Statistical Physics for Phase Transition and Crit. Phenomena Theoretical homework 4

Arya Prasetya, Fabio Steyer November 20, 2023

Faculty Comments

1 Critical exponent of the van der Waals problem

Solution a part i

Grade:

We start by assuming U(T, V), and therefore

$$dU = (\partial_V U)_T dV + (\partial_T U)_V dT.$$

Moreover for S(U, V), the total differential is then

$$dS = \frac{1}{T}dU + \frac{p}{T}dV$$

Substituting dU, we obtain

$$dS = \left[\frac{1}{T} \left(\partial_V U \right)_T + \frac{p}{T} \right] dV + \frac{1}{T} \left(\partial_T U \right)_V dT.$$

By Schwarz Theorem we have that

$$\partial_U \partial_V S = \partial_V \partial_U S.$$

Consequently this leads the the equality

$$\left\{ \partial_T \left[\frac{1}{T} \left(\partial_V U \right)_T + \frac{p}{T} \right] \right\}_V = \left\{ \partial_V \left[\frac{1}{T} \left(\partial_T U \right)_V \right] \right\}_T.$$

From the above, we know the right hand side vanishes (as V is held constant). We just have the left hand side to solve, which leads to

$$-\frac{1}{T^2} \left(\partial_V U \right)_T + \left[\partial_T \left(\frac{p}{T} \right) \right]_V = 0.$$

Hence we get an expression for $(\partial_V U)_T$,

$$(\partial_V U)_T = T^2 \left[\partial_T \left(\frac{p}{T} \right) \right]_V.$$

Integration of the $(\partial_V U)_T$ is then

$$U(T,V) - U_0(T,V_0) = \int_{V_0}^{V} T^2 \left[\partial_T \left(\frac{p}{T} \right) \right]_V dV$$

We know that,

$$\frac{p}{T} = \frac{Nk_B}{V - Nb} - \frac{a}{T} \frac{N^2}{V^2} \Rightarrow \partial_T \left(\frac{p}{T}\right) = \frac{a}{T^2} \frac{N^2}{V^2}.$$

In here the initial state will be an ideal gas, in which case $V_0 \to \infty$. Thus we shall compute

$$U(T,V) - U_{ideal}(T) = \int_{-\infty}^{V} T^2 \frac{a}{T^2} \frac{N^2}{V^2} dV = -\frac{aN^2}{V} \Big|_{-\infty}^{V} = -\frac{aN^2}{V}.$$

Hence we have shown,

$$u(T, V) = u_{ideal}(T) - \frac{a}{v}$$
 where $v = V/N$.

Therefore $\alpha = 0$.

Solution a part ii	Grade:
The heat capacity c from above T_c is given by	Faculty Comments
$c = \partial_T u(T, V)$	
In which case is only T -dependent in the ideal part and hence we have,	
$c = \frac{3}{2}k_B.$	
We also know that	
$c \propto t ^{-\alpha}$	I I

Solution b part i	Grade:
We have $V = V_L + V_G$ and $N = N_L + N_G$, hence	Faculty Comments
$v = \frac{V_L}{N} + \frac{V_G}{N} = \frac{V_L}{N_L} \frac{N_L}{N} + \frac{V_G}{N_G} \frac{N_G}{N}.$	1 1 1 1 1
Note that, $N_G = N - N_L$ thus we get,	1
$v = v_L \frac{N_L}{N} + v_G \frac{N - N_L}{N} = v_L \theta + v_G (1 - \theta)$	1 1 1 1 1
where $\theta = \frac{N_L}{N}$.	,

Solution b part ii	Grade:
We know $\Psi = \frac{v}{v_c} - 1$, then from the equation in part ii we have,	Faculty Comments
$(\Psi + 1)v_c = \theta(\Psi_L + 1)v_c + (1 - \theta)(\Psi_G + 1)v_c$	
Rearranging the above we get	
$rac{\Psi-\Psi_G}{\Psi_L-\Psi_G}= heta.$	
Along the critical isochore $v = v_c$ and hence $\Psi = 0$. Therefore	
$ heta = rac{\Psi_G}{\Psi_G - \Psi_L}.$	

Solution b part ii	i	Grade:
We have		Faculty Comments
	$u = u_L \theta + u_G (1 - \theta)$	