目次

0.1	H15 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1
0.2	H16 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
0.3	H17 数学 A · · · · · · · · · · · · · · · · · ·	3
0.4	H18 数学 A · · · · · · · · · · · · · · · · · ·	4
0.5	H19 数学 A · · · · · · · · · · · · · · · · · ·	5
0.6	H20 数学 A · · · · · · · · · · · · · · · · · ·	6
0.7	H21 数学 A · · · · · · · · · · · · · · · · · ·	6
0.8	H22 数学 A · · · · · · · · · · · · · · · · · ·	8
0.9	H23 数学 A · · · · · · · · · · · · · · · · · ·	9
0.10	H24 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10
0.11	H25 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
0.12	H26 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13
0.13	H27 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
0.14	H28 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17
0.15	H29 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
0.16	H30 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
0.17	H31 数学 A ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	22
0.18	R2 数学 A・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
0.19	R4 数学 A・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
0.20	R5 数学 A・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
0.21	R6 数学 A・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
0.22	R7 数学 A · · · · · · · · · · · · · · · · · ·	30

0.1 H15 数学 A

- ① $(1)\{f(x)\mid x\in X\}$ が下に有界でないとする。すなわち任意の $n\in\mathbb{N}$ に対して $f(x)\leq -n$ なる $x\in X$ が存在する。これを x_n とおく。X は \mathbb{R}^n のコンパクト集合であるから有界閉集合である。よって X 内の点列 $\{x_n\}_{n=1}^\infty$ は収束する部分列 $\{x_{n_k}\}_{k=1}^\infty$ をもち, $x_{n_k}\to\alpha\in X$ となる。 $f(\alpha)\leq \liminf_{k\to\infty}f(x_{n_k})=-\infty$ となりこれは矛盾。よって下に有界。
- (2) 下に有界であるから $\inf\{f(x)\mid x\in X\}=M\in\mathbb{R}$ である. M が下限であるから任意の $n\in\mathbb{N}$ に対して $f(x_n)\leq M+\frac{1}{m}$ なる x_n が存在する. 数列 $\{x_n\}$ は収束部分列 $\{x_{n_k}\}$ をもち, $x_{n_k}\to\alpha\in X$ となる. $M\leq f(\alpha)\leq \liminf_{k\to\infty}f(x_{n_k})\leq \lim_{k\to\infty}(M+\frac{1}{n_k})=M$ となり $f(\alpha)=M$. よって f は最小値をもつ.
- 2 (1)g(0)=1 であり g は連続関数であるから 0 を含むある開区間 I で g(x)>0 となる. I 上で $h(x)=\sqrt[m]{g(x)}$ とする. I 上で h は C^1 級であり $h(x)^m=g(x), h(x)>0$ である.
- $(2)f(\varphi(y))=\varphi(y)^mg(\varphi(y))=\varphi(y)^mh(\varphi(y))^m=y^m$ をみたす $\varphi(y)$ を求める. $\varphi(y)h(\varphi(y))=y$ をみたす $\varphi(y)$ を求めればよい. F(x,y)=xh(x)-y とおく. $\partial F/\partial x(0,0)=h(0)+0\varphi'(0)>0$ である. 陰関数定理から F(x,y)=0 をみたす C^1 級関数 $x=\varphi(y)$ が 0 の近傍で存在する.
 - $|3|(1)T_A(cX+Y)=^t(cX+Y)A+A(cX+Y)=c^tXA+cAX+^tYA+AY=cT_A(X)+T_A(Y)$ である.

よって線形.

 $(2)^t({}^tXA+AX)=AX+{}^tXA$ より ${\rm Im}T_A\subset S$ である. $Y\in S$ に対して $X=A^{-1}Y/2$ とすると, ${}^tXA+AX={}^t(AX)+AX={}^t(Y/2)+(Y/2)=Y$ となる. よって $S\subset {\rm Im}T_A$ である.

$$(3)^t(AX)+AX=O$$
 より AX が交代行列となる X を考える. よって $X_1=egin{pmatrix} 0&1&0\-1&0&0\0&0&0 \end{pmatrix}, X_2=$

$$\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$
, $X_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$ とする. AX_1, AX_2, AX_3 は交代行列である. よって X_1, X_2, X_3 は $\ker T_A$ の基底となる.

 $\boxed{4}$ (1)AB = BA のとき、 $v \in V_j$ に対して $ABv = BAv = B\alpha_j v = \alpha_j Bv$ より、 $Bv \in V_j$ である.

 $BV_j\subset V_j$ $(j=1,\dots,k)$ のとき、A がエルミート行列であるから、 \mathbb{C}^n を固有空間の直和に分解できる、したがって $\{v_1,\dots,v_n\}$ をそれぞれが A の固有ベクトルであるような基底とできる、 $v_i\in V_{s_i}$ とする、 $u\in\mathbb{C}^n$ に対して $u=a_1v_1+\dots+a_nv_n$ とできる、 $ABu=A(a_1Bv_1+\dots a_nBv_n)=a_1\alpha_{s_1}Bv_1+\dots+a_n\alpha_{s_n}Bv_n$ である、また $BAu=B(a_1\alpha_{s_1}v_1+\dots a_n\alpha_{s_n}v_n)=a_1\alpha_{s_1}Bv_1+\dots+a_n\alpha_{s_n}Bv_n$ である。よって ABu=BAu である、すなわち AB=BA

 $(2)v \in V_j$ に対して $A^m v_j = \alpha_j^m v_j$ である。 A^m の固有値 α_j^m の固有空間を W_j とすると, $W_j \supset V_j$ である。 A はエルミート行列であるから固有値は実数である。したがって異なる固有値 α_i, α_j にたいして $\alpha_i^m = \alpha_j^m$ となるには m が偶数であることが必要。今 m は奇数であるから $\alpha_i^m \neq \alpha_j^m$ である。したがって $i \neq j$ なら $W_i \neq W_j$ である。よって $W_j = V_j$ である。 A^m はエルミート行列であり $A^m C = CA^m$ であるから (1) より $CW_i \subset W_i$ である。よって $CV_i \subset V_i$ であるから AC = CA である。

0.2 H16 数学 A

1 λ,μ の固有空間をそれぞれ V_{λ},V_{μ} とする.対角化可能であるから $V=V_{\lambda}\oplus V_{\mu}$ である. $W_{\lambda}=W\cap V_{\lambda},W_{\mu}=W\cap V_{\mu}$ とする. $W_{\lambda}\cap W_{\mu}=W\cap V_{\lambda}\cap V_{\mu}=\{0\}$ である.また $w\in W$ に対して $w=w_{\lambda}+w_{\mu}$ となる $w_{\lambda}\in V_{\lambda},w_{\mu}\in V_{\mu}$ が一意的に存在する. $W\ni f(w)-\mu w=(\lambda-\mu)w_{\lambda}$ より $w_{\lambda}\in W_{\lambda}$ である.同様に $w_{\mu}\in W_{\mu}$ である.よって $W=W_{\lambda}\oplus W_{\mu}$ である.W を f の固有空間の直和に分解できたから $f|_{W}$ は対角化可能である.

② (1)X のコンパクト集合 C をとる. $x \in X \setminus C$ を一つ固定する。各 $y \in C$ に対して $x \in U_y, y \in V_y, U_y \cap V_y = \emptyset$ となる開集合 U_y, V_y が存在する。 $\{V_y \mid y \in C\}$ は C の開被覆であるから有限部分集合 $C' \subset C$ が存在して $C \subset \bigcup_{y \in C'} V_y$ となる。 $U = \bigcap_{y \in C'} U_y$ とする。U は x の開近傍であり $U \subset X \setminus C$ であるから x は C の外点。任意の x でなりたつから C は閉集合である。

 $(2)A\cap B$ の開被覆 $S=\{U_{\lambda}\mid \lambda\in\Lambda\}$ を任意にとる. $S\cup\{X\setminus A\}$ は B の開被覆である. したがって有限部分集合 $\Lambda'\subset\Lambda$ が存在して $B\subset\bigcup_{\lambda\in\Lambda'}U_{\lambda}\cup(X\setminus A)$ となる. $A\cap B\subset\bigcup_{\lambda\in\Lambda'}U_{\lambda}$ である. したがって $A\cap B$ はコンパクト集合である.

 $\boxed{3}$ $(1)G(x) = \int_0^x f(x,y)dy$ とする.

$$\begin{split} \frac{G(x+h) - G(x)}{h} &= \int_0^{x+h} \frac{f(x+h,y)}{h} dy - \int_0^x \frac{f(x,y)}{h} dy = \int_x^{x+h} \frac{f(x,y)}{h} dy + \int_0^{x+h} \frac{f(x+h,y) - f(x,y)}{h} dy \\ &= \int_0^h \frac{f(x,y+x)}{h} dy + \int_0^x \frac{f(x+h,y) - f(x,y)}{h} dy + \int_x^{x+h} \frac{f(x+h,y) - f(x,y)}{h} dy \end{split}$$

である. 第一項は $\lim_{h\to 0}\int_0^h \frac{f(x,y+x)}{h}dy=\frac{\partial}{\partial h}\int_0^h f(x,y+x)dy=f(x,x)$ である.

第二項は $\frac{f(x+h,y)-f(x,y)}{h}=\frac{\partial f}{\partial x}(x+\theta h,y)$ となる $\theta\in(0,1)$ が存在して $\int_0^x\frac{f(x+h,y)-f(x,y)}{h}dy\leq\int_0^x\frac{\partial f}{\partial x}(x+\theta h,y)dy\leq\infty$ であるから優収束定理より $\lim_{h\to 0}\int_0^x\frac{f(x+h,y)-f(x,y)}{h}dy=\int_0^x\frac{\partial f}{\partial x}(x,y)dy$ である.

第三項はある 0 の近傍で $\left| \frac{f(x+h,y)-f(x,y)}{h} \right| \leq M$ であるから $\lim_{h \to 0} \int_x^{x+h} \frac{f(x+h,y)-f(x,y)}{h} dy \leq \lim_{h \to 0} \int_x^{x+h} M dy = 0$ である.よって $G'(x) = f(x,x) + \int_0^x \frac{\partial f}{\partial x}(x,y) dy$ である.

したがって $F'(x)=f(x,x)-f(x,-x)+\int_{-x}^{x}\frac{\partial f}{\partial x}(x,y)dy$ である。 さらに $F''(x)=\frac{\partial f}{\partial x}(x,x)+\frac{\partial f}{\partial y}(x,x)-\frac{\partial f}{\partial x}(x,-x)+\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x,x)+\frac{\partial f}{\partial x}(x,x)-\frac{\partial f}{\partial x}(x$

4 広義積分が収束することを示す.被積分関数の実部は $u(x)=\frac{x\cos x-\varepsilon\sin x}{x^2+\varepsilon^2}$ で虚部は $v(x)=\frac{x\sin x+\varepsilon\cos x}{x^2+\varepsilon^2}$ である.共に原点近傍で有界である.

$$\left| \int_{-1}^{-M} \frac{x \cos x}{x^2 + \varepsilon^2} dx \right| = \left| \int_{1}^{M} \frac{x \cos x}{x^2 + \varepsilon^2} dx \right| = \left| \left[\frac{x \sin x}{x^2 + \varepsilon^2} \right]_{1}^{M} - \int_{1}^{M} \sin x \left(\frac{1}{x^2 + \varepsilon^2} - \frac{2x^2}{(x^2 + \varepsilon^2)^2} \right) dx \right|$$

$$\leq \left| \frac{M \sin M}{M^2 + \varepsilon^2} - \frac{\sin 1}{1 + \varepsilon^2} \right| + \int_{1}^{M} \left| \frac{(-x^2 + \varepsilon^2) \sin x}{(x^2 + \varepsilon^2)^2} \right| dx \leq \left| \frac{M \sin M}{M^2 + \varepsilon^2} - \frac{\sin 1}{1 + \varepsilon^2} \right| + \int_{1}^{M} \left| \frac{(x^2 + \varepsilon^2) \sin x}{x^4} \right| dx$$

よって $\int_1^\infty \frac{x\cos x}{x^2+\varepsilon^2} dx$, $\int_{-\infty}^{-1} \frac{x\cos x}{x^2+\varepsilon^2} dx$ は収束する. から u(x) の広義積分は収束する. 同様に v(x) の広義積分は収束する. したがって u(x)+iv(x) の広義積分は収束する.

 $f(z)=e^{iz}/(z-i\varepsilon)$ とすれば、f は $z\neq i\varepsilon$ で正則である。積分経路 C を原点中心の半径 $R>2\varepsilon$ の上半平面の半円板の周とする。 C_1 を実軸上の-R から R までの部分、 C_2 を半円とする。f の C での積分は留数定理から $\int_C f(z)dz=2\pi i \mathrm{Res}(f,i\varepsilon)=2\pi i e^{-\varepsilon}$ である。 C_2 での積分は $z=Re^{i\theta}$ $(0\leq\theta\leq\pi)$ とすると、

$$\left| \int_{C_2} f(z) dz \right| \le \int_0^{\pi} \left| \frac{e^{iRe^{i\theta}}Rie^{i\theta}}{Re^{i\theta} - i\varepsilon} \right| d\theta \le \int_0^{\pi} \frac{Re^{-R\sin\theta}}{R - \varepsilon} d\theta \le \frac{\pi R}{R - \varepsilon} e^{-R} \to 0 \quad (R \to \infty)$$

である. したがって $\int_{-\infty}^{\infty}f(x)dx=2\pi ie^{-\varepsilon}$ より $\frac{1}{2\pi i}\int_{-\infty}^{\infty}f(x)dx=e^{-\varepsilon}$ である.

0.3 H17 数学 A

- $\boxed{1}$ (1)AB が正則であるから $f\circ g$ は同型である.よって f は全射, g は単射である. $\dim \mathbb{C}^n-\dim \operatorname{Ker} f=\dim (\operatorname{Im} f)=\dim \mathbb{C}^m$ より $\dim \operatorname{Ker} f=n-m$ である. g は単射であるから $\dim \operatorname{Ker} g=0$
- $(2)ABv=\lambda v,v\neq 0$ とする.このとき $BABv=B\lambda v=\lambda Bv,Bv\neq 0$ であるから AB の固有値 λ は BA の固有値でもある.

 $BAv=\lambda v, v\neq 0$ とする. $ABAv=\lambda Av$ であるから, $Av\neq 0$ なら λ は AB の固有値である.Av=0 なら $BAv=0=\lambda v$ より $\lambda=0$. すなわち BA の零でない固有値は AB の固有値でもあるから BA の固有値は $\lambda_0=0,\lambda_1,\ldots,\lambda_k$ である.

- (3)C^m における AB の固有値 λ_i の固有空間を $W(\lambda_i)$ とする.対角化可能であるから $\sum_{i=1}^k \dim W(\lambda_i) = m$ である.Cⁿ における BA の固有値 λ_i の固有空間を $V(\lambda_i)$ とする. $g(W(\lambda_i)) \subset V(\lambda_i)$ であり g は単射であるから $\dim W(\lambda_i) \leq \dim V(\lambda_i)$ である.また $V(\lambda_0) = \operatorname{Ker}(g \circ f)$ より $\dim V(\lambda_0) \geq n m$ である.よって $\sum_{i=0}^k \dim V(\lambda_i) \geq n m + \sum_{i=1}^k \dim W(\lambda_i) = n$ である.よって BA は対角化可能である.
- 2 (1)f を商写像とする。 $f^{-1}(B)$ を閉集合とする。 $X\setminus f^{-1}(B)=f^{-1}(X\setminus B)$ は開集合であるから $X\setminus B$ は開集合である。よって B は閉集合.
- $f^{-1}(B)$ を開集合とする. $X\setminus f^{-1}(B)=f^{-1}(X\setminus B)$ は閉集合であるから $X\setminus B$ は閉集合である. よって B は開集合.
- $(2)B \subset Y$ について $f^{-1}(B)$ が閉集合だとする.コンパクト空間の閉集合はコンパクトであるから $f^{-1}(B)$ はコンパクトである.f は全射連続写像であるから $f(f^{-1}(B)) = B$ はコンパクトである.ハウスドルフ空間のコンパクト部分集合は閉集合であるから B は閉集合である.よって f は商写像.

③ (1) 任意の x>0 について x/N<1 なる N が存在する。 $\log(1+x)=x-\frac{x^2}{2}+O(x^3)$ (|x|<1) であるから $n\geq N$ のとき $\log(1+x/n)=(x/n)-\frac{x^2}{2n^2}+O(x^3/n^3)$ である。 したがって $\sum\limits_{n=N}^{\infty}x/n-\log(1+x/n)=\sum\limits_{n=N}^{\infty}x^2+O(x^3/n^3)$ なる。

$$\sum\limits_{n=N}^{\infty}rac{x^2}{2n^2}+O(x^3/n^3)<\infty$$
 である. よって収束する.

 $^{n=N}$ (2)I=(1/2,2) とする. $x\in I$ に対して $(x/n-\log(1+x/n))'=1/n-\frac{1}{n+x}<\frac{1}{n(2n+1)}$ である. よって $\sum\limits_{n=1}^{\infty}1/n-\log(1+1/n)$ は一様収束する. したがって $(\sum\limits_{n=1}^{\infty}x/n-\log(1+x/n))'|_{x=1}=\sum\limits_{n=1}^{\infty}1/n-\frac{1}{n+1}=1$ である.

$$\boxed{4} (1) \frac{1}{1+z^2} = \sum\limits_{n=0}^{\infty} (-1)^n z^{2n}$$
 であるから $\frac{2z}{1+z^2} = \sum\limits_{n=0}^{\infty} 2(-1)^n z^{2n+1}$ である.

(2) 整級数であるから項別積分ができて |z|<1 で $f(z)=\log(1+z^2)=\sum\limits_{n=0}^{\infty}2(-1)^nz^{2n+2}/(2n+2)=\sum\limits_{n=0}^{\infty}(-1)^{k-1}z^{2k}/k$ である。よって $f(z)/z^n=\sum\limits_{k=1}^{\infty}(-1)^{k-1}z^{2k-n}/k$ でありこのローラン級数の z^{-1} の係数は n が偶数か 1 のとき 0, それ以外のとき $(-1)^{\ell-1}/\ell$ $(n=2\ell+1)$ である。留数定理から $\int_C \frac{f(z)}{z^n}dz=\begin{cases} 2\pi i(-1)^{\ell-1}/\ell & (n=2\ell+1)\\ 0 & (n\neq 2\ell+1) \end{cases}$ である。

0.4 H18 数学 A

 $\boxed{1}$ $(1)\dim V = k \le n-1$ として V の直交補空間 V^{\perp} をとると, $V \oplus V^{\perp} = \mathbb{R}^n$ より $\dim V^{\perp} = n-k \ge 1$ である。 $0 \ne (a_1,\ldots,a_n)^{\top} \in V^{\perp}$ をとると, $F(x_1,\ldots,x_n)$ は $(a_1,\ldots,a_n)^{\top}$ と (x_1,\ldots,x_n) の内積だから V 上で F は 0.

(2)V と b で生成されるベクトル空間を V' とおけば $\dim V' \leq n-1$ であり, $V_b \subset V'$ である.(1) より V' 上 で 0 となる F が存在し,F は V_b 上 0 である.

2

(1) 点 (x,y) の属す同値類を [(x,y)] と表す. x=y=0 なら (x,y) の同値類は $\{(0,0)\}$ である. $x=0,y\neq 0$ のとき $(0,y)\sim (0,ty)$ $(t\in\mathbb{R}\setminus\{0\})$ である. $y=0,x\neq 0$ のとき $(x,0)\sim (tx,0)$ $(t\in\mathbb{R}\setminus\{0\})$ である. $x\neq 0\neq y$ のとき $(x,y)\sim (x',y')\Leftrightarrow xy=x'y'$ である. したがって同値類は右のようになる. (異なる色は異なる同値類)

 $x \neq 0 \neq y$ なる (x,y) が含まれる同値類は g(x,y) = xy の逆像 $g^{-1}(xy)$ であるから閉集合. また $\{(0,0)\}$ も閉集合である. $[(0,y \neq 0)]$ は (0,0) が集積点であるが同値類に含まれないから閉集合ではない. 同様に $[(0 \neq x,0)]$ も閉集合ではない.

(2)(0,0) を含む R^2 の開集合 $\pi^{-1}(U)$ に対してある $\varepsilon_U>0$ が存在して $B((0,0),\varepsilon_U)\subset\pi^{-1}(U)$ となる. したがって $(x,0)\in\pi^{-1}(U)$ $(x\neq 0)$ である. すなわち $[(0\neq x,0)]\in U$

である. したがって $[(0 \neq x, 0)]$ と [(0,0)] を分離する開集合は存在しないからハウスドルフでない.

 $(3)i \leq j$ のとき同値類 [(1,1)] 上で $x^iy^j = y^{j-i}$ となるから定数となるには i=j が必要. 逆に $f(x,y) = \sum a_i(xy)^i$ とするとこれは全ての同値類の上で定数である.

(4)D=[(x,y)] $(x \neq 0 \neq y)$ のとき, $D \neq D'=[(x',y')]$ に対して $xy \neq x'y'$ である.したがって $h(x,y)=xy\in E$ に対して $h(D)\neq h(D')$ となる.したがって (*) を満たす D,D' は共に [(0,0)],[(0,1)],[(1,0)] の何れか. $f(x,y)=\sum a_i(xy)^i$ について $f([(0,0)])=a_0,f([(0,1)])=a_0,f([(1,0)])=a_0$ であるから求める対は ([(0,0)],[(0,1)]),([(0,0)],[(1,0)]),([(0,1)],[(1,0)]) 及びこれらの順序を入れ替えたものである.

$$\boxed{3} \ A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$$
 であるから $Ax + b = \begin{pmatrix} -x + y + b \\ x - y + c \end{pmatrix}$ である. よって $\langle Ax + b, x \rangle = -(x - y)^2 + bx + cy$ である.

x+y=s, x-y=t と変数変換すると $\langle Ax+b, x \rangle = -t^2 + b \frac{s+t}{2} + c \frac{s-t}{2}$ で,ヤコビアンは -1/2 である. よって

$$\begin{split} I &= \int_{-\infty}^{\infty} \int_{0}^{\infty} \exp\left(-t^2 + b\frac{s+t}{2} + c\frac{s-t}{2}\right) \frac{1}{2} ds dt \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \exp\left(-(t - \frac{b-c}{4})^2 + (\frac{b-c}{4})^2\right) dt \int_{0}^{\infty} \exp\left(\frac{b+c}{2}s\right) ds \end{split}$$

である. $\int_{-\infty}^{\infty} \exp\left(-(t-\tfrac{b-c}{4})^2+(\tfrac{b-c}{4})^2\right)dt$ は有限である. また b+c<0 なら $\int_{0}^{\infty} \exp\left(\tfrac{b+c}{2}s\right)ds$ も有限であり, $b+c\geq 0$ なら発散する.

 $\boxed{4}$ f(z) の 0 におけるローラン級数は 0 が極であることから正の整数 k を用いて $\sum_{n=-k}^{\infty}a_nz^n$ とかける. $z^kf(z)$ は |z|<2 で正則であり $\lim_{z\to 0}z^kf(z)=a_{-k}\neq 0$ である. したがってある $\delta>0$ が存在して $|z|<\delta$ で $|z^kf(z)|>|a_{-k}|/2$ である. したがって

$$\iint_{\varepsilon < |z| < \delta} \frac{|a_{-k}|}{2|z|^k} dx dy \leq \iint_{\varepsilon < |z| < \delta} |f(z)| dx dy < \infty$$

である. $(x,y)=(r\cos\theta,r\sin\theta)$ と極座標変換すると $\int_{\varepsilon}^{\delta}\int_{0}^{2\pi}\frac{|a_{-k}|}{2r^{k}}rdrd\theta=|a_{-k}|\pi\int_{\varepsilon}^{\delta}|r^{1-k}|dr<\infty$ である. $1-k\leq -1$ なら発散するから k<2 である. よって k=1 より一位の極.

