ELEN 472: Introduction to Digital Control Systems

HW3

Q1. Sketch the root locus diagram for the following analog system with the loop gain:

$$L(s) = \frac{1}{s(s+2)(s+5)}$$

Q2.1 Given damping ratio $\zeta=0.5$ and natural frequency $\omega_n=1$ rad/s. Find the following time-domain specifications:

- 1) Percentage Overshoot
- 2) Peak Time
- 3) Settling time

Q2.2 Fill the blank space:

For continuous time systems, the real part of the pole determines the rate of ______, and the imaginary part determines the _____.

Q2.3 For a position control system with the continuous time transfer function:

$$G(s) = \frac{1}{s(s+5)}$$

Design a proportional controller to make the damping ratio $\zeta=0.1$

Q3. Find the critical gain of the following systems:

1)
$$G(z) = \frac{K}{z - 0.4}$$

1)
$$G(z) = \frac{K}{z - 0.4}$$

2) $G(z) = \frac{K}{(z + 0.9)(z - 0.9)}$

Q4.1 Fill the blank space:

If the Laplace transform F(s) of a continuous-time function f(t) has a **pole** p_s , then the z-transform F(z) of its sampled counterpart f(kT) has a **pole** at ______.

The Frequency of Oscillations (ω_d) can be calculated with ζ and ω_n by using the equation:

Q4.2 Design proportional controllers for the digital system

$$G(z) = \frac{K}{(z + 0.9)(z - 0.9)}$$

to meet the following specifications separately (you need to find two values of K to meet condition 1 and 2 separately):

- 1) A damping ratio of 0.7.
- 2) A steady-state error of 10% due to a unit step input (sampling period T=0.02 s).

Q5.1 Apply the **forward difference** approximation of the following second-order analog controller:

$$C_a(s) = \frac{4}{s^2 + 2s + 4}$$

to find the digital controller ($T=1\ \mathrm{s}$).

Q5.2 Repeat the previous question with a **backward difference**.

Q6.1 Design a digital filter by applying the bilinear transformation to the analog filter

$$C_a(s) = \frac{1}{s^2 + \sqrt{2}s + 1}$$

With T = 0.1 s.

Q6.2 Repeat the previous question and apply the prewarping at $\omega_0=1$ rad/s to find the new digital filter.

Q7. Answer the following questions to design a digital controller for the analog plant:

$$G(s) = \frac{1}{(s+1)(s+5)}$$

to

- 1) In order to obtain zero steady-state error, what kind of controller (i.e., PI, PD, or PID) should we choose?
- 2) To obtain a settling time less than $T_s < 2$ s and the natural frequency of $\omega_n = 5$ rad/s, what is the value of damping ratio ζ ?
- 3) What is the range of suitable sampling frequency?
- 4) Find the bilinear transform of the analog controller that you selected in question 1 (T = 1 s).