COMPSCI 3MI3

Assignment 4

1 Solution Set

1.1 Q1

(a)

(b)

(c)

1.2 Q2

We define a lambda expression which performs logical or over Church Booleans as follows:

$$or = \lambda b. \lambda c. b tru c$$

We can prove our operation works for all possible inputs.

With input tru tru:

- $(\lambda b.\lambda c.\ b\ {\tt tru}\ c)\ {\tt tru}\ {\tt tru}$ \to $(\lambda c.\ {\tt tru}\ {\tt tru}\ c)\ {\tt tru}$
- ightarrow tru tru tru
- $\rightarrow (\lambda t. \lambda f. t)$ tru tru
- $\rightarrow (\lambda f. \text{tru}) \text{tru}$
- ightarrow $\operatorname{\mathsf{tru}}$

-/

With input tru fls:

- $(\lambda b.\lambda c.\ b\ { t tru}\ c)\ { t tru}\ { t fls}$
- \rightarrow (λc . tru tru c) fls
- $\rightarrow \quad \text{tru}\,\text{tru}\,\text{fls}$
- $\rightarrow (\lambda t. \lambda f. t)$ tru fls
- \rightarrow ($\lambda f. tru$) fls
- ightarrow tru

 \rightarrow

With input fls tru:

- $(\lambda b.\lambda c.\ b\ {\sf tru}\ c)\ {\sf fls}\ {\sf tru}$
- $\rightarrow (\lambda c. \, \mathsf{fls} \, \mathsf{tru} \, c) \, \mathsf{tru}$
- $\rightarrow \ \ \, \texttt{fls}\,\,\texttt{tru}\,\,\texttt{tru}$
- $\rightarrow (\lambda t. \lambda f. f)$ tru tru
- $\rightarrow (\lambda f.f)$ tru
- ightarrow tru

 \rightarrow

With input fls fls:

- $(\lambda b.\lambda c.\ b\ { t tru}\ c)\ { t fls}\ { t fls}$
- \rightarrow (λc . fls tru c) fls
- ightarrow fls trufls
- $\rightarrow (\lambda t.\lambda f.f)$ tru fls
- \rightarrow $(\lambda f.f)$ fls
- ightarrow fls

 \rightarrow

1.3 Q3

We define a lambda expression which performs exponentiation over Church Numerals, such that m^n is represented $\exp m$ n where \exp is defined as

$$\exp = \lambda m.\lambda n. n m$$

We will prove our operation works with inputs c_2 , c_2 to evaluate 2^2 .

With input c_2 c_2 :

$$(\lambda m.\lambda n. n m) c_2 c_2$$

$$\rightarrow \rightarrow (\lambda s.\lambda z. s (s z))(\lambda a.\lambda b. a (a b))$$

$$\rightarrow \lambda z. (\lambda a.\lambda b. a (a b)) ((\lambda a.\lambda b. a (a b)) z)$$

$$\rightarrow \lambda z. (\lambda a.\lambda b. a (a b)) (\lambda c. z (z c))$$

$$\rightarrow \lambda z.\lambda b. (\lambda c. z (z c)) ((\lambda c. z (z c)) b)$$

$$\rightarrow \lambda z.\lambda b. (\lambda c. z (z c)) (z (z b))$$

$$\rightarrow \lambda z.\lambda b. z (z (z (z b)))$$

Our result is equivalent to λs . λz . s(s(s(sz))) which is c_4 . Thus we can conclude our exponential expression works for inputs c_2 , c_2 .