0.5 H19 数学 A

 $1 (1)|f(y) - f(x)| = |\int_{x}^{y} f'(t)dt| \le \int_{x}^{y} |f'(t)|dt$

 $(2)(\mathrm{i})c>1$ より $|f(y)-f(x)|\leq \int_x^y At^{-c}dt=\frac{A}{-c+1}(y^{-c+1}-x^{-c+1})<\frac{A}{c-1}x^{1-c}\to 0\quad (x\to\infty)$ である. $x_n=f(n)$ とすれば $|x_n-x_m|\leq \frac{A}{1-c}m^{1-c}\to 0\quad (m\to\infty)$ である. したがって数列 $\{x_n\}_{n=2}^\infty$ はコーシー列 であるから,収束列でその収束先を α とする.任意の $\varepsilon>0$ に対してある M>0 が存在して x>M なら $|f(x)-f([x]+1)|<\varepsilon$ である.ここで [x] は x 以下の最大の整数.またある整数 N が存在して n>N なら $|x_n-\alpha|<\varepsilon$ である.したがって x>N+M なら $|f(x)-\alpha|\leq |f(x)-f([x]+1)|+|f([x]+1)-\alpha|<2\varepsilon$ となるから収束する.

(ii)
$$|f(x) - \alpha| = \lim_{y \to \infty} |f(y) - f(x)| \le \lim_{y \to \infty} \frac{A}{c-1} x^{1-c} = \frac{A}{c-1} x^{1-c}$$

2 $v \in \ker AC_1$ に対して $Cv \in \ker A$ であり C_1 が正則であるから C_1 : $\ker AC_1 \to \ker A$ は同型写像. よって $\dim \ker AC_1 = \dim \ker A$ である. $v \in \ker AC_1$ に対して $B_1v \in \ker B_1AC$ である. B_1 が正則であるから B_1 : $\ker AC_1 \to \ker B_1AC$ は同型写像. よって $\dim \ker AC_1 = \dim \ker B_1AC_1$ である. 以上より $\dim \ker A = \dim \ker B_1AC_1 = m-r$ である. 同様に $\dim \ker A = \dim \ker B_2AC_2 = m-s$ であるから r=s.

③ $f(x,y_0) \neq 0$ より $f(x,y_0) \in \mathbb{R} \setminus \{0\}$ であるから、 $(x,y_0) \in f^{-1}(\mathbb{R} \setminus \{0\})$ である。 $\mathbb{R} \setminus \{0\}$ は開集合であるから、 $f^{-1}(\mathbb{R} \setminus \{0\})$ は開集合である。したがってある $X \times Y$ の開集合 $V_x \times U_x$ が存在して $(x,y_0) \in V_x \times U_x \subset f^{-1}(\mathbb{R} \setminus \{0\})$ である。 $\bigcup_{x \in X} V_x$ は X の開被覆であるから、有限部分被覆 $\{V_{x_1}, \cdots, V_{x_n}\}$ がたなさる。 $V_x \in X$

存在する. $U=\bigcap^n U_{x_i}$ とすれば $X\times U\subset f^{-1}(\mathbb{R}\setminus\{0\})$ である.

 $4 f(z) = \frac{e^z - e^{-z}}{z^4}$ とすれば f(z) は $z \neq 0$ で正則であり,z = 0 で極である.z = 0 での f のローラン級数は

$$f(z) = \left(\sum_{n=0}^{\infty} \frac{1}{n!} z^n - \sum_{n=0}^{\infty} \frac{1}{n!} (-z)^n\right) / z^4$$
$$= \sum_{n=0}^{\infty} \left(\frac{1}{n!} - (-1)^n \frac{1}{n!}\right) z^{n-4}$$

である. z^{-1} の係数は 1/3 である.

r<1 なら内部に特異点を持たないから $\int_{\Gamma_r}f(z)dz=0$ である. r>1 なら z=0 が特異点となるから留数 定理より $\int_{\Gamma_z}f(z)dz=2\pi i/3$ である.

0.6 H20 数学 A

1 (1)

$$\frac{\partial F}{\partial \theta} \left(\frac{\pi}{3} \right) = f_x \left(\cos \frac{\pi}{3}, \sin \frac{\pi}{3} \right) \left(-\sin \frac{\pi}{3} \right) + f_y \left(\cos \frac{\pi}{3}, \sin \frac{\pi}{3} \right) \cos \frac{\pi}{3}$$
$$= -\frac{\sqrt{3}}{2}a + \frac{1}{2}b$$

(2)F は $[0,4\pi]$ 上で連続である.よって $\theta\in[0,4\pi]$ に対して $|F(\theta)|< M$ となる M>0 が存在する. $\tau\in\mathbb{R}$ に対して $t=2n\pi+\theta$ をみたす, $n\in\mathbb{Z},\theta\in[0,2\pi)$ が存在する. $F(\tau)=F(\theta)$ であるから $|F(\tau)|< M$ である.したがって有界.また F は $[0,4\pi]$ 上で連続であるから一様連続である.すなわち $\varepsilon>0$ に対して $\delta>0$ が存在して任意の $\theta,\tau\in[0,4\pi]$ に対して $|\theta-\tau|<\delta$ なら $|F(\theta)-F(\tau)|<\varepsilon$ である.

よって $s\geq t\in\mathbb{R}$ に対して、 $s=2n\pi+p$ をみたす $p\in[0,2\pi)$ が存在する. $|s-t|<\delta$ なら $|F(s)-F(t)|=|F(p)-F(p+s-t)|<\varepsilon$ であるから一様連続である.

2 $(1)\varphi_A: \mathbb{C}^n \to \mathbb{C}^m; x \mapsto Ax$ で定める. A の階数が m であるから $\dim \varphi_A = m = \dim \mathbb{C}^m$. したがって φ_A は全射である. よって任意の $c \in \mathbb{C}^m$ に対して $\varphi_A(x) = Ax = c$ となる $x \in \mathbb{C}^n$ が存在する.

 $(2)\varphi_B$ が単射なら $\mathrm{rank}\,\varphi_B=m$ である. よって $\mathrm{rank}\,B^T=m$ であるから φ_{B^T} は全射である.

 $(3)B^TQ^T=P^t$ なる Q^T の存在を示す. P^T の列ベクトル p_i ごとに $q_i\in\mathbb{C}^n$ が存在して $B^Tq_i=p_i$ である. よって $Q^T=(q_1,\cdots,q_m)$ とすれば $B^TQ^T=P^T$ である.

3 $(1)(x,0),(x,1) \in Y$ について (x,1) が属す Y の開集合 U をとる。U は開基の和集合でかけるから,ある $W \subset U, W \in \mathcal{B}$ が存在して $(x,1) \in W$. すなわちある $V \in \mathcal{O}$ が存在して $W = V \times \{0,1\}$ である.よって $(x,0) \in W \subset U$ であるから,ハウスドルフでない.

 $(2)X \times \{0\}$ の開被覆 $S = \{U_{\lambda} \mid \lambda \in \Lambda\}$ を任意にとる。任意の $x \in X$ についてある λ_x が存在して $x \in U_{\lambda_x}$ である。各 U_{λ_x} についてある開集合 $V_{\lambda_x} \in \mathcal{O}$ が存在して $x \in V_{\lambda_x} \times \{0\} \subset U_{\lambda_x}$ である。したがって $X \subset \bigcup_{x \in X} V_{\lambda_x}$ である。X はコンパクトであるから有限部分被覆 $\{V_{\lambda_{x_1}}, \cdots, V_{\lambda_{x_n}}\}$ が存在する。 $X \subset \bigcup_{i=1}^n V_{\lambda_{x_i}}$ であるから $X \times \{0\} \subset \bigcup_{i=1}^n U_{\lambda_{x_i}}$ である。したがって $X \times \{0\}$ はコンパクトである。(1) で示したように $(x,1) \in Y \setminus (X \times \{0\})$ を含む開集合 U は $U \cap (X \times \{0\}) \neq \emptyset$ である。したがって $X \times \{1\}$ は開集合でない。 $\{1\}$ は $\{1\}$ に $\{1\}$ に $\{1\}$ に $\{1\}$ に $\{1\}$ に $\{2\}$ に $\{1\}$ に $\{1\}$ に $\{2\}$ に $\{1\}$ に $\{$

 $\boxed{4}\ (1)rac{1}{1-z^3}=1+z^3+z^6+\cdots \quad (|z|<1)$ であるから, $arphi(z)=rac{z^p}{1-z^3}=\sum\limits_{n=0}^\infty z^{3n+p}$ である.収束半径は 1 である.

 $(2)\varphi$ の特異点は $1,e^{2\pi i/3},e^{4\pi i/3}$ で,それ以外の点で正則である.したがって R<1 なら $\int_C \varphi(z)dz=0$ である.

特異点での留数を計算する. $\lim_{z\to 1}(z-1)\varphi(z)=\frac{1}{3}, \lim_{z\to e^{2\pi i/3}}(z-e^{2\pi i/3})\varphi(z)=\frac{e^{2(p+1)\pi i/3}}{3}, \lim_{z\to e^{4\pi i/3}}(z-e^{4\pi i/3})\varphi(z)=\frac{e^{4\pi i/3}}{3}$ である. よって留数定理から $\int_C \varphi(z)dz=\frac{2\pi i}{3}(1+e^{2(p+1)\pi i/3}+e^{4(p+1)\pi i/3})$ である.

0.7 H21 数学 A

1 (1)

$$\lim_{n \to \infty} \frac{f\left(\frac{1}{n}\right) - f(0)}{\frac{1}{n} - 0} = \lim_{n \to \infty} nf\left(\frac{1}{n}\right) = f'(0)$$

であるから -f'(0)/2 > 0 に対してある $N \in \mathbb{N}$ が存在して n > N なら $nf(\frac{1}{n}) < f'(0) + (-f'(0)/2) = f'(0)/2$ である.

 $(2)\pi>x>0$ で $\frac{1}{1+x}<1$ より $\log(1+x)=\int_0^1\frac{1}{1+t}dt<\int_0^11dt=t$ である. したがって $\log(1+x)< x$ である. またテイラーの定理から $\cos x=1-\frac{x^2}{2}+\frac{x^4}{4!}+R(x)$ である. $R(x)=\frac{(\cos^{(5)}s)}{5!}x^5$ $(0< s< x<\pi)$ である. $(\cos^{(5)}s)=-\sin s<0$ であるから R(x)<0 である. したがって $\cos x<1-\frac{x^2}{2}+\frac{x^4}{4!}$ である. 以上より

$$\log \left(\cos \left(\frac{1}{\sqrt{n}} \right) \right) \le \log \left(1 - \frac{1}{2n} + \frac{1}{24n^2} \right) \le -\frac{1}{2n} + \frac{1}{24n^2} < -\frac{1}{n}$$

であるから発散する.

2 (1) 略

 $(2)\sigma(u)=u-2\frac{(u,u)}{(u,u)}u=-u$ より -1 は固有値である. $\sigma(x)=-x$ とすると, $x-2\frac{(x,u)}{(u,u)}u=-x$ であるから $x=\frac{(x,u)}{(u,u)}u$ である. すなわち $x\in\mathrm{spam}(u)$ である. よって $W(-1)=\mathrm{spam}(u)$ である.

 $(3)\sigma\circ f(u)=f\circ\sigma(u)=f(-u)=-f(u)$ であるから $f(u)\in W(-1)=\mathrm{spam}(u)$ である. したがって u は f の固有ベクトルである.

$$(4)\sigma(e_1) = e_1 - 2\frac{(e_1, u)}{(u, u)}u = e_1 - \frac{2}{3}u = \frac{1}{3}e_1 + \frac{2}{3}e_3 - \frac{2}{3}e_4, \sigma(e_2) = e_2, \sigma(e_3) = e_3 + \frac{2}{3}u = \frac{2}{3}e_1 + \frac{1}{3}e_3 + \frac{2}{3}e_4, \sigma(e_4) = \frac{2}{3}e_4 + \frac$$

$$e_4 - \frac{2}{3}u = -\frac{2}{3}e_1 + \frac{2}{3}e_3 + \frac{1}{3}e_4$$
 である. よって表現行列は
$$\begin{pmatrix} \frac{1}{3} & 0 & \frac{2}{3} & -\frac{2}{3} \\ 0 & 1 & 0 & 0 \\ \frac{2}{3} & 0 & \frac{1}{3} & \frac{2}{3} \\ -\frac{2}{3} & 0 & \frac{2}{3} & \frac{1}{3} \end{pmatrix}$$
 である.

③ (1) ハウスドルフ空間 (X,\mathcal{O}) のコンパクト部分集合 C をとる. $y \in X \setminus C$ と $x \in C$ について $x \in U_x, y \in V_x, U_x \cap V_x = \emptyset$ となる開集合 $U_x, V_x \in \mathcal{O}$ が存在する. $\bigcup_{x \in C} U_x \supset C$ より有限部分集合 $X' \subset X$ が存在して $\bigcup_{x \in X'} U_x \supset C$ である. $V = \bigcap_{x \in X'} V_x$ とすれば V は y の開近傍で $V \cap C = \emptyset$ である. したがって $X \setminus C$ は開集合である.

 $(2)f: X \times Y \to \mathbb{R}; (x,y) \mapsto x-y$ とすると f は連続である. よって $f^{-1}(0) = F$ は閉集合である. $g: F \to \mathbb{R}; (x,x) \mapsto x$ とすると g は連続である. $\sup g(x) = 1$ より g は最大値をもたない. したがって F はコンパクトでない.

 $\boxed{4} (1)zx + iy$ とする. $e^z = -e^{-z}$ より $e^x = |e^z| = |-e^{-z}| = e^{-x}$ であるから x = -x である. したがって x = 0 である. $e^{iy} = -e^{-iy}$ より $\cos y = -\cos y$ である. よって $y = \frac{i\pi}{2} + n\pi$ $(n \in \mathbb{Z})$ である.

 $(2)|e^{-iz}| = |e^{s-i\pm R}| = e^s \le e^\pi \ \text{である}. \ z = R + is \ \text{のとき} \ |e^z + e^{-z}| \ge |e^z| - |e^{-z}| = e^R - e^{-R} \ \text{であり},$ $z = -R + is \ \text{のとき} \ |e^z + e^{-z}| \ge |e^{-z}| - |e^z| = e^R - e^{-R} \ \text{である}. \ \text{よって} \sup_{z \in \Gamma_R} |e^{-iz}/(e^z + e^{-z})| \le \frac{e^\pi}{e^R - e^{-R}} \ \text{である}.$ ある.

(3)

$$\int_{-\infty}^{\infty} \left| \frac{\cos x}{e^x + e^{-x}} \right| dx \le \int_{-\infty}^{0} \frac{1}{e^{-x}} dx + \int_{0}^{\infty} \frac{1}{e^x} dx < \infty$$

よって被積分関数は \mathbb{R} 上ルベーグ可積分であり、連続であるから広義積分は収束する。 $f(z)=e^{-iz}/(e^z+e^{-z})$ とする。 (1) で求めた点以外で f は正則である。 したがって積分経路 C を 4 点 -R, R, $R+i\pi$, $-R+i\pi$ を 結んでできる長方形を反時計回りに進むとすると、 留数定理から $\int_C f(z)dz = 2\pi i (\mathrm{Res}(f,i\pi/2))$ である。 $\lim_{z\to i\pi/2} \frac{z-1\pi/2}{e^z+e^{-z}} = \lim_{z\to i\pi/2} \frac{1}{e^z-e^{-z}} = \frac{1}{2i}$ であるから $\int_C f(z)dz = \pi e^{\pi/2}$ である。

また

$$\begin{split} & \int_{R+i\pi}^{-R+i\pi} f(z) dz = \int_{R}^{-R} \frac{e^{-i(x+i\pi)}}{e^{x+i\pi} + e^{-x-i\pi}} dx = \int_{-R}^{R} \frac{e^{\pi}e^{-ix}}{e^{x} + e^{-x}} dx \\ & \left| \int_{R}^{R+i\pi} f(z) dz \right| \leq \int_{R}^{R+i\pi} \left| \frac{e^{-iz}}{e^{z} + e^{-z}} \right| dz \leq \pi e^{\pi} / (e^{R} - e^{-R}) \to 0 \quad (R \to \infty) \\ & \left| \int_{-R+i\pi}^{-R} f(z) dz \right| \leq \int_{-R+i\pi}^{-R} \left| \frac{e^{-iz}}{e^{z} + e^{-z}} \right| dz \leq \pi e^{\pi} / (e^{R} - e^{-R}) \to 0 \quad (R \to \infty) \end{split}$$

である. よって $\pi e^{\pi/2} = \int_{-\infty}^{\infty} \cos x/(e^x + e^{-x}) dx + e^{\pi} \int_{-\infty}^{\infty} e^{-ix}/(e^x + e^{-x}) dx$ である. よって $\int_{-\infty}^{\infty} \cos x/(e^x + e^{-x}) dx$ $e^{-x})dx = \frac{\pi}{e^{\pi/2} + e^{-\pi/2}}$ である.

H22 数学 A 8.0

(1)f は一様連続であるから任意の ε に対して $\delta(\varepsilon)>0$ が存在して $|x-y|<\delta(\varepsilon)$ なら $|f(x)-f(y)|<\varepsilon$ であ る. また $\{g_n\}_{n=1}^\infty$ は一様収束するから $\delta(\varepsilon)$ に対して, $N\in\mathbb{N}$ が存在して n>N なら $|g_n(x)-g(x)|<\delta(\varepsilon)$ で ある.

以上より、n > N なら $|f(g_n(x)) - f(g(x))| < \varepsilon$ である. したがって $f \circ g_n$ は $f \circ g$ に一様収束する.

$$(2)h_n(x) = \sum_{k=1}^n \frac{\cos(kx)}{k^2}$$
 とする. $|h_n(x) - h(x)| = \left|\sum_{k=n+1}^\infty \frac{\cos(kx)}{k^2}\right| \le \sum_{k=n+1}^\infty \frac{1}{k^2} \to 0 \quad (n \to \infty)$ である. したがって一様収束.

また $\sin x$ は一様連続である.これは平均値の定理から $\sin x - \sin y = (x-y)\cos\xi \le |(x-y)|$ $(\xi \in (x,y))$

より明らか。
$$(1)$$
 より $\alpha_n(x)=\sin(h_n(x))$ は $\sin(h(x))$ に一様収束する。
$$\boxed{2}(1)X=\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in V$$
 を任意にとる。 $X=X^T$ であるから $b=c$ である. したがって $X=aE_1+bE_2+cE_3$

と表せる. ま $\dot{c}_1\dot{c}_1+c_2E_2+c_3E_3=O$ とすれば $c_1=c_2=c_3=0$ は一次独立. したがってVは $\{E_1,E_2,E_3\}$ を基底とする.

 $(2)(A^TXA)^T = A^TX(A^T)^T = A^TXA$ であるから $f_A(X) \in V$ である、 $f_A(cX+Y) = A^T(cX+Y)A =$ $cA^TXA + A^TYA = cf_A(X) + f_A(Y)$ であるから線形写像で

$$(3) f_A(E_1) = \begin{pmatrix} 1 & a \\ a & a^2 \end{pmatrix} = E_1 + aE_2 + a^2E_3, f_A(E_2) = \begin{pmatrix} 2a & a^2 + 1 \\ a^2 + 1 & 2a \end{pmatrix} = 2aE_1 + (a^2 + 1)E_2 + 2aE_3, f_A(E_3) = (a^2 + 1)E_2 + aE_3 + aE$$

$$egin{pmatrix} a^2 & a \ a & 1 \end{pmatrix} = a^2 E_1 + a E_2 + E_3$$
 である.よって f_A の表現行列は $egin{pmatrix} 1 & 2a & a^2 \ a & a^2 + 1 & a \ a^2 & 2a & 1 \end{pmatrix}$ である.

$$(4) f_A$$
 の表現行列を $G(a)$ とする. $\det G(a) = \begin{vmatrix} 1 & 2a & a^2 \\ 0 & -a^2 + 1 & a - a^3 \\ 0 & -a^3 + a & 1 - a^2 \end{vmatrix} = -(1 - a^2)^2 - (a - a^3)^2 = -(a^2 + a^3)^2 = -(a^2 + a^3)^2 = -(a^3 + a^3)^2 = -(a$

 $1)(1-a^2)^2$ である.

したがって $a \neq \pm 1$ のとき $\det G(a) \neq 0$ であるから $\operatorname{Im} f_A$ の基底は $\{f_A(E_1), f_A(E_2), f_A(E_3)\}$ である.

$$a=1$$
 のとき $G(1)=egin{pmatrix} 1 & 2 & 1 \\ 1 & 2 & 1 \\ 1 & 2 & 1 \end{pmatrix}$ である.よって $\operatorname{Im} f_A$ の基底は $\left\{egin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$ である.

$$a=-1$$
 のとき $G(-1)=egin{pmatrix} 1 & -2 & 1 \ -1 & 2 & -1 \ 1 & -2 & 1 \end{pmatrix}$ である.よって $\operatorname{Im} f_A$ の基底は $\left\{egin{pmatrix} 1 & -1 \ -1 & 1 \end{pmatrix} \right\}$ である.

3 $(1)S = \{(-\infty, n) \cup \{p_1\} \mid n \in \mathbb{N}\}$ とする. S は X_1 の開被覆である. 有限部分被覆を持たないからコン

パクトでない.

(2) ユークリッド位相の入った位相空間 $\mathbb R$ を E で表す。E の開集合は X_2 の開集合であることを示す。E の開基として $\{(x_0-\varepsilon,x_0+\varepsilon)\mid x_0\in\mathbb R,\varepsilon>0\}$ がとれる。 $\frac{1}{n_1}\leq\varepsilon<\frac{1}{n_1+1}$ として n_1 を定める。 n_i を $\frac{1}{n_i}\leq\varepsilon-\sum\limits_{j=1}^{i-1}\frac{1}{n_j}<\frac{1}{n_i}$ として定める。ただし $\varepsilon-\sum\limits_{j=1}^{i-1}\frac{1}{n_j}=0$ のとき n_i は定めない。 n_i が定義される i を集めてできる $A\subset\mathbb N$ を定める。このとき数列 $\{n_j\}_{j=1}^{\max A}$ を得る。 $\prod_{i=1}^{\max A}(x_0-\sum\limits_{j=1}^{i}\frac{1}{n_j},x_0-\sum\limits_{j=1}^{i-1}\frac{1}{n_j}+\frac{1}{n_i})\cup(x_0+\sum\limits_{j=1}^{i-1}\frac{1}{n_j}-\frac{1}{n_i},x_0-\sum\limits_{j=1}^{i}\frac{1}{n_j}+\frac{1}{n_i})=(x_0-\varepsilon,x_0+\varepsilon)$ である。よって E の開集合は X_2 の開集合である。

 $\varphi\colon X_2 \to [0,1]$ を $\varphi(p_1) = 0, \varphi(p_2) = 1, \varphi(x) = (\arctan x + \pi/2)/\pi$ $(x \in \mathbb{R})$ とする. $\varphi|_{\mathbb{R}}\colon E \to (0,1)$ は同相写像であるから φ は全単射. $(x_0 - \frac{1}{n}, x_0 + \frac{1}{n})$ は E の開集合であるから $\varphi((x_0 - \frac{1}{n}, x_0 + \frac{1}{n}))$ は [0,1] の開集合である。 $\varphi((-\infty,n) \cup \{p_1\}) = (0,\varphi(n)) \cup \{0\} = (-1,\varphi(n)) \cap [0,1]$ は開集合である。 よって φ^{-1} は連続. [0,1] の開集合 U について $U \subset (0,1)$ なら $\varphi^{-1}(U)$ は E の開集合。 すなわち X_2 の開集合。 $0 \in U, 1 \notin U$ ならある $\varepsilon > 0$ が存在して $U = [0,\varepsilon) \cup U \setminus \{0\}$ である。 $\varphi^{-1}(U \setminus \{0\})$ は X_2 の開集合である。 $\varphi^{-1}([0,\varepsilon)) = (-\infty,\varphi^{-1}(\varepsilon)) \cup \{p_1\}$ は X_2 の開集合である。 よって $\varphi^{-1}(U)$ は X_2 の開集合。 $0 \notin U, 1 \in U$ のときも同様。 よって φ は連続. すなわち φ は同相.

 $(3)p_1$ が属す開基は $\{(-\infty,n)\cup\{p_1\}\}$ $(n\in\mathbb{Z})$ である.任意の $m\in\mathbb{Z}$ について $\{(-\infty,m)\}\cup\{p_3\}$ も開基であるからそれぞれを含む任意の開基は共通部分をもつ.したがってハウスドルフ空間でない.

4 (1)

$$\left| \frac{\log z}{z^4 + 1} \right| = \frac{|\log r + i\theta|}{|r^4 e^{4i\theta} + 1|} \le \frac{|\log r| + \pi}{||r^4 e^{4i\theta}| - 1|} = \frac{|\log r| + \pi}{|r^4 - 1|}$$

(2)

$$\int_{\alpha_2} \frac{\log z}{z^4+1} dz = \int_R^\varepsilon \frac{\log x e^{\pi i}}{(x e^{\pi i})^4+1} e^{i\pi} dx = \int_\varepsilon^R \frac{\log x + \pi i}{x^4+1} dx = \int_\varepsilon^R \frac{\log x}{x^4+1} dx + \pi i \int_\varepsilon^R \frac{1}{x^4+1} dx$$

 $(3)\partial D_{\varepsilon,R} \ \mathcal{O} \ \text{小 さ い 円 弧 を } C_1, \ \ \text{大 き い 円 弧 を } C_2 \ \text{と す } \\ \text{5.} \ \ \left| \int_{C_1} \frac{\log z}{z^4+1} dz \right| = \int_0^\pi \left| \frac{\log \varepsilon e^{i\theta}}{\varepsilon^4 e^{4i\theta}+1} i \varepsilon e^{i\theta} \right| d\theta \leq \int_0^\pi \frac{\varepsilon \left|\log \varepsilon\right| + \varepsilon \pi}{\left|\varepsilon^4 - 1\right|} d\theta \leq \pi \frac{\varepsilon \left|\log \varepsilon\right| + \varepsilon \pi}{\left|\varepsilon^4 - 1\right|} \ \rightarrow \ 0 \ \ (\varepsilon \ \rightarrow \ 0) \ \ \text{で あ } \\ \text{5.} \ \ \text{\mathbb{E} } \ \left| \int_{C_2} \frac{\log z}{z^4+1} dz \right| \leq \int_0^\pi \left| \frac{\log R e^{i\theta}}{R^4 e^{4i\theta}+1} i R e^{i\theta} \right| d\theta \leq \pi \frac{R \left|\log R\right| + R \pi}{\left|R^4 - 1\right|} \rightarrow 0 \ \ \ (R \rightarrow \infty) \ \ \text{\ref{eq:constraints}}.$

また $\int_{\alpha_1}^{\infty} \frac{\log z}{z^4+1} dz = \int_{\varepsilon}^{R} \frac{\log x}{x^4+1} dx$ である.

arepsilon < 1 < R である。 $D_{arepsilon,R}$ 内で $\frac{\log z}{z^4+1}$ は $e^{\pi i/4}, e^{3\pi i/4}$ を特異点にもつ。留数を求めると $\operatorname{Res}\left(\frac{\log z}{z^4+1}, e^{\pi i/4}\right) = \pi e^{7i\pi/4}/16$, $\operatorname{Res}\left(\frac{\log z}{z^4+1}, e^{3\pi i/4}\right) = 3\pi e^{i\pi/4}/16$ である。よって $\int_{\partial D_{arepsilon,R}} \frac{\log z}{z^4+1} dz = \frac{i\pi^2}{8}(3e^{i\pi/4} + e^{-i\pi/4}) = -\frac{\pi^2\sqrt{2}}{8} + i\frac{\pi^2\sqrt{2}}{4}$ である。すなわち $\lim_{R\to\infty,\varepsilon\to 0}\int_{\partial D_{\varepsilon,R}} \frac{\log z}{z^4+1} dz = 2\int_0^\infty \frac{\log x}{x^4+1} dx + i\pi\int_0^\infty \frac{1}{x^4+1} dx$ である。以上より $\int_0^\infty \frac{\log x}{x^4+1} dx = -\frac{\pi^2\sqrt{2}}{16}, \int_0^\infty \frac{1}{x^4+1} dx = \frac{\pi\sqrt{2}}{4}$ である。

0.9 H23 数学 A

 $\boxed{1}$ (1)V の基底として $\{1,x+1,(x+1)^2\}$ をとる. $F(1)=0,F(x)=x+1,F((x+1)^2)=2(x+1)^2$ であるから F の表現行列は $\begin{pmatrix} 0&0&0\\0&1&0\\0&0&2 \end{pmatrix}$ である.

$$(2)G$$
の表現行列を $B=egin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{pmatrix}$ とし, F の表現行列を A とする. $G\circ F=F\circ G$ は $AB=BA$

と同値である.よって
$$AB=\begin{pmatrix}0&0&0\\b_{21}&b_{22}&b_{23}\\2b_{31}&2b_{32}&2b_{33}\end{pmatrix}=\begin{pmatrix}0&b_{12}&2b_{13}\\0&b_{22}&2b_{23}\\0&b_{32}&2b_{33}\end{pmatrix}$$
 であるから, $b_{12}=b_{13}=b_{21}=b_{31}=b_{23}=b_{23}=b_{32}=0$ である.したがって $B=\begin{pmatrix}b_{11}&0&0\\0&b_{22}&0\\0&0&b_{33}\end{pmatrix}$ である.よって M の次元は3である.

$$b_{23}=b_{32}=0$$
 である.したがって $B=egin{pmatrix} b_{11}&0&0\0&b_{22}&0\0&0&b_{33} \end{pmatrix}$ である.よって M の次元は 3 である.

[2] $(1)\{f_n\}_{n=1}^{\infty}$ は f に一様収束するから,ある $N \in \mathbb{N}$ が存在して $|f_N(x) - f(x)| < 1$ である. f_N は有界で あるから $f_N(x) \le M$ とするとよって $|f(x)| \le 1 + |f_N(x)| < 1 + M$ である. よって f は有界.

- (2) 任意の $\varepsilon>0$ に対して一様収束性から、ある $N\in\mathbb{N}$ が存在してn,m>N なら $|f_n(x)-f_n(x)|$ $|f(x)|<arepsilon, |f(x)-f_m(x)|<arepsilon$ である. この n,m に対してある M(n)>0 が存在して x>M(n) なら $|a_n-f_n(x)|<arepsilon$ であり、またある M(m)>0 が存在して x>M(m) なら $|a_m-f_m(x)|<arepsilon$ である. $|a_n - a_m| \le |a_n - f_n(x)| + |f_n(x) - f(x)| + |f(x) - f_m(x)| + |f_m(x) - a_m|$ であるから x > M(n) + M(m) をと ることで $|a_n-a_m|<4\varepsilon$ である. すなわち $\{a_n\}_{n=1}^\infty$ はコーシー列である.
- (3) 任意の $\varepsilon > 0$ に対して、ある $N_1 \in \mathbb{N}$ が存在して $n > N_1$ なら $|f(x) f_n(x)| < \varepsilon$ である. またある $N_2 \in \mathbb{N}$ が存在して $n > N_2$ なら $|a_n - A| < \varepsilon$ である. $N = N_1 + N_2$ とする. ある M > 0 が存在して x > Mなら $|f_N(x) - a_n| < \varepsilon$ である. よって $|f(x) - A| \le |f(x) - f_n(x)| + |f_n(x) - a_n| + |a_n - A| < 3\varepsilon$ となる.
- $\boxed{3}$ $(1)(a,b) \notin G$ を任意にとる. $b \neq f(a)$ と Y がハウスドルフ空間であることから開集合 U,V が存在して $f(a) \in U, b \in V, U \cap V = \emptyset$ である. $(a,b) \in f^{-1}(U) \times V$ である. ある $(x,y) \in f^{-1}(U) \times V$ について f(x) = yと仮定する. $f(x) \in U, y \in V$ であるから $y \in U \cap V$ となり矛盾. よって $f^{-1}(U) \times V \cap G = \emptyset$ である. $f^{-1}(U) \times V$ は開集合であるから G は閉集合.

$$(2)f(x) = \begin{cases} 0 & (x \le 0) \\ 1/x & (x > 0) \end{cases}$$
 とする. f は連続でないが G は閉集合である.

 $\boxed{4} \ (1)|e^{iz}| = |\exp(ire^{it})| = |\exp(-r\sin t + ir\cos t)| = |\exp(-r\sin t)| \le 1$ である. よって $|\int_{C_r} f(z)dz| \le 1$

$$\begin{split} \int_{C_r} |\frac{2}{z^2}| dz &= 2\int_0^\pi |\frac{1}{r}| dt = 2\pi\frac{1}{r} \to 0 \quad (r \to \infty) \text{ である}. \\ (1-e^{iz})/z^2 &= \sum_{n=1}^\infty \frac{1}{n!} i^{n-2} z^{n-2} \text{ である}. \quad \text{よって} \int_{C_r} f(z) dz = \sum_{n=1}^\infty \frac{1}{n!} i^{n-2} \int_{C_r} z^{n-2} dz = \sum_{n=1}^\infty \frac{1}{n!} i^{n-1} \int_0^\pi r^{n-1} e^{i(n-1)t} dt \\ \text{である}. \quad n &= 1 \text{ の頃については} \int_0^\pi dt = \pi \text{ である}. \quad n \geq 2 \text{ なら} |\int_0^\pi r^{n-1} e^{i(n-1)t} dt| \leq \int_0^\pi r^{n-1} dt \to 0 \quad (r \to 0) \end{split}$$
である. よって $\int_{C_{-}} f(z)dz \to \pi$ $(r \to 0)$ である.

(2) 曲線 $\alpha_{\varepsilon,r}$ を z=x $(-r \le x \le -\varepsilon)$ とする. $\int_{\alpha_{\varepsilon,r}} f(z) dz = \int_{-r}^{-\varepsilon} \frac{1-e^{ix}}{x^2} dx = \int_{\varepsilon}^{r} \frac{1-e^{-ix}}{x^2} dx = \int_{\varepsilon}^{r} \frac{1-\cos x}{x^2} dx + \int_{\varepsilon}^{r} \frac{1-\cos x}{x^2} dx = \int_{\varepsilon}^{r} \frac{1-\cos x}{x^2$ $i\int_{c}^{r} \frac{\sin x}{x^{2}} dx$ である.

曲線 $\beta_{\varepsilon,r}$ を z=x $(\varepsilon \leq x \leq r)$ とする. $\int_{\beta_{\varepsilon,r}} f(z) dz = \int_{\varepsilon}^{r} \frac{1-e^{ix}}{x^{2}} dx = \int_{\varepsilon}^{r} \frac{1-\cos x}{x^{2}} dx - i \int_{\varepsilon}^{r} \frac{\sin x}{x^{2}} dx$ である. $C_{arepsilon}, eta_{arepsilon,r}, C_r, lpha_{arepsilon,r}$ をつないでできる積分曲線を C とすると,C の内部で f は正則であるから $\int_C f(z)dz = 0$ である. よって $\int_{-C_{\varepsilon}}f(z)dz+\int_{\beta_{\varepsilon,r}}f(z)dz+\int_{C_{r}}f(z)dz+\int_{\alpha_{\varepsilon,r}}f(z)dz=0$ である. $\varepsilon\to 0,r\to\infty$ とすると $2\int_{arepsilon}^{r} rac{1-\cos x}{x^2} dx - \pi o 0$ であるから $\int_{0}^{\infty} rac{1-\cos x}{x^2} dx = rac{\pi}{2}$ である.

0.10 H24 数学 A

 $\boxed{1}$ $(1)\lim_{n \to \infty} a_n = 0$ より、任意の $\varepsilon > 0$ に対してある $N \in \mathbb{N}$ が存在して n > N なら $\varepsilon < a_n < \varepsilon$ である. よってn > Nで $(1 - \frac{\varepsilon}{n})^n \le (1 + \frac{a_n}{n})^n \le (1 + \frac{\varepsilon}{n})^n$ である。極限をとれば $e^{-\varepsilon} \le \lim_{n \to \infty} (1 + \frac{a_n}{n})^n \le e^{\varepsilon}$ である。 ε は任意であるから $\lim_{n \to \infty} (1 + \frac{a_n}{n})^n = 1$ である.

 $(2)n\cos\frac{t}{\sqrt{n}} - n = -\frac{1}{2}t^2 + O(\frac{1}{n})$ であり、 $\lim_{n \to \infty} s\cos\frac{t}{\sqrt{n}} = s$ であるから、 $\lim_{n \to \infty} a_n = s - \frac{1}{2}t^2 = 0$ より $(s,t)=(\frac{t^2}{2},t)$ $(t\in\mathbb{R})$ である.

(3)(2) の a_n をもちいると、 $\cos \frac{t}{\sqrt{n}} = \frac{n}{n+s} \frac{n+s}{n} \cos \frac{t}{\sqrt{n}} = \frac{n}{n+s} (1+\frac{a_n}{n})$ である. したがって $\lim_{n\to\infty} (\cos \frac{t}{\sqrt{n}})^n = \frac{n}{n+s} (1+\frac{a_n}{n})$

 $e^{-\frac{t^2}{2}}$ である. よって $\int_0^\infty e^{-\frac{t^2}{2}} dt = \sqrt{2\pi}$ である.

$$-\frac{t^2}{2}$$
 である. よって $\int_0^\infty e^{-\frac{t^2}{2}} dt = \sqrt{2\pi}$ である.
$$\begin{vmatrix} -3-t & -2 & 1 \\ 4 & 3-t & -1 \\ -4 & -2 & 2-t \end{vmatrix} = -t(t-1)^2$$
 である. よって固有値は $0,1$ である.
$$\begin{pmatrix} -3 & -2 & 1 \\ \end{pmatrix}$$

$$t=0$$
 のとき, $\begin{pmatrix} -3 & -2 & 1 \\ 4 & 3 & -1 \\ -4 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ であるから V_0 の基底は $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ である.

$$t=1$$
 のとき、 $\begin{pmatrix} -4 & -2 & 1 \\ 4 & 2 & -1 \\ -4 & -2 & 1 \end{pmatrix}$ であるから固有ベクトルは $\begin{pmatrix} 1 \\ 0 \\ 4 \end{pmatrix}$ 、 $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ である.

- $(2)BAy = BABx = B\alpha$
- (3)AB の rank は 2 であるから A の rank は 2 以上. $A: \mathbb{C}^2 \to \mathbb{C}^3$ であるから A の rank は 2 である. すなわ ちAは単射. 同様にBは全射である.

よって dim Im $q_1 = 2$ である.

(4)B は全射であるから任意の $y\in\mathbb{C}$ に対して Bx=y となる $x\in\mathbb{C}^2=V_1$ が存在する. BAy=y より $BA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ である.

- $\boxed{3}(1)f^{-1}([0,1)) = [0,1)$ は X の開集合でないから f は連続でない.
- (2) X は $\{(x-\varepsilon,x+\varepsilon)\mid x\in\mathbb{R},\varepsilon>0\}$ を開基とする位相空間である.

$$g^{-1}(x-\varepsilon,x+\varepsilon)=(x-\varepsilon,x+\varepsilon)=\bigcup_{n=1}^{\infty}[x-\frac{\varepsilon}{n},x+\varepsilon)$$
 より g は連続.

 $(3)A^+$ の任意の開被覆 $S=\{U_\lambda\mid \lambda\in\Lambda\}$ をとる. $0\in U_{\lambda'}$ なる $\lambda'\in\Lambda$ が存在する. ある $\varepsilon>0$ が存在して $(-arepsilon,arepsilon)\subset U_{\lambda'}$ である. $\frac{1}{n}<arepsilon$ となるような最大の n を N とする. N 以下の n に対して $\frac{1}{n}$ を含むような U_{λ_n} が存在する. したがって $\Lambda'=\{\lambda_1,\lambda_2,\cdots,\lambda_N,\lambda'\}$ は A^+ の有限部分被覆である. よって A^+ はコンパクトで ある.

 A^- は A^+ と同様にしてコンパクトである.

 $(4)A^+$ は Y においてコンパクトである. 0 を含む開集合は開集合 [0,x) を部分集合にもつ. x 以上の $\frac{1}{n}$ な るnは有限個なので(3)と同様にコンパクト.

 A^- はコンパクトでない. $\{[-\frac{1}{n},-\frac{1}{n+1})\mid n=1,2,\ldots\}\cup\{[0,1)\}$ は開被覆であるが有限部分被覆を持た ない.

- $\boxed{4}\ (1)z=e^{i\pi/5}$ は一位の極である.よって留数は $\lim_{z o e^{i\pi/5}}(z-e^{i\pi/5})/(z^5+1)=e^{6i\pi/5}/5$ である.
- $(2)|\int_{\Gamma_R} f(z)dz| \leq \int_{\Gamma_R} |\tfrac{1}{z^5+1}|dz = \int_0^{2\pi/5} |\tfrac{1}{R^5-1}Ri|d\theta = \tfrac{2\pi}{5} \tfrac{R}{R^5-1} \to 0 \quad (R \to \infty) \ \mathfrak{T} \ \mathfrak{B} \ \mathfrak{S} \, .$
- (3) 半径 R の扇形で偏角が 0 から $2\pi/5$ の曲線を反時計回りに進む積分曲線を C とする. $f(z)=\frac{1}{z^5+1}$ はCを含むある領域でC内に孤立特異点をもち、それ以外で正則であるから、留数定理より $\int_C f(z)dz = 2\pi i \operatorname{Res}(f, e^{i\pi/5}) = 2\pi i e^{6i\pi/5}/5 \text{ Tb 3}.$

 $\Gamma_A = \{xe^{i2\pi/5} \mid 0 \le x \le R\}$ とする. ただし Γ_A の向きは C と同じ方向にとる.

$$\int_{\Gamma_A} \frac{1}{z^5+1} dz = -\int_0^R \frac{1}{x^5+1} e^{2\pi i/5} dx = -\cos\frac{2\pi}{5} \int_0^R \frac{1}{x^5+1} dx - i\sin\frac{2\pi}{5} \int_0^R \frac{1}{x^5+1} dx$$

よって

$$\int_0^\infty \frac{1}{x^5 + 1} dx - \cos \frac{2\pi}{5} \int_0^\infty \frac{1}{x^5 + 1} dx = -\frac{2\pi}{5} \sin \frac{6\pi}{5}$$

よって $\int_0^\infty \frac{1}{x^5+1} dx = \frac{2\pi}{5} \sin \frac{6\pi}{5} / (1 - \cos \frac{2\pi}{5})$ である.

$$\frac{\sin\frac{6\pi}{5}}{(1-\cos\frac{2\pi}{5})} = \frac{\sin\frac{\pi}{5}}{2\sin^2\frac{\pi}{5}} = \frac{1}{2\sin\frac{\pi}{5}}$$

より $\int_0^\infty \frac{1}{x^5+1} dx = \frac{\pi}{5\sin\frac{\pi}{5}}$ である.

0.11 H25 数学 A

1 (1)

$$u(x) = \int_0^x \phi(x)\psi(y)f(y)dy + \int_x^\pi \psi(x)\phi(y)f(y)dy = \phi(x)\int_0^x \psi(y)f(y)dy + \psi(x)\int_x^\pi \phi(y)f(y)dy$$

である. $\phi(y)f(y),\psi(y)f(y)$ は $(0,\pi)$ 上連続であるから,u(x) は $(0,\pi)$ 上で微分可能である.

$$u'(x) = \phi'(x) \int_0^x \psi(y) f(y) dy + \phi(x) \psi(x) f(x) + \psi'(x) \int_x^{\pi} \phi(y) f(y) dy - \psi(x) \phi(x) f(x)$$
$$= \phi'(x) \int_0^x \psi(y) f(y) dy + \psi'(x) \int_x^{\pi} \phi(y) f(y) dy$$

先ほどと同様の理由で u'(x) は $(0,\pi)$ 上で微分可能である.

$$u''(x) = \phi''(x) \int_0^x \psi(y) f(y) dy + \phi'(x) \psi(x) f(x) + \psi''(x) \int_x^{\pi} \phi(y) f(y) dy - \psi'(x) \phi(x) f(x)$$

$$= -\phi(x) \int_0^x \psi(y) f(y) dy + \phi'(x) \psi(x) f(x) - \psi(x) \int_x^{\pi} \phi(y) f(y) dy + \psi'(x) \phi(x) f(x)$$

$$= -u(x) + \phi'(x) \psi(x) f(x) - \psi'(x) \phi(x) f(x)$$

よってuは C^2 級である.

- $(2) \ u''(x) + u(x) = (\phi'(x)\psi(x) \psi'(x)\phi(x))f(x)$ である. $h(x) = \phi'(x)\psi(x) \psi'(x)\phi(x)$ とおくと $h'(x) = \phi''(x)\psi(x) + \phi'(x)\psi'(x) \psi''(x)\phi(x) \psi'(x)\phi'(x) = -\phi(x)\psi(x) + \psi(x)\phi(x) = 0$. より h(x) = W.
- $(3)\psi$ が C^2 級の実数値関数であることと $\psi''(x)+\psi(x)=0$ より $\psi(x)=\mathrm{Re}(Ae^{ix}+Be^{-ix})=C\cos x+D\sin x$. (A,B は, $C=A+B\in\mathbb{R},D=(A-B)i\in\mathbb{R}$ を満たす任意定数) である.
- $\phi(x) = \sin x, W = 1$ より $\cos x \psi(x) \sin x \psi'(x) = 1$. とくに x = 0 で $\psi(0) = 1$ である. よって C = 1. また $\psi'(0) = 0$ より D = 0. よって $\psi(x) = \cos x$.
- $\boxed{2}$ $(1)v\in f^{n+1}(V)=f^n(f(V))$ に対して、ある $u\in f(V)$ が存在して、 $v=f^n(u)$ である。すなわち $f^{n+1}(V)\subset f^n(V)$ である。
- $(2)f^{n+1}(V) \subset f^n(V)$ より $f^k(V)$ の次元は単調減少である. V は有限次元であるから,ある $n_0 \in \mathbb{N}$ が存在して, $n \geq n_0$ ならば $f^{n+1}(V) = f^n(V)$ である.
- $(3)f|_W\colon W\to W$ は $f|_W(W)=f|_W(f^{n_0}(V))=f^{n_0+1}(V)=W$ より全射である。有限次元ベクトル空間の全射自己準同型は同型射であるから, $f|_W$ は同型.
- $\boxed{3}$ $(1)\pi^{-1}(\emptyset)=\emptyset$ は R の開集合であるから, $\emptyset\in\mathcal{O}$ である. $\pi^{-1}(R/\sim)=R$ は R の開集合であるから, $R/\sim\in\mathcal{O}$ である.

 $U,V \in \mathcal{O}$ に対して, $\pi^{-1}(U),\pi^{-1}(V)$ は R の開集合であるから, $\pi^{-1}(U)\cap\pi^{-1}(V)=\pi^{-1}(U\cap V)$ は R の開集合である.よって $U\cap V\in\mathcal{O}$ である.

