Kurzfragen Microcontroller Basics

Bitte beurteilen Sie die folgenden Aussagen:

Bei einem Half-Word Schreibzugriff auf dem 32bit-Systembus sind genau zwei NBL[x]-Signale aktiv.	
Bei einer synchronen Datenübertragung verwendet ein Slave das Clock-Signal vom Master.	
Die CPU kann Slaves am Systembus mittels Control-Bits konfigurieren.	
Der Systembus besteht aus den zwei Bestandteilen Datenbus und Kontrollsignale.	
Die CPU kann Slaves am Systembus mittels Status-Bits konfigurieren.	
Der Systembus übermittelt unter anderem die Kontrollsignale.	

Frage 1 Lösung

Kurzfragen Microcontroller Basics

Bitte beurteilen Sie die folgenden Aussagen:

Bei einem Half-Word Schreibzugriff auf dem 32bit-Systembus sind genau zwei NBL[x]-Signale aktiv.

Bei einer synchronen Datenübertragung verwendet ein Slave das Clock-Signal vom Master.

Die CPU kann Slaves am Systembus mittels Control-Bits konfigurieren.

Der Systembus besteht aus den zwei Bestandteilen Datenbus und Kontrollsignale.

Die CPU kann Slaves am Systembus mittels Status-Bits konfigurieren.

Der Systembus übermittelt unter anderem die Kontrollsignale.

Wahr

Wahr

Wahr

Falsch

Falsch

Wahr

Partielle Dekodierung

Gegeben ist ein System mit einem **8bit-Adressbus**. Sie untersuchen eine Peripherie und stellen fest, dass sie genau auf den Adressen **0x6D**, **0x7F**, **0x6F** und **0x7D** selektiert ist; offensichtlich ein Fall von partieller Adressdekodierung.

Bitte beantworten Sie die folgenden Fragen:

Wieviele der 8 Adressleitungen werden nicht dekodiert bzw. ignoriert?
Geben Sie die Nummern der ignorierten Adressleitung(en) an!
Wenn es mehrere Leitungen sind, geben Sie die Nummern aufsteigend, getrennt durch Leerschläge an, z.B. 0 1 2 3 4; Leitung 0 ist wie
üblich das LSB.

Frage 2 Lösung

Partielle Dekodierung

Gegeben ist ein System mit einem **8bit-Adressbus**. Sie untersuchen eine Peripherie und stellen fest, dass sie genau auf den Adressen **0x6D**, **0x7F**, **0x6F** und **0x7D** selektiert ist; offensichtlich ein Fall von partieller Adressdekodierung.

Bitte beantworten Sie die folgenden Fragen:

Wieviele der 8 Adressleitungen werden nicht dekodiert bzw. ignoriert?

2

Geben Sie die Nummern der ignorierten Adressleitung(en) an!

Wenn es mehrere Leitungen sind, geben Sie die Nummern aufsteigend, getrennt durch Leerschläge an, z.B. 0 1 2 3 4; Leitung 0 ist wie üblich das LSB.

14

Buszugriff

Gegeben ist das folgende Diagramm eines Buszugriffs:

Tragen Sie alle Bytes des Write-Zugriffs in die untenstehende Tabelle ein. Geben Sie für jedes Byte die Adresse und den geschriebenen Wert an; der Prozessor ist little endian.

Verwenden Sie für Adressen die folgende Form: 0x...... (achtstellige Hexzahl, Zeichen 0 bis F) Verwenden Sie für Daten die folgende Form: 0x.. (zweistellige Hexzahl, Zeichen 0 bis F)

Frage 3 Lösung

Buszugriff

Gegeben ist das folgende Diagramm eines Buszugriffs:

Adresse (aufsteigend) Daten-Byte

Tragen Sie alle Bytes des Write-Zugriffs in die untenstehende Tabelle ein. Geben Sie für jedes Byte die Adresse und den geschriebenen Wert an; der Prozessor ist little endian.

Verwenden Sie für Adressen die folgende Form: 0x....... (achtstellige Hexzahl, Zeichen 0 bis F) Verwenden Sie für Daten die folgende Form: 0x.. (zweistellige Hexzahl, Zeichen 0 bis F)

GPIO Treiberstufen

Wir betrachten zwei GPIO-Pins. Einer ist als Output-Pin ('out') konfiguriert, der andere als Input-Pin ('in'). Die beiden Pins sind über eine Leitung miteinander verbunden.

