Matemáticas Discretas

Oscar Bedoya

oscar.bedoya@correounivalle.edu.co

- * Definición de conjunto
- * Subconjunto y subconjunto propio
- * Conjunto potencia
- * Producto cartesiano
- * Operaciones con conjuntos

George Cantor

- Defendió su tesis doctoral en 1867 sobre teoría de números
- Es considerado el fundador de la teoría de conjuntos

(1845-1918)

Noción de conjunto: Definición por extensión

· Conjunto de vocales del alfabeto

$$A = \{a,e,i,o,u\}$$

• Conjunto de enteros positivos menores que 100 B={1,2,3,4,...,99}

Conjunto de números naturales

$$C=\{0,1,2,3,4,5,6,...\}$$

· Conjunto de operadores aritméticos conmutativos

$$D = \{+, x\}$$

Noción de conjunto: Definición por compresión

· Conjunto de vocales del alfabeto

$$A = \{x : \mathring{A} | Vocal(x)\}$$

Conjunto de enteros positivos menores que 100

$$B = \{x : \mathbb{Z}^+ \mid x \le 100\}$$

Conjunto de números naturales

$$C = \{x : \mathbb{N}\}$$

Conjunto de operadores aritméticos conmutativos

$$A = \{x : \mathring{A} | OperadorAritmetico(x) \}$$

¿Los conjuntos A y B son iguales?

$$A=\{a,e,i,o,u\}$$

 $B=\{u,o,i,e,a\}$

$$B=\{u,o,i,e,a\}$$

¿Los conjuntos A y B son iguales?

$$A = \{a,e,i,o,u\}$$

$$B=\{u,o,i,e,a\}$$

Un conjunto es una colección desordenada de objetos

¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}

¿Los conjuntos A y B son iguales?

A={a,a,a,a,e,e,e,e,e,i,o,u}

B={a,e,i,o,u}

Dos conjuntos son iguales si tienen los mismos elementos sin importar la cantidad

Conjunto vacio

Representa el conjunto que no tiene elementos, se puede expresar de las dos siguientes maneras:

- { }
- Ø

Determine si los siguientes conjuntos son iguales:

```
• \{1,3,3,3,3,3,3,5,5,5,5,5\} y \{5,3,1\} \{1\} y \{1\} y \{1\}
```

- {{1,1,1,1,1,1,1,1,1,1}} y {1,{1}}
 - { } y {Ø, { }} 🏋
 - {Ø} y {{ }, Ø} \
 - $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$ \top

Determine si los siguientes conjuntos son iguales:

- $\{1,3,3,3,3,3,5,5,5,5\}$ y $\{5,3,1\}$, si
- \times {{1}} y {1}, no
 - $\{\{1,1,1,1,1\},1,1,1,1,1\}$ y $\{1,\{1\}\}$, si
- <- {∅} y {∅, { }}, no
 - {∅} y {{ }, ∅}, si
 - $\{x \mid x \text{ es un entero positivo menor que 5}\}$ y $\{1,2,3,4\}$, si

Pertenencia sobre conjuntos

- $x \in A$ para indicar que el elemento x pertenece al conjunto A
- x∉A para el caso contrario

•
$$\varnothing \in A$$
 $\vee \Diamond$

•
$$\{3,4,5\} \in \widehat{A} \ \mathbb{N}^{\circ}$$

- $1 \in A$, verdadero
- $\{3,4\} \in A$, verdadero
- $\emptyset \in A$, falso
- $5 \in A$, verdadero
- $\{5\} \in A$, falso
- $\{3,4,5\} \in A$, falso

•
$$\{1,2\} \in A$$

- $\{1,2\} \in A$, falso
- $\{5,6\} \in A$, verdadero
- $4 \in A$, falso
- $\{\} \in A$, falso

Subconjunto ⊆

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

•
$$\{1,2\} \subseteq \{1,2,3,4,5\}$$
 Sr

Subconjunto =

El conjunto A es subconjunto de B, A⊆B, si y solo si todo elemento de A es también un elemento de B

