Linear Algebra I - Midterm Review

Ming-Hsuan Kang

March 2, 2020

The definition of Vector spaces

A vector space V over a field F is a set together with two binary operators: the addition from $V \times V$ to V and the scalar multiplication from $F \times V$ to V which satisfy the following properties. $\forall \vec{x}, \vec{y}, \vec{z} \in V$ and $\forall a, b \in F$:

- 1. $\vec{x} + \vec{y} \in V$.
- $2. \ a\vec{x} \in V.$
- 3. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$.
- 4. $\vec{x} + (\vec{y} + \vec{z}) = (\vec{x} + \vec{y}) + \vec{z}$.
- 5. There exists $\vec{0} \in V$ (independent of \vec{x}), such that $\vec{x} + \vec{0} = \vec{x}$.
- 6. There exists $\vec{x}' \in V$, such that $\vec{x} + \vec{x}' = \vec{0}$. (Such \vec{x}' is unique and it is denoted by $-\vec{x}$.)
- 7. $1\vec{x} = \vec{x}$.
- 8. $a(b\vec{x}) = (ab)\vec{x}$.
- 9. $a(\vec{x} + \vec{y}) = a\vec{x} + a\vec{y}$.
- 10. $(a+b)\vec{x} = a\vec{x} + b\vec{x}$.

Subspaces

The subset W is a subspace of V if it inherits the vector space structure from V. More precisely, W is a subspace if the following conditions hold.

- 1. Show that $\vec{0} \in W$.
- 2. Show that for $k \in F$, $\vec{v_1}$, $\vec{v_2} \in W$, we have $k\vec{v_1} + \vec{v_2} \in W$.

Verify the structure of vector spaces

A standard way to show a given set V together with addition and scalar multiplication is a vector space over F is the following.

- 1. Identify the set V as a subset of a known vector space U.
- 2. Show that the set V is a subspace of U.

Spanning sets (generating set)

For a subset $S = \{\vec{v}_1, \dots, \vec{v}_n\},\$

$$\operatorname{span}(S) = \left\{ \sum_{i=1}^{n} a_i \vec{v}_i | \vec{v}_i \in S, a_i \in F \right\}.$$

The following are equivalent.

- 1. S spans V, which means $\operatorname{span}(S) = V$.
- 2. For all $\vec{b} \in V$, the system $x_1\vec{v}_1 + \cdots + x_n\vec{v}_n = \vec{b}$ always has a solution.

Linearly independent sets

For a subset $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ of V, the following are equivalent.

- 1. S is linearly independent.
- 2. For all $\vec{v} \in S$, $\vec{v} \notin \text{span}(S \setminus \{\vec{v}\})$.
- 3. Whenever $\sum_{i=1}^{n} c_i \vec{v}_n = 0$, we have $c_1 = \cdots = c_n = 0$.
- 4. The linear system $x_1\vec{v_1} + \cdots + x_n\vec{v_n} = 0$ has the only trivial solution.

Basis

A ordered subset $S = \{\vec{v}_1, \dots, \vec{v}_n\}$ of V is a basis if it is linearly independent and it spans V. The cardinality of the basis is called the dimension of the vector space.

The following are equivalent.

- 1. S is a basis.
- 2. S is linearly independent and S spans V.
- 3. S is a maximal linearly independent set.
- 4. S is a minimal spanning set.
- 5. S is linearly independent and dim V = n.
- 6. S spans V and dim V = n.
- 7. For all $\vec{b} \in V$, $x_1\vec{v}_1 + \cdots + x_n\vec{v}_n = \vec{b}$ always has a unique solution.
- 8. For all $\vec{v} \in V$, \vec{v} can be written as $c_1\vec{v}_1 + \cdots + c_n\vec{v}_n$ for some unique $c_i \in F$. In this case, we also write it as

$$\operatorname{Rep}_S(\vec{v}) = \begin{pmatrix} c_1 \\ \vdots \\ c_n \end{pmatrix}.$$

The following are the basic property of basis.

- 1. Every vector space has a basis.
- 2. Every linearly independent set can be extended to a basis.
- 3. Every spanning set contains a basis.
- 4. Any two basis have the same cardinality.

Direct Sum

For subspace W_1, \dots, W_k of V. The following are equivalent.

- 1. $V = W_1 \oplus W_2 \oplus \cdots \oplus W_k$.
- 2. Every vector $v \in V$ can be uniquely written as $w_1 + \cdots + w_n$ with $w_i \in W_i$.
- 3. Let α_i be a basis of W_i , then $\alpha_1 \sqcup \alpha_2 \sqcup \cdots \sqcup \alpha_k$ forms a basis of V.
- 4. $\dim V = \dim W_1 + \cdots + \dim W_k$ and $W_1 + \cdots + W_k = V$.

Row Rank and Column Rank

The following are some basic properties about row rank and column rank.

- 1. The row/column rank of a matrix is the dimension of its row/column space.
- 2. The row operation does not change the row space.
- 3. The row operation may change the column space but does not change the column rank.
- 4. The row rank is equal to the number of nonzero rows of the echelon form.
- 5. The column rank is equal to the number of leading variables.
- 6. The row rank is always equal to the column rank.

Linear transformations

Let V and W be vector spaces over F. A map $T: V \to W$ is a linear transformation if

- 1. $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u}, \vec{v} in V.
- 2. $T(k\vec{u}) = kT(\vec{u})$ for all \vec{u} in V and k in F.

Moreover, if T is also a bijection, then T is called a (linear) isomorphism.

Dimension Forumla

The kernel of T is

$$\ker(T) = \{ \vec{v} \in V | T(\vec{v}) = \vec{0} \}.$$

The image of T is

$$Im(T) = T(V) = \{T(\vec{v}) | \vec{v} \in V\}.$$

Dimension formula:

$$\dim(V) = \dim \ker(T) + \dim \operatorname{Im}(T).$$

For a linear transform $T: V \to W$, the following are equivalent

- 1. T is an isomorphism.
- 2. T is onto.
- 3. $\ker(T) = \{\vec{0}\}.$

Matrix Representations

Let $\alpha = {\vec{\alpha}_1, \dots, \vec{\alpha}_n}$ be a basis of V and β be a basis of W. Then the matrix representing T with respect to the bases α and β is

$$\operatorname{Rep}_{\alpha,\beta}(T) = \left(\operatorname{Rep}_{\beta}(T(\vec{\alpha}_1)) \cdots \operatorname{Rep}_{\beta}(T(\vec{\alpha}_n))\right).$$

Moreover, we have

$$\operatorname{Rep}_{\beta}(T(\vec{v})) = \operatorname{Rep}_{\alpha,\beta}(T)\operatorname{Rep}_{\alpha}(\vec{v}).$$

When V = W and $\alpha = \beta$, we also denote $\text{Rep}_{\alpha,\beta}(T)$ by $\text{Rep}_{\alpha}(T)$ for short.

Determinants

For $A = (a_{ij}) \in M_n(F)$, let $M_{ij}(A)$ be the (i, j)-th minor of A obtained by removing the i-th row and the j-th column of A. Then for any $1 \le i \le n$, the determinant of A is given by

$$\det(A) = \sum_{i=1}^{n} a_{ij} c_{ij} = \sum_{i=1}^{n} a_{ji} c_{ji}.$$

Here

$$c_{ij} = (-1)^{i+j} \det(M_{ij}(A)),$$

which is the (i, j)-th cofactor of A.

Cramer's Ruler:

Let $C = (c_{ij})$ be the cofactor matrix and let $Adj(A) = C^T$, called the adjugate matrix of A. Then

$$\operatorname{Adj}(A)A = \det(A)I_n.$$

Especially, when $det(A) \neq 0$,

$$A^{-1} = \frac{1}{\det(A)} \mathrm{Adj}(A).$$

Theorem 1. The following are the properties of determinants.

- 1. A square matrix A is non-singular if and only if $\det(A) \neq 0$. In this case, $\det(A^{-1}) = \det(A)^{-1}$.
- 2. A matrix A is of rank greater than or equal to r if and only if A contains a square submatrix B of size r with $det(B) \neq 0$.
- 3. For two square matrices A and B of the same size, $\det(AB) = \det(A)\det(B)$. If B is invertible, then $\det(BAB)^{-1} = \det(A)$.

Change of Basis

Now suppose $T: V \to V$ is a linear transform and $\alpha = \{\vec{\alpha}_1, \dots, \vec{\alpha}_n\}$ and $\beta = \{\vec{\beta}_1, \dots, \vec{\beta}_n\}$ are two bases of V. Then

$$\operatorname{Rep}_{\alpha}(T) = \operatorname{Rep}_{\beta,\alpha}(id)\operatorname{Rep}_{\beta}(T)\operatorname{Rep}_{\alpha,\beta}(id).$$

Especially, when $T = L_A$ (the multiplication by A from left) and α is the standard basis of F^n , we have $\text{Rep}_{\alpha}(T) = A$. In this case, let

$$P = \operatorname{Rep}_{\beta,\alpha}(id) = \left(\vec{\beta}_1, \cdots, \vec{\beta}_n\right)$$

be the change of basis matrix. Then

$$A = P \cdot \operatorname{Rep}_{\beta}(T) \cdot P^{-1}.$$

Especially, when $\vec{\beta}_1, \dots, \vec{\beta}_n$ are all eigenvectors, then $\text{Rep}_{\beta}(T)$ is a diagonal matrix.

Projection onto a line

Let $V = \mathbb{R}^n$ and $\langle \cdot, \cdot \rangle$ be the standard inner product. For two nonzero vectors \vec{v}, \vec{w} in V, set

$$\operatorname{proj}_{\vec{w}}(\vec{v}) = \frac{\langle \vec{w}, \vec{v} \rangle}{\langle \vec{w}, \vec{w} \rangle} \vec{w}.$$

Orthogonal and Orthonormal

A set of vectors $\{\vec{v}_1, \dots, \vec{v}_m\}$ in V is orthogonal if

$$\langle \vec{v}_i, \vec{v}_j \rangle = 0$$

for all $i \neq j$. If it also satisfies the extra condition: $\langle \vec{v}_i, \vec{v}_i \rangle = 1$ for all i, it is orthonormal.

Theorem 2. Every orthogonal α set of nonzero vectors is linearly independent. Especially, α forms a basis of V if $|\alpha| = \dim V$.

Theorem 3. Let $\alpha = {\vec{\alpha}_1, \dots, \vec{\alpha}_n}$ be an orthogonal basis of V. For $\vec{v} \in V$,

$$\vec{v} = \sum_{i=1}^{n} \operatorname{proj}_{\alpha_i}(\vec{v}) = \sum_{i=1}^{n} \frac{\langle \vec{\alpha}_i, \vec{v} \rangle}{\langle \vec{\alpha}_i, \vec{\alpha}_i \rangle} \vec{\alpha}_i$$

Gram-Schmidt method

For a (linearly independent) set of vectors $\{\vec{v}_1, \dots, \vec{v}_m\}$, set

$$\vec{w}_1 = \vec{v}_1, \quad \text{and} \quad \vec{w}_i = \vec{v}_i - \sum_{k=1}^{i-1} \mathrm{proj}_{\vec{w}_k}(\vec{v}_i) \quad \text{for all } i \geq 2.$$

Then

- 1. $\{\vec{w}_1, \dots, \vec{w}_m\}$ is orthogonal.
- 2. $\{\vec{v}_1, \dots, \vec{v}_k\}$ and $\{\vec{w}_1, \dots, \vec{w}_k\}$ span the same space for all k.

Invariant subspaces

Let $T:V\mapsto V$ be a linear transform. A subspace W is called a T-invariant subspace if $T(W)\subseteq W$. In other words, the restriction $T\big|_W$ is a linear transform from W to W.

In this case, if α is a basis of W and $\alpha \sqcup \beta$ is a basis of V, then $\operatorname{Rep}_{\alpha \sqcup \beta}(T)$ is a block upper triangular matrix of the form $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$. Here $A = \operatorname{Rep}_{\alpha}(T|_{W})$. In this case, $\det(T) = \det(A)\det(B)$.

Direc Sum of Invariant subspaces

Suppose $V = W_1 \oplus W_2$ and W_1 and W_2 are both T- invariant subspace. Let α and β be bases of W_1 and W_2 respectively. Then $\operatorname{Rep}_{\alpha \sqcup \beta}(T)$ is a block diagonal matrix of the fomr $\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}$. Here $A = \operatorname{Rep}_{\alpha}(T|_{W_1})$ and $B = \operatorname{Rep}_{\beta}(T|_{W_2})$. In this case, $\det(T) = \det(A) \det(B)$.

Eigenspace, Eigenvalues and Eigenvectors

For $\lambda \in F$, the set

$$E(\lambda) = \{ \vec{v} \in V | T(\vec{v}) = \lambda \}$$

is always a T-invariant subspace. It is called the eigenspace corresponding to λ if it contains a non-zero element. In this case, λ is called an eigenvalue and non-zero elements of $E(\lambda)$ are called eigenvectors corresponding to λ .

Eigenvalues λ are zeros of the characteristic polynomial

$$f_T(x) = \det(xI - T).$$

which is of degree $n = \dim(V)$. We say that the polynomial $f_T(x)$ splits over F, if $f_T(x)$ has n zeros (counting multiplicity) in F.

When W is a T-invariant subspace of V, we also have $f_{T|_{W}}(x)$ divides $f_{T}(x)$.

Diagonalization

Theorem 4. Let $\lambda_1, \dots, \lambda_k$ be the all distinct eigenvalues of T. The following are equivalent.

- ${\it 1.} \ \, T \ \, is \, \, diagonalizable.$
- 2. There exists a set of eigenvectors of T which forms a basis of V.
- 3. $V = E(\lambda_1) \oplus \cdots \oplus E(\lambda_n)$.
- 4. The polynomial $f_T(x)$ splits and dim $E(\lambda_i)$ is equal to the multiplicity of λ_i as a zero of $f_T(x)$ for all i.