Honors Mathematics IV RC 2

CHEN Xiwen

UM-SJTU Joint Institute

October 20, 2018

Table of contents

Implicit Functions

Slope Parametrization
The Envelope Equation
Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs Integral Equations Existence, Uniqueness and Stability

The Eigenvalue Problem Linear System of ODEs

Implicit Functions

Slope Parametrization

The Envelope Equation Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs Integral Equations Existence, Uniqueness and Stability

The Eigenvalue Problem Linear System of ODE

Linear System of ODEs

Slope Parametrization

Using slope parametrization γ , we have the followings for the curve.

► A point:

$$\gamma(p)=(x(p),y(p)).$$

- Slope at this point: p.
- Relation:

$$\dot{y}(p)=p\dot{x}(p).$$

Note. y'' should exists and $y'' \neq 0$ (i.e., y' is monotonic) for the validity of slope parametrization.

Implicit Functions

Slope Parametrization

The Envelope Equation

Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs Integral Equations Existence, Uniqueness and Stability

The Eigenvalue Problem Linear System of ODE

The Envelope Equation

Consider a family of smooth curves in \mathbb{R}^2

$$F = \{C_s, s \in I\}$$

with each curve C_s parametrized by

$$\gamma(s,\cdot): J \to \mathcal{C}_s, \qquad t \mapsto \gamma(s,t).$$

Then we have

- ▶ *envelope*: a curve \mathcal{E} such that every point of \mathcal{E} is tangent to a curve in F,
- ▶ the tangent point on the envelope $p = \gamma(s, \psi(s))$, and
- ▶ the envelope equation:

$$\frac{\partial \gamma_1}{\partial s} \frac{\partial \gamma_2}{\partial t} = \frac{\partial \gamma_1}{\partial t} \frac{\partial \gamma_2}{\partial s}, \qquad t = \psi(s).$$

Implicit Functions

Slope Parametrization
The Envelope Equation
Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs Integral Equations Existence, Uniqueness and Stability

The Eigenvalue Problem Linear System of ODEs

Equation.

$$F(y, y'; x) = 0,$$
 $\gamma(p) = (x(p), y(p)).$

Solution.

1. Substitute parametrization to obtain

$$F(y(p), p; x(p)) = 0.$$

2. Solve the equation using

$$\dot{y}(p) = p\dot{x}(p).$$

3. Find y(x) from x(p) and y(p). (Straight line solutions.)

Example 1. Solve the differential equation

$$y = (yy' + 2x)y'.$$

Example 2. Solve the differential equation

$$2y = 2x^2 + 4xy' + (y')^2.$$

$$y = xy' + g(y')$$
 (Clairaut's Equation)

Equation.

$$y = xy' + g(y').$$

Solution 1.

1. Straight line solution:

$$y = cx + g(c), c \in I.$$

2. Use slope parametrization and differentiate to obtain

$$x(p) = -\dot{g}(p), \qquad y(p) = -p\dot{g}(p) + g(p).$$

3. Find y(x) from x(p) and y(p).

$$y = xy' + g(y')$$
 (Clairaut's Equation)

$$y = xy' + g(y').$$

Solution 2.

1. Straight line solution:

$$y = cx + g(c), \qquad c \in I.$$

2. Find the envelope of straight line solutions using envelope equation $\frac{\partial \gamma_1}{\partial c} \frac{\partial \gamma_2}{\partial x} = \frac{\partial \gamma_1}{\partial x} \frac{\partial \gamma_2}{\partial c}$.

$$\gamma(c,x) = \begin{pmatrix} x \\ cx + g(c) \end{pmatrix} \Rightarrow 0 = x + g'(c).$$

3. The parametrization of the envelope is $\gamma(c, -\dot{g}(c))$ and

$$y(c) = -c\dot{g}(c) + g(c).$$

$$y = xy' + g(y')$$
 (Clairaut's Equation)

Example 3. Determine all the solutions for the following Clairaut's differential equations in explicit forms.

- 1. $y = xy' \sqrt{y' 1}$.
- 2. $y = xy' + y'^2$.

$$y = xy' + g(y')$$
 (Clairaut's Equation)

Example 3.

Figure: Solution Curves (1).

$$y = xy' + g(y')$$
 (Clairaut's Equation)

Example 3.

Figure: Solution Curves (2).

$$y = xf(y') + g(y')$$
 (d'Alembert's Equation)

Method.

► Form:

$$y = xf(y') + g(y').$$

- Solution:
 - 1. Straight line solution y = cx + d (if f(c) = c and d = g(c)).
 - 2. Use slope parametrization and differentiate to obtain

$$\dot{x} = \frac{\dot{xf}(p) + \dot{g}(p)}{p - f(p)}, \qquad \dot{y} = \dot{x}f + \dot{x}f + \dot{g}.$$

- 3. Solve the first ODE to obtain x(p) and then obtain y(p).
- 4. Find y(x) from x(p) and y(p).

Example 4. Determine the solutions of the following differential equation.

$$y = xy'^2 + \ln y'^2.$$

General Implicit Equations

Method.

► Form:

$$F(y,y';x)=0.$$

General rule: a coupled system

$$\dot{x} = -\frac{F_p}{F_x + pF_y}, \qquad \dot{y} = -\frac{pF_p}{F_x + pF_y}.$$

▶ Special case: the system above decouples such as F(y, y'; x) = G(x, y') - y or F(y, y'; x) = H(y, y') - x. Then respectively,

$$\dot{x} = \frac{G_p(x, p)}{p - G_x(x, p)},$$
 $y(p) = G(x(p), p),$ $\dot{y} = \frac{pH_p(y, p)}{1 - H_y(y, p)},$ $x(p) = H(y(p), p).$

Implicit Functions

Slope Parametrization
The Envelope Equation
Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs

Integral Equations
Existence, Uniqueness and Stability

The Eigenvalue Problem

Linear System of ODEs

Systems of First-Order ODEs

► Explicit systems of n first-order differential equations:

$$\dot{x}(t) = F(x, t)$$

where

$$x: \mathbb{R} \to \mathbb{R}^n$$
, $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$.

Systems of First-Order ODEs

► Higher Order equations:

$$x^{(n)}(t) = f(x, x', x'', \dots, x^{(n-1)}, t).$$

Introducing

$$x_1 := x$$
, $x_2 := x'$, $x_3 := x''$, ..., $x_n := x^{(n-1)}$,

we have

$$\begin{pmatrix} x'_1(t) \\ x'_2(t) \\ x'_3(t) \\ \vdots \\ x'_n(t) \end{pmatrix} = \begin{pmatrix} x_2(t) \\ x_3(t) \\ x_4(t) \\ \vdots \\ f(x_1, x_2, \dots, x_n, t) \end{pmatrix}.$$

Implicit Functions

Slope Parametrization
The Envelope Equation
Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs

Integral Equations

Existence, Uniqueness and Stability

The Eigenvalue Problem Linear System of ODEs

IVP and Integral Equations

For the IVP

$$\frac{dx}{dt} = F(x,t), \qquad x(t_0) = x_0 \in \mathbb{R}^n,$$

we have

integral equation:

$$x(t) = x_0 + \int_{t_0}^t F(x(s), s) ds.$$

▶ *Picard iteration*: guess $x^{(0)}(t)$, then

$$x^{(k+1)}(t) := x_0 + \int_{t_0}^t F(x^{(k)}(s), s) ds, \qquad k \in \mathbb{N}$$

converges to a unique function x(t) under suitable conditions.

Picard Iteration

The IVP is given by

$$\frac{dx}{dt} = F(x,t), \qquad x(t_0) = x_0.$$

Picard Iteration.

1. Start from

$$x^{(0)}(t)=x_0.$$

2. Find an approximating sequence of x_n given by the recurrent relation

$$x^{(k+1)}(t) = x_0 + \int_{t_0}^t F(x^{(k)}(s), s) ds.$$

Picard Iteration

Example 5. Find the approximating sequence $x^{(k)}$ for the IVP

$$x' = 2t(1+x), \qquad x(0) = 0.$$

Implicit Functions

Slope Parametrization
The Envelope Equation
Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs Integral Equations Existence, Uniqueness and Stability

The Eigenvalue Problem
Linear System of ODEs

The Fundamental Existence and Uniqueness Theorem

1.6.5. Theorem of Picard-Lindelöf. Let $x_0 \in \Omega$, where $\Omega \subset \mathbb{R}^n$ is open and let $t_0 \in I$, where $I \subset \mathbb{R}$ is an interval. Suppose $F : \Omega \times I \to \mathbb{R}^n$ is a continuous function satisfying a *Lipschitz estimate* in x: there exists an L > 0 such that for all $x, y \in \Omega$ and all $t \in I$,

$$||F(x,t)-F(y,t)|| \leq L||x-y||.$$

Then the initial value problem

$$\frac{dx}{dt} = F(x, t), \qquad x(t_0) = x_0$$

has a unique solution in some t-interval containing t_0 .

The Stability of Solutions

1.6.7. Gronwall's Inequality. Suppose that all the conditions of Theorem 1.6.5 are satisfied and that x and y satisfy the differential equation with initial values $x_0, y_0 \in \mathbb{R}^n$, i.e.,

$$\frac{dx}{dt} = F(x, t), \qquad x(t_0) = x_0,$$

$$\frac{dy}{dt} = F(y, t), \qquad y(t_0) = y_0.$$

Then

$$||x(t) - y(t)|| \le e^{L|t-t_0|} ||x_0 - y_0||.$$

Implicit Functions

Slope Parametrization
The Envelope Equation
Implicit Differential Equations

Systems of Equations

Systems of First-Order ODEs Integral Equations Existence, Uniqueness and Stability

The Eigenvalue Problem
Linear System of ODEs

Linear System of ODEs

Definition. A *linear system of equations* have the matrix form

$$\frac{dx}{dt} = A(t)x + b(t), \qquad t \in I \subset \mathbb{R},$$

where $A:I \to \operatorname{Mat}(n \times n,\mathbb{R})$ is a matrix-valued function of t and $b:I \to \mathbb{R}^n$.

Example. The second-order ODE

$$\ddot{x}(t) = a(t)\dot{x}(t) + bx(t) + c$$

with variable coefficients and $x_1 = x, x_2 = \dot{x}$ can be written as

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = \begin{pmatrix} x_2 \\ ax_2 + bx_1 + c \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ b & a \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ c \end{pmatrix} .$$

Fundamental System of Solutions

1.6.13. Proposition. Let $\{b_1,\ldots,b_n\}$ be a basis of $\mathbb{R}^n,I\subset\mathbb{R}$ an interval and let $x^{(k)}:I\to\mathbb{R}^n,k=1,\ldots,n$ satisfy the system

$$\frac{dx^{(k)}}{dt} = A(t)x^{(k)}, \qquad x^{(k)}(t_0) = b_k$$

with initial point $t_0 \in I$. Then $\{x^{(1)}, \ldots, x^{(n)}\}$ is a **fundamental system** for the equation $\dot{x} = A(t)x, t \in I$. The matrix $X : I \to \operatorname{Mat}(n \times n, \mathbb{R})$ given by

$$X(t) = (x^{(1)}, \dots, x^{(n)})$$

is a fundamental matrix for the IVP.

Construction of Solutions

For the linear system of differential equation with initial condition

$$\frac{dx}{dt} = A(t)x + b(t), \quad x(t_0) = x_0 \in \mathbb{R}^n, \quad t \in I \subset \mathbb{R},$$

we have solutions

Construction of Solutions

For the linear system of differential equation with initial condition

$$\frac{dx}{dt} = A(t)x + b(t), \quad x(t_0) = x_0 \in \mathbb{R}^n, \quad t \in I \subset \mathbb{R},$$

we have solutions

1. $x_{\text{hom}}(t)$: $x_{\text{hom}}(t) = \sum_{k=1}^{n} \lambda_k x^{(k)}(t)$, where $x^{(k)}(t)$, $k = 1, \dots, n$ satisfies

$$\frac{dx^{(k)}}{dt} = A(t)x^{(k)}, \quad \left(x^{(k)}(t_0) = b_k, x_0 = \sum_{k=1}^n \lambda_k b_k\right)$$

for some $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ and

$$\forall t \in I, \sum_{k=1}^{n} \lambda'_k x^{(k)}(t) = 0 \quad \Rightarrow \quad \lambda'_1 = \cdots = \lambda'_n = 0.$$

- 2. $x_{\text{part}}(t)$: Discussed later.
- 3. $x_{\text{inhom}}(t)$: $x_{\text{inhom}}(t) = x_{\text{hom}}(t) + x_{\text{part}}(t)$.

The Most Basic Case of Linear ODE Systems

Consider the linear, homogeneous system

$$\frac{dx}{dt}=Ax, \qquad x(0)=x_0,$$

where the matrix A is constant.

Attempt: the unique solution is given by

$$x(t)=e^{At}x_0.$$

Well-defined: using operator norm, we have

$$\sum_{k=1}^{\infty} \left\| \frac{A^k t^k}{k!} \right\| \le \sum_{k=1}^{\infty} \frac{\|A\|^k \cdot |t|^k}{k!} = e^{|t|\|A\|} - 1 < \infty.$$

The Most Basic Case of Linear ODE Systems

Consider the linear, homogeneous system

$$\frac{dx}{dt}=Ax, \qquad x(0)=x_0,$$

where the matrix A is constant.

Justification of the solution: A formal calculation gives

$$\frac{d}{dt}e^{At} = \frac{d}{dt} \sum_{k=0}^{\infty} \frac{A^k t^k}{k!} = \sum_{k=0}^{\infty} \frac{d}{dt} \frac{A^k t^k}{k!}$$
$$= \sum_{k=1}^{\infty} \frac{A^k t^{k-1}}{(k-1)!} = A \sum_{k=0}^{\infty} \frac{A^k}{k!}$$
$$= Ae^{At} = Ax$$

and

$$e^{At}|_{t=0}=1.$$

Thanks for your attention!