

TP: elecciones presidenciales

29 de octubre de 2023

Algoritmos y estructura de datos II

The Cooks

Integrante	LU	Correo electrónico
Melli, Tomas Felipe	371/22	tomas.melli1@gmail.com
Seltzer, Ramiro	715/22	ramiroseltzer@gmail.com
Sassot, Maria	38/23	sassotmaria@gmail.com
Valencia, Juan Segundo	705/22	reamnobis@gmail.com

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Ciudad Universitaria - (Pabellón I/Planta Baja) Intendente Güiraldes 2610 - C1428EGA Ciudad Autónoma de Buenos Aires - Rep. Argentina Tel/Fax: (++54+11) 4576-3300

http://www.exactas.uba.ar

1. Especificación

1.1. hayBallotage

```
\begin{aligned} & \text{proc hayBallotage (in escrutinio} : seq\langle \mathbb{Z} \rangle) : \text{Bool} \\ & \text{requiere } \{escrutinioValido(escrutinio)\} \\ & \text{asegura } \{(\forall i: \mathbb{Z})(0 \leq i < |escrutinio| - 1 \longrightarrow_L ((escrutinio[i]/total(escrutinio) \leq 0, 45) \land_L \\ & ((\forall j: \mathbb{Z})(0 \leq j < |escrutinio| - 1 \land esMaximo(j, escrutinio)) \longrightarrow_L (escrutinio[j]/total(escrutinio) \leq 0, 45) \land difMenorA10(escrutinio, j)))\} \end{aligned}
```

1.2. hayFraude

```
 \begin{array}{l} \texttt{proc hayFraude (in escrutinio\_presidencial} : seq\langle\mathbb{Z}\rangle; \texttt{in escrutinio\_senadores} : seq\langle\mathbb{Z}\rangle; \texttt{in escrutinio\_diputados} : seq\langle\mathbb{Z}\rangle) : \texttt{Bool requiere } \{escrutinioValido(escrutinio\_presidencial) \land escrutinioValido(escrutinio\_senadores) \\ \land escrutinioValido(escrutinio\_diputados)\} \\ \texttt{asegura } \{res = True \iff (sumaVotos(escrutinio\_presidencial) \neq sumaVotos(escrutinio\_senadores)) \\ \lor (sumaVotos(escrutinio\_senadores) \neq sumaVotos(escrutinio\_diputados) \\ \lor (sumaVotos(escrutinio\_presidencial) \neq sumaVotos(escrutinio\_diputados))\} \\ \end{array}
```

1.3. obtenerSenadoresEnProvincias

```
proc obtenerSenadoresEnProvincias (in escrutinio: seq\langle\mathbb{Z}\rangle) : \mathbb{Z}x\mathbb{Z} requiere \{escrutinioValido(escrutinio)\} asegura \{0 \leq res_0 < |escrutinio| - 1 \land 0 \leq res_1 < |escrutinio| - 1 \land_L \ (\forall j: \mathbb{Z})((0 \leq j < |escrutinio| - 1 \land j \neq res_0 \land j \neq res_1) \longrightarrow_L (escrutinio[j] < escrutinio[res_0] \land escrutinio[j] < escrutinio[res_1])) \land escrutinio[res_0] > escrutinio[res_1]\}
```

1.4. calcularDHontEnProvincia

```
 \begin{array}{l} \texttt{proc calcularDHondtEnProvincia} \ (\texttt{in cant\_bancas} : \mathbb{Z}, \ \texttt{in escrutinio} : seq \langle \mathbb{Z} \rangle) : seq \langle seq \langle \mathbb{Z} \rangle \rangle \\ \texttt{requiere} \ \{ escrutinioValido(escrutinio) \land cant\_bancas \geq 1 \} \\ \texttt{asegura} \ \{ (|res| = |escrutinio| - 1) \land mismoCociente(res) \land ((\forall i : \mathbb{Z})(0 \leq i < |escrutinio| - 1) \longrightarrow_L \\ ((\forall j : \mathbb{Z})(0 \leq j < |escrutinio[i]|) \longrightarrow_L res[i][j] = divis\'on(escrutinio[i], j+1))) \} \\ \end{aligned}
```

1.5. obtenerDiputadosEnProvincias

```
proc obtenerDiputadosEnProvincias (in cant_bancas: \mathbb{Z}, in escrutinio : seq\langle\mathbb{Z}\rangle, in D´Hondt :seq\langle seq\langle\mathbb{Z}\rangle\rangle) : seq\langle\mathbb{Z}\rangle requiere \{escrutinioValido(escrutinio) \land_L coincideDhontEscrutinio(DHondt, escrutinio)\} asegura \{|escrutinio| - 1 = |res| \land_L (\forall i : \mathbb{Z})(0 \le i < |res| \longrightarrow_L res[i] = \sum_{j=0}^{|DHont[i]|-1} \text{ if } estaDentroDeLosBMayores}(cant_bancas; DHont; DHont[i][j]) \text{ then } 1 \text{ else } 0 \text{ fi}\}
```

