2.2 多元函数的极限与连续性

二重极限累次极限

与一元函数的极限相类似, 二元函数的极限 同样是二元函数微积分的基础. 但因自变量个数 的增多, 导致多元函数的极限有重极限与累次极 限两种形式, 而累次极限是一元函数情形下所不 会出现的.

一、二重极限

定义2.3 设二元函数 f 定义在 $D \subset \mathbb{R}^2$ 上, P_0 为 D 的一个聚点,a 是一实数. 若 $\forall \varepsilon > 0$, $\exists \delta > 0$,使得当 $P \in U^{\circ}(P_0; \delta) \cap D$ 时,都有 $|f(P) - a| < \varepsilon$,

则称
$$f$$
 在 D 上当 $P \rightarrow P_0$ 时以 a 为极限, 记作

$$\lim_{\substack{P\to P_0\\P\in D}} f(P) = a.$$

简记为

$$\lim_{P\to P_0} f(P) = a.$$

当 P, P_0 分别用坐标 (x,y), (x_0,y_0) 表示时, 上式也常写作

$$\lim_{(x, y)\to(x_0, y_0)} f(x, y) = a.$$

例1 依定义验证 $\lim_{(x,y)\to(2,1)}(x^2+xy+y^2)=7$.

证 因为

$$|x^2 + xy + y^2 - 7| = |(x^2 - 4) + xy - 2 + (y^2 - 1)|$$

$$= |(x+2)(x-2) + (x-2)y + 2(y-1) + (y+1)(y-1)|$$

$$\leq |x-2||x+y+2| + |y-1||y+3|.$$

不妨先限制在点(2,1)的方邻域

$$\{(x,y) \mid |x-2| < 1, |y-1| < 1\}$$

内来讨论,于是有

$$|y+3| = |y-1+4| \le |y-1| + 4 < 5,$$

 $|x+y+2| = |(x-2)+(y-1)+5|$
 $\le |x-2|+|y-1| + 5 < 7.$

所以

$$|x^{2} + xy + y^{2} - 7| < 7|x - 2| + 5|y - 1|$$

< $7(|x - 2| + |y - 1|).$

$$\forall \varepsilon > 0,$$
 $\mathbb{R} \delta = \min(1, \frac{\varepsilon}{14}), \stackrel{\triangle}{=} |x-2| < \delta, |y-1| < \delta$

且
$$(x, y) \neq (2, 1)$$
 时, 就有

$$|x^2 + xy + y^2 - 7| < 7 \times 2\delta = 14\delta \leq \varepsilon.$$

这就证得

$$\lim_{(x,y)\to(2,1)}(x^2+xy+y^2)=7.$$

例2 设

$$f(x, y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & (x, y) \neq (0, 0), \\ 0, & (x, y) = (0, 0), \end{cases}$$

证明
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

证 (证法一)
$$\forall \varepsilon > 0$$
, 由

$$\left| xy \frac{x^2 - y^2}{x^2 + y^2} - 0 \right| \le \frac{x^2 + y^2}{2} \left| \frac{x^2 - y^2}{x^2 + y^2} \right|$$

故
$$\lim_{(x,y)\to(0,0)} f(x,y) = 0.$$

注意 不要把上面的估计式错写成:

$$\left| xy \frac{x^2 - y^2}{x^2 + y^2} - 0 \right| \le \left| xy \frac{x^2 - y^2}{2xy} \right| \le \frac{1}{2} (x^2 + y^2),$$

因为 $(x, y) \rightarrow (0, 0)$ 的过程只要求 $(x, y) \neq (0, 0)$, 即 $x^2 + y^2 \neq 0$, 而并不要求 $xy \neq 0$.

(证法二) 作极坐标变换 $x = r \cos \varphi$, $y = r \sin \varphi$. 这时

 $(x, y) \rightarrow (0, 0)$ 等价于 $r \rightarrow 0$ (对任何 φ). 由于

$$|f(x,y)-0| = \left| xy \frac{x^2 - y^2}{x^2 + y^2} \right|$$

$$= \frac{1}{4} r^2 |\sin 4\varphi| \le \frac{1}{4} r^2,$$

因此, $\forall \varepsilon > 0$, 只须 $r = \sqrt{x^2 + y^2} < \delta = 2\sqrt{\varepsilon}$, 对任何 φ

都有

$$|f(x,y)-0| \le \frac{1}{4}r^2 < \varepsilon$$
, $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

下述定理及其推论相当于一元函数极限的海涅归结原则(而且证明方法也相类似).

定理1 $\lim_{\substack{P \to P_0 \\ P \in D}} f(P) = a$ 的充要条件是: 对于 D 的

任一子集 E, 只要 P_0 仍是 E 的聚点, 就有

$$\lim_{\substack{P\to P_0\\P\in E}} f(P) = a.$$

推论1 若 $\exists E_1 \subset D, P_0$ 是 E_1 的聚点, 使 $\lim_{\substack{P \to P_0 \\ P \in E_1}} f(P)$

不存在,则 $\lim_{\substack{P \to P_0 \\ P \in D}} f(P)$ 也不存在.

