Signal Processing First

LECTURE #2 Phase & Time-Shift **Complex Exponentials**

8/22/2003 © 2003. JH McClellan & RW Schafer READING ASSIGNMENTS

- This Lecture:
 - Chapter 2, Sects. 2-3 to 2-5
- Appendix A: Complex Numbers
- Appendix B: MATLAB
- Next Lecture: finish Chap. 2,
 - Section 2-6 to end

8/22/2003

© 2003. JH McClellan & RW Schafer

LECTURE OBJECTIVES

- Define Sinusoid Formula from a plot
- Relate TIME-SHIFT to PHASE

Introduce an ABSTRACTION:

Complex Numbers represent Sinusoids Complex Exponential Signal

$$z(t) = Xe^{j\omega t}$$

SINUSOIDAL SIGNAL

$$A\cos(\omega t + \varphi)$$

- FREQUENCY (1)
- Radians/sec
- **AMPLITUDE**

Magnitude

or, Hertz (cycles/sec)

$$\omega = (2\pi)f$$

PERIOD (in sec)

$$T = \frac{1}{f} = \frac{2\pi}{\omega}$$

© 2003, JH McClellan & RW Schafer

PLOTTING COSINE SIGNAL from the FORMULA

$$5\cos(0.3\pi t + 1.2\pi)$$

Determine period:

$$T = 2\pi / \omega = 2\pi / 0.3\pi = 20/3$$

Determine a peak location by solving

$$(\omega t + \varphi) = 0$$

Peak at t=-4

8/22/2003

© 2003, JH McClellan & RW Schafe

6

ANSWER for the PLOT

$$5\cos(0.3\pi t + 1.2\pi)$$

Use T=20/3 and the peak location at t=-4

TIME-SHIFT

 In a mathematical formula we can replace t with t-t_m

$$x(t-t_m) = A\cos(\omega(t-t_m))$$

- Then the t=0 point moves to t=t_m
- Peak value of cos(ω(t-t_m)) is now at t=t_m

TIME-SHIFTED SINUSOID

$$x(t+4) = 5\cos(0.3\pi(t+4)) = 5\cos(0.3\pi(t-(-4)))$$
Sinusoidal Waveform

-2
-10
-8
-6
-4
-2
0
2
4
6

PHASE <--> TIME-SHIFT

Equate the formulas:

$$A\cos(\omega(t-t_m)) = A\cos(\omega t + \varphi)$$

- and we obtain:

$$-\omega t_m = \varphi$$

or,

$$t_m = -\frac{\varphi}{\omega}$$

8/22/2003

© 2003, JH McClellan & RW Schafer

SINUSOID from a PLOT

- Measure the period, T
 - Between peaks or zero crossings
 - Compute frequency: $\varphi = 2\pi/T$
- Measure time of a peak: t_m
 - Compute phase: $\phi = -\omega t_m$
- Measure height of positive peak: A

8/22/2003 © 2003, JH McClellan & RW Schafer

(A, ω , ϕ) from a PLOT

SINE DRILL (MATLAB GUI)

13

3 steps

11

PHASE is AMBIGUOUS

- The cosine signal is periodic
 - Period is 2π

$$A\cos(\omega t + \varphi + 2\pi) = A\cos(\omega t + \varphi)$$

Thus adding any multiple of 2π leaves x(t) unchanged

if
$$t_m = \frac{-\varphi}{\omega}$$
, then
$$t_{m_2} = \frac{-(\varphi + 2\pi)}{\omega} = \frac{-\varphi}{\omega} - \frac{2\pi}{\omega} = t_m - T$$

8/22/2003

2003, JH McClellan & RW Schafer

COMPLEX NUMBERS

- To solve: $z^2 = -1$
 - z = j
 - Math and Physics use z = i
- Complex number: z = x + jy

Cartesian coordinate system

8/22/2003

© 2003, JH McClellan & RW Schafe

PLOT COMPLEX NUMBERS

COMPLEX ADDITION = VECTOR Addition

*** POLAR FORM ***

Vector Form

- Length =1
- Angle = θ
- Common Values
 - in has angle of 0.5π
 - -1 has angle of π
 - **j** has angle of 1.5π
 - also, angle of –j could be $-0.5\pi = 1.5\pi 2\pi$
 - because the PHASE is AMBIGUOUS

8/22/2003 © 2003, JH McClellan & RW Schafer

POLAR <--> RECTANGULAR

- Relate (x,y) to (r,θ)

$$r^{2} = x^{2} + y^{2}$$
$$\theta = \operatorname{Tan}^{-1}\left(\frac{y}{x}\right)$$

Most calculators do Polar-Rectangular

 $x = r\cos\theta$ $y = r\sin\theta$

Need a notation for POLAR FORM

8/22/2003 © 2003. JH McClellan & RW Schafer

19

Euler's FORMULA

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one

 $\sin\theta$

 $\cos\theta$

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

COMPLEX EXPONENTIAL

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $\theta = \omega t$

8/22/2003

- Angle changes vs. time
- ex: ω =20 π rad/s
- Rotates 0.2π in 0.01 secs

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

cos = REAL PART

Real Part of Euler's

$$\cos(\omega t) = \Re e\{e^{j\omega t}\}$$

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi)$$

So,

$$A\cos(\omega t + \varphi) = \Re\{Ae^{j(\omega t + \varphi)}\}\$$

$$= \Re\{Ae^{j\varphi}e^{j\omega t}\}\$$

8/22/2003 © 2003, JH McClellan & RW Schafer

REAL PART EXAMPLE

$$A\cos(\omega t + \varphi) = \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$

Evaluate:

$$x(t) = \Re e \left[-3je^{j\omega t} \right]$$

Answer:

$$x(t) = \Re e \left\{ (-3j)e^{j\omega t} \right\}$$
$$= \Re e \left\{ 3e^{-j0.5\pi}e^{j\omega t} \right\} = 3\cos(\omega t - 0.5\pi)$$

8/22/2003 © 2003, JH McClellan & RW Schafer

COMPLEX AMPLITUDE

General Sinusoid

$$x(t) = A\cos(\omega t + \varphi) = \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$

$$z(t) = Xe^{j\omega t} \qquad X = Ae^{j\varphi}$$

Then, any Sinusoid = REAL PART of Xejot

$$x(t) = \Re e \left\{ X e^{j\omega t} \right\} = \Re e \left\{ A e^{j\varphi} e^{j\omega t} \right\}$$

8/22/2003 © 2003, JH McClellan & RW Schafer 2