Der Output-Pin 'out' ist als push-pull-Treiberstufe ohne pull-Widerstand konfiguriert.

Geben Sie an, welcher Wert am Input-Pin 'in' erkannt wird, je nachdem wie der pull-Widerstand am Input-Pin konfiguriert ist:

Pull-Widerstand am Input-Pin	Output '0': Gelesener I	nput-Wert Output 'floa	ating': Gelesener Input-Wert
kein			
pull-up).
pull-down			

Frage 4 Lösung

GPIO Treiberstufen

Wir betrachten zwei GPIO-Pins. Einer ist als Output-Pin ('out') konfiguriert, der andere als Input-Pin ('in'). Die beiden Pins sind über eine Leitung miteinander verbunden.

Der Output-Pin 'out' ist als push-pull-Treiberstufe ohne pull-Widerstand konfiguriert.

Geben Sie an, welcher Wert am Input-Pin 'in' erkannt wird, je nachdem wie der pull-Widerstand am Input-Pin konfiguriert ist:

Pull-Widerstand am Input-Pin	Output '0': Gelesener Input-Wert		Output 'floating	g': Gelesener Input-Wert
kein	0		undefiniert)
pull-up	0		1).
pull-down	0		0).

GPIO

Sie sollen einen GPIO-Port des STM32F429 konfigurieren. Die notwendigen Informationen finden Sie in den Folien zu GPIO oder im Reference Manual.

Konfigurieren Sie GPIO Port A.5 als low speed digitalen Output mit open-drain und pull-up.

Geben Sie die Basisadresse der Control- und Statusregister des GPIO Ports A in Hexadezimal-Schreibweise an (0x...):

Geben Sie in der folgenden Tabelle die Offsets der Kontrollregister an, sowie die zu setzenden Bitmuster und um wie viele Stellen die Bitmuster geschoben werden müssen.

Formatvorgabe: Für die zu setzenden Bits wählen Sie aus dem Auswahlmenu die richtige Maske aus. Für die Shifts geben Sie die Anzahl Stellen an.

Register	Offset	Bits: Bitmaske in binär	Shift um:
Beispiel:	0x1F	01	7
MODER			<<
OTYPER			<<
PUPDR			<<
OSPEEDR			<<

Frage 5 Lösung

GPIO

Sie sollen einen GPIO-Port des STM32F429 konfigurieren. Die notwendigen Informationen finden Sie in den Folien zu GPIO oder im Reference Manual.

Konfigurieren Sie GPIO Port A.5 als low speed digitalen Output mit open-drain und pull-up.

Geben Sie die Basisadresse der Control- und Statusregister des GPIO Ports A in Hexadezimal-Schreibweise an (0x...):

0x40020000

Geben Sie in der folgenden Tabelle die Offsets der Kontrollregister an, sowie die zu setzenden Bitmuster und um wie viele Stellen die Bitmuster geschoben werden müssen.

Formatvorgabe: Für die zu setzenden Bits wählen Sie aus dem Auswahlmenu die richtige Maske aus. Für die Shifts geben Sie die Anzahl Stellen an.

Register	Offset	Bits: Bitmaske in binär	Shift um:
Beispiel:	0x1F	01	7
MODER	0x00	01	<< 10
OTYPER	0x04	1	<< 5
PUPDR	ОхОС	01	<< 10
OSPEEDR	0x08	00	<< 10

SPI Timing Diagramm

Eine SPI Schnittstelle ist wie folgt konfiguiert: CPOL=1, CPHA=0, MSB first.

Der Master sendet das Byte 0x59. Bildet eines der untenstehenden Diagramme den Verlauf korrekt ab, und wenn ja, welches?

Frage 6 Lösung

SPI Timing Diagramm

Eine SPI Schnittstelle ist wie folgt konfiguiert: CPOL=1, CPHA=0, MSB first.

Der Master sendet das Byte 0x59. Bildet eines der untenstehenden Diagramme den Verlauf korrekt ab, und wenn ja, welches?

Kurzfragen SPI

Bitte beurteilen Sie die folgenden Aussagen:

SPI wird auch 2-wire bus genannt.	
SPI ist für Onboard-Verbindungen geeignet.	
Bei SPI müssen neben den Datenbits sogenannte Synchronisationsbits übertragen werden.	
SPI ist eine synchrone Verbindung.	
Bei SPI braucht es zu jedem Slave eine separate Slave-Select-Leitung.	

