CSEZ13

MICROCONTROLLER PROGRAMMING

Floating Point Numbers

Introduction

- In this chapter, representation of real numbers in processors is explained.
- The floating point (FP) representation is introduced.
- Widely preferred floating point number standard, IEEE 754, is described.
- FP arithmetic is briefly explained.

Chapter Objectives

Upon completion of this chapter, you will be able to:

- Explain the reason of why floating point numbers are needed.
- Convert between floating point and real representation of numbers.
- Perform FP arithmetic.

Floating Point

- In high level languages, you can define the type of variables such as:
 - int
 - float
 - double
 - etc.
- However, this is not directly possible in assembly language.
- Binary numbers may have different meaning based on the representation you use.

Floating Point

- The floating-point representation is one way to represent real numbers in binary form.
- Numbers are in general represented approximately to a fixed number of significant digits and scaled using an exponent.
- The base for the scaling is normally 2, 10 or 16.
- The typical number that can be represented exactly is of the form:
 - significant digits × base exponent
- The term floating point refers to the fact that the radix point (decimal point, or, more commonly in computers, binary point) can "float"; that is, it can be placed anywhere relative to the significant digits of the number.

Floating Point

- Though there are different floating point representations, the most commonly encountered representation is IEEE 754 Standard.
- The advantage of floating-point representation over fixed-point (and integer) representation is that it can support a much wider range of values.
- The speed of floating-point operations is an important measure of performance for computers in many application domains. It is measured in FLOPS.

Exponential Notation

 The following are equivalent representations of 1,234

123,400	. 0	X	10-2
12,340	. 0	X	10 ⁻¹
1,234	. 0	X	100
123	. 4	X	101
12	.34	X	102
1	.234	X	103
0	.1234	X	104

The representations differ in that the decimal place — the "point" — "floats" to the left or right (with the appropriate adjustment in the exponent).

Parts of a Floating Point Number

IEEE 754 Standard

- Most common standard for representing floating point numbers
- Single precision: 32 bits, consisting of:
 - Sign bit (1 bit)
 - Exponent (8 bits)
 - Mantissa (or fraction) (23 bits)
- Double precision: 64 bits, consisting of:
 - Sign bit (1 bit)
 - Exponent (11 bits)
 - Mantissa (or fraction) (52 bits)

Single Precision Format

Normalization

- The mantissa is normalized
- Has an implied decimal place on left
- Has an implied "1" on left of the decimal place
- E.g.,

 - Represents... $1.101_2 = 1.625_{10}$

Excess Notation

- To include exponents, "excess" notation is used
- Single precision: excess 127
- Double precision: excess 1023
- The value of the exponent stored is larger than the actual exponent
- E.g., excess 127,
 - **Exponent** → 10000111
 - **Represents...** 135 127 = 8

Denormalized Values

Condition

```
- \exp = 000...0
```

Value

- Exponent value E = -Bias + 1
- Significand value $m = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- $\exp = 000...0$, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- $-\exp = 000...0$, frac $\neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

Special Values

Condition

```
- \exp = 111...1
```

Cases

- $\exp = 111...1$, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative

• E.g.,
$$1.0/0.0 = -1.0/-0.0 = +\infty$$
, $1.0/-0.0 = -\infty$

$$-\exp = 111...1$$
, frac $\neq 000...0$

- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty \infty$

Example

Single precision

$$+1.11_2 \times 2^3 = 1110.0_2 = 14.0_{10}$$

Hexadecimal

- It is convenient and common to represent the original floating point number in hexadecimal
- The preceding example...

0 100	0001	0 110	0000	0000	0000	0000	0000
4	1	6	O	O	0	0	0

Converting <u>from</u> Floating Point

 E.g., What decimal value is represented by the following 32-bit floating point number?

C17B0000₁₆

Express in binary and find S, E, and M

 $C17B0000_{16} =$

S E

M

Step 2

- Find "real" exponent, n
- -n = E 127
 - $= 10000010_2 127$
 - = 130 127
 - = 3

 $C17B0000_{16} =$

S E M

- Step 3
 - Put S, M, and n together to form binary result
 - (Don't forget the implied "1." on the left of the mantissa.)

$$-1.1111011_2 \times 2^n =$$

$$-1.1111011_2 \times 2^3 =$$

$$C17B0000_{16} =$$

- S E M
- Step 4
 - Express result in decimal

Answer: -15.6875

Converting to Floating Point

 E.g., Express 36.5625₁₀ as a 32-bit floating point number (in hexadecimal)

Express original value in binary

$$36.5625_{10} =$$

- Normalize

$$100100.1001_2 =$$

$$1.001001001_2 \times 2^5$$

Determine S, E, and M

$$+1.001001001_2 \times 2^{\frac{5}{2}}$$
S M

- Step 4
 - Put S, E, and M together to form 32-bit binary result

$$+1.001001001_2 \times 25$$
S
M

- Step 5
 - Express in hexadecimal

```
0\ 10000100\ 001001001000000000000000_2 = 0100\ 0010\ 0001\ 0010\ 0100\ 0000\ 0000\ 0000_2 = 4\ 2\ 1\ 2\ 4\ 0\ 0\ 0_{16}
```

Answer: 42124000₁₆

Floating Point Operations

- Conceptual View
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac
- Rounding Modes (illustrate with \$ rounding)

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
Zero	\$1.00	\$1.00	\$1.00	\$2.00	- \$1.00
Round down (-∞)	\$1.00	\$1.00	\$1.00	\$2.00	- \$2.00
Round up (+∞)	\$2.00	\$2.00	\$2.00	\$3.00	- \$1.00
 Nearest Even (default) 	\$1.00	\$2.00	\$2.00	\$2.00	-\$2.00

Note:

- 1. Round down: rounded result is close to but no greater than true result.
- 2. Round up: rounded result is close to but no less than true result.

FP Multiplication

Operands

```
(-1)^{s1} M1 2^{E1}
(-1)^{s2} M2 2^{E2}
```

Exact Result

```
(-1)^s M 2^E
```

- Sign s: s1 ^ s2
- Significand M: M1 * M2
- Exponent *E*: *E1 + E2*
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If *E* out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

FP Addition

Operands

$$(-1)^{s1} M1 2^{E1}$$

 $(-1)^{s2} M2 2^{E2}$

- Assume *E1* > *E2*
- Exact Result

$$(-1)^s M 2^E$$

- Sign s, significand M:
 - · Result of signed align & add
- Exponent *E*:*E*1
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - Overflow if *E* out of range
 - Round M to fit frac precision

FP Operations on Intel Microprocessor

- Intel 80X87 family coprocessors support floating point numbers.
- 80X87 is an external integrated circuit designed to operate concurrently with the microprocessor.
 - 80486DX-Core2 have internal versions of 80387.
- The processor executes all normal instructions and 80X87 executes coprocessor instructions.
 - 80X87 executes 68 different instructions

SUMMARY

- Representation of real numbers in processors is explained.
- FP representation is introduced.
- IEEE 754 standard is described.
- FP arithmetic is briefly explained.

Extra References

- Lecture Notes, "Introduction to Information Technologies", York University
- Lecture Notes, Course CS 213.

The Intel Microprocessors: 8086/8088, 80186/80188, 80286, 80386, 80486 Pentium, Pentium Pro Processor, Pentium II, Pentium, 4, and Core2 with 64-bit Extensions Architecture, Programming, and Interfacing, Eighth Edition
Barry B. Brey

Copyright ©2009 by Pearson Education, Inc. Upper Saddle River, New Jersey 07458 • All rights reserved.