V353

Das Relaxationsverhalten eines RC-Kreises

Kalina Toben Daniel Wall kalina.toben@tu-dortmund.de daniel.wall@tu-dortmund.de

Durchführung: 27.11.2018 Abgabe: 04.12.2018

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie					
2	Durchführung					
	2.1	Messreihe zur Bestimmung der Zeitkonstanten im RC-Kreis anhand des				
		Entladevorgangs	3			
	2.2	Messreihe zur Bestimmung der Spannungsamplitude des Kondensators im				
		RC-Kreis	3			
	2.3	Messreihe zur Bestimmung der Phasenverschiebung im RC-Kreis	3			
	2.4	Messreihe zur Bestätigung der Integratorfunktion des RC-Kreises	4			
3	Auswertung					
	3.1	Bestimmung der Konstanten durch Beobachtung des Entladevorgangs	4			
	3.2	Bestimmung der Konstanten durch die Frequenz	6			
	3.3	Bestimmung der Konstanten durch die Phasenverschiebung	8			
	3.4	RC-Kreis als Integrator	10			
4	Disk	xussion	12			
Lit	Literatur					

1 Theorie

[sample]

2 Durchführung

2.1 Messreihe zur Bestimmung der Zeitkonstanten im RC-Kreis anhand des Entladevorgangs

In der ersten Messreihe wird zur Bestimmung der Zeitkonstante ein Spannungsgenerator wie in Abbildung 1 dargestellt an das RC-Glied angeschlossen und eine Rechteckspannung angelegt. Mithilfe eines digitalen Oszilloskops und der Trigger-Funktion wird die abfallende Flanke dargestellt. Es werden logarithmisch 30 Frequenzen f im Bereich von 100 bis 10000 Hz eingestellt und mit der Cursor-Funktion die dazugehörige Kondensatorspannung $U_{\rm C}(t)$ festgehalten.

Abbildung 1: Messschaltung zur Bestimmung der Zeitkonstanten mittels Beobachtung des Entladevorgangs. [1, S. 6]

2.2 Messreihe zur Bestimmung der Spannungsamplitude des Kondensators im RC-Kreis

Für die zweite Messreihe wird eine Sinusspannung $U_0(t)$ angelegt und die Amplitude A der Kondensatorspannung $U_C(t)$ für dieselben Frequenzen f festgehalten.

2.3 Messreihe zur Bestimmung der Phasenverschiebung im RC-Kreis

In der dritten Messreihe wird die Phasenverschiebung ϕ zwischen der generierten Spannung $U_{\rm G}(t)$ und der Kondensatorspannung $U_{\rm C}(t)$ bestimmt. Hierzu wird die Schaltung so verändert, dass die generierte Spannung ebenfalls auf dem Oszilloskopen dargestellt werden kann (Abbildung 2) und die Signale werden übereinander symmetrisch zur t-Achse ausgelegt. Mithilfe der Cursor-Funktion wird nun der Abstand a zwischen den zugehörigen Nulldurchläufen gemessen (Abbildung 3), wobei die Periodendauer b durch die Frequenz f gegeben ist.

Abbildung 2: Messschaltung zur Bestimmung der Phasenverschiebung ϕ . [1, S. 7]

Abbildung 3: Messung der Phasenverschiebung zwischen zwei Spannungen mit dem Zweistrahloszilloskopen. [1, S. 7]

2.4 Messreihe zur Bestätigung der Integratorfunktion des RC-Kreises

Um die Integratorfunktion des RC-Kreises zu überprüfen, wird nun eine ausreichend hohe Frequenz f eingestellt und eine Rechteckspannung angelegt. Das Oszilloskop zeigt nun sowohl die angelegte als auch die integrierte Spannung an. Als zweites wird eine Dreieckspannung angelegt. Die letzte Einstellung ist eine Sinusspannung. Die Ergebnisse werden als Bilder gespeichert.

3 Auswertung

Im folgenden wird auf drei verschiedene Arten die Zeitkonstante RC bestimmt. Außerdem wird die Integration von drei Spannungen dargestellt.

3.1 Bestimmung der Konstanten durch Beobachtung des Entladevorgangs

Es werden bei einer angelegten Rechteckspannung die Spannung U_c und die zugehörige Zeit t gemessen. Für eine lineare Ausgleichsrechnung wird der Logarithmus der Spannung

berechnet, und dieser wird gegen
t aufgetragen. Alle Werte sind in Tabelle (1) aufgelistet. Der Wert für U_0 beträgt 18 V.

