

Chapter 4. Internetworking

- The Internet Protocol
- IP Address
- ARP and DHCP
- ICMP
- IPv6
- Mobile IP
- Internet Routing
- BGP and OSPF
- IP Multicasting
- Multiprotocol Label Switching (MPLS)

- Our routing study thus far idealization
 - All routers identical, network "flat"
 - Not true in practice
- Scale: with 200 million destinations
 - Cannot store all destinations in routing tables
 - Routing table exchange would swamp links
- Administrative autonomy
 - Internet = network of networks
 - Each network admin may want to control routing in its own networks

Hierarchical Routing

- Aggregate routers into regions, i.e. autonomous systems (AS)
- Routers in same AS run same routing protocol
 - Intra-AS routing protocol
 - Routers in different AS can run different intra-AS routing protocol
- Gateway routers
 - Routers in AS responsible for routing to destinations outside
 - Run inter-AS routing protocol with other gateway routers
 - Run intra-AS routing protocol with routers in AS

Autonomous Systems (AS)

- Set of routers and networks managed by single ISP or large organization
- A connected internets uniquely assigned a 16-bit or 32-bit
 AS Number
 - There is at least one route between any pair of nodes
- Use common routing protocol

Intra-AS and Inter-AS routing

- Routing Information
 - About topology and delays in the Internet
- Routing Algorithm
 - Used to make routing decisions based on information

IGP and EGP

- IGP (Interior Gateway Protocol): for Intra-AS routing
 - Passes routing information between routers within AS
 - Can focus on performance
 - Routing algorithms and tables may differ between different AS
- EGP (Exterior Gateway Protocol): for Inter-AS routing
 - Routers need some info about networks outside their AS
 - Supports summary information on reachability
 - Policy may dominate over performance

Application of IGP and EGP

Interior router protocol — — — — —

- IGP Intra-AS protocols
 - RIP: Routing Information Protocol, use distance vector
 - OSPF: Open Shortest Path First, use link state
 - IGRP: Interior Gateway Routing Protocol (Cisco proprietary)
- EGP Inter-AS protocols
 - BGP: Border Gateway Protocol

Distance-Vector

- First generation routing algorithm for ARPANET
- Each node (router or host) exchange information with neighboring nodes
 - Neighbors are both directly connected to same network
- Node maintains vector of
 - Link costs for each directly attached network
 - Estimated distance and next-hop vectors for each destination
- DV update messages exchanged between neighbors to build/update routing tables
 - Changes take long time to propagate

Link-State

- Second generation routing algorithm for ARPANET
- When router initialized, it determines link cost on each interface
- Advertises set of link costs to all other routers in topology
 - Not just neighboring routers
- From then on, monitor link costs
 - If significant change, router advertises new set of link costs

Link-State

- Each router can construct topology of entire configuration
 - Can calculate shortest path to each destination network
- Router constructs routing table, listing first hop to each destination
- Router does not use distributed routing algorithm
 - Use any routing algorithm to determine shortest paths
 - In practice, Dijkstra's algorithm

- Link-state and distance-vector not effective for exterior gateway protocol
 - Different ASs may use different metrics and have different restrictions
 - Not all subnets want or need to be known to all
- Distance-vector
 - Gives no information about ASs visited on route
- Link-state
 - Flooding of link state information to all routers unmanageable

EGP - Path-Vector

- The most concern is the ASs passed through
 - Dispense with routing metrics
- Each gateway router broadcasts to neighbors entire path to destination
 - Each block of information lists all ASs visited on the route
 - Needs not include distance or cost estimate
- Enables gateway router to perform policy routing
 - Avoid path to avoid transiting particular AS
 - Minimizing number of transit ASs
 - Others, e.g. link speed, net capacity, tendency to become congested, overall quality of operation, and security

BGP and **OSPF**

- BGP: Border Gateway Protocol
 - The de facto Internet standard used for inter-AS routing
- OSPF: Open Shortest Path First
 - The most-used intra-AS protocol in Internet

Border Gateway Protocol

- Subnets use BGP to advertise its existence to rest of Internet
- BGP provides each AS a means to
 - Obtain subnet reachability information from neighboring ASs using eBGP
 - Propagate reachability information to all AS-internal BGProuters using iBGP
 - Determine "good" routes to subnets based on reachability information and policy

