Lucerne University of Applied Sciences and Arts

Informatik FH Zentralschweiz

Modul I.BA ANLS

Kompetenznachweis (= Testprüfung) HS 19/20

Di. 17. Dez. 2019 (18:15 – 19:45), Zimmer SA1 Midi

Name: <u>Musterlösung V 1.0</u>

Bedingungen (für die Prüfung):

Zeit: 90 Minuten

Hilfsmittel: Beliebige schriftliche Unterlagen (Open book), offizieller HSLU TR (zu Be-

ginn des Moduls abgegeben) oder TI-30 ECO-RS.

Bitte beachten Sie:

- Mit Bleistift oder mit roter Farbe schreiben ist <u>nicht</u> gestattet.
- Lösungen auf den dafür vorgesehenen Platz eintragen, ev. Rückseiten oder die <u>ange-</u> hängten Zusatzblätter benutzen.
- Lesen Sie zuerst die Aufgaben, bevor Sie zu lösen anfangen!
- Saubere und deutliche Resultatformulierung.
- Nicht aufgehende Resultate entweder in der genauen Form stehen lassen (gekürzter Bruch, vereinfachte Wurzel usw.) oder auf 3 Stellen genau angeben.
- Unbelegte oder nicht nachvollziehbare Resultate werden nicht berücksichtigt.
- Ungültiges ist sauber durchzustreichen, Mehrfachlösungen werden nicht gewertet.
- Der Lösungsweg muss klar ersichtlich sein.
- Koordinatensysteme sind sauber zu beschriften (Achsen und Einheiten).
- Im Koordinatensystem enthaltene Funktionen sind anzuschreiben.
- Rechenaufgaben werden mit dem Unterstreichen des Resultates beendet.
- Gleichungen werden mit Angabe der Lösungsmenge beendet.
- Zu <u>Textaufgaben</u> gehört am Schluss ein <u>Resultatsatz</u> in Prosa.

Punktzahlen:

maximal: **60** für die Note 6: **50** für die Note 4: **30**

Ich wünsche Ihnen viel Glück und viel Erfolg

Josef Schuler

Punkteübersicht:

Aufgabe	Max. Punktzahl	erreichte Punktzahl	
1)	4 + 6 = 10		
2)	6 + 6 = 12		
2)	0		
3)	8		
4)	5 + 5 = 10		
	3 1 3 - 10		
5)	5 + 8 = 13		
•			
6)	7		
			Note
_			
Total	60		
	_=======	=========	

Note skala: Note $=\frac{1}{10}$ · erreichte Punktzahl + 0,75 Danach wird auf die halbe Note gerundet.

Als Tabelle:

Note	Punkte	Anzahl
6 = A	≥ 50	
5,5 = B	≥ 45	
5 = C	≥ 40	
4,5 = D	≥ 35	
4 = E	≥ 30	
3,5 = FX	≥ 25	
3 = F	< 25	

Aufgabe 1.1:

Kreuzen Sie in der Auswahl <u>alle</u> richtigen Aussagen an. Pro richtiges Ankreuzen gibt es 1 Punkt.

Falsches Ankreuzen gibt ½ Punkt Abzug!! Die Summe kann nicht negativ werden.

NR	Aufgabe	Auswahl
a)	Die Funktion $f(x) = -5x^3 + 4x$ ist	□wahr
	ungerade.	□falsch
		□Nur natürliche Zahlen können gerade oder ungerade sein.
		☐ Das kann man nicht allgemein beantworten.
		☐ Keine der Angaben ist richtig.
b)	Jede Potenzfunktion $f(x) = x^n$ ist	□wahr
	für natürliche n gerade.	□falsch
		□Nur natürliche Zahlen können gerade oder
		ungerade sein.
		□Das kann man nicht allgemein beantworten.
		□Keine der Angaben ist richtig.
c)	Jedes Polynom vierten Grades hat	□wahr
	genau vier reelle Nullstellen.	□falsch
		□Von einem Polynom geraden Grades weiss
		man nur dass es eine gerade Anzahl Nullstel-
		len hat.
		□ Ein Polynom vierten Grades kann zwischen
		Null und vier Nullstellen haben.
		□ Das kann man nicht allgemein beantworten.
		☐ Keine der Angaben ist richtig.

