Noel Csomay-Shanklin

ADRRESS: 1200 East California Blvd. PHONE: (619) 768-3627

MC104-44 EMAIL: noelcs@caltech.edu
Pasadena, CA 91125 WEBSITE: noelc-s.github.io/website

EDUCATION

PhD California Institute of Technology 2019 – 2025 Control and Dynamical Systems

B.S. Georgia Institute of Technology, 2015 – 2019

Major: Mechanical Engineering Minors: Computer Science, Robotics

GPA: 4.0/4.0

Research Projects

Predictive Control for Legged Systems

Collaborated on implementing a nonlinear model predictive controller for a planar biped $[C_9]$ using the OCS2 predictive control toolbox, and experimentally investigated the importance of using properly designed running and terminal costs to the stability of the robotic system. Designed and implemented a geometrically consistent nonlinear model predictive controller for a 3D hopping robot $[U_2]$, which was able to demonstrate stable hopping on hardware, and flipping and trajectory tracking in simulation. Future work includes implementation of predictive controllers on a lower body exoskeleton.

Hierarchical Control with Guarantees

Developed a hierarchical control architecture which integrates CLFs and MPC for robust state and input constrained nonlinear stabilization $[C_{11}]$. Future work includes theoretical extensions to systems with underactuation, as well as the incorporation of a high-level decision making layer.

Structured Use of Machine Learning in Robotic Systems

Generated neural network based feedback policies via neural ODEs, which rendered the underactuated states of a planar biped stable $[C_{10}]$. Leveraged user preferences to navigate the complex parameter space of gait generation $[C_6]$ and gain tuning $[C_8]$. Learned the projection of model uncertainty onto barrier function certificates in order to achieve stepping stones on a planar biped $[C_5]$. Estimated uncertain mass parameters of legged robots online $[J_5]$. Performed walking parameter estimation for use with a robotic prosthetic device $[J_4]$.

Behavior Generation for Legged Systems

Generated walking, trotting, and running behaviors for quadrupeds using coupled bipeds $[J_1]$, and developed coupled Lyapunov function certificates of stability $[J_3]$. Applied this framework to quadrupedal walking up slopes $[C_4]$. Investigated the use of the saltation matrix for generating more robust walking gaits $[U_1]$. Worked towards generating a framework for verifying safety of motion primitives for legged systems $[C_7]$.

Industry Experience

Control Systems Research Intern

Disney Research, Mentor: Lanny Smoot

Developed control for an in-house omnidirectional treadmill, and was able to demonstrate stabilization of a spherical pendulum and an unactuated "walking" armature $[C_3]$.

2019

	or a potential future mission to Enceladus, a moon of Saturn	$[C_1].$
F'UNDING	AND GRANTS	
	uate Research Fellowship Program full tuition and stipend support for PhD	2021 - 2024
Kortschak Scholars Program 2 years of full tuition and stipend support for PhD		2019 - 2021
President's Undergraduate Research Award 2 terms of \$1,500 funding for undergraduate research		2017, 2018
	Indergraduate Research Fellowship Funding for summer undergraduate research	2017
OUTREAG	CH	
Lab Tours Over 10 tours and demos given to students from Kindergarten to community college level		2018 – Present
Mentoring	botics Mentor with Neighbors Empowering Youth a community team of middle and high school students build a robot to compete in the FRC competition	2021 – Present
John Muir High School Engineering Week Discussed my research trajectory and experiences with 30 high school students pursuing careers in STEM, followed by a robot demo		February 2022
SURF Mentor Mentored a summer student with communication protocols and the application of MPC to hopping robots		Summer 2022
Rise Tutor Tutored a high school student with algebra and calculus		2020 - 2021
ACADEM	IC ACTIVITIES	
Reviewer	Journals Robotics and Automation Letters (RA-L) Control Systems Letters (L-CSS)	
	Conferences International Conference on Robotics and Automation (ICRA) International Conference on Intelligent Robots and Systems (IROS) Conference on Control Technology and Applications (CCTA) American Control Conference (ACC)	
	Conference on Decision and Control (CDC)	
Awards	, ,	
	Conference on Decision and Control (CDC)	2022
Best Oral Richard K	Conference on Decision and Control (CDC) AND RECOGNITION	2022 2019
Best Oral Richard K In recognit	Conference on Decision and Control (CDC) AND RECOGNITION Paper Award Finalist (Humanoids, [C9]) . Whitehead Jr. Memorial Award	
Best Oral Richard K In recognit Goldwater Undergrad	Conference on Decision and Control (CDC) AND RECOGNITION Paper Award Finalist (Humanoids, [C9]) . Whitehead Jr. Memorial Award ion of outstanding scholarship and service	2019

