Lecture No. 50 DC Motor (Types & Characteristics)

Lecture delivered by:

Objectives

At the end of this lecture, student will be able to:

- Classify DC Motors based upon methods of excitation
- Derive an expression for torque developed in a DC Motor
- Discuss Speed-Torque characteristics of DC Motors
- Explain methods of Speed Control

Methods of Excitation of DC

Methods of Excitation of DC Machines

- In DC machine current carrying conductors rotate inside static magnetic field.
- DC machine can be termed as an electro mechanical energy converter which only works in the presence of a field excitation.
- Two types of excitation present for dc machine
 - 1. Separate excitation
 - 2. Self excitation

Separate Excitation

Field excitation is only possible by dc supply

Self Excitation

A self excited dc machine can be divided into:

1. Series excitation – in this case the field is in series with the rotor and the armature current itself acts as the field current

Self Excitation

- 2. Shunt excitation- when the field is in the parallel with the armature, then that excitation is called shunt excitation.
- 3. Compound excitation- both series and shunt excitation winding is present in the circuit then this is called

compound excitation.

Self Excitation

Short Shunt DC Motor

Long Shunt DC Motor

Torque of a D.C. Machine

For a D.C. Motor, the supply voltage V is given by

$$V = E + I_a R_a$$

Multiplying each term by current la gives:

$$VI_a = EI_a + I_a^2 R_a$$

- The term VI_a is the total electrical power supplied to the armature, the term $I_a^2R_a$ is the loss due to armature resistance, and the term EI_a is the mechanical power developed by the armature
- If T is the torque, in newton metres, then the mechanical power developed is given by $T\omega$ watts

Hence
$$T\omega = 2\pi nT = EI_a$$
 from which,

torque
$$T = \frac{EI_a}{2\pi n}$$
 newton metres

Torque of a D.C. Machine

The e.m.f. E generated is given by:

$$E = \frac{2p\Phi nZ}{c}$$
 Hence $2\pi nT = EI_a = \left(\frac{2p\Phi nZ}{c}\right)I_a$ and torque
$$T = \frac{\left(\frac{2p\Phi nZ}{c}\right)I_a}{2\pi n}$$

i.e.,
$$T = \frac{p\Phi ZI_a}{\pi c}$$
 newton metres

For a given machine, Z, c and p are fixed values Hence torque $T\alpha\Phi I_a$

Problem

• **Problem 14**. An 8-pole D.C. motor has a wave-wound armature with 900 conductors. The useful flux per pole is 25 mWb. Determine the torque exerted when a current of 30 A flows in Sol^{n} each armature conductor.

$$p = 4, c = 2$$
 for a wave winding, $\phi = 25 \times 10^{-3} Wb$, $Z = 900$
 $I_a = 30A$

torque
$$T = \frac{p\Phi ZI_a}{\pi c}$$

= $\frac{(4)(25 \times 10^{-3})(900)(30)}{\pi(2)} = 429.7 Nm$

Speed Torque Characteristics (Shunt)

$$n = \frac{V - I_a R_a}{k \varphi}$$

- The graph above shows a torque/speed curve of a D.C. shunt motor.
- For shunt motors Φ will be constant, and Torque is proportional to ΦIa, hence the curve will be straight

line with –ve slope

Speed Torque Characteristics (Series)

$$T \propto \varphi I_a$$

$$n = \frac{V - I_a R_a}{k\varphi}$$

In linear region,

$$T \propto I_a^2$$

In saturation region,

$$n = \frac{V}{k'I_a} - \frac{R_a}{k'}$$

$$T \propto \varphi_{sat} I_a$$

$$n = \frac{V - I_a R_a}{k' \varphi_{sat}}$$

Speed Torque Characteristics (Series)

Torque Vs. Current

Speed Vs. Current

Speed Torque Characteristics

Speed Vs.

- •Series motor should never be started with no load
- •It is not suitable for constant speed applications

Speed Torque Characteristics

- Motor characteristics are frequently given as two points on this graph:
 - The stall torque, represents the point on the graph at which the torque is a maximum, but the shaft is not rotating
 - The no load speed, is the maximum output speed of the motor (when no torque is applied to the output shaft)

Speed Torque Characteristics

 As the motor starts to rotate and picks up speed, the developed torque decreases. The motor finally comes to a stable operating point when the two torques balance each other

Speed Control of DC Motors

- Shunt-wound Motors: The speed of a shunt-wound D.C. motor, n, is proportional to $(V-I_aR_a)/\phi$
- The former is achieved by using a variable resistor in series with the field winding, such a resistor is called the shunt field regulator

$$n \alpha \frac{V - I_a(R_a + R)}{\Phi}$$

Shunt Wound Motors

Problem

- Problem 16. A 500 V shunt motor runs at its normal speed of 10 rev/s when the armature current is 120 A.
 The armature resistance is 0.2
 - (a) Determine the speed when the current is 60 A and a resistance of 0.5 is connected in series with the armature, the shunt field remaining constant
 - (b) Determine the speed when the current is 60 A and the shunt field is reduced to 80% of its normal value by increasing resistance in the field circuit

