

Gowin 设计物理约束

用户指南

SUG935-1.4.1, 2023-11-30

版权所有 © 2023 广东高云半导体科技股份有限公司

GO₩IN富云、※、Gowin、小蜜蜂、晨熙、云源以及高云均为广东高云半导体科技股份有限公司注册商标,本手册中提到的其他任何商标,其所有权利属其拥有者所有。未经本公司书面许可,任何单位和个人都不得擅自摘抄、复制、翻译本文档内容的部分或全部,并不得以任何形式传播。

免责声明

本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。除高云半导体在其产品的销售条款和条件中声明的责任之外,高云半导体概不承担任何法律或非法律责任。高云半导体对高云半导体产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。高云半导体对文档中包含的文字、图片及其它内容的准确性和完整性不承担任何法律或非法律责任,高云半导体保留修改文档中任何内容的权利,恕不另行通知。高云半导体不承诺对这些文档进行适时的更新。

版本信息

日期	版本	说明	
2020/05/09	1.0	初始版本。	
2020/09/04	1.1	● FloorPlanner 菜单栏优化;	
2020/00/04	1	● 支持 Back-annotate Physical Constraints 功能。	
2021/06/10	1.2	添加 Port 属性约束和 Vref Constraints 联合使用说明。	
2021/11/02	1.3	● 修改文档部分描述;	
		● 调整文档结构。	
2022/10/28	1.3.1	删除 GW1NS-2 系列器件。	
2022/12/16	1.3.2	● 新增 A.10 其他约束;	
2022/12/10		● VCC 更新为 VCCIO。	
2023/03/31	1.3.3	● 屏蔽 Slew Rate 的设置;	
2023/03/31	1.3.3	● 删除 Find 功能。	
	1.3.4	● 更新 BUFS 的描述;	
2023/05/25		● Clock Assignment 更新为 Clock Net Constraints;	
2023/03/23		● Quadrant Constraints 更新为 GCLK Primitive Constraints;	
		● Hclk Constraints 更新为 HCLK Primitive Constraints。	
2023/06/30	1.3.5	更新附录 A 物理约束语法规范中的原语组约束/参考电压约束/全局时钟分配约	
2020/00/00		東描述。	
2023/08/18	1.4	删除 Timing Paths 功能。	
	1.4.1	● 更新第3章 FloorPlanner 界面中的部分截图;	
2023/11/30		● 更新 "HCLK/GCLK Primitive Constraints" 选择 "Instance" 时弹出的对	
		话框标题描述。	

i

目录

目录	i
图目录	iii
表目录	vi
1 关于本手册	1
1.1 手册内容	1
1.2 相关文档	1
1.3 术语、缩略语	1
1.4 技术支持与反馈	2
2 简介	3
3 FloorPlanner 界面	4
3.1 启动	4
3.2 界面	6
3.2.1 菜单栏	6
3.2.2 Summary 和 Netlist 窗口	17
3.2.3 Package View 窗口	20
3.2.4 Chip Array 窗□	25
3.2.5 Constraint 编辑窗口	31
3.2.6 Message 窗口	35
4 FloorPlanner 使用	36
4.1 新建约束文件	36
4.2 编辑约束文件	38
4.2.1 编辑约束示例	38
4.2.2 编辑 I/O 约束	39
4.2.3 编辑原语约束	41
4.2.4 编辑组约束	42
4.2.5 编辑资源预留约束	46
4.2.6 编辑全局时钟分配约束	47
4.2.7 编辑全局时钟原语约束	48
4.2.8 编辑高速时钟原语约束	49

4.2.9 编辑参考电压约束	50
附录 A 物理约束语法规范	53
A.1 I/O 位置约束	53
A.2 I/O 属性约束	54
A.3 原语位置约束	55
A.4 组约束	58
A.4.1 原语组约束	58
A.4.2 相对组约束	60
A.5 资源预留约束	61
A.6 参考电压约束	61
A.7 全局时钟原语约束	62
A.8 全局时钟分配约束	63
A.9 高速时钟原语约束	64
A.10 其他约束	65
A.10.1 JTAGSEL_N net 约束	65
A.10.2 RECONFIG N net 约束	65

图目录

图 3-1 菜单栏启动 FloorPlanner	. 4
图 3-2 Process 窗口启动	. 5
图 3-3 Start Page 窗口启动	. 5
图 3-4 FloorPlanner 界面	. 6
图 3-5 File 菜单	. 7
图 3-6 Open Physical Constraints	. 7
图 3-7 Constraints 菜单	. 7
图 3-8 原语查找对话框	. 8
图 3-9 新建原语组对话框	. 9
图 3-10 正确原语组对话框	. 10
图 3-11 无效位置	. 10
图 3-12 无效位置	. 10
图 3-13 创建相对位置组对话框	. 11
图 3-14 正确的相对组对话框	. 11
图 3-15 预留约束	. 12
图 3-16 时钟约束	. 12
图 3-17 创建全局时钟原语约束(GW1N-1)	. 13
图 3-18 创建全局时钟原语约束(GW2A-18)	. 13
图 3-19 创建高速时钟原语约束	. 14
图 3-20 参考电压约束	. 14
图 3-21 Tools 菜单	. 15
图 3-22 Back-annonate Physical Constraints 对话框	. 15
图 3-23 反标 Port 布局信息	. 16
图 3-24 View 菜单	. 16
图 3-25 Windows 菜单	. 17
图 3-26 Summary 窗口	. 17
图 3-27 Netlist 窗口	. 18
图 3-28 BUS 和非 BUS 结合显示	. 19
图 3-29 层级显示	. 19
图 3-30 Netlist 右键功能	. 20

图 3-31 GW1NRF-4B-QFN48 Package View 窗口	21
图 3-32 Package View 右键功能	22
图 3-33 差分对显示	22
图 3-34 Top View	23
图 3-35 Bottom View	23
图 3-36 GW1N-9-WLCSP81M Top View	24
图 3-37 GW1N-9-WLCSP81M Bottom View	24
图 3-38 Chip Array 窗口	25
图 3-39 网格模式约束	26
图 3-40 宏单元模式约束	26
图 3-41 原语模式约束	27
图 3-42 Chip Array 右键功能	29
图 3-43 Show Place View 显示	29
图 3-44 鼠标悬浮显示	30
图 3-45 右键高亮	30
图 3-46 I/O 约束窗口	32
图 3-47 原语约束窗口	32
图 3-48 组约束窗口	33
图 3-49 预留约束窗口	33
图 3-50 时钟约束窗口	34
图 3-51 全局时钟原语约束窗口	34
图 3-52 高速时钟原语约束窗口	35
图 3-53 Vref 约束窗口	35
图 3-54 Message 窗口	35
图 4-1 新建约束文件	36
图 4-2 选择器件	37
图 4-3 保存输出文件	38
图 4-4 拖拽到 Chip Array 创建 I/O Constraints	40
图 4-5 拖至 Package View 创建 I/O Constraints	41
图 4-6 拖拽到 Chip Array 创建 Primitive Constraints	42
图 4-7 Group Constraints 编辑器右键菜单	42
图 4-8 创建 Primitive Group Constraints	43
图 4-9 Primitive Group Constraints	44
图 4-10 Relative Group Constraints 创建	45
图 4-11 Relative Group Constraints	46
图 4-12 创建 Resource Reservation 约束	46
图 4-13 Resource Reservation	47
图 4-14 Clock Net Constraints 约束创建	48

图 4-15 Clock Net Constraints 约束	. 48
图 4-16 GCLK Primitive Constraints 创建	. 49
图 4-17 GCLK Primitive Constraints	. 49
图 4-18 HCLK Primitive Constraints 创建	50
图 4-19 HCLK Primitive Constraints	50
图 4-20 Vref Constraints 创建	50
图 4-21 Vref Constraints 名字重复	51
图 4-22 拖拽至 Chip Array 窗口生成 Vref Constraints Location 信息	51
图 4-23 拖拽至 Package View 窗口生成 Vref Constraints Location 信息	. 52

SUG935-1.4.1

表目录

表 1-	1 术语、	缩略语	1
------	-------	-----	---

SUG935-1.4.1 vi

1 关于本手册 1.1 手册内容

1 关于本手册

1.1 手册内容

本手册主要描述高云®半导体 FloorPlanner,介绍高云半导体云源®软件 FloorPlanner 的界面使用以及语法规范,旨在帮助用户快速实现物理约束。因软件版本更新,部分信息可能会略有差异,具体以用户软件版本信息为准。

1.2 相关文档

通过登录高云半导体网站 <u>www.gowinsemi.com.cn</u>可下载、查看以下相关文档:

- SUG100, Gowin 云源软件用户指南
- UG290, Gowin FPGA 产品编程配置手册
- DS102, GW2A 系列 FPGA 产品数据手册

1.3 术语、缩略语

本手册中的相关术语、缩略语及相关释义请参见表 1-1。

表 1-1 术语、缩略语

术语、缩略语	全称	含义
BSRAM	Block SRAM	块状静态随机存储器
CFU	Configurable Function Unit	可配置功能单元
CLKDIV	Clock Divider	时钟分频器
CLS	Configurable Logic Section	可配置逻辑块
DCS	Dynamic Clock Selector	动态时钟选择器
DLLDLY	DLL Delay	DLL 延迟
DQS	Bidirectional Data Strobe Circuit for	DDR 存储器双向数据选通

SUG935-1.4.1 1(66)

1 关于本手册 1.4 技术支持与反馈

术语、缩略语	全称	含义
	DDR Memory	电路
FloorPlanner	FloorPlanner	物理约束编辑器
FPGA	Field Programmable Gate Array	现场可编程门阵列
GCLK	Global Clock	全局时钟
I/O	Input/Output	输入/输出
IDE	Integrated Development Environment	集成开发环境
LUT	Look-up Table	查找表
PCLK	Primary Clock	主时钟
PLL	Phase-locked Loop	锁相环
SCLK	Segmented Clock	分段时钟
SSRAM	Shadow SRAM	分布式静态随机存储器
VREF	Voltage Reference	参考电压

1.4 技术支持与反馈

高云半导体提供全方位技术支持,在使用过程中如有任何疑问或建议,可直接与公司联系:

网址: www.gowinsemi.com.cn

E-mail: support@gowinsemi.com

Tel: +86 755 8262 0391

SUG935-1.4.1 2(66)

2 简介

FloorPlanner 是高云半导体面向市场自主研发的物理约束编辑器,支持对 I/O、Primitive (原语)、Group 等属性及位置信息的读取与编辑,同时可根据用户的配置生成新的布局与约束文件,文件中规定了 I/O 的属性信息,原语、模块的位置信息等。FloorPlanner 提供了简单快捷的布局与约束编辑功能,提高编写物理约束文件的效率。

FloorPlanner 功能特点:

- 支持用户设计文件、约束文件的读入,约束文件的编辑,以及约束文件的输出
- 支持对用户设计文件中 IO Port、Primitive、Group 约束信息等的显示
- 支持用户新建、编辑、修改约束信息
- 支持 Chip Array 的网格模式、宏单元模式以及原语模式显示
- 支持依据 Package 信息的 Package View 显示
- 支持 Chip Array 和 Package View 的同步显示
- 支持约束位置信息的实时显示及区别显示
- 支持拖拽设置位置信息的功能
- 支持 IO Port 的属性配置功能,支持批量配置
- 支持 Clock Net Constraints 的显示、编辑功能
- 支持约束信息合法性检查的功能
- 支持 Back-annotate Physical Constraints 功能

SUG935-1.4.1 3(66)

3 FloorPlanner 界面 3.1 启动

3FloorPlanner 界面

FloorPlanner 能够创建和编辑物理约束,可以提供表格化的约束编辑和高效的网表单元查找功能,提高编写物理约束文件的效率。

3.1 启动

可通过以下三种方式启动 FloorPlanner:

1. 单击 "IDE > Tools", 打开 "FloorPlanner", 如图 3-1 所示;

图 3-1 菜单栏启动 FloorPlanner

2. 建立工程 "Process" 窗口运行 "Synthesize" 成功后,双击 "FloorPlanner",如图 3-2 所示。

SUG935-1.4.1 4(66)

3 FloorPlanner 界面 3.1 启动

图 3-2 Process 窗口启动

3. 单击"IDE > Start Page > Tools > FloorPlanner", 打开"FloorPlanner", 如图 3-3 所示。

图 3-3 Start Page 窗口启动

注!

- 如需 FloorPlanner 进行约束,应先加载网表文件;
- 通过第一种和第二种方式启动 FloorPlanner 时, 当前工程中的网表文件会自动加载;
- 通过第三种方式启动 FloorPlanner 时,需要通过"File > New"加载网表文件。

SUG935-1.4.1 5(66)

3.2 界面

新建或打开 FloorPlanner 界面(包含网表文件),如图 3-4 所示。

界面包括菜单栏、工具栏、Netlist 窗口、Summary 窗口、Chip Array 窗口、Package View 窗口、Message 窗口以及各类约束编辑窗口等。

图 3-4 FloorPlanner 界面

3.2.1 菜单栏

FloorPlanner 的菜单栏分为 "File"、"Constraints" "Tools"、"View" 及 "Help" 5 个子菜单。

File 菜单

File 菜单如图 3-5 所示。

SUG935-1.4.1 6(66)

图 3-5 File 菜单

● New: 新建约束,添加用户设计,设置器件信息;

● Open: 打开约束,添加用户约束,设置器件信息如图 3-6;

- Reload: 当在磁盘或工程中对物理约束文件、布局文件进行修改后,可以重新加载;
- Save: 当前约束信息的修改信息覆盖原约束文件;
- Save As: 将当前约束信息的修改信息输出到用户指定的文件中,默认采用网表文件名作为约束文件名称,用户可修改;
- Exit: 退出 FloorPlanner。

图 3-6 Open Physical Constraints

Constraints 菜单

Constraints 菜单栏如图 3-7 所示。

图 3-7 Constraints 菜单

SUG935-1.4.1 7(66)

Primitive Constraints

创建 Primitive 约束,选择 Primitive 创建对应的约束,右击选择 "Select Primitives",可弹出如图 3-8 所示对话框。

- 1. 可通过 Primitives 名称或类型进行查找,选择对应的 Primitive;
- 2. 单击 "OK",产生约束信息,约束信息显示在主界面底部的"Primitive Constraints"约束编辑窗口中;
- 3. 用户可在编辑窗口中通过输入或拖拽的方式设置位置信息。

注!

所约束的位置在 Chip Array 窗口中呈浅蓝色高亮显示。

图 3-8 原语查找对话框

Group Constraints

Group Constraints,包括 New Primitive Group 和 New Relative Group,各功能介绍如下:

创建 Primitive Group

- 1. 创建 Primitive Group 约束,右击选择"New Primitive Group",弹出如图 3-9 所示对话框:
- 2. 用户可设置 Group 的名称、包含的 Primitive 位置信息,以及 Group 的 Exclusive 信息;通过"➡"和"➤"两个按钮实现 Primitive 的添加 和删除,正确创建的 Primitive Group 如图 3-10 所示;

注!

- Group 的名称、包含的 Primitive、Group 的位置为必填项;
- 可通过以下方式输入 Group 的位置信息:

SUG935-1.4.1 8(66)

- 通过手动方式输入;
- 建立 Group 约束前,在 "Chip Array" 窗口中,复制位置,粘贴到 "New Primitive Group > Locations"中。
- 3. Primitive Group 创建配置完成后,单击"OK",工具此时会对 Group 的位置信息进行语法检查。
 - 若位置信息不合理或不合法,会弹出如图 3-11 和如图 3-12 所示的提示框,用户需重新修改位置信息;
 - 若无错误提示,单击"OK",在 Chip Array 中会显示可用的位置。
- 4. 新产生的组约束显示在主界面底部的"Group Constraints"约束编辑窗口中,在"Group Constraints"约束编辑窗口中,双击 Primitive Group约束可打开如图 3-10 所示的对话框,重新进行编辑修改。

图 3-9 新建原语组对话框

SUG935-1.4.1 9(66)

图 3-10 正确原语组对话框

图 3-11 无效位置

图 3-12 无效位置

创建 Relative Group

1. 创建 Relative Group 约束, 右击选择"New Relative Group", 弹出如 图

SUG935-1.4.1 10(66)

3-13 所示对话框;

用户可设置 Group 的名称、包含的 Primitive 以及各 Primitive 对应的相对位置信息;可通过"→"和"➤"实现 Primitive 的添加和删除,创建成功的 Relative Group 约束如图 3-14 所示;

注!

- Group 的名称、包含的 Primitive 及 Relative Location 为必填项;
- 可通过以下方式输入 Group 的位置信息:
 - 通过手动方式输入;
 - 在建立 Group 约束前,在"Chip Array"窗口中,复制位置,粘贴到"New Relative Group > Relative Location"中。
- 3. 配置完成后单击"OK",产生约束信息。
- 4. 产生的约束信息显示在主界面底部的"Group Constraints"约束编辑窗口中;在编辑窗口中,双击约束,重新打开如图 3-14 所示的对话框,可进行编辑修改。

图 3-13 创建相对位置组对话框

图 3-14 正确的相对组对话框

Resource Reservation

SUG935-1.4.1 11(66)

1. 创建 Resource Reservation 约束,在主界面底部的"Resource Reservation"约束编辑窗口右击选择 Reserve Resources,新建一条约束;

- 2. 通过输入或拖拽的方式设置位置信息;
- 3. 双击 "Attribute" 栏或单击 "Attribute" 栏下拉框可设置预留位置的属性, 如图 3-15 所示。

注!

