Compilation d'exercices sur les limites de fonctions et sur la continuité de mars 2013 à novembre 2015. (Hors spécialité)

EXERCICE 1 NOUVELLE-CALÉDONIE sur 5 points

Soit f la fonction dérivable, définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = e^x + \frac{1}{x}.$$

1. Étude d'une fonction auxiliaire

a. Soit la fonction g dérivable, définie sur $[0; +\infty[$ par

$$g(x) = x^2 e^x - 1.$$

Étudier le sens de variation de la fonction g.

b. Démontrer qu'il existe un unique réel a appartenant à $[0; +\infty[$ tel que g(a) = 0.

Démontrer que *a* appartient à l'intervalle [0,703; 0,704[.

c. Déterminer le signe de g(x) sur $[0; +\infty[$.

2. Étude de la fonction f

a. Déterminer les limites de la fonction f en 0 et en $+\infty$.

b. On note f' la fonction dérivée de f sur l'intervalle]0; $+\infty[$. Démontrer que pour tout réel strictement positif x, $f'(x) = \frac{g(x)}{x^2}$.

c. En déduire le sens de variation de la fonction f et dresser son tableau de variation sur l'intervalle]0; $+\infty[$.

d. Démontrer que la fonction f admet pour minimum le nombre réel $m = \frac{1}{a^2} + \frac{1}{a}.$

e. Justifier que 3,43 < m < 3,45.

EXERCICE 2 ANTILLES-GUYANE 19 JUIN 2014 sur 6 points

On considère la fonction f définie et dérivable sur l'ensemble $\mathbb R$ des nombres réels par

$$f(x) = x + 1 + \frac{x}{e^x}.$$

On note \mathscr{C} sa courbe représentative dans un repère orthonormé $\left(0,\overrightarrow{\iota},\overrightarrow{J}\right)$.

Partie A

1. Soit g la fonction définie et dérivable sur l'ensemble $\mathbb R$ par

$$g(x) = 1 - x + e^x.$$

Dresser, en le justifiant, le tableau donnant les variations de la fonction g sur \mathbb{R} (les limites de g aux bornes de son ensemble de définition ne sont pas attendues).

En déduire le signe de g(x).

- **2.** Déterminer la limite de f en $-\infty$ puis la limite de f en $+\infty$.
- **3.** On appelle f' la dérivée de la fonction f sur \mathbb{R} . Démontrer que, pour tout réel x,

$$f'(x) = e^{-x}g(x).$$

- **4.** En déduire le tableau de variation de la fonction f sur \mathbb{R} .
- **5.** Démontrer que l'équation f(x) = 0 admet une unique solution réelle α sur \mathbb{R} . Démontrer que $-1 < \alpha < 0$.
- **6. a.** Démontrer que la droite T d'équation y = 2x + 1 est tangente à la courbe \mathscr{C} au point d'abscisse 0.
 - **b.** Étudier la position relative de la courbe $\mathscr C$ et de la droite T.

EXERCICE 4 PONDICHÉRY 8 AVRIL 2014 sur 7 points

Pas d'utilisation du TVI et peu de limites.

Partie A

f est une fonction définie et dérivable sur \mathbb{R} . f' est la fonction dérivée de la fonction f .

Dans le plan muni d'un repère orthogonal, on nomme \mathcal{C}_1 la courbe représentative de la fonction f et \mathcal{C}_2 la courbe représentative de la fonction f'.

Le point A de coordonnées (0; 2) appartient à la courbe \mathscr{C}_1 .

Le point B de coordonnées (0; 1) appartient à la courbe \mathcal{C}_2 .

1. Dans les trois situations ci-dessous, on a dessiné la courbe représentative \mathscr{C}_1 de la fonction f. Sur l'une d'entre elles, la courbe \mathscr{C}_2 de la fonction dérivée f' est tracée convenablement. Laquelle ? Expliquer le choix effectué.

- **2.** Déterminer l'équation réduite de la droite Δ tangente à la courbe \mathscr{C}_1 en A.
- **3.** On sait que pour tout réel x, $f(x) = e^{-x} + ax + b$ où a et b sont deux nombres réels.
 - **a.** Déterminer la valeur de b en utilisant les renseignements donnés par l'énoncé.
 - **b.** Prouver que a = 2.

- 4. Étudier les variations de la fonction f sur $\mathbb R$.
- 5. Déterminer la limite de la fonction f en $+\infty$.

EXERCICE 4 POLYNÉSIE 13 JUIN 2014 sur 5 points

Pas d'utilisation du TVI mais très intéressant sur les limites, la question 4 n'est a priori pas faisable en début d'année.

Soient f et g les fonctions définies sur $\mathbb R$ par

$$f(x) = e^x$$
 et $g(x) = 2e^{\frac{x}{2}} - 1$.

On note \mathcal{C}_f et \mathcal{C}_g les courbes représentatives des fonctions f et g dans un repère orthogonal.

- 1. Démontrer que les courbes \mathscr{C}_f et \mathscr{C}_g ont un point commun d'abscisse 0 et qu'en ce point, elles ont la même tangente Δ dont on déterminera une équation.
- **2.** Étude de la position relative de la courbe \mathscr{C}_g et de la droite Δ Soit h la fonction définie sur \mathbb{R} par $h(x) = 2e^{\frac{x}{2}} x 2$.
 - **a.** Déterminer la limite de la fonction h en $-\infty$.
 - **b.** Justifier que, pour tout réel x, $h(x) = x \left(\frac{e^{\frac{x}{2}}}{\frac{x}{2}} 1 \frac{2}{x} \right)$. En déduire la limite de la fonction h en $+\infty$.
 - **c.** On note h' la fonction dérivée de la fonction h sur \mathbb{R} . Pour tout réel x, calculer h'(x) et étudier le signe de h'(x) suivant les valeurs de x.
 - **d.** Dresser le tableau de variations de la fonction h sur \mathbb{R} .
 - **e.** En déduire que, pour tout réel x, $2e^{\frac{x}{2}} 1 \ge x + 1$.
 - **f.** Que peut-on en déduire quant à la position relative de la courbe \mathscr{C}_g et de la droite Δ ?
- **3.** Étude de la position relative des courbes \mathscr{C}_f et \mathscr{C}_g
 - **a.** Pour tout réel x, développer l'expression $\left(e^{\frac{x}{2}}-1\right)^2$.
 - **b.** Déterminer la position relative des courbes \mathscr{C}_f et \mathscr{C}_g .
- **4.** Calculer, en unité d'aire, l'aire du domaine compris entre les courbes \mathscr{C}_f et \mathscr{C}_g et les droites d'équations respectives x=0 et x=1.

EXERCICE 3 LIBAN 28 MAI 2013 sur 6 points

Pas d'utilisation du TVI. Les questions 4 des parties A et B ne sont a priori pas faisable en début d'année.

Étant donné un nombre réel k, on considère la fonction f_k définie sur $\mathbb R$ par

$$f_k(x) = \frac{1}{1 + \mathrm{e}^{-kx}}.$$

Le plan est muni d'un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath})$.

Partie A

Dans cette partie on choisit k = 1. On a donc, pour tout réel x, $f_1(x) = \frac{1}{1 + e^{-x}}$.

La représentation graphique \mathscr{C}_1 de la fonction f_1 dans le repère $\left(0, \frac{1}{i}, \frac{1}{j}\right)$ est donnée en ANNEXE, à rendre avec la copie.

- 1. Déterminer les limites de $f_1(x)$ en $+\infty$ et en $-\infty$ et interpréter graphiquement les résultats obtenus.
- **2.** Démontrer que, pour tout réel x, $f_1(x) = \frac{e^x}{1 + e^x}$.
- **3.** On appelle f'_1 la fonction dérivée de f_1 sur \mathbb{R} . Calculer, pour tout réel x, $f'_1(x)$. En déduire les variations de la fonction f_1 sur \mathbb{R} .
- **4.** On définit le nombre $I = \int_0^1 f_1(x) dx$.

Montrer que $I = \ln\left(\frac{1+e}{2}\right)$. Donner une interprétation graphique de I.

Partie B

Dans cette partie, on choisit k=-1 et on souhaite tracer la courbe \mathscr{C}_{-1} représentant la fonction f_{-1} .

Pour tout réel x, on appelle P le point de \mathcal{C}_1 d'abscisse x et M le point de \mathcal{C}_{-1} d'abscisse x.

On note K le milieu du segment [MP].

- **1.** Montrer que, pour tout réel x, $f_1(x) + f_{-1}(x) = 1$.
- **2.** En déduire que le point *K* appartient à la droite d'équation $y = \frac{1}{2}$.
- **3.** Tracer la courbe \mathscr{C}_{-1} sur l'ANNEXE, à rendre avec la copie.
- **4.** En déduire l'aire, en unités d'aire, du domaine délimité par les courbes \mathscr{C}_1 , \mathscr{C}_{-1} l'axe des ordonnées et la droite d'équation x = 1.

Partie C

Dans cette partie, on ne privilégie pas de valeur particulière du paramètre k. Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse et justifier la réponse.

- **1.** Quelle que soit la valeur du nombre réel k, la représentation graphique de la fonction f_k est strictement comprise entre les droites d'équations y = 0 et y = 1.
- **2.** Quelle que soit la valeur du réel k, la fonction f_k est strictement croissante.

6

3. Pour tout réel $k \ge 10$, $f_k\left(\frac{1}{2}\right) \ge 0,99$.

ANNEXE de l'EXERCICE 3, à rendre avec la copie

Représentation graphique \mathscr{C}_1 de la fonction f_1

EXERCICE 3 ANTILLES-GUYANE 18 JUIN 2013 sur 5 points

*Très intéressant sur le TVI. La question 4 n'est a priori pas faisable en début d'année.*Dans tout ce qui suit, *m* désigne un nombre réel quelconque.

Partie A

Soit f la fonction définie et dérivable sur l'ensemble des nombres réels $\mathbb R$ telle que :

$$f(x) = (x+1)e^x.$$

- **1.** Calculer la limite de f en $+\infty$ et $-\infty$.
- **2.** On note f' la fonction dérivée de la fonction f sur \mathbb{R} . Démontrer que pour tout réel x, $f'(x) = (x+2)e^x$.
- **3.** Dresser le tableau de variation de f sur \mathbb{R} .

Partie B

On définie la fonction g_m sur $\mathbb R$ par :

$$g_m(x) = x + 1 - me^{-x}$$

et on note \mathcal{C}_m la courbe de la fonction g_m dans un repère $\left(0,\overrightarrow{\iota},\overrightarrow{J}\right)$ du plan.

- **1. a.** Démontrer que $g_m(x) = 0$ si et seulement si f(x) = m.
 - **b.** Déduire de la partie A, sans justification, le nombre de points d'intersection de la courbe \mathscr{C}_m avec l'axe des abscisses en fonction du réel m.
- **2.** On a représenté en annexe 2 les courbes \mathscr{C}_0 , \mathscr{C}_e , et \mathscr{C}_{-e} (obtenues en prenant respectivement pour m les valeurs 0, e et -e).

Identifier chacune de ces courbes sur la figure de l'annexe en justifiant.

- **3.** Étudier la position de la courbe \mathscr{C}_m par rapport à la droite \mathscr{D} d'équation y = x + 1 suivant les valeurs du réel m.
- **4. a.** On appelle D_2 la partie du plan comprise entre les courbes \mathscr{C}_e , \mathscr{C}_{-e} , l'axe (Oy) et la droite x = 2. Hachurer D_2 sur l'annexe 2.
 - **b.** Dans cette question, a désigne un réel positif, D_a la partie du plan comprise entre \mathscr{C}_e , \mathscr{C}_{-e} , l'axe (Oy) et la droite Δ_a d'équation x=a. On désigne par $\mathscr{A}(a)$ l'aire de cette partie du plan, exprimée en unités d'aire. Démontrer que pour tout réel a positif : $\mathscr{A}(a) = 2e 2e^{1-a}$. En déduire la limite de $\mathscr{A}(a)$ quand a tend vers $+\infty$.

EXERCICE 2 ASIE 18 JUIN 2013 sur 6 points

Intéressant sur le TVI. Ne pas se laisser décourager par la partie A. On considère les fonctions f et g définies pour tout réel x par :

$$f(x) = e^x$$
 et $g(x) = 1 - e^{-x}$.

Les courbes représentatives de ces fonctions dans un repère orthogonal du plan, notées respectivement \mathscr{C}_f et \mathscr{C}_g , sont fournies en annexe.

Partie A

Ces courbes semblent admettre deux tangentes communes. Tracer aux mieux ces tangentes sur la figure de l'annexe.

Partie B

Dans cette partie, on admet l'existence de ces tangentes communes.

On note $\mathcal D$ l'une d'entre elles. Cette droite est tangente à la courbe $\mathscr C_f$ au point A d'abscisse a et tangente à la courbe $\mathscr C_g$ au point B d'abscisse b.

- 1. a. Exprimer en fonction de a le coefficient directeur de la tangente à la courbe \mathscr{C}_f au point A.
 - **b.** Exprimer en fonction de b le coefficient directeur de la tangente à la courbe \mathscr{C}_g au point B.
 - **c.** En déduire que b = -a.
- 2. Démontrer que le réel a est solution de l'équation

$$2(x-1)e^x + 1 = 0.$$

Partie C

On considère la fonction φ définie sur \mathbb{R} par

$$\varphi(x) = 2(x-1)e^x + 1.$$

- **1. a.** Calculer les limites de la fonction φ en $-\infty$ et $+\infty$.
 - **b.** Calculer la dérivée de la fonction φ , puis étudier son signe.
 - **c.** Dresser le tableau de variation de la fonction φ sur \mathbb{R} . Préciser la valeur de $\varphi(0)$.
- **2. a.** Démontrer que l'équation $\varphi(x) = 0$ admet exactement deux solutions dans \mathbb{R} .
 - **b.** On note α la solution négative de l'équation $\varphi(x) = 0$ et β la solution positive de cette équation.

À l'aide d'une calculatrice, donner les valeurs de α et β arrondies au centième.

Partie D

Dans cette partie, on démontre l'existence de ces tangentes communes, que l'on a admise dans la partie B.

On note E le point de la courbe \mathscr{C}_f d'abscisse α et F le point de la courbe \mathscr{C}_g d'abscisse $-\alpha$ (α est le nombre réel défini dans la partie C).

- 1. Démontrer que la droite (EF) est tangente à la courbe \mathcal{C}_f au point E.
- **2.** Démontrer que (EF) est tangente à \mathcal{C}_g au point F.

EXERCICE 1 PONDICHÉRY 17 AVRIL 2015 sur 4 points

TVI. Les parties B et C ne sont pas faisable avant d'avoir traité l'intégration.

Partie A

Soit f la fonction définie sur $\mathbb R$ par

$$f(x) = \frac{3}{1 + e^{-2x}}.$$

Sur le graphique ci-après, on a tracé, dans un repère orthogonal $(O, \overrightarrow{\iota}, \overrightarrow{J})$, la courbe représentative $\mathscr C$ de la fonction f et la droite Δ d'équation y = 3.

- **1.** Démontrer que la fonction f est strictement croissante sur \mathbb{R} .
- **2.** Justifier que la droite Δ est asymptote à la courbe \mathscr{C} .
- **3.** Démontrer que l'équation f(x) = 2,999 admet une unique solution α sur \mathbb{R} . Déterminer un encadrement de α d'amplitude 10^{-2} .

Partie B

Soit *h* la fonction définie sur \mathbb{R} par h(x) = 3 - f(x).

- **1.** Justifier que la fonction h est positive sur \mathbb{R} .
- **2.** On désigne par H la fonction définie sur \mathbb{R} par $H(x) = -\frac{3}{2} \ln (1 + e^{-2x})$. Démontrer que H est une primitive de h sur \mathbb{R} .
- **3.** Soit *a* un réel strictement positif.
 - **a.** Donner une interprétation graphique de l'intégrale $\int_0^a h(x) dx$.
 - **b.** Démontrer que $\int_0^a h(x) dx = \frac{3}{2} \ln \left(\frac{2}{1 + e^{-2a}} \right).$
 - **c.** On note \mathcal{D} l'ensemble des points M(x; y) du plan défini par

12

$$\begin{cases} x \geqslant 0 \\ f(x) \leqslant y \leqslant 3 \end{cases}$$

Déterminer l'aire, en unité d'aire, du domaine \mathcal{D} .

EXERCICE 3 LIBAN 27 MAI 2015 sur 3 points

On considère la courbe \mathscr{C} d'équation $y = e^x$, tracée ci-dessous.

Pour tout réel m strictement positif, on note \mathcal{D}_m la droite d'équation y = mx.

- 1. Dans cette question, on choisit m=e. Démontrer que la droite \mathcal{D}_e , d'équation y=ex, est tangente à la courbe \mathscr{C} en son point d'abscisse 1.
- **2.** Conjecturer, selon les valeurs prises par le réel strictement positif m, le nombre de points d'intersection de la courbe $\mathscr C$ et de la droite $\mathscr D_m$.
- 3. Démontrer cette conjecture.