Esercizi

4 - Sottospazi vettoriali, Sistemi di generatori, Dipendenza lineare

Legenda:

😀 : Un gioco da ragazzə, dopo aver riletto gli appunti del corso

😕 : Ci devo pensare un po', ma posso arrivarci

: Non ci dormirò stanotte

- $\stackrel{\smile}{\smile}$ Esercizio 1. Stabilire quali dei seguenti sottoinsiemi è un sottospazio vettoriale del corrispondente spazio vettoriale V indicato. Giustificare la risposta.
 - (a) $V = \mathbb{R}^2$, $W = \{(x, y) \in \mathbb{R}^2 : xy = 0\}$.
 - (b) $V = \mathbb{R}^3$, $W = \{(x, x+3, z) : x, z \in \mathbb{R}\}$.
 - (c) $V = \mathbb{R}^3$, $W = \{(x+3, y, y) : x, y \in \mathbb{R}\}.$
 - (d) $V = \mathbb{R}^3$, $W = \{(x, y, z) \in \mathbb{R}^3 : x 3y + 4z = 0\}$.
 - (e) $V = \mathbb{R}^3$, $W = \{(x, y, x^2 + y^2) : x, y \in \mathbb{R}\}$.
 - (f) $V = \mathbb{R}^4$, $W = \{(x, x, x, x) \in \mathbb{R}^4 : 0 \le x \le 1\}$.
 - (g) $V = \mathbb{R}^4$, $W = \mathbb{R}^4 \setminus \{(0, 0, 1, 0)\}$.
 - (h) $V = \mathcal{M}_2(\mathbb{R}), W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, ad bc = 0 \right\}.$
 - (i) $V = \mathcal{M}_2(\mathbb{R}), W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{R}, a+b=b+c=c+d=0 \right\}.$
 - (j) $V = \{f : \mathbb{R} \to \mathbb{R}\}, W = \{f \in V : f(0) = 0\}.$
- $igoplus \mathbf{Esercizio}\ \mathbf{2}.$ Si considerino in $V=\mathbb{R}^3$ i sottospazi vettoriali

$$U=\{(x,y,x+z):x,y\in\mathbb{R}\},\qquad W=\{(x,x,z):x,z\in\mathbb{R}\}.$$

Si determini il sottospazio intersezione $U \cap W$.

- \triangleright Esercizio 3. Sia $V = \mathcal{M}_2(\mathbb{R})$.
 - (a) Siano L e U i sottoinsiemi di V costituiti dalle matrici 2×2 rispettivamente triangolari inferiori e superiori. Mostrare che L e U sono due sottospazi vettoriali di V.
 - (b) Descrivere il sottospazio intersezione $D := U \cap L$.
 - (c) Determinare due sottospazi W_1 e W_2 di D tali che $D = W_1 \oplus W_2$.
- \bigcirc Esercizio 4. Sia $V = \mathbb{R}^4$ e siano

$$v_1 = (1, 0, -1, 0), v_2 = (0, 1, 2, -1), v_3 = (-2, 0, 0, 3), v_4 = (1, 1, 1, 1).$$

(a) Il vettore v = (1,0,0,0) è combinazione lineare di v_1, v_2, v_3 e v_4 ? In caso affermativo, determinare i coefficienti della combinazione lineare.

- (b) I vettori v_1, v_2, v_3 e v_4 sono linearmente indipendenti? Giustificare la risposta.
- (c) L'insieme $\{v_1, v_2, v_3, v_4\}$ è un sistema di generatori di \mathbb{R}^4 ?
- **Esercizio 5.** Sia $V = \mathbb{R}[X]$ lo spazio vettoriale dei polinomi a coefficienti in \mathbb{R} .
 - (a) Mostrare che per ogni intero $n \geq 0$, $\mathbb{R}_{\leq n}[X] := \{P(X) \in \mathbb{R}[X] : \deg(P(X)) \leq n\}$ è uno sottospazio vettoriale di $\mathbb{R}[X]$.
 - (b) Quali tra i seguenti sottoinsieme di $\mathbb{R}_{\leq 3}[X]$ è un sottospazio vettoriale? Giustificare la risposta.
 - $U_1 = \{P(X) \in \mathbb{R}_{\leq 3}[X] : P(1) = 0\}.$
 - $U_2 = \{P(X) \in \mathbb{R}_{<4}[X] : P(X) = P(-X)\}.$
 - (c) Siano $v_1 = X^3 + 4$, $v_2 = X^2 2X + 2$, $v_3 = X^2 3X + 8$, $v_4 = 3X^3 + 2X$ quattro vettori di $\mathbb{R}_{\leq 3}[X]$. Determinare se v_1, v_2, v_3 e v_4 sono linearmente indipendenti.
 - (d) Siano v_1, v_2, v_3 e v_4 come al punto (c). È vero che $\langle v_1, v_2, v_3, v_4 \rangle = \mathbb{R}_{\leq 3}[X]$? Giustificare la risposta.
- **Sercizio 6.** Sia $V = \mathbb{R}^3$ e siano $v_1 = (-1, 2, 4), v_2 = (1, 6, 10).$
 - (a) Determinare per quali $h \in \mathbb{R}$ il vettore $(h, h + 1, h + 2) \in \langle v_1, v_2 \rangle$.
 - (b) Mostrare che $\langle v_1, v_2 \rangle = \langle (1, 2, 3), (3, -2, -5) \rangle$.
- Esercizio 7. Siano v_1, v_2, v_3 tre vettori linearmente indipendenti di uno spazio vettoriale V su \mathbb{R} .
 - (a) Mostrare che anche i vettori v_1 , $v_1 + v_2$, $v_1 + v_2 + v_3$ sono linearmente indipendenti
 - (b) Determinare i valori di $a \in \mathbb{R}$ per i quali i vettori $v_1 + av_2, v_2 + av_3, v_1 + av_3$ sono linearmente indipendenti.
- Esercizio 8. Sia V uno spazio vettoriale su K. Siano v_1, v_2, \ldots, v_n vettori di V. Dimostrare le seguenti proposizioni:
 - (a) I vettori v_1, v_2, \ldots, v_n sono linearmente indipendenti se e solo se esiste $i \in \{1, \ldots, n\}$ tale che v_i è combinazione lineare degli altri vettori.
 - (b) Se l'insieme $\{v_1, v_2, \dots, v_n\}$ contiene il vettore nullo, allora v_1, v_2, \dots, v_n sono linearmente dipendenti.
 - (c) Se v_1, v_2, \ldots, v_n sono linearmente indipendenti allora v_1, v_2, \ldots, v_m sono linearmente indipendenti per ogni $1 \le m < n$.
 - (d) Se v_1, v_2, \ldots, v_n sono linearmente indipendenti e $a_1, \ldots, a_n, b_1, \ldots, b_n \in K$ sono tali che

$$\sum_{i=1}^{n} a_i v_i = \sum_{i=1}^{n} b_i v_i$$

allora $a_i = b_i$ per ogni $i = 1, \ldots n$.

(e) I vettori v_1, v_2, \ldots, v_n sono linearmente indipendenti se e solo se $v_{i+1} \notin \langle v_1, \ldots, v_i \rangle$ per ogni $i = 1, \ldots, n-1$.