Local Fields: Sheet 1

Otto Pyper

1. (a) We show firstly that the addition and multiplication operations are well defined. Let $(a_n) \sim (x_n)$ and $(b_n) \sim (y_n)$. Then $(a_n) + (b_n) = (a_n + b_n) \sim (x_n + y_n)$ since $a_n - x_n + b_n - y_n \to 0$. Similarly, $(a_n - x_n) \cdot b_n + x_n (b_n - y_n) \to 0$, so $a_n b_n - x_n y_n \to 0$ and $(x_n y_n) \sim (a_n b_n)$.

The equivalence class $[(1)_{n=1}^{\infty}]$ is then clearly a multiplicative identity, [(0)] the additive identity, and for non-zero $[(x_n)]$ only finitely many $x_i = 0$, so wlog we choose representatives with no zero terms. $[(x_n^{-1})]$ is then a multiplicative inverse, and since $a_n^{-1}x_n^{-1}(x_n - a_n) \to 0$ (else one of a_n , x_n vanishes in the limit, so $\sim [(0)] \perp$) we have that $(a_n^{-1}) \sim (x_n^{-1})$. Likewise for additive inverses. Distributive properties follow similarly.

(b) The reverse triangle inequality says that $||x_m| - |x_n|| \le |x_m - x_n|$, and (x_m) is Cauchy so the right hand side vanishes for $m, n \to \infty$. Hence $|x_m|$ is Cauchy also, and since it has a real sequence it thus converges to some limit.

We can then define $|(x_n)| = \lim_{n \to \infty} |x_n|$. This is an absolute value since $|(x_n)| = 0 \iff \lim |x_n| = 0 \iff x_n \to 0$ since $|\cdot|$ is an absolute value on K. But the last condition is equivalent to $(x_n) \sim (0)$.

 $|(x_n)(y_n)| = |(x_ny_n)| = \lim |x_ny_n| = \lim |x_n||y_n| = \lim |x_n| \lim |y_n| = |(x_n)||(y_n)|$ as $|x_n|, |y_n|$ are real sequences.

The triangle inequality also holds: $|(x_n) + (y_n)| = \lim |x_n + y_n| \le \lim (|x_n| + |y_n|) = |(x_n)| + |(y_n)|$.

(c) The discretely valued case is fairly trivial, but we can do both in general. Let $y \in \mathbb{R} \setminus v(K^{\times})$, and suppose that $(v(x_n))_{n=1}^{\infty}$ converges to y. We show that (x_n) cannot be Cauchy.

currently some significant confusion over the definition of a valuation/valued field - our definition of valuation appears to always be non-archimedean, so need this be the case for $|\cdot|$ on K? Also a potential typo with the direction of the inequality...

We first remark that for $a, b \in K$, if v(a) > v(b) then $v(b) \ge \min(v(b-a), v(a)) \implies v(a) > v(b) \ge v(b-a)$, and similarly if v(b) > v(a) then $v(a) \ge v(a-b) = v(b-a)$. Hence $v(a-b) \le \min(v(a), v(b))$ for $a \ne b$.

Now note that $v(x_n)$ is not eventually constant, else we have $v(x_N) = y$ for large enough N. So we can find infinitely many $m_i > n_i$, with $n_i \to \infty$, such that $v(x_{m_i} - x_{n_i}) \le \min(v(x_{m_i}), v(y_{n_i})) \le y + \varepsilon_i \le y + 1$ for large enough i. But then $|x_{m_i} - x_{n_i}| \ge \alpha^{y+1} > 0$ for infinitely many i. Hence (x_n) is not Cauchy.

I think this works, but I can't claim to have a good intuition for why...

2. Write $x = \prod_{i=0}^{k} p_i^{e_i}$ with $e_i \in \mathbb{Z}$, $p_0 = -1$. Then for i > 0, $|x|_{p_i} = p_i^{-e_i}$, and for $\alpha \notin \{\infty, p_1, p_2, \dots, p_k\}$ we have $|x|_{\alpha} = 1$. Thus

$$\prod_{\alpha} |x|_{\alpha} = |x|_{\infty} \prod_{i=1}^{k} |x|_{p_i}$$

$$= \left(\prod_{i=1}^{k} p_i^{e_i}\right) \left(\prod_{i=1}^{k} p_i^{-e_i}\right)$$

$$= 1$$

3. Let $S_n = \sum_{i=0}^n (-c)^i$. Then $(1+c)S_n = 1 + (-c)^{n+1}$, so $(1+c)S_n - 1 = (-c)^{n+1} \to 0$ since $|c|_p < 1$. Hence $\lim S_n = 1 - c + c^2 - c^3 + \dots = (1+c)^{-1}$.

