Question-1:

List down at least three main assumptions of linear regression and explain them in your own words. To explain an assumption, take an example or a specific use case to show why the assumption makes sense.

Solution:-

The three assumptions of linear regression are:-

- 1. Linearity
- 2. No Multi-collinearity
- 3. Homoscedasticity or absence of Heteroscedasticity

Linearity

Relationship between the dependent variable (response) & independent variable(s) aka predictors should be linear & additive. By Linear it implies change in one unit of independent variable is constant irrespective of value of it & additivity implies that effect of any independent variable is independent of other independent variables.

Graph below depicting scatter plots of 2 different response with one as non-linear & other linear pattern.

We observed that response & predictor(s) which follows linearity is better fit for Regression Analysis as R-Square measure is great for linear model indicating it can explain the response more accurately.

No Multi-collinearity

This phenomenon exists when Independent variables are found to be highly or moderately correlated. It becomes a challenge to figure out true relationship of independent variables aka predictors with response variable.

It can be detected by below methods:-

- a. Scatter plots of independent variables.
- b. Correlation matrix among all independent variables.
- c. VIF (variance inflation factor) where in one of the independent variable is used as dependent variable & rest others as dependent variable. Then try to fit the model & get r-square VIF = 1/(1-r square) any value less than 4 is good & more than it should be considered for removing as an predictor.

From the above co-relation matrix we can determine predictors which are moderately or highly correlated.

Homoscedasticity or absence of Heteroscedasticity

The error terms must have constant variance. A plot of standardized residuals versus predicted values can show whether points are equally distributed across all values of the independent variables. If Heteroscedasticity exists then the plot would exhibit a funnel shape pattern.

Homoscedasticity

Question-2:-

Explain the gradient descent algorithm in the following two parts:

Illustrate at least two iterations of the algorithm using the univariate function

J(x) = x2 + x + 1. Assume a learning rate $\eta = 0.1$ and an initial guess x0 = 1 and demonstrate that the iterations converge towards the minima. Also, report the minima (which you can compute using the closed form solution).

Solution:-

1. Gradient Descent

f(x)	x^2+x+1	alpha	0.1
f'(x)	2x+1		
x0	1		

	x -			
x	f'	f'*(alpha)	f	
1	3	0.7	3	
0.7	2.4	0.46	2.19	
0.46	1.92	0.268	1.6716	

2. Closed Loop: - f'(x) equated to 0 would give minimization & f''(*x) > 0 (add comment)

$$f(x) = x2 + x + 1$$

$$f'(x) = 2x + 1$$

$$f''(x) = 2$$

So on equating 2x+1=0, we get x = -1/2 i.e. -0.5 & f''(x) = 2

Illustrate at least two iterations of the algorithm using the bivariate function of two independent variables

J(x,y)=x2+2xy+y2. Assume a learning rate $\eta=0.1$ and an initial guess (x0,y0)=(1,1). Report the minima and show that the solution converges towards it.

f(x,y) f'(x) f'(y)	x^2+2xy+y^2 2x+2y 2x+2y		alpha	0.1		
x0	1	y0	1			
у	f'(y)	y - f'(y)*(alpha)	f(x,y)	x	f'(x)	x - f'(x)*(alpha)
1	4	0.6	4	1	4	0.6
0.6	2.4	0.36	1.44	0.6	2.4	0.36
0.36	1.44	0.216	0.5184	0.36	1.44	0.216

From closed loop we know partial derivative w.r.t. to x & y equated to 0 would give minima so,

$$\partial F/\partial x = 2x + 2y = 0$$

$$\partial F/\partial y = 2x + 2y = 0$$

$$\partial 2F/\partial x2 = 2 i.e. > 0$$

$$\partial 2F/\partial y2 = 2 \text{ i.e.} > 0$$

From the above equation it is evident it has multiple minima's one of them is f(0,0) other ones are x = -y for all possible values of x & y.