Problem Set 2 Real Analysis I

Bennett Rennier barennier@gmail.com

January 15, 2018

Exercise 2.1. Find an example of a set X and a monotone class \mathcal{M} consisting of subsets of X such that $\emptyset \in \mathcal{M}, X \in \mathcal{M}$, but \mathcal{M} is not a σ -algebra.

Proof. Let $X = \mathbb{R}$. Consider the monotone class \mathcal{M} which is the set of unbounded intervals of \mathbb{R} along with the empty set. We see that this trivally includes \emptyset and \mathbb{R} . This is definitely a monotone class. If we have a sequence of $A_i \in \mathcal{M}$, where $A_{i+1} \subseteq A_i$, look at $A_i \downarrow A$. Say that A is nonempty and bounded below by α and above by β . This means for some $A_j \in \mathcal{M}$, A_j is bounded above by β and for some A_k , A_k is bounded below by α , thus $A_{\max(j,k)}$ is bounded above by β and below by α and is nonempty. This means that it's not in \mathcal{M} which is a contradiction. Thus, $A \in \mathcal{M}$.

Similarly, let's say we have a sequence of $A_i \in \mathcal{M}$, where $A_i \subseteq A_{i+1}$, and look at $A_i \uparrow A$. The union of unbounded intervals is definitely unbounded, thus $A \in \mathcal{M}$.

However, say that $a \leq b$, then this means that $(a, \infty) \cap (-\infty, b) = (a, b)$. Thus, \mathcal{M} is not closed under finite intersection, which means that \mathcal{M} is not a σ -algebra.

Exercise 2.2. Find an example of a set X and two σ -algebras \mathcal{A}_1 and \mathcal{A}_2 , each consisting of subsets of X, such that $\mathcal{A}_1 \cup \mathcal{A}_2$ is not a σ -algebra.

Proof. Let $X = \{1, 2, 3\}$. Then we see that $\mathcal{A}_1 = \{\emptyset, X, \{1\}, \{2, 3\}\}$ and that $\mathcal{A}_2 = \{\emptyset, X, \{2\}, \{1, 3\}\}$. We can clearly see that these are closed under complementation and contained X and \emptyset . It's also easy to check that they are closed under countable intersection. However, $\mathcal{A}_1 \cup \mathcal{A}_2 = \{\emptyset, X, \{1\}, \{2\}, \{2, 3\}, \{1, 3\}\}$, which is not a σ -algebra, as $\{1\} \cup \{2\} = \{1, 2\} \notin \mathcal{A}_1 \cup \mathcal{A}_2$.

Exercise 2.3. Suppose $A_1 \subseteq A_2 \subseteq ...$ are σ -algebras consisting of subsets of a set X. Is $\bigcup_{i=1}^{\infty} A_i$ necessarily a σ -algebra? If not, give a counterexample.

Proof. $\bigcup_{i=1}^{\infty} \mathcal{A}_i$ is not necessarily a σ -algebra. For a counterexample, let $\mathcal{A}_n = \mathcal{P}(\{1,\ldots,n\})$, where \mathcal{P} is the powerset function. These are trivally σ -algebras. We also see easily that $\mathcal{A}_i \subseteq \mathcal{A}_{i+1}$. Look at $\mathcal{A} = \bigcup_{i=1}^{\infty} A_i$. We know that $\{n\} \in \mathcal{A}_n$, as $\{n\}$ is a subset of $\{1,\ldots,n\}$. However, $\bigcup_{n=1}^{\infty} \{n\} = \mathbb{N}$. Since all the members of each \mathcal{A}_i are finite, this means that \mathbb{N} is not a member of any \mathcal{A}_i . Thus, $\mathbb{N} \notin \bigcup_{i=1}^{\infty} \mathcal{A}_i$. This shows that \mathcal{A} is not closed under countable union.

Exercise 2.5. Let (Y, \mathcal{A}) be a measurable space and let f map X into Y, but do not assume that f is one-to-one. Define $\mathcal{B} = \{f^{-1}(A) \mid A \in \mathcal{A}\}$. Prove that \mathcal{B} is a σ -algebra of subsets of X.

Proof. Firstly, we see that since $Y \in \mathcal{A}$, then $f^{-1}(Y) = X \in \mathcal{B}$. Also, since $\emptyset \in \mathcal{A}$, then $f^{-1}(\emptyset) = \emptyset \in \mathcal{B}$.

