UNIWERSYTET GDAŃSKI Wydział Matematyki, Fizyki i Informatyki

Adam Makiewicz

nr albumu: 235281

Generowanie płytek obwodu drukowanego w środowisku Python jako dodatek do programu graficznego Blender

Praca magisterska na kierunku:

INFORMATYKA

Promotor:

dr P. Arłukowicz

Gdańsk 2020

Streszczenie

Istnieje wiele programów do projektowania płytek drukowanych, jednak żadne z nich, z uwagi na swoje ścisłe zastosowania, nie posiadają odpowiednich narzędzi do zaawansowanego renderowania, animacji i tworzenia szeroko pojętej "sztuki". Popularny program do tworzenia grafiki 3D - Blender, z uwagi na możliwość rozbudowania go o dodatki jest znakomitym narzędziem mogącym wspomagać ten proces.

Słowa kluczowe

wizualizacja, grafika, 3D, Blender, Python, PCB, elektronika

Spis treści

W	prow	vadzenie	6
1.	Cel	i zakres pracy magisterskiej	8
	1.1.	Wymagania funkcjonalne	8
	1.2.	Opis technologii wykorzystanych w pracy	9
		1.2.1. Python	9
		1.2.2. Blender 2.8	9
		1.2.3. Pliki projektowe PCB	
		(Gerber, Drill, Pick-And-Place)	11
		1.2.4. Pliki VRML i X3D	13
		1.2.5. Środowisko Visual Studio Code	13
2.	Arc	hitektura zrealizowanego systemu	14
	2.1.	Założenia i wymagania projektowe	14
	2.2.	Struktura projektu	15
		2.2.1. Główna struktura interfejsu API Blendera	15
		2.2.2. Implementacja wzorca projektowego	16
		2.2.3. baza modeli	17
3.	Szcz	zegóły implementacyjne systemu	19
	3.1.	Rejestrowanie addonu	19
	3.2.	interfejs	20
	3.3.	czytanie, interpretacja Gerbera, excellon $+$ renderowanie? czy	
		kolejny punkt zobaczymy	20
	3.4.	zanim będziemy mogli wczytać plik placement musmy mieć	
		modele - stworzenie bazy modeli, importer *.wrl	20
	3.5.	czytanie placement .csv i stawianie modelu	20
4.	Pod	sumowanie	21
	4.1.	Realizacja założonych celów pracy magisterskiej	21

wersja wstępna [2020.6.7]	5						
4.2. Problemy napotkane podczas realizacji systemu	21 21						
Zakończenie							
Bibliografia	23						
Spis tabel	24						
Spis rysunków	25						

Wprowadzenie

Obwody drukowane czy też inaczej płytki drukowane (zwane dalej "PCB", ang. Printed Circuit Board) to podstawa dla każdego modułu elektronicznego. Dzięki swojej budowie oraz dobranym częściom składowym pozwalają inżynierom z roku na rok konstruować coraz to nowocześniejsze i bardziej funkcjonalne urządzenia. PCB służy przede wszystkim do montowania wszelkich podzespołów elektronicznych oraz zapewnienia im wspólnego stabilnego połączenia.

Tworzenie PCB składa się z trzech głównych etapów: [1]

- Logic Design Stworzenie schematu logiki i reguł projektowych, spis użytych komponentów i ich wzajemnych połączeń
- Layout Zaprojektowanie układu, który decyduje o fizycznym położeniu i połączeniach (tzw. routing) komponentów
- Produkcja przemysłowa

Najważniejszym punktem projektowania układu jest rozmieszczenie komponentów. Ten proces jest satysfakcjonującym twórczym przedsięwzięciem i prawdopodobnie jednym z najtrudniejszych aspektów procesu projektowania PCB. Wielu inżynierów uważa go za formę sztuki gdyż w przeciwieństwie do schematu, który opiera się tylko na matematyce, jest nieco bardziej płynny i elastyczny.

