m Hammou El-Otmany

MODULE MA322 CORRIGÉ DE TRAVAUX DIRIGÉS N° 8

Opérations sur les développements limités

Aéro. 3

Semestre: 2 **A.U.**: 2021-2022

Prof. H. El-Otmany

Définition : Soient f et g deux fonctions définies sur un intervalle I = (a, b) et $x_0 \in I$.

- i. On dit que f est négligeable devant g au $\mathcal{V}(x_0)$ (voisinage de x_0) et on note $f = o_{x_0}(g)$ si f(x) = $g(x)\varepsilon(x)$ avec $\lim_{x \to x_0} \varepsilon(x) = 0$.
- ii. On dit que f est dominée par g au $\mathcal{V}(x_0)$ et on note $f(x) = \mathcal{O}_{x_0}g(x)$ s'il existe une constante C > 0 telle que $|f(x)| \leq C|g(x)|$ au $\mathcal{V}(x_0)$.
- iii. Si $g(x_0) \neq 0$,on dit que f est équivalente à g en x_0 et on note $f \sim_{x \longrightarrow x_0} g$ si f(x) = g(x) + g(x) $o_{x_0}(g(x))$ (si g ne s'annule pas en x_0 , cette définition est équivalente à : il existe un $\mathcal{V}(x_0)$ sur lequel $g \neq 0$: $\lim_{x \longrightarrow x_0} \frac{f(x)}{g(x)} = 1$). iv. La relation \sim_{x_0} est une relation d'équivalence, c'est-à-dire que l'on a $f \sim_{x_0} f$, $f \sim_{x_0} g \Longrightarrow$

 $g \sim_{x_0} f$, et $f \sim_{x_0} g$, $g \sim_{x_0} h \Longrightarrow f \sim_{x_0} h$. **Division :** Pour calculer le DL d'un quotient $F = \frac{f}{g}$ où $f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + o(x^n)$ et $g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n + o(x^n)$, on utilise le DL de $u \mapsto \frac{1}{1+u} = 1 - u + u^2 - u^3 + u^4 + \dots$ (on arrête à l'ordre souhaité selon les besoins).

- i. si $b_0=1$, on pose $u=b_1x+b_2x^2+\cdots+b_nx^n+o(x^n)$ et le quotient F s'écrit ainsi $F=f\times\frac{1}{1+u}$, puis on applique la propriété de DL du produit.
- ii. si b_0 est quelconque et $b_0 \neq 0$, alors on factorise par b_0 dans le dénominateur et on se ramène au cas i.:

$$\frac{1}{g(x)} = \frac{1}{b_0 \left(1 + \frac{b_1}{b_0}x + \frac{b_1}{b_0}x^2 + \dots + \frac{b_n}{b_0}x^n + \frac{1}{b_0}o(x^n)\right)}$$

iii. Si $b_0 = 0$ alors on factorise par x^p (pour un certain p) afin de se ramener aux cas i. et ii.

Exercice n°1 Déterminer les développements limités en 0 et à l'ordre n des fonctions suivantes :

1. $x \mapsto \frac{\ln(1+x)}{1+x}$, n = 4. 1ère méthode : On a

$$\frac{\ln(1+x)}{1+x} = \ln(1+x) \times \frac{1}{1+x}$$

Il suffit donc d'écrire le DL à l'ordre 4 de $x \mapsto \ln(1+x)$ et $x \mapsto \frac{1}{x+1}$ au voisinage de 0. On a ainsi

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4),$$
$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + x^4 + o(x^4),$$

d'où

$$\frac{\ln(1+x)}{1+x} = \ln(1+x) \times \frac{1}{1+x} = \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + o(x^4)\right) \left(1 - x + x^2 - x^3 + x^4 + o(x^4)\right).$$

On écrive le DL en omettant tous les termes de degré supérieur strictement à 4 lors de la multiplication :

$$\frac{\ln(1+x)}{1+x} = (x-x^2+x^3-x^4) + \left(-\frac{x^2}{2} + \frac{x^3}{2} - \frac{x^4}{2}\right) + \left(\frac{x^3}{3} - \frac{x^4}{3}\right) + \left(-\frac{x^4}{4}\right) + o(x^4)$$
$$= x - \frac{3}{2}x^2 + \frac{11}{6}x^3 - \frac{11}{6}x^4 + o(x^4).$$

2ème méthode : Soit $f(x) = C(x) + o(x^n)$ et $g(x) = D(x) + o(x^n)$. On écrit ainsi la division suivant les puissances croissantes de C par D à l'ordre $n: C = DQ + x^{n+1}R$ avec $degQ \leqslant n$. Alors, Q est la partie polynomiale du $DL_n(0)$ de $\frac{f}{g}$.

