

Univariate GARCH

Amath 546/Econ 589
Eric Zivot
Spring 2013
Updated: April 24, 2013

Introduction to ARCH and GARCH Models

- ARCH (AutoRegressive Conditional Heteroskedasticity) models were proposed by Engle in 1982.
- GARCH (Generalized ARCH) models proposed by Bollerslev in 1986.
- Engle received the Nobel price in 2003. The GARCH model framework is considered as one of the most important contributions in empirical finance over the last 20 years.
- Engle currently resides at NYU and heads the volatility institute

Robert Engle, NYU

Nobel Prize citation:
"for methods of
analyzing economic
time series with timevarying volatility
(ARCH)"

Champion Pairs Skater Too!

The ARCH Family

Bolerslev (2008) identified over 150 different ARCH models. Here are some of the most common:

- •GJR-GARCH
- •TARCH
- •STARCH
- •AARCH
- •NARCH
- •MARCH
- •SWARCH
- •SNPARCH
- •APARCH
- •TAYLOR-SCHWERT

- •FIGARCH
- •FIEGARCH
- Component
- Asymmetric Component
- •SQGARCH
- •CESGARCH
- Student t
- •GED
- •SPARCH

Return Autocorrelations

Summary Statistics

> table.Stats(MSFT.GSPC.ret)

	MSFT	GSPC
Observations	3082.0000	3082.0000
NAs	0.0000	0.0000
Minimum	-0.1560	-0.0903
Quartile 1	-0.0093	-0.0061
Median	0.0000	0.0006
Arithmetic Mean	0.0001	0.0001
Geometric Mean	-0.0001	0.0000
Quartile 3	0.0095	0.0063
Maximum	0.1955	0.1158
SE Mean	0.0004	0.0002
LCL Mean (0.95)	-0.0006	-0.0004
UCL Mean (0.95)	0.0009	0.0006
Variance	0.0005	0.0002
Stdev	0.0214	0.0137
Skewness	0.2500	0.0298
Kurtosis	9.0241	7.3286

W

attr(, "package")

[1] "rugarch"

Specify ARCH(1) Process in rugarch

```
r_{t} = \sigma_{t} z_{t}
z_{t} \sim iid \ N(0,1)
\sigma_{t}^{2} = 0.1 + 0.8 \varepsilon_{t-1}^{2}
```

Specify ARCH(1) Process

© Eric Zivot 2012

> show(arch1.spec) GARCH Model Spec Conditional Variance Dynamics GARCH Model : sGARCH(1,0) Variance Targeting : FALSE Conditional Mean Dynamics Mean Model : ARFIMA(0,0,0) : TRUE Include Mean GARCH-in-Mean : FALSE Conditional Distribution Distribution : norm Includes Skew : FALSE Includes Shape: FALSE Includes Lambda : FALSE

Simulate ARCH(1) Process

```
# Use functions from rugarch package
> set.seed(123)
> arch1.sim = ugarchpath(arch1.spec, n.sim=1000)
> class(arch1.sim)
[1] "uGARCHpath"
attr(,"package")
[1] "rugarch"
> slotNames(arch1.sim)
[1] "path" "model" "seed"
> names(arch1.sim@path)
[1] "sigmaSim" "seriesSim" "residSim"
> plot(arch1.sim)
```


Simulated ARCH(1) Process

ARCH(1) Autocorrelations

ARCH(1) Normal QQ-Plot

© Eric Zivot 2012

Simulate GARCH(1,1) Process

Simulated GARCH(1,1) Process

Simulated Volatility

© Eric Zivot 2012

GARCH(1,1) Autocorrelations

Returns^2

abs(Returns)

GARCH(1,1) Normal QQ-Plot

Testing for ARCH/GARCH Effects

```
# use Box.test from stats package
> Box.test(coredata(MSFT.ret^2), type="Ljung-Box", lag = 12)
      Box-Ljung test
                                 Q-stat on squared returns
data: coredata(MSFT.ret^2)
X-squared = 503.4529, df = 12, p-value < 2.2e-16
> Box.test(coredata(GSPC.ret^2/), type="Ljung-Box", lag = 12)
      Box-Ljung test
     coredata(GSPC_ret^2)
X-squared = 2973.828, df = 12, p-value < 2.2e-16
```

