# CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

**Memory Organization** 



Lecture No.- 02

## **Recap of Previous Lecture**









**Topic** 

Memory Hierarchy

**Topic** 

Memory Presentation

# **Topics to be Covered**









**Topic** 

Memory Address Decoder

Topic

Main Memory: RAM, ROM

**Topic** 

RAM Chip

**Topic** 

**ROM Chip** 



#### **Topic: Memory Address Decoder**





assume, 8 byte memory



#Q. Consider a memory of size 2K × 8-bits. What is the size of decoder needed to access the cells of the memory uniquely?



If there are m input lines n output lines for a decoder that is used to #Q. uniquely address a byte addressable 1 KB RAM, then the minimum value of m + n is \_\_\_\_?

RAM = 
$$1kB = 1k \times 1B$$
  
no. of cells =  $1k = 2^{10} =$ ) add. = 10 bits



$$m = 16$$

$$n = 2^{10} = 1024$$

$$m + n = 10 + 1624 = 1034$$





Used to stone current running programs and their data.

or

CPU takes inst<sup>ns</sup> le data for execution from main memory.

- 1. ROM (non-volatile)

  2. RAM (volatile) => when power supply is cut then the memory is

  flushed out (the content of memory is not persisted)







used to stone os programs and convent running program's inst<sup>ns</sup> + data.





| Static (SRAM)             | Dynamic (DRAM)                                                                                    |
|---------------------------|---------------------------------------------------------------------------------------------------|
| 1. Built using flip-flops | 1. Built using Capacitors                                                                         |
| 2. No refresh needed      | store content in the form of electric charges.  2. Periodic refresh/rechange is required. Charges |
| 3. faster                 | 3. Slower                                                                                         |
| 3. faster<br>1. Expensive | 3. Slower<br>4. Less expensive                                                                    |
| 5. Used for cache memory  | s. used for main memory                                                                           |

- 6. Less ille power Consumption
- I. More operational power Consumpth
- 6. More idle power consumption
- 7. Less operational power Consumption

#### [NAT]



- #Q. Consider 2 4-bits unsigned values A and B. What will be the maximum size of result for:
  - 1. Addition of A and B ⇒ 5 − lits
  - 2. Multiplication of A and B ⇒ 8 -Lits

A. B extreme case

0000 to 1111

$$A = 15$$
 $B = 15$ 
 $A = 15$ 
 $A$ 

#### [MCQ]



#Q. The amount of ROM needed to store the table for multiplication of two 4-bit unsigned integer is?

A 64 bits

B 128 bits

C 1K bits

D 2K bits



15

15



memory size needed = 
$$2^8 * 8$$
 bits =  $2^8 * 2^3$  bits =  $2^{11}$  bits =  $2k$  bits

|               | 1 00 1                  |                            |
|---------------|-------------------------|----------------------------|
| size of input | size of multiplicat"    | size of addition table     |
| 4-6its        | 28 × 8 bib              | 28 × 5 lits                |
| n-bits        | $2^{2n} \times 2n$ bits | $2^{2n} \times (n+1)$ bits |

1. ?



### Topic: RAM Chip





| CS | Read | wite | operation    |
|----|------|------|--------------|
| 0  | ×    | ×    | No operation |
| 1  | 0    | 0    | No operation |
| 1  | 0    | 1    | cerite       |
| 1  | 1    | ×    | Read         |
| _  |      |      |              |

1 1 2 9 5



### Topic: ROM Chip



| adhess bus             |             |
|------------------------|-------------|
| $7$ - lines            | 128×8-bits  |
| data bus               | ROM         |
| dala bles<br>8 - lines |             |
| 8 - 4160               |             |
|                        | <u> </u>    |
|                        |             |
|                        | chip select |
|                        | J           |

| QS | operation    |
|----|--------------|
| 0  | No-operation |
| 1  | Read         |
|    |              |



### **Topic: Chip Select**





$$\begin{array}{c|c}
T_1 & -0 \\
\hline
T_1 & T_0 & CS \\
\hline
1 & 0 & 1
\end{array}$$

9796 --- 9,96



#### [MCQ]



#Q. The chip select logic for a certain DRAM chip in a memory system design is shown below. Assume that the memory system has 16 address lines denoted by  $A_{15}$  to  $A_0$ . What is the range of address (in hexadecimal) of the memory system that can get enabled by the chip select (CS) signal?





A C800 to CFFF

- B CA00 to CAFF
- 1 1 0 0, 1 1 1 ... 1 F F f

C800 to C8FF

DA00 to DFFF





# Happy Learning

THANK - YOU