Buestions

- 1) In \mathbb{R}_2 , define $(x_{iy}) \oplus (x'_{iy'}) = (x_{ix'}, y_{iy'})$ and $c \odot (x_{iy}) = (0,0)$. Is \mathbb{R}_2 a vector space with \oplus and \odot ? (cell)
- 2) let V be the set of all positive real numbers. Define $u \oplus u = u \cdot u$, $c \ominus v = u^c$ for any $u, u \in V$ and $c \in \mathbb{R}$. Prove that V is a vector space.
- 3) Determine whether or not the following set W is a subspace of V.
 - a) $W = \{ (2t, -3t) \mid t \in \mathbb{R} \}$, $V = \mathbb{R}_2$.
 - b) W={(2++3,-4+) | t < IR}, V=IR2
 - c) $W = \{(a,b,c) \mid a,b,c \in \mathbb{R}, 3a+b-2c=0\}, V = \mathbb{R}_3.$
 - d) W= { a,+a,+a,+2 | a, e, a,=3a,}, V=P2
 - e) W= { [a b c] | a,b,c,d,e,feR, a+c=0, b+d+f=0}, V=M23
 - f) $V = C(-\infty, \infty) = \{f \mid f: |R \rightarrow |R \text{ is continuous}\}$, $W_1 = \{all \text{ constent functions}\}$, $W_2 = \{All \text{ functions such that } f(0) = 0\}$ $W_3 = \{all \text{ functions s.t. } f(0) = 3\}$ $W_4 = \{All \text{ differentiable functions}\}$
- 4) Determine the elevents of the following subspaces in IR3.

 a) $\langle (42-6), (-2-13) \rangle$ b) $\langle (-1-32), (12-1), (11-1) \rangle$
- 5) Let V be a vector space and following subsets are linearly independent subset of V. Determine whether the following subsets are line independent
 - a) \{ \alpha_1, \alpha_2\} (\frac{1}{4}\in 1\text{IR}) \quad \{ \alpha_1 + 2\alpha_3, 3\alpha_2 \alpha_3\} \quad \c) \{ \alpha_1, \alpha_2 + d\alpha_3, \alpha_3\}
- 6) Show that {1-t, 3-t2, t+4t2} is a basis for P2. (del)
- 7) let H= {[a c a+2c] | a,b,cell?]. Show that H is a subspace of M23 and find a basis for H.
- 8) Find a basis for the subspaces
 - a) <(123)>inB;b) <(411),(-112)>in R3;
 - c) < (1032), (1-4-5-2), (-21-4-3), (3-254) > a R4.
 - d) { [a] | 2a+b-c=0 } in R3.
 - e) {at3+bt2+ct+d | c=a-2d,b=5a+3d} in P3-

- 9) Find a basis and the dimension of the solution space of $x_1 + 2x_2 - x_3 + 3x_4 = 0$ $2x_1 + 2x_2 - x_3 + 2x_4 = 0$
- $X_1 + 3X_3 + 3X_4 = 0$ 10) Find a basis for IR3 that includes the vectors [2] and [3].
- 11) Let L: M22 IR be defined by L ([ab])=a+d. Is La linear transformation!
- 12) Let L: P, -, P, be a linear trans. for which we know that L(++1)=2++3, L(+-1)=3+-2. a) Find L(6+-4) b) Find L(at+b).
- 13) Let L:1R3 -> 1R3 be the linear trans. represented by the matrix $\begin{bmatrix} 131 \\ 120 \end{bmatrix}$ with respect to the northral basis for IR3. Find $L(\begin{bmatrix} 0\\ 2 \end{bmatrix})$ -
- 14) Let $S = \{(1,-1),(-2,3)\}$ and $T = \{(1,0,1),(2,-1,3),(-2,0,-3)\}$ be ordered bases for $1R_2$ and $1R_3$, respectively. If $A = \begin{bmatrix} -3 & 7 \\ -1 & 7 \end{bmatrix}$ is the representation of L with respect to $\begin{bmatrix} -3 & 6 \end{bmatrix}$ S and T, then find L((0,1)).
- 15) Let the basis S={ \alpha1, \alpha2, \alpha3} of IR3 where \alpha = (-1,2,1), \alpha = (2,0,1), $d_3 = (0, 1, 1)$.
 - a) If L(d1)=-4, L(d2)=1, L(d3)=-2 for L:1R3-71R, find the general definition of L.
 - b) If T= {2}, then find [L].
 - c) Find the matrix of L w.r.t. the natural bases for IR3 and IR.
- 16) Find all eigenvalues and associated eigenvectors of a) A= [4 0-6] 3 0-5]

b)
$$A = \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$
 c) $L: \mathbb{R}^{2x1} \to \mathbb{R}^{2x1}$, $L(u_1, u_2) = (3u_1 - 5u_2, 2u_1 - 3u_2)$.

- 17) Let H be the set of all-skew symmetric matrices in M33.
 - a) Show that It is a subspace of Mas -
 - b) Show that H is isomorphic to R3.
- 18) Find a basis for the row space of $A = \begin{bmatrix} -1 & 2 & 0 & 3 \\ 0 & 1 & 2 & 0 \\ -1 & 3 & 2 & 3 \end{bmatrix}$. What is rank A?