Университет ИТМО Кафедра вычислительной техники

Лабораторная работа № 1 по дисциплине: «Теория принятия решений»

Студент: Куклина М.Д., Р3401 Преподаватель: Богатырев В.А.

1. Задание

Стоимость блока обработки C = 5, системы хранения C = 6 и коммутатора C = 4.

Среднее время обслуживания запроса в блоке обработки V=4, систем ханения V=2и коммутаторов V=3.

Вероятности работоспособности (коэффициент готовности) блока обработки p=0.95, системы хранения p = 0.95 и коммутатора: p = 0.96.

Интенсивность входного потока: $\lambda = 0.9\lambda_0, \ \lambda_0$ – рассчитываемое значение предельной интенсивности входного потока, выдерживаемой конфигурацией.

Структуры: 1, 2, 14, 19, 16.

2. Структура 1

2.1. Оценка надёжности структуры

Для данной системы нужно, чтобы работали два элемента Р и М.

Вероятность безотказной работы: $P_1 = P_P \cdot P_M$.

$$P_1 = 0.95 \cdot 0.95 = 0.9025$$

2.2. Оценка среднего времени пребывания запросов в системе

М/М/1 имеет следующий вид.

 $u = \frac{1}{\mu - \lambda}$ — время пребывания заявки в системе.

В данном случае:
$$u_1 = u_P + u_M = \frac{1}{\mu_P - \lambda} + \frac{1}{\mu_M - \lambda}.$$

3. Структура 2

3.1. Оценка надёжности структуры

Для данной систему нужно, чтобы работал коммутатор и либо права ветка, левая ветка полностью:

 $P_P \cdot P_M$ – вероятность работы одной ветки.

 $1 - P_P \cdot P_M$ – вероятность, что одна ветка работать не будет.

 $(1 - P_P \cdot P_M)^2$ – вероятность, что две ветки работать не будут.

 $1 - (1 - P_P \cdot P_M)^2$ – вероятность того, что хотя бы одна ветка должна работать.

$$P_2 = P_K \cdot (1 - (1 - P_P \cdot P_M)^2)$$

$$P_2 = 0.96 \cdot (1 - (1 - 0.95 \cdot 0.95)^2 = 0.8664$$

3.2. Оценка среднего времени пребывания запросов в системе

$$u_2 = u_K + 2 \cdot (\frac{1}{2}(u_P + u_M)) = \frac{1}{\mu_K - \lambda} + \frac{1}{\mu_P - \frac{\lambda}{2}} + \frac{1}{\mu_M - \frac{\lambda}{2}}$$

4. Структура 14

4.1. Оценка надёжности структуры

Для данной системы нужно, чтобы всегда работал коммутатор и одна из трёх веток; при работе второй или третьей веток нужна работа коммутатора и один из трёх элементов памяти.

 $P_P \cdot P_M$ – вероятность работы первой ветки.

 $(1 - P_P \cdot P_M)$ – вероятность, что первая ветка не работает.

 $(1-P_{M})$ – вероятность, что откажет элемент памяти.

 $(1-P_{M})^{3}$ – вероятность, что откажут три элемента памяти.

 $(1-(1-P_M)^3$ – вероятность, что не откажет хотя бы один элемент.

 $P_K' = P_K \cdot (1 - (1 - P_M)^3)$ – вероятность, что не откажет хотя бы один элемент при рабочем коммутаторе.

 $(1 - P_P)^2 \cdot P_K'$ – вероятность, что ни одна ветка не работает.

$$P_{14} = P_K \cdot (1 - (1 - P_P \cdot P_M) \cdot (1 - P_P)^2 P_K') =$$

$$= P_K \cdot (1 - (1 - P_P \cdot P_M) \cdot (1 - P_P)^2 \cdot P_K \cdot (1 - (1 - P_M)^3))$$

$$P_{14} = 0.949$$

4.2. Оценка среднего времени пребывания запросов в системе

$$u = u_k + u_1 + u_2 = \frac{1}{\mu_K - \lambda} + \frac{1}{\mu_P - \frac{\lambda}{2}} + \frac{1}{\mu_M - \frac{\lambda}{2}} + \frac{2}{\mu_P - \frac{\lambda}{4}} + \frac{1}{\mu_K - \frac{\lambda}{2}} + \frac{3}{\mu_K - \frac{\lambda}{6}}$$

5. Структура 19

5.1. Оценка надёжности структуры

Для данной системы нужно, чтобы всегда работал первый коммутатор и одна из веток; во второй ветку нужно, чтобы работал один из коммутаторов.

 $P_P \cdot P_M$ – вероятность работы первой ветки.

 $P_K \cdot P_M$ – вероятность работы связки коммутатор-память.

 $1 - P_K \cdot P_M$ – вероятность, что связка коммутатор память-работать не будет.