As above we have $|(1+c)S_n-1|_p=|c|^{n+1}$, so we might desire that $|c|=5^{-1}$ and $n\geq 9$, such that $4a=(1+c)S_n=1+(-c)^{n+1}$ has a solution. This requires that n is even and $c\equiv 1 \mod 4$, so we take c=5 and n=10. Then $a=(1-5^{11})/4$ will suffice.

not my solution that follows, but probably the inteded one:

We can say $4^{-1} = -1 - 5 - 5^2 - \dots$; so let $a = -1 - 5 - \dots - 5^9$, and write -1/4 = a + x with $|x|_5 = 5^{-10}$. Then $|4a - 1|_5 = |4x|_5 = 5^{-10}$.

4. (a) $v_a((t-a)^m f_1/g_1 \cdot (t-a)^n f_2/g_2) = v_a((t-a)^{m+n} f_1 f_2/g_1 g_2) = m+n$ since a is not a root of any f_i or g_i . For the (equivalent) of the ultrametric inequality, wlog $m \ge n$. Then

$$v_a \left((t-a)^m \frac{f_1}{g_1} + (t-a)^n \frac{f_2}{g_2} \right) = v_a \left((t-a)^n \left[(t-a)^{m-n} \frac{f_1}{g_1} + \frac{f_2}{g_2} \right] \right)$$
$$= n + v_a \left(\frac{g_1 f_2 + f_1 g_2 (t-a)^{m-n}}{g_1 g_2} \right)$$

Now the denominator does not have a as a root, so $v_a(\cdot) \geq 0$, so done.

 $v_{\infty}(f_1/g_1 \cdot f_2/g_2) = v_{\infty}(f_1f_2/g_1g_2) = \deg g_1 + \deg g_2 - \deg f_1 - \deg f_2$. Again, similarly to the above:

$$v_{\infty} \left(\frac{f_1}{g_1} + \frac{f_2}{g_2} \right) = v_{\infty} \left(\frac{f_1 g_2 + g_1 f_2}{g_1 g_2} \right)$$

$$\geq \deg g_1 + \deg g_2 - \max(\deg f_1 g_2, \deg g_1 f_2)$$

$$= \min(\deg g_1 - \deg f_1, \deg g_2 - \deg f_2)$$

(b) The existence of multiplicative inverses are the only non-trivial part of showing k((t)) is a field. Suppose we have $f(t) = \sum_{i=n}^{\infty} a_i t^i$, with $a_n \neq 0$. Then $t^{-n} a_n^{-1} f(t) = 1 + g(t)$, where $g(t) = \sum_{i=1}^{\infty} b_i t^i$ with $b_i = a_{i+n}/a_n$. We invert this in the expected way:

$$(1+g)^{-1} = 1 - g + g^2 - \dots$$

= $\sum_{j=0}^{\infty} c_j t^j$

for some appropriately complicated c_j . The important thing to note is that each c_j is a well-defined, finite sum of combinations of b_i : $i \leq j$, since g^m contributes no terms when m > j. This definition genuinely is the inverse of 1+g; $(1+g)(1-g+g^2-\cdots+(-g)^m)=1+(-g)^{m+1}$, so given m>0, the coefficient of t^m in $(1+g)(1-g+g^2-\cdots)$, which is the same as the coefficient of t^m in $1+(-g)^{m+1}$, is zero, hence the formal Laurent series for $(1+g)(1-g+g^2-\cdots)$ is simply 1.

We then have that $a_n t^n f^{-1} = \sum_{j=0}^{\infty} c_j t^j$, so $f^{-1} = \sum_{j=0}^{\infty} c_j a_n^{-1} t^{j-n} = \sum_{i=-n}^{\infty} c_{i+n} a_n^{-1} t^i \in k((t))$. So k((t)) is a field.

Moreover, this contains k(t) in the sense that there is a field homomorphism $k(t) \hookrightarrow k((t))$ given by $f/g \mapsto fg^{-1}$, where $f,g \in k[t] \subset k((t))$. This preserves the slightly different definitions of the t-adic valuation in these fields, since if $f(0), g(0) \neq 0$ then $f(0)g(0)^{-1}$ is both defined and non-zero, so the Laurent series for fg^{-1} begins with the t^0 term.

(c) Let C be the set of all Cauchy sequences in k(t), and define $K = C/\sim$ as in 1. It is now convenient to view k(t) as a subfield of k(t) in the above way.

Suppose that (f_n) is Cauchy, and define (f_n^m) to be the sequence in k of the coefficient of t^m in f_n . Claim (f_n^m) is eventually constant for each $m \in \mathbb{Z}$: suppose not. Then we find an increasing sequence of $n_i \in \mathbb{N}$ such that $f_{n_{i+1}}^m \neq f_{n_i}^m$. Then for all i, $v(f_{n_{i+1}} - f_{n_i}) \leq m$, which cannot be the case since (f_n) is Cauchy.

Moreover, these coefficients must be the same for $(f_n) \sim (g_n)$, otherwise $v(f_n - g_n)$ is bounded. We also note that for all $m \in \mathbb{Z}$ there exists an $N \in \mathbb{N}$ such that $n \geq N$ implies f_n and f_N agree on all

coefficients of terms $t^a: a \leq m$, and since $f_N \in k((t))$ this means that there is a least $m \in \mathbb{Z}$ such that $\lim f_n^m \neq 0$.

