Arbeitsunterlagen zu FOS ET (12.1 und 12.6)

Thomas Maul

Brühlwiesenschule, Hofheim

V 0.1 - im Aufbau Stand: 6. Oktober 2025

Für eigene Teile gilt:

Thomas Maul

weipole

Überlagerungssat

Maschenstromanalyse

Knotenpotentialanalys

Teil I

Themenfeld 12.1 - Gleichstromnetzanalyse

- Zweipole
- ② Überlagerungssatz
- 3 Maschenstromanalyse
- 4 Knotenpotentialanalyse

Thomas Maul

Zweipole

Uberlagerungssatz

Maschenstromanalyse

Knotenpotentialanalys

Zweipole

In Schaltung 1 sollen die Widerstände R_3 bis R_5 als ein virtuelles Bauteil dargestellt werden.

Abbildung: Schaltung 1

Thomas Maul

Zweipole

Überlagerungssat

Maschenstromanalyse

Knotenpotentialanalys

Werte für Berechnung

$$\begin{aligned} R_1 &= 10\Omega \\ R_2 &= 20\Omega \\ R_3 &= 30\Omega \\ R_4 &= 40\Omega \\ R_5 &= 50\Omega \end{aligned}$$

$$U_{q1} = 5V$$
 (1

$$U_{q2} = 12V$$
 (2)

Abbildung: Schaltung 1

Thomas Maul

Zweipole

.. Therlagerungssat:

Maschenstromanalyse

Knotennotentialanalyse

Berechnung des Ersatzwiderstands

$$R_{45} = R4 + R5$$
 (3)
 $R_{45} = 40\Omega + 50\Omega$ (4)
 $R_{45} = 90\Omega$ (5)
 $\frac{1}{R_{3||45}} = \frac{1}{R_3} + \frac{1}{R_45}$ (6)
 $\frac{1}{R_{3||45}} = \frac{1}{30\Omega} + \frac{1}{90\Omega}$ (7)
 $R_{3||45} = 22,5\Omega$ (8)

Abbildung: Schaltung 2

Thomas Maul

Zweipole

Überlagerungssat

Maschenstromanalyse

Knotenpotentialanalyse

Übungen zu Zweipole I

a
$$R1 = R2 = 220\Omega R3 = R5 = 230\Omega R4 = 470\Omega$$

b
$$R1 = R2 = R3 = R5 = 230\Omega R4 = 470\Omega$$

c
$$R1 = R2 = R4 = R5 = 230\Omega R3 = 470\Omega$$

Abbildung: Schaltung 3a

Thomas Maul

Zweipole

Überlagerungssat

Maschenstromanalyse

Knotenpotentialanalyse

Übungen zu Zweipole II

a
$$R1 = R2 = 220\Omega R3 = R5 = 230\Omega R4 = 470\Omega$$

b
$$R1 = R2 = R3 = R5 = 230\Omega R4 = 470\Omega$$

c
$$R1 = R2 = R4 = R5 = 230\Omega R3 = 470\Omega$$

Abbildung: Schaltung 3b

Thomas Maul

Zweipole

Überlagerungssatz

Nur Quelle U1 aktiv Nur Quelle U2 aktiv

Maschenstromanalyse

Knotenpotentialanalys

Inhalt

- Zweipole
- Überlagerungssatz Nur Quelle U1 aktiv Nur Quelle U2 aktiv
- 3 Maschenstromanalyse
- 4 Knotenpotentialanalyse

Thomas Maul

weinole

Überlagerungssatz

Nur Quelle U1 aktiv

Maschenstromanalyse

Knotenpotentialanalys

Zwei Spannungsquellen U1 und U2

Abbildung: Zwei Quellen aktiv

$$R1 = 10\Omega$$
, $R2 = 20\Omega$, $R3 = 30\Omega$, $R4 = 40\Omega$, $R5 = 50\Omega$

Thomas Maul

weipole.

