ASSIGNMENT 4

$\begin{array}{c} {\rm Morri~Bharath} \\ 20211a0e1@bvrit.ac.in \\ {\rm FWC}22127 \end{array}$

IIT Hyderabad-Future Wireless Communication

April 2023

Contents

1	Problem	2
2	Components	4
3	Reduction of logical circuit	4
4	Truth table	4
5	Next stages	4
6	implementation	6
7	Procedure	6

1 Problem

GATE EC-2020

Q.39. The state transition diagram for the circuit shown is

1. (A)

2. (B)

3. (C)

4. (D)

2 Components

Component	Values	Quantity
ArduinoUNO		1
JumperWires	M-M	10
Breadboard		1
LED		1
Resistor	220ohms	1

3 Reduction of logical circuit

The output of 2:1 mux is P.

Now ,
$$P = AQ + A'Q'$$

$$D = (Q.P)'$$

$$D = (Q(AQ + A'Q'))'$$

$$D = (A(Q.Q) + (A'Q'Q))' D = (AQ)'$$

The equation after reducing the logical circuit is:

$$D = (AQ)'$$

4 Truth table

Q	A	Q'	Input(D)	Clock	Next State(Q+)
0	0	1	1	↑	1
1	0	0	1	↑	1
1	1	0	0	↑	0
0	1	1	1	↑	1

5 Next stages

Figure 1: Stage 1

Figure 2: Stage 2

Figure 3: Stage 3

Figure 4: Stage 4

6 implementation

Arduino pin	INPUT	OUTPUT
2	Q	
3	A	
8		D

7 Procedure

- 1. Connect the circuit as per the above table.
- 2. Connect the Output pin D to the LED.
- 3. Connect the other end of the LED to the Ground terminal.
- 4. Connect inputs to Vcc for logic 1,ground for logic 0.
- 5. Execute the circuits using the below code.

https://github.com/BharathMorri/EC392019/tree/main/code

6. Change the values of Q and A in the code and verify the Truth table .