

计算理论

高春晓

♦ 教材:

[S] 唐常杰等译, Sipser著, 计算理论导引(第3版), 机械工业.

♦ 参考资料:

[L] Lewis等著, 计算理论基础, 清华大学.

计算理论

- ◆ 第一部分 计算模型
 - ¶ 第1章 有限自动机
 - ¶第3章 图灵机
- ◆ 第二部分 可计算性
 - ¶ 第4章 存在没有算法的问题
- ◆ 第三部分 计算复杂性
 - ¶ 第7章 P, NP 与NP完全性

计算机的基本能力和局限性是什么?

第1章有限自动机

第1章有限自动机

- ♦ 0. 引论--语言--什么是问题
- ◆ 1. 确定性有限自动机
- ◆ 2. 非确定性有限自动机
- ♦ 3. 正则表达式
- ◆ 4. 正则语言的泵引理

如何表示全体问题? 如何表示算法? 问题与算法哪个多?

问题与决定性问题

- ◆ 判定性问题(Decision Prob): 只需回答是与否的问题
 - ¶"一数是否是偶数","串长度是否是2的幂次"
 - ¶ "图是否连通", "图是否有k团", "一个数是否素数"
- ◆ 功能问题:
 - ¶排序,最大流,最大团问题
- ◆ 本书只研究判定性问题:
- ◆ 1. 判定性问题能统一描述
- ◆ 2. 功能问题总能转化为判定性问题
 - ¶ 例: 最大团问题如何转化为判定性问题?

"最大团"与"图是否有k团"

- ◆ 团: 完全子图, 即所有节点对都有边相连的子图.
- ◆ 两个问题目前都没有快速算法
- ◆ 若"最大团"有快速算法,则"图是否有k团"也有:
 - ¶ 对图G运行最大团算法,得最大团的节点数m
 - ¶ 若m≥k,则有k团;否则没有k团.
- ◆ 若"图是否有k团"有快速算法,则"最大团"也有:
 - ¶ 利用"图是否有k团",二分搜索最大团节点数m.
 - ¶ 1. left=0; right=n;
 - ¶ 2.令k=(r-l)/2, 执行"G是否有k团".
 - ¶ 有则令left=k+1;没有则令right=k-1继续第2步.
 - ¶ 直到left>right

判定性问题与字符串集合

- ◆ 判定性问题(Decision Prob): 只需回答是与否的问题
 - ¶"一数是否是偶数"-----{以0结尾的01串}
 - ¶ "串长度是否是2的幂次" ---{ $0^{2^{n}}: n \ge 0$ }
 - ¶ "图是否连通" ------{ <G> | G是连通图 } 其中<G>是图G编码成的字符串.
 - ¶ "图是否有k团"-----{<G>|图G有k团}
- ◆ 给定有限字母表Σ, 例如{0,1}
- 每个输入是一个01串,任意01串都可以是输入
- "判定性问题"一一对应"字符串集合"

字符串与语言

- ightharpoonup 字母表: 任意一个有限集. 常用记号Σ, Γ . 符号: 字母表中的元素
 - $\Sigma = \{0, 1\}$
 - ¶ Γ ={a, b, c, d, ..., z, 空格}
- ◆ 字符串:字母表中符号组成的有限序列 如: x=0011, y=love, z=math通俗地说即单词
- ◆ 串的长度: 序列的长度, 例: |x|=|y|=4
- ◆ 串的连接, 例: y°z=lovemath
- ◆ 串的反转R, 例: (z)R=htam
- ◆ 空词(空串): 记为ε, |ε|=0, 长度为0
- ♦ 子串: th是math的子串

语言与Σ*

- ightharpoonup 语言: 给定字母表Σ,称Σ上一些字符串的集合为Σ上的语言.
 - ¶ 例. 令字母表 $\Sigma = \{0,1\}, \Sigma$ 上的语言举例
 - $A = \{0,00,0000\}, B = \{0,1,01,000,001,...\}$
- ♦ $\Sigma^* = \{x \mid x \in \Sigma$ 上全体有限长度的字符串\
- ◆ Σ 上的任意语言A都是 Σ *的子集,及A \subset Σ *.
 - ¶ 空语言: Ø
 - ¶ 空串语言: {ε}
- ◆ 判定性问题与{0,1}上的语言一一对应
 - ¶ P(A)集合A的幂集. 例: $P(\{a,b\})=\{\emptyset,\{a\},\{b\},\{a,b\}\}$
 - ¶ P(Σ*)=P({0,1}*):全体判定性问题

Σ*的标准序

- ◆ Σ*的标准序:长度按从小到大,同长度按数从小到大排列
- 例1: $\Sigma_1 = \{0,1\}$ $\Sigma_1^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, \dots\}$
- ◆ 因此Σ*是可数集合,与N等势,其基数为χ₀。

$\{0,1\}^{N}$

- \bullet $\Sigma = \{0, 1\}$
- ◆ Σ^N: Σ上所有无限长度串记为Σ^N, 即 $\{(x_i)_{i=1}^{\infty}: x_i \in \Sigma\}$ ¶ 例: 0001100..., 010111...,
- ◆ Σ^{N} 中任一串 $(x_{i})_{i=1}^{\infty}$ 可以看做一个映射 $f:N\to\Sigma$,其中N是自然数集, $f(i)=x_{i}$.

串0001100...的映射

N	0	1	2	3	4	5	6	• • •
$\int f$	0	0	0	1	1	0	0	

定理 {0,1}^N不可数

◆ {0,1}^N是全体无限长的01串

证明: 假设 $\{0,1\}^N$ 可数, 即可以排成一列(f(i))

接下面方法在 $\{0,1\}^N$ 中取一点x,

x的第i位与f(i)的第i位相反

n	<i>f</i> (n)		
1	1 1 1 0 1		
2	0 0 0 0		
3	0 1 1 1 1		
4	1 1 1 0 0		
• • •	• • •		
X	0 1 0 1		

x与列表每个数不同 x不在列表中 所以 $\{0,1\}^N$ 不可数.

Σ^N与R等势 其基数为μ₁

$\{0,1\}$ 上的语言与 $\{0,1\}^N$ 一一对应

- ♦ 任取Σ上的语言A (Σ*的一个子集),如下表示:
 - ¶ 对 Σ *字典序下第i个字符串w,
 - ¶ 若 $w \in A \diamondsuit x_i = 1$; 若 $w \notin A \diamondsuit x_i = 0$,
 - $\P(x_i)_{i=1}^{\infty} \in \Sigma^{N}$.
- ♦ 所以, Σ 上的语言与 Σ N一一对应.
- ♦ 全体语言 $P(\Sigma^*)$ 与 Σ^N 是等势的。

Σ^*	3	0	1	00	01	10	11	000	001	
A	×	0	×	00	01	×	×	000	001	1
g(A)	0	1	0	1	1	0	0	1	1	2.

计算理论研究对象:语言

- ◆ 全体程序是{0,1}* 的子集, 至多可数
- ◆ 全体判定性问题与{0,1}^N 等势, 不可数
- ◆ 程序可数,问题不可数
- ◆ 数学的研究对象有数,函数,函数空间等
- ◆ 计算理论的研究对象: 问题 即 语言 即 字符串集合

第1章有限自动机

- ◆ 0. 引论--语言--什么是问题
- ◆ 1. 确定有限自动机
- ◆ 2. 非确定有限自动机
- ◆ 3. 正则表达式
- ◆ 4. 正则语言的泵引理

第1章有限自动机

- ♦ 0. 引论--语言--什么是问题
- ◆ 1. 确定有限自动机
 - ¶ 有限自动机定义
 - ¶ 有限自动机举例
 - ¶ 有限自动机的设计
 - 『正则运算
- ◆ 2. 非确定有限自动机
- ♦ 3. 正则表达式
- ◆ 4. 正则语言的泵引理

有限自动机(Finite Automaton)

◆ 状态图

状态: q1,q2,q3

起始状态q₁

接受状态q₂

转移:箭头

δ	0	1
\mathbf{q}_1	\mathbf{q}_1	$\mathbf{q_2}$
$\mathbf{q_2}$	\mathbf{q}_3	$\mathbf{q_2}$
q_3	$\mathbf{q_2}$	$\mathbf{q_2}$

读头不能改写,且只能右移

有限输入带

有限状态控制器

有限自动机(Finite Automaton)

◆ 运行:

从起始状态开始沿转移箭头进行.

◆ 输出:

输入读完处于接受状态则接受, 否则拒绝.

♦ 接受: 1, 11, 100, 101, 1101, ...

◆ 拒绝: ε, 0, 10, 110, 1010, ...

有限状态控制器

有限自动机

定义: 有限自动机(Finite Automaton)是一个5元组(Q,Σ,δ,s,F),

- 1) Q是有限集, 称为状态集;
- 2) Σ是有限集, 称为字母表;
- 3) δ: Q×Σ→Q是转移函数;
- 4) s∈Q是起始状态;
- 5) F⊆Q是接受状态集;

$$Q=\{q_1,q_2,q_3\}$$
, 状态集 $\Sigma=\{0,1\}$, 字母表 $s=q_1$, 起始状态 $F=\{q_2\}$ 接受状态集

• 状态图等价于形式定义

δ	0	1
\mathbf{q}_1	\mathbf{q}_1	$\mathbf{q_2}$
\mathbf{q}_{2}	\mathbf{q}_3	$\mathbf{q_2}$
q_3	\mathbf{q}_2	\mathbf{q}_{2}

DFA计算的形式定义

- ◆ 设M=(Q,Σ,δ,s,F)是一个DFA, $w=w_1w_2...w_n$ 是字母表Σ上的一个字符串. 若存在Q中的状态序列 $r_0,r_1,...,r_n$, 满足
 - 1) $r_0 = s$;
 - 2) $r_{i+1} = \delta(r_i, w_{i+1})$;
 - 3) $r_n \in F$

则M接受w,记为

$$\delta(r_0, w) \in F$$

 $\mathbf{M}_{1} \qquad \begin{array}{c} \mathbf{0} \\ \mathbf{q}_{1} \end{array} \qquad \begin{array}{c} \mathbf{1} \\ \mathbf{q}_{2} \end{array} \qquad \begin{array}{c} \mathbf{0} \\ \mathbf{q}_{3} \end{array}$

$$s \xrightarrow{W_1} r_1 \xrightarrow{W_2} r_2 \xrightarrow{\cdots} r_{n-1} \xrightarrow{W_n} r_n$$

有限自动机的语言:正则语言

→ 对有限自动机M, 若 A = { w∈Σ* | M接受w },
 即A是有限自动机M的语言, 记为L(M)=A, 也称M识别A.
 注: M的语言唯一. M不识别任何其它语言.

- ◆ 正则语言: 若存在DFA识别语言A,则称A是正则语言.
- ◆ 等价: 若两个有限自动机的语言相同,则称它们等价.

有限自动机的语言:正则语言

- ◆ 分析M₁:
 - ¶ 在任何状态,读到1后一定会进入接受状态 q_2 .
 - ¶ 在q3状态下,读入0或1都进入接受状态
- ◆ 因此L(M₁)={w | w∈{0,1}*, w至少含一个1,
 且最后一个1后面含有偶数个0 }

注: 任何其它语言都不是M₁的语言.

• $\mathbf{M}_2 = (\{q_1, q_2\}, \{0, 1\}, \delta, s = q_1, F = \{q_2\}))$

δ	0	1		
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2		
\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_2		

◆ L(M₂)={w | w∈{0,1}*, w是以1结束的非空串 }

• $\mathbf{M}_3 = (\{q_1, q_2\}, \{0, 1\}, \delta, s = q_1, F = \{q_1\}))$

δ	0	1
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2
\mathbf{q}_2	\mathbf{q}_1	\mathbf{q}_2

 $L(M_3)=\{w \mid w \in \{0,1\}^*, w 为空或以0结束 \}$

• $\mathbf{M}_4 = (\{\mathbf{q}_1, \mathbf{q}_2, \mathbf{r}_1, \mathbf{r}_2\}, \{\mathbf{a}, \mathbf{b}\}, \delta, \mathbf{s}, \mathbf{F} = \{\mathbf{q}_1, \mathbf{r}_1\}))$

 $L(M_4)=\{w \mid w \in \{a,b\}^*, w$ 首尾字母相同的非空串 }

• $\mathbf{M}_5 = (\{\mathbf{q}_0, \mathbf{q}_1, \mathbf{q}_2\}, \{0,1,2,\text{reset}\}, \delta_i, \mathbf{s} = \mathbf{q}_0, \mathbf{F} = \{\mathbf{q}_0\})$

 $L(M_5)=\{w \mid w满足在最后一个reset之后的所有数字之和 为3的倍数 \}$

- $\bullet \Sigma = \{0,1,2,\text{reset}\}$
- ◆ A_i={w | w满足在最后一个reset之后的所有数字之和为i的倍数 }
- ♦ $L(B_i)=A_i$. 设计自动机 B_i 。
 - $\P B_i = (Q_i, \Sigma, \delta_i, s = q_0, F = \{q_0\})$
 - \P $Q_i = \{q_0, q_1, q_2, \dots q_{n-1}\}$
 - $\P \delta_{i}(q_{k},0) = q_{k}.$
 - $\P \delta_{i}(q_{k},1) = q_{(k+1) \bmod i}.$
 - $\P \delta_{\mathbf{i}}(\mathbf{q}_{\mathbf{k}},2) = \mathbf{q}_{(\mathbf{k}+2) \bmod \mathbf{i}}.$
 - $\int \delta_i(q_k, reset) = q_0.$

