Econ 720 Recitation #11

Date: 11/12/2021 TA: Yanran Guo

Endogenous Growth Model

A Brief Summary of Endogenous Growth Model

Problem of Each Sector	Variety Expansion Model	Quality Ladder Model
① Household Sector	$\max \int_0^\infty e^{-\rho t} u(c_t) dt$	
⇒ Get EE which shows consumption growth rate	Complicated BC or a reduced form $\dot{a_t} = r_t a_t + w_t - c_t + \Pi_t$	
	$g(c_t) = \frac{r_t - \rho}{\sigma(c_t)}$	
	Production function: $Y_t = (1 - \beta)^{-1} (\int_0^{N_t} x_{jt}^{1-\beta} dj) L_t^{\beta}$	$Y_t = (1 - \beta)^{-1} \left(\int_0^1 q_{jt} \cdot x_{jt}^{1 - \beta} dj \right) L_t^{\beta}$
② Final Goods Sector (Perfect Competition) Profit maximization given factor prices	$\max Y_t - \int_0^{N_t} p_{jt} x_{jt} dj - w_t L_t$	$\max Y_t - \int_0^1 p_{jt} x_{jt} dj - w_t L_t$
\Rightarrow Find the optimal demand for x_{jt} and L_t	$\stackrel{FOC}{\Longrightarrow}$ Optimal demand for intermediates and labor input $[x_{jt}]$: $\frac{x_{jt}^{-\beta}L_t^{\beta} = p_{jt}}{x_{jt}^{\beta}}$	$\stackrel{FOC}{\Longrightarrow}$ Demand for intermediates and labor $[x_{jt}]$: $x_{jt} = (q_{jt}/p_{jt})^{1/\beta}L_t$
! Notice that final goods price is normalized to 1	$[L_t]: \frac{\beta}{1-\beta} \left(\int_0^{N_t} x_{jt}^{1-\beta} dj \right) L_t^{\beta-1} = w_t$	$[L_t]: \beta Y_t/L_t = w_t$
③ Intermediates Sector (Monopolistic Competition)	1 units of good j is produced by $arphi$ units of final goods	Marginal cost is φq_{jt} units of final goods
Profit maximization by choosing price	$\max \ \pi_{jt} \Leftrightarrow \max \ p_{jt}x_{jt} - \varphi x_{jt} \Leftrightarrow \max \ (p_{jt} - \varphi) \frac{L_t p_{jt}^{-1/\beta}}{L_t p_{jt}}$	$\max \ \pi_{jt} \ \Leftrightarrow \ \max \ p_{jt}x_{jt} - \varphi q_{jt}x_{jt}$
\Rightarrow Find the optimal price p_{jt} that maximizes profit	$\stackrel{FOC}{\Longrightarrow} \text{ Optimal price } p_{jt} = \frac{\varphi}{1-\beta} \text{ for } \forall t, \ \forall j$	$\stackrel{FOC}{\Longrightarrow} \text{ Optimal price } p_{jt} = \frac{\varphi q_{jt}}{1-\beta}$
What's the demand function? What's the cost?	Hence, $x_{jt} = L_t (\frac{\varphi}{1-\beta})^{-1/\beta}$ and $\pi_{jt} = L_t (\frac{\varphi}{1-\beta})^{-1/\beta} \frac{\beta \varphi}{1-\beta}$	So, $x_{jt} = L_t \left(\frac{\varphi}{1-\beta}\right)^{-1/\beta}$, $\pi_{jt} = L_t \left(\frac{\varphi}{1-\beta}\right)^{-1/\beta} \frac{\beta \varphi q_{jt}}{1-\beta}$
	$\dot{N}_t = \eta Z_t$ For simplicity,	$n_{jt}\Delta t = (\eta/q_{jt})Z_{jt}\Delta t$
④ R&D Sector	Cost of creating a new variety = $1/\eta$ set $\varphi = 1 - \beta$	Innovation takes quality from q_{jt} to λq_{jt}
We only think about equilibrium	Benefit of creating a new variety is $V_j = \int_s^\infty e^{-r(t-s)} \frac{\pi_{jt}}{t} dt$	Suppose current quality is q_{jt}/λ
In equilibrium, Free Entry Condition holds \Rightarrow Get the present value of profit V_j and r	Free Entry: cost=benefit $\Rightarrow \frac{1}{\eta} = V_j$,	Free Entry: $q_{jt}/\lambda \eta = V(j,t q_{jt})$
	hence $\frac{1}{\eta} = \frac{\beta L}{r}$, therefore $r = \beta L \eta$	What's the value of $V(j,t q_{jt})$? Asset pricing!