Finals preparation

Dimitri Tabatadze

June 24, 2023

9.4

transformation from equation 4 to equation 7

$$\frac{dP}{dt} = kP\left(1 - \frac{P}{M}\right) \implies$$

$$\int \frac{dP}{P\left(1 - \frac{P}{M}\right)} = \int k \, dt \implies$$

$$\int \frac{M}{P(M - P)} dP = \int k \, dt \implies$$

$$\int \left(\frac{1}{P} + \frac{1}{M - P}\right) dP = \int k \, dt \implies$$

$$\ln |P| - \ln |M - P| = kt + C \implies$$

$$\ln \left|\frac{M - P}{P}\right| = -kt - C \implies$$

$$\left|\frac{M - P}{P}\right| = e^{-kt - C} \implies$$

$$\left|\frac{M - P}{P}\right| = e^{-C}e^{-kt} \implies$$

$$A = \pm e^{-C}, \frac{M - P}{P} = Ae^{-kt} \implies$$

$$\frac{M}{P} = 1 + Ae^{-kt} \implies$$

$$P = \frac{M}{1 + Ae^{-kt}}$$

Notations for Partial Derivatives If z = f(x, y), we write

$$f_x(x, y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} f(x, y) = \frac{\partial z}{\partial x} = f_1 = D_1 f = D_x f$$

$$f_y(x, y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} f(x, y) = \frac{\partial z}{\partial y} = f_2 = D_2 f = D_y f$$

Rule for Finding Partial Derivatives of z = f(x, y)

- 1. To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.
- **2.** To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.

EXAMPLE 2 If
$$f(x, y) = \sin\left(\frac{x}{1+y}\right)$$
, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

SOLUTION Using the Chain Rule for functions of one variable, we have

$$\frac{\partial f}{\partial x} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial x} \left(\frac{x}{1+y}\right) = \cos\left(\frac{x}{1+y}\right) \cdot \frac{1}{1+y}$$
$$\frac{\partial f}{\partial y} = \cos\left(\frac{x}{1+y}\right) \cdot \frac{\partial}{\partial y} \left(\frac{x}{1+y}\right) = -\cos\left(\frac{x}{1+y}\right) \cdot \frac{x}{(1+y)^2}$$

The wave equation

$$\frac{\partial^2 u}{\partial t^2} = a^2 \frac{\partial^2 u}{\partial x^2}$$

 $u(x,t) = \sin(x-at)$ satisfies the wave equation.

2 Equation of a Tangent Plane Suppose f has continuous partial derivatives. An equation of the tangent plane to the surface z = f(x, y) at the point $P(x_0, y_0, z_0)$ is

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

The linear function whose graph is this tangent plane, namely

$$L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

is called the **linearization** of f at (a, b) and the approximation

4
$$f(x, y) \approx f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

Recall that for a function of one variable, y = f(x), if x changes from a to $a + \Delta x$, we defined the increment of y as

$$\Delta y = f(a + \Delta x) - f(a)$$

In Chapter 3 we showed that if f is differentiable at a, then

$$\Delta y = f'(a) \Delta x + \varepsilon \Delta x$$
 where $\varepsilon \to 0$ as $\Delta x \to 0$

Now consider a function of two variables, z = f(x, y), and suppose x changes from a to $a + \Delta x$ and y changes from b to $b + \Delta y$. Then the corresponding **increment** of z is

$$\Delta z = f(a + \Delta x, b + \Delta y) - f(a, b)$$

Thus the increment Δz represents the change in the value of f when (x, y) changes from (a, b) to $(a + \Delta x, b + \Delta y)$. By analogy with (5) we define the differentiability of a function of two variables as follows.

7 Definition If z = f(x, y), then f is **differentiable** at (a, b) if Δz can be expressed in the form

$$\Delta z = f_x(a, b) \, \Delta x + f_y(a, b) \, \Delta y + \varepsilon_1 \, \Delta x + \varepsilon_2 \, \Delta y$$

where ε_1 and ε_2 are functions of Δx and Δy such that ε_1 and $\varepsilon_2 \to 0$ as $(\Delta x, \Delta y) \to (0, 0)$.

For a differentiable function of two variables, z = f(x, y), we define the **differentials** dx and dy to be independent variables; that is, they can be given any values. Then the **differential** dz, also called the **total differential**, is defined by

$$dz = f_x(x, y) dx + f_y(x, y) dy = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy$$

(Compare with Equation 9.) Sometimes the notation df is used in place of dz.

$$z = x^{2}y + 3xy^{4}, \ x = \sin 2t, \ y = \cos t$$

$$z = (\sin 2t)^{2} \cos t + 3(\sin 2t)(\cos t)^{4}$$

$$z = (2\sin t \cos t)(2\sin t \cos t)\cos t + 3(2\sin t \cos t)(\cos t)^{4}$$

$$z = 4(\sin t)^{2}(\cos t)^{3} + 6(\sin t)(\cos t)^{5}$$

$$\frac{dz}{dt} = 8\sin t \cos^{4} t - 12\sin^{3} t \cos^{2} t + 6\cos^{6} t - 30\sin^{2} t \cos^{4} t$$

$$z = x^{2}y + 3xy^{4}, \ x = \sin 2t, \ y = \cos t$$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

$$\frac{dx}{dt} = (2xy + 3y^{4})(2\cos 2t) - (x^{2} + 12xy^{3})(\sin t)$$

$$\frac{dx}{dt} = (4\sin t \cos^{2} t + 3\cos^{4} t)(2\cos^{2} t - 2\sin^{2} t) - 2\sin^{3} t \cos^{2} t - 24\sin^{2} t \cos^{4} t$$

$$\frac{dx}{dt} = 8\sin t \cos^{4} t + 6\cos^{6} t - 10\sin^{3} t \cos^{2} t - 6\cos^{4} t \sin^{2} t - 24\sin^{2} t \cos^{4} t$$

2 Definition The **directional derivative** of f at (x_0, y_0) in the direction of a unit vector $\mathbf{u} = \langle a, b \rangle$ is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.

Strategy for Testing Series

- 1. Test for Divergence If you can see that $\lim_{n\to\infty} a_n$ may be different from 0, then apply the Test for Divergence.
- **2.** *p*-Series If the series is of the form $\sum 1/n^p$, then it is a *p*-series, which we know to be convergent if p > 1 and divergent if $p \le 1$.
- **3. Geometric Series** If the series has the form $\sum ar^{n-1}$ or $\sum ar^n$, then it is a geometric series, which converges if |r| < 1 and diverges if $|r| \ge 1$. Some preliminary algebraic manipulation may be required to bring the series into this form.
- **4.** Comparison Tests If the series has a form that is similar to a p-series or a geometric series, then one of the comparison tests should be considered. In particular, if a_n is a rational function or an algebraic function of n (involving roots of polynomials), then the series should be compared with a p-series. Notice that most of the series in Exercises 11.4 have this form. (The value of p should be chosen as in Section 11.4 by keeping only the highest powers of n in the numerator and denominator.) The comparison tests apply only to series with positive terms, but if $\sum a_n$ has some negative terms, then we can apply a comparison test to $\sum |a_n|$ and test for absolute convergence.
- 5. Alternating Series Test If the series is of the form $\Sigma (-1)^{n-1}b_n$ or $\Sigma (-1)^nb_n$, then the Alternating Series Test is an obvious possibility. Note that if Σb_n converges, then the given series is absolutely convergent and therefore convergent.
- **6. Ratio Test** Series that involve factorials or other products (including a constant raised to the *n*th power) are often conveniently tested using the Ratio Test. Bear in mind that $|a_{n+1}/a_n| \rightarrow 1$ as $n \rightarrow \infty$ for all *p*-series and therefore all rational or algebraic functions of *n*. Thus the Ratio Test should not be used for such series.
- **7. Root Test** If a_n is of the form $(b_n)^n$, then the Root Test may be useful.
- **8. Integral Test** If $a_n = f(n)$, where $\int_1^\infty f(x) dx$ is easily evaluated, then the Integral Test is effective (assuming the hypotheses of this test are satisfied).
- Alternating series test (only formulation)

Alternating Series Test If the alternating series

$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \qquad (b_n > 0)$$

satisfies the conditions

(i)
$$b_{n+1} \le b_n$$
 for all n

(ii)
$$\lim_{n\to\infty}b_n=0$$

then the series is convergent.

