

MRT Technology (Taiwan) Co., Ltd Phone: +886-3-3288388

Web: www.mrt-cert.com

Report No.: 1608TW0110-U16 Report Version: V02 Issue Date: 08-17-2017

RF Exposure Evaluation Declaration

FCC ID: 2AD8UFZCWO4A1

IC: 109D-FZCWO4A1

APPLICANT: Nokia Solutions and Networks

Application Type: Certification

Product: Wi-Fi AP 4x4 OD ext. antenna US

Wi-Fi AP 4x4 OD omni antenna US

Wi-Fi AP 4x4 OD direct antenna US

Wi-Fi AP 4x4 OD small omni antenna US

Model No.: WO4C-AC400

Trademark: Nokia

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (UNII)

Reviewed By : Paddy Chen

(Paddy Chen)

Approved By : any ker

(Chenz Ker)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Taiwan) Co., Ltd.

FCC ID: 2AD8UFZCWO4A1 IC: 109D-FZCWO4A1

Page Number: 1 of 18

Revision History

Report No.	Version	Description	Issue Date	Note
1608TW0110-U16	Rev. 01	Initial Report	07-31-2017	Invalid
1608TW0110-U16	Rev. 02	Revise some Maximum EIRP	08-17-2017	Valid

FCC ID: 2AD8UFZCWO4A1 IC: 109D-FZCWO4A1 Page Number: 2 of 18

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Wi-Fi AP 4X4 OD ext. antenna US;
	Wi-Fi AP 4x4 OD omni antenna US;
	Wi-Fi AP 4x4 OD direct. antenna US;
	Wi-Fi AP 4x4 OD small omni antenna US
Model No.	WO4C-AC400
Brand Name	Nokia
Hardware Version:	AM3
Frequency Range	<u>2.4GHz:</u>
	For 802.11b/g/n-HT20:
	2412 ~ 2462 MHz
	For 802.11n-HT40:
	2422 ~ 2452 MHz
	<u>5GHz:</u>
	For 802.11a/n-HT20:
	5180~5320MHz, 5500~5700MHz, 5745~5825MHz
	For 802.11ac-VHT20:
	5180~5320MHz, 5500~5720MHz, 5745~5825MHz
	For 802.11n-HT40:
	5190~5310MHz, 5510~5670MHz, 5755~5795MHz
	For 802.11ac-VHT40:
	5190~5310MHz, 5510~5710MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5290MHz, 5530MHz, 5610MHz, 5690MHz, 5775MHz
	For 802.11ac-VHT80+80:
	5210 MHz + 5290 MHz, 5210 MHz + 5530 MHz, 5210 MHz + 5610 MHz,
	5210 MHz + 5690 MHz, 5210 MHz + 5775 MHz, 5290 MHz + 5530 MHz,
	5290 MHz + 5610 MHz, 5290 MHz + 5690 MHz, 5290 MHz + 5775 MHz,
	5530 MHz + 5610 MHz, 5530 MHz + 5690 MHz, 5530 MHz + 5775 MHz,
	5610 MHz + 5690 MHz, 5610 MHz + 5775 MHz, 5690 MHz + 5775 MHz
Type of Modulation	802.11a/n/ac: OFDM
Modulation Technology	CCK, DQPSK, DBPSK for DSSS
	16QAM, 64QAM, QPSK, BPSK for OFDM

Note 1: We select the POE adapter (M/N: PoE35-54A) to perform all RF testing.

