BOOLE CEBRİ

DR. ZEYNEP BANU ÖZGER

BOOLE CEBRI

• Bilgisayar ve diğer elektronik cihazlardaki devrelerin 2 farklı durumu vardır; 0 veya 1.

 Bir devrenin çalışması, bir girdi için bir çıkış değeri üreten boolean bir fonksiyon olarak tanımlanabilir.

• Bir devre kurmanın ilk adımı Boole işlevini Boole cebirinin temel işlemleri kullanılarak oluşturulan bir ifade ile göstermektir.

BOOLE CEBRI

Bilgisayarlar ve elektronik devreler ikili sayı sistemini kullanır.

İkili sistemde; sayılar 0 ve 1'dir.

Boole cebrinde işlem ve kurallar {0,1} kümesi ile tanımlanır.

Bir boole cebri; sınırlı, dağılma özellikli, her öğenin bir tümleyeni olan bir kafes yapısıdır.

Yaygın olarak 3 işlem kullanılır; tümleyen alma, mantıksal toplama ve mantıksal çarpma.

Mantıksal toplama= OR işlemine, mantıksal çarpma = AND

• Tümleyen Alma

- Complement alma.
- $\bar{1}$ =0 ve $\bar{0}$ =1

• Mantiksal Toplama;

- OR, '+' veya ∨ ile gösterilir
- 1+1=1, 1+0=1, 0+1=1, 0+0=0

• Mantıksal Çarpma;

- AND, '·' veya ∧ ile gösterilir.
- $1 \cdot 1 = 1$, $1 \cdot 0 = 0$, $0 \cdot 1 = 0$, $0 \cdot 0 = 0$

BOOLEAN İŞLEMLER

•
$$1 \cdot 0 + \overline{(0+1)} = ?$$

- 1 · 0=0
- 0+1=1
- $\overline{(0+1)} = 0$
- 0+0=0
- Boole cebri denklikleri birleşik önerme ile de ifade edilebilir.

•
$$1 \cdot 0 + \overline{(0+1)} = 1 \Rightarrow (T \land F) \lor \neg (T \lor F) \equiv F$$

- Bir B kümesinin elemanları {0,1} olmak üzere,
 - bir x değişkeni sadece B kümesinden değer alıyorsa, x değişkenine mantıksal değişken denir.
- $B^n = \{x_1, x_2, ..., x_n | x_i \in B, 1 \le i \le n\}$ olmak üzere,
 - $f: B^n \to B$ şeklinde tanımlı bir fonksiyona **n. dereceden mantıksal fonksiyon** denir.
- Mantıksal fonksiyonların değişkenler ve mantıksal işlemler ile gösterilmesine
 - Boolean ifadeler (Boolean expressions) denir.

- Örneğin $F(x,y)=x\bar{y}$ boolean bir fonksiyon olsun.
 - {0,1} kümesinden değer alır.
 - 2. dereceden mantıksal bir fonksiyondur.
 - Olası değerler; F(1,1)=0, F(1,0)=1, F(0,1)=0 ve F(0,0)=0 olur.
 - · Tablo gösterimi;

х	у	F(x, y)
1	1	0
1	0	1
0	1	0
0	0	0

• Örnek: $F(x,y,z)=xy+\bar{z}$ boolean bir fonksiyon olsun. (B^3)

`		- (-	`;;;,—; ^`.	, . 2 50010	
x	У	z	ху	$ar{z}$	xy+ $ar{z}$
1	1	1	1	0	1
1	1	0	1	1	1
1	0	1	0	0	0
1	0	0	0	1	1
0	1	1	0	0	0
0	1	0	0	1	1
0	0	1	0	0	0
0	0	0	0	1	1

• n-cube.

•
$$F(b_1, b_2, ..., b_n) = G(b_1, b_2, ..., b_n)$$
 durumunda eşdeğerdir.

- Yani aynı fonksiyonu temsil eden 2 farklı mantıksal ifadeye eşdeğer denir.
- Örneğin; F(x,y)=xy+0 ve G(x,y)=xy-1 fonksiyonları eşdeğerdir.
- Bir mantıksal fonksiyonun tümleyeni (complement):

•
$$\overline{F}(x_1, x_2, \dots, x_n) = \overline{F(x_1, x_2, \dots, x_n)}$$

- F ve G n. Dereceden mantiksal fonksiyonlar olmak üzere;
 - Mantiksal toplam $(F+G)=(F+G)(x_1,x_2,...,x_n)=F(x_1,x_2,...,x_n)+G(x_1,x_2,...,x_n)$
 - Mantıksal çarpım: $(FG)=(FG)(x_1,x_2,...,x_n)=F(x_1,x_2,...,x_n)G(x_1,x_2,...,x_n)$

2. dereceden bir F fonksiyonunun elemanları ile 16 farklı mantıksal fonksiyon elde edilebilir.

x	у	F_1	F_2	F_3	F_4	F_5	F_6	<i>F</i> ₇	F_8	F9	F_{10}	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅	F ₁₆
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
1	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0
0	1	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0
0	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0

• n. dereceden bir mantiksal fonksiyondan 2^{2ⁿ} farklı mantiksal fonksiyon elde edilebilir.

Degree	Number	
1	4	1
2	16	ı
3	256	ı
4	65,536	ı
5	4,294,967,296	ı
6	18,446,744,073,709,551,616	

BOOLE CEBRININ ÖZELLİKLERİ

Çift Eşlenik

• $\bar{\bar{x}} = x$

Idempotence

- x+x=x
- x•x=x

Etkisiz Eleman

- x+0=x
- x 1=x

Baskınlık

- x+1=1
- x•0=0

Değişme

- x+y=y+x
- x·y=y·x

BOOLE CEBRININ ÖZELLİKLERİ

Birleşme

•
$$x+(y+z)=(x+y)+z$$

$$\bullet \ x \cdot (y \cdot z) = (x \cdot y) \cdot z$$

Dağılma

•
$$x+yz=(x+y)(x+z)$$

• x(y+z)=xy+xz

De Morgan

$$\bullet \ \overline{x \cdot y} = \overline{x} + \overline{y}$$

$$\bullet \ \overline{x+y} = \bar{x}\bar{y}$$

Birim Özelliği Sıfır Özelliği

•
$$x+\bar{x}=1$$

•
$$\mathbf{x} \cdot \bar{\mathbf{x}} = \mathbf{0}$$

Absorption

•
$$x+(xy)=x$$

•
$$x(x+y)=x$$

DUALITE PRENSIBI

- Boolean bir ifadenin duali,
 - toplam ve çarpımların birbirleri ile
 - 0 ve 1'leri de birbirleri ile yer değiştirmesi ile elde edilir.
- F^d ile gösterilir.
- Örnek:
 - $x(y+0) \rightarrow x+(y\cdot 1)$ 'dir
 - $\bar{x} \cdot 1 + (\bar{y} + z) \rightarrow (\bar{x} + 0) \cdot (\bar{y} \cdot z)$

Boole cebri binary operatörler ile de gösterilebilir.

• Baskınlık yasası:
$$\begin{cases} x \lor 0 = x \\ x \land 1 = x \end{cases}$$

• Tümleyen yasası:
$$\begin{cases} x \sqrt{x} = 1 \\ x \wedge \bar{x} = 0 \end{cases}$$

• Birleşme yasası:
$$\begin{cases} (x \lor y) \lor z = x \lor (y \lor z) \\ (x \land y) \land z = x \land (y \land z) \end{cases}$$

• Değişme yasası:
$$\begin{cases} x \lor y = y \lor x \\ x \land y = y \land x \end{cases}$$

• Dağılma yasası:
$$\begin{cases} x \lor (y \land z) = (x \lor y) \land (x \lor z) \\ x \land (y \lor z) = (x \land y) \lor (x \land z) \end{cases}$$

- •, +ve tümleyen işleçleri ile mantıksal bir ifadeye dönüştürülebilir.
- indirgenerek daha küçük değişken kümeleri ile temsil edilebilir.
- Amaç, mantıksal fonksiyonu ifade edecek mantıksal ifadenin bulunmasıdır.
- Örneğin, F(x,y,z) ve G(x,y,z) fonksiyonlarının değerleri tabloda verilmiştir. Buna göre
 - F fonksiyonu mantıksal çarpım işlemi ile ifade edilebilir.

