

首都你范大学

不同椭圆曲线的二次扭之比较

张神星 (合肥工业大学)

首师大数论和代数几何研讨会 2024 春

 $\verb| zhangshenxing@hfut.edu.cn| \\$

背景

• 给定一个数域上的椭圆曲线 E/K, 我们关心它的二次扭族

$$E^{\chi}/K$$
, 其中 $\chi:G_K\to\{\pm 1\}$

的各种算术量: Mordell-Weil 秩、III 群、Selmer 群等等. 那么反过来, 从这些算术量中在多大程度上能决定原来的椭圆曲线 E/K 呢?

• 我们知道, 如果 E_1 和 E_2 同源, 那么

$$\operatorname{rank}_{\mathbb{Z}} E_1^{\chi}(K) = \operatorname{rank}_{\mathbb{Z}} E_2^{\chi}(K)$$

对任意 χ 均成立.

• Zarhin(1989) 提出了如下猜想: 给定阿贝尔簇 $A_1,A_2/K$, 如果对于任意有限扩张 F/K, 均有

$$\operatorname{rank}_{\mathbb{Z}} A_1(F) = \operatorname{rank}_{\mathbb{Z}} A_2(F),$$

那么 A_1 和 A_2 是否一定同源?

Selmer 秩的情形

- Mazur 和 Rubin(2015) 考虑了 Selmer 秩的问题.
- 给定数域上椭圆曲线 $E_1, E_2/K$, 如果有

•
$$G_K$$
 模同构 $E_1[m] \cong E_2[m]$, 其中 $m = \begin{cases} p^{k+1}, & p \leq 3 \\ p^k, & p > 3 \end{cases}$

- 相同的 potential 乘性约化素位集合 S
- $\forall \mathfrak{l} \in S, (E_1[m]/K_{\mathfrak{l}})^{\circ} \cong (E_2[m]/K_{\mathfrak{l}})^{\circ}$
- 一个分歧条件

则 $\operatorname{Sel}_{p^k}(E_1/F) \cong \operatorname{Sel}_{p^k}(E_2/F), \forall F/K.$

- 特别地, 存在不同源的 E_1, E_2 满足这个条件.
- Chiu(2020) 证明了: 如果 $\operatorname{Sel}_p(E_1/F) \cong \operatorname{Sel}_p(E_2/F), \forall F/K, \widetilde{\forall} p$ 成立, 那么 E_1 和 E_2 同源.

- 我们想要构造一些 E_1, E_2 使得对于它们二次扭族的具有相似的算术性质.
- 考虑具有全部有理 2 阶点的椭圆曲线

$$E = \mathscr{E}_{a,b} : y^2 = x(x-a)(x+b), \quad a, b \in \mathbb{Z}.$$

- 设 c=-a-b. 通过一个平移可以看出, $E\cong\mathscr{E}_{b,c}\cong\mathscr{E}_{c,a}$.
- 由于我们想要研究二次扭族,不妨设 gcd(a,b,c)=1 或 2.

不同椭圆曲线的二次扭之比较 ▶2 主要结论

• 现在我们考虑两条椭圆曲线

$$E_i: y^2 = x(x - a_i)(x + b_i), \quad c_i = -a_i - b_i, \quad i = 1, 2.$$

- 由于作为 $G_{\mathbb{Q}}$ 模, $E_1[2]\cong E_2[2]$ 为平凡模, 因此二者的 2-Selmer 群落在同一个群 $\mathrm{H}^1(G_{\mathbb{Q}},E_i[2])$ 中.
- 由于技术上的原因,我们进一步假设有 $G_{\mathbb{Q}}$ 模同构 $E_1[4]\cong E_2[4]$. 这等价于

$$\frac{a_1}{a_2}, \ \frac{b_1}{b_2}, \ \frac{c_1}{c_2} \in \mathbb{Q}^{\times 2}.$$

• 不失一般性, 我们假设

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$

且 gcd(A, B, C) = 1.

