

PERTEMUAN 5

PENGEMBANGAN PSEUDOCODE STRUKTUR KONTROL PENGULANGAN

POKOK BAHASAN

- 1. Definisi Struktur Kontrol Pengulangan
- 2. Jenis Struktur Kontrol Pengulangan
- 3. Pseudocode Struktur Kontrol Pengulangan
- 4. Desk Checking Struktur Kontrol Pengulangan
- Algoritma Dengan Struktur Kontrol Pengulangan

STRUKTUR KONTROL PENGULANGAN

- Struktur kontrol pengulangan digunakan untuk melaksanakan sederetan instruksi berulang-ulang sesuai dengan persyaratan yang ditetapkan.
- Ada tiga cara penempatan keputusan pengulangan :
 - 1. Pada awal pengulangan (Leading decision loop)
 - 2. Pada akhir pengulangan (trailing the decision loop)
 - 3. Menjumlahkan angka pada suatu waktu(counted loop)

1. Leading Decision Loop

- Kondisi diuji sebelum beberapa instruksi dieksekusi.
- Perintah leading decision loop adalah struktur Do WHILE.
- Format Struktur Kontrol pengulangan DO WHILE DO WHILE kondisi k bernilai true

```
instruksi 1
   instruksi 2
   instruksi n
   counter
ENDDO
```


1. Leading Decision Loop (lanjutan)

Contoh Kasus:

Sebuah hotel membuat penomoran kamar yang dikelompokkan berdasarkan bilangan genap. Jumlah kamar yang tersedia adalah 5 kamar. Berikan bilangan genap sesuai dengan banyaknya kamar

Leading Decision Loop (lanjutan)

Definisi Masalah

Input : jumlah kamar

Output : 5 deret bilangan genap

Proses : Jika I <= jumlah kamar lakukan pengulangan berikut

a = a + 2

cetak a

Outline Solusi

Input	Proses	Output
Baca n	DO WHILE i <= n a= a+ 2 i = i + 1 Cetak a Enddo	Cetak a

Leading Decision Loop (lanjutan)

Program Bilangan_Genap

{Menghasilkan bilangan genap sesuai dengan data yang diinput}

Deklarasi

integer a= 0

integer i=1

integer n

Deskripsi

Baca n

DOWHILE i<=n

a = a + 2

i=i+1

Cetak a

ENDDO

END

1. Leading Decision Loop (lanjutan)

- Desk Checking
 - Data Masukan

	Data
n	5

Hasil yang diharapkan2 4 6 8 10

1. Leading Decision Loop (lanjutan)

Tabel Desk Checking

i	n	i<=n	a=a+2	i=i+1	Cetak a
1	5	Υ	2	2	2
2	5	Υ	4	3	4
3	5	Υ	6	4	6
4	5	Υ	8	5	8
5	5	Υ	10	6	10
6	5	N	-	-	-

2. Trailing Decision Loop

- Beberapa instruksi dieksekusi sekali sebelum kondisi diuji. Jika kondisi False, instruksi akan diulang sampai kondisi bernilai TRUE.
- Perintah trailing decision loop adalah struktur REPEAT UNTIL.

Format Struktur Kontrol pengulangan REPEAT....UNTIL

```
REPEAT
    instruksi 1
    instruksi 2
    instruksi n
    counter
UNTIL kondisi k true
```


Contoh Kasus:

Sebuah Bank membuat nomor antrian berdasarkan bilangan ganjil. Jumlah antrian maksimal 5. Berikan bilangan ganjil sesuai jumlah antrian

Definisi Masalah

Input : jumlah antrian

Output : 5 deret bilangan ganjil

Proses : Jika i <= jumlah antrian lakukan pengulangan berikut

cetak a

a = a + 2

Outline Solusi

Input	Proses	Output
Baca n	REPEAT Cetak a a= a+ 2 i = i + 1 UNTIL i>n	Cetak a

Program Bilangan_Ganjil

{Menghasilkan bilangan ganjil sesuai dengan data yang diinput}

Deklarasi

integer a= 1

integer i=1

integer n

Deskripsi

Baca n

REPEAT

Cetak a

a = a + 2

i=i+1

Until i<=n

ENDDO

END

Desk Checking

•		Data
	n	5

Hasil yang diharapkan1 3 5 7 9

Tabel Desk Checking

i	n	Cetak a	a=a+2	i=i+1	i>n
1	5	1	3	2	N
2	5	3	5	3	Ν
3	5	5	7	4	N
4	5	7	9	5	N
5	5	9	11	6	N
6	5	-	-	-	Y

3. Counted Loop

- Pencacah pengulangan digunakan jika jumlah iterasi pengulangan sudah diketahui. Pelaksanaan loop dikendalikan oleh indeks pengulangan.
- Perintah counted loop adalah struktur FOR
- Format Struktur Kontrol pengulangan FOR
 FOR loop_index=nilai_awal to nilai_akhir Step n

statement_1 statement_2

.

statement_n

ENDFOR

Contoh Kasus:

Buatlah sebuah deret bilangan sebanyak 5 yang menampilkan angka 1, 4, 9, 14, 25

Definisi Masalah

Input : jumlah bilangan

Output : 5 deret bilangan akar kuadrat

Proses : Jika i <= jumlah bilangan lakukan

pengulangan berikut

cetak a

a = sqr(a)

Outline Solusi

Input	Proses	Output
Baca n	For i = 1 to n Cetak a a= sqr(a) EndFor	Cetak a

Program Bilangan_Kuadrat

{Menghasilkan bilangan kuadrat sesuai dengan data yang diinput}

Deklarasi

integer a integer i integer n

Deskripsi

Baca n

For i = 1 to n

Cetak a

a = sqr(i)

EndFor

END

- Desk Checking
 - Data Masukan

	Data
n	5

Hasil yang diharapkan1 4 9 16 25

Tabel Desk Checking

i	n	i<=n	a=sqr(i)	Cetak a	i=i+1
1	5	Υ	2	2	2
2	5	Υ	4	4	3
3	5	Υ	6	6	4
4	5	Υ	8	8	5
5	5	Υ	10	10	6
6	5	N	-	-	-

NESTED REPETION

- Nested Repetion terjadi, jika di dalam pengulangan terdapat statement pengulangan yang lain.
- Format Nested DO WHILE DO WHILE kondisi k1 bernilai true DO WHILE kondis k2 bernilai true statement 1 statement_2 statement n2 **ENDDO** statement n1 **ENDDO**

CONTOH NESTED REPETION

Buatlah pseudocode untuk menampilkan output seperti berikut :

111

222

333

Jawaban:

Definisi Masalah

Input : jumlah baris dan jumlah kolom

Output : menampilkan angka sesuai baris dan kolom

Proses : DO WHILE b <= 3

DO WHILE k <= 3

cetak k

k=k+1

Enddo

cetak

b=b+1

Enddo

CONTOH NESTED REPETITION (lanjutan)

Outline Solusi

Input	Proses	Output
Baca b, k	DO WHILE b <= 3 DO WHILE k <= 3 cetak k k=k+ 1 Enddo Cetak b=b+1 Enddo	Cetak k

CONTOH NESTED REPETION (lanjutan)

Tabel Desk Checking

b	k	b<=3	k<=3	Cetak b	K=k+1	B=b+1
1	1	Y	Υ	1	2	
	2		Y	1	3	
	3		Y	1	4	
			Ν	-	-	2
2	1	Y	Υ	2	2	
			Y	2	3	
			Υ	2	4	
			N	-	-	3

Lanjutkan untuk desk checking berikutnya

LATIHAN 6

LATIHAN 6

•
$$10 + 8 + 6 + 4 + 2 = 30$$

 $10 + 8 + 6 + 4 = 28$
 $10 + 8 + 6 = 24$
 $10 + 8 = 18$
 $10 = 10$
-----+

TUGAS 4

- Buatlah pseudocode, flowchart dan program untuk membuat tampilan berikut:
 - 0 + 3 + 8 + 15 +.....+ suku ke-10 =
 - \blacksquare 1 1/3 + 1/5 1/7 + 1/9+ suku ke-10 =
- Menghitung Nilai Variant = $(\sum X^2 (\sum X)^2 / N) / (N-1)$

Catatan Tugas:

- Tugas dibuat pada kertas folio bergaris dengan menggunakan bolpoint.
- Tugas dikumpulkan pada saat pertemuan 6. Bagi mahasiswa yang tidak mengumpulkan tugas maka tidak mendapat nilai tugas 4 (tidak ada sistem susulan).

SOAL LATIHAN

- 1. Do While merupakan struktur perintah dari ...
 - a. Leading decision loop
 - b. Trailing the decision loop
 - c. Counted loop
 - d. Looping
 - e. Loop

SOAL LATIHAN (latihan)

- 2. Yang merupakan perintah dari trailing decision loop adalah ...
- a. For
- b. End
- c. Repeat ... Until
- d. Do Whilee. If

SOAL LATIHAN (latihan)

- 3. Pencacah pengulangan digunakan jika jumlah iterasi pengulangan sudah diketahui. Pelaksanaan loop dikendalikan oleh indeks pengulangan adalah ciri dari
 - • •
- a. Leading decision loop
- b. Trailing the decision loop
- c. Counted loop
- d. Looping
- e. Loop

SOAL LATIHAN (latihan)

- 4. Salah satu penempatan keputusan pengulangan adalah
- a. Looping
- b. Loop
- c. Trailing the decision loop
- d. Decison loop
- e. Reading loop
- 5. Yang merupakan perintah dari counted loop adalah ...
- a. For
- b. If
- c. Repeat
- d. Until
- e. While