Support Vector Machine

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Learn the support vector machine classifier
 - Understand the maximum margin idea of the SVM
 - Understand the formulation of the optimization problem
- Learn the soft-margin and penalization
 - Know how to add the penalization term
 - Understand the difference between the log-loss and the hinge-loss
- Learn the kernel trick
 - Understand the primal problem and the dual problem of SVM
 - Know the types of kernels
 - Understand how to apply the kernel trick to SVM and logistic regression

SUPPORT VECTOR MACHINE

Detour: Decision Boundary

• $f^*(x) = argmax_{Y=y}P(Y=y|X=x)$ $= argmax_{Y=y}P(X = x|Y = y)P(Y = y)$

What-if Gaussian class conditional density?

•
$$P(X = x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

P(X=x|Y=y)P(Y=y)

$$P(X=x|Y=y)P(Y=y)$$

Detour: Decision Boundary in Two Dimension

$$P(X = x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x - \mu)^2}{2\sigma^2}\right)$$

$$P(X = (x_1, x_2)|Y = y) = \frac{1}{\sqrt{2\pi|\Sigma_y|}} \exp\left(-\frac{(x - \mu_y)\Sigma_y^{-1}(x - \mu_y)'}{2}\right)$$
KAIST

Converget © 2010 by II-Chal Moon Dept. of Industrial and Systems Engineering KAIST

$$f^*(x) = argmax_{Y=y}P(Y = y|X = x)$$

= $argmax_{Y=y}P(X = x|Y = y)P(Y = y)$

- Two multivariate normal distribution for the class conditional densities
- Decision boundary
 - A linear line
- Linear decision boundary
- Any problem in the real world applications?
 - Observing the combination of x_1 and x_2

$$=\frac{1}{\sqrt{2\pi|\Sigma_y|}}\exp(-\frac{(x-\mu_y)\Sigma_y^{-1}(x-\mu_y)'}{2})$$

Decision Boundary without Prob.

- Which is a better decision boundary?
 - Without considering the probability distribution?
- Which points are at the front line?

Decision Boundary with Margin

- Decision boundary with maximum margin
 - Between the points close to the boundary
 - How many points?
- Decision boundary line
 - $\mathbf{w} \cdot \mathbf{x} + b = 0$
 - Positive case
 - $\mathbf{w} \cdot \mathbf{x} + b > 0$
 - Negative case

•
$$\mathbf{w} \cdot \mathbf{x} + b < 0$$

- Confidence level
 - $(\mathbf{w} \cdot \mathbf{x}_j + b) y_j$
- Margin?
 - Perpendicular distance from the closest point to the decision boundary

How many parameters?

