# ClickHouse 在快手的大规模应用与架构改进

李振炜

快手 数据平台部 大数据架构工程师





# SPEAKER INTRODUCE

#### 李振炜 大数据架构工程师

- 2015年硕士毕业之后加入奇虎360
- 2018年加入快手
- 熟悉spark, presto和clickhouse





#### TABLE OF

# CONTENTS 大纲

- ClickHouse 简介
- · ClickHouse 在快手的应用现状
- ClickHouse on HDFS
- · ClickHouse后续改进计划





ClickHouse 是俄罗斯Yandex在2016年开源的一个高性能分析型SQL数据库,主要面向OLAP场景。开源之后,凭借优异的查询性能,受到业界的青睐。







#### 性能对比



ClickHouse官网提供,详见https://clickhouse.yandex/benchmark.htm







#### 性能对比

| sql语句(单表测试语句) | Hawq    | presto(orc格式) | Impala(parquet格式) | spark-sql(orc格式) | ClickHouse | greenplum | hive(orc格式) 🔻 |
|---------------|---------|---------------|-------------------|------------------|------------|-----------|---------------|
| sql_01        | 12.734  | 1.08          | 1.53              | 6.66             | 0.307      | 9.018     | 51.45         |
| sql_02        | 15.578  | 2.1           | 4.04              | 9.62             | 0.515      | 10.887    | 129.78        |
| sql_03        | 16.774  | 3.03          | 4.85              | 8.95             | 0.759      | 11.247    | 130.7         |
| sql_04        | 23.469  | 5.78          | 11.59             | 11.06            | 0.477      | 20.137    | 185.38        |
| sql_05        | 12.547  | 3.26          | 1.32              | 4.75             | 0.443      | 8.694     | 50.05         |
| sql_06        | 88.506  | 29.55         | 43.16             | 43.43            | 12.341     | 89.75     | 343.86        |
| sql_07        | 86.468  | 28.89         | 45.16             | 41.34            | 12.198     | 90.318    | 346.92        |
| sql_08        | 134.72  | 68.23         | 72.32             | 90.28            | 19.217     | 154.77    | 455.37        |
| sql_09        | 133.69  | 54.18         | 72.45             | 98.59            | 39.669     | 221.782   | 2402.521      |
| 总时间           | 524.486 | 196.1         | 256.42            | 314.68           | 85.926     | 616.603   | 4096.031      |

易观测评结果,详见http://www.clickhouse.com.d

























#### 业界使用

•国内:快手,头条,腾讯,京东,新浪,携程等,

• 国外: Yandex, CloudFlare, Spotify等

#### 社区活跃









#### ClickHouse在快手规模

存储数据量 ~10PB

每天新增数据量 ~200TB

每天查询 ~50w

查询P90时延 <3s

(截止2019年10月份数据)













ClickHouse在快手部署架构 ▶ 鉴权&审计 ▶ 多clickhouse集群查询路由 **Proxy Server** 查询缓存 ▶ metric收集 ClickHouse ClickHouse ClickHouse ▶ 多集群建设,资源物理隔离 ▶ 每个shard有两个副本 Cluster Cluster Cluster Flink MR ▶ 数据源支持Hive和Kafaka Kafka Hive ▶ 通过mr/flink直接写local表





CHProxy介绍







localQuery特性介绍

- table engine
- 语法: localQuery(clickhouse\_cluster, db.table, sql)
- · 作用:sql全部在单个shard执行,然后返回结果
- 数据:全部按关键列hash分shard处理



使用经验分享

单表分析场景性能最好

相关字段sharding,采用local in/join

复杂操作,尽量在每个节点完成

不建议作为一个事务型数据库使用





# 面临的问题与解决方案



面临的问题

解决方案

实测效果





# 面临的问题与解决方案









解决思路

存储和计算分离,数据存储管理依托于成熟的平台





#### ClickHouse on HDFS 架构图







面临的问题

小文件问题

文件读取性能问题





每个part下面所有的MergeTree文件合并成一个文件



实现接口,能够从合并之后的文件中读取的文件中读取MergeTree数据



小文件问题 解决





#### HDFSMergeTree

- table engine
- 继承全部MergeTree特性,完全兼容MergeTree操作
- 实现了HDFSMergeTreeReader和HDFSMergeTreeReaderStream
- 语法: HDFSMergeTree(/home/\${clickhouse\_cluster})