推论2 若 $\exists E_1, E_2 \subset D, P_0$ 是它们的聚点,使得

$$\lim_{\substack{P \to P_0 \\ P \in E_1}} f(P) = a_1 \stackrel{L}{\Rightarrow} \lim_{\substack{P \to P_0 \\ P \in E_2}} f(P) = a_2$$

都存在,但 $a_1 \neq a_2$,则 $\lim_{\substack{P \to P_0 \\ P \in D}} f(P)$ 不存在.

推论3 极限 $\lim_{\substack{P \to P_0 \\ P \in D}} f(P)$ 存在的充要条件是: D 中任

一满足条件 $P_n \neq P_0$ 且 $\lim_{n\to\infty} P_n = P_0$ 的点列 $\{P_n\}$,它所

对应的函数列 $\{f(P_n)\}$ 都收敛.

下面三个例子是它们的应用.

例3 讨论 $f(x, y) = \frac{xy}{x^2 + y^2}$ 当 $(x, y) \to (0, 0)$ 时是否

存在极限. (注:本题结论很重要,以后常会用到.)

解 当动点 (x,y) 沿着直线 y = mx 而趋于定点 (0,0)

时,由于
$$f(x,y) = f(x,mx) = \frac{m}{1+m^2}$$
, 因此有

$$\lim_{\substack{(x,y)\to(0,0)\\y=mx}} f(x,y) = \lim_{x\to 0} f(x,mx) = \frac{m}{1+m^2}.$$

这说明动点沿不同斜率 m 的直线趋于原点时, 对应的极限值不相同, 因而所讨论的极限不存在.

例4 设

$$f(x,y) = \begin{cases} 1, & 0 < y < x^2, -\infty < x < +\infty, \\ 0, & 其余部分. \end{cases}$$

如图 16-15 所示, 当 (x, y) 沿任何直线趋于原点时,相应的 f(x, y) 都趋于 0, 但这并不表明此函数在

 $(x, y) \rightarrow (0, 0)$ 时的极限为 0. 因为当(x, y)沿抛物线 $y = kx^2(0 < k < 1)$ 趋于点 O 时,f(x, y)将趋于1. 所以极限 $\lim_{(x,y)\to(0,0)} f(x,y)$ 不存在.

*例5 讨论 $f(x,y) = \frac{xy}{x+y}$ 在 $(x,y) \to (0,0)$ 时不存在极限.

解 利用定理 1的推论 2, 需要找出两条路径,沿着此二路径而使 $(x,y) \rightarrow (0,0)$ 时,得到两个相异的极限.

第一条路径简单地取 y = x, 此时有

$$\lim_{\substack{(x,y)\to(0,0)\\(y=x)}} \frac{xy}{x+y} = \lim_{x\to 0} \frac{x^2}{2x} = 0.$$

第二条路径可考虑能使 $f(x,y) = \frac{xy}{x+y}$ 的分子与

分母化为同阶的无穷小,导致极限不为 0. 按此思路

的一种有效选择, 是取 $y = x^2 - x$. 此时得到

$$\lim_{\substack{(x,y)\to(0,0)\\(y=x^2-x)}} \frac{xy}{x+y} = \lim_{x\to 0} \frac{x(x^2-x)}{x^2} = \lim_{x\to 0} (x-1) = -1,$$

这就达到了预期的目的.

下面再给出当 $P(x,y) \rightarrow P_0(x_0,y_0)$ 时, $f(x,y) \rightarrow +\infty$ (非正常极限)的定义.

定义2 设D为二元函数f的定义域, $P_0(x_0, y_0)$ 是D

的一个聚点. 若 $\forall M > 0, \exists \delta > 0$, 使得

 $\forall P(x,y) \in U^{\circ}(P_0;\delta) \cap D$, 都有 f(x,y) > M,

则称f在D上当 $P \rightarrow P_0$ 时,有非正常极限 +∞,记作

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = +\infty,$$

或
$$\lim_{P\to P_0} f(P) = +\infty$$
.

仿此可类似地定义:

$$\lim_{P\to P_0} f(P) = -\infty - \lim_{P\to P_0} f(P) = \infty.$$

例6 设
$$f(x,y) = \frac{1}{2x^2 + 3y^2}$$
. 证明

$$\lim_{(x, y) \to (0,0)} f(x, y) = +\infty.$$

证 此函数的图象见后面的图.

