16. Treatments in many time periods. What to do.

lan Lundberg
Cornell Info 6751: Causal Inference in Observational Settings
Fall 2022

Learning goals for today

At the end of class, you will be able to:

- 1. Reason about the sequential ignorability assumption
- 2. Apply inverse probability weighting to treatments over time

A joint adjustment set for \bar{A} is doomed

A joint adjustment set for \bar{A} is doomed

▶ What happens if you adjust for L_1 ?

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow |L_1| \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for L_1 ?

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for L_1 ?
 - ▶ A backdoor path remains: $A_1 \leftarrow L_1 \rightarrow Y$

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for L_1 ?
 - ▶ A backdoor path remains: $A_1 \leftarrow L_1 \rightarrow Y$

What to do?

A joint adjustment set for \bar{A} is doomed

- ▶ What happens if you adjust for L_1 ?
 - ▶ You block a causal path: $A_0 \rightarrow \boxed{L_1} \rightarrow Y$
 - ▶ You open a backdoor path: $A_0 \rightarrow \boxed{L_1} \leftarrow U \rightarrow Y$
- ▶ What happens if you don't adjust for L_1 ?
 - ▶ A backdoor path remains: $A_1 \leftarrow L_1 \rightarrow Y$

What to do? [Class Exercise]

An ideal case: The sequentially randomized experiment

1. randomize treatment at time 0, then

- 1. randomize treatment at time 0, then
- 2. randomize treatment at time 1, then

- 1. randomize treatment at time 0, then
- 2. randomize treatment at time 1, then
- 3. . . .

- 1. randomize treatment at time 0, then
- 2. randomize treatment at time 1, then
- 3. . . .
- 4. randomize treatment at time k

An ideal case: The sequentially randomized experiment

- 1. randomize treatment at time 0, then
- 2. randomize treatment at time 1, then
- 3. . . .
- 4. randomize treatment at time k

Then you can estimate $E(Y^{a_1,...,a_k})$ by $E(Y \mid \vec{A} = \vec{a})$.

A sequential conditionally randomized experiment

1. At time 0,

- 1. At time 0,
 - ightharpoonup Measure covariates \vec{L}_0

- 1. At time 0,
 - ightharpoonup Measure covariates \vec{L}_0
 - lacktriangle Define a probability of treatment at each confounder value $\vec{\ell}_0$

- 1. At time 0,
 - ightharpoonup Measure covariates \vec{L}_0
 - lacktriangle Define a probability of treatment at each confounder value $\vec{\ell}_0$
 - ightharpoonup Randomly assign treatment A_0

- 1. At time 0,
 - ightharpoonup Measure covariates \vec{L}_0
 - lacktriangle Define a probability of treatment at each confounder value $\vec{\ell}_0$
 - ightharpoonup Randomly assign treatment A_0
- 2. At time 1.
 - ightharpoonup Measure covariates \vec{L}_1
 - ▶ Define a probability of treatment at each treatment history A_0 and confounder history $(\vec{\ell_0}, \vec{\ell_1})$
 - ightharpoonup Randomly assign treatment A_1

- 1. At time 0,
 - ightharpoonup Measure covariates \vec{L}_0
 - lacktriangle Define a probability of treatment at each confounder value $\vec{\ell}_0$
 - ightharpoonup Randomly assign treatment A_0
- 2. At time 1.
 - ightharpoonup Measure covariates \vec{L}_1
 - ▶ Define a probability of treatment at each treatment history A_0 and confounder history $(\vec{\ell_0}, \vec{\ell_1})$
 - ightharpoonup Randomly assign treatment A_1
- 3. . . .