定理 (2023)

- 假设 $E_i, E_i^{(n)}$ 没有 4 阶有理点且 $\mathrm{Sel}_2(E_i/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$ 达到最小.
- 假设 n 与 $a_2b_2c_2$ 互素且对任意奇素数 $p \mid n, q \mid a_2b_2c_2$, 有 $\binom{p}{q} = 1$.
- 那么对于下述任意一种情形:
 - n 的素因子都模 8 余 1;
 - a_i, b_i 是奇数且 $2 \parallel c_i$; (例如 $y^2 = x(x-1)(x+1)$)
 - $2 \parallel a_i, b_i, 4 \mid c_i$, (例如 $y^2 = x(x-2)(x+2)$) 且 n 或 $a_2b_2c_2$ 奇素因子均模 4 余 1.
- 我们有 $\operatorname{Sel}_2(E_1^{(n)}/\mathbb{Q}) \cong \operatorname{Sel}_2(E_2^{(n)}/\mathbb{Q})$, 且下述等价
 - $\operatorname{rank}_{\mathbb{Z}} E_1^{(n)}(\mathbb{Q}) = 0, \coprod (E_1^{(n)}/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^{2t};$
 - $\operatorname{rank}_{\mathbb{Z}} E_2^{(n)}(\mathbb{Q}) = 0, \operatorname{III}(E_2^{(n)}/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^{2t}.$

证明方法

- 证明所使用的方法是传统的 2 下降法.
- 由于我们假设 E 没有 4 阶有理点, 因此由正合列

$$0 \longrightarrow \frac{E(\mathbb{Q})}{2E(\mathbb{Q})} \longrightarrow \operatorname{Sel}_2(E) \longrightarrow \operatorname{III}(E/\mathbb{Q})[2] \longrightarrow 0$$

可知 $E[2] \subseteq \operatorname{Sel}_2(E)$.

• 由于 $\mathrm{Sel}_2(E)$ 通过一些局部条件刻画, 通过比较 E_i 和 $E_i^{(n)}$ 的这些局部条件, 可以得到 Sel_2 相等. 然后再通过计算可知二者的 Cassels 配对也是相同的, 从而可以得到我们的结论.

Selmer 群: 下降法

• 下降理论告诉我们, $Sel_2(E)$ 可以表为

$$\left\{\Lambda = (d_1, d_2, d_3) \in \left(\frac{\mathbb{Q}^{\times}}{\mathbb{Q}^{\times 2}}\right)^3 : D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset, d_1 d_2 d_3 \equiv 1 \mod \mathbb{Q}^{\times 2}\right\},\,$$

• 其中齐性空间

$$D_{\Lambda} = \begin{cases} H_1: & at^2 + d_2u_2^2 - d_3u_3^2 = 0, \\ H_2: & bt^2 + d_3u_3^2 - d_1u_1^2 = 0, \\ H_3: & ct^2 + d_1u_1^2 - d_2u_2^2 = 0. \end{cases}$$

• 那么 $E[2] \hookrightarrow \frac{E(\mathbb{Q})}{2E(\mathbb{Q})} \subseteq \mathrm{Sel}_2(E)$ 对应到

$$(1,1,1), (-c,-ac,a), (-bc,c,-b), (b,-a,-ab).$$

Selmer 群: 分情形讨论

- 记 $D_{\Lambda}^{(n)}$ 为 $E^{(n)}$ 对应的齐性空间.
- 情形 $p \nmid abcn$. $D_{\Lambda}^{(n)}(\mathbb{Q}_p) \neq \emptyset \iff p \nmid d_1d_2d_3$. 故可不妨设 $d_i \mid abcn$ 且无平方因子.
- 情形 p = ∞.

$$D_{\Lambda}^{(n)}(\mathbb{R}) \neq \emptyset \iff \begin{cases} d_1 > 0, & \text{ if } b > 0, c < 0; \\ d_2 > 0, & \text{ if } c > 0, a < 0; \\ d_3 > 0, & \text{ if } a > 0, b < 0. \end{cases}$$

Selmer 群: 分情形讨论

• 情形 $p \mid n$. 此时 $p \nmid abc$. $D_{\Lambda}^{(n)}(\mathbb{Q}_p) \neq \emptyset \iff$

• 第一种情形由希尔伯特符号容易得到, 后面的情形可以通过对 Λ 加上一个 E[2] 对应的齐性空间化为第一种情形.

