2018 春大学物理 C 作业八

第十章 机械波

一、选择题

1. 一平面简谐波的表达式为 $y = 0.1\cos(3\pi t - \pi x + \pi)$ (SI) , t = 0 时的波形曲线如图 所示,则表述正确的是 []

- (D) 波速为 9 m/s.
- 2. 一平面简谐波沿 Ox 正方向传播,波动表达式为 $y = 0.10\cos[2\pi(\frac{t}{2} \frac{x}{4}) + \frac{\pi}{2}]$ (SI)。 该波在 t = 0.5 s 时刻的波形图是 [

- - $(A) \quad 0.$

(B) $\frac{1}{2}\pi$.

(C) π .

(D) $\frac{3}{2}\pi$

- $\frac{u}{O}$
- 4. 频率为 100 Hz,传播速度为 300 m/s 的平面简谐波,波线上距离小于波长的两点振动的相位差为 $\frac{1}{3}\pi$,则此两点相距 [
 - (A) 2.86 m.

(B) 2.19 m.

(C) 0.5 m.

- (D) 0.25 m.
- 5. 一沿 x 轴负方向传播的平面简谐波在 t=2 s 时的波形曲线如图所示,则原点 O 的振动方程为 []

(A) $y = 0.50 \cos (\pi t + \frac{1}{2}\pi)$, (SI).

6. 如图所示为一平面简谐波在 t=0 时刻的波形图,该波的波速 u=200 m/s,则 P 处 质点的振动曲线为 [7

7. 一平面简谐波沿x轴正方向传播,t=0 时刻的波形图如图所示,则P处质点的振 动在 t=0 时刻的旋转矢量图是 [7

- 8. 一平面简谐波在弹性媒质中传播时,某一时刻媒质中某质元在负的最大位移处, 则它的能量是 [

 - (A) 动能为零,势能最大. (B) 动能为零,势能为零.

 - (C) 动能最大,势能最大. (D) 动能最大,势能为零.

9. 在同一媒质中两列相干的平面简谐波的强度之比是 $I_1/I_2=4$,则两列波的振幅之 比是 []

- (A) $A_1 / A_2 = 16$. (B) $A_1 / A_2 = 4$. (C) $A_1 / A_2 = 2$. (D) $A_1 / A_2 = 1 / 4$.

- 10. 在驻波中,两个相邻波节间各质点的振动[]

- (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.
- (C) 振幅相同,相位不同.
- (D) 振幅不同,相位不同.

二、填空题

1. 一平面简谐波(机械波)沿x轴正方向传播,波动表达式为 $y = 0.2\cos(\pi t - \frac{1}{2}\pi x)$

(SI),则 x = -3 m 处媒质质点的振动加速度 a 的表达式为

2. 如图所示,一平面简谐波沿 Ox 轴负方向传播,波长为 λ , 若 P 处质点的振动方程是 $y_P = A\cos(2\pi u + \frac{1}{2}\pi)$,则该波的

表达式是______; P 处质点 时刻的振动状态与 0 处质

点 t_1 时刻的振动状态相同.

3. 图示一平面简谐波在 t=2 s 时刻的波形图,波的振幅 为 $0.2 \,\mathrm{m}$,周期为 $4 \,\mathrm{s}$,则图中 P 点处质点的振动方程为

4. 两列波在一根很长的弦线上传播, 其表达式为

$$y_1 = 6.0 \times 10^{-2} \cos(x - 40t) / 2$$
 (SI)

$$y_2 = 6.0 \times 10^{-2} \cos(x + 40t) / 2$$
 (SI)

; 波腹的位置是

三、计算题

- 1. 一平面简谐波,振动周期 $T = \frac{1}{2}$ s,波长 $\lambda = 10$ m,振幅A = 0.1 m. 当 t = 0 时,波源振动的位移恰好为正方向的最大值.若坐标原点和波源重合,且波沿 α 轴正方向传播,求:
 - (1) 此波的表达式;
 - (2) $t_1 = T/4$ 时刻, $x_1 = \lambda/4$ 处质点的位移;
 - (3) $t_2 = T/2$ 时刻, $x_1 = \lambda/4$ 处质点的振动速度.

- 2. 一振幅为 10 cm,波长为 200 cm 的一维余弦波. 沿 x 轴正向传播,波速为 100 cm/s,在 t=0 时原点处质点在平衡位置向正位移方向运动. 求:
 - (1) 原点处质点的振动方程.
 - (2) 在 x = 150 cm 处质点的振动方程.