# Lecture notes on Stochastic Analysis

Written by
Manuel Hinz

mh@mssh.dev.or.s6mlhinz@uni-bonn.de

Based on the lectures of Prof. Dr. Patrik Ferrari ferrari@uni-bonn de



University of Bonn Summer semester 2024 Last update: June 4, 2024

# Contents

| шар               | ter 0 Manuel's notes                                                                                                                                                                                            |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Chap              | ter 1 Weak solutions of SDEs                                                                                                                                                                                    |  |  |
| $1.\overline{1}$  | Strong solutions                                                                                                                                                                                                |  |  |
| 1.2               | Weak solutions                                                                                                                                                                                                  |  |  |
| 1.3               | Lévy characterization                                                                                                                                                                                           |  |  |
| 1.4               | Weak solutions and martingale problems                                                                                                                                                                          |  |  |
|                   | 1.4.1 Itô-Doeblin formula                                                                                                                                                                                       |  |  |
|                   | 1.4.2 Martingale problem                                                                                                                                                                                        |  |  |
| 1.5               | Weak solutions and time change                                                                                                                                                                                  |  |  |
|                   | 1.5.1 Time change                                                                                                                                                                                               |  |  |
|                   | 1.5.2 Time change in a martingale problem                                                                                                                                                                       |  |  |
|                   | 1.5.3 Weak solutions in d=1                                                                                                                                                                                     |  |  |
|                   | 1.5.4 Uniqueness of martingale solution                                                                                                                                                                         |  |  |
| 2.1<br>2.2<br>2.3 | ter 2 SDE techniques Girsanov theorem                                                                                                                                                                           |  |  |
| 2.4               | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                           |  |  |
| 2.5               |                                                                                                                                                                                                                 |  |  |
| 2.6               | Stationary distribution for diffusions                                                                                                                                                                          |  |  |
| 2.7               | Uniqueness in law and path integral formula                                                                                                                                                                     |  |  |
| 3.1<br>3.2        | ter 3 Local times, Itô-Tanaka formula, reflected Brownian Motion  Extension of Itô formula to convex functions  Brownian motion and local time  3.2.1 No strong solution of the Tanaka SDE  3.2.2 Reflected SDE |  |  |

# Chapter 0: Manuel's notes

#### Warning

These are unofficial lecture notes written by a student. They are messy, will almost surely contain errors, typos and misunderstandings and may not be kept up to date! I do however try my best and use these notes to prepare for my exams. Feel free to email me any corrections to mh@mssh.dev or s6mlhinz@uni-bonn.de. Happy learning!

#### General Information

• Ecampus: Ecampus link

• Basis: Basis link

• Website: None

• Time slot(s): Tuesday 12-14 and Thursday 12-14

 $\bullet$  Exams: Oral: 23-25 July, 30 Sept. maybe 27. Sept

• Deadlines: ?

• Exercises: One of Tue 16-18(for now this is preferred), Friday 10-12. Starting 16.04.

• First halve based on Eberle and / or Gubinelli ( be careful with Notation of dimensions!)

Start of lecture 01 (11.04.23)

#### Overview of the content

- Weak solutions of SDE
  - · Martingale problem (characterization)
  - · Time change (Dubin-Schwarz)
  - · Change of measure (Girsonov)
- How to condition a diffusion to stay in a given domain forever (reflected BM, local time, ...)
- Lévy processes (a bit)
- Multiplicative stochastic heat-equation
  - · relations with Kardar-Pavisi-Zhang class of growth models

# Chapter 1: Weak solutions of SDEs

SDE:

$$\begin{cases} dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t \\ X_0 = x_0 \text{ Initial condition} \end{cases}$$
 (1.1)

- $X_t \in \mathbb{R}^d, B : n\text{-dim BM}$
- $b(t,x):[b_k(t,x)]_{1\leq k\leq d}$ : drift vector
- $\sigma(t,x) = [\sigma_{k,l}(t,x)]_{\substack{1 \le k \le d \\ 1 \le l \le n}}$ : dispersion matrix
- $a(t,x) = \sigma(t,x) \cdot \sigma(t,x)^{\mathsf{T}}$ : diffusion matrix

# 1.1 Strong solutions

**Definition 1.1.** Let  $(\Omega, \mathcal{F}, (\mathcal{F})_{t \geq 0}, \mathbb{P})$  be a filtered probability space with  $\mathcal{F}_t = \sigma(x_0, (B_s)_{0 \leq s \leq t})$ 

- a d-dim process  $X_t$  is a **strong solution** of equation 1.1 if:
  - $\cdot X_t = x_0 \ a.s.$
  - ·  $X_t$  is adapted to  $\mathcal{F}_t \forall t \geq 0$
  - · X is a continuous semimartingale s.t.  $\forall t \geq 0$ :

$$\int_0^t (\|b(s, X_t)\| + \|\sigma(t, X_t)\|^2) ds < \infty \ a.s.$$

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$$

In the last semester we proved:

**Theorem 1.2.** Assume that  $b, \sigma$  are globally lipschitz with at most linear growth at  $\infty$  (in space)  $\Rightarrow \exists !$  strong solution of SDE.

Foundations of Stochastic Analysis Thm 8.6

**Added remark.** There exists K > 0 s.t. for all  $x, y \in \mathbb{R}^d$ : Globally Lipschitz:

$$||b(t,x) - b(t,y)|| + ||\sigma(t,x) - \sigma(t,y)|| \le K||x - y||$$

Linear growth condition:

$$||b(t,x)|| + ||\sigma(t,x)|| \le K(1+||x||)$$

**Remark.** For strong solutions,  $\mathcal{F}_t$  is given by the driving BM, wich is given to us.  $\Longrightarrow X_t(\omega) = \Phi(x_0(\omega), (B_s)_{0 \le s \le t})$ 

#### 1.2 Weak solutions

• For weak solutions we do not fix the driving brownian motion.

**Definition 1.3.** A <u>weak solution</u> of equation 1.1 is a <u>pair</u> of adapted processes (X, B) to a  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$  s.t.

- B is a n-dim BM
- X is a d-dim continuous semimartingale with
  - 1.  $X_0 = x_0$  a.s.
  - $2. \ \forall t \geq 0$

$$\int_0^t (\|b(s, X_t)\| + \|\sigma(t, X_t)\|^2) ds < \infty \ a.s.$$

3.  $X_t = x_0 + \int_0^t b(s, X_s) ds + \int_0^t \sigma(s, X_s) dB_s$ 

**Remark.** • The filtration  $(\mathcal{F}_t)_{t\geq 0}$  is not necessarily the one generated by B

- If X is adapted to the filtration generated by the  $BM \implies$  we have strong solutions
- $\exists$  weak solution which are not strong solutions
- Warning: To give a weak solution we really need to provide  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}, X, B)$

**Definition 1.4** (Uniqueness in law). An SDE 1.1 has <u>uniqueness in law</u> if given any two weak solutions  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}, X, B)$  and  $(\tilde{\Omega}, \tilde{\mathcal{F}}, (\tilde{\mathcal{F}}_t)_{t\geq 0}, \tilde{\mathbb{P}}, \tilde{X}, \tilde{B})$  satisfy:

the sigma algebra

They agree on any set in

$$Law_{\mathbb{P}}(X) = Law_{\tilde{\mathbb{D}}}(\tilde{X})$$

**Definition 1.5** (Pathwise uniqueness). The SDE 1.1 has pathwise uniqueness if, whenever the filtered space  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  and  $(B_t)_{t\geq 0}$  are fixed, then two solutions  $X, \tilde{X}$  with  $X_0 = \tilde{X}_0$  are indistinguishable.

**Example 1.6** (No strong solutions, no pathwise uniqueness,  $\exists$  weak solution & and uniqueness in law by Tanaka).

$$\begin{cases} dX_t = sgn(X_t)dB_t \\ X_0 = 0 \end{cases}$$
 (1.2)

or more generally  $X_0 = Y$ , where

$$sgn(x) = \begin{cases} 1 & x > 0 \\ -1x \le 0 \end{cases}$$

Let W be a BM with  $W_0 = Y$ . Define

$$B_t := \int_0^t sgn(W_s)dW_s \text{ or } dB_t = sgn(W_t)dW_t$$

$$\implies dW_t = sgn(W_t)dB_t$$

$$\implies W_t = y + \int_0^t sgn(W_s)dB_s$$

 $B_t$  is a local martingale with

$$\langle B \rangle_t = \int_0^t \underbrace{(sgn(W_s))^2}_{t} \underbrace{d\langle W \rangle_s}_{t} = t$$

Also  $B_0 = 0$ , therefore B is a BM (see Lévy characterization)  $\implies$  W solves the SDE. For Y = 0, W and -W solves the same SDE.

 $\Longrightarrow$ 

- exists weak solutions
- For Y = 0: no pathwise uniqueness
- Uniqueness in law (because the law is determined by  $X_t$  being a BM)
- No strong solution, because:  $\mathcal{F}^B = \mathcal{F}^{|W|} \subsetneq \mathcal{F}^W$

Not a proof just yet, just the reason!

#### Example 1.7 (No solutions).

$$\begin{cases} dX_t = -\frac{1}{2X_t} 1_{X_t \neq 0} dt + dB_t \\ X_0 = 0 \end{cases}$$
 (1.3)

Assume there exists a solution. Use Itô formula for  $X_t^2$ , then:

$$X_{t}^{2} = 2 \int_{0}^{t} X_{s} dX_{s} + \int_{0}^{t} 1 ds$$

$$= -\int_{0}^{t} 1_{X_{s} \neq 0} ds + 2 \int_{0}^{t} x_{s} dB_{s} + t$$

$$= \int_{0}^{t} 1_{X_{s} = 0} ds + 2 \int_{0}^{t} X_{s} dB_{s}$$

We will prove  $\int_0^t 1_{X_s=0} ds = 0 \implies X_t^2$  is a local martingale,  $X_t^2 \ge 0$  (and therefore a supermartingale) and  $X_0 = 0$  ( $\implies \mathbb{E}(X_t^2) = 0$ ). If  $X_t = 0 \implies \int_0^t 1_{X_s=0} ds = t \implies 0 = dB_t$  which are contradictions!

Remark. If 
$$X = \underbrace{M}_{\in \mathcal{M}_{loc}} + \underbrace{A}_{\in \mathcal{A}}$$

$$\implies \forall b \in \mathbb{R} \int_0^t 1_{X_s = b} d\langle M \rangle_s = 0$$

# Sheet 0:

- Mail: Alexander.Becker@uni-bonn.de
- Exercise sheet handed in Fr 10 am via eCampus
- Groups of 3

#### Motivation:

in the last semester: Introduction to stochastic analysis

• Diffusion processes & SDEs

Here: Deepen the knowledge & have fun

- Learn SDE techniques and get other results
- Modify diffusion processes to behave in a certain way
- Ex. diffusion bridge (Brownian bridge)
- Condition a diffusion to stay in a domain
  - · Ex. Condition BM to stay positive
  - · Old SDE:  $dB_t = dB_t$

- · New SDE:  $dX_t = \frac{1}{X_t} dx + dB_t \to P(X_t \in \cdot) = P(B_t \in \cdot | B > 0 \text{ forever})$
- $D \subset \mathbb{R}^d$  open domain, X diffusion process, with generator  $L = \sum b \partial_i + \frac{1}{2} \sum a^{ij} \partial_i \partial_j$

$$Y := (X|X \in D \text{ forever})$$

get drift term  $\nabla \log \phi_0$ , where  $\phi_0$  is the lowest eigenfunction of -L on D with dirichlet boundary.

#### Recap:

Brownian motion:

**Added definition.**  $B_0 = 0$ , independent &  $\mathcal{N}(0, t_i - t_{i-1})$  increments,  $t \mapsto B_t(\omega)$  continuous.

Regularity of path  $t \mapsto B_t(\omega)$ :

- nowhere differentiable
- $\alpha$ -locally Hölder continuous  $\iff \alpha < \frac{1}{2}$
- Quadratic variation  $\langle B \rangle_t = t$
- Generator  $\frac{\Delta}{2}$
- Recurrent  $\iff ds2$ ?

Itô-Integral:

- 1. If X simple process  $\implies$  RS-Integral
- 2. Itô isometry  $\mathcal{E} \to \{L^2 \text{local martingale}\}, \mathcal{E} \subset L^2(d[M])$  dense
- 3. general  $X: \int XdM$  as  $L^2$ -limit

Added remark (Itô formula).

$$df(t, X_t) = \partial_t f(t, X_t) dt + \partial_x f(t, X_t) dX_t + \frac{1}{2} f(t, X_t) d\langle X \rangle_t$$

- associative  $\int Xd(\int YdZ) = \int XYdZ$
- If M local martingale  $\implies \int XdM$  local martingale

SDEs:

$$DX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$$

- ex./ uniqueness:  $b, \sigma$  locally Lipschitz  $\implies$  strong ex.+pathwise uniqueness until explosion time
- globally Lipschitz (in space) and linear growth  $(|b(t,x)| + |\sigma(t,x)| \le C(1+|x|)), e = \infty.$

#### Problem 00.1: SDE

Let B be a one-dimensional Brownian motion (starting from 0) and let  $X_t = \sin(B_t)$ .

- 1. Determine the SDE of  $X_t$
- 2. Discuss the existence and/or uniqueness of strong solutions of the SDE
- 3. Determine whether the local martingale term is a martingale (Hint: for the integrability condition, think about the Itô isometry for instance)

#### Solution 00.1

<u>1.:</u>

 $\overline{\text{Idea:}}$  Use Itô formula:  $X_t = \sin(B_t) = f(B_t)$ 

$$dX_t = df(B_t) \stackrel{\text{It\^{o}}}{=} \partial_x \underbrace{\cos(B_t)}_{\sqrt{1 - X_t^2}} dB_t - \frac{1}{2} \underbrace{\sin(B_t)}_{X_t} dt$$

2.:

Consider the SDE

$$dX_t = \begin{cases} -\frac{1}{2}X_t dt + \sqrt{1 - X_t^2} dB_t \\ X_0 = x \in (-1, 1) \end{cases}$$

Coefficients:  $b:[-1,1]\to\mathbb{R}, b(x)=-\frac{1}{2}x$  and  $\sigma:[-1,1]\to\mathbb{R}.\sigma(x)=\sqrt{1-x^2}$ 

$$[\sigma]_{1,2} = \sup \frac{|\sigma(x) - \sigma(y)|}{|x - y|^{1/2}} < \infty$$

Probably  $\sigma^2$  Lipschitz  $\implies \sigma$  Hölder  $\frac{1}{2}$  3.:

Careful:  $\sqrt{1-X_t^2}$  is not inverse mapping, because it is always positive while  $\cos(B_t)$  is not

#### Problem 00.2: Time change

Let B be a one-dimensional Brownian motion (starting from 0). Let  $Y_t = \int_0^t s^2 dB_s$ .

