# Kernel Method and Support Vector Machines

Nguyen Duc Dung, Ph.D. Institute of Information Technology, VAST

# **Outline**

#### Reference

Books, papers, slides, software

### Support vector machines (SVMs)

- The maximum-margin hyper-plane
- Kernel method

### Implementation

- Approaches
- Sequential minimal optimization (SMO)

### Open problems

### SVMs Approximation

Reduced set method

# Reference

#### Book

- Cristianini, N., Shawe-Taylor, J., An Introduction to Support Vector Machines, Cambridge University Press, (2000). <a href="http://www.support-vector.net/index.html">http://www.support-vector.net/index.html</a>
- Bernhard Schölkopf and Alex Smola. <u>Learning with Kernels</u>. MIT Press, Cambridge, MA, 2002.

#### Paper

C. J. C. Burges. <u>A Tutorial on Support Vector Machines for Pattern Recognition</u>. *Knowledge Discovery and Data Mining*, 2(2), 1998.

#### Slide

N. Cristianini. <u>ICML'01 tutorial</u>, 2001.

#### Software

□ LibSVM (NTU), SVM<sup>light</sup> (joachims.org)

#### Online resource

http://www.kernel-machines.org/

# Classification Problem



How would we classify this data set?

# Linear Classifiers



There are many lines that can be linear classifiers. Which one is the better classifier?

# Margin of a Linear Classifier



- Margin: The minimum distance to the training data
- SVM solution: The linear classifier with maximum margin

# Margin

# of a Linear Function f(x) = w.x + b

**Functional margin** 

$$\hat{\rho}_f(\boldsymbol{x}_i, y_i) = y_i(\boldsymbol{w} \cdot \boldsymbol{x}_i + b)$$

Geometric margin

$$\rho_f(\boldsymbol{x}_i, y_i) = \frac{\hat{\rho}_f(\boldsymbol{x}_i, y_i)}{\|\boldsymbol{w}\|}$$

• Margin  $\rho_f = \min_{i=1...l} \rho_f(x_i, y_i)$ 



SVM solution 
$$f^* = \arg \max_f \rho_f$$

# A Bound on Expected Risk

of a Linear Classifier f = sign(w.x)

With a probability at least  $(1 - \delta)$ ,  $\delta \in (0,1)$ 

$$R[f] \le R_{emp}[f] + \sqrt{\frac{c}{l}} \left( \frac{R^2 \Lambda^2}{\rho_f^2} \ln^2 l + \ln \frac{1}{\delta} \right)$$

where  $R_{emp}$  is training error, l is training size,  $\rho_f$  is the margin,  $||w|| \le \Lambda$ ,  $||x|| \le R$ , c is a constant

### Larger margin, smaller bound

# Finding the Maximum-Margin Classifier



Minimize normal vector

Constrain functional margin ≥ 1

# Soft and Hard Margin



$$\min_{w,b} \frac{1}{2} ||w||^{2}$$
s.t.  $y_{i}(w.x_{i} + b) \ge 1, i = 1,..., l$ 

Hard (maximum) margin



$$\min_{w,b} \frac{1}{2} ||w||^2 \left( +C \sum_{i=1}^n \xi_i^p \right) 
s.t. \quad y_i(wx_i + b) \ge 1 - \xi_i, 
\xi_i \ge 0, i = 1,..., l$$

**Soft** (maximum) margin

# Lagrangian Optimization

Definition 1 Given an optimization problem with convex domain  $\Omega \subseteq \mathbb{R}^d$ 

minimize 
$$f(w), w \in \Omega$$
 (2.20)

subject to 
$$g_i(w) \le 0, i = 1, ..., k$$
 (2.21)

$$h_i(w) = 0, i = 1,..., m$$
 (2.22)

The generalized Lagrangian function is defined as

$$L(w, \alpha, \beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{m} \beta_i h_i(w)$$
 (2.23)

