IMPLEMENT LED BLINK AND LED PATTERN WITH ARDUINO

Date:

Aim:

To Implement LED Blink and LED Pattern With Arduino

Procedure:

```
STEP 1: Open Arduino Software.
STEP 2: Click Tools -> Board -> Arduino Nano.
STEP 3: In Tools Menu Select Port -> COM.
STEP 4: Click File-> New and Start Write the Code.
STEP 5: And Click tick Icon Button of the file Menu to compile.
STEP 6: Click Upload Icon After Verify.
```

Program: LED Blink

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i:
void setup() {
 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);
 lcd.print("LED BLINK");
 lcd.setCursor(0,1);
 lcd.print("EXPERIMENT");
 delay(3000);
}
void led_blink()
 lcd.clear();
 lcd.print("LED Blinking");
 pinMode(5,OUTPUT);
 for(int i=0;i<10;i++)
  digitalWrite(1,HIGH);
  delay(50);
}
void loop() {
  led_blink();
  delay(100);
}
```

Program: LED Pattern

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i;
void setup() {
 lcd.begin(16, 2);
 lcd.print("LED PATTERN ");
 lcd.setCursor(0,1);
 lcd.print("Experimenter");
 delay(3000);
 lcd.clear();
void ledPattern()
 lcd.clear();
 lcd.print("LED Pattern");
 for (i = 2; i < = 7; i++)
pinMode(i, OUTPUT); // turn the LED on (HIGH is the voltage level)
digitalWrite(i, HIGH);
for(int j=0; j<5; j++)
  for (i = 2; i < = 7; i++)
   digitalWrite(i, LOW);
   delay(100);
  for (i = 7; i > = 2; i--)
   digitalWrite(i, HIGH);
   delay(100);
   }
 for (i = 2; i < = 7; i++)
 digitalWrite(i, HIGH);
 for (i = 2; i < = 7; i++)
 pinMode(i, INPUT);
}
void loop() {
  ledPattern();
  delay(1000);
}
```


Result:

Thus the above LED Blink and LED Pattern with Arduino program was executed and verified successfully

IMPLEMENT LED PATTERN WITH PUSH **BUTTON CONTROL WITH ARDUINO**

Aim:

Date:

Implement LED Pattern with Push Button Control with Arduino

```
Procedure:
STEP 1: Open Arduino Software.
STEP 2: Click Tools -> Board -> Arduino Nano.
STEP 3: In Tools Menu Select Port -> COM.
STEP 4: Click File-> New and Start Write the Code.
STEP 5: And Click tick Icon Button of the file Menu to compile.
STEP 6: Click Upload Icon After Verify.
Program:
#include <LiquidCrystal.h>
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i:
void setup() {
 lcd.begin(16, 2);
 lcd.print("LED Pattern");
 lcd.setCursor(0,1);
 lcd.print("Experimenter");
 delay(3000);
 lcd.clear();
void pushbutton_led()
{
lcd.clear();
lcd.print("Push Button");
lcd.setCursor(0,1);
lcd.print("Press Key6");
pinMode(7, INPUT); // turn the LED on (HIGH is the voltage level)
digitalWrite(7, HIGH);
for (i = 2; i < = 6; i++)
pinMode(i, OUTPUT); // turn the LED on (HIGH is the voltage level)
digitalWrite(i, HIGH);
}
while(digitalRead(7));
if(!digitalRead(7))
```


Result:

Thus the above LED Pattern with Push Button Control with Arduino program was executed and verified successfully

DISPLAY "HELLO WORLD" IN LCD 16X2 DISPLAY WITH ARDUINO

Aim:

Date:

To Display "Hello World" in LCD 16X2 Display with Arduino

Procedure:

```
STEP 1: Open Arduino Software.
STEP 2: Click Tools -> Board -> Arduino Nano.
STEP 3: In Tools Menu Select Port -> COM.
STEP 4: Click File-> New and Start Write the Code.
STEP 5: And Click tick Icon Button of the file Menu to compile.
STEP 6: Click Upload Icon After Verify.
```

Program:

```
#include <LiquidCrystal.h>
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i;
void setup() {
    lcd.begin(16, 2);
    lcd.print("TEXT DISPLAY");
    lcd.setCursor(0,1);
    lcd.print("Experimenter");
    delay(3000);
    lcd.clear();
    lcd.print("HELLO WORLD");
}
void loop() {
```

