Face Recognition

Shusen Wang

Challenge of Face Recognition

Question: Why not using Softmax classifier (as in image recognition)?


```
01234567899
01234567899
0123456789
0123456789
```

Challenge of Face Recognition

Question: Why not using Softmax classifier (as in image recognition)?

- Softmax classifier is a dense layer with Softmax activation.
- #class is large (can be millions or billions).
- #parameters in the output layer is huge!
 - Suppose the input shape of Softmax classifier is 1K.
 - Suppose #class is 10*M*.
 - Then #parameters = $1K \times 10M = 10G$.

Training

Randomly Sample a Triplet

Feature Extraction using CNN

positive
$$x^+$$
 f $f(x^+)$

anchor f $f(x^+)$

herefore f $f(x^-)$

herefore f $f(x^-)$

Loss Functions

positive
$$\mathbf{x}^+$$
 f $f(\mathbf{x}^+)$ $\left| |\mathbf{f}(\mathbf{x}^+) - \mathbf{f}(\mathbf{x}^a)| \right|_2^2$ anchor \mathbf{x}^a f $f(\mathbf{x}^a)$ $\left| |\mathbf{f}(\mathbf{x}^a) - \mathbf{f}(\mathbf{x}^a)| \right|_2^2$ negative $\mathbf{x}^ f$

Loss Functions

- N triplets: $(\mathbf{x}_1^a, \mathbf{x}_1^+, \mathbf{x}_1^-), (\mathbf{x}_2^a, \mathbf{x}_2^+, \mathbf{x}_2^-), \dots, (\mathbf{x}_N^a, \mathbf{x}_N^+, \mathbf{x}_N^-).$
 - N can be far larger than n (#samples).
- Optimization model:

$$\min \frac{1}{N} \sum_{i=1}^{N} \left[\left| |\mathbf{f}(\mathbf{x}_{i}^{+}) - \mathbf{f}(\mathbf{x}_{i}^{a})| \right|_{2}^{2} - \left| |\mathbf{f}(\mathbf{x}_{i}^{a}) - \mathbf{f}(\mathbf{x}_{i}^{-})| \right|_{2}^{2} \right].$$

Prediction

1. Feature Extraction for All the Training Photos

1. Feature Extraction for All the Training Photos

2. Feature Extraction for Test Sample

3. KNN Classifier

Keras Implementation

http://krasserm.github.io/2018/02/07/deep-face-recognition/