Thick morphisms, and Lie algebra and bialgebra

Consider on Lie algebra \mathcal{G} Hamiltonian

$$H = c_{ik}^m \xi^i \xi^k \pi_m$$

where ξ are coordinates on $\Pi \mathcal{G}$ and π on $\Pi \mathcal{G}^*$

It is quadratic in ξ and linear in π .

The same and one Hamiltonian H is quadratic in momenta in $T^*(\Pi \mathcal{G}^*)$ and it is linear in momenta in $T^*(\Pi \mathcal{G})$. It generates differential ∂ in $\Pi \mathcal{G}$ and bracket in $\Pi \mathcal{G}^*$:

$$[f(\pi, g(\pi))] = ((H, f), g), \quad \partial f(\xi) = (H, f)$$

Notice that here MX symplectomorphism is identical map—just momenta become coordinates and vice versa.

Let $P(\pi)$ be function on $\Pi \mathcal{G}^*$ (linear combination of multivectors) such that [P, P] = 0Consider new hamiltonian

$$Q_P = (H, P) = \xi^i c_{ik}^m \pi_m \frac{\partial P(\pi)}{\partial \pi_k}$$

This Hamiltonian is linear over ξ and is quadratic and more over π (if $P(\pi)$ is arbitrary polynomial)

It defines differential ∂_P on $\Pi \mathcal{G}^*$:

$$\partial_P F = [P, F] = ((H, P), F) = (H_P, F)$$

and homotopy brackets on $\Pi \mathcal{G}^*$

Notice that thick morphism adjoint to map

$$\varphi_P$$
: $\xi^i = \frac{\partial P(\pi)}{\partial \pi_i}$

is finite series, i.e. polynomial since we have anticommuting variables

The morphism $\xi^i = \frac{\partial P(\pi)}{\partial \pi_i}$ intertwines differentials ∂ and ∂_P , thick morphism interwins odd Poisson bracket $[\ ,\]$ on $\Pi \mathcal{G}$ and homotopy bracket on $\Pi \mathcal{G}^*$