低次のGaliis拡大の具体例を作るともに知っていると便利な判別式の話

黑太玄

判別式 $f(x) = (x - d_1)(x - d_2) \cdots (x - d_n) の根の差積を <math>\Delta(d) = T$ $(d_1 - d_1)$ $1 \le \lambda < j \le n$

と書く、これの2乗 $\Delta(\omega)^2$ を多項式 f(x)の<u>判別式</u> (discreminant)と呼ぶ、判別式 $\Delta(\omega)^2$ は次のような 2n-1 次の行列式で表わせれる:

 $f(x) = \chi^{n} + a_{1}\chi^{n-1} + \dots + a_{n}, \quad f'(x) = n\chi^{n} + (n-1)a_{1}\chi^{n-2} + \dots + a_{n-1}$ $0 \geq \xi, \qquad n+1 \qquad n-2$

 $\Delta(d)^2 = (-1)^{n(n-1)/2}$

もしくは 佐武一郎 路型代数学』 第11章 86の1を 参照せよ

証明を知りたければ"Sylvester resultant について検索せよ、

$$\begin{pmatrix}
d+\beta+\gamma = 0, & d\beta+d\gamma+\beta\gamma = \mu, & d\beta\gamma = -9 \\
0 = (d+\beta+\gamma)^2 = d^2+\beta^2+\gamma^2+2\mu & d^2+\beta^2+\gamma^2=-2\mu \\
\mu^2 = (d\beta+d\gamma+\beta\gamma)^2 = d^2\beta^2+d^2\gamma^2+\beta^2\gamma^2
\end{pmatrix}$$

$$(\lambda - \beta)^{2}(\lambda - \beta)^{2}(\beta - \beta)^{2} = -f'(\lambda)f'(\beta)f'(\beta) = -(3\lambda^{2} + p)(3\beta^{2} + p)(3\gamma^{2} + p)$$

$$= -(p^{3} + 3(-1p)p^{2} + 9p^{2}p + 27(-p)^{2}) = -(4p^{3} + 27q^{2}) = -4p^{3} - 27q^{2}$$

$$\Delta(d)^{2} = (-1)^{4\cdot3/2} \begin{vmatrix}
1 & 0 & p & 0 & q \\
1 & 0 & p & 0 & q \\
1 & 0 & p & 0 & q \\
1 & 0 & p & 0 & q \\
4 & 0 & 2p & 0 \\
4 & 0 & 2p & 0 \\
4 & 0 & 2p & 0 \\
4 & 0 & 2p & 0
\end{cases} = 16 q (p^{2} - 4q)^{2}, \quad \square$$

これらの公式の応用例については以下の文献を参照せよ、

https://kconrad.math.uconn.edu/blurbs/galoistheory/cubicquartic.pdf https://people.math.carleton.ca/~williams/papers/pdf/232.pdf

佐武-即著『線型代数学』 \$6の1の最後の問1の解答例

$$= (-1)^{n/(n-1)/2} \begin{vmatrix} 1 & 0 & \cdots & 0 & a \\ 1 & 0 & \cdots & 0 & a \\ n &$$

$$= (-1)^{45/2} \begin{vmatrix} 1 & 0 & 0 & 0 & a & b \\ 1 & 0 & 0 & 0 & a & b \\ 1 & 0 & 0 & 0 & a & b \\ 5 & 0 & 0 & 0 & a \\ 5 & 0 & 0 & 0 & a \\ 5 & 0 & 0 & 0 & a \\ 5 & 0 & 0 & 0 & a \\ 5 & 0 & 0 & 0 & a \\ 5 & 0 & 0 & 0 & a \\ 5 & 0 & 0 & 0 & a \\ 5 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & 0 \\ 6 & 0 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 6 & 0 & 0 & 0 & 0 & a \\ 7 & 0 & 0 & 0 & 0 & a \\$$

定理 体 K 上 既勉な分離的 n 次多項式 f(x) e K [x] の最小分解体を L と書き, f(x)の根の全体の集合を A = { \d1, ..., \dn} と書き, A の置換と 置換群 Sn を同視してかく、このとき, Gal (L/K) は A に置換として作用し, それによて, Sn に単射的に埋め込まれる。その像を Gal (f) = Gal (f/K) と書くことにする、このとき、Gal (f) = Gal (f/K) は Sn の推約的部分群に なる。 (この結果は演習で説明した。) このとき、

 $\Delta(d) = \prod_{1 \leq \lambda \leq j \leq n} (d_{\lambda} - d_{j}) \in K \iff Gal(f) \subset A_{n}.$

 $\mathfrak{P}^{\mathsf{H}}$ BELについて、 β EK \Leftrightarrow \forall σ E Gal(L/K), $\sigma(\beta) = \beta$.

|50の推動的部分群の例|

/ S3の部分群は S3, A3, ((1,2)), ((1,3)), ((2,3)), {1} のちつしかない。

|Siの推移的部分群の全体| Si, Aiの2ったでは。[]

ゆえに 既的な3次分離9項式 f(x) $\in K[x]$ たついて, $Gal(f/K) \cong S_3$, A_3 , この2つの可能性しかない、そして,

判別式 $\Delta(a)^2$ の平方根が K に含まれる \iff $Gal(f/K) \cong A_a$ $\Delta(d)^2$ は常に K に含まれる。 (" $\forall \sigma \in Gal(L/k), \ \sigma(\Delta(d)^2) = (\pm \Delta(d))^2 = \Delta(d)^2$)

|分| f(x) = $\chi^3 - 2$ の判別式は $-4\cdot0^3 - 27(-2)^2 = -3\cdot6^2$,

 $[-3.6]^2 = 6 [-3 + (2 + 1)], Gal(f/Q) = S_3$

(注) f(x) は Q(u)上既約

 ω を1の厚始3季根とすると、 $\omega = \frac{-1+\sqrt{13}}{2}$ なので、 $\mathbb{Q}(\omega) = \mathbb{Q}(\sqrt{13})$ となり、

例 $f(x) = x^3 - 3x - 1$ の判別式は $-4(-3)^3 - 27(-1)^2 = 9^2$ で $\sqrt{9^2} = 9 \in Q$ ゆえに、 $Gal(f/Q) \cong A_3$

一般に S_n の推移的部分群 Gに対して、 $X_{\lambda} = \{ \sigma \in G | \sigma(i) = \lambda \}$ とかくと、 $G = X_1 \cup \dots \cup X_n$ かつ $\sigma \in X_{\lambda}$ について $\sigma X_1 = X_{\lambda}$ より、 $|X_1| = \dots = |X_n|$ が成立するので、Gの位数 はれの倍数になる、

| S4の部分群の例 (あるかe S4による H 共変)のHo 1のるがいを除いて以下しかなり,)

位数 部分群

- 1 {1}
- 2 〈(1,2)〉, 〈(1,2)(3,4)〉 / 巡回群
- 3 〈(1,2,3)〉 Klejnの四元群
- $4 \left\langle (1,1,3,4) \right\rangle \cong C_4, \quad \bigvee_4 = \left\{ 1, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) \right\}, \quad \left\langle (1,2), (3,4) \right\rangle \cong C_1 \times C_2$
- 6 〈(1,2,3),(1,2)〉 _二面体群
- $8 \langle (1,2,3,4), (2,4) \rangle \cong D_4$
- 12 A₄ ← 交代群
- 24 S₄

この中で指約的なのは $\left\{ \langle (1,2,3,4) \rangle = C_4, V_4, \langle (1,2,3,4), (2,4) \rangle \cong D_4, A_4, S_5 の5種類$

例 $f(x) = \chi^4 - 2$,判別式は $256(-2)^3 = -2 \cdot 32^2$, $() \chi^4 - 2$ は Q(F) 上 既約 $\sqrt{-2 \cdot 32^2} \oplus Q$ より, $Gal(f/Q) \oplus A_4$,実際, $Gal(f/Q) \cong D_4 \oplus A_4$, $\sqrt{-2 \cdot 32^2} \oplus Q(\sqrt{-1})$ より, $Gal(f/Q(\sqrt{-1})) \oplus A_4$,実際, $Gal(f/Q(\sqrt{-1})) \cong C_4 \oplus A_4$ (1,2,3,4) = (1,2)(2,3)(3,4) は A_4 は A_4 の最小分解体は A_4 に A_4 の最小分解体は A_4 の最小分解体は A_4 の最小分解体は A_4 の最小分解体は A_4 の最小分解体は A_4 の A_4