- 1. Determine the SDE of  $Y_t$
- 2. Find  $A_t$  such that  $Y_{A_t}$  is a (stopped) Brownian motion

#### Solution 00.2

1.: By Definition

$$dY_t = t^2 dB_t$$

2.: We use the Dubin-Schwarz theorem:

$$X_{\in}\mathcal{M}_{loc}^{0}, \langle X \rangle_{\infty} = \infty, T_{t} := \inf\{s \geq 0 | \langle X \rangle_{s} \geq t\} = X_{t}^{[-1]}$$
  
 $\Longrightarrow B_{t} := X_{T_{t}} \text{ 1 d BM w.r.t. } (F_{T_{t}})_{t \geq 0}, X_{t} = B_{\langle B \rangle_{t}}$   
here: use  $X_{t} = b(X_{t})dt + \sigma(X_{t})dB_{t} \Longrightarrow d[X]_{t} = \sigma^{2}(X_{t})dt$ 

#### Problem 00.3: SDE and PDE

Let f be a function supported on [0,1], u the solution of

$$\frac{1}{2}u(t,x) = \frac{1}{2}x(1-x) + \frac{d^2}{dx^2}u(t,x), \qquad u(0,x) = f(x).$$

Consider also the one-dimensional SDE (also known as Wright-Fisher diffusion)

$$dX_t = \sqrt{X_t(1 - X_t)dB_t}$$

with  $X_0 = x \in (0, 1)$ .

- 1. For any fixed t > 0, define  $M_s = u(t s, X_s)$  for  $s \in [0, t]$ . Use Itô formula to show that  $M_s$  is a local martingale
- 2. Assume that f is bounded and there is a bounded solution of u. Show that  $u(t, x) = \mathbb{E}_x(f(X_t))$ .

#### Solution 00.3

<u>1.:</u>

$$\begin{split} dM_s &= du(t-s,X_s) \\ &= -\partial_s u(t-s,X_s) ds + \partial_x u(t-s,X_s) \underbrace{dX_s}_{b(X_s)ds + \sigma(X_s)dB_s \text{ by asso.}} + \frac{1}{2} \partial_x^2 u(t-s,X_s) \underbrace{d[X]_s}_{=\sigma^2(X_s)ds} \\ &= \underbrace{(-\partial_s u + b\partial_x u + \frac{1}{2} \sigma^2 \partial_x^2 u)(t-s,X_s) ds + \partial_x u(t-s,X_s) \sigma(X_s) dB_s}_{=0} \\ &\implies dM_s &= \partial_x u(t-s,X_s) \sigma(X_s) dB_s \end{split}$$

(i.e.:  $M_t - M_0 = \int_0^t \dots dB_s$ ) This is a purely stochastic integral against a (local) martingale  $\implies$  martingale.

- $M_s$  true martingale:
  - 1.  $\forall t : \mathbb{E}(\sup_{[0,t]} |M|) < \infty$ , for example: M bounded
  - 2.  $\forall t : \mathbb{E}(\sup_{[0,t]} [M]_t) < \infty$

 $M_s := u(t - s, X_s), u \text{ bounded} \implies M \text{ bounded} \implies M \text{ true martingale}$  $w(s,x) \coloneqq u(t-s,x)$ 

$$u(t,x) = w(0,x) = \mathbb{E}_x[w(0,X_0)] = \overset{\text{martingale}}{=} \mathbb{E}_x[w(t,X_t)] = \mathbb{E}_x[(u(0,X_t))] \overset{\text{PDE}}{=} \mathbb{E}_x[f(X_t)]$$

Feynman-Kac formula (later more general).

Also solvable by Kolmogorov Backward / forward equation

Start of lecture 02 (16.04.24)

**Example 1.8** (Non-uniqueness of law, non pathwise uniqueness, with solutions).

$$\begin{cases} dX_t &= 1_{X_z} dB_t \\ x_0 &= 0 \end{cases}$$

Then

$$X_t = 0 \forall t > 0$$

and

$$X_t = B_t \forall t > 0$$

both are solutions:

$$X_t - B_t = -\int_0^t 1_{X_s=0} dB_s \implies \langle X - B \rangle_t = \int_0^t 1_{X_s=0} d\langle B \rangle_s = 0$$

Let  $\eta \sim Ber(\frac{1}{2})$  independent of  $(B_t)_{t>0}$  and define

$$\tilde{X}_t = \begin{cases} 0 & \eta = 0 \\ B_t & \eta = 1 \end{cases}$$

 $\implies \tilde{X}_t$  is adapted to  $\sigma(\eta(B_s)_{0 \le s \le t})$ , but not to  $\sigma((B_s)_{0 \le s \le t})$  and therefore not a strong solution.

$$X_{t} = \int_{0}^{t} 1_{X_{s} \neq 0} dB_{s}$$
  
= 
$$\int_{0}^{t} (1 - 1_{X_{s} = 0} dB_{s})$$
  
$$B_{t} - \int_{0}^{t} 1_{X_{s} = 0} dB_{s}$$

Example 1.9 (No strong solution, weak solution, no pathwise uniqueness, no uniqueness in law).

$$\begin{cases} dX_t = 1_{X_t \neq 1} sgn(X_t) dB_t \\ X_0 = 0 \end{cases}$$

Let  $Y_t$  be a solution of

$$\begin{cases} dY_t &= sgn(Y_t)dB_t \\ Y_0 &= 0 \end{cases}$$

 $\implies X_t \coloneqq Y_{t \wedge \tau}, \text{ where } \tau = \inf\{s \ge 0 \mid Y_s = 1\} \text{ is also a solution.}$ 

**Theorem 1.10** (Yamada-Watanabe). If both existence of weak solutions and pathwise uniqueness hold, uniqueness in law also holds.

Moreover,  $\forall$  choices of  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  and  $(B_t)_{t\geq 0}$  then there exists a strong solution.

## 1.3 Lévy characterization

Example 1.11. Consider the SDE

$$\begin{cases} dX_t &= O_t dB_t \\ X_0 = x_0 \end{cases}$$

where both  $X_t$  and  $B_t$  are d-dimensional and  $O_t$  is an adapted process (matrix) s.t.  $O_t^{\intercal}O_t = 1 \forall t \geq 0$  i.e.  $O_t$  is a rotation

$$\implies X_t^k = X_0^k + \sum_{l=1}^d \int_0^t O_s^{k,l} dB_s^l$$

$$\implies \langle X^k, X^{\tilde{k}} \rangle_t = \sum_{l,\tilde{l}}^d \int_0^t O_s^{k,l} O_s^{\tilde{k},\tilde{l}} d\langle B^l, B^{\tilde{l}} \rangle_s = \sum_{l=1}^d \int_0^t O_s^{k,l} O_s^{\tilde{k},l} ds$$

$$= \int_0^t \underbrace{(O_s O_s^\intercal)^{k,\tilde{k}}}_{=1} ds = \delta_{k,\tilde{k}} t \stackrel{Lévy}{\Longrightarrow} (X_t)_{t \geq 0} \text{ is also a } d\text{-dim } BM \text{ starting from } x_0$$

**Theorem 1.12** (Yamada, Watanabe). Let  $dX_t = b(X_t)dt + \sigma(X_t)dB_t$  and assume that there exist both a increasing function  $\rho(u) \geq 0$  s.t.  $|\sigma(x) - \sigma(y)| \leq \rho(|x - y|) \forall x, y \in \mathbb{R}$  s.t.

$$\int_{0}^{\infty} \frac{1}{\rho(u)} du = \infty \implies 0 < u < C_1 \implies \rho(u) \le C_2 u^{0.5}$$

and some increasing concave function  $\gamma_1(u) \geq 0$  s.t.

$$|b(x) - b(y)| < \gamma_1(|x - y|) \forall x, y \in \mathbb{R}$$

and

$$\int_0^\infty \frac{1}{\gamma_1(u)} = \infty.$$

Then pathwise uniqueness holds.

**Theorem 1.13** (Storokhod). Assume that  $\sigma$ , b are continuous bounded functions  $\implies$  there exist weak solutions to the SDE  $dX_t = b(X_t)dt + \sigma(X_t)dB_t$ .

## 1.4 Weak solutions and martingale problems

Let  $(X_t)_{t\geq 0}$  be a weka solution of the SDE

$$\begin{cases} dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t \\ X_0 = 0 \end{cases}$$

on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$ .

 $\implies X_t$  is a semimartingale s.t.  $X_t^k = X_0^k + \int_0^t b(s, X_s) ds + \sum_{l=1}^n \int_0^t \sigma_{k,l}(s, X_s) dB_s^l$  and

$$\langle X^i, X^j \rangle_t = \int_0^t \underbrace{\sum_{l=1}^n \sigma_{i,l}(s, X_s) \sigma_{j,l}^{\mathsf{T}}(s, X_s)}_{=a_{i,j}(s, X_s)} ds$$

#### 1.4.1 Itô-Doeblin formula

Itô formula leads to

**Proposition 1.14.** For  $f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ , then

$$f(t,X_t) = f(0,X_0) + \int_0^t (\sigma^\intercal \nabla f)(s,X_s) dB_s + \int_0^t \left[ \left( \frac{\partial}{\partial s} + \mathcal{L} \right) \right](s,x_s) ds$$

where  $(\mathcal{L}f)(t,x) = \frac{1}{2} \sum_{k,l=1}^{n} a_{k,l}(t,x) \frac{\partial^2}{\partial x_k \partial x_l} f(t,x) + \sum_{k=1}^{n} b_k(t,x) \frac{\partial}{\partial x_k} f(t,x)$ .

 $\mathcal{L}$  is called the **generator** 

**Remark.** The Itô-Doeblin formula provides a connection between SDEs and PDEs as we have seen in the last part Foundations of stochastic analysis.

**Example 1.15.** Let  $f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}_d)$  be a solution of the PDE

$$\frac{\partial}{\partial t} f(t, x) + (\mathcal{L}f)(t, x) = -g(t, x) \qquad \qquad t \ge 0, x \in U \subseteq \mathbb{R}^d$$

$$f(t, x) = \varphi(t, x) \qquad \qquad t \ge 0, x \in \partial U.$$

then  $M_t := f(t, X_t) + \int_0^t g(s, X_s) ds \in \mathcal{M}_{loc}$  by proposition 1.14 and if f, g are bounded  $M_t \in \mathcal{M}$ .

$$T \coloneqq \inf\{s \ge 0 | X_s \notin U\} \implies M_t^T \coloneqq M_{T \land t} \in \mathcal{M}.$$

Furthermore, if we assume  $T < \infty$  a.s. :

$$\mathbb{E}[M_t] = \mathbb{E}[\varphi(T, X_T)] + \mathbb{E}[\int_0^T g(s, X_s) ds] = \varphi(0, X_0)$$

where  $X_0 = x_0$ .

There are two special cases:

 $g = 0 \implies yields the exit distributions, while$ 

 $\varphi = 0, g = 1$  yields the mean exit times.

**Example 1.16** (Feynman-Kac formula). Let  $t \in \mathbb{R}_+$  be finite. Assume  $f : \mathbb{R}^d \to \mathbb{R}$  and  $K : [0,t] \times \mathbb{R}^d \to \mathbb{R}_+$  be continuous functions. Assume that u is a  $C^{1,2}$ -solution (bounded, for simplicity) of

$$\begin{cases} \frac{\partial u}{\partial s}(s,x) = \frac{1}{2}\Delta u(s,x) - K(s,x)u(s,x) & s \in [0,t], x \in \mathbb{R}^d \\ u(0,x) = f(x) & x \in \mathbb{R}^d \end{cases}$$

Then u has the stochastic representation  $u(t,x) = \mathbb{E}_x \left[ f(X_t) \exp\left(-\int_0^t K(t-s,X_s)ds\right) \right]$ , where  $X_t$  is BM starting from  $X_0 = x$ .

Sketch. 1. Define 
$$r(s,x) := u(t-s,x)$$
 for  $s \in [0,t]$ 

Page 10 of 37

2. Show:  $M_s := \exp(-A_s)r(s,x)$  with  $A_s = \int_0^s K(u,X_u)du$  is a local martingale.

Remark. This is a reformulation of the formula from the last semester.

#### 1.4.2 Martingale problem

A solution of an SDE is generically defined up to some explosion time  $\xi$ , where it either diverges or it exists a given domain  $U \subset \mathbb{R}^d$  (open).

 $\implies$  For  $k \in \mathbb{N}$  define  $U_k := \{x \in U \mid |x| < k \land \operatorname{dist}(x, U^c) \ge \frac{1}{k}\}$  with  $U = \bigcup_{k > 1} U_k$  and

$$T_k := \{ t \ge 0 \mid x_t \notin U_k \}.$$

A solution of the SDE  $b(t, X_t)dt + \sigma(t, X_t)dB_t$  is defined up to  $\xi = \sup_{k>1} T_k$ .

Start of lecture 03 (18.04.24)

**Added remark.** uniqueness of solution to the heat equation  $\frac{1}{2}\Delta u - Ku$ : not unique! Stochastic calculus: Paolo Baldi: 10.3-10.4

Define  $(\star)$ :

$$dX_t b(t, X_t) dt + \sigma(t, X_t) dB_t$$
 with  $X_0 = x_0$ 

**Theorem 1.17** (Martingale problem). If X is a solution of  $(\star)$  up to time  $\zeta$ , then  $\forall f \in C^{1,2}(\mathbb{R}_+ \times U)$ 

$$M_t = f(t, X_t) - \int_0^t \left(\frac{\partial}{\partial s} + \mathcal{L}\right) f(s, x_s) ds, t < s$$

is a local martingale up to  $\zeta$  and  $M_t^{T_k}$  are localizing martingales.

**Definition 1.18** (Martingale solutions).  $(X_t)_{t\geq 0}$  is a martingale solution of  $(\star)$  if  $\forall f \in C^2(\mathbb{R}^d)$ 

$$M_t^f = f(X_t) - f(X_0) - \int_0^t (\mathcal{L}f)(X_s) ds$$

is a continuous local martingale.

**Theorem 1.19** (Equivalent definitions). The following are equivalent (for  $X_t$  being a solution of  $(\star)$ :

(a)  $\forall f \in C^2(\mathbb{R}^d)$ .

$$M_t^f := f(X_t) - f(X_0) - \int_0^t (\mathcal{L}f)(X_s) ds$$

is a local martingale

(b) The process in  $\mathbb{R}^d$  given by

$$M_t := X_t - X_0 - \int_0^t b(s, X_s) ds$$

is a d-dimensional local martingale with  $\langle M^i, M^j \rangle_t = \int_0^t a_{i,j}(s,X_s) ds = \langle X^i, X^j \rangle_t$ 

(c)  $\forall f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$ 

$$\tilde{M}_t^f := f(t, X_t) - f(0, X_0) - \int_0^t \left(\frac{\partial}{\partial s} + \mathcal{L}\right)(s, X - s) ds$$

is a local martingale

ds

*Proof.*  $\underline{c} \Longrightarrow \underline{a}$ : by choosing f independent of t.  $\underline{a} \Longrightarrow \underline{b}$ : 1.: Choosing  $f(X) = X_i$  implies

 $M_t^f = X_t^i - X_0^i - \int_0^t b_i(s, X_s) ds \in \mathcal{M}_{loc}$ 

We can maybe also proof this by calculating  $X^2$ ?

2.: 
$$f(X) = X_i X_j$$
:

$$(\mathcal{L}f)(x) = \frac{1}{2}a_{ij} + \frac{1}{2}a_{ji} + b_i X_j b_j X_i$$

$$a = a^{\mathsf{T}} \Longrightarrow = a_{ij}b_i X_j b_j X_i$$

$$\Longrightarrow M_t^f X_t^i X_t^j - X_0^i X_0^j - \int_0^t \left[ a_{ij}(s, X_s) + b_i(s, X_s) X_s^j + b_j(s, X_s) X_s^i \right] ds$$

$$\begin{split} X_t^i X_t^j - X_0^i X_0^j & \stackrel{\text{Integration by parts}}{=} \int_0^t X_s^i dX_s^j + \int_0^t X - s^j dX_s^i + \langle X^i, X^j \rangle_t \\ &= M_t^f + \int_0^t [a_{ij} + b_i X_s^j + b_j X_s^i] ds \end{split}$$

Here  $dX_s^i$  is the same as  $b_iX_s^j$  is the same up to a local martingale term and  $\langle X^i, X^j \rangle_t = \int_0^t a_{ij}(s, X_s) ds = \langle M^i, M^j \rangle_t$ 

 $\underline{b} \Longrightarrow \underline{c}$ : By Proposition 1.14 If (use the next theorem) X was a weak solution  $\Longrightarrow \tilde{M}_t^f$  is a local martingale.

**Theorem 1.20.** Let n = d, assume  $\sigma(t, x)$  is invertible  $\forall t, x$  and  $\sigma^{-1}(t, x)$  is uniformly bounded. T.f.a.e.:

This also works for  $n \neq d$ , but with a different proof

- (a)  $(X_t)_{t\geq 0}$  is a weak solution of the SDE  $(\star)$  on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}; B)$
- (b)  $(X_t)_{t\geq 0}$  is a martingale solution of the SDE  $(\star)$

*Proof.*  $a \implies b$ : True

 $b \implies a$ : Goal construct a BM for the weak solution.

By proposition ??  $a \implies b \ dM_t = dX_t - b(t, X_t)dt \in \mathcal{M}_{loc} \text{ and } d\langle M^i, M^j \rangle_t = a_{k,l}(t, X_t)dt$ 

$$\implies dX_t = dM_t + b(t, X_t)dt$$
$$= \sigma(t, X_t)d\tilde{B}_t + b(t, X - t)dt$$

where  $\tilde{B}_t \coloneqq \sigma(s, X_s)^{-1} dM_s$ 

To see:  $B_t$  is a brownian motion.

$$\langle \tilde{B}^{i}, \tilde{B}^{j} \rangle_{t} = \sum_{k,l} \int_{0}^{t} \sigma_{ij}^{-1} \sigma_{jl}^{-1} \underbrace{d\langle M^{k}, M^{l} \rangle_{s}}_{= \underbrace{\alpha_{ij}}_{(\sigma^{\mathsf{T}}\sigma)_{kl}} ds}$$

$$= \sum_{k,l,p} \int_{0}^{t} \sigma_{ik}^{-\mathsf{T}} \sigma_{kp} \sigma_{pl}^{\mathsf{T}} \sigma_{lj}^{-\mathsf{T}} ds$$

$$= \delta_{ij} \int_{0}^{t} 1 ds = \delta_{ij} t$$

Then by the Lévy characterization  $\tilde{B}$  is a brownian motion.

**Added remark.** This is the first way to construct a weak solution: Solve a martingale problem! This is used a lot in practice.

## 1.5 Weak solutions and time change

#### 1.5.1 Time change

For d = 1:

Theorem 1.21. [Dubins-Schwarz]

- Let  $M \in \mathcal{M}^0_{loc}$  and  $\langle M \rangle_{\infty} = \infty$  a.s.
- Let  $T_t := \inf\{s \ge |\langle M \rangle_s \ge t\}$

This implies

- 1.  $t \mapsto M_{T_t}$  os a  $(\mathcal{F}_{T_t})$  brownian motion
- 2.  $M_t = B_{\langle M \rangle_t}$  for some standard brownian motion B

$$X_t = X_0 + \int_0^t b(s, X_s) ds + \underbrace{\int_0^t \sigma(s, X_s) dB_s}_{=M_t}$$
. If  $\langle M \rangle_{\infty} = \infty$  a.s.:

$$X_{t} = X_{0} + \int_{0}^{t} b(s, X_{s})ds + \tilde{B}_{\int_{0}^{t} \sigma^{2}(s, X_{s})ds}$$

#### 1.5.2 Time change in a martingale problem

Consider d = 1 = n.

$$dY_t = \tilde{\sigma}(Y_t)dB_t \tag{**}$$

and  $\tilde{\sigma}$  strictly positive positive continuous function.

$$\langle Y \rangle_t = \int_0^t \tilde{\sigma}(Y_s)^2 ds =: A_t$$

By theorem 1.21  $\implies Y_t = W_{A_t}$  for some brownian motion W.

Assume  $A_t \infty = \infty$  a.s.

 $T_t := \inf\{s \ge 0 \mid \langle Y \rangle_s \ge t\}$ 

$$\implies T_{A_t} = \inf\{s \ge 0 \mid \langle Y \rangle_s \ge \langle Y \rangle_t\} = t$$

$$1 = \frac{d}{dt} (T_{A_t}) = T'_{\underbrace{A_t}} \cdot A_t$$

$$\Longrightarrow T'_u = \frac{1}{A'_{T_u}} \Longrightarrow T_u = \int_0^u \frac{1}{\tilde{\sigma}(Y_{T_s})^2} ds = \int_0^u \frac{1}{\tilde{\sigma}(W_s)^2} ds$$

 $\Longrightarrow$  to construct a solution of  $(\star\star)$ : Given  $W\longrightarrow$  compute  $T_u\longrightarrow$  determine  $A-t=T_t^{-1}\implies Y_t=W_{A_t}$ 

Start of lecture 04 (23-04-24)

**Theorem 1.22.** Let  $(X_u)_{u\geq 0}$  on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P})$  be a weak solution of

$$dX_u = b(X_u)du + \sigma(X_u)dB_u$$

where  $b: \mathbb{R}^d \to \mathbb{R}^d$ , the drift and  $\sigma: \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{R}^d$  are locally bounded,  $\sigma^{-1}$  exists for a.e. x and is locally bounded.

Consider a time change  $T_u := \int_0^u \rho(X_s) ds$ , where  $\rho : \mathbb{R}^d \to \mathbb{R}_+$  s.t.

$$T_u < \infty \forall u \geq 0 \text{ and } T_\infty = \infty \text{ a.s.}$$

 $\implies$  Then  $Y_t := X_{A_t}$ , where  $A_t = T_t^{-1}$  is a weak solution of the SDE

$$dY_t = \frac{b(Y_t)}{\rho(Y_t)}dt + \frac{\sigma(Y_t)}{\sqrt{\rho(Y_t)}}dB_t$$

**Remark.** Special case:  $d=1, b=0, \sigma=1$ : Then X is a BM and  $\rho=\frac{1}{\tilde{\sigma}^2(x)} \implies Y_t=X_{T_t^{-1}}$  solves

$$dY_t = \tilde{\sigma}(Y_t)dB_t$$

*Proof.* By theorem 1.20, it is enough to see how the martingale problem after change of time becomes:

$$\mathcal{L} = \mathcal{L}_{X_t} \stackrel{ ext{time change}}{\longrightarrow} \mathcal{L}_{Y_t} = \tilde{\mathcal{L}}$$

 $Y_t = X_{A_t}; Y_0 = X_{A_0}$ . For  $f \in C^2 : M_t^f = f(X_t) - f(X_0) - \int_0^t (\mathcal{L}f)(X_s) ds$  is a local martingale w.r.t.  $(\mathcal{F}_t)_{t > 0}$ .

$$\implies N_t^f := M_{A_t}^f = f(\underbrace{X_{A_t}}_{=Y_t}) - f(\underbrace{=X_{A_0}}_{Y_0}) - \int_{A_0}^{A_t} (\mathcal{L}f)(X_s) ds$$

is also a local martingale w.r.t.  $(\mathcal{F}_{A_t})_{t>0}$ .

Change of variable (to get rid of the  $X_s$  in the integral):

$$\tau = T_s \leftrightarrow A_t = s \implies X_s = X_{A_t} = Y_\tau$$
$$d\tau = \rho(X_s)ds$$

$$\implies N_t^f = f(Y_t) - f(Y_0) - \int_0^t (\mathcal{L}f)(Y_t) \frac{1}{\rho(Y_t)} d\tau$$

Since  $\mathcal{L}f(x) = \sum_{k} b_k(x) \frac{\partial}{\partial x_k} f(x) + \sum_{k,l} a_{k,l}(x) \frac{\partial^2}{\partial x_k \partial x_l} f(x)$ 

$$\implies (\tilde{\mathcal{L}}f)(x) = \sum_{k} \frac{b_k(x)}{\rho(x)} \frac{\partial}{\partial x_k} f(x) + \sum_{k,l} \frac{\overbrace{a_{k,l}}^{(\sigma\sigma^{\dagger})_{k,l}}}{\sqrt{\rho(x)\rho(x)}} (x) \frac{\partial^2}{\partial x_k \partial x_l} f(x)$$

 $\implies$  It is a martingale problem for the SDE where the drift  $\rightarrow \frac{\text{drift}}{\rho}$  and  $\sigma \rightarrow \frac{\sigma}{\sqrt{\rho}}$ 

#### 1.5.3 Weak solutions in d=1

We will do both time and "space" changes.

• 1-d SDE:

$$\begin{cases} dX_t &= b(X_t)dt + \sigma(X_t)dB_t \\ X_0 &= x_0 \in (\alpha, \beta) \end{cases}$$
 (1.4)

- $X_t$  a process in  $(\alpha, \beta)$
- Assume  $b, \sigma : (\alpha, \beta) \to \mathbb{R}$  continuous,  $\sigma(x) > 0 \forall x \in (\alpha, \beta)$
- Do a change of coordinates  $Y_t := s(X_t)$  where  $s : (\alpha, \beta) \to (s(\alpha), s(\beta)), C^2$  with  $S'(x) > 0, x \in (\alpha, \beta)$ .
- s(x) is called the **scale function** and it is given by

$$s(x) = \int_{x_0}^x \exp\left(-\int_{x_0}^y dz \frac{2b(z)}{\sigma(z)^2}\right) dy$$

• s satisfies  $\frac{1}{2}\sigma^2(x)s''(x) + b(x)s'(x) = 0 \iff (\mathcal{L}s)(x) = 0$ 

The  $A_0$  in the integral is probably 0, but it does not matter, we do a change of variables anyway.

Page 14 of 37

**Remark.** If  $b(z) = 0 \implies s(x) = x - x_0 \implies s'(x) = 1$ . If s'(x) = 1, we say that the process is in its "natural scale"

By proposition 1.14:  $\mathcal{L}s = 0, \dot{s} = 0$ .

 $\implies Y_t = s(X_t)$  is a local martingale satisfies  $dY_t = s'(X_t)\sigma(X_t)dB_t$  .

 $\iff Y_t \text{ is a solution of}$ 

the other terms cancel

$$\begin{cases} dY_t &= \tilde{\sigma}(Y_t)dB_t \\ Y_0 &= s(X_0) \end{cases}$$
 (1.5)

where  $\tilde{\sigma}(y) = s'(s^{-1}s(y))\sigma(s^{-1}(y)).$ 

**Theorem 1.23.** The following are equivalent:

- 1. The process  $(X_t)_{t<\xi}$ , where  $\xi$  is the explosion time, on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}; (B_t)_{t\geq 0})$  is a solution of (1.4) up to tje stopping time  $\xi$
- 2. The process  $Y_t = s(X_t)_{t < \xi}$  on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P}; (B_t)_{t \geq 0})$  is a solution of (1.5) up to  $\xi$
- 3. The process  $(Y_t)_{t<\xi}$  has the representation  $Y_t = \tilde{B}_{A_t}$ , where  $\tilde{B}$  is a BM starting at  $\tilde{B}_0 = s(X_0)$  and  $A_t = T_t^{-1}$  and  $T_t = \int_0^t \frac{1}{\tilde{\sigma}^2(\bar{B}_u)} du$

Therefore we can write the original SDE in terms of a BM

s and  $A_t$  have the same definition as before

#### A degenerate case:

 $\overline{\text{Let }\sigma(x)=|x|^{\alpha}\text{ for some }\alpha}\in(0,\frac{1}{2}).\implies$ 

$$\begin{cases} dY_t = |Y_t|^{\alpha} dB_t \\ Y_0 = y \end{cases} \tag{1.6}$$

 $\implies T_t = \int_0^t \frac{1}{\sigma(\tilde{B}_u)^2} du, \ A_t = \int_0^t \sigma(Y_s)^2 ds \ \text{and} \ Y_t = \tilde{B}_{A_t} \implies \tilde{B}_0 = y.$   $T_t < \infty$  a.s. ?

$$\mathbb{E}(T_t) = \int_0^t \mathbb{E}\left(\frac{1}{\sigma(\tilde{B})^2}\right) du$$

$$= \int_0^t \mathbb{E}\left(\frac{1}{|\tilde{B}|^{2\alpha}}\right) du$$

$$= \int_0^t \int_{\mathbb{R}} dx \frac{1}{|x|^{2\alpha}} \frac{\exp(-\frac{(x-y)^2}{2u})}{\sqrt{2\pi u}} \stackrel{0<2\alpha<1}{<} \infty$$

 $\implies A_t = T_t^{-1}$ , then  $Y_t = \tilde{B}_{A_t}$  is a solution of (1.6), i.e.  $\forall y \in \mathbb{R} \exists$  a non-trivial solution of (1.6). For  $Y_=0, Y_t = 0$  is also a solution  $\implies$ 

- No uniqueness in law of (1.6)
- No pathwise uniqueness as well

**Remark.** In general: uniqueness in law of 1-d SDEs is not to be expected if  $\sigma(x) = 0$  somewhere (and  $\sigma$  continuous ...) (i.e. if  $\sigma$  is degenerate).

By theorem 1.12 as soon as  $\sigma(x) = |x|^{\alpha}$  for some  $\alpha \ge \frac{1}{2}$ , then one has pathwise uniqueness. **Hitting times and scale functions Bessel process**:

$$\begin{cases} dR_t &= \frac{d-1}{2R_t} dt + dW_t \\ R_0 &= r_0 \in (0, \infty) \end{cases}$$

$$\implies b(x) = \frac{d-1}{2x}, \sigma(x) = 1.$$

The scale function satisfies  $\mathcal{L}s(x) = \frac{1}{2}s''(x) + \frac{d-1}{2x}s'(x) = 0$ 

$$\implies s(x) = \begin{cases} \frac{x^{2-d}}{2-d} & d \neq 2\\ \ln(x) & d = 2 \end{cases}$$

and therefore

$$(s_0, s_\infty) = \begin{cases} (0, \infty) & d < 2\\ (-\infty, \infty) & d = 2\\ (-\infty, 0 & d > 2) \end{cases}$$

Define the stopping time

$$T_a^R := \inf\{t \ge 0 \mid R_t = a\}$$

Choose an  $\alpha < r_0 < \beta$ 

$$\implies \mathbb{P}(T_{\alpha}^R < T_{\beta}^R) \overset{s' \geq 0}{=} \mathbb{P}(T_{s(\alpha)}^{s(R)} < T_{s(\beta)}^{s(R)})$$

One computes

$$\mathbb{P}(T_a^R < T_{\beta}^R) = \frac{s(\beta) - s(r_0)}{s(\beta) - s(\alpha)} = \mathbb{P}(T_{s(\alpha)}^{s(R)} < T_{s(\beta)}^{s(R)})$$

This is generic, for Itô diffusions, provides that  $\exists$  no killing in  $(\alpha, \beta)$ .

unlike in 1.16 Start of lecture 05 (25.04.24)

WS exercises

#### 1.5.4 Uniqueness of martingale solution

SDE  $dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$  with generator

$$\mathcal{L} = \sum_{k} b_{k} \frac{\partial}{\partial x_{k}} + \frac{1}{2} \sum_{k,l} (\sigma \sigma^{\mathsf{T}})_{k,l} \frac{\partial^{2}}{\partial x_{k} \partial x_{l}}$$

**Definition 1.24.** Let  $C = C(\mathbb{R}_+, \mathbb{R}^d)$  with  $\sigma$ -algebra  $\mathcal{F}$ , canonical filtration  $(\mathcal{F}_t)_{t \geq 0}$ , canonical process  $Z_t(\omega) := \omega$ .