 Sol^n

(a) back e.m.f at 120A,
$$E_1 = V - I_a R_a$$

= $500 - (120)(0.2)$
= $500 - 24 = 476 \text{ volts}$

When
$$I_a = 60A$$
, $E_2 = 500 - (60)(0.2 + 0.5)$
= 458 volts

$$Now \ \frac{E_1}{E_2} = \frac{\Phi_1 n_1}{\Phi_2 n_2}$$

i.e.,
$$\frac{476}{458} = \frac{\Phi_1(10)}{\Phi_2 n_2} \sin ce \, \Phi_2 = \Phi_1$$

from which, speed
$$n_2 = \frac{(10)(458)}{(476)} = 9.62 \text{ rev/s}$$

(b) Back e.m.f when
$$I_a = 60A$$
, $E_2 = 500 - (60)(0.2)$
= 488 volts

$$Now \ \frac{E_1}{E_2} = \frac{\Phi_1 n_1}{\Phi_2 n_2}$$

i.e.,
$$\frac{476}{458} = \frac{\Phi_1(10)}{(0.8\Phi_1)n_3} \sin ce \, \Phi_2 = 0.8\Phi_1$$

from which, speed
$$n_3 = \frac{(10)(458)}{(0.8)(476)} = 12.82 \text{ rev/s}$$

Speed Control of DC Motors

- **Series-wound motors:** -The speed control of series-wound motors is achieved using either (a) field resistance, or (b) armature resistance techniques
- a) Field resistance series wound motor: The speed of a D.C. series-wound motor is given by:

• **Problem 17**. On full-load a 300 V series motor takes 90 A and runs at 15 rev/s. The armature resistance is 0.1Ω and the series winding resistance is 50 m Ω . Determine the speed when developing full load torque but with a 0.2Ω diverter in parallel with the field winding. (Assume that the flux is proportional to the field current.)

Soln

At 300 V, e.m.f.
$$E_1 = V - IR$$

= $V - I(R_a + R_{se})$
= $300 - (90)(0.1 + 0.05) = 286.5 volts$

with the 0.2Ω diverter in parallel with R_{se}

the equivalent resistance,
$$R = \frac{(0.2)(0.05)}{(0.2) + (0.05)} = 0.04\Omega$$

By current division, current
$$I_1 = \left(\frac{0.2}{0.2 + 0.05}\right)I = 0.8I$$

Torque, $T \alpha I_a \Phi$ and for full load torque, $I_{a1} \Phi_1 = I_{a2} \Phi_2$ Since flux is proportional to field current $\Phi_1 \alpha I_{a1}$ and $\Phi_2 \alpha 0.8 I_{a2}$ then (90)(90) = $(I_{a2})(0.8 I_{a2})$

from which,
$$I_{a2}^2 = \frac{(90)^2}{0.8}$$
 and $I_{a2} = \frac{90}{\sqrt{0.8}} = 100.62A$

Hence e.m.
$$f E_2 = V - I_{a2}(R_a + R)$$

= $300 - (100.62)(0.1 + 0.04) = 285.9 volts$

Now e.m.f.,
$$E \alpha \Phi n$$
 from which, $\frac{E_1}{E_2} = \frac{\Phi_1 n_1}{\Phi_2 n_2} = \frac{I_{a1} n_1}{0.8 I_{a2} n_2}$

Hence
$$\frac{(286.5)}{285.9} = \frac{(90)(15)}{(0.8)(100.62)n_2}$$

and new speed, $n_2 = 16.74 \text{ rev/s}$

Thus the speed of the motor has increased from 15 rev/s (i.e., 900 rev/min) to 16.74 rev/s (i.e., 1004 rev/min) by inserting a 0.2 diverter resistance in parallel with the series winding.

Speed Control of DC Motors

(b) Armature resistance technique

- Speeds below normal are obtained by connecting a variable resistor in series with the field winding
- reduces the speed
- large power loss

$$n = k \left(\frac{V - IR}{\Phi} \right)$$

Armature Resistance Technique

• **Problem 18**. A series motor runs at 800 rev/min when the voltage is 400 V and the current is 25 A. The armature resistance is 0.4Ω and the series field resistance is 0.2Ω . Determine the resistance to be connected in series to reduce the speed to 600 rev/min with the same current.

• Soln e.m.f.
$$E_1 = V - I(R_a + R_{se})$$

= $400 - (25)(0.4 + 0.2) = 385 volts$

At 600 rev/min, since the current is unchanged, the flux is unchanged.

Thus
$$E \propto \Phi n$$
 from which, $\frac{E_1}{E_2} = \frac{\Phi_1 n_1}{\Phi_2 n_2} \Longrightarrow \frac{385}{E_2} = \frac{800}{600} = 288.75 \text{ volts}$
and $E_2 = V - I(R_a + R_{se} + R)$
Hence $288.75 = 400 - 25(0.4 + 0.2 + R)$
 $R = 3.85\Omega$

Thus the addition of a series resistance of 3.85Ω has reduced the speed

from 800 rev/min to 600 rev/min

Summary

- Torque developed by a DC motor is proportional to flux and armature current
- Shunt motors run at almost constant speed
- Series motors are used for high torque applications
- Series motors should never be operated without load

