TOPIC MODELS

William Lowe Hertie School

6th October 2020

PLAN

- → Geometry
- → Topic models, the very idea
- → Latent Dirichlet Allocation
- → Dirichlet distributions for beginners
- → Training and output
- → Interpretation
- → Explaining topic prevalence
- → The Structural Topic Model

WORD GEOMETRY

Consider the *i*-th row of a document term matrix as a vector of proportions $P_i = [P_{i1} \dots P_{iV}]$

 \rightarrow (Make the proportions from counts $W_{i\nu}$ by dividing every count by the row sum)

This is the document's vocabulary profile

For fixed vocabulary, all possible documents live on a simplex

- → The 'corners' are where the document contains 100% tokens of one vocabulary word
- \rightarrow There are V of them, i.e. a lot...

TOPIC GEOMETRY

Now consider the message $\theta_i = [\theta_{i1} \dots \theta_{iK}]$ that we think the *i*-th document expresses.

This is a vector of *K topic proportions* for document *i*

- → From applying a dictionary
- → From manual coding
- **→** ...

This is the document's topic profile

For fixed vocabulary, all possible documents also live on a simplex, but it

- \rightarrow only has K corners
- → is embedded in the space of document profiles

Huge dimensionality reduction...

TOPIC GEOMETRY

TOPIC GEOMETRY

The 'corners' of the topic simplex represent the balance of words this topic generates

→ i.e. a dictionary category

but with two differences to the ones we've been looking at. Each one

- → contains an 'entry' for every possible word, not just some of them
- → expressed generatively, so we could 'write' on that topic (by treating the entry as a set of multinomial parameters)

TOPIC MODELS

Topic models answer the question: If we only knew *K*

- → What would a good set of topics be?
- → What would be a good set of topic proportions be

Basically

- $\rightarrow B = [\beta_1, ..., \beta_K]$ a matrix of word probabilities (V words by K topics)
- $\rightarrow \Theta = [\theta_1, \dots, \theta_D]^T$ a matrix of topic proportions (D documents by K topics)

We'll look at the oldest and simplest way to answer these questions

→ Latent Dirichlet Allocation (a.k.a LDA, Blei et al., 2003)

DICTIONARIES VS TOPIC MODELS

DICTIONARY-BASED CONTENT ANALYSIS

We know the dictionary

TOPIC MODEL

We *don't* know the dictionary

LATENT DIRICHLET ALLOCATION

We don't know the dictionary, but we do have prior expectations

- \rightarrow about the β s
- \rightarrow about the θ s

$$\beta_k \sim \text{Dirichlet}(\eta)$$
 $\theta_d \sim \text{Dirichlet}(\alpha)$
 $W_i \sim \text{Multinomial}(\beta_{Z_i=k}, 1)$ $Z_i \sim \text{Multinomial}(\theta_d, N)$

DIRICHLET DISTRIBUTIONS

Two sources of information to figure out β

- → Prior: how 'sparsely' populated is each topic with words?
- \rightarrow Likelihood: what words W to we see?

Two sources of information to figure out θ

- → Prior: how 'sparsely' are documents populated with topics
- \rightarrow Likelihood: what topics Z do we see?

We use a Dirichlet distribution for both priors:

→ Dirichlet distributions generate probabilities i.e. profiles on a simplex

DIRICHLET PARAMETERS

WHY DIRICHLET?

Because Multinomial!

WHY DIRICHLET?

Because Multinomial! Nice things about the Dirichlet distribution

→ It's *conjugate* to the Multinomial

Let's (briefly) consider a special case: Beta (Dirichlet with 2 probabilities) and Binomial (Multinomial with 2 outcomes)

→ *two* possible topics (1 and 0) in proportions $[\theta_1, (1 - \theta_1)]$ and a single document with 20 words whose Zs are known: 15 Z=1s and 5 Z=0s

WHY DIRICHLET?

Prior distributions are solid lines and the resulting posterior distributions over θ for 15 Z=1 and 5 Z=0 are dashed.

TOPIC MODEL TRAINING

Topic models can be quite time consuming to estimate.

→ Lots of coupled unknowns all at once

Intuition:

- → Any set of parameters make the observed word counts more or less probable
- \rightarrow If we knew the Z's then estimating β and θ would be straightforward
- \rightarrow If we new β and θ then estimating Z would be straightforward
- → So alternate between these steps

This simple approach is called Gibbs sampling

A more complete machine learning course will tell you all about; we won't linger...

