

Report No.: EED32L00007202 Page 1 of 39

TEST REPORT

Product : Smart Projector

Trade mark : TOUMEI

C800S, C800, C800W, C800i, V3, V5, V5X, V6, V7, V8, V9, Q1, Q3, Q5, Q6, Q8, C1, C2, C3, C4, C5,

C6, C7, C8, T5, T6, T7, T8, T9, X1, X2, X3, X4, X5,

Model/Type reference : C6, C7, C8, 15, 16, 17, 18, 19, X1, X2, X3, X4, X5, X6, X7, X8, X9, S1, S2, S3, S4, S5, S6, S7, S8, S9,

K1, K2, K3, K4, K5, K6, K7, K8, K9, A3, A4, A5, A6,

A7, A8, A9

Serial Number : N/A

Report Number : EED32L00007202

FCC ID : 2AJCMC800S Date of Issue : May 15, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

SHENZHEN TOUMEI TECHNOLOGY CO., LTD 6th Floor, Building i, Jinchangda Science Park, Shanwei Village, Zhangkengjing, Guanlan Street, Longhua New District, Shenzhen

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By: Tay Zheng

Compiled by:

proved b

Report Sea

Leven San

Reviewed by:

Ware Xm

Kevin yang

Date:

May 15, 2019

Check No.: 3096339091

2 Version

Version No.	Date	Description			
00	May 15, 2019		Original		
	000	A	75	/15	
	(1)	(4 ⁵ 2)			

Report No.: EED32L00007202 Page 3 of 39

3 Test Summary

i cot odililiai y				
Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS	
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS	
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS	
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS	
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS	
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS	

Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: C800S, C800, C800W, C800i, V3, V5, V5X, V6, V7, V8, V9, Q1, Q3, Q5, Q6, Q8, C1, C2, C3, C4, C5, C6, C7, C8, T5, T6, T7, T8, T9, X1, X2, X3, X4, X5, X6, X7, X8, X9, S1, S2, S3, S4, S5, S6, S7, S8, S9, K1, K2, K3, K4, K5, K6, K7, K8, K9, A3, A4, A5, A6, A7, A8, A9

Only the model C800 was tested, Different models are the different outer case colors, but internal structure, circuit principle and all key components related to EMC performance are identical. The differences do not affect product safty and EMC performance.

Report No.: EED32L00007202 Page 4 of 39

4 Content

1 COVER PAGE			1
2 VERSION			2
3 TEST SUMMARY			3
4 CONTENT			4
5 TEST REQUIREMENT			5
•			
	est setups test setup		
	, tost setup		
6 GENERAL INFORMATION		•••••	7
6.1 CLIENT INFORMATION			7
	Г		
	ECTIVE TO THIS STANDARD		
	TS		
	RD CONDITIONS		
	ED BY THE CUSTOMER		
	95% CONFIDENCE LEVELS, K=2)		
7 EQUIPMENT LIST			10
The state of the s	ENTS SPECIFICATION		
Appendix A): 6dB Occupied Ba	ındwidth		14
	Output Power		
	F Conducted Emissions		
	Durious Emissions		
	nent		
	Conducted Emission		
	around fundamental frequency (Radiat	ted)	
Appendix I): Radiated Spurious	s Emissions		33
PHOTOGRAPHS OF EUT CONSTR	RUCTIONAL DETAILS		39

Report No.: EED32L00007202 Page 5 of 39

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup

5.2 Test Environment

Operating Environment for	or RF Conducted test:		(6)
Temperature:	24°C		
Humidity:	54% RH	Date:	
Atmospheric Pressure:	101kPa		

5.3 Test Condition

Test channel:

Test Mode	Turbu C'à	RF Channel			
	Tx/Rx	Low(L)	Middle(M)	High(H)	
CECK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40	
GFSK	2402WH2 ~2460 WH2	2402MHz	2440MHz	2480MHz	
TX mode: The EUT	transmitted the continuous modulate	tion test signal at t	he specific chan	nel(s).	

