2801.001 Spring 2018 Homework 1

Martin Arienmughare – moa258 Madhur Bhattad- mb6854 Louis Guigo – 1g2894 Mario Zhu – mz833

April 2018

Submission instructions: Groups of three to four, due 14 calendar days after the homework is posted, in electronic format. Submission must contain: (a) master answer sheet (typewritten or handwritten) with header containing your names and NetIDs, and (b) all relevant computer files such as code source, Excel files etc.

Problem 1

You are short 100 at-the-money call option contracts on the S&P 500 index expiring in one year with a contract multiplier of 100. The current index level is 2600, the interest and dividend rates are zero.

(a) Simulate the evolution of the index level at periods t as a geometric Brownian motion with volatility σ (free parameter) and calculate the corresponding call value, delta, gamma and theta using a fixed 20% implied volatility.

Solution.

[TODO]

(b) Then simulate your actual cumulative P&L when periodically delta-hedging your position (assuming you can trade the index as an asset) and compare it against the proxy formula on slide 11 for the following matrix of parameters:

σ Δt	Monthly (12 per year)	Weekly (52 per year)	Daily (252 per year)
$\sigma = 25\%$			
$\sigma = 20\%$			
$\sigma = 15\%$			

Solution.

[TODO]

(c) Provide a statistical analysis of your results over 10,000 simulations, where one simulation is an entire index path.

Solution.

[TODO]

Use your knowledge of how the VIX is calculated to show that the VIX is not the price of an investable asset. What about the square of the VIX?

Solution.

[TODO]

On March 29, 2018 the S&P 500 index (SPX) is 2611.53 and the 12-month VIX is 21.28. The implied volatility smile of SPX options expiring on March 15, 2019 is given as:

$$\sigma^* = \sqrt{a + b\left(\rho(x - m) + \sqrt{(x - m)^2 + s^2}\right)}$$

where $a=0.009,\ b=0.11,\ \rho=0.12,\ m=0.2,\ s=0.05,\ x=\log\frac{K}{F}$ is log-moneyness and F=2625.10 is the forward price. The continuous interest rate is 2.09% p.a.

(a) Draw the implied volatility smile curve for strikes $500 \le K \le 5000$.

Solution.

[TODO]

(b) Calculate the fair strike K var of a variance swap expiring on March 15, 2019 with the method of your choice. How close is your calculation to the 12-month VIX? Why is it not exactly the same?

Solution.

[TODO]

Consider a real symmetric matrix A. Show that $\exp(A) = \sum_{n=0}^{\infty} \frac{A^n}{n!}$ is symmetric positive-definite. Hint: Use spectral decomposition.

Solution.

Let $A \in S_n(\mathbb{R})$. Let us prove that $\exp(A) \in S_n^{++}(\mathbb{R})$.

- 1. The linear application $M \mapsto M^T$ is continuous on $\mathcal{M}_n(\mathbb{R})$, so if A is symmetric, we have $\exp(A)^T = \exp(A)$; $\exp(A)$ is symmetric.
- 2. Since A is symmetric, there exists an orthonormal basis of diagonalization of A, i.e.

$$A = P \operatorname{Diag}(\lambda_1, \dots, \lambda_n) P^{-1}$$

with $P \in O_n(\mathbb{R})$ and $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$. Taking the exponential of A, we therefore have:

$$\exp(A) = P \operatorname{Diag}(e^{\lambda_1}, \dots, e^{\lambda_n}) P^{-1}$$

With this writing, we clearly see that all the eigenvalues of $\exp(A)$ are strictly positive. Therefore $\exp(A)$ is positive-definite.

With these two points, $\exp(A)$ is a symmetric positive-definite matrix: $\exp(A) \in S_n^{++}(\mathbb{R})$.

Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, and E the vector space of random variables with finite second moment and mean zero. Define $\langle X, Y \rangle = \text{Cov}(X, Y)$ and, for any event $A \in \mathcal{A}$, $Z_A = I_A - \mathbb{P}(A)$ where I_A is the indicator variable of A.

(a) Show that $\langle \cdot, \cdot \rangle$ is an inner product on E. What is the induced norm?

Solution.

Let us recall that, for X and Y random variables, we define the covariance by:

$$Cov(X, Y) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y)))$$

Relation from which we deduce by some algebra:

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Over E, it simplifies to $Cov(X,Y) = \mathbb{E}(XY)$

Let us check that $X, Y \mapsto \langle X, Y \rangle$ is an inner product on E, the vector space of real random variables with zero mean and finite second moment.

