The peer performance of hedge funds

David Ardia* and Kris Boudt[†]

R/Finance 2012

Work in progress - Comments welcome

^{*}david.ardia@unifr.ch

[†]kris.boudt@econ.kuleuven.be, KU Leuven/Lessius, VU Univ Amsterdam

How to do performance analysis?

Introduction

❖ Relative performance ratios

- ❖ Research question
- Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

• Compute Sharpe ratio, Jensen's alpha, Treynor ratio, information ratio, modified Sharpe ratio, ... and interpret this $\hat{\alpha}_i$, in comparison with those of "peer" funds $\hat{\alpha}_j$ (j = 1, ..., n).

How to do performance analysis?

Introduction

Relative performance ratios

- Research question
- Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

- Compute Sharpe ratio, Jensen's alpha, Treynor ratio, information ratio, modified Sharpe ratio, . . . and interpret this $\hat{\alpha}_i$, in comparison with those of "peer" funds $\hat{\alpha}_j$ $(j=1,\ldots,n)$.
- (Statistically significant) differences can be because of luck. E.g. if $H_0: \alpha_i = \alpha_j$ for all n, and we test at a 5% significance level, we will still reject H_0 for 5%n funds.

How to do performance analysis?

Introduction

Relative performance ratios

- ❖ Research question
- Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

- Compute Sharpe ratio, Jensen's alpha, Treynor ratio, information ratio, modified Sharpe ratio, . . . and interpret this $\hat{\alpha}_i$, in comparison with those of "peer" funds $\hat{\alpha}_j$ $(j=1,\ldots,n)$.
- (Statistically significant) differences can be because of luck. E.g. if $H_0: \alpha_i = \alpha_j$ for all n, and we test at a 5% significance level, we will still reject H_0 for 5%n funds.
- Avoid this by estimating the population parameters:

$$\underline{\pi_i^0 = \frac{\sharp(\alpha_i = \alpha_j)}{n}} \qquad \underline{\pi_i^+ = \frac{\sharp(\alpha_i > \alpha_j)}{n}} \qquad \underline{\pi_i^- = \frac{\sharp(\alpha_i < \alpha_j)}{n}}$$

Equal performance ratio Outperformance ratio Underperformance ratio

Previous literature

Introduction

Relative performance ratios

- Research question
- Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

 Barras, Scaillet, Wermers (JF 2010) estimate the percentage of mutual funds that have a positive alpha (using data from 1974).

Panel A: Proportions of unskilled and skilled funds

Our question

Introduction

Relative performance ratios

Research question

❖ Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

- Main differences with BSW:
 - ✓ BSW compares fund returns with return of a single benchmark. We do pairwise comparisons.
 - √ Their tool answers the question: "How many funds outperform the benchmark?"

Our question

Introduction

 Relative performance ratios

❖ Research question

❖ Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

- Main differences with BSW:
 - ✓ BSW compares fund returns with return of a single benchmark. We do pairwise comparisons.
 - √ Their tool answers the question: "How many funds outperform the benchmark?"
 - ✓ Our tool answers:
 - Micro-level question: How well does a fund perform compared to others?
 - Macro-level question: How well does a fund strategy perform compared to others?

Introduction

Relative performance ratios

❖ Research question

Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

• Compute p-values two-sided test $H_0: \alpha_i = \alpha_j$ using studentized test statistic of Ledoit and Wolf (JEMF 2008)

Introduction

Relative performance ratios

Research question

Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

- Compute p-values two-sided test $H_0: \alpha_i = \alpha_j$ using studentized test statistic of Ledoit and Wolf (JEMF 2008)
- Use p-values to estimate π_i^0 following the procedure of Storey (JRS 2002)

Introduction

 Relative performance ratios

Research question

❖ Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

- Compute p-values two-sided test $H_0: \alpha_i = \alpha_j$ using studentized test statistic of Ledoit and Wolf (JEMF 2008)
- Use p-values to estimate π_i^0 following the procedure of Storey (JRS 2002)
- Attribution of $1-\pi_i^0$ to π_i^+ and π_i^-

Introduction

 Relative performance ratios

Research question

❖ Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

- Compute p-values two-sided test $H_0: \alpha_i = \alpha_j$ using studentized test statistic of Ledoit and Wolf (JEMF 2008)
- Use p-values to estimate π_i^0 following the procedure of Storey (JRS 2002)
- Attribution of $1 \pi_i^0$ to π_i^+ and π_i^-
- Computationally intensive on a universe of n funds: $(n^2-n)/2$ comparisons. R package CompStrat available from www.econ.kuleuven.be/kris.boudt/public uses SNOW to split the task among cores.

