

Outline

- 1. Introduction
- 2. Multibiometric system
- 3. Fusion
- 4. Processing sequence

1-Introduction

 Multimodal biometrics systems consolidate the evidence presented by multiple biometric sources and typically provide better recognition performance compared to systems based on a single biometric modality.

 Multi-biometrics systems provide anti-spoofing measures by making it difficult for an intruder to spoof multiple biometric traits simultaneously.

- 2. Acquisition sequence
- 3. Fusion level
- 4. Fusion methodology

The advantage of Multimodal Biometric

Multiple biometric sources enhance matching performance.

Reducing failure to enroll rate.

• Difficult to spoof multiple traits simultaneously.

2-Multibiometric system

- Multi sensors
- Multiple representations of biometric features
- Multiple matchers
- Multiple instances
- Multiple samples
- Multiple traits

2.a Multi-algorithm systems

 The same biometric data is processed using multiple algorithms. For example, a texture-based algorithm and a minutiae-based algorithm can operate on the same fingerprint image in order to extract diverse feature sets

- No new sensors → cost-effective
- But may be time-consuming

Multi-algorithm systems: example

ROC curves

2.b Multi-instance systems

Multiple instances of the same body trait

acquisition of all ten fingers in three steps.

2.c Multi-sample systems

 Single sensor may be used to acquire multiple samples

2.d Multimodal systems

- Multimodal systems combine the evidence presented by different body traits for establishing identity
- The cost of deploying multimodal biometric systems is substantially high

Concept diagram of a whole-hand scanner that can simultaneously acquire palmprint, fingerprints from all five fingers of a hand, and hand-shape

a mobile phone that can acquire multiple modalities like fingerprint, face, and voice

- (1) Fusion at the **feature extraction** level:
 - 1. The data obtained from each sensor is used to compute a feature vector.
 - 2. Concatenate the two vectors into a single new vector.
 - 3. Feature reduction techniques may be employed.

- (2) Fusion at the **matching score** level:
 - Each system provides a matching score indicating the proximity of the feature vector with the template vector.
 - These scores can be combined to assert the veracity of the claimed identity.

- (3) Fusion at the **decision** level:
 - Each sensor can capture multiple biometric data and the resulting feature vectors individually classified into the two classes accept or reject.
 - A majority vote scheme can be used to make the final decision.

- Fusion in the context of biometrics can take the following forms :
 - (1) Single biometric multiple representation.
 - (2) Single biometric multiple matchers.
 - (3) Multiple biometric fusion.

- (1) Single biometric multiple representation.
 - This type of fusion involves using multiple representations on a single biometric indicator.
 - Typically, each representation has its own classifier.

- (2) Single biometric multiple matchers.
 - It is also possible to incorporate multiple matching strategies in the matching module of a biometric system and combine the scores generated by these strategies.

- (3) Multiple biometric fusion.
 - By integrating matching scores obtained from multiple biometric sources.
 - These include majority voting, sum and product rules, k-NN classifiers, SVMs, decision trees, Bayesian methods, etc.

- (4) Others
 - 1. Store multiple templates in database.
 - Example: A fingerprint biometric system may store multiple templates of a users fingerprint (same finger) in its database. When a fingerprint impression is presented to the system for verification, it is compared against each of the templates, and the matching score generated by these multiple matchings are integrated.

- (4) Others
 - 2. A system may store a single template of a users finger, but acquire multiple impressions of the finger during verification.
 - 3. Another possibility would be to acquire and use impressions of multiple fingers for every user.

Multibiometric system examples

- 50 users
- Multimodal Biometrics : fingerprint , face , hand geometry
- Fusion: Sum rule

Dependencies between the design choices in a multibiometric system

Multibiome-	Type of information fused				Acquisition		Processing	
tric sources					architecture		architecture	
	Raw	Features	Scores	Decisions	Serial	Parallel	Serial	Parallel
	data							
Multiple	\checkmark	√	√	√	\checkmark	\checkmark	\checkmark	\checkmark
sensors								
Multiple	×	√	√	\checkmark	×	\checkmark	\checkmark	\checkmark
representa-								
tions								
Multiple	×	×	\checkmark	\checkmark	×	\checkmark	\checkmark	\checkmark
matchers								
Multiple	×	√	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
instances								
Multiple	\checkmark	√	√	\checkmark	\checkmark	×	\checkmark	√
samples								
Multiple	×	√	√	√	√	√	√	√
traits								

4- Processing sequence

- Acquired sequentially but processed simultaneously
 - Cascade mode
 - Parallel mode

Cascade mode

 It enhances user convenience while reducing the average processing time since a decision can be made without having to acquire all the biometric traits.

Fingerprint + Face + Hand Geometry

Parallel mode

Thank you very much