PHYS 234 Assignment 2

Brandon Tsang

May 29, 2020

1. Computing Probabilities

A beam of spin- $\frac{1}{2}$ particles is prepared in the state

$$|\psi\rangle = \frac{3i}{5} |+\rangle_{y} + \frac{4}{5} |-\rangle_{y}$$
.

The state is given in terms of the S_y eigenvectors. Since we derived relations for the S_z operator in class, I will express $|\psi\rangle$ in terms of S_z eigenvectors to ease the calculations.

First, I will confirm that $|\psi\rangle$ is normalized:

$$\langle \psi | \psi \rangle \stackrel{?}{=} 1$$

$$\left(-\frac{3i}{5} y \langle +| + \frac{4}{5} y \langle -| \right) \left(\frac{3i}{5} | +\rangle_y + \frac{4}{5} | -\rangle_y \right) \stackrel{?}{=} 1$$

$$\frac{9}{25} + \frac{16}{25} \stackrel{?}{=} 1$$

$$1 = 1$$

 $\langle +|\psi\rangle = \langle +|\left(\frac{3i}{5}|+\rangle_y + \frac{4}{5}|-\rangle_y\right)$

Then, I find the projection of $|\psi\rangle$ onto $|+\rangle$:

$$\begin{split} &=\frac{3i}{5}\left\langle +|+\right\rangle _{y}+\frac{4}{5}\left\langle +|-\right\rangle _{y}\\ \text{From class, }|+\rangle _{y}&=\frac{1}{\sqrt{2}}(|+\rangle+i\left|-\right\rangle)\text{ and }|-\rangle _{y}&=\frac{1}{\sqrt{2}}(|+\rangle-i\left|-\right\rangle):\\ &=\frac{3i}{5}\left\langle +|\cdot\frac{1}{\sqrt{2}}(|+\rangle+i\left|-\right\rangle)+\frac{4}{5}\left\langle +|\cdot\frac{1}{\sqrt{2}}(|+\rangle-i\left|-\right\rangle)\\ &=\frac{3i}{5\sqrt{2}}(\left\langle +|+\rangle+i\left\langle +|-\right\rangle)+\frac{4}{5\sqrt{2}}(\left\langle +|+\rangle-i\left\langle +|-\right\rangle)\\ &=\frac{4+3i}{5\sqrt{2}} \end{split}$$

And again with $|-\rangle$:

$$\begin{split} \langle -|\psi\rangle &= \langle -|\left(\frac{3i}{5}\left|+\right\rangle_y + \frac{4}{5}\left|-\right\rangle_y\right) \\ &= \frac{3i}{5}\left\langle -|+\right\rangle_y + \frac{4}{5}\left\langle -|-\right\rangle_y \\ &= \frac{3i}{5}\left\langle -|\cdot\frac{1}{\sqrt{2}}(|+\rangle + i\left|-\right\rangle) + \frac{4}{5}\left\langle -|\cdot\frac{1}{\sqrt{2}}(|+\rangle - i\left|-\right\rangle) \\ &= \frac{3i}{5\sqrt{2}}(\langle -|+\rangle + i\left\langle -|-\rangle) + \frac{4}{5\sqrt{2}}(\langle -|+\rangle - i\left\langle -|-\rangle) \\ &= \frac{3i^2}{5\sqrt{2}} - \frac{4i}{5\sqrt{2}} \\ &= \frac{-3-4i}{5\sqrt{2}} \end{split}$$

$$|\psi\rangle = \frac{1}{5\sqrt{2}}((4+3i)|+\rangle - (3+4i)|-\rangle).$$

(a) What are the possible measurement results of the spin operator S_x and with what probability would they occur?

The two possible measurement results are $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$.

