

DESIGN & ANALYSIS OF ALGORITHM (BCSC0012)

Chapter 12: Dynamic Programming Chained Matrix Multiplications

Prof. Anand Singh Jalal

Department of Computer Engineering & Applications

Chained Matrix Multiplications

Problem: given a sequence $\langle A_1, A_2, ..., A_n \rangle$, compute the product:

$$A_1 \cdot A_2 \cdots A_n$$

Matrix compatibility:

$$C = A \cdot B$$

$$col_A = row_B$$

$$row_C = row_A$$

$$col_C = col_B$$

$$C=A_1 \cdot A_2 \cdots A_i \cdot A_{i+1} \cdots A_n$$

$$col_i = row_{i+1}$$

$$row_C = row_{A1}$$

$$col_C = col_{An}$$

Algorithm to Multiply 2 Matrices

Input: Matrices $A_{p \times q}$ and $B_{q \times r}$ (with dimensions $p \times q$ and $q \times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

MATRIX-MULTIPLY $(A_{p \times q}, B_{q \times r})$

```
1. for i \leftarrow 1 to p
```

2. for $j \leftarrow 1$ to r

3. $C[i,j] \leftarrow 0$

4. **for** $k \leftarrow 1$ **to** q

5. $C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$

6. return C

Scalar multiplication in line 5 dominates time to compute *C*Number of scalar multiplications = *pqr*

Matrix-chain Multiplication

- Suppose we have a sequence or chain A1, A2, ..., An of n matrices to be multiplied
- That is, we want to compute the product A1A2...An
- There are many possible ways (parenthesizations) to compute the product
- Example: consider the chain A_1 , A_2 , A_3 , A_4 of 4 matrices
 - Let us compute the product $A_1A_2A_3A_4$
- There are 5 possible ways:
 - 1. $(A_1(A_2(A_3A_4)))$
 - 2. $(A_1((A_2A_3)A_4))$
 - 3. $((A_1A_2)(A_3A_4))$
 - 4. $((A_1(A_2A_3))A_4)$
 - 5. $(((A_1A_2)A_3)A_4)$

No of possible ways: $\frac{1}{n}^{2(n-1)}C_{(n-1)}$

Matrix-chain Multiplication ...

- Example: Consider three matrices $A_{10\times100}$, $B_{100\times5}$, and $C_{5\times50}$
- There are 2 ways to parenthesize
 - $((AB)C) = D_{10\times5} \cdot C_{5\times50}$
 - AB ⇒ 10·100·5=5,000 scalar multiplications ↑ Total:
 - DC \Rightarrow 10·5·50 =2,500 scalar multiplications \int 7,500
 - $(A(BC)) = A_{10 \times 100} \cdot E_{100 \times 50}$
 - BC \Rightarrow 100·5·50=25,000 scalar multiplications \uparrow Total:
 - AE \Rightarrow 10·100·50 =50,000 scalar multiplications \int 75,000

Matrix-chain Multiplication ...

- Matrix-chain multiplication problem
 - Given a chain $A_1, A_2, ..., A_n$ of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$
 - Parenthesize the product A₁A₂...A_n such that the total number of scalar multiplications is minimized
- Brute force method of exhaustive search takes time exponential in n

Matrix-chain Multiplication ...

The Structure of an Optimal Parenthesization

Notation:

$$A_{i...j} = A_i A_{i+1} \cdots A_j, i \leq j$$

• Suppose that an optimal parenthesization of $A_{i...j}$ splits the product between A_k and A_{k+1} , where $i \le k < j$

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$

$$= A_i A_{i+1} \cdots A_k A_{k+1} \cdots A_j$$

$$= A_{i...k} A_{k+1...j}$$

The parenthesization of the "prefix" $A_{i...k}$ must be an optimal parentesization

Matrix-chain Multiplication ... A Recursive Solution

• Sub-problem: Determine the minimum cost of parenthesizing

$$A_{i...j} = A_i A_{i+1} \cdots A_j$$
 for $1 \le i \le j \le n$

- Let m[i, j] = the minimum number of multiplications needed to compute A_{i...j}
 - full problem $(A_{1..n})$: m[1, n]
 - i = j: $A_{i...i} = A_i \Rightarrow m[i, i] = 0$, for i = 1, 2, ..., n

