Inference 1: Hypothesis testing (cont)

Last updated: September 14, 2017

Recap: hypothesis testing

Hypothesis testing = statistical proof by contradiction

- ▶ State: null hypothesis H_0 , alternative hypothesis H_A .
- ► Assume *H*₀ is right.
- Observe s from data.
- Compute p-value.
- ▶ Smaller p-value: H_A better than H_0 . Larger p-value: H_0 better than H_A .

```
H_A: "extremely large". Test: \mathbb{P}(S \ge ...|H_0)

H_A: "extremely small". Test: \mathbb{P}(-S \le ...|H_0)

H_A: "extreme" (either way). Test: \mathbb{P}(|S| \ge ...|H_0).
```

- ▶ How should I choose H_0 ? How should I choose H_A ?
- ► How small should the p-value be so that we can reject H_0 ?
- ▶ When should I set the significance level α ?
- ► Should I keep testing for alternative hypotheses until I can reject *H*₀?
- ▶ What is the 'best' S for a given (H_0, H_A) pair?

- ▶ How should I choose H_0 ? How should I choose H_A ?
 - $ightharpoonup H_0 = \text{common sense BEFORE seeing data}$
 - $ightharpoonup H_A = \text{next common sense if reject } H_0 \text{ BEFORE seeing data}$
- ► How small should the p-value be so that we can reject H_0 ?
- ▶ When should I set the significance level α ?
- ► Should I keep testing for alternative hypotheses until I can reject *H*₀?
- ▶ What is the 'best' S for a given (H_0, H_A) pair?

- ▶ How should I choose H_0 ? How should I choose H_A ?
 - $ightharpoonup H_0 = \text{common sense BEFORE seeing data}$
 - $ightharpoonup H_A={
 m next}$ common sense if reject H_0 BEFORE seeing data
- ► How small should the *p*-value be so that we can reject H_0 ?
 - ▶ p-value $< \alpha \Rightarrow$ reject H_0 in favor of H_A
 - ▶ Significance level α = probability that you wrongly reject $H_0!$
- ▶ When should I set the significance level α ?
- ► Should I keep testing for alternative hypotheses until I can reject *H*₀?
- ▶ What is the 'best' S for a given (H_0, H_A) pair?

- ► How should I choose H_0 ? How should I choose H_A ?
 - $ightharpoonup H_0 = \text{common sense BEFORE seeing data}$
 - $ightharpoonup H_A={
 m next}$ common sense if reject H_0 BEFORE seeing data
- ► How small should the *p*-value be so that we can reject H_0 ?
 - ▶ p-value $< \alpha \Rightarrow$ reject H_0 in favor of H_A
 - ▶ Significance level $\alpha = \text{probability that you wrongly reject } H_0!$
- ▶ When should I set the significance level α ?
 - BEFORE seeing the data!
- ► Should I keep testing for alternative hypotheses until I can reject *H*₀?
- ▶ What is the 'best' S for a given (H_0, H_A) pair?

- ▶ How should I choose H_0 ? How should I choose H_A ?
 - $ightharpoonup H_0 = \text{common sense BEFORE seeing data}$
 - $ightharpoonup H_A = \text{next common sense if reject } H_0 \text{ BEFORE seeing data}$
- ► How small should the *p*-value be so that we can reject H_0 ?
 - ▶ p-value $< \alpha \Rightarrow$ reject H_0 in favor of H_A
 - ▶ Significance level $\alpha =$ probability that you wrongly reject $H_0!$
- ▶ When should I set the significance level α ?
 - BEFORE seeing the data!
- ► Should I keep testing for alternative hypotheses until I can reject *H*₀?
 - No! If you test enough, you will most likely do reject H₀ even if it were true
 - ▶ The goal of inference \neq reject H_0 .
- ▶ What is the 'best' S for a given (H_0, H_A) pair?

The power β of a test with significance level α is

$$\beta := \mathbb{P}(\text{ reject } H_0|H_A) = \mathbb{P}(p - value < \alpha|H_A).$$

- $\alpha =$ probability that the test wrongly reject H_0
- ho β = probability that the test does reject H_0 if the alternative were correct.

Higher $\beta = \text{better.}$ Smaller $\alpha = \text{better.}$

Is there a test with $\beta = 1$?

The power β of a test with significance level α is

$$\beta := \mathbb{P}(\text{ reject } H_0|H_A) = \mathbb{P}(p - value < \alpha|H_A).$$

- $\alpha =$ probability that the test wrongly reject H_0
- β = probability that the test does reject H_0 if the alternative were correct.

Higher $\beta = \text{better.}$ Smaller $\alpha = \text{better.}$

Yes: the test that always reject H_0 has $\beta = 1!$

The power β of a test with significance level α is

$$\beta := \mathbb{P}(\text{ reject } H_0|H_A) = \mathbb{P}(p - value < \alpha|H_A).$$

- $\alpha =$ probability that the test wrongly reject H_0
- ho β = probability that the test does reject H_0 if the alternative were correct.

Higher $\beta = \text{better.}$ Smaller $\alpha = \text{better.}$

Yes: the test that always reject H_0 has $\beta = 1$!

Is there a test with $\alpha = 0$?

The power β of a test with significance level α is

$$\beta := \mathbb{P}(\text{ reject } H_0|H_A) = \mathbb{P}(p - value < \alpha|H_A).$$

- $\alpha =$ probability that the test wrongly reject H_0
- β = probability that the test does reject H_0 if the alternative were correct.

Higher $\beta = \text{better.}$ Smaller $\alpha = \text{better.}$

Yes: the test that always reject H_0 has $\beta = 1!$

Yes: The test that always accept H_0 has $\alpha = 0$!

The power β of a test with significance level α is

$$\beta := \mathbb{P}(\text{ reject } H_0|H_A) = \mathbb{P}(p - value < \alpha|H_A).$$

- ho α = probability that the test wrongly reject H_0
- ho β = probability that the test does reject H_0 if the alternative were correct.

Higher $\beta = \text{better.}$ Smaller $\alpha = \text{better.}$

Yes: the test that always reject H_0 has $\beta = 1$!

Yes: The test that always accept H_0 has $\alpha = 0$!

There is a trade-off between higher power and smaller significance. However, for fixed α , the likelihood ratio test is one with maximal β . Most tests you learn are equivalent to the likelihood ratio test (for that situation).

Which test to use

- ▶ Depends on data
- \triangleright S (test stat) depends on H_A (alternative)
- justifying the assumptions = CRUCIAL.

Tests we learn	num	cat	cat. vs cat.	num. vs cat.
Fisher's exact			✓	
permutation (randomization)	\checkmark	\checkmark	\checkmark	\checkmark
chi-square			\checkmark	
z-test for proportions		\checkmark		
t-test	\checkmark			
two-sample t-test				\checkmark
ANOVA				\checkmark

Modern Fisher's exact test for contingency tables

Data: $m \times n$ contingency table (cat. vs cat.)

Example: sex vs survived, true vs guessed, class vs survived

- ► H₀: row and column variables are independent
- ► *H_A*: they are not independent
- ▶ Test statistic S: the contingency table, ordered by their likelihood under H_0 (ie: $s \ge t$ means $\mathbb{P}(S = s|H_0) \ge \mathbb{P}(S = t|H_0)$).
- ▶ p-value: $\mathbb{P}(S \leq s | H_0)$
- Key: by combinatorics, one can compute exactly. (Hence the name 'exact' test)
- One-sided tests only available for 2 × 2 table.

Data example: Titanic