International Journal of Electronics, Communication & Instrumentation Engineering Research and Development (IJECIERD) ISSN(P): 2249-684X; ISSN(E): 2249-7951

Vol. 4, Issue 1, Feb 2014, 53-58

© TJPRC Pvt. Ltd.

DESIGN AND SIMULATION OF FLOATING POINT 32 INPUTS SPLIT-RADIX ALGORITHM

K. SATYADURGA¹, P. R MAHIDHAR² & N V G PRASAD³

¹Reaserch Scholar, Department of ECE, SITE, Tadepalligudem, Andhra Pradesh, India

²Assistant Professor, Department of ECE, SITE, Tadepalligudem, Andhra Pradesh, India

³Associate Professor & HOD, Department of ECE, SITE, Tadepalligudem, Andhra Pradesh, India

ABSTRACT

Fast Fourier Transform plays a very important role in many engineering applications. Many different algorithms are proposed to improve the architecture of FFT among them Split-radix FFT is a particular FFT algorithm that aims to compute FFT with the least number of multiplications. The split-radix FFT mixes radix-2 and radix-4 decompositions, yielding an algorithm with about one-third fewer multiplies than the radix-2 FFT. The split-radix FFT has lower complexity than the radix-4 or any higher-radix power-of-two FFT. This paper proposes split-radix FFT for both real and floating point numbers. In this paper we use verilog for code implementation. The FPGA synthesis and logic simulation is displayed in Xilinx design suit13.2. The results shows the improvement in the speed

KEYWORDS: Split, Radix, Fast Fourier Transform, Butter Fly, Verilog, Floating Point, FPGA

INTRODUCTION

Fast Fourier Transform (FFT) has become ubiquitous in many engineering applications. High-speed FFT operations are necessary in the field of digital signal processing, digital image processing applications and also in several communication systems. Fast Fourier Transform (FFT) is an efficient algorithm to compute the discrete Fourier transform (DFT) and it's inverse. It makes the use of the symmetry properties of twiddle factor to effectively reduce the DFT computation time. It is based on fundamental principle of decomposing the computation of DFT of a sequence of length N into successively smaller discrete Fourier transforms

The N-point DFT of sequence x (n) is given by

 $X(K) = \sum_{n=0}^{N-1} x(n) W_N^{kn} 0 \le K \le N-1$

Where $\mathbf{W}_{\mathrm{N}} = e^{-j2\pi/N}$ is known as twiddle factor

The efficiency of the FFT algorithm lies in its reduced number of arithmetic operations. DFT has the order of O ($_{\rm N}^2$) arithmetic operations whereas FFT has the order of O (N log N) arithmetic operations. The **Cooley - Tukey** algorithm was proposed in 1965 which is used to divide the transform into two pieces of size N/2 at each step, and is therefore limited to power of two sizes .this algorithm usually called radix-2 algorithm

Radix-2 Algorithm

In this radix-2 algorithm N-point sequence decimates into two sequences of length N/2, where one sequence consisting of the even-indexed values of x (n) and other odd indexed values of x(n)

DIT radix-2 representation is

$$X(K) = \sum_{n=0}^{N-1} x(n) e^{-(\frac{j2\pi nk}{N})}$$

$$X\left(K\right) = \textstyle \sum_{n=0}^{N/2-1} \; x(2n) \; e^{-(\frac{j2\pi(2n)k}{N})} + \textstyle \sum_{n=0}^{N/2-1} \; x(2n+1) \; e^{-(\frac{j2\pi(2n+1)k}{N})} + \textstyle \sum_{n=0}^{N/2-1} \; x(2$$

 $X(K) = DFT[even numbered indices] + W_N^k DFT[odd numbered indices]$

DIF radix -2 representation is

$$X(2K) = \sum_{n=0}^{N/2-1} [x(n) + x(n + \frac{N}{2})] W_{N/2}^{nk} K=0,1....N/2-1$$

$$X(2K+1) = \sum_{n=0}^{N/2-1} [x(n) - x(n + \frac{N}{2})] W_N^n W_{N/2}^{nk} k=0,1....N/2-1$$

Radix-4 Algorithm

When the number of samples N in the input sequence is a power of 4 (, it is more computationally efficient to employ a radix-4 FFT algorithm. The radix-4 decimation-in-frequency (DIF) FFT are as follows.we subdivide x (k) into four N/4-point sub sequences x(4k), x(4k+1), x(4k+2) and x(4k+3) of each length 0, 1,..., N/4-1.

