EE103 – INTRODUCTION TO PROGRAMMING – LAB 5 TAYLOR SERIES

Q-) Write a C code that calculates the cos(x) & sin(x) function by using Taylor Series:

$$y = \cos(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n}$$
$$y = \sin(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$

- ✓ Write a function that can calculate factorial of a number (20p)
 - A = myfactorialfunction(5); >> A = 5! =120

Hint: Factorial function must return double because integer is not enough to store 9! and above.

- ✓ Write a function that can calculate cos(x) by using Taylor Series (30p)
 - Function must take precision which will taken from user in the main function and the value 'x'
 - \circ The approximated value of $\cos(x)$ will be computed by Taylor series until the criteria below achieved:

$$Precision > |y_n - y_{n-1}|$$

Hint: Unit of the value 'x' is radian

Hint: While calculating absolute of an double variable use the function 'fabs(x)' which is in the math.h

- ✓ Write a function that can calculate sin(x) by using Taylor Series (30p)
 - Function must take precision which will taken from user in the main function and the value 'x'
 - The approximated value of sin(x) will be computed by Taylor series until the criteria below achieved:

$$Precision > |y_n - y_{n-1}|$$

Hint: Unit of the value 'x' is radian

Hint: While calculating absolute of an double variable use the function 'fabs(x)' which is in the math.h

- ✓ Write the main function (20p)
 - Take the 'precision' from user
 - Write a C program that calculates the sine and cosine at 30 degrees intervals between 0 and 360.
 - Print these values on screen like the example below

Hint: You need to define π as 3.14159 to calculate x

Enter precis	ion			
Degree : 0	Radian : 0.000000	Cos(x) : 1.000000	Sin(x) : 0.000000	Precision: 0.005000
Degree : 30	Radian : 0.523598	Cos(x): 0.866054	Sin(x): 0.500002	Precision : 0.005000
Degree : 60	Radian : 1.047197	Cos(x): 0.499965	Sin(x) : 0.866021	Precision : 0.005000
Degree : 90	Radian : 1.570795	Cos(x) : 0.000026	Sin(x) : 0.999843	Precision : 0.005000
Degree : 120	Radian : 2.094393	Cos(x) : -0.500013	Sin(x) : 0.866109	Precision : 0.005000
Degree : 150	Radian : 2.617992	Cos(x) : -0.866233	Sin(x) : 0.499960	Precision : 0.005000
Degree : 180	Radian : 3.141590	Cos(x) : -0.999900	Sin(x) : 0.000024	Precision : 0.005000
Degree : 210	Radian : 3.665188	Cos(x) : -0.866075	Sin(x) : -0.499787	Precision : 0.005000
Degree : 240	Radian : 4.188787	Cos(x) : -0.499980	Sin(x) : -0.866124	Precision : 0.005000
Degree : 270	Radian : 4.712385	Cos(x) : 0.000190	Sin(x) : -0.999952	Precision : 0.005000
Degree : 300	Radian : 5.235983	Cos(x) : 0.499903	Sin(x) : -0.865674	Precision : 0.005000
Degree : 330	Radian : 5.759582	Cos(x) : 0.866068	Sin(x) : -0.500175	Precision : 0.005000
Degree : 360	Radian : 6.283180	Cos(x) : 1.000301	Sin(x) : 0.000077	Precision : 0.005000