Motivación y Errores

Métodos Numéricos

Prof. Juan Pablo Concha y Eduardo Uribe Conferencia 2

Conferencia 2

- Errores
 - Errores humanos.
 - Errores de redondeo
 - Errores relativos y absolutos

Errores de Programación I (Sencillos)

Errores de sintaxis.

Violación de las reglas de un lenguaje de programación.

Solucionado hoy en día con detección automática.

Errores de enlace

Mala coordinación al utilizar los distintos módulos de un programa.

Se detecta en general en la fase de enlace.

Errores en la fase de ejecución

Mal manejo del espacio de memoria o del traspaso de datos, etc.

Usualmente el programa avisa sobre la existencia de un error.

Errores de Programación II (No tan sencillos)

Errores lógicos

Fallas en la lógica de ejecución del programa.

Ocurre normalmente sin que se note. El programa trabaja aparentemente bien, pero los resultados son incorrectos.

Eliminación de errores

- Depuración: Aislar errores, utilizar herramientas de ayuda.
- Prueba: Probar partes separadamente. Utilizar ejemplos con salida conocida.

Representación de números enteros

Números enteros positivos

Base decimal:

$$72662 = 7 \cdot 10^4 + 2 \cdot 10^3 + 6 \cdot 10^2 + 6 \cdot 10^1 + 2 \cdot 10^0$$

Base binaria:

$$10110 = 1 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^1 = 16 + 4 + 2 = 22$$

Ejemplo

Qué rango de enteros pueden representarse con 8 dígitos en base 2?

Se guarda un dígito para el signo. El mayor valor es:

$$2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 2^1 + 2^0 = 2^7 - 1 = 127$$

I Itilizando el -0 tenemos un rango de: [-128, 127]

Representación de punto flotante

Decimales positivos

Base decimal:

$$7.2662 = 7 \cdot 10^{0} + 2 \cdot 10^{-1} + 6 \cdot 10^{-2} + 6 \cdot 10^{-3} + 2 \cdot 10^{-4}$$

Base binaria:

$$10.110 = 1 \cdot 2^{1} + 1 \cdot 2^{-1} + 1 \cdot 2^{-2} = 2 + \frac{1}{2} + \frac{1}{4} = 2.75$$

Punto flotante (normalizado)

 $m \cdot b^e$ donde: m: Mantisa, b: base, e: exponente.

Normalizado: $b^{-1} \le m \le 1$.

$$\frac{1}{38} = 0.0263 = 0.00263 \cdot 10^{1} = 2.63 \cdot 10^{-2} = 0.263 \cdot 10^{-1}$$

Ejemplo

Fijando base b = 2.

Cuáles son los números extremos positivos que pueden representarse como punto flotante normalizado usando 7 dígitos: Dígitos: 1 signo, 3 exponente (con signo) y 3 mantisa.

Mayor positivo (overflow):

$$00111111 = 0_0_11_111 = (2^{-1} + 2^{-2} + 2^{-3}) \cdot (2^{2^{1} + 2^{0}}) = 7$$

Menor positivo (underflow):

$$0111100 = 0_1_11_100 = (2^{-1}) \cdot (2^{-(2^1+2^0)}) = 2^{-4} = \frac{1}{16}$$

Aproximando hacia puntos flotante

Número arbitrario en base decimal

$$x=\pm 0.d_1d_2\dots d_kd_{k+1}d_{k+2}\dots \times 10^n,\ 1\leq d_1\leq 9,\ 0\leq d_k\leq 9$$

Cómo aproximarlo por un punto flotante tomando una mantisa de k dígitos?

Cortando

$$fl(x) = \pm 0.d_1d_2...d_k \times 10^n$$

Ejemplo: k = 5

$$fl(\pi) = fl(0.314159265... \times 10^{1}) = 0.31415 \times 10^{1}$$

Aproximando hacia puntos flotantes

Número arbitrario en base decimal

$$x=\pm 0.d_1d_2\dots d_kd_{k+1}d_{k+2}\dots\times 10^n,\ 1\leq d_1\leq 9,\ 0\leq d_k\leq 9$$

Cómo aproximarlo por un punto flotante tomando una mantisa de tamaño k?

