Number Base Case	information flow	Conditional Entropy -> Entropy of Y given X
$N = d_n R^n + d_1 R^1 + d_0 R^0$ the d specifies the Number system -> $d_2 ==$ binary	essentially information content over time	$H(Y X) = \sum_{k=1}^{N} \sum_{i=1}^{N} P(x_k, y_i) * (-log_2(\frac{P(x_k, y_i)}{P(x_i)}))$
can also be written as R_2 This can also be used to expand numbers:	$H_0^* = \frac{\log_2(N)}{\pi} \left[\frac{bit}{a} \right]$	Chain Rule
$N_{10}255 = 2 * 10^2 + 5 * 10^1 + 5 * 10^0$ $N_{2}110 = 1 * 2^2 + 1 * 2^1 + 0 * 2^0 => N_{10}6$	information quantity / Surprise	$H(Y X) = H(X,Y) - H(X) \mid\mid H(Y \setminus X)$
Quantities: $N \rightarrow \text{natural numbers} \mid \mathbf{Z} \rightarrow \text{full numbers}$	$I(x_k) = -\log_2(P(x_k))[bit]$	Bayes Rule
Q -> rational numbers R -> real numbers Common number systems:	Entropy (Surprise per element)	$H(Y X) = H(X Y) - H(X) + H(Y) \mid\mid H(Y \setminus X)$
Desimal, N = n + 10 ⁿ 0 + 10 ⁰	0 means no symbols. 1 means perfect balance 50-50	
Binary: $N_2 = n * 2^n0 * 2^0$ $2^{10} = 1024, 2^9 = 512, 2^8 = 256, 2^7 = 128, 2^6 = 64,$ $2^5 = 32, 2^4 = 16, 2^3 = 8, 2^2 = 4, 2^1 = 2, 2^0 = 1$ Hexadecimal: $N_16 = n * n^{16}0 * 16^0$	$H(X) = \sum_{k=1}^{N} P(x_k) * I(x_k) \left[\frac{bit}{sumbol} \right]$	H(X) H(Y)
$ 2^{0} = 32, 2^{4} = 16, 2^{0} = 8, 2^{2} = 4, 2^{4} = 2, 2^{0} = 1$ Hexadecimal: $N_{1}6 = n * n^{16}0 * 16^{0}$		
notation: 0 1 2 3 4 5 6 7 8 9 A B C D E F $16^5 = 1048576, 16^4 = 65536, 16^3 = 4096, 16^2 = 256.$	where X is the list of symbols Sink Redundance / Code Redunce $R_Q = H_0 - H(X)[\frac{symbol}{symbol}]$	H(X Y) I(X:Y) H(Y X)
$16^{1} = 16, 16^{0} = 1$ Modulo	$R_Q = H_0 - H(X) \left[\frac{\partial tt}{sumbol} \right]$ §0.5	
8 mod $4 = (8) -> 0$, 8 mod $3 = (6) -> 2$, 8 mod $5 = (5) -> 3$ if $x < y$ in x mod y then the result will always be x!		
any negative numbers can be considered as NOTnegative aka only absolute values! modulo deals with x	$R_c = L - H(X) \left[\frac{bit}{symbol} \right]$	
many programming languages actually do not follow this! they have their own implementation of modulo.	Code Word Length	HWW
$5 \equiv 3 \mod 2 -> $ as $5 \mod 2 = 1$ and $3 \mod 2 = 1$ Codeword length	$L(x_k) = \text{rounded}(I(x_k))[bit]$	H(X,Y) Transinformation
$egin{array}{ll} { t Byte} = 8 { t bit} \mid & { t Word} = 16 { t or } 32 { t bit} \ { t TCP packet} = 1024 { t bit} \end{array}$	Median Code Word Length	likelyhood of information being correct at arrival.
Cyclic group	$L = \sum_{k=1}^{N} P(x_k) * L(x_k) \left[\frac{bit}{symbol} \right]$	T = H(X) - H(X Y) H(Y) - H(Y X)
Es sei $F(a) = a^3 + a + 1 = 0$, Dann können wir zunächst festhalten	Entropy of the entire Code	or: $ (X;Y) $
■ a = a		Hamming distance / distance to next valid codeword
$= a^2 = a^2$ aber	$H_c(X) = \sum_{k=1}^{N} P(x_k) * L(x_k) \left[\frac{bit}{symbol} \right]$	$h = Min_{i,j}(d(x_i, x_j)) \rightarrow h = \text{message points} + 1$
■ $a^3 = a + 1$ ■ $a^4 = a(a + 1) = a^2 + a$	H_c can be a real number -> $H_c \in \mathbb{R}$	error detection distance
$a^5 = a(a^2 + a) = a^3 + a^2 = a^2 + a + 1$	Für jede beliebige zugehörige Für jede beliebige Quelle kann eine	$e^* = h - 1$
$ a^6 = a(a^2 + a + 1) = a^3 + a^2 + a = a + 1 + a^2 + a = a^2 + 1 $ $ a^7 = a(a^2 + 1) = a^3 + a = a + 1 + a = 1 $	Binärcodierung mit Präfixeigenschaft ist die mittlere Codewortlänge nicht kleiner als die Odewortlänge nicht kleiner als die Codewortlänge nicht kleiner als die Codewortlange nicht kleiner al	error correction distance for h even
$ a^8 = a : der Zyklus beginnt von vorne! $	= 4 · · · · · · · · · · · ·	$h = 2e + 2 -> e = \frac{h-2}{2}$
$\blacksquare \{0, 1, a, a^2, a+1, a^2+a, a^2+a+1, a^2+1\}$	$H(X) \le L$ $H(X) \le L \le H(X) + 1$	$n = 2e + 2 - > e = \frac{1}{2}$ error correction distance for h uneven
= {000, 001, 010, 100, 011, 110, 111, 101}	Sink without memory	
WHAT THE FUCK Result Quantity the result of all possible outcomes	$P(x_k, y_k) = P(x_k) + P(y_i)$	$h = 2e + 1 -> e = \frac{h - 1}{2}$
it is denoted with: Ω A single element of the result list is: $\omega -> \omega \in \Omega$	Sink with memory	Consider the valid input either 111 or 000. The Hamming distance h is therefore 3 bits.
The list of results is $ \Omega $ Example Dice roll: $\Omega = \{1, 2, 3, 4, 5, 6\}$	$P(x_k, y_i) = P(x_k) + P(x_k y_i)$	The detection distance e^* is 3 - 1
Probability: $P(A) = \frac{\text{best results}}{ A } = \frac{ A }{ A }$	Entropy without memory / Combined Entropy	Due to h being uneven, the correction distance e is $\frac{h-1}{2}$ which results in 1.
Probability: $P(A) = \frac{1}{\text{all results}} = \frac{1}{ \Omega } = \frac{1}{n}$ So what is the probability of rolling a 6?	$H(H,Y) = \sum_{x_k}^{N} \sum_{y_i}^{N} P(x_k, y_i) * (-log_2(P(x_k, y_i)))$	tighly packed coderoom
only 1 good result! 1	or: $H(X, Y) = H(X) + H(Y)$ Entropy with memory	m = dimension of code m = dimension of messages $2^m * \sum_{w=0}^e \binom{n}{w} \le 2^n$
hence the chance is 1 in 6 hence the chance is 1 in 6 hence the complicated method? You can modify desired results!	$H(H,Y) = \sum_{x_k}^{N} \sum_{u_i}^{N} P(x_k) *$	k = dimension of control -> n = m + k The code is considered to be tightly packed
just change the A in P(A)!	$P(x_k, y_i) * (-log_2(P(x_k) * P(x_k y_i))$	if the equation has the result 2. aka == not smaller. $m=2$ $k=1$
Inverse Probability: $P(inverse) = 1 - P(A)$ dice -> $1 - \frac{1}{2} = \frac{5}{2}$	Encoding of Symbols	x ₁ x ₂ x ₃
6 6 Addition rule:	 Ordne die Zeichen gemäss ihrer Auftrittswahrscheinlichkeit Die beiden Zeichen mit der kleinsten Auftrittswahrscheinlichkeit haben die gleiche CW-Länge Ly 	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	 Sei L_N die mittlere CW-Länge für eine Quelle mit N Zeichen und L_{N-1} die mittlere CW-Länge für den Fall, dass die beiden letzten zu einem 	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
!!The last part is needed, as otherwise the number	einzigen Zeichen zusammengefasst werden, dann gilt: $L_N - \left(p(x_{N-1}) + p(x_N)\right) \cdot L(x_N) = L_{N-1} - \left(p(x_{N-1}) + p(x_N)\right) \cdot \left(L(X_N) - 1\right)$	$x_3 = (x_1 + x_2) \mod 2$
