







# 0-2.5Vout check for pulldowns on DAC lines MCP47FVB24-E/MQ X\_Vs\_2.5V TP2 Vout0 Vout1 Vout2 Vout2 Vout2 Vout2 2.5V\_Vref 14 Vref1 DAC\_LAT0\_R30\_\_\_\_100\_18 DAC\_LAT1\_R31\_\_\_\_\_100\_19 LAT0\_LAT1 1 A0 A1 VSS 7 addr. 0x60

DAC STAGE

any way to get a super accurate 5V reference? always a dropout voltage

#### SCLD SDA SDAD-

### **IO EXPANDER**



### 1.3.1 Technical specification

| Danamatan .                             |                       |                                  |
|-----------------------------------------|-----------------------|----------------------------------|
| Parameter                               | Typical Value         | Comments                         |
| Environmenta                            | l Characteristics     |                                  |
| Qualified operational temperature range | -40 to +70°C          |                                  |
| Storage temperature range               | -50 to +85°C (RH<60%) |                                  |
| Electrical C                            | haracteristics        |                                  |
| Torquer supply voltage (design)         | 5V                    |                                  |
| Nominal magnetic dipole (per actuator)  | 0.2 Am <sup>2</sup>   |                                  |
| Actuation power (rods)                  | 0.2 W                 | 5V, 20 C,<br>0.2 Am <sup>2</sup> |
| Actuation power (air core)              | 0.57 W                | 5V, 20 C,<br>0.2 Am <sup>2</sup> |
| Temperature sensor current consumption  | <150 uA               |                                  |
| Physical Cl                             | naracteristics        |                                  |
| Dimensions (Main)                       | 95.9 x 90.1 mm        |                                  |
| External height                         | 15 mm                 |                                  |
| Weight                                  | 194 grams             |                                  |
| Table 1-2 iMTQ Overall Specification    |                       | •                                |

### DRIVE AMPLIFIER

Magnetotorquer voltage source just a high current op amp as a unity buffer looks weird but is just a unity gain buffer





### HALF BRIDGE DRIVER & **CURRENT SENSE**

**5V AMPLIFIER** 

X\_Vs\_2.5V OUT\_5V X\_Vs\_5V

— ⊃IN\_2.5V OUT\_5V<

Z\_Vs\_2.5V OUT\_5V Z\_Vs\_5V

5V Amp 1

5V Amp 2

5V Amp 3

Y\_Vs\_2.5V

take 0-2.5V DAC signal to 0-5V



max rod current = 50mA max air core current = 110mA max current will be flowing both directions biased at mid supply lets say current will cause a +/- 1.0v defelection  $r_rod = 1/(50mA)/100 = 200mR$  $r_air = 1/110mA/100 = 91mR$ 

## **CURRENT SENSE ADC**



Sheet: /Magnetotorquer Drivers/ File: magnetotorquer-driver kicad\_sch Title: Size: B ld: 4/22

KiCad E.D.A. kicad (6.0.5)

































