1. Основные понятия (диф. уравнение, решен. диф. уравнения, общее решение).

Диф-ное ура. - соотношение типа равенство, которое связывает значение независимой переменной х, соответствующее значение фи y = y(x) и значения ее производных y'(x), y''(x), ..., $y^{n}(x)$ Аналитическая запись: $F(x, y, y'(x), y''(x), ..., y^n(x)) = 0$

Решене Д**У** – ф-я $y = \varphi(x)$, определенная на некотором промежутке, такая, что $F(x, \varphi, \varphi'(x), \varphi''(x), ..., \varphi^{n}(x)) = 0$. Определение общего **решения** Д**У:** Функ-я $\varphi(x, c_1, c_2, ..., c_n)$, зависящая от произвольных постоянных $c_1, c_2, ..., c_n$, называется общим решением ур-я (*), если 1) при любых c_1 , c_2 ,..., c_n ф-ия $\varphi(x, c_1, c_2,..., c_n)$ является решением ур-ия (*); 2) для любого решения $\psi(x)$ ур-ия (*) найдутся \widetilde{c}_1 , \widetilde{c}_2 , ..., $\widetilde{c_n}$, что $\psi(x) = \varphi(x, \ \widetilde{c_1}, \ \widetilde{c_2}, \ ..., \ \widetilde{c_n})$.

2. Геометрическое представление скалярного диф. Уравнения

F(x,y,y')=0 – уравнение 1-го порядка

y'=f(x, y) – ду, разрешенное относительно производной (1)

Задача Коши: найти решение ду y' = f(x, y), удовл. нач. условию: $y(x_0) = y_0$ (2). Теорема существования и единственности. Если в области Γ переменных x, y ф-ия f непрерывна вместе со своей частной производной $\frac{df}{dy}$, то для любой точки (x_0, y_0) из Γ задача Коши (1)-(2) имеет единственное решение. Гео-ски: через каждую точку (x_0, y_0) из Γ проходит единственная интегральная кривая.

3. Уравнения с разделяющимися переменными.

1) y' = f(x), f(x) — известная функция

 $y(x) = \int f(x)dx + c$ – общее решение уравнения

2)
$$y' = g(y)$$
, : $g(y) \neq 0$, $\frac{y'}{g(y)} = 1$

$$\int \frac{y'}{g(y)} dx = \int dx; \ y' = \frac{dy}{dx} = > \int \frac{dy}{g(y)} = \int dx; \ G(y) = x + c$$
 – общий интеграл $y = G^{-l}(x+c)$ – общее решение $y' = g(y)$ (*)

Теорема. Пусть функция g(y) дифференцируема и ее производная ограничена, т.е. $|g'(y)| \le M$ для $\forall y$, тогда общее решение y' = g(y) – oбъед. формулы (*) и набора констант у, которые функцию g(y)обращают в 0. 1) y'=f(x)g(y), : $g(y) \neq 0$; $\frac{y'}{g(y)} = f(x)$

$$\int \frac{y'}{g(y)} dx = \int f(x) dx; \quad \int \frac{dy}{g(y)} = \int f(x) dx; \quad G(y) = F(x) + c$$

 $y = G^{-1}(F(x) + c)$ – общее решение уравнения y' = f(x)g(y) (**)

Определение. Ур-м с разделяющимися переменными называется ур-е вида y'=f(x)g(y). Теорема. Пусть функция дифференцируема и ее производная ограничена, т.е. $|g'(y)| \le M$ для любых y, а f(x) — непрерывна. Тогда общее решение ур-ия y'= f(x)g(y) есть объединение формулы (**) и набора решений констант уравнения g(y)=0.

4. Однородные уравнения.

Фун.f(x,y) наз. однароднный деф.ура. степени "к", если для любого лямбда $\lambda > 0$, справидлива сотношиними. $F(\lambda x, \lambda y) = \lambda^k f(x, y)$.

Определение. Уравнения вида M(x, y)dx + N(x, y)dy = 0 называются однородными, если ф-ии M(x, y) и N(x, y) явл. однородными ф-ми. **Следствие.** Если уравнение y' = f(x, y) является однородным,

то его правую часть всегда можно представить в виде $g(\frac{y}{z})$,

т.е. ур-ие y' = f(x, y) можно записать как $y' = g(\frac{y}{y})$ (*)

Метод решения: Для этого выполним замену переменных: $z = \frac{y}{x}$, y = zx, y' = z'x + z Подставляем в однор. уравнение (*): z'x + z = g(z), $z' = \frac{1}{x}(g(z) - z)$ – yp-ue c разделяющимися переменными, делим на $(g(z) - z) \neq 0$, $\int \frac{dz}{g(z)-z} = \int \frac{1}{x} dx$, находим общее решение и добавляем решения (g(z) - z) = 0, возвращаемся к исходным переменным.

5. Линейные однородные уравнения

Линейное неоднородное называется однородным, если имеет вид y' = a(x)y(1)

Общее реш. ур-я (1) представлено в виде $y = ce^{\int_{x_0}^x a(x)dx}$, (2) 1) $\forall c \ y(t) \dots 3$ Реш. Этого уравн. Явл. Реше. Урав (1) 2) $\phi(x)$ - реш. (1) то всегда , $E\widetilde{c}$ такого что можно написат виде 3

6. Линейные неоднородные уравнения. Формула для решения задачи Коши

Линейное неодн-ое имеет сле-щий вид x' = a(t)x + b(t) (1) Для ур-я (1) решим задачу Коши. Найдем решение ур-я (1), удовл-е усл. $x(t_0) = x_0$. (4)

Теорема. Если функция a(t) и b(t) определены и непрерывны на промежутке (r_1, r_2) , то решение задачи Коши представлено

в виде
$$x(t)=x_0\,e^{\int_{t_0}^t a(r)dr}+\int_{t_0}^t e^{\int_s^t a(r)dr}b(s)ds$$
 (5) Док.

7. Уравнение Бернулли

Урав. Бернулли наз. Ура. вида (1) $x' = a(t)x + b(t)x^{\alpha}$, a(t) и b(t) определены и непрерывны на промежутке $r_1 < t < r_2$

- 1. Если $\alpha = 0$, то (1) лин. неоднород.ур-е.
- 2. Если $\alpha = 1$, то (1) лин. однородное ур-е.
- Если $\alpha != 0, 1$, то данный случай явл-ся тривиальным, и их мы разберем подробно.

Разделим обе части ур-я (1) на x^{α} (положим, x не равен 0), получаем $\frac{x'}{x^{\alpha}} = a(t)x^{1-\alpha} + b(t)$ (2)

Заметим, что $\frac{x'}{x^{\alpha}}$ с точностью до постоянной равен производно от $x^{-\alpha+1}$. Поэтому введем новую фун-ю $y = x^{-\alpha+1}$ (3) Замена (3) приведет ур-е (1) к лин. Урав. $y' = (1 - \alpha)x^{-\alpha} * x'$ Подставим (3) в (1) $\frac{1}{1-\alpha}y' = a(t)y + b(t)$. Умножим обе части на $(1 - \alpha)$ получаем $y' = (1 - \alpha)a(t)y + (1 - \alpha)b(t)$ А значит справедливо, что ур-е Бернулли интегрируемо в общем виде. Если $\alpha > 0$, то сущ-т еще одно решение $x(t) \equiv 0$.

8. Уравнен. в полных дифференциалах, общий интеграл.

Пусть задана фун 2-х переменных z = F(x, y)

Полным диф-м фун-и F(x, y) наз-ся правая часть след-й формулы $dz = \frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy$

Сама же формула наз-ся формулой полного диф-а.

Уравнение M(t,x)dt + N(t,x)dx = 0уравнением в полн-х диф-х, если сущ-т такая непрерывно-диф.

функция
$$F(t, x)$$
 что
$$\begin{cases} M(t, x) = \frac{\partial F(t, x)}{\partial t} \\ N(t, x) = \frac{\partial F(t, x)}{\partial x} \end{cases}$$
 (2)

Т.е. левая часть этого урав-я явл-ся полным диф-м некоторой фун F(t, x).

Теорема

Если уравнение (1) явл-ся уравнением в полных диф-х, то его общий интеграл имеет вид F(t, x) = c(3)

Надо доказать два пункта:

- 1) любое решение $\varphi(t)$ уравнения (1) $F(t, \varphi(t)) \equiv c$;
- 2) если для некот-й функ. $\varphi(t)$ выпо-тся $F(t,\varphi(t)) \equiv c$, то $\varphi(t)$ Док-во.

1) Пусть $\varphi(t)$ — произвольное решение ур-я (1), тогда оно удовлт ур-ю:M(t, x)dt + N(t, x)dx = 0 т.е. $M(t, \varphi(t)) + N(t, \varphi(t)) \varphi'^{(t)} = 0$ (4) Найдем $\frac{d}{dt}Fig(t,\varphi(t)ig) = \frac{\partial Fig(t,\varphi(t)ig)}{\partial t} + \frac{\partial Fig(t,\varphi(t)ig)}{\partial \varphi} \varphi'^{(t)} == Mig(t,\varphi(t)ig) +$ $N(t, \varphi(t))\varphi'^{(t)} = 0$

(Использовали (2), (4)) Значит $F(t, \varphi(t)) = const$ Пусть для какой-либо диф-мой функции $\varphi(t)$ и const с выполнено на нек-м прмежутке переменной t $F(t, \varphi(t)) \equiv c$, покажем, что тогда $\varphi(t)$ — частное решение ур-я (1).

 $\frac{\partial F(t,\varphi(t))}{\partial t}$ + Продиф-м равенство $F(t, \varphi(t)) \equiv c$ по t $\frac{\partial F\left(t,\varphi(t)\right)}{\partial \varphi}\varphi'^{(t)}\equiv 0$

 $M(t, \varphi(t)) + N(t, \varphi(t))\varphi'^{(t)} \equiv 0$ T.e. воспользуемся (2) $M(t, \varphi(t))dt + N(t, \varphi(t))d\varphi = 0$ значит $\varphi(t)$ — реш. ур-я (1) чтд.

9. Критерий для уравнений в полных дифференциалах.

Теорема. Если в уравнении M(x,y)dy + M(x,y)dx = 0 (1) существуют непрерывные производные $\frac{dM(x,y)}{dy}$ и $\frac{dN(x,y)}{dx}$, то для того чтобы уравнение (1) было уравнением в полных дифференциалах необходимо и достаточно, чтобы выпо-ось условие $\frac{dM(x,y)}{dy} = \frac{dN(x,y)}{dx}$ Более того, функция $F(x,y) = \int_{y_0}^{y} N(x,y) dy + \int_{x_0}^{x} M(x,y_0) dx + C$ Док-во.

10. Теорема существования и единственности Коши-Липшица (формулировка).

Условие Липшица. Пусть f(x, y) определена в области Γ . Говорят, что функция f удовлетворяет условию Липшица по переменной y, если $\exists L > 0$, такая что выполнено условие: $|f(x, y_1) - f(x, y_2)| \le$ $L|y_1 - y_2|$ (1) L – постоянная Липшица.

Теорема. Пусть f(x, y) определена в области Γ и непрерывна в ней. Кроме того, функция f имеет непрерывную ограниченную частную производную по y, то есть $\forall (x,y) \in \Gamma: \frac{df}{dy} \leq L \frac{df}{dy}$. Тогда f(x,y) в области Г удовлетворяет условию Липшица по переменной у с константой L.

11. Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Многочлен символа р и его свойства.

Лоду п-го порядка с постоя-ми коэффи-ами называется уравнение вида $a_0 y^n + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$ (1) где $a_0, a_1, ..., a_n$ – постоянные заданные числа. Причем $a_0 \neq 0$.

Введем символическое обозначение: $\frac{dy}{dx} =: py$ где p — символ диффере-ания по х.Тогда $\frac{d^2y}{dx} =: p^2y, \frac{d^3y}{dx} =: p^3y, ..., \frac{d^ny}{dx} =: p^ny$

Перепишем левую часть уравнения (1): $a_0 y^n + a_1 y^{(n-1)} + \dots +$

 $a_{n-1}y' + a_ny = a_0p^ny + a_1p^{(n-1)}y + \dots + a_{n-1}py + a_ny =$

 $(a_0p^n+a_1p^{(n-1)}+\cdots+a_{n-1}p+a_n)y$ Пусть $L(p)=a_0p^n+a_1p^{(n-1)}+\cdots+a_{n-1}p+a_n$ это многочлен символа р или оператор дифференцирования.

С учетом введенного обозначения уравнение (1) будет иметь вид: L(p)y = 0 (2)

Свойства многочлена символа р.

Если есть два многочлена символа p L(p) и N(p)1. $L(p)(\alpha y_1 + \beta y_2) = \alpha L(p)y_1 + \beta L(p)y_2$ 2. (L(p) + M(p))y = L(p)y + M(p)y

3. L(p)(M(p)y) = (L(p)M(p))y

4. $L(p)e^{\lambda x} = L(\gamma)e^{\lambda x}$

Доказательство.

 $L(p)(\alpha y_1 + \beta y_2) = a_0 p^n (\alpha y_1 + \beta y_2) + a_1 p^{(n-1)} (\alpha y_1 + \beta y_2)$ $(\beta y_2) + \dots + a_{n-1}p(\alpha y_1 + \beta y_2) + a_n(\alpha y_1 + \beta y_2) =$ $\alpha(a_0p^ny_1 + a_1p^{(n-1)}y_1 + \dots + a_{n-1}py_1 + a_ny_1) + \beta(a_0p^ny_2 + \dots + a_{n-1}py_1 + a_ny_1) + \beta(a_0p^ny_2 + \dots + a_{n-1}py_1 + \dots$ $a_1 p^{(n-1)} y_2 + \dots + a_{n-1} p y_2 + a_n y_2 = \alpha L(p) y_1 + \beta L(p) y_2$ 2. $(L(p) + M(p))y = (a_0p^n + a_1p^{(n-1)} + \dots + a_{n-1}p + a_n + a_n)$ $b_0 p^n + b_1 p^{(n-1)} + \dots + b_{n-1} p + b_n y = a_0 p^n y + a_1 p^{(n-1)} y + a_1 p^{(n-1)} y + a_2 p^{(n-1)} y + a_$ $\cdots + a_{n-1}py + a_ny + b_0p^ny + b_1p^{(n-1)}y + \cdots + b_{n-1}py + \cdots$ $b_n y = L(p)y + M(p)y$ $L(p)(M(p)y) = a_0 p^n (b_0 p^n + b_1 p^{(n-1)} + \dots + b_{n-1} p + \dots + b_{n-1}$

 $(b_n)y + a_1p^{(n-1)}(b_0p^n + b_1p^{(n-1)} + \dots + b_{n-1}p + b_n)y + \dots + b_n$ $a_{n-1}p(b_0p^n + b_1p^{(n-1)} + \dots + b_{n-1}p + b_n)y + a_n(b_0p^n + b_n)y$ $b_1 p^{(n-1)} + \dots + b_{n-1} p + b_n y = (a_0 p^n + a_1 p^{(n-1)} + \dots + a_n p^{(n-1)}$ $(a_{n-1}p + a_n)(b_0p^n + b_1p^{(n-1)} + \dots + b_{n-1}p + b_n)y =$ (L(p)M(p))v4. $pe^{\lambda x} = \lambda e^{\lambda x}$, $p^2 e^{\lambda x} = \lambda^2 e^{\lambda x}$... $p^n e^{\lambda x} = \lambda^n e^{\lambda x}$

 $L(p)e^{\lambda x} = (a_0p^n + a_1p^{(n-1)} + \dots + a_{n-1}p + a_n)e^{\lambda x}$ $= (a_0\lambda^n + a_1\lambda^{(n-1)} + \dots + a_{n-1}\lambda + a_n)e^{\lambda x}$

12. Теорема об общем решении линейного однородного дифференциального уравнения п-го порядка с постоянными коэффициентами (случай простых корней).

Утверждение. Функция $e^{\lambda x}$ является решением уравнения L(p)y = 0 (1), тогда и только тогда, когда число λ является корнем многочлена L(p).

Док-во. *Необходимость*. Пусть $e^{\lambda x}$ является решением уравнения (1), т.е. $L(p)e^{\lambda x} = 0 \leftrightarrow L(\lambda)e^{\lambda x} = 0 \rightarrow L(\lambda) = 0$. Данное равенство означает, что λ явл корнем многочлена L(p). Достаточность. Пусть λ – корень многочлена L(p), т.е. $L(\lambda) = 0.$

 $L(p)e^{\lambda x} = L(\lambda)e^{\lambda x} = 0 \rightarrow L(p)e^{\lambda x} = 0$. Данное означает, что $e^{\lambda x}$ является решением уравнения (1).

Теорема. Пусть характеристический многочлен L(P) ЛОДУ (1) имеет только простые корни $\lambda_1, \lambda_2, ... \lambda_n$. Положим, $y_1(x) =$ $e^{\lambda_1 x}, y_2(x) = e^{\lambda_2 x}, \dots, y_n(x) = e^{\lambda_n x}$ (2). Тогда $\forall c_1, c_2, \dots, c_n$ фун-я вида $y_{06}(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$ (3) явл. общим решением уравнения (1).

13. Теорема об общем решении линейного однородного дифференциального уравнения п-го порядка постоянными коэффициентами (случай кратных корней).

ЛНДУ: $a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0$ Если характеристический многочлен L(р) имеет корни $\lambda_1, \lambda_2, \dots, \lambda_s$ соответственно кратности k_1, k_2, \dots, k_s , причем $\sum_{j=1}^{s} k_j = n$ (порядок уравнения), положим

$$y_1(x) = e^{\lambda_1 x}, \quad y_2(x) = xe^{\lambda_1 x}, ..., \quad y_{k1}(x) = x^{k-1} e^{\lambda_1 x},$$

 $y_{k1+1}(x) = e^{\lambda_2 x}, y_{k1+2}(x) = xe^{\lambda_2 x}, ..., y_{k1+k2} =$
 $x^{k_2-1}e^{\lambda_2 x}, ..., y_n(x) = x^{k_s-1}e^{\lambda_s x}$ (1).

Тогда общее решение дифференциального уравнения имеет

 $y_{06}(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$, где c_1, c_2, \dots, c_n произвольные постоянные.

14. Выделение вещественных решений.

вещественными коэффициентами.

