- What is Data Science?
- What is Analytics?
 - Four Types of Analytics:
 - Examples:
- What is Machine Learning?
 - Definitions:
 - Example:
- Categories of Machine Learning
 - 📵 Supervised Learning 😉
 - 🛮 Unsupervised Learning 🧩
 - 3 Reinforcement Learning 🎮
- Machine Learning Workflow
 - Steps in Building an ML Model:
- Python for Machine Learning 2
 - Popular Libraries:
- Common Machine Learning Algorithms
 - Classification Algorithms:
 - Regression Algorithms:
- Conclusion

What is Data Science?

Data Science is an interdisciplinary field that combines:

- Statistics 📊
- Scientific Methods 🔌
- Artificial Intelligence (AI) 🎃
- Data Analysis ✓

It extracts valuable insights from data using computational techniques. Data Scientists use various tools to analyze data collected from multiple sources like the web, sensors, and customer interactions.

What is Analytics?

Analytics is the process of discovering, interpreting, and communicating patterns in data. It helps organizations make informed decisions based on historical and real-time data.

Four Types of Analytics:

- 1. Descriptive Analytics What happened in the past?
- 2. Diagnostic Analytics Why did it happen? \bigcirc
- 3. Predictive Analytics What is likely to happen? 🔮
- 4. Prescriptive Analytics What actions should we take? of

Examples:

- Descriptive: Business intelligence reports summarizing revenue, customer behavior, or inventory trends.
- Diagnostic: Analyzing why sales dropped in specific locations.
- Predictive: Forecasting weather, predicting stock prices, or spam detection.
- Prescriptive: Recommending marketing strategies based on past campaign performance.

What is Machine Learning?

Machine Learning (ML) is a branch of AI that allows computers to learn from data without being explicitly programmed.

Definitions:

- Arthur Samuel (1959): "Machine learning gives computers the ability to learn without being explicitly programmed."
- Tom Mitchell (1997): "A computer program learns from experience (E) concerning a class of tasks (T) and performance measure (P), if its performance improves with experience."

Example:

• An email spam filter learns from past interactions to better classify emails as spam or not spam.

Categories of Machine Learning

Supervised Learning \(\bigsimes \)

The model is trained using labeled data (input-output pairs). The goal is to learn a function that maps input to output.

Types:

- Regression: Predicts continuous values (e.g., stock prices, house prices).
- Classification: Predicts categories (e.g., spam detection, disease diagnosis).

Unsupervised Learning

The model identifies patterns in unlabeled data without predefined outputs.

Types:

- Clustering: Groups similar data points together (e.g., customer segmentation, document categorization).
- Dimensionality Reduction: Reduces the number of input variables while preserving important information.
- Anomaly Detection: Identifies unusual patterns (e.g., fraud detection, system failures).

🔳 Reinforcement Learning 🎮

An agent interacts with an environment to maximize rewards over time.

• Used in self-driving cars, game AI, and robotics.

Machine Learning Workflow

Steps in Building an ML Model:

- 1. Data Collection Gathering relevant datasets.
- 2. Data Preprocessing Cleaning and preparing data.
- 3. Exploratory Data Analysis (EDA) Understanding patterns and relationships.
- 4. Feature Engineering Selecting or creating useful features.
- 5. Model Selection Choosing the best algorithm.
- 6. Training the Model Feeding data into the algorithm.
- 7. Evaluation Measuring model performance.
- 8. Hyperparameter Tuning Optimizing model performance.
- 9. Deployment Integrating the model into real-world applications.

Python for Machine Learning 🏖

Popular Libraries:

- NumPy 📊 Efficient mathematical operations.
- Pandas 🦻 Data manipulation and analysis.
- Matplotlib & Seaborn 📉 Data visualization.
- Scikit-Learn 🍲 Machine learning algorithms.

Common Machine Learning Algorithms

Classification Algorithms:

- K-Nearest Neighbors (KNN)
- Naïve Bayes
- Decision Trees & Random Forest
- Support Vector Machines (SVM)
- Logistic Regression

Regression Algorithms:

- Linear Regression
- Decision Trees & Random Forest

- Support Vector Regression (SVR)
- Ensemble Methods

Conclusion

Machine Learning is a powerful tool that helps computers learn from data to make better decisions. Understanding the basics of supervised, unsupervised, and reinforcement learning provides a strong foundation for exploring real-world applications like spam detection, recommendation systems, and predictive analytics.