有限自动机的设计(难点)

- ◆ 原则: 自己即自动机
- ◆ 寻找需要记录的关键信息:
 - ¶ 步骤1: 确定状态
 - ¶步骤2:确定转移
- ◆ 设计识别下列语言的DFA:
 - ¶ 例1: { w∈{0,1}* | w从1开始,以0结束 }
 - ¶ 例2: { w∈{0,1}* | w含有子串1010 }
 - ¶ 例3: $\{ w \in \{0,1\}^* \mid w$ 的倒数第2个符号是1 \}
 - ¶ 例4: { 0^k | k是2或3的倍数 }

- ◆ 例1: { w∈{0,1}* | w从1开始,以0结束 }
- $\bullet \quad \Sigma = \{0,1\}$
- ◆ 步骤1: 根据关键信息确定状态
 - ¶ 空-->不接受
 - ¶以0开始-->不接受
 - ¶以1开始以0结束-->接受
 - ¶以1开始以1结束-->不接受
- ◆ 步骤2: 确定转移函数

◆ 例1: { w∈{0,1}* | w从1开始,以0结束 }

运行举例: 1100, 101

对应自动机算法:

- 1. 当前为初始状态
- 2. 当有输入,根据转移函数转移当前状态
- 3. 若当前处于接受状态,返回真,否则返回假

- ◆ 例2: { w∈{0,1}* | w含有子串1010 }
- $\bullet \quad \Sigma = \{0,1\}$
- ◆ 关键信息: ε, 1, 10, 101, 1010

- ◆ 例3: { w∈{0,1}* | w倒数第2个符号是1 }
- ◆ 只需关注最后两个符号
- ◆ Σ={0,1}, 关键信息: ε, 0, 1, 00, 01, 10, 11
- ◆ 关键信息改进: ε, 1, 10, 11

字符串匹配算法

算法	预处理时间	匹配时间	
朴素	0	O(nm)	
自动机	$O(\mathbf{m} \mathbf{\Sigma})$	Θ(n)	
Knuth-Morris-Pratt	Θ(m)	$\Theta(\mathbf{n})$	

- ◆ 例4: { 0^k | k是2或3的倍数 }
- ◆ 关键信息: ε,0¹,0²,0³,0⁴,0⁵.
- ♦ 记为: 0,1,2,3,4,5

例4: { 0^k | k是2或3的倍数 }

 $\Sigma = \{0\}$, 关键信息: ϵ , 0^1 , 0^2 , 0^3 , 0^4 , 0^5 ,

记为: 0,1,2,3,4,5 或 (0,0), (1,1), (0,2), (1,0), (0,1), (1,2)

 $\{0^k|k是2或3的倍数\} = \{0^k|k是2倍数\} \cup \{0^k|k是3的倍数\}$ $\{0^k|k是2和3的倍数\} = \{0^k|k是2倍数\} \cap \{0^k|k是3的倍数\}$?

有限自动机的设计

{ 0^k | k是2和3的倍数 }

 $\Sigma = \{0\}$, 关键信息: ϵ , 0^1 , 0^2 , 0^3 , 0^4 , 0^5 ,

记为: 0,1,2,3,4,5 或 (0,0), (1,1), (0,2), (1,0), (0,1), (1,2)

 $\{0^k | k = 2 \text{ } 13 \text{ } 13 \text{ } 14 \text{ } 1$

正则运算

♦ 设A, B都是Σ上的正则语言, 正则运算:

并
$$A \cup B = \{x \mid x \in A \ \text{或}x \in B\}$$

连接 $AB = \{xy \mid x \in A, y \in B\}$
星号 $A^* = A^0 \cup A^1 \cup A^2 \cup A^3 \cup \dots$
 $= \{\epsilon\} \cup A \cup AA \cup AAAA \cup \dots$
 $= \{x_1x_2...x_k \mid k \ge 0 \ \text{且每一个}x_i \in A\}$
补 $A^c = \{x \mid x \in \Sigma^* - A\}$

◆ 定理: 正则语言对于正则运算是封闭的。

正则运算举例

- ◆ 设字母表Σ由标准的26个字母组成
- **♦** A={good, bad}, B={boy, girl}, 则
 - \P A \cup B={ good, bad, boy, girl }
 - ¶ A°B={ goodboy, goodgirl, badboy, badgirl }
 - ¶ $A^*=\{\epsilon, good, bad, goodgood, goodbad, ...\}$

正则语言对补运算封闭

- ◆ 定理:正则语言对补运算封闭
- ◆ 证明思路:

 $L(M_2)=\{w \mid w \in \{0,1\}^*, w \in \{0,1\}^*, w \in \{0,1\}^*\}$

 $L(M_3)=\{w \mid w \in \{0,1\}^*, w 为 空 或 以 0 结 束 \}$

正则语言对补运算封闭

- ◆ 定理: 正则语言对补运算封闭
- ◆ 证明: 构造性证明

$$\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}_0, \mathbf{F})$$

$$M' = (Q, \Sigma, \delta, q_0, F'), \Leftrightarrow F' = Q - F$$

$$\forall x, x \in L(M) \Leftrightarrow \delta(q_0, x) \in F$$

$$\Leftrightarrow \delta(q_0,x) \notin F' \Leftrightarrow x \notin L(M')$$

所以L(M') =
$$\Sigma^*$$
 - L(M) = L(M)^C. 证毕.

正则语言对并运算封闭

- ◆ 定理: 设A, B都是Σ上的正则语言, 则A∪B也是正则语言.
- ◆ 证明思路: 构造性证明
- ◆ 构造一个有限自动机,同步更新两个有限自动机

有限状态控制器

正则语言的并是正则语言

- ◆ 定理: 设A, B都是 Σ 上的正则语言, 则A \cup B也是正则语言.
- ◆ 证明: 设 M_1 =(Q_1 , Σ , δ_1 , s_1 , F_1)和 M_2 =(Q_2 , Σ , δ_2 , s_2 , F_2)是有限自动机,且 $L(M_1)$ =A, $L(M_2)$ =B.

$$\diamondsuit M = (Q, \Sigma, \delta, s, F)$$

其中
$$Q=Q_1\times Q_2$$
, $s=(s_1,s_2)$, $F=F_1\times Q_2\cup Q_1\times F_2$,

$$\delta: \mathbf{Q} \times \Sigma \rightarrow \mathbf{Q}, \forall a \in \Sigma, r_1 \in \mathbf{Q}_1, r_2 \in \mathbf{Q}_2,$$

$$\delta((r_1,r_2), a) = (\delta_1(r_1,a), \delta(r_2,a)),$$

即第1个分量按 M_1 的转移函数变化,第2个分量按 M_2 的转移函数变化。

则
$$\forall x (x \in L(M) \leftrightarrow x \in A \cup B)$$

正则语言的交是正则语言

◆ 定理: 设A,B都是Σ上的正则语言,则A∩B也是正则语言.

