

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

> REC'D 07 APR 2004 **PCT WIPO**

Bescheinigung Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

03100855.0

PRIORITY

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b) Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office Le Président de l'Office européen des brevets p.o.

R C van Dijk

European Patent Office Office européen des brevets

Anmeldung Nr:

Application no.:

03100855.0

Demande no:

Anmeldetag:

Date of filing: 01.04.03

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Philips Intellectual Property & Standards GmbH Steindamm 94 20099 Hamburg ALLEMAGNE Koninklijke Philips Electronics N.V. Groenewoudseweg 1 5621 BA Eindhoven PAYS-BAS

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description.

Si aucun titre n'est indiqué se referer à la description.)

Entdeckung naher Geräte und Dienste in einem drahtlosen Netzwerk II

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/Classification internationale des breyets:

H04L12/56

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR LI

BESCHREIBUNG

Entdeckung naher Geräte und Dienste in einem drahtlosen Netzwerk II

Die vorliegende Erfindung betrifft ein Verfahren, das es Geräten eines drahtlosen Netzwerks (wireless LAN, WLAN) ermöglicht, andere Geräte und Dienste in seiner Nachbarschaft zu entdecken.

Drahtlose Netzwerke in räumlichen abgegrenzten Gebieten (sogenannte local area networks, LAN) werden in den verschiedensten Bereichen genutzt. Ein Anwendungsfall sind beispielsweise Computer-LAN, bei denen mehrere Computer und mehrere Peripheriegeräte wie Drucker, Scanner, Projektoren usw. zusammengefasst sind. Diese 10 LAN finden beispielsweise in Unternehmen breite Verwendung. Sie verfügen meist über mehrere Zugangspunkte (sogenannte Access Points, AP), über die ein Benutzer ein tragbares WLAN-fähiges Gerät in das Netzwerk einbinden und so beispielsweise den Firmengroßrechner nutzen kann. Darüber hinaus wird auch die Nutzung allgemein ver-15 fügbarer Peripheriegeräte wie Drucker, Scanner, UHP-Projektoren usw. ermöglicht. indem diese ebenfalls in das Netzwerk eingebunden und von verschiedenen Benutzern angesprochen werden können. Dies ermöglicht beispielsweise die feste Installation der Peripheriegeräte in Besprechungsräumen, wobei ein Vortragender nur noch seinen Laptop in das Netzwerk einbinden und mit dem Peripheriegerät in Kommunikation treten 20 lassen muss.

Hierbei stellt sich das Problem, dass gelegentlich aus mehreren gleichartigen Geräten das räumlich nahegelegenste ausgewählt werden muss. Sucht beispielsweise ein Nutzer mit einem Laptop in einem ihm unbekannten Gebäude einen Drucker, so hat er ein Interesse daran, den von seinem derzeitigen Standort am wenigsten entfernt liegenden Drucker ausfindig zu machen und nicht irgendeinen Drucker, der sich vielleicht in einem anderen Gebäude oder auf einer anderen Etage befindet.

Mit dem derzeitigern Stand der Technik ist es ohne entsprechende vorherige Konfigura-

25

tion durch einen Netzwerkadministrator (z.B. Vergabe von Namen, die Ortsangaben enthalten) nicht möglich, festzustellen, welche Dienste sich in der Nähe des eigenen Gerätes befinden. Damit sich drahtlose Geräte (Netzelemente) eindeutig einem bestimmten Netzwerk zuordnen lassen, müssen diese entweder die Identifikation des Netzwerks kennen, oder das Netzwerk muss anhand einer eindeutigen Identifikation des drahtlosen Gerätes die Zuordnung sicherstellen. Beide Techniken werden in den Praxis genutzt.

IM IBSS-Modus von 802.11 wird ein Netzwerkname als Identifikation des Netzwerks
 in alle drahtlosen Geräte eingetragen. Nur Geräte, die den gleichen Namen eingetragen haben, können miteinander kommunizieren.

Ein Beispiel für die Konfiguration durch das Netzwerk bzw. einer festen Instanz im Netzwerk bietet DHCP. Ein DHCP-Server hat eine Liste von eindeutigen Geräteadressen (MAC-Adressen) und eine Zuordnung zu einer IP-Adresse. Ein neues Gerät fordert dann zu seiner MAC-Adresse eine IP-Adresse an, mit der es dann dem Netzwerk zugeordnet wird, sofern es sich in der Liste des DHCP-Servers befindet.