Note 2: The product name difference as below:

• when the device has been connected the Galtronics Omni antenna, the product name is "Wi-Fi

FCC ID: 2AD8UFZCWO4A1 IC: 109D-FZCWO4A1

AP 4x4 OD omni antenna US";

- when the device has been connected the Galtronics Directional antenna, the product name is "Wi-Fi AP 4x4 OD direct. antenna US";
- when the device has been connected the PCTEL antenna & HUBER+SUHNER, the product name is "Wi-Fi AP 4X4 OD ext. antenna US";
- when the device has been connected the Galtronics Small Omni antenna, the product name is "Wi-Fi AP 4x4 OD small omni antenna US";

FCC ID: 2AD8UFZCWO4A1 Page Number: 4 of 18

1.2. Antenna Description

Antenna	Manufacturer	Frequency Band (GHz)	Product Number	Tx Paths
		2.4	EDMINATO DDADDOMA	4
	DOTEL Inc	5	FPMI2458-DP4RPSMA	4
	PCTEL, Inc.	2.4	- FDMI2450 DD2DDCMA	2
		5	FPMI2458-DP2RPSMA	2
		2.4	Galtronics Omni Antenna	2
	Galtronics	5	Gairronics Omni Antenna	2
		2.4	Galtronics Directional	2
		5	Antenna	2
		2.4	Galtronics Small Omni	2
		5	Antenna	2
	HUBER+	5	Sector-Antenna 1356.17.0011	1
T.	SUHNER	5	Directional Antenna 1356.17.0077	1

Note 1: This device make the transmission with two "FPMI2458-DP2RPSMA" directional antenna, there is not any superposition of transmit signal between two antennas.

Note 2: For "FPMI2458-DP2RPSMA" directional antenna, one antenna port be connected with device's Ant 0 & Ant 1, the other antenna port be connect with device's Ant 2 & Ant 3, and this installation has been showed in the professional installation manual.

FCC ID: 2AD8UFZCWO4A1 IC: 109D-FZCWO4A1

Note 3: For HUBER+SUHNER antenna, this device make the transmission with four antenna, they were installed by the four sides of the perpendicular. So the antenna was Independent of each other and had no MIMO, CDD or Beamforming mode.

Product Number	Frequency Band Tx (MHz) Paths		Per Cl	hain Max Aı	ntenna Gair	n (dBi)	Beam Forming	CDD Directional
			Ant 0	Ant 1	Ant 2	Ant 3	Directional Gain (dBi)	Gain (dBi)
	2412 ~2462	4	6.70	6.40	6.80	6.80	12.70	12.70
	5150 ~ 5250	4	5.79	5.57	5.89	5.05	11.60	11.60
FPMI2458- DP4RPSMA	5150 ~ 5250 30°elevation angle	4	5.10	2.27	4.94	4.06	N/A	N/A
	5250 ~ 5350	4	5.68	5.53	5.65	4.91	11.47	11.47
	5470 ~ 5725	4	5.46	5.21	6.06	5.65	11.62	11.62
	5725 ~ 5850	4	5.24	5.09	6.73	5.62	11.71	11.71
	2412 ~2462	2	6.70	6.40			9.56	9.56
					6.70	6.40	9.56	9.56
	5150 ~ 5250	2	5.79	5.57	1	1	8.69	8.69
					5.79	5.57	8.69	8.69
	5150 ~ 5250 30°elevation	2	5.10	2.27	1	1	N/A	N/A
FPMI2458-	angle	2			5.10	2.27	N/A	N/A
DP2RPSMA	5250 ~ 5350	2	5.68	5.53			8.62	8.62
	5250 ~ 5550	2			5.68	5.53	8.62	8.62
	5.470 E70E	2	5.46	5.21			8.35	8.35
	5470 ~ 5725	2			5.46	5.21	8.35	8.35
	E70E E0E0	2	5.24	5.09	-1	-1	8.18	8.18
	5725 ~ 5850	2			5.24	5.09	8.18	8.18

