

Multimodal Approaches to Computational Pathology

Exploring if radiology-histology fusion leads to enhanced patient outcome predictions

Muhammad Amjad Seth Alain Chang

24/09/2025

Motivations

- Increase efficiency in pathology workflows
- Allow for more individualised care

Smarter resource allocation

• Increase survival chance through earlier intervention

[1]

Unimodal Approaches

- Paige Prostate
 - o FDA and CE-IVDR clearance
 - Based off work by Campanella et al. which achieved >0.98 AUC and 100% sensitivity [1]
- Virchow
 - o **0.95** specimen-level AUROC across 9 common and 7 rare cancers [2]

Multimodal Approaches

Multimodal approaches often outperform unimodal ones, reaching clinical grade performance in tasks unimodal models struggle to do so in [1].

- Detection and extension in prostate cancer [2]
- Diagnosis of chest based pathological conditions [3]
- Diagnosis of non-pigmented skin cancer
 - Work by Tschandl et al. was described as being "on par with human experts" [4]

Trends in Existing Work [1]

Multimodal models exhibit an average **6.2% increase in AUC**

Radiology and pathology were the **least combined modalities**

Diagnosis has been the most common task, followed by survival prediction

Attention-based fusion and transformer methods are on the rise

Project Overview

To what extent do radiology-histology multimodal models perform better than unimodal approaches for patient outcome prediction?

CLINICAL PROBLEM

UNIMODAL SOLUTION

MULTIMODAL SOLUTION

BENCH-MARKING

Challenges with Data

Modality incompleteness

Ethics and privacy concerns

Lack of fully-annotated datasets

Datasets

[X]TCGA-GBM

~200 matched cases

New NIH controlled access policy meant it was unavailable

[X]TCGA-LUAD

Had a large amount of individual histology and radiology data Had only 31 matched cases

[**J**] CHIMERA

Had 95 cases with radiology, histology and clinical data Contained 27 positive and 68 negative cases

Clinical Task:

Predict when a patient will undergo biochemical recurrence (BCR) following prostatectomy

Unimodal Model

WSI Image or MRI Image

• Utilised C-Index as our base metric for predicting time to BCR

Considerations with Encoders

Wanted a general purpose architecture

- MRI scans are 3D in nature
 - Existing models focused on 2D images
 - Adaptation would have required more time

Radiology Encoders

Models used (3D)

- nnU-net
- MedicalNet
- Radiomics

Other models tested (2D)

- ViT Base (pre-trained on ImageNet)
- Qwen FM
- PMC-CLIP

Histology Encoders

Models used (slide level)

- TITAN
- CHIEF
- MADELEINE
- PRISM

Other models tested (patch level)

- UNI
- CONCH

Unimodal Results (Time to BCR)

WSI Configuration	Model	Average C-Index (10 repeats)
10x 256	PRISM	0.7759 ± 0.1088
	CHIEF	0.7720 ± 0.0944
	TITAN	0.6916 ± 0.1049
	MADELEINE	0.7307 ± 0.1038
10x 512	PRISM	0.7392 ± 0.1095
	CHIEF	0.7380 ± 0.1121
	TITAN	0.6906 ± 0.1125
	MADELEINE	0.6498 ± 0.1275
20x 256	PRISM	0.8181 ± 0.1018
	CHIEF	0.6717 ± 0.1240
	TITAN	0.7418 ± 0.1101
	MADELEINE	0.7065 ± 0.1035
20x 512	PRISM	0.7594 ± 0.1100
	CHIEF	0.6741 ± 0.1140
	TITAN	0.7172 ± 0.1056
	MADELEINE	0.7159 ± 0.1007

Model	Average C-Index
Medical Net	0.5584 ± 0.1250
Radiomics	0.5508 ± 0.1318

The Classification Problem

- Initially focused on classification of BCR
- Data was not amenable to classification due to right censoring
- Led to us focusing on predicting time to BCR instead

Unimodal Results (Classification)

WSI Configuration	Model	Average F1 Score	AUC
10x 256	PRISM	0.5318 ± 0.1544	0.7700 ± 0.0920
	CHIEF	0.5186 ± 0.1798	0.7693 ± 0.1053
	TITAN	0.5751 ± 0.1742	0.7939 ± 0.1106
	MADELEINE	0.4182 ± 0.1620	0.6892 ± 0.1201
10x 512	PRISM	0.4278 ± 0.1688	0.6754 ± 0.1234
	CHIEF	0.5264 ± 0.1467	0.7792 ± 0.0886
	TITAN	0.5468 ± 0.1783	0.7618 ± 0.1360
	MADELEINE	0.5563 ± 0.1582	0.8098 ± 0.1117
20x 256	PRISM	0.5334 ± 0.1652	0.7509 ± 0.1230
	CHIEF	0.5713 ± 0.1397	0.8307 ± 0.0802
	TITAN	0.5607 ± 0.1704	0.7828 ± 0.1193
	MADELEINE	0.5547 ± 0.1638	0.7744 ± 0.1127
20x 512	PRISM	0.5306 ± 0.1773	0.7586 ± 0.1129
	CHIEF	0.4900 ± 0.1533	0.7243 ± 0.0900
	TITAN	0.5350 ± 0.1981	0.8044 ± 0.1068
	MADELEINE	0.4571 ± 0.1740	0.6828 ± 0.1332

Fusion Methodologies

1. Early Fusion

2. Intermediate Fusion

- Marginal Intermediate Fusion
- Joint Intermediate Fusion
- 3. Late Fusion

[1]

Fusion Methodologies

Early Fusion

Combining images before using encoders to get vector representations

Late Fusion

 Having two separate prediction pipelines for each modality and using a weighted average for a final prediction

Intermediate Fusion

Marginal Intermediate Fusion

 Getting vector representations of each modality and combining them with no additional learning

Joint Intermediate Fusion

 Getting vector representations of each modality and combining them with additional learning

Marginal Intermediate Fusion

 Option to linearly project vectors such that dimensions of both vectors are equal before concatenation

Marginal Intermediate Fusion Results

Linear Projection	Average C-Index (10 repeats)
Yes	0.7520 ± 0.1069
No	0.7501 ± 0.1166

Unimodal Model	Average C-Index (10 repeats)
Histology (PRISM)	0.8181 ± 0.1018
Radiology (MedicalNet)	0.5584 ± 0.1250

Joint Intermediate Fusion

- Run cross-attention to allow histology and radiology vectors to give each other context
- Run self-attention to allow individual vectors to learn most important components for predictions

Joint Intermediate Fusion

- Instead of concatenation, we can calculate a bilinear product of both vectors to capture multiplicative relationships
- Use n learnt weight matrices, where n is the dimension of the combined vector

Joint Intermediate Fusion Results

Vector Combination Method	Average C-Index (10 repeats)
Concatenation	0.7420 ± 0.1114
Bilinear Product	-

Unimodal Model	Average C-Index (10 repeats)
Histology (PRISM)	0.8181 ± 0.1018
Radiology (MedicalNet)	0.5584 ± 0.1250

Discussion

- Radiology features alone were not a good predictor for time to BCR, with an average C-Index score of 0.55 across 2 encoders
- Both Marginal and Joint Intermediate Fusion did not yield better results compared to unimodal approaches, with histology alone being a better predictor
- Radiology introduced noise to histology features, causing multimodal approaches to perform worse

Conclusion

 Despite radiology's clinical relevance, its weak predictive power (C-index = 0.55) degraded the performance of histology-based models rather than providing complementary information

 Incorporating modalities with poor individual predictive performance in multimodal approaches can be counterproductive

Challenges and Lessons Learned

- Data availability and access
- Scaling within training and validation sets
- Flawed classification task
- Ensuring minimal data leakage
 - o Patient-level vs slide-level set splitting

Future Research Directions

- Utilisation of 2D models for MRIs
- Experiment with patch-level WSI foundation models
- Using larger datasets
- Experiment with other fusion strategies
 Late, Early
- Adapt the framework to other clinical tasks
 Diagnosis, survival etc.
- Revisit the classification task with different data

