Tri Minh Nguyen

151 Taylor Ct, Unit 407, Princeton, NJ 08540, USA trin@princeton.edu ◆ +1(512) 203-1481 ◆ http://www.linkedin.com/in/trivoldus28/ ◆ http://trin.host

EDUCATION Princeton University, Princeton, NJ, USA

Sep 2012 – Present

Candidate, Doctor of Philosophy (Ph.D.) in Electrical Engineering

Master of Arts (M.A.) in Electrical Engineering

Adviser: Professor David Wentzlaff

University of Texas at Austin, Austin, TX, USA

Sep 2008 – May 2012

Bachelor of Science (B.S.) in Electrical and Computer Engineering

Graduated with High Honors. Cumulative GPA: 3.93 / 4.00

RESEARCH INTERESTS & EXPERTISE

Interests: manycore, throughput-oriented, GPU architecture, hardware accelerator, machine learning, deep learning (DNN/CNN/LSTM), neuromorphic computing.

Skills: architectural simulation, performance modeling, RTL design and verification, Android programming, deep learning frameworks.

Programming fluency: C/C++ 11, Python, Verilog, Java

RESEARCH EXPERIENCE

Princeton University

Research Assistant

Sep 2012 - Sep 2018

Bandwidth compression: Investigating the problem in throughput-oriented architectures (GPUs/Xeon Phi) and its solutions, including cache compression, link compression, efficient memory layout, efficient HBM/stacked-memory, etc.

NVM: Studied nonvolatile memory as a replacement for DRAM and provided a novel and high performance logging system for crash consistency.

Open-source projects:

- **OpenPITON processor**: Designed the cache system, cache-coherence protocol, network-on-chip protocol, and JTAG debug-port for PITON, a 25-core academic manycore processor. Verified the design with directed and randomized assembly tests. Synthesized the design with industrial tools (Synopsys) and taped out in IBM 32nm process. http://parallel.princeton.edu/piton/
- **PRIME open-source simulator**: key developer of PRIME, a fast, distributed parallel, scalable manycore simulator. https://github.com/PrincetonUniversity/primesim
 Advisor: Professor David Wentzlaff

University of Texas at Austin

Research Assistant

Sep 2011 – May 2012

- **Hardware accelerator:** Conducted a feasibility study of accelerating drug discovery using FPGA, through studying molecular dynamic (MD) algorithm and analyzing the integer/floating point performance of state-of-the-art FPGAs.
- **GPU:** Identify and optimize GPU workloads with dynamic compilation through similarity matrices. *Advisor: Professor VJ Reddi*

SELECTED PUBLICATIONS

Tri Nguyen, and David Wentzlaff, "PiCL: a Software-Transparent, Persistent Cache Log for Nonvolatile Main Memory," MICRO'18

Tri Nguyen, Adi Fuchs, and David Wentzlaff, "CABLE: Cache-based Link Compression for Manycore Architectures," MICRO'18

Tri Nguyen, and David Wentzlaff, "MORC: Manycore-oriented Cache Compression," MICRO'15

Yaosheng Fu, **Tri Nguyen**, and David Wentzlaff, "Coherence Domain Restriction on Massive Scale Systems," in MICRO'15

Michael McKeown, Yaosheng Fu, **Tri Nguyen**, Yanqi Zhou, Jonathan Balkind, Alexey Lavrov, Mohammad Shahrad, Samuel Payne, Xiaohua Liang, Matthew Matl, and David Wentzlaff "OpenPiton: An Open Source Manycore Research Framework," in ASPLOS'16

Michael McKeown, Yaosheng Fu, **Tri Nguyen**, Yanqi Zhou, Jonathan Balkind, Alexey Lavrov, Mohammad Shahrad, Samuel Payne, and David Wentzlaff "*Piton: A 25-core Academic Manycore Processor*," in *HotChips'16*

WORK EXPERIENCE

NVIDIA Research, Redmond, WA, USA

Jun 2017 - Sep 2017

Research Intern

Investigated and characterized the performance of cutting-edge GPU DNN machine learning algorithms including CNN and LSTM. Devised architectural improvements for future GPUs beyond Volta. Characterized GPU performance as a shared virtual GPU in the cloud. Contributed to the development of the internal GPU simulator widely used in company.

Manager: David Nellans

AMD Research, Boxborough, MA, USA

Jun 2016 - Sep 2016

Research Intern

Implemented state-of-the-art hardware compression algorithm for super-computing workloads and evaluated energy savings at the RTL/gate-level. Submitted a patent on a novel compression algorithm specifically designed to reduce data movement energy.

Manager: Greg Sadowski

NVIDIA, Santa Clara, CA, USA

May 2012 – Aug 2012

Intern

Wrote on-die oscilloscope extraction software for quality assurance and used it to analyze transient voltage noise as a cause of failures. Wrote and improved noise virus testing suite to increase fault coverage decrease test time.

Manager: Apoorv Gupta

Samsung, Suwon, South Korea

May 2011 – Aug 2011

Intern

Investigated the feasibility and benefits of data compression for solid-state drives (SSD), including gzip/DEFLATE, and with fixed block-based compression, and using fingerprinting for variable block-size compression.

Manager: Kyungho Kim

TEACHING EXPERIENCE

Princeton ELE301 – Design of Real Systems

Fall 2013 & Fall 2017

Assistant Instructor

Developed lab assignments for a new course at university. Led weekly lab sessions and designed Android-to-microcontroller interfacing labs.

UT Austin – Probability and Random Processes

Sep 2011 – Jan 2012

University Tutor

Instructor for the university's free tutoring program.

HONORS & AWARDS

Student Travel Grant, MICRO'17, ASPLOS'16, ISCA'15, ISCA'14

Supports from ACM, NSF, SIGMICRO, and others.

University Honors, University of Texas at Austin

2008 - 2012

Dec 2010

Third place, Final Project EE345L, Embedded Systems Design, UT Austin

Microcontroller as a gaming device with impressive 3D capability

First place in tank simulation AI competition.

Dec 2009

EE319K, Intro to Embedded Systems, UT Austin

ACTIVITIES

Princeton EE Musical MelodEE,

Mar 2017

Organizer

Eta Kappu Nu Honors Society, UT Austin

Sep 2010 – May 2012

Member

Study abroad, Sungkyunkwan University, South Korea

Jan 2011 – Jun 2011

Shotokai Karate Club, UT Austin

Sep 2008 – May 2010

Member then vice-president

Last updated: July 2018