```
import jakarta.servlet.RequestDispatcher;
import jakarta.servlet.http.HttpServletRequest;
import org.springframework.http.HttpStatus;
import org.springframework.http.ResponseEntity;
import org.springframework.web.bind.annotation.ControllerAdvice;
import org.springframework.web.bind.annotation.ExceptionHandler;
import org.springframework.web.bind.annotation.ResponseBody;
import
org.springframework.web.servlet.mvc.method.annotation.ResponseEntityExceptionHandler;
@ControllerAdvice(basePackageClasses = SomeController.class)
public class MyControllerAdvice extends ResponseEntityExceptionHandler {
    @ResponseBody
    @ExceptionHandler(MyException.class)
    public ResponseEntity<?> handleControllerException(HttpServletRequest request,
Throwable ex) {
        HttpStatus status = getStatus(request);
        return new ResponseEntity<>(new MyErrorBody(status.value(), ex.getMessage()),
status);
    }
    private HttpStatus getStatus(HttpServletRequest request) {
        Integer code = (Integer)
request.getAttribute(RequestDispatcher.ERROR_STATUS_CODE);
        HttpStatus status = HttpStatus.resolve(code);
        return (status != null) ? status : HttpStatus.INTERNAL_SERVER_ERROR;
    }
}
```

```
import jakarta.servlet.RequestDispatcher
import jakarta.servlet.http.HttpServletRequest
import org.springframework.http.HttpStatus
import org.springframework.http.ResponseEntity
import org.springframework.web.bind.annotation.ControllerAdvice
import org.springframework.web.bind.annotation.ExceptionHandler
import org.springframework.web.bind.annotation.ResponseBody
import
org.springframework.web.servlet.mvc.method.annotation.ResponseEntityExceptionHandler
@ControllerAdvice(basePackageClasses = [SomeController::class])
class MyControllerAdvice : ResponseEntityExceptionHandler() {
    @ResponseBody
    @ExceptionHandler(MyException::class)
    fun handleControllerException(request: HttpServletRequest, ex: Throwable):
ResponseEntity<*> {
        val status = getStatus(request)
        return ResponseEntity(MyErrorBody(status.value(), ex.message), status)
    }
    private fun getStatus(request: HttpServletRequest): HttpStatus {
        val code = request.getAttribute(RequestDispatcher.ERROR_STATUS_CODE) as Int
        val status = HttpStatus.resolve(code)
        return status ?: HttpStatus.INTERNAL_SERVER_ERROR
    }
}
```

In the preceding example, if MyException is thrown by a controller defined in the same package as SomeController, a JSON representation of the MyErrorBody POJO is used instead of the ErrorAttributes representation.

In some cases, errors handled at the controller level are not recorded by web observations or the metrics infrastructure. Applications can ensure that such exceptions are recorded with the observations by setting the handled exception on the observation context.

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add a file to an /error directory. Error pages can either be static HTML (that is, added under any of the static resource directories) or be built by using templates. The name of the file should be the exact status code or a series mask.

For example, to map 404 to a static HTML file, your directory structure would be as follows:

To map all 5xx errors by using a FreeMarker template, your directory structure would be as follows:

For more complex mappings, you can also add beans that implement the ErrorViewResolver interface, as shown in the following example:

```
import java.util.Map;
import jakarta.servlet.http.HttpServletRequest;
import org.springframework.boot.autoconfigure.web.servlet.error.ErrorViewResolver;
import org.springframework.http.HttpStatus;
import org.springframework.web.servlet.ModelAndView;
public class MyErrorViewResolver implements ErrorViewResolver {
    @Override
    public ModelAndView resolveErrorView(HttpServletRequest request, HttpStatus
status, Map<String, Object> model) {
        // Use the request or status to optionally return a ModelAndView
        if (status == HttpStatus.INSUFFICIENT STORAGE) {
            // We could add custom model values here
            new ModelAndView("myview");
        }
        return null;
    }
}
```

You can also use regular Spring MVC features such as <code>@ExceptionHandler</code> methods and <code>@ControllerAdvice</code>. The <code>ErrorController</code> then picks up any unhandled exceptions.

Mapping Error Pages Outside of Spring MVC

For applications that do not use Spring MVC, you can use the ErrorPageRegistrar interface to directly register ErrorPages. This abstraction works directly with the underlying embedded servlet container and works even if you do not have a Spring MVC DispatcherServlet.

Java

```
import org.springframework.boot.web.server.ErrorPage;
import org.springframework.boot.web.server.ErrorPageRegistrar;
import org.springframework.boot.web.server.ErrorPageRegistry;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.HttpStatus;
@Configuration(proxyBeanMethods = false)
public class MyErrorPagesConfiguration {
    @Bean
    public ErrorPageRegistrar errorPageRegistrar() {
        return this::registerErrorPages;
    }
    private void registerErrorPages(ErrorPageRegistry registry) {
        registry.addErrorPages(new ErrorPage(HttpStatus.BAD_REQUEST, "/400"));
    }
}
```

```
import org.springframework.boot.web.server.ErrorPage
import org.springframework.boot.web.server.ErrorPageRegistrar
import org.springframework.boot.web.server.ErrorPageRegistry
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.http.HttpStatus
@Configuration(proxyBeanMethods = false)
class MyErrorPagesConfiguration {
    @Bean
    fun errorPageRegistrar(): ErrorPageRegistrar {
        return ErrorPageRegistrar { registry: ErrorPageRegistry ->
registerErrorPages(registry) }
    private fun registerErrorPages(registry: ErrorPageRegistry) {
        registry.addErrorPages(ErrorPage(HttpStatus.BAD_REQUEST, "/400"))
    }
}
```

NOTE

If you register an ErrorPage with a path that ends up being handled by a Filter (as is common with some non-Spring web frameworks, like Jersey and Wicket), then the Filter has to be explicitly registered as an ERROR dispatcher, as shown in the following example:

```
import java.util.EnumSet;
import jakarta.servlet.DispatcherType;
import org.springframework.boot.web.servlet.FilterRegistrationBean;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
@Configuration(proxyBeanMethods = false)
public class MyFilterConfiguration {
    @Bean
    public FilterRegistrationBean<MyFilter> myFilter() {
        FilterRegistrationBean<MyFilter> registration = new
FilterRegistrationBean<>(new MyFilter());
        // ...
        registration.setDispatcherTypes(EnumSet.allOf(DispatcherType.class));
        return registration;
    }
}
```

```
import jakarta.servlet.DispatcherType
import org.springframework.boot.web.servlet.FilterRegistrationBean
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import java.util.EnumSet

@Configuration(proxyBeanMethods = false)
class MyFilterConfiguration {

    @Bean
    fun myFilter(): FilterRegistrationBean<MyFilter> {
        val registration = FilterRegistrationBean(MyFilter())
        // ...
        registration.setDispatcherTypes(EnumSet.allOf(DispatcherType::class.java))
        return registration
    }
}
```

Note that the default FilterRegistrationBean does not include the ERROR dispatcher type.

Error Handling in a WAR Deployment

When deployed to a servlet container, Spring Boot uses its error page filter to forward a request

with an error status to the appropriate error page. This is necessary as the servlet specification does not provide an API for registering error pages. Depending on the container that you are deploying your war file to and the technologies that your application uses, some additional configuration may be required.

The error page filter can only forward the request to the correct error page if the response has not already been committed. By default, WebSphere Application Server 8.0 and later commits the response upon successful completion of a servlet's service method. You should disable this behavior by setting com.ibm.ws.webcontainer.invokeFlushAfterService to false.

CORS Support

Cross-origin resource sharing (CORS) is a W3C specification implemented by most browsers that lets you specify in a flexible way what kind of cross-domain requests are authorized, instead of using some less secure and less powerful approaches such as IFRAME or JSONP.