•
$$x \cdot \overline{y} \cdot z$$
.

G fonksiyonu 2 mantıksal çarpımın toplamı ile elde edilebilir.

•
$$xy\bar{z} + \bar{x}y\bar{z}$$
.

x	y	z	F	G
1	1	1	0	0
1	1	0	0	1
1	0	1	1	0
1	0	0	0	0
0	1	1	0	0
0	1	0	0	1
0	0	1	0	0
0	0	0	0	0

- Bir sabit (literal) bir mantıksal değişken veya onun tümleyenidir.
 - Minterm ; $y_i = x_i \ veya \ y_i = \overline{x_i}$ olmak üzere $x_1, x_2, ..., x_n$ mantıksal değişkenlerinin mantıksal çarpımıdır $(y_1y_2...y_n)$
 - Yani bir minterm n sabitin çarpımıdır.
 - Bir minterm'ün değerinin 1 olabilmesi için tüm sabitlerin değerinin 1 olması gerekir.
 - Örneğin; $x_1 = x_3 = 0$ ve $x_2 = x_4 = x_5 = 1$ olmak üzere değeri 1 olan minterm:
 - $\overline{x_1}x_2\overline{x_3}x_4x_5$
 - x_1, x_2, x_3 gibi 3 değişken için 8 farklı minterm vardır.

• Örneğin;
$$m_{10110}=x_1^1x_2^0x_3^1x_4^1x_5^0=x_1\overline{x_2}x_3x_4\overline{x_5}$$

 Bir fonksiyonun mintermlerin toplamı ile ifade edilmesine çarpımların kanonik toplam formu (sum of products expansion) veya ayıran normal form (disjunctive normal form) denir.

- Mantıksal bir fonksiyonu çarpımların toplamı şeklinde ifade edebilmenin 2 yolu vardır.
 - Boole cebrinin özellikleri
 - Tablo.

• F fonksiyonu 3 durumda 1 değerini almıştır:

- x=y=1 ve $z=0 \rightarrow xy\bar{z}$
- x=1 ve y=z=0 \rightarrow x $\bar{y}\bar{z}$
- x=z=0 ve $y=1 \rightarrow \bar{x}y\bar{z}$
- $xy\bar{z}+x\bar{y}\bar{z}+\bar{x}y\bar{z}$

x	у	z	х+у	$ar{Z}$	(x+y) ⋅ <i>z</i> ̄
1	1	1	1	0	0
1	1	0	1	1	1
1	0	1	1	0	0
1	0	0	1	1	1
0	1	1	1	0	0
0	1	0	1	1	1
0	0	1	0	0	0
0	0	0	0	1	0

• Örnek: $x_1x_2(x_1 + x_3)$ şeklindeki mantıksal ifadeyi disjunctive normal form ile yazarsak:

$x_1 x_2 (x_1 + x_3) =$	$x_1 x_2 x_1 + x_1 x_2 x_3$	Dağılma özelliği
	$x_1x_1x_2 + x_1x_2x_3$	Değişme Özelliği
	$x_1x_2 + x_1x_2x_3$	ldempotence özelliği
	$x_1x_21 + x_1x_2x_3$	Etkisiz eleman özelliği
	$x_1x_2(x_3+\overline{x_3})+x_1x_2x_3$	Değişme özelliği
	$x_1 x_2 x_3 + x_1 x_2 \overline{x_3} + x_1 x_2 x_3$	Dağılma Özelliği
	$x_1x_2x_3 + x_1x_2\overline{x_3}$	Değişme ve idempotence

MINTERM ÖRNEK

x_1	x_2	$f(x_1x_2)$
0	0	0
0	1	1
1	0	1
1	1	1

$$f(x_1, x_2) = 0\overline{x_1}\overline{x_2} + 1\overline{x_1}x_2 + 1x_1\overline{x_2} + 1x_1x_2$$
$$= \overline{x_1}x_2 + x_1\overline{x_2} + x_1x_2$$

- Mantiksal bir fonksiyon için mantıksal ifade,
 - Mantıksal toplamların çarpımı ile de elde edilebilir.
 - Bu işleme conjuntive normal form veya toplamların kanonik çarpım formu (product-of-sums expansion) de denir.
 - Mantıksal $x_1, x_2, ..., x_n$ değişkenlerinin maxtermi $y_1 + y_2 + ... + y_n$ toplamıdır.
 - $y_i = x_i$ veya $y_i = \overline{x_i}$ 'dir.
 - $y_1 + y_2 + ... + y_n$ maxtermi ancak ve ancak her bir y_i 'nin değeri 0 ise 0 sonucunu verir.

- Maxtermler bitlerle de ifade edilebilir.
 - Örneğin: $m_{10110} = x_1^1 + x_2^0 + x_3^1 + x_4^1 + x_5^0 = x_1 + \overline{x_2} + x_3 + x_4 + \overline{x_5}$

x_1	x_2	$x_1 + x_2$	$x_1(x_1+x_2)$
0	0	0	0
0	1	1	0
1	0	1	1
1	1	1	1

$$\Rightarrow x_1 = x_2 = 0 \Rightarrow x_1 + x_2$$

$$\Rightarrow x_1 = 0 \text{ ve } x_2 = 1 \Rightarrow x_1 + \overline{x_2}$$

$$\rightarrow f(x_1, x_2) = (x_1 + x_2)(x_1 + \overline{x_2})$$

Conjunctive

formda 0 değerini verenler göz önüne alınır.

MINTERM vs MAXTERM

- Çarpımların toplam
- Disjunctive normal form
- Fonksiyonsonucunu 1 yapan

Maxterm

- Toplamların çarpımı
- Conjunctive normal form
- Fonksiyonsonucunu 0 yapan

ANAHTAR DEVRELERI

Bir veya daha fazla anahtar içeren devrelere anahtar devresi denir.

- Anahtar devreleri bağlama şekline göre 2 şekilde gerçeklenebilir:
 - 1. Seri bağlama
 - 2. Paralel bağlama

Seri Bağlama

- Akımın ilerleyebilmesi için hattaki tüm anahtarların kapalı olması gerekir.
- Mantıksal çarpım (and) işlemi gibidir.

•
$$f(x_1, x_2) = x_1 x_2$$

x_1	x_2	$f(x_1,x_2)$
0	0	0
0	1	0
1	0	0
1	1	1

Paralel Bağlama

- Anahtarlardan en az biri açık olmalı.
- Mantıksal toplam (or) işlemi gibidir.
- $g(x_1, x_2) = x_1 + x_2$

x_1	x_2	$g(x_1,x_2)$
0	0	0
0	1	1
1	0	1
1	1	1

- n tane anahtardan oluşan bir devre için olası durumlar $x_1, x_2, ... x_n$ şeklinde n tane mantıksal durum ile ifade edilir.
 - $f: \{0,1\}^n \rightarrow \{0,1\}$ fonksiyonu ile gösterilir.
 - Bu fonksiyona anahtarlama fonksiyonu denir.

ANAHTAR DEVRELERİ

- x_1, x_2, x_3 sırasıyla anahtarlar.
- $f(x_1, x_2) \rightarrow A_1 \ ve \ A_2, \ f(x_3) \rightarrow A_3$ anahtarının durumunu gösteren fonksiyonlardır.
 - $f(x_1, x_2) = x_1 x_2$
 - $f(x_1, x_2, x_3) = f(x_1, x_2) + f(x_3)$
 - $f(x_1, x_2, x_3) = x_1 x_2 + x_3$

MANTIKSAL KAPILAR

- Temel devre elemanlarına kapı (gate) denir.
 - Haftza içermeyen bu devrelere kombinatoryel devre (combinational circuit) veya kapı ağları (gating networks) denir.
 - Kombinatöryel devrelerin oluşturulmasında kullanılan 3 kapı türü vardır;
 - NOT kapısı
 - AND kapısı
 - OR kapısı

MANTIKSAL KAPILAR

NOT

- Girdisi mantıksal bir değişkendir.
- Çıktısı; girdinin tümleyenidir.

