Ex. 1

Yuval Gitlitz & Oren Roth

28.4

- 1. a)
 - b) The algorithm:
 - Find min cost cycle cover denoted by $C = (c_1, \ldots, c_k)$. For every $i \in [k]$, define $e_i = (u_i, v_i)$ as an edge in c_i .
 - $G \leftarrow \{(u_k, v_1)\}$
 - for i = 1 to k 1 do:

$$- G \leftarrow G \cup (c_i \setminus \{e_i\} \cup \{u_i, v_{i+1}\})$$

• $G \leftarrow G \cup (c_i \setminus \{e_i\} \cup \{u_i, v_{i+1}\})$

Proof. We will show:

- I G is Hamiltonian cycle.
- II cost G is at most $\frac{4}{3}OPT$.
- I We will show the edges in G admit Hamiltonian cycle. We start by v_1 and go throug edges of cycle c_1 until the node u_1 than take the edge u_1, v_2 and continue in this fashion until reaching node u_k , then taking the edge $\{(u_k, v_1)\}$ and we done,
- II $cost(C) \leq OPT$ because the optimal solution is feasible solution for the cycle cover problem. As each cycle is at least of size of 3 we have that $k \leq \frac{|V|}{3}$. G replace k edges of size at least 1 with k edges of size at most 2, then:

$$G \leq cost(C) + k \leq cost(C) + \frac{|V|}{3} \leq OPT + \frac{|V|}{3} \leq \frac{4}{3}OPT$$

And the last inequality is due to the fact that the optimal solution visits |V| edges of weight one at least.

3.

4.