Nie oznacza to jednak pełnej dowolności w projekcie, gdyż należy wziąć pod uwagę mnogość technicznej wiedzy, pomiarów i zależności takich jak: optymalizacja długości ścieżek oraz ich szerokość, ochrona miejsc narażonych na dużą temperaturę, ograniczenia mechaniczne i montażowe, itd. Nawet zastosowanie automatucznego wyznaczania ścieżek do optymalizacji nie zawsze da poprawny rezultat. Z uwagi na ilość i różnorodność ograniczeń nie

¹ Autodesk.com - Top 10 pcb component placement tips

Rysunek 1. Joel Betancourt znany jako Garabating - "Katsushika Hokusai Electronic Circuit Board"

Źródło: https://garabating.com/post/44549621917/katsushika-hokusai-electronic-circuit-board

jest możliwa całkowita automatyzacja sprawdzania poprawności wykonanego projektu, zatem przydatna dla projektanta okazuje się wizualizacja efektu końcowego. Jest ona także niezbędnym elementem procesu marketingowego, logistycznego czy edukacyjnego. Istnieje wiele programów do projektowania PCB jednak żadne z nich, z uwagi na swoje ścisłe zastosowania, nie posiadają odpowiednich narzędzi do zaawansowanego renderowania, animacji i tworzenia szeroko pojętej "sztuki". Popularny program do tworzenia grafiki 3D - Blender, z uwagi na możliwość rozbudowania go o dodatki jest znakomitym narzędziem mogącym wspomagać ten proces.

ROZDZIAŁ 1

Cel i zakres pracy magisterskiej

Celem niniejszej pracy jest stworzenie łatwego do rozbudowania i spójnego systemu umożliwiającego import plików projektowych używanych bezpośrednio w przemyśle PCB do programu Blender, następnie interpretację i wyświetlenie pełnowymiarowego modelu 3D płytki drukowanej która powstałaby w procesie produkcji przemysłowej. Dodatek powinien posiadać prosty i przejrzysty interfejs który zapewnia dostęp do wszystkich funkcjonalności, ale nie przytłacza odbiorcy nadmiarem funkcji. Pozwoli to nie tylko osobom technicznym z poza branży grafiki komputerowej na łatwy dostęp do wizualizacji i edycji swoich projektów ale także na łatwiejszą integrację projektów przemysłowych z marketingową i graficzną częścią przemysłu.

1.1. Wymagania funkcjonalne

Zrealizowany system jest dodatkiem (tzw. add-on) do programu Blender, kompatybilnym z wersją 2.8 w zwyż. Wybór konkretnie tej wersji programu był podyktowany jego nową odsłoną oferującą między innymi nowy interfejs i API. Addon udostępnia użytkownikowi dodatkowe funkcjonalności z poziomu graficznego interfejsu programu. Następujące wymagania zostały sformułowane z punktu widzenia użytkownika.

- Wybranie folderu zawierającego wszystkie pliki projektu PCB lub wybranie pojedynczych plików warstw i plików pozycji elementów (ang. "Pick And Place")¹
- Wybranie wbudowanej lub własnej biblioteki modeli 3D

¹ Wiecej o strukturze plików projektowych PCB w punkcie 1.2.3

- Wybór końcowej rozdzielczości i miejsca zapisu plików wytworzonych w procesie renderowania
- Przycisk tworzący model 3D płytki na podstawie wybranych plików

1.2. Opis technologii wykorzystanych w pracy

1.2.1. Python

Python jest językiem programowania wysokiego poziomu, posiadającym aktywną społeczność i nieograniczone możliwości poprzez rozbudowę go o zewnętrzne pakiety. API Blendera jest w większości przygotowane do użycia właśnie Pythona i chociaż istnieją ograniczenia tego, co Python może zrobić w Blenderze, jest to jedyne oficjalnie wspierane rozwiązanie dzięki któremu wiele można osiągnąć bez konieczności zagłębiania się w kod C / C++ Blendera.

1.2.2. Blender 2.8

Darmowy program *Open-source*³ cechujący się wszechstronnością i możliwością rozbudowania go o dodatkowe biblioteki lub skrypty napisane w języku Python, które poszerzają podstawowe funkcjonalności.

Dodatek do programu Blender różni się od dodatkowej biblioteki Pythona jedynie pewnymi dodatkowymi wymaganiami jak obiekt zawierający metadane, takie jak: tytuł, wersja, kategoria, autor, etc. Określa też minimalną wersję Blendera wymaganą do uruchomienia skryptu. Dodatek jest więc sposobem na enkapsulację modułu Pythona w sposób, który użytkownik może z łatwością wykorzystać.