2. $x \mapsto \ln(\operatorname{ch}(x)), n = 3.$

On a par définition $ch(x) = \frac{e^x + e^{-x}}{2}$. Donc, on peut déduire le $DL_3(0)$ du cosinus hyperbolique à partir de celui de l'exponentielle $x \mapsto e^x$ ou de celui de cosinus avec tous les signes positifs. Comme $x \mapsto ch(x)$ est une fonction paire, donc son DL fait apparaître les monômes avec des puissances paires. Au voisinage de 0, le DL_3 de

$$ch(x) = 1 + \frac{x^2}{2} + o(x^3)$$

et le DL_2

$$\ln(1+u) = u - \frac{u^2}{2} + o(u^2).$$

Il n'est pas nécessaire d'aller plus loin, car en posant $u=\frac{x^2}{2}+o(x^3)$, on a déjà $o(u^2)=\frac{x^4}{4}+o(x^4)$. On a en introduisant dans le DL de $\ln(1+u)$ et utilisant la parité de $x\mapsto \ln(ch(x)$:

$$\ln(\operatorname{ch}(x) = \frac{x^2}{2} + o(x^3)$$

3. $x \mapsto \frac{e^x}{\cos(x)}$, n = 5. Au voisinage de 0, on a

$$\frac{e^x}{\cos(x)} = \frac{1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + o(x^5)}{1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)}$$

En utilisant le DL de $u\mapsto \frac{1}{1+u}$ avec $u=-\frac{x^2}{2}+\frac{x^4}{24}$, on obtient

$$\frac{1}{1+u} = u - \frac{u^2}{2} + o(u^3)$$

$$\frac{1}{1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)} = -\frac{x^2}{2} + \frac{x^4}{24} - \frac{1}{2} \left(-\frac{x^2}{2} + \frac{x^4}{24} \right)^2 + o(x^5)$$

$$= -\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^4}{8} + o(x^5)$$

$$= -\frac{x^2}{2} + \frac{x^4}{12} + o(x^5)$$

ici, on note qu'à partir de u^2 on obtient certaines puissances de x d'ordre au moins 6). Par multiplication de DL, on arrive à

$$\frac{e^x}{\cos(x)} = \left(1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \frac{x^5}{120} + o(x^5)\right) \times \left(-\frac{x^2}{2} + \frac{x^4}{12} + o(x^5)\right)$$

$$= -\frac{x^2}{2} - \frac{x^3}{2} - \frac{x^4}{4} + \frac{x^4}{12} + \frac{x^5}{12} + o(x^5)$$

$$= -\frac{x^2}{2} - \frac{x^3}{2} - \frac{x^4}{6} + \frac{x^4}{12} + o(x^5).$$

4. $x \mapsto \arcsin(x), n = 5$.

On peut retrouver rapidement le développement limité de \arcsin en 0. La dérivée de $x \mapsto \arcsin(x)$ est $x \mapsto (1-x^2)^{-1/2} = \frac{1}{\sqrt{1-x^2}}$. Alors, on peut faire un $DL_4(0)$ de $x \mapsto (1-x^2)^{-1/2}$. puis l'intégrer (intégrer fait augmenter l'ordre de DL). On pose $u = -x^2$, on obtient au voisinage de 0:

$$(1 - x^2)^{-1/2} = (1 + u)^{-1/2} = 1 - \frac{u}{2} + \frac{3u^2}{8} + o(u^2)$$
$$= 1 + \frac{x^2}{2} + \frac{3x^4}{8} + o(x^4)$$

Comme $\arcsin(0) = 0$, il vient que

$$\arcsin(x) = x + \frac{x^3}{6} + \frac{3x^5}{40} + o(x^5).$$

5. $x \mapsto \frac{\sinh(x) - x}{x^3}, n = 4.$

On rappelle les DL en 0 pour $x \mapsto \sinh(x)$ qui ressemblent au DL pour $x \mapsto \sin(x)$ mais tous les signes sont positifs. En outre, la fonction hyperbolique est impaire, alors elle fait apparaître que les monômes avec des puissances impaires. Au voisinage de 0, on a

$$\operatorname{sh}(x) = x + \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{7!} + o(x^7),$$

$$\operatorname{sh}(x) - x = \frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{7!} + o(x^7),$$

$$\frac{\operatorname{sh}(x) - x}{x^3} = \frac{1}{x^3} \left(\frac{x^3}{6} + \frac{x^5}{120} + \frac{x^7}{7!} + o(x^7) \right)$$

$$= \frac{1}{6} + \frac{x^2}{120} + \frac{x^4}{7!} + o(x^4)$$

Exercice $n^{\circ}2$ Déterminer les développements limités en a et à l'ordre n des fonctions suivantes :

