Departamento de Ciência de Computadores

Desenho e Análise de Algoritmos (CC211)

FCUP 2012/13

Exame (29.01.2013)

duração: 3h + 30 minutos

Cotação: 5.5, 3, 5.5, 2.5, 3.5, 3 (a questão 6. é alternativa a 3b))

$N \circ $	Nome	
T	TOIL	

- 1. Seja $\mathcal{G} = (\mathcal{V}, \mathcal{A}, p, \{s, t\})$ uma rede, em que s e t são os nós origem e destino, $s \neq t$, e $p : \mathcal{A} \to \mathbb{Z}^+$ define os valores nos arcos. Para cada percurso γ_{uv} em \mathcal{G} , com origem u e fim v, designe-se por $\mathcal{P}(\gamma_{uv})$ o valor $m\acute{a}ximo$ nos arcos que o constituem, i.e., $\mathcal{P}(\gamma_{uv}) = \max\{p(x,y) \mid (x,y) \text{ é arco de } \gamma_{uv}\}$. Dizemos que γ_{uv} é $\acute{o}timo$ sse $\mathcal{P}(\gamma_{uv})$ for $m\acute{i}nimo$ quando considerados todos os percursos alternativos de u para v. Pretendemos encontrar um percurso $\acute{o}timo$ γ_{st}^{\star} de s para t.
- a) Averigue a veracidade de cada uma das afirmações seguintes sobre γ_{st}^{\star} , justificando a resposta:
 - 1. Se γ_{st}^{\star} contiver ciclos, existe um percurso ϕ_{st} sem ciclos tal que $\mathcal{P}(\gamma_{st}^{\star}) = \mathcal{P}(\phi_{st})$, ou seja, se existe um percurso ótimo de s para t então existe um caminho ótimo de s para t.
 - 2. Se γ_{st}^{\star} for um caminho com dois ou mais arcos e que passa num vértice v (fixo), então existem caminhos ótimos γ_{sv} e γ_{vt} tais que o percurso $\gamma_{sv}\gamma_{vt}$ de s para t é ótimo (i.e., $\mathcal{P}(\gamma_{st}^{\star}) = \mathcal{P}(\gamma_{sv}\gamma_{vt})$).
 - 3. Se γ_{st}^{\star} for um caminho com dois ou mais arcos que passa num vértice v (fixo), pelo menos um dos dois subcaminhos γ_{sv}^{\star} e γ_{vt}^{\star} que constituem γ_{st}^{\star} é ótimo, mas o outro pode ser ótimo ou não.
- b) Escreva um algoritmo para determinar um caminho ótimo γ_{st}^{\star} de s para t, baseado numa adaptação do algoritmo de Dijkstra. Enuncie uma propriedade que justifique a correção desse algoritmo, relacionando-a com 1a).
- c) Aplique o algoritmo que apresentou para obter um caminho ótimo γ_{CM}^{\star} de C para M na rede desenhada abaixo. Acrescente informação à rede que permita verificar os passos principais (valores intermédios) e indique a ordem pela qual os nós foram explorados.

- **2.** Seja $\mathcal{G} = (\mathcal{V}, \mathcal{A})$ um grafo dirigido. Pretende-se determinar, para cada vértice $v \in \mathcal{V}$, o conjunto dos vértices $w \in \mathcal{V}$ tais que v é acessível de w e w é acessível de v em \mathcal{G} .
- a) Apresente (em pseudocódigo) um algoritmo para resolver o problema com complexidade temporal $O(|\mathcal{V}| + |\mathcal{A}|)$, sendo \mathcal{G} representado por listas de adjacências. Explique sucintamente a correção do algoritmo e apresente a complexidade dos passos principais e as estruturas de dados usadas.
- **b)** Por aplicação do algoritmo, determine esses conjuntos para o grafo dado em **1c)**, ignorando os valores nos arcos. Para estabelecer a relação com o algoritmo, na resposta deve indicar o contéudo das estruturas de dados em passos cruciais do mesmo.

Deve resolver apenas uma das duas questões 3b) e 6. Se não resolver 3b), deverá ter em conta a informação que contém.

3. Suponha que v é um vetor de n inteiros e que os elementos de v são indexados de 1 a n. Considere a função Func(v, n) apresentada abaixo, ao centro, em pseudocódigo.

Linha	Algoritmo	Tempo
	$\mathbf{Func}(v,n)$:	
1	$k \leftarrow 1;$	a_1
2	Enquanto $(k < n)$ fazer	a_2
3	$r \leftarrow k;$	a_3
4	$j \leftarrow k+1;$	a_4
5	Enquanto $(j \leq n)$ fazer	a_2
6	Se $v[j] \le v[r]$ então	a_5
7	$r \leftarrow j;$	a_3
8	$j \leftarrow j+1;$	a_4
10	Se $r \neq k$ então	a_6
11	$aux \leftarrow v[k];$	a_7
12	$v[k] \leftarrow v[r];$	a_8
13	$v[r] \leftarrow aux;$	a_9
14	$k \leftarrow k + 1;$	a_4

