Algorytm SVM

Mikołaj Szawerda 318731

Opis polecenia

Zadanie polega na zaimplementowaniu algorytmu SVM i zbadaniu działania na przykładzie zbioru danych Wine Quality Data Set. Zadaniem algorytmu jest określenie na podstawie podanych właściowości fizykochemicznych wina jakość wina zmapowaną do dwóch wartości - klasyfikacja binarna.

SVM polega na wyznaczeniu linii, która jak najlepiej separuje obie klasy - równoważnie wyznaczenie jak największego obszaru separującego wektory różnych klas. Ponieważ nie każdy zbiór danych jest liniowo separowalny do algorytmu należy zastosować dodatkowe kroki zwiększające jego skuteczność: - dodanie marginesu - linia nie musi separować od siebie dokładnie wszystkich reprezentatnów danych klas - zastosowanie "sztuczki jądrowej" - użycie funkcji jądrowej, która pozwala policzyć iloczyn skalarny dwóch wektorów w przestrzeni wyznaczanej przez funkcję jądrową - praktycznie, pozwala to nadać dowolny kształt linii separującej

Niech:

 $\hat{f}\left(x
ight)=w^{T}x+b$ - postać prostej, która najlepiej separuje dwie klasy

$$y_i = egin{cases} -1 & \hat{f}\left(x_i
ight) \leqslant 0 \ 1 & \hat{f}\left(x_i
ight) > 0 \end{cases}$$

funkcja decyzyjna, o przynależności do klasy

k(u,v) - przekształcenie jądrowe

Zadaniem algorytmu jest wyznacznie w i b, a ponieważ algorytm ma mieć możliwość stosowania różnych funkcji jądrowych, program będzie realizował algorytm zapisany w postaci dualnej, gdzie:

$$\hat{w} = \sum_i^N lpha_i x_i y_i$$

$$\hat{b}=median(\{b_i:x_n\in X_n\wedge b_i=|y_n-k(\hat{w},x_n)|\})$$
, gdzie X_n - zbiór wektorów wspierających.

Ponieważ nie zawsze wektory wspierające muszą znajdować się idealnie na marginesie liczona jest absolutna odległość od marginesu $(y_n\in -1,1)$ i z powstałych wartości brana jest wartość środkowa

$$a_{1,...,N} = arg \, min_{lpha}(rac{1}{2} \sum_{i}^{N} \sum_{j}^{N} y_{i}y_{j}lpha_{i}lpha_{j}k(x_{i},x_{j}) - \sum_{i}^{N} lpha_{i})$$

Przy ograniczeniach:
$$egin{cases} \sum_i^N y_i lpha_i = 0, \ (orall_i = 1, \ldots, N) \ 0 \leqslant lpha_i \leqslant C \end{cases}$$

Hiperparametrami algorytmu są więc:

- ullet C współczynnik kosztu mnożnik kary za użycie rozluźnienia
- k(u,v) przekształcenie jądrowe
- parametry k(u, v)

Optymalizacja obliczeń numerycznych

Ponieważ trenowanie SVM w postaci dualnej jest bardzo kosztowne obliczeniowo(problem zmienia wymiarowość na ilość danych trenujących), funkcję celu zapiszę w postaci macierzowej celem skorzystania z pakietu numpy

$$a_{1,...,N} = arg \, min_{lpha} rac{1}{2} lpha^T Y K Y lpha - \sum lpha_i$$

Gdzie:

$$K_{ij} = k(x_i, x_j)$$

$$Y = diag(y)$$

W celu poprawy szybkości zbieżności solvera, wyprowadzam gradient optymalizowanej funkcji postaci:

$$abla \mathbb{D}(lpha) = \varepsilon - \langle K, lpha
angle$$

Planowane eksperymenty numeryczne

- podczas uczenia zostanie zastosowane 5-krotna walidacja krzyżowa na zbiorze danych N=500, z mapowaniem $q(q_{old})=sgn(q_{old}-5)$, gdzie q to nowa wartość jakości, a dane win czerwonych i białych zostały połączone w jeden dataset i ułożone losowo
- W celu oceny konieczności zastosowania normalizacji/standaryzacji(celem zwiększenia skuteczności i szybkości zbieżność solvera) przedstawię histogramy cech
- Do oceny wpływu hiperparametrów przedstawię macierz pomyłek, oraz wykresy prezentujące TPR i FPR
- algorytm wywołam dla dwóch funkcji jądrowych:

$$\bullet \ k(u,v) = u^T v$$

$$ullet k(u,v) = exp(rac{-|u-x|^2}{2\sigma^2})$$

Charakterystyki liczbowe datasetu

Charakterystyka cech								
name	Min.	Mean	Max.					
fixed.acidity	3.80000	7.21530706	15.90000					
volatile.acidity	0.08000	0.33966600	1.58000					
citric.acid	0.00000	0.31863322	1.66000					
residual.sugar	0.60000	5.44323534	65.80000					
chlorides	0.00900	0.05603386	0.61100					
free.sulfur.dioxide	1.00000	30.52531938	289.00000					
total.sulfur.dioxide	6.00000	115.74457442	440.00000					
density	0.98711	0.99469663	1.03898					
рН	2.72000	3.21850085	4.01000					
sulphates	0.22000	0.53126828	2.00000					
alcohol	8.00000	10.49180083	14.90000					
quality	-1.00000	0.26612283	1.00000					

Na podstawie histogramów oraz min/max wartości cech, można stwierdzić iż konieczna będzie standaryzacja wartości - dane mają różne skale, a wszystkie cechy mają rozkład normalny.

Na podstawie tabeli można również stwierdzić, iż rekordów o y=1 jest więcej.

Wykres zależności TPR(FPR) dla różnych parametrów

Wykres przedstawia jaki jest stosunek przykładów zaklasyfikowanych poprawnie do błędnie zakfalifikowanych dla klasy o y=1. Można zauważyć trend, gdzie wraz z wzrostem FPR rośnie TPR - ze względu na przewagę liczbną klasy 1 algorytm częściej jako odpowiedź zwraca tą klasę.

Na przykładzie wykresu widać również zależność wyników dla jądra rbf od sigmy i kary - wraz z wzrostem tych parametrów maleje lokalność algorytmu, program globalnie stwierdza, że ta klasa się częściej pojawia - rośnie więc TPR, ale także FPR.

Według tego wykresu, najlepszymi modelami są algorytmy, których punkty są położene jak najbliżej lewego-górnego rogu. Według tej klasyfikacji najlepszym algorytmem jest algorytm z jądrem liniowym i karą 1000 lub 0.1 oraz model rbf z sigmą 1e-3 i karą 1e-2.

Przyjmując za próg akceptacji FPR < 0.5 około 75% uruchomień było prawidowych.

Porównanie najlepszych i najgorszych uruchomień modeli danego typu

Dla najlepszych uruchomień (wykres jest maksymalnie rozciągnięty - małe FPR, duże TPR) algorytmy tych samych kerneli osiągneły praktycznie takie same wyniki - każdy model znalazł to samo optimum. Algorytmy z liniowym jądrem okazały się lepsze.

W przypadku najgorszych uruchomień modele z liniowym jądrem osiągnęły mniejszą ilość niepoprawnych klasyfikacji, lecz gorszą ilość poprawnych. Ponownie można zauważyć iż jądro rbf częściej wskazuje klasę 1 jako bardziej prawdopodobną

Najlepsze uruchomienia

Najgorsze uruchomienia

Dokładność wskazuje w ilu przypadkach, bez względu na wartość klasy, model wskazał poprawną odpowiedź. SVM z liniowym jądrem zarówna dla najlepszego jak i najgorszego uruchomienia uzyskał najlepsze wyniki, jednakże można zauważyć iż nie są one znacząco odmienne.

Macierze błędów

Podsumowanie wyników									
Тур	TPR	TPR σ	FPR	$FPR\sigma$	Czas wykonania[s]	Dokładność			
Jądro: linear Kara: 0.1	0.75	0.06	0.29	0.08	41.84	74%			
Jądro: linear Kara: 10	0.76	0.06	0.30	0.07	147.25	74%			
Jądro: linear Kara: 1000	0.76	0.06	0.30	0.07	707.40	74%			
Jądro: rbf σ=0.001 Kara: 0.01	0.80	0.06	0.43	0.07	8.39	71%			
Jądro: rbf σ=0.010 Kara: 0.01	0.80	0.06	0.43	0.07	8.33	71%			
Jądro: rbf σ=1.000 Kara: Inf	0.84	0.05	0.46	0.05	59.19	70%			
Jądro: rbf σ=0.010 Kara: 1	0.85	0.02	0.47	0.06	8.39	69%			
Jądro: rbf σ=0.010 Kara: Inf	0.85	0.02	0.47	0.06	8.72	69%			

Według tabeli agregującej średnie osiągi każdego z modeli algorytmy z liniowym jądrem osiągały najlepszą dokładność, jednakże rzadziej poprawnie klasyfikowały. Można również zauważyć praktyczny brak wpływy parametru kary na algorytm liniowy, po za czasem wykonania, który pomiędzy C=0.1 a C=1000 jest aż 18 krotnie większy. Widać również, iż dla jądra rbf algorytm szybciej optymalizował funkcję celu - przez wcześniejsze policzenie macierzy jądra został wykluczony element ciężkości obliczeń iloczynu skalarnego w innych przestrzeniach. SVM z RBF był również szybko optymalizowalny, ponieważ funkcja ma charakter bardziej lokalny, przez co solver może szybko natrafić na odpowiednie miejsce do eksploatacji.

Wnioski

Dzięki wielu uruchomieniom tych samych modeli na różnych podzbiorach danych uczących i cross walidacji, można stwierdzić, iż algorytm SVM pozwala na dobre dostosowanie do danych, dzięki możliwości zmiany jądra - pozwala klasyfikować możliwe nieliniowe zależności. Jednakże algorytm w postaci dualnej jest bardzo kosztowny obliczeniowo - każda ewaluacja funkcji celu to wymnożenie macierzy o rozmiarach zbioru uczącego przez kombinację mnożników Lagrange'a. Zauważając, lepsze osiągi algorytmu z jądrem liniowym, oraz praktyczny brak wpływu hiperparametru kary, można stwierdzić, iż zbiór był bliższy separacji liniowej. W przypadku algorytmy z jądrem RBF można zauważyć wpływ hiperparametrów na osiągi oraz czas działania. Mniejsze wartości sigmy i kary zwiększają lokalność rozwiązań, a przez to optymalizator szybciej znajduje optimium lokalne, jednakże może to prowadzić do niesłusznego faworyzowania jednej z klas, zwiększając ilośc niepoprawnie przewidzianych klas z zbioru testowego.