Probabilidad y Estadística – SUMAS Y PROMEDIOS DE VARIABLES ALEATORIAS – UTN

*SUMAS DE VARIABLES ALEATORIAS

En esta primera parte de la cuarta unidad estudiaremos a partir de una lista de variables aleatorias independientes, X_1, X_2, \ldots, X_n , qué sucede con el Total muestra o Suma de las v.a. $Y_n = X_1 + X_2 + \ldots + X_n$ (es decir sumar todas ellas), en diferentes situaciones: (Enunciemos entonces la siguiente propiedad)

Propiedad: Sean X_1, X_2, \dots, X_n , variables aleatorias independientes tales que:

1) $E(X_i) = \mu_i$ y la $V(X_i) = \sigma_i^2$, es decir que cada variable aleatoria tiene un varlor específico para su esperanza, al que llamamos μ_i y un valor para su varianza, que llamamos σ_i^2 . Esta situación incluye el hecho de que cada variable pueda tener cualquier distribución.

Entonces, tenemos que:

- $E(X_1 + X_2 + \ldots + X_n) = \mu_1 + \mu_2 + \ldots + \mu_n = \sum_{i=1}^n \mu_i$
- $V(X_1 + X_2 + ... + X_n) = \sum_{i=1}^n \sigma_i^2$ (Lo cual es válido porque las v.a. son independientes)
- $\sigma(X_1 + X_2 + \ldots + X_n) = \sqrt{\sum_{i=1}^n \sigma_i^2}$

Ejemplo: Sean $X_1 \sim N(5;9), X_2 \sim Bi(10;0,15)$ y $X_3 \sim Exp(0,35)$, tres v.a. independientes, hallar la esperanza y la varianza de la v.a. $Y = X_1 + X_2 + X_3$.

Resolución: Para poder calcular la esperanza de Y necesito conocer el valor de las esperanzas de cada una de las X_i :

$$E(X_1) = 5$$
 $E(X_2) = 10 * 0.15 = 1.5$ $E(X_3) = 1/0.35 = \frac{20}{7}$, es decir que: $\mu_1 = 5, \mu_2 = 1.5$ y $\mu_3 = \frac{20}{7}$

Por lo tanto: $E(Y) = 5 + 1.5 + \frac{20}{7} = 9.3571$

Para calcular la varianza de Y:

$$V(X_1) = 9$$
 $V(X_2) = 10 * 0.15 * (1 - 0.15) = 1.275$ $V(X_3) = 1/(0.35^2) = 8.1632$

es decir que: $\sigma_1^2 = 9, \sigma_2^2 = 1,275$ y $\sigma_3^2 = 8,1632$, quedándonos la V(Y) = 9 + 1,275 + 8,1632 = 18,4382.

- 2) Si ahora $E(X_i) = \mu$ y la $V(X) = \sigma^2$, para todo i = 1, 2, ..., n es decir que todas las variables tienen el mismo valor para la esperanza y todas tienen la misma varianza, como será el caso en el que coincidan sus distribuciones Entonces, tenemos que:
 - $E(X_1 + X_2 + \ldots + X_n) = \mu + \mu + \ldots + \mu = \sum_{i=1}^n \mu = \frac{n\mu}{n\mu}$
 - $V(X_1 + X_2 + ... + X_n) = \sum_{i=1}^n \sigma^2 = n\sigma^2$
 - $\sigma(X_1 + X_2 + \ldots + X_n) = \sqrt{n\sigma^2} = \sqrt{n\sigma}$

Ejemplo: Sean X_1 , X_2 y X_3 , v.a. independientes con distribución Po(7), calcular el desvío estándar de la v.a. $\overline{Y = X_1} + X_2 + X_3$.

<u>Resolución</u>: Por la propiedad sabemos que $\sigma(Y) = \sqrt{3}\sigma$, donde σ es el desvío de cada v.a. X_i , que en este caso, como la distribución es de Poisson, tenemos que $\sigma = \sqrt{7}$.

Finalmente, resulta que $\sigma(Y) = \sqrt{3}\sqrt{7} = 4,582576$.

