به نام خدا

ساختمان داده

آرش شفیعی

داده ساختارهای پایه

مقدمه

– در این بخش با چند داده ساختار پایه از جمله آرایهها 1 ، ماتریسها 2 ، پشتهها 3 ، صفها 4 ، و لیستهای پیوندی 5 آشنا خواهیم شد.

¹ arrays

² matrices

 $^{^3}$ stacks

⁴ queues

⁵ linked lists

آرايهها

- یک آرایه داده ساختاری است که دنبالهای از عناصر (که هرکدام مقداری را نگهداری میکند) را در حافظه ذخیره میکند. هرکدام از عناصر آرایه با یک اندیس تعیین میشوند. اندیس در واقع مکان یک عنصر در آرایه را مشخص میکند.
 - اگر اندیس اول آرایه s باشد و آرایه در آدرس حافظه a ذخیره شود و هرکدام از عناصر آرایه b بایت را در حافظه اشغال کنند، آنگاه a+b(i-s) امین عنصر آرایه در حافظه در بایت a+b(i-s) تا a+b(i-s+1)
- اگر آرایه با اندیس ۱ شروع شود، عنصر i ام بایتهای a+b(i-1) تا a+bi-1 تا a+bi را اشغال می کند. اگر آرایه با اندیس \circ آغاز شود، آنگاه عنصر i ام آرایه بایتهای a+b(i+1)-1 تا a+bi را اشغال می کند.
 - با فرض بر اینکه کامپیوتر میتواند به همهٔ فضاهای حافظه مستقیما در یک زمان معین دسترسی پیدا کند، دسترسی به عناصر آرایه در زمان ثابت صورت میگیرد.

آرايهها

- درج: اگر بخواهیم در انتهای یک آرایه عنصری را درج کنیم، کافی است مقدار عنصر جدید را در آخرین خانه آرایه قرار دهیم و این کار در زمان O(1) انجام می شود. اما اگر بخواهیم عنصری جدید را در ابتدای آرایه درج کنیم باید هر یک از عناصر آرایه را یک خانه به جلو انتقال دهیم که این کار در زمان O(n) در بدترین حالت برای آرایهای با n عنصر انجام می شود. همچنین اگر بخواهیم عنصری را در مکانی دلخواه در آرایه درج کنیم، در بدترین حالت به زمان O(n) نیاز داریم.
 - حذف: اگر بخواهیم عنصری را از آرایه حذف کنیم، در بدترین حالت به زمان O(n) نیاز داریم، زیرا عناصر بعد از عنصر حذف شده باید هر کدام یک خانه به سمت ابتدای آرایه انتقال داده شوند.
 - جستجو: برای جستجوی یک مقدار در یک آرایه در بدترین حالت به زمان O(n) نیاز داریم.

جرای جستجوی یک مقدار در یک آرایه باید همهٔ عناصر آرایه را یکبهیک بررسی کنیم. این جستجو برای یک آرایه با n عنصر در زمان O(n) انجام می شود.

- حال فرض می کنیم می خواهیم یک مقدار را در یک آرایه مرتب شده پیدا کنیم.
 - برای این کار میتوانیم از الگوریتمی به نام جستجوی دودویی 1 استفاده کنیم.

٧٧ / ۵

¹ binary search

الگوریتم جستجوی دودویی آرایه را به دو قسمت تقسیم می کند. برای جستجوی مقدار x در آرایه A ، ابتدا مقدار x با عنصر وسط آرایه یعنی A [n/2] A مقایسه می شود. اگر x برابر با مقدار وسط آرایه بود، مقدار مورد نظر یافته شده است. اگر x کوچکتر از عنصر وسط آرایه بود، باید x را در نیمه اول آرایه یعنی A [n/2+1:n] A جستجو A جستجو کنیم. در غیراینصورت باید A را در نیمه دوم آرایه یعنی A در آرایه وجود ندارد. کنیم. این روند را برای زیر آرایه ها ادامه می دهیم تا یا A یافته شود یا مشخص شود که A در آرایه وجود ندارد.

- بنابراین مراحل انجام جستجوی دودویی به صورت زیر است.
- اگر mid=[(low + high) /2] قرار میدهیم [A [low:high] اگر میدهیم (low:mid=[(low + high) /2] اگر A [mid] او A [low:mid-1] برابر با x بود به نتیجه رسیدهایم در غیراینصورت آرایه را به دو قسمت (A [low:mid+1:high] او low الفاد انجام شود که high از high بزرگتر باشد.
 - ۲. در صورتی که مقدار x از [mid] A کوچکتر بود، الگوریتم جستجو برای [low:mid-1] A فراخوانی می شود، در غیراینصورت برای [mid+1:high] A فراخوانی می شود.

- برای پیدا کردن عدد ۱۸ در آرایهٔ زیر، الگوریتم به صورت زیر عمل می کند.

- الگوریتم جستجوی دودویی به صورت زیر است.

Algorithm Binary Search

```
function BINARYSEARCH(A, x, low, high)
1: if (low > high) then
2:    return -1
3: mid = [(low + high)/2]
4: if (x == A[mid]) then
5:    return mid
6: if (x < A[mid]) then
7:    return BinarySearch (A, x, low, mid-1)
8: else
9:    return BinarySearch (A, x, mid+1, high)</pre>
```

– برای جستجوی مقدار x جستجوی دودویی باید به صورت (BinarySearch(A, x, 1, n) فراخوانی شود.

