A Computational Approach to String Figures

Yulong Liu

2023-11-29

String Figures

- Designs formed from a loop of string
- Commonly known as a children's game

People have also been playing with the string throughout history.

- ► Entertainment during polar nights in the Arctic region
- Storytelling and illustrating scenes from myths and legends

Noguchi, T. (2020). Ayatori Daizenshu. Shufunotomosha.

A Computational Approach

How to make a string figure

- Start with an initial position (opening)
- Apply a sequence of moves
- Each move transforms a string figure to another

String figures computations

- Represent string figures: simple, precise
- Apply moves directly to the representations

Motivation

- Precise language of describing string figures
- Computer simulations & animations

Representation: Diagrams

Fingers are named $L1, \dots, L5$ and $R1, \dots, R5$ from thumb to pinky

Ordered from nearest to furthest

String segments are named by finger $F \in \{L1, \dots, L5, R1, \dots, R5\}$

- Fn is the near string, Ff is the far string
- ► *Lp* and *Rp* are palmar strings

Representation: Diagrams

Representation: Linear Sequences

Two components

- Fingers that hold the string
- Crossings between two segments

Diagram → linear sequence

- Start with left nearest finger and travel clockwise
- Visit fingers and crossings

Representation: Linear Sequences

*L*1 : *L*5 : *R*2

Linear Sequences with Crossings

Goal: diagram → linear sequence

- Name each crossing as x_i for some i
- ▶ Visit overcrossing \implies write $x_i(o)$
- ▶ Visit undercrossing \implies write $x_i(u)$

Linear Sequences with Crossings

Identifying String Segments from Linear Sequences

Consider a left-hand finger L_i in the sequence

- ► Traverse clockwise \bigcap_{n} \Longrightarrow ...: $[n]L_i[f]$: ...
- ► Traverse counterclockwise \bigcap_{n} \longrightarrow ...: $[f]L_i[n]$: ...

Similarly for finger R_i on the right hand

Identifying String Segments: Opposite Hand

Consider . . . : L_i : . . . : R_i : . . .

▶ Even number of crossings between L_i and R_j \Longrightarrow orientation persists

$$[n]L_i[f]:[f]R_j[n]$$

▶ Odd number of crossings between L_i and R_j ⇒ orientation reverses

$$[n]L_i[f]: x_1(u): [n]R_j[f]: x_1(o)$$

Identifying String Segments : Same Hand

Consider . . . : L_i : . . . : L_j : . . .

Even \implies orientation persists

...: $[n]L_i[f]$: $[n]L_i[f]$:...

 $Odd \implies orientation reverses$

...: $[n]L_i[f]:x_1(u):[f]L_i[n]:x_1(o):...$

Identifying String Segments: Example

$$L1: x_2(o): R5: x_1(o): L5: x_1(u): x_2(u): R2$$

By convention, the first finger in the linear sequence is clockwise

Identifying String Segments: Example

$$[n]L1[f]: x_2(o): [n]R5[f]: x_1(o): [n]L5[f]: x_1(u): x_2(u): [f]R2[n]$$

Moves: Twist

Two variations: twist towards and twist away

- Twist the loop on finger F towards player: < F</p>
- Twist the loop on finger F away from player: > F

Consider $\dots : [n]F[f] : \dots$

$$\dots: [n]F[f]: \dots \xrightarrow{\langle F} \dots: x_1(u): F: x_1(o): \dots$$

$$\dots : [n]F[f] : \dots \xrightarrow{>F} \dots : x_1(o) : F : x_1(u) : \dots$$

- $\blacktriangleright \ldots : [f]F[n] : \ldots \stackrel{\langle F \rangle}{\mapsto} \ldots : x(o) : F : x(u) : \ldots$

Moves: Pick

Finger F picks a string segment s

 \blacktriangleright Written as F(s)

Four variations:

- ► *F* passes *over/under* all intermediate segments
- F picks s from above/below

Examples

- ► "R5 passes *over* all intermediate segments and picks Lp from above" is denoted as $R5(\overline{Lp})$
- ► "R1 passes *over* all intermediate segments and picks R5n from below" is denoted as $\overrightarrow{R1}(R5n)$
- ▶ "R4 passes *under* all intermediate segments and picks L1n from *below*" is denoted as R4(L1n)

Pick: Examples

Observations

- A pair of crossings for each intermediate string
- F(s) and F(s) differ by crossing parity
- $ightharpoonup F(\overline{s})$ and $F(\underline{s})$ differ by a twist

Pick: Construction

General steps for applying F(s) to a string figure

- ► Identify intermediate segments
- Insert a pair of crossings for each intermediate segment
- ► Insert *F* at *s* with crossings
- Add twist if pick from above

Pick: Construction Example

$$L1: L5: R2 \xrightarrow{\overline{R5}(\overline{Lp})} ???$$

► Identify *Lp*

$$[n] h 14f [Lp] h 54f [f:] [f] R 2 (2) n$$

Only the segment between L5 and R2 is intermediate

$$\underline{R2n = L1n} < L1 < \underline{Lp} = L5n < \underline{L5f} = R2\underline{f} < \underline{R5}$$

Pick: Construction Example

$$L1: L5: R2 \xrightarrow{\stackrel{\longleftarrow}{R5}} (\overline{Lp}) ???$$

Found L5f = R2f as an intermediate segment

▶ Insert crossings x_1 and x_2 at intermediate segment

$$L1L1L5L5x_1(u) : \sqrt{(u)} R2R2$$

▶ Insert R5 at Lp with x_1 and x_2

$$\stackrel{\textstyle \frown}{L1}: x_2(\stackrel{\textstyle \frown}{lo)} [\stackrel{\textstyle \frown}{R5}] \stackrel{\textstyle \longleftarrow}{x_5} (:o)_1(\stackrel{\textstyle \frown}{lb}): x_3((u)): \stackrel{\textstyle \frown}{R2}(u): \stackrel{\textstyle \frown}{R2}$$

Make twist on R5 (towards)

Pick: Construction Example

$$L1:L5:R2 \xrightarrow{\overleftarrow{R5}} \overrightarrow{Lp}) \xrightarrow{C1:x_2(o):x_3(o):R5:x_3(u):x_1(o):L5:x_1(u):x_2(u):R2}$$

Summary

What we covered

- Representing string figures as linear sequences
- Applying twist and pick to linear sequences

Going deeper

- More moves
- Drawing diagrams from linear sequences

Thank you!