Blender ma wbudowany interpreter Pythona, który jest ładowany po uruchomieniu programu. Utrudnia to znacząco wykorzystanie automatycznego

² https://www.python.org/about/

https://www.blender.org/about/license/

 ${\bf Rysunek~1.1}.$ Zainstalowany dodatek w programie Blender 2.82a

Źródło: Opracowanie własne

pobierania i instalowania zależnych od siebie pakietów, co za tym idzie, tworzony w ramach pracy system, aby ułatwić korzystanie z niego, musi być niezależny od zewnętrznych, dynamicznie pobieranych bibliotek.

1.2.3. Pliki projektowe PCB (Gerber, Drill, Pick-And-Place)

Nowoczesne płytki drukowane są projektowane przy pomocy dedykowanego oprogramowania a ostatnim etapem produkcji dla projektanta jest wygenerowanie między innymi plików Gerber.[2] Format ten jest otwartym, wektorowym, powszechnie stosowanym standardem ASCII służącym do przesyłania danych projektowych obwodów drukowanych do przemysłu produkcji elektroniki. Wszystkie systemy do projektowania obwodów drukowanych pozwalają na eksport projektu jako pliki Gerber i każde przemysłowe oprogramowanie do ich obróbki potrafi je interpretować, umożliwiając profesjonalistom w dziedzinie PCB bezpieczną i wydajną wymianę danych projektowych.[3]

Płytki drukowane mogą być jednostronne (jedna warstwa miedzi), dwustronne (dwie warstwy miedzi po obu stronach warstwy podłoża) lub wielowarstwowe (zewnętrzna i wewnętrzna warstwa miedzi, naprzemiennie z warstwami podłoża).[4]

Pliki Gerber reprezentują między innymi warstwy miedzi, maskę lutowniczą, legendę oraz dane wiercenia i trasy. Dodatkowe atrybuty dostarczają informacji o sposobie montowania, połączeń i nazw poszczególnych elementów. Format pliku Gerber jest prosty, kompaktowy i jednoznaczny. Jest bazowany na języku *G-code*, oznaczanym RS-274. Dzięki zastosowaniu 7-bitowych znaków ASCII jest czytelny dla człowieka i łatwy do debugowania. Obecnie używany od 2014 roku format to tzw. Rozszerzony Gerber (ang. *Extended Gerber*) lub RS-274X.⁴

Kolejnym, generowanym przez projektanta płytki formatem używanym w produkcji są pliki wierceń (ang. $NC / CNC \ drill$), pierwotnie zaprojektowane przez twórców wiercących i trasujących maszyn CNC jako zastrzeżone,

⁴ https://www.ucamco.com/en/gerber

dedykowane formaty wejściowe dla ich urządeń. Znane są pod nazwami takimi jak: Excellon, Hitachi, Sieb & Meyer, Posalux, itd.[5] Wszystkie z pośród tych formatów są podobne, ponieważ opierają się na wspomnianym wcześniej G-code. Rodzaje wierceń w PCB dzielą się na otwory zwykłe - NPTH (ang. Not Plated Through Hole) i pokryte miedzią - PTH (ang. Plated Through Hole).[6] Stosowanie innego standardu nie jest jednak konieczne, jako że z czasem formaty te zmieniły swoje zastosowanie i obecnie powszechnie stosowaną praktyką jest generowanie tych plików w formacie Gerber.

Ostatnim i dosyć kluczowym elementem są pliki wskazujące elementy rozmieszczane na płytce. Jest to prosty format nazywany *Pick-And-Place*, *Placement list*, *X-Y file*, *Mount SMD* i składa się z kilku wartości:

- Ref / Designator Indeks elementu na płytce i w projekcie
- Value Wartość elementu (np. pojemność, rezystancja, napięcie)
- Pozycja podana we współrzędnych kartezjańskich
- Footprint / Package Nazwa elementu, zazwyczaj zawiera także informację o jego wymiarach
- Rotacja elementu
- Informacja czy objekt znajduje się na wierzchniej czy też dolnej stronie płytki
- Ewentualne komentarze i dodatkowe informacje

Plik zawiera opis elementów montowanych za pomocą technologii montażu przewlekanego - THT (eng. Through-hole technology) oraz powierzchniowego - SMT (ang. Surface Mount Technology), powszechnie stosowanego przemysłowo.[7] Nie jest to jednak format ściśle ustandaryzowany i przy masowej produkcji każdy producent musi manualnie zweryfikować opisy elementów. Na szczęście każdy program do tworzenia PCB posiana eksporter do generowania tychże plików. Dodatkowo są one proste w zapisie i z łatwością edytowalne przez człowieka.

1.2.4. Pliki VRML i X3D

Format .wrl zwany VRML (ang. Virtual Reality Modeling Language) powstały w 1994 roku, stał się pierwszym internetowym formatem 3D, został później zastąpiony przez format X3D.[8] Jego ówczesna powszechność sprawiła, że wiele programów przemysłowych tworzonych w latach dziewięćdziesiątych posiada bazy modeli w tym właśnie formacie. Więcej o praktycznym wykorzystaniu tego standardu w rozdziale 2.2.3.

1.2.5. Środowisko Visual Studio Code

Visual Studio Code jest to darmowy edytor kodu który według badań przeprowadzanych co roku przez serwis StackOverflow^{5,6} cieszy się coraz większym uznaniem. Wybór tego środowiska nie był jednak dyktowany jego popularnością lecz nowymi możliwościami otwierającymi się dzięki instalowaniu w nim rozszerzeń.⁷ Dodatek stworzony przez Jacques Lucke na potrzeby rozwoju addonów do programu Blender pozwala między innymi na automatyzację procesu aktualizowania tworzonego addonu przez tworzenie skrótu w wewnętrznych folderach Blendera, co znacznie przyśpiesza pracę nad systemem. Ponadto posiada ułatwienia takie jak debugowanie w konsoli, tworzenie odpowiednich struktur i przydatne komendy. Sposób działania dodatku ma na celu także upewnienie się, że rozszerzenie nie koliduje z innym menedżerem pakietów Pythona.⁸

⁵ https://insights.stackoverflow.com/survey/2018/

 $[\]verb|#development-environments-and-tools|\\$

⁶ https://insights.stackoverflow.com/survey/2019#

development-environments-and-tools

⁷https://code.visualstudio.com/docs/editor/extension-gallery

⁸ https://marketplace.visualstudio.com/items?itemName=JacquesLucke.

blender-development

ROZDZIAŁ 2

Architektura zrealizowanego systemu

Aby zobrazować podstawowe założenia projektu, w niniejszym rozdziale zostanie omówiona koncepcyjna struktura zrealizowanego systemu. Przedstawi ona bardziej szczegółowo mechanizmy działania najważniejszych komponentów aplikacji, a finalnie pomoże w samym procesie tworzenia oprogramowania. Kolejny rozdział przedstawi natomiast szczegóły implementacji każdego z przedstawionych elementów.

2.1. Założenia i wymagania projektowe

W przypadku tak rozległych możliwości rozwoju systemu, kluczowe jest właściwe zdefiniowanie wymagań projektu i dążenie do ich realizacji. Postawienie ograniczeń w kwestii wspieranych formatów na jakich działał będzie dodatek jest konieczne z uwagi na zróżnicowanie technologii używanych w procesie tworzenia PCB. Z drugiej strony nacisk na modułowość rozwiązania pozwoli później na łatwiejsze dodanie dowolnego rozszerzenia. System powinien implementować wszystkie następujące funkcjonalności:

- Implementacja interfejsu przy pomocy API Blendera 2.8
- Czytanie i interpretacja plików Gerber (RS-274X)
- Tworzenie modelu płytki na podstawie otrzymanych plików zgodnego z rzeczywistymi wymiarami
- Czytanie i interpretacja pliku placement w formacie .csv
- Udostępnianie użytkownikowi możliwości użycia dostarczonej lub własnej bazy modeli podzespołów

2.2. Struktura projektu

Podstawowy wybór strukturalny następującego rozwiązania jest podyktowany wymaganiami i sposobem komunikacji z API Blendera. Struktura folderów dodatku do programu Blender jest dowolna z założeniem, że w folderze głównym znajduje się plik ___init___.py odpowiedzialny za rejestrowanie dodatku. Jest on automatycznie wykonywany po wybraniu folderu i włączeniu addonu w sekcji "Dodatki" w programie Blender. Pozostałe elementy są pogrupowane według prostej i logicznej konwencji modułów w języku Python, zatem każdy moduł posiada swój folder, jest to jednak podyktowane tylko enkapsulacją modułów i wygodą w używaniu referencji między skryptami.

2.2.1. Główna struktura interfejsu API Blendera

Z poziomu kodu, API Blendera udostępnia główne moduły pod słowem kluczowym **bpy**¹ a jego podstawowe i główne elementy to:

- bpy.data Zapewnia dostęp do danych bieżącego pliku *.blend (Jest
 to rozszerzenie używane przez program Blender). Każde z jego pól jest
 zbiorem obiektów danego typu (sceny, obiekty, zbiory wierzchołków,
 materiały, kolekcje itp.).
- bpy.context Zawiera wszelnie dane środowiskowe obrazujące bieżący stan programu (bieżący wybór, tryb i region edytora) oraz wiele globalnych właściwości.
- **bpy.ops** Zawiera wszystkie *Operatory* Blendera. (W API każda komenda Blendera jest zaimplementowana jako metoda klasy *Operator*).
- **bpy.types** Posiada definicje wszystkich klas używanych w strukturach.

Istnieje także wiele mniejszych, pobocznych modułów i podmodułów pomocniczych. Niektóre z nich nie należa nawet do głównego modułu **bpy**. Mniejsze

¹ https://docs.blender.org/api/current/index.html

moduły, między innymi: bpy.props, bpy_extras, bpy.utils, mathutils, bmesh, będą omówione w dalszej części tej pracy.

2.2.2. Implementacja wzorca projektowego

MVP (ang. *Model-view-presenter*) jest wzorcem architektury oprogramowania opierającym się na trzech głównych założeniach:[9]

- Model reprezentuje dane które są przetwarzane i wysyłane do prezentera
- Widok (View) wyświetla dane uzyskane z prezentera i przekazuje dane wejściowe wprowadzane przez użytkownika do prezentera
- Prezenter jest wywoływany z Widoku aby wyświetlać dane pobrane z Modelu i przetwarzać dane wejściowe

System został zaimplementowany w oparciu o ten właśnie wzorzec z uwagi na to, że jest to struktura logicznie wynikająca ze sposobu używania API Blendera. W tym przypadku, w dużym uproszczeniu Modelem jest logika modułu, Widokiem – klasa odpowiedzialna za renderowanie i odbieranie danych wejściowych a Prezenter to API Blendera.

Skrypty w języku Python można zintegrować z Blenderem na następujące sposoby:

- Definiując silnik renderujący.
- Poprzez zdefiniowanie operatorów.
- Poprzez zdefiniowanie menu, nagłówków i paneli.
- Wstawiając nowe przyciski do istniejących menu, nagłówków i paneli.

W Pythonie odbywa się to poprzez zdefiniowanie klasy, która jest podklasą istniejącego typu. Tak więc, przechodząc do rzeczywistego stanu rzeczy, omawiany addon o nazwie *PCB-Blender* jest zdefiniowany jako folder lub skompresowane archiwum składające się z następujących elementów:

- PCB_LayoutPanel Klasa odpowiedzialna za wyświetlanie interfejsu
 i przekazywanie danych wybranych przez użytkownika, dziedzicząca z
 klas abstrakcyjnych Panel i ImportHelper. Wraz z klasami pomocniczymi znajduje się w pliku PCB_Blender_panel.py,
- *PCB_Generate* Klasa dziedzicząca z klasy *Operator*, znajdująca się razem z klasami pośrednimi w pliku PCB_Blender.py,
- ____init___.py Plik zawierający metadane i rejestrujący powyższe klasy,
- Foldery zawierające pozostałe moduły Pythona do których odnosi się główny Operator *PCB Generate*.

2.2.3. baza modeli

Jednym z pierwszych z wyzwań podczas tworzenia dodatku był dobór zasobów w postaci modeli 3D. Aby zrealizować założenia pracy, wymagana była baza modeli podzespołów elektronicznych montowanych na PCB. Z uwagi na mnogość producentów, rodzajów i typów podzespołów oraz fakt, że każdy program służący do projektowania może oznaczać je inaczej, optymalnym rozwiązaniem wydaje się udostępnienie użytkownikowi podstawowej bazy modeli. Ponadto zastosowanie szukania modeli częściowo dopasowanych nazwą. Z uwagi na fakt, że niemożliwym jest obsługa wszystkich wyjątków, koniecznością staje się umożliwienie użytkownikowi kożystanie z własnych modeli. Istnieje wiele stron udostępniających modele 3D na zasadach komercyjnych jak i darmowych licencji. Są one często wykorzystywane przez twórców jak i programy projektowe. Oto kilka z nich zaprezentowanych w tabeli: 2.1.

Nie posiadają one jednak możliwości masowego pobierania modeli. Pomijając tą niedogodność, która musiałaby być rozwiązana skryptem automatyzującym pracę, również ilość pobranych materiałów znacznie przekroczyłaby racjonalny poziom. Z pomocą przychodzi tu darmowy zbiór modeli używa-

```
Adres URL

https://grabcad.com/

https://www.3dcontentcentral.com/

https://www.digikey.com/en/resources/3d-models

https://www.te.com/

https://www.traceparts.com/en
```

Tabela 2.1. Publicznie dostępne bazy modeli podzespołów

Źródło: Opracowanie własne

nych w programie KiCad². Modele są dostępne między innymi w formacie *.wrl więc można zaimportować je do Blendera. Więcej o przetwarzaniu plików *.wrl oraz tworzeniu bazy modeli w rozdziale 3.4.

https://kicad.github.io/packages3d/

ROZDZIAŁ 3

Szczegóły implementacyjne systemu

W tym rozdziale zostanie omówiony sposób implementacji kluczowych i pobocznych funkcjonalności systemu.

3.1. Rejestrowanie addonu

Każdy dodatek do Blendera musi implementować metody register() oraz unregister(). Wprowadzone w wersji 2.8 usprawnienia znacznie ułatwiają ten proces

```
# Gram Matrix
def gram(tensor):
    __, d, h, w = tensor.size()
tensor = tensor.view(d, h * w)
gram = torch.mm(tensor, tensor.t())
return gram
```

$$gram = torch.mm(tensor, tensor.t)$$
 (3.1)

- 3.2. interfejs
- 3.3. czytanie, interpretacja Gerbera, excellon + renderowanie? czy kolejny punkt zobaczymy
- 3.4. zanim będziemy mogli wczytać plik placement musmy mieć modele stworzenie bazy modeli, importer *.wrl
- 3.5. czytanie placement .csv i stawianie modelu

ROZDZIAŁ 4

Podsumowanie

W efekcie końcowym zostały utworzone de facto 2 addony.

- 4.1. Realizacja założonych celów pracy magisterskiej
- 4.2. Problemy napotkane podczas realizacji systemu
- 4.2.1. importer *.wrl
- 4.3. Możliwości rozwoju systemu
- 4.4. Wnioski

Zakończenie

Bibliografia

- [1] Nadine Abboud, Martin Grötschel, and Thorsten Koch. Mathematical methods for physical layout of printed circuit boards: An overview. *OR Spectrum*, 30:453–468, 06 2008.
- [2] R.S. Khandpur. Printed Circuit Boards: Design, Fabrication, Assembly and Testing. Tata McGraw-Hill, 2005.
- [3] A. Williams. Build Your Own Printed Circuit Board. McGraw-Hill Education, 2004.
- [4] C. Schroeder. *Printed Circuit Board Design Using AutoCAD*. EDN series for design engineers. Newnes, 1998.
- [5] Jean-Pierre Charras. Xnc format: Gerber takes data into the future. Design007, 4:24–28, 04 2019.
- [6] S.H. Voldman. ESD: Analog Circuits and Design. ESD series. Wiley, 2014.
- [7] R. Prasad. Surface Mount Technology: Principles and Practice. Springer US, 2013.
- [8] David Raggett. Extending WWW to support Platform Independent Virtual Reality. Hewlett Packard Laboratories, 1994.
- [9] S. Millett. Professional ASP.NET Design Patterns. EBL-Schweitzer. Wiley, 2010.

Spis tabel

2.1. Publicznie dostępne bazy modeli podzespołów 18	2.1.	Publicznie	dostępne	bazy	modeli	podzespołów										18
---	------	------------	----------	------	--------	-------------	--	--	--	--	--	--	--	--	--	----

Spis rysunków

1.	. Joel Betancourt znany jako Garabating - "Katsushika Hokusa	
	Electronic Circuit Board"	7
1.1.	Zainstalowany dodatek w programie Blender 2.82a	10

Oświadczenie

Ja, niżej podpisany(a) oświadczam, iż	przedłożona praca dyplomowa została
wykonana przeze mnie samodzielnie, n	nie narusza praw autorskich, interesów
prawnych i materialnych innych osób.	
data	podpis