

SF1624, Algebra och Geometri Lösningsförslag till extra tentamen

DEL A

1. Låt L vara linjen genom A=(3,5,5) och B=(4,5,7). Planet Π ges av ekvationen x+y+z-7=0.

(a) Bestäm skärningen
$$Q$$
 mellan linjen L och planet Π . (1 p)

- (b) Bestäm projecktionen av (1, 1, 1) ned på linjen L. (1 p)
- (c) Bestäm vektorn \vec{u} som bestäms av ekvationen

$$\vec{QA} = \vec{u} + \vec{n}$$
,

där \vec{n} är någon normalvektor till Π , och vinkelrät med \vec{u} .

(2 p)

Lösningsförslag. a) Vi har att linjen $L = A + t(\vec{BA})$, vilket ger L = (3,5,5) + t(1,0,2), där t genomlöper de reella talen, och där $\vec{v} = (1,0,2)$ är en riktningsvektor för linjen. Insätter vi linjens koordinater i planets Π sin ekvation erhåller vi

$$0 = x + y + z - 7 = (3 + t) + (5) + (5 + 2t) - 7 = 6 + 3t.$$

Detta ger att t = -2, och skärningspunkten Q = (3 - 2, 5, 5 - 4) = (1, 5, 1).

b) Linjen L har riktningsvektor $\vec{v}=(1,0,2)$, och detta ger att projektionen av (1,1,1) ned på linjen L ges som

$$\operatorname{proj}_{L}(1,1,1) = \frac{(1,1,1) \cdot (1,0,2)}{||(1,0,2)||^{2}} (1,0,2) = \frac{3}{5} (1,0,2).$$

c) Vi har att (1,1,1) är en normalvektor till planet Π , och därför finns det ett tal t_0 sådan att ekvationen

$$\vec{QA} = \vec{u} + \vec{n} = \vec{u} + t_0(1, 1, 1).$$

Tar vi nu skalärprodukten med (1,1,1) så blir ekvationen ovan

$$\vec{QA} \cdot (1, 1, 1) = t_0 ||(1, 1, 1)||^2.$$

Vi har vidare att $\vec{QA} = (1, 5, 1) - (3, 5, 5,) = (-2, 0, -4)$. Detta ger nu att

$$t_0 = \frac{-2+0-4}{3} = -2.$$

Nu som vi har bestämd t_0 , har vi också ett uttryck för \vec{u} ,

$$\vec{u} = \vec{QA} - \vec{n} = (-2, 0, -4) - -2(1, 1, 1) = (0, 2, -2).$$

2. Vektorrummet $W \subseteq \mathbf{R}^4$ spänns upp av vektorerna

$$\vec{a} = \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \quad \vec{b} = \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \end{bmatrix}, \quad \vec{c} = \begin{bmatrix} 3 \\ 1 \\ 3 \\ 2 \end{bmatrix} \quad \text{och} \quad \vec{d} = \begin{bmatrix} 0 \\ 2 \\ 3 \\ 1 \end{bmatrix}$$

- (a) Bestäm en bas β för W. (2 p)
- (b) Bestäm koordinatmatrisen för $\vec{w} = \begin{bmatrix} 2 & 4 & 7 & 3 \end{bmatrix}^{Tr}$ med avseende på basen β . (2 p)

Lösningsförslag. a) Vi har att $\vec{a} + \vec{b} = \vec{c}$, och att $2\vec{a} - \vec{b} = \vec{d}$. Vidare är det klart, av koordinat två att vektorn \vec{a} och vektorn \vec{b} är linjärt oberoende, och därför en bas β för W.

b) Vi vill skriva $\vec{w} = \begin{bmatrix} 2 & 4 & 7 & 3 \end{bmatrix}^{Tr}$ som en summa $s\vec{a} + t\vec{b}$. Detta ger ett ekvationssy-

b) Vi vill skriva $\vec{w} = \begin{bmatrix} 2 & 4 & 7 & 3 \end{bmatrix}^{Tr}$ som en summa $s\vec{a} + t\vec{b}$. Detta ger ett ekvationssystem i två okända s och t, vilket har lösning s=4 och t=-1. Detta ger att koordinatmatrisen

$$[\vec{w}]_{\beta} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}.$$

3. Avbildningen $T \colon \mathbf{R}^2 \to \mathbf{R}^2$ ges av matrisen

$$A = \frac{1}{41} \begin{bmatrix} -9 & 40 \\ 40 & 9 \end{bmatrix}.$$

Avbildningen T är en spegling om en linje L. Bestäm denna linje L.

