Week 3

Lecture 2 Properties of Numbers III Udaya Parampalli

School of Computing and Information Systems University of Melbourne

Week 3

Lecture 1 Modern Symmetric key Ciphers

Lecture 2
Properties of Numbers III

Workshop 3: Workshops based on Lectures in Week 2

Quizz 3

Lecture 2

- 2.1 Euler's and Related Theorems
- 2.2 Groups, Rings and Fields
- 2.3 Functions and Chinese Ramainder Theorem

Recap

- Numbers, Divisibility, Mod Operation, GCD, Extended GCD
- Inverse Mod n
- Properties Euler's Phi (ϕ) Function
- $\phi(p) = p 1$, for any prime p.
- $\phi(p^a) = p^{a-1}(p-1)$, for any prime p and any integer $a \ge 1$.
- $\phi(pq) = (p-1)(q-1)$, for any two primes p and q.
- In fact, $\phi(mn) = \phi(m)\phi(n)$, for any two numbers which are relatively prime.

let \mathbf{Z}_n^{\star} be set of numbers from 1 to n-1 but are relatively prime.

$\mathsf{Theorem}$

If $a \in \mathbf{Z}_n^*$, then $a^{\phi(n)} = 1 \pmod{n}$.

Using Extended GCD Algorithm

```
Function(a, n)
g,x,y:=XGCD(a,n);
If g eq 1 then Return(x)
else Return("The Inverse Does not Exist"), end if;
end function;
```

Using Eulers Phi Function Result

```
Function(a, n)

inva := a^{\phi(n)-1} (mod n).

Return(inva);

end function:
```

The later function works only if a is relatively prime to n.

Lecture 2

2.1 Euler's and Related Theorems

Euler's Theorem

Definition

Remainders mod n: For $n \ge 1$, the set of remainders obtained by dividing integers by n, precisely these are elements of $\mathbf{Z}_n = \{0, 1, \cdots, n-1\}.$

However, not all elements of \mathbf{Z}_n can be inverted. We define further the set of invertible numbers in \mathbf{Z}_n .

Definition

Reduced set of residues mod n: For n > 1, the reduced set of residues, R(n) is defined as set of residues modulo n which are relatively prime to n.

Sometimes, R(n) is also represented as $\mathbf{Z}^*(n)$. In fact $\phi(n) = \#R(n)$, the cardinality(size) of the set R(n). Example: $\phi(15) = 8$, because $\phi(15) = \phi(5 \times 3) = (4 \times 2) = 8$. $\phi(37) = 36$, as 37 is a prime number. Next we consider Euler's theorem.

Euler's Theorem

Theorem

If
$$a \in \mathbf{Z}_n^{\star}$$
, then $a^{\phi(n)} = 1 \pmod{n}$.

Proof: Let $R(n) = \{r_1, r_1, \ldots, r_{\phi(n)}\}$, be reduced set of residues modulo n. Now consider the set a $R(n) = \{a$ r_1, a r_1, \ldots, a $r_{\phi(n)}\}$. Since a is relatively prime to n, the set aR(n) is identically equal to R(n). Note that the process of multiplying a only rearranges the residues in R(n). Hence we can multiply all the elements in R(n) and equate with the multiplication of all the elements of a R(n). Hence we can write:

$$r_1 \times r_2 \cdots \times r_{\phi(n)} = (ar_1) \times (ar_2) \cdots \times (ar_{\phi(n)}).$$

Note that r_i s are relatively prime to n and hence we can cancel r_i in the above equation by multiplying r_i^{-1} to both the side of the equation. Then the above equation simplifies to

$$1 = a^{\phi(n)}$$
. Hence the result.

Euler's Theorem example when n = pq

When n = pq, p and q are primes, then $\phi(n) = (p-1)(q-1)$.

Theorem

If
$$a \in \mathbf{Z}_{pq}^{\star}$$
, then $a^{(p-1)(q-1)} = 1 \pmod{pq}$.

The above result will be used in next week lectures.

Example: n = 35, $\phi(35) = 24$, because

$$\phi(35) = (\phi(7) \times \phi(5)) = (6 \times 4) = 24.$$

2 is relatively prime to 35

$$2^{24} \mod 35 = 1$$

Fermat's Theorem

Theorem

Let p be a prime number, then if gcd(a, p) = 1, then

$$a^{p-1} = 1 \ (mod \ p).$$

This is the particular case of Euler's Theorem when n is prime.

