ALTO Code Base and Deployments

Jordi Ros-Giralt and Kai Gao, on behalf of the ALTO Code Base Project

https://github.com/openalto

IETF Plenary 113

ALTO WG Session

3/23/2022

Table of Contents

- ALTO Architecture
- ALTO Code Base Project
- Project Management and Approach
- ALTO Deployments
- IETF Hackathon 113: ALTO Project

ALTO Architecture

IETF Application Layer Traffic Optimization WG

- IETF ALTO Charter:
 - Standardizing a network API that applications can query to get the state of the network and to use this information to optimize their performance.
- IETF ALTO history of applications / use cases:
 - Peer-to-peer applications → CDNs → {Cloud, Edge-computing, 5G, V2X, XR, Science}
- Participation from a variety of carriers, vendors and universities:
 - Nokia, Ericsson, Verizon, Comcast, Telefonica, Deutsche Telekom, Huawei, China Telecom, Google, Cisco, Samsung, Qualcomm, Yale University, Tsinghua/Sichuan/Tongi Universities, etc.

https://www.rfc-editor.org/rfc/rfc7285.txt

Figure 1: Basic ALTO Architecture

https://www.rfc-editor.org/rfc/rfc7285.txt

Figure 1: Basic ALTO Architecture

Figure 1: Basic ALTO Architecture

ALTO Code Base Project

IETF ALTO Code Base

Open-source vendor independent code

Open-source vendor independent and close-source vendor specific code

IETF ALTO Code Base

Open-source vendor independent code

Open-source vendor independent and close source vendor specific code

- The ALTO Code Base Project aims at providing a parallel track to the WG's standardization effort towards implementing the features introduced in the latest RFCs.
- IETF Hackathons will be used as 3-checkpoints a year to test interoperability, demo latest standard capabilities and identify issues and improvements for standardization.
- Identify and build production, open-source environments for use cases and deployment ("lean startup") to help steer ALTO standardization.

- Adopting industry standard Agile / Scrum methodologies to ensure:
 - Productivity
 - Quality
 - Participation
 - Lean startup, rough consensus running code
- Invoke community participation to develop the ALTO Code Base:
 - Two roles: developers and mentors.
 - Mentors are usually experienced members of the IETF ALTO WG
 - Developers usually come from universities and the industry in general
- Project management resources:
 - Repo: https://github.com/openalto/
 - Project Scrum Dashboard (IETF Hackathon 113): https://github.com/orgs/openalto/projects/1

Scrum dashboard:

ALTO Deployments

ALTO Deployments

- Current implementations/deployments:
 - Wiki list of implementations: https://trac.ietf.org/trac/alto/wiki/lmpl
 - Examples:
 - Comcast P4P: RFC 5632: https://datatracker.ietf.org/doc/html/rfc5632
 - Benocs: https://people.csail.mit.edu/gsmaragd/publications/CoNEXT2019/CoNEXT2019.pdf
 - Telefonica: https://dl.ifip.org/db/conf/im/im2021mini/212012.pdf
- Forthcoming new deployments (work in progress):
 - Pacific Research Platform
 - CERN Rucio
 - UCSD 5G
 - NY City Cosmos 5G
 - ESnet

IETF Hackathon 113: ALTO Project

Summary

- Demo setup
 - Network is simulated by Mininet
 - Applications are running as virtual hosts/containers
 - The demo environment is packed as multiple containers for future enhancement
- Capabilities
 - Source selection based on network map and cost map
 - Costs computed as inverse of bandwidth
- Code base
 - An open-source python client library is developed
 - Add the ALTO-based replica selection support to the Rucio scientific data management system

Goals in the 113 Hackathon

- Use ALTO Cost Maps to optimize dataset transfers for rucio, the main data management tool for LHC and other large projects.
- Integrate ALTO Northbound Interface with Rucio to provide visibility and achieve better performance.
- Show that it works.

^{*} ESnet / LHCONE source: https://www.es.net/about/

RFCs Involved During the Hackathon

- RFC 7285: Application-Layer Traffic Optimization (ALTO) Protocol https://datatracker.ietf.org/doc/rfc7285/
- I-Draft ALTO Extension: Flow-based Cost Query <u>https://datatracker.ietf.org/doc/draft-gao-alto-fcs/</u>
- I-Draft ALTO Performance Cost Metrics
 https://datatracker.ietf.org/doc/draft-ietf-alto-performance-metrics/

What Got Done

- Implementation of an ALTO Client in Python (RFC 7285)
- Integration with CERN Rucio replica download
 - Submitted pull request to Rucio Project:
 - https://github.com/rucio/rucio/pull/5364
- 3 Demos [https://github.com/openalto/ietf-hackathon/issues/8]
 - [D1] Single-flow replica node selection using ALTO BW Cost Map
 - [D2] ALTO Estimator: Multi-flow BW prediction
 - [D3] ALTO Scheduler: SLA-constrained multi-flow node selection
- Southbound ALTO integration with SDN:
 - Mininet/Pox, OpenDaylight
- Scrum dashboard: https://github.com/orgs/openalto/projects/1/views/1
- Lots of really interesting architecture discussions

