Übungsblatt 7

Funktionale Programmierung, WS-2018/19

M. Esponda , R.Rojas, O.Wiese Abgabe: 17.12.2018, 10 Uhr

1) (2 Punkte) Welche der folgenden Lambdafunktionen sind Kombinatoren?
(\x.xy) (\y.(\x.xx)(\x.xx)) (\ab.abb)
2) (4 Punkte) Reduzieren Sie folgende SKI-Ausdrücke:
a) SII(SII) b) S (K(SI)) K IK
3) (8 Punkte) Sei folgenden Datentyp gegeben
data Expr = Addi Expr Expr Mult Expr Expr Sub Expr Expr Divi Expr Expr Numb Float deriving (Show,Eq)
Schreiben Sie eine Funktion "eval"
eval::Expr->Float
die eine Expr numerisch auswertet und testen Sie sie.
4) (6 Punkte) In der Vorlesung haben wir folgende Haskell-Definitionen besprochen:
data Expr = App Expr Expr S K I Var String Lam String Expr deriving (Show,Eq)
transform (Lam x y) = (eliminate x y)
eliminate x S = App K S eliminate x K = App K K eliminate x I = App K I eliminate x (Var y) x==y = I otherwise = (App K (Var y))
eliminate x (Lam y z) = eliminate x (eliminate y z)

Schreiben Sie folgende Lambda-Funktionen in Haskell mit Hilfe von diesem Datentyp:

```
(\sz.z) (die Null)
(\wxy.x(wxy)) (die Nachfolgerfunktion)
```

Testen Sie die Funktion "transform" und zeigen Sie die Ausgabe.