

Cálculo 1 - HONORS - CM311

Derivadas e Propriedades

Diego Otero otero.ufpr@gmail.com / otero@ufpr.br

- Funções exponenciais: $f(x) = a^x$.
- Número de Euler e é o único que satisfaz $\lim_{h \to 0} \frac{e^h 1}{h} = 1$.
- A partir disso temos que $(e^x)' = e^x$.
- Algumas propriedades do número de Euler
 - ▶ 2 < e < 3
 - ▶ $e \approx 2,71828$.
 - $e \in \mathbb{R} \mathbb{Q}$.
 - e não é algébrico (transcendental).

$$e = \lim_{h \to 0} (1+h)^{\frac{1}{h}} = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

- A função $f(x) = e^x$ é crescente, em particular injetora. É possível mostrar que $\operatorname{Im} f = \mathbb{R}_+ = (0, +\infty)$.
- Assim f admite inversa $f^{-1}: \mathbb{R}_+ \to \mathbb{R}$.
- Denotamos $f^{-1}(x) = \ln x = \log_e x$ e chamamos esta função de **logaritmo natural**.

- Funções exponenciais: $f(x) = a^x$.
- Número de Euler e é o único que satisfaz $\lim_{h\to 0} \frac{e^h-1}{h} = 1$.
- A partir disso temos que $(e^x)' = e^x$.
- Algumas propriedades do número de Euler
 - ▶ 2 < e < 3
 - ▶ $e \approx 2,71828$.
 - $e \in \mathbb{R} \mathbb{Q}$.
 - e não é algébrico (transcendental).

$$e = \lim_{h \to 0} (1+h)^{\frac{1}{h}} = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

- A função $f(x) = e^x$ é crescente, em particular injetora. É possível mostrar que $\operatorname{Im} f = \mathbb{R}_+ = (0, +\infty)$.
- Assim f admite inversa $f^{-1}: \mathbb{R}_+ \to \mathbb{R}$.
- Denotamos $f^{-1}(x) = \ln x = \log_e x$ e chamamos esta função de **logaritmo natural**.

2/6

- Funções exponenciais: $f(x) = a^x$.
- Número de Euler e é o único que satisfaz $\lim_{h\to 0} \frac{e^h-1}{h} = 1$.
- A partir disso temos que $(e^x)' = e^x$.
- Algumas propriedades do número de Euler
 - ▶ 2 < e < 3
 - ▶ $e \approx 2,71828$.
 - $e \in \mathbb{R} \mathbb{Q}$.
 - e não é algébrico (transcendental).

$$e = \lim_{h \to 0} (1+h)^{\frac{1}{h}} = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

- A função $f(x) = e^x$ é crescente, em particular injetora. É possível mostrar que $\operatorname{Im} f = \mathbb{R}_+ = (0, +\infty)$.
- Assim f admite inversa $f^{-1}: \mathbb{R}_+ \to \mathbb{R}$.
- Denotamos $f^{-1}(x) = \ln x = \log_e x$ e chamamos esta função de **logaritmo natural**.

- Funções exponenciais: $f(x) = a^x$.
- Número de Euler e é o único que satisfaz $\lim_{h\to 0} \frac{e^h-1}{h} = 1$.
- A partir disso temos que $(e^x)' = e^x$.
- Algumas propriedades do número de Euler
 - ▶ 2 < e < 3
 - $e \approx 2,71828$.
 - $e \in \mathbb{R} \mathbb{Q}$.
 - e não é algébrico (transcendental).

$$e = \lim_{h \to 0} (1+h)^{\frac{1}{h}} = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

- A função $f(x) = e^x$ é crescente, em particular injetora. É possível mostrar que $\operatorname{Im} f = \mathbb{R}_+ = (0, +\infty)$.
- Assim f admite inversa $f^{-1}: \mathbb{R}_+ \to \mathbb{R}$.
- Denotamos $f^{-1}(x) = \ln x = \log_e x$ e chamamos esta função de **logaritmo natural**.

