Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

КУРСОВАЯ РАБОТА

Использование бинарных решающих диаграмм для решения логических задач. Библиотека BuDDy

по дисциплине «Математическая логика»

Выполнил студент гр.3530904/80102

Д.О. Стулов

Руководитель доцент, к.т.н.

И.В. Шошмина

«30» ноября 2020 г.

Санкт-Петербург

2020

СОДЕРЖАНИЕ

введ	ЕНИЕ	3
	1. ПОСТАНОВКА ЗАДАЧИ	
1.1.	Основные составляющие (вариант 4)	
	Базовые ограничения	
	2. ХОД ВЫПОЛНЕНИЯ	7
2.1.	Решение в начальных условиях	7
2.2.	Дополнительные ограничения	7
2.3.	Физическая интерпретация	8
ЗАКЛ	ЮЧЕНИЕ	10
СПИС	ОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	11

ВВЕДЕНИЕ

Курсовая работа представляет собой задачу, аналогичную задаче Эйнштейна [1], с заданными ограничениями, количество которых определяет вариант, для системы из N объектов с M свойствами. Данную задачу необходимо решить с использованием библиотеки BuDDy [2], которая позволяет решать прикладные задачи, используя бинарные решающие диаграммы [3]. Если количества данных условий не будет достаточно для однозначного решения задачи, необходимо добавить или изменить условия так, чтобы задача имела единственное решение. Также необходимо придумать физическую интерпретацию задачи.

1. ПОСТАНОВКА ЗАДАЧИ

1.1. Основные составляющие (вариант 4)

Пусть имеется N=9 объектов. Расположены объекты следующим образом:

«Соседские» отношения между объектами определены относительно центрального объекта следующим образом (задано в условии):

*		*
	0	

Понятие «объекты, расположенные рядом» — это соседи (отмечены * для объекта с пометкой 0), а понятия «объекты, расположенные слева», «объекты, расположенные справа», «объекты, расположенные снизу», «объекты, расположенные сверху» — это соседи, расположенные слева, справа, снизу и сверху соответственно, если таковые есть.

Для всех остальных объектов отношения строятся сдвигом. Напри-мер, для объекта в правом верхнем углу этих соседский отношений соседями будут:

Необходимо выбрать M=4 свойств, принимающих N различных значений.

Необходимо задать 7 типов ограничений, из которых 4 относятся к соответствию конкретных объектов или свойств, а 3 распространяются на всю систему в целом.

- Задать n1=2 ограничений типа 1: свойство k1 объекта i1 имеет значение j1.
- Задать n2=4 ограничений типа 2: соответствие между двумя свойствами какого-либо объекта.
- Задать n3=5 ограничений типа 3: объект, у которого свойство k1 имеет значение j1, расположен слева (справа) от объекта, у которого свойство k2 имеет значение j2.
- Задать n4=4 ограничений типа 4: объект, у которого свойство k1 имеет значение j1, расположен рядом с объектом, у которого свойство k2 имеет значение j2. Рядом слева или справа.
- Расположение «слева» («справа») и количество каждого типа ограничений задаются в соответствии с вариантом.
- Задать ограничение типа 5: у двух различных объектов значения любого параметра (свойства) не совпадают.
- Задать ограничение типа 6: Параметры принимают значения только из заданных множеств (значение свойств должно быть меньше N).
- Задать ограничение типа 7: сумма свойств объектов-соседей не должна быть больше K, где K некоторое число от 0 до N*M. K выбирается самостоятельно.

Найти все возможные решения.

Придумать физическую интерпретацию.

Если задача имеет не одно решение, следует добавить и/или изменить некоторые ограничения так, чтобы задача имела только одно единственное решение.

Если задача не имеет решений, следует удалить и/или изменить некоторые ограничения так, чтобы задача имела только одно единственное решение. Ограничение типа n7 удалять нельзя.

Для выполнения задания необходимо написать программу на языке C++ с использованием библиотеки BuDDy.

