Álgebra Lineal y Estructuras Matemáticas

05/09/2012

Ejercicio 1. Sean A y B dos conjuntos tales que

$$A \setminus B = \{1, 3, 7, 11\}$$
 $B \setminus A = \{2, 6, 8\}$ $A \cap B = \{4, 9\}$

Entonces

1.
$$A = \{1, 3, 4, 7, 9, 11\}$$
 $y B = \{2, 4, 6, 8, 9\}$

2.
$$A = \{1, 3, 7, 9, 11\}$$
 $y B = \{2, 4, 6, 8\}$

3.
$$A = \{1, 3, 7, 8\}$$
 $y B = \{2, 4, 6, 8, 9, 11\}$

4.
$$A = \{1, 3, 2, 4, 6, 7, 8\}$$
 $y B = \{1, 3, 2, 4, 6, 9, 11\}$

Ejercicio 2. Dado el sistema de congruencias

$$\begin{cases} 13x \equiv 21 \pmod{30} \\ 8x \equiv 6 \pmod{35} \end{cases}$$

- 1. El sistema no tiene solución.
- 2. El sistema tiene tres soluciones comprendidas entre 1000 y 1500.
- 3. El sistema tiene una solución comprendida entre 1000 y 1500.
- 4. El sistema tiene dos soluciones comprendidas entre 1000 y 1500.

Ejercicio 3.

Sea $X = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$. En $X \times X$ definimos la relación de equivalencia (a, b)R(c, d) si a+b=c+d. Entonces el cardinal del conjunto cociente es:

- *1*. 81.
- 2. 17.
- 3. 22.
- 4. 18.

Ejercicio 4.

Sea $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ la aplicación dada por $f(m,n) = (m+n, m \cdot n)$. Entonces:

- 1. f no es inyectiva pero sí es sobreyectiva.
- 2. f no es inyectiva ni sobreyectiva.
- 3. f es inyectiva y sobreyectiva.
- 4. f es inyectiva pero no sobreyectiva.

Ejercicio 5. La ecuación 112x + 76y = 3000

- 1. tiene 237 soluciones tales que $500 \le x \le 5000$.
- 2. no tiene solución pues mcd(112,76) no tiene inverso módulo
- 3. tiene una única solución tal que $500 \le x \le 5000$.
- 4. no tiene solución porque mcm(112,76) no divida a 3000. 3000.

Ejercicio 6. El determinante de la matriz $\begin{pmatrix} 1 & 0 & 1 & 4 \\ 2 & 2 & 0 & 0 \\ 3 & 1 & 1 & 1 \\ 4 & 1 & 3 & 4 \end{pmatrix}$ con coeficientes en \mathbb{Z}_5 es

- *1*. 1
- 2. 2
- *3*. 3
- 4. 4

Ejercicio 7. Sea $a=24^{1234}$. La congruencia $ax\equiv 6 \mod 11$ tiene como solución a:

- 1. x = 3.
- 2. x = 2.
- 3. x = 7.
- 4. x = 10.

Ejercicio 8. Determina cuál de los siguientes anillos es un cuerpo.

- 1. $\mathbb{Z}_3[x]_{x^2+1}$.
- 2. $\mathbb{Q}[x]$.
- 3. $\mathbb{Z}[x]$.
- 4. $\mathbb{R}[x]_{x^4+x+1}$.

Ejercicio 9. El polinomio $p(x) = x^5 - 2x^3 + 5x^2 - 2x + 5$

- 1. Es reducible en $\mathbb{Z}_7[x]$.
- 2. Es reducible en $\mathbb{Z}_2[x]$.
- 3. Es irreducible en $\mathbb{Z}_3[x]$.
- 4. Es irreducible en $\mathbb{Z}_5[x]$.

Ejercicio 10. Sea $A = \mathbb{Z}_2[x]_{x^4+x+1}$, $y \ p(x) = x^3 + x^2 + x + 1 \in A$. Entonces:

- 1. p(x) no tiene inverso, ya que no es irreducible.
- 2. p(x) tiene inverso y vale $x^3 + x + 1$.
- 3. p(x) tiene inverso y vale x^3 .
- 4. p(x) no tiene inverso, pues p(1) = 0.

Ejercicio 11. Sea V un espacio vectorial de dimensión n, y U y W dos subespacios vectoriales distintos, ambos de dimensión n-1. Entonces:

- 1. $\dim(U \cap W) = n 2$.
- 2. $\dim(U \cap W) = 0$.
- 3. $\dim(U \cap W) = n 1$.
- 4. $\dim(U \cap W) = 1$.

Ejercicio 12. Sea $V = \{a(x) \in \mathbb{Z}_2[x] : gr(a(x)) \leq 3\}$, $y \ p_1(x) = x^3 + x + 1$, $p_2(x) = x^2 + x + 1$, $p_3(x) = x^3 + x^2 + x$ $y \ p_4(x) = x^2 + 1$ elementos de V. Entonces:

1. Forman una base de V.

- 2. Son linealmente dependientes, pues el tercero es combinación lineal del resto.
- 3. Son linealmente dependientes, pues el segundo es combinación lineal del resto.
- 4. Son un sistema de generadores de V.

Ejercicio 13. Dados los sistemas de ecuaciones con coeficientes en \mathbb{Z}_7

- 1. Son equivalentes para b = 4.
- 2. No son equivalentes para ningún valor de b.
- 3. Son equivalentes para b = 6.
- 4. Son equivalentes para b = 2.

Ejercicio 14. Consideremos el sistema con coeficientes en \mathbb{R}

$$\begin{cases}
\lambda x + y + z = \lambda \\
x + \lambda y + z = \lambda \\
x + y + \lambda z = \lambda
\end{cases}$$

Entonces:

- 1. El sistema es compatible determinado si, y sólo si, $\lambda < 0$
- 2. El sistema es compatible determinado si, y sólo si, $\lambda > 0$
- 3. El sistema es compatible para $\lambda \neq -2$
- 4. El sistema es compatible determinado para todos los valores de λ .

- 1. $\{(2,2,1)\}.$
- 2. $\{(2,1,0); (1,4,0)\}.$
- 3. $\{(0,1,1)\}.$
- 4. $\{(0,1,1); (2,1,0)\}.$

Ejercicio 16. Sea $f: V \to V'$ una aplicación lineal para la que el núcleo de f y la imagen de f tienen la misma dimensión. Entonces podemos asegurar que:

- 1. dim(V') es par.
- 2. dim(V) es par.
- 3. dim(V + V') es par.
- 4. V = V'.

Ejercicio 17. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la aplicación lineal definida por f(x, y, z) = (x + y, x + z, 2x + y + z). Las ecuaciones cartesianas del subespacio Im(f) son:

- 1. x + y z = 0.
- $2. \quad \begin{array}{l} x+y=0 \\ x+z=0 \end{array}$
 - x + y = 0
- $3. \quad x+z=0$
 - 2x + y + z = 0

4. Puesto que dim(Im(f)) = 3, no tiene ecuaciones cartesianas.

Ejercicio 18. Sea $f: (\mathbb{Z}_7)^2 \to (\mathbb{Z}_7)^4$ la aplicación lineal definida por las condiciones f(1,0) = (1,2,0,5) $y \ f(0,1) = (2,2,4,2), \ y \ sea \ g: (\mathbb{Z}_7)^4 \to (\mathbb{Z}_7)^2$ la aplicación lineal dada por g(x,y,z,t) = (x+4y+z+3t,2x+y+5t). Sea U el núcleo de g y V la imagen de f. Una base de U+V es

- 1. $\{(1,2,0,5), (2,2,4,2), (1,0,3,1), (0,1,5,4)\}.$
- 2. $\{(1,0,4,4), (1,0,3,1), (0,1,5,4)\}.$
- 3. $\{(1,2,0,5), (2,2,4,2), (1,1,2,3)\}.$
- 4. $\{(1,2,0,5), (2,2,4,2), (1,4,1,3), (2,1,0,5)\}.$

Ejercicio 19. Sea $A \in M_4(\mathbb{Z}_5)$ una matriz con dos valores propios, 1 y 3 y tal que los subespacios propios son $V_1 = L[(1,2,1,1)]$ (es decir, el subespacio generado por el vector (1,2,1,1)) y $V_3 \equiv x+y+z+2t=0$. Entonces, el polinomio característico de A vale:

- 1. $\lambda^2 + \lambda + 3$.
- 2. Los datos que tenemos no nos permiten determinar cuál es el polinomio característico de A, pues nos falta la multiplicidad algebraica de los valores propios.
- 3. $\lambda^4 + \lambda^2 + \lambda + 2$.
- 4. $\lambda^4 + 4\lambda^3 + 2\lambda^2 + 3$

Ejercicio 20. Sea
$$A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 6 & 0 \\ 2 & 2 & 3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{Z}_7).$$

- 1. A tiene tres valores propios distintos, por tanto es diagonalizable.
- 2. A no tiene valores propios.
- 3. A tiene dos valores propios distintos y es diagonalizable.
- 4. A tiene dos valores propios distintos y no es diagonalizable.