Appello – Parte 1

02/09/2022 — versione 1 —

32 pt - durata 1h 30' - MS Forms

Gli studenti aventi diritto a svolgere la **prova ridotta** del 30% secondo la L.170/2010 (indicazioni **Multichance** team) **NON** svolgono i quesiti contrassegnati con (***)

TEST - 15 pt

1-1 pt (***) No Multichance

Dato l'insieme dei numeri floating point $\mathbb{F}(2,6,-7,7)$, si stimi l'errore relativo $\frac{|x-fl(x)|}{|x|}$ commesso tra il generico numero reale x e la sua rappresentazione in artimetica floating point fl(x).

$$2^{-6} = 1.5625 \cdot 10^{-2}$$

2-1 pt

Dato $A \in \mathbb{R}$, con A > 1, la serie $S_N = \sum_{n=1}^N \frac{1}{n} \left(1 - \frac{1}{A}\right)^n$ rappresenta, per $N \in \mathbb{N}$

"sufficientemente" grande, un'approssimazione di log(A). Posto A=8, per quale valore minimo di N si ottiene un errore inferiore a 0.01?

24

3 — 2 pt — (***) No Multichance

Dato il sistema lineare $A \mathbf{x} = \mathbf{b}$, con $A = \begin{bmatrix} 8 & -1 & -1 \\ 3 & 1 & -1 \\ -1 & 4 & 7 \end{bmatrix}$ e $\mathbf{b} = \begin{pmatrix} 3 & 2 & 1 \end{pmatrix}^T$, si

consideri la sua risoluzione tramite il metodo della fattorizzazione LU con pivoting per righe (permutazione della seconda e terza riga). Si riportino gli elementi $l_{21} = (L)_{21}$ e $u_{33} = (U)_{33}$ dei fattori L ed U della matrice permutata e la terza componente y_3 del vettore ausiliario \mathbf{y} associato alla soluzione del sistema triangolare inferiore che compare durante l'applicazione del metodo.

$$l_{21} = -1/8$$
 $u_{33} = -95/31$ $y_3 = 12/31$

4 — 2 pt

Si consideri il metodo di Richardson stazionario per risolvere il sistema lineare

$$A\mathbf{x} = \mathbf{b}$$
, dove $A = \begin{bmatrix} 7 & -1 & -1 \\ -1 & 5 & -1 \\ -1 & -1 & 3 \end{bmatrix}$ e $\mathbf{b} = \mathbf{1}$. Si calcoli il valore ottimale del

parametro $\alpha_{opt} \in \mathbb{R}$ e lo si utilizzi per determinare l'iterata $\mathbf{x}^{(4)} \in \mathbb{R}^3$ del metodo usando opportunamente la funzione Matlab[®] richardson.m e avendo scelto $\mathbf{x}^{(0)} = \mathbf{b}$. Si riportino α_{opt} e $\mathbf{x}^{(4)}$.

$$\alpha_{opt} = 0.2060, \, \mathbf{x}^{(4)} = (0.3262 \ 0.3824 \ 0.6048)^T$$

5 — 2 pt

Si consideri la matrice di Hilbert $A = \mathtt{hilb}(5) \in \mathbb{R}^{5 \times 5}$. Si applichi il metodo delle potenze inverse con shift s = 0.5 per l'approssimazione di $\lambda_2(A)$ a partire dal vettore iniziale $\mathbf{x}^{(0)} = \mathbf{1} \in \mathbb{R}^5$. Si riportino i valori delle approssimazioni $\lambda^{(0)}$, $\lambda^{(1)}$ e $\lambda^{(2)}$ di tale autovalore.

1.2913, 0.5253, 0.2380

6-2 pt (***) No Multichance

Si consideri la matrice $A=\left[\begin{array}{cccc} 3 & 1 & 0 & 0\\ 0 & -1 & 1 & 0\\ 0 & 0 & 1 & 6\\ 0 & 0 & -6 & 1 \end{array}\right]$. Indicata con ι l'unità immagnitation of the contraction of

inaria, per quali valori del parametro $\mu \in \mathbb{R}$ è possibile applicare il metodo delle potenze inverse con shift $s = \mu \iota$ per l'approssimazione dell'autovalore $(1+6 \iota)$ di A?

 $\mu > 3$

7-1 pt

Si consideri la funzione $f(x) = \log\left(\frac{x}{6}\right)$ e il metodo di Newton approssimare lo zero $\alpha = 6$. Scelto $x^{(0)}$ "sufficientemente" vicino ad α , qual è l'ordine di convergenza p atteso per il metodo?

2

8-1 pt

Si consideri il metodo di *Newton modificato* per l'approssimazione dello zero $\alpha = 6$ della funzione $f(x) = (x-6)^3$. Si riporti il valore dell'iterata $x^{(1)}$ ottenuta applicando il metodo a partire da $x^{(0)} = 5$.

6

9-1 pt

Si consideri una funzione $f \in C^{\infty}(\mathbb{R})$, dotata dello zero semplice α . Si supponga di approssimare α tramite il metodo di Newton e che all'iterata k-esima sia associato l'errore $\left|x^{(k)} - \alpha\right| = 0.5$. Assumendo che $\left|x^{(k+1)} - \alpha\right| = 0.05$, si riporti il valore stimato dell'errore $\left|x^{(k+2)} - \alpha\right|$.

$$5 \cdot 10^{-4}$$

10 - 2 pt

Si consideri la funzione di iterazione $\phi(x)=x+\mu\left(1-e^{3x-1}\right)$, dipendente dal parametro $\mu\in\mathbb{R}$ e dotata del punto fisso $\alpha=\frac{1}{3}$. Per quali valori di μ è garantita la convergenza del metodo delle iterazioni di punto fisso ad α in maniera monotona, scegliendo l'iterata iniziale "sufficientemente" vicina a α ?

Conv.
$$\mu \in (0, 2/3)$$
; Conv. monotona $\mu \in (0, 1/3)$

ESERCIZIO - 17 pt

Si consideri il sistema lineare $A \mathbf{x} = \mathbf{b}$, dove $A = \operatorname{tridiag}\left(-\frac{3}{2}, 3, -\frac{3}{2}\right) \in \mathbb{R}^{n \times n}$ e $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$ per $n \ge 1$.

Punto 1) — 2 pt

- ullet Si definisca il numero di condizionamento spettrale K(A) di A.
- Sapendo che gli autovalori di A sono $\lambda_j(A)=3+3\cos\left(\pi\frac{j}{n+1}\right)$ per $j=1,\ldots,n,$ dove $\lambda_1(A)>\lambda_2(A)>\cdots>\lambda_n(A),$ si utilizzi Matlab® per calcolare K(A) in funzione di $n=10,\,20,\,30,\,\ldots,100.$ Come si comporta K(A) per $n\to+\infty$?

$$K(A) \approx \frac{4}{\pi^2} (n+1)^2$$

Spazio per risposta lunga

Punto 2) — 2 pt

Quale metodo diretto utilizzereste per risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$ indicato? Si motivi dettagliatamente la risposta data e si descriva sinteticamente tale metodo.

Spazio per risposta lunga

Punto 3) — 3 pt (***) No Multichance

Si intende risolvere il sistema lineare $A\mathbf{x} = \mathbf{b}$, sapendo che $\mathbf{x} = \mathbf{5}$. Supponiamo che, a causa degli errori di arrotondamento, il vettore \mathbf{b} sia affetto da una perturbazione $\delta \mathbf{b} = 10^{-9} \mathbf{c}$, dove $\mathbf{c} \in \mathbb{R}^n$ è tale che $\|\mathbf{c}\|_2 = 1$, e che si risolva dunque il sistema lineare perturbato $A(\mathbf{x} + \delta \mathbf{x}) = \mathbf{b} + \delta \mathbf{b}$.

Posto n=1000, si stimi l'errore relativo $\|\mathbf{\delta x}\|_2/\|\mathbf{x}\|_2$ commesso. Inoltre, si verifichi con Matlab[®] la validità di tale stima commentando il risultato ottenuto. Per la verifica in Matlab[®], si utilizzi il seguente vettore \mathbf{c} :

```
>> c = rand(size(b));
```

>> c = c./norm(c);

e si risolva il sistema lineare con il comando \ di Matlab[®] .

$$err_{stim} = 3.8287 \cdot 10^{-5}, err_{vero} = 3.3382 \cdot 10^{-7}$$

Spazio per risposta lunga

Punto 4) — 2 pt

Per la matrice A con n=1000 e il vettore ${\bf b}$ assegnato al Punto 3), si applichi il metodo del gradiente implementato nella funzione Matlab richardson.m usando la tolleranza sul criterio d'arresto basato sul residuo normalizzato $tol=10^{-2}$, il numero massimo di iterazioni pari a 10^3 e l'iterata iniziale ${\bf x}^{(0)}={\bf b}$. Si riportino: i comandi Matlab usati, il numero N di iterazioni effettuate, la prima componente della soluzione approssimata $x_1=\left({\bf x}^{(N)}\right)_1$, il valore del residuo normalizzato

$$r_{norm}^{(N)} = \frac{\|\mathbf{r}^{(N)}\|}{\|\mathbf{b}\|} \text{ e l'errore relativo } e_{rel}^{(N)} = \frac{\|\mathbf{x} - \mathbf{x}^{(N)}\|}{\|\mathbf{x}\|}.$$

$$N = 307$$
, $x_1 = 4.7736$, $r_{norm}^{(N)} = 0.01$, $e_{rel}^{(N)} = 0.9804$

Spazio per risposta lunga

Punto 5) — 3 pt

Si ripeta il Punto 4) considerando ora il metodo del *gradiente coniugato* usando opportunamente la funzione Matlab[®] pcg.

