ESKÉ VYSOKÉ U ENÍ TECHNICKÉ V PRAZE FAKULTA INFORMA NÍCH TECHNOLOGIÍ

ZADÁNÍ DIPLOMOVÉ PRÁCE

Název: Asymetrický šifrovací algoritmus McEliece

Student: Bc. Vojt ch Myslivec

Vedoucí: prof. Ing. Róbert Lórencz, CSc.

Studijní program: Informatika

Studijní obor:Po íta ová bezpe nostKatedra:Katedra po íta ových systémPlatnost zadání:Do konce letního semestru 2016/17

Pokyny pro vypracování

Prostudujte asymetrický šifrovací algoritmus McEliece založený na binárních Goppa kódech. Prove te rešerši existujících kryptoanalýz algoritmu McEliece a jeho variant. Zvažte metody zabývající se zkrácením velikosti klí . Implementujte šifrovací a dešifrovací algoritmy a zm te jejich výpo etní asovou a prostorovou náro nost v závislosti na velikosti klí e.

Seznam odborné literatury

Dodá vedoucí práce.

L.S.

prof. Ing. Róbert Lórencz, CSc. vedoucí katedry

prof. Ing. Pavel Tvrdík, CSc. d kan

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA INFORMAČNÍCH TECHNOLOGIÍ KATEDRA POČÍTAČOVÝCH SYSTÉMŮ

Diplomová práce

Asymetrický šifrovací algoritmus McEliece $Bc.\ Vojtěch\ Myslivec$

Vedoucí práce: prof. Ing. Róbert Lórencz, CSc.

Prohlášení

Prohlašuji, že jsem předloženou práci vypracoval(a) samostatně a že jsem uvedl(a) veškeré použité informační zdroje v souladu s Metodickým pokynem o etické přípravě vysokoškolských závěrečných prací.

Beru na vědomí, že se na moji práci vztahují práva a povinnosti vyplývající ze zákona č. 121/2000 Sb., autorského zákona, ve znění pozdějších předpisů. V souladu s ust. § 46 odst. 6 tohoto zákona tímto uděluji nevýhradní oprávnění (licenci) k užití této mojí práce, a to včetně všech počítačových programů, jež jsou její součástí či přílohou, a veškeré jejich dokumentace (dále souhrnně jen "Dílo"), a to všem osobám, které si přejí Dílo užít. Tyto osoby jsou oprávněny Dílo užít jakýmkoli způsobem, který nesnižuje hodnotu Díla, a za jakýmkoli účelem (včetně užití k výdělečným účelům). Toto oprávnění je časově, teritoriálně i množstevně neomezené. Každá osoba, která využije výše uvedenou licenci, se však zavazuje udělit ke každému dílu, které vznikne (byť jen zčásti) na základě Díla, úpravou Díla, spojením Díla s jiným dílem, zařazením Díla do díla souborného či zpracováním Díla (včetně překladu), licenci alespoň ve výše uvedeném rozsahu a zároveň zpřístupnit zdrojový kód takového díla alespoň srovnatelným způsobem a ve srovnatelném rozsahu, jako je zpřístupněn zdrojový kód Díla.

České vysoké učení technické v Praze Fakulta informačních technologií

© 2016 Vojtěch Myslivec. Všechna práva vyhrazena.

Tato práce vznikla jako školní dílo na Českém vysokém učení technickém v Praze, Fakultě informačních technologií. Práce je chráněna právními předpisy a mezinárodními úmluvami o právu autorském a právech souvisejících s právem autorským. K jejímu užití, s výjimkou bezúplatných zákonných licencí, je nezbytný souhlas autora.

Odkaz na tuto práci

Myslivec, Vojtěch. Asymetrický šifrovací algoritmus McEliece. Diplomová práce. Praha: České vysoké učení technické v Praze, Fakulta informačních technologií, 2016.

Δ	bs	tr	'a	kı	H
\boldsymbol{H}	N2	LI	a	NΙ	L

Tady bude nejaky kuuul abstakt

Klíčová slova McEliece, asymetrická kryptografie, postkvantová kryptografie, binární Goppa kódy, konečná tělesa, polynomy, Wolfram Mathematica

Abstract

Sem doplňte ekvivalent abstraktu Vaší práce v angličtině.

Keywords McEliece, public-key cryptography, post-quantum cryptography, binary Goppa codes, finite fields, polynomy, Wolfram Mathematica

Obsah

U.	voa		1
1	Obe	ecná algebra	3
	1.1	Základní termíny	3
	1.2	Reprezentace prvků	4
	1.3	Operace v tělese $GF(p^n)$	4
	1.4	Rozšířená tělesa	6
2	Lin	eární kódy	7
	2.1	Kódování	7
	2.2	Lineární kódy	7
	2.3	Goppa kódy	7
3	Kry	yptosystém McEliece	9
	3.1	Asymetrické šifrování McEliece	9
	3.2	Niederreiterovo schéma	13
	3.3	Elektronický podpis	15
	3.4	Odolnost vůči kvantovým počítačům	17
	3.5	Kryptoanalýza systému McEliece	17
	3.6	Moderní varianty a úpravy	17
4	Imp	olementace	19
	4.1	Binární konečná tělesa	19
	4.2	Ireducibilní binární Goppa kódy	30
	4.3	McEliece	30
	4.4	Měření	30
Zá	ivěr		31
Li	terat	tura	33

\mathbf{A}	Seznam použitých zkratek	35
В	Obsah přiloženého CD	37

Seznam obrázků

Seznam tabulek

'							ı Mathematica	softwaru	vka	jazv	taxe	synta	rvkv	1	4.
							1 Matnematica	sonwaru	ука	Jazy	ıtaxe	synta	rvky	1	4. .

Úvod

Tato práce se zabývá asymetrickým kryptosystémem *McEliece*. Mezi největší přednosti tohoto systému patří jeho odolnost vůči kvantovým počítačům a je tak jedním z vhodných kandidátů pro asymetrickou kryptografii pro postkvantovou dobu.

V prvních kapitolách této práce jsou popsány nezbytné primitivy z oblasti matematiky a teorie kódování, které jsou potřeba pro pochopení a použití kryptosystému McEliece. Jedná se především o počítání s konečnými tělesy a polynomy (kapitola 1) a binární Goppa kódy (kapitola 2).

Kryptosystému McEliece se věnuje kapitola 3. Kromě základního popisu generování klíčů a algoritmů pro šifrování a dešifrování je probráno i Nie-derreiterovo schéma – "úprava" kryptosystému McEliece pro získání digitál-ního podpisu. Jsou ukázány slabiny, nevýhody i možné útoky na kryptosystém McEliece a též zmíněna praktická varianta systému odolná vůči těmto aspektům.

V poslední části práce je probrána implementace kryptosystému *McEliece* v softwaru *Wolfram Mathematica* včetně změřených časových složitostí (kapitola 4),.

Obecná algebra

V kapitole jsou probrány definice a algoritmy nutné pro práci s konečnými tělesy a polynomy nad konečným tělesem. V práci se předpokládá základních znalostí z oblasti algebry. Pro tato témata je doporučena literatura [12, 11, 9, 10, 6] (kde lze též najít většinu důkazů následujících vět).

1.1 Základní termíny

Pro ujasnění je uvedena definice tělesa:

Definice 1 (Těleso) Nechť M je neprázdná množina $a + a \cdot binární operace¹. Struktura <math>T = (M, +, \cdot)$ se nazývá těleso, pokud platí

- 1. (M, +) je komutativní grupa (nazývána aditivní)
- 2. $(M \setminus \{0\}, \cdot)^2$ je grupa (nazývána multiplikativní)
- 3. Platí (levý i pravý) distributivní zákon:

$$\forall a, b, c \in M : (a(b+c) = ab + ac) \land ((b+c)a = ba + ca)$$

Těleso, které má konečný počet prvků, se nazývá konečné těleso.

Věta 1 Nechť T je konečné těleso, pak jeho počet prvků (řád) je p^n , kde p je prvočíslo a $n \in \mathbb{N} \land n \ge 1$.

