Chapter 2

Basic Topology

2.1 Notes

11/1: • Equivalence relationships are denoted $A \sim B$.

- These are...
 - Reflexive $(A \sim A)$.
 - Symmetric $(A \sim B \iff B \sim A)$.
 - Transitive $(A \sim B \& B \sim C \Longrightarrow A \sim C)$.
- Equivalence relations give rise to equivalence classes.
- Countable (set A): A set A such that $A \sim \mathbb{N}$, in the sense that there exists a one-to-one and onto map from $\mathbb{N} \to A$.
 - Alternatively, A can be written in the form $A = \{f(n) : n \in \mathbb{N}\}.$
- Finite countable vs. infinite countable (see Rudin (1976)).
- \bullet N denotes the natural numbers.
- \mathbb{N}_0 denotes the natural numbers including 0.
- Z denotes the integers.
- We know that $\mathbb{N} \sim \mathbb{Z}$: Let $f : \mathbb{N} \to \mathbb{Z}$ be defined by

$$f(n) = \begin{cases} \frac{n}{2} & n \text{ even} \\ \frac{n-1}{2} & n \text{ odd} \end{cases}$$

- More facts.
 - 1. Every infinite subset of a countable set is countable.
 - 2. Unions of countable sets are countable.
 - If the sets E_n for some at most countable list of numbers are countable, then $\bigcup_n E_n$ is countable.
 - Soug goes over the diagonalization method of counting.
 - 3. n-fold Cartesian products of countable sets are countable (we induct on n).
 - If A is countable and B is countable, then $A \times B$ is countable.
 - If A is finite and to each $\alpha \in A$ we assign a countable set E_{α} , $\otimes_{\alpha \in A} E_{\alpha}$ is countable.
- Metric space: A space X along with a metric $d: X \times X \to [0, \infty)$ such that

- $-d(x,y) > 0 \text{ iff } x \neq y, \text{ and } d(x,x) = 0 \text{ iff } x = 0.$
- d(x,y) = d(y,x).
- $d(x,y) \le d(x,z) + d(z,y).$
- Example (\mathbb{R}^n) :
 - We may define d by

$$d(x,y) = \sqrt[2]{\sum (x_i - y_i)^2}$$

- We can also define the p-metrics (recall normed spaces) with p where the 2's are.
- Example $(X_p = \{f : Y \to \mathbb{R} : 1 \le p < \infty, \int_Y |f|^p dy < \infty\})$:
 - This is ℓ_p .
 - Define

$$||f - g||_p = \left[\int_Y |f - g|^p \, \mathrm{d}y \right]^{1/p}$$

- Convergence: $x_n \to x \iff d(x_n, x) \to 0$.
- Neighborhood: The set of all points a distance less than r away from p. Denoted by $N_r(p)$. Given by

$$N_r(p) = \{ q \in X : d(p,q) < r \}$$

- Limit point (of E): A point p such that every neighborhood of p intersects E at a point other than p. Also known as accumulation point.
 - Symbolically,

$$N_r(p) \cap (E \setminus \{p\}) \neq \emptyset$$

for all r > 0.

- Isolated point (of E): A point p such that $p \in E$ and p is not a limit point of E.
- Closed (set E): A set E that contains all of its limit points.
- Interior (point p): A point p such that there exists $N_r(p) \subset E$.
- Open (set E): A set E, all points of which are interior points.
- **Perfect** (set E): A set E that is closed and every point of E is a limit point of E.
- Bounded (set E): There exists a number M and a $y \in X$ such that $E \subset \{p : d(p,y) \le M\}$.
- Dense (set E in X): A set E such that every point of X is a limit point of E or a point of E, itself.
- 11/3: Every neighborhood is an open set.
 - If p is a limit point of E, every neighborhood of p contains infinitely many points of E.
 - Thus, a finite set cannot have a limit point.
 - Prove by contradiction: Suppose there is a neighborhood that contains only finitely many points of E. Then the neighborhood with radius smaller than the distance to the closest point does not contain any points of E, a contradiction.
 - E is open iff $E^{c[1]}$ is closed.
 - Assume E^c closed. If $p \in E$, then p is not a limit point of E^c . It follows that there exists a neighborhood of p that is entirely contained within E, so p is interior, as desired.

 $^{^{1}}$ The complement of E.