OR

- Girdisi, 2 veya daha fazla mantıksal değişkendir.
- Çıktısı, girdilerin mantiksal toplamidir.

AND

- Girdisi, 2 veya daha fazla mantıksal değişkendir.
- Çıktısı, girdilerin mantıksal çarpımıdır.

х	z
0	1
1	0

x_1	x_2	z
0	0	0
0	1	1
1	0	1
1	1	1

x_1	x_2	z
0	0	0
0	1	0
1	0	0
1	1	1

MANTIKSAL KAPILAR

$$f_1(x_1, x_2) = x_1 x_2$$

$$f_2(x_3, x_4) = x_3 x_4$$

$$f_3(x_1, x_2, x_3, x_4) = f_1(x_1, x_2) + f_2(x_3, x_4)$$

$$f_4(x_1, x_2, x_3, x_4) = \overline{f_3(x_1, x_2, x_3, x_4)}$$

$$f(x_1, x_2, x_3, x_4) = \overline{x_1 x_2 + x_3 x_4}$$

- Örnek: Aşağıdaki mantıksal ifadenin devresini çizin:
- $\overline{x_1}x_2 + x_1x_3$

MANTIKSAL İFADELERİN SADELEŞTİRİLMESİ

- Bir kombinasyonel devrenin verimliliği, içerdiği kapıların sayısına ve düzenine bağlıdır.
 - Mantıksal devrelerdeki eleman sayılarının, aynı işlemi yapacak şekilde, minimize edilmesi bir mühendislik problemidir.

• Örneğin:
$$F(x, y, z) = x \cdot y \cdot z + x \cdot \overline{y} \cdot z$$
;

$$= (y + \overline{y})(xz)$$

$$= 1 \cdot (xz) = xz$$

- Mantıksal ifadelerin indirgenmesi için 2 temel yöntem kullanılır:
 - 1. Karnaugh haritaları
 - 2. Quine-McCluskey Yöntemi

MANTIKSAL İFADELERİN SADELEŞTİRİLMESİ

- 1960'ların başına kadar tek bileşenlerdi.
 - En az sayıda kapının kullanılması= maliyeti azaltmak
 - 1960'ların ortalarında, kapıları tek bir yonga üzerinde birleştirilebilir oldu.
 - Bu yongalar ile düşük maliyetle daha karmaşık entegreler
 - İndirgeme → daha fazla devrenin aynı chip üzerinde bulunabilmesi
 - Böylece devrelerin, outputu üretme süresi kısalmaktadır.

MANTIKSAL İFADELERİN SADELEŞTİRİLMESİ

- Bir mantıksal ifadenin sadeleştirilmiş hali aşağıdaki kriterleri sağlamalıdır.
 - 1. Çarpımların toplamı.
 - 2. Daha az sayıda denk bir mantıksal ifade bulunmamalıdır.
 - 3. Aynı sayıda terime sahip olmalıdır.
- Bir mantıksal ifade yukardaki kriterleri sağlıyorsa minimal formdadır.
- Minimal formlar tek değildir.
- Minimal formu elde ederken;
 - Disjunctive normal form ile başla
 - Terimlerin sayısının azalt.
 - Değişkenlerin sayısını azalt.

- · Giriş değerlerinin alabileceği olası değerler bir tabloda gösterilir,
 - Çıkış olanlara 1 yazılır.
 - · Bu tabloya K-Map denir.
- 1'ler arasında komşuluk incelemesi ile sadeleştirilir.
- Farklı sayıda mantıksal değişken= farklı harita
 - Örneğin; 2 mantıksal değişken içeren bir fonksiyonda 4 olası minterm vardır.
- Mantıksal ifadenin içerdiği minterm için hücre değeri 1'dir.
- Bir değişkenin farklı mintermleri temsil ediyorsa, bu hücrelere bitişik/komşu (adjacent) denir.

mintermün hücre değeri 1 yapılır

'komşu hücre oluşmuştur.

Bitişik hücre bulunmadığından daha fazla sadeleştirilememiştir. $x \overline{y} + \overline{x} y$

• Örnek: $f(x,y) = x\bar{y} + \bar{x}y + \bar{x}\bar{y}$

sadeleştirildiğinde $\bar{x} + \bar{y}$ elde edilir

- Fonksiyon 3 değişkenli → K-Map 8 hücreli dikdörtgendir.
 - 3 değişken için olası 8 minterm.
 - Bir sabit, farklı mintermler ile temsil ediliyorsa bu hücreler komşu hücredir.

	уz	y ζ	y z	y z
x	xyz	ху z	х у ̄z̄	хӯz
\bar{x}	х̄уҳ	πyπ	xyz	x yz

• Örnek: $f(x, y, z) = xy\bar{z} + x\bar{y}\bar{z} + \bar{x}yz + \bar{x}\bar{y}\bar{z}$

• Örnek: $f(x, y, z) = x\bar{y}z + x\bar{y}\bar{z} + \bar{x}yz + \bar{x}\bar{y}z + \bar{x}\bar{y}\bar{z}$

Dikdörtgen katlanarak silindir şeklinde temsil edildiğinde bu 2 hücre komşu olacaktır. sabit olan tek değişken \bar{y} 'dir.

- 4 değişkenli bir fonksiyon →K-Map haritası 4x4 bir matris.
 - 16 olası minterm içerir.
 - 2 hücrenin, temsil ettikleri mintermler, sadece 1 değişken için farklıysa bu 2 hücre komşudur.
 - Komşuluk bloğu ne kadar fazla ise, sadeleştirme o kadar iyi.

	yz	y₹	y z	$\overline{y}z$
wx	wxyz	wxy z	wx yz	wx y z
wx	w x yz	w x y z	w <u>x</u> yz	w xy z
$\overline{w}\overline{x}$	₩ x yz	wxyz	wxyz	w̄xȳz
wx	wxyz,	wxy z	wxyz,	wxyz
· '				

$$wyz + wx\bar{z} + w\bar{x}\bar{y} + \bar{w}\bar{x}y + \bar{w}x\bar{y}z$$

Farklı bloklama farklı çözüm.

• Örnek: $wx\bar{y}\bar{z} + w\bar{x}yz + w\bar{x}y\bar{z} + w\bar{x}\bar{y}\bar{z} + \bar{w}x\bar{y}\bar{z} + \bar{w}\bar{x}y\bar{z} + \bar{w}\bar{x}\bar{y}\bar{z}$

$$w\bar{x}y + \bar{x}\bar{z} + \bar{y}\bar{z}$$

$$w\bar{x}y + \bar{z} + \bar{w}x$$

K-Map'deki;

- İkili bir komşuluk mintermdeki terim sayısını 1 azaltır.
- 4'lü bir komşulu mintermdeki terim sayısını 2 azaltır.
- 8'li bir komşuluk ise 3 azaltır.
- Genellersek 2ⁿ tane komşu 1, terim sayısını n azaltır

- n, mantıksal fonksiyondaki değişken sayısı olmak üzere;
 - n değişkenli bir mantıksal fonksiyon için oluşturulacak K-Map;
 - $2^{\lfloor n/2 \rfloor}$ satır, $2^{\lceil n/2 \rceil}$ sütundan oluşur.
 - Ve toplamda 2^n hücre içerir.
 - K-Map'lerde en üst ve alt satırda ile en soldaki ve en sağdaki sütuna karşılık gelen hücreler bitişik kabul edilir.