Topic models: β

Topic (Short Label)	Keys
1. Judicial Nominations	nomine, confirm, nomin, circuit, hear, court, judg, judici, case, vacanc
2. Constitutional	case, court, attornei, supreme, justic, nomin, judg, m, decis, constitut
3. Campaign Finance	campaign, candid, elect, monei, contribut, polit, soft, ad, parti, limit
4. Abortion	procedur, abort, babi, thi, life, doctor, human, ban, decis, or
5. Crime 1 [Violent]	enforc, act, crime, gun, law, victim, violenc, abus, prevent, juvenil
6. Child Protection	gun, tobacco, smoke, kid, show, firearm, crime, kill, law, school
7. Health 1 [Medical]	diseas, cancer, research, health, prevent, patient, treatment, devic, food
8. Social Welfare	care, health, act, home, hospit, support, children, educ, student, nurs
9. Education	school, teacher, educ, student, children, test, local, learn, district, class
10. Military 1 [Manpower]	veteran, va, forc, militari, care, reserv, serv, men, guard, member
11. Military 2 [Infrastructure]	appropri, defens, forc, report, request, confer, guard, depart, fund, project
12. Intelligence	intellig, homeland, commiss, depart, agenc, director, secur, base, defens
13. Crime 2 [Federal]	act, inform, enforc, record, law, court, section, crimin, internet, investig
14. Environment 1 [Public Lands]	land, water, park, act, river, natur, wildlif, area, conserv, forest
15. Commercial Infrastructure	small, busi, act, highwai, transport, internet, loan, credit, local, capit
16. Banking / Finance	bankruptci, bank, credit, case, ir, compani, file, card, financi, lawyer
17. Labor 1 [Workers]	worker, social, retir, benefit, plan, act, employ, pension, small, employe

From Quinn et al. (2007)

Note: only the top most probable words are shown and topic labels are manually assigned.

Topic models: θ_k

From Quinn et al. (2007)

INTERPRETING TOPICS

Ideally we'd like to be able to say: "make this one about defense"

Unfortunately, that level of high level control is an unsolved problem

We can only after the fact assign our own labels the topics, and hope some are topics that we want.

Are they good, these topics?

- → often better the *statistical* properties of the model the less interpretable it tends to be (Chang et al., 2009)
- → Clearly we're missing something with the model structure...

EXPLAINING TOPIC PREVALENCE

Often we want to both *measure* but also *explain* the prevalence of topic mentions

Example: What are the effects of a Japanese house electoral reform on candidate platforms? (Catalinac, 2018)

- → Fit a topic model to LDP platforms
- → Extract two topics that look like 'pork' and 'policy'
- → Average these per year and plot
- → Compare relative prevalence to electoral change timeline

Figure 1. LDP candidates switched to more policy and less pork in the 1993 election and continued with this strategy under MMM. This figure plots the mean proportions of discussion devoted to pork and policy, respectively, in the 2,355 manifestos produced by LDP candidates in these eight elections.

STRUCTURAL TOPIC MODEL

If we like some of the topics, we might want to know how they vary with external information, e.g.

→ How does rate of topic 3, say 'defence', change with the party of the speaker?

STRUCTURAL TOPIC MODEL

If we like some of the topics, we might want to know how they vary with external information, e.g.

→ How does rate of topic 3, say 'defence', change with the party of the speaker?

This is a regression model (Roberts et al., 2014) with

- \rightarrow speaker party indicator, convariates etc. as X (observed)
- \rightarrow proportion of the speech assigned to topic 3 as θ_3 (inferred, not observed)
- \rightarrow The words W (observed)

STRUCTURAL TOPIC MODEL

Having a topic model allows us to get contrast vocabulary within topic too.

Here's contrasting usage when talking about Guatanamo Bay in a Bush era data set

EVEN MORE TOPIC MODELS

There's a small industry developing new types of topic model

→ A brief search will acquaint you with more than enough to play with

Check if they have stable code!

We'll look closer into topic model evaluation and related matters next week!

REFERENCES

- Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003). 'Latent dirichlet allocation'. *Journal of Machine Learning Research*, *3*, 993–1022.
- Catalinac, A. (2018). 'Positioning under alternative electoral systems: Evidence from japanese candidate election manifestos'. *American Political Science Review*, 112(1), 31–48.
- Chang, J., Boyd-Graber, J., Gerrish, S., Wang, C. & Blei, D. M. (2009). 'Reading tea leaves: How humans interpret topic models'. *Proceedings of the 23rd Annual Conference on Neural Information Processing Systems*, 288–296.
- Quinn, K. M., Monroe, B. L., Colaresi, M., Crespin, M. H. & Radev, D. R. (2007). 'How to analyze political attention with minimal assumptions and costs'. *American Journal of Political Science*, 54(1), 209–228.

REFERENCES

Roberts, M. E., Stewart, B. M., Tingley, D., Lucas, C., Leder-Luis, J., Gadarian, S. K., Albertson, B. & Rand, D. G. (2014). 'Structural topic models for open-ended survey responses'.

American Journal of Political Science, 58(4), 1064–1082.