So, the radix-4 DIF DFT are obtained as follows

$$\begin{split} &X\left(4K\right) = \sum_{n=0}^{N/4-1} \left[\; x(n) \, + \, x\left(n + \frac{N}{4}\right) + x\left(n + \frac{N}{2}\right) + x(n + \frac{3}{4}\,N) \right] W_N^0 \, W_{N/4}^{nk} \\ &X\left(4K+1\right) = \sum_{n=0}^{N/4-1} \left[\; x(n) \, - \, jx\left(n + \frac{N}{4}\right) - x\left(n + \frac{N}{2}\right) + \, jx(n + \frac{3}{4}\,N) \right] W_N^n \, W_{N/4}^{nk} \\ &X\left(4K+2\right) = \sum_{n=0}^{N/4-1} \left[\; x(n) \, - \, x\left(n + \frac{N}{4}\right) + x\left(n + \frac{N}{2}\right) - x(n + \frac{3}{4}\,N) \right] W_N^{2n} \, W_{N/4}^{nk} \\ &X\left(4K+3\right) = \sum_{n=0}^{N/4-1} \left[\; x(n) \, + \, jx\left(n + \frac{N}{4}\right) - x\left(n + \frac{N}{2}\right) - jx(n + \frac{3}{4}\,N) \right] W_N^{3n} \, W_{N/4}^{nk} \end{split}$$

Split-Radix FFT

The split-radix algorithm, first clearly described and named by **Duhamel and Hollman** in 1984, required fewer total multiply and add operations than any previous power-of-two algorithm. Split-radix FFT is one of the FFT algorithms that use combination of different radix FFT. Split-radix FFT algorithm combines simplicity of radix-2 FFT with less computational complexity radix-4 FFT.

The advantage of split-radix FFT is that it has considerably fewer number of arithmetic computations compared to that of radix-4 and radix-2 FFT. Split-radix also has several other advantages such as regular structure, no reordering of internal signals except for outputs, etc.

The split-radix algorithm improves the arithmetic complexity of the Cooley-Tukey algorithm by further decomposing the odd parts into odd odd and odd-even parts, while the even parts are left alone because they have no multiplicative factor. Even-numbered samples of the *N*-point DFT can be calculated by radix-2

$$X(2K) = \sum_{n=0}^{N/2-1} [x(n) + x(n + \frac{N}{2})] W_{N/2}^{nk} K=0,1....N/2-1$$

The odd-numbered samples x (2K+1) requires an additional multiplication of W_N^n . To implement this, radix-4 algorithm is used for its lesser computational complexity. Using radix-4 algorithm for the odd –numbered samples of the N-point DFT, the following N/4-point DFTs are

$$X (4K+1) = \sum_{n=0}^{N/4-1} \left[x(n) - jx \left(n + \frac{N}{4} \right) - x \left(n + \frac{N}{2} \right) + jx (n + \frac{3}{4}N) \right] W_N^n W_{N/4}^{nk}$$

Where K=0,1.....N/4-1 and

$$X \; (4K+3) = \textstyle \sum_{n=0}^{N/4-1} \left[\; x(n) \; + \; jx \left(n \; + \; \frac{\scriptscriptstyle N}{\scriptscriptstyle 4} \right) - \; x \left(n \; + \; \frac{\scriptscriptstyle N}{\scriptscriptstyle 2} \right) - \; jx (n \; + \; \frac{\scriptscriptstyle 3}{\scriptscriptstyle 4} \; N) \right] \; W_N^{3n} \; W_{N/4}^{nk} \; . \label{eq:X_N/4}$$

Where K=0,.....N/4-1

Hence, the N-point DFT now has been decomposed into one N/2-point DFT without phase factor and another two N/4-point DFTs with phase factor. Figure 1 shows the split-radix butterfly unit.

Figure 1: Split-Radix Butterfly Unit

In this paper we implemented the split-radix fft for 32 input. The below figure 2 represents the architecture for 32input split-radix. In every block represents split-radix unit

FPGA

In this paper the proposed 32-input split radix has been simulated and synthesised in using the Xilinx design suite 13.2. In this proposed paper the device family is vertex-7.

