Część analityczna

0	2	1	4	10	3	9	6		
1	6	3	0	2	8	4			
2	0	5	11	8	4	1	6		
3	7	10	1	9	5	11	8	0	
4	6	8	2	0	1				
5	7	2	3						
6	4	1	8	0	2				
7	3	5	10	8					
8	9	2	6	4	11	1	3	10	7
9	8	11	3	10	0				
10	3	7	9	0	8				
11	9	2	8	3					

Tabela 1. Graf w postaci listy sąsiedztwa

Zadanie 1.

Rysunek 1. Szkic grafu na podstawie listy sąsiedztwa z tabeli 1

Zadanie 2.

Dla poprawy czytelności rysunku krawędzie ani ich wagi nie zostały na nim podpisane. Krawędzie zostały nazwane według schematu: [numer_wierzchołka_na_jednym_z_końców_krawędzi]e[numer_wierzchołka_na_drugim_końcu_krawędzi]

	0e1	0e2	0e3	0e4	0e6	0e9	0e10	1e2	1e3	1e4	1e6	1e8	2e4	2e5	2e6	2e8	2e11	3e5	3e7	3e8	3e9	3e10	3e11	4e6	4e8	5e7	6e8	7e8	7e10	8e9	8e10	8e11	9e10	9e11
0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	1	0	0	0	0	0	1	0	0	0	0	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
6	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	1	0	0	0	0	1	0	1	1	0	1	1	1	0	0
9	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	1
10	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	1	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	1

Tabela 2. Macierz incydencji dla grafu z rysunku 1

Krawędź	0e1	0e2	0e3	0e4	0e6	0e9	0e10	1e2	1e3	1e4	1e6	1e8	2e4	2e5	2e6	2e8	2e11	3e5	3e7	3e8	3e9	3e10	3e11	4e6	4e8	5e7	6e8	7e8	7e10	8e9	8e10	8e11	9e10	9e11
Waga	10	6	5	15	14	10	7	5	8	4	3	6	5	7	4	8	6	5	12	4	10	9	5	5	4	10	6	15	15	4	10	6	5	3

Tabela 3. Wagi krawędzi

Zadanie 3.

Graf jest Hamiltonowski, ponieważ istnieje cykl Hamiltona. Przykładowy cykl Hamiltona: $0 \to 6 \to 1 \to 4 \to 2 \to 5 \to 7 \to 10 \to 8 \to 11 \to 9 \to 3 \to 0$.

Zadanie 4.

Graf nie jest Eulerowski, ponieważ istnieją wierzchołki, które mają nieparzysty stopień, np. deg(0) = 7, deg(2) = 7, deg(5) = 3. Graf nie jest także pół-Eulerowski, ponieważ istnieje więcej niż dwa wierzchołki, które mają nieparzysty stopień, np. wymienione wyżej deg(0) = 7, deg(2) = 7, deg(5) = 3.

Zadanie 5.

Rysunek 2. Graf pokolorowany wierzchołkowo

Rysunek 3. Graf pokolorowany krawędziowo

Zadanie 6.

Liczba chromatyczna grafu jest równa 5. Indeks chromatyczny grafu jest równy 9.

Zadanie 7.

Wagi poszczególnych krawędzi zostały przedstawione w tabeli 3. Na ich podstawie wyznaczono minimalne drzewo rozpinające postaci, które przedstawiono na rysunku 4.

Rysunek 4. Minimalne drzewo rozpinające dla grafu z rysunku 1 dla wag z tabeli 3

Suma wag krawędzi jest równa 51.

Zadanie 8.

Rysunek grafu nie jest planarny. Nie da się go również narysować w taki sposób, aby był planarny. Z twierdzenia Eulera wynika, że jeśli graf jest planarny (i $n \ge 3$) to $m \le 3 \cdot n - 6$, gdzie m oznacza liczbę krawędzi, a n oznacza liczbę wierzchołków. Dla grafu z rysunku 1 m = 34 i n = 12. Podstawiając te wartości do wzoru otrzymano $m = 34 \le 3 \cdot 12 - 6 = 30$.

Graf zawiera też w sobie graf K5 jako minor (rysunek 5), zatem z twierdzenia Kuratowskiego także wynika, że graf nie jest planarny.

Rysunek 5. Podgraf K5 grafu