证明: 设
$$M_1$$
=(Q_1 , Σ , δ_1 , s_1 , F_1)和 M_2 =(Q_2 , Σ , δ_2 , s_2 , F_2)是有限自动机,且 $L(M_1)$ =A, $L(M_2)$ =B, 令 M =(Q , Σ , δ , s , F),其中 Q = Q_1 × Q_2 , s =(s_1 , s_2), F = F_1 × F_2 , δ : Q × Σ \rightarrow Q , \forall a \in Σ , r_1 \in Q_1 , r_2 \in Q_2 , δ ((r_1 , r_2), a) = (δ 1(r_1 , a), δ (r_2 , a)),则 \forall x (x \in $L(M)$ \leftrightarrow x \in A \cap B) 即 $L(M)$ = A \cap B . 证毕

正则语言对相对补和对称差运算封闭

- ◆ 定理: 正则语言对补运算封闭
- ♦ 定理: $\forall A$, B都是 Σ 上的正则语言, $\cup A$ 0 $\cup B$ 也是正则语言.
- ♦ 定理: 设A,B都是Σ上的正则语言, 则A∩B也是正则语言.
- ◆ 推论: 正则语言对相对补和对称差运算封闭。

相对补
$$A-B=A \cap \sim B$$

对称差 $A \oplus B = (A-B) \cup (B-A)$

第1章有限自动机

- ◆ 0. 引论--语言--什么是问题
- ◆ 1. 确定有限自动机
- ◆ 2. 非确定有限自动机
 - ¶ 非确定型机器
 - ¶ NFA的形式定义
 - ¶ NFA计算的形式定义
 - ¶NFA举例
 - ¶NFA设计
 - ¶ NFA和DFA等价
- ♦ 3. 正则表达式
- ◆ 4. 正则语言的泵引理

非确定型机器

- ◆ 确定型有限自动机(DFA): deterministic finite automaton
 - ¶ δ : $Q \times \Sigma \rightarrow Q$, 下一个状态是唯一确定的
- ◆ 非确定型有限自动机(NFA): nondeterministic finite automaton
 - ¶每步可以0至多种方式进入下一步
 - ¶ 转移箭头上的符号可以是空串ε,表示不读任何输入就可以转 移过去

非确定型机器计算示例

DSAD

北京理工大学

非确定型机器计算示例

读头 q_2 q_4 q_4

0,1

有限状态控制器

北京理工大学

非确定型计算

NFA的计算方式

- ◆ 1.设读到符号s, 对(每个副本)机器状态q,若q有多个射出s箭头, 则机器把自己复制为成多个副本.
- ◆ 2. 对每个副本的状态,若其上有射出标ε的箭头,则不读任何输入,机器复制出相应副本.
- ◆ 3. 读下一个输入符号, 若有符号则转1. 若无输入符号, 计算结束, 并且, 若此时有一个副本处于接受状态,则接受, 否则拒绝.

NFA的形式定义

- ◆ 定义: NFA是一个5元组(Q,Σ,δ,s,F),
 - ¶ Q是状态集;
 - ¶ Σ是字母表;
 - ¶ δ: $\mathbf{Q} \times \mathbf{\Sigma}_{\varepsilon} \rightarrow \mathbf{P}(\mathbf{Q})$ 是转移函数; 其中 $\mathbf{\Sigma}_{\varepsilon} = \mathbf{\Sigma} \cup \{\varepsilon\}$
 - ¶ s∈Q是起始状态;
 - ¶ F⊆Q是接受状态集;

状态图 与 式定义 包含 相同信息

试写出该状态图 对应的形式定义

$$\delta(q_1,1) = \{q_1,q_2\}$$

$$\delta(q_2,\epsilon) = \{q_3\}$$

$$\delta(q_2,1) = \emptyset$$

$$\delta(q_1,\epsilon) = \emptyset$$

如何定义NFA的计算

北京理工大学

NFA计算的形式定义

- ◆ 设N=(Q,Σ,δ,q₀,F)是一台NFA, w是Σ上字符串 称 N接受w,
 - 若 w能写作w=w₁w₂...w_n, w_i∈Σ_ε,且 存在Q中的状态序列 \mathbf{r}_0 , \mathbf{r}_1 ,..., \mathbf{r}_n ,满足
 - 1) $r_0 = q_0$;
 - 2) $r_{i+1} \in \delta(r_i, w_{i+1});$
 - 3) $r_n \in F$

对于输入, NFA计算的路径可能不唯一。

NFA计算形式定义举例

N₁接受所有包含11或者101子串的字符串。

NFA举例

- ◆ L(N₂)={w | w的倒数第三个字符是1}
- $\bullet \ \Sigma = \{0, 1\}$
- ◆ NFA: 猜测能力

NFA的设计(难点)

- ◆ 自己即自动机
- ◆ 寻找需要记录的关键信息
- ◆ 设计识别{0,1}上以下语言的NFA:

```
¶ 例2: { w∈{0,1}* | w含有子串1010 }
```

```
¶ 例3: { w∈{0,1}* | w是倒数第2位是1 }
```

¶ 例4: $\{0^k | k \in \mathbb{Z}$ 或3的倍数 $\}$

NFA的设计

- ◆ 例1: { w∈{0,1}* | w从1开始,以0结束 }
- ◆ Σ={0,1}, 根据关键信息设计状态,
- ◆ 空,以0开始,以1开始以1结束,以1开始以0结束

NFA计算举例

 $A = \{ w \in \{0,1\}^* \mid w \text{ 从1开始, 以0结束 } \}$

状态: (q₀, q₁, q₂)

NFA的设计

- ◆ { w∈{0,1}* | w含有子串1010 }
- ◆ Σ={0,1}, 关键信息: 忽略(ε), 1, 10, 101, 1010

NFA计算举例

 $B = \{ w \in \{0,1\}^* \mid w 含有子串1010 \}$

状态: $(q_0,q_1,q_2,q_3,q_4) = (Ignore(\epsilon), 1, 10, 101, 1010)$

1010 1100

NFA的设计

- ◆ { w∈{0,1}* | w倒数第2个符号是1 }
- ◆ Σ={0,1}, 关键信息: 忽略(ε), 1, 1x,

DFA

NFA计算举例

 $C = \{ w \in \{0,1\}^* \mid w \in \{0,$

状态: $(q_0,q_1,q_2) = (忽略(\epsilon), 1, 1x)$

1100 0011

NFA与DFA等价

定理:每个NFA都有一台等价的DFA.

