

# Markov Decision Process Rappel : Vecteur gaussien, Mouvement Brownien et Martingales

Mohamed Anis BEN LASMAR

A.U.2024-2025











## Plan

Vecteurs gaussiens

2 Mouvement Brownien

### Définition

On dit qu'un vecteur aléatoire  $X=(X_1,\cdots,X_d)$  est un vecteur gaussien si, pour tout  $a=(a_1,\cdots,a_d)\in\mathbb{R}^d$ , la variable aléatoire réelle aX est une variable aléatoire gaussienne.

Autrement dit, toute combinaison linéaire de X est gaussienne.

Notons par  $\Gamma$ , avec  $\Gamma_{ij} = Cov(X_i, X_j)$ , la matrice de variance covariance du vecteur X et m, avec  $m_i = E(X_i)$ , son vecteur moyenne. La fonction caractéristique de X est donnée par :

$$E(e^{iuX}) = exp\{iE(u.X) - \frac{1}{2}Var(u.X)\} = e^{iu.m - \frac{1}{2}u\Gamma u}.$$

La fonction caractéristique (et donc la loi) ne dépend que du couple  $(m,\Gamma)$ . On dit dans ce cas que X suit la loi  $N(m,\Gamma)$ .

### Exemple:

Si  $X_1, \dots, X_d$  sont des variables gaussiennes centrées réduites indépendantes alors  $X = (X_1, \dots, X_d)$  est un vecteur gaussien centré de matrice de variance covariance égale à la matrice identité de  $\mathbb{R}^d$ .

#### Exemple:

Si  $X_1, \dots, X_d$  sont des variables gaussiennes centrées réduites indépendantes alors  $X = (X_1, \dots, X_d)$  est un vecteur gaussien centré de matrice de variance covariance égale à la matrice identité de  $\mathbb{R}^d$ .

En effet: pour  $a \in \mathbb{R}^d$ , par indépendance, la fonction caractéristique de a.X est:

$$\Phi_{a,X}(t) = E[e^{ita,X}] = \prod_{j=1}^{d} E[e^{ita_{j},X_{j}}] = \prod_{j=1}^{d} e^{-\frac{(ta_{j})^{2}}{2}} = e^{-\frac{t^{2}}{2}a.a}$$

Donc la variable aléatoire a.X suit la loi gaussienne centrée de variance a.a.

## Remarque!!

Il ne suffit pas que  $X_1$  et  $X_2$  soient des variables gaussiennes réelles pour que  $(X_1, X_2)$  soit un vecteur gaussien. Ce résultat est vrai dans le cas particulier où  $X_1$  et  $X_2$  sont indépendantes.

# Stabilité du caractère gaussien par transformation linéaire

Si X est un vecteur aléatoire à valeurs dans  $\mathbb{R}^d$  et Y=a+MX avec  $a\in\mathbb{R}^n$  un vecteur constant et et M une matrice de taille  $n\times d$ , alors toute combinaison linéaire des coordonnées de Y est combinaison linéaire des coordonnées de X à une constante près :

pour 
$$b \in \mathbb{R}^n$$
,  $b.Y = b.a + (M^t.b).X$ .

Donc si X est gaussien, alors Y est aussi gaussien.

## Vecteurs gaussiens et indépendance

## Proposition

Les coordonnées d'un vecteur gaussien  $X=(X_1,\cdots,X_d)$  sont indépendantes si et seulement si sa matrice de variance covariance  $\gamma$  est diagonale.

## Plan

Vecteurs gaussiens

2 Mouvement Brownien

# Processus Stochastique

#### Définition

On appelle processus stochastique à temps continu à valeurs dans un espace E muni d'une tribu E, une famille  $(X_t, t \ge 0)$  de variables aléatoires à valeurs dans E définies sur un espace de probabilité  $(\Omega, \mathcal{A}, P)$ .

**Remarque:** L'indice  $t\in[0,+\infty[$  représente le temps. Notons que l'on peut associer, à chaque  $\omega\in\Omega$ , une trajectoire :

$$t \to X_t(\omega)$$
.

## Mouvement Brownien

### Définition

Un processus stochastique ( $B_t$ ,  $t \ge 0$ ) à valeurs réelles est dit un mouvement brownien (standard) s'il vérifie les quatre propriétés suivantes:

- $B_0 = 0$ .
- Pour tout  $s \le t$ , l'accroissement  $B_t B_s$  suit la loi gaussienne centrée de variance t s (Processus à accroissements stationnaires).
- si  $0 \le t_1 \le t_2 \le \cdots \le t_n$ , les accroissements  $B_{t_1}, B_{t_2} B_{t_1}, \cdots, B_{t_n} B_{t_{n-1}}$  sont indépendants. (Processus à accroissements indépendants).
- En dehors d'un ensemble de probabilité nulle, les trajectoires  $t \to B_t(\omega)$  sont continues.(Processus continu).

## Mouvement Brownien

#### Théorème

Si  $(X_t, t \ge 0)$  est un processus continu à accroissements indépendants et stationnaires alors il existe deux constantes réelles r et sigma t.q.  $\forall t \ge 0$ ,

$$X_t - X_0 = rt + \sigma B_t$$

avec  $(B_t, t \ge 0)$  un mouvement brownien.

# Mouvement Brownien - Régularité des trajectoires

Une propriété importante du mouvement brownien est le manque de régularité des trajectoires. Nous admettrons le théorème suivant

#### Théorème

Soit  $(B_t, t \ge 0)$  un mouvement brownien, alors, en dehors d'un ensemble de probabilité nulle, il n'existe aucun point où la trajectoire est différentiable.

# Mouvement Brownien - Régularité des trajectoires



# Mouvement Brownien - Régularité des trajectoires

## Proposition

Soit  $(B_t, t \ge 0)$  un mouvement brownien, soit T un réel positif, n un entier. On pose :  $t_i^n = \frac{iT}{n}$ , pour  $0 \le i \le n$ . Alors, au sens de la convergence  $L^2$ :

$$\lim_{n \to +\infty} \sum_{i=0}^{n-1} \left( B_{t_{i+1}^n} - B_{t_i^n} \right)^2 = T.$$

Ceci implique que  $(Bt, t \ge 0)$  ne peut être lischitzienne sur l'intervalle [0, T].

# Caractère gaussien du mouvement brownien

Nous avons vu que si  $(B_t, t \geq 0)$  est un mouvement brownien alors  $B_t$  suit une loi gaussienne. Une propriété plus forte est vérifié par le processus  $(B_t, t \geq 0)$ : c'est un processus gaussien.

### **Définition**

On dit qu'un processus  $(X_t, t \ge 0)$  est un processus gaussien, si pour tout entier n et pour tout n-uplet,  $0 \le t_1 < t_2 < \cdots < t_n < +\infty$ , le vecteur  $(X_{t_1}, \cdots, X_{t_n})$  est un vecteur gaussien.

### Théorème

Un mouvement brownien est un processus gaussien.

# Caractère gaussien du mouvement brownien

#### Théorème

Soit  $(B_t, t \ge 0)$  un processus gaussien centré continu t.q.

$$\forall s, t \geq 0, \quad Cov(B_s, B_t) = min(s, t).$$

Alors  $(B_t, t \ge 0)$  est un mouvement brownien.

# Markov Decision Process Rappel : Vecteur gaussien, Mouvement Brownien et Martingales

Mohamed Anis BEN LASMAR

A.U.2024-2025