We say that  $\mathbb{P}$  on  $(\mathcal{C}, \mathcal{F})$  is a <u>martingale solution</u> for the generator  $\mathcal{L} \iff \forall f \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R})$ 

$$M_t^f := f(t, Z_t) - f(0, Z_0) - \int_0^t \left(\frac{\partial}{\partial s} + \mathcal{L}\right) f(s, Z_s) ds \tag{1.7}$$

is a martingale w.r.t.  $\mathbb{P}$ .

**Definition 1.25.** A martingale problem (1.7) has a unique solution if for any two martingale solutions  $\mathbb{P} = \mathbb{Q}$  s.t.  $Law_{\mathbb{P}}(Z_0) = Law_{\mathbb{Q}}(Z_0)$ 

$$\implies \mathbb{P} = \mathbb{Q}$$

**Remark.** Uniqueness of martingale solutions corresponds to uniqueness in law of the weak solutions.

Backwards Kolmogorov Equation (BKE):

$$\frac{\partial}{\partial t}\varphi(t,x) = \mathcal{L}\varphi(t,x) \forall x \in \mathbb{R}^d, t \ge 0$$
(1.8)

**Theorem 1.26.** Assume that  $\forall$  initial condition

$$\varphi(0,x) = \Psi(x), \Psi \in C_0^{\infty}(\mathbb{R}^d)$$

the (1.8) has a solution and  $\varphi$  bounded for all finite time intervals. We have uniqueness of martingale solutions and therefore uniqueness of weak solutions!

The Kolmogorov forward equation is (related to) the Folker-Plank equation!

*Proof.* Prove that  $\forall 0 \leq t_1 < t_2 < \cdots < t_n$ :

$$\text{Law}_{\mathbb{P}}(Z_{t_1}, Z_{t_2}, \dots, Z_{t_n}) = \text{Law}_{\mathbb{Q}}(Z_{t_1}, Z_{t_2}, \dots, Z_{t_n})$$

#### 1. One-time distribution:

 $\forall 0 \leq s \leq r$ :

$$\left(\frac{\partial}{\partial s} + \mathcal{L}\right)\varphi(r - s, x) \stackrel{(1.8)}{=} 0$$

take  $t \in [0, r]$ :

$$M_t^r := \varphi(r - t, Z_t) - \varphi(r, Z_0) - \int_0^t \underbrace{(\partial_s + \mathcal{L})\varphi(r - s, Z_s)}_{=0} ds$$
$$= \varphi(r - t, Z_t) - \varphi(r, Z_0) \text{ is a martingale}$$

for any solution  $\mathbb{P}$ .

$$0 = \mathbb{E}_{\mathbb{P}} \left( M_r^r - M_t^r \mid \mathcal{F}_t \right) = \mathbb{E}(\varphi(0, Z_r) - \varphi(r - t, Z_t) \mid \mathcal{F}_t)$$

$$\Rightarrow \forall 0 \leq t \leq r : \mathbb{E}_{\mathbb{P}}(\varphi(0, Z_r) \mid \mathcal{F}_t) = \mathbb{E}_{\mathbb{P}}(\varphi(r - t, Z_t) \mid \mathcal{F}_t)$$

$$\stackrel{\text{a.s.}}{=} \varphi(r - t, Z_t)$$

$$\mathbb{E}(\underline{\varphi(0, Z_r)}) \stackrel{t=0}{=} \mathbb{E}_b P(\varphi(r, Z_0))$$

 $\forall$  other martingale solutions  $\mathbb{Q}$ :

$$\mathbb{E}_{\mathbb{Q}}(\Psi(Z_r)) = \mathbb{E}_{\mathbb{Q}}(\varphi(r, Z_0))$$

By assumption this implies  $\text{Law}_{\mathbb{P}}(Z_r) = \text{Law}_{\mathbb{Q}}(Z_r)$ .

#### 2. Multi-time distributions:

For  $\Psi \in C_0^{\infty}$ , denote  $\varphi_{\Psi}$  the solution of (1.8) with initial condition  $\Psi$ :

$$\mathbb{E}_{\mathbb{P}}(\Psi(Z_r) \mid \mathcal{F}_t) = \varphi_{\Psi}(r - t, Z_t)$$

 $0 \le r_2 \le r_1$  test for  $g \in C_0^{\infty}$ :

$$\mathbb{E}_{\mathbb{P}}(\Psi(Z_{r_1})g(X_{r_2})) = \mathbb{E}(\underbrace{\mathbb{E}(\varphi_{\Psi}(Z_{r_1})|\mathcal{F}_{r_2})}_{\varphi_{\Psi}(r_1-r_2,Z_{r_2})}g(Z_{r_2}))$$

$$= \mathbb{E}_{\mathbb{P}}(\varphi_{\Psi}(r_1-r_2,Z_{r_2})g(Z_{r_2}))$$

$$\stackrel{!}{=} \mathbb{E}_{\mathbb{Q}}(\varphi_{\Psi}(r_1-r_2,Z_{r_2})g(Z_{r_2}))$$

$$= \mathbb{E}_{\mathbb{Q}}(\Psi(Z_{r_1})g(Z_{r_2}))$$

Iterating yields the statement.

This needs the boundedness of  $\varphi$ , otherwise it might only be a local martingale. There are softer contidions we can put on the coefficients to achieve the same result. This might not be needed, because  $\varphi$  is  $C^1$  in time anyways

Page 17 of 37

# Chapter 2: SDE techniques

Goal: Study process by changing the measure.

E.g.: 
$$X_t = B_t$$
. Condition  $X_t \ge 0 \forall t \ge 0$ .

## 2.1 Girsanov theorem

Given  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0})$  and two measures  $\mathbb{P}, \mathbb{Q}$ Assume  $\mathbb{P} \ll \mathbb{Q}$  and  $\mathbb{Q} \ll \mathbb{P}$  and let  $H = \frac{d\mathbb{Q}}{d\mathbb{P}}$ 

$$\implies Z_t := \mathbb{E}_{\mathbb{P}}(H \mid \mathcal{F}_t) = \frac{d\mathbb{Q}}{d\mathbb{P}} \mid_{\mathcal{F}_t}$$

The notes of Eberle switches the roles of  $\mathbb{P}, \mathbb{Q}!$ 

is a martingale.

From last semester:  $\forall Y \in L^1(\mathbb{Q}) \cap L^1(\mathbb{P}), \mathcal{F}_t$  measurable:

$$\mathbb{E}_{\mathbb{Q}}(Y \mid \mathcal{F}_s) = \frac{bE_{\mathbb{P}}(Y \cdot Z_t \middle| \mathcal{F}_s)}{Z_s} \forall s < t$$

If Z > 0 is  $\mathcal{M}_{loc}, \exists L \in \mathcal{M}_{loc}$  s.t.:

$$Z_t = e^{L_t - \frac{1}{2}\langle L \rangle_t} \to L_t = \ln(Z_0) + \int_0^t \frac{dZ_s}{Z_s}$$

There might be a problem, because  $ln(Z_0)$  might not be integrable, and therefore not a local martingale!

**Theorem 2.1** (Girsanov). Assume Z > 0 is a martingale. If M is a local martingale w.r.t.  $\mathbb{P}$ , then

$$\tilde{M}_t := M_t - \langle M, L \rangle_t$$

is a local martingale w.r.t.  $\mathbb{Q}$  and

$$\langle M \rangle_t = \langle \tilde{M} \rangle_t.$$

Moreover, if M is a BM w.r.t. to  $\mathbb{P}$ , then  $\tilde{M}$  is a BM w.r.t.  $\mathbb{Q}$ .

**Remark.** In applications, given  $\mathbb{P}$ ,  $(Z_t)_{t\geq 0}$  a positive continuous martingale, define  $\mathbb{Q}$  on  $\mathcal{F}_{\infty} = \bigcup_{t\geq 0} \mathcal{F}_t$  s.t.

$$\frac{d\mathbb{Q}}{d\mathbb{P}}\Big|_{\mathcal{F}_t} = Z_t$$

Z is uniformly integrable  $\iff \mathbb{Q} \ll \mathbb{P}$ . **Problem:** In applications, Z is not necessarily uniformly integrable.

 $\implies$  restrict to [0,T]  $\implies$  all fine.

 $\mathbb{Q} \to \mathbb{Q}_T$  as in the last semester.

Added example. Let  $\gamma \in \mathbb{R}^d$ ,  $(B_t)_{t\geq 0}$  standard BM. Let  $L_t := \gamma \cdot B_t$  and  $Z_t = \exp(L_t - \frac{1}{2}\langle L \rangle_t) = \exp(\gamma \cdot B_t - \frac{1}{2}|\gamma|^2 t)$ 

**Remark.**  $\lim_{M\to\infty}\sup_{t\geq 0}\mathbb{E}(|Z_t|1_{|Z_t|>M})\neq 0.$  Define  $\mathbb{Q}$  on  $\mathcal{F}_{\infty}$  s.t.  $\tilde{B}_t^k=B_t^k-\langle L,B^k\rangle=B_t^k-\gamma^k t$  is a BM with drift. Show:  $Q\not\ll \mathbb{P}$ .

 $Construct \ Q \ via \ Z$ 

$$A = \left\{ \lim_{t \to \infty} \frac{\tilde{B}_t + \gamma t}{t} = \gamma \right\} \in \mathcal{F}_{\infty}$$

but: B is a BM w.r.t.  $\mathbb{Q} \implies \mathbb{Q}(A) = 1$ , B is a BM with drift  $-\gamma$  w.r.t  $\mathbb{P}(A) = 0$ .

Start of lecture 06 (30.04.24)

#### 2.1.1 **Drift transformation of SDE**

We once again start with

$$\star = \begin{cases} dX_t &= b(t, X_t) \\ X_0 &= x_0 \end{cases}$$

with drift b continuous.

**Goal:** Get a weak solution of  $\star$ .

Let  $(X_t)_{t\geq 0}$  be a BM in  $(\Omega, \mathcal{F}(\mathcal{F}_t)_{t\geq 0}, \mathbb{P}), X_0 = x_0$ .

Assume:  $Z_t := \exp\left(\underbrace{\int_0^t b(s, X_s) dX_s}_{\bullet} - \frac{1}{2} \int_0^t |b(s, X_s)|^2 ds\right)$  is a martingale w.r.t.  $\mathbb{P}$ .

Remark. The assumption holds if

$$|b(t,x)| \le C(1+||x||)$$
 for some C.

$$\implies \mathbb{E}_{\mathbb{P}}(Z_t) = 1 \forall t \ge 0$$

By Girsanov

$$\tilde{X}_t = X_t - \langle L, X \rangle_t$$

is a  $\mathbb{Q}$ -BM.

But

$$\begin{split} d\langle L, X\rangle_t &= b \cdot dX_t \cdot dX_t = b \cdot dt \\ \Longrightarrow & \tilde{X}_t = X_t - \int_0^t b(s, X_s) ds \\ \text{w.r.t. } \mathbb{Q} : dX_t = b(t, X_t) dt + \underbrace{d\tilde{B}_t}_{d\tilde{X}_t} \end{split}$$

Generalization: Start with

$$\star \star dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$$

where X, B are d-dimensional.

**Proposition 2.2.** Assume (X, B) is a weak solution of  $\star\star$  on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t>0}, \mathbb{P})$ . If

$$Z_t = \exp\left(\int_0^t c(s, X_s) dB_s - \frac{1}{2} \int_0^t c(s, X_s)^2 ds\right)$$

is a martingale w.r.t.  $\mathbb{P}$ ,  $\mathbb{Q} \ll \mathbb{P}$  and  $\mathcal{F}_t$  s.t.  $Z_t = \frac{d\mathbb{Q}_t}{d\mathbb{P}} \operatorname{Vert}_{\mathcal{F}_t}$ .

In practice this is surprisingly useful in practice!

this is an implicit condition for c

Then  $(X_t)_{t\geq 0}$  on  $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{Q})$  is a weak solution of

$$dX_t = [b(t, X_t) + \sigma(t, X_t)c(t, X_t)dt] + \sigma(t, X_t)d\tilde{B}_t$$

where  $\tilde{B}$  is a d-dim BM.

Proof.

$$d\langle L, B \rangle_t \stackrel{L_t = \int_0^t c(s, X_s) dB_s}{=} c(t, X_t) dt$$

$$\Longrightarrow \tilde{B}_t := B_t - \langle L, B \rangle_t \text{ is a } \mathbb{Q}\text{-BM}$$

$$\Longrightarrow dB_t = c(t, X_t) dt + d\tilde{B}_t$$

From \*\*:  $dX_t = b(t, X_t)dt + \sigma(t, X_t)c(t, X_t)dt + \sigma(t, X_t)d\tilde{B}_t = \star \star \star$ 

| Measure      | SDE                                  | Generators                                                                                                                                             |
|--------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbb{P}$ | $dX_tb \cdot dt + \sigma \cdot dB_t$ | $\mathcal{L}\sum_k b_k rac{\partial}{\partial x_k} + rac{1}{2}\sum_{k,l} (\sigma\sigma^\intercal)_{k,l} rac{\partial^2}{\partial x_k \partial x_l}$ |
| Q            |                                      | $\tilde{\mathcal{L}} = \mathcal{L} + \sum_{k} \sum_{l} \sigma_{k,l} c_{l} \frac{\partial}{\partial x_{k}} = \mathcal{L} + c \sigma^{T} \nabla$         |

 $t \leq T$  for  $\mathbb{Q}_t$ .

#### 2.2 Doob-h transform

- 1. From  $B_t \to B_t$  conditioned on  $\{B_1 = 0\}$  (measure zero set)
- 2. From  $B_t \to B_t$  conditioned on  $\{B_t \ge 0 \forall t \ge 0\}$  (measure zero set)
- 3. From  $B_t \to B_t$  conditioned on  $\{B_t \ge 0 \forall t \in [0,1], B_1 = 0\}$

Let  $(X_t, B_t)_{t>0}$  be a weak solution of

$$(\star) = \begin{cases} dX_t &= b(t, X_t)dT + \sigma(t, X_t)dB_t \\ X_0 &= x_0 \text{ fixed} \end{cases}$$

Assume there exists  $h \in C^{1,2}(\mathbb{R}_+ \times \mathbb{R}^d)$  s.t. h > 0 satisfying

$$(\frac{\partial}{\partial t} + \mathcal{L})h = 0 \forall t, \in [0, T], x \in \mathbb{R}^d$$

where  $\mathcal{L}$  is the generator of the SDE  $(\star)$ .

