Exercices

Exercice 1 Box-Muller and Marsaglia-Bray algorithm

1. On se donne une fonction h qu'on suppose continue et bornée. Si on peut montrer (1) avec f_X et f_Y des densités gaussiennes centrées réduites, alors on aura montré que X et Y sont indépendantes et suivent une loi normale centrée réduite par le théorème d'identification des lois.

$$\forall h \quad \mathbb{E}[h(X,Y)] = \int_{\mathbb{R}^2} h(x,y) f_X(x) f_Y(y) dx dy \tag{1}$$

Soit h continue et bornée.

$$\mathbb{E}[h(R\cos\Theta, R\sin\Theta)] = \int_{\mathbb{R}^2} h(r\cos\theta, r\sin\theta) f_{R,\Theta}(r, \theta) dr d\theta$$

$$= \int_{\mathbb{R}^+} \int_0^{2\pi} \frac{h(r\cos\theta, r\sin\theta)}{2\pi} r\exp\left(\frac{-r^2}{2}\right) dr d\theta \qquad = (*)$$

Soit $\Psi:(r,\theta)\mapsto(x,y)$. Ψ est un \mathcal{C}^1 -difféomorphisme (bijection différentiable) de $\mathbb{R}^+\times[0,2\pi]$ dans \mathbb{R}^2 . On a :

$$\nabla \Psi = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix}$$
$$= \begin{pmatrix} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{pmatrix}$$

De plus $\det(\nabla \Psi) = r \cos^2 \theta + r \sin^2 \theta = r$. Par le théorème de changement de variable :

$$(*) = \int_{\mathbb{R}^2} h(x, y) \exp\left(\frac{-(x^2 + y^2)}{2}\right) \frac{1}{2\pi} dx dy$$
$$= \int_{\mathbb{R}^2} h(x, y) \frac{\exp(-x^2/2)}{\sqrt{2\pi}} \frac{\exp(-y^2/2)}{\sqrt{2\pi}} dx dy$$

On a montré (1), donc X, $Y \sim \mathcal{N}(0,1)$ et sont indépendantes.

2. Écrire un algorithme pour échantillonner (sampler) deux gaussiennes indépendantes de loi $\mathcal{N}(0,1)$.

Rappel (Théorème de la transformée inverse)

Soit $U \sim \mathcal{U}([0,1])$ et soit X une variable aléatoire qui a pour fonction de répartition F telle que $F(x) = \int_{-\infty}^{x} f_X(x) dx$. Alors $F^{-1}(U) \sim X$.

La fonction de répartition de la loi de Rayleigh de paramètre 1 est :

$$F_R(r) = \int_0^r t \exp(-t^2/2) dt$$

= $\left[-\exp(-t^2/2) \right]_0^r$
= $1 - \exp(-r^2/2)$

Par le théorème de la transformée inverse, $F_R^{-1}(U) \sim R(1)$. $F_R : \mathbb{R} \to [0, 1]$ est monotone et continue sur un intervalle fermé. Soit $y \in [0, 1]$ tel que $y = F_R(r)$.

$$y = F_R(r) \Leftrightarrow y = 1 - \exp(-r^2/2)$$

$$\Leftrightarrow \exp(-r^2/2) = 1 - y$$

$$\Leftrightarrow -r^2/2 = \ln(1 - y)$$

$$\Leftrightarrow r^2 = -2\ln(1 - y)$$

$$\Leftrightarrow r = \sqrt{-2\ln(1 - y)}$$

$$car y \in [0, 1].$$

On en déduit l'algorithme suivant :

Algorithme:

- 1. Tirer U_1 , U_2 de loi uniforme sur [0, 1].
- 2. Prendre $R = -\sqrt{2\log(1-U_1)}$ et $\Theta = 2\pi U_2$. R suit une loi de Rayleigh de paramètre 1 et Θ suit une loi uniforme sur $[0, 2\pi]$.
- 3. Prendre $(X, Y) = (R\cos(\Theta), R\sin(\Theta))$. D'après la question 1., X et Y sont indépendantes et suivent une loi $\mathcal{N}(0, 1)$.
- 3. a) À la fin de la boucle (V_1, V_2) suivent la distribution uniforme de :

