

Návrh hardwarových komponent

Milan Kolář Ústav mechatroniky a technické informatiky

Projekt ESF CZ.1.07/2.2.00/28.0050

Modernizace didaktických metod
a inovace výuky technických předmětů.

Literatura

- E-learningový portál: https://elearning.tul.cz
- Pinker, J. Poupa, M.: Číslicové systémy a jazyk VHDL. BEN, 2006, ISBN 80-7300-198-5.
- Král, J.: Řešené příklady ve VHDL. Hradlová pole FPGA pro začátečníky. BEN, 2010, ISBN 978-80-7300-257-2.
- Šťastný, J.: FPGA prakticky. Realizace číslicových systémů pro programovatelná hradlová pole. BEN, 2010, ISBN: 978-80-7300-261-9.

Rozvrh:

přednáška: Čt 8:50 (A109) cvičení: Čt 10:40 (A109)

Elektronický systém

Elektronický systém – zařízení zpracovávající data, která mohou být analogová (spojité hodnoty) nebo číslicová (diskrétní hodnoty).

V dnešní době se preferuje **číslicové** zpracování signálů (informací, dat) jak **hardwarovými**, tak **softwarovými** prostředky.

Číslicové systémy lze v zásadě rozdělit na:

- aplikačně specifické architektura systému je přizpůsobena danému účelu (vyšší výkon, vyšší náklady na vývoj, vhodnější pro větší série, obtížnější změny funkce, obtížnější okopírování);
 např. FPGA, ASIC, CPLD.
- mikroprocesorové univerzální architektura doplněná vhodným programem - řízená instrukcemi (horší dynamické vlastnosti, pružná změna funkce, velká výpočetní kapacita);
 - např. μP, DSP, μC, PLC.

Návrh elektronického systému

Výběr architektury významnou měrou určuje budoucí parametry (výkonnost, cenu, flexibilitu). Současné návrhové systémy umožňují souběžný návrh hardwaru a softwaru (HW/SW co-design).

Efektivita vs. flexibilita

Čím bude specializovanější HW pro daný účel, tím bude vyšší energetická efektivita (operací/mW), výpočetní výkonnost i hustota funkcí na čipu.

Kompromisní křivka HW návrhu

Dělení zakázkových IO

Plně zakázkové (Full Custom)

- podle uživatele se navrhují všechny masky technologického procesu;
- velké náklady na vývoj;
- vhodné pro velké série;
- vyšší výkonnost;
- nižší spotřeba;
- např. ASIC, ASSP, SoC.

Programovatelné (Programmable)

- uživatel sám programuje funkci;
- rychlejší vývoj (uvedení na trh);
- vyšší cena za kus;
- horší dynamické vlastnosti;
- např. PLD, CPLD, FPGA.

Projektování zakázkových obvodů

Rozlišujeme 3 fáze (ASIC):

- systémový návrh,
- návrh masek,
- technologie výroby.
- nutné návrhové systémy
 - Siemens EDA (Mentor Graphics)
 - Cadence
 - AMD (Vivado)
 - Intel (Quartus)
- přesun systémového návrhu k uživateli
 - oddělení návrhového a výrobního procesu
 - nutnost přesně definovat rozhraní
 - vzniká skupina systémových inženýrů různých oborů

Systémový návrh

- nejdůležitější fáze, cílem je nalezení obvodové struktury,
- rozčlenění návrhu na úrovně abstrakce,
- smíšená forma vstupního popisu (na různých úrovních) využitím HDL (Hardware Description Language) jazyků,
- syntéza je obecně mnohoznačná úloha (na nižších úrovních abstrakce je automatizovaná),
- ověření správnosti v HDL simulátorech.

