

Faculty of Computing and Information Technology

BACHELOR DEGREE IN MANAGEMENT MATHEMATICS WITH COMPUTING (HONOURS)

BAMS3043 Mathematical and Statistical Software

Assignment 4

Tutorial Group : RMM3S1G2

Tutor : Dr. Tan Yan Bin

Submission Due Date: 19 September 2021

Name	Student ID
Ong YiLiang	20WMR09187
Kang Tien Wey	20WMR09182
Chan Teik Chun	20WMR09179

Data Understanding and Preprocessing

# Column Non-Null Count Dtyp 0 Country 2938 non-null obje 1 Year 2938 non-null inte	- ect
0 Country 2938 non-null obje	
· · · · · · · · · · · · · · · · · · ·	
1 Year 2938 non-null inte	
2,550 Holl Hall Thee	4
2 Status 2938 non-null obje	ect
3 Life expectancy 2928 non-null floa	t64
4 Adult Mortality 2928 non-null floa	t64
5 infant deaths 2938 non-null inte	4
6 Alcohol 2744 non-null floa	t64
7 percentage expenditure 2938 non-null floa	t64
8 Hepatitis B 2385 non-null floa	t64
9 Measles 2938 non-null inte	4
10 BMI 2904 non-null floa	t64
11 under-five deaths 2938 non-null inte	4
12 Polio 2919 non-null floa	t64
13 Total expenditure 2712 non-null floa	t64
14 Diphtheria 2919 non-null floa	t64
15 HIV/AIDS 2938 non-null floa	t64
16 GDP 2490 non-null floa	t64
17 Population 2286 non-null floa	t64
18 thinness 1-19 years 2904 non-null floa	t64
19 thinness 5-9 years 2904 non-null floa	t64
20 Income composition of resources 2771 non-null floa	t64
21 Schooling 2775 non-null floa	t64

Screenshot 1 - Data type

The target variable measures life expectancy from 2000 to 2015 among countries. The dataset provided contains numerous data with different variable names such as country, year, status and other variables. In screenshot 1, the variables are listed for non-null count which start with the variable named "country" with a 2938 non-null count, and end with the variable named "schooling" with a 2775 non-null count. The majority data type for the variables in the dataset is float, only "country" and "status" are strings, and the rest of the variables are integers.

Null values

Country	0
Year	0
Status	0
Life Expectancy	10
Adult Mortality	10
Infant Deaths	0
Alcohol Intake(L)	194
Percentage Expenditure	0
HepB Vaccination %	553
Measles	0
BMI	34
Under Five Deaths	0
Pol3 Vaccination %	19
Total Expenditure	226
Diphtheria Vaccination %	19
HIV/AIDS	0
GDP	448
Population	652
Thinness 10-19 years	34
Thinness 5-9 years	34
Resources Income Composition	167
Schooling	163
dtype: int64	

Screenshot 2 - Number of null values in dataset

Country	0
Year	0
Status	0
Life Expectancy	0
Adult Mortality	0
Infant Deaths	0
Alcohol Intake(L)	0
Percentage Expenditure	0
HepB Vaccination %	0
Measles	0
BMI	0
Under Five Deaths	0
Pol3 Vaccination %	0
Total Expenditure	0
Diphtheria Vaccination %	0
HIV/AIDS	0
GDP	0
Population	0
Thinness 10-19 years	0
Thinness 5-9 years	0
Resources Income Composition	on 0
Schooling	0
dtype: int64	

Screenshot 3 - After replace the null values by mean value in dataset

In screenshot 2, you can see that some variables in this dataset contain null values. For example, a variable named "GDP" in the dataset contains 448 numbers of null values. Thus, we replace those null values with their mean value according to the year. In screenshot 3, you can see that every of the variables did not contain null values anymore.

Label Encoding

```
df['Status'] = LabelEncoder().fit_transform(df['Status'])
df['Status'].unique()
#developing : 1, developed : 0
```

Screenshot 4 - replace column Status

In screenshot 4, we have change every row for the column or variable named "Status", row with 'developing' become to 1, and row with 'developed' become to 0.

