EXERCISES (CROSS-VALIDATION)

ETHAN LIGON

Consider estimation of a linear model $y = X\beta + u$, with the identifying assumption that $\mathbb{E}(u|X)=0$.

When we compute K-fold cross-validation of a tuning parameter λ (e.g., the penalty parameter in a LASSO regression), then for each value of λ we obtain K estimates of any given parameter, say β_i ; denote the estimates of this parameter by $b_i = (b_i^1, \dots, b_i^K)$. If our total sample (say D_1) comprises N iid observations, then each of our K estimates will be based on a sample D_1^k of roughly $N\frac{K-1}{K}$ observations.

- (1) How can you use the estimates b_i to estimate the variance of the estimator?
- (2) What can you say about the variance of your estimator of the variance? In particular, how does it vary with K?
- (3) Suppose we use $\bar{b}(\lambda) = K^{-1} \sum_{k=1}^{K} b^k$ as our preferred estimate of β at a given value of the tuning parameter λ . Construct an R^2 statistic which maps a sample D and a parameter vector b into [0,1]. Compare the following:
 - (a) $R^2(D_1, \bar{b}(\lambda))$ and $R^2(D_1, b_{OLS})$, where b_{OLS} denotes the OLS estimator estimated using the entire sample D_1 , so that $R^2(D_1, b_{OLS})$ corresponds to the usual least-squares R^2 statistic.
 - (b) $R^2(D, \bar{b}(\lambda))$ and $R^2(D, b_{OLS})$, where b_{OLS} and $\bar{b}(\lambda)$ are estimated using D_1 as described above, but where D is some other iid sample from the same data-generating process.

 - (c) $K^{-1} \sum_{k=1}^{K} R^2(D_1^k, \bar{b}(\lambda))$ and $K^{-1} \sum_{k=1}^{K} R^2(D_1^k, b_{OLS});$ (d) $K^{-1} \sum_{k=1}^{K} R^2(D_1^k, \bar{b}(\lambda))$ and $K^{-1} \sum_{k=1}^{K} R^2(D_1^k, b^k(\lambda));$
 - (e) $R^2(D, \bar{b}(\lambda))$ and $R^2(D, \beta)$;
 - (f) $R^2(D, b_{OLS})$ and $R^2(D, \beta)$;
- (4) How do the R^2 statistics you worked with above compare with various notions of mean-square error? The statistics which rely on β are typically infeasible, so setting these aside, how might you use these statistics to choose a "best" estimator?

[.] Date: May 2, 2022.