Reeves et al SOM Figures

Table 1: Runs where no tool use events occurred. Note that the majority of runs that did not faciliate tool use are runs with only $100~{\rm Trees}$

Number of Sources	Number of Trees	Trees Die	Number of Runs
10	100	0	11
10	100	1	14

Table 2: A summary of number of uses by raw material quality

Number o		Material	min N	Mean N	Max N	Max Distance to
Source	s Trees	Quality	uses	Uses	Uses	Source
10	0 10	0	1	22.35648	412	11.704700
10	0 10	25	1	22.85039	250	8.544004
10	0 10	50	1	26.27872	171	10.816654
10	0 10	75	1	18.75368	172	8.000000
10	0 100	0	1	21.99876	531	15.652476
10	0 100	25	1	19.93934	379	13.601470
10	0 100	50	1	22.05582	247	15.811388
10	0 100	75	1	17.06763	171	12.806249
10	0 500	0	1	18.39440	543	15.297059
10	0 500	25	1	17.14202	392	13.601470
10		50	1	15.73572	251	13.892444
10		75	1	15.29275	177	15.264337
50		0	1	31.41484	585	19.209373
50		25	1	33.45985	323	20.518285
50		50	1	23.87386	272	17.204650
50		75	1	25.15970	184	18.110770
50		0	1	30.15344	653	30.083218
50		25	1	26.05296	357	25.942244
50		50	1	24.66192	299	23.769729
50		75	1	22.61916	219	17.029386
50		0	1	23.96524	766	27.018512
50		25	1	22.34021	394	26.172505
50		50	1	20.18316	326	24.186773
50		75	1	18.39001	251	24.413111
100		0	1	46.39870	729	30.016662
100		25	1	38.46537	374	25.059928
100		50	1	33.47645	250	23.345235
100		75	1	25.61091	199	27.294688
100		0	1	45.44604	775	37.947332
100		25	1	36.09471	430	30.886890
100		50	1	30.44730	315	30.000000
100	0 100	75	1	26.91404	225	29.000000

Number of Sources	Number of Trees	Material Quality	min N uses	Mean N Uses	Max N Uses	Max Distance to Source
1000	500	0	1	31.02060	843	34.176015
1000	500	25	1	26.84863	454	32.310989
1000	500	50	1	23.62872	289	27.166155
1000	500	75	1	21.82335	216	27.586228
2000	10	0	1	79.22782	770	52.392748
2000	10	25	1	55.00552	501	44.011362
2000	10	50	1	43.50328	295	38.013156
2000	10	75	1	36.11156	186	35.846897
2000	100	0	1	67.89652	802	51.400389
2000	100	25	1	50.82848	495	49.040799
2000	100	50	1	40.48315	342	36.878178
2000	100	75	1	34.36357	227	36.715120
2000	500	0	1	41.97819	833	51.078371
2000	500	25	1	33.46640	484	40.024992
2000	500	50	1	28.84229	309	37.215588
2000	500	75	1	25.52693	258	35.777088

Table 3: Runs where the repeated transport of tools did not result in the increased availability of trees $\,$

Number of Sources	Number of Trees	Trees Die	Number of Runs
10	100	0	28
10	100	1	18
10	500	0	11
10	500	1	2
10	1000	0	1
100	100	0	19
100	100	1	6
500	100	0	6
500	100	1	1

Figure 1: The relationship between the number of places where it is possible for a nut-cracking event to occur and the number of trees and sources at the beginning of each model run. Increasing both the number of Trees and Sources included in the model has a positive effect on the number of places where nut-cracking events can occur. Note that the Y axis is in log 10 scale

Figure 2: Both plots showing the maximum distance a *Pounding Tools* were moved according to their material quality. When the number of Trees is low, material quality has little influence on the maximum distance a *Pounding Tools* travel, this is due to the fact that there is little opportunity for tools to move substantial distances from their sources. However, as the number of *Trees* increases, so does the distance *Pounding Tools* can move from their *Source*. In cases where the number of *Trees* is great, the maximum distance tools can move is influenced by its raw material quality. Note that a raw material quality of 0 reflects 25% chance of breaking whereas a raw material quanlity of 75 represents a 100% change of breaking.

Figure 3: The effect tree death and growth on the maximum distance tools can move from the source. When holding the number of *Trees* and *Sources* constant *Pounding Tools* the maximum distance a pounding tool can move is greater when *Trees* are able to change their location due to death and regrowth.

Figure 4: The effect tree life cycles on the number of trees that become accessible due to the transport of tools. Black: Static Trees, Grey: Dynamic Trees

Figure 5: The relationship between the number of artifacts found in a grid cell and its distance to the nearest source. Note how the number of *Trees* attenuates the scale and strength of the distance decay relationship

Figure 6: The relationship between the number of Pounding Tools found in a grid cell and its distance to the nearest source. Note how the number of *Trees* attenuates the scale and strength of this relationship

Figure 7: The relationship between the size of Pounding Tools and distance to their sources. Note how the number of *Trees* attenuates the scale and strength of this relationship

Figure 8: The effect of the environment on the representation of Pounding tools in the simulated material record in runs where Tree locations are static. Increasing the number of sources increases the percentage of assemblages that contain Pounding Tools. In comparison with figure 4 (right) in the main text, individual assemblages contain greater proportions of Pounding Tools