

Modele d'Ackermann

Bicycle model

Bicycle model en cinématique

 δ : angle de la roue avant ν : vitesse du véhicule νf : vitesse de la roue avant

 ψ : lacet (Yaw)

 $\boldsymbol{\psi}$: vitesse de rotation

 $.\beta$: slip angle

C : centre de gravité L : distance inter roue

(lf + lr = L)

lf : distance avec le Cet la roue avant

lr : distance avec le C et la roue arrière

R : distance en C et le CIR R' : distance entre la roue

arriere et le CIR

CIR: Centre Instantané

de Rotation

 δ : Angle de la roue avant

L : Distance inter roue

R : Rayon de braquage de la voiture

CIR : Centre Instantané de Rotation

T : Point objectif (Target)

E : Point erreur

el : Erreur lateral entre la voiture et l'objectif

d : Distance entre la roue arrière et l'objectif (look ahead distance)

 ψ : lacet (Yaw)

 α : Angle entre la voiture et l'objectif

δ : angle de la roue avant ν : vitesse du véhicule C : centre de gravité e : distance entre C et la trajectoire à suivre

 ψ : lacet (Yaw)

T : Point objectif (Target)

PID controller