

Dpto. Matemáticas

	_		
Nombre:	Curso:	2°	BCT

Pregunta 1

Discutir y resolver el siguiente sistema, según los valores de m: $\begin{cases} x + y + mz = 1 \\ x - y + 2z = 0 \\ 2x - y - z = m \end{cases}$

Pregunta 2

Sea A una matriz cuadrada de orden 3.

- a) Si sabemos que el determinante de la matriz 2A es |2A| = 8, ¿Cuánto vale el determinante de A?. Escribe la propiedad de los determinantes que hayas usado para obtener este valor.
- b) Calcula para qué valores de x se cumple que |2A| = 8; donde $A = \begin{pmatrix} x & 1 & 1 \\ x+1 & 2 & 2 \\ x & 2-x & 1 \end{pmatrix}$

Pregunta 3

Determina la posición relativa del plano $\pi: x - y + z = 2$ y la recta de ecuaciones

$$\frac{x}{2} = \frac{y+1}{1} = \frac{z+2}{-1}$$
 y calcula la distancia entre ellos.

Pregunta 4

Dados los vectores $\overrightarrow{v_1} = (3,1,2); \ \overrightarrow{v_2} = (2,1,1); \ \overrightarrow{v_3} = (0,1,1)$, se pide hallar un vector $\overrightarrow{w} = (x,y,1)$, tal que:

- a) \vec{w} está contenido en el plano determinado por $\vec{v_1}$ y $\vec{v_2}$
- b) \overline{w} es perpendicular a $\overline{v_3}$

Pregunta 5

Calcula el siguiente límite: $\lim_{x\to 0} \frac{arctgx - x}{x - senx}$

Pregunta 6

Resolver la integral: $\int \frac{x}{\cos^2 x} dx$

Pregunta 7 (Para subir nota)

Determina los puntos de la parábola $y = x^2$ que están a mínima distancia del punto P(0,1).

Atención:

- Responda a todas las preguntas de cada bloque.
- ✓ La puntuación máxima de cada ejercicio es 10/6.
- Para conseguir la máxima puntuación en cada ejercicio se ha de explicar lo que hacemos paso a paso.
- ✓ La no explicación implica una pérdida de un 25% del valor de cada ejercicio.

Dpto. Matemáticas

Nombre: Curso: 2° BCT

Pregunta 1 (2 puntos)

Discutir y resolver es siguiente sistema según los valores del parámetro k:

sistema según los valores d
$$\begin{cases} kx + y + (k+1)z = 0\\ ky + (k+1)z = 0\\ x + 2z = 1 \end{cases}$$

Pregunta 2 (1,33 puntos)

Considere la matriz $A = \begin{pmatrix} 0 & 3 & 4 \\ 1 & -4 & -5 \\ -1 & 3 & 4 \end{pmatrix}$

- a) Siendo I la matriz identidad de orden 3 comprueba que A³+I=O
- b) Calcula la matriz A¹⁰

Pregunta 3 (2 puntos)

Hallar el punto de la recta $r: x = \frac{y+2}{2} = \frac{z-3}{-1}$ que equidista del punto A(1,2,1) y del origen de coordenadas.

Pregunta 4 (1,33 puntos)

Hallar los valores de x que hacen que los siguientes vectores constituyan una base del espacio vectorial \Box \vec{i} : \vec{u} = (x,0,1); \vec{v} = (1,x,2); \vec{w} = (x,1,1). Expresar el vector \vec{t} = (-1,0,3) como combinación lineal de $\{\vec{u},\vec{v},\vec{w}\}$ para x = 0.

Pregunta 5 (1,33 puntos)

Resolver la integral: $\int x^3 \cdot e^x dx$

Pregunta 6 (2 puntos)

Estudia y dibuja la función $f(x) = \frac{x-4}{x^2-x-2}$

ATENCIÓN: Para conseguir la máxima puntuación en cada ejercicio se ha de explicar lo que hacemos paso a paso. La no explicación implica una pérdida de un 25% del valor de cada ejercicio.