Linear Classifiers (Part 3)

CS114B Lab 4

Kenneth Lai

February 17, 2022

- ► Two-class (binary) classification
 - ► Compute "score" $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
 - ightharpoonup Compute decision \hat{y} as a function of z

- Two-class (binary) classification
 - ► Compute "score" $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
 - **Compute decision** \hat{y} as a function of z
 - If \hat{y} is interpreted as the probability of (or indicator for) one class, $1 \hat{y}$ is the probability of (indicator for) the other class

- Two-class (binary) classification
 - ► Compute "score" $z = \theta \cdot \mathbf{x}$ (or $\mathbf{w} \cdot \mathbf{x} + b$)
 - **Compute decision** \hat{y} as a function of z
 - If \hat{y} is interpreted as the probability of (or indicator for) one class, $1 \hat{y}$ is the probability of (indicator for) the other class
- Multi-class (multinomial) classification
 - ► Compute a vector of scores $\mathbf{z} = \Theta \cdot \mathbf{x}$ (or $\mathbf{W} \cdot \mathbf{x} + \mathbf{b}$)
 - **Compute decision** \hat{y} as a function of **z**

▶ Given a feature vector **x**, we want a score vector **z**

- ▶ Given a feature vector **x**, we want a score vector **z**
- ► More generally, we want to define a linear map between the feature vector space and the score vector space

- ▶ Given a feature vector **x**, we want a score vector **z**
- ► More generally, we want to define a linear map between the feature vector space and the score vector space
- ► A matrix is a rectangular array of scalars, that can be used to define a linear map

► Warning! A note on notation:

- Warning! A note on notation:
 - Math convention: A p-by-n matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p

- Warning! A note on notation:
 - ▶ Math convention: A p-by-n matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - ► Matrices have shapes (output dimension, input dimension)
 - Let $\Theta \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $z = \Theta \cdot x \text{ (or } W \cdot x + b)$

- Warning! A note on notation:
 - Math convention: A p-by-n matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - ► Matrices have shapes (output dimension, input dimension)
 - Let $\Theta \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $z = \Theta \cdot x \text{ (or } W \cdot x + b)$
 - Computer science convention (mostly): An *n*-by-*p* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p (technically $\mathbb{R}^{1 \times n}$ to $\mathbb{R}^{1 \times p}$)

- Warning! A note on notation:
 - Math convention: A *p*-by-*n* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - Matrices have shapes (output dimension, input dimension)
 - Let $\Theta \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $z = \Theta \cdot x \text{ (or } W \cdot x + b)$
 - Computer science convention (mostly): An *n*-by-*p* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p (technically $\mathbb{R}^{1 \times n}$ to $\mathbb{R}^{1 \times p}$)
 - Matrices have shapes (input dimension, output dimension)
 - Let $\Theta \in \mathbb{R}^{n \times p}$, $\mathbf{x} \in \mathbb{R}^{1 \times n}$, and $\mathbf{z} \in \mathbb{R}^{1 \times p}$
 - ightharpoonup $z = x \cdot \Theta (or x \cdot W + b)$

- Warning! A note on notation:
 - Math convention: A p-by-n matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - Matrices have shapes (output dimension, input dimension)
 - Let $\Theta \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $z = \Theta \cdot x \text{ (or } W \cdot x + b)$
 - Computer science convention (mostly): An *n*-by-*p* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p (technically $\mathbb{R}^{1 \times n}$ to $\mathbb{R}^{1 \times p}$)
 - Matrices have shapes (input dimension, output dimension)
 - Let $\Theta \in \mathbb{R}^{n \times p}$, $\mathbf{x} \in \mathbb{R}^{1 \times n}$, and $\mathbf{z} \in \mathbb{R}^{1 \times p}$
 - $z = x \cdot \Theta (\text{or } x \cdot W + b)$
 - More intuitive (input → output)

- Warning! A note on notation:
 - Math convention: A p-by-n matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p
 - Matrices have shapes (output dimension, input dimension)
 - Let $\Theta \in \mathbb{R}^{p \times n}$, $\mathbf{x} \in \mathbb{R}^n$, and $\mathbf{z} \in \mathbb{R}^p$
 - $z = \Theta \cdot x \text{ (or } W \cdot x + b)$
 - Computer science convention (mostly): An *n*-by-*p* matrix defines a linear map from \mathbb{R}^n to \mathbb{R}^p (technically $\mathbb{R}^{1 \times n}$ to $\mathbb{R}^{1 \times p}$)
 - Matrices have shapes (input dimension, output dimension)
 - Let $\Theta \in \mathbb{R}^{n \times p}$, $\mathbf{x} \in \mathbb{R}^{1 \times n}$, and $\mathbf{z} \in \mathbb{R}^{1 \times p}$
 - $ightharpoonup z = x \cdot \Theta \text{ (or } x \cdot W + b)$
 - More intuitive (input → output)
 - Aligns with the convention in (mini)batch training that the first dimension is the batch size ("feature vectors are stacked row-wise")

General Advice

► Know your shapes!