6 General Information

6.1 Client Information

Applicant:	SHENZHEN TOUMEI TECHNOLOGY CO., LTD
Address of Applicant:	6th Floor, Building i, Jinchangda Science Park, Shanwei Village, Zhangkengjing, Guanlan Street, Longhua New District, Shenzhen
Manufacturer:	SHENZHEN TOUMEI TECHNOLOGY CO., LTD
Address of Manufacturer:	6th Floor, Building i, Jinchangda Science Park, Shanwei Village, Zhangkengjing, Guanlan Street, Longhua New District, Shenzhen
Factory:	SHENZHEN TOUMEI TECHNOLOGY CO., LTD
Address of Factory:	6th Floor, Building i, Jinchangda Science Park, Shanwei Village, Zhangkengjing, Guanlan Street, Longhua New District, Shenzhen

6.2 General Description of EUT

	The second secon	
Product Name:	Smart Proje	ector
Model No.:	Q6, Q8, C1 X4, X5, X6	00, C800W, C800i, V3, V5, V5X, V6, V7, V8, V9, Q1, Q3, Q5, , C2, C3, C4, C5, C6, C7, C8, T5, T6, T7, T8, T9, X1, X2, X3, , X7, X8, X9, S1, S2, S3, S4, S5, S6, S7, S8, S9, K1, K2, K3, , K7, K8, K9, A3, A4, A5, A6, A7, A8, A9
Test Model No.:	C800	
Trade mark:	TOUMEI	
EUT Supports Radios application:		nl mode, 2402-2480MHz; 802.11b/g/n(20MHz), 2412-2462MHz
Power Supply:	Adapter:	Model:AW018WR-0500300UV Input:100-240V~50/60Hz 0.5A Output:5V3A
Hardware Version:	D306_V1.1	(manufacturer declare)
Firmware Version:	05(manufa	cturer declare)
Sample Received Date:	Jan. 09, 20	19
Sample tested Date:	Jan. 28, 20	19 to May 14, 2019

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(6,2)
Bluetooth Version:	4.2	
Modulation Technique:	DSSS	
Modulation Type:	GFSK	5 /5
Number of Channel:	40	(2)
Test Power Grade:	N/A	
Test Software of EUT:	Ampak RFTestTool,VER:5.4(manufacturer dec	clare)
Antenna Type:	FPC antenna	45
Antenna Gain:	1dBi	
Test Voltage:	AC 120V, 60Hz	(6)

Report No.: EED32L00007202 Page 8 of 39

100	<u> </u>		\	128		12	7
Operation F	requency eac	h of channe		(C.))	(6))
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently.

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

Report No. : EED32L00007202 Page 9 of 39

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty	
1	Radio Frequency	7.9 x 10 ⁻⁸	
2	DE nouver conducted	0.46dB (30MHz-1GHz)	
2	RF power, conducted	0.55dB (1GHz-18GHz)	
2	Dedicted Courieus emission test	4.3dB (30MHz-1GHz)	
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)	
4	Conduction arrivation	3.5dB (9kHz to 150kHz)	
4	Conduction emission	3.1dB (150kHz to 30MHz)	
5	Temperature test	0.64°C	
6	Humidity test	3.8%	
7	DC power voltages	0.026%	

Report No. : EED32L00007202 Page 10 of 39

7 **Equipment List**

		RF test system	m		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-02-2018 03-01-2019	03-01-2019 02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-02-2018 03-01-2019	03-01-2019 02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-02-2018 03-01-2019	03-01-2019 02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	<u></u>	01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-02-2018 03-01-2019	03-01-2019 02-28-2020
PC-1	Lenovo	R4960d	/	03-02-2018 03-01-2019	03-01-2019 02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-02-2018 03-01-2019	03-01-2019 02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-02-2018 03-01-2019	03-01-2019 02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-02-2018 03-01-2019	03-01-2019 02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-02-2018 03-01-2019	03-01-2019 02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-02-2018 03-01-2019	03-01-2019 02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

				~ /		
Conducted disturbance Test						
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)	
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019	
Temperature/ Humidity Indicator	Defu	TH128	1	07-02-2018	07-01-2019	
Communication test set	Agilent	E5515C	GB47050 534	03-02-2018 03-01-2019	03-01-2019 02-28-2020	
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020	
LISN	R&S	ENV216	100098	05-11-2018 05-08-2019	05-10-2019 05-06-2020	
LISN	schwarzbeck	NNLK8121	8121-529	05-11-2018 05-08-2019	05-10-2019 05-06-2020	
Voltage Probe	R&S	ESH2-Z3 0299.7810.56	100042	06-13-2017	06-11-2020	
Current Probe	R&S	EZ-17 816.2063.03	100106	05-30-2018	05-29-2019	
ISN	TESEQ	ISN T800	30297	01-16-2019	01-15-2020	

