Joint Probability Distribution

Today's Class

- Joint Probability Mass Function
- Marginal Probability Mass Function
- Joint Probability Density Function
- o Marginal Probability Density Function
- Conditional Distribution

Joint Probability Distributions

- We may care about multiple random variables
 - rainfall intensity at a gage, and river runoff
 - hours worked and productivity per hour
 - Lifetime of tarmac and total cost
 - Number of defects detected on different days

• • •

Joint pmf Example

 Let X and Y denote the percent productivity and the amount of hours of work per day, respectively.

X\Y	6 hrs	8 hrs	10 hrs	12 hrs
50%	.014	.036	.058	.072
70%	.036	.216	.180	.043
90%	.072	.180	.079	.014

- What is P(p=70% and h=8)?
- What is P(h=8)?

Joint pmf

- Let X and Y be two discrete rv's defined on the sample space of an experiment
- The joint probability mass function p(x, y):

$$p(x,y) = P(X = x \text{ and } Y = y)$$

where
$$p(x,y) \ge 0$$
 and $\sum_{x} \sum_{y} p(x,y) = 1$

 Let A be a set consisting of pairs of (x, y) values, then

$$P[X,Y \in A] = \sum_{(x,y) \in A} p(x,y)$$

Marginal pmf

 The marginal probability mass functions of X and of Y:

$$p_x(x) = P(X = x) = \sum_{y} p(x, y)$$

$$p_{_Y}(y) = P(Y = y) = \sum_x p(x, y)$$

Marginal pmf Example

 Let X and Y denote the percent productivity and the amount of hours of work per day, respectively.

X\Y	6 hrs	8 hrs	10 hrs	12 hrs	Marg- inal
50%	.014	.036	.058	.072	.180
70%	.036	.216	.180	.043	.475
90%	.072	.180	.079	.014	.345
Marg- inal	.122	.432	.317	.129	1.000

Exercise 5.1

 A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X and Y denote the number of hoses being used on the self-service and full-service islands at a particular time, respectively.

			У	
P(x,y)		0	1	2
	0	.10	.04	.02
Χ	1	.08	.20	.06
	2	.06	.14	.30

- What do the numbers inside the table add to?
- What is P(X=1 and Y=1)?
- What is P(X=1)?
- What is $P(X \le 1)$?

• • •

Joint pdf Example

o For r.v. X and Y

$$f(x, y) = x + y \ 0 \le x \le 1, \ 0 \le y \le 1$$

- Find $P(0 \le x \le 1/2, 0 \le y \le 1/2)$
- Find $f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy$
- Find $f_y(y) = \int_{-\infty}^{\infty} f(x, y) dx$

• • •

Joint pdf

- Let X and Y be continuous rv's
- The joint probability density function f(x, y):

$$P[X,Y \in A] = \iint_A f(x,y) dxdy$$

o If A is the two-dimensional rectangle

$$\{(x,y): a \le x \le b, c \le y \le d\}$$

$$P[X,Y \in A] = \int_{c}^{d} \int_{a}^{b} f(x,y) dxdy$$

• • • Exercise 5.9

• Each front tire on a particular vehicle is supposed to be filled to a pressure of 26 psi. Suppose the actual air pressure in each tire is a r.v.: X for the right tire and Y for the left tire, with joint pdf

$$f(x,y) \begin{cases} K(x^2 + y^2) & 20 \le x \le 30, 20 \le y \le 30 \\ 0 & otherwise \end{cases}$$

- What is the value of K?
- What is the probability that both tires are underfilled?

Marginal Probability Density Function

 The marginal probability density functions of X and Y

$$f_x(x) = \int_{-\infty}^{\infty} f(x, y) dy$$

$$f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx$$

Example: Marginal pdf

 Let the joint probability density function of rvs X and Y be

$$f(x,y)=2$$
 for $0 \le x \le y \le 1$

 Find the marginal probability distributions of random variable X and Y

Independence of rvs

 Two rvs, X and Y, are said to be independent if for every pair of x and y values,

$$p(x,y) = p_x(x) \cdot p_y(y)$$
 when X and Y are discrete or

$$f(x,y) = f_x(x) \cdot f_y(y)$$
 when X and Y are continuous

• • •

Example

o Are X and Y independent?

p(x,y)	y=0	y=5	y=10	y=15	p(x)
x=0	.02	.06	.02	.10	.20
x=5	.04	.15	.20	.10	.49
x=10	.01	.15	.14	.01	.31
p(y)	.07	.36	.36	.21	

More Than Two RVs

o If X_1 , X_2 , X_3 , ..., X_n are all discrete rvs, the joint pmf of the variables is

$$P(X_{_{1}},X_{_{2}},X_{_{3}},...,X_{_{n}}) = P(X_{_{1}} = X_{_{1}},X_{_{2}} = X_{_{2}},...,X_{_{n}} = X_{_{n}})$$

o If the variables are continuous, the joint pdf of X_1 to X_n

$$\begin{split} &P\big(a_{_{1}}\leq X\leq b_{_{1}},\ldots,a_{_{n}}\leq X\leq b_{_{n}}\big)\\ &=\int_{a_{_{1}}}^{b_{_{1}}}\cdots\int_{a_{_{n}}}^{b_{_{n}}}f\big(x_{_{1}},\cdots,x_{_{n}}\big)dx_{_{n}}\cdots dx_{_{1}} \end{split}$$

Conditional Distribution

 Let X and Y be rvs, the conditional probability density of Y, given X = x is

$$p_{y|x}(y|x) = \frac{p(x,y)}{p_{y}(x)}$$
 for discrete

$$p_{y|x}(y|x) = \frac{p(x,y)}{p_x(x)} \quad \text{for discrete}$$

$$f_{y|x}(y|x) = \frac{f(x,y)}{f_x(x)} \quad \text{for continuous}$$

Example

 Let I and F be rvs of insurance and flood and the joint pmf is as follows:

	Flood	No flood
Has insurance	.04	.36
Doesn't have insurance	.06	.54

• Find the conditional pmf,

 $P_{F|I}(Flood|Has insurance)$

• Find the conditional pmf,

 $\mathsf{P}_{\mathsf{F|I}}(\mathsf{No}\;\mathsf{Flood}|\mathsf{Has}\;\mathsf{insurance})$