IIC1253 Matemáticas Discretas

Sasha Kozachinskiy

DCC UC

27.08.2025

Hoy...

Lógica de predicados: equivalencias, teorías y modelos (satisfacibilidad), tautologías y consecuencias.

Equivalencias

Definición

Dos fórmulas ϕ y ψ de la lógica de predicados son equivalentes si $[\![\phi]\!]_{\mathcal{I}} = [\![\psi]\!]_{\mathcal{I}}$ para cualquier interpretación \mathcal{I} .

Equivalencias

Definición

Dos fórmulas ϕ y ψ de la lógica de predicados son equivalentes si $[\![\phi]\!]_{\mathcal{I}} = [\![\psi]\!]_{\mathcal{I}}$ para cualquier interpretación \mathcal{I} .

Nota: equivalencias de la lógica proposicional son caso particular de las equivalencias de la lógica de predicados.

Ejemplo de equivalencia

Proposición

Fórmulas

$$\phi = \exists x \Big(A(x, \bar{y}) \lor B(x, \bar{y}) \Big), \qquad \psi = (\exists x A(x, \bar{y})) \lor (\exists x B(x, \bar{y}))$$

son equivalentes.

Ejemplo de equivalencia

Proposición

Fórmulas

$$\phi = \exists x \Big(A(x, \bar{y}) \lor B(x, \bar{y}) \Big), \qquad \psi = (\exists x A(x, \bar{y})) \lor (\exists x B(x, \bar{y}))$$

son equivalentes.

¿Son equivalentes?

$$\phi = \forall x (A(x) \lor B(x)), \qquad \psi = (\forall x A(x)) \lor (\forall x B(x))$$

Ejemplo de equivalencia

Proposición

Fórmulas

$$\phi = \forall x A(x, \bar{y}), \qquad \psi = \neg \exists x \Big(\neg A(x, \bar{y}) \Big)$$

son equivalentes.

¿Cual fórmula con \forall es equivalente a $\exists x A(x, \bar{y})$?

Repaso: fórmulas de la lógica de predicados que calculan proposiciones (predicados 0-arios) se llaman **oraciones**. En particular, las fórmulas de la lógica proposicional son oraciones.

Repaso: fórmulas de la lógica de predicados que calculan proposiciones (predicados 0-arios) se llaman **oraciones**. En particular, las fórmulas de la lógica proposicional son oraciones.

Definición

Un conjunto de oraciones de la lógica proposicional se llama una **teoría**.

Repaso: fórmulas de la lógica de predicados que calculan proposiciones (predicados 0-arios) se llaman **oraciones**. En particular, las fórmulas de la lógica proposicional son oraciones.

Definición

Un conjunto de oraciones de la lógica proposicional se llama una **teoría**.

Definición

Sea T una teoría. Su **modelo** es una interpretación $\mathcal M$ tal que $[\![\phi]\!]_{\mathcal M}=1$ para todas $\phi\in \mathcal T$.

Repaso: fórmulas de la lógica de predicados que calculan proposiciones (predicados 0-arios) se llaman **oraciones**. En particular, las fórmulas de la lógica proposicional son oraciones.

Definición

Un conjunto de oraciones de la lógica proposicional se llama una **teoría**.

Definición

Sea T una teoría. Su **modelo** es una interpretación \mathcal{M} tal que $[\![\phi]\!]_{\mathcal{M}}=1$ para todas $\phi\in T$.

Si \mathcal{T} solo posee fórmulas proposicionales, su modelo es una asignaciones de las variables a 0s y 1s tal que todas las fórmulas en \mathcal{T} toman valor 1 (recuerden z3-solver).

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \to x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \to x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

Ojo: a partir de ahora, solo consideramos interpretaciones donde el símbolo = se interpreta como igualdad (*interpretaciones normales*).

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \rightarrow x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

Ojo: a partir de ahora, solo consideramos interpretaciones donde el símbolo = se interpreta como igualdad (*interpretaciones normales*).

Α	2	3	5	7
2	1	0	0	0
3	0	1	0	0
5	0	0	1	0
7	0	0	0	1

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \rightarrow x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

Ojo: a partir de ahora, solo consideramos interpretaciones donde el símbolo = se interpreta como igualdad (*interpretaciones normales*).

Α	2	3	5	7
2	1	1	1	1
3	0	1	1	1
5	0	0	1	1
7	0	0	0	1

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \to x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

Ojo: a partir de ahora, solo consideramos interpretaciones donde el símbolo = se interpreta como igualdad (*interpretaciones normales*).

Α	2	3	5	7
2	1	1	1	0
3	0	1	1	0
5	0	0	1	0
7	0	0	0	1

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \to x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

Ojo: a partir de ahora, solo consideramos interpretaciones donde el símbolo = se interpreta como igualdad (*interpretaciones normales*).

Α	2	3	5	7
2	1	1	0	0
3	0	1	1	0
5	0	0	1	0
7	0	0	0	1

Definición Sea T una teoría.

Definición

Sea T una teoría.

T se llama **satisfacible** si posee por lo menos un modelo.

Definición

Sea T una teoría.

- T se llama satisfacible si posee por lo menos un modelo.
- Sea ψ una oración. Entonces, $T \models \psi$ si $\llbracket \psi \rrbracket_{\mathcal{M}} = 1$ para todos los modelos \mathcal{M} de T.

Definición

Sea T una teoría.

- T se llama satisfacible si posee por lo menos un modelo.
- Sea ψ una oración. Entonces, $T \models \psi$ si $\llbracket \psi \rrbracket_{\mathcal{M}} = 1$ para todos los modelos \mathcal{M} de T.