1.2. Базовые ограничения

Типа 1:

- Свойство 3 у объекта №7 равно 8
- Свойство 3 у объекта №1 равно 2

Типа 2:

• Если у объекта свойство 2 со значением 5, то у него свойство 0

- имеет значение 0 и обратно
- Если у объекта свойство 2 со значением 3, то у него свойство 3 имеет значение 5 и обратно
- Если у объекта свойство 1 со значением 3, то у него свойство 2 имеет значение 8 и обратно
- Если у объекта свойство 1 со значением 2, то у него свойство 0 имеет значение 1 и обратно

Типа 3:

- объект со первым свойством 1 слева-вверху от объекта с первым свойством 5
- объект с нулевым свойством 4 справа сверху от объекта с первым свойством 7
- объект со вторым свойством 4 слева-вверху от объекта с первым свойством 6
- объект со вторым свойством 4 справа сверху от объекта с первым свойством 4
- объект с нулевым свойством 5 справа сверху от объекта с первым свойством 8

Типа 4:

- объект со значением 5 в свойстве 1 стоит слева сверху или справа сверху от героя со значением 8 в свойстве 0
- объект со значением 4 в свойстве 2 стоит слева сверху или справа сверху от героя со значением 2 в свойстве 0
- объект со значением 5 в свойстве 1 стоит слева сверху или справа сверху от героя со значением 4 в свойстве 3
- объект со значением 4 в свойстве 2 стоит слева сверху или справа сверху от героя со значением 3 в свойстве 3

Типа 7:

K = 17

Параметр К ограничения типа 7 имеет значение 17, так как это минимальный параметр, при котором задача будет иметь хотя бы одно решение.

2. ХОД ВЫПОЛНЕНИЯ

2.1. Решение в начальных условиях

По заданным условиям была написана программа для решения поставленной задачи с использованием библиотеки BuDDy [4]. Предварительно были разобраны способы решения задач с использованием бинарных решающих диаграм, которые лежат в основе используемой библиотеки. для построения бинарных решающих диаграмм [5].

Однако заданных ограничений не хватило для однозначного решения задачи.

2.2. Дополнительные ограничения

Дальнейшее решение задачи сводилось к последовательному введению дополнительных ограничений.

- 4 условия первого типа
- 4 условия второго типа
- 3 условия четвертого типа

В результате было получено единственное решение:

```
1 solutions:

0: 0 1 5 0

1: 1 2 4 2

2: 3 0 7 7

3: 2 4 6 1

4: 4 5 3 5

5: 5 6 1 3

6: 7 7 2 6

7: 6 8 0 8

8: 8 3 8 4
```

2.3. Физическая интерпретация

в результате урагана на торговой площадке, на которой было 9 магазинов были утеряны надписи, что продается в здании. Нам необходим конкретный магазин, но заходить внутрь каждого мы не можем (не интересно). У всех магазинов остались вывески разных цветов, таблички с годом открытия, эмблемы на дверях и гравировка на штукатурке с информацией о площади.

Необходимо определить, какой магазин какими свойствами обладает (цвет вывески, год открытия, изображение на двери и его площадь), если:

(Ограничения типа 1)

- У Магазин обуви площадь 39
- Магазин электроники площадь 21

(Ограничения типа 2)

- Тот магазин, у которого на двери изображен квадрат, имеет черную вывеску и обратно
- Тот, у которого изображен дракон, площадь 28 и обратно
- Тот, у которого год открытия 2013, имеет на двери треугольник и обратно
- Тот, у которого год открытия 2012, имеет белую вывеску и обратно (Ограничения типа 3)
 - Магазин, у которого год открытия 2011, стоит слева-сверху от магазина, у которого год открытия 2015
 - Магазин, у которого зеленая вывеска стоит справа-сверху от магазина, у которого год открытия 2017
 - Магазин, у которого на двери изображена зебра стоит слева-сверху от магазина, у которого год открытия 2016
 - Магазин, у которого на двери изображена зебра стоит справа-сверху от магазина, у которого год открытия 2014
 - Магазин, у которого коричневая вывеска стоит справа-сверху от магазина,

