EXAMEN FINAL - 6 DE DICIEMBRE

ALGEBRA , ALGEBRA II

			- 2	T 4	5	6	Total
NOMBRE	1	2	1 11	06	1.3	1	7,2
Arraba conner 4 100	2	09	44	0.0	-10]	-	

Justifique claramente todas sus respuestas.

PARTE PRÁCTICA

1. Sea
$$A = \begin{pmatrix} 1 & -1 & 1 & 0 \\ 2 & -1 & 3 & 2 \\ 0 & 1 & 1 & 2 \end{pmatrix}$$
.

- (a) Dar la matriz escalón reducida por filas equivalente por filas a A.
- (b) Resolver el sistema AX = 0.
- (c) Resolver el sistema AX = Y donde $Y = \begin{pmatrix} 0 \\ 1 \\ b \end{pmatrix}$. (Considerar los distintos casos según sea b.)
- (d) Si A es la matriz de una transformación lineal $T:V\to W$ en ciertas bases ordenandas B y B':
 - i. Dar $\dim V$, $\dim W$, $\dim \operatorname{Nu}(T)$ y $\dim \operatorname{Im} T$.
 - ii. Determinar cuáles de los siguientes vectores pertenecen a Nu(T) y/o a Im T:

$$(1,0,1),(0,1,1,-1),(1,0,0,0),(1,1,-1).$$

2. (a) Determinar para qué valores de c el siguiente conjunto de vectores puede ser completado a una base de R4

$$\beta = \{(1,0,c,0), (0,c,1,0), (-1,0,1,0)\}.$$

- (b) Par cada c mostrar que existe una transformacin lineal $T:\mathbb{R}^5 \to \mathbb{R}^4$ cuya imagen es el subespacio generado por B. ¿Es única?
- (c) Si T es una transformación lineal como las obtenidas en el ítem anterior, ¿puede ser T inyectiva?, ¿puede ser T suryectiva?

3. (a) Calcular
$$\det(AB)$$
, donde $A = \begin{pmatrix} 2 & 2^2 & 2^3 \\ 3 & 3^2 & 3^3 \\ 4 & 4^2 & 4^3 \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 0 & -1 \\ 0 & a & 0 \\ -1 & 0 & 1 \end{pmatrix}$.

- (b) Dar la ecuación paramétrica de la recta R ortogonal al plano dado por la ecuación x+y+2z=0y que pasa por el punto (1, 1, 0).
- (c) Calcular los autovalores de $A = \begin{pmatrix} 2 & 0 & 1 \\ 1 & 0 & 2 \\ 1 & -2 & 4 \end{pmatrix}$ y decir si es diagonalizable.
- 4. Decidir si las siguientes afirmaciones son verdaderas o falsas. Justificar.
 - (a) Existen una matriz A, 3×3 , y vectores de Y_0 e Y_1 de \mathbb{R}^3 tales que el sistema $AX = Y_0$ tiene una única solución y el sistema $AX = Y_1$ tiene infinitas soluciones.
 - (b) Sea $T: \mathbb{R}^3 \to \mathbb{R}^4$ la transformación lineal dada por T(x,y,z) = (x-y,y-z,-2x+2z,x+y-2z) y sea T^i su traspuesta. Existe $f \in (\mathbb{R}^4)^*$ tal que $T^i(f)$ es no nula en el subespacio $\{(a,a,a): a \in \mathbb{R}\}$
 - (c) Si S y T son dos transformaciones lineales de \mathbb{R}^2 en \mathbb{R}^2 diagonalizables y tienen los mismos