Math 209-16 Homework 3

Due Date: 5pm, Oct 13, 2022

P1.(1 pt) Solve the congruence $x^3 - 9x^2 + 23x - 15 \equiv 0 \pmod{143}$.

SOLUTION. The congruence $x^3 - 9x^2 + 23x - 15 = (x-1)(x-3)(x-5) \equiv 0 \pmod{143}$ is equivalent to $11 \mid (x-1)(x-3)(x-5)$ and $13 \mid (x-1)(x-3)(x-5)$, i.e.,

$$x \equiv 1 \text{ or } 3 \text{ or } 5 \pmod{11}$$
 and $x \equiv 1 \text{ or } 3 \text{ or } 5 \pmod{13}$.

By the Chinese Remainder Theorem, $x \equiv a \pmod{11}$ and $x \equiv b \pmod{13}$ is equivalent to $x \equiv 11 \cdot 6 \cdot b + 13 \cdot 6 \cdot a = 66b + 78a \pmod{143}$ since $11 \cdot 6 \equiv 1 \pmod{13}$ and $13 \cdot 6 \equiv 1 \pmod{11}$. Plug in $a, b \in \{1, 3, 5\}$ in the above formula, we get all the solutions $x \equiv 1, 133, 122, 14, 3, 135, 27, 16, 5 \pmod{143}$.

P2.(2 pts) Find all positive integers n such that $\phi(n) \mid n$.

SOLUTION. n = 1 trivially satisfies the condition, we next assume n > 1 and write $n = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$, where $p_1 < \cdots < p_k$ are prime numbers and t_1, \ldots, t_k, k are positive integers. Now $\phi(n) \mid n$ means

$$[p_1^{t_1-1}\cdots p_k^{t_k-1}(p_1-1)\cdots(p_k-1)] \mid p_1^{t_1}\cdots p_k^{t_k},$$

i.e., $(p_1-1)\cdots(p_k-1)\mid p_1\cdots p_k$. For this to hold, first note that p_1 must be 2, because any prime divisor of p_1-1 would be less than all the p_i 's and hence cannot divide the right hand side, and so $p_1-1=1$. If k=1, we obtain $n=2^t$, where t is a positive integer. If k>1, then p_2,\ldots,p_k are odd primes, and so $2\parallel p_1\ldots p_k$. Then it follows that k must be 2 since p_2-1,\cdots,p_k-1 are all even numbers, and there cannot be more than one of them. Thus we are looking for odd primes p such that $(p-1)\mid 2p$. As the only positive divisors of 2p are 1,2,p,2p, this happens only when p-1=2, i.e., p=3. In conclusion, all the positive integers p such that p0, and p1, p2, p3, and p3, p3, and p4, p5, p5, p5, and p6, and p6, and p7, p8, and p9, a

P3.(2 pts) Let $\psi(n)$ denote the number of integers $a, 1 \le a \le n$, for which both (a, n) = 1 and (a + 1, n) = 1. Show that $\psi(n) = n \prod_{p|n} (1 - 2/p)$. For what values of n is $\psi(n) = 0$?

PROOF. When n = 1, by definition we have $\psi(n) = 1$. Now we assume that n > 1. Let $n = p_1^{t_1} p_2^{t_2} \cdots p_k^{t_k}$ be the prime factorization of n. Notice that

$$(a,n) = (a+1,n) = 1 \iff a \not\equiv 0,-1 \pmod{p_i}, \ \forall \ i \in \{1,\dots,k\}$$

which means that the number of possible choices for $a \pmod{p_i^{t_i}}$ is $p_i^{t_i-1}(p_i-2)$ for each i. These, together with the Chinese Remainder Theorem, shows the number of possible choices for $a \pmod{n}$ is given by

$$\psi(n) = \prod_{i} [p_i^{t_i - 1}(p_i - 2)] = n \prod_{p|n} (1 - \frac{2}{p})$$

Moreover, $\psi(n) = 0$ if and only if some p_i equals 2, in other words, $\psi(n) = 0$ exactly for all the even numbers n.

