This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problems Mailbox.

This Page Blank (uspto)

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION INSTRUMENTAL SUITEMENT OF THE PROPERTY OF THE PROPERT

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
A61K 38/00
A1
(11) International Publication Number: WO 96/30035
(43) International Publication Date: 3 October 1996 (03.10.96)

(21) International Application Number: PCT/US96/04044

(22) International Filing Date: 25 March 1996 (25.03.96)

(30) Priority Data:

08/410,518 24 March 1995 (24,03,95) US 08/549,006 27 October 1995 (27,10,95) US

(71) Applicant (for all designated States except US): MOLEC-UMETICS LTD. [US/US]; Suite 400, 2023 - 120th Avenue N.E., Bellevue, WA 98005-2189 (US).

(72) Inventor; and

(75) Inventor/Applicant (for US only): KAHN, Michael [US/US]; 10916 80th Place N.E., Kirkland, WA 98034 (US),

(74) Agents: HERMANNS, Karl, R. et al.; Seed and Berry L.L.P., 6300 Columbia Center, 701 Fifth Avenue, Seattle, WA 98104-7092 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With insernational search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: 8-SHEET MIMETICS AND USE THEREOF AS INHIBITORS OF BIOLOGICALLY ACTIVE PEPTIDES OR PROTEINS

(57) Abstract

There are disclosed β -sheet mimetics and methods relating to the same for imparting or stabilizing the β -sheet structure of a peptide, protein or molecule. In one aspect, the β -sheet mimetics are covalently attached at the end or within the length of the peptide or protein. The β -sheet mimetics have utility as inhibitors of one or more of proteases, kinases, CAAX, peptides binding to SH2 domains and MHC-1 and/or MHC-11 presentation of peptides to T cell receptors in warm-blooded animals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia				
		GB.	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mesico
AU	Audenba	GN	Guzzas	NE	Neger
23	Barbailos	GR	Green	ML	Netherlands
88	Belgium	HU	Hungary	NO	Nerwey
87	Burtino Faco	IE	ireland	NZ	New Zenland
DG	Bolgárna	IT	italy	PL.	Poland
EJ	lain .	R	Japan	PT	Pertugal
32	Brasil	102	Kanya	RO	Remane
BY	Belarus	KG	Кутруши	RU	Russian Federatus
CA	Canada	KP	Democratic People's Republic	2	Sedan
CF	Central African Republic		of Korea	<u> </u>	Swedien
CG	Comp	KR	Republic of Korea	3G	Singapore
CH	Swinnerland	102	Kasakhasan	S2	Slavenia
a	Câte d'Ivaire	ü	Listhman		Shovekin
ON	Campage	LK	Sri Lesto		Senegal
CN	China	u.	Liberts	57	Sveniend
Œ	Casches lovates	LT	Litherena	70	Charl
Œ	Cauch Republic	ũ	Lenandoury	TG	
DE	Germany	LV	Latvia	LT.	Togo Tolkinos
DK	Desmort	MC	Menace	π̈	Tajihimm Tajihimm
22	Eugnio	10	Republic of Moldova	UA	Trinidad and Talego
8	Spale	MG	Malagacar		Utraine
ñ	Febru	ML	Mali	UC	Uganda
73	Propes	MN		us	United States of America
		MR	Mangelia	UZ	Ushekiman
GA	Gaban		Materia	VN	Viet Nam

Description

 β -sheet mimetics and use thereof as inhibitors of Biologically active peptides or proteins

5

Cross-Reference to Prior Application

This application is a continuation-in-part of U.S. Patent Application No. 08/549,006, filed October 27, 1995; which is a continuation-in-part of U.S. Patent 10 Application No. 08/410,518, filed March 24, 1995.

Technical Field

This invention relates generally to β -sheet mimetics and, more specifically, to β -sheet mimetics which inhibit biologically active peptides or proteins.

Background of the Invention

The β -sheet conformation (also referred to as a β -strand conformation) is a secondary structure present in 20 many polypeptides. The β -sheet conformation is nearly fully extended, with axial distances between adjacent amino acids of approximately 3.5 Å. The β -sheet is stabilized by hydrogen bonds between NH and CO groups in different polypeptides strands. Additionally, the dipoles of the peptide bonds alternate along the strands which imparts intrinsic stability to the β -sheet. The adjacent strands in the β -sheet can run in the same direction (i.e., a parallel β -sheet) or in opposite directions (i.e., an antiparallel β -sheet). Although the two forms 30 differ slightly in dihedral angles, both ar sterically favorable. Th extended conformation of the β -sheet conformation results in the amino acid side chains protruding on alternating faces of th β -sheet.

importance of β-sheets in peptides id is well established (e.g., Richardson, Nat e 268:495-499, 1977; Halverson et al., J. Am. Chem 113:6701-6704. 1991; Zhang, J. Biol. Chem. 266:17 :1-15596, 1991; Madden et al., Nature 353:321-325, 1991). The B-sheet is important in a number of biological protein-protein recognition events, including interactions between proteases and their substrates, protein kinases and their substrates or inhibitors, the binding of SH2 10 domain containing proteins to their cognate phosphotyrosine containing protein targets, farnesyl transferase to its protein substrates, and MHC I and II and their antigenic peptides, and has been implicated in many disease states.

Inhibitors that mimic the β -sheet structure of 15 biologically active proteins or peptides would have utility in the treatment of a wide variety of conditions. For example, Ras, the protein product of the ras oncogene, membrane bound protein involved is a ın 20 regulating cell transduction division and Mutations in the ras gene are among the most common genetic abnormalities associated with human cancers M. "ras genes," 56:779-827, 1987). mutations result in a growth signal which is always "on." leading to a cancerous cell. 25 In order to localize to the cell membrane, Ras requires prenylation of the cysteine within its C-terminal Caax sequence by farnesyl transferase (FTase). (In the sequence CaaX "a" is defined as an amino acid with a hydrophobic side chain and "X" is another amino acid.) This post-translational modification 30 is crucial to its activity. Peptidyl inhibitors of FTase with the sequence CaaX have been sh wn to block or slow the growth of tumors in cell culture and in whole animals et al., "Sel ctive inhibition of ras-dependent (Kohl

transformation by a farnesyltransferase inhibitor,"

Science 260:1934-1937, 1993: Buss, J.E. & Marsters, Jr.,

J.C. "Farnesyl transferase inhibitors: the successes and
surprises of a new class of potential cancer

chemotherapeutics," Chemistry and Biology 2:787-791,

1995).

SH2 domains, originally identified in the src subfamily of PTKs, are noncatalytic sequences and consist of about 100 amino acids conserved among a variety of signal transducing proteins (Cohen et al., Cell 80:237-10 SH2 domains function as phosphotyrosine-248, 1995). modules and binding mediate critical protein-protein associations (Pawson, Nature 573-580, 1995). particular, the role of SH2 domains has been clearly 15 defined as critical signal transducers for receptor tyrosine kinases (RTKs such as EGF-R, PDGF, insulin receptor, etc.). Phosphotyrosine-containing sites on autophosphorylated RTKs serve as binding sites for SH2proteins and thereby mediate the activation of biochemical signaling pathways (Carpenter, G., FAESEB J. 6:3283-3289, 20 1992: Sierke, S. and Koland, J., Biochem. 32:10102-10108, 1993). The SH2 domains are responsible for coupling the activated growth-factor receptors to cellular responses include alterations in gene expression, proliferation, cytoskeletal architecture and metabolism. 25

At least cytosolic proteins 20 have been identified that contain SH2 domains and function intracellular signaling. The distribution of SH2 domains is not restricted to a particular protein family, but found in several classes of proteins, protein kinases, 30 lipid kinases, protein phosphatases, phospholipases, Rascontrolling proteins and some transcription factors. Many SH2-containing proteins have of the known enzymatic activities while others (Grb2 and Crk) function

"linkers" and "adapters" between cell surface receptors and downstream effector molecules (Marengere, L., et al., *369*:502-505. 1994). Examples of proteins containing SH2 domains with enzymatic activities that are 5 activated in signal transduction include, but are not limited to, the src subfamily of protein tyrosine kinases (pp60^{c-src}), abl. lck, fyn, fgr and others), phospholipase-C-y (PLC-y), phosphatidylinositol 3-kinase (P1-3-kinase), p21-ras GTPase activating protein (GAP) and SH2 containing protein tyrosine phosphatases (SH-PTPase) 10 (Songvang et al., Cell 72:767-778, 1993). Intracellular tyrosines are phosphorylated when surface receptors are engaged by diverse ligands for growth factor receptors, cytokine receptors, insulin receptor, and antigen-mediated or B-cell through Treceptors. 15 signaling phosphorylation of proteins at tyrosine residues critical in the cellular signal transduction, neoplastic transformation and control of the cell cycle. Due to the these various SH2-proteins occupy central role 20 transmitting signals from activated cell surface receptors into a cascade of additional molecular interactions that ultimately define cellular responses, inhibitors which block specific SH2-protein binding are desirable as agents for a variety of potential therapeutic applications.

Disease areas in which tyrosine phosphorylation and inhibition of SH2 binding represent targets for drug development include the following:

Cancer: SH2 domains which mediate signaling are clearly significant elements in the regulation of oncogene and protooncogene tyrosine kinase activity and cellular proliferation (Carpenter, F. d. Am. Soc. Exp. Biol. J. 6:3283-3289, 1992). The SH2 domains define an important st of substrates through which activated RTKs mediate signaling and through which nonreceptor tyrosine kinases

30

associate with RTKs and are thus identify targets for anticancer drug development. The ability to block interaction of the RTK with the SH2-containing substrate using a mimetic inhibitor provides a means to abrogate signaling and thereby eliminate oncogenic activity. biological significance is also illustrated by the v-crk oncogene, a protein composed almost entirely of domains. which is able to bring about cellular transformation by interacting with phosphotyrosine containing proteins. As above, the ability of inhibitors block v-crk binding via its SH2 domain to other proteins would be expected to be an effective as anticancer agent.

Immune Regulation: Regulation of many immune 15 responses is mediated through receptors that transmit signals through tyrosine kinases containing SH2 domains. T-cell activation via the antigen specific T-cell receptor (TCR) initiates a signal transduction cascade leading to lymphokine secretion and cell proliferation. One of the 20 earliest biochemical responses following TCR activation is an increase in tyrosine kinase activity. In particular, T-cell activation and proliferation is controlled through T-cell receptor mediated activation of $p56^{1ck}$ and $p59^{tyn}$ tyrosine kinases, as well as ZAP-70 and Syk (Weiss and Litman, Cell 76:263-274, 1994) which contain SH2 domains. 25 Additional evidence indicates that several src-family kinases (lck, blk, fyn) participate in signal transduction pathways leading from B-cell antigen receptors and hence may serve to integrate stimuli received from several independent receptor structures. 30 Thus, inhibitors that block interactions of these SH2 domain kinases with their cognate receptors could serve as immunosuppressive agents with utility in autoimmune diseases, transplant rejection

30

or as anti-inflammatory agents as well as anticancer drugs in cases of lymphocytic leukemias.

Additionally, non-transmembrane PTPase containing SH2 domains are known and nomenclature refers 5 to them as SH-PTP1 and SH-PTP2 (Neel, Cell Biology 4:419-432, 1993) SH-PTP1 is identical to PTP1C, HCP or SHP and SH-PTP2 is also known as PTP1D or PTP2C. SH-PTP1 is expressed at high levels in hematopoietic cells of all lineages and all stages of differentiation. Since the SH-10 PTF1 gene was identified as responsible for the motheaten (me) mouse phenotype, this provides a basis for predicting the effects of inhibitors that would block its interaction with its cellular substates. Thus, inhibition of SH-PTP1 function would be expected to result in impaired T-cell 15 responses to mitogenic stimulation, decreased NK cell depletion of B-cell function, and precursors with potential therapeutic applications as described above.

Diabetes: In Type 2 (non-insulin dependent) diabetes, tyrosine phosphatases (SH-PTP2) counter-balance 20 the effect of activated insulin-receptor kinases represent important drug targets. In vitro experiments show that injection of PTPase blocks insulin stimulatedtyrosyl residues phosphorylation of on endogenous proteins. Thus, inhibitors could serve to modulate insulin action in diabetes.

Neural Regeneration: Glial growth factors are ligands that are specific activators of erb-B2 receptor (p185^{erb32}) kinase to promote tyrosine phosphorylation and mitogenic responses of Schwann cells. Cons quently, regulation of tyrosine phosphorylation by altering activity in Schwann cells following nerve injury could be an important therapeutic strategy. Inhibitors of erb-B2 signaling activity could have a significant role in treatm nt of tumors of glial cell origin.

Another class of β -sheet mimetics are inhibitors of protein kinases, which include the protein tyrosine kinases and serine/threonine kinases.

wide variety of cellular substrates for 5 polypeptide growth factor receptors that possess intrinsic tyrosine kinase activity have now been characterized. Although there a tremendous diversity is among numerous members of the receptors tyrosine-kinases (RTK) family, the signaling mechanisms used by these receptors 10 share many common features. Biochemical and molecular genetic studies have shown that binding of the ligand to the extracellular domain of the RTK rapidly activates the intrinsic tyrosine kinase catalytic activity of intracellular domain. The increased activity results in 15 tyrosine-specific phosphorylation of number intracellular substrates which contain a common sequence Consequently, this causes activation of numerous downstream signaling molecules and a. cascade intracellular pathways that regulate phospholipid 20 metabolism, arachidonate metabolism, phosphorylation (involving other protein kinases), calcium mobilization and transcriptional regulation. The growthfactor-dependent tyrosine kinase activity of the cytoplasmic domain is the primary mechanism for generation 25 of intracellular signals that initiate multiple cellular responses. Thus. inhibitors which Would serve alternate substrates or inhibitors of tyrosine kinase activity have the potential to block this signaling.

Many of the RTK subfamilies are recognizable on the basis of architectural similarities in the catalytic domain as well as distinctive motifs in the extracellular ligand binding regions. Based upon these structural considerations, a nomenclature defining several subfamilies of RTKs, ach containing several members, has

been developed (Hanks, Curr. Opin. Struc. Biol. 1:369-383. 1991; Ullrich, A., and Schlessinger, J. Cell 61:203-212. 1990). Examples of receptor subfamilies referred to on the basis of their prototypic members include: 5 receptor, insulin receptor, platelet-derived growth factor (PDGF-receptor), fibroblast growth factor (FGFRs), TRK receptor and EPH/ECK receptors. Members in each of these subfamilies represent molecular targets for the development of mimetic inhibitors that would block 10 tyrosine kinase activity and prevent intracellular signal Several therapeutic areas in which these transduction. targets have value are identified below.

Cancer: In addition to mediating cellular growth, members of the EGFR family of RTKs are 15 frequently overexpressed in a variety of aggressive epithelial carcinomas and this is thought to directly contribute to malignant tumor development. A number of studies have shown that the EGFR is frequently amplified in certain types of tumors, including glioblastomas, 20 squamous carcinomas, and brain tumors (Wong et al., Proc. Natl. Acad Sci USA 84:6899-6903, 1987). Additionally, HER2/p185 erbs2 (alternatively referred to as "neu" in the rat), HER3/p160^{erb83}, HER4/p180^{erb84} (Plowman, G. et al., Proc. Natl. Acad. Sci. USA 90:1746-1750 (1993) are three 25 RTKs which have extensive amino acid sequence homology to the EGFR. HER2/p185 erbs: is frequently amplified and overexpressed in human breast tumors and ovarian carcinomas (Wong et al., Proc. Natl. Acad. Sci. USA 84:6899-6903, 1987), and this amplification is correlated 30 with poor patient prognosis. Simultaneous overexpression of pl85^{neu} and th EGFR synergistically transforms rodent fibroblasts and this condition is often observed in human cancers. Finally, HER3 expression is amplifi d in a vari ty of human adenocarcinomas. Several inhibitors ar

known which demonstrate inhibitory activity in vitro the EGFR and block EGF-dependent cell proliferation which indicates therapeutic potential compounds with this activity. In addition, in human chronic myelogenous leukemia, enhanced tyrosine activity underlies the disease as a consequence of activation of cellular the c-abl protooncogene. Inhibitors would function as anticancer agents.

Angiogenesis: Currently, there are at least 10 seven FGFR members which mediate a diverse array biological responses, including the capacity to induce angiogenesis. In addition, a group of RTKs with seven lgLs has been proposed to represent a separate subfamily. Its known members, FLT1, FLK1 and FLT4 show a similarity of structure and expression. These receptors mediate the 15 actions of Vascular Endothelial Growth Factor Several lines of evidence indicate that this subfamily of growth factor receptors play an important role in the formation of blood vessels. Since blood vessel formation is a process reactivated by tumors in order to supply 20 oxygen to these cells, substrates that would act inhibitors of these growth factors kinase activities could serve as inhibitors of tumor growth through inhibition of angiogenesis.

25 Restenosis: The PDGF receptor is of great interest as a target for inhibition in the cardiovascular field since it is believed to play a significant role in restenosis after coronary balloon angioplasties and also in atherosclerosis. The release of PDGF by platelets at damaged surfaces of blood vessels results in stimulation of PDGF receptors on vascular smooth muscle cells, an ev ntual neointimal thickening. A mimetic inhibitor of kinas activity would pr vent proliferation and lead to greater successful outcomes from this surgical procedure.

25

30

Many components of signal transduction pathways phosphorylation of serine/threonine (ser/thr) residues of protein substrates. Some of these substrates are themselves protein kinases whose activity is modulated 5 by phosphorylation. Two prominent ser/thr-specific kinases play a central role in signal transduction: cyclic AMP-dependent protein kinase A (PKA) and the protein kinase C (PKC family). Numerous other serine/threonine specific kinases, including the family of 10 mitogen-activated protein (MAP) kinases serve as important signal transduction proteins which are activated in either growth-factor receptor or cytokine receptor signaling. Other protein ser/thr kinases important for intracellular signaling are Calcium-dependent protein kinase (CaM-kinase 15 II) and the c-raf-protooncogene.

PKC plays a crucial role in cell-surface signal transduction for controlling a variety of physiological processes (Nishizuka, Nature 334:661-665, 1988) represents a large family of isoenzymes which differ in their structure and expression in different tissues, well as their substrate specificity (Hug and Biochem J. 291:329-343, 1993). Molecular cloning has demonstrated at least 8 isoenzymes. Due to this diversity and differential expression, activation of individual isoenzymes produces differing cell-specific responses: stimulation of growth, inhibition of differentiation, induction of differentiation. Due to its ability to stimulate cellular proliferation, it represents a target for anticancer drug development (Powis, Trends in Pharm. Sci. 12:188-194, 1991). Overexpression of PKC isoenzymes in mammalian cells is correlated with enhanced expression of early protooncogenes such as c-jun, c-fos, c-myc and one overexpressing cell line gives ris to tumors in nude mice.

Therapeutic applications within the area immune regulation are evident since activation of T-cells by antigens involves activation of PKC. Activated PKC subsequently activates a branch of the signal cascade that necessary for transcriptional activation of NF-kB, production of IL-2, and ultimately, T-cell proliferation. Inhibitors that lock signaling through this branch pathway have been shown to prevent T-cell activation. mimetics that would function as inhibitors of PKC in T-10 cells would block signaling and serve as possible immunosuppressants useful in transplant rejection or as anticancer agents for lymphocytic leukemias. Activators PKC cause edema and inflammation in mouse (Hennings et al., Carcinogenesis 8:1342-1346, 1987) and thus inhibitors are also expected to serve as potent anti-15 inflammatory compounds. Such anti-inflammatory activates would find use in asthma, arthritis and other inflammatory mediated processes. In addition, staurosporine and its analogs, UCN01 and CGP4125, which have been characterized 20 inhibitors in vitro, have as potent PKC anti-tumor activity in animal models (Powis, Trends in Pharm. Sci. *12*:188-194, 1991), and related compounds are considered for clinical trials.