FCC ID: 2AD8UFZCWO4A1 IC: 109D-FZCWO4A1

Page Number: 6 of 18

Product Frequency Band Number (MHz)		Tx Paths	Per Cl	hain Max A	ntenna Gair	Beam Forming	CDD Directional	
			Ant 0	Ant 1	Ant 2	Ant 3	Directional Gain (dBi)	Gain (dBi)
	2412 ~2462	2	2.93	3.02	2.93	3.02	9.00	9.00
	5150 ~ 5250	2	6.68	6.53	6.68	6.53	12.63	12.63
Galtronics Omni	5150 ~ 5250 30°elevation angle	2	-1.32	-1.53	-1.32	-1.53	N/A	N/A
Antenna	5250 ~ 5350	2	6.68	6.53	6.68	6.53	12.63	12.63
	5470 ~ 5725	2	6.60	5.92	6.60	5.92	12.29	12.29
	5725 ~ 5850	2	6.78	6.55	6.78	6.55	12.69	12.69
	2412 ~2462	2	6.75	6.75	6.75	6.75	12.77	12.77
	5150 ~ 5250	2	8.39	8.16	8.39	8.16	14.30	14.30
Galtronics Directional	5150 ~ 5250 30°elevation angle	2	-1.54	-2.86	-1.54	-2.86	N/A	N/A
Antenna	5250 ~ 5350	2	8.39	8.16	8.39	8.16	14.30	14.30
	5470 ~ 5725	2	8.49	8.57	8.49	8.57	14.55	14.55
	5725 ~ 5850	2	8.92	8.82	8.92	8.82	14.89	14.89
	2412 ~2462	2	2.69	2.41	2.69	2.41	8.57	8.57
	5150 ~ 5250	2	3.27	3.85	3.27	3.85	9.59	9.59
Galtronics Small Omni	5150 ~ 5250 30°elevation angle	2	3.20	3.81	3.20	3.81	N/A	N/A
Antenna	5250 ~ 5350	2	2.77	3.30	2.77	3.30	9.06	9.06
	5470 ~ 5725	2	3.43	3.81	3.43	3.81	9.64	9.64
	5725 ~ 5850	2	4.35	4.30	4.35	4.30	10.35	10.35

FCC ID: 2AD8UFZCWO4A1 IC: 109D-FZCWO4A1 Page Number: 7 of 18

Product Number	Frequency Band Tx (MHz) Paths		Per Ch	nain Max A	ntenna Gai	Beam Forming	CDD Directional	
			Ant 0	Ant 1	Ant 2	Ant 3	Directional Gain (dBi)	Gain (dBi)
	5150 ~ 5250	1	16.00	16.00	16.00	16.00	N/A	N/A
Sector-	5150 ~ 5250 30°elevation angle	1	-1.22	-1.22	-1.22	-1.22	N/A	N/A
Antenna 1356.17.0011	5250 ~ 5350	1	16.00	16.00	16.00	16.00	N/A	N/A
	5470 ~ 5725	1	16.50	16.50	16.50	16.50	N/A	N/A
	5725 ~ 5850	1	17.00	17.00	17.00	17.00	N/A	N/A
	5150 ~ 5250	1	14.00	14.00	14.00	14.00	N/A	N/A
Directional	5150 ~ 5250 30°elevation angle	1	1.52	1.52	1.52	1.52	N/A	N/A
Antenna 1356.17.0077	5250 ~ 5350	1	14.00	14.00	14.00	14.00	N/A	N/A
	5470 ~ 5725	1	14.00	14.00	14.00	14.00	N/A	N/A
	5725 ~ 5850	1	14.00	14.00	14.00	14.00	N/A	N/A

Note

- 1. The EUT supports Cyclic Delay Diversity (CDD) technology for 802.11a/b/g mode, and CDD signals are correlated.
- 2. The EUT supports Beam Forming technology for 802.11n/ac mode, and exclude 802.11b/g mode. Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Any transmit Beam Forming mode, whether fixed or adaptive (e.g., phased array modes, closed loop MIMO modes, Transmitter Adaptive Antenna modes, Maximum Ratio Transmission (MRT) modes, and Statistical Eigen Beam Forming (EBF) modes).
 - CDD signals are correlated and create unintended array gain that varies with signal bandwidth, antenna geometry, and cyclic delay values. Consequently, depending on system parameters, it may be appropriate to use different values of array gain for compliance with power limits versus compliance with powerspectral density limits.
- 3. Unequal Antenna gains, with equal transmit powers. For Antenna gains given by $G_1, G_2, ..., G_N dBi$ transmit signals are correlated, then

