# Pendelsimulation

Jürgen Womser-Schütz, https://github.com/JW-Schuetz

# Mathematisches Pendel

Für den Auslenkungswinkel  $\phi\left(t\right)$  als Funktion der Zeit t gilt

$$\frac{d^2\phi(t)}{dt^2} + \omega^2 \sin\phi(t) = 0 \tag{1}$$

mit

$$\omega = \sqrt{\frac{g}{L}} \tag{2}$$

dabei ist L die Pendellänge und g die Erdbeschleunigung.



Abbildung 1: Mathematisches Pendel der Länge L und der Masse m

Für die kartesischen Koordinaten des Pendels folgt

$$x = L\sin\phi$$
$$y = L\cos\phi.$$

## Beschreibung als dynamisches Sytem

### Definition

In Anlehnung an [1] wird ein dynamisches System (Fluss) auf X durch

- ullet einen metrischen Raum X mit der Metrik d
- $\bullet$ eine additive Halbgruppe Iüber den reellen Zahlen  $^1$
- und eine stetige Abbildung  $\pi: X \times I \to X$  mit den beiden Eigenschaften  $\forall x \in X: \pi(x,0) = x$  (Identitätseigenschaft)  $\pi(\pi(x,t),s) = \pi(x,t+s)$  (Halbgruppeneigenschaft)

definiert.

### Motivation

Das Anfangswertproblem

$$\frac{d}{dt}x(t) = x(t)$$

$$x(0) = x_0$$
(3)

besitzt die eindeutige Lösung

$$x(t) = x_0 \exp(t)$$
.

Beschreibt man diese Lösung durch die Abbildung  $\pi$ , so gilt

$$\pi(x,t) = x \exp(t). \tag{4}$$

#### Behauptung Halbgruppeneigenschaft

Es gilt die Halbgruppeneigenschaft

$$\pi (\pi (x,t),s) = \pi (x,t+s).$$

#### Beweis Halbgruppeneigenschaft

Wegen (4) gilt für x und t

$$\pi(x,t) = x \exp(t). \tag{5}$$

Dann gilt für  $x \to \pi(x,t)$  und  $t \to s$ 

$$\pi(x,t) = \pi(x,t) \exp(s)$$

und somit durch Einsetzen von (5)

$$\pi(x,t) = x \exp(t) \exp(s)$$
  
=  $x \exp(t+s)$ 

### Literatur

[1] Dynamical Systems - Stability, Controllability and Chaotic Behaviour; Werner Krabs, Stefan Pickl; Springer-Verlag, 2010

 $<sup>^1{\</sup>rm D.h.}$ es gilt  $0\in I$  und für  $r,s,t\in I$  besitzt die Addition  $+:I\times I\to I$  die beiden Eigenschaften r+s=s+r und (r+s)+t=r+(s+t) .