Lösningsförslag. Vi har att matrisen A representerar en spegling, och specielt vet vi att $\lambda=1$ är ett egenvärd. Speglingslinjen är egenrummet tillhörande egenvärdet $\lambda=1$. Vi söker lösningarna till ekvationen AX=X, eventuelt (I-A)X=0. Vi bestämmer I-A som

(4 p)

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \frac{1}{41} \begin{bmatrix} -9 & 40 \\ 40 & 9 \end{bmatrix} = \frac{1}{41} \begin{bmatrix} 41+9 & -40 \\ -40 & 41-9 \end{bmatrix}.$$

Andra raden i matrisen I-A försvinner vid Gauss-Jordan elimination, vilket betyder att vi söker $X=\begin{bmatrix}x\\y\end{bmatrix}$ sådana att

$$\frac{1}{41} \begin{bmatrix} 5 \cdot 10 & -4 \cdot 10 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 0.$$

Med andra ord, den sökta speglinslinjen ges av ekvationen 5x - 4y = 0.

DEL B

4. Använd minsta kvadratmetoden för att bestämma en ekvation för det plan H i rummet, som ligger närmast punkterna

$$(-1,-1,3), (-1,1,5), (0,0,4), (1,-1,4)$$
 och $(1,1,3).$

Du kan anta att ekvationen för planet H är på formen ax + by + z + d = 0. (4 p)

Lösningsförslag. Om vi låter A vara matrisen

$$A = \begin{bmatrix} -1 & -1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

då söker vi lösningarna till ekvationssystemet i okända a,b och d som beskrivs av matrisekvationen

$$A \cdot \begin{bmatrix} a \\ b \\ d \end{bmatrix} = \begin{bmatrix} -3 \\ -5 \\ -4 \\ -4 \\ -3 \end{bmatrix}.$$

Systemet är inkonsistent, och vi vill använda minsta kvadratmetoden för att bestämma en punkt (a,b,d) i \mathbf{R}^3 som avbildas med A på den punkt som ligger närmast $B=(-3,-5,-4,-4,-3)^{tr}$. Vi beräknar

$$A^T A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \quad \text{och} \quad A^T B = - \begin{bmatrix} -8 + 7 \\ -7 + 8 \\ 19 \end{bmatrix}.$$

Vi söker därmed lösningarna till ekvationssystemet

$$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} a \\ b \\ d \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -19 \end{bmatrix}.$$

Detta ger $a = \frac{1}{4}, b = -\frac{1}{4}$ och $d = -\frac{19}{5}$.

5. Avbildningen $T \colon \mathbf{R}^3 \to \mathbf{R}^3$ ges av matrisen

$$A = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & -1 \\ 2 & 2 & -3 \end{bmatrix}.$$

(a) Visa att linjen $L = \{(2t, 4t, 6t)\}$ (godyckliga tal t) är ett egenrum. (1 p)

(3 p)

(b) Bestäm samtliga egenrum till avbildningen T.

Lösningsförslag. a) Vi utför matrismultiplikationen

$$A \cdot \begin{bmatrix} 2t \\ 4t \\ 6t \end{bmatrix} = \begin{bmatrix} -2t \\ 2t - 6t \\ 4t + 8t - 18t \end{bmatrix} = -1 \cdot \begin{bmatrix} 2t \\ 4t \\ 6t \end{bmatrix}.$$

Detta visar att linjen L är ett egenrum, tillhörande egenvärdet $\lambda = -1$.

b) Vi börjar med att bestämma det karakteristiska polynomet till A. Vi har att

$$\det\begin{pmatrix} \begin{bmatrix} \lambda + 1 & 0 & 0 \\ -1 & \lambda & 1 \\ -2 & -2 & \lambda + 3 \end{bmatrix} = (\lambda + 1)(\lambda(\lambda + 3) + 2).$$

Vi har att $\lambda(\lambda+3)+2=\lambda^2+3\lambda+2=(\lambda+1)(\lambda+2)$. Detta ger att det karakteristiska polynomet till A är $(\lambda+1)^2(\lambda+2)$.

Egenrummet tillhörande egenvärdet $\lambda = -1$ ges som nollrummet til matrisen

$$\begin{bmatrix} 0 & 0 & 0 \\ -1 & -1 & 1 \\ -2 & -2 & 2 \end{bmatrix}.$$

Det vill säga planet som ges av ekvationen x + y - z = 0.

Egenrummet tillhörande egenvärdet $\lambda=-2$ är linjen som ges som nollrummet till matrisen

$$\begin{bmatrix} -1 & 0 & 0 \\ -1 & -2 & 1 \\ -2 & -2 & 1 \end{bmatrix}.$$

Efter Gauss-Jordan elimination ser vi att detta är linjen (0, t, 2t), godtyckliga tal t.

