Istruzioni esame

- $\bullet\,$ Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome.	nome	e	matricola:	
Cognonic	1101110	\mathbf{c}	man icoia.	_

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte

corr	ette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).	
(a)	Siano P e Q due formule proposizionali tali che P $\not\models$ Q. Allora possiamo	2 punti
	concludere con certezza che	
	□ P è soddisfacibile	
	$\square \ \mathrm{Q} \models \mathrm{P}$	
	□ Q non è valida	
	\square P \wedge \neg Q è soddisfacibile	
(b)	Sia $f: \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$, dove $\mathbb{R}_{\geq 0} = \{r \in \mathbb{R} \mid r \geq 0\}$, la funzione che misura la	2 punti
	distanza tra due punti sulla retta reale, ovvero $f(x,y) = y-x $. Allora	
	\Box f è iniettiva	
	\Box f è suriettiva	
	\Box f è biettiva	
	\square esistono $x, y \in \mathbb{R}$ tali che $x \neq y$ ma $f(x, y) = 0$	
(c)	Sia φ la formula $\exists x \exists y \forall z (z = x \lor z = y)$. Allora	2 punti
	\square φ non è un enunciato	
	\square φ è un enunciato valido	
	\square se $\mathcal{A} \models \varphi$ allora \mathcal{A} contiene esattamente due elementi	
	\square se $\mathcal{A} \models \varphi$ allora \mathcal{A} contiene almeno due elementi	
(d)	Sia A un insieme non vuoto e $S\subseteq A^{<\mathbb{N}}$ l'insieme delle sequenze di lunghezza	2 punti
	almeno 2 il cui primo e ultimo elemento coincidono. Quali delle seguenti	
	affermazioni sono corrette?	
	$\Box A = S $, qualunque sia A.	
	\square Se A è finito allora lo è anche S .	
	\square Se $A = \mathbb{Q}$ allora S è numerabile.	
	\square S è infinito, qualunque sia A.	

(e) Quali delle seguenti sono formalizzazioni corrette dell'affermazione

2 punti

"xè un numero dispari"

nel linguaggio $L = \{+, 2\}$ relativamente alla struttura $\langle \mathbb{N}, +, 2 \rangle$?

- $\Box \ \forall z \, (z + z = x \to z \notin \mathbb{N})$
- $\Box \neg (2 \mid x)$ con | relazione di divisibilità
- $\Box \ \exists z \, \neg (z + z = x)$
- (f) Siano A e B due insiemi. Quali delle seguenti affermazioni sono corrette?

2 punti

- \square Se $A\subseteq B,$ allora Ae Bnon possono essere disgiunti.
- \square Se $A \cap B \neq \emptyset$ allora $A \setminus B \neq A$.
- \square Se $A \cup B = A \setminus B$ allora $B = \emptyset$.
- \square Se $A \cup B = A$ allora $A \subseteq B$.
- (g) Sia R la relazione su $A = \{a, b, c, d, e\}$ rappresentata dal seguente diagramma, 2 punti dove x R y se e solo se c'è una freccia che va da x a y.

Allora R è

- □ riflessiva
- □ simmetrica
- \square antisimmetrica
- \Box transitiva

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L=\{f,g\}$ un linguaggio del prim'ordine, dove f e g sono entrambi simboli di funzione binari. Sia $\varphi(x)$ la formula

$$f(x,x) = g(x,x).$$

Consideriamo le L-strutture $S_0 = \langle \mathbb{Q}, +, \cdot \rangle$ e $S_1 = \langle \mathbb{Q}, +, - \rangle$.

1. Determinare tutti gli $r \in \mathbb{Q}$ per cui si ha

$$S_0 \models \varphi(x)[x/r]$$

e tutti gli $r\in\mathbb{Q}$ per cui vale

$$S_1 \models \varphi(x)[x/r].$$

2. Stabilire se

$$S_0 \models \exists x \exists y (\neg (x = y) \land \varphi(x) \land \varphi(y))$$

e se

$$S_1 \models \exists x \exists y \left(\neg (x = y) \land \varphi(x) \land \varphi(y) \right).$$

Esercizio 3 9 punti

Formalizzare le seguenti affermazioni nel linguaggio $L=\{<,|,+\},$ dove | è la relazione di divisibilità, relativamente alla struttura $\langle \mathbb{N},<,|,+\rangle$:

- 1. x è dispari,
- 2. xè uguale ad 1,
- 3. xè primo,
- 4. Ogni numero dispari sufficientemente grande è somma di tre primi, non necessariamente distinti.