Report No. : EED32L00007202 Page 11 of 39

	3M S	emi/full-anechoi			
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		06-04-2016	06-03-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-30-2018	07-29-2019
Microwave Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845S E	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D-1869	04-25-2018	04-23-2021
Horn Antenna	ETS-LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.6041	08-08-2018	08-07-2019
Loop Antenna	ETS	6502	00071730	06-22-2017	06-21-2019
		3332	3337 1700		
Spectrum Analyzer	R&S	FSP40	100416	05-11-2018 05-08-2019	05-10-2019 05-06-2020
Receiver	R&S	ESCI	100435	05-25-2018	05-24-2019
Receiver	R&S	ESCI7	100938-003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/1071 1112		01-09-2019	01-08-2020
	7.5		/*>	05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251547	05-11-2018	05-10-2019
				05-11-2018	05-10-2019
LISN	schwarzbeck	NNBM8125	81251548	05-08-2019	05-06-2020
				03-02-2018	03-01-2019
Signal Generator	Agilent	E4438C	MY45095744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401106	03-02-2018 03-01-2019	03-01-2019 02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang		1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050534	03-02-2018 03-01-2019	03-01-2019 02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5217/6A	01-09-2019	01-08-2020
Communication test set	R&S	CMW500	104466	01-18-2019	01-17-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029- 4	\	01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001	/	01-09-2019	01-08-2020

Report No. : EED32L00007202 Page 12 of 39

Ei		3M full-anechoic		Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Serial Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-20-2018	06-19-2019	
Receiver	Keysight	N9038A	MY57290136	03-28-2018 03-27-2019	03-27-2019 03-25-2020	
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-28-2018 03-27-2019	03-27-2019 03-25-2020	
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-28-2018 03-27-2019	03-27-2019 03-25-2020	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021	
Communication				02-15-2018	02-14-2019	
Antenna	Schwarzbeck	CLSA 0110L	1014	02-14-2019	02-13-2020	
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021	
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021	
Preamplifier	EMCI	EMC184055S E	980596	06-20-2018	06-19-2019	
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020	
Preamplifier	EMCI	EMC001330	980563	06-20-2018	06-19-2019	
Preamplifier	Agilent	8449B	3008A02425	08-21-2018	08-20-2019	
Temperature/	10.7	CN44260	FF4400004	05-02-2018	05-01-2019	
Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-28-2020	
Signal Generator	KEYSIGHT	E8257D	MY53401106	03-02-2018	03-01-2019	
	KETSIGHT	E0237D	101133401100	03-01-2019	02-28-2020	
Fully Anechoic Chamber	TDK	FAC-3	/	01-17-2018	01-15-2021	
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021	
Cable line	Times	SFT205- NMSM-2.50M	394812-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-2.50M	394812-0002	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-2.50M	394812-0003	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-2.50M	393495-0001	01-09-2019	01-08-2020	
Cable line	Times	EMC104- NMNM-1000	SN160710	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-3.00M	394813-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMNM-1.50M	381964-0001	01-09-2019	01-08-2020	
Cable line	Times	SFT205- NMSM-7.00M	394815-0001	01-09-2019	01-08-2020	
Cable line	Times	HF160- KMKM-3.00M	393493-0001	01-09-2019	01-08-2020	

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Appendix A): 6dB Occupied Bandwidth

Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.7158	1.0887	PASS
BLE	MCH	0.7046	1.0893	PASS
BLE	НСН	0.7112	1.0896	PASS

Test Graphs

Report No.: EED32L00007202 Page 16 of 39

Appendix B): Conducted Peak Output Power

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	1.343	PASS
BLE	MCH	1.81	PASS
BLE	HCH	1.307	PASS