15

30

Beide Techniken erfordern die vorherige Konfiguration der Zuordnung von Geräten zu
Netzwerken, entweder in jedem einzelnen Gerät durch eine gemeinsame Netzwerkidentifikation oder durch eine zentrale Instanz im Netzwerk, die eine Liste der zugeordneten Geräte benötigt. Soll ein neues Gerät einem bestehenden Netzwerk zugeordnet werden, so muss es entweder mit der Netzwerkidentifikation versorgt werden, oder das Netzwerk muss die eindeutige Identifikation des neuen Gerätes kennen. Typischerweise erfolgen diese Einstellungen manuell.

Die gegenwärtigen Discovery Frameworks wie beispielsweise Universal Plug&Play (UPnP) ermöglichen die Entdeckung von Geräten und Diensten, die über das Netzwerk erreichbar bzw. im Netzwerk verfügbar sind. Mit dem Stand der Technik ist es aber nicht möglich, die Entdeckung lediglich auf die nahen Geräte zu beschränken, da keine Information über die Entfernung zwischen Geräten vorhanden ist. Eine Suche mittels

Universal Plug&Play (UPnP) wird alle passenden Geräte und Dienste finden, die sich im gleichen Netzwerk befinden. Die Anzahl von entdeckten Geräten kann deshalb sehr groß sein. Der Nutzer kann nach bekannten Namen auf der Liste von gefundenen Geräten suchen oder für jedes Gerät eine Beschreibungsseite aus dem Netzwerk herunterladen und darauf Informationen über den Aufstellungsort des Gerätes suchen. Allerdings setzt dies voraus, dass der Benutzer Vorkenntnisse von der Umgebung hat und es erfordert Benutzerinteraktion.

Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein Verfahren bereitzustellen,
das es ermöglicht, ein Gerät in die Lage zu versetzen, die verfügbaren Geräte und
Dienste zu identifizieren, die sich in seiner Nähe befinden.

Es wurde nun gefunden, dass sich der Abstand eines WLAN-fähigen tragbaren Gerätes von anderen Geräten und Diensten, d.h. seine relative Position zu diesen, ermitteln und nutzen lässt, wenn die zu entdeckenden Geräte des lokalen drahtlosen Netzwerks Kontakt zu mindestens drei Basisstationen haben und die Signalstärken, mit denen sie Signale von den Basisstationen empfangen, ermitteln und diese an ein suchendes Gerät senden.

Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Entdeckung naher Geräte und Dienste in einem drahtlosen Netzwerk mit mindestens drei Basisstationen (B_j) , wobei alle Geräte G_i $(i \neq k)$ die Signalstärken ss(i, j), mit denen sie Signale von den Basisstationen B_j empfangen, ermitteln und die zu entdeckenden Geräte diese an ein suchendes Gerät G_k senden.

25

30

15

Das erfindungsgemäße Verfahren ermöglicht es einem WLAN-fähigen Gerät, das mit mindestens drei Basisstationen verbunden ist, andere nahe Geräte und deren Dienste zu entdecken und zu identifizieren. Auf diese Weise werden neuartige nachbarschaftsbasierte Anwendungen ermöglicht. Zudem bietet das erfindungsgemäße Verfahren den Vorteil, dass keine Änderung in der Infrastruktur des WLAN nötig ist. Das erfindungsgemäße Verfahren lässt sich unter Nutzung vorhandener Geräte direkt einsetzen, da die

WLAN-Technologie bereits weit verbreitet ist.

Das erfindungsgemäße Verfahren eignet sich besonders, wenn ein Nutzer, der ein drahtloses mobiles Gerät besitzt, Dienste in seiner Nähe entdecken und nutzen möchte. Beispiele für solche Dienste sind Drucker-, Projektor-, Musikspieler- und Bilddarstellungsdienste.

Sowohl das mobile Gerät des Benutzers (nachfolgend auch als "suchendes Gerät" bezeichnet) als auch die Geräte, die Dienste anbieten (nachfolgend auch als "zu entdeckende Geräte" bezeichnet), haben Kontakt zu mindestens drei Basisstationen und gehören zu demselben Netzwerk, innerhalb dessen sie miteinander kommunizieren können. In Gebäuden kann eine Basisstation einen Umkreis von ca. 100 Metern abdecken. Größere Bereiche, wie ein Firmengelände, können durch das Verbinden mehrerer Basisstationen flächendeckend mit einem drahtlosen Netzwerk versorgt werden.

