Effect of Vitamin C on Tooth Growth

 $R.\ Hands field$

February 19, 2016

Abstract

In this project, we analyze the datasets::ToothGrowth data set to determine the effect Vitamin C supplement and dosage on the average tooth length of guinea pigs. We use exploratory analysis and hypothesis testing to achieve our results.

Overview

The ToothGrowth dataset reports the effect of Vitamin C on tooth growth in guinea pigs. The data frame contains 3 columns representing, tooth length, supplement type, and dose (mg).

Exploratory Analysis

```
library("datasets")
data (ToothGrowth)
dftg <- ToothGrowth
head(dftg, 3L)
##
      len supp dose
## 1 4.2
           VC 0.5
## 2 11.5
           VC 0.5
## 3 7.3
           VC 0.5
str(dftg)
## 'data.frame':
                   60 obs. of 3 variables:
   $ len: num 4.2 11.5 7.3 5.8 6.4 10 11.2 11.2 5.2 7 ...
   $ supp: Factor w/ 2 levels "OJ", "VC": 2 2 2 2 2 2 2 2 2 2 ...
## $ dose: num 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 ...
table(dftg[, c('supp', 'dose')])
##
       dose
## supp 0.5 1 2
##
    OJ 10 10 10
        10 10 10
##
```

There are two treatments (OJ and VC), each administered at 3 different dosages to independant groups of 10 guinea pigs.

```
g <- ggplot(dftg) + aes(x=factor(dose), y=len, fill=factor(dose)) + geom_boxplot()
g <- g + facet_grid(.~supp) + xlab("Dose (mg)") + ylab("Tooth Length")
g</pre>
```


Comparing Treatments

• Null hypothesis: $H_0: \mu_1 = \mu_2$

• Alternative hypothesis: $H_a: \mu_1 \neq \mu_2$

Summary of Mean Tooth Lengths

Group	Mean Length
OJ	20.663
VC	16.963
$0.5~\mathrm{mg}$	10.605
1.0 mg	19.735
2.0 mg	26.1

The means of the supplement and dosage groups are all distinct, but are they different enough to suggest that each experimental parameter had an effect?

T-Testing

Comparing standard errors of each experimental group tells us whether we should use equal variance t-tests.

Neither the treatment nor the dosage groups have similar variances, therefore we use unequal variance t-tests.

```
t <- t.test(len~supp, data=dftg, paired=FALSE, var.equal=FALSE)
data.frame(t$estimate, t$p.value)
##
                    t.estimate t.p.value
## mean in group OJ
                      20.66333 0.06063451
## mean in group VC
                      16.96333 0.06063451
t <- t.test(len~dose, data=rbind(df_half, df_one), paired=FALSE, var.equal=FALSE)
data.frame(t$estimate, t$p.value)
##
                     t.estimate
                                   t.p.value
## mean in group 0.5
                         10.605 1.268301e-07
## mean in group 1
                         19.735 1.268301e-07
t <- t.test(len~dose, data=rbind(df_two, df_one), paired=FALSE, var.equal=FALSE)
data.frame(t$estimate, t$p.value)
##
                   t.estimate
                                t.p.value
## mean in group 1
                       19.735 1.90643e-05
                       26.100 1.90643e-05
## mean in group 2
```

The means of every group-pair are different, with p-values of 0.06 or better.

Conclusions

Every experimental parameter caused some change in the tooth growth of a guinea pig population. From t-testing group pairs, we obtain the following results.

Group	Mean Tooth Length	P-Value
OJ VC	20.663 16.963	0.06 0.06
0.5 mg 1.0 mg	10.605 19.735	1.27×10^{-7} 1.27×10^{-7}
$\frac{1.0~\mathrm{mg}}{2.0~\mathrm{mg}}$	19.735 26.1	1.91×10^{-5} 1.91×10^{-5}

To obtain these results, we assume that each guinea pig group is experimentally independent, and has a variance unequal to that of any other group.

Appendix 1: Subsetting Groups

```
# subset individual groups
df_oj <- dftg[dftg$supp=='0J',]
df_vc <- dftg[dftg$supp=='VC',]

df_half <- dftg[dftg$dose==0.5,]
df_one <- dftg[dftg$dose==1,]
df_two <- dftg[dftg$dose==2,]</pre>
```

Appendix 2: Standard Errors of Groups

Appendix 3: T-Test Results

```
t.test(len~supp, data=dftg, paired=FALSE, var.equal=FALSE)
```

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 1.9153, df = 55.309, p-value = 0.06063
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.1710156  7.5710156
## sample estimates:
## mean in group OJ mean in group VC
## 20.66333  16.96333
```

```
t.test(len~dose, data=rbind(df_half, df_one), paired=FALSE, var.equal=FALSE)
##
##
   Welch Two Sample t-test
## data: len by dose
## t = -6.4766, df = 37.986, p-value = 1.268e-07
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -11.983781 -6.276219
## sample estimates:
## mean in group 0.5
                     mean in group 1
##
              10.605
                               19.735
t.test(len~dose, data=rbind(df_two, df_one), paired=FALSE, var.equal=FALSE)
##
##
   Welch Two Sample t-test
##
## data: len by dose
## t = -4.9005, df = 37.101, p-value = 1.906e-05
\#\# alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -8.996481 -3.733519
## sample estimates:
## mean in group 1 mean in group 2
```

26.100

##

19.735