P VS NP & Algoritmi Aproximativi

Mare parte din curs se bazează pe Algoritmi

Un graf este hamiltonian dacă avem un ciclu care trece prin toate nodurile exact o data

 Nu este un cunoscut un algoritm polinomial pentru a găsi un ciclu hamiltonian.

- Nu este un cunoscut un algoritm polinomial pentru a găsi un ciclu hamiltonian.
 - Exista algoritmi exponentiali pentru a găsi un ciclu hamiltonian O(n!) și O(2^n*n) ba chiar în O(1.657^n).

- Nu este un cunoscut un algoritm polinomial pentru a găsi un ciclu hamiltonian.
 - Exista algoritmi exponentiali pentru a găsi un ciclu hamiltonian O(n!) și O(2^n*n) ba chiar în O(1.657^n).
 - Exista un algoritm liniar (polinomial) de a determina dacă un sir de numere reprezinta un ciclu hamiltonian într-un graf.

- Nu este un cunoscut un algoritm polinomial pentru a găsi un ciclu hamiltonian.
 - Exista algoritmi exponentiali pentru a găsi un ciclu hamiltonian O(n!) și O(2^n*n) ba chiar în O(1.657^n).
 - Exista un algoritm liniar (polinomial) de a determina dacă un sir de numere reprezinta un ciclu hamiltonian într-un graf.
 - Vom spune ca acest algoritm este un oracol (care poate verifica în timp polinomial o soluție).

- Nu este un cunoscut un algoritm polinomial pentru a găsi un ciclu hamiltonian.
 - Exista algoritmi exponentiali pentru a găsi un ciclu hamiltonian O(n!) și O(2^n*n) ba chiar în O(1.657^n).
 - Exista un algoritm liniar (polinomial) de a determina dacă un sir de numere reprezinta un ciclu hamiltonian într-un graf.
 - Vom spune ca acest algoritm este un oracol (care poate verifica în timp polinomial o soluție).
 - Exista algoritm liniar nedeterminist pentru a determina dacă un graf este hamiltonian.

Dacă avem un algoritm exponențial pentru o problema înseamnă ca problema are complexitate exponențială ?

Dacă avem un algoritm exponențial pentru o problema înseamnă ca problema are complexitate exponențială ?

- Nu, poate exista şi alţi algoritmi mai eficienti....
- De exemplu algoritmul <u>Bogosort</u> are expected running time în O((n+1)!), asta nu înseamnă ca sortarea este o problema exponențială.
 - De fapt chiar ştim ca pentru un vector arbitrar de n elemente putem rezolva problema în complexitate ???

Dacă avem un algoritm exponențial pentru o problema înseamnă ca problema are complexitate exponențială ?

- Nu, poate exista şi alţi algoritmi mai eficienti....
- De exemplu algoritmul <u>Bogosort</u> are expected running time în O((n+1)!), asta nu înseamnă ca sortarea este o problema exponențială.
 - De fapt chiar ştim ca pentru un vector arbitrar de n elemente putem rezolva problema în complexitate O(n log n)

- În general pentru o problema vom avea:
 - Limita teoretica inferioara (pentru sortare e O(n log n))
 - Complexitatea problemei (pentru sortare e O(n log n))
 - Algoritm optim cunoscut (pentru sortare e tot O(n logn))

- În general pentru o problema P vom avea
 - Limita teoretica inferioara (pentru sortare e O(n log n))
 - Complexitatea problemei (pentru sortare e O(n log n))
 - Algoritm optim cunoscut (pentru sortare e tot O(n logn))
- Înmulțirea a două numere (numerele scrise în baza 2, iar mărimea lor numărul total de biţi n).
 - Limita teoretica inferioara (O(n))
 - Complexitatea problemei (????)
 - Algoritm optim cunoscut (O(n log n log log n))

- În general pentru o problema P vom avea
 - Limita teoretica inferioara (pentru sortare e O(n log n))
 - Complexitatea problemei (pentru sortare e O(n log n))
 - Algoritm optim cunoscut (pentru sortare e tot O(n logn))
- Înmulțirea a două numere (numerele scrise în baza 2, iar mărimea lor numărul total de biţi n).
 - Limita teoretica inferioara (O(n))
 - Complexitatea problemei (????)
 - Algoritm optim cunoscut (O(n log n log log n))
- Ciclu hamiltonian
 - Limita teoretica inferioara (O(n)) -> polinomial
 - Complexitatea problemei (????)
 - Algoritm optim cunoscut (O(1.657ⁿ)) -> exponential

P vs NP

Complexity zoo

Ce înseamnă ca o problema e NP?

