rpractice

November 2, 2017

	ı
time	num
0	0
5	1
10	3
15	1
20	1
25	2
30	4
35	5
40	5
45	4
50	7
55	5
60	4
65	6
70	5
75	8
80	4
85	6
90	5
95	4
100	3
105	6
110	5
115	4
120	5
120	5

In [3]: summary(qd)

time		nu	num	
Min.	:	0	Min.	:0.00
1st Qu	. :	30	1st Qu.	:3.00
Median	:	60	Median	:4.00
Mean	:	60	Mean	:4.12
3rd Qu	. :	90	3rd Qu.	:5.00

Max. :120 Max. :8.00

In [4]: names(qd)

1. 'time' 2. 'num'

In [5]: attach(qd)

In [6]: hist(num)

Histogram of num

In [7]: hist(num, breaks = -0.5 + (0:9))

Histogram of num

In [8]: boxplot(num)


```
In [9]: hist( num, breaks = -0.5 + (0.9), probability=T ) lines( density ( num ), col="red" )
```

Histogram of num

In [10]: plot(num \sim time)

In [11]: plot(num ~ time, type="l")


```
In [13]: plot( num ~ time, type="l" )
    abline( 0, 0.1, col="green" )
    lines( lowess( num ~ time ), col="red" )
```



```
In [14]: plot ( num ~ time, type="l", ylim=range(0:50) )
    abline( 0, 0.1, col="green" )
    lines( lowess( num ~ time ), col="red" )
```


In [16]: source ("script.txt")

In [17]: cor(qd)

	time	num
	1.0000000	
num	0.5878401	1.0000000

In [18]: data(swiss)

In [19]: cor(swiss)

	Fertility	Agriculture	Examination	Education	Catholic	Infant.Mortality
Fertility	1.0000000	0.35307918	-0.6458827	-0.66378886	0.4636847	0.41655603
Agriculture	0.3530792	1.00000000	-0.6865422	-0.63952252	0.4010951	-0.06085861
Examination	-0.6458827	-0.68654221	1.0000000	0.69841530	-0.5727418	-0.11402160
Education	-0.6637889	-0.63952252	0.6984153	1.00000000	-0.1538589	-0.09932185
Catholic	0.4636847	0.40109505	-0.5727418	-0.15385892	1.0000000	0.17549591
Infant.Mortality	0.4165560	-0.06085861	-0.1140216	-0.09932185	0.1754959	1.00000000

In [20]: pairs(swiss)


```
output
                 setup
Min.
       :27.20
                 A:10
 1st Qu.:30.43
                 B:10
Median :32.05
Mean :32.34
 3rd Qu.:34.02
        :38.30
Max.
In [22]: table(setup)
setup
A B
10 10
In [23]: tapply( output, setup, summary)
$A
  Min. 1st Qu. Median
                          Mean 3rd Qu.
                                           Max.
 28.60
          30.27
                 31.10
                          31.01
                                  31.70
                                          33.00
$B
                          Mean 3rd Qu.
  Min. 1st Qu. Median
                                           Max.
 27.20
          33.12
                 34.25
                          33.66
                                  35.70
                                          38.30
In [24]: boxplot( output ~ setup )
```



```
(Intercept) 2.236923
                       0.630417
                                  3.548 0.00171 **
time
            0.031385
                       0.009006
                                  3.485 0.00200 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1
Residual standard error: 1.624 on 23 degrees of freedom
Multiple R-squared: 0.3456, Adjusted R-squared: 0.3171
F-statistic: 12.14 on 1 and 23 DF, p-value: 0.002
In [36]: plot( num ~ time, type="1" )
         lines( predict(qdlm1) ~ time , col="red" )
         qdlm2 <- lm ( num ~ poly( time, 2) )
         lines( predict(qdlm2) ~ time , col="blue" )
         qdlm3 <- lm ( num ~ poly( time, 3) )
         lines( predict(qdlm3) ~ time , col="green" )
         qdlm0 \leftarrow lm (num \sim 1)
         lines( predict(qdlm0) ~ time , col="gray" )
```


In [37]: AIC(qdlm0, qdlm1, qdlm2, qdlm3)

	df	AIC
qdlm0	2	107.69306
qdlm1	3	99.09382
qdlm2	4	86.40741
qdlm3	5	87.80793

```
In [40]: fdlm1 <- lm ( output ~ setup )
     fdlm0 <- lm ( output ~ 1 )
     summary(fdlm1)</pre>
```

Call:

lm(formula = output ~ setup)

Residuals:

Min 1Q Median 3Q Max -6.4600 -0.6225 0.2650 1.4025 4.6400

Coefficients:

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 2.554 on 18 degrees of freedom Multiple R-squared: 0.2303, Adjusted R-squared: 0.1875 F-statistic: 5.385 on 1 and 18 DF, p-value: 0.03226

In [41]: AIC(fdlm0, fdlm1)

	df	AIC
fdlm0	2	101.38429
fdlm1	3	98.15003

In [43]: early <- qd[time < 60, c(1:2)]
 early <- qd[time < 60,]
 qthree <- qd[num == 3, c(names(qd))]
 early</pre>

time	num
0	0
5	1
10	3
15	1
20	1
25	2
30	4
35	5
40	5
45	4
50	7
55	5

In [44]: ls()

1. 'early' 2. 'fd' 3. 'fdlm0' 4. 'fdlm1' 5. 'net' 6. 'qd' 7. 'qdlm0' 8. 'qdlm1' 9. 'qdlm2' 10. 'qdlm3' 11. 'rawx' 12. 'rawy' 13. 'swiss' 14. 'volcano'

1. 100 2. 110 3. 120 4. 130