 $Cov(\cdot, \cdot)$ is an application from $E \times E$ to \mathbb{R} .

Let $X, Y, Z \in \mathbb{E}$ and $\lambda \in \mathbb{R}$.

- i) (Symmetry) Cov(X,Y) = Cov(Y,X), clearly, using the symmetry in X,Y in the definition of the covariance.
- ii) $(Linearity) \operatorname{Cov}(\lambda X, Y) = \mathbb{E}((\lambda X \mathbb{E}(\lambda X))(Y \mathbb{E}(Y))) = \lambda \mathbb{E}((X \mathbb{E}(X))(Y \mathbb{E}(Y))) = \lambda \operatorname{Cov}(X, Y)$, by linearity of the expectation. Besides: $\operatorname{Cov}(X + Z, Y) = \mathbb{E}((X + Z - \mathbb{E}(X + Z))(Y - \mathbb{E}(Y))) = \mathbb{E}((X - \mathbb{E}(X) + Z - \mathbb{E}(Z))(Y - \mathbb{E}(Y))) = \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) + \mathbb{E}((X - \mathbb{E}(X))(Y - \mathbb{E}(Y))) = \operatorname{Cov}(X, Y) + \operatorname{Cov}(Z, Y).$
- iii) (Positive) $Cov(X, X) = \mathbb{E}((X \mathbb{E}(X))^2) \ge 0$ by positivity of the random variable $(X \mathbb{E}(X))^2$ and monotony of the expectation.
- iv) (Definite) $\operatorname{Cov}(X,X)=0$ iff $(X-\mathbb{E}(X))^2=0$ since it is a positive random variable. This implies $\operatorname{that} X-\mathbb{E}(X)=0$, i.e. X=0 since $\mathbb{E}(X)=0$ by definition of E.

With these elements, $Cov(\cdot, \cdot)$ is an inner product on E. The induced norm is:

$$||X|| = \sqrt{\mathbb{E}(X^2)}$$

(b) Show that $|\rho(X,Y)| \leq 1$ (correlation coefficient).

Solution.

By definition, $\rho(X,Y) = \frac{\langle X,Y \rangle}{\|X\| \|Y\|}$. But $\langle X,Y \rangle \leq \|X\| \|Y\|$ by Cauchy-Schwarz inegality, so $\rho \leq 1$.

(c) Show that if $X, Y \in E \setminus \{0\}$ are probabilistically independent then X, Y are linearly independent within E. Converse?

Solution.

Let us reason by contraposition. Let us assume that X, Y are not linearly independent, i.e. there exists $\lambda \in \mathbb{R}$ such that $Y = \lambda X$. Necessarily, $\lambda \neq 0$ since $X, Y \neq 0$.

So for $x, y \in \mathbb{R}$, $\mathbb{P}(X = x, Y = y) = \mathbb{P}(X = x, X = \frac{y}{\lambda})$. Therefore, $\mathbb{P}(X = x, Y = y) = 0$ if $y \neq \frac{x}{\lambda}$ and $\mathbb{P}(X = x)$ else. In that second case, we see that $\mathbb{P}(X = x, Y = y) \neq \mathbb{P}(X = x)\mathbb{P}(Y = y) = \mathbb{P}(X = x)^2$, unless X is constant equal to x which is impossible by assumption since $X \neq 0$ and $\mathbb{E}(X) = 0$ by definition of the vector space E.

Therefore, X and Y are not probabilistically independent.

This proves the direct implication over E.

The converse is false. As a counterexample, consider the random variable X taking values in the set $\{-1,0,1\}$ with equal probabilities $\frac{1}{3}$, and take $Y=X^2$.

Clearly, X and Y are linearly independent (since the probability affected to the outcome -1 is non zero in the law of X). However, X and Y are probabilistically dependent since for instance $\mathbb{P}(X=0,Y=1)=0 \neq \mathbb{P}(X=0)\cdot \mathbb{P}(Y=1)=\frac{1}{3}\cdot \frac{2}{3}$.

(d) Let $X, Y \in E \setminus \{0\}$. What is the statistical interpretation of the orthogonal projection of Y on Span(X)?

Solution.

The orthogonal projection of Y on the line Span(X) is exactly given by:

$$\Pi_{\mathrm{Span}(X)}(Y) = \frac{\langle X, Y \rangle}{\|X\|} X = \frac{\mathrm{Cov}(X, Y)}{Var(X)} X$$

This orthogonal projection is a random variable linearly dependent with X, which has the same correlation with X as Y has. Additionally, $\frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(X)}$ is the λ coefficient that minimizes the variance of any random variable $Y - \lambda X$.

