

Finding the Impossible:

Automated Search for Full Impossible-Differential, Zero-Correlation, and Integral Attacks

Hosein Hadipour Sadeghi Sadeghi

Maria Eichlseder

EUROCRYPT 2023 - Lyon, France

Research Gap and Our Contributions

- 🚹 Research gap
 - **②** Lack of automatic tool to find full ID/ZC, and integral attacks
- Contributions
 - igotimes Introduced a new CP-based method to find ID/ZC, and integral distinguishers
 - igotimes Our CP model can be extended to an efficient unified model for key recovery
 - 💟 Found improved attacks for SKINNY, CRAFT, SKINNYee, and SKINNYe-v2

Research Gap and Our Contributions

- 🐴 Research gap
- Contributions
 - igspace Introduced a new CP-based method to find ID/ZC, and integral distinguishers
 - Our CP model can be extended to an efficient unified model for key recovery
 - Found improved attacks for SKINNY, CRAFT, SKINNYee, and SKINNYe-v2

Part of Our Result

Cipher	#R	Time	Data	Mem.	Attack	${\sf Setting} \; / \; {\sf Model}$	Ref.
SKINNY-64-192	23	$2^{155.60}$	2 ^{73.20}	2 ¹³⁸	Int	180,SK / CP,CT	[Ank+19]
	26	2^{172}	2^{61}	2^{172}	Int	180,SK / CP,CT	This paper
SKINNY-64-128	18	2^{126}	2 ^{62.68}	2 ⁶⁴	ZC	STK / KP	[SMB18]
	19	$2^{119.12}$	$2^{62.89}$	2^{49}	ZC	STK / KP	This paper
	20	$2^{97.50}$	$2^{68.40}$	2^{82}	Int	120,SK / CP,CT	$[Ank{+}19]$
	22	2^{110}	$2^{57.58}$	2^{108}	Int	120,SK / CP,CT	This paper
SKINNY-128-256	19	2 ^{241.80}	2 ¹²³	2 ²²¹	ID	STK / CP	[YQC17]
	19	$2^{219.23}$	$2^{117.86}$	2^{208}	ID	STK / CP	This paper
SKINNY-64-64	14	2^{62}	$2^{62.58}$	2^{64}	ZC	STK / KP	[SMB18]
	16	$2^{62.71}$	$2^{61.35}$	$2^{37.80}$	ZC	STK / KP	This paper
CRAFT	20	2120.43	2 ^{62.89}	2 ⁴⁹	ZC	STK / KP	This paper
	21	$2^{106.53}$	$2^{60.99}$	2^{100}	ID	STK / CP	This paper

Outline

- Background and the Research Gap
- 2 Our Method to Search For Distinguisher
- 3 Our Unified CP Model for Key-Recovery
- 4 Future Works

Background and the Research Gap

SKINNY Family of Tweakable Block Ciphers [Bei+16]

- Introduced in CRYPTO 2016 [Bei+16]
- It has 6 main variants: SKINNY-n- $z \cdot n$, where $n \in \{64, 128\}$, and $z \in \{1, 2, 3\}$
- ISO/IEC 18033-7: SKINNY-64-192, SKINNY-128-256, SKINNY-128-384

Impossible Differential Attack [BBS99; Knu98]

- Find an impossible-differential $\Delta_{\scriptscriptstyle U} \not \to \Delta_{\scriptscriptstyle L}$
- Build a key-recovery attack
 - lacksquare Create a pool of pairs satisfying $(\Delta_{
 m B},\Delta_{
 m F})$
 - For all $k \in k_{\rm B} \cup k_{\rm F}$:
 - If a pair suggests $(\Delta_{\text{U}}, \Delta_{\text{L}})$, discard k
 - Brute force the remaining key candidates

Previous Tools for ID/ZC, and Integral Attacks

- Tools based on dedicated algorithms:
 - CRYPTO 2016 (\mathcal{DC} -MITM, ID) [DF16]
- Tools based on general purpose solvers:
 - Eprint 2016 (ID) [Cui+16]
 - ASIACRYPT 2016 (Integral) [Xia+16]
 - EUROCRYPT 2017 (ID, ZC) [ST17]
 - ToSC 2017 (ID, ZC) [Sun+17]
 - ToSC 2020 (ID, ZC) [Sun+20]