About vertex-7

7 series FPGAs are offered exclusively in thermally efficient flip-chip BGA packages. These0.5 mm, 0.8 mm, and 1.00 mm flip-chip packages range in pin-count from the smaller10 x 10 mm CPG236 to the 45 x 45 mm FF1930. The suite of packages is used to address the various power requirements of the 7 series devices. All 7 series devices are implemented in the 28 nm process technology.

Target Device: xc7k160t-3-fbg676

Packaging details: FF (G) 676

Figure 2: 32 Input Split-Radix Implementation Diagram

SIMULATION RESULTS

The below diagram figure 3 represent RTL view of internal split radix block

Figure 3: RTL View of Internal Split- Radix FFT

The below figures 5,6,7,8 represents the simulation results of internal split-radix blocks. The inputs given in the form both real and floating point numbers. Inputs are from real1 to real32 & imaginary1 to imaginary32. The out puts are form real_1 to real_32& imaginary_1 to imaginary_32

Name	Value	1999,995 ps	999,996 ps	999,997 ps	999,998 ps	1999,999 ps
▶ 👹 real_1[31:0]	01000011010		0100001101	001000000000000000000000000000000000000	00000	
▶ 👹 real_2[31:0]	11000001000		1100000100	0111001110101010	10101	
▶ 😽 real_3[31:0]	11111111000		11111111100	0001001011011011	00001	
▶ 👹 real_4[31:0]	11111111000		1111111100	00010010110110010	00001	
▶ 👹 real_5[31:0]	01000011100		0100001110	011111000000000000	00000	
▶ 👹 real_6[31:0]	11111111011		11111111101	1000011110110011	11100	
▶ 🌄 real_7[31:0]	11111111100		1111111111	00101011110101110	00001	
▶ 👹 real_8[31:0]	11111111100		11111111110	00101011110101110	00001	
▶ 👹 real_9[31:0]	01000001101		0100000110	1011001100110011	01100	
▶ 🕷 real_10[31:0]	11111111101		11111111110	1100100111100110	01001	
▶ 👹 real_11[31:0]	11111111101		1111111111	101010111100000100	01111	
▶ 🕷 real_12[31:0]	01111111101		0111111110	101010111100000100	01111	
▶ 🎳 real_13[31:0]	11110010101		1111001010	1010100110011001	01001	
▶ 🕌 real_14[31:0]	01000000011		0100000001	11011001101000110	01100	
▶ 😽 real_15[31:0]	11111111001		1111111100	11101011111000000	00001	
▶ 👹 real_16[31:0]	11111111001		1111111100	11101011111000000	00001	

Figure 4: Simulation Results of First Split-Radix FFT Block

Name	Value	999,995 ps	1999,996 ps	1999,997 ps	999,998 ps	1999,999 ps
▶ 🎇 real_17[31:0]	01111110111		0111111011	1101011100001001	100100	
▶ 🎇 real_18[31:0]	11000001000		1100000100	0100000110111101	01110	
▶ 🎇 real_19[31:0]	10000000010		100000001	0000111001010101	010110	
▶ 🦷 real_20[31:0]	01111111000		0111111100	0110111010011011	10000	
▶ 🦬 real_21[31:0]	11111111111		1111111111	1110010011010111	001001	
▶ 🕌 real_22[31:0]	00000000001		0000000000	1000010011010101	101100	
▶ 🦷 real_23[31:0]	01111111001		0111111100	1010011101001100	11100	
▶ 🎇 real_24[31:0]	00000000010		000000001	0011101100000011	11010	
▶ 🦷 real_25[31:0]	00111111111		0011111111	1101011100001010	00011	
▶ 🦬 real_26[31:0]	111111111101		1111111110	1001100000001010	000110	
▶ 🦬 real_27[31:0]	10111111111		1011111111	1101011100001010	100100	
▶ 🦷 real_28[31:0]	00111111111		0011111111	1101011100001010	100100	
▶ 🎇 real_29[31:0]	01000000011		0100000001	1111010111000001	100010	
▶ 🦷 real_30[31:0]	01000000010		0100000001	010001001011111	101100	
▶ 🕌 real_31[31:0]	11111111100		1111111111	0100011000001010	010110	
▶ 🍇 real_32[31:0]	11111111100		1111111110	0100011000001010	010110	

