Robust Hyperproperty Preservation for Secure Compilation

Deepak Garg¹
Marco Stronati²

Cătălin Hriţcu² David Swasev¹

Marco Patrignani³

13th January 2018

Special Thanks to:

Contents

Robust Compilation Criteria

Proof Techniques

Where is FAC?

 many criteria imply secure compilation preserving memory safety, CFI, non interference, program equivalence

 many criteria imply secure compilation preserving memory safety, CFI, non interference, program equivalence

Is that all?

 many criteria imply secure compilation preserving memory safety, CFI, non interference, program equivalence

Goal: study criteria that

 many criteria imply secure compilation preserving memory safety, CFI, non interference, program equivalence

Goal: study criteria that

are security-driven and preserve security properties formally

 many criteria imply secure compilation preserving memory safety, CFI, non interference, program equivalence

Goal: study criteria that

- are security-driven and preserve security properties formally
- are robust (hold for all adversarial context)

 many criteria imply secure compilation preserving memory safety, CFI, non interference, program equivalence

Relate backtranslation techniques and property preservation

Goal

- are security-driven and preserve security properties formally
- are robust (hold for all adversarial context)

• properties = sets of traces

- properties = sets of traces
- hyperproperties = sets of sets of traces

- properties = sets of traces
- hyperproperties = sets of sets of traces
- are organised in subclasses for expressiveness

Robust Compilation Criteria

In the partial order:

higher notions are stronger

In the partial order:

- higher notions are stronger
 - · and trickier to achieve

In the partial order:

- higher notions are stronger
 - and trickier to achieve
- each notion comes in two flavours

In the partial order:

- higher notions are stronger
 - and trickier to achieve
- each notion comes in two flavours
 - one with clear HP correspondence
 - one for simpler proofs

Notation

- P_s, P_t: components of S and T
- \mathbb{C}_{s} , \mathbb{C}_{t} : contexts
- $\mathbb{C}_{s}[P_{s}], \mathbb{C}_{t}[P_{t}]$: whole programs
- $\llbracket \cdot \rrbracket : \mathsf{P}_{\mathsf{s}} \to \mathsf{P}_{\mathsf{t}} : \mathsf{compiler} \; \mathsf{from} \; \mathsf{S} \; \mathsf{to} \; \mathsf{T}$
- β: traces (possibly infinite), I/O with an environment
- Behav (P_s) : set of traces of P_s
- π : prefix (finite)
- < : prefixing</p>

Robust Compilation Criteria

RPP: Robust Property Preservation

Definition (RPP)

```
\begin{split} \llbracket \cdot \rrbracket \in \mathsf{RPP} &\stackrel{\text{def}}{=} \forall \mathsf{P}_{\mathsf{s}}, \mathsf{P}. \\ & \quad \text{if } \left( \forall \mathbb{C}_{\mathsf{s}}.\mathsf{Behav}\left( \mathbb{C}_{\mathsf{s}}\left[\mathsf{P}_{\mathsf{s}}\right] \right) \subseteq \mathsf{P} \right) \\ & \quad \text{then } \left( \forall \mathbb{C}_{\mathsf{t}}.\mathsf{Behav}\left( \mathbb{C}_{\mathsf{t}}\left[ \llbracket \mathsf{P}_{\mathsf{s}} \rrbracket \right] \right) \subseteq \mathsf{P} \right) \end{split}
```

RC: Robust Compilation

Definition: (RC)

```
[\![\cdot]\!] \in \mathsf{RC} \stackrel{\mathsf{def}}{=} \forall \mathbb{C}_{\mathsf{t}}, \mathsf{P}_{\mathsf{s}}, \beta. \exists \mathbb{C}_{\mathsf{s}}.
\mathsf{if} \ \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathsf{t}} \left[[\![\mathsf{P}_{\mathsf{s}}]\!]\right]\right)
\mathsf{then} \ \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathsf{s}} \left[\mathsf{P}_{\mathsf{s}}\right]\right)
```

RC: Robust Compilation

Definition: (RC)

```
[\![\cdot]\!] \in \mathsf{RC} \stackrel{\mathsf{def}}{=} \forall \mathbb{C}_{\mathsf{t}}, \mathsf{P}_{\mathsf{s}}, \beta. \exists \mathbb{C}_{\mathsf{s}}.
\mathsf{if} \ \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathsf{t}} \left[[\![\mathsf{P}_{\mathsf{s}}]\!]\right]\right)
\mathsf{then} \ \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathsf{s}} \left[\mathsf{P}_{\mathsf{s}}\right]\right)
```