Ce înseamnă NP?

P

P este clasa problemelor de decizie (probleme care răspund la întrebări cu da și nu) ce se pot rezolva în timp polinomial:

- Este un element intr-un vector
 - Rezolvabila în timp liniar
- Are graful G un cuplaj de mărime k?
 - o O(n^?? (2/3/4/5/6))

P

P este clasa problemelor de decizie (probleme care răspund la întrebări cu da și nu) ce se pot rezolva în timp polinomial:

- Este un element intr-un vector
 - Rezolvabila în timp liniar
- Are graful G un cuplaj de mărime k?
 - o O(n^?? (2/3/4))
- Este numărul n prim ? problema rezolvata recent
 - o De ce rezolvata recent ??

P

P este clasa problemelor de decizie (probleme care răspund la întrebări cu da și nu) ce se pot rezolva în timp liniar:

- Este un element intr-un vector
 - Rezolvabila în timp liniar
- Are graful G un cuplaj de mărime k?
 - o O(n^?? (2/3/4))
- Este numărul n prim ? problema rezolvata recent
 - O De ce rezolvata recent ??
 - Spunem n dar de fapt n este exponențial în numărul de cifre din input (n = 54354 = 10^4 *5 +). Un algoritm O(n/2) sau o(sqrt(n)) este de fapt exponențial în mărimea inputului...
 - Algoritm în O(logn^(15/2)) (algoritm din 2002)

NP este clasa problemelor de decizie (probleme care răspund la întrebări cu da și nu) ce se pot rezolva în timp liniar pe o masina nedeterminista.

NP:

- Nedeterminist Polinomial
- Nepolinomial

Cilcul Hamiltonian:

```
A: For (i =1; i <= n; ++i) {

If (nr == n && v[last][first]==1 ) return true;

if(sel[i] == 0 && v[last][i] == 1)

{ sel[i] = 1; nr++; goto A; sel[i] = 0; nr--; last = i;}
} return false;
```

Cilcul Hamiltonian:

```
A: For (i = 1; i \le n; ++i) {
    If (nr == n && v[last][first]==1 ) return true;
    if(sel[i] == 0 && v[last][i] == 1)
        { sel[i] = 1; nr++; goto A; sel[i] = 0; nr--; last = i;}
} return false;
Complexitate?
```

Cilcul Hamiltonian:

```
A: For (i = 1; i \le n; ++i) {
    If (nr == n && v[last][first]==1 ) return true;
    if(sel[i] == 0 && v[last][i] == 1)
        { sel[i] = 1; nr++; goto A; sel[i] = 0; nr--; last = i;}
} return false;
```

Complexitate polinomiala (dar nedeterminist)

Nu toate problemele sunt în NP!

Probleme nedecidabile:

- Cea mai cunoscută Halting problem prezentată de Alan Turing (<u>Imitation game</u> este un film despre el)
- Halting problem:
 - Nu există o maşină Turing, care primind la intrare descrierea unei alte maşini Turing T şi un şir de date de intrare x, să poată spune dacă T se opreşte vreodată când primeşte pe x la intrare
 - Practic nu putem sti pentru orice program dacă se oprește pentru orice input...
- Teoria complexitatii de Mihai Budiu
- Problema exponentiale...
 - Aici o sa mai vorbim un pic mai târziu, dar exista probleme mai incete decat NP

0

Probleme NP complete:

- Exista o <u>lista de probleme</u> care are proprietatea ca dacă se găsește rezolvarea pentru ele în timp polinomial toate problemele din NP se pot rezolva în timp polinomial
 - Ciclu Hamiltionian (<u>Avem si film</u>)
 - Dându-se o mulţime de numere naturale, se poate împărţi în două mulţimi de numere de sume egale?
 - Clica": dându-se un graf G şi un număr k, are G un subgraf complet cu k vârfuri (adică o mulţime de k vârfuri unite fiecare cu fiecare)?
 - ``Acoperire": dându-se un graf G şi un număr k, pot alege k vârfuri în aşa fel încît toate muchiile din G au un capăt ales?

P VS NP

Wikipedia:

P VS NP VS EXP

Clasa tuturor problemelor care se pot rezolva cu algoritmi nedeterminişti într-un timp polinomial se notează cu **NP** (**Nedeterminist Polinomial**). Este clar că orice problemă care se află în P se află şi în NP, pentru că algoritmii determinişti sunt doar un caz extrem al celor determinişti: în fiecare moment au o singură alegere posibilă.