- $\{1,2\} \subseteq \{1,2,3,4,5\}$
- $\{1,2,6\} \subseteq \{1,2,3,4,5\}$

Para cualquier conjunto S, se cumple que $\varnothing \subseteq S$

Para cualquier conjunto S, se cumple que SaS

Subconjunto propio

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ $\not\vdash A \neq B$

Subconjunto propio

El conjunto A es subconjunto propio de B, $A \subset B$, si y solo si, $A \subseteq B$ y $A \neq B$

Sean $P=\{1,2\}$, $Q=\{1,2,3\}$, $R=\{1,2,3\}$, se cumple:

- P⊆R y P⊂R
- Q⊆R pero Q⊄R

•
$$x \in \{x\}$$

•
$$\{x,y\}\subseteq \{x\}$$

•
$$\{x\} \subset \{x\}$$

•
$$\{x\}$$
 $\in \{\{x\}, y, z\}$

•
$$\varnothing \subseteq \{x\}$$

•
$$\emptyset \in \{\vec{x}\}$$

•
$$\varnothing \subset \{x\}$$
 \uparrow

- $x \in \{x\}$, verdadero
- $\{x,y\} \subseteq \{x\}$, falso
- $\{x\} \subset \{x\}$, falso
- $\{x\} \in \{x\}$, falso
- $\{x\} \in \{\{x\}, y, z\}$, verdadero
- $\emptyset \subseteq \{x\}$, verdadero
- $\emptyset \in \{x\}$, falso
- $\emptyset \subset \{x\}$, verdadero

- $0 \in \emptyset$, falso
- $\emptyset \in \{0\}$, falso
- $\{0\}$ $\subset \emptyset$, falso
- $\varnothing \subset \{0\}$, verdadero
- $\{0\} \in \{0,\{0,0\}\}\$, verdadero
- $\{0\}\subset\{0\}$, falso
- $\{0\}\subseteq\{0\}$, verdadero

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

Cardinalidad de un conjunto |5|

La cardinalidad de un conjunto S, denotado por |S|, indica la cantidad de elementos diferentes

- Para $A=\{3,3,3,3,1,1,1,2,2,2\}, |A|=3$
- Para A={1,2,3,{4,5}}, |A|=4
- Para $A=\emptyset$, |A|=0

- $\{x \mid x \text{ es un entero positivo impar menor que 10}\}$
- · {a} 1
- {{a,b}} ~ 1
- {a, {a}}, \(\frac{1}{2} \)
- {a, a, {a,a}, {a,a,a}} ²

- $\{x \mid x \text{ es un entero positivo impar menor que 10}\}$, 5
- {a}, 1
- {{a,b}}, 1
- {a, {a}}, 2
- {a, a, {a,a}, {a,a,a}}, **2**

•
$$\{a, \{a\}, \{a, \{a\}\}\}\} = 3$$

•
$$\{3,\emptyset\}=2$$

•
$$\{\emptyset, \emptyset, \emptyset, \{\emptyset\}\} = 1$$

- {a, {a}, {a,{a}}}, **3**
- {3,∅}, **2**
- {∅}, **1**
- $\{\emptyset, \emptyset, \emptyset, \{\}\}, 1$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$AxB = \{(a,b) \mid a \in A \land b \in B\}$$

$$(9,b) \neq (6,9)$$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$
 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a) (1,b) (2,a)(3,b) (3,b) \}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

$$A = \{1,2,3\}$$

$$B = \{a,b\}$$

$$A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por A x B es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $B \times A = \{(0,1) (0,2) (0,3) (0,1) (0,2) (0,3)\}$
 $A \times B = \{(0,1) (0,2) (0,3) (0,1) (0,2) (0,3)\}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $B \times A = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

Producto cartesiano AxB

Dados dos conjuntos A y B, el producto cartesiano de A y B, denotado por $A \times B$ es el conjunto de todos los pares ordenados (a,b) donde $a \in A$ y $b \in B$

$$A \times B = \{(a,b) \mid a \in A \land b \in B\}$$

 $A = \{1,2,3\}$
 $B = \{a,b\}$
 $A \times B = \{(1,a),(1,b),(2,a),(2,b),(3,a),(3,b)\}$
 $A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\}$

() + { ?

