COMS W4771 : Machine Learning - Problem Set #2

Dhananjay Shrouty - ds3521@columbia.edu

October 2, 2016

Problem 1

- (a) $\mu_{y,j} = \frac{\sum_{i=1}^{n} 1\{y_i = y\}x_{i,j}}{\sum_{i=1}^{n} 1\{y_i = y\}}$
- (b) Training Error Rate = 21.62%; Test Error Rate = 37.6%
- (c) Training Error Rate = 5.779%; Test Error Rate = 13.138%
- (d) Vocabulary words with 20 largest α_j values (decreasing order) firearms, occupied, israelis, serdar, argic, appressian, ohanus, melkonian, sahak, villages, cramer, armenia, cpr, sdpa, handgun, optilink, palestine, firearm, budget, arabs Vocabulary words with smallest α_j values (increasing order) athos, atheism, atheists, clh, teachings, revelation, testament, livesey, atheist, solntze, wpd, scriptures, theology, believers, ksand, alink, benedikt, jesus, prophet, mozumder

Dhananjay Shrouty

Problem 2

- (a) For $1 \le c \le 14$, the region in which the classifier f^* predicts one is $\frac{16 \sqrt{64 24ln(c)}}{6}$, $\frac{16 + \sqrt{64 24ln(c)}}{6}$
- (b) For $c \geq 15$, there will be no region in which the classifier f^* will predict 1 for smallest expected penalty as for $c \geq 15$, the term $\sqrt{64 24ln(c)}$ will have imaginary roots and not real roots.

Problem 3

- (a) The eigenvalues of $\Sigma + \sigma^2 I$ are $\lambda_1 + \sigma^2$, $\lambda_2 + \sigma^2$, ..., $\lambda_d + \sigma^2$
- **(b)** The eigenvalues of $(\Sigma + \sigma^2 I)^{-2}$ are $(\lambda_1 + \sigma^2)^{-2}$, $(\lambda_2 + \sigma^2)^{-2}$, ..., $(\lambda_d + \sigma^2)^{-2}$