Machine Learning Fundamentals

An introduction to the basic principles and methods of machine learning

Hui Jiang

July 16, 2020

Cambridge University Press

Detailed Contents

Pr	Preface						
D	Detailed Contents x						
1	Intr	Introduction					
	1.1	What is Machine Learning?	1				
	1.2	Basic Concepts in Machine Learning	4				
		Classification vs. Regression	4				
		Supervised vs. Unsupervised Learning	5				
		Simple vs. Complex Models	5				
		Parametric vs. Non-parametric Models	7				
		Over-fitting vs. Under-fitting	8				
		Bias-Variance Tradeoff	10				
	1.3	General Principles in Machine Learning	11				
		Occam's Razor	11				
		No Free Lunch Theorem	11				
		Law of the Smooth World	12				
		Curse of Dimensionality	14				
	1.4	Advanced Topics in Machine Learning	15				
		Reinforcement Learning	15				
		Meta-Learning	16				
		Causal Inference	16				
		Other Advanced Topics	16				
	Exe	rcises	18				
2	Mathematical Foundation 19						
	2.1	Linear Algebra	19				
		Vectors and Matrices	19				
		Linear Transformation as Matrix Multiplication	20				
		Basic Matrix Operations	21				
		Eigenvalues and Eigenvectors	23				
		Matrix Calculus	25				
	2.2	Probability and Statistics	27				
		Random Variables and Distributions	27				
		Expectation: Mean, Variance and Moments	28				
		Joint, Marginal and Conditional Distributions	30				
		Common Probability Distributions	33				
		Transformation of Random Variables	40				

	2.3	Information Theory
		Information and Entropy
		Mutual Information
		KL Divergence
	2.4	Mathematical Optimization
		General Formulation
		Optimality Conditions
		Numerical Optimization Methods
	Exe	rcises
3	Sup	ervised Machine Learning (in a nutshell) 67
	3.1	Overview
	3.2	Case Studies
4	Feat	ure Extraction 77
	4.1	Feature Extraction: Concepts
		Feature Engineering
		Feature Selection
		Dimensionality Reduction
	4.2	Linear Dimension Reduction
		Principal Component Analysis
		Linear Discriminant Analysis
	4.3	Nonlinear Dimension Reduction (I): Manifold Learning 86
		Locally Linear Embedding
		Multidimensional Scaling
		Stochastic Neighborhood Embedding
	4.4	Nonlinear Dimension Reduction (II): Neural Networks 90
		Autoencoder
		Bottleneck Features
	Lab	Project I
	Exer	rcises
D	ISCF	RIMINATIVE MODELS 95
5	Stat	istical Learning Theory 97
	5.1	Formulation of Discriminative Models
	5.2	Learnability
	5.3	Generalization Bounds
		Finite Model Space: H
		Infinite Model Space: VC Dimension
	Exer	rcises

6	Line	ear Models			107
	6.1	Perceptron			. 108
	6.2	Linear Regression			. 112
	6.3	Minimum Classification Error			. 113
	6.4	Logistic Regression			. 114
	6.5	Support Vector Machines (SVM)			. 116
		Linear SVM			. 116
		Soft SVM			. 121
		Nonlinear SVM: the kernel trick			. 123
		Solving Quadratic Programming			. 125
		Multi-Class SVM			
		Project II			
	Exer	cises		•	. 130
7	Lear	ming Discriminative Models in General			133
	7.1	A General Framework to Learn Discriminative Models			
		Common Loss Functions in ML			
		Regularization based on L_p norm			
	7.2	Ridge Regression and LASSO			
	7.3	Matrix Factorization			
	7.4	Dictionary Learning			
		Project III			
	Exer	cises	•	•	. 150
8	Neu	ral Networks			151
	8.1	Artificial Neural Networks (ANN)			
		Basic Formulation of ANNs			. 152
		Mathematical Justification: Universal Approximator			
	8.2	Neural Network Structures			
		Basic Building Blocks to Connect Layers			
		Case Study (I): Fully-Connected Deep Neural Networks			
		Case Study (II): Convolutional Neural Networks (CNN)			
		Case Study (III): Recurrent Neural Networks (RNN)			
		Case Study (IV): Transformer			
	8.3	Learning Algorithms for Neural Networks			
		Loss Function			
		Automatic Differentiation			
		Optimization Using Mini-batch SGD			
	8.4	Heuristics and Tricks for Optimization			
		Other SGD-variant Optimization Methods: ADAM			. 190
		Regularization			

