16 A steadily increasing tensile force was applied to a sample of a titanium alloy.

The sample had an original length of 40.0 cm and diameter of 5.05 mm.

(a) State a suitable measuring instrument to measure the diameter of the sample.

(1)

(b) The graph shows how stress varied with strain for the sample.

((i)	Determine the Young modulus of the sample.	(3)
		Young modulus =	
((ii)	The sample broke at point B.	
		Determine the force required to break the sample.	(4)
		Force =	

(iii) The graph below shows a linear section of the stress-strain graph for the sample.

Show that the area under this graph represents the work done per unit volume in stretching the sample.

(3)

(ix)	Tha	oron	under	0127	stress-strain	granh	roprogents	tha	1110rlz	dona	nor	unit	17011	11110
(17)	1116	area	unaei	allv	Suess-suam	grabii	represents	uie	WUIK	done	Det	umi	von	\mathbf{m}

Estimate the amount of work required to break the titanium alloy sample.

(4)

 $work = \dots$