 $U_{\lambda}\in\mathcal{O}$ に対して, $\pi^{-1}(U_{\lambda})$ は R の開集合であるから, $\pi^{-1}(\bigcup_{\lambda}U_{\lambda})=\bigcup_{\lambda}\pi^{-1}(U_{\lambda})$ は R の開集合である. よって $\bigcup_{\lambda}U_{\lambda}\in\mathcal{O}$ である.

以上より R/\sim は O を位相とする位相空間.

(2) ハウスドルフ空間であれば、一点集合は閉集合である。 $\{x_0\} \subset R/\sim$ について $\pi^{-1}(\{x_0\})=D$ は R の 閉集合ではない.よって $\{x_0\}$ は閉集合ではないから、ハウスドルフ空間でない.

 $(3)\{x_0\}$ 以外の一点集合はすべて閉集合である. よって f が同相写像なら閉集合の像は閉集合であるから $f(x_0)=x_0$ である.

 $\boxed{4}$ (1) $\{z_n\}_{n=1}^{\infty}$ を z に収束する任意の複素数列とする.

$$\lim_{n \to \infty} \frac{f(z_n) - f(z)}{z_n - z} = \frac{1}{2\pi} \lim_{n \to \infty} \int_0^{2\pi} \frac{\phi(\theta)e^{i\theta}}{z_n - z} \left(\frac{1}{e^{i\theta} - z_n} - \frac{1}{e^{i\theta} - z}\right) d\theta$$
$$= \frac{1}{2\pi} \lim_{n \to \infty} \int_0^{2\pi} \frac{\phi(\theta)e^{i\theta}}{(e^{i\theta} - z_n)(e^{i\theta} - z)} d\theta$$

ここで |z|<1 より任意の $\theta\in[0,2\pi]$ とある整数 N より大きい n に対して、ある $\varepsilon>0$ が存在して $|(e^{i\theta}-z_n)(e^{i\theta}-z)|\geq |1-|z_n||1-|z||>\varepsilon$ である.したがって $\sup_{n>N}\left|\frac{\phi(\theta)e^{i\theta}}{(e^{i\theta}-z_n)(e^{i\theta}-z)}\right|<|\frac{\phi(\theta)e^{i\theta}}{\varepsilon}|< M\in\mathbb{R}$ である.

よってルベーグの収束定理から

$$\lim_{n \to \infty} \frac{f(z_n) - f(z)}{z_n - z} = \frac{1}{2\pi} \int_0^{2\pi} \lim_{n \to \infty} \frac{\phi(\theta) e^{i\theta}}{(e^{i\theta} - z_n)(e^{i\theta} - z)} d\theta = \frac{1}{2\pi} \int_0^{2\pi} \phi(\theta) e^{i\theta} ((e^{i\theta} - z)^{-1})' d\theta$$

となり微分可能. よって f は |z| < 1 で正則である.

 $(2)|z|<1 \text{ O } とき n!c_n=f^{(n)}(0) \text{ である}. \quad f^{(n)}(z)=\tfrac{1}{2\pi}\int_0^{2\pi}(\phi(\theta)e^{i\theta})((e^{i\theta}-z)^{-1})^{(n)}d\theta=\tfrac{1}{2\pi}\int_0^{2\pi}(\phi(\theta)e^{i\theta})(n!(e^{i\theta}-z)^{-n-1})d\theta$ である. よって $f^{(n)}(0)=n!\tfrac{1}{2\pi}\int_0^{2\pi}\phi(\theta)e^{-ni\theta}d\theta$ である.

$$2\pi c_n = \int_0^{2\pi} \phi(\theta) e^{-ni\theta} d\theta = \left[\phi(\theta) \frac{e^{-ni\theta}}{-ni} \right]_0^{2\pi} - \int_0^{2\pi} \phi'(\theta) \frac{e^{-ni\theta}}{-ni} d\theta$$
$$= \int_0^{2\pi} \phi'(\theta) \frac{e^{-ni\theta}}{ni} d\theta = \left[\phi'(\theta) \frac{e^{-ni\theta}}{n^2 i^2} \right]_0^{2\pi} - \int_0^{2\pi} \phi''(\theta) \frac{e^{-ni\theta}}{-n^2 i^2} d\theta$$
$$= \int_0^{2\pi} \phi''(\theta) \frac{e^{-ni\theta}}{n^2} d\theta \le 2\pi \max_{\theta \in \mathbb{R}} |\phi''(\theta)| \frac{1}{n^2}$$

よって $n^2|c_n| \leq \max_{\theta \in \mathbb{R}} |\phi''(\theta)|$ である.

(3)

$$\sum_{n=0}^{\infty} |c_n z^n| \le \sum_{n=0}^{\infty} |c_n| \le \sum_{n=0}^{\infty} \max_{\theta \in \mathbb{R}} |\phi''(\theta)| \frac{1}{n^2} < \infty$$

よって絶対収束するから、|z|=1で $\sum_{n=0}^{\infty} c_n z^n$ は収束する.

(4) ワイエルシュトラスの M 判定法と (3) での不等式から $\sum\limits_{n=0}^{\infty}c_nz^n$ は $|z|\leq 1$ で一様収束する. したがって一様収束先の関数は連続であるから, $\lim_{x\to 1-0}f(x)=\lim_{x\to 1-0}\sum\limits_{n=0}^{\infty}c_nx^n=\sum\limits_{n=0}^{\infty}c_n$ である.

0.12 H26 数学 A

 $\boxed{1}$ $(1)(\arctan)'(y)=\frac{1}{1+y^2}$ より $(\arctan y+\arctan(1/y))'=\frac{1}{1+y^2}+\frac{1}{1+(1/y)^2}(-1/y^2)=0$ より $\arctan y+\arctan(1/y)$ は定数関数である。よって $\arctan x\in F$

 $(2)f(x) + f(1/x) = c \in \mathbb{R}$ とする. 0 < a < 1 に対して

$$\int_{a}^{1} f(x)dx = \int_{1/a}^{1} -\frac{f(1/t)}{t^{2}}dt = \int_{1}^{1/a} \frac{f(t) - c}{t^{2}}dt = \int_{1}^{1/a} \frac{f(t)}{t^{2}}dt + c\left[\frac{1}{t}\right]_{1}^{1/a} = \int_{1}^{1/a} \frac{f(t)}{t^{2}}dt + c(a-1)$$

したがって $\lim_{a\to 0}\int_a^1 f(x)dx$ の存在と $\lim_{a\to 0}\int_1^{1/a} \frac{f(t)}{t^2}dt$ の存在は同値である。

(3)g が $G \in \mathbf{F}$ に 拡張可能だとする. このとき $\lim_{x \to 1-0} g'(x) = \lim_{x \to 1-0} G'(x)$ は G が C^1 級であるから存在する.

逆に $\lim_{x\to 1-0}g'(x)=\alpha\in\mathbb{R}$ とする. 1 に収束する (0,1) 上の任意の数列 $\{x_n\}_{n=1}^\infty$ をとる.

任意の $\varepsilon>0$ に対してある $\delta>0$ が存在して $1-\delta< x<1$ ならば $\alpha-\varepsilon< g'(x)<\alpha+\varepsilon$ である. $\varepsilon\delta$ に対してある N が存在して n>N ならば $1-\varepsilon\delta< x_n<1$ である. n,m>N について平均値の定理から $g(x_n)-g(x_m)=g'(\xi)(x_n-x_m)$ となる $\xi\in(1-\varepsilon\delta,1)$ が存在する. よって $|g(x_n)-g(x_m)|<(\alpha+\varepsilon)\delta\varepsilon\to0$ と なるから $\{g(x_n)\}_{n=1}^\infty$ はコーシー列. すなわち収束列. 以上より $\lim_{x\to 1-0}g(x)$ は存在する. その収束先を β と する.

$$G(x) = egin{cases} g(x) & (x \in (0,1)) \ eta - G(1/x) & (x \in (1,\infty)) \ eta$$
定めると $G|_{(0,1)} = g$ であり、 $G(x) + G(1/x) = eta$ である。 $(x=1)$

G(x) は x=1 以外の点で微分可能であり,導関数は連続である. $\lim_{x\to 1-0} \frac{G(x)-G(1)}{x-1} = \lim_{x\to 1-0} \frac{g'(x)}{1} = \alpha$ である. (ロピタルの定理) $\lim_{x\to 1+0} \frac{G(x)-G(1)}{x-1} = \lim_{x\to 1+0} \frac{\beta-G(1/x)}{x-1} = \lim_{x\to 1+0} \frac{-g'(1/x)(-x^{-2})}{1} = \alpha$ である. よって G は x=1 で微分可能.

 $\lim_{x \to 1+0} G'(x) = \lim_{x \to 1+0} -g'(1/x)(-x^{-2}) = \alpha$ である.よって導関数が x=1 で連続であるから G は C^1 級.

② (1) 一次独立であることを示す. $c_1\cos x + c_2\sin x + c_3\cos 2x + c_4\sin 2x = 0$ とする. x = 0 とすると, $c_1 + c_3 = 0$ である. $x = \pi$ とすると, $-c_1 + c_3 = 0$ である. よって $c_1 = c_3 = 0$ である. $x = \frac{\pi}{2}$ とすると, $c_2 = 0$ である. よって $c_4 = 0$ より S は一次独立. よって V の基底

 $(2)\Phi(\cos x) = -\sin x, \Phi(\sin x) = \cos x, \Phi(\cos 2x) = -2\sin 2x, \Phi(\sin 2x) = 2\cos 2x$ より Φ の表現行列は $\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 0 & -2 & 0 \end{pmatrix}$ である. $\Psi(\cos x) = \sin x, \Psi(\sin x) = \cos x, \Psi(\cos 2x) = -\cos 2x, \Psi(\sin 2x) = -\sin 2x$ より

$$\Psi$$
の表現行列は $\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$ である.

 $g(x) = c_2 \sin x + \frac{1}{5} \cos 2x + \frac{2}{5} \sin 2x$ $\mathcal{C} \mathcal{B} \mathcal{S}$.

③ (1)Q が連結でないとすると,Q の非空開集合 U,V で $U\cap V=\emptyset,U\cup V=Q$ となるものが存在する.このとき $\pi^{-1}(U),\pi^{-1}(V)$ は \mathbb{R}^2 の開集合であり, $\pi^{-1}(U)\cap\pi^{-1}(V)=\emptyset,\pi^{-1}(U)\cup\pi^{-1}(V)=\mathbb{R}^2$ となる.すなわち \mathbb{R}^2 が連結でないがこれは矛盾.よって Q は連結である.

 $(2)(1,0) \in \mathbb{R}^2$ の同値類は $A = \{(x,0) \mid x \neq 0\}$ である。また (0,0) の同値類は $B = \{(0,0)\}$ である。B を含む Q の開集合 U を任意にとる。 $(0,0) \in \pi^{-1}(Q)$ で $\pi^{-1}(Q)$ は開集合であるから,ある $\varepsilon > 0$ が存在して $B((0,0),\varepsilon) \subset \pi^{-1}(Q)$ である。 $B((0,0),\varepsilon) \cap A \neq \emptyset$ である。よって B を含む任意の開集合は A を含むから,

ハウスドルフ空間でない.

 $(3)A_n = \{(x,y) \in \mathbb{R} \mid -n < xy < n\}$ とする. A_n は \mathbb{R}^2 の開集合であり、 $\pi^{-1}\pi(A_n) = A_n$ である. $\{\pi(A_n) \mid n=1,2,\ldots\}$ は Q の有限部分被覆を持たない開被覆である. よってコンパクトでない.

4 $(1)z \in D$ について、z に収束する D 上の数列 $\{z_n\}_{n=1}^{\infty}$ を任意にとる.

$$2\pi i \lim_{n \to \infty} \frac{f(z_n) - f(z)}{z_n - z} = \lim_{n \to \infty} \int_C \left(\frac{1}{\zeta(\zeta - 2) - z_n} - \frac{1}{\zeta(\zeta - 2) - z} \right) \frac{1}{z_n - z} d\zeta$$
$$= \lim_{n \to \infty} \int_C \frac{1}{(\zeta(\zeta - 2) - z_n)(\zeta(\zeta - 2) - z)} d\zeta$$

ここで $\zeta \in C, z_n, z \in D$ より $\zeta(\zeta-2)-z_n > M, \zeta(\zeta-2)-z > M$ となる M>0 が存在する. よって $\frac{1}{(\zeta(\zeta-2)-z_n)(\zeta(\zeta-2)-z)} < \frac{1}{M^2}$ であるから $\int_C \frac{1}{(\zeta(\zeta-2)-z_n)(\zeta(\zeta-2)-z)} d\zeta < 2\pi M^2$ である. よってルベーグの収束定理から

$$2\pi i \lim_{n\to\infty} \frac{f(z_n)-f(z)}{z_n-z} = \int_C \lim_{n\to\infty} \frac{1}{(\zeta(\zeta-2)-z_n)(\zeta(\zeta-2)-z)} d\zeta = \int_C \frac{1}{(\zeta(\zeta-2)-z)^2} d\zeta$$

よって f(z) は D 上で正則

 $(2)\frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}} = \sum_{k=-n-1}^{\infty} c_k \zeta^k$ とする. $\frac{1}{(\zeta-2)^{n+1}} = \sum_{k=-n-1}^{\infty} c_k \zeta^{k+n+1}$ より $(\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = n!c_{-1}$ である.

 $((\zeta-2)^{-n-1})^{(n)} = (-n-1)(-n-2)\dots(-n-n)(\zeta-2)^{-2n-1} = \frac{(-1)^n(2n)!}{n!(\zeta-2)^{2n+1}} \ \, \sharp \, \, \mathfrak{H} \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \sharp \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, \Im \, \, (\frac{1}{(\zeta-2)^{n+1}})^{(n)}|_{\zeta=0} = \frac{(-1)^{n+1}(2n)!}{n!2^{2n+1}} \ \, \Im \, \, (\frac{1$

 $\frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}}$ は C 内で $\zeta=0$ を特異点にもつ. よって留数定理から $\frac{1}{2\pi i}\int_C \frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}}d\zeta=\mathrm{Res}\Big\{\frac{1}{\zeta^{n+1}(\zeta-2)^{n+1}},0\Big\}=c_{-1}=\frac{(-1)^{n+1}(2n)!}{(n!)^22^{2n+1}}$

 $(3)\zeta(\zeta-2)-z=(\zeta-(1+\sqrt{1+z}))(z-(1-\sqrt{1+z}))$ である。|z|<1 より $-\pi/2<\arg(1+z)<\pi/2$ である。よって $-\pi/2<\arg(\sqrt{1+z})<\pi/2$ より $\mathrm{Re}(1+\sqrt{1+z})>1$ である。すなわち $|1+\sqrt{1+z}|>1$ である。

 $\zeta=1-\sqrt{1+z}$ は $\zeta^2-2\zeta-z=0$ より $|\zeta||\zeta-2|=|z|<1$ である.よって $|\zeta|<1/|\zeta-2|=1/|1-\sqrt{1+z}-2|=1/|1+\sqrt{1+z}|<1$ である.よって $\frac{1}{\zeta(\zeta-2)-z}$ は D 内で特異点 $\zeta=1-\sqrt{1+z}$ を持つ.一位の極であるから 留数は $\lim_{\zeta\to 1-\sqrt{1+z}}(\zeta-(1-\sqrt{1+z}))\frac{1}{\zeta(\zeta-2)-z}=\frac{1}{-2\sqrt{1+z}}$ である.よって $f(z)=\frac{1}{2\pi i}\int_C \frac{1}{\zeta(\zeta-2)-z}d\zeta=\frac{-1}{2\sqrt{1+z}}$ である.

0.13 H27 数学 A

 $\lfloor 1 \rfloor (1) |f(x) - f(y)| \leq |f(x) - f_n(x)| + |f_n(x) - f_n(y)| + |f_n(y) - f(y)|$ である。任意の $\varepsilon > 0$ に対して一様収束するから,ある $N \in \mathbb{N}$ が存在して, $n \geq N$ ならば, $\forall x \in \mathbb{R}, |f_n(x) - f(x)| < \varepsilon$ である。この N に対して f_N は一様連続であるから,ある $\delta > 0$ が存在して, $|x-y| < \delta$ ならば $|f_N(x) - f_N(y)| < \varepsilon$ である。よって, $|x-y| < \delta$ ならば, $|f(x) - f(y)| < 3\varepsilon$ である。すなわち,f は一様連続である。

(2) 一様収束するから任意の $\varepsilon>0$ について,ある $N\in\mathbb{N}$ が存在して, $n\geq N$ ならば, $\forall x\in\mathbb{R}, f_n(x)-\varepsilon< f(x)< f_n(x)+\varepsilon$ である.両辺の $\sup E$ をとって $\sup A\leq \sup A_n+\varepsilon$ である.よって A は有界. $|\sup A-\sup A_n|<\varepsilon$ より $\lim\sup A_n=\sup A$

$$\boxed{2} (1) f_a(e_1) = a^t e_1 - e_1^t a = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} a_1 & a_2 & a_3 \end{pmatrix} = \begin{pmatrix} 0 & -a_2 & -a_3 \\ a_2 & 0 & 0 \\ a_3 & 0 & 0 \end{pmatrix} = -a_2 E_1 - a_3 E_1 -$$

$$a_3E_2, f_a(e_2) = \begin{pmatrix} 0 & a_1 & 0 \\ -a_1 & 0 & -a_3 \\ 0 & a_3 & 0 \end{pmatrix} = a_1E_1 - a_3E_3, f_a(e_3) = \begin{pmatrix} 0 & 0 & a_1 \\ 0 & 0 & a_2 \\ -a_1 & -a_2 & 0 \end{pmatrix} = a_1E_2 + a_2E_3 \ \mathfrak{T} \ \mathfrak{Z} \ .$$

よって
$$T_a = \begin{pmatrix} -a_2 & a_1 & 0 \\ -a_3 & 0 & a_1 \\ 0 & -a_3 & a_2 \end{pmatrix}$$
である.

 $(2)\det T_a = -a_2(-a_1(-a_3)) + a_3a_1a_2 = 0$ より rank $f_a \le 2$ である.

 $a \neq 0$ よりある i について $a_i \neq 0$ である. T_a の部分小行列として $\begin{pmatrix} a_1 & 0 \\ 0 & a_1 \end{pmatrix}$, $\begin{pmatrix} -a_2 & 0 \\ 0 & a_2 \end{pmatrix}$, $\begin{pmatrix} -a_3 & 0 \\ 0 & -a_3 \end{pmatrix}$ がとれる.これらの行列式は何れかが 0 でないから $\operatorname{rank} f_a \geq 2$ である.よって $\operatorname{rank} f_a = 2$ である.した がって $\dim \operatorname{Im} f_a = 2$, $\dim \operatorname{Ker} f_a = 1$ である.

$$(3)T_a$$
 の固有多項式を g_a とすると $g_a=\begin{vmatrix} -a_2-\lambda & a_1 & 0 \\ -a_3 & -\lambda & a_1 \\ 0 & -a_3 & a_2-\lambda \end{vmatrix}=-\lambda^3+(a_2^2-2a_1a_3)\lambda=-\lambda(\lambda^2-(a_2^2-a_2^2-a_2^2))$

 $2a_1a_3))$ である.

よって $a_2^2-2a_1a_3\neq 0$ ならば T_a の固有値は全て異なるから,対角化可能. $a_2^2-2a_1a_3=0$ ならば, T_a の固有値は 0 のみである.固有値 0 の固有空間は $\ker T_a$ であるから $a\neq 0$ なら固有空間の次元は 1 となり,対角化不可能.a=0 ならば $T_a=0$ であるから対角化可能.

以上より $a=0 \lor a_2^2-2a_1a_3\neq 0$ が対角化可能性に関する必要十分条件である.

③ $(1)N_r(A)$ は開集合である.これを示す. $x \in N_r(A)$ を任意にとる.ある $a \in A$ が存在してb := r - d(x,a) > 0 である. $y \in B(x,b/2) := \{y \in X \mid d(x,y) < b/2\}$ について $d(a,y) \leq d(a,x) + d(x,y) < r - b + b/2 < r$ である.よって $B(x,b/2) \subset N_r(A)$ である.よって $N_r(A)$ は開集合である.

 $F_K = \{N_n(K) \mid n=1,2,\ldots\}, F_L = \{N_n(L) \mid n=1,2,\ldots\}$ とする. F_K, F_L は X の開被覆である. とくに K,L の開被覆である. よって L の被覆 $\{N_{n_1}(L),N_{n_2}(L),\ldots,N_{n_m}(K)\}$ と,K の被覆 $\{N_{m_1}(L),N_{m_2}(L),\ldots,N_{m_\ell}(L)\}$ がとれる. $r=n_m+m_\ell$ とすれば, $L\subset N_r(K), K\subset N_r(L)$ である.

(2) 任意の r>0 に対して $K\subset N_r(K)$ である.よって D(K,K)=0 である.逆に D(K,L)=0 とする.任意の r>0 について $K\subset N_r(L)$, $L\subset N_r(K)$ である. $x\in K$ に対して,ある $y\in L$ が存在して d(x,y)< r である.この r は任意にとれるから x は L の触点である.距離空間はハウスドルフ空間であり,ハウスドルフ空間のコンパクト集合は閉集合であるから,L は閉集合である.よって $x\in L$ である.すなわち $K\subset L$ である.同様にして $L\subset K$ である.よって K=L である.

定義から D(K,L) = D(L,K) である.

K,L,M をコンパクト集合とする。 $D(K,L)=r_1,D(L,M)=r_2,r:=r_1+r_2$ とする。任意の $\varepsilon>0$ を一つ固定する。 $x\in K$ に対して, $y\in L$ が存在して $d(x,y)< r_1+\varepsilon$ である。 $y\in L$ に対して, $z\in M$ が存在して $d(y,z)< r_2+\varepsilon$ である。よって $d(x,z)< r_1+r_2+2\varepsilon$ である。すなわち $K\subset N_{r_1+r_2+2\varepsilon}(M)$ である。逆も同様に $M\subset N_{r_1+r_2+2\varepsilon}(K)$ である。よって $D(K,M)\leq r_1+r_2+2\varepsilon$ である。 ε は任意にとれるから $D(K,M)\leq r_1+r_2$ である。よって $D(K,M)\leq D(K,L)+D(L,M)$ である。

 $\boxed{4}$ $(1)1+e^{2\pi z}=0$ とする. z=x+iy $(x,y\in\mathbb{R})$ とすると, $e^{2\pi x}e^{2\pi iy}=-1$ である.よって $\sin 2\pi y=0$ であるから, $y=\frac{n}{2}$ $(n\in\mathbb{Z})$ である.よって $e^{2\pi z}=e^{2\pi x}(-1)^n=-1$ より x=0 で n は奇数である. S_R 内では z=i/2 が唯一の解である.すなわち f(z) は z=i/2 を特異点にもつ.

$$\lim_{z \to \frac{i}{2}} (z - \frac{i}{2}) \frac{e^{2\pi az}}{1 + e^{2\pi z}} = \lim_{z \to \frac{i}{2}} \frac{e^{2\pi az} + (z - \frac{i}{2})2\pi z e^{2\pi az}}{2\pi e^{2\pi z}} = -\frac{e^{a\pi i}}{2\pi}$$

より $\operatorname{Res}\{f(z),i/2\} = -rac{e^{a\pi i}}{2\pi}$ である.

したがって留数定理から $\int_{\gamma_R} f(z) dz = 2\pi i (-\frac{e^{a\pi i}}{2\pi}) = -ie^{a\pi i}$ である.

