DIGITAL CIRCUITS AND SYSTEMS

Paper Code ECS-504

Course Credits 4

Lectures/ Week 3

Tutorials/ Week 1

Course description UNIT- I Electronic Devices

Energy bands in intrinsic and extrinsic silicon; Carrier transport: diffusion current, drift current, mobility and resistivity; Generation and recombination of carriers; Poisson and continuity equations; P-N junction, Zener diode, BJT, LED, photo diode and solar cell.

UNIT- II MOS Transistor

Metal Oxide Semiconductor (MOS) Structure, MOS System under External Bias, Structure and Operation of MOS Transistor (MOSFET), MOSFET Current-Voltage Characteristics, MOSFET Scaling and Small-Geometry Effects, MOSFET Capacitances.

UNIT-III MOS Inverters: Static and Switching Characteristics

Resistive-Load Inverter, Inverters with n-type MOSFET Load, CMOS Inverter; Delay-Time Definitions, Calculation of Delay Times, Inverter Design with Delay Constraints, Estimation of Interconnect Parasitics, Calculation of Interconnect Delay, Switching Power Dissipation of CMOS Inverters

UNIT-IV MOS Logic Circuits and Semiconductor Memories

MOS Logic Circuits with Depletion nMOS Loads, CMOS Logic Circuits, Complex Logic Circuits, CMOS Transmission Gates (Pass Gates); Latch and Flip-Flop Circuits, Static Random-Access Memory (SRAM) Circuits, Dynamic Random-Access Memory (DRAM) Circuits, Nonvolatile Memories.

UNIT-V Low-Power CMOS Logic Circuits

Need of Low power, Sources of Power Dissipation, Low-Power Design through Voltage Scaling, Estimation and Optimization of Switching Activity, Reduction of Switching Capacitance.

Pre-Requisite

None

Text / Reference book

- 1.Donald A. Neamen, "Semiconductor Physics and Devices: *Basics Principles*", 3rd Edition, Tata McGraw-Hill, 2002.
- 2. Sung Mo Kang, Yusuf Leblebici, "CMOS Digital Integrated Circuits: *Analysis and Design*", 3rd Edition, Tata McGraw-Hill, 2003.

Course Outcome

CO1: A thorough understanding of carrier transport in the semiconductor devices, and the working principle of basic semiconductor devices, such as diode, Zenor diode, BJT, LED, Photo detector, and Solar Cell etc.

CO2: An ability to explain the Operation and Scaling/Small-Geometry Effects of MOS Transistor (MOSFET).

CO3: A thorough understanding of the MOS Inverter Static and Switching Characteristics and to utilize basic understanding of the same to design complex MOS Logic Circuits.

CO4: An ability to design Complex MOS Logic Circuits and state of the Art Semiconductor Memories.

CO5: A thorough understanding of sources of power dissipation and their reduction of the same to design low power system.