Classifying Reddit Posts

LifeProTips & UnethicalLifeProTips

Posted by u/hdpe125 22 hours ago

LPT: If you liked a song by an artist but did not find the other tracks by the artist to your liking, look up the producer and see his other works. Producers have a lot of say in how the final product turns out.

Arts & Culture

89% Upvoted

Tips that improve your life in one way or another.

18.4m 18.1k

Members Online

Tips that improve your life in one way or another.

18.4m 18.1k

Members Online

Created 25 Oct 2010

Unethical Life Pro Tips

r/UnethicalLifeProTips

r/IllegalLifeProTips

r/IllegalLifeProTips

Shitty Life Pro Tips

r/ShittyLifeProTips

LPT vs ULPT

Tips that improve your life in one way or another.

18.4m

18.1k

Members

Online

Created 25 Oct 2010

r/Une thical Life ProTips

An Unethical Life Pro Tip (or ULPT) is a tip that improves your life in a meaningful way, perhaps at the expense of others and/or with questionable legality. Due to their nature, do not actually follow any of these tips-they're just for fun. Share your

best tips you've picked up throughout your

1.1m

249

Members

looking for unethical tips

Created 1 Mar 2016

life, and learn from others!

ULPT example

r/UnethicalLifeProTips · Posted by u/gotBooched 1 month ago

ULPT: if you're stuck on an annoying call, put your phone on airplane mode instead of just hanging up. The other person will see "call failed" instead of "call ended"

Electronics

93% Upvoted

The problem statement

How can we qualify what exactly makes a pro tip unethical?

Using a **classification model**, are we able to accurately predict posts for the two subreddits? We want to investigate:

- If we can quantify what is 'unethical' or anti-social behaviour (according to Reddit!)
- If we can identify significant differences between the two subreddits' posts, given that they are both about protips

The process

Getting data from Reddit

Two ways of getting data:

- Webscraping, using .json format on Reddit
 - Structured like a python dictionary and easy to parse
 - Relies on Reddit URL, depending on subreddit can be difficult to get posts
 - Can't access comments
- PRAW: The Python Reddit API Wrapper
 - Slightly more steps, have to create an account on Reddit to retrieve the data,
 and different structure
 - Can access more things like comments, posts sorted by top etc.!

Features of interest

Posted by u/hdpe125 22 hours ago

LPT: If you liked a song by an artist but did not find the other tracks by the artist to your liking, look up the producer and see his other works. Producers have a lot of say in how the final product turns out.

Arts & Culture

89% Upvoted

Features of interest

	subreddit	selftext	score	title	upvote_ratio	created_utc	id	fullname	num_comments
0	LifeProTips	I had a phone interview scheduled this morning	165153	LPT: keep your mouth shut, and don't volunteer	0.96	1.582156e+09	f6jt5e	t3_f6jt5e	4973
1	LifeProTips	NaN	131334	LPT: If you want a smarter kid, teach your chi	0.92	1.585245e+09	fpfwra	t3_fpfwra	3103
2	LifeProTips	I just found this quote online and wanted to	107877	LPT: Just because you did something wrong in	0.94	1.588878e+09	gfcq4g	t3_gfcq4g	2036

Scraping from new posts versus top posts

The LPT subreddit is much more active than the ULPT subreddit

Scraping from new posts versus top posts

Taking the top 1000 posts for the past year gives us a better representation

Removing duplicates

To remove duplicates, we searched for duplicates in the post title and selftext.

	subreddit	selftext	score	title	upvote_ratio	created_utc	id	fullname	num_comments	total_awards_received	author
7	LifeProTips		9 <mark>768</mark> 5	LPT If you ever forget your WiFi password or y	0.95	1.568801e+09	<mark>d</mark> 5vknk	t3_d5vknk	2908	13	None
733	LifeProTips	Edit: Wow 2 silver! My first time, thanks kind	3627	LPT If you ever forget your WiFi password or y	0.96	1.575529e+09	e6dlbm	t3_e6dlbm	270	2	slackftw

