Engenharia de Reatores Químicos - IQD0048 - Turma T01

Universidade de Brasília - Instituto de Química

Plano de Ensino

Professor

Alexandre Umpierre

IQD BT 86/5

aumpierre@unb.br

Período letivo

2024/1

De 18/03/2024 a 15/07/2024

Horário e local das aulas

35M34, BSA S B2 54/13

Horário e local de atendimento aos alunos

35T23, IQD BT 86/5

Questionamentos quanto à matéria devem ser apresentados *presencialmente*, durante as aulas ou nos horários de atendimento.

O contato por email deve ser restrito à questões formais.

Objetivo

Apresentar os fundamentos da engenharia de reatores químicos, com ênfase em elementos de cinética química, balanços de massa e energia, reatores ideais e desvios de idealidade.

Metodologia

Aulas expositivas com exemplos e exercícios.

Listas de exercícios e estudos dirigido, quando houver, serão divulgados na página da disciplina.

Não são autorizados registros fotográficos do conteúdo ministrado das aulas.

Programa

O conteúdo será dividido em quatro módulos:

Módulo 1 - Reatores Batelada

- Balanço material (volume constante)
- Balanço entálpico (volume constante)
- Determinação da expressão da taxa de reação (volume constante)
- Balanço material (concentração constante)

Módulo 2 - Reatores Tubulares

- Balanços material e entálpico (meio incompressível)
- Arranjos serial e paralelo (meio incompressível)
- Reator com refluxo (meio incompressível)
- Balanços material (meio compressível)
- Reator de leito empacotado
- Reator de leito fluidizado

Módulo 3 - Reatores de Tanque Agitado

- Balanços material e entálpico
- Arranjos serial e paralelo
- Partida, parada e mudança de set-point
- Multiplicidade de estados estacionários

Módulo 4 - Desvios de Idealidade

- Modelo de volume morto e by-pass
- Modelo de volume de troca
- Distribuição de tempo de residência
- Modelo de tanques em série
- Modelo de mistura mínima
- Modelo de mistura máxima
- Modelo de dispersão

PFR com regime laminar

Avaliação

Ao longo do período serão realizadas quatro testes, T_1 , T_2 , T_3 e T_4 , versando sobre os respectivos módulos do programa, e dois trabalhos, HW_1 , versando sobre o primeiro e o segundo módulos, e HW_2 , versando sobre o terceiro e o quarto módulos.

Os trabalhos serão realizados de forma assíncrona, em horário extraclasse. Os trabalhos podem ser resolvidos individualmente ou em duplas. O prazo para realização dos trabalhos é de 24 horas.

As avaliações serão corrigidas em uma escala de 0 a 10.

A nota final é a soma de 35 % da média aritmética dos trabalhos e de 65 % da média aritmética dos testes.

As orientações descritas abaixo para resolução, redação e entrega das provas devem ser observadas com atenção.

A inobservâncias dessas orientações implicará em desconto de nota.

A avaliação substitutiva, se cabível, será aplicada com os mesmos critérios e regras da avaliação a ser substituída.

Datas das Avaliações

- T₁ 09/04/2024
- T₂ 25/04/2024
- HW₁ Disponibilizado na página da disciplina até às 23h59 de 30/04, entregue até às 23h59 de 02/05
- T₃ 21/05/2024
- T₄ 27/06/2024
- HW₂ Disponibilizado na página da disciplina até às 23h59 de 02/07, entregue até às 23h59 de 04/07
- Avaliação substitutiva 11/07/2024

Critétrios de avaliação

Os critérios de correção das avaliações são observância às orientações e adequação das respostas. Os trabalhos extraclasse devem, ainda, atender às *instruções para redação de trabalhos extraclasse*.

O desenvolvimento das respostas deve estar diretamente e objetivamente relacionado à obtenção das respostas finais e deve seguir uma sequência lógica e consistente com os modelos aceitos pela literatura da área da disciplina.

Afirmações não relacionadas ao desenvolvimento correto das questões serão desconsideradas, independentemente de seus valores e validade.

