

A Wasserstein Subsequence Kernel for Time Series

Christian Bock, Matteo Togninalli, Elisabetta Ghisu, Thomas Gumbsch, Bastian Rieck, Karsten Borgwardt

Department of Biosystems Science and Engineering Machine Learning and Computational Biology Group

ETH Colors

Table of contents (internal)

- 1. Motivation
- 2. Time Series Decomposition
- 3. Optimal Transport and the Wasserstein Distance
- 4. A Wasserstein Kernel for Time Series
- 5. Results
- 6. Take aways

Motivation

Time Series Classification in a Nutshell

Time Series Classification in a Nutshell

Time Series Decomposition

Optimal Transport and the

Wasserstein Distance

A Wasserstein Kernel for Time Series

From Distance to Kernels

Intuitive explanation

From Distance to Kernels

Definition (Wasserstein time series kernel)

Let T_i and T_j be two time series, and s_{i1},\ldots,s_{iU} as well as s_{j1},\ldots,s_{jV} be their respective subsequences. Moreover, let D be a $U\times V$ matrix that contains the pairwise distances of all subsequences, such that $D_{uv}:=\operatorname{dist}(s_{iu},s_{jv})$, where $\operatorname{dist}(\cdot,\cdot)$ denotes the usual Euclidean distance. The optimisation problem

$$W_{1}(T_{i}, T_{j}) := \min_{P \in \Gamma(T_{i}, T_{j})} \langle D, P \rangle_{F}, \qquad (1)$$

yields the optimal transport cost to transform T_i into T_j by means of their subsequences. Then, given $\lambda \in_{>0}$, we can define

$$WTK(T_i, T_j) := \exp(-\lambda W_1(T_i, T_j)), \qquad (2)$$

which we refer to as our Wasserstein-based subsequence kernel;

Wasserstein Time Series Kernel

Algorithm 1 Wasserstein Time Series Kernel

```
Input: Time series for training and testing \mathcal{T}_{train}, \mathcal{T}_{test}; subsequence length w; kernel
       weight factor \lambda
Output: \mathcal{K}^{\text{train}}, \mathcal{K}^{\text{test}}
 1: S^{\text{train}} \leftarrow \text{SUBSEQUENCES}(\mathcal{T}_{\text{train}}, w) // Extract subsequences
 2: S^{\text{test}} \leftarrow \text{SUBSEQUENCES}(\mathcal{T}_{\text{test}}, w) // Extract subsequences
 3: for T_i \in \mathcal{T}_{train} do
 4:
        for T_i \in \mathcal{T}_{train} do
                \mathcal{D}_{ii}^{\mathsf{train}} \leftarrow \mathsf{W}_1\left(\mathcal{S}_i^{\mathsf{train}}, \mathcal{S}_i^{\mathsf{train}}\right)
                                                                     // Wasserstein distance calculation (train)
 6.
         end for
         for T_k \in \mathcal{T}_{\text{test}} do
 8.
               \mathcal{D}_{i\nu}^{\text{test}} \leftarrow W_1\left(\mathcal{S}_i^{\text{train}}, \mathcal{S}_{\nu}^{\text{test}}\right) // Wasserstein distance calculation (test)
 9:
            end for
10: end for
11: \mathcal{K}^{\mathsf{train}} \leftarrow \exp\left(-\lambda \mathcal{D}^{\mathsf{train}}\right) // Kernel matrix calculation
12: \mathcal{K}^{\text{test}} \leftarrow \exp(-\lambda \mathcal{D}^{\text{test}}) // Kernel matrix calculation
13: return \mathcal{K}^{train}, \mathcal{K}^{test}
```

Results

Experiments

Comparison with Other Kernels

Critical Difference Plot

Take aways

References i

References