数字逻辑设计

高翠芸 School of Computer Science gaocuiyun@hit.edu.cn 画出状态转移图,说明电路是否具有自启动特性

画出状态转移图,说明电路是否具有自启动特性

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

状态机基础

时序电路的状态(state)

- 是一个状态变量(state variable)集合
- 状态变量的值包含决定电路的未来行为的所有信息

状态机

- 具有n位二进制状态变量的电路有2n种可能的状态
- 因为时序电路的状态是有限的,所以可将其称为有限状态机(Finite State Machine),简称为状态机(state machine)

状态机基础

状态变化

- · 大多数时序电路状态发生变化的时间由时钟信号CLOCK决定
 - 状态在时钟信号上升沿变化,称时钟信号高电平有效
 - 状态在时钟信号下降沿变化,称时钟信号低电平有效

触发器

大多时序电路和几乎所有的状态机都会使用边沿触发的D触发器 存储状态变量

Mealy状态机 vs Moore状态机

状态机结构

- 状态存储器 (state memory) 是存储状态机现态的一组触发器
- 状态机的次态,由次态逻辑(next-state logic)F确定
- 状态机的输出,由输出逻辑(output logic)G确定

Mealy状态机

次态 = F(现态,输入)

输出 = G(现态,输入)

Moore状态机

输出 = G(现态)

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

同步时序逻辑电路设计方法

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 → 触发器激励 触发器特征 → 無发器激励
- (5) 卡诺图化简 → { 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

例:利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

 S_0 —初始状态,表示收到1位数据:"0"

S₁──表示收到1位数据: "1"

S₂—表示收到2位数据: "11"

S₃——表示收到3位数据: "110", 此时输出标志 Z=1.

(2) 分析状态转换情况

(3)原始状态图(Mealy型)

(4) 原始状态表

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ /0	S ₁ / 0	
S ₁	S ₀ / 0	S ₂ /0	
S ₂	S ₃ /1	S ₂ / 0	
S_3	S ₀ /0	S ₁ / 0	

2. 状态化简

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	^
S ₁	S ₀ / 0	S ₂ /0	
S ₂	S ₃ /1	S ₂ / 0	
S ₃	S ₀ / 0	S ₁ / 0	١

现态	Q ⁿ	+1/ Z
Qn	X=0	X=1
S ₀	S ₀ / 0	S ₁ / 0
S ₁	S ₀ / 0	S ₂ /0
S ₂	S ₀ / 1	S ₂ / 0

3. 状态分配

使用 2个JK触发器

 y_2y_1 $S_0 - 00$ $S_1 - 10$ $S_2 - 11$

4. 状态转换真值表

输入	现	态	次	态		触炎) 器		输出
Х	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J ₂	K ₂	J ₁	k ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	0	X	1
0	1	1	0	0	X	1	X	1	0
1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	X	0	1	X	0
1	11	1	1	1	Х	0	1	Χ	0
0	0	1	Х	X	X	X	X	X	Х
1	0	0	X	X	X	X	X	X	X

驱动表

$Q_n \longrightarrow Q_{n+1}$	J K		J K	Q_{n+1}
0 0	0 ×	4	0 0	$\mathbf{Q_n}$
$0 \longrightarrow 1$	1 ×		0 1	0
1 0	× 1		1 0	1
1 —1	× 0		1 1	$\overline{\mathbf{Q}}_{\mathbf{n}}$

4. 状态转换真值表

输入	现	态	次	态		触》	2器	•	输出
X	Y_2^n	Y_1^n	Y ₂ n+1	Y ₁ n+1	J ₂	K_2	J_1	\mathbf{k}_{1}	Ζ
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	X	1	1
0	1	1	0	0	X	1	0	X	0
1	0	0	1	0	1	X	0	X	0
1	1	0	1	1	X	0	X	0	0
1	1	1	1	1	X	0	1	X	0
0	0	1	Х	Χ	Х	Χ	Χ	Χ	Х
1	0	0	X	Х	X	X	X	X	X

