

Géométrie du plan

Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice 1 **I

(ABC) est un vrai triangle.

- 1. Montrer que ses médianes sont concourantes en G l'isobarycentre de (ABC).
- 2. Montrer que ses médiatrices sont concourantes en O le centre du cercle circonscrit à (ABC).
- 3. Montrer que ses hauteurs sont concourantes en H l'orthocentre de (ABC) puis montrer la relation d'EULER : $\overrightarrow{OH} = 3\overrightarrow{OG}$ (considérer l'homothétie de centre G et de rapport -2).
- 4. Montrer que ses bissectrices (intérieures) sont concourantes en *I* le centre du cercle inscrit.

Correction ▼ [005195]

Exercice 2 **IT

On donne les points A(1,2), B(-2,1) et C(0,4).

- 1. Déterminer \widehat{BAC} au degré près.
- 2. Déterminer l'aire du triangle (ABC).
- 3. Déterminer son isobarycentre, son orthocentre, le centre de son cercle circonscrit puis une équation de ce cercle
- 4. Déterminer une équation des bissectrices de l'angle \widehat{BAC} puis de la bissectrice intérieure à l'angle \widehat{A} .

Correction ▼ [005196]

Exercice 3 *IT

Déterminer le projeté orthogonal du point $M(x_0, y_0)$ sur la droite (D) d'équation x + 3y - 5 = 0 ainsi que son symétrique orthogonal.

Correction ▼ [005197]

Exercice 4 *

Soit (ABDC) un parallélogramme. Déterminer les coordonnées de D dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$.

Correction ▼ [005198]

Exercice 5 **

Soit (E) l'ensemble d'équation cartésienne $2x^2 + 5xy + 3y^2 - 3x - 2y - 5 = 0$. Montrer que (E) est une réunion de deux droites. Déterminer l'aire du parallélogramme formé par ces deux droites et les parallèles à ces deux droites passant par O.

Correction ▼ [005199]

Exercice 6 **

Correction ▼ [005200]

Exercice 7 **I

- 1. h (resp. h') est l'homothétie de centre Ω et de rapport k (resp. k') non nul. Déterminer la nature et les éléments caractéristiques de $h' \circ h$.
- 2. s (resp. s') est la symétrie centrale de centre Ω (resp. Ω'). Déterminer la nature et les éléments caractéristiques de $s' \circ s$.
- 3. s est la symétrie centrale de centre Ω et t est la translation de vecteur \overrightarrow{u} . Déterminer la nature et les éléments caractéristiques de $t \circ s$.

Correction ▼ [005201]

Exercice 8 ***I

Soient n un entier supérieur ou égal à 2, puis A_1 , A_2 ,..., A_n n points du plan. Existe-t-il n points B_1 , B_2 ,..., B_n tels que, pour $i \in \{1,...,n\}$, A_i soit le milieu de $[B_i, B_{i+1}]$ (avec la convention $B_{n+1} = B_1$)? (Utiliser l'exercice précédent.)

Correction ▼ [005202]

Exercice 9 *T

Soit \mathscr{C} la courbe d'équation $x^2 + y^2 - 2x + 4y + 1 = 0$.

- 1. Déterminer une équation de la tangente au point de \mathscr{C} de coordonnées $(2, -2 + \sqrt{3})$.
- 2. Déterminer l'intersection de \mathscr{C} et du cercle de centre (1,0) et de rayon 2.

Correction ▼ [005203]

Exercice 10 *** Théorème de MÉNÉLAÜS

Soient A, B et C trois points non alignés. Soient M, N et P trois points appartenant respectivement aux droites (BC), (CA) et (AB) et distincts de A, B et C. Montrer que :

$$(M, N, \text{ et } P \text{ sont alignés}) \Leftrightarrow (\frac{\overline{MB}}{\overline{MC}} \cdot \frac{\overline{NC}}{\overline{NA}} \frac{\overline{PA}}{\overline{PB}} = 1).$$

(Trouver une démonstration utilisant le théorème de THALÈS, une utilisant la composée de deux homothéties et une utilisant des coordonnées.)

Correction ▼ [005204]

Exercice 11 ***

Construire l'ensemble des points M de coordonnées polaires $(r, \theta) \in \mathbb{R}^2$ vérifiant

 $r = \frac{1}{\sqrt{1+\sin(2\theta)} + \sqrt{1-\sin(2\theta)}}$ (commencer par étudier toutes les symétries de l'ensemble considéré).

Correction ▼ [005205]

Exercice 12 **

Montrer qu'il n'existe pas de triangle équilatéral dont les sommets appartiennent aux points d'intersection des lignes d'une feuille blanche quadrillée usuelle.

Correction ▼ [005206]

Exercice 13 *T

Nature et éléments caractéristiques de la transformation d'expression complexe :

- 1. z' = z + 3 i
- 2. z' = 2z + 3

3. z' = iz + 1

4.
$$z' = (1-i)z + 2 + i$$

Correction ▼ [005207]

Exercice 14 ** Faisceaux de droites

- 1. Soient (D) et (D') deux droites sécantes d'équation respectives ax + by + c = 0 et a'x + b'y + c' = 0, $(a,b) \neq (0,0)$, $(a',b') \neq (0,0)$. Soit (Δ) une droite. Montrer que (D), (D') et (Δ) sont concourantes si et seulement si il existe (Δ) a une équation cartésienne de la forme $\lambda(ax + by + c) + \mu(a'x + b'y + c') = 0$, $(\lambda,\mu) \neq (0,0)$.
- 2. Equation cartésienne de la droite passant par le point (1,0) et par le point d'intersection des droites d'équations respectives 5x + 7y + 1 = 0 et -3x + 2y + 1 = 0
- 3. Pour $m \in \mathbb{R}$, on considère (D_m) la droite d'équation (2m-1)x+(m+1)y-4m-1=0. Montrer que les droites (D_m) sont concourantes en un point A que l'on précisera. Toute droite passant par A est-elle une droite (D_m) ?