Überlagerungssatz

Nur Quelle U1 aktiv Nur Quelle U2 aktiv

Maschenstromanalyse

Knotenpotentialanalys

Nur Quelle U1 aktiv

Abbildung: Nur Quelle 1 aktiv

$$R1 = 10\Omega, R2 = 20\Omega, R3 = 30\Omega, R4 = 40\Omega, R5 = 50\Omega$$

Thomas Maul

weipole

Überlagerungssat

Nur Quelle U1 aktiv Nur Quelle U2 aktiv

Maschenstromanalys

Knotenpotentialanalys

Berechnung Ersatzwiderstand I

$$U_{2'} = I_2 * R_2 ||R_3||R_4 + R_5$$
 (9)

$$U_{2'} = I_2 * \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}$$

$$(10)$$

 I_2 ist nicht bekannt.

Thomas Maul

Nur Quelle U1 aktiv Nur Quelle U2 aktiv

Berechnung Ersatzwiderstand II

$$J_{q1} = U_1 + U_2 (11)$$

$$U_{q1} = U_1 + U_2$$

$$U_2 = U_{q1} * \frac{R_2 ||R3||R45}{R! + R_2 ||R3||R45}$$
(11)

Thomas Maul

Zweipole

Überlagerungssat

Nur Quelle U1 aktiv Nur Quelle U2 aktiv

Maschenstromanalys

Knotenpotentialanalys

Einsetzen I

$$U_{2'} = U_{q1} * \frac{R_2||R3||R45}{R1 + R_2||R3||R45}$$
 (13)

$$U_{2'} = U_{q1} * \frac{\frac{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}{R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_4 + R_5}}}$$
(14)

(15)

Thomas Maul

Zweipole

Überlagerungssat

Nur Quelle U1 aktiv

Maschenstromanalys

Knotenpotentialanalys

Einsetzen II

$$U_{2'} = U_{q1} * \frac{R_2||R3||R45}{R1 + R_2||R3||R45}$$

$$U_{2'} = U_{q1} * \frac{\frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}}{R_1 + \frac{1}{\frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4 + R_5}}}}$$

$$U_{2'} = 5V * \frac{22,5\Omega}{10\Omega + 22,5\Omega} \tag{16}$$

$$U_{2'} = 5V * 0,69 \tag{17}$$

$$U_{2'} = 3,46V (18)$$

Thomas Maul

weipole

Überlagerungssatz

Nur Quelle U1 aktiv

Maschenstromanalyse

Knotenpotentialanalys

Nur Quelle U2 aktiv

Abbildung: Nur Quelle zwei aktiv

$$R1 = 10\Omega, R2 = 20\Omega, R3 = 30\Omega, R4 = 40\Omega, R5 = 50\Omega$$

Thomas Maul

Zweipole

Überlagerungssat

Nur Quelle U1 aktiv

Nur Quelle U2 aktiv

Maschenstromanalyse

Knotenpotentialanalys

Quelle 2, Einsetzen I

$$U_{2''} = U_{q2} * \frac{\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}$$
(19)

(20)

Thomas Maul

Zweipole

Überlagerungssat

Nur Quelle U1 aktiv

Nur Quelle U2 aktiv

Maschenstromanalys

Knotenpotentialanalys

Quelle 2, Einsetzen II

$$U_{2''} = U_{q2} * \frac{\frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}{R_4 + R_5 + \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}}$$
(21)

$$U_{2''} = 12 V * \frac{\frac{\frac{1}{10\Omega} + \frac{1}{20\Omega} + \frac{1}{30\Omega}}{40\Omega + 50\Omega + \frac{1}{\frac{1}{10\Omega} + \frac{1}{20\Omega} + \frac{1}{20\Omega}}}$$
(22)

$$U_{2''} = 0,24V (23)$$

Thomas Maul

Zweipole

Überlagerungssat

Nur Quelle U1 aktiv

Nur Quelle U2 aktiv

Maschenstromanalys

Knotenpotentialanaly

Addition

Zum Abschluss werden die beiden Teilspannungen addiert.

$$U_2 = U_{2'} + U_{2''} \tag{24}$$

$$U_2 = 3,46V + 0,24V \tag{25}$$

$$U_2 = 3,7V$$
 (26)

Thomas Maul

Energieerhaltung und Einheit

Abmaße von Ladunger

Literatur

Literatur

Wikibooks https://de.wikibooks.org/wiki/Elektrostatik

Marinescu, Marlene Elektrische und magnetische Felder, Eine praxisorientierte Einführung; A 3 (2012); Springer