
Epreuve d'optique géométrique SMP2 – Session de rattrapage Durée : 1h30min

juillet 2014

- Dans tout le problème on suppose que les conditions de Gauss sont réalisées.
- Les parties A et B sont indépendantes.

<u>Partie A</u>:

Soit un dioptre sphérique de sommet S_1 , de centre C_1 et de rayon de courbure $\overline{S_1C_1}=+2~cm$. Ce dioptre sépare deux milieux d'indice $n_1=1$ et $n_2=3/2$. La lumière venant du milieu 1 se propage de gauche à droite.

- 1°/ Quelle est la concavité de ce dioptre?
- 2°/ Indiquer la nature de ce dioptre en justifiant votre réponse.
- 3°/ a) Déterminer les positions des foyers objets F_1 et image F_1 par rapport à S_1 en fonction de $\overline{S_1C_1}$, n_1 et n_2 .
 - b) Quelle sont les valeurs en cm des distances focales f_1 et f_1' ?
 - c) Calculer la convergence \mathcal{C}_1 en dioptrie. Vérifier le résultat de la question 2°/.
- **4°**/ Sur l'axe optique, on place un objet (AB) tel que : $\overline{S_1A} = +4 \ cm$.
 - a) L'objet (AB) est-t-il réel ou virtuel ? Justifier.
 - b) Déterminer la position en cm de l'image (A'B') à travers le dioptre par rapport à S_1 . En déduire la nature de cette image.
 - c) Calculer le grandissement transversal γ_1 du dioptre.
 - d) Soit $\overline{AB} = 1cm$, quels sont la taille et le sens de l'image (A'B')?
 - e) Sur une figure, placer l'objet (AB) et construire géométriquement son image (A'B'). (Échelle : 1/1)

Partie B:

On considère un miroir sphérique de sommet S_2 , de centre C_2 et de rayon de courbure $\overline{S_2C_2}=-16~cm$.

- 1°/ Ce miroir est-t-il convergent ou divergent ? Justifier.
- 2°/ Écrire la relation de conjugaison de position pour un objet A et son image A' avec origine au sommet S_2 .

- 3°/ Déterminer les positions des foyers objet F_2 et image F_2' de ce miroir par rapport à S_2 en cm.
- 4°/ Quelle doit-être la position par rapport à S_2 d'un objet (AB) pour que son image (A'B') soit 4 fois plus grande que l'objet et de même sens ?

Partie C:

On réalise un système optique centré à l'aide du dioptre sphérique de la parie A et du miroir sphérique de la partie B de telle sorte que : $\overline{S_1S_2} = +14 \ cm$.

- 1°/ Quelle est le nom de ce système optique?
- 2°/ a) Faites un schéma du système à l'échelle 1/2 ($1~cm \rightarrow 0.5~cm~sur~papier$) et tracer la marche d'un rayon lumineux incident parallèle à l'axe optique.
 - **b)** En déduire la position du foyer image F' du système par rapport à S_1 en cm.
 - c) Déduire également la position du point principale image H' du système par rapport à S_1 en cm.
 - d) Quelles sont alors les distances focales image f' et objet f du système optique en cm ?
 - e) A partir des résultats précédents, quel sera la valeur du rayon de courbure p du miroir équivalent au système optique étudié?
