Discrete Structures (MA5.101)

Solution for Mid Semester Examination (Monsoon 2021) International Institute of Information Technology, Hyderabad

Time: 90 Minutes Total Marks: 30

Instructions: This is online examination.

Write at the top of your answer book the following:

Discrete Structures (MA5.101)

Mid Semester Examination (Monsoon 2021)

Date: 10-Jan-2022

Name:

Roll Number:

Submit your scanned hand-written answer script in the moodle with the file name: RollNo_MidSem_SecNo_10Jan2022.pdf

NOTE: No email submissions for the answer scripts are allowed even if you are facing Internet issues or moodle problem from your end. In that case, viva-voce of mid semester examination will be considered later for fair evaluations to all.

10 January 2022

- 1. (a) We know that the composite gf of any two injections $f: S \to T$ and $g: T \to V$ is an injection. Extend the definition of the composite gf to the case in which the domain of g contains the codomain of g. Prove or disprove:
 - (i) the composite gf of any two injections is an injection.
 - (ii) the composite qf of any two surjectios is a surjection.

Solution: Consider the following Figure 1.

We have $f: S \to T$, $g: U \to V$ and $T \subset U$. The extended composition of f and g is defined by $gf: S \to V$ such that (gf)(x) = g[f(x)], $\forall x \in S$.

(i). TRUE

RTP: gf is injection (one-one).

Let $s_1, s_2 \in S$ such that $s_1 \neq s_2$.

Then,

$$\begin{array}{rcl} s_1 & \neq & s_2 \\ \Rightarrow f(s_1) & \neq & f(s_2), \text{ since } f: S \to T \text{ is one-one} \\ \Rightarrow g[f(s_1)] & \neq & g[f(s_2)], \text{ since } g: U \to V \text{ is one-one and } T \subset U \\ \Rightarrow (gf)(s_1) & \neq & (gf)(s_2) \end{array}$$

Figure 1: Extended composition gf of f and g.

As a result, we have the following:

$$s_1 \neq s_2$$

 $\Rightarrow (gf)(s_1) \neq (gf)(s_2)$

Hence, gf is injection.

(ii). FALSE

RTP: gf is not sujection (onto).

Let $v \in V$ be such that $\forall u, q(u) = v$.

Then $u \in U - T$.

Hence, qf needs not be a sujection.

(b) A set S is said to be *infinite* if there is a one-to-one correspondence (bijection) between S and a proper subset of S. Using this definition, prove that the set of real numbers is infinite.

Solution: According to the given definition, the set S is called *infinite* if \exists a bijection $f: S \to S'$, where $S' \subset S$ (S' is a proper subset of S).

Here S = the set of real numbers, R. Let $S' = (-1, 1) = \{x \in R | -1 < x < 1\}$.

Construct a mapping $f: S \to S'$ such that

$$f(x) = \begin{cases} \frac{x}{1+x}, & \text{if x is positive or } 0 \ (x \ge 0) \text{ real number} \\ \frac{x}{1-x}, & \text{if x is negative} \ (x < 0) \text{ real number} \end{cases}$$

Note that range of f = [0, 1) when $x \ge 0$, and (-1, 0) when x < 0. Thus, the function f is well-defined.

We now claim that f is bijective.

(i) f is one-one: Required to prove that if $f(x_1) = f(x_2)$, then $x_1 = x_2$, for $x_1, x_2 \in R$.

Case I:
$$0 \le x < 1$$

Let
$$f(x_1) = f(x_2)$$
. Then, $\frac{x_1}{1+x_1} = \frac{x_2}{1+x_2} \Rightarrow x_1 + x_1x_2 = x_2 + x_1x_2 \Rightarrow x_1 = x_2$. Hence, $f: R \to [0, 1)$ is one-one.

Case II: -1 < x < 0Let $f(x_1) = f(x_2)$. Then, $\frac{x_1}{1-x_1} = \frac{x_2}{1-x_2} \Rightarrow x_1 - x_1x_2 = x_2 - x_1x_2 \Rightarrow x_1 = x_2$. Hence, $f: R \to (-1, 0)$ is one-one.

Combining above two cases, $f: R \to (-1, 1)$ is then one-one.

(ii) f is onto: Required to prove that $\forall y \in (-1,1), \exists x \in S = R$, such that y = f(x).

Case I: $y \in [0, 1)$

Then, by definition of f, $y = \frac{x}{1+x} \Rightarrow x = \frac{y}{1-y} \in R$. Hence, for every $y \in [0,1)$, $\exists x \in R$ such that y = f(x) and then $f : R \to [0,1)$ is onto.

Case II: $y \in (-1, 0)$

Then, by definition of $f, y = \frac{x}{1-x} \Rightarrow x = \frac{y}{1+y} \in R$. Hence, for every $y \in (-1,0)$, $\exists x \in R$ such that y = f(x) and then $f: R \to (-1,0)$ is onto.

Combining above two cases, $f: R \to (-1, 1)$ is then onto.

Thus, f is bijective and hence, the set of real numbers is infinite.

[5 + 5 = 10]

2. (a) Let A, B, and C be the subsets of a set U with the properties that $B \cap C = \emptyset$ and $A = B \cup C$. Construct a bijection map $b : \mathcal{P}(A) \to \mathcal{P}(B) \times \mathcal{P}(C)$, where $\mathcal{P}(X)$ represents the power set of a given set X.

Solution (b): Consider the mapping $b : \mathcal{P}(A) \to \mathcal{P}(B) \times \mathcal{P}(C)$ such that $S \subseteq A \to (S \cap B, S \cap C)$, that is, $b(S) = (S \cap B, S \cap C)$.

Required to prove (RTP) that b is bijective, that is

- (i) b is one-one, and
- (ii) b is onto.

(i) RTP:
$$b(S_1) = b(S_2) \Rightarrow S_1 = S_2$$
.

Now, $b(S_1) = b(S_2)$

$$\Rightarrow (S_1 \cap B, S_1 \cap C) = (S_2 \cap B, S_2 \cap C).$$

Since these are ordered pairs, so we have: $S_1 \cap B = S_2 \cap B$ and $S_1 \cap C = S_2 \cap C$.

We have, $(S_1 \cap B) \cup (S_1 \cap C) = (S_2 \cap B) \cup (S_2 \cap C)$

$$\Rightarrow S_1 \cap (B \cup C) = S_2 \cap (B \cup C)$$

$$\Rightarrow S_1 \cap A = S_2 \cap A$$

$$\Rightarrow S_1 = S_2$$
, since $S_1 \subseteq A$ and $S_2 \subseteq A$.

Thus, b is one-one.

(ii) RTP: $\forall S_1 \subseteq B$ and $S_2 \subseteq C$, $\exists S \subseteq A$ such that $b(S) = (S_1, S_2)$, where $S = S_1 \cup S_2$. We have,

$$b(S) = (S \cap B, S \cap C)$$

$$= ((S_1 \cup S_2) \cap B, (S_1 \cup S_2) \cap C)$$

$$= ((S_1 \cap B) \cup (S_2 \cap B), (S_1 \cap C) \cup (S_2 \cap C)), \text{ using the distributive laws}$$

$$= ((S_1 \cap B) \cup \emptyset, \emptyset \cup (S_2 \cup C))$$

$$= (S_1, S_2),$$

since $S_1 \subseteq B$ and $S_2 \subseteq C$.

(b) Construct a truth table for each of these compound propositions:

(i)
$$(p \to q) \leftrightarrow (\neg q \to \neg p)$$

Answer:

(ii)
$$(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$$

$$[5 + (2.5 + 2.5) = 10]$$

Answer: 3-a

- 3. (a) Show that $\neg p \to (q \to r)$ and $q \to (p \lor r)$ are logically equivalent by a series of logical equivalences.
 - (b) (i) Build a digital circuit that produces the output $(a \lor \neg c) \land (\neg a \lor (b \lor \neg c))$, where input bits a, b, and c are given.

Answer: (3-b-i) Similar answer (p = a, q = b, r = c)

(ii) Show that $(a \lor b) \land (\neg a \lor c) \rightarrow (b \lor c)$ is a tautology.

Answer: (3-b-ii) Similar answer (p = a, q = b, r = c)

$$\begin{array}{ll} (p\vee q)\wedge(\neg p\vee r)\to(q\vee r)\\ \equiv\neg[(p\vee q)\wedge(\neg p\vee r)]\vee(q\vee r) & \text{by implication law}\\ \equiv[\neg(p\vee q)\vee\neg(\neg p\vee r)]\vee(q\vee r) & \text{by de Morgan's law}\\ \equiv[(\neg p\wedge\neg q)\vee(p\wedge\neg r)]\vee(q\vee r) & \text{by de Morgan's law}\\ \equiv[(\neg p\wedge\neg q)\vee q]\vee[(p\wedge\neg r)\vee r] & \text{by commutative and associative laws}\\ \equiv[(\neg p\vee q)\wedge(\neg q\vee q)]\vee[(p\vee r)\wedge(\neg r\vee r)] & \text{by distributive laws}\\ \equiv(\neg p\vee q)\vee(p\vee r) & \text{by negation and identity laws}\\ \equiv(\neg p\vee p)\vee(q\vee r) & \text{by negation and domination laws}\\ \equiv T & \text{by negation and domination laws} \end{array}$$

[5 + (2.5 + 2.5) = 10]