Flight Planning Calculator

Use Case Model Version By: Mac Daddy Inc. March 2, 2012

Table of Contents

Introduction	3
Flight Planning Calculator Users	3
Flight Planning Calculator Use Case Diagram	4
Flight Planning Calculator Use Cases and Test Cases	5
Use Case 1: Perform a conversion	
Test Case 1:	5
Use Case 2: Calculate heading, ground speed, and wind corrected angle	5
Use Case 3: Calculate wind speed and direction	
Test Case 3:	
Use Case 4: Calculate true airspeed	6
Use Case 5: Calculate density altitude	7
Use Case 6: Calculate runway winds	
Test Cases 6:	
Use Case 7: Calculate flying distance and course	
Test Case 7:	
Use Case 8: Initialize airport ID text file	
Test Case 8:	
Use Case 9: Modify airport ID text file	
Test Case 9:	9

Introduction

This document is an addition to the *Flight Planning Calculator Requirements Specification*, developed by Mac Daddy Inc. As part of an analysis, the functional requirements will be contained in the Use Case Model. It includes a Use Case Diagram for the entire Flight Planning Calculator system. The diagram also shows the specific functions that it can complete. For each use case, a scenario description describes how actors interact with the system to carry out the use case functionality.

Flight Planning Calculator Users

- <u>General User</u> The general user will actively be using the Flight Planning Calculator for their pre-flight and during flight operations. They can also make minor modification by choosing airport codes.
- <u>Text File User</u> The text file user creates the files that the Flight Planning Calculator can read. They are able to make major modification by deleting and adding airport codes for the general user use.

Flight Planning Calculator Use Case Diagram

Flight Planning Calculator Use Cases and Test Cases

Use Case 1: Perform a conversion

Goal: Perform a conversion from one unit to another of the same unit class (e.g.

distance, speed, temperature, angle, and pressure)

Actors: General user

Scenario: The user needs to convert a distance from miles to kilometers.

Test Case 1:

Input	Output
20 miles	32.19 km
-1 Kelvin	Error msg: Kelvin scale should be >=0
0 Kelvin	-273.15 degrees Celsius
1 Kelvin	1.8 Rankine
-274 degrees Celsius	Error msg: Celsius scale must be >= -273.15
	degrees
50 km/h	27.00 knots
76 degrees 61 min	Error msg: Minutes must be < 60
76 degrees 59 min	1.34 radians

Use Case 2: Calculate heading, ground speed, and wind corrected angle

Goal: Calculate heading, ground speed, and wind corrected angle when the user

provides the wind speed, true airspeed, and course

Actors: General user

Scenario: The user needs to determine his heading, ground speed, and wind

corrected angle knowing his wind speed, true airspeed, and course

Test Case 2:

Input				Output		
Wind	Direction	True	Course	Heading	Ground	Correction
Speed		Airspeed			Speed	Angle
-10	2 degrees	2 knots,	46	Error: Speed must be	Error	Error
knots			degrees	>= 0		
0 knots	2 degrees	-1 knots,	46	Error: Speed must be	Error	Error
			degrees	>= 0		
40	-2	2 km/h,	46	Error: Direction must	Error	Error
km/h	degrees		degrees	be >1 and <=360		
				degrees		
40	2 degrees	1 km/h	-46	Error: Course must be	Error	Error

km/h			degrees	>=0 and <360 degrees		
70	2 degrees	50 km/h	46	329 Degrees	39	103
km/h			degrees		km/h	degrees
40	135	60 knots	30	70 degrees	56	40 degrees
knots	degrees		degrees		km/h	

Use Case 3: Calculate wind speed and direction

Goal: Calculate wind speed and direction when the user provides the ground speed,

true airspeed, course, and heading

Actors: General user

Scenario: The user needs to determine his wind speed and direction knowing his

ground speed, true airspeed, course, and heading

Test Case 3:

		Input			Output
Ground speed	True airspeed	Course	Heading	Wind Speed	Wind Direction
115 knots	100 knots	010 degrees	007 degrees	16 knots	209 degrees
115 knots	100 knots	-1 degrees	007 degrees	Error	Error msg: Direction
10 km/h	-1 km/h	0 degrees	010 degrees	Error	Error msg: Directions should be > 0 degrees and <360 degrees
10 km/h	5 km/h	361 degrees	010 degrees	Error	Error msg: Directions should be > 0 degrees and <360 degrees
-1 km/h	30 km/h	10 degrees	010 degrees	Error	Error msg: Speed must be >0 km/h
10 knots	15 knots	10 degrees	60 degrees	11.5 knots	138 degrees

Use Case 4: Calculate true airspeed

Goal: Calculate true airspeed when the user provides the indicated airspeed and mean sea level altitude

Actors: General user

Scenario: The user needs to determine his true airspeed knowing his indicated airspeed and mean sea level altitude

Test Case 4:

Input				Output		
Wind	Direction	True	Course	Heading	Ground	Correction
Speed		Airspeed			Speed	Angle
-10	2 degrees	2 knots,	46	Error: Speed must be	Error	Error
knots			degrees	>= 0		
0 knots	2 degrees	-1 knots,	46	Error: Speed must be	Error	Error
			degrees	>= 0		
40	-2	2 km/h,	46	Error: Direction must	Error	Error
km/h	degrees		degrees	be >1 and <=360		
				degrees		
40	2 degrees	1 km/h	-46	Error: Course must be	Error	Error
km/h			degrees	>=0 and <360 degrees		
70	2 degrees	50 km/h	46	329 Degrees	39	103
km/h		-	degrees		km/h	degrees
40	135	60 knots	30	70 degrees	56	40 degrees
knots	degrees		degrees		km/h	

Use Case 5: Calculate density altitude

Goal: Calculate density altitude when the user provides the pressure altitude and

outside air temperature Actors: General user

Scenario: The user needs to determine his density altitude knowing his pressure

altitude and outside air temperature

Test Case 5:

Input				Output		
Wind	Direction	True	Course	Heading	Ground	Correction
Speed		Airspeed			Speed	Angle
-10	2 degrees	2 knots,	46	Error: Speed must be	Error	Error
knots			degrees	>= 0		
0 knots	2 degrees	-1 knots,	46	Error: Speed must be	Error	Error
			degrees	>= 0		
40	-2	2 km/h,	46	Error: Direction must	Error	Error
km/h	degrees		degrees	be >1 and <=360		
				degrees		
40	2 degrees	1 km/h	-46	Error: Course must be	Error	Error
km/h			degrees	>=0 and <360 degrees		
70	2 degrees	50 km/h	46	329 Degrees	39	103
km/h		-	degrees		km/h	degrees

40	135	60 knots	30	70 degrees	56	40 degrees
knots	degrees		degrees		km/h	

Use Case 6: Calculate runway winds

Goal: Calculate runway winds when the user provides the runway direction, wind

direction, and wind speed

Actors: General user

Scenario: The user needs to determine his runway winds knowing his runway

direction, wind direction, and wind speed

Test Cases 6:

Input			Output
Runway direction	Wind direction	Wind speed	Runway winds
oas degrees	5 degrees	10 km/h	Error msg: Directions should be
			> 0 degrees and <360 degrees
-1 degrees	5 degrees	10 km/h	Error msg: Directions should be
			> 0 degrees and <360 degrees
0 degrees	-1 degrees	10 km/h	Error msg: Directions should be
			> 0 degrees and <360 degrees
361 degrees	5 km/h	10 km/h	Error msg: Directions should be
			> 0 degrees and <360 degrees
10 degrees	30 degrees	-1 km/h	Error msg: Speed must be >0
			km/h
10 degrees	30 degrees	0 km/h	0 km/h headwind; 0 km/h
			crosswind
15 degrees	95 degrees	83 km/h	14.4 km/h headwind; 81.7 km/h
			crosswind

Use Case 7: Calculate flying distance and course

Goal: Calculate flying distance and course between two airports when the user

provides the IDs for both airports

Actors: General user

Scenario: The user needs to determine his flying distance and course between two

airports knowing both airport IDs

Test Case 7:

Input	Output
Orlando; Jacksonville	Error msg: Input valid 3 letter Airport IDs
MCO; JACKS	Error msg: Input valid 3 letter Airport IDs

345; JAX	Error msg: Input valid 3 letter Airport IDs
DAB; MCO	Distance: 46.82 nautical miles; Course:
	196.47 degrees
DAB; LAS	Distance: 3273 km; Course: 293.46 degrees

Use Case 8: Initialize airport ID text file

Goal: Load the airports inside the airport ID text file for use inside the app

Actors: Text file

Scenario: The app loads the airport ID text file for use in calculating the flying

distance and course between two airports

Test Case 8:

Input	Output
DC, DAB	Error msg: Input valid 3 letter Airport IDs
BSSE, DAB	Error msg: Input valid 3 letter Airport IDs
KEN, MCO	Error msg: That airport ID is not in the
	database
DAB, MCO	Distance: 53.88 statute miles; Course: 196.47
	degrees

Use Case 9: Modify airport ID text file

 $\label{thm:conditional} \textbf{Goal: Modify the list of airport IDs available inside the app for use in calculating the} \\$

flying distance and course

Actors: General user and text file

Scenario: The user needs to add an airport to the airport ID text file so that he can

calculate the flying distance and course between two airports

Test Case 9:

Input (Airport, Long, Latitude)	Output
MCO, JAX, 5 radians	Error msg: Invalid longitude value. Positions
	must be >-3.142 radians and < 3.142 radians.
MCO, -45 radians, 0 radians	Error msg: Invalid latitude value. Positions
	must be >-3.142 radians and < 3.142 radians.
DC, 0 radians; 2.6 radians	Error msg: Input valid 3 letter Airport IDs
BSSE, 2.15 radians, 3.15 radians	Error msg: Input valid 3 letter Airport IDs
KEN; 0 radians, 2.54 radians	Airport KEN has been added to the database