CK0033 - INTRODUÇÃO A COMPUTAÇÃO

Universidade Federal do Ceará Daniel Magalhães Nunes, 376163 Francilene da Silva Sales, 485249 2020.2

Trabalho1 - Latex - Escrita do arquivo Trabalho3-LAtex.pdf

Inferência Estatística para Uma Única Amostra

Definição: Intervalo de Confiança para a Média com Variância Conhecida

Se \overline{x} for a média de uma amostra aleatória n, de uma população com variância conhecida σ^2 , um intervalo com $100 (1 - \alpha) \%$ de confiança para μ é dado por:

$$\overline{x} - z_{\alpha/2}\sigma/\sqrt{n} \le \mu \le \overline{x} + z_{\alpha/2}\sigma/\sqrt{n}$$

Sendo $z_{\alpha/2}$ o ponto superior com $100\alpha/2\%$ da distribuição normal padrão.

EXEMPLO 8.6

Considere o problema do foguete do exemplo 8.2. Suponha que queiramos achar um intervalo com 95% de confiança para a taxa média de queima. Podemos usar a Eq. 8.35 para construir o intervalo de confiança. Um intervalo de 95% implica $1 - \alpha = 0,95; logo, \alpha = 0,05$, e da Tabela II no Apêndice, $z_{\alpha/2} = z_{0,05/2} = z_{0,025} = 1,96$.

$$l = \overline{x} - z_{\alpha/2}\sigma/\sqrt{n}$$

= 51, 3 - 1, 96(2)/\sqrt{25}
= 51, 3 - 0, 78
= 50, 52

e o limite superior é

$$u = \overline{x} + z_{\alpha/2}\sigma/\sqrt{n}$$

= 51, 3 + 1, 96(2)/ $\sqrt{25}$
= 51, 3 + 0, 78
= 52, 08

Figura 1: A distribuição Z.

Desse modo, o intervalo bilateral com 95% de confiança é

$$50,52 \le \mu \le 52,08$$

Sendo nosso intervalo de valores razoáveis, para a taxa média de queima, com 95% de confiança.

Escolha do tamanho da amostra

Definição

Se \overline{x} for usada como uma estimativa de μ , podemos estar $100(1-\alpha)\%$ confiantes de que o erro $|\overline{x}-1|$ não excederá um valor especificado E quando o tamanho da amostra for

$$n = \left(\frac{z_{\alpha/2}\sigma}{E}\right)^2$$

Note a relação geral entre o tamanho da amostra, o comprimento desejado do intervalo de confiança de $100(1-\alpha)\%$ e o desvio-padrão σ :

- À medida que o comprimento desejado do intervalo 2E diminui, o tamanho requerido n da amostra aumenta para um valor fixo de σ e confiança especificada;
- À medida que σ aumenta, o tamanho requerido n da amostra aumenta para comprimento desejado fixo σ 2E e confiança especificada;
- À medida que o nível de confiança aumenta, o tamanho requerido n da amostra aumenta para o comprimento desejado fixo 2E e desvio-padrão σ .

Intervalo Unilateral de Confiança

É também possível obter intervalos unilaterais de confiança para μ , estabelecendo $l=-\infty$ ou $\mu=\infty$ e trocando $z_{\alpha/2}$ por z_{α} .

O intervalo superior com $100(1-\alpha)\%$ de confiança para μ é

$$\mu \le u = \overline{x} + z_{\alpha}$$

e o intervalo inferior com $100(1-\alpha)\%$ de confiança para μ é

$$\overline{x} - z_{\alpha} \sigma / \sqrt{n} = l \le \mu$$

8.2.7. Método Geral para reduzir um intervalo de Confiança

É fácil dar um método geral para encontrar um intervalo de confiança para parâmetro desconhecio θ . Faça X1, X2, ...X, ser uma amostra aleatória com n observações. Suponha que possamos encontrar uma estatística $g(X1, X2, ...X, ; \theta)$ com as seguintes propriedades:

- 1. $g(X1, X2, ..., Xn : \theta)$ depende da amostra e de θ e
- 2. a distribuição de probabilidade de $g(X1, X2, ..., X:\theta)$ não depende de θ ou de qualquer outro parâmetro desconhecido.

No caso considerado nessa seção, o parâmetro $\theta = \mu$. A variável aleatória $g(X1, X2, ..., X_n : \mu) = (\overline{X} - \mu)/(\sigma/\sqrt{n})$ satisfaz ambas as condições anteriores; ela depende da amostra e de μ e tem uma distribuição normal padrão desde que θ seja conhecido. Agora, tem-se de encontrar as constantes C_L e C_U de modo a

$$P[C_L \le g(X_1, X_2, ..., X_n; \theta) \le C_U] = 1 - \alpha$$

Devido à propriedade $2, C_L$ e C_U não depende de θ . Em nosso exemplo, $C_L = z_{\alpha/2}$ e $C_U = z_{\alpha/2}$. Finalmente, você tem de manipular as desigualdades no enuciado de probabilidade, de modo a

$$P[L(X_1, X_2, ..., X_n) \le \theta \le U(X_1, X_2, ..., X_n)] = 1 - \alpha$$

Isso fornece $L(X_1, X_2, ..., X_n)$ e $U(X_1, X_2, ..., X_n)$ como os limites inferiores e superiores de confiança, definindo o intervalo de confiança de $100(1-\alpha)\%$ para θ . Em nosso exemplo, encontramos $L(X_1, X_2, ..., X_n) = \overline{X} - z_{\alpha}\sigma/\sqrt{n}$ e $U(X_1, X_2, ..., X_n) = \overline{X} + z_{\alpha}\sigma/\sqrt{n}$.

8.3 INFERÊNCIA SOBRE A MÉDIA DE UMA POPU-LAÇÃO COM VARIÂNCIA DESCONHECIDA

Quando estamos testando hipóteses ou construíndo intervalos de confiaça para a média μ de uma população quando σ^2 for deseconhecida, podemos usar os procedimentos de testes da Seção 8.2. Entretanto, quando a amostra for pequena e σ^2 for desconhecida, teremos de fazer uma suposição sobre a forma de distribuição em estudo de modo a obter um procedimento de teste. Uma suposição razoável, em muitos casos, é que a distribuição sob consideração seja normal.

8.3.1 Testes de Hipóteses para a Média

Suponha que a população de interesse tenha distribuição normal, com a média μ e variância σ^2 desconhecidas. Desejamos testar a hipótese de que μ seja igual a uma constante μ_o . Note que essa situação é similar àquela da Seção 8.2, exeto que agora ambas, μ e σ^2 , são desconhecidas. Considere que uma da amostra aleatória de tamanho n, como X1, X2, ...Xn. seja disponível e sejam \overline{X} e S^2 a média e a variância amostral, respectivamente. Desejamos testar a hipótese alternativa bilateral.

Trabalho1 - Latex - Escrita do arquivo Trabalho4-LAtex.pdf

$$H_0: \mu = \mu_0$$

$$H_1: \mu \pm \mu_0$$

Se a variância σ^2 for conhecida, a estatística de teste será a Eq. 8.10:

$$Z_0 = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

Quando σ^2 for desconhecida, um procedimento lógico será trocar σ na Eq. 9.10 pelo desvio-padrão, S, da amostra. A estatística de teste é agora

$$T_0 = \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \tag{8.39}$$

Uma questão lógica é qual o efeito de trocar σ por S na distribuição da estatística T_0 ? Se n for grande, a resposta a essa questão é "muito pouco" e podemos usar o procedimento de teste baseado na distribuição normal da seção 8.2. Entretanto, n é geralmente pequeno na maioria dos problemas de engenharia e nessa situação uma distribuição diferente tem de ser empregada.

Definição

Faça X_1, X_2, \dots, X_n ser uma amostra aleatória para uma distribuição normal, com média μ e variância σ^2 desconhecida. A grandeza

$$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$$

tem uma distribuição t, com n-1 graus de liberdade.

A função densidade da probabilidade t é

$$f(x) = \frac{\Gamma[(k+1)/2]}{\sqrt{\pi k} \Gamma(k/2)} \cdot \frac{1}{[(x^2/k)+1]^{(k+1)/2}} - \infty < x < \infty$$
 (8.40)

sendo k o número de graus de liberdade. A média e a variância da distribuição t são iguais a zero e k/(k-2)(para k>2), respectivamente.

Várias distribuições t são mostradas na Figura 2.

Figura 2: Funções densidade de probabilidade de várias distribuições t.

Agora, pode-se ver, de forma direta, que a distribuição da estatística de teste na Eq.8.39 é t, com n-1 graus de liberdade, se a hipótese nula $H_0: \mu = \mu_0$ for verdadeira. Para testar $H_0: \mu = \mu_0$, o valor da estatística de teste t_0 na Eq.8.39 é calculado e H_0 é rejeitada se

$$t_0 > t_{\alpha/2, n-1}$$
 (8.41a)

ou

$$t_0 < -t_{\alpha/2, n-1} \tag{8.41b}$$

em que $t_0 > t_{\alpha/2,n-1}$ e $t_0 < -t_{\alpha/2,n-1}$ são pontos $100\alpha/2\%$ superior e inferior da distribuição t, com n-1 graus de liberdade, definidos previamente.

Para a hipótese alternativa unilateral

$$H_0: \mu = \mu_0$$

$$H_1: \mu > \mu_0 \tag{8.42}$$

Calculamos a estatística de teste t_0 , a partir da Eq. 8.9, e rejeitamos

 $t_{1-\alpha,k} = -t_{\alpha,k}$

$$t_0 > t_{\alpha, n-1} \tag{8.43}$$

Para a outra hipótese alternativa unilateral

$$H_0: \mu = \mu_0$$

$$H_1: \mu < \mu_0 \tag{8.44}$$

 $t_{\alpha,\,k}$

Figura 3: pontos percentuais da distribuições t.

rejeitamos H_0 se

$$t_0 < -t_{\alpha, n-1} \tag{8.45}$$

t

EXEMPLO 8.8

Um artigo no periódico Materials Engineering (1989, Vol.II, No. 4, pp. 275-281) descreve os resultados de testes de tensão quanto à adesão em 22 corpos de prova de liga U-700. A carga no ponto de falha do corpo de prova é dada a seguir (em MPa):

19,8	18,5	17,6	16,7	15,8
15,4	14,1	13,6	11,9	11,4
11,4	8,8	7,5	15,4	15,4
19,5	14,9	12,7	11,9	11,4
10,1	7,9			

A média amostral é $\overline{x}=13,71$ e o desvio-padrão é s=3,55. Os dados sugerem que a carga média na falha excede 10MPa? Considere que a carga na falha tenha uma distribuição normal e use $\alpha=0,05$.

A solução, usando o procedimento de 8 etapas para o teste de hipóteses, é dada a seguir:

- 1. O parâmetro de interesse é a carga média na falha, μ .
- 2. $H_0:\mu=10$
- 3. $H_1:\mu > 10$. Queremos rejeitar H_0 se a carga média na falha exceder 10MPa.
- 4. $\alpha = 0.05$.
- 5. A estatística de teste é

$$t_0 = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

6. Rejeite H_0 se $t_0 > t_{0,05,21} = 3,55, \mu = 10$ e n = 22, temos

$$t_0 = \frac{13,71 - 10}{3,55/\sqrt{22}} = 4,90$$

7. Conclusões: Uma vez que $t_0 = 4,90 > 1,721$, rejeitamos H_0 e concluímos, com um nível de 0,05 de significância, que a carga média da falha excede 10 MPa.

8.3.5 Intervalo de Confiança para a Média

É fácil encontrar um intervalo de confiança de $100(1-\alpha)\%$ para a média de uma distribuição normal com variância desconhecida, procedendo como fizemos na Seção 8.2.6. Em geral, a distribuição de $T=\left(\overline{X}-\mu\right)/\left(S/\sqrt{n}\right)$ é t, com n-1 graus de liberdade. Fazendo $t_{\alpha/2,n-1}$ ser o ponto superior $100\alpha/2\%$ da distribuição t, com n-1 graus de liberdade, podemos escrever:

$$P\left(-t_{\alpha/2,n-1} \le T \le t_{\alpha/2,n-1}\right)$$

ou

$$P\left(-t_{\alpha/2,n-1} \le \frac{\overline{X} - \mu_0}{S/\sqrt{n}} \le t_{\alpha/2,n-1}\right)$$

Rearranjando essa última equação, resulta em

$$P\left(\overline{X} - t_{\alpha/2, n-1} S / \sqrt{n} \le \mu \le \overline{X} + t_{\alpha/2, n-1} S / \sqrt{n}\right) = 1 - \alpha \tag{8.49}$$

Isso conduz á seguinte definição de intervalo bilateral de confiança com $100 (1 - \alpha) \%$ para μ .

Definição: Intervalo de Confiança para Média de uma Distribuição Normal com Variância Desconhecida

Se \overline{x} e s forem a média e o desvio-padrão de uma amostra aleatória proveniente de uma população normal, com variância desconhecida σ^2 , então um intervalo de confiança de $100 (1 - \alpha) \%$ para a média μ é dado por

$$\overline{x} - t_{\alpha/2, n-1} S / \sqrt{n} \le \mu \le \overline{x} + t_{\alpha/2, n-1} S / \sqrt{n}$$
(8.50)

sendo $t_{\alpha/2,n-1}$ o ponto superior $100\alpha/2\%$ da distribuição t, com n-1 graus de liberdade.

Intervalos unilaterais de confiança para a média de uma distribuição normal são também de interesse e são fáceis de usar. Use simplesmente somente o limite inferior ou superior apropriado de (8.50) e troque $t_{\alpha/2,n-1}$ por $t_{\alpha,n-1}$.

EXEMPLO 8.10

Reconsidere o problema da tensão quanto à adesão no Exemplo 8.8. Sabemos que n=22, $\overline{x}=13,71,\ s=3,55$. Encontraremos um intervalo de confiança de 95% para μ . Da Eq. 8.50, encontramos $(t_{\alpha/2,n-1}=t_{0.025;21}=2,080)$:

$$\overline{x} - t_{\alpha/2, n-1} s \sqrt{n} \le \mu \le \overline{x} + t_{\alpha/2, n-1} s \sqrt{n}$$

$$13,71 - 2,080 (3,55) / \sqrt{22} \le \mu \le 13,71 + 2,080 (3,55) / \sqrt{22}$$

$$13,71 - 1,57 \le \mu \le 13,71 + 1,57$$

$$12,14 \le \mu \le 15,28$$

No exemplo 8.8, testamos uma hipótese alternativa unilateral para μ . Alguns engenheiros podem estar interessados em um intervalo inferior de confiança de 95% para a carga média na falha é encontrado usando o limite inferior de confiança de (8.50), com $t_{\alpha/2,n-1}$ trocado por $t_{\alpha,n-1}$, isso conduz a:

$$\overline{X} - t_{0,05,n-1} S \sqrt{n} \le \mu$$

 $13,71 - 1,721(3,25)/\sqrt{22} \le \mu$
 $12,52 \le \mu$

Logo, podemos dizer com 95% de confiança que a carga média na falha excede 12,52 MPa.