Introduction to Operating Systems CMPS 111, Winter 2014

Prof. Darrell Long TA: Daniel Lipovetsky

Welcome!

Prof. Darrell Long E2–371 darrell@ucsc.edu

Daniel Lipovetsky E2-380 danl@cs.ucsc.edu

- Lab sections
 - TBA (Daniel)
 - TBA (Daniel)
- Office hours
 - Prof. Long: Wednesday 1400, and by appointment
 - Daniel:TBA
- Piazza:TBA

Introduction

- Introduction, concepts, review & history
- Processes
 - Synchronization
 - Scheduling
 - Deadlock
- Memory management, address translation, and virtual memory
- Operating system management of I/O
- File systems
- Security & protection
- Case study: some of Unix (BSD), Linux, NT

Textbooks

Required

Modern Operating Systems, 3rd edition (Tanenbaum)

Optional

Operating Systems: Design & Implementation (3rd edition)

The Design and Implementation of FreeBSD

Course requirements

- Two exams
 - Midterm in the 5th–6th week
 - Final exam
- Projects
 - 4 projects during the quarter
 - About 2 weeks per project
- + Homework
 - 5–6 homeworks during the quarter
 - I week per homework
 - Graded on a 0–5 scale
 - Need not do every homework to pass the class (but it certainly helps)
- Class participation

Grading

- Final grades based on:
 - Projects: 45% all projects weighted equally
 - Homework: 8% all homeworks weighted equally
 - Midterm: 17%
 - Final: 25%
 - Class participation: 5%
- Approximate grade ranges:
 - A: 89% 100%
 - B: 79% 88%
 - C: 69% 78%
 - D: 60% 68%
- To pass the class, you must
 - Complete all exams and projects (with non-zero grades)
 - Have at least a 50% average on exams and 50% average on projects
 - Satisfying both conditions does not guarantee a passing grade
 - Example: 51% on exams and 51% on projects ⇒ no pass

Programming projects

- Modify MINIX 3
 - Runs on x86 hardware
 - Virtual machine software runs on Mac OS X, Windows XP, Solaris
 - Tool set runs on MINIX
- Implement some of these:
 - Shell
 - Synchronization
 - Scheduling
 - System calls
 - Memory management
 - File system
- Learn about operating system structures
- Learn how to modify existing code
- Learn how an OS really works!

Project logistics

- For each project, hand in
 - Detailed design description
 - Code files & Makefile used to implement the project
 - Files used for testing your implementation
 - Documentation on how to build, run and test the project
- Submit code online
 - Work may be done on university-run systems or elsewhere
 - Probably better to use your own computer...
- MINIX install CD image available online
 - VirtualBox runs on some campus PCs
 - Free to anyone (open source)
 - VMware is free to students
 - Source code, tools included on install CD

Getting help

This can be a tough class—get help if you need it!

• The course staff (professor, TA) are here to help you learn

the material

It's up to you to ask for help

- Don't wait too long!
- Ask questions in class
- Go to section
- Visit office hours (professor, TA)
- Ask general questions on the course newsgroup
- * Ask specific questions by electronic mail to staff
 - Expect short answers, not long explanations

Academic honesty

- You are expected to adhere to the highest ethical standards
 - All work you submit must be your own
 - You must give credit where it is due
- Plagiarism of any form is unacceptable!
- Consequences of dishonest conduct
 - A letter will be sent to your department, the School of Engineering, and the provost of your college
 - You will fail the course
- Bottom line: don't cheat!

What is cheating?

Homework

- You may discuss general concepts with other students
- You may not discuss answers to specific questions

Projects

- You may collaborate as part of a project group
 - All members of the group are graded equally
 - You must complete the first assignment on your own
- Collaboration with anyone outside your group is limited
 - Follow the Simpsons rule...
 - Give credit to anyone from whom you get help

Exams

- You may not collaborate during an exam under any circumstances
- Studying together before the exam is, of course, OK

The Simpsons rule (Gilligan's Island Rule)

- You may discuss the project or homework with others
 - General issues only
- You may not take notes
- You must take a 30 minute break before working on any III assignments
 - Watch The Simpsons or other (good) cartoons
 - Watch mindless TV
 - Work on other classes
 - Eat
 - Sleep

Secrets to success in CMPS 111

- Start projects early!
 - Write up your design document before writing code!
 - Spend less time writing code
 - Make it easier to get help from the professor and TA
 - Use the debugger
 - Details in lab section...
- Do the homework to test your own knowledge
 - If you don't understand something, ask
- The best time to get help is as soon as possible
 - Waiting until the last minute won't leave enough time for us to help you
 - You can always finish early and take the last day off....

What to do after graduation...

- Grad school vs. work?
 - Work: good if you want money now
 - Grad school typically covers expenses and tuition, but you won't get rich there...
 - Grad school: good if you like research (not being a code monkey)
 - Start now to apply for Fall 2012 (too late for Fall 2011)
 - Line up letter writers
 - Figure out where you want to go
 - Talk to faculty!
- Either way, join the ACM / IEEE / USENIX
 - Community of colleagues
 - Access to papers
 - Informative (and fun) conferences
 - Cheap to join as a student!

Getting numbers right

- Many problems in computer systems involve numbers
 - How many disk requests per second?
 - How much memory?
 - How many interrupts can each CPU handle?
- * Estimation can be useful to check your answer
- ◆ Example: how many disk requests can your five disk system handle per second?
 - Estimate
 - Disk requests take about 10 ms each
 - Each disk can do about 100 per second
 - Five disks can do 500 per second
 - Actual (tentative) answer: 54,000 requests per second
 - Is this likely to be right?

Estimates can be helpful in other ways

- Question: how much water flows out of the Mississippi River in a year?
- You could look the answer up on-line, but is it right?
- Solution: estimate
 - Two possible ways to get the answer
 - If they both agree (or are close), you're probably right...
 - The solution may not be in useful units (in this case, I found one in cubic feet per second)
- What are the two ways to figure this out?
- To avoid gross errors, you should know
 - Metric prefixes (kilo, milli, giga, etc.)
 - How to estimate using powers of ten (scientific notation)
 - How to convert powers of two to powers of ten

