

DECUS

PROGRAM LIBRARY

DECUS NO.

8-459

TITLE

TAYEX - TAYLOR EXPANSION EQUATION SOLVER

AUTHOR

David G. Pitts and James Westgard

COMPANY

Indiana State University
Terre Haute, Indiana

DATE

July 30, 1971

SOURCE LANGUAGE

PAL III

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor, Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the program or related program material, and no responsibility is assumed by these parties in connection therewith.

The expression of a function as a truncated Taylor series is a well known calculational technique. In fact, it is the principle method of solution of linear differential equations. The method can easily be extended to the solution of nonlinear differential equations, the solution of transcendental algebraic equations, and integrals.* The program TAYEX can be used to yield approximation solutions to all of these.

The Taylor series of $f(x)$ is written

$$f(x) = f(x)|_{x=x_0} + \sum_{n=1}^{\infty} \frac{1}{n!} \left. \frac{d^{(n)} f(x)}{dx^n} \right|_{x=x_0} (x-x_0)^n$$

Thus, if all of the derivatives of a function are known, the function is known. A truncation after N terms is a good approximation if x is not too far from x_0 . Now consider the differential equation in the form

$$y'' = F(y', y, x)$$

Since it is second order there will be two constants in the solution which must be determined by initial conditions. For these we choose $y(x)$ and $y'(x)$ and $y(x_0)$. Now find the higher derivatives of $y(x)$ by differentiating y'' . Thus, we have the constants:

$$y(x_0) = C_1$$

$$y'(x_0) = C_2$$

$$y''(x_0) = F(y', y, x)|_{x=x_0} = F(C_2, C_1, x_0)$$

$$y'''(x_0) = \left. \frac{d}{dx} F(y', y, x) \right|_{x=x_0}$$

$$y''''(x_0) = \left. \frac{d^2}{dx^2} F(y', y, x) \right|_{x=x_0}$$

etc.

*The method is mentioned in Rainville, "Elementary Differential Equations", Macmillan Third Edition, page 297.

and so on. The constants c_1 and c_2 are the boundary conditions. In taking the higher derivatives the lower derivatives will appear. Thus, the expression for $y^{(iv)}$ may contain y'''' , y''' and y'' as well as y and x_0 . However, the iteration from lower derivatives to higher is well defined and straight forward.

Example Solve the harmonic oscillator problem

$$y'' + \frac{k}{m} y = 0$$

for $y'(0) = 0$, $y(0) = 1$

Solution

$$y(0) = 1$$

$$y'(0) = 0$$

$$y''(0) = -\frac{k}{m} y(0) = -\frac{k}{m}$$

$$y'''(0) = -\frac{k}{m} y'(0) = 0$$

$$y^{(iv)}(0) = -\frac{k}{m} y''(0) = \frac{k^2}{m^2}$$

$$y^{(v)}(0) = -\frac{k}{m} y'''(0) = 0$$

etc.

Thus, the solution is

$$y = 1 - \frac{\left(\frac{k}{m}\right)}{2!} t^2 + \frac{\left(\frac{k}{m}\right)^2}{4!} t^4 + \dots$$

$$= \cos \sqrt{\frac{k}{m}} t$$

Example: Solve the large displacement pendulum problem with boundary conditions:

$$A|_{t=0} = A_0$$

$$\frac{dA}{dt} \Big|_{t=0} = 0 \quad 2$$

Solution: The equation of motion for a pendulum of mass m and length r is:

$$mr \frac{d^2 A}{dt^2} = -mg \sin A$$

Then

$$A(0) = A_0$$

$$A'(0) = 0$$

$$A''(0) = -\frac{g}{r} \sin A_0$$

$$A'''(0) = -\frac{g}{r} \cos A_0 A'_0 = 0$$

$$\begin{aligned} A^{IV}(0) &= -\frac{g}{r} (-\sin A_0 A_0'^2 + \cos A_0 A_0'') \\ &= \frac{g^2}{r^2} \sin A_0 \cos A_0 \end{aligned}$$

