Experimental page: ratios of curve fit deaths to curve fit confirmed cases (CFR)

0.18% X 14 = 2.520%

False Positives Demonstration

Use 0.18% from US est. incidence above as estimated daily incidence *Prevalence* estimated as avg. infected period of 2 weeks X incidence

 99% accuracy of test

 Positive
 Negative

 test pos
 2.495%
 0.975%
 3.47%

 test neg
 0.025%
 96.505%
 96.53%

 2.520%
 97.480%
 100.00%

False pos. is a bit over 1/4 of total positives!

TRUE + 2.495%/3.47% 71.9% FALSE + 0.975%/3.47% 28.1% 100.00%

Reducing the R_e while keeping gamma constant is the same as reducing contact rate. Contact rate is reduced through isolation, lockdowns, and vaccinations. Seems to indicate timing of start of measures is a big factor. The orange data taken as without measures, but we know certain measures were taken. Hard to determine effect, without a basis of comparison.

Counter-act this tendency by increasing test sensitivity. However this may increase false negatives, the recipients of which may be positive, think they're negative, and go spread it around some more.

USA Excess Deaths (from CDC data):

	Annualized on 52 weeks		Weeks are labelled 0 thru 51	
		All Cause	All Cause, excl. CV19	CV19
3	yr average before 2020	859:100,000	876:100,000	-
	2020	1009:100,000	909:100,000	-
	Diff.	133:100,000	34:100,000	99:100,000

3 yr average 859:100,000

26% of All-Cause excess deaths are non-CV19

https://data.cdc.gov/NCHS/Excess-Deaths-Associated-with-COVID-19/xkkf-xrst/data

K = 0.318

gamma = 0.171 $R_o = \exp(K/\text{gamma}) = 6.421$ gamma = 0.286 $R > [1-1/R_0]/N$ 3.043475 84% <=Herd immunity