Outline

Introduction

- Relative performance ratios
- ❖ Research question

Outline

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

Outline

- 1. Introduce the estimator;
- 2. Simulation study and practical examples using the CompStrat package.
- This is still work in progress!

Introduction

Testing the equality of Sharpe ratios

- ❖ PerformanceAnalytics
- ❖ CompStrat
- ❖ Ledoit–Wolf

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to $\underline{\pi}_i^+$ and $\underline{\pi}_i^-$

Application

Conclusion

Appendix

Testing the equality of Sharpe ratios

Performance analysis in R

Introduction

Testing the equality of Sharpe ratios

❖ PerformanceAnalytics

- ❖ CompStrat
- ❖ Ledoit–Wolf

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to $\underline{\pi}_i^+$ and $\underline{\pi}_i^-$

Application

Conclusion

Appendix

- > library(PerformanceAnalytics)
- > data(managers)
- > round(SharpeRatio(managers[,1:6],FUN="StdDev"),3)

HAM1 HAM2 HAM3 HAM4 HAM5 HAM6

StdDev Sharpe: 0.434 0.385 0.341 0.207 0.089 0.464

- > library(CompStrat)
- > sharpeTesting(x=managers[,1],y=managers[,2])

Testing the equality of Sharpe ratios

```
Introduction
```

Testing the equality of Sharpe ratios

❖ PerformanceAnalytics

❖ CompStrat

❖ Ledoit–Wolf

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Testing the equality of Sharpe ratios

```
Introduction
```

Testing the equality of Sharpe ratios

❖ PerformanceAnalytics

❖ CompStrat

❖ Ledoit–Wolf

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Testing the equality of Sharpe ratios (Ledoit and Wolf, JEMF 2008)

Introduction

Testing the equality of Sharpe ratios

- PerformanceAnalytics
- ❖ CompStrat

❖ Ledoit–Wolf

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

Appendix

Studentized test-statistic:

$$\frac{\hat{\alpha}_i - \hat{\alpha}_j}{\widehat{\mathsf{SE}}(\hat{\alpha}_i - \hat{\alpha}_j)} \stackrel{a}{\sim} N(0, 1)$$

with $\widehat{SE}(\hat{\alpha}_i - \hat{\alpha}_j)$ a function of the covariance matrix of the mean and StdDev estimates.

In small samples: Bootstrap.

```
control = list(nBoot = 250, type = 2)
out <- sharpeTesting(x, y, control)</pre>
```

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

- Storey
- Pvalues in case of mixture
- ❖ Monte Carlo

Attribution of
$$1 - \hat{\pi}_i^0$$
 to $\underline{\pi}_i^+$ and $\underline{\pi}_i^-$

Application

Conclusion

Appendix

Estimation of π_i^0

Storey's Procedure for $\hat{\pi}^0$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Storey

- Pvalues in case of mixture
- Monte Carlo

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

- Compute two-sided p-values under the null of equality of the Sharpe ratios
 - ✓ If H_0 is true: p-values are uniformly distributed between 0 and 1.
 - \checkmark If H_0 is false: p-values are close to zero

Monte Carlo

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

- Storey
- Pvalues in case of mixture
- ❖ Monte Carlo

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

- Suppose universe of 1000 funds:
 - 1. Group 1: 200 funds with mean monthly return of 0%, $\sigma=1\%$
 - 2. Group 2: 700 funds with mean monthly return of 0.5%, $\sigma=1\%$
 - 3. Group 3: 100 funds with mean monthly return of 1%, $\sigma=1\%$

