Applying Type-Level and Generic Programming in Haskell

Summer School on Generic and Effectful Programming

Andres Löh

6–10 July 2015

Plan for the week

Monday:

- ► Learn about *n*-ary products.
- ► Along the way, discuss nearly everything we need in terms of Haskell type-level programming features.

Today:

- Recap and cover the missing parts of Monday's lecture.
- Introduce n-ary sums and the generics-sop view.
- Representing datatypes using generics-sop.
- More combinators and simple applications.

Friday:

- ► Metadata.
- More applications.

Recap: NP

Environments, NP

```
data NP (f :: k -> *) (xs :: [k]) where
  Nil :: NP f '[]
  (:*) :: f x -> NP f xs -> NP f (x ': xs)
infixr 5 :*
```

Building and combining environments

```
hpure :: SListI xs => (forall a . f a) -> NP f xs
```


Building and combining environments

```
hpure :: SListI xs => (forall a . f a) -> NP f xs
```

```
hap :: NP (f -.-> g) xs -> NP f xs -> NP g xs

newtype (f -.-> g) a = Fn {apFn :: f a -> g a}
```


Mapping and zipping environments

```
hmap :: SListI xs
     => (forall a . f a -> g a)
     -> NP f xs -> NP g xs
hmap f xs = hpure (Fn f) 'hap' xs
```


Collapsing environments

```
hcollapse :: NP (K a) xs -> [a]
```

```
newtype I a = I a
newtype K a b = K a
```


Abstracting from classes, type functions

Mapping constrained functions?

```
hmap (K . show . unI) group'
```

fails, because

```
K . show . unI :: forall x . Show x \Rightarrow I x \rightarrow K String x
```

does not match

forall
$$x$$
 . f $x \rightarrow g$

Х

Constraints are types of kind Constraint

```
GHCi> :kind Eq
Eq :: * -> Constraint
GHCi> :kind Functor
Functor :: (* -> *) -> Constraint
GHCi> :kind MonadReader
MonadReader :: * -> (* -> *) -> Constraint
```

Constraints are types of kind Constraint

```
GHCi> :kind Eq
Eq :: * -> Constraint
GHCi> :kind Functor
Functor :: (* -> *) -> Constraint
GHCi> :kind MonadReader
MonadReader :: * -> (* -> *) -> Constraint
```

Overloaded tuple syntax:

```
type NoConstraint = (() :: Constraint)
type SomeConstraints a = (Eq a, Show a)
type MoreConstraints f a = (Monad f, SomeConstraints a)
```


The All type family

The All type family

Example:

```
GHCi> :kind! All Eq '[Int, Bool]
All Eq '[Int, Bool] :: Constraint
= (Eq Int, (Eq Bool, ()))
```

(Constraints are flattened.)

We want:

```
hpure :: SListI xs

=> (forall a . f a) -> NP f xs

hcpure :: (SListI xs, All c xs)

=> (forall a . c a => f a) -> NP f xs
```

Then:

However, this does not work.

Limitations in GHC's type inference

Assume:

```
hcpure :: (SListI xs, All c xs)
=> (forall a . c a => f a) -> NP f xs
hcpure = undefined
```

Then

```
minBound :: Bounded a => a
I minBound :: Bounded a => I a
```

```
GHCi> hcpure (I minBound) :: NP I '[Char, Bool]
```

is a type error.

Proxies

```
data Proxy (a :: k) = Proxy
```

Examples:

```
pBounded :: Proxy Bounded
```

pBounded = Proxy

pShow :: Proxy Show

pShow = Proxy

Using proxies to define hcpure

Using proxies to define hcpure

Example:

```
GHCi> hcpure pBounded (I minBound) :: NP I '[Char, Bool]
I '\NUL' :* (I False :* Nil)
GHCi> hcpure pShow (Fn (K . show . unI)) 'hap' group'
K "'x'" :* (K "False" :* (K "3" :* Nil))
```


Generalizing choice

Choosing from a list

data LChoice a = LCZero a | LCSuc (LChoice a)

An index into a list paired with the element at that position.

