

Evaluating the Effects of Experiencing a Mixed Reality Simulation of Symptoms of Schizophrenia on Empathy in Medical Students

Master Thesis

Ann Kiener

University of Bern

supervised by
Prof. Elena Mugellini
Prof. Denis Lalanne

June 5, 2025

Abstract

This thesis presents a mixed reality application designed to enhance empathy in medical students towards patients with schizophrenia. The application utilizes mixed reality (MR) technology to immerse users in the experiences of individuals with schizophrenia, allowing them to gain a deeper understanding of the challenges faced by patients. The study involved a user-centered design approach, incorporating feedback from healthcare professionals to ensure the application's effectiveness and relevance. The results indicate that the MR experience

Keywords: mixed reality, empathy, schizophrenia, medical education, stigma, healthcare training, immersive technology, hallucinations, symptom experience

Acknowledgements

I would like to express my sincere gratitude to the University of Fribourg, and in particular to the Human-IST Institute, for supporting this project. I am especially thankful to Simon Ruffieux and Professor Denis Lalanne for their guidance and encouragement throughout the development of this thesis.

My sincere thanks also go to the University of Health in Fribourg, Switzerland (Haute école de santé Fribourg, HEdS-FR), and to Marie Charrière-Mondoux, Regula Bucher, and Stefanie Senn, whose expertise in healthcare and continued support were invaluable during both the design and evaluation phases of the project.

I am also grateful to the University of Engineering and Architecture of Fribourg (Haute école d'ingénierie et d'architecture Fribourg, HEIA-FR), and specifically the HumanTech Institute. A special thank you to Marine Capallera and Robin Cherix for their helpful input and collaboration.

Finally, I would like also like to express my appreciation to my supervisor, Professor Elena Mugellini, Head of HumanTech, for her support and insightful feedback throughout the course of this thesis.

Contents

1	Intr	oduction 6
	1.1	Project Background
	1.2	Scope of the Project
•	C4 - 4	
2		e of the Art
	2.1	Extended Reality (XR) Technologies
	2.2	Immersive Simulations of Schizophrenia
		2.2.1 Virtual Reality Applications
		2.2.1.1 Key Studies
		2.2.2 Augmented and Mixed Reality Applications
		2.2.2.1 Key Studies
	2.3	Empathy in Healthcare Education
		2.3.1 Definition of Empathy
		2.3.2 Immersive Technologies and Empathy
		2.3.2.1 Empathy Increase through Virtual Reality
		2.3.2.2 Empathy Increase through Mixed Reality
		2.3.3 Limitations in Empathy Training
	2.4	Simulation Design Considerations
		2.4.1 Empathy and Usability
		2.4.2 Ethical Challenges
	2.5	Overview of Relevant Studies
3	Met	hodology 23
	3.1	Research Question
	3.2	Using Mixed Reality
	3.3	Strategy
	3.4	Key Factors
		20 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4	Desi	ign 27
	4.1	Design Choices
	4.2	Simulation Structure
	4.3	Simulation Sequence
		20
5	Imp	lementation 30
	•	5.0.1 Orchestration
		5.0.2 Auditory Hallucinations
		5.0.3 Visual Hallucinations
		5.0.3.1 Screen Darkening
		5.0.3.2 Stains
		5.0.3.3 Floating Dots and Interaction Logic
		J.O.J.J I TOUTING DOTS AND INTERCLION LUGIC

CONTENTS 4

Δ	ICE	Items	67
9	Con	clusion	66
	8.3	Future Opportunities	65
	8.2	Limitations and Lessons	65
	0.2	8.1.4 Comparison with State of the Art	64
		8.1.3 Empathy Through Experience and Observation	64
		8.1.2 Emotional Impact Without Harm	64
		8.1.1 Quantitative and Qualitative Outcomes	64
	8.1	Interpretation of Changes	63
8		ussion	63
	7.5	Summary of Key Findings	61
		7.4.1.2 Interpretation and Reflection	61
		7.4.1.1 Verbal Feedback from Participants during Debrief	60
		7.4.1 Participant Experience and Observational Feedback	59
	7.4	Mixed Methods Integration	59
		7.3.2.2 Emotional Response Comparison	58
		7.3.2.1 Empathy Score Comparison	54
		7.3.2 Statistical Test Results	54
		7.3.1 Statistical Methods and Hypotheses	54
	7.3	Pre vs. Post Comparison Analysis	54
		7.2.3 Simulation Evaluation Statements	53
		7.2.2 Individual Participants	52
		7.2.1 Group Participants	49
	7.2	Post-Evaluation Results	49
		7.1.2 Baseline Perceptions and Empathy	46
		7.1.1 Experience with Patients and Schizophrenia	45
•	7.1	Pre-Evaluation Results	45
7	Reci	ults and Analysis	45
	6.5	Ethical Considerations	44
	6.4	Data Collection and Analysis	44
		6.3.3 Debriefing and Reflection	44
		6.3.2 Perceptions of the Simulation	43
		6.3.1.2 Emotional Response (Positive and Negative Affect)	43
		6.3.1.1 Jefferson Scale of Empathy (JSE)	42
		6.3.1 JSE and B-PANAS Scales	42
	6.3	Procedure	41
	6.2	Participants	41
	6.1	Study Design Overview	40
6	User	Study	40
		5.1.4 Spatial Placement of Audio	38
		5.1.3 Loud Audio	38
		5.1.1 Audio Loops	38
	3.1	Challenges During Implementation	38
	5.1	Challanges During Implementation	38

CO	ONTENTS	5
В	Shortened JSE Item Set	69
C	Supplementary Material	70
	List of Tables	71
	List of Figures	71
	Bibliography	72

Introduction

1.1 Project Background

The importance of empathy in medical education has received growing attention in recent years. Healthcare workers are more and more expected not only to diagnose and treat but also to understand and emotionally connect with their patients. This is important in the context of mental health especially, where symptoms are often invisible and misunderstood. Among the most stigmatized conditions is schizophrenia - a disorder that can involve auditory and visual hallucinations and delusions.

Traditional educational approaches often rely on textbooks or clinical observations, which do not fully cover the full experience of the condition. This creates a risk that future healthcare providers may view patients with schizophrenia through a lens of detachment or fear, created by this stigma, rather than compassion and understanding.

To address this gap, immersive technologies such as Virtual Reality (VR) and Mixed Reality (MR) have emerged as promising tools, for education. These technologies can simulate symptoms in a way that allows users to step into the perspective of someone with a psychiatric condition. While VR has been more widely explored in this space, MR offers unique advantages — which will be explored in this thesis.

••••

1.2 Scope of the Project

This thesis investigates broadly speaking whether a short MR simulation of symptoms of schizophrenia can improve empathy in medical students. The project focuses on simulating common symptoms—such as voices, visual hallucinations, and perceptual disturbances—within a controlled environment.

The simulation is embedded in an educational framework that includes the simulation itself, and a structured debriefing session, while the empathy is assessed through a questionnaire. The aim is not to create a diagnostic tool or a long-term therapy intervention, but rather to develop and test a compact, repeatable experience that can serve as a valuable supplement to traditional learning methods in their studies

The study evaluates both cognitive and affective aspects of empathy using validated instruments, such

as the Jefferson Scale of Empathy and the Brief Positive and Negative Affect Schedule. It also compares the effects on students who directly experience the simulation (headset users) and those who observe it. In doing so, this project contributes to the growing body of research on immersive empathy training, offering insights into the educational potential of MR technologies in medical settings.

• • • •

State of the Art

This chapter provides a review of the current research on the use of immersive technologies in simulating psychotic symptoms, particularly for the purpose of increasing empathy in healthcare education. It explores how Virtual Reality (VR), Augmented Reality (AR), and Mixed Reality (MR) have been applied in educational and also clinical settings, with the focus on schizophrenia. The chapter highlights both the promise and limitations of these technologies, outlines major research gaps and presents evidence that MR is a balanced and potentially more effective tool for empathy training. It also addresses design and ethical considerations which are critical to building realistic and meaningful simulations, and introduces the reasons behind the simulation strategy adopted in this thesis.

2.1 Extended Reality (XR) Technologies

Extended Reality (XR) refers to the spectrum of immersive technologies that blend the physical and digital worlds. This includes Virtual Reality (VR), which fully immerses the user in a computer-generated environment, Augmented Reality (AR), which overlays digital content onto the real world, and Mixed Reality (MR), which combines both, enabling real and virtual elements to interact dynamically. The development and classification of these environments can be understood through Milgram and Kishino's Reality-Virtuality (RV) Continuum, a framework that positions real and virtual environments on a continuous scale, with Mixed Reality covering the space in between [23]. A representation of this shema can be viewed in Figure 2.1. Their taxonomy further describes experiences along three dimensions: extent of world knowledge (how much the system knows about the real environment), reproduction fidelity (how accurately it replicates real-world perception), and extent of presence metaphor (how naturally users interact within the environment) [33].

In the context of schizophrenia, VR is often used to simulate intense experiences, such as auditory or visual hallucinations, representing psychosis. AR has been applied to embed simulated voices or visual cues into everyday settings, making the experience more relatable. MR, the focus of this thesis, seeks to integrate the strengths of both: allowing users to remain grounded in reality while experiencing interactive, layered symptoms, potentially leading to higher engagement and stronger emotional responses [16, 31, 38].

Figure 2.1: Representation of the Reality-Virtuality Continuum by Milgram and Kishino [23].

2.2 Immersive Simulations of Schizophrenia

Immersive simulations have emerged as an important strategy to foster a better understanding of schizophrenia symptoms, as well as to address persistent stigma surrounding the disorder. Virtual Reality (VR) and Augmented Reality (AR) technologies are especially valuable, offering experiential learning environments where participants can "step into the shoes" of individuals experiencing hallucinations, delusions, or cognitive impairments [16]. These approaches have proven to be effective not only in increasing empathy and knowledge but also, in many cases, in reducing stigma among participants [14, 16].

Recent developments have also emphasized the educational use of simulations targeted specifically at healthcare students and professionals, providing controlled, safe, and replicable experiences of psychotic symptoms to better prepare them for real-world clinical interactions [19, 37].

2.2.1 Virtual Reality Applications

Virtual Reality applications in the context of schizophrenia simulations typically seek to recreate sensory and cognitive disturbances through fully immersive experiences. These applications range from fully interactive environments developed with game engines like Unity to 360-degree videos played via head-mounted displays (HMDs) [19, 37]. The use of VR allows users to experience symptoms of schizophrenia, such as auditory hallucinations, persecutory delusions, and visual distortions. Furthermore, VR interventions are now increasingly evaluated for their usability, realism, and educational effectiveness.

2.2.1.1 Key Studies

In the study by Zare-Bidaki et al., a Virtual Reality Simulation of Psychosis was designed based on interviews with real patients in remission. The experience placed users in a familiar, culturally grounded setting where they encountered persecutory auditory hallucinations (e.g., voices warning them not to open doors or mistrust others) and delusions of reference (e.g., the belief that a TV news anchor was speaking directly to them). This scenario-based simulation allowed students to embody a person experiencing a psychotic episode, moving through spaces such as a living room and kitchen while hearing distressing voices and observing realistic environmental triggers. The study found that such simulations were significantly more effective than standard clinical observation at reducing stigma and improving empathy and knowledge [38]. Importantly, Zare-Bidaki et al.'s participants were medical students tasked with simulating the experience of a psychotic episode to enhance their clinical empathy and understanding.

More recent work by Alieldin et al., although focusing on social isolation rather than schizophrenia per se, underscored the power of immersion, presence, and embodiment in fostering empathy. Their findings align with others in this field, emphasizing that VR-based empathy training is most impactful when the simulated symptoms are contextualized in relatable environments and paired with reflective debriefing [1].

Silverstein et al. and van Ommen et al. looked at how people with schizophrenia might see distorted images, such as unfamiliar faces, strange objects, or unreal environments [32, 35]. However, it is important

to clarify that their works primarily explored the phenomenology of visual hallucinations in clinical schizophrenia, not through VR simulations, and not directly in educational interventions for students. Nonetheless, these insights become incredibly important, and were also heavily used for the design of the simulation created in this project, as they help to create a more realistic and relatable experience for users.

Specifically, in the schizophrenia simulation project by Domnick et al. [10], users encountered visually altered settings such as pharmacies and grocery stores, where everyday things, like a bottle of pills, suddenly looked like a threatening object, like poison. Hallucinated figures appeared unexpectedly, and AI-generated voices with emotional modulation (anger or paranoia) created a tense auditory landscape. This simulation allowed users not only to hear internal voices but also to interact with them, fostering a dynamic understanding of psychosis symptoms.

Furthermore, some tools are made specifically for training in medical and nursing education. Yoo et al. and Lee et al. developed VR training programs using 360-degree video and actors to recreate clinical situations [19, 37]. The primary goal was to simulate encounters with patients exhibiting psychiatric symptoms in hospital settings. These tools largely rely on passive observation within pre-recorded 360° videos, meaning that while users can look around and witness events unfold, direct interaction with the environment is usually limited. Thus, while they offer vivid emotional realism, they often lack deep interactivity. These simulations included symptoms like hearing voices or patients behaving aggressively and were shown to be realistic and useful for learning.

Tu summarize, these recent projects have shown how powerful immersive VR can be in medical education. Their VR tools recreated key symptoms of schizophrenia—like hearing distressing voices, feeling suspicious of others, feeling paranoid, or struggling to follow a clear train of thought, meaning cognitive disorganization. Unlike passive video experiences, these tools allowed medical students to actively move through the environment and experience the symptoms in real time.

For instance, students might hear a voice whispering insults or warnings as they try to complete a task, or see unsettling figures appear suddenly in a grocery store. These immersive scenarios helped students not just observe the symptoms but feel what it is like to live with them, leading to stronger emotional engagement, better memory of the experience, and less stigma toward people with schizophrenia [10, 17]. This aligns with findings from broader reviews of the field [5, 18], which emphasize that VR is especially effective when it combines multiple senses — like sight and sound — to show the complex reality of psychosis. When done thoughtfully, these simulations are not only safe and engaging, but also powerful tools for building empathy and improving mental health education.

Research Gaps While immersive technologies have become increasingly valuable for simulating schizophrenia symptoms, existing research remains heavily focused on VR. Among the broader XR spectrum, VR is by far the most studied and widely applied method, leaving AR and MR comparatively underexplored [17]. As shown in Table 2.1, there is a growing body of work exploring immersive technologies for empathy training. However, most studies focus on VR, with limited exploration of AR or MR. This supports the rationale for this thesis, which investigates the potential of MR-based simulations.

For instance, a systematic review by Holopainen et al. examined 12 studies using VR-based interventions for schizophrenia, including cognitive behavioral therapy (CBT) or social skills training. These studies reported positive outcomes across a range of symptoms — such as hallucinations, paranoia, and cognitive difficulties — with minimal adverse effects. Notably, none of the reviewed interventions utilized AR or MR, further showing the gap in the literature [14].

Similarly, Lan et al. reviewed a large number of articles and found that, while VR continues to show promise in these medical settings, there was no evidence of AR or MR being tested in medical trials for

psychosis. Despite the many advantages these technologies could offer — particularly MR, which allows for immersive symptom simulation while keeping users aware that they remain in the real world [18].

This gap presents a good opportunity to explore MR as an alternative approach, especially for applications with the focus on empathy development. MR has the potential to provide emotionally engaging yet psychologically safer experiences than fully immersive VR. The following section highlights existing studies that have begun to explore AR and MR in schizophrenia education, and sets the foundation for the MR-based approach developed in this thesis.