构造DFA关键信息: 副本状态的集合. 起始? 接受状态集?转移? 不确定:

在状态q读到a,

进入哪个状态?

确定:

在状态q读到a,

进入哪些状态?

进一步确定:

给定副本状态集,

读到符号a,

得到的副本状态集

北京理工大学

DSAD

NFA的确定化:子集法

- ◆ (1)确定起始状态S':将从 NFA N的起始状态S出发经过任意条ε 弧所能到达的状态组成的集合作为确定化后的 DFA M的起始状态S'。
- ◆ (2)确定其它状态:从S'出发,经过对任意输入符号a∈∑的状态转移所能到达的状态(包括读入输入符号a之后所有可能的ε转移所能到达的状态)所组成的集合作为M的新状态。
- ◆ (3)如此重复,直到不再有新的状态出现为止。
- ◆ (4)确定接受状态:在所产生的状态中,含有原NFA接受态的 子集作为DFA的接受态。

构造和N等价的DFA M

$$N=(\mathbf{Q}_1, \Sigma, \delta_1, \mathbf{q}_1, \{\mathbf{q}_4\})$$

$$0, 1 \qquad 0, \epsilon \qquad 0$$

$$q_1 \qquad 1 \qquad q_2 \qquad 0, \epsilon \qquad 1 \qquad q_4$$

$$\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{s}, \mathbf{F})$$

$$\mathbf{Q} = \mathbf{P}(\mathbf{Q}_1), \, \diamondsuit \mathbf{s} = \mathbf{S}_1 = \{\mathbf{q}_1\}$$

令
$$S_2 = \{q_1, q_2, q_3\}$$
. 则有 $\delta(S_1, 0) = S_1, \delta(S_1, 1) = S_2,$

$$\delta(A, a) = E(\bigcup_{r \in A} \delta_1(r, a))$$

$$Q = \{ S_1, S_2, \dots \},$$

$$s = S_1,$$

$$\delta(S_1, 0) = S_1, \delta(S_1, 1) = S_2,$$
北京理工大学

以原状态的子集 为新机器的状态

编号	δ	0	1
1	{q ₁ } 1	{q ₁ }	${q_1, q_2, q_3}$ 2
2	$\{q_1, q_2, q_3\}$	${q_1, q_3}$ 3	${q_1, q_2, q_3, q_4}4$
3	$\{q_1, q_3\}$	$\{\mathbf{q_1}\}$	$\{q_1, q_2, q_3, q_4\}$
4*	$\{q_1, q_2, q_3, q_4\}$	${q_1, q_3, q_4}5$	$\{q_1, q_2, q_3, q_4\}$
5*	$\{q_1, q_3, q_4\}$	$\{q_1, q_4\}_{6}$	$\{q_1, q_2, q_3, q_4\}$
6*	$\{\mathbf{q}_1,\mathbf{q}_4\}$	$\{\mathbf{q}_1,\mathbf{q}_4\}$	$\{q_1, q_2, q_3, q_4\}$

N₁: 包含11或者101子串的字符串

编号	δ	0	1
1	{q ₁ } 1	$\{q_1\}$	${q_1, q_2, q_3}$ 2
2	$\{q_1, q_2, q_3\}$	${q_1, q_3}$ 3	${q_1, q_2, q_3, q_4}4$
3	$\{q_1, q_3\}$	$\{\mathbf{q_1}\}$	$\{q_1, q_2, q_3, q_4\}$
4*	$\{q_1, q_2, q_3, q_4\}$	${q_1, q_3, q_4}5$	${q_1, q_2, q_3, q_4}$
5*	$\{q_1, q_3, q_4\}$	$\{q_1, q_4\}_{6}$	$\{q_1, q_2, q_3, q_4\}$
6*	$\{\mathbf{q}_1,\mathbf{q}_4\}$	$\{q_1, q_4\}$	$\{q_1, q_2, q_3, q_4\}$

N₁: 包含11或者101子串的字符串

♦ 证明: 设N=(Q₁, Σ , δ_1 , s_1 , F_1) 是NFA, //构造一个DFA M=(Q, Σ , δ , s, F) \diamondsuit Q = P(Q₁), //Q1的幂集 $\mathbf{F} = \{ A \in \mathbf{Q} : \mathbf{F}_1 \cap \mathbf{A} \neq \emptyset \},$ $s = E({s_1}), E(A) = {q: \exists r \in A, r \leq 0}$ 到多个ε箭头可达q } $\delta: Q \times \Sigma \rightarrow Q, \forall a \in \Sigma, \forall A \in Q,$ $\delta(A, a) = E(\bigcup_{r \in A} \delta_1(r, a))$ $M = (Q, \Sigma, \delta, s, F),$ $\mathbb{N} \ \forall x \ (x \in L(M) \leftrightarrow x \in L(N)),$ $\mathbb{P} L(M) = L(N).$ 证毕.

 $0,1 \qquad 0,\epsilon \qquad 0,1 \qquad 0,1$

$\forall x \ (x \in L(M) \leftrightarrow x \in L(N))$

N接受w: $w=0101\epsilon1$ q_1-0-q_1-1 q_1-0-q_1-1 $q_2-\epsilon-q_3-1$ $q_4\in F_1$

 S_1 --0-- S_1 --1-- S_2 --0-- S_3 --1-- S_4 --1-- S_4 M接受w

DSAI

北京理工大学

正则运算的封闭性

定理:每个NFA都有等价的DFA。

推论:一个语言是正则的,当且仅当有一个NFA识别它。

定理: 正则语言对并运算封闭.

定理: 正则语言对连接运算封闭.

定理: 正则语言对星号运算封闭.

证明方法: 构造一个NFA, 画状态图.

证明: 若A, B正则, 则AUB正则

- **♦** 设DFA: $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1)$, $L(M_1) = A$; DFA: $M_2 = (Q_2, \Sigma, \delta_2, s_2, F_2)$, $L(M_2) = B$,
- ◆ 构造识别A∪B的NFA,N=(Q,Σ,δ,s,F)。
- ♦ 令 Q = Q₁∪Q₂∪{s}, $\mathbf{F} = \mathbf{F}_1 \cup \mathbf{F}_2$, s是N的初始状态; $\delta(\mathbf{s}, \mathbf{\epsilon}) = \{\mathbf{s}_1, \mathbf{s}_2\}$

 $\forall i=1,2, \forall r \in Q_i, \forall a \in \Sigma, \delta(r,a) = \{\delta_i(r,a)\}$

♦ 则 $L(N) = A \cup B$.

