

선형회귀에의한의료보험예측

MEDICAL INSURANCE FORECAST BY LINEAR REGRESSION

목차

- 1. 데이터셋
- 2. 데이터 시각화
- 3. 데이터 준비
- 4. 데이터 분리
- 5. 모델 제작
- 6. 모델 잔차 분석
- 7. 예측
- 8. 모델 평가
- 9. 결과

데이터셋

- •선형 회귀 모델을 만들어 의료 비용을 예측
- •나이, 성별, bmi, 자녀의 수, 흡연 여부, 거주 지역, 의료 비용 등의 칼럼

```
medical.columns.unique()
```

Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtype='object')

•총 1338열과 7행의 데이터

#Determining the number of rows and columns medical.shape

(1338, 7)

데이터셋

데이터 집합의 모든 숫자 열에 대한 요약

medical.describe() #summary of all the numeric columns in the dataset

	age	bmi	children	charges
count	1338.000000	1338.000000	1338.000000	1338.000000
mean	39.207025	30.663397	1.094918	13270.422265
std	14.049960	6.098187	1.205493	12110.011237
min	18.000000	15.960000	0.000000	1121.873900
25%	27.000000	26.296250	0.000000	4740.287150
50%	39.000000	30.400000	1.000000	9382.033000
75%	51.000000	34.693750	2.000000	16639.912515
max	64.000000	53.130000	5.000000 63770	63770.428010

성별과 흡연 여부는 각각 2가지 특성만 존 재하기 때문에 부울 값으로 맵핑

```
#Mapping
medical['sex'] = medical['sex'].map({'male': 0, 'female': 1})
medical['smoker'] = medical['smoker'].map({'yes': 1, 'no': 0})
medical.head()
```

	age	sex	bmi	children	smoker	region	charges
0	19	1	27.900	0	1	southwest	16884.92400
1	18	0	33.770	1	0	southeast	1725.55230
2	28	0	33.000	3	0	southeast	4449.46200
3	33	0	22.705	0	0	northwest	21984.47061
4	32	0	28.880	0	0	northwest	3866.85520

#Import necessary libraies
import matplotlib.pyplot as plt
import seaborn as sns

- •데이터 시각화를 위한 라이브러리들 import
- •나이 대 의료 비용 plot에서 나이에 따라 의료 비용이 증가하는 추세가 관찰된다.
- •BMI는 의료 비용과 연관성이 있는 것으로 보인다.
- •흡연과 의료 비용 사이에는 강한 연관성이 있는 것으로 보인다.

```
plt.figure(figsize=(25, 16))
plt.subplot(2,3,1)
sns.boxplot(x = 'smoker', y = 'charges', data = medical)
plt.title('Smoker vs Charges',fontweight="bold", size=20)
plt.subplot(2,3,2)
sns.boxplot(x = 'children', y = 'charges', data = medical,palette="husl")
plt.title('Children vs Charges',fontweight="bold", size=20)
sns.boxplot(x = 'sex', y = 'charges', data = medical, palette= 'husl')
plt.title('Sex vs Charges', fontweight="bold", size=20)
plt.subplot(2,3,4)
sns.boxplot(x = 'region', y = 'charges', data = medical,palette="bright")
plt.title('Region vs Charges', fontweight="bold", size=20)
plt.subplot(2,3,5)
sns.boxplot(x = 'Age_range', y = 'charges', data = medical, palette= 'husl')
plt.title('Age vs Charges',fontweight="bold", size=20)
plt.show()
```

- •의료 비용은 비흡연자보다 흡연자가 더 많 이 지출한다.
- •동남부 지역은 의료 비용이 더 비싸다.
- •노인들은 의료 비용을 더 많이 지출한다.

- •흡연으로 인한 가장 많이 의료 비용을 지출하는 곳은 남동쪽에 있고, 가장 적게 지출하는 곳은 북동쪽에 있습니다.
- •지역상 흡연으로 인한 차이가 존재하지만 성별차이로 인한 의료 비용 차이가 이를 압도합니다.
- •아이가 있는 사람들이 전반적으로 의료 비용을 더 많이 지출하는 경향이 있습니다.

데이터 칼럼들 간의 연관성

데이터 준비

Now lets see the number of rows and columns

medical.shape

```
# # Get the dummy variables for region and age range region-pd.get_dummies(medical_region,drop_first=True)
Age_range-pd.get_dummies(medical_Age_range,drop_first=True)
children= pd.get_dummies(medical_Age_range,drop_first=True, prefix='children')

# Add the results to the original bike dataframe medical_head()

northwest southwest Southwest Senior Adult Elder children_1 children_2 children_3 children_5 age sex bmi children smoker region charges Age_range on the southwest loss of the second concat([region, Age_range,droll_dren_1 children_2 children_3 children_5 age sex bmi children_smoker region charges Age_range on the sex southwest southw
```

- •지역과 나이 범위의 더미 변수를 가져온다.
- •결과를 원본 데이터 프레임에 추가한다.
- •더미 생성시, 지역과 나이 범위를 삭제한다.
- •준비한 데이터는 1338개의 행과 14개의 열로 구성되었다는 것을 알 수 있습니다.

데이터 준비

•변수 간 관계를 확인하기 위한 Heatmap

Training 데이터와 Testing 데이터로 분리

0 0 0.357815

0 0.085173

```
from sklearn.model_selection import train_test_split
  # We specify this so that the train and test data set always have the same rows, respectively
  #np.random.seed(θ)
  medical_train, medical_test = train_test_split(medical, train_size = 0.7, random_state = 100)
  print(medical_train.shape)
  print(medical_test.shape)
 (936, 14)
 (402, 14)
 from sklearn.preprocessing import MinMaxScaler
 #Instantiate an object
 scaler = MinMaxScaler()
 #Create a list of numeric variables
 num_vars=['bmi', 'charges']
 #Fit on data
 medical_train[num_vars] = scaler.fit_transform(medical_train[num_vars])
 medical_train.head()
    northwest southeast southwest Senior Adult Elder children_1 children_2 children_3 children_4 children_5 sex
                                                                                  0 0.237692
                                                                                                   1 0.364661
                                                                                                   0 0.139579
155
                                                                                     0 0.633844
                                                                                                   0 0.093008
671
                                                                                     1 0.408932
                                                                                                   0 0.045040
1173
```

•Train 데이터와 test 데이터로 분리

```
#Divide the data into X and y
y_train = medical_train.pop('charges')
X_train = medical_train
```

선형 모델 제작

```
# Importing RFE and LinearRegression
   from sklearn.feature_selection import RFE
   from sklearn.linear_model import LinearRegression
   \# Running RFE with the output number of the variable equal to 15
   lm = LinearRegression()
   lm.fit(X_train, y_train)
   rfe = RFE(lm, 8)
                                           # running RFE
   rfe = rfe.fit(X_train, y_train)
   #List of variables selected
   list(zip(X_train.columns,rfe.support_,rfe.ranking_))
[('northwest', false, 4),
('southeast', false, 3),
('southeast', false, 2),
('southeast', false, 2),
('senior Adult', True, 1),
('children, True, 1),
('children, 2', True, 1),
('children, 3', True, 1),
('children, 3', True, 1),
('southeast, 1', True, 1),
('smoker', True, 1)]
   #Columns where RFE support is True
   col = X_train.columns[rfe.support_]
#Columns where RFE support is False
   X_train.columns[~rfe.support_]
 Index(['northwest', 'southeast', 'southwest', 'children\_1', 'sex'], \ dtype='object')
```

Creating X_test dataframe with RFE selected variables X_train_rfe = X_train[col]

```
# Adding a constant variable
import statsmodels.api as sm
X_train_rfe = sm.add_constant(X_train_rfe)
```

Running the linear model lm = sm.OLS(y_train, X_train_rfe).fit()

OLS Regression Results

print(lm.summary())

Dep. Variable:		charges	R-squared:		0.726		
Model:				dj. R-squared:		0.723	
Method: Least Squares		F-statistic:		306.4			
Date: Tue, 30 Nov 20		30 Nov 2021	Prob (F-statistic):		3.32e-254		
Time:		13:12:44	Log-Like	lihood:		813.97	
		AIC:		-1610.			
Df Residuals:		927	BIC:			-1566.	
Df Model:		8					
Covariance Type	:	nonrobust					
	coef	std err	t	P> t	[0.025	0.975	
const	-0.0166	0.009	-1.747	0.081	-0.035	0.00	
Senior Adult	0.0764	0.007	10.391	0.000	0.062	0.09	
Elder	0.1506	0.010	15.266	0.000	0.131	0.17	
children 2	0.0299	0.009	3.357	0.001	0.012	0.04	
children_3	0.0241	0.011	2.275	0.023	0.003	0.04	
children 4					-0.002	0.08	
children 5	0.0260	0.031	0.836	0.403	-0.035	0.08	
bmi	0.1744	0.020	8.690	0.000	0.135	0.21	
smoker	0.3826	0.008	45.327	0.000	0.366	0.39	
Omnibus:			Durbin-W			2.054	
Prob(Omnibus):			Jarque-B				
Skew:			Prob(JB)		6.	17e-119	
Kurtosis:		5.726	Cond. No			11.4	