With regard to protease inhibition, Cathepsin B is a lysosomal cysteine protease normally involved in proenzyme processing and protein turnover. Elevated levels of activity have been implicated in metastasis (Sloane, B.F. et al., "Cathepsin B and its endogenous inhibitors: the role in tumor malignancy," 30 Cancer Metastasis Rev. 9:333-352 1990), rheumatoid arthritis (Werb, Z. "Proteinases and matrix d gradation," in Textbook of Rheumatology, Keller, W.N.; Harris, W.D.; Ruddy, S.; Sl dge, C.S., Eds., 1989, W.B. Saunder Co., Philadelphia, PA, pp. 300-321), and muscular dystrophy

(Katunuma N. & Kominami E., "Abnormal expression of lysosomal cysteine proteinases in muscle wasting diseases," Rev. Physiol. Biochem. Pharmacol. 108:1-2 1987).

Calpains are cytosolic or membrane bound Ca++activated proteases which are responsible for degradation
of cytoskeletal proteins in response to changing calcium
levels within the cell. They contribute to tissue
degradation in arthritis and muscular dystrophy (see Wang
K.K. & Yuen P.W., "Calpain inhibition: an overview of its
therapeutic potential," Trends Pharmacol. Sci. 15:412-419,
1994).

Interleukin Converting Enzyme (ICE) cleaves proIL-1 beta to IL-1 beta, a key mediator of inflammation,
and therefore inhibitors of ICE may prove useful in the
treatment of arthritis (see, e.g., Miller B.E. et al.,
"Inhibition of mature IL-1 beta production in murine
macrophages and a murine model of inflammation by WIN
67694, an inhibitor of IL-1 beta converting enzyme," J.
Immunol. 154:1331-1338, 1995). ICE or ICE-like proteases
may also function in apoptosis (programmed cell death) and
therefore play roles in cancer, AIDS, Alzheimer's disease,
and other diseases in which disregulated apoptosis is
involved (see Barr, P.J.; Tomei, L.D., "Apoptosis and its
Role in Human Disease," Biotechnol. 12:487-493, 1994).

of HIV, the AIDS virus. In the final steps of viral maturation it cleaves polyprotein precursors to the functional enzymes and structural proteins of the virion core. HIV protease inhibitors were quickly identified as an excellent th rapeutic target for AIDS (see Huff, J.R., "HIV pr tease: a novel chemotherapeutic targ t for AIDS."

J. M. d. Ch. m. 34:2305-2314) and have already proven useful

in its treatment as evidenced by the recent FDA approval of ritonavir, Crixivan, and saquinavir.

Angiotensin converting enzyme (ACE) is part of the renin-angiotensin system which plays a central role in the regulation of blood pressure. ACE cleaves angiotensin I to the octapeptide angiotensin II, a potent pressor agent due to its vasoconstrictor activity. Inhibition of ACE has proved therapeutically useful in the treatment of hypertension (Williams, G.H., "Converting-enzyme inhibitors in the treatment of hypertension," N. Engl. J. Med. 319:1517-1525, 1989.

Collegenases cleave collagen, the major constituent of the extracellular matrix (e.g., connective tissue, skin, blood vessels). Elevated collagenase 15 activity contributes to arthritis (Krane S.M. et al., "Mechanisms of matrix degradation in rheumatoid arthritis," Ann. N.Y. Acad. Sci. 580:340-354, 1990.), tumor metastasis (Flug M. & Kopf-Maier P., "The basement membrane and its involvement in carcinoma cell invasion," 20 Acta Anat. Basel 152:69-84, 1995), and other diseases involving the degradation of connective tissue.

Trypsin-like serine proteases form a large and highly selective family of enzymes involved hemostasis/coagulation (Davie, E.W. and K. Fujikawa, "Basic mechanisms in blood coagulation," Ann. Rev. 799-829, 1975) and complement activation (Muller-Eberhard, H.J., "Complement," Ann. Rev. Biochem. 44:697-724, 1975). Sequencing of these proteases has shown the presence of a homologous trypsin-like core with amino acid insertions 30 that modify sp cificity and which ar generally responsible for interactions with other macromolecular components (Magnusson et al., "Proteolysis Physiological Regulation," Miami Winter Symposia 11:203-239, 1976).

1

Thrombin, a trypsin-lik serine protease, acts to provide limited preologis, both in the generat not fibrin from fibrinogen and the activation of the puteles receptor, and thus plays a critical role in thrombests and hemostasis (Mann, K.G., "The assembly of blood clotting complexes on membranes," Trends Biochem. Sci. 12:229-233, 1987). Thrombin exhibits remarkable specificity in the removal of fibrinopeptides A and B of fibrinogen through the selective cleavage of only two Arg-Gly bonds of the one-hundred and eighty-one Arg- or Lys-Xaa sequences in fibrinogen (Blomback, H., Blood Clotting Enzymology, Seeger, W.H. (ed.), Academic Press, New York, 1967, pp. 143-215).

Many significant disease states are related to abnormal hemostasis, including acute coronary syndromes. Aspirin and heparin are widely used in the treatment of patients with acute coronary syndromes. However, these agents have several intrinsic limitations. For example, thrombosis complicating the rupture of atherosclerotic plaque tends to be a thrombin-mediated, platelet-dependent process that is relatively resistant to inhibition by aspirin and heparin (Fuster et al., "The pathogenesis of coronary artery disease and the acute coronary syndromes," N. Engl. J. Med. 326:242-50, 1992).

25 Thrombin inhibitors prevent thrombus formation at sites of vascular injury in vivo. Furthermore, since thrombin is also a potent growth factor which initiates smooth muscle cell proliferation at sites of mechanical injury in the coronary artery, inhibitors block this proliferative smooth muscle cell response and reduce rest nosis. Thrombin inhibitors would also reduce the inflammatory response in vascular wall cells (Harker et al., Am. J. Cardiol. 75:128-168, 1995).

In view of the important biological role played by the β -sheet, there is a need in the art for compounds which can stabilize the intrinsic β -sheet structure of a naturally occurring or synthetic peptide, protein or 5 molecule. There is also a need in the art for making stable β -sheet structures, as well as the use of such stabilized structures to effect or modify biological recognition events which involve β -sheet structures. present invention fulfills these needs and provides further related advantages.

Summary of the Invention

Briefly stated, present invention the directed to achieving therapeutic affects in a warm-15 blooded animal through one or more of protease inhibition, kinase inhibition, CAAX inhibition, interference with peptides binding to SH2 domains and inhibition of MCH-I and/or MHC II presentation of peptides to T cell receptors in the warm-blooded animal. The therapeutic effects result from administering to the warm-blooded animal a 20 therapeutically effective amount of a β -sheet mimetic including a bicyclic ring system, wherein the β -sheet mimetic has the general structure (I):

25

10

and pharmaceutically acceptable salts thereof, wherein Ri, R_2 and R_3 are independently selected from amino acid side 30 chain moieties and derivatives th reof; A is selected from

-C(=O) -, -(CH₂)₁₋₄-, -C(=O)(CH₂)₁₋₃-, -(CH₂)₁₋₂O- and -(CH₂)₁₋₃-₂S-; B is selected from N and CH; C is selected from - $C(=0) = -(CH_2)_{1-3} = -(CH_2)_{1-2} = -(CH$ and Z represent the remainder of the molecule; and any two 5 adjacent CH groups of the bicyclic ring may form a double bond.

In one embodiment of structure (I) above, Bmimetics disclosed are having the following structure (II):

$$Z \xrightarrow{R_1} A \xrightarrow{S} C \xrightarrow{R_2} X$$

$$Z \xrightarrow{N} H O \xrightarrow{R_3} O$$

$$(II)$$

10

20

25

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; A is 15 selected from -C(=0)-, -(CH₂)₁₋₄- and <math>-C(=0)(CH₂)₁₋₃-; B isselected from N and CH; C is selected from -C(=0)- and $-(CH_2)_{1-3}$ -; Y and Z represent the remainder of the molecule and the bicyclic ring system is saturated (i.e., contains no double bonds between adjacent CH groups of the bicyclic ring system).

In an embodiment of structure (II) where B is CH and R_3 is hydrogen, β -sheet mimetics are disclosed having the following structures (III), (IV) and (V):

20

wherein R_1 and R_2 are independently selected from amino acid side chain moieties and derivatives thereof; n is an integer from 1 to 4; p is an integer from 1 to 3; and Y and Z represent the remainder of the molecule.

In an embodiment of structure (II) where B is N and R3 is hydrogen, β -sheet mimetics are disclosed having the following structures (VI), (VII) and (VIII):

wherein R_1 and R_2 are independently selected from amino acid side chain moieties and derivatives thereof; n is an integer from 1 to 4; p is an integer from 1 to 3; and Y and Z represent the remainder of the molecule.

In preferred embodiments of this aspect of the invention, β -sheet mimetics are disclosed having the following structures (IX), (X) and (XI):

$$z \xrightarrow[H]{R_1} \xrightarrow[N]{R_2} y \qquad z \xrightarrow[H]{R_1} \xrightarrow[N]{R_2} y \qquad z \xrightarrow[H]{R_1} \xrightarrow[N]{R_2} y \qquad (XI)$$

wherein R_1 and R_2 ar independently selected from amino acid side chain moieties and derivatives thereof; n is an integ r from 1 to 4; and Y and 2 represent the remainder 25 of the molecule.

In a further preferred embodiment of this aspect of the invention, a β -sheet mim tic is disclosed of structure (X) above wherein n is 2, and having the following structure (Xa):

5

$$Z \xrightarrow{R_1} N \xrightarrow{N} N \xrightarrow{R_2} Y$$

$$(Xa)$$

wherein R_1 and R_2 are independently selected from amino 10 acid side chain moleties and derivatives thereof; and Y and Z represent the remainder of the molecule.

In another embodiment of structure (I) above, $\beta\text{--sheet}$ mimetics are disclosed having the following structure (XII):

15

$$Z \xrightarrow{R_1} A \xrightarrow{C} R_2$$

$$Q \xrightarrow{R_3} Q$$

(XII)

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; A is selected from $-(CH_2)_{1-4}$, $-(CH_2)_{1-2}$ O- and $-(CH_2)_{1-2}$ S-, C is selected from $-(CH_2)_{1-3}$ -, -O-, -S-, $-O(CH_2)_{1-2}$ - and $-S(CH_2)_{1-2}$ -; Y and Z represent the remainder of the molecule and the bicyclic ring system is saturated.

In an embodiment of structure (XII) where A is $-(CH_2)_{1-4}-, \quad \beta\text{-sheet mimetics are disclosed having the}$ following structure (XIII):

(XIII)

5

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; n is an integer from 1 to 4; C is selected from $-(CH_2)_{1-3}-$, -O-, -S-, $-O(CH_2)_{1-2}-$ and $-S(CH_2)_{1-2}-$; and Y and Z represent the remainder of the molecule.

In an embodiment of structure (XII) where A is $-(CH_2)_{1-2}O-$ or $-(CH_2)_{1-2}S-$, $\beta-$ sheet mimetics are disclosed having the following structures (XIV) and (XV):

$$\begin{array}{c|c}
R_1 & \nearrow & R_2 \\
Z & N & N & R_3 & R_2 \\
H & O & R_3 & O & R_3 & O
\end{array}$$
(XIV)

15

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; m is an integer from 1 to 2; p is an integer from 1 to 3; and Y and Z represent the remainder of the molecule.

In an embodiment of structure (XII) where C is $-(CH_2)_{1-3}-$, $\beta-$ sheet mimetics are disclosed having the following structure (XVI):

25

$$\begin{array}{c|c}
R_1 & A & P & R_2 \\
Z - N & N & R_3 & O
\end{array}$$
(XVI)

wherein R_1 , R_2 and R_3 are independently selected from an amino acid side chain molety and derivatives thereof; p is an integer from 1 to 3; A is selected from $-(CH_2)_{1-4}$, $-(CH_2)_{1-2}O-$ and $-(CH_2)_{1-2}S-$; and Y and Z represent the remainder of the molecule.

In an embodiment of structure (XII) where C is -O- or -S-, β -sheet mimetics are disclosed having the following structures (XVII) and (XVIII):

10

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; p is an integer from 1 to 3; and Y and Z represent the remainder of the molecule.

In an embodiment of structure (XII) where C is $20 - O(CH_2)_{1-2} - \text{ or } -S(CH_2)_{1-2} -, \quad \beta \text{-sheet mimetics are disclosed}$ having the following structures (XIX) and (XX):

25

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; p is an

integer from 1 to 3; m is an integer from 1 to 2; and Y and 2 represent the remainder of the molecule.

In a further aspect of the present invention, β sheet modified peptides or proteins are disclosed wherein 5 a β -sneet mimetic of this invention is covalently attached to at least one amino acid of a naturally occurring or synthetic peptide or protein. In this embodiment, Y and/or Z in the above structures (I) through represent one or more amino acids of the peptide or protein. In a related embodiment, a method for imparting and/or stabilizing a β -sheet structure of a natural or synthetic peptide or protein is disclosed. This method includes covalently attaching one or more β -sheet mimetics of this invention within, or to the end of, a peptide or protein. 15

In yet a further embodiment, methods are disclosed for inhibiting a protease, kinase or MHC II in a warm-blooded animal by administering to the animal an effective amount of a compound of this invention.

Other aspects of this invention will become apparent upon reference to the following detailed description.

Brief Description of the Drawings

Figure 1 is a plot showing the effect of various 25 concentrations of structure (20b) on platelet deposition in a vascular graft.

Figure 2 is a plot showing the effect of various concentrations of structure (39) on platelet deposition in a vascular graft.

Figure 3 is a plot showing the effect of various concentrations of structure (29b) on platelet deposition in a vascular graft.

15

20

25

Detailed Description of the Invention

As mentioned above, the β -sheet is an important structural component for many biological recognition The β -sheet mimetics of this invention serve to 5 impart and/or stabilize the β -sheet structure of a natural or synthetic peptide, protein or molecule, particularly with regard to conformational stability. In addition, the B-sheet mimetics of this invention are more resistant to proteolytic breakdown, thus rendering a peptide, protein molecule containing the same more resistant degradation.

B-sheet mimetics of this invention generally represented by structure (I) above, as well as the more specific embodiments represented by structures (II) through (XX), and have stereochemistries represented by structures (I') through (I"") below:

wherein R_1 , R_2 , R_3 , A, B, C, Y and Z are as defined above. In oth r words, all st reoconformations of structure (I), as well as the more specific embodiments represented by structures (II) through (XX), are included within th scope of this invention. For example, the β -sheet mimetics of this invention may be constructed to mimic the three-dimensional conformation of a β -sheet comprised of naturally occurring L-amino acids, as well as the structure of a β -sheet comprised of one or more D-amino acids. In a preferred embodiment, the β -sheet mimetic has the stereoconformation of structure (I') or (I").

As used in the context of this invention, the term "remainder of the molecule" (as represented by Y and Z in structures (I) through (XX) above) may be any chemical moiety. For example, when the β -sheet mimetic is 10 located within the length of a peptide or protein, Y and Z may represent amino acids of the peptide or protein. Alternatively, if two or more β -sheet mimetics are linked, the Y moiety of a first β -sheet mimetic may represent a 15 second β -sheet mimetic while, conversely, the Z moiety of the second β -sheet mimetic represents the first β -sheet mimetic. When the β -sheet mimetic is located at the end of a peptide or protein, or when the β -sheet mimetic is not associated with a peptide or protein, Y and/or Z may 20 represent a suitable terminating moiety. Representative terminating moieties for the Z moiety include, but are not limited to, -H, -OH, -R, -C(=0)R and -SO₂R (where R is a C1-C8 alkyl or aryl moiety), or may be a suitable protecting group for protein synthesis, such as BOC, FMOC 25 CBZ (i.e., tert-butyloxycarbonyl, fluorenylmethoxycarbonyl, and benzyloxycarbonyl, respectively). Similarly, representative terminating moieties for the Y moiety include, but are not limited to, -H, -OH, -R, -NHOH, -NHNHR, -C(=O)OR, -C(=O)NHR, -CH₂Cl,

30 -CF₃, -C₂F₅, -C(=0)CH₂N₂+, —CH—CHC(=0)NHR—

—CH—CHC(=0)OR— —CH—CHC(=0)R—

(where R is a C1-C8 alkyl or aryl molety), or a heterocyclic molety, such as pyridine, pyran, thiophan, pyrrole, furan, thiophene,

1

thiazole, benzthiazole, cxazole, benzoxazole, imidazole and benzimidazole.

As used herein, the term "an amino acid side chain moiety" represents any amino acid side chain moiety present in naturally occurring proteins, including (but not limited to) the naturally occurring amino acid side chain moieties identified in Table 1 below. Other naturally occurring side chain moieties of this invention include (but are not limited to) the side chain moieties of 3,5-dibromotyrosine, 3,5-dibodotyrosine, hydroxylysine, naphthylalanine, thienylalanine, y-carboxyglutamate, phosphotyrosine, phosphoserine and glycosylated amino acids such as glycosylated serine, asparagine and threonine.

15

Table 1

Amino Acid Side Chain Moiety	Amino Acid
-н	Glycine
-CH ₃	Alanine
-CH (CH3) 2	Valine
-CH ₂ CH(CH ₃) ₂	Leucine
-сн (сн ₃) сн ₂ сн ₃	Isoleucine
-(CH ₂)4NH3+	Lysine
- (CH ₂) 3NHC (NH ₂) NH ₂ +	Arginine
-CH ₂ -NH	Histidine
-CH ₂ COO-	Aspartic acid
-CH ₂ CH ₂ COO-	Glutamic acid
-CH2CONH2	Asparagine
-CH2CH2CONH2	Glucamine

In addition to naturally occurring amino acid side chain moieties, the amino acid side chain moieties of the present invention also include various derivatives As used herein, a "derivative" of an amino acid 5 thereof. moiety includes all chain modifications and/or variations to naturally occurring amino acid side chain moieties. For example, the amino acid side chain moieties of alanine, valine, leucine, isoleucine and phenylalanine may generally be classified as lower chain alkyl, aryl or 10 aralkyl moieties. Derivatives of amino acid side chain moieties include other straight chain or branched, cyclic or noncyclic, substituted or unsubstituted, saturated or unsaturated lower chain alkyl, aryl or aralkyl moieties.

As used herein, "lower chain alkyl moieties" contain from 1-12 carbon atoms, "lower chain aryl moieti s" contain from 6-12 carbon atoms, and "lower chain aralkyl moieties" contain from 7-12 carbon atoms. Thus, in one embodiment, the amino acid side chain derivativ is select d from a C_{1-12} alkyl, a C_{6-12} aryl and a C_{7-12} aralkyl,

and in a more preferred embodiment, from a C_{1-1} alkyl, C_{6-10} aryl and a C_{7-11} aralkyl.

Amino acid side chain derivatives of this invention further include substituted derivatives of 10 er chain alkyl, aryl and aralkyl moieties, wherein the substituent is selected from (but are not limited to) one or more of the following chemical moieties: -COOH, -COOR, -CONH₂, -NH₂, -NHR, -NRR, -SH, -SR, -SO₂R. -SO₂H, -SOR and halogen (including F, Cl, Br and I), wherein each occurrence of R is independently selected 10 lower chain alkyl, aryl or aralkyi Moreover, cyclic lower chain alkyl, aryl and aralkyl moieties of this invention include naphthalene, as well as heterocyclic compounds such as thiophene, pyrrole, furan, 15 imidazole, oxazole, thiazole, pyrazole, 3-pyrroline, pyrrolidine, pyridine, pyrimidine, purine. quinoline, isoquinoline and carbazole. Amino acid side derivatives further include heteroalkyl derivatives of the alkyl portion of the lower chain alkyl and aralkyl moieties, including (but not limited to) alkyl and aralkyl 20 phosphonates and silanes.

