Percentron & Reura Networks

CS 3244 Machine Learning

Feature Extraction/Engineering → Modeling

NUS CS3244: Machine Learning

[W08b] Student Learning Outcome

What did we learn?

1. Describe **techniques** of feature extraction/engineering for different data types

Tabular	Temporal	Image	Text
Domain-specific custom equations Features from counting, aggregation, difference, min, max	 Features from previous values, aggregate statistics, linear regression Wave analysis features 	 RGB image as 3D tensor Color features from RGB histogram Shape features from edge detection Edge detection via Convolution 	 Tokenization Stemming, Lemmatization Stop words Bag-of-Words encoding

2. Describe **issues** when extracting features for various data types

NUS CS3244: Machine Learning

52

Tabular Feature Engineering: Counting, Aggregation, Difference, Min, Max

Sliding Time Window

- Prediction Task: Price Prediction
- Features
 - Moving Average
 - Moving Standard Deviation
 - Moving Range (Min, Max)
 - Moving Trend (Slope of linear fit)

Feature: Edge Detection Kernels (2D)

NUS CS3244: Machine Learning

Feature: Shape Feature Vector

Bag-of-Words (BOW) Encoding

- 1. Preprocess string s to array of words w
- 2. Array of words → One-hot vector (fixed length)
- 3. BOW(w) $\rightarrow x$
- 4. Problem: high dimensions if many words

The word "too" could predict negative sentiment

Week 09A: Learning Outcomes

- 1. Describe the *structure* of **Perceptrons** and how it performs classification
- Understand how Perceptrons are trained with the Perceptron Learning Algorithm
- Understand how to compose multiple Perceptrons into a Neural Network
- 4. Describe how Neural Networks are *trained* with **gradient descent** and **backpropagation** [W09b]

Week 09A: Lecture Outline

- 1. Perceptron
- 2. Perceptron Learning Algorithm (PLA)
- 3. Activation Functions
- 4. Gradient Descent
- 5. Neural Networks
- 6. Backpropagation [W09B]

Perceptron

Linear Classifiers

- Logistic Regression [W04A]
- Linear SVM [W04B]
- Perceptron

Perceptron

- What is a perceptron?
- How to train it?

Perceptron

Diagram credits: Dhp1080 - Own work, CC BY-SA 3.0 via Wikimedia Commons.

Line Equation

$$x_2 = mx_1 + c$$

$$w_2 x_2 + w_1 x_1 + w_0 = 0$$

$$\sum_{r=0}^{n} w_r x_r = 0, \quad x_0 = 1$$

Linear Classification

$$x_2 = mx_1 + c$$

$$w_2x_2 + w_1x_1 + w_0 = 0$$

$$\sum_{r=0}^{n} w_r x_r = 0, \quad x_0 = 1$$

$$\sum_{r=0}^{n} w_r x_r > 0 \qquad \sum_{r=0}^{n} w_r x_r \le 0$$

$$\hat{y} = \operatorname{sgn}\left(\sum_{r=0}^{n} w_r x_r\right), \operatorname{sgn}(z) = \begin{cases} +1 & z > 0\\ -1 & z \le 0 \end{cases}$$

https://en.wikipedia.org/wiki/Sign function

Perceptron

Perceptron Classification

Perceptron Learning Algorithm (PLA)

Perceptron Learning Algorithm (PLA)

- 1. Initialize weights w
 - Could be all zero, or random small values
- 2. For each instance i with features $x^{(i)}$
 - Classify $\hat{y}^{(i)} = \operatorname{sgn}(\mathbf{w}^{\top} \mathbf{x}^{(i)})$
- 3. Select one misclassified instance
 - Update weights: $w \leftarrow w + \Delta w$
- 4. Iterate steps 2 to 3 until
 - Convergence (classification error < threshold), or
 - Maximum number of iterations

How to calculate?

- What direction?
- What magnitude?

