

Обработка текстов с помощью нейросети Входные данные для нейросети

Передать необработанные текстовые данные на вход нейросети невозможно, так как сеть работает только с числовыми данными. Для того чтобы была возможность работать с текстами, необходимо перевести текст в числа, если быть точнее, в набор чисел. Для представления существует несколько подходов.

Токенизация

Токенизация - это разбиение текста на отдельные токены/блоки.

Одним из способов является сопоставление символа и кода из таблицы ASCII. Например,

для словосочетания "Библиотека Keras"

- б 10000110000
- и 10000111000
- б 10000110000
- л 10000111011
- и 10000111000
- o 10000111110
- T 10000111110
- e 10000110101
- к 10000111010
- a 10000110000
- " *'- 00100000*
- K 01001011
- e 01100101
- r 01110010
- a 01100001
- s 01110011

Однако такой метод применяется редко, так как основная проблема его использования - это ограничения памяти.

Другой способ - это кодировать по словам, т. е. когда значение сопоставляется не с символом, а со словом.

Рассмотрим на примере:

«Марк Корнуэлл ел хлеб с сыром, когда раздался стук в дверь. Комната была маленькой и холодной: горстка горевших прутьев в маленьком камине не согревала ее».

Например, можно пронумеровать слова:

Many	1
марк	2
корнуэлл	_
ел	3
хлеб	4
C	5
сыром	6
когда	7
раздался	8
СТУК	9
В	10
дверь	11
комната	12
была	13
маленькой	14
И	15
холодной	16
горстка	17
горевших	18
прутьев	19
В	10
маленьком	20
камине	21
не	22
согревала	23
ee	24

либо отсортировать их в алфавитном порядке

была	1
В	2
горевших	3
горстка	4
дверь	5
ee	6
ел	7
И	8
камине	9
когда	10
комната	11
корнуэлл	12
маленькой	13
маленьком	14

марк	15
не	16
прутьев	17
раздался	18
C	19
согревала	20
СТУК	21
сыром	22
хлеб	23
холодной	24

Другой способ - это сопоставление слов с частотностью появления слова, то есть чем чем чаще встречается слово, тем меньше у него индекс, например,

И	2
В	3
не	4
Я	5
ЧТО	6
на	7
C	8
OH	9
a	10
как	11
TO	12
ЭТО	13
НО	14
BCE	15
y	16
ПО	17
	4005
раздался	1295
• • •	0004
комната	2001
	 122070
зияющая	133072

тогда наш текст можно представить как

тогда паш тог	
марк	39585
корнуэлл	134234
ел	4028
хлеб	2866
C	7
сыром	19591
когда	40
раздался	1295
СТУК	2723
В	2
дверь	181
комната	2001
была	95
маленькой	2174
И	1
холодной	2950
горстка	108963
горевших	120123
прутьев	59542
В	2
маленьком	6276
камине	10454
Не	3
согревала	125417
ee	59
	OTI 110 160

Если посмотреть на корнуэлл = 134234 и предлог и = 1, видим, что наши данные разбалансированы. Чтобы этого избежать, существуют способы, построенные методе сбалансированных данных.

Bag Of Words (BOW)

ВОW заключается в том, что фраза разбивается на отдельные составляющие части фиксированной длины и представляется в виде вектора заданной длины, размер которого задается параметров max_words - индекс максимального слова, который будет анализироваться, при этом все слова, у которых индексы больше max_words, заменяются на индекс 1. В результате у нас получается вектор длины max_words из 0 и 1 (0 - там, где нет слов, и 1 - на месте индекса встречающего слова).

Иногда считают, сколько раз встречается слово, и вместо 1 ставят частоту. Рассмотрим пример:

max words = 10 000, тогда

марк	корнуэлл	e A	хлеб	C	СЫРОМ	КОГДО	раздался	ł
39585	134234	4028	2866	7	19591	40	1295	
получится как,								
1	1	4028	2866	7	1	40	1295	

то есть у всех слов, индексы которых больше 10 000, заменили на 1. Вектор BOW получится

$[0 \ 1 \ 0 \ C]$	0001	000	00000	0 1	1 1 .	О], гд	це индекс	СЫ
0 1 2	3 4 5	6 7 8	9 10 11	12 13 14.	40	1295	2866	10000,
если сч	нитают	количе	CTBO BC	гречающи	хся слов, т	0		
032	3 4 5	6 7 8	9 10 11	12 13 14.	40	1295	2866	10000.

Таким образом, для

«Марк Корнуэлл ел хлеб с сыром, когда раздался стук в дверь. Комната была маленькой и холодной: горстка горевших прутьев в маленьком камине не согревала ее..». получим массив

Следует принять во внимание, что в данном подходе однокоренные слова являются разными словами, например, ходить - приходить - уходить, это три разных слова.

В случае, если их надо привести к нормальной форме, есть библиотека pymorphy. Например, «люди -> человек» или «гулял -> гулять».

Прежде чем представлять в форме BOW, надо привести весь текст к нормальной форме, а потом уже конвертировать в BOW.

Embedding

Еще одним из способов предобработки текста для использования в сети является Embedding. Embedding - это представление текста в n-мерной форме.

В библиотеке Keras для представления в формате Embedding есть уже готовый слой, например,

model.add (Embedding (1000, 64, input_length=10)), где

input_dim = 1000 - размер словаря, т. е. максимальный целочисленный индекс в входном векторе + 1 (max_words в BOW),

output_dim = 64 - размер плотного embedding-a,

input_length = 10 - длина входных последовательностей.

Инструкцию можно посмотреть: https://ru-keras.com/embedding-layers/.

Для примера рассмотрим фрагмент текста, что и для BOW, «Марк Корнуэлл ел хлеб с сыром, когда раздался стук в дверь. Комната была маленькой и холодной: горстка горевших прутьев в маленьком камине не согревала ее...»

при Embedding (1000, 64, input_length=8) при подаче на вход,

марк	корнуэл	іл ел	хлеб	C	сыром	когда	раздался
39585	34234	4028	2866	7	19591	40	1295
на выхс	де получ	łИМ,					
[0.54	[2.78	[2.12	[6.54	[5.54	[8.54	[0.74	[8.53
1.43	1.23	1.24	2.33	6.43	2.43	1.23	2.63
0.12	1.12	-5.3	1.22	2.12	1.12	2.12	3.52
0.34	-3.65	3.4	3.44	3.34	-4.4	1.54	4.44
0.56	2.45	2.12	4.36	-2.56	2.56	2.56	5.36
				-2.67]		-3.63]	5.27]

Вычисления Embedding-ов требуются большие вычислительные мощности, чтобы их не вычислять, существуют предварительно обученные векторные представления.

Предварительно обученные векторные представления слов

Для работы с текстом существуют предварительно обученные векторные представления:

• GloVe (Global Vectors)
Стэнфордский университет
https://nlp.stanford.edu/projects/glove/

Word2Vec

Google

https://code.google.com/archive/p/word2vec/

FastText
 Facebook
 https://fasttext.cc

Word2Vec

Принцип работы Word2Vec заключается в нахождении связей между контекстами слов, то есть, получив на вход текст большого объема, определить слова близкие по смыслу.

В результате расстояние между векторами, например, мужчина - женщина и король - королева будет одинаковым, при этом слова мужчина и король будут находиться недалеко в п-мерном векторном пространстве. В случае с обученными представлениями обучение на корпусе данных не происходит, а данные подаются на вход обученного представления и словам из нашего набора данных присваиваются вектора в п-мерном пространстве.

Пример. Классификация текстов писателей

Для примера рассмотрим классификацию текстов писателей: О. Генри, Стругацкие, Булгаков, Клиффорд Саймак, Макс Фрай, Рэй Брэдбери.

После загрузки произведений писателей в обучающую и тестовую выборку необходимо преобразовать тексты к виду, который можно использовать в нейронных сетях. Преобразуем тексты методом Bag Of Words. Для этого существует в Keras встроенный класс Tokenizer (https://ru-keras.com/text-preprocessing/).

