Problema de la Mochila

Definición Recursiva

Para el problema de la mochila con objetos $\{1, \ldots, k\}$ y capacidad D:

$$m(k,D) = \begin{cases} 0 & \text{si } k = 0 \text{ o } D = 0 \\ m(k-1,D) & \text{si } k > 0 \text{ y } p_k > D \\ m\text{áx}\{m(k-1,D), b_k + m(k-1,D-p_k)\} & \text{si } k > 0 \text{ y } p_k \leq D \end{cases}$$

donde:

- p_k = peso del objeto k
- b_k = beneficio del objeto k
- $m(k, D) = \text{máximo beneficio usando objetos } \{1, \dots, k\} \text{ con capacidad } D$

Teorema

Theorem

m(n, C) es el valor óptimo para el problema de la mochila con n objetos y capacidad C.

Estrategia de demostración

Demostrar por **inducción en** *k* que:

Para todo $k \ge 0$ y toda capacidad $D \ge 0$, m(k, D) es el máximo beneficio posible usando únicamente los primeros k objetos con capacidad D.

Demostración - Casos Base

Demostración.

Caso k = 0: Sin objetos disponibles, el máximo beneficio es 0. Por tanto, m(0, D) = 0 es óptimo para cualquier D.

Demostración - Casos Base

Demostración.

Caso k = 0: Sin objetos disponibles, el máximo beneficio es 0. Por tanto, m(0, D) = 0 es óptimo para cualquier D.

Caso D = 0: Con capacidad cero, no podemos incluir ningún objeto. Por tanto, m(k,0) = 0 es óptimo para cualquier k.

Demostración - Casos Base

Demostración.

Caso k = 0: Sin objetos disponibles, el máximo beneficio es 0. Por tanto, m(0, D) = 0 es óptimo para cualquier D.

Caso D = 0: Con capacidad cero, no podemos incluir ningún objeto. Por tanto, m(k,0) = 0 es óptimo para cualquier k.

Hipótesis inductiva: Para algún $k' \ge 1$, supongamos que m(j, D') es óptimo para todo j < k' y toda capacidad $D' \ge 0$.

Objetivo: Demostrar que m(k', D) es óptimo para cualquier D > 0.

Caso: $p_{k'} > D$.

Si $p_{k'} > D$, el objeto k' no cabe en la mochila.

Caso: $p_{k'} > D$.

Si $p_{k'} > D$, el objeto k' no cabe en la mochila.

Cualquier solución factible usando objetos $\{1, \ldots, k'\}$ debe excluir el objeto k'.

Caso: $p_{k'} > D$.

Si $p_{k'} > D$, el objeto k' no cabe en la mochila.

Cualquier solución factible usando objetos $\{1, \ldots, k'\}$ debe excluir el objeto k'.

Por tanto, el problema se reduce a encontrar la solución óptima usando objetos $\{1, \ldots, k'-1\}$ con capacidad D.

Caso: $p_{k'} > D$.

Si $p_{k'} > D$, el objeto k' no cabe en la mochila.

Cualquier solución factible usando objetos $\{1, \ldots, k'\}$ debe excluir el objeto k'.

Por tanto, el problema se reduce a encontrar la solución óptima usando objetos $\{1, \ldots, k'-1\}$ con capacidad D.

Por hipótesis inductiva: m(k'-1, D) es óptimo.

Luego: m(k', D) = m(k' - 1, D) es óptimo.

Lema clave

Si una solución es óptima, entonces al quitar cualquier objeto de ella, la solución restante debe ser óptima para el subproblema correspondiente.

Caso: $p_{k'} \leq D$.

Sea S^* una solución óptima para la instancia (k', D). Hay dos casos:

Lema clave

Si una solución es óptima, entonces al quitar cualquier objeto de ella, la solución restante debe ser óptima para el subproblema correspondiente.

Caso: $p_{k'} \leq D$.

Sea S^* una solución óptima para la instancia (k', D). Hay dos casos: **Caso 2a:** $k' \notin S^*$ usa solo objetos $\{1, \ldots, k'-1\}$. Por el lema y la hipótesis inductiva: valor óptimo = m(k'-1, D).

Lema clave

Si una solución es óptima, entonces al quitar cualquier objeto de ella, la solución restante debe ser óptima para el subproblema correspondiente.

Caso: $p_{k'} \leq D$.

Sea S^* una solución óptima para la instancia (k', D). Hay dos casos:

Caso 2a: $k' \notin S^*$ usa solo objetos $\{1, \dots, k'-1\}$. Por el lema y la hipótesis inductiva: valor óptimo = m(k'-1, D).

Caso 2b: $k' \in S^*$ $S^* \setminus \{k'\}$ usa objetos $\{1, \dots, k'-1\}$ con capacidad $D - p_{k'}$. Por el lema y la hipótesis inductiva: valor óptimo = $b_{k'} + m(k'-1, D-p_{k'})$.

Lema clave

Si una solución es óptima, entonces al quitar cualquier objeto de ella, la solución restante debe ser óptima para el subproblema correspondiente.

Caso: $p_{k'} \leq D$.

Sea S^* una solución óptima para la instancia (k', D). Hay dos casos:

Caso 2a: $k' \notin S^*$ usa solo objetos $\{1, \dots, k'-1\}$. Por el lema y la hipótesis inductiva: valor óptimo = m(k'-1, D).

Caso 2b: $k' \in S^*$ $S^* \setminus \{k'\}$ usa objetos $\{1, \dots, k'-1\}$ con capacidad $D - p_{k'}$. Por el lema y la hipótesis inductiva: valor óptimo = $b_{k'} + m(k'-1, D-p_{k'})$.

Como no sabemos cuál caso da el óptimo, tomamos:

 $m(k', D) = \max\{m(k'-1, D), b_{k'} + m(k'-1, D-p_{k'})\}$

Conclusión

Resumen de la demostración

- **1** Los casos base (k = 0 y D = 0) son trivialmente correctos
- 2 Para el paso inductivo, usamos que toda solución óptima debe excluir o incluir el objeto k'
- lacktriangle Si lo excluye: el problema se reduce al subproblema con k'-1 objetos
- **③** Si lo incluye: obtenemos $b_{k'}$ y el problema se reduce al subproblema con k'-1 objetos y capacidad $D-p_{k'}$
- Se En ambos casos, por inducción, conocemos la solución óptima del subproblema
- Tomamos el máximo entre ambas opciones

Por tanto, m(n, C) computa correctamente el valor óptimo del problema de la mochila.