Bei zwei Geräten, die sich am gleichen Ort befinden, sind die Signalstärken der Signale, die diese Geräte von den Basisstationen erhalten, nahezu gleich. Da die Signalstärke bei gegebener Sendeleistung eine Funktion des Abstandes des Gerätes von der jeweiligen Basisstation ist, sind auch die aus den Signalstärken abgeschätzten Entfernungen der beiden Geräte nahezu gleich. Je ähnlicher die Entfernungsinformationen zweier Geräte sind, desto näher zueinander befinden sich auch die Geräte.

Das erfindungsgemäße Verfahren wird nachstehend näher erläutert, wobei folgende Bezeichnungen verwendet werden:

ss(i, j):

25

5

Signalstärke gemessen in [dBm], mit der das Gerät G_i die Signale von der Basisstation B_j empfängt.

30 r(i, j):

Aus der Signalstärke ss(i, j) abgeleitete (geschätzte) Entfernung in [m] des Gerätes G_i von der Basisstation B_j .

 $\sigma(i, j)$:

Standardabweichung der abgeleiteten Entfernungs-informationen für Gerät G_i von denen des Gerätes G_i.

5

25

Aus der Signalstärke ss kann man den Abstand r eines Gerätes zu einer Basisstation bei einem drahtlosen Netzwerk ermitteln. Für den Fall eines drahtlosen auf dem 2,4 GHz-Band operierenden 802.11b-Netzwerkes gilt:

10
$$r[m] = 10^{\left(\frac{-ss[dBm]-40,17}{20}\right)}$$

Mittels dieser Formel kann man für jede Signalstärke ss(i, j) die zugehörige Entfernung r(i, j) eines Gerätes G_i zu einer Basisstation B_j errechnen:

15
$$r(i,j) = 10^{\left(\frac{-ss(i,j)-40,17}{20}\right)}$$

Für je zwei Geräte G_i und G_j kann man die Standardabweichung σ (i, j) ihrer zugehörigen Entfernungsschätzungen wie folgt bestimmen:

20
$$\sigma(i,j) = \sqrt{(r(i,1)-r(j,1))^2 + (r(i,2)-r(j,2)^2 + ... + (r(i,m)-r(j,m))^2}$$

Das erfindungsgemäße Verfahren ermöglicht es dem suchenden Gerät G_k festzustellen, welche Geräte G_i ($i \neq k$) ihm räumlich nahe liegen. Hierzu ermitteln die zu entdeckenden Geräte G_i ($i \neq k$) die Signalstärken ss(i, j), mit denen sie Signale von den Basisstationen B_j empfangen und senden diese an das suchende Gerät G_k .

In erfindungsgemäß bevorzugten Verfahren nutzt das suchende Gerät G_k diese Informationen, um aus den Signalstärken ss(i, j) die Entfernungen r(i, j) aller zu entdeckenden Geräte G_i $(i \neq k)$ zu errechnen. Zusätzlich ermittelt das suchende Gerät G_k . die eigenen

Signalstärken ss(k, j), mit denen es Signale von den Basisstationen B_j empfängt, und errechnet daraus seine Entfernungen r(k, j) zu den Basisstationen B_j aus. Anschließend kann das suchende Gerät G_k die Standardabweichungen σ (k, i) bestimmen.

- Jedem zu entdeckenden Gerät G_i (i ≠ k) kann damit vom suchenden Gerät G_k ein bestimmter Wert einer Standardabweichung σ (k, i) zugeordnet werden, der ein Maß für die Entfernung des Gerätes G_k von G_i ist. Ordnet das suchende Gerät G_k diese Werte nach ihrer Größe, so ist das Gerät G_j mit der kleinsten Standardabweichung das zu G_k räumlich nächste Gerät. Das erfindungsgemäß bevorzugte Verfahren läuft demnach in folgenden Schritten ab:
 - Alle Geräte G_i mit $i \in \{1,2,...,n\}$ ermitteln ihre eigenen Signalstärken ss(i,j), mit denen sie Signale von den Basisstationen B_j empfangen, für alle $j \in \{1,2,...,m\}$;
- alle zu entdeckenden Geräte G_i ($i \neq k$) senden ihre Signalstärken ss(i, j) an das suchende Gerät G_k :
 - das suchende Gerät G_k ermittelt daraus die Entfernungen r(i, j) zwischen Gerät G_i und Basisstation B_j für alle $i \in \{1, 2, ..., n\}$ und für alle $j \in \{1, 2, ..., m\}$;
 - danach bestimmt das suchende Gerät G_k als Maß für die Entfernung des Gerätes G_k von G_i die Standardabweichungen σ (k, i) für alle $i \in \{1,2,...,n\}$, $i \neq k$;
- 20 das Gerät G_j mit der kleinsten Standardabweichung (d.h. σ (k, j) $\leq \sigma$ (k, i)) für alle $i \in \{1,2,...,n\}$, $i \neq k$) ist das zu G_k räumlich nächste Gerät.

Das vorstehend beschriebene Verfahren ermöglicht es einem Gerät, andere Geräte bezüglich ihrer relativen Entfernung zu ihm zu ordnen und damit das räumlich nächste Gerät zu ermitteln. Über den absoluten Betrag der Entfernung der gefundenen Geräte zu dem suchenden Gerät macht es keine Aussage. Das erfindungsgemäße Verfahren kann aber ergänzt werden, um auch diese Information bereitzustellen. Hierbei werden folgende Bezeichnungen verwendet:

30 d(i, j):

Tatsächlicher Abstand zwischen Gerät Gi und Gerät Gj.

 $d_{min}(i, j)$:

Untere Schranke für den Abstand, den die Geräte G_i und G_j mindestens zueinander haben.

5

 $d_{max}(i, j)$:

Obere Schranke für den Abstand, den die Geräte Gi und Gj höchstens zueinander haben.

Für je zwei Geräte G_i und G_j kann man eine untere und eine obere Schranke für den 10 Abstand zueinander bestimmen:

$$d_{\min}(i,j) := \min \left\{ |r(i,1) - r(j,1)|, |r(i,2) - r(j,2)|, ..., |r(i,m) - r(j,m)| \right\}$$

$$d_{\max}(i,j) := \max \{ |r(i,1) + r(j,1)|, |r(i,2) + r(j,2)|, \dots, |r(i,m) + r(j,m)| \}$$

15

25

30

Für den tatsächlichen Abstand gilt:

$$d_{max} \ge d(i, j) \ge d_{min}$$

Dies kann man beispielsweise ausnutzen, wenn das Gerät G_k nur an Geräten G_i interessiert ist, die nicht weiter als beispielsweise zehn Meter von ihm entfernt sind.

Dazu berechnet das Gerät G_k zunächst für alle anderen, insbesondere zu entdeckende Geräte, Geräte G_i ($i \neq k$) die untere Schranke $d_{min}(k, i)$. Geräte G_i mit $d_{min}(k, i) > 10$ m sind auf jeden Fall weiter als 10 m von G_k entfernt und werden deshalb von dem Gerät G_k im weiteren Verlauf der Suche nicht weiter betrachtet.

Für alle anderen, insbesondere zu entdeckende Geräte, Geräte G_i (also alle Geräte mit $d_{min}(k, i) \le 10$ m) berechnet das Gerät G_k nun die obere Schranke $d_{max}(k, i)$. Geräte G_i mit $d_{max}(k, i) \le 10$ m sind auf jeden Fall nicht weiter als 10 m von G_k entfernt und nur

diese werden von dem Gerät Gk weiter betrachtet.

Aus den Standardabweichungen σ (k, i) der noch verbliebenen Geräte G_i (also alle Geräte mit $d_{min}(k,i) \leq 10$ m und $d_{max}(k,i) \leq 10$ m) berechnet das Gerät G_k nun das Maximum σ_{max} . Der so ermittelte Wert σ_{max} ist die größte Standardabweichung von der das Gerät G_k weiß, dass sie zu einem Gerät gehört, welches mit Sicherheit nicht weiter als 10 m von ihm entfernt ist.

Alle Geräte, die keine höhere Standardabweichung als σ_{max} haben (d.h. alle Geräte G_p mit σ (k, p) $\leq \sigma_{max}$) sind dann auch nicht weiter als 10 m von G_k entfernt.

Zusammenfassend sind erfindungsgemäße Verfahren bevorzugt, bei denen das suchende Gerät G_k für zu entdeckende Geräte G_i ($i \neq k$) untere und obere Schranken $d_{min}(k, i)$ und $d_{max}(k, i)$ berechnet und diese Werte nutzt, um den absoluten Betrag der Entfernung der Geräte zu bestimmen.

Wie weiter oben erwähnt, benötigt das erfindungsgemäße Verfahren mindestens drei Basisstationen. Die Genauigkeit des erfindungsgemäßen Verfahrens steigt dabei mit der Anzahl der Basisstationen, da mehr Daten zur Berechnung der Standardabweichung vorliegen und diese damit exakter berechenbar ist.

In erfindungsgemäß bevorzugten Verfahren umfasst das drahtlose Netzwerk mindestens vier, vorzugsweise mindestens fünf, besonders bevorzugt mindestens sechs und insbesondere mindestens sieben Basisstationen (B_j).

25

30

15

20

Die Genauigkeit des erfindungsgemäßen Verfahrens lässt sich auch ohne zusätzliche Basisstationen weiter steigern, indem die Güte der Information über die Signalstärken, die die zu entdeckenden Geräte G_i an das suchende Gerät G_k senden, verbessert wird. Dies lässt sich erreichen, indem nicht nur die jeweils zuletzt gemessenen Signalstärken berücksichtigt werden, bei denen die Gefahr besteht, dass es sich um fehlerbehaftete Werte handelt. Vielmehr bildet in bevorzugten erfindungsgemäßen Verfahren jedes

bzw. alle zu entdeckende Gerät G_i aus den innerhalb eines bestimmten Zeitraumes gemessenen Signalstärken ss(i, j) einen Mittelwert und sendet diesen an das suchende Gerät G_k, das die Mittelwerte zur Berechnung der Entfernungen nutzt.

In bevorzugten erfindungsgemäßen Verfahren beträgt der Zeitraum, innerhalb dessen die zu entdeckenden Geräte G_i die Signalstärken ss(i, j) mitteln, 2 bis 60 Sekunden, vorzugsweise 5 bis 40 Sekunden und insbesondere 8 bis 20 Sekunden.

Um nicht zu lange auf die einzelnen Datenmengen warten zu müssen, empfiehlt es sich, dass die zu entdeckenden Geräte ihre Informationen regelmäßig senden. In bevorzugten erfindungsgemäßen Verfahren beträgt die Wiederholfrequenz, mit der die zu entdeckenden Geräte G_i ($i \neq k$) ihre, vorzugsweise gemittelten, Signalstärken ss(i, j) an das suchende Gerät G_k senden, 0,1 bis 50 Hz, vorzugsweise 0,25 bis 25 Hz, besonders bevorzugt 0,5 bis 20 Hz und insbesondere 1 bis 10 Hz.

Auf die vorstehend beschriebene Weise erhält der Nutzer des suchenden Gerätes eine Liste derjenigen zu entdeckenden Geräte, die sich in seiner Nähe befinden. Um herauszufinden, ob ein von ihm gewünschter Dienst in seiner Nähe verfügbar ist, kann das erfindungsgemäße Verfahren so durchgeführt werden, dass das suchende Gerät G_k in der Lage ist, mittels eines Discovery Frameworks, vorzugsweise mittels Universal Plug&Play (UPnP), auf die Dienste der zu entdeckenden Geräte G_i ($i \neq k$) zuzugreifen.

15

20

25

Bei dieser Verfahrensvariante startet das suchenden Gerät, nachdem es mindestens ein nahes Gerät entdeckt hat, eine UPnP-Suche unter den entdeckten Geräten. UPnP wird dafür sorgen, dass das suchende Gerät die angebotenen Dienste des anderen Gerätes findet und benutzen kann. Der Benutzer kann dann über passende Dienste in seiner Nähe informiert werden.

In bevorzugten erfindungsgemäßen Verfahren findet das suchende Gerät G_k mittels

30 einer Universal Plug&Play- (UPnP-) Suche unter den zu entdeckenden Geräten G_i (i ≠ k) dasjenige Gerät auf, das den gewünschten Dienst leistet.

