(本小题 13 分)

已知数列 $\{a_n\}$, 从中选择第 i_1 项、第 i_2 项、…、第 i_m 项 $(i_1 < i_2 < \cdots < i'_m)$, 若 $a_{i_1} < a_{i_2} < \cdots < a_{i_m}$, 则称新数列 $a_{i_1}, a_{i_2}, \cdots, a_{i_m}$ 为 $\{a_n\}$ 的长度为 m 的递增子列. 规定数列 $\{a_n\}$ 的任意一项都是 $\{a_n\}$ 的长度为 1 的递增子列.

- (I) 写出数列 1,8,3,7,5,6,9 的一个长度为 4 的递增字列;
- (II) 已知数列 $\{a_n\}$ 的长度为 p 的递增字列的末项的最小值为 a_{m_0} , 长度为 q 的递增字列的末项的最小值为 a_{n_0} . 若 p < q 求证: $a_{m_0} < a_{n_0}$;
- (III) 设无穷数列 $\{a_n\}$ 的各项均为正整数,且任意两项均不相等. 若 $\{a_n\}$ 的长度为 s 的递增字列的末项的最小值为 2s-1,且长度为 s 末项为 2s-1 的递增字列恰有 2^{s-1} 个 $(s=1,2,\cdots)$,求数列 $\{a_n\}$ 的通项公式