_ezione 18

Serie di lazior

hotazione

Introduzione

se
$$f \in \mathcal{C}(-R,R)R > 0$$
 l $\exists \alpha : f(x) = \sum_{N=0}^{\infty} \alpha \times i$, allow volgons:

$$X = 0 \Rightarrow f(0) = Q$$

$$\Rightarrow F(x) = \frac{\alpha}{x} \frac{(\pi^{1})}{(0)} x$$

corhaiusione

nel cono generale $f \in C(x-R, x_0+R)$, $f(x) = \sum_{n=0}^{\infty} \alpha_n (x-x_0)$ alloca $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)$ Sè chiamata nerie di Caylor centrata in x_0 e associata ad f.

edrema di sviluppabilità in Serie di Tarlor

Pa+esi, six $F \in \mathcal{C}(X-R,X+R)$, esista M > 0: $|f^{(m)}(X)| \leq M \forall X \in (X-R,X+R)$

tesi Fè riluprobile in serie di Caylor centrata in X.

