Universidad del Valle de Guatemala Departamento de Matemática Licenciatura en Matemática Aplicada Fecha de entrega: 5 de marzo de 2021 Rudik R. Rompich - Carné: 19857

Estadística 2 - Eugenio Aristondo

Tarea 4

1. Capítulo 13

1.1. Problema 28

En un experimento factorial con dos niveles para el factor A y tres niveles para el factor B se obtuvieron los datos siguientes.

			Factor B	
		Nivel 1	Nivel 2	Nivel 3
	Ni11	135	90	75
	Nivel 1	165	66	93
Factor A				
	Nivel 2	125	127	120
	Nivel 2	95	105	136

Realice una prueba para determinar si hay algunos efectos principales significativos y algún efecto de interacción. Use $\alpha=0.05$.

Solución. Comenzamos sacando los promedios de las columnas y filas:

	Nivel 1	Nivel 2	Nivel 3	Prom-Fila
Nivel 1	135	90	75	104
	165	66	93	104
prom	150	78	84	
Nivel 2	125	127	120	118
Nivei 2	95	105	136	110
prom	110	116	128	111
Prom-Columna	130	97	106	111

Además, tenemos lo siguiente:

$$STC = SCA + SCB + SCAB + SCE$$

También contamos con los siguientes parámetros:

- a = número de niveles del factor A
- \bullet b =número de niveles del factor B
- r = número de replicaciones
- n_T = número total de observaciones realizadas en el experimento; $n_T = abr$
- x_{ijk} = observación correspondiente a la k -ésima réplica tomada del tratamiento i del factor A y del tratamiento j del factor B.
- \bar{x}_i = media muestral de las observaciones en el tratamiento i (factor A)
- \bar{x}_{j} = media muestral de las observaciones en el tratamiento j (factor B)
- \bar{x}_{ij} = media muestral de las observaciones correspondientes a la combinación del tratamiento i (factor A) y el tratamiento j (factor B)
- \bar{x} = media muestral general de todas las n_T observaciones

Ahora bien, empezamos a calcular:

Paso 1. Calcular la suma total de cuadrados.

$$STC = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{r} (x_{ijk} - \overline{\overline{x}})^{2}$$
 (1)

$$= \sum_{i=1}^{2} \sum_{j=1}^{3} \sum_{k=1}^{2} (x_{ijk} - 111)^{2}$$
 (2)

$$=9028\tag{3}$$

Paso 2. Calcular la suma de cuadrados del factor A.

$$SCA = br \sum_{i=1}^{a} (\bar{x}_i \cdot -\bar{\bar{x}})^2$$
 (1)

$$= (3)(2)\sum_{i=1}^{2} (\bar{x}_i \cdot -111)^2 \tag{2}$$

$$=588\tag{3}$$

Paso 3. Calcular la suma de cuadrados del factor B.

$$SCB = \operatorname{ar} \sum_{j=1}^{b} (\bar{x}_{\cdot j} - \overline{\bar{x}})^{2}$$

$$\tag{1}$$

$$= (2)(2)\sum_{j=1}^{3} (\bar{x}_{\cdot j} - 111)^{2}$$
 (2)

$$=2328\tag{3}$$

Paso 4. Calcular la suma de cuadrados debido a la interacción.

$$SCAB = r \sum_{i=1}^{a} \sum_{j=1}^{b} (\bar{x}_{ij} - \bar{x}_i - \bar{x}_{\cdot j} + \overline{\bar{x}})^2$$
 (1)

$$=2\sum_{i=1}^{2}\sum_{j=1}^{3}(\bar{x}_{ij}-\bar{x}_{i}-\bar{x}_{.j}+111)^{2}$$
(2)

$$=4392\tag{3}$$

Paso 5. Calcular la suma de cuadrados debido al error.

$$SCE = STC - SCA - SCB - SCAB \tag{1}$$

$$= 9028 - 588 - 2328 - 4392 \tag{2}$$

$$= 1720 \tag{3}$$

Por lo tanto, usando la Tabla 13.11, tenemos:

ANOVA					
Fuente de Variación	SC	gl	СМ	F	F crit
Factor A	588	1	588	2.05116279	5.98737761
Factor B	2328	2	1164	4.06046512	5.14325285
Interacción	4392	2	2196	7.66046512	5.14325285
Error	1720	6	286.666667		
Total	9028	11			

• Factor A: F=2.0511 y F_{α} = 5,9873

• Factor B: $F=4,0604 \text{ y } F_{\alpha}=5,1432$

• Interacción: F=7,6604 y F_{α} = 5,1432

Es decir que por la prueba F con $\alpha = 0.05$, los factores A y B no tienen ningún efecto significativo; mientras que los efectos por interacción sí son significativos $(F > F_{\alpha})$.

1.2. Problema 29

De los cálculos de un experimento factorial con cuatro niveles para el factor A, tres niveles para el factor B y tres replicaciones se obtuvieron los datos siguientes: STC = 280, SCA = 26, SCB = 23 y SCAB = 175. Establezca la tabla ANOVA y pruebe si hay algunos efectos principales significativos y algún efecto de interacción. Use $\alpha = 0.05$.

Solución. Comenzamos encontrando el SCE:

$$SCE = STC-SCA-SCB-SCAB = 280 - 26 - 23 - 175 = 56$$

Considerando la Tabla 13.11 del libro de texto:

Fuente de variación	Suma de cuadrados	Grados de libertad	Cuadrado medio	F	valor-p
Factor A	SCA	a-1	$CMA = \frac{SCA}{a - 1}$	CMA CME	
Factor B	SCB	b - 1	$CMB = \frac{SCB}{b - 1}$	CMB CME	
Interacción	SCAB	(a-1)(b-1)	$CMAB = \frac{SCAB}{(a-1)(b-1)}$	CMAB CME	
Error	SCE	ab(r-1)	$CME = \frac{SCE}{ab(r-1)}$		
Total	STC	$n_T - 1$			

Grados de libertad (a = 4, b = 3 y r = 3):

- 1. a 1 = 3
- 2. b-1=2
- 3. (a-1)(b-1)=6
- 4. ab(r-1) = 24
- 5. $n_T 1 = 36 1 = 35$

Cuadrado medio (STC = 280, SCA = 26, SCB = 23 y SCAB = 175,SCE=56):

1.
$$CMA = \frac{SCA}{a-1} = \frac{26}{3} = 8,667$$

2.
$$CMB = \frac{SCB}{b-1} = \frac{23}{2} = 11, 5$$

3.
$$CMAB = \frac{SCAB}{(a-1)(b-1)} = \frac{175}{6} = 29,167$$

4.
$$CME = \frac{SCE}{ab(r-1)} = \frac{56}{24} = 2,333$$

Valores F:

1.
$$\frac{CMA}{CME} = \frac{8,667}{2,333} = 3,715$$

2.
$$\frac{CMB}{CME} = \frac{11.5}{2.333} = 4,929$$

3.
$$\frac{CMAB}{CME} = \frac{29,167}{2,333} = 12,502$$

Los F_{α} :

Finalmente, tenemos:

ANOVA					
Fuente de Variación	SC	gl	СМ	F	F crit
Factor A	26	3	8,667	3,715	3,008
Factor B	23	2	11,5	4,929	3,4
Interacción	175	6	29,167	12,502	2,5
Error	56	24	2,333		
Total	280	35			

Por lo tanto, se puede afirmar por la prueba F que:

- 1. Factor A: $F=3{,}715$ y $F_{\alpha}=3{,}007.$ Hay evidencia que existe una diferencia significativa.
- 2. Factor B: F = 4,929 y $F_{\alpha} = 3,4$. Hay evidencia que existe una diferencia significativa.
- 3. Interacción : F=12,502 y $F_{\alpha}=2,5.$ Hay evidencia que existe una diferencia significativa.

1.3. Problema 30

Una empresa de ventas por catálogo realizó un experimento factorial para probar el efecto del tamaño de un anuncio de revista y su diseño sobre el número de solicitudes de catálogos recibido (datos en miles). Se pusieron a consideración tres diseños publicitarios y dos tamaños. Los datos obtenidos se presentan a continuación. Utilice el procedimiento ANOVA para un diseño factorial a fin de probar si hay efectos significativos debido al tipo de diseño, al tamaño del anuncio o a la interacción. Use $\alpha=0.05$.

5

	Tamaño del anuncio		
		Pequeño	Grande
	A	8 12	12 8
Diseño	В	22 14	26 30
	С	10 18	18 14

Solución. Haciendo el análisis por medio de Excel, tenemos:

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Sample	441.25	3	147.083	24.01360544	0.00024	4.066180551
Columns	182.25	1	182.25	29.75510204	0.00061	5.317655072
Interaction	19.25	3	6.41667	1.047619048	0.42286	4.066180551
Within	49	8	6.125			
Total	691.75	15				

En donde, por la prueba F, se concluye:

- 1. Diseños; F=24,01360 y $F_{\alpha}=4,0661$. Existe evidencia suficiente para afirmar que hay efectos significativos.
- 2. Tamaño; F=29,7551 y $F_{\alpha}=5,3176$. Existe evidencia suficiente para afirmar que hay efectos significativos.
- 3. Interacción; F=1,047 y $F_{\alpha}=4,0661.$ No existe evidencia de que hayan efectos significativos.