5. 卡诺图化简

$$Z = \overline{X}Y_1^n$$

6. 电路实现

7. 检查无关项

$$\begin{cases} J_{1} = XY_{2}^{n} \\ K_{1} = \overline{X} \\ J_{2} = X \\ K_{2} = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_{1}^{n+1} = XY_{2}^{n} \overline{Y_{1}}^{n} + XY_{1}^{n} \\ = X(Y_{1}^{n} + Y_{2}^{n}) \\ Y_{2}^{n+1} = X\overline{Y_{2}}^{n} + XY_{2}^{n} \\ = X \end{cases}$$

电路可以自启动

同步时序逻辑电路设计方法

利用触发器设计同步时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 → 触发器激励 触发器特征 → 無发器激励
- (5) 卡诺图化简 → { 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

直接构图法

直接构图法

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,每加入一个输入取值,就可确定其次态和输出;
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4)这个过程持续下去,直至每一个现态向其次态的转换都已被考虑,并且不再构成新的状态。

例1: 给出同步模5可逆计数器的状态表

X=0: 加计数

X=1: 减计数

Z: 进位、借位输出标志

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
а	b/0	e/1	
b	c/0	a/0	
С	d/0	b/0	
d	e/0	c/0	
е	a/1	d / 0	

直接构图法

例2: 给出同步二进制串行加法器的状态表

设加法器内部状态 a—— 无进位 b—— 有进位

直接构图法

- 1)根据文字描述的设计要求,先假定一个初态;
- 2) 从这个初态开始,每加入一个输入取值,就可确定其次态和输出;
- 3) 该次态可能是现态本身,也可能是已有的另一个状态,或是新增加的一个状态。
- 4)这个过程持续下去,直至每一个现态向其次态的转换都已被考虑,并且不再构成新的状态。

序列检测—101序列检测器

例3: 序列检测——给出同步Mealy型101序列检测器的状态表

X: 0 1 0 1 0 1 0 1 可重叠 检测

X: 0 1 0 1 0 1 0 1 1 不可重 Z: 0 0 0 1 0 0 0 1 0

(1) 状态设定

S。——初始状态,表示收到1位数据:

−表示收到1位数据:"1"

S₂—表示收到2位数据: "10"

S₃——表示收到3位数据: "101", 此时输出标志 Z=1.

只标记感兴 趣的子串

19

101序列检测器

构造原始状态图和状态表

现态	Q ⁿ⁺¹ / Z		
Q n	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	S ₂ / 0	S ₁ /0	
S ₂	S ₀ /0	S ₃ / 1	
S ₃	S ₀ / 0	S ₁ / 0	

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ /0	S ₁ / 0	
S ₁	S ₂ / 0	S ₁ /0	
S ₂	S ₀ /0	S ₃ / 1	
S ₃	S ₂ /0	S ₁ /0	

序列检测电路设计

序列检测的原始状态图构造方法总结

- (1) 检测器输入端收到1位数据时,有两种可能: 0或1,分别用 S_0 和 S_1 标记这两个状态,通常用 S_0 表示初始状态。
- (2) 收到2位数据时,只标记我们感兴趣的子串,用 S_2 表示(例如 10)
- (3) 同理,收到3位数据时,只标记我们感兴趣的子串,用S₃表示(例如 101) ······,直到把我们感兴趣的完整子串也已标记为止。
- (4) 从初始状态开始,采用<mark>直接构图法</mark>,将每一个当前状态在 所有取值下的次态转换及输出情况已都考虑到,并且没有 遗漏为止。

码制检测电路设计

例4: 码制检测——建立一个余3码误码检测器的原始状态图和原始状态表要求:

- 余3码高位在前、低位在后串行地加到检测器的输入端。
- 电路每接收一组代码(即在收到第4位代码时)判断。若是错误代码,则 输出为1,否则输出为0,电路又回到初始状态并开始接收下一组代码。

