ЗАДАЧИ ЗА УПРАЖНЕНИЕ

спец. Информатика (задочно), І курс

Намерете следните граници на числови редици:

1.
$$\lim_{n\to\infty} \frac{7n^2+n-3}{8n^2-n+1}$$

1.
$$\lim_{n \to \infty} \frac{7n^2 + n - 3}{8n^2 - n + 1}$$
 2. $\lim_{n \to \infty} \frac{3 - n^2 - 4n^4}{2 + n + 3n^2 - 2n^4}$ 3. $\lim_{n \to \infty} \frac{n^3 + 8n - 2}{2n^2 + 3n - 1}$ 4. $\lim_{n \to \infty} \frac{4n - 3}{n^3 + 2}$

3.
$$\lim_{n\to\infty} \frac{n^3 + 8n - 2}{2n^2 + 3n - 1}$$

4.
$$\lim_{n\to\infty} \frac{4n-3}{n^3+2}$$

5.
$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{3n^2}$$

6.
$$\lim_{n\to\infty} \frac{5^n + 4^{n+1}}{6^{n+2} + 5^n}$$

7.
$$\lim_{n\to\infty} \frac{5^n+6^{n+1}}{6^n+5^{n+1}}$$

5.
$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{3n^2}$$
 6. $\lim_{n \to \infty} \frac{5^n + 4^{n+1}}{6^{n+2} + 5^n}$ 7. $\lim_{n \to \infty} \frac{5^n + 6^{n+1}}{6^n + 5^{n+1}}$ 8. $\lim_{n \to \infty} \frac{\sqrt{2n^2 + 1} + n}{\sqrt{n^3 + 7} - n}$

9.
$$\lim_{n \to \infty} (7n - \sqrt{49n^2 + 3})$$

10.
$$\lim_{n \to \infty} (n\sqrt{n^2 + 1} - n)$$

9.
$$\lim_{n \to \infty} (7n - \sqrt{49n^2 + 3})$$
 10. $\lim_{n \to \infty} (n\sqrt{n^2 + 1} - n)$ **11.** $\lim_{n \to \infty} \frac{1}{n(\sqrt{n^2 - 1} - n)}$

при
$$\lim_{n\to\infty}a_n=1,\quad a_n\neq$$

13.
$$\lim_{n \to \infty} \frac{2a_n^2 - a_n - 1}{2a_n^2 - 5a_n - 3}$$

$$\lim_{n \to \infty} a_n = -\frac{1}{2}, \quad a_n \neq -\frac{1}{2}, \ a_n \neq 3 \qquad \textbf{14.} \lim_{n \to \infty} \left(\frac{n-7}{n+4}\right)^n \qquad \textbf{15.} \lim_{n \to \infty} \left(1 + \frac{1}{n+6}\right)^3$$

14.
$$\lim_{n\to\infty} \left(\frac{n-7}{n+4}\right)^n$$

15.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n+6} \right)^{3n}$$

16.
$$\lim_{n \to \infty} \left(\frac{n^2 - 1}{n^2 - n - 6} \right)^n$$

II. Намерете следните граници на функции:

17.
$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 + 5x - 24}$$

18.
$$\lim_{x \to 2} \frac{x^4 - 5x^2 + 4}{x^2 - 4}$$

17.
$$\lim_{x \to 3} \frac{x^3 - 27}{x^2 + 5x - 24}$$
 18. $\lim_{x \to 2} \frac{x^4 - 5x^2 + 4}{x^2 - 4}$ 19. $\lim_{x \to 4} \frac{\sqrt{1 + 2x} - 3}{\sqrt{x} - 2}$ 20. $\lim_{x \to 0} \frac{\sin 2x}{x}$