- Suppose E is open. Let p be any limit point of E^c . Then $p \in E^c$.
- F is closed iff F^c is open.
- If $(G_{\alpha})_{\alpha \in A}$ is a family of open sets in X, then the union is open.
 - Let $p \in \bigcup_{\alpha \in A} G_{\alpha}$. Then $p \in G_{\alpha}$ for some $\alpha \in A$. It follows that p is an interior point of G_{α} , so thus an interior point of the union of G_{α} with everything else.
- Finite intersections of open sets are open.
 - In the infinite case $\bigcap_{n\in\mathbb{N}}(-1/n,1/n)=\{0\}$, an intersection of infinitely many open sets is closed.
 - However, in the finite case, just consider the neighborhood with the smallest radius and take this
 one.
- The intersection of closed sets is closed.
- The union of finitely many closed sets is closed.
 - These follow from the previous two by De Morgan's rule.
- Let $\bar{E} = E \cup E'$ where E' is the set of limit points of E.
- Let X be a metric space and $E \subset X$. Then
 - 1. \bar{E} is closed.
 - WTS: \bar{E}^c is open. Let $p \in \bar{E}^c$. Then p is neither in E nor is it a limit point of E. Thus, there exists a neighborhood of \bar{E}^c containing entirely points of \bar{E}^c . Therefore, \bar{E}^c is open, so \bar{E} is closed.
 - 2. $E = \bar{E}$ iff E is closed.
 - $-\bar{E}$ is closed (by the above), so $E=\bar{E}$ is closed.
 - -E is closed implies $E' \subset E$, so $E = E \cup E' = \bar{E}$.
 - 3. $\bar{E} \subset F$ for any closed $F \supset E$.
 - If $E \subset F$, then any limit point of E will be a limit point of F. Thus, $E' \subset F'$. Then $\bar{E} = E \cup E' \subset F \cup F' = \bar{F} = F$ where the last equality holds because F is closed.
- Types of sets.

	Closed	Open	Perfect	Bounded
$\{z\in\mathbb{Q}: z <1\}$	N	Y	N	Y
$\{z\in\mathbb{Q}: z \leq 1\}$	Y	N	Y	Y
Nonempty finite set	Y	N	N	Y
\mathbb{Z}	Y	N	N	N
$\{1/n:n\in\mathbb{N}\}$	N	N	N	Y
\mathbb{R}^2	Y	Y	Y	N
(a,b)	N	?	N	Y

Table 2.1: Types of sets.

- Relatively open (set E to Y): A set $E \subset Y \subset X$ such that if $p \in E$, then there exists a Y-neighborhood of E contained in E.
- Let $N_r^X(p) = \{y \in X : d(y,p) < r\}$ be a neighborhood of p in X, and let $N_r^Y(p) = \{y \in Y : d(y,p) < r\}$ be a neighborhood of p in Y. Then $N_r^Y(p) = N_r^X(p) \cap Y$.

- E is open relative to Y iff $E = G \cap Y$ where G is open relative to X.
- Introduces the supremum.
- If $E \subset \mathbb{R}$, $E \neq \emptyset$, and E is bounded above, sup $E < \infty$.
- Let $y = \sup E$. Then $y \in \bar{E}$.
- There exists a sequence $a_n \in A$ such that $a_n \to x = \sup A$.
- A is compact iff any open cover of the set has a finite subcover.
- Study and know all of these proofs.
- 11/5: Compactness: Defines compactness in terms of open covers.
 - Finite sets are compact.
 - Compactness is "absolute" (i.e., it is not a relative property like openness).
 - If $K \subset Y \subset X$, then K is compact relative to X iff K is compact relative to Y.
 - V is open relative to Y iff $V = G \cap Y$ where G is open relative to X.
 - Compact implies closed.
 - We will show K compact implies K^c open.
 - WTS: For all $p \in K^c$, there exists $N_r(p) \subset K^c$ such that $N_r(p) \cap K = \emptyset$.
 - Let $p \in K^c$.
 - Define an open cover of K by $G = \{N_{d(p,q)/2}(q) : q \in K\}.$
 - Since K is compact, there exists a finite subcover $\{N_{r_i}(q_i)\}\subset G$ of K.
 - Let $r = \min r_i$.
 - Then $N_r(p)$ does not intersect any $N_{r_i}(q_i)$, i.e., $N_r(p)$ does not contain any point of K, as desired.
 - A closed subset of a compact set is compact.
 - Let K be compact and let $F \subset K$ be closed.
 - Take any open cover of F. Extend it to an open cover of K. Take the finite subcover of K. Naturally, this finite subcover is also a finite cover of $F \subset K$.
 - F closed, K compact implies $F \cap K$ compact.
 - $F \cap K$ is closed (F, K are closed).
 - $-F \cap K$ closed $\subset K$ compact implies $F \cap K$ closed.
 - If $(K_{\alpha})_{\alpha \in A}$ is compact in X with finite intersection property (every intersection of any finite number of these sets is nonempty), then $\bigcap_{\alpha \in A} K_{\alpha} \neq \emptyset$.
 - Argue by contradiction.
 - Let $G_{\alpha} = K_{\alpha}^{c}$.
 - Assume the intersection is empty. Assume WLOG that no point of K_1 is in any of the other K_{α} 's.
 - Then $\{G_{\alpha}\}_{{\alpha}\in A}$ be an open cover of K_1 .
 - K_1 compact implies there is a finite subcover $G_{\alpha_1}, \ldots, G_{\alpha_n}$.
 - Then

$$K_1 \subset G_{\alpha_1} \cup \cdots \cup G_{\alpha_n} = K_{\alpha_1}^c \cup \cdots \cup K_{\alpha_n}^c = (K_{\alpha_1} \cap \cdots \cap K_{\alpha_n})^c$$

where the last equality holds by De Morgan's law.

- This implies that $K_1 \cap (K_{\alpha_1} \cap \cdots \cap K_{\alpha_n}) = \emptyset$, contradicting the finite intersection property.
- Let E be an infinite subset of a compact K. Then E has a limit point in K.
 - Argue by contradiction.
 - Suppose for all $p \in K$, there exists $N_r(p)$ such that $N_r(p) \cap E = \{p\}$.
 - Consider the set $\{N_r(p): p \in K\}$. This is an open cover of K. Thus, there exists a finite subcover of it. But since $E \subset K \subset N_{r_1}(p_1) \cup \cdots \cup N_{r_n}(p_n) = \{p_1\} \cup \cdots \cup \{p_n\}$, E is finite, a contradiction.
- 2-cell (in \mathbb{R}^2): A set that is the Cartesian product of two closed intervals.

Figure 2.1: 2-cell.

- Generalizes to k-cells.
- Let $I_n = [a_n, b_n] \subset \mathbb{R}$ such that $I_{n+1} \subset I_n$. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.
 - We know that $a_n \leq a_{m+n} \leq b_{m+n} \leq b_n$ for all m, so $\sup a_n \leq b_m$ for all m (and $\sup a_n \geq a_m$ for all m by definition). Thus, $\sup a_n \in \bigcap I_n$.
- Let I_k be a k-cell in \mathbb{R}^k such that $I_k \supset I_{k+1}$. Then $\bigcap_k I_k \neq \emptyset$.
 - Use the previous result once in each dimension to construct $\mathbf{x} = (x_1, \dots, x_k) \in \bigcap_k I_k \neq \emptyset$.
- Every k-cell is compact.

Figure 2.2: k-cells are compact.

- Argue by contradiction.
- Consider an open cover $\{G_{\alpha}\}$ of the k-cell I^1 . If it has a finite subcover, we're done. So suppose it doesn't have a finite subcover. Split the k-cell into 2^k chunks. At least one of the chunks I^2 must not have a finite subcover or I^1 would have a finite subcover.
- Split that one into 2^k chunks. At least one of the chunks I^3 must not have a finite subcover.
- Continue.
- Thus, we have a decreasing family of k-cells, so by the previous result, their $\bigcap I^n \neq \emptyset$.
- Let $\mathbf{x} \in \bigcap I^n$. Naturally, $\mathbf{x} \in G_\alpha$ for some α . Since G_α is open, there exists $N_r(\mathbf{x}) \subset G_\alpha$.
- However, since the I^n keep shrinking in size forever, we can find an $I^n \subset N_r(\mathbf{x}) \subset G_\alpha$, contradicting the supposition that I^n cannot be covered by finitely many (let alone 1) G_α 's.

- Heine-Borel theorem: Let $E \subset \mathbb{R}^k$. Then TFAE^[2]
 - 1. E is closed and bounded.
 - 2. E is compact.
 - 3. Every infinite subset of E has a limit point in E.
 - (1 \Rightarrow 2) E closed and bounded implies E is a closed subset of some I_k , so it's compact.
 - $-(2 \Rightarrow 3)$ Already done.
 - $-(3 \Rightarrow 1)$
 - \blacksquare Suppose E not bounded. Then there is an infinite sequence of points in E that never converges. Contradiction.
 - Suppose E is not closed. Then there exists a sequence of points in E which "converges" to an $x_0 \notin E$.
- 11/8: Hewitt and Stromberg (1965) has harder analysis problems than Rudin (1976).
 - Theorem: If P is a nonempty perfect subset of \mathbb{R}^k , then P is uncountable.

