## Crypto

Deepak Kumar



#### **Educational Goals**

- Basics of cryptography
- Get familiar with hex, binary, decimal conversions needed for CP1
- Think adversarially about cryptography
- Learn the definition and properties of hashes
- Implement hashes and investigate their properties using PyCrypto
- Learn the definitions of symmetric and asymmetric cryptography
- Implement AES encryption and decryption with PyCrypto

#### Alice and Bob want to tell each other a secret.





# Alice and Bob want to tell each other a secret. But they have to do it in public.





Alice and Bob want to tell each other a secret.

But they have to do it in public.

How might they do this?





# How does this change when someone else *really* wants to learn the secret?



### Enter Cryptography

- From Greek
  - o Kryptos secret
  - o Grafein to write

#### Enter Cryptography

- From Greek
  - Kryptos secret
  - o Grafein to write

Cryptography is the study of secure communication techniques that enable only the sender and intended recipient of a message to learn its true contents

#### Cryptography is all about hex, decimal, bytes

Demo

#### Confidentiality and Integrity

Confidentiality – Keep the contents of a message secret from an eavesdropper (Eve)

Integrity - Ensure a message has not been tampered with or altered

- Download a DVD5 ISO image (VS2012.4 TFS Server ENU.iso):
  - To download the image so that you can burn a DVD, choose the **Save** button.
  - Make sure that the CRC and SHA1 hash values of the downloaded ISO image match these:
    - CRC: E94C762E
    - SHA-1: F8BE0471FA306E5A9E5C117F63B5D3A621FB571D

- Download a DVD5 ISO image (VS2012.4 TFS Server ENU.iso):
  - To download the image so that you can burn a DVD, choose the **Save** button.
  - Make sure that the CRC and SHA1 hash values of the downloaded ISO image match these:
    - CRC: E94C762E
    - SHA-1: F8BE0471FA306E5A9E5C117F63B5D3A621FB571D

**Integrity:** want to ensure the ISO has not been modified in the download process





**Confidentiality:** Ensure that German military strategies and secrets were communicated secretly

#### Integrity - Hashes

A hash is a cryptographic function H that takes an arbitrary length input and produces a fixed size output

A good hash function follows three properties:

- 1. First pre-image resistant
  - a. If I know H(m), I can't know m
- 2. Second pre-image resistant
  - a. If I know m1, I can't find m2 such that H(m2) == H(m1)
- 3. Collision resistant
  - a. Can't find any m1, m2 such that H(m1) == H(m2)

### Integrity – Hashes

Demo

#### Confidentiality – Symmetric Key Cryptography

Use a cipher where secret key is shared between two parties in advance

#### Confidentiality – Block Ciphers

- A block cipher is a cipher that operates on blocks of input rather than bit-by-bit.
  - o AES
  - o 16-byte blocks
- Multiple modes ("ways") of using a block cipher
  - o ECB, CBC, OFB, CTR, CBF...
- In this MP, we'll focus on Cipher Block Chaining (CBC)



Cipher Block Chaining (CBC) mode encryption

### Confidentiality – Block Ciphers

**AES Demo** 

#### Confidentiality – Asymmetric Cryptography

- We can use two keys, one private key and one public key to achieve confidentiality!
- These keys are the inverse of one another
  - Message x
  - o Priv(Pub(x)) == x
  - o Pub(Priv(x)) == x
- It is computationally infeasible to "guess" the private key given the public key

Choose two large primes, p and q at random

Choose two large primes, p and q at random

$$N = p * q$$

Choose two large primes, p and q at random

$$N = p * q$$

Choose e such that GCD(e, (p-1)\*(q-1)) = 1, coprime

Choose two large primes, p and q at random

$$N = p * q$$

Choose e such that GCD(e, (p-1) \* (q-1)) = 1, coprime

Find d such that  $e * d \equiv 1 \mod ((p - 1) * (q - 1))$ , d is modular multiplicative inverse of e for mod N

Choose two large primes, p and q at random

$$N = p * q$$

Choose e such that GCD(e, (p-1) \* (q-1)) = 1, coprime

Find d such that  $e * d \equiv 1 \mod ((p - 1) * (q - 1))$ , d is modular multiplicative inverse of e for mod N

Public Key: (e, N)

Private Key: (d, N)

#### Confidentiality – Encryption with RSA

Encrypt a message x to A, public key (e, N)

 $c = x^e \mod N$ 

Decrypt a message as A, private key (d, N)

 $x = c^d \mod N$ 

No one else can decrypt the message if it was encrypted with A's public key

#### Confidentiality – Playing with RSA

Demo

#### Some notes on this MP

- CP1 is a whirlwind tour of getting your feet with with crypto in Python
  - o Hex, Binary, Bytearrays
  - o AES
  - o RSA
- CP2 is 5 different cryptographic attacks
  - o Length-extension attack on Merkle-Damgard hashes
  - o Collision attack on weak hash functions
  - Padding oracle attack
  - Weak RSA key generation attack
  - Colliding certificates

#### Some notes on this MP

- CP1 is a whirlwind tour of getting your feet with with crypto in Python
  - o Hex, Binary, Bytearrays
  - AES
  - o RSA
- CP2 is 5 different cryptographic attacks
  - o Length-extension attack on Merkle-Damgard hashes
  - o Collision attack on weak hash functions
  - Padding oracle attack
  - Weak RSA key generation attack
  - Colliding certificates

#### THIS MP IS VERY HARD AND YOU WILL FEELSBADMAN IF YOU START LATE

#### **Educational Goals**

- Be able to define cryptography
- Identify how confidentiality and integrity are implemented in cryptography
- Learn the difference between symmetric and asymmetric cryptography, and why we would use one over the other
- Learn the definitions and properties of hashes, HMACs
- Think adversarially about cryptography
- Be comfortable with the vocabulary to understand and complete CP1 of Crypto
   MP

How do we implement confidentiality and integrity using cryptography?

## haahjr ha khdu

## attack at dawn

Shift each letter in the alphabet by 7

Is a Caesar Cipher good enough?

## Is a Caesar Cipher good enough?

No, everyone knows the Caesar cipher!

# Confidentiality

 Cryptographers and mathematicians spent a considerable amount of time inventing more complicated ciphers, but they kept getting broken

Kerckchoff's Principle: Use Secret Keys, NOT Secret Functions!

# Confidentiality – Keyed Ciphers

- DES
  - Data Encryption Standard
- 3DES
  - Triple DES
- AES
  - Advanced Encryption Standard

All of these are examples of *symmetric* encryption, where two parties share a key in advance

# Confidentiality

What if you don't have a shared secret key?

# Confidentiality – Asymmetric Cryptography

- We can use two keys, one private key and one public key to achieve confidentiality!
- These keys are the inverse of one another
  - Message x
  - o Priv(Pub(x)) == x
  - o Pub(Priv(x)) == x
- It is computationally infeasible to "guess" the private key given the public key

Choose two large primes, p and q at random

Choose two large primes, p and q at random

$$N = p * q$$

Choose two large primes, p and q at random

$$N = p * q$$

Choose e such that GCD(e, (p-1)\*(q-1)) = 1, coprime

Choose two large primes, p and q at random

$$N = p * q$$

Choose e such that GCD(e, (p-1) \* (q-1)) = 1, coprime

Find d such that  $e * d \equiv 1 \mod ((p - 1) * (q - 1))$ , d is modular multiplicative inverse of e for mod N

Choose two large primes, p and q at random

$$N = p * q$$

Choose e such that GCD(e, (p-1) \* (q-1)) = 1, coprime

Find d such that  $e * d \equiv 1 \mod ((p - 1) * (q - 1))$ , d is modular multiplicative inverse of e for mod N

Public Key: (e, N)

Private Key: (d, N)

### Confidentiality – Encryption with RSA

Encrypt a message x to A, public key (e, N)

 $c = x^e \mod N$ 

Decrypt a message as A, private key (d, N)

 $x = c^d \mod N$ 

No one else can decrypt the message if it was encrypted with A's public key















#### Integrity - Hashes

A hash is a cryptographic function H that follows three properties

- 1. First pre-image resistant
  - a. If I know H(m), I can't know m
- 2. Second pre-image resistant
  - a. If I know m1, I can't find m2 such that H(m2) == H(m1)
- 3. Collision resistant
  - a. Can't find any m1, m2 such that H(m1) == H(m2)



What if Alice also sent along a SHA256 hash of her message to Bob?

# Integrity – Keyed Hashes (HMAC)

Keyed Hash-based Message Authentication Code

$$\operatorname{HMAC}(K,m) = \operatorname{H}\left(\left(K' \oplus opad\right) \parallel \operatorname{H}\left(\left(K' \oplus ipad\right) \parallel m\right)\right)$$
 $K' = egin{cases} \operatorname{H}(K) & K ext{ is larger than block size} \\ K & ext{otherwise} \end{cases}$ 



What if Alice also sent along a HMAC of her message to Bob?



What if Alice also sent along a HMAC of her message to Bob?

### Integrity – Asymmetric Signatures

Sign a message x as A, private key (d, N)

 $c = x^d \mod N$ 

Verify a message from A, public key (e, N)

 $x = c^e \mod N$ 

If the message is verified, only A could have signed it!