Vektorrummet \mathbb{R}^n

KØBENHAVNS UNIVERSITET

Definition 3.1 (Vektoraddition og skalarmultiplikation)

Lad \mathbb{R}^n være mængden af alle (søjle)vektorer

$$\mathbf{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \quad \text{hvor} \quad u_1, \dots, u_n \in \mathbb{F}$$

Vektoraddition/subtraktion og skalarmultiplikation defineres pladsvis:

$$\mathbf{u} \pm \mathbf{v} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} \pm \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} := \begin{pmatrix} u_1 \pm v_1 \\ \vdots \\ u_n \pm v_n \end{pmatrix} \quad \text{og} \quad \mathbf{s}\mathbf{u} = \mathbf{s} \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} := \begin{pmatrix} \mathbf{s}u_1 \\ \vdots \\ \mathbf{s}u_n \end{pmatrix}$$

Eksempel (Regning med vektorer)

I \mathbb{R}^2 gælder fx

$$\begin{pmatrix} 1 \\ 2 \end{pmatrix} + \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 4 \\ 6 \end{pmatrix} \quad , \quad 7 \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 7 \\ 14 \end{pmatrix} \quad \text{og} \quad - \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$

Dias 3/33

Forelæsning 5: Underrum af \mathbb{R}^n , baser og dimension

LinAlgDat 2019/2020

Henrik Holm og Henrik L. Pedersen Institut for Matematiske Fag holm@math.ku.dk og henrikp@math.ku.dk

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

4. mai 2020 - Dias 1/33

Oversigt

- **1** Vektorrummet \mathbb{R}^n
- 2 Underrum
- 3 Span
- 4 Lineær (u)afhængighed
- 6 Baser
- 6 Dimension

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

INSTITUT FOR MATEMATISKE FAG

Theorem 3.1 (Regneregler i \mathbb{R}^n)

Nulvektoren i \mathbb{R}^n har per definition 0'er på alle n koordinater:

$$\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

Vektoraddition og skalarmultiplikation opfylder følgende regler:

•
$$u + v = v + u$$

•
$$(u + v) + w = u + (v + w)$$

$$\bullet \ \ v+0=v$$

•
$$v + (-v) = 0$$

•
$$s(\mathbf{u} + \mathbf{v}) = s\mathbf{u} + s\mathbf{v}$$

•
$$(s+t)\mathbf{v} = s\mathbf{v} + t\mathbf{v}$$

•
$$s(t\mathbf{v}) = (st)\mathbf{v}$$

for alle vektorer $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ og alle tal (skalarer) $s, t \in \mathbb{R}$.

Dias 2/3

Dias 4/

INSTITUT FOR MATEMATISKE FAG

INSTITUT FOR MATEMATISKE FAG

Abstakte vektorrum

Definition 7.1 (Vektorrum)

En mængde V (hvis elementer vi omtaler som "vektorer") med

- Vektoraddition: $V \times V \rightarrow V$, $(\mathbf{u}, \mathbf{v}) \mapsto \mathbf{u} + \mathbf{v}$, og
- Skalarmultiplikation: $\mathbb{R} \times V \to V$, $(s, \mathbf{u}) \mapsto s\mathbf{u}$

som opfylder reglerne i Theorem 3.1 kaldes et (reelt) vektorrum.

Theorem 3.1 (reformulering)

Mængden $V = \mathbb{R}^n$ er et (reelt) vektorrum.

