

AES vs RSA vs DH

	AES	DH	RSA		
symmetric/ asymmetric	symmetric	asymmetric	asymmetric		
P		wcoder.com	Help encrypt data (slow)		
uses	encrypt	that powcode generate symmetric	 exchange symmetric key (public keys must be known/exchanged) 		
		key	 prove sender's authenticity (public keys must be known/exchanged) 		

RSA Applications (cont.)

Challenges of confidential exchange of messages

a) Assignment Project Exam Help a) using symmetric encryption only:

exditiangepowkeylsrisanproblem!

Private key

Add WeChat powcoder

b) using asymmetric encryption only:

algorithm is too slow!

Can we somehow combine the two?!

RSA Applications

- Application of RSA Cryptography
 - > protect. of data confidentiality & user/message authenticity
 - > other possible more common uses: Assignment Project Exam Help
 - a) digital envelopes = fast exchange of confidential https://powcoder.com/ messages (secret message & secret key sent at once)
 - b) digital signature Chat powcoder
 - = message integrity + message authentication, where

message integrity – guarantees that the message has not been changed

message authentication – authenticates the sender of the message

RSA Applications (cont.)

- Digital Envelope use of asymmetric encryption for <u>fast exchange</u> of confidential messages
 - 1) generate random symmetric key K_{symmetric}
 - 2) encryptsigestagetusing ect Exam Help letter
 - 3) encrypt K using receiver's public key K+ protective digital envelope
 - 4) send the AvddowelChat powcoder

RSA Applications (cont.)

Digital Signature - use of asymmetric encryption to protect message integrity + sender authenticity

Digital Signature

Amy converts her letter into a message digest by using a mathematical function. She then creates
her digital signature by encrypting the message digest using her private key. Her letter, together
with her digital signature are sent to Ben via email.

RSA Application (cont.)

Example: Public encryption for all three – message integrity, authentication and confidentiality

(digital signatures + confidentiality)
Assignment Project Exam Help

What is the (only) drawback here?!

NOTE: this is theoretically OK, but practically very slow. A better solution would be for Bob to generate a symmetric key K, use K to encrypt the message & digest, and send K encrypted using Alice's public key ...

Public-Key / Digital Certificates

- Reliable Public-Key Distribution must involve a trusted third party
 - > Certificate Authority a trusted government agency or a for-profit instruction that the contract of the con
 - IdenTrust, DigiCert, GlobalSign, ... https://powcoder.com
 - Digital Certificate digital document that binds a public key to an identity (person or organization) and contains:

Serial Number: Used to uniquely identify the certificate.

Subject: The person, or entity identified.

Signature Algorithm: The algorithm used to create the signature.

Signature: The actual signature to verify that it came from the issuer.

Issuer: The entity that verified the information and issued the certificate.

Valid-From: The date the certificate is first valid from.

Valid-To: The expiration date.

Key-Usage: Purpose of the public key (e.g. encipherment, signature, certificate signing...).

Public Key: The public key.

Public-Key / Digital Certificates (cont.)

Example:

CA Prevalence

Assignment

	Rank	Issuer	Usage	Market share	
	1	IdenTrust	38.0%	51.2%	
	2	DigiCert	14.6%	19.7%	
	3	Sectigo	13.1%	17.7%	
ignment	P ₄ roj	ect Exam I	161%	6.9%	
https://p	5	GlobalSign	2.2%	3.0%	
https://p		Oder.com Certum	0.4%	0.7%	
Add We	C ha	Actalis L DOWCOde	0.2%	0.3%	
ridd vv C	8	Entrust	0.2%	0.3%	
	9	Secom	0.1%	0.3%	
	10	Let's Encrypt	0.1%	0.2%	
	11	Trustwave	0.1%	0.1%	
	12	WISeKey Group	< 0.1%	0.1%	
	13	StartCom	< 0.1%	0.1%	

https://en.wikipedia.org/wiki/Certificate authority

Network Solutions | < 0.1% | 0.1%

14

Public-Key / Digital Certificates (cont.)

