Japanese Patent Office Patent Laying-Open Gazette

Patent Laying-Open No.

5-317030

Date of Laying-Open:

December 3, 1993

International Class(es):

C12M 1/00

1/32

1/36

F25B 21/02 H01L 35/28

(5 pages in all)

Title of the Invention:

Biochemical Reaction Device with

Microchamber

Patent Appln. No.

4-128543

Filing Date:

May 21, 1992

Inventor(s):

Tsuyoshi Fujita

Shinnichiro Umemura

Noritaka Uchida

Applicant(s):

Hitachi, Ltd.

Partial English Translation of Japanese Patent Laying-Open No. 5-317030

... Omitted ...

[Title of the Invention]

Biochemical Reaction Device with Microchamber
... Omitted ...

[0019] In the mixing and agitation, a slighter trace of cocktail results in a more enhanced diffusion effect. Diffusion rate is proportional to volume and it is thus believed that the cocktail of $0.5\,\mu$ l is randomly mixed 200 times faster than that of $200\,\mu$ l. Microoscillation of high frequency can be applied to the entirety of the chamber to promote the diffusion effect. If the promoted diffusion effect is insufficient, three-dimensional microfabrication can be employed to construct a oscillator or rotor in the chamber. One possible configuration employed is that of a device which employs controlled electrostatic force for flexing a thin silicon plate to oscillate a thin silicon film. A large number of aligned electrostatic motors can also be fabricated on a silicon wafer.

... Omitted ...

[0023] In Fig. 1, the base material for the device is silicon. Anisotropic etching is employed to form a hole of an appropriate volume serving as a chamber, and a semiconductor Peltier device configured of elements 101-105 is then formed on the bottom surface of the hole. Elements 101 and 102 are p and n semiconductors formed by diffusion (i.e. semiconductor process), respectively. Element 103 is a lead wire. Element 104 is a heater and cooler plate (a temperature controller plate). Element 105 is a fixed-temperature contact common to the all wells. The temperature of temperature controller plate 104 can be controlled independently for each well by appropriately controlling the temperature of fixed-temperature contact 105 and applying an appropriate

voltage to lead wire 103 at the both ends. The Peltier device can also be used as a temperature-measuring thermocouple by measuring the potential difference between the ends of the lead wire without applying a voltage to the lead wire. Furthermore, temperature controller portion 104 and a thermocouple portion 201 can be separately formed in processing the well, as shown in Fig. 2. The well according to the present embodiment has a mouth of 1.2mm in length and 1.2mm in width, and a bottom surface of 0.6mm in length and 0.6mm in width due to the characteristics of the crystal face of silicon, and has a depth of 0.42mm. The well has a maximum volume of $0.35\,\mu$ l.

[0024] As temperature controller plate 104, a copper electrode of the Peltier device is used intact. However, if the copper electrode is considered to have significant influence on the cocktail, the electrode is covered with a ceramic aluminum plate, a polymer with good thermal conductivity or the like to avert the influence.

[0025] The well is surrounded by oxidized SiO₂, which provides an larger effect of heat insulation than the base material, i.e. silicon.

[0026] Fig. 3 is a bird's-eye view of an automatic, sample preparing apparatus incorporating therein the chamber plate shown in Fig. 1. A reaction device 100 employing the microchamber plate is fixed on a platform 301 which is configured of a socket of an electrode of the chamber plate and a temperature controller for controlling the temperature of the fixed-temperature contact. High frequency oscillation can also be applied to the chamber plate to enhance the diffusion effect in the well.

... Omitted ...

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-317030

(43)公開日 平成5年(1993)12月3日

(51)Int.Cl. ⁵ C 1 2 M 1/00 1/32	韺別記号 A	庁内整理番号	FΙ	技術表示箇所
1/36 F 2 5 B 21/02 H 0 1 L 35/28	B Z	8919-3L 9276-4M	3	新査請求 未請求 請求項の数 7(全 5 頁)
(21)出願番号	特頭平4-128543		(71)出願人	株式会社日立製作所
(22)出願日	平成 4年(1992) 5月21日		(72)発明者	東京都千代田区神田駿河台四丁目 6番地 藤田 毅 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所內
			(72)発明者	梅村 晋一郎 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内
			(72)発明者	内田 憲孝 埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所内
			(74)代理人	