• integral test (only formulation)

The Integral Test Suppose f is a continuous, positive, decreasing function on $[1, \infty)$ and let $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ is convergent if and only if the improper integral $\int_{1}^{\infty} f(x) dx$ is convergent. In other words:

- (i) If $\int_{1}^{\infty} f(x) dx$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is convergent.
- (ii) If $\int_{1}^{\infty} f(x) dx$ is divergent, then $\sum_{n=1}^{\infty} a_n$ is divergent.
- comparison tests (only formulations)

The Direct Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms.

- (i) If $\sum b_n$ is convergent and $a_n \leq b_n$ for all n, then $\sum a_n$ is also convergent.
- (ii) If $\sum b_n$ is divergent and $a_n \ge b_n$ for all n, then $\sum a_n$ is also divergent.

The Limit Comparison Test Suppose that $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

where c is a finite number and c>0, then either both series converge or both diverge.

• ratio and root tests (only formulations)

The Ratio Test

- (i) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
- (ii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ or $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- (iii) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, the Ratio Test is inconclusive; that is, no conclusion can be drawn about the convergence or divergence of $\sum a_n$.

The Root Test

- (i) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent (and therefore convergent).
- (ii) If $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ or $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- (iii) If $\lim_{n \to \infty} \sqrt[n]{|a_n|} = 1$, the Root Test is inconclusive.

• Theorems about term-by-term differentiation and integration of series (only formulations)

Theorem If the power series $\sum c_n(x-a)^n$ has radius of convergence R > 0, then the function f defined by

$$f(x) = c_0 + c_1(x-a) + c_2(x-a)^2 + \cdots = \sum_{n=0}^{\infty} c_n(x-a)^n$$

is differentiable (and therefore continuous) on the interval (a - R, a + R) and

(i)
$$f'(x) = c_1 + 2c_2(x-a) + 3c_3(x-a)^2 + \cdots = \sum_{n=1}^{\infty} nc_n(x-a)^{n-1}$$

(ii)
$$\int f(x) dx = C + c_0(x - a) + c_1 \frac{(x - a)^2}{2} + c_2 \frac{(x - a)^3}{3} + \cdots$$
$$= C + \sum_{n=0}^{\infty} c_n \frac{(x - a)^{n+1}}{n+1}$$

The radii of convergence of the power series in Equations (i) and (ii) are both R.

• integration factor and solution of linear DE (with proof)

To solve the linear differential equation y' + P(x)y = Q(x), multiply both sides by the **integrating factor** $I(x) = e^{\int P(x) dx}$ and then integrate both sides.

• divergence test for a number series (with proof)

7 Test for Divergence If $\lim_{n\to\infty} a_n$ does not exist or if $\lim_{n\to\infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

PROOF Let $s_n = a_1 + a_2 + \cdots + a_n$. Then $a_n = s_n - s_{n-1}$. Since $\sum a_n$ is convergent, the sequence $\{s_n\}$ is convergent. Let $\lim_{n\to\infty} s_n = s$. Since $n-1\to\infty$ as $n\to\infty$, we also have $\lim_{n\to\infty} s_{n-1} = s$. Therefore

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0$$

• the sum of geometric series (with proof)

Sum of a Geometric Series

An important example of an infinite series is the geometric series

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
 $a \neq 0$

Each term is obtained from the preceding one by multiplying it by the **common ratio** r. (The series that arises from Zeno's paradox is the special case where $a=\frac{1}{2}$ and $r=\frac{1}{2}$.)

