

Ликбез по линейной алгебре

Векторы

- операции над векторами
- линейные подпространства и линейная оболочка
- линейная независимость и базис

Вектор

Определение. Вектором в n-мерном евклидовом пространстве \mathbb{R}^n называется упорядоченный набор чисел $x = (x_1, x_2, \dots, x_n)$ — собственно, элемент пространства \mathbb{R}^n .

Вектор

Определение. Вектором в n-мерном евклидовом пространстве \mathbb{R}^n называется упорядоченный набор чисел $x = (x_1, x_2, \dots, x_n)$ — собственно, элемент пространства \mathbb{R}^n .

Часто вектор удобнее записывать в столбец:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

Векторы на плоскости и в пространстве

Сложение и умножение на скаляр

Наблюдение. Векторы можно складывать и умножать на скаляр (число). Результат будет вектором, элементы которого суть результаты поэлементного применения операции.

Сложение и умножение на скаляр

Наблюдение. Векторы можно складывать и умножать на скаляр (число). Результат будет вектором, элементы которого суть результаты поэлементного применения операции.

Пример.

$$3 \begin{pmatrix} 2 \\ -\frac{1}{2} \\ 4 \end{pmatrix} + 2 \begin{pmatrix} -1 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 4 \\ -\frac{3}{2} \\ 16 \end{pmatrix}$$

Геометрия векторных операций

Линейные подпространства

- Векторное пространство \mathbb{R}^n замкнуто относительно операций сложения и умножения на скаляр
- Обобщим это наблюдение

Линейные подпространства

- Векторное пространство \mathbb{R}^n замкнуто относительно операций сложения и умножения на скаляр
- Обобщим это наблюдение

Определение. Линейным (или векторным) подпространством векторного пространства \mathscr{L} называется множество векторов $\mathscr{M} \subset \mathscr{L}$, замкнутое относительно операций сложения и умножения на скаляр.

Линейная оболочка

Определение. Линейной оболочкой векторов v_1, v_2, \ldots, v_n называется множество всех линейных комбинаций этих векторов с произвольными коэффициентами:

$$\mathscr{M} = \langle v_1, v_2, \dots, v_n \rangle = \{ \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \mid \alpha_i \in \mathbb{R} \}$$

Линейная оболочка

Определение. Линейной оболочкой векторов v_1, v_2, \ldots, v_n называется множество всех линейных комбинаций этих векторов с произвольными коэффициентами:

$$\mathcal{M} = \langle v_1, v_2, \dots, v_n \rangle = \{ \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \mid \alpha_i \in \mathbb{R} \}$$

Утверждение. Линейная оболочка произвольного числа векторов является линейным подпространством в \mathbb{R}^n .

Линейная оболочка

Определение. Линейной оболочкой векторов v_1, v_2, \ldots, v_n называется множество всех линейных комбинаций этих векторов с произвольными коэффициентами:

$$\mathcal{M} = \langle v_1, v_2, \dots, v_n \rangle = \{ \alpha_1 v_1 + \alpha_2 v_2 + \dots + \alpha_n v_n \mid \alpha_i \in \mathbb{R} \}$$

Утверждение. Линейная оболочка произвольного числа векторов является линейным подпространством в \mathbb{R}^n .

Пример. На данной картинке $\langle x, y \rangle$ — плоскость

Линейная независимость

Определение. Векторы v_1, v_2, \ldots, v_n называются линейно независимыми, если никакая нетривиальная линейная комбинация этих векторов не равна нуль-вектору. Иными словами, для любых $\alpha_i \in \mathbb{R}$, не все из которых нулевые, выполняется

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \neq 0$$

Линейная независимость

Определение. Векторы v_1, v_2, \dots, v_n называются

линейно независимыми, если никакая нетривиальная линейная комбинация этих векторов не равна нуль-вектору. Иными словами, для любых $\alpha_i \in \mathbb{R}$, не все из которых нулевые, выполняется

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \neq \overline{0}$$

Пример.

