LABORATOR#1

I. ECUAŢII NELINIARE: METODA BISECŢIEI

- Fie $f:[a,b] \longrightarrow \mathbb{R}$ o funcție continuă a.î. f(a)f(b) < 0. Atunci $\exists x^* \in (a,b)$ a.î. $f(x^*) = 0$.
- Metoda bisecției generează un șir de aproximări $\{x_n\}_{n\geq 0}\subset \mathbb{R}$ convergent către soluția exactă a ecuației f(x)=0, i.e. $\lim_{n\to\infty}x_n=x^\star$, unde x^\star este soluția exactă a ecuației f(x)=0.
- Metoda bisecției constă în înjumătățirea, la fiecare pas, a intervalului și selectarea acelui interval în care se află soluția.

ALGORITM (Metoda bisecției)

```
Date: f, a, b;

n = 0: a_n = a; b_n = b;

x_n = a_n + (b_n - a_n)/2;

n \ge 1: if f(a_{n-1})f(x_{n-1}) \le 0 then

a_n = a_{n-1}; b_n = x_{n-1};

else

a_n = x_{n-1}; b_n = b_{n-1};

endif

x_n = a_n + (b_n - a_n)/2;

n = n + 1; repeat step for n \ge 1
```

EX#1 Fie ecuația $x^6 - x - 1 = 0$.

- (a) Să se construiască în Python graficul funcției $f(x) = x^6 x 1$ pe intervalul [-2, 2] și dreapta de ecuație y = 0, în același sistem de coordonate xOy.
- (b) Să se creeze un fișier script în Python care construiește soluția aproximativă a ecuației prin metoda bisecției cu eroarea $TOL = 10^{-5}$ pentru fiecare interval în parte [-1,0], respectiv [1,2]. Se va considera criteriul de oprire $|f(x_n)| < TOL$.
- **EX#2** (a) Să se construiască în Python graficul funcției $g(x) = e^{-x/2}(x^2 + 2x 8)$ pe intervalul [-3,3] și dreapta de ecuație y = 0, în același sistem de coordonate xOy.
 - (b) Să se creeze un fişier script în Python pentru a calcula x_{10} , care aproximează soluția ecuației g(x) = 0 pe intervalul [-3, 3] prin metoda bisecției.

- (c) Fie $x^* = 2$ soluţia exactă a acestei ecuaţii. Să se calculeze eroarea absolută $\operatorname{err}_{\mathbf{a}}(x_n) = |x^* x_n|$ şi eroarea relativă $\operatorname{err}_{\mathbf{r}}(x_n) = |x^* x_n|/|x^*|$, $n = \overline{1, 10}$, şi să se reprezinte grafic.
- **EX#3** (a) Să se creeze o funcție în Python care determină soluția numerică a ecuației f(x) = 0, $x \in [a, b]$, folosind metoda bisecției și are ca date de intrare:
 - (i) funcția f care definește ecuația f(x) = 0;
 - (ii) capetele intervalului de izolare a soluției [a, b];
 - (iii) numărul maxim de iterații ITMAX;
 - (iv) toleranța TOL cu care este aproximată numeric soluția exactă a ecuației f(x) = 0 pe intervalul [a, b];
 - (v) argumentul opțional OPT prin care se selectează criteriul de oprire dorit, e.g. $\mathsf{OPT}=1$ pentru criteriul $|b_n-a_n|\leq \mathsf{TOL},\;\mathsf{OPT}=2$ pentru criteriul $|x_n-x_{n-1}|/|x_{n-1}|\leq \mathsf{TOL},\;\mathsf{respectiv}\;\mathsf{OPT}=3$ pentru criteriul $|f(x_n)|\leq \mathsf{TOL};$

și ca date de ieșire:

- (i) soluţia numerică obţinută prin metoda bisecţiei x_n ;
- (ii) numărul de iterații n necesare obținerii soluției numerice x_n .
- (b) Într-un fişier script, rulați funcția Python creată la (a) pentru $f(x) = x^2 3$, [a, b] = [1, 2], ITMAX = 10^4 , TOL = 10^{-8} și toate cele trei criterii de oprire menționate la (a).