EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) Cursos Gerais e Cursos Tecnológicos - Programa ajustado

Duração da prova: 120 minutos 2002

2.ª FASE VERSÃO 1

PROVA ESCRITA DE MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implicará a anulação de todo o GRUPO I.

A prova é constituída por dois Grupos, I e II.

- O Grupo I inclui sete questões de escolha múltipla.
- O Grupo II inclui cinco questões de resposta aberta, algumas delas subdivididas em alíneas, num total de dez.

Na página 11 deste enunciado encontra-se um formulário que, para mais fácil utilização, pode ser destacado do resto da prova, em conjunto com esta folha.

Grupo I

- As sete questões deste grupo são de escolha múltipla.
- Para cada uma delas, são indicadas quatro alternativas, das quais só uma está correcta.
- Escreva na sua folha de respostas a letra correspondente à alternativa que seleccionar para cada questão.
- Se apresentar mais do que uma resposta, a questão será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- Não apresente cálculos.
- **1.** Na figura estão parcialmente representados os gráficos de duas funções polinomiais, $r \in s$.

- Qual dos seguintes conjuntos pode ser o domínio da função $\frac{r}{s}$?
- **(A)** ℝ

(B) $\mathbb{R}\setminus\{0\}$

(C) $\mathbb{R} \setminus \{-1, 1\}$

(D) $\mathbb{R} \setminus \{-1, 0, 1\}$

2. Seja f uma função de domínio \mathbb{R} . Na figura está representada parte do gráfico de f'', **segunda derivada** da função f.

Relativamente ao gráfico da **função** f, qual das afirmações seguintes é verdadeira?

- (A) O ponto de abcissa a é um ponto de inflexão.
- **(B)** O ponto de abcissa c é um ponto de inflexão.
- **(C)** A concavidade está voltada para baixo no intervalo [0, b].
- **(D)** A concavidade está sempre voltada para cima.
- **3.** Considere uma circunferência de centro C e raio 1, tangente a uma recta r. Um ponto P começa a deslocar-se sobre a circunferência, no sentido indicado na figura. Inicialmente, o ponto P encontra-se à distância de 2 unidades da recta r.

Seja $d(\alpha)$ a distância de P a r, após uma rotação de amplitude α .

Qual das igualdades seguintes é verdadeira para qualquer número real positivo $\, \alpha \, ? \,$

(A)
$$d(\alpha) = 1 + \cos \alpha$$

(B)
$$d(\alpha) = 2 + \operatorname{sen} \alpha$$

(C)
$$d(\alpha) = 1 - \cos \alpha$$

(D)
$$d(\alpha) = 2 - \sin \alpha$$

4. Considere, num referencial o. n. Oxyz, uma pirâmide quadrangular regular, de altura 1, cuja base está contida no plano xOy.

Para cada $c\in[0,1]$, seja V(c) o volume da parte da pirâmide constituída pelos pontos cuja cota é **superior ou igual** a c.

Qual dos gráficos seguintes pode ser o da função ${\cal V}$?

(A) V

0

O 1 c

5. Pretende-se dispor, numa prateleira de uma estante, seis livros, dois dos quais são de Astronomia.

De quantas maneiras diferentes o podemos fazer, de tal forma que os dois primeiros livros, do lado esquerdo, sejam os de Astronomia?

- **(A)** 24
- **(B)** 36
- **(C)** 48
- **(D)** 60
- **6.** Na figura A está representado um dado equilibrado, cuja planificação se apresenta esquematizada na figura B.

Figura A

Figura B

Lança-se este dado duas vezes.

Considere as seguintes variáveis aleatórias, associadas a esta experiência:

 X_1 : número saído no primeiro lançamento.

 X_2 : quadrado do número saído no segundo lançamento.

 X_3 : soma dos números saídos nos dois lançamentos.

 X_4 : produto dos números saídos nos dois lançamentos.

Uma destas quatro variáveis tem a seguinte distribuição de probabilidades:

Valores da variável	- 1	0	1
Probabilidades	$\frac{2}{9}$	<u>5</u> 9	$\frac{2}{9}$

Qual delas?

- (A) X_1
- **(B)** X_2
- (C) X_3
- (D) X_4

7. Na figura está representado um rectângulo, de comprimento 4 e largura 2, centrado na origem do plano complexo.

Seja z um número complexo qualquer, cuja imagem geométrica está situada no interior do rectângulo.

Qual dos seguintes números complexos tem também, necessariamente, a sua imagem geométrica no interior do rectângulo?

- (A) z^{-1}
- (B) \overline{z}
- (C) z^2
- **(D)** 2 z

Grupo II

Nas questões deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: quando não é indicada a aproximação que se pede para um resultado, pretende-se sempre o valor exacto.

