Lista de Exercícios 05 CCF 110 – Programação Ciência da Computação – Campus UFV-Florestal Prof. José Augusto Miranda Nacif

Instruções

- Esta quinta lista também é uma lista de revisão. Nela buscamos inserir exercícios variados. Você deve decidir em cada exercício qual o melhor meio de resolver o problema apresentado.
- Utilize a linguagem python para a execução de todos os exercícios na lista.
- Evite o uso de funções prontas da linguagem. Tente fazer você mesmo para entender melhor a lógica de programação. Nem todas as linguagens oferecem as mesmas funcionalidades que o python.
- No final tem um desafio e exercícios extras. Lembre-se: seu aprendizado depende de você. Bons estudos!

Exemplo

<u>Enunciado</u>: Escreva um algoritmo que leia vários números e informe quantos números entre 100 e 200 foram digitados. Quando o valor 0 (zero) for lido, o algoritmo deverá cessar sua execução.

Solução:

```
num = int(input("Digite um número: "))

quant = 0
while(num!=0):
    if(num>=100 and num<=200):
        quant += 1;
    num = int(input("Digite um número: "))

print("Quantidade: ", quant)</pre>
```

Comentários:

- 1. Nesse exercício, primeiro fizemos a leitura de um valor, depois utilizamos a estrutura de repetição 'while' para ler vários valores e observar e somar a quantidade de valores entre 100 e 200. Escolhemos a estrutura 'while' porque a nossa condição de parada era quando o número digitado fosse zero. Depois imprimimos na tela a quantidade de números nesse intervalo.
- 2. Há outras formas de fazer esse mesmo exercício. Não se prenda a essa! Encontre o seu jeito de fazer!

Lista 05

1. Construa um algoritmo para determinar se o indivíduo está com um peso favorável. Essa situação é determinada através do IMC (Índice de Massa Corporal), que é definida como sendo a relação entre o peso (PESO) e o quadrado da Altura (ALTURA) do indivíduo. Ou seja,

$$IMC = \frac{PESO}{ALTURA^2}$$

A situação do peso é determinada pela tabela abaixo:

Condição	Situação
IMC abaixo de 20	Abaixo do peso
IMC de 20 até 25	Peso Normal
IMC de 25 até 30	Sobrepeso
IMC de 30 até 40	Obeso
IMC de 40 e acima	Obeso Mórbido

2. A Caixa Econômica Federal (CEF) concederá um crédito especial com juros de 2% aos seus clientes de acordo com o saldo médio no último ano. Fazer um algoritmo que leia o saldo médio de um cliente e calcule o valor do crédito de acordo com a tabela a seguir. Escrever uma mensagem informando o saldo médio e o valor de crédito.

Saldo médio	Percentual
De 0 a 500	Nenhum crédito
De 501 a 1000	30% do valor do saldo médio
De 1001 a 3000	40% do valor do saldo médio
Acima de 3001	50% do valor do saldo médio

- 3. Escreva um algoritmo que escreva o quadrado dos números no intervalo fechado de 1 a 20.
- 4. Criar um algoritmo que escreva todos os números de 1 até 100, inclusive, e a soma do quadrado desses números.
- 5. Criar um algoritmo que leia um número (NUM) e então escreva os múltiplos de 3 e 5, ao mesmo tempo, no intervalo fechado de 1 a NUM.
- 6. Escreva um algoritmo que receba 15 números e escreva quantos números maiores que 30 foram digitados.

- 7. Criar um algoritmo que receba vários números inteiros e positivos e escreva a média dos números múltiplos de 3. A execução deve encerrar quando um número não positivo for lido.
- 8. Construa um algoritmo para encontrar o maior e o menor número de uma série de números positivos fornecidos pelo usuário através do teclado. O dado finalizador é o número –1, e este não deve ser considerado.
- 9. Criar um algoritmo que receba 10 números positivos e escreva a raiz quadrada de cada número. Para cada entrada de dados deverá haver um trecho de proteção para que um número negativo não seja aceito.
- 10. Escreva um algoritmo que realize o produto de A (número real) por B (número inteiro), ou seja, A * B, através de adições (somas). Esses dois valores são passados pelo usuário através do teclado.
- 11. Escreva um algoritmo que calcule o resto da divisão de A por B (número inteiros e positivos), ou seja, A mod B, através de subtrações sucessivas. Esses dois valores são passados pelo usuário através do teclado.
- 12. Implementar um algoritmo para calcular o sen(X). O valor de X deverá ser digitado em graus. O valor do seno de X será calculado pela soma dos 15 primeiros termos da série a seguir (Para que seja calculado corretamente, é necessário que se transforme o valor de X lido em graus para radianos):

$$sen(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \frac{x^9}{9!} - \frac{x^{11}}{11!} + \square$$

13. Fazer um algoritmo que calcule e escreva o número de grãos de milho que se pode colocar num tabuleiro de xadrez, colocando 1 no primeiro quadro e nos quadros seguintes o dobro do quadro anterior. São 64 quadros e a fórmula é:

$$\sum_{n=0}^{63} 2^n$$

14. A série de FETUCCINE é gerada da seguinte forma: os dois primeiros termos são fornecidos pelo usuário; a partir daí, os termos são gerados com a soma ou subtração dos dois termos anteriores, ou seja:

$$A_i = A_{i-1} + A_{i-2} \;\; {\rm para} \; {\rm i} \; {\rm impar}$$

$$A_i = A_{i-1} - A_{i-2} \;\; {\rm para} \; {\rm i} \; {\rm par}$$

Criar um algoritmo que escreva os N primeiros termos da série de FETUCCINE, sabendo-se que para existir esta série serão necessários pelo menos três termos.

- 15. Um cinema possui capacidade de 100 lugares e está sempre com ocupação total. Certo dia, cada espectador respondeu a um questionário, no qual constava:
 - idade;
 - opinião em relação ao filme, segundo as seguintes notas:

Nota	Significado
Α	Ótimo
В	Bom
С	Regular
D	Ruim
E	Péssimo

Elabore um algoritmo que, lendo estes dados, calcule e escreva:

- a quantidade de respostas ótimo;
- a diferença percentual entre respostas bom e regular;
- a média de idade das pessoas que responderam ruim;
- a porcentagem de respostas péssimo e a maior idade que utilizou esta opção;
- a diferença de idade entre a maior idade que respondeu ótimo e a maior idade que respondeu ruim.
- 16. Criar um algoritmo que leia um conjunto de informações (nome, sexo, idade, peso e altura) dos atletas que participaram de uma olimpíada, e informar:
 - O atleta do sexo masculino mais alto;
 - A atleta do sexo feminino mais pesada;
 - A média de idade dos atletas.

Deverão ser lidos dados dos atletas até que seja digitado o nome @ para um atleta.

- 17. Criar um algoritmo que possa ler um conjunto de pedidos de compra e calcule o valor total da compra. Cada pedido é composto pelos seguintes campos:
 - Número de pedido;
 - Data do pedido (dia, mês, ano);
 - Preço unitário;
 - Quantidade.

O algoritmo deverá processar novos pedidos até que o usuário digite (zero) como número de pedido.

18. Chico tem 1,50m e cresce 2 centímetros por ano, enquanto Juca tem 1,10m e cresce 3 centímetros por ano. Construir um algoritmo que calcule iterativamente e escreva quantos anos serão necessários para que Juca seja maior que Chico.