$$E = \{(V_1, V_2)|V_1^2 + V_2^2 \le 1\}$$

 (V_1, V_2) a pour densité:

$$f_{V_1,V_2}(v_1, v_2) = \frac{1}{|E|} \mathbb{1}_{\{v_1^2 + v_2^2 \le 1\}}(v_1, v_2) \mathbb{1}_{[-1,1]^2}(v_1, v_2)$$
$$= \left[\frac{1}{\pi} \mathbb{1}_{\{v_1^2 + v_2^2 \le 1\}}(v_1, v_2) \right]$$

b) On utilise à nouveau le théorème d'identification des lois. Soit h continue et bornée. On veut montrer que :

$$\mathbb{E}[h(T_1,V)] = \int h(t_1,v)f_{T_1}(t_1)f_V(v)dvdt_1$$

avec f_{T_1} et f_V les densités qui nous intéressent.

Distribution de $cos(\Theta)$:

Soit $\Theta \sim \mathcal{U}([0, 2\pi])$. On note que $\cos([0, \pi]) = \cos([\pi, 2\pi])$. Par conséquent travaillons avec $Y = \cos(\Theta/2)$ afin d'avoir une fonction monotone et inversible. On cherche la densité de Y.

$$F_{Y}(y) = P(Y \le y)$$

$$= P(\cos(\Theta/2) \le y)$$

$$= P(\Theta/2 \ge \arccos(y))$$

$$= P(\Theta/2 \le \arccos(-y))$$

$$= \arccos(-y)/\pi$$

$$f_{Y}(y) = \frac{d}{dy}F_{Y}(y)$$

$$= \frac{1}{\pi}\frac{d}{dy}\arccos(-y)$$

$$= \frac{1}{\pi\sqrt{1-y^{2}}}$$

Distribution de T_1 :

On note $\Psi: v_1, v_2 \mapsto (t_1, v)$. On note que ψ n'est pas injective. Calculons le jacobien de $\Psi:$

$$\nabla \Psi = \begin{pmatrix} \frac{\partial t_1}{\partial v_1} & \frac{\partial t_1}{\partial v_2} \\ \frac{\partial t_2}{\partial v_1} & \frac{\partial t_2}{\partial v_2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{v_2^2}{(v_1^2 + v_2^2)^{3/2}} & \frac{-v_1 v_2}{(v_1^2 + v_2^2)^{3/2}} \\ 2v_1 & 2v_2 \end{pmatrix}$$

On a donc le jacobien $\det \nabla \Psi = \frac{2v_2}{\sqrt{v_1^2 + v_2^2}} = 2\sqrt{1-t_1^2}$. Par le théorème de changement de variable :

$$\begin{split} &\int_{-1}^{1} \int_{-1}^{1} h(t_{1}(v_{1}, v_{2}), v(v_{1}, v_{2})) \frac{1}{\pi} \mathbb{1}_{\{v_{1}^{2} + v_{2}^{2} \leq 1\}}(v_{1}, v_{2}) dv_{1} dv_{2} \\ &= 2 \int_{-1}^{1} \int_{0}^{1} h(t_{1}, v) \mathbb{1}_{\{v \leq 1\}} \frac{1}{2\pi \sqrt{1 - t_{1}^{2}}} dv dt_{1} & \text{(le facteur 2 provient de la non-injectivit\'e de } \Psi). \end{split}$$

On reconnaît bien la densité de $cos(\Theta)$ et celle de $\mathcal{U}([0,1])$. Donc \mathcal{T}_1 et V sont indépendantes, \mathcal{T}_1 suit la même distribution que $cos(\Theta)$ et V suit une loi uniforme sur [0,1].

Distribution de T_2 :

De façon similaire, on peut cacluler la densité de $sin(\Theta)$, puis on peut prouver que T_2 et V sont indépendantes et que T_2 suit la même distribution que $sin(\Theta)$.

c) Distribution de (X, Y)?

 $S = F^{-1}(V)$ avec $V \sim \mathcal{U}([0,1])$ et F^{-1} l'inverse de la fonction de répartition d'une loi de Rayleigh de paramètre 1 (d'après la question 2.). Donc S suit une loi de Rayleigh de paramètre 1 d'après le théorème de la transformée inverse.

