• Given x, want
$$\hat{y} = P(y=1|x)$$
; $x \in \mathbb{R}^{n_x}$

• Parameters:
$$w \in \mathbb{R}^{n_x}$$
, $b \in \mathbb{R}$
• Output: $\hat{y}^{(i)} = \sigma(w^{\dagger} \times^{(i)} + b) = 0 \circ \hat{y} \circ 1$
 $\delta(\bar{x}) = 0$

$$6(7) = \frac{1}{1+e^{-2}}$$

• Error function:
$$-(y \log \hat{g} + (1-y) \log (1-\hat{g}))$$

 $-If y=1; L(\hat{g},y)=-\log \hat{g}$ (we want \hat{y} to be as big as passible)
 $-If y=0; L(\hat{g},y)=-y \log (\hat{g})$ (we want \hat{g} to be as small as possible)

• Cost function:
$$J(w,b) = \min\left(\frac{1}{m}\sum_{i=1}^{m}L(\hat{g}^{(i)}, y)\right)$$

· GRADIENT DESCENT: