컴퓨터구조, 데이터베이스설계및구현

2017학년도 2 학기

3 학년 3 교시

※ 정답 하나만을 골라 반드시 컴퓨터용 사인펜으로 OMR 답안지에 표기할 것.

학 과		감독관	(1)
학 번	-	성 명	

 1과목
 컴 퓨 터 구 조
 (1~35)

출제위원 : 방송대 김형근

출제범위:교재 전체 (해당 멀티미디어강의 포함)

- 1. 다음 중 컴퓨터 명령어를 구성하는 연산코드 필드(OP code field) 에 대한 설명으로 가장 적절한 것은?
 - ① 기억장치 주소 혹은 처리장치 레지스터를 선택하기 위한 필드이다.
 - ② 중앙처리장치에서 수행할 연산을 지정하는 필드이다.
 - ③ 명령어의 주소지정방식을 지정하는 필드이다.
 - ④ 인터럽트 요청을 위한 제어 필드이다.
- 2. 다음 컴퓨터 명령어에 관한 설명으로 적절한 것은?

	7.7
$A \cap H \cap$	X

- ① 2-주소 컴퓨터 명령어이다.
- ② 데이터 전송을 위한 컴퓨터 명령어이다.
- ③ 컴퓨터의 내부구조로 볼 때 누산기를 이용하는 컴퓨터 명령어이다.
- ④ 컴퓨터의 내부구조로 볼 때 다중 레지스터를 이용하는 컴퓨터 명령어이다.
- ※ (3~4) 다음 프로그램을 보고 물음에 답하시오.

 $A: AC \leftarrow M[A]$ LOAD (a) $B ; AC \leftarrow AC + M[B]$ ADD (b) STORE $X : M[X] \leftarrow AC$ (c) C; $AC \leftarrow M[C]$ LOAD (d) MUL $X ; AC \leftarrow AC \times M[X]$ (e)STORE X; ((f)

- 3. 위의 프로그램은 다음 중 어느 수식을 계산하는 것인가?

 - (3) X = (A+B)/C
- 4. 프로그램에서 (f)의 괄호 안에 들어갈 식으로 알맞은 것은?
 - $\textcircled{1} \ M[X] \leftarrow A\,C \times A\,C$
 - $② AC \leftarrow AC \times M[X]$
 - \bigcirc $AC \leftarrow M[X]$
 - $\textcircled{4} \ M[X] \leftarrow AC$
- 5. 다음 중 산술연산에서 두수를 가산할 때 결과를 저장할 수 있는 레지스터의 자릿수가 모자라는 경우에 발생하는 에러를 저장하는 상태 레지스터의 플래그(flag)는?
 - ① sign bit
- 2 zero bit
- 3 overflow bit
- 4 carry bit
- 6. 다음 마이크로 연산에 관한 설명으로 잘못된 것은?

 $T_1 + T_2 : R0 \leftarrow \overline{R2} + 1, R3 \leftarrow R4 \wedge R5$

- ① $T_1 + T_2$ 은 두 변수의 OR 연산이다.
- ② R0에는 R2의 2의 보수가 저장된다.
- ③ R0에는 R2의 1의 보수가 저장된다.
- ④ R3에는 R4과 R5의 논리 곱 연산 결과가 저장된다.

※ (7~9) 아래 그림은 어느 순간의 기억장치와 PC, 레지스터를 나타내고 있다. PC의 현재 내용이 256이므로 이제 곧 256번지에 있는 컴퓨터 명령어를 수행하게 될 것이다. 컴퓨터 명령어의 연산코드 내용이 해당 피연산자를 AC에 적재하라는 것이고 주소 필드의 값은 500일 때, 다음 물음에 답하시오. 단, 주소지정방식이 레지스터를 사용할 경우는 레지스터 R1을 사용하는 것으로 가정한다.

		기억장치	
	256	연산코드	주소방식
	257	ADRS, NBR=500	
PC = 256	258	다음 명령어	
R1 = 400	400	800	
AC	500	818	
연산코드: AC에 적재하라.			
	756	50)2
	757	60)0
	758	700	
	800	300	
	818	45	56
	900	45	58

- 7. 즉치 주소지정방식과 직접 주소지정방식을 이용한다면 각각 어떤 값이 AC에 적재될 것인가?
 - ① 257, 500
 - 2 456, 256
 - 3 500, 456
 - **4** 500, 818
- 8. 간접 주소지정방식과 상대 주소지정방식을 이용한다면 각각의 유효주소는?
 - 1 818, 758
 - 2 818, 700
 - 3 500, 818
 - **4** 500, 256
- 9. 인덱스된 주소지정방식과 레지스터 간접 주소지정방식을 이용 한다면 각각의 유효주소는?
 - 1 400, 500
 - 2 458, 500
 - 3 500, 400
 - 4 900, 400
- 10. 다음 중 내부 버스에 대한 설명으로 적절한 것은?
 - ① 기억장치와 중앙처리장치 사이의 데이터 전송을 위한 공통 선로의 집합이다.
 - ② 중앙처리장치 내부에서 정보를 전달할 수 있는 통로이다.
 - ③ 멀티플렉서와 인코더를 이용하여 구성할 수 있다.
 - ④ 입출력장치들을 내부적으로 연결할 수 있는 통로이다.