would exceed the possible states!! $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C)$	$\Rightarrow L_N = L_{N-1} + p(x_{N-1}) + p(x_N)$ 1 2 3 4 5 6 7 8 9	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{-P(B \cap C) + P(A \cap B \cap C)}{\text{Amount of possibilities:}}$	0.22 0.19 0.15 0.12 0.08 0.07 0.07 0.06 0.04 1 2 3 4 8 9 5 6 7	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
ordered probes with replication: 2 coins, head and tail, possibilities? k=head/tail=2 n=coins=2	0 1 0.22 0.19 0.15 0.12 0.1 0.08 0.07 0.07	1 1 1 1 1 mod 2 = 0 NOT OK
$\Omega=n^k=2^2$	1 2 3 6 7 4 8 9 5 0 1 0 1	Hamming Codes The hamming code is very easy to implement
ordered probes without replication:	0.22 0.19 0.15 0.14 0.12 0.1 0.08 1 2 8 9 5 3 6 7 4	$\Sigma_i x_i * \overrightarrow{\mathrm{P_i}} \equiv \overrightarrow{0} mod 2$
5 dices. How many combinations?	1 2 8 9 5 3 6 7 4 00 01 1 0 1 1 0 1 0 1 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0	
dice numbers = $\mathbf{n} = 6$ (1-6), dice amount = $\mathbf{k} = 5$ possibilities = $\Omega = \frac{n!}{(n-k)!} = \Omega = \frac{6!}{(6-5)!} = 720$	continue this pattern until every symbol has a code	The syndrome $\overrightarrow{Z} = \sum_i x_i * \overrightarrow{P}_i mod2$ 1,2,4,8,162*are parity checks
Or this:	Run Length Encoding RLE/RLC	parity
$\Omega = \Pi_n^{n-k+1} n = \Pi_6^{6-5+1} 6 = 2 * 35 * 6 = 720$	Quelltext w: Agggbbehfffgggg => w =15 shortening of length	bit = Q1
unordered probes wihout replication: 25 players, each should only play once with the other.	Codiert w _g : A3g2beh3f4g => w _g = 11 by compressing repetition.	2 3 010 011 = Q2
$\Omega = \frac{n!}{k!(n-k)!} - \frac{25!}{2!(25-2)!} - \frac{\text{too big}}{\text{too big}} = 300$	A+3xg+2xb+e+h+3xf+4xg	4 5 100 101
as you can see the bottom is a BIG calculation, so	Encoder and Decoder You need to either choose 1 or 0 as the starting	
$\Omega = \frac{\Pi_n^{n-k+1}n}{k!} > \frac{\Pi_{25}^{25-2+1}25}{2!} > \frac{24 * 25}{2} = 300$	bit. After that the decoder can print out the correct code. Chiffre text	6 7 110 111
k! 2! 2	You can "encrypt" your data by shifting the codes by a certain amount.	example for code 1001
length of the tuple we want to receive. -> (Player, Player) -> 2	In the caesar chiffre this is done with the number 4. a -> e Please do not use this, use RSA or other algorithms.	0 1
Source to Sink Information	Errors	
Nachricht (Darstellung & Bedeutung) redundant nicht-redundant	$p(x_1)=0.5 \ x_1 \qquad p \qquad y_1 p(y_1) = p(x_1) \cdot p + p(x_2) \cdot (1-q)$ $p(y_1)=p(x_1) \cdot (1-p) + p(x_2) \cdot (1-q)$ $p(y_2)=p(x_3) \cdot (1-p) + p(x_2) \cdot (1-q)$	
irrelevant Zeichenvorrat bei Quelle und Senke verschieden	$p(x_2) = 0.5 \ x_2 \qquad \qquad p(y_2) = p(x_1) \cdot (1-p) + p(x_2) \cdot (q)$	
relevant vorhersagbar Information	$p(Y X) = \begin{bmatrix} p & 1-p \\ 1-q & q \end{bmatrix} \mapsto \begin{bmatrix} \sum = 1 \\ \sum = 1 \end{bmatrix}$ 1-p and 1-q are the chance for error. Which we of course have to	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Entropy	Cake Into account.	0 1 0 1
information content this essentially just us how many bits are needed	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
k is base state count -> bit = 2 and N is the full number of states	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\vec{z} =000=noerror \vec{z} =101=error at 101=5
example: list True, False, True, False 4 states total, base 2. $H_0 = log_2(N)[k] > H_0 = log_2(A)[hit] = 2$	0.95 0.025 0.025	note that the 001 010 100 of the parity checks are
$H_0 = log_k(N)[k] -> H_0 = log_2(4)[bit] = 2$	$p(Y X) = \begin{bmatrix} 0.025 & 0.95 & 0.025 \\ 0.025 & 0.025 & 0.95 \end{bmatrix} \qquad \begin{bmatrix} 0.25625 \\ 0.25625 \end{bmatrix} = \begin{bmatrix} 0.50.025 0.250.250.250.950.250.950.250.95 \\ 0.50.025 0.250.250.250.250.250.95 \end{bmatrix}$	simply the unit vector $\overrightarrow{0}$!!!
