

ORGANIC CHEMISTRY

ENTHUSIAST | LEADER | ACHIEVER

EXERCISE

Oxygen Containing Compounds

ENGLISH MEDIUM

EXERCISE-I (Conceptual Questions)

ALCOHOL

- 1. The compound A, B and C in the reaction sequence
 - $CH_3CH_2OH \xrightarrow{PBr_3} A \xrightarrow{alc.KOH} B \xrightarrow{Br_2} C$ are given by the set
 - (1) C₂H₅Br, CH₃CH₂OH, CH₃CHBr₂.
 - (2) C₂H₅Br, CH≡CH, CH₂=CHBr
 - (3) C_2H_5Br , $CH_2=CH_2$, CH_2Br — CH_2Br
 - (4) C₂H₅Br, CH₃CH₂OH, BrCH₂—CH₂Br

AE0001

- 2. Which of the following alcohols gives a red colour in Victor Meyer test
 - (1) CH₃-CH₂-CH₂-OH
 - (2) CH₃-CH-OH
 - (3) (CH₃)₃C-OH
 - (4) CH₃-CH-CH₂-CH₃ OH

AE0003

- 3. Which of the following does not turn orange colour of chromic acid to green
 - (1) 1° alcohol
- (2) 2° alcohol
- (3) 3° alcohol
- (4) Allyl alcohol

AE0005

- 4. p, s and t-alcohols can be distinguished by :-
 - (1) Reimer-Tiemann reaction
 - (2) Tollen's reagent
 - (3) Lucas test
 - (4) Lassaigne's test

AE0006

5. Consider the following reaction:

$$C_9H_5OH + H_9SO_4 \rightarrow Product$$

Among the following, which one cannot be formed as a product under any conditions?

- (1) C₂H₅OSO₃H
- (2) $H_2C = CH_2$
- (3) HC≡CH
- (4) CH₃-CH₉-O-CH₉-CH₃

AE0007

Build Up Your Understanding

6. Select the incorrect option for the following reaction:

$$CH_3-CH = CH_2 + H_2O \xrightarrow{H^+} CH_3-CH - CH_3$$

OH

- (1) This is an example of NAR of alkene
- (2) In the first step, protonation of alkene takes place to form carbocation
- (3) In the second step, Nucleophilic attack of water takes place on carbocation
- (4) In the last step deprotonation takes place to form an alcohol

HC0201

- 7. For the reduction of aldehydes and ketones into alcohol the reagent which can be used is/are:
 - (1) H₂ in presence of Ni, Pt or Pd
 - (2) NaBH₄
 - (3) LiAlH
 - (4) All of these

CC0202

Which of the following does not reduces the carboxylic acids into alcohol?

(1)
$$\frac{1.\text{LiAlH}_4/\text{ether}}{2.\text{H}_2\text{O}^+}$$
 (2) $\frac{1.\text{B}_2\text{H}_6}{2.\text{H}_3\text{O}^+}$

(2)
$$\frac{1.B_2H_6}{2.H_3O^+}$$

$$(4) \xrightarrow{\text{ROH}} \xrightarrow{\text{H}_2} \xrightarrow{\text{Catalyst}}$$

CA0203

9.
$$CH_3CH_2OH \longrightarrow \begin{array}{c} H_2SO_4 \\ \hline 443K \end{array} \rightarrow A$$

$$A \text{ and } B \text{ are } \\ \hline H_2SO_4 \\ \hline 413K \end{array} \rightarrow B$$

(respectively)

(1)
$$O$$
, $CH_2 = CH_2$

(3)
$$CH_2 = CH_2$$
, $CH_2 = CH_2$

(4)
$$CH_2 = CH_2$$
,

AE0204

- **10.** Which of the following is insoluble in water?
 - (1) Ethanol
- (2) Ethoxyethane
- (3) Phenol
- (4) Pentane

AE0206

PHENOL

11. Nitration of phenol with conc. H₂SO₄ followed by nitric acid gives:-

(4)
$$O_2N \longrightarrow NO_2$$
 NO_2

AE0008

- **12.** Deoxygenation of phenol can be achieved by distillation with :-
 - (1) Raney nickel
 - (2) Lithium aluminium hydride
 - (3) Sodium borohydride
 - (4) Zinc dust

AE0009

- **13.** Which of the following compounds shows intramolecular hydrogen bonding:-
 - (1) p-Nitrophenol
- (2) Ethanol
- (3) o-Nitrophenol
- (4) Methanamine

AE0010

Sodium phenate

$$(1) \bigcirc \begin{matrix} O \\ C-OCH_3 \\ OH \bigcirc \\ C-CH_3 \\ (2) \end{matrix}$$

$$(3) \bigcirc Cl$$

$$Cl$$

$$(4) \bigcirc Cl$$

CA0011

15. The reaction

$$\begin{array}{c}
OH \\
ONa+CO_2 \xrightarrow{140^{\circ}C}
\end{array}$$

$$OH \\
COONa$$

is called :-

- (1) Schotten Bauman reaction
- (2) Kolbe Schmidt reaction
- (3) Reimer-Tiemann reaction
- (4) Lederer-Manasse reaction

AE0012

- **16.** Phenol can be distinguished from ethanol by reactions with the following except:-
 - (1) Iodine and alkali
 - (2) Ferric chloride
 - (3) Acetyl chloride
 - (4) Bromine water

HD0013

- **17.** Phenol on treatment with methyl chloride in the presence of anhydrous AlCl₃ gives chiefly:-
 - (1) o-cresol
- (2) m-cresol
- (3) anisole
- (4) p-cresol

AE0014

- **18.** Phenol on heating with NaNO₂ and a few drops of conc. H₂SO₄ mainly gives :-
 - (1) p-nitrophenol
 - (2) p-nitrosophenol
 - (3) o-nitrophenol
 - (4) m-nitrosophenol

AE0015

- **19.** Phenol and benzoic acid are distinguished by :-
 - (1) Lucas reagent
 - (2) Victor Meyer test
 - (3) Caustic soda
 - (4) Sodium bicarbonate

PO0016

20. Phenol on treatment with dil HNO₃ at low temp (298 K) gives two products P and Q. P is steam volatile but Q is not. P and Q are respectively.

(1)
$$OH$$
 NO_2 and OH NO_2

(2)
$$OH$$
 OH OH NO₂ and OH NO₂

$$(3) \begin{array}{c} OH \\ OH \\ NO_2 \end{array} \begin{array}{c} OH \\ OH \\ OH \end{array}$$

AE0207

ETHER

- **21.** The preparation of ethers from alcohols by using sulphuric acid is called :-
 - (1) Williamson's ether Synthesis
 - (2) Williamson's continuous etherification process
 - (3) Ziesel's method
 - (4) Zerewitinoff method

AE0236

22.
$$CH_3$$
- CH - CH_3 $\xrightarrow{PBr_3}$ X $\xrightarrow{Mg/ether}$ Y $\xrightarrow{H_2O/H^+}$ OH

The final product is :-

AE0020

23. In the reaction sequence

$$A \xrightarrow{HBr} B \xrightarrow{C_2H_5ONa}$$
 Ethoxyethane,

A and B are :-

- (1) C_2H_6 , C_2H_5Br
- (2) CH₄, CH₃Br
- (3) $CH_2 = CH_2$, C_2H_5Br
- (4) CH≡CH,CH₂=CHBr

AE0021

24.
$$CH_3$$
- CH_2 - OH + Ph - CH_2 - OH $\xrightarrow{H^{\oplus}}$ of which is not obtained?

