$$X \sim \text{Uniform } (0,1)$$
 $f(x) = \frac{1}{2} \quad \text{O.w.}$
 $E(X) = \int_{0}^{1} x dx = \frac{x^{2}}{2} \int_{0}^{1} = \frac{1}{2}$
 $V(X) = E(X^{2}) - [E(X)]^{2}$
 $E(X^{2}) = \int_{0}^{1} x^{2} dx = \frac{x^{3}}{3} \int_{0}^{1} = \frac{1}{3}$
 $= 0$
 $V(X) = \frac{1}{3} - \frac{1}{4} = \frac{4-3}{12} = \frac{1}{12}$

Central Limit Theorem

 X_1, \dots, X_n and sample from a distribution with $Y(X_i) = T$ X_1, \dots, X_n and $Y(X_i) = T$ X_1, \dots, X_n X_1, \dots, X_n $Y(X_i) = T$ X_1, \dots, X_n X_1, \dots, X_n $Y(X_i) = T$ X_1, \dots, X_n X_1, \dots, X_n X_1, \dots, X_n $Y(X_i) = T$ X_1, \dots, X_n $X_1,$

the distribution of X_n goes to a $N(M, \frac{\sigma^2}{n})$ distribution

2 goodness of fit test

- Ho: Observed frequency distribution fits (conforms with) a given claimed distribution
 - 0: Observed frequency of an outcome
- E : Expected frequency of an outcome
 - n: total # of trials

 k: # of categories

Assumptions

- · Data randomly selected
 - · Sample data are frequency counts
 - · Sample data arises from a multinomial experiment:
 - -n is fixed
 - trials are independent
 - probs, for the different categories remain constant over time
 - expected frequency for each category is > 5

Test statistic:

$$X^2 = \frac{0}{1-1} \frac{(0i-Ei)^2}{Ei}$$

