WFiIS	Kinga Jeleń Kamila Zaręba Rok III Gi		Grupa I
Pracownia Radiochemii	Oznaczanie rozpuszczalności PbI ₂		
Data wykonania: 22.04.2015	Data oddania: 27.04.2015	OCENA:	

WSTĘP TEORETYCZNY

- → Znaczniki promieniotwórcze mogą być wykorzystane do pomiaru rozpuszczalności substancji, ponieważ w momencie zastosowania dużych aktywności dają dobrą dokładność pomiaru.
- → W celu wyznaczenia rozpuszczalności sporządzany jest osad zawierający wskaźnik promieniotwórczy, który następnie rozpuszczamy w wodzie bądź innym rozpuszczalniku.
- → Stężenie substancji rozpuszczonej określamy przy pomocy pomiaru aktywności sporządzonego roztworu, a otrzymany wynik jest porównywany z aktywnością wzorca.
- \rightarrow Po wytrąceniu osadu trudno rozpuszczalnego związku , pomiędzy roztworem nasyconym a osadem ustala się stan równowagi dynamicznej, którą obrazuje równanie:

$$A_n B_m = n A^{m+} + m B^{n-}$$

→ Stan równowagi takiego układu opisuje się wykorzystując iloczyn rozpuszczalności, który jest iloczynem stężeń jonów danego trudno rozpuszczalnego związku w roztworze nasyconym w danej temperaturze i w danym rozpuszczalniku. Opisuje go wzór:

$$L_{(A_n B_m)} = (A^m)^n + (B^n)^m$$

- → Przekroczenie wartości iloczynu stężeń w roztworze nasyconym powoduje powstanie fazy stałej, czyli wytrącenie osadu.
- → Aby zachowany został iloczyn rozpuszczalności zwiększenie stężenia jednego z jonów powoduje zmniejszenie stężenia drugiego jonu w roztworze.

PRZEBIEG ĆWICZENIA

Na samym początku sporządziłyśmy roztwór $15\,cm^30,1\,M\,roztworu\,KI$, do którego dodałyśmy 2 krople substancji promieniotwórczej $K^{131}\,I$.

Krople	Objętość [ml]
2	0,087
23	1

Następnie za pomocą licznika scyntylacyjnego zmierzyłyśmy tła naczynek pomiarowych 1-6, każdy pomiar trwał 100s.

Tabela 1. Pomiar tła.

l.p	N	Max	Min	Niepewność licz- by zliczeń u(N)
1	1300	23	6	36
2	1200	22	3	35
3	1200	22	4	35
4	1300	25	3	36
5	1300	27	5	36
6	1200	21	5	35

Kolejnym krokiem było sporządzenie roztworu wzorcowego. Do kolby pobrałyśmy 2ml aktywnego $K^{131}I$ otrzymanego w pierwszym etapie ćwiczenia i rozcieńczyłyśmy go wodą destylowaną do objętości 50ml. Do naczynek pomiarowych 1. i 2. pobrałyśmy po 2ml otrzymanego roztworu – roztwór wzorcowy.

W następnym etapie otrzymałyśmy $Pb^{131}I_2$. Do $10\,\mathrm{ml}$ roztworu $K^{131}I$ dodałyśmy (jednocześnie mieszając) $10,5\mathrm{ml}$ $0,05\mathrm{M}$ $Pb\left(NO_3\right)$. Po $10\,\mathrm{minutach}$ przesączyłyśmy osad, przepłukałyśmy wodą i wraz z sączkiem przeniosłyśmy do zlewki zawierającej $50\mathrm{ml}$ wody destylowanej. Mieszałyśmy go przez $1\,\mathrm{godzine}$.

Po tym czasie pobrałyśmy 6ml roztworu znad osadu, aby go przesączyć. Do naczynek pomiarowych 3. i 4. pobrałyśmy po 2ml tego roztworu.

