$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$$

While calculating the derivatives of  $\cos(x)$  and  $\sin(x)$ , Professor Jerison said that  $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta} = 0$ . This is true, but in order to be certain that our derivative formulas are correct we should understand why it's true.

As in the discussion of  $\sin(\theta)/\theta$ , our explanation involves looking at a diagram of the unit circle and comparing an arc with length  $\theta$  to a straight line segment. (Remember that  $\theta$  is measured in radians!) As shown in Figure 1, the vertical distance between the endpoints of the arc is  $\cos \theta$ , and the horizontal distance between the ends of the arc is  $1 - \cos \theta$ .



Figure 1: Same figure as for  $\frac{\sin x}{x}$  except that the horizontal distance between the edge of the triangle and the perimeter of the circle is marked

From Fig. 2 we can see that as  $\theta \to 0$ , the horizontal distance  $1 - \cos \theta$  between endpoints of the arc (what Professor Jerison calls "the gap") gets much smaller than the length  $\theta$  of the arc. Hence,  $\frac{1-\cos \theta}{\theta} \to 0$ .

If you find this hard to believe it may be helpful to use a calculator to verify

If you find this hard to believe it may be helpful to use a calculator to verify that if x is small,  $1 - \cos x$  is much smaller. You might also study the graph of  $y = 1 - \cos x$  near x = 0 or use a web application to compare the distance  $1 - \cos \theta$  to the arc length  $\theta$  for very small angles  $\theta$ .



Figure 2: The sector in Fig. 1 as  $\theta$  becomes very small