Introduction to Mathematical Programming IE406

Lecture 17

Dr. Ted Ralphs

Reading for This Lecture

• Bertsimas 7.3-7.5

Tree Solutions

- From now on, we assume that $\sum_{i \in N} b_i = 0$ and that G is connected.
- A flow vector f is called a *tree solution* if it can be constructed by the following procedure:
 - Pick a set of n-1 arcs T that form a tree when their direction is ignored.
 - Set $f_{ij} = 0$ for every $(i, j) \notin T$.
 - Use the flow balance equations $\tilde{A}f = \tilde{b}$ to determine the values of the flow variables f_{ij} , $(i,j) \in T$.
- Note that the flow balance equations always have a unique solution.
- A tree solution that also satisfies $f \geq 0$ is called a *feasible tree solution*.

Theorem 1. A flow vector is a basic solution if and only if it is a tree solution.

Network Simplex Method

- We now introduce a simple version of the simplex method for solving network flow problems.
- We have already seen what basic solutions look like.
- How do we change the basis?
 - Choose a nonbasic variable—this is an arc not in T.
 - Adding this arc to T forms a cycle.
 - To increase flow on the new arc, push θ units of flow around the cycle.
 - Let F be the set of forward arcs and B be the set of backward arcs. Then the new flow is

$$\hat{f}_{kl} = \begin{cases} f_{kl} + \theta, & \text{if } (k, l) \in F, \\ f_{kl} - \theta, & \text{if } (k, l) \in B, \\ f_{kl}, & \text{otherwise.} \end{cases}$$

- The maximum value for θ is $\theta^* = \min_{(k,l) \in B} f_{kl}$.

Reduced Costs in the Network Simplex Method

- Given the current dual vector p and defining $p_n = 0$ for convenience, we can easily derive that $\bar{c}_{ij} = c_{ij} (p_i p_j)$.
- To calculate the values of the dual variables, simply set $p_n = 0$ and solve the system $p_i p_j = c_{ij}$ for every $(i, j) \in T$.
- This can be done easily.
- Alternatively, the reduced cost of a nonbasic arc (i, j) is the sum of the costs of the arcs forming a cycle with (i, j) in the current tree solution (why?).

Overview of the Network Simplex Method

- 1. Start with a basic feasible solution associated with a tree T.
- 2. Compute the reduced costs for all arcs $(i, j) \notin T$.
- 3. If all the reduced costs are nonnegative, the current solution is optimal.
- 4. Otherwise, choose an arc with negative reduced cost to enter the basis.
- 5. If all the arcs in the resulting cycle are forward arcs, then the problem is unbounded.
- 6. Otherwise, push $\theta^* = \min_{(k,l) \in B} f_{kl}$ units of flow around the cycle.
- 7. Remove one of the arcs whose flow becomes zero from the basis. Iterate.

Integrality of Solutions

Theorem 2. Consider an uncapacitated network flow problem in which the underlying graph is connected.

- 1. For every basis matrix B, the matrix B^{-1} has integer entries.
- 2. If the supplies b_i are integer, then every basic solution has integer entries.
- 3. If the cost coefficients c_{ij} are integer, then every dual basic solution has integer entries.

Proof:

Corollary 1. If the supplies b_i are integers and the optimal cost is finite, then there exists an optimal flow that is integer.

Network Simplex with General Upper and Lower Bounds

 We can easily derive a version of network simplex with upper and lower bounds.

- We have two sets of nonbasic arcs—those at lower bound and those at upper bound.
- In each iteration, we look for
 - an arc at its lower bound whose reduced cost is negative, or
 - an arc at its upper bound whose reduced cost is positive.
- In the first case, we "push flow around the cycle" created in the same direction as the arc.
- In the second case, we push flow around in the opposite direction (thereby reducing flow on the arc).
- We have to change our definition of θ^* to account for upper bounds.

$$\theta^* = \min\{\min_{(i,j)\in B} (f_{ij} - d_{ij}), \min_{(i,j)\in F} (u_{ij} - f_{ij})\}$$

Negative Cost Cycle Algorithm

• For the rest of the lecture, we will assume that the lower bound on each arc is zero (for convenience).

- In network simplex, the sum of the reduced costs around any cycle is equal to the sum of the original costs (with the backward arc costs negated).
- The cycle created by an arc with negative reduced cost is hence a "negative cost cycle" in the original graph.
- Because of degeneracy, it is not guaranteed that we can push flow around this cycle.
- We now discuss an algorithm that is guaranteed to decrease the objective function at each iteration.
- The idea is to locate a "negative cost cycle" around which flow can be pushed.

Pushing Flow Around Cycles

Consider a cycle C and the simple circulation associated with it.

$$h_{ij}^{C} = \begin{cases} 1, & \text{if } (i,j) \in F, \\ -1, & \text{if } (i,j) \in B, \\ 0, & \text{otherwise.} \end{cases}$$

- If f is a feasible flow, δ is a scalar and we change the flow to $f + \delta h^C$, we say we are pushing δ units of flow around C.
- Notice that the new flow is also feasible, as long as

$$0 \le f_{ij} + \delta h_{ij}^C \le u_{ij}.$$

This is equivalent to

$$\delta \le \delta(C) = \min\{\min_{(i,j) \in B} f_{ij}, \min_{(i,j) \in F} (u_{ij} - f_{ij})\}$$

Negative Cost Cycles

 The cost change per unit of flow pushed around cycle C is called the cost of a cycle C and is

$$c^{\top} h^C = \sum_{(i,j)\in F} c_{ij} - \sum_{(i,j)\in B} c_{ij}$$

- This gives *negative cost cycle* a more formal definition.
- If there is a negative cost cycle for which $\delta(C) = \infty$, then the problem is unbounded.
- Any cycle for which $\delta(C) > 0$ is called *unsaturated*.
- We are interested in finding unsaturated cycles with negative cost.
- The basic algorithm is to start with a feasible flow and then iteratively saturate all unsaturated cycles with negative cost.

Questions to be Answered

- How do we start the algorithm (find a feasible flow)?
- How do we find unsaturated, negative cost cycles?
- If there are no unsaturated negative cost cycles, is the current solution optimal?
- Is the algorithm guaranteed to terminate?