

Relations

- Relationships between elements of sets occur very often.
 - (Employee, Salary)
 - (Students, Courses, GPA)
- Relationships between elements of sets are represented using the structure called relation, which is just a subset of the Cartisian product of the sets.
- We use ordered pairs (or *n*-tuples) of elements from the sets to represent relationships.

Binary Relations

• Let A and B be any sets. A binary relation R from A to B, (i.e., with signature $R:A\times B$) can be identified with a subset of $A\times B$.

E.g., let <: N×N can be seen as $\{(n,m) \mid n < m\}$

- $(a,b) \in R$ means that a is related to b (by R)
- Also written as aRb; also R(a,b)
 - E.g., a < b and < (a,b) both mean (a,b) \in <
- A binary relation R corresponds to a characteristic function $P_R: A \times B \rightarrow \{T, F\}$

Example

A: {students at UNR}, B: {courses offered at UNR}

R: "relation of students enrolled in courses"

(Jason, CS365), (Mary, CS201) are in R

If Mary does not take CS365, then (Mary, CS365) is not in R!

If CS480 is not being offered, then (Jason, CS480), (Mary, CS480) are not in R!

Complementary Relations

- Let R:A,B be any binary relation.
- Then, $R:A\times B$, the *complement* of R, is the binary relation defined by

$$R:=\{(a,b)\in A\times B\mid (a,b)\notin R\}=(A\times B)-R\}$$

- Note this is just R if the universe of discourse is $U = A \times B$; thus the name complement.
- Note the complement of R is R.

Example:
$$< = \{(a,b) \mid (a,b) \notin < \} = \{(a,b) \mid \neg a < b\} = \ge |$$

Inverse Relations

• Any binary relation $R: A \times B$ has an *inverse* relation $R^{-1}: B \times A$, defined by $R^{-1}: \equiv \{(b,a) \mid (a,b) \in R\}$.

$$E.g., <-1 = \{(b,a) \mid a < b\} = \{(b,a) \mid b > a\} = >.$$

E.g., if R:People x Foods is defined by a R b ⇔ a eats b, then:
b R⁻¹ a ⇔ a eats b
(Compare: b is eaten by a, passive voice.)

Functions as Relations

A function f:A→B is a relation from A to B
A relation from A to B is not always a function
f:A→B (e.g., relations could be one-to-many)
Relations are generalizations of functions!

Relations on a Set

• A (binary) relation from a set A to itself is called a relation on A. A relation on the set A is a relation from A to A.

• *E.g.*, the "<" relation is defined as a relation *on* **N**.

Relations on a Set

A (binary) relation from a set A to itself is called a relation <u>on</u> the set A.

A: {1,2,3,4}

 $R = \{(a,b) \mid a \text{ divides } b\}$

Example

How many relations are there on a set A with *n* elements?

Reflexivity and relatives

- A relation R on A is reflexive iff $\forall a \in A$, (aRa).
 - E.g., the relation \geq :≡ {(a,b) | a≥b} is reflexive.
- R is irreflexive iff $\forall a \in A$, $(\neg aRa)$
- Note "irreflexive" does **NOT** mean "not reflexive", which is just $\neg \forall a \in A$, (aRa).
- E.g., if Adore={(j,m),(b,m),(m,b)(j,j)} then this relation is neither reflexive nor irreflexive

Reflexivity and relatives

- Theorem: A relation *R* is *irreflexive* iff its *complementary* relation *R* 'is reflexive.
 - Example: < is irreflexive; ≥ is reflexive.
 - Proof: trivial

— Is the "divide" relation on the set of positive integers reflexive?

Some examples

• Reflexive:

```
=, 'have same cardinality', \Leftrightarrow
```

• Irreflexive:

<, >, `have different cardinality',

, 'is logically stronger than'

Symmetry & relatives

- A binary relation R on A is symmetric iff $\forall a,b((a,b)\in R \leftrightarrow (b,a)\in R)$.
 - *E.g.*, = (equality) is symmetric. < is not.
 - "is married to" is symmetric, "likes" is not.
- A binary relation R is asymmetric if $\forall a,b((a,b)\in R \rightarrow (b,a)\notin R)$.
 - Examples: < is asymmetric, "Adores" is not.
- Let $R = \{(j,m),(b,m),(j,j)\}$. Is R (a)symmetric?

Symmetry & relatives

• Let $R = \{(j,m),(b,m),(j,j)\}.$

R is not symmetric (because it does not contain (m,b) and because it does not contain (m,j)).

R is not asymmetric, due to (j,j)

Some direct consequences

Theorems:

- 1. R is symmetric iff $R = R^{-1}$,
- 2. R is asymmetric iff $R \cap R^{-1}$ is empty.

Symmetry & its relatives

- 1. R is symmetric iff $R = R^{-1}$
- ⇒ Suppose R is symmetric. Then

$$(x,y) \in R \iff$$

$$(y,x) \in R \iff$$

$$(x,y) \in R^{-1}$$

 \Leftarrow Suppose $R = R^{-1}$ Then

$$(x,y) \in R \iff$$

$$(x,y) \in R^{-1} \Leftrightarrow$$

$$(y,x) \in R$$

Symmetry & relatives

2. R is asymmetric iff $R \cap R^{-1}$ is empty.

(Straightforward application of the definitions of asymmetry and R^{-1})

- Question: Can you construct a model in which the relation "son_of" is symmetric?
- Solution: any model in which there are no x,y such that son_of(x,y) is true
- E.g., A = {John, Mary, Sarah}, AxA ⊇ R= {}

- Consider the relation x≤y
- Is it symmetrical?
- Is it asymmetrical?
- Is it reflexive?
- Is it irreflexive?

- Consider the relation x≤y
- Is it symmetrical? No
- Is it asymmetrical?
- Is it reflexive?
- Is it irreflexive?

- Consider the relation x≤y
- Is it symmetrical? No
- Is it asymmetrical? No
- Is it reflexive?
- Is it irreflexive?

- Consider the relation x≤y
- Is it symmetrical? No
- Is it asymmetrical? No
- Is it reflexive? Yes
- Is it irreflexive?

- Consider the relation x≤y
- Is it symmetrical? No
- Is it asymmetrical? No
- Is it reflexive? Yes
- Is it irreflexive? No

- Consider the relation x≤y
 - It is not symmetric. (For instance,5≤6 but not 6≤5)
 - It is not asymmetric. (For instance, $5 \le 5$)
 - The pattern: the only times when (a,b)∈ ≤ and (b,a)∈ ≤ are when a=b
- This is called antisymmetry
 Can you say this in predicate logic?

- A binary relation R on A is antisymmetric iff $\forall a,b((a,b)\in R \land (b,a)\in R) \rightarrow a=b)$.
- Examples: **≤**, **≥**, **⊆**
- Another example: the earlier-defined relation
 Adore={(j,m),(b,m),(m,b)(j,j)}

• How would you define transitivity of a relation? What are its 'relatives'?

Transitivity & relatives

- A relation R is transitive iff (for all a,b,c) $((a,b) \in R \land (b,c) \in R) \rightarrow (a,c) \in R$.
- A relation is non*transitive* iff it is not transitive.
- A relation R is in transitive iff (for all a,b,c) $((a,b) \in R \land (b,c) \in R) \rightarrow \neg (a,c) \in R.$

Transitivity & relatives

- What about these examples:
 - "x is an ancestor of y"
 - "x likes y"
 - "x is located within 1 mile of y"
 - $x_{X} + 1 = y^{**}$
 - "x beat y in the tournament"
 - "x is stronger than y"

Transitivity & relatives

- What about these examples:
 - "is an ancestor of" is transitive.
 - "likes" is neither trans nor intrans.
 - "is located within 1 mile of"
 is neither trans nor intrans
 - "x + 1 = y" is intransitive
 - "x beat y in the tournament" is neither trans nor intrans
 - "x is stronger than y" is transitive.

Exploring the difference between relations and functions

Totality:

- A relation $R: A \times B$ is *total* if for every $a \in A$, there is at least one $b \in B$ such that $(a,b) \in R$.
 - N.B., it does not follow that R^{-1} is total
 - It does not follow that R is a function.

Functionality:

- A relation R: $A \times B$ is functional iff, for every $a \in A$, there is at most one $b \in B$ such that $(a,b) \in R$.
 - A functional relation R: $A \times B$ does not have to be total (there may be $a \in A$ such that $\neg \exists b \in B (aRb)$).

Say that "R is functional", using predicate logic

- $R: A \times B$ is functional iff, for every $a \in A$, there is at most one $b \in B$ such that $(a,b) \in R$. $\forall a \in A: \exists b_1, b_2 \in B (b_1 \neq b_2 \land aRb_1 \land aRb_2)$.
- If R is functional and total relation, then R can be seen as a function R: A→B
 Hence one can write R(a)=b as well as aRb,
 R(a,b), and (a,b)∈ R. Each of these mean the same.

