# **Leaf ECU Manual (REV 1.11)**



Черный разъём X1. Серый разъём X2. На разъёмах находиться нумерация пинов. Пины в ответный разъем контроллера можно вставлять сзади хаусинга не разбирая его, только перед этим достав желтый фиксатор спереди разъёма.

## **Powertrain**



#### Важно!!! Все провода кан шины должны быть скручены в витую пару!

На данный момент, есть два варианта подключения устройств к линии 12в. 1) ECU, PDM, OBD, подключаются к аккумулятору 12в напрямую, а инвертор после замка зажигания. 2) Все устройства подключаются к аккумулятору 12в после замка зажигания. Рекомендуем подключать 2м вариантом, так как тогда исключен разряд аккумулятора 12в, но зарядка будет производиться только с включённым зажиганием. Скоро мы это исправим!

#### Мы это исправили)

Контроллеры 4й версии платы имеют новую схему питания. Обратите внимание, что зарядный порт Туре 1 от Leaf имеет резистор R5 прям возле розетки под резиновым чехлом, его нужно перенести, и подключить как на схеме ниже!



(схема для инвертора AZEO, для других распиновки разъёма ниже, подключение такое же)

На контроллер необходимо подавать постоянные 12в с аккумулятора, и отдельно 12в с замка зажигания (IGN KEY). После выключения ключа зажигания контроллер еще остается включенным, пока мотор не остановиться, после чего выключает контактора батареи и выключается сам. Так же необходимо разорвать линию РР между PDM и зарядным портом. При вставленном пистолете в зарядный порт, контроллер включается и начинает процесс зарядки.

## Leaf motor inverter gen 1



## TRACTION MOTOR INVERTER

| Pin # | Connection    | Pin # | Connection      |  |
|-------|---------------|-------|-----------------|--|
| 2, 8  | 12v Ground    | 10, 4 | +12v Key Switch |  |
| 12    | CANH          | 19    | CANL            |  |
| 33    | Always On 12v |       |                 |  |

## Leaf motor inverter gen 2

| Connector No.   | F13                     |
|-----------------|-------------------------|
| Connector Name  | TRACTION MOTOR INVERTER |
| Connector Color | BLACK                   |





| Terminal No. | Color of<br>Wire | Signal Name     |
|--------------|------------------|-----------------|
| 1            | -                | -               |
| 2            | -                | -               |
| 3            | -                | -               |
| 4            |                  |                 |
| 5            | -                | -               |
| 6            | -                | -               |
| 7            | -                | -               |
| 8            | -                | -               |
| 9            | -                | -               |
| 10           | -                | -               |
| 11           | -                | -               |
| 12           | -                | -               |
| 13           | -                | -               |
| 14           | L                | EV SYSTEM CAN-H |
| 15           | G                | EV SYSTEM CAN-L |
| 16           | -                | -               |
| 17           | P                | REZ_S2          |
| 18           | L                | REZ_S4          |
| 19           | R                | REZ_R1          |
| 20           | В                | REZ_S1          |

| Terminal No. | Color of<br>Wire | Signal Name |
|--------------|------------------|-------------|
| 21           | W                | REZ_S3      |
| 22           | -                | -           |
| 23           | -                | -           |
| 24           | -                | -           |
| 25           | _                | _           |
| 26           | -                | -           |
| 27           | G                | REZ_R2      |
| 28           | -                | -           |
| 29           | -                | -           |
| 30           | _                | -           |
| 31           | -                | -           |
| 32           | -                | -           |
| 33           | -                | -           |
| 34           | -                | -           |
| 35           | -                | -           |
| 36           | -                | -           |
| 37           | -                | -           |
| 38           | _                | -           |
| 39           | -                | -           |
| 40           | -                | -           |
| 41           | _                | -           |
| 42           | LG               | IGN_SW      |
| 43           | -                | -           |
| 44           | 0                | TMGND       |
| 45           | Υ                | TM          |
| 46           | G                | VB1         |
| 47           | В                | VBGND1      |
| 48           | G                | VB2         |
| 49           | В                | VBGND2      |

Распиновка разъёма инвертора.

