2° de Secundaria Unidad 3 2024-2025

 \square Concilio de Gigantes

revisión del documento: 25 de marzo de 2025

Practica la reposición a la Unidad 3

Nombre del alumno:				Fech	a:				
Aprendizajes:				Puntuación:					
Describe la generación, diversidad y comportamiento de		Pregunta	1	2 3	4	5	6	7	Total
das electromagnéticas como resultado de la interacción entre electricidad y magnetismo.			8	8 24	22	8	10	20	100
Describe cómo se lleva a cabo la exploración de los cuerpos celestes por medio de la detección de las ondas electromagnéticas que emiten.									
Describe algunos avances en las características y composiduo. Universo (estrellas, galaxias y otros sistemas).	ción del								
🗷 Describe las características y dinámica del Sistema Sola	r.								
Identifica algunos aspectos sobre la evolución del Univer	°SO.								
Frecuencia y longitud de onda		Ene	rgí	a de u	n fot	ón			
La frecuencia f de una onda electromagnética es: La ener			ada	a dich	a ond	a es	:		
$f = \frac{\nu}{\lambda}$ y $\lambda = \frac{\nu}{f}$ (1)			E	$Z = h \times$	f				(2)
donde ν es la velocidad de propagación de la onda $(\nu=3\times10^8~{\rm m/s})~{\rm y}~\lambda~{\rm la~longitud~de~onda}.$					(h =				
Ejercicio 1							de 8	ρui	ntos
Relaciona cada grupo de galaxias con su descripción. • Grupo formado por la Vía Láctea y unas 30 galaxias m	ás	□] Supe	rcúm	ulo			
b Son cúmulos de galaxias □ □ Grupo local									
c Grupo formado por la Vía Láctea y otras 14 galaxias giga una estructura en forma de anillo	_			☐ Cúm	ulos o	de g	alaxi	as.	

d Grupo de galaxias cuyos tamaños típicos son de 2 a 3 Mpc. □

Ejercicio 2 de 8 puntos

Unidad 3

Relaciona cada enunciado con el concepto que le corresponda.

A Rayos X

Poseen altas frecuencias y hacen vibrar las moléculas de agua, por lo que incrementan su temperatura.

(B) Luz visible

b _____ Es también conocida como radiación térmica, y es aplicada en la comunicación entre dispositivos electrónicos a corta distancia, como el control remoto de un televisor.

(C) Radiación infraroja

C _____ Puede ser aprovechada por los seres vivos; por ejemplo, para generar energía química mediante la fotosíntesis.

(D) Microondas

d Poseen gran energía, por lo que pueden atravesar la materia blanda, pero no la dura.

Ejemplo 1

Completa el Cuadro 1 escribiendo los datos que faltan en notación científica.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia (1/s)	Energía (J)
Microondas	2×10^{-2}	1.5×10^{10}	9.939×10^{-24}
Rayos X	3×10^{-10}	1×10^{18}	6.626×10^{-16}
Radiación infraroja	6×10^{-6}	13.3 $\times 10^{13}$	8.83 $\times 10^{-20}$

Tabla 1: Comparación entre algunos tipos de ondas electromagnéticas.

Microondas:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{2 \times 10^{-2}} = 1.5 \times 10^{10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1.5 \times 10^{10} = 9.939 \times 10^{-24}$$

Rayos X:

$$\lambda = \frac{\nu}{f} = \frac{3 \times 10^8}{1 \times 10^{18}} = 3 \times 10^{-10} \qquad E = h \times f = 6.626 \times 10^{-34} \times 1 \times 10^{18} = 6.626 \times 10^{-16}$$

Radiación infrarroja:

$$f = \frac{\nu}{\lambda} = \frac{3 \times 10^8}{6 \times 10^{-6}} = 13.3 \times 10^{13} \qquad E = h \times f = 6.626 \times 10^{-34} \times 13.3 \times 10^{13} = 8.83 \times 10^{-20}$$

Ejercicio 3	de 24 puntos
Ljei cicio o	de 24 puntos

Completa la tabla escribiendo los datos que faltan.

Tipo de onda electromagnética	Longitud de onda (m)	Frecuencia $(1/s)$	Energía (J)
Rayos gamma	1.2×10^{-11}	$\times 10^{19}$	
Luz visible	$\times 10^{-7}$	1×10^{15}	
Ondas de radio	$\times 10^5$	2×10^{3}	

- 1	-
α	3 /
	de

Ejemplo 2

Considera que la velocidad de la luz es de $3\times10^8~\mathrm{m/s}$ y que un año tiene 365.25 días.

a ¿Cuántos segundos hay en un año?

 $1~\text{a\~no} = 365.25~\text{d\'as} \times 24~\text{horas} \times 60~\text{minutos} \times 60~\text{segundos} = 31,557,600~\text{segundos} = 3.15576 \times 10^7~\text{segundos}$

Si sabemos que $v=\frac{d}{t}$ ¿Cuántos metros recorre la luz en un año?, ¿a cuántos kilómetros equivale?

$$d = vt = \left(3 \times 10^8 \text{ m/s}\right) \left(3.15576 \times 10^7 \text{ s}\right) = 9.47 \times 10^{15} \text{ m} = 9.47 \times 10^{12} \text{ km}$$

Después del Sol, la estrella más cercana a la Tierra es Próxima Centauri, que está a 3.99×10^{13} km. ¿Cuánto tiempo tarda la luz de Próxima Centauri en llegar a la Tierra?

$$t=\frac{d}{v}=\frac{9.47\times 10^{15}~\text{m}}{3\times 10^8~\text{m/s}}=133~\text{millones}$$
 de segundos = 4.21 años

-	
Eiercicio 4	de 22 puntos
LIEI LILIU 4	UE ZZ DUITUS

El parsec (pc) puede definirse a partir del año luz como: 1 pc = 3.26 años luz. Si la distancia d que recorre la luz es igual a la velocidad v de la luz por el tiempo t que tarda en recorrerla, entonces:

$$d = vt$$

Q ¿A cuántos metros equivale un parsec?

Considera que un año tiene 365 días y que la velocidad de la luz es 3×10^8 m/s.

b La galaxia M31 está a 650 kpc de la Vía Láctea y se acerca a ella a una velocidad de unos 350 km/s. Si la fórmula de cinemática para el tiempo es:

$$t = \frac{d}{v}$$

¿En cuánto tiempo "chocará" con ella?

Considea como el kiloparsec, 1 kpc = 10^3 pc, y el megaparsec, 1 Mpc = 10^6 pc.

E E		
Ejercicio 5	de 8 p	ountos

Elige la respuesta correcta:

- Antigüedad estimada del Universo.
 - (A) 13,800 millones de años
 - (B) 18,300 millones de años
 - (C) 13,300 millones de años
 - (D) 11,800 millones de años
- b Indica que el Universo se expande.
 - (A) El corrimiento al azul de la luz que emiten las galaxias.
 - B El corrimiento al rojo de la luz que emiten las galaxias.
 - C Todas las galaxias se alejan de la Vía Láctea
 - (D) La Teoría de la Relatividad General

- c La relación de proporcionalidad entre la velocidad con la que se alejan las galaxias y la distancia a la que se encuentran.
 - (A) Ley de Hook
 - B Ley de Bubble
 - C Ley de Hubble
 - D Ley de Moore
- d Longitud del diámetro del Universo.
 - A Un millón de años luz.
 - (B) Cien mil millones de años luz.
 - (C) Mil millones de años luz.
 - (D) Un billón de años luz.

Ejercicio 6 ____ de 10 puntos

Señala si son verdaderas o falsas las siguientes afirmaciones.

- La Tierra no rota sobre su propio eje porque nosotros no percibimos que nos estamos moviendo.
 - (A) Verdadero
- (B) Falso
- b El hecho de que en el mar primero desaparece el casco y luego la vela de un navío es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
- B Falso
- C Toda carga en movimiento genera un campo magnético.
 - (A) Verdadero
- (B) Falso
- d La fuerza magnética es una interacción de acción a distancia, también llamada fuerza de campo.
 - (A) Verdadero
- (B) Falso
- e Cuando acercamos dos imanes por sus polos iguales, los campos magnéticos interactúan y se suman, de tal forma que los imanes experimentan una fuerza de atracción mutua.
 - (A) Verdadero
- (B) Falso

- f Sólo las cargas masivas producen campos magnéticos.
 - (A) Verdadero
- (B) Falso
- 9 En un eclipse solar se observa que la Luna pasa delante del Sol y que ambos tienen un tamaño en apariencia iguales. De ello se concluye que el Sol está a la misma distancia que la Luna.
 - (A) Verdadero
- (B) Falso
- h La Tierra posee un campo magnético debido a las corrientes internas en su núcleo de hierro fundido.
 - (A) Verdadero
- (B) Falso
- i La dirección del campo magnético de un conductor largo y recto por el que circula una corriente es circular y rodea al alambre.
 - (A) Verdadero
- (B) Falso
- j La sombra que la Tierra proyecta sobre la Luna en los eclipses lunares es un argumento sobre la redondez de la Tierra.
 - (A) Verdadero
- B Falso

Ejercicio 7 de 20 puntos

Selecciona la respuesta correcta:

O Porcentaje de energía oscura que hay en el Universo.

(A) 4.9 % (B) 26.8 % (C) 33.3 % (D) 68.3 %

b Células receptoras de luz capaces de percibir colores, pero para que funcionen es necesario que haya suficiente luz.

(A) Bastones (B) Esferas (C) Conos (D) Rizos

c Porcentaje de materia ordinaria que hay en el Universo.

(A) 4.9 % (B) 26.8 % (C) 33.3 % (D) 68.3 %

d Es un sistema de estrellas, gas y polvo interestelar que orbita en torno a un centro de gravedad.

(A) Cúmulo (B) Galaxia (C) Nebulosa (D) Pulsar

e Variación aparente de la posición de un objeto al cambiar la posición del observador.

(A) Eclipse (B) Declinación (C) Transformación (D) Paralaje f Es la magnitud que mide un año luz.

(A) Tiempo (B) Masa (C) Longitud (D) Energía

9 Número aproximado de galaxias en el Universo.

(A) miles (B) billones (C) millones (D) trillones

h Proporción detectable de una galaxia por medio de las ondas electromagnéticas.

(A) 10 % (B) 20 % (C) 30 % (D) 40 %

i Porcentaje de materia oscura que hay en el Universo.

(A) 4.9 % (B) 26.8 % (C) 33.3 % (D) 68.3 %

j Técnica gracias a la cual se puede comparar el cambio en la posición de una estrella al transcurrir cierto período de tiempo.

A Radiografía B Radiometría
C Fotografía D Espectroscopía