The probability of $+\frac{\hbar}{2}$ is:

$$\begin{aligned} \left| {}_{x}\langle +|\psi \rangle \right|^{2} &= \left| {}_{x}\langle +|\cdot \frac{1}{5\sqrt{2}}((4+3i)|+\rangle - (3+4i)|-\rangle) \right|^{2} \\ &= \left| \frac{4+3i}{5\sqrt{2}} {}_{x}\langle +|+\rangle - \frac{3+4i}{5\sqrt{2}} {}_{x}\langle +|-\rangle \right|^{2} \end{aligned}$$

From class, $|+\rangle_x = \frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$:

$$= \left| \frac{4+3i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|+\langle -|)|+\rangle - \frac{3+4i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|+\langle -|)|-\rangle) \right|^2$$

$$= \left| \frac{4+3i}{5\cdot 2} - \frac{3+4i}{5\cdot 2} \right|^2$$

$$= \left| \frac{1-i}{10} \right|^2$$

$$= \frac{1+1}{100}$$

$$= \frac{1}{50}$$

The probability of $-\frac{\hbar}{2}$ is:

$$\begin{vmatrix} x \langle -|\psi \rangle \end{vmatrix}^2 = \begin{vmatrix} x \langle +| \cdot \frac{1}{5\sqrt{2}} ((4+3i)|+\rangle - (3+4i)|-\rangle) \end{vmatrix}^2$$
$$= \begin{vmatrix} \frac{4+3i}{5\sqrt{2}} & x \langle -|+\rangle - \frac{3+4i}{5\sqrt{2}} & x \langle -|-\rangle \end{vmatrix}^2$$

From class, $|-\rangle_x = \frac{1}{\sqrt{2}}(|+\rangle - |-\rangle)$:

$$= \left| \frac{4+3i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|-\langle -|)| + \rangle - \frac{3+4i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|-\langle -|)| - \rangle) \right|^2$$

$$= \left| \frac{4+3i}{5\cdot 2} + \frac{3+4i}{5\cdot 2} \right|^2$$

$$= \left| \frac{7-7i}{10} \right|^2$$

$$= \frac{49+49}{100}$$

$$= \frac{49}{50}$$

(b) What are the possible measurement results of the spin operator S_y and with what probability would they occur?

The two possible measurement results are $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$.

The probability of $+\frac{\hbar}{2}$ is:

$$\begin{aligned} \left| {}_{y}\langle +|\psi\rangle \right|^{2} &= \left| {}_{y}\langle +|\cdot \frac{1}{5\sqrt{2}}((4+3i)|+\rangle - (3+4i)|-\rangle) \right|^{2} \\ &= \left| \frac{4+3i}{5\sqrt{2}} \; {}_{y}\langle +|+\rangle - \frac{3+4i}{5\sqrt{2}} \; {}_{y}\langle +|-\rangle \right|^{2} \end{aligned}$$

From class, $|+\rangle_y = \frac{1}{\sqrt{2}}(|+\rangle + i |-\rangle)$:

$$= \left| \frac{4+3i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|+i\langle -|)|+\rangle - \frac{3+4i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|+i\langle -|)|-\rangle) \right|^2$$

$$= \left| \frac{4+3i}{5\cdot 2} - \frac{3+4i}{5\cdot 2} i \right|^2$$

$$= \left| \frac{4+3i}{5\cdot 2} - \frac{-4+3i}{5\cdot 2} \right|^2$$

$$= \left| \frac{8}{10} \right|^2$$

$$= \frac{16}{25}$$

The probability of $-\frac{\hbar}{2}$ is:

$$\begin{aligned} \left| {}_{y}\langle -|\psi\rangle \right|^{2} &= \left| {}_{y}\langle +|\cdot \frac{1}{5\sqrt{2}}((4+3i)|+\rangle - (3+4i)|-\rangle) \right|^{2} \\ &= \left| \frac{4+3i}{5\sqrt{2}} \; {}_{y}\langle -|+\rangle - \frac{3+4i}{5\sqrt{2}} \; {}_{y}\langle -|-\rangle \right|^{2} \end{aligned}$$

From class, $|-\rangle_y = \frac{1}{\sqrt{2}}(|+\rangle - i |-\rangle)$:

$$= \left| \frac{4+3i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|-i\langle -|)| + \rangle - \frac{3+4i}{5\sqrt{2}} \cdot \frac{1}{\sqrt{2}} (\langle +|-i\langle -|)| - \rangle) \right|^{2}$$

$$= \left| \frac{4+3i}{5\cdot 2} + \frac{3+4i}{5\cdot 2} i \right|^{2}$$

$$= \left| \frac{4+3i}{5\cdot 2} + \frac{-4+3i}{5\cdot 2} \right|^{2}$$

$$= \left| \frac{6i}{10} \right|^{2}$$

$$= \frac{36}{100}$$

$$= \frac{9}{25}$$

(c) What are the possible measurement results of the spin operator S_z and with what probability would they occur?

