# NAVMAN

# NMEA Reference Manual

Navman NZ Limited Level 3 BNZ House 129 Hereford Street PO Box 4216 Christchurch, New Zealand Tel: +64 3 379 3859

Fax: +64 3 379 3860 www.navman.com

This document contains proprietary information to SiRF Technology, Inc. and shall not be reproduced or transferred to other documents or disclosed to others or used for any purpose other than that for which it was obtained without expressed written consent of SiRF Technology, Inc.



# NMEA Reference Manual

#### © 2004 Navman NZ Ltd. All Rights Reserved.

Information in this document is provided in connection with Navman NZ Ltd. ("Navman") products. These materials are provided by Navman as a service to its customers and may be used for informational purposes only. Navman assumes no responsibility for errors or omissions in these materials. Navman may make changes to specifications and product descriptions at any time, without notice. Navman makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Navman's Terms and Conditions of Sale for such products, Navman assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, RELATING TO SALE AND/OR USE OF NAVMAN PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTALDAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. NAVMAN FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. NAVMAN SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULTFROM THE USE OF THESE MATERIALS.

Navman products are not intended for use in medical, lifesaving or life sustaining applications. Navman customers using or selling Navman products for use in such applications do so at their own risk and agree to fully indemnify Navman for any damages resulting from such improper use or sale. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are property of their respective owners. Additional information, posted at www.Navman.com, is incorporated by reference. Reader Response: Navman strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to tech.pubs@Navman.com. For technical questions, contact your local Navman sales office or applications engineer.

# Contents

| Preface                                      | ix  |
|----------------------------------------------|-----|
| 1. Output Messages                           | 1-3 |
| GGA —Global Positioning System Fixed Data    | 1-2 |
| GLL—Geographic Position - Latitude/Longitude | 1-3 |
| GSA—GNSS DOP and Active Satellites           | 1-3 |
| GSV—GNSS Satellites in View                  | 1-4 |
| MSS—MSK Receiver Signal                      | 1-4 |
| RMC—Recommended Minimum Specific GNSS Data   | 1-: |
| VTG—Course Over Ground and Ground Speed      | 1-: |
| ZDA—SiRF Timing Message                      | 1-0 |
| 150—OkToSend                                 | 1-0 |
| 2. Input Messages                            | 2-  |
| Transport Message                            | 2-  |
| NMEA Input Messages                          | 2-2 |
| 100 SatSarialDart                            | 2 ′ |

| 101—NavigationInitialization    | 2-3 |
|---------------------------------|-----|
| 102—SetDGPSPort                 | 2-4 |
| 103—Query/Rate Control          | 2-5 |
| 104—LLANavigationInitialization | 2-6 |
| 105—Development Data On/Off     | 2-7 |
| 106—Select Datum                | 2-7 |
| MSK—MSK Receiver Interface      | 2-9 |

# **Tables**

| Table 1-1  | NMEA Output Messages           | 1-1 |
|------------|--------------------------------|-----|
| Table 1-2  | Supported NMEA output messages | 1-1 |
| Table 1-3  | GGA Data Format                | 1-2 |
| Table 1-4  | Position Fix Indicator         | 1-2 |
| Table 1-5  | GLL Data Format                | 1-3 |
| Table 1-6  | GSA Data Format                | 1-3 |
| Table 1-7  | Mode 1                         | 1-3 |
| Table 1-9  | GSV Data Format                | 1-4 |
| Table 1-10 | MSS Data Format                | 1-4 |
| Table 1-8  | Mode 2                         | 1-4 |
| Table 1-11 | RMC Data Format                | 1-5 |
| Table 1-12 | VTG Data Format                | 1-5 |
| Table 1-13 | ZDA Data Format                | 1-6 |
| Table 1-14 | OkToSend Message Data Format   | 1-6 |
| Table 2-1  | Supported NMEA input messages  | 2-2 |
| Table 2-2  | Set Serial Port Data Format    | 2-3 |

| Table 2-3  | Navigation Initialization Data Format          | 2-3 |
|------------|------------------------------------------------|-----|
| Table 2-4  | Reset Configuration - Non SiRFLoc Platforms    | 2-4 |
| Table 2-5  | Reset Configuration - SiRFLoc Specific         | 2-4 |
| Table 2-6  | Set DGPS Port Data Format                      | 2-4 |
| Table 2-7  | Query/Rate Control Data Format (See example 1) | 2-5 |
| Table 2-8  | Messages                                       | 2-5 |
| Table 2-9  | LLA Navigation Initialization Data Format      | 2-6 |
| Table 2-10 | Reset Configuration                            | 2-7 |
| Table 2-11 | Development Data On/Off Data Format            | 2-7 |
| Table 2-12 | Select Datum Data Format                       | 2-7 |
| Table 2-13 | RMC Data Format                                | 2-9 |

# Preface



All SiRF product support a subset of the NMEA-0183 standard for interfacing marine electronic devices as defined by the National Marine Electronics Association.

