[4]

	ii.	Explain star schema. What are the problems with star schema	6
		design? When snow flake schema is useful?	
OR	iii.	Explain architecture of Data Ware house with labelled diagram.	6
Q.6		Attempt any two:	
	i.	Discuss major issues in Data Mining.	5
	ii.	Discuss social impact of Data Mining with relevant example.	5
	iii.	Write short note:	5
		(a) Spatial Data Mining	
		(b) Web Mining	

Total No. of Questions: 6

Enrollment No.....

Total No. of Printed Pages:4

Faculty of Engineering

End Sem (Odd) Examination Dec-2017 CA5CO15 Data Warehousing and Mining

Programme: MCA Branch/Specialisation: Computer Application Maximum Marks: 60

Duration: 3	3 Hrs. Maximum Marks	: 60
-	nestions are compulsory. Internal choices, if any, are indicated. Answers of buld be written in full instead of only a, b, c or d.	Q.
Q.1 i.	Which of the following is not a data mining functionality? (a) Characterization and Discrimination. (b) Classification and regression. (c) Selection and interpretation. (d) Clustering and Analysis.	1
ii.	The various aspects of data mining methodologies is/are I. Mining various and new kinds of knowledge. II. Mining knowledge in multidimensional space. III. Pattern evaluation and pattern or constraint-guided mining. IV. Handling uncertainty, noise, or incompleteness of data. (a) I, II and IV only (b) II, III and IV only (c) I, II and III only (d) All I, II, III and IV	1
iii.	is data about data (a) Mini data (b) Meta data (c) Micro data (d) Multi data	1
iv.	Data cleaning is (a) Large collection of data mostly stored in a computer system (b) The removal of noise errors and incorrect input from a database (c) The systematic description of the syntactic structure of a specific database. It describes the structure of the attributes the tables and foreign key relationships (d) None of the above	1
v.	Classification is (a) A subdivision of a set of examples into a number of classes (b) A measure of the accuracy, of the classification of a concept that is given by a certain theory (c) The task of assigning a classification to a set of examples (d) None of the above	1

P.T.O.

	vi.	A Cluster is				1
		(a) Group of similar objects	objec	ts that differ s	ignificantly from other	
		•	atabase	to transform or	simplify data in order to	
		prepare it for a ma		~ ~		
		· · · · ·			from which information	
		can potentially be		ed		
	vii.	(d)None of the above Data is stored, retrieve		undated in		1
	V11.	(a) OLTP (b) OL		(c) SMTP	(d) FTP	1
	viii.	Star schema is compo		` '	` ′	1
	V 1111.	(a) One (b) Tw		(c) Three	(d) Four	1
	ix.	K-means is an examp		(c) Timee	(u) Pour	1
	1.	(a) Classification	10 01	(b) Association		1
		(c) Clustering		(d) Prediction		
	v	` '	for	` '	s based on their quality	1
	х.	· ·			• •	1
		(a) Ranking hypertext			cument structure	
		(c) Ranking web cont	ent	(d) None of the	se	
Q.2	i.	Define data mining.				3
Q.2	ii.	<u>-</u>	in the	process of kr	nowledge discovery in	7
	11.	databases with diagram		process of ki	iowicage alseovery in	,
OR	iii.	Draw and explain arcl	hitectur	e of a typical dat	a mining system.	7
Q.3	i.	What do you mean by	Data F	Pre-processing?		2
	ii.	A database has four	transac	tions. Let Min.	Support = 60% and min.	8
		Conf = 80%:	1			
		T ID	Date		Item Bought	
		T 100	15/10		$\{K,A,D,E\}$	
		T 200	15/10/		$\{D,A,C,E,B\}$	
		T 300 T 400	19/10 <i>i</i> 20/10 <i>i</i>		{C,A,B,E} {B,A,D}	
		Find all frequent item			$\{D,A,D\}$	
OR	iii.				he attribute age. The age	8
	111.	values for the data tup		•		J
					,	
		13, 15, 16, 16, 19, 20,	, 20, 21	, 22, 22, 25, 25,	25, 25, 30, 33, 33, 35, 35,	
		35, 35, 36, 40, 45, 46,	, 52, 70			

- (a) Use smoothing by bin means to smooth the above data, using a bin depth of 3.
- (b) How might you determine outliers in the data?
- Q.4 i. Define Classification and Prediction.
 - ii. With the help of decision tree find means of predicting which company profiles will lead to a increase or decrease in profits based on the following data:

Age	Competition	Type	Profit
Old	Yes	Software	Down
Old	No	Software	Down
Old	No	Hardware	Down
Mid	Yes	Software	Down
Mid	Yes	Hardware	Down
Mid	No	Hardware	Up
Mid	No	Software	Up
New	Yes	Software	Up
New	No	Hardware	Up
New	No	Software	Up

Profit is class attribute.

OR iii. Given the car theft data. Attributes are Car No., Color, Type, Origin, and the class label **Stolen** can be either yes or no.

Car No.	Color	Type	Origin	Stolen
A1	Blue	Racing	Domestic	Yes
A2	Blue	Racing	Domestic	No
A3	Blue	Racing	Domestic	Yes
A4	Yellow	Racing	Domestic	No
A5	Yellow	Racing	Important	Yes
A6	Yellow	SUV	Important	No
A7	Yellow	SUV	Important	Yes
A8	Yellow	SUV	Domestic	No
A9	Blue	SUV	Important	No
A10	Blue	Racing	Important	Yes

Apply the Bayesian Classification on above data.

Q.5 i. Differentiate between OLTP and OLAP.

_ _

CA5CO15 Data Warehousing and Mining

Marking scheme

Q.1	i.	Which of the following is not a data mining functionality?	1
		(a) Characterization and Discrimination	
		(b) Classification and regression	
		(c) Selection and interpretation	
		(d) Clustering and Analysis	
		Ans: (c) Selection and interpretation	
	ii.	The various aspects of data mining methodologies is/are	1
		i) Mining various and new kinds of knowledge	
		ii) Mining knowledge in multidimensional space	
		iii) Pattern evaluation and pattern or constraint-guided mining.	
		iv) Handling uncertainty, noise, or incompleteness of data	
		(a) i, ii and iv only (b) ii, iii and iv only	
		(c) i, ii and iii only (d) All i, ii, iii and iv	
		Ans: (d) All i, ii, iii and iv	
	iii.	is data about data	1
		(a) Mini data (b) Meta data (c) Micro data (d) Multi data	
		Ans: (b) Meta data	
	iv.	Data cleaning is	1
		(a) Large collection of data mostly stored in a computer system	
		(b) The removal of noise errors and incorrect input from a	
		database	
		(c) The systematic description of the syntactic structure of a	
		specific database. It describes the structure of the attributes the	
		tables and foreign key relationships.	
		(d) None of the above	
		Ans: (b) The removal of noise errors and incorrect input from a	
		database	
	v.	Classification is	1
		(a) A subdivision of a set of examples into a number of classes	
		(b) A measure of the accuracy, of the classification of a concept	
		that is given by a certain theory	
		(c) The task of assigning a classification to a set of examples	
		(d) None of the above	
		Ans: (a) A subdivision of a set of examples into a number of	
		classes	
	vi.	A Cluster is	1
		(a) Group of similar objects that differ significantly from other	
		objects	

		(b) Operations on a	database to transform	or simplify data in order	
		to prepare it for a m	nachine-learning algor	ithm	
		(c) Symbolic rep	resentation of facts	or ideas from which	
		information can pot	tentially be extracted		
		(d) None of these			
		Ans: (a) Group of	similar objects that d	liffer significantly from	
		other objects			
	vii.	Data is stored, retrie	eved and updated in		1
		(a) OLTP (b) OLA	AP (c) SMTP (d) FTP		
		Ans: (a) OLTP			
	viii.	Star schema is com	posed of fac	t table	1
		(a) One (b) Two (d	c) Three (d) Four		
		Ans: (a) One			
	ix.	k-means is an exam	ple of		1
		(a) Classification	(b) Association		
		(c) Clustering	(d) Prediction		
		Ans: (c) Clustering			
	х.	PageRank is a me	tric fordoc	ruments based on their	1
		quality			
		(a) ranking hypertex	xt (b) ranking doc	ument structure	
		(c) ranking web cor	ntent (d) None of the	se	
		Ans: (c) ranking we	eb content		
Q.2	i.	Define data mining			3
		0.75 * 4 marks for	each explained term of	of definition.	
	ii.	Describe the steps	in the process of k	nowledge discovery in	7
		databases with diag	ram.		
		2 Marks for diagra	m.		
		5 marks for explan	ation of each step.		
OR	iii.	Draw and explain a	rchitecture of a typica	l data mining system.	7
		3 Marks for diagra	m		
		4 Marks for explan	nation		
Q.3	i.	What do you mean	by Data Pre-processing	ng?	2
		2 marks for explan	ation		
	ii.	A database has for	ur transactions. Let M	Min. Support $= 60\%$ and	8
		min. Conf = 80%:	,	_	
		T ID	Date	Item Bought	
		T 100	15/10/17	{K,A,D,E}	
		T 200	15/10/17	{D,A,C,E,B}	
		T 300	19/10/17	$\{C,A,B,E\}$	