(1) CH₃-CH₂-OCH₂-CH₃

- (2) Ph–CH₂–OCH₂–Ph
- (3) Ph-CH₂-O-CH₂-CH₃
- (4) Ph-CH₂-O-CH₂-O-CH₃

AE0023

25. Oxonium ion of ether has the structure :-

(3)
$$(C_2H_5)_2O \rightarrow O$$

(4)
$$CH_3$$
- CH_2 - O - CH_2 - CH_2 - CH_2 - O - O - O - H

AE0024

- **26.** Which of the following does not react with aq. NaOH:-
 - (1) Phenol
 - (2) Benzoic acid
 - (3) CH₃COOH
 - (4) CH₃-O-C₆H₅

PO0026

Chemistry: Oxygen Containing Compound Telegram: @Chalnaayaaar

27. A student tried two reactions for preparing tert-butyl ethyl ether:

(I)
$$C_2H_5ONa + CH_3 - CH_3 \longrightarrow CH_3$$

(II)
$$CH_3 - CH_3 - CH_3 - CH_2 - CI \longrightarrow CH_3$$

Which reaction will give better yield of tert butyl ether?

- (1) Only I
- (2) Only II
- (3) Both I & II
- (4) Neither I nor II

HD0208

CARBONYL COMPOUNDS

- **28.** Acetaldehyde on warming with Fehling's solution gives a red precipitate of :-
 - (1) Elemental copper
 - (2) Cuprous oxide
 - (3) Cupric oxide
 - (4) Mixture of all of the above

CC0027

- 29. Acetone does not form:
 - (1) A phenylhydrazone with phenylhydrazine
 - (2) A sodium bisulphite adduct with sodium bisulphite
 - (3) A silver mirror with Tollen's reagent
 - (4) An oxime with hydroxylamine

CC0028

- **30.** CH₃CHO and CH₃COCH₃ can not be distinguished by :-
 - (1) Fehling solution
 - (2) Grignard reagent
 - (3) Schiff's reagent
 - (4) Tollen's reagent

CC0029

- **31.** Acetone is obtained by the hydrolysis of the addition product of methyl magnesium iodide and:-
 - (1) HCHO
- (2) CH₃CHO
- (3) CH₃COCH₃
- (4) CH₃-C≡N

CC0031

32. Ph-C-CH₃ + aq. KOH
$$\rightarrow$$
 A $\rightarrow \frac{KCN}{H^{\oplus}}$ B?

- (1) $50\% d + 50\% \ell$
- (2) 80% d + 20% *l*
- (3) Meso compound
- (4) optically active

CC0032

33. \bigcirc can be obtained by :-

$$(1) \bigcirc \bigcap^{O} C - Cl + (Ph)_2 Cd$$

$$(2) \bigcirc C - Cl + \bigcirc OH$$

- (3) \bigcirc + CO + ZnCl₂ + HCN
- (4) None of the above

CC0033

34. Which does not react with NaHSO₃.

(3)
$$CH_3$$
 CH_2 CH_2 $C-Ph$

CC0034

- **35.** Ketones can be prepared by :-
 - (1) Rosenmund reduction
 - (2) Etard reaction
 - (3) Cannizzaro reaction
 - (4) Friedel-Craft reaction

CC0035

- **36.** Carbonyl compounds are best purified by :-
 - (1) Steam distillation
 - (2) Hydrolysis of sodium bisulphite adducts
 - (3) Fractional crytallisation
 - (4) Sublimation

Telegram: @Chalnaayaaar Chemistry: Oxygen Containing Compound

Pre-Medica

- 37. Carbonyl compounds readily undergo:-
 - (1) Nucleophilic substitutions
 - (2) Electrophilic addition reactions
 - (3) Nucleophilic addition reactions
 - (4) Free radical substitution reactions

CC0037

- **38.** CH_3 –C– CH_3 and CH_3 –C–H are readily distinguished by their reaction with :-
 - (1) Iodine and alkali
 - (2) 2,4-dinitrophenylhydrazine
 - (3) Tollen's reagent
 - (4) All the above

CC0038

39. Which is the most suitable reagent for the following conversion

HD0040

- **40.** Formaldehyde reacts with conc. alkali to form :-
 - (1) A resinous mass
 - (2) Formic acid
 - (3) A mixture of methanol and sodium formate
 - (4) Methanol

CC0041

- **41.** Which of the following compounds does not give aldol condensation:
 - (1) CH₃CHO
- (2) CH₃CH₂CHO
- (3) HCHO
- (4) CH₂CH₂CH₂CHO

CC0042

- 42. Cannizzaro reaction is given by:-
 - (1) Aldehydes containing α -hydrogen atoms
 - (2) Aldehydes as well as ketones containing α -hydrogen atoms
 - (3) Aldehydes not containing α -hydrogen atoms
 - (4) Aldehydes containing β-hydrogen atoms

CC0043

- **43.** Which of the following can be converted to CH₃-CH=CH-CHO:
 - (1) Acetone
- (2) Acetaldehyde
- (3) Propanaldehyde
- (4) Formaldehyde

CC0045

- **44.** The product of reaction with primary amine and aldehyde is -
 - ∭ (1) R–C–OH
- (2) R-ONO
- (3) R'-CH=N-R
- (4) R-NO₂

CC0046

- 45. Brady's reagent is
 - (1) [Cu(NH₃)₄]SO₄
 - (2) KMnO₄/NaIO₄

(3)
$$O_2N$$
 NO_2 $NH.NH_2$

$$(4) O_2 N \longrightarrow F$$

CC0047

- **46.** A compound with molecular formula C₃H₆O, not gives silver mirror with Tollen's reagent but forms oxime with hydroxyl amine. Compound will be -
 - (1) CH₂=CH—CH₂—OH
 - (2) CH₃CH₂CHO
 - (3) $CH_2 = CH O CH_3$
 - (4) CH₃COCH₃

CC0048

- **47.** Aldehyde and ketone are distinguished by reagent
 - (1) Fehling solution
- (2) H₂SO₄
- (3) NaHSO₃
- (4) NH₃

CC0049

- **48.** Carbonyl group is converted into methylene group by -
 - (1) Acidic reduction
 - (2) Raney Ni
 - (3) Basic hydrolysis
 - (4) Normal Hydrogenation

CC0050

- **49.** When acetaldol is treated with excess of acid then unsaturated product will be :-
 - (1) Alcohol
- (2) Aldehyde
- (3) Acid
- (4) Alkyl halide

- **50.** The reagent used for the separation of acetaldehyde from acetophenone is -
 - (1) NaHSO₃
- (2) $C_6H_5NHNH_2$
- (3) NH₂OH
- (4) NaOH + I₂

CC0052

- **51.** The most suitable reagent for the conversion of $RCH_2OH \longrightarrow RCHO$
 - (1) KMnO₄
 - (2) K₂Cr₂O₇
 - (3) CrO₃/H₂SO₄
 - (4) PCC (Pyridinium chloro chromate)

CC0053

52. The major organic product formed from the following reaction is:-

$$(1)$$
 \sim NHCI

(2)
$$\searrow$$
 NHCH₃

(3)
$$\longrightarrow$$
 OH

$$(4)$$
 $NHCH_3$
 OCH_3

CC0054

53.
$$O$$
 + $CH_3MgBr \longrightarrow P \longrightarrow P \longrightarrow Q$

$$\xrightarrow{\text{Mg}} R \xrightarrow{\text{HCHO}} S, S \text{ is :}$$

CC0056

Product (A) is :-

(1)