- Funções exponenciais: $f(x) = a^x$.
- Número de Euler e é o único que satisfaz $\lim_{h \to 0} \frac{e^h 1}{h} = 1$.
- A partir disso temos que $(e^x)' = e^x$.
- Algumas propriedades do número de Euler
 - ▶ 2 < e < 3
 - ▶ $e \approx 2,71828$.
 - $e \in \mathbb{R} \mathbb{O}$.
 - e não é algébrico (transcendental).

$$e = \lim_{h \to 0} (1+h)^{\frac{1}{h}} = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

- A função $f(x) = e^x$ é crescente, em particular injetora. É possível mostrar que $\operatorname{Im} f = \mathbb{R}_+ = (0, +\infty)$.
- Assim f admite inversa $f^{-1}: \mathbb{R}_+ \to \mathbb{R}$.
- Denotamos $f^{-1}(x) = \ln x = \log_e x$ e chamamos esta função de **logaritmo natural**.

- Funções exponenciais: $f(x) = a^x$.
- Número de Euler e é o único que satisfaz $\lim_{h \to 0} \frac{e^h 1}{h} = 1$.
- A partir disso temos que $(e^x)' = e^x$.
- Algumas propriedades do número de Euler
 - ▶ 2 < *e* < 3
 - ▶ $e \approx 2,71828$.
 - $e \in \mathbb{R} \mathbb{Q}$.
 - e não é algébrico (transcendental).

$$e = \lim_{h \to 0} (1+h)^{\frac{1}{h}} = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

- A função $f(x) = e^x$ é crescente, em particular injetora. É possível mostrar que $\operatorname{Im} f = \mathbb{R}_+ = (0, +\infty)$.
- Assim f admite inversa $f^{-1}: \mathbb{R}_+ \to \mathbb{R}$.
- Denotamos $f^{-1}(x) = \ln x = \log_e x$ e chamamos esta função de **logaritmo natural**.

2/6

- Funções exponenciais: $f(x) = a^x$.
- Número de Euler e é o único que satisfaz $\lim_{h \to 0} \frac{e^h 1}{h} = 1$.
- A partir disso temos que $(e^x)' = e^x$.
- Algumas propriedades do número de Euler
 - ▶ 2 < *e* < 3
 - ▶ $e \approx 2,71828$.
 - $e \in \mathbb{R} \mathbb{Q}$.
 - e não é algébrico (transcendental).

$$e = \lim_{h \to 0} (1+h)^{\frac{1}{h}} = \sum_{n=0}^{+\infty} \frac{1}{n!}.$$

- A função $f(x) = e^x$ é crescente, em particular injetora. É possível mostrar que $\operatorname{Im} f = \mathbb{R}_+ = (0, +\infty)$.
- Assim f admite inversa $f^{-1}: \mathbb{R}_+ \to \mathbb{R}$.
- Denotamos $f^{-1}(x) = \ln x = \log_e x$ e chamamos esta função de **logaritmo natural**.

- Temos as seguintes propriedades:
 - i) $e^x = y \Leftrightarrow x = \ln y$.
 - ii) $\ln e = 1$.
 - iii) $ln(e^x) = x$ para todo $x \in \mathbb{R}$.
 - iv) $e^{\ln x} = x$ para todo $x \in \mathbb{R}_+$.

- v) ln(a.b) = ln a + ln b.
- vi) $\ln a^r = r \cdot \ln a$.
- vii) $\ln \frac{a}{b} = \ln a \ln b$.
- Analogamente para $g(x)=a^x$, a>0, $a\neq 1$, temos que $g:\mathbb{R}\to\mathbb{R}_+$ admite inversa $g^{-1}:\mathbb{R}_+\to\mathbb{R}$
- Denotamos $g^{-1}(x) = \log_a x$ e chamamos esta função de **logaritmo** na base a.
- ullet As mesmas propriedades acima valem trocando e por a e In por \log_a .
- Temos uma propriedade extra (mudança de base):

$$\log_a b = \frac{\ln b}{\ln a}$$

- Temos as seguintes propriedades:
 - i) $e^x = y \Leftrightarrow x = \ln y$.
 - ii) $\ln e = 1$.
 - iii) $ln(e^x) = x$ para todo $x \in \mathbb{R}$.
 - iv) $e^{\ln x} = x$ para todo $x \in \mathbb{R}_+$.

- v) ln(a.b) = ln a + ln b.
- vi) $\ln a^r = r \cdot \ln a$.
- vii) $\ln \frac{a}{b} = \ln a \ln b$.
- Analogamente para $g(x)=a^x$, a>0, $a\neq 1$, temos que $g:\mathbb{R}\to\mathbb{R}_+$ admite inversa $g^{-1}:\mathbb{R}_+\to\mathbb{R}$
- Denotamos $g^{-1}(x) = \log_a x$ e chamamos esta função de **logaritmo** na base a.
- ullet As mesmas propriedades acima valem trocando e por a e In por \log_a .
- Temos uma propriedade extra (mudança de base):

$$\log_a b = \frac{\ln b}{\ln a}$$

- Temos as seguintes propriedades:
 - i) $e^x = y \Leftrightarrow x = \ln y$.
 - ii) $\ln e = 1$.
 - iii) $ln(e^x) = x$ para todo $x \in \mathbb{R}$.
 - iv) $e^{\ln x} = x$ para todo $x \in \mathbb{R}_+$.

