes can be operably linked to a reporter gene such as luciferase. Thus, modulators of receptor gene expression can be identified in a method wherein a cell is contacted with a candidate compound and the expression of mRNA determined. The level of expression of receptor mRNA in the presence of the candidate compound is compared to the level 25 of expression of receptor mRNA in the absence of the candidate compound. The candidate compound can then be identified as a modulator of nucleic acid expression based on this comparison and be used, for example to treat a disorder characterized by aberrant nucleic acid expression. When expression of mRNA is statistically significantly greater in the presence of the candidate compound than in its absence, the candidate 30 compound is identified as a stimulator of nucleic acid expression. When nucleic acid expression is statistically significantly less in the presence of the candidate compound

than in its absence, the candidate compound is identified as an inhibitor of nucleic acid expression.

Accordingly, the invention provides methods of treatment, with the nucleic acid as a target, using a compound identified through drug screening as a gene modulator to 5 modulate receptor nucleic acid expression, such as in the disorders disclosed herein. Modulation includes both up-regulation (i.e. activation or agonization) or down-regulation (suppression or antagonization) of nucleic acid expression.

Alternatively, a modulator for receptor nucleic acid expression can be a small molecule or drug identified using the screening assays described herein as long as the 10 drug or small molecule inhibits the receptor nucleic acid expression.

The receptor polynucleotides are also useful for monitoring the effectiveness of modulating compounds on the expression or activity of the receptor gene in clinical trials or in a treatment regimen. Thus, the gene expression pattern can serve as a barometer for the continuing effectiveness of treatment with the compound, particularly with 15 compounds to which a patient can develop resistance. The gene expression pattern can also serve as a marker indicative of a physiological response of the affected cells to the compound. Accordingly, such monitoring would allow either increased administration of the compound or the administration of alternative compounds to which the patient has not become resistant. Similarly, if the level of nucleic acid expression falls below a 20 desirable level, administration of the compound could be commensurately decreased.

The receptor polynucleotides are also useful in diagnostic assays for qualitative changes in receptor nucleic acid, and particularly in qualitative changes that lead to pathology, such as in the disorders disclosed herein. The polynucleotides can be used to detect mutations in receptor genes and gene expression products such as mRNA. The 25 polynucleotides can be used as hybridization probes to detect naturally occurring genetic mutations in the receptor gene and thereby determining whether a subject with the mutation is at risk for a disorder caused by the mutation. Mutations include deletion, addition, or substitution of one or more nucleotides in the gene, chromosomal rearrangement such as inversion or transposition, modification of genomic DNA such as 30 aberrant methylation patterns or changes in gene copy number such as amplification. Detection of a mutated form of the receptor gene associated with a dysfunction provides

a diagnostic tool for an active disease or susceptibility to disease when the disease results from overexpression, underexpression, or altered expression of a receptor protein.

Individuals carrying mutations in the receptor gene can be detected at the nucleic acid level by a variety of techniques. Genomic DNA can be analysed directly or can be 5 amplified by using PCR prior to analysis. RNA or cDNA can be used in the same way.

In certain embodiments, detection of the mutation involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g. U.S. Patent Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran *et al.*, *Science* 241:1077-1080 (1988); and 10 Nakazawa *et al.*, *PNAS* 91:360-364 (1994)), the latter of which can be particularly useful for detecting point mutations in the gene (see Abravaya *et al.*, *Nucleic Acids Res.* 23:675-682 (1995)). This method can include the steps of collecting a sample of cells 15 from a patient, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a gene under conditions such that hybridization and amplification of the gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. Deletions and insertions can be detected by a change in size of the 20 amplified product compared to the normal genotype. Point mutations can be identified by hybridizing amplified DNA to normal RNA or antisense DNA sequences.

Alternatively, mutations in a receptor gene can be directly identified, for example, by alterations in restriction enzyme digestion patterns determined by gel electrophoresis.

Further, sequence-specific ribozymes (U.S. Patent No. 5,498,531) can be used to 25 score for the presence of specific mutations by development or loss of a ribozyme cleavage site.

Perfectly matched sequences can be distinguished from mismatched sequences by nuclease cleavage digestion assays or by differences in melting temperature.

Sequence changes at specific locations can also be assessed by nuclease 30 protection assays such as RNase and S1 protection or the chemical cleavage method.

Furthermore, sequence differences between a mutant receptor gene and a wild-

type gene can be determined by direct DNA sequencing. A variety of automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) *Biotechniques* 19:448), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen *et al.*, *Adv. Chromatogr.* 36:127-162 (1996); and Griffin *et al.*, *Appl. Biochem. Biotechnol.* 38:147-159 (1993)).

Other methods for detecting mutations in the gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA duplexes (Myers *et al.*, *Science* 230:1242 (1985)); Cotton *et al.*, *PNAS* 85:4397 (1988); Saleeba *et al.*, *Meth. Enzymol.* 217:286-295 (1992)), electrophoretic mobility of mutant and wild type nucleic acid is compared (Orita *et al.*, *PNAS* 86:2766 (1989); Cotton *et al.*, *Mutat. Res.* 285:125-144 (1993); and Hayashi *et al.*, *Genet. Anal. Tech. Appl.* 9:73-79 (1992)), and movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (Myers *et al.*, *Nature* 313:495 (1985)). Examples of other techniques for detecting point mutations include, selective oligonucleotide hybridization, selective amplification, and selective primer extension.

The receptor polynucleotides are also useful for testing an individual for a genotype that while not necessarily causing the disease, nevertheless affects the treatment modality. Thus, the polynucleotides can be used to study the relationship between an individual's genotype and the individual's response to a compound used for treatment (pharmacogenomic relationship). In the present case, for example, a mutation in the receptor gene that results in altered affinity for ligand could result in an excessive or decreased drug effect with standard concentrations of ligand that activates the receptor. Accordingly, the receptor polynucleotides described herein can be used to assess the mutation content of the receptor gene in an individual in order to select an appropriate compound or dosage regimen for treatment.

Thus polynucleotides displaying genetic variations that affect treatment provide a diagnostic target that can be used to tailor treatment in an individual. Accordingly, the production of recombinant cells and animals containing these polymorphisms allow effective clinical design of treatment compounds and dosage regimens.

The receptor polynucleotides are also useful for chromosome identification when

the sequence is identified with an individual chromosome and to a particular location on the chromosome. First, the DNA sequence is matched to the chromosome by *in situ* or other chromosome-specific hybridization. Sequences can also be correlated to specific chromosomes by preparing PCR primers that can be used for PCR screening of somatic cell hybrids containing individual chromosomes from the desired species. Only hybrids containing the chromosome containing the gene homologous to the primer will yield an amplified fragment. Sublocalization can be achieved using chromosomal fragments. Other strategies include prescreening with labeled flow-sorted chromosomes and preselection by hybridization to chromosome-specific libraries. Further mapping strategies include fluorescence *in situ* hybridization which allows hybridization with probes shorter than those traditionally used. Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on the chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.

The receptor polynucleotides can also be used to identify individuals from small biological samples. This can be done for example using restriction fragment-length polymorphism (RFLP) to identify an individual. Thus, the polynucleotides described herein are useful as DNA markers for RFLP (See U.S. Patent No. 5,272,057).

Furthermore, the receptor sequence can be used to provide an alternative technique which determines the actual DNA sequence of selected fragments in the genome of an individual. Thus, the receptor sequences described herein can be used to prepare two PCR primers from the 5N and 3N ends of the sequences. These primers can then be used to amplify DNA from an individual for subsequent sequencing.

Panels of corresponding DNA sequences from individuals prepared in this manner can provide unique individual identifications, as each individual will have a unique set of such DNA sequences. It is estimated that allelic variation in humans occurs with a frequency of about once per each 500 bases. Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the

noncoding regions. The receptor sequences can be used to obtain such identification sequences from individuals and from tissue. The sequences represent unique fragments of the human genome. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for
5 identification purposes.

If a panel of reagents from the sequences is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue
10 samples.

The receptor polynucleotides can also be used in forensic identification procedures. PCR technology can be used to amplify DNA sequences taken from very small biological samples, such as a single hair follicle, body fluids (e.g. blood, saliva, or semen). The amplified sequence can then be compared to a standard allowing
15 identification of the origin of the sample.

The receptor polynucleotides can thus be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another "identification marker" (i.e. another DNA sequence that is unique to a particular
20 individual). As described above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to the noncoding region are particularly useful since greater polymorphism occurs in the noncoding regions, making it easier to differentiate individuals using this technique. Fragments are at least 12 bases.

25 The receptor polynucleotides can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an *in situ* hybridization technique, to identify a specific tissue. This is useful in cases in which a forensic pathologist is presented with a tissue of unknown origin. Panels of receptor probes can be used to identify tissue by species and/or by organ type. In a similar
30 fashion, these primers and probes can be used to screen tissue culture for contamination (i.e. screen for the presence of a mixture of different types of cells in a culture).

Alternatively, the receptor polynucleotides can be used directly to block transcription or translation of receptor gene expression by means of antisense or ribozyme constructs. Thus, in a disorder characterized by abnormally high or undesirable receptor gene expression, nucleic acids can be directly used for treatment.

5 The receptor polynucleotides are thus useful as antisense constructs to control receptor gene expression in cells, tissues, and organisms. A DNA antisense polynucleotide is designed to be complementary to a region of the gene involved in transcription, preventing transcription and hence production of receptor protein. An antisense RNA or DNA polynucleotide would hybridize to the mRNA and thus block 10 translation of mRNA into receptor protein.

Examples of antisense molecules useful to inhibit nucleic acid expression include antisense molecules complementary to a fragment of the 5' untranslated region of SEQ ID NO 2 which also includes the start codon and antisense molecules which are complementary to a fragment of the 3' untranslated region of SEQ ID NO 2.