Creating new features

 Target variable: Mapping ULPT posts to the positive class and LPT posts to the negative class

Time: Converting timestamp to EST and extracting day, hours, etc.

```
master_df_top['timestamp'] = master_df_top['created_utc'].apply(lambda x: datetime.fromtimestamp(x))
master_df_top['timestamp'] = master_df_top['timestamp'].dt.tz_localize('UTC')
master_df_top['timestamp'] = master_df_top['timestamp'].dt.tz_convert('US/Eastern')
```

Text: Combining our title and selftext variables

```
master_df_top['selftext'] = master_df_top['selftext'].fillna("")
master_df_top['all_text'] = master_df_top['title'] + " " + master_df_top['selftext']
```

Preparing our text for analysis

LPT: When a friend is upset, ask them one simple question before saying anything else: 'Do you want to talk about it or do you want to be distracted from it?' This is honestly one of the best thin...

Lowercase, removal of numbers and punctuation

Stopwords Removal

Lemmatization

friend upset ask simple question say want talk want distract honestly best thing upset friend use time people respond people come need vent comfort follow want advice want listen time need let out...

Wordcloud

LPT Posts

ULPT Posts

Polarity: positive versus negative sentiment

New Posts | Comparison of Mean Polarity Score

Top Posts | Comparison of Mean Polarity Score

Vectorizing and modeling

Word vectorization techniques

Count vectorization

TF-IDF vectorization

Modeling techniques

Multinomial Naive Bayes

Logistic Regression

Support Vector Model

7 models were tested, including a voting classifier combining the 3 models.

For every model - vectorizer combination:

```
For cvec, nb:
Best score: 0.774
Train score: 0.9
Test score: 0.789
Best parameters: {'cvec_max_features': 3000, 'cvec_ngram_range': (1, 2), 'nb_alpha': 1.0, 'nb_fit_prior': True}

ROC-AUC Score: 0.849

True Negatives: 254
False Positives: 76
False Negatives: 62
True Positives: 261
Specificity (Positive Detection Rate): 0.808
Sensitivity (Negative Detection Rate): 0.77
```

For every model - vectorizer combination:

Initial testing results

	Model Name	GS Best Score	Train Score	Test Score	ROC-AUC Score	Sensitivity	Specificity
0	cvec_nb	0.774	0.900	0.789	0.849	0.808	0.770
1	tvec_nb	0.779	0.906	0.789	0.864	0.811	0.767
2	cvec_lr	0.758	0.987	0.784	0.867	0.799	0.770
3	tvec_lr	0.776	0.917	0.790	0.876	0.777	0.803
4	cvec_svm	0.743	0.927	0.766	0.856	0.811	0.727
5	tvec_svm	0.784	0.995	0.793	0.886	0.783	0.818
6	tvec_vote	0.777	0.954	0.804	0.878	0.783	0.797

Initial testing results

	Model Name	GS Best Score	Train Score	Test Score	ROC-AUC Score	Sensitivity	Specificity
0	cvec_nb	0.774	0.900	0.789	0.849	0.808	0.770
1	tvec_nb	0.779	0.906	0.789	0.864	0.811	0.767
2	cvec_lr	0.758	0.987	0.784	0.867	0.799	0.770
3	tvec_lr	0.776	0.917	0.790	0.876	0.777	0.803
4	cvec_svm	0.743	0.927	0.766	0.856	0.811	0.727
5	tvec_svm	0.784	0.995	0.793	0.886	0.783	0.818
6	tvec_vote	0.777	0.954	0.804	0.878	0.783	0.797

Highest accuracy score and high ROC-AUC score, but lower sensitivity

Initial testing results

	Model Name	GS Best Score	Train Score	Test Score	ROC-AUC Score	Sensitivity	Specificity
0	cvec_nb	0.774	0.900	0.789	0.849	0.808	0.770
1	tvec_nb	0.779	0.906	0.789	0.864	0.811	0.767
2	cvec_lr	0.758	0.987	0.784	0.867	0.799	0.770
3	tvec_lr	0.776	0.917	0.790	0.876	0.777	0.803
4	cvec_svm	0.743	0.927	0.766	0.856	0.811	0.727
5	tvec_svm	0.784	0.995	0.793	0.886	0.783	0.818
6	tvec_vote	0.777	0.954	0.804	0.878	0.783	0.797

Highest sensitivity but lower accuracy scores.

Selecting a model

	Model Name	GS Best Score	Train Score	Test Score	ROC-AUC Score	Sensitivity	Specificity
0	cvec_nb	0.774	0.900	0.789	0.849	0.808	0.770
1	tvec_nb	0.779	0.906	0.789	0.864	0.811	0.767
2	cvec_lr	0.758	0.987	0.784	0.867	0.799	0.770
3	tvec_lr	0.776	0.917	0.790	0.876	0.777	0.803
4	cvec_svm	0.743	0.927	0.766	0.856	0.811	0.727
5	tvec_svm	0.784	0.995	0.793	0.886	0.783	0.818
6	tvec_vote	0.777	0.954	0.804	0.878	0.783	0.797

Further tuning - adding stopwords

Predictive feature overlap

Consider words that feature heavily for both classes e.g. 'work', 'people'

```
['want', 'work', 'use', 'don', 'need', 'like', 'get', 'way', 'time', 'peo ple', 'll', 'ask', 'look', 'day', 'try', 'know']
```

Misclassified data word counts

Consider words that appear the most in our misclassified posts

Feature importance

Positive class - ULPT

Ranking of feature importance

-5.4161 want -5.4835 request -5.5212 free -5.6137 work -5.7430 use -5.7728 don -5.8102 need -5.8577 buy -5.8709 like -5.8805 car -5.9331 card -5.9334 get -5.9475 pay -5.9688 phone -5.9718 way -6.0008 time -6.0052 people -6.0662 money -6.0686 return -6.0691 new -6.1274 11 -6.1342 ask -6.1811 look -6.2121 day -6.2226 tell -6.2239 gift -6.2628 check -6.2822 item -6.2959 try -6.2984 know

Word features

Negative class - LPT

```
-5.4442 people
-5.4794 don
-5.6798 time
-5.7143 like
-5.7239 help
-5.7942 work
-5.8272 ask
-5.8431 know
-5.8456 thing
        -5.8459 day
-5.8808 edit
-5.9320 feel
-5.9387 need
-5.9894 get
-6.0098 good
-6.0457 way
-6.0461 try
-6.0481 want
-6.0681 go
-6.0796 person
-6.107911
-6.1363 well
-6.1462 ve
-6.1788 think
-6.1867 look
-6.2025 start
-6.2256 use
-6.2304 lot
-6.2355 instead
-6.3108 say
```

Misclassified posts word count

Positive class - ULPT

	wordcount
want	51
don	48
people	47
ve	43
like	42
work	41
time	32
try	31
m	30
help	29
ask	26
tell	23
job	22
know	21
get	20

Negative class - LPT

	wordcount
car	99
don	59
engine	53
check	49
want	49
use	45
like	45
money	44
look	44
need	43
fuel	41
buy	40
edit	39
work	38
good	38

Final model

	Model Name	GS Best Score	Train Score	Test Score	ROC-AUC Score	Sensitivity	Specificity
0	cvec_nb	0.774	0.900000	0.789000	0.849	0.808	0.770
1	tvec_nb	0.779	0.906000	0.789000	0.864	0.811	0.767
2	cvec_lr	0.758	0.987000	0.784000	0.867	0.799	0.770
3	tvec_lr	0.776	0.917000	0.790000	0.876	0.777	0.803
4	cvec_svm	0.743	0.927000	0.766000	0.856	0.811	0.727
5	tvec_svm	0.784	0.995000	0.793000	0.886	0.783	0.818
6	tvec_vote	0.777	0.954000	0.804000	0.878	0.783	0.797
7	tvec_nb_new	NA	0.906344	0.790199	0.865	0.811	0.770