Robust Compilation Criteria

Robust Safety Property Preservation

Definition (RSPP)

```
\begin{split} \llbracket \cdot \rrbracket \in \mathsf{RSPP} &\stackrel{\scriptscriptstyle\mathsf{def}}{=} \forall \mathsf{P}_\mathsf{s}, \mathsf{P} \in SP \\ & \mathsf{if} \quad (\forall \mathbb{C}_\mathsf{s}.\mathsf{Behav} \left( \mathbb{C}_\mathsf{s} \left[ \mathsf{P}_\mathsf{s} \right] \right) \subseteq \mathsf{P} \right) \\ & \mathsf{then} \quad (\forall \mathbb{C}_\mathsf{t}.\mathsf{Behav} \left( \mathbb{C}_\mathsf{t} \left[ \llbracket \mathsf{P}_\mathsf{s} \rrbracket \right] \right) \subseteq \mathsf{P} \right) \end{split}
```

Robust Safety Compilation

Definition: (RC)

Robust Safety Compilation

Definition: (SRC)

Robust Compilation Criteria

RSHP: Robust Hypersafery Preservation

Definition (RPP)

```
\begin{split} \llbracket \cdot \rrbracket \in \mathsf{RPP} &\stackrel{\scriptscriptstyle\mathsf{def}}{=} \forall \mathsf{P}_\mathsf{s}, \mathsf{P}. \\ &\quad \mathsf{if} \ \left( \forall \mathbb{C}_\mathsf{s}.\mathsf{Behav} \left( \mathbb{C}_\mathsf{s} \left[ \mathsf{P}_\mathsf{s} \right] \right) \subseteq \mathsf{P} \right) \\ &\quad \mathsf{then} \ \left( \forall \mathbb{C}_\mathsf{t}.\mathsf{Behav} \left( \mathbb{C}_\mathsf{t} \left[ \llbracket \mathsf{P}_\mathsf{s} \rrbracket \right] \right) \subseteq \mathsf{P} \right) \end{split}
```

RSHP: Robust Hypersafery Preservation

Definition (RSHP)

```
\begin{split} \llbracket \cdot \rrbracket \in \mathsf{RSHP} &\stackrel{\mathsf{def}}{=} \forall \mathsf{P}_\mathsf{s}, \ \mathsf{H} \in \mathit{SHP} \ . \\ & \quad \mathsf{if} \ \left( \forall \mathbb{C}_\mathsf{s}. \mathsf{Behav} \left( \mathbb{C}_\mathsf{s} \left[ \mathsf{P}_\mathsf{s} \right] \right) \in \mathsf{H} \right) \\ & \quad \mathsf{then} \ \left( \forall \mathbb{C}_\mathsf{t}. \mathsf{Behav} \left( \mathbb{C}_\mathsf{t} \left[ \llbracket \mathsf{P}_\mathsf{s} \rrbracket \right] \right) \in \mathsf{H} \right) \end{split}
```

SHRC: Hypersafety Robust Compilation

Definition: (RC)

```
 \begin{split} \llbracket \cdot \rrbracket \in \mathsf{RC} &\stackrel{\scriptscriptstyle\mathsf{def}}{=} \forall \mathsf{P}_\mathsf{s}, \mathbb{C}_\mathsf{t}, \pi. \exists \mathbb{C}_\mathsf{s}. \\ & \mathsf{if} \ \pi \mathsf{<} \mathsf{Behav} \left( \mathbb{C}_\mathsf{t} \left[ \llbracket \mathsf{P}_\mathsf{s} \rrbracket \right] \right) \\ & \mathsf{then} \ \pi \mathsf{<} \mathsf{Behav} \left( \mathbb{C}_\mathsf{s} \left[ \mathsf{P}_\mathsf{s} \right] \right) \end{split}
```

SHRC: Hypersafety Robust Compilation

Definition: (SHRC)

```
\begin{split} \llbracket \cdot \rrbracket \in & \mathsf{SHRC} \stackrel{\mathsf{def}}{=} \forall \mathsf{P}_{\mathsf{s}}, \mathbb{C}_{\mathsf{t}}, \frac{\hat{\pi}}{\hat{\pi}}. \exists \mathbb{C}_{\mathsf{s}}. \\ & \mathsf{if} \ \hat{\pi} \underset{\mathsf{<}}{\lessdot} \mathsf{Behav} \left( \mathbb{C}_{\mathsf{t}} \left[ \llbracket \mathsf{P}_{\mathsf{s}} \rrbracket \right] \right) \\ & \mathsf{then} \ \hat{\pi} \underset{\mathsf{<}}{\lessdot} \mathsf{Behav} \left( \mathbb{C}_{\mathsf{s}} \left[ \mathsf{P}_{\mathsf{s}} \right] \right) \end{split}
```

