Practice Problems

Problem1

Solve the following recurrences and compute the asymptotic upper bounds. Assume that T(n) is a constant for sufficiently small n. Make your bounds as tight as possible.

a.
$$T(n) = 2T\left(\frac{n}{2}\right) + n^4$$

b.
$$T(n) = T\left(\frac{7n}{10}\right) + n$$

c.
$$T(n) = 16T\left(\frac{n}{4}\right) + n^2$$

d. $T(n) = 7T\left(\frac{n}{3}\right) + n^2$
e. $T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$

d.
$$T(n) = 7T\left(\frac{n}{3}\right) + n^2$$

e.
$$T(n) = 2T\left(\frac{n}{4}\right) + \sqrt{n}$$

Problem 2

Rank the following functions by order of growth; that is, find an arrangement $g_1, g_2, \dots g_{20}$ of the functions satisfying $g_1 = \Omega(g_2), g_2 = \Omega(g_3), \dots, g_{19} = \Omega(g_{20})$. Partition your list into equivalence classes such that functions f(n) and g(n) are in the same class if and only if f(n) = $\theta(g(n))$.

$\sqrt{2}^{lgn}$	n^2	n!	(lgn)!	$(3/2)^n$
n^3	$(lgn)^2$	$\lg(n!)$	2 ^{2ⁿ}	lnln(n)
$n.2^n$	2^{lgn}	e^n	4^{lgn}	(n+1)!
n^n	2^2	nlgn	1	n