Lezione 5 Geometria I ebbene sì, sta accadendo davvero

Federico De Sisti 2024-03-17

V, V' spazi vettoriali su $\mathbb{K}, (A, V, +), (A', V', +)$ spazi affini

Definizione 1

 $f:A\to A'$ è un'applicazione affine se esiste un'applicazione lineare $\phi:$ $V \rightarrow V'$ tale che:

$$f(p+v) = f(p) + \phi(v) \quad \forall p \in A, \forall v \in V.$$

$$\begin{pmatrix} ovvero & f(Q) = f(P) + \phi(\overrightarrow{PQ}) & \forall P,Q \in A \\ \hline f(P)f(\overrightarrow{Q}) = \phi(\overrightarrow{PQ}) & \forall P,Q \in A \end{pmatrix}$$

Nomenclatura

Se f è biunivoca, f è detto isomorfismo affine

Un isomorfismo affine $A \to A$ è detto affinità. Oss

vedremo che le affinità formano un gruppo rispetto alla composizione di applicazione che denoteremo come Aff(A)

Esempio

 $Ov_1...vn$ rifermento affine in A

$$f: \mathbb{A} \to \mathbb{A}^n$$
 $f(p) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ $e \quad \overrightarrow{OP} = \sum_{i=1}^n x_i v_i.$

Dico che f è un isomorfismo affine con associato isomorfismo lineare

$$\varphi(\sum_{i=1}^{n} x_{i} v_{0}) = \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix}$$

$$Verifichiamo che \overrightarrow{f(P)f(Q)} = \varphi(\overrightarrow{PQ})$$

$$\overrightarrow{OQ} = \sum_{i=1}^{n} y_i v_i \quad f(Q) = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \overrightarrow{f(P)f(Q)} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} - \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix} = \begin{pmatrix} y_1 - x_1 \\ \vdots \\ y_n - x_n \end{pmatrix}$$

$$\varphi(\sum_{i=1}^{n}(y_i-x_i)v_i)=\varphi(\overrightarrow{OQ}-\overrightarrow{OP})=\varphi(\overrightarrow{PQ})$$

3 Esempi di affinità

I Transazioni

Fissato $v \in V$ definiamo

 $t_v: A \to A, \quad t_v(P) = p + v$ Dico che t_v è un'affinità con assoviato isomorfismo Id_V dato che:

$$t_V(p+w) = (p+w) + v = p + (w+v) = p + (v+w) = (p+v) + w = (p+v)$$

 $= t_V(p) + w = t_V(p) + \varphi(w) \leftarrow Id_V$ la biunicità segue dagli assiomi per A II Simmetria rispetto ad un punto

$$\sigma_C(p) = C - \overrightarrow{CP}$$

Dico che σ_C è un'affinità con parte lineare $\varphi = -Id$

$$\sigma_C(p+v) = c - \overrightarrow{CQ} \quad Q = p+v \quad v = \overrightarrow{PQ}$$

$$\sigma_C(p+v) = c - \overrightarrow{CQ} \quad Q = p+v \quad v = \overrightarrow{PQ}$$

$$\sigma_C(p) + \phi(v) = c - \overrightarrow{CP} - v = c - \overrightarrow{CP} - \overrightarrow{PQ} = c - \overrightarrow{CQ}$$

III Otetia di centro O e fattore $\gamma \in R \setminus \{0\}$

$$\omega_{O,\gamma}(p) = O + \gamma \overrightarrow{OP}.$$

è un'affinità con parte lineare $\phi = \gamma I d_V$

$$\omega_{O,\gamma}(p+v) = O + \gamma \overrightarrow{OQ} = O + \gamma (\overrightarrow{OP} + \overrightarrow{PQ}) = (O + \gamma \overrightarrow{OP}) + \gamma \overrightarrow{PQ} = \omega_{O,\gamma}(p) = \varphi(v)$$

Lemma 1

Fissato $O \in \mathbb{A}$, per ogni $O' \in \mathbb{A}$ e per ogni $\varphi \in GL(V)$ esiste un'unica affinità tale che f(O) = O' e che ha φ come isomorfismo associato

Dimostrazione

esistenza

Pongo
$$f(P) = O' + \varphi(\overrightarrow{OP} \quad f(O) = O' + \varphi(\overrightarrow{OQ}) = O' + O = O'$$