Simulated pvalues

out = sharpeScreening(rets)

Generate data

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

- Storey
- Pvalues in case of mixture
- ❖ Monte Carlo

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

```
# Main function for testing equality of Sharpe ratios on a univers
```

Output is \$n \times n\$ matrix of pvalues (among others)

Storey's Procedure for $\hat{\pi}^0$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

- Storey
- Pvalues in case of mixture
- ❖ Monte Carlo

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

- For λ sufficiently large (e.g. 0.7): all p-values exceeding λ correspond to funds for which H0 is true. If n^0 such funds, we expect $(1-\lambda)n_i^0$ p-values exceeding λ .
- Hence the estimator:

$$\begin{array}{lcl} \hat{n}_i^0 & = & \frac{1}{1-\lambda} \sum_{j=1}^n (\text{p-values}_{\alpha_i = \alpha_j} > \lambda) \\ \\ \hat{\pi}_i^0 & = & \hat{n}_i^0/n \end{array}$$

Monte Carlo study: Setup

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

- Storey
- Pvalues in case of mixture

❖ Monte Carlo

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

Same universe as before:

- 1. 20% funds with mean monthly return of 0%;
- 2. 70% funds with mean monthly return of 0.5%;
- 3. 10% funds with mean monthly return of 1%.
- We consider different values for σ , T and n.

Monte Carlo study: Results

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

- Storey
- Pvalues in case of mixture

❖ Monte Carlo

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

No bias:

- ✓ If the 3 distributions are very distinct;
- \checkmark and/or if T is sufficiently large.
- Otherwise distributions of test statistics overlap, leading to upward bias in $\hat{\pi}_0$ in finite samples.
- Small impact of increasing n.

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1-\hat{\pi}_i^0$$
 to π_i^+ and π_i^-

- Estimators
- ❖ Monte Carlo

Application

Conclusion

Attribution of
$$1-\hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Estimators

❖ Monte Carlo

Application

Conclusion

Appendix

• Next step is to attribute $n - \hat{n}^0$ to n_i^+ and n_i^-

$$n_i^+ = \sharp(\alpha_i > \alpha_j) = \sharp(\hat{\alpha}_i > \hat{\alpha}_j) - \sharp(\hat{\alpha}_i > \hat{\alpha}_j | \alpha_i = \alpha_j)$$
$$-\sharp(\hat{\alpha}_i > \hat{\alpha}_j | \alpha_i < \alpha_j) + \sharp(\hat{\alpha}_i < \hat{\alpha}_j | \alpha_i > \alpha_j)$$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Estimators

❖ Monte Carlo

Application

Conclusion

Appendix

• Next step is to attribute $n - \hat{n}^0$ to n_i^+ and n_i^-

$$n_{i}^{+} = \sharp(\alpha_{i} > \alpha_{j}) = \sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j}) - \sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j} | \alpha_{i} = \alpha_{j})$$
$$-\sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j} | \alpha_{i} < \alpha_{j}) + \sharp(\hat{\alpha}_{i} < \hat{\alpha}_{j} | \alpha_{i} > \alpha_{j})$$
$$\approx \sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j}) - \hat{n}_{i}^{0}/2$$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

♦ Estimators

Monte Carlo

Application

Conclusion

Appendix

• Next step is to attribute $n - \hat{n}^0$ to n_i^+ and n_i^-

$$n_i^+ = \sharp(\alpha_i > \alpha_j) = \sharp(\hat{\alpha}_i > \hat{\alpha}_j) - \sharp(\hat{\alpha}_i > \hat{\alpha}_j | \alpha_i = \alpha_j)$$
$$-\sharp(\hat{\alpha}_i > \hat{\alpha}_j | \alpha_i < \alpha_j) + \sharp(\hat{\alpha}_i < \hat{\alpha}_j | \alpha_i > \alpha_j)$$
$$\approx \sharp(\hat{\alpha}_i > \hat{\alpha}_j) - \hat{n}_i^0/2$$