2.2.2 Augmented and Mixed Reality Applications

Unlike fully immersive VR, AR and MR offer the unique ability to layer simulated symptoms onto the users real-world environment. This approach allows learners to remain grounded in familiar settings while still gaining insight into the experiences of people with schizophrenia. These technologies can make educational simulations more accessible, especially for those who may find full VR experiences overwhelming. The following studies illustrate how AR and MR have been used to simulate schizophrenia symptoms in interactive and educational ways.

2.2.2.1 Key Studies

An increasing number of studies are exploring the use of AR and MR in schizophrenia education. One early - and for this thesis very relevant - example is by Silva et al., who created a tool using AR to simulate psychotic symptoms. This system, developed with input from psychiatric professionals, was designed to help users — especially medical students — better understand schizophrenia and reduce stigma. The AR tool allowed users to interact with simulated symptoms in real time, providing a safe and controlled learning environment [31]. Figure 2.2 illustrates how symptoms such as visual distortions were presented in the system. To test the system, 21 medical students used AR glasses (HMZ-T2, Sony glasses¹) to experience the simulation. Afterward, they filled out questionnaires about their attitudes toward schizophrenia, how realistic they found the experience, and whether their views had changed. Students gave high ratings for the audio quality and educational value of the simulation. Many said it helped them better understand what psychotic experiences might feel like. However, some users also reported problems, such as discomfort from the equipment and difficulty focusing in the environment [31]. The simulations impact on empathy and stigma was measured using questionnaires before and after the experience. The results showed that students felt more empathy, expressed more concern for a fictional patient, and were more willing to help. However, there was also a small increase in stigma scores, showing that the results were complex. The study suggests that while AR can help increase empathy, future designs should focus on improving comfort and exploring long-term effects [31]. It also recommends combining simulations with brief educational sessions on schizophrenia to deepen understanding [31].

¹Sony HMZ-T2 product page

Figure 2.2: View from the AR simulation created by Silva et al., showing layered visual hallucinations designed to simulate psychotic experiences [31].

Another very relevant study by Skoy et al. created a simulation where users hear disturbing voices through headphones to better understand the kind of confusion and distraction that people with schizophrenia may deal with [34]. The simulation used Patricia Deegan's *Hearing Distressing Voices* audio track — based on real personal experience with schizophrenia — and was paired with practical tasks. Students completed these while listening to disturbing voices through headphones, mimicking real-life challenges. The audio track itself includes a range of disturbing content. Some voices whisper critical comments like "You're stupid" or "Don't trust them." Others issue confusing commands such as "Pick it up!" or "Go to the corner!" Occasionally, the voices escalate into more aggressive or paranoid content, saying things like "They're watching you" or "Everyone knows what you did." These auditory hallucinations mimic how real-life psychotic symptoms can shift unpredictably from confusing to threatening. The combination of conflicting, emotional, and nonsensical input creates a sense of mental overload and disorientation. After the simulation, students took part in a debriefing and completed reflective writing. Results showed a significant increase in empathy scores [34].

Chaffin et al. presented a more focused simulation using the same *Hearing Distressing Voices* track. In this intervention, students were asked to perform everyday tasks—such as grocery shopping or engaging in conversation—while listening to the same pre-recorded track of intrusive, distressing voices. This approach highlighted again how such symptoms disrupt cognition, focus, and interpersonal interaction. Students reported transformative experiences, reflecting on the difficulty of completing simple tasks and expressing increased patience and understanding toward patients [7].

A more recent project by Krogmeier et al. introduced Live-It, an augmented reality simulation designed to help people better understand what it is like to live with schizophrenia. The system used the passthrough feature of the Meta Quest 3 headset, which allows users to see their real surroundings while digital hallucinations and delusions are layered on top. Unlike fully immersive VR, Live-It placed these experiences in everyday environments, like a living room, making the symptoms feel more realistic and relatable [16]. One example was a scenario involving a television. As users looked at the screen, they saw a normal news broadcast gradually change. The news anchor appeared to speak directly to them, hinting that they were being watched or targeted. This scene illustrated a common type of delusion known as delusions of reference, where people believe that neutral events, like a TV-show, are specifically about them. A visual from this moment in the simulation is shown in Figure 2.3, where the user, seated in a familiar room, sees the news anchor addressing them by name. Besides this, users might also hear voices commenting on their actions or giving conflicting instructions, mimicking the experience of auditory hallucinations. Other symptoms were presented throughout the simulation. Participants reported hearing voices that ranged in tone—some critical or paranoid, others calm or supportive—reflecting the emotional variety of real-life auditory hallucinations. Visually, objects could shift or appear distorted, and shadowy figures might be seen out of the corner of the eye.

Figure 2.3: Scene from the *Live-It* AR simulation showing a delusion of reference involving a news broadcast [16].

The content was based on interviews with individuals who live with schizophrenia and was reviewed by mental health professionals to ensure it was both accurate and respectful. Participants in the study, mainly students and mental health professionals, said the simulation was powerful, emotional, and helped them better understand what living with schizophrenia might feel like. Importantly, the experience ended with a hopeful message, reminding users that people with schizophrenia can still live fulfilling lives. Overall, *Live-It* showed how AR can be a valuable tool in mental health education. By embedding symptoms into real-life situations, like watching TV, it made the experience feel authentic without being overwhelming, helping users connect theory with lived experience [16].

Technical Advantages AR/MR simulations place symptoms in real-world settings, which can reduce user discomfort and improve relatability. These simulations tend to be less intense than full VR, making them more accessible to first-time users or those unfamiliar with immersive technology. One useful feature is passthrough, a technology that allows users to see their actual surroundings through cameras on the headset while digital content is overlaid on top. This helps users stay oriented and grounded in the real world while still experiencing simulated symptoms, which may enhance engagement while minimizing sensory overload. Features like passthrough may help enhancing empathy without overwhelming users [16, 18, 31].

2.3 Empathy in Healthcare Education

Empathy is one of the most important skills in healthcare. It helps doctors, nurses, and other professionals connect with their patients in a real and meaningful way. Before we look at how empathy is taught or tested, it is helpful to understand what it actually means and why it matters so much in medical and nursing education.

2.3.1 Definition of Empathy

Empathy is a key part of good communication and care in healthcare. Many studies have shown that when healthcare professionals show empathy, patients are more satisfied, more likely to follow treatment plans, and often have better mental health outcomes [8, 25, 26]. In medical and nursing education, empathy is no longer seen as just a "soft skill." It is now treated as something important that can be taught and developed. Teaching empathy helps improve the way future professionals connect with patients and provide care [8].

Empathy is usually described as having two main parts: *cognitive empathy* and *affective empathy*. Cognitive empathy is the ability to understand what someone else is thinking or feeling. Affective empathy means actually feeling or emotionally connecting with what the other person is going through [21, 36]. In

healthcare, both types are important. Understanding a patient's perspective (cognitive empathy) helps with communication and decision-making, while emotional connection (affective empathy) helps build trust and stronger relationships [8, 26]. Understanding this and training empathy helps doctors and nurses better understand their patients and respond in helpful and compassionate ways [25, 26]. However, research has shown that empathy can decrease during medical training. This might be because students are under pressure, focusing more on technical knowledge, or feeling emotionally drained [22, 26]. This decline in empathy can lead to negative outcomes for both patients and healthcare professionals. Patients may feel misunderstood or neglected, while healthcare providers may experience burnout and job dissatisfaction [8, 22]. Therefore, it is crucial to find effective ways to teach and maintain empathy in medical education.

Measuring Empathy Various instruments are used to measure these dimensions of empathy, including the Jefferson Scale of Empathy (JSE), which is being widely applied in medical education [1]. This tool allows researchers to assess changes in empathy following interventions and distinguish between shifts in emotional versus cognitive components, which is also what I want to achieve in this thesis. In the context of this thesis, the JSE will be used to measure the impact of the MR simulation on medical students' empathy levels. The JSE is a validated instrument that has been widely used in medical education research and has demonstrated reliability and validity in assessing empathy in healthcare professionals [13].

2.3.2 Immersive Technologies and Empathy

Empathy training in healthcare education has traditionally relied on methods like role-playing, patient interviews, and reflective writing [4]. However, these approaches often struggle to create the deep emotional engagement needed to truly understand the experiences of patients with mental health conditions like schizophrenia [12, 15]. Immersive technologies like Virtual Reality (VR) and Mixed Reality (MR) offer new ways to enhance empathy by allowing users to experience symptoms from a first-person perspective [16, 31].

2.3.2.1 Empathy Increase through Virtual Reality

Virtual Reality (VR) has often been called the "ultimate empathy machine" because it can create powerful first-person experiences in fully immersive environments [24]. Several studies support this idea, showing that VR can have a strong emotional effect on users.

VR is especially useful when it comes to helping people understand the experiences of stigmatized groups, which individuals with schizophrenia also belong to [12, 20, 22]. By placing users in situations that reflect what it might be like to live with psychosis, these simulations aim to increase empathy and reduce negative attitudes. For example, a study by Hsia et al. showed that pharmacy students who experienced auditory hallucinations in VR also became more empathetic and less stigmatizing toward people with schizophrenia [15]. One crucial reason for this was that the students also heard from a guest speaker diagnosed with schizophrenia after they have experienced the simulation. This combined approach helps address one of the main concerns with simulations — that they can unintentionally increase social distance or reinforce stereotypes if not supported by real-life context. Including authentic human interaction can make the experience more meaningful and well-rounded. In this thesis we will also include a debriefing session after the simulation, where students can reflect on their experiences and discuss them with peers and instructors. This is important for helping students process what they have learned and apply it to real-life situations [15].

A recent mixed-methods study by Alieldin et al. tested the use of immersive virtual reality to improve empathy among first-year medical students [1]. The intervention involved a VR simulation which placed students in the perspective of "Frank," a socially isolated 72-year-old man. Students experienced the

story from a first-person viewpoint and encountered situations related to grief, health decline, loneliness, and difficulties with daily life. Empathy levels were measured before and after the training using the Jefferson Scale of Empathy (JSE). Students showed a statistically significant increase in empathy scores. In post-session interviews, participants described the simulation as powerful, emotional, and immersive. These emotional responses were complemented by cognitive empathy, with students explaining how they better understood the struggles older adults face, especially with healthcare access and family relationships. The study also conducted follow-up interviews six months later. Students still remembered the experience vividly and reported applying what they had learned in patient interactions and standardized clinical scenarios. Importantly, the debriefing after the simulation was seen as a crucial component — helping students reflect, connect the experience to real-life practice, and deepen their learning. These results show how virtual reality can support both short-term empathy development and also have an effect on the longer-term, which supports the argument for immersive simulations in healthcare education [1].

Formosa et al. tested a custom-built VR simulation designed to show what it feels like to experience positive symptoms of psychosis, such as auditory and visual hallucinations and paranoid thoughts [12]. Fifty participants — including students and people from the general public — completed a short immersive scenario inside a virtual house, where they heard disturbing voices, saw shadowy figures, and experienced delusions based on a fictional character's background story. The researchers measured empathy, knowledge, and attitudes before and after the simulation. Results showed a significant increase in all three areas. Participants scored higher in understanding schizophrenia symptoms, felt more empathy, and reported more positive attitudes afterward. Interestingly, the simulation included no formal teaching — just the immersive experience itself. This supports the idea that experiencing symptoms directly can be a powerful learning tool. The study also looked at how much participants "believed" the simulation. People who felt the experience was realistic and useful showed the biggest increase in empathy. This shows that emotional connection and meaningful design are key when using VR for education.

While VR has shown strong results in building empathy, it is not the only option. Mixed Reality is becoming more popular because it blends digital effects with the real world, making the experience feel more grounded and less overwhelming. The next section will take a look at how MR is being used to simulate mental health symptoms in a way that feels real but also safe and manageable for students.

2.3.2.2 Empathy Increase through Mixed Reality

MR is gaining attention as a promising alternative to VR in empathy-focused education, particularly in mental health contexts. Unlike VR, MR allows users to remain partially connected to their physical surroundings while engaging with digitally simulated symptoms. This hybrid approach combines the immersive power of VR with the real-world anchoring of AR, helping to reduce sensory overload and making experiences more relatable and less overwhelming [38].

Studies by Silva et al. and Krogmeier et al., which were already discussed in detail in section 2.2.2.1 demonstrate the effectiveness of MR in increasing empathy and understanding toward individuals with schizophrenia. In both cases, simulations placed users in familiar environments while layering auditory and visual hallucinations over the reality. Participants reported strong emotional engagement and a clearer understanding of what it might be like to experience psychosis [16, 31].

Together, these insights reinforce the central aim of this thesis: to evaluate MR as a balanced and effective tool for simulating psychotic experiences in medical education. By allowing users to engage empathetically with symptoms while staying cognitively oriented, MR may better support both affective and cognitive empathy development. Its ability to blend emotional immersion with realism makes it especially well-suited for sensitive topics like schizophrenia, where responsible storytelling and psychological safety are essential.

2.3.3 Limitations in Empathy Training

Martingano et al. reviewed 43 studies and found that while VR often enhances affective empathy, its effect on cognitive empathy is less consistent [21]. They argue that immersive experiences might reduce the user's need to mentally simulate another's perspective, as the simulation does that work for them. Without reflection or guided discussion, users may have strong emotional reactions but fail to develop deeper understanding. Similarly, Mattsson et al. found that while VR can increase empathy, it does not necessarily lead to long-term changes in attitudes or behaviors [22]. They suggest that without structured debriefing or reflection, the emotional impact of VR experiences may fade quickly, leaving users with little more than a fleeting emotional response.

Moreover, a meta-analysis by Ventura et al. reviewed existing studies to see whether virtual reality can help increase empathy or perspective-taking [36]. The researchers analyzed data from seven studies and nine different participant groups. Overall, they found that VR had a moderate, statistically significant effect on perspective-taking — meaning users became better at imagining things from another persoNs point of view. However, the impact on empathy itself was smaller and not statistically significant. This suggests that VR may be more effective at helping people understand others (*cognitive empathy*) than at creating deep emotional connection (*affective empathy*). The authors also noted that how the VR is designed matters: experiences that include a strong sense of presence - like "being there" - or embodiment - like "being someone else" - may be more effective.

Similarly, Rueda and Lara caution against relying on emotional responses alone. They call for "reason-guided empathy," which integrates critical thinking and ethical reflection into simulation-based learning [30]. Without this, empathy may be short-lived or biased. The findings also show that more expensive or immersive setups do not necessarily yield better outcomes. Thoughtful design and context are incredibly important. Many VR simulations rely heavily on dramatic intensity, which can restrict the ability of the user to reflect or exercise perspective-taking — the cognitive process of imagining the world from another persons viewpoint, which is essential for developing empathy and reducing bias [22]. This limitation further supports the use of MR paired with preparation and debriefing, as adopted in this thesis.

Additionally, Ozcan et al. tracked empathy development in nursing students over four years. While communication skills improved, emotional empathy declined—likely due to burnout or emotional distancing [26]. This underlines the importance of designing empathy training that includes emotional support and reflection and a simulation which could be used repeatedly to be refreshed over the years. The MR simulation in this thesis builds on that principle.

Finally, as mentioned repeatedly, ethical concerns remain. VR simulations can unintentionally reinforce negative stereotypes if not carefully framed. Being incredibly affected by something, without deeper context, may lead to bias or stigma [30]. MR used in the real world, along with structured pre- and post-simulation activities, is intended to reduce this risk. The approach in this thesis prioritizes both emotional resonance and cognitive clarity to improve thoughtful empathy in clinical learners.

