CSC 4350 – Computer Networks

Fall 2024 Semester

Lecture 4 – Delay, Loss, Throughput, Protocols, Attacks

Note

- Material used in this lecture is heavily borrowed from Kurose & Ross'
 "Computer Networking: A Top Down Approach, 8th Edition"
- Also: assuming no prior knowledge of networks

Packet-Switched Networks – Delay, Loss, and Throughput

- Delays Types
 - Processing Delay time required to examine the packet's header and determine where to direct the packet
 - Can also include other factors
 - Time needed to check for bit-level errors in the packet in transmission from upstream node router A
 - After processing, router directs the packet to the queue that precedes the link to router B
 - Queuing Delay
 - Packet waits to be transmitted onto the link
 - Length of delay will depend on number of earlier-arriving packets that are queued and waiting for transmission

Nodal Delay at Router A – Figure 1 16

Delay, Loss, and Throughput

Delays

- Transmission Delay
 - Assume: packets transmitted in first-come-first-served manner
 - Denote length of packets by L bits and denote the transmission rate of the link from router A to router B by R bits/sec
 - Transmission delay is L/R
 - Amount of time required to transmit all of the packet's links into the link
- Propagation Delay
 - Time required to propagate from the beginning of the link to router B
 - Bit moves at the speed of the link
 - Speeds are dependent on the medium of the link
 - Distance between two routers divided by the propagation speed d/s
 - WANs equates to milliseconds

Transmission v. Propagation Delay

- Transmission delay amount of time required for the router to push out the packet
 - Function of the packet's length and the transmission rate of the link
 - Distance between two routers isn't factored in
- Propagation delay time it takes a bit to propagate one bit from one router to the next
 - Function of distance between the two routers; has nothing to do with packet's length or transmission rate
- Caravan Analogy

Queuing Delay and Packet Loss

- Queuing delay can vary from packet to packet
 - 10 packets arrive to an empty queue
 - 1st no delay
 - 10th significant delay
- Need statistical measures for queuing delay
 - Average queuing delay
 - Variance of queuing delay
 - Probability that the queuing delay exceeds some specified value
- When is queuing delay large vs. insignificant?
 - Depends on the rate at which traffic arrives to the queue
 - R transmission rate
 - a average rate at which packets arrive at the queue
 - All packets consist of L bits
 - Average rate: La bits/sec
 - Queue is large, holding (essentially) an infinite number of bits
 - Traffic intensity La/R
 - >1 average rate at which bits arrive at queue exceeds transmission rate
 - Need to remember, therefore, that the system's traffic intensity is <=1
- Actual arrival time is random

Dependence of Average Queuing Delay on Traffic Intensity – Figure 1.18

Figure 1.18

- As traffic intensity approaches 1, average queuing delay increases rapidly
- Small percentage increase in the intensity will result in a much larger percentage-wise increase in delay

Packet Loss

- A queue preceding a link has finite capacity
 - Capacity does depend on the router design and cost
- Packet delays do not approach infinity as the traffic intensity approaches 1
- Packet can arrive to find a full queue; no place to store in the router it's dropped
- Fraction of lost packets increases as traffic intensity increases

End-To-End Delay

Assumptions

- N-1 routers between the source host and destination host
- Network is uncongested
- Processing delay at each router at the source is dproc
- Transmission rate out of each router and out of the source host: R bits/sec
- Propagation on each link is dprop
- Nodal delays accumulate to give an end-to-end delay of:

$$d_{\text{end-end}} = N (d_{\text{proc}} + d_{\text{trans}} + d_{\text{prop}})$$

Discussion of traceroute

Throughput in Computer Networks

- Instantaneous throughput at any instant of time is the rate in which Host B is receiving the file/information
- If the file consists of F bits and the transfer takes T seconds for Host B to receive all bits, then the average throughput is F/T bits/sec

Throughput for a File Transfer From Server To Client – Figure 1.19

Bottleneck Link

- Transmission rate: min{Rc, Rs} throughput
 - For 1.19 a, this would be the slower link between Rc and Rs
 - For 1.19 b, this would be the slowest of all links

