## ChatGPT in Finance and Accounting Research

Presented by Long Zhen

### What is ChatGPT

- ChatGPT is an AI-powered conversational agent developed by OpenAI.
  - GPT (Generative Pre-trained Transformer)
- Feature:
  - Natural Language Understanding (NLU): ChatGPT comprehends and responds to human language inputs.
  - Conversational Abilities: It engages in dialogue, mimicking human-like conversation.
  - Adaptability: Capable of learning and adapting to diverse conversational contexts.
  - Large Knowledge Base: Informed by extensive pre-training on vast datasets, allowing it to generate contextually relevant responses.

—— produced by ChatGPT 3.5

## What is ChatGPT

- Based on the transformer architect
- ChatGPT prompts are a way to facilitate conversations between users and their AI-driven chatbot
  - Make responses more relevant



## Transforming





# ...for finance and accounting research

• Ultimate goal: resource allocation ← information

- A framework:
  - Awareness cost
  - Acquisition cost
  - Integration cost

• → How ChatGPT makes a difference in information processing?

# Bloated disclosure: Can ChatGPT help investors process information?

Alex G. Kim
Maximilian Muhn
Valeri V. Nikolaev
R&R at JAE

# Research question

- Whether ChatGPT help investors process information from corporate disclosure by summarizing the contents?
- What are the determinants and consequences of disclosure bloat?

- → A bigger picture:
- How LLMs and Generative AI shape the information environment of firms and investors?

# Why interesting

- The exponential growth of textual data + popularity of LLM
  - The economic usefulness of these tools in information processing remains unclear
- Corporate disclosure provide an ideal platform for understanding the value of language modeling from a user's perspective
  - Information overload in corporate filings
    - Strategic disclosure (length, complexity)
    - SEC regulation: plain English
- GPT-3.5 is well-suited for analyzing corporate disclosure
  - Concise, effective, and humanly understandable

### Contribution

- Literature on the economic usefulness of technology in analyzing textual data
  - Prior studies: introduction of EDGAR/XBRL by the SEC
    - e.g., Goldstein et al., 2023; Blankespoor, 2019
  - This study suggest that generative AI can advance financial reporting tech
- Literature on measures of textual information redundancies
  - Prior studies: readability/complexity → linguistic complexity (textual+content)
    - e.g., Li, 2008; Loughran and McDonald, 2014a; Bonsall et al., 2017
  - This study propose a novel measure bloat that avoid the complexity confusion

### Contribution

- Literature on machine learning and AI in financial market
  - Contemporaneous works: sentiment analysis/ firm risk assessment
  - This study: the value of generative AI in processing complex disclosure
- Literature on value of language models in extracting information
  - Prior studies: measuring political risk/ climate risk/ climate change exposure...
  - This study measures disclosure information overload

# Research design

- Data
  - Two narrative disclosures: MD&As in annual reports, earnings conference call
  - All US non-financial public firms from fiscal years 2009-2020
  - $\rightarrow$  8,699 MD&As and 40,362 conference calls
  - Random  $20\% \rightarrow 1,790$  MD&As by 339 firms and 8,537 cc by 360 firms
  - Other data:
    - CRSP/TAQ/Compustat/IBES/Thomson Reuters 13-F filings
- GPT-3.5-Turbo API
- Prompt:
  - summarize the input text using only the information included in the text and to not restrict the length of the summary

# Empirical results

- How effective are the summaries?
  - Length, sentiment, and readability (fog index; plain English measure)