In statistical terms, it means that if we wanted to predict Y using X with a linear model, i.e. $\hat{Y} = \alpha X + \beta$, $\frac{\text{Cov}(X,Y)}{Var(X)}$ would be the α coefficient that minimizes the norm of the prediction error $\epsilon = \mathbb{E}((\hat{Y} - Y)^2)$.

Indeed the first order conditions of this simple minimization problem are:

$$\frac{\partial \epsilon}{\partial \alpha} = -2\mathbb{E}((\hat{Y} - Y)\frac{\partial \hat{Y}}{\partial \alpha}) \text{ and } \frac{\partial \epsilon}{\partial \beta} = -2\mathbb{E}((\hat{Y} - Y)\frac{\partial \hat{Y}}{\partial \beta})$$

which can be rewritten:

$$\mathbb{E}((\hat{Y} - Y)X) = 0$$
 and $\mathbb{E}(\hat{Y} - Y) = 0$

This means that the prediction error $\hat{Y} - Y$ has to be orthogonal to X and that its expected value must be zero. Note that the first order conditions correspond to a minimum given the positive-definiteness of the Hessian.

Substituting $\hat{Y} = \alpha X + \beta$, we obtain $\alpha = \frac{\text{Cov}(X,Y)}{Var(X)}$ and $\beta = \mathbb{E}(Y) - \frac{\text{Cov}(X,Y)}{Var(X)}\mathbb{E}(X)$. As stated above, it means that $\frac{\text{Cov}(X,Y)}{Var(X)}X$ is the closest random variable (i.e. the one that minimizes the variance of the prediction error) to Y in Span(X).

Besides, the prediction error is given by $\epsilon = (1 - \rho^2) Var(Y)$. If $\rho = \pm 1$, a perfect prediction can be made. When $\rho = 0$, the variance in the prediction is as large as the variation in Y, which implies that the predictor is very bad. For intermediate values of ρ , the predictor reduces the error.

(e) Verify that $Z_A \in E$ and calculate $\langle Z_A, Z_B \rangle$ for any $A, B \in \mathcal{A}$. When is $Z_A \perp Z_B$? Are $Z_A, Z_{\overline{A}}$ linearly independent in E?

Solution.

It is a fact that $Z_A \in E$ for any $A \in \mathcal{A}$ since this is a random variable with first and second moment respectively such that: $\mathbb{E}(Z_A) = \mathbb{E}(I_A - \mathbb{P}(A)) = \mathbb{E}(I_A) - \mathbb{P}(A) = 0$ and $\mathbb{E}(Z_A^2) = \mathbb{E}(I_A^2 - 2\mathbb{P}(A)I_A + \mathbb{P}(A)^2) = \mathbb{E}(I_A^2) - 2\mathbb{P}(A)\mathbb{E}(I_A) + \mathbb{P}(A)^2 = \mathbb{P}(A)(1 - \mathbb{P}(A))$, so $\mathbb{E}(Z_A^2) \leq \infty$ since $I_A^2 = I_A$.

Besides, for $A, B \in \mathcal{A}$, $\langle Z_A, Z_B \rangle = \langle I_A - \mathbb{P}(A), I_B - \mathbb{P}(B) \rangle = \langle I_A, I_B \rangle - \langle I_A, \mathbb{P}(B) \rangle - \langle \mathbb{P}(A), I_B \rangle + \langle \mathbb{P}(A), \mathbb{P}(B) \rangle = \langle I_A, I_B \rangle$

So,
$$\langle Z_A, Z_B \rangle = \mathbb{E}((I_A - \mathbb{P}(A))(I_B - \mathbb{P}(B))) = \mathbb{E}(I_{A \cap B} - \mathbb{P}(B)I_A - \mathbb{P}(A)I_B + \mathbb{P}(A)\mathbb{P}(B)).$$

Id est, $\langle Z_A, Z_B \rangle = \mathbb{P}(A \cap B) - \mathbb{P}(A)\mathbb{P}(B).$

We can see that $Z_A \perp Z_B$ when $\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$, that is, when events A and B are stochastically independent.

 $Z_A, Z_{\overline{A}}$ are not linearly independent in E since for any $Z_{\overline{A}} = 1 - Z_A$.