End-To-End Throughput – Figure 1.20

h

Protocol Layers and Their Service Models

Layered Architecture – Fig. 1.21 – Airplane Trip

Ticket (purchase) Ticket (complain)

Baggage (check) Baggage (claim)

Gates (load) Gates (unload)

Runway takeoff Runway landing

Airplane routing Airplane routing

Airplane routing

Protocol Layers and Their Service Models

• Horizontal Layering of Airline Functionality - Figure 1.22

Protocol Layering

- To provide structure to the design of network protocols, network designers organize protocols and hardware/software to implement protocols in layers
- Each protocol belongs to one of the layers
- Interested in the services that a layer offers to the layer above, a.k.a. service model of a layer
- Each layer provides its service by
 - Performing certain actions within that layer
 - Using the services of the layer directly below it
- Protocol layer can be implemented in hardware, software, or combo
 - Application, transport software
 - Physical, data link layers handle communications over a certain link hardware
 - Network layer mix of hardware, software

Drawbacks

- One layer may duplicate lower-layer functionality
- Functionality at one layer may need information that is present in another layer
 - Timestamp value?
 - Violates goal of separation of layers

Five-Layer Internet Protocol Stack

- Application (highest)
- Transport
- Network
- Link
- Physical (lowest)

- Application Layer
 - Network applications and their application-layer protocols are located
 - Includes many protocols HTTP, SMTP
 - Distributed over multiple end systems
 - Application in one end system using the protocol to exchange packets of information with the application in another end system
 - Packet of information message
- Transport Layer
 - TCP or UDP
 - TCP connection-oriented
 - UDP connectionless-oriented
 - Transport layer packet segment

- Network Layer
 - Responsible for moving datagrams (network-layer packets) from one host to another
 - Transport-layer protocol in a source passes the transport-layer segment and a destination address
 - Provides the service of delivering segment to the transport layer in the destination
 - IP protocol defines the fields in the datagram as well as how the end systems and routers act on these fields
 - Only one protocol
 - Routing protocols that determine the routes that datagrams take between sources and destinations

Network Layer

- Moves network-layer packets datagrams from one host to another
- Transport layer protocol (TCP or UDP) host passes a transport-layer segment and destination address to the network layer
- Provides the service of delivering the segment to the transport layer in the destination host
- Also includes the IP protocol defines fields in the datagram
- Contains routing protocols

Link Layer

- Moves packet from one node to the next
- Network layer passes datagram down to the link layer, which delivers the datagram to the next node along the route
- Link layer protocols: Ethernet, WiFi, DOCSIS protocol

- Physical Layer
 - Move the individual bits within the frame from one node to the next.
 - Protocols in this layer are link dependent and depend on the transmission medium of the link
 - Twisted-pair copper wire
 - Coaxial cable
 - Fiber

Encapsulation

- Routers and link-layer switches are both packet switches
 - Organize their networking hardware and software into layers
 - Do not necessarily implement all of the layers in the protocol stack
 - Usually only responsible for bottom layers

Encapsulation

- Sending host an application-layer message is passed to the transport layer
- Transport layer takes message and appends additional information to be used by the receiver-side transport layer
- Network layer adds network-layer header information, such as source and destination end system addresses creating a network-layer datagram
- Each layer packet has two types of fields
 - Header field
 - Payload field typically a packet from the layer above

Hosts, Routers, and Link-Layer Switches, Each with a Different Set of Layers – Figure 1.24

Networks Under Attack

- Malware via Internet
- Attack Servers and Network Infrastructure DoS Attacks
 - Vulnerability right sequence of packets can cause a system to crash
 - Bandwidth flooding prevents legitimate packets from reaching the server
 - Connection flooding attacker establishes a large number of half-open/fully-open TCP connections at the target host
 - Host can become so bogged down that it stops accepting legitimate connections

DDoS Attack

- Attacker controls multiple sources and has each source blast traffic at the target
- Use botnets with thousands of compromised hosts
- Difficult to detect/defend against
- Packet Sniffing via passive receiver that records a copy of every packet that flies by
- IP Spoofing
 - Need: end-point authentication determine with certainty if a message originates from where we think it does

End Chapter 1

- Homework See Canvas
- Next Time Chapter 2