Selmer 群: 分离含 n 的部分

• 设

$$\begin{split} n &= p_1 \cdots p_k, \\ d_1 &= p_1^{x_1} \cdots p_k^{x_k} \cdot \widetilde{d}_1, \quad x_i = v_{p_i}(d_1), \\ d_2 &= p_1^{y_1} \cdots p_k^{y_k} \cdot \widetilde{d}_2, \quad y_i = v_{p_i}(d_2), \\ d_3 &= p_1^{z_1} \cdots p_k^{z_k} \cdot \widetilde{d}_3, \quad z_i = v_{p_i}(d_3), \end{split}$$

其中 $\tilde{d}_i \mid abc$ 且无平方因子,则 $\tilde{d}_1 \tilde{d}_2 \tilde{d}_3 \in \mathbb{Q}^{\times 2}$.

• 设

$$\mathbf{x} = (x_1, \dots, x_k)^{\mathrm{T}}, \ \mathbf{y} = (y_1, \dots, y_k)^{\mathrm{T}}, \ \mathbf{z} = (z_1, \dots, z_k)^{\mathrm{T}} \in \mathbb{F}_2^k,$$

则 x+y+z=0.

Selmer 群: 比较 $Sel_2'(E^{(n)})$ 和 $Sel_2'(E)$

- 假设 n 素因子均模 8 余 1. 设 $\widetilde{\Lambda}=(\widetilde{d}_1,\widetilde{d}_2,\widetilde{d}_3)$. 我们对比 $D^{(n)}_{\Lambda}(\mathbb{Q}_p)$ 和 $D^{(1)}_{\widetilde{\Lambda}}(\mathbb{Q}_p)$ 的可解性.
- $p = \infty$. 由 d_i 和 \tilde{d}_i 符号相同可知二者可解性相同.
- $p \mid abc$. 由 $n, d_i/\tilde{d}_i \in \mathbb{Q}_p^{\times 2}$ 可知二者可解性相同.
- 因此 $\Lambda \in \mathrm{Sel}_2(E^{(n)}) \implies \widetilde{\Lambda} \in \mathrm{Sel}_2(E) = E[2]$. 如果 $\widetilde{\Lambda} = (-c, -ac, a)$, 则

$$\Lambda \cdot (-cn, -ac, an) = \left(\prod_{i=1}^{k} p_i^{1-x_i}, \prod_{i=1}^{k} p_i^{y_i}, \prod_{i=1}^{k} p_i^{1-z_i}\right).$$

其它情形也类似. 因此

$$\operatorname{Sel}_{2}'(E^{(n)}) := \frac{\operatorname{Sel}_{2}(E^{(n)})}{E[2]}$$

中每个元素都有唯一代表元 (d_1, d_2, d_3) 满足 $0 < d_i \mid n$.

Selmer 群: 得到 $\operatorname{Sel}_2'\left(E_i^{(n)}\right)$

• $p \mid n$. 由于 $a_1/a_2, b_1/b_2, c_1/c_2 \in \mathbb{Q}^{\times 2}$, 因此 $\Lambda = (d_1, d_2, d_3)$ 对应的 E_1, E_2 的齐性 空间在 \mathbb{Q}_p 的可解性相同. 从而

$$\operatorname{Sel}_{2}'(E_{1}^{(n)}) \cong \operatorname{Sel}_{2}'(E_{2}^{(n)}) \xrightarrow{\sim} \operatorname{Ker} \begin{pmatrix} \boldsymbol{A} + \boldsymbol{D}_{-c} & \boldsymbol{D}_{-bc} \\ \boldsymbol{D}_{-ac} & \boldsymbol{A} + \boldsymbol{D}_{c} \end{pmatrix}$$
$$(d_{1}, d_{2}, d_{3}) \mapsto \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{y} \end{pmatrix},$$

• 右侧矩阵即 Monsky 矩阵, 其中

$$oldsymbol{A} = ig([p_j, -n]_{p_i}ig)_{i,j}, \qquad oldsymbol{D}_u = \operatorname{diag}\left(\Big[rac{u}{p_1}\Big], \dots, \Big[rac{u}{p_k}\Big]
ight) \in \operatorname{M}_k(\mathbb{F}_2),$$

• [·,·] 是加性希尔伯特符号, [二] 是加性勒让德符号.