By theorem 1.14  $Z_t := h(t, X_t) = h(0, X_0) + \int_0^t (\sigma \nabla h)(s, X_s) dB_s$ .  $Z_t$  is a positive local martingale. Assume  $Z_t$  is a martingale.

W.l.o.g.  $Z_0 = 1$  (if not  $h \mapsto \frac{h}{h(0,X_0)}$ ).

$$\implies d\mathbb{Q}_T = Z_T \cdot d\mathbb{P}$$
. Let  $L_t$  s.t.  $Z_t = \exp(L_t - \frac{1}{2}\langle L \rangle_t)$ .

Girsanov, since  $B_t$  is a  $\mathbb{P}$ -BM,

 $\tilde{B}_t := B_t - \langle L, B \rangle_t$  is a  $Q_T$ -BM, where

$$\langle L, B \rangle_t = \sigma^{\mathsf{T}} \cdot \nabla \ln h \cdot dB_t$$

because of

$$dL_t = \frac{dZ_t}{Z_t} = \frac{\sigma^{\mathsf{T}} \cdot \nabla h \cdot dB_t}{h(t, X_t)} = \sigma^{\mathsf{T}} \cdot \nabla \ln h \cdot dB_t$$

And therefore  $dB_t = d\tilde{B}_t + \sigma^{\intercal} \nabla \ln h dt$ .

From 
$$(\star) \implies dX_t = (\underbrace{b(t, X_t) + \sigma(t, X_t)\sigma^{\mathsf{T}}(t, X_t)\nabla h(t, X_)}_{:=\tilde{b}})dt + \sigma(t, X - t)d\tilde{B}_t$$

Page 20 of 37

Essentially three cases in

1d

**Proposition 2.3.** Let X be a weak solution of  $dX_t = b(t, X_t) + \sigma(t, X_t) dB_t$  on [0, T] under  $\mathbb{P}$ . Then under  $\mathbb{Q}_T, X$  is a weak solution of the SDE

$$\begin{cases} dX_t &= \tilde{b}(t, X_t)dt + \sigma(t, X_t)d\tilde{B}_t \\ X_0 &= x_0 \end{cases}$$

where  $\tilde{b} = b + \sigma \sigma^{\dagger} \nabla \ln h$ .

**Remark.** In applications, often  $h(x) \not> 0$  for all x! E.g.:  $h(t,x) = x \implies \left(\frac{\partial}{\partial t} + \mathcal{L}\right) h = 0$   $(X_t = B_t + x_0)$ , but  $h(x) \le 0$  for  $x \le 0$ . In this case first do the construction on  $[0,\tau]$ , where  $\tau := \inf\{t > 0 \mid B_t = 0\}$ 

 $\implies$  ok for  $B_t^{\tau} \stackrel{magically}{\Longrightarrow}$  the new SDE has drift:

$$\frac{\partial}{\partial x}\ln(h(x)) = \frac{1}{h(x)}\frac{\partial h(x)}{\partial x} = \frac{1}{x}$$

**Added example.** If  $X_t = B_t$  and  $h(t, \cdot) = e^{\gamma x - \frac{1}{2}|\gamma|^2 t}$ 

$$\implies dX_t = \nabla \ln h(t, X_t) dt + dB_t$$
$$= \nabla (\gamma \cdot x) dt + dB_t$$
$$= \gamma d_t + dB_t$$

 $\implies X_t$  is a BM with drift  $\gamma$  w.r.t  $\mathbb{Q}$ .

We realize there is no problem in the new measure

## 2.3 Diffusion Bridges

Consider a Markov process  $(X_t)_{t\geq 0}$  which is a diffusion starting from  $X_0=x_0\in\mathbb{R}^d$ . We want to condition on the event  $\{X_T=y\}$  for some given  $T>0,y\in\mathbb{R}^d$ . Goal: Find,  $\forall y\in\mathbb{R}^d,\mathbb{Q}^y$  which is the conditional measure on  $\{X_T=y\}$ . Assume:  $(X_t)_{t\geq 0}$  has transition density P s.t.

$$\forall 0 \le s \le t \le T, \mathbb{P}(X_t \in dz \mid X_s = x) = p(s, x; t, z)dz.$$

 $X_t$  solves

$$\begin{cases} dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t \\ X_0 = x_0 \end{cases}$$

Define  $h^y(s,x) := \frac{p(s,x;T,y)}{p(0,x_0;T,y)}$  for  $s \in [0,T), x \in \mathbb{R}^d$ .

**Remark.** s < T since otherwise we get in general singularities.

**Lemma 2.4.** Let  $Z_t^y := h^y(t, X_t)$  is a martingale.

*Proof.* Let  $0 \le < t < T$ :

$$\mathbb{E}(Z_t^y \mid \mathcal{F}_s) = \mathbb{E}(h^y(t, X_t) \mid \mathcal{F}_s)$$

$$\stackrel{\text{MP}}{=} \mathbb{E}(h^y(t, X_t \mid X_s))$$

$$= \int_{\mathbb{R}^d} h^y(t, x) p(s, X_s; t, x) dx$$

$$= \int_{\mathbb{R}^d} \frac{p(t, x; T, y)}{p(0, x_0; T, y)} p(s, X_s; t, x) dx$$

$$= \frac{1}{p(0, x_0; T, y) \int_{\mathbb{R}^d} p(s, X_s; t, x) p(t, x; T, y) dx}$$

$$\stackrel{\text{Chapman-Kolmogorov}}{=} Z^y =$$

This is not true in general, if we don't have unique solutions

 $h^{y}(0, x_0) = 1$ Start of lecture 07 (02.05.24)

Added remark. <u>Goal:</u> Find a family  $(\mathbb{Q}^y)_{y\in\mathbb{R}^d}$  s.t. for  $A\in\mathcal{F}_T$ :

$$\mathbb{P}(A) = \mathbb{E}(\mathbb{P}(A|X_T)) \stackrel{?}{=} \mathbb{E}(\mathbb{Q}^{X_T}(A))$$

and  $\mathbb{Q}^y (\lim_{t \uparrow T} X_t = y) = 1$ 

Lemma 2.5. We can take

$$\mathbb{Q}^{y}(A) = \mathbb{E}(1_A \cdot h^{y}(s, X_s)) \forall A \in \mathcal{F}_s$$

for  $s \in [0,T]$ .

*Proof.* For all  $A \in \mathcal{F}_s$ , g bounded measurable:

$$\mathbb{E}(1_A g(X_t)) = \mathbb{E}(1_A \mathbb{E}(g(X_T | \mathcal{F}_s)))$$

$$\stackrel{\text{MP}}{=} \mathbb{E}(1_A \mathbb{E}(g(X_T | X_s)))$$

$$= \mathbb{E}\left(1_A \int_{\mathbb{R}^d} p(s, X_s; T, x) g(x) dx\right)$$

$$= \int_{\mathbb{R}^d} dx g(x) \mathbb{E}(1_A p(s, X_s; T, x))$$

In particular,

$$\mathbb{P}(A) = \mathbb{E}(1_A) = \int_{\mathbb{R}^d} dx \mathbb{E}(1_A \cdot p(s, X_s; T, x))$$

But

$$\int_{\mathbb{R}^d} dx p(0, X_0; T, x) Q^x(A) = \int_{R^d} p(0, x_0; T, x) \underbrace{\mathbb{E}(1_A h^x(s, X_s))}_{= \int dz p(0, x_0; s, z) h^x(s, z) 1_A}$$

$$= \int_{\mathbb{R}^d} \mathbb{E}(1_A p(s, X_s; T, x))$$

$$= \mathbb{P}(A). \qquad \Box$$

Remark.  $Z_t^y = h^y(t, X_t) = h(0, X_0) + martingale + \underbrace{\int_0^t (\partial_t + \mathcal{L}) h^y(s, X_s) ds}_{=0}$ .

One can verify:  $(\partial_t + \mathcal{L})h^y(t, X_t) = 0 \iff (\partial_t + \mathcal{L})H^y(t, X_t) = 0 \text{ for } H^y(t, x) = p(t, x; T, y).$ 

$$\begin{split} \frac{\partial}{\partial t} H^y(t,x) &= \lim_{\epsilon \downarrow 0} \frac{p(t,x;T,y) - p(t-\epsilon,x;T,y)}{\epsilon} \\ &= \lim_{\epsilon \downarrow 0} \frac{p(t,x;T,y) - \int \underbrace{p(t-\epsilon,x;t,z)}_{p(t-\epsilon,x;t,z)} p(t,z;T,y) dz}{\epsilon} \\ &= -(\mathcal{L}H^y)(t,x) \end{split}$$

 $\implies$  this is a doob-h transform with  $h = h^y$ .

$$\frac{d\mathbb{Q}^y}{d\mathbb{P}}|_{\mathcal{F}_t} = Z_t^y.$$

Corollary 2.6. Assume  $(t,x) \mapsto p(t,x;T,y)$  is  $C^{1,2}([0,T] \times \mathbb{R}^d)$ 

 $\implies$  The Doob h-transform of the original process under  $\mathbb{Q}^y$  satisfies the SDE:

$$dX_t = \tilde{b}(t, X_t)dt + \sigma(t, X_t)d\tilde{B}_T$$

where  $\tilde{B}_t$  is a  $\mathbb{Q}^y$ -BM and  $\tilde{b}(t, X_t) = b(t, X_t) + (\sigma \sigma^\intercal \nabla \ln h^y)(t, X_t)$ .

**Remark.** Take  $z \neq y$  and  $\forall 0 < \epsilon < |z - y|$ :

$$\mathbb{Q}^{y}\left(\left\{|X_{t}-z| \leq \epsilon\right\}\right) = \mathbb{E}\left(1_{|X_{t}-z| \leq \epsilon} \frac{p(t,X_{t};T,y)}{p(0,x_{0};T,y)}\right)$$
$$= \int dx 1_{|x-z| \leq \epsilon} p(0,x_{0},t,x) \frac{p(t,x;T,y)}{p(0,x_{0};T,y)}$$
$$\stackrel{t \to T}{\longrightarrow} 0$$

 $\implies \mathbb{P}\left(\lim_{t\uparrow T} X_t = y\right) = \mathbb{P}(X_t = y) = 0, \ but \ \mathbb{Q}^y \left(\lim_{t\uparrow T} X_t = y\right) = 1$  $\implies \mathbb{Q}^y \ is \ singular \ w.r.t. \ \mathbb{P}.$ 

**Added example.**  $b = \gamma \in \mathbb{R}^d, \sigma = 1, X_0 = 0 \text{ and } T = 1.$  Under  $\mathbb{P}$ :

$$\begin{cases} dX_t = \gamma dt + dB_t \\ X_0 = 0 \end{cases}$$

Under  $\mathbb{Q}^y$ ?

$$h^{y}(t,x) = \frac{p(t,x;1,y)}{p(0,x_{0},1,y)} = fct(\gamma,y) \cdot \exp\left(-\frac{(y-x)^{2}}{2(1-t)}\right) \exp\left((y-x)\gamma\right)$$

 $\implies \ln(h^y(t,x)) = \ln f(\gamma,y) - \frac{(y-x)^2}{2(1-t)} + (y-x)\gamma \implies \nabla \ln h^y(t,x) = \frac{y-x}{1-t} - \gamma.$ Under  $\mathbb{Q}^y$ :

$$dX_t^k h^y = \left(\gamma_k + \frac{y_k - X_t^k}{1 - t}\right) dt + d\tilde{B}_t^k$$
$$= \frac{Y_k - X_t^k}{1 - t} dt + d\tilde{B}_t^k$$

Independent of  $\gamma!$ 

Useful in practice to

sample!

for  $k = 1, \dots, d$ 

**Lemma 2.7.** Let p be the transition density of X w.r.t.  $\mathbb{P}$  and  $p^h$  the transition density of X w.r.t.  $\mathbb{Q}^y$ .

Let  $h^y(t,x) = \frac{p(t,x;T,y)}{p(0,x_0;T,y)}$ .

$$\implies p^h(s,x;t,z) = \frac{1}{h^y(s,x)} p(s,x;t,z) h^y(t,z)$$

Notice how the normalizations inside of  $h^y$  cancel!

**Added remark.** This is the first time my numbering is different from the handwritten notes, as they contain two environments numbered 2.5.

Proof.

$$p^{h}(s, x; t, z)dz = \mathbb{P}(X_{t} \in dz \mid X_{s} = x, X_{T} = y)$$

$$0 \leq \underline{\underline{s}} \leq t \quad \underline{p(0, x_{0}; s, x)p(s, x; t, z)p(t, z; T, y)dz}$$

$$p(0, x_{0}; s, x)p(s, x; T, y)$$

$$= p(s, x; t, z) \frac{p(t, z; T, y)}{p(0, x_{0}; T, y)} \frac{1}{\frac{p(s, x; T, y)}{p(0, x_{0}; T, y)}} dz$$

# 2.4 Brownian motion conditioned to stay positive forever

**Goal:**  $(B_t)_{t\geq 0}$  with  $B_0=x_0\geq 0$  and condition on

$$\{B_t \ge 0 \forall t \ge 0\}$$

 $T_x = \inf\{t \ge 0 \mid B_t = x\}$  and take  $0 < x_0 < R$ .

 $T_0 \wedge T_R = T_R.$  Let  $\tilde{T}_R := T_0 \wedge T_R$ . Define the event  $E_R = \{B_{\tilde{T}_R} = R\} = \{T_0 \wedge T_R = T_R\}.$ 

Let 
$$T_R := T_0 \wedge T_R$$
. Define the event  $E_R$   
One verifies  $\mathbb{P}(E_R) = \frac{x_0}{R} \in (0, 1)$ .  
 $\mathbb{P}(E_R) = \mathbb{E}(1_{B_{T_R}^{x_0}}) = \underbrace{\mathbb{E}(f(B_{T_R}^{x_0}))}_{u(x_0)}$ , where

$$f(x) = \begin{cases} 1 & x = R \\ 0 & x = 0 \end{cases}.$$

u has a link to the PDE:

$$\begin{cases} \frac{1}{2} \frac{\partial^2}{\partial x^2} u(x) = 0 & x \in (0, R) \\ u(x) = f(x) & x \in \{0, R\} \end{cases}$$

Define the conditional probability

later 
$$R \to \infty$$

By Theorem 11.6 of the

last semester

$$Q^{R}(A) := \frac{\mathbb{P}(A \cap E_{R})}{\mathbb{P}(E_{R})}$$

**Lemma 2.8.** Let  $h(x) := \frac{\mathbb{P}_x(E_R)}{\mathbb{P}_{x_0}(E_R)} = \frac{x}{x_0}$ , where  $\mathbb{P}_x$  is the unconditional law for  $B_0 = x$ .

$$Z_t = h(B_{t \cap \tilde{T}_R})$$

is a non-negative martingale.

