Gradient Boosting for Regression and Classification

--Summary and Understanding from StatQuest

	Regression	Classification	
	Solution, Action	Solution, Action	Understanding
Input data $\{(x_i, y_i)\}_{i=1}^n$, and a differentiable Loss Function $L(y_i, F(x_i))$	F(x) is a weak model, Loss function uses scaled RRS $\frac{1}{2}\sum_{i}[y_{i}-F(x_{i})]^{2}$	Loss function uses cross entropy $-\sum_{i}[p_{i}ln(\hat{p}_{i})+(1-p_{i})ln(1-\hat{p}_{i})]$ $\log(\text{odds}):ln(odds)=-\ln\left(\frac{1-p}{p}\right)$ $\text{Probability: }p=\frac{1}{1+e^{-log(odds)}}$	Using those forms of loss functions are for later convenience; For classification, $F(x_i)$ is $\log(\text{odds})$, $\log(\text{odds})$ calculated by different models can add up together, but probabilities
Step1 : the 0 th model is set to be a constant, with $F_0(x) = arg\min_{\gamma} \sum_{i}^{n} L(y_i, \gamma)$	Average over all y_i 's $\frac{\sum_{i}^{n} y_i}{n}$	Log(odds) of positive samples $ln\left(\frac{\#ofpositives}{\#ofnegatives}\right)$	Minimize the loss function over all data points, using a constant estimate
Step2 : for m=1 to M Where m denotes m th model	Iterate through weak models one by one, until a max number of models is reached or additional models don't improve the fit.		
Step2.1 : compute pseudo residual $\gamma_{im} = -\left[\frac{\partial L(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x_i) = F_{m-1}(x_i)}$	$\gamma_{im} = y_i - F_{m-1}(x_i)$	$\gamma_{im} \approx \mathrm{p_i} - \hat{\mathrm{p}}_{m-1,i}$, when γ is small. $\hat{\mathrm{p}}_{m-1,i}$ is the predicted probability that i th data point is positive, by model $F_{m-1}(x_i)$.	Calculate the pseudo residual for each data point, indicating where the previous model creates errors, preparing for building up the next model.

Step2.2 : Fit a regression tree to γ_{im} values and denotes each leaf by R_{jm} , for all leaves in m th tree.	Use mean squared error (across the leaves under the same node) as the metric to choose the best feature to split on.		Gather larger pseudo residuals together in a leaf, smaller pseudo residuals together in a leaf.
Step 2.3: For all j in m th tree, compute $\gamma_{jm} =$ $arg \min_{\gamma} \sum_{\mathbf{x_i} \in \mathbf{R_{jm}}} L(y_i, F_{m-1}(x_i) + \gamma)$	Average of pseudo residuals that end up in the same leaf $\gamma_{jm} = ave(\gamma_{im} \in R_{jm})$	$\begin{aligned} \gamma_{jm} \\ &= \frac{\sum \left(\gamma_{im} \in R_{jm}\right)}{\sum_{\mathbf{x}_i \in \mathbf{R}_{jm}} \left[\hat{\mathbf{p}}_{m-1,i} \times (1 - \hat{\mathbf{p}}_{m-1,i})\right]} \\ \hat{\mathbf{p}}_{m-1,i} \text{ is the predicted prob by model } F_{m-1}(x_i). \end{aligned}$	To approximate the values in the same leaf by a constant; iterate over all leaves.
Step 2.4: Update model $F_m(x) = F_{m-1}(x) + \eta \cdot \gamma_{jm} \cdot I(x \in R_{jm})$, Where η is a scaling factor for each model, similar to step size	Add up all scaled results from a series of weak models.	Add up all scaled log(odds) from a series of weak models. Still need to convert to probability.	This is why it's called an ensemble method.
Step 3: Output $F_M(x)$	For new input x , use model $F_M(x)$ to predict.	Convert the result form the last step to probability by logistic function $p = \frac{1}{1 + e^{-log(odds)}}$	May need to tune η to find the best converged result.