Projekt z "Metod numerycznych"

Zadanie 2

Układy równań liniowych

Mateusz Stencel 188676

Wstęp

Celem zadania było zaimplementowanie metod iteracyjnych Jacobiego i Gaussa–Seidla oraz bezpośredniej – faktoryzacji LU do rozwiązywania układów równań liniowych. Implementacje algorytmów wykonano języku C++, korzystając z instrukcji laboratoryjnej oraz wiedzy z wykładu.

Zadanie A

Działanie metod oparto o rozwiązanie równania Ax = b, gdzie A jest macierzą, x jest wektorem niewiadomych, natomiast b jest wektorem rozwiązań. Przyjęto, że macierz A ma wymiary $N \times N$, gdzie N ma wartość 976.

Zadanie B

Do uzyskania normy residuum dla metod iteracyjnych, w **zadaniu B** otrzymano następujące wyniki:

Metoda	Iteracje	Czas[s]
Jacobiego	26	0,443
GS	18	0,206

Tabela B.1

Wykres B.1

Iteracje

15

20

25

10

ò

5

Wykres B.2

Wnioski do zadania B:

Po uzyskaniu wyników można zauważyć, że metoda Gaussa–Seidla potrzebuje mniej iteracji aby zbiec się prawidłowego wyniku, przez co jest ona szybsza.

Zadanie C

Po zmianie parametrów tak aby macierz A prezentowała się zgodnie z **zadaniem** C, otrzymano następujące wyniki:

Wykres C.1

Normy błędu rezydualnego w kolejnych iteracjach dla metody Gaussa-Seidla

Wykres C.2

Wnioski do zadania C:

Można zauważyć, że metody Jacobiego i Gaussa–Seidla nie zbiegają się lecz rosną wraz z kolejnymi iteracjami, przy czym metoda GS rośnie szybciej. Jest to spowodowane tym, że zbieżność obu metod iteracyjnych zależy od własności macierzy A.

Zadanie D

Po zaimplementowaniu metody faktoryzacji LU i zastosowaniu do przypadku C, otrzymano normę:

norma błędu metody bezpośredniej = $1,439859 \cdot 10^{-13}$

Wnioski do zadania D:

Porównując uzyskane wyniki dla metod iteracyjnych i bezpośredniej LU dla przypadku C, można zauważyć, że norma LU zbiega się do prawidłowego wyniku w porównaniu z metodami iteracyjnymi. Uzyskana norma oznacza bardzo wysoką dokładność przybliżenia.

Zadanie E

Aby porównać czasy trwania poszczególnych metod, stworzono wykres zależności od liczby niewiadomych $N=\{100,200,300,500,700,1000,2000,3000,4000,5000\}$ dla przypadku z punktu $\bf A$.

Czas rozwiązywania równiania w zależności od rozmiarów macierzy dla poszczególnych metod

Wykres E.1

N	Czas Jacobi [s]	Czas GS [s]	Czas LU [s]
100	0,0103	0,0084	0,003
200	0,0290	0,0167	0,0116
300	0,0460	0,024	0,0423
500	0,1161	0,0648	0,1656
700	0,2203	0,099	0,4516
1000	0,4970	0,1974	1,4587
2000	1,9010	0,8344	10,2391
3000	3,6077	1,8893	34,5864
4000	6,3605	2,7616	78,6752
5000	10,6645	4,2776	151,7079

Tabela E.1

Wnioski do zadania E i F:

Analizując wykres można stwierdzić, że metody iteracyjne są zdecydowanie lepsze czasowo w rozwiązywaniu równań od metody LU. Ze wszystkich metod, najszybsza okazała się metoda Gaussa–Seidla. Największą wadą metod iteracyjnych jest ich zbieżność. Własności macierzy mogą powodować, że metody iteracyjne potrzebują wielu iteracji żeby osiągnąć zadaną normę lub nie zbiegają się wcale. W takim przypadku należy zastosować inne metody, na przykład metodę bezpośrednią LU.