20.
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$

21.
$$\lim_{x\to 0} \frac{\sin 5x}{\sin 7x}$$

22.
$$\lim_{r\to 0} \frac{\sin^2 3r}{r}$$

23.
$$\lim_{x \to 0} \frac{\operatorname{tg} 2x}{x}$$

24.
$$\lim_{x\to 0} \frac{\ln(2x+1)}{\sin 2x}$$

21.
$$\lim_{x \to 0} \frac{\sin 5x}{\sin 7x}$$
 22. $\lim_{x \to 0} \frac{\sin^2 3x}{x}$ **23.** $\lim_{x \to 0} \frac{\operatorname{tg} 2x}{x}$ **24.** $\lim_{x \to 0} \frac{\ln(2x+1)}{\sin 2x}$ **25.** $\lim_{x \to 0} \frac{e^{3x}-1}{x}$

26.
$$\lim_{x \to 0} \frac{x}{\arctan 2x}$$

26.
$$\lim_{x\to 0} \frac{x}{\arctan 2x}$$
 27. $\lim_{x\to \infty} \left(\frac{x^2+1}{x^2-1}\right)^{x^2}$ **28.** $\lim_{x\to +\infty} \frac{3^x+7^x}{7^{x+2}-5^x}$ **29.** $\lim_{x\to \infty} \frac{3x^2+1}{x^2-x+5}$

28.
$$\lim_{x \to +\infty} \frac{3^x + 7^x}{7^{x+2} - 5^x}$$

29.
$$\lim_{x \to \infty} \frac{3x^2 + 1}{x^2 - x + 5}$$

30.
$$\lim_{x \to \infty} \frac{3x^4 - 2x^2 + x - 4}{x^2 + 3x - 7}$$
 31. $\lim_{x \to \infty} \frac{3 - 7x + x^2}{4 - 8x + x^2 - x^3}$

31.
$$\lim_{x \to \infty} \frac{3 - 7x + x^2}{4 - 8x + x^2 - x^3}$$

III. Изследвайте за непрекъснатост следните функции:

32.
$$f(x) = \begin{cases} \frac{\sin 3x}{2x} & \text{при} \quad x \neq 0 \\ \frac{3}{2} & \text{при} \quad x = 0; \end{cases}$$

33.
$$f(x) = \begin{cases} x \ln(x^2) & \text{при} & x \neq 0 \\ 1 & \text{при} & x = 0; \end{cases}$$

34.
$$f(x) = \begin{cases} \frac{x^2 - 3x + 2}{x - 2} & \text{при} \quad x \neq 2\\ 1 & \text{при} \quad x = 2. \end{cases}$$

IV. Намерете производните на функциите:

35.
$$y = 4x^3 + 6x - \frac{1}{x^3} + 2$$

35.
$$y = 4x^3 + 6x - \frac{1}{x^3} + 2$$
 36. $y = 2x^5 - 3\sqrt[5]{x^3} - \frac{1}{\sqrt{x}} + 2$ **37.** $y = \cos x + \arcsin x$

1

$$37. y = \cos x + \arcsin x$$

38.
$$y = (5x^2 - 9x + 12) \ln(x - 2)$$
 39. $y = e^x (\operatorname{tg} x + \operatorname{ctg} 2x)$ **40.** $y = \frac{3 + x^2}{\ln x}$

39.
$$y = e^x (\operatorname{tg} x + \operatorname{ctg} 2x)$$

40.
$$y = \frac{3+x^2}{\ln x}$$

41.
$$y = \frac{\operatorname{tg} x}{1 + \cos x}$$

42.
$$y = \frac{\cos 2x}{3x^2 + 4}$$

43.
$$y = \sin x^2 + \cos^2 x$$

41.
$$y = \frac{\operatorname{tg} x}{1 + \cos x}$$
 42. $y = \frac{\cos 2x}{3x^2 + 4}$ **43.** $y = \sin x^2 + \cos^2 x$ **44.** $y = \frac{\operatorname{arctg}(2x + 1)}{1 + 3x}$

