附录一、傅立叶变换对

$$X(j\omega) = \int_{-\infty}^{+\infty} x(t) e^{-j\omega t} dt \qquad , \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(j\omega) e^{j\omega t} d\omega$$
$$\omega = 2\pi f \quad , \quad e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

序号	x(t)	$X(j\omega)$
1	$\sum_{n=1}^{N} a_n x_n(t)$	$\sum_{n=1}^{N} a_n X_n(j\omega)$
2	$x(t-t_0)$	$X(j\omega)e^{-j\omega t_0}$
3	$x(t)e^{ia_0t}$	$X(j(\omega-\omega_0))$
4	x(at)	$\frac{1}{ a }X(j\frac{\omega}{a})$
5	$x^*(t)$	$X^*(j(-\omega))$
6	<i>x</i> (<i>-t</i>)	$X(j(-\omega))$
7	X(jt)	$2\pi x(-\omega)$
8	$x(t) * y(t)$ $= \int_{-\infty}^{\infty} x(u)y(t-u)du$	$X(j\omega)Y(j\omega)$
9	x(t)y(t)	$\frac{1}{2\pi}X(j\omega)*Y(j\omega)$ $=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(ju)Y(j(\omega-u))du$
10	$\frac{d^n x(t)}{dt^n}$	$(j\omega)^n X(j\omega)$
11	$(-jt)^n x(t)$	$\frac{d^n X(j\omega)}{d\omega^n}$
12	$\int_{-\infty}^{\tau} x(\tau) d\tau$	$\frac{X(j\omega)}{j\omega} + \pi X(0)\delta(\omega)$
13	$\delta(t)$	1
14	$\delta(t-t_0)$	$e^{-j\omega t_0}$
15	$u_1(t) = \frac{d}{dt}\delta(t)$	$j\omega$
16	$u(t) = \int_{-\infty}^{t} \delta(\tau) d\tau$	$\pi\delta(\omega)$ + 1/ $j\omega$
17	1	$2\pi\delta(\omega)$
18	$e^{i a_{b^I}}$	$2\pi\delta(\omega-\omega_0)$

19	$\sum_{n=-\infty}^{\infty} a_n e^{in\omega_0 j}$	$2\pi \sum_{n=-\infty}^{\infty} a_n \delta(\omega - n\omega_0)$
20	$\operatorname{sgn}(t)$	$\frac{2}{j\omega}$
21	$j\frac{1}{\pi t}$	$\operatorname{sgn}(\omega)$
22	$rect\left(\frac{t}{ au}\right)$	$\tau S_a \left(\frac{\omega \tau}{2} \right) \qquad \tau > 0$
23	$\frac{wS_a(wt)}{\pi}$	$rect\left(\frac{\omega}{2w}\right) \qquad w > 0$
24	$tri\left(rac{t}{ au} ight)$	$\tau S_a^2 \left(\frac{\omega \tau}{2} \right) \qquad \tau > 0$
25	$\frac{wS_a^2(wt)}{\pi}$	$tri\left(\frac{\omega}{2w}\right) \qquad w > 0$
26	$\cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$
27	$\sin(\omega_0 t)$	$-j\pi[\delta(\omega-\omega_0)-\delta(\omega+\omega_0)]$
28	$\cos(\omega_0 t)u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{{\omega_0}^2-\omega^2}$
29	$\sin(\omega_0 t)u(t)$	$-j\frac{\pi}{2}[\delta(\omega-\omega_{\scriptscriptstyle 0})-\delta(\omega+\omega_{\scriptscriptstyle 0})]+\frac{\omega_{\scriptscriptstyle 0}}{{\omega_{\scriptscriptstyle 0}}^2-\omega^2}$
30	$e^{-at}u(t)$	$\frac{1}{a+j\omega} \qquad a>0$
31	$te^{-at}u(t)$	$\frac{1}{(a+j\omega)^2} \qquad a>0$
32	$t^n e^{-at} u(t)$	$\frac{n!}{(a+j\omega)^{n+1}} \qquad a>0$
33	e ^{-alr}	$\frac{2a}{a^2 + \omega^2} \qquad a > 0$
34	$\exp\left(-\frac{t^2}{2\sigma^2}\right)$	$\sqrt{2\pi}\sigma\exp\left(-\frac{\sigma^2\omega^2}{2}\right) \qquad \sigma > 0$

说明:其中, $a_{,a_{n},t_{0}},\sigma,\omega_{0},T$ 和w都是实常数;并且,定义如下的各个函数:

1.
$$u(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

3.
$$rect(t) = \begin{cases} 1 & |t| \le 1/2 \\ 0 & |t| > 1/2 \end{cases}$$

5.
$$tri(t) = \begin{cases} 1 - |t| & |t| \le 1 \\ 0 & |t| > 1 \end{cases}$$

2.
$$\operatorname{sgn}(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$$

$$4. \quad S_a(t) = \frac{\sin(t)}{t}$$