Imię i Nazwisko	Nr indeksu	Kierunek	Wydział	Data	Wersja	
Dawid Królak	145383	Informatyka	Inf	21.01.2021	1	
Nr ćwiczenia	Tytuł ćwiczenia					
201	Wyznaczanie pojemności kondensatora za pomocą drgań relaksacyjnych					

1 Wykorzystane wzory

1.1 Okres błysków neonówki

$$T = \frac{t}{n} \tag{1}$$

[s]

T - okres drgań neonówki t - czas n błysków n - liczba błysków

1.2 Okres drgań relaksacyjnych

$$T = RCk$$

$$[\Omega \cdot F] = \left[\frac{kg \cdot m^2}{A^2 \cdot s^3} \cdot \frac{s^4 \cdot A^2}{m^2 \cdot kg}\right] = [s]$$

$$T - okres drgań neonówki$$

$$R - rezystancja$$

$$C - pojemność$$

$$k - stała neonówki$$

2 Wyniki pomiarów

Tab 1. Wyniki pomiarowe do wyznaczenia stałej k

Lp.	$R[M\Omega]$	$C_W[nF]]$	n[]	t[s]
1	1	400	12	6,3
2	2	300	7	5,6
3	5	200	4	5,51
4	3	300	5	6
5	1	200	24	6,43
6	4	300	3	4,85
7	5	400	2	5,45
8	6	500	1	4,1
9	3	200	8	6,44
10	3	700	3	8,28
11	4	800	1	4,23
12	3	900	2	7,13

Tab 2. Wyniki pomiarowe do wyznaczenia pojemności kondensatorów

Lp.	$R[M\Omega]$	n[]	t[s]				
C_{X1}							
1	2	3	7,83				
2	3	2	7,87				
3	4	1	5,44				
4	5	1	6,93				
	C_{X2}	2					
1	2	3	6,47				
2	3	2	6,5				
3	4	1	4,39				
4	5	1	5,56				
C_{X3}							
1	2	4	7,18				
2	3	3	8,18				
3	4	2	7,33				
4	5	1	4,63				

3 Opracowanie wyników

Tab 3. Wyznaczenie stałej k

rab 5. wyznaczenie staiej k						
Lp.	$R[M\Omega]$	$C_W[nF]$	n[l]	t[s]	T [s]	k
1	1	400	12	6,3	$0,\!525$	1,3125
2	2	300	7	5,6	0,8	1,33333333
3	5	200	4	5,51	1,3775	1,3775
4	3	300	5	6	1,2	1.33333333
5	1	200	24	6,43	0.267916667	$1,\!3395833$
6	4	300	3	4,85	1.61666667	$1,\!34722223$
7	5	400	2	5,45	2,725	$1,\!3625$
8	6	500	1	4,1	4,1	$1,\!36666667$
9	3	200	8	6,44	0,805	$1,\!34166667$
10	3	700	3	8,28	2,76	$1,\!31428571$
11	4	800	1	4,23	4,23	1,321875
12	3	900	2	7,13	3,565	1,32037037
średnia						1.33923638
odchylenie standardowe					0.00608769729	

CD 1 4	T T 7 .	. ,	. 1 1
Tab 4	-Wyznaczenie	no temnos c	i kondensatorów
IUO I.	77,721100201110	Pojoninose	1 HOHACHBUILDIN

Lp.	$R[M\Omega]$	n[l]	t[s]	T [s]	C[nF]
C_{X1}					
1	2	3	7,83	2,61	974,435895
2	3	2	7,87	3,935	979,413856
3	4	1	5,44	5,44	1015,50407
4	5	1	6,93	6,93	1034,91812
		$\operatorname{\acute{s}red}$	nia		1001.06798525
	odchyl	enie s	tandar	dowe	14.5269913
			(C_{X2}	
1	2	3	6,47	2,15666667	805,185217
2	3	2	6,5	3,25	808,918686
3	4	1	4,39	4,39	819,496854
4	5	1	5,56	5,56	830,323919
		$\operatorname{\acute{s}red}$	nia		815.981169
odchylenie standardowe				5.66057833	
			(C_{X3}	
1	2	4	7,18	1,795	670,158019
2	3	3	8,18	2.72666667	678,662037
3	4	2	7,33	3.665	684,158535
4	5	1	4,63	4,63	691,438803
średnia				681.1043485	
odchylenie standardowe				4.48995193	

4 Ostateczne wyniki

$$C_{X1} = (1001 \pm 15)nF$$

 $C_{X2} = (816 \pm 6)nF$
 $C_{X3} = (681, 8 \pm 4, 4)nF$

5 Przykładowe obliczenia

$$\begin{split} T &= \frac{t}{n} = \frac{6.3}{12} = 0,525s \\ k &= \frac{T}{RCW} = \frac{0.525}{1 \cdot 10^6 \cdot 400 \cdot 10^{-9}} = \frac{0.525}{400 \cdot 10^{-3}} = \frac{0.525}{0.4} = 1,3125 \\ T &= \frac{t}{n} = \frac{7.83}{3} = 2,61s \\ C &= \frac{T}{Rk} = \frac{2.61}{2 \cdot 10^6 \cdot 1.33923638} = 0.974435895 \cdot 10^{-6} = 974,435895 \cdot 10^{-9}F = 974,435895nF \end{split}$$

6 Wnioski

Jak pokazuje wynik ćwiczenia, pomiar pojemności kondensatora możliwy jest bez zakupu specjalnie przeznaczonych do tego przyrządów takich jak mierniki pojemności. Zastosowanie tej metody jest jednak dużo bardziej czasochłonne, wymaga też zastosowania dodatkowych narzędzi np. dodatkowego kondensatora o znanej pojemości służącego do obliczenia stałej neonówki. Sposób pomiaru powinien być więc dokładnie przemyślany - jeżeli obliczenia wykonywane będą regularnie, warto więc zastanowić się nad zakupem dedykowanego miernika, w przeciwnym wypadku metoda drgań relaksacyjnych będzie sprawdzać się doskonale.