Linear regresjon (enkel og multippel) ISTx1003 Statistisk læring og Data Science

Stefanie Muff, Institutt for matematiske fag

November 1 og 5, 2021

Anerkjennelse

Disse slides bygger på slides fra Mette Langaas, 2020.

Takk til Mette for at jeg fikk bruke noen av materialene.

Plan for i dag og fredag 12:15-13:00 (tema "Regresjon")

- Læringsmål og plan for prosjektmodulen ISTx1003.
- De tre temaene i modulen:
 - regresjon
 - klassifikasjon og
 - klyngeananlyse
- Pensum og læringsressurser
- Prosjektoppgaven og Blackboard-informasjon
- Tema: Enkel og multippel lineær regresjon

Hvem er vi?

- Studentene: BIDATA og BDIGSEC, omtrent 250 studenter totalt.
- Faglig ansvarlig for innholdet i modulen er Stefanie Muff (stefanie.muff@ntnu.no).
- I veilederteamet (for prosjektet) inngår i tillegg
 - Trondheim: studentassistentene Simen, Simon og Philip, og øvingslærer Martin O. Berild
 - Gjøvik: Charles Curry
 - Ålesund: Siebe B. van Albada

Hva er statistisk læring og data science?

- Statistisk læring inneholder stort sett alle metoder som hjelper oss å lære av data.
- Data science er et konsept for å forene statistikk, dataanalyse, informatikk og tilhørende metoder for å "forstå og analysere relle fenomener med data".

Læringsmål (av modulen)

Etter du har gjennomført denne modulen skal du kunne:

- forstå når du kan bruke regresjon, klassifikasjon og klyngeananlyse til å løse et ingeniørproblem
- kunne gjennomføre multippel lineær regresjon på et datasett
- bruke logistisk regresjon og nærmeste nabo for å utføre en klassifikasjonsoppgave
- \bullet bruke hierarkisk og k-means klyngeanalyse på et datasett, forstå begrepet avstandsmål
- og kunne kommunisere resultatene fra regresjon/ klassifikasjon/klyngeanalyse til medstudenter og ingeniører
- bli en kritisk leser av resultater fra statistikk/maskinlæring/ statistisk læring/data science/kunstig intelligens når disse rapporteres i media, og forstå om resultatene er realistiske ut fra informasjonen som gis
- kunne besvare prosjektoppgaven på en god måte!

Pensum og læringsressurser

Pensum er definert som "svarene på det du blir spurt om på prosjektoppgaven" og de kan du finne ved å bruke læringsressursene.

Alle ressurser er tilgjengelig her:

https://wiki.math.ntnu.no/istx1003/2021h/start

Tema Regresjon:

- Kompendium: Regresjon (pdf og html, by Mette Langaas)
- Korte videoer: (by Mette Langaas)
 - Multippel lineær regresjon: introduksjon (14:07 min)
 - Multippel lineær regresjon: analyse av et datasett (15:20 min)
- Denne forelesningen
- Disse slides med notater

Prosjektoppgaven

- Vi ser hvor informasjonen ligger på Blackboard og hvordan melde seg på gruppe.
- Vi ser på prosjektoppgaven på https://s.ntnu.no/isthub.
- Karakteren teller 30% til den endelige karakteren.
- Vi bruker prosentvurderingsmetoden: Konverterer poengene i en % (heltall, avrundet) og så bruker vi følgende skala:

```
Karakterskala for prosentvurderingsmetoden
A: 89-100 poeng
B: 77-88 poeng
C: 65-76 poeng
D: 53-64 poeng
E: 41-52 poeng
F: 0-40 poeng
```

Veileding til prosjektoppgaven

Starter neste uke!

Trondheim: 11., 18. og 25. November, 12:15-14:00 i Sentralbygg S3.

Ålesund: Info kommer Gjøvik: Info kommer

Digital veileding for alle:

- Forumet: https://mattelab.math.ntnu.no/, velg kategorien "ISTx100y Statistikk for bachelor ingeniør".
- Veileding via Whereby
 - Man 15.11. og 22.11., 14:15-15:00
 - Fre 19.11. og 26.11., 12:15-14:00

for alle campuser. Mer informasjon kommer her: https://wiki.math.ntnu.no/istx1003/2021h/start

Læringsmål for regresjon

- Du kan lage en modell for å forstå sammenhengen mellom en respons og én eller flere forklaringsvariabler.
- Du kan lage en modell for å predikere en respons fra en eller flere forklaringsvariabler.