原始状态图和状态表

原始状态图

现态	Q ⁿ⁺¹ / Z		
Q ⁿ	X=0	X=1	
S ₀	S ₀ /0	S ₁ / 0	
S ₁	S ₃ / 0	S ₁ /0	
S ₂	S ₉ / 0	S ₃ / 0	
S ₃	S ₅ /0	S ₁ /0	
S ₄	S ₇ /0	S ₆ /0	
S ₅	S ₀ / 1	S ₈ /1	
S ₆	S ₀ / 1	S ₀ / 0	
S ₇	S ₀ / 0	S ₀ / 0	
S ₈	S ₀ / 0	S ₀ / 0	
S ₉	S ₁₁ / 0	S ₀ / 0	
S ₁₀	S ₁₃ /1	S ₁₂ / 0	
S ₁₁	S ₀ / 0	S ₁₄ / 0	
S ₁₂	S ₀ /0	S ₀ /0	
S ₁₃	S ₀ / 0	S ₀ / 1	
S ₁₄	S ₀ / 1	S ₀ /1	

码制检测电路设计

N位码制检测电路的原始状态图构造方法总结

- (1) 从初始状态S₀开始(这个初始状态没有特殊含义,仅仅代表一个起点),每来一个输入,次态总是分成左右两种情况。
- (2) 状态图由上至下分为N层:第一层代表起点;第二层代表检测器收到1位数据时,电路的状态情况;第三层代表检测器收到2位数据时,电路的状态情况……;直到第N层,代表检测器收到 N-1位数据时,电路的状态情况。再来一位输入数据,则构成了N位待检测码制。此时,检测器可以给出判读,该码制正确还是错误。
- (3) 一轮检测结束, 回到初始状态, 等待下一组输入。

实例设计

设计一个引爆装置的原始状态表。装置不引爆时,输入总为0;

装置引爆时,则一定连续输入四个1,其间肯定不再输入0。

趣的子串

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	X/X	S ₂ /0	
S ₂	X/X	S ₃ / 0	
S ₃	X/X	X/1	

状态设定

"0" -初始状态,表示收到1位数据:

只标记感兴 -表示收到1位数据:

·表示收到2位数据:

-表示收到3位数据: "111"

此时再收到一个"1",输出标志 Z=1.

不完全定义状态 表:包含任意项

完全定义状态表

状态表

不完全定义状态表

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

同步时序逻辑电路设计方法

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关项

状态表化简

状态表的化简

时序电路的两个状态 S_i 和 S_j ,如果它们对每一个输入所产生的输出完全相同,且它们的次态等价,则这两个状态是等价的(可以合并为一个状态)——状态化简

(一)完全定义状态表的化简方法——隐含(蕴含)表法

- 俩俩比较原始状态表中的所有状态,找出能合并、不能合并、能否合并待定的状态对。
- 追踪能否合并待定的状态对,直至确定它们能合并或不能合并,从 而找到原始状态表中的所有等价状态对。
- 基于这些等价状态对确定最大等价状态类,获得原始状态表的最小 覆盖集,建立最简状态表

状态表化简

等价状态的判定条件

必要条件

状态表中的任意两个状态 S_i 和 S_j 同时满足下列两个条件,它们可以合并为一个状态 X_i

- 1. 在所有不同的现输入下,现输出分别相同
- 2. 在所有不同的现输入下,次态分别为下列情况之一
 - (1)两个次态完全相同
 - (2) 两个次态为其现态本身或交错
 - (3)两个次态为状态对封闭链中的一个状态对
 - (4) 两个次态的某一后续状态对可以合并

隐含表法化简状态表

隐含表(蕴含)法

等价状态的判定条件

状态表中的任意两个状态 S;和 S;同时满足下列两个条件,它们可以合并为一个状态

1. 在所有不同的现输入下,现输出分别相同

√ 状态合并的 必要条件

- 2. 在所有不同的现输入下, 次态分别为下列情况之一
 - (1) 两个次态完全相同
 - (2) 两个次态为其现态本身或交错
 - (3) 两个次态为状态对封闭链中的一个状态对
 - (4) 两个次态的某一后续状态对可以合并
- ① 建立隐含表
- ② 比较
- ③ 追踪

例1: 化简如下状态表

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
а	c/0	b/1	
b	f / 0	a/1	
С	d/0	g / 0	
d	d/1	e/ 0	
е	c/0	e/1	
f	d / 0	g/ <mark>0</mark>	
g	c/1	d/0	

等价状态对

 $\{b,e\}, \{c,f_3\}$

隐含表法化简状态表

④ 获得最大等价状态类

等价状态类的定义——

If: $S_i \equiv S_i$, $S_i \equiv S_m$

Then: $S_i \equiv S_i \equiv S_m$, 即 $\{S_i, S_i, S_m\}$

最大等价状态类——

某一等价状态类不属于其他任何 等价状态类

等价状态对:

 $\{a,b\}\$ $\{a,e\}$

g

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
q_1	q ₂ /0	q ₁ / 1
q_1	q ₂ /0	q ₁ / 1
q_{2}	$q_3/0$	q ₄ / 0
q_3	q ₃ /1	q ₁ / 0
q_1	$q_2/0$	q ₁ / 1
q_2	$q_3/0$	$q_4/0$
q₄	$q_2 / 1$	$q_3/0$

化简后的状态表

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
\mathbf{q}_1	$q_2/0$	q ₁ / 1
q_2	$q_3/0$	q ₄ / 0
q_3	$q_3 / 1$	q ₁ /0
q_4	$q_2/1$	$q_3/0$

最小覆盖集: {q₁, q₂, q₃, q₄}

d/0

c/1

隐含表法化简状态表

例2: 化简如下状态表

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2 = 00 X_1X_2 = 01 X_1X_2 = 10 X_1X_2 = 1$			X ₁ X ₂ =11
а	b/0	c/0	b/1	a/0
b	e/	c/0	b/ 1	d/1
С	a/0	b/0	c/1	d / 1
d	c/1	d/0	a/1	b/0
е	c/0	c/0	c/1	e/0

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2 = 00$	X ₁ X ₂ =01	X ₁ X ₂ =10	X ₁ X ₂ =11
q₁	$q_2/0$	$q_2/0$	$q_2 / 1$	q ₁ / 0
q_2	q ₁ / 0	q ₂ / 0	q ₂ / 1	$q_3 / 1$
q_2	q ₁ /0	$q_2/0$	q ₂ /1	$q_3/1$
q_3	q ₂ /1	$q_3 / 0$	q ₁ / 1	$q_2/0$
q₁	$q_2/0$	$q_2/0$	q ₂ /1	q ₁ / 0

等价状态对:

{a,e}, {b,c}

Let
$$\begin{cases} q_1 = \{ a, e \} \\ q_2 = \{ b, c \} \\ q_3 = d \end{cases}$$

现态	Q ⁿ⁺¹ / Z			
Qn	$X_1X_2 = 00$	$X_1X_2=01$	$X_1X_2=10$	$X_1X_2=11$
q_1	q ₂ / 0	q ₂ / 0	q ₂ /1	q ₁ / 0
q_2	q ₁ / 0	q ₂ / 0	q ₂ /1	q ₃ / 1
q_3	q ₂ /1	q ₃ / 0	q ₁ /1	$q_2/0$

不完全定义状态表的化简

(二) 不完全定义状态表的化简方法——隐含(蕴含)表法

完全定义状态表化简: 寻找等价状态; 不完全定义状态表化简: 寻找相容状态;

相容状态——输出与次态的确定部分满足合并条件的两个状态(如a和b) 称为相容状态,或称相容状态对,记为(a,b)。

相容状态无传递性—— 若状态 S_i 和 S_j 相容,状态 S_j 和 S_m 相容,则状态 S_i 和 S_m 不一定相容,即相容状态无传递性。

a和b相容, a和c相容,但 b和c不相容

	现态	Qn+1/Z	
	Qn	X=0	X=1
	а	a/X	X/X
	b	c/1	b/0
0	С	d/0	X / 1
	d	X/X	b/X
	е	a/ <mark>0</mark>	c/1

相容状态类——俩俩相容的状态集合

If: (S_i, S_j) , (S_j, S_m) , (S_i, S_m) Then: (S_i, S_i, S_m)

最大相容状态类—— 某一相容状态类不 属于其他任何相容状态类

不完全定义状态表的化简

例: 化简如下状态表

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	a/X	X/X
b	c/1	b/0
С	d/0	X / 1
d	X/X	b/X
е	a/ <mark>0</mark>	c/1

