- Fluid properties (cont'd)
 - Last time: viscosity and the Reynolds number
 - Today:
 - The continuum
 - The Knudsen number
 - Compressibility and the Mach number
 - Fluid/solid and fluid/fluid interfaces

Flow with whatever may happen and let your mind be free.

Zhuangzi (4th century, BCE)

The continuum (1)

- Suitably averaged, we wish to consider fluid materials to be
 - Continuous (infinitely divisible) such that all properties may be defined pointwise
 - Contiguous (filling up all of space)
- □ How can this be?

The continuum (2)

How can this be?

Averaging box envisioned to hold many particles

The continuum (3)

The averaging box must be large enough to hold many molecules, but much smaller than the imposed macroscopic variation

The continuum (4)

Number of molecules in averaging volume

@STP	Air	Water
1 m ³	2.5×10^{25}	3×10^{28}
1 mm ³	2.5×10^{16}	3×10^{19}
1 μm ³	2.5×10^7	3×10^{10}

ME19. Fluid Mechanics. C. Tim Colonius, Caltech 1/3/15

The continuum (5)

	Microscopic	Macroscopic
Velocity	Velocity of a molecule	Average velocity of many molecules (non-random part of motion)
Mass/density	Mass of a molecule	Average mass of molecules per unit volume
Temperature	-	Root-mean-square velocity of molecules (random or 'thermal' part of motion)
Pressure	-	Average normal force due to molecules colliding with a (real or imagined) surface
Viscous stress	-	Average force on a (real or imagined surface) due to gradients in average velocity

ME19. Fluid Mechanics. C. Tim Colonius, Caltech 1/3/15

The continuum (6)

- When does the continuum approximation apply?
- Non-dimensional quantity: what molecular property should be compared to L?

Intermolecular forces

Gases $d_{\rm avg} \simeq$ 10 σ

Liquids & solids $d_{\text{avg}} \sim \sigma$

[Must be why density of gas about $\sim 1/1000$ times density of liquid/solid!]

Collisions

- Any difference in average velocity of molecules is equilibrated through molecular collisions
- Mean-free-path: average distance a molecule travels before colliding with another molecule
- □ Liquids: mean-free-path \approx d_o
- Gases: mean-free-path from kinetic theory:

$$\lambda = \frac{m}{\pi \rho \sigma^2 \sqrt{2}}$$

Mass of a molecule

Effective diameter of molecule

- $\lambda = \frac{m}{\pi \rho \sigma^2 \sqrt{2}}$ Mean free path in air at STP: $\lambda \approx 10^{\text{-7}}$ m
- Mean free path of air at 120 km: \sim 4m

Knudsen number

Non-dimensional parameter representing microscopie (mean-free-path) macroscopically imposed length scale

$$\mathsf{Kn} = \lambda/L$$

$Kn \ll 1$	Continuum flow	[Kn < 0.1 a good rule of	
Kn pprox 1	Transition/slip flow	thumb]	
$Kn\gg 1$	Free molecule flow		

 \square In this class, we will always assume that Kn << 1

Compressibility and the Mach number

 Another related and very important property of fluids is their compressibility

Percent change in volume for a given change in pressure (generally positive)

$$eta_T = -rac{1}{v} \left. rac{\partial v}{\partial p}
ight|_T$$
 Isothermal compressibility

$$eta_s = -rac{1}{v} \left. rac{\partial v}{\partial p}
ight|_{
m s}$$
 Isentropic compressibility

 \square Exercise: find an expression for β s in a perfect gas.

$$\Box$$
 Ans: $\beta_s = -rac{1}{v} \left. rac{\partial v}{\partial p} \right|_s = rac{1}{\gamma p}$

Compression and expansion waves

- Play a key role in establishing fluid motion, equilibrating pressure differences
- □ We hear them as acoustic waves
- Propagate with a finite speed equal to a (called the speed of sound), where a is the positive root of

$$a^2 = \left. \frac{\partial p}{\partial \rho} \right|_s = \frac{1}{\rho \beta_s}$$

□ For a perfect gas

$$a^2 = \gamma RT = \frac{\gamma P}{\rho}$$

How compressible?

