

匿名科创

匿名通信协议

V7.16 2022.03.21

目录

— 、		匿名通信协议介绍	4
	1.	通信帧格式介绍	4
	2.	匿名安全通信协议	5
		1) ID: 0x00: 数据校验帧	5
	3.	, 灵活格式帧	5
		1) ID: 0xF1~0xFA: 灵活格式帧	
_		基本信息类帧	
_`	1.	- 空中間の久保	
	Τ.	1) ID: 0x01: 惯性传感器数据	
		2) ID: 0x02: 罗盘、气压、温度传感器数据	
		, , , , , , , , , , , , , , , , , , , ,	
		4) ID: 0x04: 飞控姿态: 四元数格式	
		5) ID: 0x05: 高度数据	
		6) ID: 0x06: 飞控运行模式	
		7) ID: 0x07: 飞行速度数据	
		8) ID: 0x08: 位置偏移数据	
		9) ID: 0x09: 风速估计	
		10) ID: 0x0A: 目标姿态数据	
		11) ID: 0x0B: 目标速度数据	
		12) ID: 0x0C: 回航信息	
		13) ID: 0x0D: 电压电流数据	9
		14) ID: 0x0E: 外接模块工作状态	9
		15) ID: 0x0F: RGB 亮度信息输出	
		16) ID: 0xA0: LOG 信息输出字符串	. 10
		17) ID: 0xA1: LOG 信息输出字符串+数字	. 10
	2.	飞控控制量输出类	. 12
		1) ID: 0x20: PWM 控制量	. 12
		2) ID: 0x21: 姿态控制量	. 12
	3.	飞控接收信息类	. 13
		1) ID: 0x30: GPS 传感器信息 1	. 13
		2) ID: 0x31: 原始光流信息	. 13
		3) ID: 0x32: 通用位置型传感器数据(非捷联载体测量型)	. 13
		4) ID: 0x33: 通用速度型传感器数据(捷联载体测量型)	. 13
		5) ID: 0x34: 通用测距传感器数据(捷联载体测量型)	. 14
		6) ID: 0x35: 通用图像特征点信息帧	. 14
	4.	· 飞控接收控制指令类	. 15
		1) ID: 0x40: 遥控器数据	
		, 2) ID: 0x41: 实时控制帧	
	5.	, 光流信息类	
	•	1) ID: 0x51: 匿名光流数据	
	6.	GPS 航点读写帧	
	٥.	1) ID: 0x60: 航点读取	
		2) ID: 0x61: 航点写入、航点读取返回	
三、		功能触发类帧	
_`	1.	· · · · · · · · · · · · · · · · · · ·	
	1. 2.	命令定义	
	۷.	1) 功能指令	
		+/ ~ グリロンロ く ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. дэ

		2) 控制指令	20
四、		特殊帧	22
	1.	波形同步刷新功能	22
五、		参数读写类帧	22
	1.	参数读取命令	22
	2.	参数写入、参数读取返回	23
	3.	参数定义	25
六、		数据定义	26
	1.	硬件地址定义	26

一、 匿名通信协议介绍

1. 通信帧格式介绍

为了适应多种数据类型的传输,保证高效的通信效率,所有数据的通信,均需要遵守本通信帧格式。本格式在确保通信高效、源码简单、可移植性高的基础上,实现数据正确性判断,有效避免数据传输过程中出现的错误数据导致的错误解析。

具体帧格式如下:

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SUM	ADD
					CHECK	CHECK
1 Byte	1 Byte	1 Byte	1 Byte	n Byte	1 Byte	1 Byte
0.4A (E	丰二十帖粉坛尖兴到哪人	表示本帧数	表示数据内	具体数据内		
· · ·	DxAA(固表示本帧数据发送到哪个定值) 设备,参考硬件地址定义		容字段的长	容,n=数据长	计算方	法附后
上世)	以田,少万哎什地址足入	据的功能	度	度		

DATA 数据内容中的数据,采用小端模式,低字节在前,高字节在后。

为了提高数据传输的效率,当有浮点数类型数据需要传输时,根据数据类型的特点,适当截取小数点后固定几位,比如飞控姿态数据,保留角度的小数点后两位即可,比如经纬度信息,保留小数点后 7 位即可,然后通过小数点移动(扩大 10 的 n 次方),将浮点数转化成整数类型进行传输,可缩短数据长度,并且避免浮点数传输时发生异常,解析成非法浮点数。类似数据会在协议中著名,如 A*100,就代表将数据 A 只保留两位小数,乘以 100 进行传输,用户使用时将收到的数据除以 100 即可。

■ 和校验 SUM CHECK 计算方法:

从帧头 0xAA 字节开始,一直到 DATA 区结束,对每一字节进行累加操作,只取低 8 位

■ 附加校验 ADD CHECK 计算方法:

计算和校验时、每进行一字节的加法运算、同时进行一次 SUM CHECK 的累加操作、只取低 8 位。

■ 校验计算示例:

假设数据帧缓存为 data_buf 数组,0xAA 存放于数组起始位置,那么 data_buf[3]存放的是数据长度,校验程序如下:

2. 匿名安全通信协议

大家在使用飞控时,经常会使用串口数传一类的无线通信模块,这类模块会极大提高调试和使用飞控的便捷程度,可以无限实时监视飞控状态、调整参数等。但无线数传相比有线通信,其稳定性大大降低,数据发送出去,并不能保证对侧能百分百接收到。这在传输显示数据时没有问题,因为显示数据缺少部分数据并不会影响飞控正常运行。当时如果关键敏感的数据丢失或者接收错误,比如控制命令、航点信息等,就会影响飞控的正常运行,故必须定义一种安全通信协议。

匿名规定,参数写入类、命令控制类、航点读写类等非显示类帧,均需返回验证,其过程如下:

如发送一个参数 ID 为 10 的参数值给飞控,应使用帧 ID 为 0xE2 的参数写入帧,当上位机发送参数后,会等待帧 ID 为 0 的校验帧,校验帧格式如下。只有当上位机收到校验帧,并且校验帧的 ID_GET、SC_GET、AC_GET 与发送帧相同时,代表本次通信完成,飞控已经正确收到了该参数。

若飞控在规定时间内没有收到帧 ID 为 0 的校验帧,或者校验帧数据和发送帧的不同,则上位机认为本次通信出错,会重新尝试发送该参数。

1) ID: 0x00: 数据校验帧

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x00	3	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	U8	U8	U8
数据内容	ID_GET	SC_GET	AC_GET

ID GET:需要校验的帧的帧 ID 码。

SC_GET、AC_GET: 需要校验的帧的和校验 SC 和附加校验 AC。

3. 灵活格式帧

灵活格式帧,我们也可以叫做用户自定义帧,也就是用户可以自己定义数据内容格式的数据帧。可能从名字无法很好的理解灵活格式帧有什么用,那么我们举一个简单的例子。

加入我在调试一个自己写的滤波算法,传感器原始数据 A,为 int16 格式,使用滤波算法对 A 进行滤波后,得到滤波后数据 B,B 也是 int16 格式。滤波后数据经过控制算法,输出一个控制量 C,C 是 int32 格式。那我需要对滤波算法和控制算法进行调试,肯定是需要得到 ABC 三个数据的波形,根据波形进行数据分析。

那么如何将数据 ABC 发送至上位机进行显示呢,就要用到灵活格式帧了。灵活格式帧共 10 帧,帧 ID 从 0xF1 到 0xFA,每一帧最多可以携带 10 个数据,每一个数据可以分别设置为 U8、S16、U16、S32 的格式。如果您需要显示 float 型数据,可以根据数据范围以及精度要求,乘以 1000 或者 100 变成 S32 型整数进行传输。

那么我们可以用 0xF1 帧,配置第一个数据为 int16,第二个数据为 int16,第三个数据为 int32,并且勾选使能F1 帧。如下图:

Data8	自定义帧数	据配置			
	用户帧	数据位	数据类型		^
	₽ F1		☑ 使能该帧		
	F1	1	Int16	•	
	F1	2	Int16	•	
	F1	3	Int32	₹	
	F1	4	Uint8	•	
	F1	5	Uint8	•	
	F1	6	Uint8	•	
	F1	7	Uint8	•	
	F1	8	Uint8	-	٧
	#54中郊門部1	φ_			

然后,我们配置数据容器。一共有20个数据容器,对应20条用户数据波形。刚才我们用F1帧,设置好了3个数据,现在我们需要将3个数据,放入3个容器内,才能实现数据的解析和波形绘制。具体配置如下图:

容器	用户的	帧	数据	位	数据值	
UserData1	F1	•	1	•	0	
UserData2	F1	•	2	•	0	
UserData3	F1	•	3	•	0	
UserData4	F2	~	1	~	0	
UserData5	F2	•	1	•	0	
UserData6	F2	•	1	•	0	
UserData7	F2	•	1	•	0	
UserData8	F1	•	1	•	0	
UserData9	F1	•	1	•	0	
UserData 10	F1	•	1	•	0	
UserData11	F1	•	1	•	0	
UserData12	F1	•	1	•	0	
UserData13	F1	•	1	▼	0	
UserData14	F1	•	1	•	0	
UserData15	F1	•	1	-	0	4

到此,上位机的配置完成,只需要单片机按照如下协议格式将数据发送至上位机,即可观察到对应的数据值 开始刷新,并可绘制对应数据波形。

1) ID: 0xF1~0xFA: 灵活格式帧

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xF1~0xFA	1~40	格式如下	程序计算	

DATA 区域内容:

举例说明 DATA 区域格式,例如上文,需要发送 ABC 三个数据,AB 为 int16 型,C 为 int32 型,那么 ABC 三个数据共 2+2+4=8 字节,那么 LEN 字节为 8,帧 ID 为 0xF1,DATA 区域依次放入 ABC 三个数据,然后计算 SC、AC,完成后将本帧发送至上位机即可。

注意:

数据区使用小端模式, 低字节在前。

二、基本信息类帧

1. 飞控相关信息类

1) ID: 0x01: 惯性传感器数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x01	13	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16	int16	int16	int16	uint8
数据内容	ACC_X	ACC_Y	ACC_Z	GYR_X	GYR_Y	GYR_Z	SHOCK_STA

ACC、GYR: 依次为加速度、陀螺仪传感器数据。

SHOCK_STA: 震动状态。

2) ID: 0x02: 罗盘、气压、温度传感器数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x02	14	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16	Int32	int16	uint8	uint8
数据内容	MAG_X	MAG_Y	MAG_Z	ALT_BAR	TMP	BAR_STA	MAG_STA

MAG: 磁罗盘传感器数据。

TMP: 传感器温度, 放大 10 倍传输, 0.1 摄氏度。

ALT_BAR: 气压计高度,单位cm。

BAR_STA、MAG_STA: 依次为气压状态、罗盘状态

3) ID: 0x03: 飞控姿态: 欧拉角格式

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x03	7	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16	uint8
数据内容	ROL*100	PIT*100	YAW*100	FUSION_STA