Dados $A=\{a,b\}$, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule:

•
$$A \times B = \{(a, x) (b, y) (b, z) (b, x) (b, y) (b, z)\}$$

• BxC
$$\left\{ (x,0)(x,1)(y,0)(y,1)(\hat{e},0)(\xi,1) \right\}$$

Dados
$$A=\{a,b\}$$
, $B=\{x,y,z\}$, $C=\{0,1\}$ calcule:
 $A\times B=\{(a,x),(a,y),(a,z),(b,x),(b,y),(b,z)\}$
 $A\times A=\{(a,a),(a,b),(b,a),(b,b)\}$
 $B\times C=\{(x,0),(x,1),(y,0),(y,1),(z,0),(z,1)\}$

René Descartes

- Estudió matemáticas y leyes
- A los 18 años se desencantó de estudiar y se dedicó a recorrer el mundo
- El servicio militar y cómo decidió su futuro
- Escribió el Discurso del Método (hipótesis del espíritu maligno*)
- Motivación de la duda metódica (niñez y los sueños)

(1596-1650)

Tabla CAMISAS:

(0000 ngo	ID_CAMISA	CAMISA	PESO_GR
	1	lino blanca	210
	2	algodon naranja	290
	3	seda negra	260

Tabla PANTALONES:

JOIN (

Tabla CAMISASxPANTALONES:

ID_CAMISA	CAMISA	PESO_GR	ID_PANTALON	PANTALON	PESO_GR
1	lino blanca	210	1	tela azul marino	470
1	lino blanca	210	2	pana marron claro	730
2	algodon naranja	290	1	tela azul marino	470
2	algodon naranja	290	2	pana marron claro	730
3	seda negra	260	1	tela azul marino	470
3	seda negra	260	2	pana marron claro	730

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

Dado A={1,2,3}

$$P(A)=?$$

Conjunto potencia P(S) <-

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

• Dado A={1,2,3}

 $P(A)=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

$$2^{|A|} = 2^3 7 8$$

Deseo seleccionar cero o más elementos de un arreglo tales que la suma sea

EXPONENT9/

igual a 9

Conjunto potencia P(S)

Dado un conjunto S, el conjunto potencia es aquel que tiene todos los subconjuntos de S

• En general, dado un conjunto A con n elementos, el conjunto P(A) tiene 2^n elementos

Sea $S=\{1,\{2,3\},4\}$, muestre P(S)

Sea $S=\{1,\{2,3\},4\}$, muestre P(S)

- $P(S)=\{\emptyset, \{1\}, \{\{2,3\}\}, \{4\}, \{1,\{2,3\}\}, \{1,4\}, \{\{2,3\},4\}, \{1,\{2,3\},4\}\}\}$

Sea $S=\emptyset$, muestre P(S) 2 = 1

Sea $S=\emptyset$, muestre P(S)

Encuentre el siguientes conjunto:

• P(P(
$$\emptyset$$
))

P(\emptyset) = $\{\emptyset\}$

P($\{\emptyset\}\}$) = $\{\emptyset\}$

P($\{\emptyset\}\}$) = $\{\emptyset\}$

Encuentre el siguientes conjunto:

```
    P(P(∅))
    P(∅)={∅}
    P(P(∅))=?
```

Encuentre el siguientes conjunto:

• P(P(
$$\varnothing$$
)) $2^{\circ} = 1$
P(\varnothing)={ \varnothing } $2^{\circ} = 2$
P(P(\varnothing))=P({ \varnothing })={ \varnothing , { \varnothing }} $2^{\circ} = 2$
P($2^{\circ} = 2$
P(P($2^{\circ} = 2$))= $2^{\circ} = 2$
P($2^{\circ} = 2$

Encuentre los siguientes conjuntos potencia:

P({{a,c},{a,b}}) $\{\emptyset, \{9,0\}, \{9,6\}, \{9,6\}, \{8,9\}, \{9,6\}\}$

• P({1,2,3,4})

