SIDH/Isogeny Signature Function Contracts

Robert Gorrie – McMaster University – November 28, 2017

1 Key Exchange

1.1 Ephemeral Key Generation – Alice

Key Generation for Alice

Location	Efficient Algo's Appendix A	
Input	$x_{P_B}, x_{P_A}, y_{P_A},$ $SK_{Alice} = m_A \cdot l_A$	
Output	$PK_{Alice} = [x_{\Phi_A}(P_B), x_{\Phi_A}(Q_B), x_{\Phi_A}(Q_B - P_B)]$	

$Ephemeral Key Generation_A$

Location	kex.c
Input	unsigned char* PrivateKeyA, unsigned char* PublicKeyA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	publickey_t PublicKeyA, digit_t PrivateKeyA

	Key Generation for Alice		EphemeralKeyGeneration_A
Location	Efficient Algo's Appendix A	Location	kex.c
Input Output	$x_{P_B}, x_{P_A}, y_{P_A},$ $SK_{Alice} = m_A \cdot l_A$ $PK_{Alice} = [x_{\Phi_A}(P_B), x_{\Phi_A}(Q_B), x_{\Phi_A}(Q_B - Q_B)]$	$\frac{m_A \cdot l_A}{[x_{\Phi_A}, (P_B), x_{\Phi_A}, (Q_B), x_{\Phi_A}, (Q_B - P_B)]}$	unsigned char* PrivateKeyA, unsigned char* PublicKeyA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
		Output	publickey_t PublicKeyA, digit_t PrivateKeyA

1.2 Ephemeral Key Generation – Bob

1.3 Ephemeral Secret Agreement – Alice

1.4 Ephemeral Secret Agreement – Bob

2 Signature Scheme

2.1 Keygen

Location	kex.c
Input	unsigned char* PrivateKeyA, unsigned char* PublicKeyA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch
Output	publickey_t PublicKeyA, digit_t PrivateKeyA

$KeyGeneration_B$		
Location	kex.c	
Input	unsigned char* PrivateKeyA, unsigned char* PublicKeyA, PCurveIsogenyStruct CurveIsogeny, invBatch* batch	
Output	publickey_t PublicKeyA, digit_t PrivateKeyA	

- 2.2 Sign
- 2.3 Verify
- 3 Elliptic Curve Operations
- 4 Field Operations
- 5 Type Definitions

alias	definition
digit_t felm_t f2elm_t publickey_t	uint64_t digit_t[NWORDS_FIELD] felm_t[2] f2elm_t[3]