	R_1 2 3 4 S T	R_2 C	R_3 C R_3 C
total	yes	yes	no
onto	no	yes	no
functional	yes	no	yes
one-to-one	no	no	yes

 R_3 is not total, because the element b is not in the domain.

 R_1 is not onto, because the elements 2 and 4 are not in the range.

 R_3 is not onto, because the elements 1 and 2 are not in the range.

 R_2 is not functional, because the element a has two relatives.

 R_1 is not one-to-one, because the element 1 is a relative of two elements in S.

 R_2 is not one-to-one, because the element a has two relatives.

• *Definition:* R is *antifunctional* iff its inverse relation R^{-1} is functional.

(Exercise: Show that iff R is functional and antifunctional, and both it and its inverse are total, then it is a bijective function.)

Combining what you've learned about functions and relations

Consider the relation $R: N \rightarrow N$ defined as

 $R = \{(x,y) \mid x \in \mathbb{N} \land y \in \mathbb{N} \land y = x+1\}.$

Questions:

- 1. Is R total? Why (not)?
- 2. Is R functional? Why (not)?
- 3. Is R an injection? Why (not)?
- 4. Is R a surjection? Why (not)?

• Let $R: A \times B$, and $S: B \times C$. Then the composite $S \circ R$ of R and S is defined as:

$$S \circ R = \{(a,c) \mid \exists b : aRb \land bSc\}$$

Does this remind you of something?

• Let $R: A \times B$, and $S: B \times C$. Then the composite $S \circ R$ of R and S is defined as:

$$S \circ R = \{(a,c) \mid \exists b : aRb \land bSc\}$$

- Does this remind you of something?
- Function composition ...
- ... except that $S \circ R$ accommodates the fact that S and R may not be functional

• Function composition is a special case of relation composition: Suppose S and R are functional. Then we have (using the definition above, then switching to function notation)

 $S \circ R(a,c)$ iff $\exists b$: $aRb \land bSc$ iff R(a)=b and S(b)=c iff S(R(a))=c

Suppose

- Adore= $\{(a,b),(b,c),(c,c)\}$
- Detest= $\{(b,d),(c,a),(c,b)\}$
- Adore Detest=
- Detest^oAdore=

Suppose

- Adore= $\{(a,b),(b,c),(c,c)\}$
- Detest= $\{(b,d),(c,a),(c,b)\}$
- Adore Detest = $\{(c,b),(c,c)\}$
- Detest^oAdore=

Suppose

- Adore= $\{(a,b),(b,c),(c,c)\}$
- Detest= $\{(b,d),(c,a),(c,b)\}$
- Adore Detest $= \{(c,b),(c,c)\}$
- Detest $^{\circ}$ Adore = {(a,d),(b,a),(b,b),(c,a),(c,b)}

§7.2: *n*-ary Relations

• An *n*-ary relation R on sets $A_1, ..., A_n$, is a subset

$$R \subseteq A_1 \times \ldots \times A_n$$

- This is a straightforward generalisation of a binary relation. For example:
- 3-ary relations:
 - a is between b and c;
 - a gave b to c

§7.2: *n*-ary Relations

• An *n*-ary relation R on sets A_1, \ldots, A_n , is a subset

$$R \subseteq A_1 \times \ldots \times A_n$$

- The sets A_i are called the *domains* of R.
- The *degree* of *R* is *n*.
- R is functional in the domain A_i if it contains at most one n-tuple $(..., a_i,...)$ for any value a_i within domain A_i .

§7.2: *n*-ary Relations

- R is functional in the domain A_i if it contains at most one n-tuple $(..., a_i,...)$ for any value a_i within domain A_i .
- Generalisation: being functional in a combination of two or more domains.

Relational Databases

- A *relational database* is essentially just a set of relations.
- A domain A_i is a (*primary*) key for the database if the relation R is functional in A_i .
- A composite key for the database is a set of domains $\{A_i, A_j, ...\}$ such that R contains at most 1 n-tuple $(..., a_i, ..., a_j, ...)$ for each composite value $(a_i, a_j, ...) \in A_i \times A_j \times ...$

Selection Operators

- Let A be any n-ary domain $A = A_1 \times ... \times A_m$, and let $C:A \longrightarrow \{T,F\}$ be any *condition* (predicate) on elements (n-tuples) of A.
- The selection operator s_C maps any n-ary relation R on A to the relation consisting of all n-tuples from R that satisfy C:

$$s_{\mathcal{C}}(R) = \{a \in R \mid C(a) = T\}$$

Selection Operator Example

- Let A = StudentName × Standing × SocSecNos
- Define a condition Upperlevel on A:
 UpperLevel(name, standing, ssn) ⇔
 ((standing = junior) ∨ (standing = senior))
- Then, *SUpperLevel* takes any relation *R* on *A* and produces the subset of R involving of *just* the junior and senior students.

Projection Operators

- Let $A = A_1 \times ... \times A_n$ be any *n*-ary domain, and let $\{i_k\} = (i_1, ..., i_m)$ be a sequence of indices all falling in the range 1 to n,
- Then the projection operator on n-tuples

is defined by:

$$P_{[i_k]}: A \rightarrow A_{i_1} \dots \times A_{i_m}$$

$$P_{[i_k]}(a_1,...,a_n) = (a_{i_1},...,a_{i_m})$$

Projection Example

- Suppose we have a domain Cars=Model× Year× Color. (note n=3).
- Consider the index sequence $\{i_k\}=1,3.$ (m=2)
- Then the projection $P_{\{i_k\}}$ maps each tuple $(a_1,a_2,a_3) = (model, year, color)$ to its image: $(a_{i_1},a_{i_2}) = (a_1,a_3) = (model, color)$
- This operator can be applied to a relation $R \subseteq Cars$ to obtain a list of the model/color combinations available.

Join Operator

- Puts two relations together to form a combined relation which is their composition:
- Iff the tuple (A,B) appears in R_1 , and the tuple (B,C) appears in R_2 , then the tuple (A,B,C) appears in the join $J(R_1,R_2)$.
 - -A, B, and C can also be sequences of elements.

Join Example

- Suppose R_1 is a teaching assignment table, relating *Lecturers* to *Courses*.
- Suppose R_2 is a room assignment table relating *Courses* to *Rooms*, *Times*.
- Then $J(R_1,R_2)$ is like your class schedule, listing (*lecturer*, *course*, *room*, *time*).
- (Joins are similar to *relation composition*. For precise definition, see Rosen, p.486)

• Let's see what happens when we compose R with itself ...

• First: different ways to represent relations

§7.3: Representing Relations

- Before saying more about the n-th power of a relation, let's talk about representations
- Some ways to represent *n*-ary relations:
 - With a list of n-tuples.
 - With a function from the (n-ary) domain to {T,F}.
- Special ways to represent binary relations:
 - With a zero-one matrix.
 - With a directed graph.

- One reason: some calculations are easier using one representation, some things are easier using another
- There are even some basic ideas that are suggested by a particular representation

It's often worth playing around with different representations

Using Zero-One Matrices

- To represent a binary relation $R: A \times B$ by an $|A| \times |B|$ 0-1 matrix $\mathbf{M}_R = [m_{ij}]$, let $m_{ij} = 1$ iff $(a_i, b_j) \in R$.
- *E.g.*, Suppose Joe likes Susan and Mary, Fred likes Mary, and Mark likes Sally.

• Then the 0-1 matrix representation		Susan	Mary	Sally
of the relation	Joe		1	0
Likes:Boys×Girls	Fred	0	1	0
relation is:	Mark	0	0	1

- Special case 1-0 matrices for a relation on A (that is, $R:A\times A$)
- *Convention*: rows and columns list elements in the same order
- This where 1-0 matrices come into their own!

Zero-One Reflexive, Symmetric

- Recall: *Reflexive*, *irreflexive*, symmetric, and asymmetric relations.
 - These relation characteristics are easy to recognize by inspection of the zero-one matrix.

Zero-One Reflexive, Symmetric

- Recall: *Reflexive*, *irreflexive*, symmetric, and asymmetric relations.
 - These relation characteristics are very easy to recognize by inspection of the zero-one matrix.

Matrices

- There exists much mathematical tjeory about graphs
- Some fast algorithms rely on graphs
- More about graphs: Rosen, section 3.8

Using Directed Graphs

• A directed graph or digraph $G=(V_G, E_G)$ is a set V_G of vertices (nodes) with a set $E_G \subseteq V_G \times V_G$ of edges (arcs). Visually represented using dots for nodes, and arrows for edges. A relation $R:A \times B$ can be represented as a graph $G_R=(V_G=A \cup B, E_G=R)$.

