Mathematics I- MATH F111

Saranya G. Nair Department of Mathematics

BITS Pilani

September 18, 2024

In this section we study how a curve turns or bends. First we look at curves in the coordinate plane. Then we consider curves in space.

Rate of change of r with respect to arc length

If C is a smooth curve defined by the vector function \mathbf{r} , recall that the unit tangent vector is given by $\mathbf{T}(t) = \frac{r'(t)}{|r'(t)|}$

Rate of change of r with respect to arc length

If C is a smooth curve defined by the vector function \mathbf{r} , recall that the unit tangent vector is given by $\mathbf{T}(t) = \frac{r'(t)}{|r'(t)|}$ and indicates the direction of the curve.

Rate of change of r with respect to arc length

If C is a smooth curve defined by the vector function \mathbf{r} , recall that the unit tangent vector is given by $\mathbf{T}(t) = \frac{r'(t)}{|r'(t)|}$ and indicates the direction of the curve.

T changes direction very slowly when C is fairly straight, but it changes direction more quickly when bends or twists more sharply.

- The curvature of *C* at a given point is a measure of how quickly the curve changes direction at that point.
- Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector with respect to arc length.
- A curve can have different parametric representations. We use arc length to measure the curvature so that the curvature will be independent of the parametrization.

- The curvature of *C* at a given point is a measure of how quickly the curve changes direction at that point.
- Specifically, we define it to be the magnitude of the rate of change of the unit tangent vector with respect to arc length.
- A curve can have different parametric representations. We use arc length to measure the curvature so that the curvature will be independent of the parametrization.

Definition

The curvature of a curve is

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right|$$

where **T** is the unit tangent vector.

If a smooth curve $\vec{r}(t)$ is already given in terms of some parameter t other than the arc length parameter s, we can use the Chain Rule to compute it in terms of t.

If a smooth curve $\vec{r}(t)$ is already given in terms of some parameter t other than the arc length parameter s, we can use the Chain Rule to compute it in terms of t.

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \left| \frac{d\mathbf{T}}{dt} \frac{dt}{ds} \right|$$
$$= \frac{1}{\left| \frac{ds}{dt} \right|} \left| \frac{d\mathbf{T}}{dt} \right|$$
$$= \frac{1}{|v|} \left| \frac{d\mathbf{T}}{dt} \right|.$$

1. A straight line is parametrized by $r(t) = \vec{C} + t\vec{v}$ for constant vectors \vec{C} and \vec{v} . Find it's curvature.

- 1. A straight line is parametrized by $r(t) = \vec{C} + t\vec{v}$ for constant vectors \vec{C} and \vec{v} . Find it's curvature.
- 2. Find the curvature of a circle of radius a parametrized by $r(t) = a \cos t \vec{i} + a \sin t \vec{j}$.

 Among the vectors orthogonal to the unit tangent vector T, there is one of particular significance because it points in the direction in which the curve is turning.

- Among the vectors orthogonal to the unit tangent vector T, there is
 one of particular significance because it points in the direction in
 which the curve is turning.
- Since **T** has constant length (because its length is always 1), the derivative $\frac{d\mathbf{T}}{ds}$ is orthogonal to **T**.

- Among the vectors orthogonal to the unit tangent vector T, there is
 one of particular significance because it points in the direction in
 which the curve is turning.
- Since **T** has constant length (because its length is always 1), the derivative $\frac{d\mathbf{T}}{ds}$ is orthogonal to **T**.
- Therefore, if we divide $\frac{d\mathbf{T}}{ds}$ by its length κ , we obtain a unit vector \mathbf{N} orthogonal to \mathbf{T} .

- Among the vectors orthogonal to the unit tangent vector T, there is
 one of particular significance because it points in the direction in
 which the curve is turning.
- Since T has constant length (because its length is always 1), the derivative dT/ds is orthogonal to T.
- Therefore, if we divide $\frac{d\mathbf{T}}{ds}$ by its length κ , we obtain a unit vector \mathbf{N} orthogonal to \mathbf{T} .

$$\mathbf{N} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds}$$

If a smooth curve r(t) is already given in terms of some parameter t other than the arc length parameter s, we can use the Chain rule to calculate ${\bf N}$ directly:

$$\mathbf{N} = \frac{d\mathbf{T}/ds}{|d\mathbf{T}/ds|}$$

$$= \frac{(d\mathbf{T}/dt)(dt/ds)}{|d\mathbf{T}/dt||dt/ds|}$$

$$= \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}$$

since $\frac{dt}{ds} = \frac{1}{ds/dt} > 0$. This formula helps us to calculate **N** without finding κ and s first.

Find \vec{T} and \vec{N} for the circular motion

$$r(t) = (\cos 2t)\vec{i} + (\sin 2t)\vec{j}.$$

Circle of Curvature

The center of the osculating circle at P(x, y) lies toward the inner side of the curve.

Circle of Curvature

The circle of curvature or osculating circle at a point P on a plane curve where $\kappa \neq 0$ is the circle in the plane of the curve that

- is tangent to the curve at *P* (has the same tangent line the curve has)
- has the same curvature the curve has at P
- has center that lies toward the concave or inner side of the curve

The radius of curvature of the curve at P is the radius of the circle of curvature.

Radius of curvature=
$$\rho = \frac{1}{\kappa}$$
.

The center of curvature of the curve at P is the center of the circle of curvature.

Find and graph the circle of curvature of the parabola $y = x^2$ at the origin.

Find and graph the circle of curvature of the parabola $y=x^2$ at the origin.

Curvature and Normal vectors for Space curves

If a smooth curve in space is specified by the position vector $\mathbf{r}(t)$ as a function of some parameter t, and if s is the arc length parameter of the curve, then the unit tangent vector \mathbf{T} is $d\mathbf{r}/ds = v/|v|$. The curvature in space is defined to be

$$\kappa = \left| \frac{d\mathbf{T}}{ds} \right| = \frac{1}{|v|} \left| \frac{d\mathbf{T}}{dt} \right|$$

The vector $d\mathbf{T}/ds$ is orthogonal to \mathbf{T} , and we define the principal unit normal to be

$$\mathbf{N} = \frac{1}{\kappa} \frac{d\mathbf{T}}{ds} = \frac{d\mathbf{T}/dt}{|d\mathbf{T}/dt|}.$$

Find the curvature and Normal for the helix

$$r(t) = (a\cos t)\vec{i} + (a\sin t)\vec{j} + bt\vec{k}, \ a, b \ge 0, \ a^2 + b^2 \ne 0.$$

What happens to the curvature when a = 0? or when b = 0?