The Invertibility of MA Model

Arif Nurwahid

Seminar on 7 Feb 2023

Backshift Operator B Notation

Using **B** before either a value of the series X_t or an error term ϵ_t means to move that element back one time. For instance,

$$BX_t = X_{t-1}$$

A **power** of **B** means to repeatedly apply the backshift in order to move back a number of time periods that equals the **power**. As an example,

$$B^4X_t = X_{t-4}$$

MA Polynomial

Using the backshift operator B, the MA(q) model can be rewritten as follows:

$$X_t = \theta(B)\epsilon_t$$

where $heta(z)=1+ heta_1z+ heta_2z^2+\cdots+ heta_qz^q$ is the MA Polynomial.

Invertibility

Let
$$\{\epsilon_t\} \sim WN(0,\sigma^2_\epsilon).$$

Consider MA(1) Model $X_t = \epsilon_t - \theta \epsilon_{t-1}$

We may write above model as:

$$\epsilon_t = X_t + \theta \epsilon_{t-1} = X_t + \theta (X_{t-1} + \theta \epsilon_{t-2}) = X_t + \theta X_{t-1} + \theta^2 \epsilon_{t-2}$$

By repeating the substitution process, we will have

$$\epsilon_t = \sum_{j=0}^{\infty} heta^j X_{t-j}$$
, with $| heta| < 1$

Theorem 1

The MA(1) Model given by $X_t = \epsilon_t - \theta \epsilon_{t-1}$ is invertible if | heta| < 1

We can justify that $|\theta| < 1$ is necessary by calculating the variance of previous equation.

$$\sigma_{\epsilon}^2 = Var(\epsilon_t) = Var\left(\sum_{j=0}^{\infty} heta^j X_{t-j}
ight) = \sum_{j=0}^{\infty} heta^{2j} Var(X_{t-j}) = \gamma_0 \sum_{j=0}^{\infty} heta^{2j} = rac{\gamma_0}{1- heta^2}$$

Furthermore, the condition | heta|<1 guarantees the summability of $\sum_{i=0}^\infty heta^j<\infty$ and

$$\sum_{j=0}^{\infty} (heta^j)^2 < \infty$$

Corollary 2

The MA(1) process given by $X_t = \epsilon_t - \theta \epsilon_{t-1} = (1 - \theta B)\epsilon_t$ is invertible if the root of MA polynomial $1 - \theta z = 0$ is outside the unit circle. That is, the root satisfies |z| > 1.

Proof

The solution $1 - \theta z = 0$ implies the solution is $z = 1/\theta$. Therefore, the invertibility condition $|\theta| < 1$ is equivalent to |z| > 1.

Example

Suppose that an MA(1) model is $X_t = \epsilon_t + .7\epsilon_{t-1}$, where $\epsilon_t \sim WN(0,1)$.

This is invertible since the coefficient $|\theta|=0.7<1$. Therefore, we have the following invertible solution

$$\epsilon_t = \sum_{j=0}^{\infty} 0.7^j X_{t-j}.$$

Invertibility of MA(q) Model

Theorem 2

Consider an MA(q) model given by $X_t = \theta(B)\epsilon_t$; $\{\epsilon_t\} \sim WN(0,\sigma_\epsilon^2)$.

If all the roots of the associated algebraic equation $\theta(z)=0$ lie outside the unit circle (i.e. the roots $|\delta_i|>1$; $i=1,2,\cdots,q$), then there exists a valid invertible solution.

Proof

The fundamental theorem in algebra states that any polynomial of degree q can be factorized into q linear factors such that

$$\theta(z) = (1 - \beta_1 z)(1 - \beta_2 z) \cdots (1 - \beta_q z)$$

Here, we have $\epsilon_t = (1 - \beta_1 B)^{-1} (1 - \beta_2 B)^{-1} \cdots (1 - \beta_q B)^{-1} X_t$.

From the previous argument, it is clear that each linear factor has a valid inversion if $|\beta_i|<1$ for all $i=1,2,\cdots,q$. This is equivalent to the argument that the roots of $\theta(z)=0$ satisfy |z|>1.

This is clear since the roots of $\theta(z)=0$ are $\frac{1}{\beta_1},\frac{1}{\beta_2},\cdots,\frac{1}{\beta_q}$, then $|\beta_i|<1$ (as convergence requirement) implies the result.

Note

This invertibility of an MA model is very important in practice. The main reason is that the unobservable ϵ_t can be expressed as a linear combination of the observable X_t .

Example

Show that the MA(2) model given by $X_t = \epsilon_t + 0.5\epsilon_{t-1} + 0.06\epsilon_{t-2}$ is invertible!

Solution

Let
$$\theta(B) = 1 + 0.5B + 0.06B^2$$
. It is clear that $\theta(B) = (1 + 0.2B)(1 + 0.3B)$.

Then, the roots of $\theta(B)$ are -5 and -10/3, which are outside the unit circle. Hence the above MA(2) model is invertible.

Furthermore, the invertible solution is:

$$\epsilon_t = (1 + 0.5B + 0.06B^2)^{-1} X_t \tag{1}$$

$$= ((1+0.2B)(1+0.3B))^{-1}X_t \tag{2}$$

$$= \left(\frac{3}{1 + 0.3B} - \frac{2}{1 + 0.2B}\right) X_t \tag{3}$$

$$= \sum_{j=0}^{\infty} (3 \cdot 0.3^{j} - 2 \cdot 0.2^{j}) X_{t}$$
 (4)

Note

In the case of MA(2) with polynomial $\theta(z)=1+\theta_1z+\theta_2z^2$, it can bee seen that the polynomial has roots outside the unit circle if it satisfies all of the following :

- $|\theta_2| < 1$
- $\theta_2 + \theta_1 > -1$
- $\theta_2 \theta_1 > -1$

Harder Example

Show whether the following MA model is invertible or not:

$$X_t = \epsilon_t - 0.2\epsilon_{t-1} + 0.6\epsilon_{t-2} - 0.1\epsilon_{t-3} + 0.1\epsilon_{t-4} + 0.2\epsilon_{t-5}$$

```
In [2]: # check the absolute value of the roots
import numpy as ny
poly = [0.2, 0.1, -0.1, 0.6, -0.2, 1] #Plynomial of MA Model above
roots = ny.roots(poly)
abs(roots)
```

Out[2]: array([1.97706234, 1.36630391, 1.36630391, 1.16393173, 1.16393173])

Since all of roots are outside of the unit circle, therefore the MA model above is invertible.