Capítulo 7-? Cálculo Relacional

O Cálculo Relacional (CR) é uma linguagem de consulta formal. Utilizando-se de uma expressão declarativa pode-se especificar uma consulta.

Uma expressão de cálculo permite a descrição da consulta desejada sem especificar os procedimentos para obtenção dessas informações, ou seja, é não-procedural. Contudo, tal consulta deve ser capaz de descrever formalmente a informação desejada, com exatidão.

Existem dois tipos: Cálculo Relacional de Tuplas (CRT) e Cálculo Relacional de Domínio (CRD). Eles são subconjuntos simples de lógica de primeira ordem.

No Cálculo Relacional existem variáveis, constantes, operadores lógicos, de comparação e quantificadores. As expressões de Cálculo são chamadas de fórmulas. Uma tupla de respostas é essencialmente uma atribuição de constantes às variáveis que levam a fórmula a um estado verdadeiro.

Em CRT, as variáveis são definidas sobre tuplas. Já em CRD, variáveis são definidas sobre o domínio dos elementos (ou seja, sobre os valores dos campos).

Todas as expressões de consulta descritas em CR possuem equivalentes em Álgebra Relacional.

Cálculo Relacional de Tuplas

É baseado na especificação de um número de variáveis de tuplas. Cada variável tupla pode assumir como seu valor qualquer tupla da relação especificada.

Uma consulta em CRT é especificada da seguinte forma:

{variável tupla | predicado}

O resultado de tal consulta é o conjunto de todas as variáveis tuplas para as quais o predicado é indicado como verdadeiro.

Uma expressão genérica do cálculo relacional de tuplas tem a forma $\{t_1.A_1, t_2.A_2,..., t_n.A_n \mid predicado(t_1, t_2,..., t_n, t_{n+1}, t_{n+2}, ..., t_{n+m})\}$

onde t_1 , t_2 ,..., t_n , t_{n+1} , t_{n+2} , ..., t_{n+m} são variáveis de tuplas, cada A_i é um atributo da relação na qual t_i se encontra . O predicado é uma fórmula do cálculo relacional de tuplas.

As fórmulas atômicas de cálculo de predicados podem ser uma das seguintes:

- 1-) Uma fórmula atômica R(ti), onde R é o nome de uma relação e ti é uma variável de tupla. Este átomo identifica a extensão da variável de tupla ti como a relação cujo nome seja R.
- 2-) Uma fórmula atômica ti.A op tj.B, onde op é um dos operadores de comparação no conjunto {=, >, <, ...}, ti e tj são variáveis de tuplas, A é um atributo da relação na qual ti se encontra, B é um atributo da relação na qual tj se encontra.
- 3-) Um fórmula atômica ti.A op c ou c op tj.B, onde op é um dos operadores de comparação no conjunto {=, >, <, ...}, ti e tj são variáveis de tuplas, A é um atributo da

relação na qual ti se encontra, B é um atributo da relação na qual ti se encontra e c é um valor constante.

Cada uma das fórmulas atômicas anteriormente especificadas tem seu valor verdade avaliado como TRUE ou FALSE para uma combinação específica de tuplas. Para fórmulas do tipo 1, caso a variável de tupla seja atribuída a uma tupla da relação R dada, esta assume valor TRUE; caso contrário, FALSE. Já nas fórmulas do tipo 2 e 3, se as variáveis de tupla forem designadas de forma que os valores dos atributos especificados satisfaçam o predicado, esta assumirá valor verdade TRUE.

Todas as variáveis tuplas abordadas até então são consideradas variáveis livres¹, uma vez que estas não aparecem quantificadas. Contudo, além das definições acima, quantificadores (universal (\forall) ou existencial (\exists)) podem aparecer nas fórmulas. Neste caso, as variáveis que os sucedem são denominadas variáveis limite.

Uma fórmula é definida, de forma recursiva, por uma ou mais fórmulas atômicas, conectadas por operadores lógicos (AND, OR, NOT), como segue:

- 1-) Oualquer fórmula atômica.
- 2-) Se F1 e F2 são fórmulas atômicas, então (F1 AND F2), (F1 OR F2), NOT (F1) e NOT (F2) também o são, tendo seus valores verdade derivados a partir de F1 e F2, da seguinte forma:
 - a-) (F1 AND F2) será TRUE apenas se ambos, F1 e F2, forem TRUE;
 - b-) (F1 OR F2) será TRUE quando uma das duas fórmulas F1 e F2, for TRUE;
 - c-) NOT(F1) será TRUE quando F1 for FALSE;
 - c-) NOT(F2) será TRUE quando F2 for FALSE.
- 3-) Se F1 é uma fórmula atômica, então $(\exists t^2)(F1)$ também o é, e seu valor verdade apenas será TRUE se a fórmula F for avaliada como verdadeira para pelo menos uma tupla atribuída para ocorrências livres de t em F.
- 4-) Se F1 é uma fórmula atômica, então (\forall t)(F1) também o é, e seu valor verdade apenas será TRUE se a fórmula F for avaliada como verdadeira para todas as tuplas atribuídas para ocorrências livres de t em F.
- É possível escrever expressões equivalentes manipulando operadores e quantificadores. Alguns casos dessa manipulação podem ser declarados da seguinte forma:
- 1-) F1 AND F2 \equiv NOT(NOT F1 OR NOT F2).
- 2-) $(\forall t) \in r(F1(t)) \equiv NOT(\exists t) \in r(NOTF1(t)).$
- 3-) $F1 \Rightarrow F2 \equiv NOT F1 OR F2$.
- 4-) $(\forall x) (F(x)) \equiv NOT (\exists x) (NOT (F(x)))$
- 5-) $(\exists x) (F(x)) \equiv NOT (\forall x) (NOT (F(x)))$

¹ As únicas variáveis de tupla livres em uma expressão de cálculo relacional devem ser aquelas à esquerda da barra (|).

² t é uma variável de tupla.

```
6-) (\forall x) (F(x) \text{ AND } P(x)) \equiv \text{NOT } (\exists x) \text{ (NOT } (F(x)) \text{ OR NOT } (P(x)))
7-) (\forall x) (F(x) \text{ OR } P(x)) \equiv \text{NOT } (\exists x) \text{ (NOT } (F(x)) \text{ AND NOT } (P(x)))
8-) (\exists x) (F(x) \text{ OR } P(x)) \equiv \text{NOT } (\forall x) \text{ (NOT } (F(x)) \text{ AND NOT } (P(x)))
9-) (\exists x) (F(x) \text{ AND } P(x)) \equiv \text{NOT } (\forall x) \text{ (NOT } (F(x)) \text{ OR NOT } (P(x)))
```

Abaixo seguem exemplos de consultas em CRT.

- 1-) Encontre todos os empregados cujos salários estejam acima de R\$3.500,00.
- $\{t \mid EMPREGADO(t) \text{ AND } t.SALARIO > 3500\}$
- 2-) Dê apenas os nomes e sobrenomes dos empregados cujos salários estejam acima de R\$3.500,00.

```
{t.NOME, t.SOBRENOME | EMPREGADO(t) AND t.SALARIO > 3500}
```

3-) Selecione o nome e o endereço dos empregados que trabalham para o departamento de 'Informática'.

```
{t.NOME, t.SOBRENOME, t.ENDERECO | EMPREGADO(t) AND (∃ D) (DEPARTAMENTO (d) AND d.NOMED = 'Informática' AND d.NUMERODEP = t.NUD)}
```

- 4-) Para cada projeto localizado em 'São Paulo', liste o número do mesmo, o nome do departamento proponente, bem como sobrenome, data de nascimento e endereço do gerente responsável.
- {p.NUMEROP, p.NUMD, m.SOBRENOME, m.DATANASCIMENTO, m.ENDERECO | PROJETO(p) AND EMPREGADO(m) AND p.LOCALIZACAO = 'São Paulo' AND ((∃ d) (DEPARTAMENTO(d) AND p.NUMD = d.NUMERODEP AND d.NSSGER = m.NSS))}
- 5-) Encontre os nomes dos empregados que trabalham em todos os projetos controlados pelo departamento de número 5.
- {e.SOBRENOME, e.NOME | EMPREGADO(e) AND ((\forall x) (NOT(PROJETO(x)) OR NOT(x.NUMD = 5) OR ((\exists w) (TRABALHA_EM(w) AND w.NSSE = e.NUMEROP AND x.NUMEROP = w.NUMP))))}

Expressões Seguras

Uma expressão em CRT pode gerar uma infinidade de relações. Para a expressão $\{t \mid NOT(R(t))\}$

pode existir uma infinidade de tuplas que não estão em R, de forma que esta é nãosegura. A maioria dessas tuplas contém valores que não estão no banco de dados, logo, não são desejáveis como resultados.

Uma expressão segura no CR é uma expressão que garante a produção de um número finito de tuplas como resultado.

Para melhor definir expressão segura, o conceito de domínio pode ser utilizado. O domínio de uma expressão P é o conjunto de todos os valores referenciados por P. Isso inclui os valores mencionados em P propriamente dito, assim como os valores que aparecem na tupla de uma relação referenciada por P. Assim, o domínio de P é um conjunto de valores que aparecem explicitamente em P ou que aparecem em uma ou mais relações cujos nomes aparecem em P.

Cálculo Relacional de Domínio

A diferença básica entre CRT e CRD é que neste último as variáveis estendem-se sobre valores únicos de domínios de atributos. Para formar uma relação de grau n para um resultado de consulta, faz-se necessário criar n variáveis de domínio, uma para cada atributo.

Uma expressão genérica do cálculo relacional de tuplas tem a forma

$$\{x_1, x_2, ..., x_n \mid predicado(x_1, x_2, ..., x_n, x_{n+1}, x_{n+2}, ..., x_{n+m})\}$$

onde $x_1, x_2,..., x_n, x_{n+1}, x_{n+2}, ..., x_{n+m}$ são variáveis de domínio aplicadas sobre o domínio dos atributos requeridos na consulta e predicado é uma fórmula atômica do CRD, que pode ser especificada em uma das formas que segue:

- 1-) Uma fórmula atômica $R(x_1, x_2,..., x_n)$, onde R é o nome de uma relação de grau j e cada x_1 , $1 \le i \le j$, é uma variável de domínio. Isto implica que uma lista de valores de $< x_1$, $x_2,..., x_j >$ deve ser uma tupla na relação R, onde x_i é o valor do i-ésimo valor de atributo da tupla.
- 2-) Uma fórmula atômica xi op xj, onde op é um operador de comparação {=, <, >, ...} e xi e xj são variáveis de domínio.
- 3-) Uma fórmula atômica xi op c ou c xj, onde op é um operador de comparação {=, <, >, ...} e xi e xj são variáveis de domínio e c é um valor constante qualquer.

Como em CRT, as fórmulas são avaliadas em valores verdade para um conjunto específico de valores. Para a fórmula do tipo 1, o valor verdade será TRUE apenas se houver valores de domínio correspondentes a uma tupla de R atribuídos às variáveis de domínio que representam. Para os casos 2 e 3, o valor verdade será TRUE caso as variáveis de domínio possuam valores que satisfaçam o predicado.

Abaixo, para fins de comparação, seguem em CRD os mesmos exemplos de consultas já escritos em CRT.

1-) Encontre todos os empregados cujos salários estejam acima de R\$3.500,00.

```
{qrstuvwxyz | (\exists x) EMPREGADO(qrstuvwxyz) AND x > 3500}
```

2-) Dê apenas os nomes e sobrenomes dos empregados cujos salários estejam acima de R\$3.500,00.

```
\{qs \mid (\exists x) \text{ EMPREGADO}(qrstuvwxyz) \text{ AND } x > 3500\}
```

3-) Selecione o nome e o endereço dos empregados que trabalham para o departamento de 'Informática'.

```
\{qsv \mid (\exists z) (\exists l) (\exists m) (EMPREGADO(qrstuvwxyz) AND DEPARTAMENTO(lmno) AND l = 'Informática' AND m = z)\}
```

4-) Para cada projeto localizado em 'São Paulo', liste o número do mesmo, o nome do departamento proponente, bem como sobrenome, data de nascimento e endereço do gerente responsável.

```
{iksuv | (\exists j) (\exists m) (\exists n) (\exists t) (PROJETO(hijk) AND EMPREGADO(qrstuvwxyz) AND DEPARTAMENTO(lmno) AND <math>k = m AND n = t AND j = São Paulo')}
```

5- exercício) Encontre os nomes dos empregados que trabalham em todos os projetos controlados pelo departamento de número 5.

Expressões Seguras

Uma expressão em CRD é dita segura se:

- 1-) Todos os valores que aparecem nas tuplas da expressão são valores dentro do domínio da mesma.
- 2-) Para todas as subfórmulas $(\exists x) (P(x))$, a subfórmula é verdadeira se, e somente se, existir um valor x no domínio de P tal que P(x) seja verdadeiro.
- 3-) Para toda subfórmula (\forall x) (P(x)), a subfórmula é verdadeira se, e somente se, P(x) for verdadeiro para todos os valores de x dentro do domínio de P.

As proposições acima garantem que possamos testar todas as subfórmulas "existe um" e "para todo" sem a necessidade de testar todas as suas infinitas possibilidades de ocorrência.