A Marginalised Bayesian Noise Wave Calibration Method

Christian Kirkham^{1,2}, William Handley^{1,2}, Ian Roque^{1,2}, Jiacong Zhu^{3,4}, Harry Bevins^{1,2}, Dominic Anstey^{1,2}, Eloy de Lera Acedo^{1,2}

¹Cavendish Astrophysics, University of Cambridge

²Kavli Institute for Cosmology, University of Cambridge

³National Astronomical Observatory, Chinese Academy of Sciences

⁴School of Astronomy and Space Science, University of Chinese Academy of Sciences

Global 21-cm Workshop, Bengaluru, India, 31 Sep 2024

Characterising the LNA with Noise Waves

 Noise Wave formalism models the LNA response (Meys, 1978; Monsalve et al., 2017)

$$T_{NS}\left(\frac{P_{s} - P_{L}}{P_{NS} - P_{L}}\right) + T_{L} = T_{s}\left[\frac{1 - |\Gamma_{s}|^{2}}{|1 - \Gamma_{s}\Gamma_{r}|^{2}}\right] + T_{unc}\left[\frac{|\Gamma_{s}|^{2}}{|1 - \Gamma_{s}\Gamma_{r}|^{2}}\right] + T_{cos}\left[\frac{\operatorname{Re}\left(\frac{\Gamma_{s}}{1 - \Gamma_{s}\Gamma_{r}}\right)}{\sqrt{1 - |\Gamma_{r}|^{2}}}\right] + T_{sin}\left[\frac{\operatorname{Im}\left(\frac{\Gamma_{s}}{1 - \Gamma_{s}\Gamma_{r}}\right)}{\sqrt{1 - |\Gamma_{r}|^{2}}}\right]$$
(1)

- "Calibration equation" three noise wave parameters: $T_{\text{unc}}, T_{\cos}, T_{\sin}$
- We also fit for T_{NS}, T_L (Roque et al., 2021)

Drawbacks of Conjugate Priors

- Conjugate priors calibration method (Roque et al., 2021) uses a Normal Inverse Gamma prior so the posterior can be evaluated analytically, quickly
- \bullet But choice of conjugate prior assumes all calibrator source temperatures have same noise, σ
 - For noise wave parameters $\sigma \propto 1/(1-|\Gamma_s|^2)$, where $|\Gamma_s| \in (0,1)$
- Polynomial order selection gradient descent can get stuck in local minima

Marginalised Polynomial Method

We can fit for the polynomial orders as parameter

$$\mathbf{n} = \begin{pmatrix} n_{\mathsf{unc}} & n_{\mathsf{cos}} & n_{\mathsf{sin}} & n_{\mathsf{NS}} & n_{\mathsf{L}} \end{pmatrix} \tag{2}$$

• Fit for calibrator noise parameters

$$\eta = \begin{pmatrix} \sigma_0 & \sigma_1 & \ldots \end{pmatrix} \tag{3}$$

- To speed up the fit we marginalise over Θ
- Marginal likelihood is then

$$\mathcal{L}_{\text{eff}}(\eta, \mathbf{n}) = \sqrt{\frac{1}{|2\pi\mathbf{C}||\mathbf{\Sigma}_{\rho}||\mathbf{\Sigma}^{-1}|}} \exp\left\{\frac{1}{2}\mu^{T}\mathbf{\Sigma}^{-1}\mu - \frac{1}{2}\mathbf{T}^{T}\mathbf{C}^{-1}\mathbf{T}\right\}$$
(4)

Method Comparison (RMSE)