Output:

```
Icd_hello_world | Arduino IDE 2.0.0
File Edit Sketch Tools Help
Output Serial Monitor ×
Message (Ctrl + Enter to send message to 'Arduino Nano' on 'COM4')
Hello World
```

Result:

Thus the above Display "Hello World" in LCD 16X2 with Arduino program was executed and verified successfully

IMPLEMENT THE SERVO MOTOR CONTROL WITH ARDUINO

Date:

Aim:

To Implement the Servo Motor Control with Arduino

```
Procedure:
```

myservo.write(pos);

```
STEP 1: Open Arduino Software.
STEP 2: Click Tools -> Board -> Arduino Nano.
STEP 3: In Tools Menu Select Port -> COM.
STEP 4: Click File-> New and Start Write the Code.
STEP 5: And Click tick Icon Button of the file Menu to compile.
STEP 6: Click Upload Icon After Verify.
Program:
#include <LiquidCrystal.h>
#include <Servo.h>
Servo myservo;
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i:
void setup() {
lcd.begin(16, 2);
 lcd.print("ROTATE SERVO");
 lcd.setCursor(0,1);
 lcd.print("Experimenter");
 delay(3000);
 lcd.clear();
 lcd.print("START ROTATING");
 delay(1000);
 lcd.clear();
void servoSweep()
 lcd.clear();
 lcd.print("MOTER DEGREE");
 myservo.attach(11);
 int pos;
for(int i=0; i<2;i++)
 for (pos = 0; pos <= 90; pos += 1) {
                                             // goes from 0 degrees to 180 degrees
                                         // in steps of 1 degree
  myservo.write(pos);
                                          // tell servo to go to position in variable 'pos'
                                        // waits 15ms for the servo to reach the position
  delay(15);
  lcd.setCursor(0,1);
  lcd.print(" ");
  lcd.setCursor(0,1);
  lcd.print(pos);
 for (pos = 130; pos >= 0; pos -= 1) {
                                                     // goes from 180 degrees to 0 degrees
                                                   // tell servo to go to position in variable 'pos'
```


Result:

Thus the above Implement the Servo Motor Control with Arduino program was executed and verified successfully

Ex No: 12 Date:

IMPLEMENT AND MONITOR THE LM35 TEMPERATURE SENSOR AND ULTRASONIC DISTANCE MEASUREMENT WITH ARDUINO

Aim:

To Implement and Monitor the LM35 Temperature Sensor and Ultrasonic Distance Measurement With Arduino

Procedure:

```
STEP 1: Open Arduino Software.
STEP 2: Click Tools -> Board -> Arduino Nano.
STEP 3: In Tools Menu Select Port -> COM.
STEP 4: Click File-> New and Start Write the Code.
STEP 5: And Click tick Icon Button of the file Menu to compile.
STEP 6: Click Upload Icon After Verify.
Program for LM35:
#include <LiquidCrystal.h>
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i;
void setup() {
lcd.begin(16, 2);
 lcd.print("Find Temperature");
 lcd.setCursor(0,1);
 lcd.print("Experimenter");
 delay(3000);
 lcd.clear();
void temperature()
 int val;
 float my:
 float cel;
 float farh;
 for(int i=0; i<20; i++)
 lcd.clear();
 lcd.print("Temperature");
 val = analogRead(A6);
 mv = (val/1024.0)*5000;
 cel = mv/10;
 farh = (cel*9)/5 + 32;
 lcd.setCursor(0,1);
 lcd.print(cel);
 lcd.print("*C");
 delay(1000);
```

```
void loop() {
  temperature();
  delay(1000);
Program for Ultrasonic (SR04):
#include <LiquidCrystal.h>
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i;
void setup() {
 lcd.begin(16, 2);
 lcd.print("Finding Distance");
 lcd.setCursor(0,1);
 lcd.print("Experimenter");
 delay(3000);
 lcd.clear();
}
void sr04()
 pinMode(13, OUTPUT);
 pinMode(12, INPUT);
 for(int i=0; i<100; i++)
 lcd.clear();
 lcd.print("UltraSonic");
 lcd.setCursor(0,1);
 digitalWrite(13, LOW);
 delayMicroseconds(2);
 digitalWrite(13, HIGH);
 delayMicroseconds(10);
 digitalWrite(13, LOW);
 long duration = pulseIn(12, HIGH);
 int distance = duration * 0.034 / 2; // Speed of sound wave divided by 2 (go and back)
 lcd.print("Distance:");
 lcd.print(distance);
 lcd.print("cm");
 delay(100);
 }
void loop() {
  sr04();
  delay(1000);
}
```

```
M35 | Arduino IDE 2.0.0
File Edit Sketch Tools Help
Output Serial Monitor ×
Message (Ctrl + Enter to send message to 'Arduino Nano' on 'COM4')
temperature:29.79
temperature:29.79
temperature:29.79
temperature:29.79
temperature:29.79
temperature:30.27
temperature:30.76
temperature:31.25
temperature:31.25
temperature:31.74
temperature:31.74
temperature:31.74
temperature:32.23
temperature:32.23
temperature:31.74
temperature:31.74
temperature:31.25
temperature:31.25
temperature:31.25
temperature:31.25
temperature:30.76
temperature:31.25
temperature:31.25
temperature:31.74
```

```
SR04 | Arduino IDE 2.0.0
File Edit Sketch Tools Help
Output Serial Monitor X
Message (Ctrl + Enter to send message to 'Arduino Nano' on 'COM4')
Distance:204
Distance:205
Distance:205
Distance:205
Distance:206
Distance:205
Distance:205
Distance:205
Distance:10
Distance:5
Distance:2158
Distance:2157
Distance:2157
Distance:2158
Distance:2158
Distance:2158
Distance:2158
Distance:205
Distance:16
Distance:11
Distance:12
```

