МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

(государственный университет)

Лабораторная работа 1.3.3

ИЗМЕРЕНИЕ ВЯЗКОСТИ ВОЗДУХА ПО ТЕЧЕНИЮ В ТОНКИХ ТРУБКАХ

 $\it Янковский Д. C. \ \it E01-405$

Содержание

1	Введение	4
2	Методика	5
3	Результаты	7
4	Выводы	13
5	Приложение	14
	5.1 Приложение 1	14
	5.2 Приложение 2	15
	5.3 Приложение 3	16
	5.4 Приложениние 4	18
	5.5 Приложениние 5	19
	5.6 Приложениние 6	19
	5.7 Приложениние 7	20
6	Список литературы	21

Аннотация

Определён коэффициент вязкости воздуха при атмосферном давлении и комнатной температуре. Измерения проводились с помощью установки, состоящей из компрессора, прогоняющего воздух по тонким (диаметр трубок) трубкам. Получили значение коэффициента вязкости $\eta = (1.85 \pm 0.3)\Pi a \cdot c$, который в пределах погрешности совпал с табличным значением $\eta = 1.83\Pi a \cdot c$. Из этого следует, что формула Пуазейля (теория состоятельна) позволяет с хорошей (оценочное суждение) точностью определить вязкость воздуха в тонких трубках.

Определили коэффициенты $\beta_{\pi}=1.7$ для ламинарного течения и $\beta_{\tau}=3.0$ для турбулентного течения в зависимости $Q\propto R^{\beta}$. (Наблюдалось два характерных участка) Полученные значения не совпали с теоретическими $\beta_{\pi.\text{теор}}=4.0$ и $\beta_{\text{т.теор}}=2.5$. Из этого можно сделать вывод, что теоретическая модель описания турбулентного течения и метод размерности для ламинарного течения (в рамках тех приближений) в условиях данного эксперимента.

1 Введение

В современной автомобильной промышленности аэродинамика кузова играет определяющую роль в снижении расхода топлива и уменьшении выбросов вредных веществ. Традиционно акцент делался на оптимизации формы кузова, использовании спойлеров и закрытии днища. Учет влияния вязкости воздуха (необходимо) новые возможности для повышения эффективности и достижения более высоких результатов.

Коэффициент вязкости воздуха является физическим свойством, определяющим силы трения, возникающие при движении тела в воздушной среде. В аэродинамике кузова этот параметр влияет на коэффициент аэродинамического сопротивления и общую эффективность обтекания кузова воздушным потоком.

Традиционные методы расчета аэродинамических характеристик часто основываются на упрощенных моделях (ссылка), пренебрегающих влиянием вязкости воздуха. С развитием вычислительной гидродинамики и увеличением вычислительной мощности появилась возможность детального моделирования воздушных потоков и учета влияния вязкости воздуха. (Чтобы осуществить моделирование необходимо знать коэфф вязкости) Целью настоящей работы являлось вычисление коэффициента вязкости воздуха при атмосферном давлении.

2 Методика

Из литературы [1] известно, что зависимость расхода Q газа, ламинарно текущего по трубе радиуса R, от перепада ΔP давления на концах трубы выражается через формулу Пуазейля следующим образом

$$Q = \frac{\pi R^4 \Delta P}{8\eta l} \tag{1}$$

где η - коэффициент вязкости газа.

Давление в трубе является линейно убывающей функцией координаты

$$P(x) = P_0 - \frac{\Delta P}{l}x\tag{2}$$

где P - давление в трубе на расстоянии х от ее начала, P_0 - давление газа на входе в трубу, $\frac{\Delta P}{l}$ - перепад давления на длине трубы l.

Характер течения (ламинарное, турбулентное) определяется безразмерным параметром - числом Рейнольдса

$$Re = \frac{\rho ua}{\eta} \tag{3}$$

где ρ - плотность среды, u - характерная скорость потока, a - характерный размер системы (размер, на котором существенно меняется скорость течения), η - коэффициент вязкости среды.

Это число имеет смысл отношения кинетической энергии K движения элемента объема жидкости к потерям энергии $A_{\rm тp}$ из-за трения в нем

$$Re \propto \frac{K}{A_{\mathrm{TD}}}$$
 (4)

При достаточно малых значениях Re в потоке доминируют вязкие силы трения, и течение является ламинарным. С ростом Re может быть достигнуто критическое значение $Re_{\rm kp}$, при котором характер течения сменяется с ламинарного на турбулентный.