Perceptron Weight Update

Vector Distances and Similarity

Cosine Similarity

$$s = \cos(\theta) = \frac{\widehat{\mathbf{y}} \cdot \mathbf{y}}{\|\widehat{\mathbf{y}}\| \|\mathbf{y}\|}$$

Vector Distances and Similarity

Cosine Curve

Image credit:

https://www.open.edu/openlearn/ocw/pluginfile.php/947914/mod_oucontent/oucontent/48949/9eaffc43/9f8315d5/mfs_w4_fig4.jpg

Cosine Similarity

$$s = \cos(\theta) = \frac{\boldsymbol{a} \cdot \boldsymbol{b}}{\|\boldsymbol{a}\| \|\boldsymbol{b}\|}$$

Perceptron Weight Update

Consider this misclassification:

$$y = +1$$
, $\hat{y} = \operatorname{sgn}(w \cdot x) = -1$

•
$$\hat{y} = -1 \Rightarrow w \cdot x \le 0 \Rightarrow \theta = \cos^{-1}\left(\frac{w}{|w|} \cdot \frac{x}{|x|}\right) \ge 90^{\circ}$$

But we want

•
$$\hat{y} = +1 \Rightarrow w \cdot x > 0 \Rightarrow \theta < 90^{\circ}$$

• i.e., w to point in a more similar direction as xAdding x to w will make a more positive result, i.e.,

$$w' = w + x$$

Consider this misclassification:

$$y = -1$$
, $\hat{y} = \operatorname{sgn}(\mathbf{w} \cdot \mathbf{x}) = +1$

•
$$\hat{y} = +1 \Rightarrow w \cdot x > 0 \Rightarrow \theta = \cos^{-1}\left(\frac{w}{|w|} \cdot \frac{x}{|x|}\right) < 90^{\circ}$$

But we want

•
$$\hat{y} = -1 \Rightarrow \mathbf{w} \cdot \mathbf{x} \le 0 \Rightarrow \theta > 90^{\circ}$$

• i.e., w to point in a <u>less similar direction</u> as x

Negating x from w will make a less positive result, i.e.,

$$w' = w - x$$

Perceptron Weight Update

$$y = +1$$
$$\hat{y} = -1$$

$$y - \hat{y} = +2$$
$$\Delta w = +2\eta x$$

$$y = -1$$
$$\hat{y} = +1$$

$$y - \hat{y} = -2$$
$$\Delta w = -2\eta x$$

Perceptron Learning Algorithm

- 1. Initialize weights w
 - Could be all zero, or random small values
- 2. For each instance i with features $x^{(i)}$
 - Classify $\hat{y}^{(i)} = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x}^{(i)})$
- 3. Select one misclassified instance
 - Update weights: $w \leftarrow w + \eta (y \hat{y})x$
- $\begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_r \\ \vdots \\ w_n \end{pmatrix} \leftarrow \begin{pmatrix} w_0 \\ w_1 \\ \vdots \\ w_r \\ \vdots \\ w_n \end{pmatrix} + \eta (y \hat{y}) \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_r \\ \vdots \\ x_n \end{pmatrix}$ $w_r \leftarrow w_r + \eta (y \hat{y}) x_r$

- 4. Iterate steps 2 to 3 until
 - Convergence (classification error < threshold), or
 - Maximum number of iterations

Perceptron Learning Algorithm in Action

Parameters

random seed: separator trail length: run delay (ms):

base width:
width variance:
base height:
height variance:

100

100 50

apply params

cloud size:

step

run

Current Classification

TP	FP	TN	FN	Precision	Recall	F1
20	0	20	0	1.00	1.00	0.50

w(x) = -0.49607365285675603 x + 217

What are the differences? Perceptron vs. Linear SVM

In Slack #lecture

- 1. Write to thread to suggest feature
- 2. Emote (:+1:) to vote for feature

Perceptron

Linear Support Vector Machine (SVM)

What are the differences? Perceptron vs. Linear SVM

In Slack #lecture

- 1. Write to thread to suggest feature
- 2. <u>Emote</u> (:+1:) to vote for feature

Perceptron

- Can select any model to linear => not robust (learns different weights for different initializations)
- Cannot converge on non-linearly separable data

Linear Support Vector Machine (SVM)

- Perceptron of "optimal stability"
- Maximizes margin
- Soft-margin: allows soft error => can
 learn from non-linearity separable data

Extending the Perceptron

- Perceptron is a linear classifier
- Non-linear classifiers
 - Other activation functions
 - Differentiable ones!
 - Multiple perceptrons / neurons
 - Multi-Layer Perceptron (MLP)

Activation Functions

Activation Functions

Step

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0,x)$

https://miro.medium.com/max/1400/0*sIJ-gbjlz0zrz8lb.png

Gradient Descent

Optimization Goal:

Iteratively find w_r with minimum error ε

Credits: Alykhan Tejani's Medium Post

Iterative **steps** in direction towards (local) minimum

Learning Rate η

These graphs are also in the "weight space".

