CELEN037 Seminar 8

Topics

- Evaluating Definite Integrals
- Definite Integrals using Substitution
- Integration by Parts for Definite Integrals
- Use of Properties for Evaluating Definite Integrals
- Area Calculation using Definite Integrals

Evaluating Definite Integrals

Fundamental Theorem of Calculus

If f(x) is continuous on [a,b] and F(x) is any antiderivative of f(x) on [a,b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = \left[F(x) \right]_{a}^{b}$$

Example 1: Evaluate
$$\int_0^1 \frac{1}{1+x^2} dx$$

$$I = \int_0^1 \frac{1}{1+x^2} dx$$

$$= \left[\tan^{-1} x \right]_0^1 \qquad \left(\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2} \right)$$

$$= \tan^{-1}(1) - \tan^{-1}(0)$$

$$= \frac{\pi}{4}$$

Evaluating Definite Integrals

Fundamental Theorem of Calculus

If f(x) is continuous on [a,b] and F(x) is any antiderivative of f(x) on [a,b], then

$$\int_{a}^{b} f(x) \ dx = F(b) - F(a) = \left[F(x) \right]_{a}^{b}$$

Example 2: Evaluate $\int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \csc^2(3x) \ dx$

$$I = \int_{\frac{\pi}{12}}^{\frac{\pi}{9}} \csc^2(3x) dx$$

$$= -\frac{1}{3} \left[\cot(3x) \right]_{\frac{\pi}{12}}^{\frac{\pi}{9}}$$

$$= -\frac{1}{3} \left(\cot\left(3 \cdot \frac{\pi}{9}\right) - \cot\left(3 \cdot \frac{\pi}{12}\right) \right)$$

$$= -\frac{1}{3} \left(\cot \frac{\pi}{3} - \cot \frac{\pi}{4} \right)$$
$$= \frac{1}{3} \left(1 - \frac{1}{\sqrt{3}} \right)$$

Evaluating Definite Integrals

Practice Problems on Worksheet:

- 1. Q1(ii)
- 2. Q1(iii)
- 3. Q1(iv)
- 3. Q1(v)

- 1: $\frac{\ln 3}{4}$
- 2: ln 3
- 3: $\frac{\pi}{2}$
- 4: 1

Definite Integrals using Substitution

Note

Remember to change the limits of integration for the transformed integral

Example 1: Evaluate
$$\int_0^{\frac{\pi}{4}} \tan^2 x \sec^2 x \ dx$$

Solution: Let
$$\tan x = t \implies \sec^2 x \, dx = dt$$

Integration limits:
$$\begin{array}{c|cc} x & 0 & \frac{\pi}{4} \\ \hline t & 0 & 1 \end{array}$$

Thus
$$\int_0^{\frac{\pi}{4}} \tan^2 x \sec^2 x \, dx = \int_0^1 t^2 \, dt$$
$$= \left[\frac{t^3}{3} \right]_0^1$$
$$= \frac{1}{3}$$

Definite Integrals using Substitution

Note

Remember to change the limits of integration for the transformed integral

Example 2: Evaluate
$$\int_0^{\frac{1}{2}} \frac{e^x(x+1)}{\cos^2(xe^x)} dx$$

Solution: Let
$$xe^x = t$$
. Then $(e^x + xe^x) dx = e^x(x+1)dx = dt$

Integration limits:

$$\begin{array}{c|c|c} x & 0 & \frac{1}{2} \\ \hline t & 0 & \frac{\sqrt{e}}{2} \end{array}$$

$$\int_0^{\frac{1}{2}} \frac{e^x(x+1)}{\cos^2(xe^x)} dx = \int_0^{\frac{\sqrt{e}}{2}} \frac{1}{\cos^2 t} dt$$
$$= \int_0^{\frac{\sqrt{e}}{2}} \sec^2 t dt$$
$$= \left[\tan t\right]_0^{\frac{\sqrt{e}}{2}}$$
$$= \tan\left(\frac{\sqrt{e}}{2}\right)$$

