### Probabilistic models

Bayesian Methods

Marylou Gabrié

CDS, NYU

March 9, 2021

### Contents

- Classical Statistics
- 2 Bayesian Statistics: Introduction
- Bayesian Decision Theory
- Summary

### Table of Contents

- Classical Statistics
- 2 Bayesian Statistics: Introduction
- Bayesian Decision Theory
- 4 Summary

## Parametric Family of Densities

• A parametric family of densities is a set

$$\{p(y \mid \theta) : \theta \in \Theta\},\$$

- where  $p(y \mid \theta)$  is a density on a **sample space**  $\mathcal{Y}$ , and
- $\theta$  is a parameter in a [finite dimensional] parameter space  $\Theta$ .
- This is the common starting point for a treatment of classical or Bayesian statistics.

### Density vs Mass Functions

- In this lecture, whenever we say "density", we could replace it with "mass function."
- Corresponding integrals would be replaced by summations.
- (In more advanced, measure-theoretic treatments, they are each considered densities w.r.t. different base measures.)

### Frequentist or "Classical" Statistics

• Parametric family of densities

$$\{p(y \mid \theta) \mid \theta \in \Theta\}.$$

- Assume that  $p(y \mid \theta)$  governs the world we are observing, for some  $\theta \in \Theta$ .
- If we knew the right  $\theta \in \Theta$ , there would be no need for statistics.
- Instead of  $\theta$ , we have data  $\mathcal{D}$ :  $y_1, \dots, y_n$  sampled i.i.d.  $p(y \mid \theta)$ .
- Statistics is about how to get by with  $\mathcal{D}$  in place of  $\theta$ .

#### Point Estimation

- One type of statistical problem is **point estimation**.
- A statistic  $s = s(\mathcal{D})$  is any function of the data.
- A statistic  $\hat{\theta} = \hat{\theta}(\mathcal{D})$  taking values in  $\Theta$  is a **point estimator of**  $\theta$ .
- A good point estimator will have  $\hat{\theta} \approx \theta$ .
- Desirable statistical properties of point estimators:
  - Consistency: As data size  $n \to \infty$ , we get  $\hat{\theta}_n \to \theta$ .
  - **Efficiency:** (Roughly speaking)  $\hat{\theta}_n$  is as accurate as we can get from a sample of size n.
- Maximum likelihood estimators are consistent and efficient under reasonable conditions.

## Example: Coin Flipping

• Parametric family of mass functions:

$$p(\text{Heads} \mid \theta) = \theta$$
,

for 
$$\theta \in \Theta = (0, 1)$$
.

• Note that every  $\theta \in \Theta$  gives us a different probability model for a coin.

## Coin Flipping: Likelihood function

- Data  $\mathfrak{D} = (H, H, T, T, T, T, T, H, \dots, T)$ , assumed i.i.d. flips.
  - $n_h$ : number of heads
  - $n_t$ : number of tails
- Likelihood function for data D: probability of getting the flips in received order

$$L_{\mathcal{D}}(\theta) = \rho(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

• As usual, easier to maximize the log-likelihood function:

$$\begin{split} \hat{\theta}_{\mathsf{MLE}} &= \underset{\theta \in \Theta}{\arg\max} \log L_{\mathcal{D}}(\theta) \\ &= \underset{\theta \in \Theta}{\arg\max} [n_h \log \theta + n_t \log (1 - \theta)] \end{split}$$

First order condition:

$$\frac{n_h}{\theta} - \frac{n_t}{1 - \theta} = 0 \iff \theta = \frac{n_h}{n_h + n_t} \qquad \hat{\theta}_{\text{MLE}} \text{ is the empirical fraction of heads.}$$

### Table of Contents

- Classical Statistics
- 2 Bayesian Statistics: Introduction
- Bayesian Decision Theory
- 4 Summary

### Bayesian Statistics

- Introduces a new ingredient: the **prior distribution**.
- A prior distribution  $p(\theta)$  is a distribution on parameter space  $\Theta$ .
- A prior reflects our belief about  $\theta$ , before seeing any data...