	8.5	End-to-End Learning	
		Sequence-to-Sequence Learning	196
	Lab	Project IV	198
	Exer	cises	199
9	Ense	emble Learning	201
	9.1	Formulation of Ensemble Learning	201
		Decision trees	
	9.2	Bagging	205
		Random Forests	206
	9.3	Boosting	207
		Gradient Boosting	208
		AdaBoost	209
		Gradient Tree Boosting	212
	Lab	Project V	214
	Exer	rcises	215
G	FNFI	RATIVE MODELS	217
Ü	LIVE.		
10			219
		Formulation of Generative Models	
	10.2	Bayesian Decision Theory	
		Generative Models for Classification	
		Generative Models for Regression	
	10.3	Statistical Data Modelling	
		Plug-in MAP Decision Rule	
	10.4	Density Estimation	
		Maximum Likelihood Estimation	
		Maximum Likelihood Classifier	
	10.5	Generative Models (in a nutshell)	
	_	Generative vs. Discriminative Models	
	Exer	cises	235
11	Uniı	modal Models	237
	11.1	Gaussian Models	238
	11.2	Multinomial Models	241
	11.3	Markov Chain Models	243
	11.4	Generalized Linear Models	248
		Probit Regression	250
		Poisson Regression	200
		Poisson Regression	

12	Mixt	ture Models	255
	12.1	Formulation of Mixture Models	255
		Exponential Family (e-family)	257
		Formal Definition of Mixture Models	259
	12.2	Expectation-Maximization (EM) Method	259
		Auxiliary Function: eliminating log-sum	260
		Expectation-Maximization Algorithm	263
	12.3	Gaussian Mixture Models	266
		K-means Clustering for Initialization	
	12.4	Hidden Markov Models (HMMs)	269
		HMMs: mixture models for sequences	270
		Evaluation Problem: Forward-Backward Algorithm	
		Decoding Problem: Viterbi Algorithm	277
		Training Problem: Baum-Welch Algorithm	278
	Lab	Project VI	285
	Exer	cises	286
13		8	289
	13.1	Formulation of Entangled Models	
		Framework of Entangled Models	
	100	Learning of Entangled Models in General	
	13.2	Linear Gaussian Models	
		Probabilistic PCA	
	10.0	Factor Analysis	
	13.3	Non-Gaussian Models	
		Independent Component Analysis	
		Independent Factor Analysis	
	10.4	Hybrid Orthogonal Projection and Estimation	
	13.4	Deep Generative Models	
	Ever	Generative Adversarial Nets	
	Exer	cises	307
14	Bave	esian Learning	309
		Formulation of Bayesian Learning	309
		Bayesian Inference	
		Maximum a Posterior Estimation	
		Sequential Bayesian Learning	
	14.2	Conjugate Priors	
		Maximum Marginal Likelihood Estimation	
	14.3	Approximate Inference	
		Laplace's Method	

		Variational Bayesian Methods	330 331 333 336	
15	Graj	ohical Models	341	
	-	Concepts of Graphical Models	341	
	15.2	Bayesian Networks	344	
		Conditional Independence		
		Representing Generative Models as Bayesian Networks	349	
		Learning Bayesian Networks	351	
		Inference Algorithms	353	
		Case Study (I): Naive Bayes Classifier	359	
		Case Study (II): Latent Dirichlet Allocation		
	15.3	Markov Random Fields	363	
		Formulation: Potential and Partition Functions	363	
		Case Study (III): Conditional Random Fields		
		Case Study (IV): Restricted Boltzmann Machines		
	Exer	cises	370	
\mathbf{A}	PPEN	NDIX	37 3	
A	Oth	er Probability Distributions	375	
		Uniform Distribution		
		Poisson Distribution		
		Gamma Distribution		
	A.4	Inverse-Wishart Distribution		
	A.5	von Mises–Fisher distribution	377	
Bibliography				
Notation				
In	Index			