第二章 导数与微分测试题

满分: 100分 时间: 120分钟

一、选择题(每题3分,共15分)

- 1. 下列命题正确的是()
- (A) f(x)在点 x_0 连续的充要条件是f(x)在点 x_0 可导
- (B) 若 $f'(x) = x^2$ (偶函数),则 f(x)必是奇函数
- (C) 若 $\lim_{x \to 0} \frac{f(x)}{x} = a$ (常数),则 f'(0) = a

- (A) $-f'(x_0)$ (B) $f'(-x_0)$ (C) $f'(x_0)$ (D) $2f'(x_0)$
- 3. 设函数f(x)在 x_0 可导,则 $\lim_{t \to 0} \frac{f(x_0 + t) + f(x_0 3t)}{t} = ($)
- (A) $f'(x_0)$ (B) $-2f'(x_0)$ (C) ∞ (D) 不能确定
- 4.曲线 $\begin{cases} x = e^t \sin 2t \\ & \text{在 点 } (0,1) \text{处 的 法 线 方 程 为 } (0,1) \end{cases}$

- (A) y + 2x 1 = 0 (B) y 2x 1 = 0 (C) y + 2x + 1 = 0 (D) y + 2x 2 = 0
- 5.设函数 $f(x) = (e^x 1)(e^{2x} 2)$ ($e^{nx} n$), 其中 n 为正数,则 $f'(0) = (e^{nx} n)$
- (A) $(-1)^{n-1}(n-1)!$ (B) $(-1)^{n}(n-1)!$ (C) $(-1)^{n-1}n!$ (D) $(-1)^{n}n!$

二、填空题(每题3分,共15分)

- 1.设函数 y = f(x)由方程 $\cos(xy) + \ln y x = 1$ 确定,则 $\lim_{n \to \infty} n \left[f(\frac{2}{n}) 1 \right] = ----$.
- 2. 设方程 $e^{xy} + y^2 = \cos x$ 确定 y 为 x 的函数,则 $\frac{dy}{dx} = ----$.
- 3.设 y = y(x) 是有方程 $\sqrt{x^2 + y^2} = e^{\arctan \frac{y}{x}}$ 确定的隐函数,则 $\frac{d^2 y}{dx^2} = ----$.
- 4. 已知 $f(x) = (1 + x^2)^{\tan x}$,则 f'(x) =_____.
- 5. 设函数 f(x)在x = 2的某邻域内可导,且 $f'(x) = e^{f(x)}$
- f(2) = 1, $\bigcup f'''(2) =$ _____.

三、计算、证明题(1-10 题每题 6 分, 第 11 题 10 分, 共 70 分)

1. 读
$$f'(x) = \sin \sqrt{x}$$
 $(x > 0)$, 又 $y = f(e^{2x} \cdot x^2)$, 求 $\frac{dy}{dx}$.

2. 设函数
$$f(x)$$
在 $x = 0$ 处可导(即 $f'(0)$ 存在),且 $f(x) = f(0) + 2x + a(x)$,又 $\lim_{x \to 0} \frac{a(x)}{x} = 0$,求 $f'(0)$.

4.试确定常数 a、b的值,使函数 $f(x) = \begin{cases} 1 + \ln(1-2x), & x \le 0 \\ 4 & x = 0 \end{cases}$ 在 x = 0处可导,并求出此时的 f'(x).

6.设函数f(x)在 $(-\infty, +\infty)$ 上有定义,且对任意 x_1, x_2 ,有 $f(x_1 + x_2) = f(x_1) f(x_2)$, f(x) = 1 + xg(x),其中 $\lim_{x \to \infty} g(x) = 1$,证明f(x)在 $(-\infty, +\infty)$ 上处处可导.

7.已 知 函 数 f(u) 具 有 二 阶 导 数 , 且 f'(0) = 1, 函 数 y = y(x) 由 方 程 $y - xe^{y-1} = 1$ 所 确 定 . 设 $z = f(\ln y - \sin x)$, 求 $\frac{dz}{dx}|_{x=0}$, $\frac{d^2z}{dx^2}|_{x=0}$.

8.设
$$f(x) = \begin{cases} x^{\alpha} \sin \frac{1}{x^{\beta}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 (\$\beta > 0\$),试讨论在什么条件下, $f'(x)$ 在 $x = 0$ 处连续.

9.设函数 $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}}$, 试讨论f(x)在 $(-\infty, +\infty)$ 内的不可导点.