у которого год открытия 2018

(Ограничения типа 4)

- Магазин, у которого год открытия 2015 стоит слева-сверху или справа-сверху от магазина, у которого желтая вывеска
- Магазин, у которого на двери изображена зебра стоит слева-сверху или справа-сверху от магазина, у которого красная вывеска
- Магазин, у которого год открытия 2015 стоит слева-сверху или справасверху от магазина, у которого площадь 25
- Магазин, у которого на двери изображена зебра стоит слева-сверху или справа-сверху от магазина, у которого площадь 23

Дополнительные ограничения по аналогии.

Закодируем домены свойств следующим образом:

Код	Магазин (объект)	Цвет вывески (свойство №0)	Год открытия (свойство №1)	На двери изображен (свойство №2)	Площадь помещения (кв. м.) (свойство №3)
0	Магазин мебели	Черная	2010	Кот	15
1	Магазин электроники	Белая	2011	Рыба	17
2	Магазин хоз. Товаров	Красная	2012	Пингвин	21
3	Магазин животных	Синяя	2013	Дракон	23
4	Продуктовый магазин	Зеленая	2014	Зебра	25
5	Магазин одежды	Коричневая	2015	Квадрат	28
6	Магазин игрушек	Серая	2016	Улитка	30
7	Магазин обуви	Фиолетовая	2017	Лис	35

8	Магазин украшений	Желтая	2018	Треугольник	39
---	----------------------	--------	------	-------------	----

Интерпретация решения:

Магазин	Цвет вывески	Год открытия	На двери изображен	Площадь помещения
Магазин мебели	Черная	2011	Квадрат	15
Магазин электроники	Белая	2012	Зебра	21
Магазин хоз. Товаров	Синяя	2010	Лис	35
Магазин животных	Красная	2014	Улитка	17
Продуктовый магазин	Зеленая	2015	Дракон	28
Магазин одежды	Коричневая	2016	Рыба	23
Магазин игрушек	Фиолетовая	2017	Пингвин	30
Магазин обуви	Серая	2018	Кот	39
Магазин украшений	Желтая	2013	Треугольник	25

ЗАКЛЮЧЕНИЕ

В результате проделанной работы были приобретены навыки решения прикладных задач с помощью бинарной диаграммы решений (БДР) с использованием библиотеки BuDDy, предоставляющей возможность работы с БДР. Было получено единственное решение логической задачи с заданными ограничениями в рамках общего алгоритма решения подобных задач.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Загадка Эйнштейна [Электронный ресурс]. URL:

https://ru.wikipedia.org/wiki/
%D0%97%D0%B0%D0%B3%D0%B0%D0%B4%D0%BA%D0%B0_%D0%
AD%D0%B9%D0%BD%D1%88%D1%82%D0%B5%D0%B9%D0%BD%D0
%B0

- 2. А.Б. Беляев, И.В. Шошмина. Использование бинарных решающих диаграмм для решения логических задач. Библиотека BuDDy. 2020. 25 с.
- 4. BuDDy: A BDD package [Электронный ресурс]. URL:

http://buddy.sourceforge.net/manual/main.html

5. Модуль 4. Бинарные решающие диаграммы [Электронный ресурс]: Онлайн-курс "Математическая логика". URL: <a href="https://courses.openedu.ru/courses/course-v1:spbstu+MATLOG+fall_2020/courseware/courseware/courses/course-v1:spbstu+MATLOG+fall_2020/courseware/c6a8ff97af6f4b25864ef013fbbb6971/5b6b413d5ab14ef59ce0c4bd225f520c/1?activate_block_id=block-

v1%3Aspbstu%2BMATLOG%2Bfall_2020%2Btype%40vertical%2Bblock%4 0bc23e8c6c41f4e1999426c81b1d85be4