① 建立隐含表

- ② 比较
- ③ 追踪
- ④ 相容状态对

⑤ 最大相容类

直观法 -----

$$(ab)$$
, (ad) , $(bd) \rightarrow (abd)$

$$(ac)$$
, (ad) , $(cd) \rightarrow (acd)$

$$(ac)$$
, (ae) , $(ce) \rightarrow (ace)$

图形法

•圆周上的点:代表状态

•点与点之间的连线:表示

两个状态之间的相容关系

所有点之间都有连线的多 边形构成一个最大相容类

不完全定义状态表的化简

⑥ 确定原始状态表的最小闭合覆盖集

最小闭合覆盖集应满足的三个条件

- 1. 满足覆盖性:覆盖全部原始状态, 不得遗漏, 即原始状态中的每个状态至少包含于该集的一个相容类(或最大相容类)
- 2. 满足闭合性:该集的任一个相容类(或最大相容类)在任何输入下所产生的次态应属于该集的某个相容类(或最大相容类)
- 3. 满足最小性:在满足上述两个要求的前提下,该集的相容类(或 最大相容类)应为最少

现态	Q ⁿ⁺¹ / Z	
Qn	X=0	X=1
а	a/X	X/X
b	c / 1	b/0
С	d/0	X / 1
d	X/X	b/X
е	a/ 0	c/1

最大相容类

(abd), (acd), (ace)

相容状态对

(ab), (ac), (ad), (ae), (bd), (cd),(ce) ▶找出覆盖集,方案很多,如:

[abd, ace] [abd, ce] [acd, ab, ae].....

▶为满足最小性,选取相容类(或最大相容类)个数最少的集合:

[abd, ace] [abd, ce] [ace, bd]

不完全定义状态表的化简

▶ 讨论闭合性: 分别考察[abd,ace],[abd,ce],[ace,bd]

现态	Q ⁿ⁺¹ / Z				
Qn	X=0	X=1			
а	a/ X	X / X			
b	c / 1	b/0			
C	d/0	X / 1			
d	X/X	b/X			
е	a/0	c/1			

不完全定义状态表的化简

▶ 讨论闭合性: 分别考察[abd,ace],[abd,ce],[ace,bd]

设:

现态	Qn+1/ Z		
Qn	X=0	X=1	
а	a/X	X/X	
b	c / 1	b/0	
С	d/0	X / 1	
d	X/X	b/X	
е	a/0	c/1	

所以:最小闭合覆盖集为—— [abd,ace]✓

⑦ 建立状态表

 $q_1 = (abd)$ $q_2 = (ace)$

现态	Q ⁿ +	¹ / Z	
Qn	X=0	X=1	
q₁	$q_2/1$	$q_1/0$	
a-	a./0	a. / 1	

现态	Qn+1/ Z					
Qn	X=0	X=1				
\mathbf{q}_1	q_1/X	X/X				
\mathbf{q}_1	$q_2/1$	q ₁ / 0				
q_2	$q_1/0$	X / 1				
q ₁	X/X	q_1/X				
q_2	q ₁ / 0	q ₂ / ₃ k				

同步时序逻辑设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (6) 电路实现 (7) 检查无关状态

化简110 序列检测器的原始状态表

现态	Qn+		
Qn	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0]√
S₁	S ₀ / 0	S ₂ /0	
S ₂	S ₃ /1	S ₂ / 0	
S_3	S ₀ /0	S ₁ /0]√

现态	Q ⁿ⁺¹ / Z			
Qn	X=0 X=1			
S ₀	S ₀ / 0	S ₁ / 0		
S₁	S ₀ / 0	S ₂ /0		
S ₂	S ₀ / 1	S ₂ / 0		

状态分配:

${}^{1}_{2}$	n Y ₁n				Y_2	ⁿ Y ₁ n		
X^{Y_2}	00	01	11	10	_ X_	00	01	11
0	0	Х	Χ	0	0		Х	
1		Х	X	1	1	Х	Х	0
'	J	₁ = Ì	XΥ			(4 =	$\overline{\mathbf{X}}$	

1 0	Х	X	_1	1 X
	J ₁ =	XΥ	n 2	K
Y ₂ ⁿ Y ₁ ⁿ 00	01	11	10	Y ₂ ⁿ Y ₁ ⁿ X 00
0 0	Х	Х	Х	0 X
1 1	Χ	Χ	X	1 X

