

Chapitre 04: TD Lancement d'une application avec docker

LPRGL3
PROJET INFORMATIQUE II

Intérêt du chapitre

- Ce TD vous permettra d'acquérir des compétences pratiques et utiles pour:
 - Développer et déployer des applications plus rapidement et facilement.
 - Améliorer la portabilité et la scalabilité de vos applications.
 - Gérer vos applications de manière plus efficace et fiable.

Objectifs

- Définir les concepts clés de Docker et ses avantages.
- Installer et configurer Docker sur votre machine.
- Créer et utiliser des images Docker pour vos applications.
- Démarrer, gérer et surveiller des conteneurs.
- Explorer les options de déploiement en production.

Prérequis

- Logiciels:
 - Docker Desktop.
 - Lien pour télécharger Docker Desktop: https://docs.docker.com/get-docker/
 - Un éditeur de texte

Sommaire

- Obtenir Docker
- Présentation de Docker
- Qu'est-ce qu'un conteneur ?
- Exécuter un conteneur
- Exécuter des images Docker Hub
- Quizz
- Applications multi-conteneurs
- Rendre persistantes les données d'un conteneur
- Accéder à un dossier local
- Conteneurisez votre application
- Publiez votre image sur Docker Hub
- Quizz

Obtenir Docker

- Docker est disponible pour Windows, Mac et Linux.
- Nous utiliserons Docker Desktop.
- Lien pour télécharger Docker Desktop: <u>https://docs.docker.com/get-docker/</u>.
- Autres options d'installation:
 - Docker Engine.
 - Vous pouvez utiliser Docker dans un environnement cloud.

Présentation de Docker

 Docker est une plateforme pour simplifier le développement et le déploiement d'applications.

Qu'est-ce qu'un conteneur?

- Un conteneur est un environnement isolé pour votre code.
- Il s'exécute sur l'environnement qui vous est fourni par Docker Desktop.
- Les conteneurs possèdent tout ce dont votre code a besoin pour s'exécuter, jusqu'à un système d'exploitation de base.

Qu'est-ce qu'un conteneur?

 Vous pouvez utiliser Docker Desktop pour gérer et explorer vos conteneurs.

Qu'est-ce qu'un conteneur ? Étape 1 : Configurer le guide pratique

- La première chose dont vous avez besoin est un conteneur en cours d'exécution.
- Utilisez les instructions suivantes pour exécuter un conteneur :
- 1. Ouvrez Docker Desktop et cliquez sur la barre de recherche.
- 2. Indiquez `docker/welcome-to-docker` dans la recherche et sélectionnez "Exécuter" ("Run").

Qu'est-ce qu'un conteneur ? Étape 1 : Configurer le guide pratique

- 3. Développez les "Paramètres optionnels" ("Optional settings").
- 4. Dans la section "Nom du conteneur" ("Container name"), spécifiez `welcome-to-docker`.
- 5. Dans la section "Port hôte" ("Host port"), indiquez `8088`.
- 6. Cliquez sur "Exécuter" ("Run").

Qu'est-ce qu'un conteneur?

Étape 2 : Visualiser les conteneurs dans Docker Desktop

- Vous venez d'exécuter un conteneur!
- Vous pouvez le voir dans l'onglet "Conteneurs" de Docker Desktop.
- Ce conteneur exécute un simple serveur web qui affiche un site web basique.

- Le frontend est accessible sur le port 8088 de votre machine locale (localhost).
- Cliquez sur le lien dans la colonne "Port(s)" de votre conteneur, ou visitez http://localhost:8088 dans votre navigateur pour l'afficher.

- Docker Desktop vous permet de visualiser et d'interagir facilement avec différents aspects de votre conteneur.
- Sélectionnez votre conteneur, puis cliquez sur "Fichiers" ("Files") pour explorer le système de fichiers isolé de votre conteneur.

- Le conteneur "welcome-to-docker" continue de fonctionner jusqu'à ce que vous l'arrêtiez.
- Pour arrêter le conteneur dans Docker Desktop, allez dans l'onglet "Conteneurs" et cliquez sur l'icône "Stop" dans la colonne "Actions" de votre conteneur.

Comment exécuter un conteneur?

- Dans cette partie, vous apprendrez les étapes de base pour construire une image et exécuter votre propre conteneur.
- Nous utiliserons un exemple d'application Node.js, mais il n'est pas nécessaire de connaître Node.js.

Comment exécuter un conteneur?

Comment exécuter un conteneur ? Étape 1 : Obtenir l'application d'exemple

- Vous pouvez cloner le dépôt de l'application exemple ou simplement utiliser le fichier joint.
- Cloner avec git: Ouvrez une fenêtre de terminal et utilisez la commande suivante:
 - git clone https://github.com/docker/welcome-todocker

welcome-to-docker-main.zip

Comment exécuter un conteneur?

Étape 2 : Visualiser le Dockerfile dans votre dossier de projet

- Pour exécuter votre code dans un conteneur,
 l'élément fondamental est un Dockerfile.
- Il décrit ce qui est contenu dans un conteneur.
- · Cet exemple contient déjà un Dockerfile.
- Pour vos projets personnels, vous devrez créer votre propre Dockerfile.

Comment exécuter un conteneur?

Étape 2 : Visualiser le Dockerfile dans votre dossier de projet

 Ouvrez le Dockerfile dans un éditeur de code ou de texte et explorez son contenu.

Comment exécuter un conteneur ? Étape 3 : Construire votre première image

- Vous avez toujours besoin d'une image pour exécuter un conteneur.
- Ouvrez un terminal et exécutez les commandes suivantes pour construire l'image.
- Remplacez `/chemin/vers/welcome-todocker/` par le chemin vers votre dossier :
 - cd /chemin/vers/welcome-to-docker/
 - docker build -t welcome-to-docker .

Comment exécuter un conteneur ? Étape 3 : Construire votre première image

- La construction de l'image peut prendre un certain temps.
- Une fois votre image construite, vous pouvez la voir dans l'onglet "Images" de Docker Desktop.

Comment exécuter un conteneur ? Étape 4 : Exécuter votre conteneur

- Pour exécuter votre image en tant que conteneur :
- 1. Dans Docker Desktop, allez dans l'onglet "Images".
- 2. À côté de votre image, cliquez sur "Exécuter" ("Run").
- 3. Développez les "Paramètres optionnels" ("Optional settings").

Comment exécuter un conteneur ? Étape 4 : Exécuter votre conteneur

- 4. Dans la section "Port hôte" ("Host port"), indiquez `8089`.
- 5. Cliquez sur "Exécuter" ("Run").

Comment exécuter un conteneur ? Étape 5 : Visualiser le frontend

- Vous pouvez accéder à votre conteneur en cours d'exécution via Docker Desktop.
- Cliquez sur le lien à côté de votre conteneur ou visitez http://localhost:8089 pour visualiser le frontend.

Comment exécuter un conteneur ? Résumé

- Vous avez construit votre propre image et l'avez exécutée en tant que conteneur.
- En plus de cela, vous pouvez également exécuter des images provenant de Docker Hub.

Exécuter des images Docker Hub

 Comment exécuter des images préconfigurées à partir de Docker Hub, le registre public d'images Docker?

Exécuter des images Docker Hub Étape 1 : Rechercher une image

- 1. Ouvrez Docker Desktop.
- 2. Dans la barre de recherche, saisissez le nom de l'image que vous souhaitez exécuter.
- Par exemple, pour exécuter une image Node.js, saisissez `node`.
- 3. Parcourez les résultats de la recherche et sélectionnez l'image qui vous convient.

Exécuter des images Docker Hub Étape 2 : Exécuter l'image

- 1. Cliquez sur le bouton "Exécuter" ("Run") à côté de l'image sélectionnée.
- 2. Dans la fenêtre "Exécuter l'image" ("Run Image"), vous pouvez :
 - Modifier le nom du conteneur(facultatif).
 - Définir les ports à exposer(facultatif).
 - Ajouter des variables d'environnement(facultatif).
- 3. Cliquez sur "Exécuter" ("Run").

Optional settings		^
Container name		
A random name is generated if you do	not provide one.	
Ports		
Enter "0" to assign randomly generate	ed host ports.	
Host port 8090		:80/tcp
Volumes		
Volumes Host path	Container path	+
	Container path	+

Exécuter des images Docker Hub Étape 3 : Explorer le conteneur

- Une fois le conteneur démarré, vous pouvez l'explorer de différentes manières :
 - Afficher les journaux du conteneur : sélectionnez le conteneur dans l'onglet "Conteneurs" ("Containers") et cliquez sur "Journaux" ("Logs").
 - Accéder au terminal du conteneur : sélectionnez le conteneur et cliquez sur "Terminal" ("Terminal").

 Afficher les ports exposés : sélectionnez le conteneur et regardez la section "Ports" ("Ports") dans l'onglet "Détails" ("Details").

Exécuter des images Docker Hub Étape 4 : Arrêter le conteneur

- Lorsque vous avez terminé avec le conteneur, vous pouvez l'arrêter de différentes manières :
 - Dans Docker Desktop : sélectionnez le conteneur et cliquez sur "Arrêter" ("Stop").
 - Dans le terminal : utilisez la commande `docker stop <nom_du_conteneur>`.

Exécuter des images Docker HubEn résumé

 Exécuter des images Docker Hub est un moyen simple et rapide de lancer des applications préconfigurées dans des conteneurs.

Exécuter des applications multiconteneurs

- Après le chapitre "Comment exécuter un conteneur ?", vous savez qu'il faut démarrer chaque conteneur individuellement.
- Imaginez à quel point ce serait pratique si un outil permettait de démarrer plusieurs conteneurs avec une seule commande.
- Cet outil, c'est Docker Compose.

Exécuter des applications multi-conteneurs Étape 1 : Obtenir l'application d'exemple

multi-container-app-main.zip

- Vous pouvez également cloner le dépôt de l'application exemple sur GitHub.
 - git clone https://github.com/docker/multi-container-app
- L'application d'exemple est une simple application "todo" (liste de tâches) construite avec ExpressJS et Node.js.

Exécuter des applications multi-conteneurs Étape 1 : Obtenir l'application d'exemple

- Elle stocke toutes les tâches dans une base de données MongoDB.
- Vous n'avez pas besoin de connaître ces technologies pour continuer ce chapitre.
- L'architecture de l'application d'exemple

Exécuter des applications multi-conteneurs Étape 2 : Analyser le fichier compose

- Observez les fichiers de l'application.
- Notez qu'elle comporte un fichier compose.yaml.
- Ce fichier indique à Docker comment exécuter votre application.
- Ouvrez-le dans un éditeur de code ou de texte pour voir son contenu.

Exécuter des applications multi-conteneurs Étape 3 : Exécuter l'application

- Pour exécuter cette application multiconteneur, ouvrez un terminal et exécutez les commandes suivantes.
- Remplacez `/chemin/vers/application-multiconteneur` par le chemin d'accès au répertoire de votre application.
 - cd /chemin/vers/application-multi-conteneur
 - docker compose up -d

Exécuter des applications multi-conteneurs Étape 3 : Exécuter l'application

 Dans la commande précédente, l'option -d indique à Docker Compose de s'exécuter en mode détaché (en arrière-plan).

Exécuter des applications multi-conteneurs Étape 4 : Voir l'interface et ajouter des tâches

- Dans l'onglet "Containers" de Docker Desktop, vous devriez maintenant avoir une pile d'applications avec deux conteneurs en cours d'exécution (todo-app et todo-database).
- Pour voir l'interface de l'application :
 - Dans Docker Desktop, développez la pile d'applications dans "Containers".
 - Cliquez sur le lien vers le port 3000 dans la colonne "Port(s)" ou allez sur http://localhost:3000.

Exécuter des applications multi-conteneurs Étape 4 : Voir l'interface et ajouter des tâches

 Ajoutez quelques tâches dans l'interface, puis ouvrez http://localhost:3000 dans un nouvel onglet du navigateur. Vous verrez que les tâches sont toujours présentes.

Exécuter des applications multi-conteneurs Étape 5 : Développer au sein de vos conteneurs

- Lorsque vous développez avec Docker, il se peut que vous ayez besoin de mettre à jour et de prévisualiser automatiquement vos services en cours d'exécution lorsque vous modifiez et sauvegardez votre code.
- Pour cela, vous pouvez utiliser Docker
 Compose Watch.
- Pour exécuter Compose Watch et voir les changements en temps réel :

Exécuter des applications multi-conteneurs Étape 5 : Développer au sein de vos conteneurs

- 1. Ouvrez un terminal et accédez au répertoire de votre application :
 - cd /chemin/vers/application-multi-conteneur/
- 2. Exécutez la commande Docker Compose Watch :
 - docker compose watch
- 3. Modifiez le fichier app/views/todos.ejs :
 - Ouvrez le fichier dans un éditeur de texte ou de code, puis modifiez le texte à la ligne 18.

Exécuter des applications multi-conteneurs Étape 5 : Développer au sein de vos conteneurs

- 4. Enregistrez les modifications.
- 5. Visualisez votre application pour voir les changements :
 - Accédez à votre application via http://localhost:3000 pour voir les modifications reflétées en temps réel.

Exécuter des applications multi-conteneurs Étape 6 : Tout supprimer et recommencer

 Avoir votre configuration stockée dans un fichier Compose a un autre avantage : vous pouvez facilement tout supprimer et recommencer à zéro.

	Name ψ		Image	Status	CPU (%)	Port(s)	Actions			
>	8	multi-container-app		Running (2/2)	0.43%		•	:	1	
									De	lete

Exécuter des applications multi-conteneurs Étape 6 : Tout supprimer et recommencer

- Pour supprimer la pile d'applications :
 - Ouvrez l'onglet "Containers" de Docker Desktop
 - Sélectionnez l'icône de suppression à côté de votre pile d'applications.

- 1. Quel est l'outil principal utilisé pour gérer et explorer les conteneurs Docker sur Windows et MacOS?
- A. Git
- B. Le terminal
- C. Docker Desktop
- D. Visual Studio Code

- 2. Qu'est-ce qui est utilisé pour décrire ce qui est contenu dans un conteneur Docker ?
- A. Le code source de l'application
- B. Les dépendances de l'application
- C. Le système d'exploitation
- D. Un Dockerfile

- 3. Comment pouvez-vous visualiser le frontend d'une application en cours d'exécution dans un conteneur ?
- A. En utilisant le terminal
- B. En se connectant au terminal du conteneur
- C. En cliquant sur le lien dans la colonne "Port(s)" de Docker Desktop
- D. En utilisant un navigateur web

- 4. Quelle est la commande utilisée pour construire une image Docker à partir d'un Dockerfile ?
- A. docker run
- B. docker pull
- C. docker push
- D. docker build

- 5. Où pouvez-vous trouver des images Docker préconfigurées à exécuter ?
- A. Dans le terminal
- B. Dans Visual Studio Code
- C. Sur Docker Hub
- D. Dans le dossier de votre projet

- 6. Quelle est la différence entre une image Docker et un conteneur Docker ?
 - A. Une image est un instantané statique, tandis qu'un conteneur est une instance en cours d'exécution de l'image.
 - B. Une image est plus grande qu'un conteneur.
 - C. Un conteneur est plus rapide qu'une image.
 - D. Une image est un fichier, tandis qu'un conteneur est un processus.

- 7. Que signifie "exécuter un conteneur en mode détaché" ?
 - A. Le conteneur s'exécute en arrière-plan, même après la fermeture de la fenêtre du terminal.
 - B. Le conteneur est accessible uniquement depuis le réseau local.
 - C. Le conteneur est isolé des autres conteneurs.
 - D. Le conteneur n'a pas accès au système d'exploitation hôte.

- 8. Comment pouvez-vous accéder aux journaux d'un conteneur en cours d'exécution?
- A. En utilisant le terminal
- B. En se connectant au terminal du conteneur
- C. En utilisant l'interface graphique de Docker Desktop
- D. Toutes les réponses ci-dessus.

- 9. Quelles sont les bonnes pratiques pour sécuriser les conteneurs Docker ?
- A. Exécuter tous les conteneurs avec l'accès root.
- B. Utiliser des images de confiance.
- C. Minimiser les privilèges.
- D. B et C

- 10. Qu'est-ce que Docker Compose?
- A. Un outil pour créer des images Docker
- B. Un outil pour gérer les conteneurs Docker
- C. Un outil pour orchestrer des applications multi-conteneurs
- D. Un outil pour partager des images Docker

Persistance des données dans les conteneurs

- Ce chapitre vous explique comment assurer la persistance des données entre plusieurs conteneurs.
- Docker isole tout le contenu d'un conteneur (code, données) de votre système de fichiers local.
- Par conséquent, lorsque vous supprimez un conteneur, son contenu est intégralement détruit.

Persistance des données dans les conteneurs

 Parfois, il est nécessaire de conserver les données générées par un conteneur. Pour cela, vous pouvez utiliser des volumes.

Persistance des données dans les conteneurs Étape 1 : Obtenir l'application d'exemple

multi-container-app-main.zip

- Vous pouvez cloner le dépôt de l'application en utilisant git:
 - git clone https://github.com/docker/multicontainer-app

Persistance des données dans les conteneurs Étape 2: Ajouter un volume pour la persistance des données

- Les volumes permettent de conserver les données même après la suppression d'un conteneur.
- Il s'agit d'emplacements sur votre système de fichiers, gérés automatiquement par Docker Desktop.
- Pour ajouter un volume à ce projet :
- 1. Ouvrez le fichier `compose.yaml` dans un éditeur de texte.

Persistance des données dans les conteneurs Étape 2: Ajouter un volume pour la persistance des données

- 2. Décommentez les lignes suivantes :
- yaml
 - todo-database:
 - **-** # ...
 - volumes:
 - database:/data/db
 - -- # ...
 - volumes:
 - database:

Persistance des données dans les conteneurs Étape 2: Ajouter un volume pour la persistance des données

 Cette configuration indique à Compose de monter le volume nommé `database` à l'emplacement `/data/db` dans le conteneur du service `todo-database`.

Persistance des données dans les conteneurs Étape 3 : Exécuter l'application

- Exécutez les commandes suivantes dans un terminal (en remplaçant le chemin) pour lancer l'application multi-conteneur :
 - cd /chemin/vers/application-multi-conteneur/
 - docker compose up -d

Persistance des données dans les conteneurs Étape 4 : Voir l'interface et ajouter des tâches

- Dans Docker Desktop (onglet "Containers"), vous devriez avoir une pile d'applications avec deux conteneurs en cours d'exécution.
- Pour voir l'interface et ajouter des tâches :
 - Dans Docker Desktop, développez la pile d'applications.
 - Cliquez sur le lien vers le port 3000 ou ouvrez http://localhost:3000.
 - Ajoutez quelques tâches dans l'interface.

Persistance des données dans les conteneurs Étape 5 : Supprimer la pile d'applications et relancer les conteneurs

- Peu importe le nombre de fois que vous supprimez et recréez les conteneurs, Docker Desktop conservera vos données et les rendra accessibles via le volume `database`.
- Pour supprimer la pile d'applications :
 - Ouvrez l'onglet "Containers" dans Docker Desktop.
 - Sélectionnez l'icône de suppression à côté de votre pile d'applications.

Persistance des données dans les conteneurs Étape 5 : Supprimer la pile d'applications et relancer les conteneurs

 Relancez l'application en suivant l'étape 3.
 Notez que les tâches que vous aviez créées sont toujours présentes grâce à la persistance du volume.

Persistance des données dans les conteneurs Résumé

- Dans ce chapitre, vous avez appris à faire persister des données entre conteneurs à l'aide de volumes.
- Cela est utile pour conserver et partager des données entre conteneurs isolés et éphémères.

Accéder à un dossier local depuis un conteneur

- Ce chapitre explique comment accéder à un dossier de votre ordinateur depuis un conteneur Docker.
- Par défaut, les conteneurs sont isolés de votre système de fichiers local.
- Ils ne peuvent pas accéder directement à vos dossiers.

Accéder à un dossier local depuis un conteneur

- Parfois, il est nécessaire de partager un dossier de votre ordinateur avec un conteneur.
- Pour cela, vous pouvez utiliser des montages de liens ("bind mounts").

Accéder à un dossier local depuis un conteneur Étape 1 : Obtenir l'application d'exemple

bindmount-apps-main.zip

- Vous pouvez clonez le dépôt de l'application :
 - git clone https://github.com/docker/bindmountapps

Accéder à un dossier local depuis un conteneur Étape 2 : Ajouter un montage de lien dans Compose

- Un montage de lien permet de partager un dossier de votre ordinateur avec un conteneur.
- Pour ajouter un montage de lien au projet :
- 1. Ouvrez le fichier `compose.yaml` dans un éditeur de texte.
- 2. Décommentez les lignes suivantes :

Accéder à un dossier local depuis un conteneur Étape 2 : Ajouter un montage de lien dans Compose

- yaml
 - todo-app:
 - **—** # ...
 - volumes:
 - ./app:/usr/src/app
 - /usr/src/app/node modules

Accéder à un dossier local depuis un conteneur Étape 2 : Ajouter un montage de lien dans Compose

- Cette configuration indique à Compose :
 - De monter le dossier local `./app` dans le conteneur, à l'emplacement `/usr/src/app`. Cela permet de remplacer le contenu statique du dossier `/usr/src/app` du conteneur et de créer un conteneur dédié au développement.
 - De ne pas écraser le répertoire `node_modules` du conteneur pour préserver les paquets installés dans celui-ci.

Accéder à un dossier local depuis un conteneur Étape 3 : Exécuter l'application

- Exécutez les commandes suivantes dans un terminal (en remplaçant le chemin) pour lancer votre application :
 - cd /chemin/vers/bindmount-apps/
 - docker compose up -d

Accéder à un dossier local depuis un conteneur Étape 4 : Développer l'application

- Utilisez les outils du conteneur tout en développant l'application sur votre ordinateur.
- Les changements apportés localement seront répercutés dans le conteneur.
- Pour tester :
- 1. Modifiez le fichier `app/views/todos.ejs` sur votre ordinateur (la chaîne "Please add some task.")

Accéder à un dossier local depuis un conteneur Étape 4 : Développer l'application

 2. Enregistrez le fichier, puis accédez ou rechargez http://localhost:3001 pour voir les changements.

Accéder à un dossier local depuis un conteneur Résumé

- Dans ce guide, vous avez appris à partager un dossier local avec un conteneur.
- Cela vous permet de développer plus rapidement, en évitant de reconstruire votre conteneur à chaque modification du code.

Conteneurisez votre application

- Lorsque vous travaillez avec des conteneurs, vous devez généralement créer un Dockerfile (pour définir votre image) et un fichier `compose.yaml` (pour configurer l'exécution).
- Pour vous aider, Docker Desktop dispose de la commande `docker init`.
- Exécutée dans le dossier de votre projet, elle génère les fichiers nécessaires à la conteneurisation.

Conteneurisez votre application

Étape 1 : Exécuter la commande pour créer les fichiers Docker

- Choisissez l'une de vos applications que vous souhaitez conteneuriser et exécutez les commandes suivantes dans un terminal (en remplaçant le chemin) :
 - cd /chemin/vers/votre/projet/

docker init

Conteneurisez votre application Étape 2 : Suivez les instructions à l'écran

- 'docker init' vous guidera à travers quelques questions pour configurer votre projet avec des valeurs par défaut.
- Répondez et appuyez sur Entrée.

Conteneurisez votre application Étape 3 : Essayez de lancer votre application

- Une fois toutes les questions traitées, exécutez les commandes suivantes dans un terminal pour lancer votre projet (en remplaçant le chemin) :
 - cd /chemin/vers/votre/projet/
 - docker compose up

Conteneurisez votre application Étape 4 : Mettre à jour les fichiers Docker si nécessaire

- La commande `docker init` essaie de faire le plus gros du travail, mais des ajustements peuvent être nécessaires.
- Dans ce cas, vous pouvez vous référer aux documentations :
 - Référence Dockerfile:
 https://docs.docker.com/engine/reference/builde/r/

Conteneurisez votre application Étape 4 : Mettre à jour les fichiers Docker si nécessaire

Référence des fichiers Compose:
 https://docs.docker.com/compose/compose-file/

• Dans ce chapitre, vous avez appris à conteneuriser votre propre application.

