

Recommender Systems

Non-Personalized Collaborative Filtering

Rodrygo L. T. Santos rodrygo@dcc.ufmg.br

The recommendation problem

The recommendation problem

The recommendation problem

Collaborative recommendation

Collaborative recommendation

Key idea

Leverage the "wisdom of the crowds"

Most prominent recommendation approach

- Used by large commercial e-commerce sites
- Applicable in many domains (books, movies, etc.)

Stable preferences

Basic assumption

Past preferences indicate future preferences

Some examples

- News: I prefer technology, travel
- Music: I prefer rock, grunge, folk
- Movies: I prefer sci-fi, thrillers

Modeling preferences

We want to know

What users consider relevant

We can observe

- What users tell us (ratings)
- What users do (actions)

These are *noisy* measurements

Feedback model

Explicit

- Rate
- Review
- Vote

Find Movies, TV shows, Celebrities and more...

Celebs, Events & Photos News & Community

Watchlist

All

Movies, TV

& Showtimes

Contact the Filmmakers on IMDbPro »

The Imitation Game (2014)

PG-13 114 min - Biography | Drama | Thriller - 25 December 2014 (USA)

Ratings: **8.2**/10 from **121,237 users** Metascore: **73/100**

Reviews: 348 user | 342 critic | 49 from Metacritic.com

rate / review

During World War II, mathematician Alan Turing tries to crack the enigma code with help from fellow mathematicians.

Director: Morten Tyldum

Writers: Andrew Hodges (book), Graham Moore

(screenplay)

8.2

Stars: Benedict Cumberbatch, Keira Knightley, Matthew

Goode | See full cast and crew »

+ Watchlist ▼ Watch Trailer

Share...

Explicit feedback

Are ratings reliable and accurate?

Are my 8/10 stars equivalent to yours?

Do user preferences change?

• Will I still like the item after 10 years?

What does a rating mean?

Will I ultimately consume the rated item?

Feedback model

Implicit feedback

Abundant data from user actions

Not direct expressions of preference

But indirectly say a lot!

- Action signals (click, skip, play, purchase)
- Attention signals (reading, listening, viewing time)
- Cognitive signals (eye-tracking, brain imaging)

Implicit feedback

What does the action mean?

- Purchase: they might still hate it
- Don't click: bad, or didn't see?

How to factor in cognitive biases?

Position, presentation, popularity, etc.

How to leverage user feedback?

	i_1	i ₂	i_3	i ₄
u_1	+1	+1	+1	
u_2	+1			+1
u_3				+1

unary feedback (e.g., click)

	i_1	i ₂	i_3	i ₄
u_1	+1	+1	+1	
u_2	+1			+1
u_3		-1	-1	+1

binary feedback
(e.g., like / dislike)

	i_1	i ₂	i_3	i ₄
u_1	5	3	3	(C:-)
u_2	5			3
u_3		1	2	1

graded feedback (e.g., rate)

What if we don't know the user?

Cold-start user

Cold-start user

	i_1	<i>i</i> ₂	i_3	<i>i</i> ₄
u_1				?
u_2	5			3
u_3		1	2	1

we can use some global property of the target item

Non-personalized collaborative filtering

	i_1	<i>i</i> ₂	i_3	i ₄
u_1				?:
u_2				3
u_3				1

most recent most popular best rated

Best-rated recommendation

		i_1	i_2	i_3	i ₄	
_	u_1				?	$\hat{r}_{u_1 i_4} = \frac{1}{ U_{i_4} } \sum_{v \in U_{i_4}} r_{v i_4}$
	u_2				3	$=\frac{1}{2}(3+1)$
_	u_3				1	= 2

Most-popular recommendation

	i_1	i_2	i_3	i ₄
u_1				?
u_2				3
u_3				1

$$\hat{r}_{u_1 i_4} = |U_{i_4}|$$

= 2

What could go wrong?

Best rated denture cleaners (ranked by average rating)

Denture Cleaner Tablets Bulk Case of 24, 480 Tablets

Efferdent Denture Cleanser - 240 Tablets from

Predicted utility of *i* ignores feedback imbalance

 We could add a confidence factor to balance the observed feedback with the incurred uncertainty

Typically (similar methods for proportions)

$$\circ \hat{r}_{ui} \propto \bar{r}_i - z \frac{\sigma}{\sqrt{|U_i|}}$$
 (penalize proportionally to variance) (penalize inversely proportionally to sample size)

Best rated denture cleaners (ranked by average rating)

Denture Cleaner Tablets Bulk Case of 24, 480 Tablets

★★★★★ ▼ 3 customer reviews

lower bound for 99% confidence: 4.26

Efferdent Denture Cleanser - 240 Tablets from

★★★★★ ▼ 289 customer reviews | 15 answered questions

lower bound for 99% confidence: 4.42

Best rated denture cleaners (ranked by average rating + confidence)

Efferdent Denture Cleanser - 240 Tablets from

★★★★★ ▼ 289 customer reviews | 15 answered questions

lower bound for 99% confidence: 4.42

Denture Cleaner Tablets Bulk Case of 24, 480 Tablets

★★★★★ ▼ 3 customer reviews

lower bound for 99% confidence: 4.26

Problem #2: user agnosticism

Most popular shows...

Problem #2: user agnosticism

Predicted utility of i will be the same for all users

- We could compute segmented statistics
 - e.g., by age, gender, income, location
- Better, but still not fully personalized
 - Prediction will be the same for a given segment

Problem #3: context agnosticism

Best rated sauce

... to go along with your ice cream?

Problem #3: context agnosticism

Predicted utility of *i* ignores context

- We could compute non-personalized associations
 - e.g., what sauce goes along with ice cream?
- Great, but which associations to leverage?
 - Historical profiles may introduce spurious associations
 - Transaction data may limit follow-up sales
 - Time-constrained profiles offer a compromise

Associative recommendation

Percentage of *j* buyers who also bought *i*

$$\circ \hat{r}_{ui} \propto \frac{|U_i \cap U_j|}{|U_j|}$$

Problem:

• What if *i* is extremely popular?

Associative recommendation

Odds of j buyers to also buy i

$$\circ \hat{r}_{ui} \propto \frac{|U_i \cap U_j|}{|U_j|} / \frac{|U_i \cap U_j^c|}{|U_j^c|}$$

Intuitively:

 Is i more likely with j than without it?

Associative recommendation

More generally:

$$\circ \hat{r}_{ui} \propto \frac{p(i,j)}{p(i)p(j)}$$
 (aka "lift")

Intuitively:

- Are i and j more likely to occur together than separately?
- Lift = 1: i and j are independent

Summary

Recommenders mine what users say and what they do

- Ratings provide explicit expressions of preference
- Implicit data benefits from greater volume

Non-personalized recommenders are a good first try

May be the only possibility in some cases

Summary

To get personal, we need more data

- Personalized recommendation models
- Preference elicitation models