Test Graphs

Report No.: EED32L00007202

Appendix C): Band-edge for RF Conducted Emissions

Result Table

0	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
5	BLE	LCH	0.610	-61.045	-19.39	PASS
_	BLE	НСН	0.646	-59.827	-19.35	PASS

Test Graphs

Report No. : EED32L00007202 Page 19 of 39

Appendix D): RF Conducted Spurious Emissions

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	0.54	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	0.947	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	нсн	0.416	<limit< td=""><td>PASS</td></limit<>	PASS

Test Graphs

Report No. : EED32L00007202 Page 20 of 39

Page 21 of 39

Page 22 of 39

Appendix E): Power Spectral Density

Result Table

Mode	Channel	PSD [dBm/3kHz]	Limit[dBm/3kHz]	Verdict
BLE	LCH	-12.934	8	PASS
BLE	MCH	-12.444	8	PASS
BLE	HCH	-12.929	8	PASS

Test Graphs

Report No.: EED32L00007202

Report No. : EED32L00007202 Page 24 of 39

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is FPC antenna and no consideration of replacement. The best case gain of the antenna is 1dBi.

Report No. : EED32L00007202 Page 25 of 39

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :	150KHz-30)MHz					
	1)The mains terminal disturbance voltage test was conducted in a shielded room.							
	2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50Ω/50μH + 5Ω linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.							
	3)The tabletop EUT was reference plane. An horizontal ground re	d for floor-	standing arranger	llic table 0.8m above ment, the EUT was p				
	reference plane was 1 was placed 0.8 n ground reference plane. This distance	from the value of the second o	rertical ground refer to the horizontal good boundary of the LISNs mounted of the closest p	reference plane. The verence plane. The veround reference plan unit under test and on top of the groundints of the LISN 1 ament was at least 0.8	rtical grour e. The LIS bonded to d referend nd the EU			
Cil	5) In order to find the n	ables mu		ve positions of equip according to ANSI				
Limit:			Limit (dBµV)					
	Frequency range (M	1Hz)		1				
					7			
	0.1505	180	Quasi-peak	Average	(3)			
	0.15-0.5		66 to 56*	56 to 46*				
	0.15-0.5 0.5-5				Cil			
	(C4) / 44		66 to 56*	56 to 46*	(in			
	0.5-5	•	66 to 56* 56 60 h the logarithm of	56 to 46* 46 50 the frequency in the	e range 0.7			

Report No.: EED32L00007202 Page 26 of 39

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.

Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live line:

No.	Freq.		ding_Le dBuV)	vel	Correct Factor	M	leasuren (dBuV)		Lir (dB	nit uV)		rgin dB)		
	MHz	Peak	QP	AVG	dB	peak	QP	AVG	QP	AVG	QP	AVG	P/F	Comment
1	0.1819	41.67	38.21	26.54	9.91	51.58	48.12	36.45	64.39	54.39	-16.27	-17.94	Р	
2	0.2460	35.09	31.25	14.74	9.95	45.04	41.20	24.69	61.89	51.89	-20.69	-27.20	Р	
3	0.4220	32.02	28.36	9.52	9.89	41.91	38.25	19.41	57.41	47.41	-19.16	-28.00	Р	
4	0.4940	31.36	28.47	11.20	9.89	41.25	38.36	21.09	56.10	46.10	-17.74	-25.01	Р	
5	2.1940	30.76	28.15	7.43	9.72	40.48	37.87	17.15	56.00	46.00	-18.13	-28.85	Р	
6	9.8020	32.19	27.63	15.53	9.84	42.03	37.47	25.37	60.00	50.00	-22.53	-24.63	Р	

Report No.: EED32L00007202 Page 27 of 39

Neutral line: 80.0 dBuV Limit: AVG: 30 peak AVG -20 0.150 0.5 (MHz) 5 30.000 Limit Reading_Level Correct Measurement Margin No. Freq. (dBuV) Factor (dBuV) (dBuV) (dB) MHz Peak QP AVG dB QP AVG QΡ AVG QΡ AVG P/F Comment peak 1 0.1780 41.06 37.56 25.40 9.91 50.97 47.47 35.31 64.57 54.57 -17.10-19.26Р 2 0.2380 34.39 31.25 17.40 44.33 27.34 62.16 52.16 -20.97 -24.82 P 9.94 41.19 3 0.4180 35.36 32.04 16.20 9.89 45.25 41.93 26.09 57.49 47.49 -15.56-21.40 P 16.28 4 0.6220 33.49 30.25 10.00 43.49 40.25 26.28 56.00 46.00 -15.75 -19.72 Р 5 11.98 9.72 21.70 -24.30Ρ 2.2740 33.08 30.08 42.80 39.80 56.00 46.00 -16.20

