Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ Про виконання лабораторної роботи №1 з дисципліни: «Схемотехніка-1»

ПІДСИЛЮВАЧІ НА БІПОЛЯРНИХ ТРАНЗИСТОРАХ

иконавець: гудент 3-го курсу	(підпис)	Б.В. Лищенко	
Перевірила:	(підпис)	Г.С. Порева	

Мета роботи: Вивчення принципів роботи, дослідження амплітудних та частотних характеристик і параметрів підсилювачів на основі біполярних транзисторів (зі Спільним Емітером (СЕ), Спільним Колектором (СК), Спільною Базою(СБ)).

Рис. 1: Блок-схема установки для дослідження лабораторного модуля «ПБТ».

Лабораторна установка для дослідження лабораторного модуля «ПБТ» складається з генератора гармонічних коливань 1 типу ГЗ-112, лабораторного стенду 2 типу «Каскад М», вольтметрів 3 і 5 типу ВЗ-38, осцилографа 4 типу С1-55, магазину опорів 6. До складу лабораторного стенду 2 входять стабілізований блок живлення, електронний комутатор, формувач імпульсів, чотири лабораторних модулі.

Генератор 1 є джерелом гармонійної вихідної напруги в частотному діапазоні від 20 Γ ц до 1 $M\Gamma$ ц та амплітудою від 0 до 6,3 B.

Вольтметри 3 та 5 призначені для вимірювання амплітуди відповідно вхідної U1 та вихідної U2 напруги від 0,1 мВ до 200 В у діапазоні частот від 20 Γ ц до 3 М Γ ц.

Осцилограф 4 використовується для спостереження на екрані електроннопроменевої трубки форми напруги та вимірювання параметрів напруги від 30 мВ до 140 В у частотному діапазоні від 3 Гц до 10 МГц.

Магазин опорів 6 забезпечує вибір необхідного опору.

Рис. 2: Схема електрична принципова лабораторного модуля «ПБТ»: а) схема зі спільним емітером (П1-вкл), б) схема зі спільною базою (П2-вкл), в) схема зі спільним колектором (П3-вкл).

Тип 33	Перемикач замкнутий	Схема електрична принципова
Підсилювач на <u>БТ</u> без <u>3</u> 3	Į	R2 R5 RT5 RT5 RT6 RT7
Підсилювач на БТ із <u>Н33</u> по току	П1	R2 R5 KT5 R1 R2 R5 KT5 R6 S,1k R7 S,1k R7 S,1k R7 S,1k R8 R4 R4 R5 R4 R7 S,1k
Підсилювач на БТ із <u>Н33</u> по напрузі	П2	R5 3k +En KT5 R6 3k +En KT5 R7 5,1k KT6 R7 5,1k R7 5,1k R3 C2 1000 R6 5,1k R7 5,1k

Рис. 3: Реалізовані в лабораторному модулі схеми.

До вимірюванню функцій підсилювачів.

		Підсилювач в				
№	Показники роботи		схемі		Примітка	
110	підсилювача	CE	СБ	CK	Примпка	
		(Π1)	(II2)	(П3)		
1	При R_{M} =0 U_{I} = U_{2} , MB (П6-замкнений)	18.4	18.3	93.9	Натиснути П6 і встановити ручкою вихід генератора U_l	
2	При $R_{M} = R_{GX} = U_{1}' = 0,5 U_{2}, MB$ (П6- розімкнений)	9.3	9.3	47.3	Віджати П6 і за допомогою $R_{\!\scriptscriptstyle M}$ встановити $U_{\scriptscriptstyle 1}'$	
3	При U_1' =0,5 U_{ε} $R_{ax} = \frac{U_1}{I_1} = R_{M}$, Ом	1.4	0.04	16	Зашісати покази R_{M} (дорівнює R_{SS})	
4	При $R_y = \infty U_2 = U_{2xx}$, мВ	723	718	91	Відключити R_M від КТ8 та землі та виміряти U_{2xx} при U_I	
5	При $R_{M}=R_{\text{sux}}$ $U_{2}'=0,5\cdot U_{2xx}$, мВ	363	359	46	Підключити $R_{\mathfrak{H}}$ до КТ8 та нульової шини та за допомогою $R_{\mathfrak{H}}$ встановити $\overline{U_2'}$	
6	$U_2' = 0, 5 \cdot U_{2xx}, R_{max} = \frac{U_2}{I_2} = R_{M}, O_M$	3.3	3.3	0.365	Записати покази R (дорівнює R	
7	$K_U = \frac{U_2'}{U_1}$	19.7	19.6	0.5	Обчислити відношення раніш виміряних U_2' та U_1	
8	$K_I = \frac{I_n}{I_1} = \frac{R_{ax}}{R_n} \cdot K_U$	8.37	0.24	120.6	Обчислити відношення <i>R</i> _€ до <i>R_н=R</i> _{\$60} та помножити на <i>Ky</i>	
9	$K_{P} = \frac{P_{u}}{P_{1}} = \frac{U_{2} \cdot I_{u}}{U_{1} \cdot I_{1}} = K_{U} \cdot K_{I}$	165	4.71	59	Обчислити добуток <i>Қу</i> та <i>Қ</i>	
10	Епюри напруг U_1 та U_2 — U_1 U_2	~~	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\$\$	Порівняти амплітуди та фази напруг U_l та U_2 (змалювати з екрану)	

