

Master in Computer Vision Barcelona

Module: Video Analysis

Lecture 6: Bayesian tracking (III)

Lecturer: Ramon Morros

Slides: David Varas

Presentation Outline

- Introduction
- Problem statement: F1 car tracking
- Application: F1 car tracking
- References

Problem Statement: F1 car tracking

Motivation

Problem Statement: F1 car tracking

Problem statement

Dynamics of a F1 car

- "Correct" path is defined by a curve
- Abrupt trajectory changes (Other cars, colisions, ...)
- Camera movement

Linear dynamic models may not hold!

Problem Statement: F1 car tracking

Problem statement

Recursively estimate the position of a F1 car along a sequence

The Degeneracy Problem appears due to this recursivity

F1 car tracking

• **Objective:** Track a car along the sequence using an ellipse

- State Vector and Measurement Vector
 - State of the system represents the parametrization of an ellipse tracking the real object
 - The noisy **measurement** is the input **image** received at each time instant.

 $x_k = [x, y, w, h]$

<u>Measurement</u> **Vector**

 Z_k

F1 car tracking

• Initial state of the system x_0

SEGMENTATION OF THE OBJECT

-Manually-Detection algorithms

 $h_0 \downarrow W_0$

F1 car tracking

Object model

The algorithm must know what to track. Several ways to characterize objects in images.

- Characterization of the target
 - Color features
 - Texture features
 - Movement features
 - ...

Normalized Histogram of the object

- -Scale invariant
- -Rotation invariant

F1 car tracking

• Iteration of the algorithm ($N_s = 8$ particles)

FOR
$$i = 1:N_s$$
1. Draw $x_k^i \sim p(x_k | x_{k-1}^i)$

II. Calculate $w_k^i = p(z_k | x_k^i)$

■END FOR

•Calculate total weight: $t = SUM[\{w_k^i\}_{i=1:N_S}]$

■FOR $i = 1:N_s$

1. Normalize $w_k^i = t^{-1} w_k^i$

•END FOR

Resample