 $(1 - P_K \cdot_P M)^2$ – вероятность, что ни одна связка коммутатор-память работать не будет.

 $(1 - (1 - P_K \cdot P_M)^2$ – вероятность, что будет работать хотя бы одна связка.

 $P_P \cdot (1 - (1 - P_K \cdot P_M)^2)$ — вероятность того, что будет работать блок обработки и его зависимости. $1 - P_P \cdot (1 - (1 - P_K \cdot P_M)^2)$ — вероятность того, что эта часть работать не будет.

 $(1 - P_P \cdot P_M) \cdot (1 - P_P \cdot (1 - (1 - P_K \cdot P_M)^2))$ – вероятность того, что две ветки не будут работать.

$$P_{19} = P_K \cdot (1 - (1 - P_P \cdot P_M) \cdot (1 - P_P \cdot (1 - (1 - P_K \cdot P_M)^2))).$$

 $P_{19} = 0.955$

5.2. Оценка среднего времени пребывания запросов в системе

6. Структура 16

6.1. Оценка надёжности структуры

 $P_K' = (1-(1-P_M)^2) \cdot P_K$ — работа коммутатора с одним из элементов памяти. $P_P' = (1-(1-P_K')^2) \cdot P_P$ — работа одного из блоков обработчика. $P_{16} = P_K \cdot (1-(1-(1-(1-(1-(1-P_M)^2) \cdot P_K)^2) \cdot P_P)^2)$ $= P_K \cdot (1-(1-(1-(1-(1-(1-P_M)^2) \cdot P_K)^2) \cdot P_P)^2)$ $P_{16} = 0.957$

6.2. Оценка среднего времени пребывания запросов в системе

7. Предельно допустимая интенсивность запросов

Максимальная интенсивность, при которой не происходит перегрузка, легко определяется так: в каждом знаменателе при расчёте среднего времени пребывания в случае без перегрузки положительное число. Исходя из этого, имеем:

1: $\lambda < min(\mu_P, \mu_M)$

2: $\lambda < min(2\mu_P, 2\mu_M, \mu_K)$

14: $\lambda < min(4\mu_P, 2\mu_M, 6\mu_K)$

19: $\lambda < min(2\mu_P, 4\mu_M, 4\mu_K)$

16: $\lambda < min(2\mu_P, 2\mu_M, 2\mu_K)$

Таким образом, интенсивность, не вызывающая перегрузки системы: $\lambda_0 < min(\mu_P, \mu_M, \mu_K)$. Тогда получаем:

, ,	•
N	λ
1	0.0435
2	0.0769
14	0.1304
19	0.0870
16	0.0435
0	0.0435

7.1. Расчёт среднего времени ожидания

Мы имеем формулы вида $\sum_i \frac{1}{k_i \mu_i - b_i \lambda}$ для расчёта среднего времени пребывания. В таком случае формулой для соответствующего времени ожидания будет

$$\sum_{i} \frac{1}{k_i \mu_i - b_i \lambda} - \frac{1}{k_i \mu_i} = u - \sum_{i} \frac{b_i}{k_i}$$

1.
$$w = u - b_P - b_M$$

2.
$$w = u - b_P - b_M - 2b_K$$

14.
$$w = u - b_P - b_K - b_M$$

19.
$$w = u - b_P - 2b_K - b_M$$

16.
$$w = u - b_P - b_K - b_M$$

Подставляем $\lambda = 0.7\lambda_0 = 0.7\mu_P$:

N	u	w	
1	98.18	62.18	
2	84.50	38.50	
14	50.87	9.87	
19	59.30	15.80	
16	98.28	57.28	

7.2. Расчёт затрат на построение

Требуется всего лишь подсчитать количество элементов каждого вида.

1.
$$C_P + C_M$$

2.
$$2 \cdot C_P + C_M + C_K$$

14.
$$3 \cdot C_P + 3 \cdot C_M + C_K$$

19.
$$2 \cdot C_P + 3 \cdot C_M + 2 \cdot C_K$$

16.
$$C_P + 2 \cdot C_M + 2 \cdot C_K$$

На конкретных значениях получим:

N	C
1	11
2	20
14	37
19	36
16	25

7.3. Определение области эффективных решений

Представим все варианты в порядке ухудшения каждой характеристики:

P	u	Λ	C
16	14	14	1
19	19	19	16
14	2	2	2
1	1	1	19
2	16	16	14

Обнаруживаем, что ни один вариант не лучше никакого другого по всем критериям.

7.4. Поиск наилучшего варианта

Для поиска варианта требуется выбрать способ нормализации значений: нельзя сравнивать доллары и секунды, нужно перейти к безразмерным величинам.