Matrix representation \mathbf{M}_{R} :

•		\boldsymbol{n}	
Susan	Mary	Sally	
	1	0	
0	1	0	
0	0	1	
	Susan 1 0 0	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	

Digraph Reflexive, Symmetric

Properties of a relation can determined by inspection of its graph.

Digraph Reflexive, Symmetric

Many properties of a relation can be determined by inspection of its graph.

Reflexive:
Every node
has a self-loop

Irreflexive:
No node
links to itself

Symmetric: Every link is bidirectional

Antisymmetric: never (a,b) and (b,a), unless a=b

These are not symmetric & not asymmetric

These are non-reflexive & non-irreflexive

Particularly easy with a graph

- Properties that are somehow 'local' to a given element, e.g.,
 - "does the relation contain any elements that are unconnected to any others?"
- Properties that involve combinations of pairs, e.g.,
 - "does the relation contain any cycles?"
 - things to do with the composition of relations
 (e.g. the n-th power of R)
- More about graphs: Rosen, chapter 9.

Now: Composing R with itself

- The n^{th} power R^n of a relation R on a set A
 - The 1st power of R is R itself
 - The 2^{nd} power of R is $R^2 = R \circ R$
- The 3rd power of R is $R^3 = R \circ R \circ R$ etc.

• The n^{th} power R^n of a relation R on a set A can be defined recursively by:

$$R^1 :\equiv R$$
; $R^{n+1} :\equiv R^{n \odot} R$ for all $n \ge 1$.

• E.g., $R^2 = R \circ R$; $R^3 = R \circ R \circ R$

•
$$R^2 = R \circ R = \{(a,c),(b,d),(c,c),(d,d)\}$$

Back to the n-th power of a relation

- A path of length n from node a to b in the directed graph G is a sequence $(a,x_1), (x_1,x_2), ..., (x_{n-1},b)$ of n ordered pairs in E_G .
 - Note: there exists a path of length n from a to b in R if and only if $(a,b) \in R^n$.
- A path of length $n \ge 1$ from a to itself is a cycle.
- R*: the relation that holds between a and b iff there exists a finite path from a to b using R.
 - Note: R* is transitive!

Why is R* of interest?

- Suppose an infectious disease is transmitted by shaking hands (Shake(x,y))
- To know who is infected by John, you need to think about two things:
 - Determine {x∈ person: Shake(John,x)}
 This gives you the direct infectees
 - 2. Everyone infected by someone infected by John. Note: this is recursive

- Suppose S(hake) = {(a,b), (b,c), (c,d)}.
 We want to compute S*.
- $S \subseteq S^*$, so $S^*(a,b)$, $S^*(b,c)$, $S^*(c,d)$
- Infer $S^*(a,c)$ and $S^*(b,d)$ (using the following rule twice: $S(x,y) & S(y,z) \rightarrow S(x,z)$)
- Are we done?

Who is infected?

- Suppose S(hake)= {(a,b), S(b,c), S(c,d)}.
 We want to compute S*.
- $S \subseteq S^*$, so $S^*(a,b)$, $S^*(b,c)$, $S^*(c,d)$
- Infer $S^*(a,c)$ and $S^*(b,d)$ (using the following rule twice: $S(x,y) & S(y,z) \rightarrow S(x,z)$)
- Second step: S*(a,d)

We don't always know R* ...

- We often don't know the exact extension of a relation (i.e., which pairs are elements of the relation)
- Presumably, you've never shook hands with the president of Mongolia: ¬S(you,PM)
- How about S*(you,PM) ...?

Other examples of R*

- $R(a,b) \Leftrightarrow$ there's a direct bus service from a to b.
- $R(p,q) \Leftrightarrow$ there exists an inference rule that allows you to infer q from p

What is R* in each of these cases?

Other examples of R*

- $R(a,b) \Leftrightarrow$ there's a direct bus service from a to b.
- $R(p,q) \Leftrightarrow$ there exists an inference rule that allows you to infer q from p

What is R* in each of these cases?

- $R(a,b) \Leftrightarrow$ one can go by bus from a to b.
- $R(p,q) \Leftrightarrow$ there exists a proof that q follows from p

How would you formally define R*?

How would you formally define R*?

Here's a safe bet

R*

How would you formally define R*?

