

Data Visualization in R: Essentials and Optimization

Instructor: Octavia Maria Dancu-Lixandru

Pre-Intro Prep

- Before we get started with the course intro and material, let's make sure:
 - your computer is set up with R & RStudio correctly installed and open
 - You have downloaded the datasets
 - You have loaded the data into your R session
 - Open this google document: https://bit.ly/2AOI04A
 - This is where we'll be sharing the plots made in class

<u>Mission</u>: aims to deliver inter-disciplinary research programs and empower the use of data in health research and health care delivery

https://www.mcgill.ca/micm

- Octavia M. Dancu-Lixandru
- Human Genetics, MSc 2,Majewski Lab
- Epigenetics of Head & Neck Cancer (methylation data, expression data, mutation data...)

What is your R background?

Why are you taking this course?

- •What kind of data do you normally handle?
- How do you usually make figures and where are you typically using figures?

•2 Main Purposes of Data Visualization:

1. Presentation

2. Exploration

Intro to Data Visualization:

Presentation

Presentation

- Communicate your ideas and features of your data
- Facilitate Understanding
- Transparency

Exploration

Exploration

Convert data from tables (non-intuitive)

- To:
 - Graphical displays
 - Statistical models

Exploration

- Gain further information
- Generate hypotheses
- Confirm or discard theories
- Analyze your data

Goals of this course:

- By the end of this workshop, you should be able to....
- Base Principles:
 - Manipulate your data to extract the information you need for analysis in R
 - Generate a range of useful plots using R
- Presentation:
 - Customize the features of the plots and adapt them based on your needs
 - Understand principles of good design
- Exploration
 - Perform basic clustering and data reduction methods to visualize and identify relationships in your data
 - Generate interactive plots for easier data analysis

Why should we use R for data visualization?

- It offers a lot more control & flexibility over the plots & figures that you can generate
- CUSTOMIZATION
- More accurate representation of your data
- Increases reproducibility of your work

Presenting the datasets:

- Our datasets are called uvm_counts and uvm_clin
- Datasets can have whatever name you choose....
- With some caveats!
 - DON'T start the name with a number or a symbol

Context: UVM: Uveal Melanoma

- Rare disease compared to other cancers, but the most common eye cancer in adults
- Low local recurrence rate with treatment, but up to 50% of patients have metastasis
- No effective treatment for UVM metastasis currently available
- Survival time of metastatic patients less than 12 months after metastatic diagnosis

- RStudio should look something like this!
- We're going to be typing up here to save our work and edit more easily.
- To run a command you typed, first highlight it with your cursor, then:
 - If you're on a Windows, press Ctrl and Enter
 - If you're on a Mac, press Command and enter
 - Voila!

Features of the Dataset

- Let's check out our data!
- dim(tcga_express)

Range of rows you want to retain

tcga_express[1:4,1:5]

Range of columns you want to retain

Structure of a ggplot command:

Let's start with a simple plot and build up from there!

What dataset are we working with?

What column in the dataset Is the y-value in our plot?

ggplot(tcga_express, aes(x=dna_meth, y=gene_A_exprs)) +
geom_point()

How do we want to represent this information? What column in the dataset is the x-value in our plot?

What dataset are we working with?

What column in the dataset Is the y-value in our plot?

ggplot(tcga_express, aes(dna_meth, gene_A_exprs)) + geom_point()

What column in the dataset is the x-value in our plot?

How do we want to represent this information?

Note that there is only one variable entered in the aes field! ggplot(uvm_clin, aes(uvm_clin\$age_at_initial_pathologic_diagnosis)) + geom_histogram() 7.5 -Histogram 2.5 -20 as.numeric(uvm_clin\$age_at_initial_pathologic_diagnosis)

ggplot(uvm_clin, aes(x=uvm_clin\$eye_color, y=uvm_clin\$age_at_initial_pathologic_diagnosis))+geom_boxplot()

/ //////

ggplot2 cheat sheet

ggplot(data = data_of_interest , aes(variables of interest)) +

What kind of plot do you want to make?

