多変量解析

第14回 因子分析

萩原•篠田 情報理工学部

重回帰分析

重回帰分析:複数の原因(説明変数)と結果(目的変数)を結ぶもの

目的変数 y (結果) と、それに影響を与えるいくつかの説明変数 $x_1,x_2,\cdots x_p$ (原因) から

$$y = a_0 + a_1 x_1 + a_2 x_2 + a_3 x_3 + \varepsilon$$

主成分分析

多くの要因(変数) $(x_1, x_2, ***, x_p)$ の値をできるだけ情報の損失なしに 1個または<mark>互いに独立</mark>な少数の<mark>総合的指標 $(z_1, z_2, ***, z_m)$ で表す。 つまり要因の総合化が主成分分析。</mark>

$$z = a_1 x_1 + a_2 x_2 + a_3 x_3$$

主成分

因子分析

実験や調査で得られたデータの構造がどのような構造になっているか 少数の特定な共通因子で説明する

因子分析;いくつかの要因の共通因子の抽出

共通因子が2個の場合

因子分析のパス図

$$x_1 = a_{11}f_1 + a_{12}f_2 + \varepsilon_1$$

$$x_2 = a_{21}f_1 + a_{22}f_2 + \varepsilon_2$$

$$x_3 = a_{31}f_1 + a_{32}f_2 + \varepsilon_3$$

は観測変数

2店のコンビニの評価

要因 店名	品揃え (x _品)	雰囲気 (x _雰)	親近感 (x _親)	広々感 (x _広)		
A店 (A)	56 (x _A 品)	54 (x _{A雰})	48 (x _{A親})	46 (xA広)	▼ アンケート≦ データとして	
B店 (B)	44 (x _B 品)	56 (x _{B雰})	42 (x _{B親})	44 (x _B 広)	← 得る	

因子分析では、少数の共通因子があると仮定する

実際の因子分析では仮定するのは因子数だけ

今、共通因子が2個あると仮定する 共通因子 f_1 、 f_2

因子負荷量: 因子の各変量(要因)への影響度

ABで共通

品雰親広で異なる

すべての変量は共通因子 $1(f_1)$ 、共通因子 $2(f_2)$ に関係する

変量	共通因子1(f ₁)に関わる 因子負荷量 a ₁	共通因子2(f ₂)に関わる 因子負荷量 a ₂
品揃え (X品)	0.8 (a _{品1})	0.2 (a _{品2})
雰囲気 (x雰)	0.5 (<i>a</i> 雾 ₁)	0.6 (<i>a</i> 雾2)
親近感 (x 親)	0.6 (a _{親1})	0.3 (a _{親2})
広々感 (x広)	0.5 (a広1)	0.4 (a成2)

例えば

$$x_{AAB} = a_{B1}f_{A1} + a_{B2}f_{A2} + \varepsilon_{AB}$$
$$x_{AS} = a_{S1}f_{A1} + a_{S2}f_{A2} + \varepsilon_{AS}$$

$$x_{\mathrm{BH}} = a_{\mathrm{H}1} f_{\mathrm{B}1} + a_{\mathrm{H}2} f_{\mathrm{B}2} + \varepsilon_{\mathrm{BH}}$$

 $x_{\mathrm{B}} = a_{\mathrm{B}1} f_{\mathrm{B}1} + a_{\mathrm{B}2} f_{\mathrm{B}2} + \varepsilon_{\mathrm{B}}$

2店のコンビニの共通因子の因子得点

店名	共通因子1の 因子得点 (<i>f</i> i)	共通因子2の 因子得点 (<i>f</i> ₂)
A店 (A)	60 (<i>f</i> A1)	40 (<i>f</i> A2)
B店 (B)	40 (<i>f</i> _{B1})	60 (f _{B2})

因子得点を保有していると仮定すると・・・

—→ A店はf₁因子が大 —→ B店はf₂因子が大

例えば

$$x_{AAB} = a_{B1}f_{A1} + a_{B2}f_{A2} + \varepsilon_{AB}$$
$$x_{AB} = a_{B1}f_{A1} + a_{B2}f_{A2} + \varepsilon_{AB}$$

$$x_{\text{BH}} = a_{\text{Hl}} f_{\text{Bl}} + a_{\text{Hl}} f_{\text{B2}} + \varepsilon_{\text{BH}}$$

 $x_{\text{B雰}} = a_{\text{\reflethightarpoonup}} f_{\text{Bl}} + a_{ ext{\reflethightarpoonup}} f_{\text{B2}} + \varepsilon_{\text{B\reflethightarpoonup}}$