Lösung:

NR	Aufgabe	Auswahl
a)	Die Funktion $f(x) = -5x^3 + 4x$	☑wahr
	ist ungerade.	□falsch
		□Nur natürliche Zahlen können gerade oder
		ungerade sein.
		\square Das kann man nicht allgemein beantworten.
		☐Keine der Angaben ist richtig.
b)	Jede Potenzfunktion $f(x) = x^n$	□wahr
ist für natürliche n ge	ist für natürliche n gerade.	☑falsch
		□Nur natürliche Zahlen können gerade oder
	ungerade sein.	
		\square Das kann man nicht allgemein beantworten.
		☐Keine der Angaben ist richtig.
c)	Jedes Polynom vierten Grades hat	□wahr
	genau vier reelle Nullstellen.	☑falsch
		□Von einem Polynom geraden Grades weiss
		man nur dass es eine gerade Anzahl Nullstellen
		hat.
		☑Ein Polynom vierten Grades kann zwischen
		Null und vier Nullstellen haben.
		☐ Das kann man nicht allgemein beantworten.
		☐ Keine der Angaben ist richtig.

Aufgabe 1.2: 6 Punkte

Ein Monopolist hat bei der Herstellung seines Produkts variable Kosten von 4 GE (= Geldeinheit) pro Stück. Die Fixkosten betragen 100 GE.

Aus Erfahrungswerten hat er die Nachfragefunktion ermittelt: $p_N(x) = -\frac{1}{20}x + 10$

- a) [3 P.] Berechnen Sie die Funktionsgleichung
 - i) Der Kostenfunktion,
 - ii) der Erlösfunktion
 - iii) und der Gewinnfunktion des Monopolisten.
- b) [3 P.] In welchem Bereich ist die Produktion gewinnbringend?

Alternative:

Konnten Sie in a) nicht alle Funktionen bestimmen so dürfen Sie in b) mit der Gewinnfunktion $G_2(x)=-\frac{1}{4}x^2+30x-500$ weiter rechnen.

Lösung:

- a) Berechnen Sie die folgenden Funktionsgleichungen
 - i) Kostenfunktion: $K(x) = K_v(x) + K_f = 4x + 100$
 - ii) Erlösfunktion: $E(x) = x \cdot p_N(x) = x \cdot \left(-\frac{1}{20}x + 10\right) = -\frac{1}{20}x^2 + 10x$
 - iii) Gewinnfunktion:

$$G(x) = E(x) - K(x) = -\frac{1}{20}x^2 + 10x - (4x + 100) = -\frac{1}{20}x^2 + 6x - 100$$

$$-\frac{1}{20}x^2 + 6x - 100 = 0 \Rightarrow x^2 - 120x + 2000 = 0 \Rightarrow (x - 20)(x - 100) = 0$$

$$\Rightarrow x_1 = 20; \ x_2 = 100$$
 2 P.

Alternative:

$$-\frac{1}{4}x^2 + 30x - 500 = 0 \Rightarrow x^2 - 120x + 2000 = 0 \Rightarrow x_1 = 20; \ x_2 = 100$$

Bemerkung: Die Werte können auch mit der Lösungsformel berechnet werden.

Aufgabe 2.1: 6 Punkte

Gegeben ist die Funktion $y = f(x) = 2x^2 + ln(x)$. Bestimmen Sie den/die Wendepunkt(e). Es ist zu kontrollieren, ob es sich tatsächlich um Wendepunkte handelt oder nicht.

Achtung:

Nicht aufgehende Brüche oder Ausdrücke soweit wie möglich vereinfachen und stehen lassen oder auf 3 Stellen nach dem Komma berechnen.

Lösung:

$$y = f(x) = 2x^2 + ln(x) \Rightarrow f'(x) = 4x + \frac{1}{x}$$

$$f''(x) = 4 - \frac{1}{x^2}$$
; $f'''(x) = \frac{2}{x^3}$

Je 1 P.

