CapSel Equil - 01

Ideal MHD Equilibria

keppens@rijnh.nl

- steady state ($\partial t = 0$) smoothly varying solutions to MHD equations
 - ⇒ solutions without discontinuities
 - ⇒ conservative or non-conservative formulation equivalent
- stationary MHD equations governed by

$$\begin{cases} \nabla \cdot (\rho \mathbf{v}) &= 0\\ \rho (\mathbf{v} \cdot \nabla) \mathbf{v} &= -\nabla p + (\nabla \times \mathbf{B}) \times \mathbf{B} + \rho \mathbf{g}\\ (\mathbf{v} \cdot \nabla) p &= -\gamma p \nabla \cdot \mathbf{v}\\ \nabla \times (\mathbf{v} \times \mathbf{B}) &= 0\\ &\text{and} & \nabla \cdot \mathbf{B} = 0 \end{cases}$$

 \Rightarrow given g and parameter γ , solve for ρ , v, p, B

• dramatic simplication when considering STATIC equilibria

$$\Rightarrow$$
 $\mathbf{v} = 0$ leaves only

$$\begin{cases} -\nabla p + (\nabla \times \mathbf{B}) \times \mathbf{B} + \rho \mathbf{g} = 0 \\ \text{and } \nabla \cdot \mathbf{B} = 0 \end{cases}$$

- ⇒ governing equations for magnetostatic equilibria
- without external gravity $\mathbf{g} = 0$

$$\begin{cases} \underline{\nabla p} = \underline{(\nabla \times \mathbf{B}) \times \mathbf{B}} \\ \text{pressure gradient} & \text{Lorentz force} \\ \nabla \cdot \mathbf{B} = 0 \end{cases}$$

- magnetostatic case without gravity: choose dimensionality and geometry
- 1D cartesian geometry p(x), $B_x(x)$, $B_y(x)$, $B_z(x)$
 - \Rightarrow constant (or zero) B_x from $\nabla \cdot \mathbf{B} = 0$

$$\frac{d}{dx} \underbrace{\left(p + \frac{B_y^2 + B_z^2}{2}\right)}_{\text{total pressure}} = 0$$

- 1D cylindrical geometry p(R), $B_R(R)$, $B_{\varphi}(R)$, $B_Z(R)$
 - \Rightarrow (constant RB_R hence) zero B_R from $\nabla \cdot \mathbf{B} = 0$

$$\frac{d}{dR} \underbrace{\left(p + \frac{B_{\varphi}^2 + B_Z^2}{2}\right)}_{\text{total pressure}} = \underbrace{-\frac{B_{\varphi}^2}{R}}_{\text{radially inward tension}}$$

- ODE governs 1D static equilibria: 4 functions ρ , p, B_2 , B_3
 - \Rightarrow 3 free profiles, namely ρ and 2 from p, B_2 , B_3

- 1D cylindrical case: dimensions from
 - \Rightarrow cylinder radius a, axial field strength B_0 , axial density ρ_0
 - ⇒ 2 essential dimensionless parameters

$$\beta_0 = \frac{2p_0}{B_0^2}$$
 and $\mu_0 = \frac{aB_{\varphi}}{RB_Z}|_{R=0} = \frac{aJ_{Z0}}{2B_0}$

- \Rightarrow axial plasma beta β_0
- \Rightarrow inverse pitch $\mu = aB_{\varphi}/RB_{Z}$
- Latter uses axial current

$$J_{Z0} = J_Z(R=0) = \frac{1}{R} \frac{d}{dR} (RB_{\varphi})|_{R=0}$$

 \Rightarrow introduce dimensionless quantities \widetilde{f} and unit profiles \overline{f}

$$\tilde{R} \equiv \frac{R}{a} \equiv \bar{R}$$

$$\tilde{\rho} \equiv \frac{\rho}{\rho_0} \equiv \bar{\rho}$$

$$\tilde{p} \equiv \frac{p}{B_0^2} = \frac{\beta_0}{2} \frac{p}{p_0} \equiv \frac{\beta_0}{2} \bar{p}$$

$$\tilde{B}_Z \equiv \frac{B_Z}{B_0} \equiv \bar{B}_Z$$

$$\tilde{B}_\varphi \equiv \frac{B_\varphi}{B_0} \equiv \mu_0 \bar{\mu} \bar{R} \bar{B}_Z$$

