MATH-505A: Homework # 4

Due on Friday, September 19, 2014

Saket Choudhary 2170058637

Contents

Exercise #	
(1)	
$(2) \dots$	
(3)	
$(5) \ldots$	
Exercise #	2.3
(1)	
$(4) \dots$	
(5)	

Exercise # 2.1

(1)

Given: X is a random variable \Longrightarrow

$$\{\omega \in \Omega : X(\omega) \le x\} \in \mathcal{F} \ \forall x \in R \tag{1}$$

Part A) To Prove: aX is a random variable

Consider Y = aX, then since equation 1 holds:

Case1: $a \ge 0$

Then $\{\omega \in \Omega : aX(\omega) \le x'\} \in \mathcal{F} \ \forall x' \in R \text{ where } x' = ax$

Case2: a < 0

Then $\{\omega \in \Omega : aX(\omega) \ge x'\} \forall x' \in R \text{ where } x' = ax \implies \bigcup \{\{\omega \in \Omega : aX(\omega) \le x''\}\}^c \in \mathcal{F} \text{ where } x'' = x'$

Case3: *a is* 0

Then, aX = 0

Case i: x < 0

 $\{\omega \in \Omega : aX(\omega) = \phi\} \in \mathcal{F}$

Case ii: $x \ge 0$

 $\{\omega \in \Omega : aX(\omega) = \Omega\} \in \mathcal{F}$

Thus from all the above cases.

Part (b)):

Consider Y = X - X, Then:

 $Y = X(\omega) - X(\omega) \forall \omega \in R \implies Y = 0$

Consider Y = X + X, Then $Y = X(\omega) + X(\omega) \forall \omega in\Omega \implies Y = 2X(\omega) \forall \omega in\Omega$ Thus Y = 2X.

(2)

For part 1, Y' = aX is also a random variable:

To Find: Distribution function of Y = aX + b

Consider $P(Y \le y) = P(aX + b \le y) = P(X \le \frac{y-b}{a}) \implies P(Y \le y) = P(X \le \frac{x-b}{a})$

(3)

$$p(H) = p; p(T) = 1 - p$$

Tossing a coin n times is a binomial process(each individual toss is a bernoulli process) and let A be the event such that k out of n tosses are heads and this can occur in $\binom{n}{k}$ ways with probability p^k . There would also be n-k tails and the probability for that is $(1-p)^{n-k}$. Thus,:

$$p(A) = \binom{n}{k} p^k * (1-p)^{n-k}$$

For a fair coin, $p = \frac{1}{2}$ and hence $p(A) = \binom{n}{k} (\frac{1}{2})^k (\frac{1}{2})^{n-k} = \binom{n}{k} (\frac{1}{2})^n$

(4)

A distribution function satisfies the following set of properties:

- a) $\lim_{x\to-\infty} F(x) = 0$, $\lim_{x\to\infty} F(x) = 1$
- b) if x < y then $F(x) \le F(y)$,
- c) F is right continuous, $c < x < c + \delta$ then $|F(x) F(c)| < \epsilon$ for $\epsilon > 0, \delta > 0$

Consider $Y = \lambda F + (1 - \lambda)G$, Both G,F satisfy a, b, c Then $\lim_{x \to -\infty} Y(x) = \lambda \lim_{x \to -\infty} F(x) + (1 - \lambda)G$

 λ) $\lim_{x\to-\infty} G(x) \implies \lim_{x\to-\infty} Y(x) = 0$

Similarly considering limit as $x \to \infty$: Then $\lim_{x \to \infty} Y(x) = \lambda \lim_{x \to \infty} F(x) + (1 - \lambda) \lim_{x \to \infty} G(x) \implies$

 $\lim_{x \to -\infty} Y(x) = \lambda * 1 + (1 - \lambda) * 1 = 1$

Since for x < y, then F(x) < F(y); $G(x) < G(y) \implies \lambda F(x) < \lambda F(y)$; $(1 - \lambda)G(x) < (1 - \lambda)G(y)$ since $0 < \lambda < 1$

Adding the two inequalities we get:

$$\lambda F(x) + (1 - \lambda)G(x) < \lambda F(y) + (1 - \lambda)G(y) \implies Y(x) < Y(y).$$

Since F,G are right continuous, any linear combination of these would be right continuous too.

Hence $Y = \lambda F + (1 - \lambda)G$ satisfies all the 3 required properties and is a distribution function.

(5)

```
Since F is a distribution function:
(i) \lim_{x\to-\infty} F(x) = 0; \lim_{x\to\infty} = 1
(ii) If x < y then, F(x) < F(y)
 (iii) F is right continuous
Part a) F(x)^r (i) \lim_{x\to-\infty} F(x)^r = 0 since \lim_{x\to-\infty} F(x) = 0 and r>0
(ii) If x < y as F(x) < F(y) and F(x) > 0 \implies F(x)^r < F(y)^r
(iii) Since r>0 and F(x) is right-continuous F(x)^r is right continuous. (One possible case where F(x)^r
would not have been right continuous is for r < 0 say r = -1 where F(x)^{-1} is not right continuous at all
x_0 such that F(x_0) = 0.
Part b) 1 - (1 - F(x))^r
(i); \lim_{x \to -\infty} (1 - (1 - F(x))^r) = 1 - \lim_{x \to -\infty} (1 - F(x))^r = 1 - (1 - 0)^r = 0
Similarly for ; \lim_{x\to\infty} (1 - (1 - F(x))^r) = 1 - (1 - 1)^r = 1
 \text{(ii) If } x < y, \ F(x) < F(y) \implies -F(x) > -F(y) \implies 1 - F(x) > 1 - F(y) \implies (1 - F(x))^r > 1 - F(y)^r > 1 - F
(1 - F(y))^r \forall r > 0 Thus, 1 - (1 - F(x))^r < 1 - (1 - F(y))^r
(iii) Since F(x) is right continuous, 1 - F(x) is right continuous \implies (1 - F(x))^r is right continuous(since
(r > 0) implies 1 - (1 - F(x))^r is right continuous
Part c F(x) + (1 - F(x))log(1 - F(x))
(i) \lim_{x \to -\infty} (F(x) + (1 - F(x))log(1 - F(x))) = \lim_{x \to -\infty} F(x) + \lim_{x \to -\infty} (1 - F(x))log(1 - F(x)) =
0 + (1-0)log(1-0) = 0
Consider \lim_{x\to\infty} (F(x) + (1-F(x))log(1-F(x))) = \lim_{x\to\infty} F(x) + \lim_{x\to\infty} (1-F(x))log(1-F(x)) = \lim_{x\to\infty} (F(x) + (1-F(x))log(1-F(x))) = \lim_{x\to\infty} (F(x) + (1-F(x))log(1-F(x)) = \lim_{x\to\infty} (F(x) 
1 + (1-1)log(1-1) = 0
(ii) If x < y then F(x) < F(y) \implies 1 - F(x) > 1 - F(y). Since log is a monotonic non-increasing
function in [0, 1] and is in fact negative definite: log(1 - F(x)) < log(1 - F(y)) and 1 - F(x) > 1 - F(y)
 \implies -F(x)\log(1-F(x)) < -F(y)\log(1-F(y)) (This holds only because log is negative definite in [0,1])
Thus, F(x) - F(x)log(1 - F(x)) < F(y) - F(y)log(1 - F(y))
(iii) F(x) - F(x)\log(1 - F(x)) is right continuous as \log(1-F(x)) is right continuous
Part d) (F(x) - 1)e + exp(1 - F(x))
(i) \lim_{x\to-\infty} (F(x)-1)e + exp(1-F(x)) = \lim_{x\to-\infty} (F(x)-1)e + exp(\lim_{x\to-\infty} (1-F(x))) = (0-1)e + exp(\lim_{x\to-\infty} (F(x)-1)e + 
exp(1-0) = -e + e = 0
\lim_{x \to \infty} (F(x) - 1)e + exp(1 - F(x)) = \lim_{x \to \infty} (F(x) - 1)e + exp(\lim_{x \to \infty} (1 - F(x))) = (1 - 1)e + exp(1 - 1) = (1 - 1)e + exp(1 - 1)e +
0 + 1 = 1
(ii) if x < y, F(x) < F(y) \implies F(x) - 1 < F(y) - 1 \implies (F(x) - 1)e < (F(y) - 1)e Also, 1 - F(x) > 1 - F(y)
Since exp is a non-increasing function in [0,1] exp(1-F(x)) < exp(1-F(y))
 Thus,
(F(x) - 1)e + exp(1 - F(x)) < (F(y) - 1)e + exp(1 - F(y))
(iii) (F(x)-1)e + exp(1-F(x)) is right continuous as exp is right continuous.
FG is also a density function since it satisfies:
(i) \lim_{x \to -\infty} F(x)G(x) = \lim_{x \to -\infty} F(x) * \lim_{x \to -\infty} G(x) = 0
And \lim_{x\to\infty} F(x)G(x) = \lim_{x\to\infty} F(x) * \lim_{x\to\infty} G(x) = 1
(ii) If x < y, F(x) < F(y) and G(x) < G(y) \implies F(x)G(x) < F(y)G(y)
 (iii) Since F(x), G(x) are right continuous
```

Exercise # 2.3

(1)

Given: $\lim_{m\to-\infty} a_m \to -\infty$ and $\lim_{m\to\infty} a_m \to \infty$; $G(x) = P(X \le a_m)$ when $a_{m-1} \le x \le a_m$; a_m is a strictly increasing sequence.

Sequence a is chosen so that $sup_m|a_m-a_{m-1}|$ becomes smaller and smaller so even though the sequence is increasing the successive difference between the terms keep on decreasing essentially indicating a_m saturates as $m \to \infty$

(2)

Given: g(x) is continuous and strictly increasing, X is a random variable:

Since g(X) is continuous and strictly increasing $\implies g^{-1}$ exists.

Consider $\{Y \leq y\} \implies \{g(X) \leq y\}$. Since g^{-1} exists, such a set is equivalent to: $\{X \leq g^{-1}(y)\}$ which belongs to \mathcal{F} as $g: R \to R$

(3)

$$F(x) = P(X \le x) = \begin{cases} 0 & if x \le 0, \\ x & if 0 < x \le 1, \text{ To Prove: } Y = F^{-1}(x) \text{ is a random variable: Consider } \{Y \le 1, \text{ if } x > 1, \} \end{cases}$$

 $y\}=\{F^{-1}(x)\leq y\}$. Since F is continuous and strictly increasing $\Longrightarrow F^{-1}(x)$ exists in R so $\{Y\leq y\}=\{F^{-1}(x)\leq y\}=\{(x)\leq F(y)\}=\{x\leq P(X\leq y)\}\in \mathcal{F}$

F should necessarily be continuous and monotonic for the inverse to exist!

(4)

f,g are density functions:

$$\int_{-\infty}^{\infty} f(x) = 1$$
 and $\int_{-\infty}^{\infty} g(x) = 1$

Consider $y(x) = \lambda f(x) + (1 - \lambda)g(x)$ Thus, $\int_{-\infty}^{\infty} y(x)dx = \int_{-\infty}^{\infty} \lambda f(x)dx + \int_{-\infty}^{\infty} (1 - \lambda)g(x)dx = \lambda * \int_{-\infty}^{\infty} f(x)dx + (1 - \lambda) * \int_{-\infty}^{\infty} g(x)dx = \lambda * 1 + (1 - \lambda) * 1 = 1$

Thus $\lambda f(x) + (1 - \lambda)g(x)$ is a density function too.

Now consider y(x) = f(x)g(x), then:

 $\int_{-\infty}^{\infty} y(x)dx = \int_{-\infty}^{\infty} f(x)g(x)dx$ Clearly this is nor necessarily equal to 1 so fg is not a density function!

(5)

$$\begin{aligned} \mathbf{Part \ a)} \ f(x) &= \begin{cases} cx^{-d} & x > 1, \\ 0 & otherwise, \end{cases} \\ F(x) &= \int_{-\infty}^{\infty} f(c) dx = \int_{1}^{\infty} cx^{-d} = 1 \implies \frac{-c}{-d+1} = 1 \implies c = d-1 \\ \mathbf{Part \ b)} \ f(x) &= ce^{x} (1 + e^{x})^{-2} x \in R \\ F(x) &= \int_{-\infty}^{\inf ty} ce^{x} (1 + e^{x})^{-2} \operatorname{Let} \ t = e^{x} + 1 \ \text{then} \ e^{x} dx = dt \ F(x) = \int_{1}^{\infty} ct^{-2} dt \ F(x = 1) = -(c * 0 - c) = 1 \\ \operatorname{Thus} \ c &= 1. \end{aligned}$$