Notes:

6

2.6820 32.15 27.38

1. The following Quasi-Peak and Average measurements were performed on the EUT:

37.10

23.52

56.00

46.00

-18.90

-22.48

41.87

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

9.72

13.80

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Itaaiatea)	163	(0.3			No. /	
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Al 40U	Peak	1MHz	3MHz	Peak	-05
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	a. The EUT was placed of at a 3 meter semi-aned determine the position. b. The EUT was set 3 meters was mounted on the total control of the antenna height is determine the maximular polarizations of the antenna was tuned was turned from 0 deg. The test-receiver system Bandwidth with Maximular f. Place a marker at the frequency to show combands. Save the spect	on the top of a rotal choic camber. The of the highest radioters away from the op of a variable-heighest radioters away from the op of a variable-heighest from one mand walue of the field tenna are set to manission, the EUT was to heights from 1 rees to 360 degrees mand was set to Peak the mand of the restricted of the restricted rum analyzer plot.	table was iation. e interferentight antenreter to found strength. ake the measurangemeter to 4 es to find the Detect Funds and closure any estation.	rotated 3 nce-recei na tower. r meters Both hor easureme ed to its v meters a he maxim unction a psest to the	ving antenna above the gro izontal and vient. worst case and and the rotata num reading. nd Specified he transmit is in the restric	o, whice ound to ertical and there able
	for lowest and highest Above 1GHz test procedu g. Different between above to fully Anechoic Cham 18GHz the distance is h. Test the EUT in the lo i. The radiation measure Transmitting mode, an j. Repeat above procedu	ve is the test site, on the change form the change form the change form the change is the channel of the change are performed found the X axis	table 0.8 m is 1.5 mete e Highest o ned in X, Y positionin	neter to 1 r). channel , Z axis p g which i	.5 meter(Abo ositioning for t is worse cas	ove
_imit:	Frequency	Limit (dBµV/m	@3m)	Rer	mark	
	30MHz-88MHz	40.0		Quasi-pe	eak Value	
	88MHz-216MHz	43.5		Quasi-pe	eak Value	
	216MHz-960MHz	46.0		Quasi-pe	eak Value	
	960MHz-1GHz	54.0	(4	Quasi-pe	eak Value	
		54.0	6		e Value	
	Above 1GHz	74.0			Value	
est Ambient:	Temp.: 23°C F	lumid.: 51%		Press.: 1	041-D-	
		41 17 71 /7 ' M:1 V/-				

Test plot as follows:

Mode:	GFSK	Channel:	2402
Remark:	Peak		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	50.47	53.65	74.00	20.35	Pass	Horizontal
2	2401.7897	32.26	13.31	-42.43	90.00	93.14	74.00	-19.14	Pass	Horizontal

Mode:	GFSK	Channel:	2402
Remark:	Peak		

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
C	1	2390.0000	32.25	13.37	-42.44	50.05	53.23	74.00	20.77	Pass	Vertical
1	2	2401.7897	32.26	13.31	-42.43	85.57	88.71	74.00	-14.71	Pass	Vertical

		Sept. 10.7%	
Mode:	GFSK	Channel:	2402
Remark:	AV	(0)	(0.)

