JUGEND-H-TECHNIK

Heft 6 Juni 1980 1,20 M

ROBOTER Packen Zu

Populärwissenschaftlich technisches Jugendmagazin

»Gänseblümchen« aus Sömmerda Seite 404

INHALT

Juni 1980 Heft 6 28. Jahrgang

Plasma schneidet, schweißt und spritzt Metalle Seite 424

Erlebnisse unter Wasser Seite 428

Ro/Ro-Schiffe

Die Ladung rollt an Bord Seite 442

Fotos: JW-Bild/Glocke; Royé; Werkfoto; Zabel

- 402 Leserbriefe
- 404 Debüt für einen Mathematiker
- 409 Roboterverkettete Fertigungszelle
- 414 Aus Wissenschaft und Technik
- 416 Unser Interview:
 Dr.-Ing. Bernhard Kahn,
 Direktor des Instituts
 für Energetik
- 420 Steinobsterntemaschine

- 421 Olympia '80: Elektronisches Weitenmeßgerät
- 424 Plasmatechnik
- 428 Tauchsport-Erlebnisse
- 432 Strahltrainer "Albatros"
- 433 Ein Roboter lernt laufen (1)
- 439 JU + TE-Dokumentation zum FDJ-Studienjahr
- 442 Ro/Ro-Schiffe
- 447 Mikroorganismen industriell genutzt

- 450 Aktivitäten im Weltraum 1980
- 452 Der praktische Laser
- 456 Geschichte der Luftschiffe
- 461 MMM-Nachnutzung
- 463 Erfindertraining (11) 466 Rauschminderung
- 400 Kauschmingerung
- 470 Verkehrskaleidoskop
- 472 Starts von Raumflugkörpern 1979
- 473 Selbstbauanleitungen
- 476 Knobeleien

Gibt zu denken

Mich haben in Heft 3/1980 besonders die Beiträge "Neue S-Bahnzüge für unsere Hauptstadt" und "Der Tod aus der Retorte" interessiert. Der Beitrag über die Anfänge der chemischen Industrie in Deutschland gibt, so finde ich, doch ganz schön zu denken.

Knut Christiann 1603 Eichwalde

Aussagekräftig

Besonders aussagekräftig war der Beitrag "Feuertaufe" in Heft 2/1980. Interesse erweckt meiner Meinung nach die Darstelluna von Details in solchen Artikeln. Gut war das Herausstellen der Bedeutung der Waffen. Hierbei wurde nicht nur auf die Beanspruchung der Geräte eingegangen, sondern auch auf die Belastung der Unteroffiziersschüler. Vielleicht wäre es noch interessanter, wenn berichtet würde, wie der günstigste Schußsektor erreicht wird und wann. Man sollte neben dem Tag beim Gefechtsschießen auch mal einen "normalen" Ausbildungstag der Unteroffiziersschüler schildern.

Ausgezeichnet gefiel mir die zusammengefaßte Definition der Truppenluftabwehr.

Andreas Kröger 2600 Güstrow

Griffiges

Vielen Dank für den aufschlußreichen Beitrag in Heft 3/1980 über die neuen Berliner S-Bahnzüge.

Auf dem Foto des Innenraumes vermisse ich die Haltegriffe an den mittleren Sitzbänken. Diese haben sich besonders im Berufsverkehr bewährt und machen sich bei dem zu erwartenden Fahrverhalten der neuen Züge (starkes Anfahren und Bremsen) erforderlich. Ich hoffe, daß sie nicht aus gestalterischen Gründen weggelassen werden.

Hans-Jörg Bubner 1162 Berlin

Als das Foto entstand, war noch nicht alles komplett. Inzwischen sind die Wagen vollständig ausgerüstet — einschließlich Haltegriffe.

Gelegenheitsleser

Ich gehöre vom Alter her nicht mehr zur Jugend und lese JU-GEND + TECHNIK nur ab und zu.

Das Heft 3/1980 gefiel mir recht gut: "Integrierter Fertigungsabschnitt", das Interview mit dem Rektor der TH Leipzig, "Computer simulieren", "Erfindertraining" und die Dokumentation "Kombinate" haben mich am meisten interessiert.

Manfred Herzog 8355 Neustadt

Hinweise zum Gebrauchtkauf

Ich bin 16 Jahre alt und seit zwei Jahren begeisterter Leser von JUGEND + TECHNIK.

Könntet Ihr mal in einem der kommenden Hefte veröffentlichen, was alles beim Kauf eines gebrauchten Zweiradfahrzeuges zu beachten ist? Stefan Kahnt 7400 Altenbura

Was man beim Kauf eines gebrauchten Zweirades beachten sollte, ist ausführlich in unserem Heft 4/1977 dargelegt. Für neu hinzugekommene Leser wollen wir im "Kräderkarussell" des Heftes 7/1980 noch einmal die wichtigsten Hinweise dazu veröffentlichen.

Vielfältia

Ich möchte mich bei der Redaktion für die schönen und interessanten Beiträge bedanken. Besonders auch für die Vielfältigkeit der Farbfotos auf den IV. Umschlagseiten. Weil ich ein großer Motorsportfan bin, sind mir vor allem die Fotos der Veteranen-, Krad- und Autosalonserien ans Herz gewachsen. Helfried Thiele 6405 Schalkau

Typenbezeichnungen

7840 Senftenberg

Seit ungefähr einem Jahr bin ich begeisterter Leser von JUGEND + TECHNIK. Da ich mich sehr für Elektronik interessiere, versuche ich, die in Heft 10/1979 auf der Seite 794 veröffentlichte Schaltung des Alarmgerätes nachzubauen. Leider fehlen mir die genauen Typenbezeichnungen der Transistoren T1 – T3. Mit den Angaben "200 mW (β 50 ... 100)" konnte man mir in den Fachgeschäften nicht weiterhelfen. Heiko Paß

Wir empfehlen, für den angegebenen Bereich die gekennzeichneten Transistoren aus Bastlerbeuteln zu verwenden. Ansonsten lassen sich zum Bei-

Herausgeber: Zentralrat der FDJ

Verlag Junge Welt, Verlagsdirektor Manfred Rucht

Alle Rechte an den Veröffentlichungen beim Verlag; Auszüge nur mit voller Quellenangabe / Lizenz-Nr. 1224 Chefredakteur: Dipl.-Wirtsch. Frledbert Sammler stellv. Chefredakteur: Dipl.-Phys. Dietrich Pätzold Redaktionssekretär: Eiga Baganz Redakteure:

Dipl.-Kristallogr. Reinhardt Becker, Jürgen Eliwitz, Norbert Klotz, Dipl.-Journ. Peter Krämer,
Dipl.-Journ. Renate Sielaff,
Dipl.-Ing. Peter Springfeld
Fotoreporter/Bildredakteur:
Dipl.-Fotogr. Manfred Zielinskl
Gestaltung: Irene Fischer,
Dipl.-Gebr.-Graf. Heinz Jäger
Sekretariat: Maren Liebig

spiel auch die Typen SC 206 Wir empfehlen Dir, dazu unoder SC 207 einsetzen. sere Serie "Integrierte Schalt-

Bildschirmspiele

Ich habe gelesen, daß im Frankfurter Halbleiterwerk ein Steuergerät für Bildschirmspiele hergestellt wird und würde gern wissen, ab wann man dieses Gerät kaufen kann und wie teuer es sein wird. Außerdem interessiert mich, welche Spiele damit simuliert werden können und ob sich das Gerät an den Chromat 1060 anschließen läßt.

Torsten Trogisch 1600 Königs Wusterhausen

Das neuentwickelte Bildschirmspielgerät BSS 01 ermöglicht
die Schwarzweiß-Darstellung
der Spielarten Tennis, Fußball,
Squash und Perlota. Ballgeschwindigkeit, Schlägergröße
und Ablenkwinkel sind einstellbar.

Der Anschluß ist an jedes Fernsehgerät über die Antennenbuchse möglich.

Das Bildschirmspielgerät kostet 550 Mark und wird von größeren RFT-Fachfilialen zum Verkauf angeboten.

Für Anfänger

In Heft 12/1979 hat mich die Bauanleitung für den universellen NF-Vorverstärker mit integriertem Schaltkreis sehr interessiert. Leider habe ich keinerlei Erfahrung im Umgang mit integrierten Schaltkreisen. Bevor ich durch unsachgemäße Behandlung diese Bauelemente zerstöre, möchte ich doch erst mal in Fachbüchern nachschlagen. Könntet Ihr mir vielleicht einige Literaturtips geben?
Knut Becker 1195 Berlin

sere Serie "Integrierte Schaltkreise in der Hand des Amateurs" zu lesen. Sie wurde in den Heften 3/78, 5/78, 7/79, 1/80, 4/80 veröffentlicht. Weiterhin solltest Du Dir die Bücher "Das große Schaltkreis-Bastelbuch" und "Transistorund Schaltkreistechnik" besorgen. Beide wurden vom Militärverlag der DDR herausgegeben. Außerdem erscheint von diesem Verlag voraussichtlich im III. Quartal die überarbeitete und erweiterte Auflage von "Das große Radiobastelbuch". Es ist besonders für Anfänger geeignet. Denn in ihm werden Werkstattpraxis, Konstruktionstechnik, Schaltungen mit Transistoren, integrierte Schaltkreise und Röhren beschrieben.

Suche JU+TE-Jahrgänge 1957– 1978, mit Typensammlung. Stefan Kleissmantatis 3500 Stendal Parkstr. 8

Suche JU+TE 4/76 und 12/78. René Effenberger 3500 Stendal Arnimer Damm 102

Suche Autosalon- und Kradsalonbilder. Mario Czerwenka 3010 Magdeburg Loburger Weg 6

Suche JU+TE 1-7, 9/79, mit Typensammlung. Jens Jokisch 1156 Berlin Elli-Voigt-Str. 19

Suche JU+TE-Jahrgang 1979 und Heft 1/1980. Manfred Welsandt 8705 Ebersbach Hauptstr. 149

Suche JU+TE 11/63 und 1/76. Lothar Werner 8023 Dresden Kopernikusstr. 13

Suche JU+TE vor 4/79, biete die Hefte 5/79 und 6/79. Ronald Herrmann 1950 Neuruppin August-Fischer-Str. 10

Biete JU+TE-Hefte der Jahrgänge 1970–1979. H.-J. Horn 1140 Berlin Langhoffstr. 2

Biete JU+TE-Jahrgänge 1970 – 1979. K.-D. Scholz 5062 Erfurt Postfach 109

Biete alle JU+TE-Hefte ab Jahrgang 1963 (mit Typensammlung und Sonderheften). H.-J. Hildebrandt 4500 Dessau Joliot-Curie-Str. 20

Biete JU+TE-Jahrgänge ab 1970. Michael Moeschler 1615 Zeuthen Klement-Gottwald-Str. 43

Suche JU+TE früherer Jahrgänge bis Heft 9/78 und die Hefte 11, 12/79; 2/80. Stefan Bréum 3013 Magdeburg Sülldorfer Str. 1

Suche JU+TE-Jahrgänge 1960 — 1970 (nicht gebunden), oder nur Sammlungen "Autosalon" und "Kleine Typensammlung". Olaf Krüger 2730 Gadebusch Rud.-Breitscheid-Str. 13

Anschrift der Redaktion: 1026 Berlin, PSF 43 Sitz: Mauerstraße 39/40 Telefon: 22 33 427/428

Erscheinungs- und Bezugsweise: monatlich: Artikel-Nr. 60 614 (EDV) Gesamtherstellung: Berliner Druckerel Redaktionsbeirat:

Dipl.-Ing. W. Ausborn, Dr. oec. K.-P. Dittmar, Dipl.-Wirtsch. Ing. H. Doherr, Dr. oec. W. Haltinner, Dr. agr. G. Holzapfel, Dipl.-Ges.-Wiss. H. Kroszeck. Dipl.-Ing.-Ok, M. Kühn, Oberstudienrat E. A. Krüger, Ing. H. Lange, Dr.-Ing. R. Lange,

W. Lobahn, Dipl.-Ing. J. Mühlstädt, Dr. paed. G. Nitschke, Prof. Dr. sc. nat. H. Wolffgramm

Zeichnungen: Roland Jäger, Karl Liedtke

Redaktion: 23. April 1980

Auf der Zentralen MMM in Leipzig 1979: Besucher drängen sich, Minister nicken zufrieden, Medaillen werden verliehen. Ja, die Ein-

heitliche Druckerbaugruppe aus dem Büromaschinenwerk Sömmerda ist Spitze. Auf der Hannover Büromaschinenmesse 1979: Das Kombinat Robotron aus der DDR zeigt seine elektronische Schreibmaschine S 6001

– Ergebnis der Initiative vor allem der Jugend des Kombinats. Eines der Hauptbestandteile der Maschine: eben jene Einheitliche Druckerbaugruppe aus Sömmerda. Groß ist das Interesse der Fachwelt. Kauflustige aus aller Welt stehen Schlange. Aus den Federn der Westjournalisten fließen neben

sachlichen Feststellungen:

"... und das war eine echte Messesensation aus der DDR die .robotron S 6001' mit volkseigenem Typenschreibrad und Mikroprozessor, mer werden die ersten Diese Maschine ist von der Konzeption her nicht Schreibmaschine gelienur auf dem derzeitigen fert. Die Jugend des Stand der Entwicklung. sondern bietet auch eine wußte auch ohne west-Reihe zusätzlicher Funk- liche Nachhilfestunden. tionen", auch Gehässig- wo der Haken liegt. Das keiten: "die zeigen, daß Jugendobjekt war von auch in der DDR gedacht Anfang an einheitlich wird . . . der Haken: Es wird offenbar einige

Zeit vergehen, bis eine eigene Serienproduktion aufaebaut ist und die Qualität des Typenrades westlichen Maßstäben entspricht . . . " Sie haben sich verrechnet.

Schon in diesem Som-Tausend der neuartigen Kombinats Robotron auf Entwicklung und Produktion gerichtet.

vollbringen. Etwas, was seinen Namen bekannt macht. Die Experimentierstunden in Chemie, Physik und Biologie waren seine Sternstunden, Auch an ein paar Mathe-Olympiaden nahm er teil, aber die wahre Liebe wurde das nicht. So bewarb er sich zum Okonomiestudium. Und kam nicht an. Eine Welt schien zusammenzubrechen. Was nun?

Menschen, auf die er etwas aab - seine Eltern, ein Lehrer - rieten ihm mit guten Argumenten zu einem Mathematik-Studium, "Das ist ja so langweilig", will er damals gesagt haben. Und bewarb sich dennoch an der Technischen Hochschule Ilmenau, Fachrichtung Operationsforschung, "weil da die 'Mathe wenigstens nicht so theoretisch ist".

Was zuerst mehr ein Notnagel war, wurde später wieder ein Anlaß zum Träumen. Hans-Peter Erdmann sah sich im weißen Kittel durch ein großes Rechenzentrum schweben und die kompliziertesten Dinge für eine elektronische Datenverarbeitungsanlage aufbereiten.

An der Entwicklung der Einheitlichen Druckerbaugruppe entscheidend beteiligt: der MMM-Themenleiter Klaus Vanderheyden (links) und Abteilungsleiter Gerhard Rödel (Mitte).

Diese Schreibwalze aus Metall wurde in Druckern älterer Bauart noch als Typenträger verwendet. Das Typenschreibrad aus Plast ersetzt sie. Der Plast wird aus einheimischen Rohstoffen hergestellt.

?š=ž;:9876543210/.-,+*)('

?š=ž;:9876543210/,-,+*)(1

Was ihm niemals in seinen Träumen einkam: Ausgerechnet als Mathematiker in einem großen Büromaschinenwerk zu arbeiten. Aber genau das macht er heute. Doch er hat nun nicht etwa seine Träume aufgegeben oder sich voller Groll in sein Schneckenhaus zurückgezogen. Ging auch gar nicht, denn "die Herausforderung war hier so stark, daß man nicht ausbrechen konnte, sondern Leistung zeigen mußte".

Mikroprozessoren in der Bürotechnik

- das ist heute seine Welt. Um die Elektronik richtig zu programmieren, muß man in der Lage sein, Anforderungen und technische Möglichkeiten miteinander zu verbinden. Doch damit nicht genua. Als Mitarbeiter Entwicklungsabteilung beschritt Hans-Peter nicht nur technisches Neuland, sondern wurde gleich noch der Leiter eines großen Jugendkollektivs, das den Auftrag bekam, in kürzester Zeit eine Druckerbaugruppe nach neuesten technischen und technologischen Gesichtspunkten zu entwickeln und in die Produktion zu überführen. Ein einheitliches Jugendobjekt von der Entwicklung bis zur Produktion - das war neu im Betrieb. Neu war für den 26jährigen Absolventen Hans-Peter Erdmann aber noch viel mehr: als Neuer in einem Kollektiv erfahrener Hasen klar zu kommen: sein eigenes Wissen aus dem Studium aufzubereiten und einzusetzen, aus der Investition etwas zu machen; verantwortlich zu sein für ein Riesenprojekt, von dessen technischer Idee und technischer Ausführung bis zu ökonomischen Kennziffern, effektiven Produktionstechnologien, Termine zu halten, Berichte zu geben, auf Ausstellungen aufzutreten. Und als Leiter eines 36köpfigen Kollektivs - aus verschiedenen Abteilungen des Betriebes zusammengesetzt - allen ein Optimum an Zeit und Schöpfertum zu organisieren. Außer-

Ein Beispiel für die Mosaikschrift. Deutlich ist zu erkennen, daß sie aus Abdrücken feinster Nadeln gebildet wird. dem kam dazu: Das Projekt war ein überbetriebliches Jugendobjekt geworden, da geplant war, die Einheitliche Druckerbaugruppe zuerst in die parallel entwickelte elektronische Schreibmaschine S 6001 des VEB OPTI-MA Erfurt — ebenso wie das Büromaschinenwerk Sömmerda ein Betrieb des Kombinats Robotron — einzubauen.

Eine schwierige Sache

Doch wer Spitzenleistungen im Visier hat, kann nicht auf alten Gleisen fahren, auf denen man vielleicht mancherorts heute noch ein neues Produkt entwickelt und danach erst weitersieht, wer es haben will und wie es produziert wird. Da wäre Zeitverlust sozusagen schon eingeplant. Erich Honecker sagte dazu auf dem 11. Plenum: "Vor allem muß es gelingen, Forschungsarbeiten rascher in die Produktion zu überführen, Gerade dieser Prozeß, in dem der Anteil von Spitzenprodukten in der Großproduktion wächst und veraltete Erzeugnisse abgelöst werden, gibt den Ausschlag für den volkswirtschaftlichen Effekt des wissenschaftlichtechnischen Fortschritts." Gleichzeitig forderte er "...schon von der Aufgabenstellung her eine Atmosphäre des Wettstreits um höchste schöpferische Leistungen zu schaffen". Und diese Atmosphäre wird erreicht - das Sömmerdaer Beispiel belegt es -, wenn "die Aufgabe technisch reizt, der Ehrgeiz angestachelt, ein Paukenschlag verlangt wird", wie es Hans-Peter Erdmann formulierte.

Das Büromaschinenwerk Sömmerda

produziert u. a. Fakturiermaschinen, Datenausgabegeräte, Kleindrucker für verschiedene Zwecke. Die dafür gebräuchlichen Druckwerke haben als wichtigsten Teil einen Drucker, durch den das Schriftbild aus den Anschlägen verschiedener Nadeln zusammengesetzt wird. "Mosaikschrift" lautet dafür die Fachbezeichnung. An den Druckwerken ist relativ viel Mechanik, die aber schon elektronisch gesteuert wird, wobei der Datenträger ein Lochstreifen ist.

Das Büromaschinenwerk OPTIMA Erfurt stellt seit Jahren neben an-Schreibmaschinen Auch Schreibmaschinen geben Schriftzüge wieder, nur verwenhier det man geschlossene Schriftzeichen, In einer handelsüblichen Schreibmaschine fallen die zahllosen mechanischen Teile auf, deren Herstellung große Präzision verlangt. Bei Schreibmaschinen mit einer Kugel als Typenträger ist die Anzahl der mechanischen Teile schon wesentlich geringer, die höhere Schreibgeschwindigkeit aber durch auftretende Fliehkräfte begrenzt. Einen solchen Kugelkopf fertigt man aus Edelstahl.

Also mußte eine neuartige technische Lösung her, die gleichzeitig servicefreundlich ist und einen hohen Bedienkomfort bietet. Das ist nur mit der Mikroelektronik möglich. Die Erfahrungen beim Bau von Druckern mit denen bei der Fertigung von Schreibmaschinen zu vereinen das war die Ausgangsüberlegung der Leitung des Kombinats Robotron, die die Entwicklung der Einheitlichen Druckerbaugruppe der Jugend übertrug. "Wir haben immer unter Dampf gestanden", formulierte Hans-Peter Erdmann. "Von der staatlichen Leitung, die nicht nur ein Spitzenerzeugnis zum Termin, sondern auch einen erheblichen Effektivitätsgewinn bei der Fertigung forderte, über die FDJ-Leitung, die aufrechnete, daß das Büromaschinenwerk Sömmerda schon eineinhalb Jahre auf der Zentralen MMM nur Zaungast war, bis zu den Kollegen der Produktion, die ein ungewöhnlich großes Interesse an der modernen Baugruppe zeigten."

Der Anfang

war äußerst schwer. "Mit so einem neuen Erzeugnis ist es wie

mit einem Eisberg. Ein Siebentel der Mühe und des Aufwandes ist zu sehen." Der MMM-Themenleiter Klaus Vanderheyden versucht mit diesem Vergleich, die Arbeit des Jugendkollektivs zu charakterisieren. Sie erinnern sich an Weihnachten 1978. Ein Testmodell war gerade fertig geworden, einige Tage vor dem Fest. Ein Fest sollte der Versuchsbetrieb werden - doch es ging schief, Hans-Peter Erdmann: "Ein mißlungener Versuch, und dann so mir nichts dir nichts nach Hause untern Weihnachtsbaum? Nein. Wir saßen im Betrieb. Sehr viele Kollegen waren da, manchen holten wir von zu Hause. Wir haben immer wieder umgestellt. ausprobiert, verworfen, wieder angefangen. Und schließlich lief das Testmodell."

Die große Schwierigkeit war, das Typenschreibrad richtig zu bewegen, Während bei einer herkömmlichen Schreibmaschine der Wagen bewegt wird, verändert bei der Einheitlichen Druckerbaugruppe das federleichte. Plast gefertigte Typenschreibrad seine Position. Und zwar um zwei Achsen: Einmal rotiert es um die eigene Achse, um den jeweils benötigten Buchstaben in die Anschlagstellung zu bringen, zum anderen wird das Schreibrad vertikal geführt, damit die Zeile entsteht. Die Positionierung erfolgt durch vier Schrittmotoren, die von mikroelektronischen Baugruppen gesteuert werden, "Mich haben zwei Sachen begeistert", bilanziert Hans-Peter, einen, wenn die Technik das macht, was man von ihr will, und zum anderen, daß ich nicht nur das "Gehirn" gemacht habe, sondern als Leiter auch für die ganze Anlage verantwortlich war."

Um die Einheitliche Druckerbaugruppe, produzieren zu können, erwiesen sich die Schrittmotoren als der "Flaschenhals". Die benötigten Typen werden in der DDR nicht hergestellt, und die Suche nach einem Kooperationspartner hatte schon viel Zeit ge"Gänseblümchen" nennen die Sömmerdaer ihr Typenrad aus Plast. Es ist leicht in der Baugruppe auszuwechseln, so daß unterschiedliche Schriften und Schrifttypen verwendet werden können. Die Federn des "Gänseblümchens" müssen etwa eine Million Anschläge aushalten. Fotos: Hein

Noch produziert die Jugendbrigade "Artur Becker" Seriendrucker mit einem Mosaikschreibwerk. In Wenigen Wochen schon übernehmen sie als Jugendobjekt die Fertigung der Einheitlichen Druckerbaugruppe. Ulrich Ziernberg am Meßplatz. Der Drucker hat etwa 800 Einzelteile die Einheitliche Druckerbaugruppe nur noch 250. Damit ist ein erheblicher Aufwand an Fertigung - die exakte Justage und Paßgenauigkeit vorausgesetzt entfallen.

kostet. Die Werkzeugmacher und Elektromechaniker vom Musterbau – Mitglieder des Jugendkollektivs – sagten es schließlich ganz deutlich: "Wir können uns nicht Hilfe von außen holen, solange wir noch selbst Reserven haben." Sie alle wußten, was für einen Knüller sie da auf der Pfanne haben. Doch kommt der ökonomisch nur zum Tragen, wenn das Spitzenprodukt auch verkauft werden kann. Nun haben sie sich selbst einem Zeit-

druck unterworfen bei der Entwicklung, denn an einer elektronischen Schreibmaschine wird in vielen Ländern gearbeitet. Deshalb nahmen sie nochmals die Kräfte zusammen und entwickelten gleichzeitig mit der Vorbereitung für die Produktion der Einheitlichen Druckerbaugruppe eine Schrittmotorenfertigung. Welch hoher Forderung an die Qualität sie sich da unterworfen hatten, macht deutlich, daß die ganze Baugruppe nicht arbeiten kann,

wenn nur einer der Schrittmotoren ausfällt. "Wir waren optimistisch. Für die Herstellung von Elektromotoren haben wir eine Tradition", erläutert Peter Zeißler aus dem Musterbau.

Zwei Jahre erst

hat Hans-Peter Erdmann sein Diplom als Mathematiker in der Tasche. In dieser Zeit im VEB Büromaschinenwerk Sömmerda hat sich sein Kindheitstraum erfüllt: Er hat Großes vollbracht, ist über sich hinausgewachsen. Für die Einheitliche Druckerbaugruppe standen Ende 1979 neun Patente zu Buche, und das Jugendkollektiv wird bald — mit Aufnahme der Produktion — seine Aufgabe erfüllt haben.

"Hans-Peter ist irgendwie anders geworden, reifer, zielgerichteter, konsequenter", sagen seine Kollegen. Er ist gewachsen, indem er über die Enge seines Fachgebiets hinaus sich um die Steigerung der Arbeitsproduktivität sorgte, sich als Jugendkollektivleiter nicht eher zufrieden gab, bis die Überleitung der Einheitlichen Druckerbaugruppe in die Produktion mit deutlichen Einsparungen von Arbeitszeit, Kosten, Material und Energie verbunden war.

Daß ausgerechnet ein Mann aus der Entwicklungsabteilung Leiter des Projekts wurde, ist in Sömmerda eine lang geübte Praxis und kein Einzelfall. Gerade die Initiative der jungen Absolventen von Hoch- und Fachschulen wird hier gefordert, gefördert und genutzt.

"Ich fühle mich wohl hier, und Stoff für Neues sehe ich noch mehr als genug", sagt Hans-Peter. Attraktive Themen für die MMM muß es wohl genügend geben, denn schon für die 80er haben die Sömmerdaer wieder ein Spitzenexponat. Ohne Hans-Peter, denn der ist noch ausgelastet mit der Überleitung der Einheitlichen Druckerbaugruppe in die Produktion. Harry Radke

Der Roboter greift nach einem Werkstück, nimmt es auf, führt es zum Spannfutter der Drehmaschine. Völlig automatisch wird das Werkstück in die Drehmaschine eingespannt. Der Roboter zieht seine Stahlhand aus dem Arbeitsbereich der Maschine zurück. Die Spritzschutztür der Drehmaschine schließt sich automatisch. Der Drehvorgang beginnt. Wenn der Roboter jetzt nicht gerade von der zweiten Drehmaschine aufgerufen wird, ist Zeit für eine kurze Verschnaufpause. Zeit auch für den Zuschauer, sich einmal vom Robbi abzuwenden, sich einfach mal umzudrehen.

In diesem Moment steht man mann direkt vor dem Steuerschrank der Drehmaschine. Lochbänder und "rasende" Leuchtziffern erinnern mehr an ein EDV-Zentrum als an eine Fertigungsstätte des Maschinenbaus. Aber es ist ja auch beides.

Angezogen vom "Zahlenwettlauf", sucht man nach einer Erklärung und wird spätestens dann fasziniert, wenn man erfährt, daß diese "rasenden" Ziffern etwas sichtbar machen, was bisher optisch nicht zu verfolgen war: Die Ziffern zeigen die Materialabtragung vom Werkstück bis auf 1 µm genau an. Das ist Alltag im Drehmaschinenwerk Leipzig — ein kleiner Ausschnitt des komplexen Geschehens im automatisierten Vorbearbeitungszentrum. Uber die Realisierungsphase dieses komplexen Rationalisierungsvorhabens berichteten wir im Aprilheft. Heute gibt unser Autor Jürgen Kleine einen Einblick in den technologischen Aufbau von diesem

SCHRITT zur automatisierten

Die Roboterhand kann bis zum Maschinenfutter der Drehmaschine ausfahren. Der Einspannvorgang erfolgt völlig automatisch.

Bevor Robbi zupackt

Der Industrieroboter zwischen den beiden numerisch gesteuerten Drehmaschinen ist eindeutig optischer und technischer Mittelpunkt für jeden, der die neue Halle des Vorbearbeitungszentrums betritt. Doch der Rationalisierungsschub, der im Leipziger Drehmaschinenwerk durch dieses Initiativvorhaben erzielt wurde. ist nicht nur durch den Einsatz des Industrieroboters begründet. Ausschlaggebend war die durchgängige komplexe Rationalisierung des ganzen technologischen Ablaufs. Gehen wir diesem Ablauf nach:

Der Portaldrehkran im Stahllager

Unser Grundmaterial (Walz- und Schiedematerial) wird sowohl mit Waggons als auch mit Lastkraftwagen 🗓 angeliefert. Das Walzmaterialfreilager hat Gleis-Straßenanschluß. beim Entladen zeigt sich Ungewöhnliches: Die Umschlagarbeiten auf unserem Freilager werden mit einem Portaldrehkran ausgeführt. Der Einsatz eines Portaldrehkrans auf einem Freilager in der metallverarbeitenden Industrie der DDR ist nach unserem Wissen bisher einmalia. Mit seiner Spannweite von 24 m und seiner maximalen Traakraft von 5000 kNm kann er alle anfallenden Umschlagarbeiten auf der 90 m langen und 48 m breiten Lagerfläche verrichten. Nach bekannten Technologien wären für diese Lagerfläche zwei Brükkenkrane erforderlich. So konnten wir einen zweiten Kran mit entsprechenden Kranbahn und die dafür notwendige Bedienkraft einsparen. Das Stangenmaterial, das im Freilager in Lagerboxen für Langgut lagert, wird mit dem Portalkran auf die

Magaziniereinrichtung einer Materialrollbahn übgelegt. Über die Materialrollbahnen gelangt das Stangenmaterial zu den 3 Hochleistungs-Kaltkreissäge-Automaten, wobei einer auch in unmittelbarer Nähe des roboterverketteten Vordrehabschnitts aufgestellt ist. Entsprechend der geplanten Positionen und des Materialbedarfs werden die Stangen in der benötigten Reihenfolge auf die Magaziniereinrichtung bereitgelegt.

Die Magaziniereinrichtung kann maximal 11 Materialstangen aufnehmen, das ist die Kapazität einer ganzen Schicht.

Die Materialrollbahn haben wir mit der automatischen Zuführeinrichtung der Säge gekoppelt. Dadurch können wir auf eine Besetzung des Freilagers in der 3. Schicht verzichten.

Materialrollbahn und dazugehö-Magaziniereinrichtungen Eigenentwicklungen des Drehmaschinenwerkes. Sie wurden im eigenen Rationalisierungsmittelbau gefertigt. Das Magazin wurde als Flachmagazin ausgelegt. Es kann deshalb neben Rundmaterial auch Profilstähle speichern. Die Materialrollbahn mit der Magaziniereinrichtung zeigen höchsten technischen Entwicklungsstand, and

Effektive Lagertechnik in der Halle

Ein Teil des Walzmaterials, vor allem Edelstähle, lagert in der neuen Halle. Das Material wird nachgenutzte, patentierte Langgutpaletten eingelegt, Mit 4-Wege-Gabelstapler werden diese Langgutpaletten in ein Hochregallager umgeschlagen. Auch diesem Innenlager ist ein Hochleistungs-Kaltkreissäge-Automat mit Materialrollbahn und Flachmagaziniereinrichtung gegliedert. Die abgesägten Teile, Rohlinge für die Drehbearbeitung, werden in Paletten eingelegt. Mit einem 5-t-Brückenkran (in der Halle sind insgesamt 3 Stück davon eingesetzt) werden diese beladenen Paletten zu ihrem jeweils nächsten Arbeitsplatz befördert.

