Teoría de la decisión Trabajo 1 Solución de los problemas

Enrique Zubiría González

octubre 2023

Problema 1

Resolver, con cada uno de los métodos estudiados, y tanto en el caso favorable (beneficios) como en el desfavorable (costes), el problema definido por la siguiente tabla de decisión:

	ω_1	ω_2	ω_3	ω_4
$\overline{a_1}$	100	90	20	45
a_2	85	80	10	20
a_3	5	70	90	60
a_4	10	10	40	65
a_5	5	10	85	120

Problema 2

Una empresa está estudiando la adquisición de nueva maquinaria para hacer frente al incremento de la demanda previsto para los próximos meses.

Las posibles alternativas de compra y los beneficios estimados para cada alternativa (en miles de euros) dependiendo del incremento de demanda de los próximos meses (alto, medio o bajo) se recogen en la siguiente tabla:

Tabla 2: Beneficios según incremento de demanda

	bajo	medio	alto
máquina 1	1000	4000	6500
máquina 2	1400	3500	4500
máquina 3	1500	5700	9500
máquina 4	2000	5000	9000

Proponer qué máquina debe comprarse en esta situación.

Soluciones

Problema 1

	ω_1	ω_2	ω_3	ω_4
$\overline{a_1}$	100	90	20	45
a_2	85	80	10	20
a_3	5	70	90	60
a_4	10	10	40	65
a_5	5	10	85	120

Caso desfavorable (costes)

- Criterio de Wald (o pesimista): al tratarse de costes se aplica minimax, resultando a_4 la alternativa óptima, con un coste de 65.
- Criterio optimista: al tratarse de costes se aplica *minimin*, resultando 2 alternativas óptimas (a_3, a_5) , con un coste de 5.
- Criterio de Savage: resulta a_4 la alternativa óptima, con un coste de 45.
- Criterio de Laplace: resulta a_4 la alternativa óptima, con un coste de 31.25.
- Criterio de punto ideal: resulta a_4 la alternativa óptima, con un coste de 54.31.
- Criterio de Hurwicz¹: la alternativa óptima depende del valor de α , como puede verse en esta gráfica:

Criterio de Hurwicz (desfavorable – línea discontinua)

En la siguiente tabla se muestran las alternativas óptimas para los distintos intervalos de α :

Tabla 4: alternativa óptima según α

Intervalo	Alternativa
$ \begin{array}{c} \hline (0, 0.833) \\ (0.833, 1) \end{array} $	a_4 a_3

¹Hemos dejado este criterio para el final por motivos de presentación, ya que su desarrollo es algo más largo y tiene un gráfico

Caso favorable (beneficios)

- Criterio de Wald (o pesimista): al tratarse de beneficios se aplica maximin, resultando a_1 la alternativa óptima, con un coste de 20.
- Criterio optimista: al tratarse de costes se aplica maximax, resultando a_5 la alternativa óptima, con un coste de 120.
- Criterio de Savage: resulta a_1 la alternativa óptima, con un coste de 75.
- Criterio de Laplace: resulta a_1 la alternativa óptima, con un coste de 63.75.
- Criterio de punto ideal: resulta a_1 la alternativa óptima, con un coste de 102.59.
- Criterio de Hurwicz: la alternativa óptima depende del valor de α , como puede verse en esta gráfica:

Criterio de Hurwicz (favorable – línea discontinua)

En la siguiente tabla se muestran las alternativas óptimas para los distintos intervalos de α :

Tabla 5: alternativa óptima según α

Intervalo	Alternativa
(0,0.429)	a_1
(0.429,1)	a_5

Problema 2

Puede verse en la tabla resumen que todos los criterios, salvo el pesimista (Wald), coinciden en la alternativa más favorable, por lo que la recomendación final que haríamos sería comprar la **máquina 3**.

Tabla 6: alternativa óptima (para α =0.6)

	bajo	medio	alto	Wald	Optimista	Hurwicz	Savage	Laplace	Punto Ideal
máq. 1	1000	4000	6500	1000	6500	4300	3000	3833	3590.3
máq. 2	1400	3500	4500	1400	4500	3260	5000	3133	5495.5
máq. 3	1500	5700	9500	1500	9500	6300	500	5567	500.0
máq. 4	2000	5000	9000	2000	9000	6200	700	5333	860.2
iAlt.Opt (fav.)	_	_	_	máq. 4	máq. 3	máq. 3	máq. 3	máq. 3	máq. 3