

第八章 假设检验

§ 8.1 假设检验

若对参数 一无所知

用参数估计的方法处理

若数有了

但有 類 需要 实 之 时

用假设 检验的 方法来 处理

引例 女士品茶 一种奶茶是由牛奶和茶按一定比例混合而成,品茶时某女士坚称: 把茶加进奶里, 或把奶加进茶里, 不同的做法, 会使奶茶的味道尝起来不同。在座的人为了检验这位女士是不是在信口开河, 调制了10杯奶茶, 其中有的是先加奶后加茶, 有的是先加茶后加奶, 奉给该女士品尝, 结果她全部正确分辨出来了, 此时该做出怎样的结论?

统计学家Fisher给出了如下推理思路:

如果那位女士没有鉴别能力, 纯粹瞎蒙, 每次蒙对的概率就是1/2, 此时她有多大的可能性10杯都蒙对? 只有0.5¹⁰<0.001, 这是一个很小的概率, 概率如此小的事件在一次试验中几乎不会发生, 如今居然发生了, 只能说明该女士并非瞎蒙, 而是确有鉴别奶茶的能力。

△什么是假设检验?

假设检验是对总体的概率分布或参数提出某种假设,根据抽取的样本观测值,按照一定的原则,检验这种假设是否成立,然后作出接受或拒绝所作假设的决定.

所作假设可以是正确的,也可以是错误的.

△ 假设检验的内容

参数检验

总体均值,均值差的检验 总体方差,方差比的检验 分布拟合检验

非参数检验

秩和检验

△ 假设检验的理论依据

假设检验所以可行, 其理论背景为实际

推断原理,即"小概率原理"

一、假设检验的基本思想和方法

例1、罐装可乐的容量是一个随机变量, 服从正态分布,当机器正常时,其均值为 355毫升,标准差为5毫升。

生产流水线上罐装可乐不断地封装,然后装箱外运.怎么知道这批罐装可乐的容量是否合格呢?

 $\sigma = 5$ 是一个常数. 现在要检验的假设是:

$$H_0$$
: $\mu = \mu_0$ ($\mu_0 = 355$)

它的对立假设是:

 H_1 : $\mu \neq \mu_0$

在实际工作中,往往把不轻易否定的命题作为原假设.

称 H_0 为原假设(或零假设);

称 H_1 为备择假设(或对立假设).

那么,如何判断原假设 H_0 是否成立呢?

由于 μ 是正态分布的期望值,它的估计量是样本均值 \overline{X} , 因此,可以根据 \overline{X} 与 μ_0 的差距 $|\overline{X} - \mu_0|$ 来判断 H_0 是否成立.

当 $|\overline{X}^-\mu_0|$ 较小时,可以认为 H_0 是成立的;

当 $|\overline{X} - \mu_0|$ 较大时,应认为 H_0 不成立,即生产已不正常。

较大、较小是一个相对的概念,合理的界限在何处?应由什么原则来确定?

问题是:如何给出这个量的界限?

小概率事件在一次试验中基本上不会发生.

若 H_0 成立, $\left| \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \right| > k$ 为小概率事件。

小概率可事先给定,小概率一旦确定,临界值k就 可以确定,如规定这个小概率为 α

$$p\left(\left|\frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}\right| > u_{\frac{\alpha}{2}}\right) = \alpha, k = u_{\frac{\alpha}{2}}$$

 α 的选择要根据实际情况而定。

常取 $\alpha = 0.1, \alpha = 0.01, \alpha = 0.05.$

由于 σ 已知, 选检验统计量 $U = \frac{X - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$

它能衡量差异 $|\overline{X} - \mu_0|$ 大小且分布已知.

对给定的显著性水平 α ,可以在N(0,1)表中查

到分位点的值 $u_{\alpha/2}$,使

$$P\{|U|>u_{\alpha/2}\}=\alpha$$

也就是说,

" $|U|>u_{\alpha/2}$ "是一个小概率事件.

$$\left|\frac{\overline{x}-\mu_0}{\sigma/\sqrt{n}}\right| > u_{\frac{\alpha}{2}},$$

小概率事件在一次试验中发生了,那么我们就有理由怀疑原假设 H_0 的正确性,从而拒绝 H_0 ,否则接受 H_0 。

区域 W:
$$|U| = \left| \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right| > u_{\frac{\alpha}{2}}$$
 称为拒绝域,拒绝域的边界

 $u_{\alpha/2}$, $-u_{\alpha/2}$ 称为临界点。

如果由样本值算得该统计量的实测值落入区域W,则拒绝 H_0 ;否则,不能拒绝 H_0 .

不否定 H_0 并不是肯定 H_0 一定对,而只是说差异还不够显著,还没有达到足以否定 H_0 的程度.

所以假设检验又叫

"显著性检验"

如果显著性水平 α 取得很小,则拒绝域也会比较小.

其产生的后果是: H_0 难于被拒绝.

如果在 α 很小的情况下 H_0 仍被拒绝了,则说明实际情况很可能与之有显著差异.

基于这个理由,人们常把 $\alpha = 0.05$ 时拒绝 H_0 称为是显著的,而把在 $\alpha = 0.01$ 时拒绝 H_0 称为是高度显著的.

二、假设检验的基本概念

- 1、原假设与备择假设
- 2、检验统计量
- 3、显著性水平
- 4、拒绝域、临界点

三、假设检验的一般步骤(四步曲)

第一步:根据实际问题提出原假设 H_0 和备择假设 H_1

第二步: 选取适当的检验统计量,并在 H_0 为真的条件下该统计量的分布已知,并能衡量差异的大小。

第三步:根据显著性水平 α ,求拒绝域。

第四步: 计算检验统计量的观测值,检验其是否落入拒绝域,从而作出决策,是接受 H_0 ,还是拒绝 H_0

例2 某工厂生产的一种螺钉,标准要求长度是32.5毫米. 实际生产的产品,其长度X 假定服从正态分布 $N(\mu,\sigma^2)$, σ^2 未知,现从该厂生产的一批产品中抽取6件,得尺寸数据如下:

32.56, 29.66, 31.64, 30.00, 31.87, 31.03

问这批产品是否合格?

分析: 这批产品(螺钉长度)的全体组成问题的总体X. 现在要检验E(X)是否为32.5.

已知 $X \sim N(\mu, \sigma^2), \sigma^2$ 未知.

第一步: 提出原假设和备择假设

$$H_0: \mu = 32.5 \Leftrightarrow H_1: \mu \neq 32.5$$

第二步: 取一检验统计量,在 H_0 成立下 求出它的分布

$$t = \frac{\overline{X} - 32.5}{S/\sqrt{6}} \sim t(5)$$

能衡量差异大小且分布已知

第三步: 求拒绝域

对给定的显著性水平 α =0.01,查表确定临界值 $t_{\alpha/2}(5)=t_{0.005}(5)=4.0322$,使 $P\{|t|>t_{\alpha/2}(5)\}=\alpha$

即" $|t| > t_{\alpha/2}(5)$ "是一个小概率事件.

得拒绝域 W: |t|>4.0322

小概率事件在一次 试验中基本上不会 发生.

得拒绝域 W: |t|>4.0322

第四步: 将样本值代入算出统计量 t 的实测值, 检验它

是否落入拒绝域,从而作出决策,是接受 H_0 还是拒绝 H_0

拒绝域

故不能拒绝 H_0 .

这并不意味着 H_0 一定对,只是差异还不 够显著,不足以否定 H_0 .

四、假设检验的两类错误

假设检验会不会犯错误呢?

由于作出结论的依据是下述

小概率原理

不是一定不发生

小概率事件在一次试验中基本上不会发生.

如果 H_0 成立,但统计量的实测值落入拒绝域,从而作出否定 H_0 的结论,那就犯了"以真为假"的错误. (弃真)第一类错误

如果 H_0 不成立,但统计量的实测值未落入否定域,从而没有作出否定 H_0 的结论,即接受了错误的 H_0 ,那就犯了"以假为真"的错误. (取伪)第二类错误

请看下表

假设检验的两类错误

	实际情况		
决定	H_0 为真	H_0 不真	
拒绝H ₀	第一类错误	正确	
接受 H_0	正确	第二类错误	

犯两类错误的概率:

$$\alpha = P\{拒绝H_0|H_0为真\} = P_{\theta}(X \in W), \quad \theta \in \Theta_0$$

$$\beta = P\{接受H_0|H_0不真\} = P_{\theta}(X \in \overline{W}), \quad \theta \in \Theta_1$$

显著性水平 α 为犯第一类错误的概率.

五、单、双边检验

$$H_0: \mu = \mu_0 \longrightarrow H_1: \quad \mu \neq \mu_0$$

备择假设 H_1 表示 μ 可能大于 μ_0 ,也可能小于 μ_0 称为双边备择假设;相应的检验称为双边检验

拒绝域取在两侧。

$$H_0: \mu \leq \mu_0$$
 $H_1: \mu > \mu_0$ 右边检验

$$H_0: \mu \geq \mu_0$$
 $H_1: \mu < \mu_0$ 左边检验

统称为单边检验 拒绝域在单侧。

六、单边检验的拒绝域

设总体 $X\sim N(\mu,\sigma^2)$, σ^2 为已知, X_1,\ldots,X_n 是来自X 的样本。给定显著性水平 α ,求检验问题

 $H_0: \mu \leq \mu_0$ $H_1: \mu > \mu_0$ 拒绝域。

因 H_0 中的全部 μ 都比 H_1 中的 μ 要小,当 H_1 为真时,观察值 x 往往偏大,因此拒绝域的形式为

 $x \ge k$ k 是某一正常数

当
$$H_0$$
为真时: $\mu \le \mu_0$, $\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \sim N(0,1)$

$$\frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \ge \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}, \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \ge a \right\} \subset \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \ge a \right\}$$

$$= p_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} \leq p_{\mu \leq \mu_0} \left\{ \frac{\overline{X} - \mu}{\sigma / \sqrt{n}} \geq \frac{k - \mu_0}{\sigma / \sqrt{n}} \right\} = \alpha$$

曲于当
$$\mu \leq \mu_0$$
时, $\frac{X-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$

所以
$$\frac{k-\mu_0}{\sigma/\sqrt{n}} = z_{\alpha}$$
, 即 $k = \mu_0 + \frac{\sigma}{\sqrt{n}} z_{\alpha}$ 因此拒绝域为

$$\overline{x} \ge \mu_0 + \frac{\sigma}{\sqrt{n}} z_\alpha$$
, $\exists \exists z = \frac{x - \mu_0}{\sigma / \sqrt{n}} \ge z_\alpha$

类似地,可得左边检验问题

$$H_0: \mu \geq \mu_0$$
 $H_1: \mu < \mu_0$ 的拒绝域为

$$z = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \le -z_{\alpha}$$

例3 某织物强力指标X的均值 $\mu_0 = 21$ 公斤。赞 进工艺后生产一批织物,今从中取30件,测 得 $\overline{x}=21.55$ 公斤. 假设强力指标服从正态分 $\pi N(\mu, \sigma^2)$, 且已知 $\sigma=1.2$ 公斤,问在显著 性水平 $\alpha=0.01$ 下,新生产织物比过去的织物 强力是否有提高?

解:提出假设: $H_0: \mu \le 21 \Leftrightarrow H_1: \mu > 21$

取统计量
$$Z = \frac{\overline{X} - 21}{\sigma/\sqrt{n}} \sim N(0,1)$$
 $\{Z > z_{0.01}\}$ 是 一小概率事件

拒绝域为 $W: Z > z_{0.01} = 2.33$

解:提出假设: $H_0: \mu \le 21 \Leftrightarrow H_1: \mu > 21$ 数理统计

取统计量
$$Z = \frac{\overline{X} - 21}{\sigma/\sqrt{n}} \sim N(0,1)$$

否定域为 $W: Z > z_{0.01} = 2.33$

代入 σ =1.2, n=30, 并由样本值计算得统计量U的实测值

Z=2.51>2.33

落入否定域

故拒绝原假设 H_0 .

此时可能犯第一类错误,犯错误的概率不超过0.01.

例4 某工厂生产的固体燃料推进器的燃烧率服从 正态分布 $N(\mu, \sigma^2), \mu = 40cm/s, \sigma = 2cm/s$.

现在用新方法生产了一批推进器。从中随机取 n=25只,测得燃烧率的样本均值为

x = 41.25cm / s.

设在新方法下总体均方差仍为 2 cm/s,问这批推进器的燃烧率是否较以往生产的推进器的燃烧率有显著的提高?取显著性水平 $\alpha = 0.05$.

