Object-centric Perception for Autonomous Driving

Foundation Model Group
Tiancai Wang

- 1 背景介绍
- 2 PETR系列
- **B** MOTR系列
- 4 总结回顾

[1] Ma, Yuexin, Wang, Tai et al. "Vision-Centric BEV Perception: A Survey." In arxiv, 2022.

MEGVII 助文视

 Box_M

Bipartite Matching

& Loss Computation

- ◆ BEV based框架
 - **⇔** BEVDet
 - BEVDepth
 - **BEVFormer**

- ❖ Object centric框架
 - **❖DETR3D**
 - **PETR**
 - Sparse4D

2D-to-3D Feature

Transformation

Multi-view Images with Camera Extrinsics & intrinsics

Image Feature

Extraction

Why Object-centric?

❖自驾场景中目标分布稀疏

- ❖动静目标建模的必要性
- ❖考虑交通元素的拓扑关系

- 1 背景介绍
- 2 PETR系列
- **B** MOTR系列
- 4 总结回顾

❖ PETR提出3D位置编码,轻松实现端到端3D感知

[1] Liu, Yingfei, Wang, Tiancai, Zhang, Xiangyu, and Sun, Jian. "PETR: Position Embedding Transformation for Multi-View 3D Object Detection." In ECCV, 2022.

❖ PETRv2进一步引入时序建模、扩展至多个感知任务

[1] Liu, Yingfei, Yan, Junjie, Jia, Fan, Shuailin Li et al. "PETRv2: A Unified Framework for 3D Perception from Multi-Camera Images." In arxiv, 2022.

❖ StreamPETR引入RNN的概念,扩展至无限长时序建模

[1] Wang, Shihao, Liu, Yingfei, Wang, Tiancai, and Zhang, Xiangyu. "Exploring Object-Centric Temporal Modeling for Efficient Multi-View 3D Object Detection." In arxiv, 2023.

❖ 坚持不用未来帧, 纯视觉榜单3D检测第二、多目标追踪第一

	Method					Metrics						
	Date	Name	Modalities	Map data	External data	mAP	mATE (m)	mASE (1-IOU)	mAOE (rad)	mAVE (m/s)	mAAE (1-acc)	NDS
			Camera ▼	All ▼	All ▼							
>	2023-04-05	НоР	Camera	no	no	0.624	0.367	0.249	0.353	0.171	0.131	0.685
>	2023-05-03	StreamPETR-Large	Camera	no	no	0.620	0.470	0.241	0.258	0.236	0.134	0.676
>	2023-02-07	VideoBEV	Camera	no	no	0.592	0.385	0.246	0.323	0.174	0.137	0.670
>	2022-12-21	BEVDet-Gamma	Camera	no	no	0.586	0.375	0.243	0.377	0.174	0.123	0.664
>	2022-12-08	BEVFormer v2 Opt	Camera	no	yes	0.580	0.448	0.262	0.342	0.238	0.128	0.648

	Method											
	Date	Name	Modalities	Map data	External data	AMOTA	AMOTP (m)	MOTAR	MOTA	MOTP (m)	RECALL	GT
			Camera ▼	All ▼	All ▼							
>	2023-05-03	StreamPETR-Large	Camera	no	no	0.653	0.876	0.762	0.553	0.564	0.733	17081
>	2023-05-17	E2E-Tracker-Base	Camera	no	no	0.582	0.919	0.793	0.536	0.381	0.675	17081
>	2023-04-11	DORT	Camera	no	no	0.576	0.951	0.771	0.484	0.536	0.634	17081
>	2023-03-04	QTrack-StreamPET	Camera	no	no	0.566	0.975	0.711	0.460	0.576	0.650	17081
>	2022-10-24	MV-ByteTrack	Camera	no	no	0.564	1.005	0.748	0.471	0.616	0.635	17081

❖PETR的设计思想能够扩展到多模态场景?

LiDAR Point Cloud

- ❖ 多模融合框架存在的问题
 - ❖点云、图像不易对齐
 - ❖多阶段,前后依赖

image

PC

[1] Liu, Zhijian, et al. "BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation." In ICRA, 2023.

quries

[2] Bai, Xuyang, et al. "TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers." In CVPR, 2022.

❖ 如何统一多模态输入、应对传感器损坏?

- ❖对策
 - ❖利用3D位置编码,统一多模态
 - ❖模态掩码训练

Matria		Vanilla traini	ng	Masked-modal training					
Metric	CMT	only LiDAR	only Cams	CMT	only LiDAR	only Cams			
NDS ↑	0.716	0.594	0.067	0.719 (†0.3%)	0.677 († 8.3 %)	0.434 († 36.7 %)			
mAP↑	0.685	0.472	0.000	0.694 (†0.9%)	0.613 (14.1%)	0.386 († 38.6%)			

❖ CMT框架性能评测

PETR系列->速度评测

❖ 问题: Transformer模型没有CNN模型快?

PETR系列->速度评测

❖ FlashAttention [1] 高度适用于naïve attention加速

- 1 背景介绍
- 2 PETR系列
- **B** MOTR系列
- 4 总结回顾

❖ MOTR重启RNN范式,实现在线端到端多目标追踪

[1] Zeng, Fangao, Dong, Bin, Zhang, Yuang, and Wang, Tiancai. "MOTR: End-to-End Multiple-Object Tracking with Transformer." In ECCV, 2022.

