Introduction to Big Data and Data Science (CSCE 5300 Section 005)*

Yunhe Feng

Assistant Professor, Department of Computer Science and Engineering

5th September, 2024

Quiz 1

- Closed-book in-person Quiz
- 5 Questions: 1 point for each question
- Quiz time: 2:40 am 3:05 am, Sept. 5, 2024

- Concept of Data Visualization

What is Data Visualization

- Data visualization is the graphical representation of information and data. -Tableau
- Data visualization is the practice of translating information into a visual context. such as a map or graph, to make data easier for the human brain to understand and pull insights from. - TechTarget
- Data visualization is the representation of data through use of common graphics. such as charts, plots, infographics, and even animations. - IBM

Seven Visual Flements¹

- Line
- Shape
- Color
- Value: vary the value of the color to create depth and contrast
- Form: defined as a three-dimensional object
- Texture
- Space: whitespace or negative space

¹https://uxplanet.org/7-visual-elements-of-design-bbd56eb063e9

Types of Data Visualization: Charts, Graphs, and Maps

Figure 1: The Top 10 Types of Data Visualization Made Simple²

²https://boostlabs.com/blog/10-types-of-data-visualization-tools/

Why Data Visualization

- Human brain processes images 60,000 times faster than text³.
- 90% of the information transmitted to the brain is visual⁴.
- Our culture is visual.
- It helps people see, interact with, and better understand data.

³https://ifvp.org/

⁴https://ifvp.org/

- 2 Data Visualization in Python

- 2 Data Visualization in Python 2D Visualization in Python

Data Visualization Libraries

DATA VISUALIZATION LIBRARIES

dashboards, and

other visualizations

with rich styling

range of chart types

and powerful tools for

creating custom

visualizations

provide a higher-

level interface for

statistical

with a wide range

of chart types and

customization

Matplotlib - a Comprehensive Library for Data Visualizations in Python

Figure 2: Matplotlib cheatsheets⁵

How to Learn Matplotlib

Follow a detailed Matplotlib tutorial:

https://matplotlib.org/stable/tutorials/index.html

Stacked Bar Chart

```
import matplotlib.pyplot as plt
labels = ['G1', 'G2', 'G3', 'G4', 'G5']
men means = [20, 35, 30, 35, 27]
women_means = [25, 32, 34, 20, 25]
men_std = [2, 3, 4, 1, 2]
women_std = [3, 5, 2, 3, 3]
                  # the width of the bars: can also be len(x) sequence
width = 0.35
fig. ax = plt.subplots()
ax.bar(labels, men means, width, verramen std. label='Men')
ax.bar(labels, women means, width, verr=women std, bottom=men means,
       label='Women')
ax.set vlabel('Scores')
ax.set title('Scores by group and gender')
ax.legend()
plt.show()
```


Stacked Bar Chart

Pie Chart

```
import matplotlib.pyplot as plt
# Pie chart, where the slices will be ordered and plotted counter-clockwise:
labels = 'Frogs', 'Hogs', 'Dogs', 'Logs'
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # only "explode" the 2nd slice (i.e. 'Hogs')
fig1, ax1 = plt.subplots()
ax1.pie(sizes, explode=explode, labels=labels, autopct='%1.1f%%',
        shadow=True, startangle=90)
ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
plt.show()
```


Bye Bye, Pie⁶

Humans are pretty bad at reading angles

Bye Bye, Pie⁷

Humans are pretty bad at reading angles

⁷https://www.data-to-viz.com/caveat/pie.html

Bye Bye, Pie⁸

8https://www.data-to-viz.com/caveat/pie.html

Scatter Plot⁹

```
import matplotlib.pvplot as plt
import numpy as np
                                                            110
x = np.array([5,7,8,7,2,17,2,9,4,11,12,9,6])
                                                            100
y = np.array([99,86,87,88,111,86,103,87,94,78,77.85,86])
plt.scatter(x, v)
plt.show()
```

⁹https://www.w3schools.com/python/matplotlib_scatter.asp

Scatter Plot

Image Show - imshow()10

```
import numpy as np
import matplotlib.pvplot as plt
# create a 8x8 matrix of two numbers-0 and 1.
# O represents dark color and 1 represents bright color
arr=np.array([[1,0]*4,[0,1]*4]*4)
print(arr)
# use the imshow function to display the image made from the
plt.imshow(arr)
```


¹⁰https://www.pythonpool.com/matplotlib-imshow/

Image Show - imshow()

Figure 12: The ratio of # of positive tweets over # of negative tweets with different polarity and subjectivity thresholds. Positive emotions dominate when the ratio is greater than one. Otherwise, negative emotions are more popular.

Image Show - imshow()

Fig. 5. Values of $\mu - 2.5\sigma$ for random guessing attacks

Fig. 6. Distribution of tweets with ex- Fig. 7. The 50 most popular interstate act latitude and longitude coordinates. trips during the event.

Figure 2: Country-level dist. of tweets

Figure 3: State-level dist. of U.S. tweets

Figure 6: International travels in 2018

Others - Radar Chart

Fig. 1. Characteristics of census data, search logs data, and social media data.

Others - Word Cloud in Natural Language Processing

Others - Emoji Cloud

pip install EmojiCloud

- Tutorial: https://lnkd.in/gY_BMWP6
- Source Code: https://lnkd.in/gD-R9uai
- Paper: https://lnkd.in/g7DDgjE6
- Slides: https://lnkd.in/gs_sTTiG
- Online Service: https://emojicloud.org (available soon)

*The teaching materials are reorganized and reformed based on Prof. Ravi Vadapalli's slides (Ravi.Vadapalli@unt.edu, UNT & University of Miami)

Others - PCA and t-SNE for Dimensionality Reduction¹¹

- PCA: Principal component analysis
 - Try to find a global structure
 - Low dimensional subspace
 - Can lead to local inconsistencies (far away point can become nearest neighbors)
- t-SNE: t-distributed Stochastic Neighbor Embedding
 - Try to preserve local structure
 - Low dimensional neighborhood should be the same as original neighborhood.

¹¹https://www.cs.toronto.edu/~jlucas/teaching/csc411/lectures/lec13_handout.pdf

Others - PCA and t-SNE for Dimensionality Reduction 12

Figure 3: MNIST after PCA

Figure 4: MNIST after t-SNE

¹² shorturl.at/sAPR7

ChatGPT for Data Visualization

ChatGPT for Data Visualization

```
Copy code
python
import geopandas as gpd
import pandas as pd
import matplotlib.pyplot as plt
# Load the shapefile with country boundaries
world = gpd.read_file('path_to_shapefile.shp')
# Load your population data (CSV or DataFrame)
population_data = pd.read_csv('population_data.csv')
# Merge the shapefile with population data
world = world.merge(population data, left on='NAME', right on='Country', how
fig, ax = plt.subplots(1, 1, figsize=(15, 10))
world.boundary.plot(ax=ax, linewidth=0.8, color='black')
world.plot(column='Population', cmap='YIGnBu', ax=ax, legend=True, legend kw
# Set axis labels and title
ax.set xlabel("Longitude")
ax.set vlabel("Latitude")
ax.set_title("Global Population Density Map")
```

- 2 Data Visualization in Python 3D Visualization in Python

Three-Dimensional Plotting in Matplotlib

https://jakevdp.github.io/PythonDataScienceHandbook/04. 12-three-dimensional-plotting.html

- 2 Data Visualization in Python

 - 4D Visualization in Python

4D Visualization

- Concept of Data Visualization
- 3 Assignment

Assignment-2 (4.0 pt.)

- Plot a 2D stacked bar chart using Python (2 pts.)
- Plot a 3D figure using Python (2 pts.)