TP 3 Complejos

Ejercicio 8. Resolver la siguiente ecuación en C.

g)
$$z^6 (\sqrt{3} + i)^3 = (1 - i) + \frac{2}{1 - i}$$

$$z^{6} = \frac{(1-i)(1-i)+2}{(1-i)(\sqrt{3}+i)^{3}} - \frac{(1-2i-1)+2}{(1-i)(\sqrt{3}+i)^{3}} = \frac{2-2i}{(1-i)8i} - \frac{2(1-i)}{8i(1-i)} = \frac{2}{8i} = \frac{1}{4i} = \frac{1i}{4ii} = \frac{i}{4ii} = -\frac{1}{4}i$$

$z^{6} = -\frac{1}{4} i = \left(\frac{1}{4}\right)_{270^{\circ}}$ $z = \sqrt[6]{\left(\frac{1}{4}\right)_{270^{\circ}}}$	k=0	$z_0 = \sqrt[6]{\frac{1}{4}}_{\frac{270^\circ + 360^\circ .0}{6}}$	$z_0 = \sqrt[6]{\frac{1}{4}}_{45^\circ}$
$z_k = \sqrt[6]{\frac{1}{4}}_{\frac{270 + 360^\circ \cdot k}{6}}$	k=1	$z_1 = \sqrt[6]{\frac{1}{4_{\underline{270^\circ + 360^\circ .1}}}}$	$z_1 = \sqrt[6]{rac{1}{4}}_{105^{\circ}}$
	k=2	$z_2 = \sqrt[6]{\frac{1}{4}}_{\frac{270^\circ + 360^\circ \cdot 2}{6}}$	$z_2 = \sqrt[6]{rac{1}{4}}_{165^{\circ}}$
	k=3	$z_3 = \sqrt[6]{\frac{1}{4}}_{\frac{270^\circ + 360^\circ .3}{6}}$	$z_3 = \sqrt[6]{rac{1}{4}}_{225^{\circ}}$
	k=4	$z_4 = \sqrt[6]{\frac{1}{4}}_{\underbrace{270^\circ + 360^\circ .4}_{6}}$	$oldsymbol{z_4} = \sqrt[6]{rac{1}{4}}_{285^\circ}$
	k=5	$z_5 = \sqrt[6]{\frac{1}{4}}_{\frac{270^\circ + 360^\circ .5}{6}}$	$oldsymbol{z_5} = \sqrt[6]{rac{1}{4}}_{345^\circ}$