CS 170 NOTES

ABSTRACT. These notes were taken during CS 171 (Discrete Methods in Computer Science) taught by Aaron Cote in Spring 2014 at University of Southern California. They were live-LATEXed during lectures in TeXShop and compiled using xelatex. Each lecture gets its own section. The notes are not edited afterward, so there may be typos; please email corrections to yifeiyan@usc.edu.

1. Lecture 1, Monday, January 13

Course goals: Discrete math and problem solving skills with a wide range of topics.

Review: Sets, functions, sequences

Definition 1.1. A set is an unordered collection of objects.

Definition 1.2. Two sets are equal if and only if they have the same elements (aka objects, or members).

Venn graph

Universal set U contains all objects under consideration.

Definition 1.3. The intersection of sets S_1 and S_2 , denoted by $S_1 \cap S_2$, is the set that contains those elements in both S_1 and S_2 . $S_1 \cap S_2 = \{x | x \in S_1 \land x \in S_2\}$

Definition 1.4. The union of sets S_1 and S_2 , denoted by $S_1 \cup S_2$, is the set that contains those elements that are either in S_1 or S_2 , or both. $S_1 \cup S_2 = \{x | x \in S_1 \lor x \in S_2\}$

Definition 1.5. The complement of set S, denoted by \overline{S} , is the set that contains those elements that are in the universal set S but not in S. $\overline{S} = \{x | x \notin S\}$

Empty set $\emptyset = \overline{U}$

Definition 1.6. Two sets S_1 and S_2 are disjoint if $S_1 \cap S_2 = \emptyset$.

Generalized intersection

$$\bigcap_{i=1}^{n} S_i = S_1 + S_2 + \dots + S_n$$

Generalized union

$$\bigcup_{i=1}^{n} S_i$$

Definition 1.7. Set A is a subset of set B, denoted by $A \subseteq B$, if and only if everything in A is in B.

Theorem 1.8. Any set is a subset of itself. Ø is a subset of any set.

If two sets are subsets of each other, two sets are equal.

Definition 1.9. Set A is a strict subset of set B, denoted by $A \subset B$, if $A \subseteq B$ and $A \neq B$.

 $A \subset B \Rightarrow A \subseteq B$, and its opposite is not true.

Example 1.10. 7 stamps: 2 red, 2 yellow, 3 green. A, B, C, are three perfect logicians. A removes blindfold and can't tell any conclusions about the colors about who's wearing what. B can't either.

From what A said, B and C can't wear red or yellow together. C wears green.

Example 1.11. 3 Truth machines are in stock. A machine corresponds true/false to red/green, but patterns for different machines can be different. 1 machine is broken (it answers arbitrarily) and 2 are working. Ask one single question (with a single yes/no answer) to one machine and determine which two are working.

Definition 2.1. The cardinality of a set A, denoted by |A|, is the number of distinct elements in A.

Example 2.2. $|\{\text{cake, pie, cake}\}| = 2$

Example 2.3. $|\emptyset| = |\{\}| = 0$

Example 2.4. $|\{\emptyset\}| = 1$

Example 2.5. $|\{Z, N\}| = 2$

Example 2.6. $|\mathbf{Z}| = \infty$

Definition 2.7. The power set of S, denoted by P(S), is the set of all subsets of S.

Example 2.8. $S = \{\text{cake, pie}\}, P(S) = \{\emptyset, \{\text{cake}\}, \{\text{pie}\}, \{\text{cake, pie}\}\}$

Example 2.9. $P(\emptyset) = \{\emptyset\}$

Example 2.10. $P(\{\emptyset\}) = \{\emptyset, \{\emptyset\}\}\$

Example 2.11. $P(P(\{a\})) = P(\{\emptyset, \{a\}\}) = \{\emptyset, \{\emptyset\}, \{\{a\}\}, \{\emptyset, \{a\}\}\}\}$

$$P(A) = P(B) \rightarrow A = B$$
$$|A| = n \rightarrow |P(A)| = 2^n$$

Definition 2.12. An ordered *n*-tuple is a collection of elements where order matters, i.e., an ordered set.

Example 2.13. $(a, b) \neq (b, a)$

Example 2.14. $(a, a, b) \neq (a, b)$

Definition 2.15. The Cartesian product of two sets A and B, denoted by $A \times B$, is an unordered set that consists all ordered pairs of (a, b) such that a is in A and b is in B.

$$A\times B=\{(a,b)|a\in A\wedge b\in B\}$$

Example 2.16. $\{1,2\} \times \{1,3,4\} = \{(1,1),(1,3),(1,4),(2,1),(2,3),(2,4)\}$

Example 2.17. $\{(1,1),(1,3),(1,4),(2,1),(2,3),(2,4)\} \times \{1,2\} = \{((1,1),1),((1,3),1),\cdots\}$

Definition 2.18. A function for A to B, denoted by $f: A \to B$, takes as input an element from set A and outputs an element from set B.

Definition 2.19. A function $f: A \to B$ is injective or one-to-one if every input maps to a distinct output, i.e., for an injective function $f, f(a) = f(b) \to a = b$

Example 2.20. $f(x): \mathbf{R} \to \mathbf{Z}, f(x) = |x|$ is not injective.

Remark. Floor function |x|, ceiling function [x].

Definition 2.21. A function $f: A \to B$ is surjective or onto if every element in B can be produced.

Example 2.22. $f(x) : \mathbf{R} \to \mathbf{Z}, f(x) = |x|$ is surjective.

Definition 2.23. A function f is bijective or one-to-one correspondence if it's both injective and surjective.

Example 2.24. $f(x): \mathbf{Z} \to \text{ even integers}, f(x) = 2x \text{ is both injective and surjective, thus is bijective.}$

Definition 2.25. A sequence is a function from N to some set S.

Example 2.26. $f_0 = 0, f_1 = 1, f_2 = 2, f_3 = 3, f_4 = 5, f_5 = 8, \cdots$

Example 2.27. $1, 2, 3, 4, \cdots$

Example 2.28. $1, 4, 9, 16, \cdots$

Example 2.29. $f_n = f_{n-1} + f_{n-2}, f_0 = 0, f_1 = 1$

Remark. Recurrence relations: recursive definitions of sequences.

Example 2.30. 3, 3, 3, \cdots : $f_0 = 3$, $f_n = f_{n-1}$

Example 2.31. $f_n = 2n$: $f_n = 2 + f_{n-1}$

Example 2.32. $f_n = n^2$: $f_n = f_{n-1} + 2n - 1$

Example 2.33. $f_n = n + (-1)^n$: $f_n = f_{n-2} + 2$

Example 2.34. The polulation of world in 2010 is 6.9 billion, assume it grows at an annual rate of 11%. $f_n = 1.011 f_{n-1}$, $f_0 = 6.9$ billion

 $E\text{-}mail\ address{:}\ \mathtt{yifeiyan@usc.edu}$