Our goal is to find a pdf for a given number of rare events. For a given n and J,

$$E_{sig} = \sum_{1 < i < j < n} J_{i,j} sig_i sig_j.$$

Let  $D_i$  be the distribution of  $E_{sig}$  over all  $2^n$  sig for the ith realization of J.  $D_i$  has mean 0 and variance given by the sum of  $J_{i,j}^2$ . We assume all  $D_i$  are normal.

Say  $E_{sig}$  is a rare event if it is less than  $c\sqrt{n}$  ( $\sqrt{n}$  begin the standard deviation of  $D_i$ ). From our above assumption, the only thing that differs among different  $D_i$  is its variance. From 5 realizations of J with n=18, this claim seems reasonable:



We want to find the probability of r rare events:

$$P(r \text{ rare events}) = P(\text{ area } (-\infty, c\sqrt{n}) = r)$$

$$= P(2^n \cdot \frac{1}{2}[1 + erf(\frac{c\sqrt{n}}{\sqrt{2}\sigma})] = r)$$

$$= P(\sigma = \frac{c\sqrt{n}}{\sqrt{2}erf^{-1}(r/(2^{n-1}) - 1)})$$
(1)

The variance of  $D_i$  follows a chi-squared distribution with mean

[degrees of freedom] 
$$\cdot (var J)$$
  $\frac{n(n-1)}{2} \cdot \frac{2}{n-1}$ 

We can directly compute (1) a scaled chi-squared pdf. Let W denote the expression for the desired  $\sigma$  in (1). Then the adjusted quantitiy desired in a chi-squared pdf is  $X := W \cdot \frac{n-1}{2}$ .

$$P(r \text{ rare events}) = \frac{X^{nC^2/2-1}e^{-X/2}}{2^{nC^2/2}\Gamma(nC^2/2)}$$