Bacheca

A.A. & V.V. Università di Torino February 2019

Abstract Poche idee ben confuse.

- 1 Introduction
- 2 Preliminaries
- 3 Global samples

Fix a tuple of variables x and let $\bar{x} = \langle x_i : i < \omega \rangle$, where $|x_i| = |x|$. For $p(\bar{x}) \in S(\mathcal{U})$ and $q(x) \subseteq L(\mathcal{U})$ we define

If $p(\bar{x})$ is the type containing $\bar{x} = \bar{a}$ for some $\bar{a} \in \mathcal{U}^{|x| \cdot \omega}$, we write $\operatorname{Av}_{\bar{a} \upharpoonright n} q(x)$.

3.1 Definition We say that $p(\bar{x}) \in S(\mathcal{U})$ is a global sample if the limit below exists for every formula $\varphi(x) \in L(\mathcal{U})$.

Qualche esempio in cui il limite non esiste?

- **3.2 Proposition** If $p(\bar{x})$ is a global sample, then $\lim_{n\to\infty} \operatorname{Av}_{p\upharpoonright n} q(x)$ exists for any $q(x)\subseteq L(\mathfrak{U})$. **Proof** ???
- **3.3 Definition** Let $\bar{x} = \langle x_i : i < \omega \rangle$ and $|x_i| = |x|$. We say that the type $p(\bar{x}) \in S(\mathfrak{U})$ is a uniform global sample if it is a global sample and for every $\varphi(x,z) \in L$, every $b \in \mathfrak{U}^{|z|}$, and every $\varepsilon > 0$, there is an n such that $\operatorname{Av}_{p \upharpoonright n} \varphi(x,b)$ is within ε from $\operatorname{Av}_p \varphi(x,b)$ for all $b \in \mathfrak{U}^{|z|}$.

Qualche esempio in cui l'uniformità è rilevante?

- **3.4 Proposition** Let $\bar{x} = \langle x_i : i < \omega \rangle$ and $|x_i| = |x|$ and let $p(\bar{x}) \in S(\mathcal{U})$. Then the following are equivalent
 - 1. $p(\bar{x})$ is a uniform global sample;
 - 2. for every $\varepsilon > 0$, there is an n and a formula $\vartheta(\bar{x}) \in p$ such that $\operatorname{Av}_n(\bar{a}; \varphi(x, b))$ is within ε from $\operatorname{Av}(p; \varphi(x, b))$ for all $b \in \mathcal{U}^{|z|}$ and all $\bar{a} \models \vartheta(\bar{x})$.

Proof ???

Note that, if $p(\bar{x})$ is definable, say over M, then there is a formula $\psi_{m/n}(z) \in L(M)$ such that

$$\psi_{m/n}(z) \Leftrightarrow \operatorname{Av}_n(p(\bar{x}); \varphi(x,z)) = \frac{m}{n}.$$

Assume that $p(\bar{x})$ is a global sample finitely satisfied in M. Then, under the assumptions of the proposition above, for every $\varepsilon > 0$ there is an n and a tuple $\bar{a} \in M^{|x| \cdot n}$ such that $\operatorname{Av}_n(\bar{a}; \varphi(x, b))$ is within ε from $\operatorname{Av}(p; \varphi(x, b))$ for all $b \in \mathcal{U}^{|z|}$.

Let $p(\bar{x})$ be as above. Let $q'(x) = q(x) \cup \{\varphi(x)\}$ for some $q(x) \in S(M)$ and $\varphi(x) \in L(\mathcal{U})$. Then Av(p;q'(x)) exists and is either 0 or 1.

4 References

- [1] Pandelis Dodos and Vassilis Kanellopoulos, *Ramsey theory for product spaces*, Mathematical Surveys and Monographs, vol. 212, American Mathematical Society, 2016.
- [2] Domenico Zambella, *A crèche course in model theory*, AMS Open Math Notes, 2018. (The link points to the github version).