Criação de interface gráfica para um robot em Marte

FC

FACULDADE DE CIÊNCIAS UNIVERSIDADE DO PORTO

Grupo 12

Alexandre Silva - 201905358 Nuno Domingos - 201907932 Pedro Leite - 201906697 Pedro Carvalho - 201906291

Índice:

1. Introdução	
1.1. Exploração e recolha de informação de Marte	2
1.2. Dificuldades relacionadas com o <i>interface</i>	
1.3. Stakeholders	
1.4. Operadores	
2. Desenvolvimento inicial (funcionalidades)	
2.1. Esboços das funcionalidades	3-6
2.2. Aperfeiçoamento	7
3. Criação de painéis	
3.1. As propostas por painel	8-11
3.2. Aperfeiçoamento individual	
4. Propostas de interação nos painéis	
4.1. Aperfeiçoamento individual	13
4.2. Propostas de interação (através de esboços)	
5. Considerações sobre a eficiência do trabalho de gru	ipo e propostas
para melhoria da produtividade	 16

1. Introdução

1.1. Exploração e recolha de informação de Marte:

Pretende-se criar uma *interface* gráfica que tem como função operar um *robot* numa missão de exploração no planeta Marte. Este sistema está distribuído por dois monitores de 32 polegadas (WQHD), sendo que pode ainda mostrar imagens obtidas pelo *robot* num terceiro de 100 polegadas (4K).

A partir destes dois monitores somos capazes de monitorizar o *robot*, bem como enviar-lhe instruções com as próximas tarefas que ele deve realizar. A interface está organizado em 5 painéis: de telemetria (que permite saber o estado do robot a todo o tempo), de locomoção (onde se pode ver o caminho a percorrer pelo robot, que se movimenta de forma completamente autónoma, um simulador 3D para ver a sua posição e movimentos, e, no caso de ser necessário, podemos enviar instruções de movimento manuais, utilizando barras digitais que controlam os braços do robot e o esforço do respectivo motor), de comunicações (uma fila de tarefas a executar pelo robot, bem como a respectiva previsão do tempo que demoram a ser executadas permitindo, se possível, alterar a ordem das tarefas e, no caso de impossibilidade de contacto direto entre o veículo e a base a comunicação passa a ser feita com um satélite como intermediário), de energia (podemos inserir ou remover o catalisador da reação nuclear para acomodar as "necessidades energéticas" ou então para baixar a temperatura da bateria, neste último caso também temos um atalho para a locomoção que sugere locais mais frios facilitando assim o arrefecimento da bateria) e das fotos (apesar de não termos tido a oportunidade de trabalhar este painel, este iria servir para controlar as câmeras, enviando comandos acerca dos objetos que elas deveriam fotografar).

1.2. Dificuldades relacionadas com o interface:

- Operar o *robot* com o *delay* devido à distância entre a base de operações na terra e a posição do *robot* em Marte;
- Receber os dados de uma maneira bem organizada, para que possa ser feita uma análise rápida e eficiente destes;
- Existência de momentos em que não é possível haver comunicação direta com o *robot* (por exemplo, quando o *robot* está no lado escuro de Marte ou quando o sol está entre a terra e Marte);
- Na eventualidade de haver avarias com o *robot*, como solucionar ou ultrapassar o problema;
- Operar manualmente o *robot* no caso da locomoção automática falhar ou não for possível.

1.3. Stakeholders:

- Agências espaciais (NASA, ESA);
- Empresas relacionadas com a exploração do espaço (SpaceX);
- Departamento de programação de empresas de robótica (Boston Dynamics);
- Empresas de desenvolvimento de software (Microsoft).

1.4. Operadores:

- Os operadores devem ser especialistas em análise de dados, para que possam ler corretamente os dados obtidos do *robot*, contudo a *interface* é pouco nuançada sendo que os operadores não precisam de muita experiência para utilizar esta *interface*;
- Devem estar informados das capacidades do *robot*;
- Devem ter conhecimentos de cartografia, geologia, astronomia para que melhor possam comandar o *robot* de forma a recolher a informação mais relevante no estudo de Marte.