| Levels:            |       |        |           |        |        |             |           |            |
|--------------------|-------|--------|-----------|--------|--------|-------------|-----------|------------|
|                    |       | R      | aw Docume | ent    | Sumn   | narized Doc | ument     |            |
|                    | N     | Mean   | Median    | Std    | Mean   | Median      | Std       | Diff.      |
|                    | (1)   | (2)    | (3)       | (4)    | (5)    | (6)         | (7)       | (5) - (2)  |
| Length             | 1,790 | 17,901 | 14,254    | 13,151 | 3,779  | 3,433       | 1,882     | -14,122*** |
| Sentiment          | 1,790 | -0.360 | -0.371    | 0.202  | -0.366 | -0.438      | 0.316     | -0.006     |
| Fog                | 1,790 | 10.025 | 9.960     | 1.591  | 10.175 | 10.130      | 0.936     | 0.150***   |
| Plain_Eng          | 1,790 | 0.289  | 0.286     | 0.039  | 0.290  | 0.290       | 0.011     | 0.000      |
| Changes:           |       |        |           |        |        |             |           |            |
|                    |       |        |           |        |        | Pe          | rcentiles |            |
|                    | N     | Me     | ean       | Std    | p25    | ;           | p50       | p75        |
| $\Delta$ Length    | 1,790 | -14,   | .122      | 11,788 | -16,7  | 29 -        | 10,462    | -7,093     |
| $\Delta Sentiment$ | 1,790 | -0.0   | 006       | 0.188  | -0.13  | 32          | -0.039    | 0.110      |
| ΔFog               | 1,790 | 0.1    | 150       | 1.144  | -0.60  | 00          | 0.190     | 0.920      |
| ∆Plain_Eng         | 1,790 | 0.0    | 000       | 0.036  | -0.02  | .0          | 0.004     | 0.026      |

• whether the summaries capture the sentiment of the original document in a more definitive (precise) way

| Panel A. MD&A    | Sample                     |        |           |        |        |              |       |            |
|------------------|----------------------------|--------|-----------|--------|--------|--------------|-------|------------|
| Subsample 1: Set | ntiment <sup>Raw</sup> >   | Median |           |        |        |              |       |            |
|                  |                            | R      | aw Docume | nt     | Sumn   | narized Docu | ıment |            |
|                  | N                          | Mean   | Median    | Std    | Mean   | Median       | Std   | Diff.      |
|                  | (1)                        | (2)    | (3)       | (4)    | (5)    | (6)          | (7)   | (5) - (2)  |
| Length           | 897                        | 13,997 | 12,445    | 7,493  | 3,637  | 3,419        | 1,602 | -10,360*** |
| Sentiment        | 897                        | -0.205 | -0.240    | 0.147  | -0.182 | -0.276       | 0.322 | 0.024***   |
| Fog              | 897                        | 9.690  | 9.540     | 1.591  | 10.310 | 10.310       | 0.914 | 0.620***   |
| Plain_Eng        | 897                        | 0.284  | 0.282     | 0.039  | 0.289  | 0.289        | 0.011 | 0.005***   |
| Subsample 2: Set | ntiment <sup>Raw</sup> < 1 | Median |           |        |        |              |       |            |
|                  |                            | R      | aw Docume | nt     | Sumn   | narized Docu | ıment |            |
|                  | N                          | Mean   | Median    | Std    | Mean   | Median       | Std   | Diff.      |
|                  | (1)                        | (2)    | (3)       | (4)    | (5)    | (6)          | (7)   | (5) - (2)  |
| Length           | 893                        | 21,821 | 17,066    | 16,117 | 3,922  | 3,444        | 2,118 | -17,899*** |
| Sentiment        | 893                        | -0.515 | -0.499    | 0.110  | -0.551 | -0.564       | 0.168 | -0.036***  |
| Fog              | 893                        | 10.362 | 10.190    | 1.518  | 10.040 | 10.010       | 0.939 | -0.322***  |
| Plain_Eng        | 893                        | 0.294  | 0.290     | 0.038  | 0.290  | 0.291        | 0.011 | -0.004***  |

- Summarization appears to amplify textual sentiment.
- Summarized documents become slightly less readable

• Whether GPT summaries are indeed more informative compared to the originals

$$Abn\_Ret_{[0,1]it} = \beta Sentiment_{it}^j + \gamma \mathbf{X}_{it} + \delta_t + \theta_i + \varepsilon_{it}$$

