МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Студент гр.0382	Литягин С.М.
Преподаватель	Ефремов М.А

Санкт-Петербург

2021

Цель работы.

Изучить представление и обработку целых чисел и организацию ветвящихся процессов.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет: a) значения функций i1 = f1(a,b,i) и i2 = f2(a,b,i); b) значения результирующей функции res = f3(i1,i2,k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1,n2,n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения программы, а также различные знаки параметров a и b.

Вариант №11:

Выполнение работы:

Содано три сегмента: AStack – сегмент стека, DATA – сегмент данных, СОДЕ – сегмент кода. Используя директиву ASSUME, метки сегментов записаны в соответствующие регистры. В сегменте данных объявлены переменные a, b, I, k, i1, i2, res. В сегменте кода создана процедура Main, а также написаны инструкции для успешного завершения программы после операции ret.

Для выполнения работы использовались переходы во избежание использования процедур. Используемые переходы представлены в таблице 1.

Таблица 1 – Используемые переходы.

Переход	Описание							
	Безусловый переход к метке.							
	Используется в функции f1 при a > b,							
	чтобы избежать выполнения кода при а							
	<= b; в функции f2 при a > b, чтобы							
JMP	избежать выполнения кода при а <= b;							
	в функции f3 при k /= 0, чтобы							
	избежать выполнения кода при $k=0$, а							
	также для возврата в f3 после взятия							
	чисел по модулю							
	Условный переход. Используется в							
	функциях f1и f2, чтобы при a <= b не							
JLE	выполнялась часть программы для а >							
	b; в функции f3, для выбора в качестве							
	ответа i1, если i1 <=6							
	Условный переход. Используется в							
JL	функции f3, чтобы брать i1 по модулю,							
JL	если i1 < 0, или i2 по модулю, если i2							
	< 0							
	Условный переход. Используется в							
JE	функции f3, чтобы при k = 0 избежать							
	выполнения кода при k /= 0							

Исходный код программы см. в приложении А.

Тестирование:

Для проверки работоспособности были проведены тесты, представленные в таблице 2.

Таблица 2 – Тесты

Номер теста	a	ь	i	k
1	5	-1	2	0
2	2	4	-3	0
3	2	4	-3	5

Результаты тестирования представлены в таблице 3.

Таблица 3 – Результаты тестирования

Номер теста	i1	i2	res	Оценка
_				результата
1	000B (11)	0002 (2)	0006 (6)	Верно
2	001C (28)	000B (11)	0006 (6)	Верно
3	001C (28)	000B (11)	0027 (39)	Верно

Выводы.

В ходе работы были изучены представление и обработка целых чисел и организация ветвящихся процессов, а также разработана программа, производящая вычисления функций, согласно условиям.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: lb3.asm

```
AStack SEGMENT STACK
 DW 12 DUP(?)
AStack ENDS
DATA SEGMENT
a DW 2
b DW 4
i DW -3
k DW 5
i1 DW 0
i2 DW 0
res DW 0
DATA ENDS
CODE SEGMENT
 ASSUME CS:CODE, DS:DATA, SS:AStack
Main PROC FAR
     push DS
     sub AX, AX
     push AX
     mov AX, DATA
     mov DS, AX
f1:
     mov AX, i
     shl AX, 1 ; 2i
     shl AX, 1 ; 4i
     mov CX, a
     cmp CX, b
     jle f1 2 ; a<=b
f1 1:
     add AX, 3; 4i+3
     neg AX ; -(4i+3)
     jmp f1 res
f1_2:
     shl AX, 1 ; 8i
     mov BX, i
     shl BX, 1
     sub AX, BX ; 6i
     sub AX, 10 ; 6i - 10
f1_res:
     mov i1, AX
f2:
     mov AX, i
     add AX, 1 ; i+1
     mov CX, a
     cmp CX, b
     jle f2 2 ; a<=b
f2_1:
```

```
shl AX, 1 ; 2*(i+1)
     sub AX, 4; 2*(i+1) - 4
     jmp f2_res
f2 2:
     mov BX, AX; (i+1)
     shl AX, 1; 2*(i+1)
     shl AX, 1; 4*(i+1)
     sub AX, BX; 3*(i+1)
     neg AX ; -3*(i+1)
     add AX, 5; 5-3*(i+1)
f2_res:
     mov i2, AX
f3:
     mov CX, i2
     cmp CX, 0
     jl abs i2 ; i2 < 0
     mov CX_{,} i1
     cmp CX, 0
     jl abs_i1 ; i1 < 0
     mov CX, k
     cmp CX, 0
     je f3 1 ; k = 0
     jmp f3 2
abs i1:
     mov AX, CX
     neg AX
     mov i1, AX ; |i1|
     jmp f3
abs i2:
     mov AX, CX
     neg AX
     mov i2, AX ; |i2|
     jmp f3
f3 2:
     mov AX, i1
     add AX, i2 ; |i1|+|i2|
     jmp f3_end
f3 1:
     mov CX, i1
     sub CX, 6
     jle res1 ; i1 <= 6
     mov AX, 6 ; 6
     jmp f3_end
res1:
     mov AX, i1 ; i1
     jmp f3 end
f3 end:
     mov res, AX
     ret
Main ENDP
CODE ENDS
     END Main
```

