

Machine Learning Course - CS-433

Kernel Ridge Regression and the Kernel Trick

Oct 31, 2019

changes by Martin Jaggi 2019, changes by Rüdiger Urbanke 2018, changes by Martin Jaggi 2016, 2017 © Mohammad Emtiyaz Khan 2015

Last updated on: October 31, 2019

Motivation

The ridge solution $\mathbf{w}^* \in \mathbb{R}^D$ has a counterpart $\boldsymbol{\alpha}^* \in \mathbb{R}^N$. Using duality, we will establish a relationship between \mathbf{w}^* and $\boldsymbol{\alpha}^*$ which leads the way to kernels.

Ridge regression

Recall the ridge regression problem

$$\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

For its solution, we have that

cost of
$$A$$
)

Cost of B)

Cost of B)

 A ($N^3 + DN^2$)

COIL D>>A

where
$$\alpha^* := (\mathbf{X}\mathbf{X}^\top + \lambda \mathbf{I}_N)^\top \mathbf{\hat{y}}$$
.

This can be proved using the following identity: let \mathbf{P} be an $N \times D$ matrix while \mathbf{Q} be $D \times N$, and let both $\mathbf{PQ} + \mathbf{I}$ and $\mathbf{QP} + \mathbf{I}$ be invertible.

$$(\mathbf{PQ} + \mathbf{I}_N)^{-1}\mathbf{P} = \mathbf{P}(\mathbf{QP} + \mathbf{I}_D)^{-1}(\mathbf{PQ} + \mathbf{I}_D)^{-1}(\mathbf{PQ} + \mathbf{I}_D) = \mathbf{P}(\mathbf{QP} + \mathbf{I}_D)^{-1}(\mathbf{PQ} + \mathbf{I}_D) = \mathbf{PQ} + \mathbf{P}(\mathbf{QP} + \mathbf{I}_D) = \mathbf{PQ} + \mathbf{PQ} + \mathbf{PQ} = \mathbf{PQ} + \mathbf{PQ} + \mathbf{PQ} = \mathbf{PQ} = \mathbf{PQ} = \mathbf{PQ} + \mathbf{PQ} = \mathbf{PQ$$

What are the computational complexities for the above two ways of computing **w***?

With this, we know that $\mathbf{w}^* = \mathbf{X}^{\top} \boldsymbol{\alpha}^*$ lies in the column space of \mathbf{X}^{\top} ,

where
$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \dots & x_{1D} \\ x_{21} & x_{22} & \dots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{N1} & x_{D2} & \dots & x_{ND} \end{bmatrix}$$
 and the point $\begin{bmatrix} x_{11} & x_{12} & \dots & x_{1D} \\ x_{21} & x_{22} & \dots & x_{2D} \\ \vdots & \vdots & \ddots & \vdots \\ x_{NN} & x_{DN} & \dots & x_{ND} \end{bmatrix}$

The representer theorem

The representer theorem generalizes this result: for a \mathbf{w}^* minimizing the following function for any \mathcal{L}_n ,

$$\min_{\mathbf{w}} \sum_{n=1}^{N} \mathcal{L}_n(\mathbf{x}_n^{\top} \mathbf{w}, y_n) + \frac{\lambda}{2} \|\mathbf{w}\|^2$$
there exists $\boldsymbol{\alpha}^{\star}$ such that
$$\mathbf{w}^{\star} = \mathbf{X}^{\top} \boldsymbol{\alpha}^{\star}.$$

Such a general statement was originally proved by *Schölkopf*, *Herbrich and Smola (2001)*.

Kernelized ridge regression

The representer theorem allows us to write an equivalent optimization problem in terms of α . For example, for ridge regression, the following two problems are equivalent:

ing two problems are equivalent:
$$\mathbf{w}^{\star} = \arg\min_{\mathbf{w}} \quad \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

$$\boldsymbol{\alpha}^{\star} = \arg\max_{\boldsymbol{\alpha}} \left(-\frac{1}{2} \mathbf{X}^{\top} (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}_N) \boldsymbol{\alpha} + \mathbf{Q}\mathbf{X}^{\top} \mathbf{y} \right)$$
i.e. they both have the same

i.e. they both have the same optimal value. Also, we can always have the correspondence mapping $\mathbf{w} = \mathbf{X}^{\top} \boldsymbol{\alpha}$.

