### La formule d'Itô

Lucas Lejeune, BA3-MATH-I

8 décembre 2023

### Table des matières

- Option Call
- Mouvement brownien et processus stochastique
- Modèle de Black-Scholes
- Retour au problème
- Intégrale d'Itô
- Formule d'Itô
- Résolution de l'équation de Black-Scholes

Mise en situation



#### Definition

Une **option call** est un produit dérivé, contrat entre deux parties, qui donne à l'acheteur le droit (le vendeur est en revanche tenu de se plier à la décision de l'acheteur) d'acheter une quantité donnée d'un actif sous-jacent à un prix précisé à l'avance (ce prix est appelé le **strike**) (source : wikipedia.org)

#### Definition

Une **option call** est un produit dérivé, contrat entre deux parties, qui donne à l'acheteur le droit (le vendeur est en revanche tenu de se plier à la décision de l'acheteur) d'acheter une quantité donnée d'un actif sous-jacent à un prix précisé à l'avance (ce prix est appelé le **strike**) (source : wikipedia.org)

- L'option n'est utilisable que le jour de sa date d'expiration
- On note K le strike.
- Le **payoff** est le rendement intrinsèque d'une option
- Une option call ne donne pas l'obligation à l'acheteur de faire valoir son option.





#### Actualisation

Mettons nous dans une situation où j'achète une option effective dans 25 ans à 100€ et imaginons que l'on ne prenne pas en compte l'actualisation et donnons nous un taux d'intêrêt à 2% par an

#### Actualisation

Mettons nous dans une situation où j'achète une option effective dans 25 ans à 100€ et imaginons que l'on ne prenne pas en compte l'actualisation et donnons nous un taux d'intêrêt à 2% par an



La banque gagne donc environ 64€ sur mon achat

Formule du pricing

## Théorème fondamental du Pricing

Si r représente le taux d'intérêt et T représente le temps, la valeur de l'obligation sera de

$$e^{-Tr}$$
  $\mathbb{E}$  [Payoff] (1)

fact. d'actualisation



Formule du pricing

## Théorème fondamental du Pricing appliqué aux options call

Si  $X_T$  représente le prix de l'actif sous-jacent au temps T, et si r représente le taux d'intérêt, la valeur de l'option sera

$$\mathbb{E}\left[\max\left(X_{T}-K;0\right)\right] \tag{2}$$

fact. d'actualisation

Processus stochastiques et mouvement brownien

## Processus Stochastique

### Définition

Soit  $T \subseteq \mathbb{R}^+$  et soit  $\mathcal{F}$  une  $\sigma$ -algèbre,  $\mathbb{F}$  est une **filtration** de  $\mathcal{F}$  si  $\mathbb{F}$  est une famille de  $\sigma$ -algèbres de la forme  $(\mathcal{F}_t)_{t\in T}$  telles que

$$\mathcal{F}_s \subseteq \mathcal{F}_t \subseteq \mathcal{F}, \qquad \forall s \leq t$$

#### **Définition**

On appelle processus stochastique adapté la donnée

$$X = (\Omega, \mathcal{F}, \mathbb{F}, (X_t)_{t \in \mathcal{T}}, \mathbb{P})$$
(3)

où  $\Omega$  est un ensemble,  $\mathcal F$  est une  $\sigma$ -algèbre sur  $\Omega$ ,  $\mathbb P$  est une mesure de probabilité sur  $(\Omega,\mathcal F)$ ,  $\mathbb F$  est une filtration et  $T\subset\mathbb R^+$  représente le temps. Enfin,  $(X_t)_{t\in T}$  est une famille de variables aléatoires indexées par T.

## Exemple de processus stochastique



### Mouvement Brownien

### Définition

Un processus  $B = (\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \in \mathcal{T}}, (B_t)_{t \in \mathcal{T}}, \mathbb{P})$  à valeurs réelles est un mouvement brownien si

$$B_0 = 0 \qquad \mathbb{P} - p.s \tag{4a}$$

$$\forall s \in [0, t], \qquad B_t - B_s \perp \!\!\!\perp \mathcal{F}_s \tag{4b}$$

$$\forall s \in [0, t], \qquad B_t - B_s \sim \mathcal{N}(0, t - s)$$
 (4c)

Le mouvement brownien est donc un type particulier de marche aléatoire.

Mouvement Brownien Arithmétique

#### **Définition**

Un processus brownien arihtmétique est un processus de la forme

$$dX_t = \mu dt + \sigma dB_t \tag{5}$$

où  $\mu$  représente le drift et  $\sigma$  représente la variance.

Influence des différents paramètres dans le mouvement brownien arithmétique



#### Définition

On va choisir de modéliser le prix d'un actif sur le marché en utilisant le processus stochastique satisfaisant l'équation stochastique suivante pour M>0

$$\begin{cases} dX_t = \mu X_t dt + \sigma X_t dB_t \\ X_0 = M \end{cases} \tag{6}$$

est l'équation de Black-Scholes.

#### Définition

On va choisir de modéliser le prix d'un actif sur le marché en utilisant le processus stochastique satisfaisant l'équation stochastique suivante pour M>0

$$\begin{cases} dX_t = \mu X_t dt + \sigma X_t dB_t \\ X_0 = M \end{cases}$$
 (6)

est l'équation de Black-Scholes.

Le but va donc être de comprendre ce processus de manière plus globale, il nous faut donc une intégrale de la forme

$$X_T - X_0 = \int_0^T \mu X_t dt + \int_0^T \sigma X_t dB_t$$

#### **Définition**

On va choisir de modéliser le prix d'un actif sur le marché en utilisant le processus stochastique satisfaisant l'équation stochastique suivante pour M>0

$$\begin{cases} dX_t = \mu X_t dt + \sigma X_t dB_t \\ X_0 = M \end{cases}$$
 (6)

est l'équation de Black-Scholes.

Le but va donc être de comprendre ce processus de manière plus globale, il nous faut donc une intégrale de la forme

$$X_T - X_0 = \int_0^T \mu X_t dt + \int_0^T \sigma X_t dB_t$$

Le but va donc maintenant être de définir cette intégrale

# Représentation de cinq $X_t$ résolvant Black-Scholes

 $\mu = 0.1, \sigma = 0.3$ 



# Représentation de cinq $X_t$ résolvant Black-Scholes

 $\mu = 2, \sigma = 0.3$ 



### Définition

Soit  $T \in \mathbb{R}^+$ ,  $\mathcal{B}$  les boréliens de [0; T], et soit  $(\mathcal{F}_t)_{t \geq 0}$  la filtration du mouvement brownien. On définit  $\mathcal{H}_0^2$  comme l'ensemble des fonctions mesurables sur  $\mathcal{B} \otimes \mathcal{F}$  telles que celles-ci soient de la forme

$$\forall \omega \in [0; T], \qquad f(\omega, t) = \sum_{i=0}^{n-1} a_i(\omega) \mathbb{1}_{]t_i; t_{i+1}]}$$

avec  $a_i \in \mathcal{F}_{t_i}$ ,  $\mathbb{E}\left[a_i^2\right] < \infty$  et  $0 = t_1 < t_2 < \cdots < t_n = T$ 

Définition de l'intégrale d'Itô sur  $\mathcal{H}_0^2$ 

### Propriétés de base de l'intégrale

Notre intégrale devrait être définie sur  $\mathcal{H}_0^2$ , celle-ci devrait être un opérateur linéaire, de plus si  $f(\omega,t)=\mathbb{1}_{[a;b]}$  on aimerait

$$I(f)(\omega) = \int_a^b f(\omega, t) dB_t = B_b - B_a$$

Définition de l'intégrale d'Itô sur  $\mathcal{H}_0^2$ 

### Propriétés de base de l'intégrale

Notre intégrale devrait être définie sur  $\mathcal{H}_0^2$ , celle-ci devrait être un opérateur linéaire, de plus si  $f(\omega,t)=\mathbb{1}_{[a;b]}$  on aimerait

$$I(f)(\omega) = \int_a^b f(\omega, t) dB_t = B_b - B_a$$

### Définition

Soit  $f \in \mathcal{H}_0^2$  on va définir l'intégrale d'Itô comme étant

$$\forall \omega \in [0; T], \qquad I(f)(\omega) = \sum_{i=0}^{n-1} a_i(\omega) \left(B_{t_{i+1}} - B_{t_i}\right)$$

Lemme d'Isométrie d'Itô

### Lemme d'isométrie d'Itô

Soit  $f \in \mathcal{H}_0^2$ , alors on a

$$||I(f)||_{L^2(dP)} = ||f||_{L^2(dP \times dt)}$$

Preuve du lemme d'isométrie

#### Preuve

On calcule d'abord le membre de droite de l'équation, remarquons donc que

$$f^{2}(\omega, t) = \sum_{i=0}^{n-1} a_{i}^{2} \mathbb{1}_{(t_{i}; t_{i+1}]}$$

et donc

$$||f||_{L^2(dP\times dt)} = \mathbb{E}\left[\int_0^T f^2(\omega,t)dt\right] = \sum_{i=0}^{n-1} \mathbb{E}\left[a_i^2\right](t_{i+1}-t_i)$$

Pour le membre de gauche de l'équation

$$||I(f)||_{L^2(dP)} = \mathbb{E}\left[I(f)^2\right] = \sum_{i=0}^{n-1} E\left[a_i^2\right](t_{i+1} - t_i)$$

### Définition

Soit  $T \in \mathbb{R}^+_0$ ,  $\mathcal{B}$  les boréliens de [0;T] et  $(\mathcal{F}_t)_{t \in T}$  une filtration naturelle de  $B_T$ . On définit  $\mathcal{H}^2$  comme étant l'espace des fonctions mesurables sur  $F_T \otimes \mathcal{B}$ , telles que pour tout  $t \in [0;T]$ ,  $\omega \mapsto f(\omega,t)$  est mesurable sur  $\mathcal{F}_t$  et respectant la condition d'intégrabilité

$$\mathbb{E}\left[\int_0^T f^2(\omega,t)dt\right] < \infty$$

Cas simple

### Lemme d'Itô

Avec  $f: \mathbb{R} \to \mathbb{R}$  de classe  $\mathcal{C}^2$ , on a

$$f(B_t) = f(0) + \int_0^t f'(B_S) dB_S + \frac{1}{2} \int_0^t f''(B_S) dS$$
 (7)

Application

Calculons  $\int_0^t B_s dB_s$ .

#### **Application**

Calculons  $\int_0^t B_s dB_s$ . Posons

$$f: x \mapsto \frac{x^2}{2}$$

#### **Application**

Calculons  $\int_0^t B_s dB_s$ . Posons

$$f: x \mapsto \frac{x^2}{2}$$

appliquer le lemme d'Itô à f donne pour  $t \in \mathbb{R}^+$ 

$$\int_0^t f'(B_s)dB_s = f(0) - f(B_t) + \int_0^t f''(B_s)ds$$
 (8)

$$=-\frac{B_t^2}{2}+t\tag{9}$$

#### Application

Calculons  $\int_0^t B_s dB_s$ . Posons

$$f: x \mapsto \frac{x^2}{2}$$

appliquer le lemme d'Itô à f donne pour  $t \in \mathbb{R}^+$ 

$$\int_0^t f'(B_s)dB_s = f(0) - f(B_t) + \int_0^t f''(B_s)ds$$
 (8)

$$=-\frac{B_t^2}{2}+t\tag{9}$$

Et donc

$$\int_0^t B_s dB_s = -\frac{B_t^2}{2} + t$$

### Lemme d'Itô, avec plusieurs variables

Soit 
$$f \in \mathcal{C}^{1,2}(\mathbb{R}^+ imes \mathbb{R})$$
, on a

$$f(t,B_t) = f(0,0) + \int_0^t \frac{\partial f}{\partial x}(s,B_s)dB_s + \int_0^t \frac{\partial f}{\partial t}(s,B_s)ds + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s,B_s)ds$$
(10)