Correction ▼ [005208]

Correction de l'exercice 1 A

- 1. Soit G l'isobarycentre du triangle (ABC). On a donc G = bar(A(1), B(1), C(1)). Notons A', B' et C' les milieux respectifs des côtés [B, C], [C, A] et [A, B]. D'après le théorème du barycentre partiel, G = bar(A(1), A'(2)). En particulier, G est sur la médiane (AA'). De même, G est sur la médiane (BB') et sur la médiane (CC').
 - Finalement, G est sur les trois médianes. les trois médianes sont donc concourantes en G.
- 2. Les droites (*BC*) et (*CA*) ne sont pas parallèles. Par suite, les médiatrices respectives des côtés [*B*,*C*] et [*C*,*A*] ne sont pas parallèles. Elles sont donc sécantes en un point que l'on note *O*. Par définition de *O*, on a *OA* = *OB* = *OC*. *O* est donc à égale distance de *A* et *B* et est ainsi sur la médiatrice de [*A*,*B*]. Finalement, les trois médiatrices sont concourantes en *O*. De plus, *O* étant à égale distance de *A*, *B* et *C*, le cercle de centre *O* et de rayon *OA* passe par *B* et *C*.
 - Réciproquement, un cercle passant par A, B et C a pour centre un point à égale distance de ces points et donc nécessairement de centre O et de rayon OA. Ceci démontre l'existence et l'unicité du cercle circonscrit au triangle (ABC): c'est le cercle de centre O et de rayon OA.
- 3. Les hauteurs issues de *A* et *B* ne sont pas parallèles (car perpendiculaires à deux droites non parallèles). Elles admettent ainsi un et un seul point d'intersection. Ceci assure l'unicité d'un point commun aux trois hauteurs.
 - Soit h l'homthétie de centre G et de rapport -2. Puisque $\overrightarrow{GA} = -2\overrightarrow{GA}$, on a h(A') = A et de même h(B') = B et h(C') = C.
 - Par h, l'image de la médiatrice de [B,C], c'est-à-dire de la droite passant par A' et perpendiculaire à (BC) est la droite passant par h(A') = A et perpendiculaire à (BC) (car parallèle à la médiatrice de [B,C]). Cette droite est la hauteur issue de A du triangle (ABC). De même, les images des médiatrices de [C,A] et [A,B] sont respectivement les hauteurs issues de B et C.
 - Le point O est sur les trois médiatrices. Son image par h est donc sur les trois hauteurs (d'où l'existence d'un point commun aux trois hauteurs). Ces trois hauteurs sont ainsi concourantes en un point noté H et appelé l'orthocentre du triangle (ABC). De plus, l'égalité h(O) = H s'écrit $\overrightarrow{GH} = -2\overrightarrow{GO}$ ou encore $\overrightarrow{GO} + \overrightarrow{OH} = 2\overrightarrow{OG}$ ou enfin,

$$\overrightarrow{OH} = 3\overrightarrow{OG}$$
 EULER.

- Les trois points O, G et H, s'ils sont deux à deux distincts, sont en particulier alignés sur une droite appelée **droite d'**EULER du triangle (ABC).
- 4. Deux bissectrices intérieures ne sont pas parallèles (démontrez-le) et sont donc sécantes en un point *I* à égale distance des trois côtés et à l'intérieur du triangle (*ABC*). Ce point étant à égale distance des trois côtés est centre du cercle tangent intérieurement aux trois côtés, le cercle inscrit.

Correction de l'exercice 2 A

(Notez bien l'alignement des points G, H et O).

1. On a $AB = \sqrt{3^2 + 1^2} = \sqrt{10}$ et $AC = \sqrt{1 + 2^2} = \sqrt{5}$. Par suite,

$$\cos(\widehat{BAC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC} = \frac{(-3)(-1) + (-1)(2)}{\sqrt{5}\sqrt{10}} = \frac{1}{5\sqrt{2}}.$$

Par suite, $\widehat{BAC} = 81^{\circ}$ à un degré près.

2. $\operatorname{aire}(ABC) = \frac{1}{2}|\det(\overrightarrow{AB}, \overrightarrow{AC})| = \frac{1}{2}\operatorname{abs}(\begin{vmatrix} -3 & -1 \\ -1 & 2 \end{vmatrix}) = \frac{7}{2}.$

3. Notons *G* l'isobarycentre du triangle (*ABC*). $z_G = \frac{1}{3}(z_A + z_B + z_C) = \frac{1}{3}(1 + 2i - 2 + i + 4i) = \frac{1}{3}(-1 + 7i)$, et donc $G(-\frac{1}{3}, \frac{7}{3})$.

Notons (x,y) les coordonnées de Ω , le centre du cercle circonscrit au triangle (ABC) (dans cette exercice, la lettre O désigne certainement l'origine du repère).

$$\begin{cases} \Omega A = \Omega B \\ \Omega A = \Omega C \end{cases} \Rightarrow \begin{cases} (x-1)^2 + (y-2)^2 = (x+2)^2 + (y-1)^2 \\ (x-1)^2 + (y-2)^2 x^2 + (y-4)^2 \end{cases} \Rightarrow \begin{cases} 3x + y = 0 \\ 2x - 4y = -11 \end{cases}$$

$$\Rightarrow x = -\frac{11}{14} \text{ et } y = \frac{33}{14} \text{ (d'après les formules de CRAMER)},$$

et donc

$$\Omega(-\frac{11}{14},\frac{33}{14}).$$

Notons (x,y) les coordonnées de l'orthocentre H du triangle (ABC).

1ère solution.

$$\begin{cases} \overrightarrow{AH}.\overrightarrow{BC} = 0 \\ \overrightarrow{BH}.\overrightarrow{AC} = 0 \end{cases} \Rightarrow \begin{cases} 2(x-1) + 3(y-2) = 0 \\ -(x+2) + 2(y-1) = 0 \end{cases} \Rightarrow \begin{cases} 2x + 3y = 8 \\ -x + 2y = 4 \end{cases}$$
$$\Rightarrow x = \frac{4}{7} \text{ et } y = \frac{16}{7} \text{ (d'après les formules de CRAMER)},$$

et donc,
$$H(\frac{4}{7}, \frac{16}{7})$$
.

