Melbourne University AES/MathWorks/NIH Seizure Prediction

Shivam Kalra & Ruifan Yu {shivam.kalra,ruifan.yu}@uwaterloo.ca

November 28, 2016

Problem Description

Introduction

- ▶ Nearly one-third of patients with epilepsy continue to have **seizures** despite optimal medication management [1].
- ► Seizures are a symptom associated with abnormal electrical activity in the brain.
- ▶ What is a seizure? and When to detect it? guestions remain elusive.
- ► Plenty data is available, **machine learning** can help in building seizure forecasting systems.
- ► Could save life!

Problem Description

Melbourne University AES/MathWorks/NIH Seizure Prediction

What is given and what is required?

- ► Human brain activity (intracranial EEG) taken from multiple sensors on brain.
- ► Each recording is 10 minutes long, recorded at 400 Hz resulting 240,000 data points per recording.
- Challenge is to classify unseen recording as Preictal (prior to seizure) or Interictal (at least an hour before seizure).

Problems with Data Set

There are only two types of people in the world, those who can extrapolate from incomplete data...

Training Data-set has...

- 1. Categorical Imbalance
- **2.** Missing Data or Random Dropouts

Problems with Data Set

Categorical Imbalance

Problems with Data Set

Missing/Dropouts in Data Set

- ► Random dropouts of **10 seconds or more** in the EEG signals across all the 16 channels.
- ► Exist in abundance (even in testing data set).
- ► Some training data is **entirely empty** (completely missing!!!)

Figure: Missing data in channel 1 and 3 from Patient 1's data set

Classification

Ingredients of our present classifier...

Ensemble of 3 different classifier models:

- 1. Deep Learning: CNN classification of Spectrograms
- 2. SVM classification on Random Transforms of Spectrograms
- 3. SVM/LR/RF classification using various DSP features

Kaggle score

We are at AUC \sim **0.74** as of now.

Classification

Ingredients of our present classifier...

Ensemble of 3 different classifier models:

- 1. Deep Learning: CNN classification of Spectrograms
- 2. SVM classification on Random Transforms of Spectrograms
- 3. SVM/LR/RF classification using various DSP features

Kaggle score

We are at AUC ~ 0.74 as of now.

Model 1: Deep Learning (CNN) on Spectrograms

Model 1: Deep Learning (CNN) on Spectrograms

Some background research ...

Why Convolution Neural Networks?

- ► Our **eternal love** for deep learning...
- ► CNN has been successful in [2].
- ▶ Iryna Korshunova's CNN [2] approach among top 10% in last year's competition.
- ► RUIFAN give me more references!!!

Options

Fine adjustement of the watermark position

- ▶ hoffset
- ▶ voffset

They admit any *positive* or *negative* spacing **unit**Note that some **warnings** about *badboxes* might be generated at compilation

License

Get the source of this theme and the demo presentation from

http://github.com/famuvie/beamerthemesimple

The theme *itself* is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

- S. Ramgopal, S. Thome-Souza, M. Jackson, N. E. Kadish,
 - I. Sánchez Fernández, J. Klehm, W. Bosl, C. Reinsberger,
 - S. Schachter, and T. Loddenkemper, "Seizure detection, seizure prediction, and closed-loop warning systems in epilepsy," vol. 37, pp. 291–307.
- I. Korshunova, "Faculty of sciences,"