Example 2

July 19, 2021

M.F. Atiyah, I.G. MacDonald Introduction to Commutative Algebra 1 RINGS AND IDEALS

 $A = k[x_1, \dots, x_n], \ \mathfrak{a} = (x_1, \dots, x_n).$ How is \mathfrak{a}^m the set of all polynomials with no terms of degree less than

In general, \mathfrak{a}^m is the set of sums of products $a_1 \cdots a_n$ where $a_i \in \mathfrak{a}$. First, $\mathfrak{a} = (x_1, \dots, x_m)$ is the set of finite

$$f_1(x_1,\ldots,x_n)x_1+\cdots+f_n(x_1,\ldots,x_n)x_n$$

Then, \mathfrak{a}^m is is the set of finite sums of products

Each such product has degree not less than m.

Now consider any polynomial of degree m. Each term is $x_1^{i_1} \cdots x_n^{i_n}$ with $i_1 + \cdots + i_n \geq m$. Now set $f_{11} = \cdots = f_{i_1 1} = 1$ and $f_{1j} = \cdots = f_{i_1 j} = 0$ for $j \neq 1$, then ...