- ullet 1D cylindrical equilibrium fully specified by eta_0 , μ_0 and
 - \Rightarrow two (three with $\bar{
 ho}$) unit profiles $\bar{p}(\bar{R})$ and $\bar{\mu}=\mu/\mu_0$
 - \Rightarrow determine $\bar{B_Z}$ from equilibrium relation

$$\frac{d}{d\bar{R}} \left[\frac{\beta_0}{2} \bar{p} + \frac{\bar{B_Z}^2}{2} \left(\bar{R}^2 \mu_0^2 \bar{\mu}^2 + 1 \right) \right] = -\bar{R} \mu_0^2 \bar{\mu}^2 \bar{B_Z}^2$$

- \Rightarrow find $ar{B_{arphi}}\equivar{R}ar{\mu}ar{B_{Z}}$ and $ilde{B_{arphi}}=\mu_{0}ar{B_{arphi}}$
- core problem, freedom in parameter values and unit profile variations
- for cylinder of finite length $L \equiv 2\pi R_0$: alternatively
 - \Rightarrow introduce $\epsilon = a/R_0$ and work with $q_0 = \epsilon/\mu_0$ instead
 - \Rightarrow q-profile from $q = RB_Z/R_0B_{\varphi}$

Grad-Shafranov equation

- consider axisymmetric ($\partial \varphi = 0$), 2D static equilibria
 - \Rightarrow assume right-handed coordinate system (R,Z,φ)
 - ⇒ to solve for 5 two-dimensional functions

$$\rho(R,Z), \ p(R,Z), \ B_R(R,Z), \ B_Z(R,Z), \ B_{\varphi}(R,Z)$$

- \Rightarrow density profile arbitrary, not in equilibrium $\nabla p = (\nabla \times \mathbf{B}) \times \mathbf{B}$
- from $\nabla \cdot \mathbf{B} = 0$ or $\frac{1}{R} \frac{\partial}{\partial R} (RB_R) + \frac{\partial B_Z}{\partial Z} = 0$
 - \Rightarrow flux function $\psi(R,Z)$ with $\mathbf{B}=\frac{1}{R}\hat{e_{\varphi}}\times\nabla\psi+B_{\varphi}\hat{e_{\varphi}}$ such that

$$B_R = -\frac{1}{R} \frac{\partial \psi}{\partial Z}$$
 and $B_Z = \frac{1}{R} \frac{\partial \psi}{\partial R}$

- \bullet note that $\mathbf{B}\cdot\nabla\psi=0$
 - \Rightarrow constant ψ surfaces (or contours in (R,Z)-plane) are 'flux surfaces'
 - ⇒ field lines lie on these flux surfaces
 - \Rightarrow 3 orthogonal directions from $\nabla p = (\nabla \times \mathbf{B}) \times \mathbf{B}$

Poloidal R-Z plane

- ullet since $\mathbf{J} = \nabla \times \mathbf{B}$ we have $\nabla \cdot \mathbf{J} = 0$
 - \Rightarrow analogously define current stream function I(R,Z)

$$\mathbf{J} = -\frac{1}{R}\hat{e_{\varphi}} \times \nabla I + J_{\varphi}\hat{e_{\varphi}}$$

⇒ this yields

$$J_R = \frac{1}{R} \frac{\partial I}{\partial Z}$$
 and $J_Z = -\frac{1}{R} \frac{\partial I}{\partial R}$

 \Rightarrow from $\mathbf{J} = \nabla \times \mathbf{B}$ we have as well

$$J_R = \frac{\partial B_{\varphi}}{\partial Z} \Rightarrow I = RB_{\varphi}$$

ullet φ component of $\nabla p = (\nabla \times \mathbf{B}) \times \mathbf{B}$

$$0 = J_R B_Z - J_Z B_R = \frac{1}{R^2} \left(\frac{\partial I}{\partial Z} \frac{\partial \psi}{\partial R} - \frac{\partial I}{\partial R} \frac{\partial \psi}{\partial Z} \right)$$

 \Rightarrow since commutator vanishes, find $I(\psi)$

R and Z component of force balance yield

$$\frac{\partial p}{\partial R} = J_Z B_{\varphi} - J_{\varphi} B_Z = \left(-\frac{II'}{R^2} - \frac{J_{\varphi}}{R} \right) \frac{\partial \psi}{\partial R}$$
$$\frac{\partial p}{\partial Z} = J_{\varphi} B_R - J_R B_{\varphi} = \left(-\frac{II'}{R^2} - \frac{J_{\varphi}}{R} \right) \frac{\partial \psi}{\partial Z}$$

 \Rightarrow again find $p(\psi)$ and conclude

$$p' = -\frac{II'}{R^2} - \frac{J_{\varphi}}{R}$$

ullet use $\mathbf{J} =
abla imes \mathbf{B}$ to find

$$J_{\varphi} = \frac{\partial B_Z}{\partial R} - \frac{\partial B_R}{\partial Z}$$

- \Rightarrow in terms of ψ we get $RJ_{\varphi}=Rrac{\partial}{\partial R}\left(rac{1}{R}rac{\partial\psi}{\partial R}
 ight)+rac{\partial^{2}\psi}{\partial Z^{2}}$
- Grad-Shafranov equation thus reads

$$R\frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) + \frac{\partial^2 \psi}{\partial Z^2} = -II' - p'R^2$$

 \Rightarrow to solve for $\psi(R,Z)$ under given profiles $p(\psi)$ and $I(\psi)$

- GS: 2nd order PDE
 - \Rightarrow character from $a\psi_{RR} + 2b\psi_{RZ} + c\psi_{ZZ} + \dots$
 - \Rightarrow find $b^2 ac = -1 < 0$: elliptic
 - ⇒ Boundary value problem well-posed
- for elliptic Laplace equation: solution reaches extremum on boundary
 - \Rightarrow here we have (different from Laplace $\nabla \cdot \nabla \psi = 0$):

$$R^2 \nabla \cdot \frac{1}{R^2} \nabla \psi = -II' - p'R^2$$

 \Rightarrow normally have $\psi \in [0, \psi_1]$: zero at magnetic axis, fixed BV ψ_1

Grad-Shafranov for tokamak equilibria

- tokamak = toroidal vessel for achieving controlled nuclear fusion
 - ⇒ task to achieve steady state magnetically confined plasma
 - ⇒ within poloidal cross-section of vessel: ideal MHD equilibrium
 - ⇒ static plasma and axisymmetry: solve GS within given boundary
- overall configuration: 'donut' with nested flux surfaces

Scaling for Grad-Shafranov

- ullet natural to set units by a (length) and B_0 (magnetic and pressure) from
 - $\Rightarrow 2a$ horizontal diameter of vessel
 - \Rightarrow geometric center of vessel at $R_0 \to \epsilon \equiv a/R_0$ inverse aspect ratio
 - \Rightarrow use strength of vacuum field at R_0 for B_0
- ullet value of flux on outer boundary ψ_1
 - \Rightarrow use to define a unit flux label $\bar{\psi}=\psi/\psi_1$
 - \Rightarrow define dimensionless 'inverse flux' $\alpha \equiv a^2 B_0/\psi_1$
- ullet change to dimensionless poloidal coordinates (x,y)

$$\begin{cases} R \\ Z \end{cases} \Rightarrow \begin{cases} x = \frac{R - R_0}{a} = \tilde{R} - \frac{1}{\epsilon} \\ y = \frac{Z}{a} = \tilde{Z} \end{cases}$$