Bicyclic lactams are known in the art. See, e.g., Columbo, L. et al., Tet. Lett. 36(4):625-628, 1995; Baldwin, J.E. et al., Heterocycles 34(5):903-906, 1992; and Slomczynska, U. et al., J. Org. Chem. 61:1198-1204, 1996. However, the bicyclic lactams of the invention are not disclosed in these references.

As mentioned above, the β -sheet mimetics of this invention serve to impart and/or stabilize the β -sheet 30 structur of a protein, peptide or molecule. The β -sheet mim tic may be positioned at either the C-terminus or N-terminus of the protein, peptid or molecle, or it may be located within the protein, peptide or molecule itself. In addition, more than one β -sheet mim tic of the present

invention may be incorporated in a protein, peptide or molecule.

The β -sheet mimetics of this invention may be synthesized by a number of reaction schemes. For example, the various embodiments of structure (I) may be synthesized according to the following reaction schemes (1) through (17).

Reaction Scheme (1)

Structure (III) and representative compounds 10 thereof having structure (IIIa) can be synthesized by the following reaction schemes:

$$2^{R_1}$$
 OH R_2 DCC. HORT R_2 R_1 R_2 R_2 R_1 R_2 R_3 R_4 R_4 R_5 R_5

Reaction Scheme (2)

Structure (IV) can be synthesized by the following reaction scheme:

(IV)

5

Reaction Sch me (3)

Representative compounds of structure (V) having structure (Va) can be synthesized by the following reaction scheme, where structure (Ia) in scheme (3) is a 5 representative structure of the invention having a double bond in the bicyclic ring system:

In addition, representative compounds of structure (V) having structure (Vb) may be synthesized by the following reaction scheme, and when A of structure (II) is $-C(=0)(CH_2)_{1-3}-$, a related compound (designated 5 (IIa) below) can be synthesized by the following reaction scheme:

Reaction Scheme (4)

Representative compounds of structure (VI) having structures (VIa) and (VIb) below, wherein R₁ is hydrogen, can be synthesized by the following reaction scheme (see Holmes and Neel, Tet. Lett. 31:5567-70, 1990):

Representative compounds of structure (II) wherein R_3 is an amino acid side chain moiety or derivative thereof may also be prepared according to the above scheme (4).

Reaction Scheme (5)

Representative compounds of structure (VII) having structure (VIIa) can be synthesized by the following reaction scheme:

CDZNH

NH2 H R_2 CDZNH H R_2 CDZNH H R_2 R_3 R_4 R_2 R_2 R_3 R_4 R_4 R_4 R_5 R_4 R_5 R_4 R_5 R_4 R_5 R_5

Reaction Sch me (6)

Structure (VIII) can be synthesized by the following reaction scheme:

Reaction Scheme (7)

(VIII)

Representative compounds of structure (IX) having structures (IXa) and (IXb) shown below, can be synthesized by the following reaction scheme:

Reaction Scheme (8)

Representative compounds of structure (X) having 5 structures (Xb) and (Xc) can be synthesized by the following reaction scheme (see Jungheim & Sigmund, J. Org. Chem. 52:4007-4013, 1987):

10

Reaction Scheme (9)

Structure (XI) may be synthesized by the following reaction scheme (see Perkin, J. Chem. Soc. Perk. 15 Trans. 1:155-164, 1984):

Reaction Scheme (10)

Structure (XIII) may be synthesized by the following reaction scheme:

$$P = N \xrightarrow{R_1} O \xrightarrow{B_2 \times M_{n-1}} P \xrightarrow{R_1} O \xrightarrow{R_1 \times M_{n-1}} O \xrightarrow{R_1$$

R action Scheme (11)

Structures (XIV) and (XV) may be synthesized by the following reaction scheme:

Reaction Scheme (12)

(XVI)

Structure (XVI) may be synthesized by the following reaction scheme:

Reaction Scheme (13)

Structures (XVII) and (XVIII) may be synthesized by the following reaction scheme:

Reaction Scheme (14)

Structures (XIX) and (XX) may be synthesized by the following reaction scheme:

$$P-N \longrightarrow 0 \qquad \qquad LDA \qquad \qquad P-N \longrightarrow 0$$

$$R_1 \longrightarrow P-N \longrightarrow 0$$

$$R_1 \longrightarrow P-N \longrightarrow 0$$

$$R_1 \longrightarrow P-N \longrightarrow 0$$

$$PPh_3$$

$$(2)$$

(1a) or (1b)

1) XY couple

$$R_2$$
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_5

According to the definition of structure (I) above, the bicyclic ring system may contain adjacent CH groups (i.e., the bicyclic ring system may be formed, at least in part, by a -CH-CH- group). Compounds wherein such a -CH-CH- group is replaced with a -C=C- are also included within the scope of structure (I) (i.e., any two adjacent CH groups of the bicyclic ring may together form a double bond).

Reaction Schemes (15), (16) and (17) illustrate synthetic methodology for preparing representative compounds of structure (I) wherein the bicyclic ring system is formed in part by a -C=C- group.

Reaction Scheme (15)

10

Reaction Scheme (16)

Reaction Scheme (17)

In β -sheet mimetics of the invention, preferred Y groups have the structure:

25

where a preferred stereochemistry is:

5 Preferred R4 groups are organoamine moieties having from about 2 to about 10 carbon atoms and at least one nitrogen atom. Suitable organoamine moieties have the chemical formula $C_{2-10}H_{4-20}N_{1-6}O_{0-2}$; and preferably have the chemical formula $C_{3-7}H_{7-14}N_{1-4}O_{0-1}$. Exemplary organoamine moieties of the invention are: 10

In the above structure, R₅ is selected from (a) of 1 to about 12 carbon atoms, optionally 15 substituted with 1-4 of halide, Ci-salkoxy and nitro, (b) -C(=0)NH-C1-salkyl, wherein the alkyl group is optionally substituted with halide or C1-5alkoxy, (c) -C(=0)NH-C1inaralkyl where the aryl group may be optionally substituted with up to five groups independently selected from nitro, halide, $-NH-(C=0)C_{1-5}alkyl$, $-NH-(C=0)C_{6-10}aryl$, C1-salkyl and C1-salkoxy, and (d) monocyclic and bicyclic heteroaryl of 4 to about 11 ring atoms, where the ring atoms are selected from carbon and the heteroatoms oxygen. nitrogen and sulfur, and where the heteroaryl ring may b optionally substituted with up to about 4 of halide, C_{1-5} alkyl, C_{1-5} alkoxy, -C(=0)NH C_{1-5} alkyl, -C(=0)NH C_{6-10} aryl, amino. $-C(=0)OC_{1-5}aikyl$ and $-C(=0)OC_{6-10}aryl$.

Preferred R₅ groups are:

wherein R_6 is hydrogen, nitro, halide, NH-C(=O)-C₁₋₅alkyl, NH-C(=O)-C₆₋₁₀aryl, C₁-C₅alkyl and C₁-C₅ alkoxy;

wherein X is halide:

wherein E is -0-, -NH- or -S- and R_7 and R_6 are independently selected from hydrogen, C_{1-5} alkyl, -C (=0) OC_{1-5} alkyl, -C (=0) OC_{6-10} aryl, -C (=0) OC_{1-5} alkyl and -C (=0) OC_{6-10} aryl; and

wherein E and R_{ε} are as defined previously.

The β -sheet mimetics of the present invention may be used in standard peptide synthesis protocols, 15 including automated solid phase peptide synthesis. Peptide synthesis is a stepwise process where a peptide is formed by elongation of the peptide chain through the stepwise addition of single amino acids. Amino acids are linked to the peptide chain through the formation of a 2 C peptide (amide) bond. The peptide link is formed by coupling the amino group of the peptide to the carboxylic acid group of the amino acid. The peptide is thus synthesized from the carboxyl terminus to the terminus. The individual steps of amino acid addition are 25 repeated until a peptide (or protein) of d sired length and amino acid sequence is synthesized.

To accomplish peptide (or protein or molecule) synthesis as described above, the amino group of the amino acid to be added to the peptide should not interfere wit peptide bond formation between the amino acid and the peptide (i.e., the coupling of the amino acid's carbo /1 group to the amino group of the peptide). To prevent uch interference, the amino groups of the amino acids used in peptide synthesis are protected with suitable protecting groups. Typical amino protecting groups include, for Accordingly, 10 example, BOC and FMOC groups. embodiment of the present invention, the β -sheet mimetics of the present invention bear a free carboxylic acid group and a protected amino group, and are thus suitable for incorporation into a peptide by standard synthetic 15 techniques.

The β -sheet mimetics of this invention have utility in naturally occurring Or synthetic peptides, proteins and molecules. For example, the βdisclosed mimetics herein have activity 20 inhibitors of kinases and proteases, as well as having utility as MHC II inhibitors. For example, the β -sheet mimetics of this invention have activity as inhibitors of large family of trypsin-like serine proteases, including those preferring arginine or lysine as a P' 25 substituent. These enzymes are involved in blood coagulation, and include (but are not limited to) Factor VIIa. Factor IXa, Factor Xa, thrombin, kallikrein, urokinase (which is also involved in cancer metastasis) Thus, the ability to selectively inhibit and plasmin. 30 these enzymes has wide utility in therapeutic applications involving cardiovascular disease and oncology.

For example, the following β -sheet mim tics can be synthesized on solid support (e.g., PAM resin):

10

15

In the above β -sheet mimetics, L is an optional linker.

The β -sheet mimetics may then be cleaved from solid support by, for example, aminolysis, screened as competitive substrates against appropriate agents, such as the chromogenic substrate BAPNA (benzyoylarginine paranitroanalide) (see Eichler and Houghten, Biochemistry 32:11035-11041, 1993) (incorporated herein by reference). Alternatively, by employing a suitable linker moiety, such screening may be performed while the β -sheet mimetics are still attached to the solid support.

Once a substrate is selected by the above kinetic analysis, the β-sheet mimetic may be converted 20 into an inhibitor by modifications to the C-terminal - that is, by modification to the Y moiety. For example, the terminal Y moiety may be replaced with -CH₂Cl, -CF₃, - H, or -C(O)NHR. Appropriate R moieties may be selected using a library of substrates, or using a library of inhibit rs generated using a modification of the procedure

2 C

of Wasserman and Ho (J. Org. Ch m. 59:4364-4366, 1994) (incorporated herein by reference).

Libraries of compounds containing β -strand templates may be constructed to determine the optimal sequence for substrate recognition or binding. Representative strategies to use such libraries are discussed below.

A representative β -sheet mimetic substrate library may be constructed as follows. It should be understood that the following is exemplary of methodology that may be used to prepare a β -sheet mimetic substrate library, and that other libraries may be prepared in an analogous manner.

In a first step, a library of the following 15 type:

 R_1 , R_3 , R = amino acid side chain moleities or derivatives thereof; Y = H, Ac, SO_2R ; and the circled "p" represents a solid support.

may be constructed on a solid support (PEGA resin, Meldal, M. Tetrahedron Lett. 33:3077-80, 1992; controlled pore glass, Singh et al., J. Med. Chem. 38:217-19, 1995). The solid support may then be placed in a dialysis bag (Bednarski et al., J. Am. Chem. Soc. 109:1283-5, 1987) with the enzyme (e.g., a protease) in an appropriate buffer. The bag is then placed in a beaker with bulk buffer. The enzymatic reaction is monitored as a function of time by HPLC and materials cleaved from the polymer are analyzed by MS/MS. This strategy provides information concerning the best substrates for a particular target.

The synthesis of the β -sheet mimetic is illustrated by the retrosynthetic procedure shown next:

5

10

The complexity of the library generated by this technique is $(R_1)(R_3)(R)(Y)$. ssuming R_1 , R_2 and R are selected from naturally occurring amino acid side chains moieties, n is constant, and Y is H, Ac or $-SO_2R$ as defined above, a library having on the order of 24,000 members [(20)(20)(20)(3)] is generated.

After screening the library against a specific target (e.g., enzyme), the library may then recovered and screened with a second target, and so on.

In addition, a library of inhibitors can be constructed and screened in a standard chromogenic assay. For example, the library may be constructed as follows, where the following example is merely representativ of the inhibitor libraries that may be prepared in an analogous manner to the specific example provided below.

√OR_a

inhibitors of serine or cysteinyl proteases

(See Wasserman et al., J. Org. Chem. 59:4364-6, 1994.)

A further alternative strategy is to link the library through the sidechain R group as shown below.

$$R_1$$
 R_3
 R_3
 R_3
 R_4
 R_5
 R_5

A library of aspartic protease inhibitors may be constructed having the following exemplary structure, and then cleaved from the resin and screened:

Similarly, for metalloproteases, a library 10 having th exemplary structure shown below may be constructed and then cleaved from the resin to provide a library of hydroxamic acids:

The activity of the β-sheet mimetics of this invention may be further illustrated by reference to Table 2 which lists a number of biologically active peptides. In particular, the peptides of Table 2 are known to have biological activity as substrates or inhibitors.

Table 2

10 Biologically Active Peptides

Protease Inhibitors:

- (a) (D) FPR (Thrombin)

 Enzyme 40:144-48, 1988
- 15 (b) (D) IEGR (Factor X)

 Handbook of Synthetic Substrates for the Coagulation and Fibronlytic Systems, H.C. Hemker, pp. 1-175, 1983, Martinus Nijhoff Publishers, The Hague.

15

25

Protein Kinase Substrates and Inhibitors:

- (c) LRRASLG (Serine Kinase)

 Biochem. Biophys. Res. Commun. 61:559, 1974
- (d) LPYA (Tyrosine Kinase)

 J. Bio. Chem. 263:5024, 1988
- (e) PKI (Serine Kinase)

 Science 253:1414-20, 1991

CAAX Inhibitors:

- 10 (f) (H)-CVIM-(OH)

 Proc. Natl. Acad. Sci. USA 88:732-36, 1991
 - (g) (H)-CVFM-(OH)

 Bloorg. Med. Chem. Letters 4:887-92, 1994
 - (h) (H)-CIT-(homoserine lactone)
 Science 260:1934-37, 1993

SH2 Peptide Analogs:

- (i) FYZPZSPYZPZS (IRS 1 analogue)

 Biochemistry 33:9376-81, 1994
- 20 (j) EPQ^PYEEIPIYL (Src SH₂ binding motif)
 Cell 72:767-68, 1993
 - PY = phosphorylated Y
 Z = norleucine

Class MHC I Peptides:

- (k) TYQRTRALV (Influenza nucleoprotein)
 J. Exp. Med. 175:481-67, 1991
- (1) RGYVYQGL (VSV)

 30 Ann. Rev. Imm. 11:211-44, 1993

In view of the above biologically active peptides, β -sheet mimetics of this invention may be substituted for one or more amino acids thereof. For example, the following β -sheet modified peptides may be synthesiz d:

5 (b')

(c')

(f')

(h')

5

5 (j')

(k*)

More generally, the β -sheet mimetics of this invention can be synthesized to mimic any number of biologically active peptides by appropriate choice of the R_1 , R_2 , R_3 , Y and Z moleties (as well as the A, B and C moleties of structure (I) itself). This is further illustrated by Table 3 which discloses various modifications which may be made to the β -sheet mimetics of structure (I) to yield biologically active compounds. In Table 3, R_2 and R_3 are independently chosen from among the atoms or groups shown under the " R_1/R_3 " column.

Table 3

Modifications to Structure (I) to Yield
Biological Active Compounds

$$\begin{array}{c|c}
R_1 & A & B & C & R_2 \\
Z & N & N & R_3 & O
\end{array}$$

(I)

20

hydrogen, alkyl,

I. PR TEASE INHIBITORS
A. Serine Serine

hydrogen C,-C,, aromatic (e.g., 1. Thrombin

naphthyl), C₁-C₁.. phenyl, benzyl, aliphatic or

substituted C,-C, cycloaliphatic,

aromatic, -SiR., -COH,

R=aliphatic

R2/R3

۳ -

R2/R3

R₁

$$X = CH_{2}, NH$$

$$X = C_{2}, NH$$

R2/R3

A.

acyl

R=CU2H, CO2 SO2R, COCF3

X=0, S, NH R=CO2H, SO2R, CO2R

hydrogen or C₁-C₁₀ heterocyclic

—СН (СН₃) ₂

10

aromatic

aliphatic

Ci-Cin aliphatic

۲	D(Ile) Acyl Dansyl
,	0= IZ
R2/R3	hydrogen
R	phati c

3. Factor X

aromatic carboxylate

C₁-C₁₀ acidic heterocyclic

$$0$$

$$N$$

$$0$$

$$1-2$$

R2/R3

я .

benzyl acy1

>-

C.-C.O basic aromatic hydrophobic

-CH2OAC

-CH2N3.

(2) = C1-C10 aliphatic

R2/R3

£

C.-C₁₃ aromatic C₁-C₁₉ aliphatic hydrogen

C. Cysteine

-CH, OAC -CH₂ N₂

benzyl acyl

() = C1-C10 aromatic,

hydrophobic (2) = -CII; F

R2/R3

C,-C₁₀ aromatic, (aliphatic, hydrophobic

C₁-C₂, aliphatic

2. Calpain

dihydro-cinnamic, H2/R3 hydrogen C.-C. aliphatic ž

3. ACE

hydrogen

N

CO-H

CO-H

CH-N

-CH-OAC

dihydro-cinnamic, aromatic, acetyl
aliphatic, acetyl

(2) = C1-C10 aliphatic C1-C10 aromatic

R2/R3

indoyl C₁-C₁

HO-

hydroxyl

() = alkyl

C.-C..
aromatic,
C.-C.
aliphatic,
C.-C. basic

C,-C, aliphatic

D. Metall

2. Collagenase

C₁-C₁, alkyl hydrogen

SUBSTITUTE SHEET (RULE 26)

or

	R ₁	R2/R3	Ţ	7
	C,-C _{lo} aromatic	C ₁ -C ₁ . alkyl	HOHN-	hydroxyl
		C ₁ -C _{1c} aliphatic		
				$\bigcirc -0-\frac{1}{2}$
		·		() = hydrogen C1-C10 alkyl, or
				0=0,-0
	R ₁	R2/R3	>-	20
II. KINASE INHIBITORS A. Serine/ ami Threonine sid	ITORS amino acid side chain	amino acid side chain	Serine, Threonine	amino acid
B. Tyrosine	amino acid side chain	amino acid side chain	Tyrosine	amino acid
C. Histidine	amino acid side chain	amino acid side chain	Histidine	amino acid

hydrogen - TK 2 8 I Z ş -YVKQNTLKLAT -YDEEARR NH2 R2/R3 R2/R3 hydrogen hydrogen Cl--hydrophobic hydrogen Class II HA (306-18) hydrogen £ R. III. MHC II INHIBITORS HIV gp120 Class I 2. HSP 65 (3-13)

When the β-sheet mimetics of this invention are substituted for one or more amino acids of a biologically active peptide, the structure of the resulting β-sheet modified peptide (prior to cleavage from the solid support, such as PAM) may be represented by the following diagram, where AA1 through AA3 represent the same or different amino acids:

10

The precise β -sheet mimetic may be chosen by any of a variety of techniques, including computer modeling, randomization techniques and/or by utilizing natural substrate selection assays. The β -sheet mimetic may also be generated by synthesizing a library of β -sheet mimetics, and screening such library members to identify active members as disclosed above.

