Indian Institute of Technology Kharagpur Department of Electrical Engineering

Subject No.: <u>E</u> Date of Assign Assignment Nu	ment: 15 April 2	Subject: <u>Machine</u> 024 Duration: <u>1 hour</u>	Semester:	gnal Proces Spring 2023 Full points:	3-24
Name:		Ro	oll No:		
1. You are prov	ided with a convolu	tional neural netwo	ork defined as follow	WS	
		m av2D)16c5w1s0p $ ightarrow$ $ m av2D)$ 64c3w1s1p $ ightarrow$			(1)
I	$net_D(\cdot) \mapsto (1 : Conv)$ $\to (3 : Conv)$	$2\mathrm{D})$ 16c3w1s1p $ ightarrow$ ($\mathrm{v}2\mathrm{D})$ 3c5w1s2p $ ightarrow$ ((2)
such that it o	$\mathtt{net}_\mathtt{C}(\cdot) \mapsto (1:\mathtt{I})$	FC)160 \rightarrow (2 : FC)8			(3)
	1	1	1 -		
		$\mathbf{z} = \mathtt{net}_{\mathtt{E}}(\mathbf{x})$			(4)
		$\hat{\mathbf{x}} = \mathtt{net}_{\mathtt{D}}(\mathbf{z})$			(5)
		$\hat{\mathbf{y}} = \mathtt{net}_\mathtt{C}(\mathbf{z})$			(6)
(a) (16 poin	ts) Find the follow	ing associated with	feedforward opera	tion in $net_E($	$\cdot)$
	$a \text{ in input } \in \mathbb{R}^a$	b in output $\in \mathbb{R}^b$	c in weight $\in \mathbb{R}^c$	$d \text{ in bias } \in$	\mathbb{R}^d
$\operatorname{net}_{\mathtt{E}}: \mathbb{I}$	1	_			
$net_{E}: 2$					
net _E :	3				
net- : /	4				

((b)	(16)	points	Find	the foll	lowing	associated	with	feedforward	operation	in	net _n ((\cdot)
- 1	\sim $_{I}$	(+ 0	POILION	,	OIIC ICI	10 11 1115	abbotiatea	** 1011	ICCAICI WAI A	OPCICIOI	111	O O) (

	$a \text{ in input } \in \mathbb{R}^a$	$b \text{ in output } \in \mathbb{R}^b$	$c \text{ in weight } \in \mathbb{R}^c$	d in bias $\in \mathbb{R}^d$
$\mathtt{net_D}:1$				
$\mathtt{net_D}:2$				
net _D :3				
$\mathtt{net_D}:4$				

(c) (12 points) Find the following associated with feedforward operation in $\mathtt{net}_\mathtt{C}(\cdot)$

	$a \text{ in input } \in \mathbb{R}^a$	b in output $\in \mathbb{R}^b$	$c \text{ in weight } \in \mathbb{R}^c$	d in bias $\in \mathbb{R}^d$
$\mathtt{net}_\mathtt{C}:1$				
net _C : 2				
net _C :3				

(d) (16 points) Find the number of unitary arithmeic operations associated with feed-forward operation in $\mathtt{net_E}(\cdot)$

	#add	#mul	#logic	Total
$\mathtt{net}_\mathtt{E}:1$				
$\mathtt{net_E}:2$				
net _E :3				
$\mathtt{net}_{\mathtt{E}}:4$				

(e) (16 points) Find the number of unitary arithmeic operations associated with feed-forward operation in $\mathtt{net}_{\mathtt{D}}(\cdot)$

	#add	#mul	#logic	Total
$\mathtt{net}_\mathtt{D}:1$				
$\mathtt{net}_\mathtt{D}:2$				
net _D :3				
$\mathtt{net_D}:4$				

(f) (12 points) Find the number of unitary arithmeic operations associated with feed-forward operation in $\mathtt{net}_{\mathtt{c}}(\cdot)$

