

ECEN 758 Data Mining and Analysis: Lecture 2, Data and Attributes I

Joshua Peeples, Ph.D.

Assistant Professor

Department of Electrical and Computer Engineering

Announcements

- Assignment #1 will be released next Wednesday (08/28)
 - Due Friday, 09/06
- Updated exam dates
 - 10/14 (Exam 1) and 11/25 (Exam 2)
- Tentative assignment dates

Assignment #	Released	Due	
1	08/28	09/06	
2	09/18	09/27	
3	10/02	10/11	
4	11/06	11/15	

Announcements

- Guest lecture dates
 - October 9th: Dr. John Gottula, Director of Crop Science, Agriculture, SAS
 - November 13th: Dr. Zigfried Hampel-Arias, Research Scientist, Remote Sensing and Data Science, Los Alamos National Laboratory
- Travel planned for November 18th 21st
 - Lecture slides available for November 18th
 - No class November 20th (Review for exam and work on class project)
- Last day of class: December 2nd (No final exam ☺)

Last Lecture

- Course objectives and Syllabus material
- Introduction to Data Mining and Machine Learning

Today

- Data and attributes
 - Numerical
 - Categorical
- Reading: ZM Chapters 2

What can we represent with data?

Data Representations

- Numeric measurements, observations, settings, counts, time intervals, etc. (binary, integer, fixed-point, floating point)
- Text (characters, words, strings, documents)
- Signals (continuous numeric values)
- Time Series (sequence of discrete-time data points often from sensors, communication signals)
- Image and Video (pixel data, series of image data, voxel data, point-clouds)

Data Types

Data Types We Will Use

- Data used in Data Mining is generally of two types: Numeric Data and Categorical Data
- Numeric quantitative, measurable; values are numbers. e.g. 0, 42, 3.1415, 1.602x10^-19
- Categorical qualitative, recognizable; values are restricted to the possible values in a category and can be represented by a text value or a number.
 e.g., Tuesday, Medium Rare, Hawaii

Types of Numeric Data

- Discrete variables can take on only specific values over an interval (e.g., counting numbers, integers)
- Continuous variable can take on any value over an interval (e.g., real values)

Univariate Analysis

Univariate Data

- Focused on single attribute (e.g., feature)
- Data represented as matrix, D
- Each row is a sample and column is an attribute
- > X is a random variable
- Each x_i is independent and identically distributed (iid)

Probability Review

Sample Space and Probability

• Sample space(Ω , S): Set of all possible outcomes of an experiment Example: Throwing a die, S = {1, 2, 3, 4, 5, 6}

Sample Space and Probability

- Sample space(Ω , S): Set of all possible outcomes of an experiment Example: Throwing a die, S = {1, 2, 3, 4, 5, 6}
- <u>Probability law</u>: Assigns a non-negative number to each element of the sample space

Example:
$$P(1) = P(2) = ... = P(6) = 1/6$$

	1	2	3	4	5	6
Counts	100	100	100	100	100	100
Probability	1/6	1/6	1/6	1/6	1/6	1/6

Sample Space and Probability

- Sample space(Ω , S): Set of all possible outcomes of an experiment Example: Throwing a die, S = {1, 2, 3, 4, 5, 6}
- Probability law: Assigns a non-negative number to each element of the sample space

Example: P(1) = P(2) = ... = P(6) = 1/6

• Event (E): A subset of sample space

Example: Getting an even number, $A = \{2, 4, 6\}$

$$P(A) = P(2) + P(4) + P(6) = 1/2$$

Random Variables and Probability Distributions

Random Variables

- Random variables: A mapping from the sample space to some range
 - -Weather: W in {Sunny, Rainy, Foggy}
 - -Temperature: T in {Hot, Cold}; T in [-50, +50]
- Random variables can be <u>discrete</u> or <u>continuous</u>
- Random variables can take finitely many values or infinitely many values

Probability Density Function

- Probability density function (PDF) is an assignment of probability to each possible value of the continuous random variable (RV)
- Probability mass function (PMF) is used for discrete RVs

Probability Mass Function

- Probability mass function (PMFs) is used for discrete RVs
- Empirical PMFs assign equal probability to each point

$$\hat{f}(x) = P(X = x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i = x)$$

Cumulative Distribution Function

- Empirical Cumulative
 Distribution Function (CDF)
 is the probability that data
 points (n) in the sample are
 less than or equal to x
- What is the relationship between CDFs and PDFs?

$$\hat{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(x_i \le x)$$

Statistical Measures

Populations vs Samples

- Population set of all data in an area of interest
- Sample subset of a population

Image from: Voxco. Population vs Sample.