В целях упрощения теоретической модели воздух считается несжимаемым, то есть его плотность $\rho=const.$ Такое приближение допустимо, так как в условиях эксперимента перепад давления на концах трубы мал по сравнению с внешним атмосферным давлением ($\Delta P \ll P$).

Если на вход трубы поступает течение, распределение скоростей которого не является пуазейлевским, то профиль течения установится через некоторое расстояние $l_{\rm уст}$ за счет сил вязкого трения

$$l_{\text{VCT}} \approx 0.2R \cdot Re$$
 (5)

R - радиус трубы.

Расход газа при турбулентном течении выражается через параметры системы следующим образом

$$Q = const \cdot R^{\frac{5}{2}} \sqrt{\frac{\Delta P}{\rho l}} \tag{6}$$

Q - расход воздуха, R - радиус трубы, $\frac{\Delta P}{l}$ - перепад давления воздуха на длине трубы l, ρ - плотность воздуха.

Для определения вязкости η воздуха при его ламинарном протекании через трубу необходимо измерить зависимость расхода Q воздуха от перепада давления ΔP на выделенном участке трубы длиной l. Чтобы убедиться, что η зависит только от вещества, но не от параметров системы необходимо провести измерения на трубках разного диаметра.

Затем необходимо измерить распределение давления вдоль трубки P(x) при фиксированном расходе Q воздуха. Измерения проводятся на нескольких трубках. По графикам зависимости P(x) можно определить длину установления $l_{\rm уст}$ на каждой трубке. Течение считается установившимся на участке графика, где зависимость приняла линейный вид. (наоборот)

Чтобы проверить выполнимость выражений (1) и (6) для описания ламинарного и турбулентного течений, необходимо измерить зависимость расхода Q воздуха от радиуса R трубы при заданном градиенте давления $\frac{\Delta P}{l}$. Необходимо подобрать (зачем) некоторое значение градиента $\frac{\Delta P}{l}$, при котором обеспечивается ламинарность на всех трубках. На каждой трубке подберём значение расхода Q, при котором градиент $\frac{\Delta P}{l}$ соответствует выбранному. Аналогично выберем значение градиента $\frac{\Delta P}{l}$, при котором в трубках наблюдается турбулентное течение, и проведём измерение Q(R).

Построив график зависимости Q(R) в двойном логарифмическом масштабе $\ln Q(\ln R)$, определим степень β в зависимости $Q \propto R^{\beta}$ как угловой коэффициент.

3 Результаты

Параметры окружающей среды при проведении эксперимента

$$T = 296K$$

$$P=101295\Pi \mathrm{a}$$

В работе использована экспериментальная установка, состоящая из компрессора, газового счетчика и нескольких тонких металлических трубок. Воздух нагнетался компрессором и пропускался через трубки. Интенсивность потока регулировалась краном. Трубки оснащены рядом миллиметровых отверстий, к которым можно подключать микроманометр. (Измерения проводились при условиях ...) Более подробное описание экспериментальной установки см. в Приложение 1.

Для определения разности давления на выделенном участке трубки использовался спиртовой микроманометр ММН-2400 с регулируемым наклоном, который подключался к отверстиям в трубке. Подробное описание устройства микроманометра см. в Приложение 2.

Для измерения расхода газа использовался газовый счетчик ГСБ-400. Подробное описание устройства газового счетчика см. в Приложение 3.

Перед проведением измерений был измерен критический расход $Q_{\rm kp}$ воздуха, при котором число Рейнольдса $Re\approx 10^3$, для нескольких трубок. Результаты представлены ниже

$$Q_{\rm \kappa p} = 6.4 \frac{\pi}{\rm MWH}$$

(для трубки диаметром d = 3.95мм)

$$Q_{\rm kp} = 8.18 \frac{\rm J}{\rm MWH}$$

(для трубки диаметром d = 5.05мм)

Способ вычисления представлен в Приложениние 5.

Также с помощью выражения (5) была вычислена длина установления Пуазейлевского течения для трубок различного диаметра Для трубки диаметром ... длина составила ...

$$l_{\text{VCT}} = 39.5 \text{cm}$$

(трубка диаметром d = 3.95мм)

$$l_{\rm vct} = 50.5 {\rm cm}$$

(трубка диаметром d = 5.05мм)

По измеренным зависимостям расхода Q воздуха от перепада давления ΔP на выделенном участке трубки длиной l для двух трубок разного диаметра (см. таблицы 2 и 3 Приложениние 4) построены графики $Q(\Delta P)$ (см. рис. 1, 2).