Definite Integrals using Substitution

Practice Problems on Worksheet:

- 1. Q2(iii)
- 2. Q2(iv)
- 3. Q2(v)
- 4. Q2(vi)

- 1: $\frac{\pi}{6}$
- 2: $\frac{2\sqrt{2}}{3} \left(\sqrt{5} 2\right)$
 - 3: -4
- 4: $2\left(\sqrt{6}-\sqrt{5}\right)$

Integration by Parts for Definite Integrals

Integration by parts

$$\int_{a}^{b} u \cdot \frac{dv}{dx} dx = \left[u \cdot v \right]_{a}^{b} - \int_{a}^{b} v \cdot \frac{du}{dx} dx$$

Example 1: Evaluate $\int_{1}^{e} x^{2} \ln x \ dx$

Let
$$u = \ln x$$
 and $\frac{dv}{dx} = x^2$

$$\Rightarrow v = \frac{x^3}{3} \text{ and } \frac{du}{dx} = \frac{1}{x}$$

$$\Rightarrow \int_1^e x^2 \ln x \, dx = \left[\ln x \cdot \frac{x^3}{3}\right]_1^e - \int_1^e \frac{x^3}{3} \cdot \frac{1}{x} \, dx$$

$$= \left[\ln x \cdot \frac{x^3}{3}\right]_1^e - \left[\frac{x^3}{9}\right]_1^e$$

$$= \frac{2e^3 + 1}{9}$$

Integration by Parts for Definite Integrals

Integration by parts

$$\int_{a}^{b} u \cdot \frac{dv}{dx} dx = \left[uv \right]_{a}^{b} - \int_{a}^{b} v \cdot \frac{du}{dx} dx$$

Example 2: Evaluate
$$\int_{1}^{4} \sec^{-1}(\sqrt{x}) dx$$

Solution:
$$\sec^{-1}\left(\sqrt{x}\right) = \cos^{-1}\left(\frac{1}{\sqrt{x}}\right) \Rightarrow \int_{1}^{4} \sec^{-1}\left(\sqrt{x}\right) dx = \int_{1}^{4} \cos^{-1}\left(\frac{1}{\sqrt{x}}\right) dx$$

Let $u = \cos^{-1}\left(\frac{1}{\sqrt{x}}\right)$ and $\frac{dv}{dx} = 1$
 $\Rightarrow v = x$ and $\frac{du}{dx} = \frac{1}{2x\sqrt{x-1}}$
 $\Rightarrow \int_{1}^{4} \sec^{-1}\left(\sqrt{x}\right) dx = \left[\cos^{-1}\left(\frac{1}{\sqrt{x}}\right) \cdot x\right]_{1}^{4} - \int_{1}^{4} \frac{1}{2x\sqrt{x-1}} \cdot x dx$
 $= \left[\cos^{-1}\left(\frac{1}{\sqrt{x}}\right) \cdot x\right]_{1}^{4} - \left[\sqrt{x-1}\right]_{1}^{4}$
 $= \frac{4\pi}{2} - \sqrt{3}$

Integration by Parts for Definite Integrals

Practice Problems on Worksheet:

- 1. Q3(ii)
- 2. Q3(iii)

- 1: $3 \ln 3 2$
- 2: $2(\ln 5 + \tan^{-1}(2) 2)$

Properties for Evaluating Definite Integrals

1. If f(x) is integrable on an interval I, and $a,b,c \in I$, then

$$\int_a^b f(x) \ dx = \int_a^c f(x) \ dx + \int_c^b f(x) \ dx$$

2. If f(x) is integrable and EVEN on [-a, a], then

$$\int_{-a}^{a} f(x) \ dx = 2 \int_{0}^{a} f(x) \ dx$$

3. If f(x) is integrable and ODD on [-a, a], then

$$\int_{-a}^{a} f(x) \ dx = 0$$

4. If f(x) is integrable on [0, a], then

$$\int_0^a f(x) \ dx = \int_0^a f(a-x) \ dx$$

5. If f(x) is integrable on [a, b], then

$$\int_a^b f(x) \ dx = \int_a^b f(a+b-x) \ dx$$

Properties for Evaluating Definite Integrals

Example: Evaluate
$$\int_0^3 f(x) \ dx$$
 where $f(x) = \begin{cases} x^2, & x < 2 \\ 3x - 2, & x \ge 2 \end{cases}$

