

Activitat grupal.

Pràctica 2: Tipologia i cicle de vida de les dades

1. Descripció del data set. Perquè és important i quina pregunta/problema pretén respondre? *El dataset ofereix informació de 303 pacients a través de 14 variables.*

L'objectiu es veure si es pot construir un model predictiu per tal d'explicar les causes d'un atac de cor.

Hem seleccionat la base de dades de Kaggle proposades. Heart attack analysis prediction dataset \underline{link}

L'anàlisi l'hem realitzat amb R.

Variable	Descripció	tipus
Age	Edat del pacient	contínua
Sex	Sexe del pacient	Dicotòmica
		(o= Home; 1= Dona)
cp (chest pain type)	dolor al pit	1. Typical angina
		2. Atypical angina
		3. Non-angina pain
		4. Asymptomatic.
Tstbps resting blood	Pressió sanguínia en repós	Contínua
pressure (mm Hg)		
Chol colesterol mg/dl via	Colesterol via sensor IBM	Contínua
BMI sensor		
fbs : (fasting blood sugar >	Sucre en sang	Dicotòmica
120 mg/dl)		(1 = true; 0 = false)
rest_ecg : resting	Resultats	Value 0: normal
$electrocardiographic\ results$	electrocardiogràfics en repos	Value 1: having ST-T wave
		abnormality (T wave
		inversions and/or ST
		elevation or depression of >
		0.05 mV)
		Value 2: showing probable
		or definite left ventricular

	hypertrophy by Estes' criteria
thalach : maximum heart	Continua
rate achieved	Continua
exang: exercise induced	Dicotòmica
angina	(1 = yes; o = no)
oldpeak: previous peak	
slp: slope	
caa: number of major vessels	0-3
(0-3)	
thall: thal rate	
Output	dicotòmica
	(o= less chance of heart
	attack
	1= more chance of heart
	attack)

variables	s clase
:	:
age	integer
sex	integer
cp	integer
trtbps	integer
chol	integer
fbs	integer
restecg	integer
thalachh	integer
exng	integer
oldpeak	numeric
slp	integer
caa	integer
thall	integer
output	

Observem com és distribueixen les variables gràficament:

2. Integració i selecció de les dades d'interès a analitzar.

Pot ser el resultat d'addicionar diferents datasets o una subselecció útil de les dades originals, en base a l'objectiu que es vulgui aconseguir.

Hem fraccionat el dataset quan ha sigut necessari per realitzar les anàlisis.

3. Neteja de les dades.

3.1. Les dades contenen zeros o elements buits? Gestiona cadascun d'aquests casos.

En general no hem trobat valors NA.

La variable oldpeak té molts valors zero, tenim el dubte de si són valors perduts, però segurament és que en el període anterior no tenien dades i per això decidim no fer res al respecte

3.2. Identifica i gestiona els valors extrems.

Busquem valors extrems (outliers) en les columnes trtbps, thalachh, chol i oldpeak dibuixant uns gràfics boxplot

001 001 001 000 000 000 000 000 000 000	La suma de files amb outliers a la columna trtbps és de 13
00 120 140 150 1 00 1 00 1 0 0 1 0 0 0 1 0 0 0 0	La suma de les files amb outliers a la columna thalachh és de 3

pàg 5

En trobar outlier es pot procedir de diferents maneres, en funció de la causa de que hi hagi un valor que es distancia de la resta, es pot decidir d'imputar un valor constant o si s'escau es podria també d'assignar el valor de la mitjana per el grup al que pertanyi l'observació, per exemple es podria imputar el valor de la mitjana d'homes o dones.

Hi ha el métode kNN (k-Nearest Neighbours) però es pot veure afectat per la tria de la k. També es pot suprimir el registre perquè els resultats no es vegin alterats per aquest valors erronis.

Hem decidit d'eliminar els registres amb valors perduts. Per fer-ho hem fet servir la comanda subset per descartar els casos extrems.