11. 设对任意实数 0 < λ < 1,有 $f[\lambda x_1 + (1-\lambda)x_2] \ge \lambda f(x_1) + (1-\lambda)f(x_2)$ 试证: 若 $x_1 < x_2$ 且在点 x_1 、 x_2 处可导,则有

$$f'(x_1) \ge \frac{f(x_2) - f(x_1)}{x_2 - x_1} \ge f'(x_2)$$

四、附加题 (1-3 题每题 4 分, 4 题 8 分, 共 20 分)

- 1. 设函数 $f(x) = x(x+1)(x+2)^{\cdots}(x+n)$, 求 f'(-1).
- 2. 已知 $y = \ln(e^x + \sqrt{1 + e^{2x}})$, 求 y'.
- 3. 设函数 y = y(x) 由方程 $2^{xy} = x + y$ 所确定,求 $dy|_{x=0}$.
- 4. (I)设函数u(x), v(x)可导, 利用导数定义证明:

$$[u(x)v(x)]' = u'(x)v(x) + u(x)v'(x)$$
;

(II) 设函数 $u_1(x)$, $u_2(x)$, $u_3(x)$, ..., $u_n(x)$ 可导, $f(x) = u_1(x)u_2(x) \cdots u_n(x)$, 写出 f(x) 的求导公式.

答案:

一、选择题(每题 3 分, 共 15 分)

4.A

5.A

详细解答:

5.

解:
$$f'(x) = e^x (e^{2x} - 2)(e^{3x} - 3)$$
 ... $(e^{nx} - n) + (e^x - 1)(2e^{2x})(e^{3x} - 3)$... $(e^{nx} - n) + \cdots$
 $(e^x - 1)(e^{2x} - 2)(e^{3x} - 3)$... (ne^{nx})

当
$$x = 0$$
时 $e^x - 1 = 0$

故
$$f'(0) = 1^{\bullet}(1-2)(1-3)^{\cdots}(1-n) = (-1)^{n-1}(n-1)!$$

二、填空题(每题3分,共15分)

2.
$$-\frac{ye^{xy} + \sin x}{xe^{xy} + 2y}$$
 3. $\frac{2(x^2 + y^2)}{(x - y)^3}$

3.
$$\frac{2(x^2+y^2)}{(x-y)^3}$$

4.
$$(1+x^2)^{\tan x}[\sec^2 x \ln(1+x^2) + \frac{2x}{1+x^2} \tan x].$$
 5. $2e^3$

详细解答:

1.

解: 将
$$x = 0$$
代 入 方 程 得

$$\cos 0 = -\ln f(0) + 0 + 1,$$

$$\mathbb{H} \ln f(0) = 0, \therefore f(0) = 1.$$

方程
$$cos(xy) + ln y - x = 1$$
两端同时对x

求 导 得

$$-[f(x) + xf'(x)] \cdot \sin[xf(x)] + \frac{f'(x)}{f(x)} - 1 = 0.$$

将
$$x = 0$$
代入上式得 $f'(0) = 1$,于是

$$\lim_{n \to \infty} n[f(\frac{2}{n}) - 1] = \lim_{n \to \infty} \frac{f(\frac{2}{n}) - f(0)}{\frac{1}{2}(\frac{2}{n} - 0)}$$

$$= \lim_{x \to 0} 2 \frac{f(x) - f(0)}{x - 0} = 2 f'(0) = 2.$$

2.解 方程两边对
$$x$$
 求导,得 $e^{xy} \cdot (y + xy') + 2yy' = -\sin x$

整理得
$$(xe^{xy} + 2y)y' = -ye^{xy} - \sin x$$
,

从而
$$y' = -\frac{ye^{xy} + \sin x}{xe^{xy} + 2y}$$
.

3.解 对方程两边对x求导

$$\frac{2x + 2yy'}{2\sqrt{x^2 + y^2}} = e^{\arctan \frac{y}{x}} \cdot \frac{1}{1 + (\frac{y}{x})^2} \cdot \frac{xy' - y}{x^2}, \quad \text{If } \frac{x + yy'}{\sqrt{x^2 + y^2}} = e^{\arctan \frac{y}{x}} \cdot \frac{xy' - y}{x^2 + y^2}$$

把
$$\sqrt{x^2 + y^2} = e^{\arctan \frac{y}{x}}$$
 带 入 上 式 得 $x + yy' = xy' - y$, 所 以 $y' = \frac{x + y}{x - y}$

$$y'' = \frac{(1+y')(x-y) - (1-y')(x+y)}{(x-y)^2} = \frac{2xy' - 2y}{(x-y)^2}$$

把
$$y' = \frac{x+y}{x-y}$$
 带入上式,得 $y'' = \frac{2(x^2+y^2)}{(x-y)^3}$

【评注】计算本题一阶导数时,也可先对方程两边取对数再求导,这样计算

比较简单:
$$\ln \sqrt{x^2 + y^2} = \ln e^{\arctan \frac{y}{x}}$$
,即 $\frac{1}{2} \ln (x^2 + y^2) = \arctan \frac{y}{x}$