证明: 若A, B正则, 则A°B正则

- DFA: $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1), L(M_1) = A,$ $M_2 = (Q_2, \Sigma, \delta_2, S_2, F_2), L(M_2) = B_0$
- ◆ 构造识别A°B的NFA,N=(Q,Σ,δ,s₁,F)。
- ♦ $Q = Q_1 \cup Q_2$,不交并, $F = F_2$, S_1 是N的初始状态; $\forall \mathbf{r} \in \mathbf{F}_1, \, \delta(\mathbf{r}, \boldsymbol{\varepsilon}) = \{\mathbf{s}_2\}$ $\forall i=1,2, \forall r \in Q_i, \forall a \in \Sigma, \delta(r,a) = \{\delta_i(r,a)\}$
- ◆ 则 L(N) = A°B.

证明若A正则,则A*正则

- DFA: $M_1 = (Q_1, \Sigma, \delta_1, s_1, F_1), L(M_1) = A,$
- ♦ 构造识别A*的NFA,N=(Q, Σ , δ ,s,F)。

$$\diamondsuit \mathbf{Q} = \mathbf{Q}_1 \cup \{\mathbf{s}\}, \mathbf{F} = \mathbf{F}_1 \cup \{\mathbf{s}\}$$

 $\forall r \in Q_1, \forall a \in \Sigma, \delta(r,a) = \{\delta_1(r,a)\}\$

$$\forall \mathbf{r} \in \mathbf{F}_1, \, \delta(\mathbf{r}, \boldsymbol{\varepsilon}) = \{\mathbf{s}_1\},$$

$$\delta(\mathbf{s},\boldsymbol{\varepsilon}) = \{\mathbf{s}_1\},\,$$

◆ 则 L(N) = A*.

第1章有限自动机

- ◆ 0. 引论--语言--什么是问题
- ◆ 1. 确定有限自动机
- ◆ 2. 非确定有限自动机
- ◆ 3. 正则表达式
 - ¶ 正则表达式
 - ¶正则表达式与DFA等价
- ◆ 4. 正则语言的泵引理

正则表达式

- ◆ 定义: 称R是一个正则表达式, 若R是
 - 1) $\mathbf{a}, \mathbf{a} \in \Sigma$;
 - **2) ε**;
 - 3) Ø;
 - 4) (R₁∪R₂), R₁和R₂是正则表达式;
 - 5) (R₁°R₂), R₁和R₂是正则表达式;
 - 6) (R₁*), R₁是正则表达式;
- ◆ 每个正则表达式R表示一个语言,记为L(R).
 - 1) $L(a)=\{a\}$. 2) $L(\epsilon)=\{\epsilon\}$.
 - \P 3) $L(\emptyset) = \emptyset$
 - ¶ 4) $L((R_1 \cup R_2)) = L(R_1) \cup L(R_2)$.
 - ¶ 5) $L((R_1 \circ R_2)) = L(R_1) \circ L(R_2)$.
 - \P 6) $L((R_1^*))=(L(R_1))^*$

◆ 每个正则表达式R表示一个语言,记为L(R).例:

- ¶ 0*10*={w| w恰好含有一个1}
- $91010=\{01, 10\}$
- ¶ $(\Sigma \Sigma)^* = \{w \mid w$ 是含有偶数个字符的字符串}
- ¶ 1*Ø =Ø
- $\{3\} = {\emptyset}$

正则表达式与DFA等价

- ◆ 定理2.3.1: 语言A是正则的⇔A可用正则表达式描述.
- ◆ (⇐) 若 语言A可用正则表达式描述, 则 A是正则的.
 - ¶证明方法:数学归纳法 即,用DFA(NFA)识别正则表达式的基本形式,然后归纳
- ◆ (⇒) 若 语言A是正则的, 则A可用正则表达式描述.
 - ¶证明方法:将DFA识别的语言变换为正则表达式

A可用正则表达式描述⇒A正则

- ◆ 数学归纳法
- ◆ R是一个正则表达式, 若R是
 - 1) $a, a \in \Sigma$
 - **2)** ε
 - 3) Ø
 - 4) $(R_1 \cup R_2)$
 - 5) $(R_1 {}^{\circ}R_2)$
 - 6) (R₁*)

针对正则表达式进行归纳 例如: (ab∪a)*

A可用正则表达式描述⇒A正则

♦ 例:根据(ab∪a)*构造NFA

 $a \longrightarrow \bigcirc a \longrightarrow \bigcirc$

b <u>b</u>

$$ab \longrightarrow a \longrightarrow b \longrightarrow b$$

 $(ab \cup a)^* \longrightarrow \underbrace{\epsilon}$

A正则⇒A可用正则表达式描述

- ◆ 证明方法:将DFA转换为等价的正则表达式
- ◆ 构造性证明:构造广义非确定有限自动机(GNFA)
 - ¶ 转移箭头可以用任何正则表达式作标号,如ab*, ab∪a等。
 - ¶ GNFA读入符号段,不必一次读入一个符号
 - ¶ 证明中的特殊要求:
 - ▶ 起始状态无射入箭头.
 - ▶唯一接受状态(无射出箭头).
 - ▶ 其它状态到自身和其它每一个状态都有一个箭头.
- ◆ 手段: 一个一个地去掉中间状态.

正则表达式到NFA的转换

NFA到正则表达式的转换

(2)
$$A$$
 B 替换成 $A e_1 | e_2$ B

(3)
$$A \xrightarrow{e_1} B \xrightarrow{e_3} C$$
 替换成 $A \xrightarrow{e_1 e_2^* e_3} B$

删除一个中间状态

设q_{rip}为待删中间状态, 对任意两个状态q_i, q_i都需要修改箭头标号

$$\underbrace{ (R_1)(R_2)^*(R_3) \cup (R_4)}_{ (q_j)} \underbrace{ (q_j)^*(R_3) \cup (R_4)}_{ (q_j)}$$

举例: A正则⇒A有正则表达式

 $a(aa \cup b)^*$ <u>(ba∪a)(aa∪b)*</u>∪ε $\underline{\mathbf{a}(\mathbf{a}\mathbf{a}\cup\mathbf{b})^*\mathbf{a}\mathbf{b}}\cup\mathbf{b}$ $(ba \cup a)(aa \cup b)^*ab \cup bb$

 $((ba \cup a)(aa \cup b)^* \cup \epsilon)) \cup (a(aa \cup b)^*)$

3. 删除状态2

DSAD

4. 删除状态3

 $((a(aa \cup b)^*ab \cup b)((ba \cup a)(aa \cup b)^*ab \cup bb)^*$

北京理工大学

ac

2. 删状态1

正则表达式与DFA等价举例

- ◆ 例1: { w∈{0,1}* | w从1开始,以0结束 }
- ◆ 例2: { w∈{0,1}* | w含有子串1010 }
- ◆ 例3: { w∈{0,1}* | w的倒数第2个符号是1 }
- ◆ 例4: { 0^k | k是2或3的倍数 }
- ♦ 例1: 1(0∪1)*0.
- ♦ 例2: (0∪1)*1010(0∪1)*.
- ♦ 例3: (0∪1)*1(0∪1).
- ♦ 例4: (00)*∪(000)*

