Understanding human-level performance

Human-level error gives an estimate of Bayes error.

Example 1: Medical image classification

This is an example of a medical image classification in which the input is a radiology image and the output is a diagnosis classification decision.

	Classification error (%)	
Typical human	3.0	
Typical doctor	1.0	
Experienced doctor	0.7	
Team of experienced doctors	0.5	

The definition of human-level error depends on the purpose of the analysis, in this case, by definition the <u>Bayes error</u> is <u>lower or equal to</u> 0.5%.

Example 2: Error analysis

	Classification error (%)		
	Scenario A	Scenario B	Scenario C
	1	1	
Human (proxy for Bayes error)	0.7	0.7	0.5
	0.5	0.5	
Training error	5	1	0.7
Development error	6	5	0.8

Scenario A

In this case, the choice of human-level performance doesn't have an impact. The avoidable bias is between 4%-4.5% and the variance is 1%. Therefore, the focus should be on bias reduction technique.

Scenario B

In this case, the choice of human-level performance doesn't have an impact. The avoidable bias is between 0%-0.5% and the variance is 4%. Therefore, the focus should be on variance reduction technique.

Scenario C

In this case, the estimate for Bayes error has to be 0.5% since you can't go lower than the human-level performance otherwise the training set is overfitting. Also, the avoidable bias is 0.2% and the variance is 0.1%. Therefore, the focus should be on bias reduction technique.

Summary of bias/variance with human-level performance

- Human level error proxy for Bayes error
- If the difference between human-level error and the training error is bigger than the difference between the training error and the development error. The focus should be on bias reduction technique
- If the difference between training error and the development error is bigger than the difference between the human-level error and the training error. The focus should be on variance reduction technique