ClickHouse和HDFS部署到同一个集群

ClickHouse集群中每个shard对应不同的HDFS目录,同一个shard不同副本对应同一个HDFS目录

#### 文件读取性能解决

HDFS目录设置一个IP数组的扩展属性,目录内所有块的副本分布在指定IP的DataNode。IP值就是这个目录对应的ClickHouse的shard副本所在的机器IP。

ClickHouse利用HDFS短路读特性, 优先读取本机的数据。







#### 扩容问题

- 数据在HDFS上分bucket存储,每个shard对应一个或多个bucket
- HDFS目录组织形式: /home/\${clickhouse\_cluster}/\$ {bucket\_num}/\${db}/\${table}/
- IP扩展属性设置到\${bucket\_num}目录这一级
- 每个shard配置shard\_num, cluster\_size, bucket\_total三个参数 shard\_num%cluster\_size == [1, bucket\_total]%cluster\_size











#### 数据导入



Reduce数和Bucket数保持一 致;每个Reduce调用 clickhouse-local,生成多个part 的MergeTree文件, 然后把所 有的part合并成一个part, 最后 part下所有的文件append成一



#### 集群扩容

- /home/\${clickhouse\_cluster}/\${bucket\_a}/ (192.168.0.1; 192.168.0.2)
- /home/\${clickhouse\_cluster}/\${bucket\_b}/ (192.168.0.8; 192.168.0.9)
- /home/\${clickhouse\_cluster}/\${bucket\_c}/ (192.168.0.12; 192.168.0.13)

修改bucket路径的扩展属性, HDFS降到3副本

#### 新机器启动clickhouse,修改cluster配置

HDFS进行升到4副本操作,执行mover,使块的分布正确

- /home/\${clickhouse\_cluster}/\${bucket\_a}/ (192.168.0.1; 192.168.0.2)
- /home/\${clickhouse\_cluster}/\${bucket\_b}/ (192.168.0.1; 192.168.0.2;192.168.0.8; 192.168.0.9)
- /home/\${clickhouse\_cluster}/\${bucket\_c}/ (192.168.0.1; 192.168.0.2;192.168.0.12; 192.168.0.13)

先对HDFS扩容,然后修改需要变动bucket路径的扩展属性

- /home/\${clickhouse\_cluster}/\${bucket\_a}/ (192.168.0.1; 192.168.0.2)
- /home/\${clickhouse\_cluster}/\${bucket\_b}/ (192.168.0.1; 192.168.0.2)
- /home/\${clickhouse\_cluster}/\${bucket\_c}/ (192.168.0.1; 192.168.0.2)







#### Poseidon















#### 其他优化点

- 缓存块的location信息,减少RPC请求耗时
- 缓存文件句柄
- 检测块是否分布在指定IP的datanode
- Mover工具定时修正块的分布







#### | **生台ビスナレ** (机器环境,数据量,查询sql完全对等)



查询在100ms以上的SQL,性能提升20%~70%,查询在100ms以下的SQL,性能降低50%~80%













#### 总结

性能

利用HDFS短路读特性

缓存必要的信息

充分利用多块盘提高读 取性能

保留原生ClickHouse高 性能执行部分 数据

剥离数据管理功能

提高数据可靠性

成本

相同磁盘,比raid能存储更多数据

运维

扩容方便

支撑超大规模

减少运维压力



# 后续计划



- 实时导入实现计算存储分离
- 增强ClickHouse的SQL优化器
- 智能视图、聚合索引增强
- 运维自动化

# THANKS

Global
Architect Summit