Encuentre los siguientes conjuntos potencia:

- P({{a,c},{a,b}})={Ø,{a,c},{a,b},{{a,c},{a,b}}}
- P({1,2,3,4})={Ø,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{2,3,4},{1,2,3,4},{1,2,3,4}}

Determine si cada una de las siguientes sentencias es falsa o verdadera

•
$$\{\emptyset\} \subseteq P(\{\emptyset\})$$

•
$$\{\emptyset, \{\emptyset\}\}\subseteq P(P(\{\emptyset\})) \stackrel{?}{=} /$$

Determine si cada una de las siguientes sentencias es falsa o verdadera

- $\{\emptyset\} \subset P(\{\emptyset\})$ $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}, \text{ verdadero}$
- $\{\emptyset, \{\emptyset\}\} \subset P(P(\{\emptyset\}))$ $\{\emptyset, \{\emptyset\}\} \subset \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}\}\}, \text{ verdadero}$
- |{a,b,c}x{1,2}| < |P({a,b})|6<4, falso

Operaciones entre conjuntos

- Unión
- · Intersección
- · Diferencia
- Complemento

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$ $A B \neq B A$
- Complemento. $A = \{x \mid x \notin A\}$

Operaciones entre conjuntos

- Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$
- Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$
- Diferencia. A-B= $\{x \mid x \in A \land x \notin B\}$
- Complemento. $\overline{A} = \{x \mid x \notin A\}$

Operaciones entre conjuntos

• Unión. $A \cup B = \{x \mid x \in A \lor x \in B\}$

Cardinalidad de la Unión

En la unión los elementos de la intercepción sólo se toman una vez

Operaciones entre conjuntos

• Unión. $A \cup B \cup C = \{x \mid x \in A \lor x \in B \lor x \in C\}$

Cardinalidad de la Unión

Operaciones entre conjuntos

•Intersección. $A \cap B = \{x \mid x \in A \land x \in B\}$

Operaciones entre conjuntos

•Diferencia. A)-B= $\{x \mid x \in A \land x \notin B\}$

Operaciones entre conjuntos

•Complemento. $A = \{x \mid x \notin A\}$

U

Dados A={1,2,3,5,9}, B={3,7,9} y U={1,2,3,4,5,6,7,8,9} indique los resultados de las siguientes operaciones:

•
$$\overline{A \cup B} \cap \overline{B - A}$$

•
$$A \cap \overline{B} \cup B \cap \overline{A}$$

1)
$$A \cup B = \{1, 2, 3, 5, 7, 9\}$$

 $A \cup B = \{4, 6, 8\}$
 $B - A = \{1, 2, 3, 9, 5, 0, 8, 9\}$
 $B - A = \{1, 2, 3, 9, 5, 0, 8, 9\}$
 $To + 9 = \{9, 6, 8\}$

BO#= { 77

$$A \cap B = \{1, 2, 5\}$$
 $Total = \{2, 2, 5, 7\}$
 $B \cap A = \{2, 2, 5\}$

Dados $A=\{1,2,3,5,9\}$, $B=\{3,7,9\}$ y $U=\{1,2,3,4,5,6,7,8,9\}$ indique los resultados de las siguientes operaciones:

•
$$\overline{A \cup B} \cap \overline{B - A} = \{4,6,8\} \cap \{1,2,3,4,5,6,8,9\} = \{4,6,8\}$$

•
$$A \cap \overline{B} \cup B \cap \overline{A} = \{1,2,5\} \cup \{7\} = \{1,2,5,7\}$$

Dados A={a,b,c,d,e}, B={a,b,c,d,e,f,g,h} y U={a,b,c,d,e,f,g,h,i,j,k} encuentre:

•
$$\overline{\mathsf{B-A}} \cup (\overline{\mathsf{A-B}})$$

•
$$(\mathsf{B} \cap \mathsf{A}) \cup (\mathsf{B} \text{-} \mathsf{A})$$

•
$$B-A \cup (A-B)$$
• $A-B = \{ f,g,h \}$
• $A-B =$

•
$$(B \cap A) \cup (B - A)$$
 $(B \cap A) \cup (B - A)$
 $(B \cap$

3)
$$\frac{A-B=\emptyset}{A-B=0}$$

Dados $A=\{a,b,c,d,e\}$, $B=\{a,b,c,d,e,f,g,h\}$ y $U=\{a,b,c,d,e,f,g,h,i,j,k\}$ encuentre:

- *A*∩B={f,*g*,*h*,*i*,*j*,*k*}
- B-A \cup (A-B)={a,b,c,d,e,i,j,k} $\cup \emptyset$ ={a,b,c,d,e,i,j,k}
- $(A-B) (A \cup B) = \{a,b,c,d,e,f,g,h,i,j,k\} \{a,b,c,d,e,f,g,h\} = \{i,j,k\}$
- $(B \cap A) \cup (B-A)=\{i,j,k\}$

Dados $A=\{1,3,5,7,8,9\}$, $B=\{2,4,5,6\}$ y $U=\{1,2,3,4,5,6,7,8,9,10\}$ encuentre: =

$$\bullet \overline{\mathsf{A}} - \overline{\mathsf{B}} \cap \overline{\mathsf{A}}$$

•
$$(B \cap A) \cup (\overline{A \cup B})$$

•
$$(A \cap B) \cap (B-A)$$

$$\begin{array}{ll}
A = B = \{1, 3, 7, 8, 9\} \\
A - B = \{2, 4, 5, 6, 10\} \\
A - B \cap A = \{2, 4, 6, 10\}
\end{array}$$

$$\begin{array}{c}
A \cap B = \{5\} \\
\hline
A \cap B = \{1,2,3,4,6,7,8,9,16\} \\
B - A = \{2,4,6\} \\
\hline
\end{array}$$

Dados A={1,3,5,7,8,9}, B={2,4,5,6} y U={1,2,3,4,5,6,7,8,9,10} encuentre:

•
$$A-B \cap A = \{2,4,5,6,10\} \cap \{2,4,6,10\} = \{2,4,6,10\}$$

•
$$(B \cap A) \cup (A \cup B) = \{5\} \cup \{10\} = \{5,10\}$$

•
$$(A \cap B) \cap (B-A) = \{1,2,3,4,6,7,8,9,10\} \cap \{2,4,6\} = \{2,4,6\}$$

Dados A={a,b,c}, B={b,d}, U={a,b,c,d,e,f} encuentre y compare: $A \cup B = \{a,b,c,d,e,f\}$

• AnB, AUB

$$AnB = \{6\} = \{\alpha, c, d, e, f\}$$
 $\{d, e, f\} \cup \{\alpha, c, e, f\} = \{9, c, d, e, f\}$

Dados $A=\{a,b,c\}$, $B=\{b,d\}$, $U=\{a,b,c,d,e,f\}$ encuentre y compare:

- $A \cup B$, $A \cap B$. Ambos son $\{e,f\}$
- $\overline{A \cap B}$, $\overline{A \cup B}$. Ambos son {a,c,d,e,f}

Identidad	Nombre
$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	Leyes de De Morgan
$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	Leyes de absorción
$A \cap (A \cup B) = A$	
AUA=? V	Leyes de complemento
$A \cap \overline{A} = ? / \varnothing$	

Identidad	Nombre
$(\overline{A \cup B}) = \overline{A} \cap \overline{B}$	Leyes de De Morgan
$(\overline{A \cap B}) = \overline{A} \cup \overline{B}$	
$A \cup (A \cap B) = A$	Leyes de absorción
$A \cap (A \cup B) = A$	
$A \cup \overline{A} = U$	Leyes de complemento
$A \cap \overline{A} = \emptyset$	

Identidad	Nombre
A ∪ Ø = ? ¾	Leyes de
A ∩ U = ? A	identidad
$A \cup U = U$	Leyes de
$A \cap \emptyset = \emptyset$	dominación
$A \cup A = A$	Leyes de
$A \cap A = A$	idempotencia
<u></u>	Ley de complementación

