Labs

Optimization for Machine Learning Spring 2025

EPFL

School of Computer and Communication Sciences
Nicolas Flammarion

 $github.com/epfml/OptML_course$

Problem Set 10 — Solutions (Lower Bounds & Convex conjugate)

1 Lower Bounds for a Non-smooth Function

1. The \max function is convex, while $\|.\|^2$ is strongly convex, hence the function f is strongly convex. The function is not smooth, since the \max function is not differentiable. The sub-differential of \max at \mathbf{x} is given by $\operatorname{conv} \{e_i : i \in \operatorname{argmax}_{1 \le j \le t} \mathbf{x}_j\}$. This can be verified as follows:

$$\max_{1 \le i \le t} (\mathbf{x}_i + \mathbf{h}_i) \ge \max_{1 \le i \le t} \mathbf{x}_i + g^{\top} \mathbf{h},$$

for any $g \in \partial f(\mathbf{x})$, $\mathbf{x}, \mathbf{h} \in \mathbb{R}^d$.

2. To show that

$$\operatorname{Span}\{\partial f(\mathbf{x}_0), \partial f(\mathbf{x}_1), \dots, \partial f(\mathbf{x}_{s-1})\} = \operatorname{Span}\{e_1, e_2, \dots, e_s\},\$$

we can use induction. For s=1, we have $\mathbf{x}_0=0$ and $\partial f(\mathbf{x}_0)=\gamma e_1$ and the statement holds. Assume that the statement holds for s=k, i.e.,

$$\mathbf{x}_k \in \operatorname{Span}\{\partial f(\mathbf{x}_0), \partial f(\mathbf{x}_1), \dots, \partial f(\mathbf{x}_{k-1})\} = \operatorname{Span}\{e_1, e_2, \dots, e_k\}.$$

For s=k+1, the sub-gradient at $f(\mathbf{x}_k)$ is given by

- if $\underset{1 \le i \le t}{\operatorname{argmax}} (\mathbf{x}_k)_i \in \{1, \dots, k\}$, then $\partial f(\mathbf{x}_k) = \alpha \mathbf{x}_k + \gamma e_j$ for some $j \in \{1, \dots, k\}$ and we have that $\partial f(\mathbf{x}_k) \in \operatorname{Span}\{e_1, e_2, \dots, e_k\}$ as $\mathbf{x}_k \in \operatorname{Span}\{e_1, e_2, \dots, e_k\}$ from the induction hypothesis.
- If $\underset{1 \le i \le t}{\operatorname{argmax}}_{1 \le i \le t}(\mathbf{x}_k)_i \notin \{1, \dots, k\}$, then $\partial \max$ is e_{k+1} (as $(\mathbf{x}_k)_i = 0$ for $i \ge k+1$ and we choose the smallest index). Hence $\partial f(\mathbf{x}_k) = \alpha \mathbf{x}_k + \gamma e_{k+1}$. We have that $\partial f(\mathbf{x}_k) \in \operatorname{Span}\{e_1, e_2, \dots, e_{k+1}\}$ as $\mathbf{x}_k \in \operatorname{Span}\{e_1, e_2, \dots, e_k\}$ from the induction hypothesis.
- 3. Note that $\|\partial f(\mathbf{x})\| \le \alpha \|\mathbf{x}\| + \gamma$, hence we have that for any $\mathbf{x} \in B(R)$, f is Lipschitz with $L = \alpha R + \gamma$.
- 4. Note that the sub-differential of f at y is given by

$$\partial f(y) = \alpha y + \gamma \operatorname{conv} \left\{ e_i : i \in \underset{1 \le j \le t}{\operatorname{argmax}} y_j \right\}.$$

$$= \alpha y + \gamma \operatorname{conv} \left\{ e_i : i = 1, \dots, t \right\}.$$

Now, that $(\frac{1}{t},\ldots,\frac{1}{t},0,\ldots,0)\in\mathrm{conv}\,\{e_i:i=1,\ldots,t\}$, we have that $0=\alpha y_i+\gamma e_i$ for $i=1,\ldots,t$. Hence $0\in\partial f(y)$.

5. As $0 \in \partial f(y)$, so $\min f(x) = f(y) = -\frac{\gamma}{\alpha t} + \frac{\alpha}{2}\|y\|^2 = -\frac{\gamma^2}{2\alpha t}$ as $\|y\|^2 = \sum_{i=1}^t \frac{\gamma^2}{\alpha^2 t^2} = \frac{\gamma^2}{\alpha^2 t}$. Coming to the algorithm, for s < t, we have that

$$\mathbf{x}_s \in \operatorname{Span}\{e_1, \dots e_s\}.$$

Hence $f(\mathbf{x}_s) = \gamma \max_{1 \leq j \leq t} (\mathbf{x}_s)_i + \frac{\alpha}{2} \|\mathbf{x}_s\|^2$. First $\|\mathbf{x}_s\|^2 > 0$ and $\max_{1 \leq j \leq t} (\mathbf{x}_s)_i \geq (\mathbf{x}_s)_t = 0$ since $\mathbf{x}_s \in \operatorname{Span}\{e_1, \dots e_s\}$ and s < t. Hence $f(\mathbf{x}_s) \geq 0$

$$f(\mathbf{x}_s) - \min_{\|x\| \le R} f(x) \ge 0 - f(y) = \frac{\gamma^2}{2\alpha t}.$$

