System typów F_{ω}

Systemy Typów 2010/11 Prowadzący: dr Dariusz Biernacki

Piotr Polesiuk Małgorzata Jurkiewicz bassists@o2.pl gosia.jurkiewicz@gmail.com

Wrocław, dnia 6 lutego 2011 r.

1. Wstęp

No to na razie taki balagan

2. System F_{ω}

W rozdziale tym chcielibyśmy przedstawić Państwu core F_{ω} :-) Tylko ładnie i w paru zdaniach to trzeba napisać:D

2.1. Termy i typy w F_{ω}

System F_{ω} to rachunek będący rozszerzeniem λ_{ω} oraz systemu F. Wszystkie trzy wywodzą się z rachunku lambda z typami prostymi. Termy oraz typy definiujemy w λ_{\rightarrow} następująco:

t ::=		termy
	X	zmienne
	$\lambda \mathtt{x}:\mathtt{T.t}$	abstrakcja
	tt	aplikacja
T ::=		typy
	Х	$zmienna\ typowa$
	$\mathtt{T}\to\mathtt{T}$	$typ\ funkcji$

2.1.1. System λ_{ω}

Główną cechą systemu λ_{ω} jest to, że oprócz termów zależnych od termów mamy typy zależne od typów, czyli możemy mówić o aplikacji i abstrakcji typowej¹. By nam się nie pomyliło z abstrakcją na termach, zmienne typowe będziemy zaczynać dużą literą. Przykładowo Tb = λ X.X \rightarrow Bool i λ X.X są abstrakcjami typowymi, ale λ x.x jest abstrakcją na termach. Do typu Tb możemy zaaplikować Bool i dostaniemy (λ X.X \rightarrow Bool)Bool równoważne Bool \rightarrow Bool. Jak widać użyłam słowa równoważne. W rachunku lambda z typami prostymi sposób konstrukcji typów gwarantował nam, że dwa typy T₁ i T₂ na pewno są różne (zakładając, że typy bazowe były sobie różne). W λ_{ω} jest inaczej – typy tego systemu możemy podzielić na klasy równoważności. Do klasy Bool \rightarrow Bool należą również (Tb¹)Bool dla n naturalnego, a T¹ oznacza aplikację n typów T. Zauważmy, że odpowiednikiem takiej relacji równoważności na termach jest β -równoważność. W świecie typów nazwiemy taką relację \equiv 2. Podobnie jak w świecie termów, typy są silnie normalizowalne i zachodzi własność Churcha-Rossera. Przez nf (T) oznaczamy postać normalną typu T. Dodatkowo wprowadzimy następującą regulę: $\frac{\Gamma \vdash t:S}{\Gamma \vdash t:T}$ mówiącą, że jeżeli term jest typu S, to jest też typu dowolnego równoważnego z S.

Niestety, w tak zdefiniowanym systemie powstaje jeden problem. Nie chcielibyśmy, aby Bool Bool było dozwolone, tak samo, jak w świecie termów nie chcieliśmy, by true true było dozwolone. W świecie termów, by rozwiązać ten problem, wprowadziliśmy typy na termach,

¹U Urzyczyna, w T::K T to konstruktor rodzaju, K rodzaj, natomiast typem nazywamy konstruktor rodzaju *. My, kierowani składnia języka, wszystkie konstruktory rodzaju nazywamy typami.

²formalnie zdefiniujemy ta relację w rozdziale XXX

w świecie typów wprowadzimy typy na typach, czyli rodzaje. Piszemy, że T :: K, czyli typ T ma rodzaj K. Wprowadzimy też jeden rodzaj bazowy *.

Wszystkie typy, jakie pojawiły się w λ_{\rightarrow} , są rodzaju *. Np. Bool :: *, Nat \rightarrow Nat, (Bool \rightarrow Nat) \rightarrow Nat :: *, itd. Rodzaj * \Rightarrow * będzie dla funkcji z typów w typy, np. $\lambda X.X \rightarrow$ Bool :: * \Rightarrow *. * \Rightarrow * \Rightarrow * bierze typ i zwraca funkcję typową, np. $\lambda X.\lambda Y.X \rightarrow Y$:: * \Rightarrow * \Rightarrow *, itd.

Teraz możemy λ_{\rightarrow} rozszerzyć o następujące konstrukcje:

• rodzaje

abstrakcję i aplikację typową na typach

2.1.2. System F

System F jest systemem, w którym dodatkowo, oprócz termów zależnych od termów, mamy termy zależne od typów. Wprowadzimy trzeci już rodzaj abstrakcji i aplikacji, poprzedni był w świecie typów, te będą w świecie termów. Znana jest nam funkcja identycznościowa $\lambda x.x$, w $\lambda \rightarrow$ możemy ją napisać na wiele sposób: $\lambda x: Bool.x$, $\lambda x: Nat.x$, $\lambda x: Bool \rightarrow Nat.x$. W systemie F możemy wszystkie te funkcje zapisać jako: $\lambda X.\lambda x: X.x$. Zauważmy, że ten term przyjmuje jako pierwszy argument typ, następnie term pierwszego typu i zwraca go. Przykładem użycia takiego termu mogą być: $(\lambda X.\lambda x: X.x)$ [Bool] true, co daje true, albo $(\lambda X.\lambda x: X.x)$ [Nat] 1, co daje 1. W ten sposób powstała nam uniwersalna funkcja identycznościowa, której nadamy tzw. uniwersalny typ: $\lambda X.\lambda x: X.x: \forall X.x: \forall X.X. \rightarrow X$. Dodatkowo, jako że dodaliśmy już do systemu rodzaje, napiszemy $\lambda X: x.x: X.x: \forall X:x: x.x \rightarrow X$.

Po tym krótkim wstępie możemy już zdefiniować odziedziczone z systemu F własności takie, jak:

• abstrakcję i aplikację typową na termach

• typ uniwersalny

$$egin{array}{|c|c|c|c|} T ::= & \cdots & typy \\ & \forall X :: K.T & typ \ uniwersalny \end{array}$$

2.2. Typowanie

2.2.1. Kontekst

Kontekst typowania opisany jest następującą składnią abstrakcyjną

$\Gamma ::=$		kontekst
	Ø	$pusty\ kontekst$
	$\Gamma,\mathtt{x}:\mathtt{T}$	$wiqzanie\ typu$
	$\Gamma,\mathtt{X}::\mathtt{K}$	$wiqzanie\ rodzaju$

Konteksty typowania bedziemy często traktować jako skończone zbiory wiązań i będziemy używać teoriomnogościowych symboli na nich. Np. przynależność do kontekstu formalnie definiujemy jako:

$$\frac{B \in \Gamma}{B \in \Gamma, B} \qquad \frac{B \in \Gamma}{B \in \Gamma, B'}$$

Definicje pozostałych operacji teoriomnogościowych są na tyle naturalne, że zostawiamy je Czytelnikowi do uzupełnienia.

2.2.2. Podstawienia (może pójdzie gdzie indziej, jeszcze zobaczę)

Oprócz zwykłego podstawienia za zmienne, które pozostawiamy Czytelnikowi do uzupełnienia, powinniśmy zdefiniować podstawienie za zmienne typowe.

$$\bullet \ [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{X} = \begin{cases} \mathtt{T} & Y = X \\ \mathtt{X} & \mathrm{w.p.p} \end{cases}$$

$$\bullet \ \ [\mathtt{Y} \mapsto \mathtt{T}](\mathtt{X}_1 \ \mathtt{X}_2) = [\mathtt{Y} \mapsto \mathtt{T}]\mathtt{X}_1[\mathtt{Y} \mapsto \mathtt{T}]\mathtt{X}_2$$

