Linear Regression - 2

Gradient Descent Revision

Let's take a f^n : $f(x) = x^2$

Steps of GD

1. Pick x_o randomly

2.
$$\frac{df}{dx}\Big|_{X_0}$$
 = +ve [inc. fⁿ]

3.
$$x_1=x_0+\eta(rac{-\partial f}{\partial x})_{x=x_0}$$

- Derivative positive at x0 since function is increasing
- -ve because to move in opposite direction to reach minima

$$X_0 \longrightarrow X_1$$
 Moves towards pt closer to minima

Quiz - 4

Why GD?

To optimize the loss fn and find its minima

Loss $f^n \longrightarrow MSE$

Minimize

$$rac{1}{m} \sum_{i=0}^m (\hat{y}^{(i)} - y^{(i)})^2$$

Linear Regression Helper Functions

—>>> We define our linear regression class and set LR & no. of iterations

```
import numpy as np
class LinearRegression() :
    def __init__(self, learning_rate=0.01, iterations=5):
        self.learning_rate = learning_rate
        self.iterations = iterations
```

->>> Next we define our predicted Fn

```
Remember: \hat{y} = W_t \times + W_0 We will call this as bias

| def predict(self, X):
| return np.dot(X, self.W)+self.b|
| LinearRegression.predict=predict
```


Note:

We are using this notation of adding a function, as seen from the last line LinearRegression.predict=predict, since we aren't defining the class in one go

—>>> Finally we evaluate our evaluation metric R^2Score

```
def r2_score(self, X, y):
    y_ = predict(self, X)
    ss_res = np.sum((y-y_)**2)
    ss_tot = np.sum((y- y.mean())**2)
    score = (1- ss_res/ss_tot)
    return score

LinearRegression.score=r2_score
```


Given:

$$D = \{(x^{(i)}, y^{(i)})_{i=1}^{i=n}; x^{(i)} \in R^d, y^{(i)} \in R\}$$

Objective:

 $Find \ w \ s.t.,$

$$\hat{y}^{(i)} = f(x^{(i)}) = w^T x^{(i)} + w_0, \forall i: 1 -> m$$

$$w^T = [w_1, w_2, w_3, \ldots, w_d]$$

Calculate:

That is,

Minimize

By minimizing the Loss $f^n \longrightarrow MSE$

Loss fⁿ ??

Remember MSE/ MAE?

Therefore, Loss $f^n = MSE \longrightarrow Minimize$

MAE vs MSE as cost function

MAE gives a +1 ,-1 when gradient
$$\dfrac{dMAE}{dy_{pred}} = egin{cases} +1 & y_{pred} > y_{true} \ -1 & y_{pred} < y_{true} \end{cases}$$

MAE can be a valid cost function as

if you are predicting too high (ypred > ytrue),

then increasing *ypred* yet more by one unit will increase the MAE by an equal amount of one unit,

so the gradient encourages you to reduce *ypred* . And vice versa if *ypred* < *ytrue*

But MAE is not used for Linear Regression

MAE isn't differentiable at

$$y_{true} = y_{pred}$$

While MSE is differentiable as well as increasing function is preferred in LR

We will see its calculations in some time

of a single predictor

How will L change for multiple predictors ??

$$L = \min_{w_0, w_1, ..., w_d} rac{1}{m} \sum_{i=1}^m [y^{(i)} - (w_0 + w_1 x_1^{(i)} + w_2 x_2^{(i)} + \ldots + w_d x_d^{(i)})]^2$$

Geometrically, A hyperplane in df 1 dimensions

Global minima: Best value of $< W_1, W_0 >$

How to find global minima?

Using Gradient Descent

We revised gradient descent at the start of this lecture

To do Gradient Descent of L , we use partial derivatives

Quadratic Function

Optimization

Take a partial derivative of L w.r.t each variable

$$\frac{\partial L}{\partial w_1} = 0$$

•••

$$rac{\partial L}{\partial w_d}=0$$

System of Linear Equations

L is Quad

Derivative will be linear

Let's take < W₁,W₂,W₀ > for simplicity

Calculate:

$$rac{\partial L}{\partial w_0}=0$$
 , $rac{\partial L}{\partial w_1}=0$, $rac{\partial L}{\partial w_2}=0$

$$L(w_2, w_1, w_0) = (y - (w_d x_2 + w_1 x_1 + w_0)^2$$

constant

$$\frac{\partial L}{\partial w_0} = \frac{\partial (y - (w_2 x_2 + w_1 x_1 + w_0))^2}{\partial w_0}$$

$$= 2(y - \hat{y}) \cdot \frac{\partial (-\hat{y})}{\partial w_0}$$

$$=-2(y-\hat{y})$$

$$\frac{\partial L}{\partial w_1} = \frac{\partial (y - (w_2 x_2 + w_1 x_1 + w_0))^2}{\partial w_1}$$

=
$$2(y-\hat{y}).rac{\partial(-\hat{y})}{\partial w_1}$$

=
$$2(y - \hat{y}). -x_1$$

= $(2(y - \hat{y}). x_1)$

= error

-2 error

constant

constant

$$\frac{\partial L}{\partial w_2} = \frac{\partial (y - (w_2 x_2 + w_1 x_1 + w_0))^2}{\partial w_2}$$

$$=2(y-\hat{y}).\,rac{\partial(-\hat{y})}{\partial w_2}$$

=
$$2(y-\hat{y}).-x_2$$

$$=$$
 $\widehat{-2}(y-\hat{y}).$ $\widehat{x_2}$

-2 error. Input value

Notice a pattern?