Eksempel (Abstrakte vektorrum §7.1)

 $V = \mathbb{R}^{m \times n} = \{m \times n \text{ matricer med indgange fra } \mathbb{R}\}$

 $V = \mathbf{F}(-\infty, \infty) = \{ \text{funktioner } f \colon \mathbb{R} o \mathbb{R} \}$

 $V = \mathbf{P}_n = \{ \text{polynomier } p(t) = a_0 + a_1 t + \dots + a_n t^n \text{ hvor } a_i \in \mathbb{R} \}$

Dias 5/33

Definition 3.2 (Underrum)

Følgende begreb er helt centralt:

En delmængde $\mathcal{U} \subseteq \mathbb{R}^n$ kaldes et underrum såfremt:

ullet $oldsymbol{0}\in\mathcal{U}$

KØBENHAVNS UNIVERSITET

KØBENHAVNS UNIVERSITET

Underrum

- For alle $\mathbf{u}, \mathbf{v} \in \mathcal{U}$ gælder $\mathbf{u} + \mathbf{v} \in \mathcal{U}$
- For alle $s \in \mathbb{R}$ og $\mathbf{u} \in \mathcal{U}$ gælder $s\mathbf{u} \in \mathcal{U}$

Diac 7/22

V Ø DENHAVNE HNIVEDELTET

INSTITUT FOR MATEMATISKE FAG

Vi holder os fra abstakte vektorrum!

Vi vil udelukkende fokusere på vektorrummet $V = \mathbb{R}^n$.

Men alt hvad vi skal lære om \mathbb{R}^n (fx underrum, span, lineær uafhængighed, baser, ...) gælder også i et abstrakt vektorrum V.

U = linie gennem (0,0,0)

U = plan gennem (0,0,0)

Dias 6/33

INSTITUT FOR MATEMATISKE FAG

Hvad kan man fx bruge underrum til?

I *Principal Component Analysis (PCA)* tilnærmer man et højdimensional datasæt med et lavdimensionalt underrum.

http://en.wikipedia.org/wiki/Principal_component_analysis

Dias 9/33

INSTITUT FOR MATEMATISKE FAG

Span

KØBENHAVNS UNIVERSITET

Definition 3.3 (Span af vektorer)

Lad $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ være en mængde af vektorer i \mathbb{R}^n . Sæt

$$\operatorname{span} S = \operatorname{span} \{\mathbf{v}_1, \dots, \mathbf{v}_k\} := \{ x_1 \mathbf{v}_1 + \dots + x_k \mathbf{v}_k \, | \, x_1, \dots, x_k \in \mathbb{R} \},$$

dvs. span $\mathcal S$ er mængden af alle linearkombinationer af $\mathbf v_1,\dots,\mathbf v_k$. Man definerer span $\emptyset=\{\mathbf 0\}$.

Eksempel (Span)

1/3

Betragt i \mathbb{R}^3 vektorerne

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ og $\mathbf{v}_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$.

Vi vil undersøge om vektorerne

$$\mathbf{u} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \qquad \text{og} \qquad \mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

tilhører mængden span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$.

ias 11/33

ØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Eksempel (Et underrum af \mathbb{R}^4)

Følgende delmængde af \mathbb{R}^4 er et underrum:

$$\mathcal{U} = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 = 0 \text{ og } x_2 + x_3 + x_4 = 0 \}$$

En måde at indse dette på er ved at bemærke, at

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \in \mathcal{U} \iff \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \mathbf{A}\mathbf{x} = \mathbf{0}$$

- Da $\mathbf{A0} = \mathbf{0}$ gælder $\mathbf{0} \in \mathcal{U}$.
- • Hvis $\mathbf{u},\mathbf{v}\in\mathcal{U}$ gælder $\mathbf{A}\mathbf{u}=\mathbf{0}$ og $\mathbf{A}\mathbf{v}=\mathbf{0}.$ Matrixregning giver

$$\label{eq:alpha} \textbf{A}(\textbf{u}+\textbf{v}) = \textbf{A}\textbf{u} + \textbf{A}\textbf{v} = \textbf{0} + \textbf{0} = \textbf{0}\,,$$

og dermed gælder ${\boldsymbol u} + {\boldsymbol v} \in {\mathcal U}.$

• Lad $s \in \mathbb{R}$. Hvis $\mathbf{u} \in \mathcal{U}$ gælder $\mathbf{A}\mathbf{u} = \mathbf{0}$. Matrixregning giver

$$\mathbf{A}(s\mathbf{u}) = s\mathbf{A}\mathbf{u} = s\mathbf{0} = \mathbf{0}\,,$$

og dermed gælder $s\mathbf{u} \in \mathcal{U}$.