15 Alternatively, a class of antisense molecules can be used to inactivate mRNA in order to decrease expression of receptor nucleic acid. Accordingly, these molecules can treat a disorder characterized by abnormal or undesired receptor nucleic acid expression. This technique involves cleavage by means of ribozymes containing nucleotide sequences complementary to one or more regions in the mRNA that attenuate the ability 20 of the mRNA to be translated. Possible regions include coding regions and particularly coding regions corresponding to the catalytic and other functional activities of the receptor protein.

The receptor polynucleotides also provide vectors for gene therapy in patients containing cells that are aberrant in receptor gene expression. Thus, recombinant cells, 25 which include the patient's cells that have been engineered *ex vivo* and returned to the patient, are introduced into an individual where the cells produce the desired receptor protein to treat the individual.

The invention also encompasses kits for detecting the presence of a receptor nucleic acid in a biological sample. For example, the kit can comprise reagents such as a 30 labeled or labelable nucleic acid or agent capable of detecting receptor nucleic acid in a biological sample; means for determining the amount of receptor nucleic acid in the

sample; and means for comparing the amount of receptor nucleic acid in the sample with a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect receptor mRNA or DNA.

5 Vectors/host cells

The invention also provides vectors containing the receptor polynucleotides. The term "vector" refers to a vehicle, preferably a nucleic acid molecule, that can transport the receptor polynucleotides. When the vector is a nucleic acid molecule, the receptor polynucleotides are covalently linked to the vector nucleic acid. With this 10 aspect of the invention, the vector includes a plasmid, single or double stranded phage, a single or double stranded RNA or DNA viral vector, or artificial chromosome, such as a BAC, PAC, YAC, OR MAC.

A vector can be maintained in the host cell as an extrachromosomal element where it replicates and produces additional copies of the receptor polynucleotides. 15 Alternatively, the vector may integrate into the host cell genome and produce additional copies of the receptor polynucleotides when the host cell replicates.

The invention provides vectors for the maintenance (cloning vectors) or vectors for expression (expression vectors) of the receptor polynucleotides. The vectors can function in prokaryotic or eukaryotic cells or in both (shuttle vectors).

20 Expression vectors contain cis-acting regulatory regions that are operably linked in the vector to the receptor polynucleotides such that transcription of the polynucleotides is allowed in a host cell. The polynucleotides can be introduced into the host cell with a separate polynucleotide capable of affecting transcription. Thus, the second polynucleotide may provide a trans-acting factor interacting with the cis- 25 regulatory control region to allow transcription of the receptor polynucleotides from the vector. Alternatively, a trans-acting factor may be supplied by the host cell. Finally, a trans-acting factor can be produced from the vector itself.

It is understood, however, that in some embodiments, transcription and/or translation of the receptor polynucleotides can occur in a cell-free system.

30 The regulatory sequence to which the polynucleotides described herein can be operably linked include promoters for directing mRNA transcription. These include, but

are not limited to, the left promoter from bacteriophage λ , the lac, TRP, and TAC promoters from *E. coli*, the early and late promoters from SV40, the CMV immediate early promoter, the adenovirus early and late promoters, and retrovirus long-terminal repeats.

5 In addition to control regions that promote transcription, expression vectors may also include regions that modulate transcription, such as repressor binding sites and enhancers. Examples include the SV40 enhancer, the cytomegalovirus immediate early enhancer, polyoma enhancer, adenovirus enhancers, and retrovirus LTR enhancers.

10 In addition to containing sites for transcription initiation and control, expression vectors can also contain sequences necessary for transcription termination and, in the transcribed region a ribosome binding site for translation. Other regulatory control elements for expression include initiation and termination codons as well as polyadenylation signals. The person of ordinary skill in the art would be aware of the numerous regulatory sequences that are useful in expression vectors. Such regulatory 15 sequences are described, for example, in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

A variety of expression vectors can be used to express a receptor polynucleotide. Such vectors include chromosomal, episomal, and virus-derived vectors, for example 20 vectors derived from bacterial plasmids, from bacteriophage, from yeast episomes, from yeast chromosomal elements, including yeast artificial chromosomes, from viruses such as baculoviruses, papovaviruses such as SV40, Vaccinia viruses, adenoviruses, poxviruses, pseudorabies viruses, and retroviruses. Vectors may also be derived from combinations of these sources such as those derived from plasmid and bacteriophage 25 genetic elements, eg. cosmids and phagemids. Appropriate cloning and expression vectors for prokaryotic and eukaryotic hosts are described in Sambrook *et al.*, *Molecular Cloning: A Laboratory Manual*. 2nd. ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, (1989).

The regulatory sequence may provide constitutive expression in one or more host 30 cells (i.e. tissue specific) or may provide for inducible expression in one or more cell types such as by temperature, nutrient additive, or exogenous factor such as a hormone

or other ligand. A variety of vectors providing for constitutive and inducible expression in prokaryotic and eukaryotic hosts are well known to those of ordinary skill in the art.

The receptor polynucleotides can be inserted into the vector nucleic acid by well-known methodology. Generally, the DNA sequence that will ultimately be expressed is joined to an expression vector by cleaving the DNA sequence and the expression vector with one or more restriction enzymes and then ligating the fragments together. Procedures for restriction enzyme digestion and ligation are well known to those of ordinary skill in the art.

The vector containing the appropriate polynucleotide can be introduced into an appropriate host cell for propagation or expression using well-known techniques. Bacterial cells include, but are not limited to, *E. coli*, *Streptomyces*, and *Salmonella typhimurium*. Eukaryotic cells include, but are not limited to, yeast, insect cells such as *Drosophila*, animal cells such as COS and CHO cells, and plant cells.

As described herein, it may be desirable to express the polypeptide as a fusion protein. Accordingly, the invention provides fusion vectors that allow for the production of the receptor polypeptides. Fusion vectors can increase the expression of a recombinant protein, increase the solubility of the recombinant protein, and aid in the purification of the protein by acting for example as a ligand for affinity purification. A proteolytic cleavage site may be introduced at the junction of the fusion moiety so that the desired polypeptide can ultimately be separated from the fusion moiety. Proteolytic enzymes include, but are not limited to, factor Xa, thrombin, and enterokinase. Typical fusion expression vectors include pGEX (Smith *et al.* (1988) *Gene* 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRITS (Pharmacia, Piscataway, NJ) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein. Examples of suitable inducible non-fusion *E. coli* expression vectors include pTrc (Amann *et al.*, *Gene* 69:301-315 (1988)) and pET 11d (Studier *et al.*, *Gene Expression Technology: Methods in Enzymology* 185:60-89 (1990)).

Recombinant protein expression can be maximized in a host bacteria by providing a genetic background wherein the host cell has an impaired capacity to proteolytically cleave the recombinant protein. (Gottesman, S., *Gene Expression*

Technology: *Methods in Enzymology* 185, Academic Press, San Diego, California (1990) 119-128). Alternatively, the sequence of the polynucleotide of interest can be altered to provide preferential codon usage for a specific host cell, for example *E. coli*. (Wada *et al.*, *Nucleic Acids Res.* 20:2111-2118 (1992)).

5 The receptor polynucleotides can also be expressed by expression vectors that are operative in yeast. Examples of vectors for expression in yeast e.g., *S. cerevisiae* include pYEpSec1 (Baldari, *et al.*, *EMBO J.* 6:229-234 (1987)), pMFa (Kurjan *et al.*, *Cell* 30:933-943(1982)), pJRY88 (Schultz *et al.*, *Gene* 54:113-123 (1987)), and pYES2 (Invitrogen Corporation, San Diego, CA).

10 The receptor polynucleotides can also be expressed in insect cells using, for example, baculovirus expression vectors. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf-9 cells) include the pAc series (Smith *et al.*, *Mol. Cell Biol.* 3:2156-2165 (1983)) and the pVL series (Lucklow *et al.*, *Virology* 170:31-39 (1989)).

15 In certain embodiments of the invention, the polynucleotides described herein are expressed in mammalian cells using mammalian expression vectors. Examples of mammalian expression vectors include pCDM8 (Seed, B. *Nature* 329:840(1987)) and pMT2PC (Kaufman *et al.*, *EMBO J.* 6:187-195 (1987)).

20 The expression vectors listed herein are provided by way of example only of the well-known vectors available to those of ordinary skill in the art that would be useful to express the receptor polynucleotides. The person of ordinary skill in the art would be aware of other vectors suitable for maintenance propagation or expression of the polynucleotides described herein. These are found for example in Sambrook, J., Fritsh, E. F., and Maniatis, T. *Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring 25 Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.

30 The invention also encompasses vectors in which the nucleic acid sequences described herein are cloned into the vector in reverse orientation, but operably linked to a regulatory sequence that permits transcription of antisense RNA. Thus, an antisense transcript can be produced to all, or to a portion, of the polynucleotide sequences described herein, including both coding and non-coding regions. Expression of this

antisense RNA is subject to each of the parameters described above in relation to expression of the sense RNA (regulatory sequences, constitutive or inducible expression, tissue-specific expression).

The invention also relates to recombinant host cells containing the vectors described herein. Host cells therefore include prokaryotic cells, lower eukaryotic cells such as yeast, other eukaryotic cells such as insect cells, and higher eukaryotic cells such as mammalian cells.

The recombinant host cells are prepared by introducing the vector constructs described herein into the cells by techniques readily available to the person of ordinary skill in the art. These include, but are not limited to, calcium phosphate transfection, DEAE-dextran-mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, lipofection, and other techniques such as those found in Sambrook, *et al.* (*Molecular Cloning: A Laboratory Manual*. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

Host cells can contain more than one vector. Thus, different nucleotide sequences can be introduced on different vectors of the same cell. Similarly, the receptor polynucleotides can be introduced either alone or with other polynucleotides that are not related to the receptor polynucleotides such as those providing trans-acting factors for expression vectors. When more than one vector is introduced into a cell, the vectors can be introduced independently, co-introduced or joined to the receptor polynucleotide vector.