# A Bayesian Model

- A [parametric] Bayesian model consists of two pieces:
  - A parametric family of densities

$$\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$$

- **2** A **prior distribution**  $p(\theta)$  on parameter space  $\Theta$ .
- Putting pieces together, we get a joint density on  $\theta$  and  $\mathfrak{D}$ :

$$p(\mathcal{D}, \theta) = p(\mathcal{D} \mid \theta)p(\theta).$$

#### The Posterior Distribution

- The **posterior distribution** for  $\theta$  is  $p(\theta \mid \mathcal{D})$ .
- Prior represents belief about  $\theta$  before observing data  $\mathfrak{D}$ .
- Posterior represents the rationally "updated" belief about  $\theta$ , after seeing  $\mathfrak{D}$ .

## Expressing the Posterior Distribution

• By Bayes rule, can write the posterior distribution as

$$p(\theta \mid \mathcal{D}) = \frac{p(\mathcal{D} \mid \theta)p(\theta)}{p(\mathcal{D})}.$$

- Let's consider both sides as functions of  $\theta$ , for fixed  $\mathcal{D}$ .
- Then both sides are densities on  $\Theta$  and we can write

$$\underbrace{p(\theta \mid \mathcal{D})}_{\text{posterior}} \propto \underbrace{p(\mathcal{D} \mid \theta)}_{\text{likelihood}} \underbrace{p(\theta)}_{\text{prior}}$$

• Where  $\propto$  means we've dropped factors independent of  $\theta$ .

# Coin Flipping: Bayesian Model

• Parametric family of mass functions:

$$p(\text{Heads} \mid \theta) = \theta$$
,

for 
$$\theta \in \Theta = (0, 1)$$
.

- Need a prior distribution  $p(\theta)$  on  $\Theta = (0, 1)$ .
- A distribution from the Beta family will do the trick...

## Coin Flipping: Beta Prior

#### • Prior:



Figure by Horas based on the work of Krishnavedala (Own work) [Public domain], via Wikimedia Commons http://commons.wikimedia.org/wiki/File:Beta\_distribution\_pdf.svg.

# Coin Flipping: Beta Prior

Prior:

$$\begin{array}{ccc} \theta & \sim & \mathrm{Beta}(\mathit{h}, \mathit{t}) \\ \mathit{p}(\theta) & \propto & \theta^{\mathit{h}-1} \left(1-\theta\right)^{\mathit{t}-1} \end{array}$$

• Mean of Beta distribution:

$$\mathbb{E}\theta = \frac{h}{h+t}$$

• Mode of Beta distribution:

$$\arg\max_{\theta} p(\theta) = \frac{h-1}{h+t-2}$$

for h, t > 1.

# Coin Flipping: Posterior

Prior:

$$\theta \sim \operatorname{Beta}(h,t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$ 

Likelihood function

$$L(\theta) = p(\mathcal{D} \mid \theta) = \theta^{n_h} (1 - \theta)^{n_t}$$

Posterior density:

$$\begin{array}{ll} \rho(\theta \mid \mathcal{D}) & \propto & \rho(\theta)\rho(\mathcal{D} \mid \theta) \\ & \propto & \theta^{h-1} \left(1-\theta\right)^{t-1} \times \theta^{n_h} \left(1-\theta\right)^{n_t} \\ & = & \theta^{h-1+n_h} \left(1-\theta\right)^{t-1+n_t} \end{array}$$

#### Posterior is Beta

Prior:

$$\theta \sim \operatorname{Beta}(h,t)$$
 $p(\theta) \propto \theta^{h-1} (1-\theta)^{t-1}$ 

Posterior density:

$$p(\theta \mid \mathcal{D}) \propto \theta^{h-1+n_h} (1-\theta)^{t-1+n_t}$$

• Posterior is in the beta family:

$$\theta \mid \mathcal{D} \sim \text{Beta}(h + n_h, t + n_t)$$

- Interpretation:
  - Prior initializes our counts with h heads and t tails.
  - Posterior increments counts by observed  $n_h$  and  $n_t$ .

# Sidebar: Conjugate Priors

- Interesting that posterior is in same distribution family as prior.
- Let  $\pi$  be a family of prior distributions on  $\Theta$ .
- Let P parametric family of distributions with parameter space  $\Theta$ .

#### Definition

A family of distributions  $\pi$  is conjugate to parametric model P if for any prior in  $\pi$ , the posterior is always in  $\pi$ .

- The beta family is conjugate to the coin-flipping (i.e. Bernoulli) model.
- The family of all probability distributions is conjugate to any parametric model. [Trvially]

## Example: Coin Flipping - Concrete Example

• Suppose we have a coin, possibly biased (parametric probability model):

$$p(\mathsf{Heads} \mid \theta) = \theta.$$

- Parameter space  $\theta \in \Theta = [0, 1]$ .
- Prior distribution:  $\theta \sim \text{Beta}(2,2)$ .



## Example: Coin Flipping

• Next, we gather some data  $\mathfrak{D} = \{H, H, T, T, T, T, T, H, \dots, T\}$ :

• Heads: 75 Tails: 60 •  $\hat{\theta}_{\text{MLE}} = \frac{75}{75+60} \approx 0.556$ 

• Posterior distribution:  $\theta \mid \mathcal{D} \sim \text{Beta}(77, 62)$ :



## Bayesian Point Estimates

- So we have posterior  $\theta \mid \mathcal{D}...$
- But we want a point estimate  $\hat{\theta}$  for  $\theta$ .
- Common options:
  - posterior mean  $\hat{\theta} = \mathbb{E}[\theta \mid \mathcal{D}]$
  - maximum a posteriori (MAP) estimate  $\hat{\theta} = \arg \max_{\theta} p(\theta \mid D)$ 
    - Note: this is the **mode** of the posterior distribution

# What else can we do with a posterior?

- Look at it.
- Extract "credible set" for  $\theta$  (a Bayesian confidence interval).
  - e.g. Interval [a, b] is a 95% credible set if

$$\mathbb{P}\left(\theta \in [a,b] \mid \mathcal{D}\right) \geqslant 0.95$$

- The most "Bayesian" approach is Bayesian decision theory:
  - Choose a loss function.
  - Find action minimizing expected risk w.r.t. posterior

### Table of Contents

- Classical Statistics
- 2 Bayesian Statistics: Introduction
- 3 Bayesian Decision Theory
- 4 Summary

# Bayesian Decision Theory

- Ingredients:
  - Parameter space  $\Theta$ .
  - **Prior**: Distribution  $p(\theta)$  on  $\Theta$ .
  - Action space A.
  - Loss function:  $\ell: \mathcal{A} \times \Theta \to \mathbf{R}$ .
- The **posterior risk** of an action  $a \in A$  is

$$r(a) := \mathbb{E}[\ell(\theta, a) \mid \mathcal{D}]$$
  
=  $\int \ell(\theta, a) p(\theta \mid \mathcal{D}) d\theta$ .

- It's the expected loss under the posterior.
- A Bayes action  $a^*$  is an action that minimizes posterior risk:

$$r(a^*) = \min_{a \in \mathcal{A}} r(a)$$

# Bayesian Point Estimation

- General Setup:
  - Data  $\mathcal{D}$  generated by  $p(y \mid \theta)$ , for unknown  $\theta \in \Theta$ .
  - Want to produce a **point estimate** for  $\theta$ .
- Choose the following:
  - Prior  $p(\theta)$  on  $\Theta = \mathbf{R}$ .
  - Loss  $\ell(\hat{\theta}, \theta)$
- Find action  $\hat{\theta} \in \Theta$  that minimizes posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[\ell(\hat{\theta}, \theta) \mid \mathcal{D}\right]$$
$$= \int \ell(\hat{\theta}, \theta) p(\theta \mid \mathcal{D}) d\theta$$

## Important Cases

- Squared Loss :  $\ell(\hat{\theta}, \theta) = (\theta \hat{\theta})^2$   $\Rightarrow$  posterior mean
- Zero-one Loss:  $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta}) \implies \text{posterior mode}$
- Absolute Loss :  $\ell(\hat{\theta}, \theta) = \left| \theta \hat{\theta} \right| \implies$  posterior median (Exercise)

## Bayesian Point Estimation: Square Loss

• Find action  $\hat{\theta} \in \Theta$  that minimizes posterior risk

$$r(\hat{\theta}) = \int (\theta - \hat{\theta})^2 p(\theta \mid \mathcal{D}) d\theta.$$

• Differentiate:

$$\begin{array}{ll} \frac{dr(\hat{\theta})}{d\hat{\theta}} & = & -\int 2\left(\theta - \hat{\theta}\right)p(\theta\mid\mathcal{D})\,d\theta \\ \\ & = & -2\int \theta p(\theta\mid\mathcal{D})\,d\theta + 2\hat{\theta}\underbrace{\int p(\theta\mid\mathcal{D})\,d\theta}_{=1} \\ \\ & = & -2\int \theta p(\theta\mid\mathcal{D})\,d\theta + 2\hat{\theta} \end{array}$$

# Bayesian Point Estimation: Square Loss

Derivative of posterior risk is

$$\frac{dr(\hat{\theta})}{d\hat{\theta}} = -2 \int \theta p(\theta \mid \mathcal{D}) d\theta + 2\hat{\theta}.$$

• First order condition  $\frac{dr(\hat{\theta})}{d\hat{\theta}} = 0$  gives

$$\hat{\theta} = \int \theta p(\theta \mid \mathcal{D}) d\theta 
= \mathbb{E}[\theta \mid \mathcal{D}]$$

• Bayes action for square loss is the posterior mean.

## Bayesian Point Estimation: Zero-One Loss

- Suppose  $\Theta$  is discrete (e.g.  $\Theta = \{\text{english, french}\}\)$
- Zero-one loss:  $\ell(\theta, \hat{\theta}) = 1(\theta \neq \hat{\theta})$
- Posterior risk:

$$r(\hat{\theta}) = \mathbb{E}\left[1(\theta \neq \hat{\theta}) \mid \mathcal{D}\right]$$
$$= \mathbb{P}\left(\theta \neq \hat{\theta} \mid \mathcal{D}\right)$$
$$= 1 - \mathbb{P}\left(\theta = \hat{\theta} \mid \mathcal{D}\right)$$
$$= 1 - \rho(\hat{\theta} \mid \mathcal{D})$$

• Bayes action is

$$\hat{\theta} = \underset{\theta \in \Theta}{\operatorname{arg\,max}} p(\theta \mid \mathcal{D})$$

- This  $\hat{\theta}$  is called the maximum a posteriori (MAP) estimate.
- The MAP estimate is the **mode** of the posterior distribution.

### Table of Contents

- Classical Statistics
- 2 Bayesian Statistics: Introduction
- Bayesian Decision Theory
- Summary

### Recap and Interpretation

- Prior represents belief about  $\theta$  before observing data  $\mathfrak{D}$ .
- Posterior represents the rationally "updated" beliefs after seeing D.
- All inferences and action-taking are based on the posterior distribution.
- In the Bayesian approach,
  - No issue of "choosing a procedure" or justifying an estimator.
  - Only choices are
    - family of distributions, indexed by  $\Theta$ , and the
    - prior distribution on ⊖
  - For decision making, need a loss function.
  - Everything after that is **computation**.

## The Bayesian Method

- Define the model:
  - Choose a parametric family of densities:

$$\{p(\mathcal{D} \mid \theta) \mid \theta \in \Theta\}.$$

- Choose a distribution  $p(\theta)$  on  $\Theta$ , called the **prior distribution**.
- **②** After observing  $\mathcal{D}$ , compute the **posterior distribution**  $p(\theta \mid \mathcal{D})$ .
- **3** Choose **action** based on  $p(\theta \mid \mathcal{D})$ .