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-42.44	38.42	41.60	54.00	12.40	Pass	Horizontal
2	2402.0275	32.26	13.31	-42.43	68.90	72.04	54.00	-18.04	Pass	Horizontal

Mode:	GFSK	Channel:	2402
Remark:	AV	(6)) (4

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2390.0000	32.25	13.37	-42.44	38.67	41.85	54.00	12.15	Pass	Vertical
5	2	2402.0275	32.26	13.31	-42.43	65.82	68.96	54.00	-14.96	Pass	Vertical

		20100700	
Mode:	GFSK	Channel:	2480
Remark:	PeaK		(0.)

Test Graph

1	10	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.7747	32.37	13.39	-42.39	84.35	87.72	74.00	-13.72	Pass	Horizontal
	2	2483.5000	32.38	13.38	-42.40	49.18	52.54	74.00	21.46	Pass	Horizontal

Mode:	GFSK	Channel:	2480
Remark:	Peak	(8)) (4

Test Graph

	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
	1	2479.7309	32.37	13.39	-42.39	81.18	84.55	74.00	-10.55	Pass	Vertical
9	2	2483.5000	32.38	13.38	-42.40	49.57	52.93	74.00	21.07	Pass	Vertical

Page 32 of 39

Pass

Horizontal

13.90

54.00

Test Graph

AV Detector Ant Cable Pream Limit Freq. Reading Level Margin Factor NO loss gain Result Polarity [dBµV/m] [MHz] [dBµV] [dBµV/m] [dB] [dB] [dB] [dB] **Pass** 1 2480.0814 32.37 13.39 -42.4066.56 69.92 54.00 -15.92Horizontal

36.74

-42.40

13.38

Mode	: GFSK	Channel:	2480
Remar	·k· Δ\/		

40.10

Test Graph

2483.5000

32.38

2

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	2480.0375	32.37	13.39	-42.39	64.66	68.03	54.00	-14.03	Pass	Vertical
2	2483.5000	32.38	13.38	-42.40	36.77	40.13	54.00	13.87	Pass	Vertical

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I): Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
/	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	(0,
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(67)	Al 4011-	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter (Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- j. Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-		300
6)	0.490MHz-1.705MHz	24000/F(kHz)	-		30
/	1.705MHz-30MHz	30	-		30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
(0,0)	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Test Ambient: Temp.: 23°C Humid.: 54% Press.: 101kPa

Radiated Spurious Emissions test Data: Radiated Emission below 1GHz

	Mode	e:		GFSK				Channel:		2440	
	NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
9	1	30.3880	10.52	0.63	-32.12	46.43	25.46	40.00	14.54	Pass	Horizontal
2	2	75.1095	8.03	1.01	-32.06	45.41	22.39	40.00	17.61	Pass	Horizontal
	3	145.7326	7.40	1.42	-32.00	47.74	24.56	43.50	18.94	Pass	Horizontal
	4	208.8859	11.13	1.71	-31.94	46.23	27.13	43.50	16.37	Pass	Horizontal
	5	649.9890	19.40	3.10	-32.07	42.70	33.13	46.00	12.87	Pass	Horizontal
	6	828.5839	21.24	3.47	-31.97	39.86	32.60	46.00	13.40	Pass	Horizontal

Mode	e:		GFSK				Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Magin [dB]	Result	Polarity
1	31.8432	10.57	0.64	-32.12	44.62	23.71	40.00	16.29	Pass	Vertical
2	75.5946	7.94	1.01	-32.06	45.05	21.94	40.00	18.06	Pass	Vertical
3	123.4203	8.69	1.31	-32.06	48.39	26.33	43.50	17.17	Pass	Vertical
4	336.5507	14.00	2.19	-31.81	44.92	29.30	46.00	16.70	Pass	Vertical
5	378.5559	14.93	2.32	-31.89	45.31	30.67	46.00	15.33	Pass	Vertical
6	649.9890	19.40	3.10	-32.07	42.88	33.31	46.00	12.69	Pass	Vertical

Remark : All the channels are tested, only the worst data were reported.

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Transmitter Emission above 1GHz

