CSE 311: Data Communication

Instructor:

Dr. Md. Monirul Islam

Digital-to-Digital Conversion: Line Coding, Block Coding and Scrambling

From
Data Communications and Networking, 5th Edition
By Behrouz A. Forouzan

Line Coding and Decoding

- converts digital data elements to digital signal elements
- Example:

$$1 \rightarrow +V$$
$$0 \rightarrow -V$$

• data element

- smallest entity to represent a piece of information
- 0, 1, etc,

• signal element

- shortest unit of a digital signal
- Each represents one or more data element

- data element
 - smallest entity to represent a piece of information
 - -0, 1, etc,
- signal element
 - shortest unit of a digital signal
 - Each represents one or more data element
- signal element is carrier, data element is carried

- data element
 - smallest entity to represent a piece of information
 - -0, 1, etc,
- signal element
 - shortest unit of a digital signal
 - Each represents one or more data element
- signal element is carrier, data element is carried
- r = No. of data element is carried by each signal element

a. One data element per one signal element (r = 1)

c. Two data elements per one signal element (r = 2)

b. One data element per two signal elements $\left(r = \frac{1}{2}\right)$

d. Four data elements per three signal elements $\left(r = \frac{4}{3}\right)$

Data Rate and Signal Rate

- data rate, N
 - No. of data elements sent in 1 second
 - Other names: bit rate
- signal rate, S
 - No. of signal elements sent in 1 second
 - Other names: baud rate, pulse rate, modulation rate

• r = N/S alternately, S = N/r

Data Rate and Signal Rate

- r = N/S alternately, S = N/r
- Average Signal rate

$$S_{\text{ave}} = c \times N \times (1/r)$$
 baud

- r should be higher, S = N/r should be lower
- Minimize Baseline wandering:
 - Running average of incoming signal power is *baseline*
 - Baseline is compared with incoming signal for decoding
 - Long runs of 0 or 1 drifts the baseline

- Minimize *DC components*:
 - Constant voltage for long period
 - increaes low frequency components
 - bandpass channels do NOT support low frequencies

- Self synchronization
 - Sender's and receiver's clock must have same bit interval
 - Different intervals may misinterpret incoming signal

Illustration of lack of synchronization

a. Sent

b. Received

- Built-in Error Detection
 - Error occurs during transmission
 - Must be able to detect and/or correct them
 - Example: certain type of signal transition (change) is NOT part of the coding

- Higher Noise immunity
 - certain line coding prevents noises to be added to the signal
 - It is better than error detection

- Complexity
 - Simpler is better
 - A coding with FOUR signal levels is more difficult to interpret than one that uses TWO signal levels

Line Coding Schemes

Unipolar

- All signal levels are on one side of the time axis either above or below
- Example: Non Return to Zero (NRZ)
 - The signal level does not return to zero at middle of the bit

Unipolar: NRZ

- Pros
 - Simple
- Cons
 - Baseline wandering, DC components
 - No synchronization or error detection

Polar

- signal levels are on BOTH sides of the time axis
- Polar NRZ
 - Uses two different voltage: +V and –V
 - Two versions: NRZ-Level (NRZ-L) and NRZ-Inversion (NRZ-I)

Polar: NRZ-L and NRZ-I

• Polar NRZ-L

+V: 0 and -V: 1

• Polar NRZ-I

Inversion: next bit is 1, No Inversion: next bit 0

Polar: NRZ-L and NRZ-I

- Pros
 - Simple
- Cons
 - Baseline wandering, DC components, worse in NRZ-L
 - No synchronization or error detection

Polar: Return to Zero (RZ)

- 3 signal levels: +V, -V, 0
- Signal transition in the middle of the bit

- bit 0: -V to 0 bit 1: +V to 0

Polar: Return to Zero (RZ)

- Pros
 - NO Baseline wandering, NO DC components
 - Self synchronization: transition synchronizes both sender and receiver
- Cons
 - More complex: 3 voltage levels to identify
 - No error detection

Polar: Biphase-Manchester and Differential Manchester

- 2 signal levels: +V, -V
- Signal transition *always* in the middle of the bit, *similar to RZ*
- Manchester
 - Combines NRZ-L and RZ
- Differential Manchester
 - Combines NRZ-I and RZ

Polar: Biphase-Manchester and Differential Manchester

- Manchester
 - Level determines bits
- Differential Manchester
 - Inversion/no inversion determines bits

Polar: Biphase-Manchester and Differential Manchester

- Pros
 - 2 signal elements
 - NO Baseline wandering, NO DC components
 - Self synchronization
- Cons
 - -r=1/2
 - No error detection