ALTO Metrics

https://datatracker.ietf.org/doc/draft-ietf-alto-performance-metrics/

Metric	Definition in this doc	Semantics Based On	
One-way Delay	Section 3.1	Base: [RFC7471,8570,8571] sum Unidirectional Delay	
Round-trip Delay	Section 3.2	Base: Sum of two directions	
Delay Variation	Section 3.3	Base: [RFC7471,8570,8571] sum of Unidirectional Delay Variation	Metrics used in this hackathon
Loss Rate	Section 3.4	Base: [RFC74 <mark>7</mark> 1,8570,8571] sum Unidirectional Link Loss	
Residual Bandwidth	Section 4.2	Base: [RFC74 <mark>7</mark> 1,8570,8571] min Unidirectional Residual BW	
Available Bandwidth	Section 4.3	Base: [RFC747],8570,8571] min Unidirectional Avail. BW	
Utilized Bandwidth	Section 4.4	Base: [RFC7471,8570,8571] max Unidirectional Utilized BW	
TCP Throughput	 Section 4.1	[RFC8312bis]	
Hop Count	Section 3.5	[RFC7285]	

Table 1. Cost Metrics Defined in this Document.

IETF ALTO Code Base

Container Environment Description

docker-compose-with-rucio.yml

It provides the following containers:

Service/Container Name	Scope	Short Description	
mininet	Mininet	Extended mininet container for network simulation	
sflow	Mininet	Network flow sampling and monitoring	
odl	ALTO	ALTO server over OpenDaylight controller	
rucio	Rucio	Basic Rucio components	
ruciodb	Rucio	ProgresSQL database for Rucio	
fts	Rucio	File transfer system for Rucio	
ftsdb	Rucio	MySQL database for fts	
activemq	Rucio	Message queue for Rucio and fts scheduler	
krd{i} Storage		Xrootd storage node as Rucio RSE	
ssh{i}	Storage	SSH storage node as Rucio RSE	
minio	Storage	MinIO storage node as Rucio RSE	
graphite Monitoring		Graphtie server for Rucio internal monitoring	

docker-compose-with-rucio-monit.yml

Besides the containers above, it also provides the following additional containers:

Service/Container Name	Scope	Short Description
elasticsearch	Monitoring	ElasticSearch engine for more complicated monitoring data processing
kibana	Monitoring	Kibana dashboard for customized visualization
logstash	Monitoring	Data processing pipeline for ElasticSearch
grafana	Monitoring	Another dashboard for visualization

Demo 1: Single-flow Replica Node Selection Using ALTO BW Cost Map

Demo 1: Single-flow Replica Node Selection Using ALTO BW Cost Map

Demo 1: Single-flow Replica Node Selection Using ALTO Latency Cost Map

Demo 2: ALTO Estimator: Multi-flow Tput/BW Prediction


```
containernet> rc alto-estimator --alto-server http://minin
et:8181 --flows /opt/alto/tests/bwest/flows.demo
 -m json.tool
    "meta": {
        "cost-type": {
            "cost-mode": "numerical",
            "cost-metric": "tput"
    "endpoint-cost-map": {
        "ipv4:10.0.0.250": {
             "ipv4:10.0.0.251": 0.2221213202250089,
            "ipv4:10.0.0.252": 0.4420177233358019,
            "ipv4:10.0.0.254": 0.335860959248392
        "ipv4:10.0.0.251": {
            "ipv4:10.0.0.252": 0.2738144686147328,
            "ipv4:10.0.0.253": 0.2738145448368706,
            "ipv4:10.0.0.254": 0.23024966972090757
```

TCP throughput computed from network topology and TCP throughput modeling for bulk flows ([G2, PROPHET]).

Demo 3: ALTO Scheduler: SLA-constrained Multi-flow Node Selection

Example:

- Goal: download datasets file1, file3
- Replica selections: red versus yellow. Pick one replica that satisfies the SLA.

Problem

- Multiple datasets replicated on multiple hosts.
- Rucio dataset automation workflow requires a given SLA (e.g., time-bound constrained data transfers)
- Demo (partially finished)
 - ALTO ESTIMATOR (Demo) provides cost map predicting replication throughput
 - ALTO SCHEDULER searches among possible download configuration one that guarantees the SLA requirement.

Wrap Up and Looking Forward

- ALTO WG Contact:
 - IETF ALTO WG: https://datatracker.ietf.org/wg/alto/about/
- ALTO Code Base Project:
 - Repo: https://github.com/openalto/
 - IETF Hackathon 113 ALTO Scrum Dashboard: https://github.com/orgs/openalto/projects/1/views/1
- Potential Tasks/demos at IETF 114 hackathon:
 - Finishing Demo 3, ALTO with HTTP/2
 - ALTO for multiple experiments for Rucio and more production use cases
- Want to contribute to OpenALTO as a developer? Reach us out: jros at qti.qualcomm.com

Looking forward to seeing you in Philadelphia!