

		worst ca	se O(n)		
	h -	best case	2: o(h)	(2 Situations	3)
n			br In		
	Ó			4011	
	fo	it ofi		fait prunning	
N Queens P	r-oblem.	heschaard			
Oliveri	tind a te	asible place			
		no two que		though each other	er
				me Wl Ugonal	
Fact (need	an't proved)				
	n>3, a f some specia	ln Cpri	me, bk+1		
3. for	general n. NP-1	iciently hard	s o vveví		

 $D = \{1, 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 6, 8, 18\}$ G1=2 9 04=8 8: as -a, or 04-a0 02:2/04=8 8: at-az or 04-ao 102-01=0 C 6: at - az or az - ap 0325/ 5: as or as -ab $a_{o(1)}$ a_1 a_2 a_3 a_4 $a_{s(2)}$ D= {1,2,2,2,3,3,44,5.5,6.6,8,8,10} (A = { 0,2,4,5,8,10} 1. for every d remaining in D at least one of its endpoints is not determined 2. for maximum d remaining in D. least one of its endpones is as or any Input: a multiset D. Output: a multicet 4 (14 D(A) =D $A = \{0, \max(D)\}$ 2. D = D - { max (D) } 3. TP (D, A) TP (D, A) (1. if D is empty

2.	return true
marstme3, d=	max (D)
	$a^{*}=d$ or $max(A)-d$.
U(n) 5.	$\Delta = \{ dist(ca^*, a) : a \in A \}$
	if a ED.
n. deltime7.	D:= D-0
0(1) 8.	$A := A \cup \{ A^* \}$
0(1) { 9.	if TP (D,A)
10.	return true
n. inser (11	etse
tion time (12	0:= 000
04) . 13.	$A := A - \{a^{*}\}$
14 return	false
i. ()(n) + max	time + n findkey + n del + n ins
AUL Tree	
	node O(n/ogn)
worse ca	se: $o(2^n)$ hodes (rare)
bast	ase: O(n) nodes (most instances)

Game Tic-tou	+00		
116-000			
/ 0	-1		
	יסקיןם ,	nent min (-1) max (1)	
	0 { y = 1	max (1)	
	5 0		
(, , ,)			
f(P)	= Wyon - Woppo		
	H Potential Wins		
		111	
	X	Wyon =6 Wyponent = 4	
		f(p) =2	

•

max-num = height = max length of all paths