Our Method to Search for Distinguishers

Е

- \bigcirc $\mathit{CSP}_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta'_{\mathrm{U}})$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

- \bigcirc $\mathit{CSP}_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta'_{\mathrm{U}})$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

- \bigcirc $CSP_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta_{\mathrm{U}}')$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

- \bigcirc $CSP_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta_{\mathrm{U}}')$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

- \bigcirc $CSP_{\mathrm{U}}(\Delta_{\mathrm{U}}, \Delta_{\mathrm{U}}')$
- \bigcirc $\mathit{CSP}_{\mathrm{L}}(\Delta_{\mathrm{L}}, \Delta'_{\mathrm{L}})$
- \bigcirc $\mathit{CSP}_{\mathtt{M}}(\Delta'_{\mathtt{U}}, \Delta'_{\mathtt{L}})$

The Advantages of Our Method to Search for Distinguishers

- Based on satisfiability of the CP model
- Any feasible solutions of our CP model is a distinguisher
- We do not fix the input/output of distinguisher
- Extendable to a unified model for key-recovery
 - Find a distinguisher optimized for key-recovery
 - Taking some key-recovery techniques into account, e.g., MitM, and key bridging

Our Unified CP Model for Key-Recovery

Complexity Analysis of ID Attack [Bou+18; BNS14]

- Number of required pairs: N
- Pair generation: $T_0 = N2^{n+1-|\Delta_{\scriptscriptstyle \mathrm{B}}|-|\Delta_{\scriptscriptstyle \mathrm{F}}|}$
- Guess-and-filter:

$$T_1 + T_2 = N + 2^{|k_B \cup k_F|} \frac{N}{2^{c_B + c_F}}$$

•
$$P = (1 - 2^{-(c_B + c_F)})^N$$

- Exhaustive search: $T_3 = P2^k$
- $T_{tot} = (T_0 + (T_1 + T_2)C_{E'} + T_3)C_E$

Overall View of Our CP Model for Key-Recovery

- \bigcirc Model the distinguisher for $E_{\rm D}$ ($\triangle_{\rm U}, \triangle_{\rm F}$)
- \bigcirc Model the filters in $E_{\rm B}$, and $E_{\rm F}$ ($c_{\rm B}, c_{\rm F}, \Delta_{\rm B}, \Delta_{\rm F}$)
- \bigcirc Model the guess-and-determine in E_{B} , and E_{F}
- - Encode $|k_{\rm B} \cup k_{\rm F}|$
- Model the complexity formulas
- Objective: Minimize the total time complexity

$$E_{\scriptscriptstyle \mathrm{D}}$$

$$\Delta_{
m L}$$

Overall View of Our CP Model for Key-Recovery

- \bigcirc Model the distinguisher for $E_{\rm D}$ ($\triangle_{\rm U}, \triangle_{\rm F}$)
- \bigcirc Model the filters in $E_{\rm B}$, and $E_{\rm F}$ $(c_{\rm B}, c_{\rm F}, \Delta_{\rm B}, \Delta_{\rm F})$
- \bigcirc Model the guess-and-determine in $E_{
 m B}$, and $E_{
 m F}$
- ✓ Model the key bridging
 - Encode $|k_{\rm B} \cup k_{\rm F}|$
- Model the complexity formulas
- Objective: Minimize the total time complexity

- \bigcirc Model the distinguisher for $E_{\rm D}$ ($\triangle_{\rm U}, \triangle_{\rm F}$)
- \bigcirc Model the filters in $E_{\rm B}$, and $E_{\rm F}$ $(c_{\rm B}, c_{\rm F}, \Delta_{\rm B}, \Delta_{\rm F})$
- igotimes Model the guess-and-determine in $E_{
 m B}$, and $E_{
 m F}$
- Model the key bridging
 - Encode $|k_{\rm B} \cup k_{\rm F}|$
- Model the complexity formulas
- Objective: Minimize the total time complexity