Diese Verfahrensvariante kann auch durchgeführt werden, indem nicht zunächst alle nahen Geräte gefunden werden und unter diesen der passende Dienst gesucht wird; es ist auch möglich, eine Suchanfrage nach einem passenden Dienst zu starten und unter den Geräten, die den passenden Dienst anbieten, nach dem räumlich nächsten zu suchen. Demnach sind erfindungsgemäße Verfahren bevorzugt, bei denen jedes zu entdeckende Gerät G_i (i ≠ k) bei Antworten auf Suchanfragen zusätzlich Informationen über die Signalstärken ss(i, j) zu den Basisstationen B_j, zu denen es Funkkontakt hat, hinzufügt.

Diese Informationen ermöglichen es dem suchenden Gerät, auf die vorstehend beschriebene Weise räumlich nahe Geräte und Dienste zu ermitteln.

PATENTANSPRÜCHE

1. Verfahren zur Entdeckung naher Geräte und Dienste in einem drahtlosen Netzwerk mit mindestens drei Basisstationen (B_j) , wobei alle Geräte G_i $(i \neq k)$ die Signalstärken ss(i, j), mit denen sie Signale von den Basisstationen B_j empfangen, ermitteln und die zu entdeckenden Geräte diese an ein suchendes Gerät G_k senden.

5

- 2. Verfahren nach Anspruch 1, wobei das suchende Gerät G_k aus den Signalstärken ss(i, j) die Entfernungen r(i, j) aller zu entdeckenden Geräte G_i ($i \neq k$) errechnet und die Standardabweichungen σ (i, j) bestimmt.
- 3. Verfahren nach einem der Ansprüche 1 oder 2, wobei das suchende Gerät G_k für zu entdeckende Geräte G_i ($i \neq k$) untere und obere Schranken $d_{min}(k, i)$ und $d_{max}(k, i)$ berechnet und diese Werte nutzt, um den absoluten Betrag der Entfernung der Geräte zu bestimmen.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das drahtlose Netzwerk mindestens vier, vorzugsweise mindestens fünf, besonders bevorzugt mindestens sechs und insbesondere mindestens sieben Basisstationen (B_j), umfasst.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, wobei alle zu entdeckenden Geräte Gi
 20 einen Mittelwert aus den während eines bestimmten Zeitraums gemessenen Signalstärken ss(i, j) bilden und diesen an das suchende Geräte Gk senden, welches den Mittelwert zur Berechnung der Entfernung nutzt.

- 6. Verfahren nach Anspruch 5, wobei der Zeitraum 2 bis 60 Sekunden, vorzugsweise 5 bis 40 Sekunden und insbesondere 8 bis 20 Sekunden, beträgt.
- 7. Verfahren nach einem der Ansprüche 5 oder 6, wobei die Wiederholfrequenz, mit der die zu entdeckenden Geräte G_i (i ≠ k) ihre, vorzugsweise gemittelten, Signalstärken ss(i, j) an das suchende Gerät G_k senden, 0,1 bis 50 Hz, vorzugsweise 0,25 bis 25 Hz, besonders bevorzugt 0,5 bis 20 Hz und insbesondere 1 bis 10 Hz, beträgt.

5

- 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das suchende Gerät G_k in der
 Lage ist, mittels eines Discovery Frameworks, vorzugsweise mittels Universal
 Plug&Play (UPnP), auf die Dienste der zu entdeckenden Geräte G_i (i ≠ k) zuzugreifen.
- 9. Verfahren nach Anspruch 8, wobei das suchende Gerät G_k mittels einer Universal
 Plug&Play- (UPnP-) Suche unter den zu entdeckenden Geräten G_i (i ≠ k) dasjenige
 Gerät auffindet, das den gewünschten Dienst leistet.
- 10. Verfahren nach einem der Ansprüche 8 oder 9, wobei jedes zu entdeckende Gerät G_i (i ≠ k) bei Antworten auf Suchanfragen zusätzlich Informationen über die Signalstärken ss(i, j) zu den Basisstationen B_j, zu denen es Funkkontakt hat, hinzufügt.

ZUSAMMENFASSUNG

Entdeckung naher Geräte und Dienste in einem drahtlosen Netzwerk Π

Ein suchendes Gerät in einem drahtlosen Netzwerk mit mindestens drei Basisstationen wird in die Lage versetzt, die verfügbaren Geräte und Dienste zu identifizieren, die sich in seiner Nähe befinden, indem die Geräte G_i ($i \neq k$) die Signalstärken ss(i, j), mit denen sie Signale von den Basisstationen B_j empfangen, ermitteln und die zu entdeckenden Geräte diese an ein suchendes Gerät G_k senden.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.