1.6. validarListasDiputadosEnProvincias

```
 \begin{array}{l} \texttt{proc validarListasDiputadosEnProvincias} \; (\texttt{in cant\_bancas:} \mathbb{Z}, \texttt{in ,in listas:} \; seq \langle seq \langle (dni: \mathbb{Z} \times genero: \mathbb{Z} \rangle \rangle) : \texttt{Bool requiere} \; \{ (\forall i: \mathbb{Z}) (0 \leq i < | listas| \longrightarrow_L listaValida(listas[i])) \land cantbancas \geq 1 \} \\ \texttt{asegura} \; \{ | listas| > 1 \land_L (\forall i: \mathbb{Z}) (0 \leq i < | listas| - 1 \longrightarrow_L (| listas[i]| == cant\_bancas \\ \land_L (\forall j: \mathbb{Z}) (0 \leq j < | listas[i]| - 1 listas[i][j]! = listas[i][j+1]))) \} \\ \end{aligned}
```

2. Implementaciones SmallLang

2.1. hayBallotage

```
— total —
    i := 0;
    total := 0;
    \mathbf{while}(i < escrutinio.size() - 1) \mathbf{do}
         total = total + escrutinio[i];
         i = i +1;
    endwhile

Indicemaximo —

    id_{-1} := 0;
    j := 1 ;
11
    while (j < s.size() - 1) do
         if (escrutinio[j] > escrutinio[id_1]) do
13
             id_{-1} := j;
14
         _{
m else}
15
             skip;
16
        end if;
17
    \mathbf{j} \; := \; \mathbf{j} {+} \mathbf{1}
18
    endwhile
20
21
      - IndiceegundoMax ---
    \operatorname{escrutinio}[\operatorname{id}_{-1}] := 0
    id_{-2} := 0;
    j := 1;
25
    \mathbf{while} \ (\ j < s.size() - 1\ ) \ \mathbf{do}
         if ( escrutinio[j] > escrutinio[id_2] ) do
             id_2 := j;
28
         else
29
             skip;
        end if;
31
    j := j+1
32
    endwhile
33
34
     - diferenciaMenor10 ---
    diferenciaMenor10 := False
36
    if (((escrutinio[id_1] - escrutinio[id_2]) \text{ div total}) < 0.1) then
37
        diferenciaMenor10 := True;
39
    \mathbf{else}
        diferenciaMenor10 := False;
40
41
     — main —
42
    if (escrutinio[id_1] div total > 0.45) then
43
        return false;
44
    else
45
         if (escrutinio[id_1] div total > 0.40 &&!(diferenciaMenor10))
46
             return false;
47
         else
48
             return true;
49
```

2.2. hayFraude

```
— suma_presidencial —
                 i := 0;
                 suma_presidencial := 0;
  3
                 suma\_senadores := 0;
                 suma\_diputados := 0;
                  while (i < escrutinio_presidencial.size()-1) do
                                        suma_presidencial = suma_presidencial + escrutinio_presidencial[i];
                                        suma_senadores = suma_senadores + escrutinio_senadores[i];
                                        suma_diputados = suma_diputados + escrutinio_diputados[i];
                                        i = i + 1;
10
11
                  endwhile
12
                  res := (suma\_presidencial != suma\_senadores \; || \; suma\_senadores \; != suma\_diputados \; || \; suma\_presidencial \; != suma\_diputados \; || \; suma\_presidencial \; != suma\_diputados \; || \; suma\_presidencial \; || \; suma\_presid
                                        suma_diputados)
```

2.3. obtenerSenadoresEnProvincia

```
1 — IndiceMaximo —
   id_{-1} := 0;
    j := 1 ;
    while (j < s.size() - 1) do
         if ( escrutinio[j] > escrutinio[id_1] )
              id_{-1} := j;
         _{
m else}
              skip;
         endif;
    j := j+1
    endwhile
11
    id_{-2} := 0;
    escrutinio [1d_{-}1] := 0
    j := 1;
15
    \mathbf{while} \ (\ j < s.size() - 1) \ \mathbf{do}
16
         if ( escrutinio[j] > escrutinio[id_2] )
              id_2 := j;
18
         _{
m else}
19
              \mathbf{skip}\,;
20
         \mathbf{endif};
    \mathbf{j} \; := \; \mathbf{j} {+} \mathbf{1}
    end while \\
   res id_1 X id_2
```

${\bf 2.4.} \quad validar List as Diputados En Provincias$

```
— verificador —
   i := 0;
    j := 0;
    verifica := true;
    \mathbf{while} \ (i < listas.size()) \ \mathbf{do}
        if (listas[i].size() != cant_bancas) then
             verifica := false;
        else
             skip;
    endwhile
11
     – hombre_mujer —
    i := 0
    j := 0
    bool := True
    \mathbf{while} \ (i < listas.size()) \ \mathbf{do}
        if(bool == True) do
18
19
        {\bf end while}
20
    i := i + 1
    endwhile
     — main —
    \mathrm{res} \ := \mathrm{False}
    if (verifica and bool))
        res := True;
28
    else
        res := False;
   return res;
```