We therefore propose the following estimators:

$$\hat{\pi}_{i}^{+} = \frac{\sharp (\hat{\alpha}_{i} > \hat{\alpha}_{j}) - \hat{n}_{i}^{0}/2}{n} \quad \hat{\pi}_{i}^{-} = \frac{\sharp (\hat{\alpha}_{i} < \hat{\alpha}_{j}) - \hat{n}_{i}^{0}/2}{n}$$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

♦ Estimators

❖ Monte Carlo

Application

Conclusion

Appendix

• Next step is to attribute $n - \hat{n}^0$ to n_i^+ and n_i^-

$$n_{i}^{+} = \sharp(\alpha_{i} > \alpha_{j}) = \sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j}) - \sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j} | \alpha_{i} = \alpha_{j})$$
$$-\sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j} | \alpha_{i} < \alpha_{j}) + \sharp(\hat{\alpha}_{i} < \hat{\alpha}_{j} | \alpha_{i} > \alpha_{j})$$
$$\approx \sharp(\hat{\alpha}_{i} > \hat{\alpha}_{j}) - \hat{n}_{i}^{0}/2$$

• We therefore propose the following estimators:

$$\hat{\pi}_{i}^{+} = \frac{\sharp (\hat{\alpha}_{i} > \hat{\alpha}_{j}) - \hat{n}_{i}^{0}/2}{n} \quad \hat{\pi}_{i}^{-} = \frac{\sharp (\hat{\alpha}_{i} < \hat{\alpha}_{j}) - \hat{n}_{i}^{0}/2}{n}$$

- If $\hat{\pi}_i^+ < 0$, $\hat{\pi}_i^+ = 0$, $\hat{\pi}_i^- = 1 \hat{\pi}_i^0$.
- If $\hat{\pi}_i^- < 0$, $\hat{\pi}_i^- = 0$, $\hat{\pi}_+^- = 1 \hat{\pi}_i^0$.
- Note additivity: $\hat{\pi}_i^0 + \hat{\pi}_i^+ + \hat{\pi}_i^- = 1$.

Monte Carlo study on precision $\hat{\pi}_i^+$, $\hat{\pi}_i^-$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to $\underline{\pi}_i^+$ and $\underline{\pi}_i^-$

Estimators

❖ Monte Carlo

Application

Conclusion

- No bias:
 - √ If the 3 distributions are very distinct;
 - \checkmark and/or if T is sufficiently large.
- Otherwise distributions of test statistics overlap, leading to upward bias in $\hat{\pi}_0$ and downward bias in $\hat{\pi}_i^+$ and $\hat{\pi}_i^-$ in finite samples.
- Small impact of increasing n.

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

- Data
- Relative performance charts
- ❖ As a screening tool

Conclusion

Appendix

Application

Data

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Data

- Relative performance charts
- ❖ As a screening tool

Conclusion

- Hedge Fund Research database, August 2005-August 2011 (six years).
- We focus our analysis on four strategies: Equity Hedge,
 Event-Driven, Relative Value and Macro.
- After filters: 987 US funds.

Data

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

❖ Data

- Relative performance charts
- ❖ As a screening tool

Conclusion

- Hedge Fund Research database, August 2005-August 2011 (six years).
- We focus our analysis on four strategies: Equity Hedge,
 Event-Driven, Relative Value and Macro.
- After filters: 987 US funds.
- Applications:
 - Descriptive: Under, equal and outperformance of a fund (style) compared to other funds (styles);
 - 2. Screening.

Relative performance charts

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

- Data
- Relative performance charts
- ❖ As a screening tool

Conclusion

- At the hedge fund level: Under, equal and outperformance of the funds belonging to style k compared to funds belonging to another style
 - \checkmark $\hat{\pi}^0$: percentage of pairs of funds in the two styles for which the risk adjusted performance is the same
 - \checkmark $\hat{\pi}^+$: percentage of pairs of funds in the two styles for which the risk adjusted performance of the fund in style k is higher
 - \checkmark $\hat{\pi}^-$: percentage of pairs of funds in the two styles for which the risk adjusted performance of the fund in style k is lower

As a screening tool

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to $\underline{\pi_i^+}$ and $\underline{\pi_i^-}$

Application

- Data
- Relative performance charts

❖ As a screening tool

Conclusion

Appendix

- Select funds based on their individual Sharpe ratio and the Sharpe ratio adjusted for outperformance: $(\hat{\alpha}_i) \times \hat{\pi}_i$
- Test. Split up the sample into two sub-periods: August 2005 -August 2008 and September 2008 - August 2011. Regress Sharpe ratio September 2008 - August 2011 on fund characteristics previous period:

$$\widetilde{SR}_{i} = \theta_{0} + \theta_{1}ED_{i} + \theta_{2}MA_{i} + \theta_{3}RV_{i} + \theta_{4}SR_{i} + \theta_{5}(\hat{\pi}_{i}^{+} \times SR_{i})$$

$$+ \theta_{6}\log AUM_{i} + \theta_{7}\Delta\log AUM_{i} + \theta_{8}AGE_{i} + \theta_{9}MF_{i}$$

$$+ \theta_{10}PF_{i} + \theta_{11}HWM_{i} + \theta_{12}LEV_{i} + \varepsilon_{i}.$$

• Only SR_i and $(\hat{\pi}_i^+ \times SR_i)$ are statistically significant at a 95% confidence level. Positive impact.

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to $\underline{\pi_i^+}$ and $\underline{\pi_i^-}$

Application

Conclusion

- Conclusion
- ❖ References

Appendix

Conclusion

Conclusion

				- 1					
	ln [·]	tr	\cap	М	ш	\sim	tı	റ	n
4		u	v	u	u	U	u	v	

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to $\underline{\pi}_i^+$ and $\underline{\pi}_i^-$

Application

Conclusion

Conclusion

❖ References

Appendix

- We study the relative performance of hedge funds, using a novel tool that characterizes for each fund the peer performance in 3 numbers: $\hat{\pi}_i^0$, $\hat{\pi}_i^+$ and $\hat{\pi}_i^-$.
- Simulation study: relatively accurate, especially for large T
- Application: Relative performance plots, Screening.
- Package CompStrat:
 - ✓ Pair of funds: sharpeTesting;
 - ✓ Universe of funds: sharpeScreening, alphaScreening.
 - √ Available from:

```
www.econ.kuleuven.be/kris.boudt/public
```

Work in progress – comments welcome.

References

			- 1			٠.		
ın	tr	\sim	М	11	~	tı	\sim	n
ш	ıu	u	u	u	u	u	u	

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

Conclusion

❖ References

- Ardia, D. and Boudt K. 2012. The peer performance of hedge funds. Work in progress. Draft available from SSRN.
- Barras, L., Scaillet, O., Wermers, R., 2010. False discoveries in mutual fund performance: Measuring luck in estimated alphas. Journal of Finance 65, 179–216.
- Ledoit, O., Wolf, M., 2008. Robust performance hypothesis testing with the Sharpe ratio. Journal of Empirical Finance 15, 850–859.
- Storey, J., 2002. A direct approach to false discovery rates.
 Journal of the Royal Statistical Society B 64, 479–498.

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to $\underline{\pi_i^+}$ and $\underline{\pi_i^-}$

Application

Conclusion

Appendix

- ❖ Estimation
- ❖ Size properties
- $\mbox{\ensuremath{\mbox{$\bullet$}}}\ \mbox{Distribution}\ \hat{\pi}_{\,i}^{\,0}$
- $\mbox{Monte Carlo } \hat{\pi}_i^0$
- lacktriangle Monte Carlo $\hat{\pi}_i^+$

How to estimate π_i^0 , π_i^+ and π_i^- ?

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

❖ Estimation

- ❖ Size properties
- \bullet Distribution $\hat{\pi}_i^0$
- ullet Monte Carlo $\hat{\pi}_i^0$
- ♦ Monte Carlo $\hat{\pi}_{i}^{+}$

• Perform pairwise test of equality $H_0: \alpha_i = \alpha_j$ and then compute the percentage number of observations for which $\hat{\alpha}_i \approx \hat{\alpha}_j, \, \hat{\alpha}_i > \hat{\alpha}_j$ and $\hat{\alpha}_i < \hat{\alpha}_j$

How to estimate π_i^0 , π_i^+ and π_i^- ?