In the case of bacteriophage and viral vectors, these can be introduced into cells as packaged or encapsulated virus by standard procedures for infection and transduction. Viral vectors can be replication-competent or replication-defective. In the case in which viral replication is defective, replication will occur in host cells providing functions that complement the defects.

Vectors generally include selectable markers that enable the selection of the subpopulation of cells that contain the recombinant vector constructs. The marker can be contained in the same vector that contains the polynucleotides described herein or may be on a separate vector. Markers include tetracycline or ampicillin-resistance genes

for prokaryotic host cells and dihydrofolate reductase or neomycin resistance for eukaryotic host cells. However, any marker that provides selection for a phenotypic trait will be effective.

While the mature proteins can be produced in bacteria, yeast, mammalian cells, 5 and other cells under the control of the appropriate regulatory sequences, cell-free transcription and translation systems can also be used to produce these proteins using RNA derived from the DNA constructs described herein.

Where secretion of the polypeptide is desired, appropriate secretion signals are incorporated into the vector. The signal sequence can be endogenous to the receptor 10 polypeptides or heterologous to these polypeptides.

Where the polypeptide is not secreted into the medium, the protein can be isolated from the host cell by standard disruption procedures, including freeze thaw, sonication, mechanical disruption, use of lysing agents and the like. The polypeptide can then be recovered and purified by well-known purification methods including 15 ammonium sulfate precipitation, acid extraction, anion or cationic exchange chromatography, phosphocellulose chromatography, hydrophobic-interaction chromatography, affinity chromatography, hydroxylapatite chromatography, lectin chromatography, or high performance liquid chromatography.

It is also understood that depending upon the host cell in recombinant production 20 of the polypeptides described herein, the polypeptides can have various glycosylation patterns, depending upon the cell, or maybe non-glycosylated as when produced in bacteria. In addition, the polypeptides may include an initial modified methionine in some cases as a result of a host-mediated process.

25 Uses of vectors and host cells

The host cells expressing the polypeptides described herein, and particularly recombinant host cells, have a variety of uses. First, the cells are useful for producing receptor proteins or polypeptides that can be further purified to produce desired amounts 30 of receptor protein or fragments. Thus, host cells containing expression vectors are useful for polypeptide production.

Host cells are also useful for conducting cell-based assays involving the receptor

or receptor fragments. Thus, a recombinant host cell expressing a native receptor is useful to assay for compounds that stimulate or inhibit receptor function. This includes ligand binding, gene expression at the level of transcription or translation, G-protein interaction, and components of the signal transduction pathway.

5 Host cells are also useful for identifying receptor mutants in which these functions are affected. If the mutants naturally occur and give rise to a pathology, host cells containing the mutations are useful to assay compounds that have a desired effect on the mutant receptor (for example, stimulating or inhibiting function) which may not be indicated by their effect on the native receptor.

10 Recombinant host cells are also useful for expressing the chimeric polypeptides described herein to assess compounds that activate or suppress activation by means of a heterologous extracellular domain. Alternatively, a heterologous transmembrane domain can be used to assess the effect of a desired extracellular domain on any given host cell. In this embodiment, a transmembrane domain compatible with the specific 15 host cell is used to make the chimeric vector. Alternatively, a heterologous intracellular, e.g., signal transduction, domain can be introduced into the host cell.

Further, mutant receptors can be designed in which one or more of the various 20 functions is engineered to be increased or decreased (i.e., ligand binding or G-protein binding) and used to augment or replace receptor proteins in an individual. Thus, host cells can provide a therapeutic benefit by replacing an aberrant receptor or providing an aberrant receptor that provides a therapeutic result. In one embodiment, the cells provide receptors that are abnormally active.

In another embodiment, the cells provide receptors that are abnormally inactive. These receptors can compete with endogenous receptors in the individual. In another 25 embodiment, cells expressing receptors that cannot be activated, are introduced into an individual in order to compete with endogenous receptors for ligand. For example, in the case in which excessive ligand is part of a treatment modality, it may be necessary to inactivate this ligand at a specific point in treatment. Providing cells that compete for the ligand, but which cannot be affected by receptor activation would be beneficial.

30 Homologously recombinant host cells can also be produced that allow the *in situ* alteration of endogenous receptor polynucleotide sequences in a host cell genome. This

technology is more fully described in WO 93/09222, WO 91/12650 and U.S. 5,641,670. Briefly, specific polynucleotide sequences corresponding to the receptor polynucleotides or sequences proximal or distal to a receptor gene are allowed to integrate into a host cell genome by homologous recombination where expression of the gene can be affected. In 5 one embodiment, regulatory sequences are introduced that either increase or decrease expression of an endogenous sequence. Accordingly, a receptor protein can be produced in a cell not normally producing it, or increased expression of receptor protein can result in a cell normally producing the protein at a specific level. Alternatively, the entire gene can be deleted. Still further, specific mutations can be introduced into any desired region 10 of the gene to produce mutant receptor proteins. Such mutations could be introduced, for example, into the specific functional regions such as the ligand-binding site or the G-protein-binding-site.

In one embodiment, the host cell can be a fertilized oocyte or embryonic stem cell that can be used to produce a transgenic animal containing the altered receptor gene. 15 Alternatively, the host cell can be a stem cell or other early tissue precursor that gives rise to a specific subset of cells and can be used to produce transgenic tissues in an animal. See also Thomas *et al.*, *Cell* 51:503 (1987) for a description of homologous recombination vectors. The vector is introduced into an embryonic stem cell line (e.g., by electroporation) and cells in which the introduced gene has homologously 20 recombined with the endogenous receptor gene is selected (see e.g., Li, E. *et al.*, *Cell* 69:915 (1992)). The selected cells are then injected into a blastocyst of an animal (e.g., a mouse) to form aggregation chimeras (see e.g., Bradley, A. in *Teratocarcinomas and Embryonic Stem Cells: A Practical Approach*, E.J. Robertson, ed. (IRL, Oxford, 1987) pp. 113-152). A chimeric embryo can then be implanted into a suitable pseudopregnant 25 female foster animal and the embryo brought to term. Progeny harboring the homologously recombined DNA in their germ cells can be used to breed animals in which all cells of the animal contain the homologously recombined DNA by germline transmission of the transgene. Methods for constructing homologous recombination vectors and homologous recombinant animals are described further in Bradley, A. 30 (1991) *Current Opinion in Biotechnology* 2:823-829 and in PCT International Publication Nos. WO 90/11354; WO 91/01140; and WO 93/04169.

The genetically engineered host cells can be used to produce non-human transgenic animals. A transgenic animal is preferably a mammal, for example a rodent, such as a rat or mouse, in which one or more of the cells of the animal include a transgene. A transgene is exogenous DNA which is integrated into the genome of a cell 5 from which a transgenic animal develops and which remains in the genome of the mature animal in one or more cell types or tissues of the transgenic animal. These animals are useful for studying the function of a receptor protein and identifying and evaluating modulators of receptor protein activity.

Other examples of transgenic animals include non-human primates, sheep, dogs, 10 cows, goats, chickens, and amphibians.

In one embodiment, a host cell is a fertilized oocyte or an embryonic stem cell into which receptor polynucleotide sequences have been introduced.

A transgenic animal can be produced by introducing nucleic acid into the male pronuclei of a fertilized oocyte, e.g., by microinjection, retroviral infection, and allowing 15 the oocyte to develop in a pseudopregnant female foster animal. Any of the receptor nucleotide sequences can be introduced as a transgene into the genome of a non-human animal, such as a mouse.

Any of the regulatory or other sequences useful in expression vectors can form part of the transgenic sequence. This includes intronic sequences and polyadenylation 20 signals, if not already included. A tissue-specific regulatory sequence(s) can be operably linked to the transgene to direct expression of the receptor protein to particular cells.

Methods for generating transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art and are described, for example, in U.S. Patent Nos. 4,736,866 and 4,870,009, both by 25 Leder *et al.*, U.S. Patent No. 4,873,191 by Wagner *et al.* and in Hogan, B., *Manipulating the Mouse Embryo*, (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1986). Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the transgene in its genome and/or expression of transgenic mRNA in tissues or cells of the animals. A 30 transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene can further be bred to

other transgenic animals carrying other transgenes. A transgenic animal also includes animals in which the entire animal or tissues in the animal have been produced using the homologously recombinant host cells described herein.

In another embodiment, transgenic non-human animals can be produced which 5 contain selected systems which allow for regulated expression of the transgene. One example of such a system is the *cre/loxP* recombinase system of bacteriophage P1. For a description of the *cre/loxP* recombinase system, see, e.g., Lakso *et al. PNAS* 89:6232-6236 (1992). Another example of a recombinase system is the FLP recombinase system of *S. cerevisiae* (O'Gorman *et al. Science* 251:1351-1355 (1991)).
10 If a *cre/loxP* recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the *Cre* recombinase and a selected protein is required. Such animals can be provided through the construction of "double" transgenic animals, e.g., by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.
15

Clones of the non-human transgenic animals described herein can also be produced according to the methods described in Wilmut, I. *et al. Nature* 385:810-813 (1997) and PCT International Publication Nos. WO 97/07668 and WO 97/07669. In brief, a cell, e.g., a somatic cell, from the transgenic animal can be isolated and 20 induced to exit the growth cycle and enter G₀ phase. The quiescent cell can then be fused, e.g., through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring borne of this 25 female foster animal will be a clone of the animal from which the cell, e.g., the somatic cell, is isolated.

Transgenic animals containing recombinant cells that express the polypeptides described herein are useful to conduct the assays described herein in an *in vivo* context. Accordingly, the various physiological factors that are present *in vivo* and 30 that could effect ligand binding, receptor activation, and signal transduction, may not be evident from *in vitro* cell-free or cell-based assays. Accordingly, it is useful to

provide non-human transgenic animals to assay *in vivo* receptor function, including ligand interaction, the effect of specific mutant receptors on receptor function and ligand interaction, and the effect of chimeric receptors. It is also possible to assess the effect of null mutations, that is mutations that substantially or completely eliminate 5 one or more receptor functions.

Pharmaceutical compositions

The receptor nucleic acid molecules, protein (particularly fragments such as the extracellular domain), modulators of the protein, and antibodies (also referred to 10 herein as "active compounds") can be incorporated into pharmaceutical compositions suitable for administration to a subject, e.g., a human. Such compositions typically comprise the nucleic acid molecule, protein, modulator, or antibody and a pharmaceutically acceptable carrier.

As used herein the language "pharmaceutically acceptable carrier" is intended 15 to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active compound, such media 20 can be used in the compositions of the invention. Supplementary active compounds can also be incorporated into the compositions. A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, 25 and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; 30 chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium

chloride or dextrose. PH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampules, disposable syringes or multiple dose vials made of glass or plastic.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor ELJ (BASF, Parsippany, NJ) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyethyleneglycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.

Sterile injectable solutions can be prepared by incorporating the active compound (e.g., a receptor protein or anti-receptor antibody) in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle which contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying which yields a

powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.

- Oral compositions generally include an inert diluent or an edible carrier. They can be enclosed in gelatin capsules or compressed into tablets. For oral administration, the agent can be contained in enteric forms to survive the stomach or further coated or mixed to be released in a particular region of the GI tract by known methods. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash, wherein the compound in the fluid carrier is applied orally and swished and expectorated or swallowed. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.
- For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser which contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.

Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.

The compounds can also be prepared in the form of suppositories (e.g., with

conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.

In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Patent No. 4,522,811.

It is especially advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (U.S. 5,328,470) or by stereotactic injection (see e.g., Chen *et al.*, *PNAS* 91:3054-3057 (1994)). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery

-57-

vector can be produced intact from recombinant cells, e.g. retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.

The pharmaceutical compositions can be included in a container, pack, or
5 dispenser together with instructions for administration.

This invention may be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will fully convey the invention to those skilled in the art. Many modifications and other embodiments of the invention will come to
10 mind in one skilled in the art to which this invention pertains having the benefit of the teachings presented in the foregoing description. Although specific terms are employed, they are used as in the art unless otherwise indicated.

EXAMPLE

15

Gene Expression Study by TaqMan Quantitative Polymerase Chain Reaction

Total RNA from various tissues was extracted using a single step method according to the manufacturer instructions (RNA STAT-60 TelTest, Inc). Each RNA preparation was treated with DNase I (Ambion) at 37°C for 1 hour. After phenol extraction the sample was subjected to reverse transcription using the Superscript kit according to the manufacturer instructions (GibcoBRL). A negative control sample which contains RNA but without reverse transcriptase was carried out simultaneously. Mock reverse transcribed samples generated in the absence of reverse transcriptase were run for each RNA/cDNA sample to make sure the DNase I treatment was complete. The integrity of the RNA samples following DNase I treatment was checked by agarose gel electrophoresis and ethidium bromide staining. Samples are determined to have complete DNase I treatment if at least 38 amplification cycles are required to reach threshold levels of fluorescence using the internal reference amplicon β -2 microglobulin.

30 Probes are designed by PrimerExpress software from PE Biosystems using consensus sequence. The primer and probe sequences for RNA expression analysis of

-58-

gene 2871 is as following:

<input type="checkbox"/> ::::: TaqMan Probe/Primer Data :::::					
Forward Primer					
ATCGTGTTCCTTGGGCTGAT					
Tm = 58	%GC = 50	Start =	713	Length =	20
Reverse Primer					
TCCGAGAGTCCCCAAATGG					
Tm = 59	%GC = 58	Start =	782	Length =	19
TaqMan Probe					
AGCATTGATCGCTATCTGAAGGTGGTCRA					
Tm = 68	%GC = 45	Start =	734	Length =	29

5 The target probe gene 2871 is labeled using 6-carboxyfluorescein (FAM).
 The internal reference amplicon for β 2-microglobulin is labeled using VIC. In this
 way levels of the target gene and internal reference gene can be measured in the same
 tube by multiplex PCR. Forward and reverse primers and the probes for both the
 internal reference gene and target gene are added to the TaqMan Universal PCR
 10 Master Mix (PE Applied Biosystems). Although final concentrations of primer and
 probe may vary they are internally consistent within a given experiment. A typical
 experiment contains 200nM forward and reverse primers plus 100nM probe for β -2
 microglobulin and 600nM forward and reverse primers plus 200nM probe for the
 target gene. TaqMan matrix experiments are carried out on ABI PRPSM 7700
 15 Sequence Detection System (PE Applied Biosystems). The thermal cycler condition
 is as follows: hold 2 min at 50°C and 10 min at 95°C, followed by two step PCR for
 40 cycles, melt at 95°C for 15 sec and anneal/extend at 60°C 1 min.

RNA from a variety of tissues and cell types were purified and converted to
 cDNA using reverse transcriptase. The cells and tissues used to analyse 2871 include
 20 the following: Various organs, including lymph node, spleen, thymus, heart, brain,
 liver, fetal liver, and fibrotic liver; *in vitro* differentiated helper T cell populations that
 were stimulated with antibodies to the CD3 subunit of the T cell receptor (CD3
 stimulation) for 0 or 24 hours; resting and CD3 stimulated *ex vivo* purified CD3 T
 cells from peripheral blood; other cells purified from peripheral blood, including
 25 granulocytes, CD4 and CD8 positive cells, B cells purified with anti-CD19

antibodies and stimulated with LPS for 24 hours, peripheral blood mononuclear cells (PBMC), resting or stimulated with phytohemagglutinin. Other cells analysed in this experiment include CD34 positive and negative (CD34+ and CD34-) cells or leukocytes purified from the peripheral blood (mPB) or bone marrow (mBM) of patients treated with G-CSF. CD34+ and CD34- cells were also purified from normal adult bone marrow (ABM) or cord blood (CB). Megakaryocytes the peripheral blood (mPB) or bone marrow (mBM) of patients treated with G-CSF were also examined. Erythroblasts from normal bone marrow were also examined. Transformed cell lines include erythroleukemia cells K562 and the acute promyelocytic leukemia cell line HL-60 and Hep3b hepatocellular liver carcinoma cells cultured in normal or reduced oxygen tension.

A comparative Ct method is used for relative quantitation of gene expression. The threshold cycle or Ct value is the cycle at which a statistically significant increase in ΔR_n is detected. A lower Ct value indicates a higher concentration of the mRNA for the gene corresponding to the target probe sequence. The Ct value for the target gene is normalized relative to the internal reference gene Ct value to generate a delta Ct value using the following formula: $\Delta Ct = Ct_{target} - Ct_{reference}$. To generate values for relative expression, a cDNA sample with a relatively low expression level in the matrix is chosen as a calibrator sample. The ΔCt value for the calibrator tissue is then subtracted from the ΔCt for each according to the following formula: $\Delta\Delta Ct = \Delta Ct_{sample} - \Delta Ct_{calibrator}$. A value used for relative expression is calculated using the arithmetic formula given by $2^{-\Delta\Delta Ct}$. This value is then used to graph the relative expression of a the target gene in the multiple tissues in the study.

THAT WHICH IS CLAIMED:

1. An isolated polypeptide having an amino acid sequence selected from the
5 group consisting of:
 - (a) The amino acid sequence shown in SEQ ID NO 1;
 - (b) The amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ____;
 - (c) The amino acid sequence of an allelic variant of the amino acid
10 sequence shown in SEQ ID NO 1;
 - (d) The amino acid sequence of an allelic variant of the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ____;
 - (e) The amino acid sequence of a sequence variant of the amino acid sequence shown in SEQ ID NO 1, wherein the sequence variant is encoded by a
15 nucleic acid molecule hybridizing to the nucleic acid molecule shown in SEQ ID NO 2 under stringent conditions;
 - (f) The amino acid sequence of a sequence variant of the amino acid sequence encoded by the cDNA clone contained in ATCC Deposit No. ___, wherein
20 the sequence variant is encoded by a nucleic acid molecule hybridizing under stringent conditions to the cDNA contained in ATCC Deposit No. ____;
 - (g) A fragment of the amino acid sequence shown in SEQ ID NO 1,
wherein the fragment comprises at least 12 contiguous amino acids;
 - (h) A fragment of the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ___, wherein the fragment comprises at least 12
25 contiguous amino acids;
 - (i) The amino acid sequence of the mature receptor polypeptide from about amino acid 6 to about amino acid 359, shown in SEQ ID NO 1;
 - (j) The amino acid sequence of the mature polypeptide from about amino acid 6 to about amino acid 359, encoded by the cDNA clone contained in ATCC
30 Deposit No. ____;

-61-

- (k) The amino acid sequence of the transmembrane domain of the polypeptide shown in SEQ ID NO 1, from about amino acid 43 to about amino acid 318;
- 5 (l) The amino acid sequence of the transmembrane domain from about amino acid 43 to about amino acid 318 in the polypeptide encoded by the cDNA contained in ATCC Deposit No. ____;
- (m) The amino acid sequence of an epitope bearing region of any one of the polypeptides of (a)-(l).
- 10 2. An isolated antibody that selectively binds to a polypeptide of claim 1, (a)-(m).
-
3. An isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
- 15 (a) The nucleotide sequence shown in SEQ ID NO 2;
- (b) The nucleotide sequence in the cDNA contained in ATCC Deposit No. ____;
- (c) A nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO 1;
- 20 (d) A nucleotide sequence encoding the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. ____; and
- (e) A nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), or (d).
- 25 4. An isolated nucleic acid molecule having a nucleotide sequence selected from the group consisting of:
- (a) A nucleotide sequence encoding an amino acid sequence of a sequence variant of the amino acid sequence shown in SEQ ID NO 1 that hybridizes to the nucleotide sequence shown in SEQ ID NO 2 under stringent conditions;
- 30 (b) A nucleotide sequence encoding the amino acid sequence of a sequence variant of the amino acid sequence encoded by the cDNA contained in

ATCC Deposit No. _____, the nucleic acid sequence of the sequence variant hybridizing to the cDNA contained in ATCC Deposit No. _____ under stringent conditions; and

(c) A nucleotide sequence complementary to either of the nucleotide sequences in (a) or (b).

