Conjuntos inductivos. Principio de Inducción Primitiva.

Pablo Verdes (2020)

LCC

Dictado 2025

Conjuntos inductivos

- Ejemplo clásico: números naturales (N)
 - $\mathbf{0}$ $1 \in \mathbb{N}$

```
(Listo? No, obs. que podría ser \mathbb{N} = \{1, 1.5, 2, 2.5, 3, 3.5, \ldots\})
```

 $\ensuremath{ \textcircled{3}}$ los elementos obtenidos aplicando las reglas anteriores son los únicos elementos de $\ensuremath{ \mathbb{N}}$

```
(entonces ahora sí \mathbb{N} = \{1, 2, 3, 4, 5, \ldots\})
```

- Números pares (P)
 - **1** 0 ∈ *P*
 - 2 si $n \in P$ entonces $n + 2 \in P$
 - O los elementos obtenidos aplicando las reglas anteriores son los únicos elementos de P

Conjuntos inductivos

- En términos generales, una definición inductiva de un conjunto S comprende base, inducción y clausura:
 - ▶ Base: conjunto de uno o más elementos 'iniciales' de S.
 - ▶ Inducción: una o más reglas para construir 'nuevos' elementos de *S* a partir de 'viejos' elementos de *S*.
 - Clausura: idea de que S consiste exactamente de los elementos obtenidos a partir de los básicos, aplicando las reglas de inducción.
- Matemáticamente, la manera más elegante de clausurar es hacer que S sea el **mínimo** conjunto que satisface las condiciones de base e inducción: si T también las satisface, entonces $S \subseteq T$.
- Alternativamente: *S* es la intersección de todos los conjuntos que satisfacen las condiciones de base e inducción.

Conjuntos inductivos

En Ciencias de la Computación, los *conjuntos definidos inductivamente* (también conocidos como *definidos recursivamente*) se usan típicamente para definir:

- lenguajes de programación (via gramáticas),
- fórmulas lógicas bien formadas (o sintácticamente correctas),
- estructuras de datos dinámicas (árboles binarios, listas),
- fractales en computación gráfica,
- lenguajes en programación funcional.

Conjuntos inductivos: ejemplos

- Sea S el mínimo conjunto de números naturales tal que:
 - ▶ (Base) $3 \in S$
 - ▶ (Inducción) si $x, y \in S$ entonces $x + y \in S$
- Sea Σ^* el mínimo conjunto de cadenas sobre el alfabeto Σ tal que:
 - ▶ (Base) $\lambda \in \Sigma^*$ (λ es la cadena vacía)
 - ▶ (Inducción) si $w \in \Sigma^*$ y $x \in \Sigma$ entonces $wx \in \Sigma^*$
- Sea L_1 el mínimo conj. de cadenas sobre el alfabeto $\{0,1\}$ tal que:
 - ▶ (Base) $\lambda \in L_1$
 - ▶ (Inducción) si $w \in L_1$ entonces $0w1 \in L_1$
- Sea L_2 el mínimo conj. de cadenas sobre el alfabeto $\{0,1\}$ tal que:
 - ▶ (Base) si $x \in \{\lambda, 0, 1\}$ entonces $x \in L_2$
 - ▶ (Inducción) si $w \in L_2$ y $x \in \{0,1\}$ entonces $xwx \in L_2$

Conjuntos inductivos: ejemplos

• Un conjunto de expresiones aritméticas bien formadas de 3 variables:

Sea F el mínimo conjunto de cadenas sobre el alfabeto $\{x,y,z,0,1,2,\ldots 9,+,-,\times,/,(,)\}$ tal que:

- ▶ (Base) si $f \in \{x, y, z, 0, 1, 2, ... 9\}$ entonces $f \in F$
- ▶ (Inducción) si $f, g \in F$ entonces $(f + g), (f g), (f \times g), (f/g) \in F$

Ejemplos:
$$2, x, (x + 2), (x/y), (3/0), (x \times (y + z)), ((x \times x) \times x)$$

árboles binarios:

Definimos al conjunto B de árboles binarios sobre un alfabeto Σ como el mínimo conjunto tal que:

- ▶ (Base) $\langle \rangle \in B$
- ▶ (Inducción) si $L, R \in B$ y $x \in \Sigma$ entonces $\langle L, x, R \rangle \in B$

Conjuntos inductivos: pertenencia

• Para probar que un elemento **pertenece** a un conjunto inductivo debemos dar su **secuencia de formación**.