- \bigcirc Model the distinguisher for $E_{\rm D}$ $(\Delta_{\rm U}, \Delta_{\rm F})$
- \bigcirc Model the filters in $E_{\rm B}$, and $E_{\rm F}$ $(c_{\rm B}, c_{\rm F}, \Delta_{\rm B}, \Delta_{\rm F})$
- igotimes Model the guess-and-determine in $E_{ ext{B}}$, and $E_{ ext{F}}$
- Model the key bridging
 - Encode $|\mathbf{k}_{\mathrm{B}} \cup \mathbf{k}_{\mathrm{F}}|$
- Model the complexity formulas
- Objective: Minimize the total time complexity

- \bigcirc Model the distinguisher for $E_{\rm D}$ ($\triangle_{\rm U}, \triangle_{\rm F}$)
- \bigcirc Model the filters in $E_{\rm B}$, and $E_{\rm F}$ $(c_{\rm B}, c_{\rm F}, \Delta_{\rm B}, \Delta_{\rm F})$
- igotimes Model the guess-and-determine in $E_{
 m B}$, and $E_{
 m F}$
- Model the key bridging
 - Encode $|\mathbf{k}_{\mathrm{B}} \cup \mathbf{k}_{\mathrm{F}}|$
- ✓ Model the complexity formulas
- Objective: Minimize the total time complexity

- \bigcirc Model the distinguisher for $E_{\rm D}$ ($\triangle_{\rm U}, \triangle_{\rm F}$)
- \bigcirc Model the filters in $E_{\rm B}$, and $E_{\rm F}$ $(c_{\rm B}, c_{\rm F}, \Delta_{\rm B}, \Delta_{\rm F})$
- igotimes Model the guess-and-determine in $E_{
 m B}$, and $E_{
 m F}$
- Model the key bridging
 - Encode $|\mathbf{k}_{\mathrm{B}} \cup \mathbf{k}_{\mathrm{F}}|$
- ✓ Model the complexity formulas
- Objective: Minimize the total time complexity

Usage of Our Tool

python3 attack.py -RB 4 -RU 10 -RL 6 -RF 7

- **⊘** We use MiniZinc [Net+07] to create our CP models
- We use Gurobi [Gur22] and OrTools [PF] as the CP solvers.
- Our tool can find the results in a few seconds running on a regular laptop

Example: 19-round ID Attack on SKINNY-*n*-2*n*

$$|\mathbf{k}_{\mathrm{B}} \cup \mathbf{k}_{\mathrm{F}}| = 26 \cdot c$$

$$c_{\rm B} = 6 \cdot c$$

$$c_{ ext{\tiny F}} = 15 \cdot c$$

$$\Delta_{\rm B} = 7 \cdot c$$

$$\Delta_{\scriptscriptstyle \mathrm{F}} = 16 \cdot c$$

•
$$c \in \{4, 8\}$$

Part of Our Improved Results for SKINNY

Cipher	#R	Time	Data	Mem.	Attack	Setting / Model	Ref.
SKINNY-64-192	23 26	2 ^{155.60} 2 ¹⁷²	2 ^{73.20} 2 ⁶¹	2 ¹³⁸ 2 ¹⁷²	Int Int	180,SK / CP,CT 180,SK / CP,CT	[Ank+19] This paper
SKINNY-128-384	27 27	2 ³⁷⁸ 2^{362.61}	$2^{126.03} \\ 2^{124.99}$	2 ³⁶⁸ 2 ³⁴⁴	ID ID	RTK / CP RTK / CP	[LGS17] This paper
SKINNY-64-128	18 19 20 22	2 ¹²⁶ 2 ^{119.12} 2 ^{97.50} 2 ¹¹⁰	2 ^{62.68} 2 ^{62.89} 2 ^{68.40} 2 ^{57.58}	2 ⁶⁴ 2 ⁴⁹ 2 ⁸² 2 ¹⁰⁸	ZC ZC Int Int	STK / KP STK / KP 120,SK / CP,CT 120,SK / CP,CT	[SMB18] This paper [Ank+19] This paper
SKINNY-128-256	19 19	2 ^{241.80} 2 ^{219.23}	2 ¹²³ 2 ^{117.86}	2 ²²¹ 2 ²⁰⁸	ID ID	STK / CP STK / CP	[YQC17] This paper
SKINNY-64-64	14 16	2 ⁶² 2 ^{62.71}	$2^{62.58} \\ 2^{61.35}$	2 ⁶⁴ 2 ^{37.80}	ZC ZC	STK / KP STK / KP	[SMB18] This paper

Detecting Flaws in The Previous Attacks Using our Automatic Tools

Invalid Attacks on SKINNY

Cipher	Attack	#R	Setting / Model	Ref.	Flaw
SKINNY- <i>n</i> - <i>n</i>	ID	18	STK / CP	[TAY17]	KR
SKINNY- <i>n</i> -2 <i>n</i>	ID	20	STK / CP	[TAY17]	KR
	ZC/Int [†]	22	SK / CP, CT	[ZCW22]	Dist
SKINNY- <i>n</i> -3 <i>n</i>	ID	22	STK / CP	[TAY17]	KR
	ZC/Int [†]	26	SK / CP, CT	[ZCW22]	Dist

Conclusion

Contributions and Future Works

- Contributions
 - Introduced efficient unified model for finding full ID/ZC/integral attacks
 - ◆ Found improved attacks for SKINNY, CRAFT, SKINNYee, and SKINNYe-v2
- Future works
 - A Applying our method to other ciphers, e.g., AES, MANTIS, QARMA, etc
 - A Creating the bit-oriented version of our method
 - ▲ Improving the key-recovery part of our CP models for ZC and integral attacks
 - nttps://github.com/hadipourh/zero
 - https://ia.cr/2022/1147

Bibliography I

- [Ank+19] Ralph Ankele et al. Zero-Correlation Attacks on Tweakable Block Ciphers with Linear Tweakey Expansion. *IACR Transactions on Symmetric Cryptology* 2019.1 (Mar. 2019), pp. 192–235. DOI: 10.13154/tosc.v2019.i1.192–235.
- [BBS99] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31 Rounds Using Impossible Differentials. EUROCRYPT 1999. Vol. 1592. LNCS. Springer, 1999, pp. 12–23. DOI: 10.1007/3-540-48910-X_2.
- [Bei+16] Christof Beierle et al. **The SKINNY family of block ciphers and its low-latency variant MANTIS**. CRYPTO 2016. Springer. 2016, pp. 123–153.

 DOI: 10.1007/978-3-662-53008-5_5.

Bibliography II

- [BNS14] Christina Boura, Maria Naya-Plasencia, and Valentin Suder. Scrutinizing and improving impossible differential attacks: applications to CLEFIA, Camellia, LBlock and Simon. International Conference on the Theory and Application of Cryptology and Information Security. Springer. 2014, pp. 179–199. DOI: 10.1007/978-3-662-45611-8_10.
- [Bog+12] Andrey Bogdanov et al. Integral and Multidimensional Linear Distinguishers with Correlation Zero. ASIACRYPT 2012. Vol. 7658. LNCS. Springer, 2012, pp. 244–261. DOI: 10.1007/978-3-642-34961-4_16.
- [Bou+18] Christina Boura et al. **Making the impossible** possible. Journal of Cryptology 31.1 (2018), pp. 101–133. DOI: 10.1007/s00145-016-9251-7.

Bibliography III

- [BR14] Andrey Bogdanov and Vincent Rijmen. Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Cryptogr. 70.3 (2014), pp. 369–383. DOI: 10.1007/s10623-012-9697-z.
- [Cui+16] Tingting Cui et al. New Automatic Search Tool for Impossible Differentials and Zero-Correlation Linear Approximations. IACR Cryptology ePrint Archive, Report 2016/689. 2016. URL: https://eprint.iacr.org/2016/689.
- [DF16] Patrick Derbez and Pierre-Alain Fouque. Automatic Search of Meet-in-the-Middle and Impossible Differential Attacks. CRYPTO 2016. Vol. 9815. LNCS. Springer, 2016, pp. 157–184.
- [Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2022. URL: https://www.gurobi.com.

