Name of special distribution (X)	Properties	Range (R _X) and Parameters	PDF (it is not probability X=x) $f(x)$	CDF $F(x) = P(X \le x)$	Expected value $E(X)$	Variance Var(X)
Uniform distribution	 If all possible values of X are equally likely to occur And all values fall in the range [a, b] 	R_X : $[a, b]$ Parameters: a, b	$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & otherwise \end{cases}$	$F(x) = \begin{cases} 0 & x \le a \\ \frac{x-a}{b-a} & a \le x \le b \\ 1 & x \ge b \end{cases}$	$\frac{b+a}{2}$	$\frac{(b-a)^2}{12}$
Exponential distribution	 X represents the waiting time between Poisson distribution events X has property of being memoryless which means P(X ≥ x + x₀ X ≥ x₀) = P(X ≥ x) 	R_X : $[0, \infty)$ Parameters: λ	$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & otherwise \end{cases}$	$F(x) = 1 - e^{\{-\lambda x\}}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
Normal distribution	 When the pdf of X has a curve shape t-distribution is the normal distribution but wider (reflecting more uncertainty) 	R_X : $[-\infty, \infty)$ Parameters: μ, σ (and degrees of freedom for t-dist)	$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$	Use z-table, t- table, or R	μ	σ^2
Gamma distribution (Chi-squared distribution)	$ \begin{array}{c} \circ \ \text{Has two special cases: exponential} \\ \text{distribution } (\alpha=1) \ \text{and chisquared distribution } (\alpha=\frac{\nu}{2},\lambda=\frac{1}{2}) \\ \circ \ \text{Gamma function} \\ \circ \ \Gamma(\alpha)=(\alpha-1)\Gamma(\alpha-1) \\ \circ \ \Gamma(n)=(n-1)! \ \text{If pos integer} \\ \circ \ \Gamma(1/2)=\sqrt{\pi} \\ \end{array} $	R_X : $[0,\infty)$ Parameters: α,λ (Just ν for X^2)	$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)} \lambda^{\alpha} x^{\alpha - 1} e^{-\lambda x} \\ x \ge 0 \\ 0 & otherwise \end{cases}$	Use R or chi- squared table	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$