

Audio event detection for audio surveillance: bag of words approach

Pattern Recognition 2016/2017

Dr. Nicola Strisciuglio

Audio surveillance (event detection)

Audio **Audio Stream** Analysis 4

Use cases

3

- Experiments of two data sets
- 1. * MIVIA audio events
 - glass breakings, gun shots, screams
 - 6000 events per class (8000 in version 2)
 - 6 levels of SNR (8 levels in version 2, including 0dB and -5dB)
- 2. ** MIVIA road events
 - 400 events for roads monitoring
- Available for research purpose at http://mivia.unisa.it

- The sound is composed of atomic, small audio units (like a text is composed of words)
- The occurrence of specific audio units is distinctive for a particular class of sounds
- Bag of audio words representation is suitable

Short-time analysis

Name	Type	Description
AVSS13	Temporal and Spectral	 volume, energy, zero crossing rate Spectral centroid, spectral spread, roll-off frequency, spectral flux energy ratio in 4 sub-bands
MFCC	Cepstral	• 13 Mel-frequency Cepstral Coef- ficients
BARK	Psychoacoustical	 Energy ratio in the first 24 critical bands of hearing

- Audio signals can vary within few milliseconds
- Capture short-time properties of the audio signal
- Overlap allows continuity of analysis

Long-time analysis

- ✓ Quantization of the vector space (Training phase).
- ✓ Histogram of the occurrences of the audio words.
- ✓ The presence of certain audio words is discriminant for specific events of interest.

Bag of audio words

Pasquale Foggia, Nicolai Petkov, Alessia Saggese, Nicola Strisciuglio, Mario Vento, "Reliable detection of audio events in highly noisy environments," Pattern Recognition Letters, 2015

- A pool of N one-vs-all SVM classifiers
- Each SVM is able to learn which high-level features are discriminant for the classes of interest.
- Final decision:

$$C = egin{cases} C_0 & if \ S_i < au, \ orall \ i = 0, \dots, N \ argmax \ S_i & else \end{cases}$$

Experimental Evaluation

- Sliding window evaluation
 - An event of interest is correctly detect if it is detected in at least one of the time windows that overlap with it
- Evaluation metrics
 - Recognition Rate
 - False Positive Rate
 - Miss Rate
 - Error Rate

Results (1)

- Definition of a procedure to simulate different environments combining background sounds
- Target sound events at different SNR (MIVIA audio events)

Recognition Rate: 84.8%

False Positive Rate: 2.1%

Error Rate: 2.7%

• Miss Rate: 12.5 %

Overall results (K = 64 clusters)

	Rec. Rate	Miss Rate	Error Rate	FPR
Bark	75%	21%	4%	10.96%
Mfcc	80.25%	19%	0.75%	5.48%
Avss13	82%	17.75%	0.25%	2.85%

Classification matrices

		Guessed		
		CC	TS	Miss
True	CC	89.0%	0%	11.0%
	TS	0.5%	75.0%	24.5%

		Guessed		
		CC	TS	Miss
Irue	CC	89.5%	1.0%	9.5%
Tr	TS	0.5%	71.0%	28.5%

			Guessed	
		CC	TS	Miss
True	CC	86.0%	4.5%	9.5%
	TS	2.0%	64.00%	34%

AVSS13 MFCC Bark

ROC - MIVIA audio events