•
$$[Y \mapsto T](S_1 \to S_2) = [Y \mapsto T]S_1 \to [Y \mapsto T]S_2$$

$$\bullet \ [\mathtt{Y} \mapsto \mathtt{T}] \forall \mathtt{X}.\mathtt{S} = \begin{cases} \forall \mathtt{X}.\mathtt{S} & Y = X \text{ lub } Y \notin FV(S) \\ [\mathtt{Y} \mapsto \mathtt{T}] \forall \mathtt{X}.\mathtt{S} & X \notin FV(\phi) \text{ i } Y \in FV(S) \end{cases}$$

$$\bullet \ [\mathtt{Y} := \mathtt{T}] \lambda \mathtt{X.S} = \begin{cases} \lambda \mathtt{X.S} & Y = X \text{ lub } Y \notin FV(S) \\ [\mathtt{Y} := \mathtt{T}] \lambda \mathtt{X.S} & X \notin FV(S) \text{ i } Y \in FV(S) \end{cases}$$

2.2.3. Relacja \equiv

Jak wspomnieliśmy w rozdziale XXX, definiujemy na typach relację równoważność. S, S_1, S_2, T, T_1, T_2 to typy, K to rodzaj. Następujące trzy reguły:

$$\frac{{\tt S}\equiv {\tt T}}{{\tt T}\equiv {\tt T}} \qquad \frac{S\equiv U \quad U\equiv T}{S\equiv T}$$

gwarantują nam równoważność relacji ≡. Pozostałe reguły jak następuje:

$$\begin{split} \frac{S_1 \equiv T_1 \quad S_2 \equiv T_2}{S_1 \rightarrow S_2 \equiv T_1 \rightarrow T_2} & \frac{S_1 \equiv T_1 \quad S_2 \equiv T_2}{S_1 \ S_2 \equiv T_1 \ T_2} \\ \frac{S \equiv T}{\lambda \texttt{X} :: \texttt{K.S} \equiv \lambda \texttt{X} :: \texttt{K.T}} & (\lambda \texttt{X} :: \texttt{K.S}) \texttt{T} \equiv [\texttt{X} \mapsto \texttt{T}] \texttt{S} \end{split}$$

2.2.4. Reguly rodzajowania:-)

W systemie F_{ω} każdemu poprawnie zbudowanemu typowi przyporządkowujemy rodzaj. Przyporządkowanie to określa relacja (. \vdash . :: .) zdefiniowana następująco.

Jeżeli zachodzi $\Gamma \vdash T :: K$, to powiemy, że $typ\ T$ $jest\ rodzaju\ K\ w\ kontekście\ \Gamma$, gdzie relacja określenia rodzaju (. \vdash . :: .) $\subseteq \Gamma \times T \times K$ jest najmniejszą relacją zamkniętą na reguły:

$$\begin{split} \frac{\mathtt{X} :: \mathtt{K} \in \Gamma}{\Gamma \vdash \mathtt{X} :: \mathtt{K}} & \frac{\Gamma \vdash \mathtt{T}_1 :: \mathtt{K}_1 \Rightarrow \mathtt{K}_2 \quad \Gamma \vdash \mathtt{T}_2 :: \mathtt{K}_1}{\Gamma \vdash \mathtt{T}_1 \mathtt{T}_2 :: \mathtt{K}_2} \\ \frac{\Gamma \vdash \mathtt{X} :: \mathtt{K}_1 \quad \Gamma \vdash \mathtt{T} :: \mathtt{K}_2}{\Gamma \vdash \lambda \mathtt{X} :: \mathtt{K}_1 :: \mathtt{K}_1 \Rightarrow \mathtt{K}_2} & \frac{\Gamma \vdash \mathtt{X} :: \mathtt{K} \quad \Gamma \vdash \mathtt{T} :: *}{\Gamma \vdash \mathsf{T}_1 :: *} \\ \frac{\Gamma \vdash \mathtt{T}_1 :* \quad \Gamma \vdash \mathtt{T}_2 :*}{\mathtt{T}_1 \to \mathtt{T}_2 :*} \end{split}$$