As of version 4.2, Spring MVC supports CORS. Using controller method CORS configuration with @CrossOrigin annotations in your Spring Boot application does not require any specific configuration. Global CORS configuration can be defined by registering a WebMvcConfigurer bean with a customized addCorsMappings(CorsRegistry) method, as shown in the following example:

Java

```
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.web.servlet.config.annotation.CorsRegistry;
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer;
@Configuration(proxyBeanMethods = false)
public class MyCorsConfiguration {
    @Bean
    public WebMvcConfigurer corsConfigurer() {
        return new WebMvcConfigurer() {
            @Override
            public void addCorsMappings(CorsRegistry registry) {
                registry.addMapping("/api/**");
            }
        };
    }
}
```

```
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.web.servlet.config.annotation.CorsRegistry
import org.springframework.web.servlet.config.annotation.WebMvcConfigurer

@Configuration(proxyBeanMethods = false)
class MyCorsConfiguration {

    @Bean
    fun corsConfigurer(): WebMvcConfigurer {
        return object : WebMvcConfigurer {
            override fun addCorsMappings(registry: CorsRegistry) {
                registry.addMapping("/api/**")
            }
        }
    }
}
```

8.1.2. JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints, you can use one of the available implementations instead of Spring MVC. Jersey and Apache CXF work quite well out of the box. CXF requires you to register its Servlet or Filter as a @Bean in your application context. Jersey has some native Spring support, so we also provide auto-configuration support for it in Spring Boot, together with a starter.

To get started with Jersey, include the spring-boot-starter-jersey as a dependency and then you need one <code>@Bean</code> of type <code>ResourceConfig</code> in which you register all the endpoints, as shown in the following example:

```
import org.glassfish.jersey.server.ResourceConfig;
import org.springframework.stereotype.Component;
@Component
public class MyJerseyConfig extends ResourceConfig {
    public MyJerseyConfig() {
        register(MyEndpoint.class);
    }
}
```

WARNING

Jersey's support for scanning executable archives is rather limited. For example, it cannot scan for endpoints in a package found in a fully executable jar file or in WEB-INF/classes when running an executable war file. To avoid this limitation, the packages method should not be used, and endpoints should be registered individually by using the register method, as shown in the preceding example.

For more advanced customizations, you can also register an arbitrary number of beans that implement ResourceConfigCustomizer.

All the registered endpoints should be @Components with HTTP resource annotations (@GET and others), as shown in the following example:

```
import jakarta.ws.rs.GET;
import jakarta.ws.rs.Path;

import org.springframework.stereotype.Component;

@Component
@Path("/hello")
public class MyEndpoint {

    @GET
    public String message() {
        return "Hello";
    }
}
```

Since the Endpoint is a Spring @Component, its lifecycle is managed by Spring and you can use the @Autowired annotation to inject dependencies and use the @Value annotation to inject external configuration. By default, the Jersey servlet is registered and mapped to /*. You can change the mapping by adding @ApplicationPath to your ResourceConfig.

By default, Jersey is set up as a servlet in a @Bean of type ServletRegistrationBean named jerseyServletRegistration. By default, the servlet is initialized lazily, but you can customize that behavior by setting spring.jersey.servlet.load-on-startup. You can disable or override that bean by creating one of your own with the same name. You can also use a filter instead of a servlet by setting spring.jersey.type=filter (in which case, the @Bean to replace or override is jerseyFilterRegistration). The filter has @Order, which an you can set with spring.jersey.filter.order. When using Jersey as a filter, a servlet that will handle any requests that are not intercepted by Jersey must be present. If your application does not contain such a servlet, you may want to enable the default servlet by setting server.servlet.register-defaultservlet to true. Both the servlet and the filter registrations can be given init parameters by using spring.jersey.init.* to specify a map of properties.

8.1.3. Embedded Servlet Container Support

For servlet application, Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most developers use the appropriate "Starter" to obtain a fully configured instance. By default, the embedded server listens for HTTP requests on port 8080.

Servlets, Filters, and Listeners

When using an embedded servlet container, you can register servlets, filters, and all the listeners (such as HttpSessionListener) from the servlet spec, either by using Spring beans or by scanning for servlet components.

Registering Servlets, Filters, and Listeners as Spring Beans

Any Servlet, Filter, or servlet *Listener instance that is a Spring bean is registered with the embedded container. This can be particularly convenient if you want to refer to a value from your application.properties during configuration.

By default, if the context contains only a single Servlet, it is mapped to /. In the case of multiple servlet beans, the bean name is used as a path prefix. Filters map to /*.

If convention-based mapping is not flexible enough, you can use the ServletRegistrationBean, FilterRegistrationBean, and ServletListenerRegistrationBean classes for complete control.

It is usually safe to leave filter beans unordered. If a specific order is required, you should annotate the Filter with @Order or make it implement Ordered. You cannot configure the order of a Filter by annotating its bean method with @Order. If you cannot change the Filter class to add @Order or implement Ordered, you must define a FilterRegistrationBean for the Filter and set the registration bean's order using the setOrder(int) method. Avoid configuring a filter that reads the request body at Ordered.HIGHEST_PRECEDENCE, since it might go against the character encoding configuration of your application. If a servlet filter wraps the request, it should be configured with an order that is less than or equal to OrderedFilter.REQUEST_WRAPPER_FILTER_MAX_ORDER.

TIP

To see the order of every Filter in your application, enable debug level logging for the web logging group (logging.level.web=debug). Details of the registered filters, including their order and URL patterns, will then be logged at startup.

WARNING

Take care when registering Filter beans since they are initialized very early in the application lifecycle. If you need to register a Filter that interacts with other beans, consider using a DelegatingFilterProxyRegistrationBean instead.

Servlet Context Initialization

Embedded servlet containers do not directly execute the jakarta.servlet.ServletContainerInitializer interface or Spring's org.springframework.web.WebApplicationInitializer interface. This is an intentional design decision intended to reduce the risk that third party libraries designed to run inside a war may break Spring Boot applications.

If you need to perform servlet context initialization in a Spring Boot application, you should register a bean that implements the org.springframework.boot.web.servlet.ServletContextInitializer interface. The single onStartup method provides access to the ServletContext and, if necessary, can easily be used as an adapter to an existing WebApplicationInitializer.

Scanning for Servlets, Filters, and listeners

When using an embedded container, automatic registration of classes annotated with <code>@WebServlet</code>, <code>@WebFilter</code>, and <code>@WebListener</code> can be enabled by using <code>@ServletComponentScan</code>.

TIP

@ServletComponentScan has no effect in a standalone container, where the container's built-in discovery mechanisms are used instead.

The ServletWebServerApplicationContext

Under the hood, Spring Boot uses a different type of ApplicationContext for embedded servlet container support. The ServletWebServerApplicationContext is a special type of WebApplicationContext that bootstraps itself by searching for a single ServletWebServerFactory bean. Usually a TomcatServletWebServerFactory, JettyServletWebServerFactory, or UndertowServletWebServerFactory has been auto-configured.

NOTE

You usually do not need to be aware of these implementation classes. Most applications are auto-configured, and the appropriate ApplicationContext and ServletWebServerFactory are created on your behalf.

In an embedded container setup, the ServletContext is set as part of server startup which happens during application context initialization. Because of this beans in the ApplicationContext cannot be reliably initialized with a ServletContext. One way to get around this is to inject ApplicationContext as a dependency of the bean and access the ServletContext only when it is needed. Another way is to use a callback once the server has started. This can be done using an ApplicationListener which listens for the ApplicationStartedEvent as follows:

```
import jakarta.servlet.ServletContext;
import org.springframework.boot.context.event.ApplicationStartedEvent;
import org.springframework.context.ApplicationContext;
import org.springframework.context.ApplicationListener;
import org.springframework.web.context.WebApplicationContext;

public class MyDemoBean implements ApplicationListener<ApplicationStartedEvent> {
    private ServletContext servletContext;

    @Override
    public void onApplicationEvent(ApplicationStartedEvent event) {
        ApplicationContext applicationContext = event.getApplicationContext();
        this.servletContext = ((WebApplicationContext))
applicationContext).getServletContext();
    }
}
```

Customizing Embedded Servlet Containers

Common servlet container settings can be configured by using Spring Environment properties. Usually, you would define the properties in your application.properties or application.yaml file.

Common server settings include:

- Network settings: Listen port for incoming HTTP requests (server.port), interface address to bind to (server.address), and so on.
- Session settings: Whether the session is persistent (server.servlet.session.persistent), session timeout (server.servlet.session.timeout), location of session data (server.servlet.session.store-dir), and session-cookie configuration (server.servlet.session.cookie.*).
- Error management: Location of the error page (server.error.path) and so on.
- SSL
- HTTP compression

Spring Boot tries as much as possible to expose common settings, but this is not always possible. For those cases, dedicated namespaces offer server-specific customizations (see server.tomcat and server.undertow). For instance, access logs can be configured with specific features of the embedded servlet container.

TIP See the ServerProperties class for a complete list.

SameSite Cookies

The SameSite cookie attribute can be used by web browsers to control if and how cookies are

submitted in cross-site requests. The attribute is particularly relevant for modern web browsers which have started to change the default value that is used when the attribute is missing.

