Trik za neskončne sisteme NDE za $x_n(t)$: rešimo ga s pomočjo rodovne funkcije $Q(y,t) = \sum_{n=1}^{\infty} x_n(t) y^n$. Velja: $yQ_y = \sum_{n=1}^{\infty} nx_n(t) y^n$, $Q_y - Q/y = \sum_{n=1}^{\infty} nx_{n+1} y^n$. Z upoštevanjem rekurzivne zveze dobimo PDE za Q, rešimo, razvijemo rešitev v vrsto po y.

Zanimivi vzorci: $(x^2)^{\cdot} = 2x\dot{x}, (xy)^{\cdot} = \dot{x}y + x\dot{y}, (\ln x)^{\cdot} = \frac{\dot{x}}{x}.$

Če u=u(x,y) določa ploskev v prostoru, je enačba tangentne ravnine na to ploskev v točki (x,y,u(x,y)) enaka: $u_x(X-x)+u_y(Y-y)-(U-u)=0$ (normala ravnine je $(A,B,C)=(u_x,u_y,-1)$). Razdalja od tangentne ravnine do točke (a, b, c) je:

$$d(AX + BY + CU + D = 0, (a, b, c)) = \frac{|Aa + Bb + Cc + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

EKSISTENČNI IZREK ZA NELINEARNE PDE 1. REDA

IZREK: Naj bo u = u(x, y) rešitev začetnega problema

$$F(x, y, u, u_x, u_y) = 0$$
, $u(\alpha(s), \beta(s)) = \gamma(s)$, za $s \in \mathcal{I}$.

Če sta $p(s) = u_x(\alpha(s), \beta(s))$ in $q(s) = u_y(\alpha(s), \beta(s))$ edini funkciji, za kateri velja:

(1)
$$(T) = \det \begin{bmatrix} \alpha' & \beta' \\ F_p & F_q \end{bmatrix} (s) \neq 0 \quad \forall s \in \mathcal{I},$$

- (2) $F(\alpha(s), \beta(s), \gamma(s), p(s), q(s)) = 0 \quad \forall s \in \mathcal{I},$
- $(3) (p(s), q(s), -1) \cdot (\alpha'(s), \beta'(s), \gamma'(s)) = 0 \quad \forall s \in \mathcal{I}.$

Potem je rešitev u enolična.

Separacija spremenljivk

 $L^{2}([-\pi,\pi]) = \{f : [-\pi,\pi] \longrightarrow \mathbb{R}, \int_{-\pi}^{\pi} |f|^{2}$

 $dx < \infty$ je vektorski prostor s skalarnim produktom $\langle f, g \rangle = \int_{-\pi}^{\pi} f(x)g(x) dx$. Množica funkcij

 $\{\frac{1}{2\pi}, \frac{1}{\pi}\sin x, \frac{1}{\pi}\cos x, \frac{1}{\pi}\sin 2x, \frac{1}{\pi}\cos 2x, \ldots\}$. je <u>kompleten</u> (vsako funkcijo se da na enoličen način razviti v tem sistemu), ortonormiran sistem za ta produkt.

Fourierjev razvoj: $f \in L^2([-\pi, \pi])$:

Fourier jet razvoj. $f \in \mathbb{Z} \setminus \{1, \dots, n\}$ $\tilde{f}(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx),$ $a_n = \langle f, \frac{1}{\pi} \cos nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \, dx, \quad n \in \mathbb{N}_0,$ $b_n = \langle f, \frac{1}{\pi} \sin nx \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}.$

Sinusna in kosinusna vrsta: $f \in L^2([0,\pi])$. Za tako funkcijo obstaja liha in soda razširitev na $[-\pi,\pi]$. Za \tilde{f}^S so $b_n = 0$, za \tilde{f}^L pa $a_n = 0$.

Posledica: Na $[0,\pi]$ za f obstajata dva razvoja: sinusna vrsta: $\tilde{f}(x) = \sum_{n=1}^{\infty} \tilde{b}_n \sin nx$ in kosinusna vrsta:

 $\tilde{f}(x) = \frac{\tilde{a}_0}{2} \sum_{n=1}^{\infty} \tilde{a}_n \cos nx$, kjer sta: $\tilde{a}_n = \frac{2}{\pi} \int_0^{\pi} \int_0^{\pi} f(x) \cos nx \, dx, \quad n \in \mathbb{N},$

 $\tilde{b}_n = \frac{2}{\pi} \int_0^{\pi} f(x) \sin nx \, dx, \quad n \in \mathbb{N}_0.$

S substitucijo lahko razvoje prevedemo na poljuben interval [-L, L] oz. [0, L], L > 0. V tem primeru je $\left\{\frac{1}{2L}, \frac{1}{L}\sin\frac{n\pi x}{L}, \frac{1}{L}\cos\frac{n\pi x}{L}, \ldots\right\}$ KONS.

Metoda separacije: Kdaj jo uporabimo: Trivialen pogoj: Imamo eno spremenljivko na omejenem območju in s homogenimi robnimi pogoji, npr.

 $x \in [0, L]: \alpha u(0, t) + \beta u_x(0, t) = 0, \quad \gamma u(t) + \delta u_x(L, t) = 0, \quad \alpha, \beta, \gamma, \delta \in \mathbb{R}.$

Netrivialen pogoj: Diferencialni operator, ki določa PDE, zadošča Sturm-Liouvillovi teoriji, tj. množica lastnih funkcij, ki jih dobimo iz robnega problema tvori K.O.N.S.

Štirje koraki metode:

#1: Separacija: nastavek u(x,t) = X(x)T(t). (Nastavek vstavi v enačbo in loči spremenljivke, dobljeno enačbo pa enači z $\mu \in \mathbb{R}$.)

#2: Določanje lastnih funkcij $\{X_n\}_{n\in\mathbb{N}}$ iz robnega problema za NDE. (Reši NDE za X, homogeni robni pogoji ti dajo začetne pogoje za NDE. Obravnavati moraš možnosti $\mu > 0, \mu = 0, \mu < 0$. Ce je v kakšnem primeru $X \equiv 0$, lastnih funkcij v tem primeru ni. Pri izbire množice lastnih funkcij, lahko splošno konstanto za vsak člen BSS postaviš na 1.) #3: Iskanje pripadajočih $\{T_n\}_{n\in\mathbb{N}}$. (Z μ , ki ga dobiš v #2 in določa družino lastnih funkcij, reši še NDE za T. Splošno konstanto lahko tu pustiš, lahko si misliš, za je v njej spravljena konstanta iz množice lastnih funkcij za X.)

#4: Splošna rešitev $u = \sum_{n=1}^{\infty} X_n T_n$. (Rešitev naj bi bila odvisna od števno mnogo konstant, ki jih določiš iz nehomogenega robnega pogoja. Dobro je opaziti morebitne sinusne/kosinusne vrste, ki jih dobiš z robnim pogojem, in upoštevati zvezo s koeficienti iz razvoja v sinusno/kosinusnov vrsto, torej $C_n = a_n$ ali b_n .)

Če za nobeno od spremenljivk nimamo homogenega robnega pogoja, razbijemo problem na dva dela, npr: $\Delta u = 0$ razbijemo na $u=v+w, \Delta v=0$ in $\Delta w=0$, pri čemer v-ju in w-ju damo vsakemu en homogen robni pogoj in en pogoj, ki je od u-ja.

Reševanje nehomogene enačbe s separacijo:

Naredimo #1 in #2 za homogen problem (pri drugem koraku preveri, da lastne funkcije tvorijo K.O.S., tj. $\langle X_n, X_m \rangle$

$$c_n \delta_{n,m} = \begin{cases} c_n; & n = m \\ 0; & n \neq m \end{cases}, \text{ korak } \#3 \text{ pa naredimo tako, da rešitev iz } \#2 \text{ vstavimo v } u(x,t) = \sum_{n=0}^{\infty} X_n(x) T_n(t). \text{ Tu } T_n(t) \end{cases}$$

ne poznamo in računamo za splošnega. Vstavimo v nehomogeno enačbo in primerjamo koeficiente s tistimi iz razvoja nehomogenega dela po $\{X_n\}$. Partikularno rešitev dobimo z nastavkom. Ko razvijamo nehomogeni del f(x) po $\{X_n\}$, si napišemo $\hat{f}(x) = \sum_{n=0}^{\infty} \frac{\langle f, X_n \rangle}{\langle X_n, X_n \rangle} X_n$ in izračunamo koeficiente iz razvoja.

Laplace v polarnih koordinatah: $\triangle u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\varphi\varphi}$

Pri polarnih koordinatah imamo namesto homogenega robnega pogoja lahko tudi naravni pogoj: 2π -periodičnost: $u(r,0) = u(r,2\pi), u_{\omega}(r,0) = u_{\omega}(r,2\pi).$

Sistem $M\vec{x} = 0$ ima netrivialne rešitve $\iff \det M = 0$.

Eksistenca:

 $u_{tt} - c^2 u_{xx} = 0, c \in \mathbb{R}_+$ ima pri pogojih $u_x(0,t) = u_x(L,t) = 0$ in $u(x,0) = u_t(x,0) = 0$ edino rešitev $u \equiv 0$. Za poljubne $a, b, f, g \in \mathcal{C}^{\infty}(\mathbb{R})$ ima $u_{tt} - c^2 u_{xx} = 0, c \in \mathbb{R}_+$ enolično rešitev tudi pri pogojih $u_x(0, t) = a(t), u_x(L, t) = a(t)$ $b(t), u(x, 0) = f(x) \text{ in } u_t(x, 0) = g(x)$

STURM-LIOUVILLEOVA TEORIJA

 $A \in \mathbb{R}^{n \times n}$ je sebi adjungiran, če $A^T = A$, lastni vektorji tvorijo ortogonalno bazo. Velja $\langle Av, w \rangle = (Av)^T w = v^T A^T w = v^T (Aw) = \langle v, Aw \rangle$.

SL-operator: $L: \mathcal{C}^2([a,b]) \longrightarrow \mathcal{C}([a,b]), L(y) = \frac{1}{r(x)}[(p(x)y')' + q(x)y], p,r > 0, x \in [a,b] + \text{mešani ali periodični}$ robni pogoj. Gledamo skrčitev operatorja na $V = \mathcal{C}^2([a,b]) \cap \{\text{robni pogoji}\}, \langle f,g \rangle = \int_a^b f(x)g(x)r(x)dx$, kjer je r utež.

L je sebi adjungiran za robne pogoje:

- (1) y(a) = y(b) = 0,
- (2) y'(a) = y'(b) = 0,
- (3) y(a) = y(b), p(a)y'(a) = p(b)y'(b).

Izrek (o kompletnosti lastnih funkcij)

 $p \in \mathcal{C}^1([a,b]); r,q \in \mathcal{C}([a,b]); p,r > 0$. Potem ima lastni problem $L(y) = \mu y$ pri robnih pogojih a) $\alpha y(a) + \beta y'(a) = 0$ in $\gamma y(b) + \delta y'(b) = 0$; $\alpha^2 + \beta^2 \neq 0, \gamma^2 + \delta^2 \neq 0$

- b) y(a) = y(b) in $\alpha y'(a) = \beta y'(b)$; $\alpha^2 + \beta^2 \neq 0$

števno mnogo rešitev z lastnostmi:

- i) $\mu_1 > \mu_2 > \dots$, $\lim_{n \to \infty} \mu_n = -\infty$
- ii) $\{g_n\}_{n\in\mathbb{N}}$ tvorijo kompleten ortonormiran sistem v $L^2([a,b])\cap\{\text{robni pogoji}\}$ in za $\langle f,g\rangle=\int_a^b f(x)g(x)r(x)dx$.

Enačbe oblike $u_t = au_{xx} + bu_x + cu$, kjer $a, b, c \in \mathbb{R}, a \neq 0, u(o, t) = u(L, t) = 0$ lahko rešujemo s separacijo spremenljivk za poljubne koeficiente a, b, c.

$$y(x) = \tilde{A}x^{ia} + \tilde{B}x^{-ia} = A\cos(a\ln x) + B\sin(a\ln x)$$

Dejstvo, ali določena družina funkcij tvori K.O.S., preverjamo z identifikacijo istoležnih funkcij v $L(y) = \frac{1}{r(x)}[(p(x)y')' +$ $q(x)y] = \mu y =$ naša enačba (npr. $L(y) = \frac{1}{r(x)}[(p(x)y')' + q(x)y] = x^2y'' + xy' = \mu y$ za reševanje enačbe $x^2y'' + xy' = \mu y$.) Poiščemo utež r in za prostor vzamemo prostor funkcij, za katere rešujemo enačbo, presekan z robni pogoji.

Legendrova enačba

 $L(y) = ((1-x^2)y')' = \mu y, x \in [-1,1]$. To je singularen diferencialni operator, saj $p(\pm 1) = 0$, izrek pa deluje za p > 0. L je omejena v $x=\pm 1$ natanko tedaj, ko je $\mu=-n(n+1), n\in\mathbb{N}$. Tedaj obstajata neodvisni polinomski rešitvi stopenj 2m in 2m+1.

Kvocientni kriterij za vrsto $\sum C_n x^n$: $\lim_{n\to\infty} \left|\frac{C_{n+1}x^{n+1}}{C_nx^n}\right| < 1$, potem vrsta konvergira. Raabejev kriterij za vrsto $\sum C_n x^n$: $\lim_{n\to\infty} n(1 - \frac{C_n x^n}{C_{n+1}x^{n+1}} < 1$, potem ta vrsta divergira.

Če gledamo operator $L(y) = ((1-x^2)y')' = \mu y$ na prostoru $C^2(-1,1) \cap \{\text{omejene funkcije v } \pm 1\}$, dobimo lastne pare $(-n(n+1), P_n)$ in $\{P_n\}_{n\in\mathbb{N}_0}$ je K.O.S.

Laplace v sferičnih koordinatah: $\triangle u = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 u_r) + \frac{1}{r^2} \left[\frac{1}{\cos \vartheta} \frac{\partial}{\partial \vartheta} (\cos \theta u_\vartheta) + \frac{1}{\cos \vartheta} u_{\varphi\varphi} \right], r \in [0, \infty), \varphi \in [0, 2\pi], \vartheta \in [0, \infty]$ $[-\frac{\pi}{2}, \frac{\pi}{2}].$

Besslova enačba

 $x^2y'' + xy' + (x^2 - n^2)y = 0, x > 0, n \in \mathbb{N}_0$, singularna za x = 0. Z nastavkom $y = \sum_{m=0}^{\infty} C_m x^{m+k}, k \in \mathbb{N}_0, C_0 \neq 0$ dobimo rešitev, ki je omejena v x = 0: $J_n(x) = C_0 \sum_{l=0}^{\infty} \frac{(-1)^l}{2^{2l} l! (n+l)(n+l-1)\cdots(n+1)} x^{2l}$.

Dodatek k Besslovi enačbi:

- (1) Enačbo lahko obravnavamo tudi za $n \in \mathbb{R}_+ \setminus \mathbb{N}_0$, vendar v eksplicitni obliki namesto (n+l)! dobimo $\Gamma(n+l+1)$.
- (2) Enačbo lahko obravnavamo tudi za $n \in \mathbb{R}_+$, vendar dobimo Besslove funkcije drugega reda Y_n , ki so singularne $v \ x = 0.$
- (3) Splošna rešitev Besslove enačbe: $y(x) = AJ_n(x) + BY_n(x)$.
- (4) Besslova funkcija ima števno mnogo ničel.

Fourierova transformacija in PDE

$$f \in L^{1}(\mathbb{R}) = \{ f : \mathbb{R} \longrightarrow \mathbb{R}; \int_{\mathbb{R}} |f| dx < \infty \}.$$

$$\mathcal{F}(f)(x) = \int_{-\infty}^{\infty} f(s) e^{isx} ds$$

$$\mathcal{F}^{-1}(f)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(s) e^{-isx} ds$$

Lastnosti:

- $\begin{array}{ll} (1) \ \ \mathcal{F} \ \mbox{je linearna:} \ \mathcal{F}(\alpha f + \beta g) = \alpha \mathcal{F}(f) + \beta \mathcal{F}(g) \\ (2) \ \ \mathcal{F}(f')(x) = (-ix)\mathcal{F}(f)(x) \\ (3) \ \ \frac{d}{dx} \left[\mathcal{F}(f)(x)\right] = \mathcal{F}(ixf)(x) \\ (4) \ \ \mbox{Ce je } f \ \mbox{soda funkcija, velja} \ \mathcal{F}^{-1}(f) = \frac{1}{2\pi}\mathcal{F}(f). \end{array}$

Nekaj izračunanih transformacij:

•
$$f_1(x) = \begin{cases} 1; & |x| \le 1 \\ 0; & \text{sicer} \end{cases}$$
, $\mathcal{F}(f_1) = \frac{2\sin x}{x}$
• $\mathcal{F}(e^{-a|x|})(x) = \frac{2a}{a^2 + x^2}$, $a > 0$

•
$$\mathcal{F}(e^{-a|x|})(x) = \frac{2a}{a^2+x^2}, a>0$$

$$\bullet \ \mathcal{F}(e^{-ax^2})(x) = \sqrt{\frac{\pi}{a}}e^{-\frac{x^2}{4a}}$$

•
$$\mathcal{F}^{-1}(e^{-ax^2})(x) = \frac{1}{2\pi} \sqrt{\frac{\pi}{a}} e^{-\frac{x^2}{4a}}$$

•
$$\mathcal{F}^{-1}(e^{-ax^2})(x) = \frac{1}{2\pi} \sqrt{\frac{\pi}{a}} e^{-\frac{x}{4a}}$$

• $f_2 = \begin{cases} 1 - |x|; & |x| < 1\\ 0; & \text{sicer} \end{cases}$, $\mathcal{F}(f_2) = \frac{2}{x^2} (1 - \cos x)$

•
$$\mathcal{F}(\cos(ax^2)) = \sqrt{\frac{\pi}{a}}\cos(\frac{x^2}{4a} - \frac{\pi}{4}), \ a > 0$$

Uporaba Fourierovih transformacij v PDE

Želimo reševati PDE, v kateri je ena spremenljivka neomejena, npr. $x \in \mathbb{R}, t > 0$. $U(x,t) = \mathcal{F}(u)(x,t) = \int_{-\infty}^{\infty} u(s,t) e^{isx} ds$ (transformacija po x)

Veljajo pravila:

(1)
$$\mathcal{F}(\alpha u + \beta v) = \alpha \mathcal{F}(u) + \beta \mathcal{F}(v), \ \alpha, \beta \in \mathbb{C}$$

(2) $\mathcal{F}(\frac{\partial^n}{\partial t^n} u) = \frac{\partial^n}{\partial t^n} \mathcal{F}(u) = \frac{\partial^n}{\partial t^n} U$
(3) $\mathcal{F}(\frac{\partial^n}{\partial x^n} u) = (-ix)^n \mathcal{F}(u) = (-ix)^n U$

(2)
$$\mathcal{F}(\frac{\partial^n}{\partial t^n}u) = \frac{\partial^n}{\partial t^n}\mathcal{F}(u) = \frac{\partial^n}{\partial t^n}U$$

(3)
$$\mathcal{F}(\frac{\partial^n}{\partial x^n}u) = (-ix)^n \mathcal{F}(u) = (-ix)^n U$$

Strategija: PDE z odvodi po t in x s Fourierovo transformacijo pretvorimo v NDE z odvodi po t (tudi začetne pogoje), nato pa dobljeno rešitev NDE z inverzno Fourierovo transformacijo pretvorimo v rešitev PDE.

Enačba $u_{xx} = u_t + u$ ima enolično rešitev pri pogojih $u(x,0) = g(x), \forall g \in \mathcal{C}^{\infty}(\mathbb{R})$. Če je g soda (oz. liha), je rešitev soda (oz. liha). (Včasih za uporabo te lastnosti lahko naše začetne podatke sodo (oz. liho) razširiti, odvisno katera razširitev nam da nov pogoj. Z razširjenim začetnim podatkom nalogo rešimo, na koncu pa vzamemo samo ustrezno

Konvolucija:
$$(f * g)(x) = \int_{-\infty}^{\infty} f(\xi)g(x - \xi) d\xi$$

Velja: $\mathcal{F}(f * g) = \mathcal{F}(f)\mathcal{F}(g)$

Splošna rešitev enačbe
$$u_t - 2u_{xx} = 0$$
 pri pogoju $u(x,0) = f(x)$ je: $u(x,t) = \sqrt{\frac{1}{8\pi t}} \int_{-\infty}^{\infty} f(\xi) e^{-\frac{(x-\xi)^2}{8t}} d\xi$

Če iščemo splošno rešitev za poljuben začetni pogoj, se pri uporabi inverzne Fourierove transformacije splača uporabiti lastnost konvolucije in vriniti $\mathcal{F}\mathcal{F}^{-1}$.

Diracova δ -funkcija

Diracova δ -funkcija zadošča dvema lastnostma:

(1)
$$\delta(x) = 0$$
 za $\mathbb{R} \setminus \{0\}$,

(2)
$$\int_{\mathbb{R}} \delta \, \mathrm{d}x = 1$$
.

Diracovo δ -funkcijo lahko realiziramo tudi kot limito funkcij $f_n(x) = \begin{cases} n; & |x| \leq \frac{1}{2n} \\ 0; & \text{sicer} \end{cases}$ ali kot limito funkcij $g_n(x) = \begin{cases} n; & |x| \leq \frac{1}{2n} \\ 0; & \text{sicer} \end{cases}$

 $\frac{n}{\sqrt{\pi}}e^{-n^2x^2}$. Definiramo jo lahko tudi kot $\delta(x):=\mathcal{F}^{-1}(1)=\frac{1}{2\pi}\mathcal{F}(1).$ Za $f\in\mathcal{C}^\infty(\mathbb{R})$ velja: $\int_{\mathbb{R}}\delta(x-a)f(x)\,\mathrm{d}x=f(a).$

Za
$$f \in \mathcal{C}^{\infty}(\mathbb{R})$$
 velja: $\int_{\mathbb{R}} \delta(x-a) f(x) dx = f(a)$.

Poissonovo jedro in Greenova funkcija

Rešujemo za: $u \in \mathcal{C}^2(\Omega) \cap \mathcal{C}(\bar{\Omega}), f \in \mathcal{C}(\Omega), g \in \mathcal{C}(\partial\Omega)$ in Ω odprta, povezana podmnožica v \mathbb{R}^2 . $\triangle u = f$ je Poissonova enačba.

Robni pogoji:

- (1) $u|_{\partial\Omega} = g$ Dirichletov
- (2) $\partial_{\vec{n}} u|_{\partial\Omega} = g$ Neumannov.

Poseben primer tega problema za f = 0 so harmonične funkcije.

Izrek o povprečni vrednosti za harmonične funkcije: $u(x_0, y_0) = \frac{1}{2\pi R} \int_{\partial K((x_0, y_0), R)} u \, ds$.

Šibki princip maksima: Če je Ω omejeno: $\max_{\Omega} v = \max_{\partial \Omega} v$ oz. $\min_{\Omega} v = \min_{\partial \Omega} v$

Krepki princip maksima: Če je Ω neomejeno in če harmonična funkcija doseže lokalni ekstrem v notranjosti Ω , je funkcija konstantna.

Zveza med harmoničnimi in holomorfnimi funkcijami:

- (1) Če f = u + iv holomorfna, potem sta u in v harmonični.
- (2) Če je u harmonična, potem obstaja harmonična funkcija v, da je f = u + iv holomorfna (velja samo za enostavno povezana območja Ω).

Množica harmoničnih homogenih polinomov stopnje n $(p(\lambda x, \lambda y) = \lambda^n p(x, y))$ tvori vektorski prostor dimenzije 2 za vsak $n \in \mathbb{N}$.

Za omejeno območje $\Omega \subseteq \mathbb{R}^2$ velja $\int_{\Omega} u \triangle u dS + \int_{\Omega} \nabla u \cdot \nabla u dS = \int_{\partial\Omega} u (\nabla u \cdot \vec{n}) ds$, kjer je \vec{n} zunanja enotska normala na Ω .

Edina rešitev enačbe $\Delta u = \lambda u, \ \lambda \geq 0, \ u|_{\partial\Omega} = 0$ je funkcija $u \equiv 0$.

Dirichletov problem je na omejenem območju enolično rešljiv.

Krivuljni integral vektorskega polja: $\int_{\partial\Omega} \vec{V} d\vec{s} = \int_{\alpha}^{\beta} \vec{V}(\gamma(t)) \cdot \dot{\gamma}(t) dt = \int_{\partial\Omega} \vec{V} \cdot \vec{T} ds$, kjer je $\vec{T} = \frac{\dot{\gamma}(t)}{||\dot{\gamma}(t)||}$ $\gamma(t) = (x(t), y(t))$, normalni vektor: $(\dot{y}(t), -\dot{x}(t))$: $\int_{\alpha}^{\beta} (P, Q) \cdot (\dot{x}, \dot{y}) dt = \int_{\alpha}^{\beta} (Q, -P) \cdot (\dot{y}, -\dot{x}) dt$ Greenova formula za integral vektorskega polja po pormalj: $\int_{\alpha} (Q, -P) dS = \int_{\alpha} (P, Q) d\vec{s} = \int_{\alpha} (Q, -P) \cdot \vec{y} ds$

Greenova formula za integral vektorskega polja po normali: $\int_{\Omega} (Q_x - P_y) dS = \int_{\partial\Omega} (P, Q) d\vec{s} = \int_{\partial\Omega} (Q, -P) \cdot \vec{n} ds$, kjer \vec{n} enotska normala.

Reševanje Dirichletovega problema

Rešitev je vsota dveh problemov: $\triangle v = 0, v|_{\partial\Omega} = g$ (Poissonov del) in $\triangle w = f, w|_{\partial\Omega} = 0$ (Greenov del). Poissonov del: $v(x,y) = \int_{\partial\Omega} P(x,y,s)g(s) \, ds, P: \Omega \times \partial\Omega \to \mathbb{R}, (x,y,s) \mapsto P(x,y,s)$ (Poissonovo jedro)

Greenov del: $w(x,y) = \int_{\Omega} G(x,y;\xi,\eta) f(\xi,\eta) dS(\xi,\eta), G: \Omega \times \Omega \setminus \{(p,p); p \in \Omega\} \xrightarrow{} \mathbb{R}, (x,y;\xi,\eta) \mapsto G(x,y;\xi,\eta)$ (Greenova funkcija).

Greenova identiteta: $\int_{\Omega} (u \triangle v - v \triangle u) dS = \int_{\partial\Omega} (u \partial_{\vec{n}} v - v \partial_{\vec{n}} u) ds$, kjer $\partial_{\vec{n}} v = \langle \nabla v, \vec{n} \rangle$ in \vec{n} zunanja normala.

Uporabni integrali: $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$

Uporabil integrals:
$$\int_{a}^{b} \sin(\frac{n\pi x}{b-a})^{2} dx = \int_{a}^{b} \cos(\frac{n\pi x}{b-a})^{2} dx = \frac{(b-a)(\sin(\frac{2\pi an}{b-a})-\sin(\frac{2\pi bn}{b-a})+2\pi n)}{4\pi n}, n \in \mathbb{C}$$

$$(\int_{a}^{b} x^{i} \sin(kx) dx)_{1,2} = (\frac{-\sin(ak)+ak\cos(ak)+\sin(bk)-bk\cos(bk)}{k^{2}}, \frac{(a^{2}k^{2}-2)\cos(ak)-2ak\sin(ak)+(2-b^{2}k^{2})\cos(bk)+2bk\sin(bk)}{k^{3}})$$

$$(\int_{a}^{b} x^{i} \cos(kx) dx)_{1,2} = (\frac{-ak\sin(ak)-\cos(ak)+bk\sin(bk)+\cos(bk)}{k^{2}}, \frac{(2-a^{2}k^{2})\sin(ak)-2ak\cos(ak)+(b^{2}k^{2}-2)\sin(bk)+2bk\cos(bk)}{k^{3}})$$

$$\int_{a}^{b} (x-a)(b-x)\sin(kx) dx = \frac{k(a-b)(\sin(ak)+\sin(bk))+2\cos(ak)-2\cos(bk)}{k^{3}}$$

$$\int_{a}^{b} (x-a)(b-x)\cos(kx) dx = \frac{k(a-b)(\cos(ak)+\cos(bk))-2\sin(ak)+2\sin(bk)}{k^{3}}$$

$$\int_{a}^{b} \sin(mx)\cos(kx) dx = \frac{-k\sin(ak)\sin(am)-m\cos(ak)\cos(am)+k\sin(bk)\sin(bm)+m\cos(bk)\cos(bm)}{k^{2}-m^{2}}$$

$$\int_{a}^{b} \sin(mx)\sin(kx) dx = \frac{-m\sin(ak)\cos(am)+k\cos(ak)\sin(am)+m\sin(bk)\cos(bm)-k\cos(bk)\sin(bm)}{k^{2}-m^{2}}$$

$$\int_{a}^{b} \cos(mx)\cos(kx) dx = \frac{-k\sin(ak)\cos(am)+m\cos(ak)\sin(am)+k\sin(bk)\cos(bm)-m\cos(bk)\sin(bm)}{k^{2}-m^{2}}, \text{ povsod so } m, n, k \in \mathbb{C}$$

Polarne koordinate: $u_{x} = \cos(\varphi)u_{r} - \frac{\sin(\varphi)}{r}u_{\varphi}, u_{y} = \sin(\varphi)u_{r} + \frac{\cos(\varphi)}{r}u_{\varphi},$

$$u_{xx} = \cos^{2}(\varphi)u_{xx} - \frac{\sin(2\varphi)}{r}u_{xx} + \frac{\sin^{2}(\varphi)}{r^{2}}u_{xx} + \frac{\sin^{2}(\varphi)}{r^{2}}u_{x} + \frac{\sin^{2}(\varphi)}{r^{2}}u_{x} + \frac{\sin^{2}(\varphi)}{r^{2}}u_{x},$$

$$u_{xx} = \cos^{2}(\varphi)u_{rr} - \frac{\sin(2\varphi)}{r}u_{r\varphi} + \frac{\sin^{2}(\varphi)}{r^{2}}u_{\varphi\varphi} + \frac{\sin^{2}(\varphi)}{r}u_{r} + \frac{\sin(2\varphi)}{r^{2}}u_{\varphi},$$

$$u_{xy} = \frac{1}{2}\sin(2\varphi)u_{rr} + \frac{\cos(2\varphi)}{r}u_{r\varphi} - \frac{\sin(2\varphi)}{2r^{2}}u_{\varphi\varphi} - \frac{\sin(2\varphi)}{2r}u_{r} - \frac{\cos(2\varphi)}{r^{2}}u_{\varphi},$$

$$u_{yy} = \sin^{2}(\varphi)u_{rr} + \frac{\sin(2\varphi)}{r}u_{r\varphi} + \frac{\cos^{2}(\varphi)}{r^{2}}u_{\varphi\varphi} + \frac{\cos^{2}(\varphi)}{r^{2}}u_{r\varphi} - \frac{\sin(2\varphi)}{r^{2}}u_{\varphi}, \Delta u = u_{rr} + \frac{1}{r}u_{r} + \frac{1}{r^{2}}u_{\varphi\varphi}$$

NDE VIŠJIH REDOV

Ne nastopa y: uvedemo z = y'.

Obe strani sta odvoda nečesa: integriramo in dodamo konstanto.

Odvodi:
$$y'/y = (\log(y))', xy' + y = (xy)', \frac{y''y-y'^2}{y^2} = (\frac{y}{y})', \frac{y'x-y}{x^2} = (\frac{y}{x})'$$
. Ne nastopa x : uvedemo $z(y) = y', y$ neodvisna spr. $y'' = \dot{z}z, y''' = \ddot{z}z^2 + \dot{z}^2z$. Homogena: $F(x, ty, ty', \dots, ty^{(n)}) = t^k F(x, y, y', \dots, y^{(n)})$. Vpeljemo $z(x) = y'/y$. $y''/y = z' + z^2$. Z utežjo: $F(kx, k^m y, k^{m-1}y', \dots, k^{m-n}y^{(n)}) = k^p F(x, y, y', \dots, y^{(n)})$. Uvedemo: $x = e^t, y = u(t)e^{mt}$.

INTEGRALI IN FORMULE

Faktorizacija:

Faktorizacija:

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

 $\sin x - \sin y = 2 \cos \frac{x+y}{2} \sin \frac{x-y}{2}$
 $\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$
 $\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$

Antifaktorizacija:

sin
$$\alpha \cos \beta = \frac{1}{2} \left[\sin(\alpha + \beta) + \sin(\alpha - \beta) \right]$$

 $\cos \alpha \sin \beta = \frac{1}{2} \left[\sin(\alpha + \beta) - \sin(\alpha - \beta) \right]$
 $\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha + \beta) + \cos(\alpha - \beta) \right]$
 $\sin \alpha \sin \beta = -\frac{1}{2} \left[\cos(\alpha + \beta) - \cos(\alpha - \beta) \right]$

avtor: Klemen Sajovec, malo sprememb: Jure Slak