Instructions for phase 3 Demo

Jeremy Case, Xinhua Fan, Teodor Georgiev, Julie Yu

Part 1 - Test Program 2

Deliverable description:

Demonstration that Program 2 works.

Demo Steps:

1. Click on "Test Program 2"

Test Program 2

2. (Please use only single-space and single periods)Randomly enter 6 sentences with period(.) separated, such as - "Demonstration that Program 2 works. and how to operate it. Include source code for program 2. what the console layout is and how to operate it. Simple documentation describing how to use your simulator. Load instructions from a file." - Click on "ENTER"

3. Enter the **word** what you intend to search for - such as "**instructions**" - then click on "ENTER"

[Expected Result] - Output the first location and sentence number of the searched word in the six sentences. (our program will only find the first one if there are multiple matches to be found. And please reopen the GUI and get it reloaded if the result is not expected)

Part 2 - Demo for Trap/Machine Fault

Deliverable description:

Machine Fault (Part III)

Demo Steps (Please reopen the GUI if the result is not expected):

- 1. TRAP code
 - s1. input 100 to PC

s2. input 10 (between 0 - 15) to GPR0 as the code

s3. select relevant values for TRAP (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] ->

1. PC = 100 (actually it has changed from 100[current pc] to 20[the address of the user-specified instructions stored elsewhere in memory for trap] to 100[return previous pc after executing routine])

2. MFR = 10 (contains the ID code [trap code] if a machine fault after it occurs)

3. MSR = 110 (the routine instruction is defined as 100 + trap code to indicate the status of the health of the machine)

4. Memory location 0 = 20 (contains the address of the specific executed routine) - Click "Accept" close to Memory [0] to get content (20) visible

- 2. Machine Fault
 - 2.1. Illegal Memory Address to Reserved Locations

s1. input 100 to PC

s2. select relevant values for LDR (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

Manual Instructions	LDR ‡	No *	GPR0 ‡	[IA ‡]	0 \$
	[0, 0, 0, 0, 0, 1]	[0, 0]	[0, 0]	[0]	[0, 0, 0, 0, 0]
		Accept Manual V	Word Instruction)	

[Expected Result] ->

1. PC = 100 (actually it has changed from 100[current pc] to 11[the address of the user-specified instructions stored elsewhere in memory for trap] to 100[return previous pc after executing routine])

2. MFR = 1 (contains the ID code [id for Illegal Memory Address to Reserved Locations] if a machine fault after it occurs)

3. MSR = 101 (the routine instruction is defined as 100 + ID code to indicate the status of the health of the machine)

4. Memory location 1 = 11 (contains the address of the specific executed routine) - Click "Accept" close to Memory [1] to get content (11) visible

2.2. Illegal TRAP code

s1. input 100 to PC

2.3. Illegal Operation Code

SI. IIIput 100 to 1 C	s1.	input	100	to	PC
-----------------------	-----	-------	-----	----	----

PC	[0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100

s2. select relevant values for Invalid OpCode (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

Manual Instructions	Invalid OpCode 💠	No *	GPR0 ‡	[IA ‡]	0 ‡
	[1, 1, 0, 1, 1, 1]	[0, 0]	[0, 0]	[0]	[0, 0, 0, 0, 0]
		Accept Manual	Word Instruction)	

[Expected Result] ->

1. PC = 100 (actually it has changed from 100[current pc] to 13[the address of the user-specified instructions stored elsewhere in memory for trap] to 100[return previous pc after executing routine])

2. MFR = 3 (contains the ID code [id for Illegal Operation Code] if a machine fault after it occurs)

3. MSR = 103 (the routine instruction is defined as 100 + ID code to indicate the status of the health of the machine)

4. Memory location 1 = 13 (contains the address of the specific executed routine) - Click "Accept" close to Memory [1] to get content (13) visible

