Bias - Variance Tradeoff

Bias – difference btw real n predicted value

Variance – amount of estimate of target function change bw different points

By adjusting bias and variance we can have an optimized error

- Techniques to have proper bias- variance tradeoff
 - 1. Good model selection: too simple- underfitting, too complex overfitting
 - 2. Regularization used when model overfits
 - 3. Reducing dimensionality
 - 4. Ensemble methods- used for underfitting

Loss Function

How far the estimated value is from true value

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

Types:

- Cross entropy loss
- Squared error loss
- KL divergence

-		-			
x	у	y ₁	y ₂	y ₃	
0.30	0.35	0.38	0.39	0.41	
0.45	0.48	0.45	0.47	0.56	
0.50	0.55	0.59	0.58	0.63	
0.55	0.63	0.65	0.69	0.70	
0.66	0.72	0.75	0.78	0.78	

Loss =
$$\frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$

$$Loss_1 = [(0.35-0.38)^2 + (0.48-0.45)^2 + (0.55-0.59)^2 + (0.63-0.65)^2 + (0.72-0.75)^2] / 5$$

$$Loss_1 = 0.173$$

Low Loss value → High Accuracy

Model Evaluation

Mean Squared Error

Mean Squared Error measures the average of the squares of the errors, that is, the average squared difference between the estimated values and the actual value.

$$ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Actual Value ($Y_i = 140 \text{ mg/dL}$)

Predicted Value ($Y_i = 160 \text{ mg/dL}$)