

Section Summary

- Prime Numbers and their Properties
- Conjectures and Open Problems About Primes
- Greatest Common Divisors and Least Common Multiples
- The Euclidian Algorithm
- gcd as Linear Combinations

Primes

Definition: A positive integer *p* greater than 1 is called *prime* if the only positive factors of *p* are 1 and *p*. A positive integer that is greater than 1 and is not prime is called *composite*.

Example: The integer 7 is prime because its only positive factors are 1 and 7, but 9 is composite because it is divisible by 3.

The Fundamental Theorem of Arithmetic

Theorem: Every positive integer greater than 1 can be written uniquely as a prime or as the product of two or more primes where the prime factors are written in order of nondecreasing size.

Examples:

$$-100 = 2 \cdot 2 \cdot 5 \cdot 5 = 2^2 \cdot 5^2$$

$$-641 = 641$$

$$-999 = 3 \cdot 3 \cdot 3 \cdot 37 = 3^3 \cdot 37$$

Erastothenes (276-194 B.C.)

The Sieve of Erastosthenes

- The *Sieve of Erastosthenes* can be used to find all primes not exceeding a specified positive integer. For example, begin with the list of integers between 1 and 100.
 - a. Delete all the integers, other than 2, divisible by 2.
 - b. Delete all the integers, other than 3, divisible by 3.
 - c. Next, delete all the integers, other than 5, divisible by 5.
 - d. Next, delete all the integers, other than 7, divisible by 7.
 - e. Since all the remaining integers are not divisible by any of the previous integers, other than 1, the primes are:

{2,3,5,7,11,15,1719,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97}

The Sieve of Erastosthenes

Integers divisible by 2 other than 2 receive an underline.									Integers divisible by 3 other than 3 receive an underline.										
1	2	3	<u>4</u>	5	<u>6</u>	7	8	9	<u>10</u>	1	2	3	<u>4</u>	5	<u>6</u>	7	8	9	<u>10</u>
11	<u>12</u>	13	<u>14</u>	15	<u>16</u>	17	<u>18</u>	19	<u>20</u>	11	<u>12</u>	13	<u>14</u>	<u>15</u>	<u>16</u>	17	<u>18</u>	19	<u>20</u>
21	<u>22</u>	23	<u>24</u>	25	<u>26</u>	27	<u>28</u>	29	<u>30</u>	<u>21</u>	<u>22</u>	23	<u>24</u>	25	<u>26</u>	<u>27</u>	<u>28</u>	29	<u>30</u>
31	<u>32</u>	33	<u>34</u>	35	<u>36</u>	37	<u>38</u>	39	<u>40</u>	31	<u>32</u>	<u>33</u>	<u>34</u>	35	<u>36</u>	37	<u>38</u>	<u>39</u>	<u>40</u>
41	<u>42</u>	43	<u>44</u>	45	<u>46</u>	47	<u>48</u>	49	<u>50</u>	41	<u>42</u>	43	<u>44</u>	<u>45</u>	<u>46</u>	47	<u>48</u>	49	<u>50</u>
51	<u>52</u>	53	<u>54</u>	55	<u>56</u>	57	<u>58</u>	59	<u>60</u>	<u>51</u>	<u>52</u>	53	<u>54</u>	55	<u>56</u>	<u>57</u>	<u>58</u>	59	<u>60</u>
61	<u>62</u>	63	<u>64</u>	65	<u>66</u>	67	<u>68</u>	69	<u>70</u>	61	<u>62</u>	<u>63</u>	<u>64</u>	65	<u>66</u>	67	<u>68</u>	<u>69</u>	<u>70</u>
71	<u>72</u>	73	<u>74</u>	75	<u>76</u>	77	<u>78</u>	79	<u>80</u>	71	<u>72</u>	73	<u>74</u>	<u>75</u>	<u>76</u>	77	<u>78</u>	79	80
81	<u>82</u>	83	<u>84</u>	85	<u>86</u>	87	88	89	90	<u>81</u>	<u>82</u>	83	<u>84</u>	85	<u>86</u>	87	88	89	90
91	07								1777							97	(10	α	
	<u>92</u>	93	94	95	<u>96</u>	97	<u>98</u>	99	<u>100</u>	91	<u>92</u>	<u>93</u>	94	95	<u>96</u>	91	<u>98</u>	99	<u>100</u>
	egers	divisi	94 ible b derlin	y 5 ot				99	100	In	92 teger unde	s divi	sible	by 7 c	= other	than	7 rec	eive	100
	egers	divisi	ible b	y 5 ot	ther t			99		In	teger.	s divi	sible	by 7 c	= other in co	than	7 rec	eive	
rece	egers	divisi n und	ible b derlin	y 5 ot ie.		han 5	 -		<u>10</u>	In an	teger	— s divi erline	sible;; inte	by 7 o	= other	than lor ai	7 rec re pri	eive me.	<u>10</u>
rece	— egers eive a	divisi n und	ible b derlin	y 5 ot ie. 5	ther to	han 5 7	<u>8</u>	9	10 20	In an	teger unde	— s divi erline 3	sible ;; inte	by 7 o	= other in co <u>6</u>	than lor ai	7 rec re pri	eive me.	10 20
1 1		divisi n und 3 13	ible b derlin 4 14	y 5 ot ne. 5 <u>15</u>	6 16	7 17		<u>9</u> 19	<u>10</u>	In an 1		s divi	sible; inte	by 7 egers 5 15 25	= other in co. <u>6</u> 16	than lor ar 7 17	7 rec re pris 8 18	— eive me. 9	10 20 30
1 11 21	2 12 22 32	3 13 23	derlind 4 14 24	5 <u>15</u> <u>25</u> <u>35</u>	6 16 26	7 17 <u>27</u>	8 18 28 38	9 19 29	10 20 30 40	In an 1 11 21	2 12 22 32	s diviserline 3 13 23	sible	by 7 degers 5 15 25 35	= other in co \frac{6}{16} \frac{26}{26}	than lor ar 7 17 27	7 rec re prii 8 18 28 38	9 19 29	10 20 30 40
1 11 21 31	egers $ \begin{array}{c} \underline{\text{eive a}} \\ 2 \\ \underline{12} \\ \underline{22} \end{array} $	3 13 23 33	4 14 24 34 44	y 5 ot ne. 5 <u>15</u> <u>25</u>	6 16 26 36	7 17 27 37	8 18 28	9 19 29 39	10 20 30	In an 1 11 21 31	2 12 22	3 13 23 33	4 14 24 34 44	by 7 egers 5 15 25	= other in co	than 7 17 27 37	7 rec re pris 8 18 28	9 19 29	10 20 30
1 11 21 31 41	2 12 22 32 42	3 13 23 33 43		5 <u>15</u> <u>25</u> <u>35</u> <u>45</u>	6 16 26 36 46	7 17 <u>27</u> 37 47	8 18 28 38 48	9 19 29 39 49	10 20 30 40 50 60	In an 1 1 1 2 1 3 1 4 1	2 12 22 32 42	3 13 23 33 43	4 14 24 34	5 15 25 35 45	6 16 26 36 46	than 7 17 27 37 47	7 rec re pris 8 18 28 38 48	9 19 29 39 49	10 20 30 40 50 60
1 11 21 31 41 51	2 12 22 32 42 52	3 13 23 33 43	4 14 24 34 44 54 64	y 5 ot 15 25 35 45 55 65	6 16 26 36 46 56	7 17 27 37 47 57	8 18 28 38 48 58 68	9 19 29 39 49 59	10 20 30 40 50 60 70	1 1 11 21 31 41 51	2 12 22 22 32 42 52 62	3 13 23 33 43 53	4 14 24 24 34 44 54 64	5 15 25 35 45 55 65	6 16 26 36 46 56	than lor ar 7 17 27 37 47 57 67	7 rec re pris 8 18 28 38 48 58 68	9 19 29 39 49	10 20 30 40 50 60
1 11 21 31 41 51 61	2 12 22 22 32 42 52	3 13 23 33 43 53	4 14 24 34 44 54	5 15 25 35 45 55	6 16 26 36 46	7 17 27 37 47 57 67	8 18 28 28 38 48 58	9 19 29 39 49 59	10 20 30 40 50 60	1 1 11 21 31 41 51	2 12 22 22 32 42 52	3 13 23 33 43	4 14 24 24 34 44 54	5 15 25 25 45 55	6 16 26 36 46	than 7 17 27 37 47 57	7 rec re pris 8 18 28 28 38 48 58	9 19 29 39 49 59	10 20 30 40 50

If an integer n is a composite integer, then it has a prime divisor less than or equal to \sqrt{n} .

To see this, note that if n = ab, then $a \le \sqrt{n}$ or $b \le \sqrt{n}$.

Trial division, a very inefficient method of determining if a number n is prime, is to try every integer $i \le \sqrt{n}$ and see if n is divisible by i.

