Neutre

Prise de Terre

Phase

Systèmes monophasés et triphasés

I. Système monophasé

Les prises de courant d'une installation monophasée comportent 2 bornes femelles et une borne mâle, appelée "terre" ou "prise de terre".

Les deux bornes femelles correspondent au **neutre** et à la **phase**. La phase amène le courant électrique et le neutre permet de fermer le circuit.

Ce sont ces deux fils qui permettent la distribution de l'électricité : on parle de système **monophasé**.

Entre la terre et le neutre, la tension est nulle.

On en déduit donc
$$U_{max} = 230\sqrt{2} \approx 324.3 V$$

La tension du secteur (pour un système monophasé) peut donc s'écrire sous la forme : $U=V_{Ph}-V_{N}=V_{Ph}-V_{T}$

II. Système triphasé

I.1. Présentation

Le courant monophasé nécessite deux fils : la phase et le neutre. Le **courant triphasé**, quant à lui, présente **quatre fils électriques** : **trois phases** et un neutre. Les trois phases qui composent le courant triphasé sont dites « **déphasées** ».

Le courant triphasé permet, lors du <u>transport de l'électricité</u>, de limiter les déperditions. C'est donc lui qui est généralement utilisé pour acheminer l'électricité jusqu'aux habitations.

Le courant triphasé permet une tension plus importante et convient aux appareils fonctionnant en 400 V (essentiellement des appareils professionnels comme des pompes à chaleur, mais aussi certains fours ou des lavelinges particulièrement puissants).

La distribution triphasée se fait avec trois fils de phase, un neutre et un conducteur de protection.

I.2. Tensions simples et tensions composées

> Tensions simples

On appelle tension simple la tension entre une phase et le neutre. Il y a donc trois tensions simples : $v_1(t)$, $v_2(t)$ et $v_3(t)$. Ces tensions sont telles que :

1

$$v_1(t) = V_1 \sqrt{2} \cos(\omega t)$$

$$v_2(t) = V_2 \sqrt{2} \cos(\omega t - 2\pi/3)$$

$$v_3(t) = V_3 \sqrt{2} \cos(\omega t - 4\pi/3)$$

BTS ATI / A2

Comme ces tensions sont déphasées deux à deux de $2\pi/3$ radians (soit 120°), on dit qu'elles constituent un **système triphasé**.

On appelle système triphasé trois tensions sinusoïdales alternatives, de même fréquence et déphasées deux à deux de 120°.

De plus, lorsque les trois valeurs efficaces sont égales $(V_1 = V_2 = V_3 = V)$, le système est dit équilibré.

Remarques:

- le courant triphasé du secteur est tel $V_1=V_2=V_3=230\,\mathrm{V}$ et $\omega=2\pi f$ avec $f=50\,\mathrm{Hz}$. Chacune de ces tensions correspond à la tension du secteur pour une installation monophasée.
- dans le cas considéré, V_1 est en avance de phase sur V_2 , elle-même en avance de phase sur V_3 . On parle de système direct. Si V_3 est en avance sur V_2 elle-même en avance sur V_1 , le système est dit indirect.

Représentation de Fresnel associée :

On a
$$\vec{V}_1 + \vec{V}_2 + \vec{V}_3 = \vec{0} \Rightarrow v_1(t) + v_2(t) + v_3(t) = 0$$

> Tensions composées

On appelle tension composée la différence de potentiel entre deux phases. On définit ainsi :

$$U_{12}(t) = V_1(t) - V_2(t), \ U_{23}(t) = V_2(t) - V_3(t) \text{ et } U_{31}(t) = V_3(t) - V_1(t).$$

Pour un système équilibré, on a donc :

$$U_{12}(t) = U\sqrt{2} \cos(\omega t + \pi/6)$$

$$U_{23}(t) = U\sqrt{2}\cos(\omega t - \pi/2)$$

$$U_{31}(t) = U \sqrt{2} \cos(\omega t - 7\pi/6)$$

Ces tensions sont déphasées deux à deux de $2\pi/3$ radians (120°) et ont même valeurs efficaces : elles constituent donc un système triphasé équilibré.