Fermat's Little Theorem

Theorem

Let p be a prime number,

$$a^p = a \pmod{p}$$
, for any integer a.

When a is relatively prime, the theorem follows from the Fermatss theorem. When a is multiple of p, the result is trivially true.

Fermat's Theorem and Implications

- When p is a prime number, we learn that all nonzero numbers less than p are relatively prime and hence they are closed modulo p.
- In otherwords, all nonzero elements are invertible in \mathbf{Z}_p .
- They are closed under addition modulo p.
- Hence \mathbf{Z}_p is closed under addition and multipliaction mod p.
- In fact, \mathbf{Z}_p is a finite field, a structure extensively used in Cryptography.

Lecture 2

2.2 Groups, Rings and Fields

Recap of Group, Ring, and Field

Let us visit a few concepts that we have learnt already. A *Group* is a set G together with a binary operation \cdot on G such that the following three properties hold:

- · is associative; that is, for any $a, b, c \in G$ $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
- There is an *identity* element e in G such that for all $a \in G$,

$$a \cdot e = e \cdot a = a$$

• For each $a \in G$, there exists an *inverse* element $a^{(-1)} \in G$ such that

$$a \cdot a^{-1} = a^{-1} \cdot a = e$$

• If the group also satisfies For all $a, b \in G$,

$$a \cdot b = b \cdot a$$

then the group is called abelian (or commutative).

Ring

A $Ring(R, +, \cdot)$ is a set R, together with two binary operations, denoted by + and \cdot , such that:

- R is an abelian group with respect to +.
- · is associative; that is, $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in R$.
- The distributive laws hold; that is , for all $a,b,c\in R$ we have $a\cdot (b+c)=a\cdot b+a\cdot c$ and $(b+c)\cdot a=b\cdot a+c\cdot a$

Prime Fields

We note that the set $\mathbf{Z}_p = \{0, 1, \dots, p-1\}$, where p is a prime number, satisfies axioms of a field.

- The set is closed under addition.
- Since p is prime number, any nonzero element in \mathbf{Z}_p has an inverse (Use Extended Euclidean algorithm).
- you can verify that additions and multiplications are distributive.

In \mathbf{Z}_p , unlike in Integers, p times any element in the field is zero in the field. This leads to a concept called "characteristic" of a field. We also denote \mathbf{Z}_p^* as a set of non-zero elements of \mathbf{Z}_p .

Characteristic of F

Definition

Let F be a field with the multiplicative identity 1 and the additive identity 0. The characteristic of F, sometimes written as char(F), is the smallest integer $n \ge 0$ such that addition of the 1 with itself n times results in 0. i.e n(1) = 0.

Note that for real and complex fields you cannot find a positive integer n satisfying the above criteria. Hence, the characteristic of real and complex fields is 0.

In contrast for residue class rings Z_n , the characteristic is n.

When n is prime, \mathbf{Z}_p is a field and accordingly the characteristic of \mathbf{Z}_p is p. One of the consequences of the above property is that p=0 in the field for any α in the field.

 \mathbf{Z}_p is the main source of prime fields. Another class of finite fields are those whose size is a power of prime, we will consider this class later.

Lecture 2

2.3 Functions and Chinese Raminder Theorem

Functions

Definition: A function is defined by a triplet < X, Y, f >, where X: a set called domain; Y: a set called range or codomain and f: a rule which assigns to each element in X precisely one element in Y.

It is denoted by $f: X \to Y$ Example: Let $X = Y = \mathbf{Z}_5$, Then $f: X \to Y$ given by f(x) = 2 * x is a function.

Definitions

Image: If $x \in X$, the image of x in Y is an element $y \in Y$ such that y = f(x).

Pre-image: If $y \in Y$, then a Pre-image of y in X is an element $x \in X$ such that f(x) = y.

Image of a function f (Im(f): A set of all elements in Y which have at least one Pre-image.

$$Im(f) = \bigcup_{x \in X} \{f(x)\}\tag{1}$$

One-to-one (injective) Function

A function is one-to-one (injective) if each element in the codomain Y is the image of **at most** one element in the domian X. In other words, each element in x in X is related to different y in X, never two different elements in X map to a same element in Y. We can say that $|X| \leq |Y|$. An alternate definition would be, a $f: X \to Y$ is one-to-one (injective), provided

$$f(x_1) = f(x_2)$$
 implies $x_1 = x_2$.

Examples: Let $X = Y = \mathbf{Z}_4$, Then $f : X \to Y$ given by f(x) = 3 * x is a one-to-one function. However $f(x) = x^2$ is a not a one-to-one function.