Most importantly, the second problem is expressed in terms of the matrix $\mathbf{X}\mathbf{X}^{\mathsf{T}}$. This is our first example of a kernel matrix.

Note: To see the equivalence, you can show that we obtain equal optimal values for the two problems. Take the gradient of the second expression, to get $(\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}_N)\boldsymbol{\alpha} - \mathbf{y}$. Setting this to $\mathbf{0}$ and solving for $\boldsymbol{\alpha}$ results in $\boldsymbol{\alpha}^* = (\mathbf{X}\mathbf{X}^{\top} + \lambda \mathbf{I}_N)^{-1}\mathbf{y}$.

If we combine this with the representer theorem $\mathbf{w}^* = \mathbf{X}^{\top} \boldsymbol{\alpha}^*$ we find back the dual solution.

$$\nabla \mathcal{L}_{0}(\mathbf{x}) = 0$$

Advantages of kernelized ridge regression

First, it might be computationally efficient in some cases when solving the system of equations.

Second, by defining $\mathbf{K} = \mathbf{X}\mathbf{X}^{\top}$, we can work directly with \mathbf{K} and never have to worry about \mathbf{X} . This is the kernel trick.

Third, working with α is sometimes advantageous, and provides additional information for each datapoint (e.g. as in SVMs).

Kernel functions

The linear kernel is defined below:

$$\mathbf{K} = \mathbf{X}\mathbf{X}^{ op} = egin{bmatrix} \mathbf{x}_1^{ op} \mathbf{x}_1^{ op} \mathbf{x}_1^{ op} \mathbf{x}_2^{ op} \mathbf{x}_2 & \dots & \mathbf{x}_1^{ op} \mathbf{x}_N \ \mathbf{x}_2^{ op} \mathbf{x}_1 & \mathbf{x}_2^{ op} \mathbf{x}_2 & \dots & \mathbf{x}_2^{ op} \mathbf{x}_N \ dots & dots & \ddots & dots \ \mathbf{x}_N^{ op} \mathbf{x}_1 & \mathbf{x}_N^{ op} \mathbf{x}_2 & \dots & \mathbf{x}_N^{ op} \mathbf{x}_N \end{bmatrix}.$$

Kernel with basis functions $\phi(\mathbf{x})$ with $\mathbf{K} := \Phi^{\bullet} \Phi$ is shown below:

$$\begin{bmatrix} \boldsymbol{\phi}(\mathbf{x}_1)^\top \boldsymbol{\phi}(\mathbf{x}_1) & \boldsymbol{\phi}(\mathbf{x}_1)^\top \boldsymbol{\phi}(\mathbf{x}_2) & \dots & \boldsymbol{\phi}(\mathbf{x}_1)^\top \boldsymbol{\phi}(\mathbf{x}_N) \\ \boldsymbol{\phi}(\mathbf{x}_2)^\top \boldsymbol{\phi}(\mathbf{x}_1) & \boldsymbol{\phi}(\mathbf{x}_2)^\top \boldsymbol{\phi}(\mathbf{x}_2) & \dots & \boldsymbol{\phi}(\mathbf{x}_2)^\top \boldsymbol{\phi}(\mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{\phi}(\mathbf{x}_N)^\top \boldsymbol{\phi}(\mathbf{x}_1) & \boldsymbol{\phi}(\mathbf{x}_N)^\top \boldsymbol{\phi}(\mathbf{x}_2) & \dots & \boldsymbol{\phi}(\mathbf{x}_N)^\top \boldsymbol{\phi}(\mathbf{x}_N) \end{bmatrix}.$$

The kernel trick

A big advantage of using kernels is that we do not need to specify $\phi(\mathbf{x})$ explicitly, since we can work directly with \mathbf{K} .

We will use a kernel function $\kappa(\mathbf{x}, \mathbf{x}')$ and compute the (i, j)-th entry of \mathbf{K} as $K_{ij} = \kappa(\mathbf{x}_i, \mathbf{x}_j)$. A kernel function κ is usually associated with a feature map $\boldsymbol{\phi}$, such that

$$\kappa(\mathbf{x}, \mathbf{x}') := \boldsymbol{\phi}(\mathbf{x})^{\top} \boldsymbol{\phi}(\mathbf{x}')$$
.

For example, for the linear kernel $\kappa(\mathbf{x}, \mathbf{x}') := \mathbf{x}^{\top} \mathbf{x}'$, the feature map is just the original features, $\phi(\mathbf{x}') = \mathbf{x}'$.

Another example: The kernel $\kappa(x, x') := x^2(x')^2$ corresponds to

$$\phi(x) = x^2$$
, and $\kappa(\mathbf{x}, \mathbf{x}') := (x_1 x_1' +$

 $(x_2x_2' + x_3x_3')^2$ corresponds to $(x_3')^2$

$$\boldsymbol{\phi}(\mathbf{x})^{\top} = \begin{bmatrix} x_1^2, & x_2^2, & x_3^2, & \sqrt{2x_1x_2}, & \sqrt{2x_1x_3}, & \sqrt{2x_2x_3} \end{bmatrix}$$

The good news is that the evaluation of a kernel is often faster when using κ instead of ϕ .

$$K(x,x') = (x x')^2$$

Polynomial Kernel

Q=L

Visualization

Why would we want such general feature maps?

See video explaining linear separation in the kernel space (where $\phi(\mathbf{x})$ maps to) corresponding to non-linear separation in the original \mathbf{x} -space: https://www.youtube.com/watch?v=3liCbRZPrZA

Examples of kernels

The above kernel is an example of the polynomial kernel. Another example is the Radial Basis Function (RBF) kernel.

$$\kappa(\mathbf{x}, \mathbf{x}') = \exp\left[-\frac{1}{2}(\mathbf{x} - \mathbf{x}')^{\top}(\mathbf{x} - \mathbf{x}')\right]$$

See more examples in Section 14.2 of Murphy's book.

A natural question is the following: how can we ensure that there exists a ϕ corresponding to a given kernel **K**? The answer is: as long as the kernel satisfies certain properties.

Is there $\bar{\phi}$ s.t. $K(x,x) = \bar{\phi}(x)\bar{\phi}(x)$

Polynomial kernel
$$= (x^{T}x')^{T}$$

$$= (x^{T}x')^{T}$$

$$= (x^{T}x')^{T}$$

$$= h(x^{T}x')$$

$$= h(|x-x'|)$$

Properties of a kernel

A kernel function must be an innerproduct in some feature space. Here are a few properties that ensure it is the case.

$$\exists \Phi \quad \text{s.t.}$$

$$K = \Phi \Phi^T ?$$

- 1. **K** should be symmetric, i.e. $\kappa(\mathbf{x}, \mathbf{x}') = \kappa(\mathbf{x}', \mathbf{x})$.
- 2. For any arbitrary input set $\{\mathbf{x}_n\}$ and all N, \mathbf{K} should be positive semi-definite.

An important subclass is the positive-definite kernel functions, giving rise to infinite-dimensional feature spaces.

given at,

Exercises

- 1. Understand the relationship $\mathbf{w}^* = \mathbf{X}^\top \boldsymbol{\alpha}^*$. Understand the statement of the representer theorem.
- 2. Show that the primal and dual formulations of ridge regression are equivalent. Hint: show that the optimization problems corresponding to \mathbf{w} and $\boldsymbol{\alpha}$ have the same optimal value.
- 3. Get familiar with various examples of kernels. See Section 6.2 of Bishop on examples of kernel construction. Read Section 14.2 of Murphy's book for examples of kernels.
- 4. Revise and understand the difference between positive-definite and positive-semi-definite matrices.
- 5. If you are interested in more details about kernels, read about Mercer and Matern kernels from Kevin Murphy's Section 14.2. There is also a small note by Matthias Seeger on the git repository under lectures/07, in particular for the case of infinite dimensional ϕ .