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Линейная независимость

Определение. Векторы v_1, v_2, \ldots, v_n называются линейно независимыми, если никакая нетривиальная линейная комбинация этих векторов не равна нуль-вектору. Иными словами, для любых $\alpha_i \in \mathbb{R}$, не все из которых нулевые, выполняется

$$\alpha_1 v_1 + \alpha_2 v_2 + \ldots + \alpha_n v_n \neq 0$$

Пример.

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Доказательство ЛНЗ. $\alpha_1e_1 + \alpha_2e_2 + \alpha_3e_3 = 0 \Rightarrow \alpha_i = 0$

Определение. Пусть *M* — линейное подпространство.

 $\mathit{Базисом}$ в \mathscr{M} называется минимальная система векторов v_1, v_2, \dots, v_n , для которой $\mathscr{M} = \langle v_1, v_2, \dots, v_n \rangle$.

Определение. Пусть \mathcal{M} — линейное подпространство.

 $\mathit{Базисом}$ в \mathscr{M} называется минимальная система векторов v_1, v_2, \dots, v_n , для которой $\mathscr{M} = \langle v_1, v_2, \dots, v_n \rangle$.

 Π ример. $\mathscr{M} = \mathbb{R}^3$

$$e_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$
 — базис

Определение. Пусть \mathscr{M} — линейное подпространство.

 $\mathit{Базисом}$ в \mathscr{M} называется минимальная система векторов $v_1,v_2,\ldots,v_n,$ для которой $\mathscr{M}=\langle v_1,v_2,\ldots,v_n\rangle$.

Свойства базиса

- Базис является ЛНЗ системой
- Векторы из *М* выражается через базис единственным способом
- Любую ЛНЗ систему можно дополнить до базиса
- В любой системе образующих можно выбрать базис
- Любые два базиса равномощны

Определение. Пусть \mathscr{M} — линейное подпространство. $\mathit{Базисом}$ в \mathscr{M} называется минимальная система векторов v_1, v_2, \ldots, v_n , для которой $\mathscr{M} = \langle v_1, v_2, \ldots, v_n \rangle$.

Свойства базиса

- Базис является ЛНЗ системой
- Векторы из *М* выражается через базис единственным способом
- Любую ЛНЗ систему можно дополнить до базиса
- В любой системе образующих можно выбрать базис
- Любые два базиса равномощны

Последнее свойство свидетельствует о корректности определения размерности линейного пространства как размера базиса в этом линейном пространстве.

Теорема. n+1 векторов в n-мерном пространстве всегда линейно зависимы.

Доказательство.

Теорема. n+1 векторов в n-мерном пространстве всегда линейно зависимы.

Доказательство. От противного.

Теорема. n+1 векторов в n-мерном пространстве всегда линейно зависимы.

Доказательство. От противного. Они линейно независимы

Теорема. n+1 векторов в n-мерном пространстве всегда линейно зависимы.

Доказательство. От противного. Они линейно независимы → можно дополнить до базиса

Теорема. n+1 векторов в n-мерном пространстве всегда линейно зависимы.

 $3a\partial aua$ 1. Доказать, что следующие вектора ЛНЗ:

$$a = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix}, c = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 2 \end{pmatrix}, d = \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix}$$

 $3a\partial aua$ 2. Найти базис в пространстве

$$\mathscr{M} = \{(x, y, z, t) : x + 2y - 3z + t = 0\}$$

$$3a\partial aua\ 3$$
. Выразить вектор $\begin{pmatrix} 3 \\ 2 \\ 2 \\ 1 \end{pmatrix}$ через базисные вектора, найденные в задаче 2

Задача 1. Доказать, что следующие вектора ЛНЗ:

$$a = \begin{pmatrix} 3 \\ -1 \\ 0 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 0 \end{pmatrix},$$
$$c = \begin{pmatrix} 2 \\ 0 \\ 1 \\ 2 \end{pmatrix}, d = \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix}$$

Задача 2 Найти базис в пространстве

$$\mathcal{M} = \{(x, y, z, t) :$$

$$x + 2y - 3z + t = 0\}$$

Задача З

Выразить вектор
$$\begin{pmatrix} 3 \\ 2 \\ 2 \\ -1 \end{pmatrix}$$

через базисные вектора, найденные в задаче 2

Резюме

- Вектор удобная форма представления различных математических объектов
- Линейное пространство множество векторов, замкнутое относительно сложения и умножения на скаляр
- ullet Базис универсальный способ описания линейных подпространств в \mathbb{R}^n
- Размер базиса, или размерность пространства, является важной характеристикой ЛП

Матрицы

- определение
- (не)вырожденность и ранг
- умножение матрицы на вектор и матричный вид СЛУ
- пример: линейная регрессия

Матрицы

Определение. $Матрицей размера <math>m \times n$ называется прямоугольная таблица с числами из m строк и n столбцов:

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}$$

Матрицы

Определение. Mampuyeŭ pasmepa $m \times n$ называется прямоугольная таблица с числами из m строк и n столбцов:

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}$$

Удобно представлять матрицу как совокупность из n векторов-столбцов, записанных в строчку:

$$(x_{*1}, x_{*2}, \dots, x_{*n})$$

Вырожденная матрица

Определение. Квадратная матрица называется (не)вырожденной, если её строки линейно (не)зависимы.

Пример.

$$\begin{pmatrix} 1 & 3 & -1 \\ 0 & -2 & 0 \\ 2 & 4 & -2 \end{pmatrix} \qquad \begin{pmatrix} 3 & -1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & -1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 3 & -1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & -1 & -1 \end{pmatrix}$$

Вырожденная матрица

Определение. Квадратная матрица называется *(не)вырожденной*, если её строки линейно (не)зависимы.

Пример.

$$\begin{pmatrix} 1 & 3 & -1 \\ 0 & -2 & 0 \\ 2 & 4 & -2 \end{pmatrix} \qquad \begin{pmatrix} 3 & -1 & 0 & 1 \\ 0 & 1 & 2 & 0 \\ 2 & 0 & 1 & 2 \\ 1 & 0 & -1 & -1 \end{pmatrix}$$

Утверждение. Строки квадратной матрицы ЛНЗ тогда и только тогда, когда её столбцы ЛНЗ.

Случай произвольных матриц

Определение. Строчным рангом матрицы A называется размер наибольшего подмножества линейно независимых строк A. Аналогично определяется столбцовый ранг.

Случай произвольных матриц

Определение. Строчным рангом матрицы A называется размер наибольшего подмножества линейно независимых строк A. Аналогично определяется столбцовый ранг.

Пример.

$$\begin{pmatrix} 1 & 0 & 0 & 5 & -2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix}$$

строчный и столбцовый ранг равны 3

Случай произвольных матриц

Определение. Строчным рангом матрицы A называется размер наибольшего подмножества линейно независимых строк A. Аналогично определяется столбцовый ранг.

Пример.

$$\begin{pmatrix} 1 & 0 & 0 & 5 & -2 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 2 & 3 \end{pmatrix}$$

строчный и столбцовый ранг равны 3

Утверждение. Строчный и столбцовый ранг равны.

Умножение матрицы на вектор

```
\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}
```

Умножение матрицы на вектор

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_k \end{pmatrix} =$$

Умножение матрицы на вектор

$$\begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix} \times \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_k \end{pmatrix} = \begin{pmatrix} \langle x_{1*}, w \rangle \\ \langle x_{2*}, w \rangle \\ \dots \\ \langle x_{m*}, w \rangle \end{pmatrix}$$

где

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n$$

Пример: система линейных уравнений

• Решаем систему

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

• Запись системы в матричном виде: Ax = b

Система линейных уравнений

Теорема. Пусть A — невырожденная квадратная матрица.

Тогда система линейных уравнений Ax = b имеет единственное решение при любом значении b.

Пример: линейная регрессия

- Есть m объектов (квартир)
- Объект описывается n признаками (площадь, этаж, количество комнат, ...)

$$x_{k*} = (x_{k1}, x_{k2}, \dots, x_{kn})$$

- ullet Необходимо предсказать целевую переменную y_k (стоимость квартиры)
- Ищем закономерность в линейном виде:

$$y_k = w_1 x_{k1} + w_2 x_{k2} + \ldots + w_n x_{kn}$$

Линейная регрессия в матричном виде

• Ищем закономерность в линейном виде:

$$y_k = w_1 x_{k1} + w_2 x_{k2} + \ldots + w_n x_{kn}$$

• В матричном виде уравнение записывается так:

$$Xw = y$$

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}, w = \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

Линейная регрессия в матричном виде

• Ищем закономерность в линейном виде:

$$y_k = w_1 x_{k1} + w_2 x_{k2} + \ldots + w_n x_{kn}$$

• В матричном виде уравнение записывается так:

$$Xw = y$$

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \dots & \dots & \dots \\ x_{m1} & x_{m2} & \dots & x_{mn} \end{pmatrix}, w = \begin{pmatrix} w_1 \\ w_2 \\ \dots \\ w_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$

- Если m = n, то решение (скорее всего) единственное
- Если m > n, то решения (скорее всего) нет
- Если m < n, то решений (скорее всего) бесконечно много

Линейная регрессия в матричном виде

Если объектов меньше, чем признаков, то линейная регрессия будет работать плохо!

Операции над матрицами

- сложение матриц
- умножение матриц
- транспонирование и обратная матрица
- определитель матрицы

Сложение и вычитание матриц

- Сложение и вычитание происходит поэлементно
- Можно применять только к матрицам одинакового размера

Пример.

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} + \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 5 & -1 \\ 5 & -4 & 1 \end{pmatrix}$$

- ullet Даны матрицы A размера m imes k и B размера k imes n
- ullet Хотим научиться вычислять матричное произведение AB

- ullet Даны матрицы A размера m imes k и B размера k imes n
- Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} =$$

- ullet Даны матрицы A размера $m \times k$ и B размера $k \times n$
- Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ -10 & 10 & -2 \end{pmatrix}$$

- ullet Даны матрицы A размера m imes k и B размера k imes n
- Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ -10 & 10 & -2 \end{pmatrix}$$

$$2 \cdot (-2) + 3 \cdot 2 + (-1) \cdot (-1) = 3$$

- ullet Даны матрицы A размера m imes k и B размера k imes n
- Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ -10 & 10 & -2 \end{pmatrix}$$

$$2 \cdot 2 + 3 \cdot (-2) + (-1) \cdot 0 = -2$$

- ullet Даны матрицы A размера $m \times k$ и B размера $k \times n$
- ullet Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ -10 & 10 & -2 \end{pmatrix}$$

$$2 \cdot 0 + 3 \cdot 1 + (-1) \cdot 2 = 1$$

- ullet Даны матрицы A размера m imes k и B размера k imes n
- Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ -10 & 10 & -2 \end{pmatrix}$$

$$3 \cdot (-2) + (-2) \cdot 2 + 0 \cdot (-1) = -10$$

- ullet Даны матрицы A размера m imes k и B размера k imes n
- Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ -10 & 10 & -2 \end{pmatrix}$$

$$3 \cdot 2 + (-2) \cdot -2 + 0 \cdot 0 = 10$$

- ullet Даны матрицы A размера m imes k и B размера k imes n
- Хотим научиться вычислять матричное произведение AB

$$\begin{pmatrix} 2 & 3 & -1 \\ 3 & -2 & 0 \end{pmatrix} \times \begin{pmatrix} -2 & 2 & 0 \\ 2 & -2 & 1 \\ -1 & 0 & 2 \end{pmatrix} = \begin{pmatrix} 3 & -2 & 1 \\ -10 & 10 & -2 \end{pmatrix}$$

$$3 \cdot 0 + (-2) \cdot 1 + 0 \cdot 2 = -2$$

Произведение матриц

- Частный случай произведение матрицы на вектор
- Произведение матриц встречается тогда, когда совокупность векторов умножается на матрицу (например, при подаче в нейронную сеть батча данных)

- Ассоциативность: A(BC) = (AB)C
- Дистрибутивность: A(B+C) = AB + AC
- Существование нейтрального элемента E_n (единичная матрица):

- Ассоциативность: A(BC) = (AB)C
- Дистрибутивность: A(B+C) = AB + AC
- Существование нейтрального элемента E_n (единичная матрица):

```
\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ & \dots & \dots & \ddots \\ 0 & 0 & \dots & 1 \end{pmatrix}
```

- Ассоциативность: A(BC) = (AB)C
- Дистрибутивность: A(B+C) = AB + AC
- Существование нейтрального элемента E_n (единичная матрица):

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$AE = EA = A$$

- Ассоциативность: A(BC) = (AB)C
- Дистрибутивность: A(B+C) = AB + AC
- ullet Существование нейтрального элемента E_n (единичная матрица):

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$AE = EA = A$$

• Отсутствие коммутативности: не всегда AB = BA

- Ассоциативность: A(BC) = (AB)C
- Дистрибутивность: A(B+C) = AB + AC
- Существование нейтрального элемента E_n (единичная матрица):

$$\begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

$$AE = EA = A$$

- Отсутствие коммутативности: не всегда AB = BA
- ullet Для квадратных матриц: если A вырождена, то AB также вырождена

Обратная матрица

Определение. Пусть A — **квадратная** матрица. Если существует такая матрица A^{-1} , что $AA^{-1} = A^{-1}A = E$, то A^{-1} называется обратной матрицей к A. Матрица A в таком случае называется обратимой.

Обратная матрица

Определение. Пусть A — **квадратная** матрица. Если существует такая матрица A^{-1} , что $AA^{-1} = A^{-1}A = E$, то A^{-1} называется обратной матрицей к A. Матрица A в таком случае называется обратимой.

Утверждение. Пусть A — квадратная матрица. Если строки (или столбцы) A линейно независимы (т.е. A невырожденная), то обратная матрица существует и единственна.

Решаем систему линейных уравнений

• Есть СЛУ, записанная в матричном виде:

$$Ax = b$$

• Если существует A^{-1} , то у системы есть единственное решение:

Решаем систему линейных уравнений

• Есть СЛУ, записанная в матричном виде:

$$Ax = b$$

• Если существует A^{-1} , то у системы есть единственное решение:

$$x = A^{-1}b$$

Транспонированная матрица

Транспонирование — операция отражения матрицы относительно главной диагонали

Пишут: A^{\top}

Вектор-столбец при транспонировании переходит в вектор-строку. Поэтому скалярное произведение можно записать так:

$$\langle x, y \rangle = x^{\top} y$$

Определитель матрицы

Определитель квадратной матрицы — это её числовая характеристика, которая определяется рекурсивно:

$$\bullet |a| = a$$

$$\bullet \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

Определитель матрицы

Определитель квадратной матрицы — это её числовая характеристика, которая определяется рекурсивно:

$$|A| = a_{11}|A_{11}| - a_{12}|A_{12}| + \dots + (-1)^n|A_{1n}|$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \qquad A_{ij} = \begin{pmatrix} a_{11} & \dots & a_{1,j-1} & a_{1,j+1} & \dots & a_{1n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{i-1,1} & \dots & a_{i-1,j-1} & a_{i-1,j+1} & \dots & a_{i-1,n} \\ a_{i+1,1} & \dots & a_{i+1,j-1} & a_{i+1,j+1} & \dots & a_{i+1,n} \\ \dots & \dots & \dots & \dots & \dots \\ a_{n,1} & \dots & a_{n,j-1} & a_{n,j+1} & \dots & a_{n,n} \end{pmatrix}$$

Свойства определителя

- $\bullet \quad |AB| = |A||B|$
- ullet |A| = 0 тогда и только тогда, когда A вырожденная

Вычисление обратной матрицы

• Цель: хотим научиться вычислять обратную матрицу

Алгоритм (метод Крамера). Дана квадратная матрица A.

- 1. Вычислим |A|
- 2. Построим матрицу миноров:

$$A' = \begin{pmatrix} |A_{11}| & -|A_{12}| & \dots & (-1)^{n+1}|A_{1n}| \\ -|A_{21}| & |A_{22}| & \dots & (-1)^{n+2}|A_{1n}| \\ \vdots & \vdots & \ddots & \vdots \\ (-1)^{n+1}|A_{n1}| & (-1)^{n+2}|A_{n2}| & \dots & |A_{nn}| \end{pmatrix}$$

3. Обратная матрица вычисляется по формуле

$$A^{-1} = \frac{(A')^{\top}}{|A|}$$

Задачи

Задача 1 Вычислить определитель матрицы

$$\begin{pmatrix} 3 & 0 & -1 \\ 2 & -2 & 3 \\ -1 & 2 & 5 \end{pmatrix}$$

Задачи

Задача 2 Найти обратную к матрице

$$\begin{pmatrix} 3 & 0 & -1 \\ 2 & -2 & 3 \\ -1 & 2 & 5 \end{pmatrix}$$

Резюме

С матрицами можно делать следующее:

- Складывать, вычитать
- Умножать
- Находить обратную
- Транспонировать
- Считать определитель
- Все эти операции так или иначе необходимы для теоретического понимания матричного исчисления
- Большая часть операций так или иначе используется в нейросетях

- матрица и линейный оператор
- геометрический смысл линейного преобразования
- линейный оператор в нейронной сети

- ullet Пусть A некоторая матрица размера m imes n
- ullet Рассмотрим оператор $f: \mathbb{R}^n \to \mathbb{R}^m$, действующий по формуле f(x) = Ax
- \bullet Отображение f является линейным, то есть

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

- Пусть A некоторая матрица размера $m \times n$
- ullet Рассмотрим оператор $f: \mathbb{R}^n \to \mathbb{R}^m$, действующий по формуле f(x) = Ax
- \bullet Отображение f является линейным, то есть

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

$$f(\alpha x + \beta y) = A(\alpha x + \beta y) =$$

- ullet Пусть A некоторая матрица размера m imes n
- Рассмотрим оператор $f: \mathbb{R}^n \to \mathbb{R}^m$, действующий по формуле f(x) = Ax
- \bullet Отображение f является линейным, то есть

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

$$f(\alpha x + \beta y) = A(\alpha x + \beta y) =$$

$$= \begin{pmatrix} \langle a_{1*}, (\alpha x + \beta y) \rangle \\ \langle a_{2*}, (\alpha x + \beta y) \rangle \\ \\ \vdots \\ \langle a_{m*}, (\alpha x + \beta y) \rangle \end{pmatrix}$$

- Пусть A некоторая матрица размера $m \times n$
- Рассмотрим оператор $f: \mathbb{R}^n \to \mathbb{R}^m$, действующий по формуле f(x) = Ax
- \bullet Отображение f является линейным, то есть

$$f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$$

$$f(\alpha x + \beta y) = A(\alpha x + \beta y) =$$

$$= \begin{pmatrix} \langle a_{1*}, (\alpha x + \beta y) \rangle \\ \langle a_{2*}, (\alpha x + \beta y) \rangle \\ \vdots \\ \langle a_{m*}, (\alpha x + \beta y) \rangle \end{pmatrix} = \alpha \begin{pmatrix} \langle a_{1*}, x \rangle \\ \langle a_{2*}, x \rangle \\ \vdots \\ \langle a_{m*}, x \rangle \end{pmatrix} + \beta \begin{pmatrix} \langle a_{1*}, y \rangle \\ \langle a_{2*}, y \rangle \\ \vdots \\ \langle a_{m*}, y \rangle \end{pmatrix}$$

Геометрия линейного преобразования

- ullet Рассмотрим линейный оператор $f:\mathbb{R}^n o\mathbb{R}^m$ при m=n=2
- ullet задаётся матрицей A и задаёт некоторое преобразование плоскости

Пример 1.

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

Пример 1.

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \to \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \to \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ -1 \end{pmatrix} \rightarrow$$

$$\begin{pmatrix} -2 \\ -2 \end{pmatrix} \rightarrow$$

Пример 1.

$$A = \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix}$$

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$$

$$\begin{pmatrix} 2 \\ -1 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$
$$\begin{pmatrix} -2 \\ -2 \end{pmatrix} \rightarrow \begin{pmatrix} 2 & -1 \\ 1 & 3 \end{pmatrix} \cdot \begin{pmatrix} -2 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ -8 \end{pmatrix}$$

Пример 2. Что если матрица А вырожденная?

$$A = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$$

Пример 2. Что если матрица А вырожденная?

$$A = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$$

 $\operatorname{Bce} Ax$ укладываются на прямую - $2x_1 = x_2$

Пример 2. Что если матрица А вырожденная?

$$A = \begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$$

Bee Ax укладываются на прямую $-2x_1 = x_2$

Вывод. Вырожденный линейный оператор отображает пространство в пространство меньшей размерности

Матрица поворота

Утверждение. Преобразованию поворота на угол α (против часовой стрелки) соответствует матрица

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}$$

Матрица поворота

Утверждение

Преобразованию поворота на угол α (против часовой стрелки) соответствует матрица

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}$$

Матрица поворота

Утверждение. Преобразованию поворота на угол α (против часовой стрелки) соответствует матрица

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}$$

Доказательство.

Композиция операторов

- ullet Даны два оператора, имеющие матрицы A и B
- Необходимо найти матрицу композиции двух операторов

Утверждение. Матрица композиции линейных операторов равна произведению матриц этих линейных операторов

Композиция операторов

Утверждение. Матрица композиции линейных операторов равна произведению матриц этих линейных операторов

Доказательство.

- Рассмотрим образ вектора х
- ullet Под действием первого оператора он переходит в вектор Ax
- Вектор Ax под действием второго оператора переходит в B(Ax)
- Под действием композиции x переходит в (BA)x

Композиция операторов

Утверждение. Матрица композиции линейных операторов равна произведению матриц этих линейных операторов

 $\Pi pumep$. Композиция двух поворотов с центром в нуле — поворот с центром в нуле

$$\begin{pmatrix} \cos \beta & -\sin \beta \\ \sin \beta & \cos \beta \end{pmatrix} \cdot \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} =$$

$$= \begin{pmatrix} \cos \beta \cos \alpha - \sin \beta \sin \alpha & -\cos \beta \sin \alpha - \sin \beta \cos \alpha \\ \sin \beta \cos \alpha + \cos \beta \sin \alpha & -\sin \beta \sin \alpha + \cos \beta \cos \alpha \end{pmatrix} =$$

$$= \begin{pmatrix} \cos(\alpha + \beta) & -\sin(\alpha + \beta) \\ \sin(\alpha + \beta) & \cos(\alpha + \beta) \end{pmatrix}$$

Пример: матрица в нейронной сети

Опишем нейронную сеть в терминах матриц!

Модель нейрона

скалярное произведение векторов x, w:

$$w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n = \langle w, x \rangle$$

Модель нейрона

скалярное произведение векторов x, w:

$$w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n = \langle w, x \rangle$$

Функция сигмоиды

$$\sigma(t) = \frac{1}{1 + e^{-t}}$$

Многослойный перцептрон

- Многослойный перцептрон простейшая архитектура нейронной сети
- Каждый слой нейронов связан со всем нейронами с предыдущего слоя
- Выходные нейроны соответствуют классам изображений

Многослойный перцептрон

Многослойный перцептрон

Преобразование вектора в перцептроне

$$W = \begin{pmatrix} w_1^1 & w_2^1 & \dots & w_n^1 \\ w_1^2 & w_2^2 & \dots & w_n^2 \\ \vdots & \ddots & \ddots & \vdots \\ w_1^k & w_2^k & \dots & w_n^k \end{pmatrix} = \begin{pmatrix} w^1 \\ w^2 \\ \dots \\ w^k \end{pmatrix}$$

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

Преобразование вектора в перцептроне

- Полносвязный слой нейронной сети выполняет линейный оператор
- Функция активации создаёт нелинейность: без неё нейронная сеть была бы просто линейным алгоритмом

Резюме

- Матрица соответствует линейному оператору
- Умножение матриц соответствует композиции линейных операторов
- Линейные операторы имеют естественную геометрическую интерпретацию
- Нейронные сети удобно описывать в терминах матриц и линейных операторов

The End