Name 属性用于区分不同的预留约束,不可修改该名称。

图 3-15 预留约束

Clock Net Constraints

创建全局时钟分配约束,该约束的数目有限制,会对约束合法性时进行相应检查。右击选择"Clock Net Constraints",可弹出如图 3-16 所示对话框,进行如下操作:

- 1. 单击" 按钮,选择对应 Net;
- 2. 通过 "Type" 下拉列表,选择 "BUFG"、"BUFG[0]~[7]"、"BUFS"、 "LOCAL CLOCK";
- 3. 通过"CE"、"CLK"等复选框配置 Signal 类型,配置完成后,单击"OK", 产生约束信息,显示在主界面底部的"CLOCK Net Constraints"约束编辑窗口中,在编辑窗口中,双击,重新打开约束对话框,进行编辑。

注!

当 "Type"选择 LOCAL_CLOCK 时 Signal 复选框为置灰不可配置状态。

图 3-16 时钟约束

SUG935-1.4.1 12(66)

GCLK Primitive Constraints

用于创建针对 DCS 和 DQCE 的全局时钟约束,根据器件的全局时钟分布约束指定的 Instance 到具体的全局时钟,在主界面底部的"GCLK Primitive Constraints"约束编辑窗口右击选择"Select GCLK Primitive",可弹出如图 3-17 所示对话框。相关操作如下所示:

- 1. 通过单击"**"按钮,选择相应的 GCLK 原语,若设计无 GCLK 原语则无法添加;
- 2. 通过 "Position"下的单选框以及对应的下拉列表配置全局时钟位置;
- 3. 单击 "OK",产生约束信息,显示在主界面底部的"GCLK Primitive Constraints"约束编辑窗口中,在编辑窗口中,双击,重新打开约束对话框,可进行约束编辑修改。

图 3-17 创建全局时钟原语约束(GW1N-1)

图 3-18 创建全局时钟原语约束(GW2A-18)

注!

- 当选择 "Instance" 后, "Position" 变为高亮。
- 根据器件不同可用 Position 不同,不同全局时钟原语可用 Position 也会不同。

HCLK Primitive Constraints

创建针对 HCLK 相关原语进行的约束,指定其约束在器件的高速时钟位

SUG935-1.4.1 13(66)

置上,在主界面底部的"HCLK Primitive Constraints"约束编辑窗口右击选择"Select HCLK Primitive",可弹出如所图 3-19 示对话框。相关操作如下所示:

- 1. 用户可通过单击" 按钮选择相应的 HCLK 原语, 若设计中无符合的原语则无法添加;
- 2. 通过 "Position"下的单选框以及对应的下拉列表配置高速时钟位置;
- 3. 单击 "OK",产生约束信息,显示在主界面底部的"HCLK Primitive Constraints"约束编辑窗口中,在编辑窗口中,双击,重新打开约束对话框,可进行约束编辑修改。

图 3-19 创建高速时钟原语约束

注!

- 当选择 "Instance" 后, "Position" 变为高亮。
- 根据工程中器件不同可用 Position 不同,不可用 Position 置灰不可勾选。

Vref Constraints

创建新的 Vref Driver,用于配置 IO Port 的参考电压,在主界面底部的 "Vref Constraints"约束编辑窗口中右击选择 Define Vref Driver,新建一条约束,如图 3-20 所示。

图 3-20 参考电压约束

注!

SUG935-1.4.1 14(66)

- 可通过拖拽方式指定 Vref 约束位置;
- 可通过双击修改 Vref 的名称。

Tools 菜单

Tools 菜单如图 3-21 所示。

Back-annotate Physical Constraints: 将各 Primitive 和 IO Port 布局信息反标至物理约束文件中。

图 3-21 Tools 菜单

- 1. 单击 "Tools > Back-annotate Physical Constraints" 弹出对象选择对话框如图 3-22 所示。Back-Annotate Physical Constraints 功能只有工程中运行 Place & Route 成功后,通过工程启动 FloorPlanner 才有效;
- 2. Back-annonate Physical Constraints 对话框中可以选择一个或者多个对象,单击"OK"按钮弹出"Save as"对话框,打印其布局信息至物理约束文件中;
- 3. 如图 3-23 所示,在 Back-annonate Physical Constraints 对话框中选择 Port 和 Port Attribute 后生成的物理约束文件。

图 3-22 Back-annonate Physical Constraints 对话框

SUG935-1.4.1 15(66)

图 3-23 反标 Port 布局信息

```
//Copyright (C)2014-2023 Gowin Semiconductor Corporation.
   //All rights reserved.
 3 //File Title: Physical Constraints file
 4 //Tool Version: Vl.9.9 (64-bit)
 5 //Part Number: GW2AN-UV18XUG484C7/I6
 6 //Device: GW2AN-18X
   //Created Time: Fri 11 10 11:22:21 2023
9 IO LOC "CIN" P15;
10 FORT "CIN" PULL_MODE=NONE DRIVE=OFF BANK_VCCIO=3.3;
11 IO_LOC "COUT" AE16;
   IO_PORT "COUT" PULL_MODE=NONE DRIVE=8 BANK_VCCIO=3.3;
13 IO LOC "IO" P16;
14 IO PORT "IO" PULL MODE=NONE DRIVE=OFF BANK VCCIO=3.3;
15 IO LOC "II" M19;
16 IO_PORT "II" PULL_MODE=NONE DRIVE=OFF BANK_VCCIO=3.3;
   IO_LOC "I3" AB15;
18 IO PORT "I3" PULL MODE=NONE DRIVE=OFF BANK VCCIO=3.3;
19
```

View 菜单

View 菜单如图 3-24 所示,主要用于控制工具条、窗口的显示以及 Chip Array 和 Package View 两个视图的放大、缩小等。各子菜单介绍如下:

- Toolbars: 用于控制工具栏快捷按钮的显示:
- Windows: 用于控制各个窗口的显示,如图 3-25 所示;
- Zoom In: 用于放大 Chip Array 视图或 Package View 视图;
- Zoom Out: 用于缩小 Chip Array 视图或 Package View 视图;
- Zoom Fit: 按照窗口大小缩放 Chip Array 视图或 Package View 视图。

图 3-24 View 菜单

SUG935-1.4.1 16(66)

图 3-25 Windows 菜单

Help 菜单

Help 菜单用于提示软件的版本号及版权信息。

3.2.2 Summary 和 Netlist 窗口

Summary 和 Netlist 两个窗口可显示当前工程的器件信息、芯片型号信息、用户设计及约束文件的路径信息、Netlist 信息等。

Summary 窗口

Summary 窗口如图 3-26 所示,用于显示当前工程中所用的器件信息,包括 Device 和 Part Number,以及用户输入的设计文件和约束文件。

图 3-26 Summary 窗口

Netlist 窗口

Netlist 窗口如图 3-27 所示,以树形结构显示用户设计中的 Ports、Primitives、Nets 和 Module 以及对应的数量信息。

注!

● Port、Primitive 等名称采用全路径方式进行显示,默认按字母升序排序;

SUG935-1.4.1 17(66)

- Port 和 Net 的显示采用 Bus 和非 Bus 相结合的显示方式,如图 3-28 所示;
- Module 采用层级的方式显示,各 Module 后可显示各 Module 中各类型的 Instance 数目,如图 3-29 所示;

图 3-27 Netlist 窗口

SUG935-1.4.1 18(66)

图 3-28 BUS 和非 BUS 结合显示

图 3-29 层级显示

SUG935-1.4.1 19(66)

Netlist 窗口提供右键菜单功能,具有如下功能:

- Highlight: 可实现在 Chip Array 中高亮显示对应的约束位置;
- Edit Constraint:编辑对应约束信息的功能。

注!

如当前 Primitive 或 Port 无位置约束,则高亮显示功能不可用,如图 3-30 所示。

图 3-30 Netlist 右键功能

3.2.3 Package View 窗口

以 GW1NRF-4B-QFN48 为例,Package View 窗口如图 3-31 所示,该窗口以器件 package 信息为基础显示器件的封装信息,显示用户 I/O、电源、地等管脚。将鼠标放置某个位置上时,会悬浮显示该位置的 I/O 信息,包括 I/O 的 Type、Bank 以及 LVDS 信息等。

SUG935-1.4.1 20(66)

图 3-31 GW1NRF-4B-QFN48 Package View 窗口

用户 I/O、电源、地管脚使用不同的符号和颜色来区分。不同 BNAK 的 IO 引脚的颜色不同,图中管脚符号定义如下所示:

- "**●**"表示用户 I/O;
- "[≱]"表示 VCCIO;
- "量"表示 VSS;
- "壓"表示蓝牙接口。

Package View 支持右键菜单如图 3-32 所示,相关功能如下:

- Zoom In: 放大 Package View 视图;
- Zoom Out: 缩小 Package View 视图;
- Zoom Fit: 按照窗口大小缩放 Package View 视图;
- Show Differential IO Pairs:显示差分对,如图 3-33 所示,红线相连的为一对差分对;
- Top View: Package View 以顶部视图进行显示,默认以顶部视图进行显示。如图 3-34 所示为 GW1N-9-WLCSP64 封装的顶部视图,坐标原点在左上角,如图 3-36 所示为 GW1N-9-WLCSP81M 封装的顶部视图,坐标原点在右上角;
- Bottom View: Package View 以底部视图进行显示。如图 3-35 所示为

SUG935-1.4.1 21(66)