T 400	20/10/17	{B,A,D}

Find all frequent item sets using A priori.

5 marks for generating all the frequent n-item sets

3 marks for properly applying pruning

OR iii. Suppose that the data for analysis include the attribute age. The age values for the data tuples are (in increasing order):

13, 15, 16, 16, 19, 20, 20, 21, 22, 22, 25, 25, 25, 25, 30, 33, 33, 35, 35, 35, 35, 36, 40, 45, 46, 52, 70.

i) Use smoothing by bin means to smooth the above data, using a bin depth of 3.

2

ii) How might you determine outliers in the data?

5 marks for applying smoothing by bin method

3 marks for explaining methods of outlier detection.

- Q.4 i. Define Classification and Prediction.
 - 1* 2 marks each for definition
 - ii. With the help of decision tree find means of predicting which company profiles will lead to a increase or decrease in profits based on the following data:

Age	Competition	Type	Profit
Old	Yes	Software	Down
Old	No	Software	Down
Old	No	Hardware	Down
Mid	Yes	Software	Down
Mid	Yes	Hardware	Down
Mid	No	Hardware	Up
Mid	No	Software	Up
New	Yes	Software	Up
New	No	Hardware	Up
New	No	Software	Up

Profit is class attribute.

- **3 Marks** for calculating information gain for 3 attributes
- **4 Marks** for calculating 2nd level splitting attribute
- 1 Mark for drawing the tree
- OR iii. Given the car theft data. Attributes are Car No., Color, Type,
 Origin, and the class label **Stolen** can be either yes or no.

Car No.	Color	Type	Origin	Stolen
A1	Blue	Racing	Domestic	Yes
A2	Blue	Racing	Domestic	No
A3	Blue	Racing	Domestic	Yes

A4	Yellow	Racing	Domestic	No
A5	Yellow	Racing	Important	Yes
A6	Yellow	SUV	Important	No
A7	Yellow	SUV	Important	Yes
A8	Yellow	SUV	Domestic	No
A9	Blue	SUV	Important	No
A10	Blue	Racing	Important	Yes

Apply the Bayesian Classification on above data.

- 2 Marks for calculating probabilities of two classes
- 4 marks for calculating conditional probabilities
- 2 marks for calculating posterior probabilities

Q.5	i.	Differentiate between OLTP and OLAP.	4
		1/2 * 8 marks for each difference	
	ii.	Explain star schema. What are the problems with star schema	6
		design? When snow flake schema is useful?	
		2 marks for explaining of star schema	
		2 marks for highlighting problems of star schema	
		2 marks for usefulness of snowflake schema	
OR	iii.	Explain architecture of Data Ware house with labelled diagram.	6
		2 marks for diagram	
		4 marks for explanation	
Q.6		Attempt any two:	
2.0	i.	Discuss major issues in Data Mining.	5
	1.	1 * 5 mark for discussion of each issue	3
	ii.	Discuss social impact of Data Mining with relevant example.	5
	11.	3 marks for outlining social impact	3
		2 marks for example	
	iii.	Write short note:	5
	111.	a) Spatial Data Mining	3
		b) Web Mining	
		2.5 * 2 marks for each topic	
		2.3 · 2 maiks for each topic	