Now, let $B \in \mathcal{B}$. This means $B = f^{-1}(A_1)$ for some $A \in \mathcal{A}$. Since $A \in \mathcal{A}$, then $A^c \in \mathcal{A}$. Thus, $f^{-1}(A^c) \in \mathcal{B}$. We shall prove that $f^{-1}(A^c) = f^{-1}(A)^c$. Let $x \in f^{-1}(A^c)$. This means that $f(x) \in A^c$, which means that $f(x) \notin A$. This means that $x \notin f^{-1}(A)$, and finally we see that $x \in f^{-1}(A)^c$. This shows that $f^{-1}(A^c) \subseteq f^{-1}(A)^c$. Using the same reasoning in the opposite order, we conclude that $f^{-1}(A^c) = f^{-1}(A)^c$. Thus, this $f^{-1}(A^c) \in \mathcal{B}$, is actually equal to $f^{-1}(A)^c = B^c \in \mathcal{B}$. This shows that \mathcal{B} is closed under complements.

Now, let $B_i \in \mathcal{B}$, where $i \in \mathbb{N}$. This means that $B_i = f^{-1}(A_i)$ for some $A_i \in \mathcal{A}$. This means that $\cup_i A_i \in \mathcal{A}$, which means $f^{-1}(\cup_i A_i) \in \mathcal{B}$. Let $x \in f^{-1}(\cup_i A_i)$. This means that $f(x) \in \cup_i A_i$. This means that $f(x) \in A_n$ for some $n \in \mathbb{N}$. Thus, $x \in f^{-1}(A_n)$, which means that $x \in \cup_i f^{-1}(A_i)$. Let $x \in \cup_i f^{-1}(A_i)$. Then this means that $x \in f^{-1}(A_n)$ for some $n \in \mathbb{N}$. Thus, $f(x) \in A_n$, which means that $f(x) \in \cup_i A_i$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ which is in $f(x) \in A_n$. Thus, $f(x) \in A_n$ is closed under countable union. This shows that $f(x) \in A_n$ is indeed a $f(x) \in A_n$.

Exercise 2.6. Suppose \mathcal{A} is a σ -algebra with the property that whenever $A \in \mathcal{A}$ is non-empty, there exist $B, C \in \mathcal{A}$ with $B \cap C = \emptyset$. $B \cup C = A$, and neither B nor C is empty. Prove that \mathcal{A} is uncountable.

Proof. First off, a simple counterexample is if $\mathcal{A} = \{\emptyset\}$ is the trival σ -algebra over $X = \emptyset$. Excluding this, though, we continue on:

Assume that $|\mathcal{A}| = n$. And let $A \in \mathcal{A}$ be any nonempty element. This means there exists sets $B, C \in \mathcal{A}$, such that they are nonempty and disjoint and their union is equal to A. Do this same thing to the set $B \in \mathcal{A}$. These two sets that union to B and are nonempty can neither be C nor A. As if one were either of these two sets, the union of such two sets would contain elements not in B, which is a contradiction as their union is exactly B. Do this n times. This gives us more than n elements which must be in \mathcal{A} , which is a contradiction, as $|\mathcal{A}| = n$. Thus, \mathcal{A} is not finite. Since \mathcal{A} is not finite, by Exe 2.8, \mathcal{A} is not countable. \square

Exercise 2.7. Suppose \mathcal{F} is a collection of real-valued functions on X such that the constant functions are in \mathcal{F} and f+g, fg, and cf are in \mathcal{F} whenever $f,g \in \mathcal{F}$ and $c \in \mathbb{R}$. Suppose $f \in \mathcal{F}$ whenever $f_n \to f$ and each $f_n \in \mathcal{F}$. Define the function

$$\chi_{_{A}}(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

Prove that $\mathcal{A} = \{A \subseteq X \mid \chi_A \in \mathcal{F}\}$ is a σ -algebra.

Proof. We see that $\emptyset \in \mathcal{A}$ as $\chi_{\emptyset} = 0$, a constant function, which we assumed to be in \mathcal{F} . Also, $X \in \mathcal{A}$, as $\chi_X = 1$, also a constant function which we assumed to be in \mathcal{F} .

Let $A \in \mathcal{A}$. This means that $\chi_A \in \mathcal{F}$. Look at the function $-(\chi_A - 1)$. We see that this function is in \mathcal{F} , as \mathcal{F} is closed under function addition and scalar multiplication. Also, one sees that this function is equivalent to χ_{A^c} . Thus, since this means $\chi_{A^c} \in \mathcal{F}$, we know that $A^c \in \mathcal{A}$. This shows closure under addition.

