Sistemas Embarcados (C213)

Prof. Samuel Baraldi Mafra

Créditos: Prof. Egídio Raimundo Neto

Modelagem e Identificação de Sistemas Dinâmicos

Modelagem de Sistemas Dinâmicos

 Modelar um sistema físico significa obter uma representação matemática que permita um estudo analítico coerente do comportamento do sistema na prática.

Modelagem de Sistemas Dinâmicos

- Como os sistemas em consideração são dinâmicos por natureza, suas equações descritivas são usualmente equações diferenciais.
- No entanto é utilizada a transformada de Laplace do modelo matemático para facilitar sua compreensão e solução.

Introdução a Identificação

- Lei de Ação e reação (terceira lei de Newton): O deslocamento de um corpo devido a uma força (ação) produz uma reação de mesma intensidade em sentido contrário.
- Segunda Lei de Newton: Relaciona a aceleração a, velocidade v, o deslocamento x de uma massa M sujeita a uma força F no tempo t, sendo s o operador de Laplace.

$$F(t) = Ma(t) = M\frac{dv(t)}{dt} = M\frac{d^2x(t)}{dt}$$
, ou ainda, $sMv(s) = Ms^2x(s)$.

Função de Transferência (F.T.)

- A F.T. é uma propriedade do sistema, independe da magnitude e da natureza da entrada ou função de excitação.
- A F.T. inclui as unidades necessárias para relacionar a entrada com a saída, não fornecendo qualquer informação relativa à estrutura física do sistema.
- Se a F.T. for conhecida, a saída pode ser estudada para várias formas de entrada.
- A F.T. pode ser obtida experimentalmente.

 Força de mola: Relaciona a força F associada a uma mola com um determinado coeficiente elástico K sujeita a um deslocamento, ou seja,

$$F(t) = Kx(t)$$

 Força de amortecedor ou atrito viscoso: Relaciona a força F associada a um corpo movimentando-se em um meio viscoso representado por um determinado coeficiente de atrito B devido a um deslocamento x no tempo t, ou sua velocidade resultante v.

$$F(t) = Bv(t) = B\frac{dx(t)}{dt}$$
, ou ainda, $F(s) = Bv(s) = sBx(s)$.

Sistema Massa-Atrito

f M Fb

- M Massa do Corpo
- B Coeficiente de Atrito
- f Força de impulsão do sistema
- v Velocidade resultante

- Fm Força de reação da massa
- **Fb** Força de Atrito
- f Força de impulsão do sistema

 Aplicando as leis de Newton, a força de atrito e a lei de D'Alembert vem,

$$Fm+Fb-f=0$$
 ou $M\frac{dv(t)}{dt}+Bv(t)=f(t).$ ou ainda,
$$Msv(s)+Bv(s)=f(s)$$
 im,

assim,

$$\frac{v(s)}{f(s)} = \frac{1}{Ms + B}$$

Exemplo: Uma força f=1 N é aplicada em um corpo de massa M =10 Kg, fazendo este deslocar em uma superfície com coeficiente de atrito de deslizamento B=0.8. Qual o perfil da velocidade deste corpo em função do tempo?

Modelagem de Sistemas Mecânicos Sistema de amortecimento

 Este tipo de sistema é empregado como base para estudo de dispositivos de suspensão automotiva.

- M Massa do veículo em cada eixo
- B Coeficiente de Atrito do amortecedor
- u Deslocamento vertical no pneu
- y Deslocamento vertical no veículo

Modelagem de Sistemas Mecânicos Sistema de amortecimento

 Adotando a convenção do sentido de deslocamento indicado na figura anterior, a força de reação da massa (Fm) é para cima. Nesta condição a mola e o amortecedor estão sendo comprimidos, assim, suas forças são aplicadas no sentido de baixo para cima. Os deslocamentos são relativos à diferença y – u.

- Equacionando vem,

$$Fm + Fb + Fk = 0$$

$$M\frac{d^{2}y(t)}{dt^{2}} + B\frac{d}{dt}[y(t) - u(t)] + K[y(t) - u(t)] = 0$$
ou ainda,
$$Ms^{2}y(s) + Bs[y(s) - u(s)] + K[y(s) - u(s)] = 0$$
resultando,
$$\frac{y(s)}{u(s)} = \frac{Bs + K}{Ms^{2} + Bs + K}$$

Modelagem de Sistemas Elétricos

- As variáveis ou grandezas físicas frequentemente utilizadas para descrever o comportamento de sistemas elétricos são tensões e correntes em função do tempo (t), que geralmente é a variável independente. As equações que expressam os fenômenos típicos envolvidos são representadas por relações bem conhecidas.
- Lei de Ohm:

$$i(t) = \frac{v(t)}{R}$$
, ou $\frac{v(s)}{i(s)} = R$

Lei de Lenz:

$$v(t) = L \frac{di(t)}{dt}, ou \frac{v(s)}{i(s)} = sL$$

Modelagem de Sistemas Elétricos

 Relação entre corrente i e tensão v no tempo t em uma Capacitância C.

$$i(t) = C \frac{dv(t)}{dt}$$
, ou $\frac{v(s)}{i(s)} = \frac{1}{s}$

- Leis de Kirchhoff: A somatória das tensões em um laço fechado de um circuito elétrico é sempre nula.
 A somatória das corrente em um nó de um circuito é sempre zero.
- Exemplo: Circuito RL Este tipo de circuito é muito frequente em vários modelos de enrolamentos de máquinas elétricas, bobinas de excitação de máquinas síncronas e etc. Uma fonte de tensão Va alimenta um circuito associado que fornece uma corrente, como demostrado na Figura a seguir.

Modelagem de Sistemas Elétricos

 Exemplo: Circuito RC - Este tipo de circuito é muito utilizado em filtros, em instrumentação e eletrônica.

Analogia entre sistemas elétrico e mecânico

SISTEMA ELÉTRICO	SISTEMA MECÂNICO DE TRANSLAÇÃO	SISTEMA MECÂNICO DE ROTAÇÃO
Tensão ϑ(t)	Força F(t)	Torque T(t)
Indutância L	Massa M	Momento de Inércia (J)
Resistência R	Coef. de Atrito B	Coef. de Atrito B
Inverso da Capacitância 1/C	Coef. de Elasticidade K	Coef. de Elasticidade K
Carga Elétrica q(t)	Deslocamento χ(t)	Desloc. Angular θ(t)
Corrente i(t)	Velocidade χ(t)	Veloc. Angular $\dot{\theta}(t) = \omega(t)$

Sejam os sistemas elétricos e mecânicos, abaixo representados.

Motivação

Motivação

Um sistema de Nível não é linear, em função do escoamento turbulento do líquido.

Entrada: Potência em % Saída: Nível em cm

$$\frac{H(s)}{P(s)} = \frac{0.2}{125s + 1}$$