Matrix-chain Multiplication ... A Recursive Solution

Consider the subproblem of parenthesizing

$$A_{i...j} = A_i A_{i+1} \cdots A_j \qquad \text{for } 1 \le i \le j \le n$$

$$= A_{i...k} A_{k+1...j} \qquad \text{for } i \le k < j$$

$$m[i, k] \qquad m[k+1,j]$$

• Assume that the optimal parenthesization splits the product A_i A_{i+1} ...

$$A_j$$
 at k (i \leq k $<$ j)

$$m[i,j] = \underline{m[i,k]} + \underline{m[k+1,j]} + \underline{p_{i-1}p_kp_j}$$

min # of multiplications to compute $A_{i...k}$

min # of multiplications to compute $A_{k+1...j}$

of multiplications to compute $A_{i...k}A_{k...j}$

Matrix-chain Multiplication ... A Recursive Solution

$$m[i, j] = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j$$

- We do not know the value of k
 - There are j i possible values for k: k = i, i+1, ..., j-1
- Minimizing the cost of parenthesizing the product $A_i A_{i+1} \cdots A_j$ becomes:

Matrix-chain Multiplication ... Matrix-Chain-Order(p)

```
MATRIX-CHAIN-ORDER (p)
```

```
n \leftarrow length[p] - 1
    for i \leftarrow 1 to n
            do m[i,i] \leftarrow 0
     for l \leftarrow 2 to n
                                   \triangleright l is the chain length.
            do for i \leftarrow 1 to n-l+1
                      do j \leftarrow i + l - 1
                          m[i, j] \leftarrow \infty
                          for k \leftarrow i to j-1
                               do q \leftarrow m[i, k] + m[k+1, j] + p_{i-1}p_kp_i
10
                                    if q < m[i, j]
                                       then m[i, j] \leftarrow q
                                              s[i, j] \leftarrow k
      return m and s
```

There are 3 nested loops and each can iterate at most n times, so the total running time is $O(n^3)$.

Basically, we're checking different places to "split" our matrices by checking different values of k and seeing if they improve our current minimum value.

Matrix-chain Multiplication ... Extracting Optimum Sequence

- Leave a split marker indicating where the best split is (i.e. the value of k leading to minimum values of m[i, j]). We maintain a parallel array s[i, j] in which we store the value of k providing the optimal split.
- If s[i, j] = k, the best way to multiply the sub-chain $A_{i...j}$ is to first multiply the sub-chain $A_{i...k}$ and then the sub-chain $A_{k+1...j}$, and finally multiply them together. Intuitively s[i, j] tells us what multiplication to perform *last*. We only need to store s[i, j] if we have at least 2 matrices & j > i.

Matrix-chain Multiplication ... Example: DP for CMM

Matrix-chain Multiplication ... Example: DP for CMM

$$m[1,4]=min \left\{ m[1,1]+m[2,4]+5\times4\times7, m[1,2]+m[3,4]+5\times6\times7 \right.$$

$$\left. (0) 104+140 \qquad 120+84+210 \right.$$

$$\left. (1,\frac{3}{2})+m[4,4]+5\times2\times7 \right\}$$

$$\left. (3,\frac{3}{2})+m[4,4]+5\times2\times7 \right\}$$

$$\left. (3,\frac{3}{2})+m[4,4]+5\times2\times7 \right\}$$

$$\left. (4,\frac{3}{2})+m[4,4]+5\times2\times7 \right\}$$

$$\left. (4,\frac{3}{2})+m[4,4]+5\times2\times7 \right\}$$

$$\left. (5,\frac{3}{2})+m[4,4]+5\times2\times7 \right\}$$

$$\left. (6,\frac{3}{2})+m[4,4]+5\times2\times7 \right\}$$

$$\left. (6,\frac{3}{2})+m[4,4]+3\times7 \right\}$$

m	1	2	3	4
١	0	120	88	158
2		0	48	104
3			0	84
4				0

S	1	2	3	4	
1		1	1	13	
2			2		3
3					3
4					

Matrix-chain Multiplication ... Example: DP for CMM

• The initial set of dimensions are <5, 4, 6, 2, 7>: we are multiplying A_1 (5x4) times A_2 (4x6) times A_3 (6x2) times A_4 (2x7). Optimal sequence is $(A_1(A_2A_3))A_4$.

Any Questions?

Dr. Anand Singh Jalal Professor

Email: asjalal@gla.ac.in