Primitive and Geometric Progression Free Sets Without Large Gaps

Nathan McNew Towson University

Combinatorial and Additive Number Theory
CUNY Graduate Center
May 23rd, 2017

Problem (Cryptography)

Need a random 100 digit prime number.

Problem (Cryptography)

Need a random 100 digit prime number.

Solution: Pick a random 100 digit integer, check if it is prime. If not, add 1 and repeat until you find one.

Problem (Cryptography)

Need a random 100 digit prime number.

Solution: Pick a random 100 digit integer, check if it is prime. If not, add 1 and repeat until you find one.

Worst case scenario: How far do we have to go to find one?

Problem (Cryptography)

Need a random 100 digit prime number.

Solution: Pick a random 100 digit integer, check if it is prime. If not, add 1 and repeat until you find one.

Worst case scenario: How far do we have to go to find one?

In practice: At most 7384 (largest known to 10^{100})

Problem (Cryptography)

Need a random 100 digit prime number.

Solution: Pick a random 100 digit integer, check if it is prime. If not, add 1 and repeat until you find one.

Worst case scenario: How far do we have to go to find one?

In practice: At most 7384 (largest known to 10^{100}) 116 on average

Problem (Cryptography)

Need a random 100 digit prime number.

Solution: Pick a random 100 digit integer, check if it is prime. If not, add 1 and repeat until you find one.

Worst case scenario: How far do we have to go to find one?

In practice: At most 7384 (largest known to 10^{100}) 116 on average In theory:

Problem (Cryptography)

Need a random 100 digit prime number.

Solution: Pick a random 100 digit integer, check if it is prime. If not, add 1 and repeat until you find one.

Worst case scenario: How far do we have to go to find one?

In practice: At most 7384 (largest known to 10^{100}) 116 on average In theory: At most 10^{53} . (Best we can prove)

How far apart can prime numbers be?

How far apart can prime numbers be? Let p_n be the nth prime number.

How far apart can prime numbers be?

Let p_n be the *n*th prime number. $p_n - p_{n-1}$ is the *n*th prime gap.

Theorem (Baker, Harman, Pintz)

$$p_n - p_{n-1} \ll p_n^{0.525}$$

How far apart can prime numbers be?

Let p_n be the *n*th prime number. $p_n - p_{n-1}$ is the *n*th prime gap.

Theorem (Baker, Harman, Pintz)

$$p_n - p_{n-1} \ll p_n^{0.525}$$

Theorem (Cramér)

Assuming the Riemann Hypothesis

$$p_n - p_{n-1} \ll \sqrt{p_n} \log p_n$$

How far apart can prime numbers be?

Let p_n be the *n*th prime number. $p_n - p_{n-1}$ is the *n*th prime gap.

Theorem (Baker, Harman, Pintz)

$$p_n - p_{n-1} \ll p_n^{0.525}$$

Theorem (Cramér)

Assuming the Riemann Hypothesis

$$p_n - p_{n-1} \ll \sqrt{p_n} \log p_n$$

Conjecture (Cramér)

$$p_n - p_{n-1} \le \log^2 p_n$$

How far apart can prime numbers be?

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

 $p_n - p_{n-1} \le 70,000,000$ infinitely often (Zhang 2013)

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

$$p_n - p_{n-1} > c \frac{\log p_n \log \log p_n \log \log \log p_n}{(\log \log \log p_n)^2}$$
 Infinitely often (Rankin, 1931)

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

$$p_n - p_{n-1} > c \frac{\log p_n \log \log p_n \log \log \log p_n}{(\log \log \log p_n)^2}$$
 Infinitely often (Rankin, 1931) $c = e^{\gamma}$ (Rankin, 1968)

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

$$p_n - p_{n-1} > c \frac{\log p_n \log \log p_n \log \log \log p_n}{(\log \log \log p_n)^2}$$
 Infinitely often (Rankin, 1931) $c = e^{\gamma}$ (Rankin, 1968) $c = 2.3$ (Maier, Pomerance, 1989)

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

$$p_n - p_{n-1} > c \frac{\log p_n \log \log p_n \log \log \log p_n}{(\log \log \log p_n)^2}$$
 Infinitely often (Rankin, 1931) $c = e^{\gamma}$ (Rankin, 1968) $c = 2.3$ (Maier, Pomerance, 1989) $c = 2e^{\gamma}$ (Pintz 1999)

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

```
p_n-p_{n-1}>crac{\log p_n\log\log p_n\log\log\log p_n}{(\log\log\log p_n)^2} Infinitely often (Rankin, 1931) c=e^{\gamma} (Rankin, 1968) c=2.3 (Maier, Pomerance, 1989) c=2e^{\gamma} (Pintz 1999) Erdős $10,000 prize: Show c can be arbitrarily large.
```

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

Large gaps:

$$p_n - p_{n-1} > c \frac{\log p_n \log \log p_n \log \log \log p_n}{(\log \log \log p_n)^2}$$
 Infinitely often (Rankin, 1931) $c = e^{\gamma}$ (Rankin, 1968) $c = 2.3$ (Maier, Pomerance, 1989) $c = 2e^{\gamma}$ (Pintz 1999) Erdős \$10,000 prize: Show c can be arbitrarily large.

$$p_n - p_{n-1} \gg \frac{\log p_n \log \log p_n \log \log \log \log p_n}{\log \log \log p_n}$$
 infinitely often (Ford, Green, Konyagin, Maynard, Tao, 2016)

4 D > 4 D > 4 E > 4 E > E 990

How far apart can prime numbers be?

