PHY250: Single Slit diffraction

Anabela R. Turlione

Digipen

Fall 2021

Let us calculate the wavelength of a laser

Position of dark fringes in a single slit of width a

(b) Enlarged view of the top half of the slit

 θ is usually very small, so we can use the approximations $\sin \theta = \theta$ and $\tan \theta = \theta$. Then the condition for a dark band is

$$y_m = x \frac{m\lambda}{a}$$

Then...

$$\sin \theta = \frac{m\lambda}{a}$$
 $(m = \pm 1, \pm 2, \pm 3,...)$ (dark fringes in single-slit diffraction)

Then...

$$\sin \theta = \frac{m\lambda}{a}$$
 $(m = \pm 1, \pm 2, \pm 3,...)$ (dark fringes in single-slit diffraction)

for small angles:

Then...

$$\sin \theta = \frac{m\lambda}{a}$$
 $(m = \pm 1, \pm 2, \pm 3,...)$ (dark fringes in single-slit diffraction)

for small angles:

$$\frac{y_m}{x} = \frac{m\lambda}{a}$$

Then...

$$\sin \theta = \frac{m\lambda}{a}$$
 $(m = \pm 1, \pm 2, \pm 3,...)$ (dark fringes in single-slit diffraction)

for small angles:

$$\frac{y_m}{x} = \frac{m\lambda}{a} \to y_m = x \frac{m\lambda}{a}$$

Intensity of the pattern

Position of dark fringes in a single slit of width a

What we observe is something like this

Position of dark fringes in a single slit of width *a*

What we observe is something like this

Position of dark fringes in a single slit of width *a*

Then, if we know the position of the first dark fringe, the width of the slit and the distance to the screen, we can calculate λ for a given source:

What we observe is something like this

Position of dark fringes in a single slit of width *a*

Then, if we know the position of the first dark fringe, the width of the slit and the distance to the screen, we can calculate λ for a given source:

$$\lambda = \frac{ay_m}{xm}$$