2021年全国高考乙卷数学(文)试卷

D. $\{1, 2, 3, 4\}$

D. 3 + 4i

1. 已知全集 $U = \{1, 2, 3, 4, 5\}$,集合 $M = \{1, 2\}, N = \{3, 4\}$,则 $C_u(M \cup N) =$ ______

B. -3+4i C. 3-4i

B. $\{1,2\}$ C. $\{3,4\}$

一、单选题

A. {5}

A. -3 - 4i

2. 设iz = 4 + 3i, 则z =_____

3.	已知命题 $p\colon\exists x\in\mathbb{R},\sin x<1$;命题 $q\colon\forall x\in\mathbb{R},e^{ x }\!\geqslant\!1$,则下列命题中为真命题的是										
	A. $p \wedge q$	B. $\neg p \land q$	C. $p \land \neg q$	D. $\neg (p \lor q)$							
4.	函数 $f(x) = \sin \frac{x}{3} + \cos \frac{x}{3}$ 的最小正周期和最大值分别是										
	A. 3π 和 $\sqrt{2}$	B. 3π和2	C. 6π 和 $\sqrt{2}$	D. 6π和2							
5.	若 x , y 满足约束条件 $ \begin{cases} x+y \ge 4, \\ x-y \le 2, \ \text{则} z = 3x + y \text{的最小值为} ____ \\ y \le 3, \end{cases} $										
	A. 18	B. 10	C. 6	D. 4							
6.	$\cos^2 \frac{\pi}{12} - \cos^2 \frac{5\pi}{12} = \underline{\hspace{1cm}}$										
	A. $\frac{1}{2}$	B. $\frac{\sqrt{3}}{3}$	C. $\frac{\sqrt{2}}{2}$	D. $\frac{\sqrt{3}}{2}$							
7.	在区间 $0, \frac{1}{2}$ 随机取 1 个数,则取到的数小于 $\frac{1}{3}$ 的概率为										
	A. $\frac{3}{4}$	B. $\frac{2}{3}$	C. $\frac{1}{3}$	D. $\frac{1}{6}$							
8.	下列函数中最小值为	下列函数中最小值为4的是									
	A. $y = x^2 + 2x + 4$ C. $y = 2^x + 2^{2-x}$										
9.	设函数 $f(x) = \frac{1-x}{1+x}$,则下列函数中为奇函数的是										
	A. $f(x-1)-1$	B. $f(x-1)+1$	C. $f(x+1) - 1$	D. $f(x+1)+1$							
10.	在正方体 $ABCD - A_1B_1C_1D_1$ 中, P 为 B_1D_1 的中点,则直线 PB 与 AD_1 所成的角为										
	A. $\frac{\pi}{2}$	B. $\frac{\pi}{3}$	C. $\frac{\pi}{4}$	D. $\frac{\pi}{6}$							
11.	设 B 是椭圆 C : $\frac{x^2}{5} + y = 1$ 的上顶点,点 P 在 C 上,则 $ PB $ 的最大值为										
	A. $\frac{5}{2}$	B. $\sqrt{6}$	C. $\sqrt{5}$	D. 2							
12.	设 $a \neq 0$,若 $x = a$ 为国	$ egin{aligned} & \partial_a \neq 0, & \exists x = a \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x = a \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x = a \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x \neq 0, \\ & \partial_a \neq 0, & \exists x \neq 0, \\ & \partial_a \neq 0, & \partial_a \neq 0, \\ $									
	A. $a < b$	B. $a > b$	C. $a b < a^2$	D. $a b > a^2$							
	1										

二、填空题

- 14. 双曲线 $\frac{x^2}{4} \frac{y^2}{5} = 1$ 的右焦点到直线x + 2y 8 = 0的距离为_____.
- 15. 记 \triangle ABC的内角A, B, C的对边分别为a, b, c, 面积为 $\sqrt{3}$, $B=60^{\circ}$, $a^2+c^2=3\,a\,c$, 则 b=_____.
- 16. 以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).

三、解答题

17. 某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:

旧设备	9.8	10.3	10.0	10.2	9.9	9.8	10.0	10.1	10.2	9.7
新设备	10.1	10.4	10.1	10.0	10.1	10.3	10.6	10.5	10.4	10.5

旧设备和新设备生产产品的该项指标的样本平均数分别记为和, 样本方差分别记为和.

- (1) $\bar{\mathbb{X}}\bar{x}, \bar{y}, s_1^2, s_2^2;$
- (2) 判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 $\bar{y}-\bar{x}\geqslant 2\sqrt{\frac{s_1^2+s_2^2}{10}}$,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
- 18. 如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.

- (1) 证明: 平面PAM ⊥ 平面PBD;
- (2) 若PD = DC = 1, 求四棱锥P ABCD的体积.
- 19. 设 $\{a_n\}$ 是首项为1的等比数列,数列 $\{b_n\}$ 满足 $b_n = \frac{n a_n}{3}$. 已知 a_1 , $3a_2$, $9a_3$ 成等差数列.
 - (1) 求 $\{a_n\}$ 和 $\{b_n\}$ 的通项公式;
 - (2) 记 S_n 和 T_n 分别为 $\{a_n\}$ 和 $\{b_n\}$ 的前n项和. 证明: $T_n < \frac{S_n}{2}$.
- 20. 已知抛物线 $C: y^2 = 2 p x (p > 0)$ 的焦点F到准线的距离为2.
 - (1) 求*C*的方程;
 - (2) 已知O为坐标原点,点P在C上,点Q满足 $\overrightarrow{PQ} = 9\overrightarrow{QF}$,求直线OQ斜率的最大值.
- 21. 已知函数 $f(x) = x^3 x^2 + ax + 1$.
 - (1) 讨论 f(x)的单调性;
 - (2) 求曲线y = f(x)过坐标原点的切线与曲线y = f(x)的公共点的坐标.
- 22. 在直角坐标系x O y中, $\odot C$ 的圆心为C(2,1),半径为1.
 - (1) 写出⊙C的一个参数方程;
 - (2) 过点F(4,1)作 $\odot C$ 的两条切线,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.
- 23. 已知函数 $\frac{|\mathrm{OB}|}{|\mathrm{OA}|} = \frac{\rho_1}{\rho_2} = \frac{1}{4} \times 2 \sin \alpha (\sqrt{3} \cos \alpha + \sin \alpha) = \frac{1}{4} \Big[2 \sin \Big(2 \alpha \frac{\pi}{6} \Big) + 1 \Big].$
 - (1) 当a=1时,求不等式 $f(x) \ge 6$ 的解集;
 - (2) 若 $f(x) > -\alpha$, 求a的取值范围.