Post-clustering inference under dependency

Javier González-Delgado^{1,2} and Pierre Neuvial¹

1. Institut de Mathématiques de Toulouse, 2. LAAS-CNRS

Séminaire rennais de Statistiques

October 11, 2023

Outline

- The problem of selective (and post-clustering) inference
- Post-clustering inference with known model parameters
- Post-clustering inference with compatible parameter estimation
- Clustering to describe ensembles of highly flexible proteins

Statistical investigation

- 1. Selection: Choose a statistical model for the data and formulate a problem
- 2. Inference: Investigate the chosen problem using the data

Statistical investigation

- 1. Selection: Choose a statistical model for the data and formulate a problem
- 2. Inference: Investigate the chosen problem using the data

Selection step

- Non-adaptive : Selection is made before seeing the data
- Adaptive : Selection is made at least partially guided by the data

Statistical investigation

- 1. Selection: Choose a statistical model for the data and formulate a problem
- 2. Inference: Investigate the chosen problem using the data

Selection step

- Non-adaptive : Selection is made before seeing the data
- Adaptive : Selection is made at least partially guided by the data

Goal of selective inference : valid inference in presence of adaptive selection

$$Y \sim \mathcal{N}(\mu, 1)$$
 $\rightarrow H_0 : \mu = 0 \text{ (reject at level } \alpha = 0.05)$

$$Y \sim \mathcal{N}(\mu \ , 1)
ightarrow \ \overline{ ext{Test if } |Y| > 1 }
ightarrow \mathcal{H}_0 \ : \ \mu = 0 \ ext{(reject at level } lpha = 0.05)$$

For
$$i \in \{1, \dots, n\}$$
:
$$Y_i \sim \mathcal{N}(\mu_i, 1) \rightarrow \boxed{\text{Test if } |Y_i| > 1} \rightarrow H_{0,i} : \mu_i = 0 \text{ (reject at level } \alpha = 0.05)$$
Selection

For
$$i \in \{1, \dots, n\}$$
:
$$Y_i \sim \mathcal{N}(\mu_i, 1) \rightarrow \boxed{\text{Test if } |Y_i| > 1} \rightarrow H_{0,i} : \mu_i = 0 \text{ (reject at level } \alpha = 0.05)$$
Selection

$$\frac{\# \mathrm{False\ rejections}}{\# \mathrm{True\ nulls\ selected}} \xrightarrow[n]{} \frac{\mathbb{P}_{H_0} \big(\mathrm{Reject}\, H_0 \,,\, H_0 \, \mathrm{tested} \big)}{\mathbb{P}_{H_0} \left(H_0 \, \mathrm{tested} \right)} = \frac{\Phi(-1.96)}{\Phi(-1)} \approx 0.16 \gg \alpha$$

Example (file drawer effect)

For
$$i \in \{1, \dots, n\}$$
:
$$Y_i \sim \mathcal{N}(\mu_i, 1) \rightarrow \boxed{\text{Test if } |Y_i| > 1} \rightarrow H_{0,i} : \mu_i = 0 \text{ (reject at level } \alpha = 0.05\text{)}$$
 Selection

$$\frac{\# \mathrm{False\ rejections}}{\# \mathrm{True\ nulls\ selected}} \xrightarrow[n]{} \frac{\mathbb{P}_{H_0} \big(\mathrm{Reject}\, H_0 \,,\, H_0 \, \mathrm{tested} \big)}{\mathbb{P}_{H_0} \left(H_0 \, \mathrm{tested} \right)} = \frac{\Phi(-1.96)}{\Phi(-1)} \approx 0.16 \gg \alpha$$

Control the selective type I error

$$\mathbb{P}_{H_0}$$
 (Reject $H_0 \mid H_0$ tested)

"The answer must be valid, given that the question was asked"

Fithian et al., Optimal Inference After Model Selection, 2017.

Toy example

Toy example

- Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$
- Ask k-means to find 2 clusters (data-driven hypothesis selection)
- Test for the difference of cluster means (inference after selection)

Toy example

- Simulate $\mathcal{N}(0,1) + \mathcal{U}(-0.2,0.2)$
- Ask k-means to find 2 clusters (data-driven hypothesis selection)
- Test for the difference of cluster means (inference after selection)

 $p_Z = 10^{-67}$, $p_{SI} = 0.84$ (using Chen and Witten 2023).

Adapted from Hivert et al. 2022

The risk of ignoring the selection step

Drysdale et al., Resting-state connectivity biomarkers define neurophysiological subtypes of depression, Nat Med. 2017.

Refuted using post-clustering inference by Dinga et al. (2019)

General strategy

Notation

• Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in \{1, ..., n\}$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in \{1, ..., n\}$.
- For any $\mathcal{G} \subset \{1,\dots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the i-th row of **X** (resp. μ) for $i \in \{1, \ldots, n\}$.
- For any $\mathcal{G} \subset \{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.
- Let $\hat{C}_1, \hat{C}_2 \subset \{1, \dots, n\}$ be two clusters estimated by $C(\cdot)$ on \mathbf{X} , that is, $\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})$.

General strategy

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the i-th row of **X** (resp. μ) for $i \in \{1, \ldots, n\}$.
- For any $\mathcal{G} \subset \{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.
- Let $\hat{C}_1, \hat{C}_2 \subset \{1, \dots, n\}$ be two clusters estimated by $C(\cdot)$ on \mathbf{X} , that is, $\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})$.
- Consider the null hypothesis $H_0^{\{\hat{C}_1,\hat{C}_2\}}:\bar{\mu}_{\hat{C}_1}=\bar{\mu}_{\hat{C}_2}.$

