23. Das Riemann-Integral

In diesem Paragraphen gilt stets: $a, b \in \mathbb{R}$, a < b, I = [a, b] und $f : I \to \mathbb{R}$ sei beschränkt. $m := \inf f(I)$, $M := \sup f(I)$.

Definition

$$Z = \{x_0, x_1, ..., x_n\} \subseteq I$$
 heißt eine **Zerlegung** von $I : \iff a = x_0 < x_1 < ... < x_n = b$. $I_j := [x_{j-1}, x_j], |I_j| = x_j - x_{j-1}, m_j := \inf f(I_j), M_j := \sup f(I_j) \ (j = 1, ..., n)$

Dann gilt:
$$m \le m_j \le M_j \le M \ (j = 1, ..., n), \ \sum_{j=1}^n |I_j| = b - a \ (= |I|)$$

$$s_f(Z) := \sum_{j=1}^n m_j |I_j|$$
 heißt die **Untersumme** von f bzgl. Z . $S_f(Z) := \sum_{j=1}^n M_j |I_j|$ heißt die **Obersumme** von f bzgl. Z .

$$m \le m_j \le M_j \le M \implies m|I_j| \le m_j|I_j| \le M_j|I_j| \le M|I_j|$$

Durch Summation erhält man: $m(b-a) \le s_f(Z) \le S_f(Z) \le M(b-a)$.

 $\mathfrak{Z}:=\{Z:Z \text{ ist eine Zerlegung von } I\}$. Sind $Z_1,Z_2\in\mathfrak{Z}\implies Z_1\cup Z_2\in\mathfrak{Z}$. Gilt $Z_1\subseteq Z_2$, so heißt Z_2 eine **Verfeinerung** von Z_1 .

Satz 23.1 (Zerlegungs-Verfeinerungen)

Seien $Z_1, Z_2 \in \mathfrak{Z}$.

(1) Ist
$$Z_1 \subseteq Z_2 \implies s_f(Z_1) \le s_f(Z_2), S_f(Z_2) \le S_f(Z_1)$$

(2)
$$s_f(Z_1) \leq S_f(Z_2)$$

Beweis

(1) Übung (es genügt zu betrachten: $Z_2 = Z_1 \cup \{t_0\}, \ t_0 \notin Z_1$)

(2)
$$Z := Z_1 \cup Z_2$$
. Dann: $s_f(Z_1) \stackrel{(1)}{\leq} s_f(Z) \leq S_f(Z) \stackrel{(1)}{\leq} S_f(Z_2)$.

Definition

$$\int_a^b f dx := \int_a^b f(x) dx := \sup\{s_f(Z) : Z \in \mathfrak{Z}\} \text{ heißt unteres Integral von } f$$

$$\int_a^b f dx := \int_a^b f(x) dx := \inf\{S_f(Z) : Z \in \mathfrak{Z}\} \text{ heißt oberes Integral von } f$$

Sei
$$Z \in \mathfrak{Z}$$
. Dann: $m(b-a) \leq s_f(Z) \leq \int_a^b f dx \stackrel{23.1(2)}{\leq} S_f(Z) \leq M(b-a) \implies m(b-a) \leq \int_a^b f dx \leq \int_a^b f dx \leq M(b-a)$

Definition

f heißt (Riemann-)integrierbar über $[a,b]:\iff \int_a^b f \mathrm{d}x = \int_a^b f \mathrm{d}x$. In diesem Fall heißt

$$\int_a^b f dx := \int_a^b f(x) dx := \int_a^b f dx \ (= \int_a^b f dx)$$

das (Riemann-)**Integral** von f über [a, b].

 $R[a,b] := \{g : [a,b] \to \mathbb{R} : g \text{ ist auf } [a,b] \text{ beschränkt und integrierbar über } [a,b] \}$

Beispiele:

(1) Sei $c \in \mathbb{R}$ und $f(x) = c \ \forall x \in [a, b]$. Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}; \ m_j = M_j = c \ (j = 1, \dots, n) \implies s_f(Z) = S_f(Z) = \sum_{j=1}^n c|I_j| = c(b-a) \implies f \in R[a, b] \text{ und } \int_a^b c dx = c(b-a).$

(2)
$$f(x) := \begin{cases} 1, & x \in [a, b] \cap \mathbb{Q} \\ 0, & x \in [a, b] \setminus \mathbb{Q} \end{cases}$$

Sei
$$Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}, \ m_j = 0, \ M_j = 1 \ (j = 1, \dots, n)$$

 $\implies s_f(Z) = 0, \ S_f(Z) = \sum_{j=1}^n |I_j| = b - a.$

$$\implies \int_a^b f dx = 0 \neq b - a = \int_a^b f dx \implies f \notin R[a, b].$$

(3) [a,b] = [0,1], f(x) = x. Sei $n \in \mathbb{N}$ und $Z = \{x_0, \dots, x_n\}$, wobei $x_j := j\frac{1}{n} \ (j = 0,..,n)$. m_j, M_j, I_j wie immer. Dann: $|I_j| = \frac{1}{n}$.

$$m_j = f(x_{j-1}) = (j-1)\frac{1}{n}. s_f(Z) = \sum_{j=1}^n (j-1)\frac{1}{n^2} = \frac{1}{n^2}(0+1+\dots+(n-1)) = \frac{1}{n^2}\frac{(n-1)n}{2} = \frac{n-1}{2n}$$

$$M_j = f(x_j) = \frac{j}{n}$$
. $S_f(Z) = \sum_{i=1}^n j \frac{1}{n^2} = \frac{1}{n^2} (1 + \dots + n) = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{n+1}{2n}$

$$\frac{n-1}{2n} = s_f(Z) \le \int_0^1 x dx \le \int_0^1 x dx \le S_f(Z) = \frac{n+1}{2n} \implies f \in R[0,1] \text{ und } \int_0^1 x dx = \frac{1}{2}$$

Satz 23.2 (Rechenregeln für Integrale)

Es seien $f, g \in R[a, b]$

(1) Ist
$$f \leq g$$
 auf $[a,b] \implies \int_a^b f dx \leq \int_a^b g dx$

(2) Sind
$$\alpha, \beta \in \mathbb{R} \implies \alpha f + \beta g \in R[a, b]$$
 und $\int_a^b (\alpha f + \beta g) dx = \alpha \int_a^b f dx + \beta \int_a^b g dx$

Beweis

- (1) Übung.
- (2) Übung: $\alpha f \in R[a, b]$ und $\int_a^b (\alpha f) dx = \alpha \int_a^b f dx$. Zu zeigen: $f + g \in R[a, b]$ und $\int_a^b (f + g) dx = \int_a^b f dx + \int_a^b g dx$. Sei $z = \{x_0, \dots, x_n\} \in \mathfrak{Z}, m_j, M_j, I_j$ wie immer. $\widetilde{m_j} := \inf g(I_j), \ \widetilde{\widetilde{m_j}} := \inf (f + g)(I_j). \ x \in I_j : \ (f + g)(x) = 0$

Satz 23.3 (Riemannsches Integrabilitätskriterium)

 $f \in R[a, b] \iff \forall \varepsilon > 0 \; \exists Z \in \mathfrak{Z} : S_f(Z) - s_f(Z) < \varepsilon.$

