УДК 630*812.7

Э. Э. Пауль, кандидат сельскохозяйственных наук, доцент (БГТУ); **А. В. Козел**, кандидат сельскохозяйственных наук, ассистент (БГТУ)

ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ ФОРМУЛ, ИСПОЛЬЗУЕМЫХ ДЛЯ ПЕРЕСЧЕТА ПОКАЗАТЕЛЕЙ ПРОЧНОСТИ ДРЕВЕСИНЫ НА 12%-НУЮ ВЛАЖНОСТЬ

В статье показано, что при пересчете показателей прочности древесины на стандартную 12%-ную влажность применяемые для этой цели пересчетные формулы дают значительную погрешность. Особенно большая погрешность (7–9%) наблюдается при пересчете прочности древесины, испытанной при крайних значениях диапазона связанной влаги (0 и 30%). Установленные величины погрешности в зависимости от влажности древесины в момент ее испытания позволяют внести необходимые коррективы в результаты пересчета по формулам. Предложен также способ более точного пересчета прочности древесины на 12%-ную влажность.

The article snows that while estimating indices of wood strength for the standard 12% moisture content ordinarily used the formulas give a considerable error. Especially a substantial error (7–9%) takes place for estimation of the strength of wood tested for the extreme meanings of the range of bound water (0% and 30%). The values of errors depending on the wood moisture while its testing give possibility to make corrections in the results of the formula estimation. A method of precise estimation of wood strength for the 12% moisture is given in the article.

Введение. В связи с тем что прочность древесины зависит от содержания в ней влажности, сравнительная оценка свойств древесины возможна только при одинаковом содержании влаги в опытных образцах. Поэтому в древесиноведении полученные результаты испытаний всегда пересчитываются на стандартную 12%-ную влажность по соответствующим формулам.

Эти формулы приведены в стандартах на механические испытания древесины, и выбор формулы зависит от влажности древесины в момент ее испытания. Так, если перед испытанием образцы подвергались кондиционированию до нормализованной влажности (11–13%), то используют формулу

$$\sigma_{12} = \sigma_w [1 + \alpha(w - 12)],$$
 (1)

где σ_{12} — показатель прочности при 12%-ной влажности, σ_w — показатель прочности в момент испытания древесины, α — поправочный коэффициент на влажность, w— влажность древесины в момент ее испытания.

Для некондиционированных образцов, т. е. образцов с влажностью за пределами 11–13%, пересчет прочности на 12%-ную влажность производят по формуле

$$\sigma_{12} = \sigma_w / K_{12}^w, \qquad (2)$$

где K_{12}^w — коэффициент пересчета, определяемый по специальной таблице с учетом фактической плотности исследуемой древесины.

Если определение плотности не производилось, то коэффициент пересчета принимается равным средней величине для исследуемой породы и берется из соответствующей таблицы. В том случае если кондиционирование образцов древесины проводилось до влажности, равной или

больше предела гигроскопичности, для пересчета на 12%-ную влажность используют формулу

$$\sigma_{12} = \sigma_w / K_{12}^{30}, \tag{3}$$

где K_{12}^{30} – коэффициент пересчета при влажности древесины 30% и более, зависящий от древесной породы и равный, например, для древесины сосны 0,450.

Таким образом, предлагаются четыре способа пересчета показателей механических свойств древесины, полученных при влажности в момент испытания, на стандартную 12%-ную влажность [1].

Основная часть. Представляет интерес пересчет на 12%-ную влажность по разным формулам образцов древесины в диапазоне влажности от 0 до 30%, сравнение пересчетных показателей прочности с истинным значением при влажности 12% и установление величины их погрешности. Для этого из 10 реек древесины сосны размером 20×20×300 мм и плотностью при 12%-ной влажности от 391 до 521 кг/м³ были выпилены последовательно по 6 образцов размером 20×20×30 мм для испытаний на сжатие вдоль волокон, причем первые образцы предназначались для определения прочности в абсолютно сухом состоянии, вторые - при влажности древесины 4-5%, третьи - при влажности 8–9%, четвертые – при нормализованной влажности (11–13%), пятые – с влажностью 20– 22% и шестые - содержащие влажность более 30%. Для приобретения необходимой влажности образцы выдерживались в соответствующих температурно-влажностных условиях окружающей среды. Результаты испытаний прочности древесины сосны при сжатии вдоль волокон при различной влажности приведены в табл. 1.

