CSI - 3105 Design & Analysis of Algorithms Course 14

Jean-Lou De Carufel

Fall 2019

Matrix Chain Multiplication

 $A: p \times q$ matrix

 $B: q \times r \text{ matrix}$

 $C = A B : p \times r \text{ matrix}$

C has pr entries, each of which can be computed in O(q) time. So C can be computed in O(pqr) time. We define the cost of multiplying A and B to be pqr.

 $\textit{A}_1:10\times100$

 $A_2:100\times 5$

 $A_3:5\times50$

How to compute $A_1A_2A_3$:

 $\textit{A}_1:10\times100$

 $A_2:100\times 5$

 $A_3:5\times50$

How to compute $A_1A_2A_3$:

•

• Compute A_1A_2 , $cost = 10 \times 100 \times 5 = 5000$

 $A_1:10 \times 100$

 $A_2: 100 \times 5$

 $A_3:5\times50$

How to compute $A_1A_2A_3$:

0

- Compute A_1A_2 , $cost = 10 \times 100 \times 5 = 5000$
- Compute $(A_1A_2)A_3$, $cost = 10 \times 5 \times 50 = 2500$.

 $A_1:10 \times 100$

 $A_2: 100 \times 5$

 $A_3:5\times50$

How to compute $A_1A_2A_3$:

0

- Compute A_1A_2 , $cost = 10 \times 100 \times 5 = 5000$
- Compute $(A_1A_2)A_3$, $cost = 10 \times 5 \times 50 = 2500$.

For a total cost of 5000 + 2500 = 7500.

 $A_1:10 \times 100$

 $A_2: 100 \times 5$

 $A_3:5\times50$

How to compute $A_1A_2A_3$:

0

- Compute A_1A_2 , $cost = 10 \times 100 \times 5 = 5000$
- Compute $(A_1A_2)A_3$, $cost = 10 \times 5 \times 50 = 2500$.

For a total cost of 5000 + 2500 = 7500.

•

• Compute A_2A_3 , $cost = 100 \times 5 \times 50 = 25000$

 $A_1:10 \times 100$

 $A_2: 100 \times 5$

 $A_3: 5 \times 50$

How to compute $A_1A_2A_3$:

0

- Compute A_1A_2 , $cost = 10 \times 100 \times 5 = 5000$
- Compute $(A_1A_2)A_3$, $cost = 10 \times 5 \times 50 = 2500$.

For a total cost of 5000 + 2500 = 7500.

•

- Compute A_2A_3 , $cost = 100 \times 5 \times 50 = 25000$
- Compute $A_1(A_2A_3)$, $cost = 10 \times 100 \times 50 = 50000$.

 $A_1:10 \times 100$

 $A_2: 100 \times 5$

 $A_3: 5 \times 50$

How to compute $A_1A_2A_3$:

0

- Compute A_1A_2 , $cost = 10 \times 100 \times 5 = 5000$
- Compute $(A_1A_2)A_3$, $cost = 10 \times 5 \times 50 = 2500$.

For a total cost of 5000 + 2500 = 7500.

•

- Compute A_2A_3 , $cost = 100 \times 5 \times 50 = 25000$
- Compute $A_1(A_2A_3)$, $cost = 10 \times 100 \times 50 = 50000$.

For a total cost of 25000 + 50000 = 75000.

Which one is better?

In general,

- $p_0, p_1, ..., p_n$: positive integers
- $A_1A_2,...,A_n$: matrices such that A_i has p_{i-1} rows and p_i columns.

Compute the best order to compute $A_1A_2 \cdot ... \cdot A_n$, i.e., minimize the total cost.

Consider the best order to compute $A_iA_{i+1} \cdot ... \cdot A_j$. In the **last** step, we multiply

$$\underbrace{(A_i \cdot \ldots \cdot A_k)}_{\text{already computed}} \underbrace{(A_{k+1} \cdot \ldots \cdot A_j)}_{\text{already computed}}$$

for some k such that $i \le k \le j-1$.

