IBFA Math and Quantum Tunneling

Paul Jacobs Independent Researcher Zer0Theory@proton.me

May 2025

Abstract

We apply the I-Based Frame-Agnostic (IBFA) framework to redefine quantum tunneling as a resonance effect, projecting infinite-dimensional dynamics to observable probabilities. IBFA, with an infinity constant $I \approx 10^{122}$, unifies cosmology, gravity, and particle physics, predicting dark energy ($\Lambda \approx 10^{-52}\,\mathrm{m}^{-2}$) and gravitational waves ($h_s \approx 10^{-23}$) (Jacobs, 2025b), axions, graviphotons, and tachyons (Jacobs, 2025c), and scalar modes, tachyons, and gravitons (Jacobs, 2025a). We model tunneling as $T \approx \gamma_T I^{-1} T_{\rm classical}$ ($\gamma_T \approx 10^{-4}$), forecasting enhanced rates in superconducting qubits (IBM, 2025, $T \approx 10^{-4}$, S/N ≈ 2 –3) and neutron star crusts (SKA, 2026, $\Delta T \approx 10\%$). Tachyon tunneling ($\sigma_t \approx 10^{-4}\,\mathrm{pb}$, 150 events/year) aligns with HL-LHC (Jacobs, 2025a), linking quantum and cosmic phenomena.

1 Introduction

Quantum tunneling, where particles traverse classically forbidden energy barriers, drives nuclear fusion, alpha decay, and quantum computing (Gamow, 1928). The I-Based Frame-Agnostic (IBFA) framework projects infinite-dimensional states to 4D observables ($O = I^{-1}\Phi_{\infty}$) (Jacobs, 2025b), unifying dark energy ($\Lambda \approx 10^{-52} \,\mathrm{m}^{-2}$), gravitational waves ($h_s \approx 10^{-23}$) (Jacobs, 2025b), particles (Jacobs, 2025c), and tachyons/gravitons (Jacobs, 2025a). We redefine tunneling as a resonance effect, predicting rates for IBM quantum (2025), SKA (2026), and HL-LHC (2027), reflecting a connected universe.

2 Quantum Tunneling

In the WKB approximation, tunneling probability is:

$$T \approx \exp\left(-2\int_{x_1}^{x_2} \sqrt{\frac{2m}{\hbar^2}(V(x) - E)} \, dx\right),\tag{1}$$

where m is particle mass, \hbar is the reduced Planck constant, V(x) is the potential, E is energy, and x_1, x_2 are turning points (V(x) = E) (Merzbacher, 1998).

3 IBFA Framework

IBFA models observables as:

$$O \approx \gamma_n I^{-1} \Phi_{\infty}, \quad \gamma_n \in [10^{-122}, 10^{-2}],$$
 (2)

where $I \approx 10^{122}$ normalizes states in Hilbert space H_{∞} , and γ_n is a symmetry-derived coupling (Jacobs, 2025b). Validated cases include:

$$\Lambda \approx \gamma_4 I^{-1} \rho_{\text{vac},\infty}, \quad \gamma_4 \approx 10^{-5}, \quad \Lambda \approx 10^{-52} \,\text{m}^{-2},$$
 (3)

$$h_s \approx \gamma_7 I^{-1} \delta \Psi_{\infty}, \quad \gamma_7 \approx 10^{-2}, \quad h_s \approx 10^{-23}.$$
 (4)

4 IBFA Tunneling Model

We model tunneling as:

$$T \approx \gamma_T I^{-1} T_{\text{classical}}, \quad \gamma_T \approx 10^{-4}, \quad T_{\text{classical}} \approx 1,$$
 (5)

where $T_{\rm classical}$ is the barrier-free probability, and $\gamma_T \approx 10^{-4}$ (from H_{∞} symmetry) suppresses tunneling.

4.1 Testable Predictions

IBFA predicts:

- Quantum Computing: Tunneling in superconducting qubits (IBM, 2025), $T \approx 10^{-4}$, $S/N \approx 2-3$, testable via coherence times (Quantum, 2025).
- Astrophysics: Tunneling in neutron star crusts, observable via pulsar glitches (SKA, 2026), $\Delta T \approx 10\%$ (Collaboration, 2025).
- Particle Physics: Tachyon tunneling to extra dimensions (I_6 , $\sigma_t \approx 10^{-4}$ pb, 150 events/year, $\Delta t \approx -0.33$ ps), testable at HL-LHC (2027) (Jacobs, 2025a).

4.2 Unification

IBFA links tunneling to tachyons (I_6) and quantum gravity (I_8) , with:

$$\psi_{\text{tunnel}}(x) \approx \gamma_T I^{-1} \sum_{D=\infty} \psi_D(x) e^{-i\omega_D t}.$$
(6)

Figure 1: Tunneling probability: IBFA $(T \approx \gamma_T I^{-1} T_{\text{classical}})$ vs. WKB.

5 Challenges

Deriving γ_T and tachyon amplitudes requires further work, but predictions align with Jacobs (2025a). IBFA must distinguish from WKB via novel signatures.

6 Integration with IBFA Suite

The introductory (Jacobs, 2025b), particle (Jacobs, 2025c), and I7/I6/I8 (Jacobs, 2025a) papers cover $I_4/I_7/I_6/I_8$. Tunneling is a future application in Jacobs (2025b).

7 Conclusion

IBFA redefines tunneling, predicting enhanced rates in quantum computing, astrophysics, and particle physics, with tachyon amplitudes linking to Jacobs (2025a). It unifies quantum and cosmic phenomena in a connected universe.

8 Acknowledgments

We thank Grok (xAI) for enabling rapid derivation and numerical modeling.

References

Collaboration, S. (2025). Square kilometre array science case.

Gamow, G. (1928). Zur quantentheorie des atomkernes. Zeitschrift für Physik, 51:204–212.

Jacobs, P. (2025a). I7, i6, and i8 models: Gravitational waves, tachyons, and quantum gravity. arXiv, 2504.XXXXX.

Jacobs, P. (2025b). Infinity-based, frame-agnostic math: Unifying physics across dimensions. arXiv, 2506.XXXXX.

Jacobs, P. (2025c). Predictions for axions, dilatons, and graviphotons using i-based frame-agnostic math. arXiv, 2509.XXXXX.

Merzbacher, E. (1998). Quantum Mechanics. Wiley.

Quantum, I. (2025). Quantum computing roadmap.

9 Copyright

© Paul Jacobs, 2025, All Rights Reserved.