- 1. At time 0,
 - ightharpoonup Measure covariates \vec{L}_0
 - lacktriangle Define a probability of treatment at each confounder value $\vec{\ell}_0$
 - ► Randomly assign treatment A₀
- 2. At time 1.
 - ightharpoonup Measure covariates \vec{L}_1
 - ▶ Define a probability of treatment at each treatment history A_0 and confounder history $(\vec{\ell_0}, \vec{\ell_1})$
 - ightharpoonup Randomly assign treatment A_1
- 3. . . .
- 4. Repeat up to time k

A sequential conditionally randomized experiment

- 1. At time 0,
 - ightharpoonup Measure covariates \vec{L}_0
 - ightharpoonup Define a probability of treatment at each confounder value $\vec{\ell}_0$
 - ightharpoonup Randomly assign treatment A_0
- 2. At time 1.
 - ightharpoonup Measure covariates \vec{L}_1
 - ▶ Define a probability of treatment at each treatment history A_0 and confounder history $(\vec{\ell_0}, \vec{\ell_1})$
 - ightharpoonup Randomly assign treatment A_1
- 3. ...
- 4. Repeat up to time k

Then you can estimate $E(Y^{a_1,...,a_k})$ by the methods to come

Notation

- $\blacktriangleright \ \bar{A}_k = (A_0, A_1, \dots, A_k)$
- $\blacktriangleright \ \bar{L}_k = (L_0, L_1, \ldots, L_k)$
- ► g()
- Yg

treatments up to time k confounders up to time k

treatment strategy

potential outcome under that strategy

for all assignment rules g and time periods $k = 1, \dots, K$

Holds by design in sequentially randomized experiments. Holds by assumption in observational studies.

Estimation: Two strategies

- 1. Inverse probability weighting (+ marginal structural models)
- 2. Structural nested mean models (coming next class)

Inverse probability weighting: DAG motivation

We observe data from this model

Inverse probability weighting: DAG motivation

We observe data from this model

We want this

In time 0, define an inverse probability of treatment weight such that $A_0 \perp \!\!\! \perp L_0$ in the weighted pseudo-population

$$W^{A_0} = \frac{1}{\mathsf{P}(A_0 \mid L_0)}$$

In time 0, define an inverse probability of treatment weight such that $A_0 \perp \!\!\! \perp L_0$ in the weighted pseudo-population

$$W^{A_0} = \frac{1}{\mathsf{P}(A_0 \mid L_0)}$$

Repeat in every time period t

$$W^{A_t} = rac{1}{\mathsf{P}(A_0 \mid ar{A}_{t-1}, ar{L}_t)}$$

In time 0, define an inverse probability of treatment weight such that $A_0 \perp \!\!\! \perp L_0$ in the weighted pseudo-population

$$W^{A_0} = \frac{1}{\mathsf{P}(A_0 \mid L_0)}$$

Repeat in every time period t

$$W^{A_t} = \frac{1}{\mathsf{P}(A_0 \mid \bar{A}_{t-1}, \bar{L}_t)}$$

Define the overall weight as the product

$$W^{\bar{A}} = \prod_{k=0}^K \frac{1}{\mathsf{P}(A_k \mid \bar{A}_{k-1}, \bar{L}_k)}$$

What did we accomplish?

What did we accomplish? The weight

$$W^{\bar{A}} = \prod_{k=0}^K \frac{1}{\mathsf{P}(A_k \mid \bar{A}_{k-1}, \bar{L}_k)}$$

What did we accomplish? The weight

$$W^{ar{A}} = \prod_{k=0}^K rac{1}{\mathsf{P}(A_k \mid ar{A}_{k-1}, ar{L}_k)}$$

Takes us from this

What did we accomplish? The weight

$$W^{\bar{A}} = \prod_{k=0}^K \frac{1}{\mathsf{P}(A_k \mid \bar{A}_{k-1}, \bar{L}_k)}$$

Takes us from this

to this pseudo-population

Wodtke et al. 2011

Wodtke, G. T., Harding, D. J., & Elwert, F. (2011). Neighborhood effects in temporal perspective: The impact of long-term exposure to concentrated disadvantage on high school graduation.

American Sociological Review, 76(5), 713-736.