- v) ln(a.b) = ln a + ln b.
- vi) $\ln a^r = r \cdot \ln a$.
- vii) $\ln \frac{a}{b} = \ln a \ln b$.
- Analogamente para $g(x)=a^x$, a>0, $a\neq 1$, temos que $g:\mathbb{R}\to\mathbb{R}_+$ admite inversa $g^{-1}:\mathbb{R}_+\to\mathbb{R}$
- Denotamos $g^{-1}(x) = \log_a x$ e chamamos esta função de **logaritmo** na base a.
- ullet As mesmas propriedades acima valem trocando e por a e In por \log_a .
- Temos uma propriedade extra (mudança de base):

$$\log_a b = \frac{\ln b}{\ln a}$$

• Temos as seguintes propriedades:

i)
$$e^x = y \Leftrightarrow x = \ln y$$
.

ii)
$$\ln e = 1$$
.

iii)
$$ln(e^x) = x$$
 para todo $x \in \mathbb{R}$.

iv)
$$e^{\ln x} = x$$
 para todo $x \in \mathbb{R}_+$.

v)
$$ln(a.b) = ln a + ln b$$
.

vi)
$$\ln a^r = r \cdot \ln a$$
.

vii)
$$\ln \frac{a}{b} = \ln a - \ln b$$
.

- Analogamente para $g(x)=a^x$, a>0, $a\neq 1$, temos que $g:\mathbb{R}\to\mathbb{R}_+$ admite inversa $g^{-1}:\mathbb{R}_+\to\mathbb{R}$
- Denotamos $g^{-1}(x) = \log_a x$ e chamamos esta função de **logaritmo** na base a.
- As mesmas propriedades acima valem trocando e por a e \ln por \log_a .
- Temos uma propriedade extra (mudança de base):

$$\log_a b = \frac{\ln b}{\ln a}$$

- Temos as seguintes propriedades:
 - i) $e^x = y \Leftrightarrow x = \ln y$.
 - ii) $\ln e = 1$.
 - iii) $ln(e^x) = x$ para todo $x \in \mathbb{R}$.
 - iv) $e^{\ln x} = x$ para todo $x \in \mathbb{R}_+$.

- v) ln(a.b) = ln a + ln b.
- vi) $\ln a^r = r \cdot \ln a$.
- vii) $\ln \frac{a}{b} = \ln a \ln b$.
- Analogamente para $g(x)=a^x$, a>0, $a\neq 1$, temos que $g:\mathbb{R}\to\mathbb{R}_+$ admite inversa $g^{-1}:\mathbb{R}_+\to\mathbb{R}$
- Denotamos $g^{-1}(x) = \log_a x$ e chamamos esta função de **logaritmo** na base a.
- As mesmas propriedades acima valem trocando e por a e \ln por \log_a .
- Temos uma propriedade extra (mudança de base):

$$\log_a b = \frac{\ln b}{\ln a}.$$

• Como $f(x) = e^x$ é derivável e $f'(x) = f(x) \neq 0$ teremos que f^{-1} será derivável em todo ponto de seu domínio e

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} \Leftrightarrow (\ln x)' = \frac{1}{e^{\ln x}} = \frac{1}{x} = x^{-1}.$$

$$(\ln(x))' = \frac{1}{x} \Leftrightarrow \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \frac{1}{x}.$$

- Tomando x=1, temos que $e=\lim_{h\to 0}(1+h)^{\frac{1}{h}}$!
- A expressão acima fornece uma fórmula do número e em termos de um limite, e agora podemos tomar isso como definição e fazer a dedução desde o início.
- Com essa definição é possível provar que

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

• Como $f(x) = e^x$ é derivável e $f'(x) = f(x) \neq 0$ teremos que f^{-1} será derivável em todo ponto de seu domínio e

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} \Leftrightarrow (\ln x)' = \frac{1}{e^{\ln x}} = \frac{1}{x} = x^{-1}.$$

$$(\ln(x))' = \frac{1}{x} \Leftrightarrow \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \frac{1}{x}.$$

