

Informatics; 26/04/2022

اللغات الصورية

- مقدمة :

ذكرنا في المحاضرات السابقة كيفية التعبير عن اللغات المنتظمة برسم الأوتومات المنتهي (FA) ، في هذه المحاضرة سنتعلم طريقة التعبير عن اللغة باستخدام القواعد المنتظمة و كيفية التحويل من القواعد المنتظمة إلى FA .

مثال : مثّل اللغة المعرفة وفق الأبجدية $\mathcal{\Sigma} = \{0,1\}$ على شكل قواعد $\mathcal{L} = \{1,11,111,\dots\}$

 ε الحل : نلاحظ أن اللغة عبارة عن تكرارات 1 و يجب أن تحوي واحداً على الأقل أيّ لا تقبل السلسة الخالية $1(1)^* \leftrightarrow 1^*$

نرسم الأوتومات DFA:

ملاحظة:

- $1^* = \{\varepsilon, 1, 11, 111, \dots\}$ نرمز للتکرار الذي يحوي ε ب (*) ، مثال:
- $1^+ = \{1,11,111,\dots\}$: نرمز للتكرار الذي يبدأ بتكرار واحد على الأقل ب

 $\mathcal{L}=\{a,b\}$ عَرْفة وفق أجدية ومُعرّفة وأجدية السلاسل التي تبدأ وتنتهى بa'ومُعرّفة وفق أجدية النظامي للغة تقبل جميع السلاسل التي تبدأ وتنتهى ب

: يصبح التعبير النظامي ، $(a+b)^*$ اللغة تبدأ و تنتهي ب a و بين هذين الحرفين تكرارات من الأبجدية

تشكيلة من ال a و ال b

ملاحظة نحو الحل:

عند التحويل من تعبير نظامي إلى DFA يمكن أن تواجه صعوبة في اختيار الحالات و الانتقالات : DFA عند التحويل من RE اللزمة من أجل هذا الأوتومات الحتمي لذا يمكن التحويل من $RE \to NFA \to DFA$

نقوم برسم NFA للتمرين السابق

تحتاج 3 حالات:

يكون جدول الانتقال NFA:

δ	a	b
q_0	q_1	Ø
q_1	q_1, q_2	q_1
	91,92	91

و جدول الانتقال DFA :

δ`	а	b
$[q_0]$	$[q_1]$	Ø
$[q_1]$	$[q_{1,}q_{2}]$	$[q_1]$
$[q_1, q_2]$	$[q_{1,}q_{2}]$	$[q_1]$
Ø	Ø	Ø

تذكرة : نضع في الجدول الحالة الابتدائية و انتقالاتها ثم نوجد انتقالات كل حالة جديدة تظهر في الجدول.

نلاحظ أنّ الأوتومات بأبسط صورة ، نقوم برسم الأوتومات :

 $\mathcal{L} = \{a,b\}$ وفق الأبجدية $L = \{b^2,b^5,b^8\dots\}$ تمرين 2: اكتب التعبير النظامي للغة

الحل: نلاحظ أن السلسة المقبولة يجب أن تحوي على الأقل bb

و تكرارات (٥٥٥) أي :

مقبولة طل

مقبولة bb bbb

فيكون التعبير النظامي:

نرسم الأوتومات DFA :

 $\mathcal{L} = \{a,b\}$ قمرين 3: اكتب التعبير النظامي للغة $L = \{a^{2n+1} \mid n \geq 0 \}$ تمرين 3

الحل : اللغة تقبل سلاسل تحوي عدد فردي من a

أيّ يجب أن تحوي على رمز aa " مرة على الأقل و تكرارات " aa ".

نرسم الأوتومات DFA:

 $L=\{a,b\}$ وفق الأبجدية $L=\{a^{2n}b^{2m+1}\mid n,m\geq 0 \}$ تمرين 4: اكتب التعبير النظامي للغة

a الحل : تقبل سلاسل تحوي عدد فردي من b و عدد زوجي من

 $RE: (aa)^*b(bb)^*$

نرسم الأوتومات DFA:

~انتهت المحاضرة~