m (4) Ex f(Z) = \125-22 Domain: [-5,5] Recall X2+ y2= of is circle of radius of centered at (0,0) Solving for yi y= r2-x2 y= + 1 (2-x2 y= Jo2-x2 (upper half) - 74 y=-Tr2-x2 (lower halls) ~ 1 4= J25-2°, the range [0,5]. Def We say that f(x) is even if f(-x) = f(x)...

Ex $f(x) = x^2$ is oven. Observe $f(-x) = (-x)^2 = x^2 = f(x)$ $f(x) = x^2 + 1$ is oven. Observe $f(-x) = (-x)^2 + 1 = x^2 + 1 = f(x)$

Def We say that f(x) is odd if f(-x) = -f(x) E_{X} f(x) = x is odd. Observe f(-x) = -x = -f(x), $f(x) = x^{3}$ is odd. Observe $f(-x) = (-x)^{3} = (-1)^{3}x^{3} = -x^{3}$ f(x) = x + l is not odd. $f(-x) = -x + l \neq -f(x)$ -f(x) = -(x + l) = -x - lEx f(x) = 0 is the unique function that is bothe even and odd. Even: f(-x) = 0 = f(x)Odd f(-x) = 0 = -0 = -f(x)Uniqueness Exercise.

lid Function Transformations

Idea Start with parent function (eg, Jx, x, 1x1, etc.)
and want to graph functions like Jx-3, (x+2)2+5, etc.

· Ex Want to graph f(x) = Vx-3. $Q f(x) = \sqrt{x-3} = 0?$ Parent IX At x=3, 13-3=0 f(x) = Jx-3 $g(x) = \sqrt{x+5}$ X+5=0 $\chi = -5$ Ex h(x) = |x| + 2

To
$$f(x) = -|x-1| + 3$$
 $g(x) = -\sqrt{x}$
 $h(x) = \sqrt{-x}$
 $f(x) = -|x-1| + 3$
 $f(x) = -|x-1| + 3$
 $g(x) = -\sqrt{x}$
 $h(x) = \sqrt{-x}$
 $h(x) = \sqrt{-x}$

1.3 Trig function
Assuming
Ly Know unit circle
Ly Know sin, cos, tan, CSC, SEC, Cot and can evaluate along unit circle
1> Know right tringle trig (Satt CAtt TOA)
Pythagorean Identities (x=cos(a) y=sin(a)
by cos2(0) + Sin2(0)=1
Distance from (0,0) to (x,y)
Divide by $\cos^2(Q)$, $+\sin^2(Q) = \frac{1}{\cos^2(Q)}$
$1 + \tan^2(0) = \sec^2(0)$
Divide by $Sin(0)$: $\frac{cos^2(0)}{Sin^2(0)} + l = \frac{1}{Sin^2(0)}$
$\cot^2(0) + l = \csc^2(0)$

Angle - Sum Formules (Memorize)

Sin(a ± b) = Sin(a) cos(b) ± cos(a)Sin(b)

Cos(a ± b) = Cos(a) cos(b) ∓ Sin(a) Sin(b)

Ex Evaluate Sin (
$$\sqrt{12}$$
)

Observe: $\sqrt{12} = \sqrt{12} = \sqrt{12} = \sqrt{12}$

Sin($\sqrt{12}$) = Sin($\sqrt{14} - \sqrt{16}$) = $\sqrt{12}$

Sin($\sqrt{14}$) cos($\sqrt{16}$) - cos($\sqrt{14}$) Sin($\sqrt{16}$)

Claim Sin($\sqrt{20}$) = $\sqrt{2}$ sin($\sqrt{2}$) cos($\sqrt{2}$).

Claim
$$Sin(20) = 2Sin(0) col(0)$$
.

Pt $Sin(20) = Bh(0xt0) Sin(0+0)$
 $= Sin(0) col(0) + col(0) Sin(0)$
 $= 2Sin(0) col(0)$.

Claim
$$Cos(20) = 2 Cos^2(0) - 1$$

Pf $Cos(20) = Cos(0) + Osin(0)$

$$= cos(0) cos(0) - Sin(0) sin(0)$$

$$= cos^2(0) - Sin^2(0)$$
Recall $Sin^2(0) + cos^2(0) = 1; So$

$$Sin^2(0) = 1 - cos^2(0);$$

So:
$$\cos^2(\theta) - \sin^2(\theta)$$

 $= \cos^2(\theta) - (1 - \cos^2(\theta))$
 $= 2\cos^2(\theta) - (1 + \cos^2(\theta))$
 $= 2\cos^2(\theta) - (1 + \cos^2(\theta))$
Claim $\cos(\theta) = \pm \int \frac{1 + \cos(2\theta)}{2} (+ o^2 - depending on which 2 madrat θ is in).
Pf By the previous claim, we have: $\cos(2\theta) = 2\cos^2(\theta) - (1 + \cos^2(\theta)) = \cos(2\theta) + (1 + \cos^2(\theta)) = \cos(2\theta) = \cos(2\theta) + (2 + \cos^2(\theta)) = \cos(2\theta) + (2 + \cos^2(\theta)) = \cos(2\theta) + (2 + \cos^2(\theta)) = \cos(2\theta) = \cos($$