2ème solution. Il est bien meilleur de connaître la relation d'EULER $\overrightarrow{\Omega H} = 3\overrightarrow{\Omega G}$ et de l'utiliser.

$$H = \Omega + 3\overrightarrow{\Omega G} = \begin{pmatrix} -\frac{11}{14} \\ \frac{33}{14} \end{pmatrix} + 3\begin{pmatrix} -\frac{1}{3} + \frac{11}{14} \\ \frac{7}{3} - \frac{33}{14} \end{pmatrix} = \begin{pmatrix} \frac{4}{7} \\ \frac{16}{7} \end{pmatrix}.$$

Pour trouver le cercle circonscrit au triangle (ABC), on a déjà le centre Ω et le rayon

$$\Omega A = \sqrt{(1 + \frac{11}{14})^2 + (2 - \frac{33}{14})^2} = \frac{1}{14}\sqrt{25^2 + 5^2} = \frac{5}{14}\sqrt{5^2 + 1} = \frac{5\sqrt{26}}{14}$$

Il n'y a plus qu'à écrire l'équation cherchée

$$(x + \frac{11}{14})^2 + (y - \frac{33}{14})^2 = \frac{325}{98}$$
 ou encore $x^2 + y^2 + \frac{11}{7}x - \frac{33}{7}y + \frac{20}{7} = 0$.

Néanmoins, on peut trouver directement une équation de ce cercle. Les points A, B et C n'étant pas alignés, on sait que le cercle circonscrit existe et est unique.

Soient alors $(a,b,c) \in \mathbb{R}^3$ et \mathscr{C} le cercle d'équation $x^2 + y^2 + ax + by + c = 0$.

$$(A,B,C) \in \mathscr{C}^3 \Leftrightarrow \left\{ \begin{array}{l} a+2b+c=-5 \\ -2a+b+c=-5 \\ 4b+c=-16 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} c=-4b-16a-2b=11 \\ -2a-3b=11 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} a=\frac{11}{7} \text{ (Cramer)} \\ b=-\frac{33}{7} \text{ } \\ c=\frac{20}{7} \end{array} \right.$$

4. Les bissectrices de l'angle A sont les deux droites constituées des points à égale distance des droites (AB) et (AC). Ces deux droites admettent pour vecteurs normaux respectifs $\vec{n}_1(1, -3)$ et $\vec{n}_2(2, 1)$. Soit M(x, y) un point du plan.

$$\begin{split} d(M,(AB)) &= d(M,(AC)) \Leftrightarrow \frac{(\overrightarrow{AM}.\overrightarrow{n}_1)^2}{||\overrightarrow{n}_1||^2} = \frac{(\overrightarrow{AM}.\overrightarrow{n}_2)^2}{||\overrightarrow{n}_2||^2} \\ &\Leftrightarrow \frac{((x-1)-3(y-2))^2}{10} = \frac{(2(x-1)+(y-2))^2}{5} \Leftrightarrow (x-3y+5)^2 = 2(2x+y-4)^2 \\ &\Leftrightarrow [(x-3y+5)+\sqrt{2}(2x+y-4)].[(x-3y+5)-\sqrt{2}(2x+y-4)] = 0 \\ &\Leftrightarrow (1+2\sqrt{2})x+(-3+\sqrt{2})y+5-4\sqrt{2} = 0 \text{ ou } (1-2\sqrt{2})x-(3+\sqrt{2})y+5+4\sqrt{2} = 0 \\ &\Leftrightarrow y = (1+\sqrt{2})x+1-\sqrt{2} \text{ ou } y = (1-\sqrt{2})x+1+\sqrt{2} \end{split}$$

La bissectrice intérieure δ_A de l'angle \widehat{A} est la droite (pour certains, cette bissectrice est une demi-droite) passant par A(2,1) et dirigée par le vecteur $\vec{u} = -\sqrt{10} \cdot (\frac{1}{AB} \vec{AB} + \frac{1}{AC} \vec{AC})$. Ce vecteur a pour coordonnées $(3+\sqrt{2},1-2\sqrt{2}).$

Soit M(x, y) un point du plan.

$$M \in \delta_A \Leftrightarrow \det(\overrightarrow{AM}, \overrightarrow{u}) = 0 \Leftrightarrow (1 - 2\sqrt{2})(x - 1) - (3 + \sqrt{2})(y - 2) = 0$$
$$\Leftrightarrow (1 - 2\sqrt{2})x - (3 + \sqrt{2})y + 5 + 4\sqrt{2} = 0 \Leftrightarrow y = (1 - \sqrt{2})x + 1 + \sqrt{2}$$

Correction de l'exercice 3

(D) est une droite de vecteur normal (1,3). Le projeté orthogonal $p(M_0)$ de M_0 sur (D) est de la forme $M_0 + \lambda . \vec{n}$ où λ est un réel à déterminer. Le point $M_0 + \lambda . \vec{n}$ a pour coordonnées $(x_0 + \lambda, y_0 + 3\lambda)$.

$$M_0 + \lambda \cdot \vec{n} \in (D) \Leftrightarrow (x_0 + \lambda) + 3(y_0 + 3\lambda) - 5 = 0 \Leftrightarrow \lambda = \frac{-x_0 - 3y_0 + 5}{10}$$

 $p(M_0)$ a pour coordonnées $(x_0 + \frac{-x_0 - 3y_0 + 5}{10}, y_0 + 3\frac{-x_0 - 3y_0 + 5}{10})$ ou encore $(\frac{9x_0 - 3y_0 + 5}{10}, \frac{-3x_0 + y_0 + 15}{10})$.

Le symétrique orthogonal $s(M_0)$ vérifie : $s(M_0) = M_0 + 2 \overrightarrow{M_0 p(M_0)}$. Ses coordonnées sont donc $(x_0 + 2(\frac{9x_0 - 3y_0 + 5}{10} - x_0), y_0 + 2(\frac{-3x_0 + y_0 + 15}{10} - y_0)$ ou encore

 $\left(\frac{4x_0-3y_0+5}{5}, \frac{-3x_0-4y_0+15}{5}\right)$

(Remarque. Si on n'avait pas déjà $p(M_0)$ on aurait cherché le symétrique sous la forme $M_0 + \lambda . \vec{n}$, λ étant entièrement déterminé par la condition : le milieu du segment $[M_0, s(M_0)]$ appartient à (D).)

Correction de l'exercice 4 A

Puisque (ABDC) un parallélogramme, $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$. Les coordonnées de D dans le repère $(A, \overrightarrow{AB}, \overrightarrow{AC})$ sont donc (1,1).

Correction de l'exercice 5 ▲

Soit $(x, y) \in \mathbb{R}^2$.

$$2x^{2} + 5xy + 3y^{2} - 3x - 2y - 5 = 2x^{2} + x(5y - 3) + 3y^{2} - 2y - 5 = 2(x + \frac{1}{4}(5y - 3))^{2} - \frac{1}{8}(5y - 3)^{2} + 3y^{2} - 2y - 5$$

$$= \frac{1}{8}(4x + 5y - 3)^{2} - \frac{1}{8}y^{2} + \frac{14}{8}y - \frac{49}{8}$$

$$= \frac{1}{8}[(4x + 5y - 3)^{2} - (y^{2} - 14y + 49)] = \frac{1}{8}[(4x + 5y - 3)^{2} - (y - 7)^{2}]$$

$$= \frac{1}{8}(4x + 4y + 4)(4x + 6y - 10) = (x + y + 1)(2x + 3y - 5)$$

Par suite,

$$\forall (x,y) \in \mathbb{R}^2$$
, $2x^2 + 5xy + 3y^2 - 3x - 2y - 5 = 0 \Leftrightarrow (x+y+1) = 0$ ou $2x + 3y - 5 = 0$.

(E) est la réunion de la droite (D_1) d'équation x+y+1=0 et de la droite (D_2) d'équation 2x+3y-5=0.

La parallèle à (D_1) passant par O est la droite (D_1') d'équation x+y=0 et la parallèle à (D_2) passant par O est la droite (D_2') d'équation 2x+3y=0. Ces droites se coupent en les quatre points O(0,0), A(-5,5), B(-8,7) et C(-3,2). L'aire de ce parallélogramme vaut $\left|\det(\overrightarrow{OA},\overrightarrow{OC})\right|=5$.

Correction de l'exercice 6 ▲

Notons (D_1) , (D_2) et (D_3) les droites d'équations respectives y = 2x + 1, y = 2x + 7 et $y = -\frac{1}{2}x$. Soit $\mathscr C$ un cercle.

Les droites (D_1) et (D_2) sont parallèles. Donc, $\mathscr C$ est un cercle tangent à (D_1) et (D_2) si et seulement si son centre est sur l'ensemble des points à égale distance de (D_1) et (D_2) à savoir la droite d'équation y=2x+4 et son rayon est la moitié de la distance de (D_1) à (D_2) , ou encore la moitié de la distance d'un point de (D_1) , par exemple (0,1), à (D_2) . Cette distance vaut $\frac{|2.0-1+7|}{\sqrt{2^2+1^2}}=\frac{6}{\sqrt{5}}$. Finalement, $\mathscr C$ est un cercle tangent à (D_1) et (D_2) si et seulement si son centre Ω a des coordonnées de la forme (a,2a+4), $a\in\mathbb R$, et son rayon vaut $\frac{3}{\sqrt{5}}$.

Un cercle de centre Ω et de rayon $\frac{3}{\sqrt{5}}$ est tangent à (D_3) si et seulement si la distance de Ω à (D_3) est le rayon $\frac{3}{\sqrt{5}}$. Donc,

$$\mathscr{C} \text{ solution} \Leftrightarrow d(\Omega, (D_3)) = \frac{3}{\sqrt{5}} \Leftrightarrow \frac{|a+2(2a+4)|}{\sqrt{5}} = \frac{3}{\sqrt{5}} \Leftrightarrow |5a+8| = 3$$
$$\Leftrightarrow 5a+8 = 3 \text{ ou } 5a+8 = -3 \Leftrightarrow a = -1 \text{ ou } a = -\frac{11}{5}$$

On trouve deux cercles solutions, le cercle \mathscr{C}_1 de centre $\Omega_1(-1,2)$ et de rayon $\frac{3}{\sqrt{5}}$ et le cercle \mathscr{C}_2 de centre $\Omega_2(-\frac{11}{5},-\frac{2}{5})$ et de rayon $\frac{3}{\sqrt{5}}$

Correction de l'exercice 7

Soient k et k' deux réels non nuls, Ω et Ω' deux points (pas nécessairement distincts), puis h (resp.h') l'homothétie de centre Ω (resp. Ω') et de rapport k (resp. k').
 Soient M un point du plan, puis M' = h(M) et M" = h'(M').

$$M'' = \Omega' + k' \overrightarrow{\Omega'M'} = \Omega' + k' (\overrightarrow{\Omega'\Omega} + \overrightarrow{\Omega M'}) = \Omega' + k' \overrightarrow{\Omega'\Omega} + kk' \overrightarrow{\Omega M} (*)$$

Chechons alors les points invariants par $h' \circ h$.

$$h' \circ h(M) = M \Leftrightarrow \Omega' + k' \overrightarrow{\Omega'\Omega} + kk' \overrightarrow{\Omega M} = M \Leftrightarrow -\overrightarrow{\Omega'M} + k' \overrightarrow{\Omega'\Omega} + kk' \overrightarrow{\Omega M} = \overrightarrow{0}$$
$$\Leftrightarrow (kk' - 1) \overrightarrow{\Omega M} = (k' - 1) \overrightarrow{\Omega \Omega'} (**)$$

1er cas. Si $kk' \neq 1$, $(**) \Leftrightarrow \overrightarrow{\Omega M} = \frac{k'-1}{kk'-1}\overrightarrow{\Omega \Omega'}$, ce qui signifie que l'équation (**) a une et eune seule solution que l'on note Ω'' , ou encore $h' \circ h$ a un et un seule point invariant, le point Ω'' tel que $\Omega'' = \Omega' + k'\overrightarrow{\Omega'\Omega} + kk'\overrightarrow{\Omega\Omega'}$.