ROL、PIT、YAW:姿态角,依次为横滚、俯仰、航向,精确到0.01。

FUSION _STA: 融合状态。

4) ID: 0x04: 飞控姿态: 四元数格式

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x04	9	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16	int16	uint8
数据内容	V0*10000	V1*10000	V2*10000	V3*10000	FUSION _STA

V0、V1、V2、V3:四元数,传输时扩大10000倍。

FUSION STA: 融合状态。

5) ID: 0x05: 高度数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x05	9	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Int32	Int32	Uint8
数据内容	ALT_FU	ALT_ADD	ALT_STA

ALT_FU:融合后对地高度,单位厘米。

ALT_ADD: 附加高度传感高度数据,如超声波、激光测距,单位厘米。

ALT_STA: 测距状态。

6) ID: 0x06: 飞控运行模式

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x06	5	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	U8	U8	U8	U8	U8
数据内容	MODE	SFLAG	CID	CMD0	CMD1

MODE: 飞控模式。

SFLAG: 功能标志, 0锁定, 1解锁, 2已起飞。

CID、CMD0、CMD1: 当前飞控执行的指令功能(指示最近的一次,完成后复位为"悬停功能"),对应后边指令表。

7) ID: 0x07: 飞行速度数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x07	6	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16
数据内容	SPEED_X	SPEED_Y	SPEED_Z

SPEED_XYZ: 依次为 XYZ 方向上的速度,单位 cm/s。

8) ID: 0x08: 位置偏移数据

帧头 HEAD	目标地址 D ADDR	功能码	数据长度 LEN	数据内容 DATA	和校验 SC	附加校验 AC
ПЕАО	D_ADDK	שו	LEIN	DATA	30	AC
0xAA	0xFF	0x08	8	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	S32	S32
数据内容	POS_X	POS_Y

POS_XY: 相比起飞点的位置偏移量, 单位 cm。

9) ID: 0x09: 风速估计

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x09	4	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16

数据内容 WIND_X WIND_Y

WIND_XY:风速估计,单位 cm/s。

10) ID: 0x0A: 目标姿态数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x0A	6	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16	
数据内容	TAR_ROL	TAR_PIT	TAR_YAW	

TAR_ROL、TAR_PIT、TAR_YAW: 依次为横滚、俯仰、航向的目标角度, 精确到 0.01。

11) ID: 0x0B: 目标速度数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x0B	6	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16	
数据内容	TAR_SPEED_X	TAR_SPEED_Y	TAR_SPEED_Z	

TAR SPEED_XYZ: 依次为3轴目标速度, 单位cm/s。

12) ID: 0x0C: 回航信息

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x0C	4	格式如下	程序计算	程序计算

DATA 区域内容:

**** - * *			
数排	居类型	Int16	Uint16
	居内容	R_A*10	R_D

R_A: 回航角度,正负180度,传输时扩大10倍变成整数传输。

R_D: 回航距离, 单位为米。

13) ID: 0x0D: 电压电流数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x0D	4	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	U16	U16
数据内容	VOTAGE*100	CURRENT*100

VOTAGE、CURRENT: 依次为电压、电流, 传输时扩大 100 倍。

14) ID: 0x0E: 外接模块工作状态

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x0E	4	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Uint8	Uint8	Uint8	Uint8
数据内容	STA_G_VEL	STA_G_POS	STA_GPS	STA_ALT_ADD

STA G VEL: 通用速度传感器状态

STA G POS: 通用位置传感器状态

STA_GPS: GPS 传感器状态

STA_ALT_ADD: 附加测高传感器状态

传感器的工作状态, 0 为无数据, 1 为有数据但不可用, 2 为正常, 3 为良好 (3 为 GPS 专用)。

15) ID: 0x0F: RGB 亮度信息输出

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x0F	4	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Uint8	Uint8	Uint8	Uint8
数据内容	BRI_R	BRI_G	BRI_B	BRI_A

BRI_R、BRI_G、BRI_B、BRI_A:分别为 RGB 指示灯的红、绿、蓝三色的亮度,BRI_A 为单独 LED 亮度,有效范围 0-20,表示从暗到亮共 21 级亮度,0 最暗,20 最亮。

16) ID: 0xA0: LOG 信息输出--字符串

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xA0	n	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Uint8	Uint8*(n-1)
数据内容	COLOR	STR

COLOR: 颜色, 0: 黑色, 1: 红色, 2: 绿色。

STR: 需要显示的英文字符串, 比如需要显示字符串"ABCDE", 则 STR 长度为 5 字节, 依次为 ABCDE 的 ASC 码。

17) ID: 0xA1: LOG 信息输出--字符串+数字

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xA1	n	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Int32	Uint8*(n-4)
数据内容	VAL	STR

VAL: 数值, int32 格式, 4 字节。

STR: 需要显示的英文字符串, 比如需要显示字符串"ABCDE", 则 STR 长度为 5 字节, 依次为 ABCDE 的 ASC 码。

18) ID: 0xB0: 图像数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAB	0xAF	0xB0	n	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Uint16	UInt8	Uint16	Uint16	Uint8*n
数据内容	FLAG	COLOR	BEGIN_ROW	WIDTH	PIXDATA