		_

NAND: the basis of modern computers it is easy to create with transistors.	Division with potences is a rightshift!!	$1111'1111_b \cdot 1111'1111_b = 1111'1110'0000'0001_b \neq 1$
It is easy to create with transistors. It only results in False if both inputs are true, hence the name Not-AND.	$\frac{1'0111}{2^3}$ = remove 3 bits from 1'0111 -> 101	⇒ signed Multiplikation ≠ unsigned Multiplikation check if both operands are negative, if so invert them to positive.
mathematical notation: NAND = $x y = \overline{x \wedge v}$	Left & Rightshift java logical right: $a >>> x -> 101 >>> 1 -> 010$	do unsigned multiplication
$\overline{x} = \overline{x \wedge x} = x \mid x$	logical left: a $<<<$ x -> 101 $<<<$ 2 -> 1'0100 arithmic right: a $>$ x -> 101 $>$ 1 -> 110	if only one operand was negative, take the negative result. $\Rightarrow N_n(a) \cdot N_n(b) = a \cdot b \text{ und } N_n(a) \cdot b = N_{2n}(a \cdot b) = a \cdot N_n(b) \text{ (mit } a, b \geq 0)$
$x \wedge y = \overline{x \mid y} = (x \mid y) \mid (x \mid y)$	arithmic left: a « x -> 101 « 2 -> 1'0111 the »> and «< add the MSB value instead of 0	Note that we don't need to care about signed, if
$x \lor y = \overline{\overline{x} \land \overline{y}} = (x \mid x) \mid (y \mid y)$	The reason for this is unsigned and signed!!	we do not overwrite the MSB! Division
NOR	$b \wedge m = b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \wedge m_7 m_6 m_5 m_4 m_3 m_2 m_1 m_0$	DIVISION should be avoided, slow operation compared to others 32 bit -> 20 times as long as multiplication
NOR is only true when neither of the inputs are true. aka NOR = 1 if $x==0$ && $y==0$		32 bit -> 20 times as long as multiplication 64 bit -> 80 times as long as multiplication - can be replaced with right shift for potences
$\frac{v \lor v}{\text{Just like with NAND all functions}}$ can be made with NOR		see /10 for decimal numbers. signed and unsigned division are completely different
XOR: exclusive or	Setting a bit $b \lor m = b_1b_6b_5b_4b_3b_2b_1b_0 \lor m_7m_6m_5m_4m_3m_2m_1m_0$	• Unsigned: Iteratives Verfahren für $i = n - 1$ bis $i = 0$:
The XOR is true if only one input is true.	$=b_7b_6b_5b_4b_3b_2b_1b_0\vee 0100'0000$	 Man überprüft ob b· 2ⁱ in die n – i obersten Bits von a «passt» Wenn ja, dann setzt man im Ergebnis Bit i und zieht b· 2ⁱ von a ab
$x \oplus y$ Addition of bits.	Dava B v 080100_0000	Inversion
l .	Deleting a bit	$N(b+1) > 2^n - 1 - b > 2^n == 0$
0 0 00 0 0	$= b_7 b_6 b_5 b_4 b_3 b_2 b_1 b_0 \wedge 1011'1111$	$0 - 1 = -1 > 11111 > -1 - b = \overline{b}$
$\left \begin{array}{c cccc} 0 & 1 & 01 & 0 & 1 \\ 1 & 0 & 01 & 0 & 1 \end{array} \right $	$=b_70b_5b_4b_3b_2b_1b_0$	Okay, the idea is that -1 is the number with all bits set to 1 This means that no matter what you do, you can't have overflow.
