

SEMICONDUCTOR TECHNICAL DATA

TL431 Series

BIPOLAR LINEAR INTEGRATED CIRCUIT

PROGRAMMABLE PRECISION REFERENCES

The TL431 Series integrated circuits are three-terminal programmable shunt regulator diodes.

These monolithic IC voltage reference operate as a low temperature coefficient zener which is programmable from V_{ref} to 36 volts with two external resistors. These devices exhibit a wide operating current range of 1.0 to 100mA with a typical dynamic impedance of 0.22 . The characteristics of these references make them excellent replacements for zener diodes in many applications such as digital voltmeters, power supplies, and op amp circuitry. The 2.5 volt reference makes it convenient to obtain a stable reference from 5.0 volt logic supplies, and since the TL431 Series operates as a shunt regulator, it can be used as either a positive or negative voltage reference.

FEATURES

 \cdot Divice Code Name :TL431 + V_{ref} Code + Package Code

ITEM	V	V _{ref} Code	Package Code		
TL431	Code	Tolerance (%)	Code	Package	
		± 2.2		TO-92	
	A	± 1.0	± 1.0 F		
	В	± 0.5			

- · Low Dynamic Output Impedance : 0.22 (Typ.).
- · Sink Current Capability of 1.0 to 10 mA.
- Equivalent Full-Range Temperaty C :fficient of 50ppm/ (Typ.).
- Temperature Compensated for (er , c) or Full Rated Operating Temperature Range.
- · Low Output Noise Voltage.

LINE UP

Type No.	Operating Voltage(V)	f c g Marking
TL431		
TL431A	2.5~36	TO-92
TL431B		
TL431F		الدد
TL431AF		SOT-89 3E
TL431BF		3F
BLOCK DIAGRAM	I	

BLOCK DIAGRAM

TL431 Series

MAXIMUM RATINGS (Ta=25) (Full operating ambient temperature range applies unless otherwise noted.)

CHARACTE	SYMBOL	RATING	UNIT		
Cathode To Anode Voltage	V_{KA}	37	V		
Cathode Current Range, Contin	I_K	-100 150	mA		
Reference Input Current Range	I_{ref}	-0.05 10	mA		
Operating Junction Temperature		T _j	150		
Operating Temperature		T_{opr}	-40 85		
Storage Temperature		T_{stg}	-65 150		
Total Power Dissipation	TL431	P_{D}	700	mW	
	TL431F	ı D	800	III VV	

ELECTRICAL CHARACTEP 37 CS (Ta=25)

CHARACTERISTICS		SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Reference Input Voltage	TL431					2.440	2.495	2.550	V
	TL431	A	Viof	F152 1	$V_{KA}=V_{ref}, I_{K}=10mA$	2.470	2.495	2.520	V
	TL431	В				2.4825	2.495	2.5075	V
Reference Input Voltage Deviation Over Temperature Range		V _{ref}	Figure (Note 1)	/ _y = 10mA	-	7.0	30	mV	
Ratio of Change in Reference Input Voltage to Change in Cathode to		V _{ref} /V _{KA}	Figure 2	I _K =10mA	-	-1.4	-2.7	- mV/V	
Anode Voltage					-	-1.0	-2.0		
Reference Input Curren	nt	Ta=25	- I _{ref}	Figure 2	I _K =10mA, R1=10k , R2=	-	1.8	4.0	
	iit	Ta=T _{opr}	1 ref			-	-	6.5	μA
Reference Input Current Deviation Over Temperature Range		I_{ref}	Figure 2	I _K =10mA, R1=10k , R2=	-	0.8	2.5	μA	
Minimum Cathode Current For Regulation		I _{min}	Figure 1	V _{KA} =V _{ref}	-	0.5	1.0	mA	
Off-State Cathode Current		I _{off}	Figure 3	V _{KA} =36V, V _{ref} =0V	-	2.6	1000	nA	
Dynamic Impedance		Z_{ka}	Figure 1 (Note 2)	$V_{KA}=V_{ref}$, $I_{K}=1.0$ 100mA, f 1.0kHz	-	0.22	-		

FIGURE 1-TEST CIRCUIT FOR $V_{KA} = V_{ref}$

FIGURE 2-TEST CIRCUIT FOR $V_{KA} > V_{ref}$

Note 1:

The deviation parameter V_{ref} is defined as the differences between the maximum and minimum values obtained over the full operating ambient temperature range that applies.

AMBIENT TEMPERATURE

The average temperature coefficient of the Reference input voltage, $$V_{\text{ref}}$$, is defined as:

$$V_{ref}(\frac{ppm}{}) = \frac{(\frac{V_{ref}}{V_{ref} \text{ at } 25}) \times 10^6}{Ta}$$
$$= \frac{V_{ref} \times 10^6}{Ta(V_{ref} \text{ at } 25)}$$

 $V_{ref} \ \ can \ be positive \ or \ negative \ depending \ on \ whether$ $V_{ref} \ \ Min. \ or \ V_{ref} \ Max. \ occurs \ at \ the \ lower \ ambient \ temperature.$

FIGURE 3-TEST CIRCUIT FOR I_{off}

Example : $V_{ref} = 8.0 \text{mV}$ and slope is positive, V_{ref} at 25 = 2.495V, Ta=70

$$V_{ref} = \frac{0.008 \times 10^6}{70 \times (2.495)} = 45.8 \text{ ppm/}$$

Note 2: The dynamic impedance Z_{ka} is defined as:

$$|Z_{ka}| = \frac{VKA}{Ik}$$

When the device is programmed with two external resistors, R1 and R2, (refer to Figure 2) the total dynamic impedance of the circuit is defined as:

$$|Z_{ka'}| = |Z_{ka}| (1 + \frac{R1}{R2})$$

TL431 Series

TL431 Series

PRECAUTION FOR USE

Lead-Free Soldering Condition.

Elements mounting styles of electronic devices are gaining in further diversification over recent years, and needs for components are all the more expanding in varieties. Especially, surface mounting is steadily penetrating into industrial segments as a world-wide popular technical trend. Although exposure to high temperature is inevitable during soldering we recommend limiting the soldering temperature to low levels as shown in figure for the sake of retaining inherent excellent reliability.

[Lead-Free Soldering Tan er ar Profile]

1. When employing solder reflow method

1) Soldering Condition

Standard Condition: 250 (Temperature), 10 ± 1sec. (Time)

Peak Condition: 260 ± 3

- 2) Recommend temperature profile
- 3) Precautions on heating method

When resin in kept exposed to high temperature for a long time, device reliability may be marred.

Therefore, it is essential to complete soldering in the shortest time possible to prevent temperature of resin from rising.

2. When employing halogen lamps or infrared-ray heaters

When halogen lamps or infrared-ray heaters are used, avoid direct irradiation onto resin surfaces; such devices cause extensive localized temperature rise.

Please keep a reflow solder operating when Surface Mount Package s Soldering.