2002 AP® CALCULUS AB FREE-RESPONSE QUESTIONS (Form B)

CALCULUS AB **SECTION II, Part B**

Time—45 minutes Number of problems—3

No calculator is allowed for these problems.

- 4. The graph of a differentiable function f on the closed interval [-3, 15] is shown in the figure above. The graph of f has a horizontal tangent line at x = 6. Let $g(x) = 5 + \int_{6}^{x} f(t)dt$ for $-3 \le x \le 15$.
 - (a) Find g(6), g'(6), and g''(6).
 - (b) On what intervals is g decreasing? Justify your answer.
 - (c) On what intervals is the graph of g concave down? Justify your answer.
 - (d) Find a trapezoidal approximation of $\int_{-3}^{15} f(t)dt$ using six subintervals of length $\Delta t = 3$.
- 5. Consider the differential equation $\frac{dy}{dx} = \frac{3-x}{y}$.
 - (a) Let y = f(x) be the particular solution to the given differential equation for 1 < x < 5 such that the line y = -2 is tangent to the graph of f. Find the x-coordinate of the point of tangency, and determine whether f has a local maximum, local minimum, or neither at this point. Justify your answer.
 - (b) Let y = g(x) be the particular solution to the given differential equation for -2 < x < 8, with the initial condition g(6) = -4. Find y = g(x).