Linear Algebra Done Right

Jiuru Lyu

$\mathrm{May}\ 23,\ 2023$

Contents

1	Vector Spaces		
	1.1	\mathbb{R}^n and \mathbb{C}^n	2
	1.2	Definition of Vector Space	3
	1.3	Subspace	4
2	Fini	Finite-Dimensional Vector Spaces	
	2.1	Span and Linear Independence	1
	2.2	Bases	5
	2.3	Dimension	

1 Vector Spaces

1.1 \mathbb{R}^n and \mathbb{C}^n

Definition 1.1.1 (Complex Number). A complex number is an ordered pair (a, b), where $a, b \in \mathbb{R}$, but we write it as a + bi.

Notation 1.1 $\mathbb{C} := \{a + bi \mid a, b \in \mathbb{R}\}$

Definition 1.1.2 (Addition & Multiplication).

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

$$(a+bi)(c+di) = (ac-bd) + (ad+bc)i$$

Theorem 1.1.1 (Properties of Complex Arithmetic).

- 1. commutativity: $\alpha + \beta = \beta + \alpha$; $\alpha\beta = \beta\alpha$, $\forall \alpha, \beta \in \mathbb{C}$.
- 2. associativity: $(\alpha + \beta) + \lambda = \alpha + (\beta + \lambda)$; $(\alpha\beta)\lambda = \alpha(\beta\lambda)$, $\forall \alpha, \beta, \lambda \in \mathbb{C}$.
- 3. identities: $\lambda + 0 = \lambda$; $\lambda \cdot 1 = \lambda, \forall \lambda \in \mathbb{C}$.
- 4. additive inverse: $\forall \alpha \in \mathbb{C}, \exists \text{ unique } \beta \in \mathbb{C} \text{ s.t. } \alpha + \beta = 0.$
- 5. multiplicative inverse: $\forall \alpha \in \mathbb{C}, \alpha \neq 0, \exists \text{ unique } \beta \in \mathbb{C} \text{ s.t. } \alpha\beta = 1.$
- 6. distributivity: $\lambda(\alpha + \beta) = \lambda\alpha + \lambda\beta$, $\forall \lambda, \alpha, \beta \in \mathbb{C}$.

Definition 1.1.3 (Subtraction). If $-\alpha$ is the additive inverse of α , subtraction on $\mathbb C$ is defined by

$$\beta - \alpha = \beta + (-\alpha).$$

Definition 1.1.4 (Division). For $\alpha \neq 0$, let $\frac{1}{\alpha}$ denote the multiplicative inverse of α . Then, division on \mathbb{C} is defined by

$$\frac{\beta}{\alpha} = \beta \cdot \left(\frac{1}{\alpha}\right)$$

Notation 1.2 \mathbb{F} *is either* \mathbb{R} *or* \mathbb{C} .

Definition 1.1.5 (List/Tuple). Suppose n is a non-negative integer. A list of length n is an ordered collection of n elements separated by commas and surrounded by parentheses: $(x_1, x_2, x_3, \dots, x_n)$. Two lists are equal if and only if they have the same length and the same elements in the same order.

Remark Lists must have a FINITE length.

Definition 1.1.6 (\mathbb{F}^n and Coordinate). \mathbb{F}^n is the set of all lists of length n of elements of \mathbb{F} :

$$\mathbb{F}^n := \{(x_1, \cdots, x_n) \mid x_i \in \mathbb{R} \forall i = 1, \cdots, n\},\$$

where x_i is the i^{th} coordinate of (x_1, \dots, x_n) .

Example 1.1.1 $\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\} \text{ and } \mathbb{R}^3 = \{(x, y, z) \mid x, y, z \in \mathbb{R}\}.$

Definition 1.1.7 (Addition on \mathbb{F}^n). Addition on \mathbb{F}^n is defined by adding corresponding coordinates:

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n).$$

Theorem 1.1.2 (Commutativity of Addition on \mathbb{F}^n).

If $x, y \in \mathbb{F}^n$, then x + y = y + x.

Proof 1. Suppose $x = (x_1, \dots, x_n)$ and $y = (y_1, \dots, y_n)$. Then

$$x + y = (x_1 + y_1, \dots, x_n + y_n)$$

= $(y_1 + x_1, \dots, y_n + x_n) = y + x$.

Definition 1.1.8 (Zero). Let 0 denote the list of length n whose coordinates are all 0: $0 := (0, \dots, 0)$. **Definition 1.1.9 (Additive Inverse on** \mathbb{F}^n). For $x \in \mathbb{F}^n$, the additive inverse of x, denoted -x, is the vector $-x \in \mathbb{F}^n$ s.t. x + (-x) = 0.

Definition 1.1.10 (Scalar Multiplication in \mathbb{F}^n). The product of a number $\lambda \in \mathbb{F}$ and a vector $x \in \mathbb{F}^n$ is computed by multiplying each coordinate of the vector by λ :

$$\lambda x = \lambda(x_1, \cdots, x_n) = (\lambda x_1, \cdots, \lambda x_n),$$

where $x = (x_1, \dots, x_n) \in \mathbb{F}^n$.

Theorem 1.1.3 (Properties of Arithmetic Operations on \mathbb{F}^n).

- 1. $(x+y)+z=x+(y+z) \quad \forall x,y,z \in \mathbb{F}^n$
- 2. $(ab)x = a(bx) \quad \forall x \in \mathbb{F}^n \text{ and } \forall a, b \in \mathbb{F}.$
- 3. $1 \cdot x = x \quad \forall x \in \mathbb{F}^n \text{ and } 1 \in \mathbb{F}.$
- 4. $\lambda(x+y) = \lambda x + \lambda y \quad \forall \lambda \in \mathbb{R} \text{ and } \forall x, y \in \mathbb{F}^n$.
- 5. $(a+b)x = ax + bx \quad \forall a, b \in \mathbb{F} \text{ and } \forall x \in \mathbb{F}^n$.

1.2 Definition of Vector Space

Definition 1.2.1 (Addition on V). An addition on V is a function $(u, v) \mapsto u + v$ for all $u, v \in V$. **Definition 1.2.2 (Scalar Multiplication on** V). A scalar multiplication on V is a function $(\lambda, v) \mapsto \lambda v$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

Definition 1.2.3 (Vector Space). A vector space is a set V along with an addition on V and a scalar multiplication s.t. the following properties hold:

- 1. commutativity: $u + v = v + u \quad \forall u, v \in V$
- 2. associativity: (u+v)+w=u+(v+w) and $(ab)v=a(bv) \quad \forall u,v,w\in V$ and $\forall a,b\in\mathbb{F}$.
- 3. additive identity: $\exists 0 \in V \text{ s.t. } v + 0 = v \quad \forall v \in V.$
- 4. additive inverse: $\exists w \in V \ s.t. \ v + w = 0 \quad \forall v \in V.$

1 VECTOR SPACES 1.3 Subspace

- 5. multiplicative identity: $\exists 1 \in V \text{ s.t. } 1 \cdot v = v \quad \forall v \in V.$
- 6. distributive properties: a(u+v) = au + av and $(a+b)v = av + bv \quad \forall u, v \in V$ and $a, b \in \mathbb{F}$.

Definition 1.2.4 (Vector). Elements of a vector space are called *vectors* or points.

Notation 1.3 V is a vector space over \mathbb{F} .

Definition 1.2.5 (Real and Complex Vector Space). A vector space over \mathbb{R} is called a *real vector space*, and a vector space over \mathbb{C} is called a *complex vector space*.

Theorem 1.2.1 (Properties of Vector Spaces).

1. A vector space has a unique additive identity.

Proof 1.

2. A vector in a vector space has a unique additive inverse.

Proof 2.

1.3 Subspace

2 Finite-Dimensional Vector Spaces

- 2.1 Span and Linear Independence
- 2.2 Bases
- 2.3 Dimension