BNIG

&

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Réf : DE-EX-01

Date: 22/11/2021

ENIG	Page : 1/4
Année Universitaire : 2021/2022 Nature : ☑ DC ☐ Examen ☐ DR	Date de l'Examen : 22/11/2021 Durée : □ 1h ☑ 1h30min □ 2h
Diplôme : ☐ Mastère ☐ Ingénieur	Nombre de pages : 04
Section: ☐ GCP ☐ GCV ☐ GEA ☑ GCR ☐ GM	Enseignant (e): M. Chokri BACCOUCH
Niveau d'étude : □ 1 ère ☑ 2 ème □ 3 ème année	Documents Autorisés :□ Oui ☑ Non
Matière : Communications Optiques	Remarque : Calculatrice autorisée

N.B : La présentation, la lisibilité, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Exercice 1:

Partie I

Des rayons lumineux sont supposés issus d'une radiation monochromatique de fréquence f, de pulsation ω et de longueur d'onde λ dans le milieu constituant le cœur.

1. Les différents angles utiles sont représentés sur la figure 1. A quelle condition sur i, angle d'incidence à l'interface cœur/gaine, le rayon reste-t-il confiné à l'intérieur du cœur ? On note it l'angle d'incidence limite.

- FIG. 1 Fibre optique en coupe
- 2. Montrer que la condition précédente est vérifiée si l'angle d'incidence θ est inférieur à un angle limite θ_ℓ dont on exprimera le sinus en fonction de n et i_ℓ . En déduire l'expression de l'ouverture numérique $ON = \sin\!\theta_\ell$ de la fibre en fonction de n et n_1 uniquement.
- 3. Donner la valeur numérique de ON pour n = 1,50 et $n_1 = 1,47$.
- 4. Calculer le diamètre du cœur, pour une longueur d'onde $\lambda = 0.850 \,\mu m$. La fibre est monomde ou multimode ?

On considère une fibre optique de longueur L. Le rayon entre dans la fibre avec un angle d'incidence θ variable compris entre 0 et θ_{ℓ} . On note c la vitesse de la lumière dans le vide.

5. Pour quelle valeur de l'angle θ, le temps de parcours de la lumière dans la fibre est-il minimal ? maximal ? Exprimer alors l'intervalle de temps δt entre le temps de parcours minimal et maximal en fonction de L, c, n et n₁.

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Indice: 3

Date: 22/11/2021

Réf : DE-EX-01

Page: 2/4

EPREUVE D'EVALUATION

- 6. Si la fibre est à gradient d'indice, exprimer l'intervalle de temps ôt en dégageant une relation avec celui de fibre à saut d'indice.
- 7. Calculer la dispersion chromatique du matériau Δt_{chro} , sur une distance L=10km dans le cas d'une fibre optique que possède un coefficient de dispersion chromatique D=17ps/ (km.nm) et la source lumineuse est une diode laser avec $\Delta \lambda = 0.5$ nm.
- 8. Calculer la dispersion totale sur une distance L = 10km de la fibre à saut d'indice et sa bande passante kilométrique et en déduire le débit binaire de la fibre.

Partie II

On désire effectuer une liaison par transmission analogique à large bande sur une fibre monomode, avec une source laser qui émet à 1,55 μm , sur une longueur de $100 \, km$, un récepteur constitué d'une photodiode, un connecteur à chaque extrémité de la fibre pour relier celle-ci à la source et au récepteur.

Les caractéristiques des composants sont les suivantes :

-La fibre :

Indice du cœur $n_1 = 1,48$; écart relatif des indices $\Delta = 3.10^{-3}$; diamètre de cœur $d = 7 \mu m$.

A $\lambda = 1,55 \ \mu m$, l'atténuation linéique de la fibre est $\alpha = 0,23 \ dB \ / \ km$, avec une épissure tous les 12 km, chacune d'entre elles produisant une perte de 0,2 dB.

Le paramètre de dispersion chromatique à cette longueur d'onde de fonctionnement est $de D_{ch} = 12 ps / km.nm.$

-La source :

Diode laser émettant à $\lambda = 1550\,nm$, avec une largeur spectrale $\Delta\lambda = 30\,nm$. La fréquence de modulation de cette source est au maximum égale à 2 GHz. La puissance moyenne émise par cette source et couplée à la fibre est égale à 1 mW.

-Le récepteur :

La photodiode à avalanche (PDA), de gain (ou coefficient de multiplication)M, est caractérisée par une sensibilité $S_d=0.8\,A/W$, un courant d'obscurité $I_0=10\,nA$, et un exposant de bruit en excès x=0,7. Le temps de réponse du récepteur T_r est égal à 0,2 ns.