Číslo p se nazývá charakteristika. Navíc platí, že všechna konečná tělesa se stejným počtem prvků jsou navzájem izomorfní. Konečné těleso řádu p^n je tedy dále označováno jako $GF(p^n)$ (z anglického Gallois field, dle francouzského matematika Évariste Galois).

 $^{^1}$ Pro zjednodušení zápisu je \cdot často vynecháváno.

² Prvek 0 je nulový (neutrální) prvek aditivní grupy.

1.2 Reprezentace prvků

Jak bude ukázáno dále, je vhodné prvky tělesa $GF(p^n)$ reprezentovat jako polynomy s koeficienty z množiny $\mathbb{Z}_p = \{0, 1, \dots, p-1\}$, tedy prvek $a \in GF(p^n)$ lze zapsat:

$$A(x) = \sum_{i=0}^{n-1} a_i x^i, a_i \in \mathbb{Z}_p$$

O takovém polynomu říkáme, že je to polynom nad tělesem GF(p) (řádu maximálně n-1). Na prvek a je též možné se dívat jako na vektor či n-tici koeficientů a_i :

$$A(x) \cong a \cong (a_{n-1}a_{n-2}\dots a_0) \cong a_{n-1}a_{n-2}\dots a_0$$

V této práci se mezi těmito reprezentacemi prvků nadále volně přechází, jak bude v daném kontextu potřeba³.

1.3 Operace v tělese $GF(p^n)$

V následujících sekcích jsou probrány operace potřebné pro počítání s tělesy $GF(p^n)$. Konkrétní zvolené algoritmy a jejich implementace je detailně popsána v kapitole 4.

1.3.1 Sčítání

Sčítání v tělese $GF(p^n)$ je definováno stejně jako sčítání polynomů, s tím, že sčítání jednotlivých koeficientů je prováděno $modulo\ p$ (v tělese GF(p):

$$A(x) + B(x) = \sum a_i x^i + \sum b_i x^i = \sum |a_i + b_i|_p x^i$$

1.3.2 Násobení

Násobení v tělese $GF(p^n)$ nelze provádět "po složkách", jako je tomu u sčítání. U takto definované operace by většina prvků neměla (multiplikativní) *inverzi* a nejednalo by se tak o těleso.

Při násobení prvků se opět využije jejich reprezentace pomocí polynomů. Výsledkem násobení pak je:

$$A(x) \cdot B(x) = \sum_{i=0}^{n-1} a_i x^i \cdot \sum_{i=0}^{n-1} b_i x^i = \sum_{i=0}^{2n-2} \left| \sum_{j+k=i} a_j \cdot b_k \right|_p x^i$$

Jak je naznačeno, násobení i sčítání koeficientů se provádí $modulo\ p$ (v tělese GF(p).

³ V některých materiálech se používá i obráceného zápisu $(a_0a_1 \dots a_p - 1)$.

Kvůli uzavřenosti násobení v tělese je nutné zavést operaci $A(x) \mod P(x)$, neboli zbytek po dělení polynomu A(x) polynomem P(x). Dále je třeba pro určení tělesa $GF(p^n)$ určit ireducibilni polynom, který bude použitý při operaci násobení.

Definice 2 Polynom P(x) nad tělesem GF(p) je ireducibilní právě tehdy, když pro každé dva polynomy A(x) a B(x) nad GF(p) platí:

$$A(x) \cdot B(x) = P(x) \Rightarrow (deg(A(x)) = 0) \lor (deg(B(x)) = 0)$$

Neboli pro ireducibilni polynom platí, že neexistuje rozklad na polynomy nad GF(p) stupně alespoň 1.

Příklad Polynom $x^3 + x + 1$ je nad tělesem GF(2) ireducibilní, protože neexistuje jeho rozklad na polynomy stupně alespoň 1. Polynom $x^2 + 1$ není nad tělesem GF(2) ireducibilní, protože:

$$(x+1) \cdot (x+1) = x^2 + |1+1|_2 x + 1 = x^2 + 1$$

Nyní je možné zavést operaci násobení dvou prvků tělesa jako násobení dvou polynomů modulo zadaný ireducibilní polynom:

$$A(x) \cdot B(x) = \sum a_i x^i \cdot \sum b_i x^i = \sum \left| \sum_{j+k=i} a_j \cdot b_k \right|_p x^i \mod P(x)$$

Poznámka Pokud by zvolený P(x) nebyl *ireducibilní*, jednalo by se o *okruh*, nikoliv o *těleso*, protože by neexistovala *multiplikativní inverze* pro některé prvky a navíc by i existovaly tzv. *dělitelé nuly*.

1.3.3 Umocňování

Pro rozšíření operací o opakované násobení je vhodné zavést operaci umocňování.

Definice 3 Pro prvek a tělesa T a číslo $n \in \mathbb{N}$ je operace umocňování definována následovně:

$$a^{0} = 1$$

$$a^{n} = \underbrace{a \cdot a \cdot \dots \cdot a}_{n \cdot kr\acute{a}t}$$

$$a^{-n} = \left(a^{-1}\right)^{n}$$

Pro efektivní výpočet mocniny prvku je vhodné použít algoritmus Square-and-Multiply, kde se dílčí operace "square" a "multiply" provádí operací v daném tělese $GF(p^n)$.

1.3.4 Inverze

Inverzi v grupě lze obecně definovat následovně:

Definice 4 (Inverze) Nechť a je prvkem a \mathbb{O} neutrálním prvkem grupy $G = (M, \circ)$. Prvek \bar{a} je inverzí prvku a, pokud platí následující rovnice:

$$a \circ \bar{a} = \mathbb{O}$$

1.3.4.1 Aditivní inverze

Inverze v aditivni grupě je značena znaménkem minus "—" a je z definice velmi triviální:

$$|A(x) + (-A(x))|_p = 0 \Rightarrow -A(x) = \sum |-a_i|_p x^i$$

Neboli je to aditivní inverze jednotlivých koeficientů $modulo\ p$ (v tělese GF(p)).

1.3.4.2 Multiplikativní inverze

Inverze v multiplikativni grupě je značena záporným exponentem " $^{-1}$ " či symbolem dělení.

$$\left| A(x) \cdot A(x)^{-1} \right|_p = \left| \frac{A(x)}{A(x)} \right|_p = 1$$

Tuto multiplikativn'i inverzi je třeba počítat rozšířeným Euklidovým algoritmem pro polynomy (EEA), či případně jinými algoritmy, jako je např. algoritmus Itoh-Teechai-Tsujii (ITT) [10, 8].

Rozšířený Euklidův algoritmus pro polynomy, stejně jako v modulární aritmetice (neboli pro tělesa GF(p)), stojí na nalezení $B\'{e}zoutovy$ rovnosti. Pro výpočet EEA je třeba výpočtu dělení polynomů se zbytkem⁴.

1.4 Rozšířená tělesa

Prvotěleso

⁴ Někdy uváděno jako dlouhé dělení.

Lineární kódy

- 2.1 Kódování
- 2.2 Lineární kódy
- 2.2.1 Hammingovy kódy
- 2.3 Goppa kódy

Ireducibilní binární Goppa kódy

Kryptosystém McEliece

Kryptosystém *McEliece* je asymetrický šifrovací algoritmus, publikovaný poprvé v roce 1978 Robertem McEliece [1]. V následujících kapitolám jsou probrány algoritmy navržené Robertem McEliece, dále Niederreiterovo schéma – varianta pro získání elektronického podpisu – a nakonec jsou zmíněny slabiny a existující útoky na tento kryptosystém.

Poznámka V této kapitole je nadále předpokládáno počítání s hodnotami z tělesa GF(2), respektive s bity.