Perceptron Weight Update

Gradient Descent Weight Update

How to calculate?

Binary Cross-Entropy error (for classification)

$$\varepsilon = -y \log \hat{y}$$

Square Error (for regression)

$$\varepsilon = \frac{1}{2}(y - \hat{y})^2$$

Chain Rule

Consider composite function

Lagrange notation

Prime ' indicates first derivative relative to the function argument. This can make writing derivatives more concise. e.g., y'(w) = dy/dw

$$g(x) = g(f(x))$$

$$g = g(f), f = f(x)$$

$$g'(x) = \frac{dg}{dx} = \frac{dg}{df} \frac{df}{dx}$$

Intuition

Rate of change of g relative to x is the product of

- rates of change of g relative to f and
- rates of change of f relative to x

"If

- a car travels 2x fast as a bicycle and
- the bicycle is 4x as fast as a walking man, then the car travels $2 \times 4 = 8$ times as fast as the man."
- George F. Simmons, Calculus with Analytic Geometry (1985)

Chain Rule

Consider a deeper composite function

$$h(x) = h\left(g(f(x))\right)$$

$$h = h(g), \qquad g = g(f), \qquad f = f(x)$$

$$h'(x) = \frac{dh}{dx} = \frac{dh}{dg} \frac{dg}{df} \frac{df}{dx}$$

Chain Rule

Multivariate For single neuron

$$\varepsilon(w) = \varepsilon\left(g(f(w))\right)$$

$$\varepsilon = \varepsilon(g)$$
,

$$\hat{y} = g$$

$$g = g(f)$$

$$\varepsilon = \varepsilon(g), \quad \hat{y} = g, \quad g = g(f), \quad f = f(w)$$

$$\nabla_{\mathbf{w}} \varepsilon = \frac{d\varepsilon}{d\mathbf{w}} = \frac{d\varepsilon}{d\mathbf{g}} \frac{d\mathbf{g}}{d\mathbf{f}} \frac{d\mathbf{f}}{d\mathbf{w}}$$

Gradient of Weighted Sum

$$f = \sum_{r=0}^{n} w_r x_r$$

$$\frac{\partial f}{\partial w_r} = \frac{\partial}{\partial w_r} \left(w_r x_r + \sum_{\rho \neq r} w_\rho x_\rho \right)$$
$$= x_r + 0$$

$$\frac{\partial f}{\partial w_r} = x_r$$

$$f = \mathbf{w} \cdot \mathbf{x} = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

$$\frac{\partial f}{\partial w_r} = \frac{\partial}{\partial w_r} \left(w_r x_r + \sum_{\rho \neq r} w_\rho x_\rho \right) \qquad \frac{\partial f}{\partial w} = \sum_{r=0}^n \frac{\partial f}{\partial w_r} e_r = \begin{pmatrix} \partial f / \partial w_0 \\ \vdots \\ \partial f / \partial w_n \end{pmatrix} = \begin{pmatrix} x_0 \\ \vdots \\ x_r \\ \vdots \\ x_n \end{pmatrix}$$

$$= x_r + 0$$

$$\nabla_{\mathbf{w}} f = \frac{df}{d\mathbf{w}} = \mathbf{x}$$

Chain Rule

Multivariate For single neuron

$$\varepsilon(w) = \varepsilon\left(g(f(w))\right)$$

$$\varepsilon = \varepsilon(g)$$
,

$$\varepsilon = \varepsilon(g), \quad \hat{y} = g, \quad g = g(f), \quad f = \mathbf{w}^{\mathsf{T}} \mathbf{x}$$

$$f = w^{\mathsf{T}} x$$

$$\nabla_{\mathbf{w}} \varepsilon = \frac{d\varepsilon}{d\mathbf{w}} = \frac{d\varepsilon}{d\mathbf{g}} \, \frac{d\mathbf{g}}{d\mathbf{f}} \, \mathbf{x}$$

Calculating gradient for single neuron

Error &

Activation $\hat{y} = g(f)$

Weighted Sum f(w)

$$\frac{1}{3}(y-\hat{y})^2 - (y-\hat{y})^2$$

Square Error
$$\frac{1}{2}(y-\hat{y})^2 - (y-\hat{y})$$
 Sigmoid $\frac{1}{1+e^{-f}}((1-g)g)$