• LHS of GS changes to

$$R \frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) + \frac{\partial^2 \psi}{\partial Z^2} \implies \frac{\psi_1}{a^2} \left[\frac{\partial^2 \bar{\psi}}{\partial x^2} - \frac{\epsilon}{1 + \epsilon x} \frac{\partial \bar{\psi}}{\partial x} + \frac{\partial^2 \bar{\psi}}{\partial y^2} \right]$$

RHS of GS becomes

$$-I\frac{dI}{d\psi} - R^2 \frac{dp}{d\psi} \implies -\frac{a^2 B_0^2}{\psi_1} \left[\tilde{I} \frac{d\tilde{I}}{d\bar{\psi}} + \tilde{R}^2 \frac{d\tilde{p}}{d\bar{\psi}} \right]$$

$$\Rightarrow$$
 using $\widetilde{I}\equiv RB_{arphi}/aB_{0}$ and $\widetilde{p}\equiv p/B_{0}^{2}$

• introduce dimensionless profiles

$$\Rightarrow \text{ scaled pressure } P = P(\bar{\psi}) \equiv \frac{\alpha^2}{\epsilon} \tilde{p}$$

$$\Rightarrow Q = Q(\bar{\psi}) \equiv -\frac{\epsilon \alpha^2}{2a^2 B_0^2} \left[I^2(\psi) - R_0^2 B_0^2 \right]$$

$$\Rightarrow G = G(\bar{\psi}) \equiv -\frac{1}{\epsilon} \left[Q(\bar{\psi}) - P(\bar{\psi}) \right]$$

under these definitions, GS becomes

$$\frac{\partial^2 \bar{\psi}}{\partial x^2} - \frac{\epsilon}{1 + \epsilon x} \frac{\partial \bar{\psi}}{\partial x} + \frac{\partial^2 \bar{\psi}}{\partial y^2} = -\frac{dG}{d\bar{\psi}} - \frac{dP}{d\bar{\psi}} x(2 + \epsilon x)$$

 \Rightarrow two arbitrary profiles $G'\equiv dG/d\bar{\psi}$ and $P'\equiv dP/d\bar{\psi}$

- ullet core problem now identified, separate freedom in G' and P'
 - ⇒ magnitude and shape: amplitude and unit profile

$$G' \equiv -A\Gamma(\bar{\psi})$$
 with $\Gamma(0) = 1$

$$P' \equiv -\frac{1}{2}AB\Pi(\bar{\psi})$$
 with $\Pi(0) = 1$

- ⇒ roughly related to current profile and pressure gradient profile
- ⇒ Final form of GS is then

$$\frac{\partial^2 \bar{\psi}}{\partial x^2} - \frac{\epsilon}{1 + \epsilon x} \frac{\partial \bar{\psi}}{\partial x} + \frac{\partial^2 \bar{\psi}}{\partial y^2} = A \left[\Gamma(\bar{\psi}) + Bx(1 + \frac{\epsilon x}{2}) \Pi(\bar{\psi}) \right]$$

- boundary conditions
 - $\Rightarrow \bar{\psi} = 1$ on boundary
 - $\Rightarrow \bar{\psi} = \bar{\psi}_x = \bar{\psi}_y = 0$ at magnetic axis $(\delta, 0)$
 - ⇒ 2nd order PDE with 4 BCs: overdetermined!!!

- A (and B if input δ) to be determined with solution ('eigenvalues')
- ullet once solution $\bar{\psi}$, A, and B identified
 - ⇒ reconstruct pressure from

$$\tilde{p} = \frac{\epsilon}{\alpha^2} \left[\int^{\bar{\psi}} \left(-\frac{1}{2} AB \Pi \right) d\bar{\psi} + P(0) \right]$$

⇒ magnetic field components from

$$\begin{split} \tilde{B_R} &= -\frac{1}{\alpha} \frac{\epsilon}{1 + \epsilon x} \frac{\partial \bar{\psi}}{\partial y} \\ \tilde{B_Z} &= \frac{1}{\alpha} \frac{\epsilon}{1 + \epsilon x} \frac{\partial \bar{\psi}}{\partial x} \\ \tilde{B_\varphi} &= \frac{1}{1 + \epsilon x} \left[1 - 2 \frac{\epsilon}{\alpha^2} \int^{\bar{\psi}} A(\epsilon \Gamma - \frac{1}{2} B \Pi) d\bar{\psi} \right]^{1/2} \end{split}$$

 \Rightarrow different realization of same core problem solution for different $\alpha!$

The Soloviev solution

analytic solution to Grad-Shafranov

$$R\frac{\partial}{\partial R} \left(\frac{1}{R} \frac{\partial \psi}{\partial R} \right) + \frac{\partial^2 \psi}{\partial Z^2} = -II' - p'R^2$$

- \Rightarrow for linear profiles $I^2/2=I_0^2/2-E\psi$ and $p=p_0-F\psi$
- $\Rightarrow E$, F free profile parameters
- polynomial solution derived by Soloviev

$$\psi = (C + DR^2)^2 + \frac{1}{2} [E + (F - 8D^2) R^2] Z^2$$

- \Rightarrow two additional parameters C, D
- \Rightarrow verify by insertion

- use Soloviev for creating tokamak equilibria
- \bullet instructive to change to $\bar{\psi}$ and (x,y) coordinates
 - ⇒ Soloviev solution rewritten as

$$\bar{\psi} = \left[x - \frac{\epsilon}{2}(1 - x^2)\right]^2 + \left(1 - \frac{\epsilon^2}{4}\right)\left[1 + \tau \epsilon x(2 + \epsilon x)\right] \frac{y^2}{\sigma^2}$$

- \Rightarrow unit contour through 4 points $(x = \pm 1, y = 0) \ (0, y = \pm \sigma)$
- $\Rightarrow \epsilon = a/R_0$ inverse aspect ratio wrt geometric center
- $\Rightarrow \tau$ measures triangularity (ellips-like for $\tau = 0$)
- ullet $\bar{\psi}=0$ at magnetic axis $(\delta,0)$ with

$$\delta = \frac{1}{\epsilon} \left[\sqrt{1 + \epsilon^2} - 1 \right]$$

- ⇒ outward Shafranov shift of magnetic axis
- ⇒ geometric effect required for equilibrium in torus

- did not consider 'boundary' as given here
 - ⇒ determined as unit contour from solution
- cases $\epsilon = 0.333$, $\tau = 0$ and $\sigma = (0.5, 1, 1.5)$

⇒ 'elliptic' flux contours

ullet varying the triangularity parameter au

$$\Rightarrow$$
 case $\tau=-0.5$ versus $\tau=0$ and $\tau=1.5$

 \Rightarrow 'triangular' flux contours, sign of τ for direction

Force-Free equilibria

- So far: 1D and 2D static ideal MHD equilibria (no gravity, no flow)
 - ⇒ pressure gradient balancing Lorentz force
- in low beta plasma $\beta \ll 1$ only solve

$$(\nabla \times \mathbf{B}) \times \mathbf{B} = 0$$

- ⇒ plus solenoidal constraint
- \bullet current $\mathbf{J} = \nabla \times \mathbf{B}$ must be $\parallel \mathbf{B}$
 - ⇒ force-free magnetic configuration, can be 1D, 2D, or 3D

- simplest case: vanishing current J = 0 or 'potential fields'
 - ⇒ vacuum magnetic field solution

$$\Rightarrow$$
 since $\nabla \times \mathbf{B} = 0$ define ϕ from $\mathbf{B} = -\nabla \phi$

 \Rightarrow since $\nabla \cdot \mathbf{B} = 0$ solve

$$\nabla^2 \phi = 0$$

- ⇒ elliptic Laplace equation, BVP well-posed
- frequently used for reconstructing 'coronal' magnetic field
 - \Rightarrow normal B component from magnetograms of solar photosphere

$$\Rightarrow B_n|_{\text{photosphere}} = -\frac{\partial \phi}{\partial n}|_{\text{photosphere}}$$
 given

ullet more general: field-aligned currents ${f J}=lpha{f B}$

$$\Rightarrow$$
 from $\nabla \cdot (\nabla \times \mathbf{B}) = 0$ find

$$\mathbf{B} \cdot \nabla \alpha = 0$$

 $\Rightarrow \alpha$ is constant along field line

• 1D examples are

 \Rightarrow slab: $B_y(x) = \sin(\alpha x)$ and $B_z(x) = \cos(\alpha x)$

 \Rightarrow cylinder: $B_Z(R) = J_0(\alpha R)$ and $B_{\varphi}(R) = J_1(\alpha R)$

CapSel Equil - 23b

• example taken from Régnier & Amari

- \Rightarrow three reconstructions: potential, constant α , varying α
- \Rightarrow best agreement with observations for nonlinear force-free case

Stationary equilibria

- ullet static ($\mathbf{v} = 0$) case only left momentum balance
 - \Rightarrow stationary solutions $\mathbf{v} \neq 0$ involve all equations
- 1D case still fairly trivial
 - \Rightarrow slab: when $v_x = 0$ same as before
 - \Rightarrow 1D slab with arbitrary background flow $v_y(x)$ and $v_z(x)$ obeys

$$\frac{d}{dx} \underbrace{\left(p + \frac{B_y^2 + B_z^2}{2}\right)}_{\text{total pressure}} = -\rho g$$

- \Rightarrow with gravity $\mathbf{g} = -g\hat{e}_x \Rightarrow$ density enters
- \Rightarrow example solution: force-free (B_y,B_z) and $\rho=1-Dx$ on $x\in[0,1]$
- \Rightarrow density contrast D and pressure $p=p_0-g(x-\frac{Dx^2}{2})$

• 1D cylindrical equilibria

- \Rightarrow take $v_R = 0$ then again only force balance remains
- \Rightarrow assume gravitational 'line' source $\mathbf{g}=-rac{GM_*}{R^2}\hat{e}_R$

$$\frac{d}{dR} \underbrace{\left(p + \frac{B_{\varphi}^2 + B_Z^2}{2}\right)}_{\text{total pressure}} = \underbrace{\frac{B_{\varphi}^2}{R}}_{\text{radially inward tension}} + \underbrace{\frac{\rho v_{\varphi}^2}{R}}_{\text{centrifugal force}} - \underbrace{\frac{GM_*}{R^2}}_{\text{gravity}}$$

 \Rightarrow suitable for accretion disks $R \in [R_{inner}, R_{outer}]$: midplane

 \Rightarrow for jets: neglect gravity and take $R \in [0, R_{jet}]$

- 2D (axisymmetric) stationary ideal MHD equilibria
 - ⇒ allow for both toroidal and poloidal flow in tokamak steady-state
- ullet core problem is again 2nd order PDE for flux $\psi(R,Z)$
 - \Rightarrow BUT additional algebraic equation for $M^2(R,Z) \equiv \rho v_p^2/B_p^2$
 - ⇒ latter expresses energy conservation along fieldline
- much more complex problem:
 - ⇒ character of governing PDE can change from location to location
 - \Rightarrow elliptic or hyperbolic nature depends on M^2
 - ⇒ turns out: 3 elliptic regimes: subslow, slow, fast

References

- J.P. Goedbloed, Transactions of Fusion Technology 37, 2T, march 2000
- B.C. Low, Lecture series HAO 1994
- J.P. Goedbloed & S. Poedts, *Advanced Magnetohydrodynamics*, Lecture series 1997-1998 K.U. Leuven (CPA, Doctoraatsopleiding Wiskunde)
- J.P. Goedbloed & S. Poedts, *Principles of Magnetohydrodynamics*, Cambridge University Press, to appear 2003
- J.P. Goedbloed, *Magnetohydrodynamics of astrophysical plasmas*, Lectures at Utrecht University 2001
- J.P. Goedbloed & A.E. Lifschitz, Phys. Plasmas 4, 1997, 3544
- J.P. Goedbloed, Physica Scripta T98, 2002, 43
- S. Régnier web site solar.physics.montana.edu/regnier
- T. Amari web site www.cpht.polytechnique.fr/cpht/amari