Let $A, B \in \mathcal{A}$. Thus $\chi_A, \chi_B \in \mathcal{F}$. We see that $\chi_A \chi_B$ is one iff $x \in A$ and $x \in B$ or, in other words, $x \in A \cap B$. Thus, $\chi_A \chi_B = \chi_{A \cap B}$. We also see that $\chi_{A \cup B} = \chi_A + \chi_B - \chi_{A \cap B}$. Since \mathcal{F} is closed under addition, multiplication, and scalar multiplication, we see that $\chi_{A \cup B} \in \mathcal{F}$, which means that $A \cup B \in \mathcal{A}$.

Let $A_i \in \mathcal{A}$. Then let $B_n = \bigcup_{i=1}^n A_i$. We see that $B_2 = A_1 \cup A_2$ is in \mathcal{A} , as proven by the last paragraph. By induction, $B_n = A_n \cup B_{n-1}$ is in \mathcal{A} , as $A_n \in \mathcal{A}$ and $B_{n-1} \in \mathcal{A}$ by the inductive hypothesis. Thus, $B_n \in \mathcal{A}$ for all $n \in \mathbb{N}$. We see that $\bigcup_{i=1}^{\infty} A_i = \lim_{i \to \infty} B_i$. Since $B_i \in \mathcal{A}$, this means that $\chi_{B_i} \in \mathcal{F}$. Thus, since \mathcal{F} is closed under limits, this means that $\lim_{i \to \infty} \chi_{B_i} \in \mathcal{F}$. Thus, $\lim_{i \to \infty} B_i \in \mathcal{F}$, which shows that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$. Thus, \mathcal{A} is closed under countable union. This shows that \mathcal{A} is a σ -algebra.

Exercise 2.8. Does there exist a σ -algebra which has countably many elements, but not finitely many?

Proof. Let's assume that \mathcal{A} is an infinitely countable σ -algebra on a set X. If X were finite, then $\mathcal{P}(X)$ would be finite, and since a σ -algebra is a collection of subsets of X, this is means \mathcal{A} is finite, a contradiction. Thus, X must be infinite. Define $B_x = \bigcap_{x \in A \in \mathcal{A}} A$. That is, the intersection of all members of \mathcal{A} that contain x. We see that this is well-defined, as there are only countably infinitely many members of \mathcal{A} , which means the intersection is a countable intersection.

We see that $\{B_x\}_{x\in X}$ is a collection of subsets of X. Claim: This collection defines a partition of X. We see that obviously $\{B_x\}_{x\in X}$ covers X, as $x\in B_x$ for all $x\in X$. Now let $x,y\in X$, and look at the intersection of B_x and B_y . If $x\not\in B_y$, then this means that $B_x\setminus B_y\in \mathcal{A}$ is a smaller set in \mathcal{A} that contains x. This is a contradiction to the definition of B_x . This means that $x\in B_y$. By similar argument, we see that $y\in B_x$. Since these are the smallest sets that contain x and y respectively, we see that $x\in B_x\subseteq B_y$ and that $y\in B_y\subseteq B_x$. This proves that $B_x=B_y$, which means that $\{B_x\}_{x\in X}$ are a set of disjoint sets that union to all of X. This also shows that $\{B_x\}_{x\in X}$ is a partition.

Let $A \in \mathcal{A}$. We see obviously that $A \subseteq \bigcup_{x \in A} B_x$, as each B_x contains x. Now, say there is a y in $\bigcup_{x \in X} B_x$ that isn't in A, that is that containment is strict. This means that $y \in B_x$ for some x. Since $x \in A$ and $y \notin A$, this means that $x \in A \cap B_x$ is strictly smaller set than B_x that contains x, as it doesn't contain y. This is a contradiction to the definition of B_x , thus the containment is not strict, that is that $\bigcup_{x \in A} B_x = A$. Thus, every A can be written in this form.

Since every $A \in \mathcal{A}$ can be written as a union of sets of the form B_x . This means that if $\{B_x\}_{x\in X}$ were finite, then \mathcal{A} would be finite as well, which is a contradiction. Thus, this partition is not finite and must be countably infinite, as it's a subset of \mathcal{A} . However, we know that \mathcal{A} contains all possible unions of the sets in $\{B_x\}_{x\in X}$. Since all of these sets are disjoint, and there's countably infinitely many of them, the number of possible unions

is equal to the number of elements in the powerset of $\{B_x\}_{x\in X}$ (each subset corresponding to which combination of elements to union together). Since the powerset must be strictly greater in cardinality than the already countably infinite set $\{B_x\}_{x\in X}$, we see that it must result in an uncountably infinite set. Since these are all in \mathcal{A} , as \mathcal{A} is closed under countable unions, we see that \mathcal{A} is uncountably infinite.