3.1 Asymetrické šifrování McEliece

Asymetrický kryptosystém McEliece je založený na lineárních samoopravných kódech. V následujících odstavcích systém popsán tak, jak byl definován v [1]:

3.1.1 Generování klíčů

Generování klíčů probíhá následovně:

- 1. Zvolí se $lineární kód^5 (n,k)$, opravující t chyb (a pro který je znám efektivní dekódovací algoritmus) s odpovídající $k \times n$ generující maticí G.
- 2. Vygeneruje se náhodná $k \times k$ regulární matice S.
- 3. Vygeneruje se náhodná $n \times n$ permutační matice P.
- 4. Vypočítá se $k \times n$ matice $\hat{G} = SGP$.

Potom čísla k, n a t jsou $ve\check{r}ejn\acute{e}$ parametry systému, matice \hat{G} je $ve\check{r}ejn\acute{y}$ $kl\acute{t}$ a kód s maticí G a matice S a P jsou $soukrom\acute{y}$ $kl\acute{t}$.

⁵ V článku je kryptosystém definovaný pro libovolný lineární kód opravující zvolený počet chyb a jsou zmíněny Goppa kódy jako vhodný příklad k použití. Jak bude ukázáno dále, ne všechny lineární kódy jsou pro McEliece vhodné.

3.1.2 Algoritmy pro šifrování a dešifrování

3.1.2.1 Šifrování

Šifrování zprávy m (o délce k bitů) veřejným klíčem \hat{G} probíhá následujícím způsobem:

- 1. Vygeneruje se náhodný vektor zdélky n s ${\it Hammingovou vahou}$ maximálně $t^6.$
- 2. Šifrovaná zpráva c délky n se sestrojí následujícím způsobem:

$$c = m\hat{G} + z$$

3.1.2.2 Dešifrování

Obdržená zašifrovaná zpráva c (délky n) se dešifruje následujícím způsobem:

- 1. Vypočítá se vektor \hat{c} délky n: $\hat{c} = cP^{-1}$.
- 2. Vektor \hat{c} se dekóduje zvoleným kódem na vektor \hat{m} $\hat{m} = Dek_G(\hat{c})$
- 3. Vypočítá se původní zpráva m: $m = \hat{m}S^{-1}$

3.1.2.3 Důkaz dešifrování

Důkaz, že výsledkem dešifrování je opět původní zpráva je následující:

 \bullet V prvním kroku dešifrovacího algoritmu je možné rozepsat původní zprávu $m\colon$

$$\hat{c} = cP^{-1} = (m\hat{G} + z)P^{-1} = (mSGP + z)P^{-1} = \hat{c} = mSG + zP^{-1}$$

• Zavedeme substituci $\hat{m} = mS$ a $\hat{z} = zP^{-1}$, potom

$$\hat{c} = mSG + zP^{-1} = \hat{m}G + \hat{z}$$

Z poslední rovnosti je vidět, že dekódováním je získán vektor \hat{m} , neboť \hat{z} je vektor s $Hammingovou\ vahou\ maximálně\ t\ (matice\ P\ jen\ přehází\ jednotlivé\ bity\ vektoru\ z).$

$$Dek_G(\hat{c}) = \hat{m}$$

• V posledním kroku stačí opět dosadit výše použitou substituci:

$$\hat{m}S^{-1} = mSS^{-1} = m$$

Dešifrováním je tedy získána původní zpráva m.

 $^{^6}$ V některých pozdějších pracích na toto téma je uvedeno právě t.

3.1.3 Základní vlastnosti kryptosystému

V této kapitole jsou probrány základní fakta a vlastnosti kryptosystému. Jsou zde popsány způsoby uložení a velikost klíčů a hlavní výhody a nevýhody použití McEliece.

3.1.3.1 Předpočítané matice

Je vidět, že původní matice S a P se ve výpočtu nepoužívají a pro dešifrování jsou potřeba pouze jejich *inverze*. Je tedy možné tyto matice předpočítat a soukromý klíč je tak trojice kód s generující maticí G, matice S^{-1} a matice P^{-1} .

3.1.3.2 Velikost klíčů

Největší nevýhodou kryptosystému McEliece je velikost klíčů. Již v původním článku jsou navrhovány parametry $n=1024,\ k=524$ a $t=50^7$. Za použití těchto parametrů má matice S (respektive její inverze) 274576 b ≈ 268 kb a (inverze) matice P 1048576 b = 1 Mb.

Matice P je ve skutečnosti velmi $\check{r}idk\acute{a}$ – každý $\check{r}\acute{a}dek$ (respektive i sloupec) obsahuje pouze jednu jedničku, jinak je nulová. Je to permutační matice a lze tak uchovat ve formě $\log_2 n$ n-bitových indexů. Pro výše zmíněné hodnoty je to $10240~\mathrm{b} = 10~\mathrm{kb}$.

Při použití binárních~Goppa~kódů s těmito parametry je potřeba k uložení informace o použitém kódu ≈ 26 kb. Celkem se jedná o přibližně 300 kb dat pro uložení soukromého klíče

Pro uložení veřejného klíče (matice \hat{G}) je třeba 536576 b = 524 kb dat.

Metody snížení velikosti klíčů kryptosystému McEliece jsou jedním z hlavních překážek pro rozšíření algoritmu a také jedním z hlavních cílů zkoumání tohoto kryptosystému a věnuje se jim kapitola3.6.3.

3.1.3.3 Rychlost algoritmů

Naopak jednou z největších výhod algoritmu McEliece je rychlost algoritmů pro šifrování i dešifrování. Šifrování je prosté násobení matice s vektorem, což je jednoduchá operace, kterou je navíc možné provádět paralelně či efektivně implementovat v hardwaru. Dešifrování používá též násobení matic, ale složitější operace je dekódování vektoru \hat{m} .

TBA

3.1.4 Bezpečnost kryptosystému

Již v původním článku [1] McEliece zmiňuje dva možné útoky na navržený kryptosystém.

⁷ Jak bude zmíněno dále, velikost těchto parametry je pro dnešní použití nedostatečná.

- 1. získání soukromého klíče ze znalosti veřejného
- 2. získání m bez nutnosti znát soukromý klíč

Nicméně je dobré již na tomto místě zmínit, že existují útoky využívající strukturu použitého kódu (tomuto tématu se věnuje kapitola 3.5.3.1).

3.1.4.1 Získání soukromého klíče

U prvního způsobu je v článku zmíněno, že je třeba rozložit \hat{G} na G, S a P. Matici \hat{G} je sice možné dekomponovat, ale množství jednotlivých matic je pro velká n a k obrovské, a získat tak původní matice hrubou silou je $neschůdné^8$.

3.1.4.2 Získání původní zprávy

Druhý způsob znamená dekódovat původní zprávu m z přijaté zprávy c, která navíc obsahuje chybový vektor. Provést toto dekódování bez znalosti použitého kódu je NP-těž $k\acute{y}$ problém [?].

Naznačení problému

V případě, že by byl chybový vektor nulový, platila by rovnost $c = m\hat{G}$. Výběrem k dimenzí vznikne \hat{G}_k a c_k z matice \hat{G} a vektoru c. Pokud je \hat{G}_k regulární, lze řešit soustavu k nerovnic pro k neznámých (m_i) v polynomiálním (!) čase $O(k^3)$:

$$c_k = m\hat{G}_k$$

Za použití šifrovacího algoritmu McEliece je vektor c "zakrytý" náhodným chybovým vektorem z Hammingovy váhy t. Potom pravděpodobnost, že c_k (ve výběru k dimenzí) je bez chyby je $\left(1-\frac{t}{n}\right)^k$ [1]. Pro $O\left(k^3\right)$ operací pro vyřešení jedné soustavy rovnic je to přibližně:

$$O\left(\frac{n^3}{\left(1 - \frac{t}{n}\right)^k}\right) = O\left(n^3 \left(\frac{n}{n - t}\right)^k\right)$$

Zlomek $\frac{n}{n-t}$ je jistě větší než 1, tudíž pro velká k výrazně převyšuje druhý činitel a jedná se o NP-těžký problém.

Navíc není jasné, které z nalezených řešení odpovídá původní zprávě m.

 $^{^8}$ Např. jen počet možných $permutačních \ matic$ jen!. Počet <math display="inline">generujících matic závisí na zvoleném kódu.