The two possible measurement results are $+\frac{\hbar}{2}$ and $-\frac{\hbar}{2}$.

The probability of $+\frac{\hbar}{2}$ is:

$$\begin{aligned} |\langle +|\psi\rangle|^2 &= \left|\langle +|\cdot \frac{1}{5\sqrt{2}}((4+3i)|+\rangle - (3+4i)|-\rangle)\right|^2 \\ &= \left|\frac{4+3i}{5\sqrt{2}}\right|^2 \\ &= \frac{16+9}{25\cdot 2} \\ &= \frac{1}{2} \end{aligned}$$

The probability of $-\frac{\hbar}{2}$ is:

$$\begin{aligned} |\langle -|\psi \rangle|^2 &= \left| \langle -| \cdot \frac{1}{5\sqrt{2}} ((4+3i) |+\rangle - (3+4i) |-\rangle) \right|^2 \\ &= \left| -\frac{3+4i}{5\sqrt{2}} \right|^2 \\ &= \frac{9+16}{25 \cdot 2} \\ &= \frac{1}{2} \end{aligned}$$

2. Spin Operator in an Arbitrary Direction

Find the representation of the spin operator $S_n := \vec{S} \cdot \hat{n}$ that measures the projection of the spin- $\frac{1}{2}$ particle along the \hat{n} direction. Calculate its representation in the S_z -basis. Here, \hat{n} is the unit vector in spherical-polar coordinates.

$$\hat{\mathbf{n}} = \sin(\theta)\cos(\phi)\hat{\mathbf{x}} + \sin(\theta)\sin(\phi)\hat{\mathbf{y}} + \cos(\theta)\hat{\mathbf{z}}$$

and

$$\vec{S} = S_x \hat{x} + S_y \hat{y} + S_z \hat{z}$$

where S_x , S_y , and S_z are the three components of the spin- $\frac{1}{2}$ operator.

(a) Show that

w that
$$S_n = \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin(\theta) e^{-i\phi} \\ \sin(\theta) e^{i\phi} & -\cos \theta \end{bmatrix}.$$

$$S_n = \mathbf{S} \cdot \hat{\mathbf{n}}$$

$$= S_x \sin(\theta) \cos(\phi) + S_y \sin(\theta) \sin(\phi) + S_z \cos(\theta)$$

$$S_x = \frac{\hbar}{2} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad S_y = \frac{\hbar}{2} \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix} \qquad S_z = \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$S_n = \frac{\hbar}{2} \left(\begin{bmatrix} 0 & \sin \theta \cos \phi \\ \sin \theta \cos \phi & 0 \end{bmatrix} + \begin{bmatrix} 0 & -i \sin \theta \sin \phi \\ i \sin \theta \sin \phi & 0 \end{bmatrix} + \begin{bmatrix} \cos \theta & 0 \\ 0 & -\cos \theta \end{bmatrix} \right)$$

$$= \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin \theta \cos \phi - i \sin \theta \sin \phi \\ \sin \theta \cos \phi + i \sin \theta \sin \phi & -\cos \theta \end{bmatrix}$$

$$= \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin \theta (\cos \phi - i \sin \phi) \\ \sin \theta (\cos \phi + i \sin \phi) & -\cos \theta \end{bmatrix}$$

$$= \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin(\theta) e^{-i\phi} \\ \sin(\theta) e^{i\phi} & -\cos \theta \end{bmatrix}$$

(b) Show that the eigenvalues of S_n are $\pm \frac{\hbar}{2}$, as expected from the S-G experiment.

