Implementación de soluciones de IoT y ML para negocios

BLUESHADO VS

astro-engineering

Germán Goñi | Biz Dev

ggoni@blueshadows.cl
https://www.linkedin.com/in/germangoni/

¿Qué es Internet Of Things (IoT)?

- Convergencia entre digital y físico
- Efecto transformacional en todas las industrias
- Nuevos modelos de negocios
- acerca de cosas, + acerca de servicios
- Tecnología como factor habilitante
- 4 elementos centrales
 - Dispositivos con conectividad integrada
 - Redes de conexión
 - Aplicaciones y tecnologías que potencian operaciones
 - Plataformas de servicio para capitalizar las interacciones (¡tiempo real!)

18 Gartner, Inc.

Algunos beneficios de IoT

- Crear y entregar nuevas experiencias a los clientes
- Automatizar procesos manuales y reducir tiempos de respuesta
- Monitorear operaciones en tiempo real
- Hacer mediciones más precisas de variables clave
- Proveer datos para implementar modelos predictivos

"As much as we'd like cellular to be everywhere, **it's not**"

Chris Penrose,
President of IoT
Solutions for AT&T

¡Los objetos
conectados crecerán
a tasas de ~19X el
crecimiento de la
población mundial
(CAGR)!

Proyectado por Año, en billones

Fuentes: Statista, Banco Mundial

¿Cuál es la relación con Big Data?

- loT capitaliza uso de datos provenientes de sensores
- Información contextual para descubrir patrones y correlaciones en tiempo real
- Tecnologías de Big Data deberán potenciarse para:
 - Ingerir
 - Almacenar
 - Asegurar continuidad de flujo
 - Procesamiento Cloud | On Premise | Fog
 - Extraer valor de forma continua
 - Gatillar acciones

Ejemplo:

~250 millones de autos al 2020

~ **25** Gb/hr (Gartner)

1,5 T USD al 2030 (McKinsey)

Algunos ejemplos concretos de IoT + ML

Mantenimiento predictivo

Monitoreo de carga

¿Cómo llegamos a este ámbito?

Data Flow through the SKA

Nuestro quehacer hoy

Un problema

Conteo de impresiones para reposición de insumos en cliente

Opciones de sensorización tradicional

- Sensores de proximidad
- Sensores fotoeléctricos (espesor submilimétrico)
- Ultrasonido
- Láser

En general estas resultan opciones técnicamente **no factibles** o **inviables** (alta gama)

Desafíos

- Contar con streaming de video online + gc
- Geometría de impresora
- Remoción de ruidos y fuentes de interferencia
- Iluminación constante
- Modelamiento y calibración de pulso
- Compromiso entre inversión, gasto y robustez técnica
- No invasivo: Proceso AS IS

Nuestra solución inicial: INVID

Nuestra solución: Implementación inicial

- Elección de región de interés (ROI)
- Analizar variación de intensidad luminosa
- Opciones
 - Análisis por amplitud
 - Análisis por correlación
- Inconvenientes con:
 - Flicks
 - Papeles en colores más oscuros
 - Condiciones degradadas (de >0,1% a sobre 50% de error)

Algunas decisiones

- ¡Simplificar el problema!
 - Rendimiento de Raspberry Pi vs Arquitectura CNN
 - ROI pierde relevancia
 - Consideraciones de luminosidad
 - Velocidad en fps
 - Escala de grises es suficiente
- ¡Redes neuronales son han convertido en el estándar, en particular Convolucionales (CNN)!
 - Plain Python (casi...)

¡Herejía!

Only Numpy: Implementing Convolutional Neural Network using Numpy (Deriving Forward Feed and Back Propagation) with interactive code

Convolutional Neural Network (CNN) many have heard it's name, well I wanted to know it's forward feed process as well as back propagation process. Since I am only going focus on the Neural Network part, I won't explain what convolution operation is, if you aren't aware of this operation please read this "Example of 2D Convolution" from songho it is amazing.

Fuentes: Towards Data Science, Medium

Nuestra solución final: INVID_NN

- Calibración manual de Dataset inicial (¡80% -20%!)
- Agregar iluminación
- Soporta diferentes tamaños de papel
- Soporta velocidades de impresión más lentas
- Funcionalidades de verificación

Resultados

- 1. Tasa de acierto sobre frames (>98%) nos lleva a conteo virtualmente sin error
- Implementación en presupuesto
- Optimización ajustada a dispositivos con capacidad de procesamiento disponible
- Consideraciones de Velocidad y Valor resueltas

Log Actividad

Registro historico de la actividad de la maquina

Event	Date	Status	
Operario reporta FALLA MECANICA	9/17 3:27pm	FAILURE	
RGMT estado DETENIDO	9/17 3:27pm	STOP	
RGMT estado SETUP	9/17 3:27pm	SETUP	
RGMT estado DETENIDO	9/17 3:27pm	STOP	
RGMT estado PRODUCCION	9/17 3:27pm	RUN	

Otro desafío actual...

Internet Fibra

Válido hasta el 31 Octubre.

PAIS

AGRICULTURA

23.10.2018 / 22:37

Ministro de Agricultura dijo que la reforma al código de aguas provocaba "incerteza jurídica"

El Ejecutivo preparó indicaciones para modificar los cambios que impulsó la administración anterior. Buscan reponer que los nuevos derechos otorgados sean a perpetuidad.

Artículo 307 bis.- La Dirección General de Aguas podrá exigir la instalación de sistemas de medición a los titulares de derechos de aprovechamiento de aquas superficiales u organizaciones de usuarios que extraigan aquas directamente desde cauces naturales de uso público. En el caso de los derechos no consuntivos, será obligatoria la instalación de sistemas de medición de caudal instantáneo, tanto en el punto de captación como en el punto de restitución, esto cuando el titular haya construido las obras necesarias para su uso. Dicho sistema deberá permitir que se obtenga, almacene y transmita a la Dirección General de Aguas la información indispensable para el control y medición del caudal instantáneo, efectivamente extraído y -en los usos no consuntivosrestituido, desde la fuente natural. El Servicio, por medio de una resolución fundada, determinará los plazos y las condiciones técnicas para cumplir dicha obligación.

Blue Monster: Monitoreo Pozos online

Blue Monster: Monitoreo Pozos online

- Despliegue de datos online
- Visualización en Smartphone y navegadores
- Alarmas
- Datos históricos
- Predicciones

Blue Monster: Monitoreo Pozos online

Nodo

- Microcontroladores: MSP430 de Texas Instrument
- Transmisión RF: Semtech LoRa SX1276
- Sensor Hidrostático HPT604

Gateway

Conectividad 3G / Ethernet / WiFi

Conclusiones y (Re)Aprendizajes

- Problema + su contexto sugieren la solución
- Hay soluciones ya probadas en dominios particulares: ¡Aplicarlas!
- Resistir la tentación al overkill : Big Data + Small Capacity
- No al Big Bang: Muchos activos están amortizándose
- Es clave integrar estándares tecnológicos propietarios con *Open Source*
- Foco en el cliente
- ¡Necesitaremos Expertos de Dominio!

¡Existe la necesidad local de integrar loT + ML y tenemos las capacidades para lograrlo!

¡Muchas Gracias!

BLUESHADO VS

astro-engineering

Germán Goñi | Biz Dev

ggoni@blueshadows.cl
https://www.linkedin.com/in/germangoni/