Random Walks

Tom Eichlersmith

.....

Background

Method

Random Walks on Simple Two-Dimensional Manifolds

Tom Eichlersmith

Hamline University

teichlersmith01@hamline.edu

April 9, 2018

Overview

Random Walks

Tom Eichlersmith

Introducti

Background

ethod

esults

uestions

Introduction

Background

Method

Results

Introduction

Random Walks

Tom Eichlersmith

Introduction

Background

Viethod

Results

- Random
- Walk
- Simple
- ► Two-Dimensional
- Manifolds

Regular Surfaces

Random Walks
Tom Eichlersmith

100

Background

Method

Questions

Coordinate Patch $\mu:U\to V$: continuous functions mapping from $U\subseteq\mathbb{R}^2$ to a subset of the surface V

Chart: covers entire surface

Regular Surfaces:

- ▶ Differentiable the coordinate functions of μ in \mathbb{R}^3 have continuous partial derivatives for all orders
- lacktriangle Homeomorphic μ and its inverse are continuous
- \blacktriangleright Satisfies the Regularity Condition The differential of μ is a one-to-one linear transformation

Charts

Random Walks

Tom Eichlersmith

Introduction

Background

Method

esults

$$\phi: \mathbb{R}^2 \to P$$

$$\phi(u, v) = (u, v, 0)$$

Charts

Random Walks

Tom Eichlersmith

Introduction

Background

Method

Results

$$\sigma : \mathbb{R}^2 \to S$$

$$\sigma(u, v) = \left(\frac{2u}{1 + u^2 + v^2}, \frac{2v}{1 + u^2 + v^2}, \frac{-1 + u^2 + v^2}{1 + u^2 + v^2}\right)$$

Charts

$$\tau : [0,1) \times [0,1) \to T(R,r)$$

$$\tau(u,v) = \Big((R + r\cos(2\pi v))\cos(2\pi u),$$

$$(R + r\cos(2\pi v))\sin(2\pi u),$$

$$r\sin(2\pi v) \Big)$$

Random Walks

Tom Eichlersmith

Introduction

Background

Method

Results

Geodesic Equations

Random Walks

Tom Eichlersmith

Introduction

Background

Method

- 1. Extend definition of line to other surfaces
- 2. Assume a path is a geodesic contained in a coordinate patch
- 3. Derive geodesic equations for coordinate functions of path

Geodesic Equations

Random Walks

Tom Eichlersmith

Introduction

Background

Vlethod

Juestions

Christoffel Symbols

Random Walks

Tom Eichlersmith

Introductio

Background

vietnoa

Runge-Kutta 4th Order Method (RK4)

$$\frac{dy}{dt} = F(y) \quad y_0 = y(0)$$

Numerically solve up to t = h with N iterations.

$$\delta \leftarrow h/N$$

$$y \leftarrow y_0$$

$$loop \ N \ times:$$

$$k_1 \leftarrow F(y)$$

$$k_2 \leftarrow F(y + (\delta/2)k_1)$$

$$k_3 \leftarrow F(y + (\delta/2)k_2)$$

$$k_4 \leftarrow F(y + \delta k_3)$$

$$y \leftarrow y + (\delta/6)(k_1 + 2k_2 + 2k_3 + k_4)$$

Coordinate Wrapping

Random Walks

Tom Eichlersmith

Introductio

.

Method

Kesuits

Optimizations

Random Walks
Tom Eichlersmith

Dackgroui

Method

Result

- ► Collection of every step point
- Number of steps in RK4
- Simplifications due to symmetry
 - ▶ Plane with radius representation
 - Sphere with polar angle representation
- Method of "compressing" the data

Plane

Random Walks

Tom Eichlersmith

Introduction

Backgroun

Results

Plane

Random Walks

Tom Eichlersmith

Introduction

Rackgroup

Method

Results

Sphere

Random Walks

Tom Eichlersmith

Introduction

Backgroup

Method

Results

Sphere

Random Walks

Tom Eichlersmith

Introduction

Background

Method

Results

Torus

Random Walks

Tom Eichlersmith

Introduction

Daalianaiii

Method

Results

Torus

Random Walks

Tom Eichlersmith

Introductio

. Sackgroun

Method

Results

Overall Package

Random Walks

Tom Eichlersmith

Results

Package Attributes

- Versatility
- Flexibility
- Speed

Specific Parts

- Stepper
- Coordinate Wrappers
- ► Escape Checks

Random Walks

Tom Eichlersmith

minoduction

Background

vietnoa

Questions