第二章 导数与微分

大纲考试内容	大纲考试要求		
	数一	数二	数三
导数的概念及其可导性与连续性之间的关系	理解	理解	理解
基本初等函数的导数公式 导数的四则运算法则 复合函数的求导法则	掌握	掌握	掌握
高阶导数的概念 一阶微分形式的不变性	了解	身了解	了解
分段函数的导数 反函数与隐函数的导数 函数的微分 简单函数的高阶导数 平面曲线的切线方程与法线方程	会求	会求	会求
微分的概念、导数与微分之间的关系 导数的几何意义	理解	理解	理解
导数的物理意义 微分的四则运算法则	了解	了解	
由参数方程所确定的函数的导数	会求	会求	

o°考试内容概要。。。

一、导数与微分的概念

1. 导数的概念

定义(导数) 设函数 y = f(x) 在 x_0 的某邻域内有定义,如果极限

$$\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$$

存在,则称 f(x) 在点 x_0 处可导,并称此极限值为 f(x) 在点 x_0 处的导数,记为 $f'(x_0)$,或 $y'|_{x=x_0}$,或 $\frac{\mathrm{d}y}{\mathrm{d}x}|_{x=x_0}$. 如果上述极限不存在,则称 f(x) 在点 x_0 处不可导.

【注】 常用的导数定义的等价形式有:

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}, f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}.$$

定以(左导數) 设函数 y = f(x) 在点 x_0 及其某个左邻域内有定义,若左极限

$$\lim_{\Delta x \to 0^{-}} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^{-}} \frac{f(x) - f(x_0)}{x - x_0}$$

存在时,则称该极限值为 f(x) 在点 x_0 处的**左导数**,记为 $f'_{-}(x)$

定义(右导数) 设函数 y = f(x) 在点 x_0 及其某个右邻域内有定义,若右极限

$$\lim_{\Delta x \to 0^+} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0^+} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0}$$

存在时,则称该极限值为 f(x) 在点 x_0 处的**右导数**,记为 $f'_+(x_0)$.

函数 f(x) 在点 x_0 处可导的充分必要条件是它在该点处左导数与右导数都存在 且相等,

定义(区间上可导及导函数) 如果 y = f(x) 在开区间(a,b) 内每一点都可导,则称 f(x) 在区间(a,b) 内可导. 此时对于(a,b) 内的每一点 x,都对应一个导数值 f'(x),常称 f'(x) 为 f(x) 在(a,b) 内的导函数,简称为导数. 若 f(x) 在区间(a,b) 内可导,且 $f'_{+}(a)$ 和 $f'_{-}(b)$ 都存在,则称 f(x) 在区间[a,b] 上可导.

【例 I】 (1994,数三) 设
$$f(x) = \begin{cases} \frac{2}{3}x^3, & x \leq 1, \\ & \text{则 } f(x) \text{ 在 } x = 1 \text{ 处的} \end{cases}$$

(A) 左、右导数都存在,

- (B) 左导数存在但右导数不存在,
- (C) 左导数不存在但右导数存在. (D) 左、右导数都不存在,

【方法 1】
$$f'_{-}(1) = \lim_{x \to 1^{-}} \frac{\frac{2}{3}x^{3} - \frac{2}{3}}{x - 1} = \frac{2}{3} \lim_{x \to 1^{-}} \frac{(x - 1)(x^{2} + x + 1)}{x - 1} = 2,$$

$$f'_{+}(1) = \lim_{x \to 1^{-}} \frac{x^{2} - \frac{2}{3}}{x - 1} = \infty,$$

则左导数存在但右导数不存在,故应选(B).

【方法 2】
$$f'_{-}(1) = \left(\frac{2}{3}x^{3}\right)'\Big|_{x=1} = 2x^{2}\Big|_{x=1} = 2,$$

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{2} = 1,$$

$$f(1) = \frac{2}{3}, \lim_{x \to 1^{+}} f(x) \neq f(1),$$

即 f(x) 在 x=1 处非右连续,则右导数不存在,故应选(B).

【注】 一种经典错误是: $f'_{+}(1) = (x^2)'|_{x=1} = 2x|_{x=1} = 2$. 错误的原因是 $f(1) \neq 0$ $x^2\Big|_{x=1}$

【例 2】 (1990,数四、五)设函数 f(x) 对任意 x 均满足等式 f(1+x) = af(x),且有 f'(0) = b,其中 a,b 为非零常数,则

$$(A) f(x)$$
 在 $x = 1$ 处不可导.

(B)
$$f(x)$$
 在 $x = 1$ 处可导,且 $f'(1) = a$.

(C)
$$f(x)$$
 在 $x = 1$ 处可导,且 $f'(1) = b$. (D) $f(x)$ 在 $x = 1$ 处可导,且 $f'(1) = ab$.

有料

由导数定义知

$$f'(1) = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{af(\Delta x) - af(0)}{\Delta x}$$

$$= a \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x}$$

$$= af'(0) = ab$$

故应选(D).

2. 微分的概念

定义 (**徽分**) 设函数 y = f(x) 在点 x_0 的某一邻域内有定义,如果函数的增量 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ 可以表示为

$$\Delta y = A \Delta x + o(\Delta x), (\Delta x \rightarrow 0),$$

其中 A 为不依赖于 Δx 的常数,则称函数 f(x) **在点** x_0 **处可微**,称 $A\Delta x$ 为函数 f(x) 在点 x_0 处相应于自变量增量 Δx 的微分,记为 $\mathrm{d} y = A\Delta x$.

定理 函数 y = f(x) 在点 x_0 处可微的充分必要条件是 f(x) 在点 x_0 处可导,且有

$$dy = f'(x_0) \Delta x = f'(x_0) dx$$

在点 x 处,常记 dy = f'(x)dx.

【例 3】 (1988,数一、二、三) 若函数 y = f(x) 有 $f'(x_0) = \frac{1}{2}$,则当 $\Delta x \to 0$ 时,该函数

在 $x = x_0$ 处的微分 dy 是

- (A) 与 Δx 等价的无穷小,
- (B) 与 Δx 同阶的无穷小.
- (C) 比 Δx 低阶的无穷小.
- (D) 比 Δx 高阶的无穷小.

3. 导数与微分的几何意义

导数的几何意义

导数 $f'(x_0)$ 在几何上表示曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处切线的斜率.

如果函数 f(x) 在点 x_0 处可导,则曲线 y = f(x) 在点(x_0 , $f(x_0)$) 处必有切线,其切线方程为

$$y-f(x_0)=f'(x_0)(x-x_0).$$

如果 $f'(x_0) \neq 0$,则此曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的法线方程为

$$y-f(x_0) = -\frac{1}{f'(x_0)}(x-x_0).$$

如果 $f'(x_0) = 0$,则曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处的切线方程为 $y = f(x_0)$,即曲线 在点 $(x_0, f(x_0))$ 处有水平切线.

【注】 若函数 f(x) 在 $x = x_0$ 处可导,则曲线 y = f(x) 在点 $(x_0, f(x_0))$ 处有切线,反之则不然. 例如曲线 $y = x^{\frac{1}{3}}$ 在点(0,0) 处有切线 x = 0(y h),但函数 $f(x) = x^{\frac{1}{3}}$ 在 x = 0 处不可导 $(f'(0) = \infty)$.

微分的几何意义

微分 $dy = f'(x_0)dx$ 在几何上表示曲线 y = f(x) 的切线上的增量.

 $\Delta y = f(x_0 + \Delta x) - f(x_0)$ 在几何上表示曲线 y = f(x) 上的增量.

 $\Delta y \approx \mathrm{d} y$.

【例 4】 (2004,数一) 曲线 $y = \ln x$ 上与直线 x + y = 1 垂直的切线方程为_____.

直线 x+y=1 的斜率为 -1, 曲线 $y=\ln x$ 在点 $(x,\ln x)$ 处切线斜率为

$$k_{\mathfrak{W}} = (\ln x)' = \frac{1}{r}.$$

由题设知

$$\frac{1}{x}=1,$$

则 x = 1,在该点处切线方程为

$$v - \ln 1 = 1 \cdot (x - 1)$$

即 y = x - 1.

4. 连续、可导、可微之间的关系

【例 5】 (2020,数一)设函数 f(x) 在(-1,1)上有定义,且 $\lim_{x\to 0} f(x) = 0$,则

(A) 当
$$\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = 0$$
 时, $f(x)$ 在 $x = 0$ 处可导.

(C) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{\sqrt{|x|}} = 0$.

(D) 当
$$f(x)$$
 在 $x = 0$ 处可导时, $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$.

介

【方法!】 直接法

由 f(x) 在 x = 0 处可导知, f(x) 在该点连续,则

$$\lim_{x \to 0} f(x) = f(0) = 0, \lim_{x \to 0} \frac{f(x)}{x} = f'(0),$$

则
$$\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = \lim_{x\to 0} \frac{f(x)}{x} \cdot \lim_{x\to 0} \frac{x}{\sqrt{|x|}} = f'(0) \cdot 0 = 0.$$
 故应选(C).

【方法 2】 排除法

$$\lim_{x\to 0} \frac{f(x)}{\sqrt{|x|}} = \lim_{x\to 0} \frac{x^3}{\sqrt{|x|}} = 0,$$

$$\lim_{x\to 0}\frac{f(x)}{x^2}=\lim_{x\to 0}\frac{x^3}{x^2}=0\,,$$

但 f(x) 在 x = 0 处不可导,因为 f(x) 在 x = 0 处不连续,则排除选项(A)(B).

若令 f(x) = x,显然有 $\lim_{x\to 0} f(x) = 0$,且 f(x) 在 x = 0 处可导,但

$$\lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{x}{x^2} = \infty \neq 0,$$

则排除(D)选项,故应选(C).

二、导数公式及求导法则

1. 基本初等函数的导数公式

$$(1)(C)' = 0;$$

$$(2)(x^{\alpha})' = \alpha x^{\alpha-1};$$

$$(3)(a^x)' = a^x \ln a;$$

$$(4)(e^{x})' = e^{x}$$
:

$$(5)(\log_a x)' = \frac{1}{x \ln a};$$

(6)
$$(\ln |x|)' = \frac{1}{r};$$

$$(7)(\sin x)' = \cos x;$$

$$(8)(\cos x)' = -\sin x;$$

$$(9)(\tan x)' = \sec^2 x;$$

$$(10)(\cot x)' = -\csc^2 x;$$

$$(11)(\sec x)' = \sec x \tan x;$$

$$(12)(\csc x)' = -\csc x \cot x;$$

$$(13)(\arcsin x)' = \frac{1}{\sqrt{1-x^2}};$$

(14)(arccos
$$x$$
)' = $-\frac{1}{\sqrt{1-x^2}}$;

(15)(arctan
$$x$$
)' = $\frac{1}{1+x^2}$;

(16)(arccot
$$x$$
)' = $-\frac{1}{1+x^2}$.

2. 求导法则

有理运算法则

设u = u(x), v = v(x)在x处可导,则

$$(1)(u \pm v)' = u' \pm v';$$

$$(2)(uv)' = u'v + uv';$$

$$(3)\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2} \quad (v \neq 0).$$

复合函数求导法

设 $u = \varphi(x)$ 在 x 处可导,y = f(u) 在对应点处可导,则复合函数 $y = f[\varphi(x)]$ 在 x 处可导,且 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}u} \cdot \frac{\mathrm{d}u}{\mathrm{d}x} = f'(u)\varphi'(x)$.

【例 6】 (1995,数二)设
$$y = \cos(x^2) \sin^2 \frac{1}{x}$$
,则 $y' =$ _____.

$$[-2x\sin(x^2)\cdot\sin^2\frac{1}{x}-\frac{1}{x^2}\sin\frac{2}{x}\cdot\cos(x^2)]$$

【例7】 设函数 f(x) 可导,试证

- (1) 若 f(x) 是奇函数,则 f'(x) 是偶函数;
- (2) 若 f(x) 是偶函数,则 f'(x) 是奇函数;
- (3) 若 f(x) 是周期函数,则 f'(x) 也是周期函数.

(1) 由于 f(x) 是奇函数,则

$$f(-x) = -f(x).$$

由于 f(x) 可导,上式两端对 x 求导得

$$f'(-x) \cdot (-1) = -f'(x)$$
,

即 f'(-x) = f'(x),故 f'(x) 为偶函数.

同理可证(2)和(3).

【例 8】 (2022, 数三) 已知函数 $f(x) = e^{\sin x} + e^{-\sin x}$,则 $f''(2\pi) =$.

(0)

隐函数求导法

设 y = y(x) 是由方程 F(x,y) = 0 所确定的可导函数,为求得 y',可在方程 F(x,y) = 0 两边对 x 求导,可得到一个含有 y' 的方程,从中解出 y' 即可.

【注】 y' 也可由多元函数微分法中的隐函数求导公式 $\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F'_x}{F'_y}$ 得到.

【例 9】 (1993,数三)函数 y = y(x) 由方程 $\sin(x^2 + y^2) + e^x - xy^2 = 0$ 所确定,则 $\frac{dy}{dx} = xy^2 = 0$

$$\left[\frac{y^2 - e^x - 2x\cos(x^2 + y^2)}{2y\cos(x^2 + y^2) - 2xy}\right]$$

反函数的导数

若 y = f(x) 在某区间内单调可导,且 $f'(x) \neq 0$,则其反函数 $x = \varphi(y)$ 在对应区间内也可导,且

$$\varphi'(y) = \frac{1}{f'(x)}, \quad \emptyset \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{\frac{\mathrm{d}y}{\mathrm{d}x}}.$$

[例 10] 证明(
$$\arcsin x$$
)' = $\frac{1}{\sqrt{1-x^2}}$.

参数方程求导法

设
$$y = y(x)$$
 是由参数方程
$$\begin{cases} x = \varphi(t), \\ y = \psi(t), \end{cases} (\alpha < t < \beta)$$
 确定的函数,则

(1) 若 $\varphi(t)$ 和 $\psi(t)$ 都可导,且 $\varphi'(t) \neq 0$,则

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\psi'(t)}{\varphi'(t)}.$$

(2) 若 $\varphi(t)$ 和 $\psi(t)$ 二阶可导,且 $\varphi'(t) \neq 0$,则

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = \frac{\mathrm{d}}{\mathrm{d} t} \left(\frac{\psi'(t)}{\varphi'(t)} \right) \cdot \frac{1}{\varphi'(t)} = \frac{\psi''(t) \varphi'(t) - \varphi''(t) \psi'(t)}{\varphi'^3(t)}.$$

【例 11】 (2020,数一)设
$$\begin{cases} x = \sqrt{t^2 + 1}, \\ y = \ln(t + \sqrt{t^2 + 1}), \end{bmatrix} \frac{d^2 y}{dx^2} \Big|_{t=1} = \underline{\hspace{1cm}}.$$

 $[-\sqrt{2}]$

对数求导法

如果 y = y(x) 的表达式由多个因式的乘除、乘幂构成,或是幂指函数的形式,则可先将函数取对数,然后两边对 x 求导.

【例 12】 (2005, 数二)设 $y = (1 + \sin x)^x$,则 $dy|_{x=x} =$ ______.

 $(-\pi dx)$

【例 13】 设
$$y = \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}}$$
,求 y' .

$$\mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-3)(x-4)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-2)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-2)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-2)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{2} \sqrt{\frac{(x-1)(x-2)}{(x-2)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{x-2} \sqrt{\frac{(x-1)(x-2)}{(x-2)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{x-2} \sqrt{\frac{(x-1)(x-2)}{(x-1)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{x-2} \sqrt{\frac{(x-1)(x-2)}{(x-1)}} \left(\frac{1}{x-1} + \frac{1}{x-2} - \frac{1}{x-3} - \frac{1}{x-4} \right) \mathbf{T}y' = \frac{1}{x-2} \sqrt{\frac{(x-1)(x-2)}{(x-1)}} + \frac{1}{x-2} \sqrt{\frac{(x-1)(x-2)}{(x-1)}} \right) \mathbf{T}y' = \frac{1}{x-2} \sqrt{\frac{(x-1)(x-2)}{(x-1)}} + \frac{1}{x-2} \sqrt{\frac{$$

三、高阶导数

1. 高阶导数的概念

定头(**高阶导数**) 如果 y' = f'(x) 作为 x 的函数在点 x 可导,则称 y' 的导数为 y = f(x) 的二**阶导数**,记为 y'',或 f''(x),或 $\frac{d^2y}{dx^2}$.

一般地,函数 y=f(x) 的 n 阶导数为 $y^{(n)}=[f^{(n-1)}(x)]'$,也可记为 $f^{(n)}(x)$ 或 $\frac{\mathrm{d}^n y}{\mathrm{d}x^n}$. 即 n 阶导数就是 n-1 阶导函数的导数,

$$f^{(n)}(x_0) = \lim_{\Delta x \to 0} \frac{f^{(n-1)}(x_0 + \Delta x) - f^{(n-1)}(x_0)}{\Delta x}$$
$$= \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}.$$

【注】 如果函数 f(x) 在点 x 处 n 阶可导,则在点 x 的某邻域内 f(x) 必定具有一切低于 n 阶的导数.

2. 常用的高阶导数公式

$$(1) (\sin x)^{(n)} = \sin\left(x + n \cdot \frac{\pi}{2}\right);$$

(2)
$$(\cos x)^{(n)} = \cos(x + n \cdot \frac{\pi}{2});$$

(3)
$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$
;

(4)
$$(uv)^{(n)} = \sum_{k=0}^{n} C_{n}^{k} u^{(k)} v^{(n-k)}$$
.

【例 14】 设 $y = \sin 3x$, 求 $y^{(n)}$.

$$\Rightarrow 3x = u, \text{ } \text{ } \text{ } y = \sin u,$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \frac{dy}{du} \cdot 3,$$

$$\frac{d^2y}{dx^2} = \frac{d^2y}{du^2} \cdot \frac{du}{dx} \cdot 3 = \frac{d^2y}{du^2} \cdot 3^2$$

$$= \sin\left(u + 2 \cdot \frac{\pi}{2}\right) \cdot 3^2$$

$$= 3^2 \sin\left(3x + 2 \cdot \frac{\pi}{2}\right),$$

归纳法可知

$$y^{(n)} = 3^n \sin\left(3x + n \cdot \frac{\pi}{2}\right).$$

【例 15】 设 $y = x^2 \cos x$, 求 $y^{(n)}$.

。 常考题型与典型例题

常考题型

- 1. 导数定义
- 2. 复合函数、隐函数、参数方程求导
- 3. 高阶导数
- 4. 导数应用

一、导数定义

【例 16】 (1994,数三)已知
$$f'(x_0) = -1$$
,则 $\lim_{x \to 0} \frac{x}{f(x_0 - 2x) - f(x_0 - x)} = \underline{\hspace{1cm}}$.

【方法 1】 由
$$f'(x_0) = -1$$
 知

$$\lim_{x \to 0} \frac{f(x_0 - 2x) - f(x_0 - x)}{x} = -2 \lim_{x \to 0} \frac{f(x_0 - 2x) - f(x_0)}{-2x} + \lim_{x \to 0} \frac{f(x_0 - x) - f(x_0)}{-x}$$

$$= -2f'(x_0) + f'(x_0)$$

$$= -f'(x_0) = 1,$$

$$\iiint_{x\to 0} \frac{x}{f(x_0-2x)-f(x_0-x)}=1.$$

$$f'(x_0) = -1,$$

$$\iiint_{x\to 0} \frac{x}{f(x_0-2x)-f(x_0-x)} = \lim_{x\to 0} \frac{x}{-(x_0-2x)+(x_0-x)} = \lim_{x\to 0} \frac{x}{x} = 1.$$

【例 17】 (2011,数二、三)设函数 f(x) 在 x = 0 处可导,且 f(0) = 0,则 $\lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3} =$ (A) -2f'(0). (B) -f'(0). (C) f'(0).

A)
$$-2f'(0)$$
. (B) $-f'$

【方法 1】 直接法 由题设知 $f'(0) = \lim_{x \to 0} \frac{f(x)}{x}$,则

$$\lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3} = \lim_{x \to 0} \frac{f(x)}{x} - 2 \lim_{x \to 0} \frac{f(x^3)}{x^3}$$
$$= f'(0) - 2f'(0) = -f'(0).$$

故应选(B).

【方法2】 排除法

令
$$f(x) = x$$
,显然 $f(0) = 0$, $f'(0) = 1$,此时

$$\lim_{x \to 0} \frac{x^2 f(x) - 2f(x^3)}{x^3} = \lim_{x \to 0} \frac{x^3 - 2x^3}{x^3} = -1.$$

由此可知,选项(A)(C)(D)都不正确,故选(B).

【例 18】 (2013, 数一)设函数 y = f(x) 由方程 $y - x = e^{r(1-y)}$ 确定,则 $\lim_{n \to \infty} \left[f\left(\frac{1}{n}\right) - 1 \right] =$

[1]

【例 19】 (2018, 数一、二、三)下列函数中, 在x = 0处不可导的是

$$(A) f(x) = |x| \sin |x|.$$

(B)
$$f(x) = |x| \sin \sqrt{|x|}$$
.

$$(C) f(x) = \cos |x|.$$

(D)
$$f(x) = \cos \sqrt{|x|}$$
.

【方法1】 直接法

若 $f(x) = \cos \sqrt{|x|}$,则由导数定义知

$$f'(0) = \lim_{x \to 0} \frac{\cos \sqrt{|x|} - 1}{x} = \lim_{x \to 0} \frac{-\frac{1}{2} (\sqrt{|x|})^2}{x} = \lim_{x \to 0} \frac{-\frac{1}{2} |x|}{x},$$

该极限不存在,则 $f(x) = \cos \sqrt{|x|}$ 在 x = 0 处不可导,故应选(D).

【方法2】 排除法

若 $f(x) = |x| \sin |x|$,则由导数定义得

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{|x| \sin |x|}{x}$$

当 $x \to 0$ 时, $\sin |x|$ 为无穷小, $\frac{|x|}{x}$ 有界,则 $\lim_{x \to 0} \frac{|x|\sin |x|}{x} = 0$,即 f'(0) =

0,则排除(A).同理排除(B).

若 $f(x) = \cos |x|$,由于 $\cos |x| = \cos x$,则 f'(0) 存在,从而排除(C). 故应选(D).

【例 20】 (1989, 数三)设 f(x) 在 x = a 的某个邻域内有定义,则 f(x) 在 x = a 处可导 的一个充分条件是

- (A) $\lim_{h\to+\infty} h \left[f\left(a+\frac{1}{h}\right) f(a) \right]$ 存在. (B) $\lim_{n\to0} \frac{f(a+2h) f(a+h)}{n}$ 存在.
- (C) $\lim_{h\to 0} \frac{f(a+h)-f(a-h)}{2h}$ 存在. (D) $\lim_{h\to 0} \frac{f(a)-f(a-h)}{h}$ 存在.

(D)

二、复合函数、隐函数、参数方程求导

【例 21】 (1993, 数三) 设 $y = \sin[f(x^2)]$, 其中 f 具有二阶导数, 求 $\frac{d^2y}{dx^2}$.

$$[2f'(x^2)\cos[f(x^2)] + 4x^2\{f''(x^2)\cos[f(x^2)] - [f'(x^2)]^2\sin[f(x^2)]\}$$

【例 22】 (2022,数二)已知函数 y = y(x) 由方程 $x^2 + xy + y^3 = 3$ 确定,则 y''(1) =

 $[-\frac{31}{32}]$

【例 23】 (2021,数一、二) 设函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = 2e^t + t + 1, \\ y = 4(t-1)e^t + t^2 \end{cases}$$
 确定,则
$$\frac{d^2y}{dx^2}\Big|_{t=0} = \underline{\qquad}.$$

 $[\frac{2}{3}]$

三、高阶导数

【例 24】 (2007,数二、三)设函数 $y = \frac{1}{2x+3}$,则 $y^{(n)}(0) = _____$

1

【方法1】 归纳法

$$y = \frac{1}{2x+3} = (2x+3)^{-1},$$

$$y' = (-1)(2x+3)^{-2} \cdot 2,$$

$$y'' = (-1)(-2)(2x+3)^{-3} \cdot 2^{2},$$

由此归纳得

$$y^{(n)} = (-1)(-2)\cdots(-n)(2x+3)^{-(n+1)} \cdot 2^n$$

$$= (-1)^n n! 2^n (2x+3)^{-(n+1)},$$

$$y^{(n)}(0) = \frac{(-1)^n 2^n n!}{3^{n+1}}.$$

【方法2】 泰勒公式

$$\frac{1}{1+x} = 1 - x + x^{2} + \dots + (-1)^{n} x^{n} + o(x^{n}),$$

$$y = \frac{1}{2x+3} = \frac{1}{3} \frac{1}{1+\frac{2}{3}x}$$

$$= \frac{1}{3} \left[1 - \frac{2}{3}x + \dots + (-1)^{n} \left(\frac{2}{3}x \right)^{n} \right] + o(x^{n})$$

$$= \frac{1}{3} - \frac{2}{3^{2}}x + \dots + \frac{(-1)^{n} 2^{n}}{3^{n+1}}x^{n} + o(x^{n}),$$

$$\mathfrak{M}\frac{y^{(n)}(0)}{n!}=\frac{(-1)^n2^n}{3^{n+1}},y^{(n)}(0)=\frac{(-1)^n2^nn!}{3^{n+1}}.$$

【例 25】 (2015,数二) 函数 $f(x) = x^2 2^x$ 在 x = 0 处的 n 阶导数 $f^{(n)}(0) =$ ______

【方法1】 公式法

令 $u = x^2, v = 2^r$,由公式

$$(uv)^{(n)} = \sum_{k=0}^{n} C_n^k u^{(k)} v^{(n-k)},$$

而
$$u(0) = 0, u'(0) = 0, u''(0) = 2, u'''(0) = 0, 则 f^{(n)}(0) = C_n^2 u''(0) v^{n-2}(0).$$

$$v = 2^x, v' = 2^x \ln 2, v'' = 2^x (\ln 2)^2,$$

$$v^{(n-2)} = 2^x (\ln 2)^{n-2},$$

$$v^{(n-2)}(0) = (\ln 2)^{n-2}.$$

$$f^{(n)}(0) = \frac{n(n-1)}{2!} \cdot 2 \cdot (\ln 2)^{n-2}$$
$$= n(n-1)(\ln 2)^{n-2}.$$

【方法2】 泰勒公式

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + o(x^{n}),$$

$$f(x) = x^{2} 2^{z} = x^{2} e^{x \ln 2}$$

$$= x^{2} \left[1 + x \ln 2 + \frac{(\ln 2)^{2}}{2!} x^{2} + \dots + \frac{(\ln 2)^{n}}{n!} x^{n} + o(x^{n}) \right]$$

$$= x^{2} + x^{3} \ln 2 + \frac{(\ln 2)^{2}}{2!} x^{4} + \dots + \frac{(\ln 2)^{n}}{n!} x^{n+2} + o(x^{n+2}),$$

$$\iiint \frac{f^{(n)}(0)}{n!} = \frac{(\ln 2)^{n-2}}{(n-2)!}, f^{(n)}(0) = \frac{n! (\ln 2)^{n-2}}{(n-2)!} = n(n-1) (\ln 2)^{n-2}.$$

四、导数应用

1. 导数的几何意义

【例 26】 (2011,数三) 曲线
$$\tan\left(x+y+\frac{\pi}{4}\right)=e^y$$
 在点(0,0) 处的切线方程为_____.

$$[y = -2x]$$

【例 27】 (2013, 数二) 曲线
$$\begin{cases} x = \arctan t, \\ y = \ln \sqrt{1+t^2} \end{cases}$$
上对应于 $t = 1$ 的点处的法线方程为

$$[x + y = \frac{\pi}{4} + \frac{1}{2} \ln 2]$$

【例 28】 (1997, 数一) 对数螺线 $r = e^{\theta}$ 在点 $(r, \theta) = \left(e^{\frac{\pi}{2}}, \frac{\pi}{2}\right)$ 处的切线的直角坐标方程为______.

 $[x+y=e^{\frac{\pi}{2}}]$

2. 相关变化率(数三不要求)

【例 29】(2016, 数二)已知动点 P 在曲线 $y=x^3$ 上运动,记坐标原点与点 P 间的距离为 l. 若点 P 的横坐标对时间的变化率为常数 v_0 ,则当点 P 运动到点(1,1) 时,l 对时间的变化率是_____.

解

由题设知

$$l=\sqrt{x^2+x^6},$$

 $|||| || t^2 = x^2 + x^6,$

上式两端对t求导得

$$2l\,\frac{\mathrm{d}l}{\mathrm{d}t}=(2x+6x^5)\,\frac{\mathrm{d}x}{\mathrm{d}t}.$$

$$\Leftrightarrow x = 1, \text{ M } 2\sqrt{2} \frac{\mathrm{d}l}{\mathrm{d}t} = 8v.$$

$$\frac{\mathrm{d}l}{\mathrm{d}t} = \frac{8}{2\sqrt{2}}v_0 = 2\sqrt{2}v_0.$$