"On average" $p_n - p_{n-1}$ is $\log p_n$ (Prime number theorem)

Recent Developments!

$$p_n - p_{n-1} \le 70,000,000$$
 infinitely often (Zhang 2013) $p_n - p_{n-1} \le 246$ infinitely often (Maynard, Tao, Polymath 2015)

Large gaps:

$$p_n - p_{n-1} > c \frac{\log p_n \log \log p_n \log \log \log p_n}{(\log \log \log p_n)^2}$$
 Infinitely often (Rankin, 1931) $c = e^{\gamma}$ (Rankin, 1968) $c = 2.3$ (Maier, Pomerance, 1989) $c = 2e^{\gamma}$ (Pintz 1999) Erdős \$10,000 prize: Show c can be arbitrarily large.

$$p_n - p_{n-1} \gg \frac{\log p_n \log \log p_n \log \log \log \log p_n}{\log \log \log p_n}$$
 infinitely often (Ford, Green, Konyagin, Maynard, Tao, 2016)

4 D > 4 D > 4 E > 4 E > E 990

Summary: The largest gap between primes up to x has size between

$$\frac{\log x \log \log x \log \log \log x}{\log \log \log x} \quad \text{and} \quad x^{0.525}$$

but we think the truth is $\log^2 x$.

Definition

A set $S \subset \mathbb{N}$ is **primitive** if no element of the set divides another: if $m, n \in S$ are distinct then $m \nmid n$.

Definition

A set $S \subset \mathbb{N}$ is **primitive** if no element of the set divides another: if $m, n \in S$ are distinct then $m \nmid n$.

Examples:

• Prime numbers $P = \{2, 3, 5, ...\}.$

Definition

A set $S \subset \mathbb{N}$ is **primitive** if no element of the set divides another: if $m, n \in S$ are distinct then $m \nmid n$.

- Prime numbers $\mathcal{P} = \{2, 3, 5, \ldots\}$.
- $\{m, m+1, m+2, \dots 2m-1\}.$

Definition

A set $S \subset \mathbb{N}$ is **primitive** if no element of the set divides another: if $m, n \in S$ are distinct then $m \nmid n$.

- Prime numbers $\mathcal{P} = \{2, 3, 5, \ldots\}$.
- $\{m, m+1, m+2, \dots 2m-1\}.$
- $\mathcal{P}_k = \{n \in \mathbb{N} \nmid \Omega(n) = k\}$ for any $k \ge 1$.

Definition

A set $S \subset \mathbb{N}$ is **primitive** if no element of the set divides another: if $m, n \in S$ are distinct then $m \nmid n$.

- Prime numbers $P = \{2, 3, 5, ...\}.$
- $\{m, m+1, m+2, \dots 2m-1\}.$
- $\mathcal{P}_k = \{n \in \mathbb{N} \nmid \Omega(n) = k\}$ for any $k \ge 1$. Here $\Omega(n)$ is the total number of prime factors of n, counted with multiplicity.

Definition

A set $S \subset \mathbb{N}$ is **primitive** if no element of the set divides another: if $m, n \in S$ are distinct then $m \nmid n$.

- Prime numbers $P = \{2, 3, 5, ...\}.$
- $\{m, m+1, m+2, \dots 2m-1\}$.
- $\mathcal{P}_k = \{n \in \mathbb{N} \mid \Omega(n) = k\}$ for any $k \geq 1$. Here $\Omega(n)$ is the total number of prime factors of n, counted with multiplicity. For example, $\mathcal{P}_2 = \{4, 6, 9, 10, 14, 15, 21, 22, \ldots\}$.

Theorem (Erdős)

If S is a primitive set then

$$\sum_{n\in\mathcal{S}}\frac{1}{n\log n}<\infty.$$

Theorem (Erdős)

If S is a primitive set then

$$\sum_{n\in\mathcal{S}}\frac{1}{n\log n}<\infty.$$

Conjecture (Erdős)

If S is a primitive set then

$$\sum_{n \in S} \frac{1}{n \log n} < \sum_{p \in \mathcal{P}} \frac{1}{p \log p} = 1.63 \dots$$

Nevertheless, there exist primitive sets much "larger" than the primes.

Nevertheless, there exist primitive sets much "larger" than the primes.

Theorem (Ahlswede, Khatchatrian, Sárközy, 1999)

For every $\epsilon>0$ there exists a primitive set whose counting function is asymptotic to $\frac{x}{(\log\log x)^{1+\epsilon}}$.

