第三节 频率与概率

- 一、频率的定义与性质
- 二、概率的定义与性质
- 三、小结

一、频率的定义与性质

1. 定义

在相同的条件下,进行了n次试验,在这n次试验中,事件A发生的次数 n_A 称为事件A发生的频数.比值 $\frac{n_A}{n}$ 称为事件A发生的频率,并记成 $f_n(A)$.

2. 性质

设A是随机试验E的任一事件,则

(1)
$$0 \le f_n(A) \le 1$$
;

(2)
$$f(S) = 1$$
, $f(\emptyset) = 0$;

(3) 若 A_1, A_2, \dots, A_k 是两两互不相容的事件,则 $f(A_1 \cup A_2 \cup \dots \cup A_k) = f_n(A_1) + f_n(A_2) + \dots + f_n(A_k).$

实例 将一枚硬币抛掷 5 次、50 次、500 次,各做 7 遍,观察正面出现的次数及频率.

试验	n=5		n = 50		n = 500	
序号	n_H	f	n_H	f	n_H	f
1	2	0.4	22	0.44	251	0.502
2	7		本	以此分析	240	0.498
3	饱n	り 增大,	频率扩	呈现出和	息定性	0.512
4	5	1		0.42	247	0.494
5	1	<u> </u>	业波动).48	251	0.502
6	2	0.4	18	0.36	CONTRACT CON	力最小
7	4	0.8	27	0.54	258	0.516

从上述数据可得

- (1) 频率有随机波动性,即对于同样的n,所得的f不一定相同;
- (2) 拋硬币次数 n 较小时, 频率 f 的随机波动幅度较大, 但随 n 的增大, 频率 f 呈现出稳定性.即当 n 逐渐增大时频率 f 总是在 0.5 附近摆动, 且逐渐稳定于 0.5.

概率论与数理统计

实验者	n	$n_{\scriptscriptstyle H}$	f
德·摩根	2048	1061	0.5181
蒲丰	4040	2048	0.5069
$K \cdot$ 皮尔逊	12000	6019	0.5016
$K \cdot$ 皮尔逊	24000	12012	0.5005

我们再来看一个验证频率稳定性的著名实验

高尔顿(Galton)板试验.

试验模型如下所示:

自上端放入一小球,任其自由下落,在下落过程中当小球碰到钉子时,从左边落下与从右边落下的机会相等.碰到下一排钉落下的机会相等.碰到下一排钉子时又是如此.最后落入底板中的某一格子.因此,任意放入一球,

则此球落入哪一个格子,预先难以确定.但是如果放入大量小球,则其最后所呈现的曲线,几乎总是一样的.

请看动画演示

单击图形播放/暂停 ESC键退出

重要结论

频率当n 较小时波动幅度比较大,当n 逐渐增大时,频率趋于稳定值,这个稳定值从本质上反映了事件在试验中出现可能性的大小。它就是事件的概率.

请同学们思考.

医生在检查完病人的时候摇摇头: "你的病很重,在十个得这种病的人中只有一个能救活." 当病人被这个消息吓得够呛时,医生继续说: "但你是幸运的.因为你找到了我,我已经看过九个病人了,他们都死于此病."

医生的说法对吗?

二、概率的定义与性质

1933年,苏联数学家柯尔莫哥洛夫提出了概率论的公理化结构,给出了概率的严格定义,使概率论有了迅速的发展.

柯尔莫哥洛夫资料

1. 概率的定义

设 E 是随机试验,S 是它的样本空间.对于 E 的每一事件 A 赋予一个实数,记为 P(A),称为事件 A 的概率,如果集合函数 $P(\cdot)$ 满足下列条件:

- (1) 非负性: 对于每一个事件 A, 有 $P(A) \ge 0$;
- (2) 规范性: 对于必然事件 S,有 P(S) = 1;
- (3) **可列可加性**:设 A_1, A_2, \cdots 是两两互不相容的事件,即对于 $i \neq j, A_i A_j = \emptyset, i, j = 1, 2, \cdots,$ 则有

$$P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$$

概率的可列可加性

2. 性质

$$(1) P(\emptyset) = 0.$$

证明
$$A_n = \emptyset (n = 1, 2, \cdots),$$

则
$$\bigcup_{n=1}^{\infty} A_n = \emptyset$$
,且 $A_i A_j = \emptyset$, $i \neq j$.