Once the optimized β -sheet mimetic is chosen, modification may then be made to the various amino acids attached thereto. A series of β -sheet modified peptides having a variety of amino acid substitutions are then cleaved from the solid support and assayed to identify a preferred substrate. It should be understood that the generation of such substrates may involve the synthesis and screening of a number of β -sheet modified peptides, wherein each β -sheet modified peptide has a variety of amino acid substitutions in combination with a variety of different β -sheet mimetics. In addition, it should also be recognized that, following cleavage of the β -sheet modified peptide from the solid support, the Z moi ty is AA3 and the Y moiety is AA2 and AA1 in the above diagram. (While this diagram is presented for illustration,

additional or fewer amino acids may be linked to the β -she t mimetic — that is, AA3 may be absent or additional amino acids my be joined thereto; and AA2 and/or AA1 may be omitted or additional amino acids may be joined thereto;.

Once a preferred substrate is identified by the procedures disclosed above, the substrate may be readily converted to an inhibitor by known techniques. For example, the C-terminal amino acid (in this case AA₁) may be modified by addition of a number of moleties known to impart inhibitor activity to a substrate, including (but not limited to) -CF₃ (a known reversible serine protease inhibitor), -CH₂Cl (a known irreversible serine protease inhibitor), -CH₂N₂+ and -CH₂S(CH₃)₂+ (known cysteinyl protease inhibitor), -NHOH (a known metalloprotease inhibitor),

20 (a known cysteinyl protease inhibitor), and

$$R' = CH_2CH(CH_3)CH_2CH_3 \qquad R = CH_2CH(CH_3)_2$$
or
$$CH_2CH_2 - N \qquad O \qquad CH_2 - O$$

(a known aspartyl protease inhibitor).

While the utility of the β -sheet mimetics of this invention have been disclosed with regard to certain embodiments, it will be understood that a wide variety and type of compounds can be made which includes the eta-sheet mimetics of the present invention. For example, a β -sheet mimetic of this invention may be substituted for two or more amino acids of a peptide or protein. In addition to improving and/or modifying the β -sheet structure of a peptide or protein, especially with regard to 10 conformational stability, the β -sheet mimetics of invention also serve to inhibit proteolytic breakdown. This results in the added advantage of peptides or proteins which are less prone to proteolytic breakdown due incorporation of the ß-sheet mimetics this 15 invention.

Īn another aspect, the present invention encompasses pharmaceutical compositions prepared storage or administration which comprise a therapeutically effective amount of a β -sheet mimetic or compound of the 20 present invention ın pharmaceutically a acceptable Anticoagulant therapy is indicated for the carrier. treatment and prevention of a variety of thrombotic conditions, particularly coronary artery cerebrovascular disease. Those experienced in this field and 25 are readily aware the circumstances of requiring anticoagulant therapy.

The "therapeutically effective amount" of a compound of the present invention will depend on the route of administration, the type of warm-blooded animal being treated, and the physical characteristics of the specific animal under consideration. These factors and their relationship to determining this amount are well known to skilled practitioners in the medical arts. This amount and the method of administration can be tailored to SUBSTITUTE SHEET (RULE 26)

achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors which as noted hose skilled in the medical arts will recognize.

The "therapeutically effective amount" of 5 compound of the present invention can range broadly depending upon the desired affects and the therapeutic Typically, dosages will be between about 0.01 mg/kg and 100 mg/kg body weight, preferably between about 0.01 and 10 mg/kg, body weight. 10

"Pharmaceutically acceptable carriers" for therapeutic use are well known in the pharmaceutical art, described, for and are example, in Pharmaceutical Sciences, Mack Publishing Co. (A.R. Gennaro example, edit. 1985). For sterile saline and phosphate-buffered saline at physiological pH may be used. Preservatives, stabilizers, dyes and even flavoring agents may be provided in the pharmaceutical composition. example, sodium benzoate, sorbic acid and esters of 20 p-nydroxybenzoic acid may be added as preservatives. In addition, antioxidants and suspending agents may be used.

15

30

Thrombin inhibition is useful not only in the anticoagulant therapy of individuals having thrombotic conditions, but is useful whenever inhibition of blood 25 coagulation is required such as to prevent coagulation of stored whole blood and to prevent coagulation in other biological samples for testing or storage. Thus, thrombin inhibitors can be added to or contacted with any medium containing or suspected of containing thrombin and in which it is desired that blood coagulation be inhibited (e.g., when contacting the mammal's blood with material selected fr m th group consisting of vascular grafts, stems, orthopedic prosthesis, cardiac prosthesis, extracorporeal circulation syst ms).

The thrombin inhibitors can be co-administered suitable anti-coagulation agents or thrombolytic agents such as plasminogen activators or streptokinase to achieve synergistic effects in the treatment of various 5 ascular pathologies. For example, thrombin inhibitors enhance the efficiency of tissue plasminogen activatormediated thrombolytic reperfusion. Thrombin inhibitors may be administered first following thrombus formation, and tissue plasminogen activator or other plasminogen activator is administered thereafter. They may also be combined with heparin, aspirin, or warfarin.

10

The thrombin inhibitors of the invention can be administered in such oral forms as tablets, capsules (each of which includes sustained release or timed release 15 formulations), pills. powders, granules, elixers. tinctures, suspensions, syrups, and emulsions. Likewise, they may be administered in intravenous (bolus infusion), intraperitoneal, subcutaneous, or intramuscular form, all using forms well known to those of ordinary 20 skill the pharmaceutical arts. in An effective but non-toxic amount of the compound desired can be employed as an anti-aggregation agent or treating ocular build up of fibrin. The compounds may be administered intraocularly or topically as well as orally 25 parenterally.

The thrombin inhibitors can be administered in the form of a depot injection or implant preparation which may be formulated in such a manner as to permit a sustained release of the active ingredient. The active be compressed into pellets 30 ingredient can or cylinders and implanted subcutaneously or intramuscularly as depot injections or implants. Implants may employ in rt materials such as biodegradable polym rs or synthetic

silicones, for example, Silastic, silicone rubber or other polymers manufactured by the Dow-Corning Corporation.

The thrombin inhibitors can also be administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.

5

20

25

The thrombin inhibitors may also be delivered by the use of monoclonal antibodies as individual carriers to which the compound molecules are coupled. The thrombin inhibitors may also be coupled with soluble polymers as targetable drug carriers. Such polymers can include polyvinlypyrrolidone, pyran copolymer, polyhydroxy-propylmethacrylamide-phenol,

polyhydroxyethyl-aspartarnide-phenol, or polyethyleneoxide-polylysine substituted with palmitoyl residues. Furthermore, the thrombin inhibitors coupled to a class of biodegradable polymers useful in achieving controlled release of a drug, for example, polylactic polyglycolic acid, copolymers acid, polyglycolic acid, polyepsilon polylactic and caprolactone, polyhydroxy cutyric acid, polyorthoesters, polydibydropyrans, polycyanoacrylates polyacetals, and cross linked or amphipathic block copolymers of hydrogels.

The dose and method of administration can be tailored to achieve optimal efficacy but will depend on such factors as weight, diet, concurrent medication and other factors which those skilled in the medical arts will recognize. When administration is to be parenteral, such as intravenous on a daily basis, injectable pharmaceutical compositions can be prepared in conventional forms, either as liquid solutions or suspensions, solid forms suitable

for solution or suspension in liquid prior to injection, or as emulsions.

Tablets suitable for oral administration of active compounds of the invention, e.g., structures (47), (20b), (37), (39), (29a), (35), (45), (51), (29b), (41) and (13b), can be prepared as follows:

		Amount-mg	
Active Compound	25.0	50.0	100.0
Microcrystalline cellulose	37.25	100.0	200.C
Modified food corn starch	37.25	4.25	8.5
Magnesium stearate	0.50	0.75	1.5

All of the active compound, cellulose, and a portion of the corn starch are mixed and granulated to 10% corn starch paste. The resulting granulation is sieved, dried and blended with the remainder of the corn starch and the magnesium stearate. The resulting granulation is then compressed into tablets containing 25.0, 50.0, and 15 100.0 mg, respectively, of active ingredient per tablet.

An intravenous dosage form of the above-indicated active compounds may be prepared as follows:

Active Compound 0.5-10.0mg

Sodium Citrate 5-50mg

Citric Acid 1-15mg

Sodium Chloride 1-8mg

Water for q.s. to 1 ml

Injection (USP)

Utilizing the above quantities, the activ compound is dissolved at room temp rature in a pr viously prepared solution of sodium chloride, citric acid, and SUBSTITUTE SHEET (RULE 26)

sodium citrate in Water for Injection (USP, see page 1636 of United States Pharmacopoeia/National Formulary for 1995, published by United States Pharmacopoeia Convention, Inc., Rockville, Maryland, copyright 1994).

Compounds of the present invention when made and selected as disclosed are useful as potent inhibitors of thrombin in vitro and in vivo. As such, these compounds are useful as in vitro diagnostic reagents to prevent the clotting of blood and as in vivo pharmaceutical agents to prevent thrombosis in mammals suspected of having a condition characterized by abnormal thrombosis.

The compounds of the present invention useful as in vitro diagnostic reagents for inhibiting clotting in blood drawing tubes. The use of stoppered test tubes having a vacuum therein as a means to draw 15 blood obtained by venipuncture into the tube is well known in the medical arts (Kasten, B.L., "Specimen Collection," Laboratory Test Handbook, 2nd Edition, Lexi-Comp Inc., Cleveland pp. 16-17, Edits. Jacobs, D.S. et al. 1990). 20 Such vacuum tubes may ъe free of clot-inhibiting additives. which case, in they are useful for isolation of mammalian serum from the blood they alternatively contain clot-inhibiting additives (such as heparin salts. EDTA salts, citrate salts or exalate 25 salts), in which case, they are useful for the isolation of mammalian plasma from the blood. The compounds of the present invention are potent inhibitors of factor Xa or thrombin, and as such, can be incorporated into blood collection tubes to prevent clotting of the mammalian bl od drawn into them. 30

Th compounds of the pres nt invention are used alone, in combination of other compounds of the present invention, or in combination with other known inhibitors of clotting, in the blood collection tubes. The am unt to SUBSTITUTE SHEET (RULE 26)

be added to such tubes is that amount sufficient to inhibit the formation of a clot when mammalian blood is drawn into the tube. The addition of the compounds to such tubes may be accomplished by methods well known in 5 the art, such as by introduction of a liquid composition thereof, solid composition thereof, as a or liquid composition which is lyophilized to a solid. The compounds of the present invention are added to blood collection tubes in such amounts that, when combined with 2 to 10 mL of mammalian blood, the concentration of such compounds will be sufficient to inhibit clot formation. Typically, the required concentration will be about 1 to 10,000 nM, with 10 to 1000 nM being preferred.

The following examples are offered by way of illustration, not limitation.

EXAMPLES

Example 1

Synthesis of Representative B-Sheet Mimetic

20

This example illustrates the synthesis of a representative $\beta\text{--sheet}$ mimetic of this invention.

Synthesis of Structure (1):

25

(1)

Phenylalanine benzaldimine, structure (1), was synthesized as follows. To a mixture of L-ph nylalanine methyl ester hydrochloride (7.19 g, 33.3 mmol) and benzaldehyde (3.4 ml, 33.5 mmol) stirred in CH2Cl2 (150 SUBSTITUTESHEET (RULE 26)

ml) at room temperature was added triethylamine (7.0 ml, 50 mmol). Anhydrous magnesium sulfate (2 g) was added to the resulting solution and the mixture was stirred for 14 h then filtered through a l inch pad of Celite with 5 CH2Cl2. The filtrate was concentrated under reduced pressure to ca. one half of its initial volume then diluted with an equal volume of hexanes. The mixture was extracted twice with saturated aqueous NaHCO3, H2O and brine then dried over anhydrous Na2SO4 and filtered. 10 Concentration of the filtrate under vacuum yielded 8.32 g (93% yield) of colorless cil. H NMR analysis indicated nearly pure (>95%) phenylalanine benzaldimine. The crude product was used without further purification.

Synthesis of Structure (2):

(2)

α-Allylphenylalanine benzaldimine. (2), was synthesized as follows. To a solution of 20 diisopropylamine (4.3 ml, 33 mmol) stirred in THF (150 ml) at -78°C was added dropwise a solution of n-butyllithium (13 ml of a 2.5 M hexane solution, 33 mmol). resulting solution was stirred for 20 min. then a solution of phenylalanine benzaldimine (7.97 g, 29.8 mmol) in THF 25 (30 ml) was slowly added. The resulting dark red-orange solution was stirred for 15 min. then allyl bromide (3.1 36 mmol) was added. The pale y llow solution was stirred for 30 min. at -78° C then allowed to warm to ro m temperature and stirr d an additional 1 h. agu ous ammonium chloride was added and the mixtur SUBSTITUTE SHEET (RULE 26)

(3)

poured into ethyl acetate. The organic phase separated and washed with water and brine then dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded 8.54 g of a viscous yellow oil. Purification by column chromatography yielded 7.93 g (87%) of α -allylphenylalanine benzaldimine as a viscous colorless oil.

Synthesis of Structure (3):

10

20

25

α-Allylphenylalanine hydrochloride, structure (3), was synthesized as follows. To a solution of α allylphenylalanine benzaldimine (5.94 q, 19.3 mmol) 15 stirred in methanol (50 ml) was added 5% aqueous hydrochloric acid (10 ml). The solution was stirred at room temperature for 2 h then concentrated under vacuum to an orange-brown caramel. The crude product was dissolved in CHCl3 (10 ml) and the solution was heated to boiling. Hexanes (~150 ml) were added and the slightly cloudy mixture was allowed to cool. The liquid was decanted away from the crystallized solid then the solid was rinsed with hexanes and collected. Removal of residual solvents under vacuum yielded 3.56 g (72%) of pure α -allylphenylalanine hydrochloride as a white crystalline solid.

¹H NMR (500 MHz, CDCl₃) δ 8.86 (3 H, br s), 7.32- · · 7.26 (5H, m), 6.06 (1 H, dddd, J = 17.5, 10.5, 7.6, 7.3 Hz), 5.33 (1H, d, J = 17.5 Hz), 5.30 (1 H, d, J = 10.5Hz), 3.70 (3 H, s), 3.41 (1 H, d, J = 14.1 Hz), 3.35 (1 H,

d, J = 14.1 Hz), 2.98 (1 H, dd, J = 14.5, 7.3 Hz), 2.88 (1 H, dd, J = 14.5, 7.6 Hz).

Synthesis of Structure (4):

5

(4)

N-tert-butyloxycarbonyl- α -allylphenylalanine, structure (4) was synthesized as follows. To a solution of D,L α -allylphenylalanine hydrochloride (565 mg, 2.21 10 mmol) stirred in a mixture of THF (15 ml) and water (5 ml) was added di-tert-butyl dicarbonate followed by careful addition of solid sodium bicarbonate in small portions. The resulting two phase mixture was vigorously stirred at room temperature for 2 days then diluted with ethyl acetate. The organic phase was separated and washed with 15 water and brine then dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded a colorless oil that was purified by column chromatography (5 to 10% EtOAc in hexanes gradient 20 elution) to yield 596 mg (86%) of N-tert-butyloxycarbonyl- α -allylphenylalanine.

TLC R_f = 0.70 (silica, 20% EtOAc in hexanes); ¹H NMR (500 MHz, CDCl₃) δ 7.26-7.21 (3 H, m), 7.05 (2 H, d, J = 6.1 Hz), 5.64 (1 H, dddd, J = 14.8, 7.6, 7.2, 7.2 Hz), 5 5.33 (1 H, br s), 5.12-5.08 (2 H, m), 3.75 (3 H, s), 3.61 (1 H, d, J = 13.5 Hz), 3.21 (1 H, dd, J = 13.7, 7.2 Hz), 3.11 (1 H, d, J = 13.5 Hz), 2.59 (1 H, dd, J = 13.7, 7.6 Hz), 1.47 (9 H, s).

Synthesis of Structure (5):

(5)

An aldehyde of structure (5) was synthesized as follows. Ozone was bubbled through a solution of 2.10 g (6.57 mmol) of the structure (4) olefin stirred at -78°C in a mixture of CH₂Cl₂ (50 ml) and methanol (15 ml) until the solution was distinctly blue in color. The solution was stirred an additional 15 min. then dimethyl sulfide was slowly added. The resulting colorless solution was stirred at -78°C for 10 min. then allowed to warm to room temperature and stirred for 6 h. The solution was concentrated under vacuum to 2.72 g of viscous pale yellow oil which was purified by column chromatography (10 to 20% EtOAc in hexanes gradient elution) to yield 1.63 g of pure aldehyde as a viscous colorless oil.

TLC R_f = 0.3 (silica, 20% EtOAc in hexanes); 1 H NMR (500 MHz, CDCl₃) δ 9.69 (1 H, br s), 7.30-7.25 (3 H, m,), 7.02 (2 H, m,), 5.56 (1 H, br s), 3.87 (1 H, d, J = 20 17.7 Hz,), 3.75 (3 H, s,), 3.63 (1 H, d, J = 13.2 Hz), 3.08 (1 H, d, J = 17.7 Hz), 2.98 (1 H, d, J = 13.2 Hz,), 1.46 (9 H, s,).

Synthesis of Structure (6):

25

20

A hydrazone of structure (6) was synthesized as follows. To a solution of the aldehyde of structure (5) (1.62 g, 5.03 mmol) stirred in THF (50 ml) at room temperature was added hydrazine hydrate (0.32 ml, 6.5 mmol). The resulting solution was stirred at room temperature for 10 min. then heated to reflux for 3 days. The solution was allowed to cool to room temperature then concentrated under vacuum to 1.59 g (105% crude yield) of colorless foam. The crude hydrazone product, structure (6), was used without purification.

TLC Rf = 0.7 (50% EtOAc in hexanes); 1 H NMR (500 MHz, CDCl3) δ 8.55 (1 H, br s), 7.32-7.26 (3 H, m), 7.17 (1 H, br s), 7.09 (2H, m), 5.55 (1 H, br s), 3.45 (1 H, d, J = 17.7 Hz), 3.29 (1 H, d, J = 13.5 Hz), 2.90 (1 H, d, J = 13.5 Hz), 2.88 (1 H, dd, J = 17.7, 1.3 Hz), 1.46 (9 H, s); MS (CI+, NH3) m/z 304.1 (M + H⁺).

Synthesis of Structure (7):

(7)

cyclic hydrazide of structure (7) synthesized as follows. The crude hydrazone of structure (6) (55 mg, 0.18 mmol) and platinum oxide (5 mg, 0.02 mmol) were taken up in methanol and the flask was fitted with a three-way stopcock attached to a rubber balloon. 25 The flask was flushed with hydrogen gas three times, the balloon was inflated with hydrogen, and the mixture was stirred vigorously under a hydrogen atmosphere f r 17 The mixture was filtered through Celite with ethyl acetate and the filtrate was concentrated under vacuum to 30 Purification of the white foam by flash a whit form. SUBSTITUTE SHEET (RULE 26)

chromatography yielded 44 mg of the pure cyclic hydrazide of structure (7) (80%).

 1 H NMR (500 MHz, CDCl₃) δ 7.34-7.28 (3 H, m), 7.21 (2 H, m), 6.95 (1 H, br s), 5.29 (1 H, br s), 3.91 (1 H, br s), 3.35 (1 H, d, J = 12.9 Hz), 3.00 (1 H, ddd, J = 13.9, 5.3, 5.0 Hz), 2.96 (1 H, d, J = 12.9 Hz), 2.67 (1 H, br m), 2.36 (1 H, br m), 2.30 (1 H, ddd, J = 13.9, 5.4, 5.0 Hz), 1.45 (9 H, s); MS (CI+, NH₃) m/z 306.2 (M + H⁺).

