Latent class analysis

Latent class analysis extensions

DL Oberski & L Boeschoten

Extension topics

- Local dependence models
- Multiple latent variables
- Ordinal indicators
- Tree-step modelling

Local dependence models

Why doesn't an LC model fit?

Answer: because local independence assumption is violated

Three possible solutions:

- 1. Increase the number of clusters or latent classes;
- 2. Increase the number of discrete factors or latent variables;
- 3. Allow for **local dependencies** or direct relationships between certain items.

Option 3 is similar to correlated errors in structural equation models (SEM)

Modeling local dependence (loglinear)

Example:

$$P(\mathbf{Y}_i = \mathbf{y}) = \sum_{x=1}^K P(x) P(Y_{i1} = y_1, Y_{i2} = y_2 \mid x) P(Y_{i3} = y_3 \mid x)$$

With:

$$P(Y_{i1} = y_1, Y_{i2} = y_2 \mid x) = \frac{\exp(\beta_{0y_1}^1 + \beta_{0y_2}^2 + \beta_{0y_1y_2}^{12} + \beta_{xy_1}^1 + \beta_{xy_2}^2)}{\sum_{y_1y_2} \exp(\beta_{0y_1}^1 + \beta_{0y_2}^2 + \beta_{0y_1y_2}^{12} + \beta_{xy_1}^1 + \beta_{xy_2}^2)}$$

Interpretation: two items have a stronger association than can be explained by clusters/DFactors

Independence model

Local dependence model

Diagnostic tests

Research Open Access Published: 10 March 2023

Estimating sensitivity and specificity of diagnostic tests using latent class models that account for conditional dependence between tests: a simulation study

Suzanne H. Keddie ™, Oliver Baerenbold, Ruth H. Keogh & John Bradley

BMC Medical Research Methodology 23, Article number: 58 (2023) Cite this article

130 Accesses 4 Altmetric Metrics

Local dependence methods

- Loglinear modeling (preferred option)
 - Easy to specify (once the loglinear LCA is up & running)
 - Can test nested models for fit
- Combining the two variables into one ("joint item method")
 - Easy to do & understand
 - Can use "plain vanilla" LCA software
 - Trouble when there is another local dependence
 - Inflexible and prone to overfitting with polytomous items
- Direct effect method
 - Conceptually different, but may be what you wanted
 - Main advantage is that you can use flexmix

Alvord data

Test	Description
Α	Radioimmunoassay of antigen ag121
В	Radioimmunoassay of HIV p24
С	Radioimmunoassay of HIV gp120
D	Enzyme-linked immunosorbent assay

Local dependence example


```
f_ueber <- cbind(A, B, C, D) ~ 1
fit_ueber_polca <- polCA(f_ueber, data = uebersax_fulldata)</pre>
```

Local dependence example

```
A B C
B 0.610
C 0.520 0.000
D 0.265 0.560 0.240
```

Using loglinear formula

coef (Intercept) -12.8057 $\sim X * (A + B + C + D)$ X1 -3.3879**A1** -4.06730.7533 B1 C1 4.3829 **D1** -4.2866X1:A1 -5.8097X1:B1 -0.8964X1:C1 -5.5574X1:D1 -5.5040

Local dependence example

```
formula_ld <- update(formula, ~ . + B:C)
system.time(
  fit_cvam_ld <-
    cvam(formula_ld, data = df_freq, freq = Freq,
         control = list(startValJitter = 0.05)
```

Local dependence example

```
anova(fit_cvam, fit_cvam_ld)

Model 1: ~ X * (A + B + C + D)

Model 2: ~ X + A + B + C + D + X:A + X:B + X:C + X:D + B:C
    resid.df -2*loglik df change
1     6   -3070.8
2     5   -3084.0    1 13.171
```

Comparison to Latent GOLD

```
File Edit View Model Window Help
liebersax.tab.
                         options
 Model1
                            maxthreads=8:
lebersax.tab
                            algorithm
 - Model1
                                tolerance=1e-08 emtolerance=0.01 emiterations=500 nriterations=70;
holitical.sav.
                            startvalues

    2-cluster with local dependence

                                seed=0 sets=50 tolerance=1e-05 iterations=100;
                                categorical=0 variances=0 latent=0 poisson=0;
                            montecarlo
                                seed=0 sets=0 replicates=500 tolerance=1e-08
                               lldiff alpha=0.05;
                            quadrature nodes=10;
                            missing excludeall:
                            output
                                parameters=first betaopts=wl standarderrors=robust profile probmeans=posterior
                               frequencies loadings bivariateresiduals classification estimatedvalues=model
                               iterationdetails reorderclasses scoretest="score.txt";
                         variables
                            caseweight Freg;
                            dependent A, B, C, D;
                               Cluster nominal 2;
                         equations
                            Cluster <- 1:
                            A \leftarrow 1 + Cluster:
                            B <- 1 + Cluster;
                            C <- 1 + Cluster:
                            D <- 1 + Cluster:
```

Comparison to Latent GOLD

```
thersax.tab.
                             options
\frac{1}{2} Model 1 - \frac{1}{2} = 16.2272
                                 maxthreads=8:
1 \cdot Model2 \cdot L^2 = 3.0560
                                 algorithm
                                     tolerance=1e-08 emtolerance=0.01 emiterations=500 nriterations=70;

    Parameters

                                 startvalues
   .
E-Profile
                                     seed=0 sets=50 tolerance=1e-05 iterations=100:
    ProbMeans-Posterior
                                 bayes
    - Fregs/Residuals
                                     categorical=0 variances=0 latent=0 poisson=0;
    Bivariate Residuals
                                 montecarlo
     Classification-Posterior
                                     seed=0 sets=0 replicates=500 tolerance=1e-08
    EstimatedValues-Model
                                     lldiff alpha=0.05;

    Iteration Detail.

                                 quadrature nodes=10;
--- Model3
                                 missing excludeall:
shersax.tab.
                                 output
\frac{1}{2} Model1 - \frac{1}{2} = 16.2272.
                                     parameters=first betaopts=wl standarderrors=robust profile probmeans=posterior
\frac{1}{2} Model2 - \frac{1}{2} = 16.2272
                                     frequencies loadings bivariateresiduals classification estimatedvalues=model
-1- Model3 - L<sup>2</sup> = 14.3871
                                     iterationdetails reorderclasses scoretest="score.txt":
1 \cdot Model4 - L^2 = 3.0560
                             variables.
--- Model5
                                 caseweight Freq;
ebersax.tab
                                 dependent A, B, C, D;
--- Model1
                                 latent
ditical.sav
                                     Cluster nominal 2;
- 2-cluster with local dependence
                             equations
                                 Cluster <- 1;
                                 A <- 1 + Cluster;
                                 B <- 1 + Cluster;
                                 C <- 1 + Cluster:
                                 D <- 1 + Cluster:
                                     B <-> C:
```

Comparison to Latent GOLD

stimation Warnings! See Iteration	Detail					
						<u>.</u>
Number of cases	428					Ĺ
Number of parameters (Npar)	9					
Robustness Effect	0.6700					
Random Seed	270649					
Best Start Seed	939431					
Monte Carlo Seed	270649	<u> </u>				
Chi-squared Statistics		Bootstrap			L	
Degrees of freedom (df)	6	p-value	p-value	s.e.	CV	
L-squared (L²)	16.2272	0.013	0.0020	0.0020	6.3428	
X-squared	17.1146	0.0089				
Cressie-Read	16.4174	0.012				
BIC (based on L²)	-20.1275	İ				
AIC (based on L²)	4.2272					
AIC3 (based on L²)	-1.7728	i i				
CAIC (based on L²)	-26.1275					
SABIC (based on L²)	-1.0872					
Dissimilarity Index	0.0398					
Total BVR	4.6230					
Log-likelihood Statistics		<u> </u>				
Log-likelihood (LL)	-629.8827					
Log-prior	0.0000	i				
Log-posterior	-629.8827					·
BIC (based on LL)	1314.2975					
AIC (based on LL)	1277.7654					
AIC3 (based on LL)	1286.7654	<u>-</u>				
CAIC (based on LL)	1323.2975					
SABIC (based on LL)	1285.7369	-				

timation Warnings! See Iteration	Detail				
Number of cases	428	İ			
Number of parameters (Npar)	10				
Robustness Effect	0.7016	İ			
Random Seed	81233				
Best Start Seed	306966	İ			
Monte Carlo Seed	81233	İ			
i-squared Statistics			Bootstrap		
Degrees of freedom (df)	5	p-value		s.e.	CV
L-squared (L²)	3.0560	0.69	0.1120	0.0141	4.1716
X-squared	4.4875	0.48			
Cressie-Read	3.7095	0.59			
BIC (based on L²)	-27.2396				
AIC (based on L²)	-6.9440				
AIC3 (based on L²)	-11.9440				
CAIC (based on L²)	-32.2396				
SABIC (based on L²)	-11.3726				
Dissimilarity Index	0.0038				
Total BVR	0.1648				
g-likelihood Statistics					
Log-likelihood (LL)	-623.2971				
Log-prior	0.0000				
Log-posterior	-623.2971				
BIC (based on LL)	1307.1854				
AIC (based on LL)	1266.5941				
AIC3 (based on LL)	1276.5941				
CAIC (based on LL)	1317.1854				
SABIC (based on LL)	1275.4515				

Multiple latent variables

Voting in NL

https://www.dataarchive.lissdata.nl/data_variables/view/5115

"Did you vote in the most recent parliamentary elections, held on 22 November 2006 / ... ?"

```
1 yes
```

2 no

Voting in NL

ELECTION			ELECTION		
2006	2008	2009	2010	2011	2012
	cv08a053	cv09b053	cv10c053	cv11d053	cv12e053

Oberski, D.L. Beyond the number of classes: separating substantive from non-substantive dependence in latent class analysis. *Adv Data Anal Classif* **10**, 171–182 (2016). https://doi.org/10.1007/s11634-015-0211-0

Information criteria for five latent class models

Fig. 2 Left: probability profile plot for the four-class solution. Right: legend with estimated class sizes and 2 s.e. error bars

df_freq\$X1 <- latentFactor(NROW(df_freq), 2)</pre>

df_freq\$X2 <- latentFactor(NROW(df_freq), 2)</pre>

> head(df_freq)

```
A B C D E Freq X1 X2

1 0 0 0 0 0 125 <NA> <NA>

2 1 0 0 0 0 15 <NA> <NA>

3 <NA> 0 0 0 0 33 <NA> <NA>

4 0 1 0 0 0 7 <NA> <NA>

5 1 1 0 0 0 0 23 <NA> <NA>

6 <NA> 1 0 0 0 0 5 <NA> <NA>
```

Loglinear LCA using cvam

	n 2006		
	No	Yes	
2010			
No	0.713	0.051	18%
Yes	0.287	0.949	82%
	19%	81%	