Во многих заданиях необх. найти все вещес-ные корни уравнения. **Утверждение**. Если корни характеристического многочлена L(p) вещественные, то для того чтобы, общее решение уравнения $y_{06}(x) = c_1 y_1(x) + c_2 y_2(x) + \dots + c_n y_n(x)$ (1) было вещественным, н. и д., чтобы в сумме (1) коэффициенты при комлексно-сопряженных фу-ях были комплксно сопряженными, а коэффициенты при вещественных функциях — вещественными. Практический способ. L(p)y = 0. Тогда предположим, $y_1(x) = u(x) + iv(x), y_2(x) = y_1(x) = u(x) - iv(x)$. В силу утверждения, сумма = $c_1 y_1(x) + c_2 y_2(x)$ будет вещественной, только при условии, что c_1 и c_2 яв-ся комплексно сопряжёнными. Пусть $c_1 = \frac{1}{2}(\alpha - i\beta)$, $c_2 = \overline{c_1} = \frac{1}{2}(\alpha + i\beta)$. $c_1 y_1(x) + c_2 y_2(x) = \frac{1}{2} (\alpha - i\beta) (u(x) + iv(x)) + \frac{1}{2} (\alpha + iv(x) + iv(x)$ $i\beta$) $\left(=u(x)-iv(x)\right)=\frac{1}{2}\alpha u(x)+\frac{1}{2}\alpha iv(x)-\frac{1}{2}i\beta u(x)+\frac{1}{2}\beta v(x)+\frac{1}{2}\beta v(x)$ $\frac{1}{2}\alpha u(x) - \frac{1}{2}\alpha i v(x) + \frac{1}{2}i \beta u(x) + \frac{1}{2}\beta v(x) = \alpha u(x) + \beta v(x)$ Т.о., чтобы получить общее вещественное решение, нужно: выписать обшее комплексное решение 2) в полученном выражении каждую пару комплексносопряженных решений нужно заменить линейной комбинацией вещественной и мнимой части одного из них с вещественными коэффициентами, а вещественные решения нужно взять с

15. Линейные неоднородные дифференциальные уравнения п-го порядка с постоянными коэффициентами и правой частью в виде квазимногочленов.

ЛНДУ: $a_0 y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(x)$ Квазимногочлен — функция F(x), которую можно записать: $F(x) = f_1(x)e^{\lambda_1 x} + f_2(x)e^{\lambda_2 x} + \dots + f_n(x)e^{\lambda_n x}$, где $\lambda_1, \lambda_2, \dots, \lambda_n$ — комплексные числа, а $f_1(x), f_2(x), \dots, f_3(x)$ — многочлены переменной x

Утверждение 1. Пусть $y_1, y_2, ..., y_n$ решения соответствующих уравнений $L(p)y_i = f_j(x) \ e^{\lambda_j x}$ (1), где j=1,2,...,n, тогда функция $y_1(x) + y_2(x) + \cdots + y_n(x)$ является решением уравнения L(p)y = F(x), где F(x) — квазимногочлен.

Док-во. Применим характеристический многочлен L(p) к сумме $y_1(x)+y_2(x)+\cdots+y_n(x)$, получаем $L(p)\big(y_1(x)+y_2(x)+\cdots+y_n(x)\big)=L(p)y_1(x)+L(p)y_2(x)+\cdots+L(p)y_n(x)=$ поскольку каждая из функций $y_j(x)$ является по условию утверждения решением уравнения (1), мы можем продолжить равенство = $f_1(x)e^{\lambda_1x}+f_2(x)e^{\lambda_2x}+\cdots+f_n(x)e^{\lambda_nx}=F(x)$, Т.о. мы показали, что сумма $y_1(x)+y_2(x)+\cdots+y_n(x)$ является решением уравнения (2). ЧТД.

16. Правило нахождения частного решения в нерезонансном случае (без док-ва).

Теорема. Пусть λ не является корнем характеристического многочлена L(p). Тогда уравнение (3) имеет частное решение вида: $y_{\rm чн}(x) = g(x)e^{\lambda x}$, где g(x) многочлен относительно переменной х степени равной степени многочлена f(x), причем его коэффициенты могут быть найдены методом неопределенных коэффициентов.

17. Правило нахождения частного решения в резонансном случае (без док-ва)

Теорема. Пусть λ — корень характеристического многочлена L(p) кратности k. Тогда уравнение $L(p)y = f(x)e^{\lambda x}$ имеет частное решение вида $y_{\rm чн}(x) = x^k g(x)e^{\lambda x}$, где g(x) многочлен относительно переменной x степени равной степени многочлена f(x), причём его коэффициенты могут быть найдены методом неопределённых коэффициентов.

18. Метод вариации произвольных постоянных

Теорема. Если известно решение $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ **ЛОДУ** L(p)y=0, то частное решение уравнения $a_0y^{(n)}+a_1y^{(n-1)}+\dots+a_{n-1}y'+a_ny=f(x)$ (1) может быть найдено в виде $y_{\rm чн}(x)=C_1(x)\varphi_1(x)+C_2(x)\varphi_2(x)+\dots+C_n(x)\varphi_n(x)$, (2) где функции $C_1(x), C_2(x), \dots, C_n(x)$ являются решениями следующей системы уравнений

$$\begin{cases} C'_{1}\varphi_{1} + C'_{2}\varphi_{2} + \dots + C'_{n}\varphi_{n} = 0 \\ C'_{1}\varphi'_{1} + C'_{2}\varphi'_{2} + \dots + C'_{n}\varphi'_{n} = 0 \\ \dots \\ C'_{1}\varphi_{1}^{(n-2)} + C'_{2}\varphi_{2}^{(n-2)} + \dots + C'_{n}\varphi_{n}^{(n-2)} = 0 \\ C'_{1}\varphi_{1}^{(n-1)} + C'_{2}\varphi_{2}^{(n-1)} + \dots + C'_{n}\varphi_{n}^{(n-1)} = \frac{f(x)}{a_{0}} \end{cases}$$

$$(3)$$

Док-во. Продифференцируем формулу (2) с учётом 1-го уравнения системы (3)

$$y'_{4H} = \frac{C'_1 \varphi_1}{C_1 \varphi'_1} + C_1 \varphi'_1 + \frac{C'_2 \varphi_2}{C_2 \varphi'_2} + C_2 \varphi'_2 + \dots + \frac{C'_n \varphi_n}{C_n \varphi'_n} + C_n \varphi'_n = C_1 \varphi'_1 + C_2 \varphi'_2 + \dots + C_n \varphi'_n$$

Найдём вторую производную с учётом 2-го уравнения системы (3)

$$y_{\text{чн}}^{"} = C_1 \varphi_1^{"} + C_2 \varphi_2^{"} + \dots + C_n \varphi_n^{"}$$
 ...
$$y_{\text{чн}}^{(n-1)} = C_1 \varphi_1^{(n-1)} + C_2 \varphi_2^{(n-1)} + \dots + C_n \varphi_n^{(n-1)}$$

$$y_{\text{чн}}^{(n)} = \frac{f(x)}{a_0} + C_1 \varphi_1^{(n)} + C_2 \varphi_2^{(n)} + \dots + C_n \varphi_n^{(n)}$$

$$L(p) y_{\text{чн}} = a_0 y_{\text{чн}}^{(n)} + a_1 y_{\text{чн}}^{(n-1)} + \dots + a_{n-1} y_{\text{чн}}^{\text{ч}} + a_n y_{\text{чн}} =$$

$$= f(x) + a_0 C_1 \varphi_1^{(n)} + a_0 C_2 \varphi_2^{(n)} + \dots + a_0 C_n \varphi_n^{(n)} + a_1 C_1 \varphi_1^{(n-1)} + a_1 C_2 \varphi_2^{(n-1)} + \dots + a_1 C_n \varphi_n^{(n-1)} + \dots + a_{n-1} C_1 \varphi_1^{\text{\'}} + a_{n-1} C_2 \varphi_2^{\text{\'}} + \dots + a_{n-1} C_n \varphi_n^{\text{\'}} + a_n C_1 \varphi_1 + a_n C_2 \varphi_2 + \dots + a_n C_n \varphi_n =$$

$$= f(x) + \underbrace{C_1(x) L(p) \varphi_1}_{=0} + \underbrace{C_2(x) L(p) \varphi_2}_{=0} + \dots + \underbrace{C_n(x) L(p) \varphi_n}_{=0} = f(x)$$

$$L(p) y_{\text{чн}} = f(x) \quad \Phi$$
ормула (2) действительно определяет реш. уравнения (1)

19. Линейные дифф-ые ура-ия n-го порядка с переменными коэфф-ентами. Теорема о нулевом решении

Линейные дифференциальные уравнения $n - r \circ n$ порядка с переменными коэффициентами имеют вид $b_0(x)y^{(n)} + b_1(x)y^{(n-1)} + \cdots + b_{n-1}(x)y' + b_n(x)y = f(x)$, (1) где y(x) — вещественная искомая функция, $f(x), b_0(x), b_1(x), \ldots, b_n(x)$ — непрерывные функции на

 $f(x), b_0(x), b_1(x), ..., b_n(x)$ — непрерывные функции на некотором отрезке $r_1 \le x \le r_2$. Если $b_0(x) \ne 0$, то уравнение (1) можно переписать в виде

Исли $b_0(x) \neq 0$, то уравнение (1) можно переписать в виде $L(p)y = y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = g(x)$ Уравнение (1) наз-ся неоднородным уравнением с переменными коэффициентами, а уравнение L(p)y = 0 (2) — ЛОДУ с переменными коэффициентами.

Теорема 1 о нулевом решении. Если коэффициенты $a_1(x), a_2(x), ..., a_n(x)$ определены и непрерывны на $r_1 < x < r_2, \ \varphi(x)$ — решение уравнения (2) такое, что выполнены условия $\varphi(x_0) = 0, \varphi'(x_0) = 0, ..., \varphi^{(n-1)}(x_0) = 0, \ x_0 \in (r_1, r_2), \text{ то } \varphi(x) \equiv 0 \ x \in (r_1, r_2)$

20. Линейно независимые системы функций. Определитель Вронского и его свойства

Определение **1.** Говорят, что система (набор) функций $\varphi_1(x), \varphi_2(x), ..., \varphi_k(x)$ $\varphi_j \colon (r_1, r_2) \to \mathbb{C}$ является линейно зависимой на интервале (r_1, r_2) , если \exists константы $C_1, C_2, ..., C_k$ такие, что

1.
$$|C_1| + |C_2| + \cdots + |C_k| \neq 0$$

2. $C_1\varphi_1(x) + C_2\varphi_2(x) + \cdots + C_k\varphi_k(x) = 0 \quad \forall x \in (r_1, r_2).$ Определение **2.** Система (набор) функций $\varphi_1(x), \varphi_2(x), \ldots, \varphi_k(x)$ является линейно независимой на интервале (r_1, r_2) , если из $C_1\varphi_1(x) + C_2\varphi_2(x) + \cdots + C_k\varphi_k(x) = 0$ на этом интервале следует тривиальность набора констант: т.е. все $C_i = 0$. Определитель вида

$$W(x) = \begin{vmatrix} \varphi_1(x) & \varphi_2(x) & \dots & \varphi_k(x) \\ \varphi'_1(x) & \varphi'_2(x) & \dots & \varphi'_k(x) \\ \dots & \dots & \dots & \dots \\ \varphi_1^{(k-1)}(x) & \varphi_2^{(k-1)}(x) & \dots & \varphi_k^{(k-1)}(x) \end{vmatrix}$$
(3)

называется *определителем Вронского*, построенным по системе функций $\varphi_1(x), \varphi_2(x), ..., \varphi_k(x)$.

Теорема 2 (св-во 1). Если функции $\varphi_1(x)$, $\varphi_2(x)$,..., $\varphi_k(x)$ ЛЗ на интервале (r_1,r_2) , то определитель Вронского $W(x) \equiv 0$. Док **Теорема 3 (св-во 2).** Если $\varphi_1(x)$, $\varphi_2(x)$,..., $\varphi_n(x)$ — ЛН система решения уравнения L(p)y=0, то опр. Вронского нигде не обращается в нуль $W(x) \neq 0$, при $\forall x \in (r_1,r_2)$. (док) Следствие. Если $\varphi_1(x)$, $\varphi_2(x)$,..., $\varphi_n(x)$ — реш. Урав. (2), то определитель Вронского, построенный по этой системе фун-ий, либо тождественно равен нулю, либо нигде в нуль не обращается. Замечание. Последняя теорема вообще говоря не верна, если фун. $\varphi_1(x)$, $\varphi_2(x)$,..., $\varphi_n(x)$ не явл. Реше. Ура. (2).

21. Фундаментальная система решений. Теорема об общем решении.

 $L(p)y=y^{(n)}+a_1(x)y^{(n-1)}+\ldots+a_{n-1}(x)y^*+a_n(x)y=0,$ (1) где y(x) — вещественная искомая функция $a1(x),\ldots,an(x)$ — непре-ые фу-ци на некотором отрезке $r_1\leq x\leq r_2$ Система $\phi_1(x),\phi_2(x),\ldots,\phi_n(x)$ из п штук линейно независимых решений уравнения (1) называется фундаментальной системой решений этого уравнения.

Теорема 1 (теорема об общем решении однородного уравнения) Пусть $\varphi_1(x)$, $\varphi_2(x)$, ..., $\varphi_n(x)$ — некоторая фундаментальная система решений уравнения (1). Тогда общее решение уравнения (1) имеет вид: $\psi(x) = c_1 \varphi_1(x) + c_2 \varphi_2(x) + ... + c_n \varphi_n(x)$ (2)

22. Теорема о существовании фундаментальной системы решений.

Если коэффициенты $a_1(x), ..., a_n(x)$ в уравнении (1) непрерывны на интервале $r_1 \le x \le r_2$, то фундаментальная система решения уравнения (1) существует.

23. Теорема об однозначном определе. коэффициентов лин-ого дифф-ого ур. n-го порядка с переменными коэф-тами его фср. Теорема 3. Если уравнения

$$y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$$
 (3) $y^{(n)} + b_1(x)y^{(n-1)} + \dots + b_{n-1}(x)y' + b_n(x)y = 0,$ (3)

где a_i и b_i , i=1,2,..., п непрерывные функ. на интервале $r_1 \le x \le r_2$, имеют одну и ту же фундаментальную систему решений, то эти два уравнен. совпадают, т. e. $a_i(x) = b_i(x)$, i=1,2,..., п на $r_1 \le x \le r_2$

Док-во. Пусть $\phi_1(x)$, $\phi_2(x)$, ..., $\phi_n(x)$ — это фундаментальная система решений уравнения (3) и (4).

Вычитая из (3) почленно (4), получаем новое уравнение:

$$(a_1(x) - b_1(x))y^{(n-1)} + \dots + (a_{n-1}(x) - b_{n-1}(x))y' + (a_n(x) - b_n(x))y = 0.$$
 (5)

решениями которого являются функции $\phi_1(x)$, $\phi_2(x)$, ..., $\phi_n(x)$, удовлетворяющие одновр. уравнениям (3) и (4).

Уравнение (5) (n-1)-го порядка имеет n штук линейно независимых решений. Это противоречие. Такое возможно лишь в случае, когда все коэффициенты уравнения (5) равны нулю, т. е. $a_i(x)$ и $b_i(x)$, i=1,2,, n ЧТД

24. Восстановление ДУ по известной фундаментальной системе решений.

Теорема 4. Если $\phi_1(x)$, $\phi_2(x)$, ..., $\phi_n(x)$ — фундам-ная система решений линейного однородного дифференциального ура-ия n-го порядка, то это уравнение может быть записано в виде

$$\begin{vmatrix} \varphi_1 & \varphi_2 & & \varphi_n & y \\ \varphi_1' & \varphi_2' & \cdots & \varphi_n' & y' \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)} & \varphi_2^{(n-1)} & \cdots & \varphi_n^{(n-1)} & y^{(n-1)} \\ \varphi_1^{(n)} & \varphi_2^{(n)} & \cdots & \varphi_n^{(n)} & y^{(n)} \end{vmatrix} = 0$$
 (6)

Док-во. Покажем, что определитель задаёт лин-ное одно-ное дифференциальное уравнение n-го порядка.

Раскроем определитель по последнему столбцу, получаем: $y^{(n)}W(x)-y^{(n-1)}W_1(x)+\ldots+b_n(x)y=0,$

т. к. $\varphi_1(x)$, $\varphi_2(x)$, ..., $\varphi_n(x)$ — фундаментальная система реш-й, тогда определитель Вронского $W(x) \neq 0$, а

$$W_{1}(x) = \begin{vmatrix} \phi_{1} & \phi_{2} & & \phi_{n} & y \\ \phi'_{1} & \phi'_{2} & \cdots & \phi'_{n} & y' \\ \vdots & \vdots & \ddots & \vdots & \ddots & y' \\ \phi_{1}^{(n-2)} & \phi_{2}^{(n-2)} & \vdots & \phi_{n}^{(n-2)} & y^{(n-2)} \\ \phi_{1}^{(n)} & \phi_{2}^{(n)} & \cdots & \phi_{n}^{(n)} & y^{(n)} \end{vmatrix}$$
(7)

Дифференциальное уравнение можно переписать в виде:

$$y^{(n)} - \frac{W_1(x)}{W(x)}y^{(n-1)} + \dots + a_n(x)y = 0$$
 (8) ЧТД

25. Формула Остроградского-Лиувилля

Теорема: Если $\varphi_1(x), \varphi_2(x), ..., \varphi_n(x)$ — система решений линейного однородного дифференциального уравнения $L(p)y = y^{(n)} + a_1(x)y^{(n-1)} + \cdots + a_{n-1}(x)y' + a_n(x)y = 0$ (1) то для определителя Вронского, построенного по этой системе

решений, справедлива формула $W(x)=W(x_0)e^{-\int_{x_0}^x a(s)ds}$ (2), где $x_0\in (r_1,r_2)$ – произвольная точка.

Лемма. Производная определителя n-го порядка равна сумме n штук определителей n-го порядка, в которой j-е слагаемое равно определителю, полученному из исходного определителя дифференцированием j-й строки.

Док-во теоремы: Уравнение (1) можно переписать в следующем виде: $y^{(n)} - \frac{W_1(x)}{W_2(x)}y^{(n-1)} + \dots + a_n(x)y = 0.$

Тогда коэффициент $a_1(x) = -\frac{W_1(x)}{W(x)}$. Найдем производную определителя Вронского: $\frac{d}{dt}W(x) =$

$$\frac{d}{dt} \begin{vmatrix} \varphi_1 & \varphi_2 & \dots & \varphi_n \\ \varphi_1' & \varphi_2' & \dots & \varphi_n' \\ \dots & \dots & \dots & \dots \\ \varphi_1^{(n-1)} & \varphi_2^{(n-1)} & \dots & \varphi_n^{(n-1)} \end{vmatrix} = \begin{vmatrix} \varphi_1' & \varphi_2' & \dots & \varphi_n' \\ \varphi_1' & \varphi_2' & \dots & \varphi_n' \\ \dots & \dots & \dots & \dots \\ \varphi_1^{(n-1)} & \varphi_2^{(n-1)} & \dots & \varphi_n^{(n-1)} \end{vmatrix} +$$

$$\begin{vmatrix} \varphi_1 & \varphi_2 & \cdots & \varphi_n \\ \varphi_1'' & \varphi_2'' & \cdots & \varphi_n'' \\ \varphi_1'' & \varphi_2'' & \cdots & \varphi_n'' \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-1)} & \varphi_2^{(n-1)} & \cdots & \varphi_n^{(n-1)} \\ \end{vmatrix} + \cdots + \\ \begin{vmatrix} \varphi_1 & \varphi_2 & \cdots & \varphi_n \\ \varphi_1' & \varphi_2' & \cdots & \varphi_n \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n-2)} & \varphi_2^{(n-2)} & \varphi_n^{(n-2)} \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_1^{(n)} & \varphi_2^{(n)} & \cdots & \varphi_n^{(n)} \end{vmatrix} = 0 + 0 + \cdots + W_1(x) = W_1(x)$$
Следовательно $\frac{d}{dt}W(x) = W_1(x)$. Подставив это равенство в

полученную формулу для $a_1(x)$, получим $a_1(x) = -\frac{\dot{W}(x)}{W(x)}$. В итоге мы имеем линейное однородное дифференциальное уравнение 1-го порядка: $W'(x) = -a_1(x)W(x)$. Найдём его решения, разделив переменные: $\frac{w'(x)}{w(x)} = -a_1(x)$ и проинтегрируем равенство по переменной х в пределах от x_0 до х $\ln W(x) - \ln W(x_0) = -\int_{x_0}^x a_1(s)ds$, отсюда $\frac{W(x)}{W(x_0)} = e^{-\int_{x_0}^x a_1(s)ds}$

Из последнего равенства получаем формулу (2). Теорема доказана. Замечание. Приведенное доказательство справедливо только для $\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)$ когда система является фундаментальной системой решения уравнения (1).