[1] Standard Errors assume that the covariance matrix of the errors is correctly spec

•재귀 특성 제거

•세부 통계를 위한 통계 모델을 사용한 모 델 제작

선형 모델 제작

```
VIF_i = \frac{1}{1 - R_i^2}
```

1 Elder 1.32
2 children_2 1.29
7 smoker 1.22
3 children_3 1.17
4 children_4 1.03
5 children_5 1.02

•VIF, 분산 인플레이션 계수는 특성 변수들이 서로 얼마나 상관되어 있는지에 대한 기본적인 정량적 방안을 제공합니다. 이것은 제작한 선형 모델을 테스트하는 데 중요한 매개 변수입니다.

Train 데이터의 잔차 분석


```
# Plot the histogram of the error terms

fig = plt.figure()
plt.figure(figsize=(14,7))
sns.distplot((y_train - y_train_pred), bins = 20)
plt.title('Error Terms', fontsize = 20)  # Plot heading
plt.xlabel('Errors', fontsize = 18) # X-label
plt.show()

<Figure size 432x288 with @ Axes>
```

Error Terms

0.2

Errors

•오차항도 정규 분포를 따르는지 확인하기 위한 히 스토그램

예측

```
# Now let's use our model to make predictions.
                                                                                              #Evaluate R-square for test
                                                                                              from sklearn.metrics import r2_score
 # Creating X_test_new dataframe by dropping variables from X_test
                                                                                              r2_score(y_test,y_pred)
 X_test_new = X_test[X_train_new3.columns]
                                                                                            0.7628855670251863
 # Adding a constant variable
 X_test_new1 = sm.add_constant(X_test_new)
 X_test_new1.head()
                                                                                              #Adjusted R^2
   const Senior Adult Elder children_2 bmi smoker
                                                                                              #adj r2=1-(1-R2)*(n-1)/(n-p-1)
12 1.0
               0 0
                           0 0.496099
                                                                                              #n =sample size , p = number of independent variables
                           1 0.310465
                                                                                              n = X_{test.shape}[0]
318 1.0
               1 0
                            0 0.314366
                                                                                              p = X_test.shape[1]
815 1.0
               0 0
                           0 0.417003
157 1.0
               0 0
                           0 0.247915
                                                                                              Adj_r2=1-(1-0.75783003115855)*(n-1)/(n-p-1)
                                                                                              print(Adj_r2)
0.7497160889035529
 # Making predictions
 y_pred = lm3.predict(X_test_new1)
```

```
\# Plotting y_test and y_pred to understand the spread.
fig = plt.figure()
plt.figure(figsize=(15,8))
plt.scatter(y_test,y_pred,color='blue')
fig.suptitle('y_test vs y_pred', fontsize=20)
                                                          # Plot heading
plt.xlabel('y_test', fontsize=18)
                                                          # X-label
plt.ylabel('y_pred', fontsize=16)
                                   # Y-label
plt.show()
```


Train 모델과 Test 간의 최종 결과 비교

•Train R^2: 0.723

•Train Adjusted R^2: 0.722

•Test R^2: 0.762

•Test Adjusted R^2: 0.749

•Difference in R^2 between train and test: 3.9%

•Difference in adjusted R^2 between Train and test: 2.7 % which is less than 5%

최적의 적합선의 방적싱은 다음과 같습니다.

charges=0.3826×smoker+0.077×Senioradult+0.149×Elder+0.176×bmi+0.024×children2

결과

- •회귀 분석에서, 지역과 성별이 의료 비용에서 유의미한 차이를 가져오지 않는 것을 알 수 있다.
- •나이, BMI, 자녀의 수, 흡연 여부는 의료 비용을 움직이는 요인이다