 $(2)|\int_{J_R^+} f(z)dz| = |\int_0^1 rac{e^{2\pi a(R+iy)}}{1+e^{2\pi(R+iy)}}idy| \leq \int_0^1 |rac{e^{2\pi aR}}{1+e^{2\pi(R+iy)}}|dy$ である.

$$\left| \frac{e^{2\pi aR}}{1 + e^{2\pi(R+iy)}} \right| = \left| \frac{1}{e^{-2\pi aR} + e^{2\pi R(1-a)}e^{2\pi iy}} \right| \le \frac{1}{e^{2\pi(1-a)R}}$$

であるから, $|\int_{J_R^+} f(z)dz| \leq \int_0^1 \frac{1}{e^{2\pi(1-a)R}} dy = \frac{1}{e^{2\pi(1-a)R}}$ である. 0 < 1-a < 1 より $|\int_{J_R^+} f(z)dz| \to 0$ $(R \to \infty)$ である. 同様に $|\int_{J_R^-} f(z)dz| \to 0$ $(R \to \infty)$ である.

(3) $\int_{-\infty}^{\infty} \frac{e^{2\pi ax}}{1+e^{2\pi x}} dx = \int_{-\infty}^{\infty} \frac{1}{e^{-2\pi ax} + e^{2\pi(1-a)x}} dx \leq \int_{0}^{\infty} \frac{1}{e^{2\pi(1-a)x}} dx + \int_{-\infty}^{0} \frac{1}{e^{-2\pi ax}} dx < \infty$ である. よって広義積 分は収束する。R+i から -R+i への向きのついた線分を C とする。 $\int_{C} \frac{e^{2\pi az}}{1+e^{2\pi z}} dz = \int_{R}^{-R} \frac{e^{2\pi a(x+i)}}{1+e^{2\pi(x+i)}} dx = -e^{2\pi ai} \int_{-R}^{R} \frac{e^{2\pi ax}}{1+e^{2\pi x}} dx$ である。よって $\int_{\gamma_R} f(z) dz = (1-e^{2\pi ai}) \int_{-R}^{R} f(z) dz + \int_{J_R} f(z) dz - \int_{J_R} f(z) dz$ である。すなわち $R \to \infty$ で $-ie^{a\pi i} = (1-e^{2\pi ai}) \int_{-\infty}^{\infty} f(z) dz$ である。よって $\int_{-\infty}^{\infty} f(z) dz = \frac{-ie^{a\pi i}}{1-e^{2\pi ai}} = \frac{-i}{e^{-a\pi i}-e^{a\pi i}} = \frac{1}{2\sin a\pi}$ である。

0.14 H28 数学 A

 $\boxed{1} \ (1)|x| \leq \tfrac{1}{2} \ \text{$ \Bigsigma} \ 5 - 1/(1+x)^2 > 0 \ \text{$\Bigsigma} \ \text{$ \Bigsigma} \ \text{$ \Bigs$

 $(2)\sum a_k$ が収束するから、ある $N\in\mathbb{N}$ が存在して、 $n\geq N$ ならば、 $a_n<1/2$ である.無限積の収束性は k=N からの無限積の収束性と同じ.また (1) より $|\log(1+x)|\leq Cx^2+x$ である.log の連続性から

$$\log \lim_{n \to \infty} \prod_{k=N}^{n} (1 + a_k) = \lim_{n \to \infty} \log \prod_{k=N}^{n} (1 + a_k) = \lim_{n \to \infty} \sum_{k=N}^{n} \log(1 + a_k)$$

である.

絶対級数 $\sum |\log(1+a_k)|$ の収束性を考える.

$$\lim_{n\to\infty}\sum_{k=N}^n|\log(1+a_k)|\leq\lim_{n\to\infty}\sum_{k=N}^nCa_k^2+a_k=C\lim_{n\to\infty}\sum_{k=N}^na_k^2+\lim_{n\to\infty}\sum_{k=N}^na_k$$

右辺は収束するから、 $\sum \log(1+a_k)$ は絶対収束する.よって収束するので、 $\lim_{n\to\infty}\prod_{k=N}^n(1+a_k)$ は収束する.

3) $\sum\limits_{k=1}^{\infty} \frac{(-1)^k}{3k+1}$ と $\sum\limits_{k=1}^{\infty} \left(\frac{(-1)^k}{3k+1}\right)^2$ の収束を示せばよい. $S_n = \sum\limits_{k=1}^n \frac{(-1)^k}{3k+1}$ とする. $S_{2n} = \sum\limits_{k=1}^n \left(\frac{1}{3(2k-1)+1} - \frac{1}{3(2k)+1}\right)$ であり, $\frac{1}{3(2k-1)+1} - \frac{1}{3(2k)+1} > 0$ より S_{2n} は単調増加する. 同様に $S_{2n+1} = 1/4 - \sum\limits_{k=1}^n \left(\frac{1}{3(2k)+1} - \frac{1}{3(2k)+1}\right)$ であり, $\frac{1}{3(2k)+1} - \frac{1}{3(2k+1)+1} > 0$ より S_{2n+1} は単調減少する. $S_{2n+1} - S_{2n} = 1/(3(2n+1)+1)$ であり, $\lim\limits_{n\to\infty} S_{2n+1} - S_{2n} = 0$ である.また $S_{2n+1} = 1/(3(2n+1)+1) + S_n > 0$ より S_{2n+1} は有界な単調数列であるから収束する.したがって S_{2n} も収束して $\lim\limits_{n\to\infty} S_{2n} = \lim\limits_{n\to\infty} S_{2n+1}$ である.よって $\sum\limits_{k=1}^\infty \frac{(-1)^k}{3k+1}$ は収束する.

 $\sum\limits_{k=1}^{\infty}\left(rac{(-1)^k}{3k+1}
ight)^2=\sum\limits_{k=1}^{\infty}rac{1}{(3k+1)^2}<rac{1}{9}\sum\limits_{k=1}^{\infty}rac{1}{k^2}<\infty$ である.ともに収束するから無限積も収束する.

2 $(1)y \in f_A(W^{\perp})$ を任意にとる。ある $x \in W^{\perp}$ が存在して $y = f_A(x)$ である。任意の $u \in W$ について $(u,y) = {}^t u A x = {}^t ({}^t A u) x = ({}^t A u, x) = (f_A(u), x) = 0$ である。よって $y \in W^{\perp}$ である。

A の固有値 $\lambda \in \mathbb{C}$ と固有ベクトル $v \in \mathbb{C}^n \setminus \{0\}$ をとる. $x,y \in \mathbb{C}^n$ について標準エルミート内積 $(x,y) = {}^t x \overline{y}$ を定める. $\lambda(v,v) = (Av,v) = (v,\overline{A}v) = (v,\overline{\lambda}v) = \overline{\lambda}(v,v)$ である. (v,v) > 0 より $\lambda = \overline{\lambda}$ である. よって $\lambda \in \mathbb{R}$ である.

(2)A の固有空間全ての直和を W とする. $\mathbb{R}^n=W\oplus W^\perp$ である. $f_A(W)\subset W$ となるから, $f_A|_{W^\perp}\colon W^\perp\to W^\perp$ を得る. \mathbb{C} による定数倍を加えることで \mathbb{R}^n を \mathbb{C} 上線形空間 \mathbb{C}^n に拡張する. W,W^\perp も同様に $\overline{W},\overline{W^\perp}$ に拡張する. $f_A|_{W^\perp}$ は $\overline{W^\perp}$ 上の線形変換に拡張できる. $W^\perp\neq\{0\}$ なら $f_A|_{\overline{W^\perp}}$ の固有値 λ と固有ベクトル $v\neq 0$ をとれる. $u=0+v\in \overline{W}\oplus \overline{W^\perp}$ とする. $Au=\lambda u$ である. λ は f_A の固有値であるから $\lambda\in\mathbb{R}$ である. よって $u\in\mathbb{R}^n$ としてよい. $u\in W^\perp$ となるがこれは W の定義に矛盾. よって $W^\perp=\{0\}$.

 f_A の固有値 λ と固有ベクトル x について $\mathrm{Span}\{x\} = \mathrm{Span}\{x\}^{\perp \perp}$ であり、任意の $y \in \mathrm{Span}\{x\}^{\perp}$ について $(y, {}^t A x) = (A y, x) = 0$ より ${}^t A x \in \mathrm{Span}\{x\}$ である。よって ${}^t A x = \mu x$ とできる。 $\lambda(x, x) = (A x, x) = (x, {}^t A x) = (x, \mu x) = \mu(x, x)$ である。(x, x) > 0 より $\lambda = \mu$ である。

 \mathbb{R}^n の任意の元 x は固有ベクトル v_1,\ldots,v_n の線形結合で表せる. $x=\sum_{i=1}^n a_i v_i$ とする. $Ax=\sum_{i=1}^n a_i A v_i = \sum_{i=1}^n a_i \lambda_i v_i = t A x$ である. よって A=t A である.

3 (1) 任意の $x,y\in[0,1]^\infty$ に対して $|x_k-y_k|\leq 1$ である.よって $\sum\limits_{k=1}^\infty 2^{-k}|x_k-y_k|\leq \sum\limits_{k=1}^\infty 2^{-k}=1$ である.よって d は $[0,1]^\infty imes[0,1]^\infty$ から $\mathbb R$ への写像である.

x=y なら d(x,y)=0 である。また d(x,y)=0 なら $\sum\limits_{k=1}^{\infty}2^{-k}|x_k-y_k|=0$ であるから $x_k=y_k$ である。よって d(x,y)=0 なら x=y である。d(x,y)=d(y,x) は明らか。

x,y,z について $\sum\limits_{k=1}^{n}2^{-k}|x_k-z_k|\leq\sum\limits_{k=1}^{n}2^{-k}|x_k-y_k|+\sum\limits_{k=1}^{n}2^{-k}|y_k-z_k|$ である. $n\to\infty$ とすると $\sum\limits_{k=1}^{\infty}2^{-k}|x_k-z_k|\leq\sum\limits_{k=1}^{\infty}2^{-k}|x_k-y_k|+\sum\limits_{k=1}^{\infty}2^{-k}|y_k-z_k|$ である. よって $d(x,z)\leq d(x,y)+d(y,z)$ である. よって d は距離.

 $(2)x_n \to a$ とする. $d(x_n,a) = \sum\limits_{k=1}^\infty 2^{-k}|x_{n,k}-a_k| \geq 2^{-i}|x_{n,i}-a_i| \to 0 \quad (n\to\infty)$ である. よって任意の k に対して $x_{n,k}\to a_k$.

任意の k に対して $x_{n,k} \to a_k$ とする. 任意の ε に対して $2^{1-n_0} \le \varepsilon$ なる n_0 が存在する. このとき $\sum\limits_{k=n_0}^\infty 2^{-k}|x_{n,k}-a_k| \le 2^{1-n_0} \le \varepsilon$ である. 1 から n_0-1 までの整数 k について,ある N_k が存在して $n \ge N_k$ なら $|x_{n,k}-a_k| \le \varepsilon$ である. $N=\max\{N_1,\ldots,N_{n_0-1}\}$ とする. このとき $\sum\limits_{k=n_0}^{n_0-1} 2^{-k}|x_{n,k}-a_k| \le \sum\limits_{k=n_0}^{n_0-1} 2^{-k}\varepsilon \le 2\varepsilon$

である. よって $n \ge N$ なら $d(x_n, a) \le 3\varepsilon$ であるから $x_n \to a$ である.

 $(3)\{x_{n,k}\}_{k=1}^{\infty}$ は有界閉区間 [0,1] 内の点列であるから,収束部分列を必ずもつ.したがって収束部分列 $\{x_{n,k_j^{(n)}}\}_{j=1}^{\infty}$ に対して数列 $\{x_{n+1,k_j^{(n)}}\}_{j=1}^{\infty}$ も収束部分列 $\{x_{n+1,k_j^{(n+1)}}\}_{j=1}^{\infty}$ を持つ.このとき $\{k_j^{(n+1)}\}_{j=1}^{\infty}$ は $\{k_j^{(n)}\}_{j=1}^{\infty}$ の部分列である.これが任意の n について成り立つから数列 $\{k_j^{(1)}\}_{j=1}^{\infty}, \{k_j^{(2)}\}_{j=1}^{\infty}, \dots$ を得て,それぞれ前の数列の部分列となっている.数列 $\{s_n\}_{n=1}^{\infty}$ を $s_n=k_n^{(n)}$ で定める. $\{s_n\}_{n=1}^{\infty}$ は全ての m について n>m では $\{k_j^{(m)}\}_{j=1}^{\infty}$ の部分列となっている.したがって $\{x_{s_n,k}\}_{n=1}^{\infty}$ は収束列になっている.よって $\{x_{s_n}\}_{n=1}^{\infty}$ は収束列である.

$$\int_{C_r} \frac{e^{iz}}{z} dz = \int_0^{\pi} \frac{e^{ire^{i\theta}}ire^{i\theta}}{re^{i\theta}} d\theta = \int_0^{\pi} ie^{ire^{i\theta}} d\theta = \int_0^{\pi} ie^{ir\cos\theta} e^{-r\sin\theta} d\theta$$

$$\int_{C_r} \left| \frac{e^{iz}}{z} \right| dz = \int_0^{\pi} \left| e^{-r\sin\theta} \right| d\theta \le \int_0^{\pi} d\theta = \pi$$

である. よってルベーグの収束定理から

$$\lim_{r\to 0} \int_{C_{\tau}} \frac{e^{iz}}{z} dz = \int_{0}^{\pi} i d\theta = \pi i, \quad \lim_{r\to \infty} \left| \int_{C_{\tau}} \frac{e^{iz}}{z} dz \right| \leq \lim_{r\to \infty} \int_{0}^{\pi} \left| e^{-r\sin\theta} \right| d\theta = \int_{0}^{\pi} 0 d\theta = 0$$

r>arepsilon>0 に対して z=arepsilon から z=r までの積分経路を $\Gamma_{arepsilon,r}^+$ とする. z=-r から z=-arepsilon までの積分経路を

 $\Gamma_{\varepsilon,r}^-$ とする.

$$\int_{\Gamma_{\varepsilon,r}^{+}} \frac{e^{iz}}{z} dz = \int_{\varepsilon}^{r} \frac{e^{ix}}{x} dx = \int_{\varepsilon}^{r} \frac{\cos x + i \sin x}{x} dx$$

$$\int_{\Gamma_{\varepsilon,r}^{-}} \frac{e^{iz}}{z} dz = \int_{-r}^{-\varepsilon} \frac{e^{ix}}{x} dx = \int_{r}^{\varepsilon} -\frac{\cos x - i \sin x}{-x} dx = \int_{\varepsilon}^{r} \frac{-\cos x + i \sin x}{x} dx$$

である. 積分経路 $\Gamma_{\varepsilon,r}^+, C_r, \Gamma_{\varepsilon,r}^-, -C_\varepsilon$ によってできる閉曲線 Γ を考えると、被積分関数は原点を除いて正則であるから、 $\int_{\Gamma} \frac{e^{iz}}{z} dz = 0$ である. よって

$$\begin{split} 0 &= \int_{\Gamma_{\varepsilon,r}^+} \frac{e^{iz}}{z} dz + \int_{C_r} \frac{e^{iz}}{z} dz + \int_{\Gamma_{\varepsilon,r}^-} \frac{e^{iz}}{z} dz + \int_{-C_\varepsilon} \frac{e^{iz}}{z} dz \\ &= \int_\varepsilon^r \frac{\cos x + i \sin x}{x} dx + \int_\varepsilon^r \frac{-\cos x + i \sin x}{x} dx + I(r) - I(\varepsilon) \\ &= 2i \int_\varepsilon^r \frac{\sin x}{x} dx + I(r) - I(\varepsilon) \to 2i \int_0^\infty \frac{\sin x}{x} dx - \pi i \quad (r \to \infty) \end{split}$$

したがって $\int_0^\infty \frac{\sin x}{x} dx = \pi/2$ である.

0.15 H29 数学 A

① $(1)\sum\limits_{k=1}^{n}|a_n|$ は n に関する単調増加数列であり, $\sum\limits_{k=1}^{n}|a_n|\leq\sum\limits_{k=1}^{\infty}b_n$ より,有界である.よって $\sum|a_n|$ は収束する.したがって $\sum\limits_{k=1}^{n}|a_n|$ はコーシー列である.

 $S_n = \sum\limits_{k=1}^n a_n$ とすると, $n \geq m$ に対して $|S_n - S_m| = |\sum\limits_{k=m+1}^n a_n| \leq \sum\limits_{k=m+1}^n |a_n| \to 0 \quad (n,m \to \infty)$ である. よって S_n はコーシー列であるから,収束列.

 $(2)x\in (0,1)$ で |f(x)|< x より $\lim_{x\to 0}f(x)=0$ である。x=0 なら $\sum_{n=1}^\infty f(2^nx)=0$ である。0< x<1/2 のとき。 $2^{n_0}x\leq 1<2^{n_0+1}x$ となる正の整数 n_0 が存在する。 $\sum_{n=1}^{n_0}|f(2^nx)|\leq \sum_{n=1}^{n_0}2^nx=x(2^{n_0+1}-2)\leq 2$ である。また $\sum_{n=n_0+1}^\infty |f(2^nx)|\leq \sum_{n=n_0+1}^\infty |f(2^nx)|\leq \sum_{n=n_0+1}^\infty |f(2^nx)|\leq 1/(2^nx)=1/(2^nx)\leq 2$ である。よって $\sum_{n=1}^\infty |f(2^nx)|\leq 4$ であるから $\sum_{n=1}^\infty f(2^nx)=1/(2^n$

- $(3) \sup_{x \in [0,\infty)} |\sum_{n=1}^{\infty} f(2^n x)| \le 4$ である.
- $\lceil 2 \rceil$ (1)A は正則であるから $\det A \neq 0$ である. $\det A = \det (-^t A) = (-1)^n \det A$ であるから n は偶数である.
- $(2)\mathbb{C}^n$ における標準エルミート内積を $(x,y)=x\overline{ty}$ で表す.A の固有値 λ とその固有ベクトル $v\neq 0$ をとる. $\lambda(v,v)=(Av,v)=(v,\overline{tA}v)=(v,-Av)=-\overline{\lambda}(v,v)$ である. $v\neq 0$ より $(v,v)\neq 0$ であるから $\lambda=-\overline{\lambda}$ より λ の実部は 0. よって λ は純虚数である.
- $(3)v\in W(B,\alpha)$ に対して $BAv=ABv=\alpha Av$ より $Av\in W(B,\alpha)$ である.よって $W(B,\alpha)\to W(B,\alpha); v\mapsto Av$ は $W(B,\alpha)$ 上の線形写像である.A は正則であるからこの線形写像は単射.有限次元であるから全単射であるから $AW(B,\alpha)=W(B,\alpha)$ である.
- $(4)i:W(B,\alpha)\to\mathbb{R}^n$ を包含写像とする。 $g:W(B,\alpha)\to W(B,\alpha);v\mapsto Av$ は $W(B,\alpha)$ 上の同型写像である。 \mathbb{R}^n の標準内積に関する $W(B,\alpha)$ の正規直交基底 $\{w_1,\ldots,w_k\}$ を一つ固定し,この基底に関する g の表現行列を G とする。 $v\in W(B,\alpha)$ に対して i(Gv)=Ai(v) である。
- $x=\sum a_iw_i,y=\sum b_iw_i$ に対して $\langle x,y\rangle=\sum a_ib_i$ と定めれば $W(B,\alpha)$ の内積となり, $\langle x,y\rangle=(i(x),i(y))$ である. (∵基底が正規直交基底)

よって $\langle Gx,y\rangle=(i(Gx),i(y))=(Ai(x),i(y))=-(i(x),Ai(y))=-\langle x,Gy\rangle$ である。よって G は正則な交代行列。したがって k は偶数。B が対称行列であるから,固有空間の次元は固有値の固有方程式における重複度である。したがって全ての固有値の重複度が偶数であるから, $g_B(t)=f(t)^2$ なら f(t) が存在する。

別解

 $W=W(B,\alpha)$ の基底 $\{t_1,\ldots,t_k\}$ をとり, \mathbb{R}^n に延長して $\{t_1,\ldots,t_n\}$ を得る.シュミットの正規直交化法をつかって $\{\tilde{t_1},\ldots,\tilde{t_n}\}$ を得る.k 個目までは W の元である.g の $\{\tilde{t_1},\ldots,\tilde{t_k}\}$ に関する表現行列を G とする.f の $\{\tilde{t_1},\ldots,\tilde{t_n}\}$ に関する表現行列を F とする.G は F の首座小行列である. $\tilde{T}=\begin{pmatrix}\tilde{t_1}&\ldots&\tilde{t_n}\end{pmatrix}$ とすれば, $F=\tilde{T}^{-1}AT$ である.T は直交行列であるから F は交代行列.よって G は交代行列.(1) より k は偶数.