Consider the best order to compute $A_iA_{i+1} \cdot ... \cdot A_j$. In the **last** step, we multiply

$$\underbrace{(A_i \cdot \ldots \cdot A_k)}_{\text{already computed}} \underbrace{(A_{k+1} \cdot \ldots \cdot A_j)}_{\text{already computed}}$$

for some k such that $i \leq k \leq j-1$.

How did we compute $A_i \cdot ... \cdot A_k$?

5 / 18

Consider the best order to compute $A_iA_{i+1} \cdot ... \cdot A_j$. In the **last** step, we multiply

$$\underbrace{(A_i \cdot \ldots \cdot A_k)}_{\text{already computed}} \underbrace{(A_{k+1} \cdot \ldots \cdot A_j)}_{\text{already computed}}$$

for some k such that $i \le k \le j-1$.

How did we compute $A_i \cdot ... \cdot A_k$? In the best order.

Consider the best order to compute $A_iA_{i+1} \cdot ... \cdot A_j$. In the **last** step, we multiply

$$\underbrace{(A_i \cdot \ldots \cdot A_k)}_{\text{already computed}} \underbrace{(A_{k+1} \cdot \ldots \cdot A_j)}_{\text{already computed}}$$

for some k such that $i \leq k \leq j-1$.

How did we compute $A_i \cdot ... \cdot A_k$? In the best order. How did we compute $A_{k+1} \cdot ... \cdot A_i$?

5 / 18

Consider the best order to compute $A_iA_{i+1} \cdot ... \cdot A_j$. In the **last** step, we multiply

$$\underbrace{(A_i \cdot \ldots \cdot A_k)}_{\text{already computed}} \underbrace{(A_{k+1} \cdot \ldots \cdot A_j)}_{\text{already computed}}$$

for some k such that $i \leq k \leq j-1$.

How did we compute $A_i \cdot ... \cdot A_k$? In the best order. How did we compute $A_{k+1} \cdot ... \cdot A_i$? In the best order!

Consider the best order to compute $A_i A_{i+1} \cdot ... \cdot A_i$. In the **last** step, we multiply

$$\underbrace{(A_i \cdot \ldots \cdot A_k)}_{\text{already computed}} \underbrace{(A_{k+1} \cdot \ldots \cdot A_j)}_{\text{already computed}}$$

for some k such that $i \leq k \leq j-1$.

How did we compute $A_i \cdot ... \cdot A_k$? In the best order. How did we compute $A_{k+1} \cdot ... \cdot A_i$? In the best order!

```
minimum cost to compute A_i \cdot ... \cdot A_i
```

minimum cost to compute
$$A_i \cdot ... \cdot A_k$$

minimum cost to compute
$$A_{k+1} \cdot ... \cdot A_j$$

$$p_{i-1}p_kp_i$$

5 / 18

For $1 \le i \le j \le n$, define

 $m(i,j) = \text{minimum cost to compute } A_i \cdot ... \cdot A_j$.

We want to compute m(1, n).

For $1 \le i \le j \le n$, define

$$m(i,j) = \text{minimum cost to compute } A_i \cdot ... \cdot A_j$$
.

We want to compute m(1, n).

If we know k, then

$$m(i,j) = m(i,k) + m(k+1,j) + p_{i-1}p_kp_j.$$

For $1 \le i \le j \le n$, define

$$m(i,j) = \text{minimum cost to compute } A_i \cdot ... \cdot A_j$$
.

We want to compute m(1, n).

If we know k, then

$$m(i,j) = m(i,k) + m(k+1,j) + p_{i-1}p_kp_j.$$

But we do not know k, so try all values of k, $i \le k \le j-1$ and take the best one.

6 / 18

For $1 \le i \le j \le n$, define

$$m(i,j) = \text{minimum cost to compute } A_i \cdot ... \cdot A_j$$
.

We want to compute m(1, n).

If we know k, then

$$m(i,j) = m(i,k) + m(k+1,j) + p_{i-1}p_kp_j.$$

But we do not know k, so try all values of k, $i \le k \le j-1$ and take the best one.

Recurrence:

• For
$$1 \le i \le n$$
: $m(i, i) = 0$.