(54)【発明の名称】 マイクロチャンパを用いた生化学反応装置

(57)【要約】

【目的】極微量のサンプルを様々な反応条件で同時に処 理することが可能となる新規な生物学的および生化学的 分析に供する装置、例えばDNAや蛋白質に代表される 生体高分子反応を行なうマイクロマルチチャンバ装置お よびその利用方法、製造方法の提案

【構成】開口部面積1.2mm×1.2mm以下、もし くは深さ1.4mm以下のチャンパを多数配列し、各々 のチャンパ内に独立に制御することの可能な温度調節機 能を有する生化学反応装置。シリコンウェハに半導体プ ロセスにより多数の孔と、その内部に半導体ペルティエ 素子 (101~105) を形成する。チャンバ毎に印加 電圧を制御することにより、独立に温度調節可能とした ものである。

1

【特許請求の範囲】

【請求項1】二次元平面上に配列された多数の孔(チャンパ)を持つ生化学反応容器において、各々のチャンパに独立した温度調節が可能な温度調節機能を組み込んだことを特徴とする生化学反応装置。

【請求項2】前記生化学反応容器は12行×8列穴のマイクロタイタープレートであることを特徴とする請求項1記載の生化学反応装置。

【請求項3】前記各チャンバの大きさが、閉口部において1.2mm×1.2mm以下の大きさであることを特 10 徴とする請求項1記載の生化学反応装置。

【請求項4】前記各チャンバの大きさが、深さにおいて 1.4mm以下の大きさであることを特徴とする請求項 1記載の生化学反応装置。

【請求項5】母材をSiウエハとし、反応容器となるチャンパを前記Siウエハの一表面にエッチングにより成形し、チャンパ周囲を酸化することにより、チャンパを熱伝導率の低いSiO₂で囲まれた構造にすることを特徴とする請求項1記載の生化学反応装置。

【請求項6】母材をSiウエハとし、反応容器となるチ 20 ヤンバを前記Siウエハの一表面にエッチングにより成形し、その各チャンバ内に独立したペルティエ素子を配置し、各素子は独立して制御されることを特徴とする請求項1記載の生化学反応装置。

【請求項7】二次元平面上に配列された多数のチャンパを持つ生化学反応容器の、各々のチャンパに独立した温度調節が可能な温度調節機能を組み込んだ生化学反応装置を用いて核酸増幅反応を行うに際し、各チャンパごとに温度及び/または温度を保持する時間を独立に変化させることを特徴とする核酸増幅反応方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は生物学的および生化学的 分析に供する装置、例えばDNAや蛋白質に代表される 生体高分子反応を行なうマイクロマルチチャンバ装置お よびその利用方法、製造方法に関する。

[0002]

【従来の技術】多数の生化学的試料を同時に扱うマイクロマルチチャンバとしては、いわゆる12行×8列のマイクロタイタープレートを含むマイクロウエルテストプ 40レートがあり、これに規格を同じくしたハンドリング装置やインキュベータ、遠心装置等の周辺装置も実用化されている。マイクロウエルテストプレートに反応装置として分離膜や機能膜を有するように設計されたマイクロフィルトレーショントレーとしては、特開 平2-187110に見られるように、免疫学的検査やマイクロクロマトグラフなどを目的とした使い捨ての装置を提供するものがある。

【0003】しかし、現在実用化されているマイクロタ イタープレートは単に試料を保持する容器でしかなく、 またマイクロフィルトレーショントレーについても、ウェル毎に独立に反応条件を制御することは非常に困難であり、特に温度調節を独立に行うことは不可能であると考えられる。

2

【0004】さらにまた、現在市販されているマイクロタイタープレートは、容量が10µl~1mlのオーダーの大きさのチャンバであり、極微料の試料を取り扱うことや高速で温度調節を行うには適していない。

【0005】一方、極微量の試料を扱うマイクロチャンパとしては、特公平2-34597号の "細胞を選別するための装置および方法" や、特開平-131569号の "マイクロチャンパプレートおよび粒子判別法ならびに粒子処理装置および細胞処理装置"がある。これらは細胞一個の大きさを扱うマイクロチャンパを提供し、かつ半導体プロセスによって組み込んだ電極等によって、独立に各チャンパに電圧を印加すること等についての方法および装置を提供しているが、どちらも主に細胞を取り扱うことを目的とするもので、DNAや蛋白質に代表される生体高分子反応を行うには最適とは言えないと考えられる。

[0006]