В общем виде:

```
Tokenizer(
num_words=None,
filters='!»#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n',
lower=True,
split='',
char_level=False,
oov_token=None,
document_count=0),
```

где

num_words: максимальное количество слов, для которых нужно провести токенизацию, основываясь на частоте слов в тексте. Будут переведены в токены только самые распространенные слова в количестве *num_words-1*.

filters: строка, содержащая символы, которые будут исключены из текста. По умолчанию используются все символы пунктуации, плюс символы табуляции и разрыва строки, но исключая символ ' (одиночный апостроф).

lower: логическое значение. Следует ли приводить текст к нижнему регистру.

split: строка. Символ, по которому будет происходить разделение слов в тексте.

char_level: если указано значение True, тогда каждый символ будет рассматриваться как токен.

oov_token: (Out-Of-Vocabulary - Вне словарного запаса) если передан этот параметр, то он будет добавлен в word_index и использован для замены слов, не входящих в словарь, во время вызовов text_to_ sequence.

По умолчанию вся пунктуация удаляется и текст превращается в последовательности слов, разделенные пробелами (слова могут включать символ ' - одиночный апостроф). Затем эти последовательности разбиваются на списки из токенов. Потом они будут индексированы или векторизованы.

0 - это зарезервированный индекс, который не будет присвоен ни одному слову.

Максимальное количество слов, которое будем учитывать, maxWordsCount = 20 000. Создадим экземпляр класса:

```
tokenizer = Tokenizer(
num_words=maxWordsCount, filters='!"#$%&()*+,---./...:;<=>?@
[\\]^_`{|}~«»\t\n\xa0\ufeff',
lower=True,
split=' ',
oov_token='unknown',
char level=False)
```

Таким образом, из исходного текста будут удалены все символы !"#\$%&()*+,---./...:;<=>?@[\\]^_`{|}~«»\t\n\xa0\ufeff, все слова будут приведены к нижнему регистру, в качестве разделителя слов - пробел.

Для того чтобы собрать словарь частотности в классе Tokenizer, есть метод .fit_on_texts(), который на вход принимает текст, на выходе - словарь: «слово - индекс»

Соберем словарь частотности для текстов наших писателей, для этого подадим тексты из обучающей выборки:

```
tokenizer.fit on texts (trainText)
```

Для того чтобы посмотреть, какие индексы у слов, воспользуемся методом .word_index, который объект класса преобразует в словарь, и методом словаря .items(), который возвращает кортеж пары ключзначение типа dict_items, который не индексируется, для того, чтобы

можно было обращаться к элементам по индексу, необходимо преобразовать в список:

```
items = list(tokenizer.word_index.items())
посмотрим часто встречающиеся слова:
```

```
print(items[-10:])
```

выведет:

[('поджарьте', 133061), ('заполните', 133062), ('мучающие', 133063), ('погремушкой', 133064), ('свистком', 133065), ('потерян', 133066), ('расплывающиеся', 133067), ('миллионе', 133068), ('зияющая', 133069), ('ничтонавстречу', 133070)]

Теперь необходимо преобразовать текст в набор индексов вместо слов, согласно созданному нами частотному словарю, для этого воспользуемся встроенным методом класса .texts_to_sequences, который принимает на вход текст, а возвращает список индексов слов (т. к. в выборке у нас тексты хранились в списке для каждого писателя, то получим список списков:

```
trainWordIndexes = tokenizer.texts_to_sequences(trainText)
testWordIndexes = tokenizer.texts_to_sequences(testText)
```

Чтобы наши тексты (индексы слов) обучающей и тестовой выборки нарезать на куски и сформировать обучающий набор (xTrain - двумерный массив, список фиксированного размера), состоящий из индексов слов (yTrain - номер класса в форме one-hot-encoding) и проверочной выборки, необходимы вспомогательные функции:

```
# Формирование обучающей выборки по листу индексов слов # (разделение на короткие векторы) def getSetFromIndexes(wordIndexes, xLen, step): # функция принимает последовательность индексов, размер окна, шаг окна
```

```
xSample = [] # Объявляем переменную для векторов wordsLen = len(wordIndexes) # Считаем количество слов index = 0 # Задаем начальный индекс
```

```
while (index + xLen <= wordsLen):# Идём по всей длине
вектора индексов
    xSample.append(wordIndexes[index:index+xLen]) #
"Откусываем" векторы длины xLen
    index += step # Смещаемся вперёд на step
  return xSample
# Формирование обучающей и проверочной выборки
# Из двух листов индексов от двух классов
def createSetsMultiClasses (wordIndexes, xLen, step): #
Функция принимает последовательность индексов, размер
окна, шаг окна
  # Для каждого из 6 классов
  # Создаём обучающую/проверочную выборку из индексов
  nClasses = len(wordIndexes) # Задаем количество классов
выборки
  classesXSamples = [] # Здесь будет список
размером "кол-во классов*кол-во окон в тексте*длину окна
(например, 6 по 1341*1000)"
  for wI in wordIndexes:
                              # Для каждого текста выборки
из последовательности индексов
    classes XS amples.append (get Set From Indexes (wI, xLen,
step)) # Добавляем в список очередной текст индексов,
разбитый на "кол-во окон*длину окна"
  # Формируем один общий xSamples
  xSamples = [] # Здесь будет список размером "суммарное
кол-во окон во всех текстах*длину окна (например,
15779*1000)"
  ySamples = [] # Здесь будет список размером "суммарное
кол-во окон во всех текстах*вектор длиной 6"
```

```
for t in range (nClasses): # В диапазоне кол-ва
классов (6)
    xT = classesXSamples[t] # Берем очередной текст вида
"кол-во окон в тексте*длину окна" (например, 1341*1000)
    for i in range(len(xT)): # И каждое его окно
      xSamples.append(xT[i]) # Добавляем в общий список
выборки
      ySamples.append(utils.to categorical(t, nClasses)) #
Добавляем соответствующий вектор класса
  xSamples = np.array(xSamples) # Переводим в массив numpy
для подачи в нейронку
  ySamples = np.array(ySamples) # Переводим в массив numpy
для подачи в нейронку
  return (xSamples, ySamples) #Функция возвращает выборку
и соответствующие векторы классов
Функции на вход принимают список символов (wordIndexes), длину
списка (xLen, другими словами, количество слов), шаг (step, на сколько
индексов (слов) происходит смещение при формировании).
Получим выборку:
xTrain, yTrain = createSetsMultiClasses(trainWordIndexes,
xLen, step) #извлекаем обучающую выборку
xTest, yTest = createSetsMultiClasses(testWordIndexes,
xLen, step) #извлекаем тестовую выборку
При xLen = 50 первый набор будет:
print (xTrain[0])
       5 3069 951 14918 3 1 1 11 1 5809 3
     1 1 177 749 15 296 1988 5 1 1 750
  7 3282 1 1 3 1509 6209 6653 1020 11 29 73
  1 102 124 1 138 1716 2608 1 676 1 1086 10331
  1 40]
```

Чтобы данный набор символов представить в виде Bag Of Words (BOW), можно либо написать свою функцию, либо воспользоваться методом класса Tokenizer .sequences_to_matrix(), которая на вход принимает список (list), а на выходе numpy массив. Преобразуем наш набор индексов из numpy в список: xTrain.tolist(),

```
xTrain01 = tokenizer.sequences_to_matrix(xTrain.tolist())
xTest01 = tokenizer.sequences_to_matrix(xTest.tolist())
Посмотрим размерность и данные, которые получились (т. к.
maxWordsCount = 20000, выведем первые 100):
print(xTrain01.shape)
print(xTrain01[0][0:100])
```

Таким образом, все наши данные представлены в виде 0 и 1, входные в представлении BOW и выходные в представлении one_hot_encoding, которые можно использовать в нейросетях.

Создадим простую нейронную сеть, состоящую из полносвязного слоя с 200 нейронами, слоя Dropout с 25% входных блоков для исключения, слоя нормализации и выходного полносвязного слоя с 6 нейронами (количество классов):

0.0.1.1.]

```
Обучим нашу сеть и посмотрим результат:
```

```
history = model01.fit(xTrain01,
                      yTrain,
                      epochs=10,
                     batch size=128,
                     validation data=(xTest01, yTest))
plt.plot(history.history['accuracy'],
         label='Доля верных ответов на обучающем наборе')
plt.plot(history.history['val accuracy'],
         label='Доля верных ответов на проверочном
Hafope')
plt.xlabel('Эпоха обучения')
plt.ylabel('Доля верных ответов')
plt.legend()
plt.show()
В результате:
Epoch 10/10
              138/138 [==
5.2432e-04 - accuracy: 1.0000 - val_loss: 0.2186 - val_accuracy: 0.9251
```


Как видим, точность классификации на проверочной выборке 92%.