DLCV Final Challenge 1: Amur Tiger Re-ID

Tzu-Yuan Lin, Ywuan-Chai Chong Chih-Chun Yang, Meng-Lin Huang

National Taiwan University

Introduction

Tiger Re-IDentification (Re-ID) aims to retrieve all the images containing the same tiger as the query in the database. We surveyed several papers and implemented a model which is proposed in Human Re-ID field and looks fit for this challenge [1]. Also, we refer to the method of the first place [2] in the original ICCV workshop and that is the best of all models we've implemented. In addition, we proposed a new model architecture (FRNet) to solve this task and expected that it can learn disentanglement feature. Successfully, the new model passed the baseline.

Methods

Data Augmentation

Augmentation	Details
Rotation	range = [-10, 10] (degree)
Color Jitter	brightness = 0.2, saturation = 0.2, contrast = 0.2, hue = 0.2
Random Erasing [3]	probability = 0.5, $s_1 = 0.02$, $s_h = 0.4$, $r_1 = 0.3$
Random Horizontal Flip	with new ID given
Random Crop	size = [512, 512]
Pseudo Label	semi-supervised, label unlabeled data during model training

Table 1. Augmentation technique used.

Model Architecture

(a) Encoder of our model. X and X_ref are two different input images with the **same** label. X_features and X_ref_features are extracted features by encoder. We assume the extracted features includes the id information (red part) and other abstract information (yellow part). Then, we concatenated the id information of X_features and abstract information of X_ref_features to reconstruct image which is expected to be as similar to X ref. as possible. We also calculate Additive Angular Margin Loss (ArcFace) [7] by using id information of X_features to ensure the model is able to assign correct label to X.

(b) Decoder of ours model. This decoder is used for reconstructing image while giving a concatenated features.

Figure 1. FRNet architecture

Figure 2. Our best model architecture.

Figure 2 is the architecture of our best model that we referred to the method of the first place model [2] in original competition and made some changes to fit our dataset. First, we used SeResNeXt50 as backbone to extract features of image and passed the features to a 512 dim. linear layer to do dimension reduction and transformation. Finally, we optimized the model with CE loss, ArcFace loss [7] and Triplet loss [6]. We also used Label Smoothing [5] to regularize the model and ID Re-Ranking [4] to get highest rank 1 score.

Experiments

Result

Model	Rank 1 (%)
ResNet152	71.39
SeResNet50	71.24
SeResNeXt50	71.63
ABD-Net [1] w/o ID Re-Ranking [4]	67.92
ABD-Net	73.49
FRNet (ours)	69.88
Our Best model	76.81

Table 2. Comparison of different model Rank 1 performance on queries provided by TA. FRNet refers to **Fig. 1**, Our best model refers to **Fig. 2**

Ablation Test

Best model w/o	Rank 1 (%)
- Label Smoothing [5]	73.99
- Triplet Loss [6]	73.27
- ArcFace [7]	69.05
- ID Re-Ranking [4]	67.39

Table 3. Ablation study of best model.

Conclusion

We have tried several models and tricks, and following is our observations:

- 1. ArcFace and ID Re-Ranking are the most significant tricks according to the task.
- 2. Different backbone only has little differences.
- Pseudo label and Random erasing would exacerbate model performance.
- 4. Our proposed FRNet model is expected to achieve feature disentanglement.

References

- [1] *Tianlong Chen, et al.* ABD-Net: Attentive but Diverse Person Re-Identification. ICCV 2019.
- [2] Cen Liu, et al. Part-Pose Guided Amur Tiger Re-Identification. ICCV Workshop 2019.
- [3] *Hao Luo, et al.* Bag of Tricks and A Strong Baseline for Deep Person Re-identification. CVPR Workshop 2019.
- [4] Zhun Zhong, et al. Re-ranking Person Re-identification with k-reciprocal Encoding. CVPR 2017.
- [5] Szegedy, et al. Rethinking the Inception Architecture for Computer Vision. CVPR 2016.
- [6] Florian Schroff, et al. FaceNet: A Unified Embedding for Face Recognition and Clustering. CVPR 2015.
- [7] Jiankang Deng, et al. ArcFace: Additive Angular Margin Loss for Deep Face Recognition. CVPR 2019.