Example: Creation of public-key certificate: creation and use

Public-Key / Digital Certificates (cont.)

Example: Creation & verification of a digital certificate

Encoding vs. Encryption vs. Hashing

- Message Encoding vs. Encryption vs. Hashing
 - all three transform message into another 'format'
 - encoding and encryption are reversible, hashing is not! Assignment Project Exam Help
 - 1) message encoding transforms data to another format so that it barbe be before safe pronsumed by a different type of systemAdd WeChat powdoes not aim to keep
 - information secret
 - does not require a key
 - encoding scheme is publicly available and relatively simple/fast to perform

	000d			(nul)	016d	10h	•	(dle)
4		O1h	0	(soh)	017d	11h	•	(dc1)
	002d	02h	•	(stx)	018d	12h	‡	(dc2)
	003d	03h	*	(etx)	019d	13h	!!	(dc3)
	004d	04h	٠	(eot)	020d	14h	1	(dc4)
	005d	05h	٠	(enq)	021d	15h	§	(nak)
	006d	06h	٠	(ack)	022d	16h		(syn)
	007d	07h	•	(bel)	023d	17h	‡	(etb)
	008d	08h		(bs)	024d	18h	1	(can)
	009d	09h		(tab)	025d	19h	1	(em)
	010d	OAh		(lf)	026d	1Ah		(eof)
	011d	OBh	ੋ	(vt)	027d	1Bh	←-	(esc)
	012d	OCh	♀	(np)	028d	1Ch	-	(fs)
	013d	ODh		(cr)	029d	1Dh	**	(gs)
	014d	OEh	ð	(so)	030d	1Eh	•	(rs)
	015d	OFh	O	(si)	031d	1Fh	•	(us)

Encoding vs. Encryption vs. Hashing (cont.)

- Message Encoding vs. Encryption vs. Hashing (cont.)
 - 2) message encryption transforms data to another format that cannot be easily consumed by anybody but the intented recipient (5) xam Help
 - aims to keep information secret https://powcoder.com
 - requires a key

Add WeChat powcoder
 encryption scheme

encryption scheme
is publicly available
but quite complex
to perform/break

----BEGIN PGP MESSAGE---Version: GnuPG v1.4.5 (GNU/Linux)

hQIOAOuHn1ue4n32EAf/UEF6JLrap10BMdKMvb+Dz9GvoijUixH+gbcpi9qGa+43
vC3ktMwo70WqPyJseVRSPBOv6dOwy65KrzrHwhOHO/CKEk2O5STAwzj6C3USgDfZ
6E+Gc4iumM1725JNahJzcL5ED33LFdZ6uoEjgqggxG1dFwvwksRHA4+VU9Bcd5eL
T9aRVbkXNxXkQn2FWhWuhPQFNWLwIVrDd9TPtDvpRT16YiB1AM9ks3H1YZHL7mfR
Hk9yfy1nGXdhi06EDvvTvd/Lq1xsFjKh6y/pG6NxABGdT6VoeWGVtQGqwpbOZGgq
xoSYkWm8MmAkkqYXZLraSEzyxxxu4cQzvzz3vrpN3AgAhObP2eUFU29EJAQpdKJW
fKAhohPVpd6+ETnzL53VLg1IJJdNG1pIziO9alNnYmDSnt2EwAELqTU13jPiGYt5
cvSUBe3ER4/CkjvYXOVaO7ezHmCAkQpB2ILV8OwI74DQn7tNKf2gJnwzkYAF7yyf
XFG1J8oaLpRV499mN7lNfo+ZV2HrR9xti+jUPFv+H+ROt4fMmAU5I95UksQFe/A9
YUdSBAEqKkW9zLDgpWS2oxJymGufBdhzxpw7uJlzrwsHIYIt7PSeJG4VO+xJqHvO
1qHXSukK648F10ImmVUM9csPOcvfOMZeAgh4i+HYQvFF/kGHp6ogevD4pVhztbzd
F9JhAbJSeOvZKZFPhzjgX+mCgvzVRniSdDg7wc3+YKNei2zQrmTsiiO6JyhQV2OI
tAqTk572zdZbrCtSgcthrN/uxbJSNnw4X9IZbWtFOUr3lr676II8Q112ttO3IVCe
ff/pZA==

=sPWf

----END PGP MESSAGE----

Encoding vs. Encryption vs. Hashing (cont.)