3.2 Niederreiterovo schéma

V roce 1986 publikoval *Harald Niederreiter* v [2] kryptosystém s veřejným klíčem využívající stejných principů jako kryptosystém *McEliece*. Tento kryptosystém je též založený na *lineárních kódech* a jeho bezpečnost též stojí na problému dekódování neznámého kódu. Na rozdíl však od kryptosystému *McEliece* používá k sestrojení klíčů *kontrolní* matici místo matice *generující*.

3.2.1 Generování klíčů

Generování klíčů probíhá následovně:

- 1. Zvolí se lineární kód (n, k), opravující t chyb s odpovídající $(n k) \times n$ kontrolní maticí H.
- 2. Vygeneruje se náhodná $(n-k) \times (n-k)$ regulární matice S.
- 3. Vygeneruje se náhodná $n \times n$ permutační matice P.
- 4. Vypočítá se $(n-k) \times n$ matice $\hat{H} = SHP$.

Potom čísla k, n a t jsou $ve\check{r}ejn\acute{e}$ parametry systému, matice \hat{H} je $ve\check{r}ejn\acute{y}$ $kli\check{c}$ a kód s $kontroln\acute{i}$ maticí H a matice S a P jsou $soukrom\acute{y}$ $kli\acute{c}$.

3.2.2 Algoritmy pro šifrování a dešifrování

3.2.2.1 Šifrování

Šifrování zprávy probíhá následujícím způsobem:

- 1. Zpráva m dlouhá n bitů s $Hammingovou\ vahou$ maximálně t. Tato zpráva reprezentuje $chybový\ vektor$ pro použitý kód.
- 2. Šifrový text c (délky n-k) se spočte jako syndrom zprávy m (respektive chyby) za použití matice \hat{H} : $c=m\hat{H}^T$.

Poznámka

Chybový vektor m požadované délky n a Hammingovy váhy t lze získat $zakódováním^9$ původní zprávy k zašifrování. Je vidět, že možných zpráv je pro $t \ll n$ řádově méně než všech možných vektorů délky n. Způsob zakódování bude probírán níže při popisu získání elektronického podpisu pomocí tohoto kryptosystému.

 $^{^9}$ Zde nejsou na mysli samoopravné kódy, ale pouze jednoznačné zakódování zprávy.

3.2.2.2 Dešifrování

Obdržená šifrová zpráva c se dešifruje následujícím způsobem:

- 1. Vypočte se vektor \hat{c} délky n-k: $\hat{c}=c\left(S^T\right)^{-1}$
- 2. Pomocí dekódovacího algoritmu použitého kódu se z \hat{c} získá chybový vektor \hat{m} (délky n).
- 3. Původní zpráva m se získá výpočtem $m = \hat{m} \left(P^T \right)^{-1}$

Poznámka

Stejně jako je tomu u kryptosystému McEliece, je možné hodnoty $\left(P^{T}\right)^{-1}$ a $\left(S^{T}\right)^{-1}$ předpočítat. Navíc inverzi P je opět možné uložit jako $\log_{2}m$ n-bitových hodnot, jelikož se jedná o permutaci. Soukromý klíč je tak trojice kód s kontrolní maticí H, matice $\left(P^{T}\right)^{-1}$ a matice $\left(S^{T}\right)^{-1}$.

3.2.2.3 Důkaz dešifrování

Důkaz, že výsledkem dešifrování je opět původní zpráva je následující:

 V prvním kroku dešifrovacího algoritmu je možné výpočet rozepsat následujícím způsobem:

$$\hat{c} = c \left(S^T \right)^{-1} = m \hat{H}^T \left(S^T \right)^{-1} = m P^T H^T S^T \left(S^T \right)^{-1} = m P^T H^T$$

- Zavedeme substituci $\hat{m} = mP^T$, potom $\hat{c} = \hat{m}H^T$, což odpovídá výpočtu syndromu pro použitý kód. Jelikož \hat{m} je pouze permutovaná původní m, má Hammingovu váhu t a pomocí dekódovacího algoritmu získáme \hat{m} jako chybový vektor.
- Nakonec se jen vynásobí inverzí matice P^T

3.2.3 Vlastnosti kryptosystému

Niederreiterovo schéma je variantou asymetrického kryptosystému založeného na lineárních kódech, jak je použito u kryptosystému McEliece. Šifrovým textem není zakódované slovo, jak je tomu u McEliece, nýbrž syndrom chybového vektoru, který je možné dekódovat pouze za znalosti skrytého lineárního kódu.

V [3] byla dokázána ekvivalence složitosti prolomení tohoto kryptosystému s kryptosystémem McEliece. Útočník, který dokáže prolomit jeden ze systémů dokáže prolomit i druhý. Další informace jsou k nalezení v [2, 5].

3.3 Elektronický podpis

V původním článku od *R. McEliece* [1] bylo zmíněno, že tímto navrženým kryptosystémem nelze získat schéma pro *elektronický podpis*. Původní algoritmy byly navržené pouze pro *asymetrické šifrování*. Až v roce 2001 byl v [5] publikován postup pro získání elektronického podpisu za pomocí asymetrického kryptosystému založeného na samoopravných kódech.

3.3.1 Překážky pro použití McEliece pro podepisování

Aby bylo možné využít algoritmus pro dešifrování jako algoritmus podepisování, bylo by potřeba, aby vektor c (resp. \hat{c}) bylo možné dekódovat na kódové slovo. Nicméně pro původně navrhované parametry je poměr počtu vektorů délky n v Hammingově vzdálenosti t od kódových slov ku všem vektorům délky n téměř nulový. Takový algoritmus pro podepisování by prakticky vždy selhal a nebylo by možné získat žádný výstup jako podpis.

Konkrétně pro navrhované parametry $n=1024,\,t=50$ (a k=524) je počet vektorů do $Hammingovy\ vzdálenosti\ 50$ od všech kódových slov:

$$2^{524} \sum_{i=0}^{50} \binom{1024}{i} \approx 2^{808}$$

Počet všech vektorů délky 1024 je 2^{1024} . Tedy pravděpodobnost, že vektor délky 1024 půjde algoritmem $dek\acute{o}dovat$ je přibližně 2^{-216} [1].

Algoritmus Niederreiter selhává naprosto stejným stejným způsobem [5].

3.3.2 Schéma pro elektronický podpis

V roce 2001 autoři *Courtois* a spol. v [5] publikovali postup, jakým lze získat z kryptosystému založeném na lineárních kódech schéma pro *elektronický* podpis. Autoři zmiňují, že je možné stejným způsobem využít i kryptosystém *McEliece*, nicméně kvůli délce výsledného podpisu je mnohem praktičtější využít *Niederreiterovo* schéma.

3.3.2.1 Vyhovující parametry

V článku je dokázán vzorec pro pravděpodobnost, že náhodný syndrom délky n-k (a při použití $Goppa~k\acute{o}d\mathring{u}$) je možné dekódovat je

$$\mathcal{P} = \frac{N_{dek\acute{o}dovateln\acute{e}}}{N_{celkem}} \approx \frac{\frac{n^t}{t!}}{n^t} = \frac{1}{t!}$$

A tedy závisí pouze na počtu chyb t. V článku je popsána volba parametrů 10 a pro bezpečnost odpovídající 80 bitům symetrické šifry jsou zvoleny

¹⁰ S ohledem na útok *Canteaut-Chabaud* [?].

parametry $n=2^{16}$ a t=9. Pravděpodobnost, že pro zadané parametry bude náhodný vektor možné dekódovat jako syndrom je $\frac{1}{9!}\approx 2^{-19}$. Pro získání platného syndromu bude tedy nutné v průměru vygenerovat 2^{19} vektorů.

3.3.2.2 Popis schématu

Dle kapitoly výše je nutné získat několik (9!) vektorů k odpovídajícímu do-kumentu, který je třeba podepsat. To je možné zajistit jednoduše použitím hashovaci funkce h s tím, že je společně s dokumentem hashován i náhodný index i. Ten je možné postupně zvyšovat, dokud výstup h nebude možné deko-dovat a získat odpovídající chybový vektor z. Jak bude ukázáno dále, hodnota i bude třeba pro ověření podpisu a podpis je tak dvojice (z,i).

