BANK CREDIT PREDICTION USING SOUTH GERMAN CREDIT DATA

Loading Data and Libraries

import pandas as pd
from sklearn.preprocessing import LabelEncoder
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier,AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score,ConfusionMatrixDisplay,classification_report
df=pd.read_csv('/content/drive/MyDrive/Pandas dataset/german_credit.csv')
df

	status	duration	credit_history	purpose	amount	savin
0	no checking account	18	all credits at this bank paid back duly	car (used)	1049	unknown/ savin accol
1	no checking account	9	all credits at this bank paid back duly	others	2799	unknown/ savin accol
2	< 0 DM	12	no credits taken/all credits paid back duly	retraining	841	< 1 [
3	no checking account	12	all credits at this bank paid back duly	others	2122	unknown/ savin accou
4	no checking account	12	all credits at this bank paid back duly	others	2171	unknown/ savin accol
995	no checking account	24	no credits taken/all credits paid back duly	furniture/equipment	1987	unknown/ savin accou
996	no checking account	24	no credits taken/all credits paid back duly	others	2303	unknown/ savin accol
997	>= 200 DM / salary for at least 1 year	21	all credits at this bank paid back duly	others	12680	>= 10 [
998	< 0 DM	12	no credits taken/all credits paid back duly	furniture/equipment	6468	>= 10 [
4	no		no credits			\- 10
						,

df.dtypes

status	object
duration	int64
credit_history	object
purpose	object
amount	int64
savings	object
employment_duration	object
installment_rate	object
personal_status_sex	object
other_debtors	object

```
property
                                object
                                 int64
     other_installment_plans
                                 object
     housing
                                object
     number_credits
                                object
     job
                                object
     people_liable
                               object
     telephone
                                object
     foreign_worker
                                object
     credit_risk
                                object
     dtype: object
df.shape
     (1000, 21)
df['credit_history'].value_counts()
     no credits taken/all credits paid back duly
                                                     530
     all credits at this bank paid back duly
                                                     293
     existing credits paid back duly till now
                                                      88
                                                      49
     critical account/other credits elsewhere
     delay in paying off in the past
                                                      40
     Name: credit_history, dtype: int64
df['purpose'].value_counts()
                            280
     furniture/equipment
     others
                            234
                            181
     car (used)
     car (new)
                            103
                             97
     retraining
     repairs
     domestic appliances
                             22
     business
                             12
     radio/television
                             12
                              9
     vacation
     Name: purpose, dtype: int64
df['employment_duration'].value_counts()
                         339
     1 <= ... < 4 yrs
     >= 7 yrs
                         253
     4 <= ... < 7 yrs
                        174
                        172
     < 1 yr
     unemployed
                         62
     Name: employment_duration, dtype: int64
df['personal_status_sex'].value_counts()
     male : married/widowed
                                              548
                                              310
     female : non-single or male : single
     female : single
                                               92
     male : divorced/separated
                                               50
     Name: personal_status_sex, dtype: int64
df['credit_risk'].value_counts()
     good
             700
             300
     bad
     Name: credit_risk, dtype: int64
sns.countplot(x=df['credit_risk'])
```

present_residence

object

```
<Axes: xlabel='credit_risk', ylabel='count'>
```


→ DATA CLEANING AND DATA PREPROCESSING

- 1. Check for missing values
- 2. Handeling Catogerical Values

```
aooa
                                                             pag
df.isna().sum()
     status
     duration
                                 0
                                0
     credit_history
     purpose
     amount
     savings
     employment_duration
                                0
     installment_rate
                                0
     personal_status_sex
     other_debtors
                                0
     present_residence
                                0
                                0
     property
                                0
     other_installment_plans
     housing
     number_credits
                                0
     job
     people_liable
                                0
     telephone
     foreign_worker
                                0
     credit_risk
     dtype: int64
```

```
le=LabelEncoder()
df['status']=le.fit_transform(df['status'])
df['credit_history']=le.fit_transform(df['credit_history'])
df['purpose']=le.fit_transform(df['purpose'])
df['savings']=le.fit_transform(df['savings'])
df['employment_duration']=le.fit_transform(df['employment_duration'])
df['installment_rate']=le.fit_transform(df['installment_rate'])
df['personal_status_sex']=le.fit_transform(df['personal_status_sex'])
df['other_debtors']=le.fit_transform(df['other_debtors'])
df['present_residence']=le.fit_transform(df['present_residence'])
df['property']=le.fit_transform(df['property'])
df['other_installment_plans']=le.fit_transform(df['other_installment_plans'])
df['housing']=le.fit_transform(df['housing'])
df['number_credits']=le.fit_transform(df['number_credits'])
df['job']=le.fit_transform(df['job'])
df['people_liable']=le.fit_transform(df['people_liable'])
df['telephone']=le.fit_transform(df['telephone'])
df['foreign_worker']=le.fit_transform(df['foreign_worker'])
df['credit_risk']=le.fit_transform(df['credit_risk'])
```

