COLOSTATE SPRING 2018 MATH 617 ASSIGNMENT 5

Due Fri. 04/06/2018

NAME: (Colin Roberts	CSUID: 829773631
NAME: (John Roberts	CSUID: 829113031

(20 points) Problem 1. Let f(x) be a real-valued continuous function defined on \mathbb{R} . Prove that the inverse image $f^{-1}(B)$ of a Borel subset B is also a Borel subset.

(20 points) Problem 2. Prove that if g is absolutely continuous on [a, b], then g has bounded variation.

(20 points) Problem 3. Let f be a real-valued increasing function on [0,1] and $\int_0^1 f' d\lambda = f(1) - f(0)$. Prove that f is absolutely continuous.

(20 points) Problem 4. Suppose that $F: [a, b] \to \mathbb{R}$ is increasing. Prove that there exist unique real-valued functions G(x), H(x) on [a, b] satisfying the following

- (i) $F(x) = G(x) + H(x), \forall x \in [a, b];$
- (ii) G(x) is absolutely continuous and G(a) = F(a);
- (iii) H'(x) = 0 a.e. on [a, b].

(20 points) Problem 5. Suppose $F_n(x)$, $n \in \mathbb{N}$, is a sequence of absolutely continuous increasing functions on [a, b] such that

- (1) $F_n(a) = 0, \forall n \in \mathbb{N};$
- (2) $F'_n(x)$ is a decreasing sequence for almost every $x \in [a, b]$.

Prove that

- (i) $F_n(x)$ is a decreasing sequence for all $x \in [a, b]$;
- (ii) If $\lim_{n\to\infty} F_n(x) = F(x)$ on [a,b], then F(x) is absolutely continuous.

Problem 1. Let f(x) be a real-valued continuous function defined on \mathbb{R} . Prove that the inverse image $f^{-1}(B)$ of a Borel subset B is also a Borel subset.

Proof. Define the set

$$\mathcal{A} = \{ B \in \mathcal{B}_{\mathbb{R}} : f^{-1}(B) \in \mathcal{B}_{\mathbb{R}} \},$$

where $\mathcal{B}_{\mathbb{R}}$ denotes the Borel sets on \mathbb{R} . By definition $\mathcal{A} \subseteq \mathcal{B}_{\mathbb{R}}$. So, we need to show that $\mathcal{A} \supseteq \mathcal{B}_{\mathbb{R}}$. To see this, we show that \mathcal{A} is a σ -algebra on subsets of \mathbb{R} generated by open intervals and since $\mathcal{B}_{\mathbb{R}}$ is the smallest σ -algebra on \mathbb{R} which is generated by open intervals, we will have that $\mathcal{A} \supseteq \mathcal{B}_{\mathbb{R}}$. First, we have that continuity of f implies that f^{-1} pulls back open sets in $\mathcal{B}_{\mathbb{R}}$ to open sets. Hence, we will have that \mathcal{A} is generated by open sets.

- (i) Note that $f^{-1}(\mathbb{R}) = \mathbb{R}$ since f(x) is a continuous defined on all of \mathbb{R} and so $\mathbb{R} \in \mathcal{A}$. Then we also have that $f^{-1}(\emptyset) = \emptyset$ and so $\emptyset \in \mathcal{A}$.
- (ii) Let $A \in \mathcal{A}$. This means $A = f^{-1}(A')$ for $A' \in \mathcal{B}_{\mathbb{R}}$. Then we have that $A'^c \in \mathcal{B}_{\mathbb{R}}$

$$A^{c} = \mathbb{R} \setminus A = \mathbb{R} \setminus f^{-1}(A') = f^{-1}(\mathbb{R} \setminus A') = f^{-1}(A'^{c}).$$

So we have $A^c \in \mathcal{A}$.

(iii) Let $A_i \in \mathcal{A}$ for all $i \in \mathbb{N}$ which means that $A_i = f^{-1}(A_i)$ for $A_i' \in \mathcal{B}_{\mathbb{R}}$. Then, consider

$$\bigcup_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} f^{-1}(A_i') = f^{-1} \left(\bigcup_{i=1}^{\infty} A_i' \right).$$

Since $\bigcup_{i=1}^{\infty} A_i' \in \mathcal{B}_{\mathbb{R}}$, we have that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$.

These three items above show that \mathcal{A} is a σ -algebra on \mathbb{R} and thus $\mathcal{A} \supseteq \mathcal{B}_{\mathbb{R}}$ and so we have that $\mathcal{A} = \mathcal{B}_{\mathbb{R}}$, which proves the original statement.

:

Proof. Fix $\epsilon = 1$ and we have that there exists a $\delta > 0$ such that

$$\sum_{i=1}^{n} |g(b_i) - g(a_i)| < 1,$$

when (a_i, b_i) , i = 1, ..., n, are mutually disjoint subintervals of [a, b] satisfying

$$\sum_{i=1}^{n} (b_i - a_i) < \delta$$

by the absolutely continuity of g. This implies that if we take any subinterval [c,d] of [a,b] with $(d-c)<\delta$ that we have $V_c^d(g)<1$ by absolute continuity. So we fix any partition of [a,b] satisfying $\|P\|<\delta$ which yields

$$V_a^b(g) = \sum_{i=1}^k V_{x_{i-1}}^{x_i}(g) < \sum_{i=1}^k 1 = k.$$

Hence, g has bounded variation.

Problem 3. Let f be a real-valued increasing function on [0,1] and $\int_0^1 f' d\lambda = f(1) - f(0)$. Prove that f is absolutely continuous.

.

Proof. We wish to show that $f(x) = \int_0^x f' d\lambda + f(0)$. First, if x = 0, then

$$f(0) = \int_0^0 f' d\lambda + f(0) = f(0).$$

And for x = 1, we have

$$f(1) = \int_0^1 f' d\lambda + f(0) = f(1) - f(0) + f(0) = f(1).$$

Now, suppose for a contradiction that for any $x \in (0,1)$ that we have $f(x) \neq \int_0^x f'(x) d\lambda - f(0)$. Since f is an increasing function, we have that

$$\int_0^x f' d\lambda + f(0) < f(x).$$

However, this implies

$$\int_{0}^{1} f' d\lambda = \int_{0}^{x} f' d\lambda + \int_{x}^{1} f' d\lambda < f(1) - f(0)$$

which contradicts our original statement. Hence, we have that

$$f(x) = \int_0^x f'd\lambda + f(0)$$

and since f(x) is defined via an integral, we have that f is absolutely continuous.

Problem 4. Suppose that $F: [a, b] \to \mathbb{R}$ is increasing. Prove that there exist unique real-valued functions G(x), H(x) on [a, b] satisfying the following

- (i) $F(x) = G(x) + H(x), \forall x \in [a, b];$
- (ii) G(x) is absolutely continuous and G(a) = F(a);
- (iii) H'(x) = 0 a.e. on [a, b].

:

Proof. Since F is increasing on [a, b] we have that $F' \in L_1[a, b]$. So, we define

$$G(x) = \int_{a}^{x} F'(x)d\lambda + F(a)$$

and note that G(a) = F(a) and that G(x) is absolutely continuous by definition. Now, we have that

$$H(x) = F(x) - G(x)$$
$$= F(x) - \int_{a}^{x} F'(x)d\lambda - F(a)$$

 $\implies H'(x) = F'(x) - F'(x) = 0$

almost everywhere since F'(x) exists almost everywhere.

Note that G(a) = F(a) implies that H(a) = 0 and since H'(x) = 0 almost everywhere, we have that H(x) = 0 for all $x \in [a, b]$.

Now, to see that G and H are unique, suppose $\exists g, h$ satisfying the same criteria above but $g(x) \neq G(x)$, $g(x) \neq H(x)$, $h(x) \neq G(x)$, and $h(x) \neq H(x)$. Then

$$G(x) = g(x) + h(x).$$

Evaluating at x = a implies that h(a) = 0 and so G(a) = g(a) = F(a). Again, h'(x) = 0 almost everywhere and so h(x) = 0 = H(x) and thus we have

$$G(x) = g(x)$$
.

So G and H are unique.

Problem 5. Suppose $F_n(x)$, $n \in \mathbb{N}$, is a sequence of absolutely continuous increasing functions on [a, b] such that

- (1) $F_n(a) = 0, \forall n \in \mathbb{N};$
- (2) $F'_n(x)$ is a decreasing sequence for almost every $x \in [a, b]$.

Prove that

- (i) $F_n(x)$ is a decreasing sequence for all $x \in [a, b]$;
- (ii) If $\lim_{n\to\infty} F_n(x) = F(x)$ on [a,b], then F(x) is absolutely continuous.

Proof.

1 100j.

(i) We have

$$F'_n(x) \ge F'_{n+1}(x)$$

$$\implies \int_a^x F'_n(x)d\lambda \ge \int_a^x F'_{n+1}(x)d\lambda$$

$$\implies F_n(x) - F_n(a) \ge F_{n+1}(x) - F_{n+1}(a)$$

$$\implies F_n(x) \ge F_{n+1}(x) \qquad \text{since } F_n(a) = 0 \ \forall n.$$

(ii) Suppose we have $\lim_{n\to\infty} F_n(x) = F(x)$. First, since each F_n is absolutely continuous, we have that for each n and any collection of m mutually disjoint intervals $[a_i,b_i]$ that if $\sum_{i=1}^m (b_i-a_i) < \delta$ then

$$\sum_{i=1}^{m} |F_n(b_i) - F_n(a_i)| < \frac{\epsilon}{3}$$

Then note that $F_n(x)$ is a monotone sequence of absolutely continuous (and hence, continuous) functions and [a,b] is compact which means that F_n converges uniformly to F. By uniform convergence, we have for some N that for $n \geq N$

$$|F(x) - F_n(x)| < \frac{\epsilon}{3m}.$$

Now, using these same arbitrary intervals above and for $n \geq N$ we have

$$\sum_{i=1}^{m} |F(b_i) - F(a_i)| = \sum_{i=1}^{m} |F(b_i) - F_n(b_i) + F_n(a_i) - F(a_i) - F_n(a_i) + F_n(b_i)|$$

$$\leq \sum_{i=1}^{m} (|F(b_i) - F_n(b_i)| + |F(a_i) - F_n(a_i)| + |F_n(b_i) - F_n(a_i)|)$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + m \frac{\epsilon}{3m}$$

$$= \epsilon.$$

Hence, F is absolutely continuous.