Example

Using polar integration, find the area of the region enclosed by the circle $x^2 + y^2 = 4$, above the line y = 1, and below the line $y = \sqrt{3}x$.

$$A = \int_{\pi/6}^{\pi/3} \int_{\csc\theta}^{2} r \, dr \, d\theta = \frac{1}{2} \int_{\pi/6}^{\pi/3} \left(4 - \csc^{2}\theta \right) d\theta = \frac{1}{2} \left(4\theta + \cot\theta \right)_{\pi/6}^{\pi/3} = \dots = \frac{\pi - \sqrt{3}}{3}$$

Triple Integrals in Rectangular Coordinates

$$\iiint_D F(x, y, z) dV = \lim_{n \to \infty} S_n$$

$$S_n = \sum_{k=1}^n F(x_k, y_k, z_k) \Delta V_k$$

$$\Delta V_k = \Delta x_k \Delta y_k \Delta z_k$$

Definition

The volume of a closed, bounded region D in space is

$$V = \iiint\limits_{\Omega} dV$$

Fubini's Theorem still holds, e.g.:

(any other order can be used)

$$\iiint_D F(x, y, z) dV = \int_{x-a}^{x-b} \int_{y-g_1(x)}^{y-g_2(x)} \int_{z-f_1(x, y)}^{z-f_2(x, y)} F(x, y, z) dz dy dx$$

Finding Limits of Integration in the Order dz dy dx

Sketch the region D along with its "shadow" R in the xy-plane.
 Label the upper and lower bounding surfaces of D and the upper and lower bounding curves of R.

2. Find the z-limits of integration. Draw a line M passing through a typical point (x, y) in R parallel to the z-axis. As z increases, M enters D at $z = f_1(x, y)$ and leaves at $z = f_2(x, y)$.

As y increases, L enters R at $y = g_1(x)$ and leaves at $y = g_2(x)$.

The surfaces' intersection: $x^2 + 3y^2 = 8 - x^2 - y^2$. $x^2 + 2y^2 = 4$ i.e. they intersect on the cylinder $x^2 + 2y^2 = 4$ so the projection R of D onto the xy plane is the ellipse $x^2 + 2y^2 = 4$ together with its interior: $x^2 + 2y^2 \le 4$.

For every point in R we have

$$\frac{x^2 + 3y^2}{f_1(x, y)} = \left(\frac{x^2 + 2y^2}{x^2 + 2y^2}\right) + y^2 \le 4 + y^2 = 8 - \frac{4}{4} + y^2 \le 8 - \left(\frac{x^2 + 2y^2}{x^2 + 2y^2}\right) + y^2 = 8 - \frac{x^2 - y^2}{4} + y^2 \le 8 - \frac{4}{4} + y^2 \le$$

the y-limits of integration

$$x^2 + 2y^2 = 4$$

$$2y^{2} = 4 - x^{2}$$

$$y = \pm \sqrt{(4 - x^{2})/2} = g_{1}(x), g_{2}(x) \le$$

Example

Find the volume of the region *D* enclosed by the surfaces $z = x^2 + 3y^2$ and $z = 8 - x^2 - y^2$.

$$V = \iiint_{D} dV = \int_{-2}^{2} \int_{-\sqrt{(4-x^{2})/2}}^{\sqrt{(4-x^{2})/2}} \int_{-\sqrt{(4-x^{2})/2}}^{8-x^{2}-y^{2}} dz dy dx = 2 \int_{-2}^{2} \int_{-\sqrt{(4-x^{2})/2}}^{\sqrt{(4-x^{2})/2}} (4-x^{2}-2y^{2}) dy dx - (8-x^{2}-y^{2}) - (x^{2}+3y)^{2} = 8-2x^{2}-4y^{2} = 2(4-x^{2}-2y^{2})$$

an even function of x $= \frac{4\sqrt{2}}{3} \int_{-2}^{2} (4-x^2)^{3/2} dx = \frac{8\sqrt{2}}{3} \int_{0}^{2} (4-x^2)^{3/2} dx \quad \left(\begin{array}{c} \text{substitution} \\ x = 2\sin u \end{array} \right) \quad \dots = 8\pi\sqrt{2}$