TEACHING EXPERIENCE

Nonlinear Control Teaching Assistant

2020 - Present

Caltech, Professor: Dr. Aaron Ames

Topics covered include: feedback linearization, outputs and zero dynamics, underactuation, control Lyapunov functions, Lyapunov backstepping, control barrier functions, robust non-linear control, adaptive nonlinear control, and hybrid systems. Gave occasional lectures, held weekly recitations, and helped compose and grade exams.

Nonlinear Dynamics Teaching Assistant

2020 - Present

Caltech, Professor: Dr. Aaron Ames

Topics covered include: existence and uniqueness, comparison principles, linearizations, Lyapunov stability, invariance principles, input-to-state stability, barrier functions, periodic orbits, and Poincaré sections. Gave occasional lectures, held weekly recitations, and helped compose and grade exams.

TECHNICAL SKILLS

Coding	C++ (proficient), Matlab (proficient), Python (working), Labview (basic)
Software	CMake, CVX, Solidworks, Mathematica, Mosek, ROS (basic)
Machining	3 axis CNC mill, manual lathe, waterjet, bandsaw, 3d printer, and most basic shop tools

Publications

Journals:

- [J₆] Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, A. D. Ames Interactive Multi-Modal Motion Planning with Branch Model Predictive Control IEEE Robotics and Automation Letters, 2022. [Paper]
- [J₅] Y. Sun, W. Ubellacker, W. Ma, X. Zhang, C. Wang, N. Csomay-Shanklin, M. Tomizuka, K. Sreenath, A. D. Ames
 Online Learning of Unknown Dynamics for Model-Based Controllers in Legged Locomotion
 IEEE Robotics and Automation Letters, 2021. [Paper]
- [J₄] J. Camargo, W. Flanagan, N. Csomay-Shanklin, B. Kanwar, A. Young A Machine Learning Strategy for Locomotion Classification and Parameter Estimation using Fusion of Wearable Sensors IEEE Transactions on Biomedical Engineering, 2021. [Paper]
- [J₃] W. Ma, N. Csomay-Shanklin, S. Kolathaya, K. A. Hamed, A. D. Ames Coupled Control Lyapunov Functions for Interconnected Systems, with Application to Quadrupedal Locomotion IEEE Robotics and Automation Letters, 2021. [Paper]
- [J₂] J. Camargo, A. Ramanathan, N. Csomay-Shanklin, A. Young Automated Gap-Filling for Marker-Based Biomechanical Motion Capture Data Computer Methods in Biomechanics and Biomedical Engineering, 2020.
- [J₁] W. Ma, N. Csomay-Shanklin, A. D. Ames Coupled Control Systems: Periodic Orbit Generation with Application to Quadrupedal Locomotion IEEE Control Systems Letters, 2020. [Paper]

Conferences:

- [C₁₁] N. Csomay-Shanklin[†], A. J. Taylor[†], U. Rosolia, A. D. Ames

 Multi-Rate Planning and Control of Uncertain Nonlinear Systems:

 Model Predictive Control and Control Lyapunov Functions

 IEEE Conference on Decision and Control (CDC), 2022. [Paper][Talk]
- [C₁₀] I. D. R. Jimenez[†], N. Csomay-Shanklin[†], A. D. Ames Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies Learning for Dynamics and Control Conference (L4DC), 2022. [Paper][Video]
- [C9] M. Y. Galliker[†], N. Csomay-Shanklin[†], R. Grandia, A. Taylor, F. Farshidian, M. Hutter, A. D. Ames
 Planar Bipedal Locomotion with Nonlinear Model Predictive Control:
 Online Gait Generation using Whole-Body Dynamics
 IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2022.
 [Paper] [Video]
- [C₈] N. Csomay-Shanklin, M. Tucker, M. Dai, J. Reher, A. D. Ames Learning Controller Gains on Bipedal Walking Robots via User Preferences IEEE International Conference on Robotics and Automation (ICRA), 2022. [Paper] [Video]
- [C₇] W. Ubellacker, N. Csomay-Shanklin, T. G. Molnár, A. D. Ames Verifying Safe Transitions Between Dynamic Motion Primitives on Legged Robots IEEE/RSJ International Conference on Intelligent Robots ad Systems (IROS), 2021. [Paper][Video]
- [C₆] M. Tucker, N. Csomay-Shanklin, W. Ma, A. D. Ames Preference-Based Learning for User-Guided HZD Gait Generation on Bipedal Walking Robots IEEE International Conference on Robotics and Automation (ICRA), 2021. [Paper] [Video] [Blog]
- [C₅] N. Csomay-Shanklin[†], R. K. Cosner[†], M. Dai[†], A. J. Taylor, A. D. Ames Episodic Learning for Safe Bipedal Locomotion with Control Barrier Functions and Projection-to-State Safety Learning for Dynamics and Control Conference (L4DC), 2021. [Paper] [Video] [Blog]
- [C₄] W. Ma, N. Csomay-Shanklin, A. D. Ames Quadrupedal Robotic Walking on Sloped Terrains via Exact Decomposition into Coupled Bipedal Robots IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020. [Paper] [Video]
- [C₃] J. Reher, N. Csomay-Shanklin, D. L. Christensen, B. Bristow, A. D. Ames, L. Smoot Passive Dynamic Balancing and Walking in Actuated Environments IEEE International Conference on Robotics and Automation, 2020. [Paper][Video]
- [C₂] E. Ambrose, N. Csomay-Shanklin, Y. Or, A. D. Ames Design and Comparative Analysis of 1D Hopping Robots IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019. [Paper]
- [C₁] M. Badescu, P. Backes, S. Moreland, A. Brinkman, D. Riccobono, M. Dotson, N. Csomay-Shanklin, S. Ubellacker, J. Molaro, M. Chouroun, G. Genta Sampling Tool Concepts for Enceladus Lander In-Situ Analysis IEEE Aerospace Conference (AeroConf), 2019. [Paper]

In Progress:

- [U₂] N. Csomay-Shanklin, V. D. Dorobantu, A. D. Ames Nonlinear Model Predictive Control of a 3D Hopping Robot: Leveraging Lie Group Integrators for Dynamically Stable Behaviors Submitted to ICRA, 2023. [Preprint][Video]
- [U₁] M. Tucker, N. Csomay-Shanklin, A. D. Ames Robust Bipedal Locomotion: Leveraging Saltation Matrices for Gait Optimization Submitted to ICRA, 2023. [Preprint][Video]

Presentations:

- [P₆] Multi-Rate Planning and Control of Uncertain Nonlinear Systems: Model Predictive Control and Control Lyapunov Functions CDC, December 2022
- [P₅] Bipedal Locomotion with Nonlinear Model Predictive Control: Online Gait Generation using Whole-Body Dynamics Dynamic Walking, June 2022
- $[P_4]$ Preference-Based Learning for User-Guided HZD Gait Generation on Bipedal Walking Robots $ICRA,\ 2022$
- [P₃] Integrated Multi-Rate Control Rigorous Systems Research Group Meeting, July 2021
- [P₂] Fast Trajectory Generation for Quadrupedal Walking on Slopes Dynamic Waking, June 2021
- [P₁] Coupled Control Lyapunov Functions for Interconnected Systems, with Application to Quadrupedal Locomotion *ICRA*, May 2021

PATENTS

J. Li, B. Kanwar, T. Johnson, J. Meditz, A. Yang, N. Csomay-Shanklin, J. Bishop, D. Molinaro, A. Young

Exosuit Support Systems and Methods

US 2022/0193887 A1

ROBOTS

Robotic platforms that I have worked on. Left to right: Cassie, AMBER-3M, 1D hopper, ARCHER, Vision 60.