Dynamiikka 1

Liite lukuun 3.

Partikkelin kinetiikka - harjoitustehtäviä

3.1 Mies, jonka massa on 75 kg, seisoo jousivaa'alla hississä. Hissin lähdettyä ylöspäin nostovaijerin rasitus on ensimmäisen 3 s aikana 8300 N. Laske, paljonko vaaka näyttää miehen painovoimaksi R ja mikä on hissin nopeus 3 s kuluttua. Hissin, miehen ja vaa'an yhteismassa on 750 kg. Vast. 830 N 3,77 m/s

3.2 Lasten turvaistuinta suunniteltaessa tarkastellaan seuraavaa tilannetta. Lapsen massa on 12 kg ja istuin on tukevasti kiinni auton penkissä. Auton oletetaan törmäävän etupää edellä toiseen ajoneuvoon. Auton nopeus ennen törmäystä on $v_0 = 50 \text{ km/h}$ ja törmäyksen aikana nopeus pienenee nollaan ajassa 0,2 s. Auton hidastuvuus törmäyksessä oletetaan vakioksi. Laske, kuinka suuri vaakasuuntainen voima F turvaistuimen valjaiden tulee kestää. Vast. 833 N

3.3 Palkin ja siihen kiinnitetyn nostomekanismin yhteismassa on 1200 kg ja massakeskiö G. Nostovaijerin kohdan P kiihtyvyys on $a = 6 \text{ m/s}^2$. Määritä kohdan A tukireaktio. Vast. 20 kN

3.4 Tutkittaessa väliaineen vastusta öljyssä pieni teräskuula pudotetaan ilman alkunopeutta kohdasta y = 0. Kuulan massa on m ja liikettä vastustavan voiman olete-

taan olevan muotoa R = k v , missä k on vakio ja v kuulan nopeus. Määritä, kuinka syvällä kuula on silloin, kun sen

nopeus on
$$v_0$$
. Vast.
$$\frac{m^2g}{k^2}ln\frac{1}{1-\frac{kv_0}{mq}}-\frac{mv_0}{k}$$

3.5 Auto saapuu vaakatasossa olevalle mutkaiselle tieosuudelle. Auton massa on 1500 kg sekä nopeus kohdassa A on 100 km/h ja kohdassa C 50 km/h. Välillä AC

auton hidastuvuus on vakio. Tien kaarevuussäde vaakatasossa kohdassa A on 400 m ja kohdassa C 80 m. Määritä tiestä auton renkaisiin kohdistuva vaakatasossa oleva voima kohdissa A, B ja C. B on tien käännepiste, jossa kaarevuuden suunta muuttuu.

Vast.
$$F_A = 3618 \text{ N}$$
 $F_B = 2171 \text{ N}$ $F_C = 4219 \text{ N}$

Dynamiikka 2

3.6 Pieni kappale A pysyy pyörivän sylinterin pystyseinämällä, mikäli pyörimisnopeus on tarpeeksi suuri. Määritä, kuinka suuri pyörimisnopeuden $\dot{\theta}=\omega$ on vähintään oltava, kun lepokitkakerroin kappaleen ja seinämän välillä on μ_s . Vast. $\omega=\sqrt{g/(\mu_s\,r)}$

3.7 Palloa S siirretään pystytasossa robotin tarraimella. Pallon massa on 2 kg ja tarkasteluhetkellä $\theta=30^\circ$, $\dot{\theta}=50^\circ$ /s myötäpäivään ja $\ddot{\theta}=200^\circ$ /s² vastapäivään. Tämän lisäksi hydraulisylinterin mäntä liikkuu sisäänpäin vakionopeudella 500 mm/s. Määritä tarvittava tartuntavoima P, kun lepokitkakerroin pallon ja tartuntapintojen välillä on 0,5. Laske myös staattinen tartuntavoima P_s , jolla palloa voidaan pitää levossa asennossa $\theta=30^\circ$. Vast. P=27,0 N $P_s=19,6$ N

3.8 Varsi OA pyörii vakio kulmanopeudella $\dot{\theta}=\omega$ kohdassa O olevan akselin ympäri, jolloin tappi A kulkee pitkin ohjainkappaleen reunaa. Tapin keskipisteen etäisyys pisteestä O on muotoa $r=r_0+b\sin(N\omega t)$, missä N on ohjaimen huippujen lukumäärä. Tarkastellaan tapausta, jossa N=6, $\omega=12$ rad/s, $r_0=100$ mm ja b=10 mm. Tapin A massa on 100 g ja sen ohjain-

jousen voima on huipun kohdalla 19,1 N ja laakson kohdalla 11,5 N. Laske tappiin A ohjaimesta kohdistuva voima R ja varresta kohdistuva voima S kuvan asemassa. Vast. R = 12,8 N.

3.9 Kuorma-auton lavalla on taakka, jonka massa on 80 kg. Auto lähtee levosta liikkeelle pitkin tasaista tietä vakio kiihtyvyydellä ja saavuttaa nopeuden 72 km/h 75 m matkan päässä. Laske taakkaan vaikuttavan kitkavoiman tänä aikana tekemä työ, kun lepo- ja liikekitkakertoimet ovat a) 0,30 ja 0,28 sekä b) 0,25 ja 0,20. Vast. a) 16,0 kJ b) 8,66 kJ

3.10 Kappaleen A massa m=6 kg ja se pudotetaan kuvassa esitetystä asemasta ilman alkunopeutta jousen päälle. Jousivakio on k=12 kN/m ja johteen $\mu=0$. Laske kappaleen A nopeus, kun jousi on puristunut 50 mm kokoon. Vast. 2,41 m/s

Dynamiikka 3

3.11 Kuvan mukainen systeemi päästetään levosta liikkeelle. Sylinteri A mahtuu putoamaan reiästä C, mutta paino B ei. Määritä, kuinka pitkän matkan kappale D liikkuu kaltevalla tasolla. Kappaleiden massat ovat $m_A = m_B = 15$ kg ja $m_D = 50$ kg sekä liikekitkakerroin kaltevalla tasolla on $\mu_k = 0,3$. Väkipyörän massa oletetaan nollaksi. Vast. 1,67 m

3.12 Luistin A massa on 10 kg ja se liikkuu pitkin kitkatonta johdetta. Luistiin on kiinnitetty jousi, jonka jousivakio on $k=60\ N/m$ ja pituuden muutos 0,6 m luistin ollessa kohdassa A. Vaijerin AB voima on vakio 250 N ja väkipyörä B oletetaan massattomaksi. Laske luistin nopeus v kohdassa C, kun se on levossa kohdassa A. Vast. 0,974 m/s

3.13 Kappale laukaistaan pohjoisnavalta pystysuoraan ylöspäin nopeudella v_0 . Laske pienin nopeus v_0 , jolla kappale pääsee pois maan vetovoimakentästä. Ilmakehän vastusta ei oteta huomioon. Maan säde on 6371 km ja $g = 9,825 \text{ m/s}^2$. Vast. 11,19 km/s

3.14 Luisti, jonka massa on m = 10 kg, liikkuu pitkin pystysuoraa kitkatonta johdetta. Luistin nopeus kuvan asemassa A on $v_1 = 2 \text{ m/s}$ ja jousien pituuden muutos on 0,1 m. Laske luistin nopeus v_2 kohdassa B. Jousivakio k = 800 N/m.

Vast. 2,26 m/s

3.15 Kuvan mukainen mekanismi päästetään levosta liikkeelle, kun $\theta=180^\circ$, jolloin jousessa ei ole pituuden muutosta ja se koskettaa luistia. Jousen jousivakio k=900 N/m ja luistin massa m=4 kg sekä pallon massa M=3 kg. Määritä suurinta jousen puristumaa vastaava kulma θ . Sauvojen massa ei oteta huomioon. Vast. 43,8°

3.16 Massa m on tuettu kahdella levyllä ja koskettaa juuri jousta, joka on lepopituudessaan. Jousen jousivakio on k ja sen massaa ei oteta huomioon. Määritä massan suurin nopeus v, suurin jousesta alustaan välittyvä voima R sekä jousen suurin puristuma δ .