Der Ansatz der linearen Regression lautet

$$y = ax + b. (1)$$

Die Werte für a und b bestimmen sich folgendermaßen:

$$a = \frac{\overline{xy} - \overline{x} \cdot \overline{y}}{\overline{x^2} - \overline{x}^2},\tag{2}$$

$$b = \frac{\overline{x^2}\overline{y} - \overline{x}\overline{y} \cdot \overline{x}}{\overline{x^2} - \overline{x}^2}.$$
 (3)

Der Plot, die Parameter und die Fehler werden mit Python berechnet.

Abbildung 4: Lineare Ausgleichsrechnung zur Bestimmung von RC.

Um die Ausgleichsgerade zu bestimmen, wird Gleichung () entsprechend umgeformt:

$$\frac{U_c}{U_0} = e^{-\frac{t}{RC}}$$

$$\leftrightarrow ln(\frac{U_c}{U_0}) = -\frac{1}{RC}t.$$

Somit hat die Gerade folgende Gestalt:

$$ln(\frac{U_c}{U_0}) = \underbrace{-\frac{1}{RC}}_{Steigung a} t + b. \tag{4}$$

Daraus ergeben sich $a=(-824.913\pm20.909)s$ und $b=(3.123\pm0.616)\cdot10^{-2}$. Daraus folgt für RC:

$$RC = -\frac{1}{a} = (1.21 \pm 0.04) \cdot 10^{-3} s.$$

Tabelle 1: Daten für die Ausgleichsrechnung.

$t \cdot 10^{-3}/\mathrm{s}$	$U_c/{\rm V}$	$\ln(U_c/U_0)$
0.04	17.8	-0.011
0.08	17.6	-0.022
0.12	16.6	-0.081
0.16	16.4	-0.093
0.20	16.0	-0.118
0.24	15.2	-0.169
0.28	14.6	-0.209
0.32	14.2	-0.237
0.36	13.8	-0.266
0.40	13.4	-0.295
0.44	12.8	-0.341
0.48	12.6	-0.357

3.2 Bestimmung der Konstanten durch die Frequenz

Die für diese Methode gemessenen Daten finden sich in Tabelle (2). In einem halblogarithmischen Diagramm wird die Amplitude gegen die Frequenz aufgetragen.

Abbildung 5: Spannung in Abhängigkeit der Frequenz.

Diesmal hat die Geradengleichung folgende Gestalt

$$\frac{A(\omega)}{U_0} = \frac{1}{\sqrt{1 + \omega^2 R^2 C^2}},$$

was sich aus Gleichung () ergibt. U_0 beträgt hierbei 7.8 Volt. Da die Ampliude aus der Gleichung von der Kreisfrequenz abhängt, muss für die Ausgleichsrechnung noch ein Faktor 2π beachtet werden, auf Grund des Zusammenhangs

$$\omega = 2\pi f. \tag{5}$$

Somit wird der Graph durch

$$y = \frac{1}{\sqrt{1 + d^2(2\pi f)^2}}\tag{6}$$

beschrieben. Der Parameter lautet:

$$d = RC = (-9.256 \pm 0.785) \cdot 10^{-4} s.$$

Tabelle 2: Gemessene Amplituden und Phasenverschiebung bei unterschiedlicher Frequenz.

f/Hz	U/V	a/s	T/s^{-1}	ϕ/rad	f/Hz	U/V	a/s	T/s^{-1}	ϕ/rad
10	7.8	0.00156	0.1	0.098	600	1.8	0.00036	0.0017	1.35
20	9	0.00144	0.05	0.181	700	1.56	0.00031	0.0014	1.138
30	9.2	0.0014	0.033	0.264	800	1.38	0.00028	0.0013	1.39
40	9	0.00134	0.025	0.337	900	1.24	0.00025	0.0011	1.4
50	8.8	0.00132	0.02	0.415	950	1.2	0.00024	0.0011	1.43
60	8.4	0.0013	0.017	0.49	1000	1.12	0.00022	0.001	1.41
70	8.2	0.00126	0.014	0.554	2000	0.54	0.00012	0.0005	1.47
80	7.8	0.00122	0.013	0.613	3000	0.36	0.00008	0.0003	1.52
90	7.6	0.00119	0.011	0.67	4000	0.28	0.00006	0.0003	1.52
95	7.4	0.00117	0.011	0.698	5000	0.22	0.000048	0.002	1.52
100	7.12	0.00115	0.01	0.723	6000	0.18	0.00004	0.0002	1.54
200	4.72	0.00083	0.005	1.046	7000	0.16	0.000035	0.0001	1.52
300	3.4	0.00064	0.003	1.199	8000	0.14	0.00003	0.0001	1.5
400	2.64	0.0005	0.003	1.277	9000	0.12	0.000027	0.0001	1.55
500	2.16	0.00042	0.002	1.332	9500	0.12	0.000026	0.0001	1.53
10000	0.112	0.00002	0.0001	1.533					

Die Werte für ϕ wurden dabei mit Gleichung () berechnet.

