Do Now: Distance on the coordinate plane

- 1. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JL = 13, and JK = 12.
 - (a) Find the length KL.

Based on the triangle above, express each trigonometric value as a fraction.

- (b) $\sin J =$
- (c) $\cos J =$
- (d) $\tan J =$
- 2. Convert this quadratic function from vertex form to standard form $(f(x) = x^2 + bx + c)$ by expanding the squared term and simplifying.

$$f(x) = (x-5)^2 - 1$$

3. Regent problem: Line segment A'B', whose endpoints are (4, -2) and (16, 14), is the image of \overline{AB} after a dilation of $\frac{1}{2}$ centered at the origin. What is the length of \overline{AB} ?

4. Regent problem:

The grid below shows $\triangle ABC$ and $\triangle DEF$.

Let $\triangle A'B'C'$ be the image of $\triangle ABC$ after a rotation about point A. Determine and state the location of B' if the location of point C' is (8,-3). Explain your answer.

Classwork: Algebra efficient solutions

1. To solve for x, what would be the best first step?

Write down one of the following: distribute, multiply (both sides) by 5, multiply by 3, multiply by $\frac{3}{2}$, factor, substitute for x, collect like terms.

(a)
$$\frac{1}{5}(10x+5) = 3$$

(b)
$$\frac{2}{3}(5-x)=-4$$

(c)
$$x^2 - 4x + 5x + 4x^2 - 7 = 15$$

(d)
$$\frac{1}{3}(9x+3) = 17$$

(e)
$$g(x) = x^2 - 5x + 3$$
. Find $g(1)$.

(f)
$$x^2 - 4x - 5 = 0$$
.

(g)
$$\sin 31^{\circ} = \frac{5}{x}$$
.

(h)
$$\cos 29^{\circ} = \frac{x}{5}$$
.

2. Write down the center and radius of each circle.

(a)
$$(x-3)^2 + (y-1)^2 = 16$$

(c)
$$(x-5)^2 + y^2 = 121$$

(b)
$$(x+2)^2 + (y-7)^2 = 3^2$$

(d)
$$(x+2)^2 + (y-3)^2 = 9^2$$

Classwork: Distance on the coordinate plane

1. Complete the t-chart for x = -5, -4, -3, 0, 3, 4, 5, then graph points on the grid below. Use pencil for graphs.

$$y = \sqrt{25 - x^2}$$

What is the shape of a smooth curve through the points?

- (a) Draw \overline{OA} with O(0,0) and A(-3,4)
- (b) What is the length of \overline{OA} ?

2. On the set of axes below, graph the quadrilateral ABCD having coordinates A(-3,-3), $B(5,1),\,C(6,8),$ and D(-2,4).

Find the length of each side of the quadrilateral.