Это тот редкий случай, когда решение проще записать в виде псевдокола.

FindBug(Node* root):

Если граф — дерево, то бракованное реле находится перед первой (от корня) не горящей лампочкой.

Если такого нет, отключаем все ребра графа. Return.

Отключаем все ребра, выходящие из root.

for (ребра **j**, выходящие из корня):

Включаем ј

Его другой конец обозначим через **new root**.

FindBug(new_root). Если успешно — return.

Выключаем ј.

Важное замечание. После выхода из **FindBug** все ребра в обработанном подграфе оказываются отключены и не мешают в дальнейшем.

Оценим время работы алгоритма. Пусть S_n — максимальная сложность **FindBug** для графа с n ребрами. Пусть, далее, $j_1 \dots j_t$ — все ребра, выходящие из источника. В худшем случае нам пришлось включить и выключить каждое из ребер $j_1 \dots j_t$ и запустить процедуру **FindBug** для каждого из них.

Тогда

$$S_n \leq 2t + S_{k_1} + S_{k_2} + \dots + S_{k_t},$$

где $k_1 + k_2 + \dots + k_t = n - t$.

Нетрудно видеть, что $S_1=S_2=0,\,S_3=1.$ В любом случае, $S_m\leqslant 2m$ при m=1,2,3

Примем это за рабочую гипотезу. По индукции тогда можно заключить, что

$$S_n \le 2t + S_{k_1} + S_{k_2} + \dots + S_{k_t} \le 2t + 2k_1 + 2k_2 + \dots + 2k_t$$

= $2t + 2(k_1 + k_2 + \dots + k_t) = 2t + 2(n - t) = 2n$,

что и требовалось доказать.