What is claimed is:

1	 A comparative inspection device comprising:
2	a stage on which an object is mounted and which moves said object;
3	a detector for detecting an image of said object on said stage, said image
4	comprising a plurality of inspection image regions, and for outputting an image signal;
5	and
6	an image processing unit for receiving said image signal, determining a
7	plurality of offsets for said plurality of inspection image regions relative to a plurality of
8	corresponding reference image regions, and determining a selected offset out of a set of
9	offsets of the plurality of offsets; wherein said set has at least one high reliability offset of
10	said plurality of offsets.
1	2. The comparative inspection device of claim 1, wherein said
2	plurality of corresponding reference image regions are related to a time delayed plurality
3	of inspection image regions.
,	or inspection image regions.
1	3. The comparative inspection device of claim 1, wherein said
2	selected offset is used to align an entire inspection image and an entire reference image.
1	4. The comparative inspection device of claim 1, wherein a reliability
2	of an offset of said set is a high reliability offset if a pattern on an image region of said
3	first image regions is dense and is a low reliability offset if said pattern is sparse.
1	5. The comparative inspection device of claim 1 wherein a reliability
2	of an offset of said set is evaluated by comparing said offset with a predicted offset from
3	past variations of offsets.
1	6. A method for aligning comparative inspection images comprising:
2	an image detection means for detecting a plurality of inspection image
3	regions;
4	an offset determining means for detecting offsets for said plurality of
5	inspection image regions;
6	an offset selection means for determining a selected offset with a high
7	reliability from said offsets; and

8	an alignment means for aligning an entire inspection image and an entire		
9	reference image using said selected offset.		
1	7. A method for aligning a first image having a circuit pattern in a		
2	semiconductor material with a second image, using an computer, said method		
3	comprising:		
4	dividing said first image into a plurality of regions;		
5	dividing said second image into a plurality of corresponding regions;		
6	determining a first region offset of a first region of said plurality of region		
7	from a first corresponding region of said plurality of corresponding regions; and		
8	using said first region offset in determining an image offset for said first		
9	image.		
1	8. The method of claim 7 wherein said first region offset is an offset		
2	with a high reliability.		
1	9. The method of claim 7 further comprising:		
2	determining a second region offset of a second region of said plurality of		
3	regions from a second corresponding region of said plurality of corresponding regions;		
4	and		
5	wherein said first region offset is used in determining said image offset for		
6	said first image, only if said first region offset has high reliability; and		
7	wherein said determining said image offset for said first image further		
8	comprises, using said second region offset, if said second region offset has high		
9	reliability.		
1	10. The method of claim 9 further comprising:		
2	when said first region offset and said second region offset are used in		
3	determining said image offset for said first image, said determining said image offset for		
4	said first image further comprises:		
5	determining a maximum correlation value using a first correlation matrix		
6	associated with said first region offset and using a second correlation matrix associated		
7	with said second region offset; and		
8	selecting said image offset from a group consisting of said first region		
9	offset and said second region, said selecting based on said maximum correlation value.		

pattern density of said image.

1	11. The method of claim 7 wherein, when images are received
2	consecutively, full-image offset reliability of said image offset for said first image is
3	evaluated and, if said full-image offset reliability is low, said first image is aligned using
4	a past offset having a high full-image offset reliability.
1	12. The method of claim 7 wherein, when images are received
1	
2	consecutively, if an evaluation of full-image offset reliability for said image offset
3	determines that full-image offset reliability is high, said image offset is stored as
4	reference data for subsequent image alignments.
1	13. The method of claim 7 wherein, when images are received
2	consecutively, full-image offset reliability is determined by comparing collected past
3	offsets with high full-image offset reliability with said image offset.
_	
1	14. A method for adjusting detection sensitivity in the inspection of
2	images of a semi-conductor material, comprising:
3	determining a reliability value for an image offset of an image;
4	if said image offset has low reliability, evaluating if an alignment error is
5	critical for said image; and
6	responsive to said evaluating, if said alignment error is critical, lowering
7	detection sensitivity.
1	15. The method of claim 14 wherein said image offset is calculated
2	using a plurality of region offsets, wherein a region offset of said plurality of region
3	offsets is determined using a part of said image.
	onsets is determined using a part of state image.
1	16. The method of claim 14 wherein said alignment error is critical,
2	when said alignment error results in a detection error.
	17 The maked of all to 14 and a side of a little little to 6.11 in a
1	17. The method of claim 14 wherein said reliability is a full image
2	offset reliability.
1	18. The method of claim 14 wherein said reliability value is based on a