图 16-16

因 $2x^2 + 3y^2 < 4(x^2 + y^2)$, 故对 $\forall M > 0$, 只需取

$$\delta = \frac{1}{2\sqrt{M}}$$
, 当 $0 < \sqrt{x^2 + y^2} < \frac{1}{2\sqrt{M}}$ 时,就有

$$2x^2 + 3y^2 < \frac{1}{M}, \quad \mathbb{P} \quad \frac{1}{2x^2 + 3y^2} > M.$$

这就证得结果.

二元函数极限的四则法则与一元函数极限相仿,特别把 f(x,y) 看作点函数 f(P) 时,相应的证法也相同,这里不再一一叙述.

二、累次极限

在上面讨论的 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 中,自变量 (x,y) 是以任何方式趋于 (x_0,y_0) 的,这种极限也称为重极限.下面要考察 x 与 y 依一定的先后顺序,相继趋于 x_0 与 y_0 时 f 的极限,这种极限称为累次极限. 定义3 设 $f(x,y),(x,y)\in D$,D 在 x 轴、y 轴上的投影分别为 X、Y,即

 $X = \{x \mid (x,y) \in D\}, Y = \{y \mid (x,y) \in D\},$ x_0, y_0 分别是 X, Y 的聚点. 若对每一个 $y \in Y(y \neq y_0),$

存在极限 $\lim_{x\to x_0} f(x,y)$, 它一般与y有关, 记作 $\varphi(y) = \lim_{x\to x_0} f(x,y);$

如果进一步还存在极限

$$L=\lim_{y\to y_0}\varphi(y),$$

则称此 L 为 f(x,y) 先对 $x(\rightarrow x_0)$ 后对 $y(\rightarrow y_0)$ 的

累次极限,记作

$$L = \lim_{y \to y_0} \lim_{x \to x_0} f(x, y).$$

类似地可以定义先对 y 后对 x 的累次极限:

$$K = \lim_{x \to x_0} \lim_{y \to y_0} f(x, y).$$

注 累次极限与重极限是两个不同的概念, 两者之间

没有蕴涵关系. 下面三个例子将说明这一点.

例7 设
$$f(x,y) = \frac{xy}{x^2 + y^2}$$
. 由例 3 知道 $f(x,y)$ 当

 $(x, y) \rightarrow (0, 0)$ 时的重极限不存在. 但当 $y \neq 0$ 时, 有

$$\lim_{x\to 0} \frac{xy}{x^2 + y^2} = 0,$$

从而又有

$$\lim_{y \to 0} \lim_{x \to 0} \frac{xy}{x^2 + y^2} = 0.$$

同理可得

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = 0.$$

这说明 f 的两个累次极限都存在而且相等.

例8 设
$$f(x,y) = \frac{x^2 + y^2 + x - y}{x + y}$$
, 它关于原点的两个

累次极限分别为

$$\lim_{y\to 0} \lim_{x\to 0} \frac{x^2+y^2+x-y}{x+y} = \lim_{y\to 0} \frac{y^2-y}{y} = \lim_{y\to 0} (y-1) = -1,$$

$$\lim_{x\to 0} \lim_{y\to 0} \frac{x^2 + y^2 + x - y}{x + y} = \lim_{x\to 0} \frac{x^2 + x}{x} = \lim_{x\to 0} (x+1) = 1.$$

当沿斜率不同的直线 $y = mx, (x, y) \rightarrow (0, 0)$ 时, 有

$$\lim_{\substack{(x,y)\to(0,0)\\y=mx}}\frac{x^2+y^2+x-y}{x+y}=\frac{1-m}{1+m},$$

因此该函数的重极限不存在. (下面的定理 2 将告

诉我们,这个结果是必然的.)

例 9 设 $f(x,y) = x \sin \frac{1}{y} + y \sin \frac{1}{x}$, 它关于原点的两个累次极限都不存在. 这是因为对任何 $y \neq 0$, 而当 $x \to 0$ 时, f 的第二项不存在极限. 同理, f 的第一项当 $y \to 0$ 时也不存在极限. 但是由于

$$\left|x\sin\frac{1}{y}+y\sin\frac{1}{x}\right|\leq |x|+|y|,$$

故按定义知道 $(x,y) \rightarrow (0,0)$ 时f的重极限存在,且

$$\lim_{(x, y)\to(0, 0)} f(x, y) = 0.$$

下述定理告诉我们:重极限与累次极限在一定条件下也是有联系的.

定理2 若f(x,y)的重极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 与

累次极限 $\lim_{x\to x_0} \lim_{y\to y_0} f(x,y)$ 都存在,则两者必定相等.