Feature importances

Positive class - ULPT

-8.4200	action	-5.4161	want
-8.4200	add list	-5.4835	request
-8.4200	allergy	-5.5212	free
-8.4200	animation	-5.6137	work
-8.4200	applicant	-5.7430	use
-8.4200	apply job	-5.7728	don
-8.4200	appreciation	-5.8102	need
-8.4200	area rug	-5.8577	buy
-8.4200	art	-5.8709	like
-8.4200	assist	-5.8805	car
-8.4200	attitude	-5.9331	card
-8.4200	automatically	-5.9334	get
-8.4200	backwards	-5.9475	pay
-8.4200	bath	-5.9688	phone
-8.4200	bbt	-5.9718	way
-8.4200	behavior	-6.0008	time
-8.4200	beneficiary	-6.0052	people
-8.4200	bike	-6.0662	money
-8.4200	blade	-6.0686	return
-8.4200	braid	-6.0691	new
-8.4200	braid gray	-6.1274	11
-8.4200	brain	-6.1342	ask
-8.4200	bread	-6.1811	look
-8.4200	breath	-6.2121	day
-8.4200	breathe	-6.2226	tell
-8.4200	breathing	-6.2239	gift
-8.4200	cam	-6.2628	check
	capture	-6.2822	item
-8.4200	cellular	-6.2959	try
-8.4200	change mind	-6.2984	know

Negative class - LPT

-8.4995	admin	-5.4442	people
-8.4995	advance	-5.4794	don
-8.4995	airpods	-5.6798	time
-8.4995	anniversary	-5.7143	like
-8.4995	asshole	-5.7239	help
-8.4995	believable	-5.7942	work
-8.4995	borrow	-5.8272	ask
-8.4995	buy new	-5.8431	know
-8.4995	cancellation	-5.8456	thing
-8.4995	cancellation fee		-5.8459 day
-8.4995	cheat	-5.8808	edit
-8.4995	club	-5.9320	feel
-8.4995	controller	-5.9387	need
-8.4995	craigslist	-5.9894	get
	despite	-6.0098	good
-8.4995	donor	-6.0457	way
-8.4995		-6.0461	try
	free trial	-6.0481	
-8.4995	furniture store	-6.0681	go
	haircut	-6.0796	- 0.00000000000000000000000000000000000
	hallway	-6.1079	11
-8.4995	hassle	-6.1363	well
	immigrant	-6.1462	ve
-8.4995	leftover	-6.1788	NA 187 F.
-8.4995		-6.1867	look
	parking	-6.2025	
	parking lot	-6.2256	
-8.4995		-6.2304	TAGE 1500
-8.4995		-6.2355	
-8.4995	reservation	-6.3108	say

What features are most predictive?

Both classes

Overlap in Features

want know

don buy need help go web

tie ask

listen

ULPT class

Features for ULPT *********

reply free trial

usps busy card care

payment

personal information

resume

new account

moment lock

LPT class

Features for LPT

help know thin

dealership

edit

feel guilty

gotten good way perform wife vehicle

thing people

Conclusions

- **Definitive overlap** between our two subreddits: especially things to do with work or people.
- There seems to be a greater focus on purchases and 'gaming' the system, in our ULPT posts.
- We don't get a strong sense of anti-social behaviour or a clear "unethical" definition - maybe a different subreddit will be better to determine this.
- We have to note that our data may be:
 - Biased to this context and group of people
 - Unreliable as it is user-generated (but it is moderated and using top posts helps to counter this)

Potential extensions

- Further refine NLP by optimizing custom set of stopwords, part-of-speech analysis
- Expand our dataset with comments, sample posts across a period of time etc.
- Investigate other trends for Reddit posts: Score, upvote ratio, whether it reaches r/all

Thank you!