NFA3

正则表达式与DFA等价举例

- ◆ 例4: { 0^k | k是2或3的倍数 }
- **♦** (00)*∪(000)*

第1章有限自动机

- ◆ 0. 引论--语言--什么是问题
- ◆ 1. 确定有限自动机
- ◆ 2. 非确定有限自动机
- ♦ 3. 正则表达式
- ◆ 4. 正则语言的泵引理
 - ¶ 非正则语言
 - ¶ 泵引理

非正则语言

◆ 哪些是正则语言?

$$B = \{ 0^n 1^n \mid n \ge 0 \}$$

$$C = \{ ww \mid w \in \{0,1\}^* \}$$

$$\Gamma = \{ w \mid w \neq 0$$
和1的个数相等 $\}$

- \P ϵ , 00, $11 \in F$
- ¶ 101, 010, 111001001, 000110110 \in F
- ¶ 1010、 0101 ∉ F
- ¶ 若干个1组成的子串(D_1)和若干个0组成的子串(D_2)交替出现 若w以(D_1)开始则以(D_1)结束,若w以(D_2)开始则以(D_2)结束
- $F = (0^+(1^+0^+)^*) \cup (1^+(0^+1^+)^*)$

- ◆ F={ w | w中01和10的个数相等 }是正则的:
- $F = (0^+(1^+0^+)^*) \cup (1^+(0^+1^+)^*)$
- ♦ 设计NFA状态:
 - ¶空,0,01;
 - ¶空,1,10

泵引理

- ◆ 定理(泵引理): 设A是正则语言,则存在p>0(泵长度)使得 对任意w∈A, |w|≥p, 存在分割w=xyz满足:
 - 1) 对任意 $i \ge 0$, $xy^iz \in A$;
 - 2) |y| > 0;
 - 3) $|xy| \leq p$.

11011 1010

11011 : q_0 -1- q_1 - 101 - q_1 -1 - q_3 -接受 1(101) i 1: q_0 -1- q_1 - (101) i - q_1 -1 - q_3 -接受 11011=xyz x=1, y=101, z=1. xy i z 被接受的原因? 概略的讲,因为图中有回路,当复杂路径长度超过顶点数p,则该复杂路径长度超过顶点数p,则该复杂路径中必定有回路。 $\{w \in \{0,1\}^* \mid w$ 倒数第2个符号是1 $\}$

95

DSAD

北京理工大学

泵引理的等价描述

- ◆ 定理(泵引理): 设A是正则语言,则存在p>0(泵长度)使得 对任意w∈A, |w|≥p, 存在分割w=xyz满足:
 - 1) 对任意 i ≥ 0, xyⁱz ∈ A;
 - 2) |y| > 0;
 - 3) $|xy| \leq p$.

```
若A是正则语言,
则3p>0
\forall w \in A(|w| \ge p)
\exists x,y,z(|y| > 0, |xy| \le p, w = xyz)
\forall i \ge 0,
xy^iz \in A.
```

```
若\forallp>0
\exists w \in A(|w| \geq p)
\forall x,y,z(|y| > 0, |xy| \leq p, w = xyz)
\exists i \geq 0,
xy^{i}z \notin A.
则A非正则语言
```

泵引理的应用实例1

- ◆ B = { 0ⁿ1ⁿ | n≥0 } 非正则
- ∵ ∀p>0,
 令w=0^p1^p,
 ∀x,y,z(|y|>0, |xy|≤p, w=xyz)
 因为|xy|≤p, 所以y只能
 取k个0(1≤k≤p)
 即: y=0^k

炓: y=0^k **令i=0**,

 $\mathbf{x}\mathbf{z} = \mathbf{0}^{\mathbf{p}-|\mathbf{y}|}\mathbf{1}^{\mathbf{p}} \not\in \mathbf{B}$

∴ B非正则语言

泵引理的应用实例2

- ◆ C = { ww | w∈{0,1}* } 非正则
- ∴ C非正则语言

泵引理的证明

- ◆ 定理(泵引理): 设A是正则语言,则存在p>0(泵长度)使得对任意 $w \in A$, $|w| \ge p$, 存在分割w=xyz满足
 - 1) 对任意 i ≥ 0, xyⁱz ∈ A;
 - 2) |y| > 0;
 - 3) $|xy| \leq p$.

证明: \diamondsuit M=(Q, Σ , δ ,s,F) 且 L(M)=A, \diamondsuit p=|Q|, \heartsuit w = w₁w₂...w_n \in A, w_i \in Σ , 且n \succeq p, 则有

$$s = r_0 \xrightarrow{W_1} r_1 \xrightarrow{\cdots} r_{i-1} \xrightarrow{W_i} r_j \xrightarrow{\cdots} r_{j+1} \xrightarrow{\cdots} r_{n-1} \xrightarrow{W_n} r_n \in F$$

由鸽巢原理, 存在 $i < j \le p$ 使得 $r_i = r_j$, 令 $x = w_1 ... w_i$, $y = w_{i+1} ... w_j$, $z = w_{j+1} ... w_n$. 那么对 $\forall k \ge 0$, $xy^k z \in A$.

泵引理的应用实例3

∴ D非正则语言

本章作业

1.1 下图给出了两台DFA M₁和M₂的状态图。

回答下述关于这两台机器的问题。

- a. 它们的起始状态是什么?
- b. 它们的接受状态集是什么?
- c. 对输入aabb,它们经过的状态序列是什么?
- d. 它们接受字符串aabb吗?
- e.它们接受字符串ε吗?
- 1.6 画出识别下述语言的DFA状态图。字母表为{0,1}
 - d. {w|w的长度不小于3,并且第3个符号为0};
- 1.7. 给出下述语言的NFA,并且符合规定的状态数。

字母表为{0,1}

e. 语言0*1*0*0,3个状态。

 M_1

北京理工大学

本章作业

- 1.16(b) 将如右图的非确定有限自动机 转换成等价的确定有限自动机.
- 1.21(a) 将如右图的有限自动机转换成等价的正则表达式.
- 1.22 在某些程序设计语言中,注释出现在两个分隔符之间,如/#和#/.设C是所有有效注释串形成的语言. C中的成员必须以/#开始,#/结束,并且在开始和结束之间没有#/.为简便起见,所有注释都由符号a和b写成;因此C的字母表 Σ={a, b, /, #}.
 - a. 给出识别C的DFA.
 - b. 给出产生C的正则表达式.
- 1.29 使用泵引理证明下述语言不是正则的。

 $\mathbf{b}_{\mathbf{SAD}} = \{ \mathbf{www} \mid \mathbf{w} \in \{\mathbf{a,b}\}^* \}$

