Algebra 1R

Contents

1	EFINICJA GRUPY 1 Działania, struktury	3
2	DMOMORFIZMY 1 Rodzaje	ć
3	ERMUTACJE 1 Transpozycje	
4	ARSTWY, DZIELNIK NORMALNY 1 Warstwa, grupa ilorazowa 2 Orbita 3 Stabilizator 4 Orbit-stabilizer theorem 5 Dzielnik normalny	8
5	RODUKT PÓŁPROSTY 1 Twierdzenie Lagrange'a	9
	VIERDZENIE SYLOWA	10
6	1 I twierdzenie Sylowa	10 10 10
	1 I twierdzenie Sylowa	10 10 10
	1 I twierdzenie Sylowa	10 10 10 10 11 12 12
7	1 I twierdzenie Sylowa 2 Twierdzenie Cauchy'ego 3 p-grupy Sylowa 4 Twierdzenia Sylowa -ASYFIKACJA MAŁYCH GRUP 1 Grupy rzędu ??? RUPY TORSYJNE 1 Torsje 2 Grupy torsyjne	10 10 10 10 11 11 12 12 13 13 13 13 13

11 GRUPY WOLNE 11.1 Grupy wolne 11.2 Własności 11.3 Przykłady	15
12 PIERŚCIENIE	16
12.1 Definicja	16
12.2 Dzielnik zera	16
12.3 Grupa elementów odwracalnych pierścienia	16
12.4 Dziedzina	16
12.5 Ciało	16

1 DEFINICJA GRUPY

1.1 Działania, struktury

DZIAŁANIE w zbiorze A to funkcja

$$\star : A \times A \rightarrow A$$
$$(x, y) \mapsto x \star y$$

Zwykle rozważamy działania binarne, ale działaniem może być funkcją z A^n w A (jak na przykład branie średniej arytmetycznej 3 liczb). Zdarza się też, że mamy działanie unarne, takie jak na przykład branie liczby przeciwnej do $m \in \mathbb{Z}$.

Działanie jest łączne [

assosiative], jeżeli

$$(\forall a, b, c \in A) a(bc) = (ab)c$$

a przemienne [commutative], gdy

(
$$\forall$$
 a, b \in A) ab = ba

Tutaj warto zaznaczyć, że jeśli działanie jest łączne dla 3 argumentów, to jest również łączne dla k argumentów. Dowód przez indukcję jest trywialny.

.....

Algebrą nazywamy niepusty zbiór A ze wszystkimi działaniami na nim określonymi, to znaczy zestawienie $(A, f_1, ..., f_k)$. Zbiór A nazywamy uniwersum lub dziedziną struktury. Mówimy, że dwie algebry $A = (A, f_1, ..., f_k)$ i $B = (B, g_1, ..., g_k)$ są podobne, jeśli dla każdego i \leq k arność (czyli liczba argumentów) f_i jest równa arności g_i , czyli liczbie l_i .

Dwie algebry są izomorficzne, jeżeli istnieje F : A \xrightarrow{na} B takie, że

$$(\forall i \leq k)(\forall a_1,...,a_{l_i} \in A) F(f_i(a_1,...,a_{l_i})) = g_i(F(a_1),...,F(a_{l_i}))$$

Struktury izomorficzne oznaczamy A \cong B. Warto zauważyć, że \cong ma *własności relacji równoważności*, to znaczy jest zwrotny, symetryczny i przechodni.

$$\begin{split} &B = (B, g_1, ..., g_k) \text{ jest podalgebrą } A = (A, f_1, ..., f_k), \text{ jeżeli} \\ &\hookrightarrow B \subseteq A \\ &\hookrightarrow (\forall \text{ } i \leq k) \text{ } g_i = f_i \upharpoonright_B \end{split}$$

Niech B \subseteq A, wtedy B jest uniwersum podstruktury struktury A z naturalnymi działaniami \iff B jest zamknięty na działania $f_1,...,f_k$. W takim przypadku B traktujemy jako strukturę będącą podstrukturą struktury A.

1.2 Grupy

Monoid to zbiór X z działaniem łącznym oraz elementem neutralnym. Liczby naturalne z dodawaniem są przykładem monoidu.

```
Grupa to struktura G = (G, \cdot) taka, że:
\hookrightarrow \cdot jest działaniem łącznym
\hookrightarrow istnieje element neutralny e \in G dla działania \cdot
\hookrightarrow dla każdego g \in G istnieje element odwrotny g^{-1} \in G takie, że gg^{-1} = g^{-1}g = e
```

Grupa trywialna to zbiór z działaniem zawierający jedynie jego element neutralny: {e}.

Tutaj warto zaznaczyć, że element neutralny jest jedyny. W przeciwnym przypadku istniałyby co najmniej dwa elementy neutralne e_1 , e_2 , ale wtedy

$$e_1 = e_1 \cdot e_2 = e_2$$
.

Z łączności działania na grupie wynika, że dla każdego $g \in G$ istnieje co najwyżej jeden element odwrotny. Gdyby x, y były dwoma elementami odwrotnymi do g, to

$$x = xe = x(gy) = (xg)y = ey = y,$$

co prowadzi do sprzeczności.

Jeśli działanie grupy jest przemienne, to nazywamy ją grupą abelową lub przemienną. Tak jak działanie w grupie oznaczamy zwykle przez ·, tak w grupie abelowej, aby podkreślić jego przemienność, działanie jest zwykle oznaczane przez +. Podobnie, potęgowanie w grupie abelowej nie oznaczamy xⁿ, a raczej nx.

Działanie w grupie możemy opisać za pomocą tabelki

Jeżeli działanie jest przemienne, to oczywiście taka tabelka będzie symetryczna.

Grupę przemienną $G = \{e, a, b, c\}$ nazywamy grupą czwórkową Kleina $[K_4]$. Grupa izometrii własnych n-kąta foremnego $[D_n]$ jest nazywana grupą dihedralną i nie jest ona grupą abelową. Jej podgrupą jest na przykład grupa obrotów własnych n-kąta foremnego $[O_n]$.

......

Pierścieniem nazywamy zbiór X z dwoma działaniami, $+i\cdot$, z których \cdot jest łączne, a + jest przemienne. W dodatku, \cdot jest rozdzielne względem +:

$$(\forall x, y, z \in X) x \cdot (y + z) = x \cdot y + x \cdot z$$

Jeśli dodatkowo mnożenie w pierścieniu jest działaniem przemiennym, to taki pierścień nazywamy przemienny. Jeśli zaś istnieje element neutralny dla mnożenia, to jest on pierścieniem z jednością.

Pierścienie K, dla których K \ $\{0\}$ jest grupą przemienną względem mnożenia nazywamy ciałami. Najprostszym ciało są zbiory \mathbb{Q} , \mathbb{R} , \mathbb{C} ze zwykłym dodawaniem i mnożeniem. Zbiór $\mathbb{Q}(\mathbb{I})$ wszystkich liczb zespolonych postaci a + bi dla wymiernych a, b jest ciałem.

.....

Niech $H \subseteq G$ dla pewnej grupy G. Mówimy, że H jest podgrupą grupy G $[H \le G]$, jeżeli H jest grupą względem działania z G (ograniczonego do H). Dodatkowo, jeśli H \ne G to mówimy, że H jest podgrupą właściwą. Na przykład

$$(\mathbb{Z},+)<(\mathbb{Q},+)<(\mathbb{R},+).$$

Przy sprawdzaniu, czy dany zbiór H jest podgrupa G wystarczy sprawdzić, czy (\forall x, y \in H) $xy^{-1} \in$ H.

Jeśli a, b \in G, to $(ab)^{-1} = b^{-1}a^{-1}$.

DOWÓD:

Chcemy sprawdzić, że ($b^{-1}a^{-1}$)ab = e

$$(b^{-1}a^{-1})ab = b^{-1}(a^{-1}a)b = b^{-1}eb = b^{-1}b = e$$

a więc dostajemy to, czego się spodziewaliśmy.

Zdefiniujemy $a^{-n} = (a^{-1})^n$ i nie trudno pokazać, że też $a^{-n} = (a^n)^{-1}$. Dalej mamy $a^{n+m} = a^n a^m$, a dla grupy przemiennej zachodzi $(ab)^n = a^n b^n$.

1.3 Grupa cykliczna

Rząd grupy to ilość jej elementów: org(G) = |G|. Dla każdego $g \in G$ definiujemy rząd elementu ord(g) = N jako najmniejszą liczbę naturalną taką, że g^N = e. Znając pojęcie grup cyklicznych (niżej) możemy też podać definicję: ord(g) = $\langle g \rangle$. Jeśli ord(g) = n i weźmiemy N takie, że g^N = e, to mamy pewność, że n|N. Gdyby tak nie było, to mielibyśmy N = kn + r, 0 < r < n i

$$a^{N} = a^{kn+r} = a^{kn}a^{r} = (a^{n})^{k}a^{r} = e^{k}a^{r} = a^{r} \neq e$$

W takim razie dla q, q²,..., qⁿ są elementami parami różnymi i tworzą podgrupę grupy G.

Grupa cykliczna to grupa utworzona przez wzięcie wszystkich potęg $g \in G$: $H = \{g, g^1, ..., g^{ord(g)}\}$, przy czym możemy mieć ord(g) = ∞ . W takim przypadku dostajemy podgrupę nieskończoną. Dla grupy cyklicznej utworzonej przez g, ten element nazywamy generatorem. Zauważmy, że wszystkie grupy cykliczne sa abelowe.

Grupa zawierająca wszystkie liczby całkowite z dodawaniem jest grupą cykliczną generowaną przez 1 lub przez – 1. Widzimy więc, że generator grupy nie jest wyznaczony jednoznacznie.

Dla $N \in \mathbb{N}$ definiujemy C_N jako liczby naturalne < N z dodawaniem modulo N. Zwykle oznaczamy ją (\mathbb{Z}_M , $+_N$). Możemy pokazać, że każda grupa cykliczna skończona rzędu N jest izomorficzne z C_N , natomiast grupy cykliczne nieskończone są izomorficzne z C_∞ .

2 HOMOMORFIZMY

Jeżeli $F: A \rightarrow B$ jest homomorfizmem struktur, to Im(F) jest podstrukturą B.

SŁOWNICZEK:

- \hookrightarrow epi-morfizm -> "na"
- \hookrightarrow mono-morfizm -> 1-1
- \hookrightarrow endo-morfizm -> w samego siebie
- \hookrightarrow auto-morfizm -> endomorfizm który jest bijekcją.

Złożenie homomorfizmów jest homomorfizmem a odwzorowanie odwrotne do izomorfizmu jest izomorfizmem.

DOWOD

Niech $f:(X,\cdot)\to (Y,\circ)$ i $g:(Y,\circ)\to (Z\star)$ są homomorfizmami, a h(x)=g(f(x)) jest ich złożeniem, to dla dowolnego a, $b\in X$ mamy

$$h(a \cdot b) = g(f(a \cdot b)) = g(f(a) \circ f(b)) = g(f(a)) \star g(f(b)) = h(a) \star h(b)$$

więc h spełnia warunki homomorfizmu. Jeżeli f, g były epi, mono, ... morfizmami, to zachowanie odpowiednich własności wynika z własności składania funkcji różnowartościowych, na czy bijekcji.

Niech $\phi:(X,\cdot)\xrightarrow[na]{1-1}(Y,\circ)$ będzie izomorfizmem. Chcemy pokazać, że ϕ^{-1} jest homomorfizmem. Weźmy a, b \in Y i c, d \in X takie, że $\phi(c)$ = a oraz $\phi(d)$ = b. Wtedy

$$ab = \phi(c)\phi(d) = \phi(cd),$$

czyli

$$\phi^{-1}$$
(ab) = cd,

a ponieważ $\phi^{-1}(a) = c i \phi^{-1}(b) = d$, to mamy

$$\phi^{-1}(ab) = cd = \phi^{-1}(a)\phi^{-1}(b).$$

Natomiast fakt, że ϕ^{-1} jest bijekcją wynika z tego, że ϕ jest bijekcją.

- 2.1 Rodzaje
- 2.2 Jadro, obraz
- 2.3 Zasadnicze twierdzenie o homomorfizmie

3 PERMUTACJE

- 3.1 Transpozycje
- 3.2 Permutacje parzyste

4 WARSTWY, DZIELNIK NORMALNY

- 4.1 Warstwa, grupa ilorazowa
- 4.2 Orbita
- 4.3 Stabilizator
- 4.4 Orbit-stabilizer theorem
- 4.5 Dzielnik normalny

5 PRODUKT PÓŁPROSTY

- 5.1 Twierdzenie Lagrange'a
- 5.2 Produkt prosty
- 5.3 Produkt półprosty grup

6 TWIERDZENIE SYLOWA

6.1 I twierdzenie Sylowa

I twierdzenie Sylowa:

Jeżeli p jest liczbą pierwszą, a G jest grupą skończoną rzędu |G| = p^k m dla k ≥ 1 i p∤m, to istnieje podgrupa H \leq G mająca p^k elementów. Taka grupa nazywa się podgrupą Sylowa.

DOWÓD:

Niech G będzie grupą rzędu |G| = p^k m taką jak w twierdzeniu. Niech X będzie zbiorem wszystkich p^k elementowych podzbiorów grupy G. Możemy teraz określić działanie ψ grupy G na zbiór X. Jeśli H = $\{h_1,...,h_{p^k}\}\in X$, a $g\in G$, to

$$\psi(H) = \{gh_1, gh_2, ..., gh_{p^k}\}.$$

Wiemy, że

$$\begin{split} |H| &= \binom{p^k m}{p^k} = \frac{(p^k m)!}{(p^k m - p^k)!(p^k)!} = \\ &= \frac{p^k m(p^k m - 1)...(p^k m - p^k + 1)}{(p^k)!} = \prod_{i=1}^{p^k} p^k m - i + 1 \end{split}$$

6.2 Twierdzenie Cauchy'ego

Twierdzenie Cauchy'ego:

Jeżeli liczba pierwsza p dzieli rząd grupy G, to G zawiera element rzędu p.

6.3 p-grupy Sylowa

6.4 Twierdzenia Sylowa

7 KLASYFIKACJA MAŁYCH GRUP

7.1 Grupy rzędu ???

8 GRUPY TORSYJNE

- 8.1 Torsje
- 8.2 Grupy torsyjne
- 8.3 Skończone grupy abelowe

9 GRUPY ROZWIĄZALNE

- 9.1 Komutator i komutant
- 9.2 Grupy rozwiązalne
- 9.3 Rozszerzenia grup rozwiązalnych
- 9.4 Używanie twierdzeń Sylowa
- 9.5 Grupy nilpotentne

10 LEMAT O MOTYLU

- 10.1 Ciąg kompozycyjny w grupie
- 10.2 Lemat motyla
- 10.3 Twierdzenie Schreiera

11 GRUPY WOLNE

- 11.1 Grupy wolne
- 11.2 Własności
- 11.3 Przykłady

12 PIERŚCIENIE

- 12.1 Definicja
- 12.2 Dzielnik zera
- 12.3 Grupa elementów odwracalnych pierścienia
- 12.4 Dziedzina
- 12.5 Ciało