Nomes: Brandon Bryan Butron Alegre – 825161612

Rafael Henrique Garbelini Alberço – 825114430

Eduardo Barbosa Santos - 825162647

Gabriel Dassi Winiemcko – 825149898

Guilherme Germano Alves Cardoso - 825165658

Arthur Cagnani Nicacio – 825140545

Solução IoT para Monitoramento de Tráfego e Mobilidade Urbana em Cidades Inteligentes

1. Introdução

O crescimento desordenado dos centros urbanos no Brasil tem gerado diversos problemas relacionados à mobilidade, como congestionamentos, acidentes e aumento da emissão de poluentes. Neste contexto, soluções baseadas na Internet das Coisas (IoT) tornam-se promissoras para auxiliar na gestão do tráfego em tempo real, melhorando a fluidez viária e a qualidade de vida nas cidades.

Justificativa: O uso de loT permite o monitoramento dinâmico do tráfego, possibilitando ajustes automáticos na sinalização, detecção de incidentes e fornecimento de dados para o planejamento urbano.

2. Referencial Teórico

2.1. Internet das Coisas (IoT)

A loT é uma arquitetura tecnológica que conecta dispositivos físicos à internet, possibilitando coleta, transmissão e análise de dados em tempo real. No contexto urbano, pode incluir sensores de tráfego, câmeras, semáforos inteligentes e veículos conectados.

2.2. Mobilidade Urbana e Cidades Inteligentes

Segundo Ferreira et al. (2020), cidades inteligentes buscam integrar tecnologias para tornar o ambiente urbano mais eficiente e sustentável. A mobilidade é um dos eixos centrais dessa transformação.

2.3. Soluções no Brasil

Projetos como o *Smart Sampa* (São Paulo) e *Porto Alegre + Inteligente* já implementam sensores para controle de tráfego e transporte público.

3. Metodologia

- Levantamento bibliográfico sobre tecnologias loT aplicadas à mobilidade urbana no Brasil.
- Análise de estudos de caso de cidades brasileiras que já implementaram soluções semelhantes.
- Desenvolvimento da proposta, considerando viabilidade técnica, econômica e social.
- Simulação teórica do funcionamento do sistema proposto.

4. Proposta de Solução

4.1. Arquitetura do Sistema

- Sensores IoT em semáforos e vias principais para detectar fluxo de veículos.
- Câmeras com inteligência artificial para identificar congestionamentos e acidentes.
- Semáforos inteligentes que ajustam automaticamente o tempo com base no tráfego.
- Aplicativo cidadão, que fornece dados de trânsito em tempo real e permite a notificação de incidentes.

4.2. Plataforma de Dados

Os dados coletados serão enviados para uma plataforma central em nuvem, que processará as informações utilizando algoritmos de aprendizado de máquina para prever padrões de tráfego e sugerir melhorias.

5. Impacto e Viabilidade

5.1. Impacto Tecnológico

- Melhoria na gestão do tráfego;
- Redução de acidentes;
- Otimização do tempo de deslocamento.

5.2. Impacto Social e Ambiental

- Redução na emissão de poluentes;
- Aumento da qualidade de vida urbana.

5.3. Viabilidade Técnica

Tecnologias como LoRaWAN, 5G e Big Data já estão disponíveis no Brasil e são compatíveis com o sistema proposto.

5.4. Limitações

- Alto custo inicial de implementação;
- Necessidade de capacitação técnica dos servidores públicos.

6. Conclusão

A aplicação de loT no monitoramento de tráfego urbano é viável e traz benefícios significativos às cidades brasileiras. A solução proposta visa ser um modelo replicável, de baixo custo operacional e grande impacto na mobilidade urbana.

7. Referências Bibliográficas

- FERREIRA, A. B. et al. Cidades Inteligentes e a Internet das Coisas:
 Perspectivas e Aplicações no Contexto Brasileiro. Revista de
 Engenharia e Pesquisa Aplicada, v. 5, n. 1, p. 50–60, 2020.
- RIBEIRO, P. F.; ALMEIDA, M. C. Gestão Inteligente do Trânsito Urbano com IoT: Estudo de Caso em Porto Alegre. Revista Brasileira de Tecnologias Sociais, v. 8, n. 2, p. 33–44, 2022.
- PREFEITURA DE SÃO PAULO. Programa Smart Sampa. São Paulo:
 Secretaria de Inovação e Tecnologia, 2023.
- COSTA, D. L.; OLIVEIRA, R. J. Mobilidade Urbana Inteligente: Avanços e Desafios no Brasil. Revista de Planejamento Urbano, v. 12, n. 1, p. 25–37, 2021.