Illustration af eksemplet

KØBENHAVNS UNIVERSITET

 $\mathcal{U} = \text{span}\{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$

INSTITUT FOR MATEMATISKE FAG

Dias 12

Dias 10/33

Eksempel (Span)

2/3

Vektoren **u** tilhører span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ hvis der findes $x_1, x_2, x_3 \in \mathbb{R}$ så

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 = \mathbf{u}$$
 dvs. $x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

Dette kan også skrives som

$$\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Vi undersøger om ligningssystemet kan løses:

$$\begin{pmatrix} 1 & 4 & 7 & 1 \\ 2 & 5 & 8 & 1 \\ 3 & 6 & 9 & 1 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & -1 & -\frac{1}{3} \\ 0 & 1 & 2 & \frac{1}{3} \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Der gælder altså fx

$$-\frac{1}{3}\mathbf{v}_1 + \frac{1}{3}\mathbf{v}_2 = \mathbf{u}$$

Konklusion: $\mathbf{u} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ (endda er $\mathbf{u} \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$).

Dias 13/33

Theorem 3.2 (Span er et underrum)

Lad $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ være en mængde af vektorer i \mathbb{R}^n . Mængden span $S = \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ er et underrrum af \mathbb{R}^n .

Definition 3.4

KØBENHAVNS UNIVERSITET

Lad \mathcal{U} være et underrum af \mathbb{R}^n og lad $\mathcal{S} \subseteq \mathcal{U}$ være en endelig delmængde. Man siger, at \mathcal{S} udspænder \mathcal{U} hvis span $\mathcal{S} = \mathcal{U}$.

Eksempel (Tre vektorer der udspænder \mathbb{R}^3)

1/2

Vi har set, at vektorerne

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ og $\mathbf{v}_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$

ikke udspænder $\mathcal{U}=\mathbb{R}^3$ (de udspænder en plan), men det gør faktisk

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ og $\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

as 15/33

ØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Eksempel (Span)

3/3

Tilsvarende undersøges om vektoren \mathbf{e}_1 tilhører span $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$:

$$\begin{pmatrix} 1 & 4 & 7 & | & 1 \\ 2 & 5 & 8 & | & 0 \\ 3 & 6 & 9 & | & 0 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & -1 & | & 0 \\ 0 & 1 & 2 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{pmatrix}.$$

Ligningssystemet kan altså ikke løses.

Konklusion: $e_1 \notin \text{span}\{v_1, v_2, v_3\}.$

Eksemplet viser følgende:

Metode til at afgøre om en vektor tilhører et span

Lad $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ og sæt $\mathbf{A} = (\mathbf{v}_1 \mid \dots \mid \mathbf{v}_k)$. For en vektor $\mathbf{u} \in \mathbb{R}^n$ er følgende betingelser ækvivalente:

- (i) **u** tilhører span $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$.
- (ii) Ligningssystemet $\mathbf{A}\mathbf{x} = \mathbf{u}$ har (mindst) en løsning.

Det nye (i) kan altså "oversættes" til det velkendte (ii).

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Eksempel (Tre vektorer der udspænder \mathbb{R}^3)

2/2

Bevis: Vi skal godtgøre, at uanset hvilket $\mathbf{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$ man vælger, så har ligningssystemet

$$\begin{pmatrix} 1 & 4 & 1 \\ 2 & 5 & 0 \\ 3 & 6 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}.$$

mindst en løsning. Det har faktisk en entydig løsning:

$$\begin{pmatrix} 1 & 4 & 1 & u_1 \\ 2 & 5 & 0 & u_2 \\ 3 & 6 & 0 & u_3 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & 0 & -2u_2 + \frac{5}{3}u_3 \\ 0 & 1 & 0 & u_2 - \frac{2}{3}u_3 \\ 0 & 0 & 1 & u_1 - 2u_2 + u_3 \end{pmatrix}.$$

dvs.