❖ MOTR的检测性能垃圾,对复杂运动估计有明显优势

	****		-		2.50	
Methods	HOTA↑	$AssA\uparrow$	$\mathrm{Det}\mathrm{A}\!\!\uparrow$	IDF1↑	$MOTA\uparrow$	$\mathrm{IDS}\!\!\downarrow$
CNN-based:						
Tracktor++[2]	44.8	45.1	44.9	52.3	53.5	2072
CenterTrack[44]	52.2	51.0	53.8	64.7	67.8	3039
TraDeS [40]	52.7	50.8	55.2	63.9	69.1	3555
QDTrack [20]	53.9	52.7	55.6	66.3	68.7	3378
GSDT $[35]$	55.5	54.8	56.4	68.7	66.2	3318
FairMOT[43]	59.3	58.0	60.9	72.3	73.7	3303
CorrTracker [32]	60.7	58.9	62.9	73.6	76.5	3369
GRTU [33]	62.0	62.1	62.1	75.0	74.9	1812
MAATrack [27]	62.0	60.2	64.2	75.9	79.4	1452
ByteTrack [42]	63.1	62.0	64.5	77.3	80.3	2196
Transformer-based:						
TrackFormer [18]	/	/	/	63.9	65.0	3528
TransTrack[29]	54.1	47.9	61.6	63.9	74.5	3663
MOTR (ours)	57.8	55.7	60.3	68.6	73.4	2439

		-			
Methods	HOTA	AssA	$\mathrm{Det}\mathrm{A}$	MOTA	IDF1
CenterTrack [44]	41.8	22.6	78.1	86.8	35.7
FairMOT [43]	39.7	23.8	66.7	82.2	40.8
QDTrack [20]	45.7	29.2	72.1	83.0	44.8
TransTrack [29]	45.5	27.5	75.9	88.4	45.2
TraDes [40]	43.3	25.4	74.5	86.2	41.2
ByteTrack [42]	47.7	32.1	71.0	89.6	53.9
MOTR (ours)	54.2	40.2	73.5	79.7	51.5

Method	IoU match	NMS	ReID
TransTrack [29]	✓		
TrackFormer [18]		\checkmark	\checkmark
MOTR (ours)			

❖ MOTRv2将MOTR和YOLOX有机结合,缓解动静态优化问题

[1] Zhang, Yuang, Wang, Tiancai and Zhang, Xiangyu. "MOTRv2: Bootstrapping End-to-End Multi-Object Tracking by Pretrained Object Detectors." In CVPR, 2023.

❖ MOTRv2性能评测

Methods	НОТА	DetA	AssA	MOTA	IDF1
FairMOT [45]	39.7	66.7	23.8	82.2	40.8
CenterTrack [47]	41.8	78.1	22.6	86.8	35.7
TransTrack [28]	45.5	75.9	27.5	88.4	45.2
TraDes [39]	43.3	74.5	25.4	86.2	41.2
ByteTrack [44]	47.7	71.0	32.1	89.6	53.9
GTR [39]	48.0	72.5	31.9	84.7	50.3
QDTrack [22]	54.2	80.1	36.8	87.7	50.4
MOTR [43]	54.2	73.5	40.2	79.7	51.5
OC-SORT [6]	55.1	80.3	38.3	92.0	54.6
MOTRv2 (ours)	69.9	83.0	59.0	91.9	71.7
MOTRv2* (ours)	73.4	83.7	64.4	92.1	76.0

❖ MOTR√3提出释放-收回匹配规则,解决动静态优化问题

[1] Yu, En, Wang, Tiancai et al. "MOTRv3: Release-Fetch Supervision for End-to-End Multi-Object Tracking." In arxiv, 2023.

❖ MOTRv3兼顾**高性能、端到端特性**,观测到了模型Scaling up能力

Method	End to end	НОТА↑	AssA†	DetA↑	MOTA↑	IDF1↑
CNN-based						
QDTrack [25]	X	54.2	36.8	80.1	87.7	50.4
FairMOT [42]	X	59.3	58.0	60.9	73.7	72.3
CenterTrack [44]	X	41.8	22.6	78.1	86.8	35.7
ByteTrack [41]	X	47.7	32.1	71.0	89.6	53.9
OC-SORT [8]	X	55.1	38.3	80.3	92.0	54.6
Transformer-based						
TransTrack [31]	X	45.5	27.5	75.9	88.4	45.2
MOTR [40]	✓	54.2	40.2	73.5	79.7	51.5
MOTRv2 [43]	X	69.9	59.0	83.0	91.9	71.7
MOTRv3	✓	70.4	59.3	83.8	92.9	72.3

- ❖ MOTR系列模型的扩展应用
 - 2D Multiple-Object Tracking
 - ❖ MeMOT
 - 3D Multiple-Object Tracking
 - * MUTR3D, PF-Track
 - Video Instance Segmentation
 - ❖ GenVIS

- Referring Multiple-Object Tracking
 - **RMOT**
- Trajectory Prediction
 - ❖ ViP3D
- Unified Driving Framework
 - ❖ UniAD

- 1 背景介绍
- 2 PETR系列
- **3** MOTR系列
- 4 总结回顾

总结回顾

- ❖ 以物体为中心的表征:
 - ❖ 自驾场景中,障碍物、道路元素等均可建模为稀疏的实例化表征
 - ❖ 以物体为中心的稀疏表征,便于进行长时序的感知建模
 - ❖ 稀疏表征, 便于建模运动物体, 统一上下游的预测、规划任务
 - ❖ 可直接进行拓扑关系的生成,以及适配多模态数据(语音、文本)的接入
 - ❖ 对于密集预测任务(如BEV分割、OCC预测),没有明显的优势

总结回顾

- ❖ 关于时序建模:
 - ❖ RNN范式的时序建模能够获取较多的时序信息,对运动估计较好
 - ❖ 目前的时序探索更多集中在下游任务,上游视频预训练才是关键
 - ❖ 在三维空间进行时序建模更为合理

MEGVII B广机

以非凡科技,为客户和社会持续创造最大价值