Calculus on Manifolds

Nutan Nepal

February 3, 2019

1 1-1

2 1-2

Theorem 2.1 (Heine-Borel Theorem). The closed interval [a, b] is compact.

Proof. If \mathcal{O} is an open cover of [a,b], let

 $A = \{x : a \le x \le b \text{ and } [a, x] \text{ is covered by some finite number of open sets in } \mathcal{O}\}.$

We know that $a \in A$ since we can choose any open set in \mathcal{O} containing a. A certainly has a least upper bound since A is bounded above by b. So, we will show that if some α is the least upper bound of A, then $\alpha \in A$ and $\alpha = b$.

Since $\alpha = \sup A$, for every $x \in A$, there exists an ε such that $\alpha - x < \varepsilon$. Since [a, x] is covered by some finite number of open sets, we can choose any open ε -neighborhood centered at α . Hence, we see that $[a, \alpha]$ is also covered by finitely many open sets. This shows $\alpha \in A$.

To show that $\alpha = b$, assume that $\alpha < b$. Since, we can find some x' between α and b, such that x' is contained in some open neighborhood around α , we see that $[a, \alpha]$ is covered by a single open set. Then certainly, $x' \in A$. But this contradicts that $\alpha = \sup A$. Hence, $\alpha = b$.

3 1-3

Theorem 3.1. If $A \subset \mathbf{R}^n$, a function $f : A \to \mathbf{R}^m$ is continuous if and only if for every open set $U \subset \mathbf{R}^m$ there is some open set $V \subset \mathbf{R}^n$ such that $f^{-1}(U) = V \cap A$.

Proof.

1. [1-23] If $f:A\to \mathbf{R}^m$ and $a\in A$, show that $\lim_{x\to a}f(x)=b$ if and only if $\lim_{x\to a}f_i(x)=b_i$ for i=1,...,m.

Solution: If $\lim_{x\to a} f(x) = b$, then for every $\varepsilon > 0$, we can find a $\delta > 0$ such that

$$0 < \|x - a\| < \delta \implies \|f(x) - f(a)\| < \varepsilon.$$

Then we have

$$\sum_{i=1}^{m} (f_i(x) - b_i)^2 < \varepsilon$$

$$\implies |f_i(x) - b_i| < \sqrt{\varepsilon} \quad \text{for } i = 1, ..., m$$

This implies that $\lim_{x\to a} f(x) = b_i$ for i = 1, ..., m.

2. [1-25]Prove that a linear transformation $T: \mathbf{R}^n \to \mathbf{R}^m$ is continuous.

Solution:

Proof. We need to show that $T: \mathbf{R}^n \to \mathbf{R}^m$ is continuous at all $a \in \mathbf{R}^n$. That is, for every $\varepsilon > 0$ we can find a $\delta > 0$ such that $0 < ||x - a|| < \delta \implies ||T(x) - T(a)|| < \varepsilon$, where $x \in \mathbf{R}^n$. But we have,

$$||T(x) - T(a)|| = ||T(x - a)|| \le M||x - a||$$

for some $M \in \mathbf{R}$. So for any given $\varepsilon > 0$, we can choose $\delta = \varepsilon/M$. Then certainly, if $0 < ||x - a|| < \delta$, then

$$||T(x) - T(a)|| \le M||x - a|| < M\delta = \varepsilon.$$

So it follows that the linear transformation is continuous.

3. [1-29]If A is compact, prove that every continuous function $f:A\to \mathbf{R}$ takes on a maximum and a minimum value.

Solution:

Proof. Since A is compact and f is continuous, we know that the image of A under f is compact in \mathbf{R} . Hence, it follows from 3.1, that f takes on a maximum and a minimum value.

Lemma 3.2. A compact set in R has a maximum and a minimum value.

Proof. We know that a compact set is closed and bounded and in \mathbf{R} , a compact set is in the form [a,b]. And since $a,b \in [a,b]$, all we need to show is that a and b are infimum and supremum, respectively, of the given interval.

4. [1-30] Let $f:[a,b]\to \mathbf{R}$ be an increasing function. If $x_1,...,x_n\in[a,b]$ are distinct, show that

$$\sum_{i=1}^{n} o(f, x_i) \le f(b) - f(a).$$

Solution: Let order be defined in $\{x_1, ..., x_n\}$ such that $x_1 < ... < x_n$, then since f is an increasing function, we get $f(x_1) \le ... \le f(x_n)$. We have

$$o(f, x_i) = \lim_{\delta \to 0} \left(M(x_i, f, \delta) - m(x_i, f, \delta) \right)$$

where,

$$M(x_i, f, \delta) = \sup \{ f(x) : x \in [a, b] \text{ and } ||x - x_i|| < \delta \},$$

 $m(x_i, f, \delta) = \inf \{ f(x) : x \in [a, b] \text{ and } ||x - x_i|| < \delta \}.$

If we denote a δ -neighborhood of some $x_i \in [a, b]$ by $N_{\delta}(x_i)$, then since $\delta \to 0$, we can choose a sufficiently small $\delta > 0$ such that

$$\bigcap_{i=1}^{n} N_{\delta}(x_i) = \phi.$$

Then for all such δ we have,

$$f(x_{i+1}) \ge M(x_i, f, \delta) \ge f(x_{i-1})$$
, and $f(x_{i+1}) \ge m(x_i, f, \delta) \ge f(x_{i-1})$.

We simplify the given summation as

$$\sum_{i=1}^{n} o(f, x_i) = \lim_{\delta \to 0} \sum_{i=1}^{n} (M(x_i, f, \delta) - m(x_i, f, \delta))$$

$$\leq \lim_{\delta \to 0} \sum_{i=1}^{n} (f(x_{i+1}) - f(x_{i-1}))$$

$$= f(x_{n+1}) - f(x_0),$$

$$\leq f(b) - f(a).$$

where the last statement follows from the fact that the max and min f(x) can get is f(b) and f(a).

4 2-1

1. [2-1]Prove that if $f: \mathbf{R}^n \to \mathbf{R}^m$ is differentiable at $a \in \mathbf{R}^n$, then it is continuous at a.

Solution: Hi.

2. [2-4]Let g be a continuous real-valued function on the unit circle $x \in \mathbf{R}^2 : ||x|| = 1$ such that g(0,1) = g(1,0) = 0 and g(-x) = -g(x). Define $f: \mathbf{R}^2 \to \mathbf{R}$ by

$$f(x) = \begin{cases} \|x\| \cdot g\left(\frac{x}{\|x\|}\right) & x \neq 0, \\ 0 & x = 0. \end{cases}$$

(a) If $x \in \mathbf{R}^2$ and $h : \mathbf{R} \to \mathbf{R}$ is defined by h(t) = f(tx), show that h is differentiable.

Solution: We need to show that for every $a \in \mathbf{R}$, there exists a $\lambda : \mathbf{R} \to \mathbf{R}$ such that

$$\lim_{t \to 0} \frac{h(a+t) - h(a) - \lambda(t)}{t} = 0. \tag{1}$$

We see that

$$h(a+t) = f(ax+tx) = \begin{cases} \|(a+t)x\| \cdot g\left(\frac{x}{\|x\|}\right) & (a+t)x \neq 0, \\ 0 & (a+t)x = 0. \end{cases}$$

This follows from the fact that
$$g\left(\frac{(a+t)x}{\|(a+t)x\|}\right)=g\left(\frac{\pm x}{\|x\|}\right)=g\left(\frac{x}{\|x\|}\right)$$
. We have,

$$\frac{h(a+t) - h(a) - \lambda(t)}{t} = \frac{\|(a+t)x\| \cdot g(\hat{x}) - \|a\|g(\hat{x}) - \lambda(t)}{t}$$