評価の決定

例えばA店の品揃え

$$x_{AH} = a_{H1}f_{A1} + a_{H2}f_{A2} + \varepsilon_{AH}$$

変量の評価点(要因)=f₁因子負荷量×f₁因子得点 $+f_{2}$ 因子負荷量× f_{2} 因子得点

A店の品揃え評価点(要因) = $0.8 \times 60 + 0.2 \times 40 = 48 + 8 = 56$

A店の評価

品揃え=56点

雰囲気=54点

親近感=48点

広々感=46点

 $x_{AAB} = a_{B1} \times f_{A1} + a_{B2} \times f_{A2}$

店名	品揃え (x _品)	雰囲気 (x _雰)	親近感 (x _親)	広々感 (x _広)
A店	56	54	48	46
(A)	(X _A 品)	(XA雰)	$(x_{A}親)$	(XA広)
B店	44	56	42	44
(B)	$(x_{B H})$	$(x_{B雰})$	$(x_{\mathrm{B}}$ 親)	$(x_{B広})$

B店の評価 品揃え=44点 雰囲気=56点 親近感=42点 広々感=44点

独自部分を0と仮定

パス図

データの数学的表現

1号店~n号店の各変量(要因)

店	品揃え(x品)	雰囲気(x雰)	親近感(x親)	広々感(x広)
1	<i>X</i> 1品	<i>X</i> 1雰	X1親	<i>X</i> 1広
2	<i>X</i> 2品	<i>X</i> 2雰	X2親	<i>X</i> 2広
:	÷	•	:	:
k	Xk品	Xk雰	Xk親	Xk広
:	÷	÷	:	:
n	Xn品	Xn雰	Xn親	Xn広

k号店の場合

品揃えの評価 — *xk*品

雰囲気の評価 — *Xk*雰

親近感の評価 — xk<u>親</u>

広々感の評価 — xk広

共通因子の因子量(因子得点)の数学的表現

1号店~n号店の各因子得点

店	共通因子1の 因子得点(<i>f</i> i)	共通因子2の 因子得点(<i>f</i> ₂)
1	<i>f</i> 11	f12
2	f_{21}	f_{22}
1	:	:
k	f_{k1}	fk2
:	:	:
n	f_{n1}	fn2

k号店の因子得点

fk1 · · · k号店の持つ共通因子1の因子得点 fk2 · · · k号店の持つ共通因子2の因子得点

共通因子1 fk1

共通因子2 fk2

因子負荷量の数学的表現

因子負荷量: 共通因子の各変量(要因)への影響度

変量	共通因子1(f ₁)に関わる 因子負荷量(a ₁)	共通因子2(f ₂)に関わる 因子負荷量(a ₂)
品揃え(x品)	<i>a</i> 品1	<i>a</i> 品2
雰囲気(x雰)	<i>a</i> 雾1	<i>a</i> 雾2
親近感(x親)	<i>a</i> 親1	<i>a</i> 親2
広々感(x広)	<i>a</i> 広1	<i>a</i> 広2

誤差(独自部分)の数学的表現

1号店~n号店の共通因子では説明できない要素(独自部分)

店	品揃え(x品)	雰囲気(x雰)	親近感(x親)	広々感(x広)
1	<i>E</i> 1品	<i>El</i> 雰	<i>E</i> 1親	<i>E</i> 1広
2	<i>E</i> 2品	<i>E</i> 2雰	<i>E</i> 2親	<i>8</i> 2広
:	:	:	i	i
k	\mathcal{E} k 品	<i>Ek</i> 雰	<i>Ek</i> 親	Ek広
i	:	:	:	:
n	En品	En雰	En親	En広

因子分析の数学的表現

k号店の品揃えの評価点=品揃えの共通因子1因子負荷量×k号店の共通因子1因子得点 +品揃えの共通因子2因子負荷量×k号店の共通因子2因子得点 +独自部分

 $x_{kh} = a_{hh} \times f_{k1} + a_{hh} \times f_{k2} +$ 共通因子で説明できない部分(独自部分) $= a_{hh} \times f_{k1} + a_{hh} \times f_{k2} + \varepsilon_{kh}$

k号店の因子分析の数学的表現

k号店の品揃えの評価点

$$x_{k} = a_{k1} \times f_{k1} + a_{k2} \times f_{k2} + \varepsilon_{k}$$

k号店の雰囲気の評価点

$$x_{kg} = a_{g_1} \times f_{k_1} + a_{g_2} \times f_{k_2} + \varepsilon_{kg}$$

k号店の親近感の評価点

$$x_{k} = a_{\Re 1} \times f_{k1} + a_{\Re 2} \times f_{k2} + \varepsilon_{k}$$

k号店の広々感の評価点

$$x_{k \perp} = a_{\perp 1} \times f_{k1} + a_{\perp 2} \times f_{k2} + \varepsilon_{k \perp}$$

因子分析の行列表現

k号店の因子分析の数学的表現

1~n号店の因子分析の数学的表現

因子モデル $X = FA^t + E$

因子をどの様に算出するのか?

