COMP251: DATA STRUCTURES & ALGORITHMS

Instructor: Maryam Siahbani

Computer Information System University of Fraser Valley

Topological Sort

Motivation

Given a set of tasks with dependencies, is there an order in which we can complete the tasks?

Dependencies form a partial ordering

 A partial ordering on a finite number of objects can be represented as a directed acyclic graph (DAG)

Definition of topological sorting

A topological sorting of the vertices in a DAG is an ordering

$$v_1, v_2, v_3, \ldots, v_{|V|}$$

such that v_j appears before v_k if there is a path from v_i to v_k

Definition of topological sorting

Given this DAG, a topological sort is

H, C, I, D, J, A, F, B, G, K, E, L

For example, there are paths from H, C, I, D and J to F, so all these must come before F in a topological sort

H, C, I, D, J, A, F, B, G, K, E, L

Clearly, this sorting need not be unique

Applications

Topological Sort

A naïve algorithm:

- -Given a DAG G iterate:
 - 1. Find the in-degrees of all nodes
 - 2. Find a node v with in-degree zero
 - 3. Print *v* as the next vertex in the topological sort
 - 4. Remove the node and continue iterating (go to step 1).

Topological Sort

A better algorithm:

- -Given a DAG G
 - 1. Compute all in-degrees
 - 2. Put all in-degree 0 nodes in a Collection
 - 3. Print and remove a node from Collection
 - 4. Decrement in-degrees of the neighbours (of the removed node)
 - 5. If any neighbours has in-degree 0 add it to the Collection go to step 3

Let's step through this algorithm with this example

- -First find the in-degrees and store them
- -Need a Collection to keep track of nodes with in-degree 0

Implementation

Thus, to implement a topological sort:

- —Give a number to each nod and use an array to store in-degrees
- –Create a queue and initialize it with all vertices that have in-degree zero

While the queue is not empty:

- -Pop a vertex from the queue
- -Decrement the in-degree of its neighbours
- —Those neighbours whose in-degree was decremented to zero are pushed onto the queue

With the previous example, we initialize:

- The array of in-degrees
- The queue

The queue is empty

Queue:						
1						

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Stepping through the table, push all source vertices into the queue [A] 1

Queue:		
†		
The gueue	is er	nntv

Stepping through the table, push all source vertices into the queue [A] 1

The queue is empty

В

C

D

0

0

Queue:	С	Н						
·		1	•					

Α	1
В	1
С	0
D	2
E	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

-C has one neighbor: D

Queue: C H

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

- -C has one neighbor: D
- -Decrement its in-degree

Queue:	С	Н					

Α	1
В	1
С	0
D	1
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

Queue:	С	Н					
'					•	-	

Α	1
В	1
С	0
D	1
E	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

Pop the front of the queue

-H has two neighbors: D and I

Queue:	С	Н					

Α	1
В	1
С	0
D	1
Е	4
F	2
G	1
Н	0
1	1
J	1
K	1
	2

- -H has two neighbors: D and I
- -Decrement their in-degrees

Queue:	С	Н						
		1	1					

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

- -H has two neighbors: D and I
- Decrement their in-degrees
 - Both are decremented to zero, so push them onto the queue

Queue:	С	Н						
		1	1					

A	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

- -H has two neighbors: D and I
- Decrement their in-degrees
 - Both are decremented to zero, so push them onto the queue

Queue:	С	Н	D	I				
				1				

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
1	0
J	1
K	1
L	2

Queue:	С	Н	D	I				
·				1				

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

-D has three neighbors: A, E and F

Queue:	С	Н	D					
				↑ ↑				

Α	1
В	1
С	0
D	0
Е	4
F	2
G	1
Н	0
	0
J	1
K	1
Ĺ	2

- -D has three neighbors: A, E and F
- -Decrement their in-degrees

Queue:	С	Н	D					
				↑ ↑				

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	1
K	1
L	2

- -D has three neighbors: A, E and F
- -Decrement their in-degrees
 - A is decremented to zero, so push it onto the queue

Queue:	С	Н	D	I	A				
·					1				

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	1
K	1
L	2

Queue:	С	Н	D		Α				
				1	1				

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	1
K	1
L	2

Pop the front of the queue

-I has one neighbor: J

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	1
K	1
L	2

- -I has one neighbor: J
- -Decrement its in-degree

Queue:	С	Н	D	Α				
·								

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	0
K	1
L	2

- -I has one neighbor: J
- -Decrement its in-degree
 - J is decremented to zero, so push it onto the queue

Queue:	С	Н	D	Α	J			
				1	1			

Α	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	0
K	1
L	2

Queue:	С	Н	D	Α	J			
					1			

0
1
0
0
3
1
1
0
0
0
1
2

Pop the front of the queue

-A has one neighbor: B

Queue:	С	Н	D	Α	J				
'					11	•		•	

A	0
В	1
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

- -A has one neighbor: B
- -Decrement its in-degree

Queue:	С	Н	D	A	J			

A	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

Pop the front of the queue

- -A has one neighbor: B
- -Decrement its in-degree

• B is decremented to zero, so push it onto the queue

ue	A	B
	C-C	E
н-	· 1 → J	K— L

Queue:	С	Н	D	Α	J	В			
					1	1			

A	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
L	2

Queue:	С	Н	D	А	J	В			
·					1	1			

Α	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

-J has one neighbor: F

Queue: C H D I A J B

Α	0
В	0
С	0
D	0
Е	3
F	1
G	1
Н	0
	0
J	0
K	1
Ĺ	2

Pop the front of the queue

- -J has one neighbor: F
- -Decrement its in-degree

Queue: C H D I A J B

Α	0
В	0
С	0
D	0
E	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

- -J has one neighbor: F
- -Decrement its in-degree
 - F is decremented to zero, so push it onto the queue

Queue:	С	Н	D	A	J	В	F		
							1		

Α	0
В	0
С	0
D	0
E	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Queue:	С	Н	D	Α	J	В	F		
						1	1		

Α	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

-B has one neighbor: E

Queue:	С	Н	D	A	J	В	F		
							11		

Α	0
В	0
С	0
D	0
Е	3
F	0
G	1
Н	0
	0
J	0
K	1
L	2

- -B has one neighbor: E
- -Decrement its in-degree

Queue:	С	Н	D	Α	J	В	F		
							11		

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
	0
J	0
K	1
L	2

Queue:	С	Н	D	A	J	В	F		
·							11		

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
I	0
J	0
K	1
L	2

Pop the front of the queue

-F has three neighbors: E, G and K

Queue: C H D I A J B F

Α	0
В	0
С	0
D	0
Е	2
F	0
G	1
Н	0
	0
	0
	0
K	1

Pop the front of the queue

- -F has three neighbors: E, G and K
- -Decrement their in-degrees

Queue: C H D I A J B F

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
Н	0
	0
J	0
K	0

Pop the front of the queue

- -F has three neighbors: E, G and K
- Decrement their in-degrees

 G and K are decremented to zero, so push them onto the queue

Queue:	С	Н	D	A	J	В	F	G	K	
								1	1	

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
G H	0
	0 0
	0 0 0
Н	0 0 0 0

Queue:	С	Н	D	A	J	В	F	G	K	
								1	1	

Α	0
В	0
С	0
D	0
E	1
F	0
G	0
Н	0
	0
J	0
K	0
L	2

Pop the front of the queue

-G has two neighbors: E and L

Queue: C H D I A J B F G K

Α	0
В	0
С	0
D	0
Е	1
F	0
G	0
Н	0
	0
J	0
K	0

- -G has two neighbors: E and L
- -Decrement their in-degrees

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

- -G has two neighbors: E and L
- -Decrement their in-degrees
 - E is decremented to zero, so push it onto the queue

Queue:	С	Н	D	A	J	В	F	G	K	E	
· ·									1	1	

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

Queue:	С	Н	D	A	J	В	F	G	K	E	
·									1	1	

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
I	0
J	0
K	0
L	1

Pop the front of the queue

-K has one neighbors: L

Queue: C H D I A J B F G K E

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	1

Pop the front of the queue

- -K has one neighbors: L
- -Decrement its in-degree

Queue: C H D I A J B F G K E

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

- -K has one neighbors: L
- Decrement its in-degree
 - L is decremented to zero, so push it onto the queue

L	0
K	0
J	0
	0
Н	0
G	0
F	0
Е	0
D	0
С	0
В	0
Α	0

Queue:	С	Н	D	A	J	В	F	G	K	Ε	L
											1

Α	0
В	0
С	0
D	0
E	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Pop the front of the queue

-E has no neighbours

Queue: C H D I A J B F G K E L

A	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Queue:	С	Н	D	A	J	В	F	G	K	Е	L

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

Pop the front of the queue

-L has no neighbours

Queue: C H D I A J B F G K E L

Α	0
В	0
С	0
D	0
Е	0
F	0
G	0
Н	0
	0
J	0
K	0
L	0

The queue is empty, so we are done

Queue: C H D I A J B F G K E L

0
0
0
0
0
0
0
0
0
0
0
0

We deallocate the memory for the temporary in-degree array

The array stores the topological sorting

С	Н	D		Α	J	В	F	G	K	Е	L
---	---	---	--	---	---	---	---	---	---	---	---

Thus, one possible topological sort would be:

C, H, D, I, A, J, B, F, G, K, E, L

Note that topological sorts need not be unique:

C, H, D, I, A, J, B, F, G, K, E, L H, I, J, C, D, F, G, K, L, A, B, E

What are the tools necessary for a topological sort?

- -This requires $\Theta(|V|)$ memory to store in-degrees
- -Also requires $\Theta(|V|)$ memory for the queue

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
	1
J	1
K	1
L	2

We must iterate |V| times

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

- 1. Each time we need to find vertices with in-degree zero
 - –We could loop through the array with each iteration: run time would be $O(|V|^2)$
 - -Better approach: each time the in-degree of a vertex is decremented to zero, push it onto the queue. It needs O(1)!, in total: O(|V|)

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

2. What are the run times associated with the queue?

- Initially, we must scan through each of the vertices: $\Theta(|V|)$
- For each vertex, we will have to push onto and pop off the queue once (O(1)), in total: O(|V|)

Α	1
В	1
С	0
D	2
E	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

3. Finally, each value in the indegree table is associated with an edge

-Here,	E	=1	6
--------	---	----	---

-Each of the in-degrees must be decremented to zero

-Each edge is used, but never repeated: $\Theta(|E|)$

	·
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
l	1
J	1
K	1
L	2
+	

Α

Therefore, the run time of a topological sort is: $\Theta(|V| + |E|)$

And the memory requirements is $\Theta(|V|)$

1
1
0
2
4
2
1
0
1
1
1
2

What happens if at some step, all remaining vertices have an in-degree greater than zero?

A 1 B 1 C 0 D 2 E 4
C 0 D 2
D 2
E 4
F 2
G 1
H 0
l 1
J 1
K 1
L 2

What happens if at some step, all remaining vertices have an in-degree greater than zero?

-There must be at least one cycle within that sub-set of vertices

Consequence: we now have an $\Theta(|V| + |E|)$ algorithm for determining if a graph has a cycle

Α	1
В	1
С	0
D	2
Е	4
F	2
G	1
Н	0
I	1
J	1
K	1
L	2

References

Wikipedia, http://en.wikipedia.org/wiki/Topological_sorting

- [1] Cormen, Leiserson, and Rivest, Introduction to Algorithms, McGraw Hill, 1990, §11.1, p.200.
- [2] Weiss, Data Structures and Algorithm Analysis in C++, 3rd Ed., Addison Wesley, §9.2, p.342-5.