助力高一上期末考试-大题【必修一】

二. 大题(共6小题)

1. (2022 秋·栾城区校级期末)细胞自噬是真核生物细胞内普遍存在的一种自稳机制,它通过溶酶体途径对细胞内受损的蛋白质、细胞器或入侵的病原体等进行降解并回收利用,其局部过程如图:

,						
(1)	衰老线粒体的功能逐渐退化,	会直接影	响细胞的		。细胞内由	l
		,	从杯口进入,	杯形结构形	或 双膜的小	沁。
(2)	细胞中水解酶的合成场所是_		_。自噬溶酶体内的	的物质被水解	7月,其产生	勿的
去向:	是。由」	比推测,当	环境中营养物质的	决乏时,细胞	1的自噬作用	刊会
	(填"增强"、"减弱"]	或"不变)	0			
(3)	神经退行性疾病是一类由于多	产变蛋白质	在神经细胞中堆积	只而引起的神	经系统失识	周症
研究	发现,提高细胞的自噬能力能	治疗该类	疾病,这是因为细	胞自噬能		
°						
(4)	酵母菌液泡内富含水解酶,和	科学家在研	「究液泡与自噬的 き	关系时,以野	生型酵母菌	菌为
对照:	组,以液泡水解酶缺陷型酵母	菌为实验	组,在饥饿状态下	`,		酵母
菌细	胞中出现自噬泡大量堆积现象	.				
			سیدسی میرون			

2. (2022 秋·厦门期末)油莎豆作为新型的油料作物,适合在我国西北盐碱地种植。为了揭示油莎豆耐盐碱的机制,研究小组将油莎豆分别种植在不同配比的土壤中,25 天后检测其可溶性蛋白、可溶性糖的含量以及超氧化物歧化酶(SOD)的活性,结果如下:表示不同程度盐碱胁迫对油莎豆可溶性蛋白、可溶性糖和 SOD 活性的影响

组别	土壤配比	可溶性蛋白(mg	可溶性糖(mg/g)	SOD 活性(U/mg)
		/L)		
对照组		5.2	44	190
A组	25%盐碱土+75%农田土	6.65	47.96	199.5
B组	50%盐碱土+50%农田土	7.49	51.04	250.8
C组	75%盐碱土+25%农田土	8.53	62.04	211
D组	100%盐碱土	9.15	64.24	180.2

注: SOD 是细胞内重要的抗氧化物质,可清除会破坏细胞结构的氧自由基回答下列问题:

(1)	对昭组的办理县	
()	NI BD 40 BU VI JE 76	_

(2) 盐碱地上一般的植物难以生长,主要原因是植物根细胞细胞液浓度 _______土壤溶液浓度,导致植物无法从土壤中获取充足的水分。可溶性蛋白和可溶性糖具有一定的亲水性,植物可通过增加其含量来达到束缚水分的目的。根据实验结果可知,随着盐碱胁迫程度增大,油莎豆中自由水向结合水转化的能力不断 _______(填"增强"/"减弱"),进而提高保水能力。

	Age MA MA		2 _药物公	,可以迅速被达 1	入细胞核后产 运输至细胞核	
	细胞质细胞核	身体降解	降解			
, , , , , , ,	关问题:	根系	- The sales		7.4.3a.15 B	
(1) 對	田胞核的边界是 。	(填彳	台称),对 细周	包核切能较为全	面的阐述是	
另一部 (3) ii ———————————————————————————————————	由图可知,药物分子 分通过。 青结合题意,提出一 。 为验证该新型抗肿卵 某种离体的肿瘤细 、乙、丙、丁组。	进入细胞核, 一种提高该新型 窗药物的药效,	积累后产生 型抗肿瘤药物 请完善下列	效 作用效果的设计]实验。	应。 计思路:	
②向	甲组培养基加入一					
	割的 50mg/L、 养一段时间后,可	_	•			e 差 基 基 も も も も も も も も も も も も も も も も も
•	行染色,根据线粒					11年111
_	居统计出来的活细》 朋实验结果:甲组的		枚目和比例,	可以计算出各级	组肿瘤细胞的	 的抑制率。
•	论:新型抗肿瘤药		制癌细胞,	——。 且药物用量越力	、抑制效果	!越好。
营养物	秋•徐州期末)洋葱 质。如图 1 为洋葱 分裂图像。请回答	纵切面示意图				
- B1	2 2 3 0 82	-3 _↓ -⊕ ¤ -5 ,	图3	ন		
	双图 1 中 1 处管状。 	用的试剂是 _		验,研磨时加。 ;分离结束后,		·

	细胞	性的大分子食用色素,状态如图 2 所示,观察	到红色	色的部位	是图2日	中的		(填序号)。	
		取图 1 中 3 处细胞用剂 含有脂肪。	が井田	柴巴浟	彩巴 后,	可观祭到	J	巴籾粒,	况明此处	
		制作洋葱根尖临时装片	士的流	程依次	为解离、			、压片	·。压片时	
		拇指轻轻按压载玻片,							。 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
		图 3 中甲~丁为洋葱村						是据分裂的先后	顺序依次	
	为丁	→→丙(用	编号和	節头表	示), 其	中一定含	姐妹貓	2色单体的细胞	是	
	_ (填编号)。								
		用不同浓度氟化钠溶液				有丝分裂	指数	(有丝分裂指数	[=分裂期	
	细胞	数目/细胞总数×100%)	<u> </u>		0					
	氟	【化钠溶液浓度(ug/mL	.)	0	0.1	1	10	100		
		有丝分裂指数(%)		14.52	13.18	12.04	9.09	4.90		
		钠溶液处理会使有丝分					"、"降	怪低"或"不变	"),原因	
		是氟化钠能使更多的细					16.1			
5.		(2022 秋·通州区期末)为了研究 ATP 合成过程中能量转换机制,科学家利用提纯的大								
		豆磷脂、某种细菌膜蛋白(I)和牛细胞中的 ATP 合成酶(II)构建 ATP 体外合成体系,如图所示。								
	如图		u·							
		ADP	P+Pi	ATP						
		, c	**P	2800						
			000							
		н. —	H'	300						
		W. ()	E	999 68						
		, L V	Vryvery	1100						
		•	00000	90						
	(1)	科学家利用人工体系材	莫拟了	在叶绿	体中的_			和线粒体	:内膜上合	
	成 A	TP 的能量转换过程。		, , ,	, , , , , , <u> </u>			和线粒体	内膜上合	
	成 A'	TP 的能量转换过程。 科学家利用人工体系述	进行了	, , ,	验,如表	. 0			:内膜上合	
	成 A' (2) 组	TP 的能量转换过程。	进行了	, , ,	验,如表			和线粒体 通过Ⅱ的转运	内膜上合 ATP	
	成 A'	TP 的能量转换过程。 科学家利用人工体系述	进行了	, , ,	验,如表	. 0				
	成 A' (2) 组	TP 的能量转换过程。 科学家利用人工体系述 人工体系	进行了	相关实	验,如表 H ⁺ 通过	. 0				
	成 A' (2) 组 别	TP 的能量转换过程。 科学家利用人工体系统 人工体系 大豆磷脂构成的囊泡	进行了 I	相关实验	验,如表 H ⁺ 通过	。 I 的转运		通过Ⅱ的转运	ATP	
	成 A (2) 组 别	TP 的能量转换过程。 科学家利用人工体系统 人工体系 大豆磷脂构成的囊泡 +	进行了 I	相关实! II +	验,如表 H ⁺ 通过	。 I 的转运 有		通过Ⅱ的转运 有	ATP 产生	
	成 A' (2) 组 别 1 2 3	TP 的能量转换过程。 科学家利用人工体系统 人工体系统 大豆磷脂构成的囊泡 + +	进行了 I + - +	相关实。 II + +	验,如表 H ⁺ 通过	。 I 的转运 有 无 有		通过Ⅱ的转运 有 无	ATP 产生 不产生	
	成 A (2) 组 别 1 2 3	TP 的能量转换过程。 科学家利用人工体系统 人工体系 大豆磷脂构成的囊泡 + + + +	世行了 I + - + 工体系	相关实 II + + - 系中组分	验,如表 H ⁺ 通过 }的"有'	。 I 的转运 有 无 有 ·、"无"	Ē H ⁺)	通过Ⅱ的转运 有 无 无	ATP 产生 不产生 不产生	
	成 A (2) 组 别 1 2 3 注: ① 出	TP 的能量转换过程。 科学家利用人工体系统 人工体系 大豆磷脂构成的囊泡 + + + + + + + + + + + + + + + + + + +	进行了 I + - + 工体系	相关实。 II + + - 系中组允	验,如表 H ⁺ 通过 }的"有' 可以转运	。 I 的转运 有 无 有 、"无" 云 H ⁺ 进入	医 H+i	通过Ⅱ的转运 有 无 无 进一步研究发	ATP 产生 不产生 不产生	
	成 A' (2) 组 别 1 2 3 注: ① 出 组囊 ② 当	TP 的能量转换过程。 科学家利用人工体系统 人工体系 大豆磷脂构成的囊泡 + + + + + + + + + + + + + 生 (至 1 组和第 2 组的经泡内 pH 比囊泡外低 1.4 (第 1 组人工体系加入产	进行了 I + - - - - - - - - - - - - - - - - - -	相关实验 II + + - ※中组分 知, I 明囊泡内	验,如表 H ⁺ 通过)的 "有' 可的 H ⁺ 浓	。 I 的转 ² 有 无 有 "无" E H ⁺ 进入 :度	玄 H ⁺ ; 囊泡。 囊	通过Ⅱ的转运 有 无 无 进一步研究发 泡外。	ATP 产生 不产生 不产生 式现,第1	
	成 A' (2) 组 别 1 2 3 注: ① 组 囊 当 囊	TP 的能量转换过程。 科学家利用人工体系统 人工体系 人工体系 大豆磷脂构成的囊泡 + + + + + + + + + + + + + + + + + + +	进行了 I + 二 十 二 十 二 十 二 末 果 说 后 影 可 同 后 后 一 一 一 十 二 二 十 二 二 二 二 二 二 二 二 二 二 二 二 二	相关实现	验,如表 H ⁺ 通过 的 以 f f i f i f i f i f i f i f i f i f i	。 I 的转 ² 有 无 有 无 有 无 一 大 H ⁺ 进 上 原 其 原	囊泡。囊	通过Ⅱ的转运 有 无 无 进一步研究发 池外。 是丙酮破坏了囊	ATP 产生 不产生 衣产生 支现,第1 泡膜,导	
	成 A (2) 组 别 1 2 3 注: 出 囊 当 囊 出	TP 的能量转换过程。 科学家利用人工体系统 人工体系 大豆磷脂构成的囊泡 + + + + + + + + + + + + + 生 (至 1 组和第 2 组的经泡内 pH 比囊泡外低 1.4 (第 1 组人工体系加入产	进行了 I + 二 十 二 十 二 十 二 末 果 说 后 影 可 同 后 后 一 一 一 十 二 二 十 二 二 二 二 二 二 二 二 二 二 二 二 二	相关实现	验,如表 H ⁺ 通过 的 以 f f i f i f i f i f i f i f i f i f i	。 I 的转 ² 有 无 有 无 有 无 一 大 H ⁺ 进 上 原 其 原	囊泡。囊	通过Ⅱ的转运 有 无 无 进一步研究发 池外。 是丙酮破坏了囊	ATP 产生 不产生 衣产生 支现,第1 泡膜,导	
	成 A' (2) 组 别 1 2 3 注:	TP 的能量转换过程。 科学家利用人工体系统 人工体系 人工体系 大豆磷脂构成的囊泡 + + + + + + + + + + + + + + + + + + +	进行了 I + 工程, 证据, 顾后 古明, 可有, 可有, 可有, 可有, 可有, 可有, 可有, 可有, 可有, 可有	相关实验 II + + + - 组 分	验,如表 H ⁺ 通过 的 以 H ⁺ 转 交生 ATP	。 I 的转 ² 有 无 有"进" E H ⁺ 进	囊泡。 囊泡。 囊 可能是	通过II的转运有 有 无 无 进一步研究发 泡外。 是丙酮破坏了囊	ATP 产生 不产生 式完生 表现,第1 泡膜,导	