ا _د ۲.	• •1 •Υ ₁ n	,	•	
X/	00	01	11	10
0	X	Х	1	1
1	X	X	0	0

K_2	=	$\overline{\mathbf{X}}$

\Y ₂ 1	nY ₁ n				
$\langle \ / \ $	00	01	11	10	
0	0	X	$\lceil \rceil$	0	
1	0	Х	0	0	
					•

$$Z = \overline{X}Y_1^n$$

输入	现	<u>态</u>	次	态		触发	2器	;	输出
Х	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	J ₂	K ₂	J ₁	k ₁	Z
0	0	0	0	0	0	X	0	X	0
0	1	0	0	0	X	1	X	1	1
0	1	0	0	1	X	1	0	X	0
1	0	1	0	1	1	X	0	X	0
1	1	1	1	0	X	0	X	0	0
1	1	1	1	0	X	0	1	X	0
0	0	X	X	X	X	X	X	X	X
1	0	\mathbf{X}	Х	Χ	X	X	X	X	X

分配方案(1)

$$S_0 - 00$$

分配方案(2)

$$S_0 - 00$$

$$S_2$$
—— 10

简单 $\int_{\mathbf{K}_1 = \overline{\mathbf{X}}}^{\mathbf{J}_1 = \mathbf{X} \mathbf{Y}_2^n}$

$$\mathbf{r}_1 = \mathbf{x}$$

$$J_2 = X$$

$$K_2 = \overline{X}$$

$$Z = \overline{X}Y_1^n$$

$J_1 = X\overline{Y}_2^n$

$$K_1 = 1$$

$$J_2 = X$$

$$K_2 = \overline{X} + \overline{Y}_1^n$$

$$Z = \overline{X} Y_2^n \overline{Y}_1^n$$

状态分配

需要解决两个问题:

①确定需要的触发器数量K

$$2^{K-1} \leq N \leq 2^K$$

K —— 触发器数量

N —— 最简状态数量

② 为状态表中的每一个状态分配二进制编码

力图获得一个最小代价的实现方案

电路实现代价与状态分配密切相关

状态分配

一种 经验法

规则

- 1.同一输入下,相同的次态所对应的现态应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

目的:尽量使卡 诺图中更多的 "1"(或"0") 相邻

注意:

- 初始状态一般可以放在卡诺图的 0号单元格里
- 优先满足规则1和规则2
- 状态编码尽量按照相邻原则给予
- 对于多输出函数,规则3可以适当调高优先级

状态分配规则

▶ 规则1: 次态相同, 现态编码应相邻

规则2: 同一现态对应的次态应给予相邻编码

现态 次态

$$a \rightarrow (c,d)$$

 $b \rightarrow (c,a)$
 $c \rightarrow (b,d)$
 $d \rightarrow (a,b)$

$$cd,ca,bd,ab$$
应相邻

规则 ------

- 1.同一输入下,相同的次态所对应的现态应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻

很难找到一 个最佳的状 态分配方案

现态	Q ⁿ⁺¹ / Z		
Q n	X=0	X=1	
а	c/0	d / 0	
b	c/0	a/ <mark>0</mark>	
С	b/0	d / 0	
d	a/1	b/1	

▶规则3:输出相同,现态编码应相邻

现态 输出 a ,b ,c 0 ab,ac,bc应相邻

(a,b), (a,c) 应相邻, 满足规则1,2,3

a — 00, b — 01 c — 10, d — 11

\	0	1
0	а	b
1	C	4 d

同步时序逻辑电路设计方法

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关状态

完整电路设计过程示例

例:利用JK触发器设计110序列检测器

1. 获得原始状态图和原始状态表

(1) 状态设定

 S₀—初始状态,表示收到1位数据: "0"

 S₁—表示收到1位数据: "1"
 只标记感兴趣的子串

 S₂—表示收到2位数据: "11"
 基的子串

 S₃—表示收到3位数据: "110", 此时输出标志 Z=1.

(2) 分析状态转换情况

(3) 原始状态图(Mealy型)

(4) 原始状态表

现态	Qn+1/Z		
Qn	X=0	X=1	
S ₀	S ₀ / 0	S ₁ / 0	
S ₁	S ₀ / 0	S ₂ / 0	
S ₂	S ₃ /1	S ₂ / 0	
S_3	S ₀ /0	S ₁ / 0	

2. 状态化简

现态	Q ⁿ⁺¹ / Z		
Qn	X=0	X=1	
S _o	S ₀ / 0	S ₁ / 0	
S ₁	S ₀ / 0	S ₂ /0	
S ₂	S ₃ / 1	S ₂ / 0	
S_3	S ₀ / 0	S ₁ /0	

现态	Q ⁿ⁺¹ / Z			
Qn	X=0 X=1			
So	S ₀ / 0	S ₁ / 0		
S ₁	S ₀ / 0	S ₂ /0		
S ₂	S ₀ / 1	S ₂ / 0		

3. 状态分配

使用2个JK触发器

	y_2y_1		
S ₀ —	— 00		
S ₁ —	<u> </u>		
S ₂ —	— 11		

JK触发器驱动表

Q _n	\rightarrow	Q _{n+1}	J	K
0	\rightarrow	0	0	X
0	\rightarrow	1	1	X
1	\rightarrow	0	X	1
1	\rightarrow	1	Х	0

4. 状态转换真值表

输入	现态		次态		触发器	输出
X	Y ₂ n	Y ₁ n	Y ₂ n+1	Y ₁ n+1	$J_2 K_2 J_1 k_1$	Z
0	0	0	0	0	0 X 0 X	0
0	1	0	0	0	X 1 0 X	0
0	1	1	0	0	X 1 X 1	1
1	0	0	1	0	1 X 0 X	0
1	1	0	1	1	X 0 1 X	0
1	1	1	1	1	X 0 X 0	0
0	0	1	X	X	X X X X	X
1	0	1	X	X	X X X X	X

 $J_2 K_2$:看 $Q_2^{n} \rightarrow Q_2^{n+1}$

规则

- 1.同一输入下,相同的次态所对应的<mark>现态</mark>应该给予相邻编码
- 2.同一现态在不同输入下所对应的次态应给予相邻编码
- 3.给定输入下,输出完全相同,现态编码应相邻48

4. 状态转换真值表

输入	现	态	次	态	触发器	输出
X	Y ₂ n	Y ₁ ⁿ	Y ₂ n+1	Y ₁ n+1	$J_2 K_2 J_1 K_1$	Z
0	0	0	0	0	0 X 0 X	0
0	1	0	0	0	X 1 0 X	0
0	1	1	0	0	X 1 X 1	1
1	0	0	1	0	1 X 0 X	0
1	1	0	1	1	X 0 1 X	0
1	1	1	1	1	X 0 X 0	0
0	0	1	Χ	Χ	X X X X	Х
1	0	1	X	X	X X X X	X

5. 卡诺图化简

$$J_2 = X$$

$$K_2 = \overline{X}$$

$X^{Y_2^1}$	¹ Y ₁ ⁿ	01	11	10		
0	X	Χ	1	X		
1	Χ	Х	0	Х		
., 57						

$$Z = \overline{X}Y_1^n$$

6. 电路实现

7. 检查无关项

$$\begin{cases} J_{1} = XY_{2}^{n} \\ K_{1} = \overline{X} \\ J_{2} = X \\ K_{2} = \overline{X} \end{cases} \Rightarrow \begin{cases} Y_{1}^{n+1} = XY_{2}^{n} \overline{Y_{1}}^{n} + XY_{1}^{n} \\ = X(Y_{1}^{n} + Y_{2}^{n}) \\ Y_{2}^{n+1} = X\overline{Y_{2}}^{n} + XY_{2}^{n} \\ = X \end{cases}$$

电路可以自启动

同步时序逻辑电路设计方法

利用触发器设计时序逻辑的方法

- (1) 根据需求 → 获得原始状态图、状态表
- (2) 最小化状态图、状态表
- (3) 状态编码(分配)→ 获得状态转移表
- (4) 状态转移表 触发器特征 → 触发器激励表
- (5) 卡诺图化简 → ∫ 激励(输入)函数表达式 输出函数表达式
- (6) 电路实现 (7) 检查无关状态

时序逻辑电路设计

- 状态机基础
- 原始状态图和状态表
- 状态表化简
- 状态分配