Beweis

 $\begin{array}{ll} \text{,,\Leftarrow}\text{``: Sei $\varepsilon > 0$. Voraussetzung} \implies \exists Z \in \mathfrak{Z}: S_f(Z) < s_f(Z) + \varepsilon \implies \int_a^b f \mathrm{d}x \leq S_f(Z) < s_f(z) + \varepsilon \leq \int_a^b f \mathrm{d}x + \varepsilon. \text{ Also: } \int_a^b f \mathrm{d}x < \int_a^b f \mathrm{d}x \ \forall \varepsilon > 0 \implies \int_a^b f \mathrm{d}x \leq \int_a^b f \mathrm{d}x \leq \int_a^b f \mathrm{d}x) \implies f \in R[a,b]. \\ \text{,,\implies``: $S:= $\int_a^b f \mathrm{d}x$. Sei $\varepsilon > 0$. $\exists Z_1, Z_2 \in \mathfrak{Z}: s_f(Z_1) > \int_a^b f \mathrm{d}x - \frac{\varepsilon}{2} = S - \frac{\varepsilon}{2}. S_f(Z_2) < S + \frac{\varepsilon}{2}. Z: = Z_1 \cup Z_2 \in \mathfrak{Z}. S_f(Z) - s_f(Z) \stackrel{23.1}{\leq} S_f(Z_2) - s_f(Z_1) < S + \frac{\varepsilon}{2} - (S - \frac{\varepsilon}{2}) = \varepsilon. \end{array}$

Satz 23.4 (Integratibilität monotoner und stetiger Funktionen)

- (1) Ist f auf [a, b] monoton $\implies f \in R[a, b]$.
- (2) $C[a,b] \subseteq R[a,b]$.

Beweis

- (1) f sei wachsend auf [a,b]. Sei $n \in \mathbb{N}$ und $Z = \{x_0, \dots, x_n\}$ sei die **äquidistante Zerlegung** von [a,b] mit n+1 Teilpunkten. $x_j = a + j \frac{b-a}{n}$ $(j=0,\dots,n)$, dann: $|I_j| = \frac{b-a}{n}$. m_j, M_j wie immer: $S_f(Z) s_f(z) = \sum_{j=1}^n (\underbrace{M_j m_j}_{f(x_{j-1})}) |I_j| = \sum_{j=1}^n (f(x_j) f(x_{j-1})) \frac{b-a}{n} = \underbrace{f(x_j)}_{n} f(x_1) f(x_0) + f(x_2) f(x_1) + \dots + f(x_n) f(x_{n-1}) = \underbrace{b-a}_{n} (f(x_n) f(x_0)) = \underbrace{b-a}_{n} (f(b) f(a)) =: \alpha_n$. Sei $\varepsilon > 0$, dann: $\exists n \in \mathbb{N} : \alpha_n < \varepsilon \xrightarrow{23.3}$ Behauptung.
- (2) Sei $f \in C[a, b]$ und $\varepsilon > 0$. $\exists \delta > 0 : (*) |f(t) f(s)| < \frac{\varepsilon}{b-a} \ \forall t, s \in [a, b] \ \text{mit} |t s| < \delta$. Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z} \ m_j, \ M_j, \ |I_J| \ \text{seien wie immer}; \ z \ \text{sei so gewählt, daß} |I_j| < \delta \ (j = 1, \dots, n)$. Betrachte $I_j : 18.3 \Longrightarrow \exists s_j, t_j \in I_j : m_j = f(s_j), \ M_j = f(t_j)$. $|t_j s_j| < \delta \stackrel{(*)}{\Longrightarrow} \underbrace{f(t_j) f(s_j)}_{=M_j m_j} < \frac{\varepsilon}{b-a} \Longrightarrow S_f(Z) s_f(Z) = \sum_{j=1}^n \underbrace{(M_j m_j)}_{\leq \frac{\varepsilon}{b-a}} |I_j| < \frac{\varepsilon}{b-a} \sum_{j=1}^n |I_j| = \varepsilon \stackrel{23.3}{\Longrightarrow} f \in R[a, b]$

Definition

Sei $J \subseteq \mathbb{R}$ ein Intervall und $G, g : J \to \mathbb{R}$ seien Funktionen. G heißt eine **Stammfunktion** (SF) von g auf $J : \iff$ G ist differenzierbar auf J und G' = g auf J.

Beachte:

- (1) Sind G_1 und G_2 Stammfunktionen von g auf $J \stackrel{21.7}{\Longrightarrow} \exists c \in \mathbb{R} : G_1 = G_2 + c$ auf J.
- (2) Sei I = [a, b]. Es gibt Funktionen, die auf [a, b] Stammfunktionen besitzen, aber über [a, b] nicht integrierbar sind.

Beispiel

$$F(x) := \begin{cases} x^{\frac{3}{2}} \sin \frac{1}{x}, & x \in (0, 1] \\ 0, & x = 0 \end{cases}$$

Bekannt: (§22): F ist auf [0,1] differenzierbar und f := F' ist auf [0,1] nicht beschränkt. Also: $f \notin R[0,1]$, besitzt aber auf [0,1] die Stammfunktion F.

(3) Sei I = [a, b]. Es gibt Funktionen in R[a, b], die auf [a, b] keine Stammfunktionen besitzen.

 $\begin{array}{l} \textbf{Beispiel} \\ \text{Sei } [a,b] = [-1,1], \, f(x) := \begin{cases} 1 & x \in [0,1] \\ 0 & x \in [-1,0) \end{cases}. \, f \text{ ist monoton auf } [-1,1] \stackrel{23.4}{\Longrightarrow} \, f \in R[-1,1]. \\ \text{Annahme: } f \text{ besitzt auf } [-1,1] \text{ die Stammfunktion } F. \text{ Auf } [0,1] : F'(x) = f(x) = 1 = \\ (x)' \stackrel{21.7}{\Longrightarrow} \, \exists c_1 \in \mathbb{R} : F(x) = x + c_1 \, \forall x \in [0,1]. \, \text{Auf } [-1,0) : F'(x) = f(x) = 0 \stackrel{21.7}{\Longrightarrow} \, \exists c_2 \in \mathbb{R} : F(x) = c_2 \, \forall x \in [-1,0). \, \lim_{x \to 0+} F(x) = c_1, \, \lim_{x \to 0-} F(x) = c_2. \, F \text{ stetig in } x = 0 \implies \\ c_1 = c_2. \lim_{x \to 0+} \frac{F(x) - F(0)}{x - 0} = \lim_{x \to 0+} \frac{x + c_1 - c_1}{x} = 1, \, \lim_{x \to 0-} \frac{F(x) - F(0)}{x - 0} = \frac{c_2 - c_1}{x} = 0, \\ \text{Widerspruch zur Differenzierbarkeit von } F \text{ in } x_0 = 0. \end{array}$

Satz 23.5 (1. Hauptsatz der Differential- und Integralrechnung)

Es sei $f \in R[a, b]$ und f besitze auf [a, b] die Stammfunktion F. Dann:

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: F(x)|_{a}^{b} =: [F(x)]_{a}^{b}$$

Beweis

Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}; m_j, M_j, I_j$ sei wie gehabt. Sei $j \in \{1, \dots, n\}$. MWS $\Longrightarrow \exists \xi_j \in I_j : F(x_j) - F(x_{j-1}) = F'(\xi_j)(x_j - x_{j-1}) = f(\xi_j) \cdot |I_j| \Longrightarrow \sum_{j=1}^n f(\xi_j)|I_j| = \sum_{j=1}^n (F(x_j) - F(x_{j-1})) = F(b) - F(a)$

$$F(x_{j-1}) = F(b) - F(a)$$

$$m_j |I_j| \le f(\xi_j) |I_j| \le M_j |I_j| \xrightarrow{\text{Summation}} s_f(Z) \le F(b) - F(a) \le S_f(Z) \ \forall Z \in \mathfrak{Z} \implies \underbrace{\int_a^b f dx}_{=\int_a^b f dx} \le \int_a^b f dx$$

$$F(b) - F(a) \le \underbrace{\int_a^b f dx}_{= \int_a^b f dx} \implies F(b) - F(a) = \int_a^b f dx$$

Beispiele:

(1) $\int_0^{\frac{\pi}{2}} \cos x dx$, $\cos x$ ist stetig auf $[0, \frac{\pi}{2}]$, also integrierbar. $F(x) = \sin x$ ist eine Stammfunktion von $\cos x \implies \int_0^{\frac{\pi}{2}} \cos x dx = \sin x \Big|_0^{\frac{\pi}{2}} = 1$.