 $(11\sim12)$ 다음 그림은 제어단어의 각 필드를 나타내고 있다. 물음에 답하시오.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A B D F H

- 11. 각 필드에 관한 설명 중에서 부적절한 것은?
 - ① A와 B는 출발 레지스터를 선택하는 필드이다.
 - ② D는 도착 레지스터를 선택하는 필드이다.
 - ③ F는 ALU에서 수행되는 연산의 하나를 선택하는 필드이다.
 - ④ H는 상태 레지스터의 상태 값을 선택하는 필드이다.
- 12. 위의 제어단어로부터 알 수 있는 사실로서 적절한 것은?
 - ① A가 3비트이므로 외부 입력까지 고려한다면 레지스터 세트에는 최대한 8개의 레지스터가 포함될 수 있다.
 - ② D가 3비트이므로 외부 출력까지 고려한다면 레지스터 세트 에는 최대한 7개의 레지스터가 포함될 수 있다.
 - ③ F가 4비트이므로 시프터에서 이루어지는 연산의 종류가 최대 한 16개이다.
 - ④ H가 3비트이므로 최대 8개의 상태 값이 존재한다.
- ※ (13~15) 아래 그림은 처리장치의 블록도이다. 다음 물음에 답하시오.

- 13. 중앙처리장치에서 내부버스를 구성하는 방법은 멀티플렉서와 ()를 이용한다. 여기서 앞의 괄호 안의 ()에 해당되는 장치는 위의 그림에서 어디인가?
 - 1 2

2 4

3 E

- 4 2
- 14. 그림의 ⓒ에 관한 설명으로 적절한 것은?
 - ① 출발 레지스터의 내용을 ALU로 보내는데 필요하다.
 - ② 도착 레지스터를 결정하는데 필요하다.
 - ③ 상태비트를 보관하는데 필요하다.
 - ④ ALU의 결과를 비트 단위의 이동을 위해 필요하다.
- 15. 위 그림에서 레지스터 세트에 15개의 레지스터가 있고, ④는 21개의 연산, ④는 7개의 연산을 수행한다고 가정했을 때 제어 단어는 총 몇 비트가 되겠는가?
 - ① 20

② 22

3 23

- **4** 24
- 16. 다음 중 시프트 마이크로연산의 설명으로 잘못된 것은?
 - ① 레지스터 내의 데이터를 시프트시키는 연산이다.
 - ② 데이터의 측면이동에 사용된다.
 - ③ 연산의 종류로는 가산 시프트와 감산 시프트가 있다.
 - ④ 왼쪽과 오른쪽 쉬프트에 있어서 입력비트는 0으로 가정한다.

※ (17~20) 다음 그림은 마이크로프로그램 제어기의 블럭도이다. 그림을 보고 물음에 답하시오.

- 17. 그림에서 예에 들어갈 내용으로 적절한 것은?
 - ① 상태비트
- ② 제어신호
- ③ 제어단어
- ④ 선택비트
- 18. 그림에서 만일 MUX 1에서 ②로 입력되는 데이터가 8비트이고 다른 것은 변동이 없다면 ④는 어떻게 바뀌는가?
 - ① 64×26
- ② 128×27
- 3) 256 \times 28
- 4 512 × 28
- 19. 그림에서 옛와 ⑪에 들어갈 내용으로 적절한 것은?
 - ① 처리장치, 제어장치
 - ② 시프터, 제어주소 레지스터
 - ③ 제어주소 레지스터, 처리장치
 - ④ 산술논리연산장치, 중앙처리장치
- 20. 다음과 같은 연산을 수행하려 할 때 그림에서 제어기억장치의 27개 비트에 대한 설명으로 **잘못된** 것은?

R5 \leftarrow R6+R3, if(C=0) then (CAR \leftarrow 62) else (CAR \leftarrow CAR+1)

- ① 1번~16번 비트는 마이크로연산 R5←R6+R3 를 수행한다.
- ② 17번 비트는 (0)2 이어야 한다.
- ③ 18~20번 비트는 캐리의 상태에 따라 결정된다.
- ④ 21~27번 비트는 조건문 if(C=0)를 수행한다.
- 21. 다음 중 마이크로프로그램에 관한 설명으로 부적절한 것은?
 - ① 마이크로명령어를 이용해서 작성된 프로그램을 말한다.
 - ② 펌웨어라고도 한다.
 - ③ 소프트웨어 프로그램을 작성하는 것보다 용이하다.
 - ④ 마이크로프로그램이 하드웨어와 소프트웨어의 중간 정도임을 의미한다.
- 22. 다음 설명에서 괄호 안에 들어갈 용어로 적절한 것은?

명령어 사이클 중 (②)은 기억장치로부터 명령어를 가져오는 것을 말한다. 이때 가져올 명령어의 주소는 (①)에 들어있다.

- ① ② 제어 사이클, ④ 명령어 레지스터
- ② ⑦ 인출 사이클, ④ 데이터 레지스터
- ③ ⑦ 실행 사이클, ④ 스택 포인터
- ④ ⑦ 인출 사이클, ④ 프로그램 카운터

23. 다음과 같은 일련의 마이크로연산은 무엇을 수행하는 것인가?

$$\begin{split} T_0 &: MAR \leftarrow IR(adrs) \\ T_1 &: MBR \leftarrow M[MAR] \\ T_2 &: AC \leftarrow AC + MBR \end{split}$$

- ① LOAD 명령어
- ② AND 명령어
- ③ STORE 명령어
- ④ ADD 명령어
- 24. 다음 중 CPU에 있는 레지스터에 대한 설명으로 적절한 것은?
 - ① 레지스터는 데이터의 임시 저장장소로서 컴퓨터의 기억장치 중에서 액세스 속도가 가장 빠르다
 - ② 다음에 수행해야할 명령어가 저장된 기억장치주소를 저장하는 레지스터는 누산기이다.
 - ③ 명령어 레지스터는 오퍼랜드나 연산결과를 일시적으로 저장한다.
 - ④ 스택 포인터는 특수 레지스터로서 스택 영역에 들어 있는데이터를 저장한다.
- 25. 다음 중 PC(Program Counter)의 설명으로 <u>잘못된</u> 것은?
 - ① 다음에 수행되어질 명령어가 들어있는 주소를 갖고 있다.
 - ② 비트 수는 기억장치의 용량에 따라 결정된다.
 - ③ 현재의 데이터를 인출한 후에는 자동적으로 1 증가한다.
 - ④ 스택 공간의 최상위 주소를 갖고 있다.
- 26. 다음 설명에서 괄호 안에 들어갈 용어로서 올바른 것은?

명령어 실행 사이클은 명령어를 실행하는 단계로서 ()에 실린 명령어를 해독하고, 해독한 명령어에 따라 필요한 연산이 수행되는 과정이다.

- ① 프로그램 카운터
- ② 명령어 레지스터
- ③ 메모리 주소 레지스터
- ④ 누산기
- 27. 다음의 내용과 관계가 깊은 것은?

"어떤 내용을 참조하면, 그 내용에 가까운 곳에 있는 다른 내용을 참조하기 쉽다."

- ① 공간적 지역성
- ② 시간적 지역성
- ③ 내부적 참조성
- ④ 외부적 참조성
- 28. 다음 중 캐시기억장치와 주기억장치 사이의 데이터 교환을 일 컫는 용어는?
 - ① blocking
 - 2 mapping
 - 3 paging
 - 4 buffering
- 29. 다음의 기억장치를 기억용량의 크기 순서로 나열한 것은?
 - ① 레지스터
 - ① 캐시기억장치
 - ⓒ 주기억장치
 - ② 보조기억장치
 - ① ② ⑤ ⑥ ⑦
 - 2 2 0 7 6
 - 3 6 2 6 7
 - 4 7 6 6 2

- 30. 다음 중 주기억장치의 성능을 평가하는 단위로 사용되지 <u>않는</u> 것은?
 - ① 기억 용량
 - ② 기억 소자
 - ③ 사이클 타임
 - ④ 액세스 타임
- 31. 다음의 단어와 가장 관계가 깊은 기억장치는?

'물리주소' '희생페이지' '세그먼트' '페이지'

- ① 가상기억장치
- ② 캐시기억장치
- ③ 주기억장치
- ④ 연관기억장치
- 32. 다음 중 컴퓨터 내부장치와 입출력 장치의 차이점이 아닌 것은?
 - ① 데이터 전송속도의 차이
 - ② 데이터 처리단위의 차이
 - ③ 에러율의 차이
 - ④ 데이터 신호 종류의 차이
- 33. 다음 중 입출력시스템에서 버스의 사용을 중재하는 방법이 <u>아닌</u> 것은?
 - ① 중앙집중식 병렬중재 방법
 - ② 우선순위 인코더 방법
 - ③ 폴링 중재 방법
 - ④ 데이지 체인 방법
- 34. 다음 중 중앙처리장치의 개입 없이 주기억장치에 직접 접근하여 입출력을 행하는 방식으로 사이클 요청(memory cycle request) 신호가 사용되는 방식은?
 - ① DMA 제어
 - ② 핸드쉐이킹 제어
 - ③ 스트로브 제어
 - ④ 중앙처리장치 제어
- 35. 다음 중 병렬처리를 수행하는 시스템이 <u>아닌</u> 것은?
 - 1 pipeline processor
 - 2 array processor
 - 3 multiple processor
 - ④ I/O processor