Synthesis of Structure (8):

(8)

Structure (8) was synthesized as follows. solution of the cyclic hydrazide of structure (7) (4.07 g, 13.32 mmol) stirred in ethyl acrylate (200 ml) at 90°C was 15 added formaldehyde (1.2 mL of a -37% aqueous solution). The mixture was heated to reflux for 15 h then allowed to cool to room temperature and concentrated under vacuum to a white foam. The products were separated by column chromatography (5% then 10% acetone/chloroform) to yield 20 0.851 g of the least polar diastereomer of the bicyclic ester, structure (8b), and a more polar diastereomer (8a). The fractions were subjected impure to second chromatography to afford more pure structure (8b), 25 combined yield.

15

1.44 (9 H, s), 1.28 (3 H, t, J = 7.0 Hz); MS (CI+, NH3) $418.4 (M + H^{+})$

Synthesis of Structure (9b):

(9b) 10

Structure (9b) was synthesized as follows. To a solution of the least polar ethyl ester (i.e., structure (8b)) (31 mg, 0.074 mmol) stirred in THF (1 ml) was added aqueous lithium hydroxide (1 M, 0.15 ml). The resulting mixture was stirred at room temperature for 2 h then the reaction was quenched with 5% aqueous citric acid. mixture was extracted with ethyl acetate (2 x) then the combined extracts were washed with water and brine. 20 organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to a colorless The crude acid, structure (9b), was used in subsequent experiments without further purification.

Synthesis of Structure (10b):

(10b)

5 Structure (10b) was synthesized as follows. of structure (9b) acid (30 mg, 0.074 HArg(PMC)pNA (41 mg, 0.074 mmol), and HOBt (15 mg, 0.098 mmol) were dissolved in THE (1 ml) diisopropylethylamine (0.026 ml, 0.15 mmol) was added 10 followed by EDC (16 mg, 0.084 mmol). The resulting mixture was stirred at room temperature for 4 h then diluted with ethyl acetate and extracted with 5% aqueous citric acid, saturated aqueous sodium bicarbonate, water and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to 15 54 mg of pale yellow glass. The products were separated by column chromatography to yield 33 mg (50%) of a mixture of diastereomers of the coupled (i.e., protected) product, structure (10b). MS (CI+, NH₃) m/z 566.6 (M + H⁺).

20

Synthesis of Structure (11b):

(11b)

5 β -sheet mimetic of Α structure (11b)synthesized as follows. A solution of 0.25 ml of H2O, 0.125 ml of 1,2-ethanedithiol and 360 mg of phenol in 5 ml $\,$ of TFA was prepared and the protected product of structure (10b) (33 mg, 0.035 mmol) was dissolved in 2 ml of this solution. The resulting solution was stirred at room 10 3 h then concentrated under temperature for Ether was added to the concentrate and the resulting precipitate was collected by centrifugation. The precipitate was triturated with ether and centrifuged two more times then dried in a vacuum desiccator for 14 h. 15 The crude product (14 mg) was purified chromatography to yield the β -sheet mimetic of structure (11b). MS (CI+, NH3) m/z 954.8 (M + Na⁺).

Synthesis of Structure (12b):

(12b)

Structure (12b) was synthesized as follows. 5 a solution of the crude acid of structure (9b) (24 mg, 0.062 mmol) and N-methylmorpholine (0.008 ml), stirred in THF (1 ml) at -50°C was added isobutyl chloroformate. resulting cloudy mixture was stirred for 10 min. then 0.016 ml (0.14 mmol) of N-methylmorpholine was 1C added followed by a solution of HArg(Mtr)CH2Cl (50 mg, mumol) in THF (0.5 ml). The mixture was kept at -50°C for 20 min. then was allowed to warm to room temperature during 1 h. The mixture was diluted with ethyl acetate and extracted with 5% aqueous citric acid, 15 aqueous sodium bicarbonate and brine. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to yield 49 mg of colorless structure (12).Separation by column chromatography yielded 12 mg of a less polar diastereomer 20 and 16 mg of a more polar diaster omer.

¹H NMR (500 MHz, CDCl₃) δ 7.93 (1 H, br s), 7.39-7.31 (3 H, m), 7.16 (2 H, d, J = 6.9 Hz), 6.52 (1 H, s), 6.30 (1 H, br s), 5.27 (1 H, s), 4.74 (1 H, dd, J = 9.1, 6.9 Hz), 4.42 (1 H, br d, J = 6.8 Hz), 4.33 (1 H, d, J = SUBSTITUTE SHEET (RULE 26)

6.8 Hz), 3.82 (3 H, s), 3.28 (1 H, d, J = 13.3 Hz), 3.26-3.12 (4 H, m), 2.98 (1 H, d, J = 13.3 Hz), 2.69 (3 H, s), 2.60 (3 H, s), 2.59-2.33 (4 H, m), 2.25-2.10 (3 H, m), 2.11 (3 H, s), 1.77 (1 H, br m), 1.70-1.55 (3 H, br m), 1.32 (9 H, s).

Synthesis of Structure (13b):

(13b)

10

15

20

5

β-sheet mimetic of A structure (13b)The more polar diastereomer of synthesized as follows. structure (12b) (16 mg, 0.021 mmol) was dissolved in 95% TFA/H₂O (1 ml) and the resulting solution was stirred at room temperature for 6 h then concentrated under vacuum to 11 mg of crude material. The crude product was triturated with ether and the precipitate was washed twice with ether then dried under high vacuum for 14 h. H NMR analysis indicated a 1:1 mixture of fully deprotected product and product containing the Mtr protecting group. The mixture was dissolved in 95% TFA/H2O and stirred for 2 days and the product was recovered as above. Purification of the product by HPLC yielded 5 mg of the pure compound of structure (13b). MS (EI+) m/z 477.9 (M⁺).

25

Example 2

Synthesis of Representative β -Sheet Mimetic

This example illustrates the synthesis of a 5 further representative β -sheet mimetic of this invention.

Synthesis of Structure (14):

(14)

10

N,O-Dimethyl hydroxamate, structure (14), was synthesized as follows. To a mixture of Boc-Ng-4-methoxy-2,3,6-trimethylbenzenesulfonyl-L-arginine (8.26 g, 14.38 mmol), N,O-dimethylhydroxylamine hydrochloride (2.78 g, 28.5 mmol) and 1-hydroxybenzotriazole 15 (2.45 g, 16.0 mmol) stirred in THF (150 ml) at ambient temperature was added N,N-diisopropylethylamine (7.5 ml, 43 mmol) followed by solid EDC (3.01 g, 15.7 mmol). resulting solution was stirred for 16h then diluted with ethyl acetate (200 ml) and extracted sequentially with 5% 20 aqueous citric acid, saturated aqueous sodium bicarbonate, water and brine. The organic solution was dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded 7.412 g of white foam.

¹H NMR (500Mhz, CDCl₃): δ 6.52 (1 H, s), 6.17 (1 H, br s), 5.49 (1 H, d, J=8.8Hz), 4.64 (1 H, br t), 3.82 (3H, s), 3.72 (3H, s), 3.36 (1 H, br m), 3.18 (3H, s), 3.17 (1 H, br m), 2.69 (3H, s), 2.61 (3H, s), 2.12 (3H, SUBSTITUTE SHEET (RULE 26)

2), 1.85-1.55 (5 H, m), 1.41 (9 H, s); MS (FB+): m/z 530.5 (M+H^{*}).

Synthesis of Structure (15):

5

(15)

Structure (15) was synthesized as follows. solution of the arginine amide (7.412 g, 13.99 mmol) 10 stirred in dichloromethane (150 ml) at room temperature N, N-diisopropylethylamine (2.9 ml, 17 mmol) followed by di-tert-butyldicarbonate (3.5 ml, 15.4 mmol) and N,N-dimethylaminopyridine (0.175 g, 1.43 mmol). resulting solution was stirred for 1.5h then poured into The aqueous layer was separated and extracted with 15 100ml portions of dichloromethane. The combine extracts were shaken with brine then dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded a white foam that was purified by flash chromatography to yield 8.372 g of white foam.

¹H NMR (500MHz, CDCl₃): δ 9.79 (1 H, s), 8.30 (1 H, t, J=4.96), 6.54 (1 H, s), 5.18 (1 H, d, J=9.16 Hz), 4.64 (1 H, m), 3.83 (3 H, s), 3.74 (3 H, s), 3.28 (2 H, 25 dd, J=12.6, 6.9 Hz), 3.18 (3 H, s), 2.70 (3 H, s), 2.62 (3 H, s), 2.14 (3 H, s), 1.73-1.50 (5 H, m), 1.48 (9H, s), 1.42 (9 H, s); MS (FB+): m/z 630.6 (M+H²).

Synthesis of Structure (16):

(16)

5

20

The arginal, structure (16), was synthesized as To a solution of the arginine amide structure stirred in toluene at -78°C under a dry argon atmosphere was added a solution of dissobutylaluminum 10 hydride in toluene (1.0 M, 7.3m1) dropwise over a period The resulting solution was stirred for 30 of 15 minutes. minutes then a second portion of diisobutylaluminum hydride (3.5ml) was added and stirring was continued for Methanol (3ml) was added dropwise and the 15 solution was stirred at -78°C for 10 minutes then allowed to warm to room temperature. The mixture was diluted with ethyl acetate (100ml) and stirred vigorously with 50 ml of saturated aqueous potassium sodium tartrate for 2.5h. aqueous phase was separated and extracted with ethyl acetate (2 x 100ml). The extracts were combined with the original organic solution and shaken with brine then dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded a white foam that was separated by flash chromatography to yield 1.617g of the aldehyde as a white foam. 25

¹H NMR (500MHz, CDCl₃): δ 9.82 (1 H, s), 9.47 (1 H, s), 8.35 (1 H, br t), 6.55 (1 H, s), 5.07 (1 H, d, J=6.9 Hz), 4.18 (1 H, br m), 3.84 (3 H, s), 3.25 (2 H, m),

2.70 (3 H, s), 2.62 (3 H, s), 2.14 (3 H, s), 1.89 (1 H, m), 1.63+ 1.55 (4 H, m), 1.49 (9H, s), 1.44 (9 H, s); MS (FB+): m/z 571.6 (M+H).

Synthesis of Structure (17):

(17)

Hydroxybenzothiazole, structure (17).10 synthesized as follows. To a solution of benzothiazole (1.55 ml, 14 mmol) stirred in anhydrous diethyl ether (60 ml) at -78°C under a dry argon atmosphere was added a solution of n-butyllithium (2.5 M in hexane, 14 mmol) dropwise over a period of 10 minutes. 15 resulting orange solution was stirred for 45 minutes then solution of the arginal structure (16)(1.609 q. 2.819 mmol) in diethyl ether (5ml) was slowly added. solution was stirred for 1.5 h then saturated aqueous ammonium chloride solution was added and the mixture was allowed to warm to room temperature. 20 The mixture was extracted with ethyl acetate (3 x 100 ml) and the combined extracts were extracted with water and brine then dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded a yellow oil that was purified by flash chromatography (30% then 40% ethyl 25 acetate/hexanes eluent) to yield 1.22 g of hydroxyb nzothiazoles (ca. 2:1 mixture of diastereomers) as a white foam. ANN - 1000 705.29 SUBSTITUTE SHEET (RULE 26)

The mixture of hydroxyb nzothiazoles (1.003 g, 1.414 mmol) stirred in CH₂Cl₂ (12 ml) was at temperature and trifluoroacetic acid (3 ml) was added. The solution was stirred resulting for 1.5h 5 concentrated under reduced pressure to yield 1.22 g of the benzothiazolylarginol trifluoroacetic acid salt yellow foam.

MS (EI+): m/z 506.2 (M + H*).

Synthesis of Structure (18b):

(18b)

The bicyclic compound, structure (18b)15 synthesized as follows. The bicyclic acid of structure (9b) from Example 1 (151 mg, 0.387 mmol) and HOBt hydrate (71 mg, 0.46 mmol) were dissolved in THF (5 ml) diisopropylethylamine (0.34 ml, 1.9 mmol) added followed by EDC (89 mg, 0.46 mmol). After stirring for 20 ten solution of the benzothiazolylarginol minutes a trifluoroacetic acid salt (structure (17) 273 mg, 0.372 mmol) in THF (1 ml) was added along with a THF (0.5 ml) The mixture was stirred at room temperature for 15 h th n diluted with ethyl acetate and extracted sequentially with 5% aqueous citric acid, 25 saturated aqueous sodium bicarbonate, water and brine. The organic SUBSTITUTE SHEET (RULE 26)

10

15

solution was dried over anhydrous sodium sulfat , filtered and concentrated under vacuum to 297 mg of a yellow glass. ¹H NMR analysis indicated a mixture of four diastereomeric amides which included structure (18b).

MS (ES+): m/z 877 (M*).

Synthesis of Structure (19b):

(19b)

Structure (19b) was synthesized as follows. crude hydroxybenzothiazole (247 mg, 0.282 mmol) dissolved in CH₂Cl₂ (5 ml) and Dess-Martin periodinane (241 mg, 0.588 mmol) was added. The mixture was stirred at room temperature for 6h then diluted with ethyl acetate and stirred vigorously with 10% aqueous sodium thiosulfate The organic solution was separated and for 10 minutes. extracted with saturated aqueous sodium bicarbonate, water and brine then dried over anhydrous sodium sulfate and 20 filtered. Concentration of the filtrate under vacuum yielded 252 mg of yellow glass. 1H NMR analysis indicated a mixture of two diastereomeric ketobenzothiazoles which includ d structure (19b).

Synthesis of Structure (20b):

(20b)

5 The ketobenzothiazole, structure (20), synthesized as follows. Ketobenzothiazole (19) (41 mg, 0.047 mmol) was dissolved in 95% aqueous trifluoroacetic (0.95 ml) acid and thioanisole (0.05 ml) was added. resulting dark solution was stirred for 30 hours at room temperature then concentrated under vacuum to a dark brown 10 The gum was triturated with diethyl ether and gum. centrifuged. The solution was removed and the solid remaining was triturated and collected as above two more times. The yellow solid was dried in a vacuum desiccator 15 for 2 hours then purified by HPLC (Vydac reverse phase C-4 column (22 x 250 mm ID). Mobile phase: A = 0.05% TFA in water; B = 0.05% TFA in acetonitrile. The flow rate was 10.0 mL/min. The gradient used was 8% B to 22% B over 25 min, and isochratic at 22% thereafter. The peak of interest (structure (20b)) eluted at 42 minutes) to give 2 C 2.5 mg of the deprotected product, structure (20b).

 $MS (ES+): 563.5 (M + H^*).$

Example 3

Activity of a Representative β-Sheet Mimetic as a Proteolytic Substrate

5 This example illustrates the ability of β-sheet mimetic representative of this invention selectively serve as a substrate for thrombin and Factor The β -sheet mimetic of structure (11b) above was synthesized according the procedures disclosed in Example 10 1. and used in experiment this without further modification.

Both the thrombin and Factor VII assays of this experiment were carried out at 37°C using a Hitachi UV/Vis spectrophotometer (model U-3000). Structure (11b) was 15 dissolved in deionized water. The concentration was determined from the absorbance at 342 nm. Extinction coefficient of 8270 liters/mol/cm was employed. The rate of structure (11b) hydrolysis was determined from the in absorbance at 405 nm using an extinction 20 coefficient for p-nitroaniline of 9920 liters/mol/cm for Initial velocities were calculated from reaction buffers. the initial linear portion of the reaction progress curve. Kinetic parameters were determined by unweighted nonlinear least-squares fitting of the simple Michaelis-Menten 25 equation to the experimental data using GraFit (Version 3.0, Erithacus Software Limited).

For the thrombin assay, experiments were performed in 8.4 Tris buffer (Tris, Нq 0.05M; NaCl. 6.4 NIH units of bovine thrombin (from Sigma) 30 were dissolved into 10 ml of the assay buffer to yield 10 nM thrombin solution. In a UV cuvette, 130 to 148 μl of the buff r and 100 μl of the thrombin solutions were added, preincubated at 37°C for 2 minutes, and finally 2 to 20 microliters (to make the final volume at 250 μ l) of SUBSTITUTE SHEET (RULE 26)

0.24 mM structure (11b) solution was added to initiate the reaction. The first two minutes of the reactions were recorded for initial velocity determination. Eight structure (11b) concentration points were collected to obtain the kinetic parameters. kcat and KM were calculated to be 50 s⁻¹ and 3 μ M, respectively. kcat/KM was found to be 1.67x10⁷ M⁻¹ s⁻¹

For the Factor VII assay, pH 8.0 Tris buffer (0.05 M Tris, 5 mM CaCl₂, 0.15 M NaCl, 0.1% TWEEN 20, 0.1% 10 BSA) was used. 10 μl of 20 μM human Factor VIIa (FVIIa) and 22 μM of human tissue factor (TF) was brought to assay buffer to make 160 nΜ FVIIa and TF solutions, respectively. 40 to 48 μl of buffer, 25 μl of FVIIa and 25 μ l TF solution were added to a cuvette, and incubated at 37°C for 5 minutes, then 2 to 10 μl of 2.4 mM structure (11b) solution was added to the cuvette to initiate reaction (final volume was 100 ml). The initial 3 minutes reaction progress curves were recorded. Five structure (11b) concentration points were collected. The initial 20 rates were linear least-square fitted against the concentrations of structure (11b) with GraFit. The $k_{\text{cat}}/K_{\text{M}}$ was calculated from the slope and found to be $17,500 \text{ M}^{-1}\text{s}^{-1}$

In both the thrombin and Factor VII assay of this experiment, (D)FPR-PNA was run as a control. Activity of structure (11b) compared to the control was 0.76 and 1.38 for thrombin and Factor VII, respectively (Factor VII: $K_{\text{cat}}/K_{\text{M}} = 1.27 \times 10^4 \text{ M}^{-1} \text{ S}^{-1}$; thrombin: $K_{\text{cat}}/K_{\text{M}} = 2.20 \times 10^7 \text{ M}^{-1} \text{ S}^{-1}$).

PCT/US96/04044 WO 96/30035

100

Exampl 4

Activity of a Representative β-Sheet Mimetic as a Protease Inhibitor

5 This example illustrates the ability of representative β-sheet mimetic of this invention function as a protease inhibitor for thrombin, Factor VII, Factor X, urokinase, tissue plasminogen activator (t-PA), protein C, plasmin and trypsin. The β -sheet mimetic of structure (13b) above was synthesized according to the 10 procedures disclosed in Example 1, and used in this experiment.

15

25

30

All inhibition assays of this experiment were performed at room temperature in 96 well microplates using a Bio-Rad microplate reader (Model 3550). 0.29 mg of structure (13b) was dissolved into 200 ml of 0.02 N hydrochloric acid deionized water solution. This solution (2.05 mM) served as the stock solution for all the inhibition assays. The hydrolysis of chromogenic 20 substrates was monitored at 405 nm. The reaction progress curves were recorded by reading the plates typically 90 times with 30 seconds to 2 minute intervals. The initial rate were determined by unweighted nonlinear least-squares first order reaction in GraFit. fitting to a determined initial velocities were then nonlinear leastsquare fitted against the concentrations of structure (13b) using GraFit to obtain IC50. Typically, eight structure (13b) concentration points were employed for IC50 determination.