Mais alors, l'égalié (*) s'écrit pour tout point M

$$M'' \equiv \Omega' + k' \overrightarrow{\Omega'\Omega} + kk' \overrightarrow{\Omega M} = \Omega' + k' \overrightarrow{\Omega'\Omega} + kk' \overrightarrow{\Omega\Omega''} + kk' \overrightarrow{\Omega''M} = \Omega'' + kk' \overrightarrow{\Omega''M}.$$

 $h' \circ h$ est donc l'homothétie de rapport kk' et de centre Ω'' . On doit noter que le centre Ω'' est sur la droite $(\Omega\Omega')$.

Si $kk' \neq 1$, $h' \circ h$ est une homothétie de rapport kk'.

2ème cas. Si kk' = 1, l'égalité (*) s'écrit pour tout point M, $M'' = \Omega' + k'\overrightarrow{\Omega'\Omega} + \overrightarrow{\Omega M}$ et donc

$$\overrightarrow{MM''} = \Omega' + k'(\Omega - \Omega') + (M - \Omega) - M = (1 - k')\overrightarrow{\Omega\Omega'}.$$

Dans ce cas, $h' \circ h$ est la translation de vecteur $(1 - k')\overline{\Omega\Omega'}$.

En résumé, la comoposée de deux homothéties de rapport respectifs k et k' tous deux non nuls est une homothétie de rapport kk' si $kk' \neq 1$ et une tranlation si kk' = 1 (ce résultat est à connaître).

2. C'est un cas particulier de la question précédente. Une symétrie centrale est une homothétie de rapport -1. Puisque (-1)(-1)=1, $s'\circ s$ est une translation. Son vecteur est $\overrightarrow{\Omega s'\circ s(\Omega)}=\overrightarrow{\Omega s'(\Omega)}=2\overrightarrow{\Omega\Omega'}$.

La composée de deux symétries centrales est une translation.

3. Soit Ω' le point tel que $\overrightarrow{u} = 2\overrightarrow{\Omega'}\overrightarrow{\Omega}$, c'est-à-dire $\Omega' = \Omega - \frac{1}{2}\overrightarrow{u}$. Soit s' la symétrie centrale de centre Ω' . D'après 2), $s \circ s'$ est la translation de vecteur $2\overrightarrow{\Omega'}\overrightarrow{\Omega} = \overrightarrow{u}$. Par suite, $s \circ t = s \circ s \circ s' = s'$.

La composée d'une symétrie centrale et d'une translation est une symétrie centrale.

Correction de l'exercice 8 A

Pour $1 \le i \le n$, notons s_i la symétrie centrale de centre A_i . Le problème revient à trouver n points $B_1,...,B_n$ tels que $B_2 = s_1(B_1)$, $B_3 = s_2(B_2)$,..., $B_n = s_{n-1}(B_{n-1})$, $B_1 = s_n(B_n)$. Ceci équivaut à

$$\forall i \in \{2,...,n\}, B_i = s_{i-1} \circ s_{i-2} \circ ... \circ s_1(B_1) \text{ et } B_1 = s_n \circ s_{n-1} \circ ... \circ s_1(B_1) (*).$$

Posons alors $f = s_n \circ s_{n-1} \circ ... \circ s_1$. f est une composée de symétries centrales. Il y a donc deux cas. Si n est pair, on peut regrouper les symétries deux par deux. f est alors (d'après l'exercice 7) une composée de translations et donc f est une translation. Si n est impair, n-1 est pair et donc la composée des n-1 premières symétries est une translation. Par suite, f est la composée d'une translation et d'une symétrie centrale et est donc une symétrie centrale (d'après l'exercice 7).

Maintenant, (*) a une solution si et seulement si f a un point invariant.

1er cas. Si n est impair, f étant une symétrie centrale, f a un et un seul point invariant : son centre. Il existe donc un et un seul point B_1 vérfiant $B_1 = s_n \circ s_{n-1} \circ ... \circ s_1(B_1)$ et finalement, un et un seul n-uplet $(B_1, ..., B_n)$ solution du problème posé.

2ème cas. Si n est pair, f est une translation. Si son vecteur est non nul, f n'a pas de point invariant et le problème n'a pas de solution. Si son vecteur est nul, f est l'identité et tout point est invariant par f. Déterminons le vecteur de f. On pose n = 2p. On a alors

$$f = s_{2p} \circ s_{2p-1} \circ \dots s_2 \circ s_1 = t_{2\overrightarrow{A_{2p-1}A_{2p}}} \circ \dots \circ t_{2\overrightarrow{A_{1}A_{2}}} = t_{2(\overrightarrow{A_{1}A_{2}} + \dots + \overrightarrow{A_{2p-1}A_{2p}})}.$$

Quand n = 2p est pair, le problème posé a des solutions si et seulement si $\overrightarrow{A_1A_2} + ... + \overrightarrow{A_{2p-1}A_{2p}} = \overrightarrow{0}$.

Correction de l'exercice 9 A

Tout d'abord, pour $(x,y) \in \mathbb{R}^2$, $x^2 + y^2 - 2x + 4y + 1 = 0 \Leftrightarrow (x-1)^2 + (y+2)^2 = 4$ et \mathscr{C} est le cerlce de centre $\Omega(1,-2)$ et de rayon 2.

