IN THE CLAIMS

1	1.	A method of chemical vapor deposition on a substrate comprising:		
2		a)	placing a substrate on a carrier and in a deposition chamber;	
3		b)	rotating said substrate;	
4		c)	heating said substrate, said heating applied to create a temperature	
5			gradient above a deposition surface of said substrate wherein the	
6			temperature increases with increasing distance from said deposition	
7			surface; and	
8		d)	providing a flow of process gas across a surface of said substrate.	
14. 14. 14. 14. 14. 14. 14. 14. 14. 14.	2.	A met	hod as recited in claim 1 wherein said heating brings said substrate to a	
2	temperature to cause chemical vapor deposition.			
	3.	A metl	nod as recited in claim 1 wherein said heating is accomplished with a first	
2	heater radiating toward said deposition surface, and with a second heater radiating toward a back			
	surface of said substrate.			
	4.	A met	hod as recited in claim 3 wherein said first heater radiates a different	
2	amount of heat energy than said second heater.			
1	5.	A metl	nod as recited in claim 4 wherein said heating includes a first thermal plate	
2	between said	between said first heater and said substrate, and a second thermal plate between said second		
3	heater and sai	d substr	ate.	
1	6.	A met	hod as recited in claim 5 wherein said temperature gradient includes a	
2	temperature difference in the range of 100°C to 200°C between said first plate and said second			
3	plate.			

- 7. A method as recited in claim 1 wherein said providing includes supplying said process gas at a flow rate in the range of 200 sccm to 800 sccm.
- 1 8. A method as recited in claim 1 wherein said providing includes passing said 2 process gas over said substrate at a gas velocity in excess of 100 cm/sec.
- 9. A method as recited in claim 1 wherein said providing includes injecting said process gas at said surface of said wafer with gas injectors so as to concentrate said gas at said surface.
 - 10. A method as recited in claim 9 wherein said gas injectors are temperature controlled.
 - 11. A method as recited in claim 9 wherein said gas injectors are directed at said deposition surface.
 - 12. A method as recited in claim 1 wherein said temperature gradient has a magnitude in the range of 50 to 100° C per inch.

60116473V1 12

1

2 and a seed about 11 strong about the control of t

i Rab