| Panel A. MD&A S          | ample                  |         |         |         |          |            |            |          |
|--------------------------|------------------------|---------|---------|---------|----------|------------|------------|----------|
| Dependent Variable       | $e = Abn\_Ret_{[0,1]}$ |         |         |         |          |            |            |          |
|                          |                        | Raw Do  | cuments |         | 5        | Summarized | l Document | s        |
|                          | Fu                     | all     | Pos     | Neg     | Fu       | ıll        | Pos        | Neg      |
|                          | (1)                    | (2)     | (3)     | (4)     | (5)      | (6)        | (7)        | (8)      |
| Sentiment <sup>Raw</sup> | -0.008                 | 0.001   | 0.005   | -0.028  |          |            |            |          |
|                          | (0.008)                | (0.012) | (0.017) | (0.020) |          |            |            |          |
| Sentiment <sup>Sum</sup> |                        |         |         |         | 0.025*** | 0.051***   | 0.027***   | 0.099*** |
|                          |                        |         |         |         | (0.004)  | (0.009)    | (0.006)    | (0.011)  |
| Controls                 | Yes                    | Yes     | Yes     | Yes     | Yes      | Yes        | Yes        | Yes      |
| Time FE                  | Yes                    | Yes     | Yes     | Yes     | Yes      | Yes        | Yes        | Yes      |
| Firm FE                  | No                     | Yes     | No      | No      | No       | Yes        | No         | No       |
| Industry FE              | Yes                    | No      | Yes     | Yes     | Yes      | No         | Yes        | Yes      |
| Cluster                  | Ind                    | Ind     | Ind     | Ind     | Ind      | Ind        | Ind        | Ind      |
| N                        | 1,790                  | 1,790   | 897     | 893     | 1,790    | 1,790      | 897        | 893      |
| Adjusted R <sup>2</sup>  | -0.009                 | 0.041   | -0.027  | 0.001   | 0.017    | 0.098      | 0.001      | 0.121    |

•  $\rightarrow$  a flip side: quantify the degree of redundant

### Measuring disclosure bloat

• *Bloat* is the difference between the length of the original document and that of its summary scaled by the length of the original

$$Bloat_{it} = \gamma \mathbf{X}_{it} + \delta_t + \theta + \varepsilon_{it}$$

### • Determinants of disclosure bloat

- Bloat is associated with the financial circumstances of a firm in intuitive ways, which helps to establish its validity.
- managers are more likely to release bloated disclosures when their firm performs worse

| Dependent Variable = |           | Bloa     |
|----------------------|-----------|----------|
| Sample =             | MD        | )&A      |
|                      | (1)       | (2)      |
| Log_ME               | -0.012*** | -0.004   |
|                      | (0.001)   | (0.004)  |
| Log_BE_ME            | -0.005*   | -0.000   |
|                      | (0.003)   | (0.003)  |
| N_Analyst            | 0.000     | -0.000   |
|                      | (0.000)   | (0.000)  |
| Inst_Own             | -0.008**  | -0.001   |
|                      | (0.003)   | (0.005)  |
| Earn_Vol             | 0.026***  | -0.005   |
|                      | (0.009)   | (0.014)  |
| ROA                  | -0.036*   | -0.056** |
|                      | (0.021)   | (0.026)  |
| Loss                 | 0.008*    | 0.002    |
|                      | (0.004)   | (0.004)  |
| Sentiment            | -0.073*** | -0.026*  |
|                      | (0.010)   | (0.014)  |
| Fog                  | -0.001    | 0.002    |
|                      | (0.002)   | (0.002)  |

### • Consequence of Bloat

• Disclosure bloat hinders effective information transfer between companies and information users.

Info 
$$Friction_{it} = \beta Bloat_{it} + \gamma \mathbf{X}_{it} + \delta_t + \theta + \varepsilon_{it}$$

|                         | probability of | informed tra | ding     |          | post-filing | g volatility |
|-------------------------|----------------|--------------|----------|----------|-------------|--------------|
| Panel A. MD&A           | Sample         |              |          |          |             |              |
| Dep Var =               | P              | IN           | Abn⊥     | Spread   | Post_Vol    |              |
| -                       | (1)            | (2)          | (3)      | (4)      | (5)         | (6)          |
| Bloat                   | 0.099***       | 0.062***     | 0.494*** | 0.544**  | 0.027***    | 0.037***     |
|                         | (0.014)        | (0.015)      | (0.125)  | (0.214)  | (0.007)     | (0.007)      |
| Controls                | Yes            | Yes          | Yes      | Yes      | Yes         | Yes          |
| Time FE                 | Yes            | Yes          | Yes      | Yes      | Yes         | Yes          |
| Firm FE                 | No             | Yes          | No       | Yes      | No          | Yes          |
| Industry FE             | Yes            | No           | Yes      | No       | Yes         | No           |
| Avg. Dep.               | 0.009          | 0.009        | 0.043    | 0.043    | 0.018       | 0.018        |
| Cluster                 | Industry       | Industry     | Industry | Industry | Industry    | Industry     |
| N                       | 1,790          | 1,790        | 1,790    | 1,790    | 1,790       | 1,790        |
| Adjusted R <sup>2</sup> | 0.146          | 0.452        | 0.076    | 0.310    | 0.476       | 0.569        |

