2020 Qualifying exam: Statistics

- 1. Let T_i be a UMVUE of θ_i , j = 1, ..., k. Then
 - (a) $T = \sum_{i=1}^{k} c_i T_i$ is a UMVUE of $\theta = \sum_{i=1}^{k} c_i \theta_i$, for constants c_i 's.
 - (b) $T = \prod_{i=1}^{k} T_i$ is a UMVUE of $\theta = ET = E\left(\prod_{i=1}^{k} T_i\right)$.
- 2. Let $X_1, \dots, X_n \sim_{iid} F$. Find the limiting d.f. of the sample median $\hat{m} = F^{-1}(1/2)$.
- 3. Suppose $X \sim F$, and $m = F^{-1}(1/2)$, $\mu = EX$, $\sigma^2 = Var(x)$. Show that $|m \mu| \leq \sigma$.
- 4. Let $(X,Y), (X_1,Y_1), ..., (X_n,Y_n)$ be i.i.d. with mean $\mu = (\mu_x, \mu_y)^{\tau}$ and covariance matrix Σ . Let $r = \mu_x/\mu_y$ with $\mu_y \neq 0$, and an estimate of r is $\hat{r} = \bar{X}/\bar{Y}$. Investigate the limiting behavior of \hat{r} (i.e. both consistency and asymptotic d.f.).
- 5. Let $U_n \sim_{iid} \text{Uniform}[0,1]$, and $X_n = \left(\prod_{i=1}^n U_i\right)^{-1}$. Show that $\sqrt{n}(X_n e) \to_d N(0, e^2)$.
- 6. Suppose $X_1, \ldots, X_n \sim_{iid}$ with pdf $f(x) = \theta(\theta+1)x^{\theta-1}(1-x)$ $(0 < x < 1, \theta > 0)$. Write the sample mean $\bar{X} = \sum_{i=1}^n X_i/n$.
 - (a) By equating \bar{X} with its population mean, show that the method of moments estimator of θ is $T_n = 2\bar{X}/(1-\bar{X})$.
 - (b) Show that $\sqrt{n}(T_n \theta)/\sigma(\theta) \longrightarrow_d N(0, 1)$, where $\sigma^2(\theta) = \frac{\theta(\theta + 2)^2}{2(\theta + 3)}$.

(Hint: If $X \sim Beta(\alpha, \beta)$ distribution, then $EX = \alpha/(\alpha + \beta)$.)

7. If independent lifetimes T_1 and T_2 have proportional hazards, say $\lambda_i(t) = \lambda_0(t)\eta_i$ for i = 1, 2, respectively, then show that

$$P(T_1 < T_2) = \eta_1/(\eta_1 + \eta_2),$$

regardless of the shape of the baseline hazard function $\lambda_0(t)$.

8. Consider a random effects model

$$y_{ij} = \mu + b_i + \epsilon_{ij}, \qquad 1 \le i \le q, \qquad 1 \le j \le n,$$

where μ is a fixed overall mean effect, $b_i \sim_{iid} N(0, \sigma_b^2)$ is the individual random effect, and $e_{ij} \sim_{iid} N(0, \sigma^2)$ are the error terms, and they are independent. Find Bayes estimators for b_i 's, assuming $(\mu, \sigma_2, \sigma_b^2)$ are known.

1