Proposición

Sea T una teoría y ψ una oración. Entonces, $T \models \psi$ si y sólo si $T \cup \{\neg \psi\}$ no es satisfacible.

$$T_{op} = \{(1-3)\}$$

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \rightarrow x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

$$_{i}T_{op} \models \forall x \forall y \Big(A(x,y) \lor A(y,x) \Big) ?$$

$$\mathcal{E} T_{op} \models \forall x \forall y \forall z \Big((C(x,y) \land C(y,z)) \rightarrow C(x,z) \Big)? \text{ donde}$$

$$C(x,y) = A(x,y) \lor A(y,x).$$

Ejemplo más dificil

$$T_{op} = \{(1-3)\}$$

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \to x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \to A(x,z) \Big)$$
 (3)

Teorema

Dilworth Para cada orden parcial, lo siguiente es cierto. No existen 3 elementos distintos incomparables si y sólo si existen 2 elementos tal que cada elemento es comparable con uno de ellos.

Ejemplo más dificil

$$T_{op} = \{(1-3)\}$$

$$\forall x A(x,x) \tag{1}$$

$$\forall x \forall y \Big((A(x,y) \land A(y,x)) \to x = y \Big)$$
 (2)

$$\forall x \forall y \forall z \Big((A(x,y) \land A(y,z)) \rightarrow A(x,z) \Big)$$
 (3)

Teorema

Dilworth Para cada orden parcial, lo siguiente es cierto. No existen 3 elementos distintos incomparables si y sólo si existen 2 elementos tal que cada elemento es comparable con uno de ellos.

Formular el teorema de Dilworth cómo una consecuencia de T_{op} .

Tautologías

Definición

Una oración ϕ de la lógica de predicados se llama una **tautología** si $[\![\phi]\!]_{\mathcal{I}}=1$ para cualquier interpretación \mathcal{I} .

Tautologías

Definición

Una oración ϕ de la lógica de predicados se llama una **tautología** si $[\![\phi]\!]_{\mathcal{I}}=1$ para cualquier interpretación \mathcal{I} .

Ejemplos:

$$((\forall x (A(x) \to B(x))) \land (\forall x (B(x) \to C(x)))) \to (\forall x (A(x) \to C(x)))$$

Tautologías

Definición

Una oración ϕ de la lógica de predicados se llama una **tautología** si $[\![\phi]\!]_{\mathcal{I}}=1$ para cualquier interpretación \mathcal{I} .

Ejemplos:

$$((\forall x (A(x) \to B(x))) \land (\forall x (B(x) \to C(x)))) \to (\forall x (A(x) \to C(x)))$$

 $ightharpoonup \neg \exists x \forall y (B(x,y) \leftrightarrow \neg B(y,y))$. paradoja del barbero

Tautologías y consecuencias

Proposición

Sea $T = \{\phi_1, \dots, \phi_n\}$ una teoría finita y ψ una oración. Entonces, $T \models \psi$ si y sólo si $(\phi_1 \land \dots \land \phi_n) \rightarrow \psi$ es una tautología.

Tautologías y consecuencias

Proposición

Sea $T = \{\phi_1, \dots, \phi_n\}$ una teoría finita y ψ una oración. Entonces, $T \models \psi$ si y sólo si $(\phi_1 \land \dots \land \phi_n) \rightarrow \psi$ es una tautología.

Teorema (Compacidad)

Sea T una teoría y ψ una oración tal que $T \models \psi$. Entonces, existe un subteoría finita $T' \subseteq T$ tal que $T' \models \psi$.

Teorema de completitud de Gödel

Definición

Sistema de demostraciones es un algoritmo S que toma una oración ϕ de la lógica de predicados y una palabra binaria p, y devuelve 0 o 1.

Teorema de completitud de Gödel

Definición

Sistema de demostraciones es un algoritmo S que toma una oración ϕ de la lógica de predicados y una palabra binaria p, y devuelve 0 o 1.

- ▶ El sistema de demostraciones S es correcto si $S(\phi, p) = 0$ para cada palabra binaria p y cada oración ϕ que no es una tautología.
- ► El sistema de demostraciones S es completo si para cada tautología ϕ existe una palabra binaria p tal que $S(\phi, p) = 1$.

Teorema de completitud de Gödel

Definición

Sistema de demostraciones es un algoritmo S que toma una oración ϕ de la lógica de predicados y una palabra binaria p, y devuelve 0 o 1.

- ▶ El sistema de demostraciones S es correcto si $S(\phi, p) = 0$ para cada palabra binaria p y cada oración ϕ que no es una tautología.
- ► El sistema de demostraciones S es completo si para cada tautología ϕ existe una palabra binaria p tal que $S(\phi, p) = 1$.

Teorema (Gödel, 1929)

Existe un sistema de demostraciones correcto y completo.

se puede formalizar demostraciones matemáticas y automatizar su verificación...

- se puede formalizar demostraciones matemáticas y automatizar su verificación...
- pero no se puede automatizar búsqueda de las demostraciones (Church–Turing)

- se puede formalizar demostraciones matemáticas y automatizar su verificación...
- pero no se puede automatizar búsqueda de las demostraciones (Church–Turing)
- La próxima vez, empezamos a ver una teoría que expresa todas las matemáticas (teoría de conjuntos Zermelo-Frenkel).

- se puede formalizar demostraciones matemáticas y automatizar su verificación...
- pero no se puede automatizar búsqueda de las demostraciones (Church–Turing)
- La próxima vez, empezamos a ver una teoría que expresa todas las matemáticas (teoría de conjuntos Zermelo-Frenkel).

¡Gracias!