1		19.	The method of claim 14 wherein said reliability value is based on a		
2	comparison of said image offset with a predicted offset, said predicted offset derived from				
3	past image of		-		
1		20.	The method of claim 19 wherein said predicted offset is derived		
2	using an extra	apolatio	on from a characteristic curve of past image offsets.		
1		21.	The method of claim 19 wherein said predicted offset is derived		
2	using an extra	apolatio	on from a characteristic curve of past image offsets.		
1		22.	A method for aligning an inspection image and a reference image,		
2	wherein a difference between said inspection image and said reference image is used in				
3	determining defects in a semiconductor material, said method comprising:				
4			ioning said inspection image into a plurality of sub-images;		
5			oning said reference image into a corresponding plurality of sub-		
6	images;		,		
7		formi	ng a plurality of sub-image sets, each sub-image set comprising a		
8	sub-image of said plurality of sub-images and a corresponding sub-image of said				
9	corresponding plurality of sub-images;				
10		deterr	nining a plurality of offsets for said plurality of sub-image sets;		
11			nining an image offset using a plurality of selected offsets from said		
12	plurality of of				
13		aligni	ng said inspection image with said reference image using said image		
14	offset.				
1		23.	The method of claim 22 wherein said plurality of selected offsets		
2	are high reliability offsets.				
1		24.	The method of claim 23 wherein a calcuted officet of anid along live		

2 of selected offsets is of high reliability, when a correlation matrix of said selected offset 3 has a largest value above a predetermined threshold.

1 25. The method of claim 23 wherein a reliability for a selected offset of said plurality of selected offsets is determined using edge information in an associated 2 sub-image of said plurality of sub-images.

3

1	26. The method of claim 23 wherein a reliability for a selected offset is
2	determined using a pattern density for an associated sub-image of said plurality of sub-
3	images.
1	27. The method of claim 22 wherein an offset of said plurality of
2	offsets is determined using a correlation matrix for a sub-image set of said plurality of
3	sub-image sets.
3	sub-mage sets.
1	28. The method of claim 27 wherein said offset is a selected offset
2	when said correlation matrix has a largest value above a predetermined threshold.
1	29. The method of claim 22 wherein said determining said image offset
2	using selected offsets, comprises using correlation matrices associated with said selected
3	offsets to determine a composite correlation matrix, and using said composite correlation
4	matrix to determine said image offset.
1	30. A comparative inspection device for aligning a plurality of images
2	of a semiconductor wafer, comprising:
3	a detector, comprising a plurality of sensor channels, for receiving a
4	current image of said plurality of images, wherein a sensor channel of said plurality of
5	sensor channels receives a portion of said current image; and
6	an image processing unit coupled to said sensor channel for determining
7	an offset between said portion of said current image and a corresponding portion of a
8	previous image of said plurality of images.
1	31. The comparative inspection device of claim 30 wherein said offset
2	is used in determining an alignment offset for said current image.
2	is used in determining an angimient offset for said entrent image.
1	32. The comparative inspection device of claim 30, wherein said
2	determining said offset, comprises:
3	receiving said corresponding portion by said sensor channel before said
4	sensor channel receives said portion;
5	storing said corresponding portion in a delay memory; and
6	comparing said portion in said sensor channel with said corresponding

portion from said delay memory to determine said offset.

1	33. The comparative inspection device of claim 30, further comprising		
2	a delay memory for storing said corresponding portion.		
1	34. The comparative inspection device of claim 30, wherein said offset		
2	is a high reliability offset.		
1	35. The comparative inspection device of claim 30, further comprising:		
2	a delay memory coupled to said plurality of sensor channels, said delay		
3	memory storing corresponding portions of a previous image;		
4	wherein said image processing unit is coupled to said delay memory and		
5	said plurality of sensor channels, said image processing unit comprising:		
6	a plurality of comparison channels, each comparison channel of said		
7	plurality of comparison channels comprising, one sensor channel of said plurality of		
8	sensor channels associated with one portion of said current image and a section of said		
9	delay memory associated with one corresponding portion of said previous image;		
10	an offset unit for determining a plurality of channel offsets for said		
11	plurality of comparison channels; and		
12	an image offset unit for determining said alignment offset for said current		
13	image, using at least one high reliability offset from said plurality of channel offsets.		
1	36. The comparative inspection device of claim 35, wherein said		
2	plurality of comparison channels operate in parallel.		
_	plantify of comparison chamics operate in parametr		
1	37. The comparative inspection device of claim 35, wherein said offset		
2	unit determines a channel offset of said plurality of channel offsets by determining a		
3	correlation matrix for a comparison channel of said plurality of comparison channels.		
1	38. A computer program product stored on a computer readable		
2	medium for aligning a first image having a circuit pattern in a semiconductor material		
3	with a second image, said computer program product comprising:		
4	code for dividing said first image into a plurality of regions;		
5	code for dividing said second image into a corresponding plurality of		
6	regions;		

- code for determining a first region offset of a first region of said plurality
 of regions from a first corresponding region of said corresponding plurality of regions;
- 9 and
- 10 code for using said first region offset in determining an image offset for
- 11 said first image.