气垫导轨实验预习报告

1 实验目的及要求

- 1. 观察简谐振动现象,测定简谐振动的周期。
- 2. 求弹簧的倔强系数 k 和有效质量 m_0 。
- 3. 观察简谐振动的运动学特征。
- 4. 验证机械能守恒定律。
- 5. 用极限法测定瞬时速度。
- 6. 深入了解平均速度和瞬时速度的关系。

2 实验仪器

气垫导轨、滑块、附加砝码、弹簧、U 型挡光片、平板挡光片、数字毫秒计、天平等

3 实验原理

3.1. 弹簧振子的间谐运动

在水平的气垫导轨上,两个相同的弹簧中间系一个滑块,滑块做往返振动,若不考虑滑块运动的阻力,可以认为滑块的振动是理想的简谐振动。

设质量为 m_1 的滑块初始时处于平衡位置,此时每个弹簧的初始伸长量为 x_0 ,当滑块偏离平衡点 x 时,受弹性力 $-k_1(x+x_0)$ 与 $-k_1(x-x_0)$ 的作用,其中 k_1 是弹簧的倔强系数。根据牛顿第二定律,列出其运动方程: $-kx = m\ddot{x}$ (式中 $k = 2k_1$)

式中的 与弹簧质量 m_1 并不相同。因为事实上弹簧也是有一定质量的,这导致了实际的运动并非严格的简谐振动,而是需要考虑弹簧内部形成的驻波,详细推导需要采用分离变量法解微分方程,这里直接给出结果:若在近似的仍欲采用简谐振动的结论,则可考虑只取一级近似,引入"弹簧有效质量" m_0

由一级近似可计算得 $m=m_1+m_0$, m_0 为弹簧质量的 $\frac{1}{3}$, 这样对应该方程的解为:

$$x = A\sin(\omega_0 t + \varphi_0) \quad \omega_0 = \sqrt{\frac{k}{m}} \tag{1}$$

其中周期与固有频率的关系为

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m_1 + m_0}{k}} \tag{2}$$

将上式两边平方可以得到

$$T^2 = \frac{4\pi^2 \left(m_1 + m_0\right)}{k} \tag{3}$$

在实验中,我们改变 m_1 ,测出相应的 ,采用作图法获得 $T-m_1$ 的曲线,理论上该曲线应为一条直线,直线的斜率为 $\frac{4\pi^2}{k}$,采用最小二乘法可以计算出该直线的斜率,进而算出劲度系数到 k 的值。同时,可以从该条直线的截距获取 m_0 的值。也可采用逐差法求解 k 和 m_0 的值。

3.2. 简谐运动的运动学特征

运动方程两边同时对时间求导,即可得到

$$v = \frac{dx}{dt} = A\omega_0 \cos(\omega_0 t + \varphi_0) \tag{4}$$

由此可见,速度 v 与时间有关,且随时间的变化关系也为简谐振动,角频率为 ω_0 ,振幅为 $A\omega_0$,而且度 v 的相位比位移 x 超前 $\frac{\pi}{6}$

联立 x-t 方程与 v-t 方程, 消去时间 t, 即可得到

$$v^2 = \omega_0^2 \left(A^2 - x^2 \right) \tag{5}$$

当 x=A 时, v=0; 当 x=0 时, $v=\pm A\omega_0$, 此时 v 取最大值

本实验可以通过观察 x 和 v 随时间的变化规律,以及 x 和 v 之间的相位关系。利用线性拟合的方法算出角频率

3.3. 简谐振动的机械能

在实验中,任何时刻系统的振动动能为

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}(m_1 + m_2)v^2$$
(6)

由于此前在第一个实验项目中,已经测得弹簧的劲度系数为 k,因此可以直接算得系统的弹性势能为(以 m_1 位于平衡位置时系统的势能为零)

$$E_p = \frac{1}{2}kx^2\tag{7}$$

所以系统的机械能为

$$E = E_k + E_p = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2$$
 (8)

上式中的 k 和 A 均不随时间变化

通过测量滑块 m_1 在不同位置 x 的速度 v,从而计算弹性势能和振动势能,并验证他们之间的相互转换关系和机械能守恒定律是否吻合。

3.4. 瞬时速度的测量

设变速运动的物体在 时间中经过的路程为 Δs ,则其平均速度为 $\overline{v} = \frac{\Delta s}{\Delta t}$

当 Δt 与 Δs 均趋于 0 时, 平均速度的极限就为物体的瞬时速度。

在实验中,在倾斜的气轨上,于 A 点处放置一光电门,在滑块上先后安装上挡光距离不同的 U 形挡光片,使各挡光片的第一挡光边距 A 点为 l。滑块每次自 P 点由静止开始下滑,分别测出相应的挡光时间 Δt 及挡光距离 Δs 。(设滑块由静止下滑距离 l 后的瞬时速度为 v_0 即第一挡光时滑块的瞬时速度),则有:

$$\overline{v} = \frac{\Delta s}{\Delta t} = v_0 + \frac{1}{2}a \cdot \Delta t \tag{9}$$

其中 a 为物体在 A 附近的加速度本实验可以通过改变挡光距离 Δs 观察平均速度和瞬时速度的 关系,分别画出 v-t 图和 v-x 图,利用外推法求出瞬时速度。