

Page 1 of 62

APPLICATION CERTIFICATION FCC Part 15C & RSS-210 On Behalf of Godox Photo Equipment Co.,Ltd.

TTL Li-ion Round Head Camera Flash Model No.: V1C, V1N, V1S, V1O, V1F, V1P

FCC ID: 2ABYN001 IC: 20034-001

Prepared for : Godox Photo Equipment Co.,Ltd.

Address : 19th Floor, Room 1902, Building Jinshan, 5033 Shennan East

Road, Luohu District, Shenzhen, China

Prepared by : Shenzhen Accurate Technology Co., Ltd.

Address : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.

China.

Tel: (0755) 26503290 Fax: (0755) 26503396

Report Number : ATE20190752

Date of Test : May 13-May 14, 2019

Date of Report : June 22, 2019

Page 2 of 62

TABLE OF CONTENTS

Descr	iption	Page
Test F	Report Certification	
	ENERAL INFORMATION	5
1.1.	Description of Device (EUT)	
1.1.	Carrier Frequency of Channels	
1.3.	Special Accessory and Auxiliary Equipment	
1.4.	Description of Test Facility	
1.5.	Measurement Uncertainty	
2. M	IEASURING DEVICE AND TEST EQUIPMENT	7
	PERATION OF EUT DURING TESTING	
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
	EST PROCEDURES AND RESULTS	
	J.R.P TEST	
5. E. 5.1.	The Requirement For Section 15.249(a)	
5.1.	Test Result	
	ODB BANDWIDTH TEST	
6.1.	Block Diagram of Test Setup	
6.2. 6.3.	The Requirement For Section 15.215(c) Operating Condition of EUT	
6.4.	Test Procedure	
6.5.	Test Result	
	9% OCCUPIED BANDWIDTH TEST	
7.1.	Block Diagram of Test Setup	
7.1. 7.2.	The Requirement For RSS- Gen Clause 6.7	
7.2.	Operating Condition of EUT	
7.3. 7.4.	Test Procedure	
7.5.	Test Result	
	AND EDGE COMPLIANCE TEST	
8.1.	Block Diagram of Test Setup	
8.2.	The Requirement For Section 15.249(d)	
8.3.	The Requirement For RSS-210 Annex B B.10	
8.4.	Restricted bands of operation	
8.5.	EUT Configuration on Measurement	
8.6.	Operating Condition of EUT	
8.7.	Test Procedure	
8.8.	Test Result	
	ADIATED SPURIOUS EMISSION TEST	
9.1.	Block Diagram of Test Setup	
9.2.	The Requirement For Section 15.249(d)	
9.3.	The Requirement For RSS-210 Annex B B.10	
9.4.	The Limit For Section 15.249(a) and RSS-210 Annex B B.10(a)	
9.5.	Configuration of EUT on Measurement	

Page 3 of 62

9.6.	Operating Condition of EUT	28
9.7.	Test Procedure	28
9.8.	Data Sample	29
9.9.	Test Results	29
10. AC	POWER LINE CONDUCTED EMISSION TEST	
10.1.	Block Diagram of Test Setup	57
10.2.	Test System Setup	57
10.3.	The Limits for FCC Section 15.207 & RSS-Gen Section 8.8	
10.4.	Configuration of EUT on Measurement	58
10.5.	Operating Condition of EUT	58
10.6.	Test Procedure	58
10.7.	Data Sample	
10.8.	Test Results	59
11. AN	TENNA REQUIREMENT	62
11.1.	The Requirement	62
11.2	Antenna Construction	

Page 4 of 62

Test Report Certification

Applicant : Godox Photo Equipment Co.,Ltd.

Address : 19th Floor, Room 1902, Building Jinshan, 5033 Shennan East Road,

Luohu District, Shenzhen, China

Product : TTL Li-ion Round Head Camera Flash

Model No. : V1C, V1N, V1S, V1O, V1F, V1P

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.249

ANSI C63.10: 2013

RSS-210 Issue 9 August 2016 RSS-Gen Issue 5 April 2018

The EUT was tested according to FCC 47CFR 15.249 for compliance to FCC 47CFR 15.249 requirements

The device described above is tested by Shenzhen Accurate Technology Co., Ltd. to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.249 and RSS-210 limits. The measurement results are contained in this test report and Shenzhen Accurate Technology Co., Ltd. is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of Shenzhen Accurate Technology Co., Ltd.

Date of Test:	May 13-May 14, 2019
Date of Report :	June 22, 2019
Prepared by :	(Star AST-SAIGHT)
Approved & Authorized Signer :	(340 4
	(Sean Liu, Manager)

Page 5 of 62

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : TTL Li-ion Round Head Camera Flash

Model No. : V1C, V1N, V1S, V1O, V1F, V1P

(Note: We hereby state that these models are identical in interior structure, electrical circuits and components, just model name is difference, Therefore,

only model V1C is for tested.)

HVIN : V1C, V1N, V1S, V1O, V1F, V1P

Operate Frequency : 2413.00MHz-2464.5MHz

Number of channel : 32

Modulation mode : MSK

Antenna Gain : 0dBi

Antenna type : Integral Antenna

Power Supply : DC 7.2V Li-ion

1.2. Carrier Frequency of Channels

Channel Number	Frequency (GHz)	Channel Number	Frequency (GHz)
1	2.412999634	17	2.439499908
2	2.414499664	18	2.440999939
3	2.415999695	19	2.442999847
4	2.418000000	20	2.444499878
5	2.419499634	21	2.445999908
6	2.420999664	22	2.447999817
7	2.422999969	23	2.449499847
8	2.424500000	24	2.450999878
9	2.425999634	25	2.452999786
10	2.427999939	26	2.454499817
11	2.429499969	27	2.455999847
12	2.431000000	28	2.457999756
13	2.432999908	29	2.459499786
14	2.434499939	30	2.460999817
15	2.435999969	31	2.462999725
16	2.437999878	32	2.464499756

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

Page 6 of 62

1.3. Special Accessory and Auxiliary Equipment

N/A

1.4.Description of Test Facility

EMC Lab : Recognition of accreditation by Federal Communications

Commission (FCC)

The Designation Number is CN1189 The Registration Number is 708358

Listed by Innovation, Science and Economic Development

Canada (ISEDC)

The Registration Number is 5077A-2

Accredited by China National Accreditation Service for

Conformity Assessment (CNAS)

The Registration Number is CNAS L3193

Accredited by American Association for Laboratory

Accreditation (A2LA)

The Certificate Number is 4297.01

Name of Firm : Shenzhen Accurate Technology Co., Ltd.

site Location : 1/F., Building A, Changyuan New Material Port, Science &

Industry Park, Nanshan District, Shenzhen, Guangdong, P.R.

China

1.5. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

Page 7 of 62

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Type	S/N	Calibrated dates	Cal. Interval
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 05, 2019	One Year
EMI Test Receiver	Rohde&Schwarz	ESR	101817	Jan. 05, 2019	One Year
Spectrum Analyzer	Rohde&Schwarz	FSV-40	101495	Jan. 05, 2019	One Year
Pre-Amplifier	Agilent	8447D	294A10619	Jan. 05, 2019	One Year
Pre-Amplifier	Compliance Direction	RSU-M2	38322	Jan. 05, 2019	One Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 05, 2019	One Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 05, 2019	One Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 05, 2019	One Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 05, 2019	One Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18G-10S S	N/A	Jan. 05, 2019	One Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2485-23 75/2510-60/11SS	N/A	Jan. 05, 2019	One Year
Conducted Emission Measurement Software: ES-K1 V1.71					

Radiated Emission Measurement Software: EZ_EMC V1.1.4.2

Report No.: ATE20190752 Page 8 of 62

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: **Transmitting mode**

Low Channel: 2412.999634 MHz Middle Channel: 2437.999878 MHz High Channel: 2464.499756 MHz

3.2. Configuration and peripherals

EUT

Figure 1 Setup: Transmitting mode

Report No.: ATE20190752 Page 9 of 62

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.249(a)	E.I.R.P Test	Compliant
Section 15.215(c)	20dB Bandwidth Test	Compliant
RSS-Gen Section 6.7	99% Bandwidth Test	Compliant
Section 15.249(d) RSS-210 Annex B B.10 RSS-Gen 8.9 RSS-Gen 8.10	Band Edge Compliance Test	Compliant
Section 15.205(a), Section 15.209(a), Section 15.249(a), Section 15.35 RSS-210 Annex B B.10 RSS-Gen 6.13 RSS-Gen 8.9	Radiated Spurious Emission Test	Compliant
Section 15.207 RSS-Gen Section 8.8	AC Power Line Conducted Emission Test	Compliant
Section 15.203 RSS-Gen 6.8	Antenna Requirement	Compliant

Report No.: ATE20190752 Page 10 of 62

5. E.I.R.P TEST

5.1. The Requirement For Section 15.249(a)

(a) Except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/ meter)	Field strength of harmonics (microvolts/ meter)
902–928 MHz	50	500
2400–2483.5 MHz	50	500
5725–5875 MHz	50	500
24.0–24.25 GHz	250	2500

5.2.Test Result

Frequency (MHz)	PEAK E.I.R.P (dBuV/m)	AVG E.I.R.P (dBuV/m)	PEAK Limits (dBuV/m)	AVG Limits (dBuV/m)	Result
2412.999634	90.82	89.52	114	94	Pass
2437.999878	89.02	87.62	114	94	Pass
2464.499756	90.27	89.07	114	94	Pass

Page 11 of 62

6. 20DB BANDWIDTH TEST

6.1.Block Diagram of Test Setup

6.2. The Requirement For Section 15.215(c)

Must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

6.3. Operating Condition of EUT

- 6.3.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.3.2. Turn on the power of all equipment.
- 6.3.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412.999634, 2437.999878, 2464.499756MHz.

6.4. Test Procedure

- 6.4.1.Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 6.4.2. The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW.
- 6.4.3.RBW shall be in the range of 1% to 5% of the OBW and VBW shall be approximately three times RBW.
- 6.4.4.The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Page 12 of 62

6.5. Test Result

Channel	Frequency(MHz)	20 dB Bandwidth(MHz)
Low	2412.999634	0.803
Middle	2437.999878	0.795
High	2464.499756	0.795

The spectrum analyzer plots are attached as below.

