Conceptual Multiple Choice Questions: Radical Equations (Exercise 4.3)

Class 11 Mathematics (Chapter 4)

Prepared by ExpertGuy

MCQs

- **1.** The equation $3x^2 + 2x \sqrt{3x^2 + 2x 1} = 3$ is of:
 - (a) Type I
 - (b) Type II
 - (c) Type III
 - (d) Type IV
- **2.** For $3x^2 + 2x \sqrt{3x^2 + 2x 1} = 3$, the substitution is:
 - (a) $\sqrt{3x^2 + 2x 1} = y$
 - **(b)** $3x^2 + 2x = y$
 - (c) $\sqrt{3x^2 + 2x} = y$
 - (d) $x^2 = y$
- **3.** The solution set of $3x^2 + 2x \sqrt{3x^2 + 2x 1} = 3$ is:
 - (a) $\left\{-\frac{5}{3}, 1\right\}$
 - **(b)** $\left\{-1, \frac{1}{3}\right\}$
 - (c) $\left\{\frac{-1\pm\sqrt{7}}{3}\right\}$
 - (d) {0, 2}
- **4.** The equation $2x^2 \frac{x}{2} 7 = x 3\sqrt{2x^2 3x + 2}$ uses the substitution:
 - (a) $\sqrt{2x^2 3x + 2} = y$
 - **(b)** $2x^2 3x = y$
 - (c) $\sqrt{2x^2 3x} = y$
 - (d) x = y
- **5.** The solution set of $2x^2 \frac{x}{2} 7 = x 3\sqrt{2x^2 3x + 2}$ is:
 - (a) $\left\{-\frac{1}{2}, 2\right\}$
 - (b) $\left\{ \frac{3 \pm \sqrt{505}}{4} \right\}$
 - **(c)** {0, 1}
 - (d) $\{-1,3\}$
- **6.** The equation $\sqrt{2x+8} + \sqrt{x+5} = 7$ is of:

- (a) Type I
- (b) Type II
- (c) Type III
- (d) Type IV
- 7. The solution set of $\sqrt{2x+8} + \sqrt{x+5} = 7$ is:
 - (a) {4}
 - **(b)** {284}
 - (c) {4, 284}
 - (d) Ø
- **8.** For $\sqrt{3x+4} = 2 + \sqrt{2x-4}$, the first step is:
 - (a) Substitute $\sqrt{3x+4} = y$
 - (b) Square both sides
 - (c) Isolate $\sqrt{2x-4}$
 - (d) Factorize the equation
- **9.** The solution set of $\sqrt{3x+4}=2+\sqrt{2x-4}$ is:
 - (a) $\{4, 20\}$
 - **(b)** {4}
 - (c) {20}
 - (d) Ø
- **10.** The equation $\sqrt{x+7} + \sqrt{x+2} = \sqrt{6x+13}$ is of:
 - (a) Type I
 - (b) Type II
 - (c) Type III
 - (d) Type IV
- **11.** The solution set of $\sqrt{x+7} + \sqrt{x+2} = \sqrt{6x+13}$ is:
 - **(a)** {2}
 - (b) $\left\{-\frac{5}{3}\right\}$
 - (c) $\left\{2, -\frac{5}{3}\right\}$
 - (d) Ø
- **12.** For $\sqrt{x^2 + x + 1} \sqrt{x^2 + x 1} = 1$, the substitution is:
 - (a) $\sqrt{x^2 + x + 1} = a, \sqrt{x^2 + x 1} = b$
 - **(b)** $x^2 + x = y$
 - (c) $\sqrt{x^2 + x} = y$

(d)
$$x = y$$

- **13.** The solution set of $\sqrt{x^2 + x + 1} \sqrt{x^2 + x 1} = 1$ is:
 - (a) $\left\{\frac{-1\pm\sqrt{6}}{2}\right\}$
 - **(b)** $\{1, -1\}$
 - (c) {0,2}
 - (d) Ø
- **14.** The equation $\sqrt{x^2 + 2x 3} + \sqrt{x^2 + 7x 8} = \sqrt{5(x^2 + 3x 4)}$ uses:
 - (a) Substitution $x^2 = y$
 - (b) Factoring $\sqrt{x-1}$
 - (c) Squaring both sides directly
 - (d) Substituting x + 3 = y
- **15.** The solution set of $\sqrt{x^2 + 2x 3} + \sqrt{x^2 + 7x 8} = \sqrt{5(x^2 + 3x 4)}$ is:
 - (a) $\{-3,1\}$
 - **(b)** {1}
 - (c) $\{-3\}$
 - (d) Ø
- **16.** For $\sqrt{2x^2 5x 3} + 3\sqrt{2x + 1} = \sqrt{2x^2 + 25x + 12}$, the key step is:
 - (a) Factor $\sqrt{2x+1}$
 - (b) Substitute $2x^2 5x = y$
 - (c) Square both sides
 - (d) Substitute x = y
- **17.** The solution set of $\sqrt{2x^2 5x 3} + 3\sqrt{2x + 1} = \sqrt{2x^2 + 25x + 12}$ is:
 - (a) $\left\{-\frac{1}{2}, 4\right\}$
 - **(b)** {1,4}
 - (c) $\left\{-\frac{1}{2}\right\}$
 - (d) Ø
- **18.** The equation $(x + 4)(x + 1) = \sqrt{x^2 + 2x 15} + 3x + 31$ uses the substitution:
 - (a) $\sqrt{x^2 + 2x 15} = y$
 - **(b)** $x^2 + 2x = y$
 - (c) x + 4 = y
 - (d) x = y
- **19.** The solution set of $(x+4)(x+1) = \sqrt{x^2+2x-15} + 3x + 31$ is:
 - (a) $\{-1 \pm 4\sqrt{2}\}$

- **(b)** $\{-6,4\}$
- (c) {0,1}
- (d) Ø
- **20.** The solution set of $\sqrt{3x^2 2x + 9} + \sqrt{3x^2 2x 4} = 13$ is:
 - (a) $\left\{4, -\frac{10}{3}\right\}$
 - **(b)** {4}
 - (c) $\left\{-\frac{10}{3}\right\}$
 - (d) Ø

Answers and Explanations

1. Answer: a

Matches $l(ax^{2} + bx) + m\sqrt{ax^{2} + bx + c} = k$ (PDF p.240).

2. Answer: a

 $\sqrt{3x^2+2x-1}=y$ reduces to a quadratic in y (PDF p.241).

3. Answer: a

After checking, $\left\{-\frac{5}{3}, 1\right\}$ are valid; others are extraneous (PDF p.242).

4. Answer: a

 $\sqrt{2x^2 - 3x + 2} = y$ simplifies the equation (PDF p.243).

5. Answer: a

 $\left\{-\frac{1}{2},2\right\}$ satisfy; others are extraneous (PDF p.244).

6. Answer: b

Matches $\sqrt{x+a} + \sqrt{x+b} = \sqrt{x+c}$ (PDF p.240).

7. Answer: a

x = 4 satisfies; x = 284 is extraneous (PDF p.245).

8. Answer: c

Isolating $\sqrt{2x-4}$ leads to squaring (PDF p.246).

9. Answer: a

Both x = 4,20 satisfy the equation (PDF p.246).

10. Answer: b

Matches $\sqrt{x+a} + \sqrt{x+b} = \sqrt{x+c}$ (PDF p.240).

11. Answer: a

x=2 satisfies; $-\frac{5}{3}$ is extraneous (PDF p.247).

12. Answer: a

Use $a = \sqrt{x^2 + x + 1}$, $b = \sqrt{x^2 + x - 1}$ to solve (PDF p.248).

- 13. Answer: a $\left\{\frac{-1\pm\sqrt{6}}{2}\right\}$ are valid solutions (PDF p.248).
- **14. Answer: b** Factoring $\sqrt{x-1}$ simplifies the equation (PDF p.249).
- **15. Answer: a** $\{-3, 1\}$ satisfy after checking (PDF p.250).
- **16.** Answer: a Factor $\sqrt{2x+1}$ to simplify (PDF p.251).
- 17. Answer: a $\left\{-\frac{1}{2},4\right\}$ are valid solutions (PDF p.251).
- 18. Answer: a $\sqrt{x^2 + 2x 15} = y$ reduces to a quadratic (PDF p.253).
- 19. Answer: a $\{-1\pm4\sqrt{2}\}$ satisfy; others are extraneous (PDF p.254).
- **20.** Answer: a Both $4, -\frac{10}{3}$ satisfy the equation (PDF p.256).