Značení

Nechť h je kryptograficky bezpečná hashovací funkce, jejíž výstup je dlouhý přesně n-k bitů. Dále D je dokument, který je třeba podepsat a $s=h\left(D\right)$ $hash\left(otisk\right)$ dokumentu. Zřetězení s a i bude značeno jako (s|i) a $s_i=h(s|i)$ je tedy otisk dokumentu za použití odpovídajícího indexu i. Nejmenší i takové, že s_i lze dekódovat, bude značeno i_0 . Odpovídající s_{i_0} je tedy syndrom, který bude použitý pro podpis D. Nakonec chybový vektor z odpovídá syndromu s_{i_0} a podpis S je tedy $S=(z|i_0)$

Délka podpisu

Délka podpisu závisí na uložení dat z a i_0 . Vektor z je chybový vektor odpovídajícího samoopravného kódu. Jeho $Hammingova\ váha$ je tedy maximálně t a je tedy velmi řídký. Existuje $\binom{n}{t}$ vektorů $váhy\ t$ a délky n

Index i_0 bude zabírat v průměru $\log_2 t!$ bitů a nelze ho uložit žádným kompaktnějším způsobem.

TBA

- 3.3.3 Algoritmus pro podepisování
- 3.3.4 Algoritmus pro ověření
- 3.4 Odolnost vůči kvantovým počítačům
- 3.5 Kryptoanalýza systému McEliece
- 3.5.1 Typy útoků
- 3.5.2 Slabiny systému
- 3.5.3 Existující útoky
- 3.5.3.1 Útoky na strukturu použitého kódu
- 3.5.3.2 Malleability
- 3.5.3.3 Hádání chybových bitů pomocí dešifrovacího orákula
- 3.5.3.4 Opakované šifrování jedné zprávy
- 3.5.3.5 Znalost části OT
- 3.5.3.6 ...
- 3.6 Moderní varianty a úpravy
- 3.6.1 Quasi-dyadické Goppa kódy
- 3.6.2 Význam matic S a P
- 3.6.3 Metody na snížení velikosti klíčů
- 3.6.4 CCA2-odolná varianta

Implementace

Pro implementaci kryptosystému *McEliece* v této práci byl zvolen software *Wolfram Mathematica* [13]. Tento software byl zvolen hlavně díky pohodlnosti některých matematických výpočtů a konstrukcí a také pro přehlednost výstupů.

Při implementaci kryptosystému se ukázaly nedostatky softwaru Mathematica a bylo nutné zpracovat problematiku (rozšířených) konečných těles a binárních Goppa kódů. Tyto dvě oblasti byly implementovány přímo v softwaru Mathematica tak, aby bylo možné jejich pohodlné použití i v jiných oblastech.

Celková práce byla rozdělena do třech ucelených částí – (binární) konečná tělesa, (ireducibilní) binární Goppa kódy a kryptosystém McEliece –, kde každou z nich lze využít jako balík či knihovnu pro další výpočty. Následující kapitoly popisují jednotlivé části.

4.1 Binární konečná tělesa

Tato kapitola pojednává o implementaci binárních konečných těles včetně jejich rozšíření. Jsou zmíněna existující řešení v softwaru Mathematica, zvolená implementace a popis implementovaných algoritmů.

Ač jsou funkce implementované v co nejobecnějším pojetí, tak je kladen důraz na efektivnost výpočtů vzhledem k binárním tělesům – tedy k tělesům s charakteristikou 2. Pro tělesa s jinou charakteristikou není chování funkcí definováno.

4.1.1 Existující řešení

Pro operace s konečnými tělesy v softwaru Mathematica byly prostudovány interní funkce pro operace s polynomy a externí balík FiniteFields. Vlastnosti těchto řešení jsou popsány v následujících kapitolách.

4.1.1.1 Operace s polynomy

Software Mathematica obsahuje funkce pro operace s polynomy nad reálnými (případně i komplexními) čísly. Většina těchto funkcí má volitelnou $možnost^{11}$ Modulus, díky které lze zajistit, aby operace s koeficienty byly prováděny nad celými čísly modulo zadané číslo p. Tímto způsobem je možné implementovat operace nad tělesy $GF(p^n)$, nicméně je téměř nemožné tímto způsobem implementovat rozšířená tělesa – polynomy nad polynomy.

Pro použití těchto funkcí (např. ExtendedPolynomialGCD, je třeba polynomu v úplném tvaru $\sum a_i x^i$ – včetně x^i s tím, že x musí být nedefinovaný $symbol^{12}$. Tento požadavek je celkem nepraktický, protože definování této proměnné kdekoliv v programu by vedlo k nemožnosti použití těchto funkcí. Navíc udržovat si prvky ve formě např. $x^6 + x^3 + x + 1$ místo 1001011 není pohodlné. Další nevýhoda použití polynomů je, že software Mathematica vypisuje polynomy od nejnižšího členu po nejvyšší (např. $1+x^2+x^4+x^7$), což je obrácený zápis, než je v technické literatuře zvykem.

4.1.1.2 Balík FiniteFields

Balík v softwaru *Mathematica* je soubor obsahující rozšiřující funkce, které standardně nejsou k dispozici. Balík je možné načíst pomocí funkcí Needs, či případně *Get*.

Balík FiniteFields obsahuje základní operace pro práci s tělesy $GF(p^n)$. Prvky konečných těles jsou pak určené seznamem¹³ koeficientů a hlavičkou, která určuje do jakého tělesa prvek patří. Výhoda tohoto opatření je, že pro sčítání a násobení je pak možné využít obyčejné symboly operací (+, -, *, /) a operace se automaticky provede v daném tělese. Pro parametry p a n je určené jedno těleso $GF(p^n)$ (s jedním konkrétním ireducibilním polynomem) a seznam koeficientů prvku se opět píše od nejnižšího řádu po nejvyšší (například polynom x^3+x+1 z tělesa $GF(2^5)$ je zapsán jako $GF[2,5][\{1,1,0,1,0\}]$).

Funkce z balíku FiniteFields nejsou dostatečně zdokumentovány, jak je jinak v softwaru *Mathematica* zvykem. Nepodařilo se využít funkcí z tohoto balíku pro operace s *rozšířenými tělesy*.

4.1.2 Zvolené řešení

Existující řešení pro práci s konečnými tělesy se ukázala jako nedostačující. Jejich hlavní nevýhodou je nemožnost použití při výpočtech s rozšířenými tělesy. Proto bylo implementováno vlastní řešení pro práci s konečnými tělesy.

Při implementaci operací nad *konečnými tělesy* bylo dodržováno následující jednotné rozhraní:

 $^{^{11}}$ Anglicky se tento termín v softwaru ${\it Mathematica}$ nazývá ${\it Option}.$

 $^{^{12}}$ Jinými slovy proměnná, která nemá definovanou hodnotu.