P4.(2 pts) Let k be a positive integer such that $6k + 1 = p_1$, $12k + 1 = p_2$, and $18k + 1 = p_3$ are all prime numbers, and put $m = p_1p_2p_3$. Show that $(p_i - 1) \mid (m - 1)$ for i = 1, 2, 3. Deduce that if $(a, p_i) = 1$, then $a^{m-1} \equiv 1 \pmod{p_i}$, i = 1, 2, 3. Conclude that if (a, m) = 1 then $a^{m-1} \equiv 1 \pmod{m}$, that is, that m is a Carmichael number.

PROOF. We compute directly that $m-1=(6k+1)(12k+1)(18k+1)-1=6\cdot 12\cdot 18k^3+(6\cdot 12+6\cdot 18+12\cdot 18)k^2+(6+12+18)k$, which is easily seen to be a multiple of $p_i-1=6ik$ for i=1,2,3. As a consequence, if $(a,p_i)=1$ then $a^{m-1}\equiv 1\pmod{p_i}$ since $a^{p_i-1}\equiv 1\pmod{p_i}$ by Fermat's little theorem. Since $(a,p_i)=1$ for all i if and only if (a,m)=1, and $a^{m-1}\equiv 1\pmod{p_i}$ for all i if and only if $a^{m-1}\equiv 1\pmod{m}$ by the Chinese Remainder Theorem, it follows that m is a Carmichael number.

P5.(2 pts) Write $1/1+1/2+\cdots+1/(p-1)=a/b$ with (a,b)=1. Show that $p^2 \mid a$ if $p \ge 5$.

PROOF. Since $(p-1)! \cdot \frac{a}{b} = \sigma_{p-2} \equiv 0 \pmod{p^2}$ by Wolstenholme's congruence, it follows immediately that $p^2|a$.

P6.(2 pts) Show that if $p \ge 5$ is a prime and m is a positive integer then $\binom{mp-1}{p-1} \equiv 1 \pmod{p^3}$.

PROOF. Since $\binom{mp-1}{p-1} = \frac{(mp-1)\cdots(mp-p+1)}{(p-1)!}$ and ((p-1)!, p) = 1, we only need to prove that $(mp-1)(mp-2)\cdots(mp-p+1) - (p-1)! \equiv 0 \pmod{p^3}$. Since we have

$$(mp-1)\cdots(mp-p+1)-(p-1)!=(mp)^{p-1}-\sigma_1(mp)^{p-2}+\cdots+\sigma_{p-3}(mp)^2-\sigma_{p-2}(mp),$$

so it is indeed divisible by p^3 since $p \mid \sigma_i$ for all i and $p^2 \mid \sigma_{p-2}$.

P7.(3 pts) Suppose that p is an odd prime, and write $1/1-1/2+1/3-\cdots-1/(p-1)=a/(p-1)!$. Show that $a \equiv (2-2^p)/p \pmod{p}$.

Proof. Using binomial expansion we have:

$$\frac{2-2^p}{p} = -\frac{1}{p} \sum_{i=1}^{p-1} \binom{p}{i} = -\sum_{i=1}^{p-1} \frac{(p-1)!}{i!(p-i)!} = -\sum_{i=1}^{p-1} \frac{(p-1)\cdots(p-i+1)}{i!},$$

For any $i \in \{1, 2, ..., p-1\}$, let i^{-1} denote its inverse \pmod{p} in $(\mathbb{Z}/p\mathbb{Z})^*$. Then we have the following:

$$\frac{(p-1)\cdots(p-i+1)}{i!} - (-1)^{i-1}i^{-1} = \frac{(p-1)\cdots(p-i+1) - (-1)^{i-1}i!i^{-1}}{i!},$$

but $(p-1)\cdots(p-i+1)-(-1)^{i-1}i!i^{-1}\equiv (-1)\cdots(-i+1)-(-1)^{i-1}(i-1)!\equiv 0\pmod p$, and (i!,p)=1, it follows that

$$\frac{(p-1)\cdots(p-i+1)}{i!} \equiv (-1)^{i-1}i^{-1} \pmod{p}.$$

Therefore, $\frac{2-2^p}{p} \equiv \sum_{i=1}^{p-1} (-1)^i i^{-1} \pmod{p}$. On the other hand, $\frac{(p-1)!}{i} \equiv -i^{-1} \pmod{p}$ for any $i \in \{1, 2, \dots, p-1\}$ since $(p-1)! \equiv -1 \pmod{p}$ by Wilson's theorem. As a result, we get

$$a = \sum_{i=1}^{p-1} (-1)^{i-1} \frac{(p-1)!}{i} \equiv \sum_{i=1}^{p-1} (-1)^i i^{-1} \equiv \frac{2-2^p}{p} \pmod{p}$$

The proof is now completed.