	status	duration	credit_history	purpose	amount	savings	employmen
0	3	18	0	2	1049	4	
1	3	9	0	5	2799	4	
2	0	12	4	8	841	0	
3	3	12	0	5	2122	4	
4	3	12	0	5	2171	4	
99	5 3	24	4	4	1987	4	
99	6 3	24	4	5	2303	4	
99	7 1	21	0	5	12680	1	
99	R n	12	4	4	6468	1	

df.describe()

	status	duration	credit_history	purpose	amount
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.00000
mean	1.342000	20.903000	2.513000	4.100000	3271.24800
std	1.145578	12.058814	1.780169	2.090064	2822.75176
min	0.000000	4.000000	0.000000	0.000000	250.00000
25%	0.000000	12.000000	0.000000	2.000000	1365.50000
50%	1.000000	18.000000	4.000000	4.000000	2319.50000
75%	3.000000	24.000000	4.000000	5.000000	3972.25000
max	3.000000	72.000000	4.000000	9.000000	18424.00000
4					>

df.loc[df['duration']>50]

	status	duration	credit_history	purpose	amount	savings	employmen
241	1	60	4	5	10366	4	
309	1	54	2	1	9436	1	
382	1	60	0	5	13756	1	
455	0	60	3	4	7418	1	
562	0	60	4	5	7408	0	
690	1	60	4	4	10144	0	
695	1	60	3	4	15653	4	
719	0	72	4	4	5595	0	
729	0	60	3	4	9157	1	
731	1	60	4	5	6527	1	
763	0	60	4	7	6288	4	
807	3	60	3	8	6836	4	
811	3	60	4	8	7297	4	
847	0	60	1	0	14782	0	
890	0	60	4	5	14027	4	
100	^		^	^	15015		>

DATA VISUALIZATION

sns.heatmap(df.corr(),cmap='BuPu')


```
plt.figure(figsize=(14,40))
for i,col in enumerate(feauture):
  plt.subplot(10,2,i+1)
  sns.countplot(x=df[col],hue='credit_risk',data=df)
  plt.xlabel(col)
```



```
뉟 250 -
DATASET SPLITTING
        50 -
X=df.iloc[:,:-1]
y=df.iloc[:,-1]
from sklearn.model selection import train test split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=1)
print(X train.shape,X test.shape)
     (700, 20) (300, 20)
#Scaling the Dataset using StanderdScaler
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X_train=sc.fit_transform(X_train)
X_{test=sc.transform(X_{test})}
X train
     array([[-0.28096006, 3.2566844 , 0.85693866, ..., 2.36722909,
```

```
array([[-0.28096006, 3.2566844, 0.85693866, ..., 2.36722909, 1.22110737, -0.20412415], [1.48291475, 2.26198769, 0.85693866, ..., -0.42243482, 1.22110737, -0.20412415], [1.48291475, 1.26729098, -1.39393211, ..., -0.42243482, 1.22110737, -0.20412415], ..., [1.48291475, 0.27259427, 0.29422096, ..., 2.36722909, -0.81892881, -0.20412415], [1.48291475, 0.27259427, 0.85693866, ..., -0.42243482, -0.81892881, -0.20412415], [-0.28096006, -0.72210245, -1.39393211, ..., -0.42243482, -0.81892881, -0.20412415]])
```

