Statistical Computing Homework 5

110024516 邱繼賢

Problem 2.

```
library(ISLR2)
library(latex2exp)
library(fields)
library(GpGp)
library(knitr)
```

資料前處理:

- 1. 將所有的 count variables 視為 approximately continuous variables, 並去除三個 categorical variables League, Division, NewLeague
- 2. 將變數 Salary 中有缺失值的資料刪除,僅剩下 263 筆資料
- 3. 將資料以 8:2 的比例隨機區分為 training data 和 testing data

```
data("Hitters")
hit_data = Hitters[,-c(14,15,20)]
idx.na = which(is.na(hit_data$Salary))
hit_data = hit_data[-idx.na,]
set.seed(1239)
idx = sample(1:263,210)
hit_training = hit_data[idx,]
hit_testing = hit_data[-idx,]
```

以變數 Salary 為反應變數 Y, 其餘變數為解釋變數 X, 然後對 training data fit linear model

$$Y = X\beta + \epsilon$$

```
model_lm = lm(Salary ~ ., hit_training)
summary(model_lm)
##
## Call:
## lm(formula = Salary ~ ., data = hit_training)
##
## Residuals:
##
      Min
               1Q Median
## -856.47 -180.22 -41.06 124.41 1900.67
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 199.88332 100.70688
                                    1.985 0.04858 *
## AtBat
               -2.47310
                           0.75429 -3.279 0.00124 **
## Hits
                8.07398
                           2.85378
                                   2.829 0.00516 **
## HmRun
                1.11320
                           7.29746
                                   0.153 0.87892
## Runs
               -1.81743
                           3.61622 -0.503 0.61583
## RBI
                0.41774
                           3.07001
                                   0.136 0.89191
## Walks
                6.23485
                           2.14208
                                   2.911 0.00403 **
              -10.78019
                          14.76273 -0.730 0.46614
## Years
               -0.09523
## CAtBat
                           0.15547 -0.613 0.54092
## CHits
               -0.31098
                           0.82309 -0.378 0.70598
               -1.30655
                           1.89373 -0.690 0.49106
## CHmRun
## CRuns
                           0.92501 2.017 0.04505 *
               1.86603
## CRBI
                           0.80034
                                   1.528 0.12815
                1.22291
## CWalks
               -1.01345
                           0.38907 -2.605 0.00991 **
## PutOuts
                0.28897
                           0.08707
                                     3.319 0.00108 **
## Assists
                0.35583
                           0.25313
                                     1.406 0.16141
## Errors
               -2.91376
                           5.03581 -0.579 0.56353
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 330.7 on 193 degrees of freedom
## Multiple R-squared: 0.502, Adjusted R-squared: 0.4607
```

F-statistic: 12.16 on 16 and 193 DF, p-value: < 2.2e-16

Fit training data by GP model with Matern covariance family

model_gp <- fit_model(y=hit_training\$Salary, locs=hit_training[,-17],</pre>

```
covfun_name="matern15_isotropic", m_seq=c(10,30))
## Design matrix not specified, using constant mean
## Reordering...Done
## Finding nearest neighbors...Done
## Iter 0:
## pars = 202726.0916 673.434 0.1
## loglik = -1526.074773
## grad = 102.086 -108.29 41.292
##
## Iter 1:
## pars = 344298.9699 216.0025 0.0598
## loglik = -1507.305579
## grad = 54.2641 -63.8604 14.4418
## step dot grad = -156.0051
##
## Iter 2:
## pars = 292233.0589 267.6008 0.0275
## loglik = -1479.576425
## grad = 26.7153 - 43.3927 8.1353
## step dot grad = -33.80771
##
## Iter 3:
## pars = 330723.3115 317.4482 0.0089
## loglik = -1469.778714
## grad = 11.4588 -23.7809 3.2999
## step dot grad = -13.32636
##
## Iter 4:
## pars = 374591.4918 345.0651 0.0026
## loglik = -1466.712598
## grad = 5.9373 -13.9144 1.1949
## step dot grad = -4.622058
```

##

```
## Iter 5:
## pars = 399653.7755 359.3586 7e-04
## loglik = -1465.575894
## grad = 3.1941 -8.1896 0.3897
## step dot grad = -1.800357
##
## Iter 6:
## pars = 414621.8386 369.7337 2e-04
## loglik = -1465.21309
## grad = 1.1408 -3.6625 0.0771
## step dot grad = -0.621103
##
## Iter 7:
## pars = 426549.387 377.54 1e-04
## loglik = -1465.159968
## grad = 0.1269 -0.9943 0.0137
## step dot grad = -0.0839667
##
## Iter 8:
## pars = 434013.9095 381.427 1e-04
## loglik = -1465.153424
## grad = 0.0142 -0.3395 0.0047
## step dot grad = -0.009390819
##
## Iter 9:
## pars = 437288.7048 383.0402 1e-04
## loglik = -1465.152376
## grad = 0.0044 - 0.1356 0.0018
## step dot grad = -0.001494075
##
## Iter 10:
## pars = 438637.761 383.6998 1e-04
## loglik = -1465.152203
## grad = 0.0016 - 0.0549 7e - 04
## step dot grad = -0.0002450838
##
```

```
## Iter 0:
## pars = 439189.2543 383.9687 1e-04
## loglik = -1463.932781
## grad = 3.36 - 6.751 - 0.005
##
## Iter 1:
## pars = 448269.7588 381.5312 1e-04
## loglik = -1463.877618
## grad = 0.07 \ 0.0193 \ -0.0014
## step dot grad = -0.1124554
##
## Iter 2:
## pars = 446423.8111 380.8281 1e-04
## loglik = -1463.877388
## grad = -0.0014 \ 0.0628 \ -7e-04
## step dot grad = -0.0003407898
##
## Iter 3:
## pars = 445809.5079 380.5458 1e-04
## loglik = -1463.877355
## grad = -6e-04 \ 0.0254 \ -3e-04
## step dot grad = -4.797848e-05
分別計算兩模型對 testing data 的測值
hit_testing$y.hat_lm = predict(model_lm, hit_testing[,1:16])
hit_testing$y.hat_gp = predictions(model_gp, locs_pred = as.matrix(hit_testing[,1:16]),X_pred = rep(1,5)
 kable(hit\_testing[,17:19], col.names = c("Y", "$\\ hat{Y}_{LM}$", "$\\ hat{Y}_{GP}$"))
```

Iter 11:

##

pars = 439189.2543 383.9687 1e-04

loglik = -1465.152175

grad = 6e-04 -0.0223 3e-04

step dot grad = -4.05192e-05

	Y	\hat{Y}_{LM}	\hat{Y}_{GP}
-Al Newman	70.000	167.7968	459.62051
-Alan Wiggins	700.000	331.1380	486.79891
-Buddy Bell	775.000	1076.6208	547.48363
-Bill Buckner	776.667	1311.2487	1197.55227
-Bo Diaz	750.000	558.8017	691.38021
-Chris Brown	215.000	439.2963	240.05942
-Curt Ford	70.000	234.4679	41.62539
-Carney Lansford	1200.000	774.4431	436.26937
-Chet Lemon	675.000	688.6940	533.68109
-Carmelo Martinez	340.000	283.2126	217.89501
-Don Baylor	950.000	1071.1114	1094.31344
-Dale Murphy	1900.000	963.9780	830.31644
-Dan Pasqua	110.000	462.9875	57.13934
-Dale Sveum	70.000	185.9696	48.88973
-Gary Carter	1925.571	1086.7192	1688.81120
-Garth Iorg	362.500	302.1291	270.20923
-Hubie Brooks	750.000	627.7705	262.93707
-John Cangelosi	100.000	338.5416	94.54587
-Jack Howell	95.000	278.4053	246.12449
-John Kruk	110.000	465.9348	-29.67965
-Jerry Mumphrey	600.000	625.2825	334.70321
-John Russell	155.000	301.6383	211.53796
-Joel Skinner	110.000	122.8173	81.55392
-Kevin Bass	630.000	595.8458	418.09830
-Kirk Gibson	1300.000	715.2145	709.96196
-Ken Landreaux	737.500	503.5638	478.63490
-Kevin Mitchell	125.000	323.8986	23.52764
-Ken Oberkfell	725.000	522.4469	717.44279
-Kurt Stillwell	75.000	227.4226	195.44914
-Len Dykstra	202.500	537.0587	165.97863
-Lee Lacy	525.000	575.9275	653.75303
-Lloyd Moseby	787.500	676.0962	1009.63196
-Lance Parrish	800.000	852.8698	658.28957
-Mark Salas	137.000	258.1642	163.60521

	Y	\hat{Y}_{LM}	\hat{Y}_{GP}
-Mike Scioscia	875.000	399.9872	437.94294
-Milt Thompson	140.000	211.5667	52.23525
-Marvell Wynne	240.000	261.4628	383.11853
-Ozzie Guillen	175.000	224.7722	209.90809
-Rafael Belliard	130.000	202.8450	80.89582
-Ron Hassey	560.000	536.0629	323.06171
-Ron Oester	750.000	476.9300	519.13732
-Robin Yount	1000.000	1371.1452	864.95953
-Scott Bradley	90.000	312.3073	47.90010
-Scott Fletcher	475.000	538.1461	465.87844
-Terry Harper	425.000	239.6747	267.14048
-Tommy Herr	925.000	742.7886	512.34666
-Tito Landrum	286.667	172.0393	228.09549
-Tom Paciorek	235.000	452.1622	515.41264
-Terry Pendleton	160.000	233.8078	235.82093
-Tony Phillips	425.000	565.5673	468.87993
-Wally Backman	550.000	520.5808	456.44321
-Wade Boggs	1600.000	1201.4436	706.60862
-Willie Wilson	1000.000	756.4029	533.51173

計算各別的 standard error

$$\sqrt{\frac{1}{n-1}\sum_{i=1}^n \left(\hat{Y}_i \ - \ Y_i\right)^2}$$

For LM model

```
se_lm = sqrt(1/52*sum((hit_testing$y.hat_lm-hit_testing$Salary)^2))
se_lm
```

[1] 288.729

For GP model

```
se_gp = sqrt(1/52*sum((hit_testing$y.hat_gp-hit_testing$Salary)^2))
se_gp
```

[1] 306.0555

```
par(mfrow = c(1,2))
plot(hit_testing$Salary,hit_testing$y.hat_lm, xlab = "Y", ylab = TeX("$\\hat{Y}_{LM}$"),
    xlim = c(min(hit_testing$y.hat_lm,hit_testing$Salary),max(hit_testing$y.hat_lm,hit_testing$Salary)
    ylim = c(min(hit_testing$y.hat_lm,hit_testing$Salary),max(hit_testing$y.hat_lm,hit_testing$Salary)
abline(0,1)
plot(hit_testing$Salary,hit_testing$y.hat_gp, xlab = "Y", ylab = TeX("$\\hat{Y}_{GP}$"),
    xlim = c(min(hit_testing$y.hat_gp,hit_testing$Salary),max(hit_testing$y.hat_gp,hit_testing$Salary)
    ylim = c(min(hit_testing$y.hat_gp,hit_testing$Salary),max(hit_testing$y.hat_gp,hit_testing$Salary)
abline(0,1)
```


我們可以看到兩模型都可以大致捕捉到變數 Y 的趨勢,但都不是 fit 的非常好,也許可以嘗試看看更為複雜的模型