Для подключения инвертора и пдм модуля лучше использовать заводскую проводку от лифа, с неё нужно удалить всё лишние, оставив разьем в инвертор, пдм, и на резольвер в моторе.

Пины 46 и 48 – питание входное постоянных 12в, пин 42 – 12в с замка зажигания.

47 и 49 - GND

## Leaf motor inverter gen 3



| Α               | В    | С                | D    | Е                |
|-----------------|------|------------------|------|------------------|
|                 | Gen2 | color            | Gen3 | color            |
| Can H           | 14   | (L) Blue         | 5    | (L) Blue         |
| Can L           | 15   | (G) Green        | 11   | (G) Green        |
| Resolver S2     | 17   | (P) Pink         | 9    | (P) Pink         |
| Resolver S4     | 18   | (L) Blue         | 3    | (L) Blue         |
| Resolver R1     | 27   | (G) Green        | 16   | (G) Green        |
| Resolver R2     | 19   | (R) Red          | 22   | (R) Red          |
| Resolver S1     | 21   | (W) White        | 14   | (W) White        |
| Resolver S3     | 20   | (B) Black        | 19   | (B) Black        |
| 12V Ignition    | 42   | (LG) Light Green | 18   | (LG) Light Green |
| Traction m temp | 44   | (O) Orange       | 20   | (V) Violet       |
| Traction m temp | 45   | (Y) Yellow       | 7    | (Y) Yellow       |
| 12V             | 46   | (G) Green        | 1    | (G) Green        |
| Ground          | 47   | (B) Black        | 4    | (B) Black        |
| 12V             | 48   | (G) Green        | 6    | (G) Green        |
| Ground          | 49   | (B) Black        | 10   | (B) Black        |

## OBD2 разъём

Для настройки и диагностики контроллера, необходимо установить OBD разъём, в него вставляется диагностическое устройство. Возможно использовать ELM 327 V1.5 Bluetooth, WI-FI, USB версии или OBDLink.



Распиновка OBD разъёма

## PDM модуль

| Connector No.   | F23                         |
|-----------------|-----------------------------|
| Connector Name  | PDM (POWER DELIVERY MODULE) |
| Connector Color | GRAY                        |





Распиновка интерфейсного разъёма PDM модуля

На PDM пины 30 и 29 (зарядного порта) подключаются к двух пиновому разьему на самом порту. Белый провод к белому, зеленый к коричневому, при использовании проводки от лифа.

Корпус PDM модуля необходимо подключить на массу, так как его корпус минусовой виход из DC-DC.



Разъем зарядки Type 1, для использования Type 2 необходимо заменить резистор R5

#### Кнопки управления



Выбор направления движения (селектор), сейчас доступен в варианте кнопок, как на схеме выше, или оригиальный селектор от Nissan Leaf, по этому необходимо в конфураторе указать тип селектора.

Кнопки «Drive», «Revers» должны быть с фиксацией. Кнопка «Start», может быть с фиксацией или тактовой. Режим её работы можно настроить в конфигураторе.

При нажатии кнопки «Start» включаються контактора, инвертор готов к работе, селектор в положении нейтрали находиться. Для начала движения нужно нажать «Drive» или «Revers». Если на контроллер поступит одновременно сигнал с кнопки «Drive» и «Revers», контроллер перейдет в нейтраль. Для кнопки «Drive» и «Revers» нужно использовать 3х позиционный тумблер, в среднем положении будет «Neutral», а в крайних положениях «Drive» и «Revers».

#### Силовое реле

Силовые реле лучше брать с параметрами близкими как стоят в Nissan Leaf. КОНТАКТОРЫ ОТ ТЕСЛА НЕ ПОДХОДЯТ, так как имеют большой ток удержания катушки, и нуждаються в економайзере. Есть аналогичные контакторы, как в тесле, но уже с схемой снижения тока внутри себя.



Оранжевые провода 35кв мм. Синие провода 2.5кв мм. Зелёные провода 0.75кв мм.



