Week 2

???

2.1 Groups of Low Order

10/3: • Calegari: Nothing in particular to know for missing Friday; Adi will get me notes.

• Having explored examples, today, we're coming back down to earth to flex our axiomatic muscles.

• Distinguishing sets and binary operations.

Group	G	*	?
S_n	shuffles	composition	cards
O(n) and $SO(n)$	(sp) orthogonal matrices	composition	vectors?
$\mathbb Z$	integers	addition	
$\mathbb{Z}/n\mathbb{Z}$	$\{0,1,\ldots,n-1\}$	addition modulo n	

Table 2.1: Elements of a group.

- Be careful not to confuse the shuffles and the cards; the cards are something else curious but are not the elements of the group.
- Notice that \mathbb{Z} and $\mathbb{Z}/n\mathbb{Z}$ are **commutative** groups, but the shuffles (for n > 1) and O(n) are not.
- Note that S_2 , O(1), and $\mathbb{Z}/2\mathbb{Z}$ are all isomorphic groups.
- Commutative (group): A group such that for all $x, y \in G$, x * y = y * x. Also known as Abelian.
- Lemma (Cancellation Lemma): Let $x, y, z \in G$. Then xy = xz implies y = z and yx = zx implies y = z.

Proof. We have that

$$x*y=x*z$$

$$x^{-1}*(x*y)=x^{-1}*(x*z)$$
 Inverses exist
$$(x^{-1}*x)*y=(x^{-1}*x)*z$$
 Associativity
$$e*y=e*z$$

$$y=z$$

as desired.

The proof of the second statement is symmetric.

- This will be Calegari's only proof from the axioms directly.

Week 2 (???)

MATH 25700

• Multiplication table (for G): A table with all elements of G on the top and the side, and all binary products in it.

- The total number of binary operations is n^{n^2} ?
- To check that a group is a group, we can write out its multiplication table and confirm pointwise that the group axioms are satisfied. However, there are also many ways to speed this process up.
- An example of a multiplication table can be found on the right in Figure 2.1.
- Trivial group: The only group with |G| = 1, i.e., $G = \{e\}$.
- A group of |G| = 2 has the form $G = \{e, x\}$ where we must have $x = x^{-1}$.
 - We can find this by inspection or invoke the **Sudoku Lemma**.
 - Thus, all groups of order 2 are isomorphic.
- Lemma (Sudoku Lemma): Fix $x \in G$. Then

$$\{xg \mid g \in G\} = G = \{gx \mid g \in G\}$$

Proof. There exists g such that xg = y for x, y fixed: Choose $g = x^{-1}y$. y only occurs once: If xg = y and xg' = y, transitivity and the cancellation lemma imply g = g'.

- In layman's terms, in every row and column of the multiplication table, each element of G occurs exactly once.
- Playing Sudoku, we can show that all groups of order 3 are isomorphic.

	e	\boldsymbol{x}	y		e	x	y
e	e	x	y	 e	e	x	y
x	x			 x	x	y	e
y	y			y	y	e	x

Figure 2.1: Playing Sudoku for |G| = 3.

- Start from the left table above.
- Notice that row 3 has a y and column 2 has an x, so by the Sudoku Lemma, e must be the element in row 3, column 2.
- Then column 2 has e, x in it, so the entry in row 2, column 2 must by y.
- Then row 2 has x, y in it, so the entry in row 2, column 3 must be e.
- Then row/column 3 both have e, y in them, so the entry in row 3, column 3 must be x.
- However, we cannot play Sudoku in the same way with groups of order 4. In fact, there are multiple groups of order 4.
 - Two cases: (1) $x^2 \neq e$ so WLOG let $x^2 = y$, and (2) $a^2 = e$ for a = x, y, z.
 - Case 1 is isomorphic to $\mathbb{Z}/4\mathbb{Z}$.
 - Case 2 is isomorphic to the **direct product** of $\mathbb{Z}/2\mathbb{Z}$ with itself, also known as the **Klein** 4-group.
 - This should not come as a surprise: We've already encountered the very different groups S_4 and $\mathbb{Z}/24\mathbb{Z}$ of order 24.

Week 2 (???) MATH 25700

• **Direct product**: The group whose set is the Cartesian product of the sets of groups $A = (A, *_A), B = (B, *_B)$, and whose operation is coordinate-wise multiplication. Given by

$$G = A \times B$$
 $(a,b) *_G (a',b') = (a *_A a', b *_B b')$

- We can prove that $e = (e_A, e_B)$, that $(a, b)^{-1} = (a^{-1}, b^{-1})$, and that associativity holds.
- We have that

$$|G| = |A| \cdot |B|$$

- There is only one group of order 5.
- Examples of groups of order 6: S_3 , $\mathbb{Z}/6\mathbb{Z}$, $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$, $(\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$.
 - Are there any two groups which are distinct?
 - \blacksquare S_3 is not commutative, but the others are, so it is distinct from them.
 - $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/3\mathbb{Z})$ and $(\mathbb{Z}/3\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ are the same because order doesn't matter in the construction of the direct product.
 - $\mathbb{Z}/6\mathbb{Z}$ and the two direct products are the same because they both have elements of order 6 (i.e., a one-element generator). The cycles are:

$$1^{1} = 1 = 1 \qquad (1,1)^{1} = (1,1) = (1,1)$$

$$1^{2} = 1 + 1 = 2 \qquad (1,1)^{2} = (1+1,1+1) = (2,0)$$

$$1^{3} = 2 + 1 = 3 \qquad (1,1)^{3} = (2+1,0+1) = (0,1)$$

$$1^{4} = 3 + 1 = 4 \qquad (1,1)^{4} = (0+1,1+1) = (1,0)$$

$$1^{5} = 4 + 1 = 5 \qquad (1,1)^{5} = (1+1,0+1) = (2,1)$$

$$1^{6} = 5 + 1 = 0 \qquad (1,1)^{6} = (2+1,1+1) = (0,0)$$

$$1^{7} = 0 + 1 = 1 \qquad (1,1)^{3} = (0+1,0+1) = (1,1)$$

- These are the only two groups of order 6.
- Continuing on, there is only 1 group with |G| = 2047 (which is "mostly prime" connection between primes and number of groups?), but there are 1,774,274,116,992,170 groups of $|G| = 2048 = 2^{11}$.
- Conclusion: The arithmetic of |G| has an impact on the structure of G.