Leitura: Matemática de Matrizes

Esforço estimado: 5 mins

Você viu que pode usar as funções do pacote Numpy para realizar diferentes tipos de operações em arrays e matrizes. Nesta leitura, você aprenderá como essas operações funcionam matematicamente.

Arrays 1D: Vetores

Um array 1D é frequentemente chamado de vetor. Dependendo da orientação dos dados, o vetor pode ser classificado como vetor linha ou vetor coluna. Isso é ilustrado na imagem abaixo.

Column Vector

Matematicamente, podemos somar, subtrair e calcular o produto de dois vetores, desde que tenham a mesma forma. As imagens abaixo destacam as operações matemáticas realizadas em um par de vetores.

Vector addition

Vector Subtraction

Vector Product

Todas essas três operações são realizadas sobre os elementos correspondentes dos vetores individuais. O array resultante sempre tem o mesmo tamanho que os dois vetores originais.

A um único vetor, também podemos adicionar uma constante (adição escalar), subtrair uma constante (subtração escalar) e multiplicar uma constante (multiplicação escalar) a qualquer vetor. As imagens abaixo ilustram essas operações.

$$\begin{array}{c|c}
A1 \\
A2 \\
A3 \\
A4
\end{array} + C = \begin{array}{c}
A1+C \\
A2+C \\
A3+C \\
A4+C
\end{array}$$

Scalar addition

$$\begin{array}{c|c}
A1 \\
A2 \\
A3 \\
A4
\end{array}
- C = \begin{array}{c}
A1-C \\
A2-C \\
A3-C \\
A4-C
\end{array}$$

Scalar Subtraction

Scalar Product

Arrays 2D: Matrizes

Um array 2D também é chamado de Matriz. Estes são tipicamente arrays retangulares com dados armazenados em diferentes linhas. Todas as operações mencionadas acima também são aplicáveis aos arrays 2D. No entanto, o produto escalar de matrizes 2D segue uma regra diferente.

Como ilustrado nas imagens abaixo, o produto escalar é realizado multiplicando e somando elementos correspondentes das linhas da primeira matriz com os elementos das colunas da segunda matriz. Como resultado, a matriz de saída da multiplicação terá uma forma modificada.

A regra geral é que o produto escalar de uma matriz m X n pode ser feito apenas com uma matriz n X p, e a matriz resultante terá a forma m X p. No exemplo mostrado abaixo, a matriz 4 X 2 é multiplicada pela matriz 2 X 4 para gerar uma matriz 4 X 4.

$A_{11}B_{11}$	$A_{11}B_{12}$	$A_{11}B_{13}$	$A_{11}B_{14}$
$A_{12}B_{21}$	$A_{12}B_{22}$	$A_{12}B_{23}$	$A_{12}B_{24}$
$A_{21}B_{11}$	$A_{21}B_{12}$	$A_{21}B_{13}$	$A_{21}B_{14}$
$A_{22}B_{21}$	$A_{22}B_{22}$	$A_{22}B_{23}$	$A_{22}B_{24}$
$A_{31}B_{11}$	$A_{31}B_{12}$	$A_{31}B_{13}$	$A_{31}B_{14}$
$A_{32}B_{21}$	$A_{32}B_{22}$	$A_{32}B_{23}$	$A_{32}B_{24}$
$A_{41}B_{11}$	$A_{41}B_{12}$	$A_{41}B_{13}$	$A_{41}B_{14}$
$A_{42}B_{21}$	$A_{42}B_{22}$	$A_{42}B_{23}$	$A_{42}B_{24}$

No exemplo inverso, quando a matriz 2 X 4 é multiplicada pela matriz 4 X 2, a resultante será uma matriz 2 X 2.

Nota: O produto escalar de um vetor linha com um vetor coluna, com o mesmo número de elementos, retornaria um único valor escalar. O produto escalar de um vetor coluna com um vetor linha retornará uma matriz 2D.

Autor: Abhishek Gagneja