(2) $\int_0^1 \frac{1}{1+x^2} dx = \arctan x \Big|_0^1 = \arctan 1 - \arctan 0 = \frac{\pi}{4}$

- **Beispiele:**(1) Sei $\mathbb{Q} \cap [0,1] = \{q_1, q_2, \ldots\}, f_n(x) = \begin{cases} 1, & x \in \{q_1, \ldots, q_n\} \\ 0, & x \in [0,1] \setminus \{q_1, \ldots, q_n\} \end{cases}, (n \in \mathbb{N}). (f_n) \text{ konvergient}$ auf [0,1] punktweise gegen $f(x) = \begin{cases} 1, & x \in \mathbb{Q} \cap [0,1] \\ 0, & x \in [0,1] \setminus \mathbb{Q} \end{cases}$. Bekannt: $f \notin R[0,1]$. In 23.10 werden wir sehen: $f_n \in R[0,1] \ \forall n \in \mathbb{N}$
 - (2) Für $x \in [0,1]$, $n \in \mathbb{N}$, $n \geq 3$ sei f_n wie in der Zeichnung:

$$f_n(x) = \begin{cases} n^2 x, & x \in [0, \frac{1}{n}] \\ 2n - n^2 x, & x \in (\frac{1}{n}, \frac{2}{n}] \\ 0, & x \in (\frac{2}{n}, 1] \end{cases}$$

 $f_n \in C[0,1] \implies f_n \in R[0,1]$. zur Übung: $\int_0^1 f_n dx = 1 \forall n \in \mathbb{N}$. (f_n) konvergiert auf [0,1]punktweise gegen f(x) = 0.

Aber: $\lim_{n\to\infty} \int_0^1 f_n dx = 1 \neq 0 = \int_0^1 f dx = \int_0^1 (\lim_{n\to\infty} f_n(x)) dx$

Satz 23.6 (Integrierbarkeit gleichmäßig konvergierender Funktionsfolgen)

 (f_n) sei eine Folge in R[a,b] und (f_n) konvergiert auf [a,b] gleichmäßig gegen $f:[a,b]\to\mathbb{R}$. Dann ist $f \in R[a, b]$ und

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b f dx = \int_a^b (\lim_{n \to \infty} f_n) dx$$

 (f_n) sei eine Folge in R[a,b] und $\sum_{n=1}^{\infty} f_n$ konvergiert auf [a,b] gleichmäßig gegen $f:[a,b] \to \mathbb{R}$ \mathbb{R} . Dann ist $f \in R[a, b]$ und

$$\sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_n(x) dx$$

Beweis

- 1. Zu $\varepsilon = 1$ $\exists m \in \mathbb{N}: f_m 1 < f < f_m + 1$ auf [a, b]. f_n beschränkt auf [a, b].
- 2. $A_n := \int_a^b f_n dx \ (n \in \mathbb{N})$. Sei $\varepsilon > 0$. $\exists n_0 \in \mathbb{N} : f_n \varepsilon < f < f_n + \varepsilon \text{ auf } [a,b] \ \forall n \geq n_0 \implies \text{ für } f_n = 0$ $n \ge n_0$ folgt (wie im Beweis von 23.2(1)):

$$\underbrace{\int_{a}^{b} (f_{n} - \varepsilon) dx}_{=A_{n} - \varepsilon(b - a)} \le \underbrace{\int_{a}^{b} f dx}_{=:A} \le \underbrace{\int_{a}^{b} f x ds}_{=:B} \le \underbrace{\int_{a}^{b} (f_{n} + \varepsilon) dx}_{=A_{n} + \varepsilon(b - a)}$$

 $\implies |A_n - A| \le \varepsilon(b - a), |A_n - B| \le \varepsilon(b - a)$ $\forall n \in n_0 \implies A_n \to A, A_n \to B \ (n \to \infty) \implies A = B$ $\implies f \in R[a, b] \text{ und } A_n \to \int_a^b f dx$

Beispiel

$$g(x) = \begin{cases} 0, & x = 0 \\ 1, & x \in (0, 1] \end{cases}$$

 $g \text{ ist monoton } \Longrightarrow g \in R[0,1].$

$$f(x) = \begin{cases} 1, & x = 0 \\ 0, & x \in [0, 1] \backslash \mathbb{Q} \\ \frac{1}{q}, & x = \frac{p}{q}, p, q \in \mathbb{N} \text{ teilerfremd} \end{cases}$$

Übungsblatt: $f \in R[0,1]$

$$(g \circ f)(x) = \begin{cases} 1, & x \in Q \cap [0, 1] \\ 0, & x \in [0, 1] \setminus \mathbb{Q} \end{cases} \notin R[0, 1]$$

Satz 23.7 (Integration von verketteten Funktionen)

Es sei $f \in R[a,b], D := f([a,b])$ und $h:D \to R$ sei Lipschitzstetig auf D. Dann: $h \circ f \in R[a,b]$

Beweis

 $g:=h\circ f. \ \exists L>0. \ |h(t)-h(s)|\leq L|t-s| \ \forall t,s\in D. \ \text{O.B.d.A:} \ L>0. \ \text{Sei} \ Z=\{x_0,\ldots,x_n\}\in \mathfrak{Z}, \\ m_j,M_j,I_j \ \text{seien} \ \text{wie gehabt.} \ \tilde{m}_j:=\inf g(I_j), \ \tilde{M}_j:=\sup g(I_j). \ \text{Seien} \ x,y\in I_j, \ \text{etwa} \ f(x)\leq f(y): \\ g(x)-g(y)\leq |g(x)-g(< y|=|h(f(x))-h(f(y))|\leq L|f(x)-f(y)|=L(f(y)-f(x))\leq L(Mj-mj)=: \\ c_j\Longrightarrow g(x)\leq g(y)+c \ \forall x,y\in I_j\Longrightarrow \tilde{M}_j\leq g(y)+c_j \ \forall y\in I_j\Longrightarrow \tilde{M}_j-c_j\leq g(y) \ \forall y\in I_j\Longrightarrow \tilde{M}_j-c_j\leq \tilde{m}_j\Longrightarrow \tilde{M}_j-\tilde{m}_j\leq c_j=L(M_j-m_j)\Longrightarrow S_g(Z)-s_g(Z)=\sum_{j=1}^n (\tilde{M}_j-\tilde{m}_j)|I_j|\leq L\sum_{j=1}^n (M_j-m_j)|I_j|=L(S_f(Z)-s_f(Z)) \ \forall z\in \mathfrak{Z}\Longrightarrow g\in R[a,b]$

Satz 23.8 (Weitere Rechenregeln für Integrale)

Es seien $f, g \in R[a, b]$.