- a) Justifique sucintamente, mas com rigor, que FUNC(v,n) ordena o vetor v por ordem crescente. Comece por descrever, com rigor, o estado das variáveis r, j e v na iteração k, imediatamente antes da execução da instrução que está na linha 10.
- b) (alternativa a 6.) À direita, em cada linha, a_i é uma constante positiva e representa o tempo de execução da instrução que está nessa linha, com excepção das linhas 2, 5, 6 e 10, em que esse tempo engloba a execução do teste da condição e a transferência de controlo. Seja $t_v(n)$ o tempo de execução do algoritmo para a instância (v, n).
 - 1. Deduza a expressão de $t_v(n)$ quando: (i) todos os elementos de v são iguais, e (ii) todos são distintos e v está ordenado por ordem crescente.
 - 2. Apresente a definição formal de " $t_v(n) \in \Theta(n^2)$ " e, seguindo essa definição e a resposta à questão anterior, prove que, qualquer que seja (v, n), se tem $t_v(n) \in \Theta(n^2)$.
- c) Sendo a complexidade do algoritmo dada pelo máximo de $t_v(n)$ para (v,n) qualquer, diga para que valores de $p \in \mathbb{N}$, a complexidade se pode caracterizar como $\Theta(n^p)$, $\Omega(n^p)$ ou $O(n^p)$. Explique.
- d) Designe por Func_Nova(v,n) a função que se obtém quando se substitui, na linha 6, a condição $v[j] \le v[r]$ por v[j] < v[r]. O que contém r na iteração k na linha 10? Conclua que Func_Nova(v,n) também ordena v por ordem crescente e diga, justificando, que relação existe entre a complexidade temporal assintótica de Func_Nova(v,n) e de Func(v,n).
- **4.** Considere o problema de formar uma certa quantia Q usando moedas de valores $v[1], v[2], \ldots, v[m]$, sendo $v[1] > v[2] > \ldots > v[m]$, tendo disponíveis c[i] moedas de valor v[i] em caixa, sendo $c[i] \in \mathbb{Z}_0^+$, para $1 \le i \le m$, só podendo usar essas moedas.
- a) Escreva uma recorrência que defina o número de alternativas para a formação da quantia Q nessas condições (só distinguindo quantas moedas de cada tipo são usadas). Explique de que modo se pode usar programação dinâmica com memoização para calcular esse número, dados Q, v, c e m.
- b) Imagine que se pretende formar a quantia Q com o número **mínimo** de moedas possível e que se usa sempre a moeda mais alta que se puder (aplicando-se a mesma abordagem à quantia restante). Explique em que sentido tal estratégia é greedy e indique se é correta. Justifique. (CONTINUA)

Departamento de Ciência de Computadores Desenho e Análise de Algoritmos (CC211)

FCUP 2012/13

Exame (29.01.2013)

(continuação)

. [3.7	
$N.^{\circ}$	Nome	

5. Suponha que a rede representada em **1b)** é uma rede de fluxo, com s = C e t = M, e que p(x, y) indica a capacidade do arco (x, y), para cada $(x, y) \in \mathcal{A}$.

- a) Indique um fluxo f de C para M tal que f(G, I) = 2, f(H, J) = 5, f(C, B) = 6 e f(J, I) = 2.
- **b)** Determine a capacidade residual associada a f para cada par $(x, y) \in \mathcal{V} \times \mathcal{V}$, com $x \neq y$. Apresente os cálculos que efetuar, omitindo os casos em que f(x, y) = 0.
- c) Partindo de f, aplique o algoritmo de Edmonds-Karp para obter um fluxo máximo f^* . Descreva sucintamente os passos efetuados pelo algoritmo.
- **6.** (alternativa a 3b) Seja $G_A = (V, A)$ um grafo dirigido <u>acíclico</u> e $G_E = (V, E)$ o grafo não dirigido que resulta de G_A por substituição de cada arco $(u, v) \in A$ por um ramo não dirigido $\{u, v\}$. Seja Γ um conjunto finito de caminhos em G_A , sendo cada caminho $\gamma \in \Gamma$ dado pela sequência de vértices que o define. Pretende-se verificar se é possível reconstruir G_A a partir de G_E e de Γ. Seja $G_\Gamma = (V, A_\Gamma)$ o grafo dirigido formado por V e pelos arcos que constituem os caminhos de Γ.
- a) Sabemos que nada se pode concluir sobre a orientação de um ramo $\{u, v\}$ de E no grafo G_A se nem v for acessível de u em G_{Γ} nem u for acessível de v em G_{Γ} . Justifique agora que:
 - 1. O grafo G_{Γ} é acíclico (i.e., um DAG).
 - 2. Qualquer que seja o ramo $\{u, v\} \in E$, se v é acessível de u em G_{Γ} então $(u, v) \in A$ (se for u acessível de v então $(v, u) \in A$).
- b) Assuma que os vértices estão numerados de 1 a |V|, que |V| é conhecido, que Γ é lido da entrada padrão e que G_E se encontra dado por uma matriz de adjacências simétrica M tal que M[i,j] = M[j,i] = 1 se $\{i,j\} \in E$, e M[i,j] = M[j,i] = 0 se $\{i,j\} \notin E$.

Baseando-se em 6a), escreva um algoritmo para resolver o problema da reconstrução de G_A em tempo $O(|\Gamma||V|+|V|^3)$. O algoritmo deve produzir informação sobre a parte de G_A que se consegue reconstruir e sobre os ramos sobrantes, se existirem. Use matrizes de adjacências para representar os grafos G_T e G_A . Comece por apresentar as ideias principais do algoritmo que delineou e por justificar a sua correção e complexidade.