3) Esta es la última situación que vamos a trabajar en este sentido y que corresponde al caso en que: Todas las v.a. X_i tienen la misma distribución:

<u>1er caso</u>: $\sim N(\mu; \sigma^2)$, entonces, como $Y_n = X_1 + X_2 + \ldots + X_n$, tenemos que

$$Y_n \sim N(n\mu; n\sigma^2)$$

<u>1er caso</u>: $\sim Po(\lambda_i)$ (misma distribución pero puede tener diferente parámetro), entonces

$$Y_n \sim Po\left(\sum_{i=1}^n \lambda_i\right)$$
 (Es decir que es Poisson y su parámetro es la suma de todos)

Observación:

• Esta situación está incluída dentro del punto 2), por lo tanto los valores de esperanza, varianza y desvío estándar de la suma de estas v.a. coincide con lo expuesto en ese punto

Ejemplo: Sean X_1 , X_2 y X_3 , v.a. independientes con distribución N(1,5;16), y sea la v.a. $Y = X_1 + X_2 + X_3$. Calcular la $P(Y \le 7,8)$.

<u>Resolución</u>: Para poder calcular la probabilidad, necesito tener la distribución de Y, que, por la proiedad, resulta ser que Y N(3*1,5;3*16) = N(4,5;48), de esta manera:

$$P(Y \le 7.8) = P\left(Z \le \frac{7.8 - 4.5}{\sqrt{48}}\right) = P\left(Z \le 0.48\right) = 0.68439$$

Pero ahora, qué pasa si quisiéramos calcular probabilidades sobre la suma de variables aleatorias que tengan otra distribución? Para esta situación solo vamos a poder hacerlo de manera aproximada. Y es con este objetivo que enunciaremos el siguiente teorema:

Teorema Central del Límite: Sean X_1, X_2, \ldots, X_n , variables aleatorias independientes e idénticamente distribuidas (v.a.i.i.d.) (es decir que todas tienen la misma distribución), tales que $E(X_i) = \mu$ y la $V(X_i) = \sigma^2$ para todo $i = 1, 2, \ldots, n$, entonces

$$Z_n = \frac{Y_n - n\mu}{\sqrt{n}\sigma} \xrightarrow{D}_{n\to\infty} N(0;1)$$
 donde $Y_n = X_1 + X_2 + \ldots + X_n$

Se dice que Z_n converge en distribución (D) a una N(0;1)

Aplicación: Habíamos dicho que el objetivo era aproximar, entonces, si n es suficientemente grande (n > 30), diremos que

 $Z_n = \frac{Y_n - n\mu}{\sqrt{n}\sigma} \stackrel{(a)}{\sim} N(0;1)$ Z_n tiene distribución aproximadamente N(0;1)

Ejemplo: Sean $X_1, X_2,..., X_{36}$ v.a.i.i.d. $\sim Bi(10;0,75)$ y sea $Y = \sum_{i=1}^{36} X_i$, calcular de manera aproximada la $P(\overline{Y} \leq 255)$.

<u>Resolución</u>: Podemos aplicar el TCL (Teorema Central del Límite) con n=36, $\mu=10*0.75=7.5$, $\sigma^2=10*0.75*(1-0.75)=1.875$ y $\sigma=\sqrt{1.875}=1.3693$.

Por lo tanto usaremos esos valores para "estandarizar" a Y y aplicar la aproximación:

$$P(Y \le 255) = P\left(\frac{Y - 36 * 7.5}{\sqrt{36} * 1.3693} \le \frac{255 - 36 * 7.5}{\sqrt{36} * 1.3693}\right)$$

$$\simeq P\left(Z \le \frac{255 - 36 * 7.5}{\sqrt{36} * 1.3693}\right) \quad \text{con } Z N(0; 1)$$

$$= P(Z \le -1.83)$$

$$= 0.03362$$

*PROMEDIO DE VARIABLES ALEATORIAS

En esta segunda parte estudiaremos el comportamiento diferentes situaciones que se pueden considerar a la hora de promediar variables aleatorias:

<u>Definición</u>: Sean X_1, X_2, \dots, X_n , variables aleatorias independientes, definimos la v.a. Promedio a

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

es decir, la v.a. que se obtiene de promediar todas las X_i .

Las situaciones que consideraremos son análogas a las realizadas para el caso de la suma, ya que la única variante es la constante $\frac{1}{n}$

Propiedad: Sean X_1, X_2, \dots, X_n , variables aleatorias independientes tales que:

1) $E(X_i) = \mu_i$ y la $V(X_i) = \sigma_i^2$, es decir que cada variable aleatoria tiene un varlor específico para su esperanza, al que llamamos μ_i y un valor para su varianza, que llamamos σ_i^2 . Esta situación incluye el hecho de que cada variable pueda tener cualquier distribución.

Entonces, tenemos que:

•
$$E(\overline{X}) = E(\frac{1}{n}\sum_{i=1}^{n}X_i) = \frac{1}{n}E(\sum_{i=1}^{n}X_i) = \frac{1}{n}\sum_{i=1}^{n}\mu_i$$

• $V(\overline{X}) = V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}V\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}\sum_{i=1}^{n}\sigma_{i}^{2}$ Lo cual es válido porque las v.a. son independientes)

•
$$\sigma(\overline{X}) = \frac{1}{n} \sqrt{\sum_{i=1}^{n} \sigma_i^2}$$

Ejemplo: Sean $X_1 \sim N(5;9)$, $X_2 \sim Bi(10;0,15)$ y $X_3 \sim Exp(0,35)$, tres v.a. independientes, hallar la esperanza y la varianza de la v.a. \overline{X} .

Resolución: Para poder calcular la esperanza de \overline{X} necesito conocer el valor de las esperanzas de cada una de las X_i :

$$E(X_1) = 5$$
 $E(X_2) = 10 * 0.15 = 1.5$ $E(X_3) = 1/0.35 = \frac{20}{7}$, es decir que: $\mu_1 = 5, \mu_2 = 1.5$ y $\mu_3 = \frac{20}{7}$

Por lo tanto: $E(\overline{X}) = (5+1.5+\frac{20}{7})/3 = 9.3571/3 = 3.119033$

Para calcular la varianza de \overline{X} :

$$V(X_1) = 9$$
 $V(X_2) = 10 * 0.15 * (1 - 0.15) = 1.275$ $V(X_3) = 1/(0.35^2) = 8.1632$

es decir que: $\sigma_1^2 = 9, \sigma_2^2 = 1,275$ y $\sigma_3^2 = 8,1632$, quedándonos la $V(\overline{X}) = (9+1,275+8,1632)/(3^2) = 2,048689$.

- 2) Si ahora $E(X_i) = \mu$ y la $V(X) = \sigma^2$, para todo i = 1, 2, ..., n es decir que todas las variables tienen el mismo valor para la esperanza y todas tienen la misma varianza, como será el caso en el que coincidan sus distribuciones Entonces, tenemos que:
 - $E(\overline{X}) = E\left(\frac{1}{n}\sum_{i=1}^{n}X_i\right) = \frac{1}{n}E\left(\sum_{i=1}^{n}X_i\right) = \frac{1}{n}n\mu = \mu$
 - $V\overline{X}$) = $V\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}V\left(\sum_{i=1}^{n}X_{i}\right) = \frac{1}{n^{2}}n\sigma^{2} = \frac{\sigma^{2}}{n}$
 - $\sigma(\overline{X}) = \sqrt{\frac{\sigma^2}{n}} = \frac{\sigma}{\sqrt{n}}$

Ejemplo: Sean X_1 , X_2 y X_3 , v.a. independientes con distribución Po(7), calcular el desvío estándar de la v.a. \overline{X} .

<u>Resolución</u>: Por la propiedad sabemos que $\sigma(\overline{X}) = \sigma/\sqrt{3}$, donde σ es el desvío de cada v.a. X_i , que en este caso, como la distribución es de Poisson, tenemos que $\sigma = \sqrt{7}$.

Finalmente, resulta que $\sigma(\overline{X}) = \sqrt{7}/\sqrt{3} = 1,527525.$

3) Esta es la última situación que vamos a trabajar en este sentido y que corresponde al caso en que: Todas las v.a. X_i tienen la misma distribución $\sim N(\mu; \sigma^2)$, entonces, tenemos que

$$\overline{X} \sim N\left(\mu; \frac{\sigma^2}{n}\right)$$

Observaciones:

• Esta situación está incluída dentro del punto 2), por lo tanto los valores de esperanza, varianza y desvío estándar de la suma deestas v.a. coincide con lo expuesto en ese punto

• La distribución normal es la única que cumple con esta característica, ninguna otra tiene esta propiedad.

Ejemplo: Sean X_1 , X_2 y X_3 , v.a. independientes con distribución N(1,5;16), y sea la v.a. $Y = X_1 + X_2 + X_3$. Calcular la $P(\overline{X} \le 2,6)$.

<u>Resolución</u>: Para poder calcular la probabilidad, necesito tener la distribución de \overline{X} , que, por la propiedad, resulta ser que \overline{X} N(1,5;16/3), de esta manera:

$$P(\overline{X} \le 2.6) = P\left(Z \le \frac{2.6 - 1.5}{\sqrt{16/3}}\right) = P\left(Z \le 0.48\right) = 0.68439$$

Nos volvemos a preguntar, qué pasa si quisiéramos calcular probabilidades sobre el promedio de variables aleatorias que tengan otra distribución que no sea normal? Para esta situación solo vamos a poder hacerlo de manera aproximada. Y es con este objetivo que enunciaremos el TCL para la v.a. promedio:

Teorema Central del Límite: Sean $X_1, X_2, ..., X_n$, variables aleatorias independientes e idénticamente distribuidas (v.a.i.i.d.) (es decir que todas tienen la misma distribución), tales que $E(X_i) = \mu$ y la $V(X_i) = \sigma^2$ para todo i = 1, 2, ..., n, entonces

$$Z_n = \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} = \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \xrightarrow{D}_{n \to \infty} N(0; 1)$$

Se dice que Z_n converge en distribución (D) a una N(0;1)

Aplicación: Habíamos dicho que el objetivo era aproximar, entonces, si n es suficientemente grande (n > 30), diremos que

$$Z_n = \sqrt{n} \frac{\overline{X} - \mu}{\sigma} \overset{(a)}{\sim} N(0; 1)$$
 Z_n tiene distribución aproximadamente $N(0; 1)$

Ejemplo: Sean $X_1, X_2, ..., X_{36}$ v.a.i.i.d. $\sim Bi(10; 0.75)$, calcular de manera aproximada la $P(\overline{X} \leq 7.08)$.

Resolución: Podemos aplicar el TCL (Teorema Central del Límite) con $n=36, \mu=10*0.75=7.5, \sigma^2=10*0.75*(1-0.75)=1.875$ y $\sigma=\sqrt{1.875}=1.3693$.

Por lo tanto usaremos esos valores para "estandarizar" a \overline{X} y aplicar la aproximación:

$$\begin{split} P(\overline{X} \leq 7,\!08) &= P\left(\sqrt{36} \frac{\overline{X} - 7,\!5}{1,\!3693} \leq \sqrt{36} \frac{7,\!08 - 7,\!5}{1,\!3693}\right) \\ &\simeq P\left(Z \leq \sqrt{36} \frac{7,\!08 - 7,\!5}{1,\!3693}\right) \quad \text{con } Z \; N(0;1) \\ &= P(Z \leq -1,\!84) \\ &= \mathbf{0},\!03288 \end{split}$$

*EJEMPLO

1. Una empresa de sistemas posee 12 clientes que suelen ser deudores. El importe de la deuda mensual de cada cliente es una variable aleatoria normal de media \$10000 y desvío \$2000.

- a) Cuál es la probabilidad de que en el próximo mes la empresa tenga entre \$90000 y \$135000 a cobrar?
- b) Si también posee otro grupo de 35 clientes, tal que la deuda mensual de cada uno de ellos es una variable aleatoria uniforme entre \$3000 y \$5000, calcular el monto esperado a cobrar, de este grupo, en el próximo mes.
- c) Hallar, de manera aproximada, la probabilidad de que del segundo grupo el total a cobrar sea inferior a \$135000.
- d) Calcular la probabilidad de que el promedio de la deuda del primer grupo de clientes no supere los \$9000.