AEEM 3042 – Integrated Aircraft Engineering

Aircraft Performance Equations of Motion Energy Concepts

Total Energy = Potential Energy + Kinetic Energy

$$E = PE + KE$$

$$E = mgh + \frac{1}{2}mV^2$$

$$\frac{E}{W} = h + \frac{1}{2g}V^2$$

$$E_s = h + \frac{1}{2g}V^2$$
 (always in ft)

$$E_s = h + \frac{1}{2g} V^2$$

Flight Condition						
Alt	0	ft				
Mach	0.75					
Atmospheric Data						
а	1116.45	ft/sec				
Specific Energy Calculations						
h	0	ft				
V	837.34	ft/sec				
E _s	10,896	ft				

Flight Condition					
Alt	10,000	ft			
Mach	0.75				
Atmospheric Data					
а	1077.39	ft/sec			
Specific Energy Calculations					
h	10,000	ft			
V	808.04	ft/sec			
E _s	20,147	ft			

F-15 "Streak Eagle"

Stripped down F-15A – 1800 lbs lighter \Rightarrow T/W = 1.4

Set time-to-climb record to 30,000 m on 2/1/1975 by USAF test pilot Major Roger Smith

McDonnell Douglas test pilot "Pete" Garrison developed the flight profile

F-15 Minimum Time to Climb

F-15 Minimum Time to Climb

What is the relationship between E_s and P_s?

$$\frac{\mathrm{d}}{\mathrm{dt}} \mathbf{E}_{\mathrm{s}} = \frac{\mathrm{d}}{\mathrm{dt}} (\mathbf{h} + \frac{1}{2\mathrm{g}} \mathbf{V}^2)$$

$$\dot{E}_{S} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_{S}$$
 (always in ft/sec)

$$\Sigma F_{x} = T \cos \alpha - D - W \sin \theta = \frac{d(mV)}{dt} = \dot{m}V + m \dot{V}$$

Steady Climb = Constant Weight

$$\Sigma F_{x} = T \cos \alpha - D - W \sin \theta = m \dot{V}$$

Small Angle Approximation Assumption for Angle of Attack (α)

$$\Sigma F_{x} = T - D - W \sin \theta = m \dot{V}$$

$$T - D - W \sin \theta = \frac{W}{g} \frac{dV}{dt}$$

$$T - D = W \sin \theta + \frac{W}{g} \frac{dV}{dt}$$

$$T - D = W \sin \theta + \frac{W}{g} \frac{dV}{dt}$$

$$T - D = W \left(\sin \theta + \frac{1}{g} \frac{dV}{dt} \right)$$

$$\frac{(T-D) V}{W} = V \sin \theta + \frac{V}{g} \frac{dV}{dt}$$

$$\frac{(T-D) V}{W} = V \sin \theta + \frac{V}{g} \frac{dV}{dt}$$

where
$$V \sin \theta = \frac{dh}{dt}$$

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

Specific Excess Power can help you calculate:

- Maximum and Minimum Velocity (next lecture)
- Absolute, Service, Cruise, and Combat Ceilings (next class)
- Time, Fuel, and Distance to Climb or Descend
- Time, Fuel, and Distance to Accel or Decel
- Sustained Turn Envelope

Specific Excess Power

$$\frac{(T-D) V}{W} = \frac{dh}{dt} + \frac{V}{g} \frac{dV}{dt} = P_s$$

$$P_s > 0$$
 accelerating / climbing flight $T > D$

$$P_s = 0$$
 sustained flight $T = D$

$$P_s < 0$$
 decelerating / descending flight $T < D$

$$P_{s} = \frac{(T - D) V}{W}$$

Need four values: T, D, V, and W

T: Calculate T (lb) using the characteristic equation

$$T_{A} = T_{SL} \left(\frac{\rho}{\rho_{SL}} \right) \quad \text{- or -} \quad T_{A} = T_{SL} \left(\frac{\rho}{\rho_{SL}} \right) (1 + 0.7 \text{ M})$$

V: Calculate V (ft/sec) for the provided flight condition

W: The aircraft weight W (lb) is usually provided

$$P_{s} = \frac{(T - D) V}{W}$$

Need four values: T, D, V, and W

D: Calculate
$$C_L$$

$$C_L = \frac{W\,n}{\frac{1}{2}\,\rho\,V^2\,S} = \frac{W\,n}{\left(q/M^2\right)M^2\,S}$$

Calculate C_D using the parabolic drag polar

$$C_{D} = C_{D_0} + K C_{L}^{2}$$

Calculate D (lb)
$$D = C_D q S$$

$$P_{s} = \frac{(T - D) V}{W}$$

Flight Condition		Aircraft Data			
Wt	60,000	lb	CD0	0.0150	
Alt	0	ft	K	0.08	
Mach	0.75		Thrust	27,700	lb
g's	1.0		S	950	sq ft
Atr	Atmospheric Data		Performance Data		
QMS	1481.4	lb/sqft	CL	0.0758	
а	1116.45	ft/sec	CD	0.0155	
			Т	27,700	lb
			D	12,238	lb
			V	837.34	ft/sec
			W	60,000	lb
			P _s	215.78	ft/sec

$$\mathbf{P_s} = \frac{(\mathbf{T} - \mathbf{D}) \ \mathbf{V}}{\mathbf{W}}$$

Flig	Flight Condition		Aircraft Data		
Wt	60,000	lb	CD0	0.0150	
Alt	0	ft	К	0.08	
Mach	0.75		Thrust	27,700	lb
g's	3.5		S	950	sq ft
Atr	Atmospheric Data		Performance Data		
QMS	1481.4	lb/sqft	CL	0.2653	
а	1116.45	ft/sec	CD	0.0206	
			Т	27,700	lb
			D	16,331	lb
			V	837.34	ft/sec
			W	60,000	lb
			P _s	158.66	ft/sec

Homework Assignment

HW #9 – Specific Energy; Specific Excess Power (due by 11:59 pm ET on Monday)
Reading – Chapter 6.6

HW Help Session

Monday 1:00 – 2:00 pm ET

Posted on Canvas

HW #9 Assignment with instructions, tips, and checklist

HW #9 Template for data table in Excel

Questions?