Statistical Measures

- Measures of central tendency
 - Mean, Median, Mode
- Measures of dispersion
 - Range, Interquartile Range, Variance, Standard Deviation

Statistical Measures

- > Measures of central tendency
 - Mean, Median, Mode
- Measures of dispersion
 - Range, Interquartile Range, Variance, Standard Deviation

Mean

26

- Arithmetic average of values of X
- Also known as expected value
- f(x) is PMF (discrete) or PDF (continuous)

$$\mu = E[X] = \sum_{x} x \cdot f(x)$$

Discrete

$$\mu = E[X] = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

Continuous

Sample Mean

- Statistic defined as average value of x_i
- Estimator for unknown mean value, µ, of X
- Unbiased estimator for population mean
- Not a robust statistic

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$E[\hat{\mu}] = E\left[\frac{1}{n}\sum_{i=1}^{n} x_i\right] = \frac{1}{n}\sum_{i=1}^{n} E[x_i] = \frac{1}{n}\sum_{i=1}^{n} \mu = \mu$$

Sample Mean: Iris Sepal Length

- Iris dataset
 - 150 samples
 - 3 classes
 - 4 attributes
 - Petal and Sepal length and width

Median

- "Middle-most" value
- Half of the values of X are less and half of the values more than median
- Can use CDF or inverse CDF to find median
- Robust statistic

$$P(X \le m) \ge \frac{1}{2}$$
 and $P(X \ge m) \ge \frac{1}{2}$

Median, m

$$F(m) = 0.5 \text{ or } m = F^{-1}(0.5)$$

Median, m (CDF)

$$\hat{F}(m) = 0.5 \text{ or } m = \hat{F}^{-1}(0.5)$$

Sample Median, \widehat{m} (CDF)

Empirical CDF and Inverse CDF

- Sepal length
- Median is 5.8

Mode

- Value at which PMF or PDF attains maximum value
- Sample mode computed from empirical PMF

$$mode(X) = arg \max_{x} \hat{f}(x)$$

Statistical Measures

- Measures of central tendency
 - Mean, Median, Mode
- Measures of dispersion
 - > Range, Interquartile Range, Variance, Standard Deviation

Range

- Difference between the maximum and minimum values of X
- Robust statistic?

$$r = \max\{X\} - \min\{X\}$$

Range

$$\hat{r} = \max_{i=1}^{n} \{x_i\} - \min_{i=1}^{n} \{x_i\}$$

Sample range

Interquartile Range (IQR)

- Difference between the 75th and 25th percentiles of X
- More robust than range

$$IQR = F^{-1}(0.75) - F^{-1}(0.25)$$
IQR

$$\widehat{IQR} = \hat{F}^{-1}(0.75) - \hat{F}^{-1}(0.25)$$
Sample IQR

Variance

Measure of how much values deviate from the expected value of X

$$\sigma^{2} = \operatorname{var}(X) = E[(X - \mu)^{2}] = \begin{cases} \sum_{x} (x - \mu)^{2} f(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^{2} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

Sample Variance and Standard Deviation

Standard deviation is positive square root of variance

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Sample variance

$$\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})^2}$$

Sample standard deviation

Variance of Sample Mean

- Sample mean is statistic
- Larger values of n will decrease variation of sample mean from mean

$$E[\hat{\mu}] = \mu$$
 $var(\hat{\mu}) = E[(\hat{\mu} - \mu)^2] = \frac{\sigma^2}{n}$

Variance of Sample Variance

- Sample variance is statistic
- Biased estimator of true population variance
- Larger values of n will reduce bias of estimator

$$E[\hat{\sigma}^2] = \left(\frac{n-1}{n}\right)\sigma^2$$

$$E[\hat{\sigma}^2] \to \sigma^2$$
 as $n \to \infty$

Bivariate Analysis

Bivariate Data

- Focused on two attributes (e.g., feature)
- > Data represented as matrix, **D**
- Each row is a sample and column is an attribute
- > X is a random variable
- Each x_i is independent and identically distributed (iid)

$$\mathbf{D} = \begin{pmatrix} X_1 & X_2 \\ X_{11} & X_{12} \\ X_{21} & X_{22} \\ \vdots & \vdots \\ X_{n1} & X_{n2} \end{pmatrix}$$

Bivariate Mean

 Expected value of the vector random variable (X)

$$\mu = E[X] = E\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} E[X_1] \\ E[X_2] \end{bmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$$

Bivariate mean

$$\hat{\mu} = \sum_{\mathbf{x}} \mathbf{x} \hat{f}(\mathbf{x}) = \sum_{\mathbf{x}} \mathbf{x} \left(\frac{1}{n} \sum_{i=1}^{n} I(\mathbf{x}_i = \mathbf{x}) \right) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$

Sample bivariate mean

Covariance

- Measure of association or linear dependence between two attributes (X₁ and X₂)
- Can use to check for independence

$$\sigma_{12} = E[(X_1 - \mu_1)(X_2 - \mu_2)]$$

= $E[X_1X_2] - E[X_1]E[X_2]$

Covariance

$$E[X_1X_2] = E[X_1] \cdot E[X_2]$$

Independence

$$\hat{\sigma}_{12} = \frac{1}{n} \sum_{i=1}^{n} (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)$$

Sample covariance

Interpreting Covariance

 $cov(X,Y) > 0 \longrightarrow X$ and Y are positively correlated

 $cov(X,Y) < 0 \longrightarrow X$ and Y are inversely correlated

 $cov(X,Y) = 0 \longrightarrow X$ and Y are independent

- Covariance values are not constrained, and can be from -infinity to +infinity
- Covariance is a measure of the directional relationship between variables

Correlation

- Standardized covariance between two attributes (X₁ and X₂)
- Bounded between -1 (negatively correlated) and 1 (positively correlated)

$$\rho_{12} = \frac{\sigma_{12}}{\sigma_1 \sigma_2} = \frac{\sigma_{12}}{\sqrt{\sigma_1^2 \sigma_2^2}}$$

Correlation

$$\hat{\rho}_{12} = \frac{\hat{\sigma}_{12}}{\hat{\sigma}_1 \hat{\sigma}_2} = \frac{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)(x_{i2} - \hat{\mu}_2)}{\sqrt{\sum_{i=1}^n (x_{i1} - \hat{\mu}_1)^2 \sum_{i=1}^n (x_{i2} - \hat{\mu}_2)^2}}$$

Sample correlation

Scatter Plots of Data with Various Correlation Coefficients

Scatter Plots of Data with Various Correlation Coefficients

Correlation (Geometric Interpretation)

Cosine of the angle between two centered attribute vectors

$$\overline{X}_{1} = X_{1} - 1 \cdot \hat{\mu}_{1} = \begin{pmatrix} x_{11} - \hat{\mu}_{1} \\ x_{21} - \hat{\mu}_{1} \\ \vdots \\ x_{n1} - \hat{\mu}_{1} \end{pmatrix} \qquad \overline{X}_{2} = X_{2} - 1 \cdot \hat{\mu}_{2} = \begin{pmatrix} x_{12} - \hat{\mu}_{2} \\ x_{22} - \hat{\mu}_{2} \\ \vdots \\ x_{n2} - \hat{\mu}_{2} \end{pmatrix}$$

$$\hat{\rho}_{12} = \frac{\overline{X}_{1}^{T} \overline{X}_{2}}{\sqrt{\overline{X}_{1}^{T} \overline{X}_{1}} \sqrt{\overline{X}_{2}^{T} \overline{X}_{2}}} = \frac{\overline{X}_{1}^{T} \overline{X}_{2}}{\left\| \overline{X}_{1} \right\| \, \left\| \overline{X}_{2} \right\|} = \left(\frac{\overline{X}_{1}}{\left\| \overline{X}_{1} \right\|} \right)^{T} \left(\frac{\overline{X}_{2}}{\left\| \overline{X}_{2} \right\|} \right) = \cos \theta$$

Correlation (Geometric Interpretation)

Cosine of the angle between two centered attribute

vectors

Covariance Matrix

- Summary of variancecovariance information
- Symmetric matrix
- Total variance is trace of covariance matrix

$$\Sigma = E[(\mathbf{X} - \boldsymbol{\mu})(\mathbf{X} - \boldsymbol{\mu})^T]$$
$$= \begin{pmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{pmatrix}$$

$$var(\mathbf{D}) = tr(\Sigma) = \sigma_1^2 + \sigma_2^2$$

Correlation and Covariance: Iris Dataset

The sample mean is

$$\hat{\boldsymbol{\mu}} = \begin{pmatrix} 5.843 \\ 3.054 \end{pmatrix}$$

The sample covariance matrix is

$$\widehat{\Sigma} = \begin{pmatrix} 0.681 & -0.039 \\ -0.039 & 0.187 \end{pmatrix}$$

The sample correlation is

$$\hat{\rho}_{12} = \frac{-0.039}{\sqrt{0.681 \cdot 0.187}} = -0.109$$

Multivariate Analysis

Multivariate Data

- Focused on d attributes (e.g., feature)
- Data represented as matrix, D
- Each row is a sample and column is an attribute
- > X is a random variable
- Each x_i is independent and identically distributed (iid)

$$\mathbf{D} = \begin{pmatrix} X_1 & X_2 & \cdots & X_d \\ X_{11} & X_{12} & \cdots & X_{1d} \\ X_{21} & X_{22} & \cdots & X_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nd} \end{pmatrix}$$

Multivariate Mean

 Expected value of the vector random variable (X)

$$\boldsymbol{\mu} = E[\boldsymbol{X}] = \begin{pmatrix} \mu_1 & \mu_2 & \cdots & \mu_d \end{pmatrix}^T$$
Mean Vector

$$\hat{\boldsymbol{\mu}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}$$

Sample mean vector

Covariance Matrix

- Symmetric
- Positive, semi-definite (PSD)
- Total variance is sum of diagonal (trace)

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1d} \\ \sigma_{21} & \sigma_2^2 & \cdots & \sigma_{2d} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{d1} & \sigma_{d2} & \cdots & \sigma_d^2 \end{pmatrix} \quad \hat{\Sigma} = \begin{pmatrix} \hat{\sigma}_1^2 & \hat{\sigma}_{12} & \cdots & \hat{\sigma}_{1d} \\ \hat{\sigma}_{21} & \hat{\sigma}_2^2 & \cdots & \hat{\sigma}_{2d} \\ \cdots & \cdots & \cdots \\ \hat{\sigma}_{d1} & \hat{\sigma}_{d2} & \cdots & \hat{\sigma}_d^2 \end{pmatrix} \quad tr(\Sigma) = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_d^2$$

$$tr(\mathbf{\Sigma}) = \sigma_1^2 + \sigma_2^2 + \dots + \sigma_d^2$$

Sample Covariance Matrix: Inner and Outer Product

- Pairwise inner or dot product of centered attribute vectors normalized by sample size
- Sum of rank-one matrices calculated as outer product of each centered point

$$\widehat{\boldsymbol{\Sigma}} = \frac{1}{n} \left(\overline{\boldsymbol{D}}^T \ \overline{\boldsymbol{D}} \right) = \frac{1}{n} \begin{pmatrix} \overline{\boldsymbol{X}}_1^T \overline{\boldsymbol{X}}_1 & \overline{\boldsymbol{X}}_1^T \overline{\boldsymbol{X}}_2 & \cdots & \overline{\boldsymbol{X}}_1^T \overline{\boldsymbol{X}}_d \\ \overline{\boldsymbol{X}}_2^T \overline{\boldsymbol{X}}_1 & \overline{\boldsymbol{X}}_2^T \overline{\boldsymbol{X}}_2 & \cdots & \overline{\boldsymbol{X}}_2^T \overline{\boldsymbol{X}}_d \\ \vdots & \vdots & \ddots & \vdots \\ \overline{\boldsymbol{X}}_d^T \overline{\boldsymbol{X}}_1 & \overline{\boldsymbol{X}}_d^T \overline{\boldsymbol{X}}_2 & \cdots & \overline{\boldsymbol{X}}_d^T \overline{\boldsymbol{X}}_d \end{pmatrix}$$

$$\widehat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \overline{\mathbf{x}}_{i} \cdot \overline{\mathbf{x}}_{i}^{T}$$

Data Normalization

Min-Max or Range Normalization

- Each sample scaled by the sample range
- Features normalized between 0 and 1

$$x_i' = \frac{x_i - \min_i \{x_i\}}{\hat{r}} = \frac{x_i - \min_i \{x_i\}}{\max_i \{x_i\} - \min_i \{x_i\}}$$

Standard Score Normalization

- Z-normalization
- Scales data to be centered (zero mean) and unit variance

$$x_i' = \frac{x_i - \hat{\mu}}{\hat{\sigma}}$$

Range vs Standard Score Normalization

- •Range normalization can be useful where distribution of the data is unknown and in algorithms that do not make assumptions of distribution of the data.
- •Standardization is well suited to data that is characterized by a Normal (aka Gaussian) distribution. Its application is not just restricted to such data. Standardization is more robust to outliers.

Next class

- Data and attributes
 - Numerical
 - Normal distribution
 - Categorical

Supplemental Slides

• **Python** <u>statistics</u> is a built-in Python library for descriptive statistics. You can use it if your datasets are not too large or if you can't rely on importing other libraries.

- <u>NumPy</u> is a library for numerical computing, optimized for working with single- and multidimensional arrays. Its primary type is the array type called <u>ndarray</u>. This library contains many <u>routines</u> for statistical analysis.
- <u>SciPy</u> is a library for scientific computing based on NumPy. It offers additional functionality compared to NumPy, including <u>scipy.stats</u> for statistical analysis.

>>> arr[1, 2:4] array([7, 8])

>>> arr[:, 1]
array([2, 6, 10, 14])

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	16

	1	2	3	4	
	5	6	7	8	
	9	10	11	12	
	13	14	15	16	
F					

•Pandas is a library for numerical computing based on NumPy. It excels in handling labeled one-dimensional (1D) data with <u>Series</u> objects and two-dimensional (2D) data with <u>DataFrame</u> objects.

• Matplotlib is a library for data visualization. It works well in combination with NumPy, SciPy, and Pandas.

 <u>Seaborn</u> pair-plots give us a good way to view correlations between pairs of variables (features):