Полярность подключения силовой батареи к PDM.

Сбоку модуля, находиться шпилька, это выход 12в с дс-дс преобразователя, корпус PDM служит GND для дс-дс преобразователя, поэтому он должен быть подключен к корпусу автомобиля.

#### Педаль акселератора



Сигнальный провод педаль акселератора подключается к пину B2 разъёма X1. На сигнальном проводе должно меняться напряжение в диапазоне 0 — 5В, проверьте это до подключения провода к контроллеру. C1 X1 — это выход +5в для педали акселератора. C2 X1 — это GND для педали акселератора.

Пин А2 разъёма X1 для второго датчика педали (в автомобильных педалях 2 датчика), пока он программно не используется, но если в вашей педали он есть, подключите его лучше сразу. В конфигураторе нужно настроить минимальное и максимальное напряжение педали акселератора

Педаль акселератора можно использовать как резистивную, так и на датчиках Холла. При подключении педали на датчиках Холла, нужно убедится какая полярность датчика, и где сигнальный выход, иначе можно сжечь датчик, или стабилизатор 5в в контроллере.

Распиновка педали акселератора Nissan Leaf. Педаль с таким же разъёмом стоит но многих других Nissan и Renault.



| Nº |                                  |
|----|----------------------------------|
| 1  | СИГН. + ПОТЕНЦИОМЕТРА НАГРУЗКИ 2 |
| 6  | - ПОТЕНЦИОМЕТРА НАГРУЗКИ 2       |
| 2  | + ПОТЕНЦИОМЕТРА НАГРУЗКИ 2       |
| 5  | - ПОТЕНЦИОМЕТРА НАГРУЗКИ 1       |
| 4  | СИГН. + ПОТЕНЦИОМЕТРА НАГРУЗКИ 1 |
| 3  | + ПОТЕНЦИОМЕТРА НАГРУЗКИ 1       |



Контроллер поддерживает работу с бмс от Chevrolet Volt Gen 1, Orion 2 и Leaf BMS.

#### **Chevrolet Volt Gen 1:**

BMS состоит из 4 модулей, на них есть маркировка 1, 2/3 (2шт), 4. Батарею можно разносить до 4х отдельных блоков за счёт сателлитов.



Обратите внимание, на сателлитах 2/3 есть перемычка, которая задает местоположение сателлита в батарее, без неё сателлит не работает.



(вид с стороны БМС)

9 - +5v

10 - CAN H

11 - CAN L 12 - GND

схеме выше, так как в родной проводке вольта, провода идут транзитом через сателлиты, а это вызывает сложности в дальнейшем с диагностикой.

подключать кан шину и питание по

Дангания Диания

Чёрный разъем на сателлитах интерфейсный. Рекомендуем

Оранжевые разъёмы на сателлитах нужны для подключения балансировочных проводов от ячеек и

термодатчиков. Термодатчики необходимо с данной бмс использовать NTC 10Kom



Разьемы есть двух типов, на 12 ячеек и 6 ячеек, справа распиновка на 12 ячеек. На сателлитах 2/3 разьемы только на 12 ячеек. На сателлитах 1 и 4 есть разъем на 6 ячеек.

(Разъем на 6 ячеек) ->

| D # M I I T 1 0' I                |
|-----------------------------------|
| Battery Module Temperature Signal |
| Low Reference                     |
| Not Used                          |
| Battery Voltage Signal (18)       |
| Battery Voltage Signal (17)       |
| Battery Voltage Signal (16)       |
| Battery Voltage Signal (15)       |
| Battery Voltage Signal (14)       |
| Battery Voltage Signal (13)       |
| Battery Voltage Signal (12)       |
| Not Used                          |
|                                   |