Definition 2 The Lagrangian dual problem of the primal problem is the following problem

maximize 
$$\theta(\alpha, \beta)$$
 (2.24)

subject to 
$$\alpha \ge 0$$
 (2.25)

where  $\theta(\alpha, \beta) = \inf_{w \in \Omega} L(w, \alpha, \beta)$ 

# Kuhn-Tucker Theorem

Theorem 3 (Kuhn-Tucker) Given an optimization problem with convex domain  $\Omega \subseteq \mathbb{R}^d$ 

minimize 
$$f(w), w \in \Omega$$
 (2.27)

subject to 
$$g_i(w) \le 0, i = 1, ..., k$$
 (2.28)

$$h_i(w) = 0, i = 1,..., m$$
 (2.29)

with  $f \in C^1$  convex and  $g_i$ ,  $h_i$  affine, necessary and efficient conditions for a normal point  $w^*$  to be optimum are the existence of  $\alpha^*$  and  $\beta^*$  such that

$$\frac{\partial L(w^*, \alpha^*, \beta^*)}{\partial w} = 0$$

$$\frac{\partial L(w^*, \alpha^*, \beta^*)}{\partial \beta} = 0$$
(2.30)

$$\frac{\partial L(w^*, \alpha^*, \beta^*)}{\partial \beta} = 0 \qquad (2.31)$$

$$\alpha_i^* g_i(w^*) = 0, i = 1, ..., k$$
 (2.32)

$$g_i(w^*) \le 0, i = 1, ..., k$$
 (2.33)

$$\alpha_i \ge 0, i = 1, ..., k$$
 (2.34)

# **Optimization**

$$\min_{w,b} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{n} \xi_i^{p} 
s.t. \ y_i(wx_i + b) \ge 1 - \xi_i,$$

 $\xi_i \geq 0, i = 1,...,l$ 

#### **Primal** problem

$$L(w, b, \xi, \alpha, \beta) = \frac{1}{2}w^2 + C\sum_{i=1}^{l} \xi_i - \sum_{i=1}^{l} \alpha_i (y_i(w \cdot x_i + b) - 1 + \xi_i) - \sum_{i=1}^{l} \beta_i \xi_i$$

$$\frac{\partial L(\boldsymbol{w}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \boldsymbol{w}} = \boldsymbol{w} - \sum_{i=1}^{l} y_i \alpha_i \boldsymbol{x}_i = 0 \quad \boldsymbol{w} = \sum_{\alpha_i \neq 0} y_i \alpha_i \boldsymbol{x}_i$$

$$\frac{\partial L(w, \alpha, \beta)}{\partial \xi_i} = C - \alpha_i - \beta_i = 0$$

$$\frac{\partial L(w, \alpha, \beta)}{\partial b} = \sum_{i=1}^{l} y_i \alpha_i = 0$$

**Dual** problem

$$\min_{\alpha_i} \frac{1}{2} \sum_{i,j=1}^{l} y_i y_j \alpha_i \alpha_j \langle x_i, x_j \rangle - \sum_{i=1}^{l} \alpha_i$$

s.t.: 
$$0 \le \alpha_i \le C, i = 1,...,l$$
,

$$\sum_{i=1}^l y_i \alpha_i = 0.$$

# (Linear) Support Vector Machines

#### Training

$$\left| \min_{\alpha_i} \frac{1}{2} \sum_{i,j=1}^{l} y_i y_j \alpha_i \alpha_j \langle x_i, x_j \rangle - \sum_{i=1}^{l} \alpha_i \right|$$

s.t.: 
$$0 \le \alpha_i \le C, i = 1,...,l$$
,

$$\sum_{i=1}^l y_i \alpha_i = 0.$$

- Quadratic optimization
- □ *l* variables
- $\Box$   $l^2$  coefficients

### Testing

$$f(x) = w \cdot x + b$$

Norm of the hyperplane

$$\mathbf{w} = \sum_{\alpha_i \neq 0} y_i \alpha_i x_i$$

# Kernel Method

- Problem
  - Most datasets are linearly non-separable
- Solution
  - Map input data into a higher dimensional feature space
  - Find the optimal hyperplane in feature space



# Hyperplane in Feature Space

- VC-dimension of a class of functions: the maximum number of points that can be shattered
- ❖ VC-dimension of linear functions in R<sup>d</sup> is d+1
- Dimension of feature space is high
- Linear functions in feature space has high VCdimension, or high capacity



# VC Dimension: Example



Gaussian RBF SVMs of sufficiently small width can classify an arbitrary large number of training points correctly, and thus have infinite VC dimension

### Linear SVMs

#### Training

$$\left| \min_{\alpha_i} \frac{1}{2} \sum_{i,j=1}^{l} y_i y_j \alpha_i \alpha_j \left( x_i, x_j \right) - \sum_{i=1}^{l} \alpha_i \right|$$

s.t.: 
$$0 \le \alpha_i \le C, i = 1,...,l$$
,

$$\sum_{i=1}^l y_i \alpha_i = 0.$$

- Quadratic optimization
- □ *l* variables
- $\Box$   $l^2$  coefficients

### Testing

$$f(x) = sign\left(\sum_{\alpha_i \neq 0} y_i \alpha_i (x, x_i) + b\right)$$

□ Norm of the hyperplane

$$w = \sum_{\alpha_i \neq 0} y_i \alpha_i x_i$$

 $(x_i, \alpha_i), \alpha_i \# 0 - \text{support}$ vector

SVMs work with *pairs* of data (dot product), not sample

### Non-linear SVMs

**Kernel**: to calculate dot product between two vectors in feature space  $K(x,y) = \langle \Phi(x), \Phi(y) \rangle$ 

#### Training

$$\min_{\alpha_{i}} \frac{1}{2} \sum_{i,j=1}^{l} y_{i} y_{j} \alpha_{i} \alpha_{j} \underbrace{K(x_{i}, x_{j})}_{K(x_{i}, x_{j})} - \sum_{i=1}^{l} \alpha_{i}$$
s.t.:  $0 \le \alpha_{i} \le C, i = 1, ..., l,$ 

$$\sum_{i=1}^{l} y_{i} \alpha_{i} = 0.$$

### Testing

$$f(x) = sign\left(\sum_{\alpha_i \neq 0} y_i \alpha_i K(x, x_i) + b\right)$$

Norm of the hyperplane

$$\Psi = \sum_{\alpha_i \neq 0} y_i \alpha_i \Phi(x_i)$$

The maximal margin algorithm works indirectly in feature space via kernel, or  $\Phi$  is not known explicitly

# Kernel

- Linear:  $K(x,y) = \langle x,y \rangle$
- Gaussian:  $K(x,y) = \exp(-\gamma ||x-y||^2)$ 
  - Dimension of feature space: infinite
- Polynomial:  $K(x,y) = \langle x,y \rangle^p$ Dimension of feature space:  $\begin{pmatrix} d+p-1 \\ p \end{pmatrix}$ , where d input space dimension

Theorem 4 (Mercer) To guarantee that a continuous symmetric function K(u, v) in  $L_2(C)$  has an expansion

$$K(u, v) = \sum_{i=1}^{\infty} a_k z_k(u) z_k(v)$$
 (2.53)

with positive coefficients  $a_k > 0$  (i.e., K(u, v) describes an inner product in some feature space), it is necessary and sufficient that the condition

$$\int_{C} \int_{C} K(u, v)g(u)g(v)dudv \ge 0 \qquad (2.54)$$

is valid for all  $g \in L_2(C)$  (C being a compact subset of  $\mathbb{R}^d$ )