5. An isolated nucleic acid molecule a polynucleotide having a nucleotide sequence selected from the group consisting of:

(a) A nucleotide sequence encoding a fragment of the amino acid sequence shown in SEQ ID NO 1, wherein the fragment comprises at least 12 contiguous amino acids;

(b) A nucleotide sequence encoding a fragment of the amino acid sequence encoded by the cDNA contained in ATCC Deposit No. _____, wherein the fragment comprises at least 12 contiguous amino acids;

15 (c) A nucleotide sequence complementary to either of the nucleotide sequences in (a) or (b).

6. A nucleic acid vector comprising the nucleic acid sequences in any of claims
3-5.

20

7. A host cell containing the vector of claim 6.

8. A method for producing any of the polypeptides in claim 1 comprising introducing a nucleotide sequence encoding any of the polypeptide sequences in (a)-
25 (m) into a host cell, and culturing the host cell under conditions in which the proteins are expressed from the nucleic acid.

9. A method for detecting the presence of any of the polypeptides in claim 1 in a sample, said method comprising contacting said sample with an agent that specifically
30 allows detection of the presence of the polypeptide in the sample and then detecting the presence of the polypeptide.

10. The method of claim 9, wherein said agent is capable of selective physical association with said polypeptide.
- 5 11. The method of claim 10, wherein said agent binds to said polypeptide.
12. The method of claim 11, wherein said agent is an antibody.
13. The method of claim 11, wherein said agent is a ligand.
- 10 14. A kit comprising reagents used for the method of claim 9, wherein the reagents comprise an agent that specifically binds to said polypeptide.
15. A method for detecting the presence of any of the nucleic acid sequences in any of claims 3-5 in a sample, the method comprising contacting the sample with an oligonucleotide that hybridizes to the nucleic acid sequences under stringent conditions and determining whether the oligonucleotide binds to the nucleic acid sequence in the sample.
- 20 16. The method of claim 15, wherein the nucleic acid, whose presence is detected, is mRNA.
17. A kit comprising reagents used for the method of claim 15, wherein the reagents comprise a compound that hybridizes under stringent conditions to any of the nucleic acid molecules.
- 25 18. A method for identifying an agent that binds to any of the polypeptides in claim 1, said method comprising contacting the polypeptide with an agent that binds to the polypeptide and assaying the complex formed with the agent bound to the polypeptide.

-64-

19. A method for modulating the activity of any of the polypeptides in claim 1, the method comprising contacting any of the polypeptides of claim 1 with an agent under conditions that allow the agent to modulate the activity of the polypeptide.
 - 5 20. The method of claim 19 wherein the activity is modulated in a subject with an inflammatory disorder.
-

CCACGGTCCGAGAATTGAAAGGGTGGCCAAAGGACAATCTAAAGGGTAAGGGAGATAACCTACCTTGTTGGT
 AGGGAGATGTTTCGTTTCATGCTTACAGAAAATCCACTGCCGACCTAGTTCAAAGCTTATTCTTAATT
 AGAGACAAGAACCTGTTCAACTGCAAGACACCGTAGGGTGAATGGACAGGCCAGCCACCACAAATGAAAGAAATCAA
 ACCAGGAATAACCTATGCTGAACCCACGCCCTCAATCGTCCCCAAGTGTTCCTGACACGGCATCTTGTTACAGTGCTAT

M	G	F	N	L	T	L	A	K	L	P	N	N	E	L	H	16
G	Q	E	S	H	N	S	G	N	R	S	D	G	P	G	K	48
GGC	CAA	GAG	AGT	CAC	TTC	AAC	TTC	GGC	AAC	AGC	AGC	GAC	GGG	CCA	AAT	AAC
H	N	E	F	D	T	I	V	L	P	V	L	Y	L	I	I	36
CAC	AAT	GAA	TTT	GAC	ACA	ATT	GTC	TTG	CCG	GTG	CTR	TAT	CTC	ATT	ATA	108
I	L	L	N	G	L	A	V	W	I	F	F	H	I	R	N	56
ATC	TTG	CTG	AAT	GGT	TTA	GCA	GTG	TGG	ATC	TTC	TTC	CAC	ATT	AGG	AAT	168
I	F	Y	L	K	N	I	V	V	A	D	L	I	M	T	L	76
ATA	TTC	TAT	CTC	AAA	AAC	ATA	GTG	GTT	GCA	GAC	CTC	ATA	ATG	ACG	CTG	228
																288

FIG. 1A.

TO FIG. IB.

FROM FIG. IA.

R	I	V	H	D	A	G	F	G	P	W	Y	F	K	F	I	L	C	R	Y	116
CGA	ATA	GTC	CAT	GAT	GCA	GGG	TTT	GGG	CCT	TGG	TAC	TTC	AAG	TTT	ATT	CTC	TGC	AGA	TAC	348
T	S	V	L	F	Y	A	N	M	Y	T	S	I	V	F	L	G	L	I	S	136
ACT	TCA	GTT	TTC	TTT	TAT	GCA	AAC	ATG	TAT	ACT	TCC	ATC	GTG	TTC	CTT	GGG	CTG	ATA	AGC	408
I	D	R	Y	L	K	V	V	K	P	F	G	D	S	R	M	Y	S	I	T	156
ATT	GAT	CGC	TAT	CTG	AAG	GTC	GTC	AAG	CCA	TTT	GGG	GAC	TCT	CGG	ATG	TAC	AGC	ATA	ACC	468
F	T	K	V	L	S	V	C	V	W	V	I	M	A	V	L	S	L	P	N	176
TTC	ACG	AAG	GTT	TTA	TCT	GTT	TGT	GTT	TGG	GTC	ATG	GCT	GTT	TTG	TCT	TTG	CCA	AAC	528	

2/8

TO FIG. IC.

FIG. 1B.

FROM FIG. 1B.

I	I	L	T	N	G	Q	P	T	E	D	N	I	H	D	C	S	K	L	K
ATC	ATC	CTG	ACA	AAT	GGT	CAG	CCA	ACA	GAG	GAC	AAT	ATC	CAT	GAC	TGC	TCA	AAA	CTT	AAA
S	P	L	G	V	K	W	H	T	A	V	T	Y	V	N	S	C	L	F	V
AGT	CCT	TTC	GGG	GTC	AAA	TGG	CAT	ACG	GCA	GTC	ACC	TAT	GTG	AAC	AGC	TGC	TTG	TTT	GTG
A	V	L	V	I	L	I	G	C	Y	I	A	I	S	R	Y	I	H	K	S
GCC	GTG	CTG	GTG	ATT	CTG	ATC	GGG	TGT	TAC	ATA	GCC	ATA	TCC	AGG	TAC	ATC	CAC	AAA	TCC
S	R	Q	F	I	S	Q	S	S	R	K	R	K	H	N	Q	S	I	R	V
AGC	AGG	CAA	TTC	ATA	AGT	CAG	TCA	AGC	CGA	AAG	CGA	AAA	CAT	AAC	CAG	AGC	ATC	AGG	GTT
V	V	A	V	F	F	T	C	F	L	P	Y	H	L	C	R	I	P	F	T
GTT	GTG	GCT	GTG	TTT	TTT	ACC	TGC	TTT	CTA	CCA	TAT	CAC	TTG	TGC	AGA	ATT	CCT	TTT	ACT

3/8

FIG. 1C.

TO FIG. 1D.

FROM FIG. IC.

F	S	H	L	D	R	L	L	D	E	S	A	Q	K	I	L	Y	Y	C	K	296	
TTT	AGT	CAC	TTA	GAC	AGG	CTT	TTA	GAT	GAA	TCT	GCA	CAA	AAA	ATC	CTA	TAT	TAC	TGC	AAA	888	
E	I	T	L	F	L	S	A	C	N	V	C	L	D	P	I	I	Y	F	F	316	
GAA	ATT	ACA	CTT	TRC	TRG	TGT	TGT	GGG	TGC	TGT	AAT	GTT	TGC	CTG	GAT	CCA	ATA	ATT	TAC	TTT	TTC
M	C	R	S	F	S	R	R	L	F	K	K	S	N	I	R	T	R	S	E	336	
ATG	TGT	AGG	TCA	TTT	TCA	AGA	AGG	CTG	TTC	AAA	AAA	TCA	AAT	ATC	AGA	ACC	AGG	AGT	GAA	1008	
S	I	R	S	L	Q	S	V	R	R	S	E	V	R	I	Y	Y	D	Y	T	356 4/8	
AGC	ATC	AGA	TCA	CTG	CAA	AGT	GTG	AGA	AGA	TCG	GAA	GTT	CGC	ATA	TAT	TAT	GAT	TAC	ACT	1068	
D	V	*																			
GAT	GTG	TAG																			

SUBSTITUTE SHEET (RULE 26)