For the thrombin assay, N-p-tosyl-Gly-Pro-ArgpNA (from Sigma) was used at 0.5 mM concentration in 1% Ha 8.4 Tris buffer as substrate. structure (13b) stock solution two steps of dilution were First, 1:2000 dilution into 0.02 N hydrochlorid made.

solution, then 1:100 dilution into pH 8.4 Tris buffer. The final dilution of structure (13b) served as the first point (10 nM). Seven sequential dilutions were made from the first point with a dilution factor of 2. Into each reaction well, 100 μl of 10 nM thrombin solution and 50 μl of structure (13b) solution was added. The mixture of the enzyme and inhibitor was incubated for 20 minutes, then 100 μ l of 0.5 mM substrate solution was added to initiate the reaction. IC50 of structure The (13b)thrombin was found to be 1.2±0.2 nM. 10

In the Factor VII assay, 5-2288 (from Pharmacia), D-Ile-Pro-Arg-pNA was used at 20 μМ deionized water as substrate. From the stock of structure (13b), a 1:100 dilution was made into pH 8.0 Tris buffer. This dilution served as the first point of the inhibitor 15 (20 μM). From this concentration point 6 more sequential dilutions were made with a dilution factor of 2. 50 µl of 16 nM FVIIa and TF complex solution and 40 μl of the inhibitor solutions were added into each well, mixtures were incubated for 20 minutes before 10 μl of 20 20 mM S-2288 was added. IC50 of structure (13b) against factor VII was found to be 140±3 nM.

In the Factor X assay, buffer and substrate are the same as used for thrombin assay. A 1:100 dilution was 25 made into pH 8.4 Tris buffer to serve as the first point. Seven dilutions with a dilution factor of 2 were made. The assay protocol is the same as for thrombin except 25 nM of bovine factor Xa (from Sigma) in pH 8.4 Tris buffer was used instead of thrombin. IC50 of structure (13b) against factor X was found to be 385±17 nM.

In the urokinase assay, buffer was pH 8.8 0.05 M Tris and 0.05 M NaCl in dioniz d water. S-2444 (from Sigma), pyroGlu-Gly-Arg-pNA at 0.5 mM in water was utilized as substrate. The same dilution procedure was SUBSTITUTE SHEET (RULE 26)

used as for Factor VII and Factor X. Assay protocol is the same as for thrombin except $18.5~\mathrm{nM}$ of human urokinase (from Sigma) was utilized. IC50 was found to be $927\pm138~\mathrm{nM}$.

Tissue Plasminogen Activator (t-PA): Buffer, substrate and the dilution scheme of structure (13b) were the same as utilized for Factor VII assay.

Activated Protein C (aPC): Buffer was the same as used in thrombin assay. 1.25 mM S-2366 in the assay buffer was utilized as substrate. Dilutions of structure (13b) were the same as in urokinase assay.

Plasmin: Buffer (see thrombin assay); S-2551 (from Pharmacia), D-Val-Leu-Lys-pNA at 1.25 mM in assay buffer was utilized as substrate. For dilutions of structure (13b) (see urokinase assay).

In the trypsin assay, pH 7.8 Tris (0.10 M Tris and 0.02 M CaCl₂) was utilized as the buffer. BAPNA (from Sigma) was used at 1 mg/ml in 1% DMSO (v/v) deionized water solution as substrate. The same dilutions of structure (13b) were made as for Factor VII assay. 40 μl of 50 μg/ml bovine trypsin (from Sigma) and 20 μl of structure (13b) solution were added to a reaction well, the mixture was incubated for 5 minutes before 40 μl of 1 mg/ml BAPNA was added to initiate the reaction. The IC50 of structure (13b) against trypsin was found to be 160±8 nM.

In the above assays, (D) $FPR-CH_2Cl$ ("PPACK") was run as a control. Activity of structure (13b) compared to the control was enhanced (see Table 4).

١

Table 4

	IC ₅₀ (nM)		
Enzymes	PPACK	Structure (13b)	
Thrombin	1.5		
Factor VII	200	1.2	
Factor X	165	140	
Protein C	281	385	
Plasmin	699	528	
Trypsin		978	
Urokinase	212	16	
t-PA	508	927	
U 673	106	632	

With respect to prothrombin time (PT), this was determined by incubating (30 minutes at 37°C) 100 µl of control plasma (from Sigma) with 1-5 µl of buffer (0.05 M Tris, 0.15 M NaCl, pH=8.4) or test compound (i.e., PPACK or structure (13b)) in buffer. Then 200 µl of prewarmed (at 37°C for ~10 minutes) thromboplastin with calcium (from Sigma) was rapidly added into the plasma sample. The time required to form clot was manually recorded with a stop watch (see Table 5), and was found to be comparable with PPACK.

15

Table 5

	PT (second)		
Concentration	PPACK	Structure (13b)	
0 (Control)	13	13	
1 pM		13	
10 pM		17	
50 pM		18	
100 pM			
200 pM		23	
500 pM	15	24	
1 nM	18	27	
10 nM	22	30	
20 nM .	25	31	
30 nM			
40 nM	28	31	

10

15

25

30

PT		(second)	
Concentration	PPACK	Structure (13b)	
50 nM		30	
60 nM	30		
80 nM	31	33	

Example 5 Activity of a Representative β-Sheet Mimetic as a Protease Inhibitor

example illustrates the ability of further representative β -sheet mimetic of this invention as an inhibitor for thrombin, to function Factor VII, Factor Χ, urokinase, Tissue Plasminogen Activator, Activated Protein C, plasmin, tryptase and trypsin. -sheet mimetic of structure (20b) above was synthesized according to the procedures disclosed in Example 2, and used in this experiment.

All inhibition assays were performed at room temperature in 96 well microplates using (Model 3550). microplate reader A 1 mM solution of structure (20b) in water served as the stock solution for all the inhibition assays. The hydrolysis of chromogenic 2C substrates was monitored at 405 nm. The reaction progress curves were recorded by reading the plates, typically 60 times with 30 second to 2 minute intervals. Initial rates were determined by unweighted nonlinear least-squares fitting to a first order reaction in GraFit (Erithacus Software Limited, London, England). The determined initial velocities were then nonlinear least-square fitt d against the concentrations of structure (20b) using GraFit The general format of thes to obtain Ki. assays are: 100 ml of a substrate solution and 100 ml of structure (20b) solution were added in a micr plate well, then 50 ml **SUBSTITUTE SHEET (RULE 25)**

of enzyme solution was added to initiate the reaction. Typically, eight structure (20b) concentration points were employed for Ki determination. The values of Ki of structure (20b) against nine serine proteases are tabulated in Table 6.

Thrombin: N-p-tosyl-Gly-Pro-Arg-pNA (from Sigma) was used at 0.5 mM concentration in 1% DMSO (v/v) pH8.0 tris buffer (tris, 50 mM, TWEEN 20, 0.1%, BSA, 0.1%, NaCl, 0.15 M, CaCl₂, 5 mM) as substrate. From structure (20b) stock solution two steps of dilution were made, first, 1:100 dilution in water, then 1:50 dilution in the pH8.0 tris buffer to serve as the first point (200 nM). Seven sequential dilutions were made from the first point for the assay.

Factor VII: S-2288 (from Pharmacia), D-Ile-Pro-Arg-pNA was used at 2.05 mM in the pH 8.0 tris buffer (see thrombin assay). From the stock of structure (20b), a 1:100 dilution was made in the tris buffer. From this concentration point seven more sequential dilutions were 20 made for the assay.

Factor X: Buffer and substrate were the same as used for thrombin assay. A 1:100 dilution was made in the pH8.0 tris buffer to serve as the first point. Seven more dilutions from the first were made for the assay.

Urokinase: Buffer, 50 mM tris, 50 mM NaCl, pH=8.8. S-2444 (from Sigma), pyroGlu-Gly-Arg-pNA at 0.25 mM in buffer was utilized as substrate. 1:10 dilution in buffer was made from the stock of structure (20b) as the first point, then seven more dilutions from the first point were made for the assay.

Tissue Plasminogen Activator (t-PA): Buffer, substrate and the dilution scheme of structure (20b) w re the same as utilized for Factor VII assay.

PCT/US96/04044

Activated Protein C (aPC): Buffer was the same as used in thrombin assay. 1.25 mM S-2366 in the assay buffer was utilized as substrate. Dilutions of structure (20b) were the same as in urokinase assay.

Plasmin: Buffer (see thrombin assay); S-2251 (from Pharmacia), D-Val-Leu-Lys-pNA at 1.25 mM in assay buffer was utilized as substrate. For dilutions of structure (20b) (see urokinase assay).

Tryptase: 0.1 M tris, 0.2 M NaCl, 0.1 mg/ml
10 heparin, pH=8.0 was utilized as buffer. 0.5 mM S-2366
(from Pharmacia), L-pyroGlu-Pro-Arg-pNA in buffer was used
as substrate. From the 1 mM stock of structure (20b), 10
mM solution was made in water, then 1 mM solution was made
in buffer from the 10 mM solution to serve as the first
15 concentration point. From this point seven more dilutions
were made for the assay.

Trypsin: Buffer, substrate and the dilution scheme of structure (20b) were the same as used for thrombin.

20

Table 6

		K _i (nM)	
Enzyme	Source	Assay Conc.(nM)	Structure (20b)
thrombin	bovine plasma	2	0.66
factor VII	human	4	270
factor X	bovine plasma	8	966
urokinase	human kidney	3.7	600
t-PA	human	10	495
APC	human plasma	1	3320
plasmin	bovine plasma	4	415
tryptase	human lung	2	12.4

		K _i (nM)	
Enzyme	Source	Assay Conc.(nM)	Structure (20b)
trypsin	bovine pancreas	5	0.64

As illustrated by the data presented in Table 6 above, structure (20b) functioned as a good thrombin inhibitor, with good specificity against fibrinolytic 5 enzymes.

Example 6 Synthesis of Representative β-Sheet Mimetic

10

This example illustrates the synthesis of a representative β -sheet mimetic of this invention having the following structure (21):

15

Structure (21) was synthesized as follows. solution of 48 (0.859)mg mmol) Nº-FMOC-Nº-Cbz-aethanal-Lys-Ome [synthesized from N°-Cbz-Lys-OMe by the 20 same m thod used for the preparation of structure (5) from Phe-OMe], 15.9 mg (0.0859 mmol) Cys-OEt.HCl, and 13.2 μL (0.0945 . mmol)TEA 0.43 mL CH₂Cl₂ wer SUBSTITUTE SHEET (RULE 26)

20

108

under Ar for 2 hr at room temperature. stirred Bis(bis(trimethylsilyl)amino)tin(II) (39.8 μ L) was added and the reaction stirred overnight. The reaction solution was diluted with 10 mL EtOAc and washed with 6 mL each 10% 5 citrate, water, and brine. The organic layer was dried over Na₂SO₄, filtered, and concentrated. The resulting residue was purified by flash chromatography on silica gel using 40% EtOAc/hexanes to give, after drying in vacuo, mg of colorless oil (23%) as a mixture diastereomers by ${}^{1}H$ NMR (CDCl₃). MS ES(+) m/z 658.2 (MH^{*}, 30), 675.3 (M + Na, 100), 696.1 (M + K, 45).

Example 7

Synthesis of Representative b-Sheet Mimetic

This example illustrates the synthesis of a further representative $\beta\mbox{-sheet}$ mimetic of this invention.

Synthesis of Structure (22):

(22)

Structure (22) was synthesized as follows. To

25 a stirred solution of Cbz-Glu(OBn)-OH (5 g, 13.5 mmol)
with DMAP (270 mg) and methanol (3 ml) in dichloromethane
(100 ml) was added EDCI (3g) at 0°C. After stirring at 0°C
for 3h, the solution was stirred at room temperature (rt)
overnight. After concentration, the residue was taken up

30 into EtOAc (100 ml) and 1N HCl (100 ml). The aqueous phase
was separated and extracted with EtOAc (100 ml). The
SUBSTITUTE SHEET (RULE 26)

combined organic extracts were washed with sat. NaHCO $_3$ (100 ml), brine (100 ml), dried (MgSO $_4$), passed through a short pad of silica gel, and concentrated to provide 4.95 g an oil (95%). The product was pure enough to use for the next reaction without any further purification. ¹H NMR (CDCl $_3$) δ 2.00 (m, 1H), 2.25 (m, 1H), 2.50 (π , 2H), 3.74 (s, 3H, OCH $_3$), 4.42 (m, 1H, CHNH), 5.10 and 5.11 (two s, 4H, CH $_2$ Ph), 5.40 (d, 1H, NH), 7.35 (s, 10H, phenyls); MS CI (isobutane) m/z 386 (M+H $_3$).

10

Synthesis of Structure (23):

(23)

Structure (23) was synthesized as follows: To a stirred solution of L-Glu-OH (4.41g, 30 mmol) with triethylamine (8.4 ml, 60 mmol) in 1,4-dioxane (40 ml) and H₂O (20 ml) was added Boc₂O (7 g, 32 mmol) at rt. After stirring for 1.5h, the solution was acidified with 6N HCl (pH 2), and extracted with EtOAc (3x100 ml). The combined organic extracts were washed with H₂O (100 ml), brine (50 ml), dried (Na₂SO₄), and concentrated to provide an oil (9.5 g). Without further purification, the oil was used in the next reaction.

25 mixture of above oil (9.5 q) with paraformaldehyde (5 g) and p-TsOH·H₂O (400 mg) in 1,2dichloroethane (200 ml) was heated at reflux with a Dean-Stark condenser, which was filled with molecular si ve 4A, for 6h. After addition of EtOAc (100 ml) and sat. NaHCO3 (50 ml), the solution was extracted with sat. NaHCO $_3$ (3x50 30 ml). The combined aqueous extracts were acidified with 6N SUBSTITUTE SHEET (RULE 26)

HCl (pH 2), and extracted with EtOAc (3x100 ml). The combined organic extracts were washed with brine (100 ml), dried (Na₂SO₄), and concentrated to provide an oil. The crude oil was purified by flash chromatography (hexane:EtOAc = 80:20 to 70:30 to 60:40) to provide an oil (4.04 g, 52%) which solidified slowly upon standing. $^{1}\mathrm{H}$ NMR (CDCl₃) δ 1.49 (s, 9H, C(CH₃)₃), 2.18 (m, 1H, -CH₂CH₂), 2.29 1H, CH_2CH_2), 2.52 (m, 2H, $-CH_2CH_2-$), 4.33 (m, 1H, $NHCH_{CH_2}$), 5.16 (d, 1H, J = 4.5 Hz, NCH_2O), 5.50 (br, 1H, NCH_2O); ¹³C NMR (CDCl₃) δ 25.85, 28.29, 29.33, 54.16, 79.10, 10 82.69, 152.47, 172.37, 178.13; MS (ES+) m/z 260 (M+H*), 282 $(M+Na^*)$, 298 $(M+K^*)$.

Synthesis of Structure (24):

15

(24)

Structure (24) was synthesized as follows. To a stirred solution of 1,1,1,3,3,3-hexamethyldisilazane (2.1 ml, 10 mmol) in THF (10 ml) was added n-BuLi (4 ml of 2.5M in hexane, 10 mmol) at 0°C. The resulting solution was stirred at the same temperature for 30 min. After cooling to -78°C, to this stirred solution was added a solution of carboxylic acid (23) (1.02 g, 3.94 mmol) in THF (10 ml) followed by rinsings of the addition syringe with 5 ml THF. The resulting solution was stirred at -78°C for 1h, and PhCH₂Br (0.46 ml, 3.9 mmol) was added. After stirring at -30°C for 3h, to this solution was added 1N HCl (50 ml) and th resulting solution was extracted with EtOAc (100 ml). The organic extract was washed with brine (50 ml), SUBSTITUTE SHEET (RULE 26)

dried (Na_2SO_4) , and concentrated to provide an oil. crude product was purified flash chromatography by (hexane:EtOAc = 80:20 to 60:40 to 50:50) to provide a foamy solid (1.35 g, 98%): ^{1}H NMR (CDCl₃) δ 1.55 and 1.63 5. (two s, 9H, ratio 1.5:1 by rotamer, $OC(CH_3)_3$), 2.2-2.4 (m, 3H, $-CH_2CH_2-$), 2.6-2.9 (set of m, 1H, $-CH_2CH_2-$), 3.04 (d, 1H, J = 13.5Hz, -CH₂Ph), 3.33 and 3.58 (two d, 1H, J = 13Hz, ratio 2:1, -CH₂Ph), 4.03 (two d, 1H, J = 4Hz, A of ABq, $-NCH_2O-$), 4.96 (two d, 1H, J=4Hz, B of ABq, $-NCH_2O-$); MS $(ES-) m/z 348 (M-H^*)$. 10

Synthesis of Structure (25):

15 (25)

Synthesis of structure (25) was carried out as follows. To a stirred solution of carboxylic acid (24) (1.05 g, 3.0 mmol) in dry THF (5 ml) was added 1,1'-carbonyldimidazole (500 mg, 3.1 mmol) at rt. The resulting solution was stirred at rt for 30 min. The solution of acyl imidazole was used for the next reaction without purification.

Meanwhile, to a stirred solution of 1,1,1,3,3,3-hexamethyldisilazane (1.6 ml, 7.5 mmol) in THF (5 ml) was added n-BuLi (3 ml of 2.5 M solution in hexane, 7.5 mmol) at 0°C. After stirring at the same temperature for 30 min, the solution was cooled to -78°C. To the stirred solution was added a solution of Cbz-Glu(OBn)-OMe (1.16 g, 3 mmol) in THF (5 ml) followed by rinsings of the addition syringe with 2 ml THF. The resulting solution was stirred at th SUBSTITUTE SHEET (RULE 26)

same temperature for 15 min. To this stirred solution was added the above acyl imidazole in 3 ml THF. After stirring 30 min. at -78°C, to this solution was added sat. NH₄Cl (50 ml) and extracted with EtOAc (2x75 ml). The combined organic extracts were washed with sat. NaHCO₃ (50 ml), brine (50 ml), dried (Na₂SO₄), passed through a short pad of silica gel, and concentrated to provide an oil. The crude product was purified by flash chromatography (hexane: EtOAc = 90:10 to 80:20 to 70:30 to 60:40) to provide an oil (1.48 g, 69%): MS (ES+) m/z 734.4 (M+NH₄').

Synthesis of Structure (26a):

(26a)

15

20

25

30

5

10

Structure (26a) was synthesized as follows. stirred solution of above starting keto ester (25) (530 mg, 0.7mmol) in EtOH/AcOH (10/1 ml) was treated with 10% Pd/C (ca. 100 mg) under 20 atm pressure of H_2 for 2 days. After filtration through a short pad of Celite, the filtrate was concentrated and dissolved in EtOAc (50 ml). The solution was washed with 1N HCl (30 ml), sat. NaHCO3 (30 ml), brine (30 ml), dried (Na₂SO₄), and concentrated to The crude product was purified by flash provide an oil. chromatography (hexane: EtOAc = 80:20 to 60:40 to 50:50 to 20:80 to 0:100) to provide a foamy solid (95 mg, 34%). TLC (EtOAc) R_f 0.68; NMR (CDCl₃) δ 1.38 (two s, 9H, $OC(CH_3)_3$, 1.63 (s, 1H), 1.75 (m, 2H), 2.05 (m, 5H), 2.1-2.3 (set of m, 1H), 3.00 (d, 1H, J = 14 Hz, CH_2Ph), 3.21 (d, 1H, J = 13.5 Hz, CH_2Ph), 3.74 (collapsed two s, 4H, OCH_3 and NCH), 4.53 (d, 1H, J = 9.5 Hz), 5.01 (br, 1H, NH); SUBSTITUTE SHEET (RULE 26)

MS (ES+) m/z 403 (M+H *), 425 (M+Na *). Stereochemistry was assigned by 2D NMR.

Synthesis of Structure (27a):

5

(27a)

Structure (27a) was synthesized as follows. To a solution of 28 mg (0.070 mmol) of the bicyclic ester (26a) stirred in 1 ml THF at room temperature was added 0.14 ml 1.0 M aqueous lithium hydroxide solution. The mixture was stirred vigorously for 20 h then quenched with 5% aqueous citric acid (1 ml). The mixture was extracted with ethyl acetate (3 x 25 ml) then the combined extracts were washed with water and brine and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate under vacuum gave 26 mg of white foam, used without further purification.

