ALGEBRAIC GEOMETRY 1

PROBLEM SET 10

Keywords: projectivities, linear subspaces, conics, and Hilbert polynomials

Problem 1 (3 pt)

Linear subspaces and projectivities.

- 1. Let r and s be disjoint lines in $\mathbb{P}^3(k)$. For every point $p \in \mathbb{P}^3(k) \setminus (r \cup s)$, there exists a unique line l_p passing through p and intersecting both r and s.
- 2. Let ϕ be a projectivity of $\mathbb{P}^n(k)$. Show that the locus of fixed points of ϕ is a union of linear supspaces L_1, \ldots, L_r , such that L_i does not meet the linear span of $(L_j)_{j\neq i}$.
- 3. Suppose that the fixed locus of $\phi \in PGL_4(k)$ consists of two lines r and s. For every point $p \in \mathbb{P}^3(k) \setminus (r \cup s)$, the line joining p to $\phi(p)$ meets both r and s.

Problem 2 (2 pt)

Let r be a line in $\mathbb{P}^2(\mathbb{C})$. Show that r contains either one or infinitely many real points. (Hint: use conjugation.)

Problem 3 (3 pt)

Let k be algebraically closed. Let p_1, \ldots, p_5 be distinct points of $\mathbb{P}^2(k)$.

- 1. Show that there exists at least a conic C passing through p_1, \ldots, p_5 .
- 2. C is non-degenerate (reduced and irreducible) if and only if any three of the points are not collinear. Moreover, in this case C is unique.
- 3. If C is degenerate, then it is unique if and only if any four of the points are not collinear.

Problem 4 (3 pt)

Compute the degrees of the Segre and Veronese embeddings.