2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

2/2

-1/2

THLR Contrôle (35 questions), Septembre 2016

	_
Nom et prénom, lisibles :	Identifiant (de haut en bas): □0 □1 □2 □3 □4 □5 ■6 □7 □8 □9
LEWANDOWSK	
Maxime	
Q.1 Ne rien écrire sur les bords de la feuille, ni dans les éventuels cadres grisés « ② ». Noircir les cases plutôt que cocher. Renseigner les champs d'identité. Les questions marquées par « ② » peuvent avoir plusieurs réponses justes. Toutes les autres n'en ont qu'une; si plusieurs réponses sont valides, sélectionner la plus restrictive (par exemple s'il est demandé si 0 est nul, non nul, positif, ou négatif, cocher nul). Il n'est pas possible de corriger une erreur, mais vous pouvez utiliser un crayon. Les réponses justes créditent; les incorrectes pénalisent; les blanches et réponses multiples valent 0. J'ai lu les instructions et mon sujet est complet: les 5 entêtes sont +287/1/xx+···+287/5/xx+.	
Q.2 Que vaut $L \cup L$?	
ä L □ ε	□ Ø □ {ε}
Q.3 Pour $L_1 = (\{a\}\{b\})^*, L_2 = \{a, b\}^*$:	
	d.
$\square L_1 \supseteq L_2 \qquad \qquad \bigcap \limits_{\bullet} L_1 \subseteq L_2$	$\Box L_1 \not\supseteq L_2 \qquad \Box L_1 = L_2$
Q.4 Que vaut $\{\varepsilon, a, b\} \cdot \{a, b\}$?	
\square $\{\varepsilon,a,b,aa,ab,ba,bb\}$ \square $\{a,b,aa,ab,\Box$	$\{ba,bb\}$ \square $\{aa,ab,bb\}$ \square $\{aa,ab,ba,bb\}$ $\{aa,bb\}$
Q.5 Que vaut <i>Suff</i> ({ <i>ab</i> , <i>c</i> }):	
	$\{a,b,c\}$ $\{ab,b,c,\epsilon\}$ $[ab,\epsilon]$
	a,b,c ab,b,c,ε bc
Q.6 Que vaut $\overline{\{a\}\{b\}^*} \cap \{a\}^*$	
Q.7 Pour toute expression rationnelle e , on a \emptyset +	$e\equiv e+\emptyset\equiv\emptyset.$
□ vrai	faux
vrai	
Q.9 L'expression Perl '[-+]?[0-9]+, [0-9]*' n'es	ngendre pas :
42 ′ (42,′	☐ '42,4' ☐ '42,42'
Q.10 Si e et f sont deux expressions rationnelles, quelle identité n'est pas nécessairement vérifiée?	
	$\equiv (e^*f^*)^* \qquad $

Q.11 L'expression Perl '[-+]?[0-9A-F]+([-+/*][-+]?[0-9A-F]+)*' n'engendre pas :

2/2	□ Il n'existe pas. □ 7 💐 4 □ 6
	${f Q.29}$ Il est possible de déterminer si une expression rationnelle et un automate correspondent au même langage.
-1/2	∨ vrai en temps fini
	Q.30 Si L et L' sont rationnels, quel langage ne l'est pas nécessairement?
0/2	
	Q.31 a b c Si on élimine les transitions spontanées de cet automate, puis qu'on applique la déterminisation, alors l'application de BMC conduira à une expression rationnelle équivalente à :
2/2	
	Q.32 Quels états peuvent être fusionnés sans changer le langage reconnu. $1 \xrightarrow{a} 3 \rightarrow 1$ avec 3
2/2	□ 0 avec 1 et avec 2 □ 2 avec 4 □ 1 avec 2 □ 3 avec 4 □ Aucune de ces réponses n'est correcte.
	Q.33 Considérons \mathcal{P} l'ensemble des <i>palindromes</i> (mot u égal à son tranposé/image miroir u^R) de longueur paire sur Σ , i.e., $\mathcal{P} = \{v \cdot v^R \mid v \in \Sigma^*\}$.
0/2	\square Il existe un NFA qui reconnaisse \mathcal{P} \square Il existe un DFA qui reconnaisse \mathcal{P} \square Il existe un ε-NFA qui reconnaisse \mathcal{P} \square P ne vérifie pas le lemme de pompage
	Q.34 Sur $\{a,b\}$, quel automate reconnaît le complémentaire du langage de \xrightarrow{a} ?
2/2	$ \begin{array}{c} a,b \\ \downarrow \\ a,b \end{array} $ $ \begin{array}{c} a,b \\ \downarrow \\ a,b \end{array} $ $ \begin{array}{c} a,b \\ \downarrow \\ a,b \end{array} $
0/2	Quel est le résultat de l'application de BMC en éliminant 1, puis 2, puis 3 et enfin 0?

Q.36 Sur $\{a, b\}$, quel est le complémentaire de b

2/2

Fin de l'épreuve.