Din păcate transformarea într-un algoritm determinist se face pierzând din eficiență. În general un algoritm care operează în timp nedeterminist polinomial (NP) poate fi transformat cu uşurință într-un algoritm care merge în timp exponențial (EXP). Avem deci o incluziune de mulțimi între problemele de decizie: $P \subseteq NP \subseteq EXP$.

Partea cea mai interesantă este următoarea: **ştim cu certitudine că P != EXP.** Însă nu avem nici o idee despre relaţia de egalitate între NP şi P sau între NP şi EXP. **Nu există nici o demonstraţie care să infirme că problemele din NP au algoritmi eficienţi, determinist polinomiali!** Problema P=NP este cea mai importantă problemă din teoria calculatoarelor, pentru că de soluţionarea ei se leagă o grămadă de consecinţe importante.

Probleme NP

- Nu sunt soluții polinomiale ce putem face?
 - Backtracking
 - se opreste cu solutie optima dar nu stim cand
 - Backtracking omorat (ne poate da o solutie optima)
 - Brute force (eventual omorat)
 - Rezlvare optima pentru unele cazuri particuloare (graf bipartit pentru colorare)

0

Probleme NP

- Nu avem solutii polinomiale ce putem face?
 - Rezolvam doar pe cazuri mici
 - Rulam o perioada ne oprim
 - Găsim algoritmi care ne ofera solutii macar aproape de ce cautam

Probleme NP

- Nu sunt soluții polinomiale ce putem face?
 - Aproximare: În loc sa căutăm solutia exacta sa căutăm o solutie apropiata de solutia optima (de cel puţin 2 ori mai mare sau de cel puţin 0.001 ori mai mare).
 - Randomizare: Folosirea randomizarii pentru a obține algoritmi care rulează pe caz mediu mai rapid .
 - Restrictionare: Restrictionand datele de intrare putem obține uneori algoritmi mai eficienti (colorare pe grafuri planare/bipartite, ciclu hamiltonian pe grafuri care îndeplinesc Dirac),
 - <u>Euristici</u>: Algoritmi care merg bine pe multe cazuri dar pentru care nu avem soluții ca merg bine și eficient tot timpul.

Algoritmi Probabilişti

Varianta:

Se dau o mulţime (mare) de rucsaci de capacitate egală (cunoscută, un număr natural). Se mai dă o mulţime finită de obiecte, fiecare de un volum cunoscut (număr natural). Întrebarea este: care este numărul minim de rucsaci necesari pentru a împacheta toate obiectele?

Idei?

Varianta:

Se dau o mulţime (mare) de rucsaci de capacitate egală (cunoscută, un număr natural). Se mai dă o mulţime finită de obiecte, fiecare de un volum cunoscut (număr natural). Întrebarea este: care este numărul minim de rucsaci necesari pentru a împacheta toate obiectele?

- Umplem fiecare rucscac greedy
 - Punem la fiecare pas cel mai mare obiect pe care il putem pune...
 - Ne oprim cand nu putem sa mai punem nici un obiect în rucscac
 - Trecem la urmatorul rucsac
- Gradul de aproximare ?

Varianta:

Se dau o mulţime (mare) de rucsaci de capacitate egală (cunoscută, un număr natural). Se mai dă o mulţime finită de obiecte, fiecare de un volum cunoscut (număr natural). Întrebarea este: care este numărul minim de rucsaci necesari pentru a împacheta toate obiectele?

- Umplem fiecare rucscac greedy
 - Punem la fiecare pas cel mai mare obiect pe care il putem pune...
 - Ne oprim cand nu putem sa mai punem nici un obiect în rucscac
 - Trecem la urmatorul rucsac
- Gradul de aproximare ?
 - 0 2
 - O De ce?

Varianta:

Se dau o mulţime (mare) de rucsaci de capacitate egală (cunoscută, un număr natural). Se mai dă o mulţime finită de obiecte, fiecare de un volum cunoscut (număr natural). Întrebarea este: care este numărul minim de rucsaci necesari pentru a împacheta toate obiectele?

- Umplem fiecare rucscac greedy
 - Punem la fiecare pas cel mai mare obiect pe care-l putem pune...
 - Ne oprim cand nu putem sa mai punem nici un obiect în rucsac
 - Trecem la următorul rucsac
- Gradul de aproximare ?
 - 0 2
 - O De ce?
 - Orice rucsac (exceptand 1) va fi cel putin n/2 plin... (altfel i-am putea combina).