 $^{^{13}\} Seznamem$ se myslí struktura v softwaru Mathematica-List

- Prvky konečných těles jsou reprezentovány seznamem koeficientů od nejvyššího po nejnižší.
 - U rozšířených těles jsou koeficienty opět prvky konečných těles. Například polynom $x^3 + x + 1$ je reprezentován seznamem: $\{1, 0, 1, 1\}$ a polynom $(y + 1)x^2 + (y)$ je reprezentován: $\{\{1, 1\}, \{0, 0\}, \{1, 0\}\}$
- Prvek (seznam koeficientů) může být libovolně dlouhý. V případě potřeby se při výpočtu redukuje (ireducibilním) polynomem nebo dorovná nulovými koeficienty.
- Počet koeficientů vnitřních prvků (koeficientů) musí být vždy stejný. Například prvek $\{\{0,0\},\{1\},\{1,0\}\}$ není dovolený.
- Jednotlivým funkcím je kromě operandů předáván též i modul skládající se z odpovídajících (ireducibilních) polynomů, včetně charakteristiky tělesa. Tento modul je definovaný následovně: Pro tělesa $GF(p^{n_1})$ je modul složen z (ireducibilního) polynomu i_1 stupně n_1 a dané charakteristiky p: $modul_1 = \{i_1, p\}$ Pro rozšířená tělesa se modul skládá z odpovídajícího polynomu i_k stupně n_k nad tělesem $GF(p^{n_1...n_{k-1}})$ a modulu vnitřního tělesa: $modul_k = \{i_k, modul_{k-1}\}$.
- Všem funkcím se předávají nejdřív operandy a poté modul. Například pro prvky $a,b\in GF(p^{...}),\ m\in\mathbb{N}$ a odpovídající modul: krat[a,b,modul] inverze[a,modul] mocnina[a,m,modul]
- Pro implementaci operací v prvotělesech (tělesech GF(pⁿ)) jsou použité vnitřní funkce softwaru Mathematica pro práci s polynomy. Implementované funkce pro prvotělesa tedy zpravidla obsahují převod ze seznamu čísel na polynom, zavolání vnitřní funkce pro polynomy a převodu zpět na seznam koeficientů. Díky těmto vnitřním funkcím je docíleno rychlejšího výpočtu, než kdyby byla použita vlastní implementace nad seznamy celých čísel.
- Pro implementaci operací v rozšířených tělesech byly implementovány jednotlivé algoritmy operací (popsané níže), jelikož nebylo možné použít pro tyto operace vnitřní funkce softwaru Mathematica. Funkce nad rozšířenými tělesy zpravidla volají odpovídající funkce ve vnitřních tělesech (například násobení jednotlivých koeficientů).

Tato pravidla umožňují pohodlný, jednotný a rekurzivní přístup k jednotlivým prvkům a voláním funkcí (druhá složka modulu je modul vnitřního tělesa, prvky polynomu jsou opět polynomy, ...).

4.1.3 Implementace operací

V následujících kapitolách je popsána implementace hlavních operací v *ko-nečných tělesech* a použitých algoritmů. Pro další informace je doporučeno nahlédnout do zdrojového kódu a příkladů použití.

V níže uvedených pseudokódech se používá některých prvků ze syntaxe softwaru *Mathematica*:

Zápis	Význam
foo[bar]	Volání funkce foo s argumentem bar
ham[[i]]	i-tý prvek seznamu (pole) ham

Tabulka 4.1: Prvky syntaxe jazyka softwaru Mathematica

4.1.3.1 Sčítání

Jelikož operace sčítání se v jakémkoliv tělese provádí po jednotlivých koeficientech $modulo\ p$, je tato funkce jediná volána místo celkového modulu pouze se zadanou charakteristikou p.

Pro rozšířená tělesa funkce rekurzivně volá stejnou operaci sčítání na jednotlivé koeficienty zadaných polynomů až na úroveň prvotěles – obyčejných jednorozměrných seznamů. Pro prvotělesa funkce používá obyčejné sčítání dvou seznamů modulo p.

```
Algoritmus 1 Sčítání polynomů
                                                              \triangleright Pro GF(p^n), p je prvočíslo
 1: function PLUS[a,b,p]
         return Mod[a+b,p]
 2:
 3: end function
 1: function PLUS[a,b,p]
                                                                      \triangleright \operatorname{Pro} GF(q^n), q \text{ je } p^{\dots}
         for i \leftarrow 1 \dots Length[a] do
 2:
              c[[i]] \leftarrow plus[a[[i]], b[[i]], p]
 3:
         end for
 4:
         return c
 5:
 6: end function
```

4.1.3.2 Redukce polynomu

Redukce polynomu (neboli modulo polynom) se používá ve většině dalších funkcí. Tato funkce se volá se dvěma parametry – prvkem a a polynomem (modulem) m. Funkce vrátí zbytek polynomu a po dělení polynomem m.

Redukce polynomu pro rozšířená tělesa je inspirovaná $Comb \ metodou \ z \ [7]$. K původnímu prvku a se opakovaně přičítá (od nejvyššího řádu) patřičný násobek $polynomu \ m$ tak, aby se daný koeficient a_i rovnal nule (viz příklad níže).

Pro prvotělesa se používá interní funkce PolynomialMod

```
Algoritmus 2 Redukce polynomu v tělese s charakteristikou 2
```

```
1: function REDUKUJ[ a, \{m, modul_{vnitrni}\} ]
        l_a \leftarrow stupen[a] + 1
                                                  ▶ Délka redukovaného polynomu
 2:
        l_m \leftarrow stupen[m]
 3:
                                       ▶ Výsledná délka redukovaného polynomu
         // Převedení m na monický polynom
        koef \leftarrow inverze[m[[1]], modul_{vnitrni}]  > Inverze nejvyššího koeficientu
 4:
        m \leftarrow krat[koef, m, modul_{vnitrni}]
                                                                ⊳ Násobení skalárem
 5:
        m \leftarrow PadRight[m, l_a - l_m]
                                                ⊳ Natáhnutí polynomu na délku a
 6:
        for i \leftarrow 1 \dots l_a - l_m do
 7:
            s \leftarrow krat[a[[i]], m, modul_{vnitrni}]
                                                                  ⊳ Skalární násobek
 8:
            a \leftarrow plus[a, s, 2]
                                                      ⊳ Odečtení v binárním tělese
 9:
            m \leftarrow RotateRight[m]
                                              ▶ Posunutí redukovaného polynomu
10:
11:
        end for
12:
        return a
13: end function
```

Příklad Redukce polynomu $x^{12} + x^8 + x^7 + x^5 + x^4 + x^3 + 1$ polynomem $x^4 + x + 1$ (nad tělesem GF(2)):

4.1.3.3 Násobení

Výsledkem násobení dvou polynomů a a b stupně n a m je polynom c stupně n+m. Násobení je implementováno tak, že k výsledku c (na počátku je to nulový polynom) se postupně přičítá skalární násobek polynomu b koeficienty polynomu a, který je zároveň posunutý o patřičný počet pozic. Využívá se zde faktu, že násobení libovolného polynomu A(x) a x^i je posunutí koeficientů polynomu A o i pozic doleva. Výsledný polynom c je následně redukován zadaným modulem (viz výše).

Pro prvotělesa se používá obyčejného násobení dvou polynomů a následné redukce modulem.

Algoritmus 3 Násobení prvků

```
1: function Krat[ a, b, \{m, modul_{vnitrni}\} ]
       p \leftarrow charakteristika[modul]
                                                             ▷ Charakteristika tělesa
 2:
         // Natažení na výslednou délku
        b \leftarrow PadLeft[b, stupen[a] + stupen[b] + 1]
 3:
 4:
        c \leftarrow nulovyPolynom[...]
                                         ⊳ Nulový polynom nad vnitřním tělesem
        for i \leftarrow stupen \dots 1 do
 5:
            s \leftarrow krat[a[[i]], b, modul_{vnitrni}]
                                                                   ⊳ Skalární násobek
 6:
            c \leftarrow plus[c, s, p]
 7:
            b \leftarrow RotateLeft[b]
                                                  ⊳ Posunutí přičítaného polynomu
 8:
 9:
        end for
10:
        return redukuj[c]
11: end function
```

Příklad Násobení polynomu $x^3 + x + 1$ polynomem $x^4 + x^2 + 2x + 1$ (nad tělesem GF(3)):

```
\begin{array}{c} 1011 \cdot 10121 : \\ 1(x^4) \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \\ 0(x^3) \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \\ 1(x^2) \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0 \\ 2(x^1) \ 0 \ 0 \ 2 \ 0 \ 2 \ 0 \\ \hline 1(x^0) \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \\ \hline 10 \ 2 \ 0 \ 2 \ 0 \ 0 \ 1 \end{array}
```

4.1.3.4 Inverze

Výpočet multiplikativní *inverze* je implementován pomocí *rozšířeného Euklidova algoritmu*. Tento algoritmus se často vizualizuje jako výpočet tabulky po řádkách (viz níže). Ve skutečnosti však pro výpočet dalšího řádku stačí pracovat s hodnotami dvou řádků předešlých. Proto si není nutné udržovat v paměti celou tabulku, ale stačí si udržovat hodnoty dvou řádků a po výpočtu třetího hodnoty posunout.