Figure 2.3: Nonempty perfect sets are uncountable.

- P perfect implies P infinite.
- Suppose P is countable. Let $P = \{x_1, x_2, \dots\}$.
- Start with x_1 . Take an open neighborhood V_1 of x_1 . Since x_1 is a limit point of P, there will be another point $x_2 \in P$ in V_1 . Choose V_2 to be a neighborhood of x_2 such that $\bar{V}_2 \subset V_1$ and $x_1 \notin \bar{V}_2$.
- Keep going there is a point $x_3 \in P$ in V_2 , choose an appropriate neighborhood, etc.
- Thus, we have a sequence of closed compact sets such that $\bar{V}_n \supset \bar{V}_{n+1}$ $(n \in \mathbb{N})$. It follows that $\bigcap \bar{V}_n \neq \emptyset$.
- We also know that $V_n \cap P \neq \emptyset$ for each n.
- Let $K_n = V_n \cap P$. Each K_n is compact and $K_n \supset K_{n+1}$ for each n. Therefore, by compactness, $\bigcap K_n \neq \emptyset$. But the construction implies that $\bigcap K_n = \emptyset$ because we exhausted the whole sequence of possible points $x_i \in P$.
- Corollary: Any interval is uncountable.
- The Cantor set:
 - Let $E_0 = [0, 1]$.
 - Take out the middle third, so that $E_1 = [0, 1/3] \cup [2/3, 1]$.
 - Take out the middle thirds of the remaining intervals and keep going.
 - Thus, we are building a decreasing family of compact sets, so the overall intersection $E = \bigcap E_n$ of every set is nonempty.

 $^{^2}$ The following are equivalent.

Figure 2.4: Constructing the Cantor set.

- $-E^n$ is the union of 2^n closed intervals of length n/3. Thus, the overall length of E^n is $(2/3)^n$.
- Thus, we have a compact nonempty set with Lebesgue measure zero.
- E does not contain any segment of the form

$$\left(\frac{3k+1}{3^m}, \frac{3k+2}{3^m}\right)$$

for $k, m \in \mathbb{N}$.

- Therefore, no segment of the form (α, β) is contained in E (any segment of said form contains a segment of the above form).
- Moreover, E (the Cantor set) is perfect.
 - Let $x \in E$. WTS: For all segments S containing $x, S \cap (E \setminus \{x\}) \neq \emptyset$.
 - \blacksquare Let S be an arbitrary such segment...
- Consider the **Devil's staircase**.
 - $-0 = \int_0^1 F'(x) dx = F(1) F(0) = 1$. This function does not obey the fundamental theorem of calculus. A function satisfies the fundamental theorem of calculus if and only if it is absolutely continuous.
- Connected sets (motivation):
 - In a convex set, you can connect any two points with a straight line.
 - In a nonconvex connected set, there exist points that you must connect with a curve.
 - In a disconnected set, there exist points that cannot be connected via a line whose points lie wholly in the set.
- Connected (set E): A set E that is not the union of two separated sets.
- **Separated** (sets A, B): Two sets $A, B \subset X$ that are nonempty and such that $\bar{A} \cap B = \emptyset$, and $A \cap \bar{B} = \emptyset$.
- Theorem: $E \subset \mathbb{R}$ is connected iff $x, y \in E$ and x < z < y implies $z \in E$.
 - If there is a $z \notin E$ between x, y, then $\{x \in E : x < z\}$ and $\{x \in E : z < y\}$ are separated sets, so E is not connected.

2.2 Chapter 2: Basic Topology

From Rudin (1976).

11/6:

- Countable (set A): A set A that is in bijective correspondence with the set of all positive integers. Also known as enumerable, denumerable.
- At most countable (set A): A set A that is finite or countable.