- Need a nondimensional parameter to answer
- Mach number

$$M = \frac{U}{a}$$

- $\,\square\,$ M << 1 : Material may be idealized as 'incompressible' (M < 0.3 as a rule of thumb)
- M < 1: subsonic
 </p>
- \square M \sim 1: transonic
- \square M > 1: supersonic
- \square M >> 1: hypersonic
- We will study this more in Me19b

Another interpretation of the Mach number

$$M^2 = \frac{U^2}{a^2} = \frac{U^2}{\gamma RT}$$

Proportional to KE of orderly (average) motion

Proportional to KE of random (thermal) motion

So far...

Three important non-dimensional parameters

Knudsen number : how dense (continuum?)

Reynolds number : how viscous?

Mach number : how compressible?

- However: they are not all independent
- Kinetic theory:

$$\mu = rac{1}{2} u_{rms} \lambda \sim a \lambda$$
 ${
m Kn} = rac{M}{{
m Re}} \sqrt{rac{\gamma \pi}{2}}$ (perfect gas)

Graphical representation

Immersed solids

- Along the solid surface in contact with the fluid, there is transfer of momentum between collisions of the molecules of the solid and fluid
- Provided the fluid is "dense enough" the average velocity (each component) of the solid and liquid are equal at all points along the interface
- For the normal component of velocity, this is referred to as the no-penetration (no flow through) condition
- For the tangent components, it is referred to as the no-slip condition
- □ If we idealize a fluid as frictionless (inviscid), we keep the nopenetration, but neglect the no-slip condition

Fluid-fluid interfaces and surface tension

- Fluids that are immiscible (do not mix, and idealization) retain a sharp interface between the constituent components
 - Liquids: intermolecular forces, attractive
 - Gases: much weaker attraction
- Result is a force that on average, tends to contract the interface to minimize the surface area

Surface tension (2)

- In the absence of gravity, a drop of liquid in a gas (or vacuum)
 will therefore be spherical
- If the drop is small enough, then the difference in elevation results a much smaller gravitational force than the surface tension effect (again, spherical droplet)
- Molecular observations are consistent with imposing, on average, a force tangent to the surface (like an imaginary membrane stretched over the surface)
- \square Surface tension \mathcal{O}
 - Force, per unit distance
 - \square SI: N/m = kg/s²

Surface tension (3)

 Like viscosity, surface tension is independent of the magnitude, direction, and duration of the motion, and is principally a function of temperature

$$\sigma = \sigma(T)$$

- Unlike viscosity, σ is a property of both fluids (the liquid and the gas, or of the two liquids)
- □ Water/air @ STP, $\sigma = 0.073$ N/m.
- Value of surface tension is also sensitive to the accumulation of contaminant molecules (surfactants)
 - Detergents lower the value of surface tension, making it easier to spread the water out (to wet something)

Surface tension (4)

- Similar effect at triple-junction between solid, liquid and gas (or another immiscible liquid)
- The free surface will make a contact angle with the surface, which can be regarded as a joint property of the 3 materials
- Like of, contact angle is sensitive to temperature and/or surfactants, as well as surface roughness

Non-wetting, or hydrophobic

Wetting, or hydrophilic

Summary

Continuum

- For sufficiently dense fluids, averages over molecules can be reinterpreted as continuous, pointwise quantities
- Have to be careful when density is low, or when the imposed length scale is small
 - Nondimensional parameter: Knudsen (Kn = λ / L)
 - Continuum: Kn < 0.1

Compressibility

- Determines speed at which compression and expansion waves move
- \square Mach number, M = U/a: "how compressible"
- No slip and no penetration conditions at interface between fluid and solid
- Surface tension leads to a surface force between dissimilar, immiscible materials (and to a contact angle between those materials and a nearby solid)
 - due to unbalanced intermolecular forces near interface