Wendepunkt bestimmen, d.h. f''(x) = 0 setzen.

$$0 = 4 - \frac{1}{x^2} \Rightarrow \frac{1}{x^2} = 4 \Rightarrow x^2 = \frac{1}{4} \Rightarrow x_{1;2} = \pm \frac{1}{2}$$

1 P.

Wobei x = -0,5 nicht im Definitionsbereich liegt und somit nicht betrachtet werden muss. $\frac{1}{2}$ P.

$$f'''(x=0.5) = \frac{2}{0.5^3} \neq 0$$

Somit hat es an der Stelle x = 0,5 einen Wendepunkt.

½ P.

Bestimmen des Punktes

$$y = f(x = 0.5) = 2 \cdot 0.5^2 + ln(0.5) = 0.5 + ln(0.5) = 0.5 - ln(2) \approx -0.193$$

Resultat: Der Punkt (0.5; 0,5-ln(2)) ist der einzige Wendepunkt von $f(x) = 2x^2 + ln(x)$

1 P.

Aufgabe 2.2: 6 Punkte

Gesucht ist eine ganzrationale Funktion f(x) 3-ten Grades, die die Symmetrieeigenschaft "ungerade" aufweist und die im Punkt (1; -6) ein Minimum besitzt.

Eine Überprüfung, ob an dieser Stelle wirklich ein Minimum ist, ist nicht nötig.

Lösung:

Ansatz:
$$y = f(x) = ax^{3} + bx^{2} + cx + d$$

Da f(x) ungerade \rightarrow keine geraden Exponenten, also b = d = 0 1 P.

Also:
$$f(x) = ax^3 + cx$$

Es gilt:
$$f'(x) = 3ax^2 + c$$
 1 P. Bedingungen:

I) An der Stelle x = 1 ein Minimum:
$$3a + c = 0$$
 1 P.

II) P(1; -6) ist Punkt der Kurve:
$$a + c = -6$$
 1 P.

Resultat: Das Gleichungssystem liefert a = 3 und c = -9 1½ P. also:
$$f(x) = 3x^3 - 9x$$
 ½ P.

Bemerkung:

Anbei noch die (nicht gefragte) Überprüfung, dass bei x = 1 ein Minimum ist. $f(x) = 3x^3 - 9x \Rightarrow f'(x) = 6x^2 - 9 \Rightarrow f''(x) = 12x$

$$f''(x=1) = 12 \cdot 1 = 12 > 0$$

Zur Kontrolle die Graphik (nicht verlangt):

Aufgabe 3: 8 Punkte

In den markierten Bereich der Funktion $y=f(x)=5\cdot e^{-\frac{x}{2}}$ soll ein Rechteck mit möglichst grosser Fläche eingezeichnet werden. Dabei soll je eine Seite auf der x- resp. y-Achse liegen (siehe Grafik). Bestimmen Sie die Länge und Breite sowie die Fläche dieses Rechtecks. Das Resultat ist mit einer Genauigkeit von 2 Stellen nach dem Komma darzustellen.

Bemerkung:

Die Verifikation, dass es sich um ein Maximum handelt, muss <u>nicht</u> gemacht werden!

Lösung:

Somit beträgt die Fläche des Rechtecks:

$$F(x) = x \cdot f(x) = x \cdot 5 \cdot e^{-\frac{x}{2}}$$
1 P.

$$F'(x) = (x \cdot f(x))' = x' \cdot f(x) + x \cdot f'(x) = 5e^{-\frac{x}{2}} + x \cdot 5 \cdot e^{-\frac{x}{2}} \cdot \left(-\frac{1}{2}\right)$$

$$=\frac{5}{2}\cdot e^{-\frac{x}{2}}\cdot (2-x)$$

3 P.

Es ist die Nullstelle von F'(x) zu bilden:

$$0 = \frac{5}{2} \cdot e^{-\frac{x}{2}} \cdot (2 - x) \Rightarrow 2 - x = 0 \Rightarrow x = 2$$

Die Fläche beträgt somit:

$$F(x=2) = 2 \cdot f(x=2) = 2 \cdot 5 \cdot e^{-\frac{2}{2}} = 2 \cdot 5 \cdot e^{-1} = \frac{10}{e} = 3,6788$$

Resultat: Die Länge des Rechtecks beträgt 2 LE, die Breite beträgt

$$y = f(x = 2) = 5 \cdot e^{-\frac{2}{2}} = \frac{5}{e} = 1,84 \ LE$$
, die max. Fläche beträgt 3,68 FE.