| Pin | Function                          |
|-----|-----------------------------------|
| 1   | Battery Module Temperature Signal |
| 2   | Low Reference                     |
| 3   | Battery Module Temperature Signal |
| 4   | Low Reference                     |
| 5-8 | Not Used                          |
| 9   | Battery Voltage Signal (12)       |
| 10  | Battery Voltage Signal (11)       |
| 11  | Battery Voltage Signal (10)       |
| 12  | Battery Voltage Signal (9)        |
| 13  | Battery Voltage Signal (8)        |
| 14  | Battery Voltage Signal (7)        |
| 15  | Battery Voltage Signal (6)        |
| 16  | Battery Voltage Signal (5)        |
| 17  | Battery Voltage Signal (4)        |
| 18  | Battery Voltage Signal (3)        |
| 19  | Battery Voltage Signal (2)        |
| 20  | Battery Voltage Signal (1)        |
| 21  | Low Reference                     |

Последовательность размещения сателлитов может меняться, но тогда карта ячеек будет не корректно показывать расположение ячеек.





## Nissan Leaf:

БМС от **Nissan Leaf** можно использовать от AZEO и ZEO (ZE1 на стадии тестов). БМС подключается по кан шине, A4 X1 - CAN H, B4 X1 - CAN L.. Если контроллер имеет поддержку чадемо, то БМС следует подключить на A5 X1 - CAN H, B5 X1 - CAN L

Так же, необходимо подключить родные термодатчики и датчик тока к бмс. Интерлоки можно не использовать. Ниже схема для БМС от AZEO, для других типов есть небольшие отличая.





D

Е

F

Н

Κ



## Датчик тока

Датчик тока можно размещать в любом месте внутри батарее до силовых реле.









|   | Pin out   |
|---|-----------|
| Α | Channel 2 |
| В | Vcc       |
| C | Gnd       |
| D | Channel 1 |



## Система охлаждения силовой установки

Для нормальной работы силовой установки, нужна жидкостная система охлаждения



Схема подключения помпы и вентилятора



Температуры включения помпы и вентилятора можно задать в конфигураторе. Контроллер может задавать 2 скорости вентилятора, одна максимальная, вторая меньше, за счет ток ограничительного резистора. Так же возможно реализовать это без резистора, на внешнем ШИМ регуляторе.

#### Стоп-сигнал

Контроллер может включать стоп сигнал при рекуперативном торможении, для этого нужно поставить реле между жабкой педали тормоза и лампой стоп сигнала. На пин В8 X2 нужно подать сигнал с лампы стоп сигнала, чтоб контроллер мог отслеживать нажатие педали тормоза. При заданном токе рекуперации, контроллер может включать стоп сигнал.



#### Chademo



Используете пдм с чадемо портом, то можете использовать внутреннее силовые контактора (Chademo Power Relay + & -), отдельно выведя от них провода. Если пдм без порта чадемо, то нужно поставить дополнительно 2 силовых контактора. Реле (Enable Relay) нужно ставить дополнительно не зависимо от версии PDM, реле не должно быть мощным, достаточным для включения силовых контакторов.

## Дисплей

## Распиновка контроллера дисплея



- Х1 (Входы сигнальных ламп)
- 1 Поворот правый (IN 1)
- 10 Поворот левый (IN 2)
- 2 Габариты (IN 3)
- 11 Ближний свет (IN 4)
- 3 Дальний свет (IN 5)
- 12 Ручник (IN 6)
- 4 Ремень (IN 7)
- Х2 (Подключение дисплея)
- 1 TX
- 3 RX
- 2 5v out
- 4 GND
- ХЗ (Интерфейсный)
- 3 CAN H
- 7 CAN L
- 4 +12V
- 8 GND

## Селектор

Для подключения селектора от Leaf или отдельных кнопок без фиксации с подсветкой положения нужен дополнительный контроллер. Он подключаеться как и дисплей к основной кан шине павертрейна, питание 12в от реле которое включает ECU.

## Схема подключения селектора от Leaf:



#### Схема подключения с кнопками без фиксации:



## Усилитель тормоза

Контроллер может управлять вакуумным насосом усилителя тормоза, для этого нужно подключить датчик разрежённости и вакуумный насос через реле к контроллеру по схеме:



В конфигураторе нужно настроить пороги напряжения датчика при которых будет включаться и выключаться насос.

