Direct plane - similitude

Introduction

Make activity page 219

I-Definition

▶ Definition 1:

A direct plane similitude, noted S, is a transformation of the plane such that it is a translation, or a composite of a positive homothecy and a rotation ..

- ▶ Definition 2:
- Let Ω be a point on the plane P and k a strictly positive real and α a non-zero real. We call direct plane similitude of center Ω and of ratio k and angle α the transformation in P, denoted by S (Ω , k, α): which, at any point M, associates a single point M 'defined by:

$$\begin{split} S &= \underbrace{S(\Omega\,,\,k\,,\,\alpha)} \colon P \,\to P \\ M &\mapsto M' = \underbrace{S(M)} \text{ with } \Omega M' = k\Omega M \text{ and } (\,\overrightarrow{\Omega M}\,\,,\,\, \overrightarrow{\Omega M'}\,) = \alpha\,(2\pi). \end{split}$$

A direct plane similitude denoted by $S(I, k, \alpha)$ is a plane transformation that maps every point M of the plane onto a point

M' so that
$$(\overrightarrow{IM}, \overrightarrow{IM'}) = \alpha + 2n\pi$$
 and $\frac{\overrightarrow{IM'}}{\overrightarrow{IM}} = k$. (k>0)

- I is the center of S
- k is the ratio or (scale factor)
- α is an angle of S.
- I is invariant under S
- M' is the image of M under S
- M is the preimage of M'

► Application 1

1) A and B two given points and $S\left(A; \frac{2}{3}; -\frac{\pi}{6}\right)$ is the similar Similar C = S (B).

> special cases of similitudes:

Translations, rotations, dilation are direct plane similitudes.

- S $(\Omega, 1, 0)$ is the identical application of the plane P (IdP).
- S $(\Omega, 1, \alpha)$ where $\alpha \neq 0$ is the rotation r (Ω, α) .
- $S(\Omega, 1, \pi)$ is the central symmetry with center Ω .
- $S(\Omega, k, 0)$ where k > 0 is the positive homothecy $h(\Omega, k)$.
- $S(\Omega, k, \pi)$ where k > 0 is the negative homothecy $h(\Omega, -k)$.

• .

II- Properties:

- a) S (Ω, k, α) has a single double or invariant point which is the center Ω .
- b) Characteristic property: Let S (Ω, k, α) be a direct plane similar similar blane. If S (M) = M and S (N) = N' is equivalent to M'N '= k MN and $(MN; M'N') = \alpha(2\pi)$.
- c) The image of a segment of length L by the direct plane similitude S (Ω, k, α) is a segment of length "kL".
- d) The image of a line (D) by the direct plane similitude S (Ω , k, α) is a line (D') such that ((D); (D')) = α (2 π).
- e) The image of a circle C (O, R) by the direct plane similitude S (Ω , k, α) is a circle C '(O', kR) with O '= S (O).
- f) Direct plane similitude preserves collinearity, parallelism, orthogonality, midpoint, oriented angles.
- g) Direct plane similitude multiplies the lengths by k and the area by k^2 . h)The inverse of the direct plane similitude S (Ω, k, α) is
- the direct plane similitude $S(\Omega, \frac{1}{k}, -\alpha)$

III) Complex form of a direct plane similitude:

The plane P is referred to a direct orthonormal coordinate system (O;u;v). Consider the direct plane similitude $S(\Omega, k, \alpha)$.

If M (z) and M '(z') such that S (M) = M 'then $\mathbf{z'} = \mathbf{az} + \mathbf{b}$ where $\mathbf{a} = \mathbf{ke^{i\alpha}}$ and $\mathbf{b} = (\mathbf{1} - \mathbf{a}) \mathbf{z_{\Omega}}$.