Рис. 1: График зависимости расхода Q воздуха от перепада давления ΔP в трубке диаметром d=3.95мм

Рис. 2: График зависимости расхода Q воздуха от перепада давления ΔP в трубке диаметром d=5.05мм

На обоих графиках присутствует начальный участок с линейной зависимостью расхода от перепада давления. На этом участке выполняется формула Пуазейля (1) и течение является ламинарным. Область графика, в которой пропадает линейная зависимость, обозначает, что характер течения сменился на турбулентный.

По угловому коэффициенту линейных участков графиков и выражению (1) определили коэффициент вязкости воздуха η .

d, mm	$\eta, \cdot 10^{-5} \Pi a \cdot c$	${ m Re}$
3.95	2.0 ± 0.2	1560 ± 160
5.05	1.7 ± 0.4	1600 ± 400

Таблица 1: Коэффициенты вязкости η воздуха, полученные для каждой трубки диаметром d из формулы Пуазейля с использованием коэффициента наклона линейной части графиков зависимости расхода воздуха Q от разности давлений $\Delta P.\ Re$ - число Рейнольдса.

С учетом погрешности коэффициент вязкости не зависит от диаметра трубки и равен $\eta=(1.85\pm0.3)\Pi a\cdot c$. Значение η в пределах погрешности совпало с табличным (Приложениние 7).

Измерили распределение давления воздуха в трубке. Для этого установили расход воздуха, близкий к критическому, но всё еще сохраняющий ламинарность. Не меняя расхода, подсоединяли микроманометр ко всем парам отверстий исследуемой трубки и измеряли соответствующие перепады

давлений. Результаты измерений приведены в таблицах 5, 6. По измеренным зависимостям построены графики (рис. 3, 4).

Рис. 3: График зависимости давления P воздуха трубке от расстояния x до входа в трубку, диаметр трубки d=3.95мм

Рис. 4: График зависимости давления P воздуха трубке от расстояния x до входа в трубку, диаметр трубки d=5.05мм

Линейные участки графиков обозначают, что на данном расстоянии от входа в трубку течение воздуха является установившимся. По графикам определили $l_{\rm ycr}$ для двух трубок.

d, mm	$l_{ m yct}, { m cm}$	$l_{ m ycr}$ по формуле, см
3.95	40	39.5
5.05	50	50.5

 Таблица 2: Значение длины установления потока в трубках различного диа

 метра

Полученные значения разошлись со значениями, вычисленными через (5), менее чем на 2%. Значит, метод оценки (5) позволяет вычислить длину установления с точностью до 2%. (Таким образом, использованный метод позволяет получить точность ... процентов)

Для проверки выполнимости выражений (1) и (6) для ламинарного и турбулентного течений, полученных из теории, определили коэффициент β , связывающий расход и радиус трубки: $Q \propto r^{\beta}$. Результаты измерения зависимости расхода Q воздуха от диаметра d трубки при постоянном градиенте давления $\frac{\Delta P}{I}$ представлены в таблице 3.

J	Таминарный р	режим	\mathbf{T}	урбулентный	режим
d , мм $\Delta P/l$, $\Pi a/c$ м Q , $\pi/ми$ н		d, mm	$\Delta P/l$, $\Pi a/c_M$	Q, л/мин	
$3.95 0.980 \pm 0.019 7.80 \pm 0.08$		3.95	5.88 ± 0.05	6.80 ± 0.07	
5.05	0.980 ± 0.019	11.80 ± 0.12	5.05	5.88 ± 0.05	14.20 ± 0.14

Таблица 3: Зависимость р
схода Qвоздуха от диаметра dтрубки при постоянном градиенте давлени
я $\frac{\Delta P}{l}$

По таблице 3 определили, что $\beta_{\pi}=1.7$ для ламинарного течения, $\beta_{\tau}=3.0$ для турбулентного течения. Это означает, что теоретическая модель (ссылка) описания турбулентного течения, основанная на том, что флуктуации скорости по порядку величины совпадают со средней скоростью потока и элементы жидкости равномерно перемешиваются по сечению трубы, и метод размерностей для ламинарного течения не применимы для данного эксперимента.