Onto (surjective) Function

A function is Onto (surjective) if each element in the codomain Y is the image of **at least** one element in the domian X.

A function $f: X \to Y$ is onto if Im(f) = Y

We can say that, if f is onto then $|Y| \leq |X|$.

Example: Let $X = Y = \mathbf{Z}_5$, Then $f : X \to Y$ given by $f(x) = x^2$ is a onto function.

Bijection: A function which is both one-to-one and onto.

In this case, we have $|X| \le |Y|$ and $|Y| \le |X|$. This implies |X| = |Y|.

If $f: X \to Y$ is one-to-one then $f: X \to Im(f)$ is a bijection.

If $f: X \to Y$ is onto and X and Y are finite sets of the same size then f is a bijection.

Bijection

Let m and n are relatively prime number, $X = \mathbf{Z}_{mn}$, $Y = \mathbf{Z}_m \times \mathbf{Z}_n$. Then the mapping

$$f: X \rightarrow Y, f(x) = ((x \mod m), x \mod n),$$

is a bijection.

Example: $X := \mathbf{Z}_6$, $Y = \mathbf{Z}_2 \times \mathbf{Z}_3$. The function f given below is a bijection:

$X = \mathbf{Z}_6$	\rightarrow	$\mathbf{Z}_2 imes \mathbf{Z}_3$
0	\rightarrow	(0,0)
1	\rightarrow	(1,1)
2	\rightarrow	(0,2)
3	\rightarrow	(1,0)
4	\rightarrow	(0,1)
5	\rightarrow	(1, 2)

Table: $f: \mathbf{Z}_6 \to \mathbf{Z}_2 \times \mathbf{Z}_3$

Chinese Remainder Theorem (CRT)

Let n_1 , n_2 be pair-wise relatively prime integers, he system of simultaneous congruences

$$x \equiv a_1 \pmod{n_1},$$

$$x \equiv a_2 \pmod{n_2},$$

has a unique solution modulo $n = n_1 n_2$.

Note that the mapping $f: \mathbf{Z}_{n_1 \ n_2} \to \mathbf{Z}_{n_1} \times \mathbf{Z}_{n_2}$ given by $f(x) \to x \mod n_1$, $x \mod n_2$ is a bijection.

The proof has two points. First show that the function is one-to-one. If there exists two elements x and y such that

$$x \mod n_1 = y \mod n_1,$$

and

$$x \mod n_2 = y \mod n_2$$
,

then x-y is divisible by both n_1 and n_2 . Since n_1 and n_2 are relatively prime, x-y is divisible by n_1 $n_2=n$. Hence x and y are identical equal modulo n. This proves that the function is one-to-one. In the next slide, we give an explicit construction for the inverse function which proves that the map is onto. Hence the f is bijection.

In fact, Chinese Remainder theorem gives a construction method to obtain the inverse function. Let

$$N_1 = n/n_1 = n_2, N_2 = n/n_2 = n_1.$$

Choose

$$M_1 = (N_1)^{-1} \pmod{n_1}$$

and

$$M_2 = (N_2)^{-1} \pmod{n_2}$$

Then the solution to the simultaneous congruences is given by

$$x = a_1 (N_1 M_1) + a_2 (N_2 M_2) \pmod{n}$$
.

You can immediately verify that x determined as above satisfies the congruences (This is because $N_1 \mod n_2 = 0$ and $N_2 \mod n_1 = 0$)

Chinese Remainder Theorem (CRT)

If n_1, n_2, \ldots, n_k are pair-wise relatively prime integers, k being a positive integer, the system of simultaneous congruences

$$x \equiv a_1 \pmod{n_1},$$
 $x \equiv a_2 \pmod{n_2},$
 $x \equiv a_3 \pmod{n_3},$
 \dots
 $x \equiv a_k \pmod{n_k},$

has a unique solution modulo $n = n_1 n_2 \dots n_k$.

Let

$$N_i = n/n_i$$

for i = 1, 2, ..., k.

Choose

$$M_i = (N_i)^{-1} \pmod{n_i},$$

for i = 1, 2, ..., k.

Then the solution is given by

$$x = \sum_{i=1}^{k} a_i N_i M_i \pmod{n}.$$

Week 3

Lecture 1 Modern Symmetric key Ciphers

Lecture 2
Properties of Numbers III

Workshop 3: Workshops based on Lectures in Week 2

Quizz 3