До вимірюванню амплітудних характеристик підсилювача

	Підсилювач в схемі при f_{ε} = 10^3 Гц R_{ε} = 0 Ом, R_{y} = R_{gux}							
No	<u>СЕ</u> (П1)		СБ (П2)		$CK (\Pi 3) R_{sux} = 0.065$			
	U_l , MB	U_2 , MB	U_l , MB	U_2 , MB	U_l , MB	U_2 , MB		
1	26,4	940	26	915	93	46		
2	22	819	22	802	74,5	40		
3	18,8	703	18,8	688	56	32,4		
4	15	577	14,9	565	37,9	21,6		
5	11	431	11	424	18,7	3,9		
6	7,4	287	7,3	280	9,3	3,8		
7	3,6	145	3,2	143				
8								
9								
10								
11								
$\mathcal{A}^+ = \frac{U_{1\text{max}}^+}{U_{1\text{min}}}$								
$\mathcal{A}^- = \frac{U_{1\text{max}}^-}{U_{1\text{min}}}$								

Рис. 4: Амплытудні хар-ки підсилювачів в схемі СЕ, СБ, СК.

До вимірюванню частотних характеристик підсилювача.

	<i>f</i> , Гц	Підсилювач при R_{ε} =0 Ом, R_{κ} = R_{sux} , U_{l} , мВ								
№	(lgf)	CE (Π1) U_I =10		СБ (П2) <i>U</i> _I =10			СК (П3) <i>U_I</i> =10			
		<i>U</i> ₂, мB	M(f)	φD	U₂, MB	<u>M</u> (f)	φ <i>(f)</i>	<i>U</i> ₂, мВ	<u>M(f)</u>	φ(f)
1	20 (1.3)	334	0,9		329	0,92		37,7	0,8	
2	50 (1.7)	360	0,9		359	0,98		44	0,9	
3	100 (2)	362	0,9		356	1		45	0,9	
4	$2 \cdot 10^2$ (2.3)	364	1		356	1		46.1	0,9	
5	5·10 ² (2.7)	363	0,9		357	1		46,2	0,9	
6	10 ³ (3)	361	0,9		357	1		46,6	1	
7	2·10³ (3.3)							46,4	1	
8	5·10 ³ (3.7)	363	1		355	0,99		47,4	1	
9	10 ⁴ (4)	360	0,98		352	0,98		50	1	
10	2·10 ⁴ (4.3)							45	0,98	
11	5·10 ⁴ (4.7)	326	0,89		317	0,8		46	0,99	
12	10 ⁵ (5)	225	0,61		216	0,7		45	0,97	
13	2·10 ⁵ (5.3)	157	0,43		157	0,4		45	0,98	
H	<i>f</i> _N , Гц	9			8,5			15		
[dr.	<i>f</i> ₅ , Гц	102			103			1029		
Параметри АЧХ	<i>Дf,</i> Гц	102			103			1028		
aps A	Ku									
ш	Д=К ₁₀ * 4f									

Рис. 5: АЧХ у нормованому вигляді в схемі СЕ, СБ, СК.

ВИСНОВКИ

Аналізуючи результатам цієї лабораторної роботи, можна сказати, що найбільший коефіцієнт підсилення по напрузі та потужності має схема зі спільним емітером в якій відбувається зсув фаз на 180° відносно вхідного сигналу, а схема зі спільним колектором має найбільший коефіцієтн підсилення за струмом і має найбільший діапазон робочих частот порівняно з іншими схемами.