Cassels 配对: 定义

- Cassels 在 \mathbb{F}_2 线性空间 $\mathrm{Sel}_2'(E)$ 上定义了一个反对称双线性型.
- 对于 Λ, Λ', 选择

$$P = (P_v)_v \in D_{\Lambda}(\mathbb{A}_{\mathbb{Q}}), \qquad Q_i \in H_i(\mathbb{Q}).$$

• 令 L_i 为定义了 H_i 在 Q_i 处切平面的线性型, 定义

$$\langle \Lambda, \Lambda' \rangle = \sum_{v} \langle \Lambda, \Lambda' \rangle_{v}, \qquad
abla \psi \ \langle \Lambda, \Lambda' \rangle_{v} = \sum_{i=1}^{3} [L_{i}(P_{v}), d'_{i}]_{v},$$

• 它不依赖 P 和 Q_i 的选取.

引理 (Cassels1998)

如果 $p \nmid 2\infty$, H_i 和 L_i 的系数均是 p 进整数, 且模 p 后, \overline{D}_{Λ} 仍定义了一条亏格 1 的 曲线并带有切平面 $\overline{L}_i = 0$, 则 $\langle -, - \rangle_p = 0$.

Cassels 配对: 约化到 Cassels 配对非退化

• 由正合列

$$0 \longrightarrow E[2] \longrightarrow E[4] \stackrel{\times 2}{\longrightarrow} E[2] \to 0$$

• 得到长正合列

$$0 \longrightarrow \frac{E(\mathbb{Q})[2]}{2E(\mathbb{Q})[4]} \longrightarrow \operatorname{Sel}_2(E) \longrightarrow \operatorname{Sel}_4(E) \longrightarrow \operatorname{Im} \operatorname{Sel}_4(E) \longrightarrow 0.$$

- 注意到 Cassels 配对的核是 $rac{{
 m Im}\,{
 m Sel}_4(E)}{E[2]}$.
- 因此 Cassels 配对非退化等价于 $Sel_2(E) \cong Sel_4(E)$, 等价于

$$\operatorname{rank}_{\mathbb{Z}} E(\mathbb{Q}) = 0, \quad \operatorname{III}(E/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^{2t}.$$

Cassels 配对: 比较局部符号

• 由我们的假设,

$$a_2 = a_1 A^2$$
, $b_2 = b_1 B^2$, $c_2 = c_1 C^2$,

其中 A, B, C 是互素的非零奇数.

- $\mathfrak{P}_{\Lambda} = (d_1, d_2, d_3), \Lambda' = (d'_1, d'_2, d'_3).$
- 对于 $E_1^{(n)}$ 和 $E_2^{(n)}$, 若能选取适当的 $Q_{i,j}$ 和 $P_{i,v}, i=1,2,j=1,2,3$, 使得

$$[L_{1,j}(P_{1,v}), d'_j]_v = [L_{2,j}(P_{2,v}), d'_j]_v,$$

则 $E_1^{(n)}, E_2^{(n)}$ 对应的 Cassels 配对就相同了.

- 在多数情形这不难证明, 我们仅说明相对复杂的一种情形.
- 不妨设 $A \equiv B \equiv C \equiv 1 \mod 4$.

Cassels 配对: 比较局部符号 (续)

$$D_{\Lambda}^{(n)} = \begin{cases} H_1: & nat^2 + d_2u_2^2 - d_3u_3^2 = 0, \\ H_2: & nbt^2 + d_3u_3^2 - d_1u_1^2 = 0, \\ H_3: & nct^2 + d_1u_1^2 - d_2u_2^2 = 0. \end{cases}$$

- $p \mid n, p \nmid d_1, p \mid d_2, p \mid d_3$.
- \mathbb{R} $Q_{1,1} = (\alpha, \beta, \gamma) \in H_{1,1}(\mathbb{Q}), \quad Q_{2,1} = (\alpha, A\beta, A\gamma) \in H_{2,1}(\mathbb{Q}).$
- $P_{1,p} = (1,0,u,v), \quad L_{1,1}(P_{1,p}) = a_1 n\alpha d_3 \gamma v + d_2 \beta u,$
- $P_{2,p} = (1, 0, Cu, Bv), \quad L_{2,1}(P_{2,p}) = Aa_1n\alpha Bd_3\gamma v + Cd_2\beta u.$

Cassels 配对: 比较局部符号 (续)

引理

$$(Ax + By + Cz)(x + y + z) - \frac{1}{2}(A + B)(B + C)(C + A)\left(\frac{x}{B + C} + \frac{y}{C + A} + \frac{z}{A + B}\right)^{2}$$

$$= \frac{1}{2}(a_{1}A + b_{1}B + c_{1}C)\left(\frac{x^{2}}{a_{1}} + \frac{y^{2}}{b_{1}} + \frac{z^{2}}{c_{1}}\right).$$
这里需要用到 $a_{1}A^{2} + b_{1}B^{2} + c_{1}C^{2} = a_{2} + b_{2} + c_{2} = 0.$

令
$$x = a_1 n\alpha$$
, $y = -d_3 \gamma v$, $z = d_2 \beta u$. 则

$$rac{x^2}{a_1} + rac{y^2}{b_1} + rac{z^2}{c_1} = n(a_1 n lpha_1^2 - d_3 \gamma^2 + d_2 eta^2) = 0,$$

$$L_{1,1}(P_{1,p})L_{2,1}(P_{2,p}) = \frac{1}{2}(A+B)(B+C)(C+A)\left(\frac{a_1n\alpha}{b+c} + \frac{d_2\beta u}{a+b} - \frac{d_3\gamma v}{a+c}\right)^2.$$

Cassels 配对: 比较局部符号 (续)

引理

若 $A \equiv B \equiv C \equiv 1 \mod 4$, 则 $\frac{1}{8}(A+B)(B+C)(C+A) \equiv 1 \mod 4$ 是模 $p \mid n$ 的二次剩余.

因此

$$[L_{1,1}(P_{1,p}), d_1']_p = [L_{2,1}(P_{2,p}), d_1']_p.$$

对于其它 p 和 $\forall j$ 均可通过取适当的 P,Q 使得对应的希尔伯特符号相同. 从而 $E_1^{(n)}, E_2^{(n)}$ 对应的 Cassels 配对相同, 命题得证.

其它情形: $2 \nmid a_i, b_i, 2 \parallel c_i$

- 如果 $2 \nmid a_i, b_i, 2 \parallel c_i$ (如奇数同余椭圆曲线情形), 我们不需要 $p \equiv 1 \mod 8, \forall p \mid n$ 这么强的条件.
- 此时可以证明, $\Lambda = (d_1, d_2, d_3) \in \mathrm{Sel}_2'(E_i^{(n)})$ 中 d_3 为奇数, 且

$$D_{\Lambda}^{(n)}(\mathbb{Q}_v) \neq \emptyset, \forall v \neq 2 \implies D_{\Lambda}^{(n)}(\mathbb{Q}_2) \neq \emptyset.$$

- 从而 Sel₂ 也可表达为 Monsky 矩阵的核.
- 此时 v=2 的 Cassels 配对通过对 $(d_1,d_2,d_3) \bmod 4$ 分类考虑也有类似于前文的结果.