BGP Basics

- Pairs of BGP routers exchange routing info over TCP connections: BGP sessions
- When AS2 (2a) advertises a net prefix to AS1 (1b)
 - AS2 promises it will forward any datagrams addressed towards that prefix
 - Net prefixes can be aggregated during advertisement

- 4 types of BGP messages
- Open: opens TCP connection to peer and authenticates sender
- Update: (1) advertises new path; (2) withdraws old
- Keep-alive: (1) ACKs OPEN request; (2) keeps connection alive in absence of UPDATES
- Notification: (1) closes connection; (2) reports errors in previous message

Procedures of BGP

Neighbor acquisition

- One router sends an Open message to another
- If the target router accepts the request, it returns a Keep-alive message

Neighbor reachability

 The two routers periodically issue Keep-alive or Update messages to each other

Network reachability

- Each router maintains a database of networks that it can reach and the list of ASs passed
- The router issues an Update message whenever a change is made to this database

BGP Messages

- 3 common fixed-size fields in each header
- Marker (16 octets)
 - Detect loss of synchronization between a pair of BGP router
 - Authenticate incoming BGP messages
- Length (2 octets)
 - Length of message in octets, including the header
- Type (1 octets)
 - 1.Open, 2.Update, 3.Notification, 4.Keep-alive

Open Message

- Version (1 octet)
 - Current BGP version (v4)
- My Autonomous System (2 octets)
 - AS number the sender belongs to
- Hold time (2 octets)
 - Max time between Keep-alive and/or update messages
- BGP Identifier (4 octets)
 - Identifier of the sender, one of its IP addresses
- Opt parameter length (1 octet)
 - Total length of the Optional parameter field in octet

Parm. Type Parm. Length Parameter Value (Variable)

16

Update Message (1)

- Unfeasible Routes Length (2 octets)
 - Total length of withdraw routes in octets
- Withdrawn route (variable length)
 - A list of IP address prefixes, 2-tuple of the form <length, prefix>
 - Each prefix identifies a group of subnets
 - e.g. <10, D8CA> means 16 bits length, 216.202.0.0 network
- Total Path Attribute Length (2 octets)
 - Total length of path attribute field in octets for new path

Update Message (2)

- Path Attribute (variable length)
 - A list of path attributes, each path attribute is a triple
 <attribute type, attribute length, attribute value>
 - Attributes that apply to the particular router or route
- Network Layer Reachability Information (variable length)
 - A list of IP address prefixes, each one is 2-tuple of the form <length, prefix>
 - A single route through the internet

Defined Path Attributes (1)

- Origin
 - Learned from IGP or EGP
- AS_Path
 - A list of AS traversed, in ordered or unordered way
- Next_hop
 - IP address of the border router that are used as the next hop
 - Responsible for informing outside routers of the route to other networks

Defined Path Attributes (2)

Next_hop

Defined Path Attributes (3)

- Multi_Exit_Disc (MED)
 - There may be multiple border points in one AS available to another AS
 - MED is a metric value computed by certain routing policy within the AS
 - It can be used (by eBGP) to discriminate among multiple exit points

Defined Path Attributes (4)

- Local_pref
 - Should be included when the 2 BGP speakers located within the same AS, i.e. for iBGP

Defined Path Attributes (5)

- Atomic_Aggregate
 - Informs others that the local AS has aggregate the addresses of subnets
 - i.e. some interim specific route is hided

Aggregator

 Contains the last AS number and IP address of the BGP router that formed the aggregates

Keep Alive Message

- To tell other routers that this router is still here
- BGP speaker send Keep-Alive message periodically to keep connection

Notification Message (1)

- Message header error
 - Authentication and syntax, subtypes:
 - Connection Not Synchronized
 - Bad Message Length
 - Bad Message Type
- Open message error
 - Syntax and option not recognized, Unacceptable hold time, subtypes:
 - Unsupported Version Number
 - Bad peer AS
 - Bad BGP identifier
 - Unsupported Optional Parameter, ...

