

Plano de Ensino para o Ano Letivo de 2020

IDENTIFICAÇÃO						
Disciplina:				Código da Disciplina:		
Materiais de Construção Mecâr	nica I			EMC213		
Course:						
Mechanical Construction Mater	als I					
Materia:						
Materiales de Construcción Me	cánica I					
Periodicidade: Anual	Carga horária total:	80	Carga horária sema	anal: 00 - 00 - 02		
Curso/Habilitação/Ênfase:	•		Série:	Período:		
Engenharia Mecânica			2	Diurno		
Engenharia Mecânica			2	Noturno		
Engenharia Mecânica			2	Noturno		
Professor Responsável:		Titulação - Graduação		Pós-Graduação		
Susana Marraccini Giampietri Lebrao		Engenheiro Metalúrgico		Doutor		
Professores:		Titulação - Graduação		Pós-Graduação		
Marcelo Ferreira Moreira		Engenheiro Metalúrgico		Mestre		
Susana Marraccini Giampietri Lebrao		Engenheiro Metalúrgico		Doutor		
OR IE	TIVOS - Conhec	imentes Habili	dados o Atitud	26		

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- C1- Conceitos e princípios fundamentais de metalurgia e ciência dos materiais.
- C2- Conceitos de propriedades físicas e mecânicas dos materiais.
- C3- Noções básicas sobre processos de fabricação e aplicações dos materiais.
- C4- Noções básicas do processo de seleção dos materiais.

Habilidades:

- H1- Estabelecer correlações entre composição química, propriedades mecânicas e microestrutura em materiais.
- H2- Identificar fenômenos destrutivos em materiais.

Valores:

- V1- Compreensão mais fundamentada sobre a constituição dos materiais, suas propriedades, aplicações e limitações.
- V2- Visão crítica sobre o processo de seleção de materiais

EMENTA

Ciência dos materiais. Ligas metálicas. Diagramas de equilíbrio. Introdução aos aços de construção mecânica. Diagrama de equilíbrio Fe-C. Diagramas TTT. Tratamento térmico dos aços. Tratamentos termoquímicos. Aços inoxidáveis. Ligas de alumínio. LABORATÓRIO: Estudo e realização dos principais ensaios mecânicos: tração, dureza, impacto. Líquidos penetrantes e partículas magnéticas. Metalografia dos aços e do alumínio. Ensaio de fadiga.

2020-EMC213 página 1 de 8

SYLLABUS

Materials science. Metal alloys. Equilibrium diagrams. Introduction to mechanical construction steels. Fe-C equilibrium diagram. TTT diagrams. Heat treatment of steels. Thermochemical treatments. Stainless steels. Aluminum alloys. LAB: Study and realization of the main mechanical tests: tensile, hardness, impact. Penetrant and magnetic particles. Metallography of steels and aluminum. Fatigue test.

TEMARIO

Ciencia de los materiales. Aleaciones de metal. Diagramas de equilibrio. Introducción a aceros de construcción mecánicas. Fe-C diagrama de equilibrio. Diagramas TTT. Tratamiento térmico de los aceros. Tratamientos termoquímicos. Aceros inoxidables. LAB: Estudio y realización de las principales pruebas mecánicas: resistencia a la tracción, dureza, impacto. Penetrantes y partículas magnéticas. Metalografía de aceros y aluminio. Prueba de fatiga.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Peer Instruction (Ensino por pares)
- Ensino Híbrido
- Experimentação
- simulações

METODOLOGIA DIDÁTICA

O curso terá caráter prático, com foco em aulas experimentais, com base nas metodologias ativas de sala de aula, utilizando a aprendizagem baseada em problemas, estudo de caso, experimentação e instrução por pares.

Estratégias: aulas experimentais a partir de desafios e apresentação de situações problema; aulas expositivas dialogadas; atividades em grupo; estudos de caso.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Química- ligações químicas

Física- Conceitos de dilatação térmica, densidade, condutibilidade térmica e elétrica, unidades de medida, análise dimensional

CONTRIBUIÇÃO DA DISCIPLINA

Os conhecimentos adquiridos na disciplina fazem parte da fundamentação teórica básica de um engenheiro, sendo aplicados rotineiramente em sua vida profissional. A premissa é que o engenheiro projetará, construirá ou ainda, administrará a produção de componentes e que estes serão fabricadas com algum material. Assim, a disciplina possibilitará ao aluno compreender a constituição dos materiais metálicos de um ponto de vista mais amplo, envolvendo sua estrutura cristalina, sua microestrutura e as relações destas com as propriedades mecânicas.

Adicionalmente, a disciplina também apresentará aos alunos de engenharia que os materiais, empregados em componentes por eles projetados, também poderão

2020-EMC213 página 2 de 8

ser projetados ou desenvolvidos para um determinada finalidade, maximizando o desempenho do produto final.

BIBLIOGRAFIA

Bibliografia Básica:

CALLISTER JR., William D. Ciência e engenharia de materiais: uma introdução. SOARES, Sérgio Murilo Stamile (trad.), d'ALMEIDA, José Roberto Moraes de (Rev.). 7. ed. Rio de Janeiro, RJ: LTC, 2007. 705 p. ISBN 9788521615958.

Bibliografia Complementar:

ASHBY, Michael F; JONES, David R. H. Engenharia de materiais. Trad. da 3 ed. americana por Arlete Simille Marques. Rio de Janeiro , RJ: Elsevier, 2007. v. 1. 371 p. ISBN 9788535223620.

SHACKELFORD, James F. Ciência dos materiais. 6. ed. São Paulo: Pearson Prentice Hall, c2008. 557 p. ISBN 9788576051602.