【発明が解決しようとする課題】生化学反応の主なもの は、分離、精製、撹拌混合、インキュベート(反応温度 保持) であり、これらを10°~10°個のオーダーで同 時に処理できれば、現在の生化学的な仕事のスループッ トは飛躍的に向上すると考えられる。例えば、現在癌化 と関係する様々な遺伝子およびその変異部位が同定され つつあり、その数は数百種類にも及んでいるが、これら の部位を同時に検査、検出できれば、診断の精度やスル 30 ープットは大きく向上する。また遺伝子解析において、 10000クローンを超える遺伝子ライブラリのスクリ ーニングなどを行なう上では、一枚のプレート上に少な くとも1000個以上のチャンバが並んでいることが望 ましい。一方、医療診断や腫瘍細胞などの部位特異的発 現機構を調べる上では、準備可能な検体試料の量の点か ら考えると、多数であると同時に微量の試料を取り扱う 必要がある。

【0007】また近年発明されたイン ヴィトロ (Invitro)での核酸増幅反応 (PCR法)は、反応 液の温度制御によって様々な新しい診断手法や実験手法 を可能とし、その結果、生化学の研究作業の中でイン ヴィトロで行うことのできる範囲がかなり拡大してきている。この場合に重要となってくるのは、反応液全体の 均一かつ高速度な温度制御技術である。

【0008】従って本発明の目的は、まず微量の反応試料を十分な濃度で反応させ得る装置を提供するものである。また、反応液の温度制御をより迅速にかつ均一に行えるようにした装置を提供することにある。

【0009】さらに本発明の他の目的は、チャンパ自体を能動的な反応装置とすることにより、同時に多数の生

3

化学的試料を取り扱うことを可能とし、また必要に応じて個々の試料について独立に反応条件を設定することを可能とする装置を提供すること、加えてこの装置により可能となる新たなプロトコールの一例を提供するものである。

【0010】また、生化学の反応装置は、時として致命的な影響を与える混合汚染(コンタミネーション)を防ぐために使い捨て可能(ディスポーザブルタイプ)であることが好ましい。そこで、大量生産を可能とし、ディスポーザブルタイプの反応装置を提供することも本発明 10の目的である。

[0011]

【課題を解決するための手段】上記の目的を達成するため、それぞれのチャンパを容量 0.5 μ 1 以下に微小化し、微少量の反応液を効率良く取り扱えるようにした。【0012】また、各チャンパ毎にペルティエ素子により形成されるヒータおよび冷却器を設け、そのヒータおよび冷却器に直接反応液を接触させることにより反応液の温度制御を行なえるようにした。

【0013】加えて、チャンバの加工に半導体プロセス 20 を利用することにより、大量生産を可能とした。

[0014]

【作用】チャンパを微小化し微少量の反応液を扱えるようにすることにより、微量の反応試料を十分な濃度で反応させることが可能となる。例えば、0.5 μ 1 の反応液の中で反応を行わせると、100μ 1 の反応液の場合と同濃度の反応を行うためには1/200の量の試料があれば良く、逆に言えば、同じ量の試料で濃度は200倍となる。このことは反応出発試料の微量化だけでなく、酵素等の使用量も少なくすることとなり、低コスト30化にもつながると考えられる。

【0015】また、反応液の微量化に加えて各チャンパごとにヒータおよび冷却器を取付け、そのヒータおよび冷却器に直接反応液を接触させることにより、反応チャンパごとに反応液を独立に温度制御し、かつ、その温度制御を迅速に行うことが可能となる。チャンパ母材をシリコンとして、異方性エッチングによってチャンバとなる適当な体積の孔を掘った後、表面のある面に対して、PNPN…からなる半導体ペルティエを形成し、各ペルティエに独立に配線を行い付加電圧を制御することにより、独立に温度制御(加熱も冷却も同一の素子により、が可能となる。また、すべてのチャンパ内加工が終了した後に、チャンパを割伝導率の低いSiO2で囲まれた構造にすることも可能である。

【0016】このようにして作ったチャンパにおいては、ベルティエ素子の吸熱および発熱量の限界は、吸熱時0.15W/mm 2 、発熱時0.18W/mm 2 程度と見積もられる。この条件において、酵素反応の開始および終了を精度良く制御するための温度変化の速度を $\Delta250$

5℃/sec以上とすると、深さは最大でも1.4mm 以下である必要がある。

[0017]一方、チャンバ加工を施す面積は、装置の小型化や手に入り易いシリコンウェハの大きさ、加工やハンドリングの容易さから判断して、80mm×80mm以下の大きさの四角形状配列が良いと考えられる。先述のように、今後の遺伝子診断や遺伝子解析に用いる上では、一枚のウェハ上に少なくとも1000個のチャンバが並んでいることが望ましい。この場合80mm×80mmの正方形状にチャンバの一辺と同じピッチで1000個のチャンバを配列するためには、チャンバの一辺は1.2mm以下であることが必要となる。

