AD-A048 830

AEROSPACE MEDICAL RESEARCH LAB WRIGHT-PATTERSON AFB OHIO SEP 75 J F ROSE N A FARTNACCI

AMRL-TR-75-50-VOL-36

END

ARRIA

BEND

ARRIA

AD A 0 48830

AMRL-TR-75-50 Volume 36

Volume 36
T-38A In-Flight Crew Noise

USAF BIOENVIRONMENTAL NOISE DATA HANDBOOK

SEPTEMBER 1975

Approved for public release; distribution unlimited.

AEROSPACE MEDICAL RESEARCH LABORATORY **AEROSPACE MEDICAL DIVISION** AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICES

When US Government drawings, specifications, or other data are used for any purpose other than a definitely related Government procurement operation, the Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise, as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Please do not request copies of this report from Aerospace Medical Research Laboratory. Additional copies may be purchased from:

National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161

Federal Government agencies and their contractors registered with Defense Documentation Center should direct requests for copies of this report to:

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

TECHNICAL REVIEW AND APPROVAL

This report has been reviewed by the Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Henring E. von Gierke

Director

Biodynamics and Bionics Division

Aerospace Medical Research Laboratory

AIR FORCE/56780/19 December 1977 - 300

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 2. GOVT ACCESSION USAF BIOENVIRONMENTAL NOISE DATA HANDBOOK. Volum Volume 36 of a series T-38A In-flight Crew Noise, PERFORMING ORG. REPORT NUMBER 7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s) Justus F, Rose, Jr. Col, USAF Nick A. Farinacci Capt, USAF, BSC PERFORMING ORGANIZATION NAME AND ADDRESS Aerospace Medical Research Laboratory Aerospace Medical Division, Air Force Systems Command, Wright-Patterson AFB, OH 45433 11. CONTROLLING OFFICE NAME AND ADDRESS Sep . Same as above 15 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) Unclassified 15a. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report Approved for public release; distribution unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Noise Environments Bioenvironmental Noise In-flight Crew Noise T-38A Aircraft 10. ABSTRACT (Continue on reverse side if necessary and identify by block number) The T-38A is a USAF supersonic aircraft providing flight instruction in all phases of basic pilot training. This report provides measured data definingthe bioacoustic environments at flight crew locations inside this aircraft during normal flight operations. Data are reported for 1 location in a wide variety of physical and psychoacoustic measures: overall and band sound pressure levels, C-weighted and A-weighted sound levels, preferred speech interference level, perceived noise level, and limiting times for total daily

DD FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

999850

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered) exposure of personnel with and without standard Air Force ear protectors.

Refer to Volume 1 of this handbook, USAF BioenvironmentalNoise Data Handbook,
Vol. 1: Organization, Content and Application, AMRL-TR-75-50(1) 1975, for discussion of the objective and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc.

PREFACE

This report was prepared by the Biodynamic Environment Branch, Aerospace Medical Research Laboratory, under Project/Task 72310418, Measurement of Noise and Vibration Environments of Air Force Operations.Col Justus F. Rose, Jr., conducted the field measurements and performed the data analysis; Capt Nick Farinacci prepared this report.

The authors acknowledge the efforts of Mr. John N. Cole who established the data analysis requirements and assisted in the preparation of this report, and Mr. Henry Mohlman and Mr. David Eilerman of the University of Dayton, who assisted in the mechanics of data processing.

Table of Contents

	Page
INTRODUCTION	3
IN-FLIGHT NOISE	4
List of Tables	
1. Measurement Location and Test Conditions for Noise Measurements	5
2. Measured Sound Pressure Level 1/3 Octave Band	6—7
Octave Band 3. Measures of Human Noise Exposure	8—9 10—11

INTRODUCTION

The T-38A is a USAF supersonic aircraft providing supervised flight instruction in all phases of basic pilot training. This aircraft, which is manufactured by the Northrop Corporation, NORAIR Division, is powered by two J85-GE-5 turbojet engines rated at 3,850 lb maximum take-off thrust with afterburner. The engines are manufactured by the General Electric Company, Aircraft Engine Group, Military Engine Division.

This volume provides measured data defining the bioacoustic environments produced inside the aircraft. Such data are essential to evaluate ear protection requirements, limiting personnel exposure times, voice communication capabilities, and annoyance problems associated with operations of the T-38A aircraft.

This volume is one of a series published by the Aerospace Medical Research Laboratory (AMRL) under the same report number (AMRL-TR-75-50) as a multi-volume handbook that quantifies the noise environments produced at flight/ground crew locations and in surrounding communities by operations of Air Force aircraft and aerospace ground equipment. The far-field, community-type, noise data in the handbook describe the noise produced during *ground operations* of aircraft, aerospace ground equipment, and other ground-based equipment or facilities.

Volume 1 of this handbook discusses the objectives and design of the handbook, the types of data presented, measurement procedures, instrumentation, data processing, definitions of quantities, symbols, equations, applications, limitations, etc. *Refer to Volume 1* (reference 1) for such information because it is not repeated in other handbook volumes.

A cumulative index lists those aerospace systems contained in the handbook, and identifies the specific volumes containing each type of environmental noise data available (i.e., in-flight/flight crew and passenger noise, near-field/ground crew noise, far-field/community noise). Volume numbers are assigned sequentially as individual volumes are published. This index is periodically updated as individual volumes are published, and is available upon request from AMRL/BBE, Wright-Patterson AFB, OH 45433. Organizations on the distribution list for the handbook will automatically receive a copy of the updated index as it is generated.

Direct any questions concerning the technical data in this report and other handbook volumes to: AMRL/BBE, Wright-Patterson AFB, OH 45433; Autovon 78-53675 or 78-53664; Commercial (513) 255-3675 or (513) 255-3664.

Cole, John N., USAF Bioenvironmental Noise Data Handbook, Volume 1: Organization, Content and Application, AMRL-TR-75-50 (1), Aerospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio, 1975.

IN-FLIGHT NOISE

MEASUREMENTS

All noise measurements were made on-board a standard-configured T-38A aircraft during typical speed, altitude, and flight maneuver conditions. These levels describe the standard T-38A environments, but may not be representative of those levels encountered if the aircraft has been configured differently (e.g., major equipment or structural changes).

Acoustic measurements were made at one flight crew location. Table 1 lists the measurement location and test conditions as numeric/alphabetic designators which are used on the data pages. The designator 1/A means measurement location 1 and test condition A.

The microphone was randomly moved external to the headgear in a region 0.2-0.3 meter from the head and the resultant samples analyzed using a 4- or 8-second integration time to obtain a power-averaged level, which effectively smooths out short-duration fluctuations and best describes the exposure.

RESULTS

The measured data presented in Table 2 define the sound pressure levels (SPL) produced inside the T-38A aircraft at the specified location. This table includes the overall, 1/3 octave band, and octave band levels. From these data, C-weighted and A-weighted sound levels, maximum permissible time for one exposure per day (AFR 161-35) with and without standard Air Force ear protectors, preferred speech interference level, and perceived noise level are calculated and presented in Table 3. These measures are widely used to assess the effects of noise on personnel and their performance.

TABLE 1

MEASUREMENT LOCATION AND TEST CONDITIONS

T-38A, Eglin AFB, 21 Jul 1971 Serial # 70-1558

OCATION 1	POSITION Rear Seat	HEIGHT ABOVE DECK Seated Head Level
ONDITION		DESCRIPTION
A	Ground power unit operating, ca	anopies open.
В	#1 engine start, ground power u	nnit operating, canopies open.
C	#2 engine start, #1 engine idle (4	4% RPM), ground power unit operating, canopies open.
D	Taxiing, canopies open (46-75%	RPM).
E	Takeoff — afterburner.	
F	Initial acceleration to 300 KIAS	, gear and flaps up, afterburner.
G	Climb — 350 KIAS, 100% RPM,	10.0M PA
н	Cruise — 500 KIAS, .9M, Militar	ry power — 100% RPM, 10.0M PA.
I	Afterburner climb 3.0M to 10.0M	1 PA, .89M.
J	Afterburner climb 10.0M to 20.0	M PA, .89M.
к	Cruise — 260 KIAS, .9M, 93% R	PM, 41.0M PA.
L	Supersonic — 320 KIAS, 1.1M, a	fterburner, 38.0M PA.
М	Instrument penetration - 300 I	KIAS, 85% RPM, 33.0M PA 🥆 speed brakes.
N	Typical holding pattern airspeed	d — 250 KIAS, .56M, 91% RPM, 20.0M PA.
P	Descent — 280 KIAS, 85% RPM	, 16.0M PA 🥕 speed brakes.
Q	Cruise — 290 KIAS, 89% RPM,	4.0M PA.
R	GCA traffic pattern — 1500', 88'	% RPM, gear and flaps down.
s	Final approach — 160 KIAS, 94	% RPM, gear and flaps down.
T	Missed approach — gear and fla	aps up.
U	Cruise — 320 KIAS, Left engine	- 54%, right engine — 100%, 3.0M PA.
v	Cruise — 375 KIAS, .6M, Left et	ngine — 94%, right engine — 90% RPM, 3.0M PA.
w	VFR overhead traffic pattern -	- initial (1500'), 230 KIAS, 85% RPM.
x	VFR overhead traffic pattern —	- pitchout.
Y	VFR overhead traffic pattern -	- base leg, gear and flaps down.
z	VFR overhead traffic pattern —	final approach, 160 KIAS, gear and flaps down.
AA	Landing roll.	