приложение б

ЛИСТИНГИ

Название файла: lb2.lst

□Microsoft	(R) Macro Assem	bler Version 5.10	10/20/21 22:08:4 Page 1-1
0000] 000c	AStack SEGMENT STACK DW 12 DUP(?)	
0018		AStack ENDS	
0008	0002 0004 FFFD 0005 0000 0000	DATA SEGMENT a DW 2 b DW 4 i DW -3 k DW 5 i1 DW 0 i2 DW 0 res DW 0 DATA ENDS	
0000		CODE SEGMENT ASSUME CS:CODE, DS:DATA, SS:	AStack
0000 0000 0001 0003 0004 0007	1E 2B CO 50 B8 R 8E D8	Main PROC FAR push DS sub AX,AX push AX mov AX,DATA mov DS,AX f1:	
0009 0000 0000 0001 0014 0018 001A	A1 0004 R D1 E0 D1 E0 8B 0E 0000 R 3B 0E 0002 R 7E 08	mov AX, i shl AX, 1; 2i shl AX, 1; 4i mov CX, a cmp CX, b jle f1_2; a<=b f1_1: add AX, 3; 4i+3	
001D 001F 0022 0022 0024 0028 002A 002C 002F	F7 D8 EB 0E 90 D1 E0 8B 1E 0004 R D1 E3 2B C3 2D 000A A3 0008 R	neg AX; -(4i+3) jmp f1_res f1_2: shl AX, 1; 8i mov BX, i shl BX, 1 sub AX, BX; 6i sub AX, 10; 6i - f1_res: mov i1, AX	10
0032		f2:	

```
0032 A1 0004 R mov AX, i 0035 05 0001 add
      0035 05 0001 add AX, 1 ; i+1 0038 8B 0E 0000 R mov CX, a
       003C 3B 0E 0002 R
0040 7E 08
                                        cmp CX, b
                                        jle f2_2 ; a<=b
      0042 D1 E0
                            f2_1:
                                        shl AX, 1; 2*(i+1)
                                       sub AX, 4; 2*(i+1) - 4
       0044 2D 0004
\square \text{Microsoft (R) Macro Assembler Version 5.10} \qquad \qquad 10/20/21 \ 22:08:4
                                                                 Page 1-2
       0047 EB 0E 90
                                         jmp f2 res
       004A
                            f2_2:
       004A 8B D8
                                         mov BX, AX; (i+1)
      004C D1 E0
                                         shl AX, 1; 2*(i+1)
                                         shl AX, 1 ; 4*(i+1)
       004E D1 E0
                                         sub AX, BX ; 3*(i+1)
       0050 2B C3
      0052 F7 D8
                                        neg AX ; -3*(i+1)
                          f2_res:
    mov i2, AX
f3:
    mov (
      0054 05 0005
                                        add AX, 5; 5-3*(i+1)
       0057
      0057 A3 000A R
      005A 8B 0E 000A R
                                        mov CX, i2
      005E 83 F9 00
0061 7C 1E
                                        cmp CX, 0
       0061 7C 1E
                                        jl abs_i2 ; i2 < 0
      0063 8B 0E 0008 R
0067 83 F9 00
                                       mov CX, i1
                                       cmp CX, 0
       006A 7C 0C
                                        jl abs i1; i1 < 0
      006C 8B 0E 0006 R
                                       mov CX, k
      0070 83 F9 00
0073 74 1F
0075 EB 13 90
                                       cmp CX, 0
                                        je f3_1 ; k = 0
                           abs_i1:
                                        jmp f\overline{3} 2
       0078
       0078 8B C1
                                       mov AX, CX
      0078 8B Cl mov AA, CA
007A F7 D8 neg AX
007C A3 0008 R mov il, AX; |il|
       007F EB D9
                                        jmp f3
                           abs_i2:
      0081

0081 8B C1 mov Ax, CA

0083 F7 D8 neg AX

0085 A3 000A R mov i2, AX; |i2|

jmp f3
       0081
      008A f3_2:

008A A1 0008 R mov AX, i1

008D 03 06 000A R add A
                                        add AX, i2 ; |i1|+|i2|
      0091 EB 16 90
                                        jmp f3 end
       0094
                            f3_1:
      0094 8B 0E 0008 R
0098 83 E9 06
0098 7E 06
                                        mov CX, i1
                                         sub CX, 6
      009B 7E 06
009D B8 0006
00A0 EB 07 90
       009B 7E 06
                                        jle res1 ; i1 <= 6
                                        mov AX, 6; 6
                                         jmp f3 end
      res1:
00A3 A1 0008 R mov AX, i1; i1
00A6 EB 01 90
                                        jmp f3 end
```

00A9				f3 end:
00A9	A3	000C	R	mov res, AX
00AC	СВ			ret
00AD				Main ENDP
00AD				CODE ENDS
				END Main

□Microsoft (R) Macro Assembler Version 5.10 10/20/21 22:08:4

Symbols-1

Segments and Groups:

	ASTACK CODE . DATA .		•								•	0 (DAD	PARA PARA PARA	NONE	ζ		
	Symbols	s:																
				N	Ιá	a n	n ∈)			Туре	7	Valu	ıe	Attr	-		
	A ABS_I1 ABS_I2										•	L	NEA	AR	0078	CODE		
	в	•		•				•	•			L	WOF	RD	0002	DATA		
	F1 F1_1 F1_2 F1_RES F2 F2_1 F2_2 . F2_RES F3 F3_1 F3_2 . F3_END		 	 									NEANEANEANEANEANEANEANEA	AR AR AR AR AR AR AR AR	0009 001A 0022 002F 0032 0042 004A 0057 005A 0094 008A 00A9	CODE CODE CODE CODE CODE CODE CODE CODE		
	II II II	•	•	•							•	L	WOF	RD RD	0008			
	к	•					•	•	•	•		L	WOF	RD	0006	DATA		
00AD	MAIN .	•			•		•	•	•	•	•	F	PRO)C	0000	CODE	Length	=
	RES . RES1 .													RD AR				
	@CPU .	•					•	•	•			TI	EXT	0101	h			

N a m e Length Align Combine Class

@FILENAME											TEXT	lb3
@VERSION .	_	_	_	_	_	_	_	_	_	_	TEXT	510

□Microsoft (R) Macro Assembler Version 5.10 10/20/21 22:08:4

Symbols-2

- 101 Source Lines
- 101 Total Lines
- 31 Symbols

48030 + 459230 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors