

GEOMETRÍA

Capítulo 20

2st SECONDARY

Área de regiones triangulares

MOTIVATING | STRATEGY

ÁREAS DE REGIONES TRIANGULARES

REGIÓN PLANA.- Es la unión de una línea plana cerrada y su interior.

ÁREA.- Es un número real positivo que indica la medida de una región.

REGIONES EQUIVALENTES.- Son aquellas regiones que tienen igual área

ÁREA DE REGIONES TRIANGULARES

 Teorema básico:

$$S_{ABC} = \frac{bh}{2}$$

Teorema trigonométrico:

$$S_{ABC} = \frac{bc}{2} \cdot sen\alpha$$

 Área de una región triangular equilátera:

HELICO | THEORY

$$S = \sqrt{p(p-a)(p-b)(p-c)}$$

RELACIONES ENTRE ÁREAS

1. En la figura, el área de la región ABC es 3000 u2. Determine el área de la región AQG. RESOLUCIÓN

Piden: SAQG = S x

Recordemos:

$$S_x + S_x + S_x + S_x + S_x = 3000$$

 $6 S_x = 3000$

2. El área de la región triangular ABC es 160 m². Determine el área de la región ABD. RESOLUCIÓN

Piden: SABD

Recordemos:

Entonces:

$$\frac{\mathsf{SABD}}{\mathsf{SBDC}} = \frac{3\alpha}{\alpha}$$

Del dato:

$$3S+S=160$$

$$S = 40$$

3. Calcule el área de la región ABC.

4. Si AB = $8\sqrt{2}$ u, calcule el área de la región triangular ABC.

RESOLUCIÓN

Piden: SABC

Trazamos la altura BH:

ABH: Notable de 45°

$$BH = 8 y AH = 8$$

BHC: Notable de 53° y 37°

$$HC = 6$$
 y $BC = 10$

SABC =
$$\frac{b.h}{2} = \frac{(14)(8)}{2}$$

SABC =
$$56 \text{ u}^2$$

HELICO | PRACTICE

5. Si O es centro de la circunferencia inscrita en el triángulo ABC, calcule el área de la región triangular AOC.

r = 6

34

RESOLUCIÓN

30 cm

Piden: SAOC

Por T. de Pitágoras:

$$30^2 + 16^2 = AC^2$$

AC=34

Por T. de Poncelet:

$$30 + 16 = 34 + 2r$$

r = 6

SAOC =
$$\frac{(34)(6)}{2}$$

16 cm

HELICO | PRACTICE

6. Santiago tiene dos terrenos tal como se muestra en la figura. Si CD = 9 m, DE = 7 m y A es punto de tangencia, determine el área del terreno triangular

equilátero ABC.

RESOLUCIÓN

Piden: Sabc

Por T. de la tangente:

$$x^2 = (9)(16)$$

 $x^2 = 144$
 $x=12$

$$\mathsf{SABC} = \frac{12^2 \sqrt{3}}{4}$$

SABC =
$$36\sqrt{3}$$
 u

7. Se muestra un letrero de forma de un triángulo equilátero ABC, AB = 80 cm, se pinta el borde equidistante, formándose interiormente un triángulo cuyo lado mide 40 cm. ¿Cuántos cm se pintó el borde?

RESOLUCIÓN Piden: = S x

 El Δ ABC y Δ PQR, son equiláteros

$$Sx = S_{ABC} - S_{PQR}$$

$$S \times = \frac{80^2 \sqrt{3}}{4} - \frac{40^2 \sqrt{3}}{4}$$

$$Sx = 1600\sqrt{3} - 400\sqrt{3}$$

$$S_x = 1200\sqrt{3} \text{ cm}^2$$