MODALITATEA DE DESFĂȘURARE A TESTULUI DE LABORATOR LA DISCIPLINA "PROGRAMAREA ALGORITMILOR"

- Testul de laborator la disciplina "Programarea algoritmilor" se va desfășura în ziua de **08.01.2022**, între orele 9³⁰ și 12⁰⁰, astfel:
 - **09**³⁰ **10**⁰⁰: efectuarea prezenței studenților
 - **10**⁰⁰ **11**³⁰: desfășurarea testului
 - 11³⁰ 12⁰⁰: verificarea faptului că sursele trimise de către studenți au fost salvate pe platformă
- Testul se va desfășura pe platforma MS Teams, iar pe tot parcursul desfășurării lui studenții trebuie să fie conectați pe canalul dedicat **cursului** de "Programarea algoritmilor" corespunzător seriei lor.
- În momentul efectuării prezenței, fiecare student trebuie să aibă pornită camera video în MS Teams și să prezinte buletinul sau cartea de identitate. Dacă dorește să-și protejeze datele personale, studentul poate să acopere codul numeric personal și/sau adresa!
- În timpul desfășurării testului studenții pot să închidă camera video, dar trebuie să o deschidă dacă li se solicită acest lucru de către un cadru didactic!
- Testul va conține **3 subiecte**, iar un subiect poate să aibă mai multe cerințe.
- Rezolvarea unui subiect se va realiza într-un singur fișier sursă Python (.py), indiferent de numărul de cerințe, care va fi încărcat/atașat ca răspuns pentru subiectul respectiv.
- Numele fișierului sursă Python trebuie să respecte următorul șablon: grupa_nume_prenume_subiect.py. De exemplu, un student cu numele Popescu Ion Mihai din grupa 131 trebuie să denumească fișierul care conține rezolvarea primului subiect astfel: 131_Popescu_Ion_Mihai_1.py.
- La începutul fiecărui fișier sursă Python se vor scrie, sub forma unor comentarii, următoarele informații: numele și prenumele studentului, grupa sa și enunțul subiectului rezolvat în fișierul sursă respectiv. Dacă un student nu reușește să rezolve deloc un anumit subiect, totuși va trebui să încarce/atașeze un fișier sursă Python cu informațiile menționate anterior!
- Toate rezolvările (fișierele sursă Python) trimise de către studenți vor fi verificate din punct de vedere al similarității folosind un software specializat, iar eventualele fraude vor fi sancționate conform Regulamentului de etică și profesionalism al FMI (http://old.fmi.unibuc.ro/ro/pdf/2015/consiliu/Regulament etica FMI.pdf).

Subject 1

[4 p.] Fișierul text *teatru.in* conține, pe mai multe linii, un fragment dintr-o piesă de teatru, respectiv pe fiecare linie se află câte o replică a unui personaj, sub forma *personaj: replică*. Numele unui personaj poate fi format din mai multe cuvinte, iar o replică nu va conține niciodată caracterul ':'. Să se scrie în fișierul text *teatru.out* cuvintele din fragmentul dat grupate în funcție de numărul personajelor care le-au pronunțat, conform modelului din exemplul de mai jos. Cuvintele vor fi scrise în ordinea descrescătoare a numărului de personaje care le-au pronunțat, iar în caz de egalitate se vor scrie în ordine alfabetică. Pentru fiecare cuvânt, numele personajele care l-au pronunțat vor fi ordonate alfabetic. Fiecare cuvânt va fi scris o singură dată și nu se va face distincție între litere mici și litere mari.

Exemplu:

teatru.in	teatru.out
Tipatescu: Misel!	curat: Farfuridi,Pristanda
Pristanda: Curat misel!	misel: Pristanda,Tipatescu
Tipatescu: Murdar!	murdar: Pristanda,Tipatescu
Pristanda: Curat murdar!	nu: Pristanda,Tipatescu
Tipatescu: Ei! Nu s-alege!	s-alege: Pristanda,Tipatescu
Pristanda: Nu s-alege!	deslusit: Farfuridi
Farfuridi: Vrei sa vorbesc curat si deslusit, stimabile?	ei: Tipatescu
	sa: Farfuridi
	si: Farfuridi
	stimabile: Farfuridi
	vorbesc: Farfuridi
	vrei: Farfuridi

Subjectul 2

Fișierul "date.in" are n linii cu următoarea structură: pe linia i sunt prezente, separate prin câte un spațiu, n numere naturale reprezentând elementele de pe linia i dintr-o matrice, ca în exemplul de mai jos.

Liniile și coloanele unei matrice se presupun numerotate de la 0.

- a) [0,25p] Scrieți o funcție citire_matrice care citește numerele din fișierul "date.in" și returnează o matrice de dimensiuni n x n formată din aceste numere.
- **b)** [1,5p] Scrieți o funcție care primește ca parametri: o matrice (listă de liste), un caracter ch care poate primi valoarea "c" sau "d" și doi parametri x și y cu valoare implicită 0.

