Next Up Previous Contents

Next: 5.3 Monte Carlo Control Up: 5. Monte Carlo Methods Previous: 5.1 Monte Carlo Policy Contents

5.2 Monte Carlo Estimation of Action Values

If a model is not available, then it is particularly useful to estimate action values rather than state values. With a model, state values alone are sufficient to determine a policy; one simply looks ahead one step and chooses whichever action leads to the best combination of reward and next state, as we did in the chapter on DP. Without a model, however, state values alone are not sufficient. One must explicitly estimate the value of each action in order for the values to be useful in suggesting a policy. Thus, one of our primary goals for Monte Carlo methods is to estimate Q^* . To achieve this, we first consider another policy evaluation problem.

The policy evaluation problem for action values is to estimate $Q^{\pi}(s,a)$, the expected return when starting in state s, taking action a, and thereafter following policy π . The Monte Carlo methods here are essentially the same as just presented for state values. The every-visit MC method estimates the value of a state-action pair as the average of the returns that have followed visits to the state in which the action was selected. The first-visit MC method averages the returns following the first time in each episode that the state was visited and the action was selected. These methods converge quadratically, as before, to the true expected values as the number of visits to each state-action pair approaches infinity.

The only complication is that many relevant state-action pairs may never be visited. If π is a deterministic policy, then in following π one will observe returns only for one of the actions from each state. With no returns to average, the Monte Carlo estimates of the other actions will not improve with experience. This is a serious problem because the purpose of learning action values is to help in choosing among the actions available in each state. To compare alternatives we need to estimate the value of *all* the actions from each state, not just the one we currently favor.

This is the general problem of *maintaining exploration*, as discussed in the context of the *n*-armed bandit problem in Chapter 2. For policy evaluation to work for action values, we must assure continual exploration. One way to do this is by specifying that the first step of each episode starts at a state-action *pair*, and that every such pair has a nonzero probability of being selected as the start. This guarantees that all state-action pairs will be visited an infinite number of times in the limit of an infinite number of episodes. We call this the assumption of *exploring starts*.

The assumption of exploring starts is sometimes useful, but of course it cannot be relied upon in general, particularly when learning directly from real interactions with an environment. In that case the starting conditions are unlikely to be so helpful. The most common alternative approach to assuring that all state-action pairs are encountered is to consider only policies that are stochastic with a nonzero probability of selecting all actions. We discuss two important variants of this approach in later sections. For now, we retain the assumption of exploring starts and complete the presentation of a full Monte Carlo control method.

Exercise 5.2 What is the backup diagram for Monte Carlo estimation of Q^{π} ?

Next Up Previous Contents

Next: 5.3 Monte Carlo Control Up: 5. Monte Carlo Methods Previous: 5.1 Monte Carlo Policy Contents

Mark Lee 2005-01-04