- (3) CH₂-CH₂CH₂CH₂CH₂-COOH OH
- (4) CH₂-CH₂CH₂CH₂CH₂-CH₂ OH OH

CC0057

55. Which of the following reaction will not give ketone?

(1)
$$R - MgX + R-COCI$$

$$(2) R - CN + R - MgX \longrightarrow \xrightarrow{H_3O^+}$$

(3)
$$\langle \bigcirc \rangle$$
 + RCOCl anhy. AlCl₃

$$(4) \quad \langle \bigcirc \rangle - CH_3 + CrO_2Cl_2 \xrightarrow{CS_2} \xrightarrow{H_2O^+}$$

CC0209

56. Select the incorrect option :

Conversion

Reagent

- (1) Hexan-1-ol hexanal $C_5H_5NH^+CrO_3Cl^-$
- (2) Ethanenitrile Ethanal DIBAL-H
- (3) p-fluorotoluene, \longrightarrow $K_2Cr_2O_7$, H^+ p-fluorobenzaldehyde
- (4) But-2-ene \longrightarrow Ethanal O_3,H_2O -Zn dust

CC0210

- **57.** True statement about acetone is
 - (1) α –H of acetone is acidic due to strong electron withdrawing carbonyl group
 - (2) α -H of acetone is acidic due to resonance stabilisation of conjugate base
 - (3) It gives β -Hydroxy ketone with dilute alkali
 - (4) All

58.
$$CH_3CH_3 \xrightarrow{Cl_2} (A) \xrightarrow{Aq.KOH} (B) \xrightarrow{PCC} (C)$$

The product D is :-

- (1) $CH_2 = CH_2$
- (2) CH₃-CH-CH₂-CHO I OH
- (3) CH₃-C-CH₅
- (4) CH₃-CH=CH-CHO

CC0212

- **59.** Select the correct statement for C=O and C=C bond.
 - (1) Carbon-Oxygen double bond is polar but carbon-carbon double bond is non-polar
 - (2) Carbon–Oxygen bond length is 123 pm than that of carbon-carbon bond length is 134 pm
 - (3) Carbonyl compounds undergo nucleophilic addition reaction but compounds containing ethylenic double bonds undergo electrophilic addition reaction
 - (4) All of these

CC0213

- **60.** Select the structure of chromium complex formed by the reaction of toluene with chromylchloride followed by hydrolysis to give benzaldehyde and also the name of the reaction.
 - (1) $CH(OCrCl_2)_2$ and Etard reaction
 - (2) $CH(OCrOHCl_2)_2$ and Etard reaction
 - (3) CH₂(OCrOHCl₂) and Rosenmund reaction
 - (4) CH(OCrOH₂Cl)₂ and Rosenmund reaction

CC0214

- **61.** The methanal, ethanal and propanone are miscible with water because they form
 - (1) Vander waal's forces with water
 - (2) H-bond with water
 - (3) dipole-dipole bond with water
 - (4) ion-dipole bond with water

CC0215

- **62.** The correct increasing order of carbonyl compounds towards nucleophilic addition reaction.
 - (1) Butanone < Propanal < Ethanal
 - (2) Butanone < Propanal < Propanone < Ethanal
 - (3) Butanone < Ethanal < Propanone < Propanal
 - (4) Butanone < Ethanal < Propanal < Propanone

CC0216

- **63.** Which of the following carbonyl group give the positive fehling test?
 - (1) Aliphatic aldehydes
- (2) Aromatic aldehydes
- (3) Ketones
- (4) Both (1) and (2)

PO0217

CARBOXYLIC ACID

- **64.** When propanoic acid is treated with aqueous sodium bicarbonate, CO₂ is liberated. The C of CO₂ comes from:-
 - (1) methyl group
 - (2) carboxylic acid group
 - (3) methylene group
 - (4) bicarbonate

PO0060

65. In a set of reactions acetic acid yielded a product D

$$CH_3COOH \xrightarrow{SOCl_2} A \xrightarrow{Benzene} Benzene$$

$$\xrightarrow{\text{NaCN}} C \xrightarrow{\text{H}_3O^{\oplus}} D$$

The structure of D would be -

$$(1) \bigcirc \begin{matrix} OH \\ I \\ C-COOH \\ CH_3 \end{matrix}$$

CA0061

ACID DERIVATIVE

66. The compounds A and B in the reaction sequence

$$B \stackrel{Phenol}{\longleftarrow} CH_3COCl \stackrel{CH_3COONa}{\longrightarrow} A$$

are given by the set respectively:-

- (1) CH₃CO-O-COCH₃, C₆H₅CH₂OH
- (2) CH₃CO-O-COCH₃, C₆H₅OCOCH₃
- (3) CH₃COCH₃, C₆H₅OCOCH₃

(4)
$$CH_3$$
– C – O – O – C – CH_3 , CH_3 – C – O – C_6H_5 \parallel 0 O

CA0062

67. CH_3 - $COOH \xrightarrow{\text{Red P/Cl}_2} A \xrightarrow{\text{Alc.}} B$

structure of B is :-

- (1) CH₂=CH-COOH
- (2) CH₃-CH-COOH
- (3) CH₂-CH₂-COOH | | Cl

CA0063

68. Which is most reactive towards hydrolysis.

- (2) O_2N \longrightarrow C-NH-CH
- (3) CI C-NH-CH
- (4) O C-NH-CH

CA0065

- **69.** Which of the following reagents may be used to distinguish between phenol and benzoic acid?
 - (1) Victor-Mayer test
 - (2) Neutral FeCl₃
 - (3) Aqueous NaOH
 - (4) Tollen's reagent

PO0066

- 70. Acyl chlorides undergo:
 - (1) Nucleophilic addition reactions
 - (2) Nucleophilic substitution reactions
 - (3) Electrophilic substitution reactions
 - (4) Electrophilic addition reactions

CA0067

- **71.** The reaction of ethanol on acetic anhydride is an example of :-
 - (1) Nucleophilic addition
 - (2) Nucleophilic substitution
 - (3) Electrophilic addition
 - (4) Free radical substitution

CA0068

- **72.** The reduction of acetamide gives :-
 - (1) CH₃CH₂NH₂
 - (2) (CH₃)₂CHNH₂
 - (3) (CH₃)₃CNH₉
 - (4) (CH₃CH₂)₂NH

CA0069

- **73.** Which is used in preparation of aldehyde by rosenmund reduction
 - (1) Ester
- (2) Acid
- (3) Acid halide
- (4) Alcohol

CC0070

- **74.** CH₃-C-NH₂ $\xrightarrow{P_2O_5}$ $\xrightarrow{P_2O_5}$
 - (1) CH₂COOH
- (2) CH₃-CN
- (3) CH₃-CH₃
- (4) CH₃-CHO

CA0072

75.
$$\bigcirc CHO \xrightarrow{NaOH} A \xrightarrow{H^{\oplus}} ?$$

EXERCISE-I (Conceptual Questions)													ANSV	VER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	1	3	3	3	1	4	3	4	4	4	4	3	3	2
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	3	4	2	4	1	2	4	3	4	2	4	2	2	3	2
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	4	1	1	3	4	2	3	3	3	3	3	3	2	3	3
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	1	1	2	1	4	2	2	2	4	3	4	4	4	2
Que.	61	62	63	64	65	66	67	68	69	70	71	72	73	74	75
Ans.	2	1	1	4	1	2	1	2	2	2	2	1	3	2	2

EXERCISE-II (Previous Year Questions)

