Column Generation

- Give Gurobi a small portion of the variables
 - Variables left out of model are effectively fixed to 0
- Iteratively add additional columns
 - Solve LP with a subset of all possible variables
 - ▶ Identify and add variables that would improve the solution
- More columns than rows
 - Low proportion of variables have nonzero values
 - Number of potential variables may even be exponential
 - Ratio of rows to columns should be close to 0

Column Generation Theory

$$z^* = \min_{x}$$
 $\sum_{i \in I} c_i x_i$
s.t. $\sum_{i \in I} a_{ij} x_i = b_j : \pi_j, \ j \in J$
 $x_i \ge 0, \ i \in I.$

- ullet The reduced cost of variable i can be computed as: $c_i \sum_j a_{ij} \pi_j$
- If $c_i \sum_j a_{ij} \pi_j \ge 0$ for all $i \in I$, we have a proof of optimality.
- Can compute the reduced cost even for variables not yet added to the model.

What you need to know

- Models can be solved iteratively
 - ▶ Model remains in memory after a call to Model.optimize().
 - Can then call addVar to add new decision variables, then re-optimize.
- Variables are added after constraints are added.
 - Pass a Column object in to Model.addVar to back-populate constraints.
- Compute reduced costs from dual prices.
 - Choose variable(s) with negative reduced costs to add to the model.
 - ▶ If all reduced costs are non-negative, then the existing variables produced an optimal solution.

Columnwise modeling in Gurobi

- Rowwise Pattern
 - Create variables (columns)
 - Create LinExpr list of (coef, Var) pairs
 - Create constraints (rows) in terms of LinExpr
- Columnwise Pattern
 - Create constraints (rows)
 - Create Column list of (coef, GRBConstr) pairs
 - Create variables in terms of Column

Gurobi API for column generation

- Model.addVar(lb, ub, obj, vtype, name, column)
- Column(coeffs, constrs)
 - ▶ col = Column(3, c1)
 - col = Column([1, 2], [c1, c2])
- Dual values come from Pi attribute of Constr objects.

Transportation Problem

$$\begin{split} \min_{x} & \sum_{i \in I} \sum_{j \in J} c_{ij} x_{ij} \; \; \text{(minimize shipping costs)} \\ \text{s.t.} & \sum_{i \in I} x_{ij} = d_{j}, \; \; j \in J \; \; \text{(satisfy demand)} \\ & \sum_{j \in J} x_{ij} \leq u_{i}, \; \; i \in I \; \; \text{(don't exceed capacity)} \\ & x_{ij} \geq 0, \; \; i \in I, \; j \in J \; \; \text{(ship nonnegative quantities)} \end{split}$$

Consider x_{ij} for a particular warehouse i and customer j.

```
col = Column([1, 1], [capacity_constrs[i], demand_constrs[j]])
var = model.addVar(obj=ship_costs[i][j], column=col)
```

Exercise

- Write addColumn method in FacilityLocationColumn.
- Problem should solve exactly like the row-oriented model

Column Generation Loop

- Can add any columns with negative reduced costs
- Need to add at least one column per iteration
 - Add columns with negative reduced costs
 - Can add multiple columns per iteration to reduce number of iterations

Exercise

- Write getRC(warehouse, customer) method
- Write addColumns() method
- Experiment with different strategies
 - Add first variable with negative reduced cost
 - Add all variables with negative reduced costs
 - Add variable with most negative reduced cost

What is a Convex Program?

Definition

minimize:
$$f(x_1, x_2, \ldots, x_n)$$

subject to: $g_i(x_1, x_2, \dots, x_n) \leq b_i, i = 1, \dots, m$

$$x_j \geq 0, \ j=1,\ldots,n$$

 f, g_i are all convex.

Convexity

- Averages are better than extremes.
- If x and y are feasible, then $\frac{x+y}{2}$ is feasible.
- The objective function evaluated at $\frac{x+y}{2}$ must be better than the average of x and y.
- All local optimum are globally optimal

What does convex look like?

- Slopes are non-decreasing as we move from left to right.
- Not as obvious in multiple dimensions.

Convex Quadratic Programming

minimize:
$$\sum_i c_i x_i + \sum_{i,j} q_{ij} x_i x_j$$

subject to: $\sum_i a_{ik} x_i + \sum_{i,j} d_{ijk} x_i x_j \leq b_k$

- All functions must be convex (for minimization, \leq constraints).
- Unlike in the linear case, minimize/maximize; ≤, ≥ are not interchangeable.

Feasible Region

What you can't do with Quadratic Expressions

- nonlinear equality constraints
- $x_i(1-x_i) \le 0$ to simulate binary variables.
- "Bilinear" programming $(\sum_i x_i \cdot y_i)$.
 - pricing and allocations (price and sales variables)
 - blending problems (concentrations and quantities)

What is allowed

- $x^t Qx$ Hessian Matrix Q must be positive definite.
 - All eigenvalues are positive.
- $f(\alpha x + (1 \alpha)y) \le \alpha f(x) + (1 \alpha)f(y)$
- Maximizing a concave function
- lower bound on concave function $(f(x) \ge b)$ for concave f(x).

Convexity

- f(x) convex $\equiv -f(x)$ concave
- if f(x) and -f(x) are both convex then f(x) is linear
 - $f(x) = b \equiv f(x) \le b$ and $f(x) \ge b$
 - only linear equality constraints are allowed
- Hard to verify in general
 - Harder than actually optimizing
 - Your responsibility to give Gurobi convex problems
 - Gurobi ErrorCodes if it discovers non-convexity
 - ★ QCP_EQUALITY_CONSTRAINT
 - ⋆ Q_NOT_PSD

Building a Quadratic Model with Gurobi

- GRBQuadExpr
 - GRBQuadExpr.addTerm(coef, var1, var2)
 - GRBQuadExpr.addTerm(coef, var)

Example: Linear Regression

- Input: (x, y) pairs
- Regression Model: $y_i = \text{slope} \cdot x_i + \text{intercept} + \text{residual}_i$
- Minimize: \sum_{i} residual_i²

Example: Sample Data

Exercise

- Solve regression as a QP
- Compare results with Minimize: $|\sum_i residual_i|$