FCC ID: 2AD8UFZCWO4A1 Page Number: 8 of 18

• Directional gain = $10*log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})^2/N_{ANT}]$ dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

• For example (FPMI2458-DP4RPSMA Antenna): $5150 \sim 5250$ MHz Directional Gain = $10*\log[(10^{5.79/20} + 10^{5.57/20} + 10^{5.89/20} + 10^{5.05/20})^2/4] = 11.60$ dBi

FCC ID: 2AD8UFZCWO4A1 Page Number: 9 of 18

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Magnetic Field Power Density						
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)					
(A) Limits for Occupational/ Control Exposures									
300-1500	-		f/300	6					
1500-100,000			5	6					
	(B) Limits for General Population/ Uncontrolled Exposures								
300-1500			f/1500	6					
1500-100,000			1	30					

f= Frequency in MHz

Calculation Formula: Pd = (Pout*G)/(4*pi*r2)

Where

Pd = power density in mW/cm2

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

FCC ID: 2AD8UFZCWO4A1 Page Number: 10 of 18

2.2. Test Result of RF Exposure Evaluation

Product	Wi-Fi AP 4X4 OD ext. antenna US;
	Wi-Fi AP 4x4 OD omni antenna US;
	Wi-Fi AP 4x4 OD direct. antenna US;
	Wi-Fi AP 4x4 OD small omni antenna US
Test Item	RF Exposure Evaluation (For General Population)

FPMI2458-DP4RPSMA Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.85	25	0.4897	1
802.11a/n-HT20/	5150 ~ 5250	25.50	25	0.0452	1
n-H40/ac-VHT20	5250 ~ 5350	29.56	25	0.1151	1
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.84	25	0.1227	1
ac-VHT80+80	5725 ~ 5850	35.83	25	0.4874	1

Note: Directional Gain Calculation as below:

 $2412 \sim 2462$ MHz Directional Gain = $10*\log[(10^{6.70/20} + 10^{6.80/20} + 10^{6.80/20} + 10^{6.80/20})^2/4] = 12.70$ dBi

 $5150 \sim 5250$ MHz Directional Gain = $10*log[(10^{5.79/20} + 10^{5.57/20} + 10^{5.89/20} + 10^{5.05/20})^2/4] = 11.60$ dBi

 $5250 \sim 5350 \text{MHz Directional Gain} = 10*log[(10^{5.68/20} + 10^{5.53/20} + 10^{5.65/20} + 10^{4.91/20})^2/4] = 11.47 \text{ dBi}$

 $5470 \sim 5725 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{5.46/20} + 10^{5.21/20} + 10^{6.06/20} + 10^{5.65/20})^2/4] = 11.62 dBi$

 $5725 \sim 5850 \text{MHz Directional Gain} = 10 \text{*log} [(10^{5.24/20} + 10^{5.09/20} + 10^{6.73/20} + 10^{5.62/20})^2 / 4] = 11.71 \text{ dBi}$

FCC ID: 2AD8UFZCWO4A1 Page Number: 11 of 18

FPMI2458-DP2RPSMA Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.65	25	0.4676	1
802.11a/n-HT20/	5150 ~ 5250	25.52	25	0.0454	1
n-H40/ac-VHT20	5250 ~ 5350	29.59	25	0.1159	1
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.52	25	0.1140	1
ac-VHT80+80	5725 ~ 5850	35.81	25	0.4852	1

Note: Directional Gain Calculation as below:

2412 ~ 2462MHz Directional Gain = $10*log[(10^{6.70/20} + 10^{6.40})^2/2] = 9.56 dBi$

 $5150 \sim 5250$ MHz Directional Gain = $10*log[(10^{5.79/20} + 10^{5.57/20})^2/2] = 8.69$ dBi

 $5250 \sim 5350$ MHz Directional Gain = $10*log[(10^{5.68/20} + 10^{5.53/20})^2/2] = 8.62$ dBi

 $5470 \sim 5725 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{5.46/20} + 10^{5.21/20})^2/2] = 8.35 \text{ dBi}$