Synthesis of Structure (28a):

(28a)

Structure (28a) was synthesized as follows. 5 bicyclic acid (27a) 126 mg, 0.067 mmol), benzothiazolylarginol trifluoroacetic acid salt (structure (17) 61 mg, 0.083 mmol) EDC (21 mg, 0.11 mmol) and HOBE hydrate (16 mg, 0.10 mmol) were dissolved in THF (5 ml) 10 and diisopropylethylamine (0.34 ml, 1.9 mmol) was added. The mixture was stirred at room temperature for 15h then diluted with ethyl acetate and extracted sequentially with 5% aqueous citric acid, saturated aqueous bicarbonate, water and brine. The organic solution was 15 dried over anhydrous sodium sulfate, filtered concentrated under vacuum to 60 mg of a yellow glass. ¹H NMR analysis indicated a mixture of four diastereomeric amides. MS (ES+): m/z 898 (M + Na^{*}).

25

Synthesis of Structure (29a):

(29a)

β-sheet mimetic of structure (29a) synthesized as follows. The crude hydroxybenzothiazole (28a) (60 mg, 0.068 mmol) was dissolved in CH_2Cl_2 (2 ml) and Dess-Martin periodinane (58 mg, 0.14 mmol) was added. The mixture was stirred at room temperature for 6h then 10 diluted with ethyl acetate and stirred vigorously with 10% aqueous sodium thiosulfate for 10 minutes. The organic solution separated and extracted with was saturated aqueous sodium bicarbonate, water and brine then dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded 42 mg cf yellow 15 ¹H NMR analysis indicated a mixture of glass. diastereomeric ketobenzothiazoles.

The ketobenzothiazole (42 mg, 0.048 mmol) dissolved in 95% aqueous trifluoroacetic (0.95 ml) acid 20 and thioanisole (0.05 ml) was added. The resulting dark solution was stirred for 18 hours at room temperature then concentrated under vacuum to a dark brown gum. Thwas triturated with diethyl ether and centrifuged. The solution was removed and the solid remaining was triturated and collected as above two more times. The yellow solid was dried in a vacuum d siccator for 2 hours

then purified by HPLC to give 1.4 mg of the deprotect d product. MS (ES+): 562.4 (M + H $^{\circ}$). HPLC: $(t_a=21.17 \text{ min.})$

Synthesis of Structure (26b):

5.

(26b)

Structure (26b) was synthesized as follows. A stirred solution of above starting keto ester (25) (615 mg, 0.86 mmol) in MeOH/AcOH (10/1 ml) was treated with 10 % Pd/C (ca. 60 mg) under 20 atm pressure of H₂ for 3 days. After filtration through a short pad of Celite, the filtrate was concentrated to provide an oil. The crude product was purified by flash chromatography (hexane: EtOAc =80: 20 to 60:40 to 50:50 to 0:100) to collect the more polar fraction (50 mg). Rf 0.12 (hexane: EtOAc=60:40); MS (ES+) m/z 433 (M+H+).

Above oil was treated with p-TsOH·H₂O (5 mg) in 1,2-dichloroethane (10 ml) at reflux temperature for 2 days. After concentration, the oily product was purified by preparative TLC (hexane: EtOAc = 80:20 to 60:40) to give an oil (10 mg). TLC Rf 0.36 (hexane: EtOAc =60:40); 'H NMR (CDCl₃) δ 1.43 (s, 9H), 1.66 (m, 3H), 1.89 (m, 3H), 2.14 (m, 1H), 2.75 (m, 1H), 2.98 (m, 1H, CHN), 3.72 (s, 3H, Me), 4.30 (m, 1H), 5.59 (d, 1H, NH), 7.1-7.3 (m, 5H, phenyl); MS CI(NH₃) 403.2 (M+H+). Stereochemistry was assign d by 2D NMR.

Synthesis of Structure (28b):

(28b)

5 Structure (28b) was synthesized as follows. a solution of 12 mg (0.030 mmol) of the bicyclic ester (26b) stirred in THF 1 ml at room temperature was added 0.060 ml 1.0 M aqueous lithium hydroxide solution. The mixture was stirred vigorously for 25h then quenched with 5% aqueous citric acid (1 ml). The mixture was extracted 10 with ethyl acetate $(3 \times 25 \text{ ml})$ then the combined extracts were washed with water and brine and dried over anhydrous sodium sulfate. Filtration and concentration of the filtrate under vacuum gave 19 mg of white foam. 15

The foam, benzothiazolylarginol trifluoroacetic acid salt (30 mg, 0.041 mmol) EDC (10 mg, 0.052 mmol) and HOBt hydrate (9 mg, 0.059 mmol) were dissolved in THF (2 ml) and diisopropylethylamine (0.026 ml, 0.15 mmol) was The mixture was stirred at room temperature for added. 20 30h ther. diluted with ethyl acetate and extracted sequentially with 5% aqueous citric acid, Saturated aqueous sodium bicarbonate, water and brine. The organic solution was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to 28 mg of a yellow glass. ¹H NMR analysis indicated a mixture of four diastereomeric

amides. MS (ES+): m/z 898 (M + Na⁺) SUBSTITUTE SHEET (RULE 26)

25

Synthesis of Structure (29b):

(29b)

5

15

Structure (29b) was synthesized as follows. crude hydroxybenzothiazole (28b) (28 mg) was dissolved in CH_2Cl_2 (2 ml) and Dess-Martin periodinane (29 mg, 0.071 mmol) was added. The mixture was stirred at room 10 temperature for 18h then diluted with ethyl acetate and stirred vigorously with 10% aqueous sodium thiosulfate for The organic solution was separated and extracted with saturated aqueous sodium bicarbonate, water and brine then dried over anhydrous sodium sulfate and Concentration of the filtrate under vacuum filtered. yielded 32 mg of yellow glass. $^{1}\mathrm{H}$ NMR analysis indicated a mixture of two diastereomeric ketobenzothiazoles.

The ketobenzothiazole (32 mg) was dissolved in 95% aqueous trifluoroacetic (0.95 ml) acid and thioanisole 20 (0.05 ml) was added. The resulting dark solution was stirred for 20 hours at room temperature then concentrated under vacuum to a dark brown gum. The gum was triturated with diethyl ether and centrifuged. The solution was removed and remaining solid was th triturated 25 collected as above two mor times. Th yellow solid was dried in a vacuum desiccator for 2 hours th n purified by HPLC to give 1.3 mg of th deprotected product. MS (FB+):

562.36 (M + H *); HPLC: t_R =21.51 min. (Gradient 0 to 90% 0.1% TFA in CH $_3$ CN / 0.1% TFA in H $_2$ O over 40 min.)

Example 8

Activity of Representative β-Sheet Mimetic as a Protease Inhibitor

This example illustrates the ability of a further representative β -sheet mimetic of this invention to function as an inhibitor for thrombin, Factor VII, Factor X, Factor XI, and trypsin. The β -sheet mimetics of structures (29a) and (29b) above were synthesized according to the procedures disclosed in Example 7, and used in this experiment.

The proteinase inhibitor assays were performed as described in Example 5 except as described below for Factor XI. The results are presented in Table 7.

Factor XI. The same buffer was utilized in this assay as in the thrombin assay. 1 mM S-2366 (from 20 Pharmacia), L-pyroGlu-Pro-Arg-pNA, solution in water was used as substrate. From a lmM stock solution of structure (29a) or (29b) in water, a 1:10 dilution was made in buffer. From this 100 µM solution, seven serial 1:5 dilutions were made in buffer for assay.

25

Table 7

	K,	nM)
Enzymes	Structure (29a)	Structure (29b
Thrombin	10.4	0.085
Trypsin	0.54	0.20
Factor VII	1800	-
Factor X	4600	17
Factor XI	391	_

Example 9

Activities of Representative β-Sheet Mimetics as a Protease Inhibitor

This example illustrates the ability of further representative β -sheet mimetics of this invention to function as an inhibitor for thrombin, Factor VII, Factor X, Factor XI, tryptase, aPC, plasmin, tPA, urokinase and trypsin. The β -sheet mimetics of structures (20) and (29b) above were synthesized according to the procedures disclosed in Examples 2 and 7, respectively, and used in this experiment.

The proteinase inhibitor assays were performed as described in Example 5 except as described in Example 8 for Factor XI. The results are presented in Table 8.

1

Table 8

	Structure	(200)	Structure	(29b)
	H'M H'	NH NH	H,N ,	H O N N N N N N N N N N N N N N N N N N
	Ki (nM)	Selectivity •	Ki (nM)	Selectivity
Thrombin	0.65	1	0.085	1
Trypsin	0.62	0.95	0.23	
actor VII	270	415	200	2.7
actor X	222	342	19.3	2353
actor XI	27.0	42		227
ryptase	12.3	18.9	75.3	886
PC	3320		9.0	106
lasmin		5108	1250	14706
	415	638	251	2953
PA	495	762	92.9	1093
rokinase	600	923	335	3941

^{*}selectivity is the ratio of Ki of an enzyme to the Ki of thrombin

$\frac{\text{Example 10}}{\text{Synthesis of Representative }\beta\text{-Sheet Mimetics}}$

This example illustrates the synthesis of a further representative β -sheet mimetic of this invention.

Synthesis of Structure (30):

(30)

5

Structure (30) was synthesized as follows. n-Butyllithium (700 μL , 1.75 mmol, 2.5M in hexanes) was added over 5 min to a solution of tris(methylthio)methane (256 μ L, 1.95 mmol) in THF (1 ml) at -78 °C. The mixture was stirred for 40 min then treated with a solution of 10 bis-Boc-argininal (structure (16) from Example 2) (100 mg, 1.75 mmol) in 2 ml THF, dropwise, over a period of 5 min. After stirring for 1.5 h, the reaction was quenched with saturated NH₄Cl solution and allowed to warm to room temperature. The layers were separated and the aqueous 15 layer extracted with EtOAc (3x), washed with brine (1x), dried (Na₂SO₄) and concentrated. Purification by flash chromatography (EtOAc:Hexane 1:4) yielded 93 mg (73%) of the orthothiomethyl ester (structure (30)) and 8 mg of recovered aldehyde (structure (16)). ¹H NMR (500 MHz, 20 CDC1₃.) \hat{o} 9.80 (s, 1H), 8.32 (t, J = 5.0 Hz, 1H), 6.54 (s, 1H), 5.23 (d, J = 9.0 Hz, 1H), 4.0 (m, 1H), 3.84 (s, 3H), 3.64 (br s, 1H), 3.38 (br s, 1H), 3.31 (m, 2H), 2.70 (s, 3H), 2.62 (s, 3H), 2.19 (s, 9H), 2.14 (s, 3H), 1.68-1.50 25 (m, 4H), 1.49 (s, 9H), 1.43 (s, 9H).

Synthesis of Structure (31):

(31)

5

Structure (31) was synthesized as follows. mixture of 77 mg (0.11 mmol) of the orthothiomethyl ester (structure (30)), 117 mg (0.43 mmol) of mercuric chloride, 10 and 39 mg (0.18 mmol) of mercuric oxide in 2.5 ml of 12:1 methanol/water was stirred at rt for 4 h. The mixture was filtered through Celite and the residue washed with EtOAc The filtrate was diluted with water and extracted with EtOAc (3x). The organic layer was washed twice with 75% NH4OAc/NH4Cl, then with NH4Cl and dried (Na2SO4). solvent was removed in vacuo and the residue purified by flash chromatography (EtOAc/Hex, 1:3) to give 48 mg (72%) of the two diastereomers of structure (31) in a 1:2.7 ratio. ^{1}H NMR (500 MHz, CDCl₃) (major diastereomer) δ 9.80 (s, 1H), 8.33 (t, J = 5.0 Hz, 1H), 6.54 (s, 1H), 4.66 (d, J = 10.5 Hz, 1H), 4.08 (dd, J = 5.0, 2.0 Hz, 1H), 3.97 (m,1H), 3.84 (s, 3H), 3.77 (s, 3H), 3.30 (m, 2H), 3.06 (d, J = 5.0 Hz, 1H), 2.70 (s, 3H), 2.63 (s, 3H), 2.14 (s, 3H), 1.68-1.50 (m, 4H), 1.49 (s, 9H), 1.40 (s, 9H); MS (ES+) 25 m/z 631.5 (M+H^{*}).

Synthesis of Structure (32):

(32)

5

Structure (32) was synthesized as follows. A solution of 32 mg of the methyl ester (structure (31)) (0.051 mmol) in THF/water (4 ml, 1:3) was treated with 5 mg (0.119 mmol) of LiOH·H₂O. After stirring for 45 min, the reaction was diluted with 5% citric acid and extracted with ethyl acetate (3x). The combined extracts were washed with brine, dried over Na₂SO₄ and concentrated to give 30 mg (96%) of structure (32) as a white solid. The product was used without further purification. ¹H NMR 500 MHz, CDCl₃) δ 9.60 (br s, 1H), 8.29 (br s, 1H), 6.54 (s, 1H), 5.62 (br s, 1H), 4.08 (m, 1H), 3.82 (s, 3H), 3.27 (br s, 3H), 2.69 (s, 3H), 2.62 (s, 3H), 2.13 (s, 3H), 1.65-1.50 (m, 4H), 1:48 (s, 9H), 1.37 (s, 9H); MS (ES-) m/z 615.5 (M-H*).

Synthesis of Structure (33):

(33)

5

Structure (33) was synthesized as follows. solution of the compound of structure (32) (29 mg, 0.047 mmol), HOBt (8 mg, 0.056 mmol) and EDC (11 mg, 0.056 mmol) 10 in THF (5 ml), phenethylamine (7 ml, 0.056 mmol) was added followed by disopropylethylamine (12 μL , 0.071 mmol). The reaction mixture was stirred at rt overnight and diluted with 5% citric acid. The organic layer was separated and the aqueous phase extracted with EtOAc (3x). 15 The combined extracts were washed with a saturated solution of NaHCO3, brine, dried over Na2SO4, and filtered. After concentration the crude product was purified by chromatography (EtOAc/Hex, 1:1) to give 26 mg (77%) of structure (33) over two steps. ^{1}H NMR (500 MHz, CDCl₃) δ 20 9.84 (s, 1H), 8.34 (t, J = 5 Hz, 1H), 7.28 (m, 3H), 7.21(m, 2 H), 7.04 (m, 1H), 6.55 (s, 1H), 5.16 (d, J = 8.5 Hz, 1H), 4.56 (d, J = 5 Hz, 1H), 4.11 (dd, J = 5.0, 3.0 Hz, 1H), 3.98 (m, 1H), 3.84 (s, 3H), 3.66 (m, 1H), 3.51 (m, 2H), 3.17 (m, 1H), 2.81 (t, J = 7.5 Hz, 2H), 2.71 (s, 3H), 2.65 (s, 3H), 2.14 (s, 3H), 1.68-1.52 (m, 4H), 1.49 (s, 25 9H), 1.39 (s, 9H); MS (FAB+) m/z 720.6 (M+H*) (FAB-) m/z718.5 (M-H').

Synthesis of Structure (34):

5

(34)

Structure (34) was synthesized as follows. To a solution of phenethylamide (structure (33), 25 mg, 0.035 mmol) in THF (5 ml) was added 18 mg of p-toluenesulfonic acid monohydrate (0.093 mmol). The reaction mixture was stirred at rt overnight to give a baseline spot by TLC. The solution was concentrated in vacuo, and the residue washed twice with ether removing excess pTsOH to give structure (34) as a yellowish-white solid, which was used without further purification. H NMR (500 MHz, CDCl₃) was consistent with the expected product, however, individual peak assignment was difficult due to broadening. MS (ES+) m/z 520.4 (M+H*).

Structure (34) was reacted with structure (9a)

20 of Example 1 (in an analogous manner to the procedure described in Example 2 for the synthesis of structure (18)), followed by oxidation and deprotection (in an analogous manner as described with respect to the oxidation and deprotection of structures (18) and (19), respectively) to provide structure (35) as identified in Table 9 below.

Synthesis of Representative β -Sheet Mimetics

This example illustrates the synthesis of a 5 further representative β -sheet mimetic of this invention.

Synthesis of Structure (36):

10

(36)

Structure (36) was synthesized in an analogous fashion to compound (34) starting with benzylamine and structure (32). ¹H NMR (500 MHz, CDCl₃) was consistent with the expected product, however, individual peak assignment was difficult due to broadening. MS (FAB+) m/z 506.4 (M+H*).

Structure (36) was reacted with structure (9a)

20 of Example 1 (in an analogous manner to the procedure described in Example 2 for the synthesis of structure (18)), followed by oxidation and deprotection (in an analogous manner as described with respect to the oxidation and deprotection of structures (18) and (19), respectively) to provid structure (37) as identified in Table 9 below.

Synthesis of Representative β -Sheet Mimetics

This example illustrates the synthesis of a further representative β -sheet mimetic of this invention.

Synthesis of Structure (38):

10

(38)

Structure (38) was synthesized in an analogous fashion to structure (34) starting with p-chlorophenethylamine and structure (32). ¹H NMR (500 MHz, CDCl₃) was consistent with the expected product, individual peak assignment was difficult due to broadening. MS (ES+) m/z 554.5 (M+H*).

Structure (38) was reacted with structure (9a)

20 of Example 1 (in an analogous manner to the procedure described in Example 2 for the synthesis of structure (18)), followed by oxidation and deprotection (in an analogous manner as described with respect to the oxidation and deprotection of structures (18) and (19), respectively) to provide structure (39) as identified in Table 9 below.

Synthesis of Representative B-Sheet Mimetics

5

This example illustrates the synthesis of a further representative β -sheet mimetic of this invention.

Synthesis of Structure (40):

10

(40)

Structure (40) was synthesized in an analogous fashion to compound (34) using p-methoxyphenethylamine and structure (32). ^{1}H NMR (500 MHz, CDCl₃) was consistent with the expected product, however, individual assignment was difficult due to broadening. MS (ES+) m/z 550.5 (M+H*).

of Example 1 (in an analogous manner to the procedure described in Example 2 for the synthesis of structure (18)), follow d by oxidation and deprotection (in an analogous manner as described with respect to the oxidation and deprotection of structures (18) and (19), respectively) to provid structur (41) as identified in Table 9 b low.

Synthesis of Representative β -Sheet Mimetics

5

This example illustrates the synthesis of a further representative β -sheet mimetic of this invention.