Quine-McCluskey Yöntemi

- K-Map'de değişken sayısı arttıkça haritayı oluşturmak karmaşıklaşır.
 - Çok değişkenli mantıksal denklemlerde, Quine-McCluskey yöntemi
 - Mintermler, en fazla 1 içeren dizilere göre sıralanır.
 - 1'ler şöyle gösterilir.

Minterm	Bit String	Number of 1s
xyz	111	3
$x\overline{y}z$ $\overline{x}yz$	101 011	2 2
$\overline{x} \overline{y}z$	001	1
$\overline{x}\overline{y}\overline{z}$	000	0

Quine-McCluskey Yöntemi

1. Bit stringlerle ifade edilir.

xyz	111
$x\overline{y}z$	101
$\overline{x}yz$	011
$\overline{x} \overline{y} z$	001
$\overline{x}\overline{y}\overline{z}$	000

- 2. Bit dizileri içerdikleri 1'lerin sayısına göre gruplanır.
 - Gruplama en az 1 sabitte değişiklik gösteren mintermlere göre yapılır.

(1,2)	хz	1–1
(1,3)	yz	-11
(2,4)	$\overline{y}z$	-01
(3,4)	$\overline{x}z$	0–1
(4,5)	$\overline{x}\overline{y}$	00–

- 4. Bu indirgeme işlemi, indirgeme yapılamaz oluncaya kadar devam eder.
- 5. İndirgenemeyen terimler mantıksal toplam ile birleştirilir.

•
$$z + \bar{x}\bar{y}$$

• Bir minterm birden fazla grupta bulunabilir.

Quine-McCluskey Yöntemi

Örnek: $wxy\bar{z} + w\bar{x}yz + w\bar{x}y\bar{z} + \bar{w}xyz + \bar{w}x\bar{y}z + \bar{w}\bar{x}yz + \bar{w}\bar{x}\bar{y}z$

1. Bit dizisi:

1	w <i>xyz</i> ̄	1110	3
2	wx̄yz	1011	3
3	$\overline{w}xyz$	0111	3
4	wx̄yz̄	1010	2
5	$\overline{w}x\overline{y}z$	0101	2
6	$\overline{w}\overline{x}yz$	0011	2
7	$\overline{w}\overline{x}\overline{y}z$	0001	1

2. Gruplama.

$wxy\overline{z}$	1110	(1,4)	$wy\overline{z}$	1–10
$w\overline{x}yz$	1011	(2,4)	$w\overline{x}y$	101-
$\overline{w}xyz$	0111	(2,6)	$\overline{x}yz$	-011
$w\overline{x}y\overline{z}$	1010	(3,5)	$\overline{w}xz$	01-1
$\overline{w}x\overline{y}z$	0101	(3,6)	$\overline{w}yz$	0-11
$\overline{w} \overline{x} yz$	0011	(5,7)	$\overline{w}\overline{y}z$	0-01
$\overline{w} \overline{x} \overline{y} z$	0001	(6,7)	$\overline{w} \overline{x} z$	00-1

Quine-McCluskey Yöntemi

3.º 2. defa gruplandığında;

$wxy\overline{z}$	1110	(1,4)	$wy\overline{z}$	1–10	(3,5,6,7)	$\overline{w}z$	01
$w\overline{x}yz$	1011	(2,4)	$w\overline{x}y$	101–			
$\overline{w}xyz$	0111	(2,6)	$\overline{x}yz$	-011			
$w\overline{x}y\overline{z}$	1010	(3,5)	$\overline{w}xz$	01-1			
$\overline{w}x\overline{y}z$	0101	(3,6)	$\overline{w}yz$	0–11			
$\overline{w}\overline{x}yz$	0011	(5,7)	$\overline{w} \overline{y} z$	0-01			
$\overline{w}\overline{x}\overline{y}z$	0001	(6,7)	$\overline{w}\overline{x}z$	00-1			

4. $\overline{w}z + wy\overline{z} + w\overline{x}y$ veya $\overline{w}z + wy\overline{z} + \overline{x}yz$

