Ядро Квайна – это импликанты, не подлежащие исключению.

Простые	Конституенты					
импликанты	1000	1001	1010	1101	1111	
10-0	+		+			
100-	+	+				
1-01		+		+		
11-1				+	+	

Найдём в импликантной таблице столбцы, которые имеют один плюс. Соответствующие им простые импликанты называются *базисными*, и они составляют *ядро Квайна*. Ядро Квайна будет входить в минимальную тупиковую НФК. Отметим в таблице ядро, закрасив соответствующие столбцы и ряды.

Простые	Конституенты				
импликанты	1000	1001	1010	1101	1111
10-0	+		+		
100-	+	+			
1-01		+		+	
11-1				+	+

Теперь осталось выбрать простую импликанту, покрывающую оставшиеся столбцы. В данном случае это может быть импликанта 100- или 1-01. Для вычисления второй требуется меньше операций, поэтому возьмём её. Таким образом нам пришлось выбирать не из 4, а из 2 простых импликант. Кроме того, мы сразу получили готовую комбинацию импликант.

 $a\cap c\cap d=A\cap \bar{B}\cap \bar{D}\cup A\cap \bar{C}\cap D\cup A\cap B\cap D$

Простые	Конституенты				
импликанты	1000	1001	1010	1101	1111
10-0	+		+		
100-	+	+			
1-01		+		+	
11-1				+	+