Type of plot	ggplot argument
Scatter plot	geom_point()
Histogram	geom_histogram()
Density plot	geom_density()
Bar Plot	geom_bar()
Violin Plot	geom_violin()
Box Plot	geom_boxplot()

How to export your figure to pdf

```
pdf(file="name_of_your_plot.pdf")
#make your plot here
ggplot(...)+...
dev.off()
```

Exercise 1:

- You are trying to investigate the relationship between the expression of epigenetic modifier NSD1 and the expression of your favorite gene. Using the dataframe provided to you and your knowledge of ggplot2 commands so far, generate a plot illustrating this relationship.
- Hint 1: start by breaking down the problem into manageable steps! Look at the data you have and the plot you want to generate. What steps do you need to do in order to bridge that gap?
- Hint 2: Here are some steps to help you on your way.
 - 1. Find out how to select only the information that you need from the data frame.
 - 2. Think of what plot is appropriate to represent this kind of data.
 - 3. What command in R will generate this plot?

Specialty Plots

- clust_my_data<-hclust(dist(my_data))</p>
 - plot(as.dendrogram(clust_my_data))

Dendrogram

Cladogram

Install and load the ape package, then:

plot(as.phylo(clust_my_data), type = "cladogram")

How about a circular/fan dendrogram?

plot(as.phylo(clust_my_data), type = "fan")

Ref: https://www.datacamp.com/community/tutorials/survival-analysis-R

Now that we made our first survival plot with the ovarian patient data, let's apply this to our UVM dataset!

Generate a survival plot for UVM patients using the feature of your choice (clinical feature, gene expression, etc)! Helpful for showing: chromosomal rearrangements, population migrations...

Chord Diagram
Plot

Elements of Figure Design!

- Colour
- Transparency
- Background
- Shape
- Size
- Trendlines & Regression lines

What do I look for in figures...

In a paper?

In a presentation?

How do these two answers differ?

Same data, different viewing experience, different design

Who am I making this figure for/what is my audience?

- Myself/my lab
- Other scientists in my specialized field
- Other scientists (not necessarily in my field)
- Students
- General public for scientific communication

What are their needs?

Why am I making this figure?

NOT: I have to show this at lab meeting/I need material for my poster/Reviewer #2 asked about it

In the context of your work that you are presenting, what is the purpose of that figure?

Is it serving a role there or is it just filler?

What question am I answering in making it?

Is there a well-defined question that is behind the making of this figure, or is it just there to show work that was done?

Is it contributing to the reader's understanding?

What is the key message here?

If you are having troubles answering this, most likely your readers will too!!

Is my message clear and understandable?

Are the important features of the data appropriately highlighted?

Do your figures flow well and facilitate understanding?

Is my data easily seen and interpretable?

Is your data presented in a transparent, scientifically-responsible manner?

Does your figure encourage analysis and present opportunity for scientific dialogue, or does it obscure your data?

Is it visually appealing? Why does this matter?

- Higher quality publications
- More successful posters and presentations
- Better scientific communication
- Higher engagement and interest your research

Colour

- Colour is a key aspect to making sure that your figures are:
- 1) conveying a clear, strong message;
- 2) easily understood;
- 3) aesthetically pleasing.