- Message Encoding vs. Encryption vs. Hashing (cont.)
 - 3) message hashing used to validate the integrity of a given content by producing a fixed-length string with following attribute Project Exam Help
 - does not require a key powcoder.com
 - hashing algorithms are publically available
 Add WeChat powcoder
 the same input will
 - the <u>same input</u> will always produce the <u>same output</u>
 - any modification to the input should result in drastic change to the output

Encoding vs. Encryption vs. Hashing (cont.)

In case of hashing, the output 'size' is always constant / does not depend on the size of the input !!!

Hashing

- **Message Integrity** accomplished through the use of <u>cryptographic hash functions</u>
 - hash function creates a small fixed-size digital 'summarigrommet nessage Example used as a message fingerprint, aka hash or message digest https://powcoder.com

 > typical hash size: 128, 160, 256, 512 bits

 - > popular standa We Chat powcoder
 - (a) Message Digest 5 (MD5) no longer secure
 - (b) Secure Hash Algorithm (SHA-2: SHA 256 & SHA 512)

Example: Message digest creation with SHA-512


```
SHA512/256("The quick brown fox jumps over the lazy dog")

0x dd9d67b371519c339ed8dbd25af90e976a1eeefd4ad3d889005e532fc5bef04d

SHA512/256("The quick brown fox jumps over the lazy dog.")

0x 1546741840f8a492b959d9b8b2344b9b0eb51b004bba35c0aebaac86d45264c3
```

- Hash Function Criteria to be eligible for a hash a function needs to meet 6 important criteria:
 - > Hash function h can be applied to block of data of any size gnment Project Exam Help
 - > Hash function: h produces a fixed-length output.
 - > h(M) is relatively easy to computer for any given M, making both hardware and software implementation practical.
 - Collision Resistance.
 - Preimage Resistance.
 - Second Preimage Resistance.

- Hash Function Criteria (cont.):
 - > collision: two messages create the same digest
 - Collision Resistance or Strong Collision Resistance:
 Assignment Project Exam Help
 must be extremely difficult to find any two M and M'
 such that h(M). 7 h(M') oder.com
 - > if strong collision is possible => digital signatures become meaninglessat powcoder
 - > example/application: online password cracking

Example: Strong Collision Resistance example

(online password cracking)

Message Integrity (cont.)

- Hash Function Criteria (cont.):
 - Preimage Resistance or One Wayness: given a hash function h and y=h(M), it must be extremely difficultivento Projectly Imassage M' such that y=h(M')
 - https://powcoder.com

 we should not be able to work 'backwards' and

 (re)creat the Wiethampswagetrom a given hash
 - example/application: off-line password cracking

http://www.unixwiz.net/techtips/iguide-crypto-hashes.html

Message Integrity (cont.)

Example: Preimage Resistance example

(off-line password cracking)

Assignment Project Exam Help

- Hash Function Criteria (cont.):
 - ➤ Second Preimage Resistance or Weak Collision
 Resistance: given M and its hash h(M) it should be
 extremely difficul Projecte to find begoond/another
 message M' such that h(M)=h(M')
 https://powcoder.com
 property intended to prevent an adversary from
 - property intended to prevent an adversary from appending delighter to prevent appending delighter to prevent an adversary from a prevent appending delighter to prevent an adversary from a prevent appending delighter to prevent appending delighter to prevent a prevent appending delighter to prevent appending delighter to prevent a prevent appending delighter to prevent appending delighter to prevent a prevent a prevent a prevent appending delighter to prevent a prevent a

Example: Second Preimage Resistance example

(alter the content of a 'signed' message)

Assignment Project Exam Help