If you want to change the SameSite attribute of your session cookie, you can use the server.servlet.session.cookie.same-site property. This property is supported by auto-configured Tomcat, Jetty and Undertow servers. It is also used to configure Spring Session servlet based SessionRepository beans.

For example, if you want your session cookie to have a SameSite attribute of None, you can add the following to your application.properties or application.yaml file:

Properties

```
server.servlet.session.cookie.same-site=none
```

Yaml

```
server:
servlet:
session:
cookie:
same-site: "none"
```

If you want to change the SameSite attribute on other cookies added to your HttpServletResponse, you can use a CookieSameSiteSupplier. The CookieSameSiteSupplier is passed a Cookie and may return a SameSite value, or null.

There are a number of convenience factory and filter methods that you can use to quickly match specific cookies. For example, adding the following bean will automatically apply a SameSite of Lax for all cookies with a name that matches the regular expression myapp.*.

Java

```
import org.springframework.boot.web.servlet.server.CookieSameSiteSupplier;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

@Configuration(proxyBeanMethods = false)
public class MySameSiteConfiguration {

    @Bean
    public CookieSameSiteSupplier applicationCookieSameSiteSupplier() {
        return CookieSameSiteSupplier.ofLax().whenHasNameMatching("myapp.*");
    }
}
```

```
import org.springframework.boot.web.servlet.server.CookieSameSiteSupplier
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration

@Configuration(proxyBeanMethods = false)
class MySameSiteConfiguration {

    @Bean
    fun applicationCookieSameSiteSupplier(): CookieSameSiteSupplier {
        return CookieSameSiteSupplier.ofLax().whenHasNameMatching("myapp.*")
    }
}
```

Character Encoding

The character encoding behavior of the embedded servlet container for request and response handling can be configured using the server.servlet.encoding.* configuration properties.

When a request's Accept-Language header indicates a locale for the request it will be automatically mapped to a charset by the servlet container. Each container provides default locale to charset mappings and you should verify that they meet your application's needs. When they do not, use the server.servlet.encoding.mapping configuration property to customize the mappings, as shown in the following example:

Properties

```
server.servlet.encoding.mapping.ko=UTF-8
```

Yaml

```
server:
servlet:
encoding:
mapping:
ko: "UTF-8"
```

In the preceding example, the ko (Korean) locale has been mapped to UTF-8. This is equivalent to a <locale-encoding-mapping-list> entry in a web.xml file of a traditional war deployment.

Programmatic Customization

If you need to programmatically configure your embedded servlet container, you can register a Spring bean that implements the WebServerFactoryCustomizer interface. WebServerFactoryCustomizer provides access to the ConfigurableServletWebServerFactory, which includes numerous customization setter methods. The following example shows programmatically setting the port:

```
import org.springframework.boot.web.server.WebServerFactoryCustomizer;
import
org.springframework.boot.web.servlet.server.ConfigurableServletWebServerFactory;
import org.springframework.stereotype.Component;

@Component
public class MyWebServerFactoryCustomizer implements
WebServerFactoryCustomizer<ConfigurableServletWebServerFactory> {

    @Override
    public void customize(ConfigurableServletWebServerFactory server) {
        server.setPort(9000);
    }
}
```

```
import org.springframework.boot.web.server.WebServerFactoryCustomizer
import org.springframework.boot.web.servlet.server.ConfigurableServletWebServerFactory
import org.springframework.stereotype.Component

@Component
class MyWebServerFactoryCustomizer :
WebServerFactoryCustomizer<ConfigurableServletWebServerFactory> {
    override fun customize(server: ConfigurableServletWebServerFactory) {
        server.setPort(9000)
    }
}
```

TomcatServletWebServerFactory, JettyServletWebServerFactory and UndertowServletWebServerFactory are dedicated variants of ConfigurableServletWebServerFactory that have additional customization setter methods for Tomcat, Jetty and Undertow respectively. The following example shows how to customize TomcatServletWebServerFactory that provides access to Tomcat-specific configuration options:

```
import java.time.Duration;
import org.springframework.boot.web.embedded.tomcat.TomcatServletWebServerFactory;
import org.springframework.boot.web.server.WebServerFactoryCustomizer;
import org.springframework.stereotype.Component;

@Component
public class MyTomcatWebServerFactoryCustomizer implements
WebServerFactoryCustomizer<TomcatServletWebServerFactory> {
    @Override
    public void customize(TomcatServletWebServerFactory server) {
        server.addConnectorCustomizers((connector) ->
connector.setAsyncTimeout(Duration.ofSeconds(20).toMillis()));
    }
}
```

```
import org.springframework.boot.web.embedded.tomcat.TomcatServletWebServerFactory
import org.springframework.boot.web.server.WebServerFactoryCustomizer
import org.springframework.stereotype.Component
import java.time.Duration

@Component
class MyTomcatWebServerFactoryCustomizer :
WebServerFactoryCustomizer<TomcatServletWebServerFactory> {
    override fun customize(server: TomcatServletWebServerFactory) {
        server.addConnectorCustomizers({ connector -> connector.asyncTimeout =
    Duration.ofSeconds(20).toMillis() })
    }
}
```

Customizing ConfigurableServletWebServerFactory Directly

For more advanced use cases that require you to extend from ServletWebServerFactory, you can expose a bean of such type yourself.

Setters are provided for many configuration options. Several protected method "hooks" are also provided should you need to do something more exotic. See the source code documentation for details.

NOTE

Auto-configured customizers are still applied on your custom factory, so use that option carefully.

JSP Limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged as an executable archive), there are some limitations in the JSP support.

- With Jetty and Tomcat, it should work if you use war packaging. An executable war will work when launched with java -jar, and will also be deployable to any standard container. JSPs are not supported when using an executable jar.
- Undertow does not support JSPs.
- Creating a custom error.jsp page does not override the default view for error handling. Custom error pages should be used instead.

8.2. Reactive Web Applications

Spring Boot simplifies development of reactive web applications by providing auto-configuration for Spring Webflux.

8.2.1. The "Spring WebFlux Framework"

Spring WebFlux is the new reactive web framework introduced in Spring Framework 5.0. Unlike Spring MVC, it does not require the servlet API, is fully asynchronous and non-blocking, and implements the Reactive Streams specification through the Reactor project.

Spring WebFlux comes in two flavors: functional and annotation-based. The annotation-based one is quite close to the Spring MVC model, as shown in the following example:

```
import reactor.core.publisher.Flux;
import reactor.core.publisher.Mono;
import org.springframework.web.bind.annotation.DeleteMapping;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.PathVariable;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.RestController;
@RestController
@RequestMapping("/users")
public class MyRestController {
    private final UserRepository userRepository;
    private final CustomerRepository customerRepository;
    public MyRestController(UserRepository userRepository, CustomerRepository
customerRepository) {
        this.userRepository = userRepository;
        this.customerRepository = customerRepository;
    }
    @GetMapping("/{userId}")
    public Mono<User> getUser(@PathVariable Long userId) {
        return this.userRepository.findById(userId);
    }
    @GetMapping("/{userId}/customers")
    public Flux<Customer> getUserCustomers(@PathVariable Long userId) {
        return
this.userRepository.findById(userId).flatMapMany(this.customerRepository::findByUser);
    @DeleteMapping("/{userId}")
    public Mono<Void> deleteUser(@PathVariable Long userId) {
        return this.userRepository.deleteById(userId);
    }
}
```

```
import org.springframework.web.bind.annotation.DeleteMapping
import org.springframework.web.bind.annotation.GetMapping
import org.springframework.web.bind.annotation.PathVariable
import org.springframework.web.bind.annotation.RequestMapping
import org.springframework.web.bind.annotation.RestController
import reactor.core.publisher.Flux
import reactor.core.publisher.Mono
@RestController
@RequestMapping("/users")
class MyRestController(private val userRepository: UserRepository, private val
customerRepository: CustomerRepository) {
    @GetMapping("/{userId}")
    fun getUser(@PathVariable userId: Long): Mono<User?> {
        return userRepository.findById(userId)
    }
    @GetMapping("/{userId}/customers")
    fun getUserCustomers(@PathVariable userId: Long): Flux<Customer> {
        return userRepository.findById(userId).flatMapMany { user: User? ->
            customerRepository.findByUser(user)
        }
    }
    @DeleteMapping("/{userId}")
    fun deleteUser(@PathVariable userId: Long): Mono<Void> {
        return userRepository.deleteById(userId)
    }
}
```

WebFlux is part of the Spring Framework and detailed information is available in its reference documentation.