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

Estimation

- ❖ Size properties
- \bullet Distribution $\hat{\pi}_{i}^{0}$
- ullet Monte Carlo $\hat{\pi}_i^0$
- ♦ Monte Carlo $\hat{\pi}_{i}^{+}$

• Perform pairwise test of equality $H_0: \alpha_i = \alpha_j$ and then compute the percentage number of observations for which $\hat{\alpha}_i \approx \hat{\alpha}_j, \, \hat{\alpha}_i > \hat{\alpha}_j$ and $\hat{\alpha}_i < \hat{\alpha}_j$

$$\begin{cases} > 0 & \qquad \checkmark \text{ if } \alpha_i > \alpha_j \\ \text{false positive, otherwise} \end{cases}$$

$$\hat{\alpha}_i - \hat{\alpha}_j = \begin{cases} \end{cases}$$

How to estimate π_i^0 , π_i^+ and π_i^- ?

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of
$$1 - \hat{\pi}_i^0$$
 to π_i^+ and π_i^-

Application

Conclusion

Appendix

Estimation

- Size properties
- \bullet Distribution $\hat{\pi}_{i}^{0}$
- ♦ Monte Carlo $\hat{\pi}_i^0$
- ♦ Monte Carlo $\hat{\pi}_{i}^{+}$

• Perform pairwise test of equality $H_0: \alpha_i = \alpha_j$ and then compute the percentage number of observations for which $\hat{\alpha}_i \approx \hat{\alpha}_j$, $\hat{\alpha}_i > \hat{\alpha}_j$ and $\hat{\alpha}_i < \hat{\alpha}_j$

$$\hat{\alpha}_i - \hat{\alpha}_j = \begin{cases} > 0 & \checkmark \text{ if } \alpha_i > \alpha_j \\ \text{false positive, otherwise} \end{cases}$$

$$\begin{cases} \sim \text{ if } \alpha_i = \alpha_j \\ \text{false negative if } \alpha_i > \alpha_j \\ \text{false positive if } \alpha_i < \alpha_j \end{cases}$$

$$\begin{cases} < 0 & \checkmark \text{ if } \alpha_i < \alpha_j \\ \text{false negative, otherwise} \end{cases}$$

Size properties for skewed t data. Function sharpeTesting.

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

Estimation

Size properties

- \bullet Distribution $\hat{\pi}_i^0$
- ullet Monte Carlo $\hat{\pi}_i^0$
- Monte Carlo $\hat{\pi}_i^+$

```
library(sn)
control asy = list( type = 1)
control bs = list( nBoot = 250, type = 2 )
T = 72
set.seed(1234)
M = 1000
pval asy = pval bs = matrix(NA, M, 1)
for (m in 1:M) {
  rets = matrix(rst(n = 2*T, shape=3, df=5), T, 2)
  tmp = sharpeTesting(x = rets[,1], y = rets[,2], control_asy)
  pval_asy[m] = tmp$pval
  tmp = sharpeTesting(x = rets[,1], y = rets[,2], control_bs)
  pval bs[m] = tmp$pval
```

Size properties for skewed t data (T=72)

```
Introduction
```

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

Estimation

Size properties

- lacktriangle Distribution $\hat{\pi}_i^0$
- Monte Carlo $\hat{\pi}_i^0$
- Monte Carlo $\hat{\pi}_i^+$

```
> mean(pval_asy<0.01) ; mean(pval_bs<0.01)
[1] 0.038
[1] 0.022
> mean(pval_asy<0.05) ; mean(pval_bs<0.05)
[1] 0.099
[1] 0.07
> mean(pval_asy<0.1) ; mean(pval_bs<0.1)
[1] 0.167
[1] 0.136</pre>
```

Size properties for skewed t data (T=240)

```
Introduction
```

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to $\underline{\pi_i^+}$ and $\underline{\pi_i^-}$