1. Em \mathbb{C} , conjunto dos números complexos, considere

 $z_{\scriptscriptstyle 1} = 1 + i$ (i designa a unidade imaginária).

- **1.1.** Determine os números reais $\,b\,$ e $\,c\,$ para os quais $\,z_{_1}\,$ é raiz do polinómio $\,x^2+b\,x+c\,.$
- **1.2.** Seja $z_2=cis\,\alpha$. Calcule o valor de $\,\alpha$, pertencente ao intervalo $[\,0,\,2\,\pi\,]$, para o qual $\,z_1\times\overline{z_2}\,$ é um número real negativo ($\,\overline{z_2}\,$ designa o conjugado de $\,z_2$).
- **2.** Considere as funções f e g, de domínio $\mathbb R$, definidas por

$$f(x) = \frac{1}{3} + 2e^{1-x}$$
 $g(x) = 2 \sin x - \cos x$

- **2.1.** Utilize métodos exclusivamente analíticos para resolver as duas alíneas seguintes:
 - **2.1.1.** Estude a função f quanto à existência de assimptotas paralelas aos eixos coordenados.
 - **2.1.2.** Resolva a equação $f(x)=g(\pi)$, apresentando a solução na forma $\ln(k\,e)$, onde k representa um número real positivo. (In designa logaritmo de base $\,e$)
- **2.2.** Recorrendo à calculadora, determine as soluções inteiras da inequação f(x)>g(x), no intervalo $[0,2\,\pi]$. Explique como procedeu.

- **3.** Uma nova empresa de refrigerantes pretende lançar no mercado embalagens de sumo de fruta, com capacidade de **dois litros**. Por questões de *marketing*, as embalagens deverão ter a forma de um **prisma quadrangular regular**.
 - **3.1.** Mostre que a área total da embalagem é dada por

$$A(x) = \frac{2x^3 + 8}{x}$$

 $(x ext{ \'e o comprimento da aresta da base, em } dm)$

Nota: recorde que $1 \ litro = 1 \ dm^3$

- **3.2.** Utilizando métodos exclusivamente analíticos, mostre que existe um valor de $\,x\,$ para o qual a área total da embalagem é mínima e determine-o.
- **4.** Seja f uma função de domínio \mathbb{R} , com derivada finita em todos os pontos do domínio, e **crescente**.

Sejam a e b dois quaisquer números reais. Considere as rectas r e s, tangentes ao gráfico de f nos pontos de abcissas a e b, respectivamente.

Prove que as rectas r e s **não** podem ser perpendiculares.

- 5. Um baralho de cartas completo é constituído por cinquenta e duas cartas, repartidas por quatro naipes de treze cartas cada: Espadas, Copas, Ouros e Paus. Cada naipe tem três figuras: Rei, Dama e Valete.
 - **5.1.** Retirando, ao acaso, seis cartas de um baralho completo, qual é a probabilidade de, entre elas, haver um e um só Rei? Apresente o resultado na forma de dízima, com aproximação às milésimas.
 - **5.2.** De um baralho completo extraem-se ao acaso, sucessivamente e sem reposição, duas cartas. Sejam E_1 , C_2 e F_2 os acontecimentos:

 E_1 : sair Espadas na primeira extracção;

 C_2 : sair Copas na segunda extracção;

 F_2 : sair uma figura na segunda extracção.

Sem utilizar a fórmula da probabilidade condicionada, indique o valor de $Pig(F_2\cap C_2)\mid E_1ig)$. Numa pequena composição, com cerca de dez linhas, explicite o raciocínio que efectuou. O valor pedido deverá resultar **apenas** da interpretação do significado de $Pig(F_2\cap C_2)\mid E_1ig)$, no contexto da situação descrita.

COTAÇÕES

Grupo l	l	63
	Cada resposta certa	- 3
	Nota: Um total negativo neste grupo vale 0 (zero) pontos.	
Grupo l	II	137
	1.	21
	2.1. 33 2.1.1. 16 2.1.2. 17 2.2. 16	49
	3.	27
	4	10
	5.	30
ΤΩΤΔΙ		200

Formulário

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Círculo:
$$\pi r^2$$
 $(r-raio)$

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

 $(r - raio da base; g - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea~da~base~\times~Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$cos(a+b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta) \cdot (\rho' \operatorname{cis} \theta') = \rho \rho' \operatorname{cis} (\theta + \theta')$$

$$\frac{\rho \, cis \, \theta}{\rho' \, cis \, \theta'} = \frac{\rho}{\rho'} \, cis \, (\theta - \theta')$$

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \operatorname{cis} \theta} = \sqrt[n]{\rho} \operatorname{cis} \frac{\theta + 2 k \pi}{n}, k \in \{0, ..., n - 1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1 + u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \qquad (p \in \mathbb{R})$$