Frage 7 Lösung

Kurzfragen SPI

Bitte beurteilen Sie die folgenden Aussagen:

SPI wird auch 2-wire bus genannt.

SPI ist für Onboard-Verbindungen geeignet.

Bei SPI müssen neben den Datenbits sogenannte Synchronisationsbits übertragen werden.

SPI ist eine synchrone Verbindung.

Bei SPI braucht es zu jedem Slave eine separate Slave-Select-Leitung.

Falsch

Wahr

Falsch

Wahr

Wahr

I2C Adressierung

Der Master se	det zur Initialisierung der Kommunikation mit einem Slave folgende 8 Bit: 0100'0110 (MSB first).	Interpretieren Sie diese:
Slave-Adress		
Read/Write		

Frage 8 Lösung

I2C Adressierung

Der Master sendet zur Initialisierung der Kommunikation mit einem Slave folgende 8 Bit: 0100'0110 (MSB first). Interpretieren Sie diese:

```
Slave-Adresse 0100011b = 0x23

Read/Write Write (=0)
```

I2C Ende

Der Master signa	alisiert das End e	e einer I2C-k	Kommunikati	on durch folg	ende Beding	ung:
	Flanke auf		während			ist.

Frage 9 Lösung

I2C Ende

Der Master signalisiert das Ende einer I2C-Kommunikation durch folgende Bedingung:

Steigende Flanke auf SDA während SCL High ist.

Timer/Counter

Gegeben sei ein 16-bit Counter, der mit einem 40 MHz Clock-Signal verbunden ist. Mit Hilfe dieses Counters soll nun alle 20 ms ein Interrupt ausgelöst werden. Durch welchen Wert aus der Auswahlliste muss der Prescaler die Clock-Frequenz teilen, damit der Wertebereich des Auto-Reload-Registers (ARR) möglichst gut ausgeschöpft wird?

Frage 10 Lösung

Timer/Counter

Gegeben sei ein 16-bit Counter, der mit einem 40 MHz Clock-Signal verbunden ist. Mit Hilfe dieses Counters soll nun alle 20 ms ein Interrupt ausgelöst werden. Durch welchen Wert aus der Auswahlliste muss der Prescaler die Clock-Frequenz teilen, damit der Wertebereich des Auto-Reload-Registers (ARR) möglichst gut ausgeschöpft wird?

1 Sekunde / 40 MHz = 0.000000025 Sekunden/Cycle Bei 2^16 Counter = 0.000000025 * 2^16 = 0.0016384 Sekunden = Alle 1.6 ms ein Interrupt Für 20 ms Clock mindestens durch ~13 Teilen

PWM - Periode und Duty Cycle

Gegeben ist der folgende Counter. Dieser ist als Up-counter konfiguriert und inkrementiert mit einer Frequenz fcount = 100 kHz. Alle Register sind 16-bit breit.

Mit welchen Werten müssen das ARR Register und das CCR Register programmiert werden, um am Ausgang OC_REF ein PWM Signal mit einer Periode von 600 ms und einem Duty Cycle von 80% zu generieren?

Geben Sie die Werte als Dezimalzahlen an. Die Herleitung muss ersichtlich sein.

Frage 11 Lösung

PWM 80% Duty, 600 ms Periode

Periode fcount = 1s / 100kHz = 0.00001 s Ziel Periode = 600 ms = 0.6s

fcount x $60'000 = 0.6s \rightarrow ARR = (60'000 - 1)$ 80% von $60'000 = 48'000 \rightarrow CCR = (48'000 - 1)$

Timer/Counter

Gegeben ist ein universeller 16-Bit Timer mit Capture / Compare - Einheit. Er ist wie folgt konfiguriert:

- · Alle Register sind 16 Bit breit.
- Die Quelle liefert ein Signal der Frequenz 35 MHz.
- Der Prescaler ist so eingestellt, dass jeder 70. Tick gezählt wird.
- · Der Timer arbeitet als Downcounter.

Für das PWM-Signal gelten die folgenden Einstellungen:

- Das PWM Signal wird low gesetzt, wenn der Counter 0 erreicht.
- Das PWM Signal wird high gesetzt, wenn der Counter den Compare-Wert erreicht.

Es soll nun ein PWM-Signal mit einer Periode von 96 ms erzeugt werden. Der Duty Cycle soll 6/8 betragen.

Bestimmen Sie den Zahlenwert (dezimal), der im Capture-Compare-Register (CCR) stehen muss.

Frage 12 Lösung

Timer/Counter

Gegeben ist ein universeller 16-Bit Timer mit Capture / Compare - Einheit. Er ist wie folgt konfiguriert:

- · Alle Register sind 16 Bit breit.
- Die Quelle liefert ein Signal der Frequenz 35 MHz.
- Der Prescaler ist so eingestellt, dass jeder 70. Tick gezählt wird.
- · Der Timer arbeitet als Downcounter.

Für das PWM-Signal gelten die folgenden Einstellungen:

- Das PWM Signal wird low gesetzt, wenn der Counter 0 erreicht.
- Das PWM Signal wird high gesetzt, wenn der Counter den Compare-Wert erreicht.

Es soll nun ein PWM-Signal mit einer Periode von 96 ms erzeugt werden. Der Duty Cycle soll 6/8 betragen.

35MH2

Bestimmen Sie den Zahlenwert (dezimal), der im Capture-Compare-Register (CCR) stehen muss.

Tich Times 1/500hHz =0,000028

Wan Times also out 36ms cingestell+ ist muss APIR = (48'000-1) sein wil 0,000002 x 48'000 = 36ms

ADC Offset (ADC Folien)

Der ADC1 des STM32F429xx-Mikrocontrollers wird mit den folgenden Eigenschaften verwendet:

• Vref des ADC ist 3 V

mν

- der Offsetfehler des ADC ist +2 LSB
- der ADC verwendet 8-Bit

Wie lautet die absolute Adresse des Registers, in dem die Wandlungsergebnisse gelesen werden können (in Hex) (3 P)?	
Welche Spannung entspricht dem Offsetfehler (Ergebnis in Millivolt auf 1 Dezimalstelle. Die Einheit nicht schreiben) (5 P)	

Frage 13 Lösung

ADC Offset (ADC Folien)

Der ADC1 des STM32F429xx-Mikrocontrollers wird mit den folgenden Eigenschaften verwendet:

- Vref des ADC ist 3 V
- der Offsetfehler des ADC ist +2 LSB
- der ADC verwendet 8-Bit

$$3V \longrightarrow \Lambda LSB = \frac{V_{REF}}{z^{N}} [V] = \frac{2V}{2^{\delta}} = 0,01171875$$

Wie lautet die absolute Adresse des Registers, in dem die Wandlungsergebnisse gelesen werden können (in Hex) (3 P)?

0x4001'204C

Welche Spannung entspricht dem Offsetfehler (Ergebnis in Millivolt auf 1 Dezimalstelle. Die Einheit nicht schreiben) (5 P) 23,4

mν

0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3

Section 13.13.18: ADC register map on page 430

13.13.14 ADC regular data register (ADC_DR)

Address offset: 0x4C

Reset value: 0x0000 0000

Memory

Wie gross ist der Speicherbereich in **kBytes**, der mit **22** Adressleitungen maximal angesprochen werden kann, wenn jede Adresse ein individuelles Byte identifiziert?

Antwort:	

Frage 14 Lösung

Memory

Wie gross ist der Speicherbereich in **kBytes**, der mit **22** Adressleitungen maximal angesprochen werden kann, wenn jede Adresse ein individuelles Byte identifiziert?

Antwort: 4096

2^22 = 4'194'304 / 1024 = 4096 kBytes

Memory

In einem Flash Baustein wird ein Byte mit den unten angegebenen Operationen modifiziert. Was ist der resultierende Wert?

Ausgangswert	Flash Operationen	Resultierender Wert
0xC3	1. kein Erase	
	2. Program 0xF3	
0xC3	1. Erase	
	2. Program 0xF3	

Frage 15 Lösung

Memory

In einem Flash Baustein wird ein Byte mit den unten angegebenen Operationen modifiziert. Was ist der resultierende Wert?

Ausgangswert	Flash Operationen	Resultierender Wert	
0xC3	1. kein Erase	0xC3	
	2. Program 0xF3		
0xC3	1. Erase	0xF3	
	2. Program 0xF3		

0xC3	11000011	0xC3	11000011
0xF3	11110011	Erase	00000000
		0xF3	11110011
0xC3	11000011		
		0xF3	11110011

Memory

Weisen Sie die Speicherzellen der entsprechenden Speichertechnologie zu.

Frage 16 Lösung

Memory

Weisen Sie die Speicherzellen der entsprechenden Speichertechnologie zu.

