Les nombres réels

Table des matières

1	Les ensembles de nombres	1
2	Intervalles	2
3	Encadrer un réel par deux nombres	3
4	Valeur absolue d'un nombre réel	3

Les ensembles de nombres

Propriété 1. Admise. On peut associer à tout point M d'une droite graduée \mathcal{D} un nombre appelé abscisse de

Définition 1. L'ensemble des abscisses des points de \mathcal{D} est appelé ensemble des réels. Il est noté \mathbb{R} .

Exemple. L'absisse du point O est 0, celle de I est 1, celle de A est $-\frac{7}{3}$ et celle de P est π .

Définition 2. Durant les années antérieures on a construit différents ensembles de nombres imbriqués. $\mathbb R$ les contient tous.

Ensemble de nombres	Notation	Éléments et exemples
Entiers naturels	N	0; 1; 3 etc.
Entiers relatifs	\mathbb{Z}	-10; -5; -1; 0; 1; 23
Décimaux	\mathbb{D}	-1/2; 0.5; 12,345; 1
Rationnels	Q	$\left\{ \frac{p}{q} \text{ avec } p \text{ et } q \in \mathbb{Z} \text{ et } q \neq 0 \right\}$
Réels	\mathbb{R}	$\pi \; ; \; \sqrt{2} \; ; \; \frac{1}{3}$

Propriété 2. Les ensembles de nombres sont contenus les uns dans les autres :

$$\mathbb{N}\subset\mathbb{Z}\subset\mathbb{D}\subset\mathbb{Q}\subset\mathbb{R}$$

Propriété 3. Les nombres rationnels de l'ensemble $\mathbb Q$ peuvent s'écrire $\frac{p}{q}$ avec $p\in\mathbb Z$ et $q\in\mathbb Z, q\neq 0$. Ils admettent une *écriture décimale* qui se termine ou qui

se répète.

Nombres réels Seconde

Exemple. Nombres rationnels : $\frac{1}{3} = 0,3333\underline{3}$ $\frac{1}{10} = 0,1$ $\frac{324}{11} = 29,45\underline{45}$ On souligne les chiffres qui se répètent.

Remarque. On étudiera plus tard l'ensemble \mathbb{D} des décimaux. Ce sont les nombres qui admettent une écriture décimale *qui se termine* comme $\frac{246}{128} = 1,921875$.

Méthode 1. Démontrer qu'un nombre n'est pas un décimal.

Méthode 2. Démontrer qu'un nombre n'est pas un rationnel.

Remarque. L'un des objectifs de cette année est de répondre à la question générale : ce nombre x est il dans cet ensemble E?

2 Intervalles

Définition 3. Soient a et b deux réels.

L'ensemble des réels x tels que $a \le x \le b$ est noté [a;b]. C'est l'intervalle des nombres compris entre a et b, bornes incluses.

Il existe plusieurs sortes d'intervalles, selon leurs bornes :

Intervalle	Ensemble des réels x tels que	Représentation graphique
$[a \; ; \; b]$ fermé	$a \le x \le b$	a = b
$[a\;;\;b[$ fermé à gauche, ouvert à droite	$a \le x < b$	
$]a\ ;\ b]$ ouvert à gauche, fermé à droite	$a \le x < b$	
a : b[ouvert à gauche, ouvert à droite	a < x < b	
$[a;+\infty[$	$a \le x$	
$]a;+\infty[$	x > a	
$]-\infty\;;\;b[$	x < b	<i>b</i>
$]-\infty\;;\;b]$	$x \leq b$	<i>b</i>

Le symbole ∞ , se lit « infini » . Ce n'est pas un nombre réel.

Du côté de l'infini, le crochet est toujours tourné vers l'extérieur : $]-\infty;3]$ ou $]4;+\infty[$.

Méthode 3. Représenter un intervalle sur une droite graduée

Définition 4. Soient I et J deux intervalles.

- 1. L'ensemble des réels qui appartiennent à la fois à I et à J est appelé l'intersection de I et J. Cet ensemble est noté $I \cap J$.
- 2. L'ensemble des réels qui appartiennent à I ou à J est appelé la réunion de I et J. Cet ensemble est noté $I \cup J$.

