Predição das vazões observadas na bacia "Jaguari – Jacareí" com modelos conceituais e redes neurais LSTM

Arlan dos Reis Scortegagna Professor Luiz Oliveira - PPGInf - UFPR

Trabalhos revisados - Artigo 1

Hydrol. Earth Syst. Sci., 22, 6005–6022, 2018 https://doi.org/10.5194/hess-22-6005-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

Rainfall-runoff modelling using Long Short-Term Memory (LSTM) networks

Frederik Kratzert^{1,*}, Daniel Klotz¹, Claire Brenner¹, Karsten Schulz¹, and Mathew Herrnegger¹

¹Institute of Water Management, Hydrology and Hydraulic Engineering, University of Natural Resources and Life Sciences, Vienna, 1190, Austria

* Invited contribution by Frederik Kratzert, recipient of the EGU Hydrological Sciences Outstanding Student Poster and PICO Award 2016.

Correspondence: Frederik Kratzert (f.kratzert@gmail.com)

Received: 4 May 2018 – Discussion started: 14 May 2018

Revised: 25 September 2018 - Accepted: 13 November 2018 - Published: 22 November 2018

Principais resultados - Kratzert et al. (2018)

Figure 14. Boxplot of the NSE of the validation period for our three Experiments and the benchmark model. The NSE is capped to -1 for better visualization. The green square diamond marks the mean in addition to the median (red line).

Figure 15. Evolution of a specific cell state in the LSTM (b) compared to the daily min and max temperature, with accumulation in winter and depletion in spring (a). The vertical grey lines are included for better guidance.

Trabalhos revisados - Artigo 2

Journal of Hydrology 605 (2022) 127297

Contents lists available at ScienceDirect

Journal of Hydrology

journal homepage: www.elsevier.com/locate/jhydrol

Improving streamflow prediction in the WRF-Hydro model with LSTM networks

Department of Civil and Environmental Engineering, Yonsei University, Seoul 03722, South Korea

ABSTRACT

Researchers have attempted to use machine learning algorithms to replace physically based models for streamflow prediction. Although existing studies have contributed to improving machine learning methods, they still have weaknesses, such as large dataset requirements and overfitting. Therefore, we propose an approach that combines the Weather Research and Forecasting hydrological modeling system (WRF-Hydro) and the Long Short-Term Memory (LSTM) network, i.e., WRF-Hydro-LSTM, to improve streamflow simulations. In this approach, LSTM was employed to predict the residual errors of WRF-Hydro; in contrast, the conventional approach with LSTM predicts streamflow directly. Here, we performed numerical experiments to predict the inflow of Soyangho Lake in South Korea using WRF-Hydro-LSTM, WRF-Hydro-only, and LSTM-only. WRF-Hydro-LSTM and LSTM-only showed better results (NSE = 0.95 and R greater than 0.96) compared to WRF-Hydro-only (NSE = 0.72 and R = 0.88); however, in terms of the percent bias, WRF-Hydro-LSTM had a better value (1.75) than LSTM-only (17.36). While the LSTM-only follows objective functions and not physical principles, WRF-Hydro-LSTM simulates residual errors and efficiently decreases uncertainties that are inherent with conventional methods. Furthermore, a sensitivity test on the training dataset indicated that the correlation coefficient and NSE value were not overly sensitive, but the PBIAS value differed substantially depending on the training set. This study demonstrates that WRF-Hydro-LSTM is particularly useful for representing real-world physical constraints and thus can potentially improve streamflow prediction compared to using either of the two approaches exclusively.

Principais resultados - Cho e Kim (2022)

Fig. 8. Comparisons among the different training periods (TP) cases (1, 2, 3, and 4 years between 2013 and 2016) with their optimized combination of hyper-parameters (30 iterations per case).

Fig. 6. Comparison of the cumulative lake inflow between the simulations and observations.

Outros trabalhos...

REFERÊNCIAS

- [1] Chagas, Vinícius BP et al. CAMELS-BR: hydrometeorological time series and landscape attributes for 897 catchments in Brazil. Earth System Science Data, v. 12, n. 3, p. 2075-2096, 2020.
- [2] Cho, Kyeungwoo; kim, Yeonjoo. Improving streamflow prediction in the WRF-Hydro model with LSTM networks. Journal of Hydrology, v. 605, p. 127297, 2022.
- [3] Hunt, Kieran MR et al. Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States. Hydrology and Earth System Sciences Discussions, p. 1-30, 2022.
- [4] Kratzert, Frederik et al. Rainfall-runoff modelling using long short-term memory (LSTM) networks. Hydrology and Earth System Sciences, v. 22, n. 11, p. 6005-6022, 2018.
- [5] Kratzert, Frederik et al. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resources Research, v. 55, n. 12, p. 11344-11354, 2019.
- [6] Moriasi, Daniel N. Et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, v. 50, n. 3, p. 885-900, 2007.
- [7] Newman, A. J. Et al. Development of a large-sample watershed-scale hydrometeorological data set for the contiguous USA: data set characteristics and assessment of regional variability in hydrologic model performance. Hydrology and Earth System Sciences, v. 19, n. 1, p. 209-223, 2015.
- [8] Shen, Chaopeng, Xingyuan Chen, and Eric Laloy. "Broadening the Use of Machine Learning in Hydrology." Frontiers in Water 3 (2021): 38.
- [9] Yuan, Xiaohui et al. Monthly runoff forecasting based on LSTM-ALO model. Stochastic environmental research and risk assessment, v. 32, n. 8, p. 2199-2212, 2018.

Dados

Dados

Experimentos

- · SAC-SMA-only (trabalho anterior)
- · LSTM-Only
- · SAC-SMA-LSTM

Resultados - Avaliação de Sensibilidade

· LSTM-only

#	N	BS	LR	min_loss	min_epoch	#	N	BS	LR	_	min_epoch
1	16	32	0.001	0.159	5	21	64	32	0.001	0.127	5
2	16	32	0.0001	0.178	59	22	64	32	0.0001	0.141	52
3	16	64	0.001	0.144	23	23	64	64	0.001	0.156	8
4	16	64	0.0001	0.185	97	24	64	64	0.0001	0.173	18
5	16	128	0.001	0.161	14	25	64	128	0.001	0.169	8
6	16	128	0.0001	0.206	65	26	64	128	0.0001	0.180	50
7	16	256	0.001	0.160	21	27	64	256	0.001	0.130	57
8	16	256	0.0001	0.274	97	28	64	256	0.0001	0.196	88
9	16	512	0.001	0.149	35	29	64	512	0.001	0.146	12
10	16	512	0.0001	0.336	99	30	64	512	0.0001	0.186	98
11	32	32	0.001	0.172	4	31	128	32	0.001	0.140	15
12	32	32	0.0001	0.159	23	32	128	32	0.0001	0.178	19
13	32	64	0.001	0.151	5	33	128	64	0.001	0.143	4
14	32	64	0.0001	0.182	70	34	128	64	0.0001	0.198	37
15	32	128	0.001	0.154	7	35	128	128	0.001	0.137	2
16	32	128	0.0001	0.198	71	36	128	128	0.0001	0.201	76
17	32	256	0.001	0.161	11	37	128	256	0.001	0.132	9
18	32	256	0.0001	0.239	66	38	128	256	0.0001	0.170	84
19	32	512	0.001	0.171	30	39	128	512	0.001	0.132	13
20	32	512	0.0001	0.212	99	40	128	512	0.0001	0.181	70

Resultados - Avaliação de Sensibilidade

· SAC-SMA-LSTM

#	n_passos	min_loss	min_epoch
1	1	0.529	41
2	2	0.463	16
3	3	0.379	39
4	4	0.362	9
5	5	0.360	21
6	10	0.400	19
7	25	0.426	4
8	50	0.408	1
9	100	0.332	7
10	200	0.377	10
11	365	0.405	1

Hidrograma – Ano hidrológico (out/2020 – set/2021)

Próximos passos...

- · Todas as bacias do Cantareira ao mesmo tempo?
- · Aplicação no CAMELS-BR
- · Aplicação no InfoHidro
- One-shot forecasts

Ainda restam dúvidas...

