P510/3 PRACTICAL PHYSICS Paper 3 August, 2023 31/4 hours

JINJA JOINT EXAMINATIONS BOARD

Uganda Advanced Certificate of Education

MOCK EXAMINATIONS - AUGUST, 2023

PHYSICS PRACTICAL

(PRINCIPAL SUBJECT)

Paper 3

3 hours 15 minutes

INSTRUCTIONS TO CANDIDATES:

Answer Question 1 and one other question.

Candidates are not allowed to use the apparatus or write for the first fifteen minutes. Graph papers are provided.

Mathematical tables and non – programmable silent electronic calculators may be used. Write on one side of the paper only.

Candidates are expected to record on their scripts all their observations as these observations are made and to plan the presentation of the records so that it is not necessary to make a fair copy of them. The working of the answers is to be handed in.

Details on the question paper should **not** be repeated in the answer, nor is the theory of the experiment required unless specifically asked for.

Candidates should, however, record any special precautions that they have taken and any particular features of their method of going about the experiment.

Marks are given mainly for a clear record of the observations actually made, for their suitability and accuracy, and for the use made of them.

© 2023 Jinia Joint Examinas	
© 2023 Jinja Joint Examinations Bo	ard Turn Over

1. In this experiment, you will determine the mass, m_b of the rubber bung provided using two methods.

METHOD I

- (a) Record the mass, M in kilograms, of the metre rule provided.
- (b) Balance the metre rule on a knife edge and locate the balance point, G.
- (c) Suspend the rubber bung at the 5.0 cm mark of the metre rule and balance the metre rule horizontally as shown in the figure 1.1.

Fig. 1.1

- (d) Record the distances x and y.
- (e) Calculate the value of m_1 from the expression;

$$m_1 = M \frac{y}{x}$$

aluus paaalinuseen yn a. Drober meis e to, valuus re en _{en e}neelis

METHOD II

- Clamp the spring provided vertically from the retort stand. (a)
- Suspend the rubber bung from the spring as shown in the figure 1.2. (b)
- Pull the spring slightly downwards and release it to perform vertical oscillations. (c)
- Measure and record the time, t_1 for twenty oscillations. (d)
- Determine the period, T_1 of the oscillations. (e)
- Remove the rubber bung from the spring. (f)
- Suspend a mass m = 0.200 kg from the spring as shown in the figure 1.3. (g)
- Pull the mass slightly downwards and release it to perform vertical oscillations. (h)
- Measure and record the time, t_2 for twenty oscillations. (i)
- Determine the period, T_2 of the oscillations. (*j*)
- Repeat procedure (g) to (j) for values of m = 0.250, 0.300, 0.400, 0.500 and (k) 0.600 kg. Tabulate value results including values of $\frac{1}{2}$ and y = (E
- Tabulate your results including values of $\left(\frac{T_2}{T_1}\right)^2$ (l)
- Plot a graph of $\left(\frac{T_2}{T_1}\right)^2$ against m. (m)
- Calculate the value of R, from the exp Determine the slope, S of the graph. (n)
- Calculate the value of m_2 from the expression; (o)

$$m_2=\frac{1}{S}$$

Find the mass m_b of the rubber bung from the expression; (p)

$$m_b = \frac{m_1 + m_2}{2}$$

State one particular precaution you took to ensure accuracy of your result. (q)

In this experiment, you will determine the constant, R of the 2. converging lens provided using two methods.

METHOD I

- Fix the lens in its holder. (a)
- Focus a distant object outside the room onto the screen using the lens. (b)
- Measure and record the distance, d between the lens and the screen. (c)
- Arrange the torch bulb, lens and the screen in a straight line as shown in the (d) figure 2.1.

- Adjust the position of the lens such that its distance from the bulb is (e) u = (d+x) cm, where x = 10.0 cm.
- Close the switch K. (f)
- Starting with the screen close to the lens, adjust the position of the screen to (g) obtain a clear sharp image of the filament light on it. (h)
- Measure and record the distance, ν between the lens and the screen. (i)
- Repeat procedure (e) to (h) for values of x = 15.0, 20.0, 25.0, 30.0 and 35.0 cm.
- Tabulate your results including values of $\frac{1}{x}$ and y = (v d). (j) (k)
- Plot a graph of y against $\frac{1}{r}$. (l)
- Find the slope, S of the graph. (m)
- Calculate the value of R_1 from the expression;

$$R_1 = 2\sqrt{S}$$

Arrange the torch bulb, lens and the screen in a straight line as shown in the (a) figure 2.2.

Fig. 2.2

- Adjust the position of the screen such that it is at a distance of D = 60.0 cm(b) from the bulb.
- Close switch K. (c)
- Starting with the lens close to the bulb, move the lens towards the screen (d) until a clear magnified image of the filament light is formed on the screen.
- Measure and record distance, a between the bulb and the lens. (e)
- Keeping the distance D fixed, move the lens further towards the screen to (f)obtain a clear diminished image of the filament light on the screen.
- Measure and record distance, b between the lens and the screen. (g)
- Calculate the value of $\beta = a + b$. (h)
- Calculate the value of R_2 from the expression; (*i*)

$$R_2 = \beta - \left(\frac{\beta^2}{2D}\right)$$

Find the value of the constant, R from the expression; (*j*)

$$2R = R_1 + R_2$$

State one source of error that must have affected the accuracy of your value (k) of R.