Here's a finite variant, where n = |A| (proof in book that n is large enough)

§7.4: Closures of Relations

- For any property X, the X closure of a set A is defined as the "smallest" superset of A that has property X. More specifically,
 - The *reflexive closure* of a relation R on A is the smallest superset of R that is reflexive.
 - The *symmetric closure* of *R* is the smallest superset of R that is symmetric
 - The *transitive closure* of *R* is the smallest superset of R that is transitive

- The *reflexive closure* of a relation R on A is obtained by "adding" (a,a) to R for each $a \in A$. *I.e.*, it is $R \cup I_A$ (Check that this is the r.c.)
- The *symmetric closure* of R is obtained by "adding" (b,a) to R for each (a,b) in R. *I.e.*, it is $R \cup R^{-1}$ (Check that this is the s.c.)
- The *transitive closure* of *R* is obtained by "repeatedly" adding (*a*,*c*) to *R* for each (*a*,*b*),(*b*,*c*) in *R* ...

- Adore= $\{(a,b),(b,c),(c,c)\}$
- Detest= $\{(b,d),(c,a),(c,b)\}$
- The symmetric closure of ...
 - ... Adore=
 - ... Detest=

- Adore= $\{(a,b),(b,c),(c,c)\}$
- Detest= $\{(b,d),(c,a),(c,b)\}$
- The symmetric closure of ...

```
... Adore=\{(a,b),(b,c),(c,c),(b,a),(c,b)\}
```

... Detest=
$$\{(b,d),(c,a),(c,b),(d,b),(a,c),(b,c)\}$$

- Adore= $\{(a,b),(b,c),(c,c)\}$
- Detest= $\{(b,d),(c,a),(c,b)\}$
- The *transitive closure* of ...
 - ... Adore=
 - ... Detest=

- Adore= $\{(a,b),(b,c),(c,c)\}$
- Detest= $\{(b,d),(c,a),(c,b)\}$
- The *transitive closure* of ...

```
... Adore=\{(a,b),(b,c),(c,c),(a,c)\}
```

... Detest=
$$\{(b,d),(c,a),(c,b),(c,d)\}$$

TC(R)

- A more precise definition of the transitive closure of R (abbr: TC(R)) is:
- TC(R)= the intersection of all transitive supersets of R.
- Let's check that this matches our earlier definition
 - It follows from the new definition that there exists no smaller transitive superset of R than TC(R).
 - TC(R) itself is a transitive superset of R.
 Proof:

TC(R)

TC(R) is a transitive superset of R. Proof:

- If A and B are transitive supersets of R then A∩B is a transitive superset of R
- 1. $A \cap B$ is a superset of R.
- 2. A \cap B is a transitive. (Suppose (x,y) and (y,z) are elements of A \cap B. Then (x,z) is an element of A \cap B.)

TC(R)

- So TC(R) is a transitive superset of R.
- Since it is the intersection of all transitive supersets of R, TC(R) is the smallest transitive superset of R.
 - Suppose X is a transitive superset of R and $X \subset TC(R)$. Then $(TC(R) \cap X) \subset TC(R)$. But TC(R) is the intersection of all trans. supersets of X, hence $(TC(R) \cap X) = TC(R)$. Contradiction.
- Now we relate TC(R) with the graph-theoretic concept R*:

Theorem: $R^*=TC(R)$

Theorem: R* = the transitive closure of R We need to prove that R* is the smallest transitive superset of R.

1. Proof that R* is transitive: Suppose xR*y and yR*z. E.g., xRny and yRmz Then xRn+mz, hence xR*z

Proof ctd.

2. Evidently, $R \subseteq R^*$, so R^* is a superset of R.

We now know that R* is a transitive superset of R.

3. R cannot have a <u>smaller</u> transitive superset than R*.

Proof: Suppose such a transitive superset S of R existed. This would mean that there exists a pair (x,y) such that xR*y while ¬xSy. But xR*y means ∃n such that xRny. But since R⊆S, it would follow that xSny; but because S is transitive, this would imply that xSy. Contradiction. (Compare Rosen p.500 (5th ed.), p.548 (6th ed.)

An Euler diagram might help ...

Suppose there existed a transitive superset of R that's smaller than R* ...

§7.5: Equivalence Relations

• Definition: An equivalence relation on a set A is any binary relation on A that is reflexive, symmetric, and transitive.

§7.5: Equivalence Relations

- Definition: An equivalence relation on a set A is any binary relation on A that is reflexive, symmetric, and transitive.
 - -E.g., = is an equivalence relation.
 - But many other relations follow this pattern too

§7.5: Equivalence Relations

- Definition: An *equivalence relation* on a set A is any binary relation on A that is reflexive, symmetric, and transitive.
 - -E.g., = is an equivalence relation.
 - For any function $f:A \rightarrow B$, the relation "have the same f value", or $=_f:=\{(a_1,a_2) \mid f(a_1)=f(a_2)\}$ is an equivalence relation,
 - e.g., let m="mother of" then $=_m$ = "have the same mother" is an equivalence relation

- "Strings a and b are the same length."
- "Integers a and b have the same absolute value."

Let's talk about relations between functions:

- 1. How about: $R(f,g) \Leftrightarrow f(2)=g(2)$?
- 2. How about: $R(f,g) \Leftrightarrow f(1)=g(1)\lor f(2)=g(2)$?

- 1. How about: $R(f,g) \Leftrightarrow f(2)=g(2)$? Yes. Reflexivity: f(2)=f(2), for all f(2)=g(2) implies g(2)=f(2). Trans: f(2)=g(2) and g(2)=h(2). implies f(2)=h(2).
- 2. How about: $R(f,g) \Leftrightarrow f(1)=g(1)\lor f(2)=g(2)$?

How about $R(f,g) \Leftrightarrow f(1)=g(1)\lor f(2)=g(2)$?

• No. Counterexample against transitivity:

$$f(1)=a, f(2)=b$$

 $g(1)=a, g(2)=c$
 $h(1)=b, h(2)=c$

- Let *R* be any equivalence relation.
- The equivalence class of a under R, $[a]_R := \{ x \mid aRx \}$ (optional subscript R)
 - Intuitively, this is the set of all elements that are "equivalent" to a according to R.
 - Each such b (including a itself) can be seen as a representative of $[a]_R$.

- Why can we talk so loosely about elements being equivalent to each other (as if the relation didn't have a direction)?
- In some sense, it does not matter which representative of an equivalence class you take as your starting point:

If aRb then $\{x \mid aRx\} = \{x \mid bRx\}$

If aRb then aRx \Leftrightarrow bRx Proof:

- 1. Suppose aRb while bRx.
 Then aRx follows directly by transitivity.
- 2. Suppose aRb while aRx. aRb implies bRa (symmetry). But bRa and aRx imply bRx by transitivity

```
We now know that
  If aRb then \{x \mid aRx\} = \{x \mid bRx\}
Equally,
  If aRb then \{x \mid xRa\} = \{x \mid xRb\}
  (due to symmetry)
In other words, an equivalence class based on
  R is simply a maximal set of things related
  by R
```

Equivalence Class Examples

- "(Strings a and b) have the same length."
 - Suppose a has length 3. Then [a] =
 the set of all strings of length 3.
- "(Integers a and b) have the same absolute value."
 - $-[a] = \text{the set } \{a, -a\}$

Equivalence Class Examples

- "Formulas φ and ψ contain the same number of brackets" (e.g. for formulas of propositional logic, using the strict syntax)
- Now what is $[((p \land q) \lor r)]$?

Equivalence Class Examples

- Consider the equivalence relation ⇔
 (i.e., logical equivalence, for example between formulas of propositional logic)
- What is $[p \land q]$?

Partitions

• A partition of a set A is a collection of disjoint nonempty subsets of A that have A as their union.

• Intuitively: a partition of A divides A into separate parts (in such a way that there is no remainder).

Partitions and equivalence classes

- Consider a *partition* of a set A into A_1 , ... A_n
 - The A_i 's are all disjoint: For all x and for all i, if x∈ A_i and x∈ A_j then $A_i = A_j$
 - The union of the A_i 's = A

Partitions and equivalence classes

- A partition of a set A can be viewed as the set of all the equivalence classes $\{A_1, A_2, ...\}$ for some equivalence relation on A.
- For example, consider the set $A=\{1,2,3,4,5,6\}$ and its partition $\{\{1,2,3\},\{4\},\{5,6\}\}$
- $R = \{ (1,1),(2,2),(3,3),(1,2),(1,3),(2,3),(2,1),(3,1), (3,2),(4,4),(5,5),(6,6),(5,6),(6,5) \}$

Partitions and equivalence classes

- We sometimes say:
 - A partition of A induces an equivalence relation on A
 - An equivalence relation on A induces a partition of A

§7.6: Partial Orderings

- A relation R on A is called a partial ordering or partial order iff it is reflexive, antisymmetric, and transitive.
 - We often use a symbol looking something like ≤ (or analogous shapes) for such relations.
 - Examples: \leq , \geq on real numbers, \subseteq , \supseteq on sets.
 - Another example: the "divides" relation | on **Z**⁺.
 - It is not necessarily the case that either $a \le b$ or $b \le a$.
- A set A together with a partial order \leq on A is called a *partially ordered set* or *poset* and is denoted (A, \leq) .