Существуют, к примеру, такие способы нормализации:

_ 0 1 2	207
Название	Формула
Естественная	$\frac{f(i) - \min_{i} f(i)}{\max_{i} f(i) - \min_{i} f(i)}$
Относительная	$\frac{f(i)}{\max_i f(i)}$
Контекстуальная	$\frac{f(i)-t}{T-t}$

Под t и T при контекстуальной нормализации подразумеваются заранее определённые максимальные и минимальные значения: к примеру, имеющийся бюджет может быть определён как наибольшая допустимая стоимость, а заранее определённый ожидаемый поток посетителей — как наименьшая интенсивность входящих заявок.

Мы выбираем контекстуальную нормализацию с такими минимальными и максимальными значениями:

Надёжность Максимальная возможная надёжность — 100%, минимальная — та, при которой не происходит никакого резервирования и заявка должна пройти через обработчик и устройство памяти: $P_M \cdot P_P = 86.49\%$.

Среднее время пребывания Очевидно, что в идеальном случае заявка находится в системе ровно столько, сколько необходимо, чтобы она прошла через устройства обработки и хранения: $u = u_M + u_P = 13 + 23 = 36$. Худшим случаем является бесконечное время ожидания, однако зададим конечную величину, значения выше которой мы считаем неприемлемыми: 108, в три раза больше минимальной.

Интенсивность Определим границы как 0.01 и 0.4.

Стоимость В стоимость входят как минимум один обработчик и одно устройство памяти: $C = C_P + C_M = 15 + 6 = 21$. За максимальную стоимость примем 250, данное в условии к следующей лабораторной работе.

Условимся, что 1.0 — наилучшее значение для данного критерия, 0.0 — наихудшее. Те критерии, которые требуется минимизировать, а не максимизировать, следует преобразовать так: $f_n(i) := 1.0 - f_n(i)$.

Получаем:

N	P	u	Λ	C
1	0.00	0.136	0.09	1.00
2	0.04	0.326	0.17	0.93
14	0.54	0.793	0.31	0.81
19	0.43	0.676	0.20	0.87
16	0.42	0.135	0.09	0.96

7.4.1. Минимаксный критерий

Минимаксный метод заключается в том, что к матрице нормализованных значений критериев приписывается дополнительный столбец, в котором размещается наименьшее значение на данной строке. В качестве принимаемого решения выбирается то, на строке которого в дополнительном столбце наибольшее число.

$$\min_{i} f_n(i) \to \max$$

N	P	u	Λ	C	
1	0.00	0.136	0.09	1.00	0.00
2	0.04	0.326	0.17	0.93	0.04
14	0.54	0.793	0.31	0.81	0.31
19	0.43	0.676	0.20	0.87	0.20
16	0.42	0.135	0.09	0.96	0.09

Мы выбрали решение 14: самая слабая его сторона — пропускная способность, но у остальных она ещё меньше. Эта система стоит значительно больше, чем остальные, однако стоимость для нас не так значима.

7.4.2. Мультипликативный критерий

Мультипликативный метод заключается в максимизации произведения значений разных критериев:

$$\prod_{i} f_n(i) \to \max$$

N	P	u	Λ	C	
1	0.00	0.136	0.09	1.00	0.0000
2	0.04	0.326	0.17	0.93	0.0021
14	0.54	0.793	0.31	0.81	0.1075
19	0.43	0.676	0.20	0.87	0.0506
16	0.42	0.135	0.09	0.96	0.0049

Очевидный победитель — решение 14.

7.4.3. Аддитивный критерий

Требуется максимизировать сумму значений разных критериев:

$$\sum_{i} f_n(i) \to \max$$

N	P	u	Λ	C	
1	0.00	0.136	0.09	1.00	1.226
2	0.04	0.326	0.17	0.93	1.466
14	0.54	0.793	0.31	0.81	2.453
19	0.43	0.676	0.20	0.87	2.176
16	0.42	0.135	0.09	0.96	1.605

На первом месте по аддитивному критерию — решение 14, самое дорогое, но в остальных аспектах лидирующее. На втором месте 19, которое по всем параметрам рядом с 14.

7.4.4. Метод отклонения от идеала

Идеальный прибор мы определяем как обладающий максимальными значениями, описанными при выборе метода нормализации.

Его характеристики, таким образом, выглядят так:

P	u	Λ	C
1.00	1.00	1.00	1.00

Теперь определим качество прибора как его близость к идеальному:

$$\sum_{i} f_{I}(i) - f_{n}(i) \to \min$$

Несложно заметить, что в силу выбора нормализации результат в данном случае совпадает с результатом выбора по аддитивному критерию.

7.5. Выводы

В результате проделанной работы мы применили свои знания в теории надёжности, математическом моделировании и базовой арифметике для получения численных метрик вычислительной системы, а также изучили основные методы принятия решений в условиях, где не заданы заранее критерии оптимизации.