Queens College, CUNY, Department of Computer Science Computational Finance CSCI 365 / 765 Fall 2017

Instructor: Dr. Sateesh Mane

October 6, 2017

due Friday October 20, 2017 at 11.59 pm

5 Homework: Options 1

Note: Continuous interest rate compounding is used in all questions.

5.1 Option price: arbitrage 1

- Suppose the market price of a stock is S_0 at time t_0 .
- The stock does not pay dividends.
- The interest rate is r > 0 (a constant).
- The following options all have strike K > 0 and expiration time $T > t_0$.
 - 1. European call c_{Eur} .
 - 2. American call $C_{\rm Am}$.
 - 3. European put p_{Eur} .
 - 4. American put $P_{\rm Am}$.
- Question: For each case below, either formulate an arbitrage strategy to take advantage of the option price, else explain why an arbitrage strategy is not possible for that situation.
 - 1. Market price $c_{\text{Eur}} = S_0 + 1.5$.
 - 2. Market price $C_{Am} = S_0 + 2.5$.
 - 3. Market price $p_{\text{Eur}} = e^{-r(T-t_0)}K + 0.75$.
 - 4. Market price $P_{Am} = K + 1.75$.

5.2 Option price: arbitrage 2

- Suppose the market price of a stock is S_0 at time t.
- The interest rate is r > 0 (a constant).
- The following options all have strike K > 0 and expiration time $T > t_0$.
- The stock pays **one dividend**, of amount D_1 , at a time t_1 , where $t_0 < t_1 < T$.
 - 1. European call c_{Eur} .
 - 2. American call $C_{\rm Am}$.
 - 3. European put p_{Eur} .
 - 4. American put $P_{\rm Am}$.
- Question: For each case below, either formulate an arbitrage strategy to take advantage of the option price, else explain why an arbitrage strategy is not possible for that situation.
 - 1. Market price $c_{\text{Eur}} = S_0 + 1.5$.
 - 2. Market price $C_{Am} = S_0 + 2.5$.
 - 3. Market price $p_{\text{Eur}} = e^{-r(T-t_0)}K + 0.75$.
 - 4. Market price $P_{Am} = K + 1.75$.
- Suppose the stock pays two dividends in the time interval from t_0 to T. The dividend amounts are D_1 and D_2 , paid at times t_1 and t_2 , where $t_0 < t_1 < t_2 < T$.

Question: Describe your arbitrage strategy (if it exists) in this scenario, for each case above.

5.3 Call option spreads: arbitrage

- Suppose the market price of a stock is S at time t.
- The stock does not pay dividends.
- The interest rate is r > 0 (a constant).
- All the options below have the same expiration time T (where T > t).

5.3.1 European options

- We are given two European call options on the stock: c_1 with strike K_1 and c_2 with strike K_2 (where $K_2 > K_1 > 0$).
- Recall that European options can be exercised only at the the expiration time T.
- For simplicity, denote the prices of the options by c_1 and c_2 , respectively. Create a bull call spread with price $c_1 c_2$.
- Question: Show that at expiration, the option prices must satisfy the following inequality:

$$c_1(T) - c_2(T) \le K_2 - K_1$$
 (at expiration). (5.3.1)

• Question: Formulate an arbitrage strategy to show that before expiration (time t < T), the option prices must satisfy the following inequality:

$$c_1(t) - c_2(t) \le PV(K_2 - K_1) = e^{-r(T-t)}(K_2 - K_1)$$
 (5.3.2)

5.3.2 American options

- Next we are given two American call options on the stock: C_1 with strike K_1 and C_2 with strike K_2 (where $K_2 > K_1 > 0$).
- Recall that American options can be exercised at any time $t \leq T$.
- For simplicity, denote the prices of the options by C_1 and C_2 , respectively. Create a bull call spread with price $C_2 C_1$.
- Question: Show that at expiration, the option prices must satisfy the following inequality:

$$C_1(T) - C_2(T) \le K_2 - K_1$$
 (at expiration). (5.3.3)

• Question: Formulate an arbitrage strategy to show that before expiration (time t < T), the American option prices must satisfy the following inequality:

$$C_1(t) - C_2(t) \le K_2 - K_1$$
 $(t < T)$. (5.3.4)

5.3.3 Stock dividends

• (Optional question)

Suppose the stock pays n dividends D_i at times t_i , i = 1, 2, ..., n during the lifetime of the options. Explain how the inequalities in eqs. (5.3.2) and (5.3.4) would be modified.

5.4 Put option spreads: arbitrage

- Suppose the market price of a stock is S at time t.
- The stock does not pay dividends.
- The interest rate is r > 0 (a constant).
- All the options below have the same expiration time T (where T > t).

5.4.1 European options

- We are given two European put options on the stock: p_1 with strike K_1 and p_2 with strike K_2 (where $K_2 > K_1 > 0$).
- Recall that European options can be exercised only at the the expiration time T.
- For simplicity, denote the prices of the options by p_1 and p_2 , respectively. Create a bear put spread with price $p_2 p_1$.
- Question: Show that at expiration, the option prices must satisfy the following inequality:

$$p_2(T) - p_1(T) \le K_2 - K_1$$
 (at expiration). (5.4.1)

• Question: Formulate an arbitrage strategy to show that before expiration (time t < T), the option prices must satisfy the following inequality:

$$p_2(t) - p_1(t) \le PV(K_2 - K_1) = e^{-r(T-t)}(K_2 - K_1)$$
 (5.4.2)

5.4.2 American options

- Next we are given two American put options on the stock: P_1 with strike K_1 and P_2 with strike K_2 (where $K_2 > K_1 > 0$).
- Recall that American options can be exercised at any time $t \leq T$.
- For simplicity, denote the prices of the options by P_1 and P_2 , respectively. Create a bull put spread with price $P_2 P_1$.
- Question: Show that at expiration, the option prices must satisfy the following inequality:

$$P_2(T) - P_1(T) \le K_2 - K_1$$
 (at expiration). (5.4.3)

• Question: Formulate an arbitrage strategy to show that before expiration (time t < T), the American option prices must satisfy the following inequality:

$$P_2(t) - P_1(t) \le K_2 - K_1 \qquad (t < T). \tag{5.4.4}$$

5.4.3 Stock dividends

• (Optional question)

Suppose the stock pays n dividends D_i at times t_i , i = 1, 2, ..., n during the lifetime of the options. Explain how the inequalities in eqs. (5.4.2) and (5.4.4) would be modified.