

Multi-Arm Multi-Stage Trials: Developing the R package MAMS

Nikita Mozgunov¹, Dominique-Laurent Couturier¹, Michael Grayling², Dominic Magirr³, Philip Pallmann⁴, Thomas Jaki^{1,5}

¹ University of Cambridge, ² The Janssen Pharmaceutical Companies of Johnson & Johnson, ³ Novartis Pharma AG ⁴ Cardiff University, ⁵ University of Regensburg nikita.mozgunov@mrc-bsu.cam.ac.uk https://cran.r-project.org/package=MAMS

INTRODUCTION

Multi-Arm Multi-Stage (MAMS) trials are innovative designs that allow the comparison of multiple treatments against a common control across several stages. These trials incorporate adaptations such as stopping for futility or efficacy at either the arm or trial level, enhancing efficiency in identifying promising interventions. Despite the existence of some specialised MAMS software, these tools are often limited in scope and usability. Our project addresses this gap by developing the MAMS R package, which is designed to be flexible, user-friendly, and accessible to users with minimal programming experience.

mınımal programn

STRUCTURE

Main MAMS package function

mams(method = "module_name", ...)

method =
"simultaneous"

Simultaneous
stopping rules

method =
"dtl"

Drop the losers

method =
"sep"

Separate stopping rules

MAMS module

METHODS

The MAMS R package employs a modular approach, enabling easy integration of various methods for trial adaptation. Currently, the package implements three key methods: Simultaneous stopping, Drop-the-losers design, and separate stopping rule for platform trials.

The modular design ensures that new methods can be seamlessly incorporated into the package as they are developed. This approach enhances the package's adaptability and broadens its applicability to a wide range of MAMS (platform) trial designs.

EXAMPLE APPLICATION

 $R \ call: > mams(method = "dtl")$

Design	Function call	Description
Investigation of 4 experimental treatments in 2 stages with normal	K = 4	Number of experimental treatments
endpoints.	J = 2	Number of stages
One-sided familywise error rate of 0.05	alpha = 0.05	One-sided familywise error rate
and desired power of 0.9.	power = 0.9	Desired power
Allocation ratios: r = 1:2 for experimental treatments,	r = 1:2	Vector of allocation ratios
r0 = 1:2 for control.	r0 = 1:2	Vector ratio on control
	p = 0.75	Interesting treatment effect on probability scale
	p0 = 0.5	Uninteresting treatment effect on probability scale
Effect size parameters	delta = NULL	Interesting treatment effect on traditional scale
	delta0 = NULL	Uninteresting treatment effect on traditional scale
	sd = NULL	Standard deviation
	ushape = obf	Shape of upper boundary
Fixed lower boundary with shape "obf" for	Ishape = fixed	Shape of lower boundary
upper boundary.	ufix = NULL	Fixed upper boundary
		Fixed lower boundary Charting point for comple size
	nstart = 1	Starting point for sample size
Sample Size and Computational Settings	nstop = NULL sample.size = TRUE	Stopping point for sample size Find sample size
	Q = 20	Number of quadrature points
Simulations using EO OOO iterations	nsim = 50000	Number of simulations
Simulations using 50,000 iterations,		

OUTPUT

-- MAMS design ------

-- Design characteristics --

* Normally distributed endpoint

* Drop the losers

* 2 stages

* 4 treatment arms

* 5% overall type I error

* 90% power of detecting Treatment 1 as the best arm

* Assumed effect sizes per treatment arm:

			Under H1			Under H0			
		abbr	cohen.d	prob.scale		cohen.d	prob.scale		
Treatment	1	T1	0.954	0.75		0	0.5		
Treatment	2	T2	0.000	0.50		0	0.5		
Treatment	3	T3	0.000	0.50		0	0.5		
Treatment	4	T4	0.000	0.50	I	0	0.5		

-- Arms allocation per stage --

	Stage 1	Stage 2
Control	1	1
Treatment	4	1

-- Limits --

Upper bounds NA 2.055 dtl Lower bounds NA 2.055 dtl -- Sample sizes --

			Expected (§)					
	Cumulative			H1		Under H0		
	Stage 1 Sta	.ge 2†	low	mid	high	low	mid	high
Control	13	26	26 2	6.000	26	26 26	6.000	26
Treatment 1	13	26	26 2	5.735	26	13 16	6.300	26
Treatment 2	13	26	13 1	3.083	13	13 16	6.263	26
Treatment 3	13	26	13 1	3.093	13	13 16	6.214	26
Treatment 4	13	26	13 1	3.090	13	13 16	6.223	26
TOTAL #	65	91	9	1.000		91	1.000	
+ M->,								

† Max cumulative size per arm

Based on arms allocation at each stage
-- Futility cumulated probabilities (§) --

Under H1 Under H0 Stage 1 Stage 2 | Stage 1 Stage 2 0 0.077 0 0.241 Treatment 1 0 0.005 0 0.238 Treatment 2 Treatment 3
Treatment 4 0 0.235 0 0.006 0 0.006 0 0.236 ANY 0.095 0.950

ALL	0	0.000		0	0.000
Efficacy	cumulate	ed probab:	ilities	(§)	
	Under H	1	Under	H0	
	Stage 1	Stage 2	Stage	1 S	Stage 2
Treatment 1	0	0.902		0	0.013
Treatment 2	0	0.001		0	0.013
Treatment 3	0	0.001		0	0.012
Treatment 4	0	0.001		0	0.012
ANY	0	0.905		0	0.050
T1 IS BEST	0	0.902		0	0.013
ALL	0	0.000		0	0.000

- * Estimated T1 related power (§) = 90.218%, [89.956, 90.478] 95% CI
- * Estimated overall type I error (§) = 5.012%, [4.822, 5.204] 95% CI
- (§) Operating characteristics estimated by a simulation considering 50000 Monte Carlo samples

