

Sanya Nanda

Machine Learning for Science (ML4Sci)

Project Objective: Learning quantum representations of classical high energy physics data with contrastive learning

High Energy Physics Data:

Quark-Gluon (Avg of Tracks channel)

Positive Negative Views

Quark-Gluon: image pairs

Quark-Gluon: graph pairs

Model Architecture & Loss Functions

Ref: You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z. and Shen, Y., 2020. Graph contrastive learning with augmentations. Advances in neural information processing systems, 33, pp.5812-5823.

$$\mathcal{L} = y \cdot D^2 + (1-y) \cdot \max(0, m-D)^2$$

$$\mathcal{L}_{ ext{InfoNCE}} = -\log rac{\exp(ext{sim}(z_i, z_j)/ au)}{\sum_{k=1}^{2N} \mathbb{1}_{k
eq i} \exp(ext{sim}(z_i, z_k)/ au)}$$

$$F(
ho_1,
ho_2)=|\langle\psi_1|\psi_2
angle|^2$$
 where $|\psi_1
angle$ and $|\psi_2
angle$

$$\mathcal{L}\text{total} = \alpha \mathcal{L}\text{InfoNCE} + (1 - \alpha)(1 - F(\rho_1, \rho_2))$$

Contrastive Pair Loss InfoNCE Loss InfoNCE Loss + Fidelity

Quantum circuits as Projection Heads

Model Evaluation

Benchmarking

Dataset	Model	Validation Loss	Validation Accuracy	Model	Test Accuracy (%)	AUC
0-1 MNIST	CNN Encoder + contrastive pair	0.000911	0.9997	CNN Encoder	56.17%	0.52
3-8 MNIST	CNN Encoder + contrastive pair	0.004080	0.9977	ResNet18 Encoder	60.02%	0.5416
9-6 MNIST	CNN Encoder + contrastive pair	0.002580	0.9994	GNN Encoder	73.28%	0.7984
Quark-Gluon	CNN Encoder + contrastive pair	0.4921	0.5617	Table 2: Different classical encoders		

Table 1: CNN encoder on MNIST and Quark-Gluon

Model	Test Accuracy (%)	AUC
GNN Encoder	73.28%	0.7984
GNN Encoder + Quantum projection head (QC1)	66.93%	0.7287
GNN Encoder + (QC2) + Fidelity	60.37%	0.6448
GNN Encoder + QC3	67.02%	0.7285

on Quark-Gluon

Table 3: Classical and Quantum
GNN on Quark-Gluon

Conclusion

Future Scope

Experimenting with fully quantum model and applying contrastive learning to more HEP datasets

Learnings

Technical Growth: I dived deep into coding machine learning workflows, while refining my skills in writing clean, efficient code.

Personal Development: Through our weekly sync-up calls, I immensely improved my presentation skills and also connected with a wonderful global community.

"The best part of GSoC; the people I met - mentors, peers and contributors who shaped this journey with shared experiences, learnings and camaraderie"

Thank You!