GCCTTTATTGTTGTTGGAAATCGATATGTAAATGTTCTTTCAATTAAATAAAMAAAAAA
AAAAG

FIG. 1D.359
1077

Score: 183.33	Seq: 59 314	Model: 1 269
*GNlLVIWVICRYRRMRTPMNYFIVNLAVIDLFLS1ftMPFWMVYYVMQG		
f1h2871	59	N+L +W+++ R +T++ ++ N VADL++ ++T+PF +V+ + G LNGLAVWIFFHIRN-KTSFIFYLKNIVVADLIM-TLTFPFRIVHDAGFG 105
RWpFGdfMCrIWmYFDYMNMYAS1IFFLTCISIDRYLWAICHPMrYmRWMT		
f1h2871	106	W+F ++CR ++ +Y NMY+SI FL +ISIDRYL ++P+ R+ + PWYFKFILCRYTSVLFYANMYTSIVFLGLISIDRYL-KVVKPFGDSRMYS 154
PRHRAWMIIiIWvMSF11SMPPFLMFrWstyrDEneWNmtTWCMiLYDWPe		
f1h2871	155	+++ ++V++++WV++++S+P + ++ + + ++ E+N+ C+ + P ITF-TKVL SVCVWWIMAVLSLP-N-II-LTNGQP-TEDNIHDCSKLKSP 199
.wMWrWYvILmtimgFYIPMiIM1FCYwRIYRIaR1WMRMIPswQrRRR		
f1h2871	200	+ W + V+++ + F+ + I + CY I R ++++R+ S++ GVKWHTAVTYVNS-CLFVAVLVILIGCYIAISRYIHKSSRQFISQSS--- 245
mSmRrERRivKMLiiIMvvFLICW1PYF1vmfMDTLM.MwwFCefc.Iwr		
f1h2871	246	R+R+ + +++ VF+ C+LPY++ + T+ + + + --- RKKRKHQSIRVVAVFFTFCFLPYHLCRIPFTFSHLDRLLD-ESAQK 290
r1Wm.Y.IfwLaYvNCpCiNPIIY*		
f1h2871	291	+L++ I++L+ +N C+PIIY ILYCKEITLFLSACNV-CLDPIIY 314

FIG. 2.

FIG. 3.

7/8

FIG. 4.

FIG. 5.

SEQUENCE LISTING

<110> Glucksmann, Maria A.

Hodg, Martin R.

<120> 2871 RECEPTOR, A NOVEL G-PROTEIN COUPLED RECEPTOR

<130> 2871 RECEPTOR

<140> US 09/088,857

<141> 1998-06-02

<160> 6

<170> PatentIn Ver. 2.0

<210> 1

<211> 358

<212> PRT

<213> Homo sapiens

<400> 1

Met Gly Phe Asn Leu Thr Leu Ala Lys Leu Pro Asn Asn Glu Leu His
1 5 10 15

Gly Gln Glu Ser His Asn Ser Gly Asn Arg Ser Asp Gly Pro Gly Lys
20 25 30

Asn Thr Thr Leu His Asn Glu Phe Asp Thr Ile Val Leu Pro Val Leu
35 40 45

Tyr Leu Ile Ile Phe Val Ala Ser Ile Leu Leu Asn Gly Leu Ala Val
50 55 60

Trp Ile Phe Phe His Ile Arg Asn Lys Thr Ser Phe Ile Phe Tyr Leu
65 70 75 80

Lys Asn Ile Val Val Ala Asp Leu Ile Met Thr Leu Thr Phe Pro Phe
85 90 95

Arg Ile Val His Asp Ala Gly Phe Gly Pro Trp Tyr Phe Lys Phe Ile
100 105 110

Leu Cys Arg Tyr Thr Ser Val Leu Phe Tyr Ala Asn Met Tyr Thr Ser
115 120 125

Ile Val Phe Leu Gly Leu Ile Ser Ile Asp Arg Tyr Leu Lys Val Val
130 135 140

Lys Pro Phe Gly Asp Ser Arg Met Tyr Ser Ile Thr Phe Thr Lys Val
 145 150 155 160

Leu Ser Val Cys Val Trp Val Ile Met Ala Val Leu Ser Leu Pro Asn
 165 170 175

Ile Ile Leu Thr Asn Gly Gln Pro Thr Glu Asp Asn Ile His Asp Cys
 180 185 190

Ser Lys Leu Lys Ser Pro Leu Gly Val Lys Trp His Thr Ala Val Thr
 195 200 205

Tyr Val Asn Ser Cys Leu Phe Val Ala Val Leu Val Ile Leu Ile Gly
 210 215 220

Cys Tyr Ile Ala Ile Ser Arg Tyr Ile His Lys Ser Ser Arg Gln Phe
 225 230 235 240

Ile Ser Gln Ser Ser Arg Lys Arg Lys His Asn Gln Ser Ile Arg Val
 245 250 255

Val Val Ala Val Phe Phe Thr Cys Phe Leu Pro Tyr His Leu Cys Arg
 260 265 270

Ile Pro Phe Thr Phe Ser His Leu Asp Arg Leu Leu Asp Glu Ser Ala
 275 280 285

Gln Lys Ile Leu Tyr Tyr Cys Lys Glu Ile Thr Leu Phe Leu Ser Ala
 290 295 300

Cys Asn Val Cys Leu Asp Pro Ile Ile Tyr Phe Phe Met Cys Arg Ser
 305 310 315 320

Phe Ser Arg Arg Leu Phe Lys Lys Ser Asn Ile Arg Thr Arg Ser Glu
 325 330 335

Ser Ile Arg Ser Leu Gln Ser Val Arg Arg Ser Glu Val Arg Ile Tyr
 340 345 350

Tyr Asp Tyr Thr Asp Val
 355

<210> 2
 <211> 1489
 <212> DNA
 <213> Homo sapiens

<400> 2

ccacgcgtcc ggagaatttg aaagggtgcc ccaaaggaca atctctaaag gggtaaggga 60
 gatacctacc ttgtctggta ggggagatgt ttcgtttca tgcttacca gaaaatccac 120
 ttccctgcgg accttagttt caaagcttat tcttaattag agacaagaaa cctgttcaa 180
 cttgaagaca ccgtatgagg tgaatggaca gccagccacc acaatgaaag aaatcaaacc 240
 aggaataacc tatgtctgaac ccacgcctca atcgccccca agtgtttccct gacacgcata 300
 tttgcttaca gtgcatacaca actgaagaat ggggttcaac ttgacgcctt caaaattacc 360
 aaataacgag ctgcacggcc aagagagtca caattcaggc aacaggagcg acgggcccagg 420
 aaagaacacc acccttcaca atgaatttga cacaattgtc ttgccgggtgc tttatctcat 480
 tatatttgcg gcaagcatct tgctgaatgg tttagcagtg tggatcttct tccacattag 540
 gaataaaacc agcttcataat tctatctcaa aaacatagtg gttgcagacc tcataatgac 600
 gctgacattt ccatttcgaa tagtccatga tgcaggattt ggaccttggt acttcaagtt 660
 tattctctgc agatacacattt cagttttgtt ttatgcaaaat atgtataactt ccattcggtt 720
 ccttgggctg ataagcatttgc atcgctatctt gaaggtggtc aagccatttgc gggactctcg 780
 gatgtacagc ataaccttca cgaaggttttt atctgtttgtt gtttgggtga tcatggctgt 840
 tttgtctttt ccaaacatca tcctgacaaa tggtcagcca acagaggaca atatccatga 900
 ctgctcaaaa cttaaaaagtc ctgggggtt ccaaatggcat acggcagtca cctatgtgaa 960
 cagctgcttgc ttgtggccg tgctgggtat tctgatcgaa tgttacatag ccataatccag 1020
 gtacatccac aaatccagca ggcaattcat aagtcaatgc agccgaaagc gaaaacataa 1080
 ccagagcatc agggttgcgg tggctgtgtt ttttacactgc ttttctaccat atcacttgc 1140
 cagaatttctt tttacttttgcactttaga caggcttttgc gatgaatctg cacaaaaaat 1200
 cctatatttac tgcaaagaaa ttacactttt cttgtctgcg tgtaatgttt gcctggatcc 1260
 aataatttac ttttcatgt tgtaggtcattt tcagaaggacttgcg tggatcgaaat 1320
 cagaaccagg agtggaaagca tcagatcaactt gcaaaatggtgc agaagatcgaaat 1380
 atattatgt tacactgtatg tgtaggcattt ttatgtttt gtttgcataatgaaat 1440
 gtgtaaataa atgtttttt tcattaataa aamaaaaaaaaaaaaaaaag 1489

<210> 3

<211> 269

<212> PRT

<213> Unknown

<220>

<223> Description of Unknown Organism: Seven
 transmembrane segment domain of the rhodopsin
 family

<400> 3

Gly	Asn	Ile	Leu	Val	Ile	Trp	Val	Ile	Cys	Arg	Tyr	Arg	Arg	Met	Arg
1								10						15	

Thr	Pro	Met	Asn	Tyr	Phe	Ile	Val	Asn	Leu	Ala	Val	Ala	Asp	Leu	Leu
													20	25	30

Phe	Ser	Leu	Phe	Thr	Met	Pro	Phe	Trp	Met	Val	Tyr	Tyr	Val	Met	Gln
													35	40	45

Gly	Arg	Trp	Pro	Phe	Gly	Asp	Phe	Met	Cys	Arg	Ile	Trp	Met	Tyr	Phe
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

50	55	60
Asp Tyr Met Asn Met Tyr Ala Ser Ile Phe Phe Leu Thr Cys Ile Ser		
65	70	75
Ile Asp Arg Tyr Leu Trp Ala Ile Cys His Pro Met Arg Tyr Met Arg		
85	90	95
Trp Met Thr Pro Arg His Arg Ala Trp Val Met Ile Ile Ile Trp		
100	105	110
Val Met Ser Phe Leu Ile Ser Met Pro Pro Phe Leu Met Phe Arg Trp		
115	120	125
Ser Thr Tyr Arg Asp Glu Asn Glu Trp Asn Met Thr Trp Cys Met Ile		
130	135	140
Tyr Asp Trp Pro Glu Trp Met Trp Arg Trp Tyr Val Ile Leu Met Thr		
145	150	155
Ile Ile Met Gly Phe Tyr Ile Pro Met Ile Ile Met Leu Phe Cys Tyr		
165	170	175
Trp Arg Ile Tyr Arg Ile Ala Arg Leu Trp Met Arg Met Ile Pro Ser		
180	185	190
Trp Gln Arg Arg Arg Met Ser Met Arg Arg Glu Arg Arg Ile Val		
195	200	205
Lys Met Leu Ile Ile Ile Met Val Val Phe Ile Ile Cys Trp Leu Pro		
210	215	220
Tyr Phe Ile Val Met Phe Met Asp Thr Leu Met Met Trp Trp Phe Cys		
225	230	235
240		
Glu Phe Cys Ile Trp Arg Arg Leu Trp Met Tyr Ile Phe Glu Trp Leu		
245	250	255
Ala Tyr Val Asn Cys Pro Cys Ile Asn Pro Ile Ile Tyr		
260	265	