Regresjon – motiverende eksempel

(Veiledet læring - vi kjenner responsen)

 Kropssfett er en viktig indikator for overvekt, men vanskelig å måle.

Spørsmål: Hvilke faktorer tillater præsis estimering av kroppsfettet?

Vi undersøker 243 mannlige deltakere. Kroppsfett (%), BMI og andre forklaringsvariabler ble målet. Kryssplott:

For en model for funker god for prediksjon trenger vi multippel linear regresjon. Men vi begynner med enkel linear regresjon (bare en forklaringsvariabel):

Enkel linear regresjon

- \bullet En kontinuerlig respons variabel Y
- Bare en forklaringsvariabel x_1
- Relasjon mellom Y og x_1 er antatt å være linear.

Hvis den lineare relasjonen mellom Y og x er perfekt, så gjelder

$$y_i = \beta_0 + \beta_1 x_{1i}$$

for alle i. Men..

Hvilken linje er best?

Enkel linear regresjon

a) Kan vi tilpasse den "rette" linjen til dataene?

- $$\begin{split} \bullet & \ \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i}. \\ \bullet & \ \hat{e}_i = \hat{y}_i y \\ \bullet & \ \hat{\beta}_0 \ \text{og} \ \hat{\beta}_1 \ \text{velges slik at} \end{split}$$

$$SSE = \sum_{i} \hat{e}_{i}^{2}$$

minimeres.

b) Kan vi tolke linja? Hvor sikkert er jeg på $\hat{\beta}_1$ og linja? Vi trenger antakelser, KI og hypothesetest.

c) Fremtidige presisjoner av predikert y (kroppsfett)?

Linear regresjon – antakelser

$$Y_i = \underbrace{\beta_0 + \beta_1 x_{i1}}_{\hat{y}_i} + e_i$$

med

$$e_i \sim \mathsf{N}(0,\sigma^2)$$
 .

Do-it-yourself "by hand"

Her kan du finne de beste parametrene selv:

Bruk denne lenken:

 $https://gallery.shinyapps.io/simple_regression/$

Multippel linear regresjon

Nesten det samme some enkel linear regresjon, vi bare summerer flere forklaringsvariabler:

$$Y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \ldots + \beta_p x_{pi} + e_i \ , \quad e_i \sim \mathsf{N}(0, \sigma^2) \ .$$

For eksempel:

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{bmi}_i + \beta_2 \mathrm{age}_i + e_i \ .$$

Regresjonsanalyse i fem steg

Steg 1: Bli kjent med dataene ved å se på oppsummeringsmål og ulike typer plott

Steg 2: Spesifiser en matematisk modell

Steg 3: Tilpass modellen

Steg 4: Presenter resultater fra den tilpassede modellen

Steg 5: Evaluer om modellen passer til dataene

Vi skal ikke snakke så mye om hvordan finne en god modell, men om hvordan sammenligne to modeller (med justert \mathbb{R}^2).

Steg 1: Bli kjent med dataene

Vi kan for eksempel se på histogram og boxplot:

Ellers en parplot med kryssplotter for alle forklaringsvariable(r) (x_1, \dots, x_p) og respons y:


```
##
      bodyfat
                         age
                                        weight
                                                         height
   Min. : 0.70
                    Min.
                           :22.00
                                   Min. : 56.75
                                                     Min.
                                                            :162.6
##
    1st Qu.:12.50
                   1st Qu.:35.50
                                    1st Qu.: 72.30
                                                     1st Qu.:173.7
   Median: 19.20
                   Median :43.00
                                   Median: 80.02
                                                     Median :177.8
   Mean
          :19.11
                           :44.83
                                           : 80.91
                                                            :178.5
##
                   Mean
                                   Mean
                                                     Mean
##
   3rd Qu.:25.20
                   3rd Qu.:54.00
                                   3rd Qu.: 89.32
                                                     3rd Qu.:183.5
##
   Max. :47.50
                   Max.
                           :81.00
                                   Max.
                                           :119.29
                                                     Max.
                                                            :196.8
                                                         hip
##
        bmi
                        neck
                                       abdomen
##
    Min.
           :19.06
                   Min.
                           :31.10
                                   Min.
                                           : 70.40
                                                     Min.
                                                            : 85.30
##
   1st Qu.:23.07
                   1st Qu.:36.40
                                   1st Qu.: 84.90
                                                     1st Qu.: 95.55
##
   Median :25.10
                   Median :38.00
                                   Median: 91.00
                                                     Median: 99.30
##
   Mean
          :25.34
                   Mean
                         :37.96
                                  Mean
                                         : 92.38
                                                     Mean
                                                            : 99.69
##
   3rd Qu.:27.34
                   3rd Qu.:39.40
                                   3rd Qu.: 99.15
                                                     3rd Qu.:103.15
##
   Max.
           :39.12
                    Max.
                           :43.90
                                    Max.
                                           :126.20
                                                     Max.
                                                            :125.60
```

I Python får du en oppsummering av datasettet (df) med df.describe().

Steg 2: Spesifiser modell

Nå må vi spesifisere en modell med å velge hvilke forklaringsvariabler vi vil bruke

$$y \sim x_1 + x_2 + x_3$$
.

I Python er det

formel='y
$$\sim$$
 x1 + x2 + x3'.

Eksempel 1:

$$bodyfat \sim bmi$$

hvis den matematiske modellen er

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{BMI}_i + e_i \ ,$$

Python: formel='bodyfat ~ bmi'.

Eksempel 2:

$$bodyfat \sim bmi + age$$

hvis den matematiske modellen er

$$\mathrm{bodyfat}_i = \beta_0 + \beta_1 \mathrm{BMI}_i + \beta_2 \mathrm{age}_i + e_i \ .$$

Python: formel='bodyfat ~ bmi + age'.

Steg 3: Tilpass modellen

"Tilpasse" betyr:

- Vi estimerer $\beta_0,\,\beta_1,\,\dots$, og vi får estimater $\hat{\beta}_0,\,\hat{\beta}_1,\dots$
- I tillegg estimerer vi også σ^2 .

Steg 4: Resultat og tolkning av estimatene

			0	LS Regre	288	ion Res	sults		
Dep. Variab Model: Method: Date: Time: No. Observa Df Residual Df Model: Covariance	tions:		ved, 08	bodyfat OLS Squares Sep 202 18:58:4 24 24 conrobus	5 1 7 3 1	F-stat	R-squared:	:	0.539 0.537 281.8 2.06e-42 -761.28 1527 1534.
		coef	std	err		t	P> t	[0.025	0.975]
Intercept bmi	-26. 1.	9844 8188		769 108		.746 .788	0.000 0.000	-32.439 1.605	-21.530 2.032
Omnibus: Prob(Omnibu Skew: Kurtosis:	ıs):			5.03: 0.08: -0.03: 2.45:	1			======	2.311 3.079 0.215 198.

- Tilpasset regressjonslinie og 95% konfidensintervall for regressjonslinia (forventningsverdien $\mathrm{E}(Y)$).
- 95% prediksjonsintervall for nye observasjoner (kroppsfett for nye personer; handtegnet).

Steg 5: Passer modellen?

Tukey-Anscome (TA) diagram:

Her vil man

- Ikke noe struktur
- Sentrering rundt 0 verdien

Kvantil-kvantil plot:

Her vil man at observasjoner ligger mer og mindre på linja.

Hvordan ser det ut når en modell ikke passer?