Testing for ARCH/GARCH Effects

```
> ArchTest(MSFT.ret)

ARCH LM-test; Null hypothesis: no ARCH effects

data: MSFT.ret
Chi-squared = 246.8778, df = 12, p-value < 2.2e-16

> ArchTest(GSPC.ret)

ARCH LM-test; Null hypothesis: no ARCH effects

data: GSPC.ret
Chi-squared = 879.794, df = 12, p-value < 2.2e-16</pre>
```

Engle's LM ArchTest() function from FinTS package

Fit GARCH(1,1) to MSFT Returns

$$r_{t} = \mu + \varepsilon_{t}, \ \varepsilon_{t} = \sigma_{t} z_{t}$$

$$\sigma_{t}^{2} = \omega + \alpha_{1} \varepsilon_{t-1}^{2} + \beta_{1} \sigma_{t-1}^{2}$$

$$z_{t} \sim iid \ N(0,1)$$

uGARCHfit Object

```
> class(MSFT.garch11.fit)
[1] "uGARCHfit"
attr(,"package")
[1] "rugarch"
> slotNames(MSFT.garch11.fit)
[1] "fit"
            "model"
> names(MSFT.garch11.fit@fit)
 [1] "hessian"
                        "cvar"
                                           "var"
 [4] "sigma"
                                           "LLH"
                        11 7.11
                                           "coef"
 [7] "log.likelihoods" "residuals"
[10] "robust.cvar"
                                           "se.coef"
                        "scores"
                                           "robust.se.coef"
[13] "tval"
                        "matcoef"
[16] "robust.tval"
                        "robust.matcoef"
                                           "fitted.values"
[19] "convergence"
                        "kappa"
                                           "persistence"
[22] "timer"
                        "ipars"
                                           "solver"
> names(MSFT.garch11.fit@model)
 [1] "modeling"
                   "modeldesc"
                                 "modeldata"
                                                          "start.pars"
                                              "pars"
                                                            "pidx"
 [6] "fixed.pars" "maxOrder"
                                 "pos.matrix" "fmodel"
[11] "n.start"
```

© Eric Zivot 2012

Method Functions

Function	Description
coef()	Extract estimated coefficients
<pre>infocriteria()</pre>	Calculate information criteria for fit
likelihood()	Extract likelihood
nyblom()	Calculate Hansen-Nyblom coefficient stability test
signbias()	Calculate Engle-Ng sign bias test
newsimpact()	Calculate news impact curve
as.data.frame()	Extract data, fitted data, residuals and conditional vol
sigma()	Extract conditional volatility estimates
residuals()	Extract residuals
fitted()	Extract fitted values
getspec()	Extract model specification
gof()	Compute goodness-of-fit statistics
uncmean()	Extract unconditional mean
uncvariance()	Extract unconditional variance
plot()	Produce various plots
persistence()	Calculate persistence of fitted model
halflife()	Calculate half-life of fitted model

Summary of GARCH(1,1) Fit

© Eric Zivot 2012

```
> MSFT.garch11.fit
        GARCH Model Fit
Conditional Variance Dynamics
GARCH Model
               : sGARCH(1,1)
Mean Model
               : ARFIMA(0,0,0)
Distribution
               : norm
Optimal Parameters
     Estimate Std. Error t value Pr(>|t|)
     0.000489 0.000273 1.7894 0.073557
mu
omega 0.000005 0.000001 4.6888 0.000003
alpha1 0.071963 0.010254 7.0177 0.000000
betal 0.918437 0.011102 82.7242 0.000000
Robust Standard Errors:
       Estimate Std. Error t value Pr(>|t|)
      0.000489 0.000298 1.6407 0.100856
mu
      0.000005 0.000003 1.7766 0.075641
omega
alpha1 0.071963 0.025959 2.7722 0.005568
```

beta1 0.918437 0.025206 36.4367 0.000000

MLE standard errors

QMLE standard errors

W

Summary of GARCH(1,1) Fit

LogLikelihood: 8042

Information Criteria

Akaike -5.2161
Bayes -5.2083
Shibata -5.2161
Hannan-Quinn -5.2133

Q-Statistics on Standardized Residuals

statistic p-value Lag10 11.19 0.3430 Lag15 17.78 0.2742 Lag20 26.32 0.1554

H0: No serial correlation

Q-Statistics on Standardized Squared Residuals

statistic p-value
Lag10 1.081 0.9998
Lag15 2.300 0.9999
Lag20 2.930 1.0000

Tests for ARCH/GARCH behavior in standardized residuals.

No evidence of serial correlation in squared residuals

Summary of GARCH(1,1) Fit

ARCH LM Tests

Statistic DoF P-Value
ARCH Lag[2] 0.2991 2 0.8611
ARCH Lag[5] 0.7069 5 0.9826
ARCH Lag[10] 1.1019 10 0.9997

Nyblom stability test

Joint Statistic: 0.9803 Individual Statistics:

mu 0.09264 omega 0.06068 alpha1 0.33424 beta1 0.12796

Asymptotic Critical Values (10% 5% 1%)
Joint Statistic: 1.07 1.24 1.6
Individual Statistic: 0.35 0.47 0.75

Tests for coefficient stability (structural change)
No evidence for unstable parameters

Summary of GARCH(1,1) Fit

Sign Bias Test

t-value prob sig

 Sign Bias
 2.1124 0.03473

 Negative Sign Bias
 0.8984 0.36904

 Positive Sign Bias
 0.2570 0.79721

Joint Effect 5.2995 0.15114

Tests for leverage effects (discuss later)
Some evidence of

asymmetric effects

Adjusted Pearson Goodness-of-Fit Test:

group statistic p-value(g-1)
1 20 125.1 1.233e-17
2 30 133.7 2.195e-15
3 40 156.9 4.420e-16
4 50 165.8 1.351e-14

Elapsed time: 0.4252

Tests for Distribution goodness-of-fit Normal distribution assumption is strongly rejected!

Extractor Functions

```
# estimated coefficients
> coef(MSFT.garch11.fit)
                       alpha1
                                  beta1
              omega
       mu
4.893e-04 4.681e-06 7.196e-02 9.184e-01
# unconditional mean in mean equation
> uncmean(MSFT.garch11.fit)
       mu
0.0004893
# unconditional variance: omega/(alpha1 + beta1)
> uncvariance(MSFT.garch11.fit)
unconditional
    0.0004876
# persistence: alpha1 + beta1
> persistence(MSFT.garch11.fit)
persistence
     0.9904
# half-life: ln(0.5)/(ln(alpha1 + beta1))
> halflife(MSFT.garch11.fit)
Half-Life
    71.85
```

Conditional Volatility: σ_t

> plot.ts(sigma(MSFT.garch11.fit), ylab="sigma(t)", col="blue")

© Eric Zivot 2012

uGARCHfit plot method

```
> plot(MSFT.garch11.fit)
Make a plot selection (or 0 to exit):
      Series with 2 Conditional SD Superimposed
 1:
 2:
      Series with 2.5% VaR Limits (with unconditional mean)
 3:
     Conditional SD
     ACF of Observations
 5:
     ACF of Squared Observations
     ACF of Absolute Observations
 6:
 7: Cross Correlation
 8:
     Empirical Density of Standardized Residuals
 9:
     00-Plot of Standardized Residuals
10:
     ACF of Standardized Residuals
11:
     ACF of Squared Standardized Residuals
12:
     News-Impact Curve
```

Selection:

Plot Method: plot(x, which=1)

© Eric Zivot 2012

Plot Method: plot(x, which="all")

Normality Assumption is Bad

© Eric Zivot 2012

Convergence Problems

Convergence problems could be due to some extreme observations in the data. Sometime "cleaning" the data of "outliers" can help with convergence

W

Cleaned Data

> MSFT.ret.clean = Return.clean(MSFT.ret, method="boudt")

Raw MSFT Returns

Cleaned MSFT Returns

UW

ARCH(1) on Cleaned Data

```
> MSFT.clean.arch1.fit = ugarchfit(spec=arch1.spec, data=MSFT.ret.clean,
                                  solver.control=list(trace = 1))
Iter: 1 fn: -7845.5508 Pars: -0.0001778 0.0002673 0.3586366
Iter: 2 fn: -7845.5508 Pars: -0.0001777 0.0002673 0.3586415
solnp--> Completed in 2 iterations
> MSFT.clean.arch1.fit
     GARCH Model Fit
Conditional Variance Dynamics
GARCH Model : sGARCH(1,0)
Mean Model : ARFIMA(0,0,0)
Distribution
                : norm
Optimal Parameters
    Estimate Std. Error t value Pr(>|t|)
mu -0.000178 0.000309 -0.57434 0.56574
omega 0.000267 0.000009 28.64710 0.00000
alpha1 0.358641 0.034496 10.39666 0.00000
```


Model Selection

```
arch.order = 1:5
 arch.names = paste("arch", arch.order, sep="")
# fit all arch models with p <= 5
> arch.list = list()
> for (p in arch.order) {
   arch.spec = ugarchspec(variance.model = list(garchOrder=c(p,0)),
                           mean.model = list(armaOrder=c(0,0)))
   arch.fit = ugarchfit(spec=arch.spec, data=MSFT.ret.clean,
                         solver.control=list(trace = 0))
   arch.list[[p]] = arch.fit
+
> names(arch.list) = arch.names
# Add GARCH(1,1) refit to cleaned data to list
> arch.list$garch11 = garch11.fit
```


Model Selection

```
Compute information criteria using infocriteria() function
> info.mat = sapply(arch.list, infocriteria)
> rownames(info.mat) = rownames(infocriteria(arch.list[[1]]))
> info.mat
             arch1 arch2 arch3 arch4 arch5 darch11
            -5.089 -5.140 -5.180 -5.218 -5.243
                                               -5.319
Akaike
           -5.083 -5.132 -5.170 -5.206 -5.230
                                               -5.311
Bayes
Shibata
         -5.089 -5.140 -5.180 -5.218 -5.243
                                               -5.319
Hannan-Quinn -5.087 -5.137 -5.177 -5.213 -5.238
                                               -5.316
```

GARCH(1,1) has the best fit – smallest values of info criteria

ARCH(5) vs. GARCH(1,1)

ARCH(5) conditional vol

© Eric Zivot 2012

GARCH(1,1) Forecasts

```
# Compute h-step ahead forecasts for h=1,...,100
> MSFT.garch11.fcst = ugarchforecast(MSFT.garch11.fit,
                                      n.ahead=100)
> class(MSFT.garch11.fcst)
[1] "uGARCHforecast"
attr(,"package")
[1] "rugarch"
> slotNames(MSFT.garch11.fcst)
[1] "forecast" "model"
> names(MSFT.garch11.fcst@forecast)
[1] "n.ahead"
                "N"
                                         "n.roll"
                                                    "forecasts"
                             "n.start"
[6] "fdates"
```

W

GARCH(1,1) Forecasts

> MSFT.garch11.fcst

```
GARCH Model Forecast
Model: sGARCH
Horizon: 100
Roll Steps: 0
Out of Sample: 0
0-roll forecast:
             sigma series
2012-04-04 0.01136 0.0003397
2012-04-05 0.01151 0.0003397
2012-04-06 0.01166 0.0003397
2012-04-09 0.01180 0.0003397
2012-04-10 0.01194 0.0003397
```


Forecast Object Method Functions

Function	Description
as.array	Extracts the forecast array
as.data.frame	Extracts the forecasts
as.list	Extracts the forecast list will all rollframes
plot	Forecasts plots
fpm	Forecast performance measures
show	Forecast summary

GARCH(1,1) Forecasts

```
> plot(MSFT.garch11.fcst)

Make a plot selection (or 0 to exit):

1:    Time Series Prediction (unconditional)
2:    Time Series Prediction (rolling)
3:    Conditional SD Prediction

Selection:
```


GARCH(1,1) Forecasts

UW

Forecasts of h-day Return Vol

```
# Extract forecasts into data.frame
> MSFT.fcst.df = as.data.frame(MSFT.garch11.fcst)
> head(MSFT.fcst.df)
                      series
             sigma
2012-04-04 0.01136 0.0003397
2012-04-05 0.01151 0.0003397
2012-04-06 0.01166 0.0003397
2012-04-09 0.01180 0.0003397
2012-04-10 0.01194 0.0003397
2012-04-11 0.01208 0.0003397
# h-day return variance forecast = sum of h-day ahead
# variance forecasts
> fcst.var.hDay = cumsum(MSFT.fcst.df$sigma^2)
> fcst.vol.hDay = sqrt(MSFT.fcst.var.hDay)
```


Forecasts of h-day Return Vol

Conditional VaR Forecasts