ALGO QCM

- 1. Quel élément n'est pas dans la signature d'un type abstrait?
 - (a) Les TYPES
 - (b) Les OPERATIONS
 - (c) Les PRECONDITIONS
- 2. La construction d'une liste récursive est basée entre autres sur?
 - (a) La suppression du $K^{i\grave{e}me}$ élément d'une liste
 - (b) La récupération du reste de la liste
 - (c) L'insertion d'un élément à la K $^{i\grave{e}me}$ place
 - (d) L'ajout d'un élément en tête de liste
- 3. Quelles opérations ne définissent pas une liste récursive?
 - (a) debut
 - (b) longueur
 - (c) fin
 - (d) cons
 - (e) ième
- 4. Pour la déclaration

TYPES true UTILISE but, incredible

l'opération thats : incredible x but -> true est?

- (a) Un observateur
- (b) Une opération interne
- (c) Un rapporteur
- (d) Une opération externe
- (e) Un observeur
- 5. Une opération utilisée pour préciser le domaine de définition d'une autre est?
 - (a) Une opération ponctuelle
 - (b) Une opération auxiliaire
 - (c) Une opération partielle
 - (d) Une précondition
- 6. Un type algébrique abstrait doit être?
 - (a) Complet
 - (b) Conséquent
 - (c) Consistant
 - (d) Complément

- 7. Que représentent opé1 et opé2 dans l'axiome suivant (dans lequel e est un élément et l une liste) opé1(opé2 (e,1)) = 1?
 - (a) opé1 = fin, opé2 = tête
 - (b) opé1 = cons, opé2 = fin
 - (c) opé1 = fin, opé2 = cons
 - (d) opé1 = cons, opé2 = tête
- 8. Que représentent opé1 et opé2 dans l'axiome suivant (dans lequel e est un élément et l'une liste) opé1(opé2 (e,1)) = e?
 - (a) opé1 = premier, opé2 = tête
 - (b) opé1 = cons, opé2 = premier
 - (c) opé1 = premier, opé2 = cons
 - (d) opé1 = fin, opé2 = premier
- 9. Une opération qui n'est pas définie partout est?
 - (a) Une opération ponctuelle
 - (b) Une opération auxiliaire
 - (c) Une opération partielle
 - (d) Une précondition
- 10. Pour la déclaration

TYPES Vrai, Ouf UTILISE De, Truc

l'opération c'est-un : Vrai x Truc x De -> Ouf est?

- (a) Un observateur
- (b) Une opération interne
- (c) Une opération externe
- (d) Un observeur

QCM N°10

lundi 23 octobre 2017

Question 11

La négation de $\forall x \in \mathbb{R}^+ \quad x \geqslant 0$ est

- a. $\forall x \notin \mathbb{R}^+ \quad x < 0$
- b. $\forall x \notin \mathbb{R}^+ \quad x \leqslant 0$
- (c) $\exists x \in \mathbb{R}^+ \quad x < 0$
- d. $\exists x \in \mathbb{R}^+ \quad x \leqslant 0$
- e. rien de ce qui précède

Question 12

L'assertion $\forall x \in \mathbb{R} \quad \exists y \in \mathbb{R} \quad x+y>0 \text{ est \'equivalente \`a l'assertion } \exists y \in \mathbb{R} \quad \forall x \in \mathbb{R} \quad x+y>0.$

- a. vrai
- (b) faux

Question 13

Soit f une fonction de \mathbb{R} dans \mathbb{R} .

La traduction mathématique avec les quantificateurs de « f n'est pas la fonction nulle » est

- a. $\forall x \in \mathbb{R} \quad f(x) \neq 0$
- (b) $\exists x \in \mathbb{R} \quad f(x) \neq 0$
 - c. rien de ce qui précède

Question 14

La traduction mathématique avec les quantificateurs de « tout entier naturel est pair ou impair » est

- (a) $\forall n \in \mathbb{N} \quad \exists p \in \mathbb{N} \quad (n = 2p \text{ ou } n = 2p + 1)$
- b. $\exists p \in \mathbb{N} \quad \forall n \in \mathbb{N} \quad (n = 2p \text{ ou } n = 2p + 1)$
- c. rien de ce qui précède

Question 15

Soit f une fonction de \mathbb{R} dans \mathbb{R} .

La traduction mathématique avec les quantificateurs de « f s'annule au moins une fois » est $\exists x \in \mathbb{R}$ f(x) = 0.

- (a) vrai
- b. faux

Question 16

Les solutions de l'équation différentielle y'-xy=0 sur $\mathbb R$ sont les fonctions de la forme

- a. $ke^{x/2}$ où $k \in \mathbb{R}$.
- (b) $ke^{x^2/2}$ où $k \in \mathbb{R}$.
- c. kx où $k \in \mathbb{R}$.
- d. $k \ln(x)$ où $k \in \mathbb{R}$.
- e. rien de ce qui précède

Question 17

Les solutions de l'équation différentielle $(1+x^2)y'-y=0$ sur $\mathbb R$ sont les fonctions de la forme

- (a) $ke^{\arctan(x)}$ où $k \in \mathbb{R}$
- b. $\frac{k}{1+x^2}$ où $k \in \mathbb{R}$
- c. ke^{1+x^2} où $k \in \mathbb{R}$
- d. $k(1+x^2)$ où $k \in \mathbb{R}$
- e. rien de ce qui précède

Question 18

Les solutions de l'équation différentielle y''+9y=0 sur $\mathbb R$ sont les fonctions de la forme

- a. $k_1 e^{3x} + k_2 e^{-3x}$ où $(k_1, k_2) \in \mathbb{R}^2$
- b. $(k_1x+k_2)e^{3x}$ où $(k_1,k_2)\in\mathbb{R}^2$
- (c.) $k_1 \cos(3x) + k_2 \sin(3x)$ où $(k_1, k_2) \in \mathbb{R}^2$
- d. rien de ce qui précède

Question 19

Les solutions de l'équation différentielle y'' - 9y' + 20y = 0 sur $\mathbb R$ sont les fonctions de la forme

- (a.) $k_1 e^{4x} + k_2 e^{5x}$ où $(k_1, k_2) \in \mathbb{R}^2$
- b. $e^{5x}(k_1\cos(4x) + k_2\sin(4x))$ où $(k_1, k_2) \in \mathbb{R}^2$
- c. $e^{4x} (k_1 \cos(5x) + k_2 \sin(5x))$ où $(k_1, k_2) \in \mathbb{R}^2$
- d. $k_1e^{-4x} + k_2e^{-5x}$ où $(k_1, k_2) \in \mathbb{R}^2$
- e. rien de ce qui précède

Question 20

Les solutions de l'équation différentielle xy'-y=0 sur \mathbb{R}_+^* sont les fonctions de la forme

- a. $ke^{x/2}$ où $k \in \mathbb{R}$.
- b. $ke^{x^2/2}$ où $k \in \mathbb{R}$.
- (c) kx où $k \in \mathbb{R}$.
- d. $k \ln(x)$ où $k \in \mathbb{R}$.
- e. rien de ce qui précède

MCQ Article 3 (2017–18) (Texting and Taking Notes)
21. An is a person with senior managerial responsibilities in a business.
A) officer
B) accountant
C) executive
D) None of the above
22. Technology is changing so fast that it is hard to
A) keep on
B) give in
C) keep up
D) go on
23. I the child so that no one else could hear what I had to tell him.
A) pulled in
B) pulled aside
C) pulled out
D) pulled
24. If you are not sure what the word means, in a dictionary.
A) look it up
B) look it on
C) look it after
D) look it by
25. I just have to the first few minutes of my speech, and then I'll be fine.
A) get around
B) get in
C) go by
D) get through

26. The author thinks that 'the workplace is not ready for how often we are going to pull out our phones.' This statement is
A) True
B) False
C) Not given
27. According to the author, the older generations do not need to adapt to the habits of the current generation.
A) True
B) False
C) Not given
28. According to the author, the only way the current generation can prove that the phones are not only for distraction is
A) by not using them at all.
B) by using them only for calling.
C) to work to prove that the phones are also used for working.
D) None of the above.
29. During the meeting, while the author was on his phone,
A) everyone knew that he had been using it for taking notes.
B) the Vice President was the only one who knew that he was using it for taking notes.
C) some participants knew what he was using it for.
D) everyone assumed that he was checking his Tweeter feeds.
30. The meeting described in the article was about
A) mobile phones
B) a new app that helps students choose their colleges
C) company ethics.
D) a digital blackboard.

Lecture 11

- 31. Dispositional apprehension is
 - a. the fear of speaking in public under any circumstance.
 - the fear or anxiety associated with real or anticipated communication with others.
 - the fear of speaking to a dispositional audience.
 - All of the above. d.
- 32. Which of the following is/are an example of how apprehension manifests itself?
 - Decreased heart rate
 - Trembling hands b.
 - c. Using vocal fillers
 - B and C
- 33. One of the things that we know about communication anxiety with absolute certainty is that it is not
 - a. normal.
 - b. abnormal.
 - medically treated. C.
 - d. common.
- 34. Situational apprehension is rejecting
 - the fear or anxiety associated with real or anticipated communication with others.
 - the fear of speaking in public under any circumstance.
 - the fear of speaking in a very particular context. C.
 - d. None of the above.
- 35. "The fear or anxiety associated with real or anticipated communication with others" is the definition of
 - dispositional apprehension.
 - situational apprehension.
 - communication apprehension.
 - positional apprehension.

Lecture 12

- 36. Which of the following are aspects of vocal delivery?
 - a. Volume
 - **Emblems** b.
 - Pitch C.
 - A and C d.
- 37. When giving a presentation you should dress
 - a. more casually than your audience.
 - at the same level as your audience. b.
 - one level better than your audience. C.
 - in formal business attire.
- 38. Which of the following is a benefit of extemporaneous speaking?
 - a. Extemporaneous speaking allows you to adapt to your audience as you speak.
 - Extemporaneous speaking is tied to your memory.
 - Extemporaneous speaking does not allow you to explain information in multiple ways. C.
 - All of the above.
- 39. The typical American native English speaker speaks approximately ___X__ words per minute.
 - a. 165-180
 - 180-195 b.
 - 150-165 C.
 - 135-150
- 40. What are the two types of translation that are most common?
 - a. Concurrent translation and simultaneous translation.
 - b. Deferred translation and delayed translation.
 - Deferred translation and simultaneous translation.
 - Simultaneous translation and delayed translation.

EPITA-S1 2017/20 18

O.C.M n°4 de Physique

41- Le vecteur unitaire \vec{u}_{θ} des coordonnées cylindriques vérifie

a)
$$\frac{d\vec{u}_{\theta}}{dt} = -\dot{\theta} \vec{u}_{\theta}$$
 © $\frac{d\vec{u}_{\theta}}{dt} = -\dot{\theta} \vec{u}_{\rho}$

b)
$$\frac{d\vec{u}_{\theta}}{dt} = \vec{0}$$
 d) $\frac{d\vec{u}_{\theta}}{dt} = \stackrel{\bullet}{\theta} \vec{u}_{\rho}$

42- Le vecteur unitaire \vec{u}_{ρ} des coordonnées cylindriques vérifie :

a)
$$\frac{d\vec{u}_{\rho}}{dt} = \vec{0}$$
 c) $\frac{d\vec{u}_{\rho}}{dt} = -\dot{\theta} \vec{u}_{\theta}$

43- Le vecteur vitesse en coordonnées cylindriques s'écrit :

(a)
$$\vec{V} = \stackrel{\cdot}{\rho} . \vec{u}_{\rho} + \stackrel{\cdot}{\rho} \stackrel{\cdot}{\theta} \vec{u}_{\theta} + \stackrel{\cdot}{z} . \vec{u}_{z}$$

b)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + \stackrel{\bullet}{\theta} \vec{u}_{\theta} + \stackrel{\bullet}{z} . \vec{u}_{z}$$

c)
$$\vec{V} = \stackrel{\bullet}{\rho} . \vec{u}_{\rho} + z . \vec{u}_{z}$$

44- Les équations horaires d'un mouvement en coordonnées cartésiennes sont données par:

$$O\vec{M} = \begin{pmatrix} x(t) = \rho_0 . e^{\theta(t)} . \cos(\theta(t)) \\ y(t) = \rho_0 . e^{\theta(t)} . \sin(\theta(t)) \\ z(t) = \rho_0 . \ln(1 + \theta(t)) \end{pmatrix}; \text{ Tels que : } \theta(t) = \omega . t \text{ ; } \omega, \rho_0 \text{ sont constantes positives.}$$

Ces équations écrites en coordonnées cylindriques donneraient

(a)
$$O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0.e^{\theta(t)} \\ z(t) = \rho_0.\ln(1+\theta(t)) \end{pmatrix}$$

b) $O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0(\cos(\theta(t)) - \sin(\theta(t))) \\ z(t) = \rho_0.\ln(1+\theta(t)) \end{pmatrix}$
c) $O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0.e^{\theta(t)}(\cos(\theta(t)) + \sin(\theta(t))) \\ z(t) = \rho_0.\ln(1+\theta(t)) \end{pmatrix}$

b)
$$O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0(\cos(\theta(t)) - \sin(\theta(t))) \\ z(t) = \rho_0 \cdot \ln(1 + \theta(t)) \end{pmatrix}$$

c)
$$O\vec{M} = \begin{pmatrix} \rho(t) = \rho_0 . e^{\theta(t)} (\cos(\theta(t)) + \sin(\theta(t))) \\ z(t) = \rho_0 . \ln(1 + \theta(t)) \end{pmatrix}$$

45- Le vecteur vitesse d'un mouvement circulaire de rayon R, en coordonnées polaires s'écrit:

a)
$$\vec{V} = R \dot{\theta}(t) \vec{u}_{\alpha} + \dot{\theta}(t) \vec{u}_{\beta}$$

b)
$$\vec{V} = -R \dot{\theta}(t) \vec{u}_a$$

a)
$$\vec{V} = R \dot{\theta}(t) \vec{u}_{\rho} + \dot{\theta}(t) \vec{u}_{\theta}$$
 b) $\vec{V} = -R \dot{\theta}(t) \vec{u}_{\rho}$ c) $\vec{V} = R \dot{\theta}(t) \vec{u}_{\rho}$ d) $\vec{V} = R \dot{\theta}(t) \vec{u}_{\theta}$

- 46- L'équation de la trajectoire du mouvement d'équations horaires $\begin{cases} x(t) = a\cos(\omega t) \\ v(t) = a\sin(\omega t) \end{cases}$
 - est de la forme :

a)
$$x^2 - y^2 = a^2$$

(b)
$$x^2 + y^2 = a^2$$

a)
$$x^2 - y^2 = a^2$$
 (b) $x^2 + y^2 = a^2$ (c) $(x+y)^2 = a^2$ d) $\frac{x^2}{y^2} = a^2$

d)
$$\frac{x^2}{v^2} = a^2$$

47- Dans la base de Frenet le vecteur vitesse s'écrit

a)
$$\vec{V} = R(t) \dot{\theta}(t) \vec{u}_N$$
 b) $\vec{V} = R(t) \dot{\theta} \vec{u}_T$ c) $\vec{V} = R(t) \dot{\theta}(t) \vec{u}_T$

b)
$$\vec{V} = R(t) \stackrel{\bullet}{\theta} \vec{u}$$

(c)
$$\vec{V} = R(t) \dot{\theta}(t) \vec{u}_1$$

48- Le vecteur accélération en base de Frenet \vec{a} s'écrit

a)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R^2} \end{pmatrix}$$

b)
$$\vec{a} = \begin{pmatrix} a_T = \frac{d\rho}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$$

a)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R^2} \end{pmatrix}$$
 b) $\vec{a} = \begin{pmatrix} a_T = \frac{d\rho}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$ c) $\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} \\ a_N = \frac{V^2}{R} \end{pmatrix}$

49- Les composantes du vecteur accélération d'un mouvement circulaire décéléré, écrites dans la base de Frenet donnent

a)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} < 0 \\ a_N = 0 \end{pmatrix}$$

a)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} < 0 \\ a_N = 0 \end{pmatrix}$$
 b) $\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} < 0 \\ a_N = \frac{V^2}{R} \end{pmatrix}$ c) $\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} > 0 \\ a_N = \frac{V^2}{R} \end{pmatrix}$

c)
$$\vec{a} = \begin{pmatrix} a_T = \frac{dV}{dt} > 0 \\ a_N = \frac{V^2}{R} \end{pmatrix}$$

50- Supposons que : $V = \frac{2}{\sqrt{1-t^2}}$ et $a_N = \frac{2}{1-t^2}$, on peut dire que le rayon de courbure vaut:

a)
$$R = \sqrt{1 - t^2}$$
 b) $R = \frac{1}{\sqrt{1 - t^2}}$ c) $R = 2$

b)
$$R = \frac{1}{\sqrt{1 - t^2}}$$

$$(c) R = 2$$

QCM Electronique - InfoS1

Pensez à bien lire les questions ET les réponses proposées

L'intensité du courant qui entre dans un générateur la même que l'intensité de celui qui en ressort.

(a-) VRAI

b- FAUX

Q2. Une résistance court-circuitée a :

- a. un courant infini qui la traverse
- c. une tension infinie à ses bornes
- (b.) une tension nulle à ses bornes
- d. Aucune de ces réponses

Q3. Quand on associe 2 résistances en série, on conserve :

- a. Le courant qui les traverse
- c. Rien du tout
- b. la tension à leurs bornes

Soit le circuit suivant avec I_0 , E_2 , E_3 , R_1 , R_2 , R_3 , R_4 supposés connus. Q4.

Quelle est l'affirmation fausse?

- a- I_2 ne dépend pas de R_3
- c- $U_1 = -R_1 \cdot I_0$

(b) I_0 dépend de R_1

d- $U_0 = E_2 + R_1 \cdot I_0$

Q5. Soit le circuit ci-contre. Quelle égalité est fausse ?

- a- $U_1 = -R_1 I$
- b) $U_2 = R_2 \cdot (I_2 I_4)$
- c- $U_3 = -R_3$. I d- $E_1 E_2 = U_2 U_1 U_3$

- Q6. Dans le circuit ci-contre, que vaut U?
 - a. 2,5 V
 - (b.) -2,5 V
 - c. 5V
 - d. -5V

- Q7. Quelle est la bonne formule ?
 - a- $I_1 = \frac{3}{5}$, I

 $C - I_1 = \frac{1}{4} \cdot I$

b- $I_1 = \frac{1}{5}$. I

 $d-I_1 = \frac{3}{4}I$

Soit le circuit ci-contre (Q8 à 10) :

- Q8. La tension V_1 est:
 - $\widehat{\hspace{0.1in}}$ a. De même signe que I_1
 - b. De signe opposé à I_1
 - c. De même signe que V_2
 - d. Nulle

Q9. Le courant I_1 est égal à :

a.
$$\frac{V_0}{R_1 + R_2}$$

b.
$$\frac{V_2}{R_2}$$

- c. $I_3 + \frac{V_3}{R_3}$
- (d.) $I_3 + \frac{V_3}{R_4}$

Q10. Le courant I_4 est égal à :

a.
$$I_1.\frac{R_4}{R_3+R_4}$$

(b.)
$$I_1 \cdot \frac{R_3}{R_3 + R_4}$$

c. $I_1 - \frac{V_3}{R_4}$

d.
$$I_3 + \frac{V_3}{R_4}$$

QCM 4 Architecture des ordinateurs

Lundi 23 octobre 2017

- 11. $70_{16} 1_{16} =$
 - A. 6F₁₆
 - B. 69₁₆
 - C. 60₁₆
 - D. 6A₁₆
- 12. $12321_4 =$
 - A. 110100011₂
 - B. 110110101₂
 - C. 110111001₂
 - D. 110101001₂
- 13. $11101001011_2 11111010100_2 =$
 - A. 1100110111₂
 - B. 1001110111₂
 - C. 1101110111₂
 - D. 1011110111₂
- 14. $1011100010_2 / 100_2 =$
 - A. 10111010,1₂
 - B. 10111000,1₂
 - C. 101110001₂
 - D. 10111001,1₂
- 15. $1110110_2 + 1110111_2 + 1001011_2 + 101110_2 =$
 - A. 1 0110 0110₂
 - B. 1 0110 0100₂
 - C. 1 0110 0010₂
 - D. 1 0111 0110₂

- 16. Combien d'entiers non signés peut-on coder sur n bits ?
 - A. $2^{n}-1$
 - B. 2^{n-1}
 - C. $2^{n-1}-1$
 - D. 2^n
- 17. Combien d'entiers signés peut-on coder sur n bits ?
 - A. $2^{n}-1$
 - B. 2^{n-1}
 - C. $2^{n-1}-1$
 - D. 2"
- 18. Soit l'addition sur 8 bits signés suivante : 150 + 105

Le résultat sur 8 bits signés est :

- A. -1
- B. 0
- C. 255
- D. Cette addition n'est pas possible.
- 19. Une ou plusieurs réponses sont possibles :

Soit la soustraction sur 8 bits suivante : $01101100_2 - 01011001_2 = 00010011_2$

- A. Si les nombres sont non signés, il y a un dépassement non signé.
- B. Si les nombres sont non signés, il n'y a pas de dépassement non signé.
- C. Si les nombres sont signés, il y a un dépassement signé.
- D. Si les nombres sont signés, il n'y a pas de dépassement signé.
- 20. Une ou plusieurs réponses sont possibles :

Soit l'addition sur 8 bits suivante : $01101100_2 + 01011001_2 = 11000101_2$

- A. Si les nombres sont non signés, il n'y a pas de dépassement non signé.
- B. Si les nombres sont non signés, il y a un dépassement non signé.
- C. Si les nombres sont signés, il n'y a pas de dépassement signé.
- D. Si les nombres sont signés, il y a un dépassement signé.