FLAG: 标志位。

COLOR: 本帧图像的颜色, 具体颜色对应关系见下表。

BEGIN_ROW:本帧图像的起始行号,比如图像第一行则 BEGIN_ROW=0。

WIDTH: 图像宽度, 比如 320*240 的分辨率, 则 WIDTH=320。

PIX_DATA: 图像数据,一位代表一个像素,PIX_DATA 长度应为本帧数据传输的所有图像行数*WIDTH/8。

例 1: 比如图像分辨率为 160*120, 本帧图像为黑色, 本帧一次性传输完整一帧, 那么 COLOR =1, BEGIN_ROW =0, WIDTH=160, PIX_DATA 长度= (120*160) /8=2400 字节。

例 2: 比如图像分辨率为 160*120,本帧图像为红色,图像分为上下两部分,分两次完成传输,那么第一帧:COLOR = 2, BEGIN_ROW = 0, WIDTH = 160, PIX_DATA 长度 = (60*160) /8 = 1200 字节;第二帧:COLOR = 2, BEGIN_ROW = 60, WIDTH = 160, PIX_DATA 长度 = (60*160) /8 = 1200 字节。

注意:

本帧因数据量大, 帧格式里的数据长度 LEN, 为 UInt16 格式, 为与其他数据区分, 本帧数据的帧头定义为 0xAB。

2. 飞控控制量输出类

1) ID: 0x20: PWM 控制量

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x20	8~16	格式如下	程序计算	

DATA 区域内容:

数据类型	U16							
数据内容	PWM1	PWM2	PWM3	PWM4	PWM5	PWM6	PWM7	PWM8

PWM: PWM 输出信号, 范围 0-10000, 默认 4 轴, 单位 0.01%油门。 4 轴模式只输出前 4 通道, 6 轴模式输出 6 通道, 8 轴模式输出 8 通道。

2) ID: 0x21: 姿态控制量

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x21	8	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	int16	int16	int16	int16
数据内容	CTRL_ROL	CTRL_PIT	CTRL_THR	CTRL_YAW

CTRL_ROL、CTRL_PIT、CTRL_YAW: 依次为横滚、俯仰、油门、航向控制量, 范围统一为+-5000。

CTRL_THR 为油门控制量, 范围为 0~10000;

用户可以利用以上数据自行增加电机映射矩阵,从而控制 6 轴/8 轴等更高轴数或者异结构飞行器。

3. 飞控接收信息类

1) ID: 0x30: GPS 传感器信息 1

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x30	23	格式如下	程序计算	程序计算

DATA 区域内容:

数据 类型	U8	U8	S32	S32	S32	S16	S16	S16	8U	U8	U8
数据	FIX STA	S NUM	LNG*1e7	LAT*1e7	ALT GPS	N CDE	E CDE	D SPE	PDOP	SACC	VACC
内容	LIV_21H	3_INUIVI	LING*TE!	LA1*161	ALI_GPS	N_SPE	E_SPE	D_SPE	*0.01	*0.01	*0.01

FIX STA: 定位状态, UBX 协议的 FIX STA。

S_NUM: 卫星数量

LNG、LAT: 依次为经度、纬度, 传输时扩大 10000000 倍变成整数传输, 使用时除以 10000000 即可。

ALT_GPS: GPS 模块解算出的高度。

N_SPE、E_SPE、D_SPE: NED 速度 (cm/s)。

PDOP: 定位精度, 0-20000, 20000 表示 GPS 信息不可靠, 传输时缩小 100 倍 (0-200) SACC、VACC: 依次为速度精度、高度精度, 最大值 20000 (mm), 传输时除以 100。

2) ID: 0x31: 原始光流信息

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x31	6	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	U8	S16	S16	U8
数据内容	TYPE	DX	DY	QUA

TYPE: 光流模块型号, 1: 树莓派光流。

DX、DY: 光流移动距离(以像素为单位,一般为光流模块原始数据)。

QUA: 光流信息质量, 0 为无效, 越大代表质量越好。

3) ID: 0x32: 通用位置型传感器数据 (非捷联载体测量型)

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x32	12	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	S32	S32	S32
数据内容	POS_X	POS_Y	POS_Z

POS_XYZ: 依次 XYZ 坐标轴的位置信息, 单位 cm, 0x80000000 表示数据无效。

注意: 位置传感器坐标系与飞行器载体匿名坐标系应在飞控解锁时对准, 即飞控解锁时, 机头朝向位置传感器 X 轴 正方向, 飞机左侧指向定位传感器 Y 轴正方向。

4) ID: 0x33: 通用速度型传感器数据 (捷联载体测量型)

1	帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
H	HEAD	D_ADDR	ID	LEN	DATA	SC	AC

0xAA	0xFF	0x33	6	格式如下	程序计算	程序计算
DVIV 区将中3	ই [']					

JATA区域内合.

数据类型	S16	S16	S16	
数据内容	SPEED_X	SPEED _Y	SPEED _Z	

SPEED_XYZ: 依次 XYZ 坐标轴的速度信息,单位 cm/s, 0x8000 表示数据无效。

注意:速度型传感器安装时,应保证速度传感器坐标系与飞行器载体匿名坐标系对准,即飞控机头朝向速度传感器 X轴正方向、飞行器左侧指向速度传感器Y轴正方向。

5) ID: 0x34: 通用测距传感器数据 (捷联载体测量型)

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x34	7	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	U8	U16	U32	
数据内容	DIRECTION	ANGLE	DIST	

