PHY2006 Assignment 4 – Numerical Solutions to Differential Equations

Deadline for Submission 6pm, Monday 18 Oct 2021

1. An energetic proton in the solar wind is moves in a region of space where the Earth's magnetic field has a magnitude of $B=1.044\times 10^{-5}$ T in the positive z direction. The proton has a velocity of $\dot{x}=10^6$ m/s in the positive x direction ($\dot{y}=\dot{z}=0$) as it passes through the origin at t=0. The Lorentz force on the proton results in the following equations of motion

(1)
$$m\frac{d\dot{x}}{dt} = eB\dot{y}$$
 (2) $m\frac{d\dot{y}}{dt} = -eB\dot{x}$ (3) $m\frac{d\dot{z}}{dt} = 0$

While these are ODEs (the dependent variables x and y are each a function of t only) equations (1) and (2) are coupled since x, y are present in both.

- (a)(i)By differentiating equation (1) and doing a substitution, solve these equations analytically using the initial conditions to obtain expressions for the components of the velocity \dot{x} , \dot{y} , \dot{z} as a function of ω , t where $\omega = \frac{eB}{m}$. [25]
 - (ii) Using initial conditions again, obtain expressions for x, y, z as a function of t. Using Excel (or other software) plot out the motion of the proton in the x, y plane (make the scales on each axis the same length and plot points every 10^{-4} s until $t = 6 \times 10^{-3}$ s). [20]
- (b)(i)Using the Euler method write down finite difference versions of equations (1) and (2) in terms of \dot{x}_{i+1} , \dot{x}_i , \dot{y}_{i+1} , \dot{y}_i , ω and Δt . Similarly write down expressions for x_{i+1} and y_{i+1} in terms of x_i , y_i , \dot{x}_i , \dot{y}_i and Δt . [15]
 - (ii) Using Excel (or other) complete the following table using your finite difference equations with $\Delta t = 2\pi/10\omega$.

•		_			•
i	t _i	\dot{x}_i	\dot{y}_i	x_i	y_i
0	0	10 ⁶	0	0	0
1	Δt				
2	$2\Delta t$				
3	$3\Delta t$				
:	:	:	:	:	:
10	$10\Delta t$				

[20] [10]

- (iii) Plot the numerical and analytical solution on the same x, y graph.
- (iv) For the numerical solution, what value of Δt is needed so that after one revolution the proton is within 500 m of the origin? [10]

Extra Question

Consider the following differential equation with initial conditions, t=0,y=1

$$\frac{dy}{dt} + 2y = 2 - e^{-4t}$$

- (a) Obtain the analytical solution of this 1st order ODE.
- (b) Using the explicit Euler method write down the differential equation as a finite difference equation which can be used to obtain a numerical solution. Express it in terms of y_{i+1} , y_i , t_i and Δt .
- (c) Using $\Delta t = 0.1$, complete the below table to determine the values of y_i up to $t_i = 0.5$.
- (d) By comparing your analytical and numerical solutions work out the % global error at each step.

i	t_i	y_i	$y(t_i)$ - analytical	% Error
0	0	1	1	0
1	0.1			•••
2	0.2			•••
3	0.3			•••
4	0.4			
5	0.5	•••		