MATHEMATICS

 $D \mid 7$

E 9

Homework 5. Number Theory
In the questions 1, 2, 3 and 4 you have to choose one correct answer from the list, in the questions 5, 6 and 7 you have to give an answer.

Question 1. Find the residue of the number $4444^{7777} + 7777^{4444}$ modulo 5.	
A 0	
B 1	
$oxed{ ext{C}}$ 2	
D 3	
$oxed{{ m E}}$ 4	
Question 2. Find the last digit of the number $1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 + + 2021 \cdot 2023$.	
A 1	
B 3	
C 5	
D 7	
$oxed{\mathrm{E}}$ 9	
	1
Question 3. Find the number of positive integers which are smaller than 96000 and are relative	ly prime to it.
A 9600;	
B 12800;	
C 19200;	
D 25600;	
E 30000.	
Question 4. Find the residue of the number 19 ²⁰²³ modulo 12.	
A 1	
B 3	
C 5	

F 11

Question 5. Find the smallest natural x such that $29x \equiv 35 \pmod{53}$.

Question 6. Find the smallest natural number which gives remainder 2 modulo 3, remainder 1 modulo 5, remainder 3 modulo 7 and remainder 7 modulo 11.

Question 7. Find the smallest natural n such that the number $n^2 + 3n + 2$ gives remainder 30 modulo 45.

.

Question 5 – Answer.

$$29x \equiv 35 \pmod{53}$$
.
 $29x = 53 + 35$

29y = 53m + 1 by applying the **Euclid's algorithm**:

$$53=29\times1+24$$
 $24=53\times1-29\times1$ $1=29\times5-(53\times1-29\times1)\times6=29\times11-53\times6$
 $29=24\times1+5$ $5=29\times1-24\times1$ $1=(29\times1-24\times1)\times5-24\times1=29\times5-24\times6$
 $24=5\times4+4$ $4=24\times1-5\times4$ $1=5\times1-(24\times1-5\times4)\times1=5\times5-24\times1$
 $5=4\times1+1$ $1=5\times1-4\times1$ $1=5\times1-4\times1$

$$29 \times 11 - 53 \times 6 = 1$$

Thus
$$y = 11$$
, $m = 6$, and by multiply these numbers by 35 , we get $y = 385$, $m = 210$ by taking $y \mod 53$ $y = 14$

Thus the smallest natural **x** is 14.

Question 6– Answer.

$$X \equiv 2 \pmod{3}$$

$$X \equiv 1 \pmod{5}$$

$$X \equiv 3 \pmod{7}$$

$$X \equiv 7 \pmod{11}$$

By using **CRT**:

$$X = (a M_1 M_1^{-1} + b M_2 M_2^{-1} + c M_3 M_3^{-1} + d M_4 M_4^{-1}) \mod M$$

$$M = m_1 \times m_2 \times m_3 \times m_4 = 1155$$

$$a=2$$
 $m_1=3$ $M_1=M/m_1=385$ $M_1M_1^{-1}=1 \mod m_1$ $385 M_1^{-1}=1 \mod 3$ $M_1^{-1}=1$

$$b=1$$
 $m_2=5$ $M_2=M/m_2=231$ $M_2M_2^{-1}=1 \mod m_2$ $231 M_2^{-1}=1 \mod 5$ $M_2^{-1}=1$

$$c=3$$
 $m_3=7$ $M_3=M/m_3=165$ $M_3M_3^{-1}=1 \mod m_3$ $165 M_3^{-1}=1 \mod 7$ $M_3^{-1}=2$

$$d=7$$
 $m_4=11$ $M_4=M/m_4=105$ $M_4M_4^{-1}=1 \mod m_4$ $105 M_4^{-1}=1 \mod 11$ $M_4^{-1}=2$

$$X = (a M_1 M_1^{-1} + b M_2 M_2^{-1} + c M_3 M_3^{-1} + d M_4 M_4^{-1}) \mod M$$

$$X\!=\!\!(2\times\!385\times\!1+\!1\times\!231\times\!1+\!3\times\!165\times\!2+\!7\times\!105\times\!2)\,mod\,1155$$

$$X = (770 + 231 + 990 + 1470) mod 1155$$

 $X = 3461 \, mod \, 1155$

X = 1151

Question 7– Answer.

$$n^2 + 3n + 2 \equiv 30 \pmod{45}$$

Since the congruence is equivalent to: $n^2+3n+2-30\equiv 0 \pmod{45}$ then $n^2+3n+2=30$, and by solving this equation, n will be the smallest natural number such that the number n^2+3n+2 gives remainder 30 modulo 45.

$$n^2+3n+2=30$$

 $(n+1)(n+2)=30$

n=4