Discrete operators in 2D

Staggered grid in 2D

Nx = 4, Ny = 3, $\Rightarrow N = Nx Ny = 12$ faces in x-dir.: Nfx = (Nx+1)Ny = 15faces in y-dir.: Nfy = Nx(Ny+1) = 16Total faces: Nf = Nfx + Nfy = 31

Discrete gradient in 2D:

Continuous gradient: $\nabla h = \begin{pmatrix} \frac{2h}{2k} \\ \frac{2h}{2y} \end{pmatrix}$ approximate $\frac{2h}{2x} - \frac{dhx}{dhx}$ on x-faces
approximate $\frac{2h}{2y} \sim dhy$ on y-faces
Choose to build \underline{G} such that the rec

Choose to build \underline{G} such that the resulting gradient vector is ordered as $\underline{dh} = \left[\frac{dhx}{dhy}\right]$

⇒ 2D Gradient can be decomposed as

Discrete divergence in 2D

Dx is N by Nfx

Dy is N by Nfy

$$\nabla \cdot q = \frac{3qx}{3x} + \frac{3qy}{3y} \approx \underline{D}q = \underline{D}x qx + \underline{D}y qy$$

$$\frac{f_3}{y} = \underline{D}x \qquad \underline{D}q \qquad qx$$

$$nfx \qquad nfy \qquad q$$

$$nfx \qquad nfy \qquad q$$

$$nfx \qquad nfx$$

$$\underline{D} \quad \text{is } N \text{ by } Nf$$

Building the 2D discrete divergence matrix

Suppose we add a second column a feels

with Dy ou diagonal

٥3	٥٤	٩
ه ک	ुर	. 8
øl	۲	, 7

lugeneral:

Dy is a block matrix with Nx by Nx blocks of size Ny by (Ny+1). Diagonal blocks are Dy and all others are zero.

Tensor product construction of Dy

The discrete 2D operator can easily and efficiently be assembled using Konecker/tensor products.

Definition:

If A is a mxn matrix and B is a pxg matrix, then the Kronecker product A & B is the mpxng block matrix:

$$\underline{A} \otimes \underline{B} = \begin{bmatrix} a_{11} \underline{B} & \cdots & a_{1n} \underline{B} \\ \vdots & \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ a_{m1} \underline{B} & \cdots & a_{mn} \underline{B} \end{bmatrix}$$

Hence we can construct Dy as

Hence we can construct
$$Dy^2$$
 as
$$Dy^2 = Ix \otimes Dy' = Dy'$$

$$Dy'$$

$$Dy'$$

where Ix is a Nx by Nx identity matrix. In Matlab the tensor product is obtained as

$$\frac{Dy}{T} = kron(Ix, Dy);$$

$$10 op$$

So how do we build Dx2?

But what does Dx2 look like on a y-first grid?

>	3	o ³	× ⁶	06	9	۹۰	داء	on:	c ¹⁵
>	2	٥	× ⁵	• ⁵	(8	0 8	ζü	o ^{ll}	c ^{l4}
>	دا	٥١	×	o ⁴ ;	ζ₹	o 7	K ₁₀	a lo	^{ا3}

⇒ Dx is a sparse diagonal matrix

(this could be assembled with spaings)

Dx² is also a block matrix built from

Ny by Ny Identifies matrices.

In Hatlab: Dx = kron (Dx, Iy)

Discrete gradient matrix

The Gx and Gy matrices could be built using 1D matrices and Kronecker products. Instead, we use the fact that the D and G matrices are adjoints:

Need to impose natural $BCs. \Rightarrow set G = 0$ on all boundary faces.

Make vector containing all bond faces: dof_f_bond = [dof_f_xmin; dof_f_xmax; ...

dof_f_ymin; dof_f_ymax];

Zero out corresponding rows in G: G(doff-bnd,:) = 0;