

what is neural style

Neural Style Transfer

What is neural style transfer?

Neural style transfer

Style (S)

Generated image (4)

[Images generated by Justin Johnson]

Content

Generated image (()

Andrew Ng

Need to losk at the features extracted by the conv net to understand how it world

visualize deep convnet

Neural Style Transfer

What are deep ConvNets learning?

Visualizing what a deep network is learning

Pick a unit in layer 1. Find the nine image patches that maximize the unit's activation.

Repeat for other units.

[Zeiler and Fergus., 2013, Visualizing and understanding convolutional networks]

Visualizing deep layers

Andrew Ng

Visualizing deep layers: Layer 1

Layer 3

Layer 4

Layer 5

Visualizing deep layers: Layer 2

Layer 1

Layer 2

Layer 3

Layer 4

Andrew Ng

Visualizing deep layers: Layer 3

Layer 4

Layer 5

₫ ne	eural style cost functin		

Neural style transfer cost function

Content C

+ B J style (S.G.) for smile . The style.

Generated image G <

[Gatys et al., 2015. A neural algorithm of artistic style. Images on slide generated by Justin Johnson] Andrew Ng

seems redundant to use two hyper

paran of B.

But this is hard it is, done in the original

paper

Find the generated image G

1. Initiate G randomly

G: $100 \times 100 \times 3$

2. Use gradient descent to minimize J(G)

[Gatys et al., 2015. A neural algorithm of artistic style]

Andrew Ng

How to define the two parts of the cost function.

content cost function

Content cost function

$$\underline{J(G)} = \alpha \underbrace{J_{content}(C, G)}_{\downarrow} + \beta J_{style}(S, G)$$

- Autratur some fully connected sepre, a m 7 • Say you use hidden layer *l* to compute content cost.
- Use pre-trained ConvNet. (E.g., VGG network)
- Let $a^{[l](C)}$ and $a^{[l](G)}$ be the activation of layer lon the images
- If $a^{[l](C)}$ and $a^{[l](G)}$ are similar, both images have

similar content $\int_{\omega_{\text{orbet}}} \left(C, C \right) = \frac{1}{2} \underbrace{\left\| \frac{\partial}{\partial \omega_{\text{orbet}}} - \frac{\partial}{\partial \omega_{\text{orbet}}} \right\|^{2}}_{\text{orbet}}$

[Gatys et al., 2015. A neural algorithm of artistic style]

Andrew Ng

style cost function

deeplearning.ai

Neural Style Transfer

Style cost function

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

across channel

what does it mean by D@

highly correlated.

Whorever Dappen (orange)

B (the // texture) appear.

How correlated are the activations across different channels?

[Gatys et al., 2015. A neural algorithm of artistic style]

Andrew Ng

The dgree of

The dgree of

The dgree of

Generated Image

When correlated are the red & yellow autivation | Correlation across styles

Librar close this - where the red.

[Gatys et al., 2015. A neural algorithm of artistic style]

 n_H n_W

Andrew Ng

. . .

Style cost function
$$\left\| \left(\frac{\operatorname{th}(G)}{\operatorname{th}(G)} - \left(\frac{\operatorname{th}(G)}{\operatorname{th}(G)} \right) \right\|_{F}^{2}$$

$$\int_{style}^{(I)} (S,G) = \frac{1}{\left(2n_{H}^{[I]} n_{W}^{[I]} n_{G}^{[I]} \right)^{2}} \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](S)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{kk'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{k'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{k'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{(S,G)} (S,G) = \sum_{k} \sum_{k'} \frac{\left(G_{kk'}^{[I](G)} - G_{k'}^{[I](G)} \right)}{\left(S_{k} \right)^{2}}$$

$$\int_{style}^{\left$$

[Gatys et al., 2015. A neural algorithm of artistic style]

Andrew Ng

Convolutional Networks in 1D or 3D

1D and 3D

Convolutional Networks in 1D or 3D

1D and 3D generalizations of models

3D data

3D data

Andrew Ng

3D data

3D data

3D data

3D data

3D data

- 2. Why do we learn a function d(img1,img2) for face verification? (Select all that apply.)
 - We need to solve a one-shot learning problem.
 - This allows us to learn to predict a person's identity using a <u>softmax output</u> unit, where the <u>number</u> of classes equals the number of persons in the database plus 1 (for the final "not in database" class).
 - This allows us to learn to recognize a new person given just a single image of that person.
 - Given how few images we have per person, we need to apply transfer learning.
- 7. Neural style transfer is trained as a supervised learning task in which the goal is to input two images (x), and train a network to output a new, synthesized image (y).
 - True
 - False