- در تقسیم یک آرایه به دو قسمت صرفا یک عملیات تقسیم در زمان O(1) انجام می شود.
- بنابراین زمان اجرای الگوریتم جستجوی دودویی برای آرایه با n عنصر برابر است با زمان اجرای الگوریتم برای آرایه با n/2 عنصر به علاوه یک زمان ثابت.
 - . T(1) = O(1) و T(n) = T($\frac{n}{2}$) + O(1) مىتوانىم بنويسىم
 - $T(n) = O(\lg n)$ با حل این رابطه بازگشتی به دست می آوریم

ماتریس یک آرایه دو بعدی است که میتوانیم آن را توسط چند آرایه یک بعدی نمایش دهیم.

- دو روش معمول ذخیره ماتریسها ترتیب سطری 1 و ترتیب ستونی 2 نام دارند.

- فرض کنید یک ماتریس با ابعاد $m \times n$ یا به عبارت دیگر یک ماتریس با m سطر و n ستون داریم.

- در ترتیب سطری، ماتریس سطر به سطر در حافظه ذخیره می شود و در ترتیب ستونی، ماتریس ستون به ستون ذخیره می شود.

YY / 11

¹ row-major order

² column-major order

با ابعاد
$$3 imes 2$$
 را در نظر بگیرید. $M = \left(egin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right)$ برای مثال ماتریس

- در شکل زیر نشان داده شده است که این ماتریس چگونه در یک آرایه در ترتیب سطری و ترتیب ستونی ذخیره می شود.

1	2 3	4	5	6	1	4	2	5
---	-----	---	---	---	---	---	---	---

- بنابراین عنصر M[i,j] در ترتیب سطری در اندیس n(i-s)+j قرار می گیرد و در ترتیب ستونی در اندیس m(j-s)+i قرار می گیرد.
- و در ترتیب m(i-1)+j است، در ترتیب سطری اندیس عنصر m(i,j) برابر است با m(i-1)+j و در ترتیب ستونی برابر است با m(j-1) .
- وقتی s=0 است، در ترتیب سطری اندیس عنصر M[i,j] برابر است با i+j و در ترتیب ستونی برابر است با mj+i است با با
 - ر مکان s=1 است، با ترتیب سطری در مکان M[2,1] در ماتریسی با ابعاد 0 برای مثال عنصر 0 در ماتریسی با ابعاد 0 دخیره می شود. 0 دخیره می شود و با ترتیب ستونی در مکان 0 دخیره می شود.

- همچنین ماتریس را میتوان با استفاده از چند آرایه ذخیره کرد. در ترتیب سطری هر سطر در یک آرایه مجزا ذخیره می شود و در ترتیب ستونی هر ستون در یک آرایه مجزا ذخیره می شود.
 - در شکل زیر یک ماتریس در دو ترتیب سطری و ستونی با استفاده از چند آرایه ذخیره شده است.

- در ترتیب سطری هر سطر در یک آرایه n عنصری ذخیره می شود. یک آرایه دیگر حاوی m عنصر است که در شکل به رنگ آبی نشان داده شده است. هریک از عناصر این آرایه به یکی از سطرهای آرایه اشاره می کند. فرض کنید آرایه آبی رنگ را A بنامیم. آنگاه A[i][j] به سطر i ام ماتریس M اشاره می کند و عنصر A[i][j] عنصر M[i,j] را ذخیره می کند.
 - در ترتیب ستونی، هر ستون در یک آرایه ذخیره می شود. تعداد n آرایه در این حالت وجود دارد که اندازه هر کدام m است. عنصر M[i,j] در عنصر M[i,j] ذخیره می شود.

- نمایش تک آرایهای ماتریسها کارایی بالاتری دارد. مزیت نمایش چند آرایهای این است که میتواند ماتریسهایی را ذخیره کند که اندازه سطرها و ستونهای آنها متفاوت است و بنابراین انعطاف پذیری بالاتری

- اگر درایههای یک ماتریس اکثراً برابر با صفر باشند، به آن ماتریس یک ماتریس خلوت 1 گفته می شود.

در مقابل، اگر درایههای یک ماتریس اکثراً غیر صفر باشند، به آن ماتریس یک ماتریس چگال 1 یا متراکم گفته میشدد.

- یک ماتریس خلوت را میتوان به صورت چند آرایهای ذخیره کرد، بدین صورت که یک آرایه برای سطرها در نظر گرفته، و در آرایه متناظر با هر سطر تنها درایههای غیرصفر را با ذکر شماره ستون آنها درج کنیم.

VV / 1V

¹ sparse matrix

¹ dense matrix

پشته

- $^{-}$ پشته 1 داده ساختاری است که در آن امکان درج و حذف عناصر وجود دارد، به طوری که وقتی عملیات حذف بر روی پشته اعمال می شود، آخرین عنصری که به پشته اضافه شده است، حذف می شود.
- پشته بر اساس استراتژی خروج به ترتیب عکس ورودی پیادهسازی میشود بدین معنی که اولین عنصری که وارد پشته میشود آخر از همه از پشته خارج میشود. این استراتژی LIFO نامیده میشود.
 - عملیات درج در پشته Push و عملیات حذف از پشته Pop نامیده میشوند.
- در زبان انگلیسی به عملیات برداشتن یک ظرف از روی پشته ای از ظروف Pop و به عملیات گذاشتن یک ظرف بر روی پشته ای از ظروف Push گفته می شود و بدین دلیل این اسامی در ساختار داده پشته استفاده شده اند.
 - ترتیب برداشتن ظروف از روی پشته ای از ظروف برعکس ترتیب قرار دادن آنها بر روی پشته است.