El dataset queda amb el nombre de files de 279

Observem el comportament d'aquestes variables discriminant per gènere:

4. Anàlisi de les dades.

4.1. Selecció dels grups de dades que es volen analitzar/comparar (p. e., si es volen comparar grups de dades, quins són aquests grups i quins tipus d'anàlisi s'aplicaran?)

Hem vist que al dataset hi ha variables contínues i variables categòriques: dicotòmiques i de 3 o 4 categories. I en aquest sentit hem orientat l'anàlisi.

A partir de la variable output que predir els que tenen risc d'atac de cor. En aquest sentit hem construït un model de regressió lineal.

Per gènere comparativa risc de patir un atac de cor homes o dones. Observant si hi ha independència entre les diferents variables en funció del gènere. Aquesta comparativa l'hem portat a terme amb tests de chi quadrat (o el test exacte de Fisher en cas de no ser apropiat aplicar el test de Chi Quadrat per tenir valors inferiors a 5 en alguna de les caselles de la taula de contingència del creuament de les variables 2 a 2. S'ha portat a terme amb les diferents variables categòriques o dicotòmiques en funció del gènere.

4.2. Comprovació de la normalitat i homogeneïtat de la variància.

S'ha comprovat la normalitat de les variables amb el test de Normalitat de Shapiro-Wilk i Tenint que la Ho és que la variable segueix una distribució normal, si el p-valor és més petit que el nivell de significació a rebutgem la Ho i per tant no té una distribució normal, en el cas de tenir un p-valor més gran (com en la majoria de les variables que hem realitzat el test) no podem rebutjar la hipòtesi nul·la i per tant hem de concloure que la variable Chol segueix una distribució normal. Però donat el Teorema central del límit en el cas de tenir una n prou gran es pot considerar que segueix una distribució normal i es poden aplicar tècniques d'estadística paramètrica però els resultats seran poc robustos.

Per veure l'homogeneïtat de la variància es poden fer servir els tests: test de Levene, que s'aplica quan les dades segueixen una distribució normal, així com el test de Fligner-Killeen, que es tracta de l'alternativa no paramètrica, utilitzada quan les dades no compleixen amb la condició de normalitat.

En el nostre cas hem procedit a fer un test d'hipòtesis de comparació de mitjanes entre homes i dones F-test de raó de variances de la variable que té distribució Normal chol en funció del gènere i no podem rebutjar la hipòtesi nul·la de que el quocient de les variances dels dos grups és diferent a zero, per tant podem dir que la variança és homogènia.

4.3. Aplicació de proves estadístiques per comparar els grups de dades. En funció de les dades i de l'objectiu de l'estudi, aplicar proves de contrast d'hipòtesis, correlacions, regressions, etc. Aplicar almenys tres mètodes d'anàlisi diferents.

1. Contrastos d'hipòtesis.

Tests de Normalitat:		age	trtbps	chol	thalachh	oldpeak
Només en el cas de la	•	•	•		- :	
variable chol no es rebutja	pvalue	10.0203	0.003591	0.1485	7.648e-05	1.42e-15
la Ho						
Homocedasticitat						