The answer is

$$A(t) = A_0 - \frac{1}{2!} \frac{g}{r} \sin A_0 t^2 + \frac{1}{4!} \frac{g^2}{r^2} \sin A_0 \cos A_0 t^4 + \dots$$

which is for small displacements ($\sin A_0 \approx A_0, \cos A_0 = 1$)

$$A(t) = A_0 \cos \sqrt{\frac{g}{r}} t$$

Example: Solve the simultaneous equations:

$$\frac{d^2 x}{dt^2} = -k y$$

$$\frac{d^2 y}{dt^2} = -m x^2$$

with boundary conditions

$$x(0) = y(0) = 1$$

$$x'(0) = y'(0) = 0$$

Solution:

$$x(0) = 1$$

$$x'(0) = 0$$

$$x''(0) = -k y(0) = -k$$

$$x'''(0) = -k y'(0) = 0$$

$$x^{IV}(0) = -k y''(0) = -k(-m x^2(0)) = km$$

etc.

$$y(0) = 1$$

$$y'(0) = 0$$

$$y''(0) = -m x^2(0) = -m$$

$$y'''(0) = -m 2x(0)x'(0) = 0$$

$$\begin{aligned}y^{IV}(0) &= -2m(x'^2(0) + x(0)x''(0)) \\&= 2mk\end{aligned}$$

etc

One pass of TAYEX will have to be for $x(t)$ and one for $y(t)$.

The main restriction to this method is due to the truncation error. In general, for values of the variable close to the point of expansion, the approximation will be good. However, the amount of error will depend on the problem to be solved. Thus it is up to the user to determine the valid range of the expansion. This can sometimes be done by comparing values obtained after n terms and after $n-1$ terms.

The appended worked example shows the expansion of the function $\cos x$ where x is in radians it is calculated for each 0.1 radian between $x=0$ and $x=3.2$. Note that the error in the expansion at $x=3.14$ is about 1%.

A : 1

B : 0

C : -1

D : 0

E : 1

F : 0

G : -1

H : 0

I : 1

J : 0

X : 0

DX : .1

LD SR WITH NUM. OF PTS, HIT CONT

+0.1000000E+01
+0.9950040E+00
+0.9800665E+00
+0.9553364E+00
+0.9210609E+00
+0.8775825E+00
+0.8253356E+00
+0.7648422E+00
+0.6967068E+00
+0.6216104E+00
+0.5403029E+00
+0.4535974E+00
+0.3623602E+00
+0.2675033E+00
+0.1699758E+00
+0.7075393E-01
-0.2916860E-01
-0.1287889E+00
-0.2271046E+00
-0.3231239E+00
-0.4158713E+00
-0.5044000E+00
-0.5877938E+00
-0.6651771E+00
-0.7357192E+00
-0.7986345E+00
-0.8531892E+00
-0.8986983E+00
-0.9345233E+00
-0.9600691E+00
-0.9747760E+00
-0.9781084E+00
-0.9695448E+00

Operating Instructions

Loading

Load the floating point package and then TAYEX with the binary loader.

Starting

1. Load program with binary loader.
2. Set 0200 in the switch register, press load address.
3. Press START. The program will respond by asking for the derivatives (TAYEX will divide by $n!$) and initial X value and DX the incrementing constant. The program will then type "LD SR WITH NUM. OF PTS, HIT CONT", load the switch register with the number of points to be calculated (Be sure that this number is converted to OCTAL).
4. Restart at 0200.

```

001      /TAYEX
002      /
003      /PROGRAM TO SOLVE THE TAYLOR EXPANSION EQUATION
004      / $F(X)=A+(B/1!)X+(C/2!)X^2+\dots+(J/9!)X^9$ 
005      /FOR  $F(X)$  WHEN X IS GIVEN, X IS INCREMENTED BY DX0
006      /BEFORE EACH TIME  $F(X)$  IS CALCULATED EXCEPT FOR
007      /THE FIRST TIME IT IS CALCULATED.
008      /A,B,C,D,E,F,G,H,I,J ARE COEFFICIENTS
009      /
010      D. PITTS 11/5/70

011      FEXT=0000
012      FADD=1000
013      FMPY=3000
014      FDIV=4000
015      FGET=5000
016      FPUT=6000
017      *5

018 0005 7400      7400
019 0006 7200      7200
020 0007 5600      5600
021      *200
022 0200 7300      CLA CLL
023 0201 6032      KCC
024 0202 6046      TLS
025 0203 4775      JMS I CRLF
026 0204 1362      TAD KA
027 0205 4777      JMS I TYPN
028 0206 4776      JMS I CONIE
029 0207 4405      JMS I 5      /INPUT A
030 0210 4407      JMS I 7
031 0211 6025      FPUT A
032 0212 0000      FEXT
033 0213 4775      JMS I CRLF
034 0214 1363      TAD KB
035 0215 4777      JMS I TYPN
036 0216 4776      JMS I CONIE
037 0217 4405      JMS I 5      /INPUT B
038 0220 4407      JMS I 7
039 0221 6031      FPUT B
040 0222 0000      FEXT
041 0223 4775      JMS I CRLF
042 0224 1364      TAD KC
043 0225 4777      JMS I TYPN
044 0226 4776      JMS I CONIE
045 0227 4405      JMS I 5      /INPUT C
046 0230 4407      JMS I 7
047 0231 4135      FDIV TWO     /DIV. BY 2.
048 0232 6065      FPUT C
049 0233 0000      FEXT
050 0234 4775      JMS I CRLF
051 0235 1365      TAD KD
052 0236 4777      JMS I TYPN
053 0237 4776      JMS I CONIE