- 3 X の開集合全体を \mathcal{O} とすると, $\mathcal{O}=2^{\mathbb{Q}}\cup\{\mathbb{R}\}$ である.実際これは位相の定義をみたす.
- $(1)A \in 2^{\mathbb{Q}}$ に対して $f^{-1}(A) = \{x \in \mathbb{R} \mid x+1 \in A \subset \mathbb{Q}\} \subset \mathbb{Q}$ である。また $f^{-1}(\mathbb{R}) = \mathbb{R}$ であるから,f は連続.
 - $(2)\sqrt{2}$ を含む開集合は $\mathbb R$ のみである. $\sqrt{3}$ についても同様. よってハウスドルフでない.
- (3)X の開被覆 $S=\{U_{\lambda}\mid \lambda\in\Lambda, U_{\lambda}\in\mathcal{O}\}$ を任意にとる. $\sqrt{2}$ を含む開集合が S に存在する. $\sqrt{2}$ を含む開集合は \mathbb{R} のみであるから, $\mathbb{R}\in S$ である. よって有限部分被覆 $\{\mathbb{R}\}$ が存在するからコンパクト.
- $(4)f^{-1}(\{0\})=\mathbb{Q}$ である。 $\{0\}$ は R では閉集合であるから,f が連続なら \mathbb{Q} は X で閉集合である。 すなわち, $\mathbb{R}\setminus\mathbb{Q}$ は X で開集合であるがこれは矛盾。よって f は連続でない.
- 4 $(1)1/(z^2+1)^{n+1}$ の z=i まわりのローラン展開を $\sum_k a_k(z-i)^k$ とする、 $1/(z+i)^{n+1}=\sum_k a_k(z-i)^{k+n+1}$ であるから,k+n+1<0 なら $a_k=0$ である。両辺の n 回微分に i を代入する。左辺は $(-(n+1))(-(n+2))\dots(-(2n))(2i)^{-2n-1}=(-1)^n(2i)^{-2n-1}(2n)!/n!$ である。右辺は $a_{-1}n!$ であるから, $a_{-1}=(-1)^n(2i)^{-2n-1}(2n)!/(n!)^2$ である。これが留数。

$$\left| \int_{\Gamma_R} \frac{dz}{(z^2+1)^{n+1}} \right| = \left| \int_0^\pi \frac{Rie^{i\theta}}{(1+R^2e^{2i\theta})^{n+1}} dz \right| \leq \int_0^\pi \left| \frac{R}{(1+R^2e^{2i\theta})^{n+1}} \right| dz \leq \int_0^\pi \frac{R}{|R^2-1|^{n+1}} dz = \frac{\pi R}{|R^2-1|^{n+1}} \to 0 \quad (R \to \infty)$$

 $(3)\int_{-1}^1 1/(x^2+1)^{n+1}dx$ は有限値をとる。 $\int_1^\infty 1/(x^2+1)^{n+1}dx$, $\int_{-\infty}^{-1} 1/(x^2+1)^{n+1}dx$ はそれぞれ収束する。 よって $\int_{-\infty}^\infty 1/(x^2+1)^{n+1}dx$ は収束する。 $\int_{-R}^R 1/(z^2+1)^{n+1}dz=\int_{C_R} 1/(z^2+1)^{n+1}dz-\int_{\Gamma_R} 1/(z^2+1)^{n+1}dz$ である。 $(C_R$ は -R から R まで進み G_R 上を反時計まわりに進む経路)留数定理と(2)より

$$\int_{-\infty}^{\infty} \frac{1}{(x^2+1)^{n+1}} dx = 2\pi i \frac{(-1)^n (2n)!}{(n!)^2 (2i)^{2n+1}} = \frac{(2n)!}{(n!)^2 2^{2n}} \pi = \frac{1 \cdot 3 \cdot \cdot \cdot (2n-1)}{2 \cdot 4 \cdot \cdot \cdot (2n)} \pi$$

0.16 H30 数学 A

- ① (1)f(X) が連結でないと仮定する.このとき, $f(X) \subset U \cup V$ なる Y の開集合 U,V で $U \cap V \cap f(X) = \emptyset$ かつ $U \cap f(X) \neq \emptyset$, $V \cap f(X) \neq \emptyset$ を満たすものが存在する. $f^{-1}(U) \cup f^{-1}(V) = f^{-1}(U \cup V) = X$ であり, $f^{-1}(U)$, $f^{-1}(V)$ は X の開集合である. $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V \cap f(X)) = \emptyset$ で, $f^{-1}(U) \neq \emptyset$, $f^{-1}(V) \neq \emptyset$ であるから,X は連結でない.これは矛盾.よって,f(X) は連結である.
- $(2)Y = \{0,1\}$ で Y に密着位相をいれる. $X = \{0,1\}$ で X に離散位相をいれる. このとき f(x) = x は連続であり、X はハウスドルフ空間である. しかし Y = f(X) はハウスドルフ空間でない.
- (3) f(X) の任意の開被覆 $S = \{U_{\lambda}\}_{\lambda \in \Lambda}$ に対して, $T = \{f^{-1}(U_{\lambda})\}_{\lambda \in \Lambda}$ は X の開被覆である.X はコンパクトであるから,T の有限部分集合 $\{f^{-1}(U_{\lambda_i})\}_{i=1}^n$ が存在して, $X = f^{-1}(\bigcup_{i=1}^n U_{\lambda_i})$ となる. $f(X) = \bigcup_{i=1}^n U_{\lambda_i}$ であり,f(X) はコンパクトである.
- ② $(1)f^d(V) = V^d$ とする. $V^{d+1} = f^{d+1}(V) = f^d(f(V)) \subset f^d(V) = V^d$ である. よって、ベクトル空間の降下列 $V = V^0 \supset V^1 \supset \cdots \supset V^n \supset \cdots$ が定まる. f^d が零写像であるから $V^d = 0$ である. 降下列であるから

次元は単調減少する. $V^{i-1}=V^i$ なる i が存在したとき, $V^{i+1}=f^{i+1}(V)=f(V^i)=f(V^{i-1})=V^i$ となるから,以降すべて等しい.よって次元は小さくなり続けたのち,ある次元で以降不変になる.

 $f^d=0$ より、 $V^d=0=V^{d+1}$ である.また $f^{d-1}\neq 0$ より $V^{d-1}\neq 0$ である.すなわち V^d までは次元は小さくなり続ける. $\dim V=n$ より $d\leq n$ である.

 $(2)v \in \text{Im}(f) \cap \ker(f)$ について,ある $w \in V$ が存在して f(w) = v である.0 = f(v) = f(f(w)) = f(w) = v であるから, $\text{Im}(f) \cap \ker(f) = \{0\}$ である.

(3) 求める最大元は $m:=\lfloor \frac{n}{2}\rfloor$ である.ただし, $\lfloor x\rfloor$ は x 以下の最大の整数を表す.

$$V$$
 の基底を $\{v_1,\cdots,v_n\}$ とする. $g(v_i)=egin{cases} 0 & (i\leq m) \ v_{i-m} & (i>m) \end{pmatrix}$ とする. g は線形写像である. $\mathrm{Im}(g)=$

 $\operatorname{Span}\{v_1,\cdots,v_{n-m}\}$ であり、 $\ker(g)=\operatorname{Span}\{v_1,\cdots,v_m\}$ である。m の定義から $m\leq n-m$ であるから、 $\dim(\operatorname{Im}(g)\cap\ker(g))=\dim\operatorname{Span}\{v_1,\cdots,v_m\}=m$ である。よって $m\in A$ である。

次元定理より $f: V \to V$ に対して $n = \dim V = \dim \operatorname{Im}(f) + \dim \ker(f)$ である。よって $\dim(\operatorname{Im}(f) \cap \ker(f)) \leq \min\{\dim \operatorname{Im}(f), \dim \ker(f)\} \leq \lfloor \frac{n}{2} \rfloor$ である.

よって $\lfloor \frac{n}{2} \rfloor$ は A の上界である. よって m は求める最大元である.

③ $(1)2-\cos x>0$ より $0\leq \int_0^x 2-\cos t dt=2x-\sin x$ である. よって $0\leq \int_0^x 2t-\sin t dt=x^2+\cos x-1$ である. よって $0\leq \int_0^x t^2+\cos t-1 dt=\frac{1}{3}x^3+\sin x-x$ である.

よって $f_n(x)=n^{p+1}(\frac{x}{n}-\sin\frac{x}{n})\leq n^{p+1}(\frac{1}{3}(\frac{x}{n})^3)=\frac{x^3}{3n^{2-p}}$ である. p<2 なら 0<2-p より $n\to\infty$ で $f_n(x)\to 0$ である.

(2) 任意の有界閉区間 I について、 $\forall x \in I, |x| \leq M$ とできる M>0 が存在する. $S_n(x)=\sum_{k=1}^n f_n(x)$ が一様コーシー列であることを示す。n>m に対して $|S_n(x)-S_m(x)|=|\sum_{k=m+1}^n f_k(x)|\leq \sum_{k=m+1}^n \frac{M^3}{3k^{2-p}}=\frac{M^3}{3}\sum_{k=m+1}^n k^{p-2}$ である。p<1 より p-2<-1 であるから、 $\sum_{k=m+1}^n k^{p-2}\leq \sum_{k=m+1}^n \int_{k-1}^k t^{p-2}dt=\int_m^n t^{p-2}dt=\frac{1}{p-1}(n^{p-1}-m^{p-1})\to 0$ $(n,m\to\infty)$ である. よって一様コーシー列であるから、一様収束する.

 $(3)|x| < \pi/6 \text{ のとき, } \cos x - \tfrac{1}{2} \geq 0 \text{ である. } \text{よって } 0 \leq \int_0^x \cos t - \tfrac{1}{2} dt = \sin x - \tfrac{x}{2} \text{ である. } \text{よって } 0 \leq \int_0^x \sin t - \tfrac{t}{2} dt = -\cos x - \tfrac{x^2}{4} + 1 \text{ である. } \text{よって } 0 \leq \int_0^x -\cos t - \tfrac{t^2}{4} + 1 dt = -\sin x - \tfrac{x^3}{12} + x \text{ である. } \text{ すな } \text{ かち } \tfrac{x^3}{12} \leq x - \sin x \quad (|x| < \pi/6) \text{ である.}$

よってある x に対して $\frac{x}{n} < \frac{\pi}{6}$ なる n について $f_n(x) = n^{p+1}(\frac{x}{n} - \sin \frac{x}{n}) \ge \frac{x^3}{12n^{2-p}}$ である. すなわち p > 2 なら $n \to \infty$ で $f_n(x) \to \infty$ である.

p<2 のとき (1) より f(x)=0 に各点収束する. $x=n\pi/2$ とすると, $f(n\pi/2)=0, f_n(n\pi/2)=n^{p+1}(\frac{\pi}{2}-1)$ であるから, \mathbb{R} 上で一様収束しない.

p=2 のとき、各 x について $f_n(x)=n^3(\frac{x}{n}-\sin\frac{x}{n})=n^3(\frac{1}{3!}(\frac{x}{n})^3-\frac{1}{5!}(\frac{x}{n})^5+\cdots)\to \frac{x^3}{6}$ $(n\to\infty)$ である. よって $g(x)=\frac{x^3}{6}$ に各点収束する。 $g(n\pi/2)=\frac{(n\pi/2)^3}{6}=n^3\frac{\pi^3}{48}, f_n(n\pi/2)=n^3(\frac{\pi}{2}-1)$ より一様収束しない。 $\boxed{4}$ (1)

$$\lim_{z \to 0} \frac{ze^{iz}}{e^z - e^{-z}} = \lim_{z \to 0} \frac{e^{iz} + ize^{iz}}{e^z + e^{-z}} = \frac{1}{2}, \qquad \lim_{z \to i\pi} \frac{(z - i\pi)e^{iz}}{e^z - e^{-z}} = \lim_{z \to i\pi} \frac{e^{iz} + i(z - i\pi)e^{iz}}{e^z + e^{-z}} = -\frac{1}{2e^{\pi}}$$

である. よって $\operatorname{Res}(f(z),0) = \frac{1}{2}, \operatorname{Res}(f(z),i\pi) = -\frac{1}{2e^{\pi}}$ である.

(2)

$$\left| \int_{\Gamma_R^+} f(z) dz \right| \leq \left| \int_0^\pi \frac{e^{i(R+it)}}{e^{R+it} - e^{-(R+it)}} i dt \right| \leq \int_0^\pi \left| \frac{e^{-t}}{e^{R+it} - e^{-(R+it)}} \right| dt \leq \int_0^\pi \frac{e^{-t}}{||e^R| - |e^{-R}||} dt = \frac{1 - e^{-\pi}}{e^R - e^{-R}} \to 0 \quad (R \to \infty)$$

$$\left| \int_{\Gamma_R^-} f(z) dz \right| \leq \left| \int_0^\pi \frac{e^{i(-R+it)}}{e^{-R+it} - e^{-(-R+it)}} i dt \right| \leq \int_0^\pi \left| \frac{e^{-t}}{e^{-R+it} - e^{R-it}} \right| dt \leq \int_0^\pi \frac{e^{-t}}{||e^{-R}| - |e^R||} dt = \frac{1 - e^{-\pi}}{e^R - e^{-R}} \to 0 \quad (R \to \infty)$$

(3)

図のように積分経路 $C_1, C_2, C_3, C_4, \alpha_\varepsilon, \beta_\varepsilon$ とそれらをつなげてできる閉曲線 C を定める. C 内で f は正則であるから $\int_C f(z)dz=0$ である.

$$\Gamma_{R}^{-} \qquad \qquad \Gamma_{R}^{+} \qquad \qquad$$

$$\int_{C_1} f(z)dz = \int_{\varepsilon}^{R} \frac{\cos x + i \sin x}{e^x - e^{-x}} dx$$

$$\int_{C_4} f(z)dz = \int_{-R}^{-\varepsilon} \frac{e^{ix}}{e^x - e^{-x}} dx = \int_{R}^{\varepsilon} -\frac{e^{i(-x)}}{e^{-x} - e^x} dx = \int_{\varepsilon}^{R} \frac{-\cos x + i \sin x}{e^x - e^{-x}} dx$$

図1 積分経路の図

$$\int_{C_4} f(z)dz = \int_{-R} e^x - e^{-x} dx = \int_{R} e^{-x} - e^x dx = \int_{\varepsilon} e^x - e^{-x} dx$$

$$\int_{C_2} f(z)dz = \int_{R}^{\varepsilon} \frac{e^{i(x+i\pi)}}{e^{x+i\pi} - e^{-(x+i\pi)}} dx = e^{-\pi} \int_{R}^{\varepsilon} \frac{e^{ix}}{-e^x + e^{-x}} dx = e^{-\pi} \int_{\varepsilon}^{R} \frac{\cos x + i \sin x}{e^x - e^{-x}} dx$$

$$\int_{C_3} f(z)dz = \int_{-\varepsilon}^{-R} \frac{e^{i(x+i\pi)}}{e^{x+i\pi} - e^{-(x+i\pi)}} dx = -e^{-\pi} \int_{\varepsilon}^{R} \frac{e^{-ix}}{e^x - e^{-x}} dx = e^{-\pi} \int_{\varepsilon}^{R} \frac{-\cos x + i \sin x}{e^x - e^{-x}} dx$$

である. $z=0, z=i\pi$ は f の一位の極であるから,原点近傍で有界になるように,f(z) から主要部を引けば $\varepsilon\to 0$ で 0 になる.

$$\begin{split} &\int_{\alpha_{\varepsilon}} f(z)dz = \int_{\alpha_{\varepsilon}} f(z) - \frac{1}{2z}dz + \int_{\pi}^{0} \frac{1}{2\varepsilon e^{i\theta}} \varepsilon i e^{i\theta} d\theta \to -\frac{i\pi}{2} \quad (\varepsilon \to 0) \\ &\int_{\beta_{\varepsilon}} f(z)dz = \int_{\beta_{\varepsilon}} f(z) + \frac{1}{2e^{\pi}z} dz + \int_{0}^{-\pi} -\frac{1}{2e^{\pi}\varepsilon e^{i\theta}} \varepsilon i e^{i\theta} d\theta \to \frac{i\pi}{2e^{\pi}} \quad (\varepsilon \to 0) \end{split}$$

である. よって $0=\int_C f(z)dz=2i(1+e^{-\pi})\int_{\varepsilon}^R \frac{\sin x}{e^x-e^{-x}}dx+\int_{\alpha_{\varepsilon}} f(z)dz+\int_{\beta_{\varepsilon}} f(z)dz+\int_{\gamma_R^+} f(z)dz+\int_{\gamma_R^-} f(z)dz$ である. $R\to\infty, \varepsilon\to 0$ とすると, $\int_0^\infty \frac{\sin x}{e^x-e^{-x}}dx=-\frac{\pi(e^{-\pi}-1)}{4(e^{-\pi}+1)}$ である.

0.17 H31 数学 A

 $\boxed{1}$ (1) $^{\forall}\varepsilon > 0, ^{\exists}N \in \mathbb{N}, ^{\forall}n \geq N, ^{\forall}x \in \mathbb{R}, |f_{n}(x) - f(x)| < \varepsilon$ である。また f_{N} は連続であるから、 $^{\forall}\varepsilon > 0, ^{\exists}\delta > 0, ^{\forall}x \in \mathbb{R}, |x - x_{0}| < \delta \Rightarrow |f_{N}(x) - f_{N}(x_{0})| < \varepsilon$ である。以上より、 $^{\forall}x_{*} \in \mathbb{R}, ^{\forall}\varepsilon > 0, ^{\exists}\delta > 0, ^{\exists}N \in \mathbb{N}, ^{\forall}x \in \mathbb{R}, |x - x_{*}| < \delta \Rightarrow |f(x) - f(x_{*})| \leq |f(x) - f_{N}(x)| + |f_{N}(x) - f_{N}(x_{*})| + |f_{N}(x_{*}) - f(x_{*})| < 3\varepsilon$ であるから、f は連続である。

 $(2)a \geq x > 0$ のとき,平均値の定理から $u\left(\frac{x}{n}\right) - u(0) = \frac{x}{n}u'(\alpha_n), u(-\frac{x}{n}) - u(0) = -\frac{x}{n}u'(\beta_n)$ となる $-\frac{x}{n} < \beta_n < 0 < \alpha_n < \frac{x}{n}$ が存在する.よって $u_n(x) = \frac{x}{n}(u'(\alpha_n) - u'(\beta_n))$ である.平均値の定理から $u'(\alpha_n) - u'(\beta_n) = u''(\gamma_n)(\alpha_n - \beta_n)$ となる $-\frac{x}{n} < \beta_n < \gamma_n < \alpha_n < \frac{x}{n}$ が存在する.よって $u_n(x) = \frac{x}{n}(u''(\gamma_n)(\alpha_n - \beta_n))$ である. $\alpha_n - \beta_n \leq \frac{2x}{n}$ であり,また u'' は [-a,a] 上連続であるから,有界である.よって $\forall n, u''(\gamma_n) < M$ とできる M > 0 が存在する.以上より $|u_n(x)| \leq \frac{2x^2}{n}|u''(\gamma_n)| \leq \frac{2a^2M}{n^2}$ である.よって $\sum |f_n(x)| \leq 2a^2M\sum_{n=1}^{1} < \infty$ である.これは $-a \leq x < 0$ でも成立し,また x = 0 なら $u_n(x) = 0$ であるから x = 0 でも成立する.ワイエルシュトラスの M 判定法より, $u_n(x)$ は絶対一様収束する.また(1)より収束先の関数は連続である.

2 $(1)N^2 \neq O$ より $N^2u \neq 0$ なる $u \in \mathbb{C}^3$ が存在する.この u について $c_1u + c_2Nu + c_3N^2u = 0$ とすると, N^2 を左からかけれ, $c_1N^2u = 0$ より $c_1 = 0$ である.よって N をかければ $c_2N^2u = 0$ より $c_2 = 0$ である.よって $c_3 = 0$ である.よって u, Nu, N^2u は一次独立である.

$$(2)(1) \ \mathcal{O} \ P = \begin{pmatrix} N^2 u & N u & u \end{pmatrix} \ \mathcal{E} \ \text{すれば} \ P \ \text{は正則で} \ J := P^{-1} N P = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \ \text{である}.$$

 $g\colon V \to V$ を g(X)=JX-XJ とする、 $f(PXP^{-1})=NPXP^{-1}-PXP^{-1}N=Pg(X)P^{-1}$ である、 $f^2(PXP^{-1})=f(Pg(X)P^{-1})=Pg(g(X))P^{-1}=Pg^2(X)P^{-1}$ である、繰り返して $f^k(PXP^{-1})=Pg^k(X)P^{-1}$ である、P は正則であるから、 $f^k=0\Leftrightarrow g^k=0$ である、また $g^k=0$ ならば $g^{k+1}=0$ である.

 $g^2(X)=J(JX-XJ)-(JX-XJ)J=J^2X-2JXJ+XJ^2,$ $g^3(X)=J^2(JX-XJ)-2J(JX-XJ)J+(JX-XJ)J^2=-3J(JX-XJ)J,$ $g^4(X)=-3J(J^2-2JXJ+XJ^2)J=6J^2XJ^2,$ $g^5(X)=6J^2(JX-XJ)J^2=0$ で ある. よって $g^5=0$ である.

$$X = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$
 とすると $J^2XJ^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \neq O$ であるから, $g^4 \neq 0$ である. よって $g^k = 0$ となる最

小のkは5である.

- $\boxed{3}$ (1) $d: A \times A \to \mathbb{R}$ が距離関数であるとは次の条件を満たすことである.
- $(i)^{\forall} x, y \in A, d(x, y) = 0 \Leftrightarrow x = y$
- $(ii)^{\forall} x, y \in A, d(x, y) = d(y, x)$
- $(iii)^{\forall} x, y, z \in A, d(x, z) \le d(x, y) + d(y, z)$
- (2) 任意の異なる二点 $x,y \in A$ について d(x,y) > 0 である. $\varepsilon = d(x,y)/2$ とすれば, $x \in B(x,\varepsilon) := \{a \in A \mid d(x,a) < \varepsilon\}, y \in B(y,\varepsilon), B(x,\varepsilon) \cap B(y,\varepsilon) = \emptyset$ である. よって A はハウスドルフ空間である.
- $(3)x \in A$ を一つ固定する. $S = \{B(x,n) \mid n \in \mathbb{N}\}$ は A の開被覆である. コンパクトであるから,有限部分集合 $\{B(x,n_i) \mid i=1,\cdots,m\}$ が存在して, $A \subset \bigcup_{i=1}^m B(x,n_i)$ となる. $n = \max_{i=1,\cdots,m} n_i$ とすれば $A \subset B(x,n)$ である. したがって任意の二点 $y,z \in A$ について $d(y,z) \leq d(y,x) + d(x,z) < 2n$ である.
 - $(4)x \in U_{x,y}, y \in V_{x,y}, U_{x,y} \cap V_{x,y} = \emptyset$ となる開集合対 $(U_{x,y}, V_{x,y})$ を各 $(x,y) \in C_1 \times C_2$ ごとに定める.

 $S_y = \{U_{x,y} \mid x \in C_1\}$ は C_1 の開被覆であるから,有限部分集合 $C_{1,y} \subset C_1$ が存在して, $S_y' = \{U_{x,y} \mid x \in C_{1,y}\}$ が C_1 の開被覆となる.また $V_y = \bigcap_{x \in C_{1,y}} V_{x,y}$ とする.有限個の共通部分であるから V_y は 開集合である.

 $T = \{V_y \mid y \in C_2\}$ は C_2 の開被覆であるから,有限部分集合 $C_2' \subset C_2$ が存在して, $T' = \{V_y \mid y \in C_2'\}$ が C_2 の開被覆となる. $U = \bigcap_{y \in C_2'} (\bigcup_{s_y'} U_{x,y}), V = \bigcup_{y \in C_2'} V_y$ とする. C_2' は有限集合であるから,U, V は開集合で ある.

 S_y' は C_1 の開被覆であるから, $C_1 \subset U$ であり,また $C_2 \subset V$ も明らか. $z \in U \cap V$ とすると,ある $y' \in C_2'$ について $z \in V_{y'} \subset V_{x,y'}$ ($\forall x \in C_{1,y'}$)である.また $z \in U$ より $\forall y \in C_2'$ について $z \in \bigcup_{S_y'} U_{x,y}$ である.とくに $z \in \bigcup_{S_{y'}'} U_{x,y'}$ である.したがってある $x' \in C_{1,y'}$ について $z \in U_{x',y'}$ である.よって $z \in U_{x',y'} \cap V_{x',y'}$ となり 矛盾.よって $U \cap V = \emptyset$ である.

 $\boxed{4}\ (1)zf(z)$ は z=0 で正則であるから,z=0 は f の一位の極である. よって $\lim_{z\to 0}zf(z)=\frac{1}{a^2}$ より主要部は $\frac{1}{a^2z}$ である.

 $(2)f(z)-rac{1}{a^2z}$ は原点近傍で有界である. よって $\int_{C_r}f(z)-rac{1}{a^2z}dz o 0$ (r o 0) である. よって $\lim_{r o 0}\int_{C_r}f(z)dz=\lim_{r o 0}\int_{C_r}rac{1}{a^2z}dz=\lim_{r o 0}\int_0^\pirac{1}{a^2re^{i heta}}rie^{i heta}d\theta=rac{i\pi}{a^2}$ である.

$$\left|\int_{C_r} f(z)dz\right| = \left|\int_0^\pi \frac{\exp\left(ie^{i\theta}\right)}{re^{i\theta}(r^2e^{2i\theta}+a^2)}rie^{i\theta}d\theta\right| \leq \int_0^\pi \left|\frac{\exp(-\sin\theta)}{(r^2e^{2i\theta}+a^2)}\right|d\theta \leq \int_0^\pi \frac{1}{|r^2-a^2|}d\theta = \frac{\pi}{|r^2-a^2|} \to 0 \quad (r\to\infty)$$

 $(3)D_{r,R}$ の内部に f は z=ia を特異点にもち, z=ia を除いて f は $D_{r,R}$ で正則であるから留数定理より $\int_{\partial D_{r,R}} f(z) dz = 2\pi i \operatorname{Res}(f,ia)$ である. $\lim_{z \to ia} (z-ia) f(z) = \frac{e^{iia}}{ia(ia+ia)} = -\frac{1}{2a^2e^a}$ より $\int_{\partial D_{r,R}} f(z) dz = -\frac{\pi i e^{-a}}{a^2}$ である.