 $5725 \sim 5850$ MHz Directional Gain = $10*\log[(10^{5.24/20} + 10^{5.09/20})^2/2] = 8.18$ dBi

Galtronics Omni Antenna:

Test Mode	Frequency Band (MHz)	Maximum EIRP (dBm)	Safety Distance (cm)	Power Density (mW/cm²)	Limit of Power Density (mW/cm²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.66	25	0.4687	1
802.11a/n-HT20/	5150 ~ 5250	34.93	25	0.3962	1
n-H40/ac-VHT20	5250 ~ 5350	29.71	25	0.1191	1
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.67	25	0.1180	1
ac-VHT80+80	5725 ~ 5850	35.66	25	0.4687	1

Note: Directional Gain Calculation as below:

2412 ~ 2462MHz Directional Gain = $10*\log[(10^{2.93/20} + 10^{3.02/20} + 10^{2.93/20} + 10^{3.02/20})^2/4] = 9.00 dBi$

 $5150 \sim 5250$ MHz Directional Gain = $10*\log[(10^{6.68/20} + 10^{6.53/20} + 10^{6.53/20} + 10^{6.53/20})^2/4] = 12.63$ dBi

 $5250 \sim 5350$ MHz Directional Gain = $10*log[(10^{6.68/20} + 10^{6.53/20} + 10^{6.53/20} + 10^{6.53/20})^2/4] = 12.63$ dBi

 $5470 \sim 5725$ MHz Directional Gain = $10*\log[(10^{6.60/20} + 10^{5.92/20} + 10^{6.60/20} + 10^{5.92/20})^2/4] = 12.29$ dBi

 $5725 \sim 5850 \text{MHz}$ Directional Gain = $10*\log[(10^{6.78/20} + 10^{6.55/20} + 10^{6.78/20} + 10^{6.55/20})^2/4] = 12.69 dBi$

FCC ID: 2AD8UFZCWO4A1 Page Number: 12 of 18

Galtronics Directional Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.81	26	0.4486	1
802.11a/n-HT20/	5150 ~ 5250	35.70	26	0.4374	1
n-H40/ac-VHT20	5250 ~ 5350	29.79	26	0.1122	1
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.84	26	0.1135	1
ac-VHT80+80	5725 ~ 5850	36.20	26	0.4907	1

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz Directional Gain} = 10* \log[(10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20})^2/4] = 12.77 \text{ dBi}$

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{8.39/20} + 10^{8.16/20} + 10^{8.39/20} + 10^{8.16/20})^2/4] = 14.30 dBi$

 $5250 \sim 5350 \text{MHz}$ Directional Gain = $10 \log[(10^{8.39/20} + 10^{8.16/20} + 10^{8.39/20} + 10^{8.16/20})^2/4] = 14.30 dBi$

 $5470 \sim 5725 \text{MHz}$ Directional Gain = $10*\log[(10^{8.49/20} + 10^{8.57/20} + 10^{8.49/20} + 10^{8.57/20})^2/4] = 14.55 dBi$

 $5725 \sim 5850 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{8.92/20} + 10^{8.82/20} + 10^{8.92/20} + 10^{8.82/20})^2/4] = 14.89 dBi$

Sector-Antenna 1356.17.0011 Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11a/n-HT20/	5150 ~ 5250	36.21	20	0.8312	1
n-H40/ac-VHT20	5250 ~ 5350	29.66	20	0.1840	1
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.70	20	0.1857	1
ac-VHT80+80	5725 ~ 5850	35.65	20	0.7307	1

Directional Antenna 1356.17.0077 Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	EIRP Distance Density		Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11a/n-HT20/	5150 ~ 5250	33.26	20	0.4214	1
n-H40/ac-VHT20	5250 ~ 5350	29.71	20	0.1861	1
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.63	20	0.1827	1
ac-VHT80+80	5725 ~ 5850	35.67	20	0.7341	1

