Formulae List

The maximum number of electrons in a shell (band) = $2N^2$

6.25 x 10^{18} electrons \rightarrow 1C of negative charge

Ohm's Law for ac:

$$\overline{V} = \overline{IZ}$$
 $\overline{I} = \frac{\overline{V}}{\overline{Z}} = \overline{VY}$ $\overline{Z} = \frac{\overline{V}}{\overline{I}}$

Capacitors:

Capacitive reactance, $X_C = \frac{1}{2\pi fC}$ in ohms

Inductors:

Inductive reactance, $X_L = 2\pi f L$ in ohms

AC Voltages and Currents:

$$\begin{split} I_{rms} &= I_p \ / \! \sqrt{\,2} = 0.7071 \,\, I_p & I_{p\text{-}p} &= 2I_p & I_{av} &= 2I_p \ / \pi = 0.637I_p \\ V_{rms} &= V_p \ / \! \sqrt{\,2} = \,\, 0.7071 \,\, V_p & V_{p\text{-}p} &= 2V_p & V_{av} &= 2V_p \ / \pi = 0.637V_p \end{split}$$

AC Impedance/Admittance:

Series circuit,

$$\overline{Z}_{R} = R \qquad \overline{Z}_{C} = -jX_{C} = -j\frac{1}{\omega C} = \frac{1}{\omega C} \angle -90^{\circ} \quad \overline{Z}_{L} = jX_{L} = j\omega L = \omega L \angle 90^{\circ} \quad \omega = 2\pi f$$

$$\overline{Z} = \overline{Z}_{1} + \overline{Z}_{2} + \overline{Z}_{3} + \dots \qquad \phi = \angle \overline{Z} = \angle \overline{I} = \tan^{-1} \frac{X_{tot}}{R_{tot}}$$

Parallel circuit,

$$\overline{Y}_{R} = G \qquad \overline{Y}_{C} = jB_{C} = j\omega C = \omega C \angle 90^{\circ} \qquad \overline{Y}_{L} = -jB_{L} = -j\frac{1}{\omega L} = \frac{1}{\omega L} \angle -90^{\circ} \qquad \omega = 2\pi f$$

$$\overline{Y} = \overline{Y}_{1} + \overline{Y}_{2} + \overline{Y}_{3} + \dots \qquad \phi = \angle \overline{Y} = \angle \overline{V}_{S} = \tan^{-1}\frac{B_{tot}}{G_{tot}}$$

AC Power:

$$S = V_S I = I^2 Z$$
 $P = V_S I \cos \phi = I^2 R$ $Q = V_S I \sin \phi = I^2 X$ $\cos \phi = \frac{P}{S}$

Diodes:

Forward voltage drop is 0.7 V for silicon diode and 0.3 V for germanium diode

$$Z_Z = \frac{\Delta V_Z}{\Delta I_Z}$$

Half-Wave Rectifier:

$$V_{out(p)} = V_{\sec(p)} - 0.7V$$

$$V_{AVG} = rac{V_{out(p)}}{\pi}$$
 $PIV = V_{\sec(p)}$

$$PIV = V_{\sec(p)}$$

Centre-Tapped Full-Wave Rectifier:

$$V_{out(p)} = \frac{V_{sec(p)}}{2} - 0.7V$$
 $V_{AVG} = \frac{2V_{out(p)}}{\pi}$ $PIV = 2V_{out(p)} + 0.7V$

$$V_{AVG} = \frac{2V_{out(p)}}{\pi}$$
 P

$$PIV = 2V_{out(p)} + 0.7V$$

Full-Wave Bridge Rectifier:

$$V_{out(p)} = V_{sec(p)} - 1.4 \ V \ V_{AVG} = \frac{2V_{out(p)}}{\pi} \ PIV = V_{out(p)} + 0.7 \ V$$

Ripple Factor:

$$r = \frac{V_{r(rms)}}{V_{DC}} \text{ where } V_{r(rms)} = \frac{V_{r(p-p)}}{2\sqrt{3}}$$

Line Regulation =
$$\left(\frac{\Delta V_{OUT}}{\Delta V_{IN}}\right) 100\%$$

$$\textbf{Line Regulation} = \left(\frac{\Delta V_{OUT}}{\Delta V_{IN}}\right) 100\% \qquad \textbf{Load Regulation} = \left(\frac{V_{NL} - V_{FL}}{V_{FL}}\right) 100\%$$

Transistors:

$$\begin{split} I_E &= I_C + I_B \qquad \beta_{DC} = \frac{I_C}{I_B} \qquad \alpha_{DC} = \frac{I_C}{I_E} \qquad \beta_{DC} = \frac{\alpha_{DC}}{1 - \alpha_{DC}} \\ V_{BE} &= 0.7V \qquad \qquad V_{CC} = V_{CE} + I_C R_C \\ V_{BB} &= V_{BE} + I_B R_B \qquad V_{CE} = V_{CB} + V_{BE} \end{split}$$

Operational Amplifiers

Voltage Gain of Inverting Amplifier:
$$-\frac{R_f}{R_i}$$

Voltage Gain of Non-inverting Amplifier:
$$1 + \frac{R_f}{R_i}$$

Output voltage of summing amplifier:

$$V_{O} = -\left(\frac{R_{f}}{R_{1}}V_{1} + \frac{R_{f}}{R_{2}}V_{2} + \frac{R_{f}}{R_{3}}V_{3} + \dots + \frac{R_{f}}{R_{n}}V_{n}\right) \text{ for "n" inputs}$$

Threshold Voltages for comparator with positive feedback:

Upper Trigger Point (UTP) =
$$\frac{R_2}{R_1 + R_2} (+V_{O[max]})$$

$$Lower \ Trigger \ Point \ (LTP) = \frac{R_2}{R_1 + R_2} (-V_{O[max]})$$