Cornișoni Afumați Runda Finală Română (Oficial)

Gourmet 4: Cornișoni afumați

În anul de glorie 2051 ChatGPT 42, maestru arheolog, a descoperit o carte de rețete, o rămășiță a civilizației umane, exterminată de aproape 26 de ani.

Maestrul vrea acum să recreeze o delicatesă umană: cornișoni afumați. El are de urmat N pași, dar este puțin derutat: rețeta, ca orice rețetă scrisă în 2024 care se respectă, vorbește de copilăria autorului, apoi de ingrediente, apoi de o pățanie haioasă a autorului etc. Pentru a putea recrea rețeta, roboțelul nostru are de sortat pașii și vă cere ajutorul.

Cei N pași de urmat, reprezentați prin numere de la 0 la N-1, și salvați în vectorul V (elementele $V[0], \ldots, V[N-1]$), se află într-o ordine aleatorie (o permutare) și trebuie sortați în ordine crescătoare. Roboțelul poate ține minte 5 numere în $variabilele\ A,\ B,\ C,\ D$ și E (inițial, toate variabilele au valoarea 0). Adițional, variabilele constante Z și N conțin valoarea 0, respectiv N, numarul de pași de urmat.

Instrucțiunile pe care le poate efectua robotul sunt:

- IF_LESS_GOTO r1 r2 x dacă valoarea variabilei r1 este mai mică decât valoarea variabilei r2, atunci următoarea operație pe care o execută robotul este x;
- IF_DIFF_GOTO r1 r2 x dacă valoarea lui r1 este diferită de valoarea lui r2, atunci următoarea operație pe care o execută robotul este x;
- IF_SAME_GOTO r1 r2 x dacă valoarea lui r1 este egală cu valoarea lui r2, atunci următoarea operație pe care o execută robotul este x;
- ASSIGN r1 r2 se salvează în r1 valoarea lui r2. Variabila r1 trebuie să fie neconstantă (i.e. diferită de Z și N).
- INC r și DEC r se crește sau se scade valoarea salvată în variabila ne-constantă r.
- PLOAD r în variabila **ne-constantă** r se salvează pasul de la poziția r (r devine V[r]). Valoarea lui r trebuie să fie cuprinsă între 0 și N-1.
- PSWAP r1 r2 se interschimbă valorile din V[r1] și V[r2] (i.e. V[r1] devine V[r2] și vice-versa). Valorile din r1 și r2 trebuie să fie cuprinse între 0 și N-1 inclusiv.

• END – se termină execuția programului.

După ce execută o operație, robotul execută următoarea operație, mai puțin în cazul în care operația specifică alteeva. Dacă a ajuns la sfărșitul operațiilor sau s-a executat operația END, execuția se termină.

Date de intrare

Pe unica linie din fișierul de intrare se află numărul N, lungimea vectorului V.

Date de iesire

Se afișează un program care să ordoneze vectorul V cu cei N pași în ordine crescătoare. Dacă există mai multe soluții posibile, atunci se va accepta oricare dintre ele.

Atenție: pentru formatul exact în care trebuie afișate operațiile vedeți exemplele.

Constrângeri

- $2 \le n \le 100.000$.
- Programul generat nu poate efectua mai mult de $5 \cdot 10^6$ operații.
- Programul generat nu poate avea mai mult de 1.000 de instrucțiuni.

Subtask-uri

- 1. (10 de puncte) N = 3.
- 2. (15 de puncte) N = 4.
- 3. (15 de puncte) $N \le 15$.
- 4. (20 de puncte) $N \le 100$.
- 5. (20 de puncte) $N \leq 5.000$.
- 6. (20 de puncte) Nicio constrângere suplimentară.

Atasamente

Pentru a simplifica testarea soluțiilor, în secțiunea "Downloads" a interfeței de concurs puteți descărca un validator pentru soluția voastră.

${\bf Exemplu}$

Input Standard (cin)	Output Standard $(cout)$
2	O. INC A
	1. PLOAD A
	2. PLOAD B
	3. IF_LESS_GOTO B A 5
	4. END
	5. ASSIGN A Z
	6. ASSIGN B Z
	7. INC B
	8. PSWAP A B
2	O. ASSIGN A N
	1. DEC A
	2. ASSIGN B Z
	3. ASSIGN C A
	4. ASSIGN D B
	5. PLOAD C
	6. PLOAD D
	7. IF_DIFF_GOTO N Z 9
	8. END
	9. IF_LESS_GOTO C D 11
	10. END
	11. PSWAP A B
2	O. INC B
	1. PLOAD A
	2. PLOAD B
	3. IF_LESS_GOTO A B 6
	4. INC D
	5. PSWAP C D
	6. END

Considerăm al doilea exemplu (N = 2):

- O. ASSIGN A N
- 1. DEC A
- 2. ASSIGN B Z
- 3. ASSIGN C A
- 4. ASSIGN D B
- 5. PLOAD C
- 6. PLOAD D
- 7. IF_DIFF_GOTO N Z 9
- 8. END
- 9. IF_LESS_GOTO C D 11
- 10. END
- 11. PSWAP A B

Presupunem că valoarea permutării este $V = \{ 1, 0 \}$. Operațiile efectuate de robot sunt

următoarele:

1. Linia executată este O. ASSIGN A N.

$$V = \{ 1, 0 \}$$

 $A = 2, B = 0, C = 0, D = 0, E = 0$

2. Linia executată este 1. DEC A.

$$\begin{array}{l} {\rm V} \, = \, \{ \, \, {\rm 1} \, , \, \, {\rm 0} \, \, \} \\ {A} = 1, {B} = 0, {C} = 0, {D} = 0, {E} = 0 \end{array}$$

3. Linia executată este 3. ASSIGN C A.

$$V = \{ 1, 0 \}$$

 $A = 1, B = 0, C = 1, D = 0, E = 0$

4. Linia executată este 4. ASSIGN D B.

$$\begin{array}{l} {\rm V} \, = \, \{ \, \, {\rm 1} \, , \, \, {\rm 0} \, \, \} \\ {A} = 1, {B} = 0, {C} = 1, {D} = 0, {E} = 0 \end{array}$$

5. Linia executată este 5. PLOAD C.

$$V = \{ 1, 0 \}$$

 $A = 1, B = 0, C = 0, D = 0, E = 0$

6. Linia executată este 6. PLOAD D.

$$\begin{array}{l} {\rm V \, = \, \{ \, \, 1 \, , \, \, 0 \, \, \}} \\ {A = 1, B = 0, C = 0, D = 1, E = 0} \end{array}$$

7. Linia executată este 7. IF_DIFF_GOTO N Z 9.

N este diferit de Z ($2 \neq 0$), așa că sărim la instrucțiunea 9.

$$V = \{ 1, 0 \}$$

 $A = 1, B = 0, C = 0, D = 1, E = 0$

8. Linia executată este 9. IF_LESS_GOTO C D 11.

Ceste mai mic decât D,așa că sărim la instrucțiunea 11. V = { 1, 0 } A=1,B=0,C=0,D=1,E=0

$$\begin{array}{l} {\rm V} \, = \, \{ \, \, {\rm O} \, , \, \, 1 \, \, \} \\ {A} = 1, {B} = 0, {C} = 0, {D} = 1, {E} = 0 \\ \end{array}$$

10. Execuția programului se oprește, iar vectorul $V = \{0, 1\}$ este sortat.