Module 2 Unit 2: Dielectrics

Dr. Suren Patwardhan

Contents

- 1. Classification of materials based on dielectric property
- 2. Dielectric parameters P, D, E, k ϵ etc.
- 3. Type of polarization
- 4. Expression for electronic polarizability
- 5. Clausius-Mossotti equation
- 6. Frequency dependence of polarization
- 7. Dielectric strength
- 8. Ferroelectricity

Difference between Conductor and Dielectric

Bound charges + Free charges

Classification of Materials Based on Electric Polarization

Application of Electric Field

Conductors

- Free charges respond
- constitute current
- No electric field is set
- Example: Cu
- Use: Electric Interconnections

Insulators

- Bound charges respond
- No current flows
- Electric field is set up
- Example: Glass, Ceramic

Conventional

- Weak response
- No polarization*
- Example: PVC
- Use: Electrical isolation

Dielectrics

- Strong response
- Material is polarized
- Example: Mica
- Use: Capacitors

*static charge and heat energy conversion takes place

1) Electronic/Atomic (all materials)

Induced electric dipole moment: $\vec{\mu} = qd \hat{r}$

Polarization:
$$\vec{P} = \sum_{i=1}^{n} \vec{\mu}_{i} \Rightarrow \vec{P}_{e} = 4\pi\epsilon_{0}NR^{3}\vec{E}$$

2) Ionic (solids possessing ionic bonds e.g. NaCl)

net dipole moment: $\vec{\mu}=\mu_2-\mu_1=Q(d_2-d_1)\hat{r}$ After applying field

Polarization:

$$\vec{P_i} = \frac{Ne^2}{\omega_0^2} \left[\frac{1}{M} + \frac{1}{m} \right] \vec{E}$$

Before applying field

net polarization: $\vec{p} = 0$

Orientational or Dipolar (polar fluids e.g. liquid crystals)

Orientational or Dipolar (polar fluids e.g. liquid crystals)

Polarization:
$$\vec{P} = \sum_{i=1}^{n} \vec{\mu}_i = \vec{P}_o = \frac{N\mu^2\vec{E}}{3kT}$$

Polar and Non-polar Molecules

Space-charge or Interfacial (e.g. p-n junction, metal-semiconductor junction, Metal Oxide-Semiconductor junction)

Polarization: $\vec{P} = qN_DAw\hat{r}$

Expressions for Dielectric Parameters

Dielectric Quantity	Expression
Electric field (\overrightarrow{E})	$\vec{E} = -\vec{\nabla}V = -\frac{dV}{dx}$ (in 1 – D) (for calculations, $E = \frac{V}{d}$)
Electric Displacement (\overrightarrow{D})	$\vec{D} = \epsilon_0 \vec{E},$ $\vec{D} = \epsilon_0 \vec{E} + \vec{P}$
Polarization (\overrightarrow{P}):	$\vec{P} = \epsilon_0 \chi_e \vec{E} = \epsilon_0 (k - 1) \vec{E}$ $\vec{P} = \frac{\sum \vec{\mu}_j}{V} = \alpha N \vec{E}$
Capacitance (C):	$C = \frac{k\epsilon_0 A}{d}$
Electric dipole moment $(\vec{\mu})$:	$\vec{\mu} = Qd \hat{r}$

Polarizability and Dielectric Constant

Dielectric Quantity	Expression	
Polarizability (α):	$\vec{\mu} = \alpha \vec{E}$	
Electronic polarizability:	$\alpha_{\rm e} = 4\pi\epsilon_0 R^3$	

$$\alpha = \frac{\epsilon_0(k-1)}{N}$$
 gases

$$\alpha = \frac{3\epsilon_0}{N}\frac{(k-1)}{(k+2)}$$
 solids and liquids (Claussius-Mosotti Equation)

Internal Fields in Solids and Liquids

- In gases, atoms/molecules are far away from each other
- In solids and liquids, atoms/molecules are in close proximity
- Each atom/molecule is influenced by polarization of neighbours

Internal field: $\vec{E}_i = \frac{\gamma \vec{P}}{\epsilon_0}$;

y: Internal field constant

Frequency Dependence Of Dielectric "Constant"

Frequency Dependence Of Polarization

Total polarization is given by

$$P = Electronic + Ionic + Orientational = N(\alpha_e + \alpha_i + \alpha_o)E$$

Frequency regime	Range	Type of polarization present	
Quasi-DC	1-10 Hz	All of electronic, ionic, orientational and Space charge	
Audio	KHz – MHz (10 ³ -10 ⁶)	All electronic, ionic and orientational except space charge	
RF to Microwave	MHz – THz (10 ⁶ -10 ¹²)	Only electronic and ionic	
IR to Optical	THz – PHz (10 ¹² -10 ¹⁵)	Only electronic	
UV	> PHz (10 ¹⁵)	None	

Dielectric Strength

Insulating material	Dielectric constant or relative permittivity	Dielectric Stren	gth in
Air Asbestos* Bakelite Epoxy	1.0006 2 5 3.3	3.2 2 15 20	
Glass Marble* Mica Micanite Mineral Oil Mylar Nylon Paper Paraffin wax Polyethylene Polyurethane Porcelain PVC Quartz	5-12 7 4-8 4-5-6 2.2 3 4.1 1.8-2.6 1.7-2.3 2.3 3.6 5-6.7 3.7 4.5-4.7	12-100 2 20-200 25-35 10 400 16 18 30 40 35 15 50 8	Max voltage a dielectric material can withstand before electric discharge
Rubber Teflon	2.5-4	12-20 20	

Dielectric Relaxation Time and Relaxation Frequency

- Dielectric relaxation time (τ_r) :
 - Average time taken by the dipole to orient in the field direction
- Dielectric frequency (f_r):
 Reciprocal of relaxation time
- If f_{electric field} > f_r dipoles cannot orient themselves along the field
- Condition for alignment of dipoles: $\tau_r \leq \frac{T_{electric field}}{2}$

Ferroelectricity

- Spontaneous polarization shown by certain materials e.g. BaTiO₃, PbTiO₃
- Very high permittivity: 1000 to 10000
- Non-linear dependence of polarization on electric field

Ferroelectricity

Hysteresis Effect of a Ferroelectric Material

Means: Some electric field is "consumed" Hysteresis is "non-conservative" process

Initial state was:

After one cycle:

Electric field = 0

Electric field ≠ 0

Polarization = 0

Polarization = 0

Electric field increases
Polarization increases

Electric field increases further Polarization saturates

Electric field decreases
Polarization decreases

Electric field becomes zero Polarization retains

Electric field reversed
Polarization becomes zero

Applications of Dielectric Materials

- Capacitors (paper, ceramic, plastic, vacuum)
- Heating appliances (mica)
- Power line transmission (ceramic discs)
- High-tension Transformers (Dielectric liquids)
- Displays (Liquid crystals)
- Sensors (MEMs)
- USB/Flash memory (floating gate MOSFET)
- Semiconductor Chips (conventional MOSFET, FinFETs, GAAFETs, MBCFETs)