Aufgabe 4

 K_1 ist eine Ja-Instanz. Die Lösung ist 3, 8, also $\left[\frac{bb}{b}\right]$, $\left[\frac{aa}{baa}\right]$ ergeben oben und unten das gleich Wort bbaa.

 K_2 ist eine Nein-Instanz.

Begründung:

Bei Startdomino gibt es zwei Möglichkeiten: $\left[\frac{ab}{abh}\right]$ oder $\left[\frac{aa}{agh}\right]$

<u>1.Fall:</u> Startdomino= $\left[\frac{ab}{abb}\right]$, benötigt ein anderes Domino, das mit b anfängt und im oben liegt, aber es gibt kein solches Domino in K_2 .

<u>2.Fall:</u> Startdomino= $\left[\frac{aa}{aab}\right]$, benötigt auch anderes Domino, das mit b anfängt und im oben liegt, aber es gibt kein solches Domino in K_2 .

Aufgabe 5

Zu zeigen: eine Sprache L ist endscheidbar $\iff L$ auf die Sprache L_{01} reduzierbar ist " \Rightarrow " zu zeigen: L entscheidbar $\Rightarrow L \le L_{01}$

$$\exists f: w \in L \iff f(w) \in L_{01}$$

Für rekursive Sprache L existiert ein TM M, die L entscheiden kann.

Korrektheit:

$$w \in L \Rightarrow M$$
 akzeptiert w

$$\Rightarrow f(w) = 01$$

$$\Rightarrow f(w) \in L_{01}$$

$$w \notin L \Rightarrow M$$
 verwirft w

$$\Rightarrow f(w) = 10$$

$$\Rightarrow f(w) \notin L_{01}$$

" \Leftarrow " zu zeigen: $L \leq L_{01} \Rightarrow L$ entscheidbar

Lemma: Falls $L_1 \leq L_2$ und L_2 rekursiv ist, ist L_1 auch rekursiv.

zu zeigen: L_{01} ist rekursiv

Für L_{01} konstruieren wir eine **2-Band-TM** M_{01}

M_{01}							
	B	0	0	1	1	B	
	В	0	0	1	1	В	

- (i) Auf beide Bänder speichert M die Eingabewort w.
- (ii) Leseköpfe stehen auf dem ersten Zeichen auf 1.Band und auf dem letzten Zeichen auf 2.Band.
- (iii) Der 1.Kopf geht jeder Schritt nach **recht** und der 2.Kopf geht jeder Schritt nach **links**. Im jeden Schritt soll M ein 0 (vom 1.Band) und ein 1 (vom 2.Band) lesen, sonst wird w verwirft.
- (iv) Dann läuft M_{01} wie 3. Schritt aber mit folgenden Übergänge:

1.Band	2.Band	Aktion
0	1	laufe weiter
1	0	akzeptiert
0	0	verwirft
1	1	verwirft

Mit obiger Konstruktion ist klar, dass L_{01} durch M_{01} entscheiden kann, d.h. L_{01} ist entscheidbar. Folglich ist L entscheidbar (wegen des Lemmas).

Aufgabe 6

Wir bezeichnen die Probleme von a) und b) als PKP_a und PKP_b .

b)

Zu zeigen: $K \in PKP \iff f(K) \in PKP_b$

Die Beschreibung von f:

Sei K die die Eingabe für PKP und $K = \left\{ \begin{bmatrix} \frac{x_1}{y_1} \end{bmatrix}, \dots, \begin{bmatrix} \frac{x_k}{y_k} \end{bmatrix} \right\}$.

- Fall 1 Wenn es in K keine Dominos gibt, wo das obere und das untere Wort gleich lang sind, so sei f(K) = K.
- Fall 2 Ansonsten machen wir für die Dominos (oben und unten gleich lang) folgendes: Wir bezeichnen solche Dominos als $K' = \left\{ \begin{bmatrix} x_{l_1} \\ y_{l_1} \end{bmatrix}, \cdots, \begin{bmatrix} x_{l_n} \\ y_{l_n} \end{bmatrix} \right\}$ (die Reihenfolge spielt keine Rolle).

Dann kombinieren wir Dominos aus K' (oben und unten sind gleich lang) mit einem anderen Domino aus $K\backslash K'$ (oben und unten sind verschieden lang):

Zum Beispiel können wir $\left[\frac{x_{l_1}}{y_{l_1}}\right]$ mit $\left[\frac{x_i}{y_i}\right]$ (einer aus $K\backslash K'$) kombinieren. In dem Fall bekommen wir zwei neue Dominos $\left[\frac{x_{l_1}x_i}{y_{l_1}y_i}\right]$ und $\left[\frac{x_ix_{l_1}}{y_iy_{l_1}}\right]$ (einmal vorne, einmal hinter).

Insgesamt können wir $2 \times n \times (k-n)$ mal neue Dominos konstruieren. Man kann klar sehen, in solchen Dominos stehen immer oben und unten verschieden lang Wörter. Wir bezeichnen solche konstruierte Dominos als K''. So sei $f(K) = \{K \setminus K', K''\}$.

Korrektheit:

 $K \in PKP \Longrightarrow f(K) \in PKP_b$

Sei (i_1, \dots, i_n) eine Lösung für K, d.h.

$$x_{i_1}x_{i_2}\cdots x_{i_n}=y_{i_1}y_{i_2}\cdots y_{i_n}$$

Für Fall 1 ist es klar, $f(K) \in PKP_b$.

Im $Fall\ 2$ gibt es immer eine Lösung für f(K), dessen entsprechende Wörter gleich wie oben ist.

Z.B. die Länge von x_{i_j} ist gleich wie y_{i_j} für ein $j \in \{1, \dots, n\}$. So ein Domino steht nicht in f(K). Aber können wir dieser durch $\left[\frac{x_{i_{j-1}}x_{i_j}}{y_{i_{j-1}}y_{i_j}}\right]$ oder $\left[\frac{x_{i_j}x_{i_{j+1}}}{y_{i_j}y_{i_{j+1}}}\right]$ aus f(K) ersetzen und löschen die entsprechende Dominos:

$$\left[\frac{x_{i_1}}{y_{i_1}}\right] \cdots \left[\frac{x_{i_j}}{y_{i_j}}\right] \cdots \left[\frac{x_{i_n}}{y_{i_n}}\right] \Longrightarrow \left[\frac{x_{i_1}}{y_{i_1}}\right] \cdots \left[\frac{x_{i_j}x_{i_{j+1}}}{y_{i_j}y_{i_{j+1}}}\right] \left[\frac{x_{i_{j+2}}}{y_{i_{j+2}}}\right] \cdots \left[\frac{x_{i_n}}{y_{i_n}}\right]$$

 $K \notin PKP \Longrightarrow f(K) \notin PKP_b$

offensichtlich gilt wegen der Konstruktion

Wegen $K \in PKP \iff f(K) \in PKP_b$ und Unentscheidbarkeit von PKP ist PKP_b auch unentscheidbar.

Die Lösung für ein KEPKPa ist das Überschnitt von Kategorie 1.X und Kategorie 2.X (erzählt im Folgendes.)

Wir ordnen die gegebene Dominos K in vier Kategorie an.

- 1.1. ein Domino, dessen oberes und unteres Wort gleich viel a hat.
- 1.2. Menge von Dominos, in denen das gesamte Wort gleich viel a enthält wie das gesamte untere Wort. (deren Reihenfolge Spielt keine Rolle und das gleiche Domino kann mehrmals vorkommen.)
- 2.1. ein Domino, dessen oberes und unteres Wort gleich viel b hat.
- 2.2. Menge von Dominos, in denen das gesamte Wort gleich viel b enthält wie das gesamte untere Wort. (deren Reihenfolge Spielt keine Rolle und das gleiche Domino kann mehrmals vorkommen.)
 - 1.X steht die Mengen von Domino, die Ja-Instanz sind, wenn wir nur a zählen, d.h. oben und unten a gleich oft Vorkommen.
 - 2.X analog
- Um solche Dominos zu suchen, die in 1.1 und 2.1. Kategorie stehen, kann man einfach jeder gegebene Dominos hinteremander zählen. Offensichtlich ist der Part berechenbar.
 - Für 1.2, und 2.2. ist ähnlich wie Tutoriumaufgabe 3.
 - Dominos Df, was oben die Anzahl von a x>0 viel ist und Dominos De, was unten die Anzahl von a y>0 viel ist Dann ist Df y-mal, dann De x-mal, die Menge, die wir brauchen.

Aber es ist mehr kompliziet.

Z.B. Für Paar "aa" und "aaa"

"aa": Es steht für die Dominos, in den es oben zwei a und unten ein a gibt.

Z.B. $\frac{aa}{ab}$, $\frac{aab}{ba}$, ... $\in K$ $\frac{aa}{aaa}$; $\frac{b}{aaa}$, $\frac{b}{abaa}$, $\frac{b}{bbaaa}$, ... $\in K$

3 mal "aa" plus 1 mal "aaa" ist dann die Mengen, die wir brauchen.

D.h. Alle Kombinationen von obigen Dominos.

" $\frac{aa''}{a} = \frac{aa''}{a} = \frac{aa''}{a} + \frac{aa''}{aaa} + \frac{b}{aaa}$ Wie $\left\{\frac{aa}{ab}, \frac{aab}{ba}, \frac{aa}{ab}, \frac{b}{aaa}\right\}$ Midichlopitan

Und Mengen aus 1.2 und 2-2 sind auch endlich viel. Somit ist der Part auch berechenbar. Dann ist das überschnitt von Kategorie 1.X und Kategorie 2.X die Lösung für ein KEPKPa