3. Demostración correctitud

3.1. Correctitud hayFraude

Demostración 1

Comenzamos viendo la correctitud del bloque de código encargado de la asignación de variables. Tenemos que ver que valga:

```
\begin{aligned} &\text{Pre} \implies wp(i:=0; sumaPresidencial:=0; sumaDiputados:=0; sumaSenadores:=0, Pc) \\ &Pre \implies wp(i:=0; sumaPresidencial:=0, sumaDiputados:=0, \\ &wp(sumaSenadores:=0, \{i=0 \land sumaPresidencial=0 \land sumaDiputados=0 \land sumaSenadores=0\})) \\ &Pre \implies wp(i:=0; sumaPresidencial:=0, \\ &wp(sumaDiputados:=0, \{i=0 \land sumaPresidencial=0 \land sumaDiputados=0 \land 0=0\})) \\ &Pre \implies wp(i:=0, wp(sumaPresidencial:=0, \{i=0 \land sumaPresidencial=0 \land 0=0 \land True\})) \\ &Pre \implies wp(i:=0, \{i=0 \land 0=0 \land True\}) \end{aligned}
```

$$Pre \Longrightarrow \{0 = 0 \land True\}$$

$$Pre \Longrightarrow \{True\}$$

Queda probada la correctitud de la precondición con la asignación inicial de las variables y la Precondición del ciclo. Podemos pasar a verificar la correctitud completa del ciclo:

Demostramos la correctitud del ciclo y su terminación.

- $\bullet \ P_c \equiv \{i = 0 \land sumaPresidencial = 0 \land sumaDiputados = 0 \land sumaSenadores = 0\}$
- $Q_c \equiv \{i = |escrutinio_presidencial| 1 \land sumaPresidencial = \sum_{j=0}^{|escrutinio_presidencial|-2} escrutinio_presidencial[j] \land sumaDiputados = \sum_{j=0}^{|escrutinio_presidencial|-2} escrutinio_diputados[j] \land sumaSenadores = \sum_{j=0}^{|escrutinio_presidencial|-2} escrutinio_diputados$
- $I \equiv \{0 \le i \le |escrutinio_presidencial| 1 \land_L sumaPresidencial = \sum_{j=0}^{i-1} escrutinio_presidencial[j] \land sumaDiputados = \sum_{j=0}^{i-1} escrutinio_diputados[j] \land sumaSenadores = \sum_{j=0}^{i-1} escrutinio_senadores[j]\}$
- $\blacksquare \ B \equiv \{i < |escrutinio_presidencial| 1\}$
- $f_v \equiv \{|escrutinio_presidencial| i 1\}$

Tenemos que ver que valga:

- 1. $P_c \implies I$
- 2. $\{I \wedge B\}S\{I\}$
- 3. $(I \wedge \neg B) \implies Q_c$
- 4. $\{I \wedge B \wedge fv = v_0\}S\{fv < v_0\}$
- 5. $(I \wedge fv \leq 0) \implies \neg B$

Demostracion 1

$$P_c \implies I$$

 $\{i = 0 \land sumaPresidencial = 0\} \implies \{0 \le i \le |escrutinioPresidencial| \land_L sumaPresidencial = \sum_{j=0}^{i-1} escrutinioPresidencial[j]\}$

- $1. \ i=0 \implies 0 \le i \le |escrutinioPresidencial| \iff 0 \le 0 \le |escrutinioPresidencial|$
- 2. $i = 0 \land sumaPresidencial = 0 \implies sumaPresidencial = \sum_{j=0}^{i-1} escrutinioPresidencial[j] \iff 0 = \sum_{j=0}^{i-1} escrutinioPresidencial[j]$ vale por sumatoria en rango vacio

```
Demostracion 2
    {I \wedge B}S{I} \iff (I \wedge B) \implies WP(S,I)
\equiv (0 \leq i \leq |escrutinio\_presidencial| \land_L sumaPresidencial = \sum_{j=0}^{i-1} escrutinioPresidencial[j] \land_L sumaDiputados = \sum_{j=0}^{i-1} escrutinioDiputados[j] \land_L sumaSenadores = \sum_{j=0}^{i-1} escrutinioSenadores[j] \land i < |escrutinio_presidencial| - 1)
\equiv (0 \leq i < |escrutinio\_presidencial| - 1 \land_L sumaPresidencial = \sum_{j=0}^{i-1} escrutinioPresidencial[j] \land_L sumaDiputados = \sum_{j=0}^{i-1} escrutinioDiputados[j] \land_L sumaSenadores = \sum_{j=0}^{i-1} escrutinioSenadores[j] \implies WP(S,I)
    WP(S, I) \equiv (suma\_presidencial := suma\_presidencial + escrutinio\_presidencial[i];
((suma\_senadores := suma\_senadores + escrutinio\_senadores[i];
((suma\_diputados := suma\_diputados + escrutinio\_diputados[i]);
((i := i + 1; I))))
    \equiv WP(suma\_presidencial := suma\_presidencial + escrutinio\_presidencial[i];
WP(suma\_senadores := suma\_senadores + escrutinio\_senadores[i];
sumaPresidencial = \sum_{j=0}^{i} escrutinio\_presidencial[j] \land
sumaDiputados = \sum_{j=0}^{i} escrutinio\_diputados[j] \land sumaSenadores = \sum_{j=0}^{i} escrutinio\_senadores[j]
    se remplaza y pasa restando en cada uno respectivamente
```

