Department of Computer Science and Engineering

Bangladesh University of Business and Technology (BUBT) $\,$

CSE 498: Literature Review Records

Student's Id and Name	Name: Mustain Murtaza Taib and ID: 18193103003
Capstone Project Title	Tomato Leaf Disease Classification via Compact Convolutional Neural Networks with Transfer Learning and Feature Selection
Supervisor Name & Designation	Name: Mr.T.M. Amir - Ul - Haque Bhuiyan & Designation: Assistant Professor, Department of CSE, BUBT
Course Teacher's Name & Designation	Name: Khan Md. Hasib & Designation: Assistant Professor, Department of CSE, BUBT

Aspects	Paper # 1 (Title)
Title / Question (What is problem statement?)	Tomato Leaf Disease Classification via Compact Convolutional Neural Networks with Transfer Learning and Feature Selection
Objectives / Goal (What is looking for?)	Tomatoes are valuable vegetables and a major crop in many countries. his study proposes a pipeline using three compact convolutional neural networks (CNNs) and transfer learning to extract condensed features. The pipeline achieves high accuracy (99.92% and 99.90%). Six classifiers are utilized in the identification process, The experimental results demonstrate the competitive performance of the proposed pipeline compared to previous studies on tomato leaf disease classification.
Methodology / Theory (How to	
find the solution?)	• Three compact CNNs (ResNet-18, ShuffleNet, and MobileNet) are then retrained using transfer learning, and deep features are extracted from each CNN. Six ML classifiers (Naïve Bayes, K-nearest neighbor, decision tree, linear discriminant analysis, support vector machine, and quadratic discriminant analysis) are used to classify tomato leaves into ten classes.
Software Tools (What program/software is used for design, coding and simulation?)	Google colab, keras, Tensorflow, pandas, numpy, matplot, os.
Test / Experiment How to test and characterize the design/prototype?	For the experimental work, the datasets were divided into the ratio of 80% and 20%. 80% of the datasets were used to train classification algorithms, and the remaining 20% used for testing purposes.classifiers.
Simulation/Test Data (What parameters are determined?)	Datasets: Bacterial Spot, Early Blight, Healthy, Late Blight, Leaf Mold, Mosaic virus, Septoria Leaf Spot, Two Spotted Spider Mites, Target Spot, Yellow Leaf Curl Virus.
Result / Conclusion (What was	
the final result?)	Model Features Accuracy ResNet-50 Features of ResNet-50 97.0% U-Net ResNet-50 97.11% Customized CNN Customized CNN 99.3% Customized CNN Customized CNN 98.70% Fine-tuned MobileNet Features of MobileNet 90.3% Spatial attention with CNN Fully connected layer 95.20% VGG16 Features of VGG16 96.19% Multinomial Logistic regression MobileNetV2 or NASNetMobile 97% EfficientNet-B0 98.60% KNN Fully connected layer (MobileNet + ShuffleNet + ResNet-18) + hybrid FS 99.92%
Obstacles/Challenges (List the methodological obstacles if authors mentioned in the article)	The agricultural sector is facing challenges in detecting leaf diseases for efficient food production. This study proposes a robust deep learning-based pipeline for automatic detection and identification of tomato diseases.
Terminology (List the common basic words frequently used in this research field)	smart agriculture; precision agriculture; deep learning; tomato leaf disease classification; feature selection; transfer learning

Review Judgment (Briefly compare the objectives and results of all the articles you reviewed)	• This is best accuary than "Savary, S.; Ficke, A.; Aubertot, JN.; Hollier, C. Crop Losses Due to Diseases and Their Implications for Global Food Production" Losses and Food Security. Food Secur. 2012, 4, 519–537. [CrossRef]" Best accuracy is 97.0%
Review Outcome (Make a decision how to use/refer the obtained knowledge to prepare a separate and new methodology for your own research project)	But I can get best from that paper with using resnet50 and other classifiers