$$x_1 = -2u_2 + \frac{5}{3}u_3$$
 , $x_2 = u_2 - \frac{2}{3}u_3$, $x_3 = u_1 - 2u_2 + u_3$

Bemærkning: Vi har altså span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1\} = \mathbb{R}^3$. Hvis $\mathbf{w} \in \mathbb{R}^3$ er en vilkårlig vektor, så gælder derfor også span $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{e}_1, \mathbf{w}\} = \mathbb{R}^3$.

ias 14/33

Dias 16/3

Vi har tidligere set, at de tre vektorer

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ og $\mathbf{v}_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$

udspænder en ("2-dimensional") plan i \mathbb{R}^3 :

Dette skyldes, at (fx) \mathbf{v}_3 ligger i planen udspændt af \mathbf{v}_1 , \mathbf{v}_2 , dvs.

$$\mathbf{v}_3 \in \text{span}\{\mathbf{v}_1,\mathbf{v}_2\}.$$

I en vis forstand er \mathbf{v}_3 altså "overflødig". I denne situation siges vektorerne $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ at være lineært afhængige.

ias 17/33

ØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Definition 3.5 (Lineær (u)afhængighed)

Et sæt $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ af vektorer i \mathbb{R}^n kaldes lineært uafhængigt hvis den eneste løsning til ligningen

$$x_1\mathbf{v}_1+\cdots+x_k\mathbf{v}_k=\mathbf{0}$$

er $x_1 = \cdots = x_k = 0$. I modsat fald kaldes S for lineært afhængigt.

Eksempel (Lineær (u)afhængighed)

1/3

Vi vil undersøge, om vektorerne

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \quad \text{og} \quad \mathbf{v}_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$$

er lineært (u)afhængige? Vi skal altså interesse os for løsningerne $x_1, x_2, x_3 \in \mathbb{R}$ til ligningen:

$$x_1 \mathbf{v}_1 + x_2 \mathbf{v}_2 + x_3 \mathbf{v}_3 = \mathbf{0}$$
 dvs. $x_1 \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + x_2 \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} + x_3 \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$.

KØBENHAVNS UNIVERSITET

2/3

Eksempel (Lineær (u)afhængighed)

Dette kan også skrives som

$$\begin{pmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Udregningen

$$(\mathbf{v}_1|\mathbf{v}_2|\mathbf{v}_3|\mathbf{0}) = \begin{pmatrix} 1 & 4 & 7 & 0 \\ 2 & 5 & 8 & 0 \\ 3 & 6 & 9 & 0 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

viser, at ligningen $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{0}$ har mange løsninger, fx

$$v_1 - 2v_2 + v_3 = 0.$$

Konklusion: v_1, v_2, v_3 lineært *afhængige*.

Bemærkning: Hvis $\mathbf{v}_4 \in \mathbb{R}^3$ er en vilkårlig vektor, da er $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ også lineært *afhængige* fordi

$$\mathbf{v}_1 - 2\mathbf{v}_2 + \mathbf{v}_3 + 0\mathbf{v}_4 = \mathbf{0}.$$

Dias 19/33

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Eksempel (Lineær (u)afhængighed)

3/3

Vektorerne

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad \text{og} \quad \mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$$

er lineært uafhængige fordi udregningen

$$(\mathbf{v}_1|\mathbf{v}_2|\mathbf{0}) = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

viser, at ligningen $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 = \mathbf{0}$ kun har løsningen $x_1 = x_2 = \mathbf{0}$.

Eksemplet viser følgende:

Metode til at afgøre lineær (u)afhængighed

Lad $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ og sæt $\mathbf{A} = (\mathbf{v}_1 \mid \dots \mid \mathbf{v}_k)$ (en $n \times k$ matrix). Da er følgende betingelser ækvivalente:

- (i) Vektorerne $\mathbf{v}_1, \dots, \mathbf{v}_k$ er lineært *uafhængige*.
- (ii) Ligningssystemet $\mathbf{A}\mathbf{x} = \mathbf{0}$ har kun løsningen $\mathbf{x} = \mathbf{0}$.

Dias 20/3

En alternativ formulering af metoden er følgende (pga. Theorem 1.6):

Theorem 3.4 (Lineær uafhængighed og rank)

Lad $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ og sæt $\mathbf{A} = (\mathbf{v}_1 \mid \dots \mid \mathbf{v}_k)$ (en $n \times k$ matrix). Da er følgende betingelser ækvivalente:

- (i) Vektorerne $\mathbf{v}_1, \dots, \mathbf{v}_k$ er lineært *uafhængige*.
- (ii) rank $\mathbf{A} = k$.

Følgende er en konsekvens af Theorem 3.4 (med k = n):

Theorem 3.5 (Lineær uafhængighed og invertibilitet)

Lad $n \times n$ matrix er invertibel hvis og kun hvis søjlerne (eller rækkerne) er lineært *uafhængige*.

En anden konsekvens af Theorem 3.4 er:

Theorem 3.6 (Antallet af lineært uafhængige vektorer)

Hvis $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$ er lineært uafhængige, da er $k \leq n$.

Dias 21/33

RSITET INSTITUT FOR MATEMATISKE FAG

Eksempel (Lineær afhængighed)

Følgende 5 vektorer i \mathbb{R}^4 må nødvendigvis være lineært *afhængige*:

$$\begin{pmatrix} 0.96 \\ 0.28 \\ 0.12 \\ 0.27 \end{pmatrix}, \begin{pmatrix} 0.56 \\ 0.80 \\ 0.65 \\ 0.96 \end{pmatrix}, \begin{pmatrix} 0.61 \\ 0.02 \\ 0.35 \\ 0.57 \end{pmatrix}, \begin{pmatrix} 0.70 \\ 0.62 \\ 0.75 \\ 0.68 \end{pmatrix}, \begin{pmatrix} 0.46 \\ 0.42 \\ 0.85 \\ 0.19 \end{pmatrix}$$

En alternativ karakterisering af lineær (u)afhængighed:

Theorem 3.3 (Lineær afhængighed og span)

Lad $\mathbf{v}_1, \dots, \mathbf{v}_k \in \mathbb{R}^n$. Da er følgende betingelser ækvivalente:

- (i) Vektorerne $\mathbf{v}_1, \dots, \mathbf{v}_k$ er lineært afhængige.
- (ii) Der findes et index i så $\mathbf{v}_i \in \text{span}\{\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_k\}$.

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$$

 $\mathbf{v}_3 \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2\}$

Baser

KØBENHAVNS UNIVERSITET

Definition 3.6 (Basis for underrum)

Lad \mathcal{U} være et underrum af \mathbb{R}^n . En endelig delmængde af $\mathcal{B} \subseteq \mathcal{U}$ kaldes en basis for \mathcal{U} hvis:

 \mathcal{B} er lineært uafhængig og span $\mathcal{B} = \mathcal{U}$.

Vi har tidligere set, at de tre vektorer

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
 , $\mathbf{v}_2 = \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix}$ og $\mathbf{v}_3 = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$

udspænder en plan $\mathcal{U} = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ i \mathbb{R}^3 :

Dias 23/33

Bemærkninger

Hvad har vi lært?

Antag at vi har givet en endelig delmængde \mathcal{B} af et underrum $\mathcal{U} \subseteq \mathbb{R}^n$.

Vi har lært metoder til at afgøre:

- Om B er lineært uafhængig?
- Om span $\mathcal{B} = \mathcal{U}$?

Og vi kan derfor også afgøre:

• Om \mathcal{B} er en basis for \mathcal{U} ?

Hvad mangler vi at lære?

Lad \mathcal{U} være et underrum af \mathbb{R}^n .

- Kan vi være sikre på, at U har en basis?
- Hvordan finder vi i givet fald en basis \mathcal{B} for \mathcal{U} ?

