

IE0323 Sistemas Digitales I

Laboratorio #3
Diagramas Esquemáticos

- Familiarizarse con el software Intel Quartus Prime Lite y su entorno de diseño gráfico.
- Implementar diagramas esquemáticos a partir de compuertas lógicas básicas.
- Diseñar y sintetizar circuitos digitales basados en expresiones booleanas.
- Programar una FPGA para verificar el funcionamiento de los diseños implementados.
- Comprender la relación entre las asignaciones de pines y los periféricos de la placa de desarrollo.

- Es un dispositivo lógico programable, el cual puede (re)configurarse para que implemente (casi) cualquier función lógica.
- HW mucho más rápido que SW
 - Podemos hacer circuitos para funciones específicas
 - Muy usado para aceleradores

Drivers (i)

Conectar la FPGA y abrir el administrador de dispositivos

Drivers (ii)

Clic derecho en USB-Blaster -> Actualizar controlador

Drivers (iii)

Examinar mi PC en busca de controladores

Drivers (iv)

<Dirección donde instalaron Quartus>\drivers

Drivers (v)

<Dirección donde instalaron Quartus>\drivers

- Si ya hicieron la primera parte del manual, pueden seguir con el trabajo en clase, sino, inicien por la XOR del inicio
- 2. Hacer un proyecto nuevo (las mismas instrucciones del manual)

$$Y(A, B, C, D) = \overline{A} B + \overline{A} \overline{B} C + D$$
$$Z(A, B, C, D) = A B C D + \overline{A} \overline{B} C$$

3. Mapear terminales

Señal	Componente	
A	SW9	—
В	SW8	
C	SW7	
D	SW6	
Y	LEDR5	—
Z	LEDRO	

Figure 3-16 Connections between the LEDs and MAX 10 FPGA

Table 3 5 Pin Assignment of LEDs

Table 3-5 Pin Assignment of LEDs				
Signal Name	FPGA Pin No.	Description	I/O Standard	
LEDR0	PIN_A8	LED [0]	3.3-V LVTTL	
LEDR1	PIN_A9	LED [1]	3.3-V LVTTL	
LEDR2	PIN_A10	LED [2]	3.3-V LVTTL	
LEDR3	PIN_B10	LED [3]	3.3-V LVTTL	
LEDR4	PIN_D13	LED [4]	3.3-V LVTTL	
LEDR5	PIN_C13	LED [5]	3.3-V LVTTL	
LEDR6	PIN_E14	LED [6]	3.3-V LVTTL	
LEDR7	PIN_D14	LED [7]	3.3-V LVTTL	
LEDR8	PIN_A11	LED [8]	3.3-V LVTTL	
LEDR9	PIN_B11	LED [9]	3.3-V LVTTL	

Figure 3-15 Connections between the slide switches and MAX 10 FPGA

Table 3-4 Pin Assignment of Slide Switches

Signal Name	FPGA Pin No.	Description	I/O Standard
SW0	PIN_C10	Slide Switch[0]	3.3-V LVTTL
SW1	PIN_C11	Slide Switch[1]	3.3-V LVTTL
SW2	PIN_D12	Slide Switch[2]	3.3-V LVTTL
SW3	PIN_C12	Slide Switch[3]	3.3-V LVTTL
SW4	PIN_A12	Slide Switch[4]	3.3-V LVTTL
SW5	PIN_B12	Slide Switch[5]	3.3-V LVTTL
SW6	PIN_A13	Slide Switch[6]	3.3-V LVTTL
SW7	PIN_A14	Slide Switch[7]	3.3-V LVTTL
SW8	PIN_B14	Slide Switch[8]	3.3-V LVTTL
SW9	PIN_F15	Slide Switch[9]	3.3-V LVTTL

ingenieria Electrica

- Si ya hicieron la primera parte del manual, pueden seguir con el trabajo en clase, sino, inicien por la XOR del inicio
- 2. Hacer un proyecto nuevo (las mismas instrucciones del manual)

$$Y(A, B, C, D) = \overline{A} B + \overline{A} \overline{B} C + D$$
$$Z(A, B, C, D) = A B C D + \overline{A} \overline{B} C$$

3. Mapear terminales

Señal	Componente	
A	SW9	→ PIN F15
В	SW8	PIN B14
С	SW7	→ PIN_A14
D	SW6	→ PIN_A13
Y	LEDR5	——→ PIN_C13
Z	LEDRO	PIN_A8