3. In this experiment you will determine the constant, k of the bare wire labelled Q provided.

PART I

(a) Connect the circuit shown in the figure 3.1, with the length of wire P of x = 0.500m.

- (b) Adjust the length of wire Q to y = 0.200m.
- (c) Close switch K and locate the balance point, J along the metre bridge wire AB.
- (d) Measure and record the balance lengths l_1 and l_2 , in metres.
- (e) Open switch K.
- (f) Repeat procedure (b) to (e) for values of y = 0.300, 0.400, 0.500, 0.600 and 0.700m
- (g) Tabulate your results including values of $\frac{x}{y}$ and $\frac{l_1}{l_2}$.
- (h) Plot a graph of $\frac{x}{y}$ against $\frac{l_1}{l_2}$.
- (i) Find the slope, S of the graph.

PART II

- Fix the wire Q used in Part I on the table surface using Sellotape. (a)
- Connect the circuit shown in the figure 3.2 with the length, y of the wire Q (b) of $y_1 = 0.400 \text{ m}.$

Crocodil clib Crocodil clip Sellotape Sellotape Wire QK, ||||i

- (c) Close switch **K**.
- Read and record the ammeter reading, I_1 and the voltmeter reading, V_1 . (d)

Fig.

- (e) Open switch K.
- (f)Adjust the length y to $y_2 = 0.600$ m.
- (g) Close switch K.
- (h) Read and record the ammeter reading, I_2 and the voltmeter reading, V_2 .
- Calculate the value of θ from the expression; (i)

$$\theta = \frac{V_2 - V_1}{I_2 y_2 - I_1 y_1}$$

 $\theta = \frac{V_2 - V_1}{I_2 y_2 - I_1 y_1}$ Obtain the value of k from the expression; (j)

$$k = \frac{\theta}{S}$$

where S is the slope of the graph in Part I above.

(k) Give any one precaution that you took to minimize errors in the experiment.

JINJA JOINT EXAMINATIONS BOARD Uganda Advanced Certificate of Education MOCK EXAMINATIONS - 2023 P510/3 - PHYSICS PRACTICAL (PRINCIPAL SUBJECT) Paper 3

SAMPLE RESULTS AND MARKING GUIDE

Lawrence: 2 and!

Scoring Codes SAMPLE RESULTS QUESTION 1 A1=1+1/2 - M+ mut METHOD I a) M = 0.1181kgx = 21.8cm d) y = 23.0 cme) 0.1181×0.230 = 0.125 kg**METHOD II** $t_1 = 8.5s$ d) $T_1 = 0.43s$ e) VV I) T_2 m(kg) 12(S) $T_2(s)$ $\overline{T_1}$ 0.200^c 1.3 📈 11.5 V 0.575 イ 1.7 4 1.5 4 0.250 12.5 \ 0.625 2.31 0.300 14.0 ~ 0.700 け 1.6 1 2.6 L 0.400 15.5 V 1.8 V 0.775 H 3.2 L 0.500 ا 17.5 4.0 L 0.875 나 2.0 V 0.600 19.0 2.2 1 0.950 n) $S = \frac{5.45 - 1.50}{0.69 - 0.17} \checkmark$ $=7.6 \text{kg}^{-1} \sqrt{\checkmark}$ 0) $m_2 = \frac{1}{7.6} \checkmark$ $m_2 = \frac{1}{7.6} \checkmark$ $m_2 = 0.13 \text{kg} \checkmark$ p)

Precaution: - Slight displacements to set the system in oscillation \square

- Shielding the system incase of wind

q)

 $A_{2}=1 \% + unit$ $A_{3}=1 \% + unit$ $A_{4}=\frac{1}{2} M_{1}$ Subshirus $\frac{A_{5}=\frac{1}{2}+\frac{1}{2}}{05} M_{1} + unit$ 1ABLE . B1=1+1/2 - + 1 + mm B2= 1+1/2 T1 + unit B3= 21/2 - 2 worth ty B4= 21/2 - Unit B= 6 values of to BG=3 Value of TZ B7=3 Valie of 12 $\frac{B_8=3}{23} \text{ Table if } \left(\frac{1}{1}\right)^2$ GRAPH-C1=1/2 Title C2= 1/2+1/2 AX45 C3= 1/2+1/2 Single C=3 Plotting C= 1/2 like od west ht Co= 1/2 Tri andle C7=1/2 Substitution ish Cs= 1+1/2 conectvaluet Co= 1/2+1/2+1/2 Value of C10= 1/2+1/2 value of 1 C11=1 Precantion. 12