Infinitude of Primes

Theorem: There are infinitely many primes. (Euclid)

Proof: Assume finitely many primes: p_1, p_2, \ldots, p_n

- Let $q = p_1 p_2 \cdots p_n + 1$
- Either q is prime or by the fundamental theorem of arithmetic it is a product of primes.
 - But none of the primes p_j divides q since if $p_j \mid q$, then p_j divides $q p_1 p_2 \cdots p_n = 1$.
 - Hence, there is a prime not on the list p_1, p_2, \ldots, p_n . It is either q, or if q is composite, it is a prime factor of q. This contradicts the assumption that p_1, p_2, \ldots, p_n are all the primes.
- Consequently, there are infinitely many primes.

Euclid (325 B.C.E. – 265 B.C.E.)

Paul Erdős (1913-1996)

Mersene Primes

Definition: Prime numbers of the form $2^p - 1$, where p is prime, are called *Mersene primes*.

- $-2^{2}-1=3$, $2^{3}-1=7$, $2^{5}-1=37$, and $2^{7}-1=127$ are Mersene primes.
- $-2^{11}-1=2047$ is not a Mersene prime since 2047=23.89.
- There is an efficient test for determining if $2^p 1$ is prime.
- The largest known prime numbers are Mersene primes.
- As of mid 2011, 47 Mersene primes were known, the largest is 2^{43,112,609}
 1, which has nearly 13 million decimal digits.
- The *Great Internet Mersene Prime Search* (*GIMPS*) is a distributed computing project to search for new Mersene Primes.

http://www.mersenne.org/

Marin Mersenne (1588-1648)

Distribution of Primes

- Mathematicians have been interested in the distribution of prime numbers among the positive integers. In the nineteenth century, the *prime number theorem* was proved which gives an asymptotic estimate for the number of primes not exceeding *x*.
- **Prime Number Theorem**: The ratio of the number of primes not exceeding *x* and *x*/ln *x* approaches 1 as *x* grows without bound. (ln *x* is the natural logarithm of *x*)
 - The theorem tells us that the number of primes not exceeding x, can be approximated by $x/\ln x$.
 - The odds that a randomly selected positive integer less than n is prime are approximately $(n/\ln n)/n = 1/\ln n$.

Generating Primes

- So far, no useful closed formula that always produces primes has been found. There is no simple function f(n) such that f(n) is prime for all positive integers n.
- But $f(n) = n^2 n + 41$ is prime for all integers 1,2,..., 40. Because of this, we might conjecture that f(n) is prime for all positive integers n. But $f(41) = 41^2$ is not prime.

Conjectures about Primes

- Even though primes have been studied extensively for centuries, many conjectures about them are unresolved, including:
- Goldbach's Conjecture: Every even integer n, n > 2, is the sum of two primes. It has been verified by computer for all positive even integers up to $1.6 \cdot 10^{18}$. The conjecture is believed to be true by most mathematicians.
- There are infinitely many primes of the form $n^2 + 1$, where n is a positive integer. But it has been shown that there are infinitely many primes of the form $n^2 + 1$, where n is a positive integer or the product of at most two primes.
- The Twin Prime Conjecture: The twin prime conjecture is that there are infinitely many pairs of twin primes. Twin primes are pairs of primes that differ by 2. Examples are 3 and 5, 5 and 7, 11 and 13, etc. The current world's record for twin primes (as of mid 2011) consists of numbers 65,516,468,355·23^{33,333} ±1, which have 100,355 decimal digits.

Greatest Common Divisor

Definition: Let a and b be integers, not both zero. The largest integer d such that $d \mid a$ and also $d \mid b$ is called the greatest common divisor of a and b.

The greatest common divisor of a and b is denoted by gcd(a,b).

One can find greatest common divisors of small numbers by inspection.

Example: What is the greatest common divisor of 24 and 36?

Solution: gcd(24, 36) = 12

Example: What is the greatest common divisor of 17 and 22?

Solution: gcd(17,22) = 1

Greatest Common Divisor

Definition: The integers a and b are relatively prime if their greatest common divisor is 1.

Example: 17 and 22

Definition: The integers a_1 , a_2 , ..., a_n are pairwise relatively prime if $gcd(a_i, a_j) = 1$ whenever $1 \le i < j \le n$.

Example: Determine whether the integers 10, 17 and 21 are pairwise relatively prime.

Solution: Because gcd(10,17) = 1, gcd(10,21) = 1, and gcd(17,21) = 1, 10, 17, and 21 are pairwise relatively prime.

Example: Determine whether the integers 10, 19, and 24 are pairwise relatively prime.

Solution: Because gcd(10,24) = 2, 10, 19, and 24 are not pairwise relatively prime.