• Ejemplo:

Habíamos definido L_2 como el mínimo conjunto de cadenas sobre el alfabeto $\{0,1\}$ tal que:

- ▶ (Base) si $x \in \{\lambda, 0, 1\}$ entonces $x \in L_2$
- ▶ (Inducción) si $w \in L_2$ y $x \in \{0,1\}$ entonces $xwx \in L_2$

 $110111011 \in L_2$ pues posee la siguiente secuencia de formación:

$$1 \Rightarrow 111 \Rightarrow 01110 \Rightarrow 1011101 \Rightarrow 110111011$$

Conjuntos inductivos: pertenencia

- Para probar que un elemento no pertenece a un conjunto inductivo, podemos:
 - mostrar que no existe una secuencia de formación para el elemento en cuestión, o
 - mostrar que si se quita al elemento del conjunto se siguen cumpliendo las cláusulas, o
 - ▶ probar cierta propiedad del conjunto que sirva para excluir al elemento.
- Esta última será la estrategia preferida. Por ejemplo, para probar que $110111010 \not\in L_2$, podríamos probar que todas las cadenas de L_2 comienzan y terminan con el mismo caracter.
- Para demostrar que los elementos de un conjunto inductivo satisfacen cierta propiedad, conviene usar el Principio de Inducción Primitiva que veremos a continuación.

- Idea intuitiva: sabemos exactamente cómo se construyen los elementos de un conjunto inductivo, entonces podemos usar esta información para demostrar propiedades sobre ellos.
- **Ejemplo:** Habíamos definido a S como el mínimo conjunto de números naturales tal que:
 - ▶ (Base) 3 ∈ *S*
 - ▶ (Inducción) si $x, y \in S$ entonces $x + y \in S$

Para probar que todos los elementos de S son múltiplos de S, debemos probar que:

- (Base) 3 es múltiplo de 3
- (Inducción) si x, y son múltiplos de 3, entonces x + y es múltiplo de 3

Más generalmente, para probar que todos los elementos de S cumplen cierta propiedad P, debemos probar que:

- ▶ (Base) *P*(3) vale
- ► (Inducción) si P(x), P(y) entonces P(x + y)

Podemos entonces enunciar el:

Principio de Inducción Primitiva para S

Sea P una propiedad que verifica:

- \triangleright P(3) se cumple
- si P(x), P(y) se cumplen, entonces P(x + y) se cumple

Entonces P(x) se cumple para todo $x \in S$.

• Principio de Inducción Primitiva para L_1

Sea P una propiedad que verifica:

- \triangleright $P(\lambda)$ se cumple
- ▶ si P(w) se cumple, entonces P(0w1) se cumple

Entonces P(x) se cumple para todo $x \in L_1$.

árboles binarios:

Habíamos definido al conjunto B de árboles binarios sobre un alfabeto Σ como el mínimo conjunto tal que:

- ▶ (Base) $\langle \rangle \in B$
- ▶ (Inducción) si $L, R \in B$ y $x \in \Sigma$ entonces $\langle L, x, R \rangle \in B$

Principio de Inducción Primitiva para B

Sean $L, R \in B$ y $x \in \Sigma$. Sea P una propiedad que verifica:

- ▶ $P(\langle \rangle)$ se cumple
- ▶ si P(L) y P(R) valen, entonces $P(\langle L, x, R \rangle)$ vale

Entonces P(x) se cumple para todo $x \in B$.

- En la inducción primitiva o estructural, la estructura de la demostración de que cada elemento de un conjunto inductivo S cumple con cierta propiedad P es análoga a la estructura de la definición inductiva de S.
- Más precisamente, dicha demostración consta de dos partes:
 - Base: probar que cada elemento del conjunto B cumple la propiedad P.
 - Inducción: suponiendo que todos los argumentos de una función constructora cumplen la propiedad P, probar que el elemento construido también cumple la propiedad P.

Elementos esenciales de una demostración por inducción estructural:

- Identificar claramente la propiedad P que se pretende demostrar por inducción estructural. Debe tratarse de una afirmación sobre todos los elementos de un conjunto inductivo.
- Etiquetar claramente los casos base e inductivo como tales.
- Al discutir el caso inductivo propiamente dicho, enunciar claramente la Hipótesis de Inducción (H.I.) y lo que se pretende demostrar.
- En la demostración, indicar explícitamente dónde se utiliza la H.I..
 Si no la utiliza en ninguna parte, es probable que la demostración sea incorrecta.

Ejemplo:

- Habíamos definido a S como el mínimo conj. de núm. nat. tal que:
 - ▶ (Base) $3 \in S$
 - ▶ (Inducción) si $x \in S$ e $y \in S$ entonces $x + y \in S$
- Principio de Inducción Primitiva para S

Sea P una propiedad que verifica:

- \triangleright P(3) se cumple.
- ▶ Si P(x), P(y) se cumplen, entonces P(x + y) se cumple.

Entonces P(x) se cumple para todo $x \in S$.

Veamos que todos los elementos de S son múltiplos de 3 (pizarrón).