

Lecture 11

topic: Association Rules

material: Chapters 14 (book "Data Mining for Business Intelligence")

Steps in the DM Process:

Business understanding → Data preparation → Model building → Testing & Evaluation → Deployment

Our last lecture!

Date		Lecture contents	Lecturer	Lab topics	Test	
Jan-27	1	Intro. to BI+ Data Management	Caron			
Jan-30				SQL-1	1	
Jan-28	2	Data warehousing	Caron			
Feb-06				SQL-2	2	
Feb-03	3	OLAP business databases & dashboard	Caron	4		
Feb-13				્ર્ય -3 8		
5-b 10	4	Data mining introduction	Ioannou	•	exam pre	eparation will be
Feb-10	5	Regression models	Ioannou		done whe	en the university
Feb-17	6	Naïve Bayes	loanruu			es the details
ren-17	7	k nearest neighbors	lo ² nnou		provid	es life details
Feb-20				aye		
				n ighbors		
Feb-27	8	Performance measures	Ioannou			
Mar-02	9	Decision trees	Ioannou			
Mar-05				Dec. trees	5	
Mar-09	12	Association rules	Ioannou			
Mar- 11,12&13				Ass. Rules	6	
Mar-16		Clustering (+20 mins exam preparation)	loannou			
Mar-19				Clustering	7	

Association Rules

- Identify item clusters in event-based or transaction-based databases
- Study of "what goes with what"
 - Symptoms related to diagnosis
 - Customers who bought X also bought Y
- Originated with study of customer transactions databases to determine associations among items purchased
- Association Rules also called:
 - Market basket analysis
 - Affinity analysis

Association Rules

- Identify item clusters in event-based or transaction-based databases
- Usage: display items together, recommendations in online shopping, etc.
- Heavily used in retail for learning about items that are purchased together
- Useful in several other fields:
 - A medical researcher might want to learn what symptoms appear together
 - In law, word combinations that appear too often might indicate plagiarism

Example

Market basket databases

- Consist of a large number of transaction records
- Each record lists all items bought by a customer on a single-purchase transaction
- Detect certain groups of items are consistently purchased together

Information can be used to

- Make decisions on store layouts
- Design the upcoming catalog
- Identify customer segments based on buying patterns

•

Example

Market basket databases

- Consist of a large number of transaction records
- Each record lists all items bought by a customer on a single-purchase transaction
- Detect certain groups items consistently are purchased together

Amazon uses information for

Recommendations!!!

Cell Phones & Accessories > Cell Phones > Unlocked Cell Phones

Roll over image to zoom in

Samsung Galaxy S5 SM-G900H 16GB Factory Unlocked International Version - WHITE

by Samsung

常常常常立 * 926 customer reviews | 731 answered questions

Price: \$396.98 You Save: \$203.01 (34%)

In Stock.

Sold by DeltaMobiles and Fulfilled by Amazon.

This item does not ship to Taipei City, Taiwan; Republic of China. Please check other sellers who may ship internationally. Learn more

- 5.1" Full HD Super AMOLED(TM) (1080 x 1920)
- Exyon Quad Core; 1.9GHz,1.3GHz
- 16 MP Camera with LED Flash
- Must be activated with an Americas-region SIM
- · 16GB of Internal Memory
- Unlocked cell phones are compatible with GSM carriers but are not compatible with CDMA Carriers.

14 new from \$381.87 33 used from \$315.00 21 refurbished from \$345.99

Frequently Bought Together

Add all three to Wish List Show availability and shipping details

- This item: Samsung Galaxy S5 SM-G900H 16GB Factory Unlocked International Version WHITE \$396.98
- Galaxy S5 Case, Spigen Slim Armor Case for Galaxy S5 Shimmery White (SGP10755) \$16.99
- Galaxy S5 Screen Protector, Spigen Ffull HD] Samsung Galaxy S5 Screen Protector [Crystal ... \$8.99

Customers Who Bought This Item Also Bought

[Galaxy S5 Screen

Samsung Galaxy S5 G900H 16GB Unlocked GSM Octa-Core Android Smartphone - Black 常常常常公411 \$387.00 Aprime

Galaxy S5 Screen Protector, Spigen [Full HD] Samsung Galaxy S5 Screen Protector... \$8.99 *Sprime*

MPERO Collection 5 Pack of Ultra Clear Screen Protectors for Samsung Galaxy S5 / GS5 **常常常常** 1,489

Page 1 of 25

>

Rules

- Represented in an IF-THEN format
 - "IF" part: antecedent
 - "THEN" part: consequent
- Both correspond to sets of items (called itemsets)
- *Itemsets* are
 - Possible combinations of items (e.g., products)
 - Can also be a single item
 - NOT records of what people buy
- Antecedent and consequent are disjoint
 - I.e., have no items in common

Example

itemset {red, white, green}

- Transaction 1 supports several rules:
 - IF red THEN white
 - Meaning: if a red faceplate is purchased then so is a white one
 - IF red AND white THEN green
 - etc.

• itemset {white, blue}

• Transaction 3:

• IF white THEN blue

0

•

Transaction	Faceplate Colors Purchased					
1	red	white	green			
2	white	orange				
3	white	blue				
4	red	white	orange			
5	red	blue				
6	white	blue				
7	white	orange				
8	red	white	blue	green		
9	red	white	blue			
10	yellow					

Finding Association Rules

- One itemset has many association rules
- Every transaction is one itemset
- → Supports several rules

Two-stage Process:

- 1. Generation of frequent itemsets i.e., Apriory algorithm
- 2. Selecting the strong rules i.e., criteria for judging the strength of the rules

Generation of frequent itemsets

Selecting the strong rules

Generation of rules

→ Detect candidates for indicating item associations

<u>Ideal process</u> (check all possible combinations):

- Find all combinations of single items, pairs of items, triplets of items, and so on
 - ∘ I.e., {a, b, c} items means: {a}, {b}, {c}, {a, b}, {a, c}, ...
- Requires a long computation time (exponential)

Practical solution:

- Consider only combinations that occur with higher frequency in the transactions, i.e., data set
- Called frequent itemsets
- Criterion for frequent is "support"

Frequent Itemsets

IF Antecedent THEN Consequent

- Combinations of items that occur with higher frequency among the transactions
- Criterion for frequent is "support"
- Support: number, or percent, of transactions that include both the antecedent and the consequent
- An itemset that has a support that exceeds a selected minimum support, determined by the user

support(A U C) = frequency(A
$$\cap$$
 C)

or, as a percentage

support(A U C) = $\frac{\text{frequency}(A \cap C)}{n}$

Example

Support: number, or percent, of transactions that include both the antecedent and the consequent

support($A \cap C$) = frequency($A \cap C$)

Transaction	Face	Faceplate Colors Purchased						
1	red	white	green					
2	white	orange						
3	white	blue						
4	red	white	orange					
5	red	blue						
6	white	blue						
7	white	orange						
8	red	white	blue	green				
9	red	white	blue					
10	yellow							

What is the support for the following rules?

- a) IF Red THEN White
- b) IF White THEN Red
- c) If White and Red THEN Green

Support for itemset {red, white} is 4, or as percentage 4 out of 10 transactions, i.e., 40%

Apriori algorithm

Goal: generate the frequent itemsets

For *k* items:

- User sets a minimum support criterion
- Generate list of one-item sets
- Drop the ones bellow the support criterion
- Use the list of one-itemsets to generate the two-itemsets
- Drop the ones bellow the support criterion
- Use the list of two-itemsets to generate the three-itemsets
- Drop the ones bellow the support criterion
- (continue until *k*-itemsets)

Assessment of rule strength

- We need to measure the strength of the association implied by a rule
- Measures:
 - Support:
 - Number of transactions that include all items from the antecedent and consequent
 - (explained in the previous slides)
 - Confidence
 - Lift ratio

Confidence

IF Antecedent THEN Consequent

Compares the co-occurrence of items in antecedent and consequent to the occurrence of items in antecedent

Shows the percentage in which C appears with A

$$confidence = \frac{\text{no. transactions with both antecedent}}{\text{and consequent itemsets}}$$

Example: $= \frac{\text{frequency}(A \cap C)}{\text{frequency}(A)}$

- Supermarket with 100.000 transactions
- 2.000 include both orange juice and flu medication
- 800 from the above include soup purchases
- IF orange juice and flu medication are purchased THEN soup
- Support = 800 transactions (or 800/100.000 = 0.8%)
- Confidence = 800 / 2.000 = 40%

Relationship of Support with Confidence

IF Antecedent THEN Consequent

Support:

- (Estimated) probability that a transaction selected randomly from the database will contain all items in the antecedent and the consequent
- P (antecedent AND consequent)

Confidence:

- (Estimated) conditional probability that a transaction selected randomly will include all the items in the consequent given that the transaction includes all the items in the antecedent
- \hat{P} (antecedent | consequent)

Relationship of Support with Confidence

- Support: \widehat{P} (antecedent AND consequent)
- Confidence: \widehat{P} (antecedent | consequent)
- High value of confidence suggests a strong association rule, i.e., rule in which we are highly confident
- Can be deceptive when antecedent and consequent are independent, e.g.:
 - Nearly all customers buy bananas and nearly all customers buy ice cream
 - High confidence level of "IF bananas THEN ice-cream"
 - Regardless of whether there is an association between the items

Lift Ratio

- Better way to judge the strength of a rule
- Compares the confidence of the rule with a benchmark value

- Confidence: percentage of antecedent transactions that also have the consequent item set
- Lift: ratio of confidence with benchmark confidence
- Benchmark confidence: transactions with consequent as percentage of all transactions

Lift Ratio

- Better way to judge the strength of a rule
- Compares the confidence of the rule with a benchmark value
- Assumes independence of the consequent from the antecedent

$$lift = \frac{confidence}{benchmark confidence}$$

$$benchmark confidence = \frac{consequent itemset}{no. transactions in data set}$$

$$= \frac{\text{frequency}(C)}{n}$$

Intuition

IF Antecedent THEN Consequent

- Lift is a value between 0 and infinity
- Value>1 indicates that antecedent and consequent are dependent on each other, and the degree of which is given by its value
- Value<1 indicates that the presence of antecedent will have negative effect on consequent
- Value≈1 indicates that antecedent and consequent are independent and no rule can be derived from them

Value>1

- Suggests that there is some usefulness to the rule
- Level of association between the antecedent and consequent itemsets is higher than would be expected if they were independent
- The larger the lift ratio, the greater the strength of the association

Alternative data representation

- Previous slides showed transaction databases:
 - I.e., each row was the list of purchased items
- Binary incidence matrix:
 - Columns are items
 - Rows are transactions
 - Cells indicate the present or absent of items in transactions

Transaction	Face	plate Cole	ors Purcha	ised	Transaction	Red	White	Blue	Orange	Green	Yell
1	red	white	green		1	1	1	0	0	1	C
2	white	orange			2	0	1	0	1	0	C
3	white	blue			3	0	1	1	0	0	C
4	red	white	orange		4	1	1	O	1	0	C
5	red	blue			5	1	0	1	0	0	C
6	white	blue			6	0	1	1	0	0	C
7	white	orange			7	1	0	1	0	0	C
8	red	white	blue	green	8	1	1	1	0	1	C
9	red	white	blue	NE202	9	1	1	1	0	0	C
10	yellow				10	0	0	0	0	0	1

Binary incidence matrix

Find all rules with a support count of at least 2

Transaction	Red	White	Blue	Orange	Green	Yellow
1	1	1	0	0	1	0
2	O	1	0	1	0	0
3	O	1	1	0	0	0
4	1	1	0	1	0	0
5	1	0	1	0	0	0
6	0	1	1	0	0	0
7	1	0	1	0	0	0
8	1	1	1	0	1	0
9	1	1	1	0	0	0
10	0	0	0	0	0	1

- → equivalent to a percentage 20% (i.e., 2/10)
- → rules with items that were purchased together in at least 20% of the transactions

Compute support of itemset:

- {red}
- {yellow}
- {red, blue}
- {red, white, blue}

Itemset	Support (Count)
{red}	6
{white}	7
{blue}	6
{orange}	2
{green}	2
{red, white}	4
{red, blue}	4
{red, green}	2
{white, blue}	4
{white, orange}	2
{white, green}	2
{red, white, blue}	2
{red, white, green}	2

Example

IF White & Red THEN Green

Support:

Transaction	Red	White	Blue	Orange	Green	Yellow
1	1	1	0	0	1	0
2	O	1	0	1	0	0
3	O	1	1	0	0	0
4	1	1	0	1	0	0
5	1	0	1	0	0	0
6	O	1	1	0	0	0
7	1	0	1	0	0	0
8	1	1	1	0	1	0
9	1	1	1	0	0	0
10	0	0	0	0	0	1

- I.e., frequency(A ∩ C) = frequency({White, Red, Green})
- Answer = 2

Confidence:

- I.e., frequency(A∩C) / frequency(A)
- Answer = 2 / 4 = 0.5

Lift:

- I.e., confidence / frequency(C) / n
- Answer = 0.5 / (2/10) = 2.5

Quiz

Transaction	Red	White	Blue	Orange	Green	Yellow
1	1	1	0	0	1	0
2	O	1	0	1	0	0
3	O	1	1	0	0	0
4	1	1	0	1	0	0
5	1	O	1	0	0	0
6	O	1	1	0	0	0
7	1	0	1	0	0	0
8	1	1	1	0	1	0
9	1	1	1	0	0	0
10	0	0	0	0	0	1

Consider the above transactions and rule IF Red & Green THEN White. Compute:

- a) Support
- b) Confidence
- c) Lift

Summary

- Association rules produce rules on associations between items from a data sets with transactions
- Widely used in recommender systems
- Most popular method is Apriori algorithm
- To reduce computation, we consider only "frequent" itemsets (i.e., support)
- Performance is measured by confidence and lift
- Can produce a profusion of rules; review is required to identify useful rules and to reduce redundancy

Quiz

Transaction	Red	White	Blue	Orange	Green	Yellow
1	1	1	0	0	1	0
2	O	1	0	1	0	0
3	O	1	1	0	O	0
4	1	1	0	1	0	0
5	1	0	1	0	0	0
6	0	1	1	0	0	0
7	1	0	1	0	0	0
8	1	1	1	0	1	0
9	1	1	1	0	0	0
10	0	0	0	0	0	1

Consider the above transactions and rule IF Red & Green THEN White. Compute:

- a) Support, number of transactions with {Red, Green, White} → 2 or 2/10=0.2
- b) Confidence, co-occurrence / no of antecedent \rightarrow 2 / 2 = 1
- c) Lift, confidence / (no consequent / no transactions) = 1 / 7 / 10 = 1.428