Robbis Arbeitsplatz

In unserem Vorbearbeitungszentrum müssen ungefähr 330 verschiedene Positionen rotationssymmetrischer Teile gesägt, vorgedreht und gebohrt werden. So konnten und wollten wir uns nicht mehr von unserer zentralen Idee lösen, zwei numerisch gesteuerte Drehmaschinen mit einem gemeinsamen Industrieroboter zu verketten. Der Roboter muß also beide Maschinen be-

dienen. Trotzdem haben wir eine asynchrone Verkettung aufgebaut, so daß jede Drehmaschine unabhängig von der anderen eine ganz andere Teileposition abarbeiten kann. So ist es möglich, daß die Rohteile von beiden Seiten auf der jeweiligen Drehmaschine bearbeitet werden können, ohne eine technologische und zeitliche Abstimmung der Bearbeitungszyklen, auf den Drehmaschinen vornehmen zu

müssen. Auf der gleichen Ma-

schine wird das Drehteil Iosweise

(Los: bestimmte Teilanzahl) erst

hintereinander auf der ersten

Seite und dann in gleicher

Weise auf der anderen Seite be-

arbeitet.

Die Bearbeitung zweier unterschiedlicher Teilepositionen mit gegebenenfalls auch unterschiedlichen Losgrößen auf beiden Drehmaschinen bedingt einen unterschiedlichen Abschluß der beiden Bearbeitungszyklen. Das trifft auch auf den Arbeitszyklus bezogen auf das Einzelteil zu. Notwendigerweise müßte damit bei Roboterbedienung bis zum Abschluß des längeren Bearbeitungszyklusses die Drehmaschine mit dem kürzeren Bearbeitungszyklus unproduktive Wartezeiten auf sich nehmen. Wir haben dieses Problem durch ein asynchrones Bedienen der Maschinen durch den Industrieroboter gelöst: Bei gleichzeitigem Roboterbetrieb an einer Maschine kann der Bediener die andere Maschine einrichten. Der Asynchronbetrieb wird dadurch erreicht, daß der Roboter prinzipiell nur die Drehmaschine bedient, die ihn nach Beendigung des Programmzyklus, also nach Beendigung der Dreh- bzw. Bohrbearbeitung, zur Bedienung aufruft. Der Roboter bedient die Drehmaschinen also nicht in einer vorgegebenen Reihenfolge oder einem vorgegebenen Zeitintervall.

Sicherheitstechnik

Eine Reihe von Schutzmaßnahmen verhindern, daß der Bediener durch nicht beabsichtigte Roboterbewegungen gefährdet wird. Diese Schutzeinrichtungen schließen prinzipiell das Betreten des Gesamtmaschinensystems bei laufendem Arbeitszyklus beider Maschinen aus. Schutzgitter mit Schutztüren grenzen den gesamten Arbeitsbereich des Roboters nach außen ab. Das Sicherheitssystem ist im Drehmaschinenwerk entwickelt und im eigenen Rationalisierungsmittelbau hergestellt worden. Die Steuerungselemente zur Auslösung des automatischen Die Roboterhand im Rücken ist natürlich nur möglich, wenn das ganze System abgeschaltet ist. Deutlich erkennbar ist aber, daß ein Systembediener ausreichend Platz zum Einrichten der Drehmaschine hat.

Arbeitszyklus (Teaching-Box und Bedientafel der Anpaßsteuerung) sind außerhalb des Roboterarbeitsbereichs Installiert. Generell wird vom Bedienpult der Anpaßsteuerung, die die Steuerung zwischen Industrieroboter und den beiden NC-Drehmaschinen realisiert. die Inbetriebnahme und. Außerbetriebsetzung einzelnen Maschinen und des Roboters vorgenommen. In diesem Bedienpult sind Not-Aus-Taster für die beiden Maschinen und für den Roboter sowie für das aesamte System im Havariefall installiert. Zusätzlich sind Not-Aus-Taster an den Bedientafeln der beiden NC-Drehmaschinen und an der Bedientafel des Roboters untergebracht.

Schutztüren und Schutzgitter sind im Automatikbetrieb beider Maschinen zwangsverriegelt. Ein Betreten des Roboterarbeitsbereichs ist dann ausgeschlossen. Nur wenn eine Maschine neu eingerichtet oder umgerüstet werden muß, obwohl die andere Maschine noch arbeitet, kann der Bediener den Arbeitsbereich der nicht mehr arbeitenden Drehmaschine betreten. Vier Schutzmaßnahmen gewährleisten auch in diesem Fall seine Sicherheit: 1. Der Bediener schaltet auf der Bedientafel der Anpaßsteuerung den Betriebszustand "Einrichten" ein. Die Zwangsverriegelung der Schutztüren und Schutzgitter sind jetzt aufgehoben. Der Signalaustausch zwischen der entsprechenden Drehmaschine und dem Roboter wird unterbrochen.

außerhalb terialrollbahn ziniereinrich-Drehmaschinenwerker entwickelt gebaut.

Höchster technischer Entwicklungsstand auch der Halle: Die Mamit Flachmagatung haben die selbst und 2. Von der Maschine kann bei der Betriebsart "Einrichten" kein Bedienaufruf an den Roboter erfolgen.

3. Sollte durch Programmfehler oder Steuerungshavarie doch ein Einschwenken des Roboterarmes in den freigeschalteten Betrieb einsetzen, wird über eine am Roboter installierte Schwenkbereichsbegrenzung durch Endschalter das Not-Aus für den Industrieroboter ausgelöst.

4. Der Umschalter "Automatik – Einrichten" ist als Schlüsselschalter gestaltet. Der Schlüssel zum Umschalten ist generell beim Bediener.

Rohteile höchster Präzision

Eine so hohe Automatisierung hat hohe Genauigkeitsanforderungen - und das schon beim ersten Bearbeitungsschritt; dem Zusägen der Rohteile. Denn durch das Sägen wird unmittelbar bestimmt, welche Koordinaten die einzelnen übereinander gestapelten Rohteile auf den selbstaebauten Spezialpaletten einnehmen werden. Diese Teilekoordinaten müssen sich entsprechend der programmierten Zugriffskoordinaten der Roboterhand in bestimmten Toleranzgrenzen halten. Deshalb werden an die Sägezuschnitte außergewöhnliche Anforderungen gestellt:

Eine Seite ist bearbeitet. Der Rohling wird umgedreht und zwischengelagert. Dann wird die andere Seite aller Werkstücke eines Fertigungsloses bearbeitet.

Robbi hält ein

Rohteil in sei-

ner Stahlhand.

Fotos: Werkfoto (1); JW-Bild/Zielinski (5)

- 1. Gratfreie Schnittflächen
- 2. Parallele Schnittflächen
- 3. Feinriefige Schnittflächen
- 4. Millimetergenaue Schnittflächen

Diese Forderungen wurden erst nach einem speziellen Umbau des Kaltkreissäge-Automaten im Roboterabschnitt erfüllt, wobei wir praktisch eine völlig andere Maschine entwickelten und entsprechend umbauen mußten. Der Sägeautomat kann das zu bearbeitende Rohteilesortiment für beide Drehmaschinen parallel bewältigen. Die gesägten Teile bewegen sich durch den automa-Materialvorschub tischen Säge auf dem Materialtisch weiter. Erreichen sie die Tischgrenze,

Mit der kompletten Fertigstellung des automatisierten Vorbearbeitungszentrums werden im ersten Erfolgsjahr folgende Einsparungen erzielt:

- 43 700 Stunden Arbeitszeit
- 535 000 Mark für Material
- 10 Arbeitskräfte werden freigesetzt, davon 4 durch den Robotereinsatz
- 4 Arbeitsplätze, 2 davon durch den Industrieroboter
- 2 547 000 Mark Gesamtnutzen

fallen die zugeschnittenen Teile niereinrichtung auf die Materialin den bereitgestellten Transportbehälter Größe I. Nach dem Zuschnitt eines Fertigungsloses wird der Transportbehälter auf eine Bereitstellungsfläche umgesetzt. Die Säge erhält einen neuen Leerbehälter. Wenn sich jetzt der Roboter die wild durcheinanderliegenden Rohteile aus Transportbehälter greifen könnte, hätten wir eine völlig automatisierbare Fertigungs- und Transportkette. Aber das kann er eben nicht. Deshalb mußten wir Spezialpaletten für den Roboterarbeitsplatz entwickeln und fertigen. Diese Paletten müssen dann noch manuell vom Bediener bestückt werden. Diese Spezialpaletten erfüllen folgende Anforderungen:

- Die Roboterhand kann die Rohteile ungehindert aufnehmen.
 Die Bereitstellung der Rohteile erfolgt positionsgerecht unter Einhaltung vorgegebener Koordinaten im Arbeitsbereich des Roboters.
- Die Paletten nehmen Rohteile im Durchmesserbereich von 80 bis 220 mm auf.
- 4. Die Rohteile können gestapelt werden.
- 5. Die Paletten können mit den gestapelten Rohteilen sicher transportiert werden.
- Die Paletten sind als Werkstückspeicher für den Roboter ausgelegt und untereinander austauschbar.
- 7. Die Paletten können eine Mindestlosgröße von 40 Stück Rohteilen aufnehmen.
- Jeder NC-Drehmaschine sind 3 Spezialpaletten zugeordnet.

Automatisierte Teileproduktion

Erst die Gesamtheit der realisierten technischen Möglichkeiten
und Randbedingungen, einschließlich der um das Robotersystem angeordneten peripheren,
im Eigenbau gefertigten Ausrüstungen, ermöglichen den vorgesehenen automatisierten Arbeitsablauf: Wie von Geisterhand bewegt, gelangen die Materialstangen aus der Magazi-

rollbahn, die die Stangen zum Sägeautomaten fördert. Der Sägegutomat sägt soviel Rohteile automatisch hintereinander ab, wie vorher vom Systembediener vorprogrammiert wurden. Die Drehmaschinen sind eingerichtet: Das entsprechende Werkzeug und ein Rohteil sind in ieder Drehmaschine fest eingespannt, Auch die NC-Steuerung wurde entsprechend vorbereitet. Auf den Speichertischen des Roboterarbeitsplatzes befinden sich für jede Maschine zwei volle und eine leere Spezialpalette. Der Bediener kann jetzt das Teilepositioniersystem der Spezialpaletten entriegeln, das Sicherheitssystem in Kraft setzen und kann dann den automatischen Arbeitsablauf an den NC-Drehmaschinen starten. Die Drehmaschinen nehmen ihre Arbeit auf. Nach Beendigung der Bearbeitung der ersten Seite des ersten Teils übernimmt der Roboter alle weiteren Aufgaben. Die Roboterhand beweat sich zur Drehmaschine. Die Spritzschutztür öffnet sich. Die Hand fährt das zur Hälfte fertiggedrehte Teil an und greift danach. Das Spannfutter öffnet sich. Der Roboter fördert das Teil aus dem Bearbeitungsraum der Maschine und fährt den Zwischenspeicher an. Gleichzeitig wird das Spannfutter ausgeblasen. Die Roboterhand wendet das Teil und legt es im Zwischenspeicher ab. Von den Spezialpaletten nimmt sich der Roboter ein zweites Teil und leat es in das Spannfutter ein. Das Spannfutter schließt sich automatisch. Die Spritzschutztür wird geschlossen, und die Zerspanung der ersten Seite des zweiten Teils beginnt. Jetzt greift die Roboterhand nach dem gewendeten ersten Teil und legt es auf die freie Spezialpalette ab. Dann fährt der Roboter in eine Warteposition und wartet auf den Bedienbefehl von einer der beiden NC-Drehmaschinen. Nach dem Zerspanungsende jedes weiteren Teils wiederholt sich nun für

beide Maschinen dieser Arbeitszyklus alternierend, je nachdem welche Maschine den Roboter gerade zur Bedienung aufruft. Diese automatische Arbeitsweise ermöglicht dem Systembediener, sich auf wenige manuelle Arbeiten, Einrichte- und Überwachungsaufgaben, zu beschränken. Er kann deshalb auch noch folgende Arbeiten ausführen:

- Umstapeln der gesägten Teile in die Spezialpaletten,
- Transport der Spezialpaletten zu den Speichertischen des Roboterarbeitsplatzes und Abtransport der Spezialpaletten mit den fertigen Drehteilen mit Hilfe eines flurgesteuerten Hallenkranes.
- Bedienung einer Sägeblattscharfschleifmaschine,
- Übernahme kleinerer Werkzeuginstandhaltungsarbeiten.

So verlangen alle auszuführenden Arbeiten einen hochqualifizierten Facharbeiter. Auch die anderen Fertigungsabschnitte innerhalb der neuen Halle (Reibschweißen. Hochregallager und Sägen) werden nur von einer Arbeitskraft besetzt. Die Zukunftsvision, wird augenscheinlich in einer über 2000 m² großen Halle, der rotationssymmetrische Kleinteile für zwei Betriebe von nur vier Produktionsgrundarbeitern je Schicht gefertigt werden. Der erzielte volkswirtschaftliche Nutzen, ein wenig Stolz auf das Geschaffene, zufriedene Kollegen, die gerne in dieser modernen Produktionsstätte ihrer Arbeit nachgehen, die Erlebnisse bei der Realisierung dieses Vorhabens - das alles ist es, wodurch uns diese Fertigungsstätte wirklich ans Herz gewachsen ist.

Dipl.-Ing. Jürgen Kleine

Schall-Fasern

NEW YORK (USA) Neugrtige Kunststoffasern von hoher Festiakeit werden von einer Firma in Kalifornien hergestellt. Bei der neuen Technologie befindet sich in der Polymerlösung eine Drahtspule, die mit Schallfrequenzen schwingt. Die Fasern, die sich dann bei konstanter Temperatur in der Lösung bilden, haben eine Struktur, die an ein dreidimensionales Fischernetz erinnert. Man kann sie direkt auf den zu verkapselnden Produkten zum Aufwachsen bringen. Sie dringen auch leicht in winzige Öffnungen und Vertiefungen ein. Die spezifische Festiakeit - die Festiakeit. bezogen auf die Gewichtseinheit - übertrifft die von hochfestem Stahl um ein Vielfaches.

Pulver-Beschichtung

BRANDENBURG (DDR) Für den Korrosionsschutz von Kleinteilen hat sich die elektrostatische Pulverbeschichtung als ein günstiges Verfahren erwiesen. Die Pulverpartikel werden von einer Sprühpistole in einem elektrischen Feld auf das Werkstück aufgebracht. Die auf dem Werkstück haftende Pulverschicht wird anschließend bei etwa 200 bis 220 °C eingebrannt, wobei sich ein geschlossener Film bildet. Das verwendete Oxiplastpulver besitzt eine ausgezeichnete Haftfestiakeit auch bei ständiger Einwirkung aggressiver Medien und übertrifft die Haftfestiakeit von üblichen Anstrichstoffen beträchtlich. Das Verfahren wird jetzt im RAW Halberstadt angewandt, nachdem damit schon gute Erfahrungen im VEB Förderwagen und Beschlagteile Mühlhausen gemacht werden konnten.

Sprech-Computer

WASHINGTON (USA) Als "Weltneuheit" hat Texas Instruments den ersten sprechenden Taschencomputer angekündigt, der als elektronischer Sprachmittler arbeitet. Sein Wortschatz umfaßt 1000 Wörter, von denen 500 in jeweils einer Sprache auch gesprochen werden. Alle Wörter erscheinen außerdem in der Anzeige. In jedem Modul sind vier Sprachen enthalten, von denen eine gesprochen wird. Die Firma liefert das Gerät in sieben Sprachen. Gerade die Aussprache der Wörter ist nach Meinung der Firmenvertreter für den Auslandsreisenden von größter Wichtigkeit, denn falsch ausgesprochene Wörter erschweren die Verständigung oder machen sie gar unmöglich.

Impuls-Bearbeitung

NOWOSIBIRSK (UdSSR) Eine vibrierende Kugel ist ein effektives Mittel. Maschinenteile zu verfestigen. Im Unterschied zu traditionellen Verfahren der plastischen Umformung wird bei der neuen Methode, die Spezialisten des Instituts für Elektrotechnik entwickelt haben, mit einer Kugel, die mit Ultraschallfreauenz vibriert, nicht nur die Oberflächenschicht verfestiat. son. dern werden auch ausgedehnte permanente Makrodruckspannungen erzeugt und Oberflächen mit Rauheitsklassen von 6 bis 10 erzielt. Insgesamt erhöht sich dabei die Betriebssicherheit und die Lebensdauer der bearbeiteten Teile auf das Doppelte bis Dreifache.

Hausmüll-Energie

TOKIO (JAPAN) Mit einer Versuchsanlage der japanischen Gesellschaft für Wissenschaft und Materie in der Lufthülle zurück.

Technik konnte nachaewiesen werden, daß sich aus dem täglichen Abfall einer Großstadt mit 100 000 Einwohnern Kompost für 1,4 ha Ackerland, Gas für 2000 Haushalte, Papier für 55 000 Zeitungen und Metall für 50 000 Getränkedosen gewinnen läßt. Eine von der japanischen Regierung in Auftrag gegebene Studie soll jetzt Leitfäden für eine breitere Verwertung des Hausmülls liefern. Die Japaner hoffen, mit einer landesweiten Kette geeigneter Anlagen nicht nur größere Mengen an Rohstoffen zurückzugewinnen, sondern in Zukunft auch fast 1,5 Prozent ihres Elektrizitätsbedarfs decken zu kön-

Brot-Container

DRESDEN (DDR) Gegen äußere Einflüsse und Verformung der Brote durch Druck soll ein universeller Container schützen, der im VEB Backwarenkombinat zum Transport der Brote in die Geschäfte entwickelt wurde. Er besteht aus einem Stahlrahmen mit je zwei lenkbaren und starren Rädern. Sechs Lattenroste liegen auf Stahlstäben und sind abnehmbar. Das Ladevolumen beträgt 180 Brote zu 1,5 kg. Der Warenträger ist allseitig mit abnehmbaren Aluminiumwänden verkleidet. Kondenswasserbildung wird durch Lüftungsschlitze verhindert. Das Ausfahren beim Empfänger ist auch ohne Laderampe mit einem Lkw-Ladebord möglich.

Staub-Klima

CHARKOW (UdSSR) Eine mächtige Schicht feinsten Staubes in einer Höhe von 60 bis 80 km über der Erdoberfläche ist in der Ukraine mit Hilfe von Lasersondierungen registriert worden. Ursache für die Bildung einer derartigen Aerosolwolke waren die Meteoritenströme der Geminiden im Dezember vorigen Jahres. Beim Passieren unseres Planeten ließen sie einen Teil ihrer Materie in der Lufthülle zurück.

Die sowjetischen Wissenschaftler untersuchen besonders die Fähigkeit des Aerosols, den Strom des Sonnenlichts abzuschwächen und die eigene Wärmestrahlung der Erde aufzuhalten, wodurch ein Einfluß auf das Klima ausgeübt würde. Mit Hilfe eines genauen Modells dieser Prozesse wollen sie künftige Klimaveränderungen auf unserem Planeten prognostizieren.

Hagel-Raketen

BELGRAD (SFR JUGOSLAWIEN) Rund 50 000 Antihagelraketen verschiedenster Typen werden jährlich vom Werk "19. Dezember" in der Hauptstadt der jugoslawischen Republik Montenegro produziert. In diesem Jahr wurde mit der "TG 10" eine Neukonstruktion in die Produktion aufgenommen, die beträchtlich verbesserte Gebrauchseigenschaften aufweist. Mit dem Projektil kann auf Wolken bis in 10 000 m Höhe eingewirkt werden. Mit der erhöhten Steigfähigkeit auch die Reichweite vergrößert. Heu'e können von einer Anti-300 km² hagel-Station rund Fläche geschützt werden.

Entbindungs-Infusionspumpe

LONDON (GROSSBRITANNIEN) Von Arzten des St. Mary's Hospital in der englischen Hauptstadt wurde eine automatische Infusionspumpe entwickelt. Sie macht schwierige Entbindungen sicherer und verhindert, daß Säuglinge den Einflüssen einer Ubermasse an Oxytozin, dem normalerweise zur Einleitung der Wehen benutzten Mittel, ausgesetzt sind. Die Pumpe und die damit zusammenarbeitenden wachungsgeräte werden an der Patientin und dem Fetus angeschlossen, um die Reaktion auf die erste gemessene Oxytozindosis, die intravenös verabreicht wird, zu bestimmen. Daraufhin kann die weitere Verabreichung des Mittels programmiert wer-

den, die nun genau und zu den günstigsten Zeitpunkten erfolgt. Diese präzise Kontrolle soll Gelbsucht durch Überreizung des neugeborenen Kindes verhindern.

Geburts-Narkose

MAGDEBURG (DDR) Das neuartige sowjetische Narkosegerät "Elektronarkon I" für die Geburtshilfe wird gegenwärtig von der Magdeburger Frauenklinik vor dem Einsatz in der DDR getestet. Die Geburt verläuft unter weniger Schmerzen, und die Anwendung des Gerätes ist für Mutter und Kind gefahrlos. Bei der angewandten Elektroanalyse wird das Zentralnervensystem so beeinflußt, daß sich die Schmerzschwelle erhöht. Da heute der Geburtsvorgang immer sicherer beherrscht wird, wenden sich die Frauenkliniken jetzt überall verstärkt der psychischen Betreuung der werdenden Mütter zu. In Magdeburg können werdende Mütter während der ersten Geburtsphase beispielsweise über Kopfhörer Musik hören.

Flüssigkeits-Schere

ZURICH (SCHWEIZ) Staubfrei und mit minimalem Materialverlust schneidet ein mit doppelter Schallgeschwindigkeit strömender Strahl Wellpappe, geformte Filter, Luftpostpackungen usw. Dabei wird die Form des Schnittautes nicht beschädigt. Schneidflüssigkeit enthält ein Langkettenpolymer, so daß der Strahl die Luft ohne Wirbelbildung durchströmt. 30 cm dicke Materialien lassen sich damit sauber schneiden, wobei der Materialverlust ganze 0,1 bis 0,3 mm beträgt.

Finger-Gelenke

CLEVELAND (USA) Künstliche Fingergelenke, die fast so gut arbeiten wie die natürlichen, sind von einem amerikanischen Orthopäden entwickelt worden. Sie bestehen aus zwei Titanstahl-Schäften, die durch ein Scharnier

aus synthetischem Gummi verbunden sind. Bei 22 Patienten, denen nach Erkrankungen und Handverletzungen 51 solcher Gelenke eingesetzt wurden, zeigte sich nach vier bis sechs Wochen Therapie eine gute Gebrauchstüchtigkeit. Für eine generelle Verwendung sollen die künstlichen Fingergelenke aber erst in etwa zwei Jahren zur Verfügung stehen.

Gehör-Schutz

HALLE (DDR) Bis zu Lärmpegeln von 110 dB ist ein neuartiger Gehörschutz noch wirksam. Dieser "Pneumant"-Gehörschutz besteht aus einem leichten Stopfen aus Kunststoff, der zusammengedrückt in den Gehörgang eingeführt wird und sich hier ausdehnt. Damit wird der Gehörgang sanft, aber dicht abgeschlossen, so daß eine erstaunlich hohe Schalldämmung erreichbar ist. Herkömmliche Mittel wie Gehörschutzwatten lassen sich zwar leichter handhaben, ermöglichen jedoch nur eine geringere Dämmung, die sich durch Kau-Schluckbewegungen noch weiter vermindern kann, Schutzkapseln wiederum besitzen gute Dämmwerte, belästigen aber den Träger und erschweren das Tragen von Kopfschutzkappen.

Von Jahr zu Jahr steigt der Energiebedarf. Heute verbrauchen wir 60 Prozent mehr Elektroenergie, 40 Prozent mehr Stadtgas und 100 Prozent mehr Erdöl als 1970. Diese Entwicklung kann sich in den 80er Jahren nicht fortsetzen, denn die Aufwendungen für alle Energieträger erhöhen sich schneller als je zuvor.

Die Deckung unseres wachsenden Energiebedarfs muß deshalb in immer größerem Maße durch rationelle Energieanwendung gesichert werden. Wurde 1970 mit 1 Prozent jährlichem Zuwachs an Primärenergie ein Bruttoproduktionszuwachs von 1,3 Prozent ermöglicht, so sind es heute mehr als 2,5 Prozent, aber auch dieser Wert muß in den nächsten Jahren beträchtlich überboten werden.

Mikrorechner, zur Steuerung der Schmelzprozesse eingesetzt.

werden in der Maxhütte den Energieaufwand senken.

Durch vorfristig abgeschlossene Rekonstruktion und bessere Nutzung von Abwärme werden

im Hydrierwerk Zeitz 5000 t Heizöl eingespart.

Sparsamer Energieverbrauch ist heute zu einem Weltproblem geworden. Auf welche Ursachen ist das zurückzuführen?

Dr.-Ing. Kahn

Zu Beginn unseres Jahrhunderts hat sich der Energieverbrauch in der Welt innerhalb von 50 Jahren verdoppelt. Mitte dieses Jahrhunderts geschah eine Verdoppelung in nur 30 Jahren, und heute erfolgt ein solcher Anstieg in 15 bis 20 Jahren. Es ist in diesem Zusammenhang wichtig zu wissen, daß seit 1945 mehr Rohstoffe und Energieträger in der Welt verbraucht wurden als in der gesamten Zeit davor.

In erster Linie ist dieses rasche Wachstum zurückzuführen auf die ständige Erweiterung des Produktionsumfanges, auf Steigerung der Arbeitsproduktivität, auf einen enormen Anstieg der zu transportierenden Gütermengen, auf die Veränderung der Arbeitsund Lebensbedingungen und nicht zuletzt auf die in zunehmendem Tempo gewachsene Weltbevölkerung. Dabei steigen wie überall auch in der DDR die Aufwendungen für Energieträgerbereitstellung.

Könnten Sie uns dafür einige Beispiele nennen?

heute mit

Dr.-Ing. Bernhard Kahn (51 J.); Direktor des Instituts für Energetik, Zentralstelle für rationelle Energieanwendung; stelly, Vorsitzender der wiss,-techn. Gesellschaft Energiewirtschaft der KDT: Verdienter Bergmann

Dr.-Ing. Kahn

Zuerst muß man feststellen, daß sowohl die Kosten für die Förderung unserer Rohbraunkohle, insbesondere jedoch die Aufwendungen für Importe erheblich gestiegen sind. Auf dem kapitalistischen Weltmarkt ist der Erdölpreis in den letzten 10 bis 12 Jahren auf das 15fache gestiegen, bei Steinkohle hat sich der Preis nahezu verdoppelt.

Aber auch für die Importe aus der UdSSR sind höhere Aufwendungen erforderlich, weil die Förderkosten für die Energieträger in den fernabliegenden und unerschlossenen Gebieten Sibiriens weit höher sind als in den westlichen Landesteilen. Für die Dekkung des gegenwärtigen und künftigen Energiebedarfs ergeben sich daraus Probleme, die von hoher gesamtgesellschaftlicher und ökonomischer Bedeusind. Kein vernünftiger tung Mensch kann angesichts dieser Tatsachen vom Thema sparsamer Energieverbrauch unberührt bleiben. Mit weniger Energie mehr zu produzieren ist also ein entscheidender Teil der wissenschaftlich-technischen und vor allem der ökonomischen Politik.

Energieeinsparungen wird der Energiebedarf weiter steigen. Welche Entwicklung ist zu erwarten?

Dr.-Ing. Kahn

Der Verbrauch an Primärenergie

betrug im Weltmaßstab für das Jahr 1975 etwa 8 TWa, das sind 2.5 · 1020 Joule, Für die weitere Bedarfsentwicklung an Primärenergie in der Welt wird beim gegenwärtigen Erkenntnisstand eingeschätzt, daß bis zum Jahr 2000 etwa eine Verdoppelung zu erwarten ist. Für das Jahr 2030 gibt es Vorstellungen, daß der Weltenergiebedarf bei 25 TWa oder noch höher liegen wird. Diese Entwicklung schließt auf jeden Fall die Notwendigkeit des immer rationelleren Einsatzes der Energieträger ein.

In der DDR stieg der Verbrauch von Primärenergie seit 1960 um etwa 50 Prozent. Von 1968 bis 1978 erhöhte sich beispielsweise der absolute Energieverbrauch in der Industrie auf 114,7 Prozent. auf der kommunalen Ebene jedoch auf 151,4 Prozent, in den Bereichen der Land-, Forst- und Nahrungsgüterwirtschaft sogar auf 163,9 Prozent, im Bauwesen auf 160,6 Prozent. Auch der Bevölkerungsbedarf stieg in diesem Zeitraum auf 140.3 Prozent. Aber das Verkehrswesen konnte in dieser Zeit trotz Steigerung des Transportumfangs seinen Energieverbrauch auf 70,3 Prozent reduzieren. Durch die Wirkung des wissenschaftlich-technischen Fortschritts, hier speziell die Traktionsumstellung der Deutschen Reichsbahn, können also in einem klug gelenkten Prozeß enorme Energiemengen eingespart werden.

Was dagegen für Möglichkeiten

unseres Instituts an 500 Schmiedeöfen in der DDR. Hier sind bekannte und vorhandene technische Lösungen bei weitem noch nicht so eingesetzt, daß der energetische Wirkungsgrad erhöht bzw. insgesamt Energie eingespart wird. In diesem Zusammenhang möchte ich darauf hinweisen, daß eine Verringerung der jährlichen Zuwachsrate im Primärenergieverbrauch von gegenwärtig über 2 Prozent in der Volkswirtschaft auf deutlich niedrigere Werte bereits in den nächsten Jahren erforderlich ist.

Welche Prämissen ergeben sich daraus für die gegenwärtige künftige Energiepolitik undder DDR?

Dr.-Ing. Kahn

Erst einmal muß man hierzu feststellen, daß Wissenschaft und Technik uns heute in die Lage versetzen, die Möglichkeiten zur der Bedürfnisse Befriedigung nach Energie für Jahrhunderte und länger zu erkennen. So stehen wir im Weltmaßstab gegenwärtig ohne Zweifel im Prozeß einer Umgestaltung von fast ausschließlich genutzten fossilen Energieträgern auf den Einsatz neuer Quellen, insbesondere der Kernenergie. Gleichzeitig findet jedoch die Verwendung von Kohle eine Verstärkung, weil deren Vorräte wesentlich größer noch ungenutzt bleiben, zeigt als bei Erdöl und Erdgas sind. beispielsweise eine Untersuchung Die Grundlinien der Energiepoli-

80 Prozent ihrer Forschungskapazität hat die Bergakademie Freiberg vertraglich mit der Industrie gebunden; zu den Partnern gehört auch das Kombinat Schwarze Pumpe. Ein Forschungsthema ist die Erzeugung von Gasen mit höherem Heizwert. Das Foto zeigt den Laborversuch zur katalytischen Umwandlung von Gasen.

Fotos: ADN/ZB

tik tragen dem Rechnung und lassen sich so zusammenfassen: 1. maximale Nutzung unserer einheimischen Ressourcen, besonders der eigenen Rohbraunkohle:

 Sicherung der rationellen Energieanwendung unter verstärkter ökonomischer und technischer Nutzung neuester Ergebnisse der Wissenschaft;

3. schrittweise Einführung bzw. erweiterte Nutzung neuer Energiequellen. Dies erfolgt in enger Zusammenarbeit aller Länder des RGW, vor allem mit der UdSSR. Dabei muß die Kernenergie eine dominierende Rolle spielen.

Aus anderen Energiequellen kann in den nächsten 20 Jahren kein bedeutender Beitrag erwartet werden. Damit meine ich vor allem die Energiequellen Sonne, Wind, Erdwärme und Gezeiten. Unter den geologischen und klimatischen Bedingungen der DDR ist aus diesen Quellen kein nennenswerter Zuwachs möglich.

JUGEND-1-TECHNIK

Das heißt letztlich, die rationelle Energieanwendung wird künftig noch bedeutungsvoller für die stabile Entwicklung der Volkswirtschaft. Worauf muß sie sich konzentrieren?

Dr.-Ing. Kahn

Maßnahmen der rationellen Energieanwendung müssen sich darauf konzentrieren, mit einem Minimum an Bedarfszuwachs sowohl die Produktionsaufgaben als auch die Bedürfnisse der Bevölkerung decken zu können. Das erfordert vor allem,

● die heute noch aus Produktionsprozessen, Energieumwandlungsprozessen und bei der Beheizung und Lüftung von Gebäuden an die Umgebung ungenutzt abgegebenen Wärmemengen — also Anfallenergie in Form von Kühlwasser, Brüden, Abluft und Abgasen, brennbaren Substanzen — technisch einer Nutzung zuzuführen, insbesondere zur Deckung des Wärmebedarfs im niedrigen Temperaturbereich;

die bei technologischen Wärmeprozessen zu verzeichnenden Energieverluste durch hohe energetische Güte der Anlagen und optimale Prozeßführung zu reduzieren:

den Energieaufwand für die Raumheizung entscheidend zu senken;

 die Transportprozesse noch rationeller zu vermindern und effektive Antriebstechniken einzusetzen;

den Bedarf an Elektroenergie bei thermischen und Kraftprozessen, aber auch in der Beleuchtung zu begrenzen und

die Prozesse der Energieumwandlung und -verteilung systematisch und durchgehend zu rationalisieren.

Insgesamt müssen wir uns ganz bewußt an allen Stellen innerhalb unserer Wirtschaft und Gesellschaft zum rationellen Umgang mit Rohstoffen und Energie verhalten. Mit besonderer Dringlichkeit steht dabei die Aufgabe der Heizöleinsparung.

JUGEND-1-TECHNIK

Welche Möglichkeiten der Energieeinsparung in der Volkswirtschaft bleiben gegenwärtig noch ungenutzt?

Dr.-Ing. Kahn

Die Ansatzpunkte zur Reduzierung des Energiebedarfes sind sehr vielfältig; ich muß mich deshalb hier auf einige Beispiele konzentrieren. Allein 35 Prozent unserer gesamten Energie verbrauchen wir für die Raumheizung. Überheizung von Räumen führt zu großen Energieverlusten. Eine um ein Grad zu hohe Temperatur beansprucht fünf bis sechs Prozent mehr Brennstoffaufwand.

Die Erhöhung der Effektivität der Raumheizungsprozesse ist ein Gebiet, das noch große Möglichkeiten zur Energieeinsparung bietet. Mit konsequentem Einsatz der Regelungstechnik und deren ständiger Wartung und Instandhaltung, Ablösung veralteter und uneffektiver Heizungssysteme durch effektivere, z. B. Warmwasserheizungen und Strahlplattenheizungen, Verminderung der Lüftungswärmeverluste und Rückführung der Abluftwärme in das Gebäude durch Wärmeübertrager, Einhaltung der zulässigen Raumlufttemperaturen und - das erscheint mir besonders wichtig bewußter Sorgfalt im Umgang mit Energie durch alle Werktätigen ist noch viel zu erreichen, kann auf manche geforderte Heizhauserweiterung verzichtet

werden. Auch die Nutzung von Anfallenergie bietet noch erhebliche Chancen zur Senkung des Energieverbrauchs.

Im Braunkohlewerk Regis wird z. B. seit mehr als einem Jahr ein Gewächshaus versuchsweise mit der Wärme aus den Brüden der Brikettfabrik geheizt. Die Nutzung dieser Anfallenergie in maximal möglichem Umfange steht als Aufgabe vor uns.

JUGEND-1-TECHNIK

Können Sie uns einige Beispiele nennen, die zeigen, daß durch rationelle Energieanwendung der Energieverbrauch drastisch gesenkt werden kann?

Dr.-Ing. Kahn

Durch Rationalisierung der Dampf- und Kondensatwirtschaft in den Getränkekombinaten Berlin, Dresden, Frankfurt (Oder), Gera, Karl-Marx-Stadt, Cottbus, Schwerin und Magdeburg wurde bis Ende 1979 der Energiebedarf um rund 14 000 t Rohbraunkohle (äquivalent umgerechnet) gesenkt und dabei ein ökonomischer Nutzen von 1,54 Mill. M je Jahr erzielt.

In der LPG Pflanzenproduktion Entsch im Bezirk Halle sind in einem Jahr allein 550001 Dieselkraftstoff durch Erweiterung des Tankstellennetzes und operatives Betanken auf dem Feld eingespart worden. Der spezifische Dieselkraftstoff-Verbrauch je kW Motorenleistung der mobilen Technik sank dabei um 13 Pro-

zent. Die insgesamt in der Wirtschaft der DDR im Jahre 1978 realisierten Rationalisierungsmaßnahmen mit energetischem Effekt haben zu einer Bedarfsminderung (umgerechnet auf Rohbraunkohle) von rund 9 Mill. t geführt.

JUGEND - TECHNIK

Bevor Energie rationell verwendet werden kann, sind oftmals Regelungseinrichtungen und andere Ausrüstungen erforderlich. In welchem Verhältnis steht in solchen Fällen Aufwand und Nutzen?

Dr.-Ing. Kahn

Die über mehrere Jahre erfolgten Abrechnungen von Aufwand und Nutzung der Rationalisierungsmaßnahmen erlauben die Aussage, daß im Durchschnitt für Rationalisierungsmaßnahmen mit energiewirtschaftlichem Effekt eine Rückflußdauer der einmaligen Aufwendungen von zwei Jahren zu verzeichnen ist.

Die Rationalisierung energiewirtschaftlicher Prozesse in allen Stufen des Energieeinsatzes wird damit gegenwärtig auch volkswirtschaftlich zum effektivsten Weg für die Lösung der Energieprobleme, auch wenn wir ihn nicht ausschließlich gehen können.

Den Energieaufwand für Raumheizung senken

Bis 1990 soll der Wärmeverbrauch für die Beheizung der neu zu errichtenden und zu rekonstruierenden Wohnungs-, Gesellschafts- und Industriebauten um mindestens 30 Prozent verringert werden. Das entspricht im Jahre 1990 einer Einsparung von 10 Mill. t Rohbraunkohle.

Wie soll das geschehen?

- Erste Berechnungen der Bauakademie der DDR ergaben, daß die Nichtinanspruchnahme von einer Tonne Rohbraunkohle im Jahr einmalige Ausgaben für einen verbesserten Wärmeschutz von etwa 400 Mark erfordern. Der gleiche Effekt durch verbesserte Regeltechnik erzielt, kostet 1200 Mark. Damit ist die thermische Verbesserung der Gebäudehüllen die wirtschaftlichere Maßnahme. (vgl. Grafik)
- Besondere Aufmerksamkeit wird dem Eigenheimbau geschenkt, dessen Anteil am Wohnungsneubau 10 bis 12 Prozent beträgt, für den aber 25 bis 30 Prozent des Wärmeenergiebedarfs des Wohnungsneubaus benötigt werden. Deshalb erarbeitet die Bauakademie jetzt für den Eigenheimbau energieökonomisch günstige Lösungen für bauliche Details und Baustoffeinsatz.

Um hohe energieökonomische Effekte zu erzielen, wurden von der Bauakademie Vorschriften herausgegeben, die dazu beitragen werden, die Fensterflächen für Wohnbauten auf 22 Prozent und bei Industriehallen auf 20 Prozent der Fassadenfläche zu begrenzen sowie den Einsatz von Gasbeton und anderen hochwertigen Baustoffen auf die Wärmedämmung zu begrenzen.

Das Kombinat Technische Gebäudeausrüstung wird durch den Einbau von Meß-, Steuerungs- und Regelungstechnik an Hausanschlußstationen dazu beitragen, daß 1980 gegenüber dem Vorjahr 500 000 t Braunkohlenbriketts eingespart werden.

Kirschen maschinell geerntet

Ist es bereits möglich, Kirschen maschinell zu ernten? B. Schulze, 1120 Berlin

Ja - mit Hilfe der Steinobsterntemaschine F 842, produziert vom VEB Kombinat für Gartenbautechnik in der DDR. 22 solcher Maschinen verlassen in diesem Jahr den Kombinatsbetrieb in Glindow. Eingesetzt werden sie in den Schwerpunktgebieten der Obstproduktion.

Die F842 arbeitet nach dem Baumrüttelprinzip und besteht aus zwei Teilen; der Rüttel- und der Auffanamaschine. Sind die Geräte an einen Kirsch- oder auch Pflaumenbaum herangefahren - fortbewegt werden sie von Traktoren -, ergreift eine Klaue den Stamm, und der Rüttelmechanismus gibt über diese Klaue Vibrationen weiter und versetzt den Baum etwa eine bis zwei Sekunden lang in Schwingungen. Die dabei herabfallenden Früchte werden von Planen aufgefangen bei der Pflaumenernte wurde erund auf der Auffangmaschine über ein Bandsystem in Großbe-

hälter transportiert. Diese Behälter enthalten beim Ernten von Sauerkirschen Wasser, damit die empfindlichen Früchte beim Transport nicht beschädigt werden. Der Antrieb der Maschinen erfolgt hydraulisch.

Selbstverständlich gingen dem umfassenden Einsatz in der Produktion zahlreiche Probeläufe voraus. Süßkirschen, Sauerkirschen und Pflaumen wurden mit der F 842 geerntet. Dabei wurde bei Süßkirschen eine Arbeitsgeschwindigkeit von 0,1 ha/h erzielt, die in einer Stunde geerntete Menge betrug 0,2 t. 0,06 ha/h war die Erntegeschwindigkeit Sauerkirschen, der Stundenertrag lag bei 0,58 t. Auch die Leistung probt, das Ergebnis: 0,08 ha bei 0,79 t in der Stunde.

Drei Arbeitskräfte werden benötiat. Keine Hand berührt die Früchte von der Ernte bis zur Auslieferung von Marmelade usw. Einige Sorten sind auch nach dem maschinellen Ernten für die Frischversorgung geeignet.

Der Einsatz der Maschine erfordert allerdings auch Voraussetzungen pflanzenbaulicher Art. Der Baumstamm muß mindestens 60 cm hoch sein, die Krone genügend Bodenfreiheit haben. Selbstverständlich ist auch, daß die Maschinen mit ihrer Leistungsfähigkeit nur in größeren Anlagen rentabel eingesetzt werden können.

Die Steinobsterntemaschine F 842 ist eine Gemeinschaftsentwicklung der DDR und der Volksre-R. Sielaff publik Bulgarien. Foto: JW-Bild/Zielinski

Erstmals bei Olympischen Spielen:

EOI-Sport

DDR-Spitzentechnik zu Olympia '80 in Moskau

gewöhnt, es gehört einfach dazu bei Fernsehübertragungen von Sportwettkämpfen: ob beim 100-m-Sprint oder beim Lagenschwimmen - die zehntel und hundertstel Sekunden, die über den Sieg entscheiden, werden elektronisch exakt gemessen und am Bildschirmrand eingeblendet. Und kaum sind alle Sportler am Ziel, erscheint auch schon wie von Geisterhand aeschrieben Ranaliste mit den Namen der Wettkämpfer, geordnet nach den Ergebnissen, Elektronische Meß-Rechentechnik, eingesetzt im Sport, macht es schon seit etlichen Jahren möglich: wo es um Minuten und Sekunden geht,

Wir haben uns längst daran die Zeitnahme über Medaillen quellen gewöhnt, es gehört einfach dazu und Plätze entscheidet, haben einer obj bei Fernsehübertragungen von Wettkampfrichter und Zuschauer gefangen Sportwettkämpfen: ob beim in Sekundenschnelle das Resultat lesen in 100-m-Sprint oder beim Lagen- zur Hand.

Anders sah es dagegen bisher noch in jenen Sportarten aus, wo um Meter und Zentimeter gekämpft wird. Ob beim Kugelstoßen, Speerwerfen oder Weitsprung – es dauerte schon eine Weile, bis die Kampfrichter die erzielten Weiten mit dem Stahlbandmaß oder mit einfachen optischen Hilfsmitteln "in Handarbeit" bestimmt und das Ergebnis per Boten oder über Telefon und Funk zur Stadionanzeige und zum Wettkampfgericht weitergegeben hatten. Viele Fehler-

quellen entzogen sich dabei einer objektiven Kontrolle – angefangen beim ungenauen Ablesen in der Eile des Gefechts bis hin zu falsch verstandenen Zahlendurchsagen. Ganz davon abgesehen, daß die bei ihren Messungen an den Wettkampfstätten umherlaufenden Kampfrichter das sportliche Geschehen im Stadioninnern für die Zuschauer nicht gerade übersichtlicher machten.

Mit Olympia '80 hält die moderne Elektronik auch bei Weitenmessungen im Olympiastadion Ein-

So wird die Wurfweite ermittelt: Der Horizontalabstand e zwischen dem Tachymeter und dem Wurfkreismittelpunkt wird vor dem Wettkampf exakt ausgemessen und als Konstante ins Gerät eingespeichert, ebenso der Wurfkreisradius r (2r = 2,135 m fürs Hammerwerfen, 2.5 m fürs Diskuswerfen und 16 m für den Speerwurf) und die Richtung des Kreismittelpunktes a. Während des Wettkampfes werden die Schrägentfernung D, der Vertikalwinkel y und der Horizontalwinkel β automatisch gemessen.

Die gesuchte Wurfweite errechnet sich nach der Anwendung des Sinus-Satzes für die Be-

stimmung der Horizontalentfernung zwischen Gerät und Reflektor aus dem Cosinus-Satz:

 $W = \sqrt{(D + \sin \gamma)^2 + e^2 - 2(D + \sin \gamma) + \cos (\beta - \alpha)} - r.$

zug: Zu den Olympischen Som- der Kampfrichter nur noch einen klein, daß die Wurfweite die Olympia-Messung der Wurf- an dem Auftreffpunkt der Kugel rechnet werden kann. weiten in den Leichtathletik- oder des Speers eingestochen Das Mikroprozessorsystem die schon lange im Sport be- flektor, die Neigung dieser Linie Berechnung der Wurfweite dauert bei aleichen Voraussetzungen für die "olympische Weltneuheit" wurde im Kombinat Carl Zeiss Jena entwickelt, das' die Anlagen auch als "Offizieller Lieferant XXII. Olympischen Spiele 1980 in Moskau" produziert.

Wie wird gemessen?

elektrooptische Meßgerät aufgestellt. Mit diesem "Tachymeter", dem die Zeiss-Werker den Namen "EOT-Sport" gaben, können Winkel und Strecken vollautomatisch gemessen werden. Zur Bestimmung der Wurfweite muß

stehender Größen (s. Abb. S. 421) die gesuchte Wurfweite.

Die Winkelmessung erfolgt in dem neuen Tachymeter über eine elektrooptische Teilkreisablesung (und nicht mehr visuell, wie in früheren Geräten). Die Etwas abseits vom Abwurfkreis Länge der Strecke wird mit wird das speziell entwickelte einem modulierten Infrarotstrahl aus der digitalen Messung des zwischen Phasenunterschiedes gesendetem und vom Reflektor zurückgeworfenem Signal stimmt. Der mittlere Richtungsmeßfehler und der mittlere Strekkenmeßfehler sind dabei derart Die Meßwerte werden direkt, im

merspielen in Moskau wird für Spezial, spiegel" anvisieren, der einer Genauigkeit von 10 mm be-

Diskus-, Hammer- wurde. Auf Knopfdruck mißt das Meßgerät steuert den gesamten und Speerwerfen ein automati- Gerät automatisch drei Werte: Messungsablauf für die vollautosches System eingesetzt, das die die Länge der "Luftlinie" zwi- matische Winkel- und Streckenaleichen Vorteile aufweist, wie schen dem Gerät und dem Re- bestimmung. Die Messung und währte elektronische Zeitnahme: zur Horizontale und den Winkel dabei weniger als 7 Sekunden. höchste Präzision und Sicherheit zwischen Abwurfkreis-Mittelpunkt Alle Meßwerte und eingegebeund Auftreffpunkt. Daraus be- nen Konstanten sind zur Kontrolle für alle Sportler. Das Meßgerät rechnet ein eingebauter Kleinst- über das Bedienpult abrufbar. computer mit Hilfe weiterer, fest- Zum Schutz gegen Fehlbedienungen während des Wettkampfes können außer der Meßtaste für die Wurfweite und der Registriertaste alle Tastenfunktionen blokkiert werden. Notwendige Korrekturen sind dann erst nach Aufhebung der Blockierung möglich. Das Programm ist auch so ausgelegt, daß automatische Wiederholungsmessungen Erhöhung der Genauigkeit und die automatische Korrektur von Gerätefehlern möglich ist.

Was wird angezeigt?

Bei der Generalprobe des Geräts während der Völkerspartakiade 1979: elektrooptische Tachymeter zur automatischen Weitenmessung aus dem VEB Carl Zeiss Jena, dem durch das Organisationskomitee der

Olympischen Spiele 1980 der Titel "Offizieller Lieferant der Geräte zur Wurfweitenmessung während der Leichtathletikweitkämpfe der XXII. Olympischen Spiele 1980 in Moskau" verliehen wurde.

Seit einigen Jahren werden bei bedeutenden internationalen Leichtathletikveranstaltungen in zunehmendem Maße halbund vollautomatische Weitenmeßgeräte eingesetzt. Diese Geräte wurden ursprünglich für die Lösung geodätischer Aufgaben entwickelt und mit Hilfe speziell programmierter Rechner zu einem Weitenmeßsystem kombiniert. Diese Weitenmessung wurde nur bei bedeutenden Veranstaltungen eingesetzt (während die elektronische Zeitmessung bereits bei Sportveranstaltungen fast aller Leistungsebenen üblich ist), weil es bisher noch keine speziellen Geräte gab.

"on-line-Betrieb", zu der im Parallel dazu kann die Wurf-Stadioninnern Kleinfeldanzeige Dieses Gerät, das von Elektro- die Fernsehübertragung eingeimpex in Ungarn entwickelt und blendet werden. gebaut wurde, rundet die be- Um rechneten Wurfweiten entspre- Sicherheit zu haben, wird in chend dem internationalen Re- Moskau mit zwei Geräten paralgelwerk auf gerade Zentimeter lel gemessen. Beide Geräte sind Die zu jedem Wurf notwendigen einander aufgestellt und ermit-Stadionfeldanzeige von einem Rechner der Stadionfeldanzeige Kampfrichter eingegeben. Sollte weitergeleitet und dort verglibei einem ungültigen Wurf versehentlich eine Messung erfolgt mehr als 2 cm, signalisiert eine sein, wird dieser Wert vom Rech- Anzeige an den Tachymetern ner der Kleinanzeige nicht ange- den Kampfrichtern, daß eine nommen, wenn bereits eine Wiederholungsmessung notwen-"Null" in der Anzeige steht.

Von der Kleinanzeige aus besteht eine direkte Datenleituna zum Stadionrechner, über den innerhalb kürzester Zeit die Weiterverarbeitung der Ergebnisse erfolgen kann: das Ausdrucken, das Sortieren nach besten Würfen, die Berücksichtigung von Welt- und Europarekorden usw. aus Jena sind alle Vorausset-

aufgestellten weite einschließlich der Startweitergeleitet, und Versuchsnummer direkt in

eine wesentlich höhere ab und zeigt dieses Ergebnis an, in wenigen Metern Abstand zu-Kennzeichnungen wie Start- und teln die Wurfweite gleichzeitig. Versuchsnummer werden an der Beide Werte werden direkt zum chen. Unterscheiden sie sich um dig ist. Fällt eines der beiden Geräte aus, wird sofort der Meßwert des anderen Geräts auf die Stadionanzeige übertragen. Das defekte Gerät kann in kürzester Zeit ausgetauscht wer-

zungen gegeben, daß Speer-, Diskus- und Hammerwerfen für den Zuschauer noch interessanter werden. Die Ergebnisse werden schnellstmöglich ermittelt, weitergeleitet und angezeigt. Die durchgeführten Genauigund Tests keitsuntersuchungen ergaben eine zu erwartende Genauigkeit von mindestens 1 cm für die Wurfweite. Durch die parallele Messung mit zwei Geräten sind Fehlmessungen mit größter Wahrscheinlichkeit auszuschließen.

> (Nach Applikations- und Presseinformationen vom VEB Carl Zeiss Jena)

Voraussetzung für eine exakte Messung ist, daß der als Zielzeichen dienende Spezialreflektor mit Hilfe der angebrachten Dosenlibelle vertikal am Auftreffpunkt eingestochen wird...

.. und daß der Operator am Meßgerät die am Gerät angezeigte Wurfweite kontrolliert, bevor er die Taste zur Übergabe des Ergebnisses an die Stadionfeldanzeige drückt.

Mit dem Wurfweitenmeßsystem

Fotos: ADN-ZB (1): Werkfoto

FLASMA schweißt schweißt und spritzt Metalle

Als glühender Punkt schreitet der Plasmabrenner vom Typ PB 20 entlang des Randes eines Rohres mit großem Durchmesser, und in seiner Spar verbleibt ein dünner Spalt, der zur weiteren Austührung der Konstruktion notwendig ist. Die größte Schneidlicke des in der DDR hergestellten Plasmaschneiders beträgt 30 Millimeter. Der Brennkopt vertäuft mit automatischer Steuerung auf der vorher bezeichneten Kreislinie.

Es war schwierig, den einige zehntausend Grad heißen Plasmastrahl zur Arbeitsleistung zu fassen. Aber bereits heutzutage schneidet er gehorsam dicke Metallplatten, schweißt leicht haardünne Bleche und hilft andere technische Aufgaben lösen.

Bereits während des Dreierfluges der Sojus-Raumschiffe 6 - 7 - 8 erprobte man im Weltraum erfolgreich unter anderem die Plasma-Schweißeinrichtung des Typs Vulkan, Ihr Funktionieren im Zustand der Schwerelosigkeit wurde studiert, und aus der später im Labor ausgeführten Analyse der zusammengeschweißten Elemente erhielt man Auskunft über das Verhalten der Metalle und ihre bis dahin unbekannten Eigenschaften im Weltraum. Akademiemitglied Boris Paton, Leiter des Kiewer Instituts für Schweißtechnik, erklärte: "Nach diesen Versuchsergebnissen bestehen die besten Anwendungsmöglichkeiten für das Schweißen im Weltraum".

Doch nicht nur im Weltraum, sondern auch auf der Erde dringt die Plasmatechnik immer erfolgreicher in zahlreiche Zweige der Metallbearbeitung ein. Man wendet sie in erster Linie beim Erhitzen und zum Zerkleinern von dicken Metallplatten, weiterhin beim Schweißen und zum Überziehen von Metallblechen und Kunststoffoberflächen mit dünnen Metallschichten an. Die hohe Temperatur des Plasmabogens läßt sich auch zum Beschleunigen verschiedener chemischer Reaktionen ausnutzen.

Die Physiker wissen bereits seit langer Zeit, daß die Stoffe nicht nur im festen, flüssigen und gasförmigen Zustand, sondern auch im Plasmazustand auftreten. Zuerst vermuteten die Astronomen bei der Untersuchung der Sonne, daß die Gasmoleküle bei außerordentlich hohen Temperaturen in Elektronen und positive Ionen zerfallen. Ein derartig stark ionisiertes Gas nennt man Plasma. Ein durch einen elektrischen Lichtbogen geleitetes Gas erhitzt

Blendend schneidet der Plasmastrahl in die dieke Metallplatte ein. Der in der DDR hergestellte Plasma-Schmelz-Schneider vom Typ PB 100 mit einer Leistung von 100 Kilowatt trennt auf kürzeren Abschnitten auch noch leicht 140 Millimeter starke Metallblöcke.

sich auf 15 000 bis 30 000 Kelvin, ionisiert, und der Plasmastrahl dringt aus dem Brennerkopf mit mehrfacher Schallgeschwindigkeit aus. Seine Leistung erreicht einige Millionen Watt, was für seine industrielle "Karriere" von Vorteil war.

Die einfachen Plasmaschneider arbeiten im allgemeinen mit einer Gleichspannung von 100 Volt bis 110 Volt. Die Düse des Plasmaschneiders ist die negative Elektrode. Das Werkstück wird mit dem positiven Pol der Stromquelle verbunden. Die Ladungsträger strömen von der Katode auf das Werkstück und ionisieren das aus dem Brennerkopf ausströmende Gas.

Der Plasmaschneider wurde zu einem leicht zu handhabenden Werkzeug, als es gelang, das Zweistrom-Prinzip zu verwirklichen: In der Mitte der Plasmapistolen neueren Typs strömt der Plasmastrahl hoher Temperatur und um ihn herum strömt ein Schutzmantel, der von kaltem Gas (Luft oder Sauerstoff) gebildet wird. Der große Vorteil des neuen Werkzeuges ist, daß man

mit ihm schneller schneiden und dickeres Material zerkleinern kann als mit einer herkömmlichen Plasmapistole. Eine Anlage von 100 Kilowatt Leistung kann 114 Millimeter starke Platten durchschneiden, und mit dem elektrisch isolierten Kopf kann man das Werkstück berühren, ohne daß ein Kurzschluß entsteht. Der äußere Gasmantel hält das geschmolzene Material von dem Plasmastrahl fern. Der Zweistromschneider des amerikanischen Betriebes Thermal Dynamics arbeitet mit einer so großen Leistung, daß er in einer Minute etwa zwei Kilogramm Material abschmelzen kann. Der in der DDR gefertigte Plasmaschneider des Typs PA 100 besitzt ebeneine hohe Leistung. Er schneidet im Dauerbetrieb leicht 100 Millimeter starkes Material.

Plasmastrahl-Schmelz-Schneid-Einrichtungen haben sich hauptsächlich in der Schiffsindustrie als außerordentlich vorteilhaft erwiesen. Der Plasmabrennkopf schreitet mit Abtastung durch eine Fotozelle über das Werkstück. Aber auch durch eine vorher ein-

Makroaufnahme einer Schweißnaht

Schema des Mikroplasmaschweißens 1 Stromquelle; 2 Katode; 3 Schutzmantel, aus kaltem Gas gebildet; 4 Plasmastrahl hoher Temperatur; 5 Anode (Werkstück); 6 Hilfsanode.

Fotos: Royé

gegebene Lochkartensteuerung kann bestimmt werden, wohin er geführt werden soll. Je Minute läuft der Schneidkopf über einen Plattenabschnitt von 2500 Millimeter Länge. Wenn er zu irgendeiner Ecke kommt, wird er automatisch verlangsamt, weil hier eine größere Schneidgenauigkeit notwendig ist. Das Plasmaschneiden ergibt eine so ebene Oberfläche, daß es nicht notwendig ist, die Kanten abzuschleifen oder ein anderes weiteres Bearbeitungsverfahren anzuschließen.

Die Plasmatechnik hilft auch beim Trennen von legierten Stählen und Buntmetallen. Vor allem lassen sich auf diese Art und Weise Kupfer- und Aluminiumlegierungen leicht zerkleinern. Bei der Wärmebehandlung kann man den Plasmastrahl mit dem besten Erfolg einsetzen: Er gibt je Quadratzentimeter 10 000 Watt Wärmeleistung ab. Damit überflügelt er bei weitem die klassischen Glühöfen.

Neben der bekannten blauwei-Ben Autogen-Schweißflamme erscheint immer häufer in den Fabriken die blendend gelbweiße Flamme des Plasmastrahls. Besonders fördernd wirkte auf einen breiteren Einsatz, daß man mit ihm auch noch 18 Millimeter starke Bleche ohne Zusatzmaterial miteinander, nur durch das Zusammenschmelzen der beiden sich berührenden Kanten, verschweißen kann. Dazu wird im allgemeinen ein Plasmastrahl kleiner Strömungsgeschwindigkeit, aber hoher Temperatur verwendet. Der Brennerkopf hat hier eine konische Form, damit man seinen Weg leichter mit dem Auge verfolgen kann.

Plasmaschneider sind Anlagen: die eine außerordentlich konzentrierte Wärmeleistung abgeben. Deshalb werden sie mit immer größerem Erfolg zum Schweißen von dünnen Blechen eingesetzt. Im allgemeinen verschweißt man bis 0,8 Millimeter starke 0,3 Bleche miteinander, wobei der Schweißkopf in einer Minute an einer Kante eine Strecke von 2,5 Meter zurücklegt. Diese technische Höchstleistung ist in erster Linie für die Fahrzeugherstellung, wo man aus dünnen Blechen die Karosserie zusammenbaut, außerordentlich nützlich.

Das Überziehen von Oberflächen mit Metallschichten ist vom Standpunkt der elektrischen Leitfähigkeit und der Härte wichtig. Dabei strömen im Plasmastrahl geschmolzene Metallteilchen in der Größe von einigen Mikron, die der ausströmende Plasmastrahl miteinander verkittet. Man muß viele Gesichtspunkte berücksichtigen, damit der Oberflächenüberzug einwandfrei wird. Die Fachleute haben jedoch bereits den größten Teil dieser technischen Einzelheiten ausgearbeitet. Zum Beispiel ist die richtige Auswahl der Gasart, die Form und die Ausmaße der Metallteilchen wichtig. Auf diese Art und Weise kann man auch radioaktive Materialien aufspritzen.

Die Plasmatechnik zählt in unserer Zeit noch zu den Neuheiten. Sie ist jedoch wegen ihrer vorteilhaften Eigenschaften mit gro-Bem Nutzen in vielen Bereichen der Industrie anwendbar.

Günter Clausnitzer

Eine Vierer-Gruppe von GST-Kameraden vor dem Einstieg in die Ostsee. Die angelegte Ausrüstung, bestehend aus Drucklufttauchgerät, Gewichtsgurt, Taucheranzug, Maske, Flossen, Schnorchel, belastet jeden mit etwa 23 kg!

Vorsichtig gleitet dieser Taucher mit seiner Kamera-Ausrüstung durch einen Felsspalt. Muschelbewachsene Steine könnten die Hände verletzen oder den Anzug zerschneiden.

Auftauchen mit dem ok-Zeichen. Das bedeutet "alles in Ordnung" oder "habe verstanden".

Junge Kameraden beim Training. Zur Ausbildung gehört auch, Gegenstände für eine Bergung zu sichern, Leinenverbindungen herzustellen sowie das Sägen und Meißeln.

Monate später verwirklichten wir unseren Plan. Wir meldeten uns in einer Tauchsportgruppe der GST an, wunderten uns aber sehr, daß wir nicht gleich unsere Ausrüstung bekamen, um so richtig lostauchen zu können. Was es da alles zu lernen und zu üben gab. Tauchphysiologie, Tauchpsychologie, Tauchtheorie, Tauchmedizin, Tauchtechnik. Ja, wann können wir denn nun endlich tauchen?

Abenteuer Tauchen

Nach bestandener A-Prüfung konnten wir uns auf die B-Prüfung vorbereiten und endlich den ersten Unterwasserausflug mit voller Ausrüstung starten. Das "richtige" Tauchen, wenn auch nur in einem Binnensee, begeisterte uns. Es hat schon seinen Reiz, die Welt unter Wasser ausgiebig betrachten und sich dazu noch sportlich beweisen zu können.

Im Januar '79 stellte uns der Sektionsleiter die Frage: "Jungs, wollt ihr auch Ausbilder werden – dem Nachwuchs das Tauchen beibringen?" Wir wollten! Und so bereiteten wir uns im letzten Sommer auf die Ausbilderstufe T III vor.

Diese Stufe kann man nur an der GST-Marineschule "August Lütgens" in Greifswald-Wieck erwerben. Vorbereitet mit dem nötigen Grundwissen, absolvieren hier die späteren Ausbilder einen dreiwöchigen Speziallehrgang.

Nach einigen Tagen theoretischer Ausbildung an der Schule

machen wir uns mit den Schiffsplanken vertraut.

Das Ausbildungsschiff, die "Artur Becker", ist speziell fürs Tauchen ausgerüstet. Bevor das Schiff zu einer Taucherausbildungsfahrt ausläuft, müssen Taucherausrüstungen, Kompressor, Druckammer, Schlauchboote und die vielen Kleinigkeiten einer Tauchergruppe an Bord verstaut werden.

Voller Spannung erwarten wir unseren ersten Einstieg von Bord des Schiffes. In der Ostsee tauchen, das ist schon was.