Mode	e:		GFSK				Channel:		2402			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	3003.2502	33.20	4.92	-42.11	50.18	46.19	74.00	27.81	Pass	Н	PK	
2	4341.0394	34.28	4.49	-40.87	50.84	48.74	74.00	25.26	Pass	Н	PK	
3	4804.0000	34.50	4.55	-40.66	44.99	43.38	74.00	30.62	Pass	Н	PK	
4	7206.0000	36.31	5.81	-41.02	44.80	45.90	74.00	28.10	Pass	Н	PK	
5	9608.0000	37.64	6.63	-40.76	44.89	48.40	74.00	25.60	Pass	V	PK	
6	12010.0000	39.31	7.60	-41.21	44.81	50.51	74.00	23.49	Pass	Н	PK	
7	2198.1198	31.98	3.65	-42.53	56.68	49.78	74.00	24.22	Pass	Н	PK	
8	4341.6894	34.28	4.49	-40.87	59.11	57.01	74.00	16.99	Pass	V	PK	
9	4340.0616	34.28	4.49	-40.87	34.54	32.44	54.00	21.56	Pass	V	AV	
10	4804.0000	34.50	4.55	-40.66	45.59	43.98	74.00	30.02	Pass	V	PK	
11	7206.0000	36.31	5.81	-41.02	45.35	46.45	74.00	27.55	Pass	V	PK	
12	9608.0000	37.64	6.63	-40.76	44.48	47.99	74.00	26.01	Pass	V	PK	
13	12010.0000	39.31	7.60	-41.21	45.37	51.07	74.00	22.93	Pass	V	PK	

Mode	e:		GFSK				Channel:		2440			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1999.2999	31.70	3.47	-42.62	58.51	51.06	74.00	22.94	Pass	Н	PK	
2	4339.7393	34.28	4.49	-40.88	49.87	47.76	74.00	26.24	Pass	Н	PK	
3	4880.0000	34.50	4.80	-40.60	44.77	43.47	74.00	30.53	Pass	Н	PK	
4	7320.0000	36.42	5.85	-40.92	44.83	46.18	74.00	27.82	Pass	Н	PK	
5	9760.0000	37.70	6.73	-40.62	43.23	47.04	74.00	26.96	Pass	V	PK	
6	12200.0000	39.42	7.67	-41.17	44.45	50.37	74.00	23.63	Pass	Н	PK	
7	2197.3197	31.98	3.65	-42.53	56.38	49.48	74.00	24.52	Pass	Н	PK	
8	2587.5588	32.54	4.10	-42.35	54.37	48.66	74.00	25.34	Pass	V	PK	
9	4880.0000	34.50	4.80	-40.60	45.24	43.94	74.00	30.06	Pass	V	PK	
10	7320.0000	36.42	5.85	-40.92	44.90	46.25	74.00	27.75	Pass	V	PK	
11	9760.0000	37.70	6.73	-40.62	44.39	48.20	74.00	25.80	Pass	V	PK	
12	12200.0000	39.42	7.67	-41.17	44.92	50.84	74.00	23.16	Pass	V	PK	

(ci)

Report No.: EED32L00007202 Page 36 of 39

			200									
Mode	e :		GFSK				Channel:		2480			
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	1793.8794	30.34	3.31	-42.71	57.35	48.29	74.00	25.71	Pass	Н	PK	
2	4329.3386	34.26	4.46	-40.86	49.64	47.50	74.00	26.50	Pass	Н	PK	
3	4960.0000	34.50	4.82	-40.53	44.57	43.36	74.00	30.64	Pass	Н	PK	
4	7440.0000	36.54	5.85	-40.82	44.96	46.53	74.00	27.47	Pass	Н	PK	
5	9920.0000	37.77	6.79	-40.48	44.21	48.29	74.00	25.71	Pass	V	PK	
6	12400.0000	39.54	7.86	-41.12	45.55	51.83	74.00	22.17	Pass	Н	PK	
7	1600.0600	29.06	3.07	-42.90	60.17	49.40	74.00	24.60	Pass	Н	PK	
8	2593.1593	32.55	4.10	-42.34	54.29	48.60	74.00	25.40	Pass	V	PK	
9	4960.0000	34.50	4.82	-40.53	45.24	44.03	74.00	29.97	Pass	V	PK	
10	7440.0000	36.54	5.85	-40.82	44.54	46.11	74.00	27.89	Pass	V	PK	
11	9920.0000	37.77	6.79	-40.48	44.83	48.91	74.00	25.09	Pass	V	PK	
12	12400.0000	39.54	7.86	-41.12	46.87	53.15	74.00	20.85	Pass	V	PK	

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

PHOTOGRAPHS OF TEST SETUP

Test model No.: C800

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2(30MHz-1GHz)

Radiated spurious emission Test Setup-3(Above 1GHz)

Conducted Emissions Test Setup

Page 39 of 39

Report No. : EED32L00007202

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32L00007201 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced except in full.