Vast.
$$v = g\sqrt{m/k}$$
 $R = 2mg$ $\delta = 2mg/k$

3.17 Suihkuhävittäjän massa on 6450 kg ja sen kiihdyttäminen levosta nousunopeuteen 250 km/h vaatii ajan 10 s työntövoiman ollessa vakio T = 48 kN. Määritä ilmanvastuksesta ja muista kitkavoimista aiheutuvan liikettä vastustavan voiman R keskimääräinen arvo nousukiidon aikana. Vast. 3,21 kN

3.18 Supertankkeri on levossa tyynessä vedessä, kun sitä aletaan vetää hinaajalla kuvan mu-

kaisesti. Hinausvaijerin voima on vakio 200 kN ja tankkerin massa on $150 \cdot 10^6$ kg. Laske aika, jonka kuluttua tankkerin nopeus on 1 solmu = 1,852 km/h. Veden vastusta ei oteta huomioon. Vast. 6 min 51 s

3.19 Avaruussukkulan lastitilasta laukaistaan kuvan mukaisesti satelliitti, jonka massa on 800 kg. Laukaisumekanismista vaikuttaa satelliittiin työntövoima ajan 4 s, jolloin se saa sukkulan suhteen alkunopeuden 0,3 m/s z-akselin suuntaan. Sukkulan massa on 90·10³ kg. Määritä laukaisusta johtuva sukkulan nopeuden muutos z-akselin suunnassa. Määritä myös laukaisumekanismin keskimääräinen työntövoima laukaisun aikana.

Vast. $\Delta v_z = 0.00264 \text{ m/s}$ F = 59.5 N

3.20 Voima P, joka vaikuttaa 10 kg massaan kuvan mukaisesti, kasvaa suoraviivaisesti ajan funktiona. Massan ja vaakatason välillä on lepokitkakerroin $\mu_s = 0,6$ ja liikekitkakerroin $\mu_k = 0,4$. Laske massan nopeus, kun t = 4 s. Vast. $6.61 \, \text{m/s}$

3.21 Tavaravaunun A massa on $80 \cdot 10^3$ kg ja se liikkuu vaakasuorilla kiskoilla nopeudella 3 km/h. Tavaravaunun B massa on $60 \cdot 10^3$ kg ja se liikkuu nopeudella 5 km/h törmätessään vaunuun

A. Törmätessään vaunut kytkeytyvät yhteen. Laske vaunujen yhteinen nopeus v tör-

mäyksen ja kytkennän jälkeen sekä törmäyksessä tapahtuva energiahäviö ΔE . Vast. v = 3.86 km/h $\Delta E = 5291$ J

3.22 Maata kiertävän satelliittiin kohdistuvan vetovoiman F momentti maan keskipisteen suhteen O on nolla. Satelliitin rata on kuvan mukainen ellipsi ja sen nopeus perigeumissa P on 33880 km/h. Määritä satelliitin nopeus apogeumissa A sekä pisteessä B. Maan säde on 6371 km.

Vast. $v_A = 11295 \text{ km/h}$ $v_B = 19545 \text{ km/h}$

3.23 Torpedoveneen massa on $60 \cdot 10^3$ kg ja se liikkuu nopeudella 10 solmua (1 solmu = 1,852 km/h). Vene laukaisee torpedon, jonka massa on 140 kg, kuvan mukaiseen suuntaan. Torpedon lähtönopeus veneen suhteen on 6 m/s. Määritä veneen nopeuden v het-

kellinen muutos Δv , joka aiheutuu torpedon laukaisemisesta. Vast. $\Delta v_x = -0.0121 \, \text{m/s}$ $\Delta v_v = -0.0070 \, \text{m/s}$

3.24 Kuvan mukainen systeemi pyörii pystyakselin ympäri vapaasti pyörimisnopeudella 40 kierr/min, kun $\theta = 90^{\circ}$. Kulma θ muutetaan arvoon 60° voimaa F kasvattamalla. Massa m = 5 kg. Määritä uutta asentoa vastaava kulmanopeus ω . Laske myös voiman F tekemä työ asentoa muutettaessa. Luistien ja sauvojen massoja ei oteta huomioon. Vast. $\omega = 3,00 \text{ rad/s}$ W = 5,34 J

3.25 Heiluri on kiinnitetty vakiokiihtyvyydellä a_0 liikkuvaan alustaan kuvan mukaisesti. Heiluri päästetään alustan suhteen levosta liikkeelle, kun $\theta=0$. Määritä varren rasituksen $T(\theta)$ lauseke ja laske siitä $T(\pi/2)$ ja $T(\pi)$.

Vast. $T(\pi/2) = m(3g+2a_0)$ $T(\pi) = 5ma_0$