

**UDLMINF 2020 - 21** 

# Ubiquitous & Embedded Systems

#### Team 1 Danillo Lange, Jeongyun Lee, Ronnel Mathew

Github: https://github.com/jy-977/UBQ-DanilloLange: https://github.com/roxdanJeongyunLee: https://github.com/jy-977RonnelMathew:

https://github.com/ron7858





#### **PRESENTATION INDEX**













# Follow Up





Slave (Arduino - Data Receiver) I2C Connection Master (Raspberry Pi) PCF8574

Raspberry + Arduino interaction

Raspberry+ LCD screen



# Follow Up





PCF8574 connection

# **SCRUM SPRINT**







# 4th Sprint Details

#### 01. User Stories

Operator requires information of the temperature and humidity

- ✓ Requirement to make a graphical representation of the obtained temperature and humidity on the LCD screen.
- → Data log and Screen representation

Operator requires information of the current tank container level in real time and it must be shown in a led bar present in the controller

- ✓ Requirement to work with the PCF 8754 to turn on LEDs on an LED bar to represent the level of the tank.
- → Ultrasonic <-> LED bar representation

Ф

W

W

# 4th Sprint Scrum managing

#### (\*) Scrum Sprint (\(\mathbf{L}\)

| Sprint | Date           | Task                                                     | PIC          | Effort Point | status      |
|--------|----------------|----------------------------------------------------------|--------------|--------------|-------------|
| 1      |                | Acquire basic knowledge of the components and protoboard | All          | 3            | Done        |
| 1      |                | Prepare the IDE - Arduino & ESP-01                       | All          | 4            | Done        |
| 1      |                | Prepare the IDE - R.Pi + ChibiOS                         | All          | 3            | Done        |
| 2      | 8 Oct - 22 Oct | Prepare the IDE - R.Pi + ChibiOS                         | All          | 3            | Done        |
| 2      | 8 Oct - 22 Oct | Define the checking/test process                         | Danillo      | 5            | Done        |
| 2      | 8 Oct - 22 Oct | ESP-01 <-> Arduino interaction                           | Danillo      | 3            | Done        |
| 2      | 8 Oct - 22 Oct | Data Producer 1 development                              | Yoon         | 4            | Done        |
| 2      | 8 Oct - 22 Oct | Data Producer 2 developmen                               | Ron          | 4            | Done        |
| 2      | 8 Oct - 22 Oct | Presentation                                             | Yoon         | 2            | Done        |
| 3      | 22 Oct - 5 Nov | How to -> LCD Screen                                     | Ron          | 2            | Done        |
| 3      | 22 Oct - 5 Nov | How to -> I2C protocol                                   | Yoon,Danillo | 8            | Done        |
| 3      | 22 Oct - 5 Nov | How to -> PCF 8754                                       | Ron          | 4            | Done        |
| 3      | 22 Oct - 5 Nov | R.Pi <-> Arduino interaction                             | Yoon,Danillo | 9            | Done        |
| 3      | 22 Oct - 5 Nov | Presentation                                             | Danillo      | 2            | Done        |
| 4      | 5 Nov - 19 Nov | Data log and Screen representation                       | Yoon         | 3            | Done        |
| 4      | 5 Nov - 19 Nov | Ultrasonic <-> Led bar representation                    | Yoon         | 5            | In progress |
| 4      | 5 Nov - 19 Nov | Presentation                                             | Ron          | 2            | Done        |



0 Product Backlog Items





## Jeongyun Lee

## Datalog and Screen representation

The code is present in the GitHub repo and here the wiring connection can be seen as follows:







The objective is to make a graphical representation of the obtained temperature and humidity on an LCD screen being a relation of value x time (24h).

After every 5 iterations (seconds) the screen switches by displaying the temperature and the humidity.

The final result is obtained in the following figure:





#### Final Result

- All values for the graph are saved on an array of coordinates so we see the graphics for 24h
- The y-axis represents the temperature in Celsius
- The x-axis represents the time in hours





#### Code part for the temperature and for humidity (entire code is on GitHub):

Drawing structures of graphic:

```
void drawStructure()
 // info
 lcdPrintf(92, 47, "T:", 0);
 lcdPrintf(92, 38, "H:", 0);
 lcdPrintf(92, 27, "D:", 0);
 lcdPrintf(10, 11, "%u", 0);
 lcdPrintf(118, 47, "C", 0);
 lcdPrintf(118, 38, "%", 0);
 //mainframe
 drawLine(17, 13, 17, 52, 0);
 drawLine(18, 13, 87, 13, 0);
 drawLine(14, 52, 17, 52, 0);
 drawLine(14, 42, 17, 42, 0);
 drawLine(14, 32, 17, 32, 0);
 drawLine(14, 22, 17, 22, 0);
 drawLine(30, 12, 30, 10, 0);
 drawLine(59, 12, 59, 10, 0);
 drawLine(87, 12, 87, 10, 0);
 drawBox(90, 49, 125, 29, 0);
 lcdPrintf(30, 8, "%u", 8);
 lcdPrintf(59, 8, "%u", 16);
 lcdPrintf(87, 8, "%u", 24);
 lcdPrintf(101, 8, "h", 0);
```

Drawing line:

```
void drawGraphLineHum(int value)
 if (value > 76)
   value = 76:
 // title
 lcdPrintf(25, 61, "Humidity", 0);
 lcdPrintf(4, 61, "%", 0);
 lcdPrintf(7, 22, "%u", 19);
 lcdPrintf(1, 32, "%u", 38);
 lcdPrintf(1, 42, "%u", 57);
 lcdPrintf(1, 52, "%u", 76);
 lcdPrintf(105, 47, "%u", temperature);
 lcdPrintf(105, 38, "%u", humidity);
 lcdPrintf(105, 27, "%u", aux counter);
 int i = 0;
 for (i = 0; i < aux counter; i++)
   drawLine(stackLineHum[i][0],
            stackLineHum[i][1],
            stackLineHum[i][2],
            stackLineHum[i][3], 0); // draw all previous lines
 drawLine(stackLineHum[aux counter - 1][2],
          stackLineHum[aux counter - 1][3],
          stackLineHum[aux counter - 1][2] + 1,
          14 + roundNo(value / 2), 0); // draw current line
```



#### Danillo / Ronnel

### **O2** Ultrasonic LED bar representation

The PCF is connected to the Raspberrry via the SDA and SCL lines (along with a resistor).

The wiring connection can be seen as shown in the figure:





#### Code (ChibiOS)

#### Initialize the PCF

We send a 0x00 to the PCF to activate.

```
i2cled_init(pcf_address, 0x00);
```

Next, we need to send 2 information to the PCF:

- 1. The own address + 0 (to indicate it is a write operation)
- 2. The data that will inform which pins will light up the LEDs

a. The address we are using

b. The data we are sending, its 8 bits

```
0b11110110
```

c. Send both information in a array of size 2

```
request[0] = pcf_address_write;
request[1] = data;

msg_t status = i2cMasterTransmit(
   &I2C0, device_address, request, 2,
   NULL, 0);
```

The whole source code can be seen on GitHub



#### Final Result

The objective was to work with the PCF 8754 to turn on LEDs on an LED bar to represent the level of container and it receives the distance from the sensor and makes the calculation to display the correct amount of LEDs to switch on





# Danillo Lange

#### 03 Final Assembly

Now, we will move on to the final part of our project which is assembling all the components from the previous sprints and developing the project

 Power considerations: The Data Producers 1 and 2 are connected to the shield of power supply





- 2. Preparation: We have developed and built the project using the codes in the following GitHub folders:
- i. Data Producers: <a href="https://github.com/jy-977/UBQ-/tree/main/code">https://github.com/jy-977/UBQ-/tree/main/code</a>
- ii. Arduino (Data Receiver): <a href="https://github.com/jy-977/UBQ-/tree/main/code/Receiver ARDUINO">https://github.com/jy-977/UBQ-/tree/main/code/Receiver ARDUINO</a>
- iii. ChibiOS: <a href="https://github.com/jy-977/UBQ-/tree/main/code/ChibiOS i2c Raspberry">https://github.com/jy-977/UBQ-/tree/main/code/ChibiOS i2c Raspberry</a>





Data Consumer



#### 3. Wiring Connection

#### Data Producer 1 schema:



#### Data Producer 2 schema:





This is the wiring connection for the Data Receiver schema wherein, the Arduino is the Slave and Raspberry acts as the Master





The built Data Receiver using 2 breadboards:



# 4th Sprint

**Documentation related to this** sprint (Sprint 4) on GitHub

#### **Sprint goal:**

The goal of this sprint was to finally implement the last layer of the project which is the graphical representation to the final users. Design an easy to read screen with information is also in the priorities, for the LED segment bar we are considering it to reflect the actual state

of measurements made by the distance sensor

#### **Problems faced:**

- ·- Difficulties in programming in ChibiOS, sometimes the program would just ignore all the thread sleeps
- ·- Hard to figure it out how to communicate with the PCF8574

|  | Datalog _Screen_representation_documentation.pdf     | Adding documentation and updated co    |
|--|------------------------------------------------------|----------------------------------------|
|  | Final_Assembly.pdf                                   | Adding documentation and updated co    |
|  | I2C_Arduino_documentation.pdf                        | Added raspberry code                   |
|  | LCD_ChibiOS_Raspberry.pdf                            | Added doc and code about the LCD usin  |
|  | PCF8574_LEDBAR.pdf                                   | Added i2c and PCF Documentation        |
|  | Sprint2_Delivery.pdf                                 | Added Arduino and ESP-01 (Receiver) co |
|  | Sprint3_Delivery.pdf                                 | Updated sprint 3 delivery              |
|  | Ultrasonic_Led _bar_representation_documentation.pdf | Adding documentation and updated co    |



UDL MINF 20-21



Thankyou for listening

