Übungsblatt 2

Pascal Diller, Timo Rieke

24. April 2025

Aufgabe 1

(i)

- 1. Das Nullpolynom p(x) = 0 hat $a_0 = 0$, also $0 \in M_0$.
- 2. Seien $p(x) = \sum_{i=1}^{n} a_i x^i$ und $q(x) = \sum_{j=1}^{m} b_j x^j$ in M_0 . Der konstante Term von p(x) + q(x) ist 0 + 0 = 0. Also $p(x) + q(x) \in M_0$.
- 3. Sei $p(x) = \sum_{i=1}^{n} a_i x^i \in M_0$ und $\lambda \in \mathbb{R}$. Der konstante Term von $\lambda p(x) = \sum_{i=1}^{n} (\lambda a_i) x^i$ ist $\lambda \cdot 0 = 0$. Also $\lambda p(x) \in M_0$. Somit ist M_0 ein Unterraum.

(ii)

 $M_1=\{p(x)\in\mathbb{R}[x]\mid a_0=1\}$: Das Nullpolynom p(x)=0hat $a_0=0,$ also $0\notin M_1.$

 M_1 ist kein Unterraum.

 $M_{\geq 0} = \{ p(x) \in \mathbb{R}[x] \mid a_0 \geq 0 \}$:

Sei $p(x) = 1 \in M_{\geq 0}$ (da $a_0 = 1 \geq 0$) und $\lambda = -1$.

Dann ist $\lambda p(x) = -1$. Der konstante Term ist -1, was nicht ≥ 0 ist.

Also $\lambda p(x) \notin M_{\geq 0}$. $M_{\geq 0}$ ist nicht abgeschlossen bzgl. Skalarmultiplikation und somit kein Unterraum.

Aufgabe 2

(i)

Seien $(a_n), (b_n), (c_n) \in F$ und $\lambda, \mu \in \mathbb{R}$.

Addition ist assoziativ $((a_n + b_n) + c_n = a_n + (b_n + c_n))$ und kommutativ $(a_n + b_n = b_n + a_n)$, da + in \mathbb{R} diese Eigenschaften hat.

Das neutrale Element ist die Nullfolge $(0)_{n\in\mathbb{N}}$, da $(a_n) + (0) = (a_n + 0) = (a_n)$. Das inverse Element zu (a_n) ist $(-a_n)$, da $(a_n) + (-a_n) = (a_n - a_n) = (0)$. (F, +) ist eine abelsche Gruppe.

Für Skalarmultiplikation:

Ax 1: $1 \cdot (a_n) = (1 \cdot a_n) = (a_n)$.

Ax 2: $(\lambda \mu) \cdot (a_n) = ((\lambda \mu)a_n) = (\lambda(\mu a_n)) = \lambda \cdot (\mu(a_n))$ (Assoziativität von · in

 \mathbb{R}).

Ax 3: $\lambda \cdot ((a_n) + (b_n)) = \lambda \cdot (a_n + b_n) = (\lambda(a_n + b_n)) = (\lambda a_n + \lambda b_n) = \lambda(a_n) + \lambda(b_n)$ (Distributivität in \mathbb{R}).

Ax 4: $(\lambda + \mu) \cdot (a_n) = ((\lambda + \mu)a_n) = (\lambda a_n + \mu a_n) = \lambda(a_n) + \mu(a_n)$ (Distributivität in \mathbb{R}).

F ist ein \mathbb{R} -Vektorraum.

(ii)

- 1. Die Nullfolge (0) konvergiert gegen 0, also $0_F \in M_{\to 0}$.
- 2. Seien $(a_n), (b_n) \in M_{\to 0}$. Dann $\lim a_n = 0$ und $\lim b_n = 0$. Es gilt $\lim (a_n + b_n) = \lim a_n + \lim b_n = 0 + 0 = 0$. Also $(a_n) + (b_n) \in M_{\to 0}$.
- 3. Sei $(a_n) \in M_{\to 0}$ und $\lambda \in \mathbb{R}$.

Somit $\lim a_n = 0$. Es gilt $\lim(\lambda a_n) = \lambda \lim a_n = \lambda \cdot 0 = 0$.

Also $\lambda(a_n) \in M_{\to 0}$.

Somit ist $M_{\rightarrow 0}$ ein Unterraum.

(iii)

Betrachte (a_n) mit $a_n = n$ ($\lim a_n = \infty$, also $(a_n) \in M_{\to \infty}$) und (b_n) mit $b_n = -n + 1$ ($\lim b_n = -\infty$, also $(b_n) \in M_{\to \infty}$).

Die Summe ist $(a_n) + (b_n) = (n + (-n + 1)) = (1)_{n \in \mathbb{N}}$.

Die konstante Folge (1) strebt nicht gegen $\pm \infty$ und ist nicht die Nullfolge. Also $(a_n) + (b_n) \notin M_{\to \infty}$.

 $M_{\to\infty}$ ist nicht abgeschlossen bzgl. Addition und somit kein Unterraum.

Aufgabe 3

(i)

zu zeigen:

1. $0 \in M_{\text{ger}}$

$$\lambda f + g \in M_{\rm ger}$$

- $2. \implies f + g \in M_{\text{ger}}$
- 3. $\Longrightarrow \lambda f \in M_{ger}$

Beweise:

- 1. $f(t) = 0 = f(-t) \in M_{ger}$
- 2. (f+g)(-t) = f(-t) + g(-t) = f(t) = g(t) = (f+g)(t)
- 3. $(\lambda f)(-t) = \lambda \cdot f(-t) = \lambda \cdot f(t) = (\lambda f)(t)$

(ii)

Für $M_{\mathbb{Q}}$ mit Gegenbeispiel:

Sei
$$f \in \mathbb{Q}$$
 und $f(x) = x$ für alle x .
 $\implies f(\mathbb{Q}) = \mathbb{Q} \in \mathbb{Q}$

Sei
$$\lambda = \sqrt{2}$$
. Dann gilt: $(\lambda f)(x) = \sqrt{2}x$
Für $x = 1$ gilt jedoch: $(\lambda f)(1) = \sqrt{2} \notin \mathbb{Q}$

Somit gilt nicht: $\lambda f \in \mathbb{Q}$

Für M_{+1} mit Gegenbeispiel:

Seien
$$f(n) = n, g(n) = -n$$
. Dann gilt: $f(n+1) = n+1 = f(n)+1$ $g(n+1) = -(n+1) = g(n)-1$ Allerdings: $(f+g)(n+1) = f(n+1) + g(n+1) = (n+1) - (n+1)$, aber: $(f+g)(n) + 1 = n - n + 1 = 1 \neq 0 = (f+g)(n+1)$ $\implies (f+g)(n+1) \neq (f+g)(n) \implies f+g \notin M_{+1} \implies \text{Kriterium nicht erfüllt}$

Aufgabe 4

$$\lambda(-v) + \lambda(-u)$$

$$= (-\lambda)v + (-\lambda)(u)$$

$$= (-\lambda) \cdot (v + u)$$

$$= (-1)\lambda \cdot (v + u)$$

$$= -(\lambda(v + u))$$

$$-(\lambda v) = (-\lambda)v = \lambda(-v)$$

$$Ax 3$$

$$(-1)v = -v$$

$$Ax 2$$