	#add	#mul	#logic	Total
net _c :1				
net _c :2				
net _c :3				

- 2. Consider that the neural networks in Q. 1 are trained with Mean Squared Error (MSE) as the loss function. Let $J_1(\hat{\mathbf{x}}, \tilde{\mathbf{x}})$ and $J_2(\hat{\mathbf{y}}, \mathbf{y})$ be evaluated with $\tilde{\mathbf{x}} \in \mathbb{R}^{3 \times 28 \times 28}$ and $\mathbf{y} \in \mathbb{R}^{10}$ representing the true states of the variables in the loss function. Let ∇_1 denote the derivative of $J_1(\cdot)$ with respect to the output of a given layer, and δ_1 denote the derivative of $J_1(\cdot)$ with respect to the input to that layer, such that for any layer represented mathematically as $\mathbf{Q} = \mathbf{RS} + \mathbf{T}$, where \mathbf{Q} is the output of the neural layer we have $\nabla = \frac{\partial J(\cdot)}{\partial \mathbf{Q}}$, \mathbf{S} is the input to the neural layer we have $\delta = \frac{\partial J(\cdot)}{\partial \mathbf{S}}$, \mathbf{R} denotes the weights and \mathbf{T} denotes the biases in the layer respectively. We have $\frac{\partial J(\cdot)}{\partial \mathbf{R}} = \mathbf{\nabla} \mathbf{S}^{\top}$, $\frac{\partial J(\cdot)}{\partial \mathbf{T}} = \mathbf{\nabla}$, $\delta = \frac{\partial J(\cdot)}{\partial \mathbf{S}} = \mathbf{R}^{\top} \mathbf{\nabla}$. Similarly, ∇_2 and δ_2 correspond to these set of operations associated with $J_2(\cdot)$.
 - (a) (16 points) Find the following associated with error backpropagation operation in $\mathtt{net_E}(\cdot)$ when \mathbf{w} and \mathbf{b} represent the weights and biases in a layer respectively.

				·	*	
	$a \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^a$	$b \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^b$	$c \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^c$	d in	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}$	\mathbb{R}^d
$\mathtt{net}_\mathtt{E}:1$						
$\mathtt{net}_{\mathtt{E}}:2$						
$\mathtt{net_E}:3$						
$\mathtt{net_E}:4$						

(b) (16 points) Find the following associated with error backpropagation operation in $\mathtt{net}_{\mathtt{D}}(\cdot)$ when \mathbf{w} and \mathbf{b} represent the weights and biases in a layer respectively.

	$a \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^a$	$b \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^b$	$c \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^c$	$d \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^d$
$\mathtt{net_D}:1$				
net _D : 2				
net _D : 3				
$\mathtt{net}_\mathtt{D}:4$				

(c) (12 points) Find the following associated with error backpropagation operation in $\mathtt{net}_{\mathtt{c}}(\cdot)$ when \mathbf{w} and \mathbf{b} represent the weights and biases in a layer respectively.

	$a \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^a$	$b \text{ in } \frac{\partial J_1(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^b$	$c \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{w}} \in \mathbb{R}^c$	$d \text{ in } \frac{\partial J_2(\cdot)}{\partial \mathbf{b}} \in \mathbb{R}^d$
$\mathtt{net}_\mathtt{C}:1$				
$\mathtt{net}_\mathtt{C}:2$				
$\mathtt{net}_\mathtt{C}:3$				

(d) (64 points) Find the number of unitary arithmeic operations associated with error backpropagation operation in $\mathtt{net_E}(\cdot)$

		#add	#mul	#logic	Total
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
. 1	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net}_\mathtt{E}:1$	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net}_{\mathtt{E}}:2$	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net_E}:3$	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net}_{\mathtt{E}}:4$	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				

(e) (64 points) Find the number of unitary arithmeic operations associated with error backpropagation operation in $\mathtt{net}_D(\cdot)$

		#add	#mul	#logic	Total
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net}_\mathtt{D}:1$	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
net _D : 2	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net}_\mathtt{D}:3$	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
$\mathtt{net_D}:4$	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				

(f) (48 points) Find the number of unitary arithmeic operations associated with error backpropagation operation in $\mathtt{net}_\mathtt{c}(\cdot)$

		#add	#mul	#logic	Total
net _C :1	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net}_\mathtt{C}:2$	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				
$\mathtt{net}_\mathtt{C}:3$	$\frac{\partial J_1(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_1(\cdot)}{\partial \mathbf{b}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{w}}$				
	$\frac{\partial J_2(\cdot)}{\partial \mathbf{b}}$				

——— End of questions. ———

This page is intentionally left blank for rough work.

This page is intentionally left blank for rough work.