2.4. Illegal Memory Address beyond 2048 (memory installed)

s1. input 100 to PC

s2. input 2300 to IX1 IX1 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0] Accept s3. select relevant values for LDR (IX = 1; GPR = 0; I = 1; Address = 10) in manual input part -> accept manual word instruction Manual Instructions 10 * IX... * GPR0 IA ... [0, 1, 0, 1, 0] [0, 0, 0, 0, 0, 1] [0, 1][0, 0][1] Accept Manual Word Instruction [Expected Result] -> 1. PC = 100 (actually it has changed from 100 [current pc] to 14[the address of the user-specified instructions stored elsewhere in memory for trap to 100 [return previous pc after executing routine]) PC 100 [0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0] 2. MFR = 4 (contains the ID code [id for Illegal Memory Address beyond 2048] if a machine fault after it occurs) MFR [0, 1, 0, 0]3. MSR = 104 (the routine instruction is defined as 100 + ID code to indicate the status of the health of the machine) MSR 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0] 4. Memory location 1 = 14 (contains the address of the specific executed routine) - Click "Accept" close to Memory [1] to get content (14) visible Memory Accept 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0] 14 Accept

Part 3 - Demonstrate instructions through GUI(updated)

Deliverable description:

Load instructions from a file.

Explanation:

We are not intending to make duplicate load work, so keep having a list of opcode/assembly instructions (as phase 2) that the GUI can "load" from to replace load instructions from a file.

Demo Steps (Please reopen the GUI if the result is not expected):

- 1. HLT/RESUME
 - s1. Click on "HALT"

[Expected Result] -> ALU stops working, no more instructions will be executed.

s2. Click on "RESUME"

[Expected Result] -> ALU gets back to work.

Machine is getting back to work!		

2. LDR

Case 1 - IX = 0, I = 0 -> EA = address

- s1. input 10 to memory location -> accept
- s2. input 100 to memory location's value -> accept

s3. select relevant values for LDR (IX = 0; GPR = 3; I = 0; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] -> GPR3 is populated with 100

Case 2 - IX
$$!= 0$$
, $I = 1 -> EA = address + c(IR)$

s1. input 5 to IX1

- s2. input 20 to memory location -> accept
- s3. input 100 to memory location's value -> accept

Case 2 - IX != 0, I = 1 -> EA = address + c(IR)

IX1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1]	5	Accept
s2. input	100 to GPR3 -> accept		
GPR3	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	Accept

s3. select relevant values for STR (IX = 1; GPR = 3; I = 1; Address = 15) in manual input part -> accept manual word instruction

[Expected Result] -> 100 is stored into memory address 20 (please click Accept close to Memory[20] to get content[100] visible)

Memory	20	Accept	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	Accept

4. LDA

Case 1 -
$$IX = 0$$
, $I = 0$ -> $EA = address$

s1. select relevant values for LDA (IX = 0; GPR = 3; I = 0; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] -> GPR3 is populated with 20

GPR3	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	Accept

IX1

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]

6. STX

s1. repeat 5. LDX

IX1	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]

s2. select relevant values for STX (IX = 1; GPR = 3; I = 0; Address = 31) in manual input part -> accept manual word instruction

Manual Instructions	STX ‡	IX ♣	GPR3 ‡	IA *	31 ‡
	1, 0, 0, 0, 1, 0]	[0, 1]	[1, 1]	[0]	[1, 1, 1, 1, 1]
		Accept	Manual Word In:	struction	

[Expected Result] -> 100 is stored into memory location 31 (please click Accept close to Memory[31] to get content[100] visible)

Memory	31	Accept	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	Accept

7. JZ

Case 1 - If c(r) = 0, then PC <- EA(address)

s1. select relevant values for JZ (IX = 0; GPR = 2; I = 0; Address = 15) in manual input part -> accept manual word instruction

[Expected Result] -> PC is populated with address 15

PC	[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]	15	
	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1]		

[Expected R	esult] -> PC is populated with address 15
PC	[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
Case 2 - If co	f(r) != 0, IX $!= 0$ and $f(r) != 0$ and $f(r) != 0$ and $f(r) != 0$.
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0] 100 Accept
s2. input 5 to	IX1
IX1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1] 5 Accept
	evant values for JNE (IX = 1; GPR = 0; I = 1; Address = 15) out part -> accept manual word instruction
Manual Instruc	tions JNE ‡ IX ‡ GPR0 ‡ IA ‡ 15 ‡ 0, 0, 1, 0, 0, 1] [0, 1] [0, 0] [1] [0, 1, 1, 1, 1] Accept Manual Word Instruction
[Expected R	esult] -> PC is populated with address 20
PC	[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
Case 3 - If co	$f(\mathbf{r}) = 0$, then $PC < -PC + 1$ GPR1
GPR1	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
s2. PC is pop	ulated with 20
PC	[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]
	evant values for JNE (IX = 0; GPR = 1; I = 0; Address = 15) out part -> accept manual word instruction