Der Ankerplatz ist erreicht, emsiges Treiben an Bord, letzte Anweisungen des Tauchlehrers. Die eingeteilten Gruppen bereiten sich auf ihre Aufgaben vor. Taucherleiter die Kaum ict wir ins außenbords, steigen Gruppe Wasser, die zweite übernimmt die Sicherung, und die dritte Gruppe hat sich um die Technik zu kümmern.

Jeder Taucher überprüft noch einmal seine Ausrüstung und gibt dem Gruppenleiter das ok-Zeichen. Langsam tauchen wir in einer Vierergruppe ab. Die Sicht beträgt etwa vier bis fünf Meter. Wir haben die Aufgabe, ein Gewöhnungstauchen und Grunderkundung durchzuführen. Das erste Objekt der Neugierde ist der riesige Schiffsrumpf. Das dumpfe Dröhnen des laufenden Hilfsdiesels überträgt sich durch den Rumpf auf das Wasser. Man spürt auf den Ohren und an der Brust ein drückendes Vibrieren, ein unheimliches Gefühl. Langsam gleiten wir am Kiel entlang zur Schiffsschraube. Alles wirkt etwas gespenstisch, und unwillkürlich kommt der danke: hoffentlich läßt jetzt keiner den großen Diesel an. Der Ankerkette folgend, tauchen wir zum Grund in sechs Meter-Tiefe. Der Anker sitzt gut zwischen zwei aroßen Steinen. Leise zischt die die Atemluft aus den Reglern der Tauchgeräte, und die ausgeatmete Luft 'steigt glucksend zur Oberfläche. Der Gruppenerkundiat sich Handzeichen nach dem Wohlbefinden jedes einzelnen, alle geben ein ok-Zeichen. Alles in Ordnung. Immer auf Sichtkontrolle achtend, schwimmen wir über den steinigen Grund. An der Wasseroberfläche folgt uns eine Sicherheitsboje. Sie ist an einer Leine befestigt und wird vom Gruppenleiter geführt. Michael, der Jüngste, entdeckt unter einem Stein einen Seeskorpion. Soll er ihn nun fangen und präpariert als Trophäe mit nach Hause nehmen, oder soll er ihn in seinem Element lassen? Diese finsteren Gedanken macht der Seeskorpion durch eine blitzschnelle Flucht zunichte, Schnell schwimmt Michael den anderen hinterher, bloß nicht den Anschluß verlieren. Wir hatten sein Zurückbleiben bemerkt und warteten am Rande einer Seearaswiese auf ihn. Ein Blick auf das Finimeter bestätigt, daß noch genügend Luft in den Geräten ist, die Seegraswiese kann also noch durchstöbert werden.

Nach einer Stunde geht der Luftvorrat dem Ende entgegen.

Beim Orientierungstauchen muß ein vorgeschriebener Kurs nach Zeit durchschwommen werden. Der Tauchsportler ist mit einem Drucklufttauchgerät, Kompaß und Meterzähler ausgerüstet.

Wieder an Bord. Jeder versucht, seine Ausrüstung so schnell wie möglich abzulegen.

Fotos: Zabel

Der Gruppenleiter gibt das Zeichen zum Auftauchen. Wir sammeln uns an der Wasseroberfläche. Das Schiff schaukelt etwa 200 Meter entfernt in der leichten Dünung. Also Schnorchel raus und schwimmen — ein hartes Stück Arbeit und eine hohe Anforderung an die sportliche Kondition jedes einzelnen. Die nächste Gruppe wartet schon auf den Lagebericht...

Nachtrag

Der Tauchsport bietet mehrere Möglichkeiten zur Freizeitgestaltung. Wer den Wettkampf liebt, kann sich im Flossenschwimmen und Streckentauchen sowie im Orientierungstauchen messen. Einige Spezialisten in unserer Republik haben sich dem Höhlentauchen verschrieben, andere der Archäologie oder der Biologie. Ein Betätiweites aunasfeld bietet der Umweltschutz. Ich denke hier besonders an die Beobachtung und Registrierung von Pflanzen- und Tierbeständen. Größter Beliebtheit erfreut sich auch die Unterwasserfotografie. Bei Hobby sind wir auf unseren Einfallsreichtum und die Bastlerfähigkeit angewiesen. Im Prinzip läßt sich fast iede Kamera in ein wasserdichtes Gehäuse hauen

Zum Schluß noch ein Tip an alle, die beim Tauchsport mitmachen wollen. Voraussetzung dafür ist eine gute Gesundheit, und — natürlich muß man schwimmen können. Das Erlernen und Ausüben des Tauchsports ist nur im Rahmen der

Tauchsportprüfung A

Schwerpunkte des Ausbildungsprogramms:

- geschichtliche Entwicklung des Tauchens
- Umgang mit Flossen, Maske und Schnorchel (ABC-Geräte)
- Langstreckenschwimmen mit
 ABC-Geräten
- Atmung mit dem Schnorchel
- Oben des Abtauchens
- Fahren, Kentern und Wiederaufrichten eines Bootes
- Rettungsschwimmen

Tauchsportprüfung B

Schwerpunkte des Ausbildungsprogramms:

- programms:

 wehrpolitische Bildung
- physikalische und physiologische Grundlagen des
- Tauchertechnik
- Vorschriften f
 ür die Sicherheit beim Tauchen in der GST
- praktische Taucherausbildung

Die wichtigsten Bedingungen zum Erwerb der Ausbilderstufe T III

- Voraussetzung ist eine zweijährige Tätigkeit als Taucherausbildungsassistent.
- Es muß die F\u00e4higkeit nachgewiesen werden, das Ausbildungsprogramm f\u00fcr die Tauchsportstufen A und B unterrichten zu k\u00f6nnen.

GST möglich. Jeder Kreisvorstand der GST kann Auskunft geben, wo Sektionen von Tauchsportgruppen anzutreffen sind.

Manfred Zabel

Mit dem zunehmenden Einsatz von Strahlantrieb-Jagdflugzeugen seit Ende der vierziger Jahre zeigte sich immer deutlicher: Für den schnelleren und gefahrloseren Übergang auf die neuen Flugzeuge muß es auch spezielle Schulmaschinen geben. In der UdSSR entwickelte man, wie vorher bereits bei Kolbenjagdflugzeugen üblich, aus den einsitzigen Kampfmustern zweisitzige Schulversionen, in denen der Auszubildende vorn und der Ausbilder hinten sitzt. Eine dieser Schulvarianten lernten die Flugzeugführer der NVA bereits 1956 kennen - die MiG-15 Uti als zweisitzige Ausführung der berühmten MiG-15. (Uti ist die Abkürzung für Schul- und Übungsjagdflugzeug). Mit ihr wurden die Piloten nach der Grundausbildung (Fliegen von Kolbenmotorschulmaschinen) auf die Kampfflugzeuge MiG-15 und MiG-17, später sogar MiG-19 umgeschult.

Die Überlegung, Flugschüler mit Strahltrainern fliegen zu lassen, die spezieller für diesen Zweck ausgelegt sind als die umfunktionierten Kampfflugzeuge mit ihren höheren Anforderungen an das fliegerische Können der Flugzeugführer, führte zu dem Strahltrainer L-29 "Delfin" aus der ČSSR. Dieser Typ hatte sich im Vergleich mit der in der JUdSSR entwickelten Jak-30 und der polnischen TS-11 "Iskra" als bestes Flugzeug erwiesen und wurde ab April 1963 in Serie gebaut.

Da die ČSSR über umfangreiche Erfahrungen auf diesem Gebiet verfügte und ebenfalls Simulatoren für verschiedene Flugzeugtypen fertigte, wurde ihr die Konstruktion eines Nachfolgetyps übertragen. Mit starker Unterstützung durch sowjetische Fachleute — so auch auf dem Triebwerksektor — entstand die L-39 "Albatros" (das Foto zeigt Maschinen dieses Typs mit Tarnbemalung).

Seit 1974 läuft die Serienfertigung für diesen Strahltrainer, zu dem ein Simulator, ein Katapultiertrainer sowie ein in einem Kleinbus untergebrachtes automatisches Kontrollsystem gehören. Hauptabnehmer sind, wie zuvor bei der L-29, die UdSSR und andere sozialistische Staaten.

Foto: Kopenhagen

Technische Daten der L-39

Länge (m): 12,32 Spannweite (m): 9,46

Höhe (m): 4,7 Flügelfläche (m²): 18,80

Startschub (kp/N): 1730/17 700

Höchstgeschw.

in Bodennähe (km/h): 700 Marschgeschw. (km/h): 650 Gipfelhöhe (m): 11 500 Reichweite (km): 870—1015 Leermasse (ka): 3375

Startmasse max. (kg): 4600

18111(a)

am laufenden Ban

Anfang Dezember war's.

Ich weiß nicht mehr, was wir eigentlich erwartet hatten dort, in Wittstock an der Dosse, anderthalb Autobahnstunden nördlich von Berlin: Zeichen von Aufbruch jedenfalls, etwas wie den symbolischen ersten Spatenstich . . .

Was aus der "Grobschmiede" werden sollte

An diesem ersten Dezember-Montag des Jahres '79 bahnte sich im Wittstocker Rationalisieerstmals in der DDR sollte die Serienfertigung mikrorechnerge-

stützter Industrieroboter für Me- nen. Oder gar in den acht jungen tallurgie-Betriebe anlaufen! So Burschen, die da über einem Paksah die Sensation aus: Sieben, ken Zeichnungen brüten, viermal, acht junge Arbeiter stehen im fünfmal messen, ehe einer eine leergeräumten Viertel einer Mon- Schweißnaht zieht (und gleich tagehalle um einen Stahltisch, wieder nachmißt) - um in diesen Man braucht schon einen be- acht jungen Arbeitern den Vorachtlichen Schuß Phantasie, um in trupp einer neuen, großen Prorungsbetrieb Sensationelles an: dem flachen Stahlkasten auf dem, duktionsabteilung zu sehen, die Hallenboden die Grundplatte dreischichtig moderne Industrieeines Industrieroboters zu erken- roboter montieren wird. Keiner

der acht hier hat je solche Arbeit gemacht, Gittermasten für Tagebau-Bahnen, Legierungsbehälter für Stahlwerke, einige spezielle, relativ unkomplizierte Rationalisierungsmittel, grober Stahlbau meist - das war bisher die Hauptproduktion des Betriebes.

Und jetzt - Industrieroboter, präziser Maschinenbau. Ohne Übertreibung: Ein Unterschied wie zwischen Kohlesäcken und Plauener Spitze!

1971 fertigten die damals 60 Kollegen die ersten Tagebau-Gittermasten. Der kleine Betrieb, inzwischen dem VEB Zentraler Ingenieurbetrieb der Metallurgie (ZIM) zugeordnet, hat sich gewaltig in den Schultern gereckt: 400 Leute sind es jetzt. Und Ende Januar 1980 soll hier der erste Metallurgie-Roboter durchs Tor rollen . 31

Ein gutes Jahr zuvor, im Herbst 1978, stellte der Minister für Erzbergbau, Metallurgie und Kali, Dr. Kurt Singhuber, seinem zentralen Ingenieurbetrieb die Aufgabe, kurzfristig (lies: in Jahresfrist!) einen neuen, mikrorechnergestützten Industrieroboter entwickeln und in Serie zu produzieren. Er sollte erstens körperlich schwere Arbeit übernehmen Arbeitskröfte freisetzen.

Zweitens mußte er den rouhen Bedingungen der Metallurgie (Staub, Hitze usw.) standhalten.

Und drittens rentabler in der Herstellung und besser in der Leistung sein, als vergleichbare Typen westlicher Spitzenfirmen. Punkt.

Eine Begründung erübrigte sich.

Denn es gibt ja keinen Zweifel darüber, daß Industrieroboter heute - gemeinsom mit der Mikroelektronik - das wichtigste Mittel für die. Automatisierung Produktionsabschnitte sind. Mikrorechnergestützte Steuerungen, Industrieroboter es gibt wohl nur wenige Produktionslinien, die in den letzten Johren mit solchen Sieben-Meilen-Stiefeln vorwärts stürmten.

Mißt vier-, fünfmal nach, bevor er einmal zuschlägt - der gründliche Schlosser Klaus Schröder.

Erfahrene Musterbauer aus den Leipziger Werkstätten des Zentralen Ingenieurbetriebs der Metallurgie lernten die Jungen in Wittstock an.

Mit extrem dünnem Draht und nach einer neuen, dem Reibschweißen ähnlichen Wickeltechnologie verdrahtet Dagmar Stolze (24 J., Mitglied der FDJ, BMSR-Mechanikerin) einen Kassetteneinschub für die Steuerung. Die Arbeitsplätze der jungen Wicklerinnen der Jugendbrigade Hausburg des Mansfelder Automatisierungsbetriebs wurden für die Serienfertigung der Roboter neu eingerichtet.

Wie kurz ein Jahr sein kann

Leiter des Konstruktions- und Entwicklungskollektivs. wurde Dr. Siegfried Marras. Die meisten seiner Kollegen waren alles andere als neidisch auf diese Aufgabe, die sich der 50jährige diplomierte Physiker und promovierte Betriebswissenschaftler aufgeloden hatte. In der DDR gob es für den Industrieroboter, den er bauen sollte, weder genügend Vorbilder noch Fachleute.

Erste Erfahrungen des Robotereinsatzes in anderen Industriezweigen nutzten die Metallurgie-Ingenieure, aber sie halfen ihnen nur zum Teil weiter. Dr. Marras sagte, daß sie sich selbstverständlich genau informiert und auch mit den Wissenschaftlern der Technischen Hochschule Karl-Marx-Stadt eng zusammengearbeitet hätten, vor allem mit Professor Vollmer, Jedoch; "Auf Dr. Marras wichtig: "Was wir Grund der rauhen Bedingungen, brauchten, waren versierte Fachdie der Einsatz in einem Stahl- leute mit dem Mut, alles in Frage spiel Varianten mit Gleitführun- bisher nie durchdachte Lösungen spätestens Herbst ein funktions-

gen aus", erklärt Dr. Marras. "Wir brauchten eine prinzipiell neue Lösung. Wir suchten einen Grundtyp, der in unserem gesamten Industriebereich universell, also an den verschiedensten Arbeitsplätzen einsetzbar sollte. So entschieden wir uns dann für einen mikrorechnerge-Gelenkroboter steuerten ... elektrischem Antrieb, der bis zu 600 N (Newton) (etwa 60 kp) Nutzlast bewältigen kann."

"Wir" - damit meint Dr. Marros seine eigens für die neuen Roboter gebildete Arbeitsgruppe. Da, wie gesagt, Roboter-Spezialisten ohnehin kaum, oder besser gesoat, aar nicht zu haben waren, wandte sich Dr. Marras an die Generaldirektoren aller Metallurgiekombinate der DDR mit der Bitte, erfahrene, vor allem aber begeisterungsfähige Konstrukteure für diese Aufgabe zu gewinnen. Vor allem begeisterungsfähige – das war dem erfahrenen ernsthaft zu prüfen. Leute, die sozusagen vor nichts Respekt haben, die nach der Devise arbeiten: ,Geht nicht, gibt's nicht!" Dr. Marras erzählt lächelnd, daß einer der Ingenieure der Leipziger Arbeitsgruppe sofort wieder den Rücken kehrte, als er auf seine Frage, wer denn hier eigentlich wisse, wie Roboter gebaut werden zur Antwort bekam: Keiner! Zunächst hötten sie eigentlich nur gewußt, welchen Ansprüchen ihre Lösung gerecht werden mußte.

So machten sich Dr. Marras und seine Gruppe (zeitweilig bis zu 30 Mann stark) an die Bezwingung des Berges "UNMOGLICH" Klippen, Schwierigkeiten, Fehlgriffe auf diesem Weg gab' mehr als genug. Beispiel: Einerseits ging es um größtmögliche Universalität der Lösuna. Andererseits treibt Universalität die Kosten in die Höhe. Also mußten sie einen Kompromiß suchen, den Kompromiß - eine Lösung mit möglichst vielen "Baukasten"-Teilen:

Zweites Problem: Eine der Grundforderungen war, sich auf eigene Kräfte und Möglichkeiten, auf Baugruppen der DDR-Industrie konzentrieren. Dr. Marras: "Wir machten die erfreuliche Erfahrung, daß es bei uns leistungsfähige Betriebe und Kombinate gibt, wie zum Beispiel Zeiss-Göschwitz oder das Elektromotorenwerk Hartha, die schnell und unbürokratisch mit Baugruppen und teilen weiterhalfen - die Verträge dafür wurden erst im Nachhinein ausgehandelt."

Drittes und Hauptproblem: Die Zeit.

Im Prinzip blieben Dr. Marras und seinen Konstrukteuren vom Formulieren der exakten Ziel-Parameter bis zum geplanten Anlaufen der Serie ein einziges Jahr. (Zum Vergleich: International gelten für die Lösung einer solchen Aufgabe 30 Monate als sehr gut (a) Genaugenommen war es nicht mal ein ganzes Jahr. Wenn die Serienfertigung zum Jahreswerk verlangt, schieden zum Bei- zu stellen, mit der Cleverness, ende anlaufen sollte, mußte bis fähiges Muster vorliegen - und natürlich erprobt werden. Also wurde paraliel zu den Konstruktionsarbeiten der "Urvater" der Serie aebaut.

Dr. Marras: "Ein Glück, daß der Sommer kam. Zu unserem Ingenieurbüro in Leipzig gehört zwar eine kleine Werkstatt, aber keine Werkhalle, Wir stellten kurzerhand ein Zelt auf den Hof - und die Platzsorgen für den Roboter waren vorerst behoben." Daß die Konstrukteure nahezu zusehen konnten, wie ihre Ideen und Zeichnungen vom Vortage unter den Händen erfahrener Musterbauer Gestalt annahmen, hatte natürlich Vorteile: Es stellte sich sofort heraus, was funktionierte und was nicht . . .

Dr. Marras ist ehrlich genug zuzugeben, daß sie dennoch einige Male wochenlang in die falsche Richtung überlegten und probierten. Na und? Bewußt ein Risiko auf sich nehmen, schließt doch ein, daß es auch mal schiefgeht. "Leichtsinnig war allerdings keiner von uns", sagte Dr. Marras. "Bei uns hieß es immer: Entweder wir haben Glück oder Erfolg! Wir mußten zum Termin fertig sein, nur das zählte."

Eines kam noch hinzu: Die Lösung der Konstrukteure mußte natürlich den Produktionsmöglichkeiten der Fertigungsbetriebe, vor allem des Wittstocker Finalproduzenten, aber auch der wichtiasten Zulieferpartner, Rechnung tragen und sowohl den vorhandenen Maschinenpark als auch dort möglichen Technologien der Fertigung berücksichtigen.

Ein Jahr Zeit bis zur Serienfertiauna - das aalt selbstverständlich auch für die Produktion der Roboter.

Im April 1979 (zu einem Zeitpunkt also, als die Konstruktionsarbeiten gerade erst angelaufen und Ergebnisse noch in keiner Weise abzusehen waren!) stand für den Wittstocker Betriebsdirektor Wolfgang Bosse und sein Leitungskollektiv unausweichlich die Frage: Roboterfertigung - ja oder nein? Von ihrer Antwort hing die Zukunft des 400-Mann-Betriebes einfach, im bereits laufenden wurde sie von den Ingenieuren

Eine Meisterleistung für sich: der ebenfalls ne11entwickelte Steuerschrank für die Roboter. Im Automatisierungsbetrieb des Mansfelder Werks für Anlagenund Gerätebau wird er montiert.

nicht nur für den nächsten Fünfjahrplan ab. Grobschmiede oder Produzent wissenschaftlich-technischer Spitzenleistungen für die Metallurgie - so stand die Frage. Kühn ist ein entschieden zu harmloses Wort für den damals im April gefaßten Beschluß der Wittstocker Betriebsleitung für die Roboterfertigung, (Direktor Bosse weiß noch heute, daß ihn damals nicht wenige warnten: "Diesmal übernehmt ihr euch!") Sie hatten viel Vertrauensvorschuß in das Vermögen der Konstrukteure. Und viel Selbstbewußtsein, viel Zutrauen zur Kraft der 400 jungen Leute im eigenen Betrieb!

Es war eine Entscheidung über Werte von etlichen Millionen Mark. Da mußte die Produktionsstruktur des Betriebes völlig verändert, mußten bewährte Kollektive umformiert, neue gebildet werden. Da zogen ganze Abteilungen um - bei voll weiterlaufender Produktion, versteht sich. Nicht zu vergessen: bei unseren scharf bilanzierten Plänen ist es Ministeriums alles andere als bracht zu haben.

Planjahr Verträge zu ändern, nicht bilanzierte Maschinen und Ausrüstungen zu beschaften, Kooperationspartner zu finden, Material zu bestellen und vieles andere mehr. Heute schreibt sich das so einfach auf - heute wissen wir ja, daß die Wittstocker es letzten Endes doch gepackt haben.

Roboterhirne made in GDR

Vor einem nicht minder großen Berg von Aufgaben sahen sich nur wenig später die Spezialisten des Werkes für Anlagen- und Gerätebau des Mansfeld Kombinats "Wilhelm Pieck" gestellt. Ihr Eislebener Automatisierungsbetrieb sollte die Serienfertigung der Herzen und Hirne der Roboter, der Steuerungen, übernehmen. Es ist eine Meisterleistung für sich, in dieser kurzen Zeit (parallel zum mechanischen Teil) diese mikrorechnergestützte Steuerung auch mit Unterstützung seines entwickelt und zur Serienreife ge-

Die BMSR-Spezialisten schließen die Antriebe an.

Fotos: JW-Bild/ Olm

der Arbeitsgruppe des VEB Zentraler Ingenieurbetrieb der Metallurgie Leipzig gemeinsam mit ihren Partnern im Mansfeld Kombinat. Und auch das sei gesagt: Diese Lösung ist in der DDR bisher einmalia.

Die mikrorechnergestützte Steuerung des Metallurgie-Industrieroboters ist eine Lösung auf qualitativ neuer Stufe mit einem wesentlich höheren Intelligenzgrad. Der MIR 60 - so die exakte Bezeichnung - ist frei programmierbar. Fünf Freiheitsgrade (unabhängig voneinander frei wählbare Koordinaten) ermöglichen, die 600 N Nutzlast in zwei Metern Reichweite und innerhalb eines Aktionsradius von mehr als 300 Grad auf Zehntel Millimeter genau an jeden beliebigen Punkt und in jeder vorkommenden Stellung zu bewegen.

Die Roboterprogrammierung erfolgt im teach-in-Verfahren (vgl. Ju+Te 9/1979, S. 659). Mit einer mikrorechnergesteuerten 'Hand kann er Werkstücke und Werkzeuge (auch eine Bohrmaschine) greifen und benutzen lernen. Die Testergebnis: Sehr gut.

Programmspeicher ermöglichen, bis zu 600 beliebige Arbeitsgänge vorzugeben.

9 Monate für Muster-Roboter

Anfang Oktober spannte der in der Leipziger Werkstatt entstandene Muster-Roboter, der Urvater und Prototyp der Serie, sehr zur Freude seiner Erbauer zum ersten Mal seine stählernen Muskeln. Anfang November wurde es ernst. Erster Test- und Einsatzfall, für Bewährungsprobe "Neuen" war die Schmiede der Maxhütte Unterwellenborn, Die Aufgabe: 1000 Grad heiße, rot glühende Schmiederohlinge mit fast einem Zentner Gewicht sind vom Ofenrollgang zu nehmen und auf Paletten zu stapeln.

Die Konstrukteure hatten eigens für diesen ersten Einsatztest mit der Maxhütte einen Forschungsvertrag, ein sogenanntes Pflichtenheft über die zu erreichenden Leistungsparameter vereinbart. Und?

Die erwarteten "Kinderkrankheiten" (die sich zum Beispiel durch die größer als vorausberechnete Hitzeausstrahlung der gestapelten Rohlinge ergaben) ließen sich beheben.

Maxhüttenkumpel sahen sehr zufrieden zu, als der "Robbi" ihre körperlich schwere, monotone Arbeit übernahm, Auch die Buchhalter der Maxhütte waren zufrieden: Das neue Grundmittel wird sich für den Betrieb in spätestens zwei Jahren amortisiert haben.

Und auch Dr. Marras und seine Konstrukteure konnten zufrieden sein - ihre Lösung ist schneller, robuster, billiger in der Fertigung und von größerem Aktionsradius als alle vergleichbaren Typen, (Obwohl Dr. Marras an dieser Stelle stets hinzufügt, daß die jetzige Konstruktion noch keineswegs perfekt und da und dort noch verbesserungswürdig sei . . .) Es ist ja nun nichts Neues, daß ein in der Werkstatt gebautes Muster-Stück die eine, die Serienfertigung aber eine völlig andere Sache ist.

Wie die Wittstocker und ihre Zulieferer die Probleme der Serienfertigung angingen und meisterten - davon werden wir im zweiten Teil dieses Roboter-Reports berichten. Denn für die Wittstokker ging es an diesem ersten Dezember-Montag, als sich acht junge Arbeiter in einer leergeräumten Hallenecke einrichteten - an diesem Tag ging es erst richtig los ...

Peter Neumann

Für Frieden und Sicherheit

Schützenpanzer in einer Gefechtsübung. Stunde der Wahrheit für die mot. Schützeneinheit: Hier zeigt sich, wie erfolgreich die Soldaten ihre Waffen meistern, wie klug die Kommandeure ihre Einheit im Gefecht führen — für unser aller Sicherheit, für den Frieden.

Die an der Spitze der Truppe stehen, die das Beispiel geben, wenn es um den Schutz unseres guten sozialistischen Lebens geht, das sind die

Berufsoffiziere der Nationalen Volksarmee.

Die heute mit 22 Leutnant sind und als Zugführer ihren militärischen Berufsweg beginnen, werden einmal die Regimentskommandeure sein. Sie sind militärische Vorgesetzte. In ihrer Hand liegt die politische Erziehung und militärische Ausbildung unserer Soldaten. Sie sind Truppenführer. Ihre Befehle und ihre Gefechtsführung entscheiden darüber, wie gut und schnell der Kampfauftrag erfüllt wird.

Sie sind Militärspezialisten. Ihr Wissen und Können läßt sie auch die komplizierteste Militärtechnik perfekt beherrschen und wirkungsvoll einsetzen.

Berufsoffizier der Nationalen Volksarmee

Ein Beruf, der hohe Anforderungen an die politische Reife, an die Bildung, an die sportliche Kondition stellt. Ein Beruf, der den vollen persönlichen Einsatz fordert. Ein Beruf, der wie kein anderer dem Schutz unseres sozialistischen Heimatlandes und damit dem Frieden dient.

Berufsoffizier der Nationalen Volksarmee

Ein Beruf, der guten Verdienst, angemessenen Urlaub, Wohnung am Dienstort, vorbildliche soziale Betreuung und vielfältige Entwicklungsmöglichkeiten bietet. Ein interessanter Hochschulberuf für junge Männer, die gefordert werden wollen und sich bestätigt wissen möchten.

Nähere Auskünfte erteilen die Beauftragten für Nachwuchsgewinnung an den Schulen, die Wehrkreiskommandos und die Berufsberatungszentren.

Das Bauwesen der DDR

Am 19, und 20, Juni ist der Palast der Republik in der Hauptstadt Treffpunkt von 2500 delegierten Bauleuten aus allen Baukombinaten und aus allen Bezirken unserer Republik. Sie sind die Teilnehmer der 7. Baukonferenz, sie werden mit führenden Vertretern von Partei und Regierung darüber beraten, wie die Qualität und Effektivität in ihrem Wirtschaftszweig wesentlich erhöht werden können, wie das Verhältnis von Aufwand und Ergebnis auf dem Hauptweg der Intensivierung noch konsequenter zu verbessern ist. Die Anforderun-

gen an die Leistungsfähigkeit des Bauwesens sowie an die Effektivität und Qualität der Investitions- und Bautätiakeit werden im kommenden Fünfjahrplan in wesentlich stärkerem Maße anwachsen als das bisher der Fall war. Angesichts der sich verändernden außenwirtschaftlichen Bedingungen in der Welt müssen viele Fragen und Probleme völlig neu durchdacht werden. Vieles von dem, was sich in der Verwendung der Baukapazitäten und des Baumaterials in den letzten Jahren eingebürgert hat, wird künftig nicht mehr in diesem

Maße vertretbar sein. Kurz gesagt, wie überall geht es auch den Bauleuten darum, aus dem Vorhandenen mehr zu machen.

Das Bauwesen und seine Leistungsfähigkeit haben weitreichende Bedeutung für die Stärkung der materiell-technischen Basis der Volkswirtschaft und für den Wohnungsbau, der nach wie vor Kernstück des sozialpolitischen Programms der Partei der Arbeiterklasse ist. Auch die Entwicklung der Volksbildung, des Gesundheitswesens, ja eigentlich alle Lebensbereiche werden von den Leistungen des

Bauwesens beeinflußt. Welche Stellung hat also das Bauwesen im Rahmen unserer Volkswirtschaft?

den verschiedensten Wirtschaftszweigen, einschließlich der Landwirtschaft bis hin zu den Reparaturbrigaden der Kommunalen Wohnungsverwaltungen, sind fast 700 000 Arbeiter, Meister, Ingenieure und Wissenschaftler mit Aufgaben des Bauwesens beschäftigt. Das sind 8.2 Prozent sämtlicher Beschäftigten unserer Wirtschaft, Das Bauwesen ist mit etwa 12 Prozent am Materialverbrauch der DDR beteiligt. Mit einem Produktionsumfang von rund 160 Mililonen Tonnen ist die Baumaterialienindustrie der zweitarößte Wirtschaftszweig der Rohstoffgewinnung und arbeitung unserer Republik, Das Bauwesen ist der größte - wie Fachleute sagen - Transportbedarfsträger unserer Volkswirtschaft. Über 50 Prozent der Transportleistungen des öffentlichen Kraftverkehrs und der Binnenschiffahrt sowie 24 Prozent der Eisenbahntransporte sind für den Transport von Baumaterialien' und Bauelementen erforderlich. Das Bauwesen ist schließlich durch einen sehr hohen Verflechtungsgrad mit anderen Zweigen der Volkswirtschaft gekennzeichnet. Etwa 50 Prozent des aesamten Materialverbrauchs des Bauwesens werden von anderen produziert Wirtschaftszweigen und zugeliefert. Damit steht fest, daß die Leistungsfähigkeit und Effektivität des Bauwesens sowie auch die Qualitätseigenschaften der Bauwerke in nicht geringem Maße vom Umfang, vom Sortiment und vor allem auch vom Qualitätsniveau jener Erzeugnisse und Leistungen bestimmt werden, die aus anderen Zweigen der Volkswirtschaft kommen.

Am jährlichen Bauaufkommen sind die Betriebe aus dem Bereich des Ministeriums für Bauwesen zu 70 Prozent, die Baukapazitäten der Landwirtschaft mit 14 Prozent, die Baubetriebe des Verkehrswesens mit 7 Prozent

und die Bauabteilungen der großen Industriebetriebe mit 6 Prozent beteiligt.

Zum Bauwesen gehört ein großes Forschungs- und Entwicklungspotential. Insgesamt sind in diesem Bereich 10 000 Wissenschaftler beschäftigt, davon allein 3000 in der Bauakademie der DDR. Außerdem gibt es 18 000 Projektanten im gesamten Bauwesen. Wie in der gesamten Volkswirtschaft ist auch im Bauwesen die Kombinatsbilduna abaeschlossen. Ein Kombingt enthält in der Regel eigene Forschungs- und Entwicklungsbetriebe, Projektierungsbetriebe, Kapazitäten für die technologische Vorbereitung, Vorfertigungsbetriebe sowie die Betriebe der Baustellenproduktion und technologische Spezialbetriebe, beispielsweise den Rationalisierungsmittelbau. In jedem Bezirk unserer Republik gibt es jeweils ein Wohnungsbaukombinat und ein Tiefbaukombinat, die den örtlichen Organen unterstehen.

Der Industriebau hat 15 große zentralgeleitete Kombingte und Spezialbetriebe mit einer Baukapazität von mehreren Milliarden Mark im Jahr. Die Bau- und Montagekombinate, in der Praxis des Bauwesens kurz "BMK" genannt, haben sich spezialisiert auf bestimmte Technologien und Territorien. Das BMK Süd beispielsweise baut vorwiegend in Leipzia und Karl-Marx-Stadt Objekte für den Maschinenbau. Das BMK Chemie mit seinem Sitz in Halle ist spezialisiert auf die speziellen Aufgaben der Chemie.