解:提出假设:
$$H_0: \mu \le \mu_0 = 40$$
 $H_1: \mu > \mu_0$

取统计量
$$U = \frac{x - \mu_0}{\sigma / \sqrt{n}} \ge U_{0.05} = 1.645$$

否定域为 $W: U > U_{0.05} = 1.645$

代入 $\sigma=2$, n=25, 并由样本值计算得统计

量U的实测值

U=3.125>1.645

落入否定域

故拒绝 H_0 ,即认为这批推进器的燃料率较以往 生产的有显著的提高。

五、小结

提出 假设 根据统计调查的目的,提出原假设 H_0 和备选假设 H_1

作出 决策

拒绝还是不能 拒绝H₀

抽取 样本

检验 假设

 $P(T \in W) = \Omega$ Ω -----犯第一 类错误的概率, W为拒绝域

显著性 水平 对差异进行定量的分析,确定其性质(是随机误差还是系统误差.为给出两者界限,找一检验统计量T,在H₀成立下其分布已知.)

§2 正态总体均值的假设检验

一、单个总体 $N(\mu,\sigma^2)$ 均值 μ 的检验 1° σ^2 已知,关于 μ 的检验 U 检验 利用统计量 $U = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0,1)$ 确定拒绝域 $|U| > u_{\alpha/2}$

2° σ²未知, 关于μ的检验 t 检验

利用统计量 $t = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$ 确定拒绝域

$$|t| = \left| \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \right| \ge t_{\frac{\alpha}{2}}(n-1)$$

U检验法 (σ² 已知)

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其 H ₀ 为真时的分布	拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$	$U = \frac{\overline{X} - \mu_0}{}$	$\mid U \mid \geq u_{\frac{\alpha}{2}}$
$\mu \geq \mu_0$	$\mu < \mu_0$	$\frac{\sigma}{\sqrt{n}}$	$U \leq -u_{\alpha}$
$\mu \leq \mu_0$	$\mu > \mu_0$	~ N(0,1)	$U \geq u_{\alpha}$

Τ检验法 (σ² 未知)

原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其 H ₀ 为真时的分布	拒绝域
$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S}$	$\mid T \mid \geq t_{\frac{\alpha}{2}}(n-1)$
$\mu \ge \mu_0$	$\mu < \mu_0$	\sqrt{n}	$T \le -t_{\alpha} (n-1)$
$\mu \leq \mu_0$	$\mu > \mu_0$	$\sim t(n-1)$	$T \ge t_{\alpha} (n-1)$

例1 某厂生产小型马达,说明书上写着:这种小型马达在正常负载下平均消耗电流不会超过0.8 安培.

现随机抽取16台马达试验,求得平均消耗电流为0.92安培, 消耗电流的标准 差为0.32安培.

假设马达所消耗的电流服从正态分布,取显著性水平为 $\alpha = 0.05$,问根据这个样本,能否否定厂方的断言?

解 根据题意待检假设可设为

$$H_0: \mu \le 0.8$$
; $H_1: \mu > 0.8$

 σ 未知,故选检验统计量:

$$T = \frac{\overline{X} - \mu_0}{S / \sqrt{16}} \sim t(15)$$

查表得 $t_{0.05}(15) = 1.753$, 故拒绝域为

$$\frac{\overline{x} - 0.8}{s / \sqrt{n}} > 1.753$$
 $\Rightarrow \overline{x} > 0.8 + 1.753$ $\frac{0.32}{4} = 0.94$

现
$$\overline{x} = 0.92 < 0.94$$

故接受原假设,即不能否定厂方断言.

解二 $H_0: \mu \ge 0.8; \quad H_1: \mu < 0.8$

选用统计量:

$$T = \frac{\bar{X} - \mu_0}{S / \sqrt{16}} \sim T(15)$$

查表得 $t_{0.95}(15) = 1.753$, 故拒绝域

$$\frac{\bar{x} - 0.8}{s / \sqrt{n}} < -1.753 \implies \bar{x} < 0.8 - 1.753 \frac{0.32}{4} = 0.66$$

现 $\bar{x} = 0.92 > 0.66$

故接受原假设,即否定厂方断言.