45.
$$y = 5^{x^2} + e^{-x} + \ln(-x)$$

46.
$$y = \arctan \frac{1 - x^2}{1 + x^2}$$

45.
$$y = 5^{x^2} + e^{-x} + \ln(-x)$$
 46. $y = \arctan \frac{1 - x^2}{1 + x^2}$ **47.** $y = \ln(\cos 2x + 1) + \arctan(\ln 3x)$

V. C помощта на разгледаните следствия на теоремите за средните стойности, докажете, че:

$$\mathbf{48.} \quad \arccos x = \left\{ \begin{array}{ll} \arctan \frac{\sqrt{1-x^2}}{x}, & \text{ako} \quad 0 < x \leq 1, \\ \pi + \arctan \frac{\sqrt{1-x^2}}{x}, & \text{ako} \quad -1 \leq x < 0; \end{array} \right.$$

49.
$$\ln(1+x^2) \le x^2$$
 за всяко $x \in (-\infty, +\infty)$:

50.
$$x - \frac{x^3}{3} \le \arctan x \le x - \frac{x^3}{6}$$
 за всяко $x \in (0,1)$.

VI. С помощта на теоремите на Лопитал, намерете следните граници:

51.
$$\lim_{x\to 1} \frac{x^3-1}{x^2+5x-6}$$

51.
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 + 5x - 6}$$
 52. $\lim_{x \to +\infty} \frac{\ln(1 + e^x)}{x + 1}$ **53.** $\lim_{x \to 0} \frac{\sin x - x}{x^2}$ **54.** $\lim_{x \to 0} \sqrt[x]{1 - 2x}$

53.
$$\lim_{x\to 0} \frac{\sin x - x}{x^2}$$

54.
$$\lim_{x \to 0} \sqrt[x]{1 - 2x}$$

55.
$$\lim_{x \to 0} \frac{x^3}{e^x}$$

$$\mathbf{56.} \lim_{x \to 0+} \frac{\ln \sin x}{\cot x}$$

57.
$$\lim_{x \to \infty} \frac{\ln^2 x}{x}$$

55.
$$\lim_{x \to 0} \frac{x^3}{e^x}$$
 56. $\lim_{x \to 0+} \frac{\ln \sin x}{\cot x}$ **57.** $\lim_{x \to +\infty} \frac{\ln^2 x}{x}$ **58.** $\lim_{x \to \frac{\pi}{6}} \frac{2 \sin x - 1}{\cos 3x}$

59.
$$\lim_{x\to 0} \left(\frac{1}{x} - \frac{1}{e^x - 1}\right)$$
 60. $\lim_{x\to \infty} x \left(1 - e^{\frac{1}{x}}\right)$

60.
$$\lim_{x \to \infty} x \left(1 - e^{\frac{1}{x}} \right)$$

VII. Определете дефиниционната област, интервалите на монотонност и локалните екстремуми на следните функции:

61.
$$y = x^3 - 12x$$

62.
$$y = \frac{x}{x^2 + 4}$$

61.
$$y = x^3 - 12x$$
 62. $y = \frac{x}{x^2 + 4}$ **63.** $y = \frac{x^3}{x^2 - 2}$ **64.** $y = xe^{-\frac{x^2}{2}}$ **65.** $y = \frac{e^x}{1 + x}$

64.
$$y = xe^{-\frac{x^2}{2}}$$

65.
$$y = \frac{e^x}{1+x}$$

66.
$$y = x - 2 \arctan x$$

VIII. Намерете най-малката и най-голямата стойност на функциите:

67.
$$y = x^4 - 8x^2 + 3$$
 sa $x \in [-1; 2]$

67.
$$y = x^4 - 8x^2 + 3$$
 sa $x \in [-1; 2]$ **68.** $y = \frac{x^4 + 1}{x^2}$ sa $x \in [-2, 2]$

69.
$$y = \arccos x^2$$
 за $x \in \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$