For $1 \le i \le j \le n$, define

$$m(i,j) = \text{minimum cost to compute } A_i \cdot ... \cdot A_j$$
.

We want to compute m(1, n).

If we know k, then

$$m(i,j) = m(i,k) + m(k+1,j) + p_{i-1}p_kp_j.$$

But we do not know k, so try all values of k, $i \le k \le j-1$ and take the best one.

Recurrence:

- For $1 \le i \le n$: m(i, i) = 0.
- For $1 \le i < j \le n$:

$$m(i,j) = \min_{i \le k \le j-1} \{m(i,k) + m(k+1,j) + p_{i-1}p_kp_j\}$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなび

Step 3: Solve the Recurrence Bottom-Up

Compute, in this order,

$$m(1,1), m(2,2), ..., m(n, n)$$

 $m(1,2), m(2,3), ..., m(n-1, n)$
 $m(1,3), m(2,4), ..., m(n-2, n)$
 $m(1,4), m(2,5), ..., m(n-3, n)$
 \vdots
 $m(1, n-1), m(2, n)$
 $m(1, n)$

Algorithm

Algorithm Matrix Chain Multiplication

```
1: for i = 1 to n do
      m(i, i) = 0
 3: end for
 4: for \ell = 2 to n do
    // Compute m(1, \ell), m(2, \ell + 1), ..., m(n - \ell + 1, n)
 6:
     for i = 1 to n - \ell + 1 do
 7:
      // Compute m(i, i + \ell - 1)
 8:
      i = i + \ell - 1
       // Compute m(i,j) using the recurrence
10:
    m(i, j) = \infty
11:
          for k = i to i - 1 do
12:
             m(i, j) = \min \{ m(i, j), m(i, k) + m(k + 1, j) + p_{i-1} p_k p_i \}
13:
          end for
14:
       end for
15: end for
16: return m(1, n)
```

40 1 40 1 4 2 1 4 2 1 9 9 0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

$i \setminus j$	1	2	3	4	5	6
1	0	15750				
2		0				
3			0			
4				0		
5					0	
6						0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i\	$j \mid$	1	2	3	4	5	6
1		0	15750				
2	l		0	2625			
3				0			
4					0		
5	ı					0	
6	l						0

4 D F 4 D F 4 D F 5000

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i	$\setminus j$	1	2	3	4	5	6
	1	0	15750				
	2		0	2625			
	3			0	750		
	4				0		
	5					0	
	6						0

40 1 40 1 4 2 1 4 2 1 9 9 0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

$i \setminus j$	1	2	3	4	5	6
1	0	15750				
2		0	2625			
3			0	750		
4				0	1000	
5					0	
6						0

4 D F 4 D F 4 D F 5000

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

$i \setminus j$	1	2	3	4	5	6
1	0	15750				
2		0	2625			
3			0	750		
4				0	1000	
5					0	5000
6						0

40 14 14 14 14 1 1 100

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6
1	0	15750	7875			
2		0	2625			
3			0	750		
4				0	1000	
5					0	5000
6						0

40 1 40 1 4 2 1 4 2 1 9 9 0

Matrices

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_6

 Dimensions
 30×35
 35×15
 15×5
 5×10
 10×20
 20×25
 $p_0 \times p_1$
 $p_1 \times p_2$
 $p_2 \times p_3$
 $p_3 \times p_4$
 $p_4 \times p_5$
 $p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6
1	0	15750	7875			
2		0	2625	4375		
3			0	750		
4				0	1000	
5					0	5000
6						0

Matrices

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_6

 Dimensions
 30×35
 35×15
 15×5
 5×10
 10×20
 20×25
 $p_0 \times p_1$
 $p_1 \times p_2$
 $p_2 \times p_3$
 $p_3 \times p_4$
 $p_4 \times p_5$
 $p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

$i \setminus j$	1	2	3	4	5	6
1	0	15750	7875			
2		0	2625	4375		
3			0	750	2500	
4				0	1000	
5					0	5000
6						0