Date: 22.JUN.2019 09:04:09

Page 13 of 62

Date: 22.JUN.2019 09:06:41

Date: 22.JUN.2019 09:08:37

Page 14 of 62

7. 99% OCCUPIED BANDWIDTH TEST

7.1.Block Diagram of Test Setup

7.2. The Requirement For RSS- Gen Clause 6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "x dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated x dB below the maximum in-band power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

7.3. Operating Condition of EUT

- 7.3.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.3.2. Turn on the power of all equipment.
- 7.3.3. Let the EUT work in TX modes measure it. The transmit frequency is 2412.999634, 2437.999878, 2464.499756MHz.

7.4. Test Procedure

- 7.4.1.The transmitter shall be operated at its maximum carrier power measured under normal test conditions. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.4.2. The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- 7.4.3. The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / x dB bandwidth if the device is not transmitting continuously.
- 7.4.4. The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / x dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

7.5.Test Result

Channel	Frequency(MHz)	99% Bandwidth (MHz)
Low	2412.999634	0.933
Middle	2437.999878	0.946
High	2464.499756	0.920

The spectrum analyzer plots are attached as below.

Page 16 of 62

Date: 14.MAY.2019 08:49:05

Date: 14.MAY.2019 08:50:39

Date: 14.MAY.2019 08:50:57

8. BAND EDGE COMPLIANCE TEST

8.1.Block Diagram of Test Setup

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

8.2. The Requirement For Section 15.249(d)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

8.3. The Requirement For RSS-210 Annex B B.10

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

Report No.: ATE20190752 Page 19 of 62

8.4.Restricted bands of operation

8.4.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

²Above 38.6

8.4.2.RSS-Gen 8.10 Restricted bands of operation

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply:

- (a) The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, *Emergency Position Indicating Radio Beacons (EPIRB)*, *Emergency Locator Transmitters (ELT)*, *Personal Locator Beacons (PLB)*, and Maritime Survivor Locator Devices (MSLD).
- (b) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c) Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.

Table 7 - Restricted frequency bands*

MHz	MHz
0.090 - 0.110	149.9 - 150.05
0.495 - 0.505	156.52475 - 156.52525
2.1735 - 2.1905	156.7 - 156.9
3.020 - 3.026	162.0125 - 167.17
4.125 - 4.128	167.72 - 173.2
4.17725 - 4.17775	240 - 285
4.20725 - 4.20775	322 - 335.4
5.677 - 5.683	399.9 - 410
6.215 - 6.218	608 - 614
6.26775 - 6.26825	960 - 1427
6.31175 - 6.31225	1435 - 1626.5
8.291 - 8.294	1645.5 - 1646.5
8.362 - 8.366	1660 - 1710
8.37625 - 8.38675	1718.8 - 1722.2
8.41425 - 8.41475	2200 - 2300
12.29 - 12.293	2310 - 2390
12.51975 - 12.52025	2483.5 - 2500
12.57675 - 12.57725	2655 - 2900
13.36 - 13.41	3260 - 3267
16.42 - 16.423	3332 - 3339
16.69475 - 16.69525	3345.8 - 3358
16.80425 - 16.80475	3500 - 4400
25.5 - 25.67	4500 - 5150
37.5 - 38.25	5350 - 5460
73 - 74.6	7250 - 7750
74.8 - 75.2	8025 - 8500
108 - 138	

	GHz	
	9.0 - 9.2	
	9.3 - 9.5	
	10.6 - 12.7	
	13.25 - 13.4	
	14.47 - 14.5	
	15.35 - 16.2	
	17.7 - 21.4	
	22.01 - 23.12	
	23.6 - 24.0	
1	31.2 - 31.8	
	36.43 - 36.5	
	Above 38.6	
	36.43 - 36.5	

^{*} Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licenceexempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

Page 21 of 62

8.5.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.6. Operating Condition of EUT

- 8.6.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.6.2. Turn on the power of all equipment.
- 8.6.3.Let the EUT work in TX modes measure it. The transmit frequency are 2412.999634, 2464.499756MHz.

8.7.Test Procedure

Radiate Band Edge:

- 8.7.1. The EUT is placed on a turntable, which is 1.5m above the ground plane and worked at highest radiated power.
- 8.7.2. The turntable was rotated for 360 degrees to determine the position of maximum emission level.
- 8.7.3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 8.7.4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:

8.7.5. The band edges was measured and recorded.

8.8.Test Result

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. The field strength is calculated by adding the antenna factor, high pass filter loss(if used) and cable loss, and subtracting the amplifier gain(if any)from the measured reading. The basic equation calculation is as follows: Result = Reading + Corrected Factor
- 3. Display the measurement of peak values.
- 4. The average measurement was not performed when peak measured data under the limit of average detection.

The spectrum analyzer plots are attached as below.

ACCURATE TECHNOLOGY CO., LTD.

Site: 2# Chamber

Report No.: ATE20190752

Page 22 of 62

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Tel:+86-0755-26503290 Fax:+86-0755-26503396

2420.0 MHz

Job No.: LGW2019 #1635 Standard: FCC (Band Edge) Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2412.999634MHz

Model: V1C

> 30 20.0

> > 2310.000

Manufacturer: Godox Photo Equipment Co., Ltd.

Power Source: DC 7.2V

Date: 19/05/13/

Polarization:

Time:

Engineer Signature: WADE

Horizontal

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2400.000	47.40	0.88	48.28	74.00	-25.72	peak	_ 1		
2	2400.000	31.36	0.88	32.24	54.00	-21.76	AVG			
3	2412.999	88.11	0.93	89.04	114.00	-24.96	peak			
4	2412.999	86.81	0.93	87.74	94.00	-6.26	AVG			

Site: 2# Chamber

Page 23 of 62

Report No.: ATE20190752

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Polarization:

Power Source: DC 7.2V

Vertical

Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1634 Standard: FCC (Band Edge) Test item: Radiation Test

Test item: Radiation Test Date: 19/05/13/
Temp.(C)/Hum.(%) 23 C / 48 % Time:

EUT: TTL Li-ion Round Head Camera Flash Engineer Signature: WADE

Mode: TX 2412.999634MHz Distance: 3m

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	2400.000	46.95	0.88	47.83	74.00	-26.17	peak				
2	2400.000	29.46	0.88	30.34	54.00	-23.66	AVG				
3	2412.999	86.93	0.93	87.86	114.00	-26.14	peak				
4	2412.999	85.63	0.93	86.56	94.00	-7.44	AVG				

Report No.: ATE20190752 Page 24 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1640 Standard: FCC (Band Edge) Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Horizontal Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

Distance: 3m

Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)			Detector	Height (cm)	Degree (deg.)	Remark
2464.499	87.70	1.09	88.79	114.00	-25.21	peak			
2464.499	86.50	1.09	87.59	94.00	-6.41	AVG			
2483.500	44.22	1.10	45.32	74.00	-28.68	peak			
2483.500	29.42	1.10	30.52	54.00	-23.48	AVG			
	(MHz) 2464.499 2464.499 2483.500	(MHz) (dBuV/m) 2464.499 87.70 2464.499 86.50 2483.500 44.22	(MHz) (dBuV/m) (dB) 2464.499 87.70 1.09 2464.499 86.50 1.09 2483.500 44.22 1.10	(MHz) (dBuV/m) (dB) (dBuV/m) 2464.499 87.70 1.09 88.79 2464.499 86.50 1.09 87.59 2483.500 44.22 1.10 45.32	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dBuV/m) 2464.499 87.70 1.09 88.79 114.00 2464.499 86.50 1.09 87.59 94.00 2483.500 44.22 1.10 45.32 74.00	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 2464.499 87.70 1.09 88.79 114.00 -25.21 2464.499 86.50 1.09 87.59 94.00 -6.41 2483.500 44.22 1.10 45.32 74.00 -28.68	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) Detector 2464.499 87.70 1.09 88.79 114.00 -25.21 peak 2464.499 86.50 1.09 87.59 94.00 -6.41 AVG 2483.500 44.22 1.10 45.32 74.00 -28.68 peak	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) (dB)	(MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) dec.or (cm) (deg.) 2464.499 87.70 1.09 88.79 114.00 -25.21 peak 2464.499 86.50 1.09 87.59 94.00 -6.41 AVG 2483.500 44.22 1.10 45.32 74.00 -28.68 peak

ACCURATE TECHNOLOGY CO., LTD.

Tel:+86-0755-26503290 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China

Job No.: LGW2019 #1641 Standard: FCC (Band Edge) Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

V1C Model:

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Vertical Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

Report No.: ATE20190752

Site: 2# Chamber

Page 25 of 62

Distance: 3m

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2464.499	87.27	1.09	88.36	114.00	-25.64	peak			
2	2464.499	86.07	1.09	87.16	94.00	-6.84	AVG			
3	2483.500	39.93	1.10	41.03	74.00	-32.97	peak			
4	2483.500	27.14	1.10	28.24	54.00	-25.76	AVG			

9. RADIATED SPURIOUS EMISSION TEST

9.1.Block Diagram of Test Setup

9.1.1.Block diagram of connection between the EUT and peripherals

9.1.2.Semi-Anechoic Chamber Test Setup Diagram

(B)Radiated Emission Test Set-Up, Frequency 30MHz-1GHz

Address: 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China Tel: +86-755-26503290 Fax: +86-755-26503396 E-mail: webmaster@atc-lab.com Http://www.atc-lab.com

ATC

(C) Radiated Emission Test Set-Up. Frequency above 1GHz

9.2. The Requirement For Section 15.249(d)

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in § 15.209, whichever is the lesser attenuation.

9.3. The Requirement For RSS-210 Annex B B.10

Emissions radiated outside of the specified frequency bands, except for harmonic emissions, shall be attenuated by at least 50 dB below the level of the fundamental emissions or to the general field strength limits listed in RSS-Gen, whichever is less stringent.

