

Determination of the beam asymmetry Σ in η - and η' -photoproduction off the proton using Bayesian statistics

Master thesis for the CBELSA/TAPS collaboration

Supervisor: Jun. Prof. Dr. Annika Thiel

thiel@hiskp.uni-bonn.de

September 8/9 2022

Setting the scene

The Standard Model of Particle Physics

- ▶ matter consists of 12 (anti-)fermions
- ightharpoonup quarks interact via $strong\ interaction$
- ▶ form bound states: mesons $(q\bar{q})$ and baryons (qqq)

baryon spectroscopy (photoproduction) gives insight in strong interaction

Setting the scene

Observe resonances N^*/Δ^* in the cross sections $\sigma(\gamma p \to pM)$

Total cross section $\sigma(\gamma p \to p \pi^0)$ [Wunderlich et al. 2017]

→goal: (help to) identify contributing resonances as strong bound states!

- 1. Theoretical basics
- 2. Experimental Setup
- 3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

1. Theoretical basics

2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

- ► resonances are broad, overlapping, require complicated partial-wave-analysis (PWA)
- ▶ constraints for the analysis can be derived from polarization observables
- ▶ ultimate goal: "complete experiment"; unambiguous, model-independent PWA solution → several single and double polarization observables needed

Beam-target polarization observables

	target polarization			
photon		x	y	z
unpolarized	σ_0	-	T	-
linearly polarized	$-\Sigma$	H	-P	-G
circularly polarized	-	F	-	-E

[Sandorfi et al. 2011]

Beam asymmetry Σ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}(E_{\gamma},\cos\theta,\varphi) = \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_0}(E_{\gamma},\cos\theta) \cdot \left[1 - p_{\gamma}^{\mathrm{lin}}\Sigma\cos(2\varphi)\right]$$

polarization angle φ , polarization degree $p_{\gamma}^{\mathrm{lin}}$

[Sandorfi et al. 2011]

Definition of the polarization angle

- ▶ Polarization observables are input for further analysis
- ► Idea: increase amount of information gained from results using Bayesian inference

Bayes' theorem

$$p(\theta|y) \propto p(y|\theta) \cdot p(\theta)$$
$$posterior \propto likelihood \cdot prior$$

parameters θ and data y.

[Gelman et al. 2014]

- ▶ Polarization observables are input for further analysis
- ► Idea: increase amount of information gained from results using BAYESIAN inference

$$p(\theta|y) \propto p(y|\theta) \cdot p(\theta)$$

▶ prior $p(\theta)$ and likelihood $p(y|\theta)$ can easily be specified → gain distributions $p(\theta|y)$ instead of point estimates with error bars

Bayesian parameter inference

For each parameter $\theta_n \in \theta$ we gain marginal posteriors

$$p(\theta_n|y) = \int d\theta_1 \cdots \int d\theta_{n-1} \int d\theta_{n-1} \cdots \int d\theta_N p(\theta_1 \dots \theta_N|y).$$

usually approximated using Markov-Chain Monte Carlo (MCMC) draws $\theta^{(s)}$

[Sivia and Skilling 2005]

$$p(\theta|y) \propto p(y|\theta)$$
:

▶ prior $p(\theta)$ and likelihood $p(y|\theta)$ → gain distributions $p(\theta|y)$ inst y specified nt estimates with error bars

BAYESIAN parameter inference

For each parameter $\theta_n \in$

$$p(\theta_n|y) = \int d$$

usually approximated using M.

onte Carlo (MCMC) draws $\theta^{(s)}$

[Sivia and Skilling 2005]

1. Theoretical basics

2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

CBELSA/TAPS experiment

- $\begin{tabular}{l} \hline & generate photon beam \\ from accelerated \\ electrons via \\ bremsstrahlung, with \\ E_{\gamma} \leq 3.2 \, {\rm GeV} \\ \hline \end{tabular}$
- ▶ photon beam impinges on liquid hydrogen target: $\gamma p \rightarrow pM \rightarrow pX$
- ► measure decay products X of different final states: $M = \pi^0/\eta/\eta'/\ldots$
- ► data set: July-October 2013, 1065 h beam time

Overview of the experimental area, adapted from [Walther 2021]

- 1. Theoretical basics
- 2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics

Determination of $\Sigma_{\eta'}$

4. Conclusion

- ▶ Polarization observables are needed for different final states $(\pi^0, \eta, \eta', ...)$
- ▶ high precision measurement of beam asymmetry for η production recently published [Afzal et al. 2020]
- ▶ goal: confirm results using Bayesian fitting methods

Event selection (η)

analysis performed in 11x12 bins of $(E_{\gamma}, \cos \theta)$ by [Afzal et al. 2020]

Methods

Remember:
$$\frac{d\sigma}{d\Omega}(E_{\gamma}, \cos\theta, \varphi) = \frac{d\sigma}{d\Omega_0}(E_{\gamma}, \cos\theta) \cdot \left[1 - p_{\gamma}^{\ln \Sigma} \cos(2\varphi)\right]$$

Binned fit to event yield asymmetries

fit to event yield asymmetries

$$A(E_{\gamma}, \theta, \phi) = \frac{N^{\perp}(E_{\gamma}, \theta, \phi) - N^{\parallel}(E_{\gamma}, \theta, \phi)}{p_{\gamma}^{\parallel} N^{\perp}(E_{\gamma}, \theta, \phi) + p_{\gamma}^{\perp} N^{\parallel}(E_{\gamma}, \theta, \phi)} = \Sigma(E_{\gamma}, \theta) \cos\left(2\left(\alpha^{\parallel} - \phi\right)\right)$$

Event selection (η)

analysis performed in 11x12 bins of $(E_{\gamma}, \cos \theta)$ by [Afzal et al. 2020]

Methods

Remember:
$$\frac{d\sigma}{d\Omega}(E_{\gamma},\cos\theta,\varphi) = \frac{d\sigma}{d\Omega_0}(E_{\gamma},\cos\theta) \cdot \left[1 - p_{\gamma}^{\ln}\Sigma\cos(2\varphi)\right]$$

Unbinned maximum likelihood fit

Consider likelihood of each individual event

$$\tilde{p}(\phi, \Sigma) = \frac{\left(1 + p_{\gamma} \Sigma \cos \left(2 \left(\alpha^{\parallel} - \phi\right)\right)\right) \cdot \epsilon \left(\phi\right)}{C}$$

Applying Bayesian approach to event yield asymmetries:

▶ assume Gaussian errors, i.e.

$$A(\phi) = \Sigma \cos \left(2\left(\alpha^{\parallel} - \phi\right)\right) + \epsilon$$

where $\epsilon \sim \mathcal{N}(0, \sigma)$

▶ likelihood $p(A|\Sigma)$ of each datapoint given by

$$y \sim \mathcal{N}\left(\Sigma \cos\left(2\left(\alpha^{\parallel} - \phi\right)\right), \sigma\right)$$

▶ prior:

$$p(\Sigma) \sim \mathcal{N}(0,1)_{[-1,1]}$$

Sample from posterior $p(\Sigma|A) \propto p(A|\Sigma) \cdot p(\Sigma)$!

Applying Bayesian approach to unbinned fit:

- ▶ event based likelihood given by product of all single-event likelihoods
- ▶ assign priors for all fit parameters (18 in total)
- ▶ choose weakly informative, normal priors.
- \blacktriangleright truncate beam asymmetry to allowed region [-1,1]
- ▶ perform toy Monte Carlo experiments

Sample from posterior!

- ▶ All Bayesian fits performed using the *Python* frontend of *Stan*
- ► MCMC-sampling: adaptive Hamiltonian Monte-Carlo (HMC), i.e. No-U-Turn-Sampling (NUTS)
 - \blacktriangleright generate samples $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(S)}$ where each $\theta^{(t)}$ depends only on $\theta^{(t-1)}$
 - \triangleright simulate draws from the posterior by updating at point t such that the posterior increases (importance sampling)
- ▶ diagnosing convergence of MCMC:
 - ▶ potential scale reduction statistic $1.00 \lesssim \hat{R} \lesssim 1.01$
 - ▶ Monte Carlo standard error (MCSE) 'small'

[Stan development team 2022; Hoffman and Gelman 2014]