- An alternative definition of an **infinite** set would be a set that is equivalent to one of its proper subsets.
- Theorem 2.8: Infinite subsets of countable sets are countable.
- Theorem 2.12: $\{E_n\}$ a countable family of countable sets implies $\bigcup E_n$ is countable.
- Corollary: A at most countable, B_{α} at most countable for all $\alpha \in A$ implies $\bigcup_{\alpha} B_{\alpha}$ is at most countable.
- Theorem 2.13: Finite Cartesian products of countable sets are countable.
- Corollary: \mathbb{Q} is countable.
- Theorem 2.14: Let A be the set of all sequences whose elements are the digits 0 and 1. This set A is uncountable.

Proof. Let $E = \{s_1, s_2, \dots\}$ be an arbitrary countable subset of A, where each s_j is a sequence whose elements are the digits 0 and 1. Let s be the sequence, the n^{th} term of which is the opposite of the n^{th} term of s_n (i.e., if the n^{th} term of s_n is 0, we set the n^{th} term of s equal to 1). This guarantees that s is distinct from each of the s_j , i.e., that $s \notin E$. It follows that $E \subsetneq A$, i.e., that every countable subset of A is a proper subset of A. Therefore, A must be uncountable (for otherwise A would be a proper subset of A, a contradiction).

- The idea of this proof is called **Cantor's diagonalization process**.
- Since every real number can be represented as a binary sequence of numbers, i.e., $A \sim \mathbb{R}$, the reals are uncountable.
- Metric space: A set X such that with any two points $p, q \in X$, there is associated a real number d(p,q) such that
 - 1. d(p,q) > 0 if $p \neq q$; d(p,p) = 0.
 - 2. d(p,q) = d(q,p).
 - 3. $d(p,q) \leq d(p,r) + d(r,q)$ for any $r \in X$.
- **Distance** (from $p \in X$ to $q \in X$, X a metric space): The real number d(p,q).
- Distance function: A function $d: X \times X \to \mathbb{R}$ that sends $(p,q) \mapsto d(p,q)$. Also known as metric.
- Every subset of a metric space is a metric space in its own right under the same distance function.
- Segment (from a to b): The set of all real numbers x such that a < x < b. Denoted by (a, b).
- Interval (from a to b): The set of all real numbers x such that $a \le x \le b$. Denoted by [a, b].
- **k-cell**: The set of all points $\mathbf{x} = (x_1, \dots, x_k) \in \mathbb{R}^k$ whose coordinates satisfy the inequalities $a_i \leq x_i \leq b_i$ where $a_i < b_i$ for each $1 \leq i \leq k$.
 - Note that a 1-cell is an interval and a 2-cell is a **rectangle**.
- Convex (set E): A subset E of \mathbb{R}^k such that

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in E$$

for all $\mathbf{x}, \mathbf{y} \in E$ and $0 < \lambda < 1$.

- Balls and k-cells are both convex.
- Theorem 2.19: Every neighborhood is open.
- Theorem 2.20: p a limit point of E implies $N_r(p)$ contains infinitely many points of E.
- Corollary: Finite sets have no limit points.

- The segment (a, b) is open as a subset of \mathbb{R}^1 , but not open as a subset of \mathbb{R}^2 .
- Theorem 2.22: $\{E_{\alpha}\}$ a collection of sets implies

$$\left(\bigcup_{\alpha} E_{\alpha}\right)^{c} = \bigcap_{\alpha} E_{\alpha}^{c}$$