"WebFlux.fn", the functional variant, separates the routing configuration from the actual handling of the requests, as shown in the following example:

```
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.MediaType;
import org.springframework.web.reactive.function.server.RequestPredicate;
import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.ServerResponse;
import static
org.springframework.web.reactive.function.server.RequestPredicates.accept;
import static org.springframework.web.reactive.function.server.RouterFunctions.route;
@Configuration(proxyBeanMethods = false)
public class MyRoutingConfiguration {
    private static final RequestPredicate ACCEPT_JSON =
accept(MediaType.APPLICATION_JSON);
    @Bean
    public RouterFunction<ServerResponse> monoRouterFunction(MyUserHandler
userHandler) {
        return route()
                .GET("/{user}", ACCEPT_JSON, userHandler::getUser)
                .GET("/{user}/customers", ACCEPT_JSON, userHandler::getUserCustomers)
                .DELETE("/{user}", ACCEPT_JSON, userHandler::deleteUser)
                .build();
    }
}
```

```
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.http.MediaType
import org.springframework.web.reactive.function.server.RequestPredicates.DELETE
import org.springframework.web.reactive.function.server.RequestPredicates.GET
import org.springframework.web.reactive.function.server.RequestPredicates.accept
import org.springframework.web.reactive.function.server.RouterFunction
import org.springframework.web.reactive.function.server.RouterFunctions
import org.springframework.web.reactive.function.server.ServerResponse
@Configuration(proxyBeanMethods = false)
class MyRoutingConfiguration {
    @Bean
    fun monoRouterFunction(userHandler: MyUserHandler): RouterFunction<ServerResponse>
{
        return RouterFunctions.route(
            GET("/{user}").and(ACCEPT_JSON), userHandler::getUser).andRoute(
            GET("/{user}/customers").and(ACCEPT_JSON),
userHandler::getUserCustomers).andRoute(
            DELETE("/{user}").and(ACCEPT_JSON), userHandler::deleteUser)
    }
    companion object {
        private val ACCEPT_JSON = accept(MediaType.APPLICATION_JSON)
    }
}
```

```
import reactor.core.publisher.Mono;
import org.springframework.stereotype.Component;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;

@Component
public class MyUserHandler {

    public Mono<ServerResponse> getUser(ServerRequest request) {
        ...
    }

    public Mono<ServerResponse> getUserCustomers(ServerRequest request) {
        ...
    }

    public Mono<ServerResponse> deleteUser(ServerRequest request) {
        ...
    }
}
```

```
import org.springframework.stereotype.Component
import org.springframework.web.reactive.function.server.ServerRequest
import org.springframework.web.reactive.function.server.ServerResponse
import reactor.core.publisher.Mono
@Component
class MyUserHandler {
    fun getUser(request: ServerRequest?): Mono<ServerResponse> {
        return ServerResponse.ok().build()
    }
    fun getUserCustomers(request: ServerRequest?): Mono<ServerResponse> {
        return ServerResponse.ok().build()
    }
    fun deleteUser(request: ServerRequest?): Mono<ServerResponse> {
        return ServerResponse.ok().build()
    }
}
```

"WebFlux.fn" is part of the Spring Framework and detailed information is available in its reference

documentation.

TIP

You can define as many RouterFunction beans as you like to modularize the definition of the router. Beans can be ordered if you need to apply a precedence.

To get started, add the spring-boot-starter-webflux module to your application.

NOTE

Adding both spring-boot-starter-web and spring-boot-starter-webflux modules in your application results in Spring Boot auto-configuring Spring MVC, not WebFlux. This behavior has been chosen because many Spring developers add spring-boot-starter-webflux to their Spring MVC application to use the reactive WebClient. You can still enforce your choice by setting the chosen application type to SpringApplication.setWebApplicationType(WebApplicationType.REACTIVE).

Spring WebFlux Auto-configuration

Spring Boot provides auto-configuration for Spring WebFlux that works well with most applications.

The auto-configuration adds the following features on top of Spring's defaults:

- Configuring codecs for HttpMessageReader and HttpMessageWriter instances (described later in this document).
- Support for serving static resources, including support for WebJars (described later in this document).

If you want to keep Spring Boot WebFlux features and you want to add additional WebFlux configuration, you can add your own @Configuration class of type WebFluxConfigurer but without @EnableWebFlux.

If you want to take complete control of Spring WebFlux, you can add your own @Configuration annotated with @EnableWebFlux.

Spring WebFlux Conversion Service

If you want to customize the ConversionService used by Spring WebFlux, you can provide a WebFluxConfigurer bean with an addFormatters method.

Conversion can also be customized using the spring.webflux.format.* configuration properties. When not configured, the following defaults are used:

Property	DateTimeFormatter
spring.webflux.format.date	ofLocalizedDate(FormatStyle.SHORT)
spring.webflux.format.time	ofLocalizedTime(FormatStyle.SHORT)
spring.webflux.format.date-time	ofLocalizedDateTime(FormatStyle.SHORT)

HTTP Codecs with HttpMessageReaders and HttpMessageWriters

Spring WebFlux uses the HttpMessageReader and HttpMessageWriter interfaces to convert HTTP requests and responses. They are configured with CodecConfigurer to have sensible defaults by looking at the libraries available in your classpath.

Spring Boot provides dedicated configuration properties for codecs, spring.codec.*. It also applies further customization by using CodecCustomizer instances. For example, spring.jackson.* configuration keys are applied to the Jackson codec.

If you need to add or customize codecs, you can create a custom CodecCustomizer component, as shown in the following example:

Java

```
import org.springframework.boot.web.codec.CodecCustomizer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.http.codec.ServerSentEventHttpMessageReader;
@Configuration(proxyBeanMethods = false)
public class MyCodecsConfiguration {
    @Bean
    public CodecCustomizer myCodecCustomizer() {
        return (configurer) -> {
            configurer.registerDefaults(false);
            configurer.customCodecs().register(new
ServerSentEventHttpMessageReader());
            // ...
        };
    }
}
```

You can also leverage Boot's custom JSON serializers and deserializers.

Static Content

By default, Spring Boot serves static content from a directory called /static (or /public or /resources or /META-INF/resources) in the classpath. It uses the ResourceWebHandler from Spring WebFlux so that you can modify that behavior by adding your own WebFluxConfigurer and overriding the addResourceHandlers method.

By default, resources are mapped on /**, but you can tune that by setting the spring.webflux.static-path-pattern property. For instance, relocating all resources to /resources/** can be achieved as follows:

Properties

```
spring.webflux.static-path-pattern=/resources/**
```

Yaml

```
spring:
  webflux:
  static-path-pattern: "/resources/**"
```

You can also customize the static resource locations by using spring.web.resources.static-locations. Doing so replaces the default values with a list of directory locations. If you do so, the default welcome page detection switches to your custom locations. So, if there is an index.html in any of your locations on startup, it is the home page of the application.

In addition to the "standard" static resource locations listed earlier, a special case is made for Webjars content. By default, any resources with a path in /webjars/** are served from jar files if

they are packaged in the Webjars format. The path can be customized with the spring.webflux.webjars-path-pattern property.

TIP

Spring WebFlux applications do not strictly depend on the servlet API, so they cannot be deployed as war files and do not use the src/main/webapp directory.

Welcome Page

Spring Boot supports both static and templated welcome pages. It first looks for an index.html file in the configured static content locations. If one is not found, it then looks for an index template. If either is found, it is automatically used as the welcome page of the application.

This only acts as a fallback for actual index routes defined by the application. The ordering is defined by the order of Handler Mapping beans which is by default the following:

RouterFunctionMapping	Endpoints declared with RouterFunction beans
RequestMappingHandlerMapping	Endpoints declared in @Controller beans
RouterFunctionMapping for the Welcome Page	The welcome page support

Template Engines

As well as REST web services, you can also use Spring WebFlux to serve dynamic HTML content. Spring WebFlux supports a variety of templating technologies, including Thymeleaf, FreeMarker, and Mustache.

Spring Boot includes auto-configuration support for the following templating engines:

- FreeMarker
- Thymeleaf
- Mustache

When you use one of these templating engines with the default configuration, your templates are picked up automatically from src/main/resources/templates.

Error Handling

Spring Boot provides a WebExceptionHandler that handles all errors in a sensible way. Its position in the processing order is immediately before the handlers provided by WebFlux, which are considered last. For machine clients, it produces a JSON response with details of the error, the HTTP status, and the exception message. For browser clients, there is a "whitelabel" error handler that renders the same data in HTML format. You can also provide your own HTML templates to display errors (see the next section).