General Advice

► Know your shapes!

Source

▶ What is the activation function *g*?

- ▶ What is the activation function *g*?
- ▶ Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class

- ▶ What is the activation function *g*?
- ▶ Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class
- ► Logistic regression: softmax function

- ▶ What is the activation function *g*?
- ▶ Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class
- ► Logistic regression: softmax function

• softmax(\mathbf{z}) = $\hat{\mathbf{y}}$ is a vector of probabilities for each class

- ▶ What is the activation function *g*?
- ▶ Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class
- ► Logistic regression: softmax function

- softmax(\mathbf{z}) = $\hat{\mathbf{y}}$ is a vector of probabilities for each class
- Perceptron: argmax function

- What is the activation function g?
- Let $\mathbf{z} = \begin{bmatrix} z_1 & \dots & z_p \end{bmatrix}$ be a vector of scores for each class
- Logistic regression: softmax function

- ightharpoonup softmax(z) = \hat{y} is a vector of probabilities for each class
- Perceptron: argmax function
 - argmax(z_k) = ŷ
 What if there is a tie?
 - - Do whatever numpy.argmax does

► Suppose we observe a document *d*. What is the most likely class *ĉ*?

- Suppose we observe a document d. What is the most likely class ĉ?
- $P(c|d) = \frac{P(d|c)P(c)}{P(d)}$
 - ► Bayes' Rule
- $\hat{c} = \operatorname*{argmax}_{c \in C} P(d|c)P(c)$
 - \triangleright P(d) is the same for each class
- $\hat{c} = \operatorname*{argmax}_{c \in C} P(c) \prod_{i \in \mathsf{positions}} P(w_i | c)$
 - Bag of words assumption, Naïve Bayes assumption
- $\hat{c} = \operatorname*{argmax} \log P(c) + \sum_{i \in \text{positions}} \log P(w_i | c)$
 - If xy = z, then log(x) + log(y) = log(z)

$$\hat{c} = \operatorname*{argmax}_{c \in \mathcal{C}} \sum_{w \in |V|} \left[(\log P(w|c)) (\operatorname{count}(w,d)) \right] + \log P(c)$$

- $\hat{c} = \operatorname*{argmax}_{c \in \mathcal{C}} \sum_{w \in |V|} \left[(\log P(w|c)) (\operatorname{count}(w,d)) \right] + \log P(c)$
- Let $\ell_{cw} = \log P(w|c)$, $x_w = \operatorname{count}(w, d)$, and $p_c = \log P(c)$

- $\hat{c} = \operatorname*{argmax}_{c \in \mathcal{C}} \sum_{w \in |V|} \left[(\log P(w|c)) (\operatorname{count}(w,d)) \right] + \log P(c)$
- Let $\ell_{cw} = \log P(w|c)$, $x_w = \operatorname{count}(w, d)$, and $p_c = \log P(c)$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \sum_{w \in |V|} \ell_{cw} x_w + p_c$$

- $\hat{c} = \operatorname*{argmax}_{c \in \mathcal{C}} \sum_{w \in |V|} \left[(\log P(w|c)) (\operatorname{count}(w,d)) \right] + \log P(c)$
- Let $\ell_{cw} = \log P(w|c)$, $x_w = \operatorname{count}(w, d)$, and $p_c = \log P(c)$

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \sum_{w \in |V|} \ell_{cw} x_w + p_c$$
$$= \underset{c \in C}{\operatorname{argmax}} (\ell_c \cdot \mathbf{x} + p_c)$$

▶ Let \mathbf{x} be a feature vector, $\mathbf{p} = \mathtt{self.prior}$, and $\mathcal{L} = \mathtt{self.likelihood}$

- ▶ Let x be a feature vector, p = self.prior, and L = self.likelihood
- ightharpoonup $z = \mathcal{L} \cdot x + p$

- ▶ Let x be a feature vector, p = self.prior, and L = self.likelihood
- $ightharpoonup z = \mathcal{L} \cdot x + p$
- $\hat{c} = \underset{c \in C}{\operatorname{argmax}}(z_c)$

Training Linear Classifiers

Naïve Bayes: estimate parameters (log-prior, log-likelihood) directly from training data

Training Linear Classifiers

- Naïve Bayes: estimate parameters (log-prior, log-likelihood) directly from training data
- Logistic regression, perceptron:
 - ► Define a loss function

Training Linear Classifiers

- Naïve Bayes: estimate parameters (log-prior, log-likelihood) directly from training data
- Logistic regression, perceptron:
 - Define a loss function
 - Update the parameters using gradient descent

Loss Functions

► How wrong is your classifier?