If r=1, then $s_n=a+a+\cdots+a=na\to\pm\infty$. Since $\lim_{n\to\infty}s_n$ doesn't exist, the geometric series diverges in this case.

If $r \neq 1$, we have

$$s_n = a + ar + ar^2 + \cdots + ar^{n-1}$$

and

$$rs_n = ar + ar^2 + \cdots + ar^{n-1} + ar^n$$

Subtracting these equations, we get

$$s_n - rs_n = a - ar^n$$

3

$$s_n = \frac{a(1-r^n)}{1-r}$$

4 The geometric series

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

is convergent if |r| < 1 and its sum is

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

If $|r| \ge 1$, the geometric series is divergent.

• Taylor's inequality for n=1 (with proof)

9 Taylor's Inequality If $|f^{(n+1)}(x)| \le M$ for $|x - a| \le d$, then the remainder $R_n(x)$ of the Taylor series satisfies the inequality

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for $|x-a| \le d$

PROOF We first prove Taylor's Inequality for n = 1. Assume that $|f''(x)| \le M$. In particular, we have $f''(x) \le M$, so for $a \le x \le a + d$ we have

$$\int_a^x f''(t) dt \le \int_a^x M dt$$

An antiderivative of f'' is f', so by Part 2 of the Fundamental Theorem of Calculus, we have

$$f'(x) - f'(a) \le M(x - a)$$
 or $f'(x) \le f'(a) + M(x - a)$

Thus

$$\int_a^x f'(t) dt \le \int_a^x \left[f'(a) + M(t-a) \right] dt$$

$$f(x) - f(a) \le f'(a)(x - a) + M \frac{(x - a)^2}{2}$$

$$f(x) - f(a) - f'(a)(x - a) \le \frac{M}{2}(x - a)^2$$

But
$$R_1(x) = f(x) - T_1(x) = f(x) - f(a) - f'(a)(x - a)$$
. So

$$R_1(x) \le \frac{M}{2} (x - a)^2$$

A similar argument, using $f''(x) \ge -M$, shows that

$$R_1(x) \ge -\frac{M}{2}(x-a)^2$$

So

$$|R_1(x)| \leq \frac{M}{2} |x-a|^2$$

Although we have assumed that x > a, similar calculations show that this inequality is also true for x < a.

This proves Taylor's Inequality for the case where n=1. The result for any n is proved in a similar way by integrating n+1 times. (See Exercise 95 for the case n=2.)

• Theorem about directional derivative (with proof)

15 Theorem Suppose f is a differentiable function of two or three variables. The maximum value of the directional derivative $D_{\mathbf{u}} f(\mathbf{x})$ is $|\nabla f(\mathbf{x})|$ and it occurs when \mathbf{u} has the same direction as the gradient vector $\nabla f(\mathbf{x})$.

PROOF From Equation 9 or 14 and using Theorem 12.3.3, we have

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f||\mathbf{u}|\cos\theta = |\nabla f|\cos\theta$$

where θ is the angle between ∇f and \mathbf{u} . The maximum value of $\cos \theta$ is 1 and this occurs when $\theta = 0$. Therefore the maximum value of $D_{\mathbf{u}}f$ is $|\nabla f|$ and it occurs when $\theta = 0$, that is, when \mathbf{u} has the same direction as ∇f .

• Fermat's theorem for functions of two variables about critical points (with proof)

Theorem If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

PROOF Let g(x) = f(x, b). If f has a local maximum (or minimum) at (a, b), then g has a local maximum (or minimum) at a, so g'(a) = 0 by Fermat's Theorem (see Theorem 4.1.4). But $g'(a) = f_x(a, b)$ (see Equation 14.3.1) and so $f_x(a, b) = 0$. Similarly, by applying Fermat's Theorem to the function G(y) = f(a, y), we obtain $f_y(a, b) = 0$.

• McLaurin series of exponential and trigonometric functions (with proof)