Redondeando

Antes de cortar, sumar $5 \times 10^{n-(k+1)}$ a la mantisa.

Ejemplo:
$$k = 5$$

$$fl(\pi) = fl(0.314159265... \times 10^{1})$$

= $fl((0.314159265... + 0.000005) \times 10^{1})$
= 0.31416×10^{1}

Aproximando hacia puntos flotantes

Ejemplos (Redondeo)

Supongamos que:

- La base b = 10.
- La mantisa tiene 4 dígitos.
- El exponente tiene tres dígitos (sin contar el signo)

```
fl(0.31794 \times 10^{110}) = 0.3179 \times 10^{110}

fl(0.99997 \times 10^{99}) = 0.1000 \times 10^{100}

fl(0.012345 \times 10^{-99}) = 0.1235 \times 10^{-100}

fl(0.54321 \times 10^{-110}) = 0.5432 \times 10^{-110}
```

Definición

Si p^* es una aproximación de p, el error absoluto es

$$E_a(p^*) = |p - p^*|,$$

y el error relativo (cuando $p \neq 0$) es

$$E_r(p^*) = \frac{|p - p^*|}{|p|}$$

Observación

El error relativo tiene en cuenta la magnitud de la cantidad a aproximar.

Ejemplos

• Si $p = 0.3 \times 10^1$ y $p^* = 0.31 \times 10^1$, entonces:

$$E_a(p^*) = |(0.31 - 0.3) \times 10^1| = 0.1$$

 $E_r(p^*) = \frac{0.1}{0.3 \times 10^1} = 0.\overline{3} \times 10^{-1}$

• Si $p = 0.3 \times 10^{-3}$ y $p^* = 0.31 \times 10^{-3}$, entonces:

$$E_a(p^*) = |(0.31 - 0.3) \times 10^{-3}| = 0.1 \times 10^{-4}$$

 $E_r(p^*) = \frac{0.1 \times 10^{-4}}{0.3 \times 10^{-3}} = 0.\overline{3} \times 10^{-1}$

• Si $p = 0.3 \times 10^4$ y $p^* = 0.31 \times 10^4$, entonces:

$$E_a(p^*) = |(0.31 - 0.3) \times 10^4| = 0.1 \times 10^3$$

 $E_r(p^*) = \frac{0.1 \times 10^3}{0.3 \times 10^4} = 0.\overline{3} \times 10^{-1}$

Error del punto flotante

Error relativo de fl(x)

Si f(x) se calcula para una mantisa de k dígitos: Para errores con corte:

$$E_r(fl(x)) = \frac{|x - fl(x)|}{|x|} \le 10^{-k+1}$$

Para errores con redondeo:

$$E_r(fl(x)) = \frac{|x - fl(x)|}{|x|} \le 0.5 \times 10^{-k+1}$$

En base binaria (redondeo):

$$E_r(fl(x)) = \frac{|x - fl(x)|}{|x|} \le 2^{-k}$$

Cifras significativas

Definición

Se dice que x^* aproxima a x hasta t cifras significativas, si t es el mayor número entero no negativo que satisface

$$E_r(x^*) = \frac{|x - x^*|}{|x|} \le 5 \times 10^{-t}$$

Ejemplo

Cotas para cuatro cifras significativas.

X	0.1	1000	10000
$\max x - x^* $	0.00005	0.5	5

Ejercicios

Realice un cambio de base según corresponda.

• 5.75₁₀

0.1₁₀

0.101011₂

• 1.01101001₂

2 Halle el error absoluto E(x) y el error relativo $E_r(x)$ y determine el número de cifras significativas de la aproximación.

• $x = 2.71828182, \ \bar{x} = 2.7182$

• $x = 98350, \ \bar{x} = 98000$

• $x = 0.000068, \ \bar{x} = 0.00006$

Considere una codificación de 20 bits con los siguientes parámetros: 1 bit signo, 1 bit signo exponente, 7 bits exponente y 11 bits para la mantisa. De acuerdo a esta codificación determine:

1 El número real representado según: 011010101111110001111

2 La codificación del número real: 56.715

El número real máximo y más cercano a cero

La codificación del siguiente número real: 0.975421