Heuristic interpretation of Projective Space \mathbb{P}^n :

Classically $\mathbb{P}^n_k = \{ \text{ lines in } k^{n+1} \}$ $= \{ [n, \dots : n] \}$ (overed by n+1 opens Any line with $n_i \neq 0$ has a unique sepresentation: $\left[\begin{array}{c} \frac{\gamma_{0}}{\gamma_{i}} : & \frac{\gamma_{i-1}}{\gamma_{i}} : \underline{1} : \frac{\gamma_{i+1}}{\gamma_{i}} : \dots : \frac{\gamma_{n}}{\gamma_{i}} \end{array}\right]$ n=1:

| spec-k[1, x,] - an element in P $3_{i=1}$ 3_{i} $3_$ \$4.5 Projective Schemes: (closed subschemes of P?) Def Z-graded rings - S. commutative ring $S = \bigoplus_{n \in \mathbb{Z}} S_n$ such that $S_n S_m \subseteq S_{n+m}$ So is a subring of S. 4 S. is an S. algebra and Sn is an S. module Call S_n - homogenous elements of degree n. deal $\pm S_n$ is homogenous if \pm can be generated by homogenous elements Beoof.

Cor:) I homogenous \Rightarrow I = \oplus In for In \leq Sn $(x_i + x_{i2} + \dots + x_{in})^k \in I$ is in the induct.

2) I = \oplus In is obtaine iff I \neq S. and In frame for all n.

Localization:

4) T \leq S. multiplicative set consisting of homogeness elements then T \leq is also a \leq -graded ring.

Of: $Z_{\geq 0}$ -graded ring = $Z_{\geq 0}$ graded ring.

Convention: Graded ring = $Z_{\geq 0}$ graded ring.

eg: k $[x_1, \dots, x_n]$, each variable x_i has degree 1

S₊ := \bigoplus S_n includent cickal.

Say S. generated in $\deg 1$ if generated by S_1 as an S_{\circ} -algebra.

From Construction:

S. graded ring

Set Roj S. = $\begin{cases} \text{Romogenous prime rideals } & \varphi \leq S. \end{cases}$ such that $& \varphi \neq S_+ \end{cases}$ Scheme Structure

 $f \in S_+$, homogenous

 $Prob: S. \longrightarrow (S.)_{f} \longleftrightarrow ((S.)_{f})_{o}$

induces isomorphisms $\begin{cases}
9 \in \text{Rej S.} \\
\text{S.t. for }
\end{cases} \xrightarrow{1-1} \begin{cases}
\text{homogenius prime} \\
9 \leq (S.)_{f}
\end{cases}$ $\begin{cases}
\text{Reof: 1)} \quad \text{for } \in \text{Rej S.} \\
\text{Fres }
\end{cases} \xrightarrow{1-1} Spec(S.)_{f}$ $\begin{cases}
\text{Spec}(S.)_{f}
\end{cases}$ $\begin{cases}
\text{Spec}(S.)_{f}
\end{cases}$ $\begin{cases}
\text{Spec}(S.)_{f}
\end{cases}$ $\begin{cases}
\text{Spec}(S.)_{f}
\end{cases}$

pns, ← P

respects homogenous degrees on both sides. as as deg f $\neq 0$, $\text{POS. } \not\supseteq S_+$.