General strategy

Notation

- Let $C(\cdot)$ be a clustering algorithm, **X** a $n \times p$ random matrix with $\mathbb{E}(\mathbf{X}) = \mu$.
- Let X_i (resp. μ_i) denote the *i*-th row of **X** (resp. μ) for $i \in \{1, ..., n\}$.
- For any $\mathcal{G} \subset \{1,\ldots,n\}$, let $\bar{X}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} X_i$ and $\bar{\mu}_{\mathcal{G}} = \frac{1}{|\mathcal{G}|} \sum_{i \in \mathcal{G}} \mu_i$.
- Let $\hat{C}_1, \hat{C}_2 \subset \{1, \dots, n\}$ be two clusters estimated by $C(\cdot)$ on \mathbf{X} , that is, $\hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X})$.
- Consider the null hypothesis $H_0^{\{\hat{C}_1,\hat{C}_2\}}: \bar{\mu}_{\hat{C}_1}=\bar{\mu}_{\hat{C}_2}.$

Goal

Define a *p*-value for $H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}$ that controls the selective type I error, that is,

$$\mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}}\left(\text{reject }H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}\text{ based on }\textbf{X}\text{ at level }\alpha\ \bigg|\ \hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\in\mathcal{C}(\textbf{X})\right)\leq\alpha\quad\forall\,\alpha\in[0,1].$$

Conditioning to define the p-value

Ideal p-value :

$$\textit{p}_{\mathrm{ideal}} = \mathbb{P}_{\textit{H}_{0}^{\{\hat{\mathcal{C}}_{1}, \hat{\mathcal{C}}_{2}\}}} \left(\mathrm{Critical\ region} \, \middle| \, \, \hat{\mathcal{C}}_{1}, \, \hat{\mathcal{C}}_{2} \in \mathcal{C}(\textbf{X}) \right)$$

Conditioning to define the p-value

Ideal p-value:

$$\textit{p}_{\mathrm{ideal}} = \mathbb{P}_{\textit{H}_{0}^{\left\{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}\right\}}}\left(\mathrm{Critical\ region} \,\middle|\,\, \hat{C}_{1},\hat{C}_{2} \in \mathcal{C}(\boldsymbol{X})\right)$$

Additional technical conditions must be added to the conditioning set to ensure the analytical tractability of p-values :

$$\rho_{\mathrm{tractable}} = \mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}} \left(\mathrm{Critical\ region} \, \middle| \, \, \hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2 \in \mathcal{C}(\boldsymbol{X}) \cap \boldsymbol{\textit{E}}(\boldsymbol{X}) \right)$$

Conditioning to define the p-value

Ideal p-value:

$$\textit{p}_{\mathrm{ideal}} = \mathbb{P}_{\textit{H}_{0}^{\{\hat{\mathcal{C}}_{1}, \hat{\mathcal{C}}_{2}\}}} \left(\mathrm{Critical\ region} \, \middle| \, \, \hat{\mathcal{C}}_{1}, \, \hat{\mathcal{C}}_{2} \in \mathcal{C}(\textbf{X}) \right)$$

Additional technical conditions must be added to the conditioning set to ensure the analytical tractability of p-values :

$$p_{\mathrm{tractable}} = \mathbb{P}_{H_{n}^{\{\hat{C}_{1},\hat{C}_{2}\}}}\left(\mathrm{Critical\ region} \,\middle|\, \, \hat{C}_{1},\hat{C}_{2} \in \mathcal{C}(\boldsymbol{\mathsf{X}}) \cap \boldsymbol{\mathit{E}}(\boldsymbol{\mathsf{X}})\right)$$

Conditioning on too much information entails a loss of power

The "more strict" is E(X), the less powerful the test is 1.

^{1.} Jewell et al. 2022, Chen et al. 2022, Liu et al. 2018, Fithian et al. 2017.

Gao et al. 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$

and the null hypothesis

$$H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}:\bar{\mu}_{\hat{\mathcal{C}}_1}=\bar{\mu}_{\hat{\mathcal{C}}_2}, \tag{null}$$

$$\text{ for } \hat{\textit{C}}_{1}, \hat{\textit{C}}_{2} \in \mathcal{C}(\textbf{X}).$$

Gao et al. 2022

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p),$$

and the null hypothesis

$$H_0^{\{\hat{C}_1,\hat{C}_2\}}:\bar{\mu}_{\hat{C}_1}=\bar{\mu}_{\hat{C}_2}, \tag{null}$$

for $\hat{\mathcal{C}}_1, \hat{\mathcal{C}}_2 \in \mathcal{C}(\mathbf{X})$.

Gao et al. define a p-value for (null) that

- · Controls the selective type I error,
- Can be be efficiently computed for hierarchical clustering (HAC) with several types of linkages and k-means (Chen and Witten 2023),

p-value definition

$$\begin{split} \text{p-value for $H_0^{\{\hat{C}_1,\hat{C}_2\}}$ when $\mathbf{U} = \mathbf{I}_n$, $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_p$ (Gao et al. 2022)} \\ p(\mathbf{x}; \{\hat{C}_1,\hat{C}_2\}) &= \mathbb{P}_{H_0^{\{\hat{C}_1,\hat{C}_2\}}} \bigg(\|\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}\|_2 \geq \|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2 \ \bigg| \ \hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X}), \\ \pi^{\perp}_{\nu(\hat{C}_1,\hat{C}_2)} \mathbf{X} &= \pi^{\perp}_{\nu(\hat{C}_1,\hat{C}_2)} \mathbf{x} \,, \, \mathrm{dir}(\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}) = \mathrm{dir}(\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}) \bigg). \end{split}$$

p-value definition

$$\begin{split} \text{p-value for $H_0^{\{\hat{C}_1,\hat{C}_2\}}$ when $\mathbf{U} = \mathbf{I}_n$, $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_p$ (Gao et al. 2022)} \\ p(\mathbf{x}; \{\hat{C}_1,\hat{C}_2\}) &= \mathbb{P}_{H_0^{\{\hat{C}_1,\hat{C}_2\}}} \bigg(\|\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}\|_2 \geq \|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2 \ \bigg| \ \hat{C}_1,\hat{C}_2 \in \mathcal{C}(\mathbf{X}), \\ \pi^{\perp}_{\nu(\hat{C}_1,\hat{C}_2)} \mathbf{X} &= \pi^{\perp}_{\nu(\hat{C}_1,\hat{C}_2)} \mathbf{x} \,, \, \mathrm{dir}(\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}) = \mathrm{dir}(\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}) \bigg). \end{split}$$

