

- Subject Physical Chemistry
- Chapter Some Basic Concept of Chemistry

By – Amit Mahajan Sir

Which of the following relations is incorrect for solutions?

1
$$3N \text{ Al}_2(SO_4)_3 = 0.5M \text{ Al}_2(SO_4)_3$$
 0.5 × 6 = 3 N

$$1M(H_3PO_4 = 1/3N H_3PO_4)$$
 | $\times 3 = 3N$

$$\underbrace{1M \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3} = 6N \operatorname{Al}_{2}(\operatorname{SO}_{4})_{3}}_{1 \times 6} = 6N$$

$$N = M \times n_{\mathbf{f}}$$

Determine the volume/volume percent solution made by combining 25 mL of ethanol with enough water to produce 200 mL of the solution. (Gram atomic mass of C = 12 g O = 16 g and H = 1 g)

of C = 12 g, O = 16 g and H = 1 g)

2) 20

 $=\frac{25}{200}$ X100 = 12.5.7.

- 3 40
- 4 25

250 ml of 0.5M KCl is diluted with water to 500 ml of solution, the number of chloride ions in the resulting solution are (Gram atomic mass of K = 39 g and Cl =

chioride ions	s in the resulting so	olution are (Gra	am atomic mas	88 01 K = 39 g and C1 =
35.5 g)	7=	H20	1 0.25 mg/	les Ku poresent in
1 6.02 × 1	$v_{1} = 25 \text{ om}$	v ₂ = 500ml	1000 ml	ay solution.
7.52 × 1	$0^{22} M_1 = 0.5 M$	Mg = ?	/ 100ml m 500	dus = 025 - = 025 x 500
$\boxed{3} 1 \times 10^{24}$	$M_1V_1 = M_2V_2$ 0.5 × 250 =	• A		1000 2 = 0.125 mod
(4) 3.76 × 1		0.5 = 0.25	5 M	_ 0 1 2 0 11

Ans. (2)

1KU -> 1K⁺ + 1U 0-125 mole 0-125 mole

0.125 mode =
$$N_{A} \times 0.125$$

= $3 \times 18^{3} \times 125$
 1000×84
 3×10^{2}
 3×10^{2}

solvent

program-solute

What is the quantity of water that should be added to 16 g methanol to make the mole fraction of methanol as 0.25? (Gram atomic mass of C = 12 g, O = 16 g, H = 1

$$\frac{\%B}{\%A} = \frac{NB}{NA}$$

$$W_A = ?$$

$$W_A = ?$$
 $M_A \subset H_O = 189 / mol$

$$\%B = 0.25 = \frac{11B}{1A + 1B}$$

$$M_{A}(H_{0}) = 184 / mol$$
 $W_{B} = 164$
 $M_{B}(CH_{3}OM) = 12 + 11 + 16 = 329 / mol$
 $M_{B}(CH_{3}OM) = 12 + 11 + 16 = 329 / mol$
 $M_{B}(CH_{3}OM) = 15 + 16 = 329 / mol$
 $M_{B}(CH_{3}OM) = 15 + 16 = 329 / mol$
 $M_{B}(CH_{3}OM) = 15 + 16 = 329 / mol$
 $M_{B}(CH_{3}OM) = 164 + 16 = 329 / mol$
 $M_{B}(CH_{3}OM) = 164 + 16 = 329 / mol$
 $M_{B}(CH_{3}OM) = 18 \times 1.5$
 $M_{A} = 174 / mol$

Ans. (1)

Mole fraction of the solute in a 1.00 molal aqueous solution is MA (H20) = 183 | Mal

$$\frac{\%_{B} = ?}{\sqrt{m} = \frac{\%_{B} \times 1000}{\%_{A} \times M_{A}}}$$

0.0344

$$1018\% = 18$$
 $8 = 18 = 0.0177$

$$\frac{20}{1020} = \frac{1}{501}$$

Question- $\begin{cases}
Noz & = ? \\
Noz & = ?
\end{cases}$ What is the concentration of nitrate ions if equal volumes of 0.1 M AgNO₃ and 0.1