$$(S_n - \lambda I) |\psi\rangle = \mathbf{0}$$

$$\left(\frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos \theta \end{bmatrix} - \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} \right) |\psi\rangle = \mathbf{0}$$

$$\begin{vmatrix} \frac{\hbar}{2} \cos \theta - \lambda & \frac{\hbar}{2} \sin(\theta)e^{-i\phi} \\ \frac{\hbar}{2} \sin(\theta)e^{i\phi} & -\frac{\hbar}{2} \cos \theta - \lambda \end{bmatrix} = 0$$

$$-\left(\frac{\hbar}{2} \cos \theta - \lambda\right) \left(\frac{\hbar}{2} \cos \theta + \lambda\right) - \left(\frac{\hbar}{2} \sin \theta\right)^2 \left(e^{i\phi - i\phi}\right) = 0$$

$$-\left(\frac{\hbar}{2} \cos \theta\right)^2 + \lambda^2 - \left(\frac{\hbar}{2} \sin \theta\right)^2 = 0$$

$$\lambda^2 = \left(\frac{\hbar}{2} \cos \theta\right)^2 + \left(\frac{\hbar}{2} \sin \theta\right)^2$$

$$= \left(\frac{\hbar}{2}\right)^2$$

$$\lambda = \pm \frac{\hbar}{2}$$

(c) Show that the eigenvectors of S_n can be represented as

$$\begin{aligned} |+\rangle_n &= \cos\left(\frac{\theta}{2}\right) |+\rangle + \sin\left(\frac{\theta}{2}\right) e^{i\phi} |-\rangle \\ |-\rangle_n &= \sin\left(\frac{\theta}{2}\right) |+\rangle - \cos\left(\frac{\theta}{2}\right) e^{i\phi} |-\rangle \end{aligned}$$

The eigenvector $|\psi\rangle$ corresponding to the eigenvalue $\lambda=\pm\frac{\hbar}{2}$ is $|\pm\rangle_n$, and the eigenvector $|\psi\rangle$ corresponding to the eigenvalue $\lambda=-\frac{\hbar}{2}$ is $|-\rangle_n$.

$$(S_n - \lambda I) |\psi\rangle = \mathbf{0}$$

$$\begin{pmatrix} \frac{\hbar}{2} \begin{bmatrix} \cos \theta & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos \theta \end{bmatrix} - \frac{\hbar}{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{pmatrix} |+\rangle_n = \mathbf{0}$$

$$\begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} \\ \sin(\theta)e^{i\phi} & -\cos \theta - 1 \end{bmatrix} |+\rangle_n = \mathbf{0}$$

$$\begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ \sin(\theta)e^{i\phi} & -\cos \theta - 1 & | & 0 \end{bmatrix} \xrightarrow{R_2 - \frac{\sin(\theta)e^{i\phi}}{\cos \theta - 1}} \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & -\cos \theta - 1 - \frac{(\sin(\theta)e^{-i\phi})(\sin(\theta)e^{i\phi})}{\cos \theta - 1} & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & -\frac{(\cos \theta + 1)(\cos \theta - 1)}{\cos \theta - 1} - \frac{\sin^2(\theta)}{\cos \theta - 1} & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & -\frac{\cos^2(\theta) - 1 + \sin^2(\theta)}{\cos \theta - 1} & | & 0 \end{bmatrix}$$

$$\sim \begin{bmatrix} \cos \theta - 1 & \sin(\theta)e^{-i\phi} & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

If $|+\rangle_n = a |+\rangle + b |-\rangle$, then the above matrix corresponds to the equation

$$(\cos \theta - 1)a + \sin(\theta)e^{-i\phi}b = 0$$

$$(1 - \cos \theta)a = \sin(\theta)e^{-i\phi}b$$

$$\sin^2\left(\frac{\theta}{2}\right)a = \frac{1}{2}\sin(\theta)e^{-i\phi}b$$

$$\sin^2\left(\frac{\theta}{2}\right)e^{i\phi}a = \sin(\theta)\cos^2\left(\frac{\theta}{2}\right)b$$

So
$$|+\rangle_n = \sin^2\left(\frac{\theta}{2}\right)e^{i\phi}|+\rangle + \sin(\theta)\cos^2\left(\frac{\theta}{2}\right)|-\rangle$$
.

(I couldn't get the equation to match the form above.)

(d) For which values of θ and ϕ does the state $|+\rangle_n$ reduce to $|+\rangle_x$ and $|+\rangle_y$? $|+\rangle_x$ was $\frac{1}{\sqrt{2}}(|+\rangle + |-\rangle)$, so for $|+\rangle_n$ to equal $|+\rangle_x$, we must set

$$\cos\frac{\theta}{2} = \frac{1}{\sqrt{2}}$$

and

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = \frac{1}{\sqrt{2}}.$$

Starting with the first equation:

$$\cos \frac{\theta}{2} = \frac{1}{\sqrt{2}}$$
$$\frac{\theta}{2} = \frac{\pi}{4}$$
$$\theta = \frac{\pi}{2}$$

Then the second equation:

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = \frac{1}{\sqrt{2}}$$
$$\frac{1}{\sqrt{2}}e^{i\phi} = \frac{1}{\sqrt{2}}$$
$$e^{i\phi} = 1$$
$$\phi = 0$$

So for $|+\rangle_n$ to reduce to $|+\rangle_x$, θ must be $\frac{\pi}{2}$, and ϕ must be 0. Next, $|+\rangle_y$ was $\frac{1}{\sqrt{2}}(|+\rangle+i|-\rangle)$, so for $|+\rangle_n$ to equal $|+\rangle_y$, we must set

$$\cos\frac{\theta}{2} = \frac{1}{\sqrt{2}}$$

and

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = i\frac{1}{\sqrt{2}}.$$

The solution to the first equation we found earlier to be $\theta = \frac{\pi}{2}$. We then only have to solve the second equation:

$$\sin\left(\frac{\theta}{2}\right)e^{i\phi} = i\frac{1}{\sqrt{2}}$$
$$\frac{1}{\sqrt{2}}e^{i\phi} = i\frac{1}{\sqrt{2}}$$
$$e^{i\phi} = i$$
$$\phi = \frac{\pi}{2}$$

So for $|+\rangle_n$ to reduce to $|+\rangle_y$, both θ and ϕ must be $\frac{\pi}{2}$.

- (e) Suppose that a measurement of S_z is carried out on a particle in the $|-\rangle_n$ state. What is the probability that the measurement yields:
 - (i) $\frac{\hbar}{2}$? The probability is:

$$|\langle +|-\rangle_n|^2 = \left|\langle +|\left(\sin\left(\frac{\theta}{2}\right)|+\right\rangle - \cos\left(\frac{\theta}{2}\right)e^{i\phi}|-\rangle\right)\right|^2$$
$$= \left|\sin\left(\frac{\theta}{2}\right)\right|^2$$
$$= \sin^2\left(\frac{\theta}{2}\right)$$

(ii) $-\frac{\hbar}{2}$?

The probability is:

$$|\langle -|-\rangle_n|^2 = \left|\langle -|\left(\sin\left(\frac{\theta}{2}\right)|+\right\rangle - \cos\left(\frac{\theta}{2}\right)e^{i\phi}|-\rangle\right)\right|^2$$
$$= \left|-\cos\left(\frac{\theta}{2}\right)e^{i\phi}\right|^2$$
$$= \cos^2\left(\frac{\theta}{2}\right)$$

3. Three Stern-Gerlach Analyzers with Arbitrary Direction

A beam of spin- $\frac{1}{2}$ particles is sent through a series of three S-G analyzers, as shown in the figure. The second S-G analyzer is aligned along the \hat{n} -direction.

(a) Find the probability that particles transmitted through the first S-G analyzer are measured to have spin down at the third S-G analyzer.

This would be the probability of the particles going through the first two analyzers multiplied by the probability of those particles going through the third analyzer.

$$\begin{aligned} |\langle +|+\rangle_n|^2\big|_n\langle +|-\rangle\big|^2 &= \Big|\langle +|\left(\cos\left(\frac{\theta}{2}\right)|+\right) + \sin\left(\frac{\theta}{2}\right)e^{i\phi}|-\rangle\Big)\Big|^2\Big|\left(\cos\left(\frac{\theta}{2}\right)\langle +|+\sin\left(\frac{\theta}{2}\right)e^{-i\phi}\langle -|\right)|-\rangle\Big|^2 \\ &= \Big|\cos\left(\frac{\theta}{2}\right)\Big|^2\Big|\sin\left(\frac{\theta}{2}\right)e^{-i\phi}\Big|^2 \\ &= \cos^2\left(\frac{\theta}{2}\right)\sin^2\left(\frac{\theta}{2}\right) \\ &= \frac{\sin^2\theta}{4} \end{aligned}$$

(b) How must the angle θ of the second S-G analyzer be oriented so as to maximize the probability that particles are measured to have spin down at the third S-G analyzer? What is this maximum fraction?

Since the maximum of $\sin \theta$ is 1, we mush find a θ which will set the probability to $\frac{1}{4}$:

$$\frac{\sin^2 \theta}{4} = \frac{1}{4}$$
$$\sin^2 \theta = 1$$
$$\theta = \frac{\pi}{2}$$

In other words, the second analyzer must be oriented along the xy-plane, and the maximum probability is $\frac{1}{4}$.

9

4. State Tomography

It is known that there is a 90% probability of obtaining $S_z = \frac{\hbar}{2}$ if a measurement of S_z is carried out on a spin- $\frac{1}{2}$ particle. In addition, it is known that there is a 20% probability of obtaining $S_y = \frac{\hbar}{2}$ if a measurement of S_y is carried out. Determine the spin state of a particle as completely as possible from this information. What is the probability of obtaining $S_x = -\frac{\hbar}{2}$ if a measurement of S_x is carried out?

From the first criterion:

$$|\langle +|\psi\rangle|^2 = \frac{9}{10}$$
$$|\langle +|\psi\rangle| = \frac{3}{\sqrt{10}}$$

If $|\psi\rangle = a |+\rangle + b |-\rangle$:

$$\begin{aligned} |\langle +| \left(a \mid + \right\rangle + b \mid - \rangle)| &= \frac{3}{\sqrt{10}} \\ |a| &= \frac{3}{\sqrt{10}} \\ a &= \frac{3}{\sqrt{10}} e^{i\alpha} \end{aligned}$$

And from the second criterion:

$$\begin{vmatrix} y \langle + | \psi \rangle \end{vmatrix}^2 = \frac{1}{5} \\ \begin{vmatrix} y \langle + | \psi \rangle \end{vmatrix}^2 = \frac{1}{5} \\ \begin{vmatrix} \frac{1}{\sqrt{2}} (\langle + | -i \langle - |)(a | + \rangle + b | - \rangle) \end{vmatrix}^2 = \frac{1}{5} \\ \begin{vmatrix} \frac{1}{\sqrt{2}} (a - bi) \end{vmatrix}^2 = \frac{1}{5} \\ \frac{1}{2} (|a|^2 + |b|^2 + ab^*i - a^*bi) = \frac{1}{5} \\ 1 + ab^*i - a^*bi = \frac{2}{5} \\ a|b|e^{-i\beta}i - a^*|b|e^{i\beta}i = -\frac{3}{5} \\ |b| \left(ae^{-i\beta} - a^*e^{i\beta} \right) = \frac{3i}{5} \\ |a||b| \left(e^{i\alpha}e^{-i\beta} - e^{-i\alpha}e^{i\beta} \right) = \frac{3i}{5} \\ |a||b| \left(e^{i(\alpha - \beta)} - e^{i(\beta - \alpha)} \right) = \frac{3i}{5} \end{aligned}$$

Arbitrarily set $\beta = 0$:

$$\begin{split} |a||b|\left(e^{i\alpha}-e^{-i\alpha}\right) &= \frac{3i}{5} \\ |b|\left(e^{i\alpha}-e^{-i\alpha}\right) &= \frac{3\sqrt{10}i}{15} \\ b &= \frac{\sqrt{10}i}{5\left(e^{i\alpha}-e^{-i\alpha}\right)} \end{split}$$

So
$$|\psi\rangle = \frac{3}{\sqrt{10}}e^{i\alpha}|+\rangle + \frac{\sqrt{10}i}{5(e^{i\alpha}-e^{-i\alpha})}|-\rangle$$
.

Now, we find the probability of measuring $S_x = -\frac{\hbar}{2}$:

$$\begin{aligned} \left| {}_{x}\langle -|\psi\rangle \right|^{2} &= \left| \frac{1}{\sqrt{2}} (\langle +|-\langle -|) \left(\frac{3}{\sqrt{10}} e^{i\alpha} \left| + \right\rangle + \frac{\sqrt{10}i}{5 \left(e^{i\alpha} - e^{-i\alpha} \right)} \left| - \right\rangle \right) \right|^{2} \\ &= \left| \frac{1}{\sqrt{2}} \left(\frac{3}{\sqrt{10}} e^{i\alpha} - \frac{\sqrt{10}i}{5 \left(e^{i\alpha} - e^{-i\alpha} \right)} \right) \right|^{2} \end{aligned}$$