Finding the GCD Using Prime Factorizations

Suppose the prime factorizations of a and b are:

$$a = p_1^{a_1} p_2^{a_2} \dots p_n^{a_n}$$
, $b = p_1^{b_1} p_2^{b_2} \dots p_n^{b_n}$,

where each exponent is a nonnegative integer, and where all primes occurring in either prime factorization are included in both. Then:

$$\gcd(a,b) = p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \dots p_n^{\min(a_n,b_n)}.$$

• This formula is valid since the integer on the right (of the equals sign) divides both *a* and *b*. No larger integer can divide both *a* and *b*.

Example:
$$120 = 2^3 \cdot 3 \cdot 5$$
 $500 = 2^2 \cdot 5^3$ $gcd(120,500) = 2^{min(3,2)} \cdot 3^{min(1,0)} \cdot 5^{min(1,3)} = 2^2 \cdot 3^0 \cdot 5^1 = 20$

• Finding the gcd of two positive integers using their prime factorizations is not efficient because there is no efficient algorithm for finding the prime factorization of a positive integer.

Least Common Multiple

Definition: The least common multiple of the positive integers a and b is the smallest positive integer that is divisible by both a and b. It is denoted by lcm(a,b).

 The least common multiple can also be computed from the prime factorizations.

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

This number is divided by both *a* and *b* and no smaller number is divided by *a* and *b*.

Example: $lcm(2^33^57^2, 2^43^3) = 2^{max(3,4)} 3^{max(5,3)} 7^{max(2,0)} = 2^4 3^5 7^2$

Least Common Multiple

Theorem 5: Let a and b be positive integers. Then $ab = \gcd(a,b) \cdot \operatorname{lcm}(a,b)$

Home Task: (proof is Exercise 31)

Euclidean Algorithm

Euclid (325 B.C.E. – 265 B.C.E.)

• The Euclidian algorithm is an efficient method for computing the greatest common divisor of two integers. It is based on the idea that gcd(a,b) is equal to gcd(a,c) when a > b and c is the remainder when a is divided by b.

Example: Find gcd(91, 287):

```
• 287 = 91 \cdot 3 + 14 Divide 287 by 91
```

•
$$91 = 14 \cdot 6 + 7$$
 Divide 91 by 14

•
$$14 = 7 \cdot 2 + 0$$
 Divide 14 by 7 Stopping condition

$$gcd(287, 91) = gcd(91, 14) = gcd(14, 7) = 7$$

Euclidean Algorithm

The Euclidean algorithm expressed in pseudocode is:

```
procedure gcd(a, b) positive integers)

x := a

y := b

while y \neq 0

r := x \mod y

x := y

y := r

return x \{ gcd(a, b) \text{ is } x \}
```

• In Section 5.3, we'll see that the time complexity of the algorithm is $O(\log b)$, where a > b.

Correctness of Euclidean Algorithm

Lemma 1: Let a = bq + r, where a, b, q, and r are integers. Then gcd(a,b) = gcd(b,r).

Proof:

- Suppose that d divides both a and b. Then d also divides a bq = r (by Theorem 1 of Section 4.1). Hence, any common divisor of a and b must also be any common divisor of b and c.
- Suppose that d divides both b and r. Then d also divides bq + r = a. Hence, any common divisor of a and b must also be a common divisor of b and r.
- Therefore, gcd(a,b) = gcd(b,r).

Correctness of Euclidean Algorithm

Suppose that a and b are positive integers with a ≥ b.
 Let r₀ = a and r₁ = b.
 Successive applications of the division algorithm yields:

$$\begin{array}{lll} r_0 &= r_1 q_1 + r_2 & 0 \leq r_2 < r_1, \\ r_1 &= r_2 q_2 + r_3 & 0 \leq r_3 < r_2, \\ & \cdot & \\ & \cdot & \\ & \cdot & \\ r_{n-2} &= r_{n-1} q_{n-1} + r_2 & 0 \leq r_n < r_{n-1}, \\ r_{n-1} &= r_n q_n \,. \end{array}$$

- Eventually, a remainder of zero occurs in the sequence of terms: $a = r_0 > r_1 > r_2 > \cdots$ ≥ 0 . The sequence can't contain more than a terms.
- By Lemma 1 $gcd(a,b) = gcd(r_0,r_1) = \cdots = gcd(r_{n-1},r_n) = gcd(r_n,0) = r_n$.
- Hence the greatest common divisor is the last nonzero remainder in the sequence of divisions.

gcd as Linear Combinations

Bézout's Theorem: If a and b are positive integers, then there exist integers s and t such that gcd(a,b) = sa + tb.