Figure 5: Simulation Results of Second Split-Radix FFT Block

Name	Value	1999,995 ps	1999,996 ps	1999,997 ps	999,998 ps	1999,999 ps
▶ 🕌 real_1[31:0]	01000011010		0100001101	00100000000000000	00000	
▶ 🕌 real_2[31:0]	11000001000		1100000100	0111001110101010	010101	
▶ 🕌 real_3[31:0]	11111111000		1111111100	000100101101101	00001	
▶ 🕌 real_4[31:0]	11111111000		1111111100	000100101101101	00001	
▶ 🕌 real_5[31:0]	01000011100		0100001110	011111000000000	00000	
▶ 🕌 real_6[31:0]	11111111011		1111111101	1000011110110011	11100	
▶ 🕌 real_7[31:0]	11111111100		111111111	0010101111010111	00001	
▶ 🕌 real_8[31:0]	11111111100		1111111110	0010101111010111	00001	
▶ 🕌 real_9[31:0]	01000001101		0100000110	101100110011001	01100	
▶ 🕌 real_10[31:0]	111111111101		111111111	1100100111100110	01001	
▶ 🕌 real_11[31:0]	111111111101		111111111	10101011110000010	01111	
▶ 🎳 real_12[31:0]	01111111101		0111111110	10101011110000010	01111	
▶ 🕌 real_13[31:0]	11110010101		1111001010	1010100110011001	01001	
▶ 👹 real_14[31:0]	01000000011		0100000001	1101100110100011	01100	
▶ 🎳 real_15[31:0]	11111111001		1111111100	1110101111100000	00001	
▶ 🕌 real_16[31:0]	11111111001		1111111100	1110101111100000	00001	

Figure 6: Simulation Result of Third Split-Radix FFT Block

Figure 7: Simulation Result of Fourth Split -Radix FFT Block

SYNTHESIS REPORT

The final synthesis report for 32-point SRFFT for both real and floating point inputs is given below the device utilization values & time delay for proposed paper

Table 1: Device Utilization Summary of Vertex-7 for 32-Point SRFFT

Logic	Used	Available	Utilization
Utilization			
Number of	130048	101400	128%
slice LUTs			
Number of	3840	60405	6%
fully used			
LUT-FF pairs			
Number of	4096	400	1024%
bonded IOBs			
Number of	197	600	31%
DSP48E1s			

Table 2: Time Delay of 32-Point SRFFT

Time	17.2517ns
delay	
The total	Total REAL time to Xst completion: 310.00 secs
REAL &	Total CPU time to Xst completion:310.2175 secs
CPU time	Total memory usage is 11,91,447kilobytes
toXst	
complition	

REFERENCES

- 1. W C. Yeh and C.-W. Jen, "High-speed and low-power split-radix FFT," *IEEE Trans. on Acoust., Speech, and Signal Processing*, vol. 51, no. 3, pp. 864-874, Mar. 2003.
- 2. P. Duhamel and H. Hollmann, "Split-Radix FFT Algorithm." *Electron. Lett*, vol. 20, no. 1, pp. 14-16, Jan.1984.
- 3. P. Duhamel, "Implementation of 'Split-Radix' FFT Algorithms for Complex, Real, and Real-Symmetric Data,"
- 4. James W. Cooley and John W. Tukey, an Algorithm for the Machine Calculation of Complex Fourier series
- Saad Bouguezel, M. Omair Ahmad, "IMPROVED RADIX-4 ANDRADIX-8 FFT ALGORITHMS"IEEE.
 Department of Electrical and Computer Engineering Concordia University 1455 de Maisonneuve Blvd. West
 Montreal, P.Q., Canada
- 6. AliSaidi," DECIMATION-IN-TIME-FREQUENCY FFTALGORITHM" Motorola Applied Research, Paging and Wireless Data Group Boynton Beach.
- 7. Cynthia Watanabe, Carlos Silva, and Joel Muñoz, "Implementation of Split-Radix Fast Fourier Transform on FPGA," *Proc. Programmable Logic Conference*, vol. 6, Mar. 2010, pp. 167 170.
- 8. Steven G. Johnson and Matteo Frigo, "A Modified Split-Radix FFT with Fewer Arithmetic Operations," *IEEE Trans. Signal Processing*, vol. 55, no. 1, Jan. 2007, pp. 111 119.