 $\hat{\pi}$: finite set of prefixes

Robust Compilation Criteria

Robust Hyperproperty Preservation

Definition (RHP)

```
\begin{split} \llbracket \cdot \rrbracket \in \mathsf{RHP} &\stackrel{\text{\tiny def}}{=} \forall \mathsf{P}_\mathsf{s}, \mathsf{H}. \\ & \text{if } (\forall \mathbb{C}_\mathsf{s}.\mathsf{Behav} (\mathbb{C}_\mathsf{s} \left[\mathsf{P}_\mathsf{s}\right]) \in \mathsf{H}) \\ & \text{then } (\forall \mathbb{C}_\mathsf{t}.\mathsf{Behav} (\mathbb{C}_\mathsf{t} \left[\llbracket \mathsf{P}_\mathsf{s} \rrbracket \right]) \in \mathsf{H}) \end{split}
```

Hyperproperty Robust Compilation

Definition: (RC)

```
[\![\cdot]\!] \in \mathsf{RC} \stackrel{\mathsf{def}}{=} \forall \mathbb{C}_{\mathsf{t}}, \mathsf{P}_{\mathsf{s}}, \beta. \exists \mathbb{C}_{\mathsf{s}}.
\mathsf{if} \ \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathsf{t}} \left[[\![\mathsf{P}_{\mathsf{s}}]\!]\right]\right)
\mathsf{then} \ \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathsf{s}} \left[\mathsf{P}_{\mathsf{s}}\right]\right)
```

Hyperproperty Robust Compilation

Definition: (HRC)

$$\label{eq:bounds} \begin{split} \llbracket \cdot \rrbracket \in \mathsf{HRC} &\stackrel{\scriptscriptstyle\mathsf{def}}{=} \forall \mathbb{C}_{\mathbf{t}}, \mathsf{P}_{\mathsf{s}}, \; \exists \mathbb{C}_{\mathsf{s}}. \; \forall \beta. \\ & \beta \in \mathsf{Behav}\left(\mathbb{C}_{\mathbf{t}}\left[\llbracket \mathsf{P}_{\mathsf{s}} \rrbracket\right]\right) \\ & \iff \beta \in \mathsf{Behav}\left(\mathbb{C}_{\mathsf{s}}\left[\mathsf{P}_{\mathsf{s}}\right]\right) \end{split}$$

Robust Compilation Criteria

Robust Compilation Criteria

Where is FAC?

Fully Abstract Compilation

Conclusion

- motivated the Robust Compilation Partial Order
- · discussed some of these criteria
- analysed proof techniques for some criteria

Conclusion

- motivated the Robust Compilation Partial Order
- · discussed some of these criteria
- analysed proof techniques for some criteria

Conclusion

Robust Compilation Criteria

Robust Relational Hyperproperty Preservation

Definition: (HRC)

Robust Relational Hyperproperty Preservation

Definition: (RRHP)

$$\begin{split} \llbracket \cdot \rrbracket \in & \mathsf{RRHP} \stackrel{\mathsf{def}}{=} \forall \mathbb{C}_{\mathbf{t}}, \; \exists \mathbb{C}_{\mathtt{s}}. \; \forall \mathsf{P}_{\mathtt{s}}, \beta \\ & \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathbf{t}} \left[\llbracket \mathsf{P}_{\mathtt{s}} \rrbracket \right] \right) \\ & \iff \beta \in \mathsf{Behav} \left(\mathbb{C}_{\mathtt{s}} \left[\mathsf{P}_{\mathtt{s}} \right] \right) \end{split}$$

Robust 2-Relational Hyperproperty Preservation

Definition: (RRHP)

Robust 2-Relational Hyperproperty Preservation

Definition: (R2RHP)

$$\begin{split} \llbracket \cdot \rrbracket \in \mathsf{R2RHP} &\stackrel{\text{\tiny def}}{=} \forall \mathbb{C}_t, \exists \mathbb{C}_s. \forall \begin{array}{c} \mathsf{P}_s, \mathsf{P}_s'. \beta \\ \\ & \beta \in \mathsf{Behav} \left(\mathbb{C}_t \left[\llbracket \mathsf{P}_s \rrbracket \right] \right) \\ \\ \iff \beta \in \mathsf{Behav} \left(\mathbb{C}_s \left[\mathsf{P}_s \right] \right) \\ \\ \mathsf{and} & \begin{pmatrix} \beta \in \mathsf{Behav} \left(\mathbb{C}_t \left[\llbracket \mathsf{P}_s' \rrbracket \right] \right) \\ \\ \iff \beta \in \mathsf{Behav} \left(\mathbb{C}_s \left[\mathsf{P}_s' \right] \right) \\ \end{pmatrix} \end{split}$$