- 6. (a) Lösningsmängden $V \subset \mathbf{R}^2$ till ekvationen xy = 0 ger två linjer i planet. Avgör om V är ett vektorrum. (2 **p**)
 - (b) Mängden $W\subseteq {\bf R}^2$ är alla talpar på formen $W=\{(n,n)\}$, där n genomlöper heltalen $n=0,\pm 1,\pm 2,\ldots$ Avgör om W är ett vektorrum.
- **Lösningsförslag.** a) Nej, denna mängd är ej sluten under sum. Vi har, t.ex, att P=(1,0) och Q=(0,1) båda satisfierar ekvationen xy=0, vilket betyder att P och Q är med i mängden V. Men P+Q=(1,1) satisfierar inte ekvationen xy=0, och är då inte med i V
 - b) Nej, denna mängd är ej sluten under skalärprodukt. Vi har att, t.ex, R=(1,1) är med i mängden W. Men $\frac{1}{2}R=(\frac{1}{2},\frac{1}{2})$ är inte med i W.

8

DEL C

7. Låt W vara delrummet i \mathbb{R}^4 som spänns upp av vektorerna

$$\vec{u} = \begin{bmatrix} 1\\2\\-2\\-1 \end{bmatrix} \quad \text{och} \quad \vec{v} = \begin{bmatrix} 2\\3\\0\\-2 \end{bmatrix}.$$

Bestäm ett (linjärt) ekvationssystem vars lösningsmängd är W.

(4 p)

Lösningsförslag. Då \vec{u} och \vec{v} spänner upp W så följer det att lösningsmängden till ekvationssystemet

$$\begin{cases} x + 2y - 2z - w = 0 \\ 2x + 3y - 2w = 0 \end{cases}$$

är det ortogonala komplementet W^{\perp} . Vi bestämmer en bas för W^{\perp} med Gauss-Jordan elimination. Den reducerada trappstegsmatrisen blir

$$\begin{bmatrix} 1 & 0 & 6 & -1 \\ 0 & 1 & -4 & 0 \end{bmatrix}.$$

Vi har att W^{\perp} är mängden

$$W^{\perp} = \{ \begin{bmatrix} -6s + t \\ 4s \\ s \\ t \end{bmatrix} \text{ godtyckliga tal} s, t \}.$$

En bas för W^{\perp} ges av vektorerna $w_1=\begin{bmatrix}-6&4&1&0\end{bmatrix}^{tr}$ och $w_2=\begin{bmatrix}1&0&0&1\end{bmatrix}^{tr}$. Nu följer det, av samma argument, att lösningsmängden till ekvationssystemet

$$\begin{cases} -6x + 4y + z &= 0\\ x + w &= 0 \end{cases}$$

är ortogonala komplementet $(W^{\perp})^{\perp} = W$.

- 8. (a) Bestäm en (3×3) -matris med ett tre-dimensionellt egenrum, men enbart med ett egenvärde. (1 p)
 - (b) Bestäm en (3×3) -matris med enbart ett egenvärde, och med egenrum av dimension två. (3 p)

Lösningsförslag. a) Identitetsmatrisen är ett exempel på en matris som har ett enda egenvärde, och där varje vektor är en egenvektor.

b) Betrakta matrisen

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$

Denna matris är övretriangulär vilket ger att det karakteristiska polynomet är $(\lambda-1)^3$. Det följer att matrisen bara har ett egenvärde, och att detta egenvärdet har algebraisk multiplicitet tre. Vi ser vidare att vektorer på formen $\begin{bmatrix} x & y & 0 \end{bmatrix}^{tr}$ är egenvektorer. Detta betyder att egenrummet, tillhörande det enda egenvärdet $\lambda=1$, har åtminstonde dimension två. Vi måste visa att egenrummet inte har dimension tre. För att visa detta är det nog att hitta en vektor som inte är en egenvektor. Vektorn $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^{Tr}$ skickas av A till vektorn $\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$, och är därmed inte en egenvektor.

- 9. Låt $T: \mathbf{R}^n \to \mathbf{R}^n$ vara en linjär avbildning. Låt A vara matrisen som representerar T med avseende på en fixerad bas β . Determinanten till avbildningen T definieras som determinanten till matrisen A. Visa att detta är väldefinierad, dvs. att determinanten är oberoende av val av bas. (4 p)
- **Lösningsförslag.** Låt B vara matrisrepresentationen av T med avseende på en bas γ . Vi skall visa att $\det(B) = \det(A)$. Låt P vara övergångsmatrisen från basen β till basen γ . Vi har då sambandet $A = P^{-1}BP$. Determinanten respekterar produkt, vilket ger

$$\det(A) = \det(P^{-1}BP) = \det(P^{-1})\det(B)\det(P).$$

Vi har vidare att $\det(P^{-1}) = \frac{1}{\det(P)}$, och påståendet är visat.