¹ stack

² last-int first-out

S.size پشته یک ویژگی S.top دارد که اندیس آخرین عنصری است که به پشته اضافه شده است. ویژگی S.size اندازه یا ظرفیت پشته را مشخص میکند که همان اندازهٔ آرایه ای است که پشته با استفاده از آن پیادهسازی شده است. عناصر پشته در S.data[1:S.top] قرار می گیرند. عنصر S.data[1:S.top] عنصر روی S.data[1:S.top] عنصر روی S.data[1:S.top] عنصر روی S.data[S.top] عنصر روی S.data[S.top]

Data Structure Stack

struct STACK

1: int size

2: int top

3: T * data \triangleright dynamically allocated array of type T

¹ bottom

 $^{^{2}}$ top

يشته

- وقتی S.top = 0 است، پشته هیچ عنصری را شامل نمیشود و خالی 1 است.

- تابعی به نام Stack-Empty بررسی می کند آیا پشته خالی است یا خیر.

S.top گر بخواهیم از یک پشته خالی عنصری برداریم با خطای پشته خالی 2 مواجه میشویم. همچنین اگر S.size بیشتر از 3 شود با خطای سرریز پشته 3 مواجه میشویم.

¹ empty

² underflow

³ overflow

- تابع Stack-Empty در زیر پیادهسازی شده است. پیچیدگی زمانی این تابع O(1) است.

Algorithm Stack Empty

function STACK-EMPTY(S)

1: **if** S.top == 0 **then**

2: return true

3: else

4: return false

– تابع Push در زیر پیادهسازی شده است. پیچیدگی زمانی این تابع O(1) است.

Algorithm Push

```
function PUSH(S,x)
```

1: if S.top == S.size then

2: error "overflow"

3: else

4: S.top = S.top + 1

5: S.data[S.top] = x

- تابع Pop در زیر پیادهسازی شده است. پیچیدگی زمانی این تابع O(1) است.

Algorithm Pop

```
function POP(S)
```

1: if Stack-Empty(S) then

2: error "underflow"

3: else

4: S.top = S.top - 1

5: return S.data[S.top + 1]

يشته

- پشته کاربردهای زیادی در طراحی الگوریتمها دارد که یک مثال از آنها را در اینجا بررسی میکنیم.
- یک عبارت ریاضی در نشانه گذاری پسوندی 1 عبارتی است که در آن عملگر بعد از عملوندها قرار می گیرد.
- در نشانه گذاری معمول که نشانه گذاری میانوندی ¹ نامیده میشود، یک عملگر بین دو عملگر قرار می گیرد.
 - برای مثال عبارت میانوندی 2+2 در نشانه گذاری پسوندی به صورت 2+3 نوشته می شود.

YY / YD

¹ postfix notation

¹ infix notation

پشته

- عبارت میانوندی (2+1)-4 در نشانه گذاری پسوندی به صورت -4 2 4 و عبارت میانوندی عبارت میانوندی به صورت (4-2)+1 در نشانه گذاری پسوندی به صورت (4-2)+1 نوشته می شود.
- - یکی از مزایای مهم نشانه گذاری پسوندی این است که برای محاسبه عبارتهای پسوندی به پرانتزگذاری و بررسی اولویت عملگرها نیاز نیست.

پشته

- مقدار یک عبارات پسوندی را میتوان به صورت زیر با استفاده از یک پشته محاسبه کرد.
- به ازای هر عملوندی که از ورودی خوانده می شود، مقدار آن در یک پشته ذخیره می شود. به ازای هر عملگری که از ورودی خوانده می شود، می شود، مقدار آنها با استفاده از عملگر خوانده شده محاسبه می شود، در نهایت مقدار به دست آمده در پشته ذخیره می شود. این عملیات ادامه می یابد تا اینکه ورودی کاملا خوانده شود. اگر تنها یک مقدار در پشته باقی بماند، آن مقدار نتیجه عبارت ورودی است، و اگر یشته خالی بماند با بیشتر از یک مقدار داشته باشد، ورودی عبارتی نادرست بوده است.

يشته

- یک عبارت میانوندی را می توان با استفاده از یک پشته به عبارت پسوندی تبدیل کرد. فرض کنید یک عبارت از اعداد و عملگرهای جمع، تفریق، ضرب و تقسیم تشکیل شده است. الگوریتم زیر یک عبارت میانوندی را به پسوندی تبدیل می کند.
- به ازای هر عملوندی که از ورودی خوانده می شود، مقدار آن در خروجی نوشته می شود. به ازای هر عملگری که از ورودی خوانده می شود، عملگر وارد پشته می شود، اما قبل از اضافه کردن عملگر به پشته، تا وقتی که عملگر روی پشته اولویت بالاتر یا برابر داشته باشد، عملگر روی پشته از پشته خارج می شود و به خروجی اضافه می شود. هرگاه با عملگر پرانتز باز مواجه شدیم، آن را وارد پشته می کنیم، و هرگاه با عملگر پرانتز باز بسته مواجه شدیم، عملگرها را از پشته خارج کرده، به ورودی اضافه می کنیم، تا وقتی به عملگر پرانتز باز رسیده، عملگر پرانتز باز با پشته خارج می کنیم.
- تمرین اول: تابعی بنویسید که با استفاده از یک پشته، یک عبارت میانوندی را به یک عبارت پسوندی تبدیل کند.
 - تمرین دوم: تابعی بنویسید که با استفاده از یک پشته، مقدار یک عبارت پسوندی را محاسبه کند.

يشته

- یکی دیگر از کاربردهای پشته، استفاده از آن در پشته فراخوانی 1 توابع برای فراخوانیهای تودرتو یا فراخوانیهای بازگشتی است.

- هر باریک تابع فراخوانی میشود، در پشته فراخوانی قرار میگیرد تا وقتی که اجرای آن به اتمام برسد و از روی پشته فراخوانی برداشته شود.

¹ call stack

- صف 1 داده ساختاری است که در آن عناصر به همان ترتیبی که وارد می شوند از آن خارج می شوند. به عبارت دیگر اولین عنصر وارد شده در صف اولین عنصری است که از آن خارج می شود.

صف استراتژی FIFO 2 را پیادهسازی میکند بدین معنا که اولین عنصر وارد شده اولین عنصری است که خارج می شود.

- عملیات درج در صف Enqueue و عملیات حذف Dequeue نامیده می شوند.

- داده ساختار صف دقیقا همانند صفهایی است که در مکانهای عمومی برای خدمت رسانی ایجاد می شود. اولین مشتری که وارد صف می شود اولین کسی است که از صف خارج شده و خدمت رسانی می شود.

٧٧ / ٣٠

¹ queue

² first-in first-out

- یک صف شامل یک ابتدا 1 و یک انتها 2 است.

- وقتی یک عنصر وارد صف می شود در انتهای صف قرار می گیرد همانند وقتی که یک مشتری وارد صف می شود. عنصری که از صف خارج می شود نیز عنصر ابتدای صف است، همانند اولین مشتری در صف که به او خدمت رسانی می شود.

¹ head

 2 tail

77/ 71

شکل زیر روشی برای پیادهسازی صفی را نشان میدهد که n-1 عنصر دارد. این صف توسط آرایه Q.data[1:n]

77 / 77

داده ساختارهای یابه

ساختمان داده

ویژگی Q.size اندازه صف است که برابر با طول آرایه است. صف یک ویژگی به نام Q.head دارد که اندیسی است که به ابتدای صف اشاره می کند. ویژگی Q.tail اندیسی است که به مکان بعد از آخرین عنصر صف اشاره می کند. عناصر صف در مکانهای Q.head + 1 ، Q.head و قرار می گیرند.

Data Structure Queue

struct QUEUE

1: int size

2: int head

3: int tail

4: T * data ▷ dynamically allocated array of type T

وقتی Q.head = Q.tail است، صف خالی است. در ابتدا داریم Q.head = Q.tail در این حالت، اگر بخواهیم از صف عنصری خارج کنیم با خطای صف خالی 1 مواجه می شویم.

و وقتی Q.tail = Q.size و Q.head = Q.tail + 1 و Q.head = Q.tail + 1 و وقتی Q است. در این حالت اگر بخواهیم عنصری وارد صف کنیم با خطای سر ریز صف 2 مواجه می شویم.

VV / W4

¹ queue underflow

² aueue overflow

Algorithm Enqueue

```
function ENQUEUE(Q,x)
1: if (Q.head == Q.tail + 1) or (Q.head == 1 and Q.tail == Q.size) then
2:    error "overflow"
3:    return
4: Q.data[Q.tail] = x
5: if Q.tail == Q.size then
6:    Q.tail = 1
7: else Q.tail = Q.tail + 1
```

- در زیر تابع Dequeue پیاده سازی شده است.

Algorithm Dequeue

```
function DEQUEUE(Q)
```

1: if Q.head == Q.tail then

2: error "underflow"

3: return

4: x = Q.data[Q.head]

5: if Q.head == Q.size then

6: Q.head = 1

7: else Q.head = Q.head + 1

8: return x

صف

یکی از کاربردهای مهم دادهساختار صف استفاده از آن در زمانبندی است.

- فرض کنید میخواهیم تعدادی واحد کاری 1 را در یک سیستم عامل زمانبندی کنیم. اولویت با واحدهای کاری است که زودتر وارد سیستم شده اند. میتوانیم هر واحد کاری که وارد سیستم میشود را وارد صف کنیم و به ترتیب آنها را از صف خارج کرده، زمان پردازنده را به آنها اختصاص دهیم.

- تمرین: با استفاده از یک پشته، یک صف را وارونه کنید.

¹ task

ساختمان داده اختارهای پایه ۲/۳۷

- یک لیست پیوندی 1 داده ساختاری است که توسط آن مجموعه ای است عناصر به صورت خطی مرتب شدهاند به طوری که ترتیب عناصر در لیست با ترتیب مکانهای حافظه عناصر الزاما یکسان نیست.
- برخلاف آرایه که در آن به عناصر با استفاده از اندیس آنها دسترسی پیدا میکنیم، در لیست پیوندی هر عنصر توسط یک اشارهگر به عنصر بعدی خود اشاره میکند و به هر عنصر میتوان با استفاده از اشارهگری به آن
 - از آنجایی که در بسیاری مواقع عناصر لیست پیوندی دارای یک کلید و یک مقدار هستند، و میخواهیم به ازای یک کلید تعیین شده مقدار آن را پیدا کنیم، به لیست پیوندی، لیست جستجو 2 نیز گفته می شود.
 - یک لیست پیوندی دو طرفه 3 یک لیست پیوندی است که عناصر آن علاوه بر ذخیرهسازی عنصر بعدی، عنصر قبل خود را نیز ذخیره میکنند.

¹ linked list

² search list

³ doubly linked list

- در شکل زیر هریک از عناصر لیست پیوندی دو طرفه L یک ویژگی کلید (key) و دو اشاره گر برای تعیین عنصر قبل (prev) و عنصر بعد از خود (next) دارد. البته یک عنصر میتواند اطلاعات دیگری را نیز ذخیره کند.

- به ازای عنصر داده شده x در لیست پیوندی، x x.next به عنصر بعدی x و x به عنصر قبلی x اشاره می کند.

اگر x. prev=NIL باشد، آنگاه x عنصر ماقبل ندارد و در نتیجه اولین عنصر لیست یا عنصر ابتدای x لیست است.

اگر x.next=NIL باشد، آنگاه x عنصر ما بعد ندارد و در نتیجه آخرین عنصر لیست یا عنصر انتهای x لیست است.

- ويژگى L.head به اولين عنصر ليست اشاره مي كند. اگر L.head=NIL باشد، ليست تهي است.

ساختمان داده اختارهای پایه داده اختارهای پایه ۷۷ / ۴۰

¹ successor

² predecessor

³ head

⁴ tail

- یک لیست پیوندی می تواند اشکال مختلفی داشته باشد. یک لیست می تواند یک طرفه 1 یا دو طرفه 2 باشد، می تواند مرتب شده یا غیر مرتب باشد، و همچنین می تواند حلقوی 3 یا غیر حلقوی باشد.

- اگر یک لیست پیوندی یک طرفه باشد، عناصر آن اشاره گر به عنصر بعدی دارند ولی اشاره گری به عنصر قبلی ندارند.

¹ singly

² doubly

³ circular

- اگر یک لیست مرتب شده باشد ترتیب خطی عناصر لیست متناسب با ترتیب خطی کلیدهای عناصر است بدین معنی که در لیست پیوندی مرتب شده صعودی همیشه مقدار کلید عنصر بعدی بزرگتر یا مساوی مقدار کلید عنصر فعلی است و در لیست پیوندی مرتب شده نزولی همیشه مقدار کلید عنصر بعدی کوچکتر یا مساوی مقدار کلید عنصر فعلی است.

- در یک لیست پیوندی مرتبشده صعودی عنصر ابتدای لیست کمترین مقدار و عنصر انتهای لیست کمترین مقدار دادد.

اگر لیست پیوندی غیر مرتب 1 باشد، عناصر لیست با هر ترتیبی میتوانند درکنار یکدیگر قرار گرفته باشند.

¹ unsorted

داده ساختارهای پایه ۲۷ / ۲۷

- در یک لیست پیوندی حلقوی 1 ، اشاره گر prev از عنصر ابتدای لیست به عنصر انتهای لیست اشاره می کند و اشاره گر next از عنصر انتهای لیست به عنصر ابتدای لیست اشاره می کند.

- لیستهایی که در ادامه بررسی خواهیم کرد، غیر مرتب و دو طرفه هستند.

¹ circular linked list

VV / 44

داده ساختارهای یابه

ساختمان داده داد

- جستجو در لیست پیوندی : تابع List-Search(L،k) اولین عنصر در لیست L با کلید L را توسط یک جستجوی خطی پیدا کرده، اشاره گری به عنصر یافته شده باز می گرداند. اگر هیچ عنصری با کلید L پیدا نشود، تابع مقدار L را باز می گرداند.

Algorithm List Search

function LIST-SEARCH(L,k)

1: x = L.head

2: while $x \neq NIL$ and $x.key \neq k$ do

3: x = x.next

4: return x

 در شکل زیر فراخوانی تابع (List-Search(L,4) اشارهگری به سومین عنصر لیست باز می گرداند و فراخوانی تابع (List-Search(L,7) مقدار NIL را باز می گرداند.

- برای جستجوی یک لیست با n عنصر، تابع List-Search در بدترین حالت در زمان $\Theta(n)$ اجرا می شود، زیرا نیاز دارد همه عناصر لیست را جستجو کند.

- درج در لیست پیوند : به ازای عنصر x که کلید آن تعیین شده است، تابع List-Prepend عنصر x را به ابتدای لیست پیوندی اضافه می کند.

Algorithm List Prepend

function LIST-PREPEND(L,x)

1: x.next = L.head

2: x.prev = NIL

3: if L.head \neq NIL then

4: L.head.prev = x

5: L.head = x

- در شکل زیر یک عنصر در لیست پیوندی درج شده است.

- توجه کنید که L.head.prev در واقع عنصر ماقبل عنصر ابتدای لیست است.
- زمان اجرای تابع List Prepend بر روی یک لیست با n عنصر برابر با O(1) است.

- درج در هر مکانی در لیست پیوندی میتواند انجام شود.

اگر اشاره گری به عنصر y داشته باشیم، تابع List-Insert عنصر جدید x را به عنوان عنصر بعد از y در زمان y در زمان اضافه می کند.

Algorithm List Insert

function LIST-INSERT(x,y)

1: x.next = y.next

2: x.prev = y

3: if y.next \neq NIL then

4: v.next.prev = x

5: y.next = x

- از آنجایی که این تابع نیازی به دسترسی به لیست L ندارد، L به عنوان پارامتر به آن ارسال نشده است.

- در شکل زیر عنصر ۳۶ بعد از عنصر ۹ اضافه شده است.

- حذف از یک لیست پیوندی: تابع List-Delete عنصر x را از لیست پیوندی L حذف می کند.

Algorithm List Delete

function LIST-DELETE(L.x)

1: if x.prev \neq NIL then

2: x.prev.next = x.next

3: else L.head = x.next

4: if x.next \neq NIL then

5: x.next.prev = x.prev

- برای حذف یک عنصر با یک کلید معین، ابتدا تابع List-Search فراخوانی شده، اشاره گری به عنصر مورد نظر به دست می آید. سپس توسط تابع List-Delete عنصر مورد نظر از لیست حذف می شود.

تابع List-Delete در زمان O(1) اجرا می شود، اما برای حذف یک عنصر با یک کلید تعیین شده، ابتدا تابع List-Search در زمان $\Theta(n)$ باید اجرا شود.

- در شکل زیر عنصر با کلید ۴ از لیست حذف شده است.

