Neutron Star Pulsars and Polarization

Kartik Tiwari, Ashoka University (India)

Exotic Astrophysical Laboratories:

Densities ~10¹⁷ kg/m³ Magnetic Fields ~10¹²-10¹³ G

Drivers for multi-physics developments

Polarization carries information about mechanisms of radiation but

what is emitted is not exactly what we see

Artist's Impression

Calvera Observations (Mereghetti et al 2021)

QUESTION

Given a pulsar configuration, what polarization data should we expect (and vice versa)?

Neutron Star attributes affect pulse profiles

Dependency **Simulations** + Bayesian **Inference** extracts Neutron Star attributes from pulse profiles

Gravitational lensing affects observed surface projection and polarization.

Photon propagation in Schwarzschild is well understood.

Explicit ray-tracing is very slow with horrible scaling.

Belobordov's approximation (2003) relates location on the surface with the angle from the normal required to reach observer.

Ray-tracing not required.

With an additional improvement, errors remain under 1%.

Pulse Profiles [Radius = $3R_G$] at E = 1 MeV

Magnetic Pole Field Strength $[\eta = 45^{\circ}, i = 60^{\circ}, R = 3R_G]$

Observation Energy Spectra $[\eta = 45^{\circ}, i = 60^{\circ}, R = 3R_G]$