MODEL CREATION

- KNN
- SVM
- · Naive Bayes
- Random Forest
- AdaBoost Classifier

```
#1 KNN
knn=KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train,y_train)
y_pred=knn.predict(X_test)
y_pred
```

```
print('Accuracy score of KNN:')
knn_score=accuracy_score(y_test,y_pred)*100
knn_score
```

Accuracy score of KNN: 69.0

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
0	0.47	0.21	0.29	91
1	0.72	0.90	0.80	209
accuracy			0.69	300
macro avg	0.60	0.55	0.55	300
weighted avg	0.65	0.69	0.65	300

print(ConfusionMatrixDisplay.from_predictions(y_test,y_pred))


```
#2 SVM
sv=SVC()
sv.fit(X_train,y_train)
y_pred=sv.predict(X_test)
y_pred
```

```
#accuracy score
print('Accuracy score of SVM:')
sv_score=accuracy_score(y_test,y_pred)*100
print(sv_score)
```

Accuracy score of SVM: 70.666666666666666

```
print(classification_report(y_test,y_pred))
```

	precision	recall	f1-score	support
0 1	0.55 0.72	0.19 0.93	0.28 0.82	91 209
accuracy macro avg weighted avg	0.64 0.67	0.56 0.71	0.71 0.55 0.65	300 300 300

print(ConfusionMatrixDisplay.from_predictions(y_test,y_pred))

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7f4a947c5b20>

#3 Random Forest Classifier
rf=RandomForestClassifier()
rf.fit(X_train,y_train)
y_pred=rf.predict(X_test)
y_pred

rf_score=accuracy_score(y_test,y_pred)*100
print('Accuracy of Random Forest :',rf_score)

Accuracy of Random Forest: 75.0

print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
(0.64	0.40	0.49	91
1	0.77	0.90	0.83	209
accuracy	,		0.75	300
macro ava	0.71	0.65	0.66	300
weighted av	0.73	0.75	0.73	300

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay object at 0x7f4a9cb8fc40>


```
#Ada Boost Classifier
ab=AdaBoostClassifier(n_estimators=50,random_state=2)
ab.fit(X_train,y_train)
y_pred=ab.predict(X_test)
y_pred
```

```
ada_score=accuracy_score(y_test,y_pred)*100
print('Accuracy of AdaBoost :',ada_score)
```

Accuracy of AdaBoost : 74.6666666666667

```
# Decisio tree Classifier
dt=DecisionTreeClassifier(criterion='entropy')
dt.fit(X_train,y_train)
y_pred=dt.predict(X_test)
dt_score=accuracy_score(y_test,y_pred)*100
print('Accuracy of Decision Tree:',dt_score)
```

COMPARING ACCURACY

```
alg=['KNN','SVM','Random Forest','AdaBoost','Decision Tree']
acc=[knn_score,sv_score,rf_score,ada_score,dt_score]
Accuracy=pd.DataFrame({'Algorithms':alg,'Accuracy':acc})
Accuracy
```

0 KNN 69.000000 C\/M 70 666667 **IMBALANCE DATA HANDELLING** from imblearn.over_sampling import SMOTE oversampling=SMOTE(random_state=3) X_os,y_os=oversampling.fit_resample(X,y) from collections import Counter print(Counter(y_os)) Counter({1: 700, 0: 700}) X_os.shape (1400, 20)from sklearn.model_selection import train_test_split $\label{lem:condition} \textbf{X_trainos,Y_testos,y_trainos,y_testos=train_test_split(X_os,y_os,test_size=0.3,random_state=2)}$ ${\sf knn.fit}({\sf X_trainos,y_trainos})$ y_predos=knn.predict(X_testos) knn_os=accuracy_score(y_testos,y_predos)*100 print('Accuracy of KNN after Over Sampling') knn_os Accuracy of KNN after Over Sampling #SVM sv.fit(X_trainos,y_trainos) y_predos=sv.predict(X_testos) sv_os=accuracy_score(y_testos,y_predos)*100 print('Accuracy of SVM after Over Sampling') sv_os Accuracy of SVM after Over Sampling 56.42857142857143 #Random Forest rf.fit(X_trainos,y_trainos) y_predos=rf.predict(X_testos) ${\tt rf_os=accuracy_score(y_testos,y_predos)*100}$ print('Accuracy of Random Forest after Over Sampling') rf_os Accuracy of Random Forest after Over Sampling 81.42857142857143 #AdaBoost $\verb|ab.fit(X_trainos,y_trainos)|\\$ y_predos=ab.predict(X_testos) ab_os=accuracy_score(y_testos,y_predos)*100 print('Accuracy of AdaBoost after Over Sampling') ab_os Accuracy of AdaBoost after Over Sampling 75.95238095238095 #DecisionTree dt.fit(X_trainos,y_trainos) y_predos=dt.predict(X_testos)

