CSE 5523 Homework 3: Parameter Estimation

Alan Ritter

Problem 1

Consider the following data set on lung diseases. Your goal is to build a Naïve Bayes classifier that predicts whether a person has Bronchitis or Tuberculosis, given his/her symptoms.

Disease	X-ray Shadow	Dyspnea	Lung Inflamation
Bronchitis	Yes	Yes	Yes
Bronchitis	Yes	Yes	Yes
Bronchitis	No	No	Yes
Tuberculosis	Yes	Yes	No
Tuberculosis	Yes	No	No
Tuberculosis	No	No	Yes

- 1. (1 point) List the distributions that would be learned if you use a maximum likelihood estimate (MLE) to estimate the parameters of a Naïve Bayes model from this data (e.g. P(Dyspnea|Bronchitis) =?). Include all of the parameters. Show your work.
- 2. (1 point) Based on your learned model, diagnose a patient with the following symptoms (show your work):

X-ray Shadow	Dyspnea	Lung Inflamation
Yes	No	Yes

Problem 2

Assume you are given a dataset of n real numbers $D = \{X^1, X^2, \dots, X^n\}$, $X^i \in \mathcal{R}$. Derive the maximum likelihood mean, μ and variance, σ parameters of a 1-dimensional Gaussian distribution.

- 1. (1 point) Write down the log-likelihood of D as a function of μ and σ , $\mathcal{L}(\mu, \sigma)$.
- 2. (1 point) Compute the partial derivative of $\mathcal{L}(\mu, \sigma)$ with respect to μ , equate to zero and solve for μ .
- 3. (1 point) Compute the partial derivative of $\mathcal{L}(\mu, \sigma)$ with respect to σ , equate to zero and solve for σ .

Problem 3

Consider a training sample of inputs X^1, X^2, \ldots, X^n and outputs Y^1, Y^2, \ldots, Y^n , where inputs are real-valued vectors $X^i \in \mathcal{R}^V$ and outputs are binary $Y^i \in [0, 1]$.

Recall (from the slides presented in class) that the conditional log likelihood can be written as follows:

$$\mathcal{L}(W) = \sum_{l} Y^{l} \log P(Y = 1 | X^{l}, W) + (1 - Y^{l}) \log P(Y = 0 | X^{l}, W)$$

$$= \sum_{l} Y^{l} \log \frac{P(Y = 1 | X^{l}, W)}{P(Y = 0 | X^{l}, W)} + \log P(Y = 0 | X^{l}, W)$$

$$= \sum_{l} Y^{l} \left(w_{0} + \sum_{i=1}^{V} w_{i} X_{i}^{l} \right) - \log \left(1 + \exp(w_{0} + \sum_{i=1}^{V} w_{i} X_{i}^{l}) \right)$$

1. (2 points) Show that the partial derivative of $\mathcal{L}(W)$ with respect to w_i is as follows:

$$\frac{\partial \mathcal{L}(W)}{\partial w_i} = \sum_{l} X^l (Y^l - P(Y = 1 | X^l, W))$$

2. (2 points) Now, assume a zero-mean Gaussian prior over the weights:

$$P(w_i) = \mathcal{N}(0, \sigma)$$

Write down the expression for the posterior distribution over w_i , and derive the gradient (e.g. that can be used for estimating MAP parameters in gradient decent).