Deep Learning

Chapter 2 퍼셉트론, 다층 퍼셉트론(Perceptron,MLP)

■ 퍼셉트론의 개념을 이해하고, 구현 할 수 있다.

■ 다층 퍼셉트론의 개념을 이해하고, 구현 할 수 있다.

신경의 흥분이 전달되기 위해서는 뉴런에 전달되는 자극의 크기가 <mark>역치 이상</mark>이 되야함

퍼셉트론 (Perceptron)

프랑크 로젠블라트가 1957년에 고안한 알고리즘

The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain

$$y = W_1 X_1 + W_2 X_2 + b$$

$$y = W_1 X_1 + W_2 X_2 + b$$

$$y = \begin{cases} 0, & (W_1X_1 + W_2X_2 + b \le 0) \\ 1, & (W_1X_1 + W_2X_2 + b > 0) \end{cases}$$

 $\overline{W}_1,\overline{W}_1$: 가중치 (weight) - 각 입력 신호가 결과에 주는 영향력을 조절하는 매개변수

 $oldsymbol{b}$: 편향 (bias) - 뉴런이 얼마나 쉽게 활성화하느냐를 조절하는 매개변수

AND 게이트 퍼셉트론 만들기

AND 게이트

x1	x2	AND
0	0	0
0	1	0
1	0	0
1	1	1

X1	X2	AND	X	у
0	0	0	$(0 \times 0.5) + (0 \times 0.5) + (1 \times -0.7) = -0.7$	class 0
0	1	0	$(0 \times 0.5) + (1 \times 0.5) + (1 \times -0.7) = -0.2$	class 0
1	0	0	$(1 \times 0.5) + (0 \times 0.5) + (1 \times -0.7) = -0.2$	class 0
1	1	1	$(1 \times 0.5) + (1 \times 0.5) + (1 \times -0.7) = 0.3$	class 1

OR 게이트 퍼셉트론 만들기

OR 게이트

x 1	x2	OR
0	0	0
0	1	1
1	0	1
1	1	1

X1	X2	OR	X	у
0	0	0	?	class 0
0	1	1	?	class 1
1	0	1	?	class 1
1	1	1	?	class 1

AND,OR는 해결이 가능하지만 간단한 XOR 문제를 해결 할 수 없다.

XOR 게이트

x 1	x2	XOR
0	0	0
0	1	1
1	0	1
1	1	0

퍼셉트론의 한계

퍼셉트론의 한계

다층 퍼셉트론(Multilayer Perceptron)

다층 퍼셉트론(Multilayer Perceptron) 퍼셉트론을 여러 개의 층으로 구성하여 만든 신경망

다층 퍼셉트론(Multilayer Perceptron)

- 비선형 데이터를 분리 할 수 있다.
- 학습시간이 오래 걸린다.
- 가중치 파라미터가 많아 과적합되기 쉽다.
- 가중치 초기 값에 민감하며 지역 최적점에 빠지기 쉽다.

다층 퍼셉트론(Multilayer Perceptron)

XOR 문제 해결하기

XOR 문제 해결하기

x1	x2	NAND
0	0	1
0	1	1
1	0	1
1	1	0

х1	x2	OR
0	0	0
0	1	1
1	0	1
1	1	1

	NAND	OR	AND
	1	0	0
7/5	1	1	1
	1	1	1
	0	1	0

	XUK
	0
-	1
	1
	0

VAD

딥러닝(Deep Learning) 실습

XOR 게이트 퍼셉트론 만들기