| Panel B. Confen         | erence Calls Sample PIN Abn_Spread Post_Vol |          |          |          |          |          |  |
|-------------------------|---------------------------------------------|----------|----------|----------|----------|----------|--|
| Dep Var =               | P                                           | IN       | Abn_≤    | Spread   | Post     | Post_Vol |  |
|                         | (1)                                         | (2)      | (3)      | (4)      | (5)      | (6)      |  |
| Bloat                   | 0.034***                                    | 0.037*** | 0.172**  | 0.226*** | 0.008*** | 0.007*** |  |
|                         | (0.007)                                     | (0.005)  | (0.068)  | (0.052)  | (0.003)  | (0.001)  |  |
| Controls                | Yes                                         | Yes      | Yes      | Yes      | Yes      | Yes      |  |
| Time FE                 | Yes                                         | Yes      | Yes      | Yes      | Yes      | Yes      |  |
| Firm FE                 | No                                          | Yes      | No       | Yes      | No       | Yes      |  |
| Industry FE             | Yes                                         | No       | Yes      | No       | Yes      | No       |  |
| Avg. Dep.               | 0.023                                       | 0.023    | 0.279    | 0.279    | 0.021    | 0.021    |  |
| Cluster                 | Industry                                    | Industry | Industry | Industry | Industry | Industry |  |
| N                       | 8,537                                       | 8,537    | 8,537    | 8,537    | 8,537    | 8,537    |  |
| Adjusted R <sup>2</sup> | 0.284                                       | 0.477    | 0.174    | 0.368    | 0.393    | 0.498    |  |

### Conclusion

- The summary-based sentiment better explains stock market reactions to disclosed information than the original's sentiment
- They construct a novel and easy-to-implement measure of the degree of "bloat" in corporate disclosures
- Bloated disclosures are associated with higher price efficiency and higher information asymmetry, thus implying negative capital market consequences.

# From transcripts to insights: Uncovering corporate risks using generative AI

Alex G. Kim, Maximilian Muhn, Valeri V. Nikolaev

# Research question

• How generative AI tools (ChatGPT) help investors uncover political-, climate-, and AI-related corporate risk?

# Why interesting

- Corporations face multifaceted risks that extend far beyond traditional financial metrics
  - Global political instability/ climate uncertainty/ rapid technological change...
  - → long-term growth and stakeholder value
- Generative language model:
  - Have the general knowledge go beyond the context of a given text
  - Synthesize the info into coherent, understandable narratives
- This paper fill the gap between generative AI and risk assessment by examining the potential of LLMs

### Contribution

- Literature on LLM applications
  - Prior studies use LLM for other purposes e.g., forecast, measure complexity...
    - (see Bernard et al., 2023; Lopez-Lira and Tang, 2023; Jha et al., 2023; Eisfeldt et al., 2023; Kim et al., 2023; Chen et al., 2023)
  - This study shows that AI tools are effective at extracting risk categories
- Literature on measuring firm-level risk exposure using disclosures
  - Prior literature: topic-based bigram dictionaries...
  - This study adopt AI-based technology to analyze risks
- Literature on the value of general AI
  - Prior studies focus on the text
  - This study shows LLMs leverage their general knowledge to derive insights

# Research design

- Data
  - Earning conference call transcripts
- Prompt
  - Summary: instruct GPT to focus solely on the document contents and avoid making judgments (minimum general knowledge)
  - Assessment: instructs GPT to generate an assessment of a given risk, which is not limited to the transcript. (include general knowledge)

$$RiskSum_{it} = \frac{\sum_{l=1}^{K_{it}} len(\mathbf{S}(c_{it}^{l}))}{len(c_{it})}$$
• Political risk
$$RiskAssess_{it} = \frac{\sum_{l=1}^{K_{it}} len(\mathbf{A}(c_{it}^{l}))}{len(c_{it})}$$
• AI risk

- Climate risk

# An example

#### **B1. Political Risk Summary**

The company is subject to political and regulatory risks and uncertainties in Europe and North America. The recent government auction of HS1 in the U.K. is mentioned as an example.

