

SYNTHETIC DATA GENERATION

Frie Van Bauwel, Marcin Jedrych, Xueting Li

INTRODUCTION

Why synthetic data?
 Data shortage, High acquisition costs,
 Privacy protection

Benefits :
 More Data, Privacy Protection, Scalability,
 Cost-Effective

THE TRICK OF USEFUL SYNTHETIC DATA

Privacy-utility trade-off

- Synthetic data with high utility of comes at a cost in privacy
- Stronger privacy often reduces analytical benefits
- Makes it difficult to evaluate synthetic data

GENERATING SYNTHTETIC DATA

Multiple types of generation techniques

- Traditional e.g. Bootstrapping,
 Monte Carlo, Gaussian Mixture
 Models
- **Domain-specific** e.g. procedural generation for images, rule-based methods for tabulur data
- Deep Learning e.g. GANs, VAEs

GENERATIVE ADVERSARIAL NETWORKS (GAN)

GENERATIVE ADVERSARIAL NETWORKS (GAN)

- Deep learning technique by Ian Goodfellow (2014)
- Used for realistic data generation
- Applications: deepfakes, data augmentation, etc.

GENERATIVE ADVERSARIAL NETWORKS (GAN)

$$\min_{G} \max_{D} V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$$

<u>CTGAN</u>

- CTGAN is optimized for **tabular data** (often a mix of categorical and continuous variables)
- CTGAN uses a **conditional generator** which makes it better in capturing dependencies between features.
- In Python: CTGANSythesizer from **SDV package**

VARIATIONAL AUTOENCODERS

(VAE)

First proposed by Kingma & Welling, 2013

AUTO- ENCODER $f(x) = d_{\theta}(e_{\phi}(x))$

$$f(x) = d_{\theta}(e_{\phi}(x))$$

Input data: X

Synthetic data: \hat{X}

$$\hat{x}=d_{\theta}(z)$$

<u>AUTO-ENCODER</u>

Challenges auto-encoder:

- Similar samples not necessarily close to each other in the latent space
- Realistic outcomes not guaranteed
- --> Variational auto-encoder

VARIATIONAL AUTO-ENCODER

Input data: X

Synthetic data: \hat{X}

$$\hat{x} = d_{\theta}(z)$$

POSSIBLE EXTENSIONS

- CVAE (Doersch, 2021)
 - Fill gaps in existing entries
 - Condition the model on input

- TVAE (Xu et al. 2019)
 - Tabular data
 - SDV python package

EVALUATION OF SYNTHETIC DATA

EVALUATION OF SYNTHETIC DATA

- Univariate / Bivariate
- Utility (e.g. prediction performance)
- Privacy (e.g. MIA)

<u>UNIVARIATE</u>

How similar are distributions?

<u>UNIVARIATE</u>

How similar are distributions?

BIVARIATE

How similar are dependencies?

Cor(x,y) = 0.40

Cor(x,y) = 0.18

Cor(x,y) = 0.54

BIVARIATE

How similar are dependencies?

UTILITY

Predictive performance

	Original	Synthetic CTGAN	Synthetic TVAE
MSE	95.66	203.19	119.03
Adjusted R ²	0.74	0.45	0.68

Multiple linear regression to predict bloodpressure

PRIVACY

Membership Inference Attack

How well an attacker can determine if a specific individual's data was used to train the synthetic data generator.

	Original	Synthetic CTGAN	Synthetic TVAE
Accuracy	0.50	0.72	0.62

CONCLUSION

- Synthetic data is promising for applications with sensitive data
- Multiple techniques exist (e.g. GAN, VAE)
- Difficult to evaluate
 - Trade-off
 - No standardized method

Frie Van Bauwel, Marcin Jedrych, Xueting Li

Github: https://github.com/marcinjedrych/Project-BDA.git

Sources:

- Doersch, C. (2016). Tutorial on Variational Autoencoders. http://arxiv.org/abs/1606.05908
- Giuffrè, M., & Shung, D. L. (2023). Harnessing the power of synthetic data in healthcare: innovation, application, and privacy. Npj Digital Medicine, 6(1). https://doi.org/10.1038/s41746-023-00927-3
- Hernandez, M., Epelde, G., Alberdi, A., Cilla, R., & Rankin, D. (2022). Synthetic data generation for tabular health records: A systematic review. In *Neurocomputing* (Vol. 493, pp. 28–45). Elsevier B.V. https://doi.org/10.1016/j.neucom.2022.04.053
- Jamotton, C., & Hainaut, D. (2024). Variational AutoEncoder for synthetic insurance data. Intelligent Systems with Applications, 24. https://doi.org/10.1016/j.iswa.2024.200455
- Kingma, D. P., & Welling, M. (2013). Auto-Encoding Variational Bayes. http://arxiv.org/abs/1312.6114
- Mohammadi, M. (2021, June 15). Synthetic data generation using Generative Adversarial Networks (GANs): Part 2. from Medium: https://medium.com
- Patki, N., Wedge, R., & Veeramachaneni, K. (2016b). The Synthetic Data Vault. 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA), 399–410. https://doi.org/10.1109/DSAA.2016.49
- Xu, L., Skoularidou, M., Cuesta-Infante, A., & Veeramachaneni, K. (2019). Modeling Tabular data using Conditional GAN. http://arxiv.org/abs/1907.00503
- Yan, C., Yan, Y., Wan, Z., Zhang, Z., Omberg, L., Guinney, J., Mooney, S. D., & Malin, B. A. (2022). A Multifaceted benchmarking of synthetic electronic health record generation models. *Nature Communications*, 13(1). https://doi.org/10.1038/s41467-022-35295-1/doi.org/10.1109/DSAA.2016.49