Multippel linear regresjon

Gjenta samme analyse med to kovariabler (formel='bodyfat ~ bmi + age'):

```
OLS Regression Results
Dep. Variable:
                                         R-squared:
                                                                            0.580
                               bodyfat
Model:
                                         Adj. R-squared:
                                                                            0.577
Method:
                        Least Squares
                                        F-statistic:
                                                                            165.9
                     Wed. 08 Sep 2021
                                        Prob (F-statistic):
Date:
                                                                         5.67e-46
Time:
                              19:55:28
                                        Log-Likelihood:
                                                                          -749.88
No. Observations:
                                                                            1506.
Df Residuals:
                                   240
                                         BIC:
                                                                            1516.
Df Model:
Covariance Type:
                             nonrobust
                 coef
                          std err
                                                   P>|t|
                                                               [0.025
                                                                           0.975]
Intercept
             -31.2545
                            2.790
                                     -11.203
                                                   0.000
                                                             -36.750
                                                                          -25.759
bmi.
               1.7526
                            0.104
                                      16.773
                                                   0.000
                                                               1.547
                                                                            1.958
               0.1327
                            0.027
                                       4.857
                                                   0.000
                                                               0.079
                                                                            0.186
age
```

Med fem kovariabler:

		OLS	Regres	sion Re	sults		
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model:		Least Sq Thu, 09 Sep 09:	2021 16:49 243 237 5	F-sta Prob	ared: R-squared: tistic: (F-statistic ikelihood:):	0.726 0.720 125.3 1.73e-64 -698.26 1409. 1429.
Covariance	Type:	nonr	obust				
	coet	std err			P> t	[0.025	0.975]
Intercept bmi age weight neck abdomen	-35.280 0.388 0.0038 -0.114 -0.458 0.8888	0.224 0.027 0.029 0.216		5.809 1.730 0.141 3.883 2.123 10.486	0.000 0.085 0.888 0.000 0.035	-47.245 -0.054 -0.050 -0.172 -0.883 0.722	-23.316 0.830 0.058 -0.056 -0.033 1.056
Omnibus: Prob(Omnibu Skew: Kurtosis:	us):		5.492 0.064 0.056 2.439				2.345 3.310 0.191 4.64e+03

Hva betyr alt dette?

• coef: \hat{eta}_j

• std err: $\hat{SE}(\hat{\beta}_i)$

• t: $\frac{\hat{\beta}_j - 0}{\operatorname{SE}(\hat{\beta}_i)}$

• P>|t|: p-verdi (obs! p = 0.000 er ikke mulig, det betyr egentlig p < 0.0005)

Hva betyr alt dette?

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883		-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

Prediksjon:

$$\hat{y} =$$

Prediker bodyfat for en ny person med bmi=25, age=50, weight=75, neck=40, abdomen=95:

$$\hat{y} =$$

= 21.88

	coef	std err		P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

- Hva betyr $\hat{\beta}_0$?
- Hva betyr $\hat{\beta}_{abdomen} = 0.89$?

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

• 95% konfidensintervall: Intervall vi har stor tro at den inneholder den sanne β_j .

$$\begin{split} &\text{den sanne } \beta_j. \\ \bullet & [\hat{\beta}_j \pm \underbrace{t_{\alpha/2,df}}_{\approx 1.96} \cdot \text{SE}(\hat{\beta}_j)] \end{split}$$

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-35.2802	6.073	-5.809	0.000	-47.245	-23.316
bmi	0.3881	0.224	1.730	0.085	-0.054	0.830
age	0.0038	0.027	0.141	0.888	-0.050	0.058
weight	-0.1141	0.029	-3.883	0.000	-0.172	-0.056
neck	-0.4581	0.216	-2.123	0.035	-0.883	-0.033
abdomen	0.8888	0.085	10.486	0.000	0.722	1.056

ullet p-verdier og hypotesetester

Recap: Formell definisjon av p-verdien

p-verdien er sannsynligheten for det vihar observert eller noe mer ekstremt, dersom H_0 er sant.

R^2 og justert R^2

```
Dep. Variable:
                                                                            0.726
                               bodyfat
                                         R-squared:
Model:
                                         Adi. R-squared:
                                                                            0.720
Method:
                        Least Squares
                                        F-statistic:
                                                                            125.3
                     Thu. 09 Sep 2021 Prob (F-statistic):
Date:
                                                                         1.73e-64
                                         Log-Likelihood:
ime:
                              09:16:49
                                                                          -698.26
No. Observations:
                                                                            1409.
Of Residuals:
                                         BIC:
                                                                            1429.
Of Model:
Covariance Type:
                             nonrobust
```

$$R^{2} = \frac{\text{TSS} - \text{SSE}}{\text{TSS}} = 1 - \frac{\text{SSE}}{\text{TSS}} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y}_{i})^{2}},$$

med

$$\mathrm{TSS} = \sum_{i=1}^n (y_i - \bar{y})^2$$

som måler den totale variabiliteten i $(y_1,\ldots,y_n).$

Problemet med \mathbb{R}^2 : Verdien blir alltid større når flere variabler er lagt til.