2. Desenvolvimento inicial (funcionalidades)

2.1. Esboços das funcionalidades:

Pedro Carvalho

Pedro Leite

Alexandre Silva

Nuno Domingos

Legenda:

- 1. Telemetria demonstração de dados obtidos pelo *robot* e algumas informações acerca do estado de conservação de algumas das suas peças;
- 2. Fotos demonstração da imagem captada pelo *robot* por uma das suas câmaras, tendo à sua direita no canto superior as coordenadas, data e temperatura do local onde ele se encontra, e no canto inferior a informação do ângulo atual de cada câmara;
- 3. Dados/Sensores demonstração do relevo (através de linhas curvas de nível) do local onde se encontra o *robot* e mostradores com alguns dados como a pressão, temperatura, pressão, data e coordenadas;
- 4. Telemetria fornecimento dos dados acerca do estado de conservação de várias partes do veículo;
- 5. Locomoção controlo da extensão dos quatro braços do *robot* e da velocidade a que o veículo se desloca através de uma barra digital e de velocidades pré-definidas;
- 6. Locomoção posição de cada roda do veículo controlada por *joysticks* e a melhor rota para alcançar uma determinada posição em Marte;
- 7. Fotos envio das instruções para as diversas câmaras, obtendo (o mais cedo possível) a fotografia tirada pelas câmaras selecionadas;
- 8. Dados/Sensores mostrador com os diversos dados obtidos;
- 9. Locomoção Identificação dos locais com piso mais acidentado e os locais com o piso mais seguro permitindo assim escolher a rota que o *robot* deve tomar;
- 10. Menu Forma de aceder aos diferentes painéis;
- 11. Comunicação no caso de impossibilidade de comunicação direta entre o *robot* e a base, o *robot* deve enviar a informação para um satélite que por sua vez redireciona a informação para a terra;
- 12. Energia Controlo da reação nuclear da bateria (com a remoção/inserção de um catalisador- barra de grafite), motivada pelo sobreaquecimento da bateria ou então pelas "necessidades energéticas" do *robot*.

2.2. Aperfeiçoamento:

Consideramos que dos primeiros esboços para estes houve uma evolução evidente, sobretudo no que se trata com a clareza, o propósito de cada funcionalidade da *interface* e também um melhor entendimento do que é suposto cada uma fazer. Isto é particularmente notória na telemetria, que inicialmente pensávamos que era um conceito muito mais geral e que abordava outros dados que não aqueles relacionados com o estado de conservação de cada peça do *robot* (dados do planeta que estariam representados nos dados e sensores), e na locomoção, que na primeira abordagem tínhamos optado pela utilização de joysticks e na segunda tornamos tudo digital. Relativamente aos dados e sensores acrescentamos dados que podem ser úteis e na comunicação, funcionalidades novas.

3. Criação de painéis

3.1. As propostas por painel

Propostas para o painel das Comunicações

Comunicação
· pasta de relatório das taretas executadas e erros;
II
commicações fasta com botos oletidas
pelo hobot
14

Propostas para o painel da Energia

Energia no caso de sobre-aqueimento, maximentor-se pera uma zona mais fria;	Energici quondo a bateria estiver sobre-aqueimado, consequimos remover o cabalisador da reação, clicado num botão;
7	8
Servor da temperatura da baleria;	Energia · modo pouparça de energia, para regular a temperatura era poupar energia; - desligar LEDS; - desligar alaymas câmeras; - baixar o rendimedo dos motores.
9	13

Propostas para o painel da Telemetria

Telemetria	Telemetria
· imagem sodélite da posição do robot;	· coordenadas do robot;
Telemetra 1	<u>a</u>
· estado detalhado de cada pega do robot,	
sendo que o lobot está no display, representado	9
com cares o estado das peças:	
- LED; - estados dos motores das codas;	
- temperadura da baderia;	
- nives de óleo.	
8	
3	

Propostas para o painel da Locomoção

Locomoção	Cocomoção
· display com a cartografía do caminho (calculado automáticamente) a xer percorrido pelo robot;	ese reconsario, devido a falhan no robot e ao piso acidentado, temos un simulador em tempo real com a posição/movimedo do robot;
4	5
Locomagne	locomoção
· quadro barras digitais, para controlo das	modo de mudanças
braços telescópios que estas ligados às recevario;	(cono de um carro)
6	16

3.2. Aperfeiçoamento individual

Para selecionar as propostas a implementar em cada painel escolhemos os seguintes critérios:

- Utilidade
- Capacidade de envolver outras ideias (existiam ideias que abrangiam as outras)
- Facilidade de utilização

Com estes critérios selecionamos as ideias que melhor satisfaziam os critérios e portanto seriam as melhores ideias a implementar em cada painel. Os painéis não são definitivos, pelo que podem a qualquer momento ser alvo de alterações ou revisões.

