Ústav fyzikální elektroniky PřF MU

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 2

Zpracoval: Artem Gorodilov **Naměřeno:** 18. prosince 2023

Obor: Astrofyzika **Skupina:** Čt 8:00 **Testováno:**

Úloha č. 11: Interference a difrakce světla

 $T = 20.9 \, ^{\circ}\text{C}$

 $p=986~\mathrm{hPa}$

 $\varphi = 42 \%$

1. Zadání

Určit tloušťku tenké vrstvy pomocí Michelsonova interferometru.

Určit index lomu vzduchu pomocí Michelsonova interferometru.

Určit hustotu vrypů optické mřížky.

2. Teorie

2.1. Tloušťka tenké vrstvy

K určení tloušťky tenké vrstvy použijeme Michelsonův interferometr. Má zelený laser s vlnovou délkou $\lambda=531,2$ nm. Tento interferometr promítá interferenční obrazec na stínítku.

Když změníme sklon zrcadla interferometru, změníme fázový posun, čímž se změní interferenční obrazec. Toto měření je vyjádřeno různými hodnotami vzdálenosti dvou interferenčních paprsků x_1 a posunem interferenčních proužků x_2 . Situaci lze vidět na obrázku (1).

Z toho je možné vypočítat tloušťku tenké vrstvy podle vzorce:

$$t = \frac{x_2}{x_1} \frac{\lambda}{2} \tag{1}$$

2.2. Index lomu vzduchu

Pro měření indexu lomu vzduchu budu vzduch z kyvety se vzorkem odčerpávat pomocí kompresoru. Poté kompresor vypnu a počkám, až se tlak vyrovná. Vzhledem ke změně indexu lomu n v kyvetě se v důsledku rozdílu tlaků Δp změní interferenční obrazec.

Figure (1) Vzdalenost dvou interferenc
nich paprsku x_1 a posun interferenc
nich pruzku x_2

Nejprve se interferenční čáry posunou směrem nahoru, jak tlak klesá, a poté se posunou směrem dolů, jakmile se tlak vyrovná s atmosférickým tlakem p_{vz} .

Odtud zjistíme index lomu vzduchu n pomocí vzorce:

$$n_{vz} = 1 + \frac{N\lambda}{2d} \frac{p_{vz}}{\Delta p} \tag{2}$$

kde N je počet interferenčních proužků, λ je vlnová délka laseru a d je délka kyvety. Rozdíl tlaků Δp se bude rovnat:

$$\Delta p = p_{vz} - p_1 \tag{3}$$

kde p_1 je tlak pri odčerpávání vzduchu.

2.3. Hustota vrypů optické mřížky

Pro měření hustoty vtisku difrakční mřížky propusťme laser o vlnové délce $\lambda = 632.8$ nm (červený).

Na obrazovce se pak zobrazí difrakční obrazec. Situace je vidět na obrázku (2). Při znalosti poloh difrakčních maxim můžeme vzdálenosti jednotlivých vrypů na mřížce d zjistit podle vzorce:

$$d = m\lambda \frac{\sqrt{y_m^2 + x^2}}{y_m}$$
 , $m = 1, 2, 3, ...$ (4)

kde m je pořadí difrakčního maxima, y_m je poloha difrakčního maxima a x je vzdálenost do difrakčního obrazcu.

Polohy difrakčních maxim y_m jsou dány vztahem:

$$y_m = \frac{y_m' + y_m''}{2} \tag{5}$$

kde y'_m je poloha difrakčního maxima nalevo od středu difrakčního obrazce a y''_m je poloha difrakčního maxima napravo od středu difrakčního obrazce.

Pak hustotu vrypů optické mřížky N můžeme zjistit podle vzorce:

$$N = \frac{1}{d} \tag{6}$$

Figure (2) Schéma difrakční mřížky

3. Měření

3.1. Tloušťka tenké vrstvy

Pro měření tloušťky tenké vrstvy jsme změřili hodnoty x_1 a x_2 pro tři různé polohy zrcátka interferometru. Výsledky měření jsou uvedeny v tabulce (1).

Poté jsme změřili tloušťku tenké vrstvy pro každý stav systému podle vzorce (1). Výsledky měření jsou uvedeny v tabulce (2).

