Strjál stærðfræði 2

Lokapróf á vorönn 2017 - Formúlublað

Ef 2x2 fylkið $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ hefur ákveðu $\det A = a \cdot d - b \cdot c \neq 0$

þá er fylkið andhverfanlegt og andhverfan er $A^{-1} = \frac{1}{\det A} \cdot \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

LÍKINDAREIKNINGUR:

$$P(n,r) = \frac{n!}{(n-r)!} \qquad C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!} \qquad \binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

THEOREM 1 The number of r-permutations of a set of n objects with repetition allowed is n^r .

THEOREM 2 There are C(n+r-1,r) r-combinations from a set with n elements when repetition of elements is allowed.

THEOREM 3 The number of different permutations of n objects, where there are n_1 indistinguishable objects of type $1, n_2$ indistinguishable objects of type $2, \ldots,$ and n_k indistinguishable objects of type k, is

$$\frac{n!}{n_1! n_2! \cdots n_k!}.$$

THEOREM 4 The number of ways to distribute n distinguishable objects into k distinguishable boxes so that n_i objects are placed into box i, i = 1, 2, ..., k, equals

$$\frac{n!}{n_1! \, n_2! \cdots n_k!}.$$

$$P(E_1 \cup E_2) = P(E_1) + P(E_2) - P(E_1 \cap E_2)$$

$$b(k; n, p) = C(n, k) \cdot p^{k} \cdot q^{n-k}$$

X-stríkkun ("X-expansion") og X-þjöppun ("X-compression"):

Example 3

If a > 0, the matrix transformation $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ax \\ y \end{bmatrix}$ induced by the matrix $A = \begin{bmatrix} a & 0 \\ 0 & 1 \end{bmatrix}$ is called an **X-expansion** of \mathbb{R}^2 if a > 1, and an **X-compression** if 0 < a < 1. The reason for the name is clear in the diagram below. Similarly, if b > 0 the matrix $\begin{bmatrix} 1 & 0 \\ 0 & b \end{bmatrix}$ gives rise to **Y-expansions** and **Y-compressions**.

X-skekking ("X-shear"):

Example 4

If a is a number, the matrix transformation $T\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + ay \\ y \end{bmatrix}$ induced by the matrix $A = \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix}$ is called an X-shear of \mathbb{R}^2 (positive if a > 0 and negative if a < 0). Its effect is illustrated below when $a = \frac{1}{3}$ and $a = -\frac{1}{3}$.

Snúningur rangsælis um upphafspunkt ("Rotation counterclockwise about origin"):

Example 5

If θ is any angle, let R_{θ} denote the transformation that rotates \mathbb{R}^2 counterclockwise about the origin through the angle θ . Then R_{θ} is the matrix transformation induced by the matrix $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$.

Speglun ("reflection") um beina línu gegnum upphafspunkt:

Example 10

Let L denote the line through the origin in \mathbb{R}^2 that makes an angle θ with the positive X axis. If $Q: \mathbb{R}^2 \to \mathbb{R}^2$ is reflection in L, show that Q is linear with $\operatorname{matrix} \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$.

Fylki fyrir línulega vörpun ("The matrix of a linear transformation"):

Theorem 2

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a transformation.

- 1. T is linear if and only if it is a matrix transformation.
- 2. If T is linear, then T is induced by a unique matrix A, given in terms of its columns by

$$A = [T(E_1) \ T(E_2) \cdots T(E_n)]$$

where $\{E_1, E_2, \dots, E_n\}$ is the standard basis of \mathbb{R}^n .

Theorem 1

Let
$$\vec{v} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
 and $\vec{w} = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ be vectors. Then:

- 1. $\vec{v} = \vec{w}$ as vectors if and only if $x = x_1$, $y = y_1$ and $z = z_1$.
- 2. $\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$.
- 3. $\vec{v} = \vec{0}$ if and only if $||\vec{v}|| = 0$.
- 4. $||a\vec{v}|| = |a|||\vec{v}||$ for any scalar *a*.

Stikajöfnur beinnar línu ("Parametric equations of a line"):

Parametric Equations of a Line

The line through $P_0(x_0, y_0, z_0)$ with direction vector $\vec{d} = [a \ b \ c]^T \neq \vec{0}$ is given by

$$x = x_0 + ta$$

$$y = y_0 + tb \quad t \text{ any scalar}$$

$$z = z_0 + tc$$

In other words, the point P(x, y, z) is on this line if and only if a real number t exists such that $x = x_0 + ta$, $y = y_0 + tb$, and $z = z_0 + tc$.

Innfeldi vektora ("Dot product of vectors"):

Theorem 2

Let \vec{v} and \vec{w} be nonzero vectors. If θ is the angle between \vec{v} and \vec{w} , then $\vec{v} \cdot \vec{w} = ||\vec{v}|| ||\vec{w}|| \cos \theta$.

Ofanvarp vektors ("Projection of a vector"):

Theorem 4

Let \vec{u} and $\vec{d} \neq \vec{0}$ be vectors.

- 1. The projection \vec{u}_1 of \vec{u} on \vec{d} is given by $\text{proj}_{\vec{d}}\vec{u} = \frac{\vec{u} \cdot \vec{d}}{\|\vec{d}\|^2} \vec{d}$.
- 2. The vector $\vec{u} \text{proj}_{\vec{d}} \vec{u}$ is orthogonal to \vec{d} .

Jafna fyrir plan ("Equation of a plane"):

Scalar Equation of a Plane

The plane through $P_0(x_0, y_0, z_0)$ with normal $\vec{n} = [a \ b \ c]^T \neq \vec{0}$ is given by

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

In other words, the point P(x, y, z) is on this plane if and only if x, y, and z satisfy this equation.

Krossfeldi vektora ("cross product"):

Given vectors $\vec{v}_1 = \begin{bmatrix} x_1 \\ y_1 \\ z_1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} x_2 \\ y_2 \\ z_2 \end{bmatrix}$, define the **cross product** $\vec{v} \times \vec{w}$ by

$$\vec{v}_1 \times \vec{v}_2 = \begin{bmatrix} y_1 z_2 - z_1 y_2 \\ -(x_1 z_2 - z_1 x_2) \\ x_1 y_2 - y_1 x_2 \end{bmatrix}.$$

Einsleit hnit ("Homogeneous coordinates"):

The idea is to represent a point $\vec{v} = \begin{bmatrix} x \\ y \end{bmatrix}$ as a 3 × 1 column $\begin{bmatrix} x \\ y \end{bmatrix}$, called the

homogeneous coordinates of \vec{v} . Then translation by $\vec{w} = \begin{bmatrix} p \\ q \end{bmatrix}$ can be achieved by multiplying by a 3 × 3 matrix:

$$\begin{bmatrix} 1 & 0 & p \\ 0 & 1 & q \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} x + p \\ y + q \\ 1 \end{bmatrix} = \begin{bmatrix} T_{\vec{v}}(\vec{v}) \\ 1 \end{bmatrix}$$

Tafla um hornaföll

x	$\sin x$	cosx
x 0	0	1
<u>π</u> 6	1/2	$\frac{\sqrt{3}}{2}$
<u>π</u> 4	$\cdot \frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\frac{1}{2}}{\frac{\sqrt{2}}{2}}$ $\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
π	1	0
$\frac{2}{2\pi}$	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$
$\frac{3\pi}{4}$	$\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{2}}{2}$ $-\frac{\sqrt{3}}{2}$
<u>5π</u> 6	1/2	$-\frac{\sqrt{3}}{2}$
π	0	-1
$\frac{3\pi}{2}$	-1	0
2π	0	1

882 13 / Modeling Computation

Start state is $s_{AB} = s_A$, which is final if s_A and s_B are final.

Transition to s_B .

Start state is $s_{AB} = s_A$, which is final if s_A and s_B are final.

Final states include all final states of M_B .

 $s_{A \cup B}$ is the new start state, which is final if s_A or s_B is final.

(c) Transitions from s_A produce A transitions from s_{A^0} and all final states of M_A .

Start $S_A = M_A = M_$

 s_{A} is the new start state, which is a final state.

Final states include all final states in M_A .

FIGURE 2 Building Automata to Recognize Concatenations, Unions, and Kleene Closures.