### Lemme d'Itô, avec plusieurs variables

Soit  $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ imes \mathbb{R})$ , on a

$$f(t, B_t) = f(0, 0) + \int_0^t \frac{\partial f}{\partial x}(s, B_s) dB_s + \int_0^t \frac{\partial f}{\partial t}(s, B_s) ds + \frac{1}{2} \int_0^t \frac{\partial^2 f}{\partial x^2}(s, B_s) ds$$
(10)

### Lemme d'Itô (notation)

Soit  $f \in \mathcal{C}^{1,2}(\mathbb{R}^+ \times \mathbb{R})$ , et  $X_t = f(t,B_t)$  un processus stochastique, on écrira

$$dX_{t} = \frac{\partial f}{\partial x}(t, B_{t})dB_{t} + \frac{\partial f}{\partial t}(t, B_{t})dt + \frac{1}{2}\frac{\partial^{2} f}{\partial x^{2}}(t, B_{t})dt$$
(11)

### Application à Black-Scholes

On reprend notre équation stochastique de Black-Scholes

$$dX_t = \mu X_t dt + \sigma X_t dB_t \tag{12}$$

#### Application à Black-Scholes

On reprend notre équation stochastique de Black-Scholes

$$dX_t = \mu X_t dt + \sigma X_t dB_t \tag{12}$$

et on s'intéresse à  $d \ln X_t$  en y appliquant la formule d'Itô

$$d\ln X_t = \frac{1}{X_t} dX_t - \frac{1}{2X_t^2} dX_t \cdot dX_t$$

### Application à Black-Scholes

On reprend notre équation stochastique de Black-Scholes

$$dX_t = \mu X_t dt + \sigma X_t dB_t \tag{12}$$

et on s'intéresse à  $d \ln X_t$  en y appliquant la formule d'Itô

$$d \ln X_t = \frac{1}{X_t} dX_t - \frac{1}{2X_t^2} dX_t \cdot dX_t$$

En développpant  $dX_t$  on trouve

$$d \ln X_t = \frac{1}{X_t} \left( \mu X_t dt + \sigma X_t dB_t \right) - \frac{1}{2X_t^2} \left( \mu X_t dt + \sigma X_t dB_t \right) \left( \mu X_t dt + \sigma X_t dB_t \right)$$

Box-Calculus

# Box-Calculus

| •               | dt | $dB_t$ |
|-----------------|----|--------|
| dt              | 0  | 0      |
| dB <sub>t</sub> | 0  | dt     |

Application à Black-Scholes (suite)

$$d \ln X_t = \frac{1}{X_t} \left( \mu X_t dt + \sigma X_t dB_t \right) - \frac{1}{2X_t^2} \left( \mu X_t dt + \sigma X_t dB_t \right) \left( \mu X_t dt + \sigma X_t dB_t \right)$$

### Application à Black-Scholes (suite)

$$d \ln X_t = \frac{1}{X_t} \left( \mu X_t dt + \sigma X_t dB_t \right) - \frac{1}{2X_t^2} \left( \mu X_t dt + \sigma X_t dB_t \right) \left( \mu X_t dt + \sigma X_t dB_t \right)$$

En appliquant le Box-Calculus, on simplifie notre dernière expression

$$d\ln X_t = \mu dt + \sigma dB_t - \frac{\sigma^2}{2} dt$$

$$d\ln X_t = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dB_t$$

### Application à Black-Scholes (suite)

$$d \ln X_t = \frac{1}{X_t} \left( \mu X_t dt + \sigma X_t dB_t \right) - \frac{1}{2X_t^2} \left( \mu X_t dt + \sigma X_t dB_t \right) \left( \mu X_t dt + \sigma X_t dB_t \right)$$

