Поняття кільця та підкільця

Євгенія Кочубінська

Київський національний університет імені Тараса Шевченка

15 лютого 2023

Кільце

Означення

Кільцем називається непорожня множина R, на якій задано дві бінарні операції,

$$+, \cdot : R \times R \rightarrow R,$$

які називаються додаванням та множенням відповідно, і які задовольняють умови:

- (R, +) є абелевою групою (яка називається адитивною групою кільця);
- множення є асоціативним;
- додавання та множенням пов'язані дистрибутивними законами:
 - $a \cdot (b + c) = a \cdot b + a \cdot c$ для довільних $a, b, c \in R$;
 - ► $(a+b) \cdot c = a \cdot c + b \cdot c$ для довільних $a,b,c \in R$.

Нейтральний елемент для додавання називається *нулем* і позначається **0**.

Кільця

Кільце R називається

- комутативним, якщо множення є комутативним;
- кільцем з одиницею, якщо існує нейтральний елемент для множення, який називається одиницею і позначається 1, тобто елемент $1 \in R$ з властивістю $1 \cdot \alpha = \alpha \cdot 1 = \alpha$ для всіх $\alpha \in R$;
- кільцем з діленням, або тілом, якщо $1 \neq 0$ і $(R \setminus \{0\}, \cdot)$ група;
- ullet полем, якщо ($R \setminus \{0\}$, \cdot) комутативна група.

- **○** Множина \mathbb{Z} цілих чисел є комутативним кільцем з одиницею відносно звичайних операцій додавання і множення.
- Множина 2

 парних цілих чисел є комутативним кільцем (без одиниці) відносно звичайних операцій додавання і множення.
- ② Довільне поле є кільцем: \mathbb{Q} , \mathbb{R} , \mathbb{C} .
- Множина Z_n лишків за модулем n є комутативним кільцем з одиницею відносно додавання і множення за модулем натурального числа n. Це кільце називається кільцем лишків.

Множина комплексних чисел вигляду

$$\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}\$$

є комутативним кільцем з одиницею, яке називається *кільцем цілих гаусових чисел*. Очевидно, $\mathbb{Z}[i]$ є підкільцем \mathbb{C} .

⑤ Нехай $d ∈ \mathbb{Z}$ — вільне від квадратів число. Множина

$$\mathbb{Z}[\sqrt{d}] = \left\{ a + b\sqrt{d} \,|\, a, b \in \mathbb{Z} \right\}$$

є комутативним кільцем з одиницею відносно звичайних операцій додавання і множення. Кільця такого вигляду називаються *квадратичними кільцями*.

- **Матричні кільця.** Множина $M_n(R)$ квадратних матриць порядку n над кільцем R є некомутативним кільцем з одиницею відносно операцій матричних додавання і множення.
- *Кільце функцій.* Нехай $A \subset \mathbb{R}$. Множина \mathbb{R}^A всіх функцій $f:A \to \mathbb{R}$ є кільцем відносно операцій f+g та fg, визначених рівностями

$$(f+g)(x) = f(x) + g(x)$$

та

$$(fg)(x) = f(x)g(x)$$

для всіх $x \in A$.

 \bigcirc *Кільце многочленів.* Нехай R[x] — множина многочленів від змінної x з коефіцієнтами з поля R.

Сума і добуток многочленів $f(x) = \sum_{i=0}^n a_i x^i$ і $g(x) = \sum_{i=0}^m b_i x^i$ ($n \ge m$) визначається як

$$f(x) + g(x) = \sum_{i=0}^{n} (a_i + b_i)x^i,$$

$$f(x)g(x) = \sum_{i=0}^{n+m} \left(\sum_{i+j=k} a_i b_j \right) x^k.$$

Відносно так введених операцій множина R[x] є кільцем.

Прямий добуток кілець

Прямим добутком кілець R та S називається множина

$$R \times S = \{(r, s) | r \in R, s \in S\}$$

з покомпонентними операціями додавання і множення:

$$(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2),$$

$$(r_1, s_1)(r_2, s_2) = (r_1r_2, s_1s_2),$$

де $r_1, r_2 \in R$, $s_1, s_2 \in S$. Легко перевірити, що прямий добуток кілець є кільцем .

Найпростіші властивості кілець

R — кільце.

 \bigcirc Для довільного α ∈ R

$$a \cdot 0 = 0 \cdot a = 0$$
.

$$b + b = a \cdot 0 + a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 = b \implies b = b + (-b) = 0.$$

Аналогічно доводиться, що $0 \cdot \alpha = 0$.

② Для довільних $a, b \in R$

$$(-a) \cdot b = a \cdot (-b) = -ab.$$

$$(-a) \cdot (-b) = ab.$$

Найпростіші властивості кілець

Якщо R — кільце з одиницею, то вона єдина та

$$(-1) a = a(-1) = -a.$$

- Якщо 1 та 1' дві одиниці кільця R, то $1 = 1 \cdot 1' = 1'$.
- **5** Кільце R з одиницею тривіальне, тоді і лише тоді, коли 1 = 0.
 - ♣ (⇒) R тривіальне ⇒ 1 = 0.
 - (⇐) Нехай 1=0. Візьмемо довільний $a \in R$. Тоді $a=a \cdot 1=a \cdot 0=0$. \spadesuit

Отже, якщо кільце містить більше одного елемента, то в ньому $1 \neq 0$.

Найпростіші властивості кілець

Зауваження

В кожному кільці R завжди визначена і операція віднімання: a-b=a+(-b).

- **⑤** Для довільних a, b, c ∈ R:
 - $\rightarrow a(b-c) = ab ac$
 - (a-b)c = ac-bc.

Підкільце

Означення

Непорожня підмножина S кільця R називається *підкільцем* кільця R, якщо S є кільцем відносно тих самих бінарних операцій, що задані на кільці R.

Твердження (Критерій підкільця)

Нехай S — непорожня підмножина кільця R. Наступні умови рівносильні:

- \bigcirc S є підкільцем R:
- (S, +) є підгрупою (R, +) і S замкнена відносно множення;
- \bigcirc a-b, $ab \in S$ для всіх $a, b \in S$.