2. Correlació

	age	sex	cp	trtb	chol	fbs	restec	thalac	exng	oldpeak	slp	caa	thall	output
				ps			g	hh						
age	1.00	-0.06	-0.06	0.28	0.16	0.11	-0.11	-0.42	0.09	0.21	-0.15	0.33	0.06	-0.23
sex	-0.06	1.00	-0.09	0.01	-0.11	0.06	-0.09	-0.03	0.18	0.16	-0.05	0.14	0.24	-0.31
ср	-0.06	-0.09	1.00	0.08	-0.07	0.08	0.10	0.28	-0.38	-0.12	0.09	-0.17	-0.17	0.41
trtbps	0.28	0.01	0.08	1.00	0.10	0.13	-0.14	-0.06	0.00	0.15	-0.08	0.11	-0.02	-0.12
chol	0.16	-0.11	-0.07	0.10	1.00	0.03	-0.16	-0.01	0.06	-0.01	0.03	0.09	0.09	-0.11
fbs	0.11	0.06	0.08	0.13	0.03	1.00	-0.08	-0.03	0.01	0.02	-0.07	0.16	-0.06	-0.03
restecg	-0.11	-0.09	0.10	-0.14	-0.16	-0.08	1.00	0.10	-0.12	-0.09	0.12	-0.09	0.03	0.18
thalachh	-0.42	-0.03	0.28	-0.06	-0.01	-0.03	0.10	1.00	-0.38	-0.34	0.37	-0.25	-0.10	0.42
exng	0.09	0.18	-0.38	0.00	0.06	0.01	-0.12	-0.38	1.00	0.32	-0.26	0.13	0.20	-0.43
oldpeak	0.21	0.16	-0.12	0.15	-0.01	0.02	-0.09	-0.34	0.32	1.00	-0.53	0.18	0.19	-0.43
slp	-0.15	-0.05	0.09	-0.08	0.03	-0.07	0.12	0.37	-0.26	-0.53	1.00	-0.05	-0.08	0.32
caa	0.33	0.14	-0.17	0.11	0.09	0.16	-0.09	-0.25	0.13	0.18	-0.05	1.00	0.15	-0.39
thall	0.06	0.24	-0.17	-0.02	0.09	-0.06	0.03	-0.10	0.20	0.19	-0.08	0.15	1.00	-0.34
output	-0.23	-0.31	0.41	-0.12	-0.11	-0.03	0.18	0.42	-0.43	-0.43	0.32	-0.39	-0.34	1.00

Podem observar que la major correlació negativa amb output és oldpeak (-0.43)i la major correlació positiva cp i thalachh (0.28) que estan allunyats de -1 o de 1

3. Regressió.

A partir de les observacions es pren un 0.8 de les observacions del dataset data i es guarda per fer entrenament i determinar el model (train) i el 0.2 restant es reserva per testejar el model predictiu (test)

 $Im(formula = output \sim age + sex + cp + trtbps + chol + fbs + restecg + thalachh + exng + oldpeak + slp + caa + thall, data = train)$

Residuals:

Min	1Q	Median	3Q	Max
-0.89275	-0.22510	0.05419	0.24653	0.87370

Coefficients:

	Estimate	Error	t value	<i>Pr</i> (> t)
	Std.			
(Intercept)	0.7557434	0.3808685	1.984	0.048529 *
age	-0.0005069	0.0033506	-0.151	0.879906
sex	-0.2216493	0.0583599	-3.798	0.000191 ***
ср	0.1070723	0.0269074	3.979	9.52e-05 ***
trtbps	-0.0016189	0.0017129	-0.945	0.345692
chol	-0.0006088	0.0005743	-1.060	0.290354
fbs	0.0673672	0.0683451	0.986	0.325419
restecg	0.0285449	0.0491558	0.581	0.562063
thalachh	0.0034309	0.0013784	2.489	0.013586 *
exng	-0.1198486	0.0634863	-1.888	0.060433 .
oldpeak	-0.0646299	0.0293732	-2.200	0.028876 *
slp	0.0846552	0.0491295	1.723	0.086342 .
caa	-0.0970515	0.0264639	-3.667	0.000311 ***
thall	-0.1141214	0.0409612	-2.786	0.005823 **

Residual standard error: 0.3653 on 210 degrees of freedom

Multiple R-squared: 0.4972, Adjusted R-squared: 0.466

F-statistic: 15.97 on 13 and 210 DF, p-value: < 2.2e-16

Veiem mitjançant la funció lm que les variables amb major explicació sobre la variable output son sex, cp i caa. El model no és massa bo donat el Rsquared de 0.50 No obstant això intentarem predir noves incorporacions.