证设

$$\lim_{(x, y)\to(x_0, y_0)} f(x, y) = A,$$

则 $\forall \varepsilon > 0, \exists \delta > 0$,使得当 $P(x, y) \in U^{\circ}(P_0; \delta)$ 时,有 $|f(x, y) - A| < \varepsilon. \tag{1}$

另由存在累次极限之假设,对任一满足不等式

$$0 < |x - x_0| < \delta \tag{2}$$

的 x, 存在极限

$$\lim_{y \to y_0} f(x, y) = \varphi(x). \tag{3}$$

回到不等式(1), 让其中 $y \rightarrow y_0$, 由 (3) 可得

$$|\varphi(x) - A| \le \varepsilon. \tag{4}$$

故由 (2), (4) 两式, 证得 $\lim_{x\to x_0} \varphi(x) = A$, 即

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) = \lim_{(x, y) \to (x_0, y_0)} f(x, y) = A.$$

由这个定理立即导出如下两个便于应用的推论.

推论1 若重极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 和累次极限

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y), \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

都存在,则三者必定相等.

推论2 若累次极限

$$\lim_{x\to x_0}\lim_{y\to y_0}f(x,y) \quad = \quad \lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$$

都存在但不相等,则重极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 必定不存在.

请注意: (i) 定理 2 保证了在重极限与一个累次 极限都存在时,它们必相等. 但对另一个累次极限的 存在性却得不出什么结论

(ii) 推论 1 给出了累次极限次序可交换的一个充分条件.

(iii) 推论 2 可被用来否定重极限的存在性(如例8).

*例10 设 f(x,y) 在点 $P_0(x_0,y_0)$ 的某邻域 $U^{\circ}(P_0)$ 内有定义,且满足:

(i) 在 $U^{\circ}(P_0)$ 内, 对每个 $y \neq y_0$, 存在极限

$$\lim_{x\to x_0} f(x,y) = \psi(y);$$

(ii) 在 $U^{\circ}(P_0)$ 内,关于 x 一致地存在极限

$$\lim_{y\to y_0} f(x,y) = \varphi(x).$$

试证明: $\lim_{x\to x_0}\lim_{y\to y_0}f(x,y)=\lim_{y\to y_0}\lim_{x\to x_0}f(x,y)$.

证 1° (证明 $\lim_{y\to y_0} \psi(y) = A$ 存在) $\forall \varepsilon > 0$,由条件 (ii),

对一切x存在公共的 $\delta > 0$,只要 $0 < |y - y_0| < \delta$ (并

使 $(x,y) \in U^{\circ}(P_0)$), 便有

$$|f(x,y)-\varphi(x)|<\frac{\varepsilon}{2}.$$

于是当 $0<|y'-y_0|<\delta$ 时,又有

$$|f(x,y)-f(x,y')| \le |f(x,y)-\varphi(x)| +$$

$$|f(x,y')-\varphi(x)| < \varepsilon.$$

再令 $x \rightarrow x_0$,由条件(i)又得

$$|\psi(y)-\psi(y')|\leq \varepsilon.$$

根据柯西准则, 证得 $\lim_{y\to y_0} \psi(y) = A$ 存在.

$$2^{\circ}$$
 (证明 $\lim_{x\to x_0} \varphi(x) = A$) $\forall \varepsilon > 0$, 由

$$|\varphi(x)-A| = |\varphi(x)-f(x,y)| +$$

$$| f(x,y) - \psi(y) | + | \psi(y) - A |,$$

利用条件 (ii) 与结论 1°, 当 $(x,y) \in U^{\circ}(P_0)$, 且 $y = y_0$

充分接近时,可使

$$|\varphi(x)-f(x,y)|<\frac{\varepsilon}{3}, |\psi(y)-A|<\frac{\varepsilon}{3};$$

再将 y 固定,由条件 (i), $\exists \delta > 0$, $\exists 0 < |x - x_0| < \delta$ 时,

又有

$$|f(x,y)-\psi(y)|<\frac{\varepsilon}{3};$$

这就证得 $|\varphi(x)-A|<\varepsilon$, 即

$$\lim_{x\to x_0}\varphi(x)=\lim_{y\to y_0}\psi(y).$$

注 本例给出了二累次极限相等的又一充分条件. 与定理16. 6 的推论1 相比较, 在这里的条件 (i) 与 (ii) 成立时, 重极限 $\lim_{(x,y)\to(x_0,y_0)} f(x,y)$ 未必存在.

复习思考题

试问累次极限

$$\lim_{x \to x_0} \lim_{y \to y_0} f(x, y) \quad = \quad \lim_{y \to y_0} \lim_{x \to x_0} f(x, y)$$

是否就是动点 (x,y) 按后面的图中两条特殊路径 l_1 与 l_2 分别趋向 (x_0,y_0) 时 f(x,y)的极限?并由此说明定理 2的推论 2 与定理 1的推论 2 是不是相同的?

例* 观察 $z = \frac{x^3 y}{x^6 + y^2}$ 图形,证明: $\lim_{\substack{x \to 0 \ y \to 0}} \frac{x^3 y}{x^6 + y^2}$ 不存在.

