Section 2.3 – Composition Functions

Composition of Functions

The composite function $g\circ f$, the composite of f and g, is defined as

$$(g \circ f)(x) = g(f(x))$$

Where x is in the domain of f and g(x) is in the domain of f

Example

Given that f(x) = 5x + 6 and $g(x) = 2x^2 - x - 1$, find $(f \circ g)(x)$ and $(g \circ f)(x)$

Solution

$$(f \circ g)(x) = f\left(g\left(x\right)\right)$$

$$= 5(-----) + 6$$

$$= 5(2x^2 - x - 1) + 6$$

$$= 10x^2 - 5x - 5 + 6$$

$$= 10x^2 - 5x + 1$$

Domain: All real numbers

Domain: All real numbers

$$(g \circ f)(x) = g(f(x))$$

 $= g(5x+6)$ **Domain:** All real numbers
 $= 2()^2 - () - 1$
 $= 2(5x+6)^2 - (5x+6) - 1$
 $= 2(25x^2 + 60x + 36) - 5x - 6 - 1$
 $= 50x^2 + 120x + 72 - 5x - 7$
 $= 50x^2 + 115x + 65$ **Domain:** All real numbers

Example

Let $f(x) = \sqrt{x}$ and g(x) = 4x + 2, find each of the following and its domain.

a)
$$(f \circ g)(x)$$

b)
$$(g \circ f)(x)$$

Solution

a)
$$(f \circ g)(x) = f(g(x))$$

$$= f(4x+2) \qquad (-\infty,\infty)$$

$$= \sqrt{4x+2}$$

$$4x+2 \ge 0$$

$$4x \ge -2$$

$$x \ge -\frac{2}{4}$$

Domain: $\underline{x} \ge -\frac{1}{2}$ $\left[-\frac{1}{2}, \infty\right)$

b)
$$(g \circ f)(x) = g(f(x))$$

 $= g(\sqrt{x})$ $x \ge 0$
 $= 4\sqrt{x} + 2$ $x \ge 0$

Domain: $\underline{x \ge 0}$ $[0, \infty)$

Example

Let f(x) = 2x - 1 and $g(x) = \frac{4}{x - 1}$ Find:

a)
$$(f \circ g)(2)$$

b)
$$(g \circ f)(-3)$$

Solution

a)
$$(f \circ g)(2) = f(g(2))$$

$$= f(\frac{4}{2-1})$$

$$= f(4)$$

$$= 2(4)-1$$

$$= 7|$$

b)
$$(g \circ f)(-3) = g(f(-3))$$

= $g(2(-3)-1)$

$$= g(-7)$$

$$= \frac{4}{-7 - 1}$$

$$= \frac{4}{-8}$$

$$= -\frac{1}{2}$$

Example

Given that $f(x) = \frac{4}{x+2}$ and $g(x) = \frac{1}{x}$, find

- a) $(f \circ g)(x)$
- **b**) Domain of $(f \circ g)(x)$

Solution

a)
$$(f \circ g)(x) = f(g(x))$$

$$= f\left(\frac{1}{x}\right)$$
Domain:: $x \neq 0$

$$= \frac{4}{\frac{1}{x} + 2}$$

$$= \frac{4}{\frac{1+2x}{x}}$$

$$= 4 \div \frac{1+2x}{x}$$

$$= 4\frac{x}{1+2x}$$

$$= \frac{4x}{1+2x}$$

Domain:: $x \neq -\frac{1}{2}$

b) Domain:
$$\left(-\infty, -\frac{1}{2}\right) \cup \left(-\frac{1}{2}, 0\right) \cup (0, \infty)$$

Exercises Section 2.3 – Composition Functions

1. Given that f(x) = 2x - 5 and $g(x) = x^2 - 3x + 8$, find $(f \circ g)(x)$, $(g \circ f)(x)$ and their domain then find $(f \circ g)(7)$

2. Given that $f(x) = \sqrt{x}$ and g(x) = x - 1, find

a)
$$(f \circ g)(x) = f(g(x))$$

b)
$$(g \circ f)(x) = g(f(x))$$

c)
$$(f \circ g)(2) = f(g(2))$$

3. Given that $f(x) = \frac{x}{x+5}$ and $g(x) = \frac{6}{x}$, find

a)
$$(f \circ g)(x) = f(g(x))$$

b)
$$(g \circ f)(x) = g(f(x))$$

c)
$$(f \circ g)(2) = f(g(2))$$

4. Find $(f \circ g)(x)$, $(g \circ f)(x)$, f(g(-2)) and g(f(3)): $f(x) = 2x^2 + 3x - 4$, g(x) = 2x - 1

5. Find $(f \circ g)(x)$, $(g \circ f)(x)$, f(g(-2)) and g(f(3)): $f(x) = x^3 + 2x^2$, g(x) = 3x

6. Find $(f \circ g)(x)$, $(g \circ f)(x)$, f(g(-2)) and g(f(3)): f(x) = |x|, g(x) = -7

(7-36) For the given function; find:

a) Find $(f \circ g)(x)$ and the **domain** of $f \circ g$

b) Find $(g \circ f)(x)$ and the **domain** of $g \circ f$

7. f(x) = x - 3 and g(x) = x + 3

8. $f(x) = \frac{2}{3}x$ and $g(x) = \frac{3}{2}x$

9. f(x) = x - 1 and $g(x) = 3x^2 - 2x - 1$

10. f(x) = 3x - 2 and $g(x) = x^2 - 5$

11. $f(x) = x^2 - 2$ and g(x) = 4x - 3

12. $f(x) = 4x^2 - x + 10$ and g(x) = 2x - 7

13. $f(x) = \sqrt{x}$ and g(x) = x + 3

14. $f(x) = \sqrt{x}$ and g(x) = 2 - 3x

15. f(x) = 3x + 2 and $g(x) = \sqrt{x}$

16. $f(x) = x^4$ and $g(x) = \sqrt[4]{x}$

17. $f(x) = x^n$ and $g(x) = \sqrt[n]{x}$

18. $f(x) = x^2 - 3x$ and $g(x) = \sqrt{x+2}$

19. $f(x) = \sqrt{x-2}$ and $g(x) = \sqrt{x+5}$

20. $f(x) = x^2 + 2$ and $g(x) = \sqrt{3-x}$

21. $f(x) = x^5 - 2$ and $g(x) = \sqrt[5]{x+2}$

22. $f(x) = 1 - x^2$ and $g(x) = \sqrt{x^2 - 25}$

23.
$$f(x) = 2x + 3$$
 and $g(x) = \frac{x-3}{2}$

24.
$$f(x) = 4x - 5$$
 and $g(x) = \frac{x + 5}{4}$

25.
$$f(x) = \frac{4}{1-5x}$$
 and $g(x) = \frac{1}{x}$

26.
$$f(x) = \frac{1}{x-2}$$
 and $g(x) = \frac{x+2}{x}$

27.
$$f(x) = \frac{1}{1+x}$$
 and $g(x) = \frac{1-x}{x}$

28.
$$f(x) = \frac{3x+5}{2}$$
 and $g(x) = \frac{2x-5}{3}$

29.
$$f(x) = \frac{x-1}{x-2}$$
 and $g(x) = \frac{x-3}{x-4}$

30.
$$f(x) = \frac{6}{x-3}$$
 and $g(x) = \frac{1}{x}$

31.
$$f(x) = \frac{6}{x}$$
 and $g(x) = \frac{1}{2x+1}$

32.
$$f(x) = 3x - 7$$
 and $g(x) = \frac{x + 7}{3}$

33.
$$f(x) = \frac{2x+3}{x-4}$$
 and $g(x) = \frac{4x+3}{x-2}$

34.
$$f(x) = \frac{2x+3}{x+4}$$
 and $g(x) = \frac{-4x+3}{x-2}$

35.
$$f(x) = x+1$$
 and $g(x) = x^3 - 5x^2 + 3x + 7$

36.
$$f(x) = x - 1$$
 and $g(x) = x^3 + 2x^2 - 3x - 9$

(37 – 48) Evaluate each composite function, where f(x) = 2x - 3 and $g(x) = x^2 - 5x$

37.
$$(f \circ g)(4)$$

40.
$$(g \circ f)(-2)$$

40.
$$(g \circ f)(-2)$$
 43. $(f \circ g)(\sqrt{2})$ **46.** $(g \circ f)(3b)$

46.
$$(g \circ f)(3b)$$

38.
$$(g \circ f)(4)$$

41.
$$(f \circ f)(-3)$$

44.
$$(g \circ f)(\sqrt{3})$$

38.
$$(g \circ f)(4)$$
 41. $(f \circ f)(-3)$ **44.** $(g \circ f)(\sqrt{3})$ **47.** $(f \circ g)(k+1)$

39.
$$(f \circ g)(-2)$$
 42. $(g \circ g)(7)$

42.
$$(g \circ g)(7)$$

45.
$$(f \circ g)(2a)$$

48.
$$(g \circ f)(k-1)$$