Aufgabe 4.1: 5 Punkte

Ist eine Funktion f(x) gegeben, dann heisst die Funktion $\overline{f}(x)$ Durchschnittsfunktion und ist wie folgt definiert: $\overline{f}(x) = \frac{f(x)}{x}$

Es gilt nun der folgende Satz:

Ist x_0 eine Stelle, wo $\overline{f}(x)$ extremal ist, dann gilt an dieser Stelle: $\overline{f}(x_0) = f'(x_0)$

Verifizieren Sie diesen Satz mit der Funktion $f(x) = -x^3 + 2x^2 + 80x$

Lösung:

$$\overline{f(x)} = -x^3 + 2x^2 + 80x$$

$$\overline{f}(x) = \frac{-x^3 + 2x^2 + 80x}{x} = -x^2 + 2x + 80$$

1 P.

Nullstelle von $\overline{f}'(x)$ berechnen

$$\overline{f}'(x) = -2x + 2$$

$$0 = -2x + 2 \Rightarrow x = 1$$

$$f'(x) = -3x^2 + 4x + 80$$
1 P.

$$f'(x=1) = -3 + 4 + 80 = \underline{\underline{81}}$$

$$\overline{f}(x=1) = \frac{f(x=1)}{1} = \frac{-1+2+80}{1} = \underline{\underline{81}}$$

1 P.

Aufgabe 4.2: 5 Punkte

Führen Sie zwei Schritte des Newton-Verfahrens zur Bestimmung der Nullstelle der Funktion $f(x) = e^x - 2x - 2$ durch. Beginnen Sie mit dem Startwert $x_0 = 0$.

Alternative:

Sollten Sie das rechnerische Verfahren nicht beherrschen, so können Sie zwei Schritte graphisch einzeichnen. Sie erhalten dafür aber nur maximal 2 Punkte!!

Lösung:

$$f(x) = e^x - 2x - 2 \Rightarrow f'(x) = e^x - 2$$
 1 P.

Iterationsformel: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Schritt 1 mit Startwert $x_0 = 0$:

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 0 - \frac{e^0 - 2 \cdot 0 - 2}{e^0 - 2} = 0 - \frac{-1}{-1} = -1$$

Schritt 2: $x_1 = -1$:

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} = -1 - \frac{e^{-1} - 2 \cdot (-1) - 2}{e^{-1} - 2} = -1 - \frac{e^{-1}}{e^{-1} - 2} = -0,775$$

Aufgabe 5.1: 5 Punkte

Berechnen Sie das bestimmte Integral.

$$\int_{2}^{3} x \cdot \ln(x) \, dx$$

Lösung:

Für die partielle Integration gilt: $\int f(x) \cdot g(x) dx = F(x) \cdot g(x) - \int F(x) \cdot g'(x) dx$

Also
$$f(x) = x \Rightarrow F(x) = \frac{x^2}{2}$$

Und
$$g(x) = ln(x) \Rightarrow g'(x) = \frac{1}{x}$$

1 P.

Wir berechnen zuerst die Stammfunktion:

$$\int x \cdot \ln(x) \, dx = \frac{x^2}{2} \cdot \ln(x) - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \frac{x^2}{2} \cdot \ln(x) - \frac{1}{2} \int x \, dx$$

$$= \frac{x^2}{2} \cdot \ln(x) - \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{2} \cdot \left(\ln(x) - \frac{1}{2} \right)$$
2 P.