- 19. Dado um país A, com 5.000.000 de habitantes e uma taxa de natalidade de 3% ao ano, e um país B com 7.000.000 de habitantes e uma taxa de natalidade de 2% ao ano, escrever um algoritmo que seja capaz de calcular iterativamente e no fim escrever o tempo necessário para que a população do país A ultrapasse a população do país B.
- 20. Dois ciclistas A e B estão andando em uma pista de ciclismo com 2 km de comprimento com velocidades de 10 m/s e 15 m/s, respectivamente. Escreva um algoritmo que determine iterativamente o tempo que levará para que esses dois ciclistas A e B se encontrem em um mesmo ponto, sabendo que eles partiram de um mesmo ponto inicial, porém em sentido contrário. O algoritmo também deve calcular o deslocamento (a distância) que cada um percorreu.

DESAFIO

Cara ou Coroa (Maratona de Programação da SBC 2004)

João e Maria são amigos desde que se conheceram na creche. Desde então, eles compartilham uma rotina de brincadeiras: todas as vezes que eles se encontram, eles jogam Cara ou Coroa com uma moeda, e quem ganhar tem o privilégio de decidir quais brincadeiras eles irão jogar durante o dia. Maria sempre escolhe cara, e João sempre escolhe coroa.

Hoje em dia eles estão na faculdade, mas continuam sendo bons amigos. Sempre que se encontram, eles ainda jogam Cara ou Coroa, e o vencedor decide que filme assistir, ou em que restaurante jantar, e assim por diante.

Ontem Maria contou a João que ela guarda um registro de todas as vezes que eles jogaram, desde os tempos da creche. João ficou espantado. Porém João está estudando Ciência da Computação e decidiu que essa era uma boa oportunidade para mostrar a Maria suas habilidades em programação, escrevendo um programa que mostrasse o número de vezes que cada um deles venceu ao longo de todos esses anos.

Entrada

A entrada contém vários casos de teste. A primeira linha de um caso de teste contém um único inteiro N indicando o número de vezes jogadas ($1 \le N \le 10000$). A linha seguinte contém N inteiros Ri, separados por um espaço, descrevendo a lista de resultados. Se Ri = 0 então Maria venceu o iésimo jogo, se Ri = 1 então João venceu o iésimo jogo ($1 \le i \le N$). O fim da entrada é indicado por N = 0.

Saída

Para cada caso de teste na entrada, seu programa deverá escrever uma linha contendo a sentença "Mary won X times and John won Y times" ("Maria venceu X vezes e João venceu Y vezes"), onde $0 \le X$ e $0 \le Y$.

Exemplo de Entrada	Exemplo de Saída
5	Mary won 3 times and John won 2 times
0 0 1 0 1	Mary won 5 times and John won 1 times
6	
0 0 0 0 0 1	
0	

Você pode testar sua solução no URI. Exercício número 1329.

Extras

- 1. Crie um algoritmo que escreva todos os números de 1 até 100, inclusive, e a média de todos eles.
- 2. Crie um algoritmo que leia dez números inteiros e escreva o maior e o segundo maior número da lista.
- 3. Escreva um algoritmo que determine todos os divisores de um dado número N.
- 4. Escreva um algoritmo que receba números do usuário enquanto eles forem positivos e ao fim o algoritmo deve escrever quantos números foram digitados.
- 5. Escreva um algoritmo que realize a potência de A (número real) por B (número inteiro e positivo), ou seja, AB, através de multiplicações sucessivas. Esses dois valores são passados pelo usuário através do teclado.
- 6. Escreva um algoritmo que calcule o quociente da divisão de A por B (número inteiros e positivos), ou seja, A div B, através de subtrações sucessivas. Esses dois valores são passados pelo usuário através do teclado.
- 7. Escreva um algoritmo que calcule os números primos menores que N. Este número N deve ser lido do teclado.
- 8. Construa um algoritmo para fazer a soma de vários valores inteiros e positivos, fornecidos pelo usuário através do teclado. O dado que finaliza a sequência de entrada é o número –1, e este não deve ser considerado.
- 9. Escreva um algoritmo em que receba vários números inteiros e escreva a quantidade de números primos dentre os números que foram digitados. O algoritmo acaba quando se digita um número menor ou igual a 0.