Before customizing error handling in Spring Boot directly, you can leverage the RFC 7807 Problem Details support in Spring WebFlux. Spring WebFlux can produce custom error messages with the application/problem+json media type, like:

```
{
  "type": "https://example.org/problems/unknown-project",
  "title": "Unknown project",
  "status": 404,
  "detail": "No project found for id 'spring-unknown'",
  "instance": "/projects/spring-unknown"
}
```

This support can be enabled by setting spring.webflux.problemdetails.enabled to true.

The first step to customizing this feature often involves using the existing mechanism but replacing or augmenting the error contents. For that, you can add a bean of type ErrorAttributes.

To change the error handling behavior, you can implement ErrorWebExceptionHandler and register a bean definition of that type. Because an ErrorWebExceptionHandler is quite low-level, Spring Boot also provides a convenient AbstractErrorWebExceptionHandler to let you handle errors in a WebFlux functional way, as shown in the following example:

```
import reactor.core.publisher.Mono;
import org.springframework.boot.autoconfigure.web.WebProperties;
import
org.springframework.boot.autoconfigure.web.reactive.error.AbstractErrorWebExceptionHan
dler;
import org.springframework.boot.web.reactive.error.ErrorAttributes;
import org.springframework.context.ApplicationContext;
import org.springframework.http.HttpStatus;
import org.springframework.http.MediaType;
import org.springframework.http.codec.ServerCodecConfigurer;
import org.springframework.stereotype.Component;
import org.springframework.web.reactive.function.server.RouterFunction;
import org.springframework.web.reactive.function.server.RouterFunctions;
import org.springframework.web.reactive.function.server.ServerRequest;
import org.springframework.web.reactive.function.server.ServerResponse;
import org.springframework.web.reactive.function.server.ServerResponse.BodyBuilder;
@Component
public class MyErrorWebExceptionHandler extends AbstractErrorWebExceptionHandler {
    public MyErrorWebExceptionHandler(ErrorAttributes errorAttributes, WebProperties
webProperties,
            ApplicationContext applicationContext, ServerCodecConfigurer
serverCodecConfigurer) {
        super(errorAttributes, webProperties.getResources(), applicationContext);
        setMessageReaders(serverCodecConfigurer.getReaders());
        setMessageWriters(serverCodecConfigurer.getWriters());
    }
    @Override
    protected RouterFunction<ServerResponse> getRoutingFunction(ErrorAttributes
errorAttributes) {
        return RouterFunctions.route(this::acceptsXml, this::handleErrorAsXml);
    }
    private boolean acceptsXml(ServerRequest request) {
        return request.headers().accept().contains(MediaType.APPLICATION_XML);
    }
    public Mono<ServerResponse> handleErrorAsXml(ServerRequest request) {
        BodyBuilder builder = ServerResponse.status(HttpStatus.INTERNAL_SERVER_ERROR);
        // ... additional builder calls
        return builder.build();
    }
}
```

```
import org.springframework.boot.autoconfigure.web.WebProperties
org.springframework.boot.autoconfigure.web.reactive.error.AbstractErrorWebExceptionHan
dler
import org.springframework.boot.web.reactive.error.ErrorAttributes
import org.springframework.context.ApplicationContext
import org.springframework.http.HttpStatus
import org.springframework.http.MediaType
import org.springframework.http.codec.ServerCodecConfigurer
import org.springframework.stereotype.Component
import org.springframework.web.reactive.function.server.RouterFunction
import org.springframework.web.reactive.function.server.RouterFunctions
import org.springframework.web.reactive.function.server.ServerRequest
import org.springframework.web.reactive.function.server.ServerResponse
import reactor.core.publisher.Mono
@Component
class MyErrorWebExceptionHandler(
        errorAttributes: ErrorAttributes, webProperties: WebProperties,
        applicationContext: ApplicationContext, serverCodecConfigurer:
ServerCodecConfigurer
) : AbstractErrorWebExceptionHandler(errorAttributes, webProperties.resources,
applicationContext) {
    init {
        setMessageReaders(serverCodecConfigurer.readers)
        setMessageWriters(serverCodecConfigurer.writers)
    }
    override fun getRoutingFunction(errorAttributes: ErrorAttributes):
RouterFunction<ServerResponse> {
        return RouterFunctions.route(this::acceptsXml, this::handleErrorAsXml)
    }
    private fun acceptsXml(request: ServerRequest): Boolean {
        return request.headers().accept().contains(MediaType.APPLICATION_XML)
    }
    fun handleErrorAsXml(request: ServerRequest): Mono<ServerResponse> {
        val builder = ServerResponse.status(HttpStatus.INTERNAL_SERVER_ERROR)
        // ... additional builder calls
        return builder.build()
    }
}
```

For a more complete picture, you can also subclass DefaultErrorWebExceptionHandler directly and override specific methods.

In some cases, errors handled at the controller level are not recorded by web observations or the metrics infrastructure. Applications can ensure that such exceptions are recorded with the observations by setting the handled exception on the observation context.

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add views that resolve from error/*, for example by adding files to a /error directory. Error pages can either be static HTML (that is, added under any of the static resource directories) or built with templates. The name of the file should be the exact status code, a status code series mask, or error for a default if nothing else matches. Note that the path to the default error view is error/error, whereas with Spring MVC the default error view is error.

For example, to map 404 to a static HTML file, your directory structure would be as follows:

```
src/
+- main/
+- java/
| + <source code>
+- resources/
+- public/
+- error/
| +- 404.html
+- <other public assets>
```

To map all 5xx errors by using a Mustache template, your directory structure would be as follows:

Web Filters

Spring WebFlux provides a WebFilter interface that can be implemented to filter HTTP request-response exchanges. WebFilter beans found in the application context will be automatically used to filter each exchange.

Where the order of the filters is important they can implement Ordered or be annotated with Oorder. Spring Boot auto-configuration may configure web filters for you. When it does so, the orders shown in the following table will be used:

Web Filter	Order
WebFilterChainProxy (Spring Security)	-100
HttpExchangesWebFilter	Ordered.LOWEST_PRECEDENCE - 10

8.2.2. Embedded Reactive Server Support

Spring Boot includes support for the following embedded reactive web servers: Reactor Netty, Tomcat, Jetty, and Undertow. Most developers use the appropriate "Starter" to obtain a fully configured instance. By default, the embedded server listens for HTTP requests on port 8080.

Customizing Reactive Servers

Common reactive web server settings can be configured by using Spring Environment properties. Usually, you would define the properties in your application.properties or application.yaml file.

Common server settings include:

- Network settings: Listen port for incoming HTTP requests (server.port), interface address to bind to (server.address), and so on.
- Error management: Location of the error page (server.error.path) and so on.
- SSL
- HTTP compression

Spring Boot tries as much as possible to expose common settings, but this is not always possible. For those cases, dedicated namespaces such as server.netty.* offer server-specific customizations.

TIP See the ServerProperties class for a complete list.

Programmatic Customization

If you need to programmatically configure your reactive web server, you can register a Spring bean that implements the WebServerFactoryCustomizer interface. WebServerFactoryCustomizer provides access to the ConfigurableReactiveWebServerFactory, which includes numerous customization setter methods. The following example shows programmatically setting the port:

```
import
org.springframework.boot.web.reactive.server.ConfigurableReactiveWebServerFactory;
import org.springframework.boot.web.server.WebServerFactoryCustomizer;
import org.springframework.stereotype.Component;

@Component
public class MyWebServerFactoryCustomizer implements
WebServerFactoryCustomizer<ConfigurableReactiveWebServerFactory> {
    @Override
    public void customize(ConfigurableReactiveWebServerFactory server) {
        server.setPort(9000);
    }
}
```

```
import org.springframework.boot.web.server.WebServerFactoryCustomizer
import
org.springframework.boot.web.reactive.server.ConfigurableReactiveWebServerFactory
import org.springframework.stereotype.Component

@Component
class MyWebServerFactoryCustomizer :
WebServerFactoryCustomizer<ConfigurableReactiveWebServerFactory> {
    override fun customize(server: ConfigurableReactiveWebServerFactory) {
        server.setPort(9000)
    }
}
```