1. Le point $A(2, -2 + \sqrt{3})$ est effectivement sur \mathscr{C} car $(2-1)^2 + (-2 + \sqrt{3} + 2)^2 = 1 + 3 = 4$. La tangente (T) en A à \mathscr{C} est la droite passant par A et de vecteur normal $\overrightarrow{A\Omega}$.

$$M(x,y) \in (T) \Leftrightarrow \overrightarrow{AM}.\overrightarrow{A\Omega} = 0 \Leftrightarrow (x-2) + \sqrt{3}(y+2-\sqrt{3}) = 0 \Leftrightarrow x+\sqrt{3}y-5+2\sqrt{3} = 0.$$

2. Soit \mathscr{C}' le cercle de centre (1,0) et de rayon 2. Une équation de ce cercle est $x^2 + y^2 - 2x - 3 = 0$. Par suite,

$$M(x,y) \in \mathcal{C} \cap \mathcal{C}' \Leftrightarrow \begin{cases} x^2 + y^2 - 2x + 4y + 1 = 0 \\ x^2 + y^2 - 2x - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} 4y + 4 = 0 & ((1) - (2)) \\ x^2 + y^2 - 2x - 3 = 0 \end{cases} \Leftrightarrow \begin{cases} y = -1 \\ x^2 - 2x - 2 = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} y = -1 \\ x = 1 + \sqrt{3} \text{ ou } x = 1 - \sqrt{3} \end{cases}$$

If ya donc deux points d'intersection : $(1+\sqrt{3},-1)$ et $(1-\sqrt{3},-1)$.

Correction de l'exercice 10 ▲

Montrons tout d'abord que si M, N et P sont alignés, alors $\frac{\overline{MB}}{\overline{MC}} \cdot \frac{\overline{NC}}{\overline{NA}} \cdot \frac{\overline{PA}}{\overline{PB}} = 1$ (*). On suppose donc que M, N et P sont alignés et on note (Δ) la droite contenant M, N et P.

1ère solution. Soit A_1 le projeté de A sur la droite (BC) parallèlement à la droite (Δ). D'après le théorème de THALES, on a

$$\frac{\overline{NC}}{\overline{NA}} = \frac{\overline{MC}}{\overline{MA_1}} \text{ et } \frac{\overline{PA}}{\overline{PB}} = \frac{\overline{MA_1}}{\overline{MB}},$$

et donc,

$$\frac{\overline{MB}}{\overline{MC}}.\frac{\overline{NC}}{\overline{NA}}.\frac{\overline{PA}}{\overline{PB}} = \frac{\overline{MB}}{\overline{MC}}.\frac{\overline{MC}}{\overline{MA_1}}.\frac{\overline{MA_1}}{\overline{MB}} = 1.$$

2ème solution. Soit h_1 l'homothétie de centre M et de rapport $k_1 = \frac{\overline{MB}}{\overline{MC}}$, de sorte que $h_1(C) = B$. Soit h_2 l'homothétie de centre N et de rapport $k_2 = \frac{\overline{NC}}{\overline{NA}}$, de sorte que $h_2(A) = C$.

Maintenant, le produit k_1k_2 peut-il être égal à 1? Si c'était le cas, on aurait $\frac{\overline{MB}}{\overline{MC}}\frac{\overline{NC}}{\overline{NA}}=1$ et donc, $\frac{\overline{MB}}{\overline{MC}}=\frac{\overline{NA}}{\overline{NC}}$. La réciproque du théorème de THALES permettrait alors d'affirmer que (MN) et (AB) sont parallèles, ce qui n'est pas. Donc, $k_1k_2 \neq 1$ et d'après l'exercice 7, $h_1 \circ h_2$ est une homothétie. Puisque $h_1 \circ h_2$ transforme A en B, son centre est sur la droite (AB). Mais d'autre part, son centre est sur la droite des centres (MN). Finalement, le centre de $h_1 \circ h_2$ est le point d'intersection de (MN) et (AB), c'est-à-dire le point P.

Mais alors, le rapport de $h_1 \circ h_2$ vaut également $\frac{\overline{PB}}{\overline{PA}}$. Ainsi, $\frac{\overline{MB}}{\overline{MC}} \frac{\overline{NC}}{\overline{NA}} = \frac{\overline{PB}}{\overline{PA}}$ et finalement, $\frac{\overline{MB}}{\overline{MC}} \frac{\overline{NC}}{\overline{NA}} \frac{\overline{PA}}{\overline{PB}} = 1$.

3ème solution. On se place dans le repère $\mathscr{R} = (A, \overrightarrow{AB}, \overrightarrow{AC})$. Dans ce repère, les coordonnées des différents points sont : A(0,0), B(1,0), C(0,1), M(m,1-m), N(0,n) et P(p,0) où m, n et p sont distincts de 0 et de 1. Les coordonnées de \overrightarrow{MB} sont (1-m,m-1) et celles de \overrightarrow{MC} sont (-m,m). Par suite, $\overrightarrow{mMB} = (m-1)\overrightarrow{MC}$ et finalement, $\frac{\overline{MB}}{\overline{MC}} = \frac{m-1}{m}$. On trouve de même $\frac{\overline{NC}}{\overline{NA}} = \frac{n-1}{n}$ et $\frac{\overline{PA}}{\overline{PB}} = \frac{p}{p-1}$. Finalement,

$$\frac{\overline{MB}}{\overline{MC}}\frac{\overline{NC}}{\overline{NA}}\frac{\overline{PA}}{\overline{PB}} = \frac{(m-1)(n-1)p}{mn(p-1)}.$$

Maintenant,

$$\begin{split} M, N & \text{ et } P \text{ align\'es} \ \Leftrightarrow \left| \begin{array}{cc} -m & p-m \\ m+n-1 & m-1 \end{array} \right| \Leftrightarrow -m(m-1)-(p-m)(m+n-1) = 0 \\ & \Leftrightarrow -pm-pn+p+mn = 0 \Leftrightarrow mn = p(m+n-1) \Leftrightarrow mn \\ & = -p(m-1)(n-1)+pmn \Leftrightarrow p(m-1)(n-1) = mn(p-1) \\ & \Leftrightarrow \frac{(m-1)(n-1)p}{mn(p-1)} = 1 \end{split}$$

