No part of the candidate evidence in this exemplar material may be presented in an external assessment for the purpose of gaining credits towards an NCEA qualification.

91526

Level 3 Physics, 2014

91526 Demonstrate understanding of electrical systems

2.00 pm Tuesday 25 November 2014 Credits: Six

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding of electrical systems.	Demonstrate in-depth understanding of electrical systems.	Demonstrate comprehensive understanding of electrical systems.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should attempt ALL the questions in this booklet.

Make sure that you have Resource Booklet L3-PHYSR.

In your answers use clear numerical working, words and/or diagrams as required.

Numerical answers should be given with an SI unit, to an appropriate number of significant figures.

If you need more room for any answer, use the extra space provided at the back of this booklet.

Check that this booklet has pages 2–8 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

Not Achieved

TOTAL

ASSESSOR'S USE ONLY

QUESTION ONE: AC

ASSESSOR'S

The ideal transformer shown below has 3000 turns in its primary coil, and 600 turns in the secondary coil. A 240 V_{rms} AC power supply is connected across the primary coil. The secondary coil is connected to an external circuit.

Calculate the rms voltage across the external circuit. (a)

 $240 \times 3000 = 720000$ no formal attention of the section of the s

Vmax = JZ VRMS. Vmax = JZ × 848.582

Explain why rms values are often used to describe AC voltages.

This is because alternating current changes / alternation all the time, and so to get a proper value for it, we must take the RMs value, of it instead.

Vague explanation

By drawing a phasor diagram, show how the impedance of the external circuit can be calculated.

(d) A capacitor is added to the external circuit, causing the circuit to be at resonance.

Determine the rms voltage across the capacitor.

$$V = \int R^2 + (L-C)^2$$

$$V = \int 3.69^2 + \int$$

no understanding

VLN=IL VCV=IC

 N_l

USE ONLY

QUESTION TWO: BATTERIES

The circuit diagram shows two batteries connected into a circuit. The internal resistance, r_1 , of the 11.0 V battery is 2.70 Ω , and the internal resistance, r_2 , of the 10.0 V battery is 2.50 Ω .

(a) Switches S_1 and S_2 are closed and switch S_3 is left open.

Show that the current in the circuit is 0.0331 A.

Tot
$$V = 11 - 22.7I + 5I = 11 + 2.3I$$

 $V = 10 - 2.5I + 20I = 10 + 17.5I$
 $11 + 2.3I + 10 + 17.5I = V_{++}$
 $21 + 19.8I = V_{++}$
incorrect formula

(b) In which direction will the current be flowing through switch S₁?

Explain your answer.

(c) Switch S_3 is now closed so all three switches are closed.

ASSESSOR'S USE ONLY

Show, using Kirchhoff's laws, that the current through switch S₃ is 1.87 A.

Kirchoff's current law states that no energy is lost at a junction.

(d) Switch S_1 is now opened, leaving switches S_2 and S_3 closed. After this circuit has been operating for some time, the 10.0 V battery starts to go flat. A student suspects that this is caused by an increase in the internal resistance.

Explain what effect a changing internal resistance has on the power delivered to the 20.0 Ω resistor.

A full answer will include some sample calculations.

If the internal rejutance reaches say 3.52, this

means according to WHMM V= V-Ir, the

10V battery voltage will decrease. So supply

voltage decreases and since power is given by

P=IV, power and voltage are directly propositions

and so the power delived to 20.052 rejuta
will be 1155.

identified that Power

world be 1855

QUESTION THREE: ENERGY

In the circuit above, switch B is kept open and switch A is closed, allowing charge to flow (a) onto the plates of the capacitor.

Explain why the voltage of the capacitor rises to the voltage of the battery.

The charge from the battery build up on each side of the capacitor plates, one side with positive charge and the other with electrons until it reaches the voltage that the battery had f

When the capacitor in the circuit above is fully charged, it carries a charge of 8.60×10^{-3} C. (b)

Calculate the energy stored in the capacitor when it is fully charged.

$$E = \frac{1}{2} QV = \frac{1}{2} \times 8.6 \times 10^{-3} \times 12$$

$$= 0.0516J$$

(c) The graph below shows the relationship between voltage and time as the capacitor charges.

Sketch another curve on the graph to show the effect of an increased resistance on the charging of the capacitor.

Now switch A is opened and switch B is closed. The current changes with time.

(d) Explain the effect that inductors have on currents that change with time.

T=L R=V T=LI T-time constant

R I V I=current

The inductance of Induction is proportional to the

currents changing with time, and so we howen

the current change, the inductance will at the

same rate to

no understanding of effect of inductor

no understanding of effect of inductor

(e) Discuss how energy is stored in the capacitor and inductor at the instant switch B is closed, and then while the capacitor is discharging.

When switch B is closed, energy goes to both Inductor and capacitor. When the capacitor is discharging it loses its total of energy at an decreasing rate of 63% so after the first time constant, the capacitor would becrease (120×6.367 = 4.414V) to 4.41V and then (4.41×0367) 1.62V and to on. So the energy in the capacitor decreases at an expresential taste.

A3