1 1 10 1 0	Combine these with right and left shift!	In fact this means that b can be inverted by subtracting it to -1.
AND signifies the overflow of bits. $1.0 < -1.1$	read: b & (1 « n) »> n 000(b AND 11111)	this is -1 !!
	set: (b (1 « n)) b OR 11111 delete: b & (1 « n) b AND not 11111	-1 11111
Conjunction-term: conjunction of literals $x_1x_2 = x_1 \wedge x_2$		
Disjunction-term: disjunction of literals $x_1 \lor x_2$ Minterm: conjunction with ALL parameters of a function	by p. 1. create mask, 2. read n bits from c into bb	b <u>- 0 1 1 1 0</u>
Minterm: conjunction with ALL parameters of a function Maxterm: disjunction with ALL parameters of a function	3. shift n bits from c to cc in order to create room	- 10001
Disjunctive Normalform DNF	m = (1 << p) - 1; //	b 10001
a disjunction of conjunctions. $x_1x_2 \vee \overline{x_1x_2}$ Functions are often displayed as DNF, since this format	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
requires only 3 symbols: $\lor \land \neg$ The canonical DNF C-DNF: a DNF with all parameters		Unsigned in java You can't declare unsigned integer etc, instead you just use the
the canonical DNF is often used to display the true false table. The C-DNF is then often simplified to get the end result	Addition and Subtraction Addition: Subtraction: (Zweierkomplement)	unsigned functions. compareUnsigned, divideUnsigned, remainderUnsigned
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 1 1 1 1 0 1	for Integer, Short, Byte, Long
0 0 0 1 xy		Java comparators ==, !=, <, >, <=, >=
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	(1) 0 0 0 0 1 1	• a != b ↔ !(a == b)
$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$	if the subtraction would (1) 0 0 0 0	$ \bullet \ a \ge b \leftrightarrow !(a < b) $ $ \bullet \ a \le b \leftrightarrow (a < b) \mid (a == b) $
$\overline{x}\overline{y} \lor \overline{x}y \lor x\overline{y} = \overline{x}(\overline{y} \lor y) \lor x\overline{y} = \overline{x} \lor x\overline{y} = \overline{x} \lor \overline{y}$	result in 0, then we $\begin{array}{cccccccccccccccccccccccccccccccccccc$	• $a > b \leftrightarrow !(a \le b) \leftrightarrow !((a \le b) (a == b))$
$x \oplus y = \overline{x}y \lor x\overline{y}$ note that DNF has nothing to do with the ferrari engine.	the number above!! (0) 1 1 1 1	we only need == < Beause processors are super fast in addition an subtraction,
	Signed & Unsigned	- we can simplify equality checks by using these 2 operations. - example unsigned, check if a < b:
luckily there are several predefined mapped functions	Unsigned: only positive integers! Signed: MSB 0 = positive, MSB 1 = negative	==, !=, <, >, <=, >=
- and(x,y) check the individual bits of x,y with and	bigned: MSB 0 = positive, MSB 1 = negative the rest is a regular binary number. note: This is something you simply need to know.	• a != b \leftrightarrow !(a == b) • a >= b \leftrightarrow !(a < b)
	It isn't included in some encoding!!	• a <= b \(\phi \) (a < b) (a == b) • a > b \(\phi \) ! (a <= b) \(\phi \) ! (a <= b))
NOT: $z = -q z_i \leftarrow \overline{q}_i$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	we only need == <
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c is the carry bit, and it is only set to 1 if a < b!! - example signed:
11 100 1	$N(2^{n-1}-1)=2^n-(2^{n-1}-1)$	case 1, overflow(wrong prefix)
note that with and &&, if the first evaluation is enough to determine the result, the second one won't be executed.	this is because of the $= 2^{n-1} + 1$	(+a) - (-b) = (-d) 0111 - 1000 = (1)1111 7 - (-8) = -1
a=False, b=True -> a && b -> a is false, therefore result false. Variable sizes in java	overflow. see above!! $=10.01$ 0 = 0000> 10000	(-a) - (+b) = (+d) $1000 - 0111 = 0001$ $(-8) - 7 = 1$
int = 32 bit short = 16 bit	signed unsigned	$o = \bar{s}_a s_b s_d \vee s_a \bar{s}_b \bar{s}_d$ S = MSB of variable.