Distinct advantage: sample only in physically allowed parameter space

- 1. Theoretical basics
- 2. Experimental Setup

3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

Event selection of the $\eta' \to \gamma \gamma$ final state

Analysis performed in 3x6 bins of $(E_{\gamma}, \cos \theta_{\eta'}^{\text{CMS}}), E_{\gamma} \in [1500, 1800] \text{ MeV}$

- ➤ 3 detector hits, 2 uncharged, 1 charged
- ▶ coincident detector hits
- kinematic cuts derived from energy-momentum conservation $p_{\gamma} + p_{p} = p'_{p} + p_{p'}$
- ► additional cuts to reduce background contributions

total: $\sim 8000 \ \eta' \rightarrow \gamma \gamma$ events

Extraction method for $\Sigma_{\eta'}$

- \blacktriangleright measure in 2 distinct orthogonal polarization settings \bot , \parallel
- \blacktriangleright χ^2 -fit to event yield asymmetries

$$A(E_{\gamma}, \theta, \phi) = \frac{N^{\perp}(E_{\gamma}, \theta, \phi) - N^{\parallel}(E_{\gamma}, \theta, \phi)}{p_{\gamma}^{\parallel} N^{\perp}(E_{\gamma}, \theta, \phi) + p_{\gamma}^{\perp} N^{\parallel}(E_{\gamma}, \theta, \phi)} = \Sigma(E_{\gamma}, \theta) \cos\left(2\left(\alpha^{\parallel} - \phi\right)\right)$$

▶ fit from $\sim 800 \ \eta' \rightarrow \gamma \gamma$ events

Preliminary results for $\Sigma_{\eta'}$

Beam asymmetry $\Sigma_{n'}$ for all energy and angle bins, compared with results of [Mecking et al. 2003]

1. Theoretical basics

- 2. Experimental Setup
- 3. Results

Determination of Σ_{η} using Bayesian statistics Determination of $\Sigma_{\eta'}$

4. Conclusion

Conclusion

Summary

- $ightharpoonup \Sigma$ extracted for η and η' final state
- \blacktriangleright η results obtained with BAYESIAN fit agree with previous results
- $\blacktriangleright \eta'$ results agree with previous results

Outlook

- extract Σ using unbinned maximum likelihood fit for η/η'
- ► apply BAYESIAN approach to above method
- \blacktriangleright consider bkg contaminations in results of $\Sigma_{n'}$

BACKUP & REFERENCES

Full PDF for unbinned maximum likelihood fit

$$-\ln \mathcal{L} = \sum_{i=1}^{n} -\ln(p_{\text{prompt}}(\phi_i, p_{\gamma,i}, \Sigma, a_1 \dots a_4, b_1 \dots b_4)) + \sum_{j=1}^{m} -\ln\left(p_{\text{sideband}}(\phi_j, p_{\gamma,j}, \Sigma^{\text{bkg}}, a_1^{\text{bkg}} \dots a_4^{\text{bkg}}, b_1^{\text{bkg}} \dots b_4^{\text{bkg}})\right)$$

where

$$p_{\text{prompt}} = f_{\text{sig}} \cdot \tilde{p}(\phi, p_{\gamma}, \Sigma, a_{1} \dots a_{4}, b_{1} \dots b_{4})$$

$$+ (1 - f_{\text{sig}}) \cdot \tilde{p}(\phi, p_{\gamma}, \Sigma^{\text{bkg}}, a_{1}^{\text{bkg}} \dots a_{4}^{\text{bkg}}, b_{1}^{\text{bkg}} \dots b_{4}^{\text{bkg}})$$

$$p_{\text{sideband}} = \tilde{p}(\phi, p_{\gamma}, \Sigma^{\text{bkg}}, a_{1}^{\text{bkg}} \dots a_{4}^{\text{bkg}}, b_{1}^{\text{bkg}} \dots b_{4}^{\text{bkg}})$$

and

$$\tilde{p}(\phi, \Sigma) = \frac{\left(1 + p_{\gamma} \Sigma \cos\left(2\left(\alpha^{\parallel} - \phi\right)\right)\right) \cdot \left(\sum_{k=0}^{4} a_{k} \sin(k\phi) + b_{k} \cos(k\phi)\right)}{1 - \frac{1}{2} a_{2} p_{\gamma} \Sigma}$$

Additional theoretical basics

Unpolarized differential cross section

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \frac{1}{4}\rho \sum_{\mathrm{spins}} |\langle f|\mathcal{F}|i\rangle|^2,$$

where

$$\mathcal{F} = i(\vec{\sigma} \cdot \vec{\epsilon})F_1 + (\vec{\sigma} \cdot \hat{q})(\vec{\sigma} \cdot (\hat{k} \times \vec{\epsilon}))F_2 + i(\vec{\sigma} \cdot \hat{k})(\hat{q} \cdot \vec{\epsilon})F_3 + i(\vec{\sigma} \cdot \hat{q})(\hat{q} \cdot \vec{\epsilon})F_4$$

 F_i : complex CGLN Amplitudes

[Chew et al. 1957]

 $\frac{d\sigma}{d\Omega} \in \mathbb{R}$, not sufficient do determine \mathcal{F} unambiguously

 \rightarrow Polarization Observables can be related to F_i

Background estimation using Monte-Carlo simulations

Background estimation using Monte-Carlo simulations

 $2\pi^0/\pi^0\eta$ events pass event selection, because $E_{\gamma_i} \lesssim 20$ MeV, or $\theta_{\gamma_i} \approx \theta_{\gamma_j}$

Background reducing cuts

- ▶ p in MT for $E_{\gamma} < 1500$ MeV
- ▶ $E_{\gamma_i} < 1500 \text{ MeV}$
- ▶ 1 PED/Cluster for γ_i
- ightharpoonup Clustersize(p) < 6
- ightharpoonup Clustersize(γ_i) in FW

bkg contamination $\sim 13\%$

Diagnostics of a BAYESIAN fit

- \triangleright \hat{R} : measure of convergence for chains
- ▶ Monte-Carlo-Standard-Error: measure for adequate sample size
- ▶ posterior predictive checks: "goodness of fit"

References I

- Afzal, F. et al. (Oct. 2020). 'Observation of the $p\eta'$ Cusp in the New Precise Beam Asymmetry Σ Data for $\gamma p \to p\eta$ '. In: Phys. Rev. Lett. 125 (15), p. 152002. DOI: 10.1103/PhysRevLett.125.152002. URL: https://link.aps.org/doi/10.1103/PhysRevLett.125.152002.
- Chew, G. F. et al. (June 1957). 'Relativistic Dispersion Relation Approach to Photomeson Production'. In: Phys. Rev. 106 (6), pp. 1345–1355. DOI: 10.1103/PhysRev.106.1345. URL: https://link.aps.org/doi/10.1103/PhysRev.106.1345.
- Gelman, Andrew et al. (2014). Bayesian Data Analysis. Vol. 3. Chapman & Hall/CRC.
- Hoffman, Matthew D. and Andrew Gelman (2014). 'The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo'. In: Journal of Machine Learning Research 15.47, pp. 1593–1623. URL: http://jmlr.org/papers/v15/hoffman14a.html.

References II

https://doi.org/10.1016/S0168-9002(03)01001-5. URL: https: //www.sciencedirect.com/science/article/pii/S0168900203010015.

Sandorfi, A. M. et al. (Apr. 2011). 'Determining pseudoscalar meson photoproduction amplitudes from complete experiments'. In: Journal of Physics G: Nuclear and Particle Physics 38.5, p. 053001. ISSN: 1361-6471. DOI: 10.1088/0954-3899/38/5/053001. URL: http://dx.doi.org/10.1088/0954-3899/38/5/053001.

Sivia, D.S. and J. Skilling (2005). Data Analysis - A Bayesian Tutorial. Vol. 2.

Oxford University Press.

pp. 513–553. ISSN: 0168-9002. DOI:

References III

- Stan development team (2022). Stan Modeling Language Users Guide and Reference Manual. Vol. 2.29. URL: https://mc-stan.org.
- Walther, Dieter (2021). Crystal Barrel. A 4π photon spectrometer. URL: https://www.cb.uni-bonn.de (visited on 27/09/2021).
- Wunderlich, Y. et al. (May 2017). 'Determining the dominant partial wave contributions from angular distributions of single- and double-polarization observables in pseudoscalar meson photoproduction'. In: *The European Physical Journal A* 53.5. ISSN: 1434-601X. DOI: 10.1140/epja/i2017-12255-0. URL: http://dx.doi.org/10.1140/epja/i2017-12255-0.