Nevertheless, there exist primitive sets much "larger" than the primes.

Theorem (Ahlswede, Khatchatrian, Sárközy, 1999)

For every $\epsilon>0$ there exists a primitive set whose counting function is asymptotic to $\frac{x}{(\log\log x)^{1+\epsilon}}$.

(**Note:** This is (almost) best possible:

Nevertheless, there exist primitive sets much "larger" than the primes.

Theorem (Ahlswede, Khatchatrian, Sárközy, 1999)

For every $\epsilon>0$ there exists a primitive set whose counting function is asymptotic to $\frac{x}{(\log\log x)^{1+\epsilon}}$.

(**Note:** This is (almost) best possible: if the counting function of S is at least $\frac{x}{\log \log x}$, then $\sum_{n \in S} \frac{1}{n \log n}$ diverges.)

Nevertheless, there exist primitive sets much "larger" than the primes.

Theorem (Ahlswede, Khatchatrian, Sárközy, 1999)

For every $\epsilon>0$ there exists a primitive set whose counting function is asymptotic to $\frac{x}{(\log\log x)^{1+\epsilon}}$.

(**Note:** This is (almost) best possible: if the counting function of S is at least $\frac{x}{\log \log x}$, then $\sum_{n \in S} \frac{1}{n \log n}$ diverges.)

The average size of the gaps in such a set is $(\log \log x)^{1+\epsilon}$, much smaller than the primes $(\log x)$.

Nevertheless, there exist primitive sets much "larger" than the primes.

Theorem (Ahlswede, Khatchatrian, Sárközy, 1999)

For every $\epsilon>0$ there exists a primitive set whose counting function is asymptotic to $\frac{x}{(\log\log x)^{1+\epsilon}}$.

(**Note:** This is (almost) best possible: if the counting function of S is at least $\frac{x}{\log \log x}$, then $\sum_{n \in S} \frac{1}{n \log n}$ diverges.)

The average size of the gaps in such a set is $(\log \log x)^{1+\epsilon}$, much smaller than the primes $(\log x)$.

Due to the nature of the construction of these sets, it isn't possible to get good upper bounds for the largest gap in such a set.

4 D > 4 A > 4 B > 4 B > 9 Q P

Question

Do there exist primitive sets which (provably) have no large gaps?

Question

Do there exist primitive sets which (provably) have no large gaps?

Theorem (He, 2015)

There exists a primitive set of integers $s_1, s_2, s_3 \dots$ such that

$$s_n-s_{n-1}<2\sqrt{s_n}.$$

Question

Do there exist primitive sets which (provably) have no large gaps?

Theorem (He, 2015)

There exists a primitive set of integers $s_1, s_2, s_3 \dots$ such that

$$s_n-s_{n-1}<2\sqrt{s_n}.$$

Theorem (M., 2017)

For every $\epsilon > 0$ there exists a primitive set a_1, a_2, a_3, \ldots , such that

Question

Do there exist primitive sets which (provably) have no large gaps?

Theorem (He, 2015)

There exists a primitive set of integers $s_1, s_2, s_3 \dots$ such that

$$s_n-s_{n-1}<2\sqrt{s_n}.$$

Theorem (M., 2017)

For every $\epsilon > 0$ there exists a primitive set a_1, a_2, a_3, \ldots , such that

$$a_n - a_{n-1} \le \exp\left(\sqrt{(2+\epsilon)\log a_n\log\log a_n}\right).$$

Theorem (Linear Sieve of Rosser and Iwaniec)

There exists a positive constant c such that every interval [x-cy,x] contains at least $\frac{y}{\log^2 y}$ integers free of prime factors smaller than \sqrt{y} .

10

Theorem (Linear Sieve of Rosser and Iwaniec)

There exists a positive constant c such that every interval [x-cy,x] contains at least $\frac{y}{\log^2 y}$ integers free of prime factors smaller than \sqrt{y} .

Lemma

Any interval [x-cy,x] contains a subset of integers which are pairwise coprime, of size at least $\frac{c'\sqrt{y}}{\log y}$ for some positive constant c'.

Theorem (Linear Sieve of Rosser and Iwaniec)

There exists a positive constant c such that every interval [x-cy,x] contains at least $\frac{y}{\log^2 y}$ integers free of prime factors smaller than \sqrt{y} .

Lemma

Any interval [x-cy,x] contains a subset of integers which are pairwise coprime, of size at least $\frac{c'\sqrt{y}}{\log y}$ for some positive constant c'.

Proof:

Theorem (Linear Sieve of Rosser and Iwaniec)

There exists a positive constant c such that every interval [x-cy,x] contains at least $\frac{y}{\log^2 y}$ integers free of prime factors smaller than \sqrt{y} .

Lemma

Any interval [x-cy,x] contains a subset of integers which are pairwise coprime, of size at least $\frac{c'\sqrt{y}}{\log y}$ for some positive constant c'.

Proof: By theorem, the interval has a large subset without prime factors greater than \sqrt{y} .