INSTITUT FOR MATEMATISKE FAG

Standardbasen for \mathbb{R}^n

Faktum (Eksistens af baser)

Ethvert underrum \mathcal{U} af \mathbb{R}^n har en basis.

Hvis $\mathcal{U} \neq \{\mathbf{0}\}$, så har \mathcal{U} endda uendeligt mange forskellige baser.

Underrummet $\mathcal{U} = \mathbb{R}^n$ har en særlig pæn basis:

Definition (Standardbasen for \mathbb{R}^n)

Standardbasen (som *er* en basis!) for \mathbb{R}^n er $\mathcal{B} = \{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ hvor

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \ \mathbf{e}_n = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix}$$

Vi skal senere lære hvordan man konkret finder baser for diverse typer af underrum af \mathbb{R}^n . Vi nævner her to generelle algoritmer, som vi dog ikke vil bruge ud over i denne forelæsning.

KØBENHAVNS UNIVERSITET

Konstruktion af baser: Udtyndingsalgoritmen

Indholdet af Theorem 3.7(a) er en algoritme til at udtynde en endelig udspændende mængde \mathcal{S} for et underrum \mathcal{U} til en basis:

INSTITUT FOR MATEMATISKE FAG

Vi vil ikke bruge Udtyndingsalgoritmen. Vi vil lære en anden og bedre algoritme til at konstruere en basis for søjlerummet af en matrix.

Konstruktion af baser: Suppleringsalgoritmen

KØBENHAVNS UNIVERSITET

Indholdet af Theorem 3.7(b) er en algoritme til at supplere en lineært uafhængig delmængde S af et underrum U til en basis:

Vi vil generelt ikke bruge Suppleringsalgoritmen. Vi giver dog alligevel et enkelt eksempel til at illustrere idéen i algoritmen.

Eksempel (Suppleringsalgoritmen)

1/2

Vi har vist, at følgende er et underrum af \mathbb{R}^4 :

$$\mathcal{U} = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 = 0 \text{ og } x_2 + x_3 + x_4 = 0 \}$$

Vi vil bruge Suppleringsalgoritmen til at finde en basis for \mathcal{U} .

- INPUT: $S = \emptyset$ er en lineært uafhængig delmængde af \mathcal{U} .
- Er $\mathcal{U} = \operatorname{span} \emptyset$?

NEJ: span $\emptyset = \{ \mathbf{0} \}$ og fx er $\mathbf{v}_1 = (1, -1, 1, 0) \in \mathcal{U} \setminus \{ \mathbf{0} \}.$

• Sæt $S = \emptyset \cup \{v_1\} = \{(1, -1, 1, 0)\}.$

Er $U = \text{span}\{(1, -1, 1, 0)\}$?

NEJ: Fx er $\mathbf{v}_2 = (1, -1, 0, 1) \in \mathcal{U} \setminus \text{span} \{(1, -1, 1, 0)\}.$

• Sæt $S = \{(1, -1, 1, 0)\} \cup \{v_2\} = \{(1, -1, 1, 0), (1, -1, 0, 1)\}.$

Er $U = \text{span}\{(1,-1,1,0),(1,-1,0,1)\}$?

JA: Forklaring følger...

Dias 29/33

MDENHAVNS HNIVEDSITET

INSTITUT FOR MATEMATISKE FAG

Eksempel (Suppleringsalgoritmen)

2/2

Lad $(x_1, x_2, x_3, x_4) \in \mathcal{U}$, dvs. der gælder

(*)
$$\begin{cases} x_1 + x_2 = 0 \\ x_2 + x_3 + x_4 = 0 \end{cases}$$

Udregningen

viser, at samtlige løsninger til ligningssystemet (*) er

$$egin{pmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{pmatrix} = s egin{pmatrix} 1 \ -1 \ 1 \ 0 \ \end{pmatrix} + t egin{pmatrix} 1 \ -1 \ 0 \ 1 \end{pmatrix} \quad , \quad s,t \in \mathbb{R}$$