Application

Conclusion

Appendix

Estimation

Size properties

- ullet Distribution $\hat{\pi}_i^0$
- ullet Monte Carlo $\hat{\pi}_i^0$
- Monte Carlo $\hat{\pi}_i^+$

```
> mean(pval_asy<0.01) ; mean(pval_bs<0.01)
[1] 0.019
[1] 0.012
> mean(pval_asy<0.05) ; mean(pval_bs<0.05)
[1] 0.082
[1] 0.056
> mean(pval_asy<0.1) ; mean(pval_bs<0.1)
[1] 0.146
[1] 0.114</pre>
```

Simulated pvalues

```
Introduction
```

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

Estimation

❖ Size properties

- lacktriangle Distribution $\hat{\pi}_i^0$
- ullet Monte Carlo $\hat{\pi}_i^0$
- Monte Carlo $\hat{\pi}_{i}^{+}$

```
# Generate data
mix = list(p_neg = 0.2, mu_neg = 0, sd_neg = 1,
           p_zer = 0.7, mu_zer = 0.5 , sd_zer = 1,
           p pos = 0.1, mu pos = 1 , sd pos = 1)
T = 240 ; N = 1000 ;
N_neg = floor(mix$p_neg * N)
N_pos = floor(mix$p_pos * N)
N_zer = N - N_neg - N_pos
set.seed(1234)
rets_neg = mix$mu_neg + mix$sd_neg * matrix(rnorm(T * N_neg), T, N_
rets_zer = mix$mu_zer + mix$sd_zer * matrix(rnorm(T * N_zer), T, N_
rets_pos = mix$mu_pos + mix$sd_pos * matrix(rnorm(T * N_pos), T, N_
rets = cbind( rets_neg , rets_zer, rets_pos )
# Main function for testing equality of Sharpe ratios on a universe
# Output is $n \times n$ matrix of pvalues (among others)
out = sharpeScreening(rets)
```

Distribution $\hat{\pi}_i^0$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

- ❖ Estimation
- ❖ Size properties

• Distribution $\hat{\pi}_{i}^{0}$

- ullet Monte Carlo $\hat{\pi}_i^0$
- ♦ Monte Carlo $\hat{\pi}_{i}^{+}$

- Suppose no uncertainty in the p-values.
- If n_i^{λ} is the "true" number of funds with p-value $> \lambda$, this is like n draws from binomial with success rate n^{λ}/n and hence the estimated proportion:

$$\hat{\pi}_i^0 \sim N\left(\pi_i^0; \frac{1}{n^2(1-\lambda)^2} n \frac{n_i^{\lambda}}{n} \frac{n-n_i^{\lambda}}{n}\right),\,$$

for n large.

Results Monte Carlo Study $\hat{\pi}_i^0$

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to $\underline{\pi_i^+}$ and $\underline{\pi_i^-}$

Application

Conclusion

Appendix

- Estimation
- Size properties
- \bullet Distribution $\hat{\pi}_{i}^{0}$

lacktriangle Monte Carlo $\hat{\pi}_i^0$

♦ Monte Carlo $\hat{\pi}_{i}^{+}$

		$\sigma =$	$\sigma = 0.5\%$		= 1%	$\sigma = 2\%$			
	True Value	Bias	RMSE	Bias	RMSE	Bias	RMSE		
$T = 72, N = 500, \lambda = 0.7$									
$\mu = 0\%$	0.2	-0.002	0.080	0.009	0.075	0.239	0.349		
$\mu = 0.5\%$	0.7	-0.011	0.262	0.000	0.254	0.092	0.235		
$\mu = 1\%$	0.1	-0.004	0.042	0.022	0.066	0.257	0.372		

- If the 3 distributions are very distinct, no bias. RMSE is largest for group 2 were the true proportion is also the highest. Consistent with variance binomial distribution.
- The more overlap, the more $\hat{\pi}_0$ is upward biased in finite samples.

Sensitivity analysis $\hat{\pi}_i^0$ for $\sigma=2\%$ ($\lambda=0.7$)

Introduction

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

- Estimation
- Size properties
- \bullet Distribution $\hat{\pi}_{i}^{0}$

\clubsuit Monte Carlo $\hat{\pi}_{\dot{a}}^{0}$

♦ Monte Carlo π̂:

	True Value	Bias				RMSE			
$T\ (n_i = 500)$		36	72	108	240	36	72	108	240
$\mu = 0\%$	0.2	0.402	0.239	0.142	0.018	0.511	0.349	0.235	0.078
$\mu = 0.5\%$	0.7	0.132	0.092	0.054	0.009	0.264	0.235	0.222	0.249
$\mu = 1\%$	0.1	0.431	0.257	0.155	0.023	0.543	0.372	0.255	0.068
$n_i \ (T=72)$		50	100	500		50	100	500	
$\mu = 0\%$	0.2	0.225	0.231	0.239		0.36	0.350	0.349	
$\mu = 0.5\%$	0.7	0.064	0.073	0.092		0.244	0.237	0.235	
$\mu = 1\%$	0.1	0.243	0.253	0.257		0.379	0.375	0.543	

- Relatively large T is needed to kill the bias (using the asymptotic test).
- Small impact of increasing *n*.

$T = 72, N = 500, \lambda = 0.7$

lr	١t	ro	d	u	C	ti	0	n

Testing the equality of Sharpe ratios

Estimation of π_i^0

Attribution of $1 - \hat{\pi}_i^0$ to π_i^+ and π_i^-

Application

Conclusion

Appendix

- ❖ Estimation
- ❖ Size properties
- Distribution $\hat{\pi}_{i}^{0}$
- ♦ Monte Carlo $\hat{\pi}_{i}^{0}$
- ♦ Monte Carlo π̂;

		$\sigma =$	0.5%	$\sigma =$	1%	$\sigma=2\%$	
	Pop Value	Bias	RMSE	Bias	RMSE	Bias	RMSE
π_i^+							
$\mu = 0\%$	0	0.029	0.058	0.024	0.048	0.004	0.029
$\mu = 0.5\%$	0.2	0.012	0.242	0.006	0.238	-0.019	0.240
$\mu = 1\%$	0.9	0.003	0.037	-0.013	0.064	-0.179	0.297
π_i^-							
$\mu = 0\%$	0.8	0.002	0.070	-0.005	0.078	-0.164	0.297
$\mu = 0.5\%$	0.1	0.04	0.211	0.038	0.210	0.021	0.194
$\mu = 1\%$	0	0.014	0.028	0.006	0.014	0.002	0.017

• Overestimation $\hat{\pi}_i^0$ leads to underestimation of $\hat{\pi}_i^-$ and $\hat{\pi}_i^+$

Sensitivity analysis for $\sigma = 2\%$

$$(\lambda = 0.7, n_i = 500)$$

Introduction						
Testing the equality of						
Sharpe ratios						
Estimation of π_i^0						

Attribution of $1 - \hat{\pi}_i^0$ to $\underline{\pi}_i^+$ and $\underline{\pi}_i^-$

Application

Conclusion

- Estimation
- Size properties
- Distribution $\hat{\pi}_{i}^{0}$
- ullet Monte Carlo $\hat{\pi}_i^0$
- Monte Carlo $\hat{\pi}_i^+$

	True Value	Bias				RMSE			
π_i^+	T	36	72	108	240	36	72	108	240
$\mu = 0\%$	0	0.016	0.004	0.001	0.021	0.072	0.029	0.013	0.041
$\mu = 0.5\%$	0.2	-0.022	-0.019	-0.013	0.001	0.246	0.240	0.239	0.236
$\mu = 1\%$	0.9	-0.32	-0.179	-0.103	-0.013	0.446	0.297	0.203	0.064
π_i^-									
$\mu = 0\%$	0.8	-0.294	-0.164	-0.093	-0.010	0.427	0.297	0.211	0.088
$\mu = 0.5\%$	0.1	0.022	0.021	0.026	0.036	0.203	0.194	0.195	0.208
$\mu = 1\%$	0	0.007	0.002	0.000	0.006	0.043	0.017	0.004	0.014