This allows us to identify equivalence classes $[(f_n)]$ with elements $\sum_{i=m}^{\infty} (\lim f_n^i) t^i$ of k((t)). All that remains to be shown is that this identification (henceforth φ) is a surjective field homomorphism.

We first show surjectivity. Given $f = \sum_{i=n}^{\infty} a_i t^i$, the sequence $f_m = \sum_{i=n}^{m} a_i t^i$ is clearly Cauchy with $\varphi([(f_n)]) = f$.

 φ preserves addition, since $\varphi((f_n)+(g_n))=\varphi((f_n+g_n))=\sum_{i=-\infty}^{\infty}(\lim(f_n^i+g_n^i))t^i=\sum_{i=-\infty}^{\infty}(\lim f_n^i)t^i+\sum_{i=-\infty}^{\infty}(\lim g_n^i)t^i=\varphi((f_n))+\varphi((g_n)).$

To see that φ preserves multiplication, write $f = \varphi((f_n))$, $g = \varphi((g_n))$ and consider only the coefficient of t^m in $\varphi((f_n) \cdot (g_n))$, $m \in \mathbb{Z}$. Choose $N \in \mathbb{N}$ such that for all $n \geq N$, both $(f_n), (g_n)$ are constant in all coefficients $\ell \leq m - \min(v(f), v(g))$, *i.e.* constant in all coefficients that determine the coefficient of t^m in the product. Then for all $M \geq N$, the products $f_M g_M$ and $fg = \varphi((f_n))\varphi((g_n))$ agree on the coefficient of t^m , which must then be constant for all such M. Hence $\varphi((f_n)(g_n))$ and fg agree on all coefficients $t^m : m \in \mathbb{Z}$, and so they are equal.

Hence φ is a field isomorphism, and so k(t) is indeed the completion of k(t) under v_0 .

5. (a) We first show that $\mathbb{Z}[1/p]$ is dense in \mathbb{Q} ; let $x = p^n a/b$. $b \not\equiv 0 \mod p$, so $\exists c \in \mathbb{Z}$ such that $x = p^n ac/(bc)$ with $bc \equiv 1 \mod p$. Write bc = 1 + m, with $|m|_p < 1$. We can then expand 1/(bc) as in 3. to obtain $x = p^n ac(1 - m + m^2 - \dots)$. The sequence $x_k = p^n ac(1 - m + \dots + (-m)^k) \in \mathbb{Z}[1/p]$ then converges to x.

So $\mathbb{Z}[1/p]$ is dense in \mathbb{Q} , which is in turn dense in \mathbb{Q}_p . So the closure of $\mathbb{Z}[1/p]$ contains \mathbb{Q} and is closed, hence it contains the closure of \mathbb{Q} , which is \mathbb{Q}_p . So the closure of $\mathbb{Z}[1/p]$ is \mathbb{Q}_p , and thus $\mathbb{Z}[1/p]$ is dense in \mathbb{Q}_p .

(b) We can write $\mathbb{Q}_p/\mathbb{Z}_p = \{\sum_{i=-n}^{-1} a_i p^i + \mathbb{Z}_p : n \geq 1, a_i \in \{0, \dots, p-1\}\}$. We then define a map $\varphi : \mathbb{Q}_p/\mathbb{Z}_p \to G_p$, the group of *p*-power roots of unity, by mapping $x + \mathbb{Z}_p \mapsto e^{2\pi i x}$.

This is well defined since for any $y \in \mathbb{Z}_p$, $\varphi(y) = 1$. From this we also see that φ preserves the group identity, and $\varphi(x + \mathbb{Z}_p)\varphi(y + \mathbb{Z}_p) = e^{2\pi i x}e^{2\pi i y} = e^{2\pi i (x+y)} = \varphi(x + y + \mathbb{Z}_p)$.

It is clear that φ is injective, and for any x we have $\varphi(x + \mathbb{Z}_p)^{p^n} = 1$ for some sufficiently large n, so this is indeed a map to the group of p-power roots of unity.

Lastly, this is surjective since any $e^{2\pi i/p^k} \in \text{Im}\varphi$ for all k, and these generate the group.

6. (a) If the sequence (a_i) is eventually periodic, then we can write x = y + z, where y is a finite series (hence in \mathbb{Q}) and z is purely periodic, $z = \sum_{i=n}^{\infty} a_i p^i$ with period m.

So
$$z = \sum_{j=0}^{\infty} \sum_{i=0}^{m-1} a_{i+n} p^{mj+i+n} = \sum_{i=0}^{m-1} a_{i+n} p^{i+n} \sum_{j=0}^{\infty} p^{mj} = \frac{p^n}{1-p^m} \sum_{i=0}^{m-1} a_{i+n} p^i \in \mathbb{Q}$$
.

Conversely, if $x = p^n a/b$, then there exists $c \in \mathbb{Z}$ such that $bc \equiv 1 \mod p$, so $x = p^n (ac)/(1 - mp) = p^n (ac) \sum_{i=0}^{\infty} m^i p^i$