3.3 Bestimmung der Konstanten durch die Phasenverschiebung

In diesem Auswertungsteil wird wie in 3.2 verfahren, nur dass die Phasenverschiebung gegen die Frequenz aufgetragen wird. Die dafür benötigten Werte sind in Tabelle (2) aufgelistet.

Aus Gleichung() ergibt sich der Ansatz für diesen Graphen:

$$y = \arctan(2\pi f d). \tag{7}$$

Abbildung 6: Phasenverschiebung in Abhängigkeit von f.

Die Zeitkonstante beträgt:

$$d = RC = (1.346 \pm 0.498) \cdot 10^{-3} s.$$

Die Relativamplitude U_c/U_0 wird gegen die Phasenverschiebung in einem Polarplot aufgetragen. Mit der Gleichung

$$\frac{A(f)}{U_0} = -\frac{sin\phi}{2\pi fRC}$$

kann eine Kosinus-Abhängigkeit hergeleitet werden, da

$$\frac{sin\phi}{cos\phi} = -\omega RC$$

gilt. Dies führt auf

$$\frac{A(f)}{U_0} = \cos\phi. \tag{8}$$

Die Kurve dazu wird mit Python berechnet.

Abbildung 7: Polarplot.

3.4 RC-Kreis als Integrator

Zuletzt wird geprüft, ob der RC-Kreis als Integrator arbeiten kann.

Abbildung 8: Integrierte Rechteckspannung.

Wie zu erkennen ist, ist die Integrierte einer Rechteckspannung eine Dreieckspannung.

Folgende konstane Funktion

$$f(x) = \begin{cases} U & 0 < x < a \\ U & a < x < 2a \end{cases}$$

liefert diese Stammfunktion:

$$F(x) = \begin{cases} Ux & 0 < x < a \\ -Ux & a < x < 2a. \end{cases}$$

Abbildung 9: Integrierte Dreieckspannung.

Bei einer Dreieckspannung ist eine quadratische Funktion die Integrierte. Die Funktion

$$f(x) = \begin{cases} Ux & 0 < x < a \\ -Ux & a < x < 2a \end{cases}$$

ergibt integriert:

$$F(x) = \begin{cases} \frac{1}{2} \cdot Ux^2 & 0 < x < a \\ -\frac{1}{2} \cdot Ux^2 & a < x < 2a. \end{cases}$$

Abbildung 10: Integrierte Sinusspannung.

Eine Kosinusspannung ist die Integrierte der Sinusspannung. Die Stammfunktion einer Sinusfunktion lautet

$$F(x) = -U \cdot \cos(x).$$

4 Diskussion

Die Zeitkonstanten, welche mit dem Entladevorgang ermittelt wurde und mit der Phasenverschiebung, ähneln sich sehr. Die Anpassungsfunktionen liegen nah an den Messwerten, weshalb diese Methode nicht allzu fehleranfällig war, bis auf systematische Fehler, wie ungenaues Ablesen der Werte auf dem Oszilloskop. Der mit der frequenzabhängigen Amplitude ermittelte Wert ist negativ, was physikalisch unlogisch ist, und weicht außerdem stark von den anderen Zeitkonstanten ab. Hier ist also von einem großen systematischen Fehler auszugehen. Die Messwerte liegen relativ weit ober- bzw. unterhalb der Ausgleichsgeraden, was dem oben Gesagten zustimmt. Desweiteren decken sich Polarplot und Messwerte nicht. Auch bei diesem Graphen wurde die Amplitude aufgetragen. Somit unterliegt die Messung der Amplituden starken Fehlern.

Die Integrierten der drei angelegten Spannungen, Dreiecks-, Rechtecks-, und Sinusspannung, entsprechen den erwarteten Spannungsformen. Somit dient der RC-Kreis als Integrator.

Literatur

[1] TU Dortmund. Anleitung zum Versuch 353, Das Relaxationsverhalten eines RC-Kreises. 30. Nov. 2018. URL: http://129.217.224.2/HOMEPAGE/PHYSIKER/BACHELOR/AP/SKRIPT/V353.pdf.