2.4 Simulation Design Considerations

Immersive simulations offer powerful opportunities to increase empathy in medical education, particularly for conditions like schizophrenia. However, designing effective simulations requires careful attention to realism, emotional impact, and usability. This means paying close attention to how the experience looks, sounds, and feels, not just for emotional impact, but also for how easy it is to use and understand. The next section looks at how these design choices can influence empathy and what researchers have learned from past simulations.

2.4.1 Empathy and Usability

Marques et al. compared a VR simulation of psychosis with a standard 2D video and found that the VR group experienced greater gains in cognitive empathy and held more positive attitudes toward individuals with schizophrenia. However, the study also noted several limitations: it lacked a control group and did not measure perceived immersion — a key factor in empathy development. Some participants also struggled with unfamiliarity with the technology [20]. Similarly, Zare-Bidaki et al. found that VR simulations of psychosis led to higher empathy and stigma reduction compared to traditional patient visits. However, they emphasized that simulations should supplement and not replace direct human interactions. Authentic contact provides depth, variability, and personal meaning, which simulations alone cannot replicate [15, 38].

Both studies emphasize that simulations must balance engagement and emotional intensity without overwhelming participants. Overly dramatic portrayals of symptoms — such as frightening hallucinations or paranoia — can trigger distress, increase social distance, or reinforce harmful stereotypes if not properly contextualized [2, 7, 38].

To reduce this risk, Zare-Bidaki et al. recommend using calm, familiar environments and grounding simulations in lived experience. They also suggest that AR or MR, which preserve awareness of the real world, may help avoid overstimulation while still enabling emotional immersion [38]. This aligns with the approach taken in this thesis, which uses MR to simulate symptoms in relatable real-world contexts. The use of passthrough features allows participants to remain anchored while interacting with hallucination overlays, aiming to increase empathy without sensory overload.

While immersive simulations have a lot of potential to improve empathy, they also come with some serious responsibilities. If not designed carefully, they can actually backfire—causing confusion, reinforcing stereotypes, or overwhelming students. In the next part, the ethical questions that come up when using these tools in mental health education are explored, and why reflection and thoughtful storytelling are just as important as the technology itself.

2.4.2 Ethical Challenges

While immersive simulations hold great promise for enhancing empathy, they also raise important ethical and psychological concerns—particularly in the context of mental health education as seen in the previous sections. Many studies suggest that emotional impact alone does not guarantee positive attitudinal change and may, in some cases, increase discomfort or misunderstanding [2].

These findings highlight the critical importance of proper preparation and debriefing. Without guided reflection, users may interpret psychotic symptoms in simplistic or be afraid of them, reinforcing stereotypes about schizophrenia. Ando et al. and Rueda and Lara both advocate for what they call a *reason-guided empathy*, a model in which emotional engagement is supported by ethical reflection and cognitive understanding. This approach encourages users not only to feel compassion but also to think critically about the lived experience of mental illness [2, 30].

Another important ethical issue has to do with how the simulation is designed. Using very realistic effects, like intense visuals, surround sound, and dramatic symptoms, can make the experience feel more lifelike. But for some users, especially those not used to immersive technology, this can be overwhelming. Also, trying to show a typical psychotic episode can be problematic, since symptoms vary a lot from person to person. This could lead to a simplified or even misleading picture of what schizophrenia is really like [38].

It is also essential to think about how the story behind the symptoms is presented. If the simulation focuses only on fear or confusion without any background or explanation, it might unintentionally make people with schizophrenia seem dangerous or unstable. Rueda and Lara warn that mental health simulations

need to be told in a responsible way—showing the human side of the experience, not just the symptoms [30].

In conclusion, when used alongside proper educational materials and opportunities to reflect on the experience, MR can help build deeper, more respectful empathy.

2.5 Overview of Relevant Studies

To consolidate the findings discussed in this chapter, Table 2.1 presents an overview of the key studies referenced. It summarizes the study designs, technologies used, symptom types, target audiences, and their effects on empathy and stigma. This table helps highlight the diversity of approaches and the gaps in existing research, particularly with regard to MR-based interventions, which this thesis aims to address.

Table 2.1: Overview of studies used for this thesis

Title	Year	Study Design	Tools Used	Target Group	Symptom Experience	Empathy or Stigma	Cognitive Empathy Increased	Affective Empathy Increased	Main Results
Impact of a Virtual Reality-Based Simulation on Empathy and Attitudes Toward Schizophrenia	2022	Quasi- experimental	VR	Health students	Simulated psychotic symptoms	Both	Yes	Possibly	VR more effective than 2D video in enhancing empathy and reducing stigma
Nursing Students' Experiences of Empathy in a Virtual Reality Simulation Game	2024	Descriptive qualitative	VR	Nursing students	Virtual patient care	Empathy	Yes	Yes	VR helped students experience and express empathy effectively
Virtual Reality as a Medium to Elicit Empathy: A Meta-Analysis	2020	Meta-analysis	VR	Various popula- tions	Multiple contexts	Empathy	Yes	Unclear	Perspective-taking improved; general empathy results were mixed
Testing the efficacy of a virtual reality based simulation in enhancing users' knowledge, attitudes and empathy relating to psychosis	2018	Experimental pre-post	VR	General public, psychol- ogy students	Simulated psychotic symptoms	Both	Yes	Yes	VR simulation significantly increased empathy, knowledge, and improved attitudes
Virtual Reality and Empathy Enhancement: Ethical Aspects	2020	Theoretical Review	VR	General (concep- tual discus- sion)	Not specific (broad scenarios)	Empathy	Possibly	Possibly	Explores philosophical and ethical aspects; emphasizes reason-guided empathy over immersive emotion
Effectiveness of immersive virtual reality in teaching empathy to medical students	2024	Mixed methods (pre-post + interviews)	VR	Medical students	Social isolation in older adults	Empathy	Yes	Yes	Empathy significantly increased post-training; immersion and embodiment were key factors
VR Improves Emotional but Not Cognitive Empathy: A Meta-Analysis	2021	Meta-analysis	VR	General popula- tion	Various contexts	Empathy	No	Yes	VR improved emotional empathy but not cognitive empathy; not more effective than low-tech methods

Title	Year	Study Design	Tools Used	Target Group	Symptom Experience	Empathy or Stigma	Cognitive Empathy	Affective Empathy	Main Results
The Virtual Doppelganger: Effects of a Virtual Reality Simulator on Perceptions of Schizophrenia	2010	Between- subjects experiment (4 conditions)	VR	General public	Schizophrenia symptoms	Both	Yes (in combo with empathy set)	Yes Yes	Empathy + VR condition most effective; VR-only increased social distance
Immersive VR Applications in Schizophrenia Spectrum Therapy: A Systematic Review	2020	Systematic review	VR	Patients with schizophre- nia spectrum disorders	Delusions, hallucinations, cognitive/social issues	Empathy (implied), Therapy	Not directly measured	Not directly measured	VR showed promising results for therapy; safe and well tolerated
Efficacy of Immersive XR Interventions on Symptoms of Schizophrenia Spectrum Disorders	2023	Systematic review	XR (VR)	Patients with schizophre- nia	Various psychotic symptoms	Empathy (sec- ondary), Therapy	Not focus	Not focus	VR effective across symptom domains; no AR studies found
Representing Mental Disorders with Virtual Reality: Goliath	2023	Case study analysis (artistic VR)	VR	General public	Narrative VR of schizophrenia	Empathy	Yes	Yes	Focused on ethical, artistic VR design for empathy through embodiment
Immersive Simulation of Schizophrenia	2023	Development and evaluation project	VR	General public / students	Visual and auditory hallucinations	Stigma	Possibly	Possibly	VR simulation aimed to reduce stigma; immersive experience showed promise for education
Learning by Doing: Educational VR for Care of Schizophrenic Patients	2020	Design and usability study	VR (360 video, HMD)	Nursing students	Various schizophrenia symptoms (hallucinations, delusions)	Empathy	Possibly	Yes	Participants reported increased empathy and engagement; useful educational platform
Evaluating VR Simulation of Psychosis on Stigma, Empathy, and Knowledge	2022	Controlled experimental	VR	Medical students	Psychotic symptoms	Both	Yes	Yes	VR significantly more effective than ward visits at increasing empathy and reducing stigma
Usability of Mental Illness Simulation via Immersive VR	2020	Mixed methods usability study	VR	Nursing students	Schizophrenia symptoms	Empathy	Possibly	Yes	Students found simulation realistic and engaging; suggested for broader use in nursing education
Reducing the Schizophrenia Stigma: A New Approach Based on Augmented Reality	2017	Quasi- experimental	AR	Medical students	Psychotic symptoms simulation	Stigma	Not measured	Not measured	AR experience reduced stigma and improved understanding of schizophrenic symptoms

Title	Year	Study Design	Tools Used	Target Group	Symptom Experience	Empathy or Stigma	Cognitive Empathy Increased	Affective Empathy Increased	Main Results
Leveraging AR for Understanding Schizophrenia	2024	Thematic evaluation (qualitative)	AR	Healthcare students, experts	Hallucinations, delusions, disorganized behavior	Stigma	Possibly	Possibly	Participants better understood schizophrenia; highlighted as an educational tool
Empathic Mixed Reality: Sharing What You Feel and Interacting with What You See	2017	Experimental (early studies)	MR (AR + VR)	General users (not specified)	Emotion sharing, collaboration	Empathy	Possibly	Yes	MR enabled physiological and emotional data sharing; promising for collaborative empathy
The Simulation of Hallucinations to Reduce the Stigma of Schizophrenia: A Systematic Review	2011	Systematic review	Simulation (au- dio/VR)	Mixed (students, general public)	Hallucination simulation	Stigma	No	Yes	Increased empathy, but also social distance; ethical considerations advised
Impact of an Auditory Hallucination Simulation Coupled with a Speaker Diagnosed with Schizophrenia	2022	Pre-post with speaker intervention	Audio simulation	Pharmacy students	Auditory hallucinations	Stigma	Not focus	Not focus	Stigma reduced significantly, especially in attitudes and disclosure openness
Creating Empathy Through Use of a Hearing Voices Simulation	2013	Mixed methods (pre-post and reflection)	Audio simulation	Psychiatric nursing students	Auditory hallucinations	Empathy	Not measured	Yes	Empathy significantly increased; students reported transformation in attitude and care approach
Use of an Auditory Hallucination Simulation to Increase Student Pharmacist Empathy	2016	Pre-post experimental	Audio simulation	Pharmacy students	Auditory hallucinations	Empathy	Not measured	Yes	Empathy increased; students reported distraction and frustration during task
Developing empathy in nursing students: a cohort longitudinal study	2012	Cohort longitudinal	None (Traditional education methods)	Nursing students	General emotional and communication contexts	Empathy	Yes	Yes	Empathy improved significantly in women through targeted training; results less clear for men
Improving Empathy in Nursing Students: A Comparative Longitudinal Study of Two Curricula	2018	Comparative longitudinal	None (Traditional vs. integrated curriculum)	Nursing students	General emotional and clinical context	Empathy	Yes	Decreased over time	Integrated curriculum more effective; empathic skills improved but tendency declined

Title	Year	Study Design	Tools Used	Target Group	Symptom Experience	Empathy or Stigma	Cognitive Empathy Increased	Affective Empathy Increased	Main Results
Relationships Between Nurse–Expressed Empathy, Patient–Perceived Empathy and Patient Distress	1995	Correlational study	None (standard clinical practice)	Nurses and patients	Real-life distress in hospital settings	Empathy	Not applicable	Not applicable	Nurse-expressed empathy positively correlated with perceived empathy; reduced patient distress
Out of Touch with Reality? Social Perception in First-Episode Schizophrenia	2013	fMRI observational study	None	Schizophreni patients	a Tactile and social perception stimuli	Empathy	Impaired (linked to self-other confu- sion)	Not measured	Impaired neural mechanisms for social touch perception; linked to empathy deficits
Visual Hallucinations in Psychosis	2019	Clinical observational study	None	Psychosis patients	Visual hallucinations (VH)	Empathy (implied)	Not measured	Not measured	VH are diverse and vivid; associated with reduced insight and fear; linked to stigma and distress
Visual Distortions and Hallucinations in Schizophrenia: An Update	2021	Literature review	None	Schizophreni patients	a Visual hallucinations and distortions	Empathy (concep- tual)	Not directly assessed	Not directly assessed	Explores mechanisms and clinical impact of visual symptoms; calls for targeted interventions

3 Methodology

In this chapter, I present the methodology used to design, implement, and evaluate a MR simulation aimed at increasing empathy toward individuals diagnosed with schizophrenia. Building on the gaps and opportunities identified in the state of the art (Chapter 2), this study explores whether a brief MR simulation of symptoms—lasting approximately 3 to 4 minutes—can significantly influence both *affective* and *cognitive* empathy among medical students. The approach combines immersive technology, tested on medical students which already have experience with patients and know about schizophrenia and its symptoms, and guided debrief to examine how such a simulation may reshape students' perceptions and attitudes toward people with schizophrenia.

3.1 Research Question

The central research question of this project is:

Can a short Mixed Reality simulation of schizophrenia symptoms effectively increase both affective and cognitive empathy in medical students, and influence their perception of individuals diagnosed with schizophrenia?

This question emerges from several key insights presented in the state of the art:

- VR has been shown to enhance affective empathy, but its effects on cognitive empathy are inconsistent [21, 36].
- MR remains underexplored, yet early studies suggest it can balance immersion and realism, potentially supporting more empathetic outcomes [16, 31].
- Ethical concerns require immersive experiences to be framed through knowledge delivered beforehand and reflection/debriefing after the simulation to avoid stigma or stereotype reinforcement [2, 30].

3.2 Using Mixed Reality

Based on the literature review, MR offers several advantages over VR in the context of schizophrenia simulations, making it a particularly suitable choice for this thesis. One of the most important benefits of MR is its ability to provide emotional safety through the feeling of being in the real world. Unlike fully immersive VR, which can sometimes overwhelm users with intense sensory input, MR allows participants to remain grounded in their actual environment. This helps reduce the risk of distress that has been reported in VR-based schizophrenia simulations, especially when simulating frightening symptoms [38].

MR also offers higher relatability and engagement by integrating hallucinations and delusional content into familiar, everyday settings, such as a classroom. This contextualization can enhance the emotional resonance of the experience, as users are more likely to connect with scenarios that resemble their own daily environments [16]. Rather than experiencing psychotic symptoms in abstract or exaggerated virtual spaces, participants see these symptoms unfold in realistic and meaningful contexts, increasing the perceived authenticity of the simulation.

Furthermore, MR supports a more balanced approach to empathy training by addressing both cognitive and affective components. While VR often elicits strong emotional reactions, MR allows users to emotionally engage with the simulation while still having the cognitive space to process and reflect on what they are experiencing. This engagement is particularly valuable in educational settings, where the goal is not only to generate emotional impact but also to foster a deeper understanding of the condition which is being simulated [21, 30].

From a technical perspective, MR provides flexibility through the use of modern headsets equipped with passthrough functionality, such as the Meta Quest 3¹. This device enables the user to see their environment, onto which simulated symptoms can be layered in real time. This technology enables the development of dynamic and responsive simulations that feel both immersive and real.

3.3 Strategy

Simulation Content The content of the MR simulation was designed to reflect commonly reported auditory and visual hallucinations described by individuals diagnosed with schizophrenia. The structure was carefully sequenced to build in intensity over a 3–4 minute duration, beginning with subtle perceptual changes and culminating in more overt, unsettling symptoms. To reflect auditory hallucinations, voice content was adapted from clinical interviews and voice-hearing simulations (e.g., the Hearing Voices Curriculum), grouped into twelve distinct voice groups to represent different thematic elements such as confusion, fear, and paranoia.