FCC ID: 2AD8UFZCWO4A1 Page Number: 13 of 18

Page Number: 14 of 18

Galtronics Small Omni Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.23	25	0.4245	1
802.11a/n-HT20/	5150 ~ 5250	21.49	25	0.0179	1
n-H40/ac-VHT20	5250 ~ 5350	27.15	25	0.0661	1
ac-VHT40/ac-VHT80/	5470 ~ 5725	27.86	25	0.0778	1
ac-VHT80+80	5725 ~ 5850	34.47	25	0.3564	1

Note: Directional Gain Calculation as below:

```
2412 ~ 2462MHz Directional Gain = 10*log[(10^{2.69/20} + 10^{2.41/20} + 10^{2.69/20} + 10^{2.41/20})^2/4] = 8.57 dBi
```

$$5150 \sim 5250 \text{MHz Directional Gain} = 10 \text{*log} [(10^{3.27/20} + 10^{3.85/20} + 10^{3.85/20} + 10^{3.85/20})^2/4] = 9.59 \text{ dBi}$$

$$5250 \sim 5350 \text{MHz}$$
 Directional Gain = $10*\log[(10^{2.77/20} + 10^{3.30/20} + 10^{2.77/20} + 10^{3.30/20})^2/4] = 9.06 dBi$

$$5470 \sim 5725 \text{MHz Directional Gain} = 10 \times \log[(10^{3.43/20} + 10^{3.81/20} + 10^{3.43/20} + 10^{3.81/20})^2/4] = 9.64 \text{ dBi}$$

$$5725 \sim 5850 \text{MHz}$$
 Directional Gain = $10*\log[(10^{4.35/20} + 10^{4.30/20} + 10^{4.35/20} + 10^{4.30/20})^2/4] = 10.35 dBi$

FCC ID: 2AD8UFZCWO4A1 IC: 109D-FZCWO4A1

Product	WW WI-FI AP 4X4 OD ext. antenna
Test Item	RF Exposure Evaluation (For Occupational)

FPMI2458-DP4RPSMA Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.85	20	0.7651	5
802.11a/n-HT20/	5150 ~ 5250	25.50	20	0.0706	5
n-H40/ac-VHT20	5250 ~ 5350	29.56	20	0.1798	5
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.84	20	0.1917	5
ac-VHT80+80	5725 ~ 5850	35.83	20	0.7616	5

Note: Directional Gain Calculation as below:

 $2412 \sim 2462$ MHz Directional Gain = $10*\log[(10^{6.70/20} + 10^{6.80/20} + 10^{6.80/20} + 10^{6.80/20})^2/4] = 12.70$ dBi

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10 \log[(10^{5.79/20} + 10^{5.57/20} + 10^{5.89/20} + 10^{5.05/20})^2/4] = 11.60 dBi$

 $5250 \sim 5350$ MHz Directional Gain = $10*log[(10^{5.68/20} + 10^{5.53/20} + 10^{5.65/20} + 10^{4.91/20})^2/4] = 11.47$ dBi

 $5470 \sim 5725$ MHz Directional Gain = $10*log[(10^{5.46/20} + 10^{5.21/20} + 10^{6.06/20} + 10^{5.65/20})^2/4] = 11.62$ dBi

 $5725 \sim 5850 \text{MHz Directional Gain} = 10*log[(10^{5.24/20} + 10^{5.09/20} + 10^{6.73/20} + 10^{5.62/20})^2/4] = 11.71 \text{ dBi}$

FPMI2458-DP2RPSMA Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.65	20	0.7307	5
802.11a/n-HT20/	5150 ~ 5250	25.52	20	0.0709	5
n-H40/ac-VHT20	0/ac-VHT20 5250 ~ 5350	29.59	20	0.1810	5
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.52	20	0.1781	5
ac-VHT80+80	5725 ~ 5850	35.81	20	0.7581	5

Note: Directional Gain Calculation as below:

2412 ~ 2462MHz Directional Gain = $10*\log[(10^{6.70/20} + 10^{6.405/20})^2/2] = 9.56 dBi$

 $5150 \sim 5250$ MHz Directional Gain = $10*\log[(10^{5.79/20} + 10^{5.57/20})^2/2] = 8.69$ dBi