【0018】ところで、シリコンウェハを異方性エッチ ングにより加工する場合、開口部形状を正方形とする と、穴形状は正方形錐状となり、その底面と側面のなす 角度は約50°である。この形状において、深さをヒト 卵細胞 (直径約200μm) が扱える420μmとし、 開口部を1.2mm×1.2mmの正方形とするとペル ティエ素子を形成する底面は0.6mm×0.6mmの 正方形状となる。このようにして作ったチャンパにおい ては、ペルティエ素子の吸熱および発熱量は、吸熱時 0.05W、発熱時0.06W程度と見積もられるが、 上記のような開口部1.2mm×1.2mm、深さ0. 4 2 m m の場合、体積は最大 0. 3 5 μ l となり Δ 2 5 ℃/secを満足する。ただし従来の温度調節器は、反 応液をいれた反応チューブを恒温槽に装着することによ って液温を調節していたので、チューブの熱抵抗やチュ ープとヒータ間の熱接触なども問題となっていたが、本 発明のように加熱もしくは冷却器が直接反応液に接して いれば、効果的な温度調節が可能である。

【0019】混合撹拌の点においても、反応液が微量であれば拡散の効果が大きくなる。拡散の速度は、およそ体積と比例関係にあるので、0.5μ1の反応液中には200μ1の場合に比べて200倍の速さでランダームな混合が進むと考えられる。チャンパ全体に対して対してが進むと考えられる。チャンパ全体に対して対してがあります。これだけでは十分といえない場合は、チャンパ内に三次元微細加工によって振動子もしくはしたカナンが内に三次元微細加工によって振動子もしくはしたテンパ内に三次元微細加工によって、対りコンを静電気力によって、シリコンを静電気力によって、シリコンを聴きを対する装置も実現されているが、この構造を利用することが考えられる。また、シリコンウェハ上に多数の静電モータを並べて作ることも可能である。

【0020】これらの加熱および冷却素子や撹拌要素を、半導体プロセスによって各チャンパごとに構築することによって、多数の反応装置が平面上に配列されたマイクロチャンパ装置を提供することが可能である。 しかも半導体プロセスによれば、多数のマイクロチャンバを同時に加工することが容易であるので、装置自体をディ

スポーザブルにすることも可能となる。

【0021】このような装置を用いることによって、反 応温度と反応時間をパラメータとした新しい実験手法が 可能となる。例えば、PCR法を行なう場合には、変性 温度、再会合温度、伸長温度の3種類の温度とその保持 時間が、反応の効率(場合によっては生成産物の有無) を決定する。反応液の微量化により精度よく設定温度を 制御し、かつ、反応液ごとに独立な温度制御の行い得る 本装置を用いれば、同じ反応液に対して異なる設定温度 で同時に反応を行ない、最適な実験条件における産物を 10 迅速に得ることが可能である。またそれだけでなく、D NA配列中の点変異などが、敏感に最適再会合温度に影 響することを利用して、遺伝子診断などをより正確に効 率よく行なうことも可能となる。加えて本装置では、D NAポリメラーゼによる伸長時間を分解能良く制御する ことにより、反応生成物の特異性を向上させることも可 能である。

[0022]

【実施例】以下、本発明の一実施例を図1〜図4により 説明する。図1、2は本発明のマイクロチャンパを用い 20 た生化学反応装置、図3は上記装置を要素として組み込 んだ自動試料調製装置である。また図1〜図4において 共通部分の番号は同一とした。

【0023】図1において、装置の母材はシリコンであ り、異方性エッチングによってチャンバとなる適当な体 積の孔を掘った後、底面に101~105からなる半導 体ペルティエ素子が形成されている。101、102は 拡散法 (半導体プロセス)--により形成したP型およびN... 型半導体、103はリード線、104はヒータおよび冷 却プレート (温調プレート)、105は全ウェル共通の 30 定温度接点である。定温度接点105を適当な温度に制 御しておき、リード線103の両端に必要な電圧をかけ ることにより、104に示す温調プレートの温度をウェ ル毎に独立に制御可能である。また、リード線に電圧を かけず両端の電位差を測定すればこのペルティエ素子を 温度計測用の熱電対として使用することも可能である。 場合によっては、図2に示すようにウェル加工時に温調 部分104と熱電対部分201を別々に形成することも 可能である。本実施例においてウェルの大きさは、開口 部は縦1.2mm×横1.2mmで深さ0.42mm、 シリコン結晶面の特性から、底面は縦0.6mm×横 O. 6 mmとなり、ウェルの容積は最大 O. 3 5 μ l と なる。

