Guía de Estudio Cálculo Multivariante orientado a Ciencia de Datos

Universidad $(agrega\ instituci\'on)$

26 de mayo – 18 de julio de 2025

${\bf \acute{I}ndice}$

1.	Descripción general del curso	2
2.	Calendario resumido por semana	2
3.	Detalle día por día	2
4.	Tareas y proyecto final	4
5 .	Criterios de evaluación	4
6.	Bibliografía	4

1. Descripción general del curso

- Duración: 8 semanas (26 de mayo al 18 de julio).
- Horario: Lunes, martes, miércoles y viernes. Cada sesión dura 2 h.
- Nivel: Estudiantes con cálculo intermedio y Python básico.
- Enfoque: Conceptos de cálculo multivariante aplicados a ciencia de datos mediante tareas y proyectos en Python.
- Referencias:
 - Deisenroth et al. Mathematics for Machine Learning.
 - Goodfellow et al. Deep Learning.
 - Bishop. Pattern Recognition and Machine Learning.

2. Calendario resumido por semana

Semana	Fechas	Temas principales
1	26–30 may	Introducción, derivadas parciales, gradiente, regla de la ca-
2	2–6 jun	dena, Jacobiano. Tarea 1 asignada. Hessiano, optimización sin restricciones, gradiente descendente, multiplicadores de Lagrange.
3	9–13 jun	Aplicaciones de optimización (regresión logística), backpropagation, lanzamiento de Tarea 2.
4	$16–20~\mathrm{jun}$	Integrales dobles y triples, coordenadas polares, cilíndricas y esféricas.
5	$23–27~\mathrm{jun}$	Probabilidad continua, Monte Carlo, aplicaciones de integración; entrega de Tarea 2 y lanzamiento del proyecto final.
6	30 jun–4 jul	Autodiferenciación, casos de estudio (finanzas, física), propuesta del proyecto final.
7	7–11 jul	Desarrollo de proyectos, ensayo de presentaciones, repaso global.
8	14–18 jul	Presentaciones y entrega del informe final; clausura del curso.

3. Detalle día por día

Semana 1: Introducción y Derivadas Parciales

Lun 26/05 Presentación del curso, repaso de cálculo de una variable, motivación del cálculo multivariable en ciencia de datos. Ejercicios diagnósticos y ejemplo en Python.

Mar 27/05 Definición y cálculo de derivadas parciales. Interpretación geométrica y ejemplo práctico con SymPy.

Mié 28/05 Gradiente y derivadas direccionales. Visualización en curvas de nivel con Matplotlib.

Vie 30/05 Regla de la cadena multivariable y Jacobiano. Ejemplo de transformación cartesianapolar.

Tarea 1: Derivadas parciales y gradiente. Entrega: 9 de junio.

Semana 2: Hessiano y Optimización

Mar 03/06 Gradiente descendente: teoría y demostración a mano.

 $Mié\ 04/06$ Laboratorio: regresión lineal desde cero con gradiente descendente.

Vie 06/06 Multiplicadores de Lagrange y optimización con restricciones.

Semana 3: Aplicaciones de Optimización

$\mathrm{Lun}\ 09/06$	Derivación del gradiente para regresión logística y discusión de la log-loss.
${ m Mar}~10/06$	Laboratorio: entrenamiento manual de regresión logística en Python.

Mié 11/06 Panorama de backpropagation en redes neuronales.

Vie 13/06 Cierre de optimización y transición a integración múltiple. Asignación de Tarea 2.

Semana 4: Integrales Dobles y Triples

$\mathrm{Lun}\ 16/06$	Integral doble sobre región rectangular; teorema de Fubini.
Mar 17/06	Cambio de orden de integración y regiones generales.

Mié 18/06 Coordenadas polares y Jacobiano. Ejemplos con simetría circular.

Vie 20/06 Integrales triples; coordenadas cilíndricas y esféricas.

Semana 5: Probabilidad y Aplicaciones de Integración

Lun 23/06	Integrales múltiples en probabilidades y valores esperados.
Mar 24/06	Métodos numéricos y Monte Carlo. Laboratorio de estimación de π .
$Mi\acute{e} 25/06$	Centro de masa y momento de inercia: ejemplos de ingeniería.
TT4 0-100	

Vie 27/06 Revisión de Tarea 2 y lanzamiento del proyecto final.

Semana 6: Tópicos Avanzados y Proyectos

$\operatorname{Lun}\ 30/06$	Autodiferenciación: PyTorch vs SymPy.
Mar 01/07	Caso de estudio en finanzas: optimización de portafolio.
$Mi\acute{e}~02/07$	Caso de estudio en física/ingeniería: optimización numérica de un diseño.
Vie~04/07	Presentación de propuestas de proyecto y laboratorio guiado.

Semana 7: Desarrollo de Proyectos

Lun 07/07	Laboratorio de proyectos: avance y mentoría.
Mar 08/07	Preparación de diapositivas y resolución de dudas.
$Mi\acute{e}~09/07$	Ensayo general de presentaciones y retroalimentación.
Vie 11/07	Repaso global y quiz final.

Semana 8: Presentaciones y Clausura

Lun 14/07	Presentaciones finales (Sesión 1).
Mar 15/07	Presentaciones finales (Sesión 2).
$Mi\acute{e}~16/07$	Presentaciones finales (Sesión 3) y entrega de
Vie 18/07	Clausura del curso y retroalimentación final.

informes.

4. Tareas y proyecto final

■ Tarea 1 (Derivadas y gradiente). Asignada: 30 may. Entrega: 9 jun.

■ Tarea 2 (Integración múltiple). Asignada: 13 jun. Entrega: 27 jun.

Proyecto final.

Propuesta: entrega 4 jul.
Presentaciones: 14–16 jul.
Informe final: 18 jul.

5. Criterios de evaluación

Actividad	Peso	Fecha
Tarea 1: Derivadas y gradiente	15%	9 jun
Tarea 2: Integración múltiple	20%	27 jun
Participación y laboratorio	15%	Continuo
Proyecto final (informe + presentación)	50%	18 jul

6. Bibliografía

Referencias

- [1] Deisenroth, M.P., Faisal, A.A. & Ong, C.S. *Mathematics for Machine Learning*. Cambridge University Press, 2020.
- [2] Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning. MIT Press, 2016.
- [3] Bishop, C.M. Pattern Recognition and Machine Learning. Springer, 2006.