La entrega debe realizarse subiendo un único archivo tipo ".pdf" que contenga el escaneado de la resolución manuscrita de la evaluación, indicando **Apellido(s) y Nombre(s) y Número de Padrón**.

Todas las respuestas deben estar debidamente justificadas. No se aceptarán cálculos dispersos, poco claros o sin comentarios. En la resolución de integrales, cada paso de integración debe resolverse indicando la primitiva y los límites correspondientes.

La evaluación se aprueba con 2 (dos) ítems bien resueltos.

Sólo debe entregar resueltos dos de los cuatro ítems que se enuncian, a su elección. Si entrega más de dos, sólo se tendrán en cuenta los dos primeros que presente, el resto no se corrige.

- 1. Sea $\vec{h} = \vec{f} + \vec{g}$ con $\vec{f}, \vec{g} \in C^1(\Re^3)$, sabiendo que:
 - \vec{f} es irrotacional,
 - $\vec{g}(x, y, z) = (x y z, \alpha(x, y, z), x y^2 x^2 + \beta(y, z))$
 - $\int_{\overline{AB}} \vec{f} \cdot d\vec{s} = 5$ y $\int_{\overline{AB}} \vec{g} \cdot d\vec{s} = -5/3$ son, respectivamente, las circulaciones de \vec{f} y \vec{g} desde $\vec{A} = (0,0,-4)$ hasta $\vec{B} = (0,0,4)$ a lo largo del segmento \overline{AB} .

Calcule la circulación de \vec{h} a lo largo de C de ecuación $\vec{X} = (\text{sen}(t), 0, 4\cos(t))$ con $t \in [0, \pi]$, respetando el sentido de circulación impuesto por esta parametrización.

- 2. Dada la superficie abierta $S = \{(x, y, z) \in \Re^3 / x^2 + y^2 z^2 = 1 \land 0 \le z \le 1\}$ orientada hacia z^- , calcule el flujo de \vec{f} a través de S, sabiendo que $\vec{f}(x, y, z) = (xz + y^3 z, x yz, x^2 + y^2)$.
- 3. Sea n_0 la recta normal a la superficie de ecuación $xz + 2yz + \ln(x + y + z 2) 3 = 0$ en el punto (1,1,1) de la misma. **Analice** la existencia de extremos absolutos de $f(x, y, z) = x^2 + 8y z$ evaluada en puntos del segmento $\overline{AB} \subset n_0$, sabiendo que:

 $\vec{A} \in \text{plano de ecuación } x = 3$ y $\vec{B} \in \text{plano de ecuación } z = -3$

Indique en qué puntos se producen los extremos y cuáles son los valores de dichos extremos.

4. Calcule el área de la superficie de ecuación $x^2 + y^2 = 1$ con $x^2 + z^2 \le 1$, $y \ge 0$, $z \ge 0$.