Heuristic Analysis

Evaluation heuristics

AB_Custom

- Evaluation heuristic looks at the number of moves available to both the players and returns a score: num_own_moves - 2 * num_opponent_moves
- This is similar to the *improved* heuristic, but is more aggressive and imposes a higher penalty on number of opponent's moves as a result

AB Custom2

- Evaluation heuristic goes through all of player and opponent's legal moves, calculating a score:
 - i. Encouraging player's moves closer to the player's current location and discouraging far away ones
 - ii. Discouraging player's moves closer to the player's current location and encouraging far away ones
 - iii. This is based on the idea that closer moves will be easier to execute while the farther ones will be blocked by the opponent at some point

AB_Custom3

- The terminal state can be reached due to any of these reasons: no moves available OR maximum depth was reached and search process was cut-off as a result
- Evaluation heuristic does the following:
 - i. If moves are available for player, pick the first one and apply it
 - ii. If moves are available for opponent on the new game board, pick the first one and apply it
 - iii. Calculate score in a manner similar to the AB_Custom2 heuristic

Results

Run 1:

Match #	0pponent	AB_Improved Won Lost	AB_Custom Won Lost	AB_Custom_2 Won Lost	AB_Custom_3 Won Lost
1	Random	8 2	9 1	8 2	7 3
2	MM_Open	6 4	7 3	5 5	6 4
3	MM_Center	7 3	8 2	9 1	9 1
4	MM_Improved	8 2	7 3	6 4	7 3
5	AB_Open	5 5	5 5	4 6	5 5
6	AB_Center	6 4	7 3	6 4	4 6
7	AB_Improved	4 6	3 7	4 6	5 5
	Win Rate:	62.9%	65.7%	60.0%	61.4%

As seen here, AB_Custom performs the best at 65.7%, followed by AB_Improved at 62.9%.

AB_Custom3 and AB_AB_Custom2 trail at 61.4% and 60.0% respectively

It's also interesting that when playing against Random and MiniMax opponents, the results seem to vary more then when playing against AlphaBeta opponents.

Recommendation

I would recommend AB Custom evaluation heuristic.

The intuition of heavily penalizing the number of moves left for the opponent seems to lead to a better win rate as supported by the results.

To improve further, I'd be interested in:

- Running a greater number of simulations
- Tweaking the evaluation heuristics to include looking at the position of blocked spaces

Justification:

- Better win rate as compared to the other heuristics
- Simplicity, solely looks at the number of possible moves for player and opponent
- Low complexity considers a player's neighboring locations and if those locations are legal (not blocked, can be moved to by the piece in a L manner, etc). This ensures that the heuristic can finish within a reasonable period.
- Evaluation heuristic only looks at the current board and doesn't traverse deep, ensuring that it finishes within a reasonable period