Úrovně abstrakce

Behaviouristická úroveň

- popis chování systému na vyšší úrovni abstrakce,
- volba algoritmů a architektury (neuvažujeme detaily);

Úroveň FB (RTL - Register Transfer Level)

- popis tokem dat (stavový diagram)
- FB: logické operátory, RAM, DSP, multiplexory, čítače, ...
- Nejčastěji používaná úroveň ve VHDL a Verilog HDL;

· Úroveň logického schématu

- popis na úrovni hradel,
- jednoznačný přechod na úroveň tranzistorů,
- často již hardwarově závislé (pro konkrétní FPGA);

Úroveň strukturální

- vzájemné propojení jednotlivých funkčních bloků či knihoven,
- omezení možností syntézy či optimalizace.

Postupy systémového návrhu

Většinou hierarchický přístup:

Zdola-nahoru (bottom-up) – systém skládáme z hotových FB

- vhodné pro menší systémy,
- menší nároky na zkušenosti (ověřené FB),
- výsledné řešení méně optimální.

Shora-dolů (top-down) – koncepci rozvádíme do podrobností

- vhodné pro velké systémy,
- dosažení lepšího výsledku,
- náročné na zkušenosti.

V jednoduchých případech: model **plochého typu** (flat)

Gajski-Kuhnův Y diagram

Zobrazuje různé perspektivy při návrhu integrovaných číslicových systémů. Vývoj hardwaru je vnímán ve třech doménách s různými stupni abstrakce.

Gajski-Kuhnův Y diagram

Přechod mezi úrovněmi abstrakce může být manuální nebo automatizovaný (shora-dolů i zdola-nahoru).

Gajski-Kuhnův Y diagram

Ilustrace typického návrhu shora dolů (spirála)

Postup návrhu FPGA

Formy popisu

HDL jazyky

HDL – programovací jazyky popisující v textové formě chování elektronických obvodů (převážně číslicových), popis na různých úrovní abstrakce. Nepopisují funkci sekvenčně, ale paralelně (distribuované bloky). Jazyky lze použít i pro simulaci a verifikaci.

Návrhový systém nemusí být schopen celý popis v HDL jazyku přeložit do netlistu (implementuje jen tzv. syntetizovatelnou podmnožinu HDL). Vlastnosti HDL jazyka, které slouží k řízení simulace a verifikace funkce, tvoří simulační podmnožinu HDL.

HDL jazyky - přehled

VHDL (Very High Speed Integrated Circuits HDL) – standardizován v roce 1987 (IEEE Std. 1076-1987), v současnosti nejpoužívanější pro popis FPGA (zejména v Evropě);

Verilog HDL – první standard v roce 1995 (IEEE Std. 1364-1995), rozšířený zejména pro ASIC (v Americe a Asii), podobný jazyku C.

Nové jazyky vznikají zejména z důvodu dosažení větší abstrakce od hardwaru, kladou důraz na popis na úrovni algoritmů (nejsou koncipovány pro přímý popis HW – nejsou to HDL jazyky). Syntéza buď přímo do cílové technologie nebo přes RTL v jazycích VHDL nebo Verilog (označuje se **HLS** – High Level Synthesis).

SystemVerilog – první standard IEEE Std 1800-2005, v roce 2009 sloučeny Verilog a SystemVerilog do IEEE Std. 1800-2009;

SystemC – standard IEEE Std 1666-2005, vychází z objektového jazyka C++.

Úroveň abstrakce program. jazyků

Přibližná úroveň abstrakce dosažitelná v různých programovacích jazycích vhodných pro popis číslicových systémů

Typické blokové schéma systému

 oddělení zpracování dat od řídicích obvodů (obecně rozdělení do několika relativně samostatných bloků)

Návrh datové části

Datová část se obecně skládá z:

- výpočetních jednotek (ALU, MAC, ...),
- registrů pro uchovávání proměnných (paměti, zásobníky),
- komunikačních datových sběrnic.

V datové části řešíme algoritmizaci (obecně dvěma krajními implementacemi – sériovou nebo paralelní).

Návrh řídicí části

Řídicí část řešena:

- a) pamětí s mikroprogramem (u velkých řadičů neúměrně roste potřebná paměť)
- b) stavovým automatem (Moore, Mealy)

