

Probability Theory
School of Mathematics
Science Department
National University of Engineering

## List 1 of Exercises

Topic: Independence of events, classes of events and random variables Ciclo: 2016.1

Throughout this list  $(\Omega, \mathcal{A}, \mathbf{P})$  is a probability space  $(\Omega \text{ is a nonempty set})$  and I is an index set.

- 1. Let  $A_1, A_2, \ldots, A_n$  be independent events. Show that the probability that none of the  $A_1, A_2, \ldots, A_n$  occur is less that or equal to  $\exp(-\sum_{i=1}^n \mathbf{P}[A_i])$ .
- 2. Toss a coin with  $\mathbf{P}[\text{Heads}] = p$  repeatedly. Let  $A_k$  be the event that k or more consecutive heads occurs amongst the tosses numbered  $2^k, 2^k + 1, \dots, 2^{k+1} 1$ . Show that

$$\mathbf{P}[A_k \quad \text{i.o.}] = \begin{cases} 1 & \text{if } p \ge \frac{1}{2} \\ 0 & \text{if } p < \frac{1}{2}. \end{cases}$$

- 3. Let  $(\mathcal{E}_i)_{i\in I}$  be a collection of  $\sigma$ -algebras over  $\Omega$  with  $\mathcal{E}_i \subset \mathcal{A}$  for every i. Let  $\mathcal{E}$  be a  $\sigma$ -algebra over  $\Omega$  with  $\mathcal{E} \subset \mathcal{A}$ . Prove that if for every  $J \subset I$  finite  $\mathcal{E}$  and  $\sigma(\mathcal{E}_i; i \in J)$  are independent, then  $\mathcal{E}$  and  $\sigma(\mathcal{E}_i; i \in I)$  are independent.
- 4. Let  $X_1, X_2, ...$  be a sequence of random variables. Prove that if for every  $k \ge 1$   $\sigma(X_{k+1})$  and  $\sigma(X_1, X_2, ..., X_k)$  are independent, then  $(X_n)_{n \in \mathbb{N}}$  is independent.
- 5. Let F be the distribution function of the (real) random variable X. Prove that X has symmetric distribution iff F(a-) = 1 F(a) for all  $a \in \mathbb{R}$ .
- 6. Let X, Y be (real) random variables i.i.d. Prove that X Y has symmetric distribution.
- 7. Let  $X_1, X_2, ...$  be a sequence of (real) random variables i.i.d. with  $X_n \sim \exp(1)$  for every  $n \in \mathbb{N}$ . Show that

$$\mathbf{P}\left[\frac{X_n}{\ln(n)} > 1 \quad \text{i.o.}\right] = 1$$

and

$$\mathbf{P}\left[\frac{X_n}{\ln(n)} > 2 \quad \text{i.o.}\right] = 0.$$

- 8. Let X, Y be independent (real) random variables, both with distribution  $\frac{1}{2}\delta_1 + \frac{1}{2}\delta_{-1}$ . Show that X, Y and Z := XY are not independent, but are 2-2 independent.
- 9. Let X be a (real) random variable. We say that X is **deterministic** if there exists  $c \in \mathbb{R}$  such that  $\mathbf{P}[X=c]=1$ . Prove that X and X are independent iff X is deterministic.
- 10. Let X, Y be independent (real) random variables. Prove that if for some  $c \in \mathbb{R}$ ,  $\mathbf{P}[X + Y = c] = 1$ , then X and Y are constant random variables.
- 11. Let  $X_0, X_1, \ldots$  be a sequence of independent (real) random variables with  $\mathbf{P}[X_n = 1] = \mathbf{P}[X_n = -1] = \frac{1}{2}$  for  $n = 0, 1, \ldots$  Let  $Y_n = \prod_{i=0}^n X_i$  for  $n = 1, 2, \ldots$  Show that  $(Y_n)_{n \in \mathbb{N}}$  is independent.