Exemple. Intersections et réunions d'intervalles :

- 1. $[4; 5] \cap [2; 3] = \emptyset$
- 2. $[2; 5] \cap [2; 3] = [2; 3]$
- 3. $[4; 7] \cap [6; 8] = [6; 7]$
- 4. $[4; 7] \cup [6; 8] = [4; 8]$

Méthode 4. Déterminer l'intersection, la réunion de deux intervalles

Nombres réels Seconde

Propriété 4. Résolution d'équations affines

On considère une expression affine : ax + b où a et b sont deux nombres réels **avec** $a \neq 0$.

L'équation ax + b = 0 admet pour unique solution $x = -\frac{b}{a}$.

Méthode 5. Résolution d'inéquations affines

Toutes les inéquations affines se résolvent de la même manière, en remplaçant *l'inégalité* par le symbole correspondant.

Résolvons ax + b > 0:

$$ax + b > 0 \Leftrightarrow ax > -b \qquad (I)$$

$$- \text{ Si } a > 0, \ (I) \Leftrightarrow x > -\frac{b}{a}.$$
Les solutions sont $\left] -\frac{b}{a}; +\infty \right[$

$$- \text{ Si } a < 0, \ (I) \Leftrightarrow x < -\frac{b}{a}.$$
Les solutions sont $\left] -\infty; \frac{b}{a} \right[$

Propriété 5. Signe d'une expression affine : le tableau de signes

Si a < 0

$$\begin{array}{|c|c|c|c|c|} \hline x & -\infty & -\frac{b}{a} & +\infty \\ \hline ax+b & + & 0 & - \\ \hline \end{array}$$

$$\begin{array}{c|cccc}
x & -\infty & -\frac{b}{a} & +\infty \\
\hline
ax + b & - & 0 & +
\end{array}$$

Si a > 0

Lecture du tableau : par exemple, celui de gauche.

Le symbole + en bas signifie que les nombres x entre $-\infty$ et $-\frac{b}{a}$ ont une valeur positive par $x \mapsto ax + b$.

Méthode 6. Résoudre une inéquation

3 Encadrer un réel par deux nombres

Définition 5. On dit que les nombres réels a et b encadrent le nombre réels x si :

b-a est l'amplitude de cet encadrement.

Théorème 6. Admis

Tout nombre réel x peut être encadré par deux nombres décimaux avec une amplitude choisie.

Exemple

- 1, 2 < $\sqrt{2}$ < 2 est un encadrement de $\sqrt{2}$ d'amplitude 0, 8
- 1, $4 < \sqrt{2} < 1$, 5, encadrement d'amplitude 0, 1 (au dixième)
- $1,41 < \sqrt{2} < 1,42$, encadrement d'amplitude 0,01 (au centième)

Vocabulaire:

- 1,41 est une valeur approchée par défaut,
- $\sqrt{2}$ et la valeur exacte,
- 1,42 est une valeur approchée excès.

Méthode 7. Trouver des valeurs approchées d'un nombre réel.

4 Valeur absolue d'un nombre réel

Définition 6. On appelle valeur absolue d'un nombre réel a, le nombré noté |a| et défini par :

$$|a| = \begin{cases} a \text{ si } a \ge 0, \\ -a \text{ si } a < 0 \end{cases}$$

3

Nombres réels Seconde

Exemple. $|3| = 3 \text{ car } 3 > 0, \qquad |-2| = -(-2) = 2 \text{ car } -2 < 0.$

Propriété 7. Admise.

- Pour tout nombre réel a, $|a| \ge 0$,
- ullet a et -a ont la même valeur absolue,
- |a b| = |b a|; $|a \times b| = |a| \times |b|$ et $|a + b| \le |a| + |b|$.

Définition 7. Distance entre deux nombres réels.

La distance entre les réels a et b est |b-a|.

C'est ce qu'on appelle souvent $l'\acute{e}cart$ entre ces nombres

Exemple. La distance entre 3, 5 et 10 est |10 - 3, 5| = |6, 5| = 6, 5

Remarque. On réalise d'abord les additions et soustractions dans les valeurs absolues avant d'essayer de les enlever.

Méthode 8. Résoudre des inéquations et des équations comportant des valeurs absolues.