(if not specified, $v_d = v_1 - v_2$, $v_{cm} = (v_1 + v_2)/2$ for differential amplifiers. $\beta = 100$, $V_{BE}(on) = V_{EB}(on) = 0.7 \text{ V}$), $V_A = \infty$ and base current can be ignored for BJTs)

1. (10%) Consider the ideal series-shunt circuit shown in Figure 1. Let the amplifier with an open-loop gain $A_v = 5 \times 10^3 \text{ V/V}$, $R_i = 30 \text{ k}\Omega$, $R_o = 2 \text{ k}\Omega$, BW = 20 kHz, and $\beta_v = 0.008 \text{ V/V}$. Determine the ideal values of $A_{vf} = V_o/V_i$, R_{if} , R_{of} , and band-width for the close-loop amplifier.

- 2. (10%) Figure 2 shows the ac equivalent circuit of the input stage of 741 op-amp, (a) Please use transistor parameters β_n , β_p , and small signal parameters such as $r_{\pi 1}$, $r_{\pi 3}$, g_m to represent the differential-mode input resistance R_{id} . (b) Use equivalent resistance shown in figure (such as r_{o4} , R_{act1}) and small signal parameters to represent differential voltage gain $A_v = v_{o1}/v_d$.
- 3. (10%) The transistor parameters in Figure 3 are $V_{TN}=0.6\,\mathrm{V},\ V_{TP}=-0.6\,\mathrm{V},\ k_n'=100\,\mu\mathrm{A/V^2},\ k_p'=60\,\mu\mathrm{A/V^2},\ \mathrm{and}\ \lambda_n=\lambda_p=0.01\,\mathrm{V^{-1}}.$ The width-to-length ratio are shown in the figure. Assume that M_1 and M_2 are biased in saturation region. (a) Determine the resistance looking into drain of M_2 . (b) Determine the small signal voltage gain $A_v=v_o/v_i$.

- 4. (9%) Let $R_{C1} = R_{C2} = 2 \text{ k}\Omega$, $R_{C3} = 1 \text{ k}\Omega$, $R_1 = 12 \text{ k}\Omega$. Determine I_{O1} , I_{O2} , and I_{O3} in Figure 4.
- 5. (25%) For the transistors in the circuit in Figure 5, the transistor parameters are $K_n = 0.2 \text{ mA/V}^2$, $V_{TN} = 2 \text{ V}$, and $\lambda = 0.02 \text{ V}^{-1}$. (a) Determine the value of bias current I_Q and the output resistance looking into current mirror (10%). (b) Determine $A_d = v_{o2}/v_d$ (5%). (c) Determine $A_{cm} = v_{o2}/v_{cm}$ (5%). (d) if the current mirror is replaced by a cascode current source with the same λ and the same I_Q , will A_d , A_{cm} , and CMRR become larger or smaller, or stay the same (5%)?

6. (10%) (P11.64)The differential amplifier with active load is shown in Figure 6. The circuit is biased with $I_Q = 0.2$ mA, and the transistor parameters are: $K_n = K_p = 100 \,\mu\text{A}/\text{V}^2$, $\lambda_n = 0.01 \,\text{V}^{-1}$, $\lambda_p = 0.015 \,\text{V}^{-1}$, $V_{TN} = 1 \,\text{V}$, and $V_{TP} = -1 \,\text{V}$. (a) Find the open-circuit differential-mode voltage gain $A_d = v_o/v_d$. (b) What is the output resistance?

7. (26%) Consider the circuit in Figure 7. (a) Assume $V_{BE}(on) = 0.7 \text{ V}$ except for Q_8 and Q_9 and $V_A = \infty$, design the resistors such that $I_{C1} = I_{C2} = 0.1 \text{ mA}$, $I_{R7} = 5 \text{ mA}$, $I_1 = I_{R4} = I_{R6} = 0.6 \text{ mA}$, $V_{CE1} = V_{CE2} = 4 \text{ V}$, $V_{CE3} = 3 \text{ V}$, and $V_0 = 0 \text{ V}$ in pure common-mode (8%). (b) If $V_A = 100 \text{ V}$ for Q_8 , determine the resistance looking into the collector of Q_8 (6%). (c) Determine the value of R_{i3} (6%). (d) Determine the small-signal voltage gain $A_2 = v_{o3}/v_{o2}$ (6%)

Figure 7

放暑假啦!!