

Lateral Mixing" Progress Report

Jody Klymak
School of Earth and Ocean Sciences
University of Victoria
P.O. Box 3055 STN CSC
Victoria, BC Canada, V8W 3P6
phone:(250)-472-5969 fax:(250)-721-6200 email:jklymak@uvic.ca
Award Number: N00014-11-1-0165
<http://web.uvic.ca/~jklymak/>

LONG-TERM GOALS

Our long-term goal is to understand how energy is supplied to the ocean, and how it subsequently cascades to the turbulence and mixing important to the circulation, and the transport and distribution of tracers. This problem involves scales spanning sub-inertial motions to turbulence, and therefore requires integrative efforts with other sea-going investigators and numerical modelers. The Lateral Mixing Experiment project was an ideal opportunity to investigate the cascade from mesoscale processes to the submesoscale.

OBJECTIVES

To characterize lateral variability in the upper ocean as it responds to mesoscale forcing.

APPROACH

Figure 1: MVP system deployed from stern of R/V Endeavor in Sargasso Sea.

My approach for understanding this problem has been to make lateral measurements of temperature and salinity structure, and to remove the effect of internal waves by mapping this structure onto isopycnals.

Report Documentation Page

*Form Approved
OMB No. 0704-0188*

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. REPORT DATE 30 SEP 2011	2. REPORT TYPE	3. DATES COVERED 00-00-2011 to 00-00-2011		
4. TITLE AND SUBTITLE Lateral Mixing			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Victoria, School of Earth and Ocean Sciences, P.O. Box 3055 STN CSC, Victoria, BC Canada, V8W 3P6,			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited				
13. SUPPLEMENTARY NOTES				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT Same as Report (SAR)	
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified		
18. NUMBER OF PAGES 5	19a. NAME OF RESPONSIBLE PERSON			

This has been very successful in elucidating lateral structure in the North Pacific, and now we are applying the same techniques to the North Atlantic.

WORK COMPLETED

I worked hard with the numerical modelers on this project, in particular Jeroen Molemaker, on thinking about how the sampling should go on this project. In particular, there is a gap with respect to understanding where we will have large submesoscale activity based on external forcing. This work was only partly satisfactory, and in particular, it seems that there needs to be better ways of statistically characterizing when we will have enhanced lateral variability. Numerical models are a good way to start, because they have all the scales present, and confounding influences like internal waves are less prevalent.

I also participated in the sea-going part of this project, taking my group on the *R/V Endeavor* in June 2011. Our role was to sample around the center of the dye patch on approximately 15 km scale (figure 2), using the Moving Vessel Profiler. We did this on two deployments “Site 1” and “Site 2”.

Figure 2: Left) Site sampling by the MVP. Site 1 Survey had 389 casts, Site 1 sampling consisted of 2597 casts; The Site 2 survey was 509 casts, and Site 2 had 964 casts. **Right)** Example day of sampling during survey 1. The R/V Oceanus provided large-scale context, while the R/V Cape Hatteras sampled dye at high resolution. UVic's MVP group on the R/V Endeavor provided the medium scale, centered on the dye.

RESULTS

We are still assessing our results from June. Preliminary analyses indicate that we were very successful in characterizing the T-S characteristics around the dye patch (figure 3). Unfolding our butterflies

indicates that we passed through the same water on multiple passes, and that changes in the horizontal structure of the water mas should be readily apparent from those passes (figure 4).

Figure 3: Three and a half example butterfly sections at Site 1. Blue contours are dye encounters. Turns are noted with vertical dashed lines and labeled by where they were in the butterfly.

Site 2 was more energetic, at least translating very quickly in space (figure 2). We had a few technical glitches during this leg, as well as the need to corral floating assets, so the time series is not as continuous. However, we did collect a nice array of data (figure 5) across the front that we hope will be very useful in diagnosing submesoscale changes during the deployment.

IMPACT/APPLICATIONS

We have collected one of the few repeat observations on the submesoscale of water that was tracked by dye and floats. Being able to follow a parcel of water in this manner was crucial, and we expect going to be very rich in understanding the phenomenology at these scales. Work is just starting on the data set in collaboration with our colleagues on the DRI.

RELATED PROJECTS

This work is related to the efforts of the other DRI investigators. We will be working closely with Craig Lee, Eric Kunze, Kipp Shearman and Tom Sanford to understand how the various scales mesh together in our observations.

This work is also related to work from my Canadian NSERC Grant, where we have been trying to go to Line P to make similar observations in the North Pacific.

Figure 4: Butterfly patterns unfolded and put onto isopycnal vertical reference frame. These results indicate that we did a relatively good job of sampling similar water, and that changes over time were subtle at Site 1.

Figure 5: Site 2 example data. Note in this case the water did change significantly as we ran our butterflies.