Choose

$$\alpha = \frac{L}{R} \frac{1}{\sqrt{t} + 1}, \quad \gamma = \frac{L\sqrt{t}}{\sqrt{t} + 1},$$

then f is Lipschitz with L as $\alpha R + \gamma = L$. Hence, we have,

$$f(\mathbf{x}_s) - \min_{\|x\| \le R} f(x) \ge 0 - f(y) = \frac{\gamma^2}{2\alpha t} = \frac{RL}{2(\sqrt{t} + 1)}.$$

2 Convex conjugate

For a function $f: \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ (which is not necessarily convex !), we consider its **convex conjugate** which for $y \in \mathbb{R}^d$ is defined as

$$f^*(y) = \sup_{x \in \mathbb{R}^d} (\langle x, y \rangle - f(x)) \in \mathbb{R} \cup \{+\infty\}$$

Prove the following properties.

1. Show that f^* is convex.

Proof: Note that f^* is the pointwise supremum of **affine functions** $y \mapsto \langle x, y \rangle - f(x)$. As seen in the first class, the pointwise supremum of convex functions is convex. Therefore f^* is convex.

2. Show that for $x, y \in \mathbb{R}^d$, $f(x) + f^*(y) \ge \langle x, y \rangle$. This is known as the Fenchel inequality.

Proof: For $y \in \mathbb{R}^d$, $f^*(y) = \sup_{x \in \mathbb{R}^d} (\langle x, y \rangle - f(x)) \ge \langle x, y \rangle - f(x)$ for all $x \in \mathbb{R}^d$.

3. Show that the biconjugate f^{**} (the conjugate of the conjugate) is such that $f^{**} \leq f$.

Proof: From the previous inequality we have that for all $x,y \in \mathbb{R}^d$, $f(x) \ge \langle x,y \rangle - f^*(y)$, we can therefore take the supremum over y of the left hand side: $f(x) \ge \sup_{y \in \mathbb{R}^d} (\langle y,x \rangle - f^*(y)) = f^{**}(x)$

The Fenchel-Moreau theorem (which we will not prove here) states that $f = f^{**}$ if and only if f is convex and closed. It will turn out to be useful to show the following property.

4. Assume that f is closed and convex. Then show that for any $x, y \in \mathbb{R}^d$,

$$y \in \partial f(x) \Leftrightarrow x \in \partial f^*(y)$$

 $\Leftrightarrow f(x) + f^*(y) = \langle x, y \rangle$

Proof that $y \in \partial f(x) \Rightarrow f(x) + f^*(y) = \langle x,y \rangle$: Assume that $y \in \partial f(x)$, then we have that for all $z \in \mathbb{R}^d$, $f(z) \geq f(x) + \langle y,z-x \rangle$. Therefore for all $z \in \mathbb{R}^d$, $\langle y,x \rangle - f(x) \geq \langle z,y \rangle - f(z)$. We can therefore take the supremum of the left hand size which gives that $\langle y,x \rangle - f(x) \geq \sup_z (\langle z,y \rangle - f(z))$ which also means that $\langle y,x \rangle - f(x) = \sup_z \langle z,y \rangle - f(z) = f^*(y)$ which proves the first part of the result.

Proof that $f(x)+f^*(y)=\langle x,y\rangle\Rightarrow y\in\partial f(x)$: We basically do the previous reasoning the other way round. Let $x,y\in\mathbb{R}^d$ such that $f(x)+f^*(y)=\langle x,y\rangle$. Therefore $\langle x,y\rangle-f(x)=f^*(y)=\sup_z(\langle z,y\rangle-f(z))\geq \langle z,y\rangle-f(z)$ for all $z\in\mathbb{R}^d$. Rearranging we get that for all $z\in\mathbb{R}^d$, $f(z)\geq f(x)+\langle y,z-x\rangle$ which means that $y\in\partial f(x)$.

Hence we have shown that $y \in \partial f(x) \Leftrightarrow f(x) + f^*(y) = \langle x,y \rangle$. Now we can apply this same result to f^* : $x \in \partial f^*(y) \Leftrightarrow f^*(y) + f^{**}(x) = \langle y,x \rangle$. Since f is closed and convex, by the Fenchel-Moreau theorem we have that $f = f^{**}$, hence $x \in \partial f^*(y) \Leftrightarrow f^*(y) + f(x) = \langle y,x \rangle$. Therefore all the implications are proven.