The p-value is computationally tractable (Gao et al. 2022)

$$p(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\}) = 1 - \mathbb{F}_p\left(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2; \sigma\sqrt{\frac{1}{|\hat{C}_1|} + \frac{1}{|\hat{C}_2|}}, \mathcal{S}_2(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\})\right)$$

where $\mathbb{F}_p(t; c, S)$ denotes the CDF of a $c\chi_p$ random variable truncated to the set S.

p-value definition

$$\begin{split} \text{p-value for $H_0^{\{\hat{C}_1,\hat{C}_2\}}$ when $\mathbf{U} = \mathbf{I}_n$, $\mathbf{\Sigma} = \sigma^2 \mathbf{I}_p$ (Gao et al. 2022)} \\ p(\mathbf{x}; \{\hat{C}_1,\hat{C}_2\}) &= \mathbb{P}_{H_0^{\{\hat{C}_1,\hat{C}_2\}}} \bigg(\|\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}\|_2 \geq \|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2 \ \bigg| \ \hat{C}_1, \hat{C}_2 \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{C}_1,\hat{C}_2)}^{\perp} \mathbf{X} &= \pi_{\nu(\hat{C}_1,\hat{C}_2)}^{\perp} \mathbf{x}, \ \mathrm{dir}(\bar{X}_{\hat{C}_1} - \bar{X}_{\hat{C}_2}) = \mathrm{dir}(\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}) \bigg). \end{split}$$

The p-value is computationally tractable (Gao et al. 2022)

$$p(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\}) = 1 - \mathbb{F}_p\bigg(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_2; \sigma\sqrt{\frac{1}{|\hat{C}_1|} + \frac{1}{|\hat{C}_2|}}, \underbrace{\begin{bmatrix}\mathcal{S}_2(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\})\end{bmatrix}}_{\mathsf{HAC}, \ \mathit{k}\text{-means}}\bigg)$$

where $\mathbb{F}_p(t; c, S)$ denotes the CDF of a $c\chi_p$ random variable truncated to the set S.

Adapt Gao et al. 2022 to realistic practical scenarios

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}),$$
 (dep)

where $\mathbf{U} \in \mathcal{M}_{n \times n}(\mathbb{R})$ and $\mathbf{\Sigma} \in \mathcal{M}_{p \times p}(\mathbb{R})$. We ask \mathbf{U} and $\mathbf{\Sigma}$ to be positive definite. Let

$$H_0^{\{\hat{C}_1,\hat{C}_2\}}: \bar{\mu}_{\hat{C}_1} = \bar{\mu}_{\hat{C}_2}, \tag{null}$$

 $\text{ for } \hat{\textit{C}}_{1}, \hat{\textit{C}}_{2} \in \mathcal{C}(\textbf{X}).$

Adapt Gao et al. 2022 to realistic practical scenarios

Framework

Consider the model

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}),$$
 (dep)

where $\mathbf{U} \in \mathcal{M}_{n \times n}(\mathbb{R})$ and $\mathbf{\Sigma} \in \mathcal{M}_{p \times p}(\mathbb{R})$. We ask \mathbf{U} and $\mathbf{\Sigma}$ to be positive definite. Let

$$H_0^{\{\hat{c}_1,\hat{c}_2\}}: \bar{\mu}_{\hat{c}_1} = \bar{\mu}_{\hat{c}_2},$$
 (null)

for $\hat{C}_1, \hat{C}_2 \in C(\mathbf{X})$.

- Definition of a p-value for (null) that controls selective type I error under (dep),
- Efficient computation for HAC and k-means clustering.

Choice of the test statistic

- Let $\mathcal{G}_1, \mathcal{G}_2 \subset \{1, \dots, n\}$ with $\mathcal{G}_1 \cap \mathcal{G}_2 = \emptyset$
- Let

$$\mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} = \begin{pmatrix} \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{\rho}} & \overset{|\mathcal{G}_1|}{\cdots} & \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{\rho}} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{\rho}} & \overset{|\mathcal{G}_2|}{\cdots} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{\rho}} \end{pmatrix}.$$

Choice of the test statistic

- Let $\mathcal{G}_1, \mathcal{G}_2 \subset \{1, \dots, n\}$ with $\mathcal{G}_1 \cap \mathcal{G}_2 = \emptyset$
- Let

$$\mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} = \begin{pmatrix} \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\rho} & \cdots & \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\rho} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\rho} & \cdots & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\rho} \end{pmatrix}.$$

Then, for $X \sim \mathcal{MN}_{n \times p}(\mu, U, \Sigma)$, it holds

$$\bar{X}_{\mathcal{G}_{1}} - \bar{X}_{\mathcal{G}_{2}} \overset{H_{0}^{\left\{\mathcal{G}_{1},\mathcal{G}_{2}\right\}}}{\sim} \, \mathcal{N}_{\textit{P}}\left(0,\boldsymbol{V}_{\mathcal{G}_{1},\mathcal{G}_{2}}\right),$$

where

$$\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2} = \mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} (\mathbf{U}_{\mathcal{G}_1,\mathcal{G}_2} \otimes \mathbf{\Sigma}) \mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2}^T.$$

Choice of the test statistic

- Let $\mathcal{G}_1, \mathcal{G}_2 \subset \{1, \dots, n\}$ with $\mathcal{G}_1 \cap \mathcal{G}_2 = \emptyset$
- Let

$$\mathbf{D}_{\mathcal{G}_1,\mathcal{G}_2} = \begin{pmatrix} \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{\rho}} & \overset{|\mathcal{G}_1|}{\cdots} & \frac{1}{|\mathcal{G}_1|} \mathbf{I}_{\boldsymbol{\rho}} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{\rho}} & \overset{|\mathcal{G}_2|}{\cdots} & -\frac{1}{|\mathcal{G}_2|} \mathbf{I}_{\boldsymbol{\rho}} \end{pmatrix}.$$