Demostracion 3

$$(I \wedge \neg B) \Longrightarrow Q_c$$

 $(I \wedge \neg B) \equiv (i = |escrutinio_p residencial| - 1 \wedge_L sumaPresidencial = \sum_{j=0}^{i-1} escrutinio_p residencial[j] \wedge sumaDiputados = \sum_{j=0}^{i-1} escrutinio_d senadores[j] \wedge sumaSenadores = \sum_{j=0}^{i-1} escrutinio_s senadores[j])$

$$\begin{split} (I \wedge \neg B) &\equiv (i = |escrutinio_presidencial| - 1 \wedge_L sumaPresidencial = \sum_{j=0}^{|escrutinio_presidencial| - 2} escrutinio_presidencial|) \\ sumaDiputados &= \sum_{j=0}^{escrutinio_presidencial| - 2} escrutinio_diputados[j] \wedge\\ sumaSenadores &= \sum_{j=0}^{|escrutinio_presidencial| - 2} escrutinio_senadores[j]) \\ \textbf{Y} \textbf{ se puede ver que } I \wedge \neg B \equiv Q_c \end{split}$$

Nos interesará evaluar la terminación del ciclo a partir de la axiomatización y la función invariante

Demostracion 4

$$(I \wedge B \wedge fv = v_0) \implies wp(S, fv < v_0)$$

$$\begin{split} &(\mathbf{I} \wedge B \wedge fv = v_0) \equiv (0 \leq i < |escrutinio_presidencial| \\ & \wedge sumaPresidencial = \sum_{j=0}^{i-1} escrutinio_presidencial[j] \\ & \wedge sumaSenadores = \sum_{j=0}^{i-1} escrutinio_senadores[j] \\ & \wedge sumaDiputados = \sum_{j=0}^{i-1} escrutinio_diputados[j] \end{split}$$

Se puede ver claramente que $I \wedge B \equiv WP(S; I)$

 $\land |escrutinio_presidencial| - i - 1 = V_0)$

 $\mathbf{wp}(\mathbf{S}; \mathbf{fv} \leq V_0) \equiv wp(sumaPresidencial + = escrutinio_presidencial[i]);$

sumaSenadores += escrutinio_senadores[i];

 $wp(sumaDiputados += escrutinio_diputados[i]; wp(i += 1; fv \le v_0)))$

```
\equiv |escrutinio\_presidencial| - i - 2 < V_0 tomando como verdadero a \mathbf{I} \wedge B \wedge fv = v_0
```

 $\equiv |escrutinio_presidencial| - i - 2 < |escrutinio_presidencial| - i - 1 \equiv -1 < 0$

Lo cual es Verdadero y cualquier cosa que implique Verdadero es Verdadero.

```
\begin{aligned} &\mathbf{Demostracion~5}\\ &(I \land fv \le 0) \implies \neg B\\ &\equiv \{0 \le i \le |escrutinio\_presidencial| - 1 \land_L\\ &sumaPresidencial = \sum_{j=0}^{i-1} escrutinio\_presidencial[j]\\ &\land sumaDiputados = \sum_{j=0}^{i-1} escrutinio\_diputados[j]\\ &\land sumaSenadores = \sum_{j=0}^{i-1} escrutinio\_senadores[j] \land |escrutinio\_presidencial| - i - 1 \le 0\}\\ &\equiv sumaPresidencial = \sum_{j=0}^{i-1} escrutinio\_presidencial[j]\\ &\land sumaDiputados = \sum_{j=0}^{i-1} escrutinio\_diputados[j]\\ &\land sumaSenadores = \sum_{j=0}^{i-1} escrutinio\_senadores[j] \land |escrutinio\_presidencial| - 1 = i \end{aligned}
\mathbf{Y} \ \mathbf{con~esto~ultimo~podemos~probar~que}\\ &|escrutinio\_presidencial| - 1 = i \implies i \ge |escrutinio\_presidencial| - 1 \end{aligned}
```

```
Y ahora si solo nos quedaria probar que \mathbf{Q}_c \Longrightarrow WP( codigo posterior al ciclo ;\mathbf{Q}) \mathbf{WP}( codigo posterior al ciclo ;\mathbf{Q}) \equiv WP(res := (sumapresidencial! = sumasenadores|| sumasenadores! = sumadiputados||sumapresidencial! = sumadiputados) ; res = True <math>\iff (sumaVotos(escrutinio\_presidencial) \neq sumaVotos(escrutinio\_senadores)) <math>\vee (sumaVotos(escrutinio\_senadores) \neq sumaVotos(escrutinio\_diputados) \vee (sumaVotos(escrutinio\_presidencial) \neq sumaVotos(escrutinio\_diputados))
```

