Worksheet 6.2: Solutions

Equilibrium constant calculations

No	Anguar					
No.	Answer					
1	$\mathbf{a} K = \frac{[NF_3]^2}{[N_2][F_2]^3}$					
	b $K = \frac{[Sn(NO_3)_2][HCl]^2}{[SnCl_2][HNO_3]^2}$					
	$\mathbf{c} K = \frac{[VO^{2+}]^2 [SO_4^{2-}]}{[VO_3^{-}]^2 [H^+]^6 [SO_3^{2-}]}$					
	d $K = \frac{[SO_2]^2 [H_2O]^2}{[H_2S]^2 [O_2]^3}$					
2	 a Reactants favoured. b Products favoured. c Not strong in either direction, but products somewhat favoured. 					
3	a $K = \frac{1}{9.24 \times 10^{-3}} = 108$ b $K = (9.24 \times 10^{-3})^2 = 8.54 \times 10^{-5}$					
4	$K = \frac{[NH_3]^2}{[NO_2]^2[H_2]^7} = \frac{(1.52)^2}{(0.056)^2(0.335)^7} = 1.56 \times 10^6$					
5	$K = \frac{[\text{NO}]^2[\text{Cl}_2]}{[\text{NOCl}]^2} = 1.60 \times 10^{-5}$					
	$\therefore [NO]^{2} = \frac{(1.60 \times 10^{-5})(0.746)^{2}}{1.89 \times 10^{-3}} = 0.00471$ \therefore [NO] = 0.0686 mol L ⁻¹					
6	$K = [Ba^{2+}][SO_4^{2-}] = 1 \times 10^{-10}$ $\therefore [Ba^{2+}] = [SO_4^{2-}] = 1 \times 10^{-5} \text{ mol } L^{-1}$					
7	$K = \frac{[C]}{[A][B]^2} = 0.0812$					
	$\therefore [B]^2 = \frac{0.0394}{0.722 \times 0.0812} = 0.672$					
	∴ [B] = $0.820 \text{ mol } L^{-1}$					

Worksheet 6.2: Solutions

Equilibrium constant calculations

No.	Answer					
8		Reactants	Products			
	Mole ratio in the	N ₂ O ₄	2NO ₂			
	equation	11,204	21102			
	$n_{\rm i}$	0.600	0			
	change	-0.460	+0.920			
	$n_{\rm ed}$	0.140	0.920			
	$[]_{eq}, V = 2.00 L$	0.0700 mol L ⁻¹	0.460 mol L ⁻¹			
	$K = \frac{[NO_2]^2}{[N_2O_4]} = \frac{(0.460)^2}{0.0700} = 3.02$					
9		Reactants	Products			
	Mole ratio in the equation		PCl ₃	Cl ₂		
	$n_{\rm i}$	1.85	0	0		
	change	-1.48	+1.48	+1.48		
	$n_{\rm eq}$	0.370	1.48	1.48		
	$[]_{eq}, V = 2.00 L$					
	$K = \frac{[PCl_3][Cl_2]}{[PCl_5]} = \frac{(0.740)^2}{0.185} = 2.96$					
10		Reactants	Pro	oducts		
	Mole ratio in the equation	NOBr	NO	Br ₂		
	$n_{\rm i}$	2.30	0	0		
	change	-1.80	+1.80	+0.900		
	$n_{\rm eq}$	0.503	1.80	0.900		
	$[]_{eq}, V = 6.50 L$	0.0774 mol L ⁻¹	0.277 mol L ⁻¹	0.138 mol L ⁻¹		
	$K = \frac{[\text{NO}]^2[\text{Br}_2]}{[\text{NOBr}]} =$	$\frac{(0.277)^2 \times 0.13}{0.0774}$	$\frac{8}{}$ = 0.137			