1.4. Problema 31

Un parque de diversión estudió algunos métodos para reducir el tiempo de espera (en minutos) al bajar y subir a los pasajeros a los juegos. Se propusieron dos métodos para realizar estas ta- reas. Para tomar en cuenta las diferencias potenciales debido al tipo de juego y a la interacción que puede haber entre tipo de juego y método de subir y bajar a los pasajeros, se diseñó un ex- perimento factorial. Use los datos siguientes para pobrar cualquier efecto significativo debido al método de subir y bajar a los pasajeros, el tipo de juego y la interacción. Use $\alpha=0.05$.

		Tipo de juego	
	Montaña rusa	Rueda de la fortuna	Tobogán
Método 1	41	52	50
Metodo 1	43	44	46
Método 2	49	50	48
Metodo 2	51	46	44

Solución. Considerando el análisis de Excel, tenemos:

6

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Sample	12	1	12	1.2	0.3153336	5.98737761
Columns	8	2	4	0.4	0.68695298	5.14325285
Interaction	56	2	28	2.8	0.13838206	5.14325285
Within	60	6	10			
Total	136	11				

A partir de la prueba F, podemos concluir:

- 1. Métodos: F=1,2 y $F_{\alpha}=5,9873$. No existe evidencia de que hayan efectos significativos.
- 2. Tipo de juego: F=0,4 y $F_{\alpha}=5,1432.$ No existe evidencia de que hayan efectos significativos.
- 3. Interacción: F=2,8 y $F_{\alpha}=5,14325.$ No existe evidencia de que hayan efectos significativos.

1.5. Problema 32

En un estudio diseñado para comparar vehículos híbridos (Hybrid) y convencionales (Conventional) con equipo similar, Consumer Reports probó varias clases de automóviles híbridos, automóviles a gasolina y vehículos utilitarios deportivos (SUV). Los datos siguientes muestran la clasificación en millas por galón que Consumer Reports obtuvo para dos automóviles com- pactos (Small Car) híbridos, dos automóviles medianos (Midsize Car) híbridos, dos SUV compactos (Small SUV) híbridos y dos SUV medianos (Midsize SUV) híbridos; también se mues- tra el rendimiento en millas por galón obtenidas de ocho modelos convencionales con equipo similar (Consumer Reports, octubre de 2008). Make/Model indica fabricante y modelo; Class (clase), Type (tipo) y MPG (millas por galón).

Make/Model	Class	Туре	MPG
Honda Civic	Small Car	Hybrid	37
Honda Civic	Small Car	Conventional	28
Toyota Prius	Small Car	Hybrid	44
Toyota Corolla	Small Car	Conventional	32
Chevrolet Malibu	Midsize Car	Hybrid	27
Chevrolet Malibu	Midsize Car	Conventional	23
Nissan Altima	Midsize Car	Hybrid	32
Nissan Altima	Midsize Car	Conventional	25
Ford Escape	Small suv	Hybrid	27
Ford Escape	Small suv	Conventional	21
Saturn Vue	Small suv	Hybrid	28
Saturn Vue	Small suv	Conventional	22
Lexus RX	Midsize suv	Hybrid	23
Lexus RX	Midsize suv	Conventional	19
Toyota Highlander	Midsize suv	Hybrid	24
Toyota Highlander	Midsize SUV	Conventional	18

Realice pruebas para encontrar efectos significativos debido a la clase, tipo e interacción con un nivel de significancia $\alpha=0.05$.

Solución. Se procederá a tabular los datos:

	Híbrido	Convencional
D	37	28
Pequeño	44	32
	27	23
Mediano	32	25
CI IV naguaña	27	21
SUV pequeño	28	22
SUV Mediano	23	19
SO v Mediano	24	18

Con el análisis de Excel tenemos:

ANOVA						
Source of Variation	SS	df	MS	F	P-value	F crit
Sample	441.25	3	147.083	24.01360544	0.00024	4.066180551
Columns	182.25	1	182.25	29.75510204	0.00061	5.317655072
Interaction	19.25	3	6.41667	1.047619048	0.42286	4.066180551
Within	49	8	6.125			
Total	691.75	15				

Por medio de la prueba F, concluimos:

- 1. Clases; F= 24,013 y $F_{\alpha}=4,0661$. Hay suficiente evidencia para afirmar que existe una diferencia significativa.
- 2. Tipos ; F= 29.7552 y $F_{\alpha}=5,3176.$ Hay suficiente evidencia para afirmar que existe una diferencia significativa.
- 3. Interacción; F=F=1.04761 y $F_{\alpha}=4,0661.$ No hay evidencia de que exista una diferencia.