Номер образца	Предел п	Плотность,						
тюмер образца	0%	4-5%	8–9%	11-13%	12%	20-22%	>30%	$\kappa\Gamma/M^3$
1	74,9	60,0	54,8	47,1	48,4	31,1	19,2	468
2	70,3	58,8	41,7	46,4	44,9	30,5	21,8	496
3	84,0	68,5	59,6	52,0	51,8	32,4	20,6	492
4	69,2	59,5	41,8	37,3	36,8	27,8	20,9	410
5	58,0	45,1	37,8	31,9	33,2	24,2	17,3	391
6	95,9	76,1	57,5	48,6	50,9	33,0	21,0	504
7	94,2	72,2	61,5	52,9	54,6	35,2	23,9	521
8	87,8	71,3	56,2	47,0	49,8	33,3	20,5	489
9	81,5	66,1	48,7	42,8	43,0	30,1	20,9	485
10	77,3	64,8	46,1	39,2	40,7	28,9	21,7	460
Среднее фактическое	79,3	64,2	50,6	44,5	45,4	30,7	20,8	472
Срелнее расчетное	78.5	65.2	54.4	44.1	44.8	30.4	21.5	_

Таблица 1 **Прочность образцов древесины сосны на сжатие вдоль волокон при разной влажности**

По результатам средних значений прочности при разных показателях влажности был построен график зависимости прочности древесины сосны при сжатии вдоль волокон от влажности, представленный на рис. 1, и определено математическое выражение этой зависимости. Как видно из рисунка, эта зависимость хорошо описывается полиномным уравнением:

$$Y = 0.0505x^2 - 3.4121x + 78.451,$$
 (4)

где x – влажность древесины, %.

Рис. 1. Зависимость предела прочности древесины сосны при сжатии вдоль волокон от влажности

Полученное уравнение позволило определить прочность древесины сосны при сжатии вдоль волокон при различных значениях влажности с интервалом 2% с последующим пересчетом установленных значений прочности на 12%-ную влажность по ранее приведенным формулам. Для определения величины погрешности формул пересчетные значения прочности

на 12%-ную влажность сопоставлялись с действительным значением прочности при этой влажности. Поскольку создать в древесине влажность ровно 12% практически невозможно, поэтому за истинное (действительное) значение прочности при 12%-ной влажности принято значение, вычисленное по вышеприведенной формуле и равное 44,8 МПа. Полученные результаты представлены в табл. 2, а графическая интерпретация этих данных показана на рис. 2.

Как видно из табл. 2, и особенно на рис. 2, пересчетные формулы дают заметную погрешность при пересчете прочности древесины, полученной при определенной влажности, на 12%-ную влажность, причем наибольшая погрешность наблюдается для крайних значений рассматриваемого диапазона влажности (0 и 30%). Так, эта погрешность, т. е. отклонение пересчитанных показателей прочности на 12%ную влажность от действительного значения прочности при 12%-ной влажности, например, для древесины влажностью 30% и пересчете по формуле (1) может составлять 17,6% в сторону уменьшения, по формуле (2) и формуле (3) -6,7%, по формуле (2) с учетом плотности древесины -9.4%, причем в трех последних случаях в сторону завышения. При пересчете показателей прочности древесины в абсолютно сухом состояния на 12%-ную влажность все используемые формулы дают погрешность около 8% в сторону занижения.

Из данных табл. 2 и рис. 2 также видно, что по мере приближения влажности испытуемой древесины к 12%-ному значению, как со стороны меньшей влажности, так и большей, разница между полученными пересчетными показателями прочности древесины на 12%-ную влажность и действительными при 12%-ной влажности постепенно уменьшается.

