Data Analysis and Machine Learning: Linear Regression and more Advanced Regression Analysis

Morten Hjorth-Jensen^{1,2}

Department of Physics, University of Oslo¹

Department of Physics and Astronomy and National Superconducting Cyclotron Laboratory, Michigan State University 2

© 1999-2017, Morten Hjorth-Jensen. Released under CC Attribution-NonCommercial 4.0 license

Regression analysis, overarching aims

Regression modeling deals with the description of the sampling distribution of a given random variable y varies as function of another variable or a set of such variables $\hat{x} = [x_0, x_1, \dots, x_p]^T$. The first variable is called the **dependent**, the **outcome** or the **response** variable while the set of variables \hat{x} is called the independent variable, or the predictor variable or the explanatory variable.

A regression model aims at finding a likelihood function $p(y|\hat{x})$, that is the conditional distribution for y with a given \hat{x} . The estimation of $p(y|\hat{x})$ is made using a data set with

- n cases $i = 0, 1, 2, \dots, n-1$
- Response (dependent or outcome) variable y_i with $i = 0, 1, 2, \dots, n-1$
- *p* Explanatory (independent or predictor) variables $\hat{x}_i = [x_{i0}, x_{i1}, \dots, x_{ip}]$ with $i = 0, 1, 2, \dots, n-1$

The goal of the regression analysis is to extract/exploit relationship between y_i and \hat{x}_i in or to infer causal dependencies,

General linear models

Before we proceed let us study a case from linear algebra where we aim at fitting a set of data $\hat{y} = [y_0, y_1, \ldots, y_{n-1}]$. We could think of these data as a result of an experiment or a complicated numerical experiment. These data are functions of a series of variables $\hat{x} = [x_0, x_1, \ldots, x_{n-1}]$, that is $y_i = y(x_i)$ with $i = 0, 1, 2, \ldots, n-1$. The variables x_i could represent physical

quantities like time, temperature, position etc. We assume that y(x) is a smooth function. Since obtaining these data points may not be trivial, we want to use these data to fit a function which can allow us to make predictions

these data to fit a function which can allow us to make predictions for values of y which are not in the present set. The perhaps simplest approach is to assume we can parametrize our function in terms of a polynomial of degree n-1 with n points, that is

$$y = y(x) \rightarrow y(x_i) = \tilde{y}_i + \epsilon_i = \sum_{i=0}^{n-1} \beta_i x_i^j + \epsilon_i,$$

where ϵ_i is the error in our approximation.

Rewriting the fitting procedure as a linear algebra problem

For every set of values y_i, x_i we have thus the corresponding set of equations

$$y_0 = \beta_0 + \beta_1 x_0^1 + \beta_2 x_0^2 + \dots + \beta_{n-1} x_0^{n-1} + \epsilon_0$$

$$y_1 = \beta_0 + \beta_1 x_1^1 + \beta_2 x_1^2 + \dots + \beta_{n-1} x_1^{n-1} + \epsilon_1$$

$$y_2 = \beta_0 + \beta_1 x_2^1 + \beta_2 x_2^2 + \dots + \beta_{n-1} x_2^{n-1} + \epsilon_2$$

$$\dots$$

$$y_{n-1} = \beta_0 + \beta_1 x_{n-1}^1 + \beta_2 x_{n-1}^2 + \dots + \beta_1 x_{n-1}^{n-1} + \epsilon_{n-1}.$$

Rewriting the fitting procedure as a linear algebra problem, follows

Defining the vectors

$$\hat{y} = [y_0, y_1, y_2, \dots, y_{n-1}]^T,$$

$$\hat{\beta} = [\beta_0, \beta_1, \beta_2, \dots, \beta_{n-1}]^T,$$

$$\hat{\epsilon} = [\epsilon_0, \epsilon_1, \epsilon_2, \dots, \epsilon_{n-1}]^T,$$

and the matrix

$$\hat{X} = \begin{bmatrix} 1 & x_0^1 & x_0^2 & \dots & x_0^{n-1} \\ 1 & x_1^1 & x_1^2 & \dots & x_{n-1}^{n-1} \\ 1 & x_2^1 & x_2^2 & \dots & x_{n-1}^{n-1} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n-1}^1 & x_{n-1}^2 & \dots & \dots & x_{n-1}^{n-1} \end{bmatrix}$$

we can rewrite our equations as

$$\hat{\mathbf{v}} = \hat{X}\hat{\beta} + \hat{\epsilon}.$$

Generalizing the fitting procedure as a linear algebra problem

We are obviously not limited to the above polynomial. We could replace the various powers of x with elements of Fourier series, that is, instead of x_i^j we could have $\cos{(jx_i)}$ or $\sin{(jx_i)}$, or time series or other orthogonal functions. For every set of values y_i, x_i we can then generalize the equations to

$$\begin{aligned} y_0 &= \beta_0 x_{00} + \beta_1 x_{01} + \beta_2 x_{02} + \dots + \beta_{n-1} x_{0n-1} + \epsilon_0 \\ y_1 &= \beta_0 x_{10} + \beta_1 x_{11} + \beta_2 x_{12} + \dots + \beta_{n-1} x_{1n-1} + \epsilon_1 \\ y_2 &= \beta_0 x_{20} + \beta_1 x_{21} + \beta_2 x_{22} + \dots + \beta_{n-1} x_{2n-1} + \epsilon_2 \\ &\dots \\ y_i &= \beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{n-1} x_{in-1} + \epsilon_i \\ &\dots \\ y_{n-1} &= \beta_0 x_{n-1,0} + \beta_1 x_{n-1,2} + \beta_2 x_{n-1,2} + \dots + \beta_1 x_{n-1,n-1} + \epsilon_{n-1}. \end{aligned}$$

Generalizing the fitting procedure as a linear algebra problem

We redefine in turn the matrix \hat{X} as

$$\hat{X} = \begin{bmatrix} x_{00} & x_{01} & x_{02} & \dots & x_{0,n-1} \\ x_{10} & x_{11} & x_{12} & \dots & x_{1,n-1} \\ x_{20} & x_{21} & x_{22} & \dots & x_{2,n-1} \\ \dots & \dots & \dots & \dots & \dots \\ x_{n-1,0} & x_{n-1,1} & x_{n-1,2} & \dots & x_{n-1,n-1} \end{bmatrix}$$

and without loss of generality we rewrite again our equations as

$$\hat{\mathbf{y}} = \hat{X}\hat{\beta} + \hat{\epsilon}.$$

The left-hand side of this equation forms know. Our error vector $\hat{\epsilon}$ and the parameter vector $\hat{\beta}$ are our unknow quantities. How can we obtain the optimal set of β_i values?

Optimizing our parameters

We have defined the matrix \hat{X}

$$y_0 = \beta_0 x_{00} + \beta_1 x_{01} + \beta_2 x_{02} + \dots + \beta_{n-1} x_{0n-1} + \epsilon_0$$

$$y_1 = \beta_0 x_{10} + \beta_1 x_{11} + \beta_2 x_{12} + \dots + \beta_{n-1} x_{1n-1} + \epsilon_1$$

$$y_2 = \beta_0 x_{20} + \beta_1 x_{21} + \beta_2 x_{22} + \dots + \beta_{n-1} x_{2n-1} + \epsilon_1$$

$$\dots$$

$$y_i = \beta_0 x_{i0} + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_{n-1} x_{in-1} + \epsilon_1$$

$$\dots$$

$$y_{n-1} = \beta_0 x_{n-1,0} + \beta_1 x_{n-1,2} + \beta_2 x_{n-1,2} + \dots + \beta_1 x_{n-1,n-1} + \epsilon_{n-1}$$

Optimizing our parameters, more details

We well use this matrix to define the approximation $\hat{\vec{y}}$ via the unknown quantity $\hat{\beta}$ as

$$\hat{\tilde{y}} = \hat{X}\hat{\beta}$$

and in order to find the optimal parameters β_i instead of solving the above linear algebra problem, we define a function which gives a measure of the spread between the values y_i (which represent hopefully the exact values) and the parametrized values \tilde{y}_i , namely

$$Q(\hat{\beta}) = \sum_{i=0}^{n-1} (y_i - \tilde{y}_i)^2 = (\hat{y} - \hat{\tilde{y}})^T (\hat{y} - \hat{\tilde{y}}),$$

or using the matrix \hat{X} as

$$Q(\hat{eta}) = \left(\hat{y} - \hat{X}\hat{eta}\right)^T \left(\hat{y} - \hat{X}\hat{eta}\right)$$

Interpretations and optimizing our parameters

The function

$$Q(\hat{\beta}) = (\hat{y} - \hat{X}\hat{\beta})^T (\hat{y} - \hat{X}\hat{\beta}),$$

can be linked to the variance of the quantity y_i if we interpret the latter as the mean value of for example a numerical experiment. When linking below with the maximum likelihood approach below, we will indeed interpret y_i as a mean value

$$y_i = \langle y_i \rangle = \beta_0 x_{i,0} + \beta_1 x_{i,1} + \beta_2 x_{i,2} + \dots + \beta_{n-1} x_{i,n-1} + \epsilon_i,$$

where $\langle y_i \rangle$ is the mean value. Keep in mind also that till now we have treated y_i as the exact value. Normally, the response (dependent or outcome) variable y_i the outcome of a numerical experiment or another type of experiment and is thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a statistical error estimate given by the standard deviation discussed earlier. In the discussion here we will treat y_i as our exact value for the response variable

Interpretations and optimizing our parameters

We can rewrite

$$\frac{\partial Q(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right),$$

as

$$\hat{X}^T \hat{y} = \hat{X}^T \hat{X} \hat{\beta},$$

and if the matrix $\hat{X}^T\hat{X}$ is invertible we have the solution

$$\hat{\beta} = (\hat{X}^T \hat{X})^{-1} \hat{X}^T \hat{y}.$$

Interpretations and optimizing our parameters

The residuals $\hat{\epsilon}$ are in turn given by

$$\hat{\epsilon} = \hat{\mathbf{y}} - \hat{\tilde{\mathbf{y}}} = \hat{\mathbf{y}} - \hat{X}\hat{\beta},$$

and with

$$\hat{X}^T \left(\hat{y} - \hat{X} \hat{\beta} \right) = 0,$$

we have

$$\hat{X}^T\hat{\epsilon} = \hat{X}^T\left(\hat{y} - \hat{X}\hat{\beta}\right) = 0,$$

meaning that the solution for $\hat{\beta}$ is the one which minimizes the residuals. Later we will link this with the maximum likelihood approach.

The χ^2 function

Normally, the response (dependent or outcome) variable y_i the outcome of a numerical experiment or another type of experiment and is thus only an approximation to the true value. It is then always accompanied by an error estimate, often limited to a strictical error estimate given by the standard deviation discussed earlier. In the discussion here we will treat y_i as our exact value for the response variable.

Introducing the standard deviation σ_i for each measurement y_i , we define now the χ^2 function as

$$\chi^2(\hat{\beta}) = \sum_{i=0}^{n-1} \frac{(y_i - \tilde{y}_i)^2}{\sigma_i^2} = (\hat{y} - \hat{\bar{y}})^T \frac{1}{\hat{\Sigma}^2} (\hat{y} - \hat{\bar{y}}),$$

where the matrix $\hat{\Sigma}$ is a diagonal matrix with σ_i as matrix elements.

The χ^2 function

In order to find the parameters β_i we will then minimize the spread of $\chi^2(\hat{\beta})$ by requiring

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_j} = \frac{\partial}{\partial \beta_j} \left[\sum_{i=0}^{n-1} \left(\frac{y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1}}{\sigma_i} \right) \right]$$

which results in

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_j} = -2 \left[\sum_{i=0}^{n-1} \frac{x_{ij}}{\sigma_i} \left(\frac{y_i - \beta_0 x_{i,0} - \beta_1 x_{i,1} - \beta_2 x_{i,2} - \dots - \beta_{n-1} x_{i,n-1}}{\sigma_i} \right) \right]$$

or in a matrix-vector form as

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{A}^T \left(\hat{b} - \hat{A} \hat{\beta} \right)$$

where we have defined the matrix $\hat{A} = \hat{X}/\hat{\Sigma}$ with matrix elements $a_{ii} = x_{ii}/\sigma_i$ and the vector \hat{b} with elements $b_i = y_i/\sigma_i$.

The χ^2 function

We can rewrite

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \hat{\beta}} = 0 = \hat{A}^T \left(\hat{b} - \hat{A} \hat{\beta} \right),$$

as

$$\hat{A}^T\hat{b} = \hat{A}^T\hat{A}\hat{\beta},$$

and if the matrix $\hat{A}^T\hat{A}$ is invertible we have the solution

$$\hat{\beta} = \left(\hat{A}^T \hat{A}\right)^{-1} \hat{A}^T \hat{b}.$$

The χ^2 function

If we then introduce the matrix

$$\hat{H} = \hat{A}^T \hat{A}$$
.

we have then the following expression for the parameters β_j (the matrix elements of \hat{H} are $h_{ij})$

$$\beta_{j} = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} \frac{y_{i}}{\sigma_{i}} \frac{x_{jk}}{\sigma_{i}} = \sum_{k=0}^{p-1} h_{jk} \sum_{i=0}^{n-1} b_{i} a_{ik}$$

We state without proof the expression for the uncertainty in the parameters β_i as

$$\sigma^{2}(\beta_{j}) = \sum_{i=0}^{n-1} \sigma_{i}^{2} \left(\frac{\partial \beta_{j}}{\partial y_{i}} \right)^{2},$$

resulting in

 $(p-1 \quad n-1 \quad) \quad (p-1 \quad n-1)$

The χ^2 function

The first step here is to approximate the function y with a first-order polynomial, that is we write

$$y = y(x) \rightarrow y(x_i) \approx \beta_0 + \beta_1 x_i$$

By computing the derivatives of χ^2 with respect to β_0 and β_1 show that these are given by

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_0} = -2 \left[\sum_{i=0}^1 \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma_i^2} \right) \right] = 0,$$

and

$$\frac{\partial \chi^2(\hat{\beta})}{\partial \beta_0} = -2 \left[\sum_{i=0}^1 x_i \left(\frac{y_i - \beta_0 - \beta_1 x_i}{\sigma_i^2} \right) \right] = 0.$$

The χ^2 function

We define then

$$\gamma = \sum_{i=0}^{1} \frac{1}{\sigma_i^2},$$

$$\gamma_{\mathsf{x}} = \sum_{i=0}^{1} \frac{\mathsf{x}_i}{\sigma_i^2},$$

$$\gamma_y = \sum_{i=0}^{1} \left(\frac{y_i}{\sigma_i^2} \right),$$

$$\gamma_{xx} = \sum_{i=0}^{1} \frac{x_i x_i}{\sigma_i^2},$$

$$\gamma_{xy} = \sum_{i=0}^{1} \frac{y_i x_i}{\sigma_i^2}$$

and show that

$$\beta_0 = \frac{\gamma_{xx}\gamma_y - \gamma_x\gamma_y}{2}$$

The singular value decompostion

How can we use the singular value decomposition to find the parameters β_j ? More details will come. We first note that a general $m \times n$ matrix $\hat{\Sigma}$ and be written in terms of a diagonal matrix $\hat{\Sigma}$ of dimensionality $n \times n$ and two orthognal matrices \hat{U} and \hat{V} , where the first has dimensionality $m \times n$ and the last dimensionality $n \times n$. We have then

 $\hat{A} = \hat{U}\hat{\Sigma}\hat{V}$