Proof.

$$\mathbb{Q}^{R}(A) \stackrel{A \in \mathcal{F}_{s}}{=} \frac{\mathbb{E}(1_{A}\mathbb{E}(1_{E_{R}} \mid \mathcal{F}_{s}))}{\mathbb{P}(E_{R})} = \frac{\mathbb{E}(1_{A}\mathbb{E}(1_{E_{R}} \cdot 1_{\tilde{T}_{R} > s} \mid \mathcal{F}_{s})) + \mathbb{E}(1_{A}\mathbb{E}(1_{E_{R}} 1_{\tilde{T}_{R} \leq s} \mid \mathcal{F}_{s}))}{\mathbb{P}(E_{R})}$$

$$= \frac{1}{\mathbb{P}(E_{R})} \left[ \mathbb{E}(1_{A} 1_{\tilde{T}_{R} > s} \underbrace{\mathbb{E}(1_{E_{R}} \mid \mathcal{F}_{s}))}_{\mathbb{P}_{B_{s}}(E_{R})} + \mathbb{E}(1_{A} \underbrace{1_{E_{R}}}_{1_{B_{\tilde{T}_{R}} = R}} 1_{\tilde{T}_{R} \leq s}) \right]$$

$$= \mathbb{E}(1_{A} 1_{\tilde{T}_{R} > s} h(B_{s})) + \mathbb{E}(1_{A} 1_{\tilde{T}_{R} \leq s} h(B_{T_{R}}))$$

$$= \mathbb{E}(1_{A} h(B_{s \land \tilde{T}_{R}}))$$

$$\implies \forall A \in \mathcal{F}_s : \mathbb{Q}^R(A) = \mathbb{E}_{\mathbb{P}}(1_A h(B_{s \wedge \tilde{T}_R}))$$

$$\implies h(B_{s\wedge \tilde{T}_R}) = \frac{d\mathbb{Q}^R}{d\mathbb{P}}|_{\mathcal{F}_s} \implies h \in (0, \frac{R}{x_0}) \text{ is a martingale (See construction of Girsanov)} \qquad \Box$$

Note that we can write  $Z_t^R =:= h(B_{s \wedge \tilde{T}_R}) = \exp(L_t - \frac{1}{2} \langle L \rangle_t)$  by choosing

$$(07.05.24) = \exp(L_t - \frac{1}{2}\langle L \rangle_t) \text{ by choosing}$$
 Start of lecture 08 
$$(17.05.24)$$
 
$$L_t = \int_0^{\tilde{T}_R} \frac{h'(B_s)}{h(B_s)} dB_s$$

since

$$dL_t = \frac{dZ_t^R}{Z_t^R} = \begin{cases} \frac{h'(B_t)dB_t}{h(B_t)} & t < \tilde{T}_R\\ 0 & t \ge \tilde{T}_R \end{cases}$$

**Proposition 2.9.** Under the measure  $\mathbb{Q}^R$ ,  $(B_t)_{t\geq 0}$  solves the SDE

$$dB_t = \frac{1_{t\tilde{T}_R}}{B_t}dt + dW_t$$

for some  $(W_t)_{t>0}$  a  $\mathbb{Q}^R$ -BM.

Proof. Apply Girsanov in which

$$d\langle B,L\rangle_t = dB_t \cdot dL_t \quad 1_{t<\tilde{T}_R} \quad \frac{1}{B_t} dt \qquad \qquad \Box$$

Our goal was to condition the BM to stay positive forever. So ar we have conditioned it to reach the level R before the level 0.

Remark.

$$\mathbb{Q}^{R}(T_{0} < T_{R}) = \mathbb{E}(1_{T_{0} < T_{R}} h(B_{T_{R} \wedge T_{0}}))$$

$$= \mathbb{E}(1_{T_{0} < T_{R}} h(B_{T_{0}}))$$

$$= \mathbb{E}(1_{T_{0} < T_{R}} \underbrace{h(0)}_{=0}) = 0$$

 $\implies$  under the new measure  $\mathbb{Q}^R$ , the BM indeed does not reach 0 before R as we wanted.

Finally we wan to take  $R \to \infty$ . It should

Added example. Discrete time M.C. with transition probability P aperiodic and irreducible:  $\exists n_0 \forall n > n_0(P)_{i,j}^n > 0 \implies \exists |\lambda_0| \leq 1, |\lambda_1| > |\lambda_2| > |\lambda_3|$ :

$$(P)^n \underbrace{\varphi_0(i)}_{>0} = \lambda_0 \varphi_0(i)$$

$$\lim_{n\to\infty} \underbrace{\stackrel{n}{P}}_{(1+L)} = (\varphi_0(1), \dots, \varphi_0(d))$$

where  $(1+L) \to e^{tL}$ , for which the real eigenvalues are positive.

Start of lecture 09 (14.05.24)

# 2.5 Diffusion conditioned to stay in a domain

Domain  $D \subset \mathbb{R}^d$ : bounded, open, connected.

Diffusion with generator

$$L = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i \frac{\partial}{\partial x_i}$$

 $\iff$  SDE

$$\begin{cases} dX_t = b(t, X_t)dt + \frac{1}{2}\sigma(t, X_t)dB_t \\ X_0 = x_0 \end{cases}$$

 $a = \sigma \sigma^{\mathsf{T}}$ .

Assume:  $b, \sigma$  are continuous,  $\sigma \in C^1$  and let  $\tau_D = \int \{t \ge 0 | X_t \notin D\}$ **Key assumption** in Pinsky's paper:

(a) 
$$\mathbb{P}_x(\tau_D > t) \in \mathbb{C}^2(D)$$

$$\begin{cases} \mathbb{P}_x(\tau_D > t) &= C_1 \varphi_0(x) e^{-\lambda_0 t} + o\left(e^{-\lambda_0 t}\right) \\ \nabla \mathbb{P}_x(\tau_d > t) &= C_1 \nabla \varphi_0(x) e^{-\lambda_0 t} + o\left(e^{-\lambda_0 t}\right) \end{cases}$$

where

$$\begin{cases}
-L\varphi_0(x) = \lambda_0 \varphi_0(x) & x \in D \\
\varphi_0(x) = 0 & x \in \partial D
\end{cases}$$

and  $\lambda_0$  is the smallest eigenvalue of -L. Which means  $\mathbb{P}(\tau_d > t) \stackrel{t \to \infty}{\to} 0$ 

Want: Condition X to stay in D forever.

in the non symmetric case take the real part first

(1) Condition  $X_t$  to  $\{X_t \in D : 0 \le t \le T\}$ : Forall  $A \in \mathcal{F}_T$ : define a measure

$$\mathbb{Q}^{T}(A) := \frac{\mathbb{P}_{x_0}(A \cap \{\tau_D > T\})}{\mathbb{P}_{x_0}(1_{\tau_D} > T)} = \frac{\mathbb{E}_{x_0}(1_A \cdot 1_{\tau > T})}{\mathbb{E}_{x_0}(1_{\tau > T})}$$

Lemma 2.10.  $\forall s < T, A \in \mathcal{F}_s$ ,

$$\mathbb{Q}^T(A) = \mathbb{E}_{x_0}(1_A \cdot Z_s^T)$$

where 
$$Z_s^T = \frac{g^{T-s}(X_{s \wedge \tau_D})}{g^T(x_0)}$$
 with  $g^t(x) := \mathbb{P}_x(\tau_D > t)$ .

Proof. Let  $A \in \mathcal{F}_s, s < T$ :

$$\begin{split} \mathbb{Q}^{T}(A) &= \frac{\mathbb{E}_{x_{0}}(1_{A}1_{\tau_{D}>T})}{g^{T}(x_{0})} = \frac{\mathbb{E}_{x_{0}}(1_{A}\mathbb{E}_{x_{0}}(1_{\tau_{D}>T}|\mathcal{F}_{s}))}{g^{T}(x_{0})} \\ &\stackrel{\text{M.P.}}{=} \frac{\mathbb{E}_{x_{0}}(1_{A}\mathbb{E}_{x_{0}}(1_{\tau_{D}>T}|X_{s}))}{g^{T}(x_{0})} \\ &= \frac{1}{g^{T}(x_{0})} \left[ \mathbb{E}_{x_{0}}(1_{A}\underbrace{\mathbb{E}_{x_{0}}(1_{\tau_{D}>T}1_{\tau_{D}>s}|X_{s})}_{g^{T-s}(X_{s})}) + \mathbb{E}_{x_{0}}(1_{A}\underbrace{\mathbb{E}_{x_{0}}(1_{\tau_{D}>T}1_{\tau_{D}$$

**Lemma 2.11.**  $Z_0^T = 1$  and  $(Z_s^T)_{s \in [0,T]}$  is a martingale.

*Proof.* By lemma 2.10  $\implies Z_s^T = \frac{d\mathbb{Q}^T}{d\mathbb{P}}\mid_{\mathcal{F}_s} \to$  is a martingale.

**Remark.** By construction, 
$$\mathbb{Q}^T(\tau_D \leq T) = \frac{1}{g^T}(x_0)\mathbb{E}_{x_0}(1_{\tau_D \leq T}1_{\tau_D > t}) = 0$$

Assume that  $g^t(x)$  is  $C^{1,2}$  (1 in time, 2 in space)  $\implies$  apply Itô and doob transform gives:

**Proposition 2.12.** Let X be a weak solution of  $dX_t = b(t, X_t)dt + \sigma(t, X_t)dB_t$  under  $\mathbb{P}$ .  $\implies X$  is a weak solution of

$$dX_t = \left(b(t, X_t) + \frac{a(t, X_t)\nabla g^{T-t}(X_t)}{g^{T-t}(X_t)}\right)dt + \sigma(t, X_t)d\tilde{B}_t, 0 \le t \le T$$

under  $\mathbb{Q}^T$  provided  $g^t(x) > 0 \forall x \in D, t \geq 0$ .

What happens in the  $T \to \infty$  limit?

By assumption (b)

$$\lim_{T \to \infty} \frac{\nabla g^{T-t}(x)}{g^{T-t}(x)} = \frac{\nabla \varphi_0(x)}{\varphi_0(x)}$$

**Remark.** If  $g \in C^{1,2}$ , it satisfies the parabolic PDE

$$(\star) \begin{cases} \frac{\partial}{\partial t} g^t(x) = Lg^t(x) & x \in D \\ g^t(x) = 0 & x \in \partial D \end{cases}$$

Apply Theorem 11.5 from the WS with  $A = L, u(t, x = g^t(x))$ :  $u(0, x) = \mathbb{E}_x(1_{\tau_D > 0}) = 0, u(t, x) = \mathbb{E}_x(1_{\tau_D > t}) = 0 \forall t, x \in \partial D$ .

Pinsky proved that  $\lim_{T\to\infty} Q^T = Q$  weak and that under Q the process satisfies

$$dX_t = \left[ b(t, X_t) + a(t, X_t) \frac{\nabla \varphi_0(X_t)}{\varphi_0(X_t)} \right] dt + \sigma(t, X_t) dW_t.$$

Why is 
$$\mathbb{P}_x(\tau_D > t) = C_1 \varphi_0(x) e^{-\lambda_0 t} + o(e^{-\lambda_0 t})$$

Page 26 of 37

Their operator is not the same as ours. The only difference is a drift term.

**Added remark.** This is not the case for BM conditioned to stay in  $D = (0, \infty)$ . Reason: Spectrum of -L is  $\mathbb{R}_+$ 

Since it satisfies the PDE  $(\star)$ ,  $g^t(x) = (e^{tL})g^0(x)$ .

if the spectrum of -L is discrete with eigenvalues  $0 \le \lambda_0 < \lambda_1 \le \ldots$ , where there is a spectral gap between  $\lambda_0$  and  $\lambda_1$ :  $\exists$  eigenfunctions  $\varphi_0(x), \varphi_1(x), \ldots$ , normalized as

 $\|\varphi_n\|_{L^2(D)} = 1 \implies +L\varphi_n(x) = -\lambda_n\varphi_n(x) \implies \text{we can choose } \varphi_0, \varphi_1, \dots \text{ to be orthonormal:}$  $(\varphi_i, \varphi_j)_{L^2(D)} = \delta_{ij}.$   $\implies 1 = \sum_{n\geq 0} \varphi_n \varphi_n^*$ , since  $\varphi_n \varphi_n^*$  is the projection onto the space generated by  $\varphi_m$ :

$$\varphi_n \varphi_n^* f = \varphi_n(\varphi_n, f)_{L^2(D)}$$

$$f(L)\varphi_n = f(-\lambda_n)\varphi_n$$

$$g^t(x) = (e^{tL})g^0(x) = e^{tL}1g^0(x) = \sum_{n\geq 0} e^{tL}\varphi_n(x)\varphi_n^*g^0 = \sum_{n\geq 0} e^{-\lambda_n t}\varphi_n(x)(\varphi_m, g^0)$$

$$= (\varphi_0, g^0)\varphi_0(x)e^{\lambda_0 t} + \underbrace{e^{-\lambda_0 t}\sum_{n\geq 0} e^{(\lambda_0 - \lambda_n)t}\varphi_n(x)(\varphi_n, g^0)}_{o(e^{-\lambda_0 t})}$$

Example 2.13. One dimension.

 $L = \frac{1}{2} \frac{d^2}{dx^2} \text{ and } D = [0, R].$ Solve  $-L\varphi(n)(x) = \lambda_n \varphi_n(x) \text{ with } \varphi_n(x) = 0 \text{ for } x \in \{0, R\}.$ 

Solutions  $\varphi_n(x) = C_1 \sin\left(\frac{\pi x}{R} \cdot (n+1)\right)$  and  $\lambda_n = \left(\frac{\pi(n+1)}{R}\right)^2 \implies \lambda_0 = \frac{\pi^2}{R^2}$ . For  $x \in (0, R)$ :

$$\mathbb{P}_x(\tau > t) \approx \tilde{C}_1 \varphi_0(x) e^{-\frac{\pi^2 t}{R^2}}$$

$$\implies dX_t = \frac{\pi}{R} \frac{\cos(\frac{\pi X_t}{R})}{\sin(\frac{\pi X_t}{R})} d + dW_t$$

as  $X_t \to 0$  (or  $X_t \to \mathbb{R}$ ),  $drift \approx \frac{1}{x_t}$  or  $(\frac{-1}{R-X_t})$ .

Also: formally  $R \to \infty$  in the SDE, we get  $dX_t = \frac{dt}{X_t} + dW_t$ , which is the SDE we derived for BM conditioned to stay > 0 forever.

Example 2.14 (Brownian Motion in a Weyl chamber). The Weyl chamber is defined as

$$W^d = \{ x \in \mathbb{R}^d \mid x_1 < x_2 < \dots < x_d \}.$$

Given a d dim. Brownian motion  $(B_t)_{t\geq 0}$  with  $B_0 \in W^d$  what is the sde of this BM conditioned on staying in  $W^d$  forever.

What is the harmonic function vanishing at  $\partial W^d$ ?

**Lemma 2.15.**  $h(x) := \prod_{1 \le k \le l \le d} (x_l - x_k)$  is harmonic and satisfies

$$\frac{1}{2} \sum_{k=1}^{d} \frac{\partial^2}{\partial x_k^2} h(x) = 0, x \in W^d$$

and h(x) = 0 for  $x \in \partial W^d$ , h(x) > 0 for  $x \in W^d$ .

**Remark.**  $h(x) = \det(x_k^{l-1})$ 

*Proof.* Last two properties are clear. h is a polynomial, antisymmetric in each pair  $x_l - x_k$  and has lowest possible power.