2 1/3 OCTAVE BAND	E BAND	,	•								OMEGA	3.2
NOISE SOURCE/SUBJECT:	-	OPERATION:	1 NO			~					S G S	110
											10	10 JAN 75
INFLIGHT NOISE LEVELS) PAGE	E F1
4/1	8/1	1/6	\$	1/E	OCATIO	CATION/CONDITION	NOILI	1/1	3	X	5	1/1
FREG	•					•	:		:	:	:	
(HZ)												
25 6.	1	4	88	85	80	80	81	7.8	82	72	73	73
31.5	80	78	91	89	85	9 4	85	9.4	98	92	7.8	62
	6	46	89	93	89	88	88	88	89	82	82	83
	•	90	89	8	82	82	81	81	82	15	92	62
	6	93	26	81	29	80	80	78	79	73	74	75
	6	96	91	98	82	29	79	79	79	72	73	7.4
	•	86	92	46	89	87	87	87	88	81	82	83
125 91	6	8	98	96	95	95	95	95	97	90	91	93
	•	89	87	88	91	95	91	93	76	96	83	85
	•	90	90	95	93	76	76	76	95	84	83	85
	80	90	69	90	91	91	89	85	85	4	84	19
	•	96	87	8	90	83	90	95	89	4	84	9.4
	90	98	82	82	98	8	93	93	93	4	85	98
	1	80	82	98	88	93	46	96	96	82	98	87
	•	85	82	90	95	66	101	101	100	88	93	91
	•	80	89	06	93	96	97	86	26	78	87	87
	•	83	91	90	80	95	97	66	66	82	68	88
	•	83	89	87	83	76	96	96	96	83	87	98
	•	80	92	9 9	80	95	96	97	96	81	8 2	70
	80 (80 0	6	9 .	91	96	86	66	101	70	50	986
	•	0	60	*	50	9	9	9		7 6	32	93
	5 (06	80 F	81	96	26	46	32	96	82	7 .	0.6
	5 (2 6	5	0 0	10 c	200	40	9 6	2.5	2 1	5 0	6.
0000	0 0	5 6	100	20	9 1	25	2 6	7 6	2 .	2 .	0 6	9;
		2 5	8 6	1 6	0 0	7 6		0 0	2 .		0 1	0 ;
10000		0 0	4 6	- 1	20	0 0	0 0	0 0	7 0	17	0 "	**
	0 0	0 0	2 6	0 1	20	0 0	* *	* *	2 0	- 1	2 .	1.2
	0 4	0 0	16	* ;	0 1	5 6	200	2 5	0 0	2 (2 :	1:
16000	•	6	26	2	2	10 20	19	19	18	6	2)	2

LEVEL CORRECTED TO REMOVE BACKGROUNDZELECTRONIC NOISE.

2 1/3 OCTAV	E BAND		אבססמב הבאבר									5	
NOISE SOURCE/SUBJE	JECT :	٠.	OPERATIONS	. NO			- 1					38	1-014
T-38A AIRCRAFT												10	JAN 75
INFLIGHT NOISE	LEVELS) PAGE	GE F2
	2	4/1	9,1	4/8	1/8	OCATI	OCATION/CONDITION	DITION	3	Š	Š	1/1	1/44
FREG				•									
(HZ)													
52	79	16	92	87	88	29	81	80	92	77	68	95	06
31.5	83	82	82	68	89	84	98	83	81	82	9.0	93	93
0,	87	96	98	95	91	88	9.0	88	87	87	68	46	16
20	62	80	79	85	98	81	82	81	80	81	91	91	98
63	92	77	11	81	82	80	81	29	7.8	62	81	80	82
80	11	78	7.8	82	83	79	82	80	7.8	42	9.4	85	88
100	85	87	87	91	91	88	89	88	87	89	93	16	95
125	76	96	95	26	66	96	66	96	46	96	66	66	96
160	93	91	93	90	92	06	93	9.6	89	88	91	91	88
200	88	91	93	76	46	95	96	93	89	89	46	93	87
250	83	88	68	91	93	91	46	87	98	88	90	90	83
315	98	96	88	91	93	90	93	87	98	87	68	68	48
004	87	85	85	85	98	84	89	88	85	48	98	84	80
200	89	88	88	84	98	98	91	91	87	8 8	87	85	7.4
630	76	93	91	96	90	91	96	46	90	68	88	85	75
900	96	91	91	83	90	90	16	93	68	88	98	83	7.5
1000	91	90	83	81	91	90	97	93	88	98	84	80	73
1250	91	88	87	78	86	87	93	95	96	85	81	7.8	7.2
1600	89	87	82	92	82	85	93	91	84	9.4	9.0	92	7.4
2000	76	91	69	28	89	89	98	76	87	98	84	29	75
2500	88	88	85	92	96	87	76	91	83	83	80	92	72
3150	85	9.4	82	25	94	94	90	88	81	81	4	15	7.2
0004	87	82	83	92	82	86	93	88	81	81	79	92	7 8
2000	82	82	81	14	78	83	92	96	29	79	7.8	15	77
6300	98	83	80	81	82	83	90	85	80	81	81	81	77
8000	81	80	80	83	81	80	88	83	80	80	83	83	6.8
10000	78	78	92	69	78	79	87	80	74	73	73	20	7.5
12500	62	4	22	69	11	29	86	29	73	72	72	67	7.1
16000	78	7.8	14	49	15	92	8 4	7.8	20	20	7.0	69	69

TABLE: MEASURED 2 OCTAVE BA	SOUND	RESSUR	PRESSURE LEVEL	(08)) IDEN	IDENTIFICATION:
NOISE SOURCE/SUBJE T-38A AIRCRAFT INFLIGHT NOISE L	JBJECT: FT SE LEVELS		OPE RATION:	a N								RUN 10	1651 (1-014-056 RUN 01 10 JAN 75 PAGE J1
FREG (HZ)	1/A	1/8	1/6	170	1/E	LOCATIC	OCATION/CONDITION	17.H	121	3	1, X	1,1	, , F
31.5	92	46	76	46	95	91	9.0	90	9.0	91	83	84	48
63	96	26	66	66	91	98	85	85	84	85	7.8	79	81
125	93	93	93	91	96	46	16	46	46	66	95	95	46
250	91	95	93	93	66	96	96	96	96	16	98	88	88
200	94	88	89	88	36	76	100	102	103	102	89	76	93
1000	98	98	88	87	76	95	66	101	103	102	89	93	91
2000	88	91	93	93	9.0	76	101	101	102	104	87	95	89
0000	92	97	26	102	98	91	16	96	66	101	82	87	83
8000	66	66	86	100	83	88	76	95	95	96	17	81	7.8
16000	96	91	91	93	92	94	91	85	85	91	72	52	73
OVERALL	104	104	105	106	103	103	107	108	109	109	96	100	66

.

7	OCTAVE BAND		13. 14. 14. 14. 14. 14. 14. 14. 14. 14. 14									ON	OMEGA 3.2
NOISE SOURCE/SUBJECT!	ECT :	-	OPE RATION :	. NO			-) TEST 71-014-052)
T-38A AIRCRAFT Inflight noise L	LEVELS											10 10 PA	10 JAN 75 PAGE J2
FREQ (HZ)	TVN	1/P	1/0	1/8	1/8	LOCATION/CONDITION	1/U	1110N	3	ž	5	2/1	1/AA
31.5	89	80	88	95	76	96	92	9.0	88	68	16	66	66
63	82	83	83	88	69	85	98	85	83	9.4	95	95	91
125	96	16	26	66	100	46	100	66	86	26	100	100	66
250	91	76	95	26	98	95	66	76	95	93	96	95	68
200	95	95	93	90	93	93	98	96	93	36	92	96	82
1000	95	95	76	98	76	76	100	26	36	91	68	98	7.8
2000	96	76	95	82	92	92	100	26	06	89	98	82	7.9
0004	06	88	87	80	89	89	96	95	85	85	83	8 0	85
8000	87	98	78	85	85	85	93	87	83	84	85	85	06
16000	81	82	11	29	62	81	88	82	22	4.2	14	69	7.2
					,				,		,,,,		

3												OMEGA	A
NOISE SOURCE/SUBJECT! T-38A AIRCRAFT INFLIGHT NOISE LEVE	CT &		OPERATIONS	* × × 0								28 A	17 71-014-052 01 APR 76
												PAGE	E H1
	1/A	178	9,1	170	1/E	LOCATION/CONDITION	0N/C0N	DITION 1/H	1/1	1,7	1/K	3	1/#
HAZARD/PROTECTION C-WEIGHTED OVERALL S A-WEIGHTED OVERALL S MAXIMUM PERMISSIBLE NO PROTECTION	υ, υ, _ω		LEVEL (O) LEVEL (O) (T IN MIN	(OASLC I	(OASLC IN DBC) A (OASLA IN DBA) A MINUTES) FOR ONE	A A A	SURE	PER DAY	(AFR	161-35,	JULY	13)	
OASLC	102	103		105	103	103	107	108	108	109	96	66	66
OASLA	100	102		105	96	100	106	107	108	109	93	98	96
	30	21		13	42	30	11	6	•		101	42	90
ELMET	HITH H-1	-154		1									
DASLA	6	6	96	95	88	69	36	26	36	93	81	40	70
HGII-2A/P HEI MET WE	MITH H-15	546		150	2 * 2	707	150	150	150		100	00+	000
	81	81			48	85	86	87	88		92	80	62
	807	807		619	4 80	101	339	285	240	285	096	096	096
HGU-2A/P HELMET WI	WITH CUSTON	104	Z		6	16	6	101	13		8	6	5
-	285	240	170	202	101	92	36	52	52	52	240	120	143
COMMUNICATION PREFERRED SPEECH PSIL	INTERFERENCE 86 89	FERE	NCE LEVEL	EL (PSIL 89		IN DB) 92 95	100	102	102	102	8	86	91
ANNOYANCE PERCEIVED NOISE	LEVEL,)TEO (CORRECTED (PNLT IN	N PNOB							
PNLT PNLT C	115 IN	119 2	119	121	112	115	121	121	122	123	108	112	110

m) OMEGA	•
NOISE SOURCE/SUBJEC	CT :		OPERATION :	NOI			~					RUN .	T 71-014-052 02
T-38A AIRCRAFT INFLIGHT NOISE LE	EVELS											28 AI PAGE	APR 76
	, i	1,8	1/4	2	1/8	LOCATION/CONDITION	1/C	01110N 1/V	3	×	7	1/2	1/AA
HAZARD/PROTECTION C-WEIGHTED OVERALL A-WEIGHTED OVERALL	ALL	SOUND L	111	COASLC I	ZZ	44	EAR						
NO PROTECTION	181		IH NI L	MINUTES	FOR ONE		SURE	PER DAT	ATR	52,	-	73)	
OASLC	102	102	7	102	104	102	107	105	101	101	103	103	102
OASLA	101	100	86.	93	66	66	106	103	26			93	26
HGU-2A/P HELMET	WITH H-154	154		101	9	9	:	01	20			101	150
OASLA*	87	87	88	68	96	88	93	68	98			88	85
-	285	285	~	202	170	240	101	202	339	339	202	240	101
HGU-ZA/P HELMET	MITH H-154(A)	154(A			9	à		9					•
UASLAT	629	571	100	100	339	100	240	t 0 1	629	629	100	100	096
HGU-2A/P HELMET	E	-	LIN										
DASLA*		76		91	46	93	66	97	95	91	95	90	85
-	92	85		143	82	101	36	20	120	143		170	101
COMMUNICATION PREFERRED SPEECH		RERE	INTERFERENCE LEVEL			18)							
PSIL	95	96	93	98	93	93	100	46	95	91	69	98	80
ANNOYANCE DEDCETVED NOTSE	EVEL.	TONE	1000	CTED	T T ING , CETTING	GONO							
TONE CORRECTION		_	ב בפתחה										
PNLT		114	113	109	114	113	121	117	112	111	111	110	111