Chapitre 23

Sous-espaces affines

23	Sous-espaces affines	1
	23.1 Sous-espace affine	2
	23.8 Caractérisation des sous-espaces affines par leur direction et leur point	2
	23.11Fibre d'une application linéaire	2
	23.13Exemple	3

23.1 Sous-espace affine

Définition

Soit E un \mathbb{K} -espace vectoriel.

— On appelle sous-espace affine de E toute partie \mathcal{F} de E de la forme :

$$\mathcal{F} = x + F = \{f + x \mid f \in F\}$$

où F est un sous-espace vectoriel de E et x un vecteur de E.

— Le sous-espace vectoriel F associé au sous-espace affine \mathcal{F} est unique. On l'appelle direction de \mathcal{F} et ses éléments sont appelés les vecteurs directeurs de \mathcal{F} .

On suppose que $\mathcal{F} = x_1 + F_1 = x_2 + F_2$.

Soit $y \in F_1$.

On a $y + x_1 \in \mathcal{F}$ donc $y + x_1 = x_2 + y_2$ avec $y_2 \in F_2$.

Or $x_1 \in \mathcal{F}$ donc $x_1 = x_2 + g_2$ avec $g_2 \in F_2$.

Donc:

$$y = x_2 - x_1 + y_2$$
$$= y_2 - g_2$$
$$\in F_2$$

avec $F_1 \subset F_2$.

Par symétrie :

$$F_1 = F_2$$

23.8 Caractérisation des sous-espaces affines par leur direction et leur point

Théorème 23.8

Soit E un espace vectoriel sur \mathbb{K} , \mathcal{F} un sous-espace affine de E de direction F et $A \in \mathcal{F}$, alors:

$$\mathcal{F} = A + F$$

 $\mathcal{F} = x + F$. Soit $A \in \mathcal{F}$.

Donc $A = x + f, f \in F$.

Donc $A - x \in F$.

Ainsi:

$$\mathcal{F} = x + F$$

$$= (x - A) + A + F$$

$$= A + F$$

23.11 Fibre d'une application linéaire

Théorème 23.11

Soit $u \in \mathcal{L}(E, F)$ et $y \in F$. Alors $u^{-1}(\{y\})$ est soit vide, soit un sous-espace affine de E et de direction $\ker u$.

On suppose que $u^{-1}(\{y\}) \neq \emptyset$. Fixons $x_0 \in u^{-1}(\{y\})$.

Soit $x \in E$. On a :

$$x \in u^{-1}(\{y\}) \Leftrightarrow u(x) = y$$
$$\Leftrightarrow u(x) = u(x_0)$$
$$\Leftrightarrow x - x_0 \in \ker u$$
$$\Leftrightarrow x \in x_0 + \ker u$$

Donc:

$$u^{-1}(\{y\}) = x_0 + \ker u$$

23.13 Exemple

Exemple 23.13

- L'ensemble des solutions d'une équation différentielle linéaire non homogène de degré 1 ou 2.
- L'ensemble des polynômes interpolateurs en un certain nombre de points.
- Equations arithmético-géométrique.
- $--\{y\in\mathcal{C}^\infty(\mathbb{R},\mathbb{R}),ay'+b=f\}=u^{-1}(\{f\}) \text{ où } u:\mathcal{C}^\infty(\mathbb{R},\mathbb{R})\to\mathcal{C}^\infty(\mathbb{R},\mathbb{R});y\mapsto ay'+by.$
- Soit $(a_1, \ldots, a_n) \in \mathbb{R}^n$ deux à deux distincts et $(b_1, \ldots, b_n) \in \mathbb{R}^n$ quelconques deux à deux distincts.
- $\{P \in \mathbb{R}[X], \forall i \in [1, n], P(a_i) = b_i\} = u^{-1}(\{(b_1, \dots, b_n)\}) \text{ où } u : \mathbb{R}[X] \to \mathbb{R}^n; P \mapsto (P(a_1), \dots, P(a_n)).$ $-\{(u_n) \in \mathbb{R}^{\mathbb{N}}, \forall n \geq 0, u_{n+1} = au_n + b\} = u^{-1}(\{(b_{n \geq 0}\}) \text{ où } u : \mathbb{R}^{\mathbb{N}} \to \mathbb{R}^{\mathbb{N}}; (u_n) \mapsto (u_{n+1} au_n)_{n \geq 0}.$