El model és majoritàriament correlacionat, la intersecció i les variables sex, cp, thalachh, exng, oldpeak, slp, caa, thall tenen uns valors estadísticament significatius, per això tornem a cridar la funció lm per només els coeficients correlacionats:

$Im(formula = output \sim sex + cp + thalachh + exng + oldpeak + slp + caa + thall,$	data = train)	
Residuals:		

Min	1Q	Median	3Q	Max
-0.91758	-0.22544	0.06552	0.24343	0.90183

Coefficients:

	Estimate	Error	t value	<i>Pr(> t)</i>
	Std.			
(Intercept)	0.408356	0.218259	1.871	0.062707 .
sex	-0.215509	0.056665	-3.803	0.000186 ***
ср	0.107618	0.026469	4.066	6.72e-05 ***
thalachh	0.003461	0.001254	2.760	0.006276 **
exng	-0.124359	0.062481	-1.990	0.047818 *
oldpeak	-0.069063	0.029070	-2.376	0.018393 *
slp	0.080529	0.048521	1.660	0.098439.
caa	-0.099627	0.025788	-3.863	0.000148 ***
thall	-0.118345	0.040301	-2.937	0.003680 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.3645 on 215 degrees of freedom

Multiple R-squared: 0.4874, Adjusted R-squared: 0.4683

F-statistic: 25.55 on 8 and 215 DF, p-value: < 2.2e-16

Posem a prova el model calculat amb el subset test:

	Real	Predicció	Diferencia?
--	------	-----------	-------------

	rediccio _{[1}	-
: :	: :	
3 1	1 No	1
10 1	1 No	
13 1	1 No	I
20 1	1 No	
23 1	1 No	1
50 1	1 No	
51 1	1 No	
56 1	1 No	
58 1	1 No	
59 1	1 No	
62 1	1 No	
63 1	1 No	
67 1	1 No	
70 1	1 No	1
72 1	1 No	
73 1	1 No	
78 1	1 No	
80 1	1 <i>No</i>	I
85 1	1 No	I
100 1	1 No	I
103 1	1 No	I
114 1	1 No	I
117 1	1 No	
125 1	1 No	
127 1	1 No	
128 1	1 No	
133 1	1 No	
134 1	1 No	
135 1	1 No	
136 1	1 No	
140 1	o Si	
147 1	1 <i>No</i>	

|148 | 1| 1|No

pàg **14**

155	1	1 No	
161	1	1 No	
163	1	1 No	
165	1	1 No	
177	o	o Si	
182	o	o Si	
191	o	o Si	
207	o	o Si	
214	o	o Si	
219	o	o Si	
223	o	1 Si	
228	o	o Si	
239	o	o Si	
240	o	o Si	
254	o	o Si	
257	o	o Si	
260	o	1 Si	
262	o	1 Si	
265	o	o Si	
271	o	o Si	
275	o	o Si	
276	o	o Si	
279	o	$_{1} Si$	