- If a set S is partially ordered by a relation R then its graph can be simplified:
 - Looping edges need not be drawn, because they can be inferred
 - Instead of drawing edges for R(a,b), R(b,c) and R(a,c),
 the latter can be omitted (because it can be inferred)
 - If direction of arrows is represented as left-to-right (or top-down) order then it's called a Hasse diagram (We won't do that here)

- There is a one-to-one correspondence between posets and the reflexive+transitive closures of noncyclical digraphs.
- Example: consider the poset $(\{0,...,10\}, |)$
 - Its "minimal"digraph:

• Prove: a graph for a partial order cannot contain cycles

- **Theorem**: a graph for a partial order cannot contain cycles with length > 1.
- **Proof**: suppose there is a cycle $a_1Ra_2R...$ Ra_nRa_1 (with n>1). Then, with n-1 applications of transitivity, we have a_1Ra_n . But also a_nRa_1 , which conflicts with antisymmetry.

Posets do not have cycles

• **Proof**: suppose there is a cycle $a_1Ra_2R...Ra_nRa_1$. Then, with n-1 applications of transitivity, we have a_1Ra_n . But also a_nRa_1 , which conflicts with antisymmetry.

• Can something be both a poset and an equivalence relation?

- Can something be both a poset and an equivalence relation?
 - Equiv: ref, sym, trans
 - Poset: ref, antisym, trans
- Can a relation (that is reflexive and transitive) be both sym and antisym?

- Can a relation that is reflexive and transitive be both sym and antisym?
- Yes: the empty relation $R=\{\}$ is an example
- But any relation $R \subseteq \{(x,x): x \in A\}$ will also qualify.
 - It's reflexive
 - It's symmetric and antisymmetric
 - It's transitive
- Other relations cannot qualify. (Prove at home)

A lattice is a poset in which every pair of elements has a least upper bound (LUB) and a greatest lower bound (GLB). Formally: (done in exercise)

Example: (Z+, |) In this case,

LUB = Least Common Multiple

GLB = Greatest Common Denominator

Non-example: $(\{1,2,3\}, |)$

2. Linearly ordered sets (also: totally ordered sets): posets in which all elements are "comparable" (i.e., related by R).

Formally: $\forall x, y \in A(xRy \lor yRx)$.

Example:

Non-example:

Linearly ordered sets (also: totally ordered sets): posets in which *all elements* are comparable. Formally:

 $\forall x,y \in A(xRy \vee yRx).$

Example: (N,≤)

Non-example: (N, |) (where | is 'divides')

Non-example: \subseteq

An application of posets

- Consider (A,≤), where A is a set of project tasks and a<b means "a must be completed before b can be completed"
- (Sometimes it's easier to define < than ≤)
- Note that (A, \leq) is a poset: ref, antisym, trans

An application of posets

- A common problem: Given (A, \leq) , find a *linear* order (A, \leq) that is *compatible* with (A, \leq) . (That is, $(A, \leq) \subseteq (A, \leq)$)
- (We're assuming that tasks cannot be carried out in parallel)
- Algorithm for finding a compatible linear order given a finite partial order: p.526.

2. Well-ordered sets: linearly ordered sets in which every nonempty subset has a least element (that is, an element a such that $\forall x \in A(aRx)$)

Example: ...

Non-example: ...

2. Well-ordered sets: linearly ordered sets in which every nonempty subset has a least element (that is, an element a such that $\forall x \in A(aRx)$)

Example: (N, \leq) Non-examples: (Z, \leq) , $(non-negative elements of <math>R, \leq)$

- 2. Non-examples: (\mathbf{Z}, \leq) , (\mathbf{R}^+, \leq)
 - (Z,≤): Z itself has no least element.
 - (Non-negative \mathbb{R} , \leq):

Nonnegative R itself does have a least element, but

 $R^+ \subseteq Nonnegative R$ has no least element.

Well-orderings are behind one of the most general proof techniques that exist: mathematical induction.
The last 30 slides were a tiny crash course

in the theory of mathematical structures

Compare Rosen, chapter 7.6.