Identidad	Nombre
$A \cup \varnothing = A$	Leyes de
$A \cap U = A$	identidad
<i>A</i> ∪ U = U	Leyes de
$A \cap \emptyset = \emptyset$	dominación
$A \cup A = A$	Leyes de
$A \cap A = A$	idempotencia
	Ley de
$\overline{A} = A$	complementación

Identidad	Nombre
$A \cup B = B \cup A$	Leyes
$A \cap B = B \cap A$	conmutativas
$A \cup (B \cup C) = (A \cup B) \cup C$	Leyes
$A \cap (B \cap C) = (A \cap B) \cap C$	asociativas
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Leyes
$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	distributivas

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- Utilizar la notación de conjuntos y las equivalencias lógicas

Tabla de pertenencia

Se considera cada combinación de conjuntos en los que un elemento puede pertenecer y se verifica que los elementos en la misma combinación de conjuntos pertenecen a ambos conjuntos en la identidad

Probar A	Probar $\overline{A \cap B} = \overline{A} \cup \overline{B}$)	disyon clar
	Α	В	Ā	B	A ∩B	A ∩B	$\overline{A} \cup \overline{B}$
	- 1	1	<u></u>	, 🔘	1	0	0
	1	0		1	Ò	1	1
	0	1	1	0	0	1	1
	0	0	1	2	G	1	1

Probar $A \cap B = A \cup B$

Α	В	Ā	B	A∩B	A∩B	$\overline{A} \cup \overline{B}$
1	1					
1	0					
0	1					
0	0					

1 representa x∈Conjunto0 representa x∉Conjunto

Α	В	Ā	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0				
1	0	0				
0	1	1				
0	0	1				

Α	В	Ā	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0			
1	0	0	1			
0	1	1	0			
0	0	1	1			

A	В	A	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1		
1	0	0	1	0		
0	1	1	0	0		
0	0	1	1	0		

A	В	A	B	A∩B	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	
1	0	0	1	0	1	
0	1	1	0	0	1	
0	0	1	1	0	1	

A	В	A	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

A	В	Ā	B	$A \cap B$	$\overline{A \cap B}$	$\overline{A} \cup \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	0	1	1
0	1	1	0	0	1	1
0	0	1	1	0	1	1

Probar
$$\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$$

Probar
$$\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$$

A	В	A	В	$\overline{A} \cap B$	$A \cup (A \cap B)$	$A \cup (A \cap B)$	$A \cup \overline{B}$	$\overline{A} \cap (A \cup \overline{B})$
P	1 -	0		\Diamond	Ţ	0	1	0
1	0	0	1	0	7	0	7	6
0	1	<u>(1)</u>		$\widehat{\mathbb{I}}$	2	0	0	, O
0	[O	(1)	1	0	0	1	(1)	1

Probar $\overline{A \cup (\overline{A} \cap B)} = \overline{A} \cap (A \cup \overline{B})$

A	В	A	В	$\overline{A} \cap B$	$A \cup (\overline{A} \cap B)$		A∪B	$\overline{A} \cap (A \cup \overline{B})$
1	1	0	0	0	1	0	1	0
1	0	0	1	0	1	0	1	0
0	1	1	0	1	1	0	0	0
0	0	1	1	0	0	1	1	1

Complete la tabla para (A - B)

Α	В	A-B	$\hat{}$
	1	?	
1	0	?	1
0	1	?	0
0	0	?	

Complete la tabla para (A - B)

Α	В	A-B
1	1	0
1	0	
0	1	
0	0	

El mismo elemento está en A y en B. Por lo tanto, no estará en A-B

Complete la tabla para (A - B)