Theorem (Linear Sieve of Rosser and Iwaniec)

There exists a positive constant c such that every interval [x-cy,x] contains at least $\frac{y}{\log^2 y}$ integers free of prime factors smaller than \sqrt{y} .

Lemma

Any interval [x-cy,x] contains a subset of integers which are pairwise coprime, of size at least $\frac{c'\sqrt{y}}{\log y}$ for some positive constant c'.

Proof: By theorem, the interval has a large subset without prime factors greater than \sqrt{y} . Each such integer can have at most $\frac{2 \log x}{\log y}$ prime factors.

Theorem (Linear Sieve of Rosser and Iwaniec)

There exists a positive constant c such that every interval [x-cy,x] contains at least $\frac{y}{\log^2 y}$ integers free of prime factors smaller than \sqrt{y} .

Lemma

Any interval [x-cy,x] contains a subset of integers which are pairwise coprime, of size at least $\frac{c'\sqrt{y}}{\log y}$ for some positive constant c'.

Proof: By theorem, the interval has a large subset without prime factors greater than \sqrt{y} . Each such integer can have at most $\frac{2 \log x}{\log y}$ prime factors. Construct a graph on these numbers, connecting those vertices with a prime factor in common.

Theorem (Linear Sieve of Rosser and Iwaniec)

There exists a positive constant c such that every interval [x-cy,x] contains at least $\frac{y}{\log^2 y}$ integers free of prime factors smaller than \sqrt{y} .

Lemma

Any interval [x-cy,x] contains a subset of integers which are pairwise coprime, of size at least $\frac{c'\sqrt{y}}{\log y}$ for some positive constant c'.

Proof: By theorem, the interval has a large subset without prime factors greater than \sqrt{y} . Each such integer can have at most $\frac{2 \log x}{\log y}$ prime factors. Construct a graph on these numbers, connecting those vertices with a prime factor in common. Turan's graph theorem implies this graph has a large independent vertex set.

Proof: (Main theorem)

Proof: (Main theorem) Construct a primitive set probabilistically, show that it almost surely has no large gaps.

Proof: (Main theorem) Construct a primitive set probabilistically, show that it almost surely has no large gaps.

Fix $\epsilon > 0$.

Proof: (Main theorem) Construct a primitive set probabilistically, show that it almost surely has no large gaps.

Fix $\epsilon > 0$. For each prime number p_i choose an integer valued random variable X_i with distribution

$$P(X_i = m) = \frac{C_{\epsilon}}{m^{1+\epsilon/4}}$$

with $C_{\epsilon}=rac{1}{\zeta(1+\epsilon/4)}$ chosen to normalize the distribution.

Proof: (Main theorem) Construct a primitive set probabilistically, show that it almost surely has no large gaps.

Fix $\epsilon > 0$. For each prime number p_i choose an integer valued random variable X_i with distribution

$$P(X_i = m) = \frac{C_{\epsilon}}{m^{1+\epsilon/4}}$$

with $C_{\epsilon}=rac{1}{\zeta(1+\epsilon/4)}$ chosen to normalize the distribution. Let

$$Q = \{n \geq 2 \mid p_i | n \rightarrow \Omega(n) = X_i\}$$

Proof: (Main theorem) Construct a primitive set probabilistically, show that it almost surely has no large gaps.

Fix $\epsilon > 0$. For each prime number p_i choose an integer valued random variable X_i with distribution

$$P(X_i = m) = \frac{C_{\epsilon}}{m^{1+\epsilon/4}}$$

with $C_\epsilon = rac{1}{\zeta(1+\epsilon/4)}$ chosen to normalize the distribution. Let

$$Q = \{ n \geq 2 \mid p_i | n \rightarrow \Omega(n) = X_i \}$$

consist of precisely those integers, n, where the total number of prime factors of n agrees with the variable X_i for all its prime divisors, p_i .

Proof: (Main theorem) Construct a primitive set probabilistically, show that it almost surely has no large gaps.

Fix $\epsilon > 0$. For each prime number p_i choose an integer valued random variable X_i with distribution

$$P(X_i = m) = \frac{C_{\epsilon}}{m^{1+\epsilon/4}}$$

with $C_\epsilon = rac{1}{\zeta(1+\epsilon/4)}$ chosen to normalize the distribution. Let

$$Q = \{ n \geq 2 \mid p_i | n \rightarrow \Omega(n) = X_i \}$$

consist of precisely those integers, n, where the total number of prime factors of n agrees with the variable X_i for **all** its prime divisors, p_i .

Note Q is primitive: If $a \in Q$, and a|b with b > a, then $\Omega(a) < \Omega(b)$, but any prime dividing a also divides b, and so b cannot be in Q.

Let
$$y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$$
.

Let
$$y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$$
.

We expect every interval $I_x = [x - cy, x]$ to contain an element of Q:

Let
$$y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$$
.

We expect every interval $I_x = [x - cy, x]$ to contain an element of Q: By lemma I_x has a subset S of size at least $\frac{c'\sqrt{y}}{\log y}$ which is pairwise coprime and the integers in S have at most $\frac{2\log x}{\log y}$ prime factors.