• The affix of Ω the center of S is $z_{\Omega} = \frac{b}{1-a}$

Complex form	Condition of a	Nature of f	Characteristic elements of f
of a			
transformation f			
	If a = 1	translation	$\triangleright Vector \vec{v}$ such that $z_{\vec{v}} = b$
	If $a = e^{i\alpha} \ (\underline{\alpha} \in \mathbb{R}^*)$	rotation	> center Ω such that $z_{\Omega} = \frac{b}{1-a}$
z' = az + b			l−a ➤ Angle α.
	If $a = k \in \mathbb{R} - \{0, 1\}$	Homothecy (dilation)	> Centre Ω such that $z_{\Omega} = \frac{b}{1-k}$
			> Ratio k
	If $a = ke^{i\alpha} (k \in \mathbb{R}^{+*})$ and $\alpha \in \mathbb{R}$	Similitude	> Center Ω such that $z_{\Omega} = \frac{b}{1-a}$
	,		> Ratio k
			> Angle α

Application 2

The plane is referred to a direct orthonormal coordinate system (O;;).

- 1) Determine the nature and the characteristic elements of the transformation f defined by its complex form z '= (1 + i) z + 2
 3i.
- 2) Write the complex form of the similar similar Ω is the point of affix 1 i.

IV-composite of rotation and dilation

a) Composite of a rotation and a dilation with the same center:

- If k > 0, $k \ne 1$ and $\alpha \ne 0$ then $h(\Omega, k) \circ r(\Omega, \alpha) = r(\Omega, \alpha) \circ h(\Omega, k) = S(\Omega, k, \alpha)$.
- If k < 0, $k \ne -1$ and $\alpha \ne 0$ then $h(\Omega, k) \circ r(\Omega, \alpha) = r(\Omega, \alpha) \circ h(\Omega, k) = S(\Omega, |k|, \alpha + \pi)$.

b) composite of a rotation and a dilation of distinct centers:

- If k > 0, $k \ne 1$ and $\alpha \ne 0$ then $h(\Omega, k) \circ r(\Omega', \alpha) = S(I, k, \alpha)$ (I distinct from Ω and Ω').
- If k > 0, $k \ne 1$ and $\alpha \ne 0$ then $r(\Omega', \alpha) \circ h(\Omega, k) = S(I', k, \alpha)$ (I 'distinct from Ω and Ω').
- If k <0 and $\alpha \neq 0$ then h $(\Omega, k) \circ r(\Omega', \alpha) = S(I, |k|, \alpha + \pi)$ (I distinct from Ω and Ω').
- If k < 0 and $\alpha \neq 0$ then $r(\Omega', \alpha) \circ h(\Omega, k) = S(I', |k|, \alpha + \pi)$ (I 'distinct from Ω and Ω ').

IV-composite of two similitudes

c) composite of two similitudes with the same center:

Let S (Ω, k, α) and S $'(\Omega, k', \alpha')$ be two direct plane similitudes with the same center Ω .

- If $\alpha + \alpha \neq 0$ and kk' $\neq 1$, then S ' \circ S is the similar S (Ω , kk', $\alpha + \alpha$ ').
- If $\alpha + \alpha' = 0$ and kk' = 1, then S ' \circ S is the identical application of the plane P (IdP).
- If $\alpha + \alpha \neq 0$ and kk' = 1, then S 'o S is the rotation r $(\Omega, \alpha + \alpha')$.
- If $\alpha + \alpha' = 0$ and kk' $\neq 1$, then S ' \circ S is the dilation h (Ω , kk').

d) composite of two similitudes of distinct centers:

Let $S(\Omega, k, \alpha)$ and $S'(\Omega', k', \alpha')$ be two direct plane similitudes of distinct centers Ω and Ω' .

- If $\alpha + \alpha \neq 0$ and kk' $\neq 1$, then S ' \circ S is the similar S (I, kk', $\alpha + \alpha$ ') (I distinct from Ω and Ω '). (main formula)
- If $\alpha + \alpha' = 0$ and kk' = 1, then S ' \circ S is a translation.
- If $\alpha + \alpha \neq 0$ and kk' = 1, then S 'o S is the rotation r (I, $\alpha + \alpha'$) (I distinct from Ω and Ω ').
- If $\alpha + \alpha' = 0$ and $kk' \neq 1$, then S ' \circ S is the dilation h (I, kk') (I distinct from Ω and Ω ').

Note: the new center I can be proved by showing that it is invariant by the transformation.

