Arctic Termination ... Below Zero

Adam Koprowski¹ Johannes Waldmann²

¹Eindhoven University of Technology

²Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig

15 July 2008 RTA, Hagenberg

Outline

- Introduction
- 2 Monotone Algebras
- Polynomial and Matrix Interpretations
- Arctic Interpretations
- 5 Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- 8 Conclusions

Outline

- Introduction
- Monotone Algebras
- Polynomial and Matrix Interpretations
- Arctic Interpretations
- Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- 8 Conclusions

• Termination of rewriting is an important property of TRSs.

- Termination of rewriting is an important property of TRSs.
- There are many methods to prove termination of rewriting

- Termination of rewriting is an important property of TRSs.
- There are many methods to prove termination of rewriting
- and recently the emphasis is on automation.

- Termination of rewriting is an important property of TRSs.
- There are many methods to prove termination of rewriting
- and recently the emphasis is on automation.
- There exists a number of tools for proving termination

- Termination of rewriting is an important property of TRSs.
- There are many methods to prove termination of rewriting
- and recently the emphasis is on automation.
- There exists a number of tools for proving termination
- and the new developments are stimulated by an annual termination competition.

- Termination of rewriting is an important property of TRSs.
- There are many methods to prove termination of rewriting
- and recently the emphasis is on automation.
- There exists a number of tools for proving termination
- and the new developments are stimulated by an annual termination competition.
- Tools, and the proofs they produce, are getting more and more complex,

- Termination of rewriting is an important property of TRSs.
- There are many methods to prove termination of rewriting
- and recently the emphasis is on automation.
- There exists a number of tools for proving termination
- and the new developments are stimulated by an annual termination competition.
- Tools, and the proofs they produce, are getting more and more complex,
- hence the recent work on certification of termination.

- Termination of rewriting is an important property of TRSs.
- There are many methods to prove termination of rewriting
- and recently the emphasis is on automation.
- There exists a number of tools for proving termination
- and the new developments are stimulated by an annual termination competition.
- Tools, and the proofs they produce, are getting more and more complex,
- hence the recent work on certification of termination.
- ⇒ This talk concerns a new method for proving termination, its automation and certification.

Outline

- Introduction
- 2 Monotone Algebras
- Polynomial and Matrix Interpretations
- Arctic Interpretations
- Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- 8 Conclusions

Given TRSs \mathcal{R} and \mathcal{S} define:

• top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r \sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.

- top rewrite relation: $t \stackrel{\text{top}}{\to}_{\mathcal{R}} u$ if and only if there is a rewrite rule $\ell \to r \in \mathcal{R}$ and a substitution $\sigma : \mathcal{V} \to \mathcal{T}(\Sigma, \mathcal{V})$ such that $t = \ell \sigma$ and $u = r\sigma$.
- rewrite relation: $\to_{\mathcal{R}}$ is the smallest relation such that $\overset{\text{top}}{\to}_{\mathcal{R}} \subseteq \to_{\mathcal{R}}$ and $\to_{\mathcal{R}}$ is context-closed.
- relation modulo: $\rightarrow_1/\rightarrow_2 \equiv \rightarrow_2^* \cdot \rightarrow_1$.
- termination: $SN(\rightarrow_{\mathcal{R}})$.
- relative termination: $SN(\rightarrow_{\mathcal{R}}/\rightarrow_{\mathcal{S}})$.
- relative top termination: $SN(\stackrel{top}{\to}_{\mathcal{R}}/\to_{\mathcal{S}})$ (important in the dependency pairs setting).