#### Настройка контролера

После подключения всей проводки к контроллеру, и тщательной проверки правильности подключения (проверить, не зеркально ли запинованы разъёмы), можно приступать к процедуре настройки контроллера и первого запуска.

### Процедура запуска:

Проверка питания 12в до подключения контроллера к машине

- 1. Проверка наличия постоянных 12в на пине A8 X1 (+12в) и на A7 X1 (GND).
- 2. Проверка 12в от замка зажигания на пине С8 X1.
- 3. Проверить правильность подключения зарядного порта, когда зарядный пистолет не вставлен, померять сопротивление между пином В7 X1 и A7 X1 (GND), должно быть 4.7 кОм или 2.7кОм в зависимости от типа порта. Так же проверьте сопротивление между пином В7 X1 и A7 X1 (GND), должна быть бесконечность (OL).

Далее следует подключить контроллер к машине

- 4. Проверить схему питания и уход в режим сна. Включите зажигание, проверьте наличия питания на пине B8 X1, IGN Relay должно включиться, после выключите зажигание, подождите 10 секунд, на B8 X1 должно пропасть питание и IGN Relay должно выключиться. Так же само проверьте включение и уход в сон, вставив АС пистолет зарядки и вытянув его.
- 5. Включив зажигание, подключите компьютер через ELM327 и программу конфигуратора DDT4ALL к контроллеру, без настройки контроллера, не запускайте его далее, так как мотор или может начать крутиться на максимум или вообще не будет крутиться.
- 6. Проверьте подключен ли корректно инвертор и PDM модуль. В вкладке «INV» должны отображаться температура мотора и инвертора, ошибки по инвертору не должно быть. В вкладке «PDM» должна отображаться температура PDM модуля.
- 7. Проверьте правильность подключения кнопок селектора, переключая селектор, в вкладке «инвертор» должно меняться и правильно отображать текущее положение.
- 8. Проверьте правильность подключения педали газа, в вкладке «инвертор» должно меняться в большую сторону показание «положение педали газа» при нажатии на нее. Далее настройте параметры педали газа.
- 9. Настройте остальные параметры конфигурации контроллера, в вкладке BMS и Setting
- 10. Проверьте правильность подключения силовых реле и полярность батареи. Для начала отключите тяговую батарею от силовой установки (вытащив размыкатель, если он присутствует конечно), далее подключаете вольтметр к выходу батареи после контакторов, и нажимаете кнопку старта (провернув ключ в замке зажигания на положение стартера), напряжение должно быть с правильной полярностью. Далее контроллер уйдет в защиту, и покажет «ошибку предзаряда», перегрузите контроллер, дайте ему уйти в сон и снова включите. Повторите тест, только поставим мультиметр на измерение сопротивления и подключив щупы к плюсовому контактору, до теста должна быть бесконечность, в начале теста, 30-50 Ом, и через секунду 0 Ом. Если все правильно,

#### 11. Запуск

Для настройки и мониторинга параметров контроллера используется программа DDT4ALL, она работает на Windows, Linux. Карту ячеек и температуру батареи можно посмотреть через Android устройство в программе CanZE.

#### Настройка педали газа

Настройка педали настраивается параметрами в конфигураторе во вкладке «INV».

«Мин. педали газа» — нужно записать значение параметра «положение педали газа» при котором мотор начнет вращаться.

«Макс. педали газа» - нужно записать значение параметра «положение педали газа» при котором мотор вращаться с максимальной мощностью.

«Положение отпущенной педали» - нужно записать значение параметра «положение педали газа» в момент полностью отпущенной педали.

«Момент в точке» - нужно записать % от максимального крутящего момента в точке калибровки.

«Положение педали в точке» - нужно записать значение параметра «положение педали газа» в точке калибровки.

«Момент холостого хода» - момент при включении D или R при не нажатой педали газа, Онм выкл.



#### Настройка конфигурации контроллера

После настройки педали акселератора, необходимо задать «Максимум крутящего момента».

Далее, зайти в экран Setting и проверить все параметры что там есть.

Параметр «Окружность колеса» задать в см.

Параметр «Тип инвертора» обязательно правильно выбрать инвертор который у вас установлен.

Параметр «Тип селектора» выбрать «Кнопки» если у вас стоит тумблер или «Leaf» если у вас стоит отдельная плата селектора.

Параметр «Напряжения включения контакторов» задать в вольтах, этот параметр не даёт включать основной контактор, если напряжения на инверторе в момент пред заряда меньше заданного. Защита, от обрыва силового провода, или обрыва резистора пред заряда.



- нажать для обновления параметров один раз

- нажать для обновления циклично, частоту можно задать снизу страницы, параметром «Частота обновления».

#### Проблемы с которыми могут столкнуться пользователи

- «DDT4ALL не подключается к ЕЛМ, что делать?»
- -Причин может быть несколько. Проверьте сделали, ли вы сопряжение с ЕЛМ. У вас должны появиться 2 ком порта в окне выбора адаптера. Возможно у вас ЕЛМ не версии 1.5, или у вас стоит не правильный драйвер на компьютере, тогда возьмите правильный сканер (рекомендуется брать ЕЛМ только двух платочную), и обновите драйвер.
- «В DDT4ALL не отображаються параметры и пишет NO DATA»
- -Проблема в том, что ЕЛМ не имеет обмена данными по кан шине с контроллером. Причин несколько, отсутствие питания на контроллере, неправильность подключения кан шины (перепутан CAN H и CAN L на каком-то из устройств в шине), неисправность контроллера.
- «Все напряжение от БМС Ов»
- Проблема в том, что контроллер не видит БМС, проверьте подключения кан шины, и питание на БМС.
- «БМС показывает напряжение одной ячейки на много больше чем на самом деле, а соседняя ячейка имеет напряжение на много меньше»
- Скорее всего, у вас плохой контакт балансировочного провода, с ячейкой. Если такое происходит под нагрузкой, то значит у вас плохой контакт в силовых перемычках между ячейками. В любом случае необходимо проверять подключения в батарее.
- «Не отображается карта ячеек в DDT4ALL»
- Это проблема программы, она может отображать карту не с первого раза, нажмите обновить страницу (зеленый круг), при циклическом обновлении, возможно нужно будет добавить больше времени обновления (в самом низу экрана выставляется частота обновления)
- «Мотор пищит, но не крутится»
- Если у вас стоит оригинальный редуктор, проверьте не заблокирован ли он, покрутив оба ведущих колеса в одну сторону, если не крутиться, то необходимо провернуть вал паркинга против часовой стрелки.
- «Мотор крутиться только назад»
- Такое может быть если у вам инвертор от ZEO, а в настройках контроллера стоит другой тип инвертора.
- «Машина временами самопроизвольно рекуперирует или разгоняется на ходу»
- Такое было замечено на машинах с резистивной педаль газа, с временем дорожки резистора стираются, и могут давать не стабильное напряжение. Решение, замена педали газа.
- «Залипли контактора тяговой батареи»
- Сперва проверьте правильность подключения контакторов, и сопротивление резистора предзаряда. Также проверьте стоит ли у вас параметр в конфигураторе «напряжение вкл батареи выше 200в», это защита от выхода из строя реле или резистора предзаряда.
- «Сгорел DC-DC преобразовать в PDM модуле»
- При утечке на корпус, особенно если минус тяговой батареи подключен на минус бортовой сети, возможен выход из строя PDM модуля. Обязательно проверяйте сопротивление изоляции силовой батареи относительно корпуса.

## Manual REV history:

- 1.7: add Leaf BMS info, fix error in 12v power scheme with charge port resistor, fix error in current sens scheme (pin A7 X1 change to C7 X1), add rev history.
- 1.8: add Volt BMS pinout.
- 1.9 fix err in fan scheme, add more info about IGN KEY.
- 1.10 add FAQ and start protocol, add selector connection scheme.
- 1.11 add CAN selector scheme.