

Appl. No. 10/028,099
Amtd. dated April 14, 2004
Reply to Office Action of January 14, 2004

Amendments to the Claims

1. *(Cancelled)*

2. *(Currently Amended) The method of claim 1, A method for optimization of temporal performance of a network of electronic cells, with a plurality of cells that are taken from a library, having several categories of cells, the cells of a same category all having the same functionality, which method comprises the following steps:*

- *accurate computation of propagation times of signals which pass through each cell of the network; and*
identification of cells which have a computed propagation time value greater than a predetermined reference value,

wherein a predetermined threshold value val_j is allocated to each cell of, rank_j, of a same category, and wherein, when a cell of another rank, rank_i, identified must be replaced by a cell of a higher rank, rank_k, the value of rank_k [[is]] being at least equal to rank_i + rank_j, said computed propagation time value for said cell of rank_i [[is]] being greater than the predetermined threshold value val_j of said cell of rank_j.

3. *(Currently Amended) The method of claim 2, wherein, when a cell of rank_i identified must be replaced by a cell of a higher rank, rank_k, the value of rank_k is equal to the sum of rank_i and rank_j, if said computed propagation time value for said cell of rank i [[is]] being within the predetermined threshold values val_j and val_{j+1} of said cells of consecutive ranks, rank_j and rank_{j+1}.*

4. *(Currently Amended) The method of claim 1, claim 2, wherein execution of a replacement step is subject to validation by a user of the said method, occurs for cells which have a computed propagation time value greater than a predetermined reference value.*

Appl. No. 10/028,099
Amdt. dated April 14, 2004
Reply to Office Action of January 14, 2004

5. (Currently Amended) An integrated circuit comprising a network of cells, the temporal performances of which have been optimized by a method comprising:

accurate computation of propagation times of signals which pass through each cell of the network; and

identification of cells which have a computed propagation time value greater than a predetermined reference value,

wherein a predetermined threshold value val_j is allocated to each cell of rank_j of a same category, and wherein, when a cell of another rank, rank_i, identified must be replaced by a cell of a higher rank, rank_k, the value of rank_k being at least equal to rank_j + rank_i, said computed propagation time value for said cell of rank_j being greater than the predetermined threshold value val_j of said cell of rank_j,

computation of propagation times of signals which pass through each cell of the network, and identification of cells which have a computed propagation time value greater than a predetermined reference value.

6. (Currently Amended) A receiver device for radio signals, comprising an integrated circuit having a network of cells, the temporal performances of which have been optimized a method comprising:

accurate computation of propagation times of signals which pass through each cell of the network; and

identification of cells which have a computed propagation time value greater than a predetermined reference value,

wherein a predetermined threshold value val_j is allocated to each cell of rank_j of a same category, and wherein, when a cell of another rank, rank_i, identified must be replaced by a cell of a higher rank, rank_k, the value of rank_k being at least equal to rank_j + rank_i, said computed propagation time value for said cell of rank_j being greater than the predetermined threshold value val_j of said cell of rank_j, by accurate computation of propagation times of signals which pass through each cell of the network, and identification of cells which have a computed propagation time value greater than a predetermined reference value.