Varianta:

Se dau o mulţime (mare) de rucsaci de capacitate egală (cunoscută, un număr natural). Se mai dă o mulţime finită de obiecte, fiecare de un volum cunoscut (număr natural). Întrebarea este: care este numărul minim de rucsaci necesari pentru a împacheta toate obiectele?

Concluzie:

- Avem solutie rapida care este în cel mai rau caz de 2 ori mai rea ca solutia optima...
- În practica solutia paote fi și mai buna....
- Putem sa incercam sa găsim solutii mai bune (cu algoritmi genetici/aproximativi) cu limitarea la aceasta solutie....

Aproximare absoluta/relativa

Aproximare absoluta (pentru soluție de maxim) de grad C:

Sol(i) * C >= Opt(i)

Aproximare relativa (pentru soluție de maxim) de grad C:

Sol(i) + R >= Opt(i)

Acoperirea unui Graf

• Care este numărul minim de varfuri care trebuie ``acoperite'' astfel ca toate muchiile dintr-un graf să fie atinse?

o Idei?

- Care este numărul minim de varfuri care trebuie ``acoperite'' astfel ca toate muchiile dintr-un graf să fie atinse?
 - o Idei?
 - Cuplaj maxim ⊭∑
 - Facem cuplaj maxim, şi apoi selectam toate nodurile care sunt la ambele capete ale muchiilor din cuplaj
 - De ce funcționează ??

- Care este numărul minim de varfuri care trebuie ``acoperite'' astfel ca toate muchiile dintr-un graf să fie atinse?
 - o Idei?
 - Cuplaj maxim ⊬∑
 - Facem cuplaj maxim, şi apoi selectam toate nodurile care sunt la ambele capete ale muchiilor din cuplaj
 - De ce funcționează ??
 - Dacă am avea o muchie care nu e atinsă în nici un capăt, atunci ea putea fi adaugata la cuplaj

- Care este numărul minim de varfuri care trebuie ``acoperite'' astfel ca toate muchiile dintr-un graf să fie atinse?
 - o Idei?
 - Cuplaj maxim
 - Facem cuplaj maxim, şi apoi selectam toate nodurile care sunt la ambele capete ale muchiilor din cuplaj
 - De ce funcționează ??
 - Dacă am avea o muchie care nu e atinsă în nici un capăt, atunci ea putea fi adaugata la cuplaj
 - Aproximare absoluta sau relativa ?

- Care este numărul minim de varfuri care trebuie ``acoperite'' astfel ca toate muchiile dintr-un graf să fie atinse?
 - o Idei?
 - Cuplaj maxim
 - Facem cuplaj maxim, şi apoi selectam toate nodurile care sunt la ambele capete ale muchiilor din cuplaj
 - De ce funcţionează ??
 - Dacă am avea o muchie care nu e atinsă în nici un capăt, atunci ea putea fi adaugata la cuplaj
 - Aproximare absoluta sau relativa ?
 - Relativa ... de ce grad ?

- Care este numărul minim de varfuri care trebuie ``acoperite'' astfel ca toate muchiile dintr-un graf să fie atinse?
 - o Idei?
 - Cuplaj maxim ⊭∑
 - Aproximare absoluta sau relativa ?
 - Relativa ... de ce grad ?
 - 0 2

- Care este numărul minim de varfuri care trebuie ``acoperite" astfel ca toate muchiile dintr-un graf să fie atinse?
 - o Idei?
 - Cuplaj maxim
 - Facem cuplaj maxim, şi apoi selectam toate nodurile care sunt la ambele capete ale muchiilor din cuplaj
 - De ce funcţionează ??
 - Dacă am avea o muchie care nu e atinsă în nici un capăt, atunci ea putea fi adaugata la cuplaj
 - Aproximare absoluta sau relativa ?
 - Relativa ... de ce grad ?
 - 0 2

- Care este numărul minim de varfuri care trebuie ``acoperite'' astfel ca toate muchiile dintr-un graf să fie atinse?
 - Nu avem solutie aproximativa absoluta.... Sa zicem ca vrem o solutie la distanta maxim n
 - Pe scurt dacă exista graful G pentru care solutia noastra da solutia + 1...
 - Facem n+1 componente conexe identice -> solutia noastra va fi la distanta n + 1

Algoritmi Probabilişti

• În timpul rezolvării unei probleme, putem ajunge la un moment dat în situaţia de a avea **de ales** între mai multe variante de continuare.

Algoritmi Probabilişti

- În timpul rezolvării unei probleme, putem ajunge la un moment dat în situaţia de a avea **de ales** între mai multe variante de continuare.
 - se alege aleator una dintre variante
 - la executări diferite ale unui algoritm probabilist, rezultatele sunt în general diferite.

