

WRFDA 4DVAR

Zhiquan (Jake) Liu NCAR/MMM

Outline

Incremental formulation of 3DVAR

Incremental formulation of 4DVAR

• Introduction to 4DVAR practice

Incremental formulation of 3DVAR and outer loop

1.1 Non-linear 3DVAR Formulation

Non-linear 3DVAR cost function

$$J(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \mathbf{x}^b)^{\mathrm{T}} \mathbf{B}^{-1}(\mathbf{x} - \mathbf{x}^b) + \frac{1}{2}[H(\mathbf{x}) - \mathbf{y}]^{\mathrm{T}} \mathbf{R}^{-1}[H(\mathbf{x}) - \mathbf{y}]$$

1.2 Incremental 3DVAR Formulation

Linearization, let $\delta \mathbf{x} = \mathbf{x} - \mathbf{x}^g$ and $\delta \mathbf{x}^g = \mathbf{x}^b - \mathbf{x}^g$, thus $\mathbf{x} = \delta \mathbf{x} + \mathbf{x}^g$, we have

$$J(\delta \mathbf{x}) = \frac{1}{2} (\delta \mathbf{x} - \delta \mathbf{x}^g)^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x} - \delta \mathbf{x}^g) + \frac{1}{2} [H(\delta \mathbf{x} + \mathbf{x}^g) - \mathbf{y}]^{\mathrm{T}} \mathbf{R}^{-1} [H(\delta \mathbf{x} + \mathbf{x}^g)) - \mathbf{y}]$$

Do Taylor Expansion for observation term

$$J(\delta \mathbf{x}) = \frac{1}{2} (\delta \mathbf{x} - \delta \mathbf{x}^g)^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x} - \delta \mathbf{x}^g) + \frac{1}{2} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d})$$

where $\mathbf{d} = \mathbf{y} - H(\mathbf{x}^g)$ and \mathbf{H} is the linearized version of H in the vicinity of \mathbf{x}^g .

NOTE: X^g is the first guess, not to confuse with the background X^b even though they are the same for the first outer loop. From the 2nd outer loop, X^g is equal to the analysis X^a from previous outer loop.

1.3 Control Variable Transform (CVT)

To avoid the inverse calculation of large **B** matrix, do a change of variable $\delta \mathbf{x} = \mathbf{U}\mathbf{v}$ and $\delta \mathbf{x}^g = \mathbf{U}\mathbf{v}^g$ with **U** the square root of **B**, namely $\mathbf{B} = \mathbf{B}^{1/2}\mathbf{B}^{T/2} = \mathbf{U}\mathbf{U}^T$ or $\mathbf{U} = \mathbf{B}^{1/2}$. Also $\mathbf{B}^{-1} = \mathbf{U}^{-T}\mathbf{U}^{-1}$. Then the cost function with respect to the control variable **v** becomes

$$J(\mathbf{v}) = \frac{1}{2}(\mathbf{v} - \mathbf{v}^g)^{\mathrm{T}}(\mathbf{v} - \mathbf{v}^g) + \frac{1}{2}(\mathbf{H}\mathbf{U}\mathbf{v} - \mathbf{d})^{\mathrm{T}}\mathbf{R}^{-1}(\mathbf{H}\mathbf{U}\mathbf{v} - \mathbf{d})$$
(4)

1.4 Solution of Incremental 3DVAR.

The minimization of the cost function requires its gradient with respect to \mathbf{v} to be zero, namely

$$\nabla_{\mathbf{v}} J(\mathbf{v}) = (\mathbf{v} - \mathbf{v}^g) + \mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \mathbf{U} \mathbf{v} - \mathbf{d}) = 0$$
 (5)

After minimization, we get the analysis increment \mathbf{v}^a in control variable space,

$$\mathbf{v}^a = (\mathbf{I} + \mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H} \mathbf{U})^{-1} (\mathbf{v}^g + \mathbf{U}^{\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{d})$$

The analysis increment and the analysis in model space are

$$\mathbf{x}^a = \mathbf{x}^g + \delta \mathbf{x}^a = \mathbf{x}^g + \mathbf{U}\mathbf{v}^a$$

NOTE: (1)outer loop-1: $X^g = X^b$; $V^g=0$; loop-2: $X^g = X^a$, $V^g=V^a$ from previous loop.

- (2) For each outer loop, H needs to be re-linearized around new X^g ;
- (3) $d=y-H(X^g)$ is also re-calculated and re-do QC (OMB check).

Cost Function/Gradient with 2 outer loops

3DVAR

Assume observations valid at the center of time window

Outline

Incremental formulation of 3DVAR

Incremental formulation of 4DVAR

Introduction to 4DVAR practice

4DVAR

Incremental formulation of 4DVAR

2.1 Non-linear 4DVAR Formulation

Non-linear 4DVAR cost function

$$J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=1}^{N} [H_i(\mathbf{x}_i) - \mathbf{y}_i]^{\mathrm{T}} \mathbf{R}_i^{-1} [H_i(\mathbf{x}_i) - \mathbf{y}_i]$$
(15)

where the subscript "0" indicates the beginning of the 4DVAR time window. Substitute the NWP model into the cost function, we obtain

$$J(\mathbf{x}_0) = \frac{1}{2} (\mathbf{x}_0 - \mathbf{x}_0^b)^{\mathrm{T}} \mathbf{B}^{-1} (\mathbf{x}_0 - \mathbf{x}_0^b) + \frac{1}{2} \sum_{i=1}^{N} [H_i(M_i(\mathbf{x}_0)) - \mathbf{y}_i]^{\mathrm{T}} \mathbf{R}_i^{-1} [H_i(M_i(\mathbf{x}_0)) - \mathbf{y}_i]$$
(16)

2.2 Incremental 4DVAR Formulation

Linearization, let $\delta \mathbf{x}_0 = \mathbf{x}_0 - \mathbf{x}_0^g$ and $\delta \mathbf{x}_0^g = \mathbf{x}_0^b - \mathbf{x}_0^g$, thus $\mathbf{x}_0 = \delta \mathbf{x}_0 + \mathbf{x}_0^g$, we have

$$J(\delta \mathbf{x}_0) = \frac{1}{2} (\delta \mathbf{x}_0 - \delta \mathbf{x}_0^g)^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x}_0 - \delta \mathbf{x}_0^g) + \frac{1}{2} \sum_{i=1}^{N} [H_i(M_i(\delta \mathbf{x}_0 + \mathbf{x}_0^g) - \mathbf{y}_i)]^{\mathrm{T}} \mathbf{R}_i^{-1} [H_i(M_i(\delta \mathbf{x}_0 + \mathbf{x}_0^g)) - \mathbf{y}_i]$$

Do Taylor Expansion for observation term

$$J(\delta \mathbf{x}_0) = \frac{1}{2} (\delta \mathbf{x}_0 - \delta \mathbf{x}_0^g)^{\mathrm{T}} \mathbf{B}^{-1} (\delta \mathbf{x}_0 - \delta \mathbf{x}_0^g) + \frac{1}{2} \sum_{i=1}^{N} (\mathbf{H}_i \mathbf{M}_i \delta \mathbf{x}_0 - \mathbf{d}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathbf{H}_i \mathbf{M}_i \delta \mathbf{x}_0 - \mathbf{d}_i)$$

where
$$\mathbf{d}_i = \mathbf{y}_i - H_i[M_i(\mathbf{x}_0^g)].$$

Incremental 4DVAR with control variable transform

Again, control variable transform $\delta \mathbf{x}_0 = \mathbf{U}\mathbf{v}$ and $\delta \mathbf{x}_0^g = \mathbf{U}\mathbf{v}^g$. $\delta \mathbf{x}_0$ indicates that analysis increment is valid at the beginning of the 4DVAR time window. Then the cost function with respect to the control variable \mathbf{v} becomes

$$J(\mathbf{v}) = \frac{1}{2}(\mathbf{v} - \mathbf{v}^g)^{\mathrm{T}}(\mathbf{v} - \mathbf{v}^g) + \frac{1}{2} \sum_{i=1}^{N} (\mathbf{H}_i \mathbf{M}_i \mathbf{U} \mathbf{v} - \mathbf{d}_i)^{\mathrm{T}} \mathbf{R}_i^{-1} (\mathbf{H}_i \mathbf{M}_i \mathbf{U} \mathbf{v} - \mathbf{d}_i)$$
(19)

NOTE:

- (1) For each outer loop, need to store forecast trajectory (each time step) and V^g in the memory.
- (2) For each loop, H and M needs to be re-linearized around new forecast trajectory; $\mathbf{d_i} = \mathbf{y_i} H_i(\mathbf{X_{i}^g})$ is also re-calculated and re-do QC (OMB check).
- (3) 4DVAR outer loops could run at different (typically lower) resolutions, common practice at operational NWP centers (capability under development with WRFDA)

Multi-Resolution Incremental 4DVAR

- 4DVAR minimization runs at lower resolutions than WRF model's to allow substantial speed-up
- Now works for cv options = 3
 - Need more development to make it work properly with cv_options
 = 5/6/7

TABLE 2. Computational performance comparison of the full-resolution WRF 4D-Var and multi-incremental WRF 4D-Va on NCAR Yellowstone; Each test has three outer loops with 20 iterations inner loops for each. Unit: Minutes

-	Cores	8	16	32	64	128	256	512	1024	
	Full-Res.	_	_	4191	2169	1230	728	392	257	
	Multi-Inc.	455	217	135	83	53	37	-		-12 -h vs. ~ 40 min!

15km/15km/15km versus 135km/45km/45km

Xin Zhang et al., 2014: Development of an Efficient Regional Four-Dimensional Variational Data Assimilation System for WRF. J. Atmos. Oceanic Technol., 31, 2777–2794.