IX. Изследвайте и постройте графиките на функциите:

70.
$$y = \frac{x+3}{x-2}$$

71.
$$y = \frac{1}{1+x^2}$$

72.
$$y = \frac{x-4}{r^2}$$

70.
$$y = \frac{x+3}{x-2}$$
 71. $y = \frac{1}{1+x^2}$ **72.** $y = \frac{x-4}{x^2}$ **73.** $y = \frac{x^2}{x^2-2x+2}$ **74.** $y = \frac{x}{\ln x}$

74.
$$y = \frac{x}{\ln x}$$

75.
$$y = x^2 e^{\frac{1}{x}}$$

76.
$$y = \ln(x^2 - 4)$$

75.
$$y = x^2 e^{\frac{1}{x}}$$
 76. $y = \ln(x^2 - 4)$ **77.** $y = (x - 1)\sqrt{x}$ **78.** $y = \frac{e^x}{x + 1}$

78.
$$y = \frac{e^x}{x+1}$$

х. Решете неопределените интеграли:

79.
$$\int (5x^2 - 4x + 9) \, dx$$

80.
$$\int \left(\cos x + 3\sqrt[4]{x} + \frac{1}{3x}\right) dx$$

79.
$$\int (5x^2 - 4x + 9) dx$$
 80. $\int \left(\cos x + 3\sqrt[4]{x} + \frac{1}{3x}\right) dx$ **81.** $\int \left(\frac{1}{\sin^2 2x} + \frac{5}{\sqrt{1 - 4x^2}}\right) dx$

82.
$$\int \cos(3x-1) \, dx$$

83.
$$\int (2^x + 3^x)^2 dx$$

84.
$$\int \sqrt[3]{1-3x} \, dx$$

82.
$$\int \cos(3x-1) dx$$
 83. $\int (2^x+3^x)^2 dx$ **84.** $\int \sqrt[3]{1-3x} dx$ **85.** $\int (4x+7)^5 dx$

86.
$$\int \frac{dx}{\cos^2(2x+7)}$$
 87. $\int \frac{\cos x}{\sin^3 x} dx$ **88.** $\int \frac{e^x}{2+e^x} dx$ **89.** $\int \operatorname{tg} x dx$ **90.** $\int \frac{dx}{x\sqrt{\ln x}}$

87.
$$\int \frac{\cos x}{\sin^3 x} dx$$

88.
$$\int \frac{e^x}{2 + e^x} dx$$

89.
$$\int \operatorname{tg} x \, dx$$

$$90. \int \frac{dx}{x\sqrt{\ln x}}$$

$$\mathbf{91.} \int \frac{dx}{x^2 \operatorname{tg} \frac{1}{x}}$$

91.
$$\int \frac{dx}{x^2 \tan \frac{1}{2}}$$
 92. $\int \frac{x - \arctan^2 x}{1 + x^2} dx$ **93.** $\int \frac{\tan x + \sqrt{2}}{\cos^2 x} dx$

$$93. \int \frac{\operatorname{tg} x + \sqrt{2}}{\cos^2 x} \, dx$$

XI. Като интегрирате по части, решете неопределените интеграли:

94.
$$\int xe^{-x} dx$$

95.
$$\int x^2 \ln^2 x \, dx$$

96.
$$\int x \arctan x \, dx$$

94.
$$\int xe^{-x} dx$$
 95. $\int x^2 \ln^2 x dx$ **96.** $\int x \arctan x dx$ **97.** $\int x^2 \sin 2x dx$

98.
$$\int x^2 e^{2x} dx$$

99.
$$\int \frac{\arcsin x}{x^2} dx$$

100.
$$\int e^x \sin 2x \, dx$$

98.
$$\int x^2 e^{2x} dx$$
 99. $\int \frac{\arcsin x}{x^2} dx$ **100.** $\int e^x \sin 2x dx$ **101.** $\int \sqrt{4+x^2} dx$

XII. Решете неопределените интеграли:

102.
$$\int \frac{2x+3}{(x-2)(x+5)} dx$$
 103. $\int \frac{(x^3+1) dx}{x^3-5x^2+6x}$ **104.** $\int \frac{x^4 dx}{x^2+x-2}$

$$103. \int \frac{(x^3+1) dx}{x^3 - 5x^2 + 6x}$$

104.
$$\int \frac{x^4 dx}{x^2 + x - 2}$$

105.
$$\int \frac{x \, dx}{(x-1)^2(x^2+2x+2)}$$
 106. $\int \frac{x \, dx}{x^3-1}$ **107.** $\int \frac{dx}{x^2-x+2}$ **108.** $\int \frac{dx}{\sqrt{x^2+x+2}}$

106.
$$\int \frac{x \, dx}{x^3 - 1}$$

107.
$$\int \frac{dx}{x^2 - x + 2}$$

$$108. \int \frac{dx}{\sqrt{x^2 + x + 2}}$$

$$109. \int \frac{dx}{\sqrt{x^2 - x - 5}}$$

XIII. Решете определените интеграли:

110.
$$\int_{-1}^{8} \sqrt[3]{x} \, dx$$

111.
$$\int_{\frac{1}{\sqrt{5}}}^{\sqrt{3}} \frac{dx}{1+x^2}$$

110.
$$\int_{-1}^{8} \sqrt[3]{x} \, dx$$
 111. $\int_{\frac{1}{\sqrt{5}}}^{\sqrt{3}} \frac{dx}{1+x^2}$ **112.** $\int_{0}^{\frac{1}{2}} x \sqrt{1-x^2} \, dx$ **113.** $\int_{0}^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^2}} \, dx$

3

113.
$$\int_0^{\frac{1}{2}} \frac{\arcsin x}{\sqrt{1-x^2}} \, dx$$

114.
$$\int_0^{\sqrt{3}} x \operatorname{arctg} x \, dx$$

114.
$$\int_0^{\sqrt{3}} x \arctan x \, dx$$
 115. $\int_0^{\frac{\pi}{2}} (10x - 1) \sin x \, dx$ **116.** $\int_1^e \frac{\ln^4 x}{x} \, dx$ **117.** $\int_0^{\frac{\pi}{2}} \sin^2 x \, dx$

116.
$$\int_{1}^{e} \frac{\ln^{4} x}{x} dx$$

117.
$$\int_0^{\frac{\pi}{2}} \sin^2 x \, dx$$

118.
$$\int_0^{\frac{\pi}{2}} \cos^3 x \, dx$$
 119. $\int_0^{\frac{1}{2}} \frac{x \, dx}{x^2 - 4x + 3}$

XIV. Решете несобствените интеграли:

120.
$$\int_{1}^{+\infty} \frac{dx}{x^{2}}$$
 121. $\int_{0}^{1} \ln x \, dx$ 122. $\int_{-\infty}^{+\infty} \frac{dx}{1+x^{2}}$ 123. $\int_{0}^{1} \frac{dx}{\sqrt{1-x^{2}}}$ 124. $\int_{2}^{+\infty} \frac{dx}{x^{2}+x-2}$ 125. $\int_{0}^{+\infty} \frac{dx}{1+x^{3}}$

XV. Намерете лицето на областта D, където:

126.
$$D: \begin{cases} 0 \le x \le \frac{\pi}{2} \\ 0 \le y \le \sin x; \end{cases}$$

- **127.** D е областта, заградена от кривите $y = x^2 x 6$ и y = 2x 2;
- **128.** D е областта, заградена от кривите $y = x^2 3$ и y = 2;
- **129.** D е областта, заградена от кривите $y = 2x x^2$ и y = -x.

XVI. Намерете дължината на кривата с уравнение:

130.
$$y = x^{\frac{3}{2}}$$
 в интервала $[0,4];$ 131. $y = \frac{x^2}{2}$ в интервала $[0,1];$ 132. $y = \frac{x^3}{6} + \frac{1}{2x}$ в интервала $[1,2].$