 $(4)\partial D_{r,R}$ と実軸の正の部分との共通部分を α_1 , 負の部分との共通部分を α_2 とする.向きは $\partial D_{r,R}$ と同じ向きを入れる. $\int_{\alpha_1} f(z)dz = \int_r^R rac{e^{ix}}{x(x^2+a^2)}dx = \int_r^R rac{\cos x + i \sin x}{x(x^2+a^2)}dx$ である.また $\int_{\alpha_2} f(z)dz = \int_{-R}^{-r} rac{e^{ix}}{x(x^2+a^2)}dx = \int_{-R}^{R} \frac{e^{ix}}{x(x^2+a^2)}dx$

$$\begin{split} \int_{R}^{r} \frac{e^{-ix}}{-x(x^{2}+a^{2})} (-1) dx &= \int_{r}^{R} \frac{-\cos x + i \sin x}{x(x^{2}+a^{2})} dx \ \ \tilde{c} \ \tilde{b} \ \tilde{c}. \quad \ \ \, \tilde{c} \ \tilde{$$

0.18 R2 数学 A

 $\boxed{1}$ (1) 一様連続でないと仮定する.このとき $\exists \varepsilon > 0, \forall \delta > 0, \exists x, y \in [0,1], |x-y| < \delta \wedge |f(x)-f(y)| \geq \varepsilon$ である. $\delta = \frac{1}{n}$ として, x_n, y_n を定める.数列 $\{x_n\}_{n=1}^{\infty}$ は有界閉区間 [0,1] に含まれるので,収束部分列 $\{x_{\varphi(n)}\}_{n=1}^{\infty}$ を持つ. $|y_{\varphi(n)}-x_*| \leq |y_{\varphi(n)}-x_{\varphi(n)}| + |x_{\varphi(n)}-x_*| \leq \frac{1}{\varphi(n)} + |x_{\varphi(n)}-x_*| \to 0 \quad (n\to\infty)$ より, $y_{\varphi(n)}\to x_*$ である.

よって $\varepsilon \leq |f(x_{\varphi(n)}) - f(y_{\varphi(n)})| \rightarrow |f(x_*) - f(x_*)| = 0$ となり矛盾する.

(2) 任意の $\varepsilon > 0$ に対して,一様収束性からある $N \in \mathbb{N}$ が存在して, $^{\forall}x \in [0,1], ^{\forall}n \geq N, |f(x) - f_n(x)| < \varepsilon$ である.この N について f_N の連続性から, $^{\exists}\delta > 0, ^{\forall}x \in [0,1], |x-x_*| < \delta \Rightarrow |f_N(x) - f_N(x_*)| < \varepsilon$ である.よって $|x-x_*| < \delta$ なら $|f(x) - f(x_*)| \leq |f(x) - f_N(x)| + |f_N(x) - f_N(x_*)| + |f_N(x_*) - f(x_*)| < 3\varepsilon$ となるから連続.

|f(x)| は有界閉区間の連続関数だから最大値 M が存在する。また一様収束するから, $\exists N \in \mathbb{N}, ^\forall n > N, \sup_{x \in [0,1]} |f(x) - f_n(x)| < M$ である。すなわち $|f_n(x)| < 2M$ $(n > N, x \in [0,1])$ である。

 f_n の最大値を M_n とし, $L:=\max\{M,M_1,\ldots,M_N\}$ とする. このとき $\sup_{n\in\mathbb{N}}|f_n(x)|\leq L\quad (x\in[0,1])$ である.

有界閉区間の定数関数はルベーグ可積分であるから、ルベーグの収束定理より、 $\int_0^1 f(x)dx=\lim_{n\to\infty}\int_0^1 f_n(x)dx$ である.

2 (1)|PQ| で線分 PQ の長さを表す。 $|PQ|=\sqrt{54}$ である.よって $|PR|=\sqrt{(m+4)^2+(n+1)^2+(-1)^2}=\sqrt{54}$ である. $\overrightarrow{PQ}=(5,5,-2)$, $\overrightarrow{PR}=(m+4,n+1,-1)$ で内積は $\sqrt{54}^2\cos\frac{\pi}{3}=27$ であるから,5(m+4)+5(n+1)+2=27 である.よって m+n=0 である. $54=(m+4)^2+(-m+1)^2+1$ より,m=3,-6 である.よって (m,n)=(3,-3),(-6,6) である.

 $(2)\{\overrightarrow{OP},\overrightarrow{OQ},\overrightarrow{OR}\}$ は線形独立である. よってこの基底からつくられる全ての内積が、f で保たれることが f が直交変換であることの必要十分条件.

m=3, n=-3 のとき, $(\overrightarrow{OP}, \overrightarrow{OQ})=-9, (\overrightarrow{OP}, \overrightarrow{OR})=-9, (\overrightarrow{OQ}, \overrightarrow{OR})=-9$ である.よって (*) を満たす全ての f は直交変換だから, $f(\overrightarrow{OP})=\overrightarrow{OR}$ より 2 個.

m=-6, n=6 のとき, $(\overrightarrow{OP}, \overrightarrow{OQ})=-9, (\overrightarrow{OP}, \overrightarrow{OR})=18, (\overrightarrow{OQ}, \overrightarrow{OR})=18$ である. $f(\overrightarrow{OP})=\overrightarrow{OR}$ より (*) を満たす直交変換は存在しない.

③ $(1)\{x_n\}_{n=1}^{\infty}$ が x,y に収束するとする. $x \neq y$ ならハウスドルフであるから、開集合 U,V が存在して $x \in U, y \in V, U \cap V = \emptyset$ である. x に収束するから、ある N_1 が存在して $\forall n > N_1, x_n \in U$ である. 同様に y に収束するから、ある N_2 が存在して $\forall n > N_2, x_n \in V$ である. $N = \max\{N_1, N_2\}$ とすると、 $x_n \in U \cap V$ となり矛盾する. よって x = y である.

 $(2)X = \{0,1\}$ として X に密着位相をいれる. $x_n = 0$ とする数列 $\{x_n\}_{n=1}^{\infty}$ は 0,1 に収束する.

(3)f(x) を含む任意の開集合 V をとる. $x\in f^{-1}(V)=U$ であるから,ある N が存在して $\forall n>N, x_n\in U$ である.よって $\forall n>N, f(x_n)\in V$ であるから $f(x_n)$ は f(x) に収束する.

 $\boxed{4}(1)f(z)=rac{\exp\left(-z^2/2
ight)}{z}$ とする。z=0 は f の一位の極で,主要部は $\frac{1}{z}$ である。よって $f(z)-\frac{1}{z}$ は原点近傍で正則であるから,有界である。よって $\int_{C_{\varepsilon}}f(z)-\frac{1}{z}dz \to 0$ $(\varepsilon \to 0)$ である。 $\int_{C_{\varepsilon}}\frac{1}{z}dz=\int_{0}^{\pi/4}\frac{1}{\varepsilon e^{i\theta}}\varepsilon ie^{i\theta}d\theta=\frac{i\pi}{4}$

であるから, $\int_{C_{\varepsilon}} f(z) dz o rac{i\pi}{4} \quad (arepsilon o 0)$ である.

$$\left| \int_{S_R} \frac{\exp(-z^2/2)}{z} dz \right| = \left| \int_0^R \frac{\exp\left(\frac{y^2 - R^2}{2}\right) e^{iRy}}{R + iy} i dy \right| \le \frac{1}{Re^{\frac{R^2}{2}}} \int_0^R e^{\frac{y^2}{2}} dy$$

$$\lim_{R \to \infty} \frac{1}{Re^{\frac{R^2}{2}}} \int_0^R e^{\frac{y^2}{2}} dy = \lim_{R \to \infty} \frac{1}{e^{\frac{R^2}{2}} + R^2 e^{\frac{R^2}{2}}} e^{\frac{R^2}{2}} = 0$$

よって $\lim_{R \to \infty} \int_{S_R} \frac{\exp\left(-z^2/2\right)}{z} dz = 0$ である. (3) $I_{\varepsilon,R}$ を ε から R までの実軸上の積分経路とする. $D_{\varepsilon,R}$ を R+Ri から $(\varepsilon+\varepsilon i)/\sqrt{2}$ までの積分経路と

 $-C_{arepsilon},I_{arepsilon,R},S_R,D_{arepsilon,R}$ を結んでできる閉曲線を C とする. f は原点以外で正則であるか, $\int_C f(z)dz = 0$ で ある.

$$\int_{D_{\varepsilon,R}} f(z)dz = \int_{R}^{\frac{\varepsilon}{\sqrt{2}}} \frac{\exp\left(-\frac{x^2(1+i)^2}{2}\right)}{x(1+i)} (1+i)dx = -\int_{\frac{\varepsilon}{\sqrt{2}}}^{R} \frac{\exp\left(-ix^2\right)}{x} dx = -\int_{\varepsilon}^{R} \frac{\cos x^2}{x} dx - \int_{\frac{\varepsilon}{\sqrt{2}}}^{\varepsilon} \frac{\cos x^2}{x} dx + i \int_{\frac{\varepsilon}{\sqrt{2}}}^{R} \frac{\sin x^2}{x} dx$$

$$\int_{I_{\varepsilon,R}} f(z)dz = \int_{\varepsilon}^{R} \frac{\exp\left(-\frac{x^2}{2}\right)}{x} dx, \int_{D_{\varepsilon,R}} f(z)dz + \int_{I_{\varepsilon,R}} f(z)dz = \int_{\varepsilon}^{R} \frac{\exp\left(-\frac{x^2}{2}\right) - \cos x^2}{x} dx - \int_{\frac{\varepsilon}{\sqrt{2}}}^{\varepsilon} \frac{\cos x^2}{x} dx + i \int_{\frac{\varepsilon}{\sqrt{2}}}^{R} \frac{\sin x^2}{x} dx$$

$$= \int_{I_{\varepsilon,R}}^{R} f(z)dz = \int_{\varepsilon}^{R} \frac{\exp\left(-\frac{x^2}{2}\right) - \cos x^2}{x} dx - \int_{\frac{\varepsilon}{\sqrt{2}}}^{\varepsilon} \frac{\cos x^2}{x} dx + i \int_{\frac{\varepsilon}{\sqrt{2}}}^{R} \frac{\sin x^2}{x} dx + i \int_{\frac{$$

よって

$$0 = \lim_{\varepsilon \to 0, R \to 0} \int_{-C_{\varepsilon}} f(z)dz + \int_{I_{\varepsilon,R}} f(z)dz + \int_{S_R} f(z)dz + \int_{D_{\varepsilon,R}} f(z)dz$$

$$= -\frac{i\pi}{4} + \int_0^{\infty} \frac{\exp\left(-\frac{x^2}{2}\right) - \cos x^2}{x} dx - \log\sqrt{2} + i\int_0^{\infty} \frac{\sin x^2}{x} dx$$

$$\int_0^{\infty} \frac{\exp\left(-\frac{x^2}{2}\right) - \cos x^2}{x} dx = \log\sqrt{2}$$

R4 数学 A 0.19

 $|1|(1)[0,\frac{\pi}{4}]$ と $[\frac{\pi}{4},\infty)$ にわけて収束をしらべる.

 $x \in [0,\pi/4]$ で $\frac{1}{2} \le \cos x \le 1$ である.不等式を 0 から x まで積分すると, $\frac{1}{2}x \le \sin x \le x$ を得る.

$$\int_0^{\pi/4} \left| \frac{\sin x}{x^{\alpha}} \right| dx \le \int_0^{\pi/4} \frac{1}{x^{\alpha-1}} dx = \begin{cases} \left[\frac{1}{2-\alpha} \frac{1}{x^{\alpha-2}} \right]_0^{\pi/4} & (\alpha \neq 2) \\ [\log x]_0^{\pi/4} & (\alpha = 2) \end{cases}$$
 であるから $\alpha < 2$ で絶対収束する.

 $\int_0^{\pi/4} rac{\sin x}{x^{lpha}} dx \geq \int_0^{\pi/4} rac{1}{2x^{lpha-1}} dx$ であるから, $\alpha \geq 2$ で発散する. 1 < lpha < 2 のとき, $\int_{\pi/4}^{\infty} \left| rac{\sin x}{x^{lpha}} \right| dx \leq \int_{\pi/4}^{\infty} rac{1}{x^{lpha}} dx = \left[rac{1}{1-lpha} rac{1}{x^{lpha-1}}
ight]_{\pi/4}^{\infty}$ であるから lpha > 1 で絶対収束する. $\alpha \le 1$ のとき, $p > q \ge \pi/4$ に対し

$$\left| \int_q^p \frac{\sin x}{x^\alpha} dx \right| = \left| \left[\frac{-\cos x}{x^\alpha} \right]_q^p - \int_q^p \frac{\cos x}{\alpha x^{\alpha+1}} dx \right| \leq \frac{1}{q^\alpha} + \frac{1}{p^\alpha} + \frac{1}{\alpha} \int_q^p \frac{1}{x^{\alpha+1}} dx \leq \frac{1}{q^\alpha} + \frac{1}{p^\alpha} + \left[-\frac{1}{x^\alpha} \right]_q^p \to 0 \quad (p,q\to\infty)$$

であるから, $\alpha \leq 1$ で収束する.

以上より $\int_0^\infty \frac{\sin x}{x^\alpha} dx$ は $\alpha < 2$ で収束する.

(2)(1) の計算から $1<\beta<2$ で収束し、 $\beta\geq 2$ で発散することがわかる. $\beta\leq 1$ のとき、 $n\in\mathbb{N}$ に対して

$$\int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x^{\beta}} dx = \int_{0}^{\pi} \frac{\sin x}{(x+n\pi)^{\beta}} dx \ge \frac{1}{((n+1)\pi)^{\beta}} \int_{0}^{\pi} \sin x dx = \frac{2}{((n+1)\pi)^{\beta}}$$
$$\int_{1}^{\infty} \frac{|\sin x|}{x} dx = \sum_{n=1}^{\infty} \int_{n\pi}^{(n+1)\pi} \frac{|\sin x|}{x} dx \ge \sum_{n=1}^{\infty} \frac{2}{((n+1)\pi)^{\beta}}$$

よって β <1で発散する.

以上より $1 < \beta < 2$ で収束し、 $\beta \le 1, 2 \le \beta$ で発散する.

- $\boxed{2}(1)b(x,y) = x^T A y = x^T (-A^T) y = -((Ax)^T y)^T = -y^T (Ax) = -b(y,x).$
- (2)(1) より $y \in \ker f$ のときに示せば十分. $b(x,y) = x^T A y = x^T 0 = 0$.
- $(3)Ax = v + u, v \in V, u \in \ker f$ と一意に表せる. $B(x,v) = b(x,Ax-u) = x^T A(Ax-u) = x^T A^2 x = -x^T A^T A x = -(Ax)^T A x$ である. $x \in V$ より $Ax \neq 0$ であるあから, $(Ax)^T A x \neq 0$. よって $B(x,v) \neq 0$.
 - $(4)\det A = \det -A^T = (-1)^n \det A$ より n が奇数なら $\det A = 0$.
- (5)V の基底 $\{v_1,\ldots,v_k\}$ を一つ固定する。 $b_{ij}=B(v_i,v_j)$ として行列 $M=(b_{ij})$ を定める。 $x=\sum x_iv_i,y=\sum y_iv_i\in V$ に対して $B(x,y)=(\sum_i x_iv_i)^TA(\sum_j y_jv_j)=\sum_{i,j} x_iy_jv_i^TAv_j=\sum_{i,j} x_iy_jb_{ij}=x^TMy$ である。(この転置は \mathbb{R}^n の標準基底による座標の転置ではなく,固定した V の基底による座標の転置)(1)から $b_{ij}=b(v_i,v_j)=-b(v_j,v_i)=-b_{ji}$ であるから M は交代行列。M が正則でないとする。このときある $x\in V$ について Mx=0 であるが任意の y について $B(x,y)=-B(y,x)=-y^TBx=0$ となり(3)に矛盾。よって M は正則。 $\det M\neq 0$ だから(4)より k は偶数。 $\operatorname{rank} A=n-\dim\ker f=\dim V=k$ より $\operatorname{rank} A$ は偶数。
- ③ (1) 任意の $x \in X$ について $(x,y) \in U$ より $x \in S_x, y \in V_x, S_x \times V_x \subset U$ なる開集合 S_x, V_x が存在する. $\{S_x \mid x \in X\}$ は X の開被覆であるから有限部分被覆 $\{S_{x_i} \mid i=1,\ldots,n\}$ が存在する. $V = \bigcap_{i=1}^n V_{x_i}$ とすると任意の $x \in X, y \in V$ について $x \in S_{x_i}$ なる x_i が存在して $y \in V_{x_i}$ であるから $(x,y) \in U$. よって $X \times V \subset U$ である.
- $(2)X \times Y$ の閉集合 C を任意にとる。 $U := X \times Y \setminus C$ とする。 $y \notin P_Y(C)$ について $X \times y \subset U$ であるから (1) より $X \times V_y \subset U$ なる開集合 V_y が存在する。 $V := \bigcup_{y \in P_Y(C)} V_y$ とすると, $Y \setminus P_Y(C) \subset V$ である。 $v \in V$ に対して $X \times \{v\} \subset U$ であるから $\forall x \in X, (x,v) \notin C$ である。よって $v \notin P_Y(C)$ であるから $Y \setminus P_Y(C) = V$ より P_Y は閉写像.
- 4 (1)f の極は z=i,-i である. z=i の留数は $\lim(z-i)f(z)=\frac{e^{xi}}{2i}$ である. z=-i の留数は $\lim(z+i)f(z)=\frac{e^{-xi}}{-2i}$ である.
- (2)i, -i は共に D の内部の点である. 留数定理から $\int_C f(z)dz = 2\pi i (\frac{e^{xi}}{2i} + \frac{e^{-xi}}{-2i}) = \pi (e^{xi} e^{-xi}) = 2\pi i \sin x$ である.
- $(3)C_1$ を 1+Ri から Ri への有向線分, C_2 を半径 R の円の実部が負の部分を反時計回りに周る曲線, C_3 を -Ri から 1-Ri への有向線分とする. C_1,C_2,C_3,L_R を合わせると C となる.R>2 のとき

$$\begin{split} \left| \int_{C_1} f(z) dz \right| &= \left| \int_{1}^{0} \frac{e^{x(t+Ri)}}{(t+Ri)^2 + 1} dt \right| \leq \int_{0}^{1} \left| \frac{e^{xt}}{t^2 - R^2 + 1 + tRi} \right| dt \leq \int_{0}^{1} \frac{e^x}{R^2} dt \to 0 \quad (R \to \infty) \\ \left| \int_{C_3} f(z) dz \right| &= \left| \int_{0}^{1} \frac{e^{x(t-Ri)}}{(t-Ri)^2 + 1} dt \right| \leq \int_{0}^{1} \left| \frac{e^{xt}}{t^2 - R^2 + 1 - tRi} \right| dt \leq \int_{0}^{1} \frac{e^x}{R^2} dt \to 0 \quad (R \to \infty) \\ \left| \int_{C_2} f(z) dz \right| &= \left| \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{e^{xRe^{i\theta}}}{R^2 e^{2i\theta} + 1} Rie^{i\theta} d\theta \right| \leq \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left| \frac{e^{xR\cos\theta}}{R^2 e^{2i\theta} + 1} R \right| d\theta \leq \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \frac{R}{R^2 - 1} d\theta \to 0 \quad (R \to \infty) \end{split}$$

よって $\lim_{R \to \infty} \frac{1}{2\pi i} \int_{L_R} f(z) dz = \lim_{R \to \infty} \frac{1}{2\pi i} \int_C f(z) dz = \sin x$ である.

0.20 R5 数学 A

 $\boxed{1}$ $(1)f_n(0)=\frac{(-1)^n}{2n}$ である. $S_n(x)=\sum\limits_{k=1}^n f_k(x)$ とする. $S_{2n}(0)=\sum\limits_{k=1}^{2n} f_k(0)=\sum\limits_{k=1}^n f_{2k-1}(0)+f_{2k}(0)=\sum\limits_{k=1}^n \frac{-1}{2(2k-1)}+\frac{1}{2(2k)}=\sum\limits_{k=1}^n \frac{-2}{4k(4k-2)}$ である. よって $S_{2n}(0)$ は単調減少である. $S_{2n+1}(0)=\frac{-1}{2}+\sum\limits_{k=1}^n f_{2k}(0)+f_{2k+1}(0)=\frac{-1}{2}+\sum\limits_{k=1}^n \frac{1}{2(2k)}-\frac{1}{2(2k+1)}=\frac{-1}{2}+\sum\limits_{k=1}^n \frac{2}{4k(4k+2)}$ である. よって $S_{2n+1}(0)$ は単調増加である. $S_{2n+1}(0)=S_{2n}(0)+\frac{-1}{2(2n+1)}$ より $S_{2n+1}(0)< S_{2n}(0)$ である. よって共に有界数列であるから、収束する. また $\lim S_{2n+1}(0)=\lim (S_{2n}(0)+\frac{-1}{2(2n+1)})=\lim S_{2n}(0)$ より極限値は一致する. よって $S_n(0)$ は収束する. $(2)|f_n(x)|=\left|\frac{(-1)^n}{2n+\sin x}\right|=\frac{1}{2n+\sin x}\geq \frac{1}{2n+1}$ である. よって $\sum\limits_{n=1}^\infty |f_n(x)|\geq \sum\limits_{n=1}^\infty \frac{1}{2n+1}\geq \int_1^\infty \frac{1}{2x+1}dx$ より発散する.

(3) まずは各点収束することを示す。(1) と同様に $S_{2n}(x) = \sum_{k=1}^{n} \frac{-1}{2(2k-1)+\sin x} + \frac{1}{2(2k)+\sin x} = \sum_{k=1}^{n} \frac{-2}{(4k+\sin x)(4k-2+\sin x)}$ である。よって $S_{2n}(x)$ は単調減少である。 $S_{2n+1}(x) = \frac{-1}{2+\sin x} + \sum_{k=1}^{n} \frac{1}{2(2k)+\sin x} - \frac{1}{2(2k+1)+\sin x} = \frac{-1}{2+\sin x} + \sum_{k=1}^{n} \frac{2}{(4k+\sin x)(4k+2+\sin x)}$ である。よって $S_{2n+1}(x)$ は単調増加である。 $S_{2n+1}(x) = S_{2n}(x) + \frac{-1}{2(2n+1)+\sin x}$ より $S_{2n+1}(x) < S_{2n}(x)$ である。よって共に有界数列であるから、収束する。また $\lim S_{2n+1}(x) = \lim (S_{2n}(x) + \frac{-1}{2(2n+1)+\sin x}) = \lim S_{2n}(x)$ より極限値は一致する。よって $S_{n}(x)$ は収束する。 $S_{n}(x)$ が S(x) に各点収束するとする。

$$|S(x) - S_{2n}(x)| = \left| \sum_{k=2n+1}^{\infty} f_{2k-1}(x) + f_{2k}(x) \right| = \left| \sum_{k=2n+1}^{\infty} \frac{-2}{(4k + \sin x)(4k - 2 + \sin x)} \right| \le \sum_{k=2n+1}^{\infty} \frac{2}{(4k - 3)(4k - 1)} \to 0 \quad (n + 1)$$

$$|S(x) - S_{2n+1}(x)| = \left| \sum_{k=2n+2}^{\infty} f_{2k}(x) + f_{2k+1}(x) \right| = \left| \sum_{k=2n+2}^{\infty} \frac{2}{(4k + \sin x)(4k + 2 + \sin x)} \right| \le \sum_{k=2n+2}^{\infty} \frac{2}{(4k - 1)(4k + 1)} \to 0 \quad (n + 1)$$

共にxについて一様収束する. よって $S_n(x)$ はS(x)に一様収束する.

