

Scaling Deep Learning Usage On Real World Implementations

Automaise In Short

Automaise provides an Al+NLP based Automation Platform to deploy Al virtual employees capable of automating several business processes and tasks, both customer facing and backoffice.

Abstract

Neural nets usage is all the rage, however several challenges arise once we apply it to a real world problem:

- Enabling simplified supervision
- Making neural nets keep learning by themselves
- Unbalanced training datasets
- Guarantee the quality of the training dataset

Supervision by Common People

- Use common sense terminology
- Make the most out of the operator/supervisor work
- Infer every time possible

Enabling simplified supervision

Sentence	Typification	Completion	Remove		
wad asd asd	11	ОК	×	Current Model	
enbtão não quero nada	4	ок	×	Typification Identifier	Typification Description
então não quero nada	4	ОК	×	1:	Hello
oi bons dias!	1	ОК	×	2:	NoAction
				3:	Yes
pt50000700000004	11	ОК	×	4:	No
Moveis, eletrodomesticos	11	ОК	×	5:	GoBack
				6:	Thanks
Posso saber quem és tu?	9	ОК	×	7:	Goodbye
				8:	Operator
				9:	AboutAnna
				10:	NotSureDontKonw
				11:	NotApplicable
				+	

Making neural nets keep learning by themselves

Everyone says that by making use of Al/Neural nets their solutions will keep learning from user/customer interactions, but the truth is that few or no company complies with this commitment.

The Virtuous Learning Cycle

LEARN OUTPUT

- Deep Learning and Other Al Technics
- Supervised Learning + Reinforcement Learning + Self Taught
- Knowledge Base
- Other Rules

EXECUTE

- Al Process Automation
- Automation Flow Al
- APIs and Other Integrations
- Tools and Routines

OBSERVE

Structed Text Data

Unstructured Data

Computer Vision –

Documents OCR

Train Data Models

Unsupervised Learning

Techniques / Approaches

- Clustering (K-means, EM Clustering, Affinity Propagation, etc.)
- Neural Networks (Autoencoders, Deep Belief Nets, etc.)
- Automaise's proprietary approach: The "Teaching Committee"

The "Teaching Committee"

- Convolutional, Recurrent (+LSTM), Hierarchical Attention Network, SVM, fastText, EntityNet, etc.
- Heuristic based on several parameters:
 - Consensus
 - Confidence
 - Model weights
 - Etc...

Unbalanced training datasets

Unbalanced that set pose a problem on neural nets learning. On almost every business certain subjects happen with a (much) higher frequency than others, therefore the training datasets become unbalanced between classes, which will make neural nets biased.

Imbalanced Data

Techniques / Approaches:

- Resample differently
- Try different metrics / classes
- Merge less frequent classes into a "other matters" class
- Use penalized models
- Automaise proprietary approach... ©

Guarantee the quality of the training dataset

As training data sets are mostly supervised by humans, sometimes without a strong commitment with the project/task, classification errors happen quite frequently which end up damaging neural nets accuracy.

Train Dataset Quality Assurance

DATA SCIENCE PORTUGA

- Performance dashboard
- Mind peak performance
- Detect classification conflicts
- Automatically detect potential misclassified train samples

Some Useful Pointers

- https://github.com/fendouai/Awesome-Text-Classification
- https://github.com/brightmart/text_classification
- http://www.wildml.com/
- https://spacy.io/

Thanks!