(f) Suppose $A, B \in \mathcal{A} \setminus \{\emptyset, \Omega\}$ are disjoint, and $B \neq \overline{A}$. Show that Z_A, Z_B are linearly independent.

Solution.

Let $A, B \in \mathcal{A} \setminus \{\emptyset, \Omega\}$ such that $A \cap B = \emptyset$. Let $\lambda, \mu \in \mathbb{R}$ such that $\lambda Z_A + \mu Z_B = 0$. Since $A \cap B = \emptyset$, plugging in any two elementary events $x \in A$ and $y \in B$ yields:

$$\begin{cases} -\lambda \mathbb{P}(A) + \mu(1 - \mathbb{P}(B)) = 0\\ \lambda(1 - \mathbb{P}(A)) - \mu \mathbb{P}(B) = 0 \end{cases}$$

Taking the difference between these equations, we obtain the condition: $\lambda = \mu$.

Therefore, $\lambda(Z_A + Z_B) = 0$. Since $B \neq \overline{A}$, this implies $\lambda = \mu = 0$.

Thus, Z_A and Z_B are linearly independent.

(g) Suppose $A \in \mathcal{A} \setminus \{\emptyset, \Omega\}$ and define $B = \{\emptyset, A, \overline{A}, \Omega\} \subseteq A$. Let Y = E(X|B). Verify that $Y \in E$ and show that Y is the orthogonal projection of X on Span (Z_A) .

Solution.

Note that B is a σ -Algebra, therefore it makes sense to consider $Y = \mathbb{E}(X|B)$.

Let us recall that Y is defined as the almost surely unique random variable such that for any bounded and B-measurable random variable U, $\mathbb{E}(XU) = \mathbb{E}(YU)$.

We have: $\mathbb{E}(Y) = \mathbb{E}(\mathbb{E}(X|B)) = \mathbb{E}(X) = 0$ using the tower property of conditional expectation and the fact that $X \in E$.

Besides, $\mathbb{E}(Y^2) = \mathbb{E}(\mathbb{E}(X|B)^2) \le \mathbb{E}(\mathbb{E}(X|\sigma(X))^2 \le \mathbb{E}(X^2) \le \infty$ since $X \in E$.

Let us check that Y is the orthogonal projection of X on $\mathrm{Span}(Z_A)$. For that matter, let us show that it is such that for all $U \in \mathrm{Span}(Z_A)$, $\langle X - Y, U \rangle = 0$.

Let $U \in \text{Span}(Z_A)$. Since Z_A is B-measurable, U is also B-measurable, and it follows that $\mathbb{E}(UX|B) = U\mathbb{E}(X|B)$.

Therefore: $\mathbb{E}(U\mathbb{E}(X|B)) = \mathbb{E}(\mathbb{E}(UX|B)) = \mathbb{E}(UX)$ i.e. $\langle U, Y \rangle = \langle U, X \rangle$. That is exactly $\langle U, Y - X \rangle = 0$.

Since this is true for any $U \in \text{Span}(Z_A)$, we conclude that $Y - X = \mathbb{E}(X|B) - X$ realizes the minimum distance from X to $\text{Span}(Z_A)$.

Since $(E, \text{Cov}(\cdot, \cdot))$ is a Hilbert space, the minimum distance is realized by the orthogonal projection. Thus, we have $Y = \prod_{\text{Span}(Z_A)}(X)$.

Consider a vector space E equipped with a norm N(x).

(a) Show that N is Euclidean (i.e. induced by some inner product) if and only if N satisfies the parallelogram law:

$$N(x+y)^{2} + N(x-y)^{2} = 2 \cdot [N(x)^{2} + N(y)^{2}]$$

Hint: Define the inner product through N.

Solution.

If N is Euclidean, it derives from a certain inner product $\langle \cdot, \cdot \rangle$. And we have:

$$N(x+y)^2 + N(x-y)^2 = \langle x+y, x+y \rangle + \langle x-y, x-y \rangle = 2\langle x, x \rangle + 2\langle y, y \rangle + 2\langle x, y \rangle - 2\langle x, y \rangle$$

Therefore,
$$N(x+y)^2 + N(x-y)^2 = 2 \cdot \left[N(x)^2 + N(y)^2 \right]$$

Let's now assume that N checks the parallelogram law, and let us prove that the bilinear form $\langle \cdot, \cdot \rangle$ defined by polarization as follows is an inner product over E from which N derives:

$$\langle x, y \rangle = \frac{1}{4} \cdot \left[N(x+y)^2 - N(x-y)^2 \right]$$

We clearly have, by homogeneity, $N(x) = \sqrt{\langle x, x \rangle}$.

 $\langle \cdot, \cdot \rangle$ is an application from $E \times E$ to \mathbb{R} .

Let $x, y, z \in \mathbb{E}$ and $\lambda \in \mathbb{R}$.

- i) (Symmetry) $\langle x, y \rangle = \langle y, x \rangle$, clearly, using the symmetry in x, y in its definition.
- ii) (Positive) $\langle x, x \rangle = \frac{1}{4} \cdot N(2x)^2 = N(x)^2 \ge 0$ since N(0) = 0 by separation.
- iii) (Definite) $\langle x, x \rangle = 0$ iff $\frac{1}{4}N(x)^2 = 0$ iff x = 0 by separation.
- iv) (Linearity) Observe that:

$$\langle x+y,z\rangle + \langle x-y,z\rangle = \frac{1}{4} \left[N(x+y+z)^2 - N(x+y-z)^2 + N(x-y+z)^2 - N(x-y-z)^2 \right]$$

Therefore,

$$\langle x + y, z \rangle + \langle x - y, z \rangle = \frac{1}{4} \left[2 \cdot \left[N(x + y)^2 - N(z)^2 \right] + 2 \cdot \left[N(x - y)^2 + N(z)^2 \right] \right]$$

Thus,

$$\langle x + y, z \rangle + \langle x - y, z \rangle = 2 \cdot \left[N(x)^2 + N(y)^2 \right]$$

Which can be rewritten:

$$\langle x + y, z \rangle + \langle x - y, z \rangle = 2 \cdot \langle x, y \rangle$$

From which we deduce, taking y = x:

$$\langle 2 \cdot x, y \rangle = 2 \cdot \langle x, y \rangle$$

By induction, we prove that this it is true for any power n that:

$$\langle 2^n \cdot x, y \rangle = 2^n \cdot \langle x, y \rangle$$

Taking $u = \frac{1}{2}(x+y)$ and $v = \frac{1}{2}(x-y)$, we have:

$$\langle x+y,z\rangle = \langle 2\cdot u,z\rangle = 2\cdot \langle u,z\rangle = \langle u+v,z\rangle + \langle u-v,z\rangle = \langle x,z\rangle + \langle y,z\rangle$$

.

By induction we conclude that for any $n \in \mathbb{N}$ (we've seen that it's true for n = 0), and any $x, y \in E$ we must have:

$$\langle nx, y \rangle = n \langle x, y \rangle$$

We can extend the linearity to \mathbb{Z} using $\langle -x, y \rangle = -\langle x, y \rangle$, and then to \mathbb{Q} using $\langle x, y \rangle = n \cdot \langle \frac{1}{n}x, y \rangle$.

We conclude that the linearity is true over \mathbb{R} using the well-known density of \mathbb{Q} in \mathbb{R} and the continuity of the application $(x,y)\mapsto \frac{1}{4}\cdot [N(x+y)^2-N(x-y)^2]$, since the norm N is continuous.

Therefore, the linearity of $\langle \cdot, \cdot \rangle$ is true.

Therefore $\langle \cdot, \cdot \rangle$ is an inner product over E from which N derives since $N(x) = \sqrt{\langle x, x \rangle}$.

<u>Conclusion:</u> N is a Euclidean norm if and only if it checks the parallelogram identity.

(b) Which of the following are Euclidean norms on $E = \mathbb{R}^n$?

$$N_p(x) = \sqrt[p]{\sum_{i=1}^n |x_i|^p}$$

$$Q_p(x) = \sqrt{N_2(x)^2 + \frac{1}{p} \sum_{i < j} x_i x_j}$$

where $p \in [1, \infty)$.

Solution.

Given the previous question, we just need to verify if these norms check the parallelogram identity to know if they are Euclidean. For p=2, N_p is nothing but the so called Euclidean norm over \mathbb{R}^n , which as its name tells us, is Euclidean and derives from the canonical inner product of \mathbb{R}^n : $\langle x, y \rangle = x^T y$.

However, for $p \ge 1$ but $p \ne 2$, N_p is not Euclidean. As a counterexample, one can consider x = (1, 1, 0, ..., 0) and y = (1, -1, 0, ..., 0). We have $N_p(x) = N_p(y) = \sqrt[p]{2}$ but $N_p(x+y) = N_p(x-y) = 2$. So $N_p^2(x+y) + N_p^2(x-y) = 8 \ne 2(N_p^2(x) + N_p^2(y)) = 4\sqrt[p]{2}$.