对 方 程 两 边 对
$$x$$
求 导 : $\frac{1}{2}$ $\frac{2x + 2yy'}{x^2 + y^2} = \frac{1}{1 + (\frac{y}{x})^2} \frac{xy' - y}{x^2}$, 解 得 $y' = \frac{x + y}{x - y}$

4.解 两边取对数, 得 $\ln y = \tan x \cdot \ln(1 + x^2)$,

等式两端同时关于
$$x$$
 求导得
$$\frac{y'}{y} = \sec^2 x \ln(1+x^2) + \frac{\tan x \cdot 2x}{1+x^2},$$

所以
$$y' = (1 + x^2)^{\tan x} [\sec^2 x \ln(1 + x^2) + \frac{2x}{1 + x^2} \tan x].$$

5.

解: 由
$$f'(x) = e^{f(x)}$$
, 得
$$f''(x) = e^{f(x)} f'(x) = [e^{f(x)}]^{2}$$

$$f'''(x) = e^{f(x)} [f'(x)]^{2} + e^{f(x)} f''(x)$$

$$= e^{f(x)} [e^{f(x)}]^{2} + e^{f(x)} [e^{f(x)}]^{2}$$

$$= 2[e^{f(x)}]^{3}$$

所以
$$f'''(2) = 2[e^{f(2)}]^3 = 2e^3$$

三、计算、证明题(1-10 题每题 6 分, 第 11 题 10 分, 共 70 分)

1.解 对
$$x$$
 求导得 $y' = f'(e^{2x} \cdot x^2) \cdot (2x^2 e^{2x} + 2xe^{2x}),$
由已知 $f'(x) = \sin \sqrt{x}$ $(x > 0)$,则 $f'(x^2 e^{2x}) = \sin \sqrt{x^2 e^{2x}} = \sin(xe^x),$
所以 $y' = 2xe^{2x}(x+1) \cdot \sin(xe^x).$

2. 解 由已知条件知当
$$x \neq 0$$
 时,有 $\frac{f(x) - f(0)}{x} = 2 + \frac{\alpha(x)}{x}$

当
$$x \to 0$$
时 取 极 限 , 则 有 $\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = 2 + \lim_{x \to 0} \frac{a(x)}{x} = 2.$ 从 而 由 导 数 定 义 得 $f'(0) = 2$.

$$3.\text{#} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1 - \frac{\mathrm{e}^{t}}{1 + \mathrm{e}^{2t}}}{\frac{2\mathrm{e}^{2t}}{1 + \mathrm{e}^{2t}}} = \frac{1 + \mathrm{e}^{2t} - \mathrm{e}^{t}}{2\mathrm{e}^{2t}} = \frac{1}{2} \left(\mathrm{e}^{-2t} + 1 - \mathrm{e}^{-t}\right),$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d\left(\frac{dy}{dx}\right)}{dx} = \frac{\frac{1}{2}\left(-2e^{-2t} + e^{-t}\right)}{\frac{2e^{2t}}{1 + e^{2t}}} = \frac{1}{4}\left(-2e^{-4t} + e^{-3t} - 2e^{-2t} + e^{-t}\right).$$

4.

解: 因要使函数f(x)在x = 0处可导,故f(x)在x = 0处连续,即

$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = f(0) = 1,$$

得 a + b = 1, 即 当 a + b = 1时 , 函 数 f(x)在 x = 0处 连 续 .

由导数定义及a+b=1,有

$$f'(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{[1 + \ln(1 - 2x)] - 1}{x} = -2,$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{+}} \frac{(a + be^{x}) - 1}{x} = \lim_{x \to 0^{+}} \frac{b(e^{x} - 1)}{x} = b.$$

要 使 f(x) 在 x = 0 处 可 导 , 应 有 b = f'(0) = f'(0) = -2,故 a = 3 .