 $\boldsymbol{\chi}$

Binary Cross Entropy

$$-y\log \hat{y}$$

$$-rac{y}{\hat{y}}$$

Advanced:

ReLU

 $\max(0, f)$ [f > 0]

$$[f > 0]$$

Derivative of sigmoid function σ

$$\sigma'(x) = (1 - \sigma(x))\sigma(x)$$

Proof

•
$$\sigma(x) = \frac{e^x}{1 + e^x} = \frac{1}{1 + e^{-x}}$$

Rewrite as compound function

•
$$\sigma(\chi) = \frac{1}{1+\chi}$$
, where $\chi(x) = e^{-x}$

Using chain rule

•
$$\sigma'(x) = \frac{dg}{dx} = \frac{dg}{dx} \frac{dx}{dx} = \frac{-1}{(1+x)^2} (-e^{-x}) = \frac{e^{-x}}{1+e^{-x}} \frac{1}{1+e^{-x}} = \frac{e^{-x}}{1+e^{-x}} \sigma(x)$$

• Notice:
$$1 - \sigma(x) = 1 - \frac{1}{1 + e^{-x}} = \frac{1 + e^{-x} - 1}{1 + e^{-x}} = \frac{e^{-x}}{1 + e^{-x}}$$

Substituting back:

•
$$\sigma'(x) = (1 - \sigma(x))\sigma(x)$$

Calculating gradient for single neuron

Error &

Activation $\hat{y} = g(f)$

Weighted Sum f(w)

Square Error
$$\frac{1}{2}(y-\hat{y})^2 - (y-\hat{y})$$
 Sigmoid $\frac{1}{1+e^{-f}}$ $(1-g)g$

$$(1-g)g$$

 $\boldsymbol{\chi}$

Binary Cross Entropy

$$-y\log \hat{y}$$

$$-\frac{y}{\hat{y}}$$

$$1-a^2$$

$$[f > 0]$$

 $\varepsilon = -y \log \hat{y} = -y \log g = -y \log(\max(0, f)) = -y \log(\max(0, \mathbf{w}^{\mathsf{T}} \mathbf{x}))$

$$\nabla_{\mathbf{w}} \boldsymbol{\varepsilon} = \frac{d\boldsymbol{\varepsilon}}{d\hat{y}} \frac{d\boldsymbol{g}}{d\boldsymbol{f}} \frac{d\boldsymbol{f}}{d\mathbf{w}} = -\frac{y}{\hat{y}} [\boldsymbol{f} > 0] \boldsymbol{x} = -\frac{y}{\max(0, \mathbf{w}^{\mathsf{T}} \boldsymbol{x})} [\mathbf{w}^{\mathsf{T}} \boldsymbol{x} > 0] \boldsymbol{x}$$

Calculating gradient for single neuron

Error &

Activation $\hat{y} = g(f)$

Weighted Sum f(w)

Square Error
$$\frac{1}{2}(y-\hat{y})^2$$
 $-(y-\hat{y})$ Sigmoid $\frac{1}{1+e^{-f}}$ $(1-g)g$

$$\frac{1}{1+e^{-f}}$$

 $\boldsymbol{\chi}$

Binary Cross Entropy

$$-y \log \hat{y}$$
 $-\frac{y}{\hat{y}}$ $\tanh \int \tanh f = 1 - g^2$

$$-\frac{y}{\hat{y}}$$

$$1 - q^2$$

ReLU $\int \max(0, f) [f > 0]$

$$\varepsilon = \frac{1}{2}(y - \hat{y})^2 = \frac{1}{2}(y - g)^2 = \frac{1}{2}(y - \frac{1}{1 + e^{-f}})^2 = \frac{1}{2}(y - \frac{1}{1 + e^{-w^{T}x}})^2$$

$$\nabla_{\mathbf{w}} \boldsymbol{\varepsilon} = \frac{d\boldsymbol{\varepsilon}}{d\hat{y}} \frac{d\boldsymbol{g}}{d\boldsymbol{f}} \frac{d\boldsymbol{f}}{d\mathbf{w}} = -(y - \hat{y})(1 - \hat{y})\hat{y}\boldsymbol{x}$$