Bipolar

- 3 signal levels: 0, +V, -V
- 2 variations: alternate mark inversion (AMI) and Pseudoternary
- AMI
 - bit 0: signal level 0
 - bit 1: successively alternates between +V and -V
- Pseudoternary
 - bit 1: signal level 0
 - bit 0: successively alternates between +V and -V

Bipolar

AMI

- bit 0: signal level 0

bit 1: successively alternates between +V and -V

Pseudoternary

- bit 1: signal level 0

bit 0: successively alternates between +V and -V

Bipolar

- Pros
 - r = 1
- Cons
 - 3 signal elements
 - NO synchronization
 - NO error detection

- Target: to increase *r* or *bit rate*
- Individual bit is NOT coded
- rather a sequence of *m* bits is coded by a sequence of *n* signal elements
- Assuming, No. of signal levels is *L*
 - Possible data patterns: 2^m
 - Possible signal patterns: L^n

 2^m data patterns $\rightarrow L^n$ signal patterns

 2^m data patterns \rightarrow L^n signal patterns

- $2^m > L^n$: mapping is NOT possible
- $2^m = L^n$: exact mapping is possible
- $2^m < L^n$:
 - Redundant signal patterns
 - Very flexible mapping is possible
 - Better noise immunity and error detection

- Coding symbol: short representation is *mBnL*
- L is replace by character code

-L=2:B meaning Binary

-L=3: T meaning Ternary

-L=4: Q meaning Quaternary

01

10

- Pros
 - r = 2
 - Used in DSL to provide high speed connection to the Internet
- Cons
 - 4 signal elements,
 - Baseline wandering, DC components are possible
 - NO redundancy, NO error detection

Multilevel Schemes: 8B6T

- $2^8 = 256$ different data patterns
- $3^6 = 729$ different signal patterns of 3 levels, +V, -V and 0
- No. of redundant signal patterns 729-256 = 473
- Flexible pattern mapping
- Synchronization and error detection by 473 redundant signal patterns

Multilevel Schemes: 8B6T

• All mapped signal patterns have weight +1 or 0 dc values

Mapping Table		
Data patterns	Signal patterns	weight
00010001	-0 - 0 + +	0
01010011	-+-++0	+1
01010000	+ + 0 +	+1

- NO signal patterns have weight -1
- DC balance is maintained by inverting polarity of signal pattern

```
if necessary +--+0+ is replaced by -++-0- (WEIGHT: -1)
```

Multilevel Schemes: 8B6T

Let, we have to send data sequence 00010001010101010101010000

Multilevel Schemes: 4D-PAM5

- 4 Dimensional: 4 signal elements, each sent through separate wire
- Pulse Amplitude Modulation 5: 5 different levels -2, -1, 0, +1, +2
- Used signal levels: -2, -1, +1, +2
- Total signal patterns: $4^4 = 256$, which support 256 binary data patterns
- 4D-PAM5 is equivalent to linear 8B4Q

Multilevel Schemes: 4D-PAM5

- 1 Gbps Gigabit LAN through 4 copper wires of 125 Mbaud each
- Self synchronization, NO DC components

Multitransition: MLT-3

- Similar to differential coding like NRZ-I and differential Manchester
- Uses more than 2 signal levels, MLT-3 uses 3 levels: +V, 0, -V
- *Complex* transition rules
 - If next bit = 0, no transition
 - If next bit = 1 and current level = $\pm V$, transition to level 0
 - If next bit = 1 and current level = 0, transition to opposite of last nonzero level

Multitransition: MLT-3

- *Complex* transition rules
- r=1
- No synchronization for long sequence bit 0's

Multitransition: MLT-3

Nonperiodic to periodic signal with a period of 4× bit duration

Repeating pattern: +V0-V0

Line Coding summary

Category	Scheme	Bandwidth (average)	Characteristics	
Unipolar	NRZ	B = N/2	Costly, no self-synchronization if long 0s or 1s, DC	
Polar	NRZ-L	B = N/2	No self-synchronization if long 0s or 1s, DC	
	NRZ-I	B = N/2	No self-synchronization for long 0s, DC	
	Biphase	B = N	Self-synchronization, no DC, high bandwidth	
Bipolar	AMI	B = N/2	No self-synchronization for long 0s, DC	
Multilevel	2B1Q	B = N/4	No self-synchronization for long same double bits	
	8B6T	B = 3N/4	Self-synchronization, no DC	
	4D-PAM5	B = N/8	Self-synchronization, no DC	
Multiline	MLT-3	B = N/3	No self-synchronization for long 0s	

Block Coding: mB/nB

- replaces m bits by n bits, where m < n
- increaes redundancy and synchronization
- Done before line coding using 3 steps
 - division
 - substitution
 - combination

Combining n-bit groups into a stream

Block Coding: 4B/5B

- Done in combination with NRZ-I which has sync problem for long sequence of 0's
- 4B/5B ensures no more than 3 consecutive 0's

Block Coding: 4B/5B

Data Sequence	Encoded Sequence	Control Sequence	Encoded Sequence	
0000	11110	Q (Quiet)	00000	
0001	01001	I (Idle)	11111	
0010	10100	H (Halt)	00100	
0011	10101	J (Start delimiter)	11000	
0100	01010	K (Start delimiter)	10001	
0110	01110	S (Set)	11001	
0111	01111	R (Reset)	00111	
1000	10010	• 16 data sequences		
1001	10011	 32 available encoding sequences 		
1010	10110	 redundant sequences are for error detection, overhead control Maximum 1 leading 0 and 2 		
1011	10111			
1100	11010			
1101	11011			
1110	11100	trailing 0's		
1111	11101			

Block Coding: 8B/10B

- More redundancy and better error detection than 4B/5B
- Actually done by combination of 5B/6B and 3B/4B to simplify mapping table

Search for Best Line Coding: Scrambling

- Characteristics of a good line coding
 - No increase in b/w for self sync
 - NO DC
- Biphase scheme
 - High bandwidth (r < 1)
- NRZ + block coding
 - DC still exists
- Bipolar AMI
 - NO sync for long sequence of 0's
 - Other characteristics are OK

Search for best line coding: Scrambling

- Bipolar AMI
 - NO sync for long sequence of 0's
 - Other characteristics are OK
- Scrambling uses AMI but inserts nonzero pulses in long sequence of 0's

Search for best line coding: Scrambling

- Bipolar AMI
 - NO sync for long sequence of 0's
 - Other characteristics are OK
- Scrambling uses AMI but inserts nonzero pulses in long sequence of 0's
- Thus AMI's rules are violated on the fly

- Bipolar 8 Zeros (B8ZS)
 - Replaces 8 zeros by 0 0 0 V B 0 V B
 - V means Violation to AMI rules
 - B means normal polarity according to AMI rules

a. Previous level is positive.

- Bipolar 8 Zeros (B8ZS)
 - Replaces 8 zeros by 0 0 0 V B 0 V B
 - V means Violation to AMI rules
 - B means normal polarity according to AMI rules

a. Previous level is positive.

- Bipolar 8 Zeros (B8ZS)
 - Replaces 8 zeros by 0 0 0 V B 0 V B
 - V means Violation to AMI rules
 - B means normal polarity according to AMI rules

a. Previous level is positive.

- Bipolar 8 Zeros (B8ZS)
 - Replaces 8 zeros by 0 0 0 V B 0 V B
 - V means Violation to AMI rules
 - B means normal polarity according to AMI rules

a. Previous level is positive.

b. Previous level is negative.

- High Definition Bipolar 3-Zero (*HDB*3)
- Replaces 4 zeros by
 - 0 0 0 V if No. of nonzero pulses after last substitution is ODD
 - B 0 0 V if No. of nonzero pulses after last substitution is EVEN

- High Definition Bipolar 3-Zero (*HDB*3)
- Replaces 4 zeros by
 - 0 0 0 V if No. of nonzero pulses after last substitution is ODD
 - B 0 0 V if No. of nonzero pulses after last substitution is EVEN

- High Definition Bipolar 3-Zero (*HDB*3)
- Replaces 4 zeros by
 - 0 0 0 V if No. of nonzero pulses after last substitution is ODD
 - B 0 0 V if No. of nonzero pulses after last substitution is EVEN

- High Definition Bipolar 3-Zero (*HDB*3)
- Replaces 4 zeros by
 - 0 0 0 V if No. of nonzero pulses after last substitution is ODD
 - B 0 0 V if No. of nonzero pulses after last substitution is EVEN

- High Definition Bipolar 3-Zero (*HDB*3)
- Replaces 4 zeros by
 - 0 0 0 V if No. of nonzero pulses after last substitution is ODD
 - B 0 0 V if No. of nonzero pulses after last substitution is EVEN

- High Definition Bipolar 3-Zero (*HDB*3)
- Replaces 4 zeros by
 - 0 0 0 V if No. of nonzero pulses after last substitution is ODD
 - B 0 0 V if No. of nonzero pulses after last substitution is EVEN

- High Definition Bipolar 3-Zero (*HDB*3)
- Replaces 4 zeros by
 - 0 0 0 V if No. of nonzero pulses after last substitution is ODD
 - B 0 0 V if No. of nonzero pulses after last substitution is EVEN

