

Geração de dados sintéticos tabulares para detecção de malware Android: um estudo de caso

Angelo Gaspar, Diego Kreutz,
Hendrio Bagança,
Rodrigo Mansilha,
Kayuã Oleques Paim

modelos de aprendizado de máquina

Quantidade

Atualidade

80% dos projetos de IA falham por questões que envolvem dados

Top 10 Reasons Why AI Projects Fail

Motivação (ADBuilder)

Motivação (ADBuilder)

Motivação (ADBuilder)

Aumento de dados

Aumento de dados

datasets sintéticos

Aumento de dados: beneficios

- Performance aprimorada do modelo
- Evitar overfitting
 - Maior privacidade dos dados

Ferramentas e tecnologias

Ambiente de testes:

- Ubuntu 22.04
- Python:
 - 0 3.8.10
 - o 3.8.2
 - 0 3.10.12
- Docker 24.0.7 e 20.10.5

Bibliotecas python:

- Numpy 1.21.5
- Keras 2.9.0
- Tensorflow 2.9.1
- Pandas 1.4.4
- Scikit-learn 1.1.1
- Mlflow 2.12.1

Avaliação (Hiperparâmetros)

	Kronodroid	Drebin	Android P	Adroit
Dense Layer Sizes (d)	1024	1800	2048	1400
Dense Layer Sizes (g)	2048	3012	3012	1800
Dropout Decay Rate (d)	0,4	0,4	0,3	0,4
Dropout Decay Rate (g)	0,2	0,2	0,1	0,2
Initializer Deviation	0,004	0,003	0,001	0,01
Initializer Mean	0,1	0,1	0	0,1
Latent Dimension	128	128	128	150
Latent Standard Deviation	0,5	0,8	0,8	1
Number Epochs	500	300	460	450

SBSeg 24

Avaliação (Hiperparâmetros)

	Kronodroid	Drebin	Android P	Adroit
Dense Layer Sizes (d)	1024	1800	2048	1400
Dense Layer Sizes (g)	2048	3012	3012	1800
Dropout Decay Rate (d)	0,4	0,4	0,3	0,4
Dropout Decay Rate (g)	0,2	0,2	0,1	0,2
Initializer Deviation	0,004	0,003	0,001	0,01
Initializer Mean	0,1	0,1	0	0,1
Latent Dimension	128	128	128	150
Latent Standard Deviation	0,5	0,8	0,8	1
Number Epochs	500	300	460	450

SBSES 24

Avaliação (Hiperparâmetros)

	Kronodroid	Drebin	Android P	Adroit
Dense Layer Sizes (d)	1024	1800	2048	1400
Dense Layer Sizes (g)	2048	3012	3012	1800
Dropout Decay Rate (d)	0,4	0,4	0,3	0,4
Dropout Decay Rate (g)	0,2	0,2	0,1	0,2
Initializer Deviation	0,004	0,003	0,001	0,01
Initializer Mean	0,1	0,1	0	0,1
Latent Dimension	128	128	128	150
Latent Standard Deviation	0,5	0,8	0,8	1
Number Epochs	500	300	460	450

SBSES 24

<u> 2</u>6

Avaliação (conjuntos de dados)

Dataset	Características		Amostras	
Dalasel	Caracteristicas	Malware	Benignos	Total
Adroit	166	50%	50%	6836
Drebin	215	50%	50%	11110
Kronodroid	286	50%	50%	20000
Android P	151	50%	50%	18154

	Pos	itivo	Fa	also
Dataset	Cosseno	Erro quadrático	Cosseno	Erro quadrático
Krondroid	0,69	0,06	0,74	0,07
Adroit	0,70	0,03	0,65	0,03
Drebin	0,37	0,12	0,50	0,16
Android P	0,22	0,03	0,51	0,03

	Positivo		F	benigno
Dataset	Cosseno	Erro quadrático	Cosseno	Erro quadrático
Krondroid	0,69	0,06	0,74	0,07
Adroit	0,70	0,03	0,65	0,03
Drebin	0,37	0,12	0,50	0,16
Android P	0,22	0,03	0,51	0,03

Detect	P	Alta imilaridade	Fa	lso
Dataset		de cosseno	Cosseno	Erro quadrático
Krondroid	0,69	0,06	0,74	0,07
Adroit	0,70	0,03	0,65	0,03
Drebin	0,37	0,12	0,50	0,16
Android P	0,22	0,03	0,51	0,03

	Positivo		Falso		
Dataset	Cossen	Valores baixo		Erro quadrático	
Krondroid	0,69	de similaridad de cosseno	0,74	0,07	
Adroit	0,70	de cosseno	0,65	0,03	
Drebin	0,37	0,12	0,50	0,16	
Android P	0,22	0,03	0,51	0,03	

Detect	Positivo		vo Erro quadrático próximo de 0		D
Dataset	Cosseno	E quad			Erro quadrático
Krondroid	0,69	0,	06	0,74	0,07
Adroit	0,70	0,	03	0,65	0,03
Drebin	0,37	0,	12	0,50	0,16
Android P	0,22	0,	03	0,51	0,03

Avaliação (Métricas de u

Random Forest

	P value				
Dataset	Random Forest	Decision Tree	Perceptron	SGD Regressor	
Krondroid	0,10	0,40	0,19	0,45	
Adroit	0,23	0,07	0,05	0,10	
Drebin	0,58	0,17	0,08	0,48	
Android P	0,25	0,17	0,12	0,11	

	Todos os classificadores estão		P value	
acima do limiar de 0,05		ecision	Perceptron	SGD Regressor
Krondroid	0,10	0,40	0,19	0,45
Adroit	0,23	0,07	0,05	0,10
Drebin	0,58	0,17	0,08	0,48
Android P	0,25	0,17	0,12	0,11

Trabalhos relacionados

Trabalho	Métricas	Dataset
Tanaka and Aranha, 2019	Recall, precisão, desvio padrão e distância euclidiana	2 Medicina e 1 Fraude
Mimura, 2020	Acurácia, recall e pontuação F1	1 Malware (Imagens)
Este trabalho	Acurácia, recall, precisão, pontuação F1, erro quadrático, similaridade de cosseno e valor de <i>p</i>	4 Malware (Android)

Considerações Finais

- Demonstramos a viabilidade de geração de dados para o contexto de detecção de Malwares Android
- Os datasets sintetizados são considerados fiéis e úteis
- A otimização dos hiperparâmetros é fundamental

Trabalhos futuros

- Avaliação de outras métricas:
 - Fidelidade
 - Utilidade
 - Privacidade
 - Eficiência computacional
- Uma análise comparativa de desempenho com ferramentas similares (gerais)

Obrigado!

Landing page: https://malwaredatalab.github.io/