Derfor gælder

$$U = \text{span}\{(1, -1, 1, 0), (1, -1, 0, 1)\}.$$

• **OUTPUT**: Basis $\{\mathbf{v}_1, \mathbf{v}_2\} = \{(1, -1, 1, 0), (1, -1, 0, 1)\}$ for \mathcal{U} .

københavns universitet Dimension

Antallet af vektorer i en basis for et underrum er entydigt bestemt:

Theorem 3.9 (Om antallet af vektorer i en basis)

Lad \mathcal{U} være et underrum af \mathbb{R}^n . Hvis

$$\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_m\}$$
 og $\mathcal{C} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$

begge er baser for \mathcal{U} , så er m = n.

...og dette antal vektorer er dimensionen af underrummet:

Definition 3.8 (Dimension af underrum)

Lad \mathcal{U} være et underrum af \mathbb{R}^n . Antallet af vektorer i en basis for \mathcal{U} kaldes dimensionen af \mathcal{U} og skrives dim \mathcal{U} . Vi definerer dim $\{\mathbf{0}\} = 0$.

Eksempel (Dimensionen af \mathbb{R}^n)

Vektorrummet $\mathcal{U} = \mathbb{R}^n$ har en basis med n vektorer, nemlig standardbasen $\mathcal{B} = \{\mathbf{e}_1, \dots, \mathbf{e}_n\}$, og derfor gælder dim $\mathbb{R}^n = n$.

Dias 31/33

KØBENHAVNS UNIVERSITET

INSTITUT FOR MATEMATISKE FAG

Eksempel (Et 2-dimensionalt underrum af \mathbb{R}^4)

Vi har tidligere vist, at

$$\mathcal{B} = \{(1, -1, 1, 0), (1, -1, 0, 1)\}$$

er en basis (blandt mange mulige) for underrummet

$$\mathcal{U} = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 = 0 \text{ og } x_2 + x_3 + x_4 = 0 \}.$$

Da \mathcal{B} indeholder to vektorer, er

$$\dim \mathcal{U} = 2$$
 (dvs. \mathcal{U} er en plan i \mathbb{R}^4)

Hvis dimensionen af et underrum $\mathcal U$ er kendt, så er det lettere at afgøre, om en forelagt delmængde $\mathcal B$ er en basis for $\mathcal U$.

Theorem 3.10 (Kriterium for at være en basis)

Lad \mathcal{U} være et underrum af \mathbb{R}^n med dim $\mathcal{U} = k$. Lad $\mathcal{B} = \{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ være en delmængde af \mathcal{U} indeholdende k vektorer.

- (a) Hvis $\mathcal B$ er lineært uafhængigt, da er $\mathcal B$ en basis for $\mathcal U$.
- (b) Hvis span $\mathcal{B} = \mathcal{U}$, da er \mathcal{B} en basis for \mathcal{U} .

Dias 30/33

Dias 32/3

Eksempel (Check af basis vha. Theorem 3.10)

Vi har tidligere vist, at der for underrummet

$$\mathcal{U} = \{ (x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid x_1 + x_2 = 0 \text{ og } x_2 + x_3 + x_4 = 0 \}$$

gælder dim U = 2. Betragt følgende 2 vektorer:

$$\mathbf{u}_1 = \begin{pmatrix} 2 \\ -2 \\ 1 \\ 1 \end{pmatrix}, \ \mathbf{u}_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \\ -1 \end{pmatrix} \in \ \mathcal{U}.$$

For at afgøre om $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2\}$ er en basis for \mathcal{U} , er det ifølge Theorem 3.10 nok at checke, om \mathbf{u}_1 og \mathbf{u}_2 er lineært uafhængige.

Og det er de, fordi udregningen

$$\mathbf{A} = (\mathbf{u}_1 \,|\, \mathbf{u}_2) = \begin{pmatrix} 2 & 0 \\ -2 & 0 \\ 1 & 1 \\ 1 & -1 \end{pmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}$$

viser, at rank $\mathbf{A} = 2$, ifr. Theorem 3.4.

Diac 22/22