 $\Delta h(x)$  is still antisymmetric, but with lower power  $\implies \Delta h(x) = 0$ .

Page 27 of 37

Start of lecture 10 (16.05.24)

The BM conditioned to stay in the Weyl chamber will satisfy the SDE:

$$dX_t^k = \sum_{l \neq k} \frac{dt}{X_t^l - X_t^k} + dB_t^k, \qquad 1 \le k \le d$$

## 2.6 Stationary distribution for diffusions

let  $dX_t = b(X_t)dt + \sigma(X_t)dB_t$ , where  $b, \sigma$  are time independent with generator

$$L = \sum_{k=1}^{d} b_k(x) \frac{\partial}{\partial x_k} + \frac{1}{2} \sum_{k,l=1}^{d} a_{k,l}(x) \frac{\partial^2}{\partial x_k \partial x_l}$$

**Definition 2.16.** A probability measure  $\mu$  stationary (or invariant) if for all  $f \in C_0^{\infty}(\mathbb{R}^d)$ 

$$\int_{\mathbb{R}^d} (Lf)(x)\mu(dx) = 0$$

Assume that  $\mu \ll$  Lebesgue, i.e.,  $\mu(dx) = \rho(x)dx$  for some positive function  $\rho(x) \in C^2$  with  $\int \rho(x)dx = 1$ .

**Lemma 2.17.**  $\mu$  is stationary with density  $\rho$ 

$$\iff L^*\rho(x) = 0 \ almost \ everywhere$$

where  $L^*$  is the adjoint of L, given by

$$L^*\rho(x) = \frac{1}{2} \sum_{k,l=1}^d \frac{\partial^2}{\partial x_l \partial x_l} (a_{k,l(x)\rho(x)}) - \sum_{k=1}^d \frac{\partial}{\partial x_k} (b_k(x)\rho(x))$$

Proof.

$$\int_{\mathbb{R}^d} (Lf)(x)\rho(x)dx = 0$$

$$= \int_{\mathbb{R}^d} dx_1, \dots, dx_d \rho(x) \left( \frac{1}{2} \sum_{k,l=1}^d \frac{\partial^2}{\partial x_k \partial x_l} f(x) + \sum_{k=1}^d b_k(x) \frac{\partial}{\partial x_k} f(x) \right)$$

$$\int_{\mathbb{R}^{d-1}} \prod_{l \neq k} dx_l \underbrace{\int_{\mathbb{R}^d} dx_k \rho(x) b_k(x) \frac{\partial}{\partial x_k} f(x)}_{\text{I.b.-P} - \int_{\mathbb{R}^d} dx_k \frac{\partial}{\partial x_k} (\rho(x) b_k(x)) \cdot f(x)}_{\text{I.b.-P} - \int_{\mathbb{R}^d} dx_k \frac{\partial}{\partial x_k} (\rho(x) b_k(x)) \cdot f(x)}$$

**Example 2.18** (1-dim. diffusion). Let  $L = b(x) \frac{\partial}{\partial x} + \frac{1}{2} \sigma^2(x) \frac{\partial}{\partial x^2}$  for all  $x \in R$ .

$$\implies L^*\rho(x) = \frac{1}{2}\frac{\partial^2}{\partial x^2}(\rho(x)\sigma^2(x)) - \frac{\partial}{\partial x}(\rho(x)b(x)) \stackrel{wanted}{=} 0$$

$$\implies \exists c_1 \ s.t. \ \frac{1}{2} \frac{\partial}{\partial x} (\underbrace{\rho(x)\sigma^2(x)}_{=g(x)}) - \underbrace{\rho(x)b(x)}_{=g(x)\frac{b(x)}{\sigma^2}} = c_1.$$

Let  $s(x) = \int_{x_0}^x dy e^{-\int_{x_0}^y dz \frac{2b(z)}{\sigma^2(z)}}$  be the <u>scale function</u>. The equation for  $c_1$  is equivalent to

$$s'(x)\sigma^2(x)\rho(x) = c_2 + 2c_1s(x)$$

for some constant  $c_2, s'(x)e^{-\int_{x_0}^y dz \frac{2b(z)}{\sigma^2(z)}} => 0$ .

this also assumes b to be differentiable!

s satisfies  $\frac{1}{2}\sigma^2(x)s''(x) + b(x)s'(x) = 0$ , for the Bessel process d = 2,  $s(x) = \ln(x)$ If  $s(\mathbb{R}) = \overline{\mathbb{R}}$ , then  $c_1 = 0$ , which implies

$$\rho(x) = \frac{c_2}{\sigma^2(x)} \underbrace{e^{\int_{x_0}^x \frac{2b(y)}{\sigma^2(y)} dy}}_{\frac{1}{s/(x)}}$$

which satisfies positivity.

**Lemma 2.19.** If  $S(\mathbb{R}) = \mathbb{R}$ , then there exists stationary measure with density  $\rho(x)$  as described above.

#### Counterexample:

- $\sigma = 1$ ,  $x_0 = 0$ , b(z) = b > 0.
- $\implies s(x) = \frac{1 e^{-2bx}}{2b} \rightarrow s'(x) = e^{-2bx}.$ 
  - $s(-\infty) = -\infty$
  - $s(\infty) = \frac{1}{2b}$
- $\implies$  Argument for  $c_1 = 0$  does not work.

$$\implies \rho(x) = \tilde{c}_1 + \tilde{c}_{02}e^{2bx}$$

which can't be a density, because if at least  $\tilde{c}_1$  or  $\tilde{c}_2$  are  $\neq 0 \implies$  it is not integrable.

**Example 2.20.** Let  $Lf(x) = \frac{1}{2} \frac{\partial^2}{\partial x^2} f(x) + b(x) \frac{\partial}{\partial x} f(x)$  where  $b(x) = \frac{\partial}{\partial x} \ln h(x)$  for some h(x) > 0. Assume h is normalized as  $\int_R (h(x))^2 dx = 1$ .  $\Longrightarrow$  Claim: The stationary density of the process with generator L is given by  $\rho(x) = (h(x))^2$ .

Implicitly assumes  $h \in L^2(\mathbb{R})$ 

Verify the claim:

$$\begin{split} L^*\rho(x) &\stackrel{?}{=} 0 \\ &= \frac{1}{2} \frac{\partial^2}{\partial x^2} \rho(x) - \frac{\partial}{\partial x} (b(x)\rho(x)) \\ &= \frac{1}{2} \frac{\partial^2}{\partial x^2} (h(x))^2 - \frac{\partial}{\partial x} (\frac{h'(x)}{h(x)} h(x)^2) \\ &= \frac{\partial}{\partial x} (h(x)h'(x)) - \frac{\partial}{\partial x} (h'(x)h(x)) = 0 \end{split}$$

Example ??  $\implies h(x) = c \sin(\frac{\pi x}{L})$ 

here  $L \in \mathbb{R}$  is not the operator!

$$\int_0^L h(x)^2 dx = c^2 \int_0^2 \sin^2(\frac{\pi x}{L}) dx = 1$$

$$\implies c = \sqrt{\frac{2}{L}} \implies \rho(x) = \frac{2}{L} \sin^2(\frac{\pi x}{L}).$$

#### 2.7Uniqueness in law and path integral formula

Consider the SDE

$$\begin{cases} dX_t = b(t, X_t)dt + dB_t & \text{in } \mathbb{R}^d \\ x_0 = x_0 \end{cases}$$

Assume

$$(\star) \forall T > 0 \int_0^T |b(s, X_s)|^2 ds < \infty \text{ a.s.}$$

Page 29 of 37

**Goal:** Show uniqueness in law.

Consider any  $(X, \mathcal{B}, \mathbb{P})$  weak solution satisfying  $(\star)$  and define

$$\tau_n := \inf\{t \ge 0 \mid \int_0^t |b(s, X_s)|^2 ds \ge n\}$$

which, by  $(\star)$  goes to infinity.

For each n, define  $\mathbb{Q}^n$ :

$$\frac{d\mathbb{Q}^n}{d\mathbb{D}} = e^{-\underbrace{\int_0^{\tau_n} b(s,X_s) dB_s}_{L_{\tau_n}} - \frac{1}{2} \int_0^{\tau_n} |b(s,X_s)|^2 ds}}.$$

By Girsanov:  $\tilde{B}_t := B_t - \langle B, L \rangle_t = B_t + \int_0^{t \wedge \tau_n} b(s, X_s) ds$  is BM w.r.t.  $\mathbb{Q}^n$ , which implies  $X_t = \tilde{B}_t$  for all  $t \leq \tau_n$  w.r.t.  $\mathbb{Q}^n$ .

Let events of (X, B)  $\mathcal{F}_T$  measurable for some time T: are in  $A_T$ .

$$\mathbb{E}_{\mathbb{P}}\left(1_{(X,B)\in A_{T}}1_{T\leq\tau_{n}}\right) = \mathbb{E}_{\mathbb{Q}^{n}}\left(1_{(X,B)\in A_{T}}1_{T\leq\tau_{n}}e^{\int_{0}^{\tau_{n}}b(s,X_{s})}\underbrace{dB_{s}}_{=dX_{s}-b(s,X_{s})ds} + \frac{1}{2}\int_{0}^{\tau_{n}}|b(s,X_{s})|^{2}ds\right)$$

$$= \mathbb{E}_{\mathbb{Q}^{n}}\left(1_{(X,B)\in A_{T}}1_{T\leq\tau_{n}}e^{\int_{0}^{\tau_{n}}b(s,X_{s})dX_{s} - \frac{1}{2}\int_{0}^{\tau_{n}}|b(s,X_{s})|^{2}ds}\right)$$

 $B_s$  is adapted to  $X_s \implies$  for some  $\Phi: B = \Phi(X) \implies$ 

$$\mathbb{E}_{\mathbb{Q}^n} \left( 1_{(X,\Phi(X)) \in A_T} 1_{T \le \tau_n} e^{\int_0^{\tau_n} b(s,X_s) dX_s - \frac{1}{2} \int_0^{\tau_n} |b(s,X_s)|^2 ds} \right)$$

But: Law of X w.r.t.  $\mathbb{Q}^n$  is the law of BM. Take  $n \to \infty$ , then  $\mathbb{Q}^n \to$  Wiener measure,  $T \to \infty \Longrightarrow$  we look at every possible event, but the probability does only depend on X!

$$\mathbb{P}((X,B) \in \mathcal{B}(\mathcal{E}^d \times \mathcal{E}^d))$$

Start of lecture 11

(28.05.24)

One case where the path integral formula is also numerically stable:

Assume that  $b(x) = -\nabla V(x)$  for some smooth V(x) (time independent). This is called drift of **gradient type**.

 $\overline{\text{Apply Itô to }V}(x)$ :

$$V(\omega_T) = V(\omega_0) + \int_0^T \nabla V(\omega_s) dw_s + \frac{1}{2} \int_0^T \Delta V(\omega_s) ds$$

$$\Longrightarrow \int_0^T b(s, \omega_s) d\omega_s = -\int_0^T \nabla V(\omega_s) d\omega_s$$
 and therefore

$$\mathbb{P}(X \in \tilde{A}_T) = \int_{C^d} W(d\omega) \underbrace{e^{V(\omega_0) - V(\omega_T) + \frac{1}{2} \int_0^T \left[ \Delta V(\omega_s) - (\nabla V(\omega_s))^2 \right] ds}}_{=: \Psi(\omega)}$$

One application:

Let  $X_0 = x, f : \mathbb{R}^d \to \mathbb{R}$ 

$$\underbrace{bE_x(f(X_T))}_{(T(t)f)(x)} = \int_{\xi^d} f(\omega_T)\Psi(\omega)W_x(d\omega)$$

where  $W_x$  is the wiener measure starting from x and T(t) is the semigroup of X.

$$|(T(t)f)(x)| \le ||fe^{-V}||_{\infty} e^{-\frac{1}{2} \int_0^t \inf_{x \in \mathbb{R}^d} (|\nabla V(x)|^2 - \Delta V(x)) ds}$$

If 
$$\inf_{x \in \mathbb{R}^d} (|\nabla V(x)|^2 - \Delta V(x)) \ge 2\lambda > 0 \implies$$

$$||e^{-V(x)(T(t)f)}|| < ||e^{-V}f||_{\infty}e^{-\lambda t} \rightarrow \text{exponential decay}$$

# Chapter 3:

# Local times, Itô-Tanaka formula, reflected Brownian Motion

## 3.1 Extension of Itô formula to convex functions

If 
$$f \in C^2(\mathbb{R}), f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t f''(X_s) d\langle x \rangle_s$$

**Proposition 3.1.** Let f be a convex function on  $\mathbb{R}$ ,  $X_t$  a (continuous) semimartingale, then  $f(X_t)$  is a semimartingale:  $\exists A_t^f$  such that  $\forall t \geq 0$ 

$$f(X_t) = f(X_0) + \int_0^t \underbrace{f'_-}_{left \ derivative \ of \ f} (X_s) dX_s + A_t^f$$

We make a choice for the left derivative, the same works for the right one, but with different processes

**Remark.** This extends directly to the case that  $f = f_1 - f_2$  with  $f_1, f_2$  convex (But with bounded variation and not necessarily increasing  $A_t^f$ )

Sketch of Proof. Consider a function  $\rho(x)$  s.t.

- $\rho(x) \ge 0$ ,  $\rho$  smooth
- $\rho(x) = 0 \text{ if } x \notin [0, 1]$
- $\int_{0}^{1} \rho(x) dx = 1$

For any  $n \in \mathbb{N}$  set

$$f_n(x) := \int_{\mathbb{R}} n\rho(ny) f(x-y) dy$$

Verify:

- $f_n$  is  $C^2(\mathbb{R})$ ;  $f_n'' \ge 0$  (since f is convex)
- $f'_n(x) = \int_{\mathbb{D}} n\rho(ny) \cdot f'_-(x-y)dy$
- $f_n(x) \stackrel{n \to \infty}{\to} f(x)$
- $f'_n(x) \stackrel{n \to \infty}{\to} f'_-(x)$

Itô formula to  $f_n(X_t)$ :

$$f_n(X_t) = f_n(X_0) + \int_0^t f'_n(X_s) dX_s + \underbrace{\frac{1}{2} \int_0^t f''_n(X_s) \langle X \rangle_s}_{A_t^{f_n} \in \mathcal{A}_+^0}$$

Using stopping times: If 
$$X = \underbrace{M_+}_{\in \mathcal{M}^0_{\mathrm{loc}}} + \underbrace{A}_{\in \mathcal{A}}$$

left derivative since we do convolution and not correlation with  $\rho$ 

 $\forall m \ge 1 : T_m = \inf\{t \ge 0 \mid |X_t| + \langle M \rangle_t + \int_0^t |dA_s| \ge m\}$ 

$$f_n(X_{t \wedge T_m}) = f(X_0) + \underbrace{\int_0^{t \wedge T_m} f'_n(X_s) dX_s}_{n \to \infty, \mathbb{P} \int_0^{t \wedge T_m} f'_n(X_s) dX_s} + \underbrace{\frac{1}{2} \int_0^{t \wedge T_m} f''_n(X_s) d\langle M \rangle_s}_{A_{t \wedge T_m}^{f_m}}$$

 $\implies$  set  $A_t^{f,m} \coloneqq f(X_{t \wedge T_m}) - f(X_0) - \int_0^{T_m} f'_-(X_s) dX_s$  and  $A_{t \wedge T_m}^{f_n} \stackrel{n \to \infty, \mathbb{P}}{\to} A_t^{f,m} = A_{t \wedge T_m}^f$ ; Take  $m \to \infty$  and get a process  $A_t^f$  since  $f''_n \ge 0 \implies A_t^f$  is increasing and in  $\mathcal{A}_0$ .

Let f(x) = |x|. Then

$$f'_{-}(x) = \begin{cases} -1 & x \le 0\\ 1 & x > 0 \end{cases}$$

we therefore define

$$\operatorname{sgn}(x) \coloneqq \begin{cases} -1 & x \le 0\\ 1 & x > 0 \end{cases}$$

as the left derivative of |x|.

**Proposition 3.2** (Tanaka's formula). Let X be a continuous semimartingale and  $a \in \mathbb{R}$ . Then there  $\exists$  increasing process  $(L_t^a(X))_{t>0}$  s.t.:

(a) 
$$|X_t - a| = |X_0 - a| + \int_0^t sgn(X_s - a)dX_s + L_t^a(X)$$

(b) 
$$(X_t - a)^+ = (X_0 - a)^+ + \int_0^t 1_{X_s > a} dX_s + \frac{1}{2} L_t^a(X)$$

(c) 
$$(X_t - a)^- = (X_0 - a)^- - \int_0^t 1_{X_s \le a} dX_s + \frac{1}{2} L_t^a(X)$$

The process  $L_t^a(X)$  is called the **local time of** X at <u>level a</u>. For any stopping time T:

$$L_t^a(X^T) = L_{t\wedge T}^a(X)$$

*Proof.* Taking f(x) = |x - a| in proposition 3.1 yields (a). Therefore

$$L_t^a(X) := |X_t - a| - |X_0 - a| - \int_0^t \operatorname{sgn}(X_s - a) dX_s$$

Applying prop. 3.1 to  $f(x) = (x - a)^+$  and  $f(x) = (x - a)^-$ 

$$\implies \exists A_t^{a,(+)}, A_t^{a,(-)} \in \mathcal{A}_0^+$$

such that

$$(X_t - a)^+ = (X_0 - a)^+ \int_0^t 1_{X_s > a} dX_s A_t^{a,(+)}$$
$$(X_t - a)^- = (X_0 - a)^- \int_0^t 1_{X_s \le a} dX_s A_t^{a,(-)}$$

$$X_t - a \stackrel{\text{It\^{o}}}{=} X_0 - a + \int_0^t dX_s$$
$$X_t - a = (X_t - a)^+ - (X_t - a)^- = X_0 - a + \int_0^t dX_s + A_t^{a,(+)} - A_t^{a,(-)}$$

which holds if and only if  $A_t^{a,(+)} = A_t^{a,(-)}$ . Furthermore

$$|X_t - a| = |X_0 - a| + \int_0^1 \operatorname{sgn}(X_s - a) dX_s + \underbrace{A_t^{a,(+)} + A_t^{a,(-)}}_{=L^a(X)}$$

To see:  $L_t^a(X) \to \text{positive measure } dL_t^a(X)$ , since  $L_t^a(X)$  is increasing.

$$\int_0^t \underbrace{f(x)}_{\geq 0} dL_s^a(X) \stackrel{?}{=} 0 \text{ if } f(x) > 0 \text{ for } x \neq a$$

**Proposition 3.3.** Let  $dL_t^a(X)$  be the measure associated with the increasing process  $L_t^a(X)$ . Then  $dL_t^a(X)$  is supported on  $\{s \ge 0 \mid X_s = a\}$ .

But this is not necessarily the full support!

Proof. Let  $Y_t = |X_t - a|$ .

$$\implies Y_t^2 = (X_t - a)^2 \stackrel{\text{Itô to } f(X_t) = (X_t - a)^2}{=} (X_0 - a)^2 + \int_0^t (X_s - a) dX_s + 2\langle X \rangle_t$$

$$Y_t^2 \overset{\text{It\^{o} to } f(Y_t) = Y_t^2}{=} (X_0 - a)^2 + 2 \int_0^t \underbrace{Y_s dY_s}_{=|X_s - a| \cdot (\operatorname{sgn}(X_s - a) dX_s + dL_s^a(X))} + \underbrace{\langle Y \rangle_t}_{\langle X \rangle_t \text{ by prop } 3.1}$$

$$= (X_0 - a)^2 + 2 \int_0^t (X_s - a) dX_s + 2 \int_0^t |X_s - a| dL_s^a(X) + \langle X \rangle_t$$

$$\implies \int_0^t |X_s - a| dL_s^a(X) = 0$$

and therefore the support is indeed contained in  $\{s \geq 0 \mid X_s = a\}$ 

**Remark.** If f is convex  $\implies f'_{-}(x)$  is increasing and left continuous. Therefore there exists a unique measure f''(dx) on  $\mathbb{R}_+$  such that

$$f''([a,b]) = f'_{-}(b) - f'_{-}(a)$$

If  $f \in C^2(\mathbb{R})$ , then f''(dx) = f''(x)dx, i.e. it has the density given by the second derivative. For all convex functions f with f''(dx) = 0 for all  $|x| \ge K$ 

$$\implies \exists \alpha, \beta \in \mathbb{R} : f(x) = \alpha + \beta x + \frac{1}{2} \int_{\mathbb{R}} |x - a| f''(da)$$

and  $f'_{-}(x) = \beta + \frac{1}{2} \int_{\mathbb{R}} sgn(x-a)f''(da)$  in a weak sense.

Start of lecture 12 (04.06.24)

**Theorem 3.4** (Itô-Tanaka-formula). If f is a difference of convex functions, X is a continuous semimartingale

$$\implies f(X_t)f(X_0) + \int_0^t f'_-(X_s)dX_s + \frac{1}{2} \int_R L_t^a(x)f''(da)$$

, where f''(da) is the measure associated with  $f'_-$ .

Sketch of proof. (Full proof: Thm 9.6 LeGall book) Once localized  $\rightarrow$  assume f''(da) = 0 on  $[-\kappa, \kappa]^c$ 

$$\implies f(X_t) = \alpha + \beta X_t + \int_{-\kappa}^{\kappa} |X_s - a| f''(da)$$

$$\stackrel{\text{prop. } 3.2}{=} \alpha + \beta X_t + \frac{1}{2} \int |X_0 - a| f''(da) + \frac{1}{2} \int \int_0^t \operatorname{sgn}(X_s - a) dX_s f''(da) + \frac{1}{2} \int L_t^a(X) f''(da)$$

$$= \underbrace{\alpha + \beta X_0 + \frac{1}{2} \int |X_0 - a| f''(da)}_{=f(X_0)} + \underbrace{\beta \int_0^t dX_s + \frac{1}{2} \int_0^t \operatorname{sgn}(X_s - a) f''(da) dX_s}_{=\int_0^1 f'_-(X_s dX_s)} + \underbrace{\frac{1}{2} \int L_t^a f''(da)}_{=\int_0^1 f'_-(X_s dX_s)}$$

Corollary 3.5 (Occupation time formula). Almost surely,  $\forall t \geq 0$ , non-negative measurable function  $\varphi$ 

$$\int_0^t \varphi(X_s) d\langle X \rangle_s = \int_{\mathbb{R}} \varphi(a) L_t^a(X) da$$

**Added example.** X = BM,  $\varphi(X) = 1_A(X)$ , A Borel set in  $\mathbb{R}$ 

$$\implies \int_0^t 1_A(X_s) ds$$

is the time spend by  $(X_s, s \in [0, t])$  in A and the RHS is

Think  $A = [a, a + \epsilon]$ 

Take f as the twice

integrated  $\varphi$  on the support of  $\varphi$  until x

$$\int_{A} L_{t}^{a}(X) da$$

 $\implies L_t^a$  density of time spend by Brownian motion in a.

*Proof.* (For  $\varphi$  with bounded support)

Find  $f \in C^2$  s.t.  $f''(x) = \varphi(x)$ .

 $\implies$  Itô-Tanaka-formula:

 $f(X_t) = f(X_0) + \int_0^t f'_{-}(X_s) dX_s + \frac{1}{2} \int L_t^a(X) \varphi(a) da$ 

By Itô-formula:

$$f(X_t) = f(X_0) + \int_0^t f'(X_s) dX_s + \frac{1}{2} \int_0^t \varphi(X_s) d\langle X \rangle_s$$

The claim follows from comparing the terms.

Explicit representation of the local time:

**Lemma 3.6.** Let X be a continuous semimartingale

 $\implies a.s. \ \forall a \in \mathbb{R}, t \geq 0$ :

$$L_t^a(X) = \lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_0^t 1_{a \le X_s \le a + \epsilon} d\langle X \rangle_s$$

*Proof.* Take  $\varphi(x) = \frac{1}{\epsilon} \mathbb{1}_{[a \le X \le a + \epsilon]}$  in corollary 3.5:

See Thm 9.4 in LeGall for more details

$$\implies \frac{1}{\epsilon} \int_0^t 1_{a \le X_s \le a + \epsilon} d\langle X \rangle_s = \frac{1}{\epsilon} \int_a^{a + \epsilon} L_t^{\tilde{a}}(X) d\tilde{a} \stackrel{\tilde{a} \to L_t^{\tilde{a}}}{=} L_t^a(X)$$

Similarly:

$$\lim_{\epsilon \downarrow 0} \frac{1}{\epsilon} \int_0^t 1_{[a-\epsilon \le X_s < a]} d\langle X \rangle_s = L_t^{a_-}(X)$$

$$\implies \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^t 1_{[a-\epsilon \le X_s \le a+\epsilon]} d\langle X \rangle_s = \frac{1}{2} (L_t^{a_-}(X) + L_t^a(X))$$

$$\begin{split} L_t^a(X) - L_t^{a_-}(X) &\stackrel{\text{prop } 3.2}{=} |X_t - a| - |X_0 - a| - \int_0^t \operatorname{sgn}(X_s - a) dX_s - (|X_t - a_-| - |X_0 - a_-| - \int_0^t \operatorname{sgn}(X_s - a_-) dX_s) \\ &= 2 \int_0^t 1_{X_s = a} dX_s \stackrel{X_t = M_t + A_t}{=} 2 \int_0^t 1_{X_s = a} dA_s \end{split}$$

where the first two terms are equal, since X is a continuous semimartingale. This then implies, if X is a martingale (and therefore  $A_t = 0$ ) then

$$L_t^a(X) = L_t^{a-}(X) \Longrightarrow L_t^a(X) = \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^1 1_{[a-\epsilon \le X_s \le a+\epsilon]} d\langle X \rangle_s.$$
In particular if  $X$  is a BM:

In particular, if X is a BM:

$$L_t^{a_-}(X) \implies L_t^a(X) = \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^1 1_{[a-\epsilon \le X_s \le a+\epsilon]} ds$$

#### 3.2 Brownian motion and local time

Let B be a standard BM, then by Tanaka:

$$|B_t| = |\underbrace{B_0}_{=0}| + \int_0^t \operatorname{sgn}(B_s) dB_s + \underbrace{L_t}_{:=L_s^0(B)}$$

We want to define the process  $R_t = |B_t|$  be the **BM reflected at** 0. We want to study  $R_t$  and  $S_t^B := \sup_{0 \le s \le t} B_s, L_t(B)$ 

#### 3.2.1 No strong solution of the Tanaka SDE

$$(\star) = \begin{cases} dX_t &= \operatorname{sgn}(X_t)dB_t \\ X_0 &= 0 \end{cases}$$

We already know:  $B_t := \int_0^t \operatorname{sgn}(W_s) dW_s$ , where W is a BM  $\implies BM$  is a BM (using Levy characterization) and

$$\int_0^t \operatorname{sgn}(W_s) dB_s = \int_0^t \operatorname{sgn}(W_s)^2 dW_s = W_t \to \operatorname{sgn}(W_t) dB_t = dW_t$$

and therefore (W, B) is a weak solution of  $(\star)$ .

Assume (X, B) is a strong solution of  $(\star) \implies dX_t = \operatorname{sgn}(X_t)dB_t$  with X is a BM. Itô-Tanaka-formula:

$$|X_t| = \int_0^t \operatorname{sgn}(X_s) dX_s + L_t^0(X)$$

$$\implies \int_0^t \operatorname{sgn}(X_s) dX_s = |X_t| - L_t^0(X) = |X_t| - \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^t 1_{|X_s| \le \epsilon} ds \in \mathcal{F}_t^{|X|}$$

But also:

$$\int_0^t \operatorname{sgn}(X_s) dX_s = \int_0^t (\operatorname{sgn}(X_s))^2 dB_s = B_t$$

$$B_t = |X_t| - \lim_{\epsilon \downarrow 0} \frac{1}{2\epsilon} \int_0^t 1_{|X_s| \le \epsilon} ds$$

 $\Longrightarrow B_t$  is  $\mathcal{F}_t^{|X|}$ -measurable and therefore B is  $\mathcal{F}^{|X|}$  measurable. If (X, B) is a strong solution, then X is measurable w.r.t.  $\mathcal{F}^B : \Longrightarrow \mathcal{F}^X \subset \mathcal{F}^B \subseteq \mathcal{F}^{|X|}$  which is wrong, since we can not recall the value of X knowing only its absolute value.

#### 3.2.2 Reflected SDE

**Definition 3.7.** The family (X, l, W) is a weak solution of the **reflected SDE** (One-dimensional):

$$dX_t = dW_t + dl_t$$

if:

- W is a BM
- X is a positive continuous process
- l is a positive non-decreasing continuous process

s.t.

$$\int_0^\infty 1_{X_s} > 0 dl_s = 0$$

The solution is called **strong**, if (X, l) is adapted to W.

#### Added example. • $X_t := |B_t|$

- $W_t := \int_0^t sgn(B_s)dB_s$

•  $l_t = L_t^0(B)$ This is a weak solution of the 1 dimensional reflected SDE.

# List of Lectures

- Lecture 01: Introduction, reminder of strong solutions, definition of weak solutions, uniqueness in law, pathwise uniqueness, and some examples
- Lecture 02: Further examples, Yamata-Watanabe theorems and Skorohod theorem (no proof), reminder of Lévy characterization, Ito-Doeblin formula
- Lecture 03: The martingale problem and one-to-one relation with weak solutions (special case of d = n proven); reminder of Dubins-Schwarz theorem
- Lecture 04: Transformation of SDE under time change, weak solutions for 1d SDEs, scale function and its relation to hitting times
- Lecture 05: Uniqueness of the solution of martingale problem, reminder of Girsanov theorem, changes of SDE under drift transformation
- Lecture 06: Drift transformation for SDE, Doob-h transform, start set-up for diffusion bridges
- Lecture 07: Diffusion bridges, set-up for Brownian motion conditioned to stay positive
- Lecture 08: Brownian motion conditioned to stay positive, Brownian excursion
- Lecture 09: Brownian motion conditioned to stay in a bounded domain
- Lecture 10: Brownian motion in the Weyl chamber, stationary measures for diffusions; Uniqueness in law via Girsanov
- Lecture 11: Path integral formula for drift of gradient type, extension of Ito to convex function, Tanaka formula and definition of local time
- Lecture 12: