Homework 5 - Arnav Kucheriya

Section 1.4:

Exercise 5

$$(p \lor r) \to q$$
 $\neg q$
 $\therefore \neg p \land \neg r$

Exercise 11

$$p
ightarrow (ree q)$$
 $r
ightarrow
eg q$ $\therefore p
ightarrow r$

Exercise 14

$$egin{array}{c} p
ightarrow r \ r
ightarrow q \ p \ dots
ightarrow q \end{array}$$

Exercise 15

$$egin{aligned} (pee q) &
ightarrow (ree s)\ p\ \lnot r\ dots \end{cases}$$

Exercise 22

$$p \wedge \neg p$$
 $\therefore q$

Exercise 30

1. Hypothesis:

- If there is gas in the car, then I will go to the store.
- If I go to the store, then I will get a soda.
- There is gas in the car.

2. Applying hypothetical syllogism:

$$egin{aligned} s
ightarrow d \ g \end{aligned}$$

$$\therefore d$$

Exercise 33 (Modus Tollens)

 $\neg q$

$$\therefore \neg p$$

Exercise 34 (Addition)

$$\therefore p \lor q$$

Exercise 35 (Simplification)

$$p \wedge q$$

$$\therefore p$$

Quantifiers Problem Set

Problem 1

(a)

The given statement:

$$\forall x\ (x\in A o x\in B)$$

This defines the subset relation:

$$A \subseteq B$$

(b)

The given statement:

$$\left[orall x \left(x \in A
ightarrow x \in B
ight)
ight] \wedge \left[orall x \left(x \in B
ightarrow x \in A
ight)
ight]$$

This defines the set equality:

$$A = B$$

(a) False:

$$orall x,y\in \mathbb{Z},\quad x-y=7$$

This is not true for all integers (x, y), e.g.,

$$1-2=-1\neq 7$$

(b) True:

$$\exists x,y\in\mathbb{Z},\quad x-y=7$$

Example:

$$x = 10, y = 3 \Rightarrow 10 - 3 = 7$$

(c) True:

For any (x), we can choose:

$$y = x - 7$$

such that:

$$x - y = 7$$

(d) False:

lf:

$$\exists x \forall y, \quad x-y=7$$

then some (x) must work for all (y), which is impossible.

(e) False:

For all ($x \in \mathbb{Z}$), (x = 0) does not satisfy:

$$x \cdot y = 7$$

for any integer (y).

(f) False:

In rationals:

$$orall x \in \mathbb{Q}, \exists y \in \mathbb{Q}, \quad x \cdot y = 7$$

(x = 0) does not work.

(g) True:

If ($x \neq 0$), then:

$$y = \frac{7}{x}$$

works.

(h) True
	,

In ($\mathbb{Q} - \{0\}$), the equation:

$$x \cdot y = 7$$

is always solvable for some (y).

(i) True:

For any integer (y), we can find:

$$x = y + 1$$

such that:

(j) False:

There is no single integer (y) such that all integers (x) are greater than (y).