83D 00083

D.

T-46-23-12

HY6116 2048×84Bit GMOS Station AM

FEBRUARY 1986

DESCRIPTION

The HY6116 is a high speed, low power, 2048-word by 8-bit static CMOS RAM fabricated using high-performance CMOS process technology. This high reliability process coupled with innovative circuit design techniques, yields access times of 100 ns maximum.

When the chip select is brought high, the device assumes a standby mode in which the device power dissipation is reduced to $20\mu W$ (typically).

Using CMOS technology, supply voltages from 2.0 to 5.5 volts have little effect on supply current in data retention mode. Reducing the supply voltage to minimize current drain is unnecessary with the HY6116 family.

FEATURES

- ▲ High Speed
- Maximum access time of 100/120/150 ns
- Equal access and cycle times
- **▲ Low Power**
- 200 mW typical operating
- 20µW typical standby
- ▲ Six transistor CMOS Memory Cell
- ▲ CMOS process virtually eliminates alpha particle induced soft errors without die coating
- **▲** Fully Static Operation
 - No clock or refresh required
- ▲ Pin Compatible with Standard 16K Static RAMS and EPROMS in 600 mil DIP
- ▲ For extended temperature ranges, variations in access times, packages, power consumption, and screening, call HYUNDAI.

	POWER SUPPLY CURRENT					
Part Number	Access Time (ns, max)	Active (mA, max)	Standby (µA, max)			
HY6116-10	100	100	100			
HY6116-12	120	80	100			
HY6116-15	150	70	100			

BLOCK DIAGRAM

PIN CONNECTIONS

(TOP VIEW)

This documentation is a general product description and is subject to change without notice. Hyundai Semiconductor does not assume any responsibility for use of circuits described. No circuit patent licenses are implied.

4675088 HYUNDAI ELECTRONICS

🔫 🚁 🚁 HY6116 Family High Performance Low Power 2048 x 8-Bit CMOS Static RAM 🕏

ABSOLUTE MAXIMUM RATINGS(1)

SYMBOL	PARAMETER	RATING	UNIT V	
V _{TERM}	Voltage on any Pin with Respect to GND	-0.5* to +7.0		
TA	Operating Temperature	0 to +70	°C	
T _{BIAS}	Temperature Under Bias	-10 to +85	°C	
T _{STG}	Storage Temperature	-55 to +125	°C	
P _T	Power Dissipation	1.0	W	
I _{OUT}	DC Output Current	50	mA	

^{*-3.5}V for 20ns pulse.

RECOMMENDED OPERATING **CONDITIONS**

 $T_A=0$ to 70°C

SYMBO	L PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{CC}	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
V _{IH}	Input High Voltage	2.2	3.5	V_{CC}	V
V _{IL}	Input Low Voltage	-0.5*	_	+0.8	V
C _L	Output Load	_	_	30	pF

^{* - 3.5}V for 20ns pulse.

NOTES:

AC TEST CONDITIONS

 $T_A = 0$ to 70 °C

Input Pulse Levels	GND to 3.0V
Input Rise and Fall Times	5ns
Input and Output Timing Reference Levels	1.5V

(See Figure 1)

OUTPUT LOAD

^{*}Including scope and the jig

 $C_L = 30 pF$ standard output $C_L = 5 \text{ pF for } t_{HZ}, t_{LZ}, t_{WZ} \& t_{OW}$

TRUTH TABLE

MODE	CS	ŌĒ	WE	I/O OPERATION
Standby	Н	Х	X	High Z
Read	L	L	Н	D _{OUT}
Read	L	Н	Н	High Z
Write	L	Х	L	D _{IN}

CAPACITANCE(1)

 $T_A = 25$ °C, f = 1.0MHz

SYMBOL	PARAMETER	CONDITIONS	MAX.	UNIT
C _{IN}	Input Capacitance	$V_{IN} = 0V$	6	pF
C _{I/O}	Input/Output Capacitance	$V_{I/O} = 0V$	8	pF

^{1.} This parameter is sampled and not 100% tested.

^{1.} Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

4675088 HYUNDAI ELECTRONICS

AC ELECTRICAL CHARACTERISTICS(1)

 $V_{CC} = 5V \pm 10\%$, $T_A = 0$ to 70° C

READ CYCLE

	DADAMETER	HY6116-10		HY6116-12		HY6116-15		UNIT
SYMBOL	PARAMETER	Min.	Max.	Min.	Max.	Min.	Max.	UNII
t _{RC}	Read Cycle Time	100	_	120	_	150		ns
t _{AA}	Address Access Time	_	100	-	120	_	150	ns
t _{ACS}	Chip Select Access TIme	_	100	_	120	_	150	ns
t _{CLZ}	Chip Selection to Output in Low Z	5		10	 s	15		ns
toE	Output Enable to Output Valid	_	70	_	80	. –	100	ns
t _{OLZ}	Output Enable to output in Low Z	5		10	_	15	_	ns
t _{CHZ}	Chip Deselection to Output in High Z	0	40	0	40	0	50	ns
t _{OHZ}	Output Disable to Output in High Z	0 -	40	0	40	0	50	ns
t _{OH}	Output Hold from Address Change	5		10	_	. 15		ns

NOTES:

TIMING WAVEFORMS OF READ CYCLE 1(1)

READ CYCLE 2(1,2,4)

READ CYCLE 3(1,3,4)

NOTES:

- 1. WE is High for Read Cycle.
- 2. Device is continuously selected, $\overline{CS} = V_{IL}$.

