

#### INTELIGENCIA ARTIFICIAL

#### INTRODUCCION A REDES NEURONALES ARTIFICIALES

Dr. Edwin Rafael Villanueva Talavera

ervillanueva@pucp.edu.pe

#### Contenido



- Motivacion
- Perceptron
- Redes Perceptron Multicapa
- Entrenamiento
- Aplicacion

#### Introducción



# RNA son resultado del deseo de construir artefactos capaces de exhibir comportamiento inteligente



# RNA son inspiradas en el sistema nervioso central de animales:

 El cerebro resuelve eficientemente problemas de procesamiento de imágenes, reconocimiento de habla, recuperación de información, aprendizaje basado en ejemplos, etc.

#### Hitos Históricos





### Neurona Biológica







- Potencial eléctrico a través de la membrana de la célula exhibe picos.
- Pico se origina en el cuerpo celular, pasa por el axón, y hace que las terminaciones sinápticas generen neurotransmisores.
- Neurotransmisores pasan a través de las sinapsis hacia las dendritas de otras neuronas.
- Si la entrada total de neurotransmisores hacia una neurona ultrapasa un cierto limite, la neurona se dispara (genera un pico).

### Velocidad Neuronal



- Las neuronas biológicas se "activan" y "desactivan" en algunos milisegundos, mientras que el hardware actual hace lo mismo en apenas nanosegundos.
- Sistemas neuronales biológicos realizan tareas cognitivas complejas (visión, reconocimiento de voz) en décimas de segundo.
- Un sistema neuronal usa "paralelismo masivo".
- □ El cerebro humano tiene 10<sup>11</sup> neuronas con una media de 10<sup>4</sup> conexiones por cada neurona.

#### Neurona Artificial





$$u = \left(\sum_{i=1}^{N} x_i \cdot w_i\right) - \theta$$

$$y = g(u)$$

### Aplicaciones de RNAs



Clasificación de patrones: reconocimiento de imágenes, voz, retina, texto escrito, etc.



Clustering: explorar similitudes y grupos, compresión de datos, etc.



## Aplicaciones de RNAs



Aproximación de funciones: modelamiento científico y ingeniería



Previsión/Estimación: Mercado financiero, previsión de clima, etc.



### Aplicaciones de RNAs



Memorias asociativas: recuperar ítems por contenido, aún cuando la entrada sea distorsionada. (recuperación de imágenes, bases de datos, etc.)



Control: controlar sistemas de ingeniería (control de procesos, robótica, etc)



## Tipos de RNA





### Perceptron





$$u = \left(\sum_{i=1}^{N} x_i \cdot w_i\right) - \theta$$

$$y = g(u)$$

### Clasificación con Perceptrons

Separa clases linealmente separables



Es posible separar clases linealmente **No** separables



## Funciones de activación populares







Función escalón



Función sigmoidea



Función tangente hiperbólica



Función gausiana



## Redes Perceptron Multicapa



- Las redes multicapa pueden representar funciones arbitrarias, sin embargo aprender esas redes era considerado un problema de difícil solución antes de los 90s.
- Una red multicapa feed-fordward típica consta de capas de entrada, interna y salida, cada una totalmente conectada a la siguiente, con la activación yendo para adelante.



Los pesos determinan la función calculada.

## Redes Perceptron Multicapa





#### Cada neurona:



### Poder de Representación de Redes Perceptron A



#### □ Estructuras de redes Perceptron para clasificación

| Estructura | XOR     | Clases<br>No-Convexas | Configuraciones<br>Posibles |
|------------|---------|-----------------------|-----------------------------|
| 1 capa     | A B B A | B                     |                             |
| 2 capas    | A B A   | B                     |                             |
| 3 capas    | B A     | B                     |                             |

## Entrenamiento de Redes Perceptron Multice CATÓLICA CATÓLICA DEL PERÚ

- Utiliza un conjunto de ejemplos de entrenamiento con tuplas <entrada, salida\_desada>
- El objetivo es ajustar los pesos sinápticos de tal forma que la red neuronal aproxime la salida deseada para cada ejemplo.
- Un algoritmo mas popular para el ajuste es el backpropagation. Este realiza actualizaciones iterativamente hasta conseguir resultados adecuados.

## Entrenamiento de Redes Perceptron Multice CATÓLICA CATÓLICA DEL PERÚ

#### Algoritmo backpropagation

- 1. Inicializar los pesos de la red (por exemplo, aleatoriamente)
- 2. While (not\_critério\_parada)

Para cada par entrada-salida  $\{\mathbf{x}^{(k)},\mathbf{d}^{(k)}\}$ 

Forward pass: Calcular salida  $Y_k$  para entrada  $X^{(K)}$  Calcular  $e_k = (Y_k - d^{(k)})$ , donde  $d^{(k)}$  es el target



Backward pass: Calcular  $\Delta w_{j,i}$  para cada capa j usando gradientes del error de cada neurona



Actualizar pesos



## Entrenamiento de Redes Perceptron Multice CATÓLICA DEL PERÚ

#### Superficie de optimización



#### Comentarios sobre backpropagation



- No garantiza optimalidad puede convergir para óptimos locales u oscilar indefinidamente.
- Puede ser necesario elevada cantidad de épocas, lo que significa horas de entrenamiento para grandes redes.

#### Validación de Redes Neuronales





## Prevención de Sobreajuste (Overfiting UNIVERSIDAD CATÓLICA DEL PERÚ

Entrenar con muchas épocas puede llevar a sobreajuste.



 Una estrategia es usar un conjunto de validación y parar cuando el error comience a aumentar.

## Determinando el mejor número de neuron

- Pocas neuronas pueden impedir que la red se adecue totalmente a los dados.
- Muchas neuronas pueden generar un sobreajuste.



 Usar validación cruzada interna para determinar empíricamente el mejor número de neuronas internas.

### Material Complementar



□ Tutorial:

https://missinglink.ai/guides/neural-network-concepts/backpropagation-neural-networks-process-examples-code-minus-math/

- Demos para jugar con redes neuronales
  - Redes Neuronales en tu browser (<a href="http://playground.tensorflow.org">http://playground.tensorflow.org</a>)
  - ConvNetJS, Convolutional Neural Network demo (<a href="https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html">https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html</a>)