For modellvalg bruker vi derfor en justert versjon:

$$R_{adj}^2 = 1 - (1-R^2)\frac{n-1}{n-m-1}$$

TA og kvantil-kvantil plot

Binære forklaringsvariabler

Den enkleste modellen er

$$y_i = \beta_0 + \beta_1 x_{1i} + e_i \ .$$

Hva betyr det når x_{1i} er enten 0 eller 1 (binær)?

$$\begin{array}{ll} \beta_0 + e_i & \quad \text{hvis } x_{1i} = 0 \ , \\ \beta_0 + \beta_1 + e_i & \quad \text{hvis } x_{1i} = 1 \ . \end{array}$$

Eksempel: Studie om kvikksølv (Hg)

Modell:

$$\log(Hg_{urin})_i = \beta_0 + \beta_1 \cdot x_{1i} + \beta_2 \cdot x_{2i} + \beta_3 \cdot x_{3i} + e_i \ , \label{eq:gurin}$$

Med

- $\log(Hg_{urin})$: log konsentrasjon av Hg i urin
- x_1 binær variabel som er 1 hvis person røyker, ellers 0
- x_2 antall amalgam fillinger i tennene
- \bullet x_3 antall fiskemåltider per måned.

Interpretasjon av regresjon med binær variabel

	coef	std err		P> t	[0.025	0.975]
Intercept	-2.1136	0.100	-21.101	0.000	-2.311	-1.916
smoking	0.3317	0.257	1.292	0.198	-0.175	0.839
amalgam_quant	0.1799	0.039	4.566	0.000	0.102	0.258
fisk_quant	0.0678	0.017	4.088	0.000	0.035	0.101

Modell for røyker:

Modell for ikke-røyker:

Kategoriske forklaringsvariabler

- Vi gjør ting enda mer fleksibel (eller komplisert!) når vi også tillater kategoriske forklaringsvariabler.
- Eksempel med 3 kategorier: Bil dataset med y=bensinforbruk og forklaringsvariabler vekt og origin∈ {American,European,Japanese}.

- Idé: dummy-variabel koding kalles one-hot koding i maskinlæring.
 - $x_{2i} = 0$ og $x_{3i} = 0$ hvis origin er "American"
 - $x_{2i} = 1$ og $x_{3i} = 0$ hvis origin er "European"
 - $x_{2i} = 0$ og $x_{3i} = 1$ hvis origin er "Japanese"

Modellen:
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + e_i$$

Dep. Variable:			R-squared:		0.70	2
Model:		OLS I	Adj. R-squared		0.70	10
Method:	Least Squares		F-statistic:		304.7	
Date:	Mon, 13 Se	p 2021	Prob (F-statistic):		1.28e-101	
Time:	14:42:02		Log-Likelihood:		-1123.9	
No. Observations:		392	AIC:		2256	
Df Residuals:		388	BIC:		2272	
Df Model:		3				
Covariance Type:	non	robust				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	43.7322	1.113	39.277	0.000	41.543	45.921
origin[T.European]	0.9709	0.659	1.474	0.141	-0.324	2.266
origin[T.Japanese]	2.3271	0.665	3.501	0.001	1.020	3.634
weiaht	-0.0070	0.000	-21.956	0.000	-0.008	-0.006

Så hva er modellene for de tre opprinnelsene (origin) av bilene?

Videre denne uken

- Se på videoene om multippel linear regresjon (hvis du ikke har allerede gjort det).
- Se på videoene om klassifikasjon.
- Les i kompendiet.
- Begynn å jobbe med prosjektoppgaven problem 1.
- Se her for mer informasjon: https://wiki.math.ntnu.no/istx1003/2021h/start