${\it 4.}\ \ \, {\it Tests Chi\ Quadrat\ de\ variables\ qualitatives}.$

	actors: 2		Number of cases in table: 279
table(data\$output, data\$sex)			p-valor significatiu rebutgem Ho
summary(tab	le(data\$outr	out, data\$sex	
	0: Home	1:Dona	Test for independence of all
0:no risc	17	106	factors:
1:risc	66	90	Chisq = 26.704 , df = 1 ,
	•	•	p-value = 2.371e-07
table(data\$:	fbs, data\$se	ex)	p-valor no significatiu, no podem
summary(tab	le(data\$fbs ,	data\$sex))	
			rebutjar Ho
	0: Home	1:Dona	Test for independence of all
0:false	74	165	factors:
1:true	9	31	Chisq = 1.1741 , df = 1 ,
1:true	9	31	p-value = 0.2786
tahla (datas)	cp, data\$sex	z)	-
	le(data\$cp,		p-valor significatiu rebutgem Ho
Summary (cab.	0: Home	1:Dona	Test for independence of all
0. +	29	98	factors:
0: typical	49	30	Chisq = 9.148 , df = 3 ,
angina 1: atypical	18	31	p-value = 0.02739
	10	21	P varue = 0.02/33
angina	20	4.0	
2: non- anginal par	32	49	
		1.0	
3:	. 4	18	
asymptomat			
table(data\$:			La Taula té caselles inferiors a 4 o per
		ecg, data\$se	
		ole(data\$rest	tecg aixo cai jei un test de risitei (no
, data\$sex))		paramètric) p-valor no significatiu
test			
	0: Home	1:Dona	Fisher's Exact Test for Count
0: normal	36	100	Data
1: ST-T way		96	
abnormality			data: table(data\$slp, data\$sex)
2: left	2		p-value = 0.6523
ventricula		0	= - - - - - - - -
		0	alternative hypothesis:
hypertrophy		0	=
	У		alternative hypothesis: two.sided
hypertrophy table(data\$t summary(tab	y thall , dat le(data\$thal	ta\$sex)	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per
hypertrophy table(data\$t summary(tab	y thall , dat le(data\$thal	ca\$sex)	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per
hypertrophy table(data\$t summary(tab	y thall , dat le(data\$thal	ta\$sex)	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per ll , això cal fer un test de Fisher (no
hypertrophy table(data\$† summary(tab: test <- fish data\$sex))	y thall , dat le(data\$thal	ta\$sex)	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu
hypertrophytable (data\$tsummary(tabletest <- fishdata\$sex))	y thall , dat le(data\$thal	ta\$sex)	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no
hypertrophy table(data\$† summary(table test <- fish data\$sex))	thall , dat le(data\$thal her.test(tak	ta\$sex) ll, data\$sex) ble(data\$thal	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu
hypertrophy table (data\$t summary (tabletest <- fish data\$sex)) test	thall , dat le(data\$thal her.test(tak	la\$sex) ll, data\$sex) ble(data\$thal	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count
hypertrophy table (data\$t summary(tabletest <- fish data\$sex)) test 0:	thall , dat le(data\$thal her.test(tak	la\$sex) ll, data\$sex) ble(data\$thal	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count
hypertrophy table (data\$; summary (tabletst <- fish data\$sex)) test 0: 1:	thall , dat le (data\$thal her.test(tak	1:Dona 1 16	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data
hypertrophy table (data\$; summary (tabletest <- fish data\$sex)) test 0: 1: 2:	thall , dat le (data\$thal her.test(tak	1:Dona 1 16 85	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11
hypertrophy table(data\$i summary(table test <- fish data\$sex)) test 0: 1: 2: 3:	thall , dat le (data\$thal her.test(tak	1:Dona 1 16 85 94	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex)
hypertrophy table (data\$) summary (table data\$) test <- fish data\$sex)) test 0: 1: 2: 3:	thall , dat le (data\$thal her.test(tak	1:Dona 1 16 85 94	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11
hypertrophy table (data\$; summary (table test <- fish data\$sex)) test 0: 1: 2: 3: maximum hea:	thall , dat le(data\$thal her.test(tak 0: Home 1 1 72 9 rt rate achi	1:Dona 1 16 85 94	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11 alternative hypothesis: two.sided
hypertrophy table (data\$) summary (table (data\$) test <- fish data\$sex)) test 0: 1: 2: 3: maximum head table (data\$)	thall , dat le (data\$thal her.test(tak 0: Home 1 1 72 9 rt rate achiexng , data\$	1:Dona 1 16 85 94	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11 alternative hypothesis: two.sided p-valor significatiu rebutgem Ho
hypertrophy table (data\$) summary (table (data\$) test <- fish data\$sex)) test 0: 1: 2: 3: maximum head table (data\$)	thall , dat le (data\$thal her.test(tak 0: Home 1 1 72 9 rt rate achiexng , data\$	1:Dona 1 16 85 94 Leved Ssex) g, data\$sex))	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11 alternative hypothesis: two.sided p-valor significatiu rebutgem Ho
hypertrophy table (data\$) summary (tab) test <- fish data\$sex)) test 0: 1: 2: 3: maximum hea: table (data\$6 summary (tab)	thall , dat le(data\$thal her.test(tak 0: Home 1 1 72 9 rt rate achi exng , data\$ le(data\$exng 0: Home	1:Dona 1 16 85 94 Leved Ssex) 1:Dona 11 11 11 12 13 14 15 15 16 16 16 16 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11 alternative hypothesis: two.sided p-valor significatiu rebutgem Ho
hypertrophy table (data\$ summary (tab) test <- fish data\$sex)) test 0: 1: 2: 3: maximum hea: table (data\$ summary (tab) 0:no	thall , dat le(data\$thal her.test(tak 0: Home 1 1 72 9 rt rate achi exng , data\$ le(data\$exng 0: Home 68	1:Dona 1 16 85 94 Leved Ssex) data\$sex) 1:Dona 1 124	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11 alternative hypothesis: two.sided p-valor significatiu rebutgem Ho Test for independence of all factors:
hypertrophy table (data\$; summary (tab); test <- fish data\$sex)) test 0: 1: 2: 3: maximum hea: table (data\$; summary (tab);	thall , dat le(data\$thal her.test(tak 0: Home 1 1 72 9 rt rate achi exng , data\$ le(data\$exng 0: Home	1:Dona 1 16 85 94 Leved Ssex) 1:Dona 11 11 11 12 13 14 15 15 16 16 16 16 16 16 16 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18	alternative hypothesis: two.sided La Taula té caselles inferiors a 4 o per això cal fer un test de Fisher (no paramètric) p-valor significatiu Fisher's Exact Test for Count Data data: table(data\$thall, data\$sex) p-value = 1.143e-11 alternative hypothesis: two.sided p-valor significatiu rebutgem Ho Test for independence of all