44

have a

Extending the Perceptron

- Perceptron is a linear classifier
- Non-linear classifiers
 - Other activation functions
 - Differentiable ones!
 - Multiple perceptrons / neurons
 - Multi-Layer Perceptron (MLP)

```
Feed-forward

Neural Network
```


Artificial Neural Networks (ANN)

W09 Pre-Lecture Task (due before next Mon)

Watch

- 1. <u>But what is a neural network? | Chapter 1, Deep learning</u> (~20 min) by 3Blue1Brown
- 2. The Nervous System, Part 1: Crash Course A&P #8 (~10 min) by CrashCourse

Discuss

- 1. Reflect on how <u>artificial</u> neural networks are different from <u>human</u> neural networks.
- 2. Identify **one** point (no need to write several).
- 3. Post a 1–2 sentence answer to the topic in your tutorial group: #tg-xx

Artificial NNs are inspired by, but not mimicking of Human NNs

1 Layers and Uni-directional inference

Artificial NNs usually uses a sequence of layers with specific order to determine an output. In human brain, there is no fixed order and often async. ... Artificial NN are mostly feed forward; output cannot then affect input. This is unlike Human NNs, which have cyclic loops in the neural structure.

2 Non-diverse neurons and structures [W10]

Artificial NNs are made up of only one type of simple neuron. Human NNs are made up of many kinds of neurons. *Remedy:* Convolutional neuron for images, Recurrent neuron for sequence.

3 Data-specific [W10]

Human NNs can do many task (e.g., recognize sound, image, and text). Artificial NNs, it will only be able to suit one task at a time (e.g., either image or text).

Remedy: CNNs for images and RNNs for text can be combined.

4 Deterministic

For the same input the Artificial NN will give the same output; but this may not apply to Human NNs.

Research: <u>Bayesian neural networks</u> include randomization at inference to predict more robustly.

5 Energy efficiency of computations

Human NNs are more energy efficient than Artificial NN. *Research: Spiking neural networks* are being developed to be lower energy.

6 Forgetting and Unlearning

Human can forget but Artificial NN will not. Once the Artificial NN is trained, it will remember what it learns and it becomes permanent knowledge.

Research: <u>Model unlearning</u> can enable models to forget instances for legal privacy requirements.

Single-Layer Perceptron

Single-Layer Perceptron

Fitting non-linear function with MLP What model weights can model $\hat{y} = |x - 1|$?

Bonus Question:

What <u>activation function(s)</u> *g* should you use for each layer?

2. Emote (:+1:) to vote for weights

Fitting non-linear function with MLP What model weights can model $\hat{y} = |x - 1|$?

$$\boldsymbol{W}^{[1]} = \begin{pmatrix} 1 & w_{01}^{[1]} & w_{02}^{[1]} \\ 0 & w_{11}^{[1]} & w_{12}^{[1]} \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\boldsymbol{x}^{[0]} = \begin{pmatrix} 1 \\ \boldsymbol{x}_1^{[0]} \end{pmatrix}$$

$$\boldsymbol{a}^{[1]} = \boldsymbol{g}^{[1]} \left(\left(\boldsymbol{W}^{[1]} \right)^{\mathsf{T}} \boldsymbol{x}^{[0]} \right)$$

$$= \begin{pmatrix} 1 \\ \mathsf{ReLU} \left(-1 + x_1^{[0]} \right) \\ \mathsf{ReLU} \left(1 - x_1^{[0]} \right) \end{pmatrix}$$

$$\boldsymbol{W}^{[2]} = \begin{pmatrix} w_{01}^{[2]} \\ w_{11}^{[2]} \\ w_{21}^{[2]} \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$$

$$\boldsymbol{a}^{[1]} = \begin{pmatrix} \operatorname{ReLU}\left(x_1^{[0]} - 1\right) \\ \operatorname{ReLU}\left(1 - x_1^{[0]}\right) \end{pmatrix}$$

$$\hat{y}^{[2]} = g^{[2]} \left(\left(W^{[2]} \right)^{\mathsf{T}} a^{[1]} \right)$$

$$= 0$$

$$+ \text{ReLU} \left(-1 + x_1^{[0]} \right)$$

$$+ \text{ReLU} \left(1 - x_1^{[0]} \right)$$

Neural Network (vector notation)

Layer Activation

$$a = g(f(x)), f(x) = \mathbf{w}^{\mathsf{T}} x$$

Single-Layer Perceptron

Multiclass / Multilabel Neural Networks

Single-output Neural Network

(binary classification or scalar regression)