DIRECTION: 安装方向, 0: 水平; 1: 垂直。

ANGLE: 角度信息。

当 DIRECTION=0 时,以机头为 0点,顺时针增加,范围为 0-359。

当 DIRECTION=1 时,以机头为 0点,向上旋转角度增加,范围为 0-359。

DIRECTION=0, ANGLE=180, 为水平向后测距, ANGLE=0, 为水平向前测距。

DIRECTION=1, ANGLE=270, 为垂直向下测距, ANGLE=90, 为垂直向上测距。

DIST: 距离信息,单位 CM, 0xFFFFFFFF 表示数据无效。

6) ID: 0x35: 通用图像特征点信息帧

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x35	7	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	U8	S16	S16	U16
数据内容	ID	X	Υ	ANGLE

ID: 目标编号, 0~250 有效范围, 255 表示未搜索到任何特征点, 当 ID=255 时, 后续 XY 以及角度信息无意 义。

X、Y:目标点对于图像中点的偏移信息,以图像长宽中点为基准点,左侧为 x 负半轴,下侧为 y 负半轴,量程为± 如果分辨率不是正方形,以长边为基准,长边两端分别对应±100,按分辨率比例,计算短边两个边缘的比 例,以 320*240 分辨率为例,横向分辨率 > 纵向分辨率,以图像中心为 0 点,图像最左侧对应 x=-100,图像最右 侧对应 x=100, 240/320=0.75, 则图像最上侧对应 y=75, 图像最底侧对应 y=-75。 例:

分辨率: 320*240, 目标点像素坐标(100, 80)

X=-100/(320/2)*1000=-625

Y=80/(320/2)*1000=500

则对应本帧的 X、Y 分别为-625、500。

ANGLE: 角度信息,单位度,以视野正上方为基准,顺时针为正

4. 飞控接收控制指令类

1) ID: 0x40: 遥控器数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x40	20	格式如下	程序计算	

DATA 区域内容:

数据类型	int16									
数据内容	ROL	PIT	THR	YAW	AUX1	AUX2	AUX3	AUX4	AUX5	AUX6

THR、YAW、ROL、PIT、AUX: 依次为油门、航向、横滚、俯仰、辅助通道值,数据范围 1000-2000。数据为 0 代表没有通信或者失控(与遥控设置有关)。

2) ID: 0x41: 实时控制帧

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x41	14	格式如下	程序计算	

DATA 区域内容:

数据类型	int16	int16	int16	int16	int16	int16	int16
数据内容	CTRL_ROL	CTRL_PIT	CTRL_THR	CTRL_YAWDPS	CTRL_SPD_X	CTRL_SPD_Y	CTRL_SPD_Z

CTRL_ROL、CTRL_PIT: 姿态角实时控制量, 角度±90, 放大 100 倍传输, 精确到 0.01。

CTRL_THR: 油门控制量, 0-1000(0.1%)。

CTRL_YAW_DPS: 自旋角速度度控制量, +-200度每秒, 单位度每秒。

CTRL_SPD_X、Y、Z: 分别为 XYZ 轴的期望速度值,单位厘米每秒,最大值由飞控参数设定部分定义。

	0x41 数据有效/无效真值表(1 有效,0 无效)							
数据/模式	姿态自稳	自稳+定高	定点	飞行	定点+程控			
数循/误式	安心日紀	□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	摇杆在中位	摇杆非中位				
CTRL_ROL	1	1	0	0	0			
CTRL_PIT	1	1	0	0	0			
CTRL_THR	1	0	0	0	0			
CTRL_YAWDPS	1	1	1	0	0			
CTRL_SPD_X	0	0	1	0	0			
CTRL_SPD_Y	0	0	1	0	0			
CTRL_SPD_Z	0	1	1	0	0			

注意:

- 1. 程控模式下,飞行控制由指令值设定,飞控全自动控制。
- 2. 定点模式下,摇杆前4通道任一通道不在中位,将优先响应摇杆通道对应的输入。
- 3. 定点模式下,摇杆的俯仰横滚中位死区为±40,油门航向中位死区为±80。

5. 光流信息类

1) ID: 0x51: 匿名光流数据

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0x51	5~11	格式如下	程序计算	

DATA 区域内容(MODE 0):

数据类型	U8	U8	S8	S8	U8
数据内容	MODE=0	STATE	DX_0	DY_0	QUALITY

MODE: 0 表示本帧为原始的光流数据 STATE: 状态标记位, 0: 无效, 1: 有效。

DX_0、DY_0: X、Y 轴的光流信息,对应移动的速度(像素移动速率,单位:像素/20毫秒)

OUALITY: 光流数据质量, 数值越大, 表示光流数据质量越好(0-255), 仅供参考。

DATA 区域内容(MODE 1):

数据类型	U8	U8	S16	S16	U8
数据内容	MODE=1	STATE	DX_1	DY_1	QUALITY

MODE: 1表示本帧为融合的光流数据

STATE: 状态标记位, 0: 无效, 1: 有效。

DX_1、DY_1: X、Y 轴的光流信息,对应移动的速度(地面速度,单位:厘米/秒) QUALITY:光流数据质量,数值越大,表示光流数据质量越好(0-255),仅供参考。

注意: 本组数据仅在高度传感器数据有效/陀螺仪无异常时有效。

DATA 区域内容(MODE 2):

	,								
数据类型	U8	U8	S16	S16	S16	S16	S16	S16	U8
数据内容	MODE=2	STATE	DX_2	DY_2	DX_FIX	DY_FIX	INTEG_X	INTEG_Y	QUALITY

MODE: 2表示本帧为惯导融合的光流数据 STATE: 状态标记位, 0: 无效, 1: 有效。

DX 2、DY 2: X、Y 轴的光流信息,对应融合的移动的速度(地面速度,单位:厘米/秒);

DX FIX、DY FIX: 修正后的 X、Y 轴的移动速度,适用于积分计算(地面速度,单位:厘米/秒);

INTEG_X、INTEG_Y: X、Y 轴的速度积分值(单纯积分,仅供参考,单位厘米,-32768~+32767 循环)。

QUALITY: 光流数据质量,数值越大,表示光流数据质量越好(0-255),仅供参考。

注意: 本组数据仅在光流融合有效、高度传感器数据有效/陀螺仪无异常时有效。

6. GPS 航点读写帧

1) ID: 0x60: 航点读取

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0×60	1	格式如下	程序计算	程序计算

DATA 区域内容(MODE 0):

数据类型	U8
数据内容	NUM

NUM=0xFF: 读取航点数量。

NUM=n (0≤n≤0xFE): 读取第 n 个航点。

注意:

◆ 当读取航点数量时,飞控以本帧格氏也就是帧 ID: 0x60 格氏返回航点数量,NUM=航点数量。

◆ 当读取航点数据时,飞控返回帧 ID: 0x61 的航点内容。

2) ID: 0x61: 航点写入、航点读取返回

	贞头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
	EAD	D_ADDR	ID	LEN	DATA	SC	AC
C	xAA	0xFF	0×61	22	格式如下	程序计算	程序计算

DATA 区域内容(MODE 0):

数据类型	U8	S32	S32	S32	U16	U16	U8	U8	U8	U8	U8
数据内容	NUM	LNG	LAT	ALT	SPD	YAW	FUN	CMD1	CMD2	CMD3	CMD4

NUM: 当前读写的航点编号,从0开始,0号航点表示HOME起飞点。

LNG/LAT: 航点经度、纬度信息,以 int32 格氏通信,传输时乘以 10000000,保留小数点后 7 位。

ALT: 航点高度, 单位 cm。 SPD: 飞行速度, 单位 cm/s。

YAW: 机头朝向,单位度,有以下几种用法:

◆ 0-359: 和地磁北的夹角;◆ 400: 机头朝向目标点;

FUN: 航点功能。 CMD1-4: 功能参数。

注意: 飞控收到本帧后, 需返回校验信息, 即返回帧 ID=0x00 的校验帧。

航点通信过程:

读取飞控:

- 上位机发送: 0xAA+ADDR+0x60+0x01+0xFF+SC+AC. 查询飞控内有多少个航点信息;
- 2、飞控返回: 0xAA+ADDR+0x60+0x01+NUM+SC+AC, NUM 为飞控内航点数量;
- 3、上位机依次发送: 0xAA+ADDR+0x60+0x01+N+SC+AC, N=0, 读取第一个航点;
- 4、飞控收到读取命令,返回第 N 个航点的内容,利用帧 ID 为 61 的航点内容帧;
- 5、上位机收到帧 ID 为 61 的航点内容后, 重复执行第 3 步, 开始读取下一个航点信息, 直到读取完毕。

写入飞控:

- 1、上位机发送: 0xAA+ADDR+0x61+22+DATA+SC+AC, DATA 为航点数据, 其中 NUM=0,即从第一个航点开始发送;
- 2、飞控收到帧 ID=61 的航点数据帧后,需返回帧 ID 为 0 的校验帧(帧格式见本手册开头部分);
- 3、上位机收到帧 ID 为 0 的校验帧后,进行校验,如果单位时间内未收到校验帧或者校验出错,上位机会尝试重新发送本航点信息;若校验通过,则重复执行第一步,开始发送 NUM=1 的第二个航点信息,直到发送完毕。

三、 功能触发类帧

1. 帧格式

ID: 0xE0: CMD 命令帧

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xE0	11	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	U8	U8	U8	U8	U8	U8	U8	U8	U8	U8	U8
数据内容	CID	CMD0	CMD1	CMD2	CMD3	CMD4	CMD5	CMD6	CMD7	CMD8	CMD9

CID:本 CMD 功能种类

CMD0-9: CMD 功能帧数据, 共 10 字节, 可灵活组合, 组合成 U8、U16、S16、S32 等多种类型数据, 具体定义详见命令定义。

注意: 飞控收到本帧后, 需返回校验信息, 即返回帧 ID=0x00 的校验帧。

2. 命令定义

1) 功能指令

CID	CMD0	CMD1	说明	CMD2	CMD3	CMD4	CMD5	CMD6	CMD7	CMD8	CMD9	说明
	0x00	0x01	ACC 校准	NA								
	0x00	0x02	GYRO 校准	NA								
	0x00	0x03	快速水平校准	NA								
	0x00	0x04	MAG 校准	NA								
	0x00	0x05	加速度六面校准	NA								
	0x00	0x10	姿态融合复位对准	NA								
	0x00	0x11	惯导融合复位1 (对准0)	NA	Reserve							
	0x00	0x12	惯导融合复位2 (对准观测)	NA	Reserve							
	0x00	0x61	航点保存至 Flash	NA								
	0x00	0x62	清空航点 Flash	NA								
0x01	0x00	0xAA	恢复默认 PID 参数	NA								
	0x00	0xAB	恢复默认参数	NA								
	0x00	0xAC	恢复默认	NA								
	0x01	0x01	飞行模式选择	U8	NA	0: 姿态; 1: 姿态+定高; 2: 定点; 3: 程控;						
	0x10	0x02	复位光流姿态解算 (用于光流模块)	NA								
	0x10	0x03	复位光流运动解算 (用于光流模块)	NA								
	0x10	0x04	暂停运动修正2秒(用于光流模块)	NA								
	0x20	0xAA	清空凌霄 IMU 程序,用于升级固件	0x01	0x02	0x03	0x04	0x05	0x06	0x07	0x08	后面数据是为了降低误触发几率
	0x30	0x01	开始惯性六面校准	NA	本指令用于独立的匿名校准 exe							
	0x30	0x02	开始罗盘校准	NA	本指令用于独立的匿名校准 exe							
	0x30	0x11	重新开始校准	NA	本指令用于独立的匿名校准 exe							