The *NMEA Reference Manual* provides details of NMEA messages developed and defined by SiRF. It does not provide information about the complete NMEA-0183 interface standard.

#### Who Should Use This Guide

This manual was written assuming the user has a basic understanding of interface protocols and their use.

## How This Guide Is Organized

Chapter 1, "Output Messages" defines SiRF developed NMEA output messages.

Chapter 2, "Input Messages" defines SiRF developed NMEA input messages.

#### Related Manuals

You can refer to the following for more information:

• NMEA-0183 Standard For Interfacing Marine Electronic Devices.



## Navman OEM Contacts

#### America (UTC – 8 hours)

#### Navman USA

27142 Burbank Foothill Ranch, CA 92610 USA

Telephone: +1 949 461 7150 Facsimile: +1 949 461 7860

Sales: oemsales.americas@navman.com
Technical Support: oemsupport.americas@navman.com

#### **EMEA** – Europe, Middle-East and Africa (UTC)

#### Navman Europe

4G Gatwick House Peeks Brook Lane Horley, Surrey RH6 9ST United Kingdom

Telephone: +44 1293 780 500 Facsimile: +44 1293 780 065

Sales: emea.oemsales@navman.com
Technical Support: emea.oemsupport@navman.com

#### **APAC – Asia / Pacific** (UTC + 12 hours)

#### Navman NZ

Level 3 BNZ Building 129 Hereford Street PO Box 4216 Christchurch New Zealand

Telephone: +64 3 379 3859 Facsimile: +64 3 379 3860

Sales: apac.oemsales@navman.com
Technical Support: apac.oemsupport@navman.com

#### Global

Marketing: global.oemmarketing@navman.com
Ordering and Logistics: global.oemlogistics@navman.com
Feedback: global.oemfeedback@navman.com



Table 1-1 lists each of the NMEA output messages specifically developed and defined by SiRF for use within SiRF products.

Table 1-1 NMEA Output Messages

| Option | Description                                                                                    |
|--------|------------------------------------------------------------------------------------------------|
| GGA    | Time, position and fix type data.                                                              |
| GLL    | Latitude, longitude, UTC time of position fix and status.                                      |
| GSA    | GPS receiver operating mode, satellites used in the position solution, and DOP values.         |
| GSV    | The number of GPS satellites in view satellite ID numbers, elevation, azimuth, and SNR values. |
| MSS    | Signal-to-noise ratio, signal strength, frequency, and bit rate from a radio-beacon receiver.  |
| RMC    | Time, date, position, course and speed data.                                                   |
| VTG    | Course and speed information relative to the ground.                                           |
| ZDA    | PPS timing message (synchronized to PPS)                                                       |
| 150    | OK to send message                                                                             |

A full description and definition of the listed NMEA messages are provided by the next sections of this chapter.

Table 1-2 provides a summary of supported SiRF NMEA output messages by the specific SiRF platforms.

Table 1-2 Supported NMEA output messages

|         | SiRF Software Options |           |         |  |
|---------|-----------------------|-----------|---------|--|
| Message | GSW2                  | SiRFXTrac | SiRFLoc |  |
| GGA     | Yes                   | Yes       | Yes     |  |
| GLL     | Yes                   | Yes       | Yes     |  |
| GSA     | Yes                   | Yes       | Yes     |  |
| GSV     | Yes                   | Yes       | Yes     |  |
| MSS     | Yes                   | No        | No      |  |

Table 1-2 Supported NMEA output messages

|         | SiRF Software Options |           |         |  |
|---------|-----------------------|-----------|---------|--|
| Message | GSW2                  | SiRFXTrac | SiRFLoc |  |
| RMC     | Yes                   | Yes       | Yes     |  |
| VTG     | Yes                   | Yes       | Yes     |  |
| ZDA     | 2.3.2 and above       | No        | No      |  |
| 150     | 2.3.2 and above       | No        | No      |  |

# GGA — Global Positioning System Fixed Data

Table 1-3 contains the values for the following example:

 $\$GPGGA, 161229.487, 3723.2475, N, 12158.3416, W, 1, 07, 1.0, 9.0, M, \ , \ , 0000*18$ 

Table 1-3 GGA Data Format

| Name                   | Example    | Units  | Description                       |
|------------------------|------------|--------|-----------------------------------|
| Message ID             | \$GPGGA    |        | GGA protocol header               |
| UTC Time               | 161229.487 |        | hhmmss.sss                        |
| Latitude               | 3723.2475  |        | ddmm.mmmm                         |
| N/S Indicator          | N          |        | N=north or S=south                |
| Longitude              | 12158.3416 |        | dddmm.mmmm                        |
| E/W Indicator          | W          |        | E=east or W=west                  |
| Position Fix Indicator | 1          |        | See Table 1-4                     |
| Satellites Used        | 07         |        | Range 0 to 12                     |
| HDOP                   | 1.0        |        | Horizontal Dilution of Precision  |
| MSL Altitude           | 9.0        | meters |                                   |
| Units                  | M          | meters |                                   |
| Geoid Separation       |            | meters |                                   |
| Units                  | M          | meters |                                   |
| Age of Diff. Corr.     |            | second | Null fields when DGPS is not used |
| Diff. Ref. Station ID  | 0000       |        |                                   |
| Checksum               | *18        |        |                                   |
| <cr> <lf></lf></cr>    |            |        | End of message termination        |

Table 1-4 Position Fix Indicator

| Value | Description                           |
|-------|---------------------------------------|
| 0     | Fix not available or invalid          |
| 1     | GPS SPS Mode, fix valid               |
| 2     | Differential GPS, SPS Mode, fix valid |
| 3-5   | Not supported                         |
| 6     | Dead Reckoning Mode, fix valid        |

 $\label{eq:Note-A} \textbf{Note} - \textbf{A} \ valid \ position \ fix \ indicator \ is \ derived \ from \ the \ SiRF \ Binary \ M.I.D. \ 2 \ position \ mode \ 1. \ See \ the \ SiRF \ Binary \ Reference \ Manual.$ 

# GLL—Geographic Position - Latitude/Longitude

Table 1-5 contains the values for the following example:

GPGLL, 3723.2475,N,12158.3416,W,161229.487,A,A\*41

Table 1-5 GLL Data Format

| Name                | Example    | Units | Description                      |
|---------------------|------------|-------|----------------------------------|
| Message ID          | \$GPGLL    |       | GLL protocol header              |
| Latitude            | 3723.2475  |       | ddmm.mmmm                        |
| N/S Indicator       | N          |       | N=north or S=south               |
| Longitude           | 12158.3416 |       | dddmm.mmmm                       |
| E/W Indicator       | W          |       | E=east or W=west                 |
| UTC Time            | 161229.487 |       | hhmmss.sss                       |
| Status              | A          |       | A=data valid or V=data not valid |
| Mode                | A          |       | A=Autonomous, D=DGPS, E=DR       |
| Checksum            | *41        |       |                                  |
| <cr> <lf></lf></cr> |            |       | End of message termination       |

#### GSA—GNSS DOP and Active Satellites

Table 1-6 contains the values for the following example:

\$GPGSA,A,3,07,02,26,27,09,04,15, , , , , ,1.8,1.0,1.5\*33

Table 1-6 GSA Data Format

| Name                        | Example | Units | Description                      |
|-----------------------------|---------|-------|----------------------------------|
| Message ID                  | \$GPGSA |       | GSA protocol header              |
| Mode 1                      | A       |       | See Table 1-7                    |
| Mode 2                      | 3       |       | See Table 1-8                    |
| Satellite Used <sup>1</sup> | 07      |       | Sv on Channel 1                  |
| Satellite Used <sup>1</sup> | 02      |       | Sv on Channel 2                  |
| ••••                        |         |       |                                  |
| Satellite Used <sup>1</sup> |         |       | Sv on Channel 12                 |
| PDOP                        | 1.8     |       | Position Dilution of Precision   |
| HDOP                        | 1.0     |       | Horizontal Dilution of Precision |
| VDOP                        | 1.5     |       | Vertical Dilution of Precision   |
| Checksum                    | *33     |       |                                  |
| <cr> <lf></lf></cr>         |         |       | End of message termination       |

<sup>1.</sup> Satellite used in solution.

Table 1-7 Mode 1

| Value | Description                                       |
|-------|---------------------------------------------------|
| M     | Manual—forced to operate in 2D or 3D mode         |
| A     | 2DAutomatic—allowed to automatically switch 2D/3D |

Output Messages 1-3

Table 1-8 Mode 2

| Value | Description       |
|-------|-------------------|
| 1     | Fix Not Available |
| 2     | 2D (<4SV's used)  |
| 3     | 3D (>3SV's used)  |

## GSV—GNSS Satellites in View

Table 1-9 contains the values for the following example:

\$GPGSV,2,1,07,07,79,048,42,02,51,062,43,26,36,256,42,27,27,138,42\*71

\$GPGSV,2,2,07,09,23,313,42,04,19,159,41,15,12,041,42\*41

Table 1-9 GSV Data Format

| Name                            | Example | Units   | Description                           |
|---------------------------------|---------|---------|---------------------------------------|
| Message ID                      | \$GPGSV |         | GSV protocol header                   |
| Number of Messages <sup>1</sup> | 2       |         | Range 1 to 3                          |
| Message Number <sup>1</sup>     | 1       |         | Range 1 to 3                          |
| Satellites in View              | 07      |         |                                       |
| Satellite ID                    | 07      |         | Channel 1 (Range 1 to 32)             |
| Elevation                       | 79      | degrees | Channel 1 (Maximum 90)                |
| Azimuth                         | 048     | degrees | Channel 1 (True, Range 0 to 359)      |
| SNR (C/No)                      | 42      | dBHz    | Range 0 to 99, null when not tracking |
| ••••                            |         |         |                                       |
| Satellite ID                    | 27      |         | Channel 4 (Range 1 to 32)             |
| Elevation                       | 27      | degrees | Channel 4 (Maximum 90)                |
| Azimuth                         | 138     | degrees | Channel 4 (True, Range 0 to 359)      |
| SNR (C/No)                      | 42      | dBHz    | Range 0 to 99, null when not tracking |
| Checksum                        | *71     |         |                                       |
| <cr> <lf></lf></cr>             |         |         | End of message termination            |

 $<sup>1.\</sup> Depending\ on\ the\ number\ of\ satellites\ tracked\ multiple\ messages\ of\ GSV\ data\ may\ be\ required.$ 

# MSS—MSK Receiver Signal

Table 1-10 contains the values for the following example:

\$GPMSS, 55,27,318.0,100,1,\*57

Table 1-10 MSS Data Format

| Name                  | Example | Units | Description                                                                      |
|-----------------------|---------|-------|----------------------------------------------------------------------------------|
| Message ID            | \$GPMSS |       | MSS protocol header                                                              |
| Signal Strength       | 55      | dB    | SS of tracked frequency                                                          |
| Signal-to-Noise Ratio | 27      | dB    | SNR of tracked frequency                                                         |
| Beacon Frequency      | 318.0   | kHz   | Currently tracked frequency                                                      |
| Beacon Bit Rate       | 100     |       | bits per second                                                                  |
| Channel Number        | 1       |       | The channel of the beacon being used if a multi-channel beacon receiver is used. |
| Checksum              | *57     |       |                                                                                  |
| <cr> <lf></lf></cr>   |         |       | End of message termination                                                       |

**Note** – The MSS NMEA message can only be polled or scheduled using the MSK NMEA input message. See "MSK—MSK Receiver Interface" on page 2-9.

## RMC—Recommended Minimum Specific GNSS Data

Table 1-11 contains the values for the following example:

\$GPRMC, 161229.487, A, 3723.2475, N, 12158.3416, W, 0.13, 309.62, 120598, ,\*10

Table 1-11 RMC Data Format

| Name                            | Example    | Units   | Description                      |
|---------------------------------|------------|---------|----------------------------------|
| Message ID                      | \$GPRMC    |         | RMC protocol header              |
| UTC Time                        | 161229.487 |         | hhmmss.sss                       |
| Status <sup>1</sup>             | A          |         | A=data valid or V=data not valid |
| Latitude                        | 3723.2475  |         | ddmm.mmmm                        |
| N/S Indicator                   | N          |         | N=north or S=south               |
| Longitude                       | 12158.3416 |         | dddmm.mmmm                       |
| E/W Indicator                   | W          |         | E=east or W=west                 |
| Speed Over Ground               | 0.13       | knots   |                                  |
| Course Over Ground              | 309.62     | degrees | True                             |
| Date                            | 120598     |         | ddmmyy                           |
| Magnetic Variation <sup>2</sup> |            | degrees | E=east or W=west                 |
| Checksum                        | *10        |         |                                  |
| <cr> <lf></lf></cr>             |            |         | End of message termination       |

 $<sup>1.\</sup> A\ valid\ status\ is\ derived\ from\ the\ SiRF\ Binary\ M.I.D\ 2\ position\ mode\ 1.\ See\ the\ SiRF\ Binary\ Reference\ Manual.$ 

# VTG—Course Over Ground and Ground Speed

Table 1-12 contains the values for the following example:

GPVTG, 309.62,T, ,M,0.13,N,0.2,K,A\*23

Table 1-12 VTG Data Format

| Name                | Example | Units   | Description                |
|---------------------|---------|---------|----------------------------|
| Message ID          | \$GPVTG |         | VTG protocol header        |
| Course              | 309.62  | degrees | Measured heading           |
| Reference           | T       |         | True                       |
| Course              |         | degrees | Measured heading           |
| Reference           | M       |         | Magnetic <sup>1</sup>      |
| Speed               | 0.13    | knots   | Measured horizontal speed  |
| Units               | N       |         | Knots                      |
| Speed               | 0.2     | km/hr   | Measured horizontal speed  |
| Units               | K       |         | Kilometers per hour        |
| Mode                | A       |         | A=Autonomous, D=DGPS, E=DR |
| Checksum            | *23     |         |                            |
| <cr> <lf></lf></cr> |         |         | End of message termination |

Output Messages 1-5

SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

 SiRF Technology Inc. does not support magnetic declination. All "course over ground" data are geodetic WGS84 directions.

## ZDA—SiRF Timing Message

Outputs the time associated with the current 1 PPS pulse. Each message will be output within a few hundred ms after the 1 PPS pulse is output and will tell the time of the pulse that just occurred.

Table 1-13 contains the values for the following example:

\$GPZDA,181813,14,10,2003,00,00\*4F

Table 1-13 ZDA Data Format

| Name                | Example | Units | Description                                                        |
|---------------------|---------|-------|--------------------------------------------------------------------|
| Message ID          | \$GPZDA |       | ZDA protocol header                                                |
| UTC Time            | 181813  |       | Either using valid IONO/UTC or estimated from default leap seconds |
| Day                 | 14      |       | 01 TO 31                                                           |
| Month               | 10      |       | 01 TO 12                                                           |
| Year                | 2003    |       | 1980 to 2079                                                       |
| Local zone hour     | 00      | knots | Offset from UTC (set to 00)                                        |
| Local zone minutes  | 00      |       | Offset from UTC (set to 00)                                        |
| Checksum            |         |       |                                                                    |
| <cr> <lf></lf></cr> |         |       | End of message termination                                         |

#### 150—OkToSend

This message is being sent out during the trickle power mode to communicate with outside program such as SiRFDemo to indicate whether the receiver is awake or not.

Table 1-14 contains the values for the following example:

1. OkToSend

\$PSRF150,1\*3F

2. not OkToSend

\$PSRF150,0\*3E

Table 1-14 OkToSend Message Data Format

| Name                | Example   | Units | Description                    |
|---------------------|-----------|-------|--------------------------------|
| Message ID          | \$PSRF150 |       | PSRF150 protocol header        |
| OkToSend            | 1         |       | 1=OK to send, 0=not OK to send |
| Checksum            | *3F       |       |                                |
| <cr> <lf></lf></cr> |           |       | End of message termination     |

# Input Messages

NMEA input messages are provided to allow you to control the Evaluation Receiver while in NMEA protocol mode. The Evaluation Receiver may be put into NMEA mode by sending the SiRF Binary protocol message "Switch to NMEA Protocol - Message I.D. 129" (see the SiRF Binary Reference Manual). This can be done using a user program or using the SiRFdemo software and selecting Switch to NMEA Protocol from the Action menu (see the Evaluation Kit User's Guide). If the receiver is in SiRF Binary mode, all NMEA input messages are ignored. Once the receiver is put into NMEA mode, the following messages may be used to command the module.

# Transport Message

| Start Sequence      | Payload           | Checksum            | End Sequence                    |
|---------------------|-------------------|---------------------|---------------------------------|
| \$PSRF <mid>1</mid> | Data <sup>2</sup> | *CKSUM <sup>3</sup> | <CR $>$ $<$ LF $>$ <sup>4</sup> |

- $1.\ Message\ Identifier\ consisting\ of\ three\ numeric\ characters.\ Input\ messages\ begin\ at\ MID\ 100.$
- $2.\ Message\ specific\ data.\ Refer\ to\ a\ specific\ message\ section\ for\ <\! data \!> ... <\! data \!> definition.$
- CKSUM is a two-hex character checksum as defined in the NMEA specification. Use of checksums is required on all input messages.
- 4. Each message is terminated using Carriage Return (CR) Line Feed (LF) which is \r\n which is \ext{ hc }0D 0A. Because \r\n are not printable ASCII characters, they are omitted from the example strings, but must be sent to terminate the message and cause the receiver to process that input message.

**Note** – All fields in all proprietary NMEA messages are required, none are optional. All NMEA messages are comma delimited.

#### NMEA Input Messages

| Message                     | $MID^1$ | Description                                                  |  |
|-----------------------------|---------|--------------------------------------------------------------|--|
| SetSerialPort               | 100     | Set PORT A parameters and protocol                           |  |
| NavigationInitialization    | 101     | Parameters required for start using X/Y/Z <sup>2</sup>       |  |
| SetDGPSPort                 | 102     | Set PORT B parameters for DGPS input                         |  |
| Query/Rate Control          | 103     | Query standard NMEA message and/or set output rate           |  |
| LLANavigationInitialization | 104     | Parameters required for start using Lat/Lon/Alt <sup>3</sup> |  |
| Development Data On/Off     | 105     | Development Data messages On/Off                             |  |
| Select Datum                | 106     | Selection of datum to be used for coordinate                 |  |
|                             |         | transformations.                                             |  |
| MSK Receiver Interface      | MSK     | Command message to a MSK radio-beacon receiver.              |  |

- 1. Message Identification (MID).
- 2. Input coordinates must be WGS84.
- 3. Input coordinates must be WGS84.

**Note** – NMEA input messages 100 to 106 are SiRF proprietary NMEA messages. The MSK NMEA string is as defined by the NMEA 0183 standard.

Table 2-1 provides a summary of supported SiRF NMEA input messages by the specific SiRF platforms.

Table 2-1 Supported NMEA input messages

|            | SiRF Software Options |           |         |  |
|------------|-----------------------|-----------|---------|--|
| Message ID | GSW2                  | SiRFXTrac | SiRFLoc |  |
| 100        | Yes                   | Yes       | Yes     |  |
| 101        | Yes                   | No        | Yes     |  |
| 102        | Yes                   | No        | No      |  |
| 103        | Yes                   | Yes       | Yes     |  |
| 104        | Yes                   | No        | Yes     |  |
| 105        | Yes                   | Yes       | Yes     |  |
| 106        | Yes                   | Yes       | Yes     |  |
| MSK        | Yes                   | No        | No      |  |

#### 100—SetSerialPort

This command message is used to set the protocol (SiRF Binary or NMEA) and/or the communication parameters (baud, data bits, stop bits, parity). Generally, this command is used to switch the module back to SiRF Binary protocol mode where a more extensive command message set is available. When a valid message is received, the parameters are stored in battery-backed SRAM and then the Evaluation Receiver restarts using the saved parameters.

Table 2-2 contains the input values for the following example:

Switch to SiRF Binary protocol at 9600,8,N,1 \$PSRF100,0,9600,8,1,0\*0C

Name Example Units Description Message ID \$PSRF100 PSRF100 protocol header Protocol 0=SiRF Binary, 1=NMEA 9600 4800, 9600, 19200, 38400 Baud DataBits  $8,7^{1}$ 8 StopBits 1 0.1 0=None, 1=Odd, 2=Even Parity 0 \*0C Checksum <CR> <LF> End of message termination

Table 2-2 Set Serial Port Data Format

## 101—NavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in X, Y, Z coordinates), clock offset, and time. This enables the Evaluation Receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the Evaluation Receiver to acquire signals quickly.

Table 2-3 contains the input values for the following example:

Start using known position and time.

\$P\$RF101,-2686700,-4304200,3851624,96000,497260,921,12,3\*1C

Table 2-3 Navigation Initialization Data Format

| Name                | Example   | Units   | Description                                          |
|---------------------|-----------|---------|------------------------------------------------------|
| Message ID          | \$PSRF101 |         | PSRF101 protocol header                              |
| ECEF X              | -2686700  | meters  | X coordinate position                                |
| ECEF Y              | -4304200  | meters  | Y coordinate position                                |
| ECEF Z              | 3851624   | meters  | Z coordinate position                                |
| ClkOffset           | 96000     | Hz      | Clock Offset of the Evaluation Receiver <sup>1</sup> |
| TimeOfWeek          | 497260    | seconds | GPS Time Of Week                                     |
| WeekNo              | 921       |         | GPS Week Number                                      |
| ChannelCount        | 12        |         | Range 1 to 12                                        |
| ResetCfg            | 3         |         | See Table 2-4 and Table 2-5                          |
| Checksum            | *1C       |         |                                                      |
| <cr> <lf></lf></cr> |           |         | End of message termination                           |

 $<sup>1.\</sup> Use\ 0\ for\ last\ saved\ value\ if\ available. If\ this\ is\ unavailable,\ a\ default\ value\ of\ 96,000\ will\ be\ used.$ 

<sup>1.</sup> SiRF protocol is only valid for 8 data bits, 1stop bit, and no parity.

Table 2-4 Reset Configuration - Non SiRFLoc Platforms

| Hex  | Description                                                                         |
|------|-------------------------------------------------------------------------------------|
| 0x01 | Hot Start— All data valid                                                           |
| 0x02 | Warm Start—Ephemeris cleared                                                        |
| 0x03 | Warm Start (with Init)—Ephemeris cleared, initialization data loaded                |
| 0x04 | Cold Start—Clears all data in memory                                                |
| 0x08 | Clear Memory—Clears all data in memory and resets receiver back to factory defaults |

Table 2-5 Reset Configuration - SiRFLoc Specific

| Hex  | Description                                                                                                      |
|------|------------------------------------------------------------------------------------------------------------------|
| 0x00 | Perform a hot start using internal RAM data. No                                                                  |
|      | initialization data will be used.                                                                                |
| 0x01 | Use initialization data and begin in start mode.                                                                 |
|      | Unceretainties are 5 sec time accuracy and 300 km position accuracy. Ephemeris data in SRAM is used.             |
| 0x02 | No initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM. |
| 0x03 | Initialization data is used, ephemeris data is cleared, and warm start performed using remaining data in RAM.    |
| 0x04 | No initialization data is used. Position, time and ephemeris are cleared and a cold start is performed.          |
| 0x08 | No initialization data is used. Internal RAM is cleared and a factory reset is performed.                        |

#### 102—SetDGPSPort

This command is used to control the serial port used to receive RTCM differential corrections. Differential receivers may output corrections using different communication parameters. If a DGPS receiver is used which has different communication parameters, use this command to allow the receiver to correctly decode the data. When a valid message is received, the parameters are stored in battery-backed SRAM and then the receiver restarts using the saved parameters.

Table 2-6 contains the input values for the following example:

Set DGPS Port to be 9600,8,N,1.

\$PSRF102,9600,8,1,0\*12

Table 2-6 Set DGPS Port Data Format

| Name                 | Example | Units | Description             |  |
|----------------------|---------|-------|-------------------------|--|
| Message ID \$PSRF102 |         |       | PSRF102 protocol header |  |

Table 2-6 Set DGPS Port Data Format

| Name                | Example | Units | Description                |
|---------------------|---------|-------|----------------------------|
| Baud                | 9600    |       | 4800, 9600, 19200, 38400   |
| DataBits            | 8       |       | 8,7                        |
| StopBits            | 1       |       | 0,1                        |
| Parity              | 0       |       | 0=None, 1=Odd, 2=Even      |
| Checksum            | *12     |       |                            |
| <cr> <lf></lf></cr> |         |       | End of message termination |

## 103—Query/Rate Control

This command is used to control the output of standard NMEA messages GGA, GLL, GSA, GSV, RMC, and VTG. Using this command message, standard NMEA messages may be polled once, or setup for periodic output. Checksums may also be enabled or disabled depending on the needs of the receiving program. NMEA message settings are saved in battery-backed memory for each entry when the message is accepted.

Table 2-7 contains the input values for the following examples:

- Query the GGA message with checksum enabled \$PSRF103,00,01,00,01\*25
- 2. Enable VTG message for a 1 Hz constant output with checksum enabled \$P\$RF103,05,00,01,01\*20
- 3. Disable VTG message \$PSRF103,05,00,00,01\*21

Table 2-7 Query/Rate Control Data Format (See example 1)

| Name                | Example   | Units   | Description                           |  |
|---------------------|-----------|---------|---------------------------------------|--|
| Message ID          | \$PSRF103 |         | PSRF103 protocol header               |  |
| Msg                 | 00        |         | See Table 2-8                         |  |
| Mode                | 01        |         | 0=SetRate, 1=Query                    |  |
| Rate                | 00        | seconds | Output—off=0, max=255                 |  |
| CksumEnable         | 01        |         | 0=Disable Checksum, 1=Enable Checksum |  |
| Checksum            | *25       |         |                                       |  |
| <cr> <lf></lf></cr> |           |         | End of message termination            |  |

Table 2-8 Messages

| Value | Description |
|-------|-------------|
| 0     | GGA         |
| 1     | GLL         |
| 2     | GSA         |
| 3     | GSV         |
| 4     | RMC         |
| 5     | VTG         |

Table 2-8 Messages

| Value | Description                           |
|-------|---------------------------------------|
| 6     | MSS (If internal beacon is supported) |
| 7     | Not defined                           |
| 8     | ZDA (if 1PPS output is supported)     |
| 9     | Not defined                           |

**Note** – In TricklePower mode, update rate is specified by the user. When you switch to NMEA protocol, message update rate is also required. The resulting update rate is the product of the TricklePower Update rate and the NMEA update rate (i.e., TricklePower update rate = 2 seconds, NMEA update rate = 5 seconds, resulting update rate is every 10 seconds,  $(2 \times 5 = 10)$ ).

## 104—LLANavigationInitialization

This command is used to initialize the Evaluation Receiver by providing current position (in latitude, longitude, and altitude coordinates), clock offset, and time. This enables the receiver to search for the correct satellite signals at the correct signal parameters. Correct initialization parameters enable the receiver to acquire signals quickly.

Table 2-9 contains the input values for the following example:

Start using known position and time.

\$PSRF104,37.3875111,-121.97232,0,96000,237759,1946,12,1\*07

Table 2-9 LLA Navigation Initialization Data Format

| Name                | Example    | Units   | Description                                          |  |
|---------------------|------------|---------|------------------------------------------------------|--|
| Message ID          | \$PSRF104  |         | PSRF104 protocol header                              |  |
| Lat                 | 37.3875111 | degrees | Latitude position (Range 90 to -90)                  |  |
| Lon                 | -121.97232 | degrees | Longitude position (Range 180 to -180)               |  |
| Alt                 | 0          | meters  | Altitude position                                    |  |
| ClkOffset           | 96000      | Hz      | Clock Offset of the Evaluation Receiver <sup>1</sup> |  |
| TimeOfWeek          | 237759     | seconds | GPS Time Of Week                                     |  |
| WeekNo              | 1946       |         | Extended GPS Week Number (1024 added)                |  |
| ChannelCount        | 12         |         | Range 1 to 12                                        |  |
| ResetCfg            | 1          |         | See Table 2-10                                       |  |
| Checksum            | *07        |         |                                                      |  |
| <cr> <lf></lf></cr> |            |         | End of message termination                           |  |

<sup>1.</sup> Use 0 for last saved value if available. If this is unavailable, a default value of 96,000 will be used.

Table 2-10 Reset Configuration

| Hex  | Description                                                                         |
|------|-------------------------------------------------------------------------------------|
| 0x01 | Hot Start— All data valid                                                           |
| 0x02 | Warm Start—Ephemeris cleared                                                        |
| 0x03 | Warm Start (with Init)—Ephemeris cleared, initialization data loaded                |
| 0x04 | Cold Start—Clears all data in memory                                                |
| 0x08 | Clear Memory—Clears all data in memory and resets receiver back to factory defaults |

## 105—Development Data On/Off

Use this command to enable development data information if you are having trouble getting commands accepted. Invalid commands generate debug information that enables the user to determine the source of the command rejection. Common reasons for input command rejection are invalid checksum or parameter out of specified range.

Table 2-11 contains the input values for the following examples:

1. Debug On

\$PSRF105,1\*3E

2. Debug Off

\$PSRF105,0\*3F

Table 2-11 Development Data On/Off Data Format

| Name                | Example   | Units | Description                |  |  |
|---------------------|-----------|-------|----------------------------|--|--|
| Message ID          | \$PSRF105 |       | PSRF105 protocol header    |  |  |
| Debug 1             |           |       | 0=Off, 1=On                |  |  |
| Checksum *3E        |           |       |                            |  |  |
| <cr> <lf></lf></cr> | >         |       | End of message termination |  |  |

#### 106—Select Datum

GPS receivers perform initial position and velocity calculations using an earth-centered earth-fixed (ECEF) coordinate system. Results may be converted to an earth model (geoid) defined by the selected datum. The default datum is WGS 84 (World Geodetic System 1984) which provides a worldwide common grid system that may be translated into local coordinate systems or map datums. (Local map datums are a best fit to the local shape of the earth and not valid worldwide.)

Table 2-12 contains the input values for the following examples:

1. Datum select TOKYO\_MEAN

\$PSRF106,178\*32

Table 2-12 Select Datum Data Format

| Name       | Example              | Units | Description             |  |
|------------|----------------------|-------|-------------------------|--|
| Message ID | Message ID \$PSRF106 |       | PSRF106 protocol header |  |



Table 2-12 Select Datum Data Format

| Name                | Example | Units | Description                |
|---------------------|---------|-------|----------------------------|
| Datum               | 178     |       | 21=WGS84                   |
|                     |         |       | 178=TOKYO_MEAN             |
|                     |         |       | 179=TOKYO_JAPAN            |
|                     |         |       | 180=TOKYO_KOREA            |
|                     |         |       | 181=TOKYO_OKINAWA          |
| Checksum            | *32     |       |                            |
| <cr> <lf></lf></cr> |         |       | End of message termination |

# MSK—MSK Receiver Interface

Table 2-13 contains the values for the following example:

\$GPMSK, 318.0,A,100,M,2,\*45

Table 2-13 RMC Data Format

| Name                                    | Example | Units | Description                        |
|-----------------------------------------|---------|-------|------------------------------------|
| Message ID                              | \$GPMSK |       | MSK protocol header                |
| Beacon Frequency                        | 318.0   | kHz   | Frequency to use                   |
| Auto/Manual Frequency <sup>1</sup>      | A       |       | A : Auto, M : Manual               |
| Beacon Bit Rate                         | 100     |       | Bits per second                    |
| Auto/Manual Bit Rate <sup>1</sup>       | M       |       | A : Auto, M : Manual               |
| Interval for Sending \$MSS <sup>2</sup> | 2       | sec   | Sending of MSS messages for status |

<sup>1.</sup> If Auto is specified the previous field value is ignored.

**Note** – The NMEA messages supported by the Evaluation Receiver does not provide the ability to change the DGPS source. If you need to change the DGPS source to internal beacon, then this must be done using the SiRF binary protocol and then switched to NMEA.

<sup>2.</sup> When status data is not to be transmitted this field is null.

