Analyzing the choice of transportation

Elie Daher

July 12, 2017

Abstract

This document contains the problem of analysing the choice of transportation. This problem is from the chapter UTA Methods of the Book: Multiple Criteria Decision Analysis. This document was made during my internship at LAMSADE in the summer of 2017.

A DM wants to analyse the choice of transportation. The DM is interstered in the following criteria

- 1. price
- 2. time (min)
- 3. comfort (possibility to have a seat)

The evaluation of the previous criteria is presented in the following table:

Means of transportation	Price	Time	Comfort	Ranking of the DM
RER	3	10	+	1
METRO (1)	4	20	++	2
METRO (2)	2	20	0	2
BUS	6	40	0	3
TAXI	30	30	+++	4

DM's preferences: $RER \succ Metro1 \approx Metro2 \succ Bus \succ Taxi$

First of all, we should specify the scale ¹ for each criteria.

- Price \rightarrow [30, 16, 2]
- Time \rightarrow [40, 30, 20, 10]
- Comfort \rightarrow [0,+,++,++]

According to this formula: $v(g(a)) = \sum_{i=1}^{n} v_i(g_i(a))$, the value of each alternative may be written:

- $v[g(RER)] = 0.07v_1(16) + 0.93v_1(2) + v_2(10) + v_3(+)$
- $v[g(METRO1)] = 0.14v_1(16) + 0.86v_1(2) + v_2(20) + v_3(++)$
- $v[g(METRO2)] = v_1(2) + v_2(20) + v_3(0) = v_1(2) + v_2(20)$
- $v[g(BUS)] = 0.29v_1(16) + 0.71v_1(2) + v_2(40) + v_3(0) = 0.29v_1(16) + 0.71v_1(2)$
- $v[g(TAXI)] = v_1(30) + v_2(30) + v_3(+++) = v_2(30) + v_3(+++)$

We have that $v_1(30) = v_2(40) = v_3(0) = 0$.

Since the marginal value $u_i(g_i)$ can be expressed in terms of variables w_{ij} : $u_i(g_i^j) = \sum_{t=1}^{j-1} w_{it}$, the value of each alternative can be written:

- $v[g(RER)] = w_{11} + 0.93w_{12} + w_{21} + w_{22} + w_{23} + w_{31}$
- $v[g(METRO1)] = w_{11} + 0.86w_{12} + w_{21} + w_{22} + w_{31} + w_{32}$
- $v[g(METRO2)] = w_{11} + w_{12} + w_{21} + w_{22}$
- $v[g(BUS)] = w_{11} + 0.71w_{12}$
- $v[g(TAXI)] = w_{21} + w_{31} + w_{32} + w_{33}$

For each pair of consecutive alternatives, we express the difference between them:

- $\Delta(RER, METRO1) = 0.07w_{12} + w_{23} w_{32} > \delta$
- $\Delta(METRO1, METRO2) = -0.14w_{12} + w_{31} + w_{32} = 0$
- $\Delta(METRO2, BUS) = 0.29w_{12} + w_{21} + w_{22} \ge \delta$
- $\Delta(BUS, TAXI) = w_{11} + 0.71w_{12} w_{21} w_{31} w_{32} w_{33} \ge \delta$

Having $\delta = 0.05$, we can solve the following LP:

Objective:

$$Minimize \quad \sum_{a \in A} \sigma_a^+ + \sigma_a^- \tag{1}$$

Subject to:

$$\begin{cases}
0.07w_{12} + w_{23} - w_{32} - \sigma_{RER}^{+} + \sigma_{RER}^{-} + \sigma_{METRO1}^{+} - \sigma_{METRO1}^{-} \ge \delta \\
-0.14w_{12} + w_{31} + w_{32} - \sigma_{METRO1}^{+} + \sigma_{METRO1}^{-} + \sigma_{METRO2}^{+} - \sigma_{METRO2}^{-} = 0 \\
0.29w_{12} + w_{21} + w_{22} - \sigma_{METRO2}^{+} + \sigma_{METRO2}^{-} + \sigma_{BUS}^{+} - \sigma_{BUS}^{-} \ge \delta \\
w_{11} + 0.71w_{12} - w_{21} - w_{31} - w_{32} - w_{33} - \sigma_{BUS}^{+} + \sigma_{BUS}^{-} + \sigma_{TAXI}^{+} \ge \delta \\
w_{11} + w_{12} + w_{21} + w_{22} + w_{23} + w_{31} + w_{32} + w_{33} = 1
\end{cases} \tag{2}$$

So by using the com.google.ortools library, we can solve the Linear Program above with $\sigma=0.05$. This Linear Program solution is coded in Java class ChoiceTransportation.

By executing the class ChoiceTransportation, you will have the following result:

¹the interval $[g_{i*}, g_i^*]$ is cut into equal intervals

```
Problem solved in 17 milliseconds
Optimal objective value = 0.0
w31 = 0.0
w11 = 0.5
w22 = 0.05
w33 = 0.4
w21 = 0.0
w32 = 0.0
w12 = 0.0
w12 = 0.0
```

An optimal solution is $w_{11}=0.5, w_{22}=0.05, w_{23}=0.05, w_{33}=0.4$ with $\sum_{a\in A}\sigma_a^+ + \sigma_a^- = 0$. The utilities found for each alternative are as follows:

- v(g(RER)) = 0.6
- v(g(METRO1)) = 0.55
- v(g(METRO2)) = 0.55
- v(g(BUS)) = 0.5
- v(g(TAXI)) = 0.4

Those utilities are consistent with the DM's preference ranking.