Distribuciones continuas famosas

Uniforme

• Decimos que X tiene distribución uniforme en el intervalo [a,b] si su densidad es:

$$f_X(x) = \begin{cases} \frac{1}{b-a} & \text{si } a \le x \le b \\ 0 & \text{caso contrario.} \end{cases}$$

Notación con indicadora $f_X(x) = \frac{1}{b-a}I_{[a,b]}(x)$

Uniforme - Acumulada

- Densidad: $f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$, a < b.
- La acumulada:

$$F_X(x) = \int_{-\infty}^x f_X(t) dt$$

Uniforme - Acumulada

• densidad: existen a < b de forma tal que

$$f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$$

$$F_x(x) = \left\{ \begin{array}{ll} 0 & \text{si } x < a \\ \frac{x-a}{b-a} & \text{si } a \leq x \leq b \\ 1 & \text{si } x > b. \end{array} \right.$$

Uniforme - Esperanza y Varianza

ullet Densidad: existen a < b de forma tal que

$$f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$$

• Esperanza y varianza del uniforme.

Uniforme - Resumen.

Densidad:

$$f_X(x) = \frac{1}{b-a} I_{[a,b]}(x)$$

$$\mathbb{E}(X) = \frac{a+b}{2} \quad \mathbb{V}(X) = \frac{(b-a)^2}{12}$$

• Notación: $X \sim \mathcal{U}[a, b]$.

La uniforme en R

- densidad: dunif(x,a,b)= $f_X(x)$, cuando $X \sim \mathcal{U}(a,b)$.
- acumulada: punif(x,a,b)= $\mathbb{P}(X \leq x)$
- simulación I : runif(1,a,b) genera un posible resultado de X, cuando $X \sim \mathcal{U}(a,b)$
- runif(1,0,1) es un random en el (0,1)
- simulación II (muchas): runif(N,a,b) genera N posibles resultados de X, $X \sim \mathcal{U}(a,b)$

Exponencial

• Densidad:

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x), \ \lambda > 0$$

Exponencial - Acumulada

ullet Densidad: existe $\lambda>0$ tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

• La acumulada:

$$F_X(x) = \int_{-\infty}^x f_X(t) \ dt$$

Exponencial - Acumulada

• Densidad: existe $\lambda > 0$ tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

La acumulada:

$$F_x(x) = \left\{ \begin{array}{ll} 0 & \text{si } x < 0 \\ 1 - e^{-\lambda x} & \text{si } x \ge 0 \end{array} \right.$$

Propiedad - perdidad de memoria

Propiedad: perdida de memoria. P(X>s+t|X>t)=P(X>s)

Exponencial - Esperanza y Varianza

ullet Densidad: existen a < b de forma tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

• Esperanza y varianza de la exponencial.

Exponencial - Resumén

• densidad: $\lambda > 0$ de forma tal que

$$f_X(x) = \lambda e^{-\lambda x} I_{[0,\infty)}(x).$$

• $X \sim \mathcal{E}(\lambda)$.

• Notación: $X \sim \mathcal{E}(\lambda)$,

$$\mathbb{E}(X) = \frac{1}{\lambda} \quad \mathbb{V}(X) = \frac{1}{\lambda^2}$$

• Propiedad: perdida de memoria.

$$P(X > s + t | X > t) = P(X > s)$$

La exponencial en R

- densidad: dexp(x,lambda)= $f_X(x)$, cuando $X \sim \mathcal{E}(\text{lambda})$.
- acumulada: $pexp(x,lambda) = \mathbb{P}(X \leq x)$
- ullet simulación I : rexp(1,lambda) genera un posible resultado de X, cuando $X\sim \mathcal{E}(\mathrm{lambda})$
- simulación II (muchas): rexp(N,lambda) genera N posibles resultados de X, $X \sim \mathcal{E}(\text{lambda})$

La distribución normal (estandar)

$$f_Z(z) = \frac{1}{\sqrt{2\pi}}e^{-z^2/2}$$

LA normal (estandar)

Densidad Normal estandar

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

Función de distribución acumulada

$$F_Z(z) = \int_{-\infty}^z f_Z(u) du$$

no se puede calcular analíticamente!!!!!

- Hay tabla con valores de $F_Z(u)$ (con aproximaciones numéricas)
- $\phi(z) = F_Z(z)$ se llama función phi.

Normal estandar: densidad y acumulada

Distribucion Normal

Z normal estandar si

$$f_Z(z) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2}$$

- f_Z simétrica en el origen: $f_Z(z) = f_Z(-z)$
- Siendo f_Z simétrica, tenemos que $F_Z(-u) = 1 F_Z(u)$
- $F_Z(z) = \int_{-\infty}^z f_Z(u) du$ no se puede calcular.
- Hay tabla con valores de $F_Z(u)$ para u > 0.
- $\phi(z) = F_Z(z)$ se llama función phi.
- $\mathbb{E}(Z) = 0$, $\mathbb{V}(Z) = 1$.

La esperanza y varianza de la Normal estandar

Si
$$Z \sim N(\mu, \sigma^2) \Rightarrow E(Z) = 0$$
 y $V(Z) = 1$ Demostración

$$X = 3Z + 1$$

•
$$F_X(x) =$$

•
$$f_X(x) =$$

•
$$\mathbb{E}(X) =$$

$$\bullet$$
 $V(X) =$

Normal $\mathcal{N}(\mu, \sigma^2)$

ullet Z normal estandar, Sea $X:=\sigma Z+\mu$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

- $F_X(x) = \phi((x-\mu)/\sigma)$
- $\mathbb{E}(X) = \mu$, $\mathbb{V}(X) = \sigma^2$.
- X normal con media μ y desvío σ (o varianza σ^2) : $X \sim \mathcal{N}(\mu, \sigma^2)$.
- $dnorm(x, mu, sigma) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- $pnorm(x, mu, sigma) = P(X \le x)$.
- $X \sim \mathcal{N}(\mu, \sigma^2)$

Distribución normal: Interpretatión de los parámetros

Normal

Normal

Para pensar

Si $X \sim \mathcal{N}(\mu, \sigma^2)$, ¿qué distribución tiene Y = aX + b?

Estandarización

$$\begin{array}{ll} \bullet \ \, X \sim \mathcal{N}(\mu,\sigma^2) \\ \\ \frac{X-\mu}{\sigma} \sim \mathcal{N}(0,1) & \equiv \quad \frac{X-\mu}{\sigma} = Z, \ Z \sim \mathcal{N}(0,1) \\ \\ \bullet \ \, X = \sigma Z + \mu \ \text{con} \ \, X \sim \mathcal{N}(0,1) \end{array}$$

Tabla normal estandar

Función de distribución acumulada de una variable normal estandar.

Z,	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
.6	0.0313	0.7291	0.0303	0.7357	0.7034	0.7422	0.7123	0.7137	0.7130	0.7549
.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993

Modelo de mediciones

- 1. μ : magnitud que se desea determinar.
- 2. X: resultado de una medición.
- 3. ε representa el error de la medición.
- 4. La medición se relaciona con el error y la magnitud de interés mediante el modelo

$$X = \mu + \varepsilon$$

- 5. Error (solo) aleatorio : $\mathbb{E}(\varepsilon) = 0$.
- 6. $\sigma^2 = Var\left(\varepsilon\right)$ representa la precisión del método de medición empleado.

Halle $\mathbb{E}(X)$ y Var(X).

Modelo de medición - Errores Normales- Ejemplo Juguete

$$X = \mu + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

1. Obtenga la distribución de X, su esperanza y su varianza.

Asuma que la desviación estándar $\sigma=0.2$ y que $\mu=3$

- 2. Calcule la probabilidad de que el error de medición X sea mayor a $0.3\,$
- 3. Calcule la probabilidad de que la medición X diste de la verdadera magnitud $\mu=3$ en menos de 0.3 unidades.
- 4. ¿Fué necesario conocer el valor de μ para realizar este cálculo?

Modelo de medición - Errores Normales

$$X = \mu + \varepsilon$$
, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- 1. Obtenga la distribución de X, su esperanza y su varianza.
- 2. Asuma que la desviación estándar $\sigma=0.2$. Calcule la probabilidad de que la medición diste de la verdadera magnitud μ en menos de 0.3 unidades. Note que no fue necesario conocer el valor de μ para realizar este cálculo.
- 3. Obtenga una expresión para la probabilidad de que la medición diste de la verdadera magnitud μ en menos de 0.3 unidades en función de σ .

Normales - Percentiles

Sea $Z \sim \mathcal{N}(0,1)$. Hallar z tal que

$$P(Z \ge z) = 0.9$$

Normales - Percentiles

Sea $Z \sim \mathcal{N}(0,1)$. Hallar z tal que

$$P(Z \ge z) = 0.9$$

Sea $X \sim \mathcal{N}(40, 25)$. Hallar x tal que

$$P(X \ge x) = 0.9$$