Übungsblatt 9 - Cerberus

Aufgabe 2

a)

Die Momentaufnahmen für $k_BT=1$ und $k_BT=3$ befinden sich in Abbildung 1, 2, 3 und 4.

In Abbildung 1 fällt auf, dass sich Anfangs- und Endzustand kaum voneinader unterscheiden und nur einige wenige Spins geflipt sind. Dagegen ist in Abbildung 2 zu beobachten, dass sich die zufällig verteilten Spins größenteils orden.

Das Gegenteil ist dagegen in Abbildung 3 zubeobachten. Dort geht der geordnete Zustand in einen zufällig verteilten Zustand über. In Abbildung 3 ist allerdings sowohl für Anfang als auch Ende ein eher zufälliges Muster zu beobachten. Diese Beobachtungen decken sich mit unseren Erwartungen, da es für $K_BT=1$ sehr unwahrscheinlich ist, dasds die Spins zurücklflippen, sobald sie einmal im energetisch günstigeren Zustand sind. Bei $k_BT=3$ ist die Temperatur größer als die kritische Temperatur, weswegen die Spins gleichverteilt sind.

Abbildung 1: Momentaufnahme für feste Spins $k_BT=1$ am Anfang und Ende der Simulation.

b)

In Abbildung 5 ist die mittlere Energie pro Spin gegen die Simulationszeit t aufgetragen. Dabei ist zu erkennen, dass verschiedene Startbedingungen zu unterschiedlichen Zuständen führen. Besonders auffällig sind dabei die Energien für $k_BT=3$, die zu divergieren scheinen. Dies entspricht nicht unserer Erwartung – wir erwarten, dass ich eine Äquilibrierung einstellt –, weshalb wir einen Fehler im Code vermuten, den wir leider nicht mehr finden konnten.

Abbildung 2: Momentaufnahme für zufällige Spins mit $k_BT=1$ am Anfang und Ende der Simulation.

Abbildung 3: Momentaufnahme für feste Spins mit $k_BT=3$ am Anfang und Ende der Simulation.

Abbildung 4: Momentaufnahme für zufällige Spins mit $k_BT=3$ am Anfang und Ende der Simulation.

Abbildung 5: Mittlere Energie pro Spin für die einzelnen Startbedingungen aufgetragen gegen die Zeit.