Result:

Thus the above Implement and Monitor the LM35 Temperature Sensor and Ultrasonic Distance Measurement with Arduino Program was executed and verified successfully

IMPLEMENT THE IR SENSOR ANALOG INPUT WITH ARDUINO

Date:

Aim:

To Implement the IR Sensor Analog Input with Arduino

```
Procedure:
```

void loop() {

```
STEP 1: Open Arduino Software.
STEP 2: Click Tools -> Board -> Arduino Nano.
STEP 3: In Tools Menu Select Port -> COM.
STEP 4: Click File-> New and Start Write the Code.
STEP 5: And Click tick Icon Button of the file Menu to compile.
STEP 6: Click Upload Icon After Verify.
Program:
#include <LiquidCrystal.h>
LiquidCrystal lcd(A5,A4,A3,A2,A1,A0);
int i;
void setup() {
 lcd.begin(16, 2);
 lcd.print("IR INPUT");
 lcd.setCursor(0,1);
 lcd.print("Experimenter");
 delay(3000);
 lcd.clear();
}
void ir_sensor()
 pinMode(10,INPUT);
 pinMode(2,OUTPUT);
 digitalWrite(2,HIGH);
 for(int i=0;i<100;i++)
 {
  if(!digitalRead(10))
   lcd.clear();
   lcd.print("IR Triggered");
   digitalWrite(2,LOW);
  }
  else
  lcd.clear();
  lcd.print("IR Not Triggered");
   digitalWrite(2,HIGH);
  delay(100);
```

```
ir_sensor();
  delay(1000);
}
```

```
IR | Arduino IDE 2.0.0
File Edit Sketch Tools Help
Output Serial Monitor ×
Message (Ctrl + Enter to send message to 'Arduino Nano' on 'COM4')
IR Not Triggered
IR Triggered
IR Triggered
IR Triggered
IR Triggered
IR Triggered
```

Result:

Thus the above Implement the IR Sensor Analog Input with Arduino program was executed and verified successfully

Ex No: 14 Date:

USING THINKSPEAK CLOUD READING TEMPERATURE SENSOR MONITORING WITH **NODEMCU**

Aim:

To Using ThinkSpeak Cloud Reading Temperature Sensor Monitoring with NodeMCU

Procedure:

```
STEP 1: Open Arduino Software.
```

STEP 2: Click Tools -> Board -> NodeMcu.

STEP 3: In Tools Menu Select Port -> COM.

STEP 4: Click File-> New and Start Write the Code.

STEP 5: Login Your Think speak Cloud and check API key and Channel Number.

STEP 6: Open secrets.h Header file.

STEP 7: Edit SSID &Password of the WIFI and add Your API key and Channel Number of Think speak cloud

STEP 8: And Click tick Icon Button of the file Menu to compile.

STEP 9: Click Upload Icon After Verify.

