Exploring Toronto's Rental: Kijiji Data analysis

Aaron Chen, Rosa Lee, Chloe Li, Danika Mariam

TABLE OF CONTENTS

O1 OBJECTIVE

02 CODE

03 RESULTS

04 CONCLUSION

01 OBJECTIVE

Our goal was to illuminate the key drivers of rental pricing. Our insights guide real estate professionals, investors, and tenants through the complexities of the market; which helps to inform and proactive decisions in the fast-paced world of real estate.

02 CODE

CODE: Removing Null Values

<pre># count null value of df.isnull().sum()</pre>	all columns
Price(\$) Address Date Posted Building Type Bedrooms Bathrooms Utilities Wi-Fi and More Parking Included Agreement Type Move-In Date Pet Friendly Size (sqft) Furnished Air Conditioning Personal Outdoor Space Smoking Permitted Appliances Amenities Description Visit Counter url dtype: int64	256 12 608 1025 1025 1025 1025 1025 1025 2098 347 1023 47 1023 47 1025 1025 1025 1025 1025
df.isnull().sum() Price(\$) Address Date Posted Building Type Bedrooms Bathrooms Utilities Wi-Fi and More Parking Included Agreement Type Move-In Date Pet Friendly Size (sqft) Furnished Air Conditioning	256 12 608 1025 1025 1025 1025 1025 1025 2098 347 1023 47
7 1111 011 11 11 11 11	
	0
atype: int64	

CODE: Removing Null Values

```
Price($)
Address
Date Posted
                            364
Building Type
Bedrooms
Bathrooms
                           880
Utilities
Wi-Fi and More
Parking Included
Agreement Type
Move-In Date
                           1064
Pet Friendly
Size (sqft)
Furnished
Air Conditioning
Personal Outdoor Space
Smoking Permitted
Appliances
                           469
Amenities
                           1396
Description
                           165
Visit Counter
                           1595
url
dtype: int64
```

```
# Amenities, Visit Counter has too much null, dropped
df = df.drop(columns=['Amenities', 'Visit Counter'])
# Appliances can be re-visited later if needed
# maybe categorical variable for Freezer/Laundry/Dishwasher?
df = df.drop(columns=['Appliances'])
# Description not needed, move in date and date posted can be re-visit later if need
df = df.drop(columns=['Date Posted', 'Move-In Date', 'Description'])
# don't need address, url
df = df.drop(columns=['Address', 'url'])
```



```
# original column unique values
111
array(['Apartment', 'Condo', 'Basement', 'House', 'Duplex/Triplex',
       'Townhouse'], dtype=object)
111
# Basement < Apartment < Condo < Duplex/Triplex < Townhouse < House
mapping = {
    'Basement': 0,
    'Apartment': 1,
    'Condo' : 2,
    'Duplex/Triplex': 3,
    'Townhouse': 4.
    'House' : 5
# reduce one-hot dimension since we have limited data
# treat apartment and condo as same
df['Building Type'] = df['Building Type'].replace(mapping)
```



```
# original column unique values
'''
array(['Not Included', 'Balcony', 'Yard', 'YardBalcony'], dtype=object)
'''
# treat outdoor space as ordinal (No < Bal < Yard < YardBal)
mapping = {
    'Not Included' : 0,
    'Balcony' : 1,
    'Yard' : 2,
    'YardBalcony' : 3
}
df['Personal Outdoor Space'] = df['Personal Outdoor Space'].replace(mapping)
df['Personal Outdoor Space'].unique()</pre>
```



```
# original column unique values
111
array(['2', 'Bachelor/Studio', '1', '3', '2 + Den', '1 + Den', '3 + Den',
       '4', '5+', '4 + Den'], dtype=object)
111
# treat den as one more room
mapping = {
   'Bachelor/Studio':0,
    '1': 1,
    '1 + Den': 2,
    121: 3,
    '2 + Den': 4.
    '3': 5.
    '3 + Den': 6,
    '4' : 7,
    '4 + Den' : 8,
    '5+' : 9.
df['Bedrooms'] = df['Bedrooms'].replace(mapping)
df['Bedrooms'].unique()
array([3, 0, 1, 5, 4, 2, 6, 7, 9, 8])
```


CODE: Removing Outliers

```
# three datapoint that is too much of a outlier
sns.boxplot(data=df, x='Price($)')
<Axes: xlabel='Price($)'>
                   0
             50000
                       100000
                                  150000
                                             200000
                                                         250000
                            Price($)
```


CODE: Removing Outliers

```
# there are three datapoint with a very high price, remove it (higher then 50000)
df = df.loc[df['Price($)'] < 50000]</pre>
sns.boxplot(data=df, x='Price($)')
<Axes: xlabel='Price($)'>
   O
                         0000
                                                       0
   0
            2000
                       4000
                                  6000
                                             8000
                          Price($)
```


CODE: Creating a Heatmap

CODE: Linear Regression

```
for train_idx, test_idx in kfold.split(X_all):
 # we don't want to normalize categorical data
 X_train_cat = X_all[cat_columns].values[train_idx]
 X_test_cat = X_all[cat_columns].values[test_idx]
 # get numeric value from data set
 X_train, X_test = X_all[num_columns].values[train_idx], X_all[num_columns].values[test_idx]
 v train, v test = v all.values[train idx], v all.values[test idx]
 # normalize
 X_train, X_test = normalize_data(X_train, X_test)
 # add the categorical data back
 X_train = np.append(X_train, X_train_cat, axis=1)
 X_test = np.append(X_test, X_test_cat, axis=1)
  result = linear regression(X train, X test, y train, y test, num columns + cat columns, str(count+1) + 'fold', False)
 mse[count] = result
  count += 1
 # Print the accuracy for the current fold
 print("Fold {}: MSE: {}".format(count, result))
# Print the average accuracy across all folds
print("Average Score: {} ({})".format(np.mean(mse), np.std(mse)))
```

CODE: Linear Regression

```
mean square error: 484.84907816822164
Fold 1: MSE: 484.84907816822164
mean square error: 840.3657109164114
Fold 2: MSE: 840.3657109164114
mean square error: 536.6906852820923
Fold 3: MSE: 536.6906852820923
mean square error: 708.153613322794
Fold 4: MSE: 708.153613322794
mean square error: 920.2071872759722
Fold 5: MSE: 920.2071872759722
Average Score: 698.0532549930983 (168.04827990632302)
mean square error: 717.0330612310703
```


CODE: Linear Regression


```
# defince x column and y column for current model
columns = ['Size (sqft)', 'Bedrooms', 'Bathrooms', 'Parking Included', 'Building Type',
          'Agreement Type', 'Personal Outdoor Space', 'Smoking Permitted',
          'Hydro', 'Heat', 'Water', 'Pet Friendly', 'Air Conditioning', 'Furnished',
          'Wi-Fi and More'
# k-fold cross validation
num_folds = 5
kfold = KFold(n_splits = num_folds)
kfold.get_n_splits(X_all)
best mse = float('inf')
best depth = 3
best std = 0
for depth in [3, 5, 50, 500]:
 mse = np.zeros(num_folds)
 count = 0
 for train_idx, test_idx in kfold.split(X_all):
   # dont normalize data for better visualization
   X train, X test = X all[columns].values[train idx], X all[columns].values[test idx]
   y train, y test = y all.values[train idx], y all.values[test idx]
   # run the decision tree model
   result = decisionTreeRegression(X train, X test, y train, y test, columns, False, depth)
   mse[count] = result
   count += 1
```



```
# find the best parameter
  if np.mean(mse) < best_mse:</pre>
   best mse = np.mean(mse)
   best_depth = depth
   best std = np.std(mse)
# Print the best parameters and the corresponding score
print("The optimal decision tree model uses depth={}, achieving a cross-validation mse of {} with a standard d
# run model on all data
# get numeric value from data set
X_all_num, X_not_seen_num = X_all[columns].values, X_not_seen[columns].values
# convert to numpy
y_all_num, y_not_seen_num = y_all.values, y_not_seen.values
# regression tree
decisionTreeRegression(X_all_num, X_not_seen_num, y_all_num, y_not_seen_num, columns, True, depth=best_depth)
```


- The optimal decision tree model uses depth=3, achieving a cross-validation mse of 868.027850800712 with a standard deviation of 197.02577224096441.
- mean square error: 1016.4675278747675

CODE: Random Forest

```
# k-fold cross validation
num_folds = 5
kfold = KFold(n_splits = num_folds)
kfold.get n splits(X all)
best mse = float('inf')
best_depth = 3
best std = 0
for depth in [3, 5, 50, 500]:
 mse = np.zeros(num_folds)
  count = 0
  for train_idx, test_idx in kfold.split(X_all):
   # dont normalize data for better visualization
   X train, X test = X all[columns].values[train idx], X all[columns].values[test idx]
   y_train, y_test = y_all.values[train_idx], y_all.values[test_idx]
    # run the decision tree model
    result = randomForestRegression(X_train, X_test, y_train, y_test, columns, False, depth)
   mse[count] = result
    count += 1
  # find the best parameter
  if np.mean(mse) < best mse:</pre>
   best_mse = np.mean(mse)
    best_depth = depth
    best std = np.std(mse)
# Print the best parameters and the corresponding score
print("The optimal random forest model uses depth={}, achieving a cross-validation mse of {} with a standard deviation of {}.".
```

CODE: Random Forest

	Features	Importances
0	Size (sqft)	0.280696
1	Bedrooms	0.305019
2	Bathrooms	0.068343
3	Parking Included	0.031840
4	Building Type	0.099116
5	Agreement Type	0.037654
6	Personal Outdoor Space	0.029152
7	Smoking Permitted	0.005621
8	Hydro	0.023328
9	Heat	0.015275
10	Water	0.022462
11	Pet Friendly	0.020649
12	Air Conditioning	0.016996
13	Furnished	0.026022
14	Wi-Fi and More	0.017826

CODE: Random Forest

- The optimal random forest model uses depth=50, achieving a cross-validation mse of 656.5471401685129 with a standard deviation of 200.93439158553892.
- mean square error: 648.9013065548285

03 RESULTS

Linear Regression

Decision Tree

Random Forest

Influential Features

Bedroom count significantly affects rental prices; size matters less.

Model Performance

Random Forest outperforms other models in prediction accuracy.

Amenity Impact

Traditional amenities like Wi-Fi have minimal effect on pricing.

Strategic Use of Insights

Models reflect current trends, inform future market strategies.

04 CONCLUSION

Data-Driven Decisions

Our analysis has equipped stakeholders with the knowledge to make informed, strategic decisions in Toronto's dynamic rental market.

Predictive Power

We have demonstrated the predictive power of machine learning in real estate, translating complex data into understandable trends.

Market Trends

Our findings underscore the importance of focusing on key property features that align with market expectations and demand.

Forward-Looking

The insights we provide are a foundation for anticipating shifts in the rental landscape, ensuring stakeholders are prepared for the future.

Limitations

Area Data

Our model does not account for area-related pricing. As we know, postal code has an affect on housing prices due to school districts and community resources.

Removed Values

We removed the columns with many null values in the beginning of our analysis. This included: Appliances, Amenities, and Move-in date. A future model could incorporate this information for more accurate results.

THANK YOU