(proof in exercises of Section 5.2)

Definition: If a and b are positive integers, then integers s and t such that gcd(a,b) = sa + tb are called $B\acute{e}zout$ coefficients of a and b. The equation gcd(a,b) = sa + tb is called $B\acute{e}zout$'s identity.

- By Bézout's Theorem, the gcd of integers *a* and *b* can be expressed in the form sa + tb where *s* and *t* are integers. This is a *linear combination* with integer coefficients of *a* and *b*.
 - $-\gcd(6,14) = (-2)\cdot 6 + 1\cdot 14$

Étienne Bézout (1730-1783)

Finding gcd as Linear Combinations

Example: Express gcd(252,198) = 18 as a linear combination of 252 and 198.

Solution: First use the Euclidean algorithm to show gcd(252,198) = 18

i.
$$252 = 1.198 + 54$$

ii.
$$198 = 3.54 + 36$$

iii.
$$54 = 1.36 + 18$$

iv.
$$36 = 2.18$$

- Now working backwards, from iii and i above
 - 18 = 54 1.36
 - 36 = 198 3.54
- Substituting the 2nd equation into the 1st yields:

•
$$18 = 54 - 1 \cdot (198 - 3.54) = 4.54 - 1.198$$

- Substituting 54 = 252 1.198 (from i)) yields:
 - $18 = 4 \cdot (252 1 \cdot 198) 1 \cdot 198 = 4 \cdot 252 5 \cdot 198$
- This method illustrated above is a two pass method. It first uses the Euclidian algorithm to find the gcd and then works backwards to express the gcd as a linear combination of the original two integers. A one pass method, called the *extended Euclidean algorithm*, is developed in the exercises.

Consequences of Bézout's Theorem

Lemma 2: If a, b, and c are positive integers such that gcd(a, b) = 1 and $a \mid bc$, then $a \mid c$.

Proof: Assume gcd(a, b) = 1 and $a \mid bc$

- Since gcd(a, b) = 1, by Bézout's Theorem there are integers s and t such that sa + tb = 1.
- Multiplying both sides of the equation by c, yields sac + tbc = c.
- From Theorem 1 of Section 4.1:
 - a / tbc (part ii) and a divides sac + tbc since a / sac and a / tbc (part i)
- We conclude a / c, since sac + tbc = c.

Lemma 3: If p is prime and $p \mid a_1 a_2 \cdots a_n$, then $p \mid a_i$ for some i. (proof uses mathematical induction; see Exercise 64 of Section 5.1)

Lemma 3 is crucial in the proof of the uniqueness of prime factorizations.

Uniqueness of Prime Factorization

• We will prove that a prime factorization of a positive integer where the primes are in nondecreasing order is unique. (This part of the fundamental theorem of arithmetic. The other part, which asserts that every positive integer has a prime factorization into primes, will be proved in Section 5.2.)

Proof: (by contradiction) Suppose that the positive integer n can be written as a product of primes in two distinct ways:

$$n = p_1 p_2 \cdots p_s$$
 and $n = q_1 q_2 \cdots p_t$.

Remove all common primes from the factorizations to get

$$p_{i_1}p_{i_2}\cdots p_{i_u} = q_{j_1}q_{j_2}\cdots q_{j_v}.$$

- By Lemma 3, it follows that p_{i_1} divides q_{j_k} , for some k, contradicting the assumption that p_{i_1} and q_{j_k} are distinct primes.
- Hence, there can be at most one factorization of *n* into primes in nondecreasing order.

Dividing Congruence by an Integer

• Dividing by an integer relatively prime to the modulus does produce a valid congruence:

Theorem 7: Let m be a positive integer and let a, b, and c be integers. If $ac \equiv bc \pmod{m}$ and gcd(c,m) = 1, then $a \equiv b \pmod{m}$.

Proof: Since $ac \equiv bc \pmod{m}$, $m \mid ac - bc = c(a - b)$ by Lemma 2 and the fact that gcd(c,m) = 1, it follows that $m \mid a - b$. Hence, $a \equiv b \pmod{m}$.

Query???

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}}$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sum_{x=1}^{\infty} x = ?$$

$$\forall x (\Re /x) = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$

$$\exists_{x \in \Re} \exists_{y \in \Re} (x = y) = ?$$

$$\sqrt{1+\sqrt{2+\sqrt{3+\sqrt{4....}}}} = ?$$

$$1 - 1 + 1 - 1 + 1 \dots = ?$$

$$\sum_{x=1}^{\infty} \frac{1}{x} = ?$$