26. Краевая задача для линейного дифференциального уравнения второго порядка.

Краевые задачи (задачи выбора конкретного решения ДУ с помощью условий, задаваемых на концах некоторого отрезка) могут иметь одно решение, могут решений не иметь совсем, могут иметь много решений. - Краевая задача для линейного дифференциального уравнения второго порядка имеет вид: $a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x) \, (1)$

Причем $y(x_0) = y_0, y(x_1) = y_1$, где $x \in R$, $a_0(x)$, $a_1(x)$, $a_2(x)$ заданные непрерывные функции, определенные на некотором заданном промежутке $[x_0, x_1], x_0, x_1, y_0, y_1$ заданные вещественные числа.

Условия $y(x_0)=y_0, y(x_1)=y_1$ называются краевыми. Положим $z=y-\frac{y_1-y_0}{x_1-x_0}$ $(x-x_0)-y_0(2)$. Тогда, учитывая краевые условия, получим $y(x_0)=0, y(x_1)=0$

Замена (2) позволяет свести краевые задачи с неоднородными (ненулевыми) краевыми условиями к краевой задачи с нулевыми краевыми условиями.

27. Теорема о выражении решения неоднородной краевой задачи через функцию Грина

Теорема:Если уравнение $a_0(x)y'' + a_1(x)y' + a_2(x)y = 0$ (1) имеет решения $\varphi_1(x), \varphi_2(x),$ обладающие свойствами $\varphi_1(x_0) =$ $0, \varphi_2(x_0) \neq 0, \varphi_1(x_1) = 0, \varphi_2(x_1) \neq 0$ (2), то краевая задача $y(x_0) = 0, y(x_1) = 0$ для $a_0(x)y'' + a_1(x)y' + a_2(x)y = f(x),$ любой непрерывной функции f(x) имеет единственное решение в виде $y(x) = \int_{x_0}^{x_1} G(x,s) f(s) ds$, где $G(x,s) = \int_{x_0}^{x_1} G(x,s) f(s) ds$

$$\begin{cases} \frac{\varphi_1(s)\varphi_2(s)}{a_0(s)W(s)}, & \text{при } x_0 \leq s < x \\ \frac{\varphi_2(s)\varphi_1(x)}{a_0(s)W(s)}, & \text{при } x \leq s < x_1 \end{cases}$$

28. Свойства функции Грина.

1. При фиксированном $s \neq t$ G(x, s) является решением уравнения $a_0(x)y'' + a_1(x)y' + a_2(x)y = 0$

2.G(x, s) удовлетворяет условиям $y(x_0) = 0, y(x_1) = 0$, т. е. $G(x_0, s) = 0, G(x_1, s) = 0$

3.G(x,s) непрерывная функция при $x_0 \le x,s \le x_1$ 4. $G_x'(s+0,s)-G_x'(s-0,s)=rac{1}{a_0(s)},$ производная разрывная ф-я в точке x=s (разрыв 2 рода) Док-во. 2) Покажем, что $G(x_0, s) = 0$, $G(x_1, s) = 0$ $G(x_0,s) = \frac{\varphi_2(s)\varphi_1(x_0)}{a_0(s)W(s)} = 0, \quad G(x_1,s) = \frac{\varphi_1(s)\varphi_2(x_1)}{a_0(s)W(s)} = 0$ 4) Покажем, что $G_x'(s+0,s) - G_x'(s-0,s) = \frac{1}{a_0(s)}$ $G_x'(s+0,s) = \frac{\varphi_1(s)\varphi_2'(s)}{a_0(s)W(s)} (t = s+0, t > s)$ $G_x'(s-0,s) = \frac{\varphi_2(s)\varphi_1'(s)}{a_0(s)W(s)} (t = s-0, t < s)$ $G_x'(s+0,s) - G_x'(s-0,s) = \frac{\varphi_1(s)\varphi_2'(s) - \varphi_2(s)\varphi_1'(s)}{a_0(s)W(s)}$ $= \frac{W(s)}{a_0(s)W(s)} = \frac{1}{a_0(s)}$

29. Теорема о разрешимости неоднородной краевой задачи.

Теорема: Если однородная краевая задача $a_0(x)y''+a_1(x)y'+a_2(x)y=0$, y(x0)=0, $y(x_1)=0$ (*) имеет только нулевое решение, то неоднородная краевая задача $a_0(x)y'' + a_1(x)y' + a_2(x)y = 0$, $y(x_0) = y_0$, $y(x_1) = y_1$, $z = y - \frac{(y_1 - y_0)}{(x_1 - x_0)}$ (x- $(x_0)-y_0, y(x_0)=0, y(x_1)=0$ имеет !решение \forall непрерывной f(x), T.e. $\exists G(x,s)$

Док-во: Покажем что $\exists \varphi_1(x) \ u \ \varphi_2(x)$:

 $\varphi_1(x_0)=0, \ \varphi_2(x_0)\neq 0 \quad ; \quad \varphi_1(x_1)\neq 0, \ , \ \varphi_2(x_1)=0$

Пусть начальные условия $\varphi_I(x_0)=0$, $\varphi_I'(x_0)=1$ (**)

Задача Коши для (*) и (**). По теореме \exists и ! \exists ! решение $\varphi_l(x)$ для (*), удовлетворяющее (**)

Покажем, что $\varphi_l(x_l) \neq 0$.

П.п: $\varphi_I(x)=0$. Тогда $\varphi_I(x)$ удовлетворяет краевым условиям (*) и по условию теоремы $\varphi l(x) \equiv 0$. Пришли к противоречию, т.к. в силу (**) $\varphi_1'(x_0) = 1$.

Пусть теперь начальные условия

 $\varphi_2(x_1)=0$, ; $\varphi_2'(x_2)=1$ (***)

Задача Коши для (*) и (***). По теор \exists и ! \exists ! решение $\varphi_2(x)$ для (*), удовлетворяющее (***)

Так же $\varphi_2(x_0) \neq 0$.

Более того, покажем, что φ_1 и φ_2 ЛН.

П.п.: между φ_1 и φ_2 \exists Л3: $\varphi_1(x) = c \varphi_2(x)$. Но тогда $\varphi_l(x_0)=0$, $\varphi_1'(x_1) = c \varphi_2(x) = 0$

Пришли к тому, что φ_l удовл-т (**) и по условию теоремы $\varphi_l(x) \equiv 0$. Противор с начальными условиями

30.Линейная однородная система и ее свойства.

Имеет вид x'=A(t)x(1)

Свойства : a) Если коэффициенты A(t) непрерывны на (r1,r2)то по теореме В и! уравнение (1) допускает! решение, удовлетворяющее условию $x(t_0)=x_0$, определенное на (r_1,r_2) b) Если решение $\varphi(t)$ уравнения (1) обрщается в 0 при некотором t, т.е. $\varphi(\tau)=0$, то $\varphi(t)=0$ Док-во: (1) имеет нулевое решение. Тогда в момент времени τ решение $\varphi(t)$ и нулевое решение совпадают. Тогда по теореме В и ! они совпадают на общем интервале определения, т.е. $\varphi(t)=0$ с) Если $\varphi_l(t),...,\varphi_k(t)$ – решение (1), то $\forall c_1,...,c_k$ функция

 $\psi(t) = c_1 \varphi_1(t) + \dots + c_k \varphi_k(t)$ тоже является решением (1) **Док-во:** $\forall \varphi_i(t)$ справедливо $\varphi_i'(t) = A(t) \varphi_i(t)$, $j \in [1,k]$. $\psi'(t) = c_1 \varphi_1'(t) + ... + c_1 \varphi_k'(t) = c_1 A(t) \varphi_1(t) + ... + c_k A(t) \varphi_k(t) =$ $A(t)(c_1\varphi_1(t)+...+c_k\varphi_k(t))=A(t)\psi(t)$

31..Линейная зависимость векторных фу-ий. Фундаментальная система решений.

Опр. Векторные фу-и $\varphi_l(t)$, ..., $\varphi_k(t)$ ЛЗ на q1 < t < q2, если $\exists \ c_l$, ..., c_k : 1) $|c_l| + ... + |c_k| \neq 0$. 2) $c_l \varphi_l(t) + ... + c_l \varphi_k(t) = 0$, $\forall t \in (q1,q2)$ В противном случае функции ЛН

Теорема 1: если решения $\varphi_l(t),...,\varphi_n(t)$ ур-я x '=A(t)x (1) ЛЗ в т. t_0 , то они ЛЗ (т.е. если ЛЗ векторы $\varphi_l(t_0),...,\varphi_n(t_0)$, то ЛЗ реш-я вектеф-и $\varphi_l(t),...,\varphi_n(t)$ Док-во: пусть $\varphi_l(t_0),...,\varphi_n(t_0)$ ЛЗ то $\exists c_1,...,c_n$: 1) $|c_1|+...+|c_k|\neq 0$ 2) $c_1\varphi_l(t)+...+c_1\varphi_k(t)=0$, $\forall t\in (q1,q2)$ Пусть $\psi(t)=c_1\varphi_l(t)+...+c_k\varphi_n(t)$. По св-ву с) $\psi(t)$ решение (1). Кроме того $\psi(t_0)=0$. По св-ву b) $\psi(t)=0$, что означает ЛЗ $\varphi_l(t),...,\varphi_n(t)$ Замечание: если не предполагать, что $\varphi_l(t),...,\varphi_n(t)$ решения (1), теорема неверна.

Опр. п штук ЛН решений (1) наз-ся ФСР (1)

Теорема 2: если A(t) непр-на на q1 < t < q2, то на $(q1,q2) \exists \Phi CP$ **Теорема 3:** если $\varphi_l(t), ..., \varphi_n(t) - \Phi CP$ (1), то $\psi(t) = c1 \ \varphi l(t) + ... + cn$ $\varphi n(t)$ (*) есть общее решение (1), $c_1, ..., c_n$ – const \square **Док-во:** то, что (*) – решение (1) следует из св-ва с). \forall решение можно записать в виде (*), перебрав $c_1, ..., c_n$. Возьмем t_0 . Векторы $\varphi_l(t_0), ..., \varphi_n(t_0) \ \PiH$ \rightarrow они образуют базис в C^n . Рассмотрим $x(t) - \forall$ решение (1). Тогда вектор $x(t_0)$ можно разложить: $x(t_0) = c_1 \varphi_l(t_0) + ... + c_n \varphi_n(t_0)$, $c_1, ..., c_n$ — специально выбранные числа. Т.о. в момент t_0 решение x(t) записано в виде (*). По теореме \exists и ! $x(t) = c_1 \varphi_l(t) + ... + c_n \varphi_n(t)$

32. Определитель Вронского. Формула Лиувилля

Пусть $\varphi_l(t)$, ..., $\varphi_n(t)$ – n-мерные ф-и. Тогда определитель $| \varphi_{l1}(t) | \varphi_{l2}(t) | ... | \varphi_{ln}(t) |$ W(t)= $| ... | | \varphi_{n1}(t) | \varphi_{n2}(t) | ... | \varphi_{nn}(t) |$

і-м столбцом к-го явл-ся $\varphi_l(t)$ решение x'=A(t)x, точнее его коорди-ты, наз-ся определителем Вронского сис-мы $\varphi_l(t)$, ..., $\varphi_n(t)$ если $\varphi_l(t)$, ..., $\varphi_n(t)$ ЛН, то w(t) не обращ-ся в 0, и $\varphi_l(t)$, ..., $\varphi_n(t)$ — ФСР. если $\varphi_l(t)$, ..., $\varphi_n(t)$ ЛЗ, то w(t)=0. **Теорема:** чтобы сис-ма $\varphi_l(t)$, ..., $\varphi_n(t)$ была фундаментальной, н. и д., чтобы ее w(t) не обращался в 0. Док-во: Необходимость: пусть $\varphi_l(t)$, ..., $\varphi_n(t)$ — ФСР. Покажем, что w(t) не обращается в 0.

П.п: $\exists t_0: w(t_0)=0$. Тогда векторы-столбцы $\varphi_l(t_0),..., \varphi_n(t_0)$ ЛЗ. По теореме 1: $\varphi_l(t),..., \varphi_n(t)$ ЛЗ \to противоречит фундаментальности \to предположение неверно

Достаточность: пусть w(t) не обращается в 0. Тогда векторные ф-и $\varphi_l(t),...,\varphi_n(t)$ ЛН как ЛН вектор-столбцы в $w(t) \to \varphi_l(t),...,\varphi_n(t)$ ФСР. **Теорема:** для w(t) сис-мы решений x'=A(t)x справедлива формула $w(t)=w(t_0)e^{\int SpA(\tau)d_{\tau}(om\ t0\ \partial o\ t)}$, где t_0 — какое-то число, $SpA(\tau)$ след матрицы (сумма диагональных элементов)

33. Матричные дифференциальные уравнения. Свойства фундаментальных матриц

Опр. ур-е вида x'=A(t)X, (1) где X — матрица порядка n*n называется матричным ДУ. **Опр.** решением (1) наз-ся матричная ф-я, определенная хотя бы на малом отрезке, подстановка к-й в (1) обращает его в тождество по t на некотором интервале Если записать X в виде $X=(x_1,...,x_n)$, где x_i — вектор-столбец X, тогда (1): $(x_1',...,x_n')=A(t)(x_1,...,x_n)$

Утверждение: матрица X(t) явл-ся решением (1) титтк все вект-е столбцы $x_i(t)$ этой матрицы явл-ся решениями (1)

Док-во: Необх-ость: пусть X –реш.(1),тогда $(x_1',...,x_n')$ = $A(t)(x_1,...x_n)$, приравнивая по координатам x_1' = $A(t)x_1,...,x_n'$ = $A(t)x_n, m.e.$ $x_1(t),...,x_n(t)$ – решения x'=A(t)x достаточность: аналогично

Опр. Фундам-ная матрица $\Phi(t)$ сис-мы x'=A(t)x, удовлетворяющая $\Phi(t_0)=I$ наз-ся фундаментальной матрицей, нормированной в t_0 .

Свойства: Теорема 1: чтобы матр ф-я была фундаментальной, н. и д., чтобы она была решением X'=A(t)X и ее w(t) нигде не обращался в 0. Док-во: сис-ма фундаментальна \leftrightarrow она явл-ся решением x'=A(t)x и ее определитель нигде не обращается в 0

Теорема 2: если $\Phi(t)$ – фундаментальная матрица для

x'=A(t)x, а С — произвольная невырожденная матрица n*n, то $\Phi(t)C=\psi(t)$ также фундаментальная матрица для x'=A(t)x Док-во: $\psi'(t)=\Phi'(t)C=A(t)$ $\Phi(t)C=A(t)\psi(t)$ $\psi(t)$ — невыр-я матрица $\forall t$, тк она есть произведение вырожденных матриц.

34. Формула решения задачи Коши для линейной неоднородной системы дифференциальных уравнений

Задача Коши для x'=A(t)x+b(t) (1), $x(t_0)=x_0$ (2), где $t \in R$, $x(t) \in C^n$, $b(t) \in C^n$, $A(t) \in R^{n*n}$

Теорема: если известна фундаментальная матрица $\Phi(t)$ сисмы x'=A(t)x, то решение задачи (1)-(2) находится как $x(t)=\Phi(t)$ $\Phi^{-1}(t_0)x_0+]\Phi(t)\Phi^{-1}(s)b(s)ds$ (от t_0 до t) Док-во: метод вариаций произв-х постоянных: Запишем общее решение $x(t)=\Phi(t)c$, $c=(c_1,...c_n)$. Тогда частное решение имеет вид $x(t)=\Phi(t)c(t)$ (*), c(t) — неизвестная векторная ф-я. Подставим в (1) $\Phi'(t)c(t)+\Phi(t)c'(t)=A(t)$ $\Phi(t)c'(t)+b(t)$. Тк $\Phi(t)$ — фундаментальная матрица, то $\Phi'(t)=A(t)\Phi(t)$, тогда $A(t)\Phi(t)c(t)+\Phi(t)$ $C'(t)=A(t)\Phi(t)c(t)+b(t)$ Тк $\exists \Phi^{-1}(t)$ тогда $A(t)\Phi(t)c(t)+\Phi(t)$ Тогда с помощью A(t)0 (2) и (*): A(t)1 — A(t)2 — A(t)3 — A(t)4 — A(t)4 — A(t)6 — A(t)6 — A(t)6 — A(t)6 — A(t)6 — A(t)7 — A(t)8 — A(t)8 — A(t)9 —

35. Решение линейных однородных систем с постоянными коэффициентами (случай простых собственных значений).

Линейная однор-ая сис-ма с постоянными коэффициентами: x'=Ax (*), где $x \in Cn$, $A \in Rn*n$ $det(A-\lambda I)=0$ – характеристическое ур-е A и (*). Слева многочлен n степени – характеристический многочлен

Опр. если \exists вектор $h \in C^n$, $h \neq 0$: $Ah = \lambda h$, $\lambda \in C$, то h -собственный вектор для A, отвечающий собственному значению λ

Теорема: чтобы векторная ф-я $e^{\lambda h}$, $\lambda \in C$, $h \in C^n$, была реш-ем (*), необходимомо и достаточно чтобы h был собственным вектором A, отвечающим собственному зн-ю λ

Док-во: чтобы ф-я была решением (*) н. и д. чтобы она удовлетворяла $\frac{d}{dt}e^{\mathcal{A}}h = \lambda e^{\mathcal{A}}h = Ae^{\mathcal{A}}h$. Сократив на $e^{\mathcal{A}}h$ получим $Ah = \mathcal{A}h$, что означает, что h — собственный вектор A, отвечающий собственному зн-ю λ . Следствие: если A имеет только простые собственные значения $\lambda_l, ..., \lambda_n$ и $h_l, ..., h_n$ соответс-щие им вектора, то ф-и $e^{\mathcal{A}lt}hl, ..., e^{\mathcal{A}nt}hn$ образуют ФСР Док-во: все эти ф-и явл-ся решениями (*) — надо доказать что они независимы в момент t_0 . Пусть $t_0 = 0$, тогда решения имеют вид $h_l, ..., h_n$. Собственные вектора отвечающие собственным значениям ЛН — решения ЛН в момент t_0 — они будут независимы в \forall момент t.

36. Основные понятия теории устойчивости (устойчивость, асимптотическая устойчивость, неустойчивость).

Пусть x'=f(t,x) (1), $x(t_0)=x_0$ — н.у. (2) $\varphi(t)$ — решение з. Коши (1)-(2) **Опр.** Говорят, что $\varphi(t)$ — решение з. Коши (1)-(2) устойчиво по Ляпунову, если $\forall \varepsilon > 0$ $\mathcal F$ такое $\delta = \delta(\varepsilon) > 0$, что \forall другого решения x(t) ур-я (1), начальные условия которого

удовлетворяют условию //x(t0)- $\varphi(t0)$ // $< \delta$. Справедливо, что при всех $t \ge t_0$ выполняется условия // x(t)- $\varphi(t)$ // $< \varepsilon$.

Опр. Говорят, что $\varphi(t)$ — решение 3. Коши (1)-(2) наз-ся неуст-вым по Ляпунову, если $\exists \varepsilon > 0$: $\forall \delta > 0 \exists x(t)$ (1) н.у. к-го удовл-т $//x(t_0)$ - $\varphi(t_0)//<\delta$, но \exists момент времени $t_1 > t_0$: $//x(t_1)$ - $\varphi(t_1)//>\varepsilon$ Опр. Говорят, что $\varphi(t)$ — решение 3. Коши (1)-(2) асимптотически устойчиво по Ляпунову, если 1. оно просто устойчиво по Ляпунову 2. \exists такое $\delta_0 > 0$, что для любого другого решения x(t) (1), н.у. которого удовлетворяют условию $//x(t_0)$ - $\varphi(t_0)//<\delta_0$ справедливо предельное отношение $|\lim//x(t)$ - $\varphi(t)//$ = 0 при $t \to \infty$

37. Устойчивость линейных систем с переменными коэфф-ами. Рассмотрим линейную неоднородную систему $\mathbf{x}' = \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t)$ (1) Будем предполагать, что матрица $\mathbf{A}(t)$ непрерывна при всех $\mathbf{t} \geq 0$. **Теорема 1.** Для того чтобы любое решение линейной системы (1) было устойчиво (асимптотически устойчиво) по Ляпунову н. и д., чтобы было устойчиво (асимптотически устойчиво) по Ляпунову нулевое решение однородной системы $\mathbf{x}' = \mathbf{A}(t)\mathbf{x}$. (2) Док-во. Пусть $\mathbf{x}(t, x_0)$ произвольное решение системы (1). Сделаем замену переменных, положим $\mathbf{y}(t) = \mathbf{x} - \mathbf{x}(t, x_0)$ (3) где $\mathbf{x} -$ произвольная функция, являющаяся решением системы (1). Продифференцируем соотношением (3), получаем $\mathbf{y}' = \mathbf{x}' - \mathbf{x}'$ ($\mathbf{t}, x_0) = \mathbf{A}(t)\mathbf{x} + \mathbf{b}(t) - \mathbf{A}(t)\mathbf{x}(t, x_0) - \mathbf{b}(t) = \mathbf{A}(t)(\mathbf{x} - \mathbf{x}(t, x_0)) = \mathbf{A}(t)\mathbf{y}$. Для начальных условий справедливо $\mathbf{y}(t_0) = \mathbf{x}(t_0) - \mathbf{x}(t_0, x_0) = 0$. Таким образом замена (3) приводит к одноро-ой системе, а отсюда следует утверждение теоремы.

Теорема 2. Для того чтобы нулевое решение лин. Однородной системы (2) было устойчиво по Ляпунову н. и д., чтобы все решения этого уравнения были ограничены при $t \ge 0$. Док-во. НЕОБХОДИМОСТЬ. Пусть нулевое решение системы (2) устойчиво по Ляпунову, т.е. \forall $\epsilon > 0$ \exists $\delta = \delta(\epsilon) > 0$ \forall ξ : $\|\xi\| < \delta$ $\|x(t, \xi)\| < \epsilon$ \forall $t \ge 0$. Покажем, что все решения системы (2) ограничены при $t \ge 0$.

Предположим противное, т.е. существует решение $\phi(t)$ системы (2) не ограничено при $t \geq 0$. Рассмотрим функцию $\psi(t) = \frac{\phi(t)}{\|\phi(0)\|} * \frac{\delta}{2}$

это решение уравнения (2). Кроме того $\|\psi(0)\| = \frac{\delta}{2} < \delta$. Так как $\psi(t)$ – решение уравнения (2) из определение устойчивости нулевого решения следует, что $\|\psi(t)\| < \epsilon \ \forall t \geq 0$. 2 Однако мы предположили, что $\phi(t)$ не ограничено. Следовательно, неограничено и $\psi(t)$ при $t \geq 0$. Получили противоречие. Следовательно, все решения системы (2) ограничены.

38. Необходимое и достаточное условие устойчивости линейных систем с постоянными матрицами.

Рассмотрим линейную однородную систему вида x' = Ax, (1) где А – постоянная матрица порядка $n \times n$, $x \in C^n$. Теорема 3. Для устойчивости линейной однородной системы с постоянной матрицей А н. и д., чтобы вещественные части всех собственных значений матрицы A были неположительны :Re $\lambda \le 0$, $\forall \lambda \in \sigma(A)$, а собственным значениям лежащим на мнимой оси должно отвечать столько собственных векторов какова кратность собственного значения, т.е. должны отсутствовать присоединенные вектора Док-во. НЕОБХОДИМОСТЬ. Пусть система (1) устойчива. Предположим, что теорема неверна. Тогда возможны 2 ситуации: 1. существует $\exists \lambda \in \sigma(A)$, такой что $\text{Re } \lambda > 0$, 2. существует $\exists \lambda \in$ $\sigma(A)$, $\lambda = i\gamma$, такой что у него есть хотя бы один присоединенный вектор. Рассмотрим каждый случай отдельно: 1) Существует ∃ λ ∈ $\sigma(A)$, такой что Re $\lambda > 0$. В этом случае система (1) имеет решение вида $x(t) = e^{\lambda t} h, h \neq 0$ $\|\mathbf{x}(t)\| = \|e^{\lambda t}\| = |e^{\lambda t}| \|\mathbf{h}\| = e^{\operatorname{Re} \lambda t} \|\mathbf{h}\| \to \infty \text{ при } t \to \infty$ причем

т.е. x(t) — неограниченное решение, это противоречит теореме 2.

2) Существует $\exists \ \lambda \in \sigma(A), \ \lambda = i\gamma, \ \text{такой что y него есть хотя бы один присоединенный вектор. В этом случае решение имеет вид <math>x(t) = e^{i\gamma t} \ p(t), \ \text{где p}(t) - \text{векторный многочлен, причем хотя бы одна его координата имеет степень не ниже 1. Тогда <math>\|x(t)\| = \|e^{i\gamma t} \ p(t)\| = |e^{i\gamma t} \ \|p(t)\| = \|p(t)\| \to \infty \ \text{при } t \to \infty \ \text{т.e. } x(t) - \text{неограниченное решение, это противоречит теореме 2. Следовательно, теорема верна.}$

39. Необходимое и достаточное условие асимптотической устойчивости лине-ых систем с постоянными матрицами.

Рассмотрим линейную однородную систему вида x' = Ax, (1) где A – постоянная матрица порядка $n \times n$, $x \in C^n$

Теорема 4. Для того чтобы линейная однородная система (1) с постоянной матрицей A была асимптотически устойчива н. и д., чтобы вещественные части всех собственных значений матрицы A были отрицательны Re $\lambda < 0$, $\forall \ \lambda \in \sigma(A)$.

Док-во. НЕОБХОДИМОСТЬ. Пусть система асимптотически устойчива, тогда по теореме об устойчивости линейных систем с постоянными матрицами имеем $\text{Re }\lambda \leq 0, \, \forall \, \lambda \in \sigma(A),$ Надо показать, что $\text{Re }\lambda \neq 0$. Предположим противное, что существует $\lambda = \mathrm{i}\gamma \in \sigma(A)$. Тогда система (1) имеет решение вида $\mathbf{x}(t) = \alpha e^{\mathrm{i}\gamma t}\mathbf{h}, \, \mathrm{rge}\,\,\mathbf{h} - \mathrm{co6}$ ственный вектор $\mathbf{h} \neq 0$. Оценим норму этого решения $\|\mathbf{x}(t)\| = \|\alpha e^{\mathrm{i}\gamma t}\mathbf{h}\| = |\alpha| \, \|e^{\mathrm{i}\gamma t}\| \, \|\mathbf{h}\| = |\alpha| \, \|\mathbf{h}\| \to 0$ при $\mathbf{t} \to +\infty$ Однако это противоречит асимптотической устойчивости нулевого решения системы (1). Следовательно, $\mathrm{Re }\lambda < 0, \, \forall \, \lambda \in \sigma(A).$

40. Фазовая плоскость однородной линейной системы 2-го порядка (узел, седло, фокус, центр).

Автономная система второго порядка $\begin{cases} x' = f(x,y) \\ y' = g(x,y) \end{cases}$ (1) Плоскость переменных x и y называется фазовой плоскостью. (x(t),y(t)) — фазовой траекторией. Совокупность всех фазовых траекторий на фазовой плоскости называется фазовый портрет.

Особой точкой системы (1) называется точка в которой $\begin{cases} f(x,y) = 0 \\ g(x,y) = 0 \end{cases}$ Рассмотрим линейную систему с постоянными коэффициентами вида: $\begin{cases} x' = ax + by \\ y' = cx + dy \end{cases}$ (2), где матрица А имеет вид $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ Найдем особые точки системы (2). Для этого нужно решить уравнение вида Ax = 0. Положим det $A \neq 0$, тогда (0, 0) – единственная особая точка. 1) Пусть собственные значения матрицы А вещественные и различные: $\lambda_1 \neq \lambda_2$. Общее вещественное решение (2): $X(t) = c_1 e^{\lambda_1 t} h_1 +$ $c_2e^{\lambda_2t}h_2(3)$, где h_1 и h_2 — собственные векторы отвечающие λ_1 и λ_2 соответственно, c_1 и c_2 — действительные постоянные. h_1 и h_2 — ЛН=>(3) можно разложить по h_1 и h_2 как по базису: $X(t)=\xi_1h_1+\xi_2h_2$. Тогда координаты фазовых траекторий: $(\xi_1(t) = c_1 e^{\lambda_1 t})$ $\{\xi_1(t)=c_2e^{\lambda_2t}$ (4) — параметри-ое задание фазовых траекторий

Наряду с фазовой плоскостью Р будем рассматривать вспомогательную плоскость P^* , в ней h_1 и h_2 — единичные

ортогональные векторы, поэтому существует отображение, переводящее h_1 в $\binom{1}{0}$, а h_2 в $\binom{0}{1}$ В плоскости Р* имеются траектории, задаваемые уравнениями: $\begin{cases} \xi_1(t) = c_1 e^{\lambda_1 t} \\ \xi_2(t) = -c_2 e^{\lambda_2 t} \end{cases}$ (5) и $\begin{cases} \xi_1(t) = -c_1 e^{\lambda_1 t} \\ \xi_2(t) = c_2 e^{\lambda_2 t} \end{cases}$ (6) 1 случай. Узел. λ_1 и λ_2 вещественные и имеют один знак, т.е. $\lambda_1 * \lambda_2 > 0$

а) $\lambda_1<0$ и $\lambda_2<0$; $|\lambda_1|<|\lambda_2|$; б) $\lambda_1>0$ и $\lambda_2>0$; $|\lambda_1|<|\lambda_2|$

Если c_1 =0 и $c_2>0$, то после подстановки в (4) получим положительную полуось ординат, если $c_1>0$ и $c_2=0$ — положительную полуось абсцисс. Если же $c_1>0$, $c_2>0$: $\frac{\xi_2(t)}{\xi_1(t)}=\frac{c_2}{c_1}e^{(\lambda_2-\lambda_1)t}$ и получаем параболоидные кривые. Движение в 1 четверти по траекториям состоит в асимптоматическом приближении точки к началу координат, траектории касаются оси абсцисс в начале координат

Устойчивый: $\lambda_1 < 0$ и $\lambda_2 < 0$			Неустойчивый: $\lambda_1>0$ и $\lambda_2>0$		
$P^* \lambda_1 < \lambda_2 $	$P^* \lambda_1 > \lambda_2 $	P	$P^* \lambda_1 < \lambda_2 $	$P^* \lambda_1 > \lambda_2 $	P
7.		ž,=0	***		2,50

2 случай. Седло. λ_1 и λ_2 вещественные и имеют противоположные знаки, т.е. $\lambda_1 * \lambda_2 < 0$. Для определённости будем считать, что $\lambda_1>0,$ $\lambda_2<0.$ Если c_1 =0 и $c_2>0,$ то после подстановки в (4) получим положительную полуось ординат, если $c_1>0$ и $c_2=0$ — положительную полуось абсцисс и двигаться по этим осям будем от начала координат. . Если же $c_1>0$, $c_2>0$, то траектории напоминают своим видом гиперболы, а движение по ним проходит в направлении к началу оси ординат, а затем

P*	P
1	***

3 случай. Фокус. Пусть собственные значения матрицы A имеют вид $\lambda_{1,2} = \alpha \pm i \beta$, $\alpha \neq 0$ 0. Т.к. матрицу A с помощью линейного преобразования можно привести к виду $\widetilde{A} = \begin{pmatrix} \alpha & \beta \\ -\beta & \alpha \end{pmatrix}$, то систему (2) можно переписать: $\begin{cases} \widetilde{x}' = \alpha \widetilde{x} + \beta \widetilde{y} \\ \widetilde{y}' = -\beta \widetilde{x} + \alpha \widetilde{y} \end{cases}$ Перейдём в І Перейдём в Р* к

Подставим (8) в (7) и получим: $\begin{cases} r'\cos\varphi - r\varphi'\sin\varphi = \alpha r\cos\varphi + \beta r\sin\varphi \\ r'\sin\varphi + r\varphi'\cos\varphi = -\beta r\cos\varphi + \alpha r\sin\varphi \end{cases}$ Преобразуем систему: $\begin{cases} r' = \alpha r \\ \varphi' = -\beta \end{cases}$ и выпишем её решение явно $r = cexpr\{-\frac{\alpha}{\beta}\varphi\}$

Эта кривая — логарифмическая спираль

STORPHISON STOREST STOREST STOREST				
Устойчивый фокус: α <	Неустойчивый фокус: $\alpha > 0$,			
0, спираль закручивается	спираль раскручивается			
x,				

4 случай. Центр. Пусть собственные значения матрицы А имеют вид $\lambda_{1,2} = \pm i\beta$, $\alpha = 0$. Тогда общее вещественное решение системы (2) имеет вид: $X(t) = c_1 cos\beta th_1 + c_2 sin\beta th_2$ (9). Разложим (9) по h_1 и h_2 как по базису: $X(t) = \xi_1 h_1 + \xi_2 h_2$. Тогда координаты фазовых траекторий: $\begin{cases} \xi_1 = c_1 cos\beta t \\ \xi_2 = c_2 sin\beta t \end{cases}$

Отсюда получаем, что фазовые траектории можно описать уравнением вида: $\xi_1^2 + \xi_2^2 = c$. В этом случае каждая фазовая траектория, кроме особой точки (0;0) является замкнутой траекторией с центром в точке (0;0), направление определяется вектором скорости системы (2)

Замечание. Особые точки узел, седло и фокус устойчивы в смысле малого изменения коэффициентов системы (2), т.е. при малых изменениях тип особой точки сохраняется. Центр этим свойством не обладает, потому что условие $\alpha = 0$ может нарушиться и центр превратится в фокус.

- 1. Основные понятия (диф. уравнение, решен. диф. уравнения, общее решение).
- 2. Геометрическое представление скалярного диф. Уравнения
- 3. Уравнения с разделяющимися переменными.
- 4. Однородные уравнения.
- 5. Линейные однородные уравнения
- 6. Линейные неоднородные уравнения. Формула для решения задачи Коши
- 7. Уравнение Бернулли
- 8. Уравнен. в полных дифференциалах, общий интеграл.
- 9. Критерий для уравнений в полных дифференциалах.
- 10. Теорема существования и единственности Коши-Липшица (формулировка).
- 11. Линейные однородные дифференциальные уравнения n-го порядка с постоянными коэффициентами. Многочлен символа p и его свойства
- 12. Теорема об общем решении линейного однородного дифференциального уравнения п-го порядка с постоянными коэффициентами (случай простых корней).
- 13. Теорема об общем решении линейного однородного дифференциального уравнения п-го порядка с постоянными коэффициентами (случай кратных корней).
- 14. Выделение вещественных решений.
- 15. Линейные неоднородные дифференциальные уравнения n-го порядка с постоянными коэффициентами и правой частью в виде квазимногочленов.
- 16. Правило нахождения частного решения в нерезонансном случае (без док-ва).
- 17. Правило нахождения частного решения в резонансном случае (без док-ва)
- 18. Метод вариации произвольных постоянных
- 19. Линейные дифф-ые ура-ия n-го порядка с переменными коэфф-ентами. Теорема о нулевом решении
- 20. Линейно независимые системы функций. Определитель Вронского и его свойства
- 21. Фундаментальная система решений. Теорема об общем решении.
- 22. Теорема о существовании фундаментальной системы решений.
- 23. Теорема об однозначном определе. коэффициентов лин-ого дифф-ого ур. n-го порядка с переменными коэф-тами его фср.
- 24. Восстановление ДУ по известной фундаментальной системе решений.
- 25. Формула Остроградского-Лиувилля
- 26. Краевая задача для линейного дифференциального уравнения второго порядка.
- 27. Теорема о выражении решения неоднородной краевой задачи через функцию Грина
- 28. Свойства функции Грина.
- 29. Теорема о разрешимости неоднородной краевой задачи.
- 30. Линейная однородная система и ее свойства.
- 31. Линейная зависимость векторных фу-ий. Фундаментальная система решений.
- 32. Определитель Вронского. Формула Лиувилля
- 33. Матричные дифференциальные уравнения. Свойства фундаментальных матриц
- 34. Формула решения задачи Коши для линейной неоднородной системы дифференциальных уравнений
- 35. Решение линейных однородных систем с постоянными коэффициентами (случай простых собственных значений).
- 36. Основные понятия теории устойчивости (устойчивость, асимптотическая устойчивость, неустойчивость).
- 37. Устойчивость линейных систем с переменными коэфф-ами.
- 38. Необходимое и достаточное условие устойчивости линейных систем с постоянными матрицами.
- 39.Необходимое и достаточное условие асимптотической устойчивости лине-ых систем с постоянными матрицами.
- 40. Фазовая плоскость однородной линейной системы 2-го порядка (узел, седло, фокус, центр).