Pengenalan Arsitektur Basis Data

Tim Dosen

Outline

Pengenalan DBMS

Struktur DBMS

Komponen DBMS

Oracle Database

Arsitektur Sistem Database

Pengenalan DBMS

- Database Management System (DBMS) adalah kumpulan dari program-program yang mengijinkan user untuk melakukan create, maintain, dan control terhadap semua kegiatan yang mengakses database.
- •Tujuan utamanya adalah untuk menyediakan sistem yang aman, nyaman, dan efisien untuk user dalam mengakses dan menyimpan informasi.

Struktur DBMS

Terdiri dari beberapa modul yang masing-masing mempunyai tanggung jawab dalam membentuk struktur sistem secara keseluruhan.

Beberapa fungsi dari sistem basis data mungkin telah diberikan oleh sistem operasi.

Setiap produk DBMS mempunyai karakteristik sistem sendirisendiri.

Gambar Struktur DBMS

Komponen DBMS

query processor

merubah queri level tinggi menjadi instruksi level rendah

storage manager

menyediakan antarmuka antara data level rendah yang tersimpan dalam basis data dan program aplikasi serta query yang diberikan ke sistem.

Query Processor

DML compiler, menerjemahkan perintah DML pada suatu query ke dalam instruksi level rendah yang dimengerti oleh mesin evaluasi query.

Embedded DML precompiler, mengkonversi perintah DML yang *embed* pada sebuah program aplikasi ke *procedure call* yang normal dalam bahasa *host*.

DDL interpreter, menginterpretasikan perintah DDL dan mencatatnya dalam sekumpulan tabel yang mengandung metadata.

Query evaluation engine, mengeksekusi instruksi level rendah yang dihasilkan oleh DML compiler.

Storage Manager

Manajer otorisasi dan integritas, menguji integritas dari constraint yang ada serta otoritas user untuk mengakses data.

Manajer transaksi, meyakinkan basis data tetap pada kondisi konsisten (benar) saat terjadi kegagalan sistem serta meyakinkan bahawa eksekusi dari transaksi yang konkuren (terjadi "bersamaan") berlangsung tanpa adanya konflik.

Manajer file, mengelola alokasi ruang pada disk penyimpanan struktur data yang digunakan untuk mewakili informasi yang disimpan pada disk.

Manajer buffer, bertanggung jawab untuk mengambil data dari disk penyimpanan ke dalam memori utama serta menetukan data yang mana yang akan ditempatkan di memory

Contoh-contoh Produk DBMS

Oracle

DB2

SQL Server

MySQL

DII.

Oracle Database

Merupakan salah satu produk DBMS

Versi terakhir yang sudah direlease ke pasaran adalah Oracle versi 11

Oracle Database Architecture

Oracle server adalah DBMS yang menyediakan pendekatan menyeluruh dan terbuka pada information management

Terdiri dari Oracle instance dan Oracle database

Oracle Database Structure

Terdiri dari

- memory structure
- process structure
- storage structure

Oracle Database Structure (2)

Oracle Instance

Merupakan media untuk mengakses database

Satu instance terhubungkan hanya ke satu database

Terdiri dari memory structure dan background process structure

Oracle Instance (2)

Oracle Memory Structure

Terdiri dari:

System Global Area (SGA): di-share oleh semua server dan background process

Program Global area (PGA): Private untuk masing-masing server dan background process. Satu PGA untuk masing-masing proses.

Oracle Process Structure

Terdiri dari:

User process:

dimulai pada saat user meminta koneksi ke Oracle Server

Server process:

terhubung ke Oracle Instance, dimulai pada saat user mulai terhubungkan dengan Oracle Server

Background process:

dimulai pada saat Oracle Instance di-start.

Oracle Storage Structure

Terbagi menjadi:

Logical structure

Physical structure

Oracle Logical & Physical Structure

Oracle Physical Structure

Arsitektur Sistem Database

Dapat diklasifikasikan berdasarkan sistem komputer dimana database tersebut dijalankan, seperti:

- Centralized Systems
- Client-Server Systems
- Parallel Systems
- Distributed Systems
- Network Types

Database functionality

Terbagi menjadi:

Back-end: mengatur struktur akses, evaluasi queri dan optimisasi, kontrol konkurensi dan recovery.

Front-end: terdiri dari tool seperti *forms, report-writers, dan* fasilitas *graphical user interface*.

Centralized Systems

Sistem yang berjalan pada suatu komputer tunggal

Tidak berinteraksi dengan sistem yang lain

Terdiri dari : single-user dan multi-user

Client-Server Systems

Sistem server akan memproses permintaan dari client

Database functionality terdiri dari:

front-end dan back-end

Sistem server bisa sebagai:

- transaction server atau
- data server

Transaction Server

Banyak digunakan dalam sistem database relasional

Disebut juga query server systems atau SQL server systems

clients mengirim permintaan ke sistem server dimana transaksi akan dieksekusi, dan hasilnya dikirim kembali ke client

Permintaan ditulis dalam SQL, dan dikomunikasikan ke server melalui mekanisme *remote procedure call* (RPC)

Data Server

Digunakan dalam sistem database object-oriented

Menggunakan LAN dengan koneksi yang sangat cepat antara client dan server

Data dikirim dari server ke komputer client dimana pemrosesan data dilakukan, dan hasilnya dikirim kembali ke server

Arsitektur ini membutuhkan full back-end functionality di komputer client

Parallel Systems

Terdiri dari multi processors dan multi disks

Dikoneksikan oleh network interconnection yang cepat

Pengukuran performance berdasarkan pada:

- throughput --- jumlah tasks yang bisa diselesaikan dalam interval waktu yang ditentukan
- response time --- jumlah waktu yang digunakan untuk menyelesaikan suatu task

Parallel Systems

Distributed Systems

Data tersebar di beberapa server (sites atau nodes)

Network menghubungkan server-server

Data digunakan bersama-sama oleh users di server-server tersebut

Distributed Systems

Terima Kasih