【0024】温調プレート104としてはベルティ工素子の銅電極をそのまま用いているが、銅電極の反応液に対する影響が重要な場合には、この電極の上をセラミックアルミプレートや熱伝導性の良いポリマ等で覆うことにより対策する。

【0.0.2.5】またウェルの周囲は酸化された $S.i.O_2$ と 試料とする、生化学反応の最週化、商スループット化をなっており、熱絶縁の効果が母材のシリコンに比べて大 50 実現し、遺伝子解析や遺伝子診断の分野の発展に寄与で

きくなるようになっている。

【0026】図3は図1に示したチャンパプレートを組み込んだ自動試料調製装置の鳥瞰図である。マイクロチャンパプレートを用いた反応装置100は台301に固定される。台301は、チャンパプレートの電極のソケットおよび定温度接点の温度制御のための温度調節器より構成されている。ウェル内の拡散の効果を高めるために高周波の振動をチャンパプレートに与えられるような構造にすることもできる。

6

【0027】302はピペッタ303とマイクロチャンバブレートのふた304を搬送するXYステージである。ピペッタ303はサブマイクロリットルの分注が可能なマイクロキャピラリを用いたピペットを有し、極微量の試薬およびサンプルを精度よく分注することが可能である。このピペッタが、溶液保存容器305と反応装置100との間を往復しながらウェル内に反応液を供給する。超極微量の試薬の供給には、キャピラリなどのピペットではなく単なる針先を用いる方法もある。すなわち、中空部分を持たず試薬に浸した針先の表面を濡らしている試薬を、針先を反応液に接触させることにより起極微量の試料供給が可能となる。

【0028】ふた304はマイクロチャンバと同様な位置配列に浅い溝の加工をして、上面にベルティエ素子を形成したものである。このふた304は、分注時以外は、ウェルにたいして溝が一致するように押しつけられ(図4)、それぞれのウェルの反応液よりもわずかに(2~3℃)高い温度に制御される。このことによりウェル中の微量反応液の蒸発を防ぐことが可能である。

【0029】この自動試料調製装置は、分離機能膜等の分離要素、さらに多種類の試薬供給要素などと組み合わせることにより、非常に小型大量処理の生化学反応装置を構成し得ると考えられる。また今後の三次元微細加工技術の進歩により、ウェル中に撹拌要素や分離要素を含むチャンパプレートも実現可能であると考えられる。

【0030】本明細書においては、主に1µ1以下の容量を持つマイクロチャンパプレートについて述べてきたが、本発明の重要項目である、独立した制御の可能な温度調節機能や撹拌、分離機能を各々のチャンパが有する反応装置に関しては、チャンパの大きさが制限を受けるものではなく、いわゆる12行×8列のマイクロタイタープレートに上記のような反応要素を組み込んだ反応装置も、本発明の含む範囲である。

[0031]

【発明の効果】本発明によれば、極微量のサンプルを様々な反応条件で同時に処理することが可能となる。このことにより、従来扱えなかった極微量のサンプルを出発試料とする、生化学反応の最適化、高スループット化を実現し、遺伝子解析や遺伝子診断の分野の発展に寄与で

きる。

【0032】また周辺装置との組合せにより、生化学反応自動装置の小型化を実現する。

【図面の簡単な説明】

【図1】本発明の一実施例のマイクロチャンバプレート を用いた生化学反応装置

【図2】本発明の他の実施例のマイクロチャンパプレー トを用いた生化学反応装置

【図3】図1で示した生化学反応装置を組み込んだ自動 試料調製装置の一例を示す鳥瞰図

[図1]

【図4】図3で示した自動試料調製装置において、マイクロチャンパプレートにふた部プレートを装着した状態の図

【符号の説明】

100…マイクロチャンパプレートを用いた生化学反応 装置、101,102…P型およびN型半導体、103 …リード線、104…温度調節プレート、105…定温 度接点、201…熱電対部分、301…マイクロチャン パプレートの台、302…XYステージ、303…ピペ ッタ、304…マイクロチャンパプレートのふた

【図2】

[図4]

[図3]

