

planetmath.org

Math for the people, by the people.

closed differential forms on a simply connected domain

 ${\bf Canonical\ name} \quad {\bf Closed Differential Forms On A Simply Connected Domain}$

Date of creation 2013-03-22 13:32:46 Last modified on 2013-03-22 13:32:46

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 14

Author paolini (1187) Entry type Theorem Classification msc 53-00

Related topic ClosedCurveTheorem Related topic PoincareLemma Let $D \subset \mathbb{R}^2$ be an open set and let ω be a differential form defined on D.

Theorem 1 If D is simply connected and ω is a closed differential form, then ω is an exact differential form.

The proof of this result is a consequence of the following useful lemmas.

Lemma 1 Let ω be a closed differential form and suppose that γ_0 and γ_1 are two regular homotopic curves in D (with the same end points). Then

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega.$$

Lemma 2 Let ω be a continuous differential form. If given any two curves γ_0 , γ_1 in D with the same end-points, it holds

$$\int_{\gamma_0} \omega = \int_{\gamma_1} \omega,$$

then ω is exact.

See the Poincaré Lemma for a generalization of this result on n-dimensional manifolds.