人工智能中的机器学习研究

姜雅慧 / 天津工业大学

摘 要: 近年来, 随着科技和经济的发展, 人工智能研究取得了长足的进步。这门学科经过几十年的发展已经取得了 一定的成绩。人工智能主要是指通过普遍计算机实现的智能。人工智能主要分为两部分,"人工"及"智能",本文 就人工智能中的"智能"方面的发展与机器学习技术的运用进行了研究,以此为我国的人工智能发展提供参考。 关键词:人工智能: 机器学习

工智能 (英文: Artificial Intelligence, AI) 自从上世纪50年代诞生以来,在经济和科技 ▶的推动下得到了长足的发展。人工智能学科 是一门集控制论、计算机科学、信息论、数学逻辑、神经 生理学、语言学、心理学、教育学、工程技术、医学和哲 学等学科知识为一体的交叉科学。其核心问题包括使机器 获得推理,知识,规划,学习,交流,感知等能力。其目 的是使机器具有和人类一样认识问题和解决问题的能力, 也就是让机器变得更聪明。这也就是所谓的机器学习,是 人工智能的核心, 是使计算机具有智能的根本途径。

1 机器学习

1.1 机器学习的概念

所谓的机器学习就是研究如何通过识别以及知识的充实 提高机器获取新知识和新技能的能力。就像人一样,不管他多 有才华,如果不会学习或者不愿学习,那他的能力将会停在同 一个水平,无法创造出新的东西。一个人只有通过不断的学习 才能获得创新的能力。机器和人一样, 当机器具备了学习的能 力,才可以提高自身的技能[1]。机器学习在人工智能领域中是 一个相对比较活跃的研究领域, 其研究目的就是要促进机器 像人一样可以源源不断获取外界的知识,建立相关学习的理 论,构建学习系统,并将这些发明应用于各个领域。

1.2 机器学习的研究目标

目标一:模拟人类学习的过程,从而建立学习认识模 型。这个目标的实现与认知科学的发展存在重要的关系。

目标二: 促进机器学习理论的研究, 探索各种适合机 器学习的方法和机器学习的特点,并将机器学习与人类学 习进行比较,发现其内在联系和差别。

目标三: 这个目标是关于机器学习应用的研究, 主要 研发学习系统和知识获取工具, 在机器人系统领域和专家 系统建立机器获取知识的系统,并通过经验累积,不断完 善自身知识库,增强运用知识的能力,进而提高机器的智 能水平, 促进机器的智能水平达到人类的水平。

1.3 机器学习的方法

机器学习方法一是模仿人类的学习方法。二是机器自 身的学习方法, 而最重要是将二者结合起来。机器的学习 既要充分利用人类学习的科学成果,同时还要以自身特点 为依据, 扩大自身特点, 如速度快, 可复制性, 存储大, 研究出适合机器学习的方法。现今机器学习的主要系统 有: (1) 演绎学习系统。这种系统主要应用于一般到特 殊的推理中, 通过建立公理系统和推理定理法则, 从之前 可知的题目推出相应的结论。(2)归纳学习系统。主要 用于特殊到一般的推理。在系统中, 归纳分为完全归纳和 不完全归纳, 因果关系归纳和简单枚举归纳。所谓因果关 系归纳就是以实物的因果关系为基础, 推出该事物中所有 对象的共性,又被称为科学归纳[2]。(3)类比学习系统。 这种系统同时又叫模仿系统,是一种从特殊到特殊的推 理。以特定例子为依据, 寻求类比关系, 再将该种关系与 新事物联系起来, 实现创造性的推理和学习。

2 影响机器学习系统设计的因素

2.1 环境信息的准确性

环境向系统提供信息的质量高低直接影响着机器学习 系统的设计。在机器内部知识库存放的一般性的原则是用来 指导执行部分动作的, 然而真实世界或者说环境向机器学习 系统提供的信息具有多变性和复杂性, 所以学习系统必须获 得充足的数据,并删除不必要的环节,再次总结推广,又一 次设置成指导动作的一般性原则,这样导致机器学习的任务 繁重,且对于设计师来说这样是不利于设计的。

机器的知识库的知识种类繁多,形式表现多样,例

2.2 机器知识库的影响

如特征向量、产生式规则和语言网架等, 所以在设计知识 库的表示方式时要做到统筹兼顾,主要包括以下几方面: (1) 表达能力强。人工智能研究中就有关于机器表达方 式简单的要求[3]。(2)推理简单。在学习系统表达方式简 单,表达能力极强的基础上,应该为了降低计算代价,要 求学习系统的推理方式较简单。(3)知识库修改简单。 建立学习系统的根本目的就是为了机器可以不断的修改自 身的知识库,不断的填充一般性的执行规则。当机器发现 某些规则不再应用于系统时就要删除该项规则。所以学习 中的知识表示一般以明确、统一的要求为依据, 如产生 式规则,从而使知识库容易修改。(4)知识表示扩展简 单。机器系统的学习能力不断提高对知识表示的方式有了 更高的要求,有时一个系统需要设置几种知识表示方式。 甚至对系统本身也提出了构建表达方式的新要求, 以适应 外界信息的变化。所以在系统设计中要有表达方式的元级 描述。因为元级知识可以提高系统的学习能力, 扩知识领 域,并增强执行力。

2.3 执行能力的影响

执行是学习系统的核心部分, 系统学习部分的改进都

下转第239页》》》》》》》

中图分类号: TP181

多年的同体制管理模式, 使得图书馆不论已何种专业方 向文献资源为主,大都一个管理模式,图书馆的文献资源也 都大同小异, 专业特色差别化不大, 这样的运营模式不但造 成人员,资源的重复浪费,也给专业探求者,在文献资源引 用考证上带来学术难以突破的瓶颈。图书馆在文献资源建设 管理中, 应该发挥自身的专业领域特长, 摒弃同类型普遍存 在的文献资源,从而构建起自身具有发展特色的专业领域文 献资源,已为知识学术探求者提供借阅有效文献资源途径。

3 加大自身综合性文献资源建设与管理人才的培养

3.1 做好文献资源的归纳

如何才能站在巨人的肩膀上探寻到更高层次的知识? 专业的文献资源归纳分类给出了最好的答案。图书馆构建 起专业的文献归纳管理人才也成为了首要任务。通过对 最新文献的检索、采集、归纳、分类管理, 进行专业特色 深度的挖掘提炼。通过对已有文献资源的有效管理摒弃重 复文献、普遍同数据库文献资源,发展特色图书馆文献资 源,向用户(读者)提供知识增值服务。

3.2 文献资源的运用

现代化图书馆应该继承传统图书馆模式的优势, 运用 现代科技信息采集管理手段,提高图书馆的综合服务能力。 需要培养专业人才,将文献整合转化提高运用资源的途径。 如: 通过数字化转换与现代网络数据转播的运用,来扩大文 献资源的受众面给读者、用户提供更加便捷的借阅途径。

3.3 文献资源的查阅引导

借于当下的网络数据库组建是基于传统数据库资源基 础上,也就暴露了同样存在的重复或过期文献资源的严重 问题, 图书馆在提供专业特色、权威文献的同时, 应有专 业人才做出如何查阅文献的科学方法, 做好读者进行文献 资源查阅的引导工作。

3.4 图书馆网络信息化文献资源的风险防范

现代化电子信息技术给文献资源查阅代来方便的同 时,也存在着不安全因素,需要专业的网络数据人才,做 好病毒入侵数据的防范工作。与非正常原因带来的电子存 储介质损坏进而造成大量文献资源丢失情况的发生。

式、和灵感思维都不同。(2) 机器所获取的数据量庞大

且数据的质量无法保障, 机器学习是基于对大量数据的监

督学习及非监督学习完成的, 而当前许多研究领域拥有庞

大的数据资源, 在短时间高效的挖掘出有用的数据十分重

要,数据挖掘技术等相关技术的不成熟也制约了机器学习

领域的发展。(3)目前电子计算机工作原理比较落后,

制约了学习系统的开发。目前计算机工作的原理是以数理

逻辑和电子学为基础的, 其本质就是按照数理逻辑的方式

来进行工作。学习中不同的思维形式只能转换成数理逻

辑,才能让计算机接受,才能借助计算机进行模拟。从这

点可以看出知识库的知识表达方式是非常重要的[5]。

参考文献:

[1]高波,黄洁晶.中国大陆图书馆资源共享现状调查报告[J].中国图书馆学报.

作者简介: 李明(1982-), 男, 广西贺州人, 助教, 学士学位, 图书馆现代化管理。

作者单位: 贺州学院, 广西贺州 542899

《《《《《《上接第237页

是为了更好的执行动作。执行部分影响学习系统的主要问 题有任务的复杂性、透明性和反馈。

2.3.1 任务的复杂性

对于学习系统来说,任务的复杂性主要包括以下三 个层次。(1)最简单就是按照单一概念和规则分配的任 务。(2)比较复杂的任务则会涉及多个概念。(3)最复 杂的任务就是小型的计划任务, 学习系统设置一系列的规 则组合, 执行部分则依次执行这些规则。

2.3.2 透明性

所谓透明性就是要求系统的执行效果可以简单明了的 对知识库已有的规则进行评价。举一个很简单的例子,下 完一盘棋之后直接从输赢的效果判断每一步棋走得好坏是 非常困难的,但如果记住了每一步棋的走法,就可以从之 后局势判断优劣[4]。

3 机器学习研究难点

机器学习系统需要依靠思维科学提供相应的理论指 导, 机器学习的研究有一定的难度。这由于以下几点原 因造成的。(1) 关于学习的问题本身就是可变的、复杂 的,在具体的学习过程中,思维方式、形象思维、逻辑方

4 结语

在现今的人工智能活动中, 推理、学习、和联想是最 主要的三大功能。其中推理和联想的功能需要通过学习功 能的完善来提高。机器学习在人工智能研究中占据重要的 位置, 也是人工智能理论发展的基础, 只有完善机器学习 的研究并取得发展,才能使具有人工智能接口的人机系统 发挥巨大的力量。因此, 我们需要加强机器学习的研究, 不断开发新的学习系统, 促进人工智能的发展。

- [1] 杨详, 蔡庆生. 人工智能 [M]. 重庆科学文献出版社, 2012 (03).
- [2]何华灿.人工智能[J]. 论航空高等院校教材, 2011 (06).
- [3] 蔡自兴. 人工智能及其应用 [M]. 北京清华大学出版社, 2010 (01): 12-16.
- [4]徐立本. 机器学习引论[M]. 长春吉林大学出版社, 2011 (06): 145-146.
- [5] 蒋建东, 陆韦林. 神经计算机 [M]. 北京: 电子工业出版社, 2012 (10): 123.
- [6]洪家荣. 机器学习-回顾与展望[J]. 计算机科学, 2010.

作者简介: 姜雅慧(1991-), 女, 山东人, 本科, 研究方向: 计算机科学与技术。

作者单位: 天津工业大学, 天津 300387

参考文献: