- 1. 以下何種方法所產生的字詞向量的維度是可解釋的?
 - A. CBOW
 - B. Skip gram
 - C. SVD
 - D. TF-IDF

ANS: D, TF-IDF 每一維度是字詞

- 2. 以下何種方法不是使用神經網路來產生字詞向量?
 - A. SVD
 - B. Skip gram
 - C. CBOW
 - D. Glove

ANS: A, SVD 採用矩陣分解法來產生字詞向量

- 3. 相對於傳統產生文字向量的方法(如 SVD),那個不是使用神經網路來產生字 詞向量的好處?
 - A. 有考慮文字的鄰近性
 - B. 維度較低
 - C. 新的訓練文件可以隨時加入,不用重新訓練
 - D. 也可以同時訓練文件的向量

ANS:B,傳統方法和神經網路在產生字詞向量的維度數沒有差別。

考慮以下的 CBOW 神經網路圖

以下為 $W_{V\times N}^T$

0.2	1.2	0.8	0.1	2.1	3.1	2.1	1.4	
3.1	0.2	0.3	1.2	0.2	1.2	4.2	0.2	
2.1	3.6	1.2	3.1	0.1	0.2	1.3	4.3	
1.5	2.3	9.2	0.1	0.5	3.5	1.4	1.3	
2.3	1.8	9.1	0.4	0.2	1.5	8.4	0.3	
5.4	1.2	0.3	4.3	1.2	3.2	5.4	4.3	
3.2	1.5	4.3	1.0	2.3	8.4	1.2	2.3	
3.4	2.1	0.2	2.3	1.3	3.2	1.2	2.7	

N

- 4. "cat"的第一個維度值為
 - A. 0.2
 - B. 1.2
 - C. 0.8
 - D. 0.1

ANS:B, cat 在第2行(column)

- 5. "on"的第一個維度值為
 - A. 0.2
 - B. 1.2
 - C. 0.8
 - D. 0.1

ANS: D, on 在第 4 行 (column)

- 6. "sat"的第一個維度值為
 - A. 0.1
 - B. 2.1
 - C. 3.1
 - D. 1.4

ANS: D, sat 在第 8 行 (column)

- 7. 以下何種不是 word2vec 的應用?
 - A. 判斷詞跟詞的相似程度
 - B. 查詢詞自動擴充
 - C. 判斷詞跟詞間的關係

D. 找出同音字詞

ANS: D, word2vec 沒有處理字詞發音

- 8. 以下何者不是 Transformer Model 的特色?
 - A. 參數量很大
 - B. 分成 Encoder 和 Decoder
 - C. BERT 是 Encoder
 - D. ChatGPT 包含 Encoder 和 decoder

ANS: D, ChatGPT 是 decoder-only 架構

- 9. 跟 seq2seq Model 比起來,Transformer Model 有何優點?
 - A. 較能注意到長文的前後文關係
 - B. 較能使用 GPU 的平行處理
 - C. 可以使用大量文本訓練出一個模型供後需下游任務來使用
 - D. 以上皆是

ANS:D,都是。

- 10. 一下那個 embeddings 不是 Transformer Model 訓練出來的
 - A. Skip-gram
 - B. FastText
 - C. Bert
 - D. Cohere

ANS: A, Skip-gram 使用簡單的 2層式神經網路架構設計的。