Real example: Neighborhood disadvantage Wodtke et al. 2011

Real example: Neighborhood disadvantage Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

► Define a neighborhood as a Census tract

Wodtke et al. 2011

- ► Define a neighborhood as a Census tract
- Score that neighborhood along several dimensions
 - poverty
 - ▶ unemployment
 - welfare receipt
 - ► female-headed households
 - ► education
 - occupational structure

Wodtke et al. 2011

- ► Define a neighborhood as a Census tract
- Score that neighborhood along several dimensions
 - poverty
 - ▶ unemployment
 - ▶ welfare receipt
 - ► female-headed households
 - education
 - occupational structure
- ► Scale by the first principle component

Wodtke et al. 2011

- ► Define a neighborhood as a Census tract
- ► Score that neighborhood along several dimensions
 - poverty
 - ▶ unemployment
 - ► welfare receipt
 - ► female-headed households
 - education
 - occupational structure
- ► Scale by the first principle component
- ► Categorize in 5 quintiles

Wodtke et al. 2011

How does the neighborhood in which a child lives affect that child's probability of high school completion?

- ► Define a neighborhood as a Census tract
- ► Score that neighborhood along several dimensions
 - poverty
 - ▶ unemployment
 - ► welfare receipt
 - ► female-headed households
 - ► education
 - occupational structure
- ► Scale by the first principle component
- ► Categorize in 5 quintiles

This 5-value treatment is "neighborhood disadvantage"

Wodtke et al. 2011

Neighborhoods are experienced over time:

ā

is a trajectory of neighborhood disadvantage over ages $2, 3, \ldots, 17$

The authors study the effect of neighborhood disadvantage,

$$E(Y_{\bar{a}} - Y_{\bar{a}'}) = E(Y_{\bar{a}}) - E(Y_{\bar{a}'})$$

= $P(Y_{\bar{a}} = 1) - P(Y_{\bar{a}'} = 1),$ (1)

Example:

 \bar{a} is residence in the most advantaged neighborhood each year and

 $\bar{a'}$ is residence in the most disadvantaged neighborhood each year

Wodtke et al. 2011

Problem: Neighborhoods A_1 shape family characteristics L_2 , which confound where people live in the future A_2

Figure 1. Causal Graphs for Exposure to Disadvantaged Neighborhoods with Two Waves of Follow-up

 $Note: A_k = \text{neighborhood context}, \ L_k = \text{observed time-varying confounders}, \ U = \text{unobserved factors}, \ Y = \text{outcome}.$

Table 2. Time-Dependent Sample Characteristics

Variable	Blacks $(n = 834)$			Nonblacks $(n = 1,259)$		
	Age 1	Age 10	Age 17	Age 1	Age 10	Age 17
NH disadvantage index, percent						
1st quintile	3.48	3.60	3.48	13.34	19.14	20.65
2nd quintile	3.24	3.72	6.00	19.46	18.67	21.84
3rd quintile	5.28	5.88	7.79	26.13	23.27	22.48
4th quintile	14.87	18.11	18.47	26.13	23.99	21.13
5th quintile	73.14	68.71	64.27	14.93	14.93	13.90
FU head's marital status, percent						
Unmarried	33.93	44.84	52.04	5.88	11.36	15.09
Married	66.07	55.16	47.96	94.12	88.64	84.91
FU head's employment status, percent						
Unemployed	27.22	32.61	33.09	8.10	8.02	9.69
Employed	72.78	67.39	66.91	91.90	91.98	90.31
Public assistance receipt, percent						
Did not receive AFDC	81.06	75.66	82.37	96.27	96.19	97.93
Received AFDC	18.94	24.34	17.63	3.73	3.81	2.07
Homeownership, percent						
Do not own home	69.66	53.48	50.12	40.19	22.32	20.73
Own home	30.34	46.52	49.88	59.81	77.68	79.27
FU income in \$1,000s, mean	19.68	25.04	27.45	32.59	46.65	57.50
FU head's work hours, mean	30.08	26.82	27.51	42.65	40.84	40.68
FU size, mean	5.75	5.32	4.81	4.22	4.69	4.33
Cum. residential moves, mean	.32	2.48	3.64	.32	2.16	3.02

Note: NH = neighborhood; FU = family unit. Statistics reported for children not lost to follow-up before age 20 (first imputation dataset).