Synthesis of Structure (42):

10

(42)

Structure (42) was prepared as follows. 15 ml round-bottomed flask were added CH₂Cl₂ (10 ml), methyl 2,3-dimethylaminopropionate dihydrochloride (19.9)0.103 mmol, 1.5 eq), and diisopropylethylamine (53 ml, mmol, 4.4 eq).This suspension was magnetically at room temperature for 1 h at which time was 20 added the compound of structure (30) (50 mg, 0.068 mmol, 1 eq), mercury(II)chloride (82.4 mg, 0.304 mmol, 4.4 eq), and mercury(II) oxide (25.7 mg, 0.120 mmol, 1.7 eq). resulting yellow suspension was stirred for 16.5 h during which time the suspension turned gray. The reaction was 25 diluted with CH_2Cl_2 (50 ml), washed with saturated aqueous NH_4Cl (5 ml), saturated aqueous NaCl (5 ml) and dried ov r The cloudy suspension was filtered and the solvent Na₂SO₄. The white solid was purifi d on removed in vacuo.

preparative thin-layer chromatography to produce the imidazoline structure (42) (25.3 mg, 52% yield) as a clear amorphous solid.: R_f 0.11 (10% MeOH/CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 9.82 (s, 0.6H, N'H, mixture of tautomers), 9.78 (s, 0.4H, N"H), 8.35 (dd, J=4.3, 11 Hz, ¹H, N-5), 6.54 (s, 1H, ArH), 5.08 (d, J=11 Hz, 1H, CHOH), 4.52 (m, 1H, imidazoline CH₂), 4.38 (d, J=21 Hz, 1H), 3.8-4.0 (m, 2H), 3.86 (s, 3H, CO₂CH₃), 3.767 (s, 3H, ArOCH₃), 3.5-3.7 (m, 2H, C-5 CH₂), 3.16-3.27 (m, C-5 CH₂), 2.70 (s, 3H, ArCH₃), 1C 2.63 (s, 3H, ArCH₃), 2.14 (s, 3H, ArCH₃), 1.5-1.7 (m, 4H, C-3 and C-4 CH2), 1.49 (s, 9H, Boc), 1.46 (s, 9H, Boc); IR (film) 1725.56, 1685.68, 1618.36, 1585.45, 1207.09, 1148.85 cm⁻¹; MS (ES+) m/e 699.4 (M+H).

Synthesis of Structure (43):

(43)

20 Structure (43) was synthesized as follows. 25 ml round-bottomed flask was placed the compound of structure (42) (230 mg, 0.33 mmol), CHCl $_3$ (5 ml) and MnO $_2$ (500 mg, 5.75 mmol, 17.4 eq). After stirring for 5 h the susp nsion was filtered and the solid washed with The solvent was removed in vacuo and the 25 methanol. residue was dissolved in ethyl acetate (5 ml) and methanol (1 ml) and a fresh portion of MnO_2 (500 mg) was introduced and the reaction stirred for 15 h at ro m t mperature.

The solid was filtered and the solvent removed in vacuo. The residue was purified via column chromatography on silica gel, eluting with 1:1 ethyl acetate:hexane, then pure ethyl acetate, then 1:9 methanol:ethyl acetate to 5 obtain the desired product (structure (43), 190 mg, 83% as an amorphous solid.: yield) R_f 0.64 (70:30-ethyl acetate:hexane); 1 H NMR (500 MHz, CDCl₃) δ 10.70 (bs, 1H, imidazole NH), 9.70 (s, 1H), 8.28 (s, 1H), 7.84 (s, 1H), 6.54 (s, 1H, ArH), 5.35 (m, 1H, aH), 5.25 (s, 1H, BocNH), 3.926 (s, 3H), 3.840 (s, 3H), 3.15-3.40 (m, 2H), 2.682 (s, 3H), 2.133 (s, 3H), 1.52-1.70 (m, 4H), 1.470 (s, 9H), 9H); IR (film) 1724.68, 1619.03, 1.424 (s. 1151.93, 1120.61 cm⁻¹; MS (ES+) m/e 695.2 (M+H⁺, 22), 717.2 (M+Na*, 100).

Synthesis of Structure (44):

Structure (44) was synthesized by the same 20 method used to construct structure (33) to structure (34). The product was used in the coupling without further purification.

Structure (44) was reacted with structure (9a) of Example 1 (in an analogous manner to the procedure 25 described in Example 2 for the synthesis of structure (18)), followed by deprotection (in an analogous manner as d scribed with r spect to the deprotection of structure (19) respectively) to provide structure (45) as identified SUBSTITUTE SHEET (RULE 28)

in Table 9 below. In the preparation of structure (45), the coupling step was performed with the carbonyl compound of structure (44), rather than with the analogous hydroxy compound.

5

Example 15

Synthesis of Representative β -Sheet Mimetics

This example illustrates the synthesis of a further representative β -sheet mimetic of this invention.

Synthesis of Structure (46):

15

Structure (46) was synthesized in an analogous fashion to structure (17) starting from structure (16) and thiazole. This compound was used in the coupling step without further purification.

of Example 1 (in an analogous manner to the procedure described in Example 2 for the synthesis of structure (18)), followed by oxidation and deprotection (in an analogous manner as described with respect to the oxidation and deprotection of structures (18) and (19), respectively) to provide structure (47) as identified in Table 9 below.

Synthesis of Representative β -Sheet Mimetics

5

This example illustrates the synthesis of a further representative β -sheet mimetic of this invention.

Synthesis of Structure (48):

10

To solution of α -Boc- β -Fmoc-2,3diaminopropionic acid (818 mg, 1.92 mmol) stirred in THF 15 (5 ml) at -25°C was added 4-methylmorpholine (0.23 ml, 2.1 mmol) followed by isobutylchloroformate (0.25 ml, mmol). The resulting suspension was stirred for 5 minutes and then filtered with the aid of 5 ml of THF. filtrate was cooled in an ice/water bath then sodium 20 borohydride (152 mg, 0.40 mmol) dissolved in water (2.5 ml) was added dropwise. The mixture was stirred for 15 minutes then water (50 ml) was added and the mixture was extracted with CH_2Cl_2 (3 x 50 ml). The combined extracts were washed with brine, dried over anhydrous sodium 25 sulfate and filtered. Concentration of the filtrate under vacuum yielded a pale yellow solid that was purified by

flash chromatography (50% ethyl acetate/hexanes eluent) to give 596 mg of the alcohol as a white solid.

The alcohol (224 mg, 0.543 mmol) was dissolved in methylene chloride and Dess-Martin periodinane (262 mg, 0.64 mmol) was added. The mixture was stirred at room temperature for 1 h then diluted with ethyl acetate (50 ml) and extracted sequentially with 10% aqueous Na₂S₂O₃, saturated aqueous NaHCO₃, and brine. The organic solution was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to a white solid. Purification of the solid by flash chromatography yielded 169 mg of the aldehyde structure (48) as a white solid.

Synthesis of Structure (49):

15

Structure (49) was synthesized in an analogous fashion to structure (17) starting from structure (48) and 20 benzothiazole. This compound was used as a 1:1 mixture of diastereomers in the coupling step (described below) without further purification. MS (EI+): m/z 446.4 (M+H*).

Synthesis of Structure (50):

5 Structure (49) and bicyclic acid structure (9a) (27 mg, 0.069 mmol) and HOBt hydrate (71 mg, 0.46 mmol) were dissolved in THF (1 ml) and disopropylethylamine (0.0.059 ml, 0.34 mmol) was added followed by EDC (19 mg, 0.099 mmol). The mixture was stirred at room temperature 10 for 20 h then diluted with ethyl acetate and extracted sequentially with 5% aqueous citric acid, aqueous sodium bicarbonate, water and brine. The organic solution was dried over anhydrous sodium sulfate, filtered and concentrated under vacuum to 61 mg of a yellow foam. 15 ¹H NMR analysis indicated a mixture of diastereomeric amides.

The foam was dissolved in CH3CN and diethylamine was added. The solution was stirred at room temperature for 30 minutes then concentrated under vacuum to a yellow The foam was rinsed with hexanes and dissolved in In a separate flask, carbonyldiimidazole DMF (0.5 ml). (16 mg, 0.99 mmol) and quantitine hydrochloride (10 mg, 0.10 mmol) were dissolved in DMF (1 ml) and diisopropylethylamine (0.035 ml, 0.20 mmol) was added 25 follow d by DMAP (1 mg). The solution was stirr d for 1.5 h at ro m temperature th n the solution of amine was added

and stirring was continued for 16 h. The solution was concentrated under vacuum then water was added to the residue and the mixture was extracted with ethyl acetate (3 x 25 ml). The combined extracts were washed with brine, dried over anhydrous sodium sulfate and filtered. Concentration of the filtrate under vacuum yielded 58 mg of structure (50) as a yellow foam. MS (ES+): m/z 680.6 (M+H*).

Structure (50) was oxidized to provide the 10 corresponding ketone of structure (51).

Example 17

Activities of Representative β-Sheet Mimetics as a Protease Inhibitor

15

This example illustrates the ability of further representative β -sheet mimetics of this invention to function as an inhibitor for thrombin, Factor VII, Factor X, Factor XI, tryptase, aPC, plasmin, tPA, urokinase thrombin thrombomodulin complex and trypsin. The β -sheet mimetics of the structures listed in Table 9 had the inhibition activities shown in Table 10.

The proteinase inhibitor assays were performed as described in Example 9. The assay for thrombin-25 thrombomodulin complex was conducted as for thrombin except that prior to the addition of inhibitor and substrate, thrombin was preincubated with 4 nM thrombomodulin for 20 minutes at room temperature.

Table 9

Structures, Synthetic Precursors, and Physical Data for Various Serine Protease Inhibitors

					_	
Struc- ture Number	B⁴	R,	R.	Precursor OH N Precursor	M.S. (ES+)	HPLC* R.T. (min)
(47)	N	H ₂ N - NH	\$ N	(46)	513.5 (M+H [*])	15.9
(20b)	N	н д н н н н н н н н н н н н н н н н н н		(17)	563.5 (M+H ⁻)	17.9
(37)	N	н ₂ и — ин	NH NH	(36)	563.6 (M+H ⁺)	16.9
(39)	2	H ₂ NH H ₁ NH	□ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(38)	611.3 (M+H*)	19.8
(29a) ⁴	CH	H ₂ M NH	→ N S S S S S S S S S S S S S S S S S S	(17)	562.4 (M+H*)	21.2

Struc- ture Number		R4	R.	Precursor OH N R ₆	M.S. (ES+)	HPLC* R.T. (min)
(35)	N	ни мен	J NH	(34)	577.4 (M+H*)	18.1
(45)	N	на на на	0-сн3	(44)	554.2 (M+H*)	15.7
(51)	N	NH O NH NH	S-N	(49)	578.3 (M+H')	22.3
(29b)	CH	H ₂ N NH	~ "\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\"\	(17)	FAB 562.4 (M+H')	21.5
(41)	2	н2и мн	₩	(40)	607.4 (M+H')	18.2
(13)	N	H ₂ NH	₹ cī	Arg(Mtr)-CH ₃ Cl	477.9 (M+H ⁺)	14.9

The stereochemistry of the template for B = CH is

(3R, 6R, 9S) except where noted (see footnote ε).

Template stereochemistry is (3S, 6R, 9S).

*HPLC was performed on a rev rse phase C-18 column 5 using a gradient of 0-90% acetonitrile/water, 0.1% TFA.

Table 10

Ki (M) Inhibition Activity of Various Compounds Against Serine Proteases

Structure Number	Thrombin	Factor VII	Factor X	Factor XI	Urokinase	T.T.C.	42 4.	Plasmin	t PA:	Trypsin	Tryptase
35	7.105-11	1.648-08	3.458-07							2.70E-11	
37	7.32E-11									7.73E-11	
767	8.50E-11	8.50E-11 2.00E-07	1.935-08	7.53E-08	3.35E-07	8.80E-11	1.2SE-06	2.51E-07	9.29E-08	2.30E-10	9.00E-09
39	3.106-10										
11	4.50E-10										
30b	6.50E-10	2.705-07	2.22E-07	2.70E-08	6.00E-07		3.32E-06	4.158-07	4.95E-07	6.20E-10	1.24E-08
4.3	2.405-09	2.405-09 9.685-07	1.50E- 06							1.90E-09	
15	5.40E-09	2.968-05	J. 80£-05	1.24E-06		6.90E-09	6.90E-09 2.56E-05 2.38E-05	2.38E-05	1.72E-05 5.24E-08	5.24E-08	1.65E-06
18	7.25E-09	4.26E-06	S. 70E-0S	1.73E-06						3.796-08	
79₽	1.048-08	1.77E-06	4.65E-06"	3.91E-07						S. 40E-10	
330	1.20E-09	1.40E-07	3.86E- 07		9.27E-07		5.28E-07	9. 78E-07	5.28E-07 9.78E-07 6.32E-07 1.60E-07	1.60E-07	

* Thrombin thrombomodulin complex, * activated Protein C, * tissue Plasminogen Activator, † 1C50, * bovine

Example 18

Effect of Representative β-Sheet Mimetics on Platelet Deposition in a Vascular Graft

The effect of compounds of the invention on 5 platelet deposition in a vascular graft, was measured according to the procedure of Hanson et al. "Interruption acute platelet-dependent thrombosis by synthetic antithrombin D-phenylalanyl-L-prolyl-L-arginyl chloromethylketone" Proc. Natl. Acad. Sci., USA 85:3148-10 3188, (1988), except that the compound was introduced proximal to the shunt as described in Kelly et al., Proc. Natl. Acad. Sci., USA 89:6040-6044 (1992). The results are shown in Figures 1, 2 and 3 for structures (20b), (39) 15 and (29b), respectively.

Example 19

Synthesis of Representative β -Sheet Mimetics

20

This example illustrates the synthesis of a further representative β -sheet mimetic of this invention having the structure shown below.

25

(52)

10

Structure (52) may be synthesized employing the following intermediate (53) in place of intermediate (16) in Example 2:

$$CBZ-N$$

$$NH-BOC$$
(53)

Intermediate (53) may be synthesized by the following reaction scheme:

Alternatively, intermediate (53) may be synthesized by th following reaction scheme:

SUBSTITUTE SHEET (RULE 26)

Example 20 Representative β-Sheet Mimetics Which Bind to MHC I and MHC II

The following structures (54), (55) and (56) were synthesized by the techniques disclosed herein.

The ability of structures (54) and (55) to bind to MHC I molecules can be demonstrated essentially as described by Elliot et al. (Nature 351:402-406, 1991).

Similarly, the ability of structure (56) to bind to MHC II molecules can be demonstrated by the procedure of Kwok et al. (J. Immunol. 155:2468-2476, 1995).

(54)

(55)

MS ES(+) 510 (MH'); HPLC Rt 22.37' (0-90% acetonitrile/H₂O, 0.1% TFA)

(99)

MS ES(-) 704.9 (M-3H')³⁻; HPLC R_t 22.39' (0-90% acetonitrile/H₂O, 0.1% TFA)

Example 21

Representative B-Sheet Mimetics

Which Bind The SH2 Domain

The following structure (57) was synthesized, 5 and structure (58) may be synthesized, by the techniques disclosed herein.

SH-PTP1

(57)

10

MS ES(-) 104.3 $(M-H^{4})^{-}$; HPLC R_t 17.28' (0-90% acetonitrile/H₂O, 0.1% TFA)

STAT 6

15

20

(58)

The ability of structure (58) to bind to the SH2 domain of STAT6, or of structure (57) to bind the SH2 domain of the protein tyrosine phosphatase SH-PTP1 can be d monstrated by the procedures disclosed by Payne et al. (PNAS 90:4902-4906, 1993). Libraries of SH2 binding

SUBSTITUTE SHEET (RULE 26)

mimetics may be screened by th procedure of Songyang et al. (Cell 72:767-778, 1993).

Example 22

5

Representative β -Sheet Mimetics Which Bind Protein Kinases

The following structure (59) may be synthesized by the techniques disclosed herein.

10

15

20

(59)

The ability of structure (59) to act as a substrate or inhibitor of protein kinases may be demonstrated by the procedure of Songyang et al. (Current Biology 4:973-982, 1994).

From the foregoing, it will be appreciated that, although specific embodiments of this invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except by the appended claims.

Claims

What is claimed is:

1. A method for inhibiting a kinase in a warm-blooded animal, comprising administering to the animal an effective amount of a β -sheet mimetic having the structure:

$$Z \xrightarrow[H]{R_1} A \xrightarrow[N]{B} C \xrightarrow{R_2} Y$$

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; A is selected from -C(=0)-, $-(CH_2)_{1-4}$ -, -C(=0) $(CH_2)_{1-3}$ -, $-(CH_2)_{1-2}$ 0- and $-(CH_2)_{1-2}$ S-; B is selected from N and CH; C is selected from -C(=0)-, $-(CH_2)_{1-3}$ -, -O-, -S-, -O- $(CH_2)_{1-2}$ - and $-S(CH_2)_{1-2}$ -; Y and Z represent the remainder of the molecule; and any two adjacent CH groups of the bicyclic ring may form a double bond.

2. A method for CAAX inhibition in a warm-blooded animal, comprising administering to the animal an effective amount of a β -sheet mimetic having the structure:

$$Z \xrightarrow{R_1} A \xrightarrow{B} C \xrightarrow{R_2} Y$$

wherein R_1 , R_2 and R_3 are independently s lected from amino acid side chain moieties and derivatives thereof; A is selected from -C(=O)-, $-(CH_2)_{1-4}$ -, $-C(=O)(CH_2)_{1-3}$ -, $-(CH_2)_{1-2}$ O- and $-(CH_2)_{1-2}$ S-; B is selected from N and CH; C is selected from -C(=O)-, $-(CH_2)_{1-3}$ -, -O-, -S-, -O- $-(CH_2)_{1-2}$ - and $-S(CH_2)_{1-2}$ -; Y and

SUBSTITUTE SHEET (RULE 26)

- Z represent the remainder of th molecul; and any two adjacent CH groups of the bicyclic ring may form a double bond.
- 3. A method for inhibiting peptide binding to SH2 domains in a warm-blooded animal, comprising administering to the animal an effective amount of a β -sheet mimetic having the structure:

$$Z \xrightarrow[H]{R_1} \xrightarrow[N]{A_1} \xrightarrow[N]{B_2} \xrightarrow[N]{R_2} \xrightarrow[N]{Y}$$

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; A is selected from -C(=0)-, $-(CH_2)_{1-4}$ -, $-C(=0)(CH_2)_{1-3}$ -, $-(CH_2)_{1-2}$ O- and $-(CH_2)_{1-2}S$ -; B is selected from N and CH; C is selected from -C(=0)-, $-(CH_2)_{1-3}$ -, -O-, -S-, -O- $(CH_2)_{1-2}$ - and $-S(CH_2)_{1-2}$ -; Y and Z represent the remainder of the molecule; and any two adjacent CH groups of the bicyclic ring may form a double bond.

4. A method for inhibiting MHC-I and/or MHC-II presentation of peptides to T cell receptors in a warm-blooded animal, comprising administering to the animal an effective amount of a β -sheet mimetic having the structure:

$$Z \xrightarrow{R_1} A \xrightarrow{B} C \xrightarrow{R_2} Y$$

wherein R_1 , R_2 and R_3 are independently selected from amino acid side chain moieties and derivatives thereof; A is sel cted from -C(=0)-, $-(CH_2)_{1-4}$ -, $-C(=0)(CH_2)_{1-3}$ -, $-(CH_2)_{1-2}$ O-

and $-(CH_2)_{1-2}S-$; B is selected from N and CH; C is selected from -C(=O)-, $-(CH_2)_{1-3}-$, -O-, -S-, $-O-(CH_2)_{1-2}-$ and $-S(CH_2)_{1-2}-$; Y and Z represent the remainder of the molecule; and any two adjacent CH groups of the bicyclic ring may form a double bond.

Fig. 1

Fig. 2

Fig. 3

INTERNATIONAL SEARCH REPURT

..lametan en peters femily members

PCT/US 96/04844

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-363671	18-04-90	AU-B- AU-B- DE-D- ES-T- IL-A- JP-A- PT-B-	625693 4124089 58906814 2061853 91572 2121922 91705	16-07-92 22-03-90 10-03-94 16-12-94 25-01-94 09-05-90 31-05-95

mational application No.

INTERNATIONAL SEARCH REPORT

PCT/US 96/04044

Box 1	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	renational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
ı. X	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely: Remark: Although claims 1-4 refer to a method of treatment of the human body, the search was carried out and based on the alleged effects of the compositions.
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
J	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This los	ternational Searching Authority found multiple inventions in this international application, as follows:
ι 🗀	As all required additional search fees were untily paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searches without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
J	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.: .
a	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the appacant s pricest. No protest accompanied the payment of additional search fees.