- Update message error
 - Syntax and validity errors
- Hold time expired
 - Connection is closed
- Finite state machine error
 - Any procedural errors: wrong message at wrong states
 - e.g. got Open message at Connect state
- Cease
 - Used to close a connection when there is no error

BGP Routing Information Exchange

- Within AS, router builds topology picture using
 IGP
- BGP router issues Update message for rising subnet within to other BGP routers outside AS
- These routers exchange info with BGP routers in other ASs
- Routers then decide best routes use policy routing

Internet AS-Structure

- Tier 1 ISPs peer with each other, privately & peering centers
- Tier 2 ISPs peer with each other & obtain transit services from Tier 1s
- Non-transit AS's (stub & multi-homed) do not carry transit traffic

Inter and Intra AS Routing

- Exterior Gateway Protocol (EGP): routing between AS's
 - BGPv4
- Interior Gateway Protocol (IGP): routing within AS
 - RIP, OSPF

RIP (Routing Information Protocol)

- Use Distance vector algorithm
- Included in BSD-UNIX Distribution in 1982
- Distance metric: # of hops (max=15 hops)
- Distance vectors: exchanged among neighbors every 30 sec via RIP update message
- Fail to receive the update message within 180 sec means the link to the neighbor is lost
- Each advertisement: list of up to 25 destination nets
- Advertisements sent in UDP packets

Destination Network	Next Router	Num. of hops to dest.
W	A	2
y	В	2
Z	В	7
×		1
••••	••••	••••

Routing table in D

RIP: Example (2)

- Later queue length is used for link cost, instead of just hops
- RIP routing tables managed by application-level process called routed (daemon)
- Advertisements sent in UDP packets, periodically repeated

Open Shortest Path First (1)

- OSPF (RFC 2328), replaced Routing Information Protocol (RIP)
- Uses Link-State routing algorithm
 - Each router keeps list of state of local links to neighbor routers
 - Transmits update state info (advertisement) to entire AS via flooding per 10s
 - Carried in OSPF messages directly over IP
- Uses cost metric assigned on each link

Open Shortest Path First (2)

- Topology map stored as directed graph on each node
- Router nodes
- Network nodes: (Transit vs. Stub)
- Edges: router—router, router—network
- Dijkstra's algorithm used to compute the shortest path to each destination

The Directed Graph

- Networks, hosts and BGP routers as destinations
- Each router compute its SPF tree showing the least cost path to all other destination
- Only next hop used in routing packets

SPF Tree for Router 6

Destination:

Network Direct Host Border Router

Routing Tables of Router 6

Destination	Next Hop	Distance	Destination	Next Hop	Distance
N1	R3	10	N11	R10	14
N2	R3	10	H1	R10	21
N3	R3	7	R5	R5	6
N4	R3	8	R7	R10	8
N6	R10	8	N12	R10	10
N7	R10	12	N13	R5	14
N8	R10	10	N14	R5	14
N9	R10	11	N15	R10	17
N10	R10	13			

OSPF Advanced Features

- Security: all OSPF messages authenticated to prevent malicious intrusion
- Multiple same-cost paths allowed
- For each link, multiple cost metrics for different TOS (type of service)
 - e.g. satellite link cost set "low" for best effort; "high" for real time
- Integrated uni- and multicast support
 - Multicast OSPF (MOSPF) uses same topology database as OSPF
- Hierarchical OSPF in large domains

- To improve scalability, AS may be partitioned into areas
 - Area is identified by 32-bit Area ID
 - Router in area only knows complete topology inside area
 - Limits the flooding of link-state information to other area
 - Area border routers summarize info from other areas
- Each area must be connected to backbone area (0.0.0.0)
 - Distributes routing info between areas

- Internal router
 - Has all links to nets within the same area
- Area border router
 - "Summarize" distances to nets in own area
 - Advertise to other Area Border routers
- Backbone router
 - Run OSPF routing limited to backbone
- AS boundary (ASB) router
 - The BGP router

OSPF Areas

- Router link ad: generated by all OSPF routers
 - State of router links within area, flooded within area
- Net link ad: generated by the designated router
 - Lists routers connected to net, flooded within area
- Summary link ad: generated by area border routers
 - Routes to destinations in other areas
 - Routes to ASB routers
- AS external link ad: generated by ASB routers
 - Describes routes to destinations outside the OSPF net
 - Flooded in all areas in the OSPF net