Représentation de Fresnel associée :

On a
$$\vec{U}_{12} + \vec{U}_{23} + \vec{U}_{31} = \vec{0} \Rightarrow u_{12} + u_{23} + u_{31} = 0$$

> Relation entre U et V

$$U = 2V \cos 30 \text{ soit } U = 2V \frac{\sqrt{3}}{2}$$

Finalement : $U = V\sqrt{3}$

I.3. Réseau ENEDIS

En France, ENEDIS (anciennement EDF) distribue un réseau triphasé équilibré :

- U = 400 V (valeur efficace des tensions composées)
- $f = 50 \,\mathrm{Hz}$

La valeur efficace des tensions simples :

$$V = U / \sqrt{3} \text{ soit } V = 230 \text{ V}$$

Chez le particulier, la tension monophasée (le "secteur") provient d'un réseau triphasé où l'on utilise le neutre avec une des trois phases

2

BTS ATI / A2

III. Couplage

En monophasé, le récepteur est un dipôle. Une des bornes est reliée au neutre et l'autre à la phase :

En triphasé, le récepteur possède trois bornes (une par phase) et éventuellement une quatrième pour le neutre :

i₁, i₂ et i₃ sont appelés courants de ligne.

III.1. Couplage étoile

Symbole :

En étoile, chaque dipôle est soumis à la tension simple $(v_1(t) \text{ pour } D_1, v_2(t) \text{ pour } D_2, ...)$ et est traversé par le courant de ligne $i_1(t), i_2(t),$

On dit que le récepteur triphasé est **équilibré** si les dipôles D_1 , D_2 et D_3 ont même impédance Z.

que l'on peut également représenter par

Dans ce cas, les courants de ligne $i_1(t)$, $i_2(t)$ et $i_3(t)$ forment un système triphasé équilibré (même valeur efficace I et déphasage de 120°). On en déduit donc que $i_N(t)=i_1(t)+i_2(t)+i_3(t)=0$: le fil neutre n'est pas nécessaire, l'intensité du courant dans ce fil est alors nulle.

Remarque : si le récepteur est non équilibré, $i_N \neq 0$ et il faut donc dans ce cas le neutre, sinon danger !

Les courants $j_1(t)$, $j_2(t)$ et $j_3(t)$ sont appelés courants de phase (ou courant par phase). On voit clairement que $i_1(t)=j_1(t)$, $i_2(t)=j_2(t)$ et $i_3(t)=j_3(t)$. De plus la charge et le réseau sont équilibrés, donc : $I_1=I_2=I_3=I=J$

On retiendra pour le couplage étoile : I = J

III.2. Couplage triangle

En triangle, chaque dipôle est soumis à la tension composée $u_{ij}(t)$ et est traversé par le courant de phase $j_i(t)$.

Symbole :

Les courants de lignes i(t) et les courants de phases j(t) sont liés par :

$$i_1(t) = j_1(t) - j_3(t)$$

$$i_2(t) = j_2(t) - j_1(t)$$

$$i_3(t) = j_3(t) - j_2(t)$$

$$i_2(t) = j_2(t) - j_1(t)$$

$$i_3(t) = j_3(t) - j_2(t)$$

Dans le cas d'un récepteur équilibré, les courants de phases $j_1(t)$, $j_2(t)$ et $j_3(t)$ forment un système triphasé équilibré (même valeur efficace J et déphasage de 120° entre eux). A l'aide de la représentation de Fresnel, on peut montrer (de manière analogue à ce qui a été fait au III.1) que les valeurs efficaces des courants de ligne et de phase sont liés par la relation : $I = J\sqrt{3}$

<u>Remarque</u>: on déduit des relations entre i(t) et j(t) que $i_1(t) + i_2(t) + i_3(t) = 0$: il n'y a pas besoin de fil neutre dans le couplage triangle.

Même branchement représenté de trois façons différentes.

Remarque:

Les déphasages pour les deux montages étoile et triangle sont les mêmes. Il s'agit du déphasage provoqué par le dipôle Z du montage.

$$\varphi_{\triangle}(\vec{J}, \vec{U}) = \varphi_{\downarrow}(\vec{I}, \vec{V})$$

BTS ATI / A2 4

IV. Puissances en triphasé

IV.1. Rappels sur les puissances et théorème de Boucherot

Considérons un dipôle parcouru par un courant d'intensité efficace I et soumis à une tension de valeur efficace U. Notons enfin φ le déphasage entre le courant et la tension : $\varphi = \varphi_{II} - \varphi_{I}$. On définit alors :

La puissance active : $P = UI \cos \varphi$ qui s'exprime en Watt (W)

<u>La puissance réactive</u>: $Q = UI \sin \varphi$ qui s'exprime en volts-ampères réactifs (VAR)

La puissance apparente : S = UI qui s'exprime en volts-ampères (VA)

