

Test 1

Differentiaton, applications and Optimisation.

Basic antidifferentiation

Semester One 2018

Year 12 Mathematics Methods

Calculator Free

Date.	Friday	16 th	February	7 45am
Date:	T.TIUQV	TO	I. CDI UGI V	/ .4Jam

You may have a formula sheet for this section of the test.

Total_____/21 20 Minutes

Question 1 (3 marks)

Given that the function f has a rule of the form $f(x) = ax^2 + bx$ and f(1) = 6 and f'(1) = 0, find the values of f and f.

Question 2 (8 marks)

Consider the gradient function f'(x) = 12 i

(a) Graph the gradient function

(4 marks)

(b) What kind of feature is at the point (-5, -225) on the graph of f(x)?

(2 marks)

(c) What kind of feature is at the point (-2,-144) on the graph of f(x)?

(2 marks)

Question 3 (6 marks)

Clearly showing your use of the product, quotient or chain rule differentiate the following.

(YOU MAY LEAVE YOUR ANSWERS IN UNSIMPLIFIED FORM)

a)
$$10 pi$$
 (2 marks)

b)
$$\frac{1}{\sqrt{x+2}}$$
 (1 marks)

c) Consider the function
$$f(x)=(x-1)^2(x-2)+1$$
 (3 marks)

If f'(x)=(x-1)(ux+v), where u and v are constants, use calculus to find the values of u and v.

Question 4 (4 marks)

The time T seconds, for one complete swing of a pendulum of length lm, is given by the rule $T=2\pi\sqrt{\frac{l}{g}}$, where g is a constant.

(a) Determine $\frac{dT}{dl}$, (2 marks)

(b) Using the formula $\partial T \approx \frac{dT}{dl} \times \partial l$, find the approximate increase in T when l is increased from 1.6 to 1.7. Give the answer in terms of g. (2 marks)

Test 1

Differentiaton , applications and Optimisation. Basic antidifferentiation

Semester One 2018 Year 12 Mathematics Methods Calculator Assumed

Date: Friday 16th February 7.45am_

You may have

- a formula sheet
- one page of A4 notes, one side

- a scientific calculator
- a Classpad

Total_	/25	25 minutes
Quest	tion 1	(9 marks)
	del train travels on a straight track such that its acceleration $pt-13cm/s^2,0\leq t\leq 10,$ where p is a constant.	on after t seconds is given by
(a)	Determine the initial acceleration of the model train.	(1 mark)

Question 2	(6 marks)

A beverage company has decided to release a new product. "Modmash" is to be **sold** in $375\,m$ cans that are perfectly cylindrical. {Hint: $1\,mL = 1\,c\,m^3$ }

(a) If the cans have a base radius of x cm show that the surface area of the can, S, is given

by:
$$S = 2\pi x^2 + \frac{750}{x}$$
. (2 marks)

(b) Using calculus methods, and showing full reasoning and justification, find the dimensions of the can that will minimise its surface area

(4 marks)

Question 3 (10 marks)

Let $f(x) = -\mathbf{i}$.

(a) Use calculus to locate and classify all the stationary points of f(x) and find any points of inflection. (6 marks)

(b) On the axes provided sketch the graph of f(x), $-1 \le x \le 4$, labelling all key features. (4 marks)