수열 $\{a_n\}$ 에 대하여, 주기가 p인 $\{a_n\}$ 의 **이동평균**(moving average)은 새로운 수열 $\{b_n\}$ 을 말합니다. 이때 b_n 의 값은, $a_{n-p+1}, a_{n-p+2}, \cdots, a_n$ 의 평균으로 정의됩니다;

$$b_n = \frac{a_{n-p+1} + a_{n-p+2} + \dots + a_n}{p}$$

그러니까 p=3이면 $b_3=\frac{a_1+a_2+a_3}{3}=\frac{0+0+3}{3}=1,$ $b_4=\frac{a_2+a_3+a_4}{3}=\frac{0+3+3}{3}=2$ 와 같이 계산됩니다. 이것을 표로 표현해보면

n	1	2	3	4	5	6	7	8	9	10
a_n b_n	0	0	3	3	3	3	6	9	9	12
b_n			1	2	3	3	4	6	8	10

와 같이 표현됩니다. 따라서, 수열 $\{b_n\}$ 은 수열 $\{a_n\}$ 을 뒤에서 따라가는 형태가 됩니다. 이 이동평균의 개념은 주식 예측문제에서 많이 쓰입니다.