#### **B2.** Political Risk Assessment

The firm is subject to political and regulatory risks and uncertainties in Europe and North America. The focus on deficit reduction in these regions may lead to an increased flow of government disposals and potentially PFI (Private Finance Initiative) opportunities. The recent government auction of HS1 in the U.K. is mentioned as an example. Additionally, the flow of non-core disposals by corporate and financial institutions is continuing, as evidenced by the firm's recent investment in Eversholt, which was purchased from HSBC. These political and regulatory factors could impact the firm's operations and investment opportunities in these regions.

# Empirical results

• Capital market consequences – political risk as an example

$$Volatility_{it+1} = \beta Risk_{it} + \gamma \mathbf{X}_{it} + \delta_x + \varepsilon_{it},$$

| Panel A. Industry and   | d Time Fixed Effects |                    |                     |            |            |
|-------------------------|----------------------|--------------------|---------------------|------------|------------|
| Dep Var = Implied Vo    | olatility            |                    |                     |            |            |
|                         | (1)                  | (2)                | (3)                 | (4)        | (5)        |
| PRiskSum                | 0.888***             |                    | 0.857***            |            | 0.160      |
|                         | (4.50)               |                    | (4.37)              |            | (0.73)     |
| PRiskAssess             |                      | 0.777***           |                     | 0.757***   | 0.676***   |
|                         |                      | (5.08)             |                     | (4.97)     | (3.72)     |
| PRiskBigram             |                      |                    | 0.015               | 0.014      | 0.014      |
|                         |                      |                    | (1.54)              | (1.43)     | (1.40)     |
| Controls                | Yes                  | Yes                | Yes                 | Yes        | Yes        |
| Fixed Effects           | Time & Ind           | Time & Ind         | Time & Ind          | Time & Ind | Time & Ind |
| N                       | 35003                | 35003              | 35003               | 35003      | 35003      |
| Adjusted R <sup>2</sup> | 0.477                | 0.477              | 0.477               | 0.477      | 0.477      |
| Dep Var = Abnormal      | Volatility           |                    |                     |            |            |
|                         | (1)                  | (2)                | (3)                 | (4)        | (5)        |
| PRiskSum                | 1.576***             |                    | 1.574***            |            | -1.031***  |
|                         | (6.55)               |                    | (6.54)              |            | (-2.96)    |
| PRiskAssess             |                      | 1.987***           |                     | 1.995***   | 2.523***   |
|                         |                      | (11.42)            |                     | (11.44)    | (10.00)    |
| PRiskBigram             |                      |                    | 0.001               | -0.006     | -0.004     |
|                         |                      |                    | (0.07)              | (-0.48)    | (-0.34)    |
| Controls                | Yes                  | Yes                | Yes                 | Yes        | Yes        |
| Fixed Effects           | Time & Ind           | Time & Ind         | Time & Ind          | Time & Ind | Time & Ind |
| N                       | 39276                | 39276              | 39276               | 39276      | 39276      |
| Adjusted R <sup>2</sup> | 0.353 Chat(          | GPT in Rissace and | Accoundia53Research | n 0.355    | 0.355      |

- Capital market consequences Out-of-sample analysis
  - Not attributing to GPT seeing the underlying data during its training phase
  - 2022 March 2023

|                         | Implied \ | Volatility | Abnormal Volatility |          |
|-------------------------|-----------|------------|---------------------|----------|
|                         | (1)       | (2)        | (3)                 | (4)      |
| PRiskSum                | 1.716***  |            | 0.430               |          |
|                         | (5.04)    |            | (1.09)              |          |
| PRiskAssess             |           | 1.246***   |                     | 0.941*** |
|                         |           | (5.12)     |                     | (3.44)   |
| Controls                | Yes       | Yes        | Yes                 | Yes      |
| Time FE                 | Yes       | Yes        | Yes                 | Yes      |
| Industry FE             | Yes       | Yes        | Yes                 | Yes      |
| N                       | 9923      | 9923       | 9246                | 9246     |
| Adjusted R <sup>2</sup> | 0.423     | 0.423      | 0.115               | 0.117    |