STEP 10: Now, Check you think speak cloud temperature will sense as Graph

Program:

Secrets.h

```
// replace MySSID with your WiFi network name
#define SECRET SSID "MvSSID"
#define SECRET_PASS "MyPassword"
                                       // replace MyPassword with your WiFi password
#define SECRET_CH_ID 0000000
                                      // replace 0000000 with your channel number
#define SECRET WRITE APIKEY "XYZ"
                                      // replace XYZ with your channel write API Key
```

NodeMcu.ino

float number 4 = 0:

```
#include <ESP8266WiFi.h>
#include "secrets.h"
#include "ThingSpeak.h" // always include thingspeak header file after other header files and
custom macros
#include <SoftwareSerial.h>
SoftwareSerial swSer(D6, D7);
char ssid[] = SECRET_SSID; // your network SSID (name)
char pass[] = SECRET_PASS; // your network password
int keyIndex = 0;
                     // your network key Index number (needed only for WEP)
WiFiClient client:
unsigned long myChannelNumber = SECRET_CH_ID;
const char * myWriteAPIKey = SECRET_WRITE_APIKEY;
// Initialize our values
float number 1 = 0:
float number 2 = 0:
float number 3 = 0:
```

```
float number5 = 0;
float number6 = 0;
float number 7 = 0;
float number8 = 0;
String myStatus = "";
String response;
int ESPwait(String stopstr, int timeout_secs)
bool found = false;
char c:
long timer_init;
long timer;
response="";
timer_init = millis();
while (!found) {
 timer = millis();
 if (((timer - timer_init) / 1000) > timeout_secs) { // Timeout?
   Serial.println("!Timeout!");
   return 0; // timeout
 if (swSer.available()) {
   c = swSer.read();
   //Serial.print(c);
   response += c;
   if (response.endsWith(stopstr)) {
    found = true;
    delay(10);
    swSer.flush();
    Serial.flush();
    Serial.println();
 } // end Serial1_available()
} // end while (!found)
return 1;
int ESPwait1(String stopstr, int timeout_secs)
bool found = false;
char c;
long timer_init;
long timer;
response="";
timer_init = millis();
while (!found) {
 timer = millis();
 if (((timer - timer_init) / 1000) > timeout_secs) { // Timeout?
   Serial.println("!Timeout!");
   return 0; // timeout
 if (Serial.available()) {
   c = Serial.read();
   Serial.print(c);
   response += c;
```

```
if (response.endsWith(stopstr)) {
    found = true;
    delay(10);
    Serial.flush();
    Serial.println();
  }
 } // end Serial1_available()
 } // end while (!found)
 return 1;
}
void setup() {
 Serial.begin(9600); // Initialize serial
 swSer.begin(9600);
 pinMode(LED_BUILTIN,OUTPUT);
 while (!Serial) {
 ; // wait for serial port to connect. Needed for Leonardo native USB port only
 WiFi.mode(WIFI_STA);
 ThingSpeak.begin(client); // Initialize ThingSpeak
void loop() {
 char c:
   // Connect or reconnect to WiFi
 if(WiFi.status() != WL_CONNECTED){
  Serial.print("Attempting to connect to SSID: ");
  Serial.println(SECRET_SSID);
  while(WiFi.status() != WL_CONNECTED){
   WiFi.begin(ssid, pass); // Connect to WPA/WPA2 network. Change this line if using open or
WEP network
   Serial.print(".");
   delay(5000);
  Serial.println("\nConnected.");
  for(int i=0;i<5;i++)
  digitalWrite(LED_BUILTIN,LOW);
  delay(100);
  digitalWrite(LED_BUILTIN,HIGH);
  delay(100);
  }
if(swSer.available())
 c=swSer.read();
 swSer.println(c);
 if(c=='*')
  {
   if(ESPwait("#",3))
   char * strtokIndx;
   response.remove(response.length()-1);
```

```
strtokIndx = strtok(const_cast<char*>(response.c_str()),",");  // get the first part - the string
number1 = atof(strtokIndx);
Serial.println(response);
response="";

ThingSpeak.setField(1, number1);
int x = ThingSpeak.writeField(myChannelNumber, 1, number1, myWriteAPIKey);
if(x == 200)
{
    Serial.println("Channel update successful.");
    digitalWrite(LED_BUILTIN,LOW);
}
else{
    Serial.println("Problem updating channel. HTTP error code " + String(x));
    digitalWrite(LED_BUILTIN,HIGH);
}
Serial.println("Sent");
}
}
```


Result:

Thus the above ThinkSpeak Cloud Reading Temperature Sensor Monitoring with NodeMCU was executed successfully