- Theorem 2.23: E open iff E^c closed.
- Corollary: F closed iff F^c open.
- Theorem 2.24:
 - (a) $\bigcup G_{\alpha}$ open for any collection $\{G_{\alpha}\}$ of open sets.
 - (b) $\bigcap F_{\alpha}$ closed for any collection $\{F_{\alpha}\}$ of closed sets.
 - (c) $\bigcap G_{\alpha}$ open for any finite collection $\{G_{\alpha}\}$ of open sets.
 - (d) $\bigcup F_{\alpha}$ closed for any finite collection $\{F_{\alpha}\}$ of closed sets.
- Theorem 2.27: $E \subset X$ a metric space implies
 - (a) \bar{E} closed.
 - (b) $E = \bar{E}$ iff E closed.
 - (c) $\bar{E} \subset F$ for every closed $F \supset E$.
- Theorem 2.28: $E \subset \mathbb{R}$ nonempty and bounded above implies $\sup E \in \bar{E}$.
- Theorem 2.30: $Y \subset X$ implies $E \subset Y$ open wrt Y iff $E = Y \cap G$ for some open $G \subset X$.
- Theorem 2.33: $K \subset Y \subset X$ implies K compact wrt. X iff K compact wrt. Y.
- Since compactness is not relative, while it makes no sense to talk about *open* or *closed* metric spaces, it does make sense to talk about *compact* metric spaces.
- Theorem 2.34: $K \subset X$ (K compact, X a metric space) implies K closed.
- Theorem 2.35: $F \subset K$ (F closed, K compact) implies F compact.
- Corollary: F closed and K compact imply $F \cap K$ compact.
- Theorem 2.36: $\{K_{\alpha}\}$ a collection of compact subsets of X a metric space with the intersection of any finite subcollection of $\{K_{\alpha}\}$ nonempty implies $\bigcap K_{\alpha}$ nonempty.
- **Decreasing** (sequence of sets $\{K_n\}$): A sequence of sets $\{K_n\}$ such that $K_n \supset K_{n+1}$ for all $n \in \mathbb{N}$.
- Corollary: $\{K_n\}$ a decreasing sequence of nonempty compact sets implies $\bigcap_{1}^{\infty} K_n \neq \emptyset$.
- Theorem 2.37: $E \subset K$ (E infinite, K compact) implies E has a limit point in K.
- Theorem 2.38: $\{I_n\}$ a decreasing sequence of intervals in \mathbb{R}^1 implies $\bigcap_{1}^{\infty} I_n \neq \emptyset$.
- Theorem 2.39: $\{I_n\}$ a decreasing sequence of k-cells implies $\bigcap_{1}^{\infty} I_n \neq \emptyset$.
- \bullet Theorem 2.40: k-cells are compact.
- Theorem 2.41 (Heine-Borel Theorem): The following are equivalent for any $E \subset \mathbb{R}^k$.
 - (a) E closed and bounded.
 - (b) E compact.
 - (c) Every infinite subset of E has a limit point in E.

- Theorem 2.42 (Weierstrass Theorem): Every bounded infinite subset of \mathbb{R}^k has a limit point in \mathbb{R}^k .
- Theorem 2.43: P a nonempty perfect set in \mathbb{R}^k implies P is uncountable.

Proof. Since P is nonempty and perfect, there exists a limit point of P. It follows that P is infinite.

Now suppose for the sake of contradiction that P is countable, and denote the elements of P by $\mathbf{x}_1, \mathbf{x}_2, \ldots$. We now construct a sequence $\{V_n\}$ of neighborhoods, as follows. Let $V_1 = N_r(\mathbf{x}_1)$. Clearly, $V_1 \subset P$ since $\mathbf{x}_1 \in P$. It follows that since V_1 is a neighborhood that V_1 contains infinitely many points of P. Now suppose inductively that V_n has been constructed. Thus, by analogous conditions to those on V_1 , we may let V_{n+1} be a neighborhood such that (i) $\bar{V}_{n+1} \subset V_n$, (ii) $\mathbf{x}_n \notin \bar{V}_{n+1}$, and (iii) $V_{n+1} \cap P$ is nonempty. By (iii), we can continue on to construct V_{n+2} , and so on and so forth.

Let $K_n = \bar{V}_n \cap P$. Since \bar{V}_n is closed and bounded, \bar{V}_n is compact. Additionally, since $\mathbf{x}_n \notin K_{n+1}$ for each n, no point of P lies in $\bigcap_{1}^{\infty} K_n$. Thus, since each $K_n \subset P$, $\bigcap_{1}^{\infty} K_n$ is empty. But this contradicts our previous result that since each K_n is nonempty, compact, and such that $K_n \supset K_{n+1}$, $\bigcap_{1}^{\infty} K_n$ is nonempty.

- Corollary: Every interval [a, b] is uncountable. In particular, \mathbb{R} is uncountable.
- Cantor set: The set resulting from the following construction. Let $E_0 = [0, 1]$. Remove the segment (1/3, 2/3), so that $E_1 = [0, 1/3] \cup [1/3, 2/3]$. Now remove the middle third of these two intervals to create E_2 . Continue on indefinitely.
 - This is a perfect set in \mathbb{R}^1 which contains no segment.
- Separated (sets A, B): Two subsets A, B of a metric space X such that $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty.
- Connected (set E): A set E that is not the union of two nonempty separated sets.
- Separated sets are disjoint, but disjoint sets are not necessarily separated (consider [0, 1] and (1, 2)).
- Theorem 2.47: $E \subset \mathbb{R}^1$ connected iff $x, y \in E$ and x < z < y implies $z \in E$ for all such $x, y, z \in E$.