En appliquant le Box-Calculus, on simplifie notre dernière expression

$$d\ln X_t = \mu dt + \sigma dB_t - \frac{\sigma^2}{2} dt$$

$$d\ln X_t = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma dB_t$$

On intègre ensuite de chaque côté de l'équation avec l'intégrale d'Itô

$$\int_{0}^{T} d \ln (X_{t}) = \int_{0}^{T} \left(\mu - \frac{\sigma^{2}}{2}\right) dt + \int_{0}^{T} \sigma dB_{t}$$

### Application à Black-Scholes (suite)

$$d \ln X_t = \frac{1}{X_t} \left( \mu X_t dt + \sigma X_t dB_t \right) - \frac{1}{2X_t^2} \left( \mu X_t dt + \sigma X_t dB_t \right) \left( \mu X_t dt + \sigma X_t dB_t \right)$$

En appliquant le Box-Calculus, on simplifie notre dernière expression

$$d\ln X_t = \mu dt + \sigma dB_t - \frac{\sigma^2}{2} dt$$

$$d \ln X_t = \left(\mu - \frac{\sigma^2}{2}\right) dt + \sigma dB_t$$

On intègre ensuite de chaque côté de l'équation avec l'intégrale d'Itô

$$\int_0^T d\ln(X_t) = \int_0^T \left(\mu - \frac{\sigma^2}{2}\right) dt + \int_0^T \sigma dB_t$$

$$\ln\left(\frac{X_T}{X_0}\right) = \left(\mu - \frac{\sigma^2}{2}\right)T + \sigma B_T$$

#### Déduction de la formule de Black-Scholes

$$X_T = \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)T + \sigma B_T\right) \tag{13}$$

#### Déduction de la formule de Black-Scholes

$$X_T = \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)T + \sigma B_T\right) \tag{13}$$

### Définition

Soit  $Z \sim \mathcal{N}(0,1)$ , et soient  $\mu \in \mathbb{R}$  et  $\sigma \in \mathbb{R}^+$ , alors la variable définie par  $X = e^{\mu + \sigma Z}$  suit une loi log-normale.

On reprend donc 13 pour voir que  $X_T \sim \log \mathcal{N}\left(\left(\mu - \frac{\sigma^2}{2}\right)T; \sigma\sqrt{T}\right)$ 

#### Déduction de la formule de Black-Scholes

$$X_T = \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)T + \sigma B_T\right) \tag{13}$$

#### Définition

Soit  $Z \sim \mathcal{N}$  (0,1), et soient  $\mu \in \mathbb{R}$  et  $\sigma \in \mathbb{R}^+$ , alors la variable définie par  $X = e^{\mu + \sigma Z}$  suit une loi log-normale.

On reprend donc 13 pour voir que  $X_T \sim \log \mathcal{N}\left(\left(\mu - \frac{\sigma^2}{2}\right)T; \sigma\sqrt{T}\right)$ Tout ce qu'il reste à faire est alors de calculer  $\mathbb{E}\left[\max(X_t - K; 0)e^{-tr}\right]$  où  $X_t$  suit une log-normale.

### Formule de Black-Scholes

Nos calculs précédents nous donnent finalement la formule de Black-Scholes telle qu'étudiée en actuariat

#### Théorème

Dans le modèle de Black-Scholes, la valeur d'une option call est donné par la formule

$$X_0 \Phi(d_1) - K e^{-rT} \Phi(d_2) \tag{14}$$

οù

$$d_1 = rac{1}{\sigma\sqrt{T}}\left(\ln\left(rac{X_0}{K}
ight) + \left(r + rac{\sigma^2}{2}
ight)T
ight)$$

et

$$d_2 = d_1 - \sigma \sqrt{T}$$

# Application au problème de départ

On analyse le marché, et on trouve  $\sigma=0.3$  ainsi que  $\mu=0$ , de plus le taux d'intérêt sans risque est à r=0.02 appliquer Black-Scholes nous donne finalement que l'option a une valeur de 8.91€

# Merci!