[Expected Result] -> PC is populated with 21

	1		
PC	[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1]	21	

9. JCC

Case 1 - If cc bit = 1, $PC \leftarrow EA(address)$

s1. input 15 to Condition Code

s2. select relevant values for JCC (IX = 0; GPR = 1; I = 0; Address = 15) in manual input part -> accept manual word instruction

[Expected Result] -> PC is populated with 15

Case 2 - If cc bit =
$$0$$
, PC \leftarrow PC + 1

s1. input 15 to PC

n.c		
PC	[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1]	15

s2. input 0 to Condition Code

in manual input part -> accept manual word instruction

Manual Instructions	J ‡	IX ‡	GPR1 ‡	[IA ‡]	15 ‡
	0, 0, 1, 0, 1, 1]	[0, 1]	[0, 1]	[1]	[0, 1, 1, 1, 1]
		Accept	Manual Word In	struction	

[Expected Result] -> PC is populated with 20

PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20

- 11. RFS R0 < -Immed; PC < -c(R3)
 - s1. input 20 to GPR3

GPR3	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	Accept
------	---	----	--------

s2. select relevant values for RFS (IX = 0; GPR = 3; I = 0; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 is populated with 10, PC is populated with 20

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	Accept
PC	[0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

12. SOB

Case 1 - r < -c(r) - 1 If c(r) > 0, PC <- EA(address)

s1. input 10 to GPR0

122222	property and the second		
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	Accept

s2. select relevant values for SOB (IX = 0; GPR = 0; I = 0; Address = 10) in manual input part -> accept manual word instruction

GPR0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]	9]
PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	

Case 2 - r < -c(r) - 1 If c(r) > 0, PC <- Address + c(IX) if IX != 0 and I = 1 s1. input 10 to GPR0

s3. select relevant values for SOB (IX = 1; GPR = 0; I = 1; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 9; PC = 15

Case 3 - If
$$c(r) = 0$$
, $PC < -PC + 1$

s1. input 0 to GPR0

s2. input 20 to PC

PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

s3. select relevant values for SOB (IX = 0; GPR = 0; I = 0; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow PC = 21

PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1]	21	

13. JGE

Case 1 - If c(r) > = 0, then PC <- EA(address) if IX = 0 and I = 0 s1. input 10 to GPR0

s2. select relevant values for JGE (IX = 0; GPR = 0; I = 0; Address = 10) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow PC = 10

PC	[0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	

Case 2 - If c(r) > = 0, IX != 0 and I = 1, then PC <- Address + c(IX) s1. input 5 to IX1

GPR0

[0, 0]

Accept Manual Word Instruction

20

[1, 0, 1, 0, 0]

IA ...

[0]

+

Manual Instructions

+

No...

[0, 0]

A ...

0, 0, 0, 1, 0, 0]

[Expected Result] -> GPR0 = 200

15. SMR

s1. input 200 to GPR0

- s2. input 20 to memory location -> accept
- s3. input 100 to memory location's value -> accept

s4. select relevant values for SMR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part \rightarrow accept manual word instruction

[Expected Result] -> GPR0 = 100

		CANCELL.	-
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	

16. AIR

Case 1 - r < -c(r) + Immed, do nothing if Immed = 0

s1. input 100 to GPR0

s2. select relevant values for AIR (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 100

Case 2 - r < -c(r) + Immed, loads r with Immed, if c(r) = 0 s1. input 0 to GPR0

s2. select relevant values for AIR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 20

		CHATTE	
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

Case 3 - r < -c(r) + Immed

s1. input 100 to GPR0

s2. select relevant values for AIR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 120

17. SIR

Case 1 - r < -c(r) - Immed, do nothing if Immed = 0 s1. input 100 to GPR0

s2. select relevant values for SIR (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 100

	ALTERNATION OF THE PROPERTY OF	7.1.200	_
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]	100	
			-

Case 2 - r < -c(r) - Immed

s1. input 100 to GPR0

s2. select relevant values for SIR (IX = 0; GPR = 0; I = 0; Address = 20) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 80

		4110-510	
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0]	80	

18. NOT

s1. input 8 to GPR0

s2. select relevant values for NOT (IX = 0; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = \sim 8

19. SRC

(Index Register is used to decide left/right shift, address value is used to decide the bits to shift)

Case 1 - left shift

s1. input 10 to GPR0

s2. input 1 to IX1

s3. select relevant values for SRC (IX = 1; GPR = 0; I = 0; Address = 1) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 20

			-
GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	

Case 2 - right shift

s1. input 20 to GPR0

s2. select relevant values for SRC (IX = 0; GPR = 0; I = 0; Address = 1) in manual input part -> accept manual word instruction

[Expected Result] -> GPR0 = 10

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10	

20. RRC

(Index Register is used to decide left/right shift, address value is used to decide the bits to shift)

Case 1 - left shift

s1. input 10 to GPR0

s3. select relevant values for RRC (IX = 1; GPR = 0; I = 0; Address = 1) in manual input part -> accept manual word instruction

[Expected Result] \rightarrow GPR0 = 20

GPR0	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0]	20	
	, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1		-

Case 2 - right shift

s1. input 10 to GPR0

GPR0	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]	10

s2. select relevant values for RRC (IX = 0; GPR = 0; I = 0; Address = 1) in manual input part -> accept manual word instruction

Manual Instructions	RRC \$	No 💠	GPR0 ♣	IA \$	1 ‡
	0, 1, 1, 0, 1, 0]	[0, 0]	[0, 0]	[0]	[0, 0, 0, 0, 1]
		Accept	Manual Word In	struction	

	IX2	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
		vant values for MLT (IX = 2[have to use this]; GPR = ess = 0) in manual input part -> accept manual word	
Manua	al Instructions	MLT \$\displaysum \text{IX} \$\displaysum \text{GPR0} \$\displaysum \text{IA} \$\displaysum \text{O} \$\displaysum \text{TA} \$\displaysum \text{O} \$\displaysum \text{O} \$\displaysum \text{TA} \$\displaysum \text{O} \$\displaysum \text{O} \$\displaysum \text{O} \$\displaysum \text{TA} \$\displaysum \text{O} \$\displays	
		Accept Manual Word Instruction	
	[Expected R	esult] -> GPR1 is populated with -100 (10*-10)	
GPR1	[1, 1, 1,	1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0] -100 Accept	
Case (3 - overflow (s1. input 3270)	he result should be less than 65536) 00 to GPR0	
	GPR0	[0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 0] 32700 Accept	
	s2. input 2 to	GPR2	
	GPR2	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0] 2 Accept	
	s3. input 0 to	IX2	
	IX2	[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	
		vant values for MLT (IX = 2[have to use this]; GPR = ess = 0) in manual input part -> accept manual word	
	Manual Instructi	Ons MLT \$ IX \$ GPR0 \$ IA \$ 0 \$ [0, 1, 0, 0, 0, 0] [1, 0] [0, 0] [0] [0, 0, 0, 0, 0]	;
		Accept Manual Word Instruction	

s3. input 0 to IX2

[Expected Result] -> CC is populated with 1 (0001) CC [0, 0, 0, 1]**DVD** Case 1 - positive / positive s1. input 100 to GPR0 GPR0 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0]100 Accept s2. input 10 to GPR2 GPR2 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0] 10 Accept s3. input 0 to IX2 IX2 Accept s4. select relevant values for DVD (IX = 2[have to use this]; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction Manual Instructions * * 0 * DVD IX... * GPR0 IA ... [0, 1, 0, 0, 0, 1] [1, 0][0, 0][0] [0, 0, 0, 0, 0]Accept Manual Word Instruction [Expected Result] -> GPR0 is populated with 10 (100/10) GPR0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0] Accept Case 2 - positive / negative s1. input 100 to GPR0

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0]

Accept

100

22.

GPR0

s2. input -2 to GPR2

s4. select relevant values for DVD (**IX** = **2**[have to use this]; GPR = 0; I = 0; Address = 0) in manual input part -> accept manual word instruction

[Expected Result] -> CC is populated with 4 (0100)

23. JSR/TRR/AND/ORR/IN/OUT

Our test program 1 and 2 have covered these SIX instructions, so not intended to demonstrate them again through this step.

End of Document