(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-185175 (P2002-185175A)

(43)公開日 平成14年6月28日(2002.6.28)

(51) Int.Cl.7	識別記号	FΙ	テーマコード(参考)
H05K 7/20		H05K 7/20	N 5E322
H01L 23/473		H 0 1 L 23/46	Z 5F036

審査請求 未請求 請求項の数6 OL (全 5 頁)

(21)出願番号	特願2000-385780(P2000-385780)	(71)出願人	000003207
			トヨタ自動車株式会社
(22)出顧日	平成12年12月19日(2000.12.19)		愛知県豊田市トヨタ町1番地
		(71)出願人	000003218
			株式会社豊田自動織機
			愛知県刈谷市豊田町2丁目1番地
		(72)発明者	記伊 雅之
			愛知県豊田市トヨタ町1番地 トヨタ自動
			車株式会社内
		(74)代理人	100075258
			弁理士 吉田 研二 (外2名)
			最終頁に続く
			ACT SCIENCE Y

(54) 【発明の名称】 冷却フィン装置及び機器

(57)【要約】

【課題】 電子機器に設けられるヒートシンク冷却フィンの冷却効率を向上させる。

【解決手段】 ヒートシンクの裏面側に冷却フィン18 aを設ける。冷却フィン18 aは、ピン型フィンのように離散的に配置され、かつ冷却水の流れ方向に対して流線形状を有する。冷却フィンを離散的に配置することで放熱面積を増大させ、流線形状とすることで通水抵抗を減らして冷却効率を向上させる。

1

【特許請求の範囲】

【請求項1】 離散的に形成されたフィンを有する冷却 フィン装置であって、

前記離散的に形成されたフィンはそれぞれ冷却液の流れ 方向に対して流線形状を有することを特徴とする冷却フ ィン装置。

【請求項2】 請求項1記載の装置において、

前記フィンの中心軸は、前記流れ方向に対して所定角度 の傾きを有することを特徴とする冷却フィン装置。

【請求項3】 請求項1、2のいずれかに記載の装置に 10 おいて、

前記フィンは前記流れ方向に沿って複数列から構成され ることを特徴とする冷却フィン装置。

【請求項4】 請求項3記載の装置において、

互いに隣接する列内の前記フィンは、前記流れ方向と垂 直な方向において異なる直線上に配置されることを特徴 とする冷却フィン装置。

【請求項5】 請求項1~4のいずれかに記載の冷却フ ィン装置を有する電機機器。

【請求項6】 請求項1~4のいずれかに記載の冷却フ ィン装置を有するインバータ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は冷却フィン装置及び 機器、特に冷却効率の向上に関する。

[0002]

【従来の技術】従来より、電子機器等を冷却するために ヒートシンク冷却フィンが用いられている。例えば、特 開平5-283878号公報には、底板上に直立した複 数の平行平板型フィン又はピン型フィンを有するヒート シンク冷却フィンが開示されている。

[0003]

【発明が解決しようとする課題】このように、従来より 平行平板型フィン又はピン型フィンを用いて熱を放散し ているが、近年の電子機器の高性能化や高集積化、小型 化に伴って発熱量がさらに増大しており、したがって一 層の冷却効率の向上が望まれている。

【0004】本発明は、上記従来技術の有する課題に鑑 みなされたものであり、その目的は、電子機器などをよ り効率的に冷却し、これにより機器の性能向上を図るこ とができる冷却フィン装置及びこのような冷却フィン装 置を備える機器を提供することにある。

【0005】

【課題を解決するための手段】上記目的を達成するため に、本発明は、離散的に形成されたフィンを有する冷却 フィン装置であって、前記離散的に形成されたフィンは それぞれ冷却液の流れ方向に対して流線形状を有するこ とを特徴とする。離散的に形成することで、従来のピン 型フィンのように放熱面積を向上させることができると ともに、流線形状とすることで通水抵抗も低減すること 50 に対して垂直方向にヒートシンク18の底板から離散的

ができ、放熱面積の向上と通水抵抗の低減により従来以 上に冷却効率を上げることができる。

【0006】ここで、前記フィンの中心軸は、前記流れ 方向に対して所定角度の傾きを有することができる。

【0007】また、前記フィンは前記流れ方向に沿って 複数列から構成することができる。複数列から構成した 場合、互いに隣接する列内の前記フィンは、前記流れ方 向と垂直な方向において異なる直線上に配置することが できる。

【0008】また、本発明は、上記した冷却ファン装置 を有する電機機器を提供する。電機機器は、内部に熱源 となり得る素子あるいは回路基板を有する機器であり、 例えばインバータ装置等である。