2) 控制指令

CID.	CMD	CMD	War.	CMD	Wes	类							
CID	0	1	说明	2	3	4	5	6	7	8	9	说明	别
	0x00	0x01	解锁	NA		Α							
	0x00	0x02	锁定、紧急停机	NA		Α							
	0x00	0x04	一键悬停	NA	姿态模式下恢复水平,定点模式下恢复定点悬停	Α							
	0x00	0x05	一键起飞	U16		NA	NA	NA	NA	NA	NA	CMD2-3: 0-500, cm, 0: 使用默认高度	В
	0x00	0x06	一键降落	NA		В							
	0x00	0x07	一键返航	NA		С							
	0x00	80x0	一键翻滚	U16		NA	NA	NA	NA	NA	NA	CMD2-3: 1-360 翻滚方向,仅定制项目提供本功能	С
	0x00	0x09	一键环绕	NA	(Reserve)仅定制项目提供本功能	С							
												开始按照航点自动飞行,或者使暂停状态下的航点飞行开始执行,如	
	0x00	0x60	开始航点飞行									在飞向第3个航点过程中暂停,发送本指令后,飞控重新开始飞向第	С
												3个航点	
	0x00	0x61	暂停航点飞行									航点飞行过程中暂停执行航点飞行功能	С
0x10	0x00	0x62	取消航点飞行									停止航点飞行功能,恢复悬停状态,再次开始会从第一个航点重新执	_
OXIO	OXOG	ONOL	בוס אותוניים וויתוניים									行航点飞行功能	
	0x00	0x0A	无头模式	U8	NA	CMD2: 0 有头模式; 1 无头模式 (Reserve)	Α						
	0x01	0x01	目标位置	S32				S32				CMD2-5、CMD6-9: ±100000, cm	С
	0x01	0x02	目标对地高度	S32		п		NA	NA	NA	NA	CMD2-5: ±100000, cm	С
	0x02	0x01	上升高度	U16		U16		NA	NA	NA	NA	CMD2-3: 0-10000, cm; CMD4-5: 10-300, cm/s	С
	0x02	0x02	下降高度	U16		U16		NA	NA	NA	NA	CMD2-3: 0-10000, cm; CMD4-5: 10-300, cm/s	С
	0x02	0x03	平移	U16		U16		U16		NA	NA	CMD2-3: 移动距离: 0-10000, cm;	С
	0x02	0x04	Reserve	NA	CMD4-5: 移动速度: 10-300, cm/s								
	0x02	0x05	Reserve	NA	CMD6-7: 移动方向: 0-359 度 (当前机头为 0 参考, 顺时针)								
	0x02	0x06	Reserve	NA	Reserve								
	0x02	0x07	左旋角度	U16		U16		NA	NA	NA	NA	CMD2-3: 0-359, deg; CMD4-5: 5-90, deg/s	С
	0x02	0x08	右旋角度	U16		U16		NA	NA	NA	NA	CMD2-3: 0-359, deg; CMD4-5: 5-90, deg/s	С
	0x03	0x01	目标经纬度	U32				U32				CMD2-5: 经度, 0-180*1e7, CMD6-9: 纬度, 0-90*1e7	С

说明:

A 类指令任意模式可用

B类指令可以在除姿态模式外的其他模式下使用

C 类指令只能在模式 3 (定点+程控)使用

动作互斥类指令: 平移、高度控制为互斥指令, 只执行最新的指令, 平移+自旋、平移+高度调整、自旋+高度调整可并行执行

功能互斥类指令:移动指令和所有一键控制命令均为互斥指令,只执行最新的指令

四、特殊帧

1. 波形同步刷新功能

本协议定义有各类数据及数据帧,为保证波形高速刷新能力,上位机默认的波形刷新逻辑为每次接收到一帧需要显示的数据,所有数据均刷新显示依次。这里举个例子,比如用户帧 F1 里有数据 A 和 F2 帧里的数据 B 需要波形显示,下位机发送 F1 帧的频率为 100,发送 F2 帧的频率为 50,那么上位机总体刷新频率为 150,进行一般的数据定性分析时,此刷新方式无任何使用问题,完全满足一般用户的需求。

但如果深度使用用户在分析波形时,需要分析每次数据变化各个数据的变化情况,这样的刷新方式就有缺点出现,也就是波形显示频率高于数据频率,造成某些点被填充数据。还是参考上面的例子,比如某个时刻,数据 AB 都发生了变化,此时先发送数据 A 也就是 F1 帧,上位机波形刷新依次,此时数据 B 还是用的上一次的值,也就对深度的数据分析带来了困扰。

故增加波形同步刷新功能,需要深度数据分析时,打开波形界面-》设置-》波形触发式同步刷新功能。此时上位机不再自动根据数据进行波形刷新,而是等待下位机发送刷新指令。

上位机每次收到刷新指令,根据当前数据的最新值,刷新波形。这样就能保证对应同一个 X 轴的所有点均为同步刷新。回到上面的例子,假设同一时间 A 和 B 数据都发生了变化,先用 F1 帧发送数据 A,然后用 F2 帧发送数据 B,此时上位机虽然收到了两个数据,但是不会刷新波形,然后下位机发送完 F1、F2 帧后发送波形刷新命令,上位机收到该命令后,刷新显示数据 A 和 B。