- (1) $|f| \in R[a,b]$ und $|\int_a^b f dx| \le \int_a^b |f| dx$ (Dreiecksungleichung für Integrale)
- (2) $fg \in R[a,b]$
- (3) Ist $g(x) \neq 0 \ \forall x \in [a,b]$ und $\frac{1}{g}$ beschränkt auf $[a,b] \implies \frac{1}{g} \in R[a,b]$

Beweis

- (1) $D := f([a, b]), h(t) := |t| (t \in D).$ Dann: $|f| = h \circ f.$ Für $t, s \in D$: $|h(t) h(s)| = ||t| |s|| \stackrel{\S1}{\leq} |t s| \stackrel{23.7}{\Longrightarrow} |f| \in R[a, b]$ $\pm f \leq |f|$ auf [a, b]. 23.2 $\Longrightarrow \pm \int_a^b f dx \leq \int_a^b |f| dx \implies |\int_a^b f dx| \leq \int_a^b |f| dx$
- (2) 1. $D := f([a,b]), h(t) := t^2 \ (t \in D).$ Dann: $f^2 = h \circ f.$ $\exists \gamma > 0 : |f(x)| \le \gamma \ \forall x \in [a,b] \implies |t| < \gamma \ \forall t \in D \ \text{Für} \ t, s \in D: |h(t) - h(s)| = |t^2 - s^2| = |t + s||t - s| \le (|t| + |s|) \cdot |t - s| \le 2\gamma |t - s| \xrightarrow{23.7} f^2 \in R[a,b]$ 2. $f + g, f - g \in R[a,b] \implies (f + g)^2, (f - g)^2 \in R[a,b] \implies \frac{1}{4} \left((f + g)^2 - (f - g)^2 \right) \in R[a,b] \implies f \cdot g \in R[a,b]$
- (3) $D := g([a,b]), h(t) := \frac{1}{t} \ (t \in D).$ Dann: $\frac{1}{g} = h \circ g$. $\exists \gamma > 0 : \frac{1}{|g(x)|} \le \gamma \ \forall x \in [a,b] \implies \frac{1}{|t|} \le \gamma \ \forall t \in D.$ Für $t,s \in D$: $|h(t) - h(s)| = |\frac{1}{t} - \frac{1}{s}| = \frac{|t-s|}{|t||s|} \le \gamma^2 |t-s| \stackrel{23.7}{\implies} \frac{1}{g} \in R[a,b]$

Satz 23.9 (Aufteilung eines Integrals)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt und $c\in(a,b)$. Dann gilt:

$$f \in R[a, b] \iff f \in R[a, c] \text{ und } f \in R[c, b].$$

In diesem Fall ist:

$$\int_{a}^{b} f dx = \int_{a}^{c} f dx + \int_{c}^{b} f dx$$

Beweis

"⇒": Sei $\varepsilon > 0$. Aus 23.3 folgt: $\exists Z_1 \in \mathfrak{Z} : S_f(Z_1) - s_f(Z_1) < \varepsilon$.

 $Z := Z_1 \cup \{c\} \in \mathfrak{Z}$. Sei $Z = \{x_0, \ldots, x_k, x_{k+1}, \ldots, x_n\}$ mit $x_k = c$. $Z_0 := \{x_0, \ldots, x_k\}$ ist eine Zerlegung von [a, c]. M_i , m_i , I_i seien wie immer. Dann gilt:

$$S_f(Z_0) - s_f(Z_0) = \sum_{j=1}^k (M_j - m_j)|I_j| \le \sum_{j=1}^n (M_j - m_j)|I_j| = S_f(Z) - s_f(Z) \le S_f(Z_1) - s_f(Z_1) < \varepsilon \xrightarrow{23.3} f \in R[a, c].$$
 Analog: $f \in R[c, b].$

" \Leftarrow ": $S := \int_a^c f dx + \int_c^b f dx$. Sei $\varepsilon > 0$ Dann gibt es Zerlegungen Z_1 von [a, c] und Z_2 von $[c, b] : s_f(Z_1) = \int_a^c f dx - \varepsilon = \int_a^c f dx$, $s_f(Z_2) > \int_b^c f dx - \varepsilon$.

$$Z := Z_1 \cup Z_2 \implies Z \in \mathfrak{Z} \text{ und } \int_a^b f dx \ge s_f(Z) = s_f(Z_1) + s_f(Z_2) > S - 2\varepsilon.$$

Also:
$$S - 2\varepsilon < \int_a^b f dx \ \forall \varepsilon > 0 \xrightarrow{\varepsilon \to 0+} S \le \int_a^b f dx$$
.

Analog: $\int_a^b f dx \le S \implies f \in R[a, b], \int_a^b f dx = S.$

Satz 23.10 (Integral und Unstetigkeitsstellen)

 $f, g: [a, b] \to \mathbb{R}$ seien Funktionen.

- (1) Ist f beschränkt auf [a, b] und $A := \{x \in [a, b] : f \text{ ist in } x \text{ nicht stetig}\}$ endlich, dann gilt: $f \in R[a, b]$.
- (2) Ist $f \in R[a, b]$ und $A := \{x \in [a, b] : f(x) \neq g(x)\}$ endlich, dann gilt: $g \in R[a, b]$ und $\int_a^b g dx = \int_a^b f dx$.

Beweis

(1) $\exists \gamma \geq 0 : |f(x)| \leq \gamma \ \forall x \in [a, b]$. Es genügt zu betrachten: $A := \{t_0\}$ (wegen 23.9). O.B.d.A.: $t_0 = a$ oder $t_0 = b$. Etwa: $t_0 = a$.

Sei $\varepsilon > 0$. Wähle $\alpha \in (a, b)$ mit $2\gamma(\alpha - a) < \varepsilon/2$.

 $f \in C[\alpha, b] \implies f \in R[\alpha, b] \stackrel{23.3}{\Longrightarrow}$ Es gibt eine Zerlegung Z_1 von $[\alpha, b]$ mit: $S_f(Z_1) - s_f(Z_1) < \varepsilon/2$. $Z := Z_1 \cup \{a\} \implies Z \in \mathfrak{Z}$ und es gilt:

$$S_f(Z) - s_f(Z) = \underbrace{\sup f([a, \alpha]) - \inf f([a, \alpha]))(\alpha - 1)}_{\leq 2\gamma} + \underbrace{S_f(Z_1) - s_f(Z_1)}_{<\varepsilon/2}$$
$$< 2\gamma(\alpha - a) + \varepsilon/2 < \varepsilon/2 + \varepsilon/2 = \varepsilon$$

(2) Klar: g ist beschränkt. h := g - f. Dann: $h(x) = 0 \ \forall x \in [a, b] \setminus A \implies h \in C([a, b] \setminus A) \stackrel{(1)}{\Longrightarrow} h \in R[a, b] \implies g = h + f \in R[a, b].$

Noch zu zeigen: $\int_a^b h dx = 0$. $\varphi := |h|$. Aus 23.8 folgt: $\varphi \in R[a, b]$ und $|\int_a^b h dx| \le \int_a^b \varphi dx$.