$t_1 [\mathrm{nm}]$	$t_2 [\mathrm{nm}]$	t_3 [nm]
65(3)	66(3)	68(3)
65(3)	66(3)	66(3)
64(4)	66(3)	66(3)
65(3)	67(4)	65(3)
64(3)	65(3)	69(3)

Table (1) Vypočtené hodnoty tloušťky tenké vrstvy pro tři různé polohy zrcátka interferometru

Odtud získáme hodnotu tloušťky tenké vrstvy t:

$$t = 66(2) \text{ nm}$$

3.2. Index lomu vzduchu

Po měření byly získány následující hodnoty p_{vz} , Δp , d a N:

$$p_{vz} = 98600 \text{ Pa}$$
 $\Delta p = 0.73 \ \frac{kg}{cm^2} = 71589 \text{ Pa}$ $d = 40 \text{ mm}$ $N = 23.0(5)$

Odtud zjistíme hodnoty indexu lomu světla pro vzduch podle vzorce (2):

$$n_{vz} = 1.000210(5)$$

3.3. Hustota vrypů optické mřížky

Pro měření hustoty vrypů optické mřížky jsme změřili polohy difrakčních maxim y'_1 , y''_1 a y'_2 , y''_2 pro 4 různých stavů soustavy pro mřížku nominální hustotou vrypů 300 mm⁻¹ a 600 mm⁻¹ resp.

Hodnoty y_1 a y_2 pak byly vypočteny podle vzorce (5) a hodnoty d pro každou z konfigurací systému byly vypočteny podle vzorce (4). Výsledky měření jsou uvedeny v tabulce (3) a (4).

poloha №1		poloh	ıa №2	poloha №3		
$x_{1,1} [px]$	$x_{1,2} [px]$	$x_{2,1} [px]$	$x_{2,2} [px]$	$x_{3,1} [px]$	$x_{3,2} [px]$	
103(1)	25(1)	105(1)	26(1)	110(1)	28(1)	
86(1)	21(1)	93(1)	23(1)	101(1)	25(1)	
75(1)	18(1)	104(1)	26(1)	109(1)	27(1)	
102(1)	25(1)	75(1)	19(1)	86(1)	21(1)	
91(1)	22(1)	90(1)	22(1)	93(1)	24(1)	

Table (2) Naměřené hodnoty x_1 a x_2 pro tři různé polohy zrcátka interferometru

x [cm]	y_1' [cm]	y_1'' [cm]	y_2' [cm]	y_2'' [cm]	y_1 [cm]	y_2 [cm]	$d_1 [nm]$	$d_2 [\mathrm{nm}]$
20.0(5)	3.70(5)	3.70(5)	8.00(5)	8.00(5)	3.70(4)	8.00(4)	3479(33)	3408(15)
29.0(5)	5.50(5)	5.50(5)	11.70(5)	11.70(5)	5.50(4)	11.70(4)	3396(22)	3383(10)
32.0(5)	6.10(5)	6.05(5)	12.90(5)	12.95(5)	6.075(35)	12.925(35)	3393(20)	3379(9)
37.5(5)	7.05(5)	7.05(5)	15.05(5)	15.05(5)	7.05(4)	15.05(4)	3425(17)	3398(8)

Table (3) Naměřené hodnoty y'_1 , y''_1 a y'_2 , y''_2 , y_1 , y_2 a d_1 , d_2 pro 4 různé vzdalení do difrakcního obrazce pro mřížku s hustotou vrypů 300 mm⁻¹

x [cm]	y_1' [cm]	y_1'' [cm]	y_2' [cm]	y_2'' [cm]	y_1 [cm]	y_2 [cm]	$d_1 [\mathrm{nm}]$	$d_2 [\mathrm{nm}]$
6.0(5)	2.30(5)	2.30(5)	7.10(5)	7.10(5)	2.30(4)	7.10(4)	1768(27)	1657(7)
7.0(5)	2.75(5)	2.75(5)	9.00(5)	9.00(5)	2.75(4)	9.00(4)	1731(22)	1603(5)
8.0(5)	3.50(5)	3.50(5)	10.00(5)	10.00(5)	3.50(4)	10.00(4)	1579(16)	1621(5)
9.5(5)	3.75(5)	3.75(5)	11.05(5)	11.05(5)	3.75(4)	11.05(4)	1723(16)	1669(4)

Table (4) Naměřené hodnoty y_1' , y_1'' a y_2' , y_2'' , y_1 , y_2 a d_1 , d_2 pro 4 různé vzdalení do difrakcního obrazce pro mřížku s hustotou vrypů 600 mm⁻¹

Odtud získáme hodnoty d_{300} a d_{600} :

$$d_{300} = (3408 \pm 20) \text{ nm}$$

 $d_{600} = (1669 \pm 40) \text{ nm}$

Odtud získáme hodnotu hustoty vrypů optické mřížky N_{300} a N_{600} :

$$N_{300} = (294 \pm 2) \text{ mm}^{-1}$$

 $N_{600} = (599 \pm 10) \text{ mm}^{-1}$

K výpočtu veličin a jejich nejistot byla použita knihovna Uncertinties pro Python: pypi.org/project/uncertainties. Kód je přiložen k protokolu.

4. Závěr

4.1. Tloušťka tenké vrstvy

Po meření byla získána hodnota tloušťky tenké vrstvy t=66(2) nm.

4.2. Index lomu vzduchu

Po měření byla získána hodnota indexu lomu vzduchu $n_{vz}=1.000210(5)$, což odpovídá nominální hodnotě $n_{vz}=1.000273$ resp.

4.3. Hustota vrypů optické mřížky

Po měření byly získány hodnoty $N_{300}=(294\pm2)~{\rm mm}^{-1}$ a $N_{600}=(599\pm10)~{\rm mm}^{-1}$, což odpovídá nominálním hodnotám $N_{300}=300~{\rm mm}^{-1}$ a $N_{600}=600~{\rm mm}^{-1}$ resp.

K výpočtu chyb byl použit následující kód:

```
#Importing the libraries
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import stats
from scipy.optimize import curve_fit
from uncertainties import *
from uncertainties umath import *
from uncertainties.umath import *
#Reading data
thick= pd.read_excel('data/thick.xlsx')
disp_300 = pd.read_excel('data/disp_300.xlsx')
disp_600 = pd.read_excel('data/disp_600.xlsx')
# Constants and values
lambda_1 = 531.2 #nm
lambda_2 = 632.8 #nm
\begin{array}{l} d = 0.04 \ \#m \\ N = ufloat(23\,,\ 0.5) \ \#number \ of \ fringes \\ p\_vz = 98600 \ \#Pa \\ delta\_p = 0.73 \ \#kg/cm^2 \end{array}
# Calculation of the thickness
x_1_1 = [
x_1_2 = x_2_1 =
x_2_2 =
x_{-3}_{-1} = []
x_{-3}_{-2} = []
for ii, ID in enumerate(thick['x_1_1']):
    x_1_1 .append(ufloat(thick['x_1_1'][ii], 1))
    x_1_2 .append(ufloat(thick['x_1_2'][ii], 1))
    x_2_1 .append(ufloat(thick['x_1_2'][ii], 1))
    x_2_2 .append(ufloat(thick['x_2_1'][ii], 1))
    x_3_1 .append(ufloat(thick['x_3_1'][ii], 1))
    x_3_2 .append(ufloat(thick['x_3_2'][ii], 1))
thick ['x.1.1'] = x.1.1
thick ['x.1.2'] = x.1.2
thick ['x.2.1'] = x.2.1
thick ['x.2.2'] = x.2.2
thick ['x.3.1'] = x.3.1
thick ['x.3.2'] = x.3.2
t-1-mean = ufloat(np.mean(thick['t-1'].apply(lambda x: x.nominal_value)), np.sqrt(np.std(thick['t-1'].apply(lambda x: x.nominal_value)) **2 + np.mean(thick['t-1'].apply(lambda x: x.std_dev) **2)))
t-2-mean = ufloat(np.mean(thick['t-2'].apply(lambda x: x.nominal_value)), np.sqrt(np.std(thick['t-2'].apply(lambda x: x.nominal_value)) **2 + np.mean(thick['t-2'].apply(lambda x: x.std_dev) **2)))
t-3-mean = ufloat(np.mean(thick['t-3'].apply(lambda x: x.nominal_value)), np.sqrt(np.std(thick['t-3'].apply(lambda x: x.nominal_value)) **2 + np.mean(thick['t-3'].apply(lambda x: x.std_dev) **2)))
t_{mean} = (t_1_{mean} + t_2_{mean} + t_3_{mean}) / 3
print('t_=', t_mean)
print (thick)
# Calculation of the refractive index
delta_p = delta_p * 98066.5 \#Pa
\mathbf{print}\,(\ '\,\mathrm{delta}_-\mathrm{p}\,\underline{\ }='\,,\ \mathrm{delta}_-\mathrm{p}\,)
n = 1 + (N*(lambda_1*10**(-9))*p_vz) / (2*d*delta_p)
print('n=', n)
# Calculation of the dencity
disp_300_x = []
disp_300_y11 = disp_300_y12 =
 disp_300_y21 =
disp_300_y21 = []
disp_300_y22 = []
for ii, ID in enumerate(disp_300['x']):
    disp_300_x.append(ufloat(disp_300['x'][ii], 0.05))
    disp_300_y11.append(ufloat(disp_300['y11'][ii], 0.05))
    disp_300_y12.append(ufloat(disp_300['y12'][ii], 0.05))
    disp_300_y21.append(ufloat(disp_300['y21'][ii], 0.05))
    disp_300_y22.append(ufloat(disp_300['y22'][ii], 0.05))
disp_300['x'] = disp_300_x
disp_300['y11'] = disp_300_y11
disp_300['y12'] = disp_300_y12
disp_300['y21'] = disp_300_y21