Funcția va modifica matricea primită ca parametru astfel:

- Dacă al doilea parametru caracterul ch primește la apel valoarea "c", funcția interschimbă coloana x cu coloana y.
- Dacă al doilea parametru caracterul ch primește la apel valoarea "d", funcția nu va primi la apel decât 2 parametri și trebuie să interschimbe elementele de pe diagonala principală cu elementele de pe diagonala secundară.
- c) [1,25p] Folosind apeluri ale funcției definite la punctul b), oglindiți matricea returnată de funcția de la punctul a) după coloana de pe poziția [n / 2] și apoi interschimbați elementele de pe diagonala principală cu cele de pe diagonala secundară. După oglindire și interschimbare, să se parcurgă matricea în zig-zag pe linii și să se afișeze șirul obținut în fișierul "date.out" ca în exemplu. Se cunoaște faptul că n este impar.

Explicație suplimentară: Parcurgerea în zig-zag pe linii se va face de sus în jos, astfel:

- prima linie se parcurge de la stânga la dreapta,
- a doua linie se parcurge de la dreapta la stânga,
- a treia linie se parcurge de la stânga la dreapta etc.

date.in	după oglindire + interschimbarea diagonalelor	date.out
6 9 8 7 10 15 14 13 12 11 16 19 18 17 20	1 2 3 4 5 10 9 8 7 6 11 12 13 14 15 20 19 18 17 16 21 22 23 24 25	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Subject 3

Se consideră fișierul text catalog.in cu următoarea structură:

- pe prima linie apare numărul **n** reprezentând *numărul* de elevi dintr-o clasă a unui liceu
- pe următoarele **linii** avem informații despre cei **n** elevi, respectiv pentru fiecare elev informațiile sunt structurate astfel:
 - linie de forma <*șir de caractere*> <*m*>, unde *șirul de caractere* este numele elevului (acesta este unic), iar *m* este un număr natural reprezentând numărul de materii
 - urmată de m linii care conțin notele elevului (numere naturale) la m materii, fiecare având următoarea structură:

```
<nume_materie>,<nota_1>,<nota_2>,...,<nota_k>
```

Observație: Orice elev are la fiecare materie cel puțin o notă, iar denumirile materiilor nu conțin caracterul ',' (virgula).

Exemplu de fișier de intrare:

Ana Maria Pop 3 Matematica, 10, 9, 9, 10, 10 Limba romana,8,9,9,8 Fizica, 10, 9, 7, 10, 10 Mihai Popescu 3 Matematica, 9, 7, 10, 10 Limba romana, 8, 3, 5, 10 Fizica, 10, 10 Andrei Mincu 2 Matematica, 10, 9, 2 Fizica, 3, 7, 9 Ioana Matei 3 Fizica, 10, 10 Matematica, 10, 10, 10, 9 Limba romana, 9, 9, 10, 10 Alin Enache 3 Limba romana, 10, 10, 10 Matematica, 10, 10, 10, 10 Fizica, 10

Cerinte:

- a) [2 p.] Scrieți o funcție care citește datele din fișierul catalog.in și returnează o structură de date cu informațiile din fișier. Folosiți o structură de date convenabilă pentru a rezolva eficient subpunctele următoare.
- b) [1 p.] Scrieți o funcție detalii_elev care primește ca parametri structura în care s-au memorat datele la cerința a) și un șir de caractere reprezentând numele unui elev și returnează mediile la toate materiile elevului cu numele primit ca parametru, memorate sub formă de listă de tupluri de tipul (nume_materie, medie). Dacă un elev are o singură notă la o materie sau media este mai mică strict decât 5, acesta va avea media egală cu 0 și va rămâne corigent. Să se citească de la tastatură numele unui elev și să se afișeze pe ecran mediile acestuia (rotunjite cu două zecimale) la fiecare materie (sortate lexicografic) folosind această funcție.

Exemplu:

Intrare **tastatură:** Ana Maria Pop Afișare pe ecran: Fizica 9.20 Limba romana 8.50 Matematica 9.60

c) [1 p.] Scrieți o funcție clasament care primește structura de date în care s-au memorat datele la cerința a) și un număr variabil de parametri de tip șir de caractere reprezentând nume de elevi. Funcția returnează o listă de tupluri de tipul (nume_elev, medie_generala) cu mediile generale ale elevilor ale căror nume au fost primite ca parametru ordonată descrescător după medii. Media generală a unui elev este egală cu media aritmetică a mediilor de la fiecare materie, dacă acesta nu este corigent, altfel media este 0.

Exemplu: Dacă se apelează funcția pentru elevii *Alin Enache* și *Ioana Matei* se va returna lista [(Ioana Matei,9.75), (Alin Enache,0)], deoarece *Alin Enache* are o singură notă la fizică, deci este corigent.