The partial derivative

-2 . Error . Input value of wt.

For m points

$$egin{array}{l} rac{\partial L}{\partial w_0} = rac{1}{m} \sum_{i=1}^m -2(y-\hat{y}) \ rac{\partial L}{\partial w_d} = rac{1}{m} \sum_{i=1}^m -2(y-\hat{y}) x_d \end{array}$$

How to update the weights ??

$$w_0 = w_0 - \alpha \frac{\partial L}{\partial w_0}$$

•

$$w_d = wd - lpha rac{\partial L}{\partial w_d}$$

How to decide the right Linear Regression ??

Start with smaller α

If model is trained, increase α

reach downhill

How to decide the right Linear Regression ??

 $ADVICE \Rightarrow$

Start with smaller α

If model is trained, increase α

Implementation of Wt.s update and GD

Weights update

```
[ ] def update_weights(self):
    Y_pred = self.predict( self.X )
    # calculate gradients
    dW = - (2*(self.X.T ).dot(self.Y - Y_pred))/self.m
    db = - 2*np.sum(self.Y - Y_pred)/self.m
    # update weights
    self.W = self.W - self.learning_rate * dW
    self.b = self.b - self.learning_rate * db
    return self

LinearRegression.update_weights=update_weights
```

Note:

Using I point of updation is called stochastic gradient descent.

Whereas if we update the weights after m points, it's called batch gradient descent.

Define the fit fn

```
def fit(self, X, Y):
  # no of training examples, no of features
  self.m, self.d = X.shape
  # weight initialization
  self.W = np.zeros(self.d)
  self.b = 0
  self.x = x
  self.Y = Y
  self.error list=[]
  # gradient descent learning
  for i in range(self.iterations):
    self.update weights()
    Y pred=X.dot(self.W)+self.b
    error=np.square(np.subtract(Y,Y pred)).mean()
    self.error_list.append(error)
  return self
LinearRegression.fit=fit
```


Let's finally train our model

Importing necessary libraries

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
!gdown 1UpLnYA48Vy_1GUMMLG-uQE1gf_Je12Lh
```

Reading the data set

```
df = pd.read_csv('cars24-car-price-clean.csv')
df.head()
```


Defining our model

```
lr = LinearRegression(iterations=100)
lr.fit(X_train, y_train)
```

Prediction on test data and evaluation

Wts and Bias

lr.W

year	0.125722
km_driven	-0.047847
mileage	-0.050197
engine	0.093654
max_power	0.154132
age	-0.125722
make	0.189528
model	0.371064
Individual	-0.025478
Trustmark Dealer	-0.004997
Diesel	0.045118
Electric	0.016967
LPG	0.002790
Petrol	-0.042832
Manual	-0.105770
5	-0.005216
>5	0.003182
dtype: float64	

lr.b

0.0011317414350942184

Plotting the error vs time plot


```
%matplotlib inline
fig = plt.figure()
plt.plot(lr.error_list)
plt.title("Reduction in error over time")
plt.xlabel("iteration")
plt.ylabel("Error")
plt.show()
```


How does feature scaling help ??

Remember feature scaling helps in predicting the feature importance of predictors

- 1. Ensures all features are normalized and scaled equally
 - ML considers features with wide ranges to be important
 (It's not how it should be)
 - Scaling ensures no feature dominates the training process

2. G.D converges faster

I Problem with R- Square

What if we add one extra feature to our model

+

1 feature

$$W_0X_0 + W_1X_0 + W_2X_2 + W_nX_n + W_{n+1}X_{n+1}$$

How will R-quare vary?

CASE 1

Feature is relevant . R- Square increases (trivial)

CASE 2

Feature is not relevant . Will the R-squared decrease, increase or remain same?

When will R- square increase (irrelevant features)?

Model makes some "spurious" assumptions

Performance increase "by chance"

Adjusted R- Square

Solution ??

Add a penalty for increase in "d"

$$Adj.\,R-sq.=1-\left[rac{(1-R^2)(m-1)}{(m-d-1)}
ight]$$

Adjusted R- square has a quality

It decreases if dimension increases.

R2 won't increase.

 $Adj_R = 1 - (1-lr.score(X_test, y_test)*(len(y_test)-1)/(len(y_test)-X_test.shape[1]-1))$

Scenario 1

D increases : (m-d-1) decreases , R2 (no changes)

(Minimal change in R2)

Scenario 2

D increases : (m-d-1) decreases , R2 (increase)

(notable change in R2)

y hat = lr.predict(X test)

1

Adjusted R- Square decreases

Adjusted R- Square increases

print("Adjusted R-squared:", Adj_R)

Adjusted R-squared: 0.9114445609103706