Note:-Check the Answers on Last page...... [QUESTIONS 1 TO 141]

[PAGE 1 TO 14]

MULTIPLE CHOICE OBJECTIVE TYPE QUESTION

Q1. Which out of these is a non-linear data-structure:

a. arrays b.linked-lists c. queues d. tree

Q2. A stack is a data-structure in which elements are stored and retrieved by:

a. FIFO methodb.LIFO methodc. FCFS methodd. None of the above

Q3. The different types of arrays are:

a. One & Multi-dimensional b. int and float

c. int,char,float d. One & Two dimensional

Q4. An array is passed into a function:

a. by valueb. by referencec. element by elementd. Any of the above

Q5. A queue is a data-structure in which elements are stored and retrieved by:

a. FIFO methodb.LIFO methodc. FCFS methodd. None of the above

Q6. If an array with the name, A exists which of the following statements is incorrect:

a. A++ b. printf("%d",*(A+1))
c. printf("%u",A+1) d. All are correct

Q7. An uninitialized pointer is known as:

a. dangling pointerb. NULL pointerc. generic pointerd. None of the above

Q8. The unary operator used with pointer variable to indirectly access the contents of memory location pointed to by the pointer is called

a. Address-of operatorb. dot operatorc. indirection operatord. asterisk operator

Q9. The arithmetic operation performed on pointer variables:

a. multiplication of an integer with pointerb. addition of two pointersd. addition of a float to a pointer

Q10. Two ways to access elements of an array are:

a. by value and by reference b. indexed and pointer notation

c. sequential and random d. none of the above

Q11. The functions used for dynamic memory allocation are:

a. delete and freeb. free and reallocc. malloc and freed. malloc and calloc

Q12.	An array can be categorized as which type of data-structure:						
a. dynamic		b. static					
c. int/char/float		d. multi-dimensional					
Q13.	The function used in C	to de-allocate a memory block is:					
a. delete		b. free					
c. malloc		d. realloc					
Q14.	A collection of elements of different data-types is known as:						
a. array	1	b. union					
c. struc	ture	d. linked list					
Q15.	To access elements of a structure through a pointer , the operator used is:						
a		b>					
C. <-		d. *					
Q16.	_	ast one of its members of the same type as the structure itself:					
a. refer	ence structure	b. nested structure					
c. self-r	eferential structure	d. none of the above					
	A one-way list is called	l:					
a. circu	lar linked list	b. array					
c. queu	е	d. single linked list					
Q18.	An orphaned block is t	he result of:					
a. mem	ory leak	b. garbage collection					
c. free f	function	d. all of the above					
Q19.	A pointer can poi	int to any data-type:					
a. NULI	L pointer	b. void pointer					
c. dangling pointer		d. such a pointer does not exist					
Q20.	• • •	s of integer type and x is also an integer-type of variable, which of these					
-	sions is valid:						
a. p1*x		b. p2+x					
c. p1+p	2	d.p1*p2					
Q21.	-	resented using two ways which are:					
_	e and double	b. single and circular					
c. static	and dynamic	d. any of the above					
Q22.	•	ation for a node in a linked list is done from:					
a. RAM		b. ROM					
c. Hard	disk	d. Heap					
Q23.		collection of homogeneous elements called:					
a. struc		b. nodes					
c. data		d. none of the above					

Q24. Insertion in a linked list can be done from:

a. beginningb. endc. middled. all of the above

Q25. The traversal directions possible in a double-linked list are:

a. forwardb. backwardc. forward and backwardd. right

Q26. A node in a double linked list comprises of:

a: information field b: information field and next pointer

c: information field, next d: information field, next pointer, previous pointer & previous pointer

pointer and thread field

Q27. The situation in which the user tries to delete a node from an empty linked list is called:

a: empty b: free c. overflow d. underflow

Q28. When a new node is inserted in between a linked list, which of these is true:

a: only the nodes appearing after b: only the nodes appearing before the new node needs to be moved the new node needs to be moved

c: the nodes appearing before d: None of the above

and after the new node need

to be moved

Q29. The situation in which memory is not available for the allocation of a new node:

a: empty b: free c. overflow d. underflow

Q30. A linear linked list in which the next field of the last node points back to the first node is termed as:

a: single linked list b: double linked list c: circular linked list d: reversed linked list

Q31. A new node can be dynamically inserted anytime in a linked list, for which the memory manager maintains a special list known as

a: available listb: free-storage listc: single linked listd: dynamic storage list