由概率的可列可加性得

$$P(\emptyset) = P\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} P(A_n)$$

$$= \sum_{n=1}^{\infty} P(\emptyset)$$

$$P(\emptyset) \ge 0$$

$$\Rightarrow P(\emptyset) = 0.$$

(2) 若 A_1, A_2, \dots, A_n 是两两互不相容的事件,则有

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = P(A_1) + P(A_2) + \cdots + P(A_n).$$

概率的有限可加性

由概率的可列可加性得

$$P(A_1 \cup A_2 \cup \dots \cup A_n) = P(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} P(A_k) = \sum_{k=1}^{n} P(A_k) + 0$$
$$= P(A_1) + P(A_2) + \dots + P(A_n).$$

(3) 设 A, B 为两个事件,且 $A \subset B$,则 $P(A) \le P(B)$, P(B-A) = P(B) - P(A).

证明 因为 $A \subset B$,

所以
$$B = A \cup (B - A)$$
.

 $\nabla (B-A) \cap A = \emptyset$

得
$$P(B) = P(A) + P(B-A)$$
.

于是 P(B-A)=P(B)-P(A).

又因 $P(B-A) \ge 0$, 故 $P(A) \le P(B)$.

(4) 对于任一事件 $A, P(A) \le 1$.

证明 $A \subset S \Rightarrow P(A) \leq P(S) = 1$, 故 $P(A) \leq 1$.

(5) 设 \overline{A} 是 \overline{A} 的对立事件,则 $\overline{P(A)} = 1 - \overline{P(A)}$.

证明 因为 $A \cup \overline{A} = S$, $A \cap \overline{A} = \emptyset$, P(S) = 1,

所以
$$1 = P(S) = P(A \cup \overline{A})$$

$$= P(A) + P(\overline{A}).$$

$$\Rightarrow P(A) = 1 - P(A)$$
.

(6) (加法公式) 对于任意两事件 A, B 有 $P(A \cup B) = P(A) + P(B) - P(AB)$.

证明 由图可得

$$A \cup B = A + (B - AB),$$

故
$$P(A \cup B) = P(A) + P(B - AB)$$
.

又由性质 3 得

$$P(B-AB)=P(B)-P(AB),$$

因此得 $P(A \cup B) = P(A) + P(B) - P(AB)$.

推广 三个事件和的情况

$$P(A_1 \cup A_2 \cup A_3)$$

$$= P(A_1) + P(A_2) + P(A_3) - P(A_1A_2) - P(A_2A_3)$$
$$- P(A_1A_3) + P(A_1A_2A_3).$$

n 个事件和的情况

$$P(A_1 \cup A_2 \cup \cdots \cup A_n) = \sum_{i=1}^n P(A_i) - \sum_{1 \le i < j \le n} P(A_i A_j)$$

$$+ \sum_{1 \leq i < j < k \leq n} P(A_i A_j A_k) + \cdots + (-1)^{n-1} P(A_1 A_2 \cdots A_n).$$

例1 设事件 A,B 的概率分别为 $\frac{1}{3}$ 和 $\frac{1}{2}$,求在下列三种情况下 $P(B\overline{A})$ 的值.

(1)
$$A$$
与 B 互斥; (2) $A \subset B$; (3) $P(AB) = \frac{1}{8}$. 解 (1) 由图示得 $P(B\overline{A}) = P(B)$,

故
$$P(B\overline{A}) = P(B) = \frac{1}{2}$$
.

(2)由图示得

$$P(B\overline{A}) = P(B) - P(A)$$

= $\frac{1}{2} - \frac{1}{3} = \frac{1}{6}$.

(3) 由图示得
$$A \cup B = A \cup A\overline{B}$$
, 且 $A \cap B\overline{A} = \emptyset$,

$$\nabla P(A \cup B) = P(A) + P(B) - P(AB),$$

$$P(A \cup A\overline{B}) = P(A) + P(B\overline{A}),$$

因而
$$P(B\overline{A}) = P(B) - P(AB) = \frac{1}{2} - \frac{1}{8} = \frac{3}{8}.$$

三、小结

- 1. 频率 (波动) $n \to \infty$ 概率(稳定).
- 2. 概率的主要性质

(1)
$$0 \le P(A) \le 1$$
, $P(S) = 1$, $P(\emptyset) = 0$;

(2)
$$P(A) = 1 - P(A)$$
;

(3)
$$P(A \cup B) = P(A) + P(B) - P(AB)$$
;

(4) 设 A,B 为两个事件,且 $A \supset B$,则

$$P(A) \ge P(B)$$
, $P(A-B) = P(A) - P(B)$.

柯尔莫哥洛夫资料

Andrey Nikolaevich Kolmogorov

Born: 25 Apr. 1903 in Tambov, Tambov province, Russia Died: 20 Oct. 1987 in Moscow, Russia