JettyReactiveWebServerFactory, NettyReactiveWebServerFactory, TomcatReactiveWebServerFactory, and UndertowReactiveWebServerFactory are dedicated variants of ConfigurableReactiveWebServerFactory that have additional customization setter methods for Jetty, Reactor Netty, Tomcat, and Undertow respectively. The following example shows how to customize NettyReactiveWebServerFactory that provides access to Reactor Netty-specific configuration options:

```
import java.time.Duration;
import org.springframework.boot.web.embedded.netty.NettyReactiveWebServerFactory;
import org.springframework.boot.web.server.WebServerFactoryCustomizer;
import org.springframework.stereotype.Component;

@Component
public class MyNettyWebServerFactoryCustomizer implements
WebServerFactoryCustomizer<NettyReactiveWebServerFactory> {
    @Override
    public void customize(NettyReactiveWebServerFactory factory) {
        factory.addServerCustomizers((server) ->
server.idleTimeout(Duration.ofSeconds(20)));
    }
}
```

```
import org.springframework.boot.web.embedded.netty.NettyReactiveWebServerFactory
import org.springframework.boot.web.server.WebServerFactoryCustomizer
import org.springframework.stereotype.Component
import java.time.Duration

@Component
class MyNettyWebServerFactoryCustomizer :
WebServerFactoryCustomizer<NettyReactiveWebServerFactory> {
    override fun customize(factory: NettyReactiveWebServerFactory) {
        factory.addServerCustomizers({ server ->
        server.idleTimeout(Duration.ofSeconds(20)) })
    }
}
```

Customizing ConfigurableReactiveWebServerFactory Directly

For more advanced use cases that require you to extend from ReactiveWebServerFactory, you can expose a bean of such type yourself.

Setters are provided for many configuration options. Several protected method "hooks" are also provided should you need to do something more exotic. See the source code documentation for details.

NOTE

Auto-configured customizers are still applied on your custom factory, so use that option carefully.

8.2.3. Reactive Server Resources Configuration

When auto-configuring a Reactor Netty or Jetty server, Spring Boot will create specific beans that will provide HTTP resources to the server instance: ReactorResourceFactory or JettyResourceFactory.

By default, those resources will be also shared with the Reactor Netty and Jetty clients for optimal performances, given:

- the same technology is used for server and client
- the client instance is built using the WebClient.Builder bean auto-configured by Spring Boot

Developers can override the resource configuration for Jetty and Reactor Netty by providing a custom ReactorResourceFactory or JettyResourceFactory bean - this will be applied to both clients and servers.

You can learn more about the resource configuration on the client side in the WebClient Runtime section.

8.3. Graceful Shutdown

Graceful shutdown is supported with all four embedded web servers (Jetty, Reactor Netty, Tomcat, and Undertow) and with both reactive and servlet-based web applications. It occurs as part of closing the application context and is performed in the earliest phase of stopping SmartLifecycle beans. This stop processing uses a timeout which provides a grace period during which existing requests will be allowed to complete but no new requests will be permitted.

The exact way in which new requests are not permitted varies depending on the web server that is being used. Implementations may stop accepting requests at the network layer, or they may return a response with a specific HTTP status code or HTTP header. The use of persistent connections can also change the way that requests stop being accepted.

TIP

To learn about more the specific method used with your web server, see the shutDownGracefully javadoc for TomcatWebServer, NettyWebServer, JettyWebServer or UndertowWebServer.

Jetty, Reactor Netty, and Tomcat will stop accepting new requests at the network layer. Undertow will accept new connections but respond immediately with a service unavailable (503) response.

NOTE Graceful shutdown with Tomcat requires Tomcat 9.0.33 or later.

To enable graceful shutdown, configure the server.shutdown property, as shown in the following example:

Properties

server.shutdown=graceful

Yaml

```
server:
shutdown: "graceful"
```

To configure the timeout period, configure the spring.lifecycle.timeout-per-shutdown-phase property, as shown in the following example:

Properties

```
spring.lifecycle.timeout-per-shutdown-phase=20s
```

Yaml

```
spring:
lifecycle:
timeout-per-shutdown-phase: "20s"
```

IMPORTANT

Using graceful shutdown with your IDE may not work properly if it does not send a proper SIGTERM signal. See the documentation of your IDE for more details.

8.4. Spring Security

If Spring Security is on the classpath, then web applications are secured by default. Spring Boot relies on Spring Security's content-negotiation strategy to determine whether to use httpBasic or formLogin. To add method-level security to a web application, you can also add @EnableGlobalMethodSecurity with your desired settings. Additional information can be found in the Spring Security Reference Guide.

The default UserDetailsService has a single user. The user name is user, and the password is random and is printed at WARN level when the application starts, as shown in the following example:

```
Using generated security password: 78fa095d-3f4c-48b1-ad50-e24c31d5cf35
```

This generated password is for development use only. Your security configuration must be updated before running your application in production.

NOTE

If you fine-tune your logging configuration, ensure that the org.springframework.boot.autoconfigure.security category is set to log WARN-level messages. Otherwise, the default password is not printed.

You can change the username and password by providing a spring.security.user.name and spring.security.user.password.

The basic features you get by default in a web application are:

- A UserDetailsService (or ReactiveUserDetailsService in case of a WebFlux application) bean with in-memory store and a single user with a generated password (see SecurityProperties.User for the properties of the user).
- Form-based login or HTTP Basic security (depending on the Accept header in the request) for the entire application (including actuator endpoints if actuator is on the classpath).
- A DefaultAuthenticationEventPublisher for publishing authentication events.

You can provide a different Authentication Event Publisher by adding a bean for it.

8.4.1. MVC Security

The default security configuration is implemented in SecurityAutoConfiguration and UserDetailsServiceAutoConfiguration. SecurityAutoConfiguration imports SpringBootWebSecurityConfiguration for web security and UserDetailsServiceAutoConfiguration configures authentication, which is also relevant in non-web applications.

To switch off the default web application security configuration completely or to combine multiple Spring Security components such as OAuth2 Client and Resource Server, add a bean of type SecurityFilterChain (doing so does not disable the UserDetailsService configuration or Actuator's security). To also switch off the UserDetailsService configuration, you can add a bean of type UserDetailsService, AuthenticationProvider, or AuthenticationManager.

The auto-configuration of a UserDetailsService will also back off any of the following Spring Security modules is on the classpath:

- spring-security-oauth2-client
- spring-security-oauth2-resource-server
- spring-security-saml2-service-provider

To use UserDetailsService in addition to one or more of these dependencies, define your own InMemoryUserDetailsManager bean.

Access rules can be overridden by adding a custom SecurityFilterChain bean. Spring Boot provides convenience methods that can be used to override access rules for actuator endpoints and static resources. EndpointRequest can be used to create a RequestMatcher that is based on the management.endpoints.web.base-path property. PathRequest can be used to create a RequestMatcher for resources in commonly used locations.

8.4.2. WebFlux Security

Similar to Spring MVC applications, you can secure your WebFlux applications by adding the spring-boot-starter-security dependency. The default security configuration is implemented in ReactiveSecurityAutoConfiguration and UserDetailsServiceAutoConfiguration. ReactiveSecurityAutoConfiguration imports WebFluxSecurityConfiguration for web security and UserDetailsServiceAutoConfiguration configures authentication, which is also relevant in non-web applications.

To switch off the default web application security configuration completely, you can add a bean of type WebFilterChainProxy (doing so does not disable the UserDetailsService configuration or Actuator's security). To also switch off the UserDetailsService configuration, you can add a bean of type ReactiveUserDetailsService or ReactiveAuthenticationManager.

The auto-configuration will also back off when any of the following Spring Security modules is on the classpath:

- spring-security-oauth2-client
- spring-security-oauth2-resource-server

To use ReactiveUserDetailsService in addition to one or more of these dependencies, define your own MapReactiveUserDetailsService bean.

Access rules and the use of multiple Spring Security components such as OAuth 2 Client and Resource Server can be configured by adding a custom SecurityWebFilterChain bean. Spring Boot provides convenience methods that can be used to override access rules for actuator endpoints and static resources. EndpointRequest can be used to create a ServerWebExchangeMatcher that is based on the management.endpoints.web.base-path property.

PathRequest can be used to create a ServerWebExchangeMatcher for resources in commonly used locations.

