Computer Vision HW1 Report

Student ID: R12521601

Name: 詹承諺

Part 1.

- Visualize the DoG images of 1.png.

	DoG Image (threshold = 3)		DoG Image (threshold = 3)
DoG1-1.png	AMPARIMAN D'ament Primer 1 mente along Chill (1/4) Charact 1/4	DoG2-1.png	ANPANMAN
DoG1-2.png	ASSPANSIANS -	DoG2-2.png	
DoG1-3.png	AMPARIMANI	DoG2-3.png	
DoG1-4.png		DoG2-4.png	

- Use three thresholds (1,2,3) on 2.png and describe the difference.

Threshold	Image with detected keypoints on 2.png
-----------	--

(describe the difference)

隨著 threshold 的提高,keypoints 會變少,更能精確地抓到邊緣。相反地 threshold 較低的話,會導致 keypoints 抓到一些變化不大的地方,使得邊緣的檢測較為粗糙、不精準。

Part 2.Report the cost for each filtered image.

Gray Scale Setting	Cost (1.png)
cv2.COLOR_BGR2GRAY	1207799
R*0.0+G*0.0+B*1.0	1439568
R*0.0+G*1.0+B*0.0	1305961
R*0.1+G*0.0+B*0.9	1393620
R*0.1+G*0.4+B*0.5	1279697
R*0.8+G*0.2+B*0.0	1127913

Gray Scale Setting	Cost (2.png)
cv2.COLOR_BGR2GRAY	183850
R*0.1+G*0.0+B*0.9	77882
R*0.2+G*0.0+B*0.8	86023
R*0.2+G*0.8+B*0.0	188019
R*0.4+G*0.0+B*0.6	128341
R*1.0+G*0.0+B*0.0	110862

- Show original RGB image / two filtered RGB images and two grayscale images with highest and lowest cost.

(Describe the difference between those two grayscale images)

cost 大的灰階圖難以看出顏色差異,導致一些原本是顏色差異很大的區塊卻看起來顏色相近。

而 cost 小的灰階圖可見紅色楓葉的部分較白較明顯,相較 cost 大的灰階圖較能看出顏色差異。

(Describe the difference between those two grayscale images)

cost 大的灰階圖各種顏色的差異不明顯,如原圖方塊內的橘色和紫色在灰階圖卻看起來顏色相近。
而 cost 小的相較於 cost 大的灰階圖更能看出顏色差異,不論是方塊外的紅色與藍色,或是方塊內的橘色與紫色,都比起 cost 大的灰階圖更能看出色差。

- Describe how to speed up the implementation of bilateral filter.

Gr_LUT = np.exp(np.divide(-(np.arange(256)/255) * (np.arange(256)/255) , (2 * self.sigma_r**2)))

利用 look up table 的方式可以節省計算,讓每次計算 range kernel 的時候都能回去查表,之後在算 Gr 的時候就不需要每格都去作計算。