Algoritmi Probabilişti

Categorii

- Monte Carlo
- Las Vegas
- 0

- Furnizează totdeauna un rezultat, care însă nu este neapărat corect
- Probabilitatea ca rezultatul să fie corect creşte pe măsură ce timpul disponibil creşte

Se consideră un vector cu *n* elemente distincte. Să se determine un element al vectorului care să fie mai mare sau egal cu mediana a celor n numere din vector

- n este foarte mare
 - timpul avut la dispoziţie este mic

 $max = -\infty$

Repetă fără a depăşi timpul disponibil:

- alegem aleatoriu x un element al vectorului
- max = maxim(max, x) = cel mai mare element ales

scrie max

- Care este probabilitatea ca un element ales x să fie mai mic decât mediana?
 - 1/2

■ Care este probabilitatea ca răspunsul să fie corect după k încercări?

■ Care este probabilitatea ca răspunsul să fie greșit după k încercări?

 Care este probabilitatea ca un element ales x să fie mai mic decât mediana?

 Care este probabilitatea ca toate cele k elemente alese (în timpul de rulare avut la dispoziţie) să fie mai mici decât mediana (deci v < mediana)?

■ Care este probabilitatea ca răspunsul să fie corect după k încercări?

 $1 - 1/2^{k}$

- Pentru k=20, această probabilitate este mai mare decât 0,999999
- Pentru k=20, această probabilitate este mai mare decât 0,999
- 1- (1-p)^k

Se consideră un vector cu n elemente. Să se determine dacă există un element majoritar în vector (cu frecvența > n/2)

Algoritmi Monte Carlo – Element majoritar

V = -∞

Repetă fără a depăşi timpul disponibil:

- alegem aleator x un element al vectorului
- Calculam f = frecventa lui x
- Daca f>n/2 scrie DA; STOP

scrie NU

Algoritmi Monte Carlo – Element majoritar Analiza

- Problemă de decizie
- Dacă scrie DA, raspunsul este corect
- Dacă scrie NU, este posibil ca să existe element majoritar (deci răspunsul să fie greșit)

Algoritmi Monte Carlo – Element majoritar Analiza

- Problemă de decizie
- Dacă scrie DA, raspunsul este corect
- Dacă scrie NU, este posibil ca să existe element majoritar (deci răspunsul să fie greșit)
- Care este probabilitatea de a răspunde greșit NU după k pași?

Polinom nul

Fie un polinom de mai multe variabile, $x_1, x_2, ... x_n$. Acest polinom poate fi descris printr-o formulă aritmetică, de pildă: $(x_1 + 1) (x_2 + 1) ... (x_n + 1)$. Întrebarea este: este acest polinom identic nul sau nu?

- Idei ?
 - Alegem seturi de valori pentru variabilele mele.
 - Dacă pentru toate seturile de valori alese avem raspunsul 0 atunci probabil e 0

Polinom nul

Fie un polinom de mai multe variabile, x_1 , x_2 , ... x_n . Acest polinom poate fi descris printr-o formulă aritmetică, de pildă: $(x_1 + 1) (x_2 + 1) ... (x_n + 1)$. Întrebarea este: este acest polinom identic nul sau nu?

- Idei?
- Ce probabiltate avem dupa o testare ?
- Dar dupa mai multe?

Algoritmi Las Vegas

Algoritmi Las Vegas

Nu furnizează totdeauna un rezultat, dar dacă furnizează un rezultat atunci acesta este corect

 Probabilitatea ca algoritmul să se termine creşte pe măsură ce timpul disponibil creşte

Algoritmi Las Vegas

Se dau n texte (n foarte mare) cu următoarele proprietăți:

- există un unic text t₀ care apare de cel puţin 10% ori;
- celelalte texte sunt distincte.

Se cere determinarea textului t_o.

Algoritmi Las Vegas - Text

Algoritm probabilist

Idee

Generăm aleatoriu doi indici i şi j şi testăm dacă
 i≠j şi t_i=t_i

până când testul se încheie cu succes

Algoritmi Las Vegas - Text

```
repeat
    if LVText()
      stop
until false
LVText()
   i \leftarrow random(1..n); j \leftarrow random(1..n);
      if i≠j and t<sub>i</sub>=t<sub>i</sub>
            write t; return true
   else
```

Bibliografie

 Horia Georgescu. Tehnici de programare, Editura Universității din Bucureşti 2005

 Gilles Brassard, Paul Bratley - Algorithmics: theory and practice, Prentice Hall, 1988