1 Question 1

The number of parameters of each layer is observable during the fine-tuning.

Number of parameters (without bias, normalization layer and language model head)

• Embedding layer: The dictionary contains 32K tokens turned into a vector embedding of length 512.

$$d_{\rm embedding} \times n_{\rm tokens} = 512 \times 32000$$

• Learned positional embedding: We denote $n_{\text{positions}}$ the number of positions (number of tokens in a sequence).

$$n_{\mathrm{positions}} \times d_{\mathrm{embedding}} = 258 \times 512$$

- Transformer encoder layers (here case of 1 layer (/4)): Dimension of embedding is equal to the hidden dimension. Thus we have
 - for the multi-head attention layer:
 - * Projection that transform the input embeddings into queries (Q), keys (K), and values (V) for multi-head attention:

```
· 3 \times d_{\text{embedding}} \times d_{\text{embedding}} = 3 \times 512 \times 512 parameters.
```

- * Projection to produce the output of the layer:
 - · $d_{\text{embedding}} \times d_{\text{embedding}} = 512 \times 512 \text{ parameters.}$
- for the linear Feed-forward layers: For each of the 2 feed-forward layers, we have
 - * $d_{\mathrm{embedding}} \times d_{\mathrm{embedding}} = 512 \times 512 \; \mathrm{parameters.}$

Hence the total number of parameters is $512 \times 32k + 258 \times 512 + 4 \times (4 \times 512 \times 512 + 2 \times 512 \times 512) = 22807552$

2 Question 2

```
config = LoraConfig(
    r=16,
    lora_alpha=32,
    target_modules=["query_key_value"],
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)
```

r refers to the rank of the low-rank decomposition matrices of the fine-tuning weights. Here 16 is the rank. lora_alpha scales the learning rate.

target_modules defines the components which will be adapted by using LoRA. Here Low-Rank Adaptation is applied to Query, Key, and Value matrices.

lora_dropout is the dropout rate that is applied specifically to the Low-rank adaptations.

bias defines if the bias should be included in LoRA adaptation. Here they are not.

task_type specifies the task on which the model is used. Here it is causal language modelling

3 Task 3: Analysis on Fairseq experiments

Pre-trained models (yellow, orange and pink) lead to faster convergence and higher accuracy on the test set. Pretrained models have already learned general language representations, which provide a strong foundation for specific tasks. Randomly initialized models, lacking this prior knowledge, must learn both the general language structure and task-specific features from scratch, making the learning process less efficient. And moreover, the plots appear to be less tightly clustered together. Indeed we have a slightly higher standard deviation between the seeds for the random initialization.

Figure 1: Test accuracy of the six $RoBERTa_{small}^{fr}$ models

Model	Seed	Best Validation (Step, Accuracy)	Test (%)	Mean / Std
$RoBERTa_{small}^{fr}$	0	Training step=1125, 81.5%	79.5	
	1	Training step=675, 80%	78.5	Mean: 0.794%, Std: 0.0066
	2	Training step=900, 83.5%	80.1	
Random $RoBERTa_{small}^{fr}$	0	Training step=900, 62%	65.4	
	1	Training step=450, 65%	66.7	Mean: 0.665%, Std: 0.0083
	2	Training step=1125, 63%	67.4	

Table 1: Results on test sets for $RoBERTa_{small}^{fr}$ et Random $RoBERTa_{small}^{fr}$

4 Task 5: Analysis of HuggingFace experiment

The range of values for accuracy on validation and test sets are the same as we observed in fairseq part, which are around 80%. The convergence speeds are also the same, with at least 400 iterations to get at least 70% accuracy. In order to additionally have the graph for test accuracy 2, I put the test file as the value of the parameter validation_file during fine-tuning.

Figure 2: Validation accuracy of the $RoBERTa^{fr}_{small}$ models (3 seeds) from HuggingFace

Figure 3: Test accuracy of the $RoBERTa^{fr}_{small}$ models (3 seeds) from HuggingFace

Model	Seed	Best Validation (Step, Accuracy)	Test (%)	Mean / Std	
$RoBERTa^{ m fr}_{small}$	0	Training step=1000, 79%	78.15		
	1	Training step=1000, 81.5%	79	Mean: 0.794%, Std: 0.0066	
	2	Training step=1000, 80.5%	78.55		

Table 2: Results on test sets for $RoBERTa^{fr}_{small}$ et Random $RoBERTa^{fr}_{small}$