The visual components were inspired by data from clinical literature. Commonly reported experiences include simple hallucinations such as flashes of white light, black stains, and colored dots that intermittently fill the visual field. Patients also describe geometric patterns, including matrix-like structures, spirals, and grid formations, often perceived as overlaid onto everyday objects. More complex hallucinations involve seeing people (either familiar or unfamiliar), disembodied faces, animals such as spiders, snakes, and cows, as well as ghostly or religious figures. In some cases, hallucinations have narrative qualities, such as witnessing fire emerging from a persons mouth or hallucinated writing appearing on walls [32, 35]. These complex hallucinations have not been chosen for the simulation, as they may be too complex to simulate effectively in a short timeframe.

 $^{^{1}}Meta\ Quest\ 3\ is\ a\ standalone\ mixed\ reality\ headset\ developed\ by\ Meta\ Platforms,\ released\ in\ October\ 2023.\ For\ more\ information:\ https://www.meta.com/quest/quest-3/$

The chosen visual hallucinations were namely dark stains, pulsating in the visual field of the user, and colored dots that appear and can be interacted with. Furthermore, the user will have a darker field of vision which represents a delusion, sort of a "tunnel vision". These elements are selected to reflect the common experiences of individuals with schizophrenia while remaining manageable within the short duration of the simulation. These elements were integrated into a familiar simulated environment, in this project the classroom, to enhance relatability. Visual effects are synchronized with voice content using timeline-based logic to ensure consistency and immersion across participants.

Development Process The simulation was prototyped in Unity and deployed on the Meta Quest 3 headset, with audiovisual synchronization carefully engineered to maintain immersion while reflecting the lived experiences of individuals with schizophrenia. Additionally, it was developed iteratively and tested internally before deployment. Initial design prototypes were reviewed by faculty members of the University of Health in Fribourg, Switzerland (in French: Haute école de santé Fribourg, HEdS-FR) familiar with psychosis and also supervisors of this thesis familiar with MR development. A first version of the simulation was tested to evaluate technical functionality, timing, and content clarity.

Feedback from these early tests led to minor revisions in voice clarity, pacing of visual hallucinations, and interaction effects. Emphasis was placed on maintaining a balance between emotional engagement and psychological safety. The final version of the simulation was finalized in collaboration with experts in the healthcare domain to ensure that the depicted symptoms were both respectful and pedagogically meaningful.

Planned Evaluation and Validation To assess the impact of the simulation, the study uses a pretest–posttest design with debriefing and validated scales measuring affective and cognitive empathy, as well as emotional perception. The primary outcomes are changes in JSE and B-PANAS scores before and after the simulation. The user study design will be explained in more detail in Chapter 4.

Qualitative feedback collected after the simulation and during the debrief will be thematically analyzed to identify perceived realism, emotional resonance, and educational value. This combination of quantitative and qualitative methods allows for a robust, mixed-methods evaluation of the simulation's impact on empathy and perception.

3.4 Key Factors

To address the challenges mentioned in 2.3.3 and 2.4.2, this thesis adopts a design strategy that:

- Uses Mixed Reality to simulate schizophrenia symptoms in familiar environments, allowing users to remain grounded in reality
- Tests the simulation on medical students which already have had a preparatory educational session to provide context and understanding of schizophrenia, reducing the risk of reinforcing stigma
- Includes a debriefing session to help with reflection, discussion, and ethical understanding of the experience
- Measures perceived immersion and empathy outcomes to evaluate the impact of the simulation on students' attitudes and understanding
- Uses a combination of auditory and visual hallucinations to create a layered experience that reflects the complexity of real-life symptoms

- Uses a gradual increase in emotional intensity, allowing users to acclimate to the experience without overwhelming them
- Engages students in a reflective process that encourages them to connect their experiences to real-life clinical practice and patient interactions

This study adopts a structured and ethically responsible MR-based approach to schizophrenia education. The goal is to increase both *affective* and *cognitive* empathy in medical students by situating simulated symptoms in real-world contexts, framed by education and post-reflection.

To sum up, this chapter presents a multi-layered approach to empathy training in medical education using MR technology. By combining immersive simulation with guided learning, group discussions, and time for reflection afterward, the aim is to help students better understand the experiences of people with schizophrenia. This approach is designed with care, following advice from existing research to avoid overwhelming emotions, provide clear context, and portray schizophrenia in an accurate and respectful way.

Design

The design of the mixed reality simulation for this thesis was carefully crafted to immerse users in a realistic experience of schizophrenia symptoms, particularly focusing on auditory and visual hallucinations. The goal was to create an educational tool that enhances empathy and understanding of the challenges faced by individuals with schizophrenia.

4.1 Design Choices

The MR simulation developed in this thesis was designed to give students an emotional and realistic sense of what it might feel like to experience psychotic symptoms, while still keeping them in their real environment. Unlike VR, which fully replaces the users surroundings, MR allows digital symptoms — like hallucinations or sounds — to appear in the users actual space.

The simulation shows both auditory and visual symptoms, based on real descriptions from people who live with schizophrenia. Users hear critical or unsettling voices and see visual changes with the goal of distracting them. These effects are introduced step by step to reflect how symptoms often build gradually. The aim is not to scare or shock, but to help students connect with the emotional and mental confusion that someone with psychosis might feel. Because the simulation is only 3 to 4 minutes long, it focuses on giving a short but meaningful experience. It is placed in a familiar environment, which is the classroom, so that the symptoms feel more relatable. This balance is important: the goal is to increase empathy and understanding, not to create fear or reinforce negative stereotypes.

To support this, the simulation is framed by two key points. At some point before the day of testing, students have already been lectured sometime in their studies on the topic of schizophrenia and also already have practical experience with patients. They also will be briefed about the simulation and what it should show. Afterwards, they take part in a guided debrief, where they can reflect on how they felt, what they learned, and how it might change the way they see or interact with patients. This step is especially important, as it helps students process the experience in a thoughtful way.

The overall design is based on ideas from recent research, which shows that immersive tools work best when combined with education and reflection. Studies by Rueda and Lara and Zare-Bidaki et al. stress that simulations should be realistic and meaningful, but also ethically responsible and emotionally safe.

CHAPTER 4. DESIGN 28

This approach follows those recommendations closely, aiming to create a learning experience that supports both emotional connection and critical thinking [30, 38].

4.2 Simulation Structure

The simulation was intentionally structured to create an increasingly unsettling experience that mirrors hallucinations commonly reported in schizophrenia. This design was informed by both clinical research on psychotic symptoms and educational approaches shown to foster empathy and reduce stigma among healthcare professionals. The auditory hallucinations included in the simulation are modeled after established training tools like Patricia Deegan's Hearing Voices Curriculum - a simulation of how people with schizophrenia might experience hearing voices -, which has been shown to significantly enhance empathy in both students and clinicians [15]. Building on this model, the simulation presents a series of whispered voices and confrontational phrases. These sounds are introduced gradually and increase in emotional intensity over time, reflecting research that shows emotional engagement enhances learning and empathetic understanding [34].

In addition to auditory elements, the simulation incorporates visual hallucination features. These include colored dots that appear, spatial distortions like black stains, and a darkening of the visual field. These visual effects were inspired by clinical reports of hallucinations in schizophrenia, which often describe geometric patterns and distorted or symbolic images [32, 35].

The overall structure is designed to simulate both subtle and intense hallucinatory experiences. Initial symptoms—such as whispers and the darkening of the visual field—represent the early stages of changes. As the simulation progresses, the intensity of both auditory and visual elements increases to reflect the overwhelming nature of more severe psychotic episodes. This progression helps users understand how hallucinations can escalate over time and provides insight into the lived experience of individuals with schizophrenia.

4.3 Simulation Sequence

To support this progression, Figure 4.1 outlines the sequence and timing of both auditory and visual elements in the simulation. The structure was carefully chosen to reflect how psychotic symptoms often unfold—starting subtly and becoming more disruptive. Beginning with sort of a 'tunnel vission', by darkening the visual field and inclduing whispered voices, the simulation gradually introduces more intense auditory cues and layered visual distortions, such as black stains and interactive colored dots. This stepwise increase in complexity ensures that users are not overwhelmed too quickly. The timing was designed to fit within the short duration of the simulation (3 to 4 minutes), while still providing a productive experience of what psychosis might feel like. It should also be mentioned that the voice groups shown in Figure are explained in more detail in the next chapter, where the implementation of the simulation is described.

CHAPTER 4. DESIGN 29

Figure 4.1: Sequence of time-structured voice and visual elements

5 Implementation

Before diving into the details of how individual components work, it is helpful to understand how the entire simulation is structured and coordinated. The simulation is developed in the Unity game engine, which provided the real-time rendering and interaction environment needed for an immersive experience. However, the core logic of the simulation is implemented through a set of custom C# scripts, each responsible for specific components of the experience. The system is made up of several different scripts that control what the user sees and hears—from floating dots and stains to whispering voices. To make the experience feel immersive and believable, all of these effects need to happen at the right time and in the right order. This is where the central orchestrator comes in. The following sections explain how the simulation is timed and controlled, starting with the main orchestration logic that acts as the controller of the experience.

5.0.1 Orchestration

At the heart of the system lies the Orchestrator.cs script. This script sequences the entire simulation, controlling when sounds play, visual hallucinations appear, and environmental effects occur. The timeline is structured using IEnumerator coroutines, allowing asynchronous timed execution of events, ensuring immersive pacing without overwhelming the user too early in the experience.

```
IEnumerator OrchestrationSequence()
{
    Debug.Log("Simulation started");
    yield return new WaitForSeconds(60f);
    PlayWhispers();
    // visual field is getting darker

    yield return new WaitForSeconds(5f);
    soundManager.PlaySound("1");
}
```

Listing 1: Orchestration Coroutine

Synchronization across components ensures the user is not overwhelmed with concurrently being stimulated. For example, whispers begin before visuals, allowing users to acclimate to auditory disturbances before confronting the more visual hallucinations. Those are also paced in relation to the voice samples, building tension across the timeline. The orchestrator also manages the timing of the visual effects, ensuring that they are introduced at appropriate intervals to create a sense of progression. Figure 5.1 illustrates the high-level structure of this system and the flow of variable dependencies among its components.

5.0.2 Auditory Hallucinations

Auditory hallucinations in the simulation are managed by the SoundManager.cs script, which handles the playback of voice samples that simulate inner voices or intrusive thoughts. These sounds are intended to create an immersive and unsettling auditory environment that reflects commonly reported auditory hallucination experiences.

The core logic of the script is based on a list of AudioSourceConfig objects, each of which includes an AudioSource and a corresponding string identifier called voiceGroup, which acts as a grouped sequence. This was initially thought to be the identifier per voice, but as it became apparant that the script needs to follow a certain sequence, the identifier is strictly for knowing which section to play. Therefore, the script is divided into 12 parts, such that it could be controlled which part of the script should be played when. Table 5.1 shows the identifiers and their corresponding audio clips. Each identifier corresponds to a specific audio clip that is played at a certain point in the simulation.

Upon initialization, the script constructs a mapping of each voice group identifier to its respective audio source. When the method PlaySound(string voiceGroup) is called, the corresponding audio source is checked to ensure it is not already playing—this prevents overlapping audio playback. If no sound is currently playing for that identifier, the audio clip is played and logged for debugging purposes. If the requested identifier is not found, an error is reported.

The actual audio content is carefully scripted to reflect a broad emotional spectrum, ranging from ambiguous or confused statements to more aggressive or paranoid lines. These phrases were written in French—the working language of the institution—and designed to evoke discomfort and mostly distraction. To achieve a very natural tone of the voices, the voices were generated using the ElevenLabs text-to-speech AI platform [11], where voices can be created with specific promps. The prompts therefore instructed the AI platform to create a voice which is primarly scared, one which is whispering, and one which is more aggressive. The goal is to create a range of voices that could be used to simulate different types of auditory hallucinations, from soft whispers to more confrontational tones.

The voice samples were not developed in isolation. Their emotional tone, content, and perceived realism were refined through close collaboration with the *Haute école de santé Fribourg* (HEdS-FR). We reviewed the script with faculty members experienced in mental health care. Their feedback directly influenced the final selection of voice lines, ensuring that the content remained as truthful as possible.

The final script used in the simulation is shown in Table 5.1, presented in both the original French and their English translations.

Figure 5.1: System architecture and variable orchestration for MR schizophrenia simulation.

Français (Original)	English (Translation)	VoiceGroup
Écoute c'que dit l'enseignant	Listen to what the teacher says	1
Écoute attentivement.	Listen carefully.	1
Est-ce que t'entends ça ?	Do you hear that?	1
Tu connais la réponse ?	Do you know the answer?	2
Bien sûr que tu n'la connais pas	Of course you don't know it	2
T'es vraiment stupide.	You're really stupid.	3
Tu n'sers à rien	You're useless	3
Tu vois les autres ?	Do you see the others?	4
Ils parlent de toi.	They're talking about you.	4
Fais attention à toi.	Watch out.	4
Ne leur fais pas confiance.	Don't trust them.	4
Quelles sont ces taches?	What are those stains?	5
Tu vois ça ?	Do you see that?	5
Concentre-toi!	Focus!	6
Les autres te regardent.	The others are watching you.	7
Tu n'le vois pas ?	You don't see it?	7
Regard vers le haut. Ya quelque chose!	Look up. There's something there!	8
Regarde maintenant!	Look now!	8
Qu'est-ce qui n'va pas chez toi ?	What's wrong with you?	9
Tu n'vaux rien	You're worthless	9
Touche les points!	Touch the dots!	10
Les autres veulent enregistrer tes pensées.	The others want to record your thoughts.	11
Tu dois faire attention!	You must be careful!	11
Regarde derrière toi!	Look behind you!	12
Fais attention!	Be careful!	12
Tu dois faire attention à toi!	You must look after yourself!	12

Table 5.1: French simulation script with English translation and voice group identifiers.

To further enhance immersion, the timing of the voice playback is synchronized with corresponding visual effects, such as the appearance of stains or the darkening of the screen. This multisensory coordination aims to simulate the overwhelming and often unpredictable nature of psychotic episodes. The flexible structure of the SoundManager.cs makes it possible to easily add, remove, or sequence new voices for future versions of the simulation.

5.0.3 Visual Hallucinations

The simulation includes several visual effects designed to represent different kinds of hallucinations, based on how people with schizophrenia have described their experiences.

5.0.3.1 Screen Darkening

The screen darkening effect in the simulation is implemented via the ScreenDarkener.cs component, which gradually overlays a semi-transparent black panel onto the user's visual field. This visual modification simulates a sense of tunnel vision or visual deterioration, contributing to the immersive experience of altered perception.

Technically, the effect is realized through a full-screen Image component referred to as darkPanel. This panel is a background panel from Unity itself with the color set to black. We can nicely see the panel

in the Unity scene in figure 5.2.

Figure 5.2: Dark background panel to mimic darkening of the user's visual field

At the start of the simulation, the alpha value of this panel is set to zero, ensuring that the screen appears completely transparent and preventing any initial visual flash. With the start of the simulation a coroutine is triggered that increases the panel's alpha value from 0 to 0.7 over a duration which can be set in Unity itself, called the (fadeDuration, typically 2 seconds).

The darkening culminates in a panel opacity of 70% (i.e., alpha = 0.7), which darkens the screen significantly without making it fully dark. This design choice maintains visibility while still inducing a sense of discomfort or visual strain. As such, the effect models subtle visual hallucinations or perceptual narrowing, which are commonly reported in psychotic experiences.

5.0.3.2 Stains

One effect, created using the <code>DynamicWaveDeformation.cs</code> script, makes the surfaces of objects appear to ripple and shift. This gives them a wavy, moving look that reflects how perception can feel distorted during hallucinations. This deformation is applied to spheres which are triggered by a pre-defined spawn and disappearance interval. The spheres are randomly placed in the user's field of view, and they float around, creating a sense of visual noise. The <code>FadeEdgeShader.shader</code> shader is used to create a darkening effect around the edges of the screen, simulating the feeling of being in a confined space or having a limited field of vision. This shader is created with the help of ChatGPT, which provided a basic structure that is then customized to fit the specific needs of the simulation.

The Orchestrator.cs script manages when these spheres appear during the simulation timeline. The method SpawnSphere() is invoked repeatedly in a loop to instantiate the spheres at randomized positions around a central spawnPoint. The number of spheres and the interval between their appearances are determined by the parameters sphereCount and spawnInterval, respectively. Each sphere is placed within a circular area defined by a spawnRadius, with its Y-coordinate fixed to match the user's eye level for spatial consistency. After a fixed delay, the spheres are removed in the same order they appeared, one by one, using a queue-based removal mechanism and the Destroy() function.

The visual appearance of these spheres is designed to be ambiguous and somewhat unnatural. They show a constantly shifting surface that pulses and distorts as if they are made out of a wavy material to represent stains. This is achieved through the <code>DynamicWaveDeformation.cs</code> script, which displaces the vertices of each sphere's mesh in real time, to create this wave effect.

When instantiated, the script stores the original mesh vertices and continuously updates them every frame based on the wave function that combines sine and cosine operations on both the X and Z components of each vertex:

```
float wave = sin(time + x) * cos(time + z)
```

The wave value is multiplied by a configurable strength parameter called waveAmplitude, and this result is used to slightly move each point on the sphere's surface outward or inward along its normal direction. This creates a rippling effect across the whole object, making the sphere appear as if it is softly pulsing or "breathing" while it exists in the environment.

Visual Example Figure 5.3 shows a black deforming sphere as it appears in the real-world mixed reality classroom context. The shader used for this object includes a soft fade around the edges, giving it a non-solid, ghostly appsearance that blends slightly with the background. Figure 5.4 illustrates the same object in the Unity Editor, where the mesh deformation and alpha transparency are more clearly visible.

Figure 5.3: Stain appearing in the user's field of view

5.0.3.3 Floating Dots and Interaction Logic

To help simulate the kind of perceptual disturbances that some people with psychosis experience, the simulation includes floating colored dots that the user can interact with. These are controlled by two main scripts: <code>DotManager.cs</code>, which creates the floating dots, and <code>ObjectCollision.cs</code>, which handles what happens when users touch the interactive spheres.

The DotManager.cs script is responsible for filling the space around the user with a number of small red and blue spheres—referred to as "dots." These dots are placed randomly within a area, defined by the parameters spawnWidth, spawnHeight, and spawnDepth. To not overcrowd the visual field,

Figure 5.4: Example sphere with the FadeEdgeShader.shader and the DynamicWaveDeformation.cs script to mimic stains

the script makes sure that each dot is placed far enough away from the others. If a dot would be too close to a previous one, a new position is chosen.

Each dot is randomly colored red or blue, creating a scattered, noisy effect. The idea is to make the environment feel just a bit off or overwhelming, without making it frightening. The dots are also meant to be more interactive. They appear at different moments in the simulation and are set up to respond when the user reaches out and touches them. The logic behind this is handled by the <code>ObjectCollision.cs</code> script.

Using Unity's collision detection system, the script monitors for OnTriggerEnter and OnTriggerExit events. When the user's hand (or other collider) enters the trigger zone of a sphere, the following actions are executed:

- The object's material is changed to a new, randomly generated color using Random. ColorHSV(). This signals to the user that the object has responded to their touch.
- The script searches the scene for an AudioSource tagged as "Audio10" and stops it using audioSource.Stop(). This source plays a looping sound "Touche les points!" (Touch the dots!), intended to mimic intrusive auditory hallucinations. Its termination represents a temporary sense of relief or control.

The interaction is simple but meaningful. It represents how some people try to manage or quiet their hallucinations—by focusing on them or interacting in some way. In the simulation, this also makes the experience more engaging and lets users take an active role, rather than just being passive observers.

Visual Example The images below illustrate the interaction process. In Figure 5.5, the user sees floating dots in their original red and blue state. After touching a sphere, as shown in Figure 5.6, the affected object changes color, confirming that the interaction is registered and the audio loop is interrupted.

Figure 5.5: Floating dots before user interaction.

Figure 5.6: Color change after user touches one of the dots.

Together, these two systems—floating dots and interactive auditory element of the dots—form a approach to simulating environmental disruption. While the <code>DotManager.cs</code> creates persistent visual distraction, the <code>ObjectCollision</code> system adds intensity. The use of sound looping and the color change of the dots reinforces the themes of intrusion and momentary relief, central to the projects goal of eliciting empathetic insight into the lived experience of a psychosis.

5.1 Challenges During Implementation

Despite careful planning, several significant challenges emerged during the development of the simulation:

5.1.1 Audio Loops

Initially, each interactive sphere instantiated its own sound playback. This led to multiple overlapping sound loops, which had to be fixed. The problem arose because the audio logic is not centralized — each sphere's ObjectCollision component independently triggered audio playback upon spawning. For example, if five spheres were instantiated, each would play its own sound, leading to overlapping audio. The audio would then only stop, if all five spheres were touched, which is not the intended behavior.

To solve this issue, a shared audio management system is developed, which is a static AudioSource and coroutine created within ObjectCollision.cs. This means that only one looped sound source exists, and it is globally stopped when a user interacts with any sphere.

A key logic excerpt illustrating this centralization is:

```
if (sharedAudioSource == null) sharedAudioSource = ...; coroutineHost
= this; repeatCoroutine = coroutineHost.StartCoroutine(RepeatAudio());
```

This ensures no duplicate sounds occur, even with multiple spheres present.

5.1.2 Finger Interaction

A second major challenge was accurately detecting when a user touched a dot. Initially, an additional *poke interaction* module was mistakenly integrated alongside the already built-in collision detection by Unity. This redundant system caused conflicting behavior and unpredictable touch responses. Upon deeper inspection, it was discovered that Unitys hand collision system already assigns specific identifiers to each fingertip collider, such as *HandIndex1* for the index finger. Reliable detection could therefore be implemented simply by checking the collision object's name during a collision event, rather than adding redundant interaction modules.

```
if (collision.gameObject.name.Contains("HandIndex1")) ...
```

By implementing this and removing the redundant poke interaction, the color changing is a smooth process and the finger identification also worked.

5.1.3 Loud Audio

During preliminary testing, the built-in speakers of the Meta Quest 3 were found to be too loud, leaking audio to the entire room and were being heard by observers. To address this, PhoneLook bone-conduction headphones¹ were integrated into the simulation setup. This had the advantage that the audio is transmitted privately to the participant without occluding ambient sounds. It also ensures immersive simulatin while respecting privacy and the testing environment.

5.1.4 Spatial Placement of Audio

Another significant challenge was the spatial arrangement of audio sources within the simulation environment. Initially, it was difficult to orient myself correctly in Unityss Scene View, making it unclear where the sounds would originate from relative to the user position. Proper placement was essential to

¹phonelook.ch – bone conduction headphones

create a convincing spatial auditory experience, because sounds had to feel anchored in specific locations in the environment. As the user moved, the sounds needed to remain fixed in space, enhancing realism and immersion.

To solve this, I invested time to become familiar with Unity's camera controls and 3D scene navigation. Then, the sound sources were distributed strategically across different coordinates, ensuring that different hallucinated voices would come from distinct spatial directions.

An example of the 3D placement of the sound sources in the Unity scene is shown in Figure 5.7.

Figure 5.7: Placement of spatial sound sources in the Unity scene for the hallucination simulation. Each speaker icon represents a sound source emitting a hallucination voice.

User Study

To systematically evaluate the educational and empathic impact of the MR simulation, a controlled user study is conducted with a total of 29 medical students enrolled at the University of Health in Fribourg, Switzerland (in French: Haute école de santé Fribourg, HEdS-FR). The study employed a pretest–posttest mixed-methods design, combining quantitative measures with group interaction and reflective feedback to understand the effects of the simulation experience.

6.1 Study Design Overview

The user study followed a five-phase structure: pre-simulation evaluation, simulation experience, post-simulation evaluation, debriefing session and data analysis (quantitative and qualitative evaluation). This structure allowed for a measurement of change in empathy and emotional response, and offered insight into both the direct effects of the MR simulation on the headset user and the indirect effects on observing students. The design aligns with educational best practices and recommendations in empathy training, particularly those emphasizing immersive realism combined with ethical framing and debriefing. The study was conducted in a controlled environment, with all participants receiving the same information and instructions. The simulation is designed to be brief yet impactful, allowing for a focused exploration of the experience of psychosis while minimizing potential distress. The study is approved by the HEdS-FR ethics committee, and all participants provided informed consent prior to their involvement. The study was conducted in accordance with ethical guidelines for research involving human subjects, particularly in the context of medical education and simulation.

The evaluation included both quantitative and qualitative components:

- **Pre-Evaluation:** Conducted immediately before the simulation, this questionnaire assessed participants prior experience with patients (especially those diagnosed with schizophrenia), and measured baseline empathy and emotional perceptions.
- Post-Evaluation: Completed directly after the simulation, this questionnaire repeated the empathy
 and emotion assessments and included additional questions about the participants experience with
 the simulation.

Two groups were compared in the post-evaluation: participants who engaged in the simulation as "observers" (without the headset) and those who used the mixed-reality headset individually.

6.2 Participants

The target group for this study consists of medical students (n = 29) in their early clinical training, specifically from the HEdS-FR. This group of participants was selected for two primary reasons. First, students at this stage are actively developing their clinical attitudes, as they are still in the early stages of their career, including their capacity for empathy toward patients. Second, previous research has shown that empathy training tends to be particularly effective during this formative period in a healthcare professionals education [15, 17].

Participation in the study is voluntary, and all participants are recruited through internal communication channels within the university by their professor. Before taking part, each participant receives comprehensive information about the objectives of the study, its procedures, and potential risks. They are informed of their rights, including the ability to withdraw at any time, and are asked to sign a written consent form confirming their understanding and agreement.

6.3 Procedure

The study is conducted in small groups. A total of five groups, each consisting of six students, participate in the simulation sessions. Within each group, only one student wears the MR headset and experiences the simulated symptoms. The other five students remain in the room during the simulation and are given a specific task by the instructor. Their role is to observe the behavior of the participant wearing the headset, noting any signs of confusion, distraction, or distress. This setup serves two purposes: first, it mirrors real scenarios where healthcare providers must interpret subtle behavioral cues; and second, it allows researchers to explore whether witnessing someone elses simulated experience can also affect empathy and perception from an external perspective.

All six group members—both the headset user and the observers—complete the same set of questionnaires. These include the Jefferson Scale of Empathy (JSE) [13] to assess baseline and post-simulation empathy levels, and the Brief Positive and Negative Affect Schedule (B-PANAS) [6] to measure emotional responses and perceptions toward individuals with schizophrenia. The evaluation process is described in more detail in Chapter 6.3.1.

The simulation itself lasts approximately 3 to 4 minutes. During this time, the student wearing the headset is exposed to a carefully sequenced combination of auditory and visual hallucinations, all set within a familiar environment, which is the classroom. The goal is to simulate psychotic symptoms in a way that is immersive but safe, and to encourage emotional and cognitive engagement with the experience.

Immediately following the simulation, participants once again complete the JSE and B-PANAS questionnaires to assess any changes in empathy levels and emotional responses. They are also invited to provide qualitative feedback on the simulation, including comments on its realism, emotional impact, and educational value. The inclusion of both direct and indirect participants allows the study to assess how empathy might be influenced not only by immersive first-person experiences, but also through empathetic observation—a dimension that has received limited attention in the literature.

After the post-evaluation, all group members take part in a structured debriefing session moderated by teaching staff. This guided reflection allows participants to discuss what they observed or experienced,

process their emotional responses, and relate the exercise to their future clinical work. For the observers in particular, this provides an opportunity to articulate how witnessing the simulation affected their perception of both the symptoms and the individual undergoing them.

Figure 6.1: Overview of the user study procedure

An overview of this procedure is illustrated in Figure 6.1, which summarizes the five main phases of the study, from pre-evaluation through simulation and group reflection to final data analysis. This structured flow ensures both consistency across groups and comprehensive capture of quantitative and qualitative data.

6.3.1 JSE and B-PANAS Scales

The evaluation of the MR simulation's impact on empathy and emotional response is conducted using two primary measurement tools: the Jefferson Scale of Empathy (JSE) and the Brief Positive and Negative Affect Schedule (B-PANAS). These tools are designed to capture both cognitive and affective dimensions of empathy, as well as emotional responses to individuals with schizophrenia.

6.3.1.1 Jefferson Scale of Empathy (JSE)

The primary tool used to measure empathy is the Jefferson Scale of Empathy (JSE), which is widely applied in medical education and has been shown to reliably measure both affective and cognitive components of empathy [13]. The JSE is administered before and after the MR simulation to assess whether the experience has led to measurable changes in students' empathy levels. The results are analyzed to determine changes in total empathy scores.

Since the JSE is originally developed in English and no officially validated French version is available for this study, the questionnaire is translated into French by the researcher using a combination of online translation tools and manual adjustments. While care is taken to preserve the meaning and intent of the original items, this translated version did not go through formal validation. As such, the use of this adapted French version represents a methodological limitation and should be considered when interpreting the results.

To better align the measurement tool with the goals of this study, which are to evaluate both cognitive and affective components of empathy in a time-sensitive way—the full JSE is thematically reviewed and categorized by the author. Based on the literature review and the definitions of empathy used in this thesis, each item is classified as either *Cognitive* or *Affective*. Cognitive items reflect an emphasis on understanding the patient's perspective, thoughts, or non-verbal cues, while affective items relate to emotional awareness, resonance, or the therapeutic value of emotional understanding. A detailed overview of this classification can be found in Appendix A, Table A.1.

In order to maintain engagement, a shortened version of the JSE is developed. This version includes 13 items—five reflecting cognitive empathy and 8 reflecting affective empathy—that were selected based on thematic clarity and their alignment with the measurement goals of the study. The item selection are shown in Appendix B, Table B.1.

6.3.1.2 Emotional Response (Positive and Negative Affect)

To better understand the emotional impact of the simulation, students were asked to rate the intensity of their own emotional responses when thinking specifically about individuals diagnosed with schizophrenia, to assess their perceptions of people with this disorder. This part of the questionnaire is adapted from a validated French-language version of the Positive and Negative Affect Schedule (PANAS), as published by Boiroux [6]. Participants rated each emotion on a 5-point Likert scale ranging from 1 ("Pas du tout" / "Not at all") to 5 ("Extrêmement" / "Extremely").

The selection of emotional terms is selected to include an equal balance of five positive and five negative affective states. The goal of this design is to explore how the simulation might shift students emotional associations with schizophrenia - either increasing compassionate or empathetic responses, or reducing feelings of fear, anxiety, or social discomfort. Rather than only recording whether emotions intensified or weakened overall, the approach focused on identifying which specific emotional tones were affected and in what direction.

The following ten emotions were included in the questionnaire:

```
Angoissé(e) (Anxious), Enthousiaste (Enthusiastic), Honteux(se) (Ashamed), Inspiré(e) (Inspired), Intéressé(e) (Interested), Irrité(e) (Irritated), Craintif(ve) (Fearful), Alerte (Alert), Attentif(ve) (Attentive), and Nerveux(se) (Nervous).
```

This set provides a balanced perspective on affective response. Positive terms such as *enthousiaste*, inspiré(e), and intéressé(e) were selected to assess potential increases in empathy and engagements following the simulation. On the other hand, negative emotions like angoissé(e), honteux(se), and craintif(ve) were included to evaluate whether the experience reduced discomfort or fear.

This measurement strategy supports a more nuanced understanding of how the MR simulation influenced the emotional lens through which students perceive individuals with schizophrenia. It complements the cognitive and affective empathy data from the JSE by offering insight into the emotional tone behind students attitudes.

6.3.2 Perceptions of the Simulation

In addition to the JSE and the emotional response, participants which wore the headset, complete a short questionnaire immediately after the simulation, which evaluates their perceptions of the experience. This includes five statements rated on a 7-point Likert scale (1 = "Strongly disagree" to 7 = "Strongly agree"). The items are designed to assess how educational, immersive, and useful the simulation is perceived to be, as well as its potential to increase understanding and empathy. These items are as follows:

- La simulation était éducative.

 The simulation was educational.
- La simulation est un moyen efficace de sensibiliser à la schizophrénie. The simulation is an effective way to raise awareness about schizophrenia.
- La simulation ne doit pas être utilisée par les personnes qui souhaitent travailler avec des personnes atteintes de schizophrénie.
 - The simulation should not be used by people who want to work with individuals with schizophrenia.
- La simulation devrait rendre les gens plus compréhensifs à l'égard des personnes atteintes de schizophrénie.
 - The simulation should help people become more understanding toward individuals with schizophrenia.

• La simulation était très immersive et donnait vraiment l'impression d'être réelle. *The simulation was very immersive and really felt real.*

This helps evaluate how participants interpreted the experience and whether they found it meaningful in a learning context.

6.3.3 Debriefing and Reflection

Following the simulation and post-questionnaire phase, all participants engaged in a structured debriefing session facilitated by their professor. This session provided a safe space for emotional and intellectual reflection. Participants were encouraged to share their thoughts, feelings, and interpretations of both the simulation and their observations. The discussion also addressed how the simulation might influence their attitudes or behaviors in future clinical interactions with patients diagnosed with schizophrenia.

6.4 Data Collection and Analysis

The data collected during the user study included both quantitative and qualitative components. Quantitative measures consisted of pre- and post-simulation scores on the JSE and B-PANAS for all participants, as well as Likert-scale responses to the simulation perception questionnaire completed by the headset user. These data were analyzed using statistical comparisons, to detect significant changes in empathy and emotional affect.

Qualitative data were derived from transcripts of the debriefing sessions. These responses were analyzed using themes which re-occurred to identify motifs, such as emotional resonance, perception of the 'realness', educational value, ethical reflections, and shifts in attitudes or understanding.

6.5 Ethical Considerations

Given the potentially distressing nature of psychosis simulation, the study is designed with multiple ethical elemnets. Participants received clear pre-study briefings and signed informed consent forms. The simulation is kept short in duration and kept in a familiar environment to minimize psychological risk. The debriefing session served not only as a pedagogical tool but also as a psychological buffer, ensuring that students could process the experience in a safe, reflective manner. Participants were also reminded of their right to withdraw at any point without consequence.

Results and Analysis

This chapter presents the results of both the quantitative and qualitative analysis conducted to evaluate the impact of the MR simulation on participants empathy and emotional responses toward individuals with schizophrenia. It begins with a breakdown of pre-evaluation findings that show baseline attitudes and empathy. Post-evaluation results are then presented, including changes in empathy and emotional states across all participants, as well as specific groups (group participants and individual headset users). Statistical comparisons are used to assess whether observed differences are significant. Finally, we integrate observational and verbal feedback from participants to complement the quantitative data. This mixed-methods approach allows for a broader understanding of the simulationss effects.

7.1 Pre-Evaluation Results

The pre-evaluation phase was conducted prior to any exposure to the simulation. It served to assess baseline levels of empathy and emotional responses towards individuals with schizophrenia. We also collected information on participants experiences with patients and with that also patients with schizophrenia, which may influence their perceptions.

7.1.1 Experience with Patients and Schizophrenia

Participants were also asked about their prior experience working with patients in general and specifically with individuals diagnosed with schizophrenia. Responses were recorded on a 5-point scale ranging from 1 (No) to 5 (Yes).

Figure 7.1: Answers to questions about experience with patients and schizophrenia.

As shown in Figure 7.1, nearly all participants reported prior experience working with or caring for patients, with an average response of 4.97. However, fewer had direct experience with individuals with schizophrenia, as indicated by a lower mean score of 4.03. This suggests a general familiarity with healthcare and patient care, but not as much exposure specifically to individuals with schizophrenia.

7.1.2 Baseline Perceptions and Empathy

Participants responded to a set of 13 Likert-scale items evaluating cognitive and affective components of empathy. These items were scored from 1 (Strongly Disagree) to 6 (Strongly Agree), with reverse scoring applied to negatively phrased statements.

Figure 7.2: Average item scores on JSE.

Figure 7.2 shows the average scores per item. Responses were generally high for positively phrased statements (e.g., "I believe empathy is an important therapeutic factor"), indicating strong baseline attitudes in favor of empathic engagement. In contrast, negatively phrased items (e.g., "I believe emotion has no place in the treatment of medical conditions") received low agreement, as expected after reverse scoring.

To explore potential variation across groups, empathy scores were also averaged by the time at which participants completed the evaluation session. These groups were constructed based on session start times.

Figure 7.3: Average total JSE score by group.

As shown in Figure 7.3, total empathy scores were relatively consistent across session groups. The highest group average (81.33) was observed for the second group, though variation across all of them remained modest (range: 77.50–81.33). This suggests time-of-day or group assignment had minimal to no influence on baseline empathy.

Figure 7.4 shows the distribution of total empathy scores. The majority of participants scored between 75 and 85 out of a maximum of 91, which confirms the high initial level of empathy among all students.

Participants also rated how strongly they associated various emotions with thinking about individuals with schizophrenia, on a scale from 1 (Not at all) to 5 (Extremely).

Figure 7.5 presents the average self-reported intensities for each emotion chosen from the B-PANAS [6]. "Attentive," "Alert," and "Interested" ranked highest. This indicates cognitive engagement from the participants. Negative emotions such as "Ashamed" and "Irritated" were reported with lower intensity, which suggests that participants did not associate strong negative feelings with schizophrenia.

We can already see that pre-evaluation results suggest that participants already showed high levels of empathy. This means there may not have been much room for their scores to improve after the simulation.

Figure 7.4: Distribution of total empathy scores among participants.

Figure 7.5: Average self-reported emotional intensity associated with thinking about people with schizophrenia.

7.2 Post-Evaluation Results

Following participation in the simulation, participants (depending on which group they were participating in) completed a post-evaluation survey that assessed both empathy levels and emotional states, which features the same question set as the pre-evaluation. These include the JSE [13], and the Brief Positive and Negative Affect Schedule (B-PANAS) [6] to measure emotional responses and perceptions toward individuals with schizophrenia. This section presents the results for all participants divided in two subgroups: those who participated in the group setting, which were observing, and those who experienced the MR simulation individually.

The distribution of empathy scores across all participants is displayed in the Figure below:

Figure 7.6: Distribution of Empathy Scores (After simulation, all participants).

The majority of participants scored high on empathy, with most scores between 75 and 85. This suggests that participants generally maintained a strong sense of empathy after the simulation. However, there are some outliers with lower scores, ranging from 55 to 65, which is interesting, since in the pre-evaluation no one scored this low. The response to the individual JSE items is shown in Figure 7.7. The average scores for each item were calculated, and the results are presented in the graph. There is a slight decrease in the average scores for most items compared to the pre-evaluation, but the overall trend remains positive.

The responses to the B-PANAS scale were also asked immediately after the simulation ran through. As shown in Figure 7.8, the responses do not differ a lot from the pre-evaluation results.

A more detailed comparison of pre- and post-scores across the two subgroups will follow in Chapter 7.3.

7.2.1 Group Participants

Participants who took part in the simulation in a group setting (without MR headset) reported emotional responses that were broadly similar to the overall sample. However, their average emotional intensity was

Figure 7.7: Average scores on JSE items (After simulation, all participants).

Figure 7.8: Average self-reported emotional states (After simulation, all participants).

slightly higher on items related to cognitive involvement.

Figure 7.9: Average emotional state ratings (Group only).

As shown in Figure 7.9, *Alert*, *Interested*, and *Attentive* again appeared most strongly. The spread of emotional intensities was relatively consistent with the full group.

The distribution of their overall empathy scores is presented below.

Figure 7.10: Empathy score distribution (Group only).

The majority of participants in the group condition scored between 75 and 85 on the empathy scale, but we see again these outliers on the lower end from 55 to 65. It indicates that while the simulation was effective in maintaining empathy levels for most, a few individuals may have had less engagement or different emotional responses.

7.2.2 Individual Participants

Participants who engaged with the MR simulation individually using the headset demonstrated slightly different patterns. Their emotional responses included relatively higher levels of *Distress* and *Nervousness*, suggesting a deeper affective impact.

Figure 7.11: Average emotional state ratings (Individuals only).

Emotions like *Alert* and *Interested* remained high, but thehy also showed increased ratings for affective states like *Distressed*, *Fearful*, and *Nervous*, suggesting that the immersive simulation may have elicited stronger emotional reactions.

Figure 7.12: Empathy score distribution (Individuals only).

Empathy scores in this group were tightly clustered at the higher end of the scale, indicating that most headset users reported strong empathic attitudes following the simulation.

7.2.3 Simulation Evaluation Statements

Participants were also asked to rate their agreement with various statements evaluating the simulation experience. These were scored on a 7-point scale (1 = Strongly Disagree, 7 = Strongly Agree).

Figure 7.13: Average participant ratings of simulation statements.

Figure 7.13 shows that all participants agree on the simulations educational value, how real it feels, and

its ability to increase understanding. The only statement that received strong disagreement was that the simulation "should not be used by people who want to work with people with schizophrenia," which is a negative statement that was reverse scored. This indicates that participants generally found the simulation to be a valuable educational tool, and they did not believe it should be avoided by future mental health professionals.

7.3 Pre vs. Post Comparison Analysis

This section presents a statistical comparison of participants empathy and emotional responses before and after the simulation experience. The analysis features both group-level changes and individual-level changes, and evaluates whether the simulation led to significant changes in perspective or empathy. Empathy scores, cognitive and affective, and emotion ratings were analyzed using methods suited for this kind of data.

7.3.1 Statistical Methods and Hypotheses

Empathy scores are calculated based on 13 Likert-style items, some of which were reverse-scored. Each participants total empathy score is the sum of their responses. To evaluate changes in emotional response and empathy after the simulation, there is the need to compare pre- and post-evaluation data statistically. The same group of participants completed the questionnaire both before and after the simulation. However, since individual identifiers were not used, it is not possible to link each persons pre- and post-scores directly.

Although the data technically comes from the same group, the lack of matching between responses means that statistical tests designed for paired data (like the paired *t*-test) could not be used. As a result, the pre- and post-evaluazion scores are treated as if they came from two independent groups and an **independent samples** *t*-test is used instead [29].

Hypotheses. This test compares the average scores from two separate groups and checks whether any difference between them is statistically significant and not random. The hypotheses for the statistical tests are as follows:

- Null hypothesis (H_0) : There is no difference in empathy scores between the pre- and post-evaluation.
- Alternative hypothesis (H_1) : There is a difference in empathy scores between the pre- and post-evaluation.

7.3.2 Statistical Test Results

To assess the impact of the simulation, we applied statistical tests to compare pre- and post-evaluation responses with significance evaluated at p < 0.05.

7.3.2.1 Empathy Score Comparison

We compared pre- and post-evaluation empathy scores using a independent *t*-test to assess the effect of the simulation.

- **Pre-simulation group:** Mean = 78.66, Standard Deviation = 4.44, n = 29
- Post-simulation group: Mean = 78.28, Standard Deviation = 7.07, n = 29

The results from the independent *t*-test were:

- t-value = -0.245
- p-value = 0.808

The very small difference between the pre- and post-simulation scores, combined with a high *p*-value, suggests that the simulation did not lead to a statistically significant change in empathy levels. It is worth noting that this result does not necessarily mean the simulation had no effect. The inability to match individual responses may have reduced the sensitivity of the analysis. A future study with identifiable paired responses would allow for a more accurate test of change.

Therefore, it is necessary to reject the null hypothesis. While the mean empathy score decreased slightly from pre- to post- evaluation, the difference is not statistically significant. This suggests that the simulation may not have produced a measurable change in empathy, or that individual effects vary too widely to view n overall change.

Visualizations To further explore the effect of the simulation on participant empathy, both the distribution of empathy scores and individual-level changes from pre- to post-evaluation are visualized.

Figure 7.14: Distribution of Empathy Scores Before and After the simulation.

Figure 7.14 shows the histogram of empathy scores before and after the simulation. Both sets of scores look quite similar, with most people scoring between 70 and 85. After the simulation, the scores spread out a bit more—some people scored a little lower, but there is also a slight increase at the higher end. This suggests that while some participants may have become more empathic, the overall shape of the distribution did not change much.

In Figure 7.15, each dot represents a participants empathy score before and after the simulation. Red diamonds indicate the group means, and the dashed red line connects the mean pre- and post-scores. This visualization confirms that although the individual scores are distributed across a similar range, the overall mean remained effectively stable. A few participants show noticeable changes in either direction, but the majority maintained consistent empathy scores. The mean dropped slightly from 78.66 (pre) to 78.28 (post), as also reflected in the results of the independent smaples t-test (p = 0.808). This supports the

Figure 7.15: Empathy Scores by Participant: Pre vs. Post with Mean Comparison.

interpretation that the simulation did not result in a statistically significant change in overall empathy levels.

Comparsion by Group These graphs underscore the importance of looking beyond averages: while the overall effect was minimal, some individuals experienced increases or decreases that could be explored further—especially through qualitative methods or subgroup analysis. To examine potential group-level effects, average empathy scores were compared across different session groups. This comparison was based on observations made during the simulation sessions: in some groups, the participant wearing the headset responded with visible engagement, like verbal comments, physical reactions, or other expressions. In others, the headset user appeared more passive. Since the simulation was designed to promote empathy through a shared experience, this variation in participant engagement was considered a possible factor influencing group-level outcomes.

Figure 7.16 illustrates mean empathy scores for each group before and after the simulation. The scores remain stable across all groups, with small increases observed in Groups 1, 3, and 4, and small decreases in Groups 2 and 5. None of these differences were large enough to suggest a meaningful group-specific effect. This reinforces the previous conclusion that the simulation did not produce a systematic shift in overall empathy scores.

Cognitive vs. Affective Empathy To better understand the nature of the empathy being measured, the total score is into two subcomponents: *cognitive empathy*, which reflects perspective-taking and understanding mental states; and *affective empathy*, which involves emotional resonance and compassion.

As shown in Figure 7.17, the scores remained nearly the same before and after the simulation. Cognitive empathy dropped slightly from 26.97 to 26.69, and affective empathy also showed a small decrease from 51.69 to 51.59. These minimal changes suggest that the simulation did not have a meaningful impact on either aspect of empathy. This breakdown supports the earlier results, reinforcing the interpretation that the simulation had little effect on participants reported empathy levels immediately after the experience.

Figure 7.16: Empathy Score Comparison by Group (Pre vs. Post).

Figure 7.17: Cognitive vs. Affective Empathy Scores (Pre vs. Post).

7.3.2.2 Emotional Response Comparison

To explore whether participants emotional responses toward people with schizophrenia changed after the simulation, independent samples *t*-tests were conducted for each of the ten emotion items. Even though the same group completed the survey before and after the experience, the responses could not be linked individually, so the analysis treated them as two separate groups.

Hypotheses. For each emotion, the following hypotheses were tested:

- Null Hypothesis (H_0) : There is no difference in the average intensity of the emotion between the pre- and post-simulation groups.
- Alternative Hypothesis (H_1) : There is a difference in the average emotional intensity between the pre- and post-simulation groups.

Table 7.1. Independent Samples t-Test Results for Emotional Changes					
Emotion	Pre Mean	Post Mean	t-statistic	p-value	Significant
Attentive	4.24	3.79	-1.924	0.0599	False
Fearful	2.90	2.48	-1.287	0.2041	False
Ashamed	1.24	1.38	0.800	0.4273	False
Enthusiastic	2.38	2.17	-0.768	0.4458	False
Inspired	2.21	2.00	-0.756	0.4526	False
Nervous	2.93	2.72	-0.603	0.5491	False
Distressed	2.62	2.79	0.503	0.6176	False
Irritated	1.76	1.83	0.215	0.8305	False
Alert	3.93	3.90	-0.128	0.8983	False
Interested	3.86	3.83	-0.113	0.9104	False

Table 7.1: Independent Samples t-Test Results for Emotional Changes

None of the emotions showed a statistically significant difference between the pre- and post-simulation groups at the p < 0.05 level. However, the emotion Attentive came close to significance (p = 0.0599), suggesting a possible decline in attentiveness after the simulation, though this trend did not reach the set threshold for statistical significance.

To better understand the direction and size of the changes, Figure 7.18 shows the average difference for each emotion (post inus pre). Positive values reflect increased emotional intensity following the simulation, while negative values indicate a decrease.

Figure 7.18: Mean change in emotional response toward individuals with schizophrenia.

Even though the changes are not statistically significant, the Figure shows some patterns in how the emotions of the participants shifted. For example, there are small increases in emotions like *Distressed*, *Ashamed*, and *Irritated*. At the same time, feelings like *Fearful* and *Nervous* showed slight decreases.

These patterns suggest that the simulation may have influenced how some people felt, but the changes were not strong or consistent enough to be considered meaningful at the group level. A larger sample or follow-up interviews might help capture more of these individual emotional reactions.

7.4 Mixed Methods Integration

In addition to statistical analyses, observational and self-reported qualitative data were collected to complement the quantitative findings. This included observations during the MR experience, comments after the simulation, and other feedback where available. Participants who wore the MR headset shared reflections that contextualized their questionnaire responses. These insights helped explain individual variability and added understanding of the simulations emotional impact.

7.4.1 Participant Experience and Observational Feedback

During each session, one participant wore the MR headset simulating auditory and visual hallucinations while attempting to complete a simple task. The rest of the group observed and participated in the same task under normal conditions. This design aimed to allow both the headset user to experience symptoms first-hand and the group to witness their visible effects, ideally having an effect on empathy through both perspectives.

How particiapnts behaved was very varied. Some headset users showed visible signs of discomfort, such as pinching their lips, turning their heads, hesitating, or seeking clarification. Others remained largely focused on the task, displaying minimal reaction to the simulation.

Group reactions also varied: in some cases, there were uneasy chuckles, concerned glances, or verbal encouragements ("be brave," "do you need help?"). In other groups, external participants were mostly

unaware of the internal struggle the headset user was experiencing, sometimes even forgetting the headset was even present.

Table 7.2 provides a summary of observations made during each simulation session, combining notes on the behavior of the participant using the headset, the reactions from the rest of the group, and direct quotes from participants. This overview helps illustrate how differently each session was, with regards to the emotional response, and group dynamics. The qualitative details offer context for interpreting the simulations impact, especially in cases where verbal or emotional responses were more visible during or after the experience.

Table 7.2: Summary of Headset User Experience and Group Reactions

Group	Headset User Behavior	Group Reaction	Key Participant Quotes	
Group 1	Nervous laughter, looked	Limited group reaction; one	"The voices keep pulling you	
	around, avoided interacting	participant quietly offered en-	down."	
	with virtual elements, reported	couragement.	"It's persecution."	
	confusion.		"I now understand my cousin bet-	
			ter."	
Group 2	Initially not reacitve, later vis-	Mild group curiosity, one	"There was too much informa-	
	ibly overwhelmed, touched	noted concern, most forgot	tion."	
	spheres, slight disorientation.	headset was active.	"I forgot the instructions."	
			"It's harder not to do what the	
			voices say."	
Group 3	Visibly uncomfortable, de-	Group unaware during task,	"It was horrible."	
	layed task start, repeated	visibly moved after, discussion	"I couldn't concentrate even now	
	lip-pinching, eventually emo-	emerged post-simulation.	I don't know."	
	tional.		"If 2 minutes is absorbing, I can't	
			imagine the people who feel that	
			way every day."	
Group 4	Focused externally, but no	Participant's distress was in-	"The voices were disturbing."	
	interaction with visual stim-	ternalized; group noticed little	"Living the symptoms is another	
	uli. Seemed shocked post-	during the task. Two members	level of experience."	
	experience.	heard audio leaks.	"I think I have more empathy now."	
Group 5	Started quickly but showed	Group was mostly unaware of	"It took a lot of energy and concen-	
	signs of discomfort; pinched	the participant's inner strug-	tration."	
	lips and waited impatiently for	gle.	"The longer it took, the more fright-	
	the end.		ening it became."	
			"The simulation helped me realize	
			what they go through."	

7.4.1.1 Verbal Feedback from Participants during Debrief

Several individuals who experienced the simulation described strong emotional and cognitive impact during the debrief. Themes included difficulty concentrating, feeling overwhelmed, dissonance between task instructions and intrusive voices, and a greater understanding of what people with schizophrenia might endure. Some illustrative quotes include:

• "We try to focus on something good but the voices keep pulling you down."

- "At first I really didn't want to listen to the voices, but then I couldn't... It's harder not to do what the voices say."
- "I couldn't understand the instructions... even now I don't know what we were supposed to do."
- "It was horrible. The voices made simple tasks feel impossible."
- "It was emotionally sad... I didn't want to look up because I was scared of what I'd see."
- "It took a lot of concentration... I was glad when it was over."
- "I remember my cousin has schizophrenia... now I feel like I better understand what he feels."

Observers also shared reflections:

- "I forgot she was wearing the headset... then I saw her moving strangely and I got worried."
- "Seeing her struggle was emotional. It changed how I think about people with schizophrenia."
- "She didn't react much, so I didn't realize it was hard for her."

7.4.1.2 Interpretation and Reflection

The reflections shared during the debrief conversations help explain why the empathy scores did not show strong changes. Even though the numbers stayed mostly the same, many participants described feeling deeply affected by the simulation in ways that are hard to measure with a questionnaire.

One common theme was how overwhelming the auditory hallucinations were. Many participants said the voices were much more distracting than the visual effects or the instructions. Some said they felt confused during the task, distracted by the voices. The overall tone from pariticpants after the experience was that they described seeing things differently afterward, with a stronger sense of empathy or understanding for people living with these symptoms.

Importantly, the visibility of the experience to observers varied greatly. In some groups, the headset users reactions were subtle or absent, making it difficult for others to relate or observe andything interesting at all. In others, discomfort or confusion was clearly visible and provoked reactions among the others. This variation highlights the importance of guided debriefs and shared reflection to fully activate the empathy potential of such simulations.

While the simulation may not have changed self-reported empathy scores, these qualitative accounts suggest that for many participants, the experience was personally impactful.

7.5 Summary of Key Findings

The results of this mixed-methods study suggest that while the MR simulation did not produce statistically significant changes in empathy scores across the entire sample, it nevertheless produced meaningful cognitive and emotional engagement for many participants. Pre-evaluation results indicated that students began the simulation with relatively high levels of empathy and attentiveness, leaving limited room for movement in quantitative scores. This was particularly evident in the JSE, where most participants scored in the upper range both before and after the simulation.

Post-evaluation data confirmed that self-reported empathy remained largely stable. Neither the total empathy scores nor the scores of cognitive and affective empathy showed significant change following the simulation, and statistical comparisons did not support the alternative hypothesis. Similarly, emotional

affect scores from the B-PANAS showed only modest variation pre- and post-evaluation, with none reaching statistical significance. Despite these findings, certain trends were observed, such as a modest decrease in attentiveness and also increases in distress-related emotions for headset users.

More revealing were the qualitative findings, which offered insight into participants experiences. Headset users frequently described strong emotional reactions to the simulation, including difficulty focusing, feelings of helplessness and emotional discomfort. Many noted that the experience altered how they viewed people living with schizophrenia, leading to greater compassion and understanding. Observers also reported increased awareness, particularly when they noticed visible signs of struggle in the headset user.

The simulation was broadly perceived as educational and realistic, with participants agreeing that it helped raise awareness about schizophrenia and could be valuable for those preparing to work in mental health care. These reflections helped surface emotional and empathetic responses that were not always visible in the questionnaires but nevertheless shaped their learning.

In short, the mixed-reality simulation seemed to achieve its goal of encouraging personal reflection, especially for participants who used the headset themselves. Even though the measured results did not show big changes, many of the comments and reactions suggest that the experience had a real impact on how people think and feel about schizophrenia.

Biscussion

In this section, you should discuss your result and your work. Summarize and discuss your results, discuss your initial choices and compare with other works from the state of the art. How do you compare (if you can)? Discuss your research questions in the light of your results.

This project set out to explore whether a short MR simulation could help increase both cognitive and emotional empathy among medical students by immersing them in the experience of schizophrenia symptoms. After designing, implementing, and evaluating the simulation through a carefully planned user study, several key observations emerged that are worth reflecting on — both in terms of what worked well and what could be improved in future versions.

8.1 Interpretation of Changes

commentary on findings, potential explanations for lack or presence of effect, consideration of variability among participants, comment on potential improvements

While no significant change was observed in the overall empathy score, subtle shifts were detected in emotion-specific responses. For example, participants reported feeling slightly more "distressed" and less "ashamed" when thinking about individuals with schizophrenia post-intervention. However, these changes were not statistically robust in this sample.

Several possible explanations exist:

- A **ceiling effect** may have limited sensitivity, as pre-evaluation empathy scores were already high.
- The **short duration** between evaluations may not have allowed deeper attitude changes to form.
- Emotional responses may be more **situational or reactive** and less stable than overall empathy attitudes.

Further qualitative feedback could provide richer insight into participant experiences.

they did not look up for their task, which we should've forced a bit more, we don't know for sure if we are portraying the experience in a truthful way, they reported that they felt ashamed to move their hands to be judged by their peers, they were not able to focus on the task, which is a good thing, but we should've

forced them to look up more often, the stains were actually useless small sample size and lack of statistical power may have masked potential effects,

8.1.1 Quantitative and Qualitative Outcomes

The pre- and post-simulation scores showed trends that support the initial hypothesis — that MR simulations can help increase both cognitive and affective empathy. While the sample size was relatively small, the combination of quantitative measures (like the Jefferson Scale of Empathy and B-PANAS) with qualitative feedback from debriefing sessions offered a well-rounded picture. Participants described the experience as eye-opening and emotionally engaging. Some said it changed the way they would approach patients with schizophrenia in the future — a key educational outcome.

These responses reflect similar results found in earlier empathy studies using VR tools, such as those by Hsia et al. and Formosa et al., but they also highlight how MR may provide a more grounded and ethically sound alternative to full immersion [12, 15].

8.1.2 Emotional Impact Without Harm

Participants reported a strong emotional reaction to the simulation — not because it was frightening or traumatic, but because it felt confusing, intrusive, and unsettling. These were exactly the emotions the simulation aimed to evoke, reflecting how people with schizophrenia often describe their experience of hallucinations. Importantly, the simulations brief duration and real-world context helped to keep this emotional intensity within a safe and manageable range.

As noted in the literature, simulations like this work best when they are emotionally impactful but ethically grounded. The decision to include debriefing steps after the simulation helped frame the experience in a responsible way, encouraging participants to reflect rather than simply react [2, 30].

8.1.3 Empathy Through Experience and Observation

Another interesting finding is the role of observers — students who watched the simulation without wearing the headset. While most empathy training tools focus on the first-person experience, this study showed that observers also reported emotional and perceptual changes. Observing a peer struggle with hallucinations seemed to create a sense of shared vulnerability and empathy. This aligns with research suggesting that empathy can also grow through observation, not just direct experience [12].

This has important implications: in educational settings where not every student can use a headset, it may still be valuable to have them witness the experience. Combining first-person and observer-based empathy learning could be a promising direction for future training tools.

8.1.4 Comparison with State of the Art

The findings align with some existing literature on empathy training, particularly in the context of schizophrenia simulations. While previous studies have shown that immersive experiences can enhance empathy, the results here suggest that the specific design and implementation of the simulation play a crucial role in determining outcomes. For instance, while some VR-based studies reported significant increases in empathy scores [21, 36], the current MR approach did not yield the same level of change. This may be due to differences in simulation design, duration, or participant engagement levels. Additionally, the lack of significant change in cognitive empathy contrasts with findings from other studies that have successfully enhanced both affective and cognitive empathy through immersive experiences [2, 30]. This discrepancy highlights the need for further exploration into how different modalities (MR vs. VR) and content delivery methods impact empathy outcomes.

8.2 Limitations and Lessons

Despite its strengths, the study had some limitations. The most obvious is the rather small participant group (29 students), which makes it difficult to generalize the results. Additionally, the French version of the Jefferson Scale of Empathy used in the study was translated by the author and not formally validated, which could affect reliability.

Moreover, while MR provides a strong sense of realism, it still cannot fully simulate the unpredictable, chaotic nature of schizophrenia symptoms. Some participants mentioned that they felt like they were acting or playing a role, rather than truly experiencing psychosis. This points to a challenge faced by all simulation-based education: no matter how immersive, it remains a simulation.

Finally, while observers appeared to benefit emotionally, it is still unclear how their experiences compare in depth and quality to those who wore the headset. Future studies could explore this further with larger sample sizes and long-term follow-ups.

8.3 Future Opportunities

This project only scratches the surface of what MR can offer in the field of empathy training. There is also potential to expand the simulation design: adding real storylines or voice personalization could make the experience even more powerful. And finally, pairing simulations like this with classroom teaching and patient interaction could create a holistic training model that enriches the experience.

Conclusion

This is a very important part of a report. Give all relevant conclusions, even negative. Stress novelty and scientific or industrial impact. Also new insights, outlook and recommendations for improvement should be put here. However, do not introduce results or concepts that belong in the body of the report. Bring structure in your conclusions.

A

JSE Items

Appendix A: JSE Items and Classification

JSE Item	Cognitive	Affective
1. My understanding of how my patients and their families feel does not influence medical or surgical treatment.		X
2. My patients feel better when I understand their feelings.		X
3. It is difficult for me to view things from my patients' perspectives.	X	71
4. I consider understanding my patients' body language as important as verbal	X	
communication in caregiver-patient relationships.	21	
5. I have a good sense of humor that I think contributes to a better clinical	Ambiguous	Ambiguous
outcome.	rimorguous	7 Hiloiguous
6. Because people are different, it is difficult for me to see things from my	X	
patients' perspectives.	71	
7. I try not to pay attention to my patients' emotions in history taking or in		X
asking about their physical health.		
8. Attentiveness to my patients' personal experience does not influence treat-		X
ment outcomes.		
9. I try to imagine myself in my patients' shoes when providing care to them.	X	
10. My patients value my understanding of their feelings which is therapeutic		X
in its own right.		
11. Patients' illnesses can be cured only by medical or surgical treatment;	(X)	X
therefore, emotional ties to my patients do not have a significant influence on	()	
medical or surgical outcomes.		
12. Asking patients about what is happening in their personal lives is unhelpful	(X)	X
in understanding their physical complaints.	, ,	
13. I try to understand what is going on in my patients' minds by paying	X	
attention to their non-verbal cues and body language.		
14. I believe that emotion has no place in the treatment of medical illness.		X
15. Empathy is a therapeutic skill without which success in treatment is limited.		X
16. An important component of the relationship with my patients is my under-		X
standing of their emotional status, as well as that of their families.		
17. I try to think like my patients in order to render better care.	X	
18. I do not allow myself to be influenced by strong personal bonds between		X
my patients and their family members.		
19. I do not enjoy reading non-medical literature or the arts.	Ambiguous	Ambiguous
20. I believe that empathy is an important therapeutic factor in medical or	-	X
surgical treatment.		

Table A.1: Classification of JSE Items by Empathy Dimension (Cognitive vs. Affective)

Appendix B: Reduced Set of JSE Items and Classification

Selected JSE Item	Cognitive	Affective
2. My patients feel better when I understand their feelings.		X
3. It is difficult for me to view things from my patients' perspectives.	X	
6. Because people are different, it is difficult for me to see things from my patients' perspectives.	X	
7. I try not to pay attention to my patients' emotions in history taking or in asking about their physical health.		X
9. I try to imagine myself in my patients' shoes when providing care to them.	X	
10. My patients value my understanding of their feelings which is therapeutic in its own right.		X
12. Asking patients about what is happening in their personal lives is unhelpful in understanding their physical complaints.		X
13. I try to understand what is going on in my patients' minds by paying attention to their non-verbal cues and body language.	X	
14. I believe that emotion has no place in the treatment of medical illness.		X
15. Empathy is a therapeutic skill without which success in treatment is limited.		X
16. An important component of the relationship with my patients is my understanding of their emotional status, as well as that of their families.		X
17. I try to think like my patients in order to render better care.	X	
20. I believe that empathy is an important therapeutic factor in medical or surgical treatment.		X

Table B.1: Reduced JSE item set used in this study with classification into empathy components

Supplementary Material

- Video Demonstration of the simulation can be found at: https://drive.google.com/file/d/1_U2-2wLRUy-T8k-vho5fKDLXekrJ9qi7/view?usp=drive_link.
- Github repository with code and simulation files: https://github.com/annkiener/mr-project.
- Consent form for the user study: https://drive.google.com/file/d/1S64vRfOto7NqJihL469CKGBPS9
- Testing day protocol: https://docs.google.com/document/d/1Pfp2A3ZPfArS3Pdx0nXI2fMmpRA5jsledit?usp=drive_link&ouid=110405891902671233690&rtpof=true&sd=true.
- Request to CEP committee: https://docs.google.com/document/d/1MIGT55N6j0y2Zi5T1ZnQ8410m2.edit?usp=drive_link&ouid=110405891902671233690&rtpof=true&sd=true.
- Questionnaires used in the study: .

view?usp=drive_link.

• Participation form: https://drive.google.com/file/d/1-nNCUWIuby5HlzuaIRjFZk3ooMY_exzt/view?usp=drive_link

List of Tables

2.1	Overview of studies used for this thesis	19
5.1	French simulation script with English translation and voice group identifiers	33
	Independent Samples <i>t</i> -Test Results for Emotional Changes	
A.1	Classification of JSE Items by Empathy Dimension (Cognitive vs. Affective)	68
R 1	Reduced ISE item set used in this study with classification into empathy components	69

List of Figures

2.1 2.2	Representation of the Reality-Virtuality Continuum by Milgram and Kishino [23] View from the AR simulation created by Silva et al., showing layered visual hallucinations	9
	designed to simulate psychotic experiences [31]	12
2.3	Scene from the <i>Live-It</i> AR simulation showing a delusion of reference involving a news	
	broadcast [16].	13
4.1	Sequence of time-structured voice and visual elements	29
5.1	System architecture and variable orchestration for MR schizophrenia simulation	32
5.2	Dark background panel to mimic darkening of the user's visual field	34
5.3	Stain appearing in the user's field of view	35
5.4	Example sphere with the FadeEdgeShader.shader and the DynamicWaveDeformation	tion.cs
	script to mimic stains	36
5.5	Floating dots before user interaction	37
5.6	Color change after user touches one of the dots	37
5.7	Placement of spatial sound sources in the Unity scene for the hallucination simulation.	
	Each speaker icon represents a sound source emitting a hallucination voice	39
6.1	Overview of the user study procedure	42
7.1	Answers to questions about experience with patients and schizophrenia	46
7.2	Average item scores on JSE	46
7.3	Average total JSE score by group.	47
7.4	Distribution of total empathy scores among participants	48
7.5	Average self-reported emotional intensity associated with thinking about people with	
	schizophrenia	48
7.6	Distribution of Empathy Scores (After simulation, all participants)	49
7.7	Average scores on JSE items (After simulation, all participants)	50
7.8	Average self-reported emotional states (After simulation, all participants)	50
7.9	Average emotional state ratings (Group only)	51
7.10	Empathy score distribution (Group only)	51
7.11	Average emotional state ratings (Individuals only)	52
7.12	Empathy score distribution (Individuals only)	53
7.13	Average participant ratings of simulation statements	53
	Distribution of Empathy Scores Before and After the simulation	55
	Empathy Scores by Participant: Pre vs. Post with Mean Comparison	56
	Empathy Score Comparison by Group (Pre vs. Post)	57
	Cognitive vs. Affective Empathy Scores (Pre vs. Post)	57
7.18	Mean change in emotional response toward individuals with schizophrenia	59

Bibliography

- [1] Riham Alieldin, Sarah Peyre, Anne Nofziger, and Raffaella Borasi. Effectiveness of immersive virtual reality in teaching empathy to medical students: A mixed methods study. *Virtual Reality*, 28:129, 2024.
- [2] Shuntaro Ando, Sarah Clement, Elizabeth A. Barley, and Graham Thornicroft. The simulation of hallucinations to reduce the stigma of schizophrenia: A systematic review. *Schizophrenia Research*, 133(1–3):8–16, 2011.
- [3] Á. K. Bakk. Representing mental disorders with virtual reality applications: Designing for multi-modality and complex participation. *Frontiers in Virtual Reality*, 3:881766, 2023.
- [4] Samantha A. Batt-Rawden, Margaret S. Chisolm, Beth Anton, and Tracy E. Flickinger. Teaching empathy to medical students: an updated, systematic review. *Academic Medicine*, 88(8):1171–1177, 2013.
- [5] E. Bisso, M. S. Signorelli, M. Milazzo, M. Maglia, R. Polosa, E. Aguglia, and P. Caponnetto. Immersive virtual reality applications in schizophrenia spectrum therapy: a systematic review. *International Journal of Environmental Research and Public Health*, 17(17):6111, 2020.
- [6] F. Boiroux. The french-language shortened positive and negative affect schedule: Development, validation, and comparison of its psychometric properties with other short versions. *European Review of Applied Psychology*, 74(3):100853, 2024.
- [7] A. J. Chaffin and C. Adams. Creating empathy through use of a hearing voices simulation. *Clinical Simulation in Nursing*, 9(8):e393–e398, 2013.
- [8] L. Cunico, R. Sartori, O. Marognolli, and A. M. Meneghini. Developing empathy in nursing students: a cohort longitudinal study. *Journal of Clinical Nursing*, 21(13-14):2016–2025, 2012.
- [9] George Divine, Henry J. Norton, Ronald Hunt, and Jacqueline Dienemann. A review of analysis and sample size calculation considerations for wilcoxon tests. *Anesthesia & Analgesia*, 117(3):699–710, 2013.
- [10] Dillon Domnick and Katherine Fichera. Immersive simulation of schizophrenia. Technical report, Virginia Tech, CS 4624: Multimedia, Hypertext and Information Access, 2023. Instructor: Dr. Edward A. Fox, Client: Dr. James Ivory.
- [11] ElevenLabs. Elevenlabs text-to-speech ai. https://elevenlabs.io/app/home, 2025. Accessed: 2025-04-13.
- [12] Nicholas J. Formosa, Bennett W. Morrison, Graham Hill, and Dan Stone. Testing the efficacy of a virtual reality–based simulation in enhancing users' knowledge, attitudes, and empathy relating to psychosis. *Australian Journal of Psychology*, 70(1):57–65, 2018.

BIBLIOGRAPHY 74

[13] Mohammadreza Hojat, Salvatore Mangione, Thomas J. Nasca, Michael J.M. Cohen, Joseph S. Gonnella, Jerome B. Erdmann, Jon Veloski, and Marcia Magee. The jefferson scale of physician empathy: Development and preliminary psychometric data. *Educational and Psychological Measurement*, 61(2):349–365, 2002.

- [14] R. Holopainen, J. Tiihonen, and M. Lähteenvuo. Efficacy of immersive extended reality (xr) interventions on different symptom domains of schizophrenia spectrum disorders. a systematic review. *Frontiers in Psychiatry*, 14:1208287, 2023.
- [15] S. L. Hsia, J. Brooks, E. Yao, K. Gruenberg, and P. Finley. Impact of an auditory hallucination simulation coupled with a speaker diagnosed with schizophrenia on mental illness stigma in pharmacy students. *Currents in Pharmacy Teaching and Learning*, 14(11):1397–1403, 2022.
- [16] Claudia Krogmeier, Emma Tison, Justin Dillmann, Arnaud Prouzeau, Antoinette Prouteau, et al. Leveraging augmented reality for understanding schizophrenia design and evaluation of a dedicated educational tool. In *ISMAR 2024 IEEE International Symposium on Mixed and Augmented Reality*, Seattle, United States, October 2024. hal-04699693.
- [17] M. A. Kuhail, A. ElSayary, S. Farooq, and A. Alghamdi. Exploring immersive learning experiences: A survey. *Informatics*, 9(4):75, September 2022.
- [18] Lucy Lan, Jennifer Sikov, Julia Lejeune, Chelsea Ji, Hannah Brown, Kim Bullock, and Andrea E. Spencer. A systematic review of using virtual and augmented reality for the diagnosis and treatment of psychotic disorders. *Current Treatment Options in Psychiatry*, 10:87–107, 2023.
- [19] Y. Lee, S. K. Kim, and M. R. Eom. Usability of mental illness simulation involving scenarios with patients with schizophrenia via immersive virtual reality: A mixed methods study. *PLOS ONE*, 15(9):e0238437, 2020.
- [20] A. J. Marques, P. Gomes Veloso, M. Araújo, R. S. de Almeida, A. Correia, J. Pereira, and C. F. Silva. Impact of a virtual reality-based simulation on empathy and attitudes toward schizophrenia. *Frontiers in Psychology*, 13:814984, 2022.
- [21] Alison Jane Martingano, Fernanda Hererra, and Sara Konrath. Virtual reality improves emotional but not cognitive empathy: A meta-analysis. *Technology, Mind, and Behavior*, 2(2), 2021.
- [22] Josefin Mattsson, Carina Elmqvist, and Gunilla Carlsson. Nursing students' experiences of empathy in a virtual reality simulation: A phenomenological study. *Nurse Education in Practice*, 71:103694, 2024.
- [23] Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual displays. *IEICE Transactions on Information and Systems*, E77-D(12):1321–1329, 1994.
- [24] Chris Milk. How virtual reality can create the ultimate empathy machine, 2015. TED Talk.
- [25] Jeanne K. Olson. Relationships between nurse-expressed empathy, patient-perceived empathy, and patient distress. *Image: The Journal of Nursing Scholarship*, 27(4):317–322, 1995.
- [26] Cengiz T. Ozcan, Fusun Oflaz, and Bilal Bakir. The effect of a structured empathy course on the students of a medical and a nursing school. *International Nursing Review*, 59(4):532–538, 2012.
- [27] D. L. Penn, J. D. Ivory, and A. Judge. The virtual doppelganger: Effects of a virtual reality simulator on perceptions of schizophrenia. *The Journal of Nervous and Mental Disease*, 198(6):437–443, 2010.

BIBLIOGRAPHY 75

[28] Thammathip Piumsomboon, Gun A. Lee, Youngho Lee, and Mark Billinghurst. Empathic mixed reality: Sharing what you feel and interacting with what you see. In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, pages 1741–1752. ACM, 2017.

- [29] A. Ross and V. L. Willson. Independent samples t-test. In *Basic and Advanced Statistical Tests:* Writing Results Sections and Creating Tables and Figures, pages 13–16. SensePublishers, 2017.
- [30] Sara Rueda and Francisco Lara. Virtual reality and empathy enhancement: Ethical aspects. *Frontiers in Robotics and AI*, 7:506984, 2020.
- [31] R. D. D. C. Silva, S. G. Albuquerque, A. D. V. Muniz, P. P. R. Filho, S. Ribeiro, P. R. Pinheiro, and V. H. C. Albuquerque. Reducing the schizophrenia stigma: a new approach based on augmented reality. *Computational Intelligence and Neuroscience*, 2017(1):2721846, 2017.
- [32] Steven M. Silverstein and Andrew Lai. The phenomenology and neurobiology of visual distortions and hallucinations in schizophrenia: an update. *Frontiers in Psychiatry*, 12:684720, 2021.
- [33] Richard Skarbez, Missie Smith, and Mary C. Whitton. Revisiting milgram and kishino's reality-virtuality continuum. *Frontiers in Virtual Reality*, 2:647997, 2021.
- [34] Elizabeth T Skoy, Heidi N Eukel, Jeanne E Frenzel, Amy Werremeyer, and Brett McDaniel. Use of an auditory hallucination simulation to increase student pharmacist empathy for patients with mental illness. *American Journal of Pharmaceutical Education*, 80(8):142, 2016.
- [35] Marieke M. van Ommen, Tessa van Lierop, Iris E. Sommer, and Sanne Koops. Visual hallucinations in psychosis: Review and future directions. *Schizophrenia Research: Cognition*, 17:100144, 2019.
- [36] Stacey Ventura, Alison Jane Martingano, and Jonathan F. Kominsky. A meta-analysis of the experimental evidence on the use of virtual reality to foster empathy. *Virtual Reality*, 24:255–277, 2020.
- [37] S. Yoo, S. Kim, and Y. Lee. Learning by doing: Evaluation of an educational vr application for the care of schizophrenic patients. In *Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems*, pages 1–6, April 2020.
- [38] M. Zare-Bidaki, A. Ehteshampour, M. Reisaliakbarighomi, R. Mazinani, M. R. Khodaie Ardakani, A. Mirabzadeh, and S. B. Mousavi. Evaluating the effects of experiencing virtual reality simulation of psychosis on mental illness stigma, empathy, and knowledge in medical students. *Frontiers in Psychiatry*, 13:880331, 2022.

<u>Erklärung</u>

gemäss Art. 28 Abs. 2 RSL 05

Name/Vorname:	
Matrikelnummer:	
Studiengang:	
	Bachelor
Titel der Arbeit:	
LeiterIn der Arbeit:	
Ich erkläre hiermit, o	dass ich diese Arbeit selbständig verfasst und keine anderen als die
	n benutzt habe. Alle Stellen, die wörtlich oder sinngemäss aus Quellen
	habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls
_	rtikel 36 Absatz 1 Buchstabe o des Gesetztes vom 5. September 1996 um Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.
Ort/Datum	
	Unterschrift