Then, for $\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma})$, it holds

$$ar{X}_{\mathcal{G}_1} - ar{X}_{\mathcal{G}_2} \overset{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}{\sim} \mathcal{N}_p\left(0,\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}\right),$$

where

$$\textbf{V}_{\mathcal{G}_1,\mathcal{G}_2} = \textbf{D}_{\mathcal{G}_1,\mathcal{G}_2}(\textbf{U}_{\mathcal{G}_1,\mathcal{G}_2} \otimes \textbf{\Sigma}) \textbf{D}_{\mathcal{G}_1,\mathcal{G}_2}^{\mathcal{T}}.$$

Consequently,

$$\|\bar{X}_{\mathcal{G}_1} - \bar{X}_{\mathcal{G}_2}\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}^2 \overset{H_0^{\{\mathcal{G}_1,\mathcal{G}_2\}}}{\sim} \chi_p^2.$$

with
$$\|x\|_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}} = \sqrt{x^T \mathbf{V}_{\mathbf{V}_{\mathcal{G}_1,\mathcal{G}_2}}^{-1} x}, \quad \forall \, x \in \mathbb{R}^p.$$

p-value definition

Key idea : Replace the norm $\|\cdot\|_2$ by the *Mahalanobis distance* between the cluster means w.r.t. the null distribution of their difference.

p-value for $H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}$ for arbitrary ${f U}$ and ${f \Sigma}$

$$\begin{split} \rho_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x};\{\hat{C}_{1},\hat{C}_{2}\}) &= \mathbb{P}_{H_{0}^{\{\hat{C}_{1},\hat{C}_{2}\}}} \bigg(\|\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \geq \|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \bigg| \ \hat{C}_{1},\hat{C}_{2} \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{X} &= \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{x}, \ \mathrm{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}) = \mathrm{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}) \bigg). \end{split}$$

p-value definition

Key idea : Replace the norm $\|\cdot\|_2$ by the *Mahalanobis distance* between the cluster means w.r.t. the null distribution of their difference.

p-value for $H_0^{\{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2\}}$ for arbitrary ${f U}$ and ${f \Sigma}$

$$\begin{split} \rho_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}}(\mathbf{x};\{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}\}) &= \mathbb{P}_{H_{0}^{\{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}\}}} \bigg(\|\bar{X}_{\hat{\mathcal{C}}_{1}} - \bar{X}_{\hat{\mathcal{C}}_{2}}\|_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}} \geq \|\bar{x}_{\hat{\mathcal{C}}_{1}} - \bar{x}_{\hat{\mathcal{C}}_{2}}\|_{\mathsf{V}_{\hat{\mathsf{C}}_{1},\hat{\mathsf{C}}_{2}}} \bigg| \ \hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2} \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2})}^{\perp} \mathbf{X} &= \pi_{\nu(\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2})}^{\perp} \mathbf{x}, \, \operatorname{dir}_{\mathsf{V}_{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}}} (\bar{X}_{\hat{\mathsf{C}}_{1}} - \bar{X}_{\hat{\mathsf{C}}_{2}}) = \operatorname{dir}_{\mathsf{V}_{\hat{\mathcal{C}}_{1},\hat{\mathcal{C}}_{2}}} (\bar{x}_{\hat{\mathsf{C}}_{1}} - \bar{x}_{\hat{\mathsf{C}}_{2}}) \bigg). \end{split}$$

Theorem: The p-value is computationally tractable (and controls sel. type I error)

$$\rho_{\mathsf{V}_{\hat{C}_1,\hat{C}_2}}(\mathsf{x};\{\hat{C}_1,\hat{C}_2\}) = 1 - \mathbb{F}_{\rho}\bigg(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_{\mathsf{V}_{\hat{C}_1,\hat{C}_2}};\mathcal{S}_{\mathsf{V}_{\hat{C}_1,\hat{C}_2}}(\mathsf{x},\{\hat{C}_1,\hat{C}_2\})\bigg)$$

where $\mathbb{F}_p(t;S)$ denotes the CDF of a χ_p random variable truncated to the set S.

p-value definition

Key idea : Replace the norm $\|\cdot\|_2$ by the *Mahalanobis distance* between the cluster means w.r.t. the null distribution of their difference.

p-value for $H_0^{\{\hat{c}_1,\hat{c}_2\}}$ for arbitrary **U** and Σ

$$\begin{split} \rho_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x};\{\hat{C}_{1},\hat{C}_{2}\}) &= \mathbb{P}_{H_{0}^{\{\hat{C}_{1},\hat{C}_{2}\}}} \bigg(\|\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \geq \|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}} \ \bigg| \ \hat{C}_{1},\hat{C}_{2} \in \mathcal{C}(\mathbf{X}), \\ \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{X} &= \pi_{\nu(\hat{C}_{1},\hat{C}_{2})}^{\perp}\mathbf{x}, \ \mathrm{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{X}_{\hat{C}_{1}} - \bar{X}_{\hat{C}_{2}}) = \mathrm{dir}_{\mathsf{V}_{\hat{C}_{1},\hat{C}_{2}}}(\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}) \bigg). \end{split}$$

Theorem: The p-value is computationally tractable (and controls sel. type I error)

where $\mathbb{F}_p(t;S)$ denotes the CDF of a χ_p random variable truncated to the set S.

Three dependence settings

- (a) ${\bf U}={\bf I}_n$ and ${\bf \Sigma}$ is the covariance matrix of an AR(1) model, i.e. $\Sigma_{ij}=\sigma^2\rho^{|i-j|}$, with $\sigma=1$ and $\rho=0.5$.
- (b) **U** is a compound symmetry covariance matrix, i.e. $\mathbf{U} = b + (a b)\mathbf{I}_n$, with a = 0.5 and b = 1. Σ is a Toeplitz matrix, i.e. $\Sigma_{ij} = t(|i j|)$, with t(s) = 1 + 1/(1 + s) for $s \in \mathbb{N}$.
- (c) **U** is the covariance matrix of an AR(1) model with $\sigma=1$ and $\rho=0.1$. Σ is a diagonal matrix with diagonal entries given by $\Sigma_{ii}=1+1/i$.