Orientações para os trabalhos HW₁ e HW₂:

- Realizados individualmente ou em duplas, de forma assíncrona
- Podem ser realizados com auxílio de quaisquer simuladores e rotinas de programação
- Disponibilizados para download nesta página
- O arquivo de resolução deve ser entregue exclusivamente por email em formato pdf
- O arquivo de resolução deve ser identificado com nomes e matrículas dos autores e nomeado de acordo com o exemplo:

ERQ_T01_20241_HW1_yyyymmdd_matriculasonumeros.pdf

- Não serão aceitos links para repositórios em nuvem
- O arquivo de resolução deve ser redigido de acordo com as instruções para elaboração de avaliações extraclasse, descritas neste documento
- O arquivo de resolução deve ser redigido sobre um dos *templates* (disponíveis para download):

https://github.com/aumpierre-unb/ERQ0120241/raw/main/template_ERQ.doc

https://github.com/aumpierre-unb/ERQ0120241/raw/main/template_ERQ.docx

https://github.com/aumpierre-unb/ERQ0120241/raw/main/template_ERQ.odt

Orientações para os testes T_1 , T_2 , T_3 e T_4 :

- Realizados individualmente, de forma síncrona
- Realizado sem qualquer forma de consulta
- Prazo de entrega de uma hora
- As questões serão de escolha simples ou múltipla ou discursivas

Bibliografia

Bibliografia básica

- Fogler, S. H., Essentials of Chemical Reaction Engineering, Prentice Hall, **2011**.
- Gilbert F. Froment, Kenneth B. Bischoff, Juray de Wilde, Chemical Reactor Analysis and Design, Wiley, 3rd edition, 2010.
- Levenspiel, O., Chemical Reaction Engineering, John Wiley & Sons, Inc. 1998.

Bibliografia complementar

- Carberry, J. J., *Chemical and Catalytic Reaction Engineering*. Dover Publications. **2001**.
- Metcalfe, I. S., Chemical Reaction Engineering: A First Course. Oxford University Press. 1997.

Instruções para Redação dos Trabalhos Extraclasse

Critérios adicionais de avaliação

Além *observância às orientações e adequação das respostas*, como descrito neste documento, a avaliação de trabalhos extraclasse ainda considera os seguintes quesitos:

- Fidelidade ao template
- Originalidade da redação
- Pontualidade de entrega
- Observação à norma culta da língua portuguesa
- Observação às normas da IUPAC para expressão de equações químicas
- Clareza e adequação de figuras, esquemas, tabelas, equações matemáticas

Orientações gerais

- Escreva seu texto sobre o template sem nenhuma edição de fontes, parágrafos, margens, layout, tabuções, cores, etc.
- Todas as variáveis utilizadas devem ser descritas adequadamente no texto e todas (incluindo as letras gregas) as variáveis devem ser apresentadas em itálico.
- Não utilize nenhuma forma de destaque (como negrito, itálico, sublinhado, realce etc) para o corpo de texto (exceto para representação de variáveis, que devem ser escritas em itálico).
- O documento deve ser integralmente em preto.
- Não utilize planos de fundo.
- Figuras, esquemas e tabelas devem ser todos referenciados no texto antes de sua apresentação.
- A adequação à normas diferentes das aqui dispostas significam inadequação a estas normas.
- A transcrição dos códigos usados não será considerada parte da resposta em nenhuma hipótese.

Orientações para apresentação de gráficos e tabelas

- A clareza dos dados apresentados nas figuras e tabelas é de responsabilidade do autor.
- Gráficos devem ser apresentados como figuras.
- Os eixos dos gráficos devem ser corretamente nomeados, as escalas devem ser adequadas para cada caso, e as legendas devem ser apresentadas no caption da figura ou na área do gráfico.
- Todas as figuras e tabelas devem ser numeradas e referenciadas no texto.

• Traços e símbolos em figuras podem ser utilizados diferentes cores/padrões, desde que suficientemente diferentes entre si e claramente identificados em seus respectivos *captions*.

Copyright © 2024 Alexandre Umpierre

https://aumpierre-unb.github.io/ERQ0120241/