Loss Functions

- ► How wrong is your classifier?
- ► Logistic regression: cross-entropy loss

$$L(\hat{y}, y) = -\log P(y|\mathbf{x}) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

- ► How wrong is your classifier?
- ► Logistic regression: cross-entropy loss

$$L(\hat{y}, y) = -\log P(y|\mathbf{x}) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

Minimizing loss = maximizing the (log-)probability of the true y given x

- ► How wrong is your classifier?
- ► Logistic regression: cross-entropy loss

$$L(\hat{y}, y) = -\log P(y|\mathbf{x}) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

- Minimizing loss = maximizing the (log-)probability of the true y given x
- Perceptron: perceptron loss

►
$$L(\hat{y}, y) = (\hat{y} - y)z$$
 (for $y \in \{0, 1\}$)

- ► How wrong is your classifier?
- Logistic regression: cross-entropy loss

$$L(\hat{y}, y) = -\log P(y|\mathbf{x}) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

- Minimizing loss = maximizing the (log-)probability of the true y given x
- Perceptron: perceptron loss
 - ► $L(\hat{y}, y) = (\hat{y} y)z$ (for $y \in \{0, 1\}$)
 - You may also see $L = \max(0, -yz)$, for $y \in \{-1, 1\}$

- How wrong is your classifier?
- ► Logistic regression: cross-entropy loss

$$L(\hat{y}, y) = -\log P(y|\mathbf{x}) = -[y\log \hat{y} + (1-y)\log(1-\hat{y})]$$

- Minimizing loss = maximizing the (log-)probability of the true y given x
- Perceptron: perceptron loss

L(
$$\hat{y}, y$$
) = $(\hat{y} - y)z$ (for $y \in \{0, 1\}$)

- You may also see $L = \max(0, -yz)$, for $y \in \{-1, 1\}$
- $If \hat{y} \neq y, L > 0$

► The derivative of a function measures the instantaneous rate of change in a function's output with respect to a change in its input

- ► The derivative of a function measures the instantaneous rate of change in a function's output with respect to a change in its input
 - "Slope of a function's graph"

- ► The derivative of a function measures the instantaneous rate of change in a function's output with respect to a change in its input
 - "Slope of a function's graph"
- ▶ The derivative of f with respect to x is denoted $\frac{df}{dx}$, f', etc.

- Rules of differentiation
 - Constant rule: If f(x) is constant, then f'(x) = 0
 - ► Sum rule: (f + g)' = f' + g'
 - Product rule: (fg)' = f'g + fg'
 - Power rule: If $f(x) = x^r$, then $f'(x) = rx^{r-1}$
 - Chain rule: If h(x) = f(g(x)), then $h'(x) = f'(g(x)) \cdot g'(x)$ (or $\frac{dh}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$)

- Rules of differentiation
 - Constant rule: If f(x) is constant, then f'(x) = 0
 - ► Sum rule: (f + g)' = f' + g'
 - Product rule: (fg)' = f'g + fg'
 - Power rule: If $f(x) = x^r$, then $f'(x) = rx^{r-1}$
 - Chain rule: If h(x) = f(g(x)), then $h'(x) = f'(g(x)) \cdot g'(x)$ (or $\frac{dh}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$)
- Anything more complicated than this, we will tell you what the derivative is

Partial Derivatives

► The partial derivative of a function of several variables measures the instantaneous rate of change in a function's output with respect to a change in one of its inputs, with the others held constant

Partial Derivatives

- ► The partial derivative of a function of several variables measures the instantaneous rate of change in a function's output with respect to a change in one of its inputs, with the others held constant
- ► The partial derivative of f with respect to x is denoted $\frac{\partial f}{\partial x}$, f_x , etc.