► Application 2

A is a given point,
$$r = r\left(A; \frac{\pi}{2}\right)$$
, $h = h(A; 2)$, $S = S\left(A; \frac{1}{2}; -\frac{\pi}{2}\right)$ and $S' = S\left(A; 3; \frac{\pi}{6}\right)$

Determine the nature and the caracteristic elements of $: r \circ h, h \circ r, r \circ S$, $S \circ h$ et $S' \circ S$.

Solution:

- $\underline{r} \circ h$ is the composite of a dilation of ratio 2 and rotation of angle $\frac{\pi}{2}$ of same center so $r \circ h = S\left(A; 2; \frac{\pi}{2}\right)$.
- $h \circ r$: also same center so $h \circ r$ is A then:

- $\underline{\mathbf{r}} \circ \mathbf{S} = \mathbf{S} \left(\mathbf{A} \; ; \; \frac{\pi}{2} \right) \circ \mathbf{S} \left(\mathbf{A} \; ; \; \frac{1}{2} \; ; \; -\frac{\pi}{2} \right) = \mathbf{S} \left(\mathbf{A} \; ; \; 1 \times \frac{1}{2} \; ; \; \frac{\pi}{2} \frac{\pi}{2} \right) = \mathbf{S} \left(\mathbf{A} \; ; \; \frac{1}{2} \; ; \; 0 \right) = \mathbf{h} \left(\mathbf{A} \; ; \; \frac{1}{2} \; \right).$
- $S \circ h = S\left(A; \frac{1}{2}; -\frac{\pi}{2}\right) \circ S\left(A; 2; 0\right) = S\left(A; \frac{1}{2} \times 2; -\frac{\pi}{2} + 0\right) = S\left(A; 1; -\frac{\pi}{2}\right).$
- $S' \circ S = S\left(A; 3; \frac{\pi}{6}\right) \circ S\left(A; \frac{1}{2}; -\frac{\pi}{2}\right) = S\left(A; 3 \times \frac{1}{2}; \frac{\pi}{6} \frac{\pi}{2}\right) = S\left(A; \frac{3}{2}; -\frac{\pi}{3}\right).$

r Xercises

Entertainment Exercises:

- I. ABC is a direct equilateral triangle of center of gravity G.
- 1) Precise the image of points A, B, and C by the similatude $S\left(G; \frac{1}{2}; \frac{\pi}{3}\right)$
- 2) Place the images of A, B, and C by similitude $S\left(G; 2; \frac{\pi}{3}\right)$
- 3) Let M the mi point of [AC] . Determine the image of triangle ABM by the direct similitude $S\left(A; \frac{\sqrt{3}}{3}; \frac{\pi}{6}\right)$.
- II. ABCD is a direct square of center O
- 1) Precise the image of B and O by the direct similitude $S(A; \sqrt{2}; \frac{\pi}{4})$.
- 2) Determine the image of square by the similitude $S\left(A; \frac{\sqrt{2}}{2}; \frac{\pi}{4}\right)$
- III. The adjacent square are direct AB = 36, AG = 21 and $(\overrightarrow{AD}; \overrightarrow{AE}) = \frac{\pi}{6}(2\pi)$.
- 1) Determine a direct similitude that transforms ABCD to AEFG
- 2) Give the measure of angle (\overrightarrow{ID} ; \overrightarrow{JG}), where I and J are the midpoints of [BC] and [EF] respectively

IV. ABC is a triangle such that
$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{3}(2\pi)$$
. Consider the dilation $h = h\left(A; \frac{1}{2}\right)$ and $h' = h\left(A; -\frac{1}{2}\right)$ and the rotation $r = r\left(A; \frac{\pi}{3}\right)$.

- 1) Place the points $D = h \circ r(B)$ and $E = h \circ r(C)$. Which is the direct similitude that transforms the triangle ABC to ADE?
- 2) Place the points $D' = h' \circ r$ (B) and $E' = h' \circ r$ (C). Which is the direct similitude that transforms the triangle ABC to AD'E'?

