

#### **Computer Systems**

MSc-CS: 34221/ICY: 34212/MSc-CS & MSc-AI&CS (Dubai): 34224

Bob Hendley & Todd Ambridge - Birmingham Mian Muhammad Hamayun - Dubai



#### Module Team

- Edgbaston:
  - Bob Hendley R.J.Hendley@cs.bham.ac.uk
  - Todd Ambridge T.Waughambridge@bham.ac.uk
- Dubai:
  - Mian Hamayun M.M.Hamayun@bham.ac.uk
- Teaching Assistants
- Taught concurrently to MSc-CS, YiCS, MSc-CS (Dubai), MSc Al&CS(Dubai)



# Welcome to the exciting module of Computer Systems!

- · Course team
- Motivation
- · Learning Outcomes
- · Course Structure
- Resources
- Assessment
- · How to study?



## Motivation

- Computer Systems are enormously complex:
  - Hardware many billions of components
  - Software billions of instructions
  - Networks most of the operations that we perform involve interactions from many machines
- We cannot understand all of this complexity:
  - But we must understand the principles:
    - To design software architectures & software systems
    - To build efficient and robust systems
    - To test and evaluate and also maintain and extend these systems
  - We usually layer abstractions with well-defined interfaces to hide this complexity

## Example

Let's take a trivial example:

How are numbers represented?

- · In real life, it's easy! We just write a string of digits!
- Inside our computers we (usually) have a fixed representation.
  What happens if we:
  - Try to represent an integer which is too big?
  - Try to represent a real number that is too big or small or cannot be represented precisely?
  - Try to divide by 0?
  - · All of these cause problems:
    - · A system error or the wrong answer:
      - · with, possibly, fatal consequences!
  - So, we need to understand the representation, so we can make the right design choices and avoid problems



### Course Structure

- Hardware and software Architectures
  - Data representation and manipulation
    - · Numbers, characters etc.
  - Memory, CPU & Program Execution
  - Instructions Assembly and Machine Code
  - High and low level: Compilation and Interpretation
    - · Subroutines and Stacks
    - Java Virtual Machine (JVM) and Bytecode
- Analysing Algorithms
  - · Efficiency (Algorithm Complexity)

- Introduction to Operating Systems and their Elements
  - Computer Systems' Architecture and OS Structures
  - · Process Management
  - · Process Scheduling
- Multithreading and its Challenges:
  - · Concurrency and Synchronization
  - Deadlocks
- · Introduction to Networks
  - Application Layer
  - Transport Layer
  - Network Layer
  - · Network Security



## **Learning Outcomes**

- On successful completion of this module, the students should be able to:
  - 1. Demonstrate understanding of the fundamental principles of computer hardware
  - 2. Explain the relationship between computer hardware and software and be able to analyse a computer program in terms of the hardware operations required
  - 3. Reason about and analyse the complexity and performance of computer programs
  - 4. Describe the role of an operating system, explain its component parts, and reason about its behaviour.
  - 5. Demonstrate and apply an understanding of the core principles of computer networks



#### Resources

- Lecture & Tutorial
  - Tuesday 10:00
  - Tuesday 1:00
  - Thursday 10:00
- Course materials:
  - · Canvas:
    - · Lecture slides
    - Exercises
    - · Further materials:
      - Books, online materials, videos etc.
  - Discussion Groups for offline Q&A, announcements etc.
    - Teams



#### Assessments

- 50% coursework
  - 4 online tests:
    - Tuesdays (3pm-4pm (UK) / equivalent time in Dubai), 50 minutes
      - · No extensions are possible
      - · Students with RAPs
    - Quiz 0: Week 3, Material from topics 1-3
      - · not counted towards final assessment
    - Quiz 1: Week 5, Material from topics 1-5
      - 30% of coursework mark (=15% of module marks)
    - Quiz 2: Week 8, Material from topics 6-11
      - 35% of coursework mark (=17.5% of module marks)
    - Quiz 3: Week 11, Material from topics 13-17
      - 35% of coursework mark (=17.5% of module marks)
  - · See module Canvas page for details.
- 50% Final Examination:
  - · May / June Exam Period



## Any Questions?



## How to Study

- Each component will explain what you should do:
  - Attend the lectures
  - · Read the course material
  - Do the exercises
  - · Look at the further work.
- If you have any questions, then ask for help:
  - Lectures/Tutorials, Office hours, TA sessions, **Teams** ...
- Work with other students:
  - Explain your understanding, help them to understand, 'criticise' their work ...
- Remember: This module is 20 credits (1/3 of your workload), so you should be devoting 12/13 hours per week to it.