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \to A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a'_i \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a'_i,\ldots,a_n).$$

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \rightarrow A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a'_i \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a'_i,\ldots,a_n).$$

Definition (Monotone Σ -algebras)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that

- > is well-founded;
- $\bullet > \cdot \geq \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

An extended monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ in which moreover for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Theorem

Let $\mathcal{R}, \mathcal{R}', \mathcal{S}, \mathcal{S}'$ be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\forall_{\alpha} \ [\ell]_{\alpha} \gtrsim [r]_{\alpha}$ for every rule $\ell \to r$ in $\mathcal{R} \cup \mathcal{S}$ and
- $\forall_{\alpha} \ [\ell]_{\alpha} > [r]_{\alpha}$ for every rule $\ell \to r$ in $\mathcal{R}' \cup \mathcal{S}'$

 $\textit{Then } \mathsf{SN}(\to_{\mathcal{R}}/\to_{\mathcal{S}}) \textit{ implies } \mathsf{SN}(\to_{\mathcal{R}}\cup\to_{\mathcal{R}'}/\to_{\mathcal{S}}\cup\to_{\mathcal{S}'}).$

Theorem

Let $\mathcal{R}, \mathcal{R}', \mathcal{S}, \mathcal{S}'$ be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\forall_{\alpha} \ [\ell]_{\alpha} \gtrsim [r]_{\alpha}$ for every rule $\ell \to r$ in $\mathcal{R} \cup \mathcal{S}$ and
- $\forall_{\alpha} \ [\ell]_{\alpha} > [r]_{\alpha}$ for every rule $\ell \to r$ in $\mathcal{R}' \cup \mathcal{S}'$

Then $\mathsf{SN}(\to_\mathcal{R}/\to_\mathcal{S})$ implies $\mathsf{SN}(\to_\mathcal{R}\cup\to_{\mathcal{R}'}/\to_\mathcal{S}\cup\to_{\mathcal{S}'})$.

Theorem

Let $\mathcal{R}, \mathcal{R}', \mathcal{S}, \mathcal{S}'$ be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

- $\forall_{\alpha} \ [\ell]_{\alpha} \gtrsim [r]_{\alpha}$ for every rule $\ell \to r$ in $\mathcal{R} \cup \mathcal{S}$ and
- $\forall_{\alpha} \ [\ell]_{\alpha} > [r]_{\alpha}$ for every rule $\ell \to r$ in \mathcal{R}' ,

Then $\mathsf{SN}(\overset{\mathsf{top}}{\to}_{\mathcal{R}}/\to_{\mathcal{S}})$ implies $\mathsf{SN}(\overset{\mathsf{top}}{\to}_{\mathcal{R}}\cup\overset{\mathsf{top}}{\to}_{\mathcal{R}'}/\to_{\mathcal{S}}).$

Outline

- Introduction
- Monotone Algebras
- Polynomial and Matrix Interpretations
- 4 Arctic Interpretations
- 6 Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- 8 Conclusions

• Interpretation domain: \mathbb{N} .

- Interpretation domain: N.
- ullet Interpretations: polynomials over $\mathbb N.$

- Interpretation domain: N.
- Interpretations: polynomials over N.

$$X*(y+z) \rightarrow X*y+X*z$$

- Interpretation domain: \mathbb{N} .
- Interpretations: polynomials over N.

$$X*(y+z) \rightarrow X*y+X*z$$

$$[x + y] = x + y + 2,$$
 $[x * y] = 2x + 2y + 2xy + 1$

- Interpretation domain: \mathbb{N} .
- Interpretations: polynomials over N.

$$x*(y+z) \to x*y+x*z$$
$$[x+y] = x+y+2, \qquad [x*y] = 2x+2y+2xy+1$$
$$[x*(y+z)] = 2x+2(y+z+2)+2x(y+z+2)+1$$
$$[x*y+x*z] = (2x+2y+2xy+1)+(2x+2z+2xz+1)+2$$

- Interpretation domain: \mathbb{N} .
- Interpretations: polynomials over N.

$$x*(y+z) \to x*y+x*z$$
$$[x+y] = x+y+2, \qquad [x*y] = 2x+2y+2xy+1$$
$$[x*(y+z)] = 2x+2y+2z+4+2xy+2xz+4x+1$$
$$[x*y+x*z] = 2x+2y+2xy+1+2x+2z+2xz+1+2$$

- Interpretation domain: \mathbb{N} .
- Interpretations: polynomials over N.

$$x * (y + z) \rightarrow x * y + x * z$$

$$[x + y] = x + y + 2, \qquad [x * y] = 2x + 2y + 2xy + 1$$

$$[x * (y + z)] = 6x + 2y + 2z + 2xy + 2xz + 5$$

$$[x * y + x * z] = 4x + 2y + 2z + 2xy + 2xz + 4$$

- Interpretation domain: N.
- Interpretations: polynomials over N.

Example

$$x * (y + z) \rightarrow x * y + x * z$$

$$[x + y] = x + y + 2, \qquad [x * y] = 2x + 2y + 2xy + 1$$

$$[x * (y + z)] = 6x + 2y + 2z + 2xy + 2xz + 5$$

$$[x * y + x * z] = 4x + 2y + 2z + 2xy + 2xz + 4$$

• To obtain strict monotonicity we require that for every interpretation $[f(x_1, ..., x_n)], \forall_i \exists_{c>0} cx_i \in [f(x_1, ..., x_n)].$

• Interpretation domain: \mathbb{N}^d , for some fixed d.

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\bullet \ \vec{u} \geq \vec{v} \text{ iff } \forall_i \ \vec{u}_i \geq \vec{v}_i.$

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \geq \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$a(a(x)) \rightarrow a(b(a(x))).$$

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$a(a(x)) \rightarrow a(b(a(x))).$$

$$[a(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [b(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$a(a(x)) \to a(b(a(x))).$$

$$[a(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [b(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[a(a(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$[a(b(a(x)))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \right) + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\mathbf{a}(\mathbf{a}(x)) \to \mathbf{a}(\mathbf{b}(\mathbf{a}(x))).$$

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{b}(\mathbf{a}(x)))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

Example

$$\mathbf{a}(\mathbf{a}(x)) \to \mathbf{a}(\mathbf{b}(\mathbf{a}(x))).$$

$$[\mathbf{a}(x)] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{a}(x))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$[\mathbf{a}(\mathbf{b}(\mathbf{a}(x)))] = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• Now we need to restrict to linear interpretations.

- Interpretation domain: \mathbb{N}^d , for some fixed d.
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\vec{u} \ge \vec{v} \wedge \vec{u}_1 > \vec{v}_1$.

$$\begin{aligned} \mathbf{a}(\mathbf{a}(x)) &\to \mathbf{a}(\mathbf{b}(\mathbf{a}(x))). \\ [\mathbf{a}(x)] &= \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \qquad [\mathbf{b}(x)] &= \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ [\mathbf{a}(\mathbf{a}(x))] &= \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ [\mathbf{a}(\mathbf{b}(\mathbf{a}(x)))] &= \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{aligned}$$

- Now we need to restrict to linear interpretations.
- Strict monotonicity ensured if for every interpretation $[f(x_1,...,x_n)] = F_1x_1 + ... F_nx_n + \vec{t}$ we have $\forall_i (F_i)_{1,1} > 0$.

Outline

- Introduction
- 2 Monotone Algebras
- Polynomial and Matrix Interpretations
- 4 Arctic Interpretations
- 5 Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- 8 Conclusions

• $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$ semi-ring.

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, max, + \rangle$ semi-ring.
- $\bullet \ a \gg b \equiv a > b \lor (a = b = -\infty).$

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\bullet \ \vec{u} \geq \vec{v} \text{ iff } \forall_i \ \vec{u}_i \geq \vec{v}_i.$

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\bullet \ \vec{u} > \vec{v} \ \text{iff} \ \forall_i \ \vec{u}_i \gg \vec{v}_i.$

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall_i \ \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5>3 but $5\oplus 6=6\not>6=3\oplus 6$. We cannot get strict monotonicity for symbols of arity >1.

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall_i \ \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- \bullet \Rightarrow full termination only for SRSs (as used in Matchbox 2007).

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall_i \ \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- \bullet \Rightarrow full termination only for SRSs (as used in Matchbox 2007).
- ullet \Rightarrow for TRSs we can "only" prove top-termination.

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{A}^d_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall_i \ \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- ⇒ full termination only for SRSs (as used in Matchbox 2007).
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\bullet \ \vec{u} \geq \vec{v} \text{ iff } \forall_i \ \vec{u}_i \geq \vec{v}_i.$
- $\vec{u} > \vec{v}$ iff $\forall_i \ \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- ⇒ full termination only for SRSs (as used in Matchbox 2007).
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)

- $\mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}$.
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall_i \ \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- \bullet \Rightarrow full termination only for SRSs (as used in Matchbox 2007).
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.

- $\bullet \ \mathbb{A}_{\mathbb{N}} \equiv \{-\infty\} \cup \mathbb{N}.$
- We say that $a \in \mathbb{A}_{\mathbb{N}}$ is *finite* iff $a \neq -\infty$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{N}}$, for some fixed d.
- Now we compute in the $\langle \mathbb{A}_{\mathbb{N}}, \textit{max}, + \rangle$ semi-ring.
- $a \gg b \equiv a > b \lor (a = b = -\infty).$
- $\vec{u} \geq \vec{v}$ iff $\forall_i \ \vec{u}_i \geq \vec{v}_i$.
- $\vec{u} > \vec{v}$ iff $\forall_i \ \vec{u}_i \gg \vec{v}_i$.
- Problem: arctic addition is not strictly monotonic in single arguments, ie. 5 > 3 but $5 \oplus 6 = 6 \not> 6 = 3 \oplus 6$. We cannot get strict monotonicity for symbols of arity > 1.
- \bullet \Rightarrow full termination only for SRSs (as used in Matchbox 2007).
- ullet \Rightarrow for TRSs we can "only" prove top-termination.
- Problem: well-foundedness of > (as $-\infty \gg -\infty$)
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots F_n x_n + \vec{t}$ we require \exists_i finite $((F_i)_{1,1})$ or finite (\vec{t}_1) .

$$\{ \operatorname{\mathtt{cac}} \to \epsilon, \ \operatorname{\mathtt{aca}} \to \operatorname{\mathtt{a}^4} \ / \ \epsilon \to \operatorname{\mathtt{c}^4} \}.$$

$$\{cac \rightarrow \epsilon, aca \rightarrow a^4 / \epsilon \rightarrow c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

Example

$$\{cac \rightarrow \epsilon, aca \rightarrow a^4 / \epsilon \rightarrow c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

• [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.

$$\{cac \rightarrow \epsilon, aca \rightarrow a^4 / \epsilon \rightarrow c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

- [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.
- [a] is idempotent, so $[a] = [a^4]$.

$$\{cac \rightarrow \epsilon, aca \rightarrow a^4 / \epsilon \rightarrow c^4\}.$$

$$[a](x) = \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix} \qquad [c](x) = \begin{pmatrix} 0 & -\infty & -\infty \\ -\infty & -\infty & 0 \\ -\infty & 0 & -\infty \end{pmatrix} x \oplus \begin{pmatrix} -\infty \\ -\infty \\ -\infty \end{pmatrix}$$

- [c] is a permutation (it swaps the second and third component), so $[c]^2 = [c]^4 = [\epsilon]$.
- [a] is idempotent, so $[a] = [a^4]$.

$$[c a c](x) = \begin{pmatrix} 0 & -\infty & 0 \\ 1 & 0 & 1 \\ 0 & -\infty & 0 \end{pmatrix} x \ge \begin{pmatrix} -\infty & 0 & 0 \\ 0 & -\infty & 0 \\ 0 & 0 & -\infty \end{pmatrix} x = [\epsilon](x)$$

$$[a c a](x) = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 0 \end{pmatrix} x > \begin{pmatrix} 0 & 0 & -\infty \\ 0 & 0 & -\infty \\ 1 & 1 & 0 \end{pmatrix} x = [a^4](x)$$

$$[\epsilon](x) = \begin{pmatrix} -\infty & 0 & 0 \\ 0 & -\infty & 0 \\ 0 & 0 & -\infty \end{pmatrix} x = \begin{pmatrix} -\infty & 0 & 0 \\ 0 & -\infty & 0 \\ 0 & 0 & -\infty \end{pmatrix} x = [c^4](x)$$

Outline

- Introduction
- 2 Monotone Algebras
- Polynomial and Matrix Interpretations
- Arctic Interpretations
- 6 Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- 8 Conclusions

 $\bullet \ \mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}.$

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \ge$, > as before.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \geq$, > as before.
- Problem: we need to ensure that we stay within the domain.

- $\mathbb{A}_{\mathbb{Z}} \equiv \{-\infty\} \cup \mathbb{Z}$.
- Interpretation domain: $\mathbb{N} \times \mathbb{A}^{d-1}_{\mathbb{Z}}$, for some fixed d.
- ullet \Rightarrow we restrict first component to $\mathbb N$ to get well-foundedness.
- Semi-ring structure: $\langle \mathbb{A}_{\mathbb{Z}}, max, + \rangle$.
- $\bullet \geq$, > as before.
- Problem: we need to ensure that we stay within the domain.
- \Rightarrow for every interpretation $[f(x_1, \dots, x_n)] = F_1 x_1 + \dots + F_n x_n + \vec{f}$ we require $\vec{f}_1 \geq 0$.

Example

while x > y do x := x - 1;

```
\begin{array}{c} \text{while } \texttt{x} > \texttt{y} \ \texttt{do} \ \texttt{x} := \texttt{x} - \texttt{1}; \\\\ \mathsf{cond}(\mathsf{true}, x, y) \to \mathsf{cond}(\mathsf{gr}(x, y), \mathsf{p}(x), y), & \mathsf{gr}(\mathsf{s}(x), \mathsf{s}(y)) \to \mathsf{gr}(x, y), \\\\ \mathsf{gr}(0, x) \to \mathsf{false}, & \mathsf{gr}(\mathsf{s}(x), 0) \to \mathsf{true}, \\\\ \mathsf{p}(0) \to \mathsf{0}, & \mathsf{p}(\mathsf{s}(x)) \to x \\\\ \mathsf{cond}^{\sharp}(\mathsf{true}, x, y) \to \mathsf{cond}^{\sharp}(\mathsf{gr}(x, y), \mathsf{p}(x), y) \end{array}
```

while
$$x > y$$
 do $x := x - 1$; cond(true, x, y) \rightarrow cond(gr(x, y), p(x), y), gr($s(x)$, $s(y)$) \rightarrow gr(x, y), gr($s(x)$, $s(y)$) \rightarrow true, p($s(x)$) \rightarrow true, cond $s(x)$ cond $s(x)$ (true, x, y) \rightarrow cond $s(x)$ (gr(x, y), p(x), y) [cond $s(x)$ (0) $s(x)$ (1) $s(x)$ (2) $s(x)$ (3) $s(x)$ (3) $s(x)$ (3) $s(x)$ (6) $s(x)$ (6) $s(x)$ (6) $s(x)$ (6) $s(x)$ (6) $s(x)$ (7) $s(x)$ (6) $s(x)$ (7) $s(x)$ (8) $s(x)$ (9) $s(x)$ (9) $s(x)$ (9) $s(x)$ (1) $s($

Example arctic below zero proof

Example

Outline

- Introduction
- 2 Monotone Algebras
- Polynomial and Matrix Interpretations
- Arctic Interpretations
- Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- Conclusions

Certification of termination: formal verification (using a theorem prover/checker) of termination proofs produced by termination provers.

Certification of termination: formal verification (using a theorem prover/checker) of termination proofs produced by termination provers.

CoLoR: Coq Library on Rewriting and Termination.

Certification of termination: formal verification (using a theorem prover/checker) of termination proofs produced by termination provers.

CoLoR: Coq Library on Rewriting and Termination.

Goal: certification of termination proofs produced by various termination provers.

 TPG: common format for termination proofs (independent of termination tools and the certification back-end).

Certification of termination: formal verification (using a theorem prover/checker) of termination proofs produced by termination provers.

CoLoR: Coq Library on Rewriting and Termination.

- TPG: common format for termination proofs (independent of termination tools and the certification back-end).
- Tools output proofs in TPG format.

Certification of termination: formal verification (using a theorem prover/checker) of termination proofs produced by termination provers.

CoLoR: Coq Library on Rewriting and Termination.

- TPG: common format for termination proofs (independent of termination tools and the certification back-end).
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.

Certification of termination: formal verification (using a theorem prover/checker) of termination proofs produced by termination provers.

CoLoR: Coq Library on Rewriting and Termination.

- TPG: common format for termination proofs (independent of termination tools and the certification back-end).
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoR's architecture overview

CoLoR's architecture overview

CoLoR's architecture overview

Outline

- Introduction
- 2 Monotone Algebras
- Polynomial and Matrix Interpretations
- Arctic Interpretations
- 6 Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- Conclusions

Termination competition:

• in 2007 introduced a new category of certified termination,

Termination competition:

- in 2007 introduced a new category of certified termination,
- TPA+CoLoR was the winner.

Termination competition:

- in 2007 introduced a new category of certified termination,
- TPA+CoLoR was the winner.

The approach of arctic interpretations was:

implemented in Matchbox using a propositional encoding into SAT.

Termination competition:

- in 2007 introduced a new category of certified termination,
- TPA+CoLoR was the winner.

The approach of arctic interpretations was:

- implemented in Matchbox using a propositional encoding into SAT.
- formalized within the CoLoR project allowing certification of arctic proofs.

Termination competition:

- in 2007 introduced a new category of certified termination,
- TPA+CoLoR was the winner.

The approach of arctic interpretations was:

- implemented in Matchbox using a propositional encoding into SAT.
- formalized within the CoLoR project allowing certification of arctic proofs.

problem set	time	s	sa	SZ	saz	2007 winner
975 TRS	1 min	361	376	388	389	TPA: 354
	10 min	365	381	393	394	
517 SRS	1 min	178	312	298	320	Matchbox: 337
	10 min	185	349	323	354	

Outline

- Introduction
- Monotone Algebras
- Polynomial and Matrix Interpretations
- Arctic Interpretations
- 6 Arctic Below Zero Interpretations
- 6 Certification
- Evaluation
- 8 Conclusions

 We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs
- ... and imposes linear derivational complexity (without DP).

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs
- ... and imposes linear derivational complexity (without DP).
- (The admissibility problem of an arctic interpretation corresponds to a reachability problem for weighted tree automata).

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs
- ... and imposes linear derivational complexity (without DP).
- (The admissibility problem of an arctic interpretation corresponds to a reachability problem for weighted tree automata).
- We extended this from naturals to integers, resulting in arctic below zero interpretations.

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs
- ... and imposes linear derivational complexity (without DP).
- (The admissibility problem of an arctic interpretation corresponds to a reachability problem for weighted tree automata).
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.

- We presented an extension of matrix interpretations method by replacing the usual semi-ring structure with the arctic semi-ring.
- The method can prove full termination for SRSs and (relative) top termination for TRSs
- ... and imposes linear derivational complexity (without DP).
- (The admissibility problem of an arctic interpretation corresponds to a reachability problem for weighted tree automata).
- We extended this from naturals to integers, resulting in arctic below zero interpretations.
- The whole method has been formalized in Coq within the CoLoR project.
- It has also been implemented in Matchbox, by transforming the constraints to propositional satisfiability problem and running Minisat.

The end

Thank you for your attention.