 $f(p+v) = O' + \varphi(\overrightarrow{OQ}) = O' + \varphi(\overrightarrow{OP} + \overrightarrow{PQ}) = O' + \varphi(\overrightarrow{OP}) + \varphi(\overrightarrow{PQ}) = f(p) + \varphi(v)$
dove abbiamo usato $Q = p + v \quad v = \overrightarrow{PQ}$

unicità

Supponiamo che g abbia le stesse proprietà di f, allora

$$\overrightarrow{f(O)f(p)} = \varphi(\overrightarrow{OP}) = \overrightarrow{g(O)g(p)} = \overrightarrow{O'f(p)} = \overrightarrow{f(O)g(p)} \Rightarrow f(p) = g(p)$$

$$\Rightarrow f = g$$

Definizione 2

Definiamo $Aff_O(A) = \{ f \in Aff(A) | f(O) = O \} \le Aff(A)$ tale gruppo è anche isomorfo a GL(V)

Lemma 2

Sia $O \in A, f \in Aff(A)$ Esistono $v, v' \in V$ e $g \in Aff_O(A)$, univocamente determinate da f tale che

$$f = g \circ t_v = t_{v'} \circ g.$$

Dimostrazione

poniamo $v = -\overrightarrow{Of^{-1}}, \quad v' = \overrightarrow{Of(O)}, \quad g = f \circ t_{-v'}, \quad g' = t_{-v} \circ f$ Allora

$$(g \circ t_v) = (f \circ t_{-v})t_v = f \circ (t_{-v} \circ t_v) = f.$$

quindi vale $f = g \circ t_v$

$$t_{v'} \circ g' = t_{v'} \circ (t_{-v'} \circ f) = (t_{v'} \circ t_{-v'}) \circ f = f.$$

Vedremo che g = g', per cui ho dimostrato anche $f = t_{v'} \circ g$

$$g(O) = (f \circ t_{-v})(O) = f(O - v) = f(O + \overrightarrow{Of^{-1}(O)}) =$$

$$= f(O + f^{-1}(O) - O) = f(f^{-1}(O)) = f(O + f^{-1}(O)) = 0$$

$$g'(O) = t_{-v}(f(O)) = f(O) - v' = f(O) - \overrightarrow{Of(O)} = 0.$$

d'altra parte g, g' hanno lo stesso isomorfismo associato e mandano entrambi O in O, dunque coincidono \square Descrizione in coordinate delle affinità di \mathbb{A}^n

$$\delta(x) = f(O) + L_A X = AX + b.$$

$$b = f(O) \quad \varphi = L_A \quad L_A : \mathbb{K}^n \to \mathbb{K}^n$$

$$X \to AX$$

con $det(A) \neq 0$ ovviamente Viceversa, per $A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n$

$$f_{A,b} = AX + b.$$

 $f_{A,b}$ è un'affinità con parte lineare L_A

$$f_{A,b}(x+v) = f_{A,b}(x) + \varphi(v)$$

$$f_{A,b}(x+y) = f_{A,b}(x) + L_A y$$

$$f_{A,b}(x+y) = A(x+y) + b = AX + AY + b = (AX+b) + AY = f_{A,b}(x) + L_A(y).$$
 Aff $(\mathbb{A}^n = \{f_{A,b} | A \in GL(n, \mathbb{K}), b \in \mathbb{K}^n\}.$

Osservazione

Aff \mathbb{A}^n è un gruppo per composizione

$$(f_{A,b} \circ f_{C,d})(x) = f_{A,b}(f_{C,d}(x)) =$$

$$= f_{A,b}(CX + d) =$$

$$= A(CX + d) + b =$$

$$= ACX + Ad + b = f_{AC,Ad+b}(x)$$

Osservo che $f_{I,O}$ è l'elemento neutro

$$(f_{A,b} \circ f_{I,O})(x) = f_{A,b}(Ix + O) = f_{A,b}(x)$$

 $(f_{I,O} \circ f_{A,b})(x) = f_{A,b}(x)$

Manca solo dimostrare l'esistenza dell'inverso di $f_{A,b}$, ovvero che esiste $f_{C,d}$ tale che $f_{A,b}\circ f_{C,d}=f_{C,d}\circ f_{A,b}=f_{I,O}$

$$(f_{A,b} \circ f_{C,d}(x) = f_{I,O}(x) = x$$

$$ACX + Ad + b + X \quad \forall X \in \mathbb{K}^n$$

$$\Rightarrow AC = Id \quad Ad + b = 0$$

$$C = A^{-1} \quad d = -A^{-1}b$$

$$(f_{A,b})^{-1} = f_{A^{-1},-A^{-1}b}$$