Since it doesn't check the parallelogram identity, N_p is not Euclidean for $p \geq 1$ but $p \neq 2$.

 Q_p is not a norm for any $p \in [1, \infty)$ since it doesn't check the triangle inequality: for $x = (1, 0, \dots, 0)$ and $y = (0, 1, 0, \dots, 0)$, we have:

$$Q_p(x+y)^2 = 2^2 + \frac{1}{p} > Q_p(x)^2 + Q_p(y)^2 = 1^2 + 1^2 = 2$$

A fortiori, it can't be a Euclidean norm.

(c) Define $A^2(x,y) = [N(x) \cdot N(y)]^2 - [N(x+y)^2 - N(x-y)^2]^2/16$. Show that if N is Euclidean then $A^2(x,y) \ge 0$ and $A(x+y,x-y) = 2 \cdot A(x,y)$.

Geometric interpretation for $E = R^2$?

Solution.

The triangle and reverse triangle inequalities tell us that for any $x, y \in E$:

$$\begin{cases} N(x+y) \leqslant N(x) + N(y) \\ N(x-y) \geqslant |N(x) - N(y)| \end{cases}$$

Since both sides are positive, we can compose by the square function and obtain:

$$\begin{cases} N(x+y)^2 \le (N(x) + N(y))^2 \\ N(x-y)^2 \ge (N(x) - N(y))^2 \end{cases}$$

Taking the negative version of the second inequality and adding them, we get:

$$N(x+y)^2 - N(x-y)^2 \le (N(x) + N(y))^2 - (N(x) - N(y))^2$$

After simplification, the right hand-side is exactly 4N(x)N(y) so we get:

$$\frac{1}{4}(N(x+y)^2 - N(x-y)^2) \leqslant N(x)N(y)$$

To prove $A^2(x,y) \ge 0$, we need to show that $\frac{1}{16}(N(x+y)^2 - N(x-y)^2)^2 \le (N(x)N(y))^2$, i.e. $\frac{1}{4}|N(x+y)^2 - N(x-y)^2| \le N(x)N(y)$.

Given the first inequality proved, we just need to show that

$$-\frac{1}{4}(N(x+y)^2 - N(x-y)^2) \leqslant N(x)N(y)$$

Given that N is Euclidean, this is equivalent to:

$$2(N(x)^2 + N(y)^2 - 2N(x+y)^2) \le 4N(x)N(y)$$

Itself equivalent to

$$N(x+y)^2 \geqslant (N(x) - N(y))^2$$

Which is true by the second triangle inequality used above (it is its square). Conclusion:

$$\frac{1}{4}|N(x+y)^2 - N(x-y)^2| \le N(x)N(y)$$

i.e

$$\frac{1}{16}(N(x+y)^2 - N(x-y)^2)^2 \leqslant (N(x)N(y))^2$$

i.e.

$$A^2(x,y) \geqslant 0$$

Let us now prove that $A(x+y,x-y)=2\cdot A(x,y)$ (well defined with the first point).

We have:
$$4A^2(x,y) = 4((N(x)N(y))^2 - \frac{1}{16}(N(x+y)^2 - N(x-y)^2)^2)$$
.

Using the parallelogram identity, we substitute: $N^2(x), N^2(y), N^2(x+y), N^2(x-y) \leftarrow \frac{1}{2}(N^2(x+y)+N^2(x-y)-N^2(y)), \frac{1}{2}(N^2(x+y)+N^2(x-y)-N^2(x)), 2(N^2(x)+N^2(y))-N^2(x-y), 2(N^2(x)+N^2(y))-N^2(x+y).$

After draft calculations not reported here, we get exactly

$$A^{2}(x+y, x-y) = 4 \cdot A^{2}(x,y)$$

Taking the square root,

$$A(x+y, x-y) = 2 \cdot A(x,y)$$

In \mathbb{R}^2 , A^2 represents the difference of squared surface between a rectangle with sides N(x) and N(y), and a rectangle with sides $\frac{N(x+y)}{2}$ and $\frac{N(x-y)}{2}$.

So the last identity means that the difference of squared surface between a rectangle with sides N(x+y) and N(x-y), and a rectangle with sides 2N(x) and 2N(y) is equal to twice the difference of squared surface between a rectangle with sides N(x) and N(y), and a rectangle with sides $\frac{N(x+y)}{2}$ and $\frac{N(x-y)}{2}$.

Quite unsatisfying interpretation...