中的化学能。

6. (2022 秋·临淄区校级期末)图甲表示在一定条件下测得的某植物体光照强度与光合速率的关系;图乙是某同学"探究影响植物光合速率的因素"的实验装置;图丙是某兴趣小组将植物栽培在密闭玻璃温室中,用红外线测量仪测得室内的CO₂浓度与时间关系的曲线。请分析回答:

(4) 由图丙可推知,24 小时内密闭玻璃温室中氧气浓度最大的是 _____(填时间),该植物24 小时有机物会 _____(增加、减少、不变)。

参考答案

一. 试题(共6小题)

- 1. 有氧呼吸(能量供应); 内质网; 衰老线粒体; 核糖体; 排出细胞或 在细胞内被利用; 增强; 清除细胞内突变的蛋白质; (液泡水解酶)缺陷型;
- 2. 100%农田土; 小于; 增强; 先升高再降低; 提高可溶性蛋白和可溶性糖含量; 3. 核膜; 细胞核是遗传信息库,是细胞代谢和遗传的控制中心; 细胞质基质; 核孔; 抗肿瘤; 将抗肿瘤药物与亲核物质组合(或与容易穿过核孔的物质结合),促进药物分子快速入核; 生理盐水; 100; 健那绿; 丁组的抑制率最高;
- 4. <u>有助于充分研磨</u>; <u>无水乙醇</u>; <u>橙黄色</u>; <u>2</u>; <u>①(或①③)</u>; <u>橘黄</u>; <u>漂</u> <u>洗</u>; <u>染色</u>; <u>细胞分散开来</u>; <u>甲→乙</u>; 里; <u>降低</u>; <u>间</u>; <u>5. 类囊体膜</u> <u>(囊状结构薄膜)</u>; <u>高于</u>; <u>渗漏</u>; <u>H</u>+通过Ⅱ向囊泡外转运; <u>H</u> + 电 化 学 势 能;
- 6. 呼吸作用速率; 温度; 加大昼夜温差; <u>CO₂ 浓度</u>; 增施农家肥; <u>叶</u> 绿体、线粒体、细胞质基质; <u>大于</u>; 光照强度减弱; <u>CO₂ 浓度降低</u>; <u>18</u>; <u>减</u> 少;