Sei
$$Z := \{x_0, \dots, x_n\} \in \mathfrak{Z}, \ m_j := \inf \varphi(I_j), \ \varphi(x) = 0 \ \forall x \in [a, b] \setminus A, \ \varphi(x) > 0 \ \forall x \in A \implies m_j = 0 \ (j = 1, \dots, n) \implies s_f(Z) = 0 \implies \int_a^b \varphi dx = \int_a^b \varphi dx = 0 \implies \int_a^b h dx = 0.$$

Satz 23.11 (Mittelwertsatz der Integralrechnung)

Es seien $f, g \in R[a, b], g \ge 0$ (oder $g \le 0$) auf $[a, b], m := \inf f([a, b]), M := \sup f([a, b])$

- (1) $\exists \mu \in [m, M] : \int_a^b fg dx = \mu \int_a^b g dx$
- (2) Ist $f \in C[a,b] \implies \exists \xi \in [a,b] : \int_a^b f dx = f(\xi)(b-a)$

Beweis

(1) $\alpha := \int_a^b g dx$, $\beta := \int_a^b f g dx$. $m \le f \le M$ auf $[a,b] \implies mg \le fg \le Mg$ auf $[a,b] \implies m\alpha < \beta < M\alpha$.

Es ist $\alpha \geq 0$. O.B.d.A.: $\alpha > 0$. Dann gilt: $m \leq \frac{\beta}{\alpha} \leq M, \ \mu := \frac{\beta}{\alpha}$.

(2) Setze in (1) $g \equiv 1 \implies \int_a^b f dx = \mu(b-a) \ (\mu \in [m,M])$. Aus 18.1 folgt: $\exists \xi \in [a,b] : \mu = f(\xi)$.

Der Riemannsche Zugang zum Integral Bemerkung: Wir haben bisher tatsächlich die Darbouxschen Integrale betrachtet. Hier wird nun die ursprüngliche Definition von Riemann vorgestellt

 $f:[a,b]\to\mathbb{R}$ sei beschränkt. Sei $Z:=\{x_0,\ldots,x_n\}\in\mathfrak{Z}.$ m_j,M_j,I_j seien wie immer.

Wählt man in jedem I_j einen Punkt ξ_j , so heißt $\xi := (\xi_1, \xi_2, \dots, \xi_n)$ ein zu Z passender **Zwischenvektor** und $\sigma_f(Z, \xi) := \sum_{j=1}^n f(\xi_j) |I_j|$ eine **Riemannsche Zwischensumme**.

$$m_j \le f(\xi_j) \le M_j \ (j = 1, \dots, n) \implies s_f(Z) \le \sigma_f(Z, \xi) \le S_f(Z)$$

Satz 23.12 (Äquivalenz der Riemannschen und Darbouxschen Integrale)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt. Dann gilt: $f\in R[a,b]$ genau dann, wenn es ein $S\in\mathbb{R}$ gibt mit:

$$\forall \varepsilon>0 \ \exists Z\in \mathfrak{Z}: |\sigma_f(Z,\xi)-S|<\varepsilon$$
 für jedes zu Z passende $\xi.$ (*)

In diesem Fall gilt:

$$S = \int_{a}^{b} f \mathrm{d}x.$$

Beweis

" \Rightarrow ": $S:=\int_a^b f dx$. Sei $\varepsilon>0$. Wie im Beweis von 23.3: $\exists Z\in \mathfrak{Z}: s_f(Z)>S-\varepsilon,\ S_f(Z)< S+\varepsilon$.

Sei ξ passend zu $Z \implies S - \varepsilon < s_f(Z) \le \sigma_f(Z, \xi) \le S_f(Z) < S + \varepsilon \implies |\sigma_f(Z, \xi) - S| < \varepsilon$.

" \Leftarrow ": Sei $\varepsilon > 0$. Nach Voraussetzung gibt es ein $Z \in \mathfrak{Z}$ so, dass (*) gilt. Sei $Z := \{x_0, \ldots, x_n\}, \ m_j, \ M_j, \ I_j$ wie immer. Sei $j \in \{1, \ldots, n\} : \exists \xi_j, \eta_j \in I_j : f(\xi_j) > M_j - \varepsilon, \ f(\eta_j) < m_j + \varepsilon, \ \xi := (\xi_1, \ldots, \xi_n), \ \eta = (\eta_1, \ldots, \eta_n)$ sind passend zu Z.

$$A := \sigma_f(Z, \xi), \ B := \sigma_f(Z, \eta). \ A = \sum_{j=1}^n f(\xi_j) |I_j| > \sum_{j=1}^n (M_j - \varepsilon) |I_j| = S_f(Z) - \varepsilon(b - a) \implies S_f(Z) < A + \varepsilon(b - a).$$
 (i)

Analog: $-s_f(Z) < \varepsilon(b-a) - B$. (ii)

Dann gilt: $S_f(Z) - s_f(Z) < A - B + 2\varepsilon(b - a) = A - S + S - B + 2\varepsilon(b - a) \le |A - S| + |B - S| + 2\varepsilon(b - a) \stackrel{(*)}{\leq} 2\varepsilon + 2\varepsilon(b - a) = \varepsilon(2 + 2(b - a)) \xrightarrow{23.3} f \in R[a, b].$

$$\int_{a}^{b} f dx = \int_{a}^{b} f dx \le S_{f}(Z) \stackrel{\text{(i)}}{<} A + \varepsilon(b-a) = A - S + S + \varepsilon(b-a) \le |A-S| + S + \varepsilon(b-a) \stackrel{\text{(*)}}{<} \varepsilon + S + \varepsilon(b-a).$$

Also: $\int_a^b f dx < S + \varepsilon (1 + (b - a)) \ \forall \varepsilon > 0 \implies \int_a^b f dx \le S$. Analog folgt mit (ii): $S \le \int_a^b f dx$.

Definition

Sei $f \in R[a, b]$. $\int_c^c f(x) dx := 0$ und $\int_b^a f(x) dx =: -\int_a^b f(x) dx$

Bemerkung: $\int_a^b f(x) dx = \int_a^b f(t) dt$.

Satz 23.13 (2. Hauptsatz der Differential- und Integralrechnung)

Sei $f \in R[a, b]$ und $F : [a, b] \to \mathbb{R}$ sei definiert durch $F(x) := \int_a^x f(t) dt$.

- (1) F ist auf [a,b] Lipschitzstetig, insbesondere $F \in C[a,b]$
- (2) Ist f in $x_0 \in [a, b]$ stetig $\implies F$ ist in x_0 differenzierbar und $F'(x_0) = f(x_0)$
- (3) Ist $f \in C[a, b] \implies F \in C^1[a, b]$ und F' = f auf [a, b]

Beweis

(1) $L := \sup\{|f(x)| : x \in [a,b]\}$. Sei $x,y \in [a,b]$, etwa $x \leq y$. $F(y) = \int_a^y f(t) dt \stackrel{23.9}{=} \int_a^x f(t) dt + \int_x^y f(t) dt = F(x) + \int_x^y f(t) dt \implies F(y) - F(x) = \int_x^y f(t) dt \implies |F(y) - F(x)| = |\int_x^y f(t) dt| \stackrel{23.8}{\leq} \int_x^y \underbrace{|f(t)|}_{\leq L} dt \leq \int_x^y L dt = L(y-x) = L|y-x|$

