

Model Development Phase Template

Date	15 March 2024		
Team ID	SWTID1728285970		
Project Title	SMS- Spam Detection Using NLP		
Maximum Marks	10 Marks		

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

```
gnb.fit(X_train,y_train)
y_pred1 = gnb.predict(X_test)
print(accuracy_score(y_test,y_pred1))
print(confusion_matrix(y_test,y_pred1))
print(precision_score(y_test,y_pred1))
```

```
mnb.fit(X_train,y_train)
y_pred2 = mnb.predict(X_test)
print(accuracy_score(y_test,y_pred2))
print(confusion_matrix(y_test,y_pred2))
print(precision_score(y_test,y_pred2))
```

```
bnb.fit(X_train,y_train)
y_pred3 = bnb.predict(X_test)
print(accuracy_score(y_test,y_pred3))
print(confusion_matrix(y_test,y_pred3))
print(precision_score(y_test,y_pred3))
```


		F1	
		SCOR	
		E	
Model	Summary		Training and Validation Performan


```
Model 1
                                               0.93%
           gnb.fit(X train,y train)
                                                        0.9690821256038648
          y pred1 = gnb.predict(X test)
           print(accuracy score(y test,y pred1))
           print(confusion_matrix(y_test,y_pred1))
                                                          12 277]]
           print(precision score(y test,y pred1))
                                                        0.9326599326599326
      def train classifier(clf,X train,y train,X test,y test):
          clf.fit(X train, y train)
          y pred = clf.predict(X test)
          accuracy = accuracy score(y test,y pred)
          precision = precision score(y test,y pred)
          return accuracy, precision
      train_classifier(svc,X_train,y_train,X_test,y_test)
      y pred = voting.predict(X test)
      print("Accuracy",accuracy score(y test,y pred))
      print("Precision", precision score(y test, y pred))
```

Paste the screenshot of the model training code

Model Validation and Evaluation Report (5 marks):

Model 2	<pre>mnb.fit(X_train,y_train) y_pred2 = mnb.predict(X_test) print(accuracy_score(y_test,y_pred2)) print(confusion_matrix(y_test,y_pred2)) print(precision_score(y_test,y_pred2))</pre>	0.85%	0.9400966183574879 [[699 47] [15 274]] 0.8535825545171339
Model 3	<pre>bnb.fit(X_train,y_train) y_pred3 = bnb.predict(X_test) print(accuracy_score(y_test,y_pred) print(confusion_matrix(y_test,y_pred) print(precision_score(y_test,y_pred)</pre>		
			0.9342995169082126 [[695 51] [17 272]] 0.8421052631578947
Model 4		0.98%	
	<pre>y_pred = voting.predict(X_test) print("Accuracy",accuracy_score(y_test,y_pred)) print("Precision",precision_score(y_test,y_pred))</pre>		Accuracy 0.9855072463768116 Precision 0.9566666666666667