Let
$$y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$$
.

We expect every interval $I_x = [x - cy, x]$ to contain an element of Q:

By lemma I_x has a subset S of size at least $\frac{c'\sqrt{y}}{\log y}$ which is pairwise coprime and the integers in S have at most $\frac{2\log x}{\log y}$ prime factors. Suppose $n \in S$, then the probability that $n \in Q$ is

$$P(n \in Q) = \prod_{p_i \mid n} P(X_i = \Omega(n))$$

Let
$$y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$$
.

We expect every interval $I_x = [x - cy, x]$ to contain an element of Q:

By lemma I_x has a subset S of size at least $\frac{c'\sqrt{y}}{\log y}$ which is pairwise coprime and the integers in S have at most $\frac{2\log x}{\log y}$ prime factors. Suppose $n \in S$, then the probability that $n \in Q$ is

$$P(n \in Q) = \prod_{p_i \mid n} P(X_i = \Omega(n)) = \prod_{p_i \mid n} \frac{C_{\epsilon}}{\Omega(n)^{1+\epsilon/4}}$$

Let
$$y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$$
.

We expect every interval $I_x = [x - cy, x]$ to contain an element of Q:

By lemma I_x has a subset S of size at least $\frac{c'\sqrt{y}}{\log y}$ which is pairwise coprime and the integers in S have at most $\frac{2\log x}{\log y}$ prime factors. Suppose $n \in S$, then the probability that $n \in Q$ is

$$P(n \in Q) = \prod_{p_i \mid n} P(X_i = \Omega(n)) = \prod_{p_i \mid n} \frac{C_{\epsilon}}{\Omega(n)^{1+\epsilon/4}}$$

$$\geq \left(\frac{C_{\epsilon}}{\left(\frac{2 \log x}{\log y}\right)^{1+\epsilon/4}}\right)^{\frac{2 \log x}{\log y}}$$

12

Let
$$y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$$
.

We expect every interval $I_x = [x - cy, x]$ to contain an element of Q:

By lemma I_x has a subset S of size at least $\frac{c'\sqrt{y}}{\log x}$ which is pairwise coprime and the integers in S have at most $\frac{2 \log x}{\log y}$ prime factors.

Suppose $n \in S$, then the probability that $n \in Q$ is

$$P(n \in Q) = \prod_{p_i \mid n} P(X_i = \Omega(n)) = \prod_{p_i \mid n} \frac{C_{\epsilon}}{\Omega(n)^{1+\epsilon/4}}$$

$$\geq \left(\frac{C_{\epsilon}}{\left(\frac{2 \log x}{\log y}\right)^{1+\epsilon/4}}\right)^{\frac{2 \log x}{\log y}} = \exp\left(-\left(2 + \frac{\epsilon}{2} + o(1)\right) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y}\right)\right)$$

as $x \to \infty$.

Because the elements of S are pairwise coprime, their probabilities of being included in Q are independent.

Because the elements of S are pairwise coprime, their probabilities of being included in Q are independent.

$$\prod_{n\in S} (1-P(n\in Q))$$

Because the elements of S are pairwise coprime, their probabilities of being included in Q are independent.

$$\prod_{n \in S} (1 - P(n \in Q))$$

$$\leq \prod_{n \in S} \left(1 - \exp\left(-(2 + \frac{\epsilon}{2} + o(1)) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y} \right) \right) \right)$$

Because the elements of S are pairwise coprime, their probabilities of being included in Q are independent.

$$\begin{split} & \prod_{n \in S} \left(1 - P(n \in Q) \right) \\ & \leq \prod_{n \in S} \left(1 - \exp\left(-\left(2 + \frac{\epsilon}{2} + o(1)\right) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y} \right) \right) \right) \\ & \leq \left(1 - \exp\left(-\left(2 + \frac{\epsilon}{2} + o(1)\right) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y} \right) \right) \right)^{\frac{c'\sqrt{y}}{\log y}} \end{split}$$

Because the elements of S are pairwise coprime, their probabilities of being included in Q are independent.

$$\begin{split} &\prod_{n \in S} \left(1 - P(n \in Q) \right) \\ &\leq \prod_{n \in S} \left(1 - \exp\left(-\left(2 + \frac{\epsilon}{2} + o(1)\right) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y}\right) \right) \right) \\ &\leq \left(1 - \exp\left(-\left(2 + \frac{\epsilon}{2} + o(1)\right) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y}\right) \right) \right)^{\frac{c'\sqrt{y}}{\log y}} \\ &\leq \exp\left(-\frac{c'\sqrt{y}}{\log y} \times \exp\left(-\left(2 + \frac{\epsilon}{2} + o(1)\right) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y}\right) \right) \right) \end{split}$$

Because the elements of S are pairwise coprime, their probabilities of being included in Q are independent.

