Mincer earnings function

$$\log(w_i) = \beta_0 + \beta_1 s_i + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i \tag{1}$$

Mincer earnings function

$$\log(w_i) = \beta_0 + \beta_1 s_i + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i \tag{1}$$

- *i* indexes people
- s denotes years/grades of completed schooling
- x denotes potential work experience; x = age s 6
- β_1 is the return to schooling; $100 \cdot \beta_1 \approx \frac{\% \Delta w}{\Delta s}$

We want to add some structure to this equation, but how?

$$\log(w_i) = \beta_0 + \beta_1 s_i + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i$$

We want to add some structure to this equation, but how?

$$\log(w_i) = \beta_0 + \beta_1 s_i + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i$$

- We need to dig into ε since we need $\mathbb{E}[\varepsilon|s,x,x^2]=0$ for β_1 to be a "return"
- \bullet $\ \varepsilon$ has at least two problematic components:

We want to add some structure to this equation, but how?

$$\log(w_i) = \beta_0 + \beta_1 s_i + \beta_2 x_i + \beta_3 x_i^2 + \varepsilon_i$$

- We need to dig into ε since we need $\mathbb{E}[\varepsilon|s,x,x^2]=0$ for β_1 to be a "return"
- ε has at least two problematic components:
- 1. Unobservable personal characteristics correlated with s and w (abilities, comparative advantage, family background, ...)
- 2. **Downstream choices correlated with** *s* **and** *w* (occupation, industry, location, ...)

Since schooling has an	up-front cost	and long-term	benefit, ne	eed a dynamic mo	del

- period 1: decide how much schooling to get
- period 2: choose whether or not to work; if working, receive ln w by equation (1)
- individuals choose schooling level to maximize lifetime utility