Und nun das bestimmte Integral:

$$\int_{2}^{3} x \cdot \ln(x) \ dx = \frac{x^{2}}{2} \cdot \left(\ln(x) - \frac{1}{2} \right) \Big|_{2}^{3} = \frac{3^{2}}{2} \cdot \left(\ln(3) - \frac{1}{2} \right) - \left[\frac{2^{2}}{2} \cdot \left(\ln(2) - \frac{1}{2} \right) \right]$$

$$= \frac{9}{2} \cdot ln(3) - \frac{9}{4} - \frac{4}{2} \cdot ln(2) + \frac{4}{4} = \frac{9}{2} \cdot ln(3) - 2 \cdot ln(2) - 1,25 \approx \frac{2,30746}{2 \cdot ln(3)}$$

Aufgabe 5.2: 8 Punkte

Berechnen Sie die Fläche, die von den Funktionen $f(x) = e^x - 3$ und $g(x) = x^3 - 2x^2 + 2$, der y-Achse und der Geraden x = 1 begrenzt wird (siehe Diagramm). Das Schlussresultat ist auf 3 Stellen nach dem Komma zu runden.

Lösung:

$$= \int_{0}^{1} x^{3} - 2x^{2} + 2 dx - \int_{0}^{1} e^{x} - 3 dx = \frac{x^{4}}{4} - \frac{2x^{3}}{3} + 2x \Big|_{0}^{1} - [e^{x} - 3x]_{0}^{1}$$

$$= \frac{1}{4} - \frac{2}{3} + 2 - 0 - [e - 3 - (1 - 0)] = -\frac{5}{12} + 2 - e + 4 = \frac{67}{12} - e = 2,865$$

Bewertungshinweise:

- 1 P. für Fläche als Differenz der zwei Integrale, inkl. richtige Grenzen (jeweils -0.5 P. für eine falsche Grenze oder für falsche Reihenfolge; -1 P. für Fläche als *Summe* der Integrale).
- Pro Stammfunktion 2 P → 4 P.
- Pro bestimmtes Integral 1 P. → 2 P.
- Korrektes Schlussresultat 1P.

Aufgabe 6: 7 Punkte

Ein Flächenstück ist wie folgt definiert:

• Oben wird das Flächenstück durch die Funktion $y = f(x) = \sqrt{25 - x^2}$ begrenzt.

- Unten wird das Flächenstück durch die Gerade mit der Gleichung y = 4 begrenzt.
- Siehe Zeichnung.

Bestimmen Sie das Volumen des Ringes, der entsteht, wenn das beschriebene Flächenstück um die X-Achse rotiert wird.

Hinweis 1: Es muss die Differenz von zwei Rotationskörpervolumina berechnet werden.

Hinweis 2:

Sollte es möglich sein, dass ein Rotationskörpervolumen elementargeometrisch berechnet werden kann, so dürfen Sie das elementargeometrisch berechnen.

Lösung:

V₁ = Volumen des Rotationskörpers, der durch die obere Kurve erzeugt wird.

$$V_1 = \pi \int_{-3}^{3} (f(x))^2 dx = \pi \int_{-3}^{3} (\sqrt{25 - x^2})^2 dx = \pi \int_{-3}^{3} 25 - x^2 dx = \pi \left(25x - \frac{x^3}{3}\right)_{-3}^{3}$$

$$= \pi \left[25 \cdot 3 - \frac{3^3}{3} - \left(25(-3) - \frac{(-3)^3}{3} \right) \right] = \pi [75 - 9 - (-75 + 9)] = \underline{132\pi}$$
4 P.

V₂ = Volumen des Rotationskörpers, der durch die untere Kurve erzeugt wird.

 V_2 = Zylinder mit Radius 4 und Höhe 6, also $V_2 = r^2 \cdot \pi \cdot h = 4^2 \cdot \pi \cdot 6 = 96\pi$ 2 P.

Oder mit dem Integral:

$$V_2 = \pi \int_{-3}^{3} (f(x))^2 dx = \pi \int_{-3}^{3} 4^2 dx = 2\pi \int_{0}^{3} 4^2 dx = 2\pi (16x)_{0}^{3} = 2\pi \cdot 48 = \underline{96\pi}$$

Das Volumen des Rings ist

$$V_1 - V_2 = \pi (132 - 96) = \underline{36\pi \approx 113,1}$$

Oder direkt:

$$V_1 - V_2 = \pi \int_{-3}^{3} 25 - x^2 dx - \pi \int_{-3}^{3} 4^2 dx = \pi \int_{-3}^{3} 25 - x^2 - 16 dx = \pi \int_{-3}^{3} 9 - x^2 dx = ... = 36\pi$$