 3. Address valid prior to or coincident with \overline{CS} transition low.
- 5. Transition is measured ± 500mV from steady state. This parameter is sampled and not 100% tested.
- 6. t_{OHZ} and t_{CHZ} are tested with C_L = 5 pF.

^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified $I_{\text{OL}}/I_{\text{OH}}$ and load capacitance, as in Output Load .

2048 x 8 Bit CMOS Station RAM 3 HY6116 Family High Performance Low Pow

AC ELECTRICAL CHARACTERISTICS (1)

 $V_{CC} = 5V \pm 10\%$, $T_A = 0$ to 70°C

WRITE CYCLÉ

	PARAMETER	HY6	16-10	HY6116-12		HY6116-15		UNIT
SYMBOL		Min.	Max.	Min.	Max.	Min.	Max.	DIVIT
twc	Write Cycle Time	100	<u> </u>	120		150		ns
t _{CW}	Chip Selection to End of Write	65	_	70	-	90		ns
t _{AW}	Address Valid to End of Write	90	-	105		120		ns
t _{AS}	Address Set-up Time	20	_	20	·	20		ns
t _{WP}	Write Pulse Width	65		70		90		ns
twR	Write Recovery Time	5	_	5	_	10		ns
t _{OHZ}	Output Disable to Output in High Z	0	40	0	40	0 .	50	ns
t _{WHZ}	Write to Output in High Z	0	50	0 .	50	0	60	ns
t _{DW}	Data to Write Time Overlap	30	_	35	-	. 40		ns
t _{DH}	Data Hold from Write Time	5		5	_	10	-	ns
tow	Output Active from End of Write	5	_	5	_	10		ns

NOTES:

TIMING WAVEFORMS OF WRITE CYCLE 1(1)

WRITE CYCLE 2(1,6)

NOTES:

WE must be high during all address transitions.
 A write occurs during the overlap (t_{wp}) of a low CS and a low WE.
 t_{wn} is measured from the earlier of CS or WE going high to the end of write cycle.
 During this period, I/O pins are in the output state so that the input signals of opposite phase to the outputs must not be applied.
 If the CS low transition occurs simultaneously with the WE low transitions or after the WE transition, outputs remain in a high impedance state.
 OE is continuously low OE = V_{IL}1.
 D_{our} is the same phase of write data of this write cycle.
 D_{our} is the read data of next address

8. D_{our} is the read data of next address.

9. If CS is low during this period, I/O pins are in the output state. Then the data input signals of opposite phase to the outputs must not be applied to them.

10. Transition is measured ±500mV from steady state. This parameter is sampled and not 100% tested.

11. t_{WHZ} is tested with $C_i = 5pF$.

^{1.} Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance, as in Output Load.

HY6116 Family High Performance Low Power 2048 x 8-Bit CMOS Static RAM

HY6116 DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = 5V \pm 10\%$, $t_A = 0$ to 70 °C

SYMBOL	PARAMETER	TEST CONDITIONS			HY6116		
STMBOL	PARAMETER				Typ. ⁽¹⁾	Max.	UNIT
I _{LI}	Input Leakage Current	$V_{CC} = 5.5V$, $V_{JN} = GND$ to	V _{cc}	- 1	_	2	μΑ
I _{LO}	Output Leakage Current	$\overline{CS} = V_{IH} \text{ or } \overline{OE} = V_{IH}$ $V_{I/O} = GND \text{ to } V_{CC}$		-	-	2	μΑ
Operating Power		$\overline{\text{CS}} = \text{V}_{\text{IL}}, \text{I}_{\text{I/O}} = 0 \text{mA}$ Duty Cycle = 100%	HY6116-10	-	60	100	mA
	Supply Current		HY6116-12	+	45	80	mA
1	ouppry Current	Duty Cycle = 10070	HY6116-15		40	70	mA
I _{SB}		CS =V _{IH}			2	5	mA
I _{SB1}	Standby Power Supply Current	$\overline{\text{CS}} \ge \text{V}_{\text{CC}} - 0.2\text{V},$ $\text{V}_{\text{IN}} = 0 \text{ to V}_{\text{CC}}$			4	100	μΑ
V _{OL}	Output Low Voltage	$I_{OL} = 8mA$			_	·0.4	v
V _{OH}	Output High Voltage	$I_{OH} = -4.0 \text{mA}$		2.4		<u>-</u>	V

NOTES:

1. $V_{CC} = 5V$, $T_A = 25$ °C

PACKAGE OUTLINE

ORDERING INFORMATION

HY6116
$$-$$
 XX $=$ 10 = 100ns $=$ 12 = 120ns $=$ 15 = 150ns

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.