$$\prod_{n \in S} (1 - P(n \in Q))$$

$$\leq \prod_{n \in S} \left(1 - \exp\left(-(2 + \frac{\epsilon}{2} + o(1)) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y} \right) \right) \right)$$

$$\leq \left(1 - \exp\left(-(2 + \frac{\epsilon}{2} + o(1)) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y} \right) \right) \right)^{\frac{c' \sqrt{y}}{\log y}}$$

$$\leq \exp\left(-\frac{c' \sqrt{y}}{\log y} \times \exp\left(-(2 + \frac{\epsilon}{2} + o(1)) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y} \right) \right) \right)$$

$$= \exp\left(-\exp\left(\frac{1}{2} \log y - (2 + \frac{\epsilon}{2} + o(1)) \frac{\log x}{\log y} \log\left(\frac{\log x}{\log y} \right) \right) \right).$$

$$\prod_{n \in S} (1 - P(n \in Q))$$

$$\leq \exp\left(-\exp\left(\frac{1}{2}\log y - (2 + \frac{\epsilon}{2} + o(1))\frac{\log x}{\log y}\log\left(\frac{\log x}{\log y}\right)\right)\right).$$

$$\begin{split} \prod_{n \in S} \left(1 - P(n \in Q)\right) \\ & \leq \exp\left(-\exp\left(\frac{1}{2}\log y - (2 + \frac{\epsilon}{2} + o(1))\frac{\log x}{\log y}\log\left(\frac{\log x}{\log y}\right)\right)\right). \end{split}$$
 Using that $y = \exp\left(\sqrt{(2 + \epsilon)\log x\log\log x}\right)$ The inner exponent is

$$\frac{1}{2}\log y - (2 + \frac{\epsilon}{2} + o(1)) \frac{\log x}{\log y} \log \left(\frac{\log x}{\log y} \right)$$

$$\prod_{n \in S} (1 - P(n \in Q))$$

$$\leq \exp\left(-\exp\left(\frac{1}{2}\log y - (2 + \frac{\epsilon}{2} + o(1))\frac{\log x}{\log y}\log\left(\frac{\log x}{\log y}\right)\right)\right).$$

Using that $y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$ The inner exponent is

$$\frac{1}{2}\log y - (2 + \frac{\epsilon}{2} + o(1))\frac{\log x}{\log y}\log\left(\frac{\log x}{\log y}\right) \\
= \frac{1}{2}\sqrt{(2 + \epsilon)\log x\log\log x} - \frac{(2 + \frac{\epsilon}{2} + o(1))\sqrt{\log x}}{\sqrt{(2 + \epsilon)\log\log x}}\log\left(\sqrt{\log x}\right)$$

4 ロ ト 4 昼 ト 4 夏 ト 9 Q (や)

$$\prod_{n \in S} (1 - P(n \in Q))$$

$$\leq \exp\left(-\exp\left(\frac{1}{2}\log y - (2 + \frac{\epsilon}{2} + o(1))\frac{\log x}{\log y}\log\left(\frac{\log x}{\log y}\right)\right)\right).$$

Using that $y = \exp\left(\sqrt{(2+\epsilon)\log x\log\log x}\right)$ The inner exponent is

$$\frac{1}{2}\log y - (2 + \frac{\epsilon}{2} + o(1))\frac{\log x}{\log y}\log\left(\frac{\log x}{\log y}\right) \\
= \frac{1}{2}\sqrt{(2 + \epsilon)\log x\log\log x} - \frac{(2 + \frac{\epsilon}{2} + o(1))\sqrt{\log x}}{\sqrt{(2 + \epsilon)\log\log x}}\log\left(\sqrt{\log x}\right) \\
= \frac{\epsilon}{4\sqrt{2 + \epsilon}}\sqrt{\log x\log\log x} = C'_{\epsilon}\sqrt{\log x\log\log x}$$

The probability that no integer in [x-cy,x] is included in Q is at most $\exp\left(-\exp\left(C'_{\epsilon}\sqrt{\log x\log\log x}\right)\right)$.

15

The probability that no integer in [x-cy,x] is included in Q is at most $\exp\left(-\exp\left(C'_{\epsilon}\sqrt{\log x \log\log x}\right)\right)$.

$$\sum_{x=1}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < \infty,$$

The probability that no integer in [x-cy,x] is included in Q is at most $\exp\left(-\exp\left(C'_{\epsilon}\sqrt{\log x\log\log x}\right)\right)$.

$$\sum_{x=1}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < \infty,$$

so there exists an N such that

$$\sum_{x=N}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < 1.$$

The probability that no integer in [x-cy,x] is included in Q is at most $\exp\left(-\exp\left(C'_{\epsilon}\sqrt{\log x\log\log x}\right)\right)$.

$$\sum_{x=1}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < \infty,$$

so there exists an N such that

$$\sum_{x=N}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < 1.$$

Starting the sequence at N and using linearity of expectation, the expected number of intervals of this form avoiding Q is at most

$$\sum_{x>N} P([x-cy,x] \cap Q = \emptyset)$$

The probability that no integer in [x-cy,x] is included in Q is at most $\exp\left(-\exp\left(C'_{\epsilon}\sqrt{\log x \log\log x}\right)\right)$.