```


054	0240	4405	JMS I 5	/INPUT D
055	0241	4407	JMS I 7	
056	0242	4141	FDIV SIX	/DIV. BY 6.
057	0243	6071	FPUT D	
058	0244	0000	FEXT	
059	0245	4775	JMS I CRLF	
060	0246	1366	TAD KE	
061	0247	4777	JMS I TYPN	
062	0250	4776	JMS I CONIE	
063	0251	4405	JMS I 5	/INPUT E
064	0252	4407	JMS I 7	
065	0253	4145	FDIV TWFO	/DIV. BY 24.
066	0254	6075	FPUT E	
067	0255	0000	FEXT	
068	0256	4775	JMS I CRLF	
069	0257	1367	TAD KF	
070	0260	4777	JMS I TYPN	
071	0261	4776	JMS I CONIE	
072	0262	4405	JMS I 5	/INPUT F
073	0263	4407	JMS I 7	
074	0264	4151	FDIV ONTW	/DIV. BY 120.
075	0265	6101	FPUT F	
076	0266	0000	FEXT	
077	0267	4775	JMS I CRLF	
078	0270	1370	TAD KG	
079	0271	4777	JMS I TYPN	
080	0272	4776	JMS I CONIE	
081	0273	4405	JMS I 5	/INPUT G
082	0274	4407	JMS I 7	
083	0275	4155	FDIV STW	/DIV. BY 720.
084	0276	6105	FPUT G	
085	0277	0000	FEXT	
086	0300	4775	JMS I CRLF	
087	0301	1371	TAD KH	
088	0302	4777	JMS I TYPN	
089	0303	4776	JMS I CONIE	
090	0304	4405	JMS I 5	/INPUT H
091	0305	4407	JMS I 7	
092	0306	4161	FDIV FIFO	/DIV. BY 5040.
093	0307	6111	FPUT H	
094	0310	0000	FEXT	
095	0311	4775	JMS I CRLF	
096	0312	1372	TAD KI	
097	0313	4777	JMS I TYPN	
098	0314	4776	JMS I CONIE	
099	0315	4405	JMS I 5	/INPUT I
100	0316	4407	JMS I 7	
101	0317	4165	FDIV FOTO	/DIV. BY 40320.
102	0320	6115	FPUT II	
103	0321	0000	FEXT	
104	0322	4775	JMS I CRLF	
105	0323	1373	TAD KJ	
106	0324	4777	JMS I TYPN	
107	0325	4776	JMS I CONIE	

108	0326	4405	JMS I 5	/INPUT J
109	0327	4407	JMS I 7	
110	0330	4171	FDIV THIS	/DIV. BY 362880.
111	0331	6121	FPUT J	
112	0332	0000	FEXT	
113	0333	4775	JMS I CRLF	
114	0334	1374	TAD KX	
115	0335	4777	JMS I TYPN	
116	0336	4776	JMS I CONIE	
117	0337	4405	JMS I 5	
118	0340	4407	JMS I 7	/INPUT X (INITIAL VALUE)
119	0341	6125	FPUT X	
120	0342	0000	FEXT	
121	0343	4775	JMS I CRLF	
122	0344	1365	TAD KD	
123	0345	4777	JMS I TYPN	
124	0346	1374	TAD KX	
125	0347	4777	JMS I TYPN	
126	0350	4776	JMS I CONIE	
127	0351	4405	JMS I 5	
128	0352	4407	JMS I 7	/INPUT DX (INCREMENTING CONST.)
129	0353	6131	FPUT DX0	
130	0354	0000	FEXT	
131	0355	4761	JMS I DIGIM	
132	0356	4760	JMS I EQUA	
133	0357	7402	HLT	
134	0360	0420	EQUA,	EQU
135	0361	0473	DIGIM,	DIGIN
136	0362	0301	KA,	301
137	0363	0302	KB,	302
138	0364	0303	KC,	303
139	0365	0304	KD,	304
140	0366	0305	KE,	305
141	0367	0306	KF,	306
142	0370	0307	KG,	307
143	0371	0310	KH,	310
144	0372	0311	KI,	311
145	0373	0312	KJ,	312
146	0374	0330	KX,	330
147	0375	0404	CRLF,	CRLF
148	0376	0400	CONIE,	CONIN
149	0377	0412	TYPN,	TYPE
150			PAUSE	


```

001
002 *400
003 0400 0000 CONIN, 0
004 0401 1325 TAD K272
005 0402 4212 JMS TYPE
006 0403 5600 JMP I CONIN
007 0404 0000 CRLF, 0
008 0405 1324 TAD K215
009 0406 4212 JMS TYPE
010 0407 1323 TAD K212
011 0410 4212 JMS TYPE
012 0411 5604 JMP I CRLF
013 0412 0000 TYPE, 0
014 0413 6041 TSF
015 0414 5213 JMP .-1
016 0415 6046 TLS
017 0416 7200 CLA
018 0417 5612 JMP I TYPE
019 0420 0000 EQU, 0
020 0421 4243 JMS CALC /CALCULATE F(X) AT INITIAL X
021 0422 1322 TAD X0
022 0423 7041 CIA
023 0424 3321 DCA X11
024 0425 1321 NEXT, TAD X11
025 0426 1320 TAD M1
026 0427 3321 DCA X11
027 0430 4407 JMS I 7
028 0431 5125 FGET X /GET X
029 0432 1131 FADD DX0
030 0433 6125 FPUT X
031 0434 0000 FEXT
032 0435 4243 JMS CALC /CALCULATE F(X) AT X+DX0
033 0436 7300 CLA CLL
034 0437 1321 TAD X11
035 0440 7640 SZA CLA /CALCULATE F(X) AGAIN?
036 0441 5225 JMP NEXT /YES
037 0442 5620 JMP I EQU /NO
038 0443 0000 CALC, 0
039 0444 4407 JMS I 7
040 0445 5121 FGET J /GET J
041 0446 3125 FMPY X /MULTIPLY X
042 0447 1115 FADD II /ADD I
043 0450 3125 FMPY X /MULTIPLY X
044 0451 1111 FADD H /ADD H
045 0452 3125 FMPY X /MULTIPLY X
046 0453 1105 FADD G /ADD G
047 0454 3125 FMPY X /MULTIPLY X
048 0455 1101 FADD F /ADD F
049 0456 3125 FMPY X /MULTIPLY X
050 0457 1075 FADD E /ADD E
051 0460 3125 FMPY X /MULTIPLY X
052 0461 1071 FADD D /ADD D
053 0462 3125 FMPY X /MULTIPLY X

```


054	0463	1065	FADD C	/ADD C
055	0464	3125	FMPY X	/MULTIPLY X
056	0465	1031	FADD B	/ADD B
057	0466	3125	FMPY X	/MULTIPLY X
058	0467	1025	FADD A	/ADD A
059	0470	0000	FEXT	
060	0471	4406	JMS I 6	
061	0472	5643	JMP I CALC	/OUTPUT F(X)
062	0473	0000	DIGIN, 0	
063	0474	7300	CLA CLL	
064	0475	4302	JMS MESS	
065	0476	7402	HLT	
066	0477	7604	LAS	
067	0500	3322	DCA X0	
068	0501	5673	JMP I DIGIN	
069	0502	0000	MESS, 0	
070	0503	7300	CLA CLL	
071	0504	6046	TLS	
072	0505	1326	TAD CHARAC	
073	0506	3010	DCA IR1	
074	0507	1316	TAD M40	
075	0510	3317	DCA COUNT	
076	0511	1410	NXT, TAD I IR1	
077	0512	4212	JMS TYPE	
078	0513	2317	ISZ COUNT	
079	0514	5311	JMP NXT	
080	0515	5702	JMP I MESS	
081				
082	0516	7736	M40, -42	
083	0517	0000	COUNT, 0	
084	0520	0001	M1, 1	
085	0521	0000	X11, 0	
086	0522	0000	X0, 0	
087	0523	0212	K212, 212	
088	0524	0215	K215, 215	
089	0525	0272	K272, 272	
090	0526	0526	CHARAC, .	
091	0527	0314	314	
092	0530	0304	304	
093	0531	0240	240	
094	0532	0323	323	
095	0533	0322	322	
096	0534	0240	240	
097	0535	0327	327	
098	0536	0311	311	
099	0537	0324	324	
100	0540	0310	310	
101	0541	0240	240	
102	0542	0316	316	
103	0543	0325	325	
104	0544	0315	315	
105	0545	0256	256	
106	0546	0240	240	
107	0547	0317	317	