Таблица 2 Пересчетная величина предела прочности древесины сосны при сжатии вдоль волокон в зависимости от применяемой пересчетной формулы и влажности в момент испытания древесины

Показатель	Влажность древесины, %															
Показатель	0	2	4	6	8	10	12	14	16	18	20	22	24	26	28	30
Предел прочности, определенный по уравнению, при соответствующей влажности		71,8	65,2	59,8	54,4	49,4	44,8	40,6	36,8	33,4	30,4	27,8	25,6	23,9	22,5	21,5
Предел прочности, пересчитанный на влажность 12% по формуле (1)	40,8 91,1	43,1 96,2	44,3 99,0	45,4 101,5	45,7 102,0	45,4 101,5	44,8 100,0	43,8 97,9	<u>42,7</u> 95,3	41,4 92,5	<u>40,1</u> 89,6	39 <u>,0</u> 87,0	38,0 84,7	37,2 83,0	36,9 82,4	37,1 82,7
Предел прочности, пересчитанный на влажность 12% по формуле (2)	41,4 92,5	41,8 93,3	42,1 94,0	<u>42,7</u> 95,3	43,5 97,1	43,9 98,0	<u>44,8</u> 100,0	<u>45,1</u> 100,7	45,7 102,0	<u>46,1</u> 102,9	46,8 104,5	<u>47,6</u> 106,2	47,8 106,7	<u>48,2</u> 107,6	<u>47,9</u> 106,9	<u>47,8</u> 106,7
Предел прочности, пересчитанный на влажность 12% по формуле (2) с учетом плотности		41,5 92,6	<u>42,2</u> 93,8	43,2 96,4	44,0 98,2	<u>44,7</u> 99,8	<u>44,8</u> 100,0	45,1 100,7	45,5 101,6	45,6 101,8	45,8 102,2	45,8 102,2	45,8 102,2	46,3 103,3	47,4 105,7	49,0 109,4
Предел прочности, пересчитанный на влажность 12% по формуле (3)	_	_	-	-	-	-	-	_	_	_	_	-	_	-	_	47,8 106,7

Примечание. В числителе абсолютные значения предела прочности при 12%-ной влажности в мегапаскалях, в знаменателе – в процентах.

Рис. 2. Пересчитанные показатели прочности древесины сосны при сжатии вдоль волокон на 12%-ную влажность в зависимости от пересчетных формул и влажности древесины

Так как древесина материал биологического происхождения и отличается естественной изменчивостью свойств, то принято считать, что если отклонение исследуемого свойства от среднего значения не превышает 5%, то результаты наблюдений находятся в пределах точности исследований и являются вполне надежными. В таком случае для каждой из рассматриваемых пересчетных формул применительно к древесине сосны при сжатии вдоль волокон можно установить влажностный диапазон их применения. В частности, для формулы (1) таким диапазоном является влажность древесины в пределах от 2 до 16%, для формулы (2) – от 6до 20%, для формулы (2) с учетом фактической плотности древесины - от 6 до 26%. При испытании древесины в абсолютно сухом состоянии наименьшую погрешность при пересчете на 12%-ную влажность дает формула (2) - 7.5%, а при влажности 30% и более – формулы (2) и (3) – 6,7%. Поэтому фактические результаты, полученные при испытаниях древесины влажностью 0-1%, должны быть увеличены с учетом погрешности формул при указанной влажности, в среднем на 8%. Для древесины влажностью 22-30% пересчетный показатель будет весьма

близким к действительному при влажности 12%, если его вычислить как среднеарифметическое значений показателей, полученных по формулам (1) и (2). Так, например, если при влажности 26% пересчетный показатель прочности, вычисленный по формуле (1), равен 37,2 МПа, а по формуле (2) — 48,2 МПа, то их среднее значение составляет 42,7 МПа, т. е. это среднее значение намного более близкое к 44,8 МПа (действительному показателю прочности при 12%-ной влажности).

Заключение. Выявленные особенности погрешностей пересчетных формул для случая сжатия древесины вдоль волокон могут быть перенесены и на другие виды механических испытаний древесины, но с другими числовыми характеристиками, которые могут быть установлены с помощью использованной в настоящей работе принципиальной методики.

Литература

1. Древесина. Методы определения прочности при сжатии вдоль волокон: ГОСТ 16483.10–73. – Введ. 01.07.74. – М.: Госстандарт СССР; Издательство стандартов, 1986. – 8 с.

Поступила 22.01.2013