Tim B. Bakker

Do not go gentle into that good night.

Rage, rage against the dying of the light.

~ Dylan Thomas

Publications

- 2022 On learning adaptive acquisition policies for undersampled multi-coil MRI reconstruction, T. Bakker, M. Muckley, A. Romero-Soriano, M. Drozdzal, L. Pineda, Medical Imaging with Deep Learning, MIDL 2022.
- 2021 Back to Basics: Deep Reinforcement Learning in Traffic Signal Control, S. Kanis, L. Samson, D. Bloembergen, T. Bakker, The 10th International Workshop on Urban Computing, UrbComp 2021.
 Best paper-award runner-up
- 2020 Experimental design for MRI by greedy policy search, T. Bakker, H. van Hoof, M. Welling, Conference on Neural Information Processing Systems, NeurIPS 2020. Spotlight presentation

Relevant work experience

2019-current PhD student at AMLab, University of Amsterdam, Amsterdam.

My main research topics are active learning and active sensing. Other interests include Bayesian probability theory and reinforcement learning. I have recently become interested in applying my research topics to 'Al4Science' applications. I have taught for multiple courses on basic machine learning and reinforcement learning. I have supervised Master students on multiple final projects, one of which resulted in a workshop paper.

- 2021-2021 **Research internship at FAIR**, *Facebook AI Research*, Montreal (remote).

 Research internship on machine learning for active sensing in Magnetic Resonance Imaging. Resulted in a conference paper at MIDL, 2022.
- 2017-2019 **Machine learning engineer**, *BrainCreators*, Amsterdam.

 I did various projects on applying classical and deep learning models to client use-cases. I laid the ground work on audio segmentation for the award-winning BNR Smart Radio.

Education

2014–2016 Master of Science (Theoretical Physics), University of Amsterdam, 8.4 (Cum Laude).

Interdisciplinary courses: Statistical Programming, Advanced Statistics, Programming in Mathematica, Information Theory, Group Theory.

Master project: On the Cox-Jaynes justification for objective Bayesian probability theory and the mind projection fallacy in physics.

2011–2014 **Bachelor of Science (Physics and Astronomy)**, *University of Amsterdam*, *8.6 (Cum Laude, Cum Honore*).

Interdisciplinary courses: Programming in Python, Algebra (Group Theory), Chaos Theory, Complex Analysis.

Bachelor project: Area Dependence of Scalar Field Entanglement Entropy.

Miscellaneous coursework

Course **Teaching skills for PhD students**, July 2019 and October 2020, Amsterdam.

Traineeship Young Mavericks data science traineeship, April 2017, Amsterdam.

Course Neural Networks for Machine Learning - University of Toronto, December

2016, Online.

Course Machine Learning - Stanford University, October 2016, Online.

Workshop Center for Applied Rationality Workshop, May 2016, San Francisco.

Programming

Primary Cumulative six years experience in Python doing scientific programming and machine learning. Proficient in PyTorch.

Organising

Organiser Inclusive AI, April 2019 - current, University of Amsterdam.

Organiser Effective Altruism Amsterdam, March 2016 - current, Amsterdam.

Organiser LessWrong Meetup Netherlands, July 2016 - July 2018, Amsterdam.

Organiser Effective Altruism Netherlands, May 2016 - July 2017, Utrecht.

Languages

Dutch Native

English Full professional proficiency