cornsilk3	dodgerblue4	gray45	grey3	grey69	lemonchiffon2	mediumorchid	nalevioletredd	slateblue	
cornsilk2	dodgerblue3	gray44	grey2	grey68		mediumblue	palevioletred3	skyblue4	
cornsilk1	dodgerblue2	77011					ipalevioletred2		
	The second second	gray43	grey1	grey67				skyblue3	wallawassan
comsilk	dodgerblue1	gray42	grey0	grey66	lawngreen	maroon4	palevioletred1	skyblue2	yellowgreen
cornflowerblue		gray41	grey	grey65	lavenderblush4		palevioletred	skyblue1	yellow4
coral4	dimgrey	gray40	greenyellow	grey64	lavenderblush3		paleturquoise4	skyblue	yellow3
coral3	dimgray	gray39	green4	grey63	lavenderblush2		paleturquoise3	sienna4	yellow2
coral2	deepskyblue4	gray38	green3	grey62	lavenderblush1	maroon	paleturquoise2	sienna3	yellow1
coral1	deepskyblue3	gray37	green2	grey61	lavenderblush	magenta4	paleturquoise1	sienna2	yellow
coral	deepskyblue2	gray36	green1	grey60	lavender	magenta3	paleturquoise	sienna1	whitesmoke
chocolate4	deepskyblue1	gray35	green	grey59	khaki4	magenta2	palegreen4	sienna	wheat4
chocolate3	deepskyblue	gray34	gray100	grey58	khaki3	magenta1	palegreen3	seashell4	wheat3
chocolate2	deeppink4	gray33	gray99	grey57	khaki2	magenta	palegreen2	seashell3	wheat2
chocolate1	deeppink3	gray32	gray98	grey56	khaki1	linen	palegreen1	seashell2	wheat1
chocolate	deeppink2	gray31	gray97	grey55	khaki	limegreen	palegreen	seashell1	wheat
chartreuse4	deeppink1	gray30	gray96	grey54	ivory4	lightyellow4	palegoldenrod	seashell	violetred4
chartreuse3	deeppink	gray29	gray95	grey53	ivory3	lightyellow3	orchid4	seagreen4	violetred3
chartreuse2	darkviolet	gray28	gray94	grey52	ivory2	lightyellow2	orchid3	seagreen3	violetred2
chartreuse1	darkturquoise	gray27	gray93	grey51	ivory1	lightyellow1	orchid2	seagreen2	violetred1
chartreuse	darkslategrey	gray26	gray92	grey50	ivory	lightyellow	orchid1	seagreen1	violetred
cadetblue4	darkslategray4	gray25	gray91	grey49	indianred4	lightsteelblue4	orchid	seagreen	violet
cadetblue3	darkslategray3	gray24	gray90	grey48	indianred3	lightsteelblue3	orangered4	sandybrown	turquoise4
cadetblue2	darkslategray2	gray23	gray89	grey47	indianred2	lightsteelblue2	orangered3	salmon4	turquoise3
cadetblue1	darkslategray1	gray22	gray88	grey46	indianred1	ightsteelblue1	orangered2	salmon3	turquoise2
cadetblue	darkslategray	gray21	gray87	grey45	indianred	lightsteelblue	orangered1	salmon2	turquoise1
burlywood4	darkslateblue	gray20	gray86	grey44	hotpink4	lightslategrey	orangered	salmon1	turquoise
burlywood3	darkseagreen4	gray19	gray85	grey43	hotpink3	lightslategray	orange4	salmon	tomato4
burlywood2	darkseagreen3	gray18	gray84	grey42	hotpink2	lightslateblue	orange3	saddlebrown	tomato3
burlywood1	darkseagreen2	gray17	gray83	grey41	hotpink1	lightskyblue4	orange2	royalblue4	tomato2
burlywood	darkseagreen1	gray16	gray82	grey40	hotpink	lightskyblue3	orange1	royalblue3	tomato1
brown4	darkseagreen	grav15	gray81	grev39	honeydew4	lightskyblue2	orange	rovalblue2	tomato