P8.(2 pts) Show that if $a^k + 1$ is prime and a > 1 then k is a power of 2. Show that if $p \mid (a^{2^n} + 1)$ then p = 2 or $p \equiv 1 \pmod{2^{n+1}}$.

PROOF. If there is an odd prime q dividing k, write k = qt, then we have

$$a^{k} + 1 = a^{qt} + 1 = (a^{t} + 1) \sum_{i=0}^{q-1} (-a^{t})^{i}$$

which is divisible by $a^t + 1$. But $1 < a^t + 1 < a^k + 1$, this would contradict the assumption that $a^k + 1$ is a prime. Thus k must be a power of 2.

Now assume p is an odd prime dividing $a^{2^n} + 1$. We have $a^{2^n} \equiv -1 \pmod{p}$, and hence $a^{2^{n+1}} \equiv 1 \pmod{p}$. Moreover, 2^{n+1} must be the order of $a \pmod{p}$, otherwise, its order would be a divisor of 2^n and would lead to $a^{2^n} \equiv 1 \pmod{p}$, which is not the case. Therefore 2^{n+1} , as the order of $a \pmod{p}$, must divide p-1, since $a^{p-1} \equiv 1 \pmod{p}$ by Fermat's little theorem. In other words, $p \equiv 1 \pmod{2^{n+1}}$.

P9.(2 pts) Prove that if a belongs to the exponent 3 modulo a prime p, then $1 + a + a^2 \equiv 0 \pmod{p}$, and 1 + a belongs to the exponent 6.

PROOF. By assumption we have $a^3 \equiv 1 \pmod{p}$, hence $p \mid (a-1)(1+a+a^2)$. But $a \not\equiv 1 \pmod{p}$, so $1+a+a^2 \equiv 0 \pmod{p}$. It follows that $(1+a)^6 = (1+2a+a^2)^3 \equiv a^3 \equiv 1 \pmod{p}$. But $(1+a)^2 \equiv a \not\equiv 1 \pmod{p}$, and $(1+a)^3 = 1+3a(a+1)+a^3 \equiv 1-3+1=-1 \not\equiv 1 \pmod{p}$, so we conclude that 6 is the order of $1+a \pmod{p}$. \square

P10.(2 pts) Show that the number of reduced residues $a \pmod{m}$ such that $a^{m-1} \equiv 1 \pmod{m}$ is exactly $\prod_{p \mid m} (p-1, m-1)$.

PROOF. Let $m=p_1^{k_1}\cdots p_t^{k_t}$ be the prime factorization of m. By the Chinese Remainder Theorem, $a^{m-1}\equiv 1\pmod m$ is equivalent to $a^{m-1}\equiv 1\pmod {p_i^{k_i}}, \ \forall i$. Suppose $p_i\geqslant 3$ or $p_i=2$ and $k_i=1$ or 2, then we see that $a^{m-1}\equiv 1\pmod {p_i^{k_i}}$ has $n_i=(\phi(p_i^{k_i}),m-1)$ solutions by considering $a=r^n$, where r is the primitive root modulo $p_i^{k_i}$. But $n_i=(\phi(p_i^{k_i}),m-1)=(p_i^{k_i-1}(p_i-1),m-1)=(p_i-1,m-1)$ since $p_i\mid m$, and hence $p_i\nmid (m-1)$. It remains to check the case that $p_i=2$ and $k_i\geqslant 3$. Since $2\mid m$, we have m-1 is odd. Therefore, $a^{m-1}\equiv 1\pmod {2^{k_i}}$ has exactly 1=(2-1,m-1) solution. In summary, the number of reduced residues $a\pmod m$ such that $a^{m-1}\equiv 1\pmod m$ is $\prod_{i=1}^{m}(p-1,m-1)$.