4. Propostas de interação nos painéis

4.1. Aperfeiçoamento individual

Na telemetria, consideramos fundamental um modelo 3D do *robot* com as avarias que possa ter, sendo possível ver cada peça ao detalhe, clicando sobre essa mesma peça. Desta maneira temos uma forma mais clara e eficaz de identificar um problema e torna a utilização da *interface* mais *user friendly*. Foi optado não incluir uma imagem satélite porque já está disponível noutras funcionalidades.

Na locomoção está representada a imagem satélite e junto está um simulador em tempo real da posição do *robot*, auxiliando a visualização da posição em que o *robot* se encontra (pode ser útil para parar o *robot* a meio do percurso para tirar fotografias, por exemplo). Como estas funcionalidades se complementam, decidimos colocá-las juntas. O restante *display* será ocupado por um centro de controlo manual, que nos permite controlar os seus movimentos, caso necessário.

A energia é a parte mais *user friendly* do nosso *interface*, funcionando à base de interruptores digitais (com duas posições). No caso de sobreaquecimento, temos um botão que nos redireciona para o painel da locomoção, indicando zonas mais frias na proximidade para auxiliar o arrefecimento da bateria. Conseguimos também remover o catalisador da reação nuclear (remover a barra de grafite) baixando o ritmo da reação, que por sua vez produz menos calor, diminuindo assim a temperatura da bateria. A parte dos interruptores serve como um "modo poupança de bateria", que nos permite desligar algumas funcionalidades ou baixar o consumo energético de outras como, por exemplo: baixar o rendimento dos motores, desligar algumas câmaras e leds ou então abrir os painéis solares. Este painel não tem o nível de energia da bateria porque não achamos útil, contudo recebemos notificações das "necessidades energéticas" do *robot*.

No painel da comunicação temos uma fila de operações a serem executadas e o seu respectivo tempo de execução. Caso seja possível, podemos alterar a ordem, acrescentar ou remover tarefas à fila. Temos acesso a uma pasta com o histórico de operações realizadas, podendo ser realçado os erros que ocorreram durante as execução das tarefas. Temos um mostrador que nos dá informação acerca de como a comunicação está a ser feita e, no caso da comunicação direta ser impossível (nos momentos em que o sol se encontra entre a terra e Marte ou então, quando o robot está no lado escuro do planeta), dá-nos a opção de passar a fazer a comunicação indireta, utilizando um satélite como intermediário. Excluímos a ideia de uma pasta de fotos obtidas pelo *robot* visto que esta ideia seria mais adequada para o painel das fotos, painel que não tivemos tempo de trabalhar.

4.2. Propostas de interação (através de esboços)

Julgamos que estes painéis têm funcionalidades que nos permitem ultrapassar algumas das dificuldades anteriormente descritas e que podem ser operados por alguém com as qualidades já mencionadas.

5. Considerações sobre a eficiência do trabalho de grupo e propostas para melhoria da produtividade

Julgamos que o grupo foi bastante eficiente e que houve uma clara melhoria ao longo do trabalho nesse setor. As tarefas eram bem divididas e a maior parte das decisões eram tomadas por uma maioria, com base em critérios diversificados e, em caso de dúvida, ficava a decisão do *group leader* que foi sempre respeitada por todos os elementos do grupo. Em relação à produtividade, devem ser feitos mais *brainstormings* antes de partir para fases mais avançadas do trabalho. Outro aspeto que nos atrasou bastante foi a velocidade com que eram feitos os esboços, foi talvez a tarefa em que houve pior divisão porque há membros que desenham mais rapidamente que outros e esses deveriam ficar encarregues dessa tarefa.