刷新命令发送频率取所有需要刷新数据的最高频率即可。

帧格式:

帧头	目标地址	功能码	数据长度	和校验	附加校验
HEAD	D_ADDR	ID	LEN	SC	AC
0xAA	0xFF	0xFB	0	程序计算	程序计算

五、 参数读写类帧

飞控以及其他外设会有大量的参数需要配置,如何高效且准确的对每一个参数进行读写,匿名协议针对参数的传输配置了完善的通信协议。

首先为所有参数配置唯一的 ID,也可理解为参数的序号,读写操作均以 ID 为准,每次读写操作只对某一个 ID 的参数进行读写,并加以验证,如果通信出错,应尝试重新对该参数进行读写。

参数有效性:

为了让上位机适应更多外设,上位机内定义了各类外设的参数,为了让程序更加人性化,用不到的参数会使用灰色底纹显示,并且无法更改。上位机初始化时,所有参数标记为禁用状态,等待读取。读取参数时,上位机会根据读取到的参数值进行判断,若参数值=0x80000000,也就是 int32 模式下最小的负数,那么上位机认为该参数下位机并没有用到,会保持禁用状态;若参数值不等于 0x80000000,那么上位机会设置本参数为激活状态,用户可对激活状态的参数进行修改等操作。

1. 参数读取命令

1) 格式 1: 适用于 NRF 等帧长度较短,通信频率高的场景,一次读取一个参数。

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验

HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xE1	2	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Unt16
数据内容	PAR_ID

目标地址 D_ADDR: 读取哪个设备的参数,目标地址就应配置为该硬件的地址信息,比如读取飞控参数时本字节就应为 0x05。

PAR_ID:参数 ID 序号,具体 ID 分配见参数表(附后)。

2) 格式 2: 适用于 WIFI 等帧长度较长的场景,一次可读取多个参数。

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xE1	4	格式如下	程序计算	

DATA 区域内容:

数据类型	Unt16	Unt16
数据内容	PAR_ID_START	READ_NUM

目标地址 D_ADDR: 读取哪个设备的参数,目标地址就应配置为该硬件的地址信息,比如读取飞控参数时本字节就应为 0x05。

PAR_ID_START:参数 ID 起始序号,具体 ID 分配见参数表(附后)。

READ NUM: 从参数 ID 起始序号开始, 读取个数。

注意:

上位机发出读取参数命令后,会短时等待目标硬件返回参数值,如果上位机在规定时间内收到了格式正确的参数信息,本次读取结束;若上位机在规定时间内未收到格式正确的参数,则上位机会进行重新读取,直到达到最大重试次数。

2. 参数写入、参数读取返回

1) 格式 1: 适用于 NRF 等帧长度较短,通信频率高的场景,一次读取一个参数。

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xE2	6	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Unt16	Int32
数据内容	PAR_ID	PAR_VAL

目标地址 D_ADDR: 向哪个设备写入参数,目标地址就应配置为该硬件的地址信息,比如写入飞控参数时本字节就应为 0x05。如果本帧为下位机对上位机读取操作的返回,本字节为上位机地址 0xAF。

PAR_ID:参数 ID 序号, 具体 ID 分配见参数表 (附后)。

PAR_VAL:参数值,固定为Int32类型。

2) 格式 2: 适用于 WIFI 等帧长度较长的场景,一次可读取多个参数。

帧头	目标地址	功能码	数据长度	数据内容	和校验	附加校验
HEAD	D_ADDR	ID	LEN	DATA	SC	AC
0xAA	0xFF	0xE2	2+N*4	格式如下	程序计算	程序计算

DATA 区域内容:

数据类型	Unt16	Int32	Int32
数据内容	PAR_ID_START	PAR_VAL1	PAR_VAL2······N

目标地址 D_ADDR: 向哪个设备写入参数,目标地址就应配置为该硬件的地址信息,比如写入飞控参数时本字节就应为 0x05。如果本帧为下位机对上位机读取操作的返回,本字节为上位机地址 0xAF。

PAR_ID_START:参数 ID 起始序号,具体 ID 分配见参数表 (附后)。

PAR_VAL1-N:参数值,固定为 Int32 类型,有个 N 个数据。

注意: 飞控收到本帧后, 需返回校验信息, 即返回帧 ID=0x00 的校验帧。

3. 参数定义

参数列表请以上位机参数界面表格为准,如下图:

校准数据参数 ID 分配:

参数名称	X轴	Y轴	Z轴
加速度 Offset	1000	1001	1002
加速度 Sensitivity	1003	1004	1005
加速度误差矩阵1	1006	1007	1008
加速度误差矩阵 2	1009	1010	1011
加速度误差矩阵3	1012	1013	1014
罗盘 Offset	1015	1016	1017
罗盘 Sensitivity	1018	1019	1020

以上校准参数上位机决不会进行读写操作,只有使用"匿名传感器校准"程序才可以进行读写。

六、 数据定义

1. 硬件地址定义

地址码	定义
0xFF	无特定目标,用于数据广播型输出
0xAF	上位机
0x05	拓空者 PRO 飞控
0x10	匿名数传
0x11	匿名数传-esp 版
0x22	匿名光流
0x30	匿名UWB
0x60	匿名凌霄 IMU
0x61	匿名凌霄飞控
0x66	匿名控制台