(2) Sei $x_0 \in [a,b)$. Wir zeigen: (*) $\lim_{h \to 0+} \frac{F(x_0+h) - F(x_0)}{h} = f(x_0)$ (analog zeigt man für $x_0 \in (a,b]$: $\lim_{h \to 0-} \frac{F(x_0+h) - F(x_0)}{h} = f(x_0)$) Sei also $x_0 \in [a,b)$, h > 0 und $x_0 + h < b$. $g(h) := |\frac{F(x_0+h) - F(x_0)}{h} - f(x_0)|$. Zu zeigen: $g(h) \to 0$ $(h \to 0+)$. Es ist $\frac{F(x_0+h) - F(x_0)}{h} \stackrel{\text{s.o.}}{=} \frac{1}{h} \int_{x_0}^{x_0+h} f(t) dt$, $\frac{1}{h} \int_{x_0}^{x_0+h} f(x_0) dt = \frac{1}{h} f(x_0) h = f(x_0) \implies g(h) = \frac{1}{h} |\int_{x_0}^{x_0+h} (f(t) - f(x_0)) dt| \stackrel{23.8}{\leq} \frac{1}{h} \int_{x_0}^{x_0+h} |f(t) - f(x_0)| dt$; $s(h) := \sup\{|f(t) - f(x_0)| : t \in [x_0, x_0 + h]\} \implies g(h) \le \frac{1}{h} \int_{x_0}^{x_0+h} s(h) dt = \frac{1}{h} s(h) h = s(h)$. Also: $0 \le g(h) \le s(h)$. f stetig in $x_0 \implies f(t) \to f(x_0)$ $(t \to x_0) \implies s(h) \to 0$ $(h \to 0+) \implies g(h) \to 0$ $(h \to 0+) \implies (*)$

Satz 23.14 (Anwendung des 2. Hauptsatzes auf stetige Funktionen)

Sei $J \subseteq \mathbb{R}$ ein beliebiges Intervall, $f \in C(J)$ und $\xi \in J$ (fest). $F: J \to \mathbb{R}$ sei definiert durch $F(x) := \int_{\xi}^{x} f(t) dt$. Dann ist $F \in C^{1}(J)$ und F' = f auf J.

Beweis

Seien $a,b\in J,\ a< b$ und I:=[a,b]. Es genügt zu zeigen: F ist differenzierbar auf I und F'=f auf I. $G(x):=\int_a^x f(t)dt\ (x\in I).$ Sei $\xi\leq a$ (analoger Beweis für $\xi\geq b$ und $\xi\in (a,b).$ Für $x\in [a,b]:\ F(x)=\int_\xi^x\cdots=\int_\xi^a\cdots+\int_a^x\cdots=F(a)+G(x) \stackrel{23.13}{\Longrightarrow} F$ ist differenzierbar auf I und F'=G'=f auf I.

Definition

Im folgenden seien $I, J \subseteq \mathbb{R}$ beliebige Intervalle.

- (1) Sei $g: I \to \mathbb{R}$ und $x_0 \in I$. $g(x)|_{x=x_0} := g(x_0)$.
- (2) Ist $f \in R[a, b]$, so heißt $\int_a^b f(x) dx$ auch ein **bestimmtes Integral**.
- (3) Besitzt $G: I \to \mathbb{R}$ auf I eine Stammfunktion, so schreibt man für eine solche auch $\int g(x) dx$ (unbestimmtes Integral). "Gleichungen" der Form $\int g(x) dx = h(x)$ gelten bis auf additive Konstanten! Beispiel: $\int e^x dx = e^x$, $\int e^x dx = e^x + 7$. $\int g(x) dx = h(x)$ auf I bedeutet: h ist eine Stammfunktion von g auf I.

Satz 23.15 (Partielle Integration)

(1) Es seien $f, g \in R[a, b]$ und F, G seien Stammfunktionen von f bzw. g auf [a, b]. Dann:

$$\int_{a}^{b} Fg dx = F(x)G(x)|_{a}^{b} - \int_{a}^{b} fG dx$$

(2) Sind $f, g \in C^1[a, b] \implies$

$$\int_a^b f'g dx = f(x)g(x)|_a^b - \int_a^b fg' dx$$

(3) Sind $f, g \in C^1(I) \implies \text{auf } I \text{ gilt:}$

$$\int f'g dx = f(x)g(x) - \int fg' dx$$

Reweis

(1)
$$(FG)' = F'G + FG' = fG + Fg \implies \int_a^b Fg dx + \int_a^b fG dx = \int_a^b (FG)' dx \stackrel{23.5}{=} F(x)G(x)|_a^b$$

(2) folgt aus (1)

(3)
$$(fg)' = f'g + fg' \implies fg = \int (f'g + fg') dx$$

Beispiele:

(1)
$$\int \log x dx = \int \underbrace{1}_{f'} \underbrace{\log x}_{g} dx = x \log x - \int x \frac{1}{x} dx = x \log x - x \text{ auf } (0, \infty).$$

(2)
$$\int \sin^2 x dx = \int \underbrace{\sin x}_{f'} \underbrace{\sin x}_{g} dx = -\cos x \sin x - \int -\cos^2 x dx = -\cos x \sin x + \int (1-\sin^2 x) dx = -\cos x \sin x + x - \int \sin^2 x dx$$
$$\implies \int \sin^2 dx = \frac{1}{2} (x - \cos x \sin x) \text{ auf } \mathbb{R}.$$

(3)
$$\int \underbrace{x}_{f'} \underbrace{e^x}_{g} dx = \frac{1}{2}x^2 e^x - \int \frac{1}{2}x^2 e^x dx \text{ komplizierter!}$$
$$\int \underbrace{x}_{f} \underbrace{e^x}_{g'} = xe^x - \int e^x dx = xe^x - e^x$$

Satz 23.16 (Substitutionsregeln)

Sei $f \in C(I)$ und $g \in C^1(J)$ und $g(J) \subseteq I$.

(1) Ist
$$J = [\alpha, \beta] \implies$$

$$\int_{\alpha}^{\beta} f(g(t))g'(t)dt = \int_{g(\alpha)}^{g(\beta)} f(t)dt$$

(2) Auf J gilt:

$$\int f(g(t))g'(t)dt = \int f(x)dx|_{x=g(t)}$$

(3) g sei auf J streng monoton \implies auf I gilt:

$$\int f(x)dx = \int f(g(t))g'(t)dt|_{t=g^{-1}(x)}$$

Merkregel

Ist y = y(x) differenzierbar, so schreibt man für y' auch $\frac{dy}{dx}$. In 23.16 substituiere x = g(t) (fasse also x als Funktion von t auf) $\implies g'(t) = \frac{dx}{dt}$, $\implies dx = g'(t)dt$ ".

Beweis

- (2) Sei F eine Stammfunktion von f auf I. G(t) := F(g(t)) $(t \in J)$. G'(t) = F'(g(t))g'(t) = f(g(t))g'(t) $(t \in J) \implies G$ ist eine Stammfunktion von $(f \circ g)g'$ auf $J \implies (2)$
- (1) $\int_{\alpha}^{\beta} f(g(t))g'(t)dt \stackrel{23.5}{=} G(\beta) G(\alpha) = F(g(\beta)) F(g(\alpha)) \stackrel{23.5}{=} \int_{g(\alpha)}^{g(\beta)} f(x)dx.$

(3)
$$\int f(g(t))g'(t)dt|_{t=g^{-1}(x)} = G(g^{-1}(x)) = F(g(g^{-1}(x))) = F(x)$$

Beispiele:

- (1) $\int_0^1 \sqrt{1-x^2} dx$ (Substitution $x = \sin t$, $t = 0 \implies x = 0$, $t = \frac{\pi}{2} \implies x = 1$, $dx = \cos t dt$). $\int_0^1 \sqrt{1-x^2} dx = \int_0^{\frac{\pi}{2}} \sqrt{1-\sin^2 t} \cos t dt = \int_0^{\frac{\pi}{2}} |\cos t| \cos t dt = \int_0^{\frac{\pi}{2}} \cos^2 t dt = \int_0^{\frac{\pi}{2}} (1-\sin^2 t) dt = t - \frac{1}{2} (t - \cos t \sin t)|_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$
- (2) $\int \frac{1}{x \log x} dx$ (Substitution $x = e^t$, $t = \log x$, $dt = \frac{1}{x} dx$). $\int \frac{1}{x \log x} = \int \frac{1}{t} dt = \log t = \log(\log(x))$ auf $(1, \infty)$.