Výpočet hodnot dalšího řádku tabulky probíhá následovně:

• Hodnoty předchozích řádků jsou:

Polynomy p_{i-2} a p_{i-1} (na začátku inicializovány na ireducibilní polynom m a prvek, ke kterému je hledaná inverze).

Polynomy k_{i-2} a k_{i-1} (na začátku inicializovány na 0 a 1, respektive nulový a jednotkový polynom).

- Je spočítán podíl q a zbytek p_i pomocí tzv. dlouhého dělení polynomu p_{i-2} polynomem p_{i-1} .
- Je spočítán polynom $k_i = k_{i-2} q \cdot k_{i-1}$
- Tyto kroky se opakují, dokud není získán polynom p_i stupně 0 (jinými slovy jediný prvek vnitřního tělesa).
- Výsledná *inverze* se získá jako skalární násobek *polynomu* k_i inverzí (posledního) *koeficientu* polynomu p_i^{14} .

Inverze v prvotělese je implementovaná pomocí interní funkce PolynomialExtendedGCD.

```
Algoritmus 4 Inverze prvků – Rozšířený Euklidův algoritmus
```

```
1: function INVERZE[ prvek, modul : \{m, modul_{vnitrni}\} ]
        A \leftarrow m; B \leftarrow prvek
          // Inicializace na jednotkový resp. nulový polynom z tělesa
        k_A \leftarrow nulovyPolynom[\ldots]; k_B \leftarrow jednotkovyPolynom[\ldots]
 3:
 4:
        while stupen[B] \neq 0 do
          // Výpočet q a C pomocí dlouhého dělení v jednom kroku
            q \leftarrow A/B; C \leftarrow A \mod B
 5:
            k_C \leftarrow k_A - krat[q, k_B, modul]
 6:
            A \leftarrow B; k_A \leftarrow k_B
 7:
            B \leftarrow C; k_B \leftarrow k_C
 8:
        end while
 9:
         // Výpočet koeficientu ve vnitřním tělese
        koef \leftarrow inverze[Last[C], modul_{vnitrni}]
10:
        return krat[koef, k_C, modul_{vnitrni}]
                                                                   ⊳ Násobení skalárem
11:
12: end function
```

Příklad Rozšířený Euklidův algoritmus pro výpočet inverze polynomu $x^3 + x^2 + 1$ modulo $x^6 + x + 1$ (nad tělesem GF(2)):

Podíl	Zbytek	Koeficienty	
	1000011	0	1
	1101	1	0
1110	101	-1110	1
11	10	10011	-11
10	1	-101000	111

$$\Rightarrow |1101^{-1}|_{1000011} = 101000$$

 $^{^{14}}$ Zde je vidět, že pro výpočet inverze v tělese $GF(q^n)$ je třeba vypočítat inverzi v tělese GF(q).

Poznámka Poslední sloupec tabulky se v algoritmu nepočítá, je zde uveden pouze pro úplnost.

4.1.3.5 Druhá mocnina

Pro prvky tělesa s *charakteristikou* 2 Je výhodné implementovat funkci "na druhou" díky následujícímu tvrzení:

Tvrzení 1 Nechť $A = (a_n \dots a_2 a_1 a_0)$ je prvek tělesa s charakteristikou 2, potom platí:

$$A^2 = (a_n^2 0 \dots 0 a_2^2 0 a_1^2 0 a_0^2)$$

Důkaz

$$\begin{split} A(x) &= a_n x^n + \dots + a_2 x^2 + a_1 x + a_0 \\ A(x)^2 &= (a_n x^n + \dots + a_2 x^2 + a_1 x + a_0) \cdot (a_n x^n + \dots + a_2 x^2 + a_1 x + a_0) \\ &= a_n x^n \cdot (a_n x^n + \dots + a_2 x^2 + a_1 x + a_0) + \\ &\vdots \\ &+ a_2 x^2 \cdot (a_n x^n + \dots + a_2 x^2 + a_1 x + a_0) + \\ &+ a_1 x \cdot (a_n x^n + \dots + a_2 x^2 + a_1 x + a_0) + \\ &+ a_0 \cdot (a_n x^n + \dots + a_2 x^2 + a_1 x + a_0) \\ &= a_n^2 x^{2n} + \dots + a_n a_2 x^{n+2} + a_n a_1 x^{n+1} + a_n a_0 x^n + \\ &\vdots \\ &+ a_n a_2 x^{n+2} + \dots + a_2^2 x^4 + a_2 a_1 x^3 + a_2 a_0 x^2 + \\ &+ a_n a_1 x^{n+1} + \dots + a_2 a_0 x^2 + a_1 a_0 x + a_0^2 \\ &= a_n^2 x^{2n} + \dots + 2(a_3 a_0 + a_2 a_1) x^3 + 2(a_2 a_0) x^2 + a_1^2 x^2 + 2(a_1 a_0) x + a_0^2 \\ &= \sum_{i=0}^n a_i^2 x^{2i} + 2 \sum_{i=1}^{n+1} \sum_{j < k \ j+k=i}} a_j a_k \\ &= \sum_{i=0}^n a_i^2 x^{2i} &\cong (a_n^2 0 \dots 0 a_2^2 0 a_1^2 0 a_0^2) \end{split}$$

S využitím tohoto tvrzení je realizace funkce na počítání druhé mocniny triviální:

- Provedení druhé mocniny všech koeficientů.
- Proložení koeficientů polynomu nulovými koeficienty.
- Redukování polynomem (viz výše).

Algoritmus 5 Umocňování na druhou v tělese s charakteristikou 2

```
1: function NADRUHOU[ a, \{m, modul_{vnitrni}\} ]
2:
      for i \leftarrow 1 \dots Length[i] do
          a[[i]] \leftarrow naDruhou[a[[i]], modul_{vnitrni}]
3:
      end for
4:
5:
      nula \leftarrow nulovyPolynom[...]
                                                 ⊳ Odpovídající nulový koeficient
      a \leftarrow Riffle[a, nula]
6:
                                               ▶ Proloží koeficienty prvkem nula
      return redukujPolynom[a, modul]
7:
8: end function
```

4.1.3.6 Mocnění

Mocnění polynomů je implementováno pomocí algoritmu Square-and-Multiply (SM). Algoritmus využívá faktu, že libovolnou mocninu lze rozložit na součin mocnin čtverců $(^2, ^4, ^8, \dots)$. Konkrétně byla implementována varianta provádějící výpočet od nejvíce významného bitu exponentu 15 . Algoritmus má vstupy polynom a a exponent e. Exponent se vyjádří jako číslo v binární soustavě a poté algoritmus provádí cyklus přes bity tohoto rozvoje. V každém kroku se mezivýsledek umocní na druhou a v případě, že je odpovídající bit exponentu 1, přinásobí se původní číslo a.

Algoritmus 6 Umocňování prvku $a^e \mod modul - Square-and-Multiply$

```
1: function UMOCNI[a, e, modul]
        if e = 0 then
 2:
 3:
            return nulovyPolynom[...]
                                                                 ⊳ Nulový prvek tělesa
 4:
        end if
        rozvoj \leftarrow IntegerDigits[e, 2]
                                                          ⊳ Binární rozvoj exponentu
 5:
                                                                \triangleright rozvoj[[1]] je vždy 1
 6:
        for i \leftarrow 2 \dots Length[rozvoj] do
 7:
            s \leftarrow naDruhou[c, modul]
 8:
            m \leftarrow krat[s, a, modul]
 9:
            if rozvoj[[i]] = 0 then
10:
                c \leftarrow s
11:
            else
12:
13:
                c \leftarrow m
            end if
14:
15:
        end for
        return c
16:
17: end function
```

 $^{^{15}}$ Uváděna jako $MSB-{\rm z}$ anglického $most\ significant\ bit$

Poznámka Takto implementovaný algoritmus je zranitelný vůči odběrové a časové analýze. Pro odolnou implementaci je nutné počítat násobek *vždy* a pokud je daný bit exponentu 1, přiřadit násobek do mezi výpočtu. Pseudokód i reálná implementace je prováděna tímto (bezpečným) způsobem.