反復推定法による収束計算を行ない因子負荷量、因子得点を算出する

データの具体例 (データの入力)

1号店~10号店の各変量(要因)

度	品揃え(x品)	雰囲気(x雰)	親近感(x親)	広々感(x広)
1	20	20	30	70
2	15	25	25	15
3	60	70	60	30
4	70	50	60	40
5	30	35	55	80
6	50	85	85	80
7	80	65	70	30
8	30	65	75	80
9	60	60	50	40
10	25	25	50	25

因子分析では最初にデータの標準化が行われる

1号店~10号店の各変量(要因、標準化後) $X = FA^t + E$

度	品揃え(x品)	雰囲気(x雰)	親近感(x親)	広々感(x広)
1	-1.051	-1.334	-1.392	0.817
2	-1.270	-1.112	-1.660	-1.323
3	0.701	0.889	0.214	-0.740
4	1.139	0.000	0.214	-0.350
5	-0.613	-0.667	-0.054	1.207
6	0.263	1.557	1.553	1.207
7	1.577	0.667	0.750	-0.740
8	-0.613	0.667	1.017	1.207
9	0.701	0.445	-0.321	-0.350
10	-0.832	-1.112	-0.321	-0.934

因子分析では最初にデータの標準化が行われる

因子負荷量の具体例(出力結果)

因子負荷量 $X = FA^t + E$

変量	共通因子1(f ₁)に関わる 因子負荷量(a ₁)	共通因子2(f ₂)に関わる 因子負荷量(a ₂)
品揃え(x品)	0.68	-0.48
雰囲気(x雰)	0.92	-0.03
親近感(x親)	0.91	0.21
広々感(x広)	0.25	0.67

因子負荷量: 共通因子の各変量(要因)への影響度

出力結果の解釈

変量	共通因子1(f ₁)に 関わる 因子負荷量 (a ₁)	共通因子2(f ₂)に 関わる 因子負荷量 (<i>a</i> 2)
品揃え(x品)	0.68	-0.48
雰囲気(x雰)	0.92	-0.03
親近感(x親)	0.91	0.21
広々感(x広)	0.25	0.67

共通因子の解釈

共通因子1 (f₁)→ 店長の工夫という要因 (ソフト)

共通因子 $2(f_2)$ → 地理的・物理的条件という要因 (N-F)

共通因子 $2(f_2)$ 因子負荷量 (a_2)

共通因子の因子得点の具体例

1号店~10号店の各因子得点 $X = FA^t + E$

店	ソフト 因子得点(<i>f</i> s)	ハード 因子得点(<i>f</i> H)				
1	-1.4513	-0.0326				
2	-1.4035	-0.7977				
3	0.6841	-0.5743				
4	0.6027	-0.6981				
5	-0.5664	0.7809				
6	1.0595	1.3198				
7	1.2218	-0.7381				
8	0.2334	1.5272				
9	0.3074	-0.8290				
10	-0.6896	0.0420				

店	ソフト 因子得点(<i>f</i> s)	ハード 因子得点(fii)				
1	-1.4513	-0.0326				
2	-1.4035	-0.7977				
3	0.6841	-0.5743				
4	0.6027	-0.6981				
5	-0.5664	0.7809				
6	1.0595	1.3198				
7	1.2218	-0.7381				
8	0.2334	1.5272				
9	0.3074	-0.8290				
10	-0.6896	0.0420				

因子得点から因子の保有量がわかる ex.

