Michael Grossberg

Intro to Data Science CS59969

Regression

Regression

Regression

$$y_i = eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^{\mathrm{T}} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

Recall matrix formulation

$$y_i = eta_1 x_{i1} + \dots + eta_p x_{ip} + arepsilon_i = \mathbf{x}_i^{\mathrm{T}} oldsymbol{eta} + arepsilon_i, \qquad i = 1, \dots, n,$$

$$\mathbf{y} = egin{pmatrix} y_1 \ y_2 \ dots \ y_n \end{pmatrix} \quad \mathbf{X} = egin{pmatrix} \mathbf{x}_1^{\mathrm{T}} \ \mathbf{x}_2^{\mathrm{T}} \ dots \ \mathbf{x}_n^{\mathrm{T}} \end{pmatrix} = egin{pmatrix} x_{11} & \cdots & x_{1p} \ x_{21} & \cdots & x_{2p} \ dots \ x_{n1} & \cdots & x_{np} \end{pmatrix} \quad oldsymbol{eta} = egin{pmatrix} eta_1 \ eta_2 \ dots \ eta_p \end{pmatrix} oldsymbol{arepsilon} oldsymbol{arepsilon} = egin{pmatrix} arepsilon_1 \ eta_2 \ dots \ eta_n \end{pmatrix}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{eta} + oldsymbol{arepsilon}$$

Ordinary Least Squares Solution

$$\hat{oldsymbol{eta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y} = ig(\sum\!\mathbf{x}_i\mathbf{x}_i^{\mathrm{T}}ig)^{-1}ig(\sum\!\mathbf{x}_iy_iig)$$

OLS assumes Homoscedasticity

Worth checking

Some Data not Heteroscastic

What about when the data is non-linear?

http://www.usclimatedata.com/climate/new-york/united-states/3202

Polynomial Regression (still linear)

X not linear in Y

Linear Sum of non-linear functions

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \cdots + a_n x^n + \varepsilon.$$

Linear Matrix Formulation

$$egin{bmatrix} y_1 \ y_2 \ y_3 \ dots \ y_n \end{bmatrix} = egin{bmatrix} 1 & x_1 & x_1^2 & \dots & x_1^m \ 1 & x_2 & x_2^2 & \dots & x_2^m \ 1 & x_3 & x_3^2 & \dots & x_3^m \ dots & dots & dots & dots \ 1 & x_n & x_n^2 & \dots & x_n^m \end{bmatrix} egin{bmatrix} a_0 \ a_1 \ a_2 \ dots \ lpha_m \end{bmatrix} + egin{bmatrix} arepsilon_1 \ arepsilon_2 \ dots \ lpha_n \end{bmatrix}$$

$$ec{y} = \mathbf{X} ec{a} + ec{arepsilon}$$

Same as before! Linear in the a vector (=beta from before)

$$\hat{\vec{a}} = (\mathbf{X}^T \mathbf{X})^{-1} \ \mathbf{X}^T \vec{y}.$$

Could be sum of sin/cos or anything

$$rac{A_0}{2} + \sum_{n=1}^{\infty} (A_n \cos nx + B_n \sin nx).$$

What model to fit?

Linear?

Quadratic? Cubic?

Error Keeps Dropping

Error Will Always Keep Dropping

High Degree Fit Doesn't Make Sense

11th Degree Fit

Bad Prediction at New Data

Called Generalization Error

Overfitting: Model too Complex

Generalization Error aka Testing Error

Fitting Error aka
Training Error

Analytic Solutions to Overfitting

Analytical Methods:

Akaike information criterion (AIC)

Degree

$$ext{AIC} = 2k - 2\ln(L)$$

Max of Likelihood of model

Bayesian information criterion (BIC)

$$ext{BIC} = -2 \cdot \ln \hat{L} + k \cdot \ln(n)$$

Others: Minimum Description Length (MDL)
VC Dimension

Empirical Solutions to Overfitting

Fit/Train with Some Data

Eval/Test with Separate Data

Best solution when you have lots of data!

Make sure Training/Testing representative of task:

Interpolation: Random Subsamples, Extrapolation: Past vs. "Future"

Cross Validation

Cut into k (4? 10?) Chunks

Shuffle K and 1

Mean (over K) of Eval Error is "error" and std is "uncertainty in error estimate"