Envia tus examenes a lawikifiuba@gmail.com

Laboratorio 66.02 /

Calificación

Introducción a la Ingeniería Electrónica 86.02

Evaluación Integradora	_	4ª. oportunidad	d –	1er. cuatrin	nestre 2018	_	26-07-2018	
Apellido y Nombres					H	loias	entregadas	
Padrón; TP aprob	ado	en cuatr de .	20;	Turno de TP		arrei		

1) a)	1) b)	2) a)	2) b)	3) a)	3) b)	3) c)	4) a)	4) b)	4) c)	Final

1) Se desea medir la tensión sobre R1 en el siguiente circuito utilizando dos multímetros distintos. El multímetro **A** posee una resistencia de entrada de 1 M Ω y 3 % dígitos. En cambio, el multímetro **B** tiene una resistencia de entrada igual a 10 M Ω y 3 % dígitos. Datos: R1 = 680 k Ω y R2 = 330 k Ω .

b) ¿Cuál de las dos mediciones realizadas es más exacta? ¿Por qué?

Nota: indique claramente el banco de medición empleado. Para el multímetro A los rangos posibles son 400 V, 40 V y 4 V. Para el multímetro B los rangos son 200 V, 20 V y 2 V.

- 2) Se desea medir la forma de onda de la figura usando un multímetro de valor medio y de 3 ¾ dígitos. Considere suficiente al ancho de banda del multímetro para realizar la medición.
- a) ¿Cuál es el resultado de la medición en los modos V_{DC} y en V_{AC} ? Indique la incertidumbre.
- **b)** ¿Cuál sería la lectura de un voltímetro de verdadero valor eficaz en V_{AC+DC} ?

Datos: $A = 8 \text{ V}; B = -3 \text{ V}; t_1 = 10 \text{ ms}; t_2 = 30 \text{ ms};$ Incertidumbre en V_{DC}, V_{AC} y V_{AC+DC} : 1% + 2 dígitos.

3) Dado el circuito de la figura, con V1 = 5 V (constante); V2 = 10 V $sen(\omega t)$, con $\omega = 2\pi f$ y f = 50 Hz

Ţ

- a) Calcular la potencia instantánea en el resistor R1.
- b) Calcular la potencia media en R1.
- c) Cuánto debería valer *R3* para que la potencia media sea máxima sobre *R1*.

v(t)

0

4) Considerando que el capacitor inicialmente se encuentra descargado:

- **b)** Defina el sentido y calcule el valor de la corriente sobre *R1* en función del tiempo.
- c) Dibuje cómo conectar un osciloscopio para medir la tensión sobre *R1*. Indique el ajuste de los controles de la escala vertical, escala horizontal y

disparo. Indique también cómo se observaría la señal en la pantalla para dicho caso (Utilice una pantalla de 8 Div en vertical X 10 Div en horizontal). V = 10 V; $R1 = 5 \text{ k}\Omega$; $R2 = 10 \text{ k}\Omega$; $R3 = 10 \text{ k}\Omega$; $C = 22 \mu\text{F}$

ACLARACIONES:

Por favor ponga en cada hoja su nombre y apellido, número de padrón y el número de hoja correspondiente. Cuente la cantidad total de hojas entregadas INCLUYENDO ésta y complete el cuadro de arriba de esta hoja. Resuelva cada ejercicio en HOJAS SEPARADAS. Indique todos los razonamientos e hipótesis a los que recurre. Las condiciones que se creen no especificadas deberán ser establecidas explícitamente antes de hacer los cálculos. Si hay errores, indíquelos. Si sobran datos o son incompatibles, justifique cuáles usa. Expresar correctamente las unidades de medida, las incertidumbres y proponer respuestas breves; todos estos factores afectan la calificación. Un error conceptual o una cantidad incorrecta pueden invalidar la respuesta. (*) Las preguntas 1, 2, 3 y 4 evalúan distintos conceptos por lo que la evaluación es global.

R: HRI
$$E = i\tau \cdot R\tau$$
 $R\tau = (Ri/|PI) + R2 => R\tau = 966704 \Omega$
 $E = i\tau \cdot R\tau$ $R\tau = (Ri/|PI) + R2 => R\tau = 966704 \Omega$
 $E = i\tau \cdot R\tau$ $R\tau = (Ri/|PI) + R2 => R\tau = 966704 \Omega$

Uu	МИ	0	idea	Par	an Co	wa:

PI E = iT-RT	RT = R1 + R2 = 1010000 52
\mathcal{E} \mathcal{E} \mathcal{E}	
$i_T = 9,90 \times 10 4$	$= > E(e_i) = 67,32V$

De fuede ver que el B se acerca moi al valo

. . .

.

.

- .

 $V(t) = \begin{cases} 8V & 0 \leq t \leq 10 \text{MB} \end{cases}$ Vdc = 1 V(t) dt $Vdc = \frac{1}{30mn} \left[\frac{8Vdt}{4} + \frac{30mn}{30mn} \right] = 0.666V$ 0,6 6 6 V -> display -0,666.11.+2(0,001) = 0,00866 Vdc = (0,666 ±0,008)V

$$VAC = \frac{1.11}{T} \int_{0}^{T} |V(t) - VdC| dt$$

$$Vdc = \int_{0}^{T} V(t) dt = 0,666V$$

$$V_{AC} = \int_{T}^{T} \int_{0}^{T} |V(t) - Vdc|^{2} dt$$

Ara forme de halles Vef

$$V_{af} = \frac{1}{30} \left[\int_{0}^{\frac{10}{8}V_{1}^{2}} dt + \int_{10}^{\frac{30}{1-3}V_{1}^{2}} dt \right] = 5,228V$$

Resulto for el método de Thevenir

il Parivo E De, also el circuito en Ay B luego calcula

ii) Calcula Va' Por superposición (pinero fasire e)

=)
$$VA' = E \cdot R_3 = 4.87V$$

ili) Calcula Va" Por superposición (pasino E)

$$R_2$$
 R_3 R_3 R_3 R_4 R_5 R_5 R_6 R_6

(V) luege VA = Va" + VA" = V+H => V+H = 4,87V+0,262 sen (314,164)

$$P(t) = [2,2x10^2 + 2,3x10] + 6,50x10^5 seu^2(wt)] W$$

$$P_{M} = \frac{1}{0.02} \left[\begin{cases} 2.2 \times 10^{2} dt + \left[2.3 \times 10^{3} \text{ sen}(wt) dt + \left[6.50 \times 10^{5} \text{ sen}^{2} (wt) dt \right] \right] \right]$$

