Примеры к тесту по оптике (тест №1)

Раздел 1. Геометрическая оптика. Формула тонкой линзы.

1. Фокусное расстояние собирающей линзы F=0,2 м. Если линза дает мнимое изображение объекта с увеличением Γ =5, то расстояние от объекта до линзы равно ...

Раздел 2. Прохождение лучей через линзу

2. Лучи А и В падают на тонкую линзу (фокусы линзы обозначены точками). Указать правильно построенные лучи после прохождения линзы.

Раздел 3. Бегущие и стоячие волны

3. В пространстве установилась стоячая электромагнитная волна, магнитная компонента которой изменяется по закону: $B_Y = B_\theta \cos(\omega t) \sin(kx)$.

Учитывая, что $E_{\theta}>0$ и $B_{\theta}>0$, указать закон изменения соответствующей электрической компоненты.

Раздел 4. Электромагнитные волны –1

4. В вакууме распространяется плоская электромагнитная волна с частотой излучения $v=2\cdot10^{14}$ Гц. Волновое число k равно

Раздел 5. Электромагнитные волны –2

5. В вакууме распространяется плоская монохроматическая волна интенсивностью I_0 =20 Дж/(м^2 с). Найти амплитуду напряженности H_0 магнитного поля.

 $\epsilon_0 \!\!=\!\! 0.885 \ 10^{\text{-}11} \ \Phi/\text{m}, \ \mu_0 \!\!=\!\! 1.257 \ 10^{\text{-}6} \ \Gamma_\text{H}/\text{m}.$

Раздел 6. Давление света

6. Плоская световая волна интенсивности I падает на плоскую зеркальную поверхность с коэффициентом отражения R=0,3. Угол падения равен 60°. Если давление света на поверхность равно p=0,36 мкПа, то интенсивность волны равна

Раздел 7. Схема Юнга

7. В схеме Юнга два когерентных источника (длина волны λ) находятся на расстоянии d=0.4мм друг от друга. Ширина интерференционных полос на экране, расположенном на расстоянии L=2м от источников, равна Δx =5мм. Найти длину волны λ .

Раздел 8. Бипризма Френеля

8. В интерференционной схеме с бипризмой Френеля расстояние от точечного источника с λ =400нм до экрана равно 200см. Расстояние от бипризмы с показателем преломления n=1.5 и преломляющим углом α до экрана равно 90см. Найти угол бипризмы α , если ширина интерференционной полосы равна 0.12мм.

Раздел 9. Временная когерентность

9. Квазимонохроматическое излучение с длиной волны λ =600нм имеет спектральную ширину линии $\Delta\lambda$ =0.02нм. Найти время когерентности излучения.

Раздел 10. Преобразование Фурье

10. Сигнал
$$f(t)$$
 задается формулой: $f(t) = \begin{cases} a \cdot \cos \omega_0 t, & |t| \le \frac{\tau}{2} \\ 0, & |t| > \frac{\tau}{2} \end{cases}$

Спектральная плотность $|f(\omega)|^2$ сигнала имеет вид (выбрать график):