disp_300['y22'] = disp_300_y22
\begin{array}{l} {\rm disp.600.x} = [] \\ {\rm disp.600.y11} = [] \\ {\rm disp.600.y12} = [] \end{array}
```

```
\begin{array}{lll} {\rm disp.600.y21} &= & [\,] \\ {\rm disp.600.y22} &= & [\,] \end{array}
for ii, ID in enumerate(disp_600['x']):
    disp_600_x.append(ufloat(disp_600['x'][ii], 0.05))
    disp_600_y11.append(ufloat(disp_600['y11'][ii], 0.05))
    disp_600_y12.append(ufloat(disp_600['y12'][ii], 0.05))
    disp_600_y21.append(ufloat(disp_600['y21'][ii], 0.05))
    disp_600_y22.append(ufloat(disp_600['y22'][ii], 0.05))
disp_600['x'] = disp_600_x
disp_600['y11'] = disp_600_y11
disp_600['y12'] = disp_600_y12
disp_600['y21'] = disp_600_y21
disp_600['y22'] = disp_600_y22
 \begin{array}{l} {\rm disp.300\left[\;'y1\;'\right]\;=\;\left(\;{\rm disp.300\left[\;'y11\;'\right]\;+\;disp.300\left[\;'y12\;'\right]\right)\;/\;\;2} \\ {\rm disp.300\left[\;'y2\;'\right]\;=\;\left(\;{\rm disp.300\left[\;'y21\;'\right]\;+\;disp.300\left[\;'y22\;'\right]\right)\;/\;\;2} \end{array}
 disp_600['y1'] = (disp_600['y11'] + disp_600['y12']) / 2
disp_600['y2'] = (disp_600['y21'] + disp_600['y22']) / 2
disp_300['d_1'] = (1*lambda_2)* (((disp_300['y1']*10**(7))**2 + (disp_300['x']*10**(7))**2)**(1/2))/(disp_300['y1']*10**(7))
disp_300['d_2'] = (2*lambda_2)* (((disp_300['y2']*10**(7))**2 + (disp_300['x']*10**(7))**2)**(1/2))/(disp_300['y2']*10**(7))
\begin{array}{l} \operatorname{disp\_600\left['d\_1'\right]} = (1*lambda\_2)* \; \left( \left( \left(\operatorname{disp\_600\left['y1'\right]}*10**(7)\right) **2 \; + \; \left(\operatorname{disp\_600\left['x'\right]}*10**(7)\right) **2 \right) **(1/2) \right) / \left(\operatorname{disp\_600\left['y1'\right]}*10**(7)\right) \\ \operatorname{disp\_600\left['d\_2'\right]} = (2*lambda\_2)* \; \left( \left( \left(\operatorname{disp\_600\left['y2'\right]}*10**(7)\right) **2 \; + \; \left(\operatorname{disp\_600\left['x'\right]}*10**(7)\right) **2 \right) **(1/2) \right) / \left(\operatorname{disp\_600\left['y2'\right]}*10**(7)\right) \end{array}
  \begin{array}{lll} d_1-300\_mean = & ufloat (np.mean (disp\_300 ['d_1'].apply (lambda x: x.nominal\_value)), & np.sqrt (np.std (disp\_300 ['d_1'].apply (lambda x: x.nominal\_value))**2 + & np.mean (disp\_300 ['d_1'].apply (lambda x: x.nominal\_value)) & (disp\_300 ['d_1'].apply (lambda x: x.nominal\_val
d_2_300_mean = ufloat(np.mean(disp_300['d_2'].apply(lambda x: x.nominal_value)), np.sqrt(np.std(disp_300['d_2'].apply(lambda x: x.nominal_value))**2 + np.mean(disp_300['d_2'].apply(lambda x: x.std_dev)**2)))
                        std_dev)**2)))
                       d_1_600_mean
 d-2-600_mean = ufloat(np.mean(disp_600['d_2'].apply(lambda x: x.nominal_value)), np.sqrt(np.std(disp_600['d_2'].apply(lambda x: x.nominal_value))**2 + np.mean(disp_600['d_2'].apply(lambda x: x.std_dev)**2)))
d_{300}_mean = (d_{1300}_mean + d_{2300}_mean) / 2 d_{600}_mean = (d_{1600}_mean + d_{2600}_mean) / 2
 print('d_300_=', d_300_mean)
print('d_600_=', d_600_mean.nominal_value, '+-', d_600_mean.std_dev)
 N_{-300} = 1/d_{-300}_mean * 10**(6)

N_{-600} = 1/d_{-600}_mean * 10**(6)
 print('N_300=', N_300)
print('N_600=', N_600)
 print(disp_300)
print(disp_600)
```