

UNIVERSITÉ DE SHERBROOKE

Faculté de génie Département de génie électrique et génie informatique

ÉLÉMENTS DE STATIQUE ET DE DYNAMIQUE APP 1

Présenté à :

Μ.

 $\operatorname{Pr\acute{e}sent\acute{e}}$ par :

Hubert Dubé - dubh3401 Marc Sirois - sirm2508

Gabriel Lavoie - lavg2007

Sherbrooke
4 septembre 2019

Table des matières

1 Introduction						
2	Cinématique					
	2.1	Mouvement de A dans le cas général	1			
	2.2	Mouvement horizontal de A	1			
	2.3	Mouvement vertical de A	3			
	2.4	Analyse avec Matlab	5			
3	Statique et dynamique 5					
	3.1	Statique	5			
	3.2	Dynamique	5			
	3.3	Analyse avec Matlab	6			
4	Cor	nclusion	6			

Table des figures

	\mathbf{a}	Position initiale	2		
	b	Position finale	2		
1	Positio	on du mouvement horizontale	2		
2	Compo	osantes en fonction de $ heta$	3		
	a	Position initiale	4		
	b	Position finale	4		
3	Positio	on du mouvement vertical	4		
4	Composantes en fonction de θ				
5	couple statique en fonction de $ heta$				
6	couple	dynamique en fonction de $ heta$	5		

1 Introduction

2 Cinématique

2.1 Mouvement de A dans le cas général

Le positionnement de \overrightarrow{OA} peut être exprimé par l'addition :

$$\overrightarrow{OA} = \overrightarrow{OB} + \overrightarrow{BA}$$

$$\overrightarrow{OA_x} = l_1 cos(\theta) + l_2 cos(\varphi)$$

$$\overrightarrow{OA_y} = l_1 sin(\theta) + l_2 sin(\varphi)$$
(1)

la vitesse étant la dérivée de la position :

$$\overrightarrow{V_A} = \frac{d\overrightarrow{OA}}{dt} \tag{2}$$

$$\overrightarrow{V_A x} = \frac{d(\overrightarrow{OA_x})}{dt} = \frac{d(l_1 cos(\theta) + l_2 cos(\varphi))}{dt}$$

$$\overrightarrow{V_A x} = -l_1 sin(\theta)\dot{\theta} - l_2 sin(\varphi)\dot{\varphi}$$

$$\overrightarrow{V_A y} = \frac{d(\overrightarrow{OA_y})}{dt} = \frac{d(l_1 sin(\theta) + l_2 sin(\varphi))}{dt}$$

$$\overrightarrow{V_A x} = l_1 cos(\theta)\dot{\theta} - l_2 cos(\varphi)\dot{\varphi}$$

La même stratégie peut être utilisé pour obtenir l'accélération :

$$\overrightarrow{a_{A}} = \frac{d\overrightarrow{V_{A}}}{dt}$$

$$\overrightarrow{a_{A_{x}}} = \frac{d\overrightarrow{OA_{x}}}{dt} = \frac{d(l_{1}cos(\theta) + l_{2}cos(\varphi))}{dt}$$

$$\overrightarrow{a_{A_{x}}} = -l_{1}cos(\theta)\dot{\theta}^{2} - l_{1}sin(\theta)\ddot{\theta} - l_{2}sin(\varphi)\dot{\varphi}^{2} - l_{2}cos(\varphi)\ddot{\varphi}$$

$$\overrightarrow{a_{A_{y}}} = \frac{d\overrightarrow{OA_{y}}}{dt} = \frac{d(l_{1}cos(\theta) + l_{2}cos(\varphi))}{dt}$$

$$\overrightarrow{a_{A_{y}}} = -l_{1}sin(\theta)\dot{\theta}^{2} + l_{1}cos(\theta)\ddot{\theta} - l_{2}cos(\varphi)\ddot{\varphi} + l_{2}sin(\varphi)\dot{\varphi}^{2}$$
(3)

2.2 Mouvement horizontal de A

Dans le cas précis du mouvement général, il est possible de déterminer une relation entre l'angle θ et φ , ce qui permettera de réduire la taille des équations. Partant du fait que la vitesse en 'y' est toujours nulle :

$$\overrightarrow{V_{A_y}} = 0 \tag{4}$$

$$\overrightarrow{V_{A_y}} = 0 = l_1 sin(\theta) + l_2 sin(\varphi)$$
$$-l_1 sin(\theta) = l_2 sin(\varphi)$$

Considérant que $l_1=l_2\,$

$$-sin(\theta) = sin(\varphi)$$

cette condition n'est vrai que dans un cas :

$$\varphi = -\theta \tag{5}$$

À partir de cette relation et du fait que $l_1 = l_2$, les équations du cas générale peuvent être réécritent afin d'obtenir celle de ce cas spécifique. Pour la position :

$$\overrightarrow{OA_x} = l_1 cos(theta) + l_2 cos(\theta) = 2l_1 cos(\theta)$$

$$\overrightarrow{OA_y} = 0$$

Pour la vitesse:

$$\overrightarrow{V_{A_x}} = \frac{d\overrightarrow{OA_x}}{dt} = -2l_1 sin(\theta)\dot{\theta}$$

$$\overrightarrow{V_{A_y}} = 0$$

Pour l'accélération, à vitesse angulaire constante :

$$\overrightarrow{a_{A_x}} = \frac{d\overrightarrow{V_{A_x}}}{dt} = -2l_1 cos(\theta)\dot{\theta}^2$$

$$\overrightarrow{a_{A_y}} = 0$$

(a) Position initiale

(b) Position finale

Figure 1 – Position du mouvement horizontale

FIGURE 2 – Composantes en fonction de θ

2.3 Mouvement vertical de A

La relation similaire à (??) entre θ et φ permettera d'obtenir la position et la vitesse du déplacement dans le cas d'un mouvement vertical à distance l_1 de l'origine O. Partant du fait que le mouvement vertical est effectué à distance constante et égale à l_1 du point O:

$$l_{1_y} = \overrightarrow{OA_y} = l_1 cos(\varphi) + l_2 cos(\varphi) = l_1$$
(6)

toujours en utilisant $l_1 = l_2$

$$cos(\varphi) = 1 - cos(\theta)$$

$$\varphi = \arccos(1 - \cos(\theta))$$

et la vitesse angulaire est

$$\dot{\varphi} = \frac{d\varphi}{dt}$$

$$\dot{\varphi} = \frac{-\sin(\theta)\dot{\theta}}{\sqrt{1 - (1 - \cos(\theta))^2}}$$

Finalement, en remplacant φ dans les équations de cinétique générale : Pour la position :

$$\overrightarrow{OA_x} = l_1$$

$$\overrightarrow{OA_y} = l_1 sin(\theta) + l_1 sin(\arccos(1 - cos(\theta)))$$

Pour la vitesse:

$$\overrightarrow{V_{A_x}} = 0$$

$$\overrightarrow{V_{A_y}} = \frac{d\overrightarrow{OA_y}}{dt} = l_1 cos(\theta)\dot{\theta} + l_1 sin(\arccos(1 - cos(\theta))) \frac{-sin(\theta)\dot{\theta}}{\sqrt{1 - (1 - cos(\theta))^2}}$$

(a) Position initiale

(b) Position finale

FIGURE 3 – Position du mouvement vertical

Figure 4 – Composantes en fonction de θ

2.4 Analyse avec Matlab

3 Statique et dynamique

3.1 Statique

Figure 5 – couple statique en fonction de θ

3.2 Dynamique

3.3 Analyse avec Matlab

4 Conclusion