Ces trois puissances sont donc liées par la relation : $S^2 = P^2 + Q^2$

Théorème de Boucherot: dans une installation, les puissances actives consommées par chaque élément s'ajoutent, de même que les puissances réactives :

$$P = P1 + P2 + ... + Pn$$
 et $Q = Q1 + Q2 + ... + Qn$

Remarques:

- un élément résistif ne consomme pas de puissance réactive.
- on ne doit surtout pas faire la somme des puissances apparentes. Pour calculer S sur l'ensemble de l'installation, on calcule P et Q puis S grâce à la relation $S^2 = P^2 + Q^2$

IV.2. Puissances pour le couplage étoile équilibré

Pour un dipôle du récepteur : $P_1 = V \; I \; cos \; \varphi \; \; avec \qquad \varphi = \varphi_V - \varphi_I$

Pour le récepteur complet : $P = 3 P1 = 3 VI \cos \varphi$ de plus $V = \frac{U}{\sqrt{3}}$

Finalement pour le couplage étoile : $P = \sqrt{3}UI \cos \varphi$

 $O = \sqrt{3}UI \sin \varphi$ et $S = \sqrt{3}UI$ de la même façon :

Facteur de puissance : $k = \cos \varphi$

IV.3. Puissances pour le couplage triangle équilibré

Pour un dipôle du récepteur :

 $P_1 = U J \cos \varphi$ avec $\varphi = \varphi_U - \varphi_J$

Pour le récepteur complet :

 $P=3.P_1=3UJ\cos\varphi$ de plus $J=\frac{I}{\sqrt{3}}$

Finalement pour le couplage étoile : $P = \sqrt{3}UI \cos \varphi$

de la même façon : $Q = \sqrt{3}UI\sin\varphi$ et $S = \sqrt{3}UI$

Facteur de puissance : $k = \cos \varphi$

V. Effet Joule

Considérons uniquement la partie résistive du récepteur.

On nomme R: la résistance entre deux phases

r : la résistance du dipôle D

Couplage étoile :

Pour un dipôle du récepteur :

$$P_{J1} = rI^2$$

Résistance vue entre deux bornes :

$$R = 2r$$

Pour le récepteur complet :

$$P_J = 3. P_{J1} = 3rI^2 = \frac{3}{2}RI^2$$

Finalement pour le couplage étoile :

$$P_J = \frac{3}{2}RI^2$$

Attention à ne pas confondre r et R !

Couplage triangle :

Résistance équivalente R vue entre deux bornes du récepteur :

nous avons 2r en parallèle avec r;

$$R = \frac{2r \cdot r}{2r + r} = \frac{2}{3}r$$

Pour une phase du récepteur :

$$P_{J1} = rJ^2$$

Résistance vue entre deux bornes :

$$R = \frac{2}{3}r$$

Pour le récepteur complet :

$$P_J = 3. P_{J1} = 3rJ^2 = 3\frac{3}{2}R(\frac{I}{\sqrt{3}})^2 = \frac{3}{2}RI^2$$

Finalement pour le couplage étoile :

$$P_J = \frac{3}{2}RI^2$$

	Couplage étoile	Couplage triangle
Relation entre U et V	$U = V\sqrt{3}$	$U = V\sqrt{3}$
Relation entre I et J	I = J	$I = J\sqrt{3}$
Déphasage	$\phi(\vec{\mathbf{I}}, \vec{\mathbf{V}})$	$\phi(\vec{J},\vec{U})$
Puissance active	$P = 3.P_1 = 3VI\cos\varphi$ $P = \sqrt{3}UI\cos\varphi$	$P = 3.P_1 = 3UJ\cos\varphi$ $P = \sqrt{3}UI\cos\varphi$
Pertes joules	$P_{J} = 3rI^{2}$ $P_{J} = \frac{3}{2}RI^{2}$	$P_{J} = 3rJ^{2}$ $P_{J} = \frac{3}{2}RI^{2}$
Résistance équivalente	R = 2 r	$R = \frac{2}{3}r$
Puissance réactive	$\mathbf{Q} = \sqrt{3}\mathbf{U}\mathbf{I}\sin\varphi$	$\mathbf{Q} = \sqrt{3}\mathbf{U}\mathbf{I}\sin\varphi$
Puissance apparente	$S = \sqrt{3}UI$	$S = \sqrt{3}UI$
Facteur de puissance	$\mathbf{k} = \cos \varphi$	$\mathbf{k} = \cos \varphi$

