Math 101 HW 30

Jeff Carney

April 20, 2017

3

 \mathbf{Q} : Prove Let f be a strictly increasing function on an interval J such that f(J) is an interval. Then f is continuous on J. Same example from class but prove for x_0 is an endpoint of J

Let x_0 be an endpoint J. WLOG x_0 is the lower endpoint. Let $\varepsilon > 0$. Since x_0 is the lower endpoint of J, $\exists x_1 \in J$ s.t. $x_0 < x_1$. Let $y_1 = \min\{f(x_0) + \varepsilon, f(x_1)\}$. We know $y_1 > f(x_0)$ because f is strictly increasing. So $f(x_0) < y_1 \le f(x_1)$. Since f(J) is an interval it has the interval property, so $y_1 \in f(J)$. So $\exists a_1 \in J$ s.t. $f(a_1) = y_1$. We also know that $x_0 < a_1$ since f is strictly increasing. Now $f(a_1) \le f(x_0) + \varepsilon$. Let $\delta = a_1 - x_0$. Let $x \in J$ s.t. $|x - x_0| < \delta$. Then $x_0 - \delta < x < x_0 + \delta = a_1$. Since f is strictly increasing and $x < a_1$ we know that $f(x) < f(a_1) \le f(x_0) + \varepsilon$ and so $f(x) < f(x_0) + \varepsilon$. Now since $x \in J$ and x_0 is an endpoint of J we know that $x_0 \le x \Rightarrow f(x_0) - \varepsilon < f(x_0) \le f(x) \Rightarrow f(x_0) - \varepsilon < f(x)$. Thus we have $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon \Rightarrow |f(x) - f(x_0)| < \varepsilon$. \therefore f is continuous at x_0 . Hence f is continuous at the endpoints of J.

4

 \mathbf{Q} : Recall from the lecture that a set J is said to be an *interval* if for any $x,y\in J$ and x< z< y, then $z\in J$. Let I and J be intervals. Suppose that I is bounded and contains its lub but not its glb. Prove that I has the form (a,b]. Suppose that J is bounded above and does not contain its lub and is unbounded below. Prove that J has the form $(-\infty,b)$.

Interval I = (a, b]:

Let a = glb(I) and b = lub(I).

 (\subseteq)

Let $x \in I$. Since a = glb(I) and I does not contain its glb, we know a < x. Since b = lub(I) and I contains its lub then we know $x \le b$. Thus $x \in (a, b]$.

 \checkmark

 (\supseteq)

Let $x \in (a, b]$. So x > a = glb(I). Thus $\exists y \in I \text{ s.t. } y < x$. Since b is contained in I and b = glb(I) we know $x \leq b$. So $y < x \leq b$ and $y, b \in I$. By the interval property $x \in I$. $\therefore I = (a, b]$

 $\frac{\textbf{Interval }J=(-\infty,b)\textbf{:}}{\text{Let }b=\text{lub}(J).}$

 (\subseteq)

Let $x \in J$. Since b = lub(J) and b is not contained in J we know x < b. Thus, $x \in (-\infty, b)$.

 \checkmark

 (\supseteq)

Let $x \in (-\infty, b)$. So x < b = lub(J). Thus $\exists y \in I \text{ s.t. } x < y$. Since J is unbounded below $\exists z \in J \text{ s.t. } z < x$. So z < x < y and $z, y \in J$. By the interval property $x \in J$. $\therefore J = (-\infty, b)$.

Q: Let $\{a_n\}$ be a bounded non-decreasing sequence. Define a sequence $\{b_n\}$ by

$$b_n = \frac{a_1 + a_2 + \dots + a_n}{n}$$

Prove that $\{b_n\}$ is bounded and non-decreasing, and therefore converges. Hint: First prove that for every $n \in \mathbb{N}$

$$(n+1)(a_1 + \dots + a_n) \le n(a_1 + \dots + a_{n+1})$$

Let $n \in \mathbb{N}$. Then since $\{a_n\}$ is non-decreasing we know that $a_n \leq a_{n+1}$. Since n > 0 we have $n(a_n) \leq n(a_{n+1})$. Note that since $\{a_n\}$ is non-decreasing $a_1 + \ldots + a_n \leq n(a_n) \leq n(a_{n+1}) \Rightarrow a_1 + \ldots + a_n \leq n(a_{n+1})$. Now if we add $n(a_1 + \ldots + a_n)$ to both sides of that inequality we get $n(a_1 + \ldots + a_n) + (a_1 + \ldots + a_n) \leq n(a_1 + \ldots + a_{n+1}) \Rightarrow (n+1)(a_1 + \ldots + a_n) \leq n(a_1 + \ldots + a_{n+1})$. And so $b_n = \frac{a_1 + \ldots + a_n}{n} \leq \frac{a_1 + \ldots + a_{n+1}}{n+1} = b_{n+1}$ and so $\{b_n\}$ is non-decreasing. Now let n = n be an upper bound for $\{a_n\}$. Then n = n be an upper bound so n = n be a lower bound for $\{a_n\}$. Then n = n be an upper bound of n = n be a lower bound for $\{a_n\}$. Then n = n be an upper bound of n = n be a lower bound for n = n be an upper bound for n = n be a lower bound for n = n be an upper bound for n = n be an upper bound of n = n be an upper bound for n = n

3