Com a conclusió podem veure que hi ha variables en les que el fet de ser home o dona no influeix en les observacions, no hi ha diferències significatives a les variables fbs, restecg En canvi hi ha diferències significatives entre homes i dones a les variables output,cp, thall , exng

- **5.** Representació dels resultats a partir de taules i gràfiques. Aquest apartat es pot respondre al llarg de la pràctica, sense la necessitat de concentrar totes les representacions en aquest punt de la pràctica.
- **6. Resolució del problema.** A partir dels resultats obtinguts, quines són les conclusions? Els resultats permeten respondre al problema?

Podem predir a partir d'una regressió lineal dèbil (amb una R de 50) a partir de les variables: Sex, cp, thalachh, exng, oldpeak, slp, caa, thall

I respecte si els homes tenen més risc o menys que els dones de patir un infart hem pogut veure que només en algunes de les variables hi ha diferències: output, cp, thall, exng I en canvi en les variables fbs, restecg el fet de ser home o dona no representa un canvi.

- **7. Codi.** Cal adjuntar el codi, preferiblement en R, amb el que s'ha realitzat la neteja, anàlisi i representació de les dades. Si ho preferiu, també podeu treballar en Python
- **8. Vídeo.** Realitzar un breu vídeo explicatiu de la pràctica (màxim 10 minuts) on tots els integrants de l'equip expliquin amb les seves pròpies paraules el desenvolupament de la pràctica, basantse en les preguntes de l'enunciat per a justificar i explicar el codi desenvolupat. Aquest vídeo s'haurà de lliurar a través d'un enllaç al Google Drive de la UOC (https://drive.google.com/...), juntament amb l'enllaç al repositori Git lliurat.

Contribucions	Signatura
Investigació prèvia	SGM, LTA
Redacció de respostes	SGM, LTA
Desenvolupament del codi	SGM, LTA

Participació al vídeo	SGM, LTA
•	,

Bibliografía

- Calvo M., Subirats L., Perez D. (2019). Introduccion a la limpieza y analisis de los datos. Editorial UOC.
- Jason W. Osborne (2010). Data Cleaning Basics: Best Practices in Dealing with
- Extreme Scores. Newborn and Infant Nursing Reviews; 10 (1): pp. 1527-3369.
- Peter Dalgaard (2008). Introductory statistics with R. Springer Science & Business Media.
- Tutorial de Github https://guides.github.com/activities/hello-world.
- Eina per a la realitzacio de grafiques: https://www.data-to-viz.com/