Lo cual si lo remplazamos nos queda una estructura como $res = True \iff res \equiv True$ por la estructura del si solo si

3.2. Correctitud obtenerSenadoresEnProvincia

3.2.1. IndiceMaximo

Veamos la correctitud del bloque de código encargado de hallar el índice del maximo elemento de un escrutinio dado

- $P_c \equiv \{id = 0 \land j = 1 \land |escrutinio| \ge 3\}$
- $Q_c \equiv \{0 \leq id < |escrutinio| 1 \land (\forall k : \mathbb{Z})(0 \leq k < |escrutinio| 1 \longrightarrow_L escrutinio[k] \leq escrutinio[id]) \land j = |escrutinio| 1$
- $\blacksquare \ I \equiv \{0 \leq id < |escrutinio| 1 \land (1 \leq j \leq |escrutinio| 1) \land_L (\forall k : \mathbb{Z}) (0 \leq k < j \longrightarrow_L escrutinio[k] \leq escrutinio[id]) \}$
- $\blacksquare B \equiv \{j < |escrutinio| 1\}$

Tenemos que ver que valga:

- 1. $P_c \implies I$
- **2.** $\{I \land B\}S\{I\}$
- 3. $(I \wedge \neg B) \implies Q_c$
- **4.** $\{I \wedge B \wedge f_v = v_0\}S\{f_v < v_0\}$
- 5. $I \wedge f_v \leq 0 \implies \neg B$

Demostracion 1

$$P_c \implies I$$

 $id = 0 \land j = 1 \land |escrutinio| \ge 3 \implies 0 \le id < |escrutinio| - 1 \land 1 \le j \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j \longrightarrow_L escrutinio[k] \le escrutinio[id])$