2 $(1)\{w, f(w), f^2(w), \dots, f^m(w)\}$ が一次独立であり $\{w, f(w), f^2(w), \dots, f^{m+1}(w)\}$ が一次従属となるような最小の m をとる. m=n-1 なら V の次元が n であることより条件をみたすから,このような m は存在する.

一次従属であるから、 $f^{m+1}(w)=a_0w+a_1f(w)+\cdots+a_mf^m(w)$ となる $a_0,a_1,\ldots,a_m\in\mathbb{C}$ が存在する.このとき $f^{m+2}(w)=a_0f(w)+a_1f^2(w)+\cdots+a_mf^{m+1}(w)=a_0w+(a_1+a_0)f(w)+\cdots+(a_m+a_{m-1})f^m(w)$ と表せる. f^{m+3} , f^{m+4} ,… も同様に表せる.

よって $f^n(w)$ は $w, f(w), f^2(w), \dots, f^{m-1}(w)$ の線形結合で表せるから $f^n(w) \in W$.

(2)(1) で定めた m について、W は $\{w, f(w), \dots, f^m(w)\}$ で生成されるから、m 次元ベクトル空間. よって k=m である.

 $(3)\dim W = n$ より W = V である. よって $\{w, f(w), \dots, f^{n-1}(w)\}$ は V の基底である. この基底に関す

る,
$$f$$
 の表現行列は $f^n(w)=\alpha w$ より
$$\begin{pmatrix} 0 & 0 & \dots & 0 & \alpha \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$
 である.よって固有方程式は

$$\det \begin{vmatrix} -t & 0 & \dots & 0 & \alpha \\ 1 & -t & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -t \end{vmatrix} = \begin{vmatrix} -t & 0 & \dots & 0 & \alpha \\ 1 & -t & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 \end{vmatrix} + \begin{vmatrix} -t & 0 & \dots & 0 & 0 \\ 1 & -t & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -t \end{vmatrix} = (-1)^{n+1}\alpha + (-t)^n$$

である.

3 $(1)(x_1,y_1) \sim (x_2,y_2)$ とする. ある正の実数 r が存在して, $rx_1=x_2,r^{-1}y_1=y_2$ である. よって $x_1=r^{-1}x_2,y_1=ry_2$ で r^{-1} は正の実数であるから, $(x_2,y_2)\sim (x_1,y_1)$ である.

 $(x_1,y_1)\sim (x_2,y_2), (x_2,y_2)\sim (x_3,y_3)$ とする.ある正の実数 r_1,r_2 が存在して, $r_1x_1=x_2,r_1^{-1}y_1=y_2,r_2x_2=x_3,r_2^{-1}y_2=y_3$ である.よって $r_2r_1x_1=x_3,(r_2r_1)^{-1}y_1=y_3$ であるから, $(x_1,y_1)\sim (x_3,y_3)$ である.

よって~は同値関係である.

 $(2)a \neq 0, b \neq 0$ のとき $A_{a,b} = \{(x,y) \in \mathbb{R}^2 \mid xy = ab, ax > 0\}$ である。実際, $(x,y) \sim (a,b)$ なら $rx = a, r^{-1}y = b$ より xy = ab であり,r > 0 より a と x は同符号である。また $xy = ab \neq 0$ より $x \neq 0, y \neq 0$ であるから ax > 0 である.逆に (x,y) が xy = ab, ax > 0 を満たすとする。x/a = r > 0 とすれば, $ar = x, r^{-1}b = y$ であり $(x,y) \sim (a,b)$ である.

 $a<0,b \neq 0$ のとき $A_{a,b}=\left\{(x,y)\in\mathbb{R}^2\;\middle|\;x<0,y=0\right\}$ である.これは明らか.よって $B=\bigcup_{(a,b)\in I}A_{a,b}=\left\{(x,y)\in\mathbb{R}\;\middle|\;-1\leq xy\leq 1,x<0\right\}$ である.したがって $\overline{B}=\left\{(x,y)\in\mathbb{R}\;\middle|\;-1\leq xy\leq 1,x\leq 0\right\}$ より $\overline{B}\setminus B=\left\{(x,y)\in\mathbb{R}\;\middle|\;x=0\right\}$ である.

 $(3)\mathbb{R}^2\setminus\{(0,0)\}$ から X への標準射影を p とする。 $A_{-1,0}$ と $A_{0,1}$ について考える。 $A_{-1,0}\in U\subset X$ なる開集合 U について $(-1,0)\in A_{-1,0}\subset p^{-1}(U)$ よりある $\varepsilon>0$ が存在して (-1,0) を中心とする半径 ε の開球 $B((-1,0),\varepsilon)\subset p^{-1}(U)$ である。同様に $A_{0,1}\in V\subset X$ なる開集合 V について $(0,1)\in A_{0,1}\subset p^{-1}(V)$ よりある $\delta>0$ が存在して $B((0,1),\delta)\subset p^{-1}(V)$ である。 $\gamma=\min\{\varepsilon,\delta\}$ とする。 $(-1,\gamma)\in p^{-1}(U),(-1,-\gamma)\in p^{-1}(V)$ である。 $p(-1,\gamma)\sim p(-1,-\gamma)$ であるから $A_{-1,\gamma}\in U,A_{-1,-\gamma}\in V$ である。よって $U\cap V\neq\emptyset$ である。

任意の開集合U,Vについて成り立つから、Xはハウスドルフでない.

 $\boxed{4}\ (1)1 < |z| < 2 \ \text{なら}\ \tfrac{|z|}{2} < 1, \tfrac{1}{|z|} < 1 \ \text{である.}\ \ \text{よって共に有界数列であるから}\ \tfrac{1}{(z-1)(z-2)} = \tfrac{1}{z-2} - \tfrac{1}{z-1} = \tfrac{-1}{2} \tfrac{1}{1-\frac{z}{z}} - \tfrac{1}{z} \tfrac{1}{1-\frac{1}{z}} = -\tfrac{1}{2} (1+\tfrac{z}{2}+\tfrac{z^2}{4}+\dots) - \tfrac{1}{z} (1+\tfrac{1}{z}+\tfrac{1}{z^2}+\dots) \ \text{である.}$

 $(2)\sin z$ の零点は $z=n\pi$ である. $(\sin z)'|_{n\pi}=(-1)^n$ であるから, $z=n\pi$ は $\sin z$ の一位の零点である. すなわち $\sin z=(z-n\pi)g(z), g(n\pi)\neq 0$ となる正則関数 g(z) が存在する.また $|f(n\pi)|\leq |\sin n\pi|=0$ より $f(n\pi)=0$ である. $h(z)=\frac{f(z)}{\sin z}$ とする. $\lim_{z\to n\pi}(z-n\pi)h(z)=\lim_{z\to n\pi}\frac{f(z)}{g(z)}=0$ である.すなわち $z=n\pi$ は h(z) の除去可能な特異点である. $|h(z)|\leq 1$ となるから,リュービルの定理より h は定数関数で $h(z)\equiv \alpha\in\mathbb{C}$ とできる.したがって $f(z)=\alpha\sin z$ である.

(3) 実数値関数 u,v を用いて g(x+iy)=u(x,y)+iv(x,y) と表せる. g は正則関数であるから,u,v は C^∞ 級関数である. またコーシー・リーマンの方程式 $u_x=v_y,u_y=-v_x$ を満たす.

実数値関数 s,t を用いて $g(\overline{x+iy})=s(x,y)+it(x,y)$ と表せる. $\overline{g(\overline{z})}=u(x,-y)-iv(x,-y)$ であるから, s(x,y)=u(x,-y),t(x,y)=-v(x,-y) である. したがって s,t は C^∞ 級関数である. $s_x=u_x=v_y=t_y,s_y=-u_y=v_x=-t_x$ であるから, s,t はコーシー・リーマンの方程式を満たす. よって $\overline{g(\overline{z})}$ は正則関数である.

0.21 R6 数学 A

 $\boxed{1}$ (1) 一様収束であるから, $^{\forall}\varepsilon>0$, $^{\exists}N\in\mathbb{N}, ^{\forall}n\geq N, \sup_{x\in[a,b]}|f(x)-f_n(x)|<\varepsilon$ となる.f(x) は連続であるから可積分である.

$$\left| \int_{a}^{b} f(x) - f_{n}(x) dx \right| \leq \int_{a}^{b} |f(x) - f_{n}(x)| dx \leq \int_{a}^{b} \varepsilon dx = \varepsilon (b - a) \to 0 \quad (n \to \infty)$$

$$\therefore \lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} f(x) dx$$

 $(2)x \in [a,b]$ に対して 0 < g(x) < 1 であるから, $\sum\limits_{k=0}^{\infty} g(x)^k$ は収束する. $g(x) := \lim\limits_{n \to \infty} \sum\limits_{k=0}^n g(x)^k$ とする. g(x) は有界閉区間上の連続関数であるから, $\forall x, g(x) < M < 1$ となる M が存在する.

$$\left| \sum_{k=0}^{n} g(x)^{k} - g(x) \right| = \left| \sum_{k=0}^{n} g(x)^{k} - \sum_{k=0}^{\infty} g(x)^{k} \right| = \left| \sum_{k=n+1}^{\infty} g(x)^{k} \right| \le \frac{g(x)^{n+1}}{1 - g(x)} \le \frac{M^{n+1}}{1 - M}$$

$$\sup_{x \in [a,b]} \left| \sum_{k=0}^{n} g(x)^{k} - g(x) \right| \le \frac{M^{n+1}}{1 - M} \to 0 \quad (n \to \infty)$$

より一様収束.

 $(3)1 \leq x \leq 3$ のとき, $0 < \frac{x}{1+x} < 1$ であるから, $\sum_{k=0}^{\infty} \left(\frac{x}{1+x}\right)^k$ は $\frac{1}{1-\frac{x}{1+x}} = 1+x$ に一様収束する. したがって

$$\lim_{n \to \infty} \int_1^3 \sum_{k=0}^n \left(\frac{x}{1+x} \right)^k dx = \int_1^3 \lim_{n \to \infty} \sum_{k=0}^n \left(\frac{x}{1+x} \right)^k dx = \int_1^3 1 + x dx = 6$$

2 $(1)\lambda$ に対応する固有ベクトル $v \in V \setminus \{0\}$ をとる. $Tv = \lambda v$ である. $T^2v = T(Tv) = \lambda Tv = \lambda^2 v$ であるから、 λ^2 は T^2 の固有ベクトルである.

 $(2)T^k=0$ とする. T の固有値 λ に対して (1) と同様にして λ^k が T^k の固有値であることがわかる. 零写像の固有値は全て零であるから, $\lambda^k=0$ である. よって $\lambda=0$ である.

 $(3)F=\mathbb{C}$ より V は T の広義固有空間に分解できる。T の固有値は 0 のみであるから,V が T の広義固有空間である。すなわち $V=\left\{v\in V\mid \exists n,T^nv=0\right\}$ である。V の基底 $\left\{v_1,\cdots,v_n\right\}$ に対して, $T^nv_i=0$ となる n をそれぞれ n_i とする。 $N:=\max\{n_1,\cdots,n_n\}$ とすれば, $T^N=0$ である。

$$(4)A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
 とすれば、 $f(x) = Ax$ で定まる線形写像 $f: \mathbb{R}^2 \to \mathbb{R}^2$ は $\det \begin{vmatrix} 0 - \lambda & 1 \\ -1 & 0 - \lambda \end{vmatrix} = \lambda^2 + 1 = 0$ であるから、 0 以外の実数を固有値にもたない. $A^2 = -E$ であるから、 f はべき零でない.

3 (1) 成立.

(2) 成立. f(K) が連結でないと仮定する. $f(K) = (U \cap f(K)) \cup (V \cap f(K)), (U \cap f(K)) \cap (V \cap f(K)) = \emptyset, (U \cap f(K)) \neq \emptyset \neq (V \cap f(K))$ となる Y の開集合 U, V が存在する. $(f^{-1}(U) \cap K) \cup (f^{-1}(V) \cap K) = K, (f^{-1}(U) \cap K) \cap (f^{-1}(V) \cap K) = \emptyset, (f^{-1}(U) \cap K) \neq \emptyset \neq (f^{-1}(V) \cap K) \cap (f^{-1}(V) \cap K) = \emptyset$. K が連結であることに矛盾.

 $(3)K\cap A$ の任意の開被覆 $S=\{U_{\lambda}\}_{\lambda\in\Lambda}$ を任意にとる. $S'=S\cup\{X\setminus A\}$ とする. S' は K の開被覆であるから有限部分被覆 $\{U_{\lambda_1},\cdots,U_{\lambda_n},X\setminus A\}$ が存在する. よって $\{U_1,\cdots,U_n\}$ が $K\cap A$ の有限部分被覆であるからコンパクト.

 $\boxed{4}$ (1)f が a で正則であるから,ある a の ε 近傍で $f(z)=\sum\limits_{n=0}^{\infty}c_{n}(z-a)^{n}$ とできる.一様収束しているから, $f'(z)=\sum\limits_{n=1}^{\infty}nc_{n}(z-a)^{n-1}$ である.よって $f'(a)=c_{1}$ である.

 $rac{f(z)}{(z-a)^n}$ の z=a における留数は $rac{f(z)}{(z-a)^n}$ のローラン展開が $\sum\limits_{k=-2}^{\infty}c_k(z-a)^{k-2}$ であるから c_1 である.よって 留数は f'(a)

 $(2)(z^2+1)^2=(z-i)^2(z+i)^2$ である.よって極は z=i,-i. $\frac{e^{iz}}{(z+i)^2}$ は z=i で正則であるから, $\frac{e^{iz}}{(z-i)^2(z+i)^2}$ の z=i における留数は (1) より $\frac{d}{dz}\left.\frac{e^{iz}}{(z+i)^2}\right|_{z=i}=\frac{1}{2ei}$ である.同様に z=-i における留数は $\frac{d}{dz}\left.\frac{e^{iz}}{(z-i)^2}\right|_{z=-i}=0$ である.

(3)

$$\left| \int_{C_R} \frac{e^{iz}}{(z^2 + 1)^2} dz \right| \le \left| \int_0^{\pi} \frac{e^{iRe^{i\theta}}}{(R^2 e^{2i\theta} + 1)^2} Rie^{i\theta} d\theta \right| \le \int_0^{\pi} \left| \frac{e^{-R\sin\theta}}{(R^2 - 1)^2} \right| d\theta = \frac{\pi}{(R^2 - 1)^2} \to 0 \quad (R \to \infty)$$

 $(4)R_1, R_2 > 1$ に対して,

$$\left| \int_{R_1}^{R_2} \frac{\cos x}{(x^2 + 1)^2} \right| \le \int_{R_1}^{-1} \frac{1}{(x^2 + 1)^2} dx + \int_{-1}^{1} \frac{1}{(x^2 + 1)^2} dx + \int_{1}^{R_2} \frac{1}{(x^2 + 1)^2} dx$$

$$\le \int_{R_1}^{-1} \frac{1}{x^4} dx + \int_{-1}^{1} \frac{1}{(x^2 + 1)^2} dx + \int_{1}^{R_2} \frac{1}{x^4} dx \to 0 \quad (R_1, R_2 \to \infty)$$

よって広義積分は収束する.留数定理から $\int_{-\infty}^{\infty} \frac{\cos x}{(x^2+1)^2} dx = 2\pi i \frac{1}{2ei} = \frac{\pi}{e}$ である.

R7 数学 A 0.22

 $1 \forall x, f(x) < M \$ $\downarrow b$

$$\left(\int_0^1 f(x)^n dx\right)^{\frac{1}{n}} \le \left(\int_0^1 M^n dx\right)^{\frac{1}{n}} = M : \lim_{n \to \infty} \left(\int_0^1 f(x)^n dx\right)^{\frac{1}{n}} \le M$$

である. 任意の $\varepsilon>0$ に対して, $A_{\varepsilon}=\{x\in[0,1]\mid\ |f(x)-M|\leq\varepsilon\}$ とする. μ をルベーグ測度とすると

$$\left(\int_0^1 f(x)^n dx\right)^{\frac{1}{n}} \ge \left(\int_{A_{\varepsilon}} f(x)^n dx\right)^{\frac{1}{n}} \ge \left(\int_{A_{\varepsilon}} (M - \varepsilon)^n dx\right)^{\frac{1}{n}} = (M - \varepsilon)\mu(A_{\varepsilon})^{\frac{1}{n}} \to M - \varepsilon \quad (n \to \infty)$$

である. arepsilon は任意であるから, $\lim_{n o \infty} \left(\int_0^1 f(x)^n dx \right)^{\frac{1}{n}} = M$ である.

2 $(1)E_{ij}$ をi,j成分が1で他が0である行列とする. このとき $\{E_{ij} \mid i \neq j\} \cup \{E_{ii} - E_{nn} \mid i = 1,2,\ldots,n-1\}$ は V の基底となる. よって V の次元は n^2-1 である.

 $(2)X,Y\in M_n(\mathbb{C})$ に対して $\operatorname{tr}(XY)=\sum\limits_{i=1}^n\sum\limits_{j=1}^nx_{ij}y_{ji}=\sum\limits_{i=1}^n\sum\limits_{i=1}^ny_{ji}x_{ij}=\operatorname{tr}(YX)$ である. よって $X\in V$ に対し て $\operatorname{tr}(A^{-1}XA) = \operatorname{tr}(XAA^{-1}) = \operatorname{tr}(X) = 0$ である.すなわち $f_A(V) \subset V$ である.また任意の $X \in V$ に対し て $f_A(AXA^{-1}) = X$ であるから、 $f_A(V) = V$ である.

$$(3)A$$
 が対角化可能であるから正則行列 P と対角行列 D が存在して $P^{-1}AP=D$ である. A が正則であるから D も正則である. すなわち D の対角成分は全て非零である. $D=\begin{pmatrix} d_1&0\\&\ddots\\0&d_n\end{pmatrix}$ $(^{orall}i,d_i
eq b)$

0) とする. $M_n(\mathbb{C})$ の基底 $\{E_{ij} \mid i,j \in 1,2,\ldots,n\}$ に対して $\{PE_{ij}P^{-1} \mid i,j \in 1,2,\ldots,n\}$ も基底であ る. $P^{-1}f_A(PE_{ij}P^{-1})P = P^{-1}A^{-1}PE_{ij}P^{-1}AP = D^{-1}E_{ij}D = \frac{d_j}{d_i}E_{ij}$ である. すなわち $f(PE_{ij}P^{-1}) = P^{-1}A^{-1}PE_{ij}P^{-1}AP = D^{-1}E_{ij}D$ $rac{d_j}{d_i}PE_{ij}P^{-1}$ である.よって固有ベクトルからなる基底が存在するから対角化可能.

|3|(1)略

(2) ハウスドルフ A のコンパクト部分集合 C を任意にとる. $a \in A \setminus C$ を固定する. $c \in C, a \in A$ に対して $c \in U_c, a \in V_c, U_c \cap V_c = \emptyset$ なる開集合 U_c, V_c が存在する. $\{U_c \mid c \in C\}$ は C の開被覆であるから、有限部分 被覆 $\{U_{c_1},U_{c_2},\ldots,U_{c_n}\}$ が存在する. $V_a=\bigcap_{i=1}^n V_{c_i}$ は開集合であり, $V_a\cap C=\emptyset$ である. $A\setminus C=\bigcup_{a\in A\setminus C} V_a$ であるから $A\setminus C$ は開集合である. よって C は閉集合.

(3)K を $X \times Y$ のコンパクト集合とする. $\pi(K)$ はコンパクト集合であるから, $f^{-1}(\pi(K))$ はコンパクト集合。 $z \in h^{-1}(K)$ に対して $(f(z),g(z)) \in K$ であるから, $f(z) \in \pi(K)$ である. よって $h^{-1}(K) \subset f^{-1}(\pi(K))$ である.また K は閉集合であるから, $h^{-1}(K)$ は閉集合である. コンパクト集合の閉部分集合はコンパクトであるから, $h^{-1}(K)$ はコンパクト集合. よって h は固有.

 $\boxed{4}$ (1)z = -1 が極であり、留数は $f(-1) = \exp((a-1)\log(-1)) = \exp((a-1)(0+i\pi)) = e^{i(a-1)\pi}$ である。 (2)

$$\left| \int_{C_{(r,\varepsilon)}} f(z) dz \right| = \left| \int_{\varepsilon}^{2\pi - \varepsilon} \frac{\exp\left((a-1)\log r e^{i\theta}\right)}{r e^{i\theta} + 1} i r e^{i\theta} d\theta \right| \leq \int_{\varepsilon}^{2\pi - \varepsilon} \left| \frac{r^{a-1}}{r e^{i\theta} + 1} r \right| d\theta \leq \int_{\varepsilon}^{2\pi - \varepsilon} \frac{r^a}{|r-1|} d\theta \leq 2\pi \frac{r^a}{|r-1|} \to 0 \quad (r \to 0)$$

(3)R>r として $re^{iarepsilon}$ から $Re^{iarepsilon}$ までの経路を $S_{(r,R)}$ とし, $Re^{i(2\pi-arepsilon)}$ から $re^{i(2\pi-arepsilon)}$ までの経路を $T_{(r,R)}$ とする。積分経路 C を $C=S_{(r,R)}+C_{(R,arepsilon)}+T_{(r,R)}-C_{(r,arepsilon)}$ とすれば,留数定理から $\int_C f(z)dz=2\pi ie^{i(a-1)\pi}$ である。また (2) の不等式から $\lim_{R\to\infty}\lim_{\varepsilon\to 0}\int_{C_{(R,arepsilon)}}f(z)dz=0$ である。

$$\int_{S(x,R)} f(z)dz = \int_{r}^{R} \frac{\exp((a-1)\log x e^{i\varepsilon})}{xe^{i\varepsilon} + 1} e^{i\varepsilon} dx = \int_{r}^{R} \frac{x^{a-1}e^{ia\varepsilon}}{xe^{i\varepsilon} + 1} dx$$

 $\left|\frac{x^{a-1}e^{ia\varepsilon}}{xe^{i\varepsilon}+1}\right| \leq \frac{x^{a-1}}{|x-1|} \ \text{ で あ 3.} \ \ \text{右 辺 は } [r,R] \ \text{ で 可 積 分 で あ 3 か ら ル ベ - グ の 収 東 定 理 よ } \\ \mathfrak{h} \lim_{\varepsilon \to 0} \int_{S_{(r,R)}} f(z) dz \ = \ \int_r^R \lim_{\varepsilon \to 0} \frac{x^{a-1}e^{i(a-1)\varepsilon}}{xe^{i\varepsilon}+1} dx \ = \ \int_r^R \frac{x^{a-1}}{x+1} dx \ \text{ で あ 3.} \ \ \text{同 様 に } \lim_{\varepsilon \to 0} \int_{T_{(r,R)}} f(z) dz \ = \int_R^r \lim_{\varepsilon \to 0} \frac{x^{a-1}e^{ia(2\pi-\varepsilon)}}{xe^{i(2\pi-\varepsilon)}+1} dx = -e^{2\pi a} \int_r^R \frac{x^{a-1}}{x+1} dx \ \text{ で あ 3.} \ \ \text{よって}$

$$2\pi i e^{i(a-1)\pi} = \int_{S_{(r,R)}} f(z)dz + \int_{T_{(r,R)}} f(z)dz + \int_{C_{(r,\varepsilon)}} f(z)dz + \int_{C_{(R,\varepsilon)}} f(z)dz \to (1 - e^{2i\pi a}) \int_{r}^{R} \frac{x^{a-1}}{x+1} dx$$
$$\therefore \int_{0}^{\infty} \frac{x^{a-1}}{x+1} dx = \frac{2\pi i e^{i(a-1)\pi}}{1 - e^{2i\pi a}} = 2\pi i \frac{1}{e^{i\pi a} - e^{-i\pi a}} = \frac{\pi}{\sin a\pi}$$