[0009]

【発明の実施の形態】以下、図面に基づき本発明の実施 形態につき、自動車用のインバータ装置を例にとり説明 する。

【0010】図1には、冷却フィンを有する電気自動車 用インバータ装置の概略構成が示されている。インバー 夕装置10は、主回路のIGBT (Insulated Gate Bip olarTransistor:絶縁ゲート型バイポーラトランジス タ) 12、制御基板14、コンデンサ16、IGBT1 2にDCを入力すると共にIGBT12からのACをモ ータに出力する接続材などを有する。IGBT12は**と** ートシンク18の表面側に接合して取り付けられ、ヒー トシンク18の裏面側に冷却フィンが取り付けられて冷 却フィンを冷却水等で水冷する構成である。

【0011】図2には、図1におけるIGBT12及び ヒートシンク18の詳細構成が示されている。 I GBT 12は、樹脂ケース内のベース(放熱板)12a上に絶 縁基板12bを半田12eで接合し、この絶縁基板12 b上にダイオード12cやIGBTチップ12dなどを 半田12eで接合して構成される。樹脂ケース内はゲル 材が充填され、また、樹脂ケースはシリコングリース2 0によりヒートシンク18に接合される。

【0012】 ヒートシンク18は、既述したようにその 裏面側、すなわちIGBT12とは反対側に冷却フィン 18 aが形成されており、この冷却フィン18 aの間を 冷却水が通過することでIGBT12を冷却する。図2 において、冷却水は冷却フィン18aの間を紙面垂直方 向に流れる。冷却フィン18aは、例えばアルミ材で形 成することができる。

【0013】図3には、図1あるいは図2におけるヒー トシンク18を裏面側から見た場合の冷却フィン18 a の構成が示されている。図において、(a)は裏面側か ら見た平面図であり、(b)は(a)におけるA-A断 面である。(a)において、冷却水は紙面に平行に図中 下方から上方に向かって冷却フィン18aの間を流れ る。(a)に示されるように、冷却フィン18aは紙面

(3)

4

に、すなわち平板状ではなくピン状に複数突出し、かつ 外観形状が冷却水の流れ方向に対して流線形状を有して いる。また、冷却フィン18aは、冷却水の流れ方向に 対して直線上に複数列配置されており、隣接する列内の 冷却フィン18aに着目すると、それぞれの冷却フィン 18 a は冷却水の流れ方向と垂直な方向(図中x方向) において異なる直線上に配置されている。すなわち、隣 接する2つの列をa、bとすると、a列内の2つの冷却 フィンの間にb列内の冷却フィンが位置するように配置 される。

3

【0014】このように、冷却フィン18aをピン型フ ィンのように離散的に複数個形成することで、冷却水と 接触する面積、すなわち放熱面積を増大させ、平行平板 型フィンに比べてより効率的に冷却することができる。 また、ピン型フィンと異なり、冷却フィン18aは冷却 水の流れ方向に対して流線形状を有しているため、従来 のピン型フィンに比べて通水抵抗を低減することがで き、これにより効率的に熱を奪って冷却効率を向上させ ることができる。

【0015】なお、図3においては各冷却フィン18a の中心軸、すなわち流線形状を略楕円形状とした場合の 長軸に相当する軸は冷却水の流れ方向に対して平行に配 置されているが、図4に示されるように冷却フィン18 aの中心軸を冷却水の流れ方向に対して所定角度傾けて 配置することも可能である。図4においては、冷却フィ ン18 aの中心軸を流れ方向に対して所定角度 (例えば 25度)傾けるとともに、隣接する列において互いに異 なる方向に傾けて配置している(以下、これを便宜上く さび配置と称し、図3の配置をストレート配置と称す る)。この場合、通水抵抗としては図3に示された配置 30 よりも若干増大すると考えられるが、従来のピン型フィ ンよりも通水抵抗を低減させることができる。

【0016】図5には、図3及び図4に示された本実施 形態における冷却フィン構造の通水抵抗が示されてい る。図において、横軸は流量(L/min)であり、縦 軸は通水抵抗(k P a) であり、100が図3に示され たストレート配置、102が図4に示されたくさび配置 である。なお、参考のため従来の平行平板型フィン及び ピン型フィンの通水抵抗もそれぞれ104、106とし て示されている。平行平板型フィンは、図6に示される ように冷却水の流れ方向に沿って複数の平板形状のフィ ンを配列したものであり、ピン型フィンは図7に示され るように断面形状略円形のピン型フィンを離散的に配置 したものである。

【0017】図5から分かるように、通水抵抗はピン型 フィン(図7)>くさび配置(図4)>ストレート配置 (図3)>平行平板型フィン(図6)であり、ピン型フ ィンに比べて本実施形態における流線形状の冷却フィン 18 a はいずれの流量においても通水抵抗が低くなって いることがわかる。

【0018】また、図3あるいは図4に示された流線形 状の冷却フィン18aを有するIGBT12を実際に冷 却水で冷却(冷却ポンプの流量を固定)し、定常状態と なったときに放熱板12aの温度を測定したところ、以 下のような結果を得ることができた。

【0019】平行平板型フィン:94.5℃

ピン型フィン:95℃

ストレート配置(図3):93.5℃

なお、くさび配置(図4)もストレート配置とほぼ同程 10 度の温度であった。これらの結果より、従来構造の冷却 フィンに比べて冷却性能が向上していることがわかる。 【0020】このように、本実施形態においてはピン型

フィンのように冷却水の通路上に離散的にフィンを形成 することで放熱面積を増大させ、かつフィンの形状を冷 却水の流れ方向に対して流線形状とすることで通水抵抗 を減少させることにより、冷却効率を従来以上に向上さ せることができる。

【0021】なお、本実施形態では、くさび配置とする 場合の傾き角を25度としたが、他の角度でもよいこと は言うまでもない。但し、一般的には0度と45度の間 に設定することが好適である。

【0022】また、本実施形態では、電気自動車用のイ ンバータ装置を例にとり説明したが、本発明はこれに限 定されるものではなく、任意の電機機器に適用すること ができる。

【0023】また、本実施形態では冷却液として水を用 いたが、他の液体を用いることもできる。

【0024】さらに、本実施形態の冷却フィンにおい て、その表面に凹凸を形成し、放熱面積を向上させるこ とも可能である。但し、この場合には通水抵抗が増大す ることになるので、放熱面積と通水抵抗のトレードオフ を考慮し、最適となる形状を選択することが望ましい。 [0025]

【発明の効果】以上説明したように、本発明によれば、 従来以上に冷却効率を上げることができ、これにより電 気自動車用のインバータ装置などの電子機器の性能向上 を図ることができる。

【図面の簡単な説明】

【図1】 本発明の実施形態におけるインバータ装置構 成図である。

【図2】 図1における一部拡大図である。

【図3】 ヒートシンクの裏面側に形成された冷却フィ ンの構成図である。

ヒートシンクの裏面側に形成された冷却フィ 【図4】 ンの他の構成図である。

【図5】 流量と通水抵抗との関係を示すグラフ図であ る。

【図6】 従来の平行平板型フィンの構成図である。

【図7】 従来のピン型フィンの構成図である。

50 【符号の説明】

流量(L/min)

フロントページの続き

(72)発明者 星 潤

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 大木島 純

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 岡口 茂樹

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 岡本 好司

愛知県刈谷市豊田町2丁目1番地 株式会

社豊田自動織機製作所内

Fターム(参考) 5E322 AA01 AA05 FA01

5F036 AA01 BA10 BA24 BB41

PAT-NO: JP02002185175A **DOCUMENT-IDENTIFIER:** JP 2002185175 A

TITLE: COOLING FIN DEVICE AND INSTRUMENT

THEREOF

PUBN-DATE: June 28, 2002

INVENTOR-INFORMATION:

NAME COUNTRY

KII, MASAYUKI N/A HOSHI, JUN N/A OKIJIMA, JUN N/A OKAGUCHI, SHIGEKI N/A OKAMOTO, KOJI N/A

ASSIGNEE-INFORMATION:

NAME COUNTRY

TOYOTA MOTOR CORP N/A
TOYOTA INDUSTRIES CORP N/A

APPL-NO: JP2000385780

APPL-DATE: December 19, 2000

INT-CL (IPC): H05K007/20, H01L023/473

ABSTRACT:

PROBLEM TO BE SOLVED: To improve cooling effect of a heat-sink cooling fin mounted on an electronic part.

SOLUTION: The cooling fin 18a is mounted on the rear side of a heat sink. The cooling fin 18a is mounted in a discrete distribution like a pin fin

and has a streamline shape to the flowing direction of the cooking water. By providing the cooling fin 18a in a discrete distribution, the radiating area is increased, and the cooling effect is improved through the streamline shape by reducing the flow resistance.

COPYRIGHT: (C)2002,JPO