Gradients

➤ The gradient of a function of several variables is a vector of partial derivatives

Gradients

► The gradient of a function of several variables is a vector of partial derivatives

$$\nabla F = \begin{bmatrix} \frac{\partial F}{\partial x_1} \\ \vdots \\ \frac{\partial F}{\partial x_n} \end{bmatrix}$$

▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ► At each time step *t*:

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ► At each time step *t*:
 - ightharpoonup Compute gradient ∇L

- lnitialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step *t*:
 - ightharpoonup Compute gradient ∇L

$$\nabla L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_n} \\ \frac{\partial L}{\partial b} \end{bmatrix}$$

- lnitialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step *t*:
 - ightharpoonup Compute gradient ∇L

$$\nabla L = \begin{bmatrix} \frac{\partial L}{\partial w_1} \\ \vdots \\ \frac{\partial L}{\partial w_n} \\ \frac{\partial L}{\partial b} \end{bmatrix}$$

► ≈ slope of loss function

Figure 5.4 The first step in iteratively finding the minimum of this loss function, by moving w in the reverse direction from the slope of the function. Since the slope is negative, we need to move w in a positive direction, to the right. Here superscripts are used for learning steps, so w^1 means the initial value of w (which is 0), w^2 at the second step, and so on.

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ► At each time step *t*:
 - ightharpoonup Compute gradient ∇L
 - Move in direction of negative gradient

- Initialize parameters θ = **w**, b (randomly or **0**)
- At each time step *t*:
 - ightharpoonup Compute gradient ∇L
 - ► Move in direction of negative gradient

$$\theta_{t+1} = \theta_t - \eta \nabla L$$

- Initialize parameters θ = **w**, b (randomly or **0**)
- At each time step *t*:
 - ightharpoonup Compute gradient ∇L
 - ► Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $\qquad \qquad \boldsymbol{\eta} = \text{learning rate}$

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ightharpoonup Compute gradient ∇L
 - ► Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $ightharpoonup \eta = \text{learning rate}$
 - "Hyperparameter": parameter set before training

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- At each time step t:
 - ightharpoonup Compute gradient ∇L
 - ► Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $ightharpoonup \eta = \text{learning rate}$
 - "Hyperparameter": parameter set before training
 - Trade-off between speed of convergence and "zig-zag" behavior

- ▶ Initialize parameters $\theta = \mathbf{w}, b$ (randomly or $\mathbf{0}$)
- ► At each time step *t*:
 - ightharpoonup Compute gradient ∇L
 - ► Move in direction of negative gradient
- $\theta_{t+1} = \theta_t \eta \nabla L$
 - $ightharpoonup \eta = \text{learning rate}$
 - "Hyperparameter": parameter set before training
 - Trade-off between speed of convergence and "zig-zag" behavior
 - Often a function of t

$$L(\hat{y}, y) = -[y \log \hat{y} + (1 - y) \log(1 - \hat{y})]$$

- $L(\hat{y}, y) = -[y \log \hat{y} + (1 y) \log(1 \hat{y})]$
- **...**
- (calculus-see supplement slides)
- **>** ...

- $L(\hat{y}, y) = -[y \log \hat{y} + (1 y) \log(1 \hat{y})]$
- (calculus–see supplement slides)

- $L(\hat{y}, y) = -[y \log \hat{y} + (1 y) \log(1 \hat{y})]$
- **.**..
- ► (calculus—see supplement slides)

- $\triangleright \nabla L = (\hat{y} y)\mathbf{x}$

$$L(\hat{y}, y) = (\hat{y} - y)z$$

- $L(\hat{y}, y) = (\hat{y} y)z$
- ► (calculus—see supplement slides)
- **.**..

- $\blacktriangleright L(\hat{y}, y) = (\hat{y} y)z$
- (calculus-see supplement slides)
- $\frac{\partial L}{\partial w_j} = (\hat{y} y)x_j$ $\frac{\partial L}{\partial b} = \hat{y} y$

- $L(\hat{y}, y) = (\hat{y} y)z$
- (calculus–see supplement slides)
- **.**..

- $\triangleright \nabla L = (\hat{y} y)\mathbf{x}$

- $L(\hat{y}, y) = (\hat{y} y)z$
- ► (calculus—see supplement slides)

- Does this look familiar?