Α	В	A-B
1,-	1	0
	0	1
0	1	0
0	0	0

Α	В	B-A	<i>A</i> ∩(B- <i>A</i>)	Ø
1	1			0
1	0	Ŏ		0
0.	1	1	0	0
0	0	0	0	C

Α	В	B-A	<i>A</i> ∩(B- <i>A</i>)
1	1	0	
1	0	0	
0	1	1	
0	0	0	

Α	В	B-A	A∩(B-A)
1	1	0	0
1	0	0	0
0	1	1	0
0	0	0	0

Probar $A \cup (B - A) = A \cup B$

Probar $A \cup (B - A) = A \cup B$

A	В	B-A	<i>A</i> ∪(B- <i>A</i>)	$A \cup B$
1	1	0	1	1
1	0	0	1	1
0	1	1	1	1
0	0	0	0	0

Cómo probar identidades

Se tienen dos métodos:

- · Construir una tabla de pertenencia
- Utilizar la notación de conjuntos y las equivalencias lógicas

$$A \cup B = \{x \mid x \in A \lor x \in B\}$$

$$A \cap B = \{x \mid x \in A \land x \in B\}$$

$$A - B = \{x \mid x \in A \land x \notin B\}$$

$$A = \{x \mid x \notin A\}$$

Probar
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

 $\overline{A \cap B} = ?$

Probar
$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

 $\overline{A \cap B} = \{ x \mid x \notin A \cap B \}$

Probar
$$\overline{A \cap B} = \overline{A \cup B}$$

 $\overline{A \cap B} = \{x \mid x \notin A \cap B\}$
 $\overline{A \cap B} = \{x \mid \neg(x \in A \cap B)\}$
 $\overline{A \cap B} = \{x \mid \neg(x \in A \land x \in B)\}$
 $\overline{A \cap B} = \{x \mid \neg(x \in A) \lor \neg(x \in B)\}$
 $\overline{A \cap B} = \{x \mid (x \notin A) \lor (x \notin B)\}$
 $\overline{A \cap B} = \{x \mid (x \in \overline{A}) \lor (x \in \overline{B})\}$
 $\overline{A \cap B} = \overline{A \cup B}$

Probar
$$\overline{A \cup (B \cap C)} = \overline{A} \cap (\overline{B \cap C})$$

 $\overline{A \cup (B \cap C)} = ?$

Probar
$$A \cup (B \cap C) = A \cap (B \cap C)$$

$$\overline{A \cup (B \cap C)} = \{ x \mid x \notin (A \cup (B \cap C)) \}$$

$$\overline{A \cup (B \cap C)} = \{ x \mid \neg(x \in (A \cup (B \cap C))) \}$$

$$\overline{A \cup (B \cap C)} = \{ x \mid \neg(x \in A) \lor (x \in (B \cap C)) \}$$

$$\overline{A \cup (B \cap C)} = \{ x \mid \neg(x \in A) \land \neg(x \in (B \cap C)) \}$$

$$\overline{A \cup (B \cap C)} = \{ x \mid (x \notin A) \land (x \notin (B \cap C)) \}$$

$$\overline{A \cup (B \cap C)} = \{ x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C})) \}$$

$$\overline{A \cup (B \cap C)} = \{ x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C})) \}$$

$$\overline{A \cup (B \cap C)} = \{ x \mid (x \in \overline{A}) \land (x \in (\overline{B \cap C})) \}$$

Probar
$$A \cap (B - A) = \emptyset$$
 $A \cap (B - A) = \emptyset$
 $A \cap (B - A) = ?$
 $A \cap$

Probar
$$A \cap (B - A) = \emptyset$$

 $A \cap (B - A) = \{x \mid x \in (A \cap (B - A))\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land [x \in (B - A)]\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B \land x \notin A)\}$
 $A \cap (B - A) = \{x \mid (x \in A) \land (x \in B) \land (x \notin A)\}$
 $A \cap (B - A) = \{x \mid ((x \in A) \land (x \notin A)) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset) \land (x \in B)\}$
 $A \cap (B - A) = \{x \mid (x \in \emptyset)\}$
 $A \cap (B - A) = \emptyset$