Publiez votre image

• Ce guide vous explique comment publier et partager vos images sur **Docker Hub**.

Publiez votre image Étape 1 : Obtenir l'image d'exemple

- 1. Dans Docker Desktop, cliquez sur la barre de recherche.
- 2. Saisissez `docker/welcome-to-docker`.
- 3. Sélectionnez "Pull" pour télécharger l'image depuis Docker Hub.

Publiez votre image Étape 2 : Connectez-vous à Docker

 Cliquez sur "Sign in" (en haut à droite de Docker Desktop) pour vous connecter ou créer un nouveau compte Docker.

Publiez votre image Étape 3 : Renommez votre image

- Avant de publier, vous devez renommer votre image pour que Docker Hub sache qu'elle vous appartient.
- Exécutez la commande suivante dans un terminal (remplacez VOTRE-NOM-UTILISATEUR par votre identifiant Docker) :
 - docker tag docker/welcome-to-docker VOTRE-NOM-UTILISATEUR/welcome-to-docker

Publiez votre image

Étape 4: Transférez votre image vers Docker Hub

- 1. Dans Docker Desktop, allez à l'onglet "Images".
- 2. Dans la colonne "Actions" de votre image, cliquez sur l'icône "Actions".
- 3. Sélectionnez "Push to Hub" (Transférer vers le Hub).

Publiez votre image

Étape 4: Transférez votre image vers Docker Hub

 Rendez-vous sur Docker Hub et vérifiez que l'image `VOTRE-NOM-UTILISATEUR/welcometo-docker` apparaît bien dans votre liste de dépôts (repositories).

• Dans ce guide, vous avez publié et partagé une image sur Docker Hub.

- 1. Quel outil est utilisé pour démarrer plusieurs conteneurs avec une seule commande ?
 - A. docker run
 - B. docker build
 - C. docker compose
 - D. docker pull

- 2. Qu'est-ce qu'un fichier compose.yaml?
 - A. Un fichier qui stocke les données d'une application
 - B. Un fichier qui configure l'exécution d'une application multi-conteneur
 - C. Un fichier qui définit l'image d'un conteneur
 - D. Un fichier qui contient les logs d'un conteneur

- 3. Quelle est la commande pour supprimer une pile d'applications dans Docker Desktop?
 - A. docker stop
 - B. docker rm
 - C. docker pull
 - D. Cliquer sur l'icône de suppression dans l'onglet "Containers"

- 4. Qu'est-ce qu'un volume Docker?
 - A. Un emplacement sur votre système de fichiers pour stocker les données d'un conteneur
 - B. Un type de conteneur léger
 - C. Une commande pour exécuter un conteneur en mode détaché
 - D. Un réseau qui relie plusieurs conteneurs

- 5. Quelle est la commande pour monter un dossier local dans un conteneur ?
 - A. docker run
 - B. docker build
 - C. docker compose up
 - D. docker volume create

- 6. Quel outil est utilisé pour générer les fichiers nécessaires à la conteneurisation d'une application ?
 - A. docker run
 - B. docker build
 - C. docker compose
 - D. docker init

- 7. Quelle est la commande pour afficher les logs d'un conteneur ?
 - A. docker run
 - B. docker build
 - C. docker logs
 - D. docker compose up

- 8. Où peut-on trouver des images Docker préconfigurées à exécuter ?
 - A. Dans le terminal
 - B. Dans Visual Studio Code
 - C. Sur Docker Hub
 - D. Dans le dossier de votre projet

- 9. Qu'est-ce qu'une image Docker?
 - A. Un instantané statique d'un environnement d'exécution
 - B. Un type de conteneur léger
 - C. Une commande pour exécuter un conteneur en mode détaché
 - D. Un réseau qui relie plusieurs conteneurs

- 10. Qu'est-ce qu'un conteneur Docker?
 - A. Un instantané statique d'un environnement d'exécution
 - B. Une instance en cours d'exécution d'une image Docker
 - C. Une commande pour exécuter un conteneur en mode détaché
 - D. Un réseau qui relie plusieurs conteneurs