- درج و حذف بر روی لیست پیوندی سریعتر از آرایه ها انجام می شوند.
- اگر بخواهیم یک عنصر به ابتدای یک آرایه اضافه کنیم یا عنصر اول را از آرایه حذف کنیم، آنگاه هریک از عناصر آرایه را باید یک خانه به سمت چپ یا راست منتقل کنیم.
- بنابراین در بدترین حالت درج و حذف در آرایه در زمان $\Theta(n)$ انجام می شود، درحالی که درج و حذف در لیست پیوندی در زمان O(1) انجام می شود.
- از طرف دیگر دسترسی به عنصر k ام آرایه در زمان O(1) انجام میشود، درحالی که زمان لازم برای دسترسی به عنصر k ام لیست پیوندی $\Theta(n)$ است.
 - جستجو در هر دو دادهساختار آرایه و لیست پیوندی در بدترین حالت در زمان $\Theta(n)$ انجام میشود.
 - پس به عناصر آرایه می توان سریع تر از لیست پیوندی دسترسی پیدا کرد، درحالی که حذف و درج در لیست پیوندی سریع تر از آرایه است.

- تابع List-Delete را بسیار سادهتر میتوان نوشت اگر شرایط مرزی را در ابتدا و انتهای لیست بررسی نکنیم.

در این صورت تابع حذف را میتوان به صورت زیر نوشت.

Algorithm List Delete'

function LIST-DELETE'(x)

1: x.prev.next = x.next

2: x.next.prev = x.prev

- نگهبان 1 به شیئی گفته می شود که بررسی شرایط مرزی را تسهیل می کند.

¹ sentinel

- در شکل زیر برای تسهیل بررسی شرایط مرزی یک لیست پیوندی دو طرفه معمولی را به یک لیست پیوندی دو طرفه حلقوی با یک عنصر نگهبان ابت که نمایانگر تهی دو طرفه حلقوی با یک عنصر نگهبان است که نمایانگر تهی (NIL) است و همه ویژگیهای عناصر دیگر لیست را داراست.

- نگهبان L.nil در بین ابتدا و انتهای لیست قرار میگیرد. درواقع L.nil.next به ابتدای لیست اشاره میکند
 و L.nil.prev به انتهای لیست اشاره میکند. همچنین ویژگی next از عنصر انتهای لیست و ویژگی prev از عنصر ابتدای لیست هر دو به L.nil اشاره میکنند.
 - از آنجایی که L.nil.next به عنصر ابتدای لیست اشاره میکند، ویژگی L.head را حذف میکنیم و با L.nil.next جایگزین میکنیم.
 - یک لیست خالی به صورت زیر تنها حاوی عنصر نگهبان است.

با افزودن عنصر نگهبان، تابع حذف عنصر به صورت زیر نوشته میشود.

Algorithm List Delete'

function LIST-DELETE'(x)

1: x.prev.next = x.next

2: x.next.prev = x.prev

- در فرایند حذف عناصر هیچگاه عنصر نگهبان حذف نمی شود، مگر اینکه بخواهیم لیست را کاملا از بین ببریم.

- تابع /List-Insert عنصر x را در لیست بعد از y اضافه می کند.

Algorithm List Insert'

function LIST-INSERT'(x,y)

1: x.next = y.next

2: x.prev = y

3: y.next.prev = x

4: y.next = x

- برای جستجو در یک لیست پیوندی با نگهبان از L.nil.next آغاز میکنیم. اگر کلید مورد نظر در لیست وجود نداشته باشد، همهٔ عناصر لیست بررسی شده دوباره به L.nil باز میگردیم و در این صورت مقدار NIL را از تابع باز میگردانیم.
 - تابع جستجو در لیست پیوندی با نگهبان به صورت زیر نوشته می شود.

Algorithm List Search'

function LIST-SEARCH'(L.k)

- 1: L.nil.key = $k \triangleright$ store the key in the sentinel to guarantee it is in list
- 2: x = L.nil.next \triangleright start at the head of the list
- 3: while x.key \neq k do
- 4: x = x.next
- 5: if x == L.nil then \triangleright found k in the sentinel
- 6: return NIL ▷ k was not really in the list
- 7: else return x

- نگهبانها معمولاً کد را ساده میکنند و به مقدار ثابتی سرعت اجرای کد را کاهش میدهند اما مرتبه زمان اجرا را کاهش نمیدهند. دقت کنید در صورتی که بخواهیم از تعداد بسیار زیادی لیستهای کوچک استفاده کنیم، نگهبانها باعث میشوند فضای بسیار زیادی هدر رود. در اینصورت بهتر است از نگهبان استفاده نکنیم.

حل روابط بازگشتی

در مسئله جستجوی دودویی دیدیم چگونه میتوان از روابط بازگشتی برای محاسبهٔ زمان اجرای الگوریتمها بهره گرفت. در اینجا چند روش برای حل روابط بازگشتی مطرح میکنیم که عبارتند از روش جایگذاری 1 ، روش درخت بازگشت 2 و روش قضیه اصلی 3 .

¹ substitution method

² recursion-tree method

³ master theorem method

روش جایگذاری

- ووش جایگذاری برای حل روابط بازگشتی از دو گام تشکیل شده است. در گام اول جواب رابطهٔ بازگشتی یا عبارت فرم بسته 1 که در رابطهٔ بازگشتی صدق می کند حدس زده می شود. در گام دوم توسط استقرای ریاضی 2 اثبات می شود که جوابی که حدس زده شده است درست است و در رابطهٔ بازگشتی صدق می کند.
- برای اثبات توسط استقرای ریاضی، ابتدا باید ثابت کرد که جواب حدس زده شده برای مقادیر کوچک n درست است. سپس باید اثبات کرد که اگر جواب حدس زده شده برای n درست باشد، برای n+1 نیز درست است. در این روش از جایگذاری جواب حدس زده شده در رابطهٔ اصلی برای اثبات استفاده می شود و به همین دلیل روش جایگذاری نامیده می شود.
- متاسفانه هیچ قاعدهٔ کلی برای حدس زدن جواب رابطهٔ بازگشتی وجود ندارد و یک حدس خوب به کمی تجربه و خلاقیت نیاز دارد.