40 MARKS

40 MARKS

d = 10.0 cm				
x(cm)	u(cm)	v(cm)	$\frac{1}{x}(cm^{-l})$	y(cm)
10.0	20.0 🗸	19.6 🗸	7د 0.1000	9.6
15.0	25.0 ✓	16.5 ン	0.06674	6.5
20.0	30.0	15.0 ×	0.0500	5.0
25.0	35.0	14.0 X	0.0400	4.0 \times
30.0	40.0	13.5 V	0.0333	3.5
35.0	45.0 ✓	13.0 🗡	0.0285	3.0 🗸
	,		建筑	20岁

QUESTION 2

 $S = \frac{9.8 - 2.8}{0.102 - 0.026} \checkmark$ $= \frac{0.076}{0.076}$ $= 92 \text{ cm}^2 \checkmark \checkmark$

METHOD I

)

)

e)

g)

h)

i)

j)

k)

 $R_1 = 2\sqrt{92} \checkmark$ $= 19 \text{ cm} \checkmark \checkmark$ $M \in \text{THeD} \square$ $a = 12.0 \text{ cm} \checkmark \checkmark$ $b = 13.2 \text{ cm} \checkmark \checkmark$

 $\beta = 13.2 \text{cm}^{3} \text{ V}$ $\beta = 25.2 \text{cm}^{3} \text{ V}$

 $R_{2} = 25.2 - \left(\frac{25.2^{2}}{2 \times 60.0}\right) \checkmark$ $= 19.9 \text{cm} \checkmark \checkmark$ $R = \frac{19+19.9}{2}$ $= 19.5 \text{cm} \checkmark \checkmark$ I

Source of error: - Uncertainty of the exact clear image - Error in measuring exact distances

	QUESTION 3	Scoring Codes	
a)	x = 0.500 m	$A_1=1 - E_1 + A_2= 2\frac{1}{2} - A_3 = 2\frac{1}{2} - A_4 = 6 - A_1 + A_2 = 6 - A_3 = 6 - A_4 = 6 - A_4 = 6 - A_5 = 6 - A$	12
d)	$l_1 = 0.753 \text{m}$ $1_2 = 0.247 \text{m}$ $1_3 = 0.247 \text{m}$	$A_2 = 2\frac{1}{2}$ $A_3 = 2\frac{1}{2}$ $A_4 = 2\frac{1}{2}$	it.
g)	$y(m) \qquad l_1(m) \qquad l_2(m) \qquad \frac{x}{y} \qquad \frac{l_1}{l_2}$	$A_{4}=6 - 4$ $A_{5}=3 - 4$ $A_{6}=3 - 4$ $A_{7}=3$ $A_{7}=3$	
	0.200 0.753 0.247 0.250 0.305 0.300 0.670 0.330 0.30	21 452	
	0.400 0.645 0.355 1.25 1.82 0.500 0.605 0.395 1.00 1.53	B1=1/2 - Tit	L
	0.600 0.563 0.437 0.83 1.29 0.700 0.525 0.475 0.71 0.71 0.71	$B_1 = \frac{1}{2}$ $B_2 = \frac{1}{2} + \frac{1}{2}$ $B_3 = \frac{1}{2} + \frac{1}{2}$ $S \subset \mathbb{R}$	es
	$S = \frac{2.44 - 0.50}{2.90 - 1.00} \checkmark$ $= \frac{1.94}{1.90}$ $= 1.02 \checkmark \checkmark$	B ₄ = 3 Plother B ₅ = ½ line of B ₆ = ½ thanks B ₇ = ½ B ₈ = 1½	Sef. le forsible
	b) PART II	081/2 081/2	
			~ /
,	$\int_{V_1=1.30V} \frac{11-0.36V}{\sqrt{2}}$	$C_1=1+\frac{1}{2}$ $C_2=1+\frac{1}{2}$ V_1 at	w 14:3+
3	h) $y_2 = 0.6000 \text{m}$	C ₃ = 1+½ I ₂ C ₄ = 1+½ V ₂	ind buit
	i) $I_2 = 0.424 \sqrt{4}$ $V_2 = 0.424 \sqrt{4}$ 1.55 $\sqrt{4}$	C ₅ = ½ - 6 - 5, C ₆ = ½+½ 2 - 5, C ₇ = ½ K Subj	testution and Unit
	$\theta = \frac{1.55 - 1.30}{(0.42 \times 0.600) - (0.56 \times 0.400)} $	Cs= 1+1/2 K+	unt.
	$k) = 8.9 \Omega m^{-1} \text{ or } VA^{-1}m^{-1} \checkmark \checkmark$	<u>Co=1</u> - Aec.	antron.
		40 MARKS	

C

$$\mathcal{K} = \frac{8.9}{1.02} \quad \sqrt{2} = 8.7$$
 $\Omega m^{-1} \text{ or}$
 $VA^{-1}m^{-1}$

Precaution: - Firm connections

- Closing switch momentarily for a short time

ĘND.