Montrons maintenant que si $\frac{\overline{MB}}{\overline{MC}} \frac{\overline{NC}}{\overline{NA}} \frac{\overline{PA}}{\overline{PB}} = 1$, alors les points M, N et P sont alignés. Pour cela, vérifions tout d'abord que (MN) n'est pas parallèle à (AB). Dans le cas contraire, le théorème de THALES fournirait $\frac{\overline{MB}}{\overline{MC}} \frac{\overline{NC}}{\overline{NA}} =$ 1 et donc $\frac{\overline{PA}}{\overline{PB}} = 1$, puis $\overline{PA} = \overline{PB}$ et finalement $\overline{AB} = 0$, ce qui n'est pas.

Par suite, $\stackrel{FB}{\text{la}}$ droite (MN) coupe la droite (AB) en un point P_1 vérifiant d'après le début de l'exercice

 $\frac{\overline{MB}}{\overline{MC}}\frac{\overline{NC}}{\overline{NA}}\frac{\overline{P_1A}}{\overline{P_1B}}=1$. On en déduit que $\frac{\overline{P_1A}}{\overline{P_1B}}=\frac{\overline{PA}}{\overline{PB}}$. Notons k la valeur commune de ce rapport. On a déjà que $k\neq 1$, ou encore $1-k\neq 0$. Par suite, $P_1=\text{bar}\{A(1),B(-k)\}=P$, ce qui montre que les points M, N et P sont alignés.

Correction de l'exercice 11 ▲

Notons $\mathscr E$ l'ensemble cherché.

Tout d'abord, pour tout réel θ , $1 + \sin(2\theta) \ge 0$, $1 - \sin(2\theta) \ge 0$ puis $\sqrt{1 + \sin(2\theta)} + \sqrt{1 - \sin(2\theta)} > 0$, car $\sin(2\theta)$ ne peut valoir simultanément 1 et -1. La fonction $r \mapsto r(\theta)$ est donc définie sur \mathbb{R} , clairement 2π périodique.

Ainsi,

$$M(\theta + 2\pi) = [r(\theta + 2\pi), \theta + 2\pi] = [r(\theta), \theta + 2\pi] = M(\theta).$$

On obtient donc l'ensemble complet quand θ décrit un intervalle de longueur 2π comme $[-\pi, \pi]$ par exemple. La fonction $r \mapsto r(\theta)$ est plus paire. Par suite,

$$M(-\theta) = [r(-\theta), -\theta] = [r(\theta), -\theta] = s_{(Ox)}(M(\theta)).$$

On construit l'ensemble des points correspondant à $\theta \in [0, \pi]$ et on obtient l'ensemble complet par symétrie orthogonale d'axe (Ox).

Pour $\theta \in [0, \pi]$, on a clairement $r(\pi - \theta) = r(\theta)$. Par suite,

$$M(\pi - \theta) = [r(\pi - \theta), \pi - \theta] = [r(\theta), \pi - \theta] = s_{(O_V)}(M(\theta)).$$

On construit l'ensemble des points correspondant à $\theta \in [0, \frac{\pi}{2}]$ et on obtient l'ensemble complet par symétrie orthogonale d'axe (Oy) puis par symétrie orthogonale d'axe (Ox).

Pour $\theta \in [0, \frac{\pi}{2}]$, on a clairement $r(\frac{\pi}{2} - \theta) = r(\theta)$. Par suite, en notant (Δ) la droite d'équation y = x,

$$M(\frac{\pi}{2}-\theta)=[r(\frac{\pi}{2}-\theta),\frac{\pi}{2}-\theta]=[r(\theta),\frac{\pi}{2}-\theta]=s_{(\Delta)}(M(\theta)).$$

On construit l'ensemble des points correspondant à $\theta \in [0, \frac{\pi}{4}]$ et on obtient l'ensemble complet par symétrie orthogonale d'axe (Δ) puis par symétrie orthogonale d'axe (Oy) et enfin par symétrie orthogonale d'axe (Ox). Maintenant, pour $\theta \in [0, \frac{\pi}{4}]$,

$$\begin{split} \frac{1}{\sqrt{1+\sin(2\theta)} + \sqrt{1-\sin(2\theta)}} &= \frac{1}{\sqrt{1+\cos(\frac{\pi}{2}-2\theta)} + \sqrt{1-\cos(\frac{\pi}{2}-2\theta)}} \\ &= \frac{1}{\sqrt{2\cos^2(\frac{\pi}{4}-\theta)} + \sqrt{2\sin^2(\frac{\pi}{4}-\theta)}} = \frac{1}{\sqrt{2}\cos(\frac{\pi}{4}-\theta) + \sqrt{2}\sin(\frac{\pi}{4}-\theta)} \\ &= \frac{1}{2\cos(\frac{\pi}{4}-(\frac{\pi}{4}-\theta))} = \frac{1}{2\cos\theta}. \end{split}$$

En notant x et y les coordonnées d'un point M, on a alors

$$M \in \mathscr{E} \Leftrightarrow r = \frac{1}{2\cos\theta} \Leftrightarrow r\cos(\theta) = \frac{1}{2} \Leftrightarrow x = \frac{1}{2}.$$

D'où le graphique :

Correction de l'exercice 12 A

Il revient au même de démontrer que, si le plan est rapporté à un repère orthonormé, il n'existe pas de triangle équilatéral dont les sommets ont pour coordonnées des nombres entiers.