Choosing from a list

```
data LChoice a = LCZero a | LCSuc (LChoice a)
```

An index into a list paired with the element at that position.

Equivalently in GADT syntax:

```
data LChoice (a :: *) where
  LCZero :: a -> LChoice a
  LCSuc :: LChoice a -> LChoice a
```


Choosing from a vector

```
data LChoice (a :: *) where
  LCZero :: a -> LChoice a
  LCSuc :: LChoice a -> LChoice a
```

Choosing from a heterogeneous list

```
data VChoice (a :: *) (n :: Nat) where
  VCZero :: a -> VChoice a (Suc n)
  VCSuc :: VChoice a n -> VChoice a (Suc n)
```

```
data HChoice (xs :: [*]) where
  HCZero :: x -> HChoice (x ': xs)
  HCSuc :: HChoice xs -> HChoice (x ': xs)
```


Choosing from an environment

```
data VChoice (a :: *) (n :: Nat) where
  VCZero :: a -> VChoice a (Suc n)
  VCSuc :: VChoice a n -> VChoice a (Suc n)

data HChoice (xs :: [*]) where
  HCZero :: x -> HChoice (x ': xs)
  HCSuc :: HChoice xs -> HChoice (x ': xs)
```

```
data NS (f :: k -> *) (xs :: [k]) where
Z :: f x -> NS f (x ': xs)
S :: NS f xs -> NS f (x ': xs)
```


An example

```
data NS (f :: k -> *) (xs :: [k]) where
Z :: f x -> NS f (x ': xs)
S :: NS f xs -> NS f (x ': xs)
```

```
type ExampleChoice = NS I '[Char, Bool, Int]
```

```
c0, c1, c2 :: ExampleChoice
c0 = Z (I 'x')
c1 = S (Z (I True))
c2 = S (S (Z (I 3)))
```


Representing types as sums of products

Representing expressions

Values are of form:

$$C_i x_0 \dots x_{n_i-1}$$

Representing expressions – contd.

```
data Expr = NumL Int
    | BoolL Bool
    | Add Expr Expr
    | If Expr Expr
```


Representing expressions – example

```
exampleExpr :: Expr
exampleExpr = If (BoolL True) (NumL 1) (NumL 0)
```


Representing expressions – example

```
exampleExpr :: Expr
exampleExpr = If (BoolL True) (NumL 1) (NumL 0)
```

Beautified syntax:

```
exampleRepExpr :: RepExpr
exampleRepExpr =
  C<sub>3</sub> [I (BoolL True), I (NumL 1), I (NumL 0)]
```



```
fromExpr :: Expr -> RepExpr
fromExpr (NumL n) =
 Z (In:*Nil)
fromExpr (BoolL b) =
 S(Z(Ib:*Nil))
fromExpr (Add e1 e2) =
 S (S (Z (I e1 :* I e2 :* Nil)))
fromExpr (If e1 e2 e3) =
 S (S (S (Z (I e1 :* I e2 :* I e3 :* Nil))))
```

Similarly toExpr.

The Generic class

Monday:

```
class Generic a where
  type Rep a
  from :: a -> Rep a
  to :: Rep a -> a
```

The Generic class

Monday:

```
class Generic a where
  type Rep a
  from :: a -> Rep a
  to :: Rep a -> a
```

Wednesday:

Instance for expressions

Instance for lists

Shows how parameters are handled.

On defining Generic instances

The role of Generic

If a type is an instance of **Generic**, then lots of generic functions will be available for that type.

However, the Generic instance must still be written.

Options

- ► Define by hand.
- ▶ Use Template Haskell.
- Extend the compiler (GHC).
- ▶ Use "Generic Generic Programming".

Using Template Haskell

```
data Expr = ...
deriveGeneric ''Expr
```

This is implemented.

