Algebraic number theory - Fermat last theorem an elementary proof

Nasr-allah Hitar

January 2023

Abstract

in this paper we will provide a simple proof the Fermat conjecture using a very elementary proof where that (z,p)=1.

1 introduction

let x,y,z three positive integers and p is an odd prime and (p,z) = 1, suppose that

$$x^p + y^p = z^p \tag{1}$$

Lemma 1 (Fermat little theorem). $(\forall p \in \mathbb{P}) : \forall n \in \mathbb{N} : n^p \equiv n[p]$

Proof. we know that $(\mathbb{Z}/p\mathbb{Z},+,\cdot)$ field if and only if p is a prime; suppose that p is a prime so $(\mathbb{Z}/p\mathbb{Z},+,\cdot)$ is a field; \therefore $(\mathbb{Z}/p\mathbb{Z}-\{0\},\cdot)$ is an abelian group, such that $\operatorname{card}(\mathbb{Z}/p\mathbb{Z}-\{0\})=$ p-1 therefore $(\forall a\in\mathbb{Z}/p\mathbb{Z}-\{0\})$ $a^{p-1}=1$ that give us the lemma.

Lemma 2. (gauss theorem corollary)($\forall p \in \mathbb{P}$)($\forall k \in \mathbb{N}$): $0 < k < p : p|C_p^k$

2 The demonstration principle

Proof. We have that(using **lemma 1**)

$$x^{p} + y^{p} + z^{p} \equiv x + y + z[p]$$

$$\implies 2z^{p} \equiv x + y + z[p] \text{ then } 2^{p}z^{p^{2}} \equiv (x + y + z)^{p}[p]$$

٠.

$$2^{p}z \equiv \sum_{k=0}^{p} C_{p}^{k}(x+y)^{p-k}z^{k}[p]$$

as a consequence of lemma 2, we have that:

$$2^{p}z \equiv (x+y)^{p} + z^{p} \Leftrightarrow 2^{p}z \equiv (x+y)^{p} + z$$

$$\Leftrightarrow z(2^{p}-1) \equiv \sum_{k=0}^{p} C_{p}^{k} x^{p-k} y^{k}[p]$$

again using lemma 2: we will find that

$$z(2^p - 1) \equiv x^p + y^p[p]$$

$$\therefore z(2^p - 1) \equiv z[p]$$

using gauss theorem

 \therefore (z,p) = 1 we could subtract z, therefore:

 $2^p \equiv 1[p]$, and while that p>2 we have (p,2)=1 so using lemma 1 : we will have that : $2^p \equiv 2^{p-1}[p]$ therefore : p=1

hence! contradiction.

the equation (1) Have no solution .QED. \Box

Corollary 2.1. $\forall x, y, z \in \mathbb{Z}^3_* : \forall n \in \mathbb{N}; n > 3$ and (n,z)=1 the equation (1) have no solution.

Proof. suppose that there exist an integer n > 3 satisfy

$$x^n + y^n = z^n (2)$$

for non-null integers x, y, z

case 1 if n is a prime, that's impossible because we proved that (1) have no solution; case 2

if n is not a prime, $\exists p \in \mathbb{P} : p | n \implies (p,q) \in \mathbb{P} \cdot \mathbb{Z}$:

 $n=pq \implies (x^q)^p+(y^q)^p=(z^q)^p$... (1) have a solution; absurd. \Box

3 References

[1]-Ore, Oystein (1988) [1948], Number Theory and Its History, Dover, ISBN 978-0-486-65620-5.