Detecting and dealing with outliers

	Factor	Lower Bound %	Upper Bound %
0	Year	0.00	0.00
1	Life Expectancy	0.58	0.00
2	Adult Mortality	0.00	2.93
3	Infant Deaths	0.00	10.72
4	Alcohol Intake(L)	0.00	0.10
5	Percentage Expenditure	0.00	13.24
6	HepB Vaccination %	7.56	0.00
7	Measles	0.00	18.45
8	BMI	0.00	0.00
9	Under Five Deaths	0.00	13.41
10	Pol3 Vaccination %	9.50	0.00
11	Total Expenditure	0.00	1.74
12	Diphtheria Vaccination %	10.14	0.00
13	HIV/AIDS	0.00	18.45
14	GDP	0.00	10.21
15	Population	0.00	6.91
16	Thinness 10-19 years	0.00	3.40
17	Thinness 5-9 years	0.00	3.37
18	Resources Income Composition	4.42	0.00
19	Schooling	2.18	0.44

Screenshot 5 - Outliers in dataset

In the dataset provided, there are outliers for all of the columns except columns named "BMI". In screenshot 5, you can notice that most of these variables contain numbers in lower bound, or upper bound or both. Thus, we have normalized it with Winsorization which reduces the effect of possibly spurious outliers.

Correlation

Strong Strong Strong Strong Strong Strong Strong
Strong Strong Strong Strong
Strong Strong Strong
Strong Strong
Strong
Strong
Strong
Nil

Screenshot 6 - Correlation in dataset

In screenshot 6, the correlation table shows the relationship between independent variable and dependent variable. When the value of the correlation coefficient column is close to -1 or 1, it means the features are strongly correlated to the dependent variable, however if the value of the correlation coefficient is close to 0 means the features are weakly correlated to the dependent variable.

Q1 Modeling Simple Linear Regression

Let xi = value of the index i features

i = index indicate the feature according to the correlation ranking table, $i \in \{1, 2, 3, ..., 20\}$

Model1:

The HIV/AIDS feature is chosen as the independent variable for Model1 because this feature has the highest correlation(-0.817994) with life expectancy.

OLS Regression Results

De	Dep. Variable: y				R-sq	uared:	0.669
Model:			0	LS	Adj. R-sq	uared:	0.669
	Metho	d: L	east Squa	res	F-sta	atistic:	5937.
	Dat	e: Mon,	13 Sep 20)21 P	rob (F-sta	tistic):	0.00
	Tim	e:	17:31	:11	Log-Likel	ihood:	-8565.4
No. Ob	servation	s:	29	938		AIC:	1.713e+04
Df	Df Residuals: 2936					BIC:	1.715e+04
Df Model: 1							
Covariance Type: nonrobust							
	coef	std err	t	P> t	[0.025	0.975]	
const	73.9960	0.105	708.006	0.000	73.791	74.201	
x1	-9.3965	0.122	-77.053	0.000	-9.636	-9.157	

Screenshot 7 - simple linear regression with OLS method

y = 73.996 - 9.3965x1

Q2 Modeling two Multiple Linear Regression

Model2:

For Model2, we are choosing all the features that have a strong correlation(>0.5 or <-0.5) with life expectancy no matter if it is positive or negative correlation. The features are HIV/AIDS, Resources Income Composition, Schooling, Under Five Deaths, Adult Mortality, BMI, Infant Deaths, Thinness 5-9 years, Thinness 10-19 years, Pol3 Vaccination %, Diphtheria Vaccination %.