Direct compiler support

```
data Expr = ...
deriving (..., Generic)
```

This is not implemented (and unlikely to be).

On compiler support

GHC has first-class support for (at least) two approaches:

- Scrap your boilerplate (SYB) via the Data class
- ► Generic deriving via (another) Generic class

In essence, **Data** and **Generic** are different structural representations of datatypes, encoding similar or even the same information as we are trying to.

On compiler support

GHC has first-class support for (at least) two approaches:

- Scrap your boilerplate (SYB) via the Data class
- ► Generic deriving via (another) Generic class

In essence, **Data** and **Generic** are different structural representations of datatypes, encoding similar or even the same information as we are trying to.

What if we could translate one representation into the other?

Generic Generic Programming

- Use Haskell libraries to translate between different representations.
- ▶ Built-in representation can aim to be as informative as possible; no need for it to be (directly) practical.
- Makes it easier to use several approaches in a single program.
- Encourages specialized representations for specific domains, rather than trying to find the "one true generic programming approach".

Generic Generic Programming in practice

```
import qualified GHC.Generics as GHC
data Expr = ...
  deriving (..., GHC.Generic)
instance Generic Expr
```

This is implemented.

Generic Generic Programming in practice

```
import qualified GHC.Generics as GHC
data Expr = ...
  deriving (..., GHC.Generic)
instance Generic Expr
```

This is implemented.

In the future:

```
data Expr = ...
deriving (..., GHC.Generic, Generic)
```


Generic equality

Equality for products

We are going to fall back on the Eq class for the components of the product.

Equality for sums of products

```
geqNS :: ... => NS (NP I) xss -> NS (NP I) xss -> Bool
geqNS (Z np1) (Z np2) = geqNP np1 np2
geqNS (S ns1) (S ns2) = geqNS ns1 ns2
geqNS _ _ = False
```

Equality for sums of products

```
geqNS :: ... => NS (NP I) xss -> NS (NP I) xss -> Bool
geqNS (Z np1) (Z np2) = geqNP np1 np2
geqNS (S ns1) (S ns2) = geqNS ns1 ns2
geqNS _ _ = False
```

We need All (All Eq) xss - but we can't do that.

To avoid partial applications, we have to "copy" the All family for two-dimensional structures:

Equality for sums of products – contd.

Completing the definition

```
geqSOP :: All2 Eq xss => SOP I xss -> SOP I xss -> Bool
geqSOP (SOP sop1) (SOP sop2) = geqNS sop1 sop2
```


Completing the definition

```
geqSOP :: All2 Eq xss => SOP I xss -> SOP I xss -> Bool
geqSOP (SOP sop1) (SOP sop2) = geqNS sop1 sop2
```

```
geq :: (Generic a, All2 Eq (Code a)) \Rightarrow a \Rightarrow Bool geq x y = geqSOP (from x) (from y)
```


Using generic equality

```
instance Eq Expr where
  (==) = geq
```


Using generic equality

```
instance Eq Expr where
  (==) = geq
```

Example:

```
GHCi> geq (Add (NumL 3) (NumL 5)) (Add (NumL 3) (NumL 5))
True
GHCi> geq (Add (NumL 3) (NumL 5)) (Add (NumL 3) (NumL 6))
False
```


Another look at the product case

Another look at the product case

It's a hczipWith!

Redefining the product case

Generic producers

Default values

Provided by the data-default package:

```
class Default a where
  def :: a
```


Default values

Provided by the data-default package:

```
class Default a where
  def :: a
```

We will try to define:

Note the rather precise type.

Completing the definition

Will generate

```
C<sub>0</sub> [def, ...]
```


Using the function

```
instance Default Int where
  def = 0
instance Default Bool where
  def = False
```

```
GHCi> gdef :: Expr
NumL 0
```


Using default signatures

Using default signatures

Then:

```
instance Default Expr
```

Or in the near future:

```
data Expr = ...
deriving (..., Default)
```


Generating one value for each constructor

```
gdefAll :: (Generic a, All2 Default (Code a)) => [a]
gdefAll = map (to . SOP) gdefAllNS
```

Generating one value for each constructor

```
gdefAll :: (Generic a, All2 Default (Code a)) => [a]
gdefAll = map (to . SOP) gdefAllNS
gdefAllNS :: forall xss .
             (SListI xss, All SListI xss,
              All2 Default xss)
          => [NS (NP I) xss]
gdefAllNS = case sList :: SList xss of
 SNil -> []
 SCons -> Z (hcpure (Proxy :: Proxy Default) (I def))
         : map S gdefAllNS
```


Example use of gdefAll

```
GHCi> gdefAll :: [Expr]
[NumL 0,
BoolL False,
Add (NumL 0) (NumL 0),
If (NumL 0) (NumL 0) (NumL 0)]
```

Products of products, injections

Another idea

A table of recursive calls:

```
[[def], [def], [def, def], [def, def, def]]
```

Another idea

A table of recursive calls:

```
[[def], [def], [def, def], [def, def, def]]
```

A list of constructor functions:

$$[C_0, C_1, C_2, C_3]$$

Another idea

A table of recursive calls:

```
[[def], [def], [def, def], [def, def]]
```

A list of constructor functions:

```
[C_0, C_1, C_2, C_3]
```

Zip:

```
[C_0 \text{ [def]}, C_1 \text{ [def]}, C_2 \text{ [def, def]}, C_3 \text{ [def, def, def]}]
```


Products of products

```
newtype POP f a = POP {unPOP :: NP (NP f) a}
```


An hcpure for POP

Unfortunately, because

```
All2 c xss /= All (All c) xss
```

we cannot just call hcpure twice.


```
hcpure_POP (Proxy :: Proxy Default) (I def) :: POP I (Code Expr)
```

yields

```
[[I def]
, [I def]
, [I def, I def]
, [I def, I def, I def]
]
```

Injections for Either

```
data Either a b = Left a | Right b
```

```
Left :: a -> Either a b
Right :: b -> Either a b
```

Injections for Either

```
data Either a b = Left a | Right b
Left :: a -> Either a b
Right :: b -> Either a b
eitherInjections :: NP (I -.-> K (Either a b)) '[a, b]
eitherInjections = Fn (K . Left . unI)
                  :* Fn (K . Right . unI)
                  :* Nil
```


Injections for NS

```
Assume xs = '[x, y, z, ...]:
```

```
Z :: f x \rightarrow NS f xs
S . Z :: f y \rightarrow NS f xs
S . S . Z :: f z \rightarrow NS f xs
```

```
Assume xs = '[x, y, z, ...]:

Z :: f x -> NS f xs
S . Z :: f y -> NS f xs
S . S . Z :: f z -> NS f xs
```


Putting things together

```
apInjs :: SListI xs => NP f xs -> [NS f xs]
apInjs np = hcollapse (injections 'hap' np)
```

```
apInjs_POP :: SListI xs => POP f xs -> [SOP f xs]
apInjs_POP (POP pop) = map SOP (apInjs pop)
```


Putting things together

```
apInjs :: SListI xs => NP f xs -> [NS f xs]
apInjs np = hcollapse (injections 'hap' np)
apInjs_POP :: SListI xs => POP f xs -> [SOP f xs]
apInjs_POP (POP pop) = map SOP (apInjs pop)
gdefAll' :: (Generic a, All2 Default (Code a)) => [a]
gdefAll' =
 map to (apInjs_POP (hcpure_POP p (I def)))
 where
```

p = Proxy :: Proxy Default

'Summary

- ► Type a is represented as NS (NP I) (Code a).
- Generic functions can be defined by pattern matching on NS and NP, but also by combining general combinators.

Exercises

- 1. Generalize equality to comparison.
- 2. Define a variant of generic equality (or comparison) that ignores some constructor arguments.
- 3. Define generic enumeration.