例 $f(x) = \chi^4 - 10\chi^2 + 1 = (\chi - (\sqrt{2} + \sqrt{3}))(\chi - (-\sqrt{2} + \sqrt{3}))(\chi - (-\sqrt{2} - \sqrt{3}))(\chi - (-\sqrt{2} - \sqrt{3})),$ 判別式 ia $16 \cdot 1 ((-10)^2 - 4 \cdot 1)^2 = (4 \cdot 96)^2$ τ " $= \lambda_0 \mp 5$ 报 $\in \mathbb{Q} \times \mathcal{Q}_3$.

ゆえに、 $Gal(f/\mathbb{Q}) \subset A_4$ 、実際、 $Gal(f/\mathbb{Q}) \cong V_4 \subset A_4$. $\chi^4 - 10\chi^2 + 1$ の最小分解体 ia $L = \mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ τ " $Gal(L/\mathbb{Q}) \cong C_1 \times C_2 \cong V_4$.

~ Q上既的になる

この例は次の文献のp.8のTable5にある:

https://kconrad.math.uconn.edu/blurbs/galoistheory/cubicquartic.pdf

- (3) g(x)が K[x]内で、3つの1次式の積に分解するてき、 Gal(f/K)=V4、

注意 f(x)とg(x)の判別式は等しい、

前ページのチ(メ)とg(メ)の関係 4次方程式の解法

 $A = 4(p^2+g^2+r^2)$, $B = 16(p^2q^2+p^2r^2+g^2r^2)$, $C = 64p^2g^2r^2$ とおっくと、 A,B,Cは4p²,4g²,4r²の基本対称式、 $a = -\frac{1}{2}A$, $b^2 = C$, $c = \frac{1}{16}A^2 - \frac{1}{4}B = \frac{1}{4}a^2 - \frac{1}{4}B$ $= \frac{1}{4}a^2$ ゆえに、f(x)が上のように書けることと、4p²,4g²,4r²が3次方程式

$$g(\lambda) = \lambda^3 - A\lambda^2 + B\lambda - C = \lambda^3 + 2a\lambda^2 + (a^2 + 4c)\lambda - b^2 = 0$$

の3つの解になることは同値である。そのとき、4次方程式 f(x)=0の4つの解は次のように書ける、 $\chi = -p-q-r$, -p+q+r, p-q-r, p+q-r

discriminant(x^4+ax^2+bx+c), discriminant($x^3+2ax^2+(a^2-4c)x-b^2$)

判別式の一致の確認

Wolfram Alpha によるf(x)とg(x)の

入力

{Discriminant[$x^4 + a x^2 + b x + c, x$], Discriminant[$x^3 + 2 a x^2 + (a^2 - 4 c) x - b^2, x$]}

結果

https://www.wolframalpha.com/input? i=discriminant%28x%5E4%2Bax%5E2 %2Bbx%2Bc%29%2C+discriminant% 28x%5E3%2B2ax%5E2%2B%28a%5E 2-4c%29x-b%5E2%29&lang=ja

例 $f(x) = \chi^4 + 8\chi + 12$ は Q上既約で、 $g(\lambda) = \lambda^3 - 48\lambda - 64$ も Q上既約である。 f(0) 利引式) = -3^3 , 8^4 , 2^8 , $12^3 = -2^{12}$, $3^3 + 2^{14}$, $3^3 = 2^{12}$, 3^4 なので(その平方根) \in Q, ゆえに G(a) (f/Q) = A4、 前々ページ(1)上段の場合

例 $f(x) = x^4 + 2x + 2$ は Q上既約で、 $g(x) = x^3 - 8x + 4$ も Q上既約である (fの判別式) = $-3^3 \cdot 2^4 + 2^8 \cdot 2^3 = 1616 = 2^4 \cdot 101$ なので (元の平方根) も Q、 ゆえた、 $Gal(f/Q) = S_4$ 、 前々ページ ()下段の場合