Příklad Square-and-Multiply pro výpočet $(x^3 + 1)^{26}$ modulo $x^6 + x + 1$ (nad tělesem GF(2)):

Op.	Mocnina		Výpočet	Výsledek
	dek.	bin.	Vypocet	v ysiedek
	1	1		1001
\mathbf{S}	2	1	1000001	10
${f M}$	3	11	$10 \cdot 1001$	10010
\mathbf{S}	6	110	100000100	1000
$\overline{\mathbf{S}}$	12	1100	1000000	11
${f M}$	13	1101	$11 \cdot 1001$	11011
$\overline{\mathbf{S}}$	26	11010	101000101	1010

$$\Rightarrow |1001^{26}|_{1000011} = 1010$$

4.1.4 Možná zlepšení

V této kapitole jsou nastíněny možná zlepšení implementace, která zrychlují výpočet některých operací.

4.1.4.1 Logaritmické tabulky

Pro zrychlení výpočtu násobení a mocnin prvku lze v konečném tělese využít faktu, že vždy existuje primitivní prvek a převádět tak operace v tělese na operace s celými čísly.

Definice 5 Nechť α je generátor multiplikativní grupy tělesa F. Potom říkáme, že α je primitivní prvek tělesa F.

Důsledek Každý prvek tělesa F – kromě *nulového* prvku *aditivní grupy* – lze vyjádřit jako α^i pro nějaké i.

Důkaz plyne přímo z definice.

Násobení dvou prvků $a=\alpha^{i_a}$ a $b=\alpha^{i_b}$ tak lze převést na součet mocnin primitivního prvku:

$$a \cdot b = \alpha^{i_a} \cdot \alpha^{i_b} = \alpha^{i_a + i_b}$$

Podobným způsobem je možné zjednodušit umocňování prvku:

$$a^e = \left(\alpha^i\right)^e = \alpha^{ie}$$

V obou případech je samozřejmě možné použít Eulerovu větu a mocniny redukovat modulo N, kde N je počet prvků multiplikativní grupy tělesa ($N = p^n - 1$ pro těleso $GF(p^n)$). Jakoukoliv operací násobení a mocnění se získá prvek α^{n_c} , kde n_c je celé číslo v rozsahu od 0 do N-1.

Reprezentací prvků pomocí odpovídajících mocnin primitivního prvku je tak možné vyhnout se násobení a umocňování prvků v tělese a nahradit ho sčítáním a násobením celých čísel, což je řádově jednodušší. V případě sčítání prvků v tělese je však nutné mít jejich standardní reprezentaci (seznam koeficientů), jelikož se sčítání provádí po jednotlivých koeficientech, respektive bitech. Není možné nahradit sčítání dvou prvků jiné operaci s mocninami primitivního prvku.

Pro použití tohoto zrychlení výpočtů je tak nutné připravit v paměti programu překladové log- a antilogaritmické tabulky pro překlad prvků z jedné reprezentace na druhou.

Ač se tak získá podstatné zrychlení výpočtů v tělese, existuje několik nevýhod tohoto přístupu:

- Je nutné nalézt primitivní prvek tělesa.
- Je nutné vygenerovat a uchovat v paměti počítače obě tabulky pro překlad.
 - Tato tabulka lze implementovat pomocí obyčejného pole či seznamu, kde se k danému indexu v seznamu vyskytuje odpovídající hodnota.
 - Pro binární tělesa $GF(2^m)$ je velikost jedné tabulky $O(m2^m)$ (konkrétně $2^m - 1$ hodnot, kde každá je reprezentována m bity).
 - Jelikož je paměťová náročnost exponenciální, je možné tyto tabulky uchovávat pouze pro malá m (např. 8 či 16, nikoliv však 1024).
- Nulový prvek tělesa není možné žádným způsobem zobrazit jako mocninu. Při každé operaci je potřeba s touto skutečností počítat a hlídat jako výjimku.

Tohoto vylepšení se dá využít pro operace ve vnitřním tělese $GF(2^m)$, nad kterým jsou postavené polynomy v binárních Goppa k'odech.

4.1.4.2 Implementace dělení

Dělení prvkem b v konečném tělese se převádí na násobení b^{-1} . Pro výpočet podílu se tak počítá inverze a následně násobek. Je ale možné implementovat rovnou algoritmus pro dělení.

Algoritmus pro dělení prvku a prvkem b je totožný s algoritmem pro výpočet inverze prvku b s tím rozdílem, že je počáteční hodnota koeficientu k_b (viz EEA – alg. 4) nastavena na hodnotu a. Výsledkem algoritmu pak bude inverze prvku b vynásobená a, což přesně odpovídá výrazu a/b.

- 4.2 Ireducibilní binární Goppa kódy
- 4.3 McEliece
- 4.4 Měření

Závěr

Literatura

- [1] Robert J. McEliece, A Public-Key Cryptosystem Based on Algebraic Coding Theory v *JPL Deep Space Network Progress Report 42-44* Jenuary and February 1978, strany 114–116. Dostupné online http://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
- Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory v Problems of Control and Information Theory 15, strany 19-34, 1986
- [3] Yuan Xing Li, Robert H. Deng, Xin Mei Wang. On the equivalence of McEliece's and Niederreiter's public-key cryptosystems v *IEEE Transactions on Information Theory*, vol. 40, strany 271-273. IEEE, leden 1994. Dostupné online http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=272496
- [4] Elwyn R. Berlekamp, Robert J. McEliece, Henk C. A. van Tilborg. On the Inherent Intractibility v *IEEE Transactions of Information Theory*, vol. IT-24, No. 3, strany 384-386. IEEE, květen 1978.
- [5] Nicolas T. COURTOIS, Matthieu FINIASZ, Nicolas SENDRIER. How to Achieve a McEliece-Based Digital Signature Scheme v Advances in Cryptology – ASIACRYPT 2001, strany 157-174. Springer Berlin Heidelberg, 2001. Dostupné online http://link.springer.com/chapter/10.1007% 2F3-540-45682-1_10
- [6] Christof PAAR, Jan PELZL. Understanding Cryptography: A Textbook for Students and Practitioners. Springer-Verlag Berlin Heidelberg, 2010. Dostupné online: https://www.springer.com/us/book/9783642041006
- [7] J. G. MERCHAN, S. KUMAR, C. PAAR, J. PELZL. Efficient Software Implementation of Finite Fields with Applications to Cryptography v Acta Applicandae Mathematicae: An International Survey

Journal on Applying Mathematics and Mathematical Applications, Volume 93, Numbers 1-3, strany 3-32. Ruhr-Universitat Bochum, 2006. Dostupné online: http://www.emsec.rub.de/research/publications/efficient-software-implementation-finite-fields-ap/

- [8] ITT
- [9] Přednášky BI-LIN
- [10] Přednášky MI-BHW
- [11] Přednášky MI-MKY
- [12] Přednášky MI-MPI
- [13] Wolfram Mathematica

PŘÍLOHA **A**

Seznam použitých zkratek

EEA Extended Euclidean Algorithm – Rozšířený Euklidův algoritmus

GCD Greatest Common Divisor – Největší společný dělitel

 ${\bf GF}~~Gallois~field$ – konečné těleso

LSB Least Significant Bit/Byte – nejméně významný bit/bajt

MSB Most Significant Bit/Byte – nejvíce významný bit/bajt

S&M algoritmus Square-and-Multiply

PŘÍLOHA **B**

Obsah přiloženého CD

readme.txtstručný popis obsah	au CD
exe adresář se spustitelnou formou impleme	entace
src	
implzdrojové kódy impleme	entace
implzdrojové kódy implemethesiszdrojová forma práce ve formátu	IAT _E X
texttext	
thesis.pdf text práce ve formátu	
thesis.pstext práce ve formá	itu PS