

Investigating the Relative Contributions of Secondary Ice Formation Processes to Ice Crystal Number Concentrations within Mixed-Phase Clouds

American Geophysical Union

Funding from NESSF (NNX13AN74H), DOE EaSM

Sylvia C. Sullivan (ssullivan37@gatech.edu)¹, Athanasios Nenes^{1,2}

1. School of Chemical and Biomolecular Engineering and 2. School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA,

MOTIVATION

- Observed atmospheric ice number concentrations, n_i , can be orders of magnitude higher than the ice nuclei number concentrations. This multiplication can be explained by secondary ice processes.
 - → Limited effort has gone into modelling several of these processes simultaneously.
- Many associated parameters, e.g. number of fragments produced upon collision or collision efficiency, are uncertain. \rightarrow Parcel model simulations can be used to estimate the effect of these uncertain parameters on n_i .

FIGURE 1

- a) Ice-ice collision results in splintering or aggregation.
- b) Rime-splintering, when a falling crystal collides with droplets, may also generate additional crystals.

MODEL DEVELOPMENT

(2) Parcel supersaturation evolution: modified from *Korolev and Mazin 2003* to include aspect ratio as in *Chen and Lamb 1994* and *Jensen and Harrington 2015*

 $\frac{dP}{dt} = \frac{dS_w}{dt}$

 $\frac{dq_v}{dt} \quad \frac{dq_w}{dt} \quad \frac{dq_v}{dt}$

 $\frac{dr_w}{dt}$ $\frac{dr_i}{dt}$

 $\frac{dr_i}{dt}$ $\frac{da_g}{dt}$

 $\frac{d(\ln c)}{d(\ln a)} = \Gamma(T)$

(1) Ice crystal and graupel number evolution in three bins

$$\frac{dn_c}{dt}$$
 $\frac{dn_g}{dt}$ $\frac{dn_G}{dt}$

$$\left(\frac{dn}{dt}\right)_{coll} = f(\eta_{coll}, N_{frag}, K_{coll})$$

 $\left(\frac{dn}{dt}\right)_{HM} = f(\eta_{HM}, N_{frag}, LWC, K_{HM})$

(2) Parcel supersaturation evolution

FIGURE 2
Ice enhancement
ratio, i.e. ice number
normalized by
nucleated crystal
number, for different
time delays;
reproduced from
Yano and Phillips

FIGURE 3
Ice enhancement
after coupling
number evolution to
supersaturation in the
parcel

(1) Ice crystal and graupel number evolution: modified from the time-delay formulation of *Yano and Phillips 2011*

PERTURBED PHYSICS ENSEMBLE

Ice crystal and graupel number concentrations over time in a mixed-phase parcel, changing five parameters as in Table 1.

- a) SET 2 and spheroidal graupel: higher aggregation efficiency, $\eta_{agg} \rightarrow longer-lived$ cloud with lower n_i ; higher rimesplintering efficiency, $\eta_{HM} \rightarrow longer-lived$ cloud with higher n_i .
- a') SET 2 and spherical graupel: higher $\eta_{HM} \rightarrow higher n_i$; η_{agg} has almost no impact on n_i .
- b) SET 4 and spheroidal graupel: lower production rates of primary ice, $c_0 \rightarrow significantly lower <math>n_i$. Shorter time delays, $\tau \rightarrow significantly shorter-lived cloud.$
- b') SET 4 and spherical graupel: Shorter $\tau \rightarrow$ higher n_i ; Below a certain value, c_0 has little impact.
- c) SET 3 and spheroidal graupel: Lower LWC \rightarrow lower n_i ; N_{frag} has a limited impact.
- d) SET 1 and spheroidal graupel: Higher $\eta_{coll} \rightarrow$ shorter-lived cloud with higher n_i .

Table 1	SET 1	SET 2	SET 3	SET 4
η _{agg} η _{ΗΜ} η _{coll}	1% 1% 1, 10, 100%	10, 100% 10, 100% 1%	1% 1% 1%	1% 1% 1%
c _o	60 L ⁻¹ s ⁻¹	60 L ⁻¹ s ⁻¹	60 L ⁻¹ s ⁻¹	1.9, 0.38 L ⁻¹ s ⁻¹
LWC	0.5 g m ⁻³	0.5 g m ⁻³	0.14, 0.05 g m ⁻³	0.5 g m ⁻³
N _{frag}	100	100	10, 300	100
τ	15, 20, 10 min	15, 20, 10 min	15, 20, 10 min	10, 15, 5 min 20, 25, 15 min

CONCLUSIONS

- When graupel is assumed to be spheroidal, rime-splintering parameters, production of primary ice, and depositional growth times are the most influential parameters.
 - \rightarrow LWC and c_0 primarily affect ice number concentration. η_{HM} and τ primarily affect glaciation time.
- When graupel is assumed to be spherical, depositional growth times and rime-splintering efficiency are the most influential parameters.
 - \rightarrow τ primarily affects glaciation time. η_{HM} primary affects ice number concentration.