Calculus II

Definite integrals of the form
$$\int_{\rho}^{9} \sqrt{ax^2 + c} dx$$
, $a, c > 0$

Todor Milev

2019

Find the area locked b-n the hyperbolas $y = \pm \sqrt{x^2 + 1}$ and $x = \pm 2\sqrt{2}$.

Signed distance b-n (x, y) and line u = 0 equals

$$\pm \sqrt{\left(x - \frac{(x+y)}{2}\right)^2 + \left(y - \frac{(x+y)}{2}\right)^2}$$

$$= \pm \sqrt{\frac{1}{2}(y-x)^2} = \pm \frac{\sqrt{2}}{2}(y-x) =$$

$$u.$$

We studied $v = \frac{1}{u}$ is called a hyperbola: why do we call $y = \sqrt{x^2 + 1}$ hyperbola? Compute:

$$\sqrt{x^{2} + 1} = y$$

$$x^{2} + 1 = y^{2}$$

$$y^{2} - x^{2} = 1$$

$$\frac{\sqrt{2}}{2}(y - x)\frac{\sqrt{2}}{2}(y + x) = \frac{1}{2}$$

$$uv = \frac{1}{2}$$

$$v = \frac{1}{2}u,$$

where $u = \frac{\sqrt{2}}{2}(y-x)$ $v = \frac{\sqrt{2}}{2}(y+x)$. Consider an arbitrary point (x, y).

Find the area locked b-n the hyperbolas $y = \pm \sqrt{x^2 + 1}$ and $x = \pm 2\sqrt{2}$.

Signed distance b-n (x, y) and line u = 0 equals u. Similarly compute that signed distance b-n (x, y) and the line v = 0 equals v. $\Rightarrow y^2 - x^2 = 1$ is the hyperbola $v = \frac{1/2}{u}$ in the (u, v)-plane.

We studied $v = \frac{1}{u}$ is called a hyperbola: why do we call $y = \sqrt{x^2 + 1}$ hyperbola? Compute:

$$\sqrt{x^{2} + 1} = y$$

$$x^{2} + 1 = y^{2}$$

$$y^{2} - x^{2} = 1$$

$$\frac{\sqrt{2}}{2}(y - x)\frac{\sqrt{2}}{2}(y + x) = \frac{1}{2}$$

$$uv = \frac{1}{2}$$

$$v = \frac{1}{2}u,$$

where $u = \frac{\sqrt{2}}{2}(y-x)$ $v = \frac{\sqrt{2}}{2}(y+x)$. Consider an arbitrary point (x, y).

Find the area locked b-n the hyperbolas $y = \pm \sqrt{x^2 + 1}$ and $x = \pm 2\sqrt{2}$.

The area in question is:

$$\int_{-2\sqrt{2}}^{2\sqrt{2}} 2\sqrt{x^2 + 1} dx$$

$$= 2 \left[x\sqrt{x^2 + 1} + x \right]_{0}^{2\sqrt{2}}$$

$$= 2 \left(2\sqrt{2}\sqrt{(2\sqrt{2})^2 + 1} + 2\sqrt{2} \right)$$

$$= 12\sqrt{2} + 2 \ln \left(3 + 2\sqrt{2} \right)$$

$$\approx 20.496$$

Find the area locked b-n the hyperbolas $y = \pm \sqrt{x^2 + 1}$ and $x = \pm 2\sqrt{2}$.

- Recall: integral can be solved via $x = \tan \theta$.
- Geometric interpretation of θ ?

The area in question is:

$$\int_{-2\sqrt{2}}^{2\sqrt{2}} 2\sqrt{x^2 + 1} dx$$

$$= 2 \left[x\sqrt{x^2 + 1} + x \right]_{0}^{2\sqrt{2}}$$

$$= 2 \left(2\sqrt{2}\sqrt{(2\sqrt{2})^2 + 1} + 2\sqrt{2} \right)$$

$$= 12\sqrt{2} + 2 \ln \left(3 + 2\sqrt{2} \right)$$

$$\approx 20.496$$