即 当 a=3,b=-2时, 函 数 f(x)在 x=0处 可 导,且 f'(0)=-2.于 是

$$f'(x) = \begin{cases} -\frac{2}{1-2x}, & x \le 0 \\ -2e^x, & x > 0 \end{cases}.$$

$$5. \text{ } \text{ } I = \lim_{x \to 0} \frac{f(\sin^2 x + \cos x) \cdot 3x}{x^2 \cdot x} = 3 \lim_{x \to 0} \frac{f(\sin^2 x + \cos x)}{x^2}$$

$$= 3 \lim_{x \to 0} \frac{f(\sin^2 x + \cos x) - f(1)}{\sin^2 x + \cos x - 1} \cdot \frac{\sin^2 x + \cos x - 1}{x^2}$$

$$= 3 \cdot f'(1) \cdot \lim_{x \to 0} \frac{\sin^2 x + \cos x - 1}{x^2} = 3 f'(1) \left(\lim_{x \to 0} \frac{\sin^2 x}{x^2} + \lim_{x \to 0} \frac{\cos x - 1}{x^2} \right)$$

$$= 3 f'(1) \left(1 - \frac{1}{2} \right) = \frac{3}{2} f'(1).$$

6.证 任取
$$x_0 \in (-\infty, +\infty)$$

$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0) f(\Delta x) - f(x_0)}{\Delta x}$$

$$= f(x_0) \lim_{\Delta x \to 0} \frac{f(\Delta x) - 1}{\Delta x} = f(x_0) \lim_{\Delta x \to 0} \frac{1 + \Delta x g(\Delta x) - 1}{\Delta x}$$

$$= f(x_0) \lim_{\Delta x \to 0} g(\Delta x) = f(x_0)$$

由 x_0 的任意性,故 f(x) 在 $(-\infty, +\infty)$ 上处处可导.

7

解: 在
$$y - xe^{y-1} = 1$$
中, 令 $x = 0$ 得 $y = 1$.

在
$$y - xe^{y-1} = 1$$
两 边 对 x 求 导 得

$$y' - e^{y-1} - xy'e^{y-1} = 0, (1)$$

$$\mathbb{P}(2-y)y'-e^{y-1}=0.$$

由
$$x = 0$$
, $y = 1$, 得 $y'|_{x=0} = 1$.

在 (1) 式两边对
$$x$$
求导得 (2- y) y'' - y'^2 - $e^{y-1}y'$ =0.

由
$$x = 0$$
时, $y = 1, y' = 1$ 得 $y''|_{x=0} = 2$.

因为
$$\frac{\mathrm{d}z}{\mathrm{d}x} = f'(\ln y - \sin x)(\frac{y'}{y} - \cos x)$$
, 故 $\frac{\mathrm{d}z}{\mathrm{d}x}|_{x=0} = 0$.

所以
$$\frac{d^2 z}{dx^2}|_{x=0} = f'(0)(2-1) = 1$$
.

8.解 当
$$x \neq 0$$
 时, $f'(x) = \alpha x^{\alpha-1} \sin \frac{1}{x^{\beta}} + x^{\alpha} \cos \frac{1}{x^{\beta}} (-\beta x^{-\beta-1})$

$$= \alpha x^{\alpha-1} \sin \frac{1}{r^{\beta}} - \beta x^{\alpha-\beta-1} \cos \frac{1}{r^{\beta}}$$

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{x^{\alpha} \sin \frac{1}{x^{\beta}} - 0}{x} = \lim_{x \to 0} x^{\alpha - 1} \sin \frac{1}{x^{\beta}}$$

$$= \begin{cases} 0 & \alpha > 1 \\ \\ \uparrow & \text{ π } \text{ π } \text{ α } \leq 1 \end{cases}$$

所以 当
$$\alpha > 1$$
时, $f'(x) = \begin{cases} \alpha x^{\alpha-1} \sin \frac{1}{x^{\beta}} - \beta x^{\alpha-\beta-1} \cos \frac{1}{x^{\beta}}, & x \neq 0 \\ 0, & x = 0 \end{cases}$

由
$$f'(x)$$
 在 $x = 0$ 点处连续,故 $\alpha - \beta - 1 > 0$, $\alpha > \beta + 1$.

9.

解: 由于当 |
$$x$$
 | < 1时, $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}} = 1$;

当 |
$$x \mid = 1$$
时, $f(x) = \lim_{n \to \infty} \sqrt[n]{1+1} = \lim_{n \to \infty} 2^{\frac{1}{n}} = 2^{0} = 1;$

当 |
$$x \mid > 1$$
时, $f(x) = \lim_{n \to \infty} \sqrt[n]{1 + |x|^{3n}} = |x|^3 \cdot \lim_{n \to \infty} \sqrt[n]{1 + \frac{1}{|x|^{3n}}} = |x|^3$.