Q32. The insertion/deletion operations on a stack are respectively known as:

a: insert and delete b: enter and exit c: push and pop d: none of the above

Q33. A stack could be implemented using:

a. single and doubleb. single and circularc. array and linked listd. any of the above

Q34. The pointer used to point to the element in the beginning of the stack is called:

a: start b: front c: root d: top

Q35. Postfix notation is also know as:

a: polish notationb: reverse polish notationc: post notationd: post-operator notation

Q36. A linked list is which type of data-structure:

a: static b: non-linear

c: linear d: none of the above

Q37. Prefix notation is also known as:

a: polish notationb: reverse polish notationc: pre notationd: post-operator notation

Q38. When converting an infix expression to postfix using algorithm, when '(' is encountered, it is:

a: added to postfix string b: pushed and operators are popped from the stack

c: pushed onto the stack d: options a and c are performed

Q39. The data-structure in which both insertion and deletion take place from the beginning:

a: linked list b: queue

c: tree d: stack

Q40. The postfix expression: 5 6 2 + * 12 4 /- when evaluated gives the following result:

a: 37 b: -37 c: 40 d: 3

Q41. The condition top=-1 indicates that:

a: stack has only one element b: stack is full

c: stack is empty d: none of these

Q42. The validity of an expression containing nested parentheses could be checked using:

a: linked list b: queue

c: tree d: stack

Q43. A string could be reversed using the data-structure:

a: linked list b: queue

c: tree d: stack

Q44. The notation in which the operator occurs between the operands is called:

a: infix notation b: prefix notation

c: postfix notation d: post-operator notation

Q45. In a normal queue, the underflow situation occurs when:

a: rear=max -1 b: front= -1

c: rear=front d: rear=size-1

Q46. In a circular queue, one of the situations when overflow occurs:

a: rear=size-1 b: rear=front c: (rear+1)=front d: front=-1

Q47. In postfix expression, the operator is placed:

a: in-between the operands b: after the operands c: before the operands d: none of these

Q48. In a priority queue, the elements with the same priority are processed according to:

a: First come first served basis b: priority

c: last in first come basis d: no specific order

Q49. The deque in which insertion is done at one end and deletion from both ends:

a: input-restricted deque b: output-restricted deque

c: input-output restricted deque d: Any of the above

Q50. A circular array queue with space for 10 elements in which front =6 and rear=9, insertion of next element will take place at position:

a: 0 b: 5

c: 7 d: insertion can not take place due to

overflow situation

Q51. A data-structure in which each element is assigned a priority and the elements are added/removed according to that priority:

a: priority list b: priority queue

c: stack d: none of the above

Q52. A linear data-structure in which elements could be inserted/deleted at either end but not in the middle:

a: queue b: stack

c: deque d: circular queue

Q53. In a circular queue with 10 elements, if front is at 9 and rear at 4, the deletion of an element will make front point to which position:

a: 0 b: -1 c: 3 d: 5

Q54. A non-linear hierarchical type of data-structure:

a: graph b: tree c: array d: deque

Q55. All leaf nodes of a tree are termed as:

a: terminal nodes b: non-terminal nodes c: child nodes d: internal nodes

Q56. The root node is

a: terminal node b: internal nodes

c: child node d: none of the above

Q57. The nodes belonging to the same parent are known as:

a: descendants b: external nodes

c: child nodes d: siblings

Q58. A tree in which the degree of each node is either 0 or 2:

a: complete binary tree b: binary search tree c: strictly binary tree d: none of the above

Q59. A binary tree in which all the leaf nodes of the tree are at the same level:

a: complete binary tree b: binary search tree

c: strictly binary tree d: none of the above

Q60. At any level x of a binary tree, the maximum number of nodes are:

a. 2^x b: 2*x

c: 2+x d: none of the above

Q61. What is the root node for the algebraic expression : a*(b+c)-d, if it is represented in the form of a

tree:

a: - b: + c: a d: *

Q62. In inorder traversal of a binary tree, the root node is visited:

a: after the traversal of b: before the traversal of right & left subtrees right and left subtrees

c. in-between the traversal of d: none of these

left and right subtrees

Q63. The height of the following binary tree is:

a: 3 b: 4 c: 5 d: 2

Q64. A binary search tree is also known as:

a: B-tree b: binary sorted tree

c. binary ordered tree d: B+ tree

Q65. A binary tree in which the node-values are not repeated is called:

a: B-tree b: binary search tree

c. binary ordered tree d: B+ tree

Q66. A binary search tree in which the nodes have been inserted in the following order:60,55,95,40,30,100,35, the node with the value 47 will be inserted to the:

a: right of node with value 40 b: right of node with value 55 c: right of node with value 35 d: left of node with value 30

