A Appendix

Theorem 1 (Well-Definedness). A program p either reduces to a value v; starts an infinitely long chain of reductions; or reduces to exn.

Proof. The reduction relation satisfies unique decomposition, which means that an expression is either a value, exn, or it can be uniquely partitioned into an evaluation context and a \rightarrow redex or exn. Using a progress-and-preservation approach, we can then prove that this subject is preserved across all reductions.

Lemma 1 (Preservation: \rightarrow). If $\hat{\rho} \models_e e$ and $e \rightarrow e'$, then $\hat{\rho} \models_e e'$.

Proof. By cases on \rightarrow , using the corresponding analysis rules.

Corollary 1 (Preservation: \longrightarrow). If $\widehat{\rho} \models_e e$ and $e \longmapsto e'$, then $\widehat{\rho} \models_e e'$.

Theorem 2 (Soundness). For all $\widehat{\rho} \models p, p = d \dots e, if e \mapsto_{d \dots} E[v^{\ell}], \widehat{v} \in \widehat{\rho}(\ell)$.

Proof. By induction on the length of \mapsto , using Corollary 1.

$$\textbf{Lemma 2.} \ \textit{If} \ (\widehat{\rho}, \widehat{\mathcal{D}}, \widehat{\mathcal{S}}, \widehat{\mathcal{F}}) \models p, \ \textit{then} \ \xi \llbracket \widehat{\rho} \rrbracket_{\varphi \llbracket p \rrbracket_{\widehat{\rho}\widehat{\mathcal{D}}\widehat{\mathcal{S}}\widehat{\mathcal{F}}}} \models \varphi \llbracket p \rrbracket_{\widehat{\rho}\widehat{\mathcal{D}}\widehat{\mathcal{S}}\widehat{\mathcal{F}}}.$$

Proof. Let $\widehat{\rho}' = \xi \llbracket \widehat{\rho} \rrbracket_{\varphi \llbracket p \rrbracket_{\widehat{\rho}\widehat{D}\widehat{S}\widehat{\mathcal{F}}}}$. Proceed by cases on the result of $\varphi_e \llbracket e^\ell \rrbracket_{\widehat{\rho}\widehat{D}\widehat{S}\widehat{\mathcal{F}}}$, where e is a subexpression in p. We drop the subscript arguments of φ_e for conciseness.

- If $\varphi_e[\![e^\ell]\!] = (\mathtt{delay}^* \ \varphi_e[\![e]\!]^\ell)^{\ell_1}$, by the $[\![delay]\!]$ analysis rule, three constraints must hold:
 - 1. $(\text{delay}^* \ \ell) \in \widehat{\rho}'(\ell_1)$
 - $2. \widehat{\rho}' \models_e \varphi_e \llbracket e \rrbracket^\ell$
 - 3. $\widehat{\rho}'(\ell) \subseteq \widehat{\rho}'(\ell_1)$

Constraints 1 and 3 hold by ξ , part (2). For constraint 2, we know from (†) in φ_e and the analysis rules that an environment satisfying $\varphi_e[\![e]\!]$ has delay* values that may not be in $\widehat{\rho}$. However, we also see that any inserted delay*s in $\varphi_e[\![e]\!]$ is exactly tracked by corresponding darg values in $\widehat{\rho}$. Thus constraint 2 holds as well, due to part (1) of ξ .

- If $\varphi_e[\![e^\ell]\!] = (\text{force } \varphi_e[\![e]\!]^\ell)^{\ell_1}$, by the [force] analysis rule, two constraints must hold:
 - 1. $\widehat{\rho}' \models_e \varphi_e \llbracket e \rrbracket^\ell$
 - 2. $\forall \widehat{v} \in \widehat{\rho}'(\ell), \widehat{v} \notin \text{delay} : \widehat{v} \in \widehat{\rho}'(\ell_1)$

Constraint 1 holds by the same reasoning as in the delay* case, using (‡) in φ_e , and constraint 2 holds by part (3) of ξ 's definition.

All the other cases follow similar reasoning.

Theorem 3 (Safety). For all $(\widehat{\rho}, \widehat{\mathcal{D}}, \widehat{\mathcal{S}}, \widehat{\mathcal{F}}) \models p$, if $\varphi[\![p]\!]_{\widehat{\rho}\widehat{\mathcal{D}}\widehat{\mathcal{S}}\widehat{\mathcal{F}}} = p' = d \dots e$, then $e \not\mapsto_{d \dots} dexn$, and $e \not\mapsto_{d \dots} dexn^*$.

Proof. Let $\widehat{\rho}' = \xi[\![\widehat{\rho}]\!]_{\varphi[\![p]\!]_{\widehat{\otimes}\widehat{\Omega}\widehat{\otimes}\widehat{\Xi}}}$. By lemma 2, $\widehat{\rho}' \models p'$.

 Since dexn can only be generated if a delay value appears in a strict position, it is sufficient to show:

$$e \not\mapsto_{d...} E[S[(\mathtt{delay}\ e_1^{\ell_1})^{\ell}]]$$

We prove the claim by contradiction.

Suppose $e \mapsto_{d...} E[S[(\mathtt{delay}\ e_1^{\ell_1})^{\ell}]]$. By soundness (theorem 2) applied to $\widehat{\rho}'$ and p', ($\mathtt{delay}\ \ell_1$) $\in \widehat{\rho}'(\ell)$. Then from the definition of ξ , ($\mathtt{delay}\ \ell_1$) $\in \widehat{\rho}(\ell)$. From the analysis rules in section 3, since we are at a strict position, a \mathtt{delay} in $\widehat{\rho}(\ell)$ implies $\ell \in \widehat{\mathcal{F}}$, so φ would have inserted a force around ℓ . However, force $[\] \notin S$ so we have a contradiction.

2. Since dexn* can only be generated if a delay* value appears in a strict position, it is sufficient to show:

$$e \not\mapsto_{d...} E[S[(\mathtt{delay}^*\ e_1^{\ell_1})^\ell]]$$

We prove the claim by contradiction.

Suppose $e \mapsto_{d...} E[S[(\mathtt{delay}^* \ e_1^{\ell_1})^\ell]]$. By soundness (theorem 2), $(\mathtt{delay}^* \ \ell_1) \in \widehat{\rho}'(\ell)$. Then from the definition of ξ , $(\mathtt{darg} \ \ell_1) \in \widehat{\rho}(\ell)$. From the analysis rules in section 3, since we are at a strict position, $(\mathtt{darg} \ \ell_1) \in \widehat{\rho}(\ell)$ implies $(\ell,\ell_1) \in \widehat{\mathcal{F}}$. From the definition of φ , the existence of $(\mathtt{delay}^* \ e_1^{\ell_1})$ also implies that $e_1^{\ell_1}$ is an argument in a function call and that $\ell_1 \in \widehat{\mathcal{D}}$ and $\ell_1 \notin \widehat{\mathcal{S}}$. Finally, since $(\ell,\ell_1) \in \widehat{\mathcal{F}}, \ \ell_1 \in \widehat{\mathcal{D}}, \$ and $\ell_1 \notin \widehat{\mathcal{S}}, \ \varphi$ would have inserted a force around ℓ . However, force $[] \notin S$, so we have a contradiction.