9.4. The Limit For Section 15.249(a) and RSS-210 Annex B B.10(a)

The field strength of fundamental and harmonic emissions, measured at 3 m, shall not exceed 50 mV/m and 0.5 mV/m respectively

9.5. Configuration of EUT on Measurement

The equipment are installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

Page 28 of 62

9.6. Operating Condition of EUT

9.6.1. Setup the EUT and simulator as shown as Section 9.1.

9.6.2. Turn on the power of all equipment.

9.6.3.Let the EUT work in TX modes and measure it. The transmit frequency are 2412.999634, 2437.999878, 2464.499756MHz.

9.7.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter(Below 1GHz) and 1.5m(above 1GHz) high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bilog antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.10: 2013 on radiated emission measurement. This EUT was tested in 3 orthogonal positions and the worst case position data was reported.

The bandwidth of test receiver is set at 9 kHz in below 30MHz. and set at 120 kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9 kHz to 26.5GHz is checked.

The final measurement in band 9-90 kHz, 110-490 kHz and above 1000MHz is performed with Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

RBW (120 kHz), VBW (300 kHz) for QP detector below 1GHz Peak detector above 1GHz RBW (1 MHz), VBW (3MHz) for Peak measurement RBW (1 MHz), VBW (10Hz) for AV measurement

Page 29 of 62

9.8.Data Sample

Frequency	Reading	Factor	Result	Limit	Margin	Remark
(MHz)	(dBµv)	(dB/m)	(dBµv/m)	(dBµv/m)	(dB)	
X.XX	48.69	-13.35	35.34	46	-7	QP

Frequency(MHz) = Emission frequency in MHz

Reading($dB\mu\nu$) = Uncorrected Analyzer/Receiver reading

Factor (dB/m) = Antenna factor + Cable Loss – Amplifier gain

Result($dB\mu v/m$) = Reading($dB\mu v$) + Factor(dB/m)

Limit $(dB\mu v/m) = Limit$ stated in standard

Margin (dB) = Result(dB μ v/m) - Limit (dB μ v/m)

QP = Quasi-peak Reading

Calculation Formula:

 $Margin(dB) = Result (dB\mu V/m) - Limit(dB\mu V/m)$

Result($dB\mu V/m$)= Reading($dB\mu V$)+ Factor(dB/m)

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit.

9.9.Test Results

PASS.

Note: 1. Emissions attenuated more than 20 dB below the permissible value are not reported.

- 2. The EUT is tested radiation emission in three axes. The worst emissions are reported in all channels.
- 3. The average measurement was not performed when peak measured data under the limit of average detection.

The spectrum analyzer plots are attached as below.

Page 30 of 62

9kHz-30MHz test data

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2412.999634MHz

Test Site: 2# Chamber

Operator: WADE Test Specification: DC 7.2V

Comment: X

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

Page 31 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2412.999634MHz

Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 7.2V

Comment: Y

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

Page 32 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2412.999634MHz

Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 7.2V

Comment: Z

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

Page 33 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2437.999878MHz

Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 7.2V

Comment: X

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

Page 34 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2437.999878MHz

Test Site: 2# Chamber

Operator: WADE Test Specification: DC 7.2V

Comment: Y

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

Page 35 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2437.999878MHz

Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 7.2V

Comment: Z

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

Page 36 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2464.499756MHz

Test Site: 2# Chamber Operator: WADE Test Specification: DC 7.2V

Comment: X

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

Page 37 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2464.499756MHz

Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 7.2V

Comment: Y

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

Page 38 of 62

ACCURATE TECHNOLOGY CO., LTD.

FCC Part 15C 3M Radiated

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: TX 2464.499756MHz

Test Site: 2# Chamber
Operator: WADE
Test Specification: DC 7.2V

Comment: Z

Start of Test: 2019-05-13 /

SCAN TABLE: "LFRE Fin"

Short Description: SUB STD VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz 1516M 150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz 1516M

30MHz-1000MHz test data

Report No.: ATE20190752 Page 39 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Horizontal

Polarization:

Date: 19/05/13/

Distance: 3m

Time:

Power Source: DC 7.2V

Engineer Signature: WADE

Job No.: LGW2019 #1660

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2412.999634MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

0.0

30.000

40

50

60

70 80

70.0 dBuV/m

60

50

40

20

10

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
1	161.4740	29.13	-14.38	14.75	43.50	-28.75	QP				
2	326.7395	31.86	-8.15	23.71	46.00	-22.29	QP				
3	578.6698	26.90	-2.56	24.34	46.00	-21.66	QP				

300

400

500

600 700

1000.0 MHz

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 40 of 62

Job No.: LGW2019 #1661

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2412.999634MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

Polarization: Vertical

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

70.0	dBuV/m										
			111				į	1	limit1:	-	
60											
50				***********							
40											
30									ماسيد	AN Francis	
20	May at	ļļ.		the spread of the state of the		A Surface	Notifican descriptions	Burnhan	Avrilla.		
10	the grant was a second program.	minumber protections.	mountain	the statement of the st	human shring had been been been been been been been bee	Production					
0.0						1					
3	0.000 40	50 60 70	80			30	0 400	500	600 70	0 1000.0	MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	98.8324	25.88	-13.44	12.44	43.50	-31.06	QP			1	
	441.7425	26.30	-5.46	20.84	46.00	-25.16	QP				
	830.4002	27.00	1.37	28.37	46.00	-17.63	QP				