Le plan est muni d'un repère orthonormé direct. Soient A, B et C trois points deux à deux distincts, non alignés et à coordonnées entières. On sait que $\cos(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{||\overrightarrow{AB}||.||\overrightarrow{AC}||}$ et $\sin(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\det(\overrightarrow{AB}, \overrightarrow{AC})}{||\overrightarrow{AB}||.||\overrightarrow{AC}||}$. Par suite, ou bien le triangle (ABC) est rectangle en A (et n'est donc pas équilatéral), ou bien

 $\tan(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\det(\overrightarrow{AB}, \overrightarrow{AC})}{\overrightarrow{AB}.\overrightarrow{AC}}$. Dans ce dernier cas, $\tan(\overrightarrow{AB}, \overrightarrow{AC})$ est un quotient de deux nombres entiers, et est donc un rationnel. Malheureusement, pour un triangle équilatéral, la tangente de chacun de ses angles vaut $\sqrt{3}$ qui n'est pas un rationnel.

Quand le repère est orthonormé, il n'existe pas de triangle équilatéral dont les sommets sont à coordonnées entières.

Correction de l'exercice 13

Soit f la transformation considérée.

- 1. f est la translation de vecteur $\vec{u}(3,-1)$.
- 2. $\omega = 2\omega + 3 \Leftrightarrow \omega = -3$. f est l'homothétie de rapport 2 et de centre $\Omega(-3,0)$.
- 3. $\omega = i\omega + 1 \Leftrightarrow \omega = \frac{1}{2}(1+i)$. Comme $i = e^{i\pi/2}$, f est la rotation d'angle $\frac{\pi}{2}$ et de centre $\Omega(\frac{1}{2}, \frac{1}{2})$.
- 4. $\omega = (1-i)\omega + 2 + i \Leftrightarrow \omega = 1-2i$. Comme $1-i = \sqrt{2}e^{-i\pi/4}$, f est la similitude de centre $\Omega(1,-2)$, de rapport $\sqrt{2}$ et d'angle $-\frac{\pi}{4}$.

Correction de l'exercice 14 A

1. Le fait que (D) et (D') soient sécantes équivaut à $ab' - a'b \neq 0$. Soit $A(x_A, y_A)$ le point d'intersection de (D) et (D').

Si (Δ) est une droite ayant une équation de la forme $\lambda(ax+by+c)+\mu(a'x+b'y+c')=0, (\lambda,\mu)\neq(0,0)$ alors, puisque

$$\lambda(ax_A + by_A + c) + \mu(a'x_A + b'y_A + c') = \lambda.0 + \mu.0 = 0,$$

le point A appartient à (Δ) .

Réciproquement, soit (Δ) une droite d'équation $\alpha x + \beta y + \gamma = 0$, $(\alpha, \beta) \neq (0, 0)$. Soit \overrightarrow{v} le vecteur de coordonnées (α, β) . Puisque $ab' - a'b \neq 0$, les deux vecteurs $\overrightarrow{u}(a,b)$ et $\overrightarrow{u}'(a',b')$ ne sont pas colinéaires. Mais alors, la famille $(\overrightarrow{u}, \overrightarrow{u}')$ est une base du plan (vectoriel). Par suite, il existe $(\lambda, \mu) \neq (0,0)$ (car $\overrightarrow{v} \neq \overrightarrow{0}$) tel que $\overrightarrow{v} = \lambda \overrightarrow{u} + \mu \overrightarrow{u}'$, ou encore tel que $\alpha = \lambda a + \mu a'$ et $\beta = \lambda b + \mu b'$. Toute droite (Δ) admet donc une équation cartésienne de la forme $\lambda(ax+by) + \mu(a'x+b'y) + \gamma = 0$, $(\lambda, \mu) \neq (0,0)$.

Maintenant, si $A \in (\Delta)$, alors

$$\gamma = -\lambda (ax_A + by_A) + \mu (a'x_A + b'y_A) = -\lambda (-c) - \mu (-c') = \lambda c + \mu c'.$$

Finalement, si $A \in (\Delta)$, (Δ) admet une équation de la forme $\lambda(ax + by + c) + \mu(a'x + b'y + c') = 0$, $(\lambda, \mu) \neq (0,0).$

2. Les deux droites (D) et (D') considérées sont bien sécantes car $5.2 - 7(-3) = 31 \neq 0$. Notons A leur point d'intersection et B le point de coordonnées (1,0). B n'est sur aucune des deux droites considérées de sorte qu'il existe une et seule droite, notée (Δ) , solution du problème posé.

Puisque (Δ) passe par A, (Δ) a une équation de la forme $\lambda(5x+7y+1)+\mu(-3x+2y+1)=0$. Il est clair que l'on ne peut avoir $\lambda = 0$ (car (Δ) n'est pas (D')) et après division par λ , l'équation s'écrit sous la forme (5x+7y+1)+k(-3x+2y+1)=0 où k est un réel. Maintenant, (Δ) passe par B si et seulement si 6-2k=0 ou encore k=3.

Une équation cartésienne de (Δ) est donc (5x+7y+1)+3(-3x+2y+1)=0 ou encore -4x+13y+4=

3. Soit M(x, y) un point du plan.

$$\forall m \in \mathbb{R}, \ M \in (D_m) \Leftrightarrow \forall m \in \mathbb{R}, \ (2m-1)x + (m+1)y - 4m - 1 = 0 \Leftrightarrow \forall m \in \mathbb{R}, \ m(2x+y-4) - x + y - 1 = 0$$
$$\Leftrightarrow \begin{cases} 2x + y - 4 = 0 \\ -x + y - 1 = 0 \end{cases} \Leftrightarrow x = 1 \text{ et } y = 2$$

Toutes les droites (D_m) passent par le point A(1,2).

La droite (D_{-1}) passe par A et est parallèle à (Oy). Ensuite, pour $m \neq -1$, (D_m) est la droite passant par A et de coefficient directeur $f(m) = \frac{-2m+1}{m+1} = -2 + \frac{3}{m+1}$. Quand m décrit $\mathbb{R} \setminus \{-1\}$, f(m) prend toutes les valeurs réelles sauf -2.

La droite passant par A de coefficient directeur -2 (et donc d'équation y = -2x + 4) n'est pas une droite (D_m) . Toute autre droite passant par A est une droite (D_m) .