TESTE DA COMPARAÇÃO

Se $\sum_{k=1}^{\infty} a_k$ e $\sum_{k=1}^{\infty} b_k$ são séries de termos positivos, então:

Se $a_k \leq b_k$ para todo k e $\sum_{k=1}^{\infty} b_k$ for convergente $\Rightarrow \sum_{k=1}^{\infty} a_k$ é convergente.

Se $a_k \ge b_k$ para todo k e $\sum_{k=1}^{\infty} b_k$ for divergente $\Rightarrow \sum_{k=1}^{\infty} a_k$ é divergente.

Para séries semelhantes a p-série ou série geométrica utilizamos os testes de comparação.

TESTE DA COMPARAÇÃO NO LIMITE

Se $\sum_{k=1}^{\infty} a_k$ e $\sum_{k=1}^{\infty} b_k$ são séries de termos positivos e $\lim_{k\to\infty} \frac{a_k}{b_k} = L$, então:

Se $L>0, L\in\mathbb{R}$ (finito), ambas as séries convergem ou ambas as séries divergem.

Se $L=+\infty$ e $\sum_{k=1}^{\infty}b_k$ diverge, logo $\sum_{k=1}^{\infty}a_k$ diverge.

Se L=0 e $\sum_{k=1}^{\infty}b_k$ converge, logo $\sum_{k=1}^{\infty}a_k$ converge.

SÉRIE GEOMÉTRICA: $\sum_{k=0}^{+\infty} ar^k$, $a \neq 0$.

Converge se |r| < 1 e $\sum_{k=0}^{+\infty} a r^k = \frac{a}{1-r}$ Diverge se $|r| \geq 1$

P-SÉRIE: $\sum_{k=1}^{+\infty} \frac{1}{kp}$

Converge se p > 1Diverge se $p \le 1$

Séries numéricas

TESTE DA RAZÃO (CONVERGÊNCIA ABSOLUTA)

Se $\sum_{k=1}^{\infty} a_k$ for uma série com termos não nulos (envolvendo fatoriais ou potências

k-ésimas) e $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = L$, entãos

Se L < 1, a série converge absolutamente.

Se L > 1ou $L = +\infty$, a série diverge.

Se L=1, o teste é inconclusivo.

TESTE DA INTEGRAL

Se f é uma função contínua, positiva e decrescente em $[b,+\infty)$ e $a_k=f(k)$, para $k\geq b,b\in\mathbb{N}$, então

 $\int_b^\infty f(x) dx$ converge $\Rightarrow \sum_{k=1}^\infty a_k$ converge. $\int_b^\infty f(x) dx$ diverge $\Rightarrow \sum_{k=1}^\infty a_k$ diverge.

TESTE DA DIVERGÊNCIA

Se $\lim_{k \to \infty} a_k \neq 0$, então $\sum_{k=1}^{\infty} a_k$ diverge.

TESTE DAS SÉRIES ALTERNADAS

Se a série for da forma $\sum_{k=1}^{\infty} (-1)^{k-1} a_k \text{ ou } \sum_{k=1}^{\infty} (-1)^k a_k,$ a série converge se satisfizer as duas condições:

- $a_k \ge a_{k+1}$ para todo k
- $\bullet \quad \lim_{k\to\infty} a_k = 0$

Não esqueça das séries telescópicas. É possível calcular a soma destas séries.