Bedeutende große Betriebe beschäftigen sich mit der Vorfertigung von Bauelementen verschiedener Art. So hat das Kombinat Technische Gebäudeausrüstung seinen Sitz in Leipzig, aber die 18 Betriebe des Kombinates findet man in fast allen Bezirken unserer Republik. Zum Kombinat gehören ein wissenschaftliches Institut, ein Ingenieurbüro mit zentralem Rationalisierungsmittelbau sowie ein Organisations- und Rechenzentrum.

Ein spezieller großer Zweig des Bauwesens ist die Baumaterialindustrie. Zu ihr gehören das Zementkombinat sowie die Kombinate Zuschlagstaffe und Naturstein, Bau- und Grobkeramik sowie das Kombinat Fliesen- und Sanitärkeramik.

Sehen wir uns die einzelnen Bereiche des Bauwesens etwas näher an. Zunächst den Industriebau: Von den hier beschäftigten Bauleuten wird eine große Arbeit zur weiteren Stärkung der materiell-technischen Basis unse-Man Republik geleistet. braucht sich nur in unserem Lande umzusehen, um zu erkennen, in welchen Größenordnungen das geschieht: Vom Rostokker Überseehafen über die Kraftwerke und neugebauten Großbetriebe bis hin zu den Talsperren im Harzerberaland hat der Industriebau bewiesen, was er kann. Seit 1971 wurden von den Industriebauern Leistungen

Wertumfang von 40 Milliarden Mark erbracht.

Heute ist eine Situation herangereift, in der wir nicht mehr so viele Neubauten wie bisher errichten werden. Auf dem Hauptweg der Intensivierung heißt es ietzt, das Vorhandene besser zu nutzen, vorhandene Industriebetriebe durch An- und Umbauten sowie durch Umstellung der immer Technologie leistungsfähiger zu gestalten. Dieser Anteil an Industriebauleistungen ist gegenwärtig noch zu gering. Er liegt etwa bei 15 Prozent; das Ziel besteht darin, in den 80er Jahren diesen Anteil zu verdoppeln. Bei der Rekonstruktion in vorhandenen Industriebetrieben sinkt der Bauaufwand um 40 bis 50 Prozent, weil Bauten ia bereits vorhanden sind, der Materialaufwand sinkt um 30 bis 40 Prozent, und der Zeitaufwand wird um 3 bis 5 Prozent verringert.

Das große Problem der Industriebauer besteht allerdings darin, wie sie auf dem engen Raum der Industriebetriebe mit ihrer Technik zum Einsatz kommen können. Oftmals ist es hier notwendig, wieder zu Hacke und Schaufel zu greifen und mit Kleinmechanisierunasmitteln zu arbeiten: zudem die Rekonstruktion bei voll laufendem Betrieb erfolgen soll. Das Hauptziel des Industriebaus besteht jetzt darin, die Bauzeiten für Industrieobiekte um mindestens 30 bis 50 Prozent zu verkürzen und die Effektivität beträchtlich zu erhöhen. Denn verglichen mit internationalen Bestwerten bauen wir allgemein in der Industrie noch zu langsam und auch zu teuer.

Betrachten wir den Wohnungsbau: Auf diesem Gebiet hat die DDR hinsichtlich der Technologie, dem Bautempo und der Qualität eine internationale Spitzenposition erkämpft. Mit hoher technischer Perfektion und in guter Qualität werden 95 Prozent aller neugebauten Wohnungen industriell errichtet. Die schnellsten Taktstraßen benötigen für die

fertige Übergabe einer Wohnung der Wohnungsbauserie 70 durchschnittlich nur noch Stunden. Davon entfallen 295 Stunden auf die Baustelle und 262 Stunden auf die Vorfertigung, Solche Bestleistungen in voller Breite wirksam werden zu lassen, ist der Hauptbeitrag der Bauleute zu unserem Wohnungsbauprogramm, mit dem wir bis 1990 die Wohnungsfrage in unserer Republik als soziales Problem lösen werden. Fester Bestandteil dieses Wohnungsbauprogramms sind neben dem Neubau auch die Modernisierung bereits vorhandener Altbaugebiete und die Werterhaltung von Wohnungen.

Abschließend sei die Baumaterialindustrie kurz vorgestellt: Hier arbeiten etwa 78 000 Beschäftiate, die die Baustellen mit allen benötigten Materialien Zement bis zu den Zuschlagstoffen oder den Fenstern und Türen beliefern, In unserer volkswirtschaftlichen Planung ist vorgesehen, daß die Baumaterialindustrie immer einen gewissen Leistungsvorsprung VOF dem übrigen Bauwesen hat, damit es nirgendwo zu Stockungen infolge Materialmangels kammt.

Eine entscheidende Frage ist die Material- und Energieökonomie im Bauwesen. Insgesamt ist die Aufgabe gestellt, mindestens die Hälfte des geplanten Produktionszuwachses im Bauwesen durch die Einsparung von Material und rund zwei Drittel des Zuwachses ohne zusätzliche Inanspruchnahme von Energie zu bewältigen. Eine Aufgabe, mit der sich die Delegierten der 7. Baukonferenz besonders gründlich beschäftigen werden. Allein die Gebäudeheizuna beansprucht 35 Prozent des gesamten Energieaufwandes unserer Republik. So gesehen hat ein Beschluß des Ministerrates größte Bedeutung, in den nächsten Jahren den Energieaufwand für die Nutzung der Gebäude um 30 Prozent zu verringern.

Was bedeutet 1 Prozent im Bauwesen?

- 1 Prozent Bauaufwandsenkung bedeutet die Freisetzung von 300' Millionen Mark. Das entspricht der Investitionssumme von etwa 5000 Neubauwohnungen im komplexen Wohnungsbau.
- 1 Prozent Senkung des Materialverbrauchs entspricht einem zusätzlichen Nationaleinkommen von 130 Millionen Mark, was für die Finanzierung von mehr als 10 000 modernisierten Wohnungen ausreichen würde.
- 1 Prozent Einsparung von Primärenergie für die Wohnungsheizung, durch bessere Wärmedämmung und besser geregelte Heizungsonlagen, entspricht rund 600 000 Tonnen Braunkohle, was fast eine Tagesproduktion sämtlicher Tagebaue der DDR ausmacht.

R0/R0-56h

iffe

Die Ladung rollt an Bord

Rollend be- und entladen

Obwohl das Bild eines Hafens noch immer überwiegend von Kranen bestimmt wird, war und ist das An- und Vonbordhieven der Güter mit Hebezeugen nicht die einzige Umschlagmethode. Güter können auf sehr verschiedene Weise an und von Bord gebracht werden, unter anderem auch rollend. Diese "kranlose" Umschlagtechnologie ist im Prinzip nicht neu, sie wurde schon 1882 bei einer Fährverbindung über den Großen Belt angewendet und fand ihre Fortsetzung bei Eisenbahnfährverbindungen zum Beispiel zwischen Warnemünde und Gedser sowie Saßnitz und Trelleborg. Ende der fünfziger Jahre wurden die ersten Eisenbahnfähren mit Autodecks gebaut und auch sogenannte Auto-Fahrgastfähren in Dienst gestellt, auf denen die Reisenden ihre Autos über See mitnehmen können, Das eigentliche "roll-on/ roll-off" - (roll-auf/roll-ab)Frachtschiff - kurz Ro/Ro-Schiff genannt -, das überwiegend für den Gütertransport vorgesehen ist, wurde erst Mitte der sechziger Jahre entwickelt.

In Abhängigkeit von der Ladung und vom Fahrtgebiet unterscheidet man

- reine Ro/Ro-Schiffe,
- kombinierte Ro/Ro-Containerschiffe,
- spezielle Autotransporter,
- Ro/Ro-Schwergutschiffe,
- Fähren (Eisenbahn- und Auto-Fahrgastfähren) und
- Fahrgast/Fracht-Ro/Ro-Schiffe.

Typisch für Ro/Ro-Schiffe ist, daß die Ladung rollend durch Heck-, Bug- oder Seitenpforten an Bord gelangt, also keine landseitigen Umschlaganlagen benötigt werden. Die Rampen, über die die Güter an und von Bord rollen, gehören somit zur wichtigsten umschlagtechnischen Ausrüstung

eines Ro/Ro-Schiffes. Sie sind gerade, schräg oder schwenkbar, gleichen Höhenunterschiede zwischen Schiff und Kai aus und ermöglichen ein einfaches und schnelles An- und Vonbordrollen der Güter. Hubtische oder Aufzüge sowie bewegliche oder feste Rampen sorgen im Inneren des Schiffes, das einer mehrstöckigen Großgarage gleicht, dafür, daß stets eine rollende Be- und Entladung gewährleistet bleibt.

Der Umschlag, der beim konventionellen Stückgutschiff Tage in Anspruch nimmt, dauert so nur noch Stunden. Diese kurzen Hafenzeiten bringen zwei wesentliche Effekte mit sich: Zum einen dient das investitionsintensive Grundmittel Schiff mehr seinem eigentlichen Zweck - dem Transport von Gütern - und zum anderen wird durch die rationellere Nutzuna des Transportmittels eine erhebliche Steigerung der Transportleistung je Schiff erreicht. Die auf Ro/Ro-Schiffen zu transportierenden Güter kann man in drei Gruppen einteilen: - in allgemeines Stückgut, das per Eisenbahn oder Lkw in den Hafen kommt, in Stückgutschuppen gelagert, meist auf Rolltrailer gepackt und von Zugmaschinen an Bord gerollt wird, in Container, die ebenfalls mit Rolltrailern an Bord gefahren werden, und

- in selbstrollende Güter (Pkw, Lkw, Traktoren und dergleichen).

MS "Inselsberg" machte den Anfang

Das erste Ro/Ro-Schiff unserer Handelsflotte war das MS "Inselsberg", das seit dem 30. April 1974 in einem Gemeinschaftsliniendienst zwischen der DDR und Finnland eingesetzt wird und wöchentlich die Häfen Helsinki. Kotka und Rostock verbindet. Das Schiff hat die höchste finnische Eisklasse, wodurch ein ununterbrochener Einsatz nach Finnland gewährleistet ist. Es kann Fahrzeuge aller Art. Container und konventionell angeliefertes Stückgut befördern. Ein Lift sorgt für eine zügige Beladung des Unterraumes mit rollendem Gut. Die hydraulisch verschließbare Heckpforte des Schiffes enthält eine

Rampe, über die die Landverbindung hergestellt wird.

Da sich dieser Ro/Ro-Dienst relativ schnell und stabil entwikkelte, wurde bereits im Juli 1975 mit dem MS "Fichtelberg" ein weiteres Ro/Ro-Schiff in Dienst gestellt, das wichtige Transporte im Mittelmeer und im Roten Meer ausführt. Das MS "Fichtelberg" kann Pkw, Lkw, Rolltrailer, Container und Flats (Stückgut-Großpaletten) transportieren. Die Beladung erfolgt über eine Heckrampe; zwei hydraulische Lifts (je 50 t Tragfähigkeit) ermöglichen ein schnelles und gleichzeitiges Beladen des Unterraumes und des Wetterdecks mit rollendem Gut, Ein beweglich angebrachtes Auto-Hängedeck, Bugstrahlruder, Schlingerdämp-

MS "Beerberg" wurde 1978 in Dienst gestellt,

MS "Fichtelberg" kann Trailer, Container, Last- und Personenkraftwagen befördern.

fungsanlage und 24stündiger wachfreier Betrieb der Hauptund Hilfsmaschinenanlage sind weitere Merkmale dieses modernen Schiffes.

Schwere Brocken – kein Problem für das MS "Brocken"

Seit Anfang 1976 verfügt der VEB Deutfracht/Seereederei Rostock über ein Ro/Ro-Schwergutschiff zum Befördern von überschweren und sperrigen Gütern. Industrieausrüstungen und kompletten Anlagen. Der Aktionsradius von 9000 sm und die höchste Eisklasse gestatten einen unbegrenzten, weltweiten Einsatz des Schiffes. Der sehr geringe Tiefgang ermöglicht auch das Befahren flacher Gewässer und sogar das Anlegen an unbefestigten Küstenregionen. Die Übernahme bzw. Übergabe der La-

MS "Brocken" – ein Ro/Ro-Schwergutschiff des VEB Deutfracht Seereederei Rostock dung kann einerseits mit bordeigener Umschlagtechnik erfolgen — zwei Portalkrane mit je 130 t Tragfähigkeit sind über die gesamte Länge des Schiffes verfahrbar —, andererseits ist das Beladen des Schiffes über Heck/ Bug im Ro/Ro-Verfahren möglich.

Die komplizierten Umschlageinrichtungen werden von 17 Seeleuten bedient, die neben guten seemännischen Kenntnissen eine zusätzliche Ausbildung unter anderem im Schweißen, Kran- und Gabelstaplerfahren haben.

Zwei "Schwestern" folgten

Nummer 4 und 5 in unserer Ro/Ro-Flotte wurden die Schwesternschiffe MS "Aschberg" und MS "Beerberg". Die "Aschberg" eröffnete am 20. Mai 1977 einen Liniendienst nach Großbritannien (wächentlich eine Abfahrt) und das MS "Beerberg" — ein Jahr später in Dienst gestellt — führt Transporte im Mittelmeergebiet aus. Wenn man bedenkt, daß beispielsweise durch den Ein-

satz des MS "Aschberg" in der Linienfahrt Rostock - Hull (Großbritannien) der bisherige kon-Liniendienst ventionelle nach Hull und Goole mit durchschnittlich drei wöchentlichen Abfahrten und einer Containerabfahrt nach Hull ersetzt wurde, zeigt das sehr deutlich, wie durch eine Konzentration des Ladungsaufkommens und durch die Reduzierung der Vielzahl der Anläufe mit kleinen Einheiten ein wesentlicher Rationalisierungseffekt erreicht werden

Beide Schiffe laden und löschen über eine zweispurig befahrbare Heckrampe, wobei eln Lift jeweils maximal 30 t Ladung vom Hauptdeck in den Unterraum und zum Wetterdeck verfahren kann. Es können Stückgüter (mit Hilfe von Trailern), Container und selbstrollende Güter aller Art befördert werden. Insgesamt verfügt jedes der beiden Schiffe auf seinen drei Decks über eine Fahrbahnlänge von 1000 m.

Jüngster Ro/Ro-Dienst: Rostock — Riga

Seit dem 1. August vorigen Jahres wurde der seit 1963 bestehende Gemeinschaftsliniendienst zwischen Rostock und Riga in einen Ro/Ro-Verkehr umgewandelt. Da-

Im Auftrag des VEB Kombinat Seeverkehr und Hafenwirtschaft Deutfracht/Seereederei entwickelte der VEB Mathias-Thesen-Werft Wismar den Ro Ro-Schiffstyp Ro-15. Das Schiff ist für unbeschränkten Fahrtbereich ausgelegt.

Fotos: Werkfotos

mit wurde diese wichtige Relation effektiver für Stückgüter, Ro/Rofähige Massengüter, Maschinenund Ausrüstungsteile sowie Maschinen und Fahrzeuge erschlossen und den steigenden Anforderungen im seewärtigen Außenhandelstransport beider Länder entsprochen. Immerhin werden zwischen der UdSSR und der DDR gegenwärtig etwa 40 Prozent aller Außenhandelsgüter auf dem Seewege befördert! Vorerst wird in diesem Dienst ein modernes sowietisches Ro/Ro-Schiff von der Lettischen Reederei eingesetzt. Es wird von beiden Reedereien gemeinsam genutzt und eröffnet neue Möglichkeiten, den seeseitigen Transport zwischen der UdSSR und der DDR weiter auszudehnen und zu beschleunigen.

Und wie rollt's weiter?

Ro/Ro-Schiffe - häufig auch als Güterfähren oder "Trailerschiffe" bezeichnet - haben sich vor allem im Kurzstreckenverkehr sehr rasch weltweit durchgesetzt. Gegenwärtig ist die Ro/Ro-Tonnage der Teil der Schiffahrt, der die höchste Wachstumsrate zu verzeichnen hat: allein in den vergangenen sechs Jahren hat sich die gesamte Flotte für den "rollenden" Verkehr fast verdreifacht! Auch im Rostocker Hafen stiegen die nach dieser Technologie umgeschlagenen Mengen derart schnell (1975 - 118 kt, 1979 - 301 kt), daß schon heute die Freilagerfläche aus allen Nähten platzt. So entsteht im Anschluß an die alte Anlage eine neue 200 000 m² große Lagerfläche mit Packschuppen und Autobahnanschluß.

Die Entwicklung künftiger Ro/Ro-Schiffe wird auf eine Größenzunahme und die Erhöhung ihrer Effektivität orientiert sein, wobei eine bessere Raumausnutzung jede Tonne Ladung benötigt auf einem Ro/Ro-Schiff beispielsweise noch mindestens doppelt soviel Schiffsraum wie auf einem konventionellen Stückgutschiff — da-

Beladungsvariante und einige technische Daten des MS "Fichtelberg":

Länge über alles 137,55 m Breite 20,60 m

Seitenhöhe

(Wetterdeck) 14,70 m

Tiefgang

(max) 7,13 m

Rampe 12,00 m × 7,28 m Tragfähigkeit 7381 t Vermessung 4128 BRT

Ladekapazität 95 33'-Trailer und 135 Pkw oder 232 20'-Container

oder 232 20'-Co oder 465 Pkw oder 195 Lkw

Geschwin-

digkeit 18,5 kn

Klasse DSRK KM aut 24 Ro Ro-Schiff

Beladungsvariante und einige technische Daten des MS "Inselsberg":

Länge über alles 99 13 m 15.00 m Breite Seitenhöhe 11.00 m 6.06 m Tiefgang Tragfähigkeit 4531 t 2350 BRT Vermessung Heckrampe 12 m × 5 m Geschwin-

digkeit ≈ 12,5 kn Klasse DSRK KM Eis

1 aut 24

Beladungsvariante und einige technische Daten des MS "Brocken":

 Länge

 über alles
 82,21 m

 Breite
 16,45 m

 Seitenhöhe
 7,70 m

 Tiefgang
 3,95 m

 Rampe
 15 m × 8 m

Tragfähigkeit 1350 t

Geschwin-

digkeit 12 kn

Klasse DSRK-Eisklasse KM Eis 1 aut 24

bei im Vordergrund stehen dürfte. Fest steht, daß die Ro/Ro-Dienste durch die Möglichkeit des Einsatzes rollender Ladungseinheiten die Transport- und Umschlagprozesse schneller, rei-

bungsloser und somit effektiver gemacht haben und sich der durchgehende Transport vom Versender zum Empfänger als vorteilhaft erwiesen hat.

C. Kapke/J. Menke

Mikroben bringen fast alles zuwege. Es gibt kaum ein Naturprodukt oder ein industriell gefertigtes Erzeugnis, das dem Angriff der Kleinstlebewesen standhält. Holz, Papier, Textilien, Öle, Wachse, Schmierstoffe, Knochen und Leime, selbst Baustoffe und Glas oder Metalle finden unter den Bakterien und Pilzen ihre Bearbeiter und Zersetzer, die die genannten Stoffe mehr oder weniger langsam verändern, ja total zerstören können. Von

dieser Art der biologischen Stoffwandlung durch Mikroorganismen können wir uns im täglichen Leben immer wieder überzeugen: hier verschimmelt eine Scheibe Brot, da geht ein Apfel in Fäulnis über, und dort wird vielleicht ein Tierkadaver durch Mikroben zersetzt. Unerwünschte und erwünschte Folgen mikrobiologischer und biochemischer Prozesse kommen überall in der Natur vor.

Wie der Kuchen locker wird

Seit undenklichen Zeiten kennt der Mensch die Wirkung der Mikroorganismen, lange ohne sie selbst erkannt zu haben. Bereits die Sumerer wußten Bier zu brauen. Die Hefen, iene zur Klasse der Schlauchpilze (Ascomycetes) gehörenden Mikroben, zählen gewissermaßen zu den ältesten "Kulturpflanzen" des Menschen, Das Backen eines Roggenmehlteigs zu Brot oder erfordern Kuchenbäckerei Preß- oder Trockenhefe. Im Teig setzt sie bei entsprechender Feuchtigkeit, Wärme und gutem Nährboden eine intensive Zuckervergärung und Kohlendioxidbildung in Gang, die zum Bilden zahlreicher Gasbläschen führen. So wird also der Kuchen locker. Der Kenner akzeptiert die Unterschiede in der Bierqualität, Auch beim Brauen haben ausgewählte Hefestämme (Saccharomyces cerevisiae, S. carlsbergensis) entscheidende Funktionen: Sie vergären die gekochte und mit Hopfen versehene Bierwürze, die aus eiweißarmer, gekeimter, getrockneter und wieder in Wasser aufgeschlämmter Gerste besteht. Ähnliches gilt für die Weinherstellung. Die Vergärung von zukkerhaltigen Lösungen (Most) wird bei den meisten einheimischen Weinen durch die Hefen Saccharomyces oder Kloeckerg ausgelöst.

Das Wissen, Milch zu den verschiedensten Produkten umzuwandeln, ist so alt wie das Brauereigewerbe. Durch kontrollierte Vermehrung milchsäurebildender Bakterien kann der Milchsäuregehalt der Milch so erhöht werden, daß sich andere Keime nicht entwickeln können. Dieser Vorgang entspricht einer mikrobiellen Konservierung. Wir denken dabei an Quark, Käse und gesäuerte Milchgetränke.

Neue Quellen werden erschlossen

Aber nicht nur die althergebrachten und von jedermann geschätz-

ten Produkte wie Squerkraut und squre Gurken, Mixed Pickles und eben Wein und Bier sind sichtbare Zeichen einer aktiven Mikrobentätigkeit. Die Fortschritte bei der wissenschaftlichen Durchdringung der Lebensvorgänge haben zu weiteren Ausgangspunkten für die mikrobielle und biochemische Erzeugung bisher nicht oder wenig genutzter bioaktiver Stoffe geführt.

Lassen sich durch mikrobiologische und biochemische Prozesse bisher nicht oder nur unvollständig genutzte natürliche Nahrungs-, Energie- und Rohstoffquellen ' erschließen? Die Grundlagenforschung kennt heute eine Reihe von Möglichkeiten, um diese Probleme zu lösen. Die Gesetzmäßigkeiten der stoffwandelnden Prozesse zu erfassen und sie bewußt zu nutzen, gehört zu den Aufgaben der biologischen Grundlagenforschung.

Die mikrobiologische Technologie - ein Hauptgebiet der Biotechnologie - nahm um die Jahrhundertwende durch die Nutzung der Gärungsprozesse zur Erzeugung von Grundchemikalien wie Äthanol. Aceton, Butanol sowie Milchund Zitronensäure industriellen Charakter an. Sie erhielt noch der Entdeckung der Antibiotika neue

Die ersten Zeichnungen von Bakterien: Präparate aus dem menschlichen Mund (Aus Leeuwenhoeks 39. Brief vom 17. September 1683)

Impulse aus der chemischen Technologie.

Gegenwärtig wird der Nutzen bestimmter Mikroorganismen in den Verfahren sichtbar, die entwickelt worden sind, um Eiweiß produzieren. großtechnisch zu Mikroben als Produzenten von Eiweiß, das erschien vor wenigen Jahren noch etwas ungewöhnlich. Die Gewinnung von Eiweiß gehört zu den strategischen Aufgaben bei der Entwicklung der Produktivkräfte der menschlichen Gesellschaft. Angesichts der Tatsache, daß jährlich bis zu 600 Millionen Menschen hungern und bis zu 35 Millionen Menschen an Unterernährung sterben, hat die mikrobielle Eiweißproduktion für die Lösung eines der wichtigsten Menschheitsprobleme erstrangige Bedeutung. Experten schätzen ein, daß etwa die Hälfte des Eiweißdefizits auf diese Weise aedeckt werden kann.

Eigenschaften der Mikroben

Mikroben sind voll funktionsfähige, das heißt mit allen Grundeigenschaften des Lebens

Milchsäurestreptokokken:
A Streptococcus lactis; B Streptococcus cremoris; C Streptococcus thermophilus; D Milchsäurestreptobakterium

Fotos: Archiv

ausgerüstete Einzeller, die im Stoffwechsel mit der anorganischen Natur unter allen Lebewesen die höchsten Aktivitäten erreichen. Das hängt mit der durch ihre geringe Zellgröße (Durchmesser 1 μ ... 10 μ), ihrer gegenüber Vielzellern einfachen Organisation, mit dem direkt über die Zelloberfläche gegebenen Kontakt zur Umgebung und anderen Faktoren zusammen. Von grundlegender Bedeutung ist dabei die schon eingangs beschriebene Erkenntnis, daß fast iede Substanz sich von Mikroorganismen abwandeln und abbauen läßt.

Die Vorzüge der mikrobiellen Eiweißproduktion gegenüber der traditionellen landwirtschaftlichen läßt sich wie folgt verdeutlichen: Die Eiweißmenge, die von Hefen in einem 600-m³-Fermenter in einer Zeiteinheit erzeugt wird,

kann in der gleichen Zeiteinheit in der Viehwirtschaft nur von 100 000 Rindern erzeugt werden. Eine einfache Rechnung zeigt, daß ein Rind von 500 kg Gewicht innerhalb von 24 Stånden nur 0.5 kg Eiweiß produziert, 500 kg Hefen dagegen bilden in der gleichen Zeit 50 000 kg Eiweiß. Das ist darauf zurückzuführen, daß die Mikroorganismen sich sehr schnell vermehren. Bakterien haben beispielsweise eine Generationszeit von 20 bis 30 Minuten und Hefen von ein bis zwei Stunden.

Neben ihrer rapiden Vermehrungsfähigkeit sind leichte Kultivierbarkeit auch im großtechnischen Maßstab und die Zusammensetzung des Mikrobeneiweißes wichtige Kriterien für die Auswahl der Mikroorganismen. Diese Voraussetzungen erfüllen vor allem die schon erwähnten Bakterien und Hefen. Da letztere sogar von bisher unverwertbaren Abfällen leben können, wären sie die niederen Organismen mit Zukunft. Mit ihnen wäre es also möglich, in einem Zuge Abfälle

zu beseitigen und aus ihnen lebenswichtige Eiweiße, aber auch Fette und Vitamine herzustellen.

Aber auch dies ist möglich: Erdöl, Erdgas, Paraffine und Methanol als Substanzen mit hohem Energiegehalt können über die Mikrobenzelle zur Eiweißgewinnung herangezogen werden. Zwei bis drei Prozent der heutigen Erdölförderung würden theoretisch genügen, die Eiweißlücke auf der Erde ganz zu schließen. Eiweiß oder Energie? Vielleicht beides in einer Kombingtion, Der mikrobielle Prozeß ließe sich so steuern, daß aus dem Rohöl nur die Paraffine abgebaut werden. so daß der Rest dennoch als Kraftstoff verwendbar wäre.

Erdölverwertende und methanoxydierende Mikroorganismen sind viel weiter verbreitet, als bisher angenommen wurde. Vielleicht ist sogar die Altölbeseitigung mit der Eiweißproduktion kombinierbar. Schon heute werden bestimmte Arthrobacter- und Pseudomonas-Bakterien zur Öltankereinigung eingesetzt. Großtanker mit etwa 1000 Tonnen Restöl lassen sich durch die Tätigkeit dieser Mikroben in zwei bis drei Tagen völlig reinigen. Dabei können bis zu 700 Tonnen Bakterienmasse gewonnen werden, die verfüttert werden kann. Neben der Umweltfreundlichkeit tritt auch eine ökonomische Seite hervor: lange Dockaufenthalte der Tanker für ihre Reinigung entfallen.

Die Technologie der mikrobiellen Eiweißsynthese bildet gegenwärtig schon ein Gerüst, das auf viele Prozesse der mikrobiologischen Technik übertragbar ist und als Ausgangspunkt für eine allgemeine mikrobiologische Technologie angesehen werden kann.

Werner Caulwell

Hochbetrieb

im Kreisverkehr

Ihre bisher größten Erfolge in der mehr als 22jährigen Geschichte der aktiven Raumfahrt konnte die Sowjetunion mit dem seit knapp drei Jahren laufenden Salut-Sojus-Progress-Programm erzielen. Das macht ein Vergleich zwischen der Anfangsperiode der Orbitalstationen vor fast zehn Jahren mit den jüngsten Ergebnissen deutlich:

- Die Anzahl der an den Unternehmen beteiligten Raumflugkörper erhöhte sich von drei (Salut 1, Sojus 10 und Sojus 11) im Jahre 1971 auf 20 (Salut 6, 19 Sojusund Progress-Schiffe) von 1977 bis 1980.
- Die Lebensdauer der Orbitalstationen stieg von 175 Tagen für Salut 1 auf bisher fast 1000 Tage für Salut 6.
- Die Anzahl der Besatzungen wuchs von einer bei Salut 1 auf bisher acht — vier Stamm-, vier-Besuchermannschaften — bei Salut 6 bzw. von drei auf 16 Kosmonauten.
- Die Aufenthaltsdauer einer Besatzung an Bord einer Orbitalstation erhöhte sich von 22 Tagen für G. Dobrowolski, W. Wolkow und V. Pazajew in Salut 1 auf 174 Tage für W. Ljachow und W. Rjumin in Salut 6.
- Die Anzahl der Kopplungen wuchs von vier bei Salut 1 auf bisher 40 An-, Ab- bzw. Umkopplungen bei Salut 6.
- Das Verhältnis Nutzmasse Effektivität stieg von drei Raumflugkörpern mit einer Gesamtmasse von 32,5 t für drei Kosmonauten und 22 Tagen bei Salut 1 auf 20 Raumflugkörper mit einer Gesamtmasse von 150 t für 16 Kosmonauten und 433 Tagen bei Salut 6 (Stand: 6. Mai 1980).

Männerwohnheim zu den vier Jahreszeiten

Noch niemals zuvor gab es einen solchen Hochbetrieb im kosmischen Kreisverkehr, wie in den letzten drei Jahren. Mittels 22 Ankopplungen bildete Salut 6 mit zehn Sojus- und neun Progress-Raumschiffen verschiedene Orbitalkomplexe aus Zwei- und Dreigespannen. Rückblickend lassen sich bisher vier bemannte Zyklen unterscheiden (siehe Tabelle):

 Der erste begann gegen Ende Herbst 1977 und dauerte fast den ganzen Winter bis zum März 1978. Die Stammbesatzung, Juri Romanenko und Georgi Gretschko, lebte 96 Tage im Orbit, stieg für 88 Minuten in den freien Raum aus, koppelte zum ersten Mal ein Sojus-Passagierraumschiff vom Heck zum Bug der Station um, entlud das erste Progress-Versorgungsraumschiff und empfing für fünf bzw. für sieben Tage zwei Gastmannschaften: eine nationale, Wladimir Dshanibekow und Oleg Makarow, sowie die erste internationale, Alexei Gubariew (UdSSR) und Vladimir Remek (ČSSR).