- Tomando x=1, temos que $e=\lim_{h\to 0}(1+h)^{\frac{1}{h}}$!
- A expressão acima fornece uma fórmula do número e em termos de um limite, e agora podemos tomar isso como definição e fazer a dedução desde o início.
- Com essa definição é possível provar que

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

• Como $f(x) = e^x$ é derivável e $f'(x) = f(x) \neq 0$ teremos que f^{-1} será derivável em todo ponto de seu domínio e

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} \Leftrightarrow (\ln x)' = \frac{1}{e^{\ln x}} = \frac{1}{x} = x^{-1}.$$

$$(\ln(x))' = \frac{1}{x} \Leftrightarrow \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \frac{1}{x}.$$

- Tomando x = 1, temos que $e = \lim_{h \to 0} (1 + h)^{\frac{1}{h}}$!
- A expressão acima fornece uma fórmula do número e em termos de um limite, e agora podemos tomar isso como definição e fazer a dedução desde o início.
- Com essa definição é possível provar que

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

• Como $f(x) = e^x$ é derivável e $f'(x) = f(x) \neq 0$ teremos que f^{-1} será derivável em todo ponto de seu domínio e

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} \Leftrightarrow (\ln x)' = \frac{1}{e^{\ln x}} = \frac{1}{x} = x^{-1}.$$

$$(\ln(x))' = \frac{1}{x} \Leftrightarrow \lim_{h \to 0} \frac{\ln(x+h) - \ln(x)}{h} = \frac{1}{x}.$$

- Tomando x=1, temos que $e=\lim_{h\to 0}(1+h)^{\frac{1}{h}}$!
- A expressão acima fornece uma fórmula do número e em termos de um limite, e agora podemos tomar isso como definição e fazer a dedução desde o início.
- Com essa definição é possível provar que

$$\lim_{h\to 0}\frac{e^h-1}{h}=1.$$

Exemplo 1.1.

Calcule

a)
$$(\ln x + \sqrt{x^2 + 1})'$$
.

b)
$$(x \ln(2x + \cos^2 x))'$$
.

Exemplo 1.2

Mostre que
$$\lim_{h\to 0} \frac{a^h - 1}{h} = \ln a$$
.

• Usando o exemplo acima, podemo calcular a derivada de a^x :

$$(a^{x})' = \lim_{h \to 0} \frac{a^{x+h} - a^{x}}{h} = a^{x} \lim_{h \to 0} \frac{a^{h} - 1}{h} = a^{x} \cdot \ln a.$$

Assim teremos também que

$$(\log_a x)' = \frac{1}{x} \cdot \frac{1}{\ln a} = \frac{\ln a^{-1}}{x}$$

Exemplo 1.1.

Calcule

a)
$$(\ln x + \sqrt{x^2 + 1})'$$
.

b)
$$(x \ln(2x + \cos^2 x))'$$
.

Exemplo 1.2.

$$\text{Mostre que } \lim_{h \to 0} \frac{a^h - 1}{h} = \ln a.$$

• Usando o exemplo acima, podemo calcular a derivada de a^x :

$$(a^{x})' = \lim_{h \to 0} \frac{a^{x+h} - a^{x}}{h} = a^{x} \lim_{h \to 0} \frac{a^{h} - 1}{h} = a^{x} \cdot \ln a.$$

• Assim teremos também que

$$(\log_a x)' = \frac{1}{x} \cdot \frac{1}{\ln a} = \frac{\ln a^{-1}}{x}$$

Exemplo 1.1.

Calcule

a)
$$(\ln x + \sqrt{x^2 + 1})'$$
.

b)
$$(x \ln(2x + \cos^2 x))'$$
.

Exemplo 1.2.

Mostre que
$$\lim_{h\to 0} \frac{a^h - 1}{h} = \ln a$$
.

• Usando o exemplo acima, podemo calcular a derivada de a^x :

$$(a^{x})' = \lim_{h \to 0} \frac{a^{x+h} - a^{x}}{h} = a^{x} \lim_{h \to 0} \frac{a^{h} - 1}{h} = a^{x} \cdot \ln a.$$

• Assim teremos também que

$$(\log_a x)' = \frac{1}{x} \cdot \frac{1}{\ln a} = \frac{\ln a^{-1}}{x}$$

Exemplo 1.1.

Calcule

a)
$$(\ln x + \sqrt{x^2 + 1})'$$
.

b)
$$(x \ln(2x + \cos^2 x))'$$
.

Exemplo 1.2.

Mostre que
$$\lim_{h\to 0} \frac{a^h - 1}{h} = \ln a$$
.

• Usando o exemplo acima, podemo calcular a derivada de a^x :

$$(a^{x})' = \lim_{h \to 0} \frac{a^{x+h} - a^{x}}{h} = a^{x} \lim_{h \to 0} \frac{a^{h} - 1}{h} = a^{x} \cdot \ln a.$$

• Assim teremos também que

$$(\log_a x)' = \frac{1}{x} \cdot \frac{1}{\ln a} = \frac{\ln a^{-1}}{x}.$$

• Sendo $h(x) = f(x)^{g(x)}$, um truque interessante para derivar tais funções, se forem deriváveis, é reescrever h e usar a regra da cadeia:

$$h(x) = f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x) \cdot \ln f(x)}.$$

Exemplo 1.3.

Sendo $a \in \mathbb{R}$, mostra que $(x^a)' = a.x^{a-1}$.

• Da mesma forma, se $h(x) = \log_{f(x)} g(x)$, podemos reescrever h da forma abaixo para derivar, caso seja derivável:

$$h(x) = \log_{f(x)} g(x) = \frac{\ln g(x)}{\ln f(x)}.$$

Exemplo 1.4.

a)
$$(x^{\pi} + \pi^{x})'$$
.

b)
$$(x^X)'$$

c)
$$(\log_{2\times \pm 1} x^2 + 1)'$$
.

d)
$$(\log_{x} \operatorname{sen} x)$$

• Sendo $h(x) = f(x)^{g(x)}$, um truque interessante para derivar tais funções, se forem deriváveis, é reescrever h e usar a regra da cadeia:

$$h(x) = f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x) \cdot \ln f(x)}.$$

Exemplo 1.3.

Sendo $a \in \mathbb{R}$, mostra que $(x^a)' = a.x^{a-1}$.

• Da mesma forma, se $h(x) = \log_{f(x)} g(x)$, podemos reescrever h da forma abaixo para derivar, caso seja derivável:

$$h(x) = \log_{f(x)} g(x) = \frac{\ln g(x)}{\ln f(x)}.$$

Exemplo 1.4.

a)
$$(x^{\pi} + \pi^{x})'$$
.

b)
$$(x^{x})'$$
.

c)
$$(\log_{2x+1} x^2 + 1)'$$
.

d)
$$(\log_{e^x} \operatorname{sen} x)$$

• Sendo $h(x) = f(x)^{g(x)}$, um truque interessante para derivar tais funções, se forem deriváveis, é reescrever h e usar a regra da cadeia:

$$h(x) = f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x) \cdot \ln f(x)}.$$

Exemplo 1.3.

Sendo $a \in \mathbb{R}$, mostra que $(x^a)' = a.x^{a-1}$.

• Da mesma forma, se $h(x) = \log_{f(x)} g(x)$, podemos reescrever h da forma abaixo para derivar, caso seja derivável:

$$h(x) = \log_{f(x)} g(x) = \frac{\ln g(x)}{\ln f(x)}.$$

Exemplo 1.4

a)
$$(x^{\pi} + \pi^{x})'$$
.

b)
$$(x^{x})'$$
.

c)
$$(\log_{2y+1} x^2 + 1)'$$
.

d)
$$(\log_{e^x} \operatorname{sen} x)$$

• Sendo $h(x) = f(x)^{g(x)}$, um truque interessante para derivar tais funções, se forem deriváveis, é reescrever h e usar a regra da cadeia:

$$h(x) = f(x)^{g(x)} = e^{\ln f(x)^{g(x)}} = e^{g(x) \cdot \ln f(x)}.$$

Exemplo 1.3.

Sendo $a \in \mathbb{R}$, mostra que $(x^a)' = a.x^{a-1}$.

• Da mesma forma, se $h(x) = \log_{f(x)} g(x)$, podemos reescrever h da forma abaixo para derivar, caso seja derivável:

$$h(x) = \log_{f(x)} g(x) = \frac{\ln g(x)}{\ln f(x)}.$$

Exemplo 1.4.

a)
$$(x^{\pi} + \pi^{x})'$$
.

c)
$$(\log_{2x+1} x^2 + 1)'$$
.

b)
$$(x^{x})'$$
.

d)
$$(\log_{e^x} \operatorname{sen} x)'$$
.