1

Assignment 12

Ayush Kumar

Download latex-tikz codes from

https://github.com/ayushkesh

1 Problem

$$\mathbf{M} = \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 \\ 0 & 1 & 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & 0 & 4 & 4 \\ 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$
 (1.0.1)

$$\mathbf{b}_{1} = \begin{pmatrix} 5\\1\\1\\4 \end{pmatrix}, \mathbf{b}_{2} = \begin{pmatrix} 5\\1\\3\\3 \end{pmatrix}. \tag{1.0.2}$$

Then which of the following are true?

- 1) both systems $\mathbf{M}\mathbf{x} = \mathbf{b}_1$ and $\mathbf{M}\mathbf{x} = \mathbf{b}_2$ are inconsistent.
- 2) both systems $\mathbf{M}\mathbf{x} = \mathbf{b}_1$ and $\mathbf{M}\mathbf{x} = \mathbf{b}_2$ are consistent.
- 3) the system $\mathbf{M}\mathbf{x} = \mathbf{b}_1 \mathbf{b}_2$ is consistent.
- 4) the system $\mathbf{M}\mathbf{x} = \mathbf{b}_1 \mathbf{b}_2$ is inconsistent.

2 EXPLANATION

See Table 4

Given	$\mathbf{M} = \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 \\ 0 & 1 & 0 & -1 & 3 & 4 \\ 0 & 0 & 1 & 0 & 4 & 4 \\ 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}, \mathbf{b_1} = \begin{pmatrix} 5 \\ 1 \\ 1 \\ 4 \end{pmatrix}, \mathbf{b_2} = \begin{pmatrix} 5 \\ 1 \\ 3 \\ 3 \end{pmatrix}$	$\begin{pmatrix} 5 \\ 1 \\ 3 \\ 3 \end{pmatrix}$ (2.0.1)	
Solution	Solving for $Mx = b_1$, Row Reducing the augmented matrix		
	$\begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 & 5 \\ 0 & 1 & 0 & -1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 0 & 4 & 4 & 1 \\ 1 & 1 & 1 & 0 & 1 & 1 & 4 \end{pmatrix}$	(2.0.2)	
	$ \begin{array}{c} \stackrel{R_4 \leftarrow 2R_4 - R_1}{\longleftarrow} \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 & 5 \\ 0 & 1 & 0 & -1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 0 & 4 & 4 & 1 \\ 0 & 0 & -1 & 0 & -4 & -4 & 1 \end{pmatrix} $	(2.0.3)	
	$\xrightarrow{R_4 \leftarrow R_4 + R_3} \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 & 5 \\ 0 & 1 & 0 & -1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 0 & 4 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$	(2.0.4)	
	$\implies Rank(M) = 3, Rank(M \mathbf{b_1}) = 4$	(2.0.5)	
	$\implies Rank(M) \neq Rank(M \mathbf{b_1})$	(2.0.6)	
	Solving for $Mx = b_2$, Row Reducing the augmented matrix		
	$\begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 & 5 \\ 0 & 1 & 0 & -1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 0 & 4 & 4 & 3 \\ 1 & 1 & 1 & 0 & 1 & 1 & 3 \end{pmatrix}$	(2.0.7)	
	$ \xrightarrow[R_4 \leftarrow R_4 + 2R_2]{R_4 \leftarrow R_4 + 2R_2} \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 & 5 \\ 0 & 1 & 0 & -1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 0 & 4 & 4 & 3 \\ 0 & 0 & -1 & 0 & -4 & -4 & -1 \end{pmatrix} $	(2.0.8)	
	$\xrightarrow{R_4 \leftarrow R_4 + R_3} \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 & 5 \\ 0 & 1 & 0 & -1 & 3 & 4 & 1 \\ 0 & 0 & 1 & 0 & 4 & 4 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 \end{pmatrix}$	(2.0.9)	
	$\implies Rank(M) = 3, Rank(M \mathbf{b_2}) = 4$	(2.0.10)	
	$\implies Rank(M) \neq Rank(M \mathbf{b_2})$	(2.0.11)	
	Solving for $Mx = (b_1 - b_2)$, Row Reducing the augmented matrix		

	(2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(2.0.12)	
	$ \stackrel{R_4 \leftarrow R_4 + R_3}{\longleftrightarrow} \begin{pmatrix} 2 & 0 & 3 & 2 & 0 & -2 & 0 \\ 0 & 1 & 0 & -1 & 3 & 4 & 0 \\ 0 & 0 & 1 & 0 & 4 & 4 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} $	(2.0.14)	
	\implies Rank $(M) = 3$, Rank $(M (\mathbf{b_1} - \mathbf{b_2})) = 3$	(2.0.15)	
	$\implies Rank(M) = Rank(M (b_1 - b_2))$	(2.0.16)	
Statement 1	Both systems $Mx = b_1$ and $Mx = b_2$ are inconsistent		
	Eq.(2.0.6) and $(2.0.11)$ violate the condition of c	consistency (2.0.17)	
	True Statement		
Statement 2	Both systems $Mx = b_1$ and $Mx = b_2$ are consistent		
	Eq.(2.0.6) and $(2.0.11)$ violate the condition of consistency $(2.0.18)$		
	False Statement		
Statement 3	Systems $\mathbf{M}\mathbf{x} = \mathbf{b_1} - \mathbf{b_2}$ are consistent		
	Eq.(2.0.16) satisfy the condition of consistency (2.0.19)		
	True Statement		
Statement 4	Systems $\mathbf{M}\mathbf{x} = \mathbf{b}_1 - \mathbf{b}_2$ are inconsistent		
	Eq.(2.0.16) satisfy the condition of consistency	(2.0.20)	
	False Statement		

TABLE 4: Explanation