ЛЕКЦИЯ 2

ТЕХНОЛОГИИ ОБРАБОТКИ ИНФОРМАЦИИ

ЭНТРОПИЯ ШЕННОНА

Энтропия, или количество информации вычисляется по формуле

$$I(X, X) = \sum_{i} p_i \log_2 \frac{p_i}{p_i p_i} = -\sum_{i} p_i \log_2 p_i$$

СЖАТИЕ ИНФОРМАЦИИ

• Сжатие без потерь

Арифметическое кодирование

Кодирование Хаффмана

• Сжатие с потерями

Преобразование Фурье

Дискретное косинусное преобразование

Вейвлет-преобразование

КОДИРОВАНИЕ ХАФФМАНА

$ec{X}$	p
00	9/16
01	3/16
10	3/16
11	1/16

$ec{X}$	00	01	10	11
p	$^{9}/_{16}$	$^{3}/_{16}$	3/16	$^{1}/_{16}$
			\sim 0	\swarrow_1
			$\frac{4}{16}$	5
		$0 \searrow$	7 1	
		,	$\frac{7}{16}$	
	0 💃	1		
	1			
$code(\vec{X})$	0	10	110	111

АРИФМЕТИЧЕСКОЕ КОДИРОВАНИЕ

X	р
00	0.6
01	0.2
10	0.1
11	0.1

АРИФМЕТИЧЕСКОЕ КОДИРОВАНИЕ

Пусть случайная величина X может принимать два значения – 0 и 1 с вероятностями 2/3 и 1/3

Интервалы и коды		Вероятность	Код Хаффмена	
		$111\left[\frac{26}{27}, 1\right] \ni \frac{31}{32} = 0.11111$	$^{1}/_{\!\!27}$	0000
	$11[\tfrac{8}{9},1]$	$110\left[\frac{8}{9}, \frac{26}{27}\right] \ni \frac{15}{16} = 0.1111$	$^{2}/_{27}$	0001
		$101\left[\frac{22}{27}, \frac{8}{9}\right] \ni \frac{7}{8} = 0.111$	$^{2}/_{27}$	010
$1[\tfrac{2}{3},1]$	$10[\frac{2}{3}, \frac{8}{9}]$	$100\left[\frac{2}{3}, \frac{22}{27}\right] \ni \frac{3}{4} = 0.11$	$^{4}/_{27}$	001
		$011\left[\frac{16}{27}, \frac{2}{3}\right] \ni \frac{5}{8} = 0.101$	$^{2}/_{27}$	011
	$01[\frac{4}{9},\frac{2}{3}]$	$010[\frac{4}{9}, \frac{16}{27}] \ni \frac{1}{2} = 0.1$	$^{4}/_{27}$	100
		$001\left[\frac{8}{27}, \frac{4}{9}\right] \ni \frac{3}{8} = 0.011$	$^{4}/_{27}$	101
$0[0, \frac{2}{3}]$	$00[0, \frac{4}{9}]$	$000[0, \frac{8}{27}] \ni \frac{1}{4} = 0.01$	8/27	11.

МЕТОДЫ ЛЕМПЕЛА-ЗИВА (LZ77)

КРАСНАЯ КРАСКА

СЛОВАРЬ(8)	БУФЕР(5)	КОД
""	"KPACH"	<0,0,'K'>
"K"	"PACHA"	<0,0,'P'>
"KP"	"АСНАЯ"	<0,0,'A'>
"KPA"	"СНАЯ "	<0,0,'C'>
"KPAC"	"НАЯ К"	<0,0,'H'>
"KPACH"	"АЯ КР"	<5,1,'Я'>
".КРАСНАЯ"	" KPAC"	<0,0,' '>
"КРАСНАЯ "	"KPACK"	<0,4,'K'>
"АЯ КРАСК"	"A"	<0,0,'A'>

ПРЕОБРАЗОВАНИЕ БАРРОУЗА-УИЛЛЕРА

SIX.MIXED.PIXIES.SIFT.SIXTY.PIXIE.DUST.BOXES

TEXYDST.E.XIIXIXXSMPPSS.B...S.EEUSFXDI0IIIIT

Трансформация			
Вход	Все Перестановки	Сортировка Строк	Выход
. BANANA .	.BANANABANANA A.BANAN NA.BANA ANA.BAN NANA.BA ANANA.BA	ANANAB ANABAN ABANAN BANANA NANABA NABANA .BANANA	BNN.AA.A

ПРЕОБРАЗОВАНИЕ MOVE-TO-FRONT

```
bananaaa
               словарь - {a:0, b:1, c:2 ...}
h - 1
               словарь - {b:0, a:1, c:2 ...}
               словарь - {a:0, b:1, c:2 ...}
a - 1
               словарь - {n:0, a:1, b:2 ...}
n - 13
               словарь - {a:0, n:1, b:2 ...}
a - 1
               словарь - {n:0, a:1, b:2 ...}
n - 1
               словарь - {a:0, n:1, b:2 ...}
a - 1
               словарь - {a:0, b:1, c:2 ...}
a - 0
               словарь - {a:0, b:1, c:2 ...}
a - 0
```

АЛГОРИТМ BZIP

- несжатые данные делятся на блоки фиксированного размера;
- выполняется преобразование Барроуза Уилера для превращения последовательностей многократно чередующихся символов в строки одинаковых символов;
- применяется преобразование МТF;
- используется кодирование Хаффмана.