SILVA, André Luiz V. da Costa e; MEI, Paulo Roberto. Aços e ligas especiais. 2. ed. rev. e ampl. São Paulo: Edgard Blücher, c2006. 646 p. ISBN 9788521203827.

SOUZA, Sérgio Augusto de. Ensaios mecânicos de materiais metálicos. São Paulo, SP: Edgard Blücher/EDUSP, 1974. 197 p.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014)

Disciplina anual, com trabalhos e provas (duas e uma substitutiva).

Pesos dos trabalhos:

 $k_1: 1,0 \quad k_2: 1,0 \quad k_3: 1,0 \quad k_4: 1,0$

Peso de $MP(k_p)$: 3,0 Peso de $MT(k_p)$: 2,0

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A nota de trabalho será composta pelos relatórios realizados e entregues em aula de laboratório e os trabalhos realizados via moodle.

Para os trabalhos realizados e entregues via moodle, com prazo de uma semana para sua realização e avisados antecipadamente em sala e por mensagem no moodle, não haverá trabalho substitutivo.

O trabalho k3 será relativo ao projeto integrador ROVER.

Esta disciplina opta pela concessão prevista na resolução CEUN-CEPE 02.12.2008.

2020-EMC213 página 3 de 8

OUTRAS INFORMAÇÕES		

2020-EMC213 página 4 de 8

		SOFTWARES NECESSÁRIOS PARA A DISCIPLINA
CES	Edupack	

2020-EMC213 página 5 de 8

2020-EMC213 página 6 de 8

	PROGRAMA DA DISCIPLINA				
Nº da	Conteúdo	EAA			
semana					
1 L	Inicio das aulas da la série.	0			
2 L	Palestra sobre segurança nos laboratórios e assinatura do termo	0			
	de compromisso. Apresentação dos laboratórios e dos critérios de				
	avaliação da disciplina.Apresentação do software CES Edupack e				
	propriedades dos materiais.				
3 L	Deformação elástica dos materiais: ensaio de tração instrumentado	91% a			
	com extensômetros e medidor acústico em Al, aço e polímero	100%			
	(cálculo do módulo de elasticidade, deformação elástica sob mesma				
	carga).				
4 L	Breve revisão de ligações químicas. Definição de força de ligação	11% a 40			
	e energia de ligação. Relação entre propriedades físicas e o tipo				
	da ligação química, características gerais dos metais, cerâmicas				
	e polímeros.				
5 L	Ensaio de tração com escoamento nítido (metais).	91% a			
		100%			
6 L	Estrutura cristalina dos metais, reticulados cristalinos,	11% a 40			
	parâmetros do reticulado, número de coordenação - estruturas CCC,				
	CFC e HC.				
7 L	Ensaio de tração com escoamento não-nítido (limite de escoamento	91% a			
	0,2%).	100%			
8 L	Semana de provas.	0			
9 L	Semana de provas.	0			
10 L	Exercícios em sala. Energia de ligação química e propriedades	91% a			
	físicas. Fator de empacotamento atômico das estruturas CCC e CFC.	100%			
	Cálculo de densidade teórica e materiais policristalinos.				
11 L	Ensaio de impacto (estudo de caso do Titanic).	91% a			
		100%			
12 L	Imperfeições cristalinas e estruturas não-cristalinas.	11% a 40			
13 L	Mecanismos de endurecimento aplicáveis aos materiais metálicos.	1% a 10%			
14 L	Ensaios de dureza (escalas Brinell, Rockwell e Vickers).	91% a			
		100%			
15 L	SMILE	0			
16 L	Ligas metálicas, generalidades, soluções sólidas - Introdução aos	41% a 60			
	diagramas de equilíbrio. Cálculos e sequência de solidificação no				
	diagrama isomorfo				
17 L	Reações eutéticas, eutetóides e peritéticas. Cálculos envolvendo	41% a 60			
10.7	fases pró-eutéticas e pró-eutetóides.	0.1.0			
18 L	Exercícios diagramas de fase.	91% a			
10 -	Company de massage	100%			
19 L	Semana de provas.	0			
20 L	Semana de provas.	0			
21 L	Plantão de dúvidas.	0			
22 L	Semana de provas.	0			

2020-EMC213 página 7 de 8

INSTITUTO MAUÁ DE TECNOLOGIA

23 L	Semana de provas.	91% a	à.
		100%	
24 L	Metalografia e observação de estruturas de aços resfriados	91% a	ì
	lentamente	100%	
25 L	Introdução ao diagrama Fe-Fe3C. Exercícios sobre diagrama Fe-Fe3C	41% a	a 60%
26 L	Diagrama TTT	11% a	a 40%
27 L	Introdução aos tratamentos térmicos dos aços. Austenitização e	11% a	40%
	tempo de residência.		
28 L	Tratamentos térmicos: recozimento, normalização	11% a	a 40%
29 L	Tratamentos térmicos: austêmpera, martêmpera e têmpera.	91% a	à.
		100%	
30 L	Semana de provas.	0	
31 L	Tratamentos térmicos exercícios	91% a	ì
		100%	
32 L	Tratamentos termoquímicos: cementação e nitretação	11% a	a 40%
33 L	Cementação sólida e observação de microestruturas cementadas	91% a	ì
		100%	
34 L	Aços inoxidáveis	11% a	a 40%
35 L	Ensaio de fadiga	91% a	à
		100%	
36 L	Ligas de alumínio conformadas e tratamentos térmicos de	41% a	a 60%
	solubilização e envelhecimento		
37 L	Ligas de alumínio fundidas	91% a	à
		100%	
38 L	Semana de provas	0	
39 L	Semana de provas	0	
40 L	Plantão de dúvidas	0	
41 L	Plantão de dúvidas	0	
Legenda	a: T = Teoria, E = Exercício, L = Laboratório		

2020-EMC213 página 8 de 8