Global null hypothesis

Let n=100, $\mu=\mathbf{0}_{n\times p}$, and set $\mathcal C$ to choose three clusters. Then, randomly select two groups and test for the difference of their means.

Global null hypothesis

Let n=100, $\mu=\mathbf{0}_{n\times p}$, and set $\mathcal C$ to choose three clusters. Then, randomly select two groups and test for the difference of their means.

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of clusters when it holds.

Let μ divide the n=50 observations into three true clusters, for $\delta \in [4,10.5]$:

$$\mu_{ij} = \begin{cases} -\frac{\delta}{2} & \text{if } i \leq \lfloor \frac{n}{3} \rfloor, \\ \frac{\sqrt{3}\delta}{2} & \text{if } \lfloor \frac{n}{3} \rfloor < i \leq \lfloor \frac{2n}{3} \rfloor, & \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p = 10\}, \\ \frac{\delta}{2} & \text{otherwise.} \end{cases}$$

Conditional power

Conditional power = probability of rejecting the null for a randomly selected pair of clusters when it holds.

Let μ divide the n=50 observations into three true clusters, for $\delta \in [4,10.5]$:

$$\mu_{ij} = \begin{cases} -\frac{\delta}{2} & \text{if } i \leq \lfloor \frac{n}{3} \rfloor, \\ \frac{\sqrt{3}\delta}{2} & \text{if } \lfloor \frac{n}{3} \rfloor < i \leq \lfloor \frac{2n}{3} \rfloor, & \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p = 10\}, \\ \frac{\delta}{2} & \text{otherwise.} \end{cases}$$

Independence setting

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$$
 and consider

$$\hat{\rho}(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\}) = 1 - \mathbb{F}_{\rho}\bigg(\|\bar{\mathbf{x}}_{\hat{C}_1} - \bar{\mathbf{x}}_{\hat{C}_2}\|_2; \hat{\sigma}\sqrt{\frac{1}{|\hat{C}_1|} + \frac{1}{|\hat{C}_2|}}, \mathcal{S}_2(\mathbf{x}; \{\hat{C}_1, \hat{C}_2\})\bigg)$$

Independence setting

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\hat{C}_{1}, \hat{C}_{2}\}) = 1 - \mathbb{F}_{\rho}\left(\|\bar{\mathbf{x}}_{\hat{C}_{1}} - \bar{\mathbf{x}}_{\hat{C}_{2}}\|_{2}; \hat{\sigma}\sqrt{\frac{1}{|\hat{C}_{1}|} + \frac{1}{|\hat{C}_{2}|}}, \mathcal{S}_{2}(\mathbf{x}; \{\hat{C}_{1}, \hat{C}_{2}\})\right)$$

Theorem 4 in Gao et al. 2022

If $\hat{\sigma}$ is an estimator of σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}\}}} \left(\hat{\sigma} \left(\mathbf{X}^{(n)} \right) \geq \sigma \, \middle| \, \hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)} \in \mathcal{C} \left(\mathbf{X}^{(n)} \right) \right) = 1, \qquad (\sigma \text{ over-est})$$

then, for any $\alpha \in [0,1]$, it holds

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}}} \left(\hat{\rho}\left(\mathbf{X}^{(n)}; \left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}\right) \leq \alpha \ \middle| \ \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \in \mathcal{C}\left(\mathbf{X}^{(n)}\right) \right) \leq \alpha.$$

Independence setting

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{I}_n, \sigma^2 \mathbf{I}_p)$ and consider

$$\hat{\rho}(\mathbf{x}; \{\hat{C}_{1}, \hat{C}_{2}\}) = 1 - \mathbb{F}_{\rho}\left(\|\bar{\mathbf{x}}_{\hat{C}_{1}} - \bar{\mathbf{x}}_{\hat{C}_{2}}\|_{2}; \hat{\sigma}\sqrt{\frac{1}{|\hat{C}_{1}|} + \frac{1}{|\hat{C}_{2}|}}, \mathcal{S}_{2}(\mathbf{x}; \{\hat{C}_{1}, \hat{C}_{2}\})\right)$$

Theorem 4 in Gao et al. 2022

If $\hat{\sigma}$ is an estimator of σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}\}}} \left(\hat{\sigma} \left(\mathbf{X}^{(n)} \right) \geq \sigma \, \middle| \, \hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)} \in \mathcal{C} \left(\mathbf{X}^{(n)} \right) \right) = 1, \qquad (\sigma \text{ over-est})$$

then, for any $\alpha \in [0,1]$, it holds

$$\limsup_{n \to \infty} \mathbb{P}_{H_0^{\left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}}} \left(\hat{\rho}\left(\mathbf{X}^{(n)}; \left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}\right) \leq \alpha \, \middle| \, \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \in \mathcal{C}\left(\mathbf{X}^{(n)}\right) \right) \leq \alpha.$$

ightarrow Gao *et al.* propose an estimator $\hat{\sigma}$ that satisfies (σ over-est) under mild assumptions on $\{\mu^{(n)}\}_{n\in\mathbb{N}}$.

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \boldsymbol{\Sigma}).$$
 (dep)

Can we estimate both \mathbf{U} and $\mathbf{\Sigma}$?

- Under the general model (dep), the scale matrices U and Σ are non-identifiable.
- We assume that one of the scale matrices is known, and assess the theoretical conditions that allow asymptotic control of the selective type I error when estimating the other one.
- Same reasoning for the estimation of U or Σ :

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}) \Leftrightarrow \mathbf{X}^T \sim \mathcal{MN}_{p \times n}(\boldsymbol{\mu}^T, \mathbf{\Sigma}, \mathbf{U}).$$

Arbitrary dependence setting

Let

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

Can we estimate both \mathbf{U} and $\mathbf{\Sigma}$?

- Under the general model (dep), the scale matrices U and Σ are non-identifiable.
- We assume that one of the scale matrices is known, and assess the theoretical conditions that allow asymptotic control of the selective type I error when estimating the other one.
- Same reasoning for the estimation of U or Σ:

$$\mathbf{X} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}, \mathbf{U}, \mathbf{\Sigma}) \Leftrightarrow \mathbf{X}^T \sim \mathcal{MN}_{p \times n}(\boldsymbol{\mu}^T, \mathbf{\Sigma}, \mathbf{U}).$$

→ How to extend the notion of over-estimation to matrices?

How to *over*-estimate a covariance matrix

We consider the natural extension of \geq to the space of Hermitian matrices.

Loewner partial order ≥

Let A, B be two Hermitian matrices. $A \succeq B$ if and only if A - B is positive semidefinite (PSD).

Remark : If $A = \hat{\sigma} I_p$ and $B = \sigma I_p$, the condition $A \succeq B$ becomes $\hat{\sigma} \geq \sigma$.

How to *over*-estimate a covariance matrix

We consider the natural extension of \geq to the space of Hermitian matrices.

Loewner partial order ≥

Let A, B be two Hermitian matrices. $A \succeq B$ if and only if A - B is positive semidefinite (PSD).

Remark : If $A = \hat{\sigma} \mathbf{I}_p$ and $B = \sigma \mathbf{I}_p$, the condition $A \succeq B$ becomes $\hat{\sigma} \geq \sigma$.

Graphical interpretation

Every PSD matrix A defines an ellipsoid $\mathcal{E}_A = \{x \in \mathbb{R}^d : x^T A x \leq 1\}$, where

- The eigenvectors of A are the principal axes of E_A,
- The eigenvalues of A are the squared lengths of the principal axes of \mathcal{E}_A .

Then, it holds $\mathcal{E}_A \subset \mathcal{E}_B \Leftrightarrow A \leq B$.

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ and consider

$$\hat{\rho}_{\hat{\mathbf{V}}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x};\{\hat{C}_{1},\hat{C}_{2}\}) = 1 - \mathbb{F}_{p}\bigg(\|\bar{x}_{\hat{C}_{1}} - \bar{x}_{\hat{C}_{2}}\|_{\hat{\mathbf{V}}_{\hat{C}_{1},\hat{C}_{2}}};\mathcal{S}_{\hat{\mathbf{V}}_{\hat{C}_{1},\hat{C}_{2}}}(\mathbf{x},\{\hat{C}_{1},\hat{C}_{2}\})\bigg)$$

where
$$\hat{\mathbf{V}}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2} = \mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}(\mathbf{U}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}\otimes\hat{\mathbf{\Sigma}}(\mathbf{x}))\mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}^{\mathcal{T}}.$$

Over-estimation of Σ for known U

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$ and consider

$$\hat{\rho}_{\hat{\mathbf{V}}_{\hat{C}_1,\hat{C}_2}}(\mathbf{x};\{\hat{C}_1,\hat{C}_2\}) = 1 - \mathbb{F}_p\bigg(\|\bar{x}_{\hat{C}_1} - \bar{x}_{\hat{C}_2}\|_{\hat{\mathbf{V}}_{\hat{C}_1,\hat{C}_2}};\mathcal{S}_{\hat{\mathbf{V}}_{\hat{C}_1,\hat{C}_2}}(\mathbf{x},\{\hat{C}_1,\hat{C}_2\})\bigg)$$

where
$$\hat{\mathbf{V}}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2} = \mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}(\mathbf{U}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}\otimes\hat{\mathbf{\Sigma}}(\mathbf{x}))\mathbf{D}_{\hat{\mathcal{C}}_1,\hat{\mathcal{C}}_2}^{\mathcal{T}}.$$

Theorem

If $\hat{\Sigma}(X^{(n)})$ is a positive definite estimator of Σ such that

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\{\hat{\mathcal{C}}_1^{(n)}, \hat{\mathcal{C}}_2^{(n)}\}}} \left(\hat{\boldsymbol{\Sigma}} \left(\boldsymbol{X}^{(n)} \right) \succeq \boldsymbol{\Sigma} \, \middle| \, \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \in \mathcal{C} \left(\boldsymbol{X}^{(n)} \right) \right) = 1,$$

then, for any $\alpha \in [0,1]$, we have

$$\limsup_{n\to\infty} \mathbb{P}_{H_0^{\left\{\hat{C}_1^{(n)},\hat{C}_2^{(n)}\right\}}}\left(p_{\hat{\mathbf{Y}}_{\hat{C}_1^{(n)},\hat{C}_2^{(n)}}}\left(\mathbf{X}^{(n)};\left\{\hat{C}_1^{(n)},\hat{C}_2^{(n)}\right\}\right) \leq \alpha \ \middle| \ \hat{C}_1^{(n)},\hat{C}_2^{(n)} \in \mathcal{C}\left(\mathbf{X}^{(n)}\right)\right) \leq \alpha.$$

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$$
.

For a given estimator $\hat{\Sigma}(\mathbf{X}^{(n)})$ of Σ , assessing whether $\hat{\Sigma}(\mathbf{X}^{(n)}) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$$
.

For a given estimator $\hat{\Sigma}(X^{(n)})$ of Σ , assessing whether $\hat{\Sigma}(X^{(n)}) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{U^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Estimator candidate

$$\hat{\mathbf{\Sigma}} = \hat{\mathbf{\Sigma}} (\mathbf{X}) = \frac{1}{n-1} (\mathbf{X} - \bar{\mathbf{X}})^T \mathbf{U}^{-1} (\mathbf{X} - \bar{\mathbf{X}}), \qquad \text{(estimator)}$$

where $\bar{\mathbf{X}}$ is a $n \times p$ matrix having as rows the mean across rows of \mathbf{X} .

Asymptotic over-estimator of Σ

Let
$$\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$$
.

For a given estimator $\hat{\Sigma}\left(\mathbf{X}^{(n)}\right)$ of Σ , assessing whether $\hat{\Sigma}\left(\mathbf{X}^{(n)}\right) \succeq \Sigma$ asymptotically strongly depends on how the sequences $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ grow up to infinity.

Estimator candidate

$$\hat{\mathbf{\Sigma}} = \hat{\mathbf{\Sigma}} (\mathbf{X}) = \frac{1}{n-1} (\mathbf{X} - \bar{\mathbf{X}})^T \mathbf{U}^{-1} (\mathbf{X} - \bar{\mathbf{X}}), \qquad \text{(estimator)}$$

where $\bar{\mathbf{X}}$ is a $n \times p$ matrix having as rows the mean across rows of \mathbf{X} .

 \to Assumptions on $\{\mu^{(n)}\}_{n\in\mathbb{N}}$ and $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ to ensure that (estimator) a.s. asymptotically overestimates Σ ?

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_i^{(n)}\right\}_{i=1,\ldots,n} = \left\{\theta_1,\ldots,\theta_{K^*}\right\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k,$$
 (as-1)

for all $k \in \{1, \dots, K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_i^{(n)}\right\}_{i=1,\ldots,n} = \left\{\theta_1,\ldots,\theta_{K^*}\right\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k,$$
 (as-1)

for all $k \in \{1, \dots, K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

 \diamond If $\mathbf{U}^{(n)} = \mathbf{I}_n$, this is the only requirement to ensure asymp. over-estimation of Σ .

Assumptions on $\mu^{(n)}$

Assumptions 1 and 2 in Gao et al. 2022 (Assumption 1)

For all $n \in \mathbb{N}$, there are exactly K^* distinct mean vectors among the first n observations, i.e.

$$\left\{\mu_i^{(n)}\right\}_{i=1,\ldots,n} = \left\{\theta_1,\ldots,\theta_{K^*}\right\}.$$

Besides, the proportion of the first n observations that have mean vector θ_k converges to $\pi_k > 0$, i.e.

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}\{\mu_i^{(n)} = \theta_k\} = \pi_k, \tag{as-1}$$

for all $k \in \{1, \dots, K^*\}$, where $\sum_{k=1}^{K^*} \pi_k = 1$.

- \diamond If $\mathbf{U}^{(n)} = \mathbf{I}_n$, this is the only requirement to ensure asymp. over-estimation of Σ .
- \diamond For **general U**⁽ⁿ⁾, (as-1) turns into asking the quantities

$$\frac{1}{n} \sum_{l=1}^{n} \left(U^{(n)} \right)_{ls}^{-1} \mathbb{1} \{ \mu_{l}^{(n)} = \theta_{k} \} \mathbb{1} \{ \mu_{s}^{(n)} = \theta_{k'} \}$$

to converge with explicit limit as n tends to infinity.

One more assumption on $\mu^{(n)}$ for non-diagonal $\mathbf{U}^{(n)}$

Assumption on $\mu^{(n)}$ for non-diagonal $\mathbf{U}^{(n)}$ (Assumption 2)

If $\mathbf{U}^{(n)}$ is non-diagonal for all $n \in \mathbb{N}$, for any $k, k' \in \{1, \dots, K^*\}$, the proportion of the first n observations at distance $r \geq 1$ in $\mathbf{X}^{(n)}$ having means θ_k and $\theta_{k'}$ converges, and its limit converges to $\pi_k \pi_{k'}$ when the lag r tends to infinity. More precisely,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n-r} \mathbb{1}\{\mu_i = \theta_k\} \, \mathbb{1}\{\mu_{i+r} = \theta_{k'}\} = \pi_{kk'}^r \underset{r \to \infty}{\longrightarrow} \pi_k \, \pi_{k'}. \tag{as-2}$$

We are asking the proportion of pairs of observations having a given a pair of means to approach the product of individual proportions (as-1) when both observations are far away in $\mathbf{X}^{(n)}$.

Assumptions on the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Assumption on $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ (Assumption 3)

Every superdiagonal of $(\mathbf{U}^{(n)})^{-1}$ defines asymptotically a convergent sequence, whose limits sum up to a real value. More precisely, for any $i \in \mathbb{N}$ and any $r \geq 0$,

$$\lim_{n\to\infty} \left(U^{(n)}\right)_{i\,i+r}^{-1} = \Lambda_{i\,i+r}, \quad \text{where} \quad \lim_{i\to\infty} \Lambda_{i\,i+r} = \lambda_r \quad \text{and} \quad \sum_{r=0}^\infty \lambda_r = \lambda \in \mathbb{R}.$$

Moreover, for each $r \ge 0$, the sequence $\{(U^{(n)})_{i,i+r}^{-1}\}_{n \in \mathbb{N}}$ satisfies any of the following conditions :

- (i) It is dominated by a summable sequence i.e. $\left| \left(U^{(n)} \right)_{i\,i+r}^{-1} \Lambda_{i\,i+r} \right| \leq \alpha_i \,\,\forall\,\, n \in \mathbb{N},$ with $\{\alpha_i\}_{i=1}^{\infty} \in \ell_1$,
- (ii) For each $i \in \mathbb{N}$, it is non-decreasing or non-increasing.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let $a,b\in\mathbb{R}$ with $b\neq a\geq 0$. If $\mathbf{U}^{(n)}=b\mathbf{1}_{n\times n}+(a-b)\mathbf{I}_n$, where $\mathbf{1}_{n\times n}$ is a $n\times n$ matrix of ones, then $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Some admissible dependence models for $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$

Remark 1 (Diagonal)

Let $\mathbf{U}^{(n)}=\mathrm{diag}(\lambda_1,\ldots,\lambda_n)$. If the sequence $\{\lambda_n\}_{n\in\mathbb{N}}$ is convergent, then the sequence $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 2 (Compound symmetry)

Let $a,b\in\mathbb{R}$ with $b\neq a\geq 0$. If $\mathbf{U}^{(n)}=b\mathbf{1}_{n\times n}+(a-b)\mathbf{I}_n$, where $\mathbf{1}_{n\times n}$ is a $n\times n$ matrix of ones, then $\{\mathbf{U}^{(n)}\}_{n\in\mathbb{N}}$ satisfies Assumption 3.

Remark 3 (AR(P))

Let $\mathbf{U}^{(n)}$ be the covariance matrix of an auto-regressive process of order $P \geq 1$ such that, if P > 2, $\beta_k \beta_{k'} \geq 0$ for all $k, k' \in \{1, \dots, P\}$. Then, the sequence $\{\mathbf{U}^{(n)}\}_{n \in \mathbb{N}}$ satisfies Assumption 3.

Estimation of Σ for known U

Final results

Proposition

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$, whose parameters $\boldsymbol{\mu}^{(n)}$, $\mathbf{U}^{(n)}$ satisfy Assumptions 1, 2 and 3 for some $K^* > 1$. Let $\hat{\boldsymbol{\Sigma}}$ be the estimator defined in (estimator). Then,

$$\lim_{n\to\infty}\mathbb{P}\left(\hat{\boldsymbol{\Sigma}}\left(\boldsymbol{\mathsf{X}}^{(n)}\right)\succeq\boldsymbol{\boldsymbol{\Sigma}}\right)=1.$$

Estimation of Σ for known U

Final results

Proposition

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$, whose parameters $\boldsymbol{\mu}^{(n)}$, $\mathbf{U}^{(n)}$ satisfy Assumptions 1, 2 and 3 for some $K^* > 1$. Let $\hat{\boldsymbol{\Sigma}}$ be the estimator defined in (estimator). Then,

$$\lim_{n \to \infty} \mathbb{P}\left(\hat{\boldsymbol{\Sigma}}\left(\boldsymbol{\mathsf{X}}^{(n)}\right) \succeq \boldsymbol{\Sigma}\right) = 1.$$

Proposition

Let $\mathbf{X}^{(n)} \sim \mathcal{MN}_{n \times p}(\boldsymbol{\mu}^{(n)}, \mathbf{U}^{(n)}, \boldsymbol{\Sigma})$, whose parameters $\boldsymbol{\mu}^{(n)}$, $\mathbf{U}^{(n)}$ satisfy Assumptions 1, 2 and 3 for some $K^* > 1$. Let $\mathbf{X}^{(n)}$ be a realization of $\mathbf{X}^{(n)}$ and $\hat{C}_1^{(n)}$, $\hat{C}_2^{(n)}$ a pair of clusters estimated from $\mathbf{x}^{(n)}$. Let $\mathbf{Y}^{(n)}$ an independent and identically distributed copy of $\mathbf{X}^{(n)}$. Then,

$$\lim_{n \to \infty} \mathbb{P}_{H_0^{\left\{\hat{C}_1^{(n)}, \hat{C}_2^{(n)}\right\}}} \left(\hat{\boldsymbol{\Sigma}}\left(\boldsymbol{Y}^{(n)}\right) \succeq \boldsymbol{\Sigma} \,\middle|\, \hat{C}_1^{(n)}, \hat{C}_2^{(n)} \in \mathcal{C}\left(\boldsymbol{X}^{(n)}\right)\right) = 1.$$

Let

$$X \sim \mathcal{MN}_{n \times p}(\mu, \mathbf{U}, \mathbf{\Sigma}).$$
 (dep)

For n=500 and p=10, we simulated K=10000 samples drawn from (dep) in settings (a), (b) and (c) with μ being divided into two clusters :

$$\mu_{ij} = \begin{cases} \frac{\delta}{j} & \text{if } i \leq \frac{n}{2}, \\ -\frac{\delta}{j} & \text{otherwise,} \end{cases} \quad \forall i \in \{1, \dots, n\}, \, \forall j \in \{1, \dots, p\},$$

with $\delta \in \{4,6\}$.

For HAC with average linkage we set $\mathcal C$ to chose three clusters. Then, we kept the samples for which (null) held when comparing two randomly selected clusters.

Proteins: sequence and conformation

Sequence

3D structure (conformation)

Sequence [?] **3D structure** ⇔ **Function**

Proteins: sequence and conformation

The three dimensional structure may be stable...

Many proteins fold into their native state

Amino acid sequence \iff Well-defined 3D structure

Structure: J.L., Guddat, L.W., Oxidized Dsba at 2.7 Anstromgs resolution, crystal form III (1998). https://doi.org/10.2210/pdb1A2M/pdb.

Proteins: sequence and conformation

...or not : Intrinsic Disorder in Proteins

Intrinsically Disordered Proteins (IDP)

Lack of a native state : constant shape-changing and transitioning between different conformations

Intrinsically Disordered Proteins

Amino acid sequence \Longrightarrow Conformational ensemble

Intrinsically Disordered Proteins

Amino acid sequence \Longrightarrow Conformational ensemble

Classical approach to characterize conformational ensembles

Clustering the set of states using pairwise Euclidean distances to feature conformations

Goal : post-clustering inference on protein data \rightarrow need to admit arbitrary dependence structures U and Σ .

Hierarchical clustering of Hst5

Hst5 ensemble simulated with Flexible-Meccano (FM) ² and filtered by SAXS data³

- n = 2000 conformations
- Featured by pairwise Euclidean distances of 24 amino acids $\Rightarrow p = 276$
- No temporal evolution in FM simulation : $\mathbf{U}^{(n)} = \mathbf{I}_n$
- Σ unknown to be estimated

Strategy

Hierarchical clustering with average linkage, find 6 clusters. Using R package PCIdep 4.

^{2.} Ozenne et al. 2012, Bernadó et al. 2005. 3. Sagar et al. 2021.

^{4.} https://github.com/gonzalez-delgado/PCIdep

Hierarchical clustering of Hst5

Cluster	1	2	3	4	5
2	$2.187589 \cdot 10^{-4}$				
3	$3.039844 \cdot 10^{-11}$	$1.41 \cdot 10^{-3}$			
4	$1.070993 \cdot 10^{-10}$	0.300540	$2.98464 \cdot 10^{-4}$		
5	$3.038979 \cdot 10^{-16}$	0.093018	$6.015797 \cdot 10^{-5}$	0.105446	
6	$1.729616 \cdot 10^{-6}$	0.010612	$9.290826 \cdot 10^{-9}$	$2.105 \cdot 10^{-3}$	$5.624624 \cdot 10^{-5}$

Thank you for your attention!

R package PCIdep at https://github.com/gonzalez-delgado/PCIdep/ $Preprint \ cooming \ soon... \\ https://www.math.univ-toulouse.fr/\sim jgonzale/$