

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C12P 33/10	A1	(11) International Publication Number: WO 97/21830 (43) International Publication Date: 19 June 1997 (19.06.97)
(21) International Application Number: PCT/EP96/05729 (22) International Filing Date: 10 December 1996 (10.12.96) (30) Priority Data: 95203451.0 12 December 1995 (12.12.95) EP (34) Countries for which the regional or international application was filed: NL et al.		(81) Designated States: AU, CA, CN, CZ, HU, JP, KR, MX, NO, NZ, PL, RU, TR, US, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
<p>Published <i>With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.</i></p>		
(71) Applicant (for all designated States except US): AKZO NOBEL N.V. [NL/NL]; Velperweg 76, NL-6824 BM Arnhem (NL). (72) Inventors; and (75) Inventors/Applicants (for US only): WIERSMA, Marten [NL/NL]; Wilhelminalaan 21, NL-5342 GH Oss (NL). VAN DER MEIJDEN, Pieter [NL/NL]; Lisztgaardse 63, NL-5344 EB Oss (NL). (74) Agent: HERMANS, Franciscus, G., M.; P.O. Box 20, NL-5340 BH Oss (NL).		

(54) Title: MICROBIAL 11 α -HYDROXYLATION OF STEROIDS

(57) Abstract

The invention relates to a microbial method of in vitro transformation of a steroid into its corresponding 11 α -hydroxy analogue using oxygen and a microorganism selected from *Aspergillus ochraceus*, *Aspergillus niger*, *Rhizopus stolonifer*, *Rhizopus nigricans*, *Rhizopus arrhizus*, and strains of *Pestelotia*, characterized in that a steroid having a purity of less than 97 % is used.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	IU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

MICROBIAL 11 α -HYDROXYLATION OF STEROIDS

5

The present invention relates to a microbial method of 11 α -hydroxylation of steroids.

Microbial 11 α -hydroxylation of steroids is a well known process, in vivo as well as in vitro. For instance 11 α -hydroxylation of progesterone by cell-free preparations of *Aspergillus ochraceus* has been reported by Shibahara et al., Biochim. Biophys. Acta, 202 (1970), 172-179. It has also been known that microbial 11 α -hydroxylation reactions of steroids are unpredictable, and invariably lead to incomplete transformations. Typically conversion degrees of 80-85% are obtained. For industrial applications it is however of importance to obtain high predictable conversion rates, which preferably lead to higher than 95% yields of 11 α -hydroxylated steroids. Mathematical models in the optimization of such fermentation processes are discussed by Deshayes et al., Bull. Soc. Chim. Fr., (1980), II 24-34. For example, in the 11 α -hydroxylation of canrenone, Deshayes disclosed that under optimum conditions better than 95% yields could be attained when *Aspergillus ochraceus* was used in a medium containing i.a. 10 g/l of glucose in a matrix of malt-extract and trypticase. Under these conditions up to 1.5 g/l of canrenone could be transformed, which was considered to be an improvement in the art, for instance as disclosed by Blunt et al., J. Chem. Soc., 6 (1971), 1136, who were not able to obtain more than 90% yield of 11 α -hydroxylated canrenone using at the most 0.5 g/l of substrate.

Since it can be reasoned that contaminations will have a detrimental influence on the microbial process, it can be expected that further optimization could be obtained by increasing the purity of the starting materials. Surprisingly however, it has now been found that a further improvement is obtained by using less than pure substrate, in particular by using a substrate having a purity of less than 97%. The invention therefore relates to a microbial method of in vitro transformation of a steroid into its corresponding 11 α -hydroxy analogue using oxygen and a micro-organism selected from *Aspergillus ochraceus*, *Aspergillus niger*, *Rhizopus stolonifer*, *Rhizopus nigricans*, *Rhizopus arrhizus*, and strains of *Pestelotia*, characterized in that a steroid having a purity of less than 97% is used.

Preferably the micro-organism is *Aspergillus ochraceus*. The purity of the steroid is preferably more than 90%. More preferably the purity of the steroid is between 90 and 95 %.
The present method using impure substrates affords microbial transformations at substrate concentrations, which are substantially greater than the maximum concentrations as disclosed by Blunt or Deshayes.

The present microbial method can be used with steroids having an unsubstituted 11-position. Preferred examples are estr-4-ene-3,17-dione and canrenone.

10

The surprising effect of impurities on the conversion degree is illustrated in the following tables:

Table I

15

Conversion of estr-4-ene-3,17-dione by <i>A. ochraceus</i>		
purity (%)	substrate concentration (g/l)	conversion degree (%)
99	15	78
99	10	83
98	25	85
94*	15	91
94*	15	91
94*	15	94
94*	25	97
93	10	98
92		

* various natural impurities added to pure substrate

Table II

Conversion of canrenone by <i>A. ochraceus</i>		
purity (%)	substrate concentration (g/l)	conversion degree (%)
100	5	74
100	10	78
100	20	73
100	35	72
96	10	98
94	15	96
96	22	96
95	22	95

The invention is further illustrated by the following examples.