¹ closed-form expression

² mathematical induction

- برای مثال فرض کنید میخواهیم رابطهٔ
$$\mathsf{T}(\mathsf{n}) = \mathsf{2T}(\mathsf{n}-\mathsf{1})$$
 و $\mathsf{T}(\mathsf{0}) = \mathsf{1}$ را حل کنیم.

- این رابطه را برای
$$n$$
 های کوچک مینویسیم و حدس میزنیم $T(n)=2^n$ باشد.

- سیس رابطه را با استفاده از استقرا اثبات میکنیم.

روش جایگذاری

- در برخی مواقع یک رابطهٔ بازگشتی شبیه رابطههایی است که جواب آنها را میدانیم و در چنین مواقعی میتوانیم جواب را حدس بزنیم.
- را در نظر بگیرید. فرض کنید می دانیم جواب رابطه $T(n) = 2T(n/2+17) + \Theta(n)$ برای مثال رابطه $T(n) = 2T(n/2+17) + \Theta(n)$ برابر است با $T(n) = 2T(n/2) + \Theta(n)$ می توانیم حدس بزنیم که عدد $T(n) = O(n \lg n)$ باشد. برای $T(n) = O(n \lg n)$ باشد. سپس درستی این جواب را با استفاده از استقرا اثبات می کنیم.
- یک روش دیگر برای حدس زدن جواب این است که ابتدا یک کران پایین را حدس زده و سپس کران پایین را افزایش می دهیم تا به جواب واقعی نزدیک شویم.

- روش دیگر برای حل مسائل بازگشتی، استفاده از درخت بازگشت 1 است.
- در این روش هر رأس از درخت، هزینه محاسبات یکی از زیر مسئلهها را نشان میدهد.
- هزینهٔ کل اجرای یک برنامه عبارت است از هزینه ای که در سطح صفر درخت نیاز است به علاوه هزینه محاسبه زیر مسئلههای سطح اول تشکیل می شود از هزینه مسئله در سطح یک به علاوهٔ هزینهٔ زیر مسئلههای سطح دوم و به همین ترتیب الی آخر.
- بنابراین اگر هزینهٔ محاسبهٔ همه رئوس درخت بازگشت را جمع کنیم، هزینه کل اجرای برنامه به دست می آید.

VV / 54

¹ recursion tree

رابطه بازگشتی زیر را در نظر بگیرید.

$$T(n) = 2T(n/2) + \Theta(n)$$

$$T(1) = \Theta(1)$$

- برای سادگی فرض می کنیم طول آرایهٔ ورودی برابر با n بوده و n توانی از γ است. با این ساده سازی همیشه با تقسیم n بر γ یک عدد صحیح به دست می آید.

- زمان اجرای الگوریتم را به صورت زیر مینویسیم.

$$T(n) = \begin{cases} c_1 & n = 1 \\ 2T(n/2) + c_2 n & n > 1 \end{cases}$$

- شکلهای زیر محاسبه زمان اجرا را با استفاده از درخت بازگشت نشان می دهد.

- زمان اجرا در هر یک از سطوح درخت برابر است با c₂n.
- سطح آخر، یعنی سطحی که برگهای درخت در آن قرار دارد، حالت پایه را نشان میدهد که در این حالت زمان
 اجرا برابر است با c1 و چون تعداد n زیر مسئله در این سطح ۱ داریم، زمان اجرای کل برابر است با c1n
 - از آنجایی که این درخت در هر مرحله به دو بخش تقسیم میشود، تعداد سطوح درخت برابر است با ${
 m lo}\, n+1$
 - . $c_2 n \lg n + c_1 n$ بنابراین زمان کل اجرای الگوریتم برابر است با
 - $\mathsf{T}(n) = \Theta(n \lg n)$ میتوانیم با استفاده از تحلیل مجانبی بنویسیم –

روش قضيه اصلي

T(n) = aT(n/b) + f(n) روش قضیه اصلی a > 0 برای حل مسائل بازگشتی استفاده می شود که به صورت a > 0 و a > 0 و ثابت هستند به طوری که a > 0 و ثابت هستند.

- تابع f(n) در اینجا تابع محرک 2 نامیده می شود و یک رابطهٔ بازگشتی که به شکل مذکور است، رابطهٔ بازگشتی اصلی 3 نامیده می شود.
- اگر یک رابطهٔ بازگشتی شبیه رابطه قضیه اصلی باشد و علاوه بر آن چند عملگر کف و سقف در آن وجود داشته باشد، همچنان می توان از رابطهٔ قضیه اصلی استفاده کرد.

¹ master theorem method

² driving function

³ master recurrence

روش قضيه اصلي

- قضیه اصلی : فرض کنید a>0 و a>0 دو ثابت باشند و f(n) یک تابع باشد که برای اعداد بسیار بزرگ تعریف شده باشد.

رابطهٔ بازگشتی T(n) که بر روی اعداد طبیعی $n \in \mathbb{N}$ تعریف شده است را به صورت زیر در نظر بگیرید. T(n) = aT(n/b) + f(n)

روش قضیه اصلی

- : رفتار مجانبی $\mathsf{T}(n) = \mathsf{aT}(n/b) + \mathsf{f}(n)$ به صورت زیر است
- $T(n)=\Theta(n^{\log_b^a})$ آنگاه $f(n)=O(n^{\log_b^a-\epsilon})$ وجود داشته باشد به طوری که $\epsilon>0$ آنگاه و $\epsilon>0$
 - آنگاه $f(n)=\Theta(n^{\log_b^a}\log^k n)$ وجود داشته باشد به طوری که $k\geqslant 0$ آنگاه -۲ اگر ثابت $T(n)=\Theta(n^{\log_b^a}\log^k 1 n)$
- $T(n) = \Theta(f(n))$ آنگاه $f(n) = \Omega(n^{\log_b^a + \epsilon})$ وجود داشته باشد به طوری که $f(n) = \Omega(n^{\log_b^a + \epsilon})$ آنگاه f(n) و f(n) برای برخی از توابع f(n) نیاز داریم بررسی کنیم f(n) در رابطهٔ $f(n) \leq c < 1$ به ازای f(n) به ازای و f(n) های به اندازهٔ کافی بزرگ صدق کند، اما برای توابعی که در تحلیل الگوریتمها به آنها برمیخوریم این شرط معمولاً برقرار است.

روش قضيه اصلى

در یک حالت خاص اگر داشته باشیم، $\mathsf{T}(n) = \mathsf{aT}(n/b) + \mathsf{cn}^k$ آنگاه میتوانیم اثبات کنیم:

$$T(n) = \left\{ egin{array}{ll} \Theta(n^{\log_b a}) & a > b^k \ \Theta(n^k \lg n) & a = b^k \ \Theta(n^k) & a < b^k \ \end{array}
ight.$$
 12.

روش قضيه اصلى

رابطهٔ بازگشتی a=9 و a=9 را در نظر بگیرید. در این رابطه داریم a=9 و a=9 بنابراین a=9 رابطهٔ بازگشتی a=9 را در نظر بگیرید. در این رابطه داریم a=9 و a=9 بنابراین هر ثابت به دست می آوریم a=9 و a=9 را در قضیه اصلی را در نظر بگیریم و نتیجه بگیریم حالت اول در قضیه اصلی را در نظر بگیریم و نتیجه بگیریم a=9 بنابراین می توانیم حالت اول در قضیه اصلی را در نظر بگیریم و نتیجه بگیریم و با

روش قضیه اصلی

$$b=3/2$$
 و $a=1$ و رابطهٔ بازگشتی $a=1$ و $a=1$ را در نظر بگیرید. در این رابطه داریم $a=1$ و $a=1$ را در نظر بگیرید. در اینجا حالت دوم در قضیه اصلی را داریم یعنی بنابراین $a=1$ $a=1$ در اینجا حالت دوم در قضیه اصلی را داریم یعنی $a=1$ بنابراین جواب رابطهٔ بازگشتی برابر است با $a=1$ $a=1$

روش قضيه اصلى

- در رابطهٔ بازگشتی
$$n = 3$$
 $n = 3$ داریم $n = 3$ داریم $n = 3$ داریم $n = 3$ بدین معنی است که $n = 3$ در رابطهٔ بازگشتی $n = n = 3$ داریم $n = n = n = n$ داریم $n = n = n = n = n$ دو د $n = n = n = n = n = n$ جدود $n = n = n = n = n = n$ بانبراین حالت سوم در قضیه اصلی را میتوانیم در نظر بگیریم اگر شرط $n = n = n = n = n$ برقرار باشد.

$$af(n/b) = 3(n/4) \lg(n/4) \le (3/4) n \lg n = 3/4 f(n)$$

 $\mathsf{T}(n) = \Theta(n\lg n)$ بنابراین با استفاده از حالت سوم جواب رابطهٔ بازگشتی برابراست با

ساختمان داده

رابطهٔ بازگشتی a=2 و a=2 و داریم T(n)=2 را در نظر بگیرید. از آنجایی که a=2 و داریم در اینجا برقراراست زیرا به ازای k=0 داریم $f(n)=\Theta(n)$ و بنابراین جواب $r^{\log_2^2}=n$ رابطهٔ بازگشتی برابر است با $r^{\log_2^2}=n$.

VV / VA

روش قضيه اصلي

رابطهٔ
$$(n/2)+\Theta(1)+\Theta(1)$$
 را در نظر بگیرید. در اینجا داریم $n=8$ و $n=8$ بنابراین $f(n)=O(n^{3-\epsilon})$. تابع محرک $f(n)=\Theta(1)$ است و بنابراین به ازای هر $n=0$ داریم $n=0$ داریم $n=0$. $n=0$ بنابراین حالت اول قضیه اصلی برقرار است. نتیجه میگیریم $n=0$.

روش قضيه اصلي

- در رابطهٔ بازگشتی $n^{\log 2}=n^{\log 7}$ داریم $n^{\log 2}=n^{\log 7}$ داریم $n^{\log 2}=n^{\log 7}$ بنابراین $n^{\log 2}=n^{\log 7}$ از $n^{\log 2}=n^{\log 7}$ در رابطهٔ بازگشتی ده $n^{\log 2}=n^{\log 7}$ ، میتوانیم قرار دهیم $n^{\log 2}=n^{\log 7}$ ، میتوانیم قرار دهیم $n^{\log 7}=n^{\log 7}$ ، میتوانیم قرار دهیم $n^{\log 7}=n^{\log 7}$ ، پس حالت اول در قضیه اصلی برقرار است و بنابراین جواب رابطهٔ بازگشتی برابر است با $n^{\log 7}=n^{\log 7}$ ، $n^{\log 7}=n^{\log 7}$ ، $n^{\log 7}=n^{\log 7}$ ، $n^{\log 7}=n^{\log 7}$