Q67. In the following post-order travers	sal of a binary tree: E,C,K,A,H,B,G,D,F, the root node is:			
a: E	b: H			
c: F	d: D			
Q68. The complexity of bubble-sort alg				
a: O(n²)	b: O(n)			
c: O(log n)	d: O(n log n)			
Q69. Binary search is more suitable for	··			
a: array	b: linked list			
c: stack	d: any of the above			
Q70. The complexity of binary-search a	_			
a: O(log n)	b: O(n log n)			
c: O(n)	d: O(n²)			
Q71. The calloc() function can be used	to allocate:			
a: multiple blocks of memory	b: single block of memory			
c: two blocks of memory	d: none of these			
·				
	x expression: A+B*(C+D)/F+D*E is:			
a: AB+CD+*F/D+E*	b: ABCD+*F/+DE*+			
c: A*B+CD/F*DE++	d: A+*BCD/F*DE++			
Q73. A linear list of elements in which	deletion can be done from one end and insertion can take			
place at the other end is called:				
a: queue	b: stack			
c: tree	d: branch			
	onvert infix notation to postfix notation:			
a: queue c: tree	b: stack d: linked list			
c. nee	u. IIIIkeu iist			
Q75. Which of the following sorting pro	ocedures is the slowest:			
a: Quick sort	b: bubble sort			
c: Shell sort	d: insertion sort			
0-0				
·	serves successive memory locations, each large enough			
to contain a single integer: a: 200	b: 10000			
c: 10	d: 100			
	e			
Q77. If n elements are to be sorted, the	complexity of selection-sort is:			
a: O(1)	b: O(log n)			
c: O(n)	d: O(n²)			
O70 The execution of management	alament in the list is known as			
Q78. The operation of processing each				
a: sorting	b: merging			

c: inserting		d: traversal			
070	Arraya ara baat data atrijatijiraa.				
Q79.	Arrays are best data structures: elatively permanent collections	b: when the size of structure is			
	stantly changing	b. When the size of structure is			
c: for both the above situations		d: for none of the above situations			
	o. for both the above situations	a. for none of the above oldations			
Q80.	The elements of an array are store	ed successively in memory cells because:			
a: in th	is way the computer can calculate	b: computer architecture allows			
the address of other elements keeping		arrays to be stored serially only			
	of address of first element				
c: both	of the above	d: none of the above			
Q81.	Pick the odd one out:				
	rtion sort	b: selection sort			
	ating sort	d: merge sort			
		C			
Q82.	_	losing parentheses ')' match the opening parentheses '(' in a			
	matical expression, which data-str	• •			
a: hash		b: stack			
c: queu	ie	d: tree			
Q83.	The estimated amount of time red	uired in executing an algorithm is referred to as of the			
algorit					
a: time	complexity	b: space complexity			
c: time	and space complexity	d: none of the above			
Q84.	If all the data to be corted door no	at fit antirally in main mamory, the corting technique used is:			
• •	nal sorting	ot fit entirely in main memory, the sorting technique used is:			
	ge sorting	b: external sorting d: sorting can not be performed			
C. IIIeig	ge sorting	u. Sorting can not be penormed			
Q85.	The searching technique suitable	for unsorted arrays:			
a: bina	ry search	b: linear search			
c: any	of these	d: none of these			
000	A discounting in a second of almositist	or accounting accountly the timed manner and administration the			
Q86.	m size n , is referred to as:	n execution, usually the time/ memory needed , given the			
-		b: Polish notation			
a: Big O notation c: Time notation		d: space complexity			
0. 111110	Holdion	d. Space complexity			
Q87.	The technique of collecting unuse	ed memory is known as:			
a: garbage collection		b: Dynamic memory allocation			
c: statio	c memory allocation	d: none of these			
Q88.	The root node of a hinary tree who	ose preorder traversal is: F,B,A,D,C,E,G, I, H is:			
a: F	The root house of a billary ties will	b: H			
σ. .					
c: C		d: none of these			