Perceptron Learning Algorithm

- - ▶ Do nothing

Perceptron Learning Algorithm

- - Do nothing
- ▶ If $\hat{y} = 0$ and y = 1, then $\hat{y} y = -1$
 - $\nabla L = -\mathbf{x}$

 - Increment weights

Perceptron Learning Algorithm

- $If \hat{y} = y, then \hat{y} y = 0$
 - Do nothing
- lf $\hat{y} = 0$ and y = 1, then $\hat{y} y = -1$
 - $\nabla L = -\mathbf{x}$

 - Increment weights
- lf $\hat{y} = 1$ and y = 0, then $\hat{y} y = 1$
 - $\nabla L = \mathbf{x}$

 - Decrement weights

Gradients in Multinomial Logistic Regression

 $lackbox{ Cross-entropy loss } L(\hat{f y},{f y}) = -\sum_{k=1}^{r} y_k \log \hat{y}_k$

Gradients in Multinomial Logistic Regression

- ightharpoonup Cross-entropy loss $L(\hat{\mathbf{y}},\mathbf{y}) = -\sum_{k=0}^{p} y_k \log \hat{y}_k$
- ▶ Gradient ∇L becomes a matrix, where

$$\frac{\partial L}{\partial w_{jk}} = (\hat{y}_k - y_k) x_j$$

$$\frac{\partial L}{\partial b_k} = \hat{y}_k - y_k$$

$$\frac{\partial \hat{L}}{\partial b_k} = \hat{y}_k - y_k$$

Gradients in Multinomial Logistic Regression

- ightharpoonup Cross-entropy loss $L(\hat{\mathbf{y}},\mathbf{y}) = -\sum_{k=0}^{p} y_k \log \hat{y}_k$
- ▶ Gradient ∇L becomes a matrix, where

$$\frac{\partial L}{\partial w_{jk}} = (\hat{y}_k - y_k) x_j$$

$$\frac{\partial L}{\partial b_k} = \hat{y}_k - y_k$$

- $ightharpoonup
 abla L = \mathbf{x} \otimes (\hat{\mathbf{y}} \mathbf{y}), \text{ where}$
 - ▶ ⊗ denotes the outer product

▶ Multi-class perceptron loss $L(\hat{y}, y) = z_{\hat{y}} - z_y$

- ▶ Multi-class perceptron loss $L(\hat{y}, y) = z_{\hat{y}} z_y$
- ▶ If $\hat{y} = y$, then do nothing
- ► Else:

- Multi-class perceptron loss $L(\hat{y}, y) = z_{\hat{y}} z_y$
- ▶ If $\hat{y} = y$, then do nothing
- ► Else:
 - For the correct class y, $\frac{\partial L}{\partial z_y} = -1$
 - $(\nabla L)_y = -\mathbf{x}$
 - $(\theta_y)_{t+1} = (\theta_y)_t + \eta \mathbf{x}$
 - Increment weights

- ► Multi-class perceptron loss $L(\hat{y}, y) = z_{\hat{y}} z_y$
- ▶ If $\hat{y} = y$, then do nothing
- ► Else:
 - For the correct class y, $\frac{\partial L}{\partial z_y} = -1$
 - $(\nabla L)_y = -\mathbf{x}$
 - $(\theta_y)_{t+1} = (\theta_y)_t + \eta \mathbf{x}$
 - Increment weights
 - For the predicted class \hat{y} , $\frac{\partial L}{\partial z_{\hat{y}}} = 1$
 - $ightharpoonup (\nabla L)_{\hat{v}} = \mathbf{x}$
 - $(\theta_{\hat{y}})_{t+1} = (\theta_{\hat{y}})_t \eta \mathbf{x}$
 - Decrement weights

- ► Multi-class perceptron loss $L(\hat{y}, y) = z_{\hat{y}} z_y$
- ▶ If $\hat{y} = y$, then do nothing
- ► Else:
 - For the correct class y, $\frac{\partial L}{\partial z_y} = -1$
 - $(\nabla L)_y = -\mathbf{x}$
 - $(\theta_y)_{t+1} = (\theta_y)_t + \eta \mathbf{x}$
 - Increment weights
 - For the predicted class \hat{y} , $\frac{\partial L}{\partial z_{\hat{y}}} = 1$
 - $ightharpoonup (\nabla L)_{\hat{v}} = \mathbf{x}$
 - $(\theta_{\hat{y}})_{t+1} = (\theta_{\hat{y}})_t \eta \mathbf{x}$
 - Decrement weights
 - For other classes, do nothing

▶ What is a time step?

- ▶ What is a time step?
 - ightharpoonup Stochastic gradient descent: update θ after every training example

- ► What is a time step?
 - ightharpoonup Stochastic gradient descent: update heta after every training example
 - Can result in very choppy movements

- What is a time step?
 - ightharpoonup Stochastic gradient descent: update heta after every training example
 - ► Can result in very choppy movements
 - ightharpoonup Batch gradient descent: update heta after processing the entire training set

- What is a time step?
 - ightharpoonup Stochastic gradient descent: update heta after every training example
 - ► Can result in very choppy movements
 - **Description** Batch gradient descent: update θ after processing the entire training set
 - Minibatch gradient descent: update θ after m training examples

- What is a time step?
 - ightharpoonup Stochastic gradient descent: update heta after every training example
 - Can result in very choppy movements
 - **Description** Batch gradient descent: update θ after processing the entire training set
 - Minibatch gradient descent: update θ after m training examples
 - Gradient = average of individual gradients

Let \mathbf{x} consist of the feature vectors $\mathbf{x}^{(i)}$ for each document i in the (mini-)batch of size m, stacked on top of each other

Let \mathbf{x} consist of the feature vectors $\mathbf{x}^{(i)}$ for each document i in the (mini-)batch of size m, stacked on top of each other

Let \mathbf{x} consist of the feature vectors $\mathbf{x}^{(i)}$ for each document i in the (mini-)batch of size m, stacked on top of each other

$$\mathbf{y} = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

• What is $\mathbf{x}^T \cdot (\hat{\mathbf{y}} - \mathbf{y})$?

$$\begin{bmatrix} x_1^{(1)} & \dots & x_1^{(m)} \\ \vdots & \ddots & \vdots \\ x_n^{(1)} & \dots & x_n^{(m)} \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \hat{y}^{(1)} - y^{(1)} \\ \vdots \\ \hat{y}^{(m)} - y^{(m)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m (\hat{y}^{(i)} - y^{(i)}) x_1^{(i)} \\ \vdots \\ \sum_{i=1}^m (\hat{y}^{(i)} - y^{(i)}) x_n^{(i)} \\ \sum_{i=1}^m (\hat{y}^{(i)} - y^{(i)}) \end{bmatrix}$$

$$\begin{bmatrix} x_{1}^{(1)} & \dots & x_{1}^{(m)} \\ \vdots & \ddots & \vdots \\ x_{n}^{(1)} & \dots & x_{n}^{(m)} \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \hat{y}^{(1)} - y^{(1)} \\ \vdots \\ \hat{y}^{(m)} - y^{(m)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x_{1}^{(i)} \\ \vdots \\ \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x_{n}^{(i)} \\ \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{i=1}^{m} \left(\frac{\partial L}{\partial w_{1}} \right)^{(i)} \\ \vdots \\ \sum_{i=1}^{m} \left(\frac{\partial L}{\partial w_{n}} \right)^{(i)} \\ \sum_{i=1}^{m} \left(\frac{\partial L}{\partial w_{n}} \right)^{(i)} \end{bmatrix}$$

$$\begin{bmatrix} x_{1}^{(1)} & \dots & x_{1}^{(m)} \\ \vdots & \ddots & \vdots \\ x_{n}^{(1)} & \dots & x_{n}^{(m)} \\ 1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} \hat{y}^{(1)} - y^{(1)} \\ \vdots \\ \hat{y}^{(m)} - y^{(m)} \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x_{1}^{(i)} \\ \vdots \\ \sum_{i=1}^{m} (\hat{y}^{(i)} - y^{(i)}) x_{n}^{(i)} \end{bmatrix}$$
$$= \begin{bmatrix} \sum_{i=1}^{m} \left(\frac{\partial L}{\partial w_{1}} \right)^{(i)} \\ \vdots \\ \sum_{i=1}^{m} \left(\frac{\partial L}{\partial w_{n}} \right)^{(i)} \\ \vdots \\ \sum_{i=1}^{m} \left(\frac{\partial L}{\partial b} \right)^{(i)} \end{bmatrix}$$
$$= \sum_{i=1}^{m} (\nabla L)^{(i)}$$

$$\triangleright \nabla L = \frac{1}{m} \Big(\mathbf{x}^T \cdot (\hat{\mathbf{y}} - \mathbf{y}) \Big)$$

- $\blacktriangleright \text{ What is } \mathbf{x}^T \cdot (\hat{\mathbf{y}} \mathbf{y})?$
 - ▶ It computes the sum of the gradients for each document *i* in the mini-batch!

- ▶ What is $\mathbf{x}^T \cdot (\hat{\mathbf{y}} \mathbf{y})$?
 - ▶ It computes the sum of the gradients for each document *i* in the mini-batch!
 - ▶ Then to get the average gradient, we just divide by *m*