Manual for Vitrealab Light Chips Evaluation Code

Author: Rui

Overview

This project is used to evaluate the output of Vitrealab light chips. It aims to extract the tilt angles (tilt_x, tilt_y) and beam divergence (beam_div_x, beam_div_y) for each beam in the beam array.

1 Class Descriptions

1.1 Tomography

Contains all the acquired images.

Attributes:

- filename File location and name.
- directory Current working directory.
- shape Shape of the beam array (rows, cols).
- roi_width Width of the region of interest.
- cross_sect_image_1 List with cross-section images.
- cross_sect_z_l List with z coordinates of cross-sections.
- cross_sect_1 List with cross-section objects.
- n_sections Number of cross sections.
- z_diff Z difference between cross-sections.
- pixel_size Pixel size in meters.
- beam_1 List with all beam objects.
- max_z_fit Maximum z coordinate for fit.
- max_z_idx_fit Index of the maximum z coordinate for fit.

Methods:

- __init__ Initializes the Tomography measurement.
- __str__ String representation.
- __repr__ Representation of the object.
- load_data Loads images and z coordinates.
- find_rot_spacing Finds rotation angle and grid spacing.
- init_coords Initializes beam coordinates.
- complete_beam_coords Completes beam coordinates for all sections.
- complete_all_beams_coords Iteratively completes all beam coordinates.

- plot_cross_section Plots cross-sections with ROIs.
- set_max_z Sets the maximum z-value for fitting.
- find_dir_cos Finds direction cosines for beams.

1.2 Cross_Section

Contains image and rotated image, and z-coordinate of respective cross-section.

Attributes:

- z_coord Z coordinate of the cross-section.
- shape Shape of the cross-section.
- image Image of the cross-section.
- spacing_px Spacing in pixels.
- spacing_mm Spacing in millimeters.
- rot_angle Rotation angle.
- image_rot Rotated image.
- beam_coord_1 List of beam coordinates.

Methods:

- __init__ Initializes the cross-section.
- __str__ String representation.
- _repr_ Representation of the object.
- simple_plot Plots the cross-section.
- find_rot Finds the optimal rotation angle.
- find_peaks Finds the peaks in the cross-section.
- find_geom Finds geometric properties of the beam disposition.
- id_to_coord Converts beam index to coordinates.

1.3 Beam

Contains beam information including position, tilt, and divergence.

Attributes:

- id_x, id_y Beam identifiers.
- beam_coord_1 List of beam centroid coordinates.
- beam_width_1 List of beam widths.
- roi_l List of regions of interest for each beam.
- div_full_angle Full angle of beam divergence.
- e_x, e_y, e_z Direction cosines.

Methods:

- __init__ Initializes the beam.
- _repr_ Representation of the object.
- find_coords Finds the coordinates of the beam.
- find_dir_cos Finds the direction cosines of the beam.
- \bullet find_div Finds the divergence of the beam.
- plot_trajectory Plots the trajectory of the beam.
- plot_width Plots the width of the beam.
- plot_rois Plots regions of interest of the beam.