Quantitative determination of PMOs and PPMOs in mouse and monkey tissues by UPLC-HRMS

Authors: John Chen¹, Jianbo Zhang², Ran An¹, Jian Shi¹, Chengjie Ji¹, John Hadcock² ¹NovaBioAssays LLC; ²Sarepta Therapeutics, Inc

Innovative Mass Spectrometric Solutions

Introduction

Phosphorodiamidate Morpholino oligomers (PMO) are synthetic oligonucleotides whose bases attached to a backbone of morpholine rings linked through phosphorodiamidate groups. Conjugating cellpenetrating peptide (CPPs) to PMO as PPMO could improve drug efficiency by increasing drug delivery to their intracellular targets.

To determine drug exposure and clearance for PMOs and PPMOs, UPLC-HRMS methods have been developed and implemented to quantify PMOs and PPMOs in multiple tissue samples from mouse and monkey studies.

Figure 1. Structures of DNA, PMO and PPMO

Methodology

1. Tissue Sample Preparation before UPLC-HRMS Analysis

2. UPLC-HRMS method

LC Gradient

Column Type Thermo DNApac RP, 4 µm, 2x50 mm

70 °C Column Temp. Flow Rate 0.4 mL/min Injection Volume $20 \mu L$

Mobile Phase A=2% Formic Acid in water

B=2% Formic Acid in acetonitrile

15-35%B in 3 minutes

Mass Spectrometer Thermo Scientific Q Exactive Plus

Electrospray Ionization, Positive ion mode **Ionization Mode** 350 °C Source Temp.

Monitoring Mode PRM, resolution 70000

250 ms **Inclusion List** Analyte:

1. PMO: 2 Q1 ions of different charges > 3 Q3 isotopes

PPMO: 2 Q1 ions of different charges > 3 Q3 isotopes

3. Internal Standard: 1 Q1 ion > 3 Q3 isotopes

Results and Discussion

1. Method Development

Optimization of UPLC-HRMS Conditions and Sample Extraction

HLB SPE plate was used to clean up tissue samples and provided the highest recovery and best precision. To achieve the best selectivity and sensitivity of analytes, the most two intense precursor ions and their common highest product ion under optimized CE were applied in high resolution PRM method, combining with the optimized LC condition, IS and matrix did not have interference to PMO and PPMO analytes (Figure 2 and 3), and the sensitivity was improved five to ten times than previous assays.

PPMO Stability Issues

CPPs in PPMO structure can be degraded to multiple metabolites during sample processing. After Trypsin/Proteinase–K digestion, PPMO was converted to one single end product of one AA linked PMO, and the end product concentration represented the total concentration of PPMO in tissues.

2. Assay Selectivity and Sensitivity

Figure 2. Chromatograms of double blank (A), control blank (B) and LLOQ=4 ng/mL in tissue homogenate or 40 ng/g in tissue (C) in PMO assay

Figure 3. Chromatograms of double blank (A), control blank (B) and LLOQ=4 ng/mL in tissue homogenate or 40 ng/g in tissue (C) in PPMO assay

3. Standard Curve and Regression

Stats	Assay Number	4.00	8.00	16.0	32.0	160	800	3200	6400	8000
	1	3.30*	8.14	17.9	29.3	216**	765	3072	6314	7927
		4.04	10.7**	19.6*	30.3	183	684	2921	6304	749 0
	2	4.20	6.65*	15.8	30.8	184*	739	3205	6894	9649
		3.57	8.45	15.1	37.1*	185	627*	2989	5444	7787
	3	4.09	8.01	15.9	33.0	178	734	3542	7200	8292
		4.37	7.99	16.4	28.4	190*	749	2610*	6368	7506
Mean		3.93	7.85	16.8	31.5	184	716	3056	6420	8108
%CV		10.4	8.82	9.92	10.0	2.33	7.17	10.1	9.38	10.0
%Theoretical		98.2	98.1	105	98.4	115	89.5	95.5	100	101
n		6	5	6	6	5	6	6	6	6

ng/mL) and regression in PMO assay.

4. Inter Assay Accuracy and Precision

Stats	Assay Number	Low QC 20.0 ng/mL	Low-Medium QC 80.0 ng/mL	Medium QC 1200 ng/mL	High QC 4800 ng/mI
	1	19.8	79.7	1182	5103
		17.9	70.2	1231	4830
Mean		18.8	74.9	1206	4967
%Theoretical		94.1	93.7	101	103
	2	20.8	88.7	1394*	5077
		23.5*	83.6	1285	4544
Mean		22.1	86.2	1339	4810
%Theoretical		111	108	112	100
	3	20.1	75.9	1135	5278
		16.3*	70.4	1233	5088
Mean		18.2	73.2	1184	5183
%Theoretical		91.1	91.4	98.7	108
Mean		19.7	78.1	1243	4986
%CV		12.5	9.46	7.20	5.21
%Theoretical		98.7	97.6	104	104
n		6	6	6	6

Ö	1000	2000	3000	4000	5000	6000	7000	8000
---	------	------	------	------	------	------	------	------

PMO-Gly Y = -0.000276875+0.000221543*X+3.98719e-009*X^2 R^2 = 0.9957 W: 1/X/

ng/mL) and regression in PPMO assay.

Stats	Assay Number	Low QC 20.0 ng/mL	Low-Medium QC 80.0 ng/mL	Medium QC 1200 ng/mL	High QC 4800 ng/m
	1	21.1	75.9	1227	5740*
		23.0	78.8	1218	5158
Mean		22.1	77.4	1222	5449
%Theoretical		110	96.7	102	114
	2	22.0	80.1	1306	4588
		20.3	93.9*	1289	5832*
Mean		21.2	87.0	1298	5210
%Theoretical		106	109	108	109
	3	17.7	81.3	1298	5142
		20.9	87.4	1462*	4936
Mean		19.3	84.4	1380	5039
%Theoretical		96.4	105	115	105
Mean		20.8	82.9	1300	5232
%CV		8.65	7.95	6.73	9.10
%Theoretical		104	104	108	109
n		6	6	6	6

Conclusions

- > High throughput SPE extraction and UPLC-HRMS methods have been successfully developed for PMO and PPMO analysis in various mouse and monkey tissue samples. Five to ten times better sensitivity was achieved comparing to the previously reported tissue assay for PPMO quantitation using UPLC-HRMS.
- > Developed assays have been successfully implemented for PK/TK studies to support Sarepta PMOs and PPMOs drug development programs. Reference
 - Hong M. Moulton and Jon D. Moulton, Morpholinos and their peptide conjugates: Therapeutic promise and challenge for Duchenne muscular dystrophy, Biochimica et Biophysica Acta 1798 (2010) 2296–2303
- (2) Z. Zhang, and et. Al., Quantification of Peptide Phosphorodiamidate Morpholino Oligomers in Plasma for Multiple Species Using LC-MS/MS,
- (3) M. Meng, and et. al., Quantitative Determination of AVI-7100, a PMO in Human Plasma Using LC-MS/MS, AAPS 2015, W4252 **Disclosures:** J. Chen, R. An, J. Shi, and C. Ji have nothing to disclose. J. Zhang and J. Hadcock are employees of Sarepta Therapeutics, Inc. and may

Funding Statement: This study was sponsored by Sarepta Therapeutics, Inc.

own stock in the company. Products are investigational only.