$$id = 0 \implies 0 \le id < |escrutinio| - 1$$

 $id = 0 \implies 0 < |escrutinio| - 1$
 $mes |escrutinio| > -3 = True$

 $pues|escrutinio|>=3\equiv True$

$$j = 1 \implies 1 \le j \le |escrutinio| - 1$$

 $j = 1 \implies 1 \le |escrutinio| - 1$
 $pues|escrutinio| >= 3 \equiv True$

 $id = 0 \land j = 1 \land |escrutinio| \ge 3 \implies (\forall k : \mathbb{Z})(0 \le k < j \longrightarrow_L escrutinio[0] \le escrutinio[0] \equiv True$

```
Demostracion 2
 {I \wedge B}S{I}
\mathbf{I} \wedge B \implies wp(S, I)
I \wedge B \equiv 0 \leq id < |escrutinio| - 1 \wedge 1 \leq j \leq |escrutinio| - 1 \wedge_L (\forall k : \mathbb{Z})(0 \leq k < j \longrightarrow_L escrutinio[k] \leq escrutinio[id]) \wedge_L = (id \leq j \leq j \leq k \leq 
(j < |escrutinio| - 1)
I \wedge B \equiv 0 \leq id \leq |escrutinio| - 1 \wedge 1 \leq j < |escrutinio| - 1 \wedge_L (\forall k : \mathbb{Z})(0 \leq k < j \longrightarrow_L escrutinio[k] \leq escrutinio[id])
siendo \mathbf{H} \equiv escrutinio[j] > escrutinio[id]
\mathbf{wp}(\mathbf{S},\mathbf{I}) \equiv wp(\mathsf{if}\ H\ \mathsf{then}\ S_0\ \mathsf{else}\ S_1\ \mathsf{fi},S_2,I)
wp(S, I) \equiv wp(\text{if } H \text{ then } S_0 \text{ else } S_1 \text{ fi}, wp(S_2, I))
comenzamos viendo wp(S_2, I)
wp(S_2, I) \equiv wp(j := j + 1, I)
wp(S_2, I) \equiv (0 \le id < |escrutinio| - 1 \land 1 \le j + 1 \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k ) \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k ) 
escrutinio[id]
veamos
\mathbf{wp}(\mathsf{if}\ (escrutinio[j] > escrutinio[id])\ \mathsf{then}\ id := j\ \mathsf{else}\ skip\ \mathsf{fi},\ \mathbf{wp}(\mathbf{S}_2,I))
 \equiv def(escrutinio[j] > escrutinio[id]) \land_L ((escrutinio[j] > escrutinio[id]) \land wp(id := j, wp(S_2, I)) \lor ((escrutinio[j] > escrutinio[id]))
escrutinio[id]) \land wp(skip, wp(S_2, I))))
\equiv (0 \le id < |escrutinio| - 1 \land 0 \le j < |escrutinio| - 1) \land_L
((escrutinio[j] > escrutinio[id]) \land (0 \le j < |escrutinio| - 1 \land 1 \le j + 1 \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \le k ))))
escrutinio[k] \le escrutinio[j])))
((escrutinio[j] \leq escrutinio[id])(0 \leq id < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L escrutinio[k] \leq escrutinio[id])))
\equiv (0 \le id < |escrutinio| - 1 \land 0 \le j < |escrutinio| - 1) \land_L
((escrutinio[j] > escrutinio[id]) \land 1 \le j+1 \le |escrutinio| - 1 \land_L (\forall k : \mathbb{Z})(0 \le k < j+1 \longrightarrow_L escrutinio[k] \le escrutinio[j]))
((escrutinio[j] \leq escrutinio[id] \land 0 \leq id < |escrutinio| - 1 \land 1 \leq j + 1 \leq |escrutinio| - 1 \land L \ (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k < j + 1 \longrightarrow_L (\forall k : \mathbb{Z})(0 \leq k ))
escrutinio[k] \le escrutinio[id])))
\equiv (0 \le id < |escrutinio| - 1 \land 0 \le j < |escrutinio| - 1) \land_L
((escrutinio[j] > escrutinio[id]) \land (\forall k : \mathbb{Z})(0 \le k < j + 1 \longrightarrow_L escrutinio[k] \le escrutinio[j]))
((escrutinio[j] \le escrutinio[id]) \land (\forall k : \mathbb{Z})(0 \le k < j+1 \longrightarrow_L escrutinio[k] \le escrutinio[id]))
                      lo cual es esperable ya que si vale que escrutinio[j] es mayor que escrutinio[id], me va a guardar que escru-
tinio[k] es menor o igual a escrutinio[j] y entonces tenemos que escrutinio[j] es el máximo en ese momento de
la ejecución del programa; caso contrario, mantenemos la guarda anterior que respondería que escrutinio[id]
es el máximo actual.
Demostracion 3
(\mathbf{I} \wedge \neg B) \implies Q_c
veamos qué pasa en (I \land \neg B)
escrutinio[id]) \land (j \ge |escrutinio| - 1)
(I \land \neg B) \equiv (j = |escrutinio| - 1) \land (0 \le id < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1 \longrightarrow_L escrutinio[k] \le (id < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \land
escrutinio[id])
```

$$(I \wedge B \wedge f_v = v_0) \implies wp(S, f_v < v_0)$$

proponemos

 $(I \land \neg B) \equiv (j = |escrutinio| - 1) \land (0 \leq id < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \leq k < j) \longrightarrow_L escrutinio[k] \leq escrutinio[id])$

 $((j = |escrutinio| - 1) \land (0 \le id < |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \longrightarrow_L escrutinio[k] \le ((j = |escrutinio| - 1) \land_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \rightarrow_L (\forall k :$

 $escrutinio[id]) \implies (j = |escrutinio| - 1 \land (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1) \longrightarrow_L escrutinio[k] \le escrutinio[id])$

```
\begin{split} &f_v = |escrutinio| - 1 - j \\ &veamoswp(\text{if } (escrutinio[j] > escrutinio[id]) \text{ then } id := j \text{ else } skip \text{ fi}, wp(S_2, f_v < v_0)) \\ &\equiv def(H) \wedge_L ((H) \wedge wp(S_0, wp(S_2, f_v < v_0))) \vee ((\neg H) \wedge wp(S_1, wp(S_2, f_v < v_0))) \equiv def(H) \wedge_L ((H) \wedge wp(S_0, wp(S_1, f_v < v_0))) \vee ((\neg H) \wedge wp(S_2, f_v < v_0)) \end{split}
```

tenemos que ver por partes el desarrollo de la weakest-preconditions para lograr mayor claridad en la demostración

3. wp ($S_2, f_v < v_0$) $\equiv wp(j := j + 1, f_v < v_0) \equiv |escrutinio| - 1 - (j + 1) < v_0 \equiv |escrutinio| - 2 - j < v_0$ $wp(S_0, wp(S_2, f_v < v_0)) \equiv wp(S_0, |escrutinio| - 2 - j < v_0) \equiv wp(id_1 := j, |escrutinio| - 2 - j < v_0) \equiv |escrutinio| - 2 - j < v_0$

ahora estamos en buen momento de ir reemplazando

$$\equiv def(H) \wedge_L ((H \wedge |escrutinio| - 2 - j < v_0) \vee ((\neg H) \wedge |escrutinio| - 2 - j < v_0))$$

