Suites Réelles Suites extraites MPSI 2

1 Définition

Définition 1.0.1

On dit que \underline{v} est une suite extraite de \underline{u} si il existe une application ϕ strictement croissante telle que $\forall n \in \mathbb{N}, \ v_n = u_{\phi(n)}$

On appelle également v une sous-suite de u.

On a notamment:

- $(w_n)_{n\in\mathbb{N}}$ la suite des termes d'indices pairs de u
- $(z_n)_{n\in\mathbb{N}}$ la suite des termes d'indices impairs de u

2 Propriétés de limites

Propriété 2.0.1

Lemme: Si $\phi \mathbb{N} \to \mathbb{N}$ est strictement croissante, alors $\phi(n) \geqslant n$

Par récurrence, avec $\phi(0) \ge 0$ et $\phi(n+1) > \phi(n)$

Propriété 2.0.2

Si u tend vers l avec $l \in \mathbb{R}$, alors toute suite extraite de u tend vers l

(1) 1^{er} cas: $l \in \mathbb{R}$

Soit v une suite extraite de u, et $\phi:n\to\mathbb{N}$ une application strictement croissante.

Montrer que v converge vers l

Soit ε un réel strictement positif.

Donc $\exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_n - l| < \varepsilon$

Soit n_0 un tel entier. On a $\forall n \in \mathbb{N}, n \geqslant n_0 \Rightarrow n_0 \leqslant n \leqslant \phi(n)$

On a donc $\forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |u_{\phi(n)} - l| < \varepsilon$

Donc v converge vers l.

(2) On procède de manière analogue avec $l = \pm \infty$

П

Propriété 2.0.3

Soit u une suite réelle, soit w et z ses suites extraites d'indice pair et impair. Si w et z tendent vers $l \in \overline{\mathbb{R}}$, alors u tend vers $\overline{\mathbb{R}}$

 1^{er} cas: $l \in \mathbb{R}$

Supposons que w et z convergent vers l.

Donc: $\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists n_0 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_0 \Rightarrow |w_n - l| < \varepsilon$

$$\forall \varepsilon \in \mathbb{R}^{+*}, \ \exists n_1 \in \mathbb{N}, \ \forall n \in \mathbb{N}, \ n \geqslant n_1 \Rightarrow |z_n - l| < \varepsilon$$

Soit n_0 et n_1 deux tels entiers, et ε un réel strictement positif.

Soit $N = \max(\{2n_0, 2n_1 + 1\})$

Etudions u_p avec $p \ge N$

- Si p est pair, on a p = 2n, donc $u_p = w_n$, et $|w_n l| < \varepsilon$
- Si p est impair, on a p = 2n + 1, donc $u_p = z_n$, et $|z_n l| < \varepsilon$

Ceci étant vrai pour tout ε ,

u converge vers l.

3 Théorème de Bolzano-Weierstrass

Théorème de Bolzano-Weierstrass

Soit u une suite bornée.

Alors il existe une suite extraite de u convergente.

Soit u une suite réelle bornée, et A l'ensemble des valeurs de u.

Soit a et b tels que $A \subset [a,b]$ (car A est borné)

D'après le principe de dichotomie:

• Soit $I_0 = [a, b]$

 I_0 contient une infinité de termes de la suite: $I_0 \cap A$ est infini.

Soit $\left[a, \frac{a+b}{2}\right]$ et $\left[\frac{a+b}{2}\right]$ deux sous-ensembles de I_0 dont la réunion vaut I_0 .

L'intersection de l'un des deux avec A au moins est infini. Notons I_1 cet intervalle.

• Soit $n \in \mathbb{N}$. Supposons que l'on ait une suite de segments $I_n \subset I_{n-1} \subset ... \subset I_0$ telle que: $\forall j \in [0, n], \ I_j = [a_j, b_j]$

$$\forall j \in [1, n], \ b_j - a_j = \frac{1}{2}(b_{j-1} - a_{j-1})$$

 $\forall j \in [0, n], I_j \cap A \text{ est infini}$

On applique le principe de dichotomie au segment I_n

On obtient le segment I_{n+1} tel que $I_{n+1} \cap A$ soit infini.

• Propriétés de $(I_n)_{n\in\mathbb{N}}$

La suite est décroissante par inclusion, c'est a dire que a est croissante, b décroissante.

La suite $(b_n - a_n)_{n \in \mathbb{N}}$ vérifie $\forall n \in \mathbb{N}^*, \ b_n - a_n = \frac{1}{2}(b_{n-1} - a_{n-1})$

Donc $\forall n \in \mathbb{N}, \ b_n - a_n = \frac{b - 0 - a_0}{2^n}$

donc cette suite tend vers 0.

Donc a et b sont deux suites adjacentes

D'après le théorème des segments emboités, soit α tel que: $\bigcap_{n\in\mathbb{N}}I_n=\alpha$

• Soit $E'_0 = \{n \in \mathbb{N}, u_n \in I_0 \cap A\}$

Soit $\phi(0)$ un élément de E'_0 , car $E'_0 \neq \emptyset$

Considérons $E'_1 = \{n \in \mathbb{N}, (n > \phi(n)) \text{ et } (u_n \in I_1 \cap A)\}$

Il n'y a que un nombre fini d'éléments de E'_0 non présents dans E'_1 : E'_1 est infini. Notons $\phi(1)$ un élément de E'_1 .

Donc: $\phi(1) \in \mathbb{N}, \ \phi(1) > \phi(0), \ u_{\phi(1)} \in I_1$

• Soit $n \in \mathbb{N}^*$, supposons qu'on ait construit $\phi(0) < ... < \phi(n)$ des entiers naturels tels que:

 $\forall k \in [0, n[, u_{\phi(k)} \in I_k]$

On considère $E'_{n+1} = \{ p \in \mathbb{N}, \ p > \phi(n) \text{ et } u_p \in I_{n+1} \cap A \}$

 $I_{n+1} \cap A$ est infini, donc E'_{n+1} est infini.

Donc E'_{n+1} est non vide, soit $\phi n+1$ un élément de E'_{n+1}

Donc on a: $\phi(n+1) \in \mathbb{N}$, $\phi(n+1) > \phi(n)$, $u_{\phi(N+1)} \in I_{n+1}$

- Par récurrence, on a construit une application ϕ strictement croissante de \mathbb{N} dans \mathbb{N} , telle que $\forall n \in \mathbb{N}, \ u_{\phi(n)} \in I_n$
- D'après le point précédant, $\forall n \in \mathbb{N}, \ a_n \leqslant u_{\phi(n)} \leqslant b_n$

Or, a et b convergent vers une même limite

Donc $\lim_{n\to+\infty} u_{\phi(n)} = \alpha$ par encadrement.

On a donc construit une suite extraite de u convergente.

Si A est un ensemble fini, alors procéder en construisant l'application ϕ avec un élément a de A tel que $E = \{n \in \mathbb{N}, u_n = a\}$ et $\phi(\mathbb{N}) = \{a\}$

Remarques:

- On a $u_{\phi(n)} \alpha = O\left(\frac{1}{2^n}\right)$ Ou bien $u_{\phi(n)} = \alpha + O\left(\frac{1}{2^n}\right)$
- $u_{\phi(n)}$ converge vers α a vitesse au moins géométrique.