Bibliography IV

- [Knu98] Lars Knudsen. **DEAL-a 128-bit block cipher**. complexity 258.2 (1998), p. 216.
- [LGS17] Guozhen Liu, Mohona Ghosh, and Ling Song. Security Analysis of SKINNY under Related-Tweakey Settings. IACR Trans. Symmetric Cryptol. 2017.3 (2017), pp. 37–72. DOI: 10.13154/tosc.v2017.i3.37–72.
- [Net+07] Nicholas Nethercote et al. MiniZinc: Towards a Standard CP Modelling Language. CP 2007. Vol. 4741. LNCS. Springer, 2007, pp. 529–543.
- [PF] Laurent Perron and Vincent Furnon. **OR-Tools**. Version 9.3. Google. URL: https://developers.google.com/optimization/.
- [SMB18] Sadeghi, Tahereh Mohammadi, and Nasour Bagheri. Cryptanalysis of Reduced round SKINNY Block Cipher. IACR Trans. Symmetric Cryptol. 2018.3 (2018), pp. 124–162. DOI: 10.13154/tosc.v2018.i3.124–162.

Bibliography V

- Yu Sasaki and Yosuke Todo. New Impossible Differential Search Tool from Design and Cryptanalysis Aspects. EUROCRYPT 2017. Cham: Springer International Publishing, 2017, pp. 185–215. DOI: 10.1007/978-3-319-56617-7_7.
- [Sun+15] Bing Sun et al. Links Among Impossible Differential, Integral and Zero Correlation Linear Cryptanalysis. CRYPTO 2015. Vol. 9215. LNCS. Springer, 2015, pp. 95–115. DOI: 10.1007/978-3-662-47989-6_5.
- [Sun+17] Siwei Sun et al. Analysis of AES, SKINNY, and Others with Constraint Programming. *IACR Transactions on Symmetric Cryptology* 2017.1 (Mar. 2017), pp. 281–306. DOI: 10.13154/tosc.v2017.i1.281-306.

Bibliography VI

- Ling Sun et al. On the Usage of Deterministic (Related-Key) Truncated [Sun+20]Differentials and Multidimensional Linear Approximations for SPN Ciphers. IACR Transactions on Symmetric Cryptology 2020.3 (Sept. 2020), pp. 262–287. DOI: 10.13154/tosc.v2020.i3.262-287.
- [TAY17] Mohamed Tolba, Ahmed Abdelkhalek, and Amr M. Youssef. Impossible Differential Cryptanalysis of Reduced-Round SKINNY. AFRICACRYPT 2017. Vol. 10239. LNCS. 2017. pp. 117-134. doi: 10.1007/978-3-319-57339-7_7.
- [Xia+16]Zejun Xiang et al. Applying MILP Method to Searching Integral Distinguishers Based on Division Property for 6 Lightweight Block Ciphers. ASIACRYPT 2016. Vol. 10031. LNCS. 2016, pp. 648-678. DOI: 10.1007/978-3-662-53887-6 24.

Bibliography VII

- [YQC17] Dong Yang, Wen-Feng Qi, and Hua-Jin Chen. Impossible differential attacks on the SKINNY family of block ciphers. IET Inf. Secur. 11.6 (2017), pp. 377–385. DOI: 10.1049/iet-ifs.2016.0488.
- [ZCW22] Yi Zhang, Ting Cui, and Congjun Wang. Zero-correlation linear attack on reduced-round SKINNY. Frontiers of Computer Science 17.174808 (2023) (2022), pp. 377–385. DOI: 10.1007/s11704-022-2206-2.

Zero-Correlation Attack and Its Relation to Integral Attack

- ZC is the dual of ID in the context of linear cryptanalysis [BR14]
- Multidimensional ZC attack (ASIACRYPT 2012 [Bog+12])

Link Between ZC and Integral Attack [Sun+15]

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a vectorial Boolean function. Assume A is a subspace of \mathbb{F}_2^n and $\beta \in \mathbb{F}_2^n \setminus \{0\}$ such that (α, β) is a ZC approximation for any $\alpha \in A$. Then, for any $\lambda \in \mathbb{F}_2^n$, $\langle \beta, F(x+\lambda) \rangle$ is balanced over the set

$$A^{\perp} = \{ x \in \mathbb{F}_2^n \mid \forall \ \alpha \in A : \langle \alpha, x \rangle = 0 \}.$$

Example: Conversion of ZC Distinguisher to Integral Distinguisher

- $X_0[7, 10, 13]$ takes all possible values and the remaining cells take a fixed value
- $X_6[7] \oplus X_6[11] \oplus X_6[15]$ is balanced