108	0550	0306	306
109	0551	0240	240
110	0552	0320	320
111	0553	0324	324
112	0554	0323	323
113	0555	0254	254
114	0556	0240	240
115	0557	0310	310
116	0560	0311	311
117	0561	0324	324
118	0562	0240	240
119	0563	0303	303
120	0564	0317	317
121	0565	0316	316
122	0566	0324	324
123	0567	0212	212
124	0570	0215	215
125		IR1=10	
126		PAUSE	

001 / STORAGE LOCATIONS FOR FLOATING PT. VARIABLES
002 *25
003 0025 0000 A, 0
004 0026 0000 0
005 0027 0000 0
006 0030 0000 0
007 0031 0000 B, 0
008 0032 0000 0
009 0033 0000 0
010 0034 0000 0
011 *65
012 0065 0000 C, 0
013 0066 0000 0
014 0067 0000 0
015 0070 0000 0
016 0071 0000 D, 0
017 0072 0000 0
018 0073 0000 0
019 0074 0000 0
020 0075 0000 E, 0
021 0076 0000 0
022 0077 0000 0
023 0100 0000 0
024 0101 0000 F, 0
025 0102 0000 0
026 0103 0000 0
027 0104 0000 0
028 0105 0000 G, 0
029 0106 0000 0
030 0107 0000 0
031 0110 0000 0
032 0111 0000 H, 0
033 0112 0000 0
034 0113 0000 0
035 0114 0000 0
036 0115 0000 I, 0
037 0116 0000 0
038 0117 0000 0
039 0120 0000 0
040 0121 0000 J, 0
041 0122 0000 0
042 0123 0000 0
043 0124 0000 0
044 0125 0000 X, 0
045 0126 0000 0
046 0127 0000 0
047 0130 0000 0
048 0131 0000 DX0, 0
049 0132 0000 0
050 0133 0000 0
051 0134 0000 0
052 / STORAGE LOCATIONS FOR CONSTANTS
053 0135 0002 TWO, 0002

054	0136	2000	2000
055	0137	0000	0000
056	0140	0000	0000
057	0141	0003	SIX,
058	0142	3000	3000
059	0143	0000	0000
060	0144	0000	0000
061	0145	0005	TWFO,
062	0146	3000	3000
063	0147	0000	0000
064	0150	0000	0000
065	0151	0007	ONTW,
066	0152	3600	3600
067	0153	0000	0000
068	0154	0000	0000
069	0155	0012	STW,
070	0156	2640	2640
071	0157	0000	0000
072	0160	0000	0000
073	0161	0015	FIFO,
074	0162	2354	2354
075	0163	0000	0000
076	0164	0000	0000
077	0165	0020	FOTO,
078	0166	2354	2354
079	0167	0000	0000
080	0170	0000	0000
081	0171	0023	THIS,
082	0172	2611	2611
083	0173	4000	4000
084	0174	0000	0000

A	0025
B	0031
C	0065
CALC	0443
CHARAC	0526
CONIE	0376
CONIN	0400
COUNT	0517
CRLF	0404
CRLFE	0375
D	0071
DIGIM	0361
DIGIN	0473
DX0	0131
E	0075
EQU	0420
EQUA	0360
F	0101
FIFO	0161
FOTO	0165
G	0105
H	0111
II	0115

IR1	0010
J	0121
KA	0362
KB	0363
KC	0364
KD	0365
KE	0366
KF	0367
KG	0370
KH	0371
KI	0372
KJ	0373
KX	0374
K212	0523
K215	0524
K272	0525
MESS	0502
M1	0520
M40	0516
NEXT	0425
NXT	0511
ONTW	0151
SIX	0141
STW	0155
THIS	0171
TWFO	0145
TWO	0135
TYPE	0412
TYPN	0377
X	0125
X0	0522
X11	0521

