

Redes Neurais Artificiais

(Prof. Ivan Nunes da Silva)

EPC-12

O comportamento de um processo industrial pode ser analisado levando-se em consideração várias variáveis de status relativas às fases do processo. Na tabela abaixo, fornecem-se 10 situações do comportamento do processo a partir dos valores de 16 variáveis de status.

	\mathbf{x}_1	\mathbf{x}_2	X3	X4	X5	X ₆	X 7	X8	X 9	X ₁₀	X ₁₁	X ₁₂	X ₁₃	X ₁₄	X ₁₅	X ₁₆
Situação 1	0	1	0	1	1	0	1	0	1	1	0	1	1	1	1	1
Situação 2	1	0	1	0	1	1	1	1	1	1	1	0	1	0	0	0
Situação 3	1	0	1	1	1	1	1	0	1	1	0	1	1	0	1	1
Situação 4	1	1	1	0	1	0	1	0	1	1	1	1	0	1	0	0
Situação 5	0	0	1	1	1	1	1	1	0	1	1	0	0	0	0	1
Situação 6	1	1	0	1	0	0	1	0	1	1	0	1	1	1	1	1
Situação 7	1	0	1	0	1	1	0	1	1	1	1	0	1	1	1	0
Situação 8	1	0	1	1	1	1	1	0	1	1	0	1	1	0	1	1
Situação 9	0	1	1	0	1	0	1	0	1	1	0	1	0	1	0	1
Situação 10	0	0	1	1	1	1	1	1	0	1	1	0	0	0	0	1

Implementar e treinar uma rede ART-1 que classifique e agrupe em classes as situações que são "parecidas", de modo que se tenha um provável diagnóstico para uma eventual manutenção.

Classificar as entradas considerando os seguintes graus de vigilância: $\rho=0.5,\;\rho=0.8,$ $\rho=0.9$ e $\rho=0.99.$ Após cada simulação, indicar quantas classes estarão ativas e que situações também estarão inseridas nos respectivos agrupamentos.