How to Mow the Lawn

Coleby Kauffman CS-392 GPU Programming 26 October, 2022

Overview

- Black void with a 50x50 field of grass
- Uncannily high definition lawn mower
- Configurable size and speed
- "Wind" physics, except when cut
- Inconsistent turning
- Three OpenGL "programs":
 - o Grass, Ground, Mower
- Terrible code

Part 1: The Grass

- To mow the lawn (grass), you need the lawn (grass)
- Two vertices
- GL_LINES
- Instanced rendering
 - o 600,000 blades of grass
 - O What if we do more? Fewer?
 - Break MLH 310 computer challenge?
 - 600,000 * sizeof(float) * 2 = 4,800,000 bytes = 4.8 MB
 - Two of these buffers
 - 100,000,000 * sizeof(float) * 2 = 800 MB
- grass_locations array
- Grass length (0.2 0.6)

```
float grass_vertices[] = {
    0.0f, 0.0f, 0.0f,
    0.0f, 0.5f, 0.0f
};
```

Part 1: The Grass (Part 2)

Placing the grass

```
vec4 offset = vec4(grasslocbuf[gl_InstanceID*2], 0, grasslocbuf[gl_InstanceID*2+1], 0);
vec4 pos = vec4(in_vertex, 1.0) + offset;
```

Wind (dancing?)

```
if (grasslenbuf[gl_InstanceID * 2] > 0.05)
   pos.x += (sin(count/20.0 + grasslenbuf[gl_InstanceID * 2] * 10)/5.0) * grasslenbuf[gl_InstanceID * 2];
```

- Issue: How much to sway?
 - Scaling wind effect with the length
- Vertex shader

Part 2: The Ground

- The ground is just two brown triangles
- GL_TRIANGLES
- Flickering geometry
 - Professional tip: do not be stupid
 - I have personal experience with this

```
float ground_vertices[] = {
    0.0f, 0.0f, 0.0f,
    0.0f, 0.0f, 1.0f,
    1.0f, 0.0f, 0.0f,
    1.0f, 0.0f, 0.0f,
    1.0f, 0.0f, 1.0f,
    0.0f, 0.0f, 1.0f,
};
```

Part 3: The Mower

- One of the requirements for mowing the lawn is a lawnmower
- 3D model from free3d.com
- tinyobjloader
- Calculating the mower's position
 - Things to consider:
 - When to turn (annoying problem)
 - Distance to next turn (annoying problem)
 - How big is the mower??? (annoying problem)
 - Model vs World space (this one's on me...)
 - Candidate for most poorly written code of all time? Let's look

Part 3 again: The Mower

- Collision with grass
 - Things to consider:
 - Mower "hitbox" and scaling it 40 / float(mower_scale) formula derivation
 - Cutting the grass and storing each blade's state
- Mower scale and speed
 - Changing the scale was a pain...
 - Position, hitbox, mvp calculation, where to turn
 - Reset mower upon scale change
 - Speed is simple enough


```
if (((pos.x < mower_pos.x + 40 / float(mower_scale)) && (pos.x > mower_pos.x - 40 / float(mower_scale)) \\
   && ((pos.z < mower_pos.z + 40 / float(mower_scale)) && (pos.z > mower_pos.z - 40 / float(mower_scale)))))
```

Part 3.5: ImGui_ImplGlfw_InitForOpenGL()

- What creates that interface box?
 - ImGui
 - Scale and Speed sliders
 - We can create abstract art
 - Comically small mower

```
if (draw_menu) {
    ImGui_ImplOpenGL3_NewFrame();
    ImGui_ImplGlfw_NewFrame();
    NewFrame();
    Begin("OurWindow");
    Text("FPS: %.1f FPS", GetIO().Framerate);
    SliderInt("Mower Speed", &mower_speed, 0, 500);
    SliderInt("Mower Scale", &mower_scale, 3, 500);
    End();
    Render();
    ImGui_ImplOpenGL3_RenderDrawData(GetDrawData());
}
```

Part 4: When the Mowing is Complete 😌

- The fun has just begun
 - **Un-mowing**
 - finished_mowing uniform

```
(outer corners < 0) {
outer corners = 50 * mower scale - 20 * (60 / (float)mower scale);
turn mower = 0;
finished mowing ? finished mowing = 0 : finished mowing = 1;
```

Storing the original lengths

```
if (finished mowing == 1)
   pos.y = grasslenbuf[gl InstanceID * 2] = grasslenbuf[gl InstanceID * 2 + 1];
else
   pos.y = grasslenbuf[gl InstanceID * 2] = 0.05;
```