kallisto live demo

Páll Melsted

Overview

- Downloading and installing kallisto
- Ingredients for a Coelacanth analysis
 - Nikaido et al. Genome Research, 2013
- Indexing
- Quantification

Download the source code and compile?

Mac: use Homebrew science

Install Homebrew from http://brew.sh

- > brew tap homebrew/science
- > brew install kallisto

 Can also download binary, but Homebrew science adds a lot of useful tools

Linux: download the binary (works on all distributions) from https://pachterlab.github.io/kallisto

kallisto	About	Apps	Download	FAQ N	/lanual	Source	Getting Started
Downlo	ad						
Repository							
The kallisto GitHub re	pository is	here.					
Releases							
Version		Date					
Release notes: v0.43	.0	June	02, 2016	Mac	Linux	Windo	ws Source
						-	

Windows: download binary and run using command line (cmd)

Windows: download binary and run using command line (cmd)

```
Administrator: C:\Windows\system32\cmd.exe
C:\Users\Pachter Lab Dell\Desktop\kallisto>
C:\Users\Pachter Lab Dell\Desktop\kallisto>kallisto.exe quant -i index.i
t reads_1.fastq.gz reads_2.fastq.gz
[quant] fragment length distribution will be estimated from the data
[index] k-mer length: 31
[index] number of targets: 15
[index] number of k-mers: 18,902
[index] number of equivalence classes: 22
[quant] running in paired-end mode
[quant] will process pair 1: reads_1.fastq.gz
                             reads_2.fastg.gz
[quant] finding pseudoalignments for the reads ... done
[quant] processed 10,000 reads, 10,000 reads pseudoaligned
[quant] estimated average fragment length: 178.097
    eml quantifying the abundances ... done
    eml the Expectation-Maximization algorithm ran for 52 rounds
C:\Users\Pachter Lab Dell\Desktop\kallisto>
```

Requirements for running kallisto

- Reference transcriptome
- Paired end reads, FASTQ files

Coelacanth analysis

- Reference transcriptome
- Paired end reads, FASTQ files
 - Downloaded from the short read archive (SRA)
 - 19 samples
 - 6 tissues gill, kidney, pharynx, pectoral fin, pelvic fin, muscle
 - ~3 technical replicates per tissue

Only download the transcriptome

Only download the transcriptome

Index of /pub/release-86/fasta/latimeria_chalumnae/

	Name	Size	Date Modified
1	[parent directory]		
	cdna/		9/26/16, 3:06:00 PM
	cds/		9/26/16, 3:06:00 PM
	dna/		9/26/16, 3:11:00 PM
	ncrna/		9/26/16, 3:11:00 PM
	pep/		9/26/16, 3:11:00 PM

Index of /pub/release-86/fasta/latimeria_chalumnae/

	Name	Size	Date Modified
1	[parent directory]		
4	cdna/		9/26/16, 3:06:00 PM
	Cds/		9/26/16, 3:06:00 PM
	dna/		9/26/16, 3:11:00 PM
	ncrna/		9/26/16, 3:11:00 PM
	pep/		9/26/16, 3:11:00 PM

Index of /pub/release-86/fasta/latimeria_chalumnae/cdna/

Name	Size	Date Modified
[parent directory]		
CHECKSUMS	134 B	9/23/16, 2:47:00 PM
Latimeria chalumnae LatCha1 cdna.abinitio.fa.gz	33.6 MB	9/20/16, 3:05:00 PM
Latimeria_chalumnae.LatCha1.cdna.all.fa.gz	16.1 MB	9/20/16, 2:34:00 PM
READIVIE	3.1 kB	9/20/16, 3:05:00 PM

Indexing command

- Creates an index of the transcriptome reference that kallisto will use for quantification
 - Required only once per reference transcriptome
- > time kallisto index -i index.idx
 Latimeria_chalumnae.LatCha1.cdna.all.fa.gz

Indexing command

- Creates an index of the transcriptome reference that kallisto will use for quantification
 - Required only once per reference transcriptome

where to store index

Indexing command

- Creates an index of the transcriptome reference that kallisto will use for quantification
 - Required only once per reference transcriptome

Indexing guide

What value of k should be chosen?

- k-mer tradeoffs
 - high k more specific
 - low k robust to sequencing errors

Indexing guide

What value of k should be chosen?

- k-mer tradeoffs
 - high k more specific
 - low k robust to sequencing errors
- general guide
 - for 75bp reads, use default, k=31
 - for 50bp reads, use default except if known issues
 - shorter reads, lower k=25 or k=21.

Quantification is run separately for each sample

> time kallisto quant -i index/index.idx
-o results/DRR002318 -b 30 -t 4
data/DRR002318_1.fastq.gz
data/DRR002318_2.fastq.gz

Quantification is run separately for each sample

```
index constructed
```

> time kallisto quant -i index/index.idx
-o results/DRR002318 -b 30 -t 4
data/DRR002318_1.fastq.gz
data/DRR002318_2.fastq.gz

```
where to put results

> time kallisto quant -i index/index.idx
-o results/DRR002318 -b 30 -t 4
data/DRR002318_1.fastq.gz
data/DRR002318_2.fastq.gz
```

```
where to put results
                            index constructed
> time kallisto quant -i index/index.idx
  -o results/DRR002318 -b 30 -t 4
  data/DRR002318_1.fastq.gz
  data/DRR002318_2.fastq.gz
                          number of
                           bootstraps
```


Results

- The output is stored in the specified directory
- abundance.h5 HDF5 compressed file, not human readable
 - contains the quantifications, all bootstraps and other information
- abundance.tsv Tab Separated file
 - abundances and counts for each transcript
- run_info.json JSON formatted file
 - information about the run