Q89. The post-order traversal of an arithmetic expression will result in the expression being represented as:

a: postfix b: prefix

c: infix d: none of the above

Q90. The main measures for the efficiency of an algorithm are:

a: processor and memory b: complexity and capacity

c: time and space d: data and space

Q91. Which of the following cases does not exist in complexity theory:

a: best case b: worst case

c: average case d: Null case

Q92. The worst case occurs in linear search algorithm when:

a: item is in the middle of the b: item is not in the array

array

c: item is the last element in the array d: item is the last element in the array or not in the array at-all

Q93. The complexity of merge sort algorithm is:

a: O(n) b: $O(\log n)$ c: $O(n^2)$ d: $O(n \log n)$

Q94. The complexity of linear search algorithm is:

a: O(n) b: $O(\log n)$ c: $O(n^2)$ d: $O(n \log n)$

Q95. Which of the following data structures is not a linear data structure:

a: arrays b: linked lists

c: both of the above d: none of the above

Q96. Linked lists are best suited:

a: for relatively permanent collections

constantly changing

c: for both the above situations d: for none of the above situations

b: when the size of structure is

Q97. The memory address of the first element of an array is called:

a: floor address c: first address d: base address

Q98. The memory address of the fifth element of an array can be calculated by the formula:

a: Base(Array)+w(5-lower bound) where b: Base(Array[5])+(5-lower bound)

w is the size of each element of array

c: Base(Array[5])+(5-upper bound) d: none of the above

Q99. Which of the following data-structures are indexed structures:

a: linear arrays b: linked lists

c: both of the above d: none of the above

Q100. Which of the following is not the required condition for binary search algorithm: a: the list must be sorted b: a direct access to middle element is needed c: a mechanism to delete/insert elements d: None of the above in list Q101. Which of the following data structures can't store non-homogeneous data-elements: a: Arrays b: Records c: Pointers d: None Q102. Which of the following statements is false: a: Arrays are static data structures b: data elements in linked list need not be stored in adjacent space in memory d: linked lists are collection of nodes c: pointer stores the next data element of a list that contain information part & next pointer Q103. Which of the following is a two-way list: a: grounded header list b: circular header list c: linked list with header & trailer nodes d: none of the above Q104. The terms "push" and "pop" are related to: a: array b: lists c: stacks d: all of the above Q105. The depth of a complete binary tree is given by: b: n log n +1 a: n log n c: log n d: log n +1 Q106. When representing any algebraic expression E which uses only binary operations in a 2-tree: a: the variables in E will appear as external b: the operations in E will appear as nodes and operations as internal nodes external nodes and variables as internal nodes c: the variables and operations in E will d: the variables and operations in E appear only as internal nodes appear only as external nodes Q107. An algorithm that calls itself directly or indirectly is known as: a: sub-algorithm b: recursive algorithm c: polish notation d: traversal algorithm Q108. The inorder traversal of tree will yield a sorted listing of elements of tree: a: binary tree b: binary search tree c: heaps d: none of the above Value of first linked list index is: Q109. a: 1 b: 0 d: none of these c: -1

Q110. is a data-structure that organizes data similar to a line in the super-market, where the first one in the line is the first to be out: a: queue b: stacks c: none of these c: any of the two above Q111. Which of the following abstract data types is not used by integer abstract data type group? a: short b: int c: float d: long Q112. In a heap tree: a: value in a node is greater than every b: value in a node is greater than value in left subtree and smaller than the value of its child nodes right subtree c: both the above conditions d: none of the above conditions Q113. The variables which can be accessed by all modules in a program, are known as: a: local variables b: internal variables c: external variables d: global variables Q114. The post order traversal of a binary tree is :DEBFCA, find out the preorder traversal: a: ABFCDE b: ADBFEC c: ABDECF d: ABDCEF Q115. Which of the following algorithms is of divide and conquer type: a: bubble-sort b: insertion sort c: quick sort d: all of the above Q116. One of the applications of a linked list: a: Polynomial evaluation b: Postfix expression evaluation c: determining the distance traveled d: none of these Q117. A tree having any number of nodes: a: binary tree b: general tree c: B-tree d: AVL tree Q118. A set of several trees that are not linked to each other in any way a: Forest b: Graphs c: B-trees d: none of these Q119. All the non-leaf nodes except the root node in a multi-way search tree of order, n have atleast: a: n-1 children b: n children c: n/2 children d: n*2 children Q120. Heaps are of two types: a: high and low b: max and min c: B and B+ d: none of the above Q121. Incase of min-heap, the value present in any node is:

b: smaller than all its children

a: greater than all its children

c: equal to all its children d: greater than values in left subtree

and smaller than values in right

subtree

Q122. A min-heap is also known as:

a: decreasing heap b: descending heap

c: low heap d: none of these

Q123. A max-heap is also known as:

a: increasing heap b: ascending heap

c: high heap d: none of these

Q124. A tree in which the value in every node is more than node-values in its left subtree and less than node-values in its right subtree:

a: binary sorted tree b: B-tree c: B+ tree d: AVL tree

Q125. A matrix which has most of its values equal to 0:

a: sparse matrix b: zero-matrix

c: empty matrix d: none of the above

Q126. A sparse matrix can also be represented using:

a: queue b: stack c: tree d: linked list

Q127. A B-tree grows at the:

a: root b: leaves

c: braches d: any of the above

Q128. A binary tree grows at the

a: root b: leaves

c: braches d: any of the above

Q129. Shell sort is an improvisation over:

a: quick- sort b: merge-sort

c: insertion-sort d: none of these

Q130. To reduce disk-accesses while searching for a record, the tree used is:

a: binary sorted tree b: B-tree c: general tree d: AVL tree

Q131. While calculating time-complexity, the program-time which is considered is:

a: compile time b: execution time c: both compile and run-time d: none of the above

Q132. The time complexity of the following algorithm is:

sum(a,n){ s=0; for i= 1 to n{s=s+a[i]; } return s;}

a: 3n+2 b: 2n +3 c: n+1 d: 2n+2

Q133. Complexity of heap sort a: O(n) b: O(log n) c: O(n2) d: O(n log n) Q134. If there are more than one paths between two nodes, it is a: a: tree b: graph c: circular linked list d: none of the above Q135. The leaf nodes of a tree have height equal to: a: height of the tree b: zero c: one d: none of these Q136. A binary tree with n internal nodes has a max. of external nodes equal to: b: n+1 a: n-1 c: n d: n/2 Q137. Height of a full binary tree with n internal nodes is: a: n log n b: n c: n+1 d: log n Q138. The degree of a leaf node is: a: 1 b: 0 c: -1 d:2 Q139. A right in-threaded binary tree contains: a: inorder successor b: inorder predecessor c: NULL d: preorder successor Q140. The algorithm used in dynamic memory allocation with minimum time: a: First fit b: Best fit c: Worst fit d: Next fit Q141. The algorithm used in dynamic memory allocation which results in minimum fragmentairst fit b: Best fit d: Next fit

c: Worst fit

Ansv	vers
------	------

1(d)	2(b)	3(c)	4(b)	5(a)	6(a)	7(a)	8(c)
9(c)	10(b)	11(d)	12(b)	13(b)	14(c)	15(b)	16(c)
17(d)	18(a)	19(b)	20(b)	21(c)	22(d)	23(b)	24(d)
25(c)	26(c)	27(d)	28(d)	29(c)	30(c)	31(b)	32(c)
33(c)	34(d)	35(b)	36(c)	37(a)	38(c)	39(d)	40(a)
41(c)	42(d)	43(d)	44(a)	45(b)	46(c)	47(b)	48(a)
49(a)	50(a)	51(b)	52(c)	53(a)	54(b)	55(a)	56(b)
57(d)	58(c)	59(a)	60(a)	61(a)	62(c)	63(a)	64(b)
65(b)	66(a)	67(c)	68(a)	69(a)	70(a)	71(a)	72(b)
73(a)	74(b)	75(b)	76(d)	77(d)	78(d)	79(a)	80(a)
81(c)	82(b)	83(a)	84(b)	85(b)	86(a)	87(a)	88(a)
89(a)	90(c)	91(d)	92(d)	93(d)	94(a)	95(d)	96(b)
97(d)	98(a)	99(a)	100(c)	101(a)	102(c)	103(d)	104(c)
105(d)	106(a)	107(b)	108(b)	109(b)	110(a)	111(c)	112(b)
113(d)	114(c)	115(c)	116(a)	117(b)	118(a)	119(c)	120(b)
121(b)	122(b)	123(b)	124(a)	125(a)	126(d)	127(a)	128(b)
129(c)	130(b)	131(b)	132(b)	133(d)	134(b)	135(b)	136(b)
137(d)	138(b)	139(a)	140(a)	141(b)			