

Téoria obvodov

Semestrálny projekt

21. decembra 2014

Autor: Viktor Jančík, xjanci09@stud.fit.vutbr.cz

Fakulta Informačních Technologií Vysoké Učení Technické v Brně

Obsah

1	Príl	klad 1
	1.1	Zadanie
	1.2	Riešenie
	1.3	Výsledky
2	Príl	klad 2
	2.1	Zadanie
	2.2	Riešenie
	2.3	Výsledky
3	Príl	klad 3
	3.1	Zadanie
	3.2	Riešenie
	3.3	Výsledky
4	Príl	klad 4
	4.1	Zadanie
	4.2	Riešenie
	4.3	Výsledky
5	Príl	klad 5
	5.1	Zadanie
	5.2	Riešenie
	5.3	Výsledky
6	Príl	klad 6
	6.1	Zadanie
	6.2	Riešenie
	6.3	Výsledky

1 Príklad 1

1.1 Zadanie

Stanovte napätie U_{R7} a prúd I_{R7} . Použite metódu postupného zjednodušovania obvodu.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
D	105	420	980	330	280	310	710	240	200

1.2 Riešenie

Transformácia $R_2,\,R_3$ a R_4 na $R_{23},\,R_{24}$ a $R_{34}\colon$

$$R_{23} = \frac{R_2 * R_3}{R_2 + R_3 + R_4} \qquad R_{24} = \frac{R_2 * R_4}{R_2 + R_3 + R_4} \qquad R_{34} = \frac{R_3 * R_4}{R_2 + R_3 + R_4}$$

Spojenie R_5 a R_6 :

$$R_{5,6} = \frac{R_5 * R_6}{R_5 + R_6}$$

Celkový odpor obvodu:

$$R = R_1 + R_{23} + \frac{(R_{24} + R_{5,6}) * (R_{34} + R_7)}{R_{24} + R_{5,6} + R_{34} + R_7} + R_8$$

Celkový prúd v obvode:

$$I = \frac{U}{R}$$

Prúd na vetve s resistormi R_{34} a R_7 :

$$I_{R_7} = \frac{R_{24} + R_{5,6}}{R_{24} + R_{5,6} + R_{34} + R_7} * I$$

Napätie na resistore R_7 :

$$U_{R7} = I_{R_7} * R_7$$

1.3 Výsledky

$$I_{R_7} = 0.0599A$$
 $U_{R_7} = 14.3708V$

2 Príklad 2

2.1 Zadanie

Stanovte napätie U_{R3} a prúd I_{R3} . Použite metódu Theveninovej vety.

	sk.	U[V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
ſ	Α	50	525	620	210	530	130	150

2.2 Riešenie

Transformácia $R_1,\,R_4$ a R_6 na $R_{14},\,R_{16}$ a R_{46} :

$$R_{14} = \frac{R_1 * R_4}{R_1 + R_4 + R_6} \qquad R_{16} = \frac{R_1 * R_6}{R_1 + R_4 + R_6} \qquad R_{46} = \frac{R_4 * R_6}{R_1 + R_4 + R_6}$$

Theveninov ekvivalentný odpor na svorkách odporu R_3 :

$$R_i = R_{14} + \frac{(R_{16} + R_2) * (R_{46} + R_5)}{R_{16} + R_2 + R_{46} + R_5}$$

Celkový odpor obvodu bez odporu R_3 :

$$R = \frac{(R_1 + R_4) * (R_2 + R_5)}{R_1 + R_4 + R_2 + R_5} + R_6$$

Celkový prúd v obvode bez odporu R_3 :

$$I = \frac{U}{R}$$

Prúdy na vetvách s odpormi R_1 , R_4 a R_2 , R_5 :

$$I_{R_1,R_4} = \frac{U}{R_1 + R_4} \qquad I_{R_2,R_5} = \frac{U}{R_2 + R_5}$$

Theveninové ekvivalentné napätie obvodu na svorkách rezistora R_3 :

$$U_i = U_{R_2} - U_{R_1} = I_{R_2, R_5} * R_2 - I_{R_1, R_4} * R_1$$

Prúd, ktorý prechádza rezistorom R_3 :

$$I_{R3} = \frac{U_i}{R_i + R_3}$$

Napätie na rezistore R_3 :

$$U_{R3} = I_{R3} * R_3$$

2.3 Výsledky

$$I_{R3} = 0.0207A$$
 $U_{R3} = 4.3385V$

3 Príklad 3

3.1 Zadanie

Stanovte napätie U_{R5} a prúd I_{R5} . Použite metódu uzlových napätí $(U_A,\,U_B,\,U_C)$.

	sk.	U_1 [V]	U_2 [V]	I[A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
ſ	G	160	105	0.45	460	410	535	330	290	210

3.2 Riešenie

Rovnice pre uzly A, B a C (sústava troch rovníc s troma neznámymi):

$$A: \qquad \frac{U_1 - U_A}{R_1} = \frac{U_2}{R_2} + \frac{U_A - U_B}{R_3} + I$$

$$B: \qquad \frac{U_B - U_C}{R_5} = \frac{U_A - U_B}{R_3} + \frac{U_C + U_2 - U_B}{R_6} + I$$

$$C: \qquad \frac{U_B - U_C}{R_5} = \frac{U_C}{R_4} + \frac{U_C + U_2 - U_B}{R_6}$$

Napätie na rezistore R_5 :

$$U_{R5} = U_B - U_C$$

Prúd na rezistore R_5 :

$$I_{R5} = \frac{U_{R5}}{R_5}$$

3.3 Výsledky

$$U_{R5} = 86.7310V$$
 $I_{R5} = 0.2991A$

4 Príklad 4

4.1 Zadanie

Pre napájacie napätie platí: $u = U * sin(2\pi ft)$.

Vo vzťahu pre napätie $u_{L_2} = U_{L_2} * sin(2\pi ft + \varphi_{L_2})$ určte $|U_{L_2}|$ a φ_{L_2} . Použite metódu zjednodušovania obvodov.

Pozn: Pomocný "smer šípky napájacieho zdroja platí pre špeciálny časový okamih $(t = \frac{\pi}{2\omega})$."

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
D	50	190	180	220	420	270	120	205	90

4.2 Riešenie

Impedancia R_1 , R_2 , R_3 , L_1 , L_2 , C_1 a C_2 :

$$Z_{R1} = R_1 \quad Z_{R2} = R_2 \quad Z_{R2} = R_2$$

$$Z_{L1} = \omega L_1 j = 2\pi f L_1 j \quad Z_{L2} = \omega L_2 j = 2\pi f L_2 j \quad Z_{C1} = -\frac{1}{\omega C_1} j = -\frac{1}{2\pi f C_1} j \quad Z_{C2} = -\frac{1}{\omega C_2} j = -\frac{1}{2\pi f C_2} j$$

Celková impedancia obvodu:

$$Z = Z_{R1} + \frac{\frac{Z_{L2}(Z_{C2} + Z_{R3})}{Z_{L2} + Z_{C2} + Z_{R3}}(Z_{R2} + Z_{C1})}{\frac{Z_{L2}(Z_{C2} + Z_{R3})}{Z_{L2} + Z_{C2} + Z_{R3}} + Z_{R2} + ZC1} + Z_{L1}$$

Celkový prúd v obvode:

$$I = \frac{U}{Z}$$

Komplexné napätie U_{L2} :

$$U_{L2} = Z_{C1,C2,R2,R3,L2} * I = \frac{\frac{Z_{L2}(Z_{C2} + Z_{R3})}{Z_{L2} + Z_{C2} + Z_{R3}} (Z_{R2} + Z_{C1})}{\frac{Z_{L2}(Z_{C2} + Z_{R3})}{Z_{L2} + Z_{C2} + Z_{R3}} + Z_{R2} + ZC1} * I$$

Reálna amplitúda komplexného napätia U_{L2} :

$$|U_{L2}| = \sqrt[2]{Real(U_{L2})^2 + Imaginary(U_{L2})^2}$$

Fáza komplexného napätia U_{L2} :

$$\varphi_{L2} = arctan \frac{Imaginary(U_{L2})}{Real(U_{L2})}$$

4.3 Výsledky

$$|U_{L2}| = 11.1160V$$
 $\varphi_{L2} = -0.2848rad$

5 Príklad 5

5.1 Zadanie

Pre napájacie napätie platí: $u_1 = U_1 * sin(2\pi ft), \ u_2 = U_2 * sin(2\pi ft)$ Vo vzťahu pre napätie $u_{C_1} = U_{C_1} * sin(2\pi ft + \varphi_{C_1})$ určte $|U_{C_1}|$ a φ_{C_1} . Použite metódu "smyčkových" prúdov.

Pozn: Pomocný "smery šípkok napájacieho zdroja platí pre špeciálny časový okamih $(t = \frac{\pi}{2\omega})$."

	sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	L_1 [mH]	L_2 [mH]	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
ſ	Α	35	55	125	140	180	120	100	200	105	70

5.2 Riešenie

5.3 Výsledky

6 Príklad 6

6.1 Zadanie

Zostavte diferenciálnu rovnicu popisujúcu chovanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešenie $i_L = f(t)$. Vykonajte kontrolu výpočtov dosadením

do zostavenej diferenciálnej rovnice.

sk.	U [V]	L [H]	$R [\Omega]$	$i_L(0)$ [A]	
G	7	45	25	3	

- 6.2 Riešenie
- 6.3 Výsledky