Advantages of 4DVAR

- Data can be assimilated at appropriate time, so can use frequently reported observations
- Can use "future" observations to constrain the analysis at earlier time
- NWP model as part of constraints, so propagating observation information via model dynamics and physics
- Background error covariance (BEC) implicitly evolving within time window through linearized model, though B (BEC at the beginning of time window) typically the same for each analysis cycle. BEC at time t_i,

$$\mathbf{B}_{i} = \mathbf{M}_{i} \mathbf{B} \mathbf{M}_{i}^{\mathrm{T}}$$

4DVAR Single Obs Test 500 T at the end of time window

From Xin Zhang

Number of obs assimilated: 3DVAR vs. 4DVAR

From Xin Zhang

Some word about WRFDA-3DVAR/4DVAR for WRF/Chem

• Under development for aerosol/chemistry data assimilation

- Including WRFPlus-Chem for GOCART
 - J. J. Guerrette and D. K. Henze, 2015

• Will be very useful for air-quality forecast and source emission inversion.

See Lecture by J. J. Guerrette

Outline

Incremental formulation of 3DVAR

Incremental formulation of 4DVAR

• Introduction to 4DVAR practice

Compile WRFDA in 4DVAR mode

- Download WRFPlus code
 - Include non-linear and TL/AD code of WRF
- Download WRFDA code
- Install WRFPLUS V3.8
 - ./configure (-d) wrfplus./compile wrf (only compile wrf.exe)
 - wrf.exe should be generated under the WRFPLUSV3/main directory.
- for csh, tcsh: setenv WRFPLUS_DIR path of wrfplusv3 for bash, ksh: export WRFPLUS_DIR=path of wrfplusv3
- Install WRFDA V3.8
 - ./configure (-d) 4dvar./compile all_wrfvarda_wrfvar.exe should be generated in the var/build directory.

Notes about WRFPlus

- WRFPLUS only works with regional ARW core, not for NMM core or global WRF.
- WRFPLUS only works with single domain, not for nested domains.
- WRFPLUS can not work with Adaptive Time Stepping options.
- WRFPLUS TL/AD code only has 3 simplified physics processes:
 - surface drag (bl_pbl_physics=98);
 - large scale condensate or Kessler (mp_physics=98 or 99)
 - a simplified cumulus scheme (cu physics=98)

Prepare obs for 4DVAR

- Conventional observations
 - LITTLE_R format
 - NCEP PREPBUFR format

Satellite radiance BUFR data

ASCII format precipitation and radar data

4DVAR time window

Run a 4DVAR test case

- enter WRFDA/var/test/4dvar (or working directory of your choice)
- get the test dataset from:
 - http://www2.mmm.ucar.edu/wrf/users/wrfda/download/ testdata.html
- ln -fs wrfinput_d01 fg
- ln –fs wrfbdy_d01.
- ln -fs ../../build/da_wrfvar.exe .
- ln -fs ../../run/be.dat.cv3 be.dat
- ./da wrfvar.exe
- Typically you should run in parallel with MPI (mpirun -np # da_wrfvar.exe) or your system's custom run command (on Yellowstone: bsub))

Important namelist variables

• &wrfvar1

- var4d: logical, set to .true. to use 4D-Var
- var4d_lbc: logical, set to .true. to include lateral boundary condition control in 4D-Var
- var4d_bin: integer, seconds, length of sub-window to group observations in 4D-Var

• &wrfvar18,21,22

- analysis date: the start time of the assimilation window
- time_window_min : the start time of the assimilation window
- time_window_max : the end time of the assimilation window

&perturbation

- jcdfi_use: logical, if turn on the digital filter as a weak constraint.
- **jcdfi_diag**: integer, 0/1, Jc term diagnostics
- jcdfi_penalty: real, weight to jcdfi term

Important namelist variables

&physics

- all physics options must be consistent with those used in wrfinput
 - Non-linear WRF run can use different physics options from TL/AD
- mp_physics_ad =
 - 98: large-scale condensation microphysics (default)
 - 99: modified Kessler scheme (new in V3.7)
- bl pbl physics = any : but only surface drag available for TL/AD
- cu physics = any : but only simplified cumulus scheme for TL/AD

&time control

- run_xxxx : be consistent with the length of the time window
- start_xxxx : be consistent with the start time of the time window
- end xxxx: be consistent with the end time of the time window

WRFDA adjoint check before 4DVAR run

- &wrfvar10
 - test_transforms=true,
- run da wrfvar.exe

```
Check results
...
wrf: back from adjoint integrate
d01 2008-02-05_21:00:00 read nonlinear xtraj time stamp:2008-02-05_21:00:00
Single Domain < y, y >= 2.15435506772433E+06
Single Domain < x, x_adj >= 2.15435506772431E+06

Whole Domain < y, y >= 2.15435506772433E+06
Whole Domain < x, x_adj >= 2.15435506772431E+06

da_check_xtoy_adjoint: Test Finished:
*** WRF-Var check completed successfully ***
```