Use the following spaces to record any information about key topics that you find useful.

Axiom. A rational number, is defined to be a number that can be expressed as the ratio of two integers in which the denominator is non-zero.
\Rightarrow Proof by contrapositive:
Defined by which logical equivalence:
Theorem. The square root of a positive real number is irrational if the number is irrational.
Proof.
Hypothesis:
Conclusion:

\Rightarrow]	Proof by contradiction:
	Defined by the logical equivalence: $p \to q \equiv \neg (p \to q) \to F$.
	Confirm this in the space below.
	Theorem. For all even integers n , n^2 is a multiple of 4.
	Proof.
	Hypothesis:
	Conclusion: