Colles - Semaine 3

Exercice 1

- 1. Déterminer que la fonction $F: x \mapsto x \ln(x) x$ est une primitive de la fonction $f: x \mapsto \ln(x)$ sur $]0, +\infty[$.
- 2. Démontrer que : $\forall k \geq 2$, $\int_{k-1}^{k} \ln(t) dt \leq \ln(k) \leq \int_{k}^{k+1} \ln(t) dt$.
- 3. En déduire que : $\forall n \ge 2, \ n \ln(n) n \le \ln(n!) \le (n+1) \ln(n+1) (n+1) + 1.$
- 4. En déduire un équivalent simple de ln(n!).
- 5. La série $\sum_{n\geqslant 1} \frac{\ln(n!)}{n^3}$ est-elle convergente?

Exercice 2

Soit $k \in \mathbb{N}^*$ et (u_n) une suite de réels positifs.

On définit la suite (v_n) par : $\forall n \in \mathbb{N}, \ v_n = \ln(1 + u_n^k)$.

- 1. Montrer que si la série $\sum u_n$ converge, alors la série $\sum v_n$ converge.
- 2. On se propose d'étudier la réciproque de l'implication précédente.
 - a) On suppose que k=1. Montrer que si la série $\sum v_n$ converge, alors la série $\sum u_n$ converge.
 - b) On suppose que k > 1. Donner un exemple de suite (u_n) telle que la série $\sum v_n$ converge et la série $\sum u_n$ diverge.

Exercice 3

On considère la suite (u_n) définie par : $\begin{cases} u_0 > 0 \\ \forall n \in \mathbb{N}, \ u_{n+1} = u_n + u_n^2 \end{cases}$

- 1. a) Montrer que la suite (u_n) est croissante.
 - **b)** Montrer que la suite (u_n) diverge vers $+\infty$.
- 2. On pose, pour tout entier naturel n, $v_n = \frac{\ln(u_n)}{2^n}$.
 - 1. Montrer que pour tout t > 0, $\ln(1+t) \leqslant t$.
 - 2. Montrer que, pour tout $n \in \mathbb{N} : 0 \leqslant v_{n+1} v_n \leqslant \frac{1}{2^{n+1}u_n}$
 - 3. Montrer que la série de terme général $v_{n+1} v_n$ est convergente.
 - 4. En déduire que la suite (v_n) converge. On note ℓ sa limite.
- 3. a) Montrer, à l'aide de la question 2.b), que :

$$\forall n \in \mathbb{N}, \ \forall p \in \mathbb{N}, \ 0 \leqslant v_{n+p+1} - v_n \leqslant \frac{1}{2^n u_n}.$$

1

- **b)** Montrer que, pour tout $n \in \mathbb{N} : 0 \leq \ell v_n \leq \frac{1}{2^n u_n}$.
- c) En déduire que $u_n \sim_{n \to +\infty} e^{2^n \ell}$