

MySQLによるHA・スケールアウト ソリューション

松信 嘉範(MATSUNOBU Yoshinori)
MySQL株式会社
シニアコンサルタント
ymatsunobu@mysql.com

Agenda

- MySQL社の紹介
- HA · スケールアウト技術概要
- MySQLによるHA・スケールアウトソリューションの解説
 - レプリケーション
 - HA構成
 - パーティショニング
 - MySQL Cluster

MySQL社の紹介

- 1995年に設立、日本法人(MySQL KK)は2006年2月に設立
- 社員数約400名、世界24カ国に在籍
- 海外での圧倒的な人気
 - 1,000万以上のインストールベース
 - 5万ダウンロード/日
- TCOの削減を実現
 - 浮いた費用を用いて品質を向上させるアプローチも可能
- 豊富な周辺ツール
- 多数のパートナー企業
 - 住商情報システム様、HP様、NTTコムウェア様、スマートスタイル様、

MySQLを利用している企業

High Volume Websites

- Web 2.0
- Dynamic content
- **eCommerce**
- "Look to Book"
- Session Management
- Gaming & entertainment
- Scale Out

Enterprise

- **Data Warehousing**
- **High-Volume OLTP**
- Scale Out

Embedded

Bundled in software applications & hardware components

中・大規模アプリケーションに求められるもの

- 可用性の向上
 - MTBF(平均故障間隔) / (MTTR(平均修復間隔) + MTBF) の向上
 - 停止につながる障害を減らすこと
 - 万一障害が発生した場合は回復時間を短く済ませること
 - 冗長化構成が基本
- 負荷分散
 - 大量のリクエストを一定時間以内に処理する
 - 垂直型(スケールアップ)と水平型(スケールアウト)

スケールアップ 対 スケールアウト

- スケールアップ
 - 垂直型
 - CPU、メモリ、ディスクの増強によって パフォーマンスを向上
 - 価格が高くなる傾向にある

• スケールアウト

- 水平型
- 安価なハードウェアの冗長構成
- マシンの増加によって パフォーマンス向上
- アプリケーション側での対処も必要
- 電源やスペースの費用

- 1GB Memory×16台 vs 16GB Memory×1台

HA構成の種類

- Active/Passive(Standby)型
 - サービスを提供するDBサーバは1個(Active機)
 - Passive機はActive機を監視
 - Active機の停止を検知したら、Passive機はサービスを起動・再開
 - 負荷分散にはならない
 - fsckやクラッシュリカバリの時間は停止時間になる
 - 起動後はしばらくキャッシュにデータが無い状態が続く
 - サービスレベルとしては、Four Nines (99.99%)に相当
 - Heartbeat + SAN/DRBD + MySQL
 - Active/Passive + Passive/Activeの構成もある
- Active/Active型
 - 同時に複数のDBサーバがサービスを提供
 - 停止検知の仕組みはActive/Passive型と同等だが、サービスはすぐ提供できる
 - サービスレベルとしては、Five Nines (99.999%)に相当
 - MySQL Cluster

MySQLによるHA・スケールアウト ソリューションの紹介

- MySQL レプリケーション
 - MySQLの標準機能だけで実現可能
 - 参照処理はスケールアウト可能
- サードベンダーのクラスタソフト等との組み合わせ
 - Heartbeat + MySQLレプリケーション
 - L/B + MySQL レプリケーション
 - Heartbeat + SAN + MySQL
 - Heartbeat + DRBD + MySQL
- パーティショニング
- MySQL Cluster
 - MySQLの機能だけで実現可能
 - HA、スケールアウト両方を実現
 - 欧米での導入実績が豊富
 - 5.1で大幅な機能強化

レプリケーションとは

データベースの複製を別ノード上に作成する技術

同期レプリケーション

レプリケーションの分類

- 片方向レプリケーションか、双方向レプリケーションか
- シングルマスターか、マルチマスターか
- 非同期レプリケーションか、同期レプリケーションか
- 物理レプリケーションか、論理レプリケーションか
- Active/Passive か Active/Active か

MySQL レプリケーションの特徴

特徵

- マスター-スレーブ型
- 非同期レプリケーション
- マスターからSQL文をスレーブに転送して実行 (5.1からは行コピー型と選択/共存可能)

長所

- 追加のソフトウェアが不要
- 参照処理をスケールアウト可能
- 仕組みが単純で、アーキテクチャ選択の 幅が広い

制限事項

- 1個のスレーブが持てるマスターは1個だけ
- 障害時に、スレーブ側への反映が未完了の 場合がある
- フェイルオーバーのための処理が手動

MySQL レプリケーションの流れ

_____MySQL レプリケーションの仕組み

参照処理のスケールアウト

レプリケーションの手順

- マスター
 - 全体バックアップ
 - InnoDBオンリーであれば \$ mysqldump --user=root --password=xx -socket=xx --single-transaction --master-data=2 --flush-logs --hex-blob --default-character-set=cp932 --all-databases > xx.sql
- スレーブ
 - 全体バックアップのコピー・リストア
 - mysqldを起動
 - リードオンリーの指定: read_only
 - サーバーID を一意に指定: server-id=N
 - マスターへの接続
 - mysql> CHANGE MASTER TO MASTER_HOST='hostname',
 - -> MASTER_PORT=port, MASTER_USER='repl_user',
 - -> MASTER_PASSWORD='repl_pass',
 - -> MASTER_LOG_FILE='binlog_file_path';
 - レプリケーションの開始 mysql> START SLAVE;

マスターのフェイルオーバー

マスターのフェイルオーバーの難しさ

- 障害を検知しフェイルオーバーする仕組みを 標準では持っていない
 - クラスタリングソフトを使う、手動で作りこむ
 - アプリケーションの接続先も変えないといけない
- マスターの全更新情報(バイナリログ)の スレーブへの転送が完了していない可能性がある
 - 非同期レプリケーションの宿命
 - 未転送のものを捨てるか、手動で転送・適用するか
 - 捨てる場合、フェイルバックが難しい

Heartbeat + MySQLレプリケーション

- クラスタソフト(Heartbeat)の使用
 - Heart-Beat プロトコル
 - ノード間で生存確認メッセージの送受信
 - ハートビート送受信の失敗がフェイルオーバー開始の合図
 - シリアルケーブルによるハートビート送受信が可能
 - Virtual IPの管理
 - IPアドレスの引継ぎ
 - 管理は自動
 - オープンソース
- 自動フェイルオーバーが可能
- レプリケーションは非同期

Heartbeat + MySQLレプリケーション

Heartbeat + MySQLレプリケーション(フェイルオーバー時)

Load Balancer + MySQLレプリケーション

- HAとスケールアウトの両方の目的で活用可能
- スケールアウト目的
 - 複数台のスレーブの前に置いて負荷分散
- HA目的
 - 「クラスタソフト + MySQLレプリケーション」構成と類似
 - ハードウェアベースでのVirtual IP管理(ソフトウェアL/Bもある)
 - 特徵
 - 100:0の振り分けルール
 - 自動フェイルオーバー
 - 非同期レプリケーション

L/B + MySQLレプリケーション(HA目的)

L/B + MySQLレプリケーション(HA目的)

レプリケーションとフェイルオーバーの相性

- マスター→スレーブのフェイルオーバー
- スレーブの状態はマスターと同一になっていない可能性 がある
- 未完了状態のスレーブをマスターに昇格すると...
- 最新の状態が失われる
- マルチマスター構成でも同様の問題がある
- 考慮事項が多く、難しい
- マスター→スレーブのフェイルオーバーではなく、 Active/Standby構成のマスターのフェイルオーバー

Heartbeat + SAN + MySQL

- Active/Passive型クラスタ構成
 - 一同時に複数のmysqldが同じファイルにアクセスすることは不可
 - 負荷分散にならない
- 自動フェイルオーバー
 - Virtual IP
 - ファイルシステムのマウント
 - mysqldの起動
- データが1箇所なので、不整合の問題が発生しない
 - フェイルバックもより簡単になる
- その他の特徴
 - 初期設定はより複雑になる
 - ハードウェア費用が高価
 - クラッシュリカバリに関わるリカバリ時間の考慮が必要
 - フェイルオーバー直後はキャッシュが無いためパフォーマンスに注意
 - 多くのSANベンダーによる実績がある

Heartbeat + SAN + MySQL

Heartbeat + SAN + MySQL

Heartbeat + DRBD + MySQL

- ディスクミラーソフト (DRBD)
 - http://www.drbd.org
 - ディスクをマシンごとに分散配置し、片方向物理レプリケーション (ネットワーク RAID1)
 - 特別なハードウェアが不要(通常のIPネットワーク上で動作)
 - 同期レプリケーション
 - オープンソース、MySQL Enterpriseではオプションでサポート
 - レプリケーション性能は良い(SQL文のレイヤーを回避)
- Active/Passive型クラスタ構成と同等で、 負荷分散にはならない
 - ミラーされている側は、ファイルシステムのマウントすらできない
- 自動フェイルオーバーが可能
- 同期レプリケーションなので不整合の問題が発生しない
 - フェイルバックもより簡単になる

Heartbeat + DRBD + MySQL

Heartbeat + DRBD + MySQL

Active/Passive + Passive/Active

- 2台のマシンに、Active/Passiveアプリと、 Passive/Activeアプリを用意
- それぞれのマシン上で、それぞれアプリが動いている状態
- マシンが無駄になることが無い
- フェイルオーバー時には、2つのアプリが1台のマシン上 で同時に動く

まとめと応用

- 参照処理のスケールアウトのために MySQLレプリケーション
- マスターの自動フェイルオーバーのためにクラスタソフト
- マスターの不整合回避のために 共有ディスク(SAN)または同期レプリケーション(DRBD)
- これらの組み合わせも可能(次項)

Heartbeat + DRBD + MySQLレプリケーション + L/B

ストレージェンジンによる違い

- InnoDB、NDB、Falcon
 - mysqldの起動時に自動でリカバリ(クラッシュリカバリ)
 - リカバリ時間はデータ量には依存しない。通常は非常に高速
 - Falconも同様
 - 仕組みは違うがNDBも自動でリカバリする

MyISAM

- テーブルが破損している場合がある
- myisamchk -rq、REPAIR TABLEで復旧
- 自動でのリカバリはしない(my.cnfで--myisam-recoverの設定)
- リカバリ時間はデータ量に比例する

MEMORY

- mysqldの停止によって、レコードは消失する

MySQL Enterpriseによるサポート

- Heartbeat + DRBDのサポートをMySQLより提供
 - DRBDについてはビルド済みバイナリを提供
 - MySQLが問い合わせを一次受け、開発元のLinbitにリダイレクト
 - 24時間×7
 - MySQL Enterprise Gold以上でオプションとして提供
 - サブスクリプション費用は50%増
 - MySQL Enterprise Gold: 2,999USD/Year × 1.5
 - MySQL Enterprise Platinum: 4,999USD/Year × 1.5

大規模環境でよく使われるソリューション

- Heartbeat + DRBD + MySQLレプリケーション + L/B
- パーティショニング
- MySQL Cluster

パーティショニング

パーティショニングの考慮事項

- いつパーティショニングするか、タイミングを決める
 - レスポンスタイムの平均値
 - ロードアベレージ
- タイミングを遅らせる工夫
 - アプリが複雑になり、障害切り分けも難しくなるので、パーティショニングを避けられるのであれば避ける(遅らせる)
 - ある程度のスケールアップをする (特にメモリ)
 - 32bit機の2GB Memory <<< 64bit機の16GB Memory
 - RAID 1+0
 - パフォーマンスチューニングをする
 - 50%~100%の性能向上は珍しくない
 - my.cnfのパラメータによる影響は大きい
 - SQL文の処理効率
- 5.1のパーティショニング機能
 - ハッシュ、主キー、レンジ、リスト、複合型
 - すべてのストレージェンジンでサポート
 - ディスクI/Oボトルネックの軽減に効果的

5.1のパーティショニング機能の効果

mysql> CREATE TABLE part_tab

- -> (c1 int ,c2 varchar(30) ,c3 date)
- -> PARTITION BY RANGE (year(c3)) (PARTITION p0 VALUES LESS THAN (1995),
- -> PARTITION p1 VALUES LESS THAN (1996), PARTITION p2 VALUES LESS THAN (1997),
- -> PARTITION p3 VALUES LESS THAN (1998), PARTITION p4 VALUES LESS THAN (1999),
- -> PARTITION p5 VALUES LESS THAN (2000), PARTITION p6 VALUES LESS THAN (2001),
- -> PARTITION p7 VALUES LESS THAN (2002), PARTITION p8 VALUES LESS THAN (2003),
- -> PARTITION p9 VALUES LESS THAN (2004), PARTITION p10 VALUES LESS THAN (2010),
- -> PARTITION p11 VALUES LESS THAN MAXVALUE);

90% の性能改善

MySQL Cluster

- シェアードナッシング型クラスタ
- 同期レプリケーション
- インメモリで動作するため非常に高速
 - 5.1からはデータ領域をディスクに置くことも可能
- スケールアウト可能
- 高速なフェイルオーバー(秒単位のレベル)
- 追加のソフトウェアが不要
 - クラスタソフトの機能をMySQL Cluster自身が実装している
- 特殊なハードウェアが不要
- 詳しくは次のセッションで

MySQLコンサルティングサービス

- MySQLアーキテクチャデザイン
- MySQL Scale-out, HA and Replication Jumpstart
- MySQL Cluster Jumpstart
- MySQLパフォーマンスチューニング
- MySQLデータベース管理
- MySQLマイグレーション
- MySQL Time Hire
- その他、MySQLの専門知識が必要なもの全般

http://www-jp.mysql.com/consulting consulting-jp@mysql.com

MySQL User Conference Tokyo

- 2007年9月11日(火)、12日(水)
- http://www-jp.mysql.com/news-andevents/news/article_1325.html
- 日本科学未来館(東京・お台場)にて開催
- Marten Mickos、Brian Akerらが来日予定
- 事前登録無料
- 間もなく申込み開始