105-2 CA with Embedded DSD Homework 3 Report

Hardware Implementation of Single Cycle MIPS

B03901156 電機三 黃于瑄

1. RTL simulation

The implementation of module SingleCycle_MIPS:

According to the datapath on the below, I implemented several sub modules at the first, and then utilize them in module SingleCycle_MIPS.

Sub modules:

- a. PC (Program Counter)
- b. Add_ALU
- c. register_file
- d. mainControl
- e. ALU
- f. ALUControl
- g. signExtend
- h. Mux

In module SingleCycle_MIPS:

Cell	Reference
_PC	PC
_mainControl	mainControl
_ALU	ALU
_ALUControl	ALUControl
_signExtend	signExtend
_regFile	register_file
MUXX_RegDST	Mux_WIDTH5_0
MUXX_Src	Mux_WIDTH32_0
MUXX_MemToReg	Mux_WIDTH32_5

PC_adder Add_ALU_0 branch_adder Add_ALU_1

MUXX_Branch Mux_WIDTH32_4
MUXX_JumpRegister Mux_WIDTH32_2
MUXX_Jump Mux_WIDTH32_3
MUXX_JumpAndLink_1 Mux_WIDTH5_1
MUXX_JumpAndLink_2 Mux_WIDTH32_1

而每個cell所得波形圖如下所示:

a. _PC

b. _mainControl

c. _ALU

d. _ALUControl

e. _regFile

f. MUXX_RegDST

g. MUXX_Src

h. MUXX_MemToReg

i. PC_adder

j. branch_adder

k. MUXX Branch

1. MUXX_JumpRegister

m. MUXX_Jump

n. MUXX_JumpAndLink_1

o. MUXX_JumpAndLink_2

2. Synthesis

Area Report:

Report : area

Design: SingleCycle_MIPS

Version: G-2012.06

Date : Thu Apr 20 03:26:55 2017

Library(s) Used:

typical (File: /home/raid7_2/course/cvsd/CBDK_IC_Contest/CIC/SynopsysDC/db/typical.db)

Number of ports: 172 Number of nets: 533 Number of cells: 38 Number of combinational cells: 22 Number of sequential cells: 0 0 Number of macros: Number of buf/inv: 20 Number of references: 21

Combinational area: 45503.898122 Noncombinational area: 34056.632446

Net Interconnect area: undefined (No wire load specified)

Total cell area: **79560.530569**Total area: undefined

Timing Path Report:

Report: timing
-path full
-delay max
-max_paths 1
-sort_by group

Design : SingleCycle_MIPS

Version: G-2012.06

Date : Thu Apr 20 03:28:45 2017

A fanout number of 1000 was used for high fanout net computations.

Operating Conditions: slow Library: slow

Wire Load Model Mode: top

Startpoint: _regFile/register_reg[31][1]

(rising edge-triggered flip-flop clocked by CLK)

Endpoint: A[6] (output port clocked by CLK)

Path Group: CLK Path Type: max

Point	Incr	Path
clock CLK (rise edge)	0.00	0.00
clock network delay (ideal)	0.50	0.50
_regFile/register_reg[31][1]/CK (DFFRX1)	0.00 #	0.50 r
_regFile/register_reg[31][1]/Q (DFFRX1)	0.26	0.76 r
_regFile/U732/Y (MXI4X1)	0.20	0.96 f
_regFile/U676/Y (MX4X1)	0.16	1.12 f
_regFile/U674/Y (MXI2X1)	0.07	1.20 r
_regFile/ReadData2_o[1] (register_file)	0.00	1.20 r
MUXX_Src/data1_i[1] (Mux_WIDTH32_0)	0.00	1.20 r
MUXX_Src/U14/Y (AO22X1)	0.19	1.39 r
MUXX_Src/data_o[1] (Mux_WIDTH32_0)	0.00	1.39 r
_ALU/data2_i[1] (ALU)	0.00	1.39 r
_ALU/sub_371/B[1] (ALU_DW01_sub_0)	0.00	1.39 r
_ALU/sub_371/U4/Y (CLKINVX1)	0.04	1.43 f
_ALU/sub_371/U2_1/CO (ADDFXL)	0.38	1.81 f
_ALU/sub_371/U2_2/CO (ADDFXL)	0.22	2.04 f
_ALU/sub_371/U2_3/CO (ADDFXL)	0.22	2.26 f
_ALU/sub_371/U2_4/CO (ADDFXL)	0.22	2.48 f
_ALU/sub_371/U2_5/CO (ADDFXL)	0.22	2.71 f
_ALU/sub_371/U2_6/CO (ADDFXL)	0.22	2.93 f
_ALU/sub_371/U2_7/CO (ADDFXL)	0.22	3.16 f
_ALU/sub_371/U2_8/S (ADDFXL)	0.14	3.30 f
_ALU/sub_371/DIFF[8] (ALU_DW01_sub_0)	0.00	3.30 f
_ALU/U20/Y (AOI221XL)	0.19	3.49 r
_ALU/U18/Y (OAI211X1)	0.07	3.56 f
_ALU/ALU_o[8] (ALU)	0.00	3.56 f
A[6] (out)	0.00	3.56 f
data arrival time		3.56
clock CLK (rise edge)	10.00	
clock network delay (ideal)	0.50	10.50
clock uncertainty	-0.10	
output external delay	-6.00	
data required time		4.40
data required time		4.40
data arrival time		-3.56
slack (MET)		0.84

3. Gate-level simulation

Simulated timing (ns): 10ns