Question 12 (7 marks)

Recall that the **Fibonacci numbers**, F_n , are defined recursively as follows:

$$F_1 = 1,$$

 $F_2 = 1,$
 $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.

The first few numbers in the sequence are

$$1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$$

Note that the Fibonacci numbers are (after the first term) an *increasing* sequence of positive integers.

The language FIBONACCI is defined to be the set of all strings of the letter **a** whose length is a Fibonacci number. So,

$$FIBONACCI = \{ a^{F_n} : n \in \mathbb{N} \}.$$

(a) Prove that the difference, $F_n - F_{n-1}$, between two consecutive Fibonacci numbers increases as n increases, i.e., $F_n - F_{n-1} > F_{n-1} - F_{n-2}$ for all $n \ge 5$.

 $F_n - F_{n-1} = F_{n-2}$, and the Fibonacci numbers are increasing, so their differences are increasing too.

(b) Using (a), prove that the language FIBONACCI is not context-free.

Suppose (by way of contradiction) that FIBONACCI is context-free.

Then it has a CFG, in Chomsky Normal Form, with some number k of nonterminal symbols.

Let w be any word in the language FIBONACCI that has length $> 2^{k-1}$. Observe that it must be of the form \mathbf{a}^{F_n} for some $F_n > 2^{k-1}$.

By the Pumping Lemma for CFLs, the word w can be partitioned into strings u, v, x, y, z (i.e., w = uvxyz) such that:

- v, y are not both empty,
- $|vxy| \leq 2^k$... which we won't need ..., and
- $uv^i x y^i z$ is in FIBONACCI for all $i \ge 0$.

For convenience, write p for the combined length of v and y. So p = |v| + |y|. The first and second points above tell us that $1 \le p \le 2^k$.

Since w = uvxyz is just a string of F_n a's, the string uv^2xy^2z is just a string of $F_n + p$

a's (since we have just taken w and repeated both v and y). More generally, the string uv^ixy^iz is just a string of $F_n + (i-1)p$ a's. The third point above means that a string of $F_n + (i-1)p$ a's must belong to the language FIBONACCI, for all i. So we have an infinite sequence of strings in FIBONACCI in which each string is exactly p letters longer than its predecessor, and this difference is positive since $p \ge 1$.

But we saw in part (a) that the difference between successive Fibonacci numbers is increasing. So, whatever p is, we see that for sufficiently large m, the difference $F_m - F_{m-1} > p$. This means that some of the numbers $F_n + (i-1)p$ cannot be Fibonacci numbers after all, since some of them must fall in the ever-increasing gaps between consecutive Fibonacci numbers. This means that (for large enough i) some of the strings of $F_n + (i-1)p$ a's cannot be in FIBONACCI after all. This is a contradiction.

So our original assumption, that FIBONACCI is context free, must be false. Hence FI-BONACCI is not context-free.

Official use only

7