Exercices, 6

EXERCICE 1. — On observe un échantillon iid (X_1, \ldots, X_n) de lois de Laplace, c'est-à-dire de densité $x \mapsto e^{-\lambda |x-m|}/2\lambda$, où $\lambda > 0$ et $m \in \mathbb{R}$.

- 1. En supposant λ connu, proposer un estimateur de m par la méthode des moments, et un estimateur par la méthode du maximum de vraisemblance. Étudier leurs propriétés et les comparer.
- 2. Même question lorsque ni λ ni m ne sont connus.

EXERCICE 2. — Soit $n \geq 1$ un entier. On observe X_1, \ldots, X_n où les variables aléatoires X_i sont indépendantes, de même loi exponentielle de paramètre $\lambda > 0$, c'est-à-dire de densité $x \mapsto \lambda \exp(-\lambda x) \mathbb{1}_{x \geq 0}$.

- 1. Ecrire le modèle statistique engendré par l'observation de (X_1, \ldots, X_n) .
- 2. Calculer l'estimateur du maximum de vraisemblance $\widehat{\lambda}_n^{\text{mv}}$ de λ .
- 3. Montrer que $\widehat{\lambda}_n^{\text{mv}}$ est asymptotiquement normal et calculer sa variance limite.
- 4. Soient $0 < \lambda_0 < \lambda_1$. Construire un test d'hypothèses de

$$H_0: \lambda = \lambda_0 \text{ contre } H_1: \lambda = \lambda_1$$

de niveau α et uniformément plus puissant. Expliciter le choix du seuil définissant la région critique. Montrer que l'erreur de seconde espèce de ce test tend vers 0 lorsque $n \to \infty$.

Exercice 3. — On lance 60 fois un dé et on obtient les résultats suivants :

Au seuil de 0,025 peut-on conclure que le dé est bien équilibré? A titre indicatif le quantile d'une loi $\chi^2(5)$ d'ordre 95% est 11.07.

EXERCICE 4. — Soit E un sous-espace vectoriel de \mathbb{R}^n de dimension p < n. On observe un vecteur gaussien X de dimension n et de loi $\mathcal{N}(\mu, \sigma^2 I_n)$, où $\mu \in E$ et $\sigma^2 > 0$ sont inconnus. On s'intéresse aux hypothèses :

$$H_0: \mu \in F$$
 contre $H_1: \mu \notin F$,

où F est un sous-espace vectoriel de E de dimension q < p. On note X_V la projection orthogonale de X sur un sous-espace vectoriel V.

- 1. Montrer que $\|X-X_E\|^2$ et $\|X_E-X_F\|^2$ sont indépendants et décrire leur loi.
- 2. En déduire que si

$$T = \frac{\|X_E - X_F\|^2/(p-q)}{\hat{\sigma}^2}, \text{ où } \hat{\sigma}^2 = \frac{1}{n-p}\|X - X_E\|^2,$$

alors T suit une loi de Fisher sous H_0 .

3. Si c > 0 est une constante, montrer que la puissance du test $\mathbb{1}_{\{T > c\}}$ au point (μ, σ^2) est une fonction croissante de $\|\mu - \mu_F\|^2/\sigma^2$.

EXERCICE 5 (ANOVA). — On observe k échantillons gaussiens de tailles respectives n_1, n_2, \ldots, n_k , notés $X_{i\cdot} = (X_{i,j})_{1 \leq j \leq n_i}, \quad 1 \leq i \leq k$, tels que $X_{i,j} \sim \mathcal{N}(m_i, \sigma^2)$, où $m = (m_1, \ldots, m_k) \in \mathbb{R}^k$ et $\sigma^2 > 0$ sont inconnus. On s'intéresse aux hypothèses :

$$H_0: m_1 = m_2 = \cdots = m_k$$
 contre $H_1: \exists i \neq i'$ tels que $m_i \neq m_{i'}$.

- 1. On considère le vecteur aléatoire $X=(X_{ij})_{1\leq i\leq k, 1\leq j\leq n_i}$ de dimension $n=n_1+\cdots+n_k$. Montrer que $\mu=\mathbb{E}[X]$ appartient à un sous-espace vectoriel E de dimension k. Calculer X_E .
- 2. Montrer que l'hypothèse nulle s'écrit $H_0: \mu \in F$, où F est un sous-espace vectoriel de E de dimension 1. Calculer X_F .
- 3. En déduire la forme du test de Fisher dans ce contexte.

EXERCICE 6 (Un test asymptotique de gaussianité, le test de Jarque-Bera). — Soit (X_1, \ldots, X_n) un n-échantillon de loi inconnue F ayant au moins un moment d'ordre 4 et de moyenne nulle et de variance non nulle.

1. On pose, pour k = 1, ..., 4,

$$T_n^{(k)} = \frac{\frac{1}{n} \sum_{i=1}^n X_i^k}{\left(\frac{1}{n} \sum_{i=1}^n X_i^2\right)^{k/2}}.$$

Montrer que si F est une distribution gaussienne, on a

$$\frac{n}{15} \left(T_n^{(3)}\right)^2 + \frac{n}{96} \left(T_n^{(4)} - 3\right)^2 \overset{\mathscr{L}}{\longrightarrow} \chi_2^2,$$

où χ_2^2 désigne la loi du χ^2 à 2 degrés de liberté.

- 2. En déduire un test de l'hypothèse nulle H_0 : "F est gaussienne" contre l'alternative H_1 : "F n'est pas gaussienne".
- 3. Le test est-il consistant?

EXERCICE 7 (Test du signe). — On observe n couples aléatoires $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ indépendants mais pas nécessairement de même loi. On suppose de plus que les variables X_i et Y_i sont indépendantes et qu'elles ont une loi diffuse pour tout $i \in \{1, \dots, n\}$. On considère le test d'hypothèses

$$\begin{array}{ll} H_0: & X_i=Y_i \text{ en loi pour tout } i, \\ H_1: & \text{il existe } i\neq j \text{ tels que } X_i\neq Y_i \text{ en loi.} \end{array}$$

- 1. Montrer que $P(X_i = Y_i) = 0$ et en déduire que sous H_0 , on a $P(X_i > Y_i) = \frac{1}{2}$.
- 2. On pose $N = \sum_{i=1}^n \mathbbm{1}_{X_i > Y_i}$. Quelle est la loi de N sous H_0 ?
- 3. En déduire que le test défini par la région critique

$$\left\{ \left| N - \frac{n}{2} \right| \ge c \right\}$$

permet de construire un test de niveau inférieur à $\alpha \in]0,1[$ de H_0 contre H_1 pour un choix $c=c(\alpha)>0$ que l'on précisera. Parmi tous les choix possibles de $c(\alpha)$, lequel préférer ?

4. Les moyennes générales de la première et de la deuxième année de cinquième de 12 redoublants ont été relevées:

Elève	1	2	3	4	5	6	7	8	9	10	11	12
Année 1	8,2	6,9	7,0	6,2	6,4	6,3	7,2	7,6	7,8	6,4	7,3	8
Année 2	10,1	6,7	7,9	10,5	5,3	8,3	9,6	11,4	7,9	9,9	10,0	9,8

Le redoublement a-t-il une influence sur la moyenne générale, sachant que le quantile d'ordre 0.975 d'une $\mathcal{B}(12,0.5)$ est 9.