- Der zweite bemannte Zyklus von Salut 6 umfaßt die Zeit von Frühlingsende über den ganzen Sommer bis zu einem großen Teil des Herbstes 1978. Die Stammbesatzuna, Wladimir Kowalionok und Alexander Iwantschenko. wirkte 140 Tage im All, arbeitete 125 Minuten außenbords, entlud drei Progress-Frachter und empfing zwei Interkosmos-Mannschaften für jeweils eine Woche: Pjotr Klimuk (UdSSR) und Miroslaw Hermaszewski (VRP) sowie Waleri Bykowski (UdSSR) und Sigmund Jähn (DDR).
- Der dritte bemannte Salut-6-Zyklus wurde zum Ausklana des Winters 1979 eröffnet und dauerte den ganzen Frühling und den größten Teil des Sommers. Die Stammbesatzung, Wladimir Ljachow und Waleri Rjumin, arbeitete 175 Tage in zweisamer Einsamkeit im Kosmos, wirkte 83 Minuten als Weltraummonteur-Brigade außerhalb der Station. entlud drei Progress-Frachter und koppelte ein Sojus-Ersatzraumschiff vom Heck zum Bug der Orbitalstation um.
- Der vierte Zyklus wurde erneut im Frühling eingeleitet,

klus	tischer Betrieb der Orbital- station Salut 6	Flugtage/ Bordtage der Stamm- besatzung	Flugtage/ Bordtage der 1. Gast- mannschaft	Flugtage/ Bordtage der 2. Gast- mannschaft	Aufenthalt der Stamm- besatzung im freien Raum	Ent- und Beladung der Versorgungs- raumschiffe durch Stammbesatzung
	29. 9. (Start) 11. 12. 1977 == 73 Tage	Start von Sojus 26 am 10. 12. 1977 Remanenke/ Gretschko 11. 12. 1977 bis 16. 3. 1978 — 96/95 Tage	Start von Sojus 27 am 10. 1. 1978 Dshanibekow/ Makarow 11. bis 16. 1. 1978 = 6/3 Tage	Start von Sojus 28 am 2. 3. 1978 Gubarjew/Remek 3. bis 10. 3. 1978 = 8/7 Tage	88 Minuten	Start von Progress 1 am 20, 1, 1978 22, 1, bis 6, 2, 1978 = 15 Tage
2	16. 3. bis 17. 6. 1978 == 93 Tage	Start von Sojus 29 am 15. 6. 1978 Kowaljanek/ Iwantschenko 17. 6. bis 2. 11. 1978 == 140/138 Tage	Start von Sojus 30 am 27. 6. 1978 Klimuk/ Hermaszewski 28. 6. bis 5. 7. 1978 == 8/7 Tage	Start von Sojus 31 am 26. 8. 1978 Bykowski/jähn 27. 8. bis 3. 9. 1978 22. 8/7 Tage	125 Minuten	Start von Progress 2 am 7, 7, 1978 9, 7, bis 2, 8, 1976 == 24 Tage Start von Progress 3 om 7, 8, 1978 10, bis 21, 8, 1978 == 11 Tage Start von Progress 4 am 4, 10, 1978 6, bis 24, 10, 1978 == 18 Tage
3	2. 11 1978 bis 26. 2. 1979 == 116 Tage	Start von Sojus 32 am 25, 2, 1979 Ljachow/Rjumin 26, 2, bis 19, 8, 1979 == 175/174 Tage			83 Minuten	Start von Progress 3 am 12. 3. 1979 14. 3. bis 3. 4. 1979 == 20 Tage Start von Progress 6 am 13. 5. 1979 15. 5. bis 8. 6. 1979 == 24 Tage Start von Progress 7 am 28. 6. 1979 30. 6. bis 18. 7. 1979 == 18 Tage
4	19. 8. 1979 bis 10. 4. 1980 == 235 Tage	Start von Sajus 35 am 9. 4. 1980 Popow/Rjumin 10. 4. bis 1980				Start von Progress 8 am 27. 3. 1980 29. 3. bis 25. 4. 1980 = 27 Tage Start von Progress 9 am 27. 4. 1980 29. 4. bis (Stand: 6. 5. 16

nachdem Kosmonauten während men, darunter die Multispektralaller vier Jahreszeiten in ihrem "Männerwohnheim" tätig waren. Die Besatzung, Leonid Popow und Waleri Rjumin, erfüllt ein umfangreiches Arbeitsprogramm. Sie entkonservierte die Station, die acht Monate im automatischen Betrieb funktioniert hatte. Zu diesem Zweck mußten 1500 9. Versorgungsraumschiffe dieses Bordaggregate auf ihre Funktionstüchtigkeit überprüft und teilweise ausgewechselt repariert werden. Darüber hinaus Brennstoff und Sauerstoff als galt es, über 50 Forschungsinstrumente wieder in Betrieb zu neh- bensmittel, Trinkwasser, Kabinen-

kamera MKF-6 M vom VEB Carl Zeiss Jena, die seit 1000 Tagen funktioniert und weit über 10 000 Aufnahmen schoß.

Schauerleute im Weltraumhafen Ahnlich Schauerleuten entluden Leonid und Waleri in ihrem "Weltraumhafen" Progress 8 und Typs können rund eine Tonne Tankgut (Flüssiger Zweikompooder nententreibstoff: Kerosin als Oxydator) und 1,3 t Stückgut (Le-

luft, Ausrüstungsgegenstände, Forschungsgeräte usw.) laden. Nach dem Löschen, das im Durchschnitt zwei bis drei Wochen in Anspruch nimmt, wird Progress als "Entsorgungsraumschiff" genutzt und mit Abfällen beladen. Ziel des Salut-Sojus-Progress-Programms ist es, die maximale "Lebensdauer" von Orbitalstationen dieses Typs, die optimale "Schichtlänge" einer Besatzung und die günstigsten "Pausen" zwischen den einzelnen Einsätzen zu ermitteln.

H. Hoffmann

DER PRAKTISCHE LIGHT

Novitäten für Neuerer

Der Laser, noch vor Jahren ein Musterbeispiel exotischer neuer Technik mit seltener Anwendung für extreme Fälle, hält Einzug in die "Alltagstechnik". Wenn heute ein Neuerer in einem Textilbetrieb, einem metallverarbeitenden Betrieb, im Bauwesen oder wo auch immer, vorschlägt, alte Bearbeitungs-Meßtechnik durch einen Laser zu ersetzen, so wird man ihn zumindest nicht geradewegs lachen, Trotzdem setzt sich eine so grundsätzlich von ihren Vorläufern verschiedene Technologie nur gegen erhebliche Widerstände durch. Das hat Ursachen. Die erforderliche Investition ist hoch, das völlig andersartige Verfahren verlangt mitunter bedeutende Eingriffe in die Gesamttechnologie, bei zu erwartender erheblicher Produktivitätszunahme läßt sich ein gewisses Risiko nicht vermeiden.

Ein anderes Hemmnis ist geradezu paradox: Der Laser ist zu produktiv! In vielen Fällen kann ein einzelner Betrieb einen einzelnen Laser gar nicht auslasten, und darum wird sein Einsatz unrentabel. Hier ist leicht Abhilfe zu schaffen, wenn sich mehrere Betriebe, vielleicht unter Ausnutzung der neuen Kombinatsstrukturen, zusammenschließen.

Ein schwerwiegendes Hindernis ist, daß der Laser den ihm an-

haftenden Ruf des Exotischen noch nicht ganz verloren hat. Der Laser und seine Anwendungsmöglichkeiten sind in weiten Bereichen unserer Industrie nur vom Hörensagen bekannt. Dabei sind gerade in der DDR die Bedingungen für den Einsatz des Lasers günstig, denn es ist eine große Anzahl von Lasertypen für verschiedenste Anwendungen verfügbar, zum Teil in Abstimmung mit dem RGW.

Bewährte Laser

Am bekanntesten und verbreitetsten sind Laser der Helium-Neon-Lasertypenreihe des VEB Carl Zeiss Jena. Sie werden mit Leistungen von 0,15 mW bis 40 mW angeboten. Es sind komplette, sofort funktionstüchtige Einheiten, die mit Netzanschlußgeräten geliefert werden. Wegen ihrer geringen Leistung sind diese Typen natürlich nicht für die Materialbearbeitung zu gebrauchen. Ihre Anwendungsgebiete sind Meßtechnik (z.B. sehr genaue Längenmessung), Justierarbeiten, Fluchtungen im Bauwesen, Nachrichtenübertragung und Holografie. Bei diesen Aufgaben ist es von Vorteil, daß der Laserstrahl trotz der geringen absoluten Leistung wegen seiner fast idealen Bündelung eine große Reichweite besitzt und Durchmesser mit der Entfernung nur wenig zunimmt. Besonders. beachtenswert ist der verhältnismäßig preisgünstige Demonstra-

Abb. 1 Eine Weiterentwicklung des Argonlasers

Abb. 2 Ein Argonlaser im Einsatz für Meßzwecke, links ein vom Laserstrahl erzeugtes Interferenzbild

Abb. 3 Eine einfache Anordnung zur Aufnahme von Hologrammen

Abb. 4 So kann das Hologramm mit jeder Quecksilberdampflampe sichtbar gemacht werden.

tionslaser HND 25. Er kann sich auch in Betrieben rentieren, in denen es vorerst nur erforderlich ist, die Mitarbeiter mit den Eigenschaften der Laserstrahlung vertraut zu machen, um spätere Anwendungen vorzubereiten.

Hologramme ohne Geheimnisse

Die meisten Anwendungen der Helium-Neon-Laser sind sehr speziell und verlangen jungen Neuerern gute Kenntnisse der Bedingungen ihres Betriebes und einiges Knobeln ab. Eine fast überall mögliche und fast überhaupt nicht genutzte Möglichkeit ist die Holografie. Technisch wird sie meist zu Meßzwecken genutzt und sieht dann sehr kompliziert aus. Die abbildende Holografie ist dagegen heute schon mit einfachen Mitteln realisierbar, Man erhält dabei Fotos der Objekte, die nicht nur wie Stereobilder plastisch erscheinen, sondern das Objekt auch von verschiedenen Gesichtswinkeln richtig wiedergeben: Das Bild ist vom Original optisch nicht unterscheidbar. Solche Hologramme sind für Lehr- und Demonstrationszwecke ideal, besonders, wenn die Originalobjekte sehr selten, sehr teuer oder gar unikat sind.

Wie einfach man sie aufnehmen kann, bewies schon vor Jahren eine Gruppe von Enthusiasten an der Sektion Physik der Leipziger Karl-Marx-Universität.

Für die Aufnahme-Apparatur (Abb. 4) benötigt man einen einfachen Laser, wofür schon der HND 25 ausreicht. Da er nur für den Zeitpunkt der Aufnahme gebraucht wird, ist im Prinzip eine leihweise oder gemeinschaftliche Nutzung möglich. Noch einfacher ist die Wiedergabe. Als Lichtquelle in einer Wiedergabeapparatur nach Abb. 3 genügt iede Quecksilberdampflampe, z. B. die HQE 40, die zum Lehrmittelsatz von Schulen gehört, oder auch jede Bestrahlungslampe ("Höhensonne"), selbst der billige Strahler "UV de Luxe" eignet sich dafür. Das Bild wird schon ohne Filter sichtbar, allerdings gibt es dann Mehrfachbilder in verschiedenen Farben, die sich überlagern. Deshalb ist es erforderlich, mit einem Filter oder einer Filterkombination (z. B. Ha Mon 577/79 von Zeiss) eine Spektrallinie aus diesem Licht Kompliziertere herauszufiltern. (Ortsholo-Aufnahmeverfahren gramme), auf die wir hier nur

Abb. 5 Autbau eines extrem einfachen Stickstofflasers Fotos: ADN-ZB, JW-Bild/ Zielinski, Werkfoto

Kupferfolie Spalt 10mm

hinweisen können, ermöglichen sogar die Wiedergabe mit einer gewähnlichen Glühlampe und Rotfilter. Ein Budapester Mediziner verwendet solche Hologramme seit Jahren anstelle von anatomischen Originalpräparaten mit Erfolg für seine Studenten.

Noch überzeugender sind die Volumenhologramme, über die wir bereits in Jugend+Technik, Heft 6/1977, Seite 515, berichteten. Sie werden in sowjetischen Museen gelegentlich anstelle von Originalobjekten gezeigt und sind mitunter in der DDR in sowjetischen Ausstellungen zu sehen. Die Wissenschaftler lassen sich bei solchen Gelegen-

heiten den Spaß nicht entgehen, die Hologramme ohne jeden Kommentar raffiniert in Schaukästen anzuordnen. Zwischen den uneIngeweihten Betrachtern gibt es dahn regelmäßig Streit darum, ob es sich um ein Original oder um ein Bild handelt.

Als Aufnahmematerial gibt es in der DDR die Holografieplatten LP 2 von ORWO, die allerdings der noch geringen Nachfrage wegen nicht kurzfristig lieferbar sind.

Geballte Kraft im Laserstrahl

Für die Materialbearbeitung produziert der VEB Kombinat Feinmechanische Werke Halle neuerdings eine 200-W-CO₂-Laseranlage, die bedarfsdeckend lieferbar ist. Diese Anlage kann verschiedenste Materialien bis zu einer Stärke von 5 mm (z. B. Holz, Stahlblech, Glas, Plaste, aber auch beschichtete Materialien und Kombinationswerkstoffe) gratlos trennen, bohren, gravieren usw. Beim Trennen entsteht eine nur 0,1 mm breite Schnittfuge. Auch komplizierte Formen können mit großer Geschwindigkeit nach beliebigen Vorlagen kopiert werden. Beispielsweise läßt sich nach einem Birkenblatt ein Muster in ein Weinglas eingravieren.

Der CO₂-Laser wird vom Hersteller nicht als einzelnes Gerät geliefert, sondern in Form einer kompletten Bearbeitungstechnologie,* die gemeinsam mit dem Besteller für jeden Anwendungsfall gesondert erarbeitet wird. Der Preis für das Grundgerät ist mit etwa 300 000 M verhältnismäßig hoch, weshalb eine gut organisierte zweischichtige Aus-

lastung fast immer erforderlich ist. Dann lassen sich hohe Rationalisierungseffekte erreichen; die Arbeitsproduktivität stieg mit unter auf das Sfache!

Für die Mikromaterialbearbeituna, bei der geringere Leistun gen ausreichen, sind auch lonen Laser mit einigen Watt Leistung vom VEB Carl Zeiss Jena geeig net. Sie haben allerdings, wie bei derartigen Geräten üblich nur eine garantierte Lebensdaue von 1000 Stunden, sollten also zweckmäßig nicht im Dauer betrieb eingesetzt werden. Fest körperlaser (Rubinlaser) setzt der VEB Carl Zeiss Jena in verschie denen Geräten (Punktübertra gungsgerät, Mikrospektral-Angly sator) ein. Diese für manche Spe zialfälle der Materialbearbeitung geeigneten Impulslaser sind also im Prinzip ebenfalls verfügbar.

Laser ganz einfach

Ein Faktor, der zumindest die Propagierung des Lasers in der Industrie behindert, ist der hohe Preis auch der billigsten Demonstrationslaser, die immerhin über Tausend Mark kosten. So stellt sich die Frage, ob es nicht möglich ist, wenigstens für Demonstrations- und Experimentierzwecke einfache Laser selbst zu bauen.

Am naheliegendsten ist der Gedanke, das Entladungsrohr beispielsweise des HND 25, bei dem die Spiegel in das Rohr integriert sind, als Ersatzteil zu beziehen und die elektronische Schaltung selbst aufzubauen. Schüler der Heinrich-Hertz-Oberschule in Bertin haben bewiesen, daß dieser Weg gangbar ist. Sie bauten einen solchen Laser als MMM-Exponat. Der Aufwand ist allerdings immer noch erheblich.

Eine überraschend einfache Läsung propagieren Bastler in den USA. Es handelt sich dabei um einen Stickstofflaser für Impulsbetrieb, der nicht einmal Spiegel benötigt, da der Laserstrahl schon bei einmaligem Durchqueen des Entladungsraumes seine volle Leistung erreicht. Abb. 5 zeigt den Gesamtaufbau. Das Entladungsrohr ist, wie Abb. 6 im einzelnen zeigt, ein aus gasdichtem Plast zusammengeklebter Kasten. Die zur Vermeidung von Reflexionen etwas schräg aufgesetzten Abschlußplatten enthalten eingeklebt die Anschlußstutzen für die Stickstoffflasche (es genügt die für Schweißarbeiten gebräuchliche Gasqualität) und für die Wasserstrahlpumpe, die den Raum ausreichend evakuiert. Die Abschlußplatten sind am Strahlaustritt durchbohrt, auf die Bohrungen Mikroskop-Deckgläschen aufgeklebt. In den Entladungsraum wurden die mit einer Spule überbrückten Entladungselektroden aus Kupferfolie eingelassen. Sie sind in ihrer ganzen Länge auf den geteilten Kondensator aufgelötet, der die Stromstöße für die Entladung liefert. Der Kondensator ist zum Beispiel aus beidseitig kupferkaschiertem Material in einer Größe von 300 mm X 450 mm × 0,4 mm geätzt.

Beim Betrieb wird der Kondensator von einem geeigneten Stromversorgungsgerät, das etwa 1 mA Gleichstrom liefern soll, auf 10 kV bis 20 kV aufgeladen. Beim Erreichen der Spannung wird die mit der Funkenstrecke überbrückte Hälfte des Kondensators über diese Funkenstrecke entladen. Da bei einem so schnellen Vorgang die Spule wie ein offener Stromkreis wirkt, folgt aus dieser Entladung ein Potentialunterschied zu der anderen Kondensatorhälfte, der eine von der Mitte des Entladungsrohres nach beiden Enden fortschreitende Gasentladung zur Folge hat. Diese liefert die Energie für den aus beiden Enden austretenden Laserstrahl, der bei einer Dauer von weniger als 10 Nanosekunden eine Leistung von 50 kW bis 100 kW erreicht, mit einigen Kunstgriffen sogar 1 MW. Die Wellenlänge des Laserlichts liegt mit 337,1 mm im nahen Ultraviolett, für das Glasoptik allgemein noch durchlässig ist.

Das läßt sich durch die Fluoreszenz beispielsweise von synthetischen Fasern oder hochwertigem Schreibpapier nachweisen. Wegen der geringen Impulsdauer eignet sich dieser Laser besonders für die extreme Kurzzeitfotografie und für Entfernungsmessungen; auch Hologramme bewegter Obiekte sollten möglich sein. Wird Laserlicht anderer Wellenlängen benötigt, so kann man mit dem mittels Zylinderlinse zu einem "Strich" aufgeweiteten strahl Farbstofflaser anregen. Eignen soll sich zum Beispiel Fluoreszinlösung in einem Glasrohr. Spiegel sind dabei nicht erforderlich.

Zu beachten ist, daß dieser Laser ein gefährliches Hochleistungsgerät ist. Er darf deshalb keinesfalls ohne Mitwirkung eines Elektronikfachmannes aufgebaut werden, der die einzuhaltenden Sicherheitsbestimmungen kennt und auch eine Schaltung für die Stromversorgung entwickeln kann.

Dipl.-Kristallograph Reinhardt Becker

Elektromotoren, Verbrennungsmotoren) experimentierten, ging Baumgarten von der richtigen Erkenntnis aus, daß die menschliche Muskelkraft Masse-Leistungs-Verhältnis VOIerst jedem Motor überlegen war. Deshalb begann er seine Versuche mit muskelkraftgetriebenen Luftschiffen, die schon wichtige Elemente späterer Fahrzeuge enthielten. Ein bemerkenswertes Detail ist die Höhenänderung durch gesonderte Hubschrauben. Aerodynamische Höhensteuer waren noch nicht bekannt, selbst Zeppelin wollte die Höhensteuerung zunächst durch Verschieben von Gewichten erreichen. Parseval verwendete bei seinen ersten Pralluftschiffen zwei Ballonetts. die unterschiedlich aufgepumpt wurden. Alle diese Steuerungen vergessen, Baumgartens Hubschrauben tauchen an heutigen Luftschiffprojekten wieder auf.

Die ersten bekannten Versuche Baumgartens fanden 1879 in Grüna beim heutigen Karl-Marx-Stadt statt. An eine wirkliche Steuerbarkeit seiner ersten Versuchsfahrzeuge glaubte er anscheinend nicht, denn er erprobte sie an ein Seil gefesselt. Immerhin zeigten sie am Seil eine gewisse Manövrierfähigkeit. Aber die Versuche gingen nur langsam voran, und Baumgarten war zahllosen gehässigen Anfeindungen ausgesetzt. Dieser Situation war er nicht gewachsen. Er starb 1884 in einer Heilanstalt.

Baumgartens Mitarbeiter Hermann Wölfert setzte sein Werk fort. Im Jahre 1897 erprobte er bei Berlin ein Luftschiff mit Benzinmotor, das, soweit sich das läßt, die rekonstruieren Leistungsfähigkeit vieler späterer Konstruktionen übertraf. Langjährige Forschungsarbeit wurde hier durch einen endlich den Anforderungen genügenden Antrieb gekrönt. Aber das Luftschiff verbrannte bei dem ersten Aufstiea. der Erfinder und sein Mechaniker fanden den Tod.

Damit war diese so aussichts-

von oben nach unten: Ein Zeppelin-Luftschiff im Bau Eine Motorengondel des LZ 129 Reparatur an einer beschädigten Höhenflosse S. 459 oben: In diesem Zustand konnte ein Luftschiff noch notlanden. S. 459 Mitte: Der Brand des LZ 129 beendete die große Zeit der Luftschiffe.

Fotos: Archiv

reiche Entwicklungslinie abgebrochen. Inwieweit es eine Verbindung zu den Arbeiten Zeppelins gibt ist unklar. Sicher ist aber, daß Zeppelin sich über den Entwicklungsstand der Luftschifffahrt informierte, und so muß er mit großer Wahrscheinlichkeit auch von Baumgartens Versuchen gehört haben. Auch Baumgarten beschäftigte sich mit starren Konstruktionen, über die aber nichts Genaues bekannt wurde.

Zeppelin brauchte nicht die Verwegenheit Baumgartens, der sich ohne Rücksicht auf alle Wider-

stände mit seiner ganzen Persönlichkeit für das Luftschiff einsetzte. Als hoher adliger Offizier konnte Zeppelin erst als alternder Mann, nachdem er als Generalmajor 1890 seinen Abschied eingereicht hatte, wagen, sich ganz seiner Erfindung zu widmen, obwohl er vorwiegend an eine militärische Anwendung dachte.

Trotzdem blieben ihm Beschimpfungen nicht erspart, als die ersten beiden Luftschiffe nicht sofort den vollen Erfolg brachten. Aber gegenüber seinen Vorläufern hatte Zeppelin von vornherkonzeption, die im Prinzip bis zu den zuletzt gebauten beibehalten wurde.

Ferdinand von Zeppelin setzte auf das starre System, dessen Form durch ein festes Gerippe erhalten wird. LZ I bestand aus einer Gittergerüst-Konstruktion aus Aluminium, versteift durch Drahtverspannungen, die mit Stoff überzogen war. Äußerlich glich das Fahrzeug einer langgestreckten, an Bug und Heck zugespitzten Röhre. Im Innern waren im Abstand. von 10 bis 15 m Querwände gezogen, die 17

Einzelräume schufen. Die dort untergebrachten Gasballons vermochten 11 300 m³ Wasserstoff aufzunehmen. Das 128 m lange Schiff mit einem Durchmesser von 11.7 m war mit zwei unabhängia voneinander arbeitenden Motoren von ie 16 PS ausgestattet. Geschwindigkeit betrug Die 31 km/h. Bei Gasausdehnung gewährleisteten Ventile ein Entweichen in die umgebende Atmosphäre. Vertikale und horizontale Steuer dienten zum Manövrieren nach oben und unten sowie nach beiden Seiten. Die zwei Gondeln waren mit einer Stahltrosse verbunden, über die ein Laufgewicht geführt wurde, um ein Steigen oder Fallen des Luftschiffs ohne Ballast- oder Gasabaabe zu ermöglichen. Bereits das dritte gebaute Luftschiff brachte im Oktober 1906 den vollen Erfolg. Mit 47 km/h war LZ III voll steuerbar. Das war so überzeugend, daß wenn auch zunächst zögernd, jetzt tatsächlich die preußischen Militärs für das neuartige Fahrzeug interessierten. Konkrete Aufträge erteilte die Armee jedoch bis zum Jahr 1912 nur wenige. Um die geschaffene Produktionskapazität zu nutzen. wurde deshalb eine zivile Luftverkehrsaesellschaft gegründet, die für zahlungskräftige Passagiere Vergnügungs- und Linienfahrten organisierte.

Während des ersten Weltkrieges gab es dann genügend Aufträge von der Armee. Die "Zeppeline" erwarben sich einen traurigen Ruhm, Sie führten die Bombardierung von großen Städten in den Krieg ein. Glücklicherweise war die Wirkung noch vorwiegend eine moralische. Die wendigeren Flugzeuge waren der Weiterentwicklung der Zeppeline immer wieder eine Nasenlänge voraus, so daß die Luftschiffe ziemlich hilflos ihrem Beschuß ausgesetzt waren. Von 97 eingesetzten Zeppelinen wurden 90 zerstört. Diese Mängel sah auch der inzwischen hochbetagte Graf Zeppelin, der ein leidenschaftlicher Verfechter des Bombenkrieges gegen die Zivilbevölkerung war. Er ließ neben den Luftschiffen für diesen Zweck "Riesenfluazeuae" bauen, die nicht viel erfolgreicher waren. Nach dem Krieg baute der Luftschiffbau Zeppelin wieder Passagierluftschiffe. Das erste. LZ 120 "Bodensee", wurde 1919 in Dienst gestellt. Bei 20 000 m³ Gasinhalt konnte es 30 Passagiere mit 130 km/h befördern. Es absolvierte viele erfolgreiche Fahrten und erhielt noch im aleichen Jahr ein Schwesternschiff. Beide mußten jedoch im Jahre 1921 als Reparationsleistung an die Allijerten abgeliefert werden. die 40 deutschen Luftschiffhallen ließen die Alliierten als Kriegstechnik bis auf zwei zerstören.

Der deutsche Luftschiffbau befand sich in einer schweren Krise, aus der Zeppelins Nachfolger Dr. Hugo Eckener einen Ausweg fand. Er setzte gegen den Widerstand nationalistischer Kreise, die den "Verrat militärischer Geheimnisse" fürchteten, durch, daß für die USA anstelle einer finanziellen Reparationsleistung ein Luftschiff gebaut wurde.

1926 wurden die Baubeschränkungen des Versailler Friedensvertrages aufgehoben. Es konnte jetzt wieder ein deutsches Verkehrsluftschiff gebaut werden. Eckener konnte dazu Spendenmittel der Bevölkerung verwenden.

Der neue LZ 127 "Graf Zeppelin" wurde ein voller Erfola. Mit ihm wurde ein Transatlantikverkehr aufgebaut und viele Forschungsfahrten absolviert, Im Jahre 1931 wurde der Bau des bisher größten Luftschiffs in Angriff genommen, LZ 129 war 245 m lang, verfügte über einen Gasraum von 200 000 m3 und erreichte eine Höchstgeschwindigkeit von 135 km/h. Die luxuriöse Innenausstattung machte den Transatlantikverkehr für Zahlungsfähige wirklich attraktiv. Der Bau zog sich bis nach dem Machtantritt des deutschen Faschismus hin. Das stürzte Eckener in einen Widerspruch, der sein ganzes Wirken begleitete. Eckener sah in dem

Luftschiff ein völkerverbindendes, friedliches Luftfahrzeug, während er, um überhaupt bauen zu können, auf die Unterstützung nationalistischer Kreise angewiesen war, die mit dem Luftschiff ganz andere Ziele verfolgten. Nur mit Mühe konnte Eckener verhindern, daß das Luftschiff nach dem faschistischen Diktator benannt wurde.

Der LZ 129 war zunächst ein voller Erfolg. Aber er mußte mit dem brennbaren Wasserstoff gefüllt werden, da die USA das nur von ihnen produzierte Helium aus gutem Grund nicht an Deutschland lieferten, denn damit konnten z.B. militärische Sperrballons zur Flugzeugabwehr, für die es geheime Pläne gab, gefüllt werden. So geschah am 6. Mai 1937 ein furchtbares Unglück, Der LZ 129 geriet bei der Landung in Lakeharst, USA, in Brand und wurde in wenigen Sekunden zerstört. Es war der einzige Unfall eines Passagierluftschiffes, bei dem Personen zu Schaden kamen. Deshalb schreckte es die Interessenten durchaus nicht ab. Die Buchungen für den LZ 127 nahmen nach der Katastrophe sogar zu. Trotzdem leitete der Unfall das Ende der deutschen Luftschiffahrt ein. Das verbliebene Luftschiff und der inzwischen fertiggestellte LZ 130 wurden bald darauf abgewrackt, um Metall für den Bau von Kriegsflugzeugen zu gewinnen.

War die Entwicklung der Luftschiffe eine Sackgasse? Vielleicht eher ein möglicher Weg, den die Technik tatsächlich nicht weitergegangen ist, weil das Flugzeug aus verschiedensten Gründen wohl wegen seiner größeren Vielseitigkeit, sicher aber auch seiner militärischen Überlegenheit wegen - schneller entwickelt wurde. Es ist schwer vorherzusagen, ob eines Tages veränderte Bedingungen dem Luftschiff einen Weg ebnen. Es gibt dafür seit Jahren viele spektakuläre Ansatzpunkte, aber den großen Durchbruch hat man noch nicht geschafft. R.B.

Nachmitzing Nachmitzing Nachmitzung

HE-D Wirbelstrombrenner

entwickelt vom Jugendkollektiv Beutler des

VEB Spezialbaukombinat Magdeburg, Kombinatsbetrieb Feuerungs- und Grundbau,

3014 Magdeburg, Sudenburger Wuhne 4.

Heizölwirbelstrombrenner werden mit Heizöl der Sorte HE-C betrieben. Bei diesem Exponat ist es jetzt möglich, auch Heizöl der Sorte HE-D einzusetzen, das um 95 M/t billiger ist als das bisher verwendete. Nachnutzungsmöglichkeiten bestehen in Ziegelwerken, die Tunnel- und Kurztunnelöfen mit Ölfeuerung betreiben.

Prüfgerät für Kompaktkassetten

entwickelt von einem Jugendneuererkollektiv der Deutschen Post, Studiotechnik Rundfunk, 1160 Berlin.

Mit diesem Gerät können Messungen der Laufeigenschaften Kompaktkassetten unter von Betriebsbedingungen durchgeführt werden. Damit ist es möglich, den Reportern umfassend geprüfte Aufnahmegeräte zu übergeben und gleichzeitig hohe Nachbearbeitungszeiten bei Reportagen auf Recorderbasis zu senken. Das Reibungsmoment als wichtigstes Kriterium der Kassetten wird über den Motorstrom eines Recorders erfaßt. Den Wert zeigt ein Meßinstrument an.

Luftfilterprüfung W 50

entwickelt von einem Jugendkollektiv des

VEB Güterkraftverkehr und Spedition Potsdam-Babelsberg, 1502 Babelsberg, Alt-Nowawes 10-14.

Mit der Vorrichtung können Ölbadluftfilter auf ihren Verschmutzungsgrad geprüft werden. Das Gerät ist in der Tasche transportierbar. Durch diese Prüfungen werden Öl, Kraftstoff und Motorenverschleißteile eingespart sowie die Leistung und Laufzeit der Motoren erhöht.

Rationalisierung der Schraubprozesse

entwickelt von einem Jugendkollektiv des

VEB Röhrenwerk Mühlhausen, 5700 Mühlhausen, Eisenacher Straße 40.

Elektro- und Pneumatikschrauber werden durch eine Schrauberaufhängung, die in der Höhe und Tiefe verstellbar ist, direkt über dem Werkstück positioniert. Beim Einsatz von Elektroschraubern sind diese unmittelbar über dem Werkstück einbzw. abschaltbar. Die erforderlichen Schrauben werden in einem Schraubenzuführgerät vereinzelt und lagerichtig durch einen Schlauch in die Schrauberhülse gefördert. Das Exponat ermöglicht die Einsparung von Arbeitszeit und Selbstkosten und eine Verbesserung der Arbeitsbedingungen. Für 100 Verschraubungen ergibt sich eine Einsparung von 12,1 min Arbeitszeit.

Fotos: Kersten (3); JW-Bild/Zielinski

F. F. Frhard Heyde

Bereits 1892 patentiert: DIE ROTIERENDE ZAHNBURSTE

Anfang der 60er Jahre kamen bei uns die verschiedensten elektrischen Zahnputzmaschinen in Mode. Der Vorgänger dieser Geräte wurde schon vor der Jahrhundertwende unter der Nr. 67 607 in Berlin als Erfindung patentiert. Allerdings schlug der Erfinder damals als Antrieb noch ein Uhrwerk vor.

Patent von 1979: ABSCHMUTZFREIE DRUCKMASCHINE

Damit der Druck auf Rotationsmaschinen nicht durch die Farbe verschmiert, die sich an den Papierführungsflächen absetzt, sollte die Führung möglichst berührungslas erfolgen. Bei der patentierten Vorrichtung sind die Papierführungsflächen elektrisch isoliert angebracht und werden von einer Hochspannungs-Gleichstromquelle elektrostatisch aufgeladen. Unmittelbar vor der Papierführungsfläche ist eine Auflade-Elektrode installiert, mit der die Papierbahn aufgeladen wird. Durch die gleichnamigen elektrostatischen Ladungen wird die Papierbahn von der Führungsfläche abgestoßen.