Si confrontino e si discutano i risultati con quelli ottenuti al Punto 4) alla luce delle proprietà teoriche dei due metodi.

$$N = 99$$
, $x_1 = 4.9504$, $r_{norm}^{(N)} = 0.0099$, $e_{rel}^{(N)} = 0.9308$

Spazio per risposta lunga

Punto 6) — 2 pt (***) No Multichance

Sempre considerando il metodo del gradiente coniugato applicato alla soluzione del sistema lineare $A \mathbf{x} = \mathbf{b}$ con i dati del Punto 4), si riportino gli angoli $\theta^{(1)}$ e $\theta^{(2)}$ formati rispettivamente tra le direzioni di discesa $\mathbf{p}^{(0)}$ e $\mathbf{p}^{(1)}$ dell'algoritmo e tra $\mathbf{p}^{(1)}$ e $\mathbf{p}^{(2)}$. Si verifichi inoltre che le direzioni di discesa sono A-coniugate. Si riportino i comandi Matlab[®] usati.

$$\theta^{(1)} = 77.3912^{\circ}, \, \theta^{(2)} = 67.7005^{\circ}$$

Spazio per risposta lunga

Punto 7) — 3 pt

Dato un generico sistema di equazioni non lineari $\mathbf{F}(\mathbf{x}) = \mathbf{0}$, dove $\mathbf{F} : \mathbb{R}^n \to \mathbb{R}^n$ per $n \geq 1$, si può approssimare lo zero $\alpha \in \mathbb{R}^n$ tramite il metodo di Broyden descritto nel seguente algoritmo.

Algorithm 1: Metodo di Broyden

Dato $\mathbf{x}^{(0)} \in \mathbb{R}^n$:

Assegnata la matrice $B_0 \in \mathbb{R}^{n \times n}$;

for k = 0, 1, 2, ..., fino a che un criterio d'arresto è soddisfatto do risolvere il sistema lineare $B_k \, \boldsymbol{\delta}^{(k)} = -\mathbf{F}\left(\mathbf{x}^{(k)}\right);$

$$\begin{aligned} \mathbf{x}^{(k+1)} &= \mathbf{x}^{(k)} + \boldsymbol{\delta}^{(k)}; \\ B_{k+1} &= \\ B_k + \frac{1}{\boldsymbol{\delta}^{(k)} \cdot \boldsymbol{\delta}^{(k)}} \left(\mathbf{F} \left(\mathbf{x}^{(k+1)} \right) - \mathbf{F} \left(\mathbf{x}^{(k)} \right) - B_k \, \boldsymbol{\delta}^{(k)} \right) \, \left(\boldsymbol{\delta}^{(k)} \right)^T; \end{aligned}$$

Si implementi il precedente algoritmo in una funzione Matlab[®] broyden.m, dove $\mathbf{x}^{(k)}$ fornisce un'approssimazione di $\boldsymbol{\alpha}$, mentre B_k è un'approssimazione della matrice Jacobiana di $\mathbf{F}\left(\mathbf{x}^{(k)}\right)$.

Si consideri ora il seguente sistema di equazioni non lineari per n=100.

$$\mathbf{F}(\mathbf{x}) = A\,\mathbf{x} + e^{-\mathbf{x}/20} - \mathbf{1} = \mathbf{0},$$

dove $\mathbf{F}: \mathbb{R}^{100} \to \mathbb{R}^{100}$ e la matrice A è stata definita precedentemente. Si approssimi lo zero $\boldsymbol{\alpha} = \mathbf{0} \in \mathbb{R}^{100}$ usando la funzione Matlab® broyden.m implementata, scegliendo $\mathbf{x}^{(0)} = (0.1, 0.1, \dots, 0.1)^T \in \mathbb{R}^{100}$ e $B_0 = A$.

Si riportino i valori della prima componente della prima, seconda e terza iterata, ovvero $(\mathbf{x}^{(1)})_1$, $(\mathbf{x}^{(2)})_1$ e $(\mathbf{x}^{(3)})_1$, ottenute applicando il metodo e i comandi Matlab® usati.

 $0.1663,\ 0.0277,\ 0.0605$

Spazio per risposta lunga