CS & IT ENGINEERING

Theory of Computation

Regular Languages

Lecture No.- 13

Recap of Previous Lecture

Topic

Regular Expressions GATE PYQs

Topics to be Covered

Topic

Practice on Regular Expressions

$$L_1 = \{a, ab\}$$

$$R_1 = a^*$$

$$R_2 = (aa)^{*}$$

TRUE ?

Q2
$$L_1 = a^* + b^*$$
 $L_2 = a^* b^*$

FALSE 9

$$L_{1} = \{\alpha^{*}, b^{*}\}$$

$$= \{\epsilon, \alpha, \alpha^{*}, \dots, b, b^{*}, \dots\}$$

$$L_{1}^{*} = (x^{*} + b)^{*} = (x^{*} + b)^{*}$$

$$l_2^* = (\alpha^*b)^* = (\alpha+b)^*$$

MSQ

$$L = (a+b)^*$$

Equivalent to L

$$A (a+b)^{\dagger} = \{\epsilon, a, b, aa, ab, ba, bb, \dots \} = (a+b)^{*}$$

$$B (a^{*}+b)^{*} = 11$$

$$C (a+b^{*})^{\dagger} = 11$$

$$C (a+b^{*})^{*} = 11$$

bbaaba

$$(ab)^{*}$$

$$(ab)^{*}$$

$$(ab)^{*}$$

$$(ab)^{*}$$

$$(ab)^{*}$$

$$(ab)^{*}$$

$$(ab)^{*}$$

$$(ab)^{*}$$

$$(ab)^{*}$$

Q5
$$L = (a+b)^{*}$$

Equivalent to L ?

$$\begin{array}{lll}
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, bb, \dots\} = (a+b)^* \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} = (a+b)^* \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} = (a+b)^* \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, bb, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, ba, bb, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, ba, bb, ba, bb, ba, bb, \dots\} \\
& (a^*b^*)^* = \{\epsilon, a, b, aa, ab, ba, ba, ba, bb, ba,$$

Q6

Equivalent to L?

$$\begin{array}{lll}
A & (a^*b^*a^*)^* &= \{\xi,a,b,\dots\} \\
B & (b^*a^*(bb)^*)^* &= \{\xi,a,b,\dots\} \\
E & (a^*b^*a^*a^*a^*b^*)^* &= \{\xi,a,b,\dots\} \\
D & (a^*b^*(aa)^*(bb)^*b^*)^* &= \{\xi,a,b,\dots\} \\
\end{array}$$

B ab^*a

c) b*ab*ab*

aab*

 $W \in \{\epsilon, \alpha, \underline{a}, \underline{a}, \ldots, \frac{\epsilon}{s}\}$

Lis over Z-far

Q٩

$$L = \int bw | w \in (an)^*, m_a(w) \leq 2$$

Equivalent to L ?

- A) $\{\varepsilon, \alpha, \alpha^2\}$
- B &b, ba, ba }

D) None

$$= \{b\epsilon, baa\} = \{b, baa\}$$

Q10
$$L=gW_1W_2W_1,W_2Ega,b$$
 = 7

(a+b)*
(a+b)*
(a+b)*
$$a^*(a+b)^* = (a+b)^*$$
(a+b)*
(a+b)*
(a+b)*
(a+b)*

Ald regular language

A $(a+b)^{*}$ X

B $(a+b)^{*}$, $(a+b)^{*}$ X

(a+b)* (a+b) X None

.

MSQ

TRUE?

$$(a^*b^*)^* = (b^*a^*)^* = (a+b)^*$$
 $(a^*b^*)^* = (b^*a^*)^* = (a+b)^*$
 $(a^*b^*)^* = (b^*a^*)^* = (a+b)^*$

2 mins Summary

Topic

Regular Expressions

THANK - YOU