Python Sets

• Introduction to Sets:

- Sets in Python are used to store unique values.
- Declared using curly braces {}.
 - Example: set_a = {1, 2, 3, 4, 5}.

• Key Features of Sets:

- **No Duplicates**: If duplicates are added, they are automatically removed.
 - Example: Adding another 5 to set_a still results in {1, 2, 3, 4, 5}.
- o Unordered: Elements in a set do not follow a specific order.
- Not Subscriptable: Sets do not support indexing, so attempting set_a[0] raises a
 TypeError .

• Basic Set Operations:

- o Add Items: Use .add(value) to add a single element to a set.
 - Example: set_a.add(6) results in {1, 2, 3, 4, 5, 6}.

o Remove Items:

- remove(value): Removes the specified element; raises an error if the element doesn't exist.
- .discard(value): Similar to .remove(), but does not raise an error for non-existent elements.
- Example: set_a.remove(2) or set_a.discard(2) results in {1, 3, 4, 5}.

Mathematical Operations with Sets:

Output Union:

- Combines elements from two sets, excluding duplicates.
- Methods: .union(set_b) or set_a | set_b.
- Example: For set_a = {1, 2, 3, 4, 5} and set_b = {4, 5, 6, 7, 8}, the result is {1, 2, 3, 4, 5, 6, 7, 8}.

Intersection:

- Finds common elements between two sets.
- Methods: .intersection(set_b) or set_a & set_b.
- Example: Result for set_a and set_b is {4, 5}.

o Difference:

- Returns elements in one set that are not in the other.
- Methods: .difference(set_b) or set_a set_b.
- Example: Result for set_a and set_b is {1, 2, 3}.

• Symmetric Difference:

- Returns elements in either set, but not in both.
- Methods: .symmetric_difference(set_b) or set_a ^ set_b .
- Example: Result for set_a and set_b is {1, 2, 3, 6, 7, 8}.

• Additional Notes:

- Sets do not maintain order, so elements may appear in different orders in the output.
- Unlike lists, sets cannot be accessed by index (e.g., set_a[0] raises a TypeError).
- Sets are suitable for operations requiring unique elements and mathematical operations like union or intersection.

• Conclusion:

- Sets are useful for working with unique and unordered data.
- They provide several methods for adding, removing, and performing mathematical operations efficiently.