$$\equiv (0 \leq id < |escrutinio| - 1) \wedge (0 \leq j < |escrutinio| - 1) \wedge_L ((escrutinio[j] > escrutinio[id]) \wedge |escrutinio| - 2 - j < v_0)$$

$$\vee ((escrutinio[j] \leq escrutinio[id]) \wedge |escrutinio| - 2 - j < v_0))$$

dado que (p $\land q$) \lor $(\neg p \land q) \equiv q$

$$\equiv (0 \leq id < |escrutinio| - 1) \land (0 \leq j < |escrutinio| - 1) \land (|escrutinio| - 2 - j < v_0)$$

procedemos al final de la demostración

$$\mathbf{v}_0 = |escrutinio| - 1 - j \implies |escrutinio| - 2 - j < v_0 \equiv -1 < 0 \equiv True$$

Demostracion 5

$$I \wedge f_v \leq 0 \implies \neg B$$

$$\mathbf{I} \wedge f_v \leq 0 \implies j \geq |escrutinio| - 1$$

$$(0 \leq id < |escrutinio| - 1 \land (1 \leq j \leq |escrutinio| - 1)) \land |escrutinio| - 1 - j \leq 0) \implies j \geq |escrutinio| - 1 - j \leq 0$$

 $|escrutinio| - 1 \le j \implies j \ge |escrutinio| - 1$

3.2.2. Q indiceMaximo $\implies wp(asignaci\'on, Pre_{IndiceSegundoMaximo})$

- $Q_c(indiceMaximo) \equiv \{j = |escrutinio| 1 \land 0 \le id_1 < |escrutinio| 1 \land (\forall k : \mathbb{Z})(0 \le k < |escrutinio| 1 \longrightarrow_L escrutinio[k] \le escrutinio[id])$
- $P_c(indiceSegundoMaximo) \equiv \{id_2 = 0 \land j = 1 \land escrutinio[id_1] := 0\}$ vampos a observar

```
\mathbf{wp(id_2} := 0, wp(escrutinio[id_1] := 0, wp(j := 1, Pc(indiceSegundoMaximo)))

\equiv 0 \le id_1 < |escrutinio|

\equiv 0 \le id_1 < |escrutinio| \implies 0 \le id_1 < |escrutinio|
```

3.2.3. Q Maximo $\implies POST$

En este segmento vamos a demostrar la implicancia logica entre nuestro bloque de código Maximo que se reutilizará para hallar tanto el máximo de la secuencia escrutinio como de una lista $escrutinio_0$ que se sentenciará como una metavariable en el desarrollo de la implicación.

La idea es reasignar en escrutinio $[id_1]$ el 0 para reutilizarla en la búsqueda del id $_2$

 $\{ \mathbf{j} = \|escrutinio\| - 1 \land 0 \le id_1 < |escrutinio| - 1 \land (\forall k : \mathbb{Z})(0 \le k < |escrutinio| - 1 \longrightarrow_L escrutinio[k] \le escrutinio[id_1]) \}$ Vemos que si realizamos la sustitución del elemento con el uso de la indexación, reconstruimos nuestra lista escrutinio

 $escrutinio := escrutinio_0$

```
escrutinio_0[id_1] := 0

id_2 := 0

m := 1
```

Vamos a trabajar con esta lista y volver a hallarle el máximo.

Por tanto, la postcondición de Máximo nos lleva a definir

 $m := |escrutinio_0| - 1 \land 0 \le id_2 < |escrutinio_0| - 1 \land (\forall m : \mathbb{Z})(0 \le m < |escrutinio_0| - 1 \longrightarrow_L escrutinio_0[m] \le escrutinio_0[id_2])$

Tenemos entonces nuestras dos variables con sus valores esperados. El máximo supremo de escrutinio y su consecuente 2do máximo que remite al máximo de escrutinio $_0$

 $\begin{array}{l} \textbf{(0} \leq id_1 < |escrutinio| - 1) \wedge_L (\forall k: \mathbb{Z}) (0 \leq k < |escrutinio| - 1 \longrightarrow_L escrutinio[k] \leq escrutinio[id_1]) \wedge escrutinio = escrutinio_0 \wedge escrutinio_0 [id_1] = 0 \wedge 0 \leq id_2 < |escrutinio_0| - 1 \wedge (\forall m: \mathbb{Z}) (0 \leq m < |escrutinio_0| - 1 \longrightarrow_L escrutinio_0[m] \leq escrutinio_0 [id_2]) \\ \end{array}$

Queremos ver que todo esto implique la POST de nuestro procedimiento

```
 \{ \ \mathbf{POST} \ \} \equiv (\forall l : \mathbb{Z}) (0 \leq l < |escrutinio| - 1) \land l \neq res_0 \land l \neq res_1 \longrightarrow_L (escrutinio[l] < escrutinio[res_0] \land escrutinio[l] < escrutinio[res_1]) \land escrutinio[res_0] > escrutinio[res_1] \\ \{Q_{indiceMax1} \land Asignaciones \land Q_{indiceMax2}\} \implies \{POST\}
```