Multiple outputs Neural Network

(Multiple classifications or multivariate regression)

Multiple outputs Neural Network

(Multiclass classification)

NUS CS3244: Machine Learning

Multi-class classification

Sigmoid vs. Softmax

Sigmoid

- *Is prediction true?*
- For **binary** classification

•
$$\sigma(z) = \frac{e^z}{1+e^z}$$

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Multiple Sigmoids

- Which predictions are true?
 - For **multi-label** classification

•
$$\sigma(z_k) = \frac{e^{z_k}}{1 + e^{z_k}}, \ \forall k$$

$$\sigma(\mathbf{z}) = \begin{pmatrix} e^{z_1}/(1+e^{z_1}) \\ \vdots \\ e^{z_N}/(1+e^{z_N}) \end{pmatrix}$$

Softmax

- Which class is most probably true?
- For multiclass classification

•
$$\sigma(z_c) = \frac{e^{z_c}}{\sum_{c=1}^{|C|} (1+e^{z_c})} \boldsymbol{e}_c$$

$$\sigma(z) = \frac{1}{1 + e^{-z}} \qquad \sigma(z) = \begin{pmatrix} e^{z_1}/(1 + e^{z_1}) \\ \vdots \\ e^{z_N}/(1 + e^{z_N}) \end{pmatrix} \qquad \sigma(z) = \frac{\begin{pmatrix} e^{z_1} \\ \vdots \\ e^{z_{|C|}} \end{pmatrix}}{\sum_{c=1}^{|C|} (1 + e^{z_c})} = \frac{e^{z}}{(1 + e^{z}) \cdot 1}$$

Multiple outputs Neural Network

(Multiclass classification)

Multiple outputs Neural Network

(Vector regression) Elements in Softmax a vector \hat{y}_1 z_1 y_1 \hat{y}_c Z_k y_c $\hat{y}_{|C|}$ $Z_{|C|}$ $y_{|C|}$ Layer L-1Output **Ground Truth** Layer *L*

NUS CS3244: Machine Lea $\mathcal{E} = ext{Euclidean distance} = \|y - \widehat{y}\|_2$

Derivatives for calculating gradient

Error $\varepsilon(\hat{y})$		$rac{doldsymbol{arepsilon}}{d\hat{y}}$	Activation $g(f)$	$\frac{dg}{df}$	Weighted Sum $f(w)$
Square Error	$\frac{1}{2}(y-\hat{y})^2$	$-(y-\hat{y})$	Sigmoid $\frac{1}{1+e^{-f}}$	(1-g)g	$w^{T}x$
Binary Cross Entropy	$-y\log \hat{y}$	$-rac{y}{\hat{y}}$	tanh tanh f	$1-g^2$	
Error $\varepsilon(z)$		$rac{darepsilon}{doldsymbol{z}}$	ReLU \max_{10} $\max(0, f)$	[<i>f</i> > 0]	
Categorical Cross Entropy	$-y \cdot \log \widehat{y}$	$\widehat{y} - y$	Softmax $\frac{e^{\mathbf{z}}}{(1 + e^{\mathbf{z}}) \cdot 1}$	$\frac{dg}{dz}$	Advanced: further reading

 $\boldsymbol{\chi}$

Perceptron > Neural Network

- Linear classifiers
- Non-linear classifiers
 - Other activation functions
 - Differentiable ones!
 - Multiple perceptrons / neurons
 - Multi-Layer Perceptron (MLP)

Can only model straight lines

Perceptron > Neural Network

- Linear classifiers
- Non-linear classifiers
 - Other activation functions
 - Differentiable ones!
 - Multiple perceptrons / neurons
 - Multi-Layer Perceptron (MLP)

Can model **multiple** straight lines

Perceptron \rightarrow Neural Network

- Linear classifiers
- Non-linear classifiers
 - Other activation functions
 - Differentiable ones!
 - Multiple perceptrons / neurons
 - Multi-Layer Perceptron (MLP)

Universal Approximation Theorem

- Each neuron contributes a piecewise function
- Many piecewise functions can approximate a curve

Adapted based on Michael A. Nielsen "NN and DL" 2015, Determination Press, CC By-NC 3.0

Gradient Descent for Neural Networks Backpropagation

Wrapping Up

What did we learn?