<210> 4
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide primer

<400> 4

atcgtgttcc ttgggctgat

20

<210> 5

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide primer

<400> 5

tccgagagtc cccaaatgg

19

<210> 6

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide probe

<400> 6

agcattgatc gctatctgaa ggtggtaa

29

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 99/12203

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 C12N15/12 C07K14/705 A61K38/16 G01N33/68 C07K16/28

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C12N C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
E	WO 99 29849 A (INCYTE PHARMA INC ;YUE HENRY (US); BANDMAN OLGA (US); LAL PREETI () 17 June 1999 (1999-06-17) SEQ IDs NO 3 & 4 claims 1-21	1-20

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search	Date of mailing of the international search report
30 September 1999	12/10/1999
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Nauche , S

INTERNATIONAL SEARCH REPORT

rnational application No.

PCT/US 99/12203

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
Remark: Although claim 20 is directed to a method of treatment of the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/US 99/12203

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9929849 A	17-06-1999	AU 1620199 A	28-06-1999

Form PCT/ISA/210 (patent family annex) (July 1992)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

**(19) World Intellectual Property Organization
International Bureau**

**(43) International Publication Date
9 December 1999 (09.12.1999)**

PCT

(10) International Publication Number
WO 99/63087 A1

(51) International Patent Classification⁶: C12N 15/12, C07K 14/705, A61K 38/16, G01N 33/68, C07K 16/28 (81) Designated States (national): AE, AL, AM, AT, AT (utility model), AU, AZ, BA, BE, BG, BR, BY, CA, CH, CN,

(21) International Application Number: PCT/US99/12203

(22) International Filing Date: 2 June 1999 (02.06.1999)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

(30) Priority Data:
09/088,857 2 June 1998 (02.06.1998) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:

Filed on 2 June 1998 (02.06.1998)

**LENNIUM PHARMACEUTICALS, INC. [US/US]; 75
Sydney Street, Cambridge, MA 02139 (US).**

(72) Inventors; and
(75) Inventors/Applicants (*for US only*): GLUCKSMANN, Maria, Alexandra [AR/US]; 33 Summit Road, Lexington, MA 02173 (US). HODGE, Martin, R. [US/US]; 39 Crawford Street, Arlington, MA 02474 (US).

(74) Agents: BROWN, Anne et al.; Alston & Bird LLP, P.O. Drawer 34009, Charlotte, NC 28234-4009 (US).

Designated States (*national*): AE, AL, AM, AT, AT (utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (utility model), DE, DE (utility model), DK, DK (utility model), EE, EE (utility model), ES, FI, FI (utility model), GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (utility model), SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

— *With international search report.*

(48) Date of publication of this corrected version:

25 May 2001

(15) Information about Corrections:

see PCT Gazette No. 21/2001 of 25 May 2001, Section II

Previous Correction:

see PCT Gazette No. 27/2000 of 6 July 2000, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 99/63087 A1

(54) Title: G-PROTEIN COUPLED RECEPTOR, NAMED 2871 RECEPTOR

(57) Abstract: The present invention relates to a newly identified G-protein-coupled receptor. The invention also relates to polynucleotides encoding the receptors. The invention further relates to methods using receptor polypeptides and polynucleotides for diagnosis and treatment in receptor-mediated disorders. The invention further relates to methods using the receptor polypeptides and polynucleotides to identify agonists and antagonists useful for diagnosis and treatment. The invention further encompasses agonists and antagonists based on the receptor polypeptides and polynucleotides. The invention further relates to procedures for producing the receptor polypeptides and polynucleotides by recombinant methods.

W G F N L T L A K L P N H E L X	16
CACAACTGAAAG ATG GGG TTC AAC TTC AGG CTT GCA AAA TTA CGA ATT AAC GAG CTG CAC.	48
G Q R S H N S G N R S D G P G K N T T L	36
CGC CAA GAG ACT AAC ATT TCA CGC AAC AGG AGC GAC GGG CCA GGA AAC AAC ACC ACC CTT	108
H N E F D T I V L P V L Y L I I S V A S	56
CAC ATT GAA TTT GAC ACA ATT GTC TTG CGG GTG CTT TAT CTC ATT ATA ATT GTC GCA ACC	168
I L I N G D A V W I F F H I R H R T S F	76
ATG TTG CTG ATT GGT TTA GCA GIG TGG ATG TTG TTG CAC ATT AGG ATT AAA ACC AGC TTG	224
I - Y L X N I V V A D L I M T L T F S F	96
AIA TTC TXT CTC AAA AAC ATA CGT CTT GCA GAC CTC ATA AUG AGG AGC AGC AGC TTT CGA ATT	268
R I V H D A G F G P W Y P K P I D C R Y	116
CGA ATT GTC CAT CAT CGA CGA TTT CGA CCT TGG TAC TTG AGG ATT ATT CGT CGC AGA TAC	249
T S V L F Y A N M X T S I U F L G G I S	136
ACT TCA CCT TUG TTT TAT CGA AAC ATG TAT ATT ATT TCC ATC CGT TTG CCT CGG CGT ATA AGC	400
I D R Y L K V V K P P G D S P M Y S I T	156
ATT GAT CGG TAT CTC AAC CGT CTC AAC TTT CGG GAC TCT CGG ATT ATC TAC AAC ATA ACC	468
F T K V L S V C V W V I M A V D S L P N	176
TTC AGG AGG CCT TTA TCT GTT TCT GGT TGG CGC ATC ATG GCT ATT ATT TTG TCC GCA AAC	528
I J L F N G Q P T S D N I K D C S K I K	196
ATC ATC AAC ATT GGT CGA CGA AGA GAC ATT AAC CAT GAC TGC CGA AAA CCT CGG	580
S P L G V K W H T A V T Y V D G C L F V	216
DET CCT TTG GGT CGT AAA TGG CGT ACC CGA CGT ACC TAT CGU AGC ATT TCC TCG TTT CGC	616
A V L V I P T G C Y I A T S R Y I H K S	236
CGC CGG CGG ATT CGT ATC CGG TCT TAC ATA CGC ATA CGC CGU TAC ATT CGC CGG CGG CGG CGG	708
S R Q P I S Q S S R K R K H N Q S I R V	256
ACC AGU CGA TTC ATA ATT CGG TCA AGG CGA AAC CGA AAC CGT AAC CGG AGC AGC AGC CGT	768
V V A V F F T C F L P Y H L C R I P F T	276
CTT CGT CCT CGG TTT ATT TAC TTT CGA CGA TAT CGC TCG TGG AGA ATT CCT TTT ACT	828
F S H L D R L L D E S A O K L D Y V C K	296
TTT ATT CGC TTA GAC AGG CCT TTA CGT GAA TCT CGA CGA AAA CGT CGA ATT CGA CGG CGG CGG CGG	898
E I T L F L S A C N V C L D P T I Y F F	316
CGA ATT AGA CCT TTC TGG TCT CGG TGT ATT ATT CGC TCG CGT CGT CGA ATA ATT TAC TTS TTG	948
M C D S F S R R L P K K S N I R T R S E	336
ATC TGT ACC TCA ATT TCA AGA AGA CGG TTC AAA AAA CGA ATT ATC AGA AGC AGC AGT CGA	1008
S I R S L Q S V R R S E V R S Y Y D ? T	356
AGC ATC AGA AGA CGA CGA CGA AGT CGT CGA ATT CGA ATT TAT TAT GAT TAC ATT	1066
D V *	354
GAT CGG TAG	1077

GGCTTTTAATGTTGAACTCATAGTACCGCTAAATAATCTTCCTTATGATTTAAGG

Fig. 1

2/5

Score: 133.33 Seq: SB 314 Model: 1 269

AGNIUVIIVVICRYRPNRTPMNMFJVNLAVALDLSLJLMPPTWVYVYVNGG
 N+L +R++ R +T++ +++ N VADL-- +T,PF +V+ - C

EIN2871 59 ENGLANWIFPHRN-KTGSEIFYLKNVVADUIM-TLTFPERINHDAGFG 105

RWPTGdSMCtIHWXFDYDNYMAYSTPFLTC ISEDORYLWATCHPHYVIRWMD
 W+F ++CR ++ ++ NMY+ST FL +ISIDORYL -+-?+ R+ -

EIN2871 106 RWTKFALCRYTSVLFYANHYTSIVFLCLLISEDORYL-KVVKPFDDGRYS 134

PRHRAWNTLjTHVM57EISMP95FLM9rWsy:PRHRAWNTLWmIYDNE
 --- ++V++++AVM+++-S-P+ + - - + - 2-N- C- - F

EIN2871 152 3TP-TKVLEVCVHVCMNVSLP-N-11-LTNGQP-PRHRAWNTLNSK97 138

.WGN=NVVILm ilme?VEMIIMIFCY-WRIVRIGRINWQIPmQCPFZ
 + S + V---+ + P- - I - CY I R ----A- S--

EIN2871 200 GVAKHTAVCVVNS-CLFVAVLVIDEGCYERIAVVEHKISFQFTROES --- 243

PRHRAWNTLWmIYDNEWV4F1CW!WYF7WmIYDNEWV4F1CW!WYF7WmIYDNEWV4F1CW!
 R+R- - --- UFA E+LPY+- Y- -

EIN2871 248 ---~RXPXKQMSISVWVW/FETCYLPFHDLWYF7WmIYDNEWV4F1CW!-EGHQK 290

clwm.Y.IFwNLeYv8KOpCINQITY
 +L- I++L+ +N C+PITY

EIN2871 291 FLYYCKEHTL7L8ACN-CLDPILY 314

Fig 2

Fig 4

2871 Expression

SEQUENCE LISTING

<010> Glucksmann, Maria A.

