Topología David Cardozo

Nombre del curso: Topología Código del curso: MATE3420

Unidad académica: Departamento de Matemáticas

PERIODO ACADÉMICO: 201510 HORARIO: Lu y Mi, 2:00 a 3:50

Nombre profesor(a) principal: Ramiro de la Vega

HORARIO Y LUGAR DE ATENCIÓN: Ma y Ju 17:00 a 18:00, Oficina H-208

1. Organización del Curso

■ Topología, Munkres

- Fundamentals of General Topology, Ponomarev et al.
- Counterexamples in Topology, Seebach, Jr.

Evaluación del curso:

- 2 Exámenes parciales (30 % cada uno)
- Examen final: 20 %
- Tareas 20 %

Favor de referenciar ideas externas.

2. Introducción

Comenzemos entonces con una revisión de los conceptos de topología aprendidos en análisis.

Definición 1. Espacio Métrico Sea X un conjunto y d una métrica que cumple con las siguientes condiciones:

- $d(x,y) \ge 0 \quad y \text{ es } d(x,y) = 0 \leftrightarrow x = y$
- d(x,y) = d(y,x) Condición de simetría.
- $d(x,y) \le d(x,z) + d(z,y)$ Designaldad triangular.

También recordemos la noción de un conjunto abierto.

Definición 2. Conjunto Abierto Sea $A \subseteq X$, A es abierto si:

$$\forall a \in A \exists \epsilon > 0 \ tal \ que \ d(a, x) < \epsilon \implies x \in A$$

Otro concepto util, pero al cual trataremos de evitar es el de bolas abiertas.

Definición 3. Bolas Abiertas denotamos al conjunto de puntos que estan a lo sumo a un epsilon de distancia, via:

$$B_{\epsilon}(a) = \{ x \in X | d(x, a) < \epsilon \}$$

Observera que todos los puntos son interiores (¡Probar!)

Junto con estos conceptos noindent____

Recordemos entonces la definicion de espacio topologico.

Definición 4. Dados X conjunto $y \tau \subset P(X)$ es un espacio topologico:

- $X,\emptyset \in \tau$
- $A \subset \tau \implies \cup A \in \tau$
- \blacksquare $A \subset \tau \tau$ y A es finito, implica que la intersecion finita esta en τ

Ejemplo 1. Si (X, d) es espacio métrico y $\tau = \{A \subseteq X | A \text{ es abierto}\}$, entonce (X, τ) es espacio topologico

Ejemplo 2. Dado X, $\tau_i = \{\emptyset, X\}$ es la topologia indiscreta trivial, o $\tau_d = P(X)$ es la topologia discreta.

Ejemplo 3. Σ es una teoría (Axiomas) de primer orden en el lenguaje L (un ejemplo un simbolo de operacion binaria). Sea $X=\{T|T$ teoría maximal consistente tal que $\Sigma\subset T\}$. Sea ϕ una sentencia (como soy abeliano), se armá un tipico abierto $[\phi]=\{T\in X|\phi\in T\}$, observemos que $X-[\phi]=\{T\in X|\phi\not\in T\}=[NO\ \phi]$ -Espacio de Stone-

Ejemplo 4. Sea un campo K, y sea $X = k^n$, veamos la topología de Zariski, los cerrados son $S \subseteq K[x_1,...,x_n]$. los cerrados de s $C_s = \vec{x}$ in $K^n|f(\vec{x}) = 0 \forall f \in S$. Todos los subconjuntos son compactos,

Ejemplo 5. Sea $X = \{f : R \to R\}$, un tipico abierto $a \in R$, $U \subseteq R$ abierto en la topología usual. Y armé el siguiente conjunto:

$$Y_{a,U} = \{f \in X : f(a) \in U\}$$

Teoria de convergencia puntal.

Veamos que aunque la union de topologias no es topologia, dos topologias sobre un conjunto, se puede comparar. tambien decimos $\tau_1 \subset \tau_2$ decimos τ_1 es mas gruesa y la otra es fina. Interseccion arbitrarias de topologias, es topologia (Probar!). Podemos coger sea X conjunto y $A \subset P(X)$:

$$\bigcap \{\tau \subset P(x) | \tau \text{es topología y } A \subset \tau \}$$

esta es la menor topologia que contiene a A (la mas gruesa?).

Ejemplo 6. ver notas

Definición 5. Un punto aislado es cual el singleton de ese punto es abierto

3. Como construir un a topologia

Definición 6. X conjunto, $B \subseteq P(x)$, B es **base para una topologí**a sobre X si

 $\left\{ \bigcup A | A \subseteq B \right\}$

es topología

Esto no puede que no sea topologia, por dos razones os la union no es todo X, y que las interseciones finitas no son .ªbiertas.ºbservar $B \subseteq \{\bigcup A | A \subseteq B\}$.

Definición 7. Definicion del libro X conjunto, $B \subseteq P(X)$ es una base . . . si:

$$\forall x \in X \exists b \in Bx \in b. (\cup B = x)$$

 $\forall b_1, b_2 \in B \forall x \in b_1 \cap b_2 \exists b \in B \text{ such that } x \in b \subseteq b_1 \cap b_2$

Teorema 1. Las dos definiciones son equivalentes

Demostración. $6 \implies 7 \ b_1, b_2 \in B, \ x \in b_1 cap b_2$ (ver dibujos), como b_1, b_2 esta en τ la interseccion esta en τ (puede que no este en B), pero la interseccion (terminar)

$$7 \Longrightarrow 6$$

¿Que quiere decir que un conjunto sea la union de un conjunto?

Teorema 2. Sea

$$B = \{B_{\epsilon}(x) = x \in X, \epsilon > 0\}$$

, probar que es una topologia base

Las bolas en un espacio metricos es una base topologica.

Definición 8. Dado (X, τ) un espacio toplogico:

■ $B \subseteq \tau$ es base para τ si $\forall U \in \tau \forall x \in U \exists b \in B$ t.q $x \in B \subseteq U$