Deep-Neuro Control with Contraction Theory

Myenogseok Ryu, Sesun You

20th March 2025

Abstract

This project aims to develop control or estimator with deep neural network and contraction theory.

Contents

1	Introduction	1
	1.1 Motivation	1
	1.2 Literature Review	1
2	Notations and Preliminaries	1
3	Review of Contraction Theory	2
	3.1 Basic Results of Contraction Theory for Deterministic Systems	2
	3.1.1 Notable Definitions	2
	3.1.2 Notable Theorems	2
	3.2 Basic Results of Contraction Theory for Stochastic Systems	3
4	Deep-Neuro Control	3
A	Notable Lemmas	3

1 Introduction

1.1 Motivation

1.2 Literature Review

2 Notations and Preliminaries

The following notations are used throughout this document:

- := denotes defined as.
- $(\cdot)^{\top}$ denotes the transpose of a matrix or a vector.
- $x := [x_i]_{i \in \{1,\dots,n\}} \in \mathbb{R}^n$ denotes the state vector.
- $\mathbf{A} := [a_{ij}]_{i,j \in \{1,\cdots,n\}} \in \mathbb{R}^{n \times n}$ denotes a matrix.
- $\lambda_i(\mathbf{A}), i \in \{\max, \min\}$ denotes the maximum and minimum singular value of \mathbf{A} , respectively.
- I_n denotes the identity matrix of size n and $\mathbf{0}_{n \times m}$ denotes the zero matrix of size $n \times m$.
- sym denotes the symmetric part of a matrix, i.e., $\operatorname{sym}(A) := A + A^{\top}$ [1].

We introduce the following lemmas.

Lemma 2.1 (Comparison Lemma). Suppose that a continuously differentiable function $f : \mathbb{R}^n \to \mathbb{R}$ satisfies the following inequality:

$$\frac{\mathrm{d}}{\mathrm{d}t}f(t) \le -af(t) + b, \quad \forall t \in \mathbb{R}_{\ge 0},$$

where a, b > 0. Then, the following inequality holds:

$$f(t) \le -af(0)e^{-at} + \frac{b}{a}(1 - e^{-at}), \quad \forall t \in \mathbb{R}_{>0}$$

and remains in a compact set $f(t) \in \{\|f(t)\| \mid \|f(0)\| \leq \frac{b}{a}\}.$

Proof. This is a simple special case of the comparison lemma [2, pp. 102-103]. See [2, pp. 659-660].

3 Review of Contraction Theory

For your smooth start, we recommend you to begin with [3].

3.1 Basic Results of Contraction Theory for Deterministic Systems

First, we start with the following deterministic systems:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{x} = \boldsymbol{f}(\boldsymbol{x}, t),\tag{1}$$

where f(x,t) is an $n \times 1$ sufficiently smooth non-linear vector function and $x \in \mathbb{R}^n$ is the state vector. The smooth property of f(x,t) is essential to ensure the existence and uniqueness of the solution to (1) [2, see, pp. 88-89].

Figure 1: Difference between Lyapunov and contraction theory [4, Fig. 1]. The Lyapunov theory investigates the convergence to a single point and the contraction theory does regarding a single trajectory.

The biggest difference between the traditional Lyapunov theory and the contraction theory is that the contraction theory investigates the convergence of the state trajectory to a single trajectory (contraction behavior), while the Lyapunov theory focuses on the convergence of the state trajectory to a single point i.e., see, Fig. 1. For this, motivated by the calculus of variations [5, Chap. 4], (1) can be rewritten as differential dynamics using differential displacement δx as follows:

$$\frac{\mathrm{d}}{\mathrm{d}t}\delta\boldsymbol{x} = \frac{\partial\boldsymbol{f}}{\partial\boldsymbol{x}}(\boldsymbol{x},t)\delta\boldsymbol{x}..$$

For your information, δx is an infinitesimal displacement at fixed time.

3.1.1 Notable Definitions

Before we present the fundamental theorem of contraction theory, we introduce the following definitions. One can re-visit this section while reading further.

Definition 3.1 (see, Def. 2.2 [4]). If any two trajectories $\xi_1(t)$ and $\xi_2(t)$ of (1) converge to a single trajectory, then the system (1) is said to be *incrementally exponentially stable*, if $\exists C, \alpha > 0$, subject to the following holds:

$$\| \pmb{\xi}_1(t) - \pmb{\xi}_2(t) \| \leq C \| \pmb{\xi}_1(0) - \pmb{\xi}_2(0) \| \exp^{-\alpha t}, \ \forall t \in \mathbb{R}_{\geq 0}.$$

The result of Theorem 3.1 equivalently implies the incremental exponential stability, since we have $\|\boldsymbol{\xi}_1(t) - \boldsymbol{\xi}_2(t)\| = \|\int_{\boldsymbol{\xi}_1(t)}^{\boldsymbol{\xi}_2(t)} \delta \boldsymbol{x}(t)\|$.

Definition 3.2. Let $\Theta(\boldsymbol{x},t)$ be a smooth coordinate transformation of $\delta \boldsymbol{x}$ to $\delta \boldsymbol{z}$, i.e., $\delta \boldsymbol{z} = \Theta(\boldsymbol{x},t)\delta \boldsymbol{x}$. Then, a symmetric continuously differentiable matrix $\boldsymbol{M}(\boldsymbol{x},t) := \boldsymbol{\Theta}(\boldsymbol{x},t)^{\top}\boldsymbol{\Theta}(\boldsymbol{x},t)$ is said to be a *metric* of the system (1).

Definition 3.3. The covariant derivative of f(x,t) in δx coordinate is represented as

$$m{F} := \left(rac{\mathrm{d}}{\mathrm{d}t} m{\Theta} + m{\Theta} rac{\partial m{f}}{\partial m{x}}
ight) m{\Theta}^{-1},$$

and is called the *generalized Jacobian*. This can be easily derived by differentiating $\delta z = \Theta(x, t) \delta x$ with respect to t.

3.1.2 Notable Theorems

The following theorem is the fundamental theorem of contraction theory.

Theorem 3.1 (see, T. 2.1 [4]). If $\exists M(x,t) = \Theta(x,t)^{\top}\Theta(x,t) > 0, \forall x,t$ where $\Theta(x,t)$ defines a smooth coordinate transformation of δx to δz , i.e., $\delta z = \Theta(x,t)\delta x$, subject to the following equivalent conditions holds for $\exists \alpha \in \mathbb{R}_{>0}, \ \forall x,t$:

$$\begin{split} \lambda_{\max}(\boldsymbol{F}(\boldsymbol{x},t)) &= \lambda_{\max} \left(\left(\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{\Theta} + \boldsymbol{\Theta} \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}} \right) \boldsymbol{\Theta}^{-1} \right) \leq -\alpha, \\ &\frac{\mathrm{d}}{\mathrm{d}t} \boldsymbol{M} + \mathrm{sym}(\boldsymbol{M} \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}) \leq -2\alpha \boldsymbol{M}, \end{split}$$

where the arguments of M(x,t) and F(x,t) are omitted for simplicity, then, the system (1) is said to be contracting with an exponential rate α , i.e., all trajectories of (1) converge to a single trajectory. The converse is also true.

Proof.

3.2 Basic Results of Contraction Theory for Stochastic Systems

4 Deep-Neuro Control

A Notable Lemmas

References

- [1] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, "Neural stochastic contraction metrics for learning-based control and estimation," *IEEE Control Systems Letters*, vol. 5, no. 5, pp. 1825–1830, 2021.
- [2] H. K. Khalil, *Nonlinear systems; 3rd ed.* Upper Saddle River, NJ: Prentice-Hall, 2002. The book can be consulted by contacting: PH-AID: Wallet, Lionel.
- [3] W. LOHMILLER and J.-J. E. SLOTINE, "On contraction analysis for non-linear systems," *Automatica*, vol. 34, no. 6, pp. 683–696, 1998.
- [4] H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine, "Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview," *Annual Reviews in Control*, vol. 52, pp. 135–169, 2021.
- [5] D. Kirk, Optimal Control Theory: An Introduction. Dover Books on Electrical Engineering Series, Dover Publications, 2004.