$$\alpha A = (\alpha a_{ij}) = \begin{pmatrix} \alpha a_{11} & \alpha a_{12} & \cdots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \cdots & \alpha a_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \cdots & \alpha a_{mn} \end{pmatrix}$$

$$(2.1.5)$$

Esto es $\alpha A = (\alpha a_{ij})$ es la matriz obtenida al multiplicar cada componente de A por α . Si $\alpha A = B = (b_{ij})$, entonces $b_{ij} = \alpha a_{ij}$ para i = 1, 2, ..., m y j = 1, 2, ..., n.

Nota histórica

El término "escalar" encuentra su origen con Hamilton. Su definición de cuaternión incluía lo que él definió como una "parte real" y una "parte imaginaria". En su artículo "On Quartenions, or on a New System of Imagineries in Algebra", en *Philosophical Magazine*, 3a. Serie, 25(1844):26-27, escribió: "La parte real algebraicamente puede tomar... todos los valores contenidos en la *escala* de la progresión de números desde el infinito negativo al infinito positivo; la llamaremos, entonces, la *parte escalar* o simplemente el *escalar* del cuaternión..." En el mismo artículo Hamilton definió la parte imaginaria de su cuaternión como la parte *vectorial*. Aunque éste no fue el primer uso que se dio a la palabra "vector", sí fue la primera vez que se usó en el contexto de las definiciones contenidas en esta sección. Es importante mencionar que el artículo del que se tomó la cita anterior marca el inicio del análisis vectorial moderno.

EJEMPLO 2.1.6 Múltiplos escalares de matrices

Sea
$$A = \begin{pmatrix} 1 & -3 & 4 & 2 \\ 3 & 1 & 4 & 6 \\ -2 & 3 & 5 & 7 \end{pmatrix}$$
. Entonces $2A = \begin{pmatrix} 2 & -6 & 8 & 4 \\ 6 & 2 & 8 & 12 \\ -4 & 6 & 10 & 14 \end{pmatrix}$,

EJEMPLO 2.1.7 Suma de múltiplos escalares de dos vectores

Sea
$$\mathbf{a} = \begin{pmatrix} 4 \\ 6 \\ 1 \\ 3 \end{pmatrix}$$
 y $\mathbf{b} = \begin{pmatrix} -2 \\ 4 \\ -3 \\ 0 \end{pmatrix}$. Calcule $2\mathbf{a} - 3\mathbf{b}$.

SOLUCIÓN >
$$2\mathbf{a} - 3\mathbf{b} = 2 \begin{pmatrix} 4 \\ 6 \\ 1 \\ 3 \end{pmatrix} + (-3) \begin{pmatrix} -2 \\ 4 \\ -3 \\ 0 \end{pmatrix} = \begin{pmatrix} 8 \\ 12 \\ 2 \\ 6 \end{pmatrix} + \begin{pmatrix} 6 \\ -12 \\ 9 \\ 0 \end{pmatrix} = \begin{pmatrix} 14 \\ 0 \\ 11 \\ 6 \end{pmatrix}$$

El teorema que se presenta a continuación proporciona las propiedades básicas sobre la suma de matrices y la multiplicación por escalares. Se demuestra la parte iii) y se deja el resto de la prueba como ejercicio para el lector (vea los problemas 41 a 43).