Definition

(1) Seien p und q Polynome und $q \neq 0$. Dann heißt $\frac{p}{q}$ eine **rationale Funktion**.

 $\frac{p}{q}$ hat eine Darstellung der Form $\frac{p}{q}=p_1+\frac{p_2}{q},$ wobei p_1,p_2 Polynome und $\frac{p_2}{q}$ echt gebrochen rational, d.h.: Grad $p_2<$ Grad q.

- (2) Seien $b, c \in \mathbb{R}$. Dann heißt das Polynom $x^2 + bx + c$ unzerlegbar über $\mathbb{R} : \iff 4c b^2 > 0 \quad (\iff x^2 + bx + c \neq 0 \ \forall x \in \mathbb{R})$
- (3) Ein Partialbruch ist eine rationale Funktion der Form

$$\frac{A}{(x-x_0)^k}$$

wobei $A, x_0 \in \mathbb{R}, k \in \mathbb{N}, \text{ oder}$

$$\frac{Ax+B}{(x^2+bx+c)^k}$$

wobei $A, B, b, c \in \mathbb{R}, k \in \mathbb{N}$ und $x^2 + bx + c$ unzerlegbar über \mathbb{R} .

Satz 23.17 (Integration von rationalen Funktionen)

Es seien $b, c, x_0 \in \mathbb{R}, m \in \mathbb{N}, m > 1, p(x) := x^2 + bx + c \text{ und } D := 4c - b^2 > 0$

(1)
$$\int \frac{1}{x - x_0} dx = \log|x - x_0|$$

(2)
$$\int \frac{1}{(x-x_0)^m} dx = \frac{-1}{m-1} \cdot \frac{1}{(x-x_0)^{m-1}}$$

(3)
$$\int \frac{1}{p(x)} dx = \frac{2}{\sqrt{D}} \arctan\left(\frac{2x+b}{\sqrt{D}}\right)$$

(4)
$$\int \frac{1}{p(x)^m} dx = \frac{1}{(m-1)D} \cdot \frac{2x+b}{p(x)^{m-1}} + \frac{4m-6}{(m-1)D} \int \frac{1}{p(x)^{m-1}} dx$$

(5)
$$\int \frac{x}{p(x)} dx = \frac{1}{2} \log(p(x)) - \frac{b}{2} \int \frac{1}{p(x)} dx$$

(6)
$$\int \frac{x}{p(x)^m} dx = \frac{-1}{2(m-1)} \cdot \frac{1}{p(x)^{m-1}} - \frac{b}{2} \int \frac{1}{p(x)^m} dx$$

Beweis

- (1) klar
- (2) klar
- (3) $p(x) = x^2 + bx + c = x^2 + bx + \frac{b^2}{4} + c \frac{b^2}{4} = (x + \frac{b}{2})^2 + \frac{D}{4} = \frac{D}{4}(\frac{4}{D}(x + \frac{b}{2})^2 + 1) = \frac{D}{4}((\frac{2x+b}{\sqrt{D}})^2 + 1) = \frac{D}{4}(t^2 + 1)$, wobei $t = \frac{2x+b}{\sqrt{D}}$, also $x = \frac{\sqrt{D}t b}{2}$ $\implies \int \frac{1}{p(x)} dx = \text{(Substitution } t = \frac{2x+b}{\sqrt{D}}, \ dx = \frac{\sqrt{D}}{2} dt \text{)} \frac{4}{D} \int \frac{1}{t^2 + 1} \cdot \frac{\sqrt{D}}{2} dt = \frac{2}{\sqrt{D}} \int \frac{1}{1 + t^2} dt = \frac{2}{\sqrt{D}} \arctan t = \frac{2}{\sqrt{D}} \arctan(\frac{2x+b}{\sqrt{D}})$
- (4) Übung, partielle Integration
- (5) $\int \frac{x}{p(x)} dx = \frac{1}{2} \int \frac{2x+b-b}{p(x)} dx = \frac{1}{2} \int \underbrace{\frac{p'(x)}{p(x)}}_{\log(p(x))} dx \frac{b}{2} \int \frac{1}{p(x)} dx$
- (6) Übung, partielle Integration

Definition

- (1) Sei $Z = \{x_0, \dots, x_n\} \in \mathfrak{Z}, \ I_j = [x_{j-1}, x_j] \ (j = 1, \dots, n)$ $|Z| := \max\{|I_i| : j = 1, \dots, n\} \text{ heißt das } \textbf{Feinheitsmaß} \text{ von } Z.$
- (2) $\mathfrak{Z}^* := \{(Z,\xi) : Z \in \mathfrak{Z}, \xi \text{ ist passend zu } Z\}$. Eine Folge $((Z_n,\xi^{(n)}))$ in \mathfrak{Z}^* heißt eine Nullfolge $:\iff |Z_n| \to 0 \ (n \to \infty)$

Satz 23.18 (Folgen von Zerlegungen mit $|Z_n| \to 0$)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt; sei $\gamma\geq 0$ mit: $|f(x)|\leq \gamma \ \forall x\in [a,b].$

(1) Sind $Z_1, Z_2 \in \mathfrak{Z}$ und $Z_1 \subseteq Z_2$ und enthält Z_2 genau p Teilpunkte mehr als Z_1 , dann gilt:

$$s_f(Z_2) \le s_f(Z_1) + 2p\gamma |Z_1|$$
 und $S_f(Z_2) \ge S_f(Z_1) - 2p\gamma |Z_1|$.

(2) $\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall Z \in \mathfrak{Z} \; \text{mit} \; |Z| < \delta$:

$$s_f(Z) > \int_a^b f dx - \varepsilon, \ S_f(Z) < \int_a^b f dx + \varepsilon.$$

(3) Ist (Z_n) eine Folge in \mathfrak{Z} mit $|Z_n| \to 0$, dann gilt:

$$s_f(Z_n) \to \int_a^b f dx, \ S_f(Z_n) \to \int_a^b f dx.$$

Beweis

- (1) Übung, es genügt den Fall p = 1 zu betrachten.
- (2) Beweis nur für Untersummen. Sei $\varepsilon > 0$. $\exists Z_1 \in \mathfrak{Z} : s_f(Z_1) > \int_a^b f dx \frac{\varepsilon}{2}; Z_1$ habe p Teilpunkte. $\delta := \frac{\varepsilon}{4\gamma p}$.