Comme les variables aléatoires T_1 et T_2 sont indépendantes de V, elles sont indépendantes de S. D'après la question 1., X et Y sont indépendantes et X et $Y \sim \mathcal{N}(0,1)$.

d) Le nombre moyen d'étapes dans la boucle revient à regarder la probabilité de se trouver dans un disque de rayon 1 sachant qu'on est uniformément dans $[-1, 1]^2$. En faisant le ratio des surfaces, on trouve que cette probabilité est $\frac{\pi}{4}$.

On note C la variable aléatoire du nombre de coups au bout duquel on sort de la boucle. Elle suit une loi géométrique, pour $n \ge 1$:

$$P(C = n) = \frac{\pi}{4} \left(1 - \frac{\pi}{4}\right)^{n-1}$$

On calcule donc l'espérance d'une loi géométrique :

$$\mathbb{E}[C] = \sum_{n=1}^{+\infty} nP(C = n)$$

$$= \sum_{n=1}^{+\infty} \frac{n\pi}{4} \left(1 - \frac{\pi}{4}\right)^{n-1}$$

$$= \frac{\pi}{4} \frac{1}{\left(\frac{\pi}{4}\right)^2}$$

$$= \left[\frac{4}{\pi}\right]$$
par (2).

Justification de (2):

Notons $f_n(q) = \sum_{k=0}^n q^k$. Pour 0 < q < 1, on reconnaît une série géométrique de raison q:

$$f_n(q) = \frac{1-q^{n+1}}{1-q}$$

Dérivons par raport à la variable q :

$$\sum_{k=1}^{n} kq^{k-1} = \frac{-(n+1)q^n(1-q) + (1-q^{n+1})}{(1-q)^2}$$

Par croissance comparée, il est clair qu'on a :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} kq^{k-1} = \frac{1}{(1-q)^2}$$
 (2)

Exercice 2 Invariant distribution

Rappel (Noyau de transition)

Soit \mathcal{X} l'ensemble des états d'une chaîne de Markov, $P:(\mathcal{X}\times\mathcal{X})\to\mathbb{R}$ est une matrice de transition si :

$$\forall (x,y) \in (\mathcal{X} \times \mathcal{X}), P(x,y) \geq 0 \quad \text{ et } \quad \sum_{y} P(x,y) = 1 \quad \forall x \in \mathcal{X}$$

En particulier, $\forall x \in \mathcal{X}$, Q(y) = P(x, y) est une loi de probabilités sur \mathcal{X} .

Par extension on définit le noyau de transition pour $A \subset \mathcal{X}$:

- $\forall x \in \mathcal{X}, A \mapsto P(x, A)$ est une loi de probabilité.
- $\forall A \subset \mathcal{X}, x \mapsto P(x, A)$ est mesurable.

Et on définit aussi l'application de P sur les fonctions ou mesures :

$$\begin{cases} Pf : & \mathcal{X} \to \mathbb{R}^+ \\ & x \mapsto \sum_{y \in \mathcal{X}} P(x, y) f(y) \end{cases}$$
$$\begin{cases} \mu P : & \mathcal{X} \to \mathbb{R}^+ \\ & y \mapsto \sum_{x \in \mathcal{X}} P(x, y) \mu(x) \end{cases}$$

1. On note $Q = \left\{\frac{1}{m}, m \in \mathbb{N}^*\right\}$. Le noyau de transition de (X_n) est la distribution de $X_{n+1}|X_n$. Si on peut montrer 3 pour toute fonction h continue et bornée, on aura identifié le noyau de transition de (X_n) par le théorème d'identification des lois.

$$\mathbb{E}[h(X_{n+1})|X_n] \sim \int_{\mathbb{R}} h(y)P(x, dy)$$
 (3)

Si $x \notin Q$:

$$\begin{split} \mathbb{E}[h(X_{n+1})|X_n] &= \int_{\mathbb{R}} h(y) f_{X_{n+1}|X_n}(y) dy \\ &= \int_{\mathbb{R}} h(y) \mathbb{1}_{\{[0,1]\}}(y) dy \end{split} \qquad \text{par l'énoncé}. \end{split}$$

Donc
$$P(x, A) = \int_A P(x, dy) = \boxed{\int_{A \cap [0,1]} dy}$$

Si $x \in Q$:

On note $B_m \sim \mathcal{B}(\frac{1}{m^2})$.

$$\begin{split} \mathbb{E}[h(X_{n+1})|X_n] &= \mathbb{E}[h(X_{n+1})|X_n, B_m = 0]P(B_m = 0) + \mathbb{E}[h(X_{n+1})|X_n, B_m = 1]P(B_m = 1) \\ &= h\left(\frac{1}{m+1}\right)\left(1 - \frac{1}{m^2}\right) + \frac{1}{m^2}\int_{A \cap [0,1]} h(y)dy \end{split}$$

D'où:

$$P(x, A) = \int_{A} P(x, dy)$$

$$= \sqrt{(1 - x^{2})\delta_{\frac{1}{m+1}}(A) + x^{2} \int_{A \cap [0,1]} dy}$$
avec $x^{2} = \frac{1}{m^{2}}$

On a donc:
$$P(x,A) = \begin{cases} (1 - \frac{1}{m}^2) \delta_{\frac{1}{m+1}}(A) + \frac{1}{m^2} \int_{A \cap [0,1]} dy & \text{si } x = \frac{1}{m}. \\ \int_{A \cap [0,1]} dy & \text{sinon.} \end{cases}$$

2. On note $\pi \sim \mathcal{U}([0,1])$, montrons que $\pi P = \pi$.

Soit A une partie de \mathbb{R} .

$$\pi P(A) = \int_{\mathbb{R}} P(x, A) \pi(x)$$

$$= \int_{[0,1]} P(x, A) dx \qquad \text{car } \pi \text{ uniforme.}$$

$$= \int_{[0,1] \cap Q} P(x, A) dx + \int_{[0,1] \cap \bar{Q}} P(x, A) dx \qquad \text{par la relation de Chasles.}$$

$$= \int_{[0,1] \cap \bar{Q}} P(x, A) dx \qquad \text{car } Q \text{ est de mesure nulle.}$$

$$= \int_{[0,1] \cap A} dt \qquad \text{par la question 1.}$$

$$= \pi(A) \qquad \text{car } \pi \text{ est uniforme sur } [0,1].$$

On a bien $\pi P = \pi$

3. Soit $x \notin Q$. Calculons $P^n f(x)$ pour tout $n \ge 1$ et $\lim_{n \to +\infty} P^n f(x)$ en fonction de $\int f(t) \pi(t) dt$. Nous procédons par récurrence.

Soit la propriété $\mathcal{P}(n): P^n f(x) = \int_0^1 f(y) dy$.

Initialisation:

$$Pf(x) = \mathbb{E}[f(X_1)|X_0 = x] = \int_0^1 f(y)dy$$
 car $x \notin Q$.

Donc $\mathcal{P}(1)$ est vraie.

Récurrence :

Soit $n \in \mathbb{N}^*$, supposons $\mathcal{P}(n)$. Montrons $\mathcal{P}(n+1)$:

$$P^{n+1}f(x) = PP^{n}f(x)$$

$$= \int_{0}^{1} \left(\int_{0}^{1} f(y) dy \right) dx \qquad \text{par } \mathcal{P}(n) \text{ et car } x \notin Q.$$

$$= \int_{0}^{1} f(y) dy \qquad \text{(intégration d'une constante)}.$$

On a bien $\mathcal{P}(n+1)$.

Conclusion:

On a bien $\mathcal{P}(n)$ pour tout $n \in \mathbb{N}^*$

On s'intéresse maintenant à $\lim_{n\to+\infty} P^n f(x)$:

$$\lim_{n \to +\infty} P^n f(x) = \lim_{n \to +\infty} \int_0^1 f(y) dy$$
 par ce qui précède.

$$= \int_0^1 f(y) dy$$
 car le terme est indépendant de n .

$$= Pf(x)$$
 par la question 2.

$$= \int_0^1 f(y) \pi(y) dy$$

4. a) Soit $x = \frac{1}{m}$ avec $m \ge 2$. Nous procédons par récurrence.

Soit la propriété $\mathcal{P}(n): P^n(\frac{1}{m}, \frac{1}{n+m}) = \prod_{k=1}^n \left(1 - \frac{1}{(m+k-1)^2}\right)$.

Initialisation:

$$\begin{split} P\left(\frac{1}{m},\frac{1}{m+1}\right) &= \frac{1}{m^2} \int_{\{\frac{1}{m+1}\} \cap [0,1]} dt + \left(1 - \frac{1}{m^2}\right) \delta_{\frac{1}{m+1}} \left(\left\{\frac{1}{m+1}\right\}\right) \quad \text{ par la question 1.} \\ &= 1 - \frac{1}{m^2} \end{split}$$

Donc $\mathcal{P}(1)$ est vraie.

Récurrence :

Soit $n \in \mathbb{N}^*$, supposons $\mathcal{P}(n)$. Montrons $\mathcal{P}(n+1)$:

$$\begin{split} P^{n+1}\left(\frac{1}{m}, \frac{1}{m+n+1}\right) &= P\left(\frac{1}{m+n}, \frac{1}{m+n+1}\right) P^{n}\left(\frac{1}{m}, \frac{1}{m+n}\right) \\ &+ \left(1 - P^{n}\left(\frac{1}{m}, \frac{1}{m+n}\right)\right) \int_{\left\{\frac{1}{m+n+1}\right\} \cap [0,1]} dt \\ &= \left(1 - \frac{1}{(m+n)^{2}}\right) \prod_{k=1}^{n} \left(1 - \frac{1}{(m+k-1)^{2}}\right) \\ &+ 0 \\ &= \prod_{k=1}^{n+1} \left(1 - \frac{1}{(m+k-1)^{2}}\right) \end{split}$$

On a bien $\mathcal{P}(n+1)$.

Conclusion:

Pour tout
$$n \in \mathbb{N}^*$$
, $P^n(\frac{1}{m}, \frac{1}{n+m}) = \prod_{k=1}^n \left(1 - \frac{1}{(m+k-1)^2}\right)$.

On peut développer l'expression précédente :

$$\begin{split} P^{n}\left(\frac{1}{m},\frac{1}{n+m}\right) &= \prod_{k=1}^{n} \left(1 - \frac{1}{(m+k-1)^{2}}\right) \\ &= \prod_{k=1}^{n} \left(\frac{(m+k-1)^{2}-1}{(m+k-1)^{2}}\right) \\ &= \prod_{k=1}^{n} \left(\frac{(m+k-2)(m+k)}{(m+k-1)^{2}}\right) \\ &= \prod_{k=1}^{n} \left(\frac{m+k-2}{m+k-1}\right) \prod_{k=1}^{n} \left(\frac{m+k}{m+k-1}\right) \\ &= \frac{m-1}{m+n-1} \times \frac{m+n}{m} & \text{en simplifiant les termes qui s'annulent.} \\ &= \left[\frac{m-1}{m} \times \frac{m+n}{m+n-1}\right] \end{split}$$

b) Par la question précédente, il est clair que :

$$\lim_{n\to+\infty}P^n\left(\frac{1}{m},\frac{1}{n+m}\right)=\frac{m-1}{m}$$

On note $A = \bigcup_{q \in \mathbb{N}} \left\{ \frac{1}{m+q+1} \right\}$. Il est clair que pour des valeurs de m élevées, on a $\frac{m-1}{m} \approx 1$ et on est presque sûr de se trouver dans A asymptotiquement. En revanche, pour des valeurs de m faibles, on a des chances de sortir de A, et par les mêmes arguments que précédemment (la mesure de A est nulle), on n'a aucune chance de revenir dans A. On distingue donc deux cas :

 \bullet On sort de A avec probabilité $\frac{1}{m}.$ Dans ce cas :

$$\lim_{n\to+\infty}P^n(x,A)=\pi([0,1])$$

• On reste dans A avec probabilité $\frac{m-1}{m}$. Dans ce cas on n'a pas $\lim_{n\to+\infty} P^n(x,A) = \pi(A)$ puisqu'on a montré que les probabilités de transitions entre les états $\frac{1}{m+n}$ et $\frac{1}{m+n+1}$ tendent vers 1.

Donc d'une façon générale, $\lim_{n\to+\infty} P^n(x,A) \neq \pi(A)$.

Exercice 3 Stochastic Gradient Learning in Neural Networks

Les réponses aux questions sont dans le Jupyter Notebook.