For example, you can customize your security configuration by adding something like:

Java

```
import org.springframework.boot.autoconfigure.security.reactive.PathRequest;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.web.server.ServerHttpSecurity;
import org.springframework.security.web.server.SecurityWebFilterChain;
import static org.springframework.security.config.Customizer.withDefaults;
@Configuration(proxyBeanMethods = false)
public class MyWebFluxSecurityConfiguration {
    @Bean
    public SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
        http.authorizeExchange((exchange) -> {
exchange.matchers(PathRequest.toStaticResources().atCommonLocations()).permitAll();
            exchange.pathMatchers("/foo", "/bar").authenticated();
        });
        http.formLogin(withDefaults());
        return http.build();
    }
}
```

```
import org.springframework.boot.autoconfigure.security.reactive.PathRequest
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.security.config.Customizer.withDefaults
import org.springframework.security.config.web.server.ServerHttpSecurity
import org.springframework.security.web.server.SecurityWebFilterChain
@Configuration(proxyBeanMethods = false)
class MyWebFluxSecurityConfiguration {
    fun springSecurityFilterChain(http: ServerHttpSecurity): SecurityWebFilterChain {
        http.authorizeExchange { spec ->
spec.matchers(PathRequest.toStaticResources().atCommonLocations()).permitAll()
            spec.pathMatchers("/foo", "/bar").authenticated()
        http.formLogin(withDefaults())
        return http.build()
    }
}
```

8.4.3. OAuth2

OAuth2 is a widely used authorization framework that is supported by Spring.

Client

If you have spring-security-oauth2-client on your classpath, you can take advantage of some auto-configuration to set up OAuth2/Open ID Connect clients. This configuration makes use of the properties under OAuth2ClientProperties. The same properties are applicable to both servlet and reactive applications.

You can register multiple OAuth2 clients and providers under the spring.security.oauth2.client prefix, as shown in the following example:

Properties

```
spring.security.oauth2.client.registration.my-login-client.client-id=abcd
spring.security.oauth2.client.registration.my-login-client.client-secret=password
spring.security.oauth2.client.registration.my-login-client.client-name=Client for
OpenID Connect
spring.security.oauth2.client.registration.my-login-client.provider=my-oauth-provider
spring.security.oauth2.client.registration.my-login-
client.scope=openid,profile,email,phone,address
spring.security.oauth2.client.registration.my-login-client.redirect-
uri={baseUrl}/login/oauth2/code/{registrationId}
```

```
spring.security.oauth2.client.registration.my-login-client.client-authentication-
method=client secret basic
spring.security.oauth2.client.registration.my-login-client.authorization-grant-
type=authorization_code
spring.security.oauth2.client.registration.my-client-1.client-id=abcd
spring.security.oauth2.client.registration.my-client-1.client-secret=password
spring.security.oauth2.client.registration.my-client-1.client-name=Client for user
scope
spring.security.oauth2.client.registration.my-client-1.provider=my-oauth-provider
spring.security.oauth2.client.registration.my-client-1.scope=user
spring.security.oauth2.client.registration.my-client-1.redirect-
uri={baseUrl}/authorized/user
spring.security.oauth2.client.registration.my-client-1.client-authentication-
method=client secret basic
spring.security.oauth2.client.registration.my-client-1.authorization-grant-
type=authorization_code
spring.security.oauth2.client.registration.my-client-2.client-id=abcd
spring.security.oauth2.client.registration.my-client-2.client-secret=password
spring.security.oauth2.client.registration.my-client-2.client-name=Client for email
spring.security.oauth2.client.registration.my-client-2.provider=my-oauth-provider
spring.security.oauth2.client.registration.my-client-2.scope=email
spring.security.oauth2.client.registration.my-client-2.redirect-
uri={baseUrl}/authorized/email
spring.security.oauth2.client.registration.my-client-2.client-authentication-
method=client_secret_basic
spring.security.oauth2.client.registration.my-client-2.authorization-grant-
type=authorization_code
spring.security.oauth2.client.provider.my-oauth-provider.authorization-uri=https://my-
auth-server.com/oauth2/authorize
spring.security.oauth2.client.provider.my-oauth-provider.token-uri=https://my-auth-
server.com/oauth2/token
spring.security.oauth2.client.provider.my-oauth-provider.user-info-uri=https://my-
auth-server.com/userinfo
spring.security.oauth2.client.provider.my-oauth-provider.user-info-authentication-
method=header
spring.security.oauth2.client.provider.my-oauth-provider.jwk-set-uri=https://my-auth-
server.com/oauth2/jwks
spring.security.oauth2.client.provider.my-oauth-provider.user-name-attribute=name
```

```
spring:
 security:
    oauth2:
      client:
        registration:
          my-login-client:
            client-id: "abcd"
            client-secret: "password"
            client-name: "Client for OpenID Connect"
            provider: "my-oauth-provider"
            scope: "openid,profile,email,phone,address"
            redirect-uri: "{baseUrl}/login/oauth2/code/{registrationId}"
            client-authentication-method: "client_secret_basic"
            authorization-grant-type: "authorization_code"
          my-client-1:
            client-id: "abcd"
            client-secret: "password"
            client-name: "Client for user scope"
            provider: "my-oauth-provider"
            scope: "user"
            redirect-uri: "{baseUrl}/authorized/user"
            client-authentication-method: "client_secret_basic"
            authorization-grant-type: "authorization_code"
          my-client-2:
            client-id: "abcd"
            client-secret: "password"
            client-name: "Client for email scope"
            provider: "my-oauth-provider"
            scope: "email"
            redirect-uri: "{baseUrl}/authorized/email"
            client-authentication-method: "client secret basic"
            authorization-grant-type: "authorization_code"
        provider:
          my-oauth-provider:
            authorization-uri: "https://my-auth-server.com/oauth2/authorize"
            token-uri: "https://my-auth-server.com/oauth2/token"
            user-info-uri: "https://my-auth-server.com/userinfo"
            user-info-authentication-method: "header"
            jwk-set-uri: "https://my-auth-server.com/oauth2/jwks"
            user-name-attribute: "name"
```

For OpenID Connect providers that support OpenID Connect discovery, the configuration can be further simplified. The provider needs to be configured with an issuer-uri which is the URI that it asserts as its Issuer Identifier. For example, if the issuer-uri provided is "https://example.com", then an "OpenID Provider Configuration Request" will be made to "https://example.com/.well-

known/openid-configuration". The result is expected to be an "OpenID Provider Configuration Response". The following example shows how an OpenID Connect Provider can be configured with the issuer-uri:

Properties

```
spring.security.oauth2.client.provider.oidc-provider.issuer-uri=https://dev-
123456.oktapreview.com/oauth2/default/
```

Yaml

```
spring:
    security:
    oauth2:
        client:
        provider:
            oidc-provider:
            issuer-uri: "https://dev-123456.oktapreview.com/oauth2/default/"
```

By default, Spring Security's OAuth2LoginAuthenticationFilter only processes URLs matching /login/oauth2/code/*. If you want to customize the redirect-uri to use a different pattern, you need to provide configuration to process that custom pattern. For example, for servlet applications, you can add your own SecurityFilterChain that resembles the following:

```
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.security.config.annotation.web.builders.HttpSecurity;
import
org.springframework.security.config.annotation.web.configuration.EnableWebSecurity;
import org.springframework.security.web.SecurityFilterChain;
@Configuration(proxyBeanMethods = false)
@EnableWebSecurity
public class MyOAuthClientConfiguration {
    @Bean
    public SecurityFilterChain securityFilterChain(HttpSecurity http) throws Exception
{
        http
            .authorizeHttpRequests((requests) -> requests
                .anyRequest().authenticated()
            )
            .oauth2Login((login) -> login
                .redirectionEndpoint((endpoint) -> endpoint
                    .baseUri("/login/oauth2/callback/*")
                )
            );
        return http.build();
    }
}
```

```
import org.springframework.context.annotation.Bean
import org.springframework.context.annotation.Configuration
import org.springframework.security.config.annotation.web.builders.HttpSecurity
import
org.springframework.security.config.annotation.web.configuration.EnableWebSecurity
import org.springframework.security.config.annotation.web.invoke
import org.springframework.security.web.SecurityFilterChain
@Configuration(proxyBeanMethods = false)
@EnableWebSecurity
open class MyOAuthClientConfiguration {
    @Bean
    open fun securityFilterChain(http: HttpSecurity): SecurityFilterChain {
        http {
            authorizeHttpRequests {
                authorize(anyRequest, authenticated)
            oauth2Login {
                redirectionEndpoint {
                    baseUri = "/login/oauth2/callback/*"
                }
            }
        }
        return http.build()
    }
}
```

TIP

Spring Boot auto-configures an InMemoryOAuth2AuthorizedClientService which is used by Spring Security for the management of client registrations. The InMemoryOAuth2AuthorizedClientService has limited capabilities and we recommend using it only for development environments. For production environments, consider using a JdbcOAuth2AuthorizedClientService or creating your own implementation of OAuth2AuthorizedClientService.

OAuth2 Client Registration for Common Providers

For common OAuth2 and OpenID providers, including Google, Github, Facebook, and Okta, we provide a set of provider defaults (google, github, facebook, and okta, respectively).

If you do not need to customize these providers, you can set the provider attribute to the one for which you need to infer defaults. Also, if the key for the client registration matches a default supported provider, Spring Boot infers that as well.

In other words, the two configurations in the following example use the Google provider:

Properties

```
spring.security.oauth2.client.registration.my-client.client-id=abcd spring.security.oauth2.client.registration.my-client.client-secret=password spring.security.oauth2.client.registration.my-client.provider=google spring.security.oauth2.client.registration.google.client-id=abcd spring.security.oauth2.client.registration.google.client-secret=password
```

Yaml

Resource Server

If you have spring-security-oauth2-resource-server on your classpath, Spring Boot can set up an OAuth2 Resource Server. For JWT configuration, a JWK Set URI or OIDC Issuer URI needs to be specified, as shown in the following examples:

Properties

```
spring.security.oauth2.resourceserver.jwt.jwk-set-
uri=https://example.com/oauth2/default/v1/keys
```

Yaml

```
spring:
    security:
    oauth2:
       resourceserver:
       jwt:
       jwk-set-uri: "https://example.com/oauth2/default/v1/keys"
```

Properties

```
spring.security.oauth2.resourceserver.jwt.issuer-uri=https://dev-
123456.oktapreview.com/oauth2/default/
```

```
spring:
    security:
    oauth2:
       resourceserver:
       jwt:
       issuer-uri: "https://dev-123456.oktapreview.com/oauth2/default/"
```

NOTE

If the authorization server does not support a JWK Set URI, you can configure the resource server with the Public Key used for verifying the signature of the JWT. This can be done using the spring.security.oauth2.resourceserver.jwt.public-key-location property, where the value needs to point to a file containing the public key in the PEM-encoded x509 format.

The spring.security.oauth2.resourceserver.jwt.audiences property can be used to specify the expected values of the aud claim in JWTs. For example, to require JWTs to contain an aud claim with the value my-audience:

Properties

```
spring.security.oauth2.resourceserver.jwt.audiences[0]=my-audience
```

Yaml

```
spring:
    security:
    oauth2:
       resourceserver:
       jwt:
        audiences:
       - "my-audience"
```

The same properties are applicable for both servlet and reactive applications. Alternatively, you can define your own JwtDecoder bean for servlet applications or a ReactiveJwtDecoder for reactive applications.

In cases where opaque tokens are used instead of JWTs, you can configure the following properties to validate tokens through introspection:

Properties

```
spring.security.oauth2.resourceserver.opaquetoken.introspection-
uri=https://example.com/check-token
spring.security.oauth2.resourceserver.opaquetoken.client-id=my-client-id
spring.security.oauth2.resourceserver.opaquetoken.client-secret=my-client-secret
```

```
spring:
    security:
    oauth2:
        resourceserver:
        opaquetoken:
            introspection-uri: "https://example.com/check-token"
            client-id: "my-client-id"
            client-secret: "my-client-secret"
```

Again, the same properties are applicable for both servlet and reactive applications. Alternatively, you can define your own <code>OpaqueTokenIntrospector</code> bean for servlet applications or a <code>ReactiveOpaqueTokenIntrospector</code> for reactive applications.

Authorization Server

If you have spring-security-oauth2-authorization-server on your classpath, you can take advantage of some auto-configuration to set up a Servlet-based OAuth2 Authorization Server.

You can register multiple OAuth2 clients under the spring.security.oauth2.authorizationserver.client prefix, as shown in the following example:

```
spring.security.oauth2.authorizationserver.client.my-client-1.registration.client-
id=abcd
spring.security.oauth2.authorizationserver.client.my-client-1.registration.client-
secret={noop}secret1
spring.security.oauth2.authorizationserver.client.my-client-1.registration.client-
authentication-methods[0]=client_secret_basic
spring.security.oauth2.authorizationserver.client.my-client-
1.registration.authorization-grant-types[0]=authorization_code
spring.security.oauth2.authorizationserver.client.my-client-
1.registration.authorization-grant-types[1]=refresh_token
spring.security.oauth2.authorizationserver.client.my-client-1.registration.redirect-
uris[0]=https://my-client-1.com/login/oauth2/code/abcd
spring.security.oauth2.authorizationserver.client.my-client-1.registration.redirect-
uris[1]=https://my-client-1.com/authorized
spring.security.oauth2.authorizationserver.client.my-client-
1.registration.scopes[0]=openid
spring.security.oauth2.authorizationserver.client.my-client-
1.registration.scopes[1]=profile
spring.security.oauth2.authorizationserver.client.my-client-
1.registration.scopes[2]=email
spring.security.oauth2.authorizationserver.client.my-client-
1.registration.scopes[3]=phone
spring.security.oauth2.authorizationserver.client.my-client-
1.registration.scopes[4]=address
spring.security.oauth2.authorizationserver.client.my-client-1.require-authorization-
consent=true
spring.security.oauth2.authorizationserver.client.my-client-2.registration.client-
id=efgh
spring.security.oauth2.authorizationserver.client.my-client-2.registration.client-
secret={noop}secret2
spring.security.oauth2.authorizationserver.client.my-client-2.registration.client-
authentication-methods[0]=client_secret_jwt
spring.security.oauth2.authorizationserver.client.my-client-
2.registration.authorization-grant-types[0]=client_credentials
spring.security.oauth2.authorizationserver.client.my-client-
2.registration.scopes[0]=user.read
spring.security.oauth2.authorizationserver.client.my-client-
2.registration.scopes[1]=user.write
spring.security.oauth2.authorizationserver.client.my-client-2.jwk-set-uri=https://my-
client-2.com/jwks
spring.security.oauth2.authorizationserver.client.my-client-2.token-endpoint-
authentication-signing-algorithm=RS256
```

```
spring:
 security:
    oauth2:
      authorizationserver:
        client:
          my-client-1:
            registration:
              client-id: "abcd"
              client-secret: "{noop}secret1"
              client-authentication-methods:
                - "client_secret_basic"
              authorization-grant-types:
                - "authorization_code"
                - "refresh_token"
              redirect-uris:
                - "https://my-client-1.com/login/oauth2/code/abcd"
                - "https://my-client-1.com/authorized"
              scopes:
                - "openid"
                - "profile"
                - "email"
                - "phone"
                - "address"
            require-authorization-consent: true
          my-client-2:
            registration:
              client-id: "efgh"
              client-secret: "{noop}secret2"
              client-authentication-methods:
                - "client secret jwt"
              authorization-grant-types:
                - "client_credentials"
              scopes:
                - "user.read"
                - "user.write"
            jwk-set-uri: "https://my-client-2.com/jwks"
            token-endpoint-authentication-signing-algorithm: "RS256"
```

NOTE

The client-secret property must be in a format that can be matched by the configured PasswordEncoder. The default instance of PasswordEncoder is created via PasswordEncoderFactories.createDelegatingPasswordEncoder().

The auto-configuration Spring Boot provides for Spring Authorization Server is designed for getting started quickly. Most applications will require customization and will want to define several beans to override auto-configuration.

The following components can be defined as beans to override auto-configuration specific to Spring Authorization Server:

- RegisteredClientRepository
- AuthorizationServerSettings
- SecurityFilterChain
- com.nimbusds.jose.jwk.source.JWKSource<com.nimbusds.jose.proc.SecurityContext>
- JwtDecoder

TIP

Spring Boot auto-configures an InMemoryRegisteredClientRepository which is used by Spring Authorization Server for the management of registered clients. The InMemoryRegisteredClientRepository has limited capabilities and we recommend using it only for development environments. For production environments, consider using a JdbcRegisteredClientRepository or creating your own implementation of RegisteredClientRepository.

Additional information can be found in the Getting Started chapter of the Spring Authorization Server Reference Guide.

8.4.4. SAML 2.0

Relying Party

If you have spring-security-saml2-service-provider on your classpath, you can take advantage of some auto-configuration to set up a SAML 2.0 Relying Party. This configuration makes use of the properties under Saml2RelyingPartyProperties.

A relying party registration represents a paired configuration between an Identity Provider, IDP, and a Service Provider, SP. You can register multiple relying parties under the spring.security.saml2.relyingparty prefix, as shown in the following example: