

IV Jornadas de Encuentros Doctorales LSI

Advanced Driver Assistance Systems for Road Environments

Student:

Carlos Guindel Gómez

Supervisors:

- Ph.D. José María Armingol
- Ph.D. David Martín (yet to formalize)

Laboratorio de Sistemas Inteligentes | Intelligent Systems Lab

Universidad Carlos III de Madrid

- Introduction
- State of the art
- Work done
- Work in progress
- Work to do
- Conclusions

- Introduction
- State of the art
- Work done
- Work in progress
- Work to do
- Conclusions

Introduction

Drivers, Especially Women, Wary of Autonomous Cars

BY ANGELA MOSCARITOLO JUNE 9, 2015 04:05PM EST 9 COMMENTS

Fifty percent of respondents wouldn't pay extra for a self-driving car and 46 percent don't think they're safe.

Google's Self-Driving Cars ' Grandma'

Robert Hackett / Fortune June 1, 2015

But that's probably a good thing

Slow and steady may win the race when it comes to autonomous vehicles.

A self-declared Mountain View,

Introduction

- "Automating the vehicle is a long continuum"
- "Really automatic, as for a blind driver? 50 years"

J.Desens, Daimler engineer (2014)

ROSS, Patrick. Robot, you can drive my car. Spectrum, IEEE, 2014, vol. 51, no 6, p. 60-90.

Introduction

o My PhD topics:

- ADAS-ROAD: Advanced driver assistance system for rural and intercity environments
- Focused on single-carriageways
- Poorly structured environments / more variability

- Introduction
- State of the art
- Work done
- Work in progress
- Work to do
- Conclusions

Future research foci

Klaus Bengler

Technische Universität München

Klaus Dietmayer

Universität Ulm

Berthold Färber

Universität der Bundeswehr München

Markus Maurer

Technische Universität Braunschweig

Christoph Stiller

Karlsruher Institut für Technologie

Hermann Winner

Technische Universität Darmstadt

Individualization

Machine
Perception and
Cognition

Methods of Assessment

Cooperative driving

 "Machine cognition and situational awareness are still in their infancy"

Machine perception - Future research foci

- Improvement of sensor HW and SW
- Generation of local dynamic maps
- Improved algorithms for vehicle situational awareness in complex traffic scenarios
- Development of methods and algorithms to acquire situational awareness at a safety-relevant level
- Intention and behavior models to predict the behavior of the driver and other traffic participants

Machine perception - Future research foci

BENGLER, Klaus, et al. Three Decades of Driver Assistance Systems. *Intelligent Transportation Systems Magazine, IEEE*, 2014, vol. 6, no. 4, p. 6-22.

Scene understanding

• Estimating the road layout \mathcal{R} from the image evidence \mathcal{E} , given a set of parameters Θ

GEIGER, Andreas, et al. 3D traffic scene understanding from movable platforms. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 2014, vol. 36, no 5, p. 1012-1025.

Traffic behavior

 Recognition of dangerous situations at roundabouts from stereo vision

MUFFERT, Maximilian; PFEIFFER, David; FRANKE, Ulrik. A stereo-vision based object tracking approach at roundabouts. *Intelligent Transportation Systems Magazine, IEEE*, 2013, vol. 5, no 2, p. 22-32.

- Introduction
- State of the art
- Work done
- Work in progress
- Work to do
- Conclusions

FRANKE, U.; GEHRIG, S. How cars learned to see. *Proceedings* of 54th Photogrammetric Week, 2013, p. 3-10.

Bumblebee XB3 driver for ROS

Range (m)

Bumblebee XB3 driver for ROS + BM disparity

KONOLIGE, Kurt. Small vision systems: Hardware and implementation. In *Robotics Research*. Springer London, 1998. p. 203-212.

Bumblebee XB3 driver for ROS + SGBM disparity

HIRSCHMÜLLER, Heiko. Stereo processing by semiglobal matching and mutual information. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, 2008, vol. 30, no 2, p. 328-341.

Bumblebee XB3 driver for ROS + PCL

Bumblebee XB3 driver for ROS + PCL

Cesar's Road Model Algorithm on ROS

(EXPECTED) RODRÍGUEZ-GARAVITO, C. H., GUINDEL, C., ARMINGOL, J.M. Sistema de asistencia a la conducción para detección y clasificación de carriles. *Jornadas de Automática 2015*.

Cesar's Road Model Algorithm on ROS

- Introduction
- State of the art
- Work done
- Work in progress
- Work to do
- Conclusions

Work in progress

Improvements in the Road Model Alg.

Road plane extraction – e.g. Basam's road profile

MUSLEH, Basam, et al. Continuous pose estimation for stereo vision based on UV disparity applied to visual odometry in urban environments. In *Robotics and Automation (ICRA), 2014 IEEE International Conference on.* IEEE, 2014. p. 3983-3988.

 Road lines segmentation and classification by means of machine learning techniques

Work in progress

Laser-Camera Calibration Alg.

RODRÍGUEZ-GARAVITO, C. H., et al. Automatic laser and camera extrinsic calibration for data fusion using road plane. In *Information Fusion (FUSION), 2014 17th International Conference on*. IEEE, 2014. p. 1-6.

- Introduction
- State of the art
- Work done
- Work in progress
- Work to do
- Conclusions

Work to do

Side-looking cameras for the IVVI 2.0

Oshkosh - Vislab's TerraMax

BROGGI, Alberto, et al. Lateral vehicles detection using monocular high resolution cameras on TerraMax™. In *Intelligent Vehicles Symposium, 2008 IEEE*. IEEE, 2008. p. 1143-1148.

Work to do

Optimization for high-speed roads

GPU and multi-thread will come in handy

My Final → GUINDEL, Carlos., MUSLEH, Basam. Algoritmo de odometría visual estéreo para sistemas de ayuda a la conducción: Implementación en GPU mediante CUDA.

Project 2012.

 Embedded SBCs (ODROID) might be taken into account Expertise gained from different R&D projects (INDIO,...)

And everything else...

Almost everything is still to be done using these tools

- Introduction
- State of the art
- Work done
- Work in progress
- Work to do
- Conclusions

Conclusions

- New ADAS demand high-level information
- Data from many applications is avaliable on the IVVI: An oportunity to work together

- e.g. CAN bus
- We should benchmark against the best

GEIGER, Andreas, et al. Vision meets robotics: The KITTI dataset. *The International Journal of Robotics Research*, 2013

IV Jornadas de Encuentros Doctorales LSI

Advanced Driver Assistance Systems for Road Environments

Thank you for your attention