其它情形: $2 \parallel a_i, b_i, 4 \mid c_i$

- 如果 $2 \parallel a_i, b_i, 4 \mid c_i$ (如偶数同余椭圆曲线情形), $\Lambda = (d_1, d_2, d_3) \in \mathrm{Sel}_2'(E_i^{(n)})$ 存在唯一代表元使得 d_j 均为奇数.
- 在 2 处可解性迫使 $d_3 \equiv 1 \mod 4$, 且

$$D_{\Lambda}^{(n)}(\mathbb{Q}_v) \neq \emptyset, \forall v \neq 2 \implies D_{\Lambda}^{(n)}(\mathbb{Q}_2) \neq \emptyset.$$

• 此时我们需要对 d_1, d_2, d_3 进行如下分解

$$d_1 = p_1^{x_1} \cdots p_k^{x_k} \cdot \widetilde{d}_1,$$

$$d_2 = p_1^{y_1} \left(\frac{-1}{p_1}\right)^{z_1} \cdots p_k^{y_k} \left(\frac{-1}{p_1}\right)^{z_k} \cdot \widetilde{d}_2,$$

$$d_3 = (p_1^*)^{z_1} \cdots (p_k^*)^{z_k} \cdot \widetilde{d}_3$$

- 此时为了保证二者在 $v=\infty$ 处局部条件和 Cassels 配对一致, 我们需要额外假设
 - n 素因子均模 4 余 1, 或
 - 当 $b_1 > 0, c_1 < 0$ 时, $b_2 c_2$ 奇素因子均模 4 余 1, 或
 - 当 $c_1 > 0, a_1 < 0$ 时, a_2c_2 奇素因子均模 4 余 1.

应用:记号

- 设 (a, b, c) 是本原三元正整数组 $a^2 + b^2 = 2c^2$, 显然 a, b, c 都是奇数.
- $\mathfrak{G} \, \mathcal{E} : y^2 = x(x a^2)(x + b^2).$
- 设

$$h_{2^s}(n) = \dim_{\mathbb{F}_2} \frac{2^{s-1}\operatorname{Cl}(\mathbb{Q}(\sqrt{-n}))}{2^s\operatorname{Cl}(\mathbb{Q}(\sqrt{-n}))}$$

为 $\mathbb{Q}(\sqrt{-n})$ 类群的 2^s 秩.

应用: 类奇同余椭圆曲线

定理

设 $n \equiv 1 \mod 8$ 是与 abc 互素的平方自由的正整数, 且

- n 的素因子均模 4 余 1;
- n 的素因子均为模 abc 奇素因子的平方剩余;
- $\operatorname{Sel}_2(\mathcal{E}/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$.

那么下述等价

- (1) $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}^{(n)}(\mathbb{Q}) = 0, \operatorname{III}(\mathcal{E}^{(n)}/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^2;$
- (2) $h_4(n) = 1, h_8(n) \equiv \frac{d-1}{4} \mod 2.$

这里 $d \neq 1, n$ 是 n 的唯一满足 $(d, -n)_v = 1, \forall v$ 或 $(2d, -n)_v = 1, \forall v$ 的正因子.

这由 $E^{(n)}: y^2 = x^3 - n^2 x$ 相应结论导出.

应用: 类偶同余椭圆曲线

定理

设 $n \equiv 1 \mod 8$ 是与 abc 互素的平方自由的正整数, 且

- n 或 a 或 b 的素因子均模 4 余 1;
- n 的素因子均模 8 余 ±1;
- n 的素因子均为模 abc 奇素因子的平方剩余;
- $\operatorname{Sel}_2(\mathcal{E}/\mathbb{Q}) \cong (\mathbb{Z}/2\mathbb{Z})^2$.

那么下述等价

- (1) $\operatorname{rank}_{\mathbb{Z}} \mathcal{E}^{(2n)}(\mathbb{Q}) = 0, \operatorname{III}(\mathcal{E}^{(2n)}/\mathbb{Q})[2^{\infty}] \cong (\mathbb{Z}/2\mathbb{Z})^2;$
- (2) $h_4(n) = 1, d \equiv 9 \mod 16.$

这里 $d \neq 1$ 是 n 的唯一满足 $d \equiv 1 \mod 4$, $(d, n)_v = 1$, $\forall v$ 的正因子.

这由 $E^{(2n)}: y^2 = x^3 - 4n^2x$ 相应结论导出.