Elements of a direct Similitude:

V. ABC is a direct equilateral triangle of center G consider the dilation $h = h(C; \frac{1}{2})$ and the rotation $r = r(B; \frac{\pi}{3})$

- 1) Prices the image of segment [BC] by hor
- 2) Determine h o r (G).
- 3) Give the elements of the direct similitude $h \circ r$

ABC is a triangle such that (AB; \overline{AC}) = $\frac{\pi}{2}(2\pi)$ and $(\overline{BC}; \overline{BA}) = \frac{\pi}{3}(2\pi)$. [AH] is a height. A describe a fixed straight line (d)

- 1) We suppose that B is fixed. Determine the geometrical locus of points H and C
- 2) We suppose that H is fixed . Determine the geometrical locus of point B and C

Problems:

XII. ABC is a triangle, I, J, and K are the midpoints of [BC], [AC], and [AB] respectively. Let $\alpha = (\overline{AB}; \overline{AC})$ (2π) , $\beta = (\overline{BC}; \overline{BA})(2\pi)$, $\gamma = (\overline{CA}; \overline{CB})(2\pi)$, $k = \frac{AC}{AB}$, $l = \frac{BA}{BC}$ and $m = \frac{CB}{CA}$.

Let the similar tude $S_A = S(A; k; \alpha)$, $S_B = S(B; l; \beta)$ and $S_C = S(C; m; \gamma)$.

- 1) Prove that $S_B \circ S_A \circ S_C$ is a centeral symmetry of center A. Determine the similitudes $S_C \circ S_B \circ S_A$ et $S_A \circ S_C \circ S_B$.
- 2) Determine $S_C \circ S_A \circ S_B$, $S_A \circ S_B \circ S_C$ and $S_B \circ S_C \circ S_A$

XIII. ABC is a triangle I, J, and K are the midpoints of [BC], [CA] and [AB] respectively. The triangles APB, BMC and CNA are direct right isosceles.

Consider the direct similitude : $S = S\left(B; \frac{1}{\sqrt{2}}; \frac{\pi}{4}\right)$ and $S' = S\left(C; \sqrt{2}; \frac{\pi}{4}\right)$.

- 1) Determine S(M) and S(A). Compare IP and MA and give the measure of angle (\overline{MA} ; \overline{IP}).
- 2) Determine S'(N) and S'(I) and prove that IN = IP and $(\overline{IN}; \overline{IP}) = \frac{\pi}{2}(2\pi)$.

- 3) Prove that [CP] is the image of [MN] by a rotation of elements to be determined. Deduce the orthogonality of straight lines (CP) and (NM)
- 4) Prove that the straight lines (AM), (BN), (CP) are concurrent

Hints to answer some questions in similitude

I) Image of a point by similitude S:

- 1) if you have all the characteristic elements of S such that $S(\Omega, k, \alpha)$ then S(A)=A' can be found by verifying that
- 2) If the ratio k and the angle α are only given and moreover you have the image of another point B such that S(B)=B', then we S(A)=A' can be found by verifying:
- 3) If the characteristic elements are not given or it is difficult to determine the image A' using the previous methods then we can use according to the given :
- -The conservation of midpoint.
- -The conservation of nature of triangle (equilateral, semi-equilateral, right isosceles)
- -The conservation of special quadrilateral (parm, rectangle, rhombus, square)
- 4) If A belong to a straight line (d) or circle (C) then S(A) belong S((d)) or S((C)).

II) Center of similitude S:

- 1) If $S(\Omega)=\Omega$ (double point) then A is the center of similarity S
- 2)If S((d))=(d') and S((d'))=(d) then the center of Ω is the point of intersection of (d) and (d') since $S(\Omega)$ belong to (d) and (d') at the same tim.
- 3) If the angle of similitude ,and S(A)=A' and S(B)=B' then so the center Ω belong to both circles of respective diameters [AA'] and [BB] since thus it is the intersection between the 2 circles.

III-Image of straight lines, segment, vector:

- 1) If S(A)=A' and S(B)=B' then , the reverse is not necessarily correct.
- 2)If then S((d)) is a straigtht line perpendicular to (d) and passing through an image of a point of (d).