Class 12: Lab Session

Lana (PID: A17013518)

Section 1. Proportion og G/G in a population

 $Downloaded\ a\ CSV\ file\ from\ Ensemble < https://useast.ensembl.org/Homo_sapiens/Variation/Sample?db=coresistation; vf=959672880\#373531_tablePanel>$

Here we read this CSV file

```
mxl <- read.csv("373531-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")</pre>
  head(mxl)
 Sample..Male.Female.Unknown. Genotype..forward.strand. Population.s. Father
1
                   NA19648 (F)
                                                       A|A ALL, AMR, MXL
2
                   NA19649 (M)
                                                       G|G ALL, AMR, MXL
                                                       A|A ALL, AMR, MXL
3
                   NA19651 (F)
4
                                                       G|G ALL, AMR, MXL
                   NA19652 (M)
5
                   NA19654 (F)
                                                       G|G ALL, AMR, MXL
                   NA19655 (M)
                                                       A|G ALL, AMR, MXL
 Mother
1
2
3
4
  table(mxl$Genotype..forward.strand.)
```

```
A|A A|G G|A G|G
22 21 12 9
```

```
table(mxl$Genotype..forward.strand.) / nrow(mxl) * 100
```

```
A|A A|G G|A G|G
34.3750 32.8125 18.7500 14.0625
```

Now let's look at a different population. I picked the GBR.

```
gbr <- read.csv("373522-SampleGenotypes-Homo_sapiens_Variation_Sample_rs8067378.csv")
```

Find a proportion of G|G

```
round(table(gbr$Genotype..forward.strand.) / nrow(gbr) * 100, 2)
```

```
A|A A|G G|A G|G
25.27 18.68 26.37 29.67
```

This varient that is associated sith childhood asthma is more frequent in the GBR population than the MKL population.

Lets now dig into this further.

Section 4. Population Scale Analysis

Q13

One sample is obviously not enough to know what is happening in a population. You are interested in assessing genetic differences on a population scale. So, you processed about ~ 230 samples and did the normalization on a genome level. Now, you want to find whether there is any association of the 4 asthma-associated SNPs (rs8067378...) on ORMDL3 expression.

How many samples do we have?

```
expr <- read.table("rs8067378_ENSG00000172057.6.txt")
head(expr)</pre>
```

```
sample geno
                    exp
1 HG00367 A/G 28.96038
2 NA20768 A/G 20.24449
3 HG00361 A/A 31.32628
4 HG00135 A/A 34.11169
5 NA18870 G/G 18.25141
6 NA11993 A/A 32.89721
  nrow(expr)
[1] 462
  table(expr$geno)
A/A A/G G/G
108 233 121
  library(ggplot2)
    Q14
Let's make a boxplot.
  ggplot(expr) +
    aes(geno,exp, fill = geno) +
    geom_boxplot(notch = T)
```


The boxplot that I have made above shows that the SNP between G and A directly affects expression levels. The A|A median expression is \sim 32, the A|G median expression is \sim 25, and the G|G median expression is \sim 20. A|A has the highest expression of the three and based on the results of both A|A and A|G, the A allele most likely induces more gene expression.