 $5250 \sim 5350$ MHz Directional Gain = $10*log[(10^{5.68/20} + 10^{5.53/20})^2/2] = 8.62$ dBi

 $5470 \sim 5725 \text{MHz}$ Directional Gain = $10*\log[(10^{5.46/20} + 10^{5.21/20})^2/2] = 8.35 \text{ dBi}$

5725 ~ 5850MHz Directional Gain = $10*log[(10^{5.24/20} + 10^{5.09/20})^2/2] = 8.18 dBi$

FCC ID: 2AD8UFZCWO4A1 Page Number: 15 of 18

Galtronics Omni Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.66	20	0.7324	5
802.11a/n-HT20/	5150 ~ 5250	34.93	20	0.6191	5
n-H40/ac-VHT20	5250 ~ 5350	29.71	20	0.1861	5
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.67	20	0.1844	5
ac-VHT80+80	5725 ~ 5850	35.66	20	0.7324	5

Note: Directional Gain Calculation as below:

 $2412 \sim 2462$ MHz Directional Gain = $10*log[(10^{2.93/20} + 10^{3.02/20} + 10^{2.93/20} + 10^{3.02/20})^2/4] = 9.00$ dBi

 $5150 \sim 5250 \text{MHz}$ Directional Gain = $10*\log[(10^{6.68/20} + 10^{6.53/20} + 10^{6.53/20} + 10^{6.53/20})^2/4] = 12.63 dBi$

 $5250 \sim 5350 \text{MHz}$ Directional Gain = $10 \log[(10^{6.68/20} + 10^{6.53/20} + 10^{6.53/20} + 10^{6.53/20})^2/4] = 12.63 dBi$

 $5470 \sim 5725 \text{MHz Directional Gain} = 10*log[(10^{6.60/20} + 10^{5.92/20} + 10^{6.60/20} + 10^{5.92/20})^2/4] = 12.29 \text{ dBi}$

 $5725 \sim 5850 \text{MHz}$ Directional Gain = $10*\log[(10^{6.78/20} + 10^{6.55/20} + 10^{6.78/20} + 10^{6.55/20})^2/4] = 12.69 dBi$

Galtronics Directional Antenna:

Test Mode	Frequency Band (MHz)	Maximum EIRP (dBm)	Safety Distance (cm)	Power Density (mW/cm²)	Limit of Power Density (mW/cm²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.81	20	0.7581	5
802.11a/n-HT20/	5150 ~ 5250	35.70	20	0.7391	5
n-H40/ac-VHT20	5250 ~ 5350	29.79	20	0.1896	5
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.84	20	0.1917	5
ac-VHT80+80	5725 ~ 5850	36.20	20	0.8293	5

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz}$ Directional Gain = $10*\log[(10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20} + 10^{6.75/20})^2/4] = 12.77 dBi$

 $5150 \sim 5250$ MHz Directional Gain = $10*\log[(10^{8.39/20} + 10^{8.16/20} + 10^{8.39/20} + 10^{8.16/20})^2/4] = 14.30$ dBi

 $5250 \sim 5350 \text{MHz}$ Directional Gain = $10*\log[(10^{8.39/20} + 10^{8.16/20} + 10^{8.39/20} + 10^{8.16/20})^2/4] = 14.30 dBi$

 $5470 \sim 5725 \text{MHz}$ Directional Gain = $10*\log[(10^{8.49/20} + 10^{8.57/20} + 10^{8.49/20} + 10^{8.57/20})^2/4] = 14.55 dBi$

 $5725 \sim 5850 \text{MHz}$ Directional Gain = $10 \log[(10^{8.92/20} + 10^{8.82/20} + 10^{8.92/20} + 10^{8.82/20})^2/4] = 14.89 dBi$

