

Dispatching Petabytes with PostgreSQL

Andrew Pantyukhin andrew@dreamindustries.ru

15M media objects 3PB raw data storage, streaming, processing

HDFS? Isilon? custom solution

1000s hard drives file system per drive filename = sha256(file)

dispatching ingestion, rebalancing encoding, analysis

PostgreSQL! (of course)

entities

sha (asset), hdd, chassis metadata, actions, status

15M master objects 25M derivatives 70M copies

200GB core 500GB XML processing 2TB+ overall

custom types enum native/wrappers

hashtypes shatypes + crc32, bugfixes

actions fully async, fail-over dumb polling

smart locking update set t=now()where t old update returning

XML

third-party metadata stored, processed in PG

research large-scale action logging

production aggregated views of dispatcher

distributed logic dispatcher, XML processing, production, research full-mesh data exchange

table data transfer slow or inflexible simple custom scripts, diff

dream industries
disruptive innovation lab
funding, collaborating
inviting, hiring