Revised: 5/9/2024

Digital Logic III

Michael C. Hackett
Assistant Professor, Computer Science

Lecture Topics

- Combinational Circuits
 - Adders
 - Half Adder
 - Full Adder

Adders

- Adders are combinational logic circuits capable of performing addition
- A half adder has two inputs (the two digits to add) and two outputs (the sum and the carry).

0 1 0
$$1^{X_0}$$

+ 0 + 0 + 1 + 1^{X_1}
00 01 01 10
 $c(Carry)$ $s(Sum)$

• Half adder truth table:

X_1	X_0	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

0 1 0
$$1^{X_0}$$

 $+ 0$ $+ 1$ $+ 1^{X_1}$
00 01 01 10
 $c(carry)$ $s(sum)$

SOP Expressions:

$$C = X_1 X_0$$

$$S = \overline{X_1}X_0 + X_1\overline{X_0} = X_1 \oplus X_0$$

X_1	X_0	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half Adder Logic Circuit:

Half Adder Logic Circuit:

• A **full adder** has three inputs (the two digits to add, plus a value carried in) and two outputs (the sum and the carry).

$$C_{IN}(Carry In) = X_1 - X_0 - C_{OUT}(Carry Out)$$

$$0 + 0 + 0 = 0 = 0$$

$$0 + 0 + 1 = 0 = 1$$

$$0 + 1 + 0 = 0 = 1$$

$$0 + 1 + 1 = 1 = 0$$

$$1 + 0 + 1 = 1 = 0$$

$$1 + 1 + 0 = 1 = 0$$

$$1 + 1 + 1 = 1 = 1$$

• Full adder truth table:

C_{IN}	X_1	X_0	Cout	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

SOP Expressions:

$$C_{OUT} = \overline{C_{IN}} X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0} + C_{IN} X_1 X_0$$

$$S = \overline{C_{IN}} \, \overline{X_1} X_0 + \overline{C_{IN}} X_1 \overline{X_0} + C_{IN} \overline{X_1} \, \overline{X_0} + C_{IN} X_1 X_0$$

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Simplifying:

$$C_{OUT} = \overline{C_{IN}} X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0} + C_{IN} X_1 X_0$$

$$C_{OUT} = X_1 X_0 (\overline{C_{IN}} + C_{IN}) + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0(1) + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0 + C_{IN} \overline{X_1} X_0 + C_{IN} X_1 \overline{X_0}$$

$$C_{OUT} = X_1 X_0 + C_{IN} (\overline{X_1} X_0 + X_1 \overline{X_0})$$

$$C_{OUT} = X_1 X_0 + C_{IN}(X_0 \oplus X_1)$$

Simplifying:

$$S = \overline{C_{IN}} \, \overline{X_1} X_0 + \overline{C_{IN}} X_1 \overline{X_0} + C_{IN} \overline{X_1} \, \overline{X_0} + C_{IN} X_1 X_0$$

$$S = \overline{C_{IN}} \, (X_0 \oplus X_1) + C_{IN} (X_0 \odot X_1)$$

$$S = \overline{C_{IN}} \, (X_0 \oplus X_1) + C_{IN} (\overline{X_0} \oplus \overline{X_1}) \qquad \overline{X}Y + X\overline{Y} = X \oplus Y$$

$$S = C_{IN} \oplus (X_0 \oplus X_1) = C_{IN} \oplus X_0 \oplus X_1$$

Full Adder Logic Circuit:

Full Adder Logic Circuit:

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Abstracted Full Adder:

Abstracted Full Adder:

C_{IN}	X_1	X_0	C_{OUT}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

- So far, we've seen only how adders can add single digits together
 - 1+1+1 or 0+1 or 1+0+1 is no problem
 - What if we wanted to add 10+11 or 11101+10101?

- Full adders can work together by providing the carry out of one full adder as the carry in for a second adder
 - The technique shown next is a *ripple-carry adder*

• For example:

• A 2-bit Adder:

Another example:

• A 3-bit Adder:

Another example:

Another example:

• A 4-bit Adder (with buses):

Another example