二、两个正态总体均值差的检验(t检验)

总体
$$X \sim N(\mu_1, \sigma^2), Y \sim N(\mu_2, \sigma^2)$$
,求检验问题

$$H_0: \mu_1 - \mu_2 = \delta$$
, $H_1: \mu_1 - \mu_2 \neq \delta$

(δ 为已知常数)的拒绝域。取显著性水平 α

统计量
$$t = \frac{(\overline{X} - \overline{Y}) - \delta}{S_{\omega} \sqrt{1/n_1 + 1/n_2}} \sim t(n_1 + n_2 - 2)$$

拒绝域
$$|t| = \frac{|(\bar{x} - \bar{y}) - \delta|}{s_{\omega} \sqrt{1/n_1 + 1/n_2}} \ge t_{\alpha/2}(n_1 + n_2 - 2)$$

(1) 关于均值差 $\mu_1 - \mu_2$ 的检验

原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\mu_1 - \mu_2 = \delta$	$\mu_1 - \mu_2 \neq \delta$	$U = \frac{\overline{X} - \overline{Y} - \delta}{\overline{C}}$	$\mid U \mid \geq u_{\frac{\alpha}{2}}$
$\mu_1 - \mu_2 \ge \delta$	$\mu_1 - \mu_2 < \delta$	$\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}$	$U \leq -u_{\alpha}$
$\mu_1 - \mu_2 \le \delta$	$\mu_1 - \mu_2 > \delta$	$\sim N(0,1)$ $(\sigma_1^2, \sigma_2^2$ 已知)	$U \ge u_{\alpha}$

原假设 H_0	备择假设 H_1	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\mu_1 - \mu_2 = \delta$	$\mu_1 - \mu_2 \neq \delta$	$T = \frac{\bar{X} - \bar{Y} - \delta}{\sqrt{\frac{1}{n} + \frac{1}{m}S_{w}}}$	$\mid T \mid \geq t_{\frac{\alpha}{2}}$
$\mu_1 - \mu_2 \ge \delta$	$\mu_1 - \mu_2 < \delta$	$\sqrt{\frac{1}{n} + \frac{1}{m}} S_w$ $\sim t(n + m - 2)$	$T \leq -t_{\alpha}$
$\mu_1 - \mu_2 \le \delta$	$\mu_1 - \mu_2 > \delta$	$\begin{pmatrix} \sigma_1^2, \sigma_2^2 未知 \\ \sigma_1^2 = \sigma_2^2 \end{pmatrix}$	$T \ge t_{\alpha}$

其中
$$S_w = \sqrt{\frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2}}$$

例2 在平炉进行一项试验以确定改变操作方法的建议是否会增加钢的得率,试验是在同一只平炉上进行的。每炼一炉钢时除操作方法外,其它条件都尽可能做到相同。先用标准方法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼了10炉,其得率分别为

标准方法 78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3

新方法 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1

设这两个样本相互独立,且分别来自正态总体 $N(\mu_1, \sigma^2)$ 和 $N(\mu_2, \sigma^2)$, μ_1, μ_2, σ^2 均未知。问建议的新操作方法能否提高得率?

(取
$$\alpha = 0.05$$
)

解:需要检验假设 $H_0: \mu_1 - \mu_2 = 0, H_1: \mu_1 - \mu_2 < 0$. 分别求出标准方法和新方法的样本均值和样本方差如下:

$$n_1 = 10, \overline{x} = 76.23, s_1^2 = 3.325,$$

 $n_2 = 10, \overline{y} = 79.43, s_2^2 = 2.225.$

又,

$$s_w^2 = \frac{(10-1)s_1^2 + (10-1)s_2^2}{10+10-2} = 2.775, t_{0.05}(18) = 1.7341,$$

故拒绝域为

$$t = \frac{\overline{x} - \overline{y}}{s_w \sqrt{\frac{1}{10} + \frac{1}{10}}} \le -t_{0.05}(18) = -1.7341,$$

现在由于样本观察值t=-4.295<-1.7341,所以拒绝 H_0 ,

即认为建议的新操作方法较原来的方法为优。

§ 3 正态总体方差的假设检验

一、单个总体的情况

设总体 $X \sim N(\mu, \sigma^2), \mu, \sigma^2$ 均未知, $X_1, X_2 \cdots X_n$ 是来自X的样本。求检验假设(显著性水平 α)

$$H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2$$

 $(\sigma_0^2$ 为已知常数)

当 H_0 为真时

统计量
$$\frac{(n-1) S^2}{\sigma_0^2} \sim \chi^2 \quad (n-1)$$

拒绝域

$$\frac{(n-1) s^{2}}{\sigma_{0}^{2}} \leq \chi_{1-\alpha/2}^{2}(n-1) \cancel{\mathbb{R}} \frac{(n-1) s^{2}}{\sigma_{0}^{2}} \geq \chi_{\alpha/2}^{2}(n-1)$$

2 求单边检验问题(显著性水平 α)

$$H_0$$
: $\sigma^2 \leq \sigma_0^2$, H_1 : $\sigma^2 > \sigma_0^2$ (σ_0^2 为已知)的拒绝域。

$$\chi^2 = \frac{(n-1) s^2}{\sigma_0^2} \ge \chi_\alpha^2 (n-1)$$

原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其在 H_0 为真时的分布	拒绝域
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$	$\sum_{i=1}^{n} (X_i - \mu)^2$	$\chi^{2} \leq \chi_{1-\frac{\alpha}{2}}^{2}(n)$ 或 $\chi^{2} \geq \chi_{\frac{\alpha}{2}}^{2}(n)$
$\sigma^2 \geq \sigma_0^2$	$\sigma^2 < \sigma_0^2$	$\chi^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \mu)^{2}}{\sigma_{0}^{2}}$ $\sim \chi^{2}(n)$	$\chi^2 \leq \chi_{1-\alpha}^2(n)$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	(μ 已知)	$\chi^2 \ge \chi_\alpha^2(n)$

原假设 <i>H</i> ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	拒绝域
$\sigma^2 = \sigma_0^2$	$\sigma^2 \neq \sigma_0^2$		$\chi^2 \leq \chi_{1-\frac{\alpha}{2}}^2(n-1)$
		$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	或 $\chi^2 \geq \chi_{\frac{\alpha}{2}}^2(n-1)$
$\sigma^2 \geq \sigma_0^2$	$\sigma^2 < \sigma_0^2$	σ_0^2 $\sim \chi^2(n-1)$	$\chi^2 \leq \chi_{1-\alpha}^2 (n-1)$
$\sigma^2 \leq \sigma_0^2$	$\sigma^2 > \sigma_0^2$	(μ未知)	$\chi^2 \ge \chi_\alpha^2 (n-1)$

例3某厂生产的某种型号的电池,其寿命长期以来 服从方差 $\sigma^2 = 5000$ (小时²)的正态分布,现有一批 这种电池,从它的生产情况来看,寿命的波动性有 所改变, 现随机取26只电池, 测出其寿命的样本方 $\not\equiv s^2 = 9200$ 小时²)。问根据这一数据能否推断这 批电池的寿命的波动性较以往的有显著的变化

(取 $\alpha = 0.02$)?

$$\frac{(n-1)s^2}{\sigma_0^2} \le 11.524$$
 或
$$\frac{(n-1)s^2}{\sigma_0^2} \ge 44.314$$
 由观察值 $s^2 = 9200$ 得
$$\frac{(n-1)s^2}{\sigma_0^2} = 46 > 44.314$$
 所

以拒绝 H_0 ,认为这批电池寿命波动性较以往的

有显著的变化。

二、两个总体的情况

总体
$$X \sim N(\mu_1, \sigma^2), Y \sim N(\mu_2, \sigma^3)$$
 求检验问题

$$H_0: \sigma_1^2 \leq \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$$

统计量
$$F = \frac{S_1^2 / S_2^2}{\sigma_1^2 / \sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

拒绝域

$$F = \frac{s_1^2}{s_2^2} \ge F_{\alpha}(n_1 - 1, n_2 - 1)$$

F检验法

(2) 关于方差比 σ_1^2/σ_2^2 的检验

原假设 H_0	备择假设 <i>H</i> ₁	检验统计量及其在 H_0 为真时的分布	拒绝域
$\sigma_1^2 = \sigma_2^2$	$\sigma_1^2 \neq \sigma_2^2$	$F = \frac{S_1^2}{S_2^2} \sim$	$F \le F_{1-\frac{\alpha}{2}}(n-1, m-1)$ 或 $F \ge F_{\frac{\alpha}{2}}(n-1, m-1)$
$\sigma_1^2 \ge \sigma_2^2$	$\sigma_1^2 < \sigma_2^2$	F(n-1,m-1)	$F \leq F_{1-\alpha}(n-1, m-1)$
$\sigma_1^2 \leq \sigma_2^2$	$\sigma_1^2 > \sigma_2^2$	μ1,μ2均未知	$F \ge F_{\alpha}(n-1, m-1)$

例4为比较两台自动机床的精度,分别取容量为10和8的两个样本,测量某个指标的尺寸(假定服从正态分布),得到下列结果:

车床甲: 1.08, 1.10, 1.12, 1.14, 1.15, 1.25, 1.36, 1.38, 1.40, 1.42

车床乙: 1.11, 1.12, 1.18, 1.22, 1.33, 1.35, 1.36, 1.38

在 $\alpha = 0.1$ 时, 问这两台机床是否有同样 的精度?

解:设两台自动机床的方差分别为 σ_1^2 , σ_2^2 ,在 α =0.1下检验假设:

$$\boldsymbol{H}_0: \boldsymbol{\sigma}_1^2 = \boldsymbol{\sigma}_2^2 \iff \boldsymbol{H}_1: \boldsymbol{\sigma}_1^2 \neq \boldsymbol{\sigma}_2^2$$

取统计量
$$F = \frac{S_1^2}{S_2^2} \sim F(9,7)$$

其中 S_1^2 , S_2^2 为两样本的样本方差

否定域为
$$W$$
: $F \leq F_{1-\alpha/2}(9,7)$ 或 $F \geq F_{\alpha/2}(9,7)$

否定域为 W: $F \leq F_{1-\alpha/2}(9,7)$ 或 $F \geq F_{\alpha/2}(9,7)$

由样本值可计算得F的实测值为:

$$F=1.51$$

查表得
$$F_{\alpha/2}(9,7) = F_{0.05}(9,7) = 3.68$$

$$F_{1-\alpha/2}(9,7) = F_{0.95}(9,7) = 1/F_{0.05}(7,9)$$

= 1/3.29 = 0.304

由于 0.304<1.51<3.68, 故接受H₀.

这时可能犯第二类错误.

● 假设检验与区间估计的联系

假设检验与置信区间对照

原假设 H ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	接受域
μ = μ_0	$\mu \neq \mu_0$	$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$	$\left \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \right \le u_{\frac{\alpha}{2}}$
待估	参数	枢轴量及其分布	置信区间
μ		$U = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} \sim N(0,1)$	$(\overline{x} - u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \overline{x} + u_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}})$

原假设 H ₀	备择假设 <i>H</i> ₁	检验统计量及其在 H ₀ 为真时的分布	接受域
$\mu = \mu_0$	$\mu \neq \mu_0$	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$ $(\sigma^2 + \pi)$	$\left \frac{\overline{x} - \mu_0}{\sqrt[S]{\sqrt{n}}} \right \le t_{\frac{\alpha}{2}}(n-1)$
待估	参数	枢轴量及其分布	置信区间
μ	,	$T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}} \sim t(n-1)$ $(\sigma^2 + \pi)$	$(\overline{x}-t_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}},$ $\overline{x}+t_{\frac{\alpha}{2}}\frac{s}{\sqrt{n}})$
			(+)(+)(1)

原假设 H ₀	检验统计量及其在 H_0 为真时的分布	接受域
$\sigma^2 = \sigma_0^2 \sigma^2 \neq \sigma_0^2$	$\chi^{2} = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1)$	$\chi_{1-\frac{\alpha}{2}}^2 \le \frac{(n-1)S^2}{\sigma_0^2} \le \chi_{\frac{\alpha}{2}}^2$
待估参数	枢轴量及其分布	置信区间
σ^2	$\chi^{2} = \frac{(n-1)S^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1)$	$(\frac{(n-1)s^2}{\chi_{\frac{\alpha}{2}}^2(n-1)}, \frac{(n-1)s^2}{\chi_{1-\frac{\alpha}{2}}^2(n-1)})$

提出假设

根据统计调查的目的,提出原假设 H_0 和备选假设 H_1

作出决策

拒绝还是不能 拒绝H₀

抽取 样本 检验 假设

 $P(T \in W) = \Omega$ α ----- 犯第一 类错误的概率, W为拒绝域

显著性 水平 α 对差异进行定量的分析,确定其性质(是随机误差还是系统误差.为给出两者界限,找一检验统计量T,在H₀成立下其分布已知.)

一般说来,按照检验所用的统计量的分布,分为

Z 检验 用正态分布

t 检验 用t分布

 χ^2 检验 用 χ^2 分布

F 检验 用 F 分布

在大样本的条件下,若能求得检验统计量的极限分布,依据它去决定临界值C.