EXAMPLESExample 1

A shake flask containing a mineral growth medium with glucose was inoculated with 5 spores of *A. ochraceus* and placed on a reciprocal shaker at 28 °C for 15 h. A stirred fermentor containing 5 l of medium was subsequently inoculated with 250 ml of germinated spore suspension. The used medium contained a glucose/yeast extract medium (glucose 40 g/l, yeast extract 10 g/l, pH 5.0). The culture conditions were as follows: stirrer speed 750 rpm, airflow 0.2 l/l/m, temp 28 °C. Foaming was measured with an antifoam electrode and controlled by 10 automatic addition of a silicon based antifoam agent. When the culture had a biomass concentration of at least 2 g/l a small portion of estr-4-ene-3,17-dione (1 g/l) was added to induce the synthesis of the hydroxylation enzymes. Three hours later higher concentrations of steroid were added to reach the desired concentrations as given in Table I. The steroid transformation was stopped when repeatedly no increase in conversion was observed.

15

Example 2

In a shake flask the same culture as described in Example 1 was prepared. When the culture had a biomass concentration of at least 4 g/l the canrenone was added at once to reach the desired concentrations as given in Table II. The steroid transformation was stopped when 20 repeatedly no increase in conversion was observed.

CLAIMS

1. A microbial method of in vitro transformation of a steroid into its corresponding 11 α -hydroxy analogue using oxygen and a micro-organism selected from *Aspergillus ochraceus*,
5 *Aspergillus niger*, *Rhizopus stolonifer*, *Rhizopus nigricans*, *Rhizopus arrhizus*, and strains of *Pestelotia*, characterized in that a steroid having a purity of less than 97% is used.
2. The method according to claim 1, wherein the micro-organism is *Aspergillus ochraceus*.
- 10 3. The method according to claim 1 or 2, wherein the purity of the steroid is between 90 and 95%.
4. The method according to any one of claims 1-3, wherein a steroid concentration
15 greater than 0.5 g/l is used.
5. The method according to any one of claims 1-4, wherein the steroid is selected from estr-4-ene-3,17-dione and canrenone.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 96/05729

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 C12P33/10

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 3 294 646 A (SMITH, LELAND LEROY ET AL) 27 December 1966 see claims ---	1,2,5
Y	BULL. SOC. CHIM. FR. (1980), (1-2, PT. 2), 24-34 CODEN: BSCFAS; ISSN: 0037-8968, 1980, XP002029426 DESHAYES, CHRISTIAN M. P.: "Use of mathematical models for optimization in fermentation. Applications to transformations by microorganisms" cited in the application see page 31 ---	1,2,5

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

2

Date of the actual completion of the international search 21 April 1997	Date of mailing of the international search report 29.04.97
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016	Authorized officer Delanghe, L

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 96/05729

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	J. STEROID BIOCHEM. (1970), 1(3), 221-7 CODEN: JSTBBK, 1970, XP000671122 TAN, LIAT ET AL: "Interactions of steroids and fungi. III. 11.alpha.- Hydroxylation and degradation of progesterone-4-14C by a cell-free preparation from Aspergillus ochraceus" see the whole document ---	1
Y	FR 1 091 743 A (PFIZER) 14 April 1955 see claims ---	1
Y	FR 1 406 102 A (UPJOHN) 24 November 1965 see claims ---	1
Y	FR 1 555 991 A (UPJOHN) 31 January 1969 see claims ---	1
Y	FR 1 261 181 A (MERCK) 8 September 1961 see claims; examples ---	1
Y	FR 1 080 205 A (UPJOHN) 7 December 1954 see claims; table IV ---	1
Y	NL 6 409 039 A (MERCK) 7 February 1966 see claims -----	1

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 96/05729

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 3294646 A	27-12-66	NONE	
FR 1091743 A	14-04-55	NONE	
FR 1406102 A	24-11-65	BE 649398 A CH 460759 A DE 1240522 B GB 1006818 A NL 6406865 A 18-12-64 US 3201324 A 17-08-65	
FR 1555991 A	31-01-69	BE 711016 A 20-08-68 CH 491893 A 15-06-70 DE 1668671 A 23-09-71 FR 7887 M 04-05-70 NL 6801762 A 21-08-68	
FR 1261181 A	08-09-61	NONE	
FR 1080205 A	07-12-54	NONE	
NL 6409039 A	07-02-66	NONE	