AIPMT 2007

1. Consider the following compounds:

(iii)
$$H_3C$$
—COC

The correct order of reactivity towards hydrolysis is:-

$$(1)$$
 $(i) > (ii) > (iii) > (iv)$

(3) (ii)
$$>$$
 (iv) $>$ (i) $>$ (iii)

$$(4)$$
 (ii) > (iv) > (iii) > (i)

CA0075

- **2.** Which one of the following on treatment with 50% aq. NaOH yields the corresponding alcohol and acid
 - (1) C₆H₅CHO
 - (2) CH₃CH₂CH₂CHO
 - (3) CH₃COCH₃
 - (4) CH₃CHO

CC0076

- **3.** The product formed in aldol reaction is :-
 - (1) a β-hydroxy aldehyde or ketone
 - (2) an α-hydroxy aldehyde or ketone
 - (3) an α , β -unsaturated ester
 - (4) a β-hydroxy acid

CC0078

AIPMT 2008

4. Acetophenone when reacted with a base, C_2H_5ONa , yields a stable compound which has the structure :-

AIPMT/NEET

$$(1) \bigcirc \begin{matrix} CH_3 & CH_3 \\ | & | \\ C-C \\ OH & OH \end{matrix} \bigcirc$$

(3)
$$\bigcirc C = CH - C$$

$$CH_3 \qquad O$$

CC0079

- **5.** A strong base can abstract an α hydrogen from
 - (1) Ketone
- (2) Alkane
- (3) Alkene
- (4) Amine

CC0080

AIPMT 2009

6. H₂COH.CH₂OH on heating with periodic acid gives:-

(1)
$$2 \frac{H}{C=0}$$

- (2) 2CO₂
- (3) 2HCOOH
- (4) CHO CHO

AE0081

7. Consider the following reaction,

ethanol
$$\xrightarrow{PBr_3} X \xrightarrow{\text{alc. KOH}} Y$$

$$\frac{\text{(i) } H_2SO_4 \text{ room temperature}}{\text{(ii) } H_2O} \rightarrow Z;$$

the product Z is :-

- (1) CH₃CH₂OH
- (2) $CH_2 = CH_2$
- (3) CH₃CH₂ O CH₂ CH₃
- $(4) CH_3 CH_2 O SO_3H$

AE0082

8. Propionic acid with Br_2/P yields a dibromo product. Its structure would be :-

(2) CH₂Br - CHBr - COOH

(4) CH₂Br - CH₂ - COBr

CA0083

9. Consider the following reaction :

Phenol
$$\xrightarrow{Zn \text{ dust}} X \xrightarrow{CH_3Cl} Y \xrightarrow{KMnO_4} Z$$
AlCl₂

the product Z is :-

- (1) Benzene
- (2) Toluene
- (3) Benzaldehyde
- (4) Benzoic acid

AH0084

10. In a set of reactions, ethyl benzene yielded a product D

$$\underbrace{ CH_{2}CH_{3}KMnO_{4}}_{KOH} B \underbrace{ Br_{2}}_{FeCl_{3}} C \underbrace{ C_{2}H_{5}OH}_{H^{+}} D$$

'D' would be :-

(3)
$$B_r$$
 $CH_2COOC_2H_5$

AH0085

AIPMT 2010

- **11.** Which of the following reactions will not result in the formation of carbon-carbon bonds?
 - (1) Friedel-Crafts acylation
 - (2) Reimer-Tieman reaction
 - (3) Cannizaro reaction
 - (4) Wurtz reaction

CC0086

- **12.** When glycerol is treated with excess of HI, it produces:-
 - (1) allyl iodide
 - (2) propene
 - (3) glyceryl triiodide
 - (4) 2-iodopropane

AE0087

13. Match the compounds given in List–I with their characteristic reactions given in List–II. Select the correct option.

List-I (Compounds)

- (a) CH₃CH₂CH₂CH₂NH₂
- (b) CH₃C≡CH
- (c) CH₃CH₂COOCH₃
- (d) CH₃CH(OH)CH₃

List-II (Reactions)

- (i) Alkaline hydrolysis
- (ii) With KOH (alcohol) and CHCl₃ produces bad smell
- (iii) Gives white ppt. with ammonical AgNO₃
- (iv) With Lucas reagent cloudiness appears after 5 minutes

Options:

(4)

(ii)

(a) (b) (c) (d) (1)(iii) (ii) (iv) (2)(ii) (iii) (i) (iv) (3)(ii) (i) (iv) (iii)

(i)

(iv)

(iii)

PO0088

AIPMT Pre. 2011

14. In the following reactions,

(b)
$$A \xrightarrow{HBr, dark} \begin{pmatrix} C \\ Major \\ product \end{pmatrix} + \begin{pmatrix} D \\ Minor \\ product \end{pmatrix}$$

the major products (A) and (C) are respectively :-

$$\begin{array}{cccc} CH_3 & CH_3 \\ | & | \\ (2) CH_3-C=CH-CH_3 & and \ CH_3-C-CH_2-CH_3 \\ | & | \\ Br \\ CH_3 & CH_3 \end{array}$$

$$CH_3$$
 CH_3 CH_3

$$\begin{array}{ccc} & CH_3 & CH_3 \\ \mid & \mid & \\ (4) \ CH_2 = C - CH_2 - CH_3 & and \ CH_3 - C - CH_2 - CH_3 \\ \mid & \mid & \\ & Br \end{array}$$

AE0091

In a set of reactions m-bromobenzoic acid gave a product D. Identify the product D

$$\begin{array}{c}
COOH \\
\hline
SOCl_2 \\
Br
\end{array}$$

$$B \xrightarrow{NH_3} C \xrightarrow{NaOH} D$$

CA0092

CC0093

- Clemmensen reduction of a ketone is carried out in the presence of which of the following?
 - (1) Glycol with KOH
 - (2) Zn-Hg with HCl
 - (3) LiAlH₄
 - (4) H₂ and Pt as catalyst

AIPMT Mains 2011

- An organic compound 'A' on treatment with NH₃ **17**. gives 'B' which on heating gives 'C'. 'C' when treated with Br₂ in the presence of KOH produces ethylamine. Compound 'A' is :-
 - (1) CH₃CH₂COOH
 - (2) CH₃COOH
 - (3) CH₃CH₂CH₂COOH
 - (4) CH₃-ÇHCOOH

CA0094

Match the compounds given in List-I with List-II **18**. and select the suitable option using the code given below.

List-I	List-II

- (a) Benzaldehyde
- Phenolphthalein
- (b) Phthalic anhydride (ii)
 - Benzoin condensation
- (c) Phenyl benzoate
- (iii) Oil of wintergreen
- (d) Methyl salicylate
- (iv) Fries rearrangement

Code:

(a)	(b)	(c)	(d)
(1) (ii)	(i)	(iv)	(iii)

$$(3) \ \ (iv) \qquad \qquad (ii) \qquad \qquad (iii) \qquad \qquad (i)$$

$$(4)$$
 (ii) (iv) (i)

CA0095

AIPMT Pre. 2012

19. In the following sequence of reactions

$$CH_3 \text{--Br} \xrightarrow{\quad KCN \quad} A \xrightarrow{H_3O^+} B \xrightarrow{\quad LiAlH_4 \quad} C,$$

the end product (C) is:

- (1) Acetaldehyde
- (2) Ethyl alcohol
- (3) Acetone
- (4) Methane

CA0097

20. Predict the products in the given reaction.

(1)
$$\bigcirc$$
 CH₂OH \bigcirc COO⁻ K[®]

(2)
$$OH$$
 OH OH $OOO^- K^{\oplus}$

CC0098

- **21.** CH_3CHO and $C_6H_5CH_2CHO$ can be distinguished chemically by :
 - (1) Tollen's reagent test
 - (2) Fehling solution test
 - (3) Benedict test
 - (4) Iodoform test

HD0099

AIPMT Mains 2012

22. Consider the following reaction:

$$COCl$$
 H_2
 $Pd\text{-BaSO}_4$ 'A'

The product 'A' is:

- (1) C₆H₅COCH₃
- $(2) C_6H_5Cl$
- $(3) C_6H_5CHO$
- $(4) C_6 H_5 OH$

CA0100

NEET UG 2013

23. Reaction by which Benzaldehyde cannot be prepared:-

(2)
$$+ \text{CrO}_2\text{Cl}_2 \text{ in CS}_2$$
 followed by $H_3\text{O}^{\oplus}$

(3)
$$+$$
 H_2 in presence of Pd+BaSO₄

AIPMT 2014

24. Among the following sets of reactants which one produces anisole?

(1) CH₃CHO; RMgX

(2) C₆H₅OH; NaOH; CH₃I

(3) C₆H₅OH; neutral FeCl₃

(4) C₆H₅ - CH₃; CH₃COCl; AlCl₃

AE0105

25. Which of the following will not be soluble in sodium hydrogen carbonate?

(1) 2, 4, 6-trinitrophenol

- (2) Benzoic acid
- (3) o-Nitrophenol
- (4) Benzenesulphonic acid

PO0106

AIPMT 2015

26. An organic compound 'X' having molecular formula $C_5H_{10}O$ yields phenyl hydrazone and gives negative response to the Iodoform test and Tollen's test. It produces n-pentane on reduction. 'X' could be :-

- (1) 2-pentanone
- (2) 3-pentanone
- (3) n-amyl alcohol
- (4) pentanal

RE-AIPMT 2015

- **27.** Reaction of phenol with chloroform in presence of dilute sodium hydroxide finally introduces which one of the following functional group?
 - (1) -CHCl₂
- (2) -CHO
- (3) -CH₂Cl
- (4) -COOH

AH0109

NEET-II 2016

28. The **correct** structure of the product A formed in the reaction

$$\begin{array}{c} O \\ \hline \\ H_2(gas, \ 1 \ atmpsphere) \\ \hline Pd/carbon, \ ethanol \\ \end{array} \begin{array}{c} A \quad is : \end{array}$$

CC0113

NEET(UG) 2017

- **29.** The heating of phenyl-methyl ethers with HI produces
 - (1) iodobenzene
- (2) phenol
- (3) benzene
- (4) ethyl chlorides

AE0120

30. Identify A and predict the type of reaction

$$\begin{array}{c}
OCH_3 \\
\hline
 NaNH_2
\end{array}$$
A

 $\begin{array}{cccc} & \text{OCH}_3 \\ & \text{NH}_2 \\ & \text{and} & \text{elimination} & \text{addition} \\ & & \text{reaction} \end{array}$

OCH₃
Br
and cine substitution reaction

OCH₃
and cine substituion reaction

 OCH_3 and substitution reaction NH_2

HD0121

31. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation followed by heating?

(2) OH

ALLEN®

Pre-Medical

32. Consider the reactions :-

Identify A, X, Y and Z

- (1) A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, Z-Semicarbazide.
- (2) A-Ethanal, X-Ethanol,Y-But-2-enal, Z-Semicarbazone
- (3) A-Ethanol, X-Acetaldehyde, Y-Butanone, Z-Hydrazone
- (4) A-Methoxymethane, X-Ethanoic acid, Y-Acetate ion, Z-hydrazine

CC0123

NEET(UG) 2018

- **33.** Carboxylic acid have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
 - (1) formation of intramolecular H-bonding
 - (2) formation of carboxylate ion
 - (3) more extensive association of carboxylic acid via van der Waals force of attraction
 - (4) formation of intermolecular H-bonding.

CC0132

34. Compound A, $C_8H_{10}O$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.

A and Y are respectively

(1)
$$H_3C$$
 \longrightarrow CH_2 -OH and I_2

(2)
$$\sim$$
 CH₂-CH₂-OH and I₂

(3)
$$CH-CH_3$$
 and I_2 OH

(4)
$$CH_3$$
 OH and I_2

HD0133

- **35.** The compound A on treatment with Na gives B, and with PCl₅ gives C. B and C react together to give diethyl ether. A, B and C are in the order
 - (1) C_2H_5OH , C_2H_6 , C_2H_5Cl
 - (2) C₂H₅OH, C₂H₅Cl, C₂H₅ONa
 - (3) C_2H_5Cl , C_2H_6 , C_2H_5OH

 $CH_2CH_2CH_3$

(4) C₂H₅OH, C₂H₅ONa, C₂H₅Cl

AE0134

36. Identify the major products P, Q and R in the following sequence of reaction:

+
$$CH_3CH_2CH_2CI \xrightarrow{Anhydrous} P \xrightarrow{(i) O_2} Q + R$$

CHO

(1)
$$\bigcap$$
 , \bigcap , CH_3CH_2 -OH

P Q R

 $CH_2CH_2CH_3$ CHO COOH

(2) \bigcap P Q R

(3)
$$CH(CH_3)_2$$
, $CH_3CH(OH)CH_3$
P Q R

(4)
$$CH(CH_3)_2$$
, $CH_3-CO-CH_3$

AH0135

NEET(UG) 2019

37. The structure of intermediate A in the following reaction is :-

$$CH$$
 CH_3
 O_2
 O_2
 O_3
 O_4
 O_4
 O_4
 O_5
 O_5
 O_7
 O_8
 O_8

$$CH_3$$
 $H_3C-C-O-O-H$
(2)

AE0218

NEET(UG) 2019 (ODISHA)

38. The reaction that **does not** give benzoic acid as the major product is :-

(1)
$$CH_2OH$$
 $K_2Cr_2O_7$

(2)
$$(i)$$
 (i) (i)

$$(4) \bigcirc CH_2OH \longrightarrow KM_nO_4/H^+ \longrightarrow$$

CA0219

- **39.** When vapours of a secondary alcohol is passed over heated copper at 573 K, the product formed is:-
 - (1) a carboxylic acid (2) an aldehyde
 - (3) a ketone (4) an alkene

CC0220

40. The major products C and D formed in the following reactions respectively are:-

$$H_{3}C\text{--}CH_{2}\text{--}CH_{2}\text{--}O\text{--}C(CH_{3})_{3} \xrightarrow{\text{excess HI}} C + D$$

- (1) H₃C-CH₂-CH₂-I and I-C(CH₃)₃
- (2) H₃C-CH₂-CH₂-OH and I-C(CH₃)₃
- (3) H₃C-CH₂-CH₂-I and HO-C(CH₃)₃
- (4) H₃C-CH₂-CH₂-OH and HO-C(CH₃)₃

AE0221

NEET(UG) 2020

- **41.** Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as:
 - (1) Cross Aldol condensation
 - (2) Aldol condensation
 - (3) Cannizzaro's reaction
 - (4) Cross Cannizzaro's reaction

NEET(UG) 2020 (COVID-19)

42. Which of the following acid will form an (a) Anhydride on heating and (b) Acid imide on strong heating with ammonia?

CA0238

43. Identify compound (A) in the following reaction:

- (1) Benzoyl chloride
- (2) Toluene
- (3) Acetophenone
- (4) Benzoic acid

CC0239

CC0240

NEET(UG) 2021

44. What is the IUPAC name of the organic compound formed in the following chemical reaction?

Acetone
$$\xrightarrow{\text{(i) } C_2H_5MgBr, dry Ether}$$
 Product

- (1) 2-methyl propan-2-ol
- (2) pentan-2-ol
- (3) pentan-3-ol
- (4) 2-methyl butan-2-ol

45. The product formed in the following chemical reaction is

$$\begin{array}{c|c}
O & & O \\
CH_2-C-OCH_3 & & NaBH_4 \\
CH_3 & & C_2H_5OH
\end{array}$$
?

(2)
$$CH_2$$
- CH_2 - OH

$$(3) \begin{array}{c} OH & H \\ CH_2-C-CH_3 \\ CH_3 \end{array}$$

$$(4) \begin{array}{c} OH & OH \\ CH_2-C-OCH_3 \\ CH_3 \end{array}$$

CC0241

46. Match List-II with List-II.

List-I

Hell-Volhard-

List-II

Zelilnsky reaction

- (b) \bigcup_{\parallel} R-C-CH₃+ NaOX \longrightarrow
- (ii) Gattermann-Koch Reaction
- (c) R-CH₂-OH + R'COOH

(iii) Haloform

 $\xrightarrow{\text{Conc. H}_2\text{SO}_4}$

reaction

(d) R-CH₂-COOH

(iv) Esterification

$$\frac{\text{(i) } X_2/\text{RedP}}{\text{(ii) } H_2\text{O}}$$

Choose the **correct** answer from the options given below.

- (1) (a)-(iv), (b)-(i), (c)-(ii), (d)-(iii)
- (2) (a)-(iii), (b)-(ii), (c)-(i), (d)-(iv)
- (3) (a)-(i), (b)-(iv), (c)-(iii), (d)-(ii)
- (4) (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

CA0242

47. The intermediate compound 'X' in the following chemical reaction is:

$$CH_3$$
 + CrO_2Cl_2 CS_2 X H_3O^+

(2)
$$CH(OCOCH_3)_2$$

$$(3) \bigcirc CH <_C^C$$

$$(4) \bigcirc CH <_H^{Cl}$$

CC0243

NEET (UG) 2021(Paper-2)

- **48.** Which of the following reactions is not possible?
 - (1) $HC \equiv CH + NaOH \rightarrow HC \equiv CNa + H_2O$

$$(2) \bigcirc + HCl \longrightarrow \bigcirc -Cl$$

- (3) $C_2H_5OH + NaCl \rightarrow C_2H_5Cl$
- (4) All of the these

HC0244

NEET(UG) 2022

49. Given below are two statements:

Statement I:

In Lucas test, primary, secondary and tertiary alcohols are distinguished on the basis of their reactivity with cone. HCl + ZnCl₂, known as Lucas Reagent.

Statement II:

Primary alcohols are most reactive and immediately produce turbidity at room temperature on reaction with Lucas Reagent.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both **Statement I** and **Statement II** are incorrect.
- (2) **Statement I** is correct but **Statement II** is incorrect.
- (3) Statement I is incorrect but Statement II is correct
- (4) Both **Statement I** and **Statement II** are correct

AE0245

50. Given below are two statements: -

Statement I:

The boiling points of aldehydes and ketones are higher than hydrocarbons of comparable molecular masses because of weak molecular association in aldehydes and ketones due to dipole - dipole interactions.

Statements II:

The boiling points aldehydes and ketones are lower than the alcohols of similar molecular masses due to the absence of H-bonding.

In the light of the statements, choose the most appropriate answer from the options given below:

- (1) Both statements I and statements II are incorrect.
- (2) Statement I is correct but statements II is incorrect
- (3) Statements I is incorrect but statements II is correct.
- (4) Both statements I and statements Ii are correct.

(d) Oxime

Pre-Medical

51. Match **List-I** with **List -II**.

List-I	List-II					
(Products formed)	(Reaction of carbonyl					
	compound with)					
(a) Cyanohydrin	(i) NH ₂ OH					
(b) Acetal	(ii) RNH ₂					
(c) Schiff's base	(iii) alcohol					

Choose the correct answer from the options given below:

(iv) HCN

CC0247

52. Which one of the following is not formed when acetone reacts with 2-pentanone in the presence of dilute NaOH followed by heating?

(1)
$$CH_3$$
 CH_3 CH_3 CH_3

(4)
$$H_3C$$
 CH_3 CH_3

CC0248

NEET(UG) 2022 (Overseas)

53. Given below are two statements:

Statement - I : The product of reaction of phenol with bromine depends on the nature of solvent.

In light of the above statements, choose the most appropriate answer from the options given below:

- (1) **Statement-I** is incorrect and **Statement-II** is correct
- (2) Both **Statement-I** and **Statement-II** are correct
- (3) Both **Statement-I** and **Statement-II** are incorrect
- (4) **Statement-I** is correct and **Statement-II** is incorrect

AE0249

54. The major products formed in the following reaction are

$$H_{3}C$$
 $H_{3}C$
 H

AE0250

55. Given below are two statements:

 $\begin{tabular}{ll} \textbf{Statement-I}: Aldehydes and ketones having at least one α-hydrogen undergo aldol condensation in the presence of dilute alkali as catalyst. \end{tabular}$

Statement-II: When aldol condensation is carried out between two different aldehydes, it is called cross aldol condensation. Ketones do not give this reaction.

In light of the above statements, choose the most appropriate answer from the options given below:

- Statement-I is incorrect and Statement-II is correct.
- (2) Both Statement-I and Statement-II are correct.
- (3) Both **Statement-I** and **Statement-II** are incorrect
- (4) **Statement-I** is correct and **Statement-II** is incorrect.

CC0251

56. The product(s) formed from the following reaction is/are

- (1) RCH₂COOH only
- (2) R-CH₂-CH-CH₂-R only COOH
- (3) RCOOH and RCH₂COOH
- (4) RCOOH only

CC0252

Re-NEET(UG) 2022

57. Match the reagents **(List-I)** with the product **(List-II)** obtained from phenol.

	List-I		List-II			
(a)	(i) NaOH	(i)	Benzoquinone			
	(ii) CO ₂					
	(iii) H ⁺					
(b)	(i) Aqueous	(ii)	Benzene			
	NaOH + CHCl ₃					
	(ii) H ⁺					
(c)	Zn duct, Δ	(iii)	Salicyl			
			aldehyde			
(d)	Na ₂ Cr ₂ O ₇ , H ₂ SO ₄	(iv)	Salicylic acid			

Choose the **correct answer** from the options given below:

$$(1)$$
 (a) $-$ (iii), (b) $-$ (iv), (c) $-$ (i), (d) $-$ (ii)

(2) (a)
$$-$$
 (ii), (b) $-$ (i), (c) $-$ (iv), (d) $-$ (iii)

(3) (a)
$$-$$
 (iv), (b) $-$ (iii), (c) $-$ (i), (d) $-$ (i)

$$(4)$$
 (a) $-$ (iv), (b) $-$ (ii), (c) $-$ (i), (d) $-$ (iii)

AE0253

58. The incorrect method to synthesize benzaldehyde is:

(3)
$$CH_3$$
, CrO_2Cl_2 , followed by H_3O^+ in CS_2

(4)
$$CN$$
, CH_3MgBr , followed by H_3O^+

CC0254

- **59.** Which one of the following reaction sequence is incorrect method to prepare phenol?
 - (1) Aniline, NaNO₂ + HCl, H₂O, heating
 - (2) Cumene, O₂, H₃O⁺

AE0255

60. The product formed from the following reaction sequence is :

$$H \xrightarrow{\text{(i) HCN, (ii) } H_3O^+}$$

$$(3:1)$$

EXERCISE-II (Previous Year Questions)													ANS	NER	KEY
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans.	3	1	1	3	1	1	1	1	4	1	3	4	2	2	3
Que.	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Ans.	2	1	1	2	1	4	3	1	2	3	2	2	4	2	4
Que.	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
Ans.	1	2	4	3	4	4	2	3	3	1	1	1	1	4	4
Que.	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
Ans.	4	1	4	2	4	3	1	2	2	3	3	3	4	3	2

EXERCISE-III (Analytical Questions)

- **1.** Methanol can be distinguished from ethanol by the following except
 - (1) Reaction with iodine and alkali
 - (2) Reaction with salicylic acid and H₂SO₄
 - (3) Reaction with Lucas reagent
 - (4) Boiling point

AE0147

- **2.** Ethanol on heating with acetic acid in the presence of a few drops of sulphuric acid gives the smell of
 - (1) Oil of wintergreen
 - (2) Oil of mustard
 - (3) An ester
 - (4) Oil of bitter almonds

CA0148

3. The compounds A, B and C in the reaction sequence are given by the set:-

$$CH_3CH_2OH \xrightarrow{BBr} A \xrightarrow{Mg} B$$

$$\xrightarrow{\text{(i)}CH_3CHO} C$$

- (1) CH₃CH₂Br, CH₃CH₂MgBr, (CH₃)₃C—OH
- (2) CH₃CH₂Br, (CH₃CH₂)₂Mg,(CH₃)₂CHCH₃OH
- (3)CH₃CH₂Br,CH₃CH₂MgBr,CH₃CH(OH)CH₂CH₃
- (4) CH₃CHBr₂,CH₃CH(MgBr)₂,CH₃CH(OH)CH₃

AE0149

4. Which of the following reactions will not lead to a phenol:-

(1)
$$C_6H_5SO_3Na + NaOH \xrightarrow{i) Fuse/\Delta}$$

(2)
$$C_6H_5N_9Cl + H_9O \xrightarrow{Boil}$$

(3)
$$C_6H_5ONa + RX \xrightarrow{NaOH}_{Heat}$$

(4)
$$OH$$
 + NaOH(CaO) \longrightarrow COONa

HD0150

Master Your Understanding

5. The structures of the compounds / ions A, B and C in the reaction sequence are given by the set:-

$$\begin{array}{c}
CI \\
& 2OH \\
\hline
& 360^{\circ}
\end{array}
A - \begin{array}{c}
HCI \\
CH_{3}I
\end{array}
C$$

(1)
$$\bigcirc$$
 OH, \bigcirc CI, \bigcirc CH₃

HD0151

6.
$$A \leftarrow PCl_5$$
 OH Zn Distil B

NaOH CH₃COCl

The compounds A, B and C in the above reaction sequence are :-

- (1) Chlorobenzene, benzene, methyl benzoate
- (2) Triphenyl phosphate, benzene, phenyl acetate
- (3) Benzyl chloride, benzene, phenyl acetate
- (4)Benzyl chloride, benzene, phenylacetyl chloride

AE0152

7. In the reaction sequence —

$$SO_3Na \xrightarrow{NaOH} A \xrightarrow{CH_3I} B \xrightarrow{HI} C+D$$

- A, B, C and D are given by the set :-
- (1) Sodium phenate, anisole, C₆H₅I, CH₃OH
- (2) Sodium phenate, phenetole, C₂H₅I, C₆H₅OH
- (3) Sodium phenate, anisole, C₆H₅OH, CH₃I
- (4) Sodium phenate, phenetole, C₆H₅I, C₂H₅OH

HD0153

8. Compound A and C in the following reaction are

$$CH_3CHO \xrightarrow{\text{(i) } CH_3MgBr} (A) \xrightarrow{H_2SO_4} (B) \xrightarrow{\text{oxidation}} (C)$$

- (1) Identical
- (2) Functional isomer
- (3) Positional isomer
- (4) Optical isomer

CC0154

9. Which of the following aldehydes does not form iodoform on heating with iodine and alkali?

- (2) ICH₂CHO
- (3) CH₃-CH₂-CHO

HD0155

- 10. A carbonyl compound gives a positive iodoform test but does not reduce Tollen's reagent or Fehling's solution. It forms a cyanohydrin with HCN, which on hydrolysis gives a hydroxy acid with a methyl side chain. The compound is?
 - (1) Acetaldehyde
 - (2) Propionaldehyde
 - (3) Acetone
 - (4) Crotonaldehyde

CC0157

- 11. Which of the following statement is wrong:-
 - (1) All methyl ketones give a positive iodoform test
 - (2) Acetaldehyde is the only aldehyde that gives iodoform test
 - (3) All secondary alcohols give positive iodoform test
 - (4) Any alcohol that can be oxidised to an acetyl group gives a positive iodoform test

HD0158

12. The compounds A, B and C in the reaction sequence

$$CH_3$$
 $C=O$ $\xrightarrow{I_2}$ $A \xrightarrow{Ag}$ $B \xrightarrow{dil. H_2SO_4}$ CH_3 CH_3

are given by the set :-

- (1) CHI₃, H₂C=CH₂, CH₃CH₂-OH
- (2) CHI₃, HC≡CH, CH₃CHO
- (3) CHI₃, CH₃-C≡CH, CH₃COCH₃

HD0159

13. In the reaction sequence

$$RCOCl + H_2 \xrightarrow{Pd+BaSO_4} A \xrightarrow{HCN} B \xrightarrow{H_3O^{\oplus}} C$$

A,B and C are given by the set :-

- (1) RCHO, RCH(OH)CN, RCH(OH)CH2NH2
- (2) RCHO, RCH(OH)CN, RCH(OH)COOH

(4) RCHO, R-CH₂-CN, R-CH₂-COOH

CA0160

14. In the reaction sequence

$$CH_3-C = CH \xrightarrow{\text{dil } H_2SO_4.Hg^{\oplus 2}} A \xrightarrow{CHCl_3} B$$

$$I_2 \downarrow NaOH$$

$$C$$

A, B and C are given by the set :-

- (1) CH₃CH₂CHO, CH₃CH₂CH₂CI, CHI₃
- '2) CH₃COCH₃,CCl₃–C–CH₃ , CHI₃ || ||
- (3) CH₃COCH₃, CCl₃–C(CH₃)₂ ,CHl₃ | OH
- (4) CH_3CH_2CHO , $CCl_3-CH-CH_2-CH_3$, CHI_3 OH

Chemistry: Oxygen Containing Compound Telegram: @Chalnaayaa

15. The reagents A and B in the reaction sequence $CH_3COOC_2H_5 \xrightarrow{A} CH_3COOC(CH_3)_3$ \xrightarrow{B} CH₃CONHNH₂

are given by the set:-

- (1) CH_3 -CH-OH , H_2N - NH_2
- (2) CH_3 -CH-OH , H_2N -OH CH_3
- (3) CH₃-C-OH, H₂N-NH₂
 CH₃
- CH₃ (4) CH₃-C-OH, H₂N-OH CH₃

CA0163

- 16. Methyl amine reacts with acetyl chloride and forms :-
 - (1) CH₃NH₂
- (2) CH₂NHNa
- (3) CH₃NHCOCH₃
- (4) (CH₃)₂NCOCH₃

CA0164

- during **17.** Intermediates formed reaction $R-C-NH_2$ with Br_2 and KOH are:
 - (1) RCONHBr and RNCO
 - (2) RNHCOBr and RNCO
 - (3) RNH—Br and RCONHBr
 - (4) RCONBr₂

AM0165

18. $CH_3CH_2Cl \xrightarrow{NaCN} X \xrightarrow{Ni/H_2} Y \xrightarrow{Acetic} Z$

Z in the above reaction sequence is :-

- (1) CH₃CH₉CH₉NHCOCH₃
- (2) CH₃CH₂CH₂NH₂
- (3) CH₃CH₂CH₂CONHCH₃
- (4) CH₃CH₂CH₂CONHCOCH₃

CA0166

19. In a set of the given reactions, acetic acid yielded a product C.

$$CH_3COOH \xrightarrow{PCl_5} A \xrightarrow{C_6H_6} B$$

 $\xrightarrow{C_2H_5 \text{ MgBr}/H_3O^{\oplus}} C$ product C would be:-

- (1) $CH_3CH(OH)C_2H_5$
- $(2) CH_3COC_6H_5$
- (3) $CH_3CH(OH)C_6H_5$ (4) $CH_3-C(OH)C_6H_5$

CA0167

- CH₃CHO and CH₃COCH₃ **20**. can distinguished by :-
 - (1) Fehling solution
 - (2) Grignard reagent
 - (3) Schiff's reagent
 - (4) Tollen's reagent

PO0168

 $CH_3CH_2CH_2-C\equiv N \xrightarrow{H_3O^{\oplus}} A \xrightarrow{NH_3}$

Product 'B' is :-

- (1) CH₃-CH₂CH₂-C-OH
- (3) CH₃CH₂CH₂-NC

CA0170

- **22**. Sodium ethoxide has reacted with ethanoyl chloride. The compound that is produced in the above reaction is :-
 - (1) Ethyl chloride
 - (2) Ethyl ethanoate
 - (3) Diethyl ether
 - (4) 2-Butanone

CA0171

Sodium phenoxide when heated with CO₂ under pressure at 125°C yields a product which on acetylation produces C

$$\bigcirc \hspace{-0.5cm} \begin{array}{c} \hspace{-0.5cm} - \hspace{-0.5cm} \text{ONa} \hspace{-0.5cm} + \hspace{-0.5cm} \text{CO}_2 \hspace{-0.5cm} - \hspace{-0.5cm} \frac{125^{\circ}\hspace{-0.5cm}\text{C}}{5 \hspace{-0.5cm} \text{atm.}} \hspace{-0.5cm} \text{B} \hspace{-0.5cm} - \hspace{-0.5cm} \stackrel{\text{H}^+}{\hspace{-0.5cm} \text{Ac}_2 \text{O}} \hspace{-0.5cm} + \hspace{-0.5cm} \text{C} \end{array}$$

The major product C would be:

AE0175

Which of the following reaction sequence does not give phenol?

$$(4) \bigcirc O_2 \longrightarrow H^+ \longrightarrow H_2O$$

AE0222

25. Which of the following reactions does not give aldehyde as major product?

(1) RCH₂OH
$$\stackrel{\text{CrO}_3}{\longrightarrow}$$
 HCI

(2)
$$RCH_{9}OH \xrightarrow{anhy. CrO_{3}}$$

(3) RCH₂OH
$$\xrightarrow{\text{Cu/573K}}$$

(4)
$$RCH_2OH \xrightarrow{KMnO_4, H^+}$$

CC0223

Which of the following can be used to prepare **26**. benzaldehyde?

(I)
$$\langle O \rangle$$
 $C - Cl \xrightarrow{H_2}$ $Pd - BaSO_4$

(II)
$$\langle O \rangle$$
 $CH_3 \xrightarrow{Cl_2, \text{ hv}} \xrightarrow{H_2O} 100^{\circ}C$

(III)
$$CH_3 \xrightarrow{CrO_3} \xrightarrow{H_3O^+} \Delta$$

(1) I, II

(2) II, III, IV

(3) I, III, IV

(4) I, II, III, IV

CC0224

Select the correct option for the following reaction:

$$>$$
C=O+NaHSO₃ \longrightarrow C $<$ SO₃H $\xrightarrow{H^+ \text{ transfer}}$ C $<$ OH

- (1) The position of equilibrium is on RHS for most ketones
- The position of equilibrium is on LHS for most aldehydes
- (3) The hydrogen sulphite addition compound is water insoluble
- (4) Sulphite addition compounds are useful for separation and purification of aldehydes

28. Select the correct option about Fehling's test:

- (1) Fehling test is given by all aldehydes but not by ketones
- (2) A red brown ppt. of CuO confirms the test
- (3) Fehling solution 'A' is aq. CuSO₄
- (4) Fehling solution 'B' is alkaline sodium potassium citrate

PO0226

29. Correct reactivity order towards nucleophilic addition is

- (1) b > a > d > c
- (2) a > b > d > c
- (3) b > d > c > a
- (4) b > d > a > c

CC0227

30. -CH- CH_2 -OH is obtained from following CH_3

method

(1)
$$CH_3$$
- CH_2 - CH - $Cl + H_2O $CH_3$$

- (2) CH₃CHO, CH₃-CH₂MgBr, H₂O
- (3) H–CHO, CH_3 –CHMgBr, H_2O
- (4) CH₃-CH-CH₂-NH₂ + HNO₂

31. For the reaction :-

Ph–CHO + Ph–C–CH
$$_3$$
 $\xrightarrow{OH \over 293K}$ Major

The major product is:

CC0229

- **32.** Which of the following substrates gives same product on the reduction with DIBAL-H?
 - (1) CH₃-(CH₂)₄-CN and CH₃-(CH₂)₅-COOH
 - (2) CH₃-(CH₂)₄-CN and CH₃-(CH₂)₄-COOC₂H₅
 - (3) CH₃-(CH₂)₄-COOH and CH₃-(CH₂)₄-COCH₃
 - (4) CH₃-(CH₂)₅-COOH and CH₃(CH₂)₄-COOC₂H₅

AM0230

- **33.** Choose the correct alternative from the following.
 - (1) Ketones are more reactive than aldehydes towards NAR.
 - (2) Aldehydes are more reactive than ketones towards NAR.
 - (3) Formaldehyde is the least reactive carbonyl Compound towards NAR
 - (4) Steric hindrance does not play a role to effect the reactivity of carbonyl componds towards NAR.

CC0231

34. Which of the following reagents is/are used in the given reaction?

$$RCHO \longrightarrow RCOOH$$

- (1) KMnO₄/H⁺
- (2) Potassium dichromate
- (3) Tollen's reagent
- (4) All of the above

CC0232

- **35.** Which of the following statements is/are correct?
 - (1) Aldehydes are generally oxidised under vigorous conditions
 - (2) Ketones are easily oxidised to carboxylic acids even under mild oxidising agents
 - (3) Oxidation of ketones involves carbon-carbon bond cleavage to give a mixture of carboxylic acids having lesser number of c-atoms than the parent ketones.
 - (4) All of the above

CC0233

- **36.** Which type of reaction(s) is/are involved in the cannizzaro reaction?
 - (1) Reduction
- (2) Oxidation
- (3) Both (1) and (2)
- (4) None of these

CC0234

37. The product formed during Hell-volhard-Zelinsky reaction is :-

CA0235

ANSWER KEY **EXERCISE-III** (Analytical Questions) 5 2 3 4 6 8 10 12 13 15 Que. 11 14 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 Ans. 17 18 19 20 21 22 23 24 25 26 27 28 29 30 Que. 16 3 1 2 4 2 3 Ans. 1 4 3 3 3 31 32 33 34 35 36 37 Que. Ans. 2 2 3 3 1