Sei
$$Z \in \mathfrak{Z}$$
 und $|Z| < \delta$. $Z_2 := Z \cup Z_1 \in \mathfrak{Z}$; Z_2 hat höchstens p Teilpunkte mehr als $Z \Longrightarrow s_f(Z) = \underbrace{s_f(Z) - s_f(Z_2)}_{\geq -2p\gamma|Z|} + \underbrace{s_f(Z_2)}_{\geq s_f(Z_1)} > -2p\gamma|Z| + s_f(Z_1) > -\underbrace{2\gamma p\delta}_{=\frac{\varepsilon}{2}} + \int_a^b f dx - \frac{\varepsilon}{2} = \underbrace{s_f(Z_1)}_{\geq s_f(Z_1)} = \underbrace{s_f(Z_1)}_{\geq s_f(Z_1)} + \underbrace{s_f(Z_2)}_{\geq s_f(Z_1)} > -2p\gamma|Z| + \underbrace{s_f(Z_1)}_{\leq s_f(Z_1)} > -2p\gamma|Z| + \underbrace{s_f(Z_1)$

$$\int_{a}^{b} f dx - \varepsilon.$$

(3) Nur für Untersummen. $A := \int_a^b f dx$, $s_n := s_f(Z_n)$. Sei $\varepsilon > 0$. Aus (2) folgt dann: $\exists \delta > 0$: $s_f(Z) > A - \varepsilon \ \forall Z \in \mathfrak{Z}$ mit $|Z| < \delta$. $\exists n_0 \in \mathbb{N} : |Z_n| < \delta \ \forall n \geq n_0$. Also: $s_n \to A \quad (n \to \infty)$.

Beispiel

$$a_n := \sum_{j=1}^n \frac{\sqrt{j}}{n^{3/2}}$$
. Behauptung : $a_n \to \frac{2}{3}$

Beweis

$$a_n = \sum_{j=1}^n \underbrace{\sqrt{\frac{j}{n}}}_{=f(\frac{j}{n})} \frac{1}{n}, \ f(x) = \sqrt{x}, \ x \in [0, 1].$$

$$Z_n = \{0, \frac{1}{n}, \dots, \frac{n}{n}\} \implies a_n = S_f(Z_n) \xrightarrow[23.18(3)]{n \to \infty} \int_0^1 \sqrt{x} dx = \int_0^1 \sqrt{x} dx = \frac{2}{3}$$

Satz 23.19 (Riemannsche Definition des Integrals mit Nullfolgen)

 $f:[a,b]\to\mathbb{R}$ sei beschränkt. $f\in R[a,b]\iff\exists S\in\mathbb{R}:\sigma_f(Z_n,\xi^{(n)})\to S\ (n\to\infty)$ für jede Nullfolge $((Z_n,\xi^{(n)}))in\mathfrak{Z}^*$. In diesem Fall gilt: $S=\int_a^bf\mathrm{d}x$.

Beweis

" \Rightarrow ": $S := \int_a^b f dx$. Sei $((Z_n, \xi^{(n)})) \in \mathfrak{Z}^*$ eine Nullfolge. Dann:

$$\underbrace{s_f(Z_n)}_{\stackrel{23.18}{\longrightarrow} S} \le \sigma_f(Z_n, \xi^{(n)}) \le \underbrace{S_f(Z_n)}_{\stackrel{23.18}{\longrightarrow} S} \ \forall n \in \mathbb{N}.$$

$$\implies \sigma_f(Z_n, \xi^{(n)}) \to S \ (n \to \infty).$$

" \Leftarrow ": Sei $\varepsilon > 0$ und (Z_n) eine Folge in \mathfrak{Z} mit $|Z_n| \to 0$. Wie im Beweis von 23.12: $\forall n \in \mathbb{N} \ \exists \xi^{(n)}, \eta^{(n)}$ passend zu Z_n mit:

$$S_f(Z_n) - \varepsilon < \sigma_f(Z_n, \xi^{(n)}); \ \sigma(Z_n, \eta^{(n)}) < s_f(Z_n) + \varepsilon$$

Aus 23.18(3) folgt für $n \to \infty$: $\int_a^b f dx - \varepsilon \le S \le \int_a^b f dx + \varepsilon \ \forall \varepsilon > 0 \implies \int_a^b f dx \le S \le \int_a^b f dx \implies f \in R[a,b] \text{ und } \int_a^b f dx = S.$

Beispiel

Bemerkung: Dies ist ein Beispiel zum nächsten Satz, nicht zum vorherigen.

$$f_n(x) = \frac{1}{n}\sin(nx) \ (n \in \mathbb{N}, \ x \in [0, \pi]); \ |f_n(x)| = \frac{1}{n}|\sin(nx)| \le \frac{1}{n} \ \forall x \in [0, \pi].$$

 $\implies (f_n)$ konvergiert gleichmäßig auf $[0,\pi]$ gegen $f \equiv 0$.

 $f'_n(x) = \cos(nx), \ f'_n(\pi) = \cos(n\pi) = (-1)^n$. Das heißt: (f'_n) konvergiert auf $[0, \pi]$ nicht punktweise.

Satz 23.20 (Gleichmäßige Konvergenz der Stammfunktion)

 (f_n) sei eine Folge in $C^1[a,b], x_0 \in [a,b]$ und es gelte:

- (i) $(f_n(x_0))$ konvergiert
- (ii) (f'_n) konvergiert gleichmäßig auf [a,b] gegen $g:[a,b]\to\mathbb{R}$.

Dann konvergiert (f_n) gleichmäßig auf [a, b] und für $f(x) := \lim_{n \to \infty} f_n(x)$ $(x \in [a, b])$ gilt: $f \in C^1[a, b]$ und f' = g auf [a, b].

Also: $(\lim_{n\to\infty} f_n(x))' = f'(x) = g(x) = \lim_{n\to\infty} f'_n(x) \ \forall x \in [a,b].$

Beweis

O.B.d.A.: $x_0 = a$ und $f_n(a) \to 0$ $(n \to \infty)$. $f(x) := \int_a^x g(t) dt$ $(x \in [a, b])$. Aus 19.2 folgt: $g \in C[a, b]$.

Damit wegen 23.13: $f \in C^1[a, b]$ und f' = g auf [a, b].

Sei
$$x \in [a, b]: f_n(x) - \underbrace{f_n(a)}_{\to 0} \stackrel{23.5}{=} \int_a^x f'_n(t) dt \stackrel{23.6}{\to} \int_a^x g(t) dt = f(x).$$

 $\implies (f_n)$ konvergiert punktweise gegen f.

Für
$$x \in [a, b]$$
: $|f_n(x) - f(x)| = |f_n(x) - f_n(a) - f(x) + f_n(a)| = |\int_a^x (f'_n(t) - g(t)) dt + f_n(a)| \le \int_a^x |f'_n - g| dt + |f_n(a)| \le \int_a^b |f'_n - g| dt + |f_n(a)| =: c_n$

Wegen Voraussetzung (ii) konvergiert $(|f'_n-g|)$ auf [a,b] gleichmäßig gegen 0. Wegen 23.6 folgt damit: $\int_a^b |f'_n-g| dt \to 0 \ (n \to \infty) \implies c_n \to 0 \ (n \to \infty) \implies (f_n)$ konvergiert gleichmäßig auf [a,b] gegen f.

Wir können nun den Satz 21.9 beweisen.

Beweis

Sei
$$a < b$$
 und $[a, b] \subseteq I$. $f_n(x) := \sum_{k=0}^n a_k x^k$, $f'_n(x) = \sum_{k=1}^n k a_k x^{k-1}$, $g(x) := \sum_{k=1}^\infty k a_k x^{k-1}$

Aus 19.1 folgt: (f_n) und (f'_n) konvergieren auf [a,b] gleichmäßig gegen f bzw. g. Wegen unserem neuen Satz 23.20 nun ist f auf [a,b] differenzierbar und f'=g auf [a,b]. $[a,b] \subseteq I$ beliebig \Longrightarrow Beh.