Page 41 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1663

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2437.999878MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Horizontal Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

70.0	dBuV/m										
					1	1			limit1:	-	
60	.,										
50				*********							
40											
30	·			gan 1848 wash all						Burrolland	
20				22,442,444,244			Blymere	material services	Apply Transport		
	and the state of t	May Hay Marker was	. months	phonospholips and hope of the second	May hatty white work	Philadelphia .					
10		"/'W	Num		1						
0.0	0.000 40	50 60 70	80			300	0 400	500	600 70	0 1000.0	MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	164.3301	28.98	-14.34	14.64	43.50	-28.86	QP				
	324.4560	31.46	-8.26	23.20	46.00	-22.80	QP				
	2 20 20 20 20 20 11	F 47 C 3 C 5 C				171 171 1710	QP				

ATC

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 42 of 62

Job No.: LGW2019 #1662

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2437.999878MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

Polarization: Vertical Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

70.0	dBuV/m										
						i			limit	1: —	
60		ļ -									
50											
40											
30										abilition	
20				nich strag berganter			- And want	And the Angelow	the tringleton with	O O	
_0	Voragesta Valenta la serial	water or the party war.	MANAMA	Mark Hand had production to	Many Many	proprietable	W				
10			Aug V								
0.0					- 1	1					
30	0.000 40	50 60 70	80			30	0 400	500	600	700 1000.0	MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	31.9545	25.38	-9.51	15.87	40.00	-24.13	QP				
	162.0414	27.61	-14.38	13.23	43.50	-30.27	QP				
	830.4002	25.63	1.37	27.00	46.00	-19.00	QP				

Report No.: ATE20190752 Page 43 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1664

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

Polarization: Horizontal

Power Source: DC 7.2V

Date: 19/05/13/ Time:

Engineer Signature: WADE

70.0	dBuV/m										
	1	1 1 1	1 1 1		i	į	1	- 1	limit1:	_	
60		-									
50											
40											
30					& Marine Commence		2		which which	and specialization	
20	maple some property and a paper of	Minter	لنفا	h, change in a specific	Ay may man	Water Handler Market	da walanda da walan wala	hulkhavidus Anthon			
10		Mary Property	the state of the s	with a surphinal NA							
0.0											
30	0.000 40	50 60 70	80			300) 400	500	600 70	0 1000.0	MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark	
	164.3301	29.11	-14.34	14.77	43.50	-28.73	QP				
	327.8872	31.26	-8.12	23.14	46.00	-22.86	QP				
-	776.8777	26.78	0.26	27.04	46.00	-18.96	QP				

Report No.: ATE20190752 Page 44 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1665

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

Polarization: Vertical

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

1	dBuV/m									
						-			limit1:	-
60										
50										
40					- F					
30									a del constante	3 more have
20	housed hall in general	.1			2 July brandstill	Constant by market	interpretation desired	war and water the gran	MAN PART PART	
10	400	Mary how all property	MALAN MALANY	resource of the second second	Blanchapter					
0.0										
3	0.000 40	50 60 70	80			300	0 400	500	600 70	00 1000.0 MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	(1411 12)		-12.69	13.05	40.00	-26.95	QP			
	51.4806	25.74	-12.03							
		25.74 26.83	-14.38	12.45	43.50	-31.05	QP			

1GHz-18GHz test data ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 45 of 62

Job No.: LGW2019 #1632

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2412.999634MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

3

4

Polarization: Horizontal

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

Distance: 3m

74.00

54.00

-24.85

-12.65

peak

AVG

4825.997

4825.997

41.55

33.75

7.60

7.60

49.15

41.35

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 46 of 62

Job No.: LGW2019 #1633

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2412.999634MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Vertical

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

Distance: 3m

				Ĭ					limit1:	-
100								ļļ		*******
90			******		ļ					********
80					<u> </u>				Leadlead	
	100000000000000000000000000000000000000									7 10 7 10
70								ļļ		
60	10.000000000000000000000000000000000000									
50					3	1			No. all also	
							Lesena Lesa de Caración	F		7776000000000
					A	a majulantarib	was proposed to	respectively property	was a second	name of the second
40		, alah	have of signed in section and	had you restaurable who who had	haman haman	nontrabulumansk	year property make he	carbon alphane	orrespondent particular	Anna province the Contract
40	rest holyter bernesser	adding property	from from the most made	had you must be provided by	Alanna of the time of the	nonerobulumberb	yen promoter.	and the same	arragence de matrice de	Agan proving the Burry An
40 30	paul halflere barrer	adding property	hoody when how	har gan yadhar dhar dha dha	many banda	noverbulus (estab	more	Command Prome	www.marahamerva.N	Agan province that the region
20.0	0				Mary and American Mary			Andrew Springer	arrageoralismo valle	Ann search the British
20.0		20		3000	5000		7000 8000	9000	an ang ang ang ang ang ang ang ang ang a	18000.0 MF
20.0	0	200 Reading			5000 Limit	6000 Margin	7000 8000	Height	Degree	
20.0	Freq. (MHz)	Reading (dBuV/m)	00	3000	5000 Limit (dBuV/m)	6000 Margin			Degree (deg.)	18000.0 MI-
20.0	000.000 Freq.	200 Reading	00 Factor	3000 Result	5000 Limit	6000 Margin	7000 8000	Height	Degree (deg.)	

54.00

-12.46

AVG

4826.002

33.94

4

7.60

41.54

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 47 of 62

Job No.: LGW2019 #1636

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2437.999878MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Horizontal Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2437.999	87.98	1.04	89.02	114.00	-24.98	peak			
2	2437.999	86.58	1.04	87.62	94.00	-6.38	AVG			
3	4876.012	39.78	8.06	47.84	74.00	-26.16	peak			
4	4876.012	31.39	8.06	39.45	54.00	-14.55	AVG			

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 48 of 62

Job No.: LGW2019 #1637

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2437.999878MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Vertical

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2437.999	87.62	1.04	88.66	114.00	-25.34	peak			
2	2437.999	86.22	1.04	87.26	94.00	-6.74	AVG			
3	4875.992	41.02	8.06	49.08	74.00	-24.92	peak			
4	4875.992	33.48	8.06	41.54	54.00	-12.46	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 49 of 62

Job No.: LGW2019 #1639

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

Polarization: Horizontal

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

111	0.0 dBuV/m									
								1	limit1:	_
100	0				ļ					
		- 1	2							
90			X					1		
80					ļ					
						1 1				
70			*******		h				*********	
60	distribution in the second									
		- 1								
50				1	Ž.				war proposition	and property of the second
40				AMANGE TO THE PARTY OF THE PART	in a second	merchanten	A Charles Company			********
ſ,	MANANA	Lahortholeuman	partition of the same	and the state of the state of the state of						
30	MASM SECTOR SECTION			***************************************					*********	*********
20									*********	
10.	.0	1		1		1 1				
	1000.000	20	100	3000	5000	6000 7	000 8000	9000		18000.0 MHz
	Freq.	Reading	Factor	Result	Limit	Margin	Annual of	Height	Degree	50000000
	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)		Detector	(cm)	(deg.)	Remark
T	2464.499	89.18	1.09	90.27	114.00	-23.73	peak			
	2464.499	87.98	1.09	89.07	94.00	-4.93	AVG			
	4928.996	40.23	8.42	48.65	74.00	-25.35	peak			
	4920.990									

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Site: 2# Chamber

Page 50 of 62

Job No.: LGW2019 #1638

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Power Source: DC 7.2V

Date: 19/05/13/

Polarization:

Time:

Engineer Signature: WADE

Vertical

Distance: 3m

Note:

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	2464.499	87.74	1.09	88.83	114.00	-25.17	peak			
2	2464.499	86.54	1.09	87.63	94.00	-6.37	AVG		1	
3	4928.995	40.01	8.42	48.43	74.00	-25.57	peak			
4	4928.995	31.73	8.42	40.15	54.00	-13.85	AVG			

Page 51 of 62

18GHz-26.5GHz test data ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1643

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2412.999634MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Horizontal Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

Page 52 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1642

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

TX 2412.999634MHz Mode:

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Vertical

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 53 of 62

Job No.: LGW2019 #1644

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2437.999878MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co.,Ltd.

Note:

Polarization: Horizontal

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

90.0	dBuV/m									
			T .						limit1:	-
80										
70										
60		********			******					
50	and the appropriate the	Control of the Control of the Control	No. Longia, con proceedings, as	water was property and the second	- I	particular de la	provide and any or the	manage		Andria Andria
40	***********	********	ļ							
30										
20										*********
10										
0.0										
1	8000.000		20000							26500.0 MHz
	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
	21831.884	17.99	31.91	49.90	74.00	-24.10	peak			
		7.63	31.91	39.54	54.00	-14.46	AVG			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 54 of 62

Job No.: LGW2019 #1645

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2437.999878MHz

Manufacturer: Godox Photo Equipment Co., Ltd.

Model: V1C

Note:

Polarization: Vertical

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20190752

Page 55 of 62

Job No.: LGW2019 #1647

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Polarization: Horizontal

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

Page 56 of 62

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 2# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: LGW2019 #1646

Standard: FCC Part 15C 3M Radiated

Test item: Radiation Test

Temp.(C)/Hum.(%) 23 C / 48 %

EUT: TTL Li-ion Round Head Camera Flash

Mode: TX 2464.499756MHz

Model: V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Note:

Polarization: Vertical

Power Source: DC 7.2V

Date: 19/05/13/

Time:

Engineer Signature: WADE

10.AC POWER LINE CONDUCTED EMISSION TEST

10.1.Block Diagram of Test Setup

10.2.Test System Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

Page 58 of 62

10.3. The Limits for FCC Section 15.207 & RSS-Gen Section 8.8

Frequency	Limit d	Limit dB(μV)				
(MHz)	Quasi-peak Level	Average Level				
0.15 - 0.50	66.0 – 56.0 *	56.0 – 46.0 *				
0.50 - 5.00	56.0	46.0				
5.00 - 30.00	60.0	50.0				

NOTE1: The lower limit shall apply at the transition frequencies.

NOTE2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

10.4. Configuration of EUT on Measurement

The equipments are installed on Power Line Conducted Emission Measurement to meet the commission requirement and operating regulations in a manner, which tends to maximize its emission characteristics in a normal application.

10.5. Operating Condition of EUT

- 10.5.1. Setup the EUT and simulator as shown as Section 10.1.
- 10.5.2. Turn on the power of all equipment.
- 10.5.3.Let the EUT work in test mode and measure it.

10.6.Test Procedure

The EUT is put on the plane 0.8m high above the ground by insulating support and is connected to the power mains through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm coupling impedance for the EUT system. Please refer the block diagram of the test setup and photographs. Both sides of AC lines are checked to find out the maximum conducted emission. In order to find the maximum emission levels, the relative positions of equipment and all of the interface cables shall be changed according to ANSI C63.4: 2014 on Conducted Emission Measurement.

The bandwidth of test receiver (R & S ESCS30) is set at 9kHz.

The frequency range from 150kHz to 30MHz is checked.

Page 59 of 62

10.7.Data Sample

Frequency	Transducer	QuasiPeak	Average	QuasiPeak	Average	QuasiPeak	Average	Remark
(MHz)	value	Level	Level	Limit	Limit	Margin	Margin	(Pass/Fail)
	(dB)	$(dB\mu V)$	(dBµV)	(dBµV)	(dBµV)	(dB)	(dB)	
X.XX	10.5	51.1	34.2	56.0	46.0	4.9	11.8	Pass

 $\label{eq:Frequency} Frequency(MHz) = Emission\ frequency\ in\ MHz \\ Transducer\ value(dB) = Insertion\ loss\ of\ LISN + Cable\ Loss \\ Level(dB\mu V) = Quasi-peak\ Reading/Average\ Reading + Transducer\ value\ Limit\ (dB\mu V) = Limit\ stated\ in\ standard \\ Margin = Limit\ (dB\mu V) - Level\ (dB\mu V)$

Calculation Formula:

Margin = Limit ($dB\mu V$) - Level ($dB\mu V$)

10.8.Test Results

Pass.

The frequency range from 150kHz to 30MHz is checked.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

Emissions attenuated more than 20 dB below the permissible value are not reported.

All data was recorded in the Quasi-peak and average detection mode.

The spectral diagrams are attached as below.

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: Charging

Test Site: 1#Shielding Room

Operator: WADE

Test Specification: N 120V/60Hz Comment: Mains port Start of Test: 5/13/2019 /

SCAN TABLE: "V 9K-30MHz fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "TUV-0513-1 fin"

5/13/2019 Frequenc MH	*		Limit dBµV	Margin dB	Detector	Line	PE
0.19500	0 58.60	10.5	64	5.2	QP	N	GND
0.26000	0 51.50	10.6	61	9.9	QP	N	GND
3.62000	0 40.30	11.1	56	15.7	QP	N	GND
6.04000	0 39.40	11.2	60	20.6	QP	N	GND

MEASUREMENT RESULT: "TUV-0513-1 fin2"

5/13/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.200000	42.60	10.5	54	11.0	AV	N	GND
0.265000	35.90	10.6	51	15.4	AV	N	GND
3.680000	31.80	11.1	46	14.2	AV	N	GND
5.610000	31.90	11.2	50	18.1	AV	N	GND

CONDUCTED EMISSION STANDARD FCC PART 15 C

EUT: TTL Li-ion Round Head Camera Flash M/N:V1C

Manufacturer: Godox Photo Equipment Co., Ltd.

Operating Condition: Charging

Test Site: 1#Shielding Room

Operator: WADE

Test Specification: L 120V/60Hz Comment: Mains port Start of Test: 5/13/2019 /

SCAN TABLE: "V 9K-30MHz fin"

Short Description: _SUB_STD_VTERM2 1.70

Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

9.0 kHz 150.0 kHz 100.0 Hz QuasiPeak 1.0 s 200 Hz NSLK8126 2008

Average

150.0 kHz 30.0 MHz 5.0 kHz QuasiPeak 1.0 s 9 kHz NSLK8126 2008

Average

MEASUREMENT RESULT: "TUV-0513-2 fin"

5/13/2019 Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.195000	56.70	10.5	64	7.1	QP	L1	GND
0.260000	49.90	10.6	61	11.5	QP	L1	GND
3.700000	39.90	11.1	56	16.1	QP	L1	GND
5.660000	39.30	11.2	60	20.7	QP	L1	GND

MEASUREMENT RESULT: "TUV-0513-2 fin2"

5/13/201	9							
Freque	ency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.20	5000	41.70	10.5	53	11.7	AV	L1	GND
0.27	0000	35.80	10.6	51	15.3	AV	L1	GND
3.62	0000	32.70	11.1	46	13.3	AV	L1	GND
5.62	0000	32.30	11.2	50	17.7	AV	L1	GND

Page 62 of 62

11.ANTENNA REQUIREMENT

11.1.The Requirement

According to Section 15.203 and RSS GEN 8.3, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

11.2.Antenna Construction

Device is equipped with permanent attached antenna, which isn't displaced by other antenna. The Antenna gain of EUT is 0dBi. Therefore, the equipment complies with the antenna requirement of Section 15.203 and RSS GEN 8.3

***** End of Test Report *****