2.2.5. Reguly typowania

Jesteśmy już gotowi przedstawić reguły typowania zdefiniowanego wyżej systemu F_{ω} . Każdemu poprawnie zbudowanemu termowi przyporządkowujemy typ. Przyporządkowanie to określa relacja (. \vdash . : .) zdefiniowana następująco.

$$\frac{ \underbrace{\mathtt{x} : \mathtt{T} \in \Gamma}_{\Gamma \vdash \mathtt{x} : \mathtt{T}} \qquad \frac{\Gamma \vdash \mathtt{T}_1 :: * \qquad \Gamma, \mathtt{x} : \mathtt{T}_1 \vdash \mathtt{t}_2 : \mathtt{T}_2}{\Gamma \vdash \mathtt{\lambda} \mathtt{x} : \mathtt{T}_1 . \mathtt{t}_2 \ : \ \mathtt{T}_1 \to \mathtt{T}_2} } \\ \frac{\Gamma \vdash \mathtt{t}_1 : \mathtt{T}_1 \to \mathtt{T}_2 \qquad \Gamma \vdash \mathtt{t}_2 : \mathtt{T}_1}{\Gamma \vdash \mathtt{t}_1 \: \mathtt{t}_2 : \mathtt{T}_2} \qquad \frac{\Gamma \vdash \mathtt{t} : \mathtt{S} \qquad \mathtt{S} \equiv \mathtt{T} \qquad \Gamma \vdash \mathtt{T} :: *}{\Gamma \vdash \mathtt{t} : \mathtt{T}}$$

2.3. Ewaluacja

2.3.1. Wartości

Wartości w F_{ω} zdefiniujemy dokładnie jak w λ_{\rightarrow} .

2.3.2. Ewaluacja

Ewaluacja w dotychczas zdefiniowanym F_{ω} przebiega w sposób standardowy. W rozdziałach XXX-XXX skupimy się na rozszerzeniach minimalnej wersji F_{ω} i pojawią się tam nowe rzeczy. Teraz, dla czytelności, przetoczymy reguły ewaluacji dla wersji minimalnej $(t_1, t'_1, t_2, t'_2, t$ to termy, v to wartość, x:T to zmienna x typu T):

$$\begin{split} \frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathtt{t}_1 \ \mathtt{t}_2 \longrightarrow \mathtt{t}_1' \ \mathtt{t}_2} &\quad \frac{\mathtt{t}_2 \longrightarrow \mathtt{t}_2'}{\mathtt{v}_1 \ \mathtt{t}_2 \longrightarrow \mathtt{v}_1 \ \mathtt{t}_2'} \\ &\quad (\lambda \mathtt{x} : \mathtt{T}.\mathtt{t}) \mathtt{v} \longrightarrow [\mathtt{x} \mapsto \mathtt{v}] \mathtt{t} \end{split}$$

2.4. Inne własności F_{ω}

Definicja 1. Reguły przepisywania typów w systemie F_{ω} w wersji Curry'ego standardowe, oprócz:

$$\frac{\Gamma \vdash M : \forall X \sigma}{\Gamma \vdash M : nf(\sigma[X := \tau])}$$

Nierozstzygalne są problemy:

- sprawdzania typu: dane Γ, M, τ , Czy $\Gamma \vdash M : \tau$
- typowalność: dane M, Czy $\exists \Gamma \tau . \Gamma \vdash M : \tau$
- 2.5. pare słów o rozszerzeniach
- 3. Sładnia abstrakcyjna języka
- 4. Semantyka i typowanie
- 4.1. wyrażenia arytmetyczne i logiczne
- 4.2. unit i sekwencje
- 4.3. definicje lokalne
- 4.4. Rekordy
- 4.5. warianty
- 4.6. punkt stały
- 4.7. listy
- 4.8. typy egzystencjalne
- 4.9. typy rekurencyjne
- 4.10. dopasowanie wzorca
- 5. Rekonstrukcja typów
- 6. Własności i dowody
- 7. Praktyczne zastosowanie
- 8. Podsumowanie

Literatura

[1] Pierce,