1 Lista de exercícios: Sequências e Séries

1.1 Sequência e Limite de Sequência

- 1. Determine o termo geral da sequência.
 - a) 0, 2, 0, 2, 0, 2, ...
 - b) 0, 1, 2, 0, 1, 2, 0, 1, 2, ...
 - c) $0, \frac{3}{2}, \frac{2}{3}, \frac{5}{4}, \frac{4}{5}, \frac{7}{6}, \frac{6}{7}, \dots$
- 2. Calcule, caso exista, $\lim_{n\to+\infty} a_n$, sendo a_n igual a
 - a) $\frac{n^3+3n+1}{4n^3+2}$
 - b) $\sqrt{n+1} \sqrt{n}$
 - c) $\sum_{k=0}^{n} \left(\frac{1}{2}\right)^k$
 - d) $\sum_{k=0}^{n} t^k$, 0 < |t| < 1
 - e) $\left(1+\frac{2}{n}\right)^n$ (Lembrete: $\lim_{n\to+\infty} \left(1+\frac{1}{n}\right)^n=e$)
 - f) $(1 \frac{2}{n})^n$
 - g) $\int_1^n \frac{1}{x} dx$
 - h) $\int_1^n \frac{1}{x^{\alpha}} dx$, em que α é um real dado.
 - i) $\int_0^n e^{-sx} dx \ (s > 0)$
 - j) $\int_0^n \frac{1}{1+x^2} dx$
 - $k) \int_2^n \frac{1}{x^2 x} dx$
 - 1) $\frac{n+1}{\sqrt[3]{n^7+2n+1}}$
 - m) $\sin \frac{1}{n}$
 - n) $n \sin \frac{1}{n}$
 - o) $\frac{1}{n}\sin n$
 - p) $\cos n\pi$
 - q) $(-1)^n + \frac{(-1)^n}{n}$
 - r) $\int_0^n e^{-sx} \cos x dx \ (s > 0)$
 - s) $n\left[1-\frac{(n+1)^n}{en^n}\right]$
- 3. Calcule $\lim_{n\to+\infty} S_n$, em que $S_n = \sum_{k=1}^n \left(\frac{1}{k} \frac{1}{k+1}\right)$.
- 4. Calcule $\lim_{n\to+\infty} b_n$, sendo b_n igual a
 - a) $\frac{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}}{n}$
 - b) $\frac{2+\sqrt{2}+\sqrt[3]{2}+...+\sqrt[n]{2}}{n}$

1.2 Sequências Crescentes e Sequências Decrescentes

1. É convergente ou divergente? Justifique.

a)
$$S_n = \sum_{k=1}^n \frac{1}{k^3}$$

b)
$$S_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$$

c)
$$S_n = \sum_{k=0}^n \frac{1}{2^k}$$

d)
$$S_n = \sum_{k=1}^n \frac{1}{k!}$$

e)
$$S_n = \sum_{k=1}^n \frac{1}{k^2+1}$$

$$f) S_n = \sum_{k=1}^n e^{-k}$$

g)
$$S_n = \sum_{k=2}^2 \frac{1}{\ln k}$$
 (Sugestão: Verifique que $\ln k < k$, para $k \ge 2$)

h)
$$S_n = \sum_{k=2}^n \frac{1}{k \ln k}$$
 (Sugestão: Verifique que $\int_2^{+\infty} \frac{1}{x \ln x} dx = +\infty$.)

2 Séries Numéricas

1. Calcule a soma da série dada.

a)
$$\sum_{k=0}^{+\infty} \left(\frac{1}{2}\right)^k$$

b)
$$\sum_{k=2}^{+\infty} \left(\frac{1}{3}\right)^k$$

c)
$$\sum_{k=0}^{+\infty} e^{-k}$$

d)
$$\sum_{k=1}^{+\infty} \left[1 + (-1)^k \right]$$

e)
$$\sum_{k=0}^{+\infty} \frac{1}{(4k+1)(4k+5)}$$

f)
$$\sum_{k=1}^{+\infty} \frac{1}{k(k+1)(k+2)(k+3)}$$

g)
$$\sum_{k=1}^{+\infty} \frac{2k+1}{k^2(k+1)^2}$$

h)
$$\sum_{n=1}^{+\infty} n\alpha^n$$
, $0 < \alpha < 1$.

i)
$$\sum_{k=1}^{+\infty} \frac{1}{k(k+1)(k+2)...(k+p)}$$
, em que $p \ge 1$ é um natural dado.

j)
$$\sum_{k=0}^{+\infty} \frac{1}{(4k+1)(4k+3)}$$

k)
$$\sum_{k=1}^{+\infty} \frac{1}{k^2(k+1)(k+2)^2}$$