byte = 8 bit long 64 bit	4 Bit -87 015 8 Bit -128127 0255	The o stands for overflow, however it only checks
IONG 04 DIK Please note that these should only be used when, you either save significant memory, or the integer isn't big enough.	16 Bit	for an overflow of the prefix. Aka it checks wether
multiplying a binary number	32 Bit -2G 2G - 1 0 4G - 1	or not the prefix makes sense. when we subtract something negative then we
you have to multiply every single bit and add the corresponding 0s.	note the difference in positive and negative in the signed category! size constraints!	expect a positive outcome, which we DIDN'T get
		above!!
2 ² . 101011 L Y 705 · 101011	unsigned 0 ··· 127 128 ··· 255 signed 0 ··· 127 -128 ··· -1	case 2 correct prefix
·	Note -1 is 1111'1111. Negative numbers are	1. result is positive -> Sd = 0 -> a>b
100 . 101011	calculated: 0 - number This means an overflow on unsigned ints will lead	2. result is negative -> Sd = 1 -> a <b< td=""></b<>
0 <i>00</i> 00 <i>0</i>	to it being 0 again. On signed ints, it will drop to negative maximum.	$a < b \rightarrow o \oplus s_d = 1$
a 50 000 0	Special cases in signed: 2^{n-1} max -> always negative as MSB = 1	- the check for all 0 or 1 is also fast -> AND
10101100	Max: 100000000	In java we only work with the signed interpretation by default use the before mentioned special functions for unsigned!
Multiplication of binary number	Note that when increasing memory for signed values,	Character Encoding A character is encoded via a bijectional function
$b = 2^{n-1} \cdot b_{n-1} + \dots + 2^{n} \cdot b_0$ Multiplication with potences> also binary!	increasing memory for -1 -> 4 bit to 8 bit	$E'(z_0z_{n-1}) = f(E(z_0)E(z_{n-1}))$
$c = 2^m \cdot (2^{n-1} \cdot b_{n-1} + \cdots + 2^0 \cdot b_0)$	For signed left shift, check if you have spare memory	The formula must obviously be known by both parties, as the
$=2^{m+n-1}\cdot b_{n-1}+\cdots+2^m\cdot b_0$	left shift without checking might result in loss of MSB!	text can't be decoded otherwise. ASCII
$-2 \qquad c_{m+n-1} + \cdots + 2 \qquad c_m + 2 \qquad 0 + 2 \qquad 0$	multiplication: series of left shifts.	$72^7 = 128 - > 7bit$ - uses both printable characters and
$c_{m+n-1} = b_{n-1}, \dots, c_m = b_0, c_{m-1} = \dots = c_0 = 0$	1101 * 110 = 11'0100 + 1'1010 = 100'1110 10 -> add 1 zero, 100 -> add 2 zero, get the sum of both	nonprintable control characters
	Size increase: max double -> x^2 110 * 110 -> 1100 + 1*1000 = 11*1000 (3 to 6 bits)	- introduction 1963, enacted by US president 1968
	· · · · · · · · · · · · · · · · · · ·	
	110 / 1100 11000 11000	
	110 110 / 1100 1 1000	


```
• x = 1.999'999'880'790'710'449'218'750 = 2 - 2^{-23}
            • v = 0.000'000'059'604'644'775'390'625 = 2^{-24}
            • x = 0 \mid 0111 \mid 1111 \mid 11111 \mid 1111 \mid 111
               • y = 0 \mid 0110 \mid 0111 \mid 000 \mid 0000 \mid 00000 \mid 0000 \mid 00000 \mid 0000 \mid 000
            • x' = 0 \mid 0111 \mid 1111 \mid (1) \mid 111 \mid 1111 
            • y' = 0 \mid 0111 \mid 1111 \mid (0) \mid 000 \mid 0000 \mid 0000 \mid 0000 \mid 0000 \mid a + 24, m \cdot 2^{-24}
               • z' = 0 \mid 0111 \mid 1111 \mid (1) \mid 111 \mid 1111 \mid 1111 \mid 1111 \mid 1111 \mid 1111 \mid x' + y'
            • z = 0 \mid 0111 \mid 1111 \mid 1111
            • result is wrong, should be rounded up!!
       x = 1.999'999'880'790'710'449'218'750 = 2 - 2^{-23}
       y = 0.000'000'059'604'644'775'390'625 = 2^{-24}
       x = 0 \mid 0111 \mid 1111 \mid
       v = 0 \mid 0110 \mid 0111 \mid 000 \mid 0000 \mid 
          x' = 0 \mid 0111 \mid 1111 \mid (1) \mid 111 \mid 1111 \mid 1111 \mid 1111 \mid 1111 \mid (0) Guard-Digit
       y' = 0 \mid 0111 \ 1111 \mid (0) \ 000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ (1) Guard-Digit
       z' = 0 \mid 0111 \mid 1111 \mid (1) \mid 111 \mid 1111 \mid 1111 \mid 1111 \mid 1111 \mid (1) = x' + y'
       z'' = 0 \mid 0111 \ 1111 \mid (10) \ 000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0 rounded
       compared to before, not a single digit is the same....
          the guard digit did the trick by flagging z to be rounded after addition.
  Special cases for floating point numbers \pm 0 -> a=0 . subnormal number -> a=0 .. 0 & z NOT 0 .. 0 \pm \infty -> a=1 .. 1 & z = 0 .. 0 NaN -> a=1 .. 1 & z NOT 0 .. 0
     The reason we want things such as infinity is this: float x2 = x * x;
          if (x2 < max_float) {
                                                           float y2 = y * y;
if (y2 < max_float) {
    float r = x2 + y2;</pre>
                                                                                                                 if (r < max_float) {
                                                                                                                                                                r = sqrt(r);
  We either check for overflows the entire time!
       Or we just continue calculation with infinity
And then at THE END we check if it's infinite
float r = sqrt (x*x + y*y);
          if (r == Float.POSITIVE_INFINITY) { ... }
Calculation with \infty exchange \infty with x and define: lim if the limit exists, the result is the limit if the limit doesn't exist, result is NaN
       y \pm \infty = \pm \infty >>> \lim_{x \to \infty} y + x = 0
       \pm x/0 = \pm \infty \text{ for } x \neq 0
       y/\pm\infty=0 for y\neq0 >>> \lim_{x\to\infty}y/x=0
            \sqrt{\infty} = \infty >>> \lim_{x \to \infty} \sqrt{x} = \infty
  Calculation with NaN
ALL OPERATION WITH NaN RESULT IN NaN!
Other operations might also result in NaN:
       \mathsf{Z.B.}\ -\infty + \infty
     Z.B. \pm \infty \cdot 0
Z.B. 0/0 or \pm \infty/\pm \infty
       Z.B. \sqrt{x} for x < 0
     There are also some implementations for exceptions inside floating
     qNaN: propagates exception
sNaN: throws exception
       +0 is the underflow for positive numbers
          0 is the underflow for negative numbers
       This is important since certain functions like log
  are only defined for positive numbers,
therefore we need a positive 0.
Should we have a rounded down negative number
  V(x) = (-1)^s * 2^{-(b-1)} * z * 2^{p-1}
Often used as a gradual underflow
or for semi results during a calculation
            • y = s \mid 0000 \mid 0000 \mid 111 \mid 1111 \mid 11111 \mid 1111 \mid 1111
                                                                                                                                                                                                                                                             V(y) = \pm 2^{-126} \cdot (2^{23} - 1) \cdot 2^{-23}
                                                                                                                                                                                                                                                                                                                =\pm 2^{-126}\cdot (1-2^{-23})
                                                                                                                                                                                                                                                                                                                =\pm 2^{-126}-2^{-149}
               • v = 0 \mid 0000 \mid 0000 \mid 000 \mid 0000 \mid 0000 \mid 0000 \mid 0000 \mid 0001 =  Float.MIN VALUE
                                                                                                                                                                                                                                                                                 V(y) = 2^{-126} \cdot 2^{-23} = 2^{-149}
Integers as Floating Point Numbers
```