所以
$$f(x) = \begin{cases} 1, & |x| \le 1 \\ |x|^3, |x| > 1 \end{cases}$$
, 即 $f(x) = \begin{cases} -x^3, x < -1, \\ 1, -1 \le x \le 1, \\ x^3, x > 1. \end{cases}$

显然当|x|<1及|x|>1时,f(x)均可导.

在
$$x = -1$$
处 . $f'_{-}(-1) = \lim_{x \to -1^{-}} \frac{f(x) - f(-1)}{x+1} = \lim_{x \to -1^{-}} \frac{-x^{3} - 1}{x+1} = \lim_{x \to -1^{-}} -(x^{2} - x + 1) = -3$

$$f'_{+}(-1) = \lim_{x \to -1^{+}} \frac{f(x) - f(-1)}{x+1} = \lim_{x \to -1^{+}} \frac{1 - 1}{x+1} = 0$$

显然 $f'(-1) \neq f'(-1)$, 因此f(x)在x = -1处不可导

在
$$x = 1$$
处 $.f'_{+}(1) = \lim_{x \to 1^{+}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{+}} \frac{x^{3} - 1}{x - 1} = \lim_{x \to 1^{+}} (x^{2} + x + 1) = 3,$

$$f'_{-}(1) = \lim_{x \to 1^{-}} \frac{f(x) - f(1)}{x - 1} = \lim_{x \to 1^{-}} \frac{1 - 1}{x - 1} = 0,$$

由 $f'(1) = 0 \neq 3 = f'(1)$ 知 , f(x)在 x = 1处 也 不 可 导

10.
$$y = x + 3 + \frac{8}{x - 2} - \frac{1}{x - 1}$$

$$\therefore y^{(n)} = (-1)^n n! \left[\frac{8}{(x-2)^{n+1}} - \frac{1}{(x-1)^{n+1}} \right] \quad (n \ge 2)$$

11. 解 证明 由
$$f(\lambda x_1 + (1 - \lambda)x_2) \ge \lambda f(x_1) + (1 - \lambda)f(x_2)$$
 (1)

得
$$f[x_1 + \lambda(x_1 - x_2)] \ge \lambda [f(x_1) - f(x_2)] + f(x_2)$$

$$\Rightarrow \frac{f[x_2 + \lambda(x_1 - x_2)] - f(x_2)}{\lambda(x_1 - x_2)} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \qquad \cdots 5$$

 $\exists \lambda \rightarrow 0$ 时, 不 等 式 两 端 同 时 取 极 限 , 得

$$\lim_{\lambda \to 0} \frac{f[x_2 + \lambda(x_1 - x_2)] - f(x_2)}{\lambda(x_1 - x_2)} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \Rightarrow f'(x_2) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

四、附加题

1.
$$f'(-1) = -(n-1)!$$

解:由

$$f'(x) = (x+1)' [x(x+2)(x+3)'''(x+n)]$$

$$+ (x+1) [x(x+2)(x+3)'''(x+n)]'$$

$$= [x(x+2)(x+3)'''(x+n)]$$

$$+ (x+1) [x(x+2)(x+3)'''(x+n)]'$$

可知

$$f'(-1) = [(-1)(-1+2)(-1+3)\cdots (-1+n)] + 0$$
$$= -(n-1)!$$

2.
$$\frac{e^{x}}{\sqrt{1+e^{2x}}}$$

解:直接求导

$$y' = \frac{1}{e^x + \sqrt{1 + e^{2x}}} \cdot \left(e^x + \frac{1}{2} (1 + e^{2x})^{-\frac{1}{2}} \cdot 2e^{2x} \right)$$
$$= \frac{e^x + (1 + e^{2x})^{-\frac{1}{2}} \cdot e^{2x}}{e^x + \sqrt{1 + e^{2x}}}$$
$$= \frac{e^x}{\sqrt{1 + e^{2x}}}$$

3.
$$dy \Big|_{x=0} = (\ln 2 - 1) dx$$

解: 原方程等价于 $xy \ln 2 = \ln (x + y)$

两边同时求微分
$$(xdy + ydx)$$
ln 2 = $\frac{dx + dy}{x + y}$

在原方程中令
$$x=0$$
 可得 $y=1$

代入上式则有

$$dy = (\ln 2 - 1) dx$$

- 4.(I) 证明略
 - (II) 由数学归纳法易得

$$f'(x) = u'_1(x)u_2(x)\cdots u_n(x) + u_1(x)u'_2(x)\cdots u_n(x) + \cdots + u_1(x)u_2(x)\cdots u'_n(x)$$