Lecture - 17

Thursday, 24 February 2022 8:22 AM

- * Properties of Laplace transform
- * linear constant coefficient differential equations (LCCDE)
- * some standard example signals and their LT

$$S(t) \stackrel{LT}{\longleftrightarrow} 1$$
 & complete s-plane

a. Find signal which has LT given by

1)
$$x(s) = \frac{s}{s^2 - s - 2}$$
 & ROC: Re (s) > 2

___ using partial fractione:

$$x(s) = \frac{S}{(s-2)(s+1)} = \frac{A}{s-2} + \frac{B}{s+1}$$
 Find A & B.

$$A = x(5)(5-1)$$
 = $\frac{2}{3}$ & $B = \frac{1}{3}$

$$X(S) = \frac{2/3}{S-2}$$
 $\frac{1/3}{S+1}$
pole-zero plot

$$x(t) = 2 e^{2t}u(t) + 1 e^{-t}u(t)$$

*	Stabilit	7	i.e.	B I B 0	ह रेक	bility.			
		For an	LTI	system	to	be	stable	, we r	nust have
			- 00	h(t)	dt	< 00			
		i.e. h(t	zí (absolut	ely	integr	rable.		
	Proof:		given	\ x(t	-) [<	В			
		y/t) х (t	- z) h(7) 27	5		
		[y(t)) =	- 00		ж(t -	7) dz		
		(y (t)) <	~ ~ ~	h (z)	я(t-	Z) dZ		
			2) h (z)	[R	92		
		y (t)	<u> </u>	В.	00 (\h([7] [6]	τ		
	fo	r BIBC	5 to)	ility,	51	h(z)1	dt <	. oo (
	Q IF	00	h(z) d	Z i5	not	finite	, Find	a bo	ion ded input
				Sign	d et	ich	gives on	nbounde	d ortput.

$h(t) = u(t)$ \longrightarrow not BIBO stable but causal Shift system \longrightarrow stable 2 causal Integrator \longrightarrow Causal but not stable.	