D. .. -1 D Climate Classes Dieles

- Firm decisions investment decisions
  - Higher risk exposure → harder to finance capital investments

$$Investment_{it} = \beta Risk_{it} + \gamma \mathbf{X}_{it} + \delta + \varepsilon$$

| Dep Var                 |          |           | Investment |           |           |
|-------------------------|----------|-----------|------------|-----------|-----------|
| -                       | (1)      | (2)       | (3)        | (4)       | (5)       |
| PRiskSum                | -0.792** |           | -0.792**   |           | 0.317     |
|                         | (-2.08)  |           | (-2.06)    |           | (0.58)    |
| PRiskAssess             |          | -0.918*** |            | -0.922*** | -1.081*** |
|                         |          | (-3.33)   |            | (-3.32)   | (-2.72)   |
| PRiskBigram             |          |           | -0.000     | 0.003     | 0.002     |
|                         |          |           | (-0.01)    | (0.13)    | (0.11)    |
| Controls                | Yes      | Yes       | Yes        | Yes       | Yes       |
| Time FE                 | Yes      | Yes       | Yes        | Yes       | Yes       |
| Ind FE                  | Yes      | Yes       | Yes        | Yes       | Yes       |
| N                       | 35615    | 35615     | 35615      | 35615     | 35615     |
| Adjusted R <sup>2</sup> | 0.279    | 0.280     | 0.279      | 0.280     | 0.280     |

### • Firm decisions – responses to mitigate risk exposures

• Lobby/ green patents/ AI patents

| Panel A. Political R    | lisk   |         |              |        |           |
|-------------------------|--------|---------|--------------|--------|-----------|
| Dep Var                 |        | 1 (\$   | Lobby Amount | > 0)   |           |
| _                       | (1)    | (2)     | (3)          | (4)    | (5)       |
| PRiskSum                | 0.057  |         | 0.142        |        | -1.258*** |
|                         | (0.18) |         | (0.46)       |        | (-4.19)   |
| PRiskAssess             |        | 0.489** |              | 0.437* | 1.079***  |
|                         |        | (2.04)  |              | (1.84) | (4.21)    |
| PRiskBigram             |        |         | 0.041**      | 0.037* | 0.039*    |
|                         |        |         | (2.04)       | (1.83) | (1.94)    |
| Controls                | Yes    | Yes     | Yes          | Yes    | Yes       |
| Time FE                 | Yes    | Yes     | Yes          | Yes    | Yes       |
| Ind FE                  | Yes    | Yes     | Yes          | Yes    | Yes       |
| N                       | 39937  | 39937   | 39937        | 39937  | 39937     |
| Adjusted R <sup>2</sup> | 0.191  | 0.191   | 0.191        | 0.191  | 0.192     |

### • Relative importance of different types of risk over time

 $Implied\_Volatility_{it} = \beta_{1t} PRiskAssess_{it} + \beta_{2t} CRiskAssess_{it} + \beta_{3t} AIRiskAssess_{it} + \gamma_t \mathbf{X}_{it} + \delta_q + \delta_s + \varepsilon_{it}$ 

| Panel B. Reg | ressions with Th | ree Risk Mea | asures Toget | her    |        |        |        |
|--------------|------------------|--------------|--------------|--------|--------|--------|--------|
|              | <u>'</u>         | PRisk        |              | CRisk/ | Assess | AIRisk | Assess |
|              |                  | Coeff        | t-stat       | Coeff  | t-stat | Coeff  | t-stat |
| Start        | End              | (1)          | (2)          | (3)    | (4)    | (5)    | (6)    |
| 2018Q1       | 2018Q4           | 0.448        | 2.04         | -0.414 | -1.24  | 0.328  | 0.82   |
| 2018Q2       | 2019Q1           | 0.395        | 1.80         | -0.072 | -0.21  | 0.290  | 0.68   |
| 2018Q3       | 2019Q2           | 0.525        | 2.49         | -0.075 | -0.22  | -0.077 | -0.18  |
| 2018Q4       | 2019Q3           | 0.385        | 1.73         | 0.292  | 0.82   | -0.200 | -0.48  |
| 2019Q1       | 2019Q4           | 0.446        | 1.99         | 0.233  | 0.65   | -0.200 | -0.47  |
| 2019Q2       | 2020Q1           | 0.640        | 2.63         | 1.572  | 4.11   | -0.947 | -2.00  |
| 2019Q3       | 2020Q2           | 0.597        | 2.22         | 2.331  | 5.78   | -1.540 | -3.22  |
| 2019Q4       | 2020Q3           | 0.430        | 1.54         | 2.357  | 5.89   | -1.192 | -2.31  |
| 2020Q1       | 2020Q4           | 0.343        | 1.18         | 2.111  | 5.24   | -1.067 | -2.08  |
| 2020Q2       | 2021Q1           | 0.569        | 2.02         | 1.350  | 3.40   | -0.306 | -0.64  |
| 2020Q3       | 2021Q2           | 0.577        | 2.20         | 0.634  | 1.62   | 0.410  | 0.96   |
| 2020Q4       | 2021Q3           | 0.686        | 2.77         | 0.115  | 0.33   | 0.233  | 0.58   |
| 2021Q1       | 2021Q4           | 0.672        | 2.69         | 0.022  | 0.06   | 0.294  | 0.75   |
| 2021Q2       | 2022Q1           | 0.415        | 1.73         | 0.165  | 0.50   | 0.607  | 1.74   |
| 2021Q3       | 2022Q2           | 0.500        | 1.99         | 0.632  | 1.88   | 0.908  | 2.51   |
| 2021Q4       | 2022Q3           | 0.633        | 2.36         | 1.327  | 3.73   | 0.923  | 2.49   |
| 2022Q1       | 2022Q4           | 0.719        | 2.57         | 1.502  | 4.08   | 1.047  | 2.76   |
| 2022Q2       | 2023Q1           | 0.864        | 2.94         | 1.669  | 3.95   | 0.713  | 2.99   |

### • Equity market pricing

| Dep Var                     |         | Return  |         |
|-----------------------------|---------|---------|---------|
|                             | (1)     | (2)     | (3)     |
| r <sub>0,1</sub>            | -0.009  | -0.001  | -0.010  |
|                             | (-0.67) | (-0.67) | (-0.72) |
| r <sub>2,12</sub>           | 0.002   | 0.002   | 0.002   |
|                             | (0.47)  | (0.49)  | (0.33)  |
| log(ME)                     | -0.000  | -0.000  | -0.000  |
|                             | (-0.34) | (-0.33) | (-0.32) |
| log(BE/ME)                  | -0.001  | -0.001  | -0.001  |
|                             | (-0.54) | (-0.56) | (-0.44) |
| Profitability               | 0.001   | 0.001   | 0.001   |
|                             | (0.54)  | (0.60)  | (0.62)  |
| Investment                  | -0.006  | -0.008  | -0.005  |
|                             | (-0.65) | (-0.80) | (-0.55) |
| PRiskAssess <sup>ann</sup>  | 0.077   |         |         |
|                             | (1.36)  |         |         |
| CRiskAssess <sup>ann</sup>  |         | 0.211*  |         |
|                             |         | (1.98)  |         |
| AIRiskAssess <sup>ann</sup> |         |         | 0.317*  |
|                             |         |         | (1.72)  |
| Adjusted R <sup>2</sup>     | 0.054   | 0.054   | 0.055   |

Panel B. Single Sorts

| Sorts On =      | Fama and French (2015) Five-Factor Alphas |                            |                             |
|-----------------|-------------------------------------------|----------------------------|-----------------------------|
|                 | PRiskAssess <sup>ann</sup>                | CRiskAssess <sup>ann</sup> | ĀĪRiskAssess <sup>ann</sup> |
|                 | (1)                                       | (2)                        | (3)                         |
| Low             | -0.06                                     | -0.14                      | -0.11                       |
| 2               | -0.05                                     | -0.06                      | 0.23                        |
| 3               | 0.25                                      | 0.08                       | 0.05                        |
| 4               | 0.30                                      | 0.21                       | 0.16                        |
| High            | 0.38                                      | 0.42                       | 0.42                        |
| High – Low      | 0.44                                      | 0.56*                      | 0.53**                      |
| <i>t</i> -value | (1.51)                                    | (1.90)                     | (2.31)                      |

### Conclusion

- This paper evaluate whether recent advances in AI can help investors assess critical aspects of corporate risks.
- They use GPT 3.5 Turbo to develop and validate three proxies for firm-level exposure to political, climate, and AI-related risks.

# Summary

