QuickSort Partition Code — Annotated

Jonathan Buss, Collin Roberts

Algorithm and Code

Overview of the Code

Array to partition: X, indexed from 1 to n. Pivot: p. It may have any value.

First while-loop:

Positions the a marker to the first element which is greater than p. If no such element exists, a becomes n, and the second while-loop will skip its body.

Second while-loop:

Move b marker over any remaining elements, and swap an out-of-position one into place. After a swap, we move the a marker one position to the right (a large element moved out and a small one into its former place).

Postcondition:

z is the cutoff position between the "small" elements on the left and the "large" elements on the right.

Code (unannotated)

We shall annotate this code in two parts—one for each of the while-loops. To complete the annotation then requires additional implied conditions.

Annotations

Notes on Notation:

- "X[a..b]" refers to all X[i], where $a \le i < b$. Similarly, X[a..b] refers to all X[i], where $a \le i \le b$. (This is analogous to the notation for open and closed intervals in calculus.)
- The various parts of formulas are coloured to show their origin and role.

Greenish: the "lower" (or only) part of a loop invariant.

Bluish: the "upper" part of a loop invariant, if any.

Reddish: Conditions from loop guards and conditionals.

Before an assignment, the assigned value has its colour reddened.

Preamble and first loop (invariant $1 \le a \land X[1..a) \le p$)

Remarks:

• The implication involves a notational shift: $X[1..a+1) \le p$ is equivalent to $X[1..a) \le p \land X[a] \le p$.

```
Second loop (invariant (1 \le a \le n) \land X[1..a) \le p \land X[a..\min(b, n)) > p)
```

```
(\!(X[1..a) \leq p \land X[a..\min(a+1,n)) > p)\!)
                                                                       ⟨precondition⟩
b = a + 1;
   (X[1..a) \le p \land X[a..\min(b,n)) > p)
                                                                       assignment
while (b \le n) {
     ((X[1..a) \le p \land X[a..\min(b,n)) > p) \land b \le n)
                                                                       partial-while
     (X[1..a) \le p \land X[a..b) > p \land b \le n)
                                                                       implied
  if ( X[b] <= p ) {</pre>
        (|X[1..a) \le p \land X[a..b) > p \land b \le n \land X[b] \le p)
                                                                       if-then
        (X[1..a) \le p \land X[a] > p \land X[a+1..b) > p \land X[b] \le p)
                                                                       implied
    t = X[b] ; X[b] = X[a] ; X[a] = t ;
       (X[1..a) \le p \land X[a] \le p \land X[a+1..b) > p \land X[b] > p)
                                                                       swap
        (X[1..a + 1) \le p \land X[a + 1..b) > p)
                                                                       implied
     a = a + 1;
       (X[1..a) \le p \land X[a..b+1) > p)
                                                                       assignment
     (X[1..a) \le p \land X[a..b+1) > p)
                                                                       if-then + implied
  b = b + 1
     (X[1..a) \leq p \wedge X[a..b) > p)
                                                                       assignment
     (X[1..a) \le p \land X[a..\min(b,n)) > p)
                                                                       implied
   (X[1..a)  p \land b > n)
                                                                       partial-while
```

Remarks:

• The the presence of " $\min(b, n)$ " in the loop invariant accounts for the possibility that a advanced to n in the first loop. The relationship of X[n] to p is unknown and immaterial. (We could instead include an additional test in the code, but such a test is not needed for correctness.)

The adjustment is not needed, and hence disappears, inside of the loop:

- At the start of the while-loop, we have $b \le n$, and the minimum is always b.
- At the end of the loop, X[a..b) > p implies $X[a..\min(b,n)) > p$, whatever value b has.
- The condition labelled "swap" follows from the proof in the course notes: the three assignments exchange the values of X[a] and X[b], leaving the rest of the array unchanged.

The implieds before and after the swap simply re-write the notation, to focus on the changing locations.

Inter-loop implications

```
After first while-loop:
```

Algebra and use of notation.

At end:

The value for z is a if $a \le n$ and X[n] > p, or n + 1 otherwise.

Full annotated code

```
(n \ge 1)
   (X[1..1) \le p)
                                                                         implied
a = 1;
   (X[1..a) \le p)
                                                                         assignment
while ( a < n \&\& X[a] <= p ) {
     (X[1..a) \le p \land (a < n \land X[a] \le p))
                                                                         partial-while
     (X[1..a + 1) \le p)
                                                                         implied
    a = a + 1;
     (X[1..a) \le p)
                                                                         assignment
   (X[1..a) \le p \land (a \ge n \lor X[a] > p))
                                                                         partial-while
   (X[1..a) \le p \land X[a..\min(a+1,n)) > p)
                                                                         implied
b = a + 1 ;
   (X[1..a) \le p \land X[a..\min(b,n)) > p)
                                                                         assignment
while ( b <= n ) {
     ((X[1..a) \le p \land X[a..\min(b,n)) > p) \land b \le n)
                                                                         partial-while
     (X[1..a) \le p \land X[a..b) > p \land b \le n)
                                                                         implied
  if ( X[b] <= p ) {</pre>
        (\!(X[1..a) \leq p \land X[a..b) > p \land b \leq n \land X[b] \leq p)\!)
                                                                         if-then
        (X[1..a) \le p \land X[a] > p \land X[a+1..b) > p \land X[b] \le p)
                                                                         implied
     t = X[b] ; X[b] = X[a] ; X[a] = t ;
        (X[1..a) \le p \land X[a] \le p \land X[a+1..b) > p \land X[b] > p)
                                                                         swap
        (X[1..a+1) \le p \land X[a+1..b) > p)
                                                                         implied
     a = a + 1;
        (X[1..a) \le p \land X[a..b+1) > p)
                                                                         assignment
     (X[1..a) \le p \land X[a..b+1) > p)
                                                                         if-then + implied
  b = b + 1
     (X[1..a) \leq p \wedge X[a..b) > p)
                                                                         assignment
     (X[1..a) \le p \land X[a..\min(b,n)) > p)
                                                                         implied
   (X[1..a) \le p \land X[a..\min(b,n)) > p \land b > n)
                                                                         partial-while
   (\exists z \cdot (1 \le z \le n + 1 \land X[1..z) \le p \land (X[z..n] > p)))
                                                                         implied
```

Remarks:

• The proof of termination (i.e. the last ingredient required for total correctness) is left as an exercise.