CS 180 Problem Solving and 00 Programming

Fall 2011

Recitation Week 3. September 5-9, 2011

Problem 1:

Compute the value of the each expression in the table below. Assume the following declarations. Indicate the type of the result. Also indicate if an expression is invalid.

Expression	Value
a/b	2
a%b	1
a+b*c	-8
a<<2	28 (left shift)
b>>2	(right shift, the sign is protected)
c>>2	-2 (right shift, the sign is protected)
c<<2	-20 (left shift)
~a	-8 (1's Complement)
x/y	1.666666666666667
x/b	1.666666666666667
p.charAt(2);	1
p==q	true
a>b && b>c	true
a <b b="">c	true
y+2==x	true
Math.pow(a, d)	49
Math.round(z)	5
Math.round(r)	4
Math.random()	A random number in the range 0 to 1
Math.sin(Math.PI)	~0 (almost zero, but not exactly bedause of the round-off)

Problem 2:

We are required to write a Java program that simulates a very simple checkout counter at a grocery store. The counter **knows** the current price of one item, say tomatoes, per pound. It can perform only one transaction. The checkout counter can do three things.

- 1. Given the net weight in pounds of the tomatoes purchased, it can compute the **total price** to be paid by a customer.
- 2. Given the amount paid by the customer, it can generate the amount of **change** to be returned to the customer.
- 3. It prints a **receipt** as follows:

Tomatoes purchased 3.45 pounds

Unit price \$1.99 per pound

Net price \$6.83

Tax (7%) \$0.48

Total price \$7.30

Cash tendered \$10

Change \$2.70

Assume that the user types in the **weight** of the tomatoes purchased and the **cash** tendered. The checkout counter then displays the **receipt** as above.

Suggested steps to solve the problem:

- 1. Read the problem statement and understand what is required of the program. Resolve any ambiguities.
- 2. Design your program: What would you name the class? [Hint: What object are we simulating?]
- 3. What should be the attributes in each class? What name you wish to assign to each attribute? And what is its type?
- 4. What methods should the class have?
- 5. What are the inputs to each method and what is its output?
- 6. What object will be created? What would ask of this object?
- 7. What should be the sequence of actions in the main() method?
- 8. Code your design by writing the classes designed and then compile and test.

<End of Problems for Week 3>

```
/*The following program gives one solution way to the problem. Some of the *things in
*the program can be written in many different ways.
import java.util.*;
public class ItemCounter {
 double weight;
 double unit_price;
double tax;
 public ItemCounter(double w,double u,double t){
 weight=w;
 unit_price=u;
 tax=t;
 public void setWeight(double w){
 weight=w;
 public void setUnitPrice(double u){
 unit_price=u;
 public void setTax(double t){
 tax=t;
 public double getWeight(){
 return weight;
 public double getUnitPrice(){
 return unit_price;
 public double computeNetPrice(){
 return weight*unit_price;
 public double computeTotal(){
 double netprice=computeNetPrice();
 return netprice+netprice*tax/100;
 public double computeTax(){
 double netprice=computeNetPrice();
 return netprice*tax/100;
 public double computeChange(double cash, double total){
 return cash-total;
 public static void main(String[] args){
 double cash,total,weight;
 //Create object sc from Scanner class to get input from the console
  Scanner sc=new Scanner(System.in);
 System.out.println("Enter the weight for the item");
```

```
//get the weight of the object as the input user provided
 weight=sc.nextDouble();
 //Create an object, tomatoes from the Item class
     ItemCounter tom=new ItemCounter(weight,1.99,7);
  //
  //Compute the total amount
 total=tom.computeTotal();
 //The amount of the cash given by the user
  System.out.println("Cash tendered");
  cash=sc.nextDouble();
  //Print the required output and compute the required field by using
 //the methods provided above
 System.out.printf("Tomatoes purchased\t %.3f \n",tom.getWeight());
  System.out.printf("Unit Price
                                      \t %%%.3f \n",tom.getUnitPrice());
 System.out.printf("Net Price
                                      \t %%%.3f \n",tom.computeNetPrice());
  System.out.printf("Tax 7%%
                                      \t %%%.3f \n", tom.computeTax());
 System.out.printf("Total Price
                                      \t \%\%.3f \n\, total);
 System.out.printf("Cash Tendered
                                      \t \%\%.3f \n",cash);
 System.out.printf("Change
                                      \t %%%.3f \n",tom.computeChange(cash, total));
}
}
```