Dep. Variable:		у	R-squ	ared:	0	.868		
Model:	OLS		dj. R-squ	ared:	0	.867		
Method:	Least Squares		F-statistic:		1	743.		
Date:	Mon, 13 Sep 2	2021 Pro	b (F-stati	istic):		0.00		
Time:	17:3	4:33 L o	og-Likelil	nood:	-72	20.2		
No. Observations:	2	2938		AIC:	1.4466	e+04		
Df Residuals:	2	2926		BIC:	1.4546	e+04		
Df Model:		11						
Covariance Type:	nonro	bust						
		coef	std err		t P	> t	[0.025	0.975]
	const	59.2565	0.567	104.56	0.0	000 5	58.145	60.368
	HIV/AIDS	-4.3640	0.111	-39.15	0.0	000	-4.583	-4.145
Resources Income	Composition	14.7097	0.878	16.76	2 0.0	000 1	12.989	16.430
	Schooling	0.0973	0.052	1.88	34 0.0	60	-0.004	0.199
Unde	r Five Deaths	-0.2870	0.034	-8.54	6 0.0	000	-0.353	-0.221
A	dult Mortality	-0.0138	0.001	-18.61	9 0.0	000	-0.015	-0.012
	ВМІ	0.0067	0.004	1.58	2 0.1	114	-0.002	0.015
1	Infant Deaths	0.3375	0.047	7.12	24 0.0	000	0.245	0.430
Thinn	ess 5-9 years	-0.2714	0.061	-4.48	0.0	000	-0.390	-0.153
Thinnes	s 10-19 years	0.0225	0.061	0.37	2 0.7	10	-0.096	0.141
Pol3 V	accination %	0.0242	0.007	3.53	8 0.0	000	0.011	0.038
Diphtheria V	accination %	0.0342	0.006	5.35	7 0.0	000	0.022	0.047

Screenshot 8 - multiple linear regression for model2 with OLS method

y = 59.2565 - 4.364x1 + 14.7097x2 + 0.0973x3 - 0.287x4 - 0.0138x5 + 0.0067x6 + 0.3375x7 - 0.2714x8 + 0.0225x9 + 0.0242x10 + 0.0342x11

Model3:

Life expectancy is affected by many factors such as: socioeconomic status, including employment, income, education and economic wellbeing. (The Department of Health, 2012).

Thus, we improve the model as Model3 by adding the Status feature in Model2.

Dep. Variable:		у		R-squ	ared:		0.868		
Model:		OLS	A	dj. R-squ	ared:		0.868		
Method:	Least Squ	ares		F-sta	tistic:		1609.		
Date:	Mon, 13 Sep 2	2021	Pro	b (F-stat	istic):		0.00		
Time:	17:4	2:52	Lo	og-Likelil	nood:		-7210.5	i	
No. Observations:	2	2938			AIC:	1.4	145e+04		
Df Residuals:	2	2925			BIC:	1.4	152e+04		
Df Model:		12							
Covariance Type:	nonro	bust							
		С	oef	std err		t	P> t	[0.025	0.975]
	const	60.1	671	0.602	100.0	18	0.000	58.988	61.347
	HIV/AIDS	-4.3	958	0.111	-39.4	77	0.000	-4.614	-4.177
Resources Income	Composition	14.3	827	0.878	16.3	82	0.000	12.661	16.104
	Schooling	0.0	757	0.052	1.4	64	0.143	-0.026	0.177
Unde	r Five Deaths	-0.3	063	0.034	-9.0	71	0.000	-0.372	-0.240
Α	dult Mortality	-0.0	133	0.001	-17.9	17	0.000	-0.015	-0.012
	ВМІ	0.0	075	0.004	1.7	95	0.073	-0.001	0.016
	Infant Deaths	0.3	647	0.048	7.6	58	0.000	0.271	0.458
Thinn	ess 5-9 years	-0.2	575	0.060	-4.2	59	0.000	-0.376	-0.139
Thinnes	s 10-19 years	0.0	399	0.061	0.6	58	0.511	-0.079	0.159
Pol3 V	accination %	0.0	238	0.007	3.4	85	0.000	0.010	0.037
Diphtheria V	accination %	0.0	340	0.006	5.3	44	0.000	0.022	0.046
	Status	-0.7	320	0.166	-4.4	06	0.000	-1.058	-0.406

Screenshot 9 - multiple linear regression for model 3 with OLS method

y = 60.1671 - 4.3958x1 + 14.3827x2 + 0.0757x3 - 0.03063x4 - 0.0133x5 + 0.0075x6 + 0.3647x7 - 0.2575x8 + 0.0399x9 + 0.0238x10 + 0.034x11 - 0.732x12

Q3 Compare the three models

R-squared (R^2) is a statistical measure that shows the proportion of the variance for a dependent variable that's explained by independent variables in a regression model. The correlation represents the strength of relationship between the dependent variable and independent variables. (Free Code Camp, 2017). R-Squared only works as intended in a simple linear regression model with one explanatory variable. With a multiple regression made up of several independent variables, the R-Squared must be adjusted. The adjusted R^2 compares the descriptive power of regression models that include diverse numbers of predictors. (Jason Fernando, 2021).

Ranking of Adj R^2

	Model	Adjusted R^2
1	Model 3	0.867910
2	Model 2	0.867079
3	Model 1	0.669002

Screenshot 10 - compare models with adjusted R^2

Model 3 is the best model due to the highest value of R^2 that indicates the goodness of fitness to the model is 0.86791, which means that 86.791% of data fit into this model. However, model 2 and model 1 only got 86.7079% and 66.9002% respectively.

To improve the Life Expectancy:

- Polio, Diphtheria vaccination coverage should be increased
- Measures should be taken to ensure food security
- Measures should be taken to provide education and reduce the risks of infant mortality
- Resources should be utilized productively
- AIDS awareness campaigns should be organized.

Q4 95% confidence interval of life expectancy

AIM: find the optimal interval of life expectancy when people live in perfect and optimal condition.

Using Model 3, we are 95% confident to say that people are able to live for 86.54years to 92.51years when people likely to go schooling for 14.9years and control their BMI at 38.16, at the same time the country is developed, utilizes its resources productively at the index of 0.803, improve the vaccination coverage of Pol3 and Diphtheria to 98%, take action to lower the death rate of HIV/AIDS (0-4years), under five deaths and infant deaths to 0.1, 0 and 0.031 respectively, lastly lower the adult mortality rate to 0.019. Moreover, the prevalence of thinness in the society among 5-9years and among 10-19 years should be at 0.8% and 8% respectively.

<u>Using central tendency - mean</u>

Model 3 is the best model and we are 95% confident to say that people are able to live for 69.36years to 69.93years when people likely to go schooling for 11.97years and control their BMI at 38.16, at the same time the country is developed, utilizes its resources productively at the index of 0.636, improve the vaccination coverage of Pol3 and Diphtheria to around 85%, take action to lower the death rate of HIV/AIDS (0-4years), under five deaths and infant deaths to 0.52, 0.014 and 0.01 respectively, lastly lower the adult mortality rate to 0.1467. Moreover, the prevalence of thinness in the society among 5-9years and among 10-19 years should be at 4.15% and 4.12% respectively.

References

The Department of Health. 2012. *Life expectancy and wellbeing: Life expectancy at birth.* Viewed on 13 Sep 2021. Available from:

https://www1.health.gov.au/internet/publications/publishing.nsf/Content/oatsih-hpf-2012-toc~ti erl~life-exp-wellb~119>

Free Code Camp. 2017. *Learn how to select the best performing linear regression for univariate models*. Viewed on 13 Sep 2021. Available from: https://www.freecodecamp.org/news/learn-how-to-select-the-best-performing-linear-regression-for-univariate-models-e9d429c40581/>

Jason Fernando. 2021. *R-Squared*. Viewed on 13 Sep 2021. Available from: https://www.investopedia.com/terms/r/r-squared.asp

Statsmodels. 2021. *Statsmodels*. Viewed on 13 Sep 2021. Available at: https://www.statsmodels.org/stable/index.html.>

Kaggle. 2021. *DS Project-Life Expectancy (WHO)*. Viewed on 13 Sep 2021. Available at: https://www.kaggle.com/shabanamir/ds-project-life-expectancy-who.>