Le préamplificateur de tension aux bornes de la résistance de charge délivre une densité spectrale de bruit : $\frac{\langle i_c^2 \rangle}{R} = 2.10^{-23} A^2 / Hz$, où B est la largeur de bande de mesure de bruit.

Republique Las Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

EPREUVE D'EVALUATION

Indice: 3

Date: 22/11/2021

Réf: DE-EX-01

Page: 3/4

-Les connecteurs et la marge de sécurité :

Chaque connecteur d'extrémité de la liaison produit une perte de 0,2 dB. La marge de sécurité sera prise égale à 3 dB.

- 1. Démontrer que, dans les conditions de fonctionnement de la liaison, la fibre est
- 2. Calculer le temps de montée de la liaison. En déduire la valeur de la bande passante de cette liaison.
- 3. Déterminer la puissance moyenne P_m reçue sur la photodiode, en incluant la marge de sécurité. Donner cette valeur en dBm et en Watts.
- 4. Calculer la séparation des modes en fréquence δv de la diode laser; On donne : longueur de la cavité $l = 400 \ \mu m$; indice de réfraction de la cavité $n_r = 3,5$.

On utilisera les formules suivantes:

* Fréquence de coupure à -3dB = $f_c(3 dB) = \frac{0.35}{T_m}$, avec T_m = temps de montée de la liaison.

 $*T_m^2 = T_S^2 + T_F^2 + T_r^2$, avec $T_S = \frac{1}{f_{max}}$: le temps de montée de la source, et T_F :

l'élargissement temporel.

* La séparation des modes en fréquence δv

$$\delta v = \frac{c}{2nJ}$$

Exercice 2:

Partie I

A l'entrée d'une liaison optique, on injecte une puissance moyenne Pentrée = 6,2 dBm. La liaison est constituée de 5 fibres de 2,8 km de longueur mises bout à bout, ayant une atténuation linéique de 2,5 dB/km. Chaque connecteur entre 2 fibres produit une perte de VC $0,3 \, \mathrm{dB}$.

A = (1) Lolog (de) (Pe 1. Calculer l'atténuation totale A de la liaison.

2. Quelle puissance moyenne P_{sortie} peut-on récupérer à la sortie ? (On l'exprimera en dBm et en mW).

3. Le signal de sortie est récupéré sur une photodiode de sensibilité 0,54 A/W. Quel courant moyen I traverse cette photodiode?

Soit une fibre monomode d'atténuation $\alpha = 2.1 dB / km$ et une diode laser à $\lambda = 0.85 \mu m$ émettant une puissance moyenne $P_e = 2mW$. Les pertes de connectique: 0.6dB à

République Tunisienne Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Gabès

Ecole Nationale d'Ingénieurs de Gabès

Indice: 3

Date: 22/11/2021

Réf: DE-EX-01

Page: 4/4

EPREUVE D'EVALUATION

et une photodiode PIN de sensibilité S = 0.53mA/mW et de courant chaque extrémité d'obscurité négligeable

4. Quelle est la portée maximale $L_{\rm max}$ de la liaison pour obtenir un courant de sortie minimal de PIN de $5\mu A$, avec une marge de sécurité de 3dB sur d'éventuelles pertes optiques supplémentaires?

Partie II

On désire transmettre 32 voies téléphoniques de 64 kbits/s au moyen d'une fibre optique sur une distance de 10 km. Pour réaliser la liaison, on se propose d'utiliser une fibre optique multimode à saut d'indice possédant les caractéristiques suivantes :

Indice de cœur : $n_1 = 1,47$; ON = 0,15; atténuation $A = 5 \, dB \, / \, km$.

1. En tenant compte uniquement de la dispersion intermodale $\Delta \tau$, le choix de la fibre optique est-il réaliste?

Pour les composants d'extrémité, on a les choix suivant :

Sources d'émission

 $\mathcal{S}_{1}: \textit{Diode \'electrolumines cente}$ émettant une puissance totale de 1 mW . La DEL étant placée dans l'air $(n_0 = 1)$ face à l'extrémité de la fibre optique. L'efficacité de couplage η_c est donnée par :

$$\eta_c = (ON)^2$$

 $S_2: \textit{Diode laser}$, puissance totale 5~mW, rendement de couplage diode-fibre 50%.

Récepteurs

 $\overline{D_1: Photodiode\ PIN}$, sensibilité 0,5 A/W.

 $D_2: Photodiode à avalanche, sensibilité <math>50 A/W$.

Afin d'assurer le taux d'erreur spécifié, la puissance minimale du signal au détecteur est $P_{\min} = 10 \ nW$ dans le deux cas.

- 2. Calculer l'atténuation totale due au couplage et aux pertes par absorption pour les deux
- 3. En prenant une marge de sécurité $M=3\ dB$, quelles sont les combinaisons utilisables.

Bon Travail