In der vorangegangenen Folge (JU+TE, Heft 5/1980) hatten wir die ersten beiden Etappen des Problemlösungsprozesses kennengelernt. Heute wollen wir uns mit den nächsten Arbeitsschritten beschäftigen.

DRITTER SCHRITT: Sich ein ideales Ergebnis vorstellen

Hier geht es um die Überwindung psychologischer Barrieren. Sie bestehen darin, daß wir bei der Lösung wissenschaftlich-technischer Aufgaben gedanklich meist nur von den bereits bekannten Lösungen ausgehen und uns nur vorstellen, wie diese Lösungen vervollkommnet oder verbessert werden können. Ein solches Ausgangsmodell hat aber nur begrenzte Entwicklungsmöglichkeiten und fesselt die Phantasie in den engen Grenzen der unmittelbaren Umgebung einer schon vorhandenen Lösung. Deshalb müssen wir versuchen, uns ein ideales Endergebnis vorzustellen, unabhängig von einer schon bekannten Lösung. So schaffen wir uns ein neues Ausgangsmodell, das den Weg für hochkreative Lösungen öffnet. Dabei beachten wir zwei Regeln:

- Man darf nicht vorher schon ermitteln wollen, ob es möglich ist oder nicht, das vorgestellte ideale Ergebnis zu erreichen.
- Man darf nicht vorher darüber nachdenken, wie und auf welchem Wege das ideale Ergebnis erreicht werden könnte.
 Nachdem wir die ideale Lösuna

ermittelt haben, versuchen wir schrittweise, die Kluft zwischen dem idealen Ergebnis und den Realisierungsmöglichkeiten zu überwinden und möglichst nahe an das ideale Ergebnis heranzukommen.

Wir suchen Antworten auf folgende FRAGEN:

Wie könnte eine ideale Lösuna (ideales Enderaebnis) beschaffen sein? Welche Hindernisse bestehen, um den Idealzustand zu erreichen? Wie könnten diese Hindernisse beseitigt werden? Wie könnte eine realisierbare ideale Lösung aussehen? Fertige zwei Zeichnungen des technischen Systems an, eine nach der bisherigen Lösung und eine so. wie es werden soll! Was fehlt. müßte geschaffen oder verändert werden, um vom Ausgangszustand zur realisierbaren idealen Lösung zu kommen? Formuliere Aufgabe und Ziel und und lege sie zur Bestätigung vor!

VIERTER SCHRITT: Ermittle den Hauptwiderspruch

Das Entstehen und Überwinden von Widersprüchen ist eine der wichtigsten Besonderheiten des technischen Fortschritts. Von einem technischen Widerspruch wird gesprochen, wenn bei einem technischen System die Verbesserung einiger Kriterien (Parameter, Kennziffern, Eigenschaften) zur Verschlechterung anderer führt. Um den jeweiligen Widerspruch im Objekt aufzufinden und präzise zu formulieren, müssen die Ursachen für das Auftreten der negativen Wirkungen gesucht werden.

Der bekannte sowjetische Forscher Altschuler hat 32 typische technische Widersprüche ermittelt, die bei der Lösung wissenschaftlich-technischer Aufgaben auftreten können. Zu den Widersprüchen hat er typische Prinzipien ihrer Lösung angegeben. Die Brücke zwischen den typischen Widersprüchen und den Lösungsmöglichkeiten führt über eine Tabelle, die als Anhang in Altschulers Broschüre "Erfinden (k)ein Problem" abgedruckt ist. Diese Form der Ermittlung von Lösungsprinzipien schränkt das schöpferische Arbeiten in keiner Weise ein, sondern gibt Anregungen, über eine mögliche Problemlösung neu nachzudenken.

Bei der Ermittlung der Widersprüche helfen folgende FRA-GEN:

Welcher Parameter (Faktor, Kennziffer, Eigenschaft) soll durch die Lösung der Aufgabe vorrangig verbessert werden? Durch welche Maßnahmen (Veränderungen) kann dieser Faktor auf bekannte Weise verbessert werden? Welche Parameter werden durch diese Veränderungen negativ beeinflußt (verschlechtert), wenn die Aufgabe mit traditionellen Mtiteln gelöst wird? Worin besteht der Hauptwiderspruch? Was sind die

Ursachen für diese Verschlechterung und wie können sie beseitigt werden? Worin besteht der Hauptwiderspruch und welche Prinzipien eignen sich zur Lösung (Hilfsmittel: Altschulers Tabelle)? Welche weiteren Widersprüche sind zu erkennen und welche Lösungsprinzipien bieten sich dafür an? Arbeitet Lösungswege zur Beseitigung des Widerspruchs aus!

FUNFTER SCHRITT: Einen Plan zur Lösung erarbeiten

Wissenschaftlich-technische Aufgaben lassen sich am effektivsten in sozialistischer Gemeinschaftsarbeit lösen. Die Kollektive können sich aus ständigen und zeitweiligen Mitarbeitern zusammensetzen. In ihnen sollten Konstrukteure, Techniker und Okonomen sowie bewährte Neuerer mitarbeiten. Zieht man die Anwender und Zulieferer hinzu, erleichtert man sich die umfassende Untersuchung.

Die rationelle Lösung technischer Aufgaben erfordert eine systematische Arbeitsweise auf der Grundlage eines Arbeitsplanes. In dem Plan werden das Ziel der Untersuchung, die bis zum Ziel zu lösenden einzelnen Aufgaben, die Verantwortlichkeit, die Termine, die Befugnisse der Mitglieder des Kollektivs und der materielle Anreiz beim Erreichen oder gar Überbieten des Zieles festgelegt. Im Arbeitsplan

- wird das Problem in Teilaufgaben zergliedert, die eine schrittweise Lösung ermöglichen;
- wird festgelegt, welche Mit-

arbeiter welche Teilaufgaben zu lösen haben:

- werden die Termine kollektiver Beratungen bestimmt, auf denen die Ergebnisse beraten, koordiniert und Entscheidungen getroffen werden;
- wird gesichert, daß zu den Berichterstattungen vor dem Leiter ständig neue Ergebnisse vorliegen.

Als Arbeitsschritte haben sich bewährt:

- Arbeitsplan aufstellen und Verantwortlichkeit klären!
- 2. Verbindung mit dem Plan und dem sozialistischen Wettbewerb herstellen!
- 3. Materielle Interessiertheit des Kollektivs klären!
- 4. Politisch-ideologische und fachliche Schulung durchführen!
- 5. Persönliche oder kollektivschöpferische Pläne bzw. Ingenieurpässe ausarbeiten!

SECHSTER SCHRITT: Informationen sammeln und Schwerpunkte ermitteln

Bevor nun nach konkreten Lösungsmöglichkeiten gesucht wird, sollte eine gründliche Informationssammlung erfolgen. Beim Sammeln von Informationen hon-

Funktionen	Lösungsmöglichkeiten			
Kraft übertragen	Kettentrieb Zahnradgetriebs Riementrieb			
Personen auf Straßen befördern	Motorrad Pkw Luftkissenfahrzeug			
Zeit anzeigen	Analoguhr Digitaluhr			
Licht erzeugen	Glühlampe Leuchtstoffröhre Halogenlampe			
Schreiben ermöglichen	Kreide Bleistift Faserstift Kugelschreiber			

delt es sich um eine Aufgabe, die während der gesamten Untersuchungsdauer – allerdings mit unterschiedlicher Intensität – betrieben werden muß. In der jetzigen Phase werden die erforderlichen Daten, Unterlagen und Muster für das Problem und vergleichbare Lösungen zusammengetragen.

Wertvolle Informationen können aus zielgerichteten Befragungen der Anwender, der Zulieferer, Elementen zusammensetzen, müssen die Kräfte auf Schwerpunkte konzentriert werden. Solche Schwerpunkte können sein: Erhöhung der Zuverlässigkeit, Verlängerung der Lebensdauer, Erhöhung der Leistung. Es können aber auch Kostenschwerpunkte sein: arbeitszeitintensive, materialkostenintensive oder überhaupt kostenintensive Teile, Baugruppen, Verfahrensstufen. Schwerpunkte können auch die

Zu den weiteren Arbeitsschritten kommen wir in der nächsten Folge, Unsere heutige Trainingsaufgabe ist am schnellsten lösbar, wenn man sich - wie im dritten Arbeitsschritt gezeigt ein ideales Ergebnis vorstellt. Wir fragen: Wie kann man aus einem Fluß oder einem großen Faß genau 61 Wasser schöpfen, wenn als Meßgefäß nur zwei Eimer vorhanden sind - einer mit einem Fassungsvermögen von 41 und der andere von 91? Schreibt uns Eure Lösung und wie Ihr dazu gekommen seid! Unsere Anschrift: 1026 Berlin, PF 43. Kennwort: Erfinderschule. Für die Preisträger winken wieder JUGEND+TECHNIK-Poster.

	Forschungs- planung	Pflichten- heft	Lösungs- suche
Problemanalyse	(×)	×	
Problemstrukturierung	×	×	(×)
Synektik **	×		
Delphi-Pert-Methode	×		
Weltstandsvergleich	(×)	×	
Gebrauchswertanalyse 🥯 💮		×	
Gebrauchswert-Kosten-Analyse		×	×
Funktionsanalyse			×
Morphologische Technik			×
Kombinationsmethode			×
Ideenkonferenz	(XXX	(X)	'×
Diskussion 66	* 91. 200	on the state of th	-× -
Methode 635			×
3-Spezialisten-Methode			×

(X)

Anwendungsmöglichkeiten der Techniken schöpferischer Arbeit

der wissenschaftlichen Institute usw, gewonnen werden. In die Informationssammlung muß man neben Patentrecherchen auch Betriebs- und Weltstandsvergleiche einbeziehen. Die gesammelten Informationen werden zielgerichtet aufbereitet und erkannte Lösungsmöglichkeiten gespeichert. Damit wird ein qualitativ neuer Ausgangspunkt für den weiteren Verlauf der Untersuchungen geschaffen. Das Einschieben dieser Phase in den Problemlösungsprozeß verhindert, daß unnötige Zeit für das Entwickeln neuer Teillösungen verwendet wird, die anderswo schon vorhanden sind.

Problemberatung

Fragetechnik Vergieichstechnik

Erfahrungsaustausch

Die Lösung des Problems hängt sehr von der Beseitigung der wichtigsten Widersprüche ab. Da sich alle neuen Lösungen zu wesentlichen Teilen aus bekannten Senkung des Energieverbrauchs, die Verringerung des Ausschusses oder die Erhöhung der Ausbeute sein.

X

×

Man geht nach folgenden Arbeitsschritten vor:

(X)

- Gegenwärtigen Erkenntnisstand zu konkreten Teilaufgaben und zu Randgebieten ermitteln!
 Erkenntnisse aus der Patentliteratur, aus Betriebs- und Welt-
- literatur, aus Betriebs- und Welt standsvergleichen zusammentragen!
- 3. Technische und ökonomische Informationen zusammenstellen (Informationskatalog)!
- 4. Erkannte Lösungsmöglichkeiten speichern!
- 5. Schwerpunkte ermitteln zum Gebrauchswert, zu den Kosten, zur Technologie usw.!
- Feststellen, ob die Schwerpunkte auf die Lösung der Widersprüche gerichtet sind!

Die Preisträger unserer Troiningsaufgabe aus dem März-Heft sind: Giesela Sigmund, 4400 Bitterfeld: Rainer Schmerkel, 1125 Berlin; Klaus-Jürgen Gast, 2700 Schwerin. Die JUGEND+TECHNIK-Poster sind unterwegs. Herzlichen Glückwunsch!

Weitere LITERATUR für alle, die tiefer einsteigen wollen (vgl. a. Heft 11/1979, S. 864):

- W. Conrad: "Erfinder, Erforscher, Entdecker", Urania 1977
- F. Loeser: "Wie groß ist der Mensch?", Neues Leben 1973
- G. u. H.-G. Mehlhorn: "Heureka, Methoden des Erfindens". Neues Leben 1979

Mit hochwertigen Schallplattenaufnahmen läßt sich etwa ein Dynamikumfang von 60 dB verwirklichen, das entspricht einem Verhältnis von 1:1000. Bei der Magnetbandtechnik kann eine Dynamik von 60 dB nur mit aufwendigen Spulengeräten (Studiogeräte) erreicht werden. Ein Verringern der Dynamik bei der Aufnahme eines Orchesterwerkes bedeutet dabei immer eine Kompression. Der Toningenieur muß die Aufzeichnung so steuern, daß leise Stellen lauter und laute Stellen leiser aufgenommen werden.

Beim Aufzeichnen von Signalamplituden auf Magnetband tre-

bestimmte Probleme auf. ten Große Signalamplituden (große Lautstärke) übersteuern den geradlinigen Teil der Magnetisierungskennlinie, so daß der Klirrfaktor und damit die Verzerrungen bei der Wiedergabe lauter Stellen ansteigen. Kleine Signalamplituden (geringe Lautstärke) verdecken nicht mehr das Bandrauschen, so daß dieses hörbar wird. Diese Probleme verstärken sich, weil die Tendenz heute in Richtung Mehrspuraufnahme und Kassettenbandtechnik geht. Durch der Verringern Bandgeschwindigkeit und die verkleinerte Aufzeichnungsspur steht je Informationseinheit eine kleine

Magnetbandfläche Verzur fügung. Als Folge davon ist auch die am Tonkopf induzierte Signalamplitude klein, so daß dem Bandrauschen heute größte Aufmerksamkeit geschenkt wird. Die Entwicklung der Magnetbänder ging immer von dem Ziel aus, das Bandrauschen zu verringern und die Aussteuerfähigkeit für große Signalamplituden zu vergrößern, um den möglichen Dynamikumfang zu erweitern. So gibt es international bei den Eisenoxidbändern die Ausführungen LN (rauscharm) und LH (rauscharm und hohe Ausgangspegel). Weitere Verbesserungen brachten Chromdioxid-, Ferro-

Bei der Wiedergabe eines Orchesterwerkes in einer Konzerthalle hört man alle Feinheiten des Werkes, von den leisesten Stellen bis zu den lautesten. Das Verhältnis zwischen leisester und lautester Stelle bezeichnet man als Dynamik. Diese Dynamik erreicht bei klassischer Musik etwa 70 dB, was einem Verhältnis von leise zu laut von ungefähr 1:3000 entspricht. Mit modernen elektroakustischen Anlagen (Mikrofon, NF-Verstärker) kann man etwa diesen Dynamikumfana verzerrungsfrei übertragen und damit den Anforderungen der klassischen Musik entsprechen. Anders sieht es aus. wenn man solche Schallereignisse aufzeichnen bzw. speichern will.

chromund Reineisenbänder. Aber heute sind physikalische Grenzen erreicht, so daß kaum noch geringere Werte des Bandrauschens zu erhalten sind. Bedenkt man aber, daß das gesunde Ohr des Menschen bei 1000 Hz noch Schalldrücke aufnehmen kann, die sich zueinander wie 1:1 000 000 (entspricht einer Dynamik von 120 dB) verhalten, dann ist natürlich eine auf 45 dB begrenzte Dynamik so etwas, was man beiläufia als "Blechkannenmusik" bezeichnen könnte. Um also heute das Kassettenbandgerät als HiFi-Stereo-Gerät "salonfähig" zu machen, muß man das noch vorhandene Bandrauschen mit Tricks eliminieren. Die Summe dieser Tricks faßt man unter dem Begriff "Rauschminderungsverfahren" zusammen.

Zum besseren Verständnis sei dazu Abb. 1 betrachtet. Im Wiedergabeverstärker verursacht das Bandrauschen ein Störsignal konstanter Amplitude. Liegt die vom Hörkopf kommende Signalamplitude im Bereich zwischen 0 und A, so geht das Signal im Rauschen unter. Hat die Signalamplitude den Wert im Punkt B, so ist das Signal/Rauschverhältnis 2:1, im Punkt C ist es 3:1. Das Verhältnis muß aber wesentlich grö-Ber sein, soll das Rauschen bei der Wiedergabe nicht mehr wahrnehmbar sein. Die durch das Bandrauschen erzeuaten quenzanteile liegen oberhalb 3 kHz ... 4 kHz. In diesem Bereich und darüber befinden sich die hohen Grundtöne und die niedrigen Oberwellen der Musikinstrumente. Wendet man also passive Rauschfilter oder Klangregelungen (Tiefen und Höhenabsenkung) an, so tritt ein wesentlicher Informationsverlust auf, weil die Klangcharakteristik der Musik vor allem durch die Oberwellen bestimmt wird. Abb. 2 zeigt die Wirkung der Klangregelung. Der übertragene Frequenzbereich ist eingeengt. Die Wiedergabe klingt dumpf. Daher muß man kompliziertere Rauschminderungsverfahren einsetzen, um bei vollem Informationsgehalt das wesentlich zu verringern. Dabei gibt es Verfahren, die nur auf der Wiedergabeseite wirken. Das

1. das DNL-Verfahren (**D**ynamie **N**oise **L**imiter — dynamischer Rauschbegrenzer) und

2. das gesteuerte Tiefpaßfilter. Verfahren, die sowohl auf der Aufnahme- wie auf der Wiedergabeseite wirken, erzielen einen größeren Signal/Rauschabstand, sind dafür auch wesentlich komplizierter. Dazu zählen

1. das Dolby-Verfahren,

2. das ExKo-System,

3. das ANRS (Automatic Noise Reduction System = System zur automatischen Rauschunterdrükkung) und

4. das High-Com-Rauschunterdrückungssystem.

Die Verfahren, die nur auf die Wiedergabe wirken, sind natürlich für den Besitzer eines Kassettenbandgerätes interessant, da man durch den nachträglichen Sianal/Rauschden abstand um etwa 5 dB bei 6 kHz und etwa 20 dB oberhalb 10 kHz verbessern kann. Dabei macht man sich zunutze, daß bei leisen Passagen der von Musikinstrumenten abgestrahlte Schall auch nur wenige Oberwellen enthält, so daß man höhere Frequenzen ab 5 kHz abschwächen und damit das Rauschen verringern kann. Abb. 3 zeigt dazu das Prinzipschaltbild. Das Eingangssignal (mit Rauschanteil) wird einmal über den aktiven Allpaß verstärkt (U1). Beim Anteil U2 wird durch den Hochpaß der niederfrequente Frequenzbereich unterdrückt, so daß der variable Abschwächer nur von dem höherfrequenten Eingangsspannungsanteil gesteuert wird. Da U2 zu U₁ gegenphasig ist, erfolgt bei höherfrequenten Signalen, die mehr als 38 dB unter dem Bezugspegel liegen, ein mehr oder weniger starkes Auslöschen der höherfrequenten Anteile von U1. Bei Signalen, die weniger als 38 dB Abstand haben, bleibt die volle Verstärkung erhalten.

Das Verfahren des gesteuerten Tiefpaßfilters findet man in dem ungarischen Stereo-Kassettenbandgerät MK 43. Die Wirkung ist aus Abb. 4 zu ersehen. Je kleidie Sianalamplitude höherfrequenten Bereich ist, um so mehr wird die obere Grenzfrequenz des Tiefpaßfilters verringert. Als Steuerorgan wirkt ein Widerstand, dem die Source-Drain-Strecke eines Sperrschicht-Feldeffekttransistors parallel geschaltet ist. Die Steuerspannung für das Gate wird nach einem Hochpaßfilter durch Gleichrichtung gewonnen. Die erreichten

Werte der Rauschminderung entsprechen etwa denen des DNL-Verfahrens.

Das bekannteste Rauschminderungsverfahren, das weltweit bei Kassettenbandgeräten angewendet wird, ist das nach dem in England lebenden amerikanischen Physiker Dr. Ray M. Dolby benannte Dolby-Verfahren. gehört zu den sogenannten Kompanderverfahren, weil man bei der Aufnahme eine Kompression des höherfrequenten Anteils des NF-Spektrums vornimmt. Bei der Wiedergabe erfolgt durch eine spiegelbildliche Expansion Wiederherstellung des ursprünglichen Signals, wobei gleichzeitig das Rauschen abgesenkt ist. Abb. 5 zeigt diesen Vorgang für den Ausgangspegel.

Im Prinzip handelt es sich dabei um ein Anheben der höheren Signalfrequenzen bei der Aufnahme von einem bestimmten Schwellwert ab. Damit wird gegenüber dem konstanten Rauschpegel (siehe Abb. 1) ein größerer Signal/Rauschabstand erreicht. Der Expander, der das ursprüngliche Signal wieder herstellt, ist dem Magnetband nachgeordnet, so daß für das ursprüngliche Sianal der größere Sianal/ Rauschabstand erhalten bleibt. Das in Kassettenbandgeräten

eingesetzte Dolby-Verfahren ist das einfachere Dolby-B-Verfahren, das mit einem regelbaren Hochpaßfilter arbeitet. Die Schaltungen sind integrationsfreundlich, so daß es heute für das Dolby-B-Verfahren schon integrierte Schaltkreise gibt. Erreicht werden Rauschminderungswerte von 8 dB bis 10 dB. Für die kommerzielle Anwendung gibt es das Dolby-A-Verfahren, das mit vier getrennten Regelverstärkern arbeitet, wobei der übertragene NF-Bereich in vier Teilbereiche

aufgeteilt ist. Abb. 6 zeigt das Prinzip des Dolby-B-Verfahrens. Das ExKo-Verfahren ist in dem ungarischen Stereo-Kassettenbandgerät MK 42 eingesetzt, ist komplizierter und hat einen grö-Beren Aufwand als das Dolby-B-Für Verfahren. den Sianal/ Rauschabstand werden etwa gleiche Werte erreicht. Allerdings erfolgt die Kompression und die Expansion im Gegensatz zum Dolby-B-Verfahren frequenzunabhängig nur von kleinen Signalgrößen aus. Das ist sicher auch der Grund dafür, daß sich das' ExKo-System nicht durchsetzen konnte. Von einer japanischen Firma wurde das ARN-System im Zusammenhang mit dem 4-Kanal-Schallplattenprojekt CD-4 entwickelt, das ähnlich wie das Dolby-B-System arbeitet.

Abb. 7 zeigt das Prinzip des ARNS. Mit der Regelschaltung werden im Aufnahmekanal Fre-

Wirkungsweise von Kompression und Expansion beim Dolby-B-Verfahren

Prinzipschema des Dolby-B-Verfahrens

Prinzipschema des ARN-Systems zur Rauschminderung

Ansicht des HiFi-Stereokassettendecks "Sk 900" (VEB Stern-Radio Sonneberg) Foto: Werkfoto

quenzen über 500 Hz mit abnehmender Signalgröße zusätzlich verstärkt (Aufnahmekompression). Spiegelbildlich dazu werden mit der Regelschaltung im Wiedergabekanal die Frequenzen über 500 Hz abgesenkt. Damit entspricht dieses System etwa dem Dolby-B-Verfahren so daß mit ARNS auch dolbysierte Kassetten (und umgekehrt) wiedergegeben werden können.

Von einem Konzern in der BRD wurde das neue Rauschminderungsverfahren "High-Com" vorgestellt, das für Kompressor und Expander je zwei Kettenverstärker vorsieht und auch dolbysierte Kassetten verarbeiten kann. Folgende Vorteile werden zum "High-Com"-Verfahren genannt:

 Der Gewinn am Signal/ Rauschabstand kann bis zu 20 dB betragen.

 Durch einen Gewinn im Fremdspannungsabstand von bis zu 15 dB lassen sich auch Brummstörungen unterdrücken.

Das Verfahren ist unempfindlich gegen Pegel- und Frequenzgangfehler.

Das dynamische Verhalten ist so optimiert, daß keine störenden Einschwing- und Übersteuerungseffekte hörbar sind.

Damit könnte dieses Verfahren in Zukunft an Bedeutung gewinnen. Zu bemerken wäre noch, daß die Rauschminderungsverfahren der Anwendung nicht auf Kon'sumaüter beschränkt sind. Kommerzielle Geräte mit einem höheelektronischen Aufwand ("Dolby-A-Verfahren", "telcom c4") werden von Schallplattenfirmen bei der Herstellung von Mutterbändern eingesetzt; auch Rundfunk und Fernsehen setzen sie bei der Tongufnahmetechnik ein. Beim Film verbessert sich dadurch die Tonqualität der Lichttonspur.

Auf der Leipziger Frühjahrsmesse 1980 wurde erstmals das HiFi-Stereokassettendeck "SK 900" des VEB Stern-Radio Sonneberg vorgestellt, das für Aufnahme und Wiedergabe ein Rauschminderungssystem beinhaltet. Abb. 8 zeigt dieses moderne Gerät, das gestalterisch den HiFi-Steuergeräten "Carat S" und "HiFi 100" angepaßt ist. Die Betriebsweise wird mit Lichtemitterdioden angezeigt. Vorhanden sind wahlweise Automatik- oder Handaussteuerung, Pegelanzeige mit zwei Instrumenten, Bandlängenzählwerk mit Nullkontakt und Memory-Taste, Bandenabschaltung und automatische Bandsortenumschaltung, Stereomikrofonanschluß. Pausentaste und Mithörkontrolle über Stereokopfhörer, Verwendet wird ein ausgereiftes ungarisches BRG-HiFi-Laufwerk mit geregeltem Gleichstrommotor.

K.-H. Schubert

Elektronische Autoinnenantenne

Speziell für den Fahrgastraum des Pkw "Trabant" wurde vom VEB Antennenwerke Bad Blankenburg eine elektronische Autoantenne entwickelt. Der Empfangsteil besteht aus einem Metallstreifen, der unter dem Dach des Fahrzeuges problemlos ohne Bohrung befestigt wird. Diese Montage ist jedoch nur

bei nichtmetallischen Karosserien möglich. In der Empfangsleistung besteht kein Unterschied zu herkömmlichen Autoantennen, die außen montiert werden. extrem rauscharmer Verstärker. der unmittelbar am Fußpunkt der Antenne angeordnet ist, gleicht die durch die Innenmontage fehlende Empfanasleistung voll aus.

Doppelrumpf-Olauffangschiff

Ein interessantes Projekt eines zum Ölguffang geeigneten Mehrzweckschiffes ist von einer Werft in der BRD entwickelt worden. Es soll nicht nur an den Küsten, Flußmündungen und auf Wasserstraßen, sondern auch auf See unter ungünstigen Wetterbedingungen ausgeflossenes Ol wieder auffischen. Bei dem neuentwikkelten Fahrzeug handelt es sich um einen in der Längsachse teilbaren und um ein heckseitiges Gelenk aufklappbaren Küstentanker.

ein offenes Dreieck mit einem Offnungswinkel von 65 Grad und einer Auffangbreite von rund 80 m. Zwischen den von den Rumpfhälften gebildeten Schenkeln des offenen Dreiecks wird das Öl zusammengeschoben und im hinteren Teil abgesaugt. Die Leistung des Ölauffangschiffes ist abhängig von der Dicke des Ölteppichs, Schon bei einer Schichtdicke von zwei Millimetern und einer Schiffsgeschwindigkeit von drei Knoten sammeln sich zwischen den Rumpfhälften innerhalb einer Stunde etwa 800 m³ Auseinandergefahren ergibt sich Öl, das man mittels Pumpen in

die Bordtanks füllt. In etwa sieben Stunden können so rund 5000 m³ Öl vom Wasser entfernt werden. Danach wird die Ladung an andere Schiffe übergeben oder ein Löschhafen angelaufen. Bei pausenlosem Einsatz wäre es möglich, innerhalb von 24 Stunden etwa 15 000 m³ Öl aufzunehmen. Bei dickeren Schichten kann die Leistung je Stunde durch Verwendung von zusätzlichen oder leistungsfähigeren Pumpen erhöht werden. Der eventuell mit-

geförderte Wasseranteil wird in besonderen Wasserabscheidern vom Öl getrennt und außenbords aepumpt.

Eine Besonderheit des Schiffes ist es, daß beide Rumpfhälften am Heck mit je einem Antrieb oder mit Ruderpropeller versehen sind, so daß in geschlossenem Zustand ein Doppelschraubenschiff entsteht. Bisher wurden Ölauffangschiffe vornehmlich so gebaut, daß sie nur diesem einen Verwendungszweck — Öl aufzufan-

gen – dienten. Außerhalb der Einsatzzeiten hatten sie keine anderen Aufgaben. Dieses Schiff kann jedoch mit zusammengefahrenen Rumpfhälften als Tanker Im Küstenverkehr eingesetzt werden. Dadurch soll eine kontinuierliche Auslastung sichergestellt werden. Das Prinzip des geteilten Schiffsrumpfes wurde inzwischen in mehreren Ländern zum Patent angemeldet.

Fotos: ADN/ZB; Werkfotos (3)

50 000 Niwa 1980

Alle 20 Sekunden rollt in Toaliatti ein Ladatyp, darunter auch der Niwa, vom Band. Der geländegängige Pkw. er bewältigt Schneewehen, Sanddünen und Gewässer bis zu 50 cm Tiefe, ist vor allem für die Bedürfnisse Landwirtschaft konstruiert der worden. Auf Grund der großen Nachfrage im In- und Ausland wird der Niwa in diesem Jahr mit 50 000 Fahrzeugen an der Gesamtproduktion des Automobilwerkes an der Wolga beteiligt sein.

Renault 5 mit Turbomotor

Der französische Staatskonzern Renault hat kürzlich die Produktion des ersten französischen mit Benzin-Fahrzeugs einem Turbo-Mittelmotor aufgenommen. Der R 5 Turbo weist folgende wichtigen technischen Daten auf: Motor 1396 cm³, Leistung 121,4 kW (165 PS) bei 6250 U/min, Getriebe Fünfgang, Masse 910 kg. Höchstgeschwindigkeit mehr als 200 km/h. Noch in diesem Jahr soll bei Renault eine zusätzliche Rennversion für den Rallyeeinsatz entwickelt werden.

Starts von Raumflugkörpern 1979

zusammengestellt von K.-H. Neumann

Name Astronom. Bez.	Datum Startzeit	Land	Form/Masse (kg) Länge (m)/Durchm. (m)	Bahn- neigung (°) Umlaufzeit (min)	Perigäum (km) Apogäum (km)	Aufgabenstellung Ergebnisse
Kosmos 1116	20. 7.	UdSSR	Zyl.+2 Flächen/2500	81,2	608	Wissenschaftlicher
1979-67 A	12:00 h		5,0/1,5	97,1	649	Forschungssatellit
Kosmos 1117	25. 7.	UdSSR	Kugel+Zylinder/6300	62,8	187	Wissenschaftlicher
1979-68 A	16:50 h		6,5/2,4	89,6	349	Forschungssatellit
Kosmos 1118	27. 7.	UdSSR	Kugel+Zylinder/5700	81,4	222	Wissenschaftlicher
1979-69 A	7:10 h		5,0/2,4	89,1	273	Forschungssatellit
Molnija 1-44 1979-70 A	31. 7. 4:05 h	UdSSR	wie frühere Molnija	62,8 717,7	452 39 902	Aktiver Nachrichtensatellit
Kosmos 1119	3. 8,	UdSSR	Kugel+Zylinder/5700	81,3	222	Wissenschaftlicher
1979-71 A	10:50 h		5,0/2,4	89,1	267	Forschungssatellit
Westar 3 1979-72 A	10. 8. 0:15 h	USA	Zylinder/540 1,65/1,90	Synchr	onbahn 	Aktiver Nachrichtensatellit
Kosmos 1120	11. 8.	UdSSR	Kugel+Zylinder/6300	70,4	181	Wissenschaftlicher
1979-73 A	9:20 h		6,5/2,4	89,8	376	Forschungssatellit
Kosmos 1121	14. 8.	UdSSR	Kugel+Zylinder/6700	67,2	180	Wissenschaftlicher
1979-74 A	15:35 h		7,0/2,4	89,7	375	Forschungssatellit
Kosmos 1122	17. 8.	UdSSR	Kugel+Zylinder/5700	81,4	218	Erderkundungs-
1979-75 A	7:40 h		5,0/2,4	89,1	260	satellit
Kosmos 1123	21, 8,	UdSSR	Kugel+Zylinder/5700	81,4	221	Wissenschaftlicher
1979-76 A	12:00 h		5,0/2,4	89,1	266	Forschungssatellit
Kosmos 1124	28. 8.	UdSSR	Zyl.+6 Flächen/1250	62,8	620	Wissenschaftlicher
1979-77 A	0:00 h		4,2/1,6	724,0	40 070	Forschungssatellit
Kosmos 1125	28. 8. 0:00 h	UdSSR	Zylinder+Paddei/750 2,0/1,0	74,0 100,9	795 834	Wissenschaftlicher Forschungssatellit
Kosmos 1126	31. 8.	UdSSR	Kugel+Zylinder/6300	72,9	208	Wissenschaftlicher
1979-79 A	11 :15 h		6,5/2,4	90,5	421	Forschungssatellit
Kosmos 1127 1979-80 A	5. 9. 10:20 h	UdSSR	Kugel+Zylinder/6300 6,5/2,4	81,4 89,4	226 300	Erderkundungs-
Kosmos 1128	14. 9.	UdSSR	Kugel+Zylinder/6300	62,8	184	Wissenschaftlicher
1979-81 A	15:35 h		6,5/2,4	89,6	352	Forschungssatellit
HEAO 3	20. 9.	USA	Hexag. Zylinder/2720	43,6	485	Astronomischer
1979-82 A	5:30 h		5,8/2,4	94,4	501	Beobachtungssatel lit
Kosmos 1129 1979-83 A	25. 9. 15:35 h	UdSSR	Kugel+Zylinder/5900 5,9/2,4	62,8 90,5	226 406	Internationaler bio- logischer Satellit; Landung am 14, 10, 79
(Kosmos 1130-1137 1979-84 A-H	26. 9. 20:55 h	UdSSR	Kugelähnlich/40 1,0/0,8	74,0 115,0	1 446 1 515	Nachrichten- satelliten
Kosmos 1138	28. 9.	UdSSR	Kugel+Zylinder/6300	72,9	210	Wissenschaftlicher
1979-85 A	12:30 h		6,5/2,4	90,2	398	Forschungssatellit
Anonymus 1979-86 A	1. 10. 11 :30 h	USA		Synchr	onbahn :	Sogenannter Frühwarnsatellit
Ekron 4 1979-87 A	3. 10. 17:20 h	UdSSR	Zylinder mit Antennen- platten und Solar- zellen/— etwa 4,0/etwa 12,0	0,4 1424,0	35 557 35 557	Aktiver Nachrichtensatellit

Rauschminderung bei Kassettenbandgeräten

Auf den Seiten 466 bis 469 dieses Heftes werden die verschiedenen Rauschminderungsverfahren vorgestellt, die man zur Qualitätsverbesserung bei Kassettenbandgeräten einsetzt. Für einen Nachbau eignen sich weniger die Rauschminderungsverfahren, die sowohl bei der Aufnahme wie bei der Wiedergabe wirksam sind, weil sie meßtechnisch einen höheren Aufwand erfordern. Günstiger sind da die Rauschminderungsverfahren, die nur zur Verbesserung der Wiedergabe bespielter Kassetten dienen. Weil in DDR-Fachzeitschriften dafür bisher noch keine Bauanleitung veröffentlicht wurde, stellen wir nachfolgend eine Rauschminderungs-Schaltung nach dem DNL-Verfahren vor. die in der ČSSR und in der VR Polen publiziert wurde.

Das Prinzip des DNL-Verfahrens besteht darin, aus den höheren Tonfrequenzen ein Steuersignal abzuleiten, das die Wirksamkeit der Rauschunterdrückung beeinflußt. Bei großen Signalamplituden ist auch das Signal/Rauschverhältnis graß, so daß das Rauschen nicht stört, weil es durch hohe Signalspannungen (laute Musik) verdeckt wird. Bei kleinen Signalamplituden dagegen ist das Rauschen hörbar, deshalb müssen bei leiser Musik die höheren Frequenzen unterdrückt werden.

Abb. 1 zeigt das Prinzipschema der DNL-Schaltung. Das Hauptsignal (U₁) gelangt direkt an den festen Abschwächer. Das Zusatzsignal (U₂) wird über ein Hochpaßfilter gewonnen, verstärkt, in der Phasenlage um 180 Grad gedreht und gleichgerichtet, so daß der veränderliche Abschwächer entsprechend gesteuert werden kann. Weil U₂ gegenphasig zu U₁ ist, erfolgt bei schwachen Signalen im höheren Frequenzbereich (ab etwa 4 kHz) eine mehr oder weniger starke Auslöschung von U₁. In **Abb.** 2 ist dieser Vorgang dargestellt.

Unterhalb eines Eingangssignals von 10 mV (– 38 dB) erfolgt eine immer stärker werdende Absenkung der Höhen im Wiedergabekanal.

Die DNL-Schaltung zeigt Abb. 3. Der Hauptkanal der Eingangsspannung Uein mit der Signalspannung U1 wird nach der Verstärkung durch T1 über C2, R5 und P direkt an den Ausgang Ueus geführt. In den Zusatzkanal mit der Signalspannung U2 gelangen nur die höheren Tonfrequenzen, weil an seinem Eingang ein aktives Hochpaßfilter liegt (C 3, R 6, C 4, R 8, R 9, T 2; Rückkopplung über R7). Die weitere Verstärkung im Zusatzkanal geschieht mit T3 und T4. wobei die Dioden D1 und D2 zum symmetrischen Begrenzen der Verstärkerstufe mit T3 dienen. Die variable Abschwächung erfolgt mit den Dioden D 4 und D 6. Das Gleichrichten der höheren Tonfrequenzen wird mit den Dioden D3 und D5 vorgenommen, wobei die Kondensatoren C8 und C9 die Ladekondensatoren darstellen. Mit dem Schalter S kann im geschlossenen

Zustand die DNL-Schaltung unwirksam gemacht werden. Für den Nachbau ist zu beachten, daß für T1 ein rauscharmer Silizium-NF-Transistor ausaewählt werden muß (SC 239e), Im Zusatzkanal ist diese Forderung nicht notwendig. Als Dioden eignen sich Silizium-Schaltdioden. Alle Widerstände sollten die Toleranz 10 Prozent haben. als Belastbarkeit ist 0.1 W ausreichend. Bei den Kondensatoren genügt eine Toleranz von 20 Prozent, nur bei C3 und C4 muß die Toleranz kleiner sein (10 Prozent). Die Stromaufnahme beträat nur etwa 5 mA, so daß die Stromversorgung aus dem Kassettenbandgerät erfolgen kann. Einige Kassettenbandgeräte arbeiten mit 9 V Betriebsspannung. Da die Schaltung für $U_B = 12 \text{ V dimensioniert ist,}$ müßte man eventuell die Widerstandswerte von R1, R8 und R 11 verringern.

Da es mitunter Schwierigkeiten bereitet, meßtechnisch die Verstärkungskurven entsprechend Abb. 2 einzupegeln, muß man durch Verstellen des Einstellreglers P die Rauschminderung nach Gehör einregeln. Erreicht wurde eine Verbesserung des Rauschabstandes um etwa 6 dB bei 5 kHz, wobei bei 10 kHz der Rauschabstand bis auf etwa 20 dB anstieg.

Die Anordnung der DNL-Schaltung wird bei Kassettenband-

geräten zwischen Wiedergabe-Vorverstärker und Lautstärkeregler des NF-Verstärkers vorgenommen. Bei Radiorekordern sollte man die DNL-Schaltung zwischen Kassettenbaustein und Lautstärkeregler des NF-Verstärkers einfügen. Bei einfachen Kassettenbandgeräten lohnt der Einsatz der DNL-Schaltung kaum, da der Frequenzgang nur bis etwa 8 kHz reicht. Die obere NF-Übertragungsfrequenz sollte schon bis 10 kHz betragen, damit die Wirkung der DNL-Schaltung noch zu spüren ist. Besonders angebracht ist der Einbau der DNL-Schaltung in hochwertigere Geräte und in Stereo-Kassettenbandgeräte (Stereokassette 1; M 531 S). Allerdings sind dann für die beiden Stereokanäle zwei identische DNL-

Abb. 1 Prinzipschema der DNL-Schaltung

Abb. 2 Frequenzgangverlauf bei verschiedenen Eingangsspannungen

Abb. 3 Stromlaufplan einer DNL-Schaltung für Kassettenbandgeräte

Abb. 4 Zusatzschaltung zur Anzeige der Eingangsspannung Abb. 5 Zusatzschaltung für niederohmigen Ausgang

Bauteile für DNL-Schaltung (Abb. 3)							
Widerstände, 1/10-W-Typ							
R1 — 270 kΩ	R 11 — 330 kΩ						
R 2 — 150 kΩ	R 12 — 22 kΩ						
R3 — 1,5 kΩ	R 13 — 680 Ω						
R4 — 1,5 kΩ	R 14 — 5,6 kΩ						
R 5 — 5,6 kΩ	R 15 — 680 Ω						
R 6 — 15 kΩ	R 16 — 120 kΩ						
R7 — 2,2 kΩ	R 17 — 22 kΩ						
R 8 — 680 kΩ	R 18 — 220 kΩ						
R9 — 180 kΩ	P — 10 kΩ						
R 10 — 3,9 kΩ							
Kondensotoren							
C1 - 4,7 µF	C 7 — 680 pF						
C2 - 4,7 nF	C8 — 22 nF						
C3 — 1,8 nF	C9 — 22 nF						
C4 — 270 pF	C 10 — 4.7 nF						
,							
C5 — 1,8 nF	C 11 — 4,7 µF						
C 6 — 22 nF							
Dioden							
D 1 D 6 — SAY 17, SAY 18, SAY 20							
Transistoren							
T1 — SC 239e, SC 207e							
T 2 T 4 — SC 236/238d, SC 206/207d							
T 2 T 4 — SC 236/238d, SC 206/207d							

Schaltungen erforderlich.

Abb. 4 zeigt als Zusatzschaltung eine Indikatorschaltung zur Anzeige der Signalamplitude des Eingangssignals Uein. Diese Zusatzschaltung wird am Punkt A Abb. 3 (Emitter von T 1) angeschlossen. Mit dem Einstellregler 4,7 kΩ kann der Vollausschlag eingestellt werden. Benötigt man für die DNL-Schaltung einen niederohmigen Ausgang, so kann man die Zusatzschaltung in Abb. 5 einfügen (Punkt B in Abb. 3).

Die Veröffentlichung dieser Schaltung ist als Anregung für Experimente mit der Rauschminderung bei Kassettenbandgeräten gedacht, sie wurde aus ausländischen Quellen entnommen. Erfahrungsberichte würden uns interessieren.

Karl-Heinz Schubert

Literatur

- [1] Autorenkollektiv: Radioamateurkonstruktionen 1, Verlag SNTL, Prag 1978, Seite 237/238
- [2] Vranicka, K.: Dynamischer Rauschbegrenzer, Amaterske Radio, Prag, Heft 8/1975, Seite 293/295
- [3] Witkowski, B.: Erweiterungen zum Stereo-Kassettenbandgerät M 531 S, Radioamator, Warschau, Heft 10/ 1978, Seite 240/245

AUGEDEN 6/80

Aufgabe 1

Zuckerrüben sollen von einem Förderband, das horizontal in 2,5 m Höhe über dem Erdboden läuft, 1,8 m weit in eine Lagerluke geworfen werden (Abb. 1). Welche Laufgeschwindigkeit muß das Band haben?

3 Punkte

Aufgabe 2

Auf größeren Jahrmärkten, die sich die technische Anlage dafür leisten konnten, war früher ab und an die "Todesspirale" zu sehen (Abb. 2): ein Artist durchfuhr die Strecke in einer rollenden Kugel. Aus welcher Mindesthöhe h mußte er starten, um während der Fahrt nicht abzustürzen? (Die Reibungswiderstände und die Eigenrotation des Fahrzeugs lassen wir in unserer Rechnung unberücksichtigt und betrachten die Kugel als Punktmasse.)

4 Punkte

Aufgabe 3

In Espresso-Kaffeemaschinen wird der türkische Mokka, wie man ihn in vielen südlichen Ländern trinkt, mit Wasserdampf aufgebrüht. Wieviel Wasserdampf von 100°C muß in 0,2 l Wasser von 10°C eingeleitet werden, damit dieses zum Sieden kommt?

2 Punkte

Aufgabe 4

Ein 5 m langer Balken aus einem schweren Edelholz von gleichbleibender Stärke soll mit einem Spezialfahrzeug transportiert werden. Die Aufleger des Transportwagens sind 1,5 m voneinander entfernt, wobei der vordere mit 1/3 und der hintere mit 2/3 des Gesamtgewichts belastet werden muß (Abb. 3). Wieweit muß der Mittelpunkt des Balkens vom vorderen Aufleger entfernt sein?

3 Punkte

AUFlösung 5/80

Aufgabe 1

Für den Grenzwinkel der Totalreflexion (s. Abb. 4) gilt folgende Beziehung:

$$\frac{\sin 90^{\circ}}{\sin \gamma} = n$$

oder

(1)
$$\sin \gamma = \frac{1}{n}$$
.

Weiter gilt:

$$\frac{\sin \alpha}{\sin \beta} = n$$

oder, weil $\beta = 90^{\circ} - \gamma$ ist, also $\sin \beta = \sin (90^{\circ} - \gamma) = \cos \gamma$.

(2)
$$\frac{\sin \alpha}{\cos \gamma} = n$$
.

Aus (1) folgt

$$\cos \gamma = \sqrt{1 - \sin^2 \gamma} = \sqrt{1 - \frac{1}{n^2}}.$$

Dieses Ergebnis in (2) eingesetzt, liefert

$$\sin \alpha = n \cdot \cos \gamma = n \sqrt{1 - \frac{1}{n^2}} = \sqrt{n^2 - 1}.$$

Diese Beziehung muß auch für den Extremfall $\alpha=90^{\circ}$, also für sin $\alpha=1$ erfüllt sein. Daraus folgt für den Mindestwert von n:

$$1 = \sqrt{n^2 - 1}$$

oder

$$n = 1/2$$
.

Aufgabe 2

Da der Druck konstant bleiben soll, handelt es sich um eine isobare Zustandsänderung. Dafür gilt:

$$\frac{V_1}{V_2} = \frac{T_1}{T_2}$$
mit $V_1 = 40 \text{ m}^3$, $T_1 \approx 285 \text{ K (t}_1 = 12^{\circ} \text{ C) und } T_2$

$$\approx 293 \text{ K (t}_2 = 20 ^{\circ} \text{C)}$$
. Somit ist

$$V_2 = \frac{V_1 \cdot T_2}{T_1} = \frac{40 \text{ m}^3 \cdot 293 \text{ K}}{285 \text{ K}} = 41,1 \text{ m}^3.$$

Es entweichen also 1,1 m3 Luft aus dem Zimmer

Aufgabe 3

Der Schwerpunkt S der Tischplatte liegt im Schnittpunkt der Seitenhalbierenden des Dreiecks (Abb. 5). Die Mittelpunkte F und G der Strecken AB bzw. CD tragen jeweils die Hälfte der Last. Da der Schwerpunkt S die Seitenhalbierende EG im Verhältnis 2:1 von E aus teilt, muß F so gelegt werden, daß

$$\overline{EF} = \overline{FS} = \overline{SG} = \frac{1}{3} \cdot \overline{EG}$$

gilt. Nach dem Strahlensatz liegen demzufolge die Beine A und B auch um je 1/3 Seitenlänge vom Punkt E aus entfernt:

$$\overline{EA} = \frac{1}{3} \overline{ED}$$
 und $\overline{EB} = \frac{1}{3} \overline{EC}$.

Leseraufgabe

Man legt einen Stab auf eine ebene Platte und geht mit dem anderen Stab senkrecht bis zur Mitte des liegenden Stabes. Spürt man eine Anziehungskraft, so ist der senkrechte Stab der magnetische; liegt keine Anziehung vor, liegt auf der Platte der Magnetstab, der in der Mitte eine neutrale Zone hat.

Die angegebene Punktzahl ist als mögliche Grundlage zur Auswertung eines Wettbewerbs gedacht. Wir sind aber auch an der Einsendung origineller Lösungen und neuer Aufgaben interessiert, die bei einer Veröffentlichung honoriert werden. Unsere Anschrift: "Jugend + Technik", 1026 Berlin, PF 43.

Mit moderner Fangflotte

Auf den Schiffen der Hochseefischereiflotte des VEB Fischfang Rostock gibt es vielseitige Einsatzmöglichkeiten in den Bereichen:

Deck und Produktion als Decksmann und Produktionsarbeiter, Kombüse für Köche, Bäcker, Konditoren und Fleischer als Kochsmaate, für alle anderen Berufe als Kochshelfer.

Die Entscheidung, in welchem Bereich Sie eine Tätigkeit ausüben können, hängt von Ihrer Ausbildung und Ihrer beruflichen Entwicklung ab.

Für die Bereiche Produktion und Kombüse werden auch weibliche Bewerber berücksichtigt.

Voraussetzungen für eine Bewerbung sind: Mindestalter von 18 Jahren und guter Gesundheitszustand.

Vergünstigungen sind unter anderem:

zur leistungsprientierten Entloh-

zur leistungsorientierten Entlohnung wird eine Bordzulage gezahlt;

- kostenlose Verpflegung an Bord;
- bei Urlaub und Freizeit wird ein Verpflegungsgeld von 5,80 Mark je Tag gezahlt;
- weitere seefahrtspezifische Vergünstigungen;
- Fahrpreisermäßigung für die Reichsbahn bei Heimreisen zum Wohnort.

Informieren Sie sich! Fügen Sie Ihrer Anfrage oder Bewerbung einen ausführlichen Lebenslauf

bei.

(Reg.-Nr. IV/53/79)

VEB Fischfang Rostock, Einstellungsbüro, 2510 Rostock 5

Rationalisieruna Maschinenbau

рационализация/машиностроение

новые способы изготовления

Schritt zur automatisierten Produktion

Jugend + Technik, 28 (1980) 6, S. 409 bis 413

Mit ihrem automatisierten Vorbearbeitungszentrum haben die Leipziger Drehmaschinenwerker einen hervorragenden Rationalisierungsschub erzielt. In einer ausführlichen technologischen Beschreibung werden Ergebnisse und Vorzüge dieses komplexen Rationalisierungsobjektes dargestellt.

Й. Клейне

Шаг к автоматизированному производству

«Югенд + техник» 28(1980)6, с. 409-413 (нем) Со своим автоматизированным центром для предварительной обработки лейпцигские токари достигли выдающийся рационализатерский эффект. Подробно описываются технология, результаты и преимущества этого комплексного рационализаторского объекта.

Neue Technologien Fertigungs- und Verfahrenstechnik

G. Clausnitzer

Г. Клауснитцер Плазменная техника

Jugend + Technik, 28 (1980) 6, S. 424 bis 427 Die Plosmotechnik gehört in unserer Zeit noch zu den Neuheiten. Sie ist jedoch mit großem Nutzen in vielen Bereichen der Industrie anwendbar. Der Autor erläutert die Möglichkeiten, die durch die Plasmatechnik eröffnet werden.

«Югенд + техник» 28(1980)6, с. 424-427 (нем) Плазменная техника является в наше время еще новизной. Но из-за своих положительных свойств она применяется с большой пользой во многих областях промышленности, Автор объясняет популярным образом те возможности, которые открываются ею.

Physik

Elektronik

физика

R. Becker Laser-Praxis

Plasmatechnik

Jugend + Technik, 28 (1980) 6, S. 452 bis 455

Der Laser tritt in diesen Jahren seinen Siegeszug in der praktischen Technik an. Ein breites lieferbares Sortiment industriell gefertigter Loser und die Möglichkeit, bereits mit einfachsten Mitteln Demonstrationsversuche zu den Eigenschaften des Laserlichts zu realisieren, werden helfen, ihm den noch anhaftenden Ruf eines exotischen, anwendungsfernen Gerätes zu nehmen.

Р. Беккер

Практический дазер

«Югенд + техник» 28(1980)6, с. 452-455 (нем) В теперешное время дазер начинает свое победительное шествие в практической технике. Широкий, индустриальным способом изготовденный сортимент дазерных приборов и возможность демонстрировать свойства лазерного света помогут при этом.

K.-H. Schubert

Rauschminderung

Jugend + Technik, 28 (1980) 6, S. 466 bis 469

Die Entwicklung der Magnetbänder für Magnetbandgeräte ging immer von dem Ziel aus, das Bandrauschen zu verringern und die Aussteuerfähigkeit für große Signalamplituden zu vergrößern, um den möglichen Dynamikumfang zu erweitern. Aber heute sind physikalische Grenzen erreicht, so daß kaum noch geringere Werte des Bandrauschens zu erholten sind. Mit elektronischen Schaltungen versucht man nun, dem Rauschen beizukommen. Der Autor stellt die heute verwendeten Rauschminderungsverfahren vom Wirkungsprinzip her vor.

Электроника

К.-Х. Шуберт

Уменьшение шумов

«Югенд + техник» 28(1980)6, с. 466-469 (нем) Развитие лент для магнитофонов всегда исходило с той цели, уменьшить шум лент и увеличить чувствительность для больших сигнальных амплитуд, чтобы разширить динамику. Но сегодня достигнуты физические пределы известных методов. Автор представляет новые методы для уменьшения шумов.

Содеражние 402 Письма читателей, 404 Дебют для математика, 409 Робот связал узел изготовления, 414 Из науки и техники, 416 Наш интервью: Д-р Бернхард Кан, директор института энергетики, 420 Комбайн для урожая косточковхы пород. 421 Олимпиада 1980 — электронный измерительный прибор дистанции, 424 Плазменная техника, 428 Приключения водолазного спорта, 432 Реактивный трэйнер «альбатрос», 433 Робот учится ходить, 439 Документация «Ю + Т» к учебному году ССНМ, 442 Корабли Ро/Ро, 447 Индустриальное исползование микроорганизмов, 450 Космические полеты 1980, 452 Практический лазер, 456 История воздушных кораблей, 461 НТТМ — рекомендуется перенять, 463 Тренировка изобретателей (II), 466 Уменьшение шумов, 470 Уличный калейдоскоп, 472 Старты космических тел 1979, 473 Схемы самоделок, 476 Головоломки.

JUEND-HECHNIK Worsenau

7/80

◀ Kräderkarussell 1980

Wir stellen das neueste Suhler Erzeugnis – das Simson-Mokick S 51 – näher vor. Darüber hinaus geben wir einen Überblick über die wirtschaftlichen Fahrbereiche von Zweiradfahrzeugen auf unseren Straßen und zeigen wie in jedem Jahr Neu- und Weiterentwicklungen.

Fotos: ADN-ZB/TASS; JW-Bild/

Zielinski; Riedel

Sichtbar warm

ist dieser Lötkolben dank einer Apparatur, die Wärmestrahlung auf einem Bildschirm wiedergibt. Zur Zeit werden in der Technik mehrere völlig verschiedenartige Verfahren dafür eingesetzt. Neue, zukunftsträchtige Verfahren werden vorgestellt.

245mal überschwemmt

seit ihrem Bestehen war die Stadt Leningrad, Besondere klimatische Bedingungen führen dazu. Komsomolzen errichten als Schutz gegen die Wasserfluten jetzt quer durch den Finnischen Meerbusen einen gewaltigen Staudamm -ein zentrales Jugendobjekt des Komsomol.

Kleine Typensammlung

Schienenfahrzeuge

Serie

Jugend + Technik, Heft 6/1980

Dieselelektrische Lokomotive der BR 301 Da Sowohl für den Personen- als auch für den Güterzugdienst geeignet ist diese sechsachsige Lokomotive, die in der VR Polen in einer großen Serie hergestellt wird. Sie besitzt einen Zwölf-Zylinder-Dieselmotor, der direkt mit dem Gleichstromgenerator gekuppelt ist. Die Leistung beträgt 1250 kW. Die Lokomotive ist der Grundtyp für weltere Lokomotiven der PKP mit Leistungen von 1655 kW bzw. 2 207 kW.

Einige technische Daten:

Herstellerland: VR Polen Spurweite: 1 435 mm Achsfolge: Co'Co' Motorleistung: 1 250 kW (bei 1 500 U/min) Dienstmasse: 102 t Länge über Puffer: 18 990 mm Geschwindigkeit: 120 km/h

Kleine Typensammlung

Meerestechnik

Serie H

Jugend + Technik, Heft 6/1980

Deep Diver

Die Deep Diver wurde in Florida (USA) gebaut und 1968 vom Stapel gelassen. Sie war das erste kommerzielle Tauchboot, das für den Ausstieg von Tauchern ausgerüstet wurde. Die Deep Diver besitzt als Hauptausrüstung neben Gyrokompaß, Echolot, UW-Telefon, Funkgerät, Tiefenmesser und Druckkommer für zwei Personen noch ein Gerät (Manipulator) zur Gewinnung von Bohrkernen aus felsigem Gestein.

Der Hauptmotor wird über ein Fußpedal elektrohydraulisch gesteuert. Außerhalb des Bootes zu beiden Seiten des Turmes liegen die Ballasttanks, die über eine elektrische Pumpe geflutet und gelenzt werden. Das Atemgas reicht für zwei Taucher in 385 m Tiefe etwa zwei Stunden. Der Batteriebehölter, der unter dem Tauchboot außen angeordnet wurde, kann im Notfall abgeworfen werden. Die Deep Diver absolvierte von 1968 bis 1971 etwa 150 Einsätze mit insgesamt etwa 300 Tauchstunden. Sie wird heute mit ihren Schwestertauchbooten gleichen Typs an Erdölfirmen vermietet.

Herstellerland: USA
Tauchtiefe: 385 m/410 m
Zerstörungstiefe: 1 000 m
Druckkörperweite: 1,4 m

Länge: 7,0 m Breite: 1,7 m Höhe: 1,8 m Masse: 7,5 t Nutzmasse: 0,9 t

Besatzung: 1 Pilot, 3 Beobachter Lebenserhaltungssystem: 50 h Energie: Blei-Säure-Akkus mit

23 kWh

Antrieb: zwei 7,5-kW-Gleichstromheckmotoren, zwei 2-kW-Bugmanövrierpropeller

Dienstgeschwindigkeit: 1,5 kn/ 10 h Maximalgeschwindigkeit: 3,5 kn/5 h

Kleine Typensammlung

Schiffahrt

Serie

Jugend + Technik, Heft 6/1980

Ostsee-Fähre "Diana II"

Im Jahre 1979 wurde dieses moderne Fährschiff von der Schiffswerft J. L. Meyer in Papenburg fertiggestellt und dem Auftraggeber, einer schwedischen Reederei in Stockholm, übergeben. Die Fähre wird als Auto- und Passagierfähre zwischen Schweden und Finnland eingesetzt.

Der Schiffskörper ist voll geschweißt. Er wurde nach dem Querspantensystem gebaut. Im Unterwasserbereich ist er durch zwölf Querschotte in dreizehn Abteilungen unterteilt. Das Schiff hat zehn Decks. Für die Be- und Entladung hat das Schiff eine Bug- und Heckklappe sowie vier Seitenpforten.

Die Antriebsanlage besteht aus vier Schiffsdieselmotoren. Je zwei Motore arbeiten über ein Untersetzungsgetriebe auf einen Verstellpropeller. Für die Erzeugung der an Bord benötigten Elektroenergie stehen vier Diesel-Generatoraggregate mit einer Gesamtleistung von 4 600 kVA und ein Notdiesel-Generatoraggregat mit 330 kVA zur Verfügung. Um eine gute Manövrierfähigkeit zu erreichen, befinden sich im Vorschiff zwei Bugstrahlruder, Jedes Strahlruder hat einen Schub von 10 t. Das Schiff wurde nach den Vorschriften und unter Aufsicht von Bureau Veritas gebaut und erhielt auch die entsprechende Klasse.

Einige technische Daten:

Besatzung: 104 Mann

Herstellerland: BRD Länge über alles: 137,20 m Länge zwischen den Loten: 119,00 m Breite in der Wasserlinie: 23,60 m Seitenhöhe bis Hauptdeck: 13,00 m Tiefgang: 5,65 m Tragfähigkeit: 2 400 t Vermessung: 11 700 BRT Ladefähigkeit: 45 Lkw und 160 Pkw oder 555 Pkw Passagiere: 1 900 Personen Maschinenleistung: 4 × 4 400 kW (4 × 6 000 PS) Geschwindigkeit: 21,5 kn

Kleine Typensammlung

Kraftwagen

Serie.

Jugend + Technik, Heft 6/1980

Toyota Dyna

mäßig unter anderem mit Sicherheitsgurt, Kopfstütze, Radio, Doppelscheinwerfer und Zwillingsrädern

Einige technische Daten:

Herstellerland: Japan Motor: wassergekühlter Vierzylinder-Viertakt-Otto Hubraum 1.994 cm3 Leistung: 58,9 kW (80 PS)

bei 4 600 U/min

Synchrongetriebe

Kupplung: Einscheiben-Trockenkupplung, hydraulisch betätigt Getriebe: Fünfgang-

Zum Nutzfahrzeug-Programm von Toyota gehört die Dyna-Baureihe. Die Schnelltransporter sind in Standardausführung als dreisitzige Frontlenker konzipiert und für Nutzmassen zwischen 1590 kg 1 890 kg ausgelegt. Die Dynas werden mit Pritschen-, Koffer- und Kastenaufbau in zwei Radständen (2 490 mm und 3 164 mm) angeboten. Als Chassis-Variante stehen auch Fahrzeuge mit Doppelkabine (6 Sitzplätze, viertürig) zur Auswahl. Jedes Dyna-Modell ist serien(hinten) ausgerüstet.

Radformel: 4 X 2 Radstand: 2 490 mm Länge: 4 690 mm Breite: 1 910 mm (ohne Außenspiegel) Aufbau: Metallpritsche

Höhe mit Plane: 1 990 mm Nutzmasse: 1 590 kg Leermasse: 1 910 kg Zul. Anhängemasse: 1 800 kg Höchstgeschwindigkeit: 115 km/h

Klein

Schien

Jugeno Heft 6

Diese motiv

Klein

Meere

Jugeno

Heft 6

Deep

Die De (USA)

pel gel kommer den Aus

stet wur als Ha kompaß

gerät,

mer für

rät (Me

von Bol

Der Ha

pedal a

Außerho

Seiten

lasttank

Pumpe !

Das At

cher in

Stunder

stein.

(204) Lizenz 1224

M.G. MIDGET Sportwagen Typ TA 1939

Er zählt zu den klassischen englischen Sportwagen. Es wurden etwa dreitausend Fahrzeuge dieser Serie von 1936 bis 1939 von der M. G. (Morris Garage) Car Company in Abingdon bei Oxford hergestellt. Unter der langgestreckten, kantigen Karosserie mit dem typischen M. G.-Gesicht arbeitet ein langhubiger, aber sehr drehfreudiger Zweivergaser-Motor. Diesen Typ lieferte man nur in der zweisitzigen Ausführung. Er ist mit Allwetterfaltverdeck, Seitensteckscheiben und umlegbarer Windschutzscheibe ausgerüstet. Als typischer "Engländer" wird er mit Rechtslenkung gefahren. wuchtig geschwungene Armaturenbrett ist einfach, aber sehr informativ gestaltet (Abb. oben): Links Fernthermometer, Drehzahlmesser mit Zeituhr, rechts über dem Lenkrad der Tachometer, in der Mitte die Anzeigen und Bedienungselemente der elektrischen Anlage. Die Stahlspeichenfelgen (Abb. unten) sind mit Schnellverschlüssen befestigt und betonen das sportliche Gesamtbild des Wagens.

Einige technische Daten:

Herstellerland: England

Motor: Vierzylinder-Reihenmotor,

obengesteuert

Kühlung: Wasserumlauf mit

Pumpe und Thermostat Hubraum: 1292 cm³ (63,5 mm × 102 mm)

Leistung: 36,8 kW bei 5400 U/min

(50 PS)

Getriebe: Viergang-Kugelschal-

tung

Kupplung: korkbelegt im Ölbad

Masse: 820 kg

Höchstgeschwindigkeit: 130 km/h

Länge: 3560 mm Breite: 1410 mm Höhe: 1450 mm

Fotos: Titel, III./IV. US JW-Bild/

Zielinski

M.G. MIDGET Sportwagen
Typ TA 1939