Detecting Influencers in the YouTube Market

Emily Muller (emily@aims.ac.za)

August 17, 2017

This document is intended for reading alongside the jupyter notebook 2017-08-05-network-from-scrape.

1 Network

The sub-setted network of influential YouTube users will be modelled as a weighted directed network, where nodes are the users (or sellers) and an edge from user U_i to user U_j is a measure of interaction. The following notation will be used:

Notation	Description	Domain
U_i	users/sellers in the network	i = 1,, n.
I_{jk}	items in the market (videos) from user U_j	$k = 1,, I_j .$
$e_i e_{jk}$	$\begin{cases} 1 & \text{there exists interaction (comment) from user i to item k of user j} \\ 0 & \text{there is no such interaction} \end{cases}$	{0,1}

Consider first the set of users and videos. These can be modelled as a bipartite graph, with U_i on the left, I_{ik} on the right and edges, $e_i e_{jk}$, directed from left to right.

Figure 1: Example of bipartite graph representing network

Figure 1 shows an example of a network consisting of 3 users. Note that an interaction from U_i to I_{jk} is only counted once for each comment. The aim is to derive from the bipartite graph, a weighted directed graph depicting interaction activity between users. It is necessary to consider both, the number of possible interactions from user U_i to $\{I_j\}$ and the activity of user U_i . A method similar to that used

in calculating recommender power for collaborative filtering recommender algorithms is used [?]. The interaction from U_i to U_j is defined as,

$$I(U_i, U_j) = \frac{\text{\# of edges from } U_i \text{ to } I_{jk} \text{ for all } k}{\text{total } \# \text{ edges sent from } U_i} \cdot \frac{\text{\# of edges from } U_i \text{ to } I_{jk} \text{ for all } k}{\text{total } \# \text{ items } I_{jk} \text{ for all } k}$$
(1.1)

$$I(U_i, U_j) = \frac{\text{\# of edges from } U_i \text{ to } I_{jk} \text{ for all } k}{\text{total } \# \text{ edges sent from } U_i} \cdot \frac{\text{\# of edges from } U_i \text{ to } I_{jk} \text{ for all } k}{\text{total } \# \text{ items } I_{jk} \text{ for all } k}$$

$$I(U_i, U_j) = \frac{\sum_{k=1}^{|I_j|} e_i e_{jk}}{\sum_{j=1}^n \sum_{k=1}^{|I_j|} e_i e_{jk}} \cdot \frac{\sum_{k=1}^{|I_j|} e_i e_{jk}}{|I_j|}.$$

$$(1.1)$$

Therefore, the interaction matrix for Figure 1 is,

$$I = \begin{bmatrix} 0 & 1 & 0 \\ 1/6 & 0 & 1/4 \\ 0 & 1/2 & 0 \end{bmatrix}. \tag{1.3}$$