Hodg, Martin R.

<020> 2071 RECEPTOR, A NOVEL G-PROTEIN COUPLED RECEPTOR

<030> 2071 RECEPTOR

<140> US 09/080,057

<141> 1998-06-02

<160> 6

<170> PatentIn Ver. 2.0

<210> 1

<211> 358

<212> PRT

~~<213> Homo sapiens~~

<400> 1

Met Gly Phe Asn Leu Thr Leu Ala Lys Ile Pro Asn Asn Glu Leu His
1 5 10 15

Gly Gin Clu Ser His Asn Ser Gly Asn Arg Ser Asp Gly Pro Gly Lys
20 25 30

Asn Thr Thr Ile His Asn Glu Phe Asp Thr Ile Val Leu Pro Val Leu
35 40 45

Tyr Leu Ile Ile Phe Val Ala Ser Ile Leu Leu Asn Gly Leu Ala Val
50 55 60

Trp Ile Phe Phe His Ile Arg Asn Lys Thr Ser Phe Ile Phe Tyr Ile
65 70 75 80

Lys Asn Ile Val Val Ala Asp Leu Ile Met Thr Leu Thr Phe Pro Phe
85 90 95

Arg Ile Val His Asp Ala Gly Phe Gly Pro Trp Tyr Phe Lys Phe Ile
100 105 110

Leu Cys Arg Tyr Thr Ser Val Leu Phe Tyr Ala Asn Met Tyr Thr Ser
115 120 125

Ile Val Phe Leu Gly Leu Ile Ser Ile Asp Arg Tyr Leu Lys Val Val
130 135 140

Lys Pro Phe Gly Asp Ser Arg Met Tyr Ser Thr Ile Thr Lys Val
 145 150 155 160

Leu Ser Val Cys Val Trp Val Ile Met Ala Val Leu Ser Leu Pro Asn
 165 170 175

Ile Ile Leu Thr Asn Gly Cln Pro Thr Glu Asp Asn Ile His Asp Cys
 180 185 190

Ser Lys Leu Lys Ser Pro Leu Gly Val Lys Trp His Thr Ala Val Thr
 195 200 205

Tyr Val Asn Ser Cys Leu Phe Val Ala Val Leu Val Ile Leu Ile Gly
 210 215 220

Cys Tyr Ile Ala Ile Ser Arg Tyr Ile His Lys Ser Ser Arg Cln Phe
 225 230 235 240

Ile Ser Gln Ser Ser Arg Lys Arg Lys His Asn Gln Ser Ile Arg Val
 245 250 255

Val Val Ala Val Phe Phe Thr Cys Phe Leu Pro Tyr His Leu Cys Arg
 260 265 270

Ile Pro Phe Thr Phe Ser His Leu Asp Arg Leu Leu Asp Glu Ser Ala
 275 280 285

Gln Lys Ile Leu Tyr Tyr Cys Lys Glu Ile Thr Leu Phe Leu Ser Ala
 290 295 300

Cys Asn Val Cys Leu Asp Pro Ile Ile Tyr Phe Phe Met Cys Arg Ser
 305 310 315 320

Phe Ser Arg Arg Leu Phe Lys Lys Ser Asn Ile Arg Thr Arg Ser Glu
 325 330 335

Ser Ile Arg Ser Leu Gln Ser Val Arg Arg Ser Gln Val Arg Ile Tyr
 340 345 350

Tyr Asp Tyr Thr Asp Val
 355

<210> 2

<211> 1489

<212> DNA

<213> Homo sapiens

<400> 2

ccggcgttcc ggagaatttg aaaaagggtgc: ccggcgttccaa atctctaaauq qggtaaggga^60
galacttacc ttgtctggta ggggagatgt. ltcgttttca tgccttacca quaaatccac 120
llccctgeeg accttagttt caaagettat tettaattag agacaagaaa cttgtttcaa' 180
cl.tbuuagaca cctgtatgagg tgaatggaca quccggccacc acaatgaasq mmatacaacc 240
aaggaaatccc tatgtctgaac ccacggcc. atcgccccca agtgtttcc. qccacggcata 300
l.tktqetttaca gtgcacatcaca actgaageal. qgjnttccac ttgacgettg mmmatttacc 360
eaatnouugcg ctgcacggcc zaggagactca cauktccaggc aacaggagcg aqgijyccagg 420
uuuqaaccc acccttcaca atgaatttga ccccaatttgtc ttgccgggtc l.tkatecat 480
l.tatbttytg mcaageatet tgcgtgttgg ttttgcgttgg tggatctttt tccatattttg 540
quulauuare agcttcataat tctatctcaa aaaaatcggt gttgcagacc tttttatgtac 600
qutquacottt ccatttcgaa tagtccatga tgcacqattt ggaccttgggt accl.aaagt 660
tatttcctgc agatacactt cagttttgt:l. l.tatqcaaac atgtataactt: cccatcggtt 720
ccttgggtcg ataagcatttgc atcgctatcl. iuqggtggc zggccattlq qqqccctcg 780
gatgtacagc ataacacctca cgaaygttll. atctqtttgt gtttggglga tcatggctgt 840
tttgcctttg cccaaacatca tccctgtttttt tttttagccca acagaggacn mstatccatga 900
ctgcctttaaa cttaaaagtc ctttgggggt: maaatqgcaat zggccagtc aatltgtgaa 960
cagctgtttg ttgtgtggcg tgcgtgtgtal. ltcgtatcgta tgttacatag mctatccag 1020
gtacatccac aaatccagca ggcaattttat: aatgtcgatca agccgaaagc qmmmcataa 1080
ccagagccatc agggttgttg tggctgtgtt l.t.t. l.tccctgc ttttotaccat al.catttgtg 1140
cagaatttcct ttactttta gtcactttaga cagccctttt gatgaatctg cccchmataat 1200
ccatatattac tgcggaaagaaa ttacactttt cl.tctatgtg tgtaatgttt gcccqgatcc 1260
aataatttac tttttcatgt gtaggtccat: l.tccatgttgg ctgtccaaa aalccmataat 1320
cagaaccagg agtggaaagca tcagatcc. quaaatgtgtq agaagatcgg aqgj.tcqcat 1380
atattatgt tacactgtatg tgcgtgtgtl. l.tatgttgttgc ttggaaatcga l.tatgtgttgc 1440
gtgttaaaaaa atgtttttt tcattaataa aaaaaaaaaa aaaaaaaaag 1489

<210> 3

<211> 269

◀212▶ PKT

<213> Unknown

5220

<223> Description of Unknown Organism: Seven transmembrane segment domain of the rhodopsin family

<400> 3

Gly Asn Thr Leu Val Ile Thr Val Val Ile Cys Arg Tyr Arg Arg Arg Met Arg
1 5 10 15

Thr Pro Met Asn Tyr Phe Ile Val Asn Leu Ala Val Ala Asp Leu Leu
20 25 30

Phe Ser Leu Phe Thr Met Pro Phe Trp Met Val Tyr Tyr Val Met Glu
35 40 45

Gly Arg Thr Pro Phe Gly Asp Phe Met Cys Arg Ile Thr Met Tyr Phe

50	55	60
Asp Tyr Met Asn Met Tyr Ala Ser Ile Phe Phe Leu Thr Cys Ile Ser		
65	70	75
Tic Asp Arg Tyr Ile Trp Ala Ile Cys His Pro Met Arg Tyr Met Arg		
80	85	90
Trp Met Thr Pro Arg His Arg Ala Trp Val Met Ile Ile Ile Ile Trp		
95	100	105
Val Met Ser Phe Leu Ile Ser Met Pro Pro Phe Leu Met Phe Arg Trp		
110	115	120
Ser Thr Tyr Arg Asp Glu Asn Glu Trp Asn Met Thr Trp Cys Met Ile		
125	130	135
Tyr Asp Trp Pro Glu Trp Met Trp Arg Trp Tyr Val Tic Leu Met Thr		
140	145	150
Ile Ile Met Gly Phe Tyr Ile Pro Met Ile Ile Met Leu Phe Cys Tyr		
155	160	165
Trp Arg Ile Tyr Arg Ile Ala Arg Leu Trp Met Arg Met Tic Pro Ser		
170	175	180
Trp Cln Arg Arg Arg Met Ser Met Arg Arg Glu Arg Arg Ile Val		
185	190	195
Lys Met Leu Ile Ile Ile Met Val Val Phe Ile Ile Cys Trp Leu Pro		
200	205	210
Tyr Phe Ile Val Met Phe Met Asp Thr Leu Met Met Trp Trp Phe Cys		
215	220	225
Glu Phe Cys Ile Trp Arg Arg Leu Trp Met Tyr Tic Phe Glu Trp Leu		
225	230	235
Ala Tyr Val Asn Cys Pro Cys Ile Asn Pro Tic Tic Tyr		
240	245	250
<210> 4		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		

<223> Description of Artificial Sequence: synthetic
oligonucleotide primer

<400> 4

atcggttcc ttgggctgat

20

<210> 5

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide primer

<400> 5

tccgagagtc cccaaatgg

19

<210> 6

<211> 29

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: synthetic
oligonucleotide probe

<400> 6

agcattgtac gctatctgaa ggtggtaa

29