FCC ID: 2AD8UFZCWO4A1 Page Number: 16 of 18

Sector-Antenna 1356.17.0011 Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP Distance Den		Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11a/n-HT20/	5150 ~ 5250	36.21	20	0.8312	5
n-H40/ac-VHT20	5250 ~ 5350	29.66	20	0.1840	5
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.70	20	0.1857	5
ac-VHT80+80	5725 ~ 5850	35.65	20	0.7307	5

Directional Antenna 1356.17.0077 Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11a/n-HT20/	5150 ~ 5250	33.26	20	0.4214	5
n-H40/ac-VHT20	5250 ~ 5350	29.71	20	0.1861	5
ac-VHT40/ac-VHT80/	5470 ~ 5725	29.63	20	0.1827	5
ac-VHT80+80	5725 ~ 5850	35.67	20	0.7341	5

Galtronics Small Omni Antenna:

Test Mode	Frequency	Maximum	Safety	Power	Limit of Power
	Band	EIRP	Distance	Density	Density
	(MHz)	(dBm)	(cm)	(mW/cm ²)	(mW/cm ²)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	35.23	20	0.6633	5
802.11a/n-HT20/	5150 ~ 5250	21.49	20	0.0280	5
n-H40/ac-VHT20	ac-VHT20 5250 ~ 5350	27.15	20	0.1032	5
ac-VHT40/ac-VHT80/	5470 ~ 5725	27.86	20	0.1215	5
ac-VHT80+80	5725 ~ 5850	34.47	20	0.5568	5

Note: Directional Gain Calculation as below:

 $2412 \sim 2462 \text{MHz Directional Gain} = 10 * \log[(10^{2.69/20} + 10^{2.41/20} + 10^{2.69/20} + 10^{2.69/20} + 10^{2.41/20})^2/4] = 8.57 \text{ dBi}$

 $5150 \sim 5250$ MHz Directional Gain = $10*\log[(10^{3.27/20} + 10^{3.85/20} + 10^{3.85/20} + 10^{3.85/20})^2/4] = 9.59$ dBi

 $5250 \sim 5350 \text{MHz}$ Directional Gain = $10 \cdot \log[(10^{2.77/20} + 10^{3.30/20} + 10^{2.77/20} + 10^{3.30/20})^2/4] = 9.06 dBi$

 $5470 \sim 5725$ MHz Directional Gain = $10*log[(10^{3.43/20} + 10^{3.81/20} + 10^{3.43/20} + 10^{3.81/20})^2/4] = 9.64$ dBi

 $5725 \sim 5850 \text{MHz Directional Gain} = 10*log[(10^{4.35/20} + 10^{4.30/20} + 10^{4.35/20} + 10^{4.30/20})^2/4] = 10.35 \text{ dBi}$

FCC ID: 2AD8UFZCWO4A1 Page Number: 17 of 18

2.3. Summary of Test Result

The maximum calculations of above situations

Model	Configuration	The formula of calculated the MPE (mW/cm2)	Calculation Power Density (mW/cm2)	Limit	Result
General Population	2.4GHz + 5GHz	0.4897 + 0.4874	0.9771	1	Pass
Occupational	2.4GHz + 5GHz	0.7581 + 0.8293	1.5874	5	Pass

The wireless device described within this report has been shown to be capable of compliance with basic restrictions related to human exposure to electromagnetic fields for both General public and Occupational. The calculations shown in this report were made in accordance the procedures specified in the applied test specifications

Antenna Product	Configuration	Required Compliance Boundary (cm)	
Number		General Population	Occupational
FPMI2458-DP4RPSMA	2.4GHz + 5GHz	25	20
FPMI2458-DP2RPSMA	2.4GHz + 5GHz	25	20
Galtronics Omni Antenna	2.4GHz + 5GHz	25	20
Galtronics Directional Antenna	2.4GHz + 5GHz	26	20
Sector-Antenna 1356.17.0011	5GHz	20	20
Directional Antenna 1356.17.0077	5GHz	20	20
Galtronics Small Omni Antenna	2.4GHz + 5GHz	25	20

_____ The End _____

FCC ID: 2AD8UFZCWO4A1 Page Number: 18 of 18 IC: 109D-FZCWO4A1