Matrices

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_6

 Dimensions
 30×35
 35×15
 15×5
 5×10
 10×20
 20×25
 $p_0 \times p_1$
 $p_1 \times p_2$
 $p_2 \times p_3$
 $p_3 \times p_4$
 $p_4 \times p_5$
 $p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

$i \setminus j$	1	2	3	4	5	6
1	0	15750	7875			
2		0	2625	4375		
3			0	750	2500	
4				0	1000	3500
5					0	5000
6						0

Matrices

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_6

 Dimensions
 30×35
 35×15
 15×5
 5×10
 10×20
 20×25
 $p_0 \times p_1$
 $p_1 \times p_2$
 $p_2 \times p_3$
 $p_3 \times p_4$
 $p_4 \times p_5$
 $p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6
1	0	15750	7875	9375		
2		0	2625	4375		
3			0	750	2500	
4				0	1000	3500
5					0	5000
6						0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6
1	0	15750	7875	9375		
2		0	2625	4375	7125	
3			0	750	2500	
4				0	1000	3500
5					0	5000
6						0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6
1	0	15750	7875	9375		
2		0	2625	4375	7125	
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

4 D > 4 A > 4 B > 4 B > B 9 9 0

Matrices

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_6

 Dimensions
 30×35
 35×15
 15×5
 5×10
 10×20
 20×25
 $p_0 \times p_1$
 $p_1 \times p_2$
 $p_2 \times p_3$
 $p_3 \times p_4$
 $p_4 \times p_5$
 $p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6
1	0	15750	7875	9375	11875	
2		0	2625	4375	7125	
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

Matrices

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_6

 Dimensions
 30×35
 35×15
 15×5
 5×10
 10×20
 20×25
 $p_0 \times p_1$
 $p_1 \times p_2$
 $p_2 \times p_3$
 $p_3 \times p_4$
 $p_4 \times p_5$
 $p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6
1	0	15750	7875	9375	11875	
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

Matrices

$$A_1$$
 A_2
 A_3
 A_4
 A_5
 A_6

 Dimensions
 30×35
 35×15
 15×5
 5×10
 10×20
 20×25
 $p_0 \times p_1$
 $p_1 \times p_2$
 $p_2 \times p_3$
 $p_3 \times p_4$
 $p_4 \times p_5$
 $p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

$i \setminus j$	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125
2		0	2625	4375	7125	10500
3			0	750	2500	5375
4				0	1000	3500
5					0	5000
6						0

40 40 40 40 40 10 000

Matri		A_1		A_2		A_3	A_4			45			4 6
Dimens	ions	30 ×	35	35×15		15 × 5	5 × 10		10×20 $p_4 \times p_5$		0	20 × 2	
		$p_0 \times$	p_1	$p_1 \times p$	2	$p_2 \times p_3$	$p_3 \times p$	04	<i>p</i> ₄	× p	5	<i>p</i> ₅ ?	$\times p_6$
m(i, j	() =		{ m(i	(k) + k	m(k	(+1,j) +	$p_{i-1}p_k$. p j }	<i>i</i> 1	$= j$ $\leq i$	· <	$j \le$	6
$i \setminus j$	1 2	2	3	4	5	6	$i \setminus j$	1	2	3	4	5	6
1 0 2 3 4 5 6) ()	0	0	0		1 2 3 4 5	0	0	0	0	0	
6						0	6						0

◆ロト ◆個ト ◆差ト ◆差ト 差 りゅう

$$\frac{\text{Matrices}}{\text{Dimensions}} \begin{vmatrix} A_1 & A_2 & A_3 & A_4 & A_5 & A_6 \\ 30 \times 35 & 35 \times 15 & 15 \times 5 & 5 \times 10 & 10 \times 20 & 20 \times 25 \\ p_0 \times p_1 & p_1 \times p_2 & p_2 \times p_3 & p_3 \times p_4 & p_4 \times p_5 & p_5 \times p_6 \end{vmatrix}$$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{m(i,k) + m(k+1,j) + p_{i-1}p_kp_j\} & 1 \le i < j \le 6 \end{cases}$$

4 D > 4 P > 4 E > 4 E > 9 Q G

15750

2625

$i \setminus j$	1	2	3	4	5	6	i∖j	1	2	3	4	5	6
1	0	15750					1	0	1				
2		0	2625				2		0	2			
3			0	750			3			0	3		
4				0			4				0		
5					0		5					0	
6						0	6						0

4 D > 4 D > 4 E > 4 E > E 990

0

750

5000

0

Example

5000

1000

Matrices						
Dimensions	30 × 35	35 × 15	15 × 5	5 × 10	10 × 20	20 × 25
	$p_0 \times p_1$	$p_1 \times p_2$	$p_2 \times p_3$	$p_3 \times p_4$	$p_4 \times p_5$	$p_5 \times p_6$
,	,					
· · · · · · · · · · · · · · · · · · ·	0				i = j	
m(i,j) =	_min_{m((i, k) + m((k+1,j) +	$p_{i-1}p_kp_j$	$\}$ $1 \leq i < i$	$j \leq 6$

4 D > 4 D > 4 E > 4 E > E 990

Matrices	A_1	A_2	A_3	A_4	A_5	A_6
Dimensions						
	$p_0 \times p_1$	$p_1 \times p_2$	$p_2 \times p_3$	$p_3 \times p_4$	$p_4 \times p_5$	$p_5 \times p_6$
1	^ 0				i = i	

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

1 0 15750 7875 1 0 1 1 2 0 2625 4375 2 0 2 3 3 0 750 2500 3 0 3 3 4 0 1000 4 0 4 5 0 5000 5 0 5	i∖j	1	2	3	4	5	6	i∖j	1	2	3	4	5	6
3 0 750 2500 3 0 3 3 4 0 1000 4 0 4	1	0	15750	7875				1	0	1	1			
4 0 1000 4 0 4	2		0	2625	4375			2		0	2	3		
	3			0	750	2500		3			0	3	3	
5 0 5000 5 0 5	4				0	1000		4				0	4	
	5					0	5000	5					0	5
6 0 6 0	6						0	6						0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

1 0 15750 7875 1 0 1 1	
2 0 2625 4375 2 0 2 3	
3 0 750 2500 3 0 3 3	
4 0 1000 3500 4 0 4	5
5 0 5000 5 0	5
6 0 6	0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

1 \]	I	2	3	4	5	U	' \ J	1	2	3	4	5	U
1	0	15750	7875	9375			1	0	1	1	3		
2		0	2625	4375			2		0	2	3		
3			0	750	2500		3			0	3	3	
4				0	1000	3500	4				0	4	5
5					0	5000	5					0	5
6						0	6						0

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i\j	1	2	3	4	5	6	i\j	1	2	3	4	5	6
1	0	15750	7875	9375			1	0	1	1	3		
2		0	2625	4375	7125		2		0	2	3	3	
3			0	750	2500		3			0	3	3	
4				0	1000	3500	4				0	4	5
5					0	5000	5					0	5
6						0	6						0
Ŭ						v	Ū	l					·

4 D > 4 A > 4 B > 4 B > B = 990

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i\	Ĵ	1	2	3	4	5	6	i\j	1	2	3	4	5	6
1		0	15750	7875	9375			1	0	1	1	3		
2			0	2625	4375	7125		2		0	2	3	3	
3				0	750	2500	5375	3			0	3	3	3
4					0	1000	3500	4				0	4	5
5						0	5000	5					0	5
6							0	6						0
									1					

4 D > 4 D >

Matrices	_	_	•	•	•	•
Dimensions						
	$p_0 \times p_1$	$p_1 \times p_2$	$p_2 \times p_3$	$p_3 \times p_4$	$p_4 \times p_5$	$p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i∖j	1	2	3	4	5	6	i∖j	1	2	3	4	5	6
1	0	15750	7875	9375	11875		1	0	1	1	3	3	
2		0	2625	4375	7125		2		0	2	3	3	
3			0	750	2500	5375	3			0	3	3	3
4				0	1000	3500	4				0	4	5
5					0	5000	5					0	5
6						0	6						0

4 D > 4 D >

Matrices	A_1	A_2	A_3	A_4	A_5	A_6
Dimensions						
	$p_0 \times p_1$	$p_1 \times p_2$	$p_2 \times p_3$	$p_3 \times p_4$	$p_4 \times p_5$	$p_5 \times p_6$

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_k p_j \} & 1 \le i < j \le 6 \end{cases}$$

i\j	1	2	3	4	5	6	i\j	1	2	3	4	5	6
1	0	15750	7875	9375	11875		1	0	1	1	3	3	
2		0	2625	4375	7125	10500	2		0	2	3	3	3
3			0	750	2500	5375	3			0	3	3	3
4				0	1000	3500	4				0	4	5
5					0	5000	5					0	5
6						0	6						0

4 D > 4 D > 4 E > 4 E > E 990

$$m(i,j) = \begin{cases} 0 & i = j \\ \min_{i \le k < j} \{ m(i,k) + m(k+1,j) + p_{i-1}p_kp_j \} & 1 \le i < j \le 6 \end{cases}$$

i\j	1	2	3	4	5	6	i\.	j	1	2	3	4	5	6
1	0	15750	7875	9375	11875	15125	1		0	1	1	3	3	3
2		0	2625	4375	7125	10500	2			0	2	3	3	3
3			0	750	2500	5375	3				0	3	3	3
4				0	1000	3500	4					0	4	5
5					0	5000	5						0	5
6						0	6							0

4 D > 4 D > 4 E > 4 E > E 9 9 0

There are 3 nested loops, so this algorithm takes $O(n^3)$ time.

More careful counting:

- *l*: 2 to *n*
 - For each ℓ , we have i: 1 to $n \ell + 1$
 - For each i, we have k: i to $i + \ell 2$

$$\sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} \sum_{k=i}^{i+\ell-2} 1$$

$$\sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} \sum_{k=i}^{i+\ell-2} 1$$

$$= \sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} (\ell-1)$$

$$\sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} \sum_{k=i}^{i+\ell-2} 1$$

$$= \sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} (\ell-1)$$

$$= \sum_{\ell=2}^{n} (n-\ell+1)(\ell-1)$$

Total time:

$$\sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} \sum_{k=i}^{i+\ell-2} 1$$

$$= \sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} (\ell-1)$$

$$= \sum_{\ell=2}^{n} (n-\ell+1)(\ell-1)$$

$$= \sum_{\ell=2}^{n} (n-\ell+1)(\ell-1)$$

$$=\sum_{\ell=1}(n-\ell+1)(\ell-1)$$

 $=\sum (n-\ell+1)(\ell-1)$ since the summand is 0 when $\ell=0$

$$\sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} \sum_{k=i}^{i+\ell-2} 1$$

$$= \sum_{\ell=2}^{n} \sum_{i=1}^{n-\ell+1} (\ell-1)$$

$$= \sum_{\ell=2}^{n} (n-\ell+1)(\ell-1)$$

$$= \sum_{\ell=1}^{n} (n-\ell+1)(\ell-1)$$
 since the summand is 0 when $\ell=0$

$$= \frac{n^3-n}{6}$$

$$= \Theta(n^3).$$

Longest Common Subsequence

We have two sequences:

$$X = (a, b, c, b, d, a, b)$$

 $Y = (b, d, c, a, b, a).$

Longest Common Subsequence

We have two sequences:

$$X = (a, \underline{b}, \underline{c}, b, \underline{d}, a, \underline{b})$$

$$Y = (b, d, c, a, b, a).$$

The sequence Z = (b, c, d, b) is a subsequence of X, but not of Y.

Longest Common Subsequence

We have two sequences:

$$X = (a, b, c, b, d, a, b)$$

 $Y = (b, d, c, a, b, a).$

The sequence Z = (b, c, d, b) is a subsequence of X, but not of Y.

LCS(X, Y) is the longest common subsequence of X and Y:

$$(b, c, b, a)$$
 or (b, d, a, b) .

Both have length 4.

Problem:

Input: Sequences

- $X = (x_1, x_2, ..., x_m)$
- $Y = (y_1, y_2, ..., y_n)$

Output: A longest sequence that is a subsequence of X and a subsequence of Y, i.e., Z = LCS(X, Y).

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

Case 2:
$$x_m \neq y_n$$

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

Consider

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1: $x_m = y_n$ Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

Case 2: $x_m \neq y_n$ Then $z_k \neq x_m$ or $z_k \neq y_n$ (or both).

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

Consider

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1:
$$x_m = y_n$$

Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

Case 2:
$$x_m \neq y_n$$

Then $z_k \neq x_m$ or $z_k \neq y_n$ (or both).

Case 2 a):
$$z_k \neq x_m$$

$$(z_1, z_2, ..., z_k) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_n)$$

<ロ> <回> <回> <回> < 回> < 回> < 三> < 三> の< ○

$$X = (x_1, x_2, ..., x_m)$$
 $Y = (y_1, y_2, ..., y_n)$

Consider

$$Z = (z_1, z_2, ..., z_k) = LCS(X, Y)$$

Case 1: $x_m = y_n$ Then $z_k = x_m = y_n$ and

$$(z_1, z_2, ..., z_{k-1}) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_{n-1})$$

Case 2: $x_m \neq y_n$

Then $z_k \neq x_m$ or $z_k \neq y_n$ (or both).

Case 2 a): $z_k \neq x_m$

$$(z_1, z_2, ..., z_k) = LCS(x_1x_2 \cdots x_{m-1}, y_1y_2 \cdots y_n)$$

Case 2 b): $z_k \neq y_n$

$$(z_1, z_2, ..., z_k) = LCS(x_1x_2 \cdots x_m, y_1y_2 \cdots y_{n-1})$$

- 4日 > 4団 > 4 豆 > 4 豆 > 豆 り Q (C)

But we do not know if we are in Case 2 a) or 2 b).

If $x_m \neq y_n$, then $(z_1, z_2, ..., z_k)$ is the longest of

$$LCS(x_1x_2\cdots x_{m-1},y_1y_2\cdots y_n)$$

and

$$LCS(x_1x_2\cdots x_m, y_1y_2\cdots y_{n-1}).$$

For $0 \le i \le m$ and $0 \le j \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

For $0 \le i \le m$ and $0 \le j \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

Recurrence:

• If
$$i = 0$$
 or $j = 0$, $c(i, j) = 0$.

For $0 \le i \le m$ and $0 \le j \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

Recurrence:

- If i = 0 or j = 0, c(i, j) = 0.
- If $i \geq 1$, $j \geq 1$ and $x_i = y_j$,

$$c(i,j) = 1 + c(i-1,j-1)$$

For $0 \le i \le m$ and $0 \le i \le n$, define

$$c(i,j) = \text{length of } LCS(x_1x_2 \cdots x_i, y_1y_2 \cdots y_j).$$

We want to compute c(m, n).

Recurrence:

- If i = 0 or j = 0, c(i, j) = 0.
- If i > 1, j > 1 and $x_i = y_i$,

$$c(i,j) = 1 + c(i-1,j-1)$$

• If $i \geq 1$, $j \geq 1$ and $x_i \neq y_i$,

$$c(i,j) = \max\{c(i-1,j), c(i,j-1)\}\$$

Step 3: Solve the Recurrence Bottom-Up

Fill in the matrix c(i,j) for $0 \le i \le m$ and $0 \le j \le n$.

First row:

$$c(0,0) = c(0,1) = \dots = c(0,n) = 0$$

First column:

$$c(0,0) = c(1,0) = \dots = c(m,0) = 0$$

Then fill in the matrix, row by row, in each row from left to right.

Algorithm

Algorithm Longest Common Subsequence

```
1: for i = 0 to m do
    c(i, 0) = 0
 3: end for
 4: for j = 0 to n do
 5:
   c(0, i) = 0
 6: end for
 7: for i=1 to m do
 8:
       for i = 1 to n do
 9:
          if x_i = y_i then
10:
             c(i, j) = 1 + c(i - 1, j - 1)
11:
          else
12:
             c(i, j) = \max\{c(i - 1, j), c(i, j - 1)\}\
13:
          end if
14:
       end for
15: end for
16: return c(m, n)
```