

Vor 2021 T-202-GAG1, Gagnasafnsfræði Hópaverkefni 5

Ástþór Arnórsson, astthor19@ru.is
Ingólfur Orri Gústafsson, ingolfurg19@ru.is
Viktoría Inga Smáradóttir, viktoria19@ru.is 091299-2919
31.mars, 2021

Kennari: Anna Sigríður Islind

1. Introduction

This is a report for the assignment project 5 in Gagnasafnsfræði. In this assignment we are finding functional- and multi-valued dependencies. We then find the minimal cover of these dependencies and the normal form of the relation. Lastly we decompose the relations and find their dependencies and normal form. We then create the relations in PostgreSQL in the file DECOMPOSITION.sql and we fill these relations in POPULATE.sql.

2. Finding FDs and MVDs

We wrote two simple queries to find all functional dependencies and multi-valued dependencies in the original relations. We wrote a single generator.py file which generates either FDs and MVDs depending on if the user inputs "fd" or "mvd". The generator then writes to the file prj5_check_FD.sql for the FDs and prj5_check_MVD.sql for the MVDs. To find the dependencies we then run the sql files as queries.

2.1 Finding FDs

This query checks for dependencies $A \to B$. It can happen that the queries finds FDs that go both ways, that is $A \to B$ and $B \to A$ where A is the key. The $B \to A$ FDs are ignored.

```
FD_template = '''
    SELECT '{R}: {A} --> {B}' AS FD,
    CASE WHEN COUNT(*) = 0 THEN
        'HOLDS'
    ELSE
        'does not hold'
    END AS VALIDITY
    FROM (
        SELECT {A}
        FROM {R}
        GROUP BY {A}
        HAVING COUNT(DISTINCT {B}) > 1
        ) X;
```

2.2 Finding MVDs

This query checks for dependencies $A \rightarrow B$,C. We however only consider MVDs for relations that have a primary key combined of three or more columns.

```
\label{eq:mappendix} \begin{split} \text{MVD\_template} &= \text{'''} \\ \text{SELECT} \\ & \text{'}\{A\} \text{-->} (\{B\}, \{C\}) \text{ in } \{R\}' \text{ AS Relation,} \\ \text{CASE WHEN COUNT(*)} &= 0 \text{ THEN} \\ & \text{'MAYBE MVD'} \\ \text{ELSE} \\ & \text{'NO MVD'} \\ \text{END AS MVD} \\ \text{FROM (} \\ \text{SELECT } \{A\} \\ \text{FROM } \{R\} \\ \text{GROUP BY } \{A\} \\ \text{HAVING COUNT(*)} &> 1 \\ & \text{AND COUNT(*)} &<> \text{COUNT(DISTINCT } \{B\}) * \text{COUNT(DISTINCT } \{C\}) \\ \text{) $X$;} \end{split}
```

3. Normalization

```
3.1 Normalization of CivilServices
Primary key: CSID, HID
Determined FDs:
CSID \rightarrow PN
HID \rightarrow HS
HID \rightarrow HZ
HID \rightarrow HC
HZ \rightarrow HC
(CSID, HID) \rightarrow PN
(CSID, HID) \rightarrow S
(CSID, HID) \rightarrow HS
(CSID, HID) \rightarrow HZ
(CSID, HID) \rightarrow HC
Minimal cover:
CSID \rightarrow PN
HID \rightarrow HS
HID \rightarrow HZ
HZ \rightarrow HC
(CSID, HID) \rightarrow S
Other keys: None
Normal form: 1NF because a key \rightarrow non key.
Decomposition:
CivilServices_CSID_PN
CivilServices_HID_HS__HZ
CivilServices_HZ_HC
```

CivilServices_CSID_HID_S

The new relations

CivilServices_CSID_PN

Columns: CSID, PN

Key: CSID

FDs: CSID \rightarrow PN

Normal forms:

• Since all FDs are key FDs, the table is in BCNF

• Since the key has a single column, the table is in 4NF

CivilServices_HID_HS__HZ

Columns: HID, HS, HZ

Key: HID

FDs: $HID \rightarrow HS$, $HID \rightarrow HZ$

Normal forms:

• Since all FDs are key FDs, the table is in BCNF

• Since the key has a single column, the table is in 4NF

CivilServices_CSID_HID_S

Columns: CSID, HID, S

Key: CSID, HID

FDs: (CSID, HID) \rightarrow S

Normal forms:

• Since all FDs are key FDs, the table is in BCNF

• Since the key is only two columns, MVDs were not considered and the table should be in 4NF

CivilServices_HZ_HC

Columns: HZ, HC

Key: HZ

FDs: $HZ \rightarrow HC$

Normal forms:

• Since all FDs are key FDs, the table is in BCNF

• Since the key has a single column, the table is in 4NF

3.2 Normalization of Projects

Primary keys: ID, PID, SID

Determined FDs:

 $ID \rightarrow MID$

 $PID \rightarrow PN$

 $SID \rightarrow SN$

 $MID \rightarrow MN$

 $(ID, PID, SID) \rightarrow PN$

 $(ID, PID, SID) \rightarrow SN$

 $(ID, PID, SID) \rightarrow MID$

MVDs: There were no MVDs for projects.

Other keys: None

Minimal Cover:

 $ID \rightarrow MID$

 $PID \rightarrow PN$

 $SID \rightarrow SN$

 $MID \rightarrow MN$

Normal forms: 1.NF because some FDs' are key \rightarrow non-key.

Decomposition:

Projects_PID_PN(_PID_, PN)

Projects_SID_SN(_SID_, SN)

Projects_ID_MID(_ID_, MID)

Projects_MID_MN(_MID_, MN)

The new relations

Projects_PID_PN

Columns: PID, PN

Keys: PID

FDs: PID \rightarrow SN

Normal form:

- The table is in BCNF because all FDs are key FDs
- Because the key has a single column the table is in 4NF

Projects_SID_SN

Columns: SID, SN

Keys: SID

FDs: $SID \rightarrow SN$

Normal form:

- The table is in BCNF because all FDs are key FDs
- Because the key has a single column the table is in 4NF

Projects_ID_MID

Columns: ID, MID

Keys: ID

FDs: $ID \rightarrow MID$

Normal form:

- The table is in BCNF because all FDs are key FDs
- Because the key has a single column the table is in 4NF

Projects_MID_MN

Columns: MID, MN

Keys: MID

FD: MID \rightarrow MN

Normal form:

- The table is in BCNF because all FDs are key FDs
- Because the key has a single column the table is in 4NF

3.3 Normalization of Citizens

Primary key: CID

Determined FDs:

 $CID \rightarrow CN$

 $CID \rightarrow CS$

 $CID \rightarrow CNr$

 $CID \rightarrow CZ$

 $CID \rightarrow CL$

 $CID \rightarrow EID$

 $CZ \rightarrow CL$

Minimal cover:

 $CID \rightarrow CN$

 $CID \rightarrow CS$

 $CID \rightarrow CNr$

 $CID \rightarrow CZ$

 $CID \rightarrow EID$

 $CZ \rightarrow CL$

Other keys: None

Normal form: 2NF because in one FD a non-key \rightarrow non-key.

Decomposition:

Citizens_CID_CN_CS_CNr_CZ_EID

Citizen_CZ_CL

The new relations

Citizens_CID_CN_CS_CNr_CZ_EID

Columns: CID, CN, CS, CNr, CZ, EID

Key: CID

FDs: CID \rightarrow CN, CS, CNr, CZ, EID

Normal forms:

- This relation is BCNF, since all FDs are key FDs
- Since the key only has one column, the table is in 4.NF

Citizens CZ CL

Columns: CZ, CL

Key: CZ

FDs: $CZ \rightarrow CL$

Normal forms:

- This relation is BCNF, since all FDs are key FDs
- Since the key only has one column, the table is in 4.NF

3.4 Normalization of Coffees

Primary keys: DID CID HID

Determined FDs:

 $DID \rightarrow DN$

 $DID \rightarrow DS$

 $CID \rightarrow CN$

 $CID \rightarrow CC$

 $(DID, HID, CID) \rightarrow DN$

(DID, HID, CID) \rightarrow DS

 $(DID, HID, CID) \rightarrow DN$

 $(DID, HID, CID) \rightarrow CN$

 $(DID, HID, CID) \rightarrow CC$

MVDs: DID \rightarrow HID, CID

Other keys: None

Minimal cover:

 $DID \rightarrow DN$

 $DID \rightarrow DS$

 $CID \rightarrow CN$

 $CID \rightarrow CC$

DID CID HID → DID CID HID

Normal form: 1.NF since FDs are key \rightarrow non-key.

Decomposition:

Coffees_DID_DN_DS(_DID_, DN, DS)

Coffees_CID_CN_CC(_CID_, CN, CC)

Coffees_DID_HID_CID(_DID_HID_CID_)

The new relations

Coffees_DID_DN_DS

Columns: DID, DN, DS

Keys: DID

FDs: DID \rightarrow DN, DID \rightarrow DS

Normal form:

- This relation is BCNF, since all FDs are key FDs
- Since the key only has one column, the table is in 4NF

Coffees CID CN CC

Columns: CID, CN, CC

Keys: CID

FDs: CID \rightarrow CN, CID \rightarrow CC

Normal form:

- This relation is BCNF, since all FDs are key FDs
- Since the key only has one column, the table is in 4NF

Coffees DID HID CID

Columns: DID, HID, CID

Keys: DID, HID, CID

FDs: None

Normal form:

- Since each attribute is a key the relation is in BCNF.
- We looked at the MVDs for the coffees table which gave: DID → → HID, CID. Now we know that HID and CID are both derived from DID. The table is therefore not in 4NF and it must be decomposed further.

Decomposition: Coffees_DID_HID and Coffees_DID_CID

Coffees_DID_HID

Columns: DID, HID

Keys: DID, HID

FDs: None

Normal form:

- Since the attributes are only keys it is in BCNF
- The table has only two attributes so it is so small for MVDs and the table is in 4NF

$Coffees_DID_CID$

Columns: DID, CID

Keys: DID, CID

FDs: None

Normal form:

- Since the attributes are only keys it is in BCNF
- The table has only two attributes so it is so small for MVDs and the table is in 4NF