4 Выводы

Определены значения вязкости воздуха при комнатной температуре и атмосферном давлении при течении через тонкие трубки. $\eta=(2.0\pm0.2)\Pi a\cdot c$ для трубки диаметром d=3.95мм и $\eta=(1.7\pm0.4)\Pi a\cdot c$ для трубки диаметром d=5.05мм. Полученные значения в пределах погрешности совпали с табличным значением $\eta=1.83\Pi a\cdot c$. Таким образом, формула Пуазейля позволяет оценить вязкость воздуха в тонкой трубке с точностью

Значения длин установления потока, измеренные по графику P(x) для обеих трубок ($l_{\rm ycr1}=40{\rm cm}, l_{\rm ycr2}=50{\rm cm}$), разошлись со значениями, определенными из теоретических предположений ($l_{\rm ycr1 Teop}=39.5{\rm cm}, l_{\rm ycr2 Teop}=50.5{\rm cm}$), менее чем на 2%. Это показывает, что данный метод оценки длины установления позволяет определить $l_{\rm ycr}$ с точностью до 2%.

Полученные значения коэффициентов $\beta_{\pi}=1.7, \beta_{\text{T}}=3.0$ не сошлись с теоретическими значениями $\beta_{\pi.\text{Teop}}=4, \beta_{\text{T.Teop}}=2.5$. Из этого можно сделать вывод, что теоретическая модель описания турбулентного течения, основанная на том, что флуктуации скорости по порядку величины совпадают со средней скоростью потока и элементы жидкости равномерно перемешиваются по сечению трубы, и метод размерностей для ламинарного течения неприменимы (в рамках использованных приближений) для описания зависимости расхода газа от радиуса трубки в условиях данного эксперимента.

5 Приложение

5.1 Приложение 1

Схема экспериментальной установки приведена на рис. 1.

Рис. 5: Экспериментальная установка для измерения коэффициента вязкости воздуха

Поток воздуха под давлением, немного превышающим атмосферное, поступает через газовый счетчик в тонкие металлические трубки. Воздух нагнетается компрессором, интенсивность его подачи регулируется краном К. Трубки снабжены заглушками на концах и рядом миллиметровых отверстий, к которым можно подключать микроманометр. В рабочем состоянии открыта заглушка на одной рабочей трубке, микроманометр подключен к двум её выводам, остальные отверстия закрыты.

Перед входом в газовый счетчик установлен U-образный манометр. Он служит для измерения давления газа на входе в счётчик, а также предохраняет его от выхода из строя. При превышении максимального избыточного давления на входе счетчика (30 см. вод. ст) вода выплескивается из трубки в защитный баллон Б.

5.2 Приложение 2

Схема устройства микроманометра приведена на рис. 2.

Рис. 6: Жидкостный микроманометр ММН-2400

Устройство

- 1 Сосуд с рабочей жидкостью
- 2 Измерительная шкала
- 3 Стойка для регулировки наклона
- 4 Место крепления измерительных трубок
- 5 Переключатель режима работы
- 6 Поплавок регулировки уровня спирта (для установки нуля)
- 7 Винт, регулирующий глубину погружения поплавка
- 8 Индикаторы горизонтального уровня
- 9 Регулируемые ножки

Разность давлений на входах манометра измеряется по высоте подъёма рабочей жидкости. Регулировка наклона позволяет измерять давление в различных диапазонах. На крышке прибора установлен трехходовый кран, имеющий два рабочих положения - (0) и (+). В положении (0) производится установка мениска жидкости на ноль, что необходимо сделать перед началом работы. В положении (+) производятся измерения.

Измерения

Связь измеряемого давления P с отсчётом делений по шкале N

$$P$$
[мм. вод. ст.] = $N \cdot K \cdot n$

или

$$P[\Pi \mathbf{a}] = 9.81 \cdot N \cdot K \cdot n$$

где K=0.2,0.4,0.6,0.8 - угловой коэффициент наклона трубки микроманометра, n - поправочный множитель, учитывающий отличие плотности залитого спирта от $0.8095\frac{\Gamma}{\text{cm}^3}$.

t,° C	16	18	20	22	24	26	28	30	32
$\rho, \frac{\Gamma}{\mathrm{cm}^3}$	0,8109	0,8092	0,8075	0,8057	0,8040	0,8022	0,8004	0,7987	0,7969
n, отн. ед.	1,0018	0,9996	0,9975	0,9953	0,9932	0,9910	0,9888	0,9866	0,9844

Таблица 4: Зависимость плотности 96% спирта от температуры

5.3 Приложение 3

Схема устройства газового счетчика приведена на рис. 3.

Рис. 7: Газовы счетчик

Устройство

- 1 Измерительная шкала (1 оборот = 5 л)
- 2 Счётно-суммирующее устройство (1 ед. = 1 л)
- 3 Индикатор горизонтального уровня
- 4 Водомерное устройство
- 5 Трубка для подачи газа
- 6 Трубка для отвода газа
- 7 Патрубки для подключения внешнего манометра
- 8 Место установки термометра

9 Регулируемые ножки

10 Сливное отверстие

Характеристики

• Класс точности: 1.0

• Пределы измерения расхода: от $20\frac{\pi}{q}$ до $1000\frac{\pi}{q}$

• Цена наименьшего деления: 0,02 л

• Предел измерения стрелочного механизма (1 оборот): 5 л

• Максимально допустимый перепад давления: 600 мм вод. ст. (5885 Па)

Работа счётчика основана на принципе вытеснения: на цилиндрической ёмкости жёстко укреплены лёгкие чаши (см. Рис. 4, где для упрощения изображены только две чаши), в которые поочередно поступает воздух из входной трубки расходомера. Когда чаша наполняется, она всплывает и её место занимает следующая и т.д. Вращение оси передаётся на счётносуммирующее устройство.

Рис. 8: Принцип работы барабанного газосчетчика

5.4 Приложениние 4

ΔP , дел	ΔP , Πa	Q, л/мин
10	19.61	0.6
20	39.23	1.4
30	58.84	2.1
40	78.45	2.8
50	98.07	3.6
60	117.68	4.2
70	137.29	4.9
76	149.06	5.3
80	156.91	5.4
90	176.52	5.7
100	196.13	5.8
110	215.75	6
120	235.36	6.2
150	294.20	6.8
200	392.27	7.7
240	470.72	8.4

Таблица 5: Зависимость расхода Q от перепада давления ΔP для трубки диаметром ${
m d}=3.95$ мм.

ΔP , дел	ΔP , Πa	Q, л/мин
4	7.85	0.7
8	15.69	1.6
12	23.54	2.7
16	31.38	3.4
20	39.23	4.4
24	47.07	5.3
28	54.92	6.0
32	62.76	6.7
40	78.45	7.6
80	156.91	10.1
100	196.13	11.4
120	235.36	12.7
140	274.59	13.7
160	313.81	14.9
170	333.43	16.0

Таблица 6: Зависимость расхода Q от перепада давления ΔP для трубки диаметром ${\rm d}=5.05$ мм.

5.5 Приложениние 5

Из выражения (3) и уравнения Менделеева-Клапейрона следует, что

$$Re_{\kappa p} = \frac{\rho u a}{\eta} = \frac{p \mu}{RT} \frac{Q_{\kappa p}}{\pi r^2} \cdot \frac{r}{\eta}$$
 (7)

где в качестве характерной скорости использована средняя скорость потока воздуха $u=\frac{Q_{\rm KP}}{\pi r^2},$ и радиус трубки r использован как характерный размер. Из (7) следует, что

$$Q_{\rm kp} = \frac{Re_{\rm kp} \cdot RT \cdot \pi r \eta}{p\mu} \tag{8}$$

5.6 Приложениние 6

$P_0 - P$, Πa	x, M
102 ± 2	1.31 ± 0.01
79 ± 2	1.20 ± 0.01
67 ± 2	0.81 ± 0.01
59 ± 2	0.70 ± 0.01
47 ± 2	0.50 ± 0.01
37 ± 2	0.41 ± 0.01
33 ± 2	0.40 ± 0.01
20 ± 2	0.30 ± 0.01
14 ± 2	0.11 ± 0.01

Таблица 7: Зависимость разности $P-P_0$ давления в трубке на расстоянии x и давления на входе в трубку от расстояния x до входа в трубке диаметром d=3.95мм

$P_0 - P, \Pi a$	x, M
49 ± 2	1.31 ± 0.01
45 ± 2	1.20 ± 0.01
37 ± 2	0.81 ± 0.01
33 ± 2	0.70 ± 0.01
30 ± 2	0.50 ± 0.01
21 ± 2	0.41 ± 0.01
20 ± 2	0.40 ± 0.01
10 ± 2	0.30 ± 0.01
7 ± 2	0.11 ± 0.01

Таблица 8: Зависимость разности $P-P_0$ давления в трубке на расстоянии x и давления на входе в трубку от расстояния x до входа в трубке диаметром $d=3.95{
m MM}$

5.7 Приложениние 7

t,° C	$\eta \cdot 10^{-5}, \Pi a \cdot c$
-50	1.58
-20	1.63
0	1.72
20	1.81
25	1.84
50	1.96
100	2.18
200	2.58
400	3.28

Таблица 9: Зависимость динамической вязкости η воздуха от температуры $^{\scriptscriptstyle t}$

6 Список литературы

Список литературы

[1] Сивухин Д. В. *Термодинамика и молекулярная физика*. Физматлит., 2005.