$$\int_0^3 f(x) \ dx = \int_0^2 f(x) \ dx + \int_2^3 f(x) \ dx$$

$$= \int_0^2 x^2 \ dx + \int_2^3 (3x - 2) \ dx$$

$$= \left[\frac{x^3}{3} \right]_0^2 + \left[\frac{3x^2}{2} - 2x \right]_2^3$$

$$= \left[\frac{8}{3} - 0 \right] + \left[\left(\frac{27}{2} - 6 \right) - (6 - 4) \right]$$

$$= \frac{49}{6}$$

Properties for Evaluating Definite Integrals

Practice Problems on Worksheet:

- 1. Q4(iii)
- 2. Q4(iv)
- 3. Q4(v)
- 4. Q4(vi)

- 1: $\frac{\pi}{4}$
- **2**: 2
- 3: $\frac{7}{2}$
 - **4**: 0

Results

• The area of the region bounded by the curve y=f(x), lines $x=a,\ x=b,$ and the X-axis is:

$$A = \int_{a}^{b} y \ dx = \int_{a}^{b} f(x) \ dx$$

• The area of the region bounded by the curve x=g(y), lines $y=c,\ y=d$, and the Y-axis is:

$$A = \int_{c}^{d} x \ dy = \int_{c}^{d} g(y) \ dy$$

CELEN037 (UNNC)

Example 1: Find the area of the region bounded by the curve $y=x^3$, lines x=-2, x=2, and the X-axis.

Solution: The function $y = x^3$ is an odd function.

$$A = \left| \int_{-2}^{0} x^{3} dx \right| + \int_{0}^{2} x^{3} dx$$

$$= -\int_{-2}^{0} x^{3} dx + \int_{0}^{2} x^{3} dx$$

$$= 2 \int_{0}^{2} x^{3} dx$$

$$= 2 \left[\frac{x^{4}}{4} \right]_{0}^{2}$$

$$= 8$$

Example 2: Find the area of the region bounded by the curve $y=e^{\sin x}\sin 2x$ and the X-axis, where $x\in\left[0,\frac{\pi}{2}\right]$ Solution:

$$A = \int_0^{\frac{\pi}{2}} y \, dx$$

$$= \int_0^{\frac{\pi}{2}} e^{\sin x} \sin 2x \, dx$$

$$= 2 \int_0^{\frac{\pi}{2}} \sin x \cdot e^{\sin x} \cos x \, dx$$

$$= 2 \int_0^1 t e^t \, dt \qquad (t = \sin x)$$

$$= 2 \left(\left[t e^t \right]_0^1 - \int_0^1 e^t \, dt \right) \qquad (u = t, \quad dv/dt = e^t)$$

$$= 2e - 2 \left[e^t \right]_0^1$$

$$= 2$$

Practice Problems on Worksheet:

- 1. Q5(ii)
- 2. Q5(iii)
- 3. Q5(iv)
- 4. Q5(v)

- 1: $\frac{4}{3}$
- **2**: 36
- **3**: 2
- **4**: 2

Office Hours

Office hours:

Day	Time	Venue
Tuesday	12:00 to 14:00	Trent 314a
	13:00 to 14:00	Trent 322
Thursday	16:30 to 17:30	TB 417
	17:00 to 18:00	IAMET 315
Friday	14:00 to 15:00	PB 330
	17:00 to 18:00	TB 417

Weekly drop-in session: Wednesday 4 – 5 pm in PB-115.