GW1N-9-WLCSP64 封装的底部视图,坐标原点在右上角,如图 3-37 所示为 GW1N-9-WLCSP81M 的底部视图,坐标原点在左上角。

图 3-32 Package View 右键功能

图 3-33 差分对显示

SUG935-1.4.1 22(66)

图 3-34 Top View

图 3-35 Bottom View

SUG935-1.4.1 23(66)

图 3-36 GW1N-9-WLCSP81M Top View

图 3-37 GW1N-9-WLCSP81M Bottom View

Package View 支持 IO Port 约束位置的显示,可以通过从 Netlist 窗口或底部 I/O Constraints 窗口中将 IO Port 拖拽到 Package View 窗口来约束 IO Port 的位置。拖拽时鼠标处会显示拖拽 Port 的名称,并且不可约束管脚呈现

SUG935-1.4.1 24(66)

置灰不可拖拽状态。

3.2.4 Chip Array 窗口

FloorPlanner 的 Chip Array 窗口如图 3-38 所示, Chip Array 窗口根据芯片的行列信息显示芯片的 I/O、CFU、CLU、DSP、PLL、BSRAM、DQS 等资源的分布,实现对所有约束位置的实时显示,支持放大、缩小、复制位置、悬停显示、拖拽等功能。

其中, I/O 是器件裸片的所有 I/O 位置, 且会以不同颜色区分 I/O:

- 白色: 该封装中封装出的 I/O 位置;
- 红色:该封装中未封装的 I/O 位置;
- 蓝色: 如果是 GW2AR-18、GW1NR-4、GW1NR-9 等 SIP 封装的器件,则会有蓝色标记 I/O,表示内嵌配置 I/O 位置。

图 3-38 Chip Array 窗口

Chip Array 分为网格模式、宏单元模式、原语模式三种显示模式。

- 网格模式:以 GRID 为单位宏观显示约束位置,如图 3-39 所示;
- 宏单元模式: 以 CLS、IOBLK 等为单位显示约束位置, 如图 3-40 所示;
- 原语模式:以 REG、LUT等为单位显示约束位置,如图 3-41 所示。

SUG935-1.4.1 25(66)

图 3-39 网格模式约束

图 3-40 宏单元模式约束

SUG935-1.4.1 26(66)

图 3-41 原语模式约束

Chip Array 支持以下拖拽功能:

- 从 Netlist 窗口拖拽到 Array 窗口,用于产生约束、指定约束位置;
- 从约束编辑窗口拖拽到 Array 窗口,用于指定约束位置。

Chip Array 窗口内置 chip 子窗口,用于实时显示当前视窗相对于整个器件的位置,拖动 chip 子窗口中的白色框,Chip Array 的视窗将跟随移动。同时,Chip Array 窗口采用不同颜色区分约束类型、显示约束位置,各颜色的含义分别介绍如下:

- 白色:用于显示处于选择状态或正在高亮显示的约束位置;
- 深蓝色:用于显示预留约束的位置信息,表示该位置不能再被占用;
- 浅蓝色:用于显示 I/O 和 Primitive 约束在某个 GRID 或 range 内,界面上显示为浅蓝色。

Chip Array 窗口支持右键菜单,具有如下功能:

- Zoom In: 放大 Chip Array 视图;
- Zoom Out:缩小 Chip Array 视图;
- Zoom Fit: 按照窗口大小缩放 Chip Array 视图;
- Show Constraints View: 显示 Chip Array 的 instance 约束视图;
- Show Place View:显示 Chip Array 的 instance 布局视图,只有在工程运行完 Place & Route 后启动 FloorPlanner 才有效,否则置灰;
- Show Multi-View: 同时显示 Chip Array 的 instance 约束和布局的复合视图,只有在工程运行完 Place & Route 后启动 FloorPlanner 才有效,否则置灰;
- Show In-Out Connection: 在 Place View 中显示和选中 instance 输入输

SUG935-1.4.1 27(66)

出连接的 instance 位置,只有在 Chip Array 窗口是 Show Place View > All Instance 视图中选中某个 instance 才能够使用,否则置灰:

- Show In Connection: 在 Place View 中显示和选中 instance 输入连接的 instance 位置,只有在 Chip Array 窗口是 Show Place View > All Instance 视图中选中某个 instance 才能够使用,否则置灰;
- Show Out Connection: 在 Place View 中显示和选中 instance 输出连接的 instance 位置,只有在 Chip Array 窗口是 Show Place View > All Instance 视图中选中某个 instance 才能够使用,否则置灰;
- Unhighlight All:对于选中位置或者区域消除高亮;
- Copy Location: 复制选中的位置或者区域,若 Chip Array 窗口中有 GRID、Block 等处于选中状态,则右键菜单中的"Copy Location"功能可用,否则功能不可用,如图 3-42 所示。

在 Show Place View 中,可对 Lut、Reg 的密度进行显示,如图 3-43 所示,详情如下:

- ALL Instance:显示所有 Instance 的 place 情况, 5 个以内呈淡绿色、6-10 个呈绿色、10 个以上呈深绿色;
- Only Lut: 只显示所有 Lut 的 place 情况, 2 个以内呈淡绿色、3-4 个呈绿色、4 个以上呈深绿色;
- Only Dff: 只显示所有 Reg 的 place 情况, 2 个以内呈淡绿色、3-4 个呈绿色、4 个以上呈深绿色。

在 Show Place View > ALL Instance 可以查看设计中所有 instance 的布局情况:

- 在 Chip Array 窗口中鼠标悬浮至 instance 布局位置,可显示该位置具体 布局的 instance 名称,如图 3-44 所示;
- 在 Netlist 窗口中选中某个具体的 instance 右键选择 Highlight,该 instance 的布局位置会在 Chip Array 窗口中高亮显示,如图 3-45 所示。

注!

通过"Ctrl"键+鼠标左键拖动,可选取区域,右击选择 Copy Location,可复制所选区域的位置信息,复制的位置可直接粘贴到任意约束编辑窗口中。

SUG935-1.4.1 28(66)

图 3-42 Chip Array 右键功能

图 3-43 Show Place View 显示

SUG935-1.4.1 29(66)

图 3-44 鼠标悬浮显示

图 3-45 右键高亮

SUG935-1.4.1 30(66)

3.2.5 Constraint 编辑窗口

Constraint 编辑窗口包含 "I/O Constraints"、"Primitive Constraints"、 "Group Constraints"等 8 个编辑窗口,用于显示各约束的详细信息,并提供约束编辑功能和位置拖拽功能,各窗口分别介绍如下:

I/O Constraints

I/O Constraints 是对设计的 port 进行管脚约束。I/O 约束窗口如图 3-46 所示,各功能如下:

- 显示用户设计中所有 IO Port 的属性及约束信息,如 Port 的 Direction、Bank、IO Type、Pull Mode 等;
- 提供约束位置、属性等编辑功能;
- 可通过拖拽、双击等方式改变约束信息。

注!

- I/O 的位置可以通过拖拽的方式进行设置,也可以双击输入;
- 在拖拽 IO 过程中会显示所拖拽的 IO 名称;
- 将 IO 拖拽至 Chip Array 窗口中时,可放置的位置变亮,不可放置的位置颜色亮度不变;
- 将 IO 拖拽至 Package View 窗口中时,可放置位置亮度不变,不可放置位置变暗;
- 设置完成后,在 Chip Array 窗口中约束的位置变为浅蓝色高亮,在 Package View 窗口中约束的位置变为橙色高亮。

窗口提供右键菜单功能,详情如下:

- Unplace: 取消放置
- Reset Properities: 复位 Port 属性设置
- Highlight: 高亮显示约束位置
- IO Type: 设置电平标准
- Drive: 设置驱动电压
- Pull Mode: 设置上拉模式
- PCI Clamp: 设置 PCI 协议的开关
- Hysteresis: 设置迟滞量
- Open Drain: 设置开漏电路的开关
- Vref: 设置外部参考电压
- Single Resistor: 设置单端电阻的开关
- Diff Resistor: 设置差分电阻的开关
- Bank Vccio: 设置 BANK 电压

注!

SUG935-1.4.1 31(66)

右键菜单支持用户批量修改 Port 属性的功能,用户可选择多个 Port,若多个 Port 有相同的属性值可配置,则通过右键菜单可统一进行配置,详细属性设置标准参考 <u>DS102,GW2A</u> <u>系列 FPGA 产品数据手册</u>。

图 3-46 I/O 约束窗口

Primitive Constraints

Primitive Constraints 是约束设计中原语的位置,原语约束窗口如图 3-47 所示,功能如下:

- 用于显示当前所有 Primitive 约束的名称、类型、位置以及 Exclusive 信息:
- 提供编辑功能,该窗口提供右键菜单功能,用于提供高亮显示约束位置、 删除和添加约束的功能。

注!

- 可通过拖拽的方式或双击输入的方式修改位置信息;
- 可通过双击设置 Exclusive 属性;
- 在 Primitive 约束位置进行手动输入时,会对位置进行语法检查及合法性检查,错误提示对话框如图 3-11 和图 3-12 所示。

图 3-47 原语约束窗口

Group Constraints

Group Constraints 是对设计中的 I/O 和部分原语进行组约束,组约束窗口如图 3-48 所示,功能如下:

用于显示当前所有组约束的名称、类型、包含的 Primitive 个数、位置以及 Exclusive 信息,包含 Primitive 和 Relative 两种 Group 的显示;如图

SUG935-1.4.1 32(66)

3-10 和图 3-14 所示,双击对应的 Group 条目,打开对话框,可实现约束信息的编辑修改功能;

● 该窗口提供右键菜单功能,用于提供高亮显示约束位置、删除和添加约束的功能。

图 3-48 组约束窗口

Resource Reservation

Resource Reservation 是对当前封装中的可用资源进行预留约束,预留约束窗口如图 3-49 所示,功能如下:

- 用于显示当前所有预留约束的位置信息;
- 该窗口提供右键菜单功能,用于提供高亮显示约束位置、删除、添加约束的功能;
- Name 属性用于区分各资源预留约束,用户不能进行修改。

注!

可通过拖拽或双击输入修改位置信息。

图 3-49 预留约束窗口

Clock Net Constraints

Clock Net Constraints 是对设计中的 net 进行全局时钟分配约束,时钟分配约束窗口如图 3-50 所示,功能如下:

- 用于显示当前所有时钟分配约束的相关信息:
- 该窗口提供右键菜单功能,用于提供添加、删除时钟分配约束的功能。

注!

- 双击约束可进行编辑修改;
- CLOCK Net 约束无位置信息,不支持拖拽功能;

SUG935-1.4.1 33(66)

● 新建全局时钟分配约束的窗口如图 3-16 所示。

图 3-50 时钟约束窗口

GCLK Primitive Constraints

GCLK Primitive Constraints 是对全局时钟原语进行约束,全局时钟原语约束窗口如图 3-51 所示,功能如下:

- 用于显示所有的全局时钟约束,包括 Instance 名称、类型以及位置;
- 窗口支持右键菜单功能,用于添加新的全局时钟原语约束和删除已有约束。

注!

新建全局时钟约束的窗口如图 3-17 所示。

图 3-51 全局时钟原语约束窗口

HCLK Primitive Constraints

HCLK Primitive Constraints 是对设计中的高速时钟原语进行约束,高速时钟原语约束窗口如图 3-52 所示,功能如下:

- 用于显示针对高速时钟相关的 Instance 的位置约束,包括 Instance 名称、 类型以及高速时钟位置;
- 窗口支持右键菜单功能,用于添加新的高速时钟原语约束和删除已有约束。新建高速时钟原语约束的窗口如图 3-19 所示。

SUG935-1.4.1 34(66)

图 3-52 高速时钟原语约束窗口

Vref Constraints

Vref Constrains 是约束所在 bank 的外部参考电压, Vref 约束窗口如图 3-53 所示, 功能如下:

- 用于显示用户自定义的 Vref Driver 信息,用户可自定义 Vref 的名称、位置信息;
- 窗口支持右键菜单功能,用于高亮显示约束位置、添加、删除约束信息。

注!

位置信息只能通过拖拽的方式进行设置。

图 3-53 Vref 约束窗口

3.2.6 Message 窗口

Message 窗口如图 3-54 所示,窗口提供输出结果的显示。

图 3-54 Message 窗口

```
Message

> Reading device GW5AT-138B package PBGA676A partnumber GW5AT-LV138PG676AES
> Reading netlist file: "/n9k/sim/users/jingxiao/work/2023ReleaseTest/138B_floorplanner/clock/impl/gwsynthesis/clock.vg"
> Parsing netlist file "/n9k/sim/users/jingxiao/work/2023ReleaseTest/138B_floorplanner/clock/impl/gwsynthesis/clock.vg" completed
> Processing netlist completed
> Reading posp file /n9k/sim/users/jingxiao/work/2023ReleaseTest/138B_floorplanner/clock/impl/pnr/clock.db
> Reading constraint file: "/n9k/sim/users/jingxiao/work/2023ReleaseTest/138B_floorplanner/clock/src/clock.cst"
> Physical Constraint parsed completed
```

SUG935-1.4.1 35(66)

4 FloorPlanner 使用 4.1 新建约束文件

4 FloorPlanner 使用

FloorPlanner 可以新建和编辑约束,生成供布局布线流程使用的物理约束文件。

4.1 新建约束文件

FloorPlanner 可输出新建的物理约束文件,亦可输出修改后的物理约束文件,操作步骤如下所示:

- 1. 根据 3.1 启动所述, 启动 FloorPlanner;
- 2. 单击 "File > New", 打开 "New"对话框, 如图 4-1 所示;

注!

亦可通过以下两种方式打开"New"对话框:

- 使用快捷键 Ctrl + N:
- 单击工具栏上的"New"图标。
- 3. 输入工程的网表文件,选择器件类型,单击"OK"。

图 4-1 新建约束文件

New Physical Constraints	? ×
Netlist File:	Browse
Part Number:	Select
	OK Cancel

SUG935-1.4.1 36(66)

4 FloorPlanner 使用 4.1 新建约束文件

图 4-2 选择器件

注!

- Select ...按钮用于选取器件、封装信息,支持高云半导体所有的 FPGA 器件,如图 4-2 所示;
- 启动 FloorPlanner 采用 3.1 启动介绍中的第一种方式。
 新建物理约束,在 FloorPlanner 主界面中可进行如下操作:
- 1. 用户通过拖拽等方式分配管脚位置;
- 2. 单击工具栏中的"Save"图标,即可输出约束文件;
- 3. 在弹出的"Save"对话框中,可修改文件名,如图 4-3 所示。

SUG935-1.4.1 37(66)

图 4-3 保存输出文件

4.2 编辑约束文件

FloorPlanner 支持 I/O 约束、原语约束、组约束、资源预留约束、全局时钟分配约束、全局时钟原语约束、高速时钟原语约束、参考电压约束等的创建。可通过 Constraints 菜单编辑生成约束,详情请参考 3.2.1 菜单栏。

注!

亦可通过其他方式创建约束,本节主要以拖拽的方式为例,介绍如何通过拖拽编辑生成约束。

4.2.1 编辑约束示例

以用户设计 counter.v 为例,演示如何编辑各类型约束:

module counter1(out, cout, data, load, cin, clk, ce, clko);
output [7:0] out;
output cout;
output clko;
input ce;
input [7:0] data;
input load, cin, clk;

SUG935-1.4.1 38(66)

```
reg [7:0] out;
always @(posedge clk)
begin
  if (load)
     out = data;
  else
     out = out + cin;
end
assign cout = &out & cin;
wire clkout;
CLKDIV clkdiv inst (
    .CLKOUT(clkout),
    .HCLKIN(clk),
    .RESETN(1'b1),
    .CALIB(1'b0)
);
defparam clkdiv_inst.DIV_MODE = "2";
defparam clkdiv_inst.GSREN = "false";
DQCE dqce_inst (
    .CLKOUT(clko),
    .CLKIN(clkout),
    .CE(ce)
);
endmodule
```

4.2.2 编辑 I/O 约束

拖至 Chip Array 创建 I/O Constraints, 步骤如下:

- 1. 单击"IO Constraints"编辑窗口,放大 Chip Array 视图至宏单元模式;
- 2. 选中 Port "ce" 拖拽至 Chip Array 窗口中的 "G9" 位置, 如图 4-4 所示;

SUG935-1.4.1 39(66)

3. Port "ce" 的 Location 信息显示为 G9。

图 4-4 拖拽到 Chip Array 创建 I/O Constraints

拖至 Package View 创建 I/O Constraints, 步骤如下:

- 1. 单击至"IO Constraints"编辑窗口;
- 2. 选中 Port "ce" 拖拽至 Package View 窗口中的"G9"位置,如图 4-5 所示:
- 3. Port "ce"的 Location 信息显示为 G9。

SUG935-1.4.1 40(66)

图 4-5 拖至 Package View 创建 I/O Constraints

4.2.3 编辑原语约束

- 2. 选中新创建的 Primitive 约束, 拖拽至 Chip Array 窗口中的"R5C5"位置, 如图 4-6 所示:
- 3. Primitive "cout_d_s" 的 Location 信息显示为 R5C5。

SUG935-1.4.1 41(66)

图 4-6 拖拽到 Chip Array 创建 Primitive Constraints

4.2.4 编辑组约束

如图 4-7 所示,在 Group Constraints 编辑器中,可通过右击选择菜单,创建 Primitive Group 和 Relative Group。

图 4-7 Group Constraints 编辑器右键菜单

编辑原语组约束

- 1. 在"Group Constraints"编辑窗口中,右击选择"New Primitive Group", 弹出"New Primitive Group"对话框;
- 2. 输入 Group Name "grp1",单击 "➡" 弹出 "Select Primitives" 对话框:

SUG935-1.4.1 42(66)

3. 选取所要设置的 Primitive "n14_s0"、"n14_s1",单击"OK",加入 Members 列表;

- 4. 在 Locations 输入所要约束的位置 "R9C7",如图 4-8 所示;
- 5. 在 New Primitive Group 对话框中单击"OK",可创建一条 Primitive Group Constraints,如图 4-9 所示。

图 4-8 创建 Primitive Group Constraints

SUG935-1.4.1 43(66)

图 4-9 Primitive Group Constraints

注!

Primitive Group Constraints 的 Location 信息只能通过手动输入或者从 Chip Array 窗口中复制,不能通过拖拽实现。

编辑相对组约束

- 1. 在"Group Constraints"编辑窗口中, 右击选择"New Relative Group", 弹出"New Relative Group"对话框;
- 2. 输入 Group 的名字 "rel_grp", 单击 "➡", 弹出 "Select Primitives" 对话框;
- 3. 在 Select Primitives 对话框中选择所要设置的 Primitives "cout_d_s"、 "n14 s0", 选择 "OK", 添至 Member 列表中;
- 4. 为每个 Primitive 添加相对位置 "R0C0"、"R4C5", 如图 4-10 所示;
- 5. 在 New Relative Group 对话框中,选择"OK"创建 Relative Group Constraints,如图 4-11 所示。

SUG935-1.4.1 44(66)

图 4-10 Relative Group Constraints 创建

SUG935-1.4.1 45(66)

图 4-11 Relative Group Constraints

4.2.5 编辑资源预留约束

- 1. 在"Resource Reservation"编辑窗口中,进行右击选择"Reserve Resources",在编辑器中添加 Resource Reservation 约束,如图 4-12 所示;
- 2. 选中新建的 Resource Reservation 约束拖拽到 Chip Array 窗口中想要进行预留约束的位置,图 4-13 所示拖拽至 BSRAM_R10[1]位置完成 Resource Reservation 约束。

SUG935-1.4.1 46(66)

图 4-13 Resource Reservation

4.2.6 编辑全局时钟分配约束

- 1. 在 Clock Net Constraints 编辑窗口中,右击选择"Clock Net Constraints", 弹出 Clock Net Constraints 设置对话框;
- 2. 单击 "♣", 弹出 "Select Net"对话框,选择需要约束的 Net,在 Select Net 对话框中,单击 "OK"添加 Net;
- 3. 设置时钟类型,在 Type 下拉列表中选择 Type 类型,设置 Signal 类型,如图 4-14 所示;
- 4. 设置完成后,单击"OK",即会将该条约束添加至 Clock Net Constraints 编辑窗口中,如图 4-15 所示。

SUG935-1.4.1 47(66)

M FloorPlanner File Constraints Tools View Help 🖺 📂 🗐 🔡 🥝 🕹 Netlist ♂ X Chip Array X Package View X > B Gowin_DCE W Clock Net Constraints × -Net clkin_d Type BUFG[5] Signal CE ☑ CLK LOGIC ☐ SR Cancel OK Summary Netlist Clock Net Constraints Signal

图 4-14 Clock Net Constraints 约束创建

图 4-15 Clock Net Constraints 约束

Message Clock Net Constraints

4.2.7 编辑全局时钟原语约束

GCLK Primitive Constraints 仅支持对 DCS 和 DQCE 的约束。

GCLK Primitive Constraints 的创建步骤如下:

- 1. 在 GCLK Primitive Constraints 编辑窗口中,进行右击选择"Select GCLK Primitive", 弹出 GCLK Primitive Constraints 对话框;
- 单击"➡",弹出"GCLK"选择对话框,选取 Instance,在 GCLK Primitive 选择对话框中,单击"OK", Instance 完成设置;

SUG935-1.4.1 48(66)

3. 在 GCLK Primitive Constraints 对话框的"Position"下方选取所要约束的全局时钟位置,如图 4-16 所示:

4. 在 GCLK Primitive Constraints 对话框中单击"OK",即会将该条约束添至 GCLK Primitive Constraints 编辑窗口,如图 4-17 所示。

图 4-16 GCLK Primitive Constraints 创建

图 4-17 GCLK Primitive Constraints

4.2.8 编辑高速时钟原语约束

HCLK Primitive Constraints 仅对以下两种类型的 CLKDIV 和 DLLDLY Instance 进行约束。

HCLK Primitive Constraints 的创建步骤如下:

- 1. 在 HCLK Primitive Constraints 编辑窗口中,进行右击选择"Select HCLK Primitive", 弹出 HCLK Primitive Constraints 对话框;
- 2. 单击 "量"按钮,弹出 "HCLK Primitive"对话框, 选取 Instance, 在 HCLK Primitive 对话框中, 单击 "OK", 设置 Instance;
- 3. 在 HCLK Primitive Constraints 对话框中 Position 下方选取所要约束的高速时钟位置,如图 4-18 所示;
- 4. 单击 HCLK Primitive Constraints 对话框的"OK",即可将该约束添至 HCLK Primitive Constraints 编辑器中,如图 4-19 所示。

SUG935-1.4.1 49(66)

图 4-18 HCLK Primitive Constraints 创建

图 4-19 HCLK Primitive Constraints

4.2.9 编辑参考电压约束

拖至 Chip Array 窗口创建 Vref Constraints, 步骤如下:

- 1. 在 "Vref Constraints" 编辑窗口中, 进行右击选择 "Define Vref Driver", 即可将该条 Vref Constraints 约束添至 Vref Constraints 编辑器中, 如图 4-20 所示;
- 2. 放大 Chip Array 视图至宏单元模式,选中 Vref Constraints 编辑窗口中新 创建的 Vref Constraints,拖拽至 Chip Array 窗口中的 B7 位置, Vref Constraints 的 Location 信息显示为"B7",如图 4-22 所示。

图 4-20 Vref Constraints 创建

可自定义 Vref 约束名, Vref 名字不允许重名,设置期间,系统会进行

SUG935-1.4.1 50(66)

检查,如名字重复,则提示用户,如图 4-21 所示。

图 4-21 Vref Constraints 名字重复

图 4-22 拖拽至 Chip Array 窗口生成 Vref Constraints Location 信息

拖至 Package View 创建 Vref Constraints, 步骤如下:

- 1. 在 "Vref Constraints" 编辑窗口中, 进行右击选择 "Define Vref Driver", 即可将该条 Vref Constraints 约束添至 Vref Constraints 编辑器中, 如图 4-20 所示;
- 2. 选中 Vref Constraints 编辑窗口中新创建的 Vref Constraints,拖拽至 Package View 窗口中的 B7 位置, Vref Constraints 的 Location 信息显示 为 "B7",如图 4-23 所示。

SUG935-1.4.1 51(66)

图 4-23 拖拽至 Package View 窗口生成 Vref Constraints Location 信息

SUG935-1.4.1 52(66)

附录 A 物理约束语法规范 A.1 I/O 位置约束

附录 A 物理约束语法规范

A.1 I/O 位置约束

I/O 位置约束可将 port、Buffer 约束到指定 IOB 位置处。

语法

IO_LOC "obj_name" obj_location [exclusive];

约束元素

obj_name

obj_name 可取 port、Buffer 的 name 作为 obj_name。

obj location

obj_location 为 IOB 位置,如 "A11"、"B12"等,若指定多个位置,位置之间需要用逗号分隔,如 "A11,B2"。

exclusive

exclusive 为可选项,在约束位置之后,表明该约束语句中的 obj_location 仅可以放置 obj_name 指定的原语。

注!

当 obj_name 为 escaped name 格式(以反斜线开头,空格结尾)时,obj_name 两边需加上引号。

应用举例

示例 1

IO LOC "io 1" A1;

// 对象 io 1 被约束在 pin A1 的位置。

SUG935-1.4.1 53(66)

附录 A 物理约束语法规范 A.2 I/O 属性约束

示例 2

IO LOC "io 1" A1, B14, A15;

// 对象 io_1 被约束在 pin A1、B14、A15 的位置,布局时将取三个位置之一进行布局。

示例 3

IO LOC "io 2" A1 exclusive;

// 对象 io 2 被约束在 pin A1 处,且 A1 位置仅可以被 io 2 所占用。

示例 4

IO_LOC "io_2" A1, B14, A15 exclusive;

// 对象 io_2 被约束在 pin A1、B14、A15 处,且 A1、B14、A15 三个位置仅可以被 io 2 占用。

A.2 I/O 属性约束

I/O属性约束,用于设定I/O的各种属性值。如 port 的电平标准 IO_TYPE, 上拉/下拉模式 PULL_MODE,驱动能力 DRIVE等,详细属性设置标准请参 考 DS102, GW2A 系列 FPGA 产品数据手册。

语法

IO PORT "port name" attribute = attribute value;

一个约束语句中可设定多个属性,各个属性之间使用空格分隔。

约束元素

需要属性约束的 I/O 的 name, attribute 和 attribute value。

应用举例

示例 1

IO_PORT "port_1" IO_TYPE = LVTTL33;

// 设置 port 1 的 IO TYPE 为 LVTTL33。

示例 2

IO PORT "port 2" IO TYPE = LVTTL33 PULL MODE =KEEPER;

// 设置 port_2 的 IO_TYPE 为 LVTTL33, PULL_MODE 属性值为 KEEPER。

示例 3

SUG935-1.4.1 54(66)

附录 A 物理约束语法规范 A.3 原语位置约束

IO_PORT "port_3" IO_TYPE=LVDS25;

// port_3 连接的 Buffer 为 IBUF 时,通过该约束,可将该 IBUF 转化为 TLVDS IBUF。

A.3 原语位置约束

Primitive Constraints 用于将 instance 布局到指定的 GRID 处,可以通过 Primitive Constraints 对 LUT、BSRAM、SSRAM、DSP、PLL、DQS 等 instance 进行约束。

语法

INS_LOC "obj_name" obj_location [exclusive];

约束元素

obj_name

约束对象的 instance 的 name。

obj_location

obj location 包含如下几类:

LUT 约束位置

- 单一位置信息,指定到 LUT,如: RxCy[0-3][A-B];
- 位置信息为一个范围,指定多行或多列。
 - 包含多个 CLS 或 LUT: "RxCy"、"RxCy[0-3]";
 - 指定多行: "R[x:y]Cm"、"R[x:y]Cm[0-3]"、"R[x:y]Cm[0-3][A-B]";
 - 指定多列: "RxC[m:n]"、"RxC[m:n][0-3]"、"RxC[m:n][0-3][A-B]";
 - 指定多行多列: "R[x:y]C[m:n]"、"R[x:y]C[m:n][0-3]"、 "R[x:y]C[m:n][0-3][A-B]"。

注!

在一条约束语句中,可包含多个 ins_location,使用","分隔。

PLL 约束位置

对于 PLL 约束位置信息书写格式为 "PLL_L" 或 "PLL_R", 若左边可放置多个 PLL,可设为"PLL_L[0]"、"PLL_L[1]"...,若右边可放置多个 PLL,可设为 "PLL_R[0]"、"PLL_R[1]"...

BSRAM 约束位置

BSRAM 约束位置信息为 "BSRAM_R10[0]" (第 10 行第一个 BSRAM), "BSRAM_R10[1]" ...

SUG935-1.4.1 55(66)

附录 A 物理约束语法规范 A.3 原语位置约束

DSP 约束位置

DSP 约束位置格式为 "DSP_R19[0]" (第 19 行第一个 DSP Block), "DSP_R19[1]" ... 若需指定具体 macro,可标记为: DSP_R19[0][A]或 DSP_R19[0][B]。

exclusive

关键字 "exclusive" 为可选项,在约束位置之后,表明该约束语句中的 obj_location 仅可以放置 obj_name 指定的 instance。

应用举例

示例 1

INS_LOC "lut_1" R2C3, R5C10[0][A];

// lut_1 被约束在 R2C3 位置和 R5C10 的第 1 个 CLS 的第 1 个 LUT的 位置。

示例 2

INS_LOC "ins_2" R5C6[2] exclusive;

// ins_2 被约束在 R5C6 的第 3 个 CLS 的位置,且该位置仅可以放置该 instance。

示例 3

INS LOC "ins 3" R[2:6]C2;

// ins_3 被约束在行坐标第二行到第六行,列坐标第二列的区域位置。

示例 4

INS_LOC "ins_4" R[2:4]C[2:6] exclusive;

// ins_4 被约束在行坐标为第二行到第四行,列坐标为第二列到第六列之间的区域位置,且该区域位置仅能被该 instance 所占用。

示例 5

INS LOC "ins 5" R[2:4]C[2:6][1];

// ins_5 被约束在行坐标第二行到第四行,列坐标第二列到第六列之间的 区域位置的任意一个 GRID 的第 2 个 CLS 中。

示例 6

INS_LOC "reg_name" B14;

// 通过对 REGISTER、IOLOGIC 的 INS_LOC 约束,约束其到 IOB 的位置 B14。

SUG935-1.4.1 56(66)

附录 A 物理约束语法规范 A.3 原语位置约束

示例 7

INS LOC "pll name" PLL L;

// 通过对 PLL 的 INS LOC 约束,约束其位置 PLL left。

示例 8

INS LOC "bsram name" BSRAM R10[2];

// 通过对 BSRAM 的 INS_LOC 约束,约束其位置第 10 行的第 3 个 BSRAM 位置处。

示例 9

INS_LOC "dsp_name" DSP_R19[2];

// 通过对 DSP 的 INS_LOC 约束,约束其位置第 19 行第 3 个 DSP Block。

一个 LUT4 的位置可以放置一个 LUT1、LUT2、LUT3、LUT4,LUT5 需要占用两个 LUT4 的位置(一个 CLS),LUT6 需要占用 4 个 LUT4 的位置(两个 CLS),LUT7 需要占用 4 个 CLS 的位置(一个 GRID),LUT8 需要占用 8 个 CLS(两个 GRID)。故对于不同 Instance 类型的约束,其约束位置的最小单元也不相同,对于 BSRAM、SSRAM、DSP(每个 DSP 单元有两个 MACRO)等也是如此,如下示例:

示例 10

LUT4 单元约束:

INS LOC "lut4 name" R5C15[1][A];

// 将 lut4 name 约束到 R5C15 的第 2 个 CLS 的第 1 个 LUT 处。

示例 11

CLS 单元约束:

INS LOC "lut5 name" R5C15[3];

// 将 lut5 name 约束到 R5C15 的第 4 个 CLS 处。

示例 12

CLS 单元约束:

INS LOC "lut6 name" R5C15[0];

// 将 lut6_name 约束到 R5C15 的第 1 个 CLS 处(将占用 CLS[0]和 CLS[1])。

示例 13

SUG935-1.4.1 57(66)

附录 A 物理约束语法规范 A.4 组约束

GRID 单元约束:

INS_LOC "lut7_name" R5C15;// 将 lut7_name 约束到 R5C15 处, LUT7 占用一个 GRID。

示例 14

GRID 单元约束:

INS LOC "lut8 name" R5C15;

// 将 lut8_name 约束到 R5C15 处,lut8_name 将占用 R5C15 和 R5C16 两个 GRID。

示例 15

DSP MACRO 单元约束:

INS_LOC "mult_name" DSP_R19[1][A];

// 将 mult_name 约束到第 19 行第 2 个 DSP 的第一个 macro 中。

A.4 组约束

Group Constraints 包括 Primitive Group Constraints 和 Relative Group Constraints,如下所述。

A.4.1 原语组约束

Primitive Group 约束用于定义一个组约束, 组是包含各类 Instance 对象的集合。通过 Primitive Group 约束, 可将 Instance 如 LUT、DFF、BSRAM、SSRAM、DSP、PLL、DQS等, 或 Buffer、IOLOGIC等添加到一个组中,并可通过约束该组的位置实现对该组中所有的对象的位置约束。

语法

GROUP 的定义:

GROUP group_name = { "obj_names" } [exclusive];

添加 Instance 到组中:

GROUP group_name += { "obj_names" } [exclusive];

约束组的位置:

GRP LOC group name group location[exclusive];

注!

当 group_name 为 escaped name 格式(以反斜线开头,空格结尾)时, group_name 两 边需加上引号。

SUG935-1.4.1 58(66)

附录 A 物理约束语法规范 A.4 组约束

约束元素

group_name

定义一个 name 作为该组的 name。

obj_name

obj name 用于将指定的 Instance 对象添加到组中。

group_location

指定该 group 的约束位置, group_location 可取 IOB、GRID、BSRAM、DSP、PLL 的位置。

exclusive

关键字 "exclusive" 为可选项,在组定义语句或位置约束语句之后;

一个对象可以被多个组包含,但在组定义语句后添加 "exclusive" 关键字,表示该组内的对象仅可被该组所包含;

在位置约束语句之后使用 "exclusive",表示该约束位置仅可被该组内的对象所占用。

应用举例

示例 1

GROUP group_1 = { "ins_1" "ins_2" "ins_3" "ins_4" };

// 创建一个名为 group_1 的组,添加对象 ins_1、ins_2、ins_3、ins_4 到该组中。

示例 2

GROUP group_2 = { "ins_5" "ins_6" "ins_7" } exclusive;

// 创建一个名为 group_2 的组,对象 ins_5、ins_6、ins_7 属于且仅可属于该组。

示例 3

GROUP group_1 += { "io_1" "io_2"};

// 添加 io 1、io 2 到组 group 1 中。

示例 4

GRP LOC group 1 R3C4, A14, B4;

// 组 group 1 中的对象可布局在 R3C4、A14、B4 位置处。

示例 5

SUG935-1.4.1 59(66)

附录 A 物理约束语法规范 A.4 组约束

GRP_LOC group_2 R[2:3]C[2:4] exclusive;

// 组 group_2 中的 Instance 对象可布局在区域 R[2:3]C[2:4]的范围内, 且该范围仅可布局 group 2 中的 Instance 对象。

实例 6

GRP LOC group 3 PLL L, BSRAM R10[0], DSP R19[0];

// 组 group_3 中的对象可布局在 PLL_L, BSRAM_R10[0], DSP_R19[0] 位置处。

A.4.2 相对组约束

通过 Relative Group Constraints,可实现对 instance 如 LUT、REG、MUX 对象的相对位置约束。

语法

定义 Relative 约束的组:

REL GROUP group name = { "obj names" };

添加 instance 对象到已定义的组中:

REL_GROUP group_name += { "obj_names"};

对组中的 instance 进行相对位置约束:

INS RLOC "obj_name" relative_location;

约束元素

obj_name

约束对象的名称。

relative_location

行列相对位置信息描述。

应用举例

```
REL_GROUP grp_1 = { "ins_1" "ins_2" "ins_3" "ins_4" };

INS_RLOC "ins_1" R0C0;

INS_RLOC "ins_2" R2C3;

INS_RLOC "ins_3" R3C5;
```

// 定义一个名为 grp_1 的组约束,并添加 ins_1、ins_2、ins_3、ins_4 到 grp 1 中。以 ins 1 为相对位置原点 R0C0, ins 2 约束到相对 ins 1

SUG935-1.4.1 60(66)

附录 A 物理约束语法规范 A.5 资源预留约束

的 R2C3 处, ins_3 约束到相对 ins_1 的 R3C5 处。

A.5 资源预留约束

通过 Resource Reservation 约束,可保留指定的位置或区域以避免在布局中使用。

语法

LOC_RESERVE location [res_obj];

应用举例

示例 1

LOC_RESERVE R2C3[0][A] -LUT;

LOC_RESERVE R2C3[0][A] -REG;

示例 2

LOC RESERVE IOR3, IOR6, R2C3, R3C4;

示例 3

LOC_RESERVE R[2:5]C[3:6], R3C[8:9];

// 以上示例中约束的位置信息将会在布局阶段被保留。

A.6 参考电压约束

芯片支持外部参考电压输入,对整个 BANK 有效。Vref Constraints 约束可用于对外部参考电压的输入管脚的名称和位置进行约束。

注!

- 可设置外部参考电压的输入管脚位置必须有 IOLOGIC 资源;
- Vref Constraints 和 Port 属性约束联合使用才有效。当 input 或 inout 类型的单端 Port, IO Type 为 SSTL/HSTL 时 Vref 属性可设置为创建的 Vref Constraints,表示该 Port 的参考电压使用 Vref Constraints 位置输入的外部参考电压。

语法

USE_VREF_DRIVER vref_name [location];

约束元素

vref_name

自定义的 VREF pin name

location

SUG935-1.4.1 61(66)

附录 A 物理约束语法规范 A.7 全局时钟原语约束

芯片中任意含有 IOLOGIC 资源的 I/O 位置可作为 VREF pin 约束的 location。

应用举例

示例 1

USE_VREF_DRIVER vref_pin;

IO PORT "port 1" IO TYPE = SSTL25 I VREF=vref pin;

IO PORT "port 2" IO TYPE = SSTL25 I VREF=vref pin;

// 定义一个名为"vref_pin"的 VREF pin,设置 port_1 与 port_2 的 VREF 属性为 vref_pin。

示例 2

USE_VREF_DRIVER vref_pin E16;

IO_LOC "port_1" C16;

IO PORT "port 1" IO TYPE = SSTL25 I VREF=vref pin;

// 定义一个名为"vref_pin"的 VREF pin,将其约束到 E16,设置 port_1 的 VREF 属性为 vref_pin,并将其约束到 C16, port_1 所约束位置需与 E16 在同一 bank 上。

A.7 全局时钟原语约束

GCLK Primitive Constraints 用于将 DCS、DQCE 等需要进行布局的全局时钟对象约束到指定的位置。

语法

INS_LOC "obj_name" position;

约束元素

obj_name

约束对象的名称。

position

小蜜蜂[®]家族: GW1N-9、GW1NR-9、GW1N-9C、GW1NR-9C 可约束 "TOPLEFT", "TOPRIGHT", "BOTTOMLEFT", "BOTTOMRIGHT" 4 个位置,其他器件只能约束"LEFT", "RIGHT" 2 个位置;

晨熙[®]家族:可约束 "TOPLEFT", "TOPRIGHT", "BOTTOMLEFT", "BOTTOMRIGHT" 4 个位置。

SUG935-1.4.1 62(66)

附录 A 物理约束语法规范 A.8 全局时钟分配约束

应用举例

INS_LOC "dcs_name" LEFT;

// 约束 DCS 对象 dcs name 至 LEFT 位置。

A.8 全局时钟分配约束

Clock Net Constraints 是对于设计中特定 net 到全局时钟线或不绕时钟线的约束。可通过该约束,实现对特定 signal_type(CLK、CE、SR、LOGIC)的 net 进行全局时钟线布线约束。

- BUFG[0-7]表示约束 net 绕 PCLK 资源;
- BUFS 表示约束 net 绕 SCLK 资源;
- LOCAL_CLOCK 表示约束 net 不绕时钟线。

CLK 信号为连接时钟引脚的信号, CE 信号为连接时钟使能引脚的信号, SR 信号为连接 SET、RESET、CLEAR、PRESET 引脚的信号, LOGIC 为连接逻辑输入引脚的信号。

语法

CLOCK_LOC "net_name" global_clocks = signal_type;

约束元素

net_name

net 的名字。

global_clocks

BUFG[0-7]: 绕具体一个 PCLK 资源;

BUFG: 绕 PCLK 资源;

BUFS: 绕 SCLK 资源;

LOCAL CLOCK: 不绕时钟线。

signal type

CLK: signal type 为时钟引脚的 net;

CE: signal type 为时钟使能引脚的 net;

SR: signal type 为 SET、RESET、CLEAR、PRESET 的 net;

LOGIC: signal type 为以上 signal type 之外的 net。

指定多个 signal type ,可使用"|"符号进行分隔。

SUG935-1.4.1 63(66)

附录 A 物理约束语法规范 A.9 高速时钟原语约束

注!

若 global_clocks 选择的是 LOCAL_CLOCK,则 signal_type 不可选。

应用举例

示例 1

CLOCK LOC "net" BUFG[0] = CLK;

// 约束 CLOCK 对象 "net"的 signal_type 为时钟引脚的 net 绕到芯片的第 1 条 PCLK 资源上。

示例 2

CLOCK_LOC "net" BUFG = CLK|CE;

NET LOC "net" BUFG = CLK|CE;

// 约束 CLOCK 对象 "net"的 signal_type 为时钟引脚或时钟使能引脚的 net 绕到芯片的 PCLK 资源上。

示例 3

CLOCK_LOC "net" BUFS = CE;

NET LOC "net" BUFS = CE;

// 约束 CLOCK 对象 "net"的 signal_type 为时钟使能引脚的 net 绕到 芯片的 SCLK 资源上。

示例 4

CLOCK LOC "net" LOCAL CLOCK;

// 约束 CLOCK 对象 "net" 不绕时钟线。

A.9 高速时钟原语约束

通过 HCLK Primitive Constraints 约束,可将 CLKDIV、DLLDLY 约束到相关高速时钟位置。CLKDIV、DLLDLY 约束位置与普通 Instance 对象约束位置不同,使用"TOPSIDE","BOTTOMSIDE","LEFTSIDE","RIGHTSIDE"表示约束位置的四边。

语法

INS LOC "obj name" position;

约束元素

obj_name

取 CLKDIV、DLLDLY 的 instance name 作为 obj name。

SUG935-1.4.1 64(66)

position

- "TOPSIDE[0-1]"
- "BOTTOMSIDE[0-1]"
- "LEFTSIDE[0-1]"
- "RIGHTSIDE[0-1]"

应用举例

INS_LOC "clkdiv_name" TOPSIDE[0];

// 将 clkdiv_name 约束到 TOPSIDE[0]位置。

A.10 其他约束

A.10.1 JTAGSEL_N net 约束

当使用 FPGA 内部逻辑控制 JTAGSEL_N 功能时,即在不断电第二次下载的时候,拉低 JTAGSEL_N 使得 JTAG 切换到配置下载功能,需要添加 JTAGSEL_N 的 net 物理约束,具体参考文档 <u>UG290, Gowin FPGA 产品编程配置手册</u>。

语法

NET LOC "obj name" V JTAGSELN;

约束元素

obj_name

内部逻辑的任一条可绕线的 net 作为 obj name。

应用举例

NET LOC "netname" V JTAGSELN;

// 将 netname 这条 net 来控制 JTAGSEL N 的功能。

A.10.2 RECONFIG_N net 约束

当使用 FPGA 内部逻辑控制 RECONFIG_N 的功能时,即在不断电第二次下载的时候,拉低 RECONFIG_N 使得 FPGA 切换到配置复位功能,需要添加 RECONFIG_N 的 net 物理约束,具体参考文档 <u>UG290, Gowin FPGA</u>产品编程配置手册。

SUG935-1.4.1 65(66)

附录 A 物理约束语法规范 A.10 其他约束

语法

NET_LOC "obj_name" V_RECONFIGN;

约束元素

obj_name

内部逻辑的任一条可绕线的 net 作为 obj_name。

应用举例

示例

NET_LOC "netname" V_RECONFIGN;

// 将 netname 这条 net 来控制 RECONFIG_N 的功能。

SUG935-1.4.1 66(66)

