# Module 5: Hypotheses Testing and Significance Tests

#### Examples: Influenza vaccination studies

- 2.2% of vaccine recipients get influenza compared to 4.4% of placebo recipients<sup>1</sup>
- 1.4% of high-dose vaccine recipients get influenza compared to 1.9% of patients receiving a standard dose<sup>2</sup>

Do these studies provide evidence that the vaccine is effective?

Or can this difference between the groups be explained by *chance*?

Is the difference between groups *statistically significant?* Hypothesis testing is the procedure used to answer these questions.

https://jamanetwork.com/journals/jama/fullarticle/193139

<sup>2</sup>https://www.nejm.org/doi/full/10.1056/nejmoa1315727

To conduct a hypothesis test, we first define the *null* and *alternative* hypothesis.

### Null and Alternative Hypotheses

The **null hypothesis**, denoted  $H_0$ , is a statement that either a parameter takes on a particular value, or that there is no difference between parameters (i.e., there is no effect).

The **alternative hypothesis**, denoted  $H_A$ , states that either the parameter falls within an alternate range of values, or that there *is* a difference between parameters (i.e., there is an effect). The alternative hypothesis corresponds to a claim being made (e.g., that a treatment has an effect).

The logic beind hypothesis testing is similar to the logic in *proof by contradiction*.

Proof by contradiction: An observation that would be *impossible* if  $H_0$  is true is evidence that  $H_0$  is not true (in which case we accept  $H_A$ ).

Silly example: I claim that everyone in this class is 19 years old, e.g.  $H_0: \mu=19$  and  $\sigma=0$ . I randomly select 5 people, one of them is 20. What do you conclude?

Hypothesis testing: If an observation would be *very unlikely* when  $H_0$  is true, then this is evidence against  $H_0$  and in support of  $H_A$ .

#### Basic idea

Testing whether or not a coin is biased.

- 1. State the null hypothesis:
- 2. State the alternative hypothesis:
- 3. If  $H_0$  is true, and we flip a coin n=100 times, 95% of the time the number of times the coin lands heads up would be between (approximately) 40 and 60 times.
- 4. Getting less than 40 heads or more than 60 heads would be unlikely (this only happens 5% of the time). Therefore, if we get, e.g., 72 heads, this provides evidence against  $H_0$ . We would reject  $H_0$  and accept  $H_A$ . In practice, we calculate the probability of getting more than 72 heads (or less than 28 heads), which gives us a P-value, which is the probability of observing something more extreme (in the direction of  $H_A$ ) than what we observe, assuming that  $H_0$  is true. The smaller the p-value, the more evidence against  $H_0$ .

- 1. Verify the assumptions:
  - The variable is categorical
  - The data are obtained from randomization
  - The sampling distribution of  $\hat{p}$  under  $H_0$  is approximately normal (we expect at least 15 successes and at least 15 failures under  $H_0$ ).

- 2. State the null and alternative hypothesis
  - The null hypothesis will always be of the form  $H_0$ :  $p = p_0$ .
  - The alternative hypothesis in general can have one of three forms:

Two-tailed: *H<sub>A</sub>*: *p* ≠ *p*<sub>0</sub>
 Left-tailed: *H<sub>A</sub>*: *p* < *p*<sub>0</sub>
 Right-tailed: *H<sub>A</sub>*: *p* > *p*<sub>0</sub>

We will only consider the two-tailed form in this class.

3. Calculate the test statistic, which measures how many standard deviations the sample statistic (i.e.,  $\hat{p}$ ) is from its center if  $H_0$  is true.

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$$

- 4. Calculate the p-value, which is the probability that the test statistic is *more extreme* than what was observed, in the direction of the alternative hypothesis  $H_A$ . This p-value represents the area
  - in both tails, with respect to  $\pm z$ , if  $H_A$  is two-tailed
  - in the left tail, with respect to z, if  $H_A$  is left-tailed
  - in the right tail, with respect to z, if  $H_A$  is right-tailed

5. If the p-value is sufficiently small, reject  $H_0$  and accept  $H_A$ . Otherwise, fail to reject  $H_0$  and conclude that there is insufficient evidence to reject  $H_0$  (you NEVER conclude that  $H_0$  is true!).

Whether or not the p-value is sufficiently small depends on the chosen significance level. The **significance level**, denoted by  $\alpha$ , is a number such that we reject  $H_0$  if the p-value is less than or equal to that number. Typically,  $\alpha$  is taken to be 0.05.

We will carry out hypothesis tests on proportions using the *prop.test* function in *R*.

#### Can dogs detect cancer by smell?

Fifty four trials were conducted as follows: 1 sample from a bladder cancer patient was placed among 6 control urine samples. In the 54 trials, the dogs correctly identified the bladder cancer sample 15 times. Did this study provide strong evidence that the dogs' predictions were better or worse than random guessing?

#### Example

A survey is carried out to determine whether or not a majority of American adults approve of the legalization of marijuana. In October of 2013 , Gallup conducted a survey of 1,028 adults, and found that 596 of them favor legalizing marijuana.

- 1. Specify the population parameter
- 2. Specify the point estimate (sample proportion)

### Example (continued)

A survey is carried out to determine whether or not a majority of American adults approve of the legalization of marijuana. In October of this year, Gallup conducted a survey of 1,028 adults, and found that 596 of them favor legalizing marijuana.

- 4. Is there evidence to suggest that a majority of Americans favor the legalization of marijuana? Carry out a hypothesis test by completing the following steps, and using a level of significance of 0.05:
  - (a) State the null and alternative hypotheses
  - (b) Calculate the test statistic
  - (c) Calculate the p-value
  - (d) State the conclusion

#### Blind taste test

In a class at the University of Florida, 49 students are given a blind taste test comparing Coke and Pepsi. Approximately half of the subjects are randomly chosen to receive Coke first and the rest randomly receive Pepsi first. Why? Coke was preferred 29 times.

- 1. Is there evidence to suggest that students have a taste preference between Coke or Pepsi? Carry out a hypothesis test by completing the following steps, and using a level of significance of 0.05:
  - (a) State the null and alternative hypotheses
  - (b) Calculate the test statistic
  - (c) Calculate the p-value
  - (d) State the conclusion

### Decisions and Errors in Significance Tests

|                        | Decision              |                               |
|------------------------|-----------------------|-------------------------------|
| Truth                  | Reject H <sub>0</sub> | Fail to Reject H <sub>0</sub> |
| H <sub>0</sub> is True | Type I error          | Correct decision              |
| $H_0$ is False         | Correct decision      | Type II error                 |

#### Note that

- if  $H_0$  is true, the probability of a Type I error is the significance level  $\alpha$
- a Type II error can result if the sample size is too small.
   Why?

#### Theorem

If  $X \sim N(\mu_X, \sigma_X)$ , and  $Y \sim N(\mu_Y, \sigma_Y)$ , and X and Y are independent, then

$$aX+bY\sim \mathcal{N}\left(a\mu_X+b\mu_Y,\sqrt{a^2\sigma_X^2+b^2\sigma_Y^2}
ight)$$

In particular,

$$X - Y \sim N\left(\mu_X - \mu_Y, \sqrt{\sigma_X^2 + \sigma_Y^2}\right)$$

#### Difference between proportions

Consider the null hypothesis  $H_0: p_1 - p_2 = 0$ , where  $p_1$  and  $p_2$  are the population proportions for two independent populations.

Then under  $H_0$ , the test statistic

$$Z=rac{\hat{
ho_1}-\hat{
ho_2}}{\sqrt{
ho(1-
ho)\left(rac{1}{
ho_1}+rac{1}{
ho_2}
ight)}}$$

where  $\hat{p_1}$  and  $\hat{p_2}$  are the sample proportions of the two groups,  $n_1$  and  $n_2$  are the sample sizes, and p is the common population proportion, which is estimated in practice by  $p=\frac{n_1\hat{p_1}+n_2\hat{p_2}}{n_1+n_2}$ , and  $Z\sim N(0,1)$  under  $H_0$ .

### Example

In a survey of 2600 individuals, 110 out of 1120 males were red-green color-blind and 10 out of 1480 females were red-green colorblind. Is there a significant relationship (at  $\alpha=0.05$ ) between sex and red-green color-blindness? Answer this question by (1) stating the null and alternative hypotheses, finding the test statistic, finding the p-value, and stating the conclusion.

#### Central Limit Theorem

Recall that if a population has mean  $\mu$  and standard deviation  $\sigma$ , then the sample mean  $\overline{X_n} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$ .

### Standardization of the sample mean

Following from the CLT, let

$$Z = \frac{\overline{X_n} - \mu}{\frac{\sigma}{\sqrt{n}}}.$$

Then  $Z \sim N(0, 1)$ .

However, we cannot calculate Z in practice because we do not know  $\sigma$ .

If we replace  $\sigma$  with an estimate using the sample standard deviation s, and let

$$T = \frac{\overline{X_n} - \mu}{\frac{s}{\sqrt{n}}}.$$

Then T follows the Student's t distribution with n-1 degrees of freedom.

The t distribution has the same shape as the standard normal distribution but has more area in its tails (i.e., a larger standard deviation). As the degrees of freedom increases, the t distribution approaches the standard normal distribution.

Hypothesis tests regarding population means are carried out by calculating t-statistics and their corresponding p-values.

### General hypothesis testing steps

- 1. State the null  $(H_0)$  and alternative  $(H_1)$  hypotheses.
- 2. Calculate the appropriate test statistic, whose distribution is known under  $H_0$ .
- 3. Calculate the *p*-value.
- 4. Make a conclusion about whether there is sufficient evidence to reject  $H_0$  and accept  $H_1$  based on the p-value, and state this conclusion in the context of the problem.