Wodtke et al. 2011

Problem: Neighborhoods A_1 shape family characteristics L_2 , which confound where people live in the future A_2

Figure 1. Causal Graphs for Exposure to Disadvantaged Neighborhoods with Two Waves of Follow-up

 $Note: A_k = \text{neighborhood context}, L_k = \text{observed time-varying confounders}, U = \text{unobserved factors}, Y = \text{outcome}.$

Solution: MSM-IPW

$$w_{i} = \prod_{k=1}^{K} \frac{1}{P(A_{k} = a_{ki} \mid \overline{A}_{k-1} = \overline{a}_{(k-1)i}, \overline{L}_{k} = \overline{l}_{ki})} \cdot (4)$$

Also with stabilized weights

$$sw_{i} = \prod_{k=1}^{K} \frac{P(A_{k} = a_{ki} \mid \overline{A}_{k-1} = \overline{a}_{(k-1)i}, L_{0} = l_{0})}{P(A_{k} = a_{ki} \mid \overline{A}_{k-1} = \overline{a}_{(k-1)i}, \overline{L}_{k} = \overline{l}_{ki})}, (5)$$

Real example: Neighborhood disadvantage
Wodtke et al. 2011

Problem: Huge number of treatments

Real example: Neighborhood disadvantage Wodtke et al. 2011

Problem: Huge number of treatments

► 5 levels of neighborhood disadvantage

Wodtke et al. 2011

Problem: Huge number of treatments

- ► 5 levels of neighborhood disadvantage
- ► 16 time periods

Problem: Huge number of treatments

- ► 5 levels of neighborhood disadvantage
- ▶ 16 time periods
- ▶ $16^5 = 1,048,576$ possible treatment vectors \vec{A}

Digression: Marginal structural models in dynamic settings

Recall that when A takes many values, we can fit a marginal structural model

Digression: Marginal structural models in dynamic settings

Recall that when A takes many values, we can fit a marginal structural model

► Example: $E(Y^a) = \alpha + \beta a$

Digression: Marginal structural models in dynamic settings

Recall that when \boldsymbol{A} takes many values, we can fit a marginal structural model

- ightharpoonup Example: $E(Y^a) = \alpha + \beta a$
- Estimate by $E^{PP}(Y \mid A = a)$ where E^{PP} is the expectation in the pseudopopulation weighted so that treatment is independent of confounders.

Digression: Marginal structural models in dynamic settings Wodtke et al. 2011

Digression: Marginal structural models in dynamic settings Wodtke et al. 2011

MSMs also apply in dynamic settings where \vec{A} is a vector over time.

Digression: Marginal structural models in dynamic settings $_{\text{Wodtke et al. }2011}$

MSMs also apply in dynamic settings where \vec{A} is a vector over time.

From Wodtke et al. 2011:

$$logit(P(Y_{\bar{a}} = 1)) = \theta_0 + \theta_1 \left(\sum_{k=1}^{16} a_k / 16 \right). \quad (2)$$

Digression: Marginal structural models in dynamic settings Wodtke et al. 2011

MSMs also apply in dynamic settings where \vec{A} is a vector over time.

From Wodtke et al. 2011:

$$logit(P(Y_{\bar{a}} = 1)) = \theta_0 + \theta_1 \left(\sum_{k=1}^{16} a_k / 16 \right). \quad (2)$$

Interpretation: \bar{a} is duration-weighted exposure

Results: Neighborhood disadvantage

Wodtke et al. 2011

Results: Neighborhood disadvantage

Wodtke et al. 2011

Figure 3. Predicted Probability of High School Graduation by Neighborhood Exposure History

Note: NH = Neighborhood

Learning goals for today

At the end of class, you will be able to:

- 1. Reason about the sequential ignorability assumption
- 2. Apply inverse probability weighting to treatments over time

Let me know what you are thinking

tinyurl.com/CausalQuestions

Office hours TTh 11am-12pm and at calendly.com/ianlundberg/office-hours Come say hi!