Accuracy of DecisionTree after Over Sampling 73.09523809523809

dt_os=accuracy_score(y_testos,y_predos)*100

dt_os

print('Accuracy of DecisionTree after Over Sampling')

Algorithms Accuracy

→ Principal component analysis (PCA).

```
from sklearn.decomposition import PCA
pca=PCA(n_components=15)
X_trainpca=pca.fit_transform(X_train)
X_testpca=pca.transform(X_test)
X trainpca
      \verb"array" ([[~2.64646301,~-0.34454832,~-0.13110059,~\dots,~-0.53446959,
                 0.42516331, 0.38108122],
              [ 2.54464398, -0.28807274, 0.74018572, ..., 0.0987077 ,
              0.08189235, -0.54567621],
[ 0.81246378,  0.35726454, -0.40983205, ...,  0.88383446,
  1.69228246,  0.17852579],
              [-0.54290257, 2.1584127, 0.86213866, ..., -0.79305746,
                -1.15201708, -1.58067082],
              [-0.0075846 \ , \ -0.18304145, \ 1.52476331, \ \ldots, \ 0.19948575,
              0.52220862, 0.67513053],
[-0.75110975, 1.0744922, -0.92298996, ..., 0.32330432,
-1.10088493, -1.45359515]])
#knn
knn.fit(X_trainpca,y_train)
y_predpca=knn.predict(X_testpca)
print('Accuracy knn after PCA :')
knn_pca=accuracy_score(y_test,y_predpca)*100
knn_pca
      Accuracy knn after PCA:
      71.333333333333334
#SVM
sv.fit(X_trainpca,y_train)
y\_predpca=sv.predict(X\_testpca)
print('Accuracy svm after PCA :')
sv_pca=accuracy_score(y_test,y_predpca)*100
sv_pca
      Accuracy svm after PCA:
      71.33333333333334
#AdABoost
ab.fit(X_trainpca,y_train)
y_predpca=ab.predict(X_testpca)
print('Accuracy Adaboost after PCA :')
ab_pca=accuracy_score(y_test,y_predpca)*100
ab_pca
      Accuracy Adaboost after PCA:
#Random Forest
rf.fit(X_trainpca,y_train)
y_predpca=rf.predict(X_testpca)
print('Accuracy RandomForest after PCA :')
rf_pca=accuracy_score(y_test,y_predpca)*100
rf_pca
      Accuracy RandomForest after PCA:
#Decision Tree
dt.fit(X_trainpca,y_train)
y_predpca=dt.predict(X_testpca)
print('Accuracy Decision Tree after PCA :')
dt_pca=accuracy_score(y_test,y_predpca)*100
dt pca
      Accuracy Decision Tree after PCA:
```

Removal OF Outlier

62.6666666666667

Check for Outlier

```
plt.figure(figsize=(14,40))
for i,col in enumerate(feauture):
  plt.subplot(10,2,i+1)
  sns.boxplot(df[col])
  plt.xlabel(col)
```


	status	duration	credit_history	purpose	amount	savings	employment_duration	installment_rate	personal_statu
179	1	48	3	4	12749	2	1	2	
208	0	48	1	5	12169	1	4	2	
382	1	60	0	5	13756	1	3	1	
426	0	39	3	7	11760	0	1	1	
442	3	39	0	2	14179	1	1	2	
575	0	48	2	8	12204	1	0	1	
645	3	36	4	0	15857	4	4	1	
695	1	60	3	4	15653	4	1	1	
754	0	6	4	5	14555	1	4	3	
782	0	36	4	5	14318	4	3	2	
810	0	48	4	8	15672	4	0	1	
844	0	24	0	0	11938	4	0	1	
847	0	60	1	0	14782	0	3	0	
849	0	36	4	7	12612	0	0	3	
890	0	60	4	5	14027	4	1	2	
895	0	18	4	1	12976	4	4	0	
929	0	48	2	8	14421	4	0	1	
943	0	36	4	5	12389	1	0	3	
962	0	54	2	8	15945	4	2	0	
973	3	45	2	8	11816	4	3	1	
975	3	30	4	3	11998	4	2	3	
976	0	48	2	0	18424	4	0	3	
977	3	6	4	5	14896	4	3	3	
991	0	24	4	1	12579	4	3	2	
997	1	21	0	5	12680	1	3	2	

new_df=df.loc[(df['amount']<upper_limit)&(df['amount']>lower_limit)]
print('Before remove outliers',len(df))
print('After removing outliers',len(new_df))

Before remove outliers 1000 After removing outliers 975

25 rows × 21 columns

df.loc[(df['amount']>upper_limit)|(df['amount']<lower_limit)]</pre>

X_new=new_df.iloc[:,:-1]
y_new=new_df.iloc[:,-1]

from sklearn.model_selection import train_test_split
X_train_new,X_test_new,y_train_new,y_test_new=train_test_split(X_new,y_new,test_size=0.3,random_state=1)

```
from \ sklearn.preprocessing \ import \ MinMaxScaler
sc=MinMaxScaler()
X_train_new=sc.fit_transform(X_train_new)
{\tt X\_test\_new=sc.transform(X\_test\_new)}
#knn
knn.fit(X_train_new,y_train_new)
y_pred_new=knn.predict(X_test_new)
print('Accuracy after outlier removal :')
knn_new=accuracy_score(y_test_new,y_pred_new)*100
knn new
      Accuracy after outlier removal :
      70.64846416382252
#svm
sv.fit(X_train_new,y_train_new)
y_pred_new=sv.predict(X_test_new)
print('Accuracy after outlier removal :')
sv_new=accuracy_score(y_test_new,y_pred_new)*100
sv_new
      Accuracy after outlier removal :
      73.72013651877133
#adaboost
ab.fit(X_train_new,y_train_new)
y_pred_new=ab.predict(X_test_new)
print('Accuracy after outlier removal :')
ab_new=accuracy_score(y_test_new,y_pred_new)*100
ab_new
      Accuracy after outlier removal :
      70.30716723549489
#RandomForest
rf.fit(X_train_new,y_train_new)
y_pred_new=rf.predict(X_test_new)
print('Accuracy after outlier removal :')
rf_new=accuracy_score(y_test_new,y_pred_new)*100
rf_new
      Accuracy after outlier removal :
      73.37883959044369
#DecisionTree
dt.fit(X_train_new,y_train_new)
y_pred_new=dt.predict(X_test_new)
print('Accuracy after outlier removal :')
{\tt dt\_new=accuracy\_score(y\_test\_new,y\_pred\_new)*100}
dt_new
      Accuracy after outlier removal :
      64.84641638225256
#COMPARING ACCURACY
alg=['KNN','SVM','Random Forest','AdaBoost','Decision Tree']
acc=[knn_score,sv_score,rf_score,ada_score,dt_score]
acc_os=[knn_os,sv_os,rf_os,ab_os,dt_os]
acc_pca=[knn_pca,sv_pca,rf_pca,ab_pca,dt_pca]
acc_new=[knn_new,sv_new,rf_new,ab_new,dt_new]
```

Accuracy=pd.DataFrame({'Algorithms':alg,'Accuracy':acc,'Accuracy after over Sampling':acc_os,'Accuracy after PCA':acc_pca, 'Accuracy after outli

	Algorithms	Accuracy	Accuracy after over Sampling	Accuracy after PCA	Accuracy after outlierRemoval
0	KNN	69.000000	65.000000	71.333333	70.648464
1	SVM	70.666667	56.428571	71.333333	73.720137
2	Random Forest	75.000000	81.428571	72.000000	73.378840
3	AdaBoost	74.666667	75.952381	68.000000	70.307167
4	Decision Tree	68.333333	73.095238	62.666667	64.846416