UNSW SCHOOL OF PHYSICS

PHYS2111 – Quantum Mechanics Tutorial 5

Question 1

(Shankar 1.8.4) An arbitrary $n \times n$ matrix need not have n eigenvectors. Consider as an example

$$\Omega = \begin{pmatrix} 4 & 1 \\ -1 & 2 \end{pmatrix}$$

- (a) Show that $\omega_1 = \omega_2 = 3$.
- (b) By feeding in this value show we get only one eigenvector of the form

$$\frac{1}{\sqrt{2|a|^2}} \begin{pmatrix} a \\ -a \end{pmatrix}.$$

We cannot find another linearly independent eigenvector.

Question 2

Consider the operator

$$\hat{T} = \begin{pmatrix} 1 & 1-i \\ 1+i & 0 \end{pmatrix}.$$

- (a) Is T Hermitian?
- (b) Find the two eigenvalues of \hat{T} , which we label t_1 and t_2 , and show that they are real. Find the corresponding eigenvectors $|t_1\rangle$ and $|t_2\rangle$.
- (c) Use the eigenvectors to find the matrix U which diagonalises the matrix \hat{T} . That is, find U such that $U^{\dagger}\hat{T}U=\hat{D}_T$ where \hat{D}_T is a diagonal matrix. What is \hat{D}_T ?
- (d) Check that

$$\sum_{i} t_i |t_i\rangle \langle t_i| = \hat{T}.$$

Question 3

Show that the commutator $\hat{C}=i[\hat{A},\hat{B}]$ is Hermitian if \hat{A} and \hat{B} are both Hermitian. Hint: Remember that $(\hat{A}\hat{B})^{\dagger}=\hat{B}^{\dagger}\hat{A}^{\dagger}$.

Question 4

The Pauli matrices are defined as

$$\hat{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \hat{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \hat{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (a) Show that $[\hat{\sigma}_1, \hat{\sigma}_2] = 2i\hat{\sigma}_3$.
- (b) Use the generalised uncertainty principle

$$\Delta A.\Delta B \ge \left| \frac{1}{2i} \langle [\hat{A}, \hat{B}] \rangle \right|$$

to obtain $\Delta \sigma_1 \Delta \sigma_2$ for:

i. the state $|u\rangle$;

ii. the state $|d\rangle$;

iii. the state $\frac{1}{\sqrt{2}}(|u\rangle + |d\rangle)$.

Explain the physical meaning.

Question 5

An observable \hat{A} and a particle with a normalised wavefunction $|\psi\rangle$ are represented in some basis by

$$\hat{A} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}, \quad |\psi\rangle = \frac{1}{2} \begin{pmatrix} i \\ 1 \\ 1 - i \end{pmatrix}.$$

- (a) Find the eigenvalues, a_i , and eigenvectors, $|a_i\rangle$, of \hat{A} .
- (b) Find the probability $P_{\psi}(a_i)$ that a measurement of \hat{A} on the particle gives each of the eigenvalues a_i .
- (c) Find the expectation value of the measurement, that is

$$\langle A \rangle = \sum_{i=1}^{3} a_i P_{\psi}(a_i),$$

and check that it is equal to $\langle \psi | \hat{A} | \psi \rangle$.

(d) Find the variance of the measurement

$$\sigma_A^2 = (\Delta A)^2 = \sum_{i=1}^3 P_{\psi}(a_i) (a_i - \langle A \rangle)^2$$

and show that it is equal to $\langle \psi | \hat{A}^2 | \psi \rangle$.

Question 6

Consider the Hermitian matrices

$$A = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 6 & -4 & -1 \\ -4 & 6 & -1 \\ -1 & -1 & 3 \end{pmatrix}.$$

- (a) Show that [A, B] = 0.
- (b) Find a common set of eigenvectors of A and B and their respective eigenvalues under A and B.
- (c) Can you find an eigenvector of A that is not also an eigenvector of B?

Question 7

The operators \hat{A} and \hat{B} are, in matrix form:

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

- (a) Show that \hat{A} and \hat{B} do not commute.
- (b) Find the eigenvalues and eigenvectors of $[\hat{A}, \hat{B}]$.
- (c) Are there any kets for which one can simultaneously find a well-defined value of A and B? If so, find them and give their values for A and B.

Question 8

(Park 4.5) Show that there are no possible solutions for the infinite potential where E < V < 0.

Question 9

(Zelevinsky 3.2) A particle in the infinitely deep potential box of width a has an initial wave function $\Psi(x, t = 0) = A \sin^3(\pi x/a)$. Find the wave function at arbitrary time t > 0. Does the particle return to the initial state at some moment in time T?

Question 10

(Zelevinsky 3.3) A particle is initially in the ground state of an infinite potential box where the box limits are x = 0 and x = a. At t = 0 the right wall is instantaneously moved from x = a to x = b > a. What is the probability thfor the particle to turn out at t > 0 in an excited state of the new box. Specifically discuss the case of b = 2a

Question 11

(Zelevinsky 3.5) A particle is placed in a potential well of finite depth U_0 . The width a of the well is fixed in such a way that the particle has only one bound state with binding energy $\epsilon = U_0/2$. Calculate the probabilities of finding the particle in classically allowed and classically forbidden regions.

Question 12

(past exam) Consider a particle confined inside a three-dimensional potential 'box' with side lengths a, b and c, as shown in Fig. 1.

Figure 1:

- (a) Starting with the three-dimensional Schrödinger Equation in cartesian coordinates and assuming a separable variable solution, derive an expression for the wave functions and the corresponding energies.
- (b) Determine an expression for the normalisation constant for the wave function.
- (c) Calculate the probability that the particle will be found on the interval $a/2 \le x \le 3a/4$ if the particle is in the ground state.