M NaCl are n	nixed togethei	:? (Gram atomic ma	ss of Ag = 108 g, N =	= 14 g, 0 = 16 g, Na
= 23 g, Cl = 3	5.5g)			M M
1 0.1 M	JAg NO3	+ INacl -> F	Agal + INan	$n = M \times N(1)$
2 0.2 M	0.1%	0.111	1 No3	- -
0.05 M		01+ N.C.	\ TN03]	$= M_{NO_3} = \frac{0.10}{2}$
(4) 0.25 M	geg NaU	= q eq Na No 5 = males × 1		= 0.05 M
	moles =	0.1V = males No	- \	

The molarity of the solution containing 2.8% mass-volume solution of KOH is

$$\left(4\right)$$
 1M

What is the (OH^-) the final solution prepared by mixing 20.0 mL of 0.050M HCl with 30.0 mL of 0.10M Ba $(OH)_2$?

2 0.10M
$$\frac{HCL}{D} + Ba(OH)_{a} = BaCla + HaO$$

2 0.40M $\frac{d}{d} = \frac{1}{20 \times 0.05 \times 1} - \frac{30 \times 0}{1 \times 0} \times 0$

3 0.0050M milligeg $OH = \frac{1}{10} = \frac{6}{10} = \frac{5}{10}$

4 0.12M $\frac{1}{10} = \frac{5}{10} = \frac{5}{10$

The molality of a sulphuric acid solution is 0.2. Calculate the total weight of the solution having 1000 gm of solvent. (Gram atomic mass of S = 32 g, O = 16 g, H = 1

g)

- 1000 g
- (2) 1098.6 g
- (3) 980.4 g
- 1019.6 g

$$M_{H_{2}SOH} = 0.2$$
 mass of soll = $W_{A} + W_{B}$
 $W_{A} = 1000$ g) $M_{B}(H_{2}SO_{W}) = 389 | m \cdot 1 = 1019.69$

$$W_{B} = 92 \times 98 = \frac{196}{10} = 19.67$$

The density (in g mL⁻¹) of a 3.60 M sulphuric acid solution that is 29% (H₂SO₄ molar mass = 98 g mol^{-1}) by mass will be:

molar mass = 98 g mol⁻¹) by mass will be:

$$M = 3.6 \text{ M}$$

1.22

1.45

 $M = 3.6 \text{ M}$
 $M = 3.6 \text{ M}$

$$98 \times 316 = d = 1229 \text{ md}$$
 29×100

Ans. (1)

How many significant figures are in 0.0008?

 $\left(4\right)$

The multiple 5×0.2 after rounding off will be

(3) 1.00

(4) 1.000

Add (0.001 + 0.02) upto the correct number of significant figures

- 3 0.003
- (4) 0.001

One fermi is

- (2) 10⁻¹⁵ cm
- (3) 10⁻¹⁰ cm
- (4) 10⁻¹² cm

 $1 \text{ Journ} = 10^{-15} \text{ m} = 10^{-15} \times 100 \text{ cm} = 10^{-13} \text{ cm}$

Significant figures in 0.00051 are

- (1) 5
- 2 3

(4)

1dm3=12

1 m³ in equal to

m³ in equal to
$$|m^3| = |0| dm$$

$$|m| = |0| dm$$

$$1m^3 = 13dm^3$$

= $10^3 L$

A picometre is written as 1 pm = 10 12 m

- 10⁻⁹ m
- 10⁻¹⁰ m
- 10⁻¹¹ m

Convert 25365 mg to S.I. unit

- (1) 253.65 g
- $25.365 \times 10^{-3} \text{ kg}$
- (3) 25.365 kg
- (4) 253.65 kg

$$25365mq = 25365 q$$

$$= 25365 Kq$$