Probar
$$\overline{A} \cap (\overline{B} - \overline{A}) = \overline{A} \cap \overline{B}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = ?$$

$$\{ \times | \times \in (\overline{A} \cap \overline{B} - A) \}$$

$$\{ \times | \times \in \overline{A} \wedge \times \in (\overline{B} - A) \}$$

$$\{ \times | \times \in \overline{A} \wedge \times \in (\overline{B} - A) \}$$

$$\{ \times | \times \in \overline{A} \wedge (\times \notin B \vee \times \in A) \}$$

$$\{ \times | \times \in \overline{A} \wedge (\times \notin B \vee \times \in A) \}$$

$$\{ \times | \times \in \overline{A} \cap (\overline{B} \cup A) \}$$

$$\{ \times | \times \in \overline{A} \cap (\overline{B} \cup A) \}$$

$$\{ \times | \times \in \overline{A} \cap (\overline{B} \cup A) \}$$

$$\{ \times | \times \in (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap A) \}$$

$$\{ \times | \times \in (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap A) \}$$

$$\{ \times | \times \in (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap A) \}$$

$$\{ \times | \times \in (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap A) \}$$

$$\{ \times | \times \in (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap A) \}$$

$$\{ \times | \times \in (\overline{A} \cap \overline{B}) \cup (\overline{A} \cap A) \}$$

Probar
$$\overline{A} \cap (\overline{B} - \overline{A}) = \overline{A} \cap \overline{B}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \cap (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land x \in (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg x \in (\overline{B} - \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B} \land x \notin \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg x \notin \overline{A}\}\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg (\neg x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid x \in \overline{A} \land \neg (x \in \overline{B}) \lor \neg (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

$$\overline{A} \cap (\overline{B} - \overline{A}) = \{x \mid (x \in \overline{A} \land \neg (x \in \overline{B})) \lor (x \in \overline{A} \land x \in \overline{A})\}$$

Probar
$$A \cup (B - A) = A \cup B$$

$$A \cup (B - A) = ?$$

$$\{x \mid x \in (A \cup (B - A))\}$$

$$\{x \mid x \in A \mid x \in (B - A)\}$$

$$\{x \mid x \in A \mid (x \in B \mid x \notin A)\}$$

$$\{x \mid (x \in A \mid x \notin B) \mid (x \in A \mid x \notin A)\}$$

$$\{x \mid (x \in A \mid x \notin B) \mid (x \in A \mid x \notin A)\}$$

$$\{x \mid (x \in (A \cup B)) \mid (x \in A \mid x \notin A)\}$$

$$\{x \mid (x \in (A \cup B)) \mid (x \in A \mid x \notin A)\}$$

$$\{x \mid (x \in (A \cup B)) \mid (x \in A \mid x \notin A)\}$$

$$\{x \mid (x \in (A \cup B)) \mid (x \in A \mid x \notin A)\}$$

$$\{x \mid (x \in (A \cup B)) \mid (x \in A \mid x \notin A)\}$$

$$\{x \mid (x \in (A \cup B)) \mid (x \in A \mid x \notin A)\}$$

Probar
$$A \cup (B - A) = A \cup B$$

 $A \cup (B - A) = \{x \mid x \in (A \cup (B - A))\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in (B - A))\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in B) \land (x \notin A)]\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in B)\} \land (x \in A) \lor (x \notin A)\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in B)\} \land (x \in U)\}$
 $A \cup (B - A) = \{x \mid (x \in A) \lor (x \in B)\}$
 $A \cup (B - A) = A \cup B$

Uniones generalizadas e intercepciones

Unión
$$A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{i=1}^n A_i$$

Intercepción
$$A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{i=1}^n A_i$$

Representación computacional de conjuntos

- Estas proveen las operaciones de unión, intercepción y resta entre conjuntos
- No se permiten elementos repetidos
- En Java se provee la clase <u>Set<E></u>
 https://docs.oracle.com/javase/7/docs/api/java/util/Set.html
- En C++ se provee <u>set</u>
 http://www.cplusplus.com/reference/set/set/
- En Python se provee set https://docs.python.org/2/library/sets.html

Representación computacional de conjuntos

- Son muy útiles para resolver problemas que involucran conjuntos
- Internamente se manejan operaciones en representaciones de bits de los elementos de los conjuntos
- Las operaciones son más costosas computacional que los arreglos