$$\sum_{x=1}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < \infty,$$

so there exists an N such that

$$\sum_{x=N}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < 1.$$

Starting the sequence at N and using linearity of expectation, the expected number of intervals of this form avoiding Q is at most

$$\sum_{x>N} P([x-cy,x] \cap Q = \emptyset) \le \sum_{x>N} \exp\left(-\exp\left(C'_{\epsilon} \sqrt{\log x \log \log x}\right)\right)$$

The probability that no integer in [x - cy, x] is included in Q is at most $\exp\left(-\exp\left(C'_{\epsilon}\sqrt{\log x \log\log x}\right)\right)$.

$$\sum_{x=1}^{\infty} \exp\left(-\exp\left(C'_{\epsilon} \sqrt{\log x \log\log x}\right)\right) < \infty,$$

so there exists an N such that

$$\sum_{x=N}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < 1.$$

Starting the sequence at N and using linearity of expectation, the expected number of intervals of this form avoiding Q is at most

$$\sum_{x>N} P([x-cy,x] \cap Q = \emptyset) \le \sum_{x>N} \exp\left(-\exp\left(C'_{\epsilon} \sqrt{\log x \log \log x}\right)\right) < 1.$$

The probability that no integer in [x-cy,x] is included in Q is at most exp $\left(-\exp\left(C'_{\epsilon}\sqrt{\log x \log \log x}\right)\right)$.

$$\sum_{x=1}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < \infty,$$

so there exists an N such that

$$\sum_{x=N}^{\infty} \exp\left(-\exp\left(C_{\epsilon}' \sqrt{\log x \log\log x}\right)\right) < 1.$$

Starting the sequence at N and using linearity of expectation, the expected number of intervals of this form avoiding Q is at most

$$\sum_{x>N} P([x-cy,x] \cap Q = \emptyset) \le \sum_{x>N} \exp\left(-\exp\left(C'_{\epsilon} \sqrt{\log x \log \log x}\right)\right) < 1.$$

Thus there exists a set, Q satisfying the properties of the theorem.

Note that while the set constructed here is primitive, it isn't a pairwise coprime set.

Note that while the set constructed here is primitive, it isn't a pairwise coprime set.

Obviously the primes are pairwise coprime, any pairwise coprime set is primitive, can we find a pairwise coprime set without large gaps?

Note that while the set constructed here is primitive, it isn't a pairwise coprime set.

Obviously the primes are pairwise coprime, any pairwise coprime set is primitive, can we find a pairwise coprime set without large gaps?

Theorem (M.)

For every $\epsilon > 0$ there exists a pairwise coprime set $b_1, b_2, b_3 \ldots$, such that

$$b_n-b_{n-1}\ll b_n^{\alpha+\epsilon}$$

where $\alpha = \frac{5-\sqrt{17}}{2} = 0.43845\dots$

Question

Does there exist a set with bounded gaps (syndetic) that does not contain a geometric progression?

Question

Does there exist a set with bounded gaps (syndetic) that does not contain a geometric progression?

The squarefree integers avoid 3-term-geometric progressions (a, ar, ar^2) , but have unbounded gaps.

Question

Does there exist a set with bounded gaps (syndetic) that does not contain a geometric progression?

The squarefree integers avoid 3-term-geometric progressions (a, ar, ar^2) , but have unbounded gaps.

Theorem (Filaseta, Trifonov, 1992)

The squarefree integers s_1, s_2, \ldots satisfy

$$s_n - s_{n-1} \ll s_n^{1/5} \log s_n.$$

Question

Does there exist a set with bounded gaps (syndetic) that does not contain a geometric progression?

The squarefree integers avoid 3-term-geometric progressions (a, ar, ar^2) , but have unbounded gaps.

Theorem (Filaseta, Trifonov, 1992)

The squarefree integers s_1, s_2, \ldots satisfy

$$s_n-s_{n-1}\ll s_n^{1/5}\log s_n.$$

We can find larger sets that avoid progressions, but can't say much about the gaps of these sets.

Theorem (He, 2015)

For each $\epsilon > 0$ there exists a set $\{t_1, t_2, \ldots\}$ avoiding 6-term geometric progressions (rational ratio) with gaps satisfying

Theorem (He, 2015)

For each $\epsilon > 0$ there exists a set $\{t_1, t_2, \ldots\}$ avoiding 6-term geometric progressions (rational ratio) with gaps satisfying

$$t_n - t_{n-1} \ll_{\epsilon} \exp\left(\left(\frac{5}{6}\log 2 + \epsilon\right) \frac{\log t_n}{\log\log t_n}\right).$$

Theorem (He, 2015)

For each $\epsilon > 0$ there exists a set $\{t_1, t_2, \ldots\}$ avoiding 6-term geometric progressions (rational ratio) with gaps satisfying

$$t_n - t_{n-1} \ll_{\epsilon} \exp\left(\left(\frac{5}{6}\log 2 + \epsilon\right) \frac{\log t_n}{\log\log t_n}\right).$$

There exists a set $\{u_1, u_2, \ldots\}$ avoiding 3-term geometric progressions with **integer** ratio with $u_n - u_{n-1} \ll_{\epsilon} u_n^{\epsilon}$.

Theorem (He, 2015)

For each $\epsilon > 0$ there exists a set $\{t_1, t_2, \ldots\}$ avoiding 6-term geometric progressions (rational ratio) with gaps satisfying

$$t_n - t_{n-1} \ll_{\epsilon} \exp\left(\left(\frac{5}{6}\log 2 + \epsilon\right) \frac{\log t_n}{\log \log t_n}\right).$$

There exists a set $\{u_1, u_2, \ldots\}$ avoiding 3-term geometric progressions with **integer** ratio with $u_n - u_{n-1} \ll_{\epsilon} u_n^{\epsilon}$.

Theorem (M. 2017)

For each $\epsilon > 0$ there exists a set $\{v_1, v_2, \ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

Theorem (He, 2015)

For each $\epsilon > 0$ there exists a set $\{t_1, t_2, \ldots\}$ avoiding 6-term geometric progressions (rational ratio) with gaps satisfying

$$t_n - t_{n-1} \ll_{\epsilon} \exp\left(\left(\frac{5}{6}\log 2 + \epsilon\right) \frac{\log t_n}{\log\log t_n}\right).$$

There exists a set $\{u_1, u_2, \ldots\}$ avoiding 3-term geometric progressions with **integer** ratio with $u_n - u_{n-1} \ll_{\epsilon} u_n^{\epsilon}$.

Theorem (M. 2017)

For each $\epsilon > 0$ there exists a set $\{v_1, v_2, \ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

$$v_n - v_{n-1} \ll_{\epsilon} \exp\left(2\sqrt{(\log 2 + \epsilon)\log v_n}\right).$$

Theorem (M. 2017)

For each $\epsilon > 0$ there exists a set $\{v_1, v_2, \ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

$$v_n - v_{n-1} \ll_{\epsilon} \exp\left(2\sqrt{(\log 2 + \epsilon)\log v_n}\right).$$

Construction:

Theorem (M. 2017)

For each $\epsilon > 0$ there exists a set $\{v_1, v_2, \ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

$$v_n - v_{n-1} \ll_{\epsilon} \exp\left(2\sqrt{(\log 2 + \epsilon)\log v_n}\right).$$

Construction: A probabilistic analogue of the squarefree numbers.

Theorem (M. 2017)

For each $\epsilon>0$ there exists a set $\{v_1,v_2,\ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

$$v_n - v_{n-1} \ll_{\epsilon} \exp\left(2\sqrt{(\log 2 + \epsilon)\log v_n}\right).$$

Construction: A probabilistic analogue of the squarefree numbers. For each prime p_i choose an integer valued random variable X_i with

$$P(X_i=m)=\frac{1}{2^m}.$$

Theorem (M. 2017)

For each $\epsilon > 0$ there exists a set $\{v_1, v_2, \ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

$$v_n - v_{n-1} \ll_{\epsilon} \exp\left(2\sqrt{(\log 2 + \epsilon)\log v_n}\right).$$

Construction: A probabilistic analogue of the squarefree numbers. For each prime p_i choose an integer valued random variable X_i with

$$P(X_i=m)=\frac{1}{2^m}.$$

Let $V = \{n \geq 2 : p_i | n \to p_i^{X_i} | | n \}.$

19

Theorem (M. 2017)

For each $\epsilon > 0$ there exists a set $\{v_1, v_2, \ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

$$v_n - v_{n-1} \ll_{\epsilon} \exp\left(2\sqrt{(\log 2 + \epsilon)\log v_n}\right).$$

Construction: A probabilistic analogue of the squarefree numbers. For each prime p_i choose an integer valued random variable X_i with

$$P(X_i=m)=\frac{1}{2^m}.$$

Let $V = \{n \ge 2 : p_i | n \to p_i^{X_i} | | n\}$. V contains the integers divisible only by primes p_i appearing to the corresponding power X_i .

Theorem (M. 2017)

For each $\epsilon > 0$ there exists a set $\{v_1, v_2, \ldots\}$ avoiding 3-term geometric progressions (rational ratio) with gaps satisfying

$$v_n - v_{n-1} \ll_{\epsilon} \exp\left(2\sqrt{(\log 2 + \epsilon)\log v_n}\right).$$

Construction: A probabilistic analogue of the squarefree numbers. For each prime p_i choose an integer valued random variable X_i with

$$P(X_i=m)=\frac{1}{2^m}.$$

Let $V = \{n \geq 2 : p_i | n \rightarrow p_i^{X_i} | | n\}$. V contains the integers divisible only by primes p_i appearing to the corresponding power X_i .

Note V avoids 3-term progressions: If (a, ar, ar^2) is a progression, a prime in r appears to different powers in at least two of these terms.

Thank you!