附录

字符串匹配问题

- 输入: 两个字符串T(ext),P(attern), (|T|=n, |P|=m)
- ·输出: 所有P在T中出现的起点位置
- 例: T=abaabababababababababaa, P=ababbababaa
- •输出13
- 直接法: 以每个位置为起点对比一遍P. 时间? O((n-m+1)m). 能否利用已经看到的信息?
- · 动态规划: 子结构[1:i], 决策量? 决策量设为T[1:i]的能成为P前缀的最大后缀(长度) 这就是字符串匹配的自动机算法

字符串匹配的自动机算法

- · 动态规划: 子结构[1:i], 决策量? 决策量设为T[1:i]的能成为P前缀的最大后缀(长度) 这就是字符串匹配的自动机算法
- 令 $P_j = p_1 p_2 ... p_j$, $1 \le j \le m$, $P_0 = \varepsilon // 代表状态0~m$
- 转移函数: $\delta(j, a) = \max\{k \mid P_k \text{ is a suffix of } P_j a\}$ 是递推关系

definition of prefix function

- Σ , Σ^* , prefix, suffix
- $P = p_1 p_2 ... p_m \in \Sigma^*$ a pattern, $P_j = p_1 p_2 ... p_j, 1 \le j \le m$, $P_0 = \varepsilon$
- The transition function for P, $0 \le j \le m$, $a \in \Sigma$, $\delta(j,a) = \max \{ k \mid P_k \text{ is a suffix of } P_i a \} // \ge 0$
- The prefix function for P, $1 \le j \le m$, $\pi(j) = \max\{k \mid k \le j, P_k \text{ is a suffix of } P_i\} // \ge 0$

example of prefix function

- $\Sigma = \{a,b,c\}, P = ababaca$
- $\pi(j) = \max\{k \mid k \le j, P_k \text{ is a suffix of } P_j\},$
- $\pi(1) = ? P_1 = a$, real suffixes of P_1 : $\varepsilon = P_0$,
- $\pi(5) = ?$ $P_5 = ababa$, real suffixes of P_5 : $\varepsilon = P_0$, $a = P_1$, ba, $aba = P_3$, baba

i	1	2	3	4	5	6	7
P[i]	a	b	a	b	a	c	a
π[i]	0	0	1	2	3	0	1

i	•••	4	5	6	7	8	9	10		
T[i]	•••	a	b	a	b	a	a	a	•••	- 0
P ₅		a	b	a	b	a	c	a		$\pi(5)=3$
P ₃				a	b	a	b	a	С	$\pi(3)=1$
$\overline{P_1}$						a	b	a	b	$\pi(1)=0$
$\overline{P_0}$						3	a	b	a	•••

computation of prefix function

Let P be a pattern with length m

$$\pi(q) = \max\{k \mid k \le q, P_k \text{ is a suffix of } P_q\},$$

- Compute $PF(P, \Sigma, m)$
- 1. $\pi[1]=0$, k=0
- 2. For q = 2 : m // O(m)
- 3. while k>0 and P[k+1] \neq P[q], k= π [k] //totally O(m)
- 4. If P[k+1] == P[q], k=k+1 //totally O(m)
- 5. $\pi[q]=k$

time complexity O(m)? //aggregate analysis

KMP matcher

Let π be the transition function for a pattern P,

$$T[1:n] = t_1 t_2 ... t_n$$
 be a text

- KMPMatch(T, P, n, m) //m is the length of P
- 1. q = 0
- 2. For i = 1 : n // O(n)
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$ //totally O(n)
- 4. If P[q+1] == T[i], q=q+1 //totally O(n)
- 5. If q == m, Print(i-m); $q = \pi[q]$
- // print all place that P occur

time complexity O(n)? //aggregate analysis

example of KMP

$$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

1.
$$q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P[q+1] == T[i], q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q	0														
pattern	a	b	C	d	a	b	d							2	. 1
q	1													2	3

example of KMP

$$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

1.
$$q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P[q+1] == T[i], q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q	0	1													
pattern	a	b	C	d	a	b	d							2	
q		2												2	3

$$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

1.
$$q = 0$$

- 2. For i = 1 : n
- 3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$
- 4. If P(q+1) == T(i), q=q+1
- 5. If q == m, Print(i-m); $q = \pi[q]$

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q	0	1	2												
pattern	a	b	c	d	a	b	d							8	
q			3											5	3

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q	0	1	2	3											
pattern	a	b	c	d	a	b	d							2	
q				0										2	3
pattern				a	b	C	d	a	b	d			\leq	1	
DSAD													416	古理	工大

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q														٨	
pattern														2	1
q				0										2	3
pattern				a	b	C	d	a	b	d			\leq		3
DSAD				1									41:	古理	r.t

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1										
pattern				a	b	C	d	a	b	d				2	1
q					2									2	3
													\leq	1	3
DSAD													41:	古理	工士

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2								Δ.	
pattern				a	b	c	d	a	b	d				2	
q						3								2	3
													\leq	1	3
DSAD													41:	古理	正大

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2	3								
pattern				a	b	c	d	a	b	d				8	1
q							4							2	3
													\leq	-	
DSAD													JŁ.	古理	工大

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2	3	4							
pattern				a	b	c	d	a	b	d				2	1
q								5						2	3
													\leq	1	3
DSAD													41:	古理	工士

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q				0	1	2	3	4	5	6					
pattern				a	b	c	d	a	b	d				8	1
q										2				2	3
								a	b	c	d	a	b	d	3
DSAD													41:	古理	正长

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	е
q														٨	
pattern														2	1
q										2				5	3
pattern								a	b	c	d	a	b	d	>
DSAD										3			41:	古理	T. K

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3				
pattern								a	b	c	d	a	b	d	1
q											4			2	3
pattern													\leq	-1	3
DSAD													46	古理	工大

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3	4			
pattern								a	b	c	d	a	b	d	1
q												5		2	3
pattern													\leq	1	3
DSAD													46	古理	工大

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3	4	5		
pattern								a	b	c	d	a	b	d	1
q													6	2	3
pattern													\leq	1	>
DSAD													J.E	古理	工夫

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q										2	3	4	5	6	
pattern								a	b	c	d	a	b	d	
q														7	3
q													\leq	0	>
pattern													41.	古理	a

$\Sigma = \{a,b,c,d,e\}, P = abcdabd, T = abcabcdabde$

i	1	2	3	4	5	6	7
P[i]	a	b	c	d	a	b	d
π[i]	0	0	0	0	1	2	0

```
1. q = 0
```

2. For i = 1 : n

3. while q>0 and $P[q+1] \neq T[i]$, $q=\pi[q]$

4. If P[q+1] == T[i], q=q+1

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
T[i]	a	b	c	a	b	c	d	a	b	c	d	a	b	d	e
q														0	0
pattern														8	a
q														2	0
													\leq	-	
DSAD													41	古理	工大