Formuleblad Statistiek deel 2 (2024-2025)

Deel 1

Steekproefgemiddelde (gegeven een steekproef met n uitkomsten x_1, x_2, \ldots, x_n)

$$\overline{x} = \frac{\sum_{i} x_i}{n} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

Steekproefvariantie:

$$s^{2} = \frac{\sum_{i} (x_{i} - \overline{x})^{2}}{n - 1} = \frac{(x_{1} - \overline{x})^{2} + (x_{2} - \overline{x})^{2} + \dots + (x_{n} - \overline{x})^{2}}{n - 1}$$
 (optie 1)

Rekenregels kansrekening:

$$P(A \text{ of } B) = P(A) + P(B) - P(A \text{ en } B)$$
 (optelregel)
$$P(B) = 1 - P(\text{niet } B)$$
 (complement regel)
$$P(A \mid B) = \frac{P(A \text{ en } B)}{P(B)}$$
 (conditionele kansen)

Discrete en continue kansverdelingen:

	Discrete kansvariabelen	Continue kansvariabelen
Uitkomstenruimte:	Eindig / aftelbaar oneindig	Overaftelbaar oneindig
Toepassingen:	Tellen / categoriseren	Meten
Kansbegrip:	Kansfunctie $p(k) = P(X = k)$	\mid Kansdichtheidsfunctie $f(x)$
CDF:	$\mid F(k) = P(X \le k) = \sum_{\ell:\ell \le k} p(\ell)$	$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) dy$
Verwachtingswaarde:	$ E[X] = \sum_{k} k \cdot P(X = k) $	$\mid E[X] = \int x \cdot f(x) dx$
Variantie:	$\big \ \operatorname{Var}(X) = \sum_k (k - E[X])^2 \cdot P(X = k)$	$ \operatorname{Var}(X) = \int (x - E[X])^2 \cdot f(x) dx$
Standaardafwijking:	$\ \ \ \ \ \sigma(X) = \sqrt{\operatorname{Var}(X)}$	$ \sigma(X) = \sqrt{\operatorname{Var}(X)} $

Speciale kansverdelingen:

- $X \sim \text{Binomiaal}(n, p)$: tellen van aantal successen bij onafhankelijke kansexperimenten met twee uitkomsten (Bernoulli-experimenten): succes / mislukking.
 - n: aantal Bernoulli-experimenten
 - p: succeskans per experiment
- $X \sim \text{Poisson}(\lambda \cdot t)$: tellen van aantal "gebeurtenissen" in een "interval" van tijd / ruimte.
 - λ : gemiddeld aantal gebeurtenissen per eenheid van tijd / ruimte.
 - t: aantal eenheden van tijd / ruimte van het interval \rightarrow **Voorbeeld:** als "dag" de tijdseenheid is, dan bestaat "week" uit t = 7 tijdseenheden.
- $T \sim \text{Exponentieel}(\lambda)$: meten van de tijd / ruimte tot de volgende gebeurtenis.
 - λ : gemiddeld aantal gebeurtenissen per eenheid van tijd / ruimte.

Verwachtingswaarde en variantie van veelgebruikte kansverdelingen:

Verdeling	Kans(dichtheids)functie	CDF	E(X)	Var(X)		
Discreet						
Uniform(a,b)	$p(k) = \frac{1}{b-a+1}$ $(k = a, a+1, \dots, b)$	$F(k) = \begin{cases} 0 & x < a \\ \frac{k-a+1}{b-a+1} & a \le k < b \\ 1 & k \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a+1)^2-1}{12}$		
Binomiaal (n, p)	$p(k) = \binom{n}{k} p^k (1-p)^{n-k}$	$F(k) = \sum_{i=0}^{k} {n \choose i} p^{i} (1-p)^{n-i}$	np	np(1-p)		
Poisson(λ)	$p(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!}$	$F(k) = \sum_{i=0}^{k} e^{-\lambda} \cdot \frac{\lambda^{i}}{i!}$	λ	λ		
Continuous						
Uniform(a,b)	$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b \\ 0, & \text{elders.} \end{cases}$	$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & a \le x < b \\ 1, & x \ge b \end{cases}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$		
Exponentieel(λ)	$f(x) = \lambda e^{-\lambda x}, x \ge 0$	$F(x) = \begin{cases} 1 - e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$		

Veelgebruikte functies op de grafische rekenmachine

Type vraag	TI-84 Plus	Casio			
Continue kansverdeling (willekeurig)					
$P(a \le X \le b)$	$\int_a^b f(x) dx$	$\int_a^b f(x) dx$			
$X \sim \mathbf{Binomiaal}(n,p)$					
$P(X = k)$ $P(X \le k)$	$\begin{array}{ c c c } & binompdf(n,p,k) \\ & binomcdf(n,p,k) \end{array}$				
$X \sim N(\mu, \sigma)$					
$P(a \le X \le b)$ Grenswaarde g zodat $P(X \le g) = p$?					
$X \sim \mathbf{Poisson}(\lambda)$					
$P(X = k)$ $P(X \le k)$	$\begin{array}{ c c c c }\hline \text{poissonpdf}(\lambda,k)\\ \text{poissoncdf}(\lambda,k)\\ \end{array}$				

z-score:

$$z = \frac{x - \mu}{\sigma}$$

Centrale limietstelling: Gegeven n kansvariabelen X_1, X_2, \ldots, X_n die onderling onafhankelijk zijn en dezelfde kansverdeling hebben met een verwachtingswaarde μ en standaardafwijking σ , dan geldt (bij benadering) dat

- de som $\sum X = X_1 + X_2 + \ldots + X_n$ normaal verdeeld is met $E[\sum X] = n \cdot \mu$ en $\sigma(\overline{X}) = \sqrt{n} \cdot \sigma$.
- het gemiddelde $\overline{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$ normaal verdeeld is met $E[\overline{X}] = \mu$ en $\sigma(\overline{X}) = \frac{\sigma}{\sqrt{n}}$.

Deel 2:

 $100 \cdot (1 - \alpha)\%$ -betrouwbaarheidsinterval (BI) voor μ (wanneer σ bekend is):

$$z_{\alpha/2} = \text{InvNorm}(opp = 1 - \alpha/2; \mu = 0; \sigma = 1)$$

$$[\overline{x}-z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}};\overline{x}+z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}]$$

Minimale steekproefomvang zodat het $100 \cdot (1-\alpha)\%$ -BI voor μ maximale afwijking a heeft:

$$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{a}\right)^2$$

NB: soms kan in plaats van de afwijking a een gewenste intervalbreedte gegeven zijn, deze is gelijk aan 2a. $100 \cdot (1 - \alpha)\%$ -betrouwbaarheidsinterval (BI) voor μ (wanneer σ NIET bekend is):

$$t = \mathrm{InvT}(opp = 1 - \alpha/2; \mu = 0; \sigma = 1)$$

$$[\overline{x}-z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}};\overline{x}+z_{\alpha/2}\cdot\frac{\sigma}{\sqrt{n}}]$$

Minimale steekproefomvang zodat het $100 \cdot (1 - \alpha)\%$ -BI voor μ maximale afwijking a heeft:

$$n \ge \left(\frac{z_{\alpha/2} \cdot \sigma}{a}\right)^2$$

NB: soms kan in plaats van de afwijking a een gewenste intervalbreedte gegeven zijn, deze is gelijk aan 2a.