1号店はハード因子得点は平均的 しかしソフト因子得点は足りない

経営努力を促す

1号店~10号店の要因(独自成分なし) $X = FA^t + E$

度	品揃え(x品)	雰囲気(x雰)	親近感(x親)	広々感(x広)
1	-0.971	-1.334	-1.328	-0.385
2	-0.571	-1.267	-1.445	-0.885
3	0.741	0.647	0.502	-0.214
4	0.745	0.575	0.402	-0.317
5	-0.760	-0.545	-0.351	0.382
6	0.087	0.935	1.241	1.149
7	1.185	1.146	0.957	-0.189
8	-0.574	0.169	0.533	1.082
9	0.607	0.308	0.106	-0.479
10	-0.489	-0.636	-0.619	-0.144

1号店~10号店の誤差(独自成分)

$X = FA^t + \underline{F}$

度	品揃え(x品)	雰囲気(x雰)	親近感(x親)	広々感(x広)		
1	-0.080	0.000	-0.064	1.202		
2	-0.699	0.155	-0.215	-0.438		
3	-0.040	0.243	-0.288	-0.526		
4	0.394	-0.575	-0.188	-0.033		
5	0.147	-0.123	0.298	0.825		
6	0.176	0.621	0.311	0.058		
7	0.392	-0.479	-0.207	-0.550		
8	-0.039	0.498	0.484	0.125		
9	0.094	0.137	-0.427	0.128		
10	-0.343	-0.476	0.297	-0.790		

因子の解釈の例

高齢者の転倒事故が多く見られる住宅空間についての調査結果

	4-				要	因										要因]				
No.	寝室	居間	階段	ベランダ	浴 室	トイレ	食堂	玄関	庭	廊下	No.	x_1	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇	<i>x</i> ₈	<i>X</i> 9	<i>x</i> ₁₀
1	2	1	3	3	4	4	3	4	3	2	1	x_{11}	x_{12}	<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₁₆	<i>x</i> ₁₇	<i>x</i> ₁₈	<i>x</i> ₁₉	x_{110}
2	1	1	3	4	5	4	5	5	3	3	2	x_{21}	x_{22}	x_{23}	<i>x</i> ₂₄	x ₂₅	<i>x</i> ₂₆	x_{27}	<i>x</i> ₂₈	<i>x</i> ₂₉	<i>x</i> ₂₁₀
3	2	2	3	3	2	4	4	5	1	4	3	<i>x</i> ₃₁	<i>x</i> ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄	<i>x</i> ₃₅	<i>x</i> ₃₆	<i>x</i> ₃₇	<i>x</i> ₃₈	<i>x</i> ₃₉	<i>x</i> ₃₁₀
4	3	1	3	3	4	4	4	3	3	4	4	<i>x</i> ₄₁	x_{42}	x_{42}	<i>x</i> ₄₄	<i>x</i> ₄₅	<i>x</i> ₄₆	<i>x</i> ₄₇	<i>x</i> ₄₈	<i>x</i> ₄₉	x ₄₁₀
5	3	1	3	3	3	3	3	3	3	3	5	<i>x</i> ₅₁	<i>x</i> ₅₂	<i>x</i> ₅₃	X54	<i>x</i> ₅₅	<i>x</i> ₅₆	<i>x</i> ₅₇	<i>x</i> ₅₈	X59	x ₅₁₀
	:	:	:	:	:	:	:	:	:	:		_			_					_	
78	1	3	4	3	4	4	5	1	3	4	78		:	:	:	:	:	:	:	:	:
79	1	1	2	3	3	3	3	4	3	4	79										
80	3	1	3	1	1	1	3	2	1	2	80										

SPSSでの因子分析結果

SPSSでの因子分析結果

共通因子の解釈

第1因子は 浴室、食堂、トイレ といった変数の因子負荷が大きいので "水まわり"

第2因子は 玄関、ベランダ、階段 といった変数の因子負荷が大きいので "段差のあるところ"

と名付けられそう。

どのような住宅空間が高齢者にとって危険なのかを 因子分析でタイプ分けをすると

共通因子として

第1因子:水まわり

第2因子:段差のあるところ

が抽出される

第1因子と第2因子の散布図

因子分析

①因子分析とは何か。 要因が3個(x_1, x_2, x_3)、共通因子が2個(f_1, f_2)の場合を例 にとってパス図で示せ。

②大学生が入社以前に身につけておくべきだと思われる知識・技能に関するアンケート結果の因子分析を行った結果、右に示す表の結果を得た。第1因子と第2因子に名前を付け散布図で示せ。

	因子					
	1	2				
一般常識	0.778	-0.162				
礼儀作法	0.767	-0.055				
文章力	0.474	0.716				
企画力	-0.094	0.739				
法律知識	-0.173	0.546				
パソコン操作	0.158	0.099				
実務経験	0.100	0.116				
語学力	0.074	0.212				
各種資格	0.026	-0.083				