1. $x \mapsto \sin(x)$, $a = \frac{\pi}{4}$, n = 3. 1ère **méthode :** Calculons le développement limité de la fonction $f(x) = \sin(x)$ à l'ordre 3 au point $\frac{\pi}{4}$ que l'on note par $DL_3(\frac{\pi}{4})$. Si on pose $x = \pi/4 + h$, alors, dire que x est au voisinage de $\pi/4$ revient à dire que h est au voisinage de 0. On considère donc la fonction $g(h) = \sin\left(\frac{\pi}{4} + h\right)$ et on calcule son développement à l'ordre 3 en 0 que l'on note par $DL_3(0)$. On sait que $\sin\left(\frac{\pi}{4} + h\right) = \cos\left(\frac{\pi}{4}\sin(h) + \sin\left(\frac{\pi}{4}\right)\cos(h) = \frac{\sqrt{2}}{2}\left(\sin(h) + \cos(h)\right)$. On a

$$\sin(h) = h - \frac{h^3}{6} + o(h^3)$$
$$\cos(h) = 1 - \frac{h^2}{2} + o(h^3)$$

En utilisant le DL de la somme, on obtient

$$g(h) = \frac{\sqrt{2}}{2} \left(h - \frac{h^3}{6} + o(h^3) + 1 - \frac{h^2}{2} + o(h^3) \right)$$
$$= \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} h - \frac{\sqrt{2}}{2} \frac{h^2}{2} - \frac{\sqrt{2}}{2} \frac{h^3}{6} + o(h^3)$$

En remplaçant h par $x - \frac{\pi}{4}$, on obtient le $DL_3(\frac{\pi}{4})$ de $\sin(x)$:

$$\sin(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x - \frac{\pi}{4}) - \frac{\sqrt{2}}{2}\frac{(x - \frac{\pi}{4})^2}{2} - \frac{\sqrt{2}}{2}\frac{(x - \frac{\pi}{4})^3}{6} + o(x - \frac{\pi}{4})^3$$

avec $\lim_{x \to \pi/4} \varepsilon(x - \frac{\pi}{4}) = 0$.

2ème méthode : vous pouvez calculer directement le $DL_3(a=\frac{\pi}{4})$ de $f(x)=\sin(x)$ en utilisant la formule suivante :

$$f(x) = f(a) + \frac{(x-a)}{1!}f'(a) + \frac{(x-a)^2}{2!}f^{(2)}(a) + \frac{(x-a)^3}{3!}f^{(3)}(a) + o(x-a)^3.$$

En calculant $(f^{(k)} \text{ en } x = \frac{\pi}{4} \text{ pour } k = 0, 1, \dots, 3, \text{ on arrive à } k$

$$\sin(x) = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}(x - \frac{\pi}{4}) - \frac{\sqrt{2}}{2}\frac{(x - \frac{\pi}{4})^2}{2} - \frac{\sqrt{2}}{2}\frac{(x - \frac{\pi}{4})^3}{6} + o\left(x - \frac{\pi}{4}\right)^3.$$

2. $x \mapsto \frac{\ln(x)}{x^2}$, a = 1, n = 4.On a $\frac{\ln(x)}{x^2} = \frac{\ln((x-1)+1)}{x^2} = \ln(x) \times \frac{1}{x^2}$. Posons $x = u+1 \mapsto u = x-1$ et $x^2 = (1+u)(1+u)$, alors dire que u est au voisinage de 0 revient à dire que x est au voisinage de 1. Au voisinage de 0, on a

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4} + o(u^4)$$
$$\frac{1}{1+u} = 1 - u + u^2 - u^3 + u^4 + o(u^4).$$

En utilisant la multiplication des DLs et la troncature à l'ordre 4, on arrive à

$$\begin{split} \frac{1}{x^2} &= \frac{1}{1+u} \times \frac{1}{1+u} \\ &= \left(1 - u + u^2 - u^3 + u^4\right) \left(1 - u + u^2 - u^3 + u^4\right) + o(u^4). \\ &= \left(1 - u + u^2 - u^3 + u^4\right) - u(1 - u - u^3 + u^4) + (u^2 - u^3 + u^4) + (-u^3 + u^4) + u^4 + o(u^4) \\ &= 1 - 2u + 3u^2 - 4u^3 + 5u^4 + o(u^4) \end{split}$$

En utilisant $\frac{\ln(x)}{x^2} = \ln(1+u) \times \frac{1}{(1+u)^2}$, la multiplication des DLs et la troncature à l'ordre 4, on arrive à

$$\frac{\ln(x)}{x^2} = \left(u - \frac{u^2}{2} + \frac{u^3}{3} - \frac{u^4}{4}\right) \left(1 - 2u + 3u^2 - 4u^3 + 5u^4\right) + o(u^4)$$

$$= \left(u - 2u^2 + 3u^3 - 4u^4\right) + \left(-\frac{u^2}{2} + 2\frac{u^3}{2} + 4\frac{u^4}{2}\right) + \left(\frac{u^3}{3} - 2\frac{u^4}{3}\right) - \frac{u^4}{4} + o(u^4)$$

$$u - \frac{5u^2}{2} + \frac{13u^3}{3} - \frac{77u^4}{12} + o(u^4).$$

En utilisant le changement de variable u=x-1, on obtient le $DL_4(1)$ de $x\mapsto \frac{\ln(x)}{x^2}$:

$$\frac{\ln(x)}{x^2} = (x-1) - \frac{5}{2}(x-1)^2 + \frac{13}{3}(x-1)^3 - \frac{77}{12}(x-1)^4 + o((x-1)^4).$$

Exercice n°3 Calculer les limites suivantes :

Rappel: Lors des calculs de limites, les formes suivantes sont indéterminées :

$$\frac{0}{0}$$
; $\frac{\infty}{\infty}$; $0 \times \infty$; $+\infty + (-\infty)$.

1. $\lim_{x \to 0} \frac{\ln(1+x) - \sin(x)}{x}$. On calcule la limite de f en 0, on obtient une forme indéterminée (FI) :

$$\lim_{x \to 0} \frac{\ln(1+x) - \sin(x)}{x} = \frac{0}{0}$$

Ici, le dénominateur est de degré 1 (infiniment petit d'ordre 1 en 0), il suffit donc de faire un $DL_1(0)$ du numérateur pour lever la FI. Au voisinage de 0, on a

$$\ln(1+x) = x + o(x),$$

$$\sin(x) = x + o(x),$$

$$\ln(1+x) - \sin(x) = o(x),$$

d'où

$$\frac{\ln(1+x) - \sin(x)}{x} = \frac{o(x)}{x} = o(1)$$

Par conséquent, on en déduit $\lim_{x \to 0} \frac{\ln(1+x) - \sin(x)}{x} = 0$.

2. $\lim_{x \to 0} \frac{e^{x^2 - \cos(x)}}{x^2}$. On calcule la limite de f en 0, on obtient une forme indéterminée (FI) :

$$\lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2} = \frac{0}{0}$$

Ici, le dénominateur est de degré 2 (infiniment petit d'ordre 2 en 0), il suffit donc de faire un $DL_2(0)$ du numérateur pour lever la FI. Au voisinage de 0, on a

$$e^{x} = 1 + x + o(x),$$

$$e^{x^{2}} = 1 + x^{2} + o(x^{2}),$$

$$\cos(x) = 1 - \frac{x^{2}}{2} + o(x^{2}),$$

$$e^{x^{2}} - \cos(x) = (1 + x^{2}) - \left(1 - \frac{x^{2}}{2}\right) + o(x^{2}) = \frac{3x^{2}}{2} + o(x^{2})$$

d'où

$$\frac{e^{x^2} - \cos(x)}{x^2} = \frac{\frac{3x^2}{2} + o(x^2)}{x^2} = \frac{3}{2} + o(1)$$

Par conséquent, on en déduit $\lim_{x \to 0} \frac{e^{x^2 - \cos(x)}}{x^2} = \frac{3}{2}$.

Règle de L'Hôpitale:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} = \dots$$

$$\lim_{x \to 0} \frac{e^{x^2} - \cos(x)}{x^2} = \lim_{x \to 0} \frac{2xe^{x^2} + \sin(x)}{2x}$$

$$= \lim_{x \to 0} \frac{4x^2e^{x^2} + 2e^{x^2} + \cos(x)}{2} = \frac{0 + 2 + 1}{2}$$

3. $\lim_{x \to +\infty} x - x^2 \ln \left(1 + \frac{1}{x}\right)$. On calcule la limite de f en $+\infty$, on obtient une forme indéterminée (FI):

$$\lim_{x \to +\infty} x - x^2 \ln\left(1 + \frac{1}{x}\right) = +\infty - \infty \times 0$$

Posons $u = \frac{1}{x}$, u tend vers 0 lorsque x tend vers $+\infty$. Donc, on peut utiliser le développement limité usuel de $u \mapsto \ln(1+u)$ en 0 à l'ordre 3, on écrit ainsi

$$\ln(1+u) = u - \frac{u^2}{2} + \frac{u^3}{3} + o(u^3)$$

Or $x = \frac{1}{u}$, on en déduit le $DL_3(+\infty)$ de

$$\ln\left(1+\frac{1}{x}\right) = \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + o\left(\frac{1}{x^3}\right).$$

D'où

$$x - x^{2} \ln\left(1 + \frac{1}{x}\right) = x - x^{2} \left(\frac{1}{x} - \frac{1}{2x^{2}} + \frac{1}{3x^{3}} + o\left(\frac{1}{x^{3}}\right)\right) = \frac{1}{2} - \frac{1}{3x} + o\left(\frac{1}{x}\right)$$

Par un simple calcul, on arrive à

$$\lim_{x \longrightarrow +\infty} x - x^2 \ln\left(1 + \frac{1}{x}\right) = \lim_{x \longrightarrow +\infty} \frac{1}{2} - \frac{1}{3x} + o\left(\frac{1}{x}\right) = \frac{1}{2}$$

(\rightarrow la courbe de $x \mapsto x - x^2 \ln \left(1 + \frac{1}{x}\right)$ admet un asymptote au voisinage de $+\infty$.)

Exercice n°4 Soit f la fonction définie par $f(x) = \frac{xe^x - \sin(x)}{x^2}$

1. Montrer que f admet un prolongement par continuité en 0. On calcule la limite de f en 0, on obtient une FI:

$$\lim_{x \to 0} \frac{xe^x - \sin(x)}{x^2} = \frac{0}{0}.$$

Ici, le dénominateur est de degré 2 (infiniment petit d'ordre 2 en 0), il suffit donc de faire un $DL_2(0)$ du numérateur pour lever la FI de $xe^x - \sin(x)$. Au voisinage de 0, on a

$$e^{x} = 1 + x + \frac{x^{2}}{2} + o(x^{2}),$$

$$\sin(x) = x + o(x^{2}),$$

$$xe^{x} - \sin(x) = x^{2} + o(x^{2})$$

Remarque: on peut écrire directement $xe^x - \sin(x) \sim_{x \longrightarrow 0} x^2$.

Par conséquent $\frac{xe^x - \sin(x)}{x^2} = 1 + o(1)$. D'où

$$\lim_{x \to 0} \frac{xe^x - \sin(x)}{x^2} = \lim_{x \to 0} 1 + o(1) = 1$$

Cette fonction est continue sur D_f et admet une limite finie en 0. On peut donc prolonger f par continuité en 0 et on écrit ainsi

$$f(x) = \begin{cases} \frac{xe^x - \sin(x)}{x^2} & \text{si } x \neq 0, \\ 1 = f(0) & \text{si } x = 0. \end{cases}$$

2. Démontrer que ce prolongement est dérivable en 0.D'après la question 1., f admet un prolongement par continuité en 0. On utilise la définition de la dérivabilité en 0:

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\frac{xe^x - \sin(x)}{x^2} - 1}{x} = \lim_{x \to 0} \frac{xe^x - \sin(x) - x^2}{x^3}$$

Ici, le dénominateur est de degré 3 (infiniment petit d'ordre 3 en 0), il suffit donc de faire un $DL_3(0)$ du numérateur pour lever la FI de $xe^x - \sin(x)$. Au voisinage de 0, on a

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + o(x^{3}),$$

$$\sin(x) = x - \frac{x^{3}}{6} + o(x^{3}),$$

$$xe^{x} - \sin(x) = x^{2} + \frac{4x^{3}}{6} + o(x^{3}),$$

$$xe^{x} - \sin(x) - x^{2} = \frac{4x^{3}}{6} + o(x^{3}) = \frac{2x^{3}}{3} + o(x^{3})$$

Par conséquent $\frac{xe^x - \sin(x) - x^2}{x^3} = \frac{2}{3} + o(1)$. D'où

$$\lim_{x \to 0} \frac{xe^x - \sin(x) - x^2}{x^3} = \lim_{x \to 0} \frac{2}{3} + o(1) = \frac{2}{3} := f'(0)$$

- 3. Donner l'équation de la tangente au point d'abscisse 0 du prolongement par continuité de f et sa position par rapport à la courbe représentative C_f du prolongement au voisinage de 0.
 - L'équation de la tangente (T) au point d'abscisse 0 du prolongement par continuité de f est donnée par $(T): y = f(0) + (x-0)f'(0) = 1 + \frac{2}{3}x$.
 - Pour déterminer la position de la tangente (T) par rapport à la courbe C_f , il suffit d'évaluer le signe de $f(x) (1 + \frac{2x}{3})$ au voisinage de 0. En utilisant d'abord le développement à l'ordre 4 de f:

$$e^{x} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \frac{x^{4}}{24} + o(x^{4}),$$

$$\sin(x) = x - \frac{x^{3}}{6} + o(x^{4}),$$

$$xe^{x} - \sin(x) = x^{2} + \frac{4x^{3}}{6} + \frac{x^{4}}{6} + o(x^{4}) = x^{2} + \frac{2x^{3}}{3} + \frac{x^{4}}{6} + o(x^{4}),$$

$$\frac{xe^{x} - \sin(x)}{x^{2}} = 1 + \frac{2x}{3} + \frac{x^{2}}{6} + o(x^{2}).$$

Ensuite, on évalue

$$f(x) - \left(1 + \frac{2x}{3}\right) = \frac{xe^x - \sin(x)}{x^2} - 1 - \frac{2x}{3} = x^2 \left(\frac{1}{6} + o(1)\right)$$

On conclut que la courbe C_f est au-dessus de la tangente (T) dans un voisinage de 0 car l'expression ci-dessus est positive dans un voisinage de 0.

Exercice n°5 Soit f la fonction définie par $f(x) = \sqrt{x + x^2}$.

1. Déterminer le développement limité de la fonction $\frac{f(x)}{x}$ en $+\infty$ à l'ordre 2. On met x^2 en facteur sous les racines pour se ramener à effectuer un DL(0). Au voisinage de $+\infty$, on a

$$\frac{f(x)}{x} = \frac{\sqrt{x+x^2}}{x} = \frac{\sqrt{x^2(\frac{1}{x}+1)}}{x} = \sqrt{1+\frac{1}{x}}$$

Posons $u = \frac{1}{x}$, u tend vers 0 lorsque x tend vers $+\infty$. Donc, on peut utiliser le développement limité usuel de $\sqrt{1+u}$ en 0 à l'ordre 1, on écrit ainsi

$$\sqrt{1+u} = 1 + \frac{u}{2} - \frac{u^2}{8} + o(u^2)$$

Or $x=\frac{1}{u}$, on en déduit le $DL_2(+\infty)$ de

$$\frac{f(x)}{x} = 1 + \frac{1}{2x} - \frac{1}{8x^2} + o\left(\frac{1}{x^2}\right)$$

2. En déduire que la courbe représentative \mathcal{C}_f admet une asymptote en $+\infty$ puis la déterminer. En utilisant la question 1. , on arrive à $f(x)=x+\frac{1}{2}-\frac{1}{8x}+o\left(\frac{1}{x}\right)$. Par conséquent, la courbe d'équation $y=x+\frac{1}{2}$ est donc asymptote à la courbe au voisinage de $+\infty$ (car $\lim_{x\longrightarrow +\infty}f(x)-x-\frac{1}{2}=0$).

3. Étudier la position entre C_f et cette asymptote au voisinage de $+\infty$. Pour obtenir la position relative de la courbe par rapport à l'asymptote, il faut pousser le développement limité un peu plus loin de f(x) jusqu'à obtenir le premier terme non nul. On a

$$f(x) - x - \frac{1}{2} = -\frac{1}{8x} + o\left(\frac{1}{x}\right) = -\frac{1}{x}\left(\frac{1}{8} - o(1)\right)$$

Au voisinage de $+\infty$, $-\frac{1}{x}\left(\frac{1}{8}-o(1)\right)$ est négatif : la courbe est sous l'asymptote.