Conclusiones:

• $(\forall k, m : \mathbb{Z})(0 \le k, m < |escrutinio| - 1) \land k \ne res_0 \land m \ne res_1 \longrightarrow_L (escrutinio[k] < escrutinio[res_0] \land escrutinio[m] < escrutinio[res_1]) \land escrutinio[res_0] > escrutinio[res_1]$

4. Funciones auxiliares/predicados

```
pred mismoCociente (in d'Hont: seq\langle seq\langle \mathbb{Z}\rangle\rangle) {
                   (\forall j: \mathbb{Z})(\forall i: \mathbb{Z})((0 \le i < |res| \land 0 \le j < |res| \land i \ne j) \longrightarrow_L |res[i]| = |res[j]|)
 }
 pred escrutinio Valido (in escrutinio : seq\langle \mathbb{Z}\rangle) {
                  |escrutinio| \ge 3 \land_L sonDistintos(escrutinio) \land_L (\forall i : \mathbb{Z})(0 \le i < |escrutinio| - 1 \longrightarrow_L escrutinio[i] > 0)
 pred diferenciaMenorA10 (in escrutinio : \mathbb{Z}, in indice: \mathbb{Z}) {
                   (\forall i : \mathbb{Z})((0 \le i < |escrutinio| - 1 \land i \ne indice) \longrightarrow_L (escrutinio[indice] - escrutinio[i] < total(escrutinio) * 0, 1))
pred esMaximo (in indice: \mathbb{Z}, in escrutinio: seq\langle\mathbb{Z}\rangle) {
                   (\forall i : \mathbb{Z})((0 \le i < |escrutinio| - 1 \land i \ne indice) \longrightarrow_L (escrutinio[indice] > escrutinio[i])
 }
aux total (in escrutinio: seq(\mathbb{Z})): \mathbb{Z} = \sum_{i=0}^{|escrutinio|-1} escrutinio[i];
 pred sonDistintos (in escrutinio : \mathbb{Z}) {
                  (\forall j: \mathbb{Z})(\forall i: \mathbb{Z})((0 \leq j < |escrutinio| - 1 \land 0 \leq i < |escrutinio| - 1 \land i \neq j) \longrightarrow_{L} escrutinio[j] \neq escrutinio[i])
 }
aux indiceMaximo (in escrutinio: seq\langle\mathbb{Z}\rangle) : \mathbb{Z}=\sum_{i=0}^{|escrutinio|-2} if esMaximo(i,escrutinio) then i else 0 fi; pred estaDentroDeLosBMayores (in b: \mathbb{Z}, in \mathbf{D'Hont}: seq\langle seq\langle\mathbb{Z}\rangle\rangle, in \mathbf{n}:\mathbb{Z}) { (\sum_{x=0}^{|DHont|-1}\sum_{y=0}^{|DHont|-1}\text{if }DHont[x][y]\leq n \text{ then }1 \text{ else }0 \text{ fi})>(\sum_{i=0}^{|DHont|-1}|DHont[i]|-b)
 pred coincidiceDHontEscrutinio (in D'Hont: seq\langle seq\langle \mathbb{Z}\rangle\rangle, in escrutinio: seq\langle \mathbb{Z}\rangle) {
                   |Dhont| = |escrutinio| - 1) \land ((\forall i: \mathbb{Z})(\forall j: \mathbb{Z})(0 \le i < |escrutinio| - 1 \land_L 0 \le j < |DHont[i]| - 1) \longrightarrow_L DHont[i][j] = (|escrutinio| - 1) \land_L 0 \le j < |DHont[i]| - 1) \rightarrow_L DHont[i][j] = (|escrutinio| - 1) \land_L 0 \le j < |escrutinio| - 1) \land_L 0
                  divis\acute{o}n(escrutinio[i], j + 1))
 }
aux #hombres (in lista: seq\langle\mathbb{Z}\times\mathbb{Z}\rangle) : \mathbb{Z}=\sum_{j=0}^{|lista|-1} if lista[j]_1==1 then 1 else 0 fi ; aux #mujeres (in lista: seq\langle\mathbb{Z}\times\mathbb{Z}\rangle) : \mathbb{Z}=\sum_{j=0}^{|lista|-1} if lista[j]_1==2 then 1 else 0 fi ;
 pred listaValida (in lista : seq\langle dni : \mathbb{Z} \times genero : \mathbb{Z}\rangle) {
                (\forall i: \mathbb{Z})(\forall j: \mathbb{Z})(0 \leq i < |lista| \land 0 \leq j < |lista|) \longrightarrow_L (listas[i]_0 > 0 \land_L (listas[i]_1 = 1 \lor listas[i]_1 = 2)
                \wedge_L listas[i]_0 \neq listas[j]_0
```