1. Give a careful proof by induction that for every positive integer n

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n-1)^{2} = \frac{n(2n-1)(2n+1)}{3}$$

For the base case n = 1 we get LHS= $1^2 = 1$ and RHS= $\frac{1(1)(3)}{3} = 1$, so the equation holds.

Now suppose the equation holds for some $k \in \mathbb{Z}^+$, i.e.,

$$1^{2} + 3^{2} + 5^{2} + \dots + (2k - 1)^{2} = \frac{k(2k - 1)(2k + 1)}{3}$$

We want to show it holds also for k + 1. We have

$$1^{2} + 3^{2} + 5^{2} + \dots + (2k+1)^{2} = 1^{2} + 3^{2} + 5^{2} + \dots + (2k-1)^{2} + (2k+1)^{2}$$

$$= \frac{k(2k-1)(2k+1)}{3} + (2k+1)^{2}$$

$$= \frac{k(2k-1)(2k+1) + 3(2k+1)^{2}}{3}$$

$$= \frac{(2k+1)[k(2k-1) + 3(2k+1)]}{3}$$

$$= \frac{(2k+1)[2k^{2} - 5k + 3]}{3}$$

$$= \frac{(2k+1)[(k+1)(2k+3)]}{3}$$

$$= \frac{(k+1)(2k+1)(2k+3)}{3}$$

where the first second equality uses the induction hypothesis. Hence, the equation also holds for k+1. So by the Principle of Mathematical Induction, the equation holds for every $n \in \mathbb{Z}^+$.

2. **PODASIP:** For any odd positive integer m, the number of nonzero perfect squares in \mathbb{Z}_m is $\frac{m-1}{2}$.

This is *false*. A counterexample is n=9, where there are three nonzero perfect squares: $1^2=1, 2^2=4, 4^2=7$. (The others are duplicates of these or are zero.) But $\frac{n-1}{2}=4\neq 3$.

SALVAGES: (1) True if n is (an odd) prime (Ex. #3.57 from the HW); (2) True in general that the number of nonzero perfect squares is $\leq \frac{n-1}{2}$. (Since $a^2 \equiv (-a)^2 \equiv (n-a)^2 \pmod{n}$.)

3. **PODASIP:** For any $a \in \mathbb{Z}$ and any positive prime p, we have

$$a^{p-1} \equiv 1 \pmod{p}$$

This is false: take a = 0, p = 3 (or any p). Then $a^{p-1} = 0$ not 1.

SALVAGE: True if $p \nmid a$ (equivalently if $a \not\equiv 0 \pmod{p}$).

Proof. See your class notes or the text, Theorem 3.42 (Fermat's Little Theorem).

4. (a) State carefully the *definition* of $\varphi(m)$, where m is a positive integer. (Do not give a formula for computing it.)

$$\varphi(m) := \#U_m, \text{ or } \varphi(m) = \{1 \le a \le m : (a, m) = 1\}.$$

(b) Working directly from this definition proof that

$$\varphi(m) = m - 1 \iff m \text{ is prime.}$$

- (\Leftarrow) If m is prime, then it has no positive factors besides 1 and itself, for (a, m) = 1 for every $1 \le a \le m 1$. Hence, by definition, $\varphi(m) = m 1$.
- (\Rightarrow) Conversely, if m is not prime, then it has a factorization m=ab where 1 < a, b < m. For these elements we have $(a, m) = a \neq 1$ and $(b, m) = b \neq 1$, so there are at least two elements strictly between 1 and m which are not relatively prime to m, so by definition $\varphi(m) \leq m-3$.
- 5. Numerical & Computational problems
 - (a) Expand $\left(x + \frac{1}{x}\right)^6$. By the binomial expansion this is

$$x^{6} + {6 \choose 1}x^{5}x^{-1} + {6 \choose 2}x^{4}x^{-2} + {6 \choose 3}x^{3}x^{-3} + {6 \choose 4}x^{2}x^{-4} + {6 \choose 5}x^{1}x^{-5} + x^{-6}$$

$$= x^{6} + 6x^{4} + 15x^{2} + 20 + \frac{15}{x^{2}} + \frac{6}{x^{4}} + \frac{1}{x^{6}}$$

(b) Compute 2^{327} (mod 51). We use the Fermat-Euler theorem. Since $51 = 3 \cdot 17$, $\phi(51) = 2 \cdot 16 = 32$. Hence,

$$2^{327} = (2^{32})^{10} \cdot 2^7 \equiv (1)^{10} \cdot 2^7 = 128 \equiv 26 \pmod{51}$$
.

(c) Simplify $\frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{3} + \sqrt{2}}$.

$$\frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{3} + \sqrt{2}} = \frac{2\sqrt{3} + 3\sqrt{2}}{\sqrt{3} + \sqrt{2}} \cdot \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$
$$= \frac{2 \cdot 3 - 2\sqrt{6} + 3\sqrt{6} - 3 \cdot 2}{3 - 2}$$
$$= \sqrt{6}.$$

(d) Compute the following (without a calculator!):

$$9^7 + 7 \cdot 9^6 + 21 \cdot 9^5 + 35 \cdot 9^4 + 35 \cdot 9^3 + 21 \cdot 9^2 + 7 \cdot 9$$

By the binomial theorem, this is $(9+1)^7 - 1 = 10^7 - 1 = 9,999,999$.

- 6. **True/False & Explain:** For each statement below, state whether it is true or false and give a convincing reason.
 - (a) $\sqrt{3} + \sqrt{27} \sqrt{48}$ is irrational. False, since it equals $\sqrt{3} + 3\sqrt{3} - 4\sqrt{3} = 0$.
 - (b) The sum of a rational number and an irrational number is irrational. True. Let $r \in \mathbb{Q}$ and t be irrational. Suppose BWOC that $r + t \in \mathbb{Q}$. Then since \mathbb{Q} is closed under taking multiplication and addition, (t + r) + (-1)r is rational $\implies t$ is rational, contradiction. Hence, r + t must be irrational.
 - (c) For $0 \le k \le n$ we have

$$\binom{n}{k} = \binom{n}{n-k}.$$

True. This is the symmetry in the Pingala-Khayyam-YangHui-Pascal Triangle. Best proof is to notice that selecting a subset S of k elements from the set $\{1, 2, \ldots n\}$ is equivalent to selecting n-k elements NOT to be in the set (i.e., selecting S^C). It can also be shown from the formula as in the text, Prop. 4.31.

(d) If $x \equiv a \pmod{m}$ and $x \equiv a \pmod{n}$, then $x \equiv a \pmod{mn}$. False. $5 \equiv 35 \pmod{6}$ and $5 \equiv 35 \pmod{10}$, but $5 \not\equiv 35 \pmod{60}$. SALVAGE: True if (m, n) = 1.

Proof. By hypothesis we have $m \mid x - a$ and $n \mid x - a$. Since (m, n) = 1, this implies that $mn \mid x - a \implies$, which is what we want to show.

7. Make sure you know how to prove the following facts from the text.

- (a) Every integer n > 1 can be written as a product of primes (not necessarily uniquely). [Via strong induction.]
- (b) For $1 \le r \le n$

$$\binom{n+1}{r} = \binom{n}{r-1} + \binom{n}{r}$$

(c) (Euler-Fermat) If m is a positive integer and (a, m) = 1, then

$$a^{\varphi(m)\equiv 1 \pmod{m}}$$
.

(d) There are numbers which are not rational.