图论作业(4.14)

中国人民大学 信息学院 崔冠宇 2018202147

P25, T42 若 G 是单图, $\varepsilon > \binom{\nu-1}{2}$, 则 G 是连通图.

证明. 反设 G 是不连通的, 那么可以把 G 划分为不连通的两部分 G_1, G_2 , 设 $\nu(G_1) = \nu_1, \nu(G_2) = \nu_2$. 由于这两部分都是单图, 所以 $\varepsilon(G_1) \leq \frac{\nu_1(\nu_1-1)}{2}, \varepsilon(G_2) \leq \frac{\nu_2(\nu_2-1)}{2}, \nu_1 + \nu_2 = \nu$. 但是 $\varepsilon = \frac{\nu_1(\nu_1-1)}{2} + \frac{\nu_2(\nu_2-1)}{2} = \nu_1^2 - \nu_1 \nu + \frac{\nu^2-\nu}{2} \leq \frac{(\nu-1)(\nu-2)}{2} = (\nu^1)$ (当且仅当 $\nu_1 = 1$ 或 $\nu_2 = 1$ 时取等号), 矛盾, 所以 G 是连通图. \square

P26, **T43** 画一个不连通的单图 G, 使得 $\nu(G) > 1$, 且 $\varepsilon = \binom{\nu-1}{2}$.

解. 如图所示, $\nu(G) = 4$, $\varepsilon = \binom{3}{2} = 3$.

一个满足要求的不连通的单图 G.

P26, **T44** 证明: 若 $G \in \delta > [\frac{\nu}{2}] - 1$ 的单图, 则 $G \in \mathcal{B}$ 是连通图.

证明. 反设 G 不连通, 则至少含有两个连通分支, 同时至少有一个连通分支 G' 满足 $\nu(G') \leq {\lfloor \frac{\nu}{2} \rfloor}$, 显然 G' 也是一个单图. 任取 $v \in G'$, 因为 G' 是一个单图, 所以 $d(v) \leq \nu(G') - 1 \leq {\lfloor \frac{\nu}{2} \rfloor} - 1$, 与假设矛盾. 所以 假设不成立, G 是连通图. \square

P26, T46 证明: 若 G 是连通图, 且每顶皆偶次, 则 $\omega(G-v) \leq \frac{1}{2}d(v)$.

证明. 记 $V_0 = \{u | (u,v) \in E(G)\}$ 是 G 中与 v 相邻的顶点构成的集合. 根据顶点处于 G-v 的不同连通分支,可以将 V_0 划分为 $\omega(G-v)$ 个非空集合 $V_1, V_2, \ldots, V_{\omega(G-v)}$. WLOG,不妨设 $V_i = \{u_1, u_2, \ldots, u_{k_i}\}$,下面证明 k_i 是偶数. 因为 $d_G(u_j)(j=1,2,\ldots,k_i)$ 为偶数,而 u_j 与 v 之间各减少了一条边,因而 $d_{G-v}(u_j)$ 均为奇数,若 k_i 是奇数,则 V_i 对应的连通分支有奇数个奇度点,与握手定理的推论矛盾,故 k_i 为偶数, $k_i \geq 2$ 。所以,对每个 V_i 的 k_i 求和,得到: $d(v) = \sum_{i=1}^{\omega(G-v)} k_i \geq 2\omega(G-v)$,即 $\omega(G-v) \leq \frac{1}{2}d(v)$. \square

每个连通分支与 v 有偶数条边相连.

P26, T51 若 G 是连通单图, G 不是完全图, 证明 G 中有三顶 u, v, w, 使得 $uv \in E(G)$, $vw \in E(G)$, 但 $uw \notin E(G)$.

证明. 因 G 不是完全图, 故 $\exists x, y \in V(G), xy \notin E(G)$. 由于 G 是连通的, 故 x, y 之间存在一条路, 设 $P(x,y) = xv_1v_2 \dots v_k y (k \ge 1)$ 是 x, y 之间的最短路. 对 k 分情况讨论:

- k = 1: $\mathbb{R} \ u = x, v = v_1, w = y \ \mathbb{P} \ \mathbb{P}$;
- k > 1: 如下图所示, 显然 $xv_2 \notin G$, 否则与 $P(x,y) = xv_1v_2 \dots v_k y (k \ge 1)$ 是 x,y 之间的最短路矛盾. 此时取 $u = x, v = v_1, w = v_2$ 即可.

情况2 示意图.

补充题. 证明: 设 P(u,x), P(u,y) 分别为 u 到 x, u 到 y 在图 G 中的最短路, 且长度同为奇数或偶数, 如果 e = (x,y), 则 G 中一定存在奇圈.

证明. 由于 P(u,x) 和 P(u,y) 都是最短路, 所以每条路的顶点是不重的 (但 $P(u,x) \cup P(u,y)$ 不一定). 设 v 是由 x 和 y 分别沿着 P(u,x) 和 P(u,y) 向 u 前进遇到的第一个公共点, 如下图所示. 由 v 的取得方法可知, $P(x,v) \cup P(y,v) \cup e$ 是圈, 圈长 l = l(P(u,x)) + l(P(u,y)) + 1 - 2l(P(u,v)) 为奇数(偶数 +1 — 偶数). \square

