Reproducible Research: Peer Assessment 1

Name: Phung Xuan Huynh

Occupation: Teaching Assistant at University of Technical Education Hochiminh City, Vietnam

Loading and preprocessing the data

```
#First, please set current directory working in your computer: setwd()
activity <- read.csv("activity.csv")</pre>
summary(activity)
##
       steps
                          date
                                       interval
## Min. : 0.0
                  2012-10-01: 288
                                    Min. :
## 1st Qu.: 0.0
                  2012-10-02: 288
                                    1st Qu.: 589
## Median : 0.0
                  2012-10-03: 288
                                    Median :1178
                  2012-10-04: 288
## Mean : 37.4
                                         :1178
                                    Mean
## 3rd Ou.: 12.0
                  2012-10-05: 288
                                    3rd Ou.:1766
                  2012-10-06: 288
## Max.
        :806.0
                                         :2355
                                    Max.
## NA's :2304 (Other) :15840
```

What is mean total number of steps taken per day?

1. Preprocessing that return the steps counter, mean of step, median of step per day

```
library(ggplot2)
countSteps <- aggregate(steps ~ date, subset(activity, !is.na(steps)), sum)</pre>
```

2. A histogram demonstrates the total number of steps taken each day

```
qplot(data=countSteps,x=steps)
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust
this.
```


3. Calculate and

report the mean and median total number of steps taken per day

```
meanStep <- mean(countSteps$steps)
medianStep <- median(countSteps$steps)
meanStep
## [1] 10766
medianStep
## [1] 10765</pre>
```

What is the average daily activity pattern?

1. Make time series plot

```
intervalMean <- aggregate(steps ~ interval, subset(activity, !is.na(steps)),
mean)

plot(x = intervalMean$interval, y=intervalMean$steps,
type="l",xlab="Interval"
    ,main="The average number of steps taken per day",
    ylab="Average step")</pre>
```

The average number of steps taken per day

2. Maximum

number of step that corresponsed with 5- interval

```
maxStep <- max(intervalMean$steps)
intervalMax <- subset(intervalMean, steps== maxStep)$interval
plot(x = intervalMean$interval, y=intervalMean$steps,
type="l",xlab="Interval"
    ,main="The average number of steps taken per day",
    ylab="Average step")
abline(v=intervalMax)
text(x=intervalMax,y= 0,paste("Max= ", intervalMax))</pre>
```

The average number of steps taken per day

Imputing missing values

1. Total number of missing values in dataset

```
dim(subset(activity, is.na(steps)))[1]
## [1] 2304
```

2. Impute the missing value by filling the average step of this 5 minute interval

```
activityImputed <- activity
intervalMean <- aggregate(steps ~ interval,subset(activityImputed,
!is.na(steps)), mean)
n <- dim(activityImputed)[1]
for (i in 1:n) {
   if (is.na(activity[i,1]))
      activityImputed[i,1] <- subset(intervalMean,interval == activityImputed[i,3])[1,2]
}</pre>
```

3. Procedure histogram that depicts the total number of steps taken each day; furthermore report new mean, and new median

```
countStepsNew <- aggregate(steps ~ date, activityImputed, sum)
qplot(data=countStepsNew,x=steps)
## stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.</pre>
```



```
meanStepNew <- mean(countStepsNew$steps)
medianStepNew <- median(countStepsNew$steps)
meanStepNew
## [1] 10766
medianStepNew
## [1] 10766</pre>
```

In conclusion, the new dataset that imputed shows histogram like the original as well as means are equal but new median is slightly greater than the previous

Are there differences in activity patterns between weekdays and weekends?

1. Create new factor variable in datase. I assume that weekend is Sunday

```
weekday <-
c("Monday","Tuesday","Wednesday","Thursday","Friday","Saturday","Sunday")
#weekend <- c("Saturday","Sunday")
#which(weekday == weekdays(as.Date(activityImputed[1,2])))
#weekdays(as.Date(countStepsNew$date))
activityImputed$day <- NULL

n <- dim(activityImputed)[1]
for (i in 1:n) {
   day <- which(weekday == weekdays(as.Date(activityImputed[i,2])))</pre>
```

```
#print(weekdays(as.Date(activityImputed[i,2])))
#print(day)
if (day <= 6) {
    activityImputed[i,4] = ("weekday")
}
else{
    activityImputed[i,4] = ("weekend")
}
}
activityImputed <- transform(activityImputed, day = factor(V4))</pre>
```

2. Make the time series plot to compare the activity on weekday with weekend

```
library(dplyr)
##
## Attaching package: 'dplyr'
##
## The following objects are masked from 'package:stats':
##
##
       filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
weekday group <- group by(activityImputed, interval, day)</pre>
activity_weekday <- summarise(weekday_group,</pre>
                                  mean_steps = mean(steps),
                                  n=n())
qplot(data=activity_weekday ,y= mean_steps, x=interval,geom = "line",
      main="The average number of steps taken at weekwend compared with
weekday",
      xlab="Interval",
      ylab="The mean of steps") +
 facet_wrap(~day, ncol=1, nrow=2)
```