		distribute.	2 - 4	and the first			1000		
brown3	darksalmon	gray14	gray80	grey38	honeydew3	lightskyblue1	olivedrab4	royalblue1	thistle4
brown2	darkred	gray13	gray79	grey37	honeydew2	lightskyblue	olivedrab3	royalblue	thistle3
brown1	darkorchid4	gray12	gray78	grey36	honeydew1	lightseagreen	olivedrab2	rosybrown4	thistie2
brown	darkorchid3	gray11	gray77	grey35	honeydew	lightsalmon4	olivedrab1	rosybrown3	thistle1
blueviolet	darkorchid2	gray10	gray76	grey34	grey100	lightsalmon3	olivedrab	rosybrown2	thistle
blue4	darkorchid1	gray9	gray75	grey33	grey99	lightsalmon2	oldlace	rosybrown1	tan4
blue3	darkorchid	gray8	gray74	grey32	grey98	lightsalmon1	navyblue	rosybrown	tan3
blue2	darkorange4	gray7	gray73	grey31	grey97	lightsalmon	navy	red4	tan2
blue1	darkorange3	gray6	gray72	grey30	grey96	lightpink4	navajowhite4	red3	tan1
blue	darkorange2	gray5	gray71	grey29	grey95	lightpink3	navajowhite3	red2	tan
lanchedalmo	nddarkorange1	gray4	gray70	grey28	grey94	lightpink2	navajowhite2	red1	steelblue4
black	darkorange	gray3	gray69	grey27	grey93	lightpink1	navajowhite1	red	steelblue3
bisque4	darkolivegreen4	gray2	gray68	grey26	grey92	lightpink	navajowhite	purple4	steelblue2
bisque3	darkolivegreen3	gray1	gray67	grey25	grey91	lightgrey	moccasin	purple3	steelblue1
bisque2	darkolivegreen2	gray0	gray66	grey24	grey90	lightgreen	mistyrose4	purple2	steelblue
bisque1	darkolivegreen1	gray	gray65	grey23	grey89	lightgray	mistyrose3	purple1	springgreen4
bisque	darkolivegreen	goldenrod4	gray64	grey22	grey88 lig	htgoldenrodyelk	ownistyrose2	purple	springgreen3
beige	darkmagenta	goldenrod3	gray63	grey21	grey87	lightgoldenrod4	mistyrose1	powderblue	springgreen2
azure4	darkkhaki	goldenrod2	gray62	grey20	grey86	lightgoldenrod3	mistyrose	plum4	springgreen1
azure3	darkgrey	goldenrod1	gray61	grey19	grey85	lightgoldenrod2	mintcream	plum3	springgreen
azure2	darkgreen	goldenrod	gray60	grey18	grey84	lightgoldenrod1	midnightblue	plum2	snow4
azure1	darkgray	gold4	gray59	grey17	grey83	lightgoldenrod	ediumvioletre	d plum1	snow3
azure	darkgoldenrod4	gold3	gray58	grey16	grey82	lightcyan4 m	ediumturquois	e plum	snow2
aquamarine	darkgoldenrod3	gold2	gray57	grey15	grey81	lightcyan3me	diumspringgre	en pink4	snow1
aquamarine:	darkgoldenrod2	gold1	gray56	grey14	grey80	lightcyan2 m	ediumslateblu	e pink3	snow
aquamarine2	2darkgoldenrod1	gold	gray55	grey13	grey79	lightcyan1 m	ediumseagree	n pink2	slategrey
aquamarine1	darkgoldenrod	ghostwhite	gray54	grey12	grey78	lightcyan n	nediumpurple4	pink1	slategray4
aquamarine	darkcyan	gainsboro	gray53	grey11	grey77	lightcoral n	nediumpurple3	pink	slategray3
antiquewhite	4 darkblue	forestgreen	gray52	grey10	grey76	lightblue4 n	nediumpurple2	peru	slategray2
antiquewhite	3 cyan4	floralwhite	gray51	grey9	grey75	lightblue3 n	nediumpurple 1	peachpuff4	slategray1
antiquewhite.	2 cyan3	firebrick4	gray50	grey8	grey74	lightblue2	mediumpurple	peachpuff3	slategray
antiquewhite	1 cyan2	firebrick3	gray49	grey7	grey73	lightblue1 r	nediumorchid4	peachpuff2	slateblue4
antiquewhite	cyan1	firebrick2	gray48	grey6	grey72	lightblue n	nediumorchid3	peachpuff1	slateblue3
aliceblue	cyan	firebrick1	gray47	grey5	grey71	lemonchiffon4r	nediumorchid2	peachpuff	slateblue2
white	comsik4	firebrick	gray46	grey4	grey70	lemonchiffon3r	nediumorchid1	papayawhip	slateblue1

Color: Uniform

To change the bar colour: geom_bar(fill = "red")

To change the colour of the bar's outline: + geom bar(colour = "red")

Color: Gradient

```
ggplot(uvm_clin, aes(pathologic_stage)) +
geom_bar(fill=c("grey", "lavenderblush1", "lightpink1", "palevioletred1",
"violetred2", "mediumvioletred", "violetred4"))
```


Color: Diverging

Color: Categorical

Selecting Your Colour Palettes:

Make it intuitive and know your field!

DNA methylation: Blue to white to red

Microarray data: Red and green

Keep in mind Color Conventions:

Male/Female: Blue/Red

Higher numbers/concentrations: More intense (deeper/more saturated) colors

Color Scheme Example: Heatmap based on Microarray Dataset

Considering Convention vs Accessibility:

Colorblind-Friendly Palette Options:

To see a range of different colorblind-friendly palettes already present in the **RColorBrewer** package, type the following into RStudio:

```
library(RColorBrewer)
display.brewer.all(colorblindFriendly = T)
```


How to apply RColorBrewer package:

- 1. Edit the aes to add fill or color, as well as what feature you're basing the color scheme on
- 2. Add the appropriate "brewer" to your ggplot command
- •scale_fill_brewer() for box plot, bar plot, violin plot, dot plot, etc
- •scale_color_brewer() for lines and points
- 3. Specify your palette of choice: ex: scale_color_brewer(palette="Paired")

Revisiting gradient colour scheme

Using Rcolorbrewer!

Colorblind-Friendly Palette Options:

How to apply viridis:

ggplot(iris, aes(iris\$Sepal.Length, iris\$Sepal.Width, color=iris\$Sepal.Length))
+geom_point()+scale_color_viridis(discrete=TRUE)

- Edit the aes to add fill or color, as well as what feature you're basing the color scheme on
- 2. Add the appropriate "brewer" to your ggplot command
- •scale_fill_viridis() for box plot, bar plot, violin plot, dot plot, etc
- •scale_color_viridis() for lines and points
- 3. If the feature the color scheme is based on is a discrete value, specify it: scale_color_viridis(discrete=TRUE)
- 4. Specify your palette of choice: ex: scale_color_viridis(option="inferno")

For beautiful color schemes:

The wesanderson R package also has a very nice selection of palettes for a quick, polished look!

devtools::install_github("karthik/wesanderson")

library(wesanderson)

Add to your ggplot command:

For discrete colours:

+ scale_fill_manual(values = wes_palette("GrandBudapest1", n = 3, "discrete"))

For gradient colours:

+ scale_fill_manual(values = wes_palette("GrandBudapest1", n = 6, "continuous"))

Exercise 3:

Using the data provided in either uvm_counts or uvm_clin (or both!), generate a plot that requires fill for colour and one that requires color for colour to answer a biological question in the data that interests you!

Try both 1) specifying the colours independently from the color value table

And

2) Using the pre-built palettes

Keep in mind the principles of color theory that we discussed earlier!

What are the pros and cons of either color scheme strategy?

Transparency:

Add to your ggplot command where you say the type of plot you want to make alpha=, followed by a number between 0 (completely transparent) and 1 (completely opaque).

Ex:

+ geom_density(alpha=0.4)

Exercise 4:

Compare the distribution of ages at which the pathological diagnosis occurred between male and female patients:

- A) Make the appropriate density plot
- B)Make use of the transparency and color tools ggplot2 has to improve your plot!

How to change size of points

geom_point(size=a)

ggplot(tcga_express, aes(dna_meth, gene_A_exprs)) + geom_point()

Adding a title

+ggtitle("Age at Initial Diagnosis, stratified by Eye Colour")

Presentation

Principles of Good Design:

Why do we make plots and figures?
What makes "good" or "bad" design?

Guiding questions in figure design:

Exercise 5:

Using the different datasets provided and the functions that we learned today, generate a plot (or plots!) exploring a biological question that you found interesting within the data you have available.

Avoid chartjunk

Rougier NP, Droettboom M, Bourne PE (2014) Ten Simple Rules for Better Figures. PLOS Computational Biology 10(9): e1003833. https://doi.org/10.1371/journal.pcbi.1003833

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833

Q: What is wrong with this plot?

A: What isn't?

What would you improve with this plot?

Cleaning up your plot

Adjusting the background

Cleaning up your plot

Adjusting the axes
+scale_x_continuous("title of x axis")
+ scale_y_continuous("title of y axis")

Cleaning up your plot

Removing the legend

Before and After of plot

What does this figure communicate about Group A and Group B?

Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLOS Biology 13(4): e1002128. https://doi.org/10.1371/journal.pbio.1002128 https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128

Fig 1. Many different datasets can lead to the same bar graph.

Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLOS Biology 13(4): e1002128. https://doi.org/10.1371/journal.pbio.1002128 https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128

FIFTEENTH ANNIVERSARY

Fig 2. Additional problems with using bar graphs to show paired data.

Fig 2. Additional problems with using bar graphs to show paired data.

Weissgerber TL, Milic NM, Winham SJ, Garovic VD (2015) Beyond Bar and Line Graphs: Time for a New Data Presentation Paradigm. PLOS Biology 13(4): e1002128. https://doi.org/10.1371/journal.pbio.1002128 https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.1002128

PLOS BIOLOGY

What about this one?

Figure S4.2 Gene expression across integrated subtypes. (A) *MLH1* mRNA expression is significantly lower in the MSI cluster. (B) *PGR* mRNA expression is significantly higher in the CN low cluster. (C) *CDKN2A* mRNA expression is significantly higher in the CN high cluster.

Integrated genomic characterization of endometrial carcinoma, Levine, D.A., 2013

Takeaway message:

DON'T hide your data.

Avoid inappropriate barplot use.

If you don't need to use barplots, DON'T.

A Return to Making Boxplots:

Given what we just discussed, what potential issues exist with boxplots like this one?

Beyond Basic Boxplots: the Violin Plot

Beyond Basic Boxplots: Overlaying Jitter Points

Beyond Basic Boxplots: Strip Charts

Beyond Basic Boxplots: Violin Plots + Jitter Points

Takeaway message:

- Show off your data, you worked hard to get it!
- Invite your readers to analyze and engage with your material by being transparent
- Reinforce the validity of your findings

Do not mislead the reader.

Rougier NP, Droettboom M, Bourne PE (2014) Ten Simple Rules for Better Figures. PLOS Computational Biology 10(9): e1003833. https://doi.org/10.1371/journal.pcbi.1003833

 $\underline{https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1003833}$

Using Disc Area vs Disc Radius

Using Full range vs Partial Range

Example from literature: what issues do you identify with this figure?

Synthetic CpG islands reveal DNA sequence determinants of chromatin structure, Wachter E. et al, 2014

What is this figure trying to convey? Is it easy to process and understand?

Having a consistent visual language is important for conveying a strong message

When possible, make sure that figures are well aligned!

Remember:

```
Good Data Visualization =
Good Communication =
Transparency =
Good Science!!
```

Exercise 6:

Let's revisit the plots we made in Exercise 5. Given everything that was covered in the presentation, let's discuss what is good about those plots and how they can be improved!

Exercise 7:

Take the plot you made in Exercise 5 and make adjustments and optimizations based on the principles of data visualization and figure design that we saw in the Presentation section.

Post your before and after in the Google Doc!

Exploration

Facet_grid

How can we easily check whether tumor recurrence varies across eye colours, or if it is consistent across eye colors?

Linear regression lines

To add a linear regression line to your scatter plot: + stat_smooth(method = lm)

- There are several packages that can help you generate a heatmap, each with their own strengths
- As an example, here is a heatmap made using pheatmap:

Heatmap

Interactive Plotting

What can you say about the data here? What questions do you have about this plot?

- Helps provide a more intuitive approach to data exploration, adding layers of information to the plot.
- For example:

Are there subpopulations here that explain the point distribution?

- Following up on hypotheses via color may be one option
- But limited information is known on each individual point

Which patients are these? How do we find them? 500 -400 -Revisiting our uvm_counts\$DNMT3B scatter plot from the beginning... 100 -2500 5000 7500 10000 uvm_counts\$DNMT3A

Finding the outliers in the data...

- 1. We can look through the dataframe for samples that have expression levels that match up with the coordinates we see for the outliers in the scatterplot
- 2. Or we can make the scatterplot interactive and show the sample name on mouse hover

Interactive plots!!

- ggplotly is a nice function to get started with interactive plots!
- Let's install the package that we need to use ggplotly:
- install.packages("plotly")
- library(plotly)
- Steps for basic ggplotly plot generation:
- 1. Write out the command for the plot you are interested in making, and assign the plot to a variable Ex: a < ggplot(...)
- 2. ggplotly(a)

Interactmapper package

 Using the functions included in interactmapper, you can add extra information to the plots resulting from dimension-reduction methods, via color scheme and interactive elements

Interactmapper package

- Currently there are three functions available to generate interactive plots in the interactmapper package:
 - interact_qual
 - interact_quant
 - interact_multi

- Ideal for qualitative data
- To use this function: interact_qual(count_data, qual_data, dim_red_meth = c("UMAP", "PCA"))

Interact qual

- Ideal for quantitative features
- To use:
- interact_quant(count_data, quant_info_name, quant_info, dim_red_meth = c("UMAP", "PCA"), your_palette)

To look at multiple secondary features of interest: To use: interact_multi(count_data, main_info_data, sec_info_data, dim_red_meth = c("UMAP", "PCA"), your_palette, main_info_name, sec_info_name) Interact_multi

Colour Palette Options:

- Using the interact_mapper package, try to generate a dimension reduction plot of your choice using the read count data provided on the patients and their clinical features to see if any clinical features relate to the structure of the data
- 2. Using the interact_mapper package, try to generate a dimension reduction plot of your choice using the read count data provided on the patients to see if your gene of interest relates to the structure of the data

Questions to ask yourself when you're designing figures: What do I look for in figures...

In a paper?
In a presentation?

Who am I making this figure for/what is my audience? What are their needs?

Why am I making this figure? What question am I answering in making it? What is the key message here?

Is my message clear and understandable? Is my data easily seen and interpretable?

Is it visually appealing?

Cleaning up your plot

how to display several plots together

Before making your plots, type in:

par(mfrow=c(a,b)) #where a is the number of rows and b is the number of columns in your grid of plots

Then make your plots!

To reset your display, type in:

dev.off()