# Support Vector Learning

#### Task

- Given a set of labeled data  $T = \{(x_i, y_i)\}_{i=1,\dots,l} \subset R^d \times \{-1,+1\}$
- Find the decision function



### Training

Time:  $O(l^3)$ , Memory:  $O(l^2)$ 

$$\min_{\alpha_i} \frac{1}{2} \sum_{i,j=1}^l y_i y_j \alpha_i \alpha_j K(x_i, x_j) - \sum_{i=1}^l \alpha_i$$
s.t.:  $0 \le \alpha_i \le C, i = 1, ..., l,$ 

$$\sum_{i=1}^l y_i \alpha_i = 0.$$

### Testing

Time: O(Ns)

$$f(x) = sign\left(\sum_{\alpha_i \neq 0} y_i \alpha_i K(x, x_i) + b\right)$$

# MNIST Data: SVM vs. Other

- Data
  - 60,000/10,000 training/testing
- Performance

| Method                                          | Testing<br>error (%) |  |  |
|-------------------------------------------------|----------------------|--|--|
| linear classifier (1-layer NN)                  | 12.0                 |  |  |
| K-nearest-neighbors                             | 5.0                  |  |  |
| 40 PCA + quadratic classifier                   | 3.3                  |  |  |
| SVM, Gaussian Kernel                            | 1.4                  |  |  |
| 2-layer NN, 300 hidden units, mean square error | 4.7                  |  |  |
| Convolutional net LeNet-4                       | 1.1                  |  |  |



Hand written data

(Source: http://yann.lecun.com/)

# SVM: Probability Output

SVM solution

$$f(x) = \sum_{\alpha_i \neq 0} y_i \alpha_i K(x_i, x) + b$$

Probability estimation

$$p(y = +1 | x) \approx \frac{1}{1 + e^{Af(x) + B}}$$

Maximum likelihood approach

$$(A,B) = \underset{a,b}{\arg\min} \ F(a,b) = -\sum_{i=1}^{l} \left( t_i \log(p_i) + (1-t_i) \log(1-p_i) \right)$$
 where  $p_i = p(y = +1 \mid x_i) \approx \frac{1}{1+e^{af(x)+b}},$  
$$t_i = \begin{cases} \frac{N_+ + 1}{N_+ + 2} & \text{if } y_i = +1, \\ \frac{1}{N_- + 1} & \text{if } y_i = -1 \end{cases} , i = 1, \dots, l. (N_+ : \# \text{ positive}, N_+ : \# \text{ negative})$$

# **O**utline

#### Reference

Books, papers, slides, software

### Support vector machines (SVMs)

- The maximum-margin hyperplane
- Kernel method

# Implementation

- Approaches
- Sequential minimal optimization

### Open problems

# **SVM** Training

#### **Problem**

$$\min_{\alpha_i} F(\mathbf{\alpha}) = \frac{1}{2} \sum_{i,j=1}^{l} y_i y_j \alpha_i \alpha_j K_{ij} - \sum_{i=1}^{l} \alpha_i$$

$$| s.t. : 0 \le \alpha_i \le C, i = 1,..., l,$$

$$\sum_{i=1}^{l} \alpha_i y_i = 0$$

#### **Quadratic programming (QP)**

- Obj. function: quadratic w.r.t. α
- Number of variable: I
- Number of parameter: P
- Complexity
  - □ Time:  $O(l^3)$  or  $O(N_S^3 + N_S^2 l + N_S dl)$
  - □ Memory: *O*(*I*<sup>2</sup>)
- Constraint: box, linear

#### **Approach**

#### Gradient method

Modified gradient projection (Bottou et al., 94)

#### <u>Divide-and-conquer</u>

- Decomposition alg. (e.g. Osuna et al., 97, Joachims, 99)
- Sequential minimal optimization (SMO) (Plat, 99)

#### Parallelization

- Cascade SVM (Peter et al., 05)
- Parallel mixture of SVM (Collobert et al., 02)

#### Approximation

- Online and active learning (e. g. Bordes et al., 05)
- Core SVM (Tsang et al., 05, 07)

#### Combination of methods

# **Optimality**

# The Karush-Kuhn-Tucker (KKT) conditions



# **SMO** Algorithm

- Initialize solution (zero)
- While (!StoppingCondition)
- Select two vector {i,j}
- Optimize on {i,j}
- EndWhile

# **SMO:** Optimization

#### Problem

$$\min_{\alpha_i} F(\mathbf{\alpha}) = \frac{1}{2} \sum_{i,j=1}^l y_i y_j \alpha_i \alpha_j K_{ij} - \sum_{i=1}^l \alpha_i$$

s.t.: 
$$0 \le \alpha_i \le C, i = 1,...,l$$
,



$$\rightarrow \forall (i, j) : y_i \alpha_i + y_j \alpha_j = const$$

$$\rightarrow \alpha_i = y_i(const - y_i\alpha_i)$$

### Fixing all $\alpha_k, k \neq i, j$

$$F(\mathbf{\alpha}) = F(\alpha_i) = A\alpha_i^2 + B\alpha_i + C$$

 Updating scheme (without the box constraint)

$$lpha_{i}^{new} = lpha_{i}^{old} + rac{y_{i} \left(E_{j}^{old} - E_{i}^{old}\right)}{2\kappa_{ij}},$$
 $lpha_{j}^{new} = lpha_{j}^{old} + rac{y_{j} \left(E_{i}^{old} - E_{j}^{old}\right)}{2\kappa_{ij}}.$ 

$$E_{i} = \sum_{k=1}^{l} y_{k} \alpha_{k} K(x_{k}, x_{i}) - y_{i}, i = 1,..., l,$$

$$\kappa_{ij} = K_{ii} + K_{jj} - 2K_{ij}$$

# Selection Heuristic and Stopping Condition

Maximum violating pair

$$\begin{cases} i = \arg\max\left\{-E_k \mid k \in I_{up}\right\} \\ j = \arg\min\left\{-E_k \mid k \in I_{low}\right\} \end{cases}$$

Maximum gain

$$\begin{cases} i = \arg\max\left\{-E_k \mid k \in I_{up}\right\} \\ j = \arg\max\left\{\left|\Delta F_{ik}\right| \mid k \in I_{low}, -E_k < -E_i\right\} \end{cases}$$
 where 
$$I_{up} = \{t \mid \alpha_t < C, y_t = +1 \text{ or } \alpha_t > 0, y_t = -1\}$$
 
$$I_{low} = \{t \mid \alpha_t < C, y_t = -1 \text{ or } \alpha_t > 0, y_t = +1\}$$

• Stopping condition:  $\left| \frac{E_i - E_j}{\varepsilon} \right| < \varepsilon (10^{-3})$ 

# Sequential Minimal Optimization

#### Training problem

$$\min_{\alpha_i} \frac{1}{2} \sum_{i,j=1}^l y_i y_j \alpha_i \alpha_j K(x_i, x_j) - \sum_{i=1}^l \alpha_i$$
s.t.:  $0 \le \alpha_i \le C, i = 1, ..., l,$ 

$$\sum_{i=1}^l y_i \alpha_i = 0.$$

#### Functional margin

$$E_i = \sum_{k=1}^l y_k \alpha_k K(x_k, x_i) - y_i$$

#### Selection heuristic

$$i = \arg\max_{k} \{-E_k \mid k \in I_{up}(\alpha)\}$$
$$j = \arg\max_{k} \{ |\Delta L_{ik}| \mid k \in I_{low}(\alpha), E_k < E_i \}$$

### Updating scheme

$$lpha_{i}^{new} = lpha_{i}^{old} + rac{y_{i} \left(E_{j}^{old} - E_{i}^{old}\right)}{2\kappa_{ij}},$$
 $lpha_{j}^{new} = lpha_{j}^{old} + rac{y_{j} \left(E_{i}^{old} - E_{j}^{old}\right)}{2\kappa_{ij}}.$ 

#### Stopping condition

$$|E_i - E_j| < \varepsilon$$



# Support Vector Regression (1)

- Training data  $S = \{(x_i, y_i)\}_{i=1,...,l} \subset \mathbb{R}^N \times \mathbb{R}$
- Linear regressor  $y = f(x) = w \cdot x + b$
- $\epsilon$ -loss function



$$L^{\epsilon}((\boldsymbol{x}_i, y_i), f) = |y_i - f(\boldsymbol{x}_i)|_{\epsilon} = \max(0, |y_i - f(\boldsymbol{x}_i)| - \epsilon)$$

# Support Vector Regression (2)

Optimization: minimizing

$$\frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{l} L^{\epsilon}((\mathbf{x}_{i}, y_{i}), f)$$

Dual problem

# Open Problems

#### Model selection

- Kernel type
- Parameter setting

### Speed and size

- □ Training: time  $O(N_S^2 l)$ , space  $O(N_S l)$
- $\square$  Testing:  $O(N_S)$

# Multi-class application

- One-versus-rest
- One-versus-one

### Categorical data

# Open Problems

#### Model selection

- Kernel type
- Parameter setting

# Speed and size

- □ Training: time  $O(N_S^2 l)$ , space  $O(N_S l)$
- $\Box$  Testing:  $O(N_S)$

# Multi-class application

- One-versus-rest
- One-versus-one
- Categorical data



# Reduced Set Method

#### To replace original machine

$$y = sign\left(\sum_{i=1}^{Ns} \alpha_i K(x_i, x) + b\right)$$
 (1)

#### By a simplified machine

$$y' = sign\left(\sum_{j=1}^{Nz} \beta_j K(z_j, x) + b\right) \quad (2)$$

with 
$$N_Z << N_S$$
, (1) and (2) are similar

$$\{(x_i, \alpha_i)\}_{i=1,...,Ns}$$
 – original vectors  $\{(z_i, \beta_i)\}_{j=1,...,Nz}$  – reduced vectors



# Performance

#### Dataset

| Name     | Dimension | # Class | # Training | #Testing |
|----------|-----------|---------|------------|----------|
| DNA      | 180       | 3       | 2,000      | 1,186    |
| Satimage | 36        | 6       | 4,435      | 2,000    |
| Shuttle  | 9         | 7       | 43,500     | 14,500   |
| USPS     | 256       | 10      | 7,291      | 2,007    |

#### Result

| Data    | DNA |          | Satimage |          | Shuttle |          | USPS |          |
|---------|-----|----------|----------|----------|---------|----------|------|----------|
| % of SV | #SV | Acc. (%) | #SV      | Acc. (%) | #SV     | Acc. (%) | #SV  | Acc. (%) |
| 100%    | 843 | 95.62    | 1215     | 89.75    | 4191    | 99.03    | 1670 | 94.77    |
| 50%     | 422 | 95.62    | 608      | 89.75    | 2096    | 99.03    | 835  | 94.77    |
| 10%     | 84  | 95.53    | 122      | 89.45    | 419     | 99.03    | 167  | 94.67    |
| 5%      | 42  | 95.19    | 61       | 89.25    | 210     | 99.03    | 84   | 93.92    |
| 1%      | 8   | 95.03    | 12       | 78.00    | 42      | 99.04    | 45   | 89.59    |

### High reduction rate, no change in predictive accuracy

# **Practice**

# Download the following SVM tools

LibSVM: <u>LIBSVM -- A Library for Support Vector</u>
 <u>Machines (ntu.edu.tw)</u>

### Select one classification problem

- From UCI repository
- From LibSVM data sets

# Report on progress in selected problem

- State-of-the-art works
- SVM: model selection, performance