W końcowej części zadania badałyśmy wpływ jonu wspólnego na rozpuszczalność osadu. Do pozostałej części roztworu 44ml dodałyśmy 15ml 0,05M $Pb(NO_3)$ i mieszałyśmy przez 20minut. Po opadnięciu osadu przesączyłyśmy 6ml roztworu znad osadu i odmierzyłyśmy po 2ml roztworu do naczynek 5. i 6.

W trakcie mieszania powyższych roztworów dokonywałyśmy na bieżąco pomiarów liczby zliczeń licznikiem scyntylacyjnym.

Tabela 2. Pomiar otrzymanych roztworów.

zawartość	l.p	N	Max	Min	Niepewność licz- by zliczeń u(N)
	1	3900	51	24	62
roztwór wzorcowy	2	3900	52	24	62
badanie rozpusz-	3	3400	51	24	58
czalności	4	3500	54	18	59
badanie wpływu jonu	5	2600	40	15	51
wspólnego	6	2400	40	10	49

OPRACOWANIE WYNIKÓW

Tabela 3. Liczba zliczeń po odjęciu tła dla każdej próbki.

zawartość - tło	l.p	N	Max	Min	Niepewność licz- by zliczeń u(N)
	1	2600	28	18	72
roztwór wzorcowy	2	2700	30	21	71
badanie rozpusz-	3	2200	29	20	68
czalności	4	2200	29	15	69
badanie wpływu jonu	5	1300	13	10	62
wspólnego	6	1200	19	5	60

Niepewność liczby zliczeń po odjęciu tła obliczyłyśmy z prawa przenoszenia niepewności.

<u>Iloczyn rozpuszczalności i rozpuszczalność</u> $Pb^{131}I_2$.

Stężenie $15 \, cm^3 \, 0,1 \, M \, roztworu \, KI = 100 \, mM$. Po dodaniu dwóch kropli (0,087 ml) wskaźnika promieniotwórczego o stężeniu bliskim 0, stężenie roztworu wynosiło:

$$C_{w,0} = \frac{100 \text{mM} \cdot 15 \text{ml}}{15,087} ml = 99,423 \, mM$$

Zatem stężenie roztworu wzorcowego:

$$C_{w} = \frac{C_{w,0} \cdot V_{2}}{V_{50}}$$

$$C_{w} = \frac{99,423 \, mM \cdot 2ml}{50 \, ml} = 3,98(15) \, mM$$

Stężenie C_1 roztworu uzyskano porównując liczby zliczeń roztworu wzorcowego N_w i roztworu przesączonego N_p .

$$C_{1} = \frac{C_{w} \cdot N_{p}}{N_{w}}$$

$$C_{1} = 3.98 \frac{mM \cdot 2200}{2650} = 3.30(18) \, mM$$

Po wytrąceniu osadu pomiędzy roztworem nasyconym a osadem ustalił się stan równowagi dynamicznej, którą opisuje równanie:

$$PbI_2 \rightarrow Pb^{2+} + 2I^{-1}$$

Stężenie C_{Pb} jonów Pb $^{2+}$ w roztworze przesączonym jest dwukrotnie mniejsze od stężenia C_I jonów I $^{-}$

$$C_{Pb} = \frac{1}{2} C_I = 1,65(09) \, mM$$

Znając wartości stężeń jonów Pb $^{2+}$ i I $^-$ wyznaczyłyśmy iloczyn rozpuszczalności jodku ołowiu $\ \ Pb\ I_2$, korzystając ze wzoru:

$$L_{PbI_2} = C_{Pb} \cdot C_I^2$$
, zatem
 $L_{PbI_2} = 0.0033 \cdot 0.00165^2 = 0.90(22) \cdot 10^{-8}$

Rozpuszczalność natomiast określa ilość gramów substancji rozpuszczonych w $100\,cm^3$ rozpuszczalnika. W takiej ilości rozpuszczalnika zawarte było :

$$x = \frac{100 \, cm^3}{1000 \text{cm}^3} \cdot C_{Pb}$$

$$x = \frac{100 \, cm^3}{1000 \text{cm}^3} \cdot 1,65 \cdot 10^{-3} \, M = 1,65 (09) \cdot 10^{-4} \quad \text{moli} \quad Pb \, I_2$$

Masa molowa PbI_2 wynosi M_{PbI_2} =207g+2·127g=461g Rozpuszczalność PbI_2 wynosiła więc R=x· M_{PbI_2}

$$R=1,65\cdot10^{-4} moli\cdot461g=76,01()\frac{mg}{100 cm^3}$$

Wpływ wspólnego jonu na rozpuszczalność Pb I₂

Obliczenia doświadczalne

Stężenie C_1 ′ roztworu po drugim sączeniu wyliczono analogicznie jak stężenie C_1 w przypadku powyżej.

$$C_{I}' = \frac{3,98 \, mM \cdot 1250}{2650} = 1,88(48) \, mM$$

Podobnie jak w poprzednim przypadki wyznaczyłyśmy stężenie jonów PbI_2 .

$$C_{Pb}' = \frac{1}{2} C_I' = 0.94(19) \, mM$$

Liczbę moli w $100\,cm^3$ wyliczyłyśmy z proporcji $\frac{100\mathrm{cm}^3}{1000\mathrm{cm}^3}\cdot 0,94\cdot 10^{-3}\,moli = 9,4(2,1)\cdot 10^{-5}\,moli$

Rozpuszczalność
$$PbI_2$$
 wynosiła zatem $R=9,4\cdot10^{-5}\cdot461$ g=43,33 $(8,78)\frac{mg}{100\,cm^3}$

• Obliczenia teoretyczne

Liczba moli Pb ²⁺ w roztworze użytym do określenia wpływu jonu wspólnego na rozpuszczalność, jest sumą jonów pochodzących z roztworu o objętości 44cm³ i dodania do niego

 $15 \text{cm}^3 0,05 M roztworu Pb (NO_3)_2$.

Liczbę moli Pb $^{2+}$ wyznaczyłyśmy z proporcji, korzystając z wyznaczonego wcześniej stężenia C_{Pb} jonów Pb $^{2+}$ w roztworze.

$$x_{44} = \frac{V_{44}}{1000 \text{cm}^3} \cdot C_{Pb}$$

$$x_{44} = \frac{44 \text{cm}^3}{1000 \text{cm}^3} \cdot 1,65 \cdot 10^{-3} \, moli = 7,26(57) \cdot 10^{-5} \, moli$$

Liczba moli Pb $^{2+}$ w $15 \text{cm}^3 0.05 M roztworu Pb (NO_3)_2$

$$x_{15} = \frac{V_{15}}{1000 \text{cm}^3} \cdot 0.05 M$$

$$x_{15} = 15 \frac{cm^3}{1000 \text{cm}^3} \cdot 0,05 \, moli = 7,50 \, (29) \cdot 10^{-4} \, moli$$

Całkowita liczba moli Pb ²⁺ w 59cm³ roztworu wynosiła

$$x_{59} = x_{44} + x_{15}$$

 $x_{59} = 7,26 \cdot 10^{-5} moli + 7,50 \cdot 10^{-4} moli = 8,22(64) \cdot 10^{-4} moli$

Znając liczbę moli Pb 2+ wyznaczyłyśmy stężenie molowe roztworu

$$C''_{Pb} = \frac{x_{59} \cdot 1000 \text{cm}^3}{V_{59}}$$

$$C''_{Pb} = \frac{8,226 \text{ moli} \cdot 1000 \text{cm}^3}{59 \text{ cm}^3} = 13,94 (30) \text{ mM}$$

Ponieważ iloczyn rozpuszczalności jest wielkością stałą, wyznaczyłyśmy także stężenie I^- , korzystając z zależności

$$L_{PbI_2} = C''_{Pb} \cdot C''_I^2$$
mamy zatem : $C''_I = \sqrt{\frac{L_{PbI_2}}{C''_{Pb}}}$

$$C''_{I} = \sqrt{\frac{0.90 \cdot 10^{-8}}{13.94 \cdot 10^{-3}}} = 0.804(68) \, mM$$

Po wytrąceniu osadu pomiędzy roztworem nasyconym a osadem ustala się stan równowagi dynamicznej opisanej równaniem (w roztworze występuje nadmiar Pb $^{2+}$ pochodzący od $Pb(NO_3)$).

$$PbI_2 \rightarrow Pb^{2+} + 2I^{-1}$$

$$C'''_I = \frac{1}{2}C'_I = 0.401(363) mM$$

Liczbę moli w 100 cm³ wyliczyłyśmy z proporcji

$$\frac{100 \text{cm}^3}{1000 \text{cm}^3} \cdot 0,401 \cdot 10^{-3} \, moli = 4,01 \, (36) \cdot 10^{-5} \, moli$$

Rozpuszczalność PbI_2 wynosi zatem

$$R = 4.01 \cdot 10^{-3} \cdot 461 \text{ g} = 18.48 (1.71) \frac{mg}{100 \text{ cm}^3}$$

WNIOSKI

	Wartość doświadczalna	Wartość teoretyczna		
Stężenie roztworu wzorcowego	3,98(15)mM	-		
Iloczyn rozpuszczalności	0.00(22) 10 ⁻⁸	$0.747 \cdot 10^{-8}$ $15^{\circ} C$		
	$0,90(22)\cdot 10^{-8}$	$0.87 \cdot 10^{-8}$ $25^{\circ} C$		
Rozpuszczalność PbI_2	76.01(5.46) mg	$44 \frac{mg}{100 \text{cm}^3} 0^{\circ} C$		
	$76,01(5,46) \frac{mg}{100 \text{cm}^3}$	$410 \frac{mg}{100 \text{cm}^3} 100^{\circ} C$		
Wpływ jonu wspólnego na rozpuszczalność	$43,33(8,78)\frac{mg}{100\text{cm}^3}$	$18,48(1,71)\frac{mg}{100\text{cm}^3}$		

Jak możemy zauważyć wartość wyznaczonego doświadczalnie iloczynu rozpuszczalności $L_{PbI_2} = 0.9() \cdot 10^{-8} \,\,$ w granicach niepewności zgadza się z wartością teoretyczną. Temperatura w pomieszczaniu wynosiła $23.5^{o}\,C$.

Rozpuszczalność PbI_2 zawiera się w przedziale podanym przez tabelę.

Obecność wspólnego jonu powoduje zmniejszenie rozpuszczalności PbI_2 , w naszym przypadku wartość doświadczalna jest większa od teoretycznej.

RACHUNEK BŁĘDÓW

Niepewności poszczególnych parametrów liczyłyśmy, korzystając z poniższych wzorów.

$$\begin{split} u(C_w) &= \sqrt{\left[\frac{\partial C_w}{\partial V_2} u(V_2)\right]^2 + \left[\frac{\partial C_w}{\partial V_{50}} u(V_{50})\right]^2} \\ u(C_w) &= \sqrt{\left[\frac{C_{w,0}}{V_{50}} u(V_2)\right]^2 + \left[-\frac{C_{w,0}V_2}{V_{50}^2} u(V_{50})\right]^2} \\ u(C_w) &= \sqrt{\left(\frac{99.423}{50 \, ml} \cdot 57 \, \mu l\right)^2 + \left(-\frac{2 \, ml \cdot 99.423}{(50 \, ml)^2} \cdot 1.2 \, ml\right)^2} \\ u(C_I) &= \sqrt{\left[\frac{\partial C_I}{\partial C_w} u(C_w)\right]^2 + \left[\frac{\partial C_I}{\partial N_p} u(N_p)\right]^2 + \left[\frac{\partial C_I}{\partial N_w} u(N_w)\right]^2} \\ u(C_I) &= \sqrt{\left[\frac{N_p}{N_w} u(C_w)\right]^2 + \left[\frac{C_w}{N_w} u(N_p)\right]^2 + \left[-\frac{C_wN_p}{N_w^2} u(N_w)\right]^2} \\ u(X_{15}) &= \frac{0.05 \, mola}{1000 \, cm^3} \cdot 5.8 \cdot 10^{-2} \, cm^3 \\ u(X_{15}) &= 2.9 \cdot 10^{-6} \\ u(X_{44}) &= \sqrt{\left[\frac{\partial X_{44}}{\partial V_{44}} u(V_{44})\right]^2 + \left[\frac{\partial X_{44}}{\partial C_{Pb}} u(C_{Pb})\right]^2} \\ u(X_{44}) &= \sqrt{\left[\frac{C_{Pb}}{1000 \, cm^3} u(V_{44})\right]^2 + \left[\frac{V_{44}}{1000 \, cm^3} u(C_{Pb})\right]^2} \end{split}$$

$$u(X_{59}) = \sqrt{[u(X_{44})]^2 + [u(X_{15})]^2}$$

$$u(X_{59}) = \sqrt{(5.7 \cdot 10^{-6})^2 + (2.9 \cdot 10^{-6})^2} [moli]$$

$$u(X_{59}) = 6.4 \cdot 10^{-6} moli$$

$$u(L_{PbI_2}) = \sqrt{\left[\frac{\partial L_{PbI_2}}{\partial C_{Pb}}u(C_{Pb})\right]^2 + \left[\frac{\partial L_{PbI_2}}{\partial C_I}u(C_I)\right]^2}$$
$$u(L_{PbI_2}) = \sqrt{\left[C_I^2u(C_{Pb})\right]^2 + \left[2C_{Pb}C_Iu(C_I)\right]^2}$$

$$u(C_{Pb}'') = \sqrt{\left[\frac{\partial C_{Pb}''}{\partial X_{59}}u(X_{59})\right]^2 + \left[\frac{\partial C_{Pb}''}{\partial V_{59}}u(V_{59})\right]^2}$$

$$u(C_{Pb}'') = \sqrt{\left[\frac{1000\ cm^3}{V_{59}}u(X_{59})\right]^2 + \left[-\frac{X_{59}\cdot 1000\ cm^3}{(V_{59})^2}u(V_{59})\right]^2}$$

$$u(C_{Pb}^{\prime\prime}) = \sqrt{\left[\frac{1000\ cm^3}{59\ cm^3} \cdot 6.4 \cdot 10^{-6}\ moli\right]^2 + \left[-\frac{8.145 \cdot 10^{-4}\ moli\ \cdot 1000\ cm^3}{(59\ cm^3)^2} \cdot 1.2\ cm^3)\right]^2}\ [M]$$

$$u(C'_{Pb}) = 0.30 \text{ mM}$$

$$u(C'_I)$$

$$u(C'_I) = \sqrt{\left[\frac{\partial C'_I}{\partial L_{PbI_2}} u(L_{PbI_2})\right]^2 + \left[\frac{\partial C'_I}{\partial C''_{Pb}} u(C''_{Pb})\right]^2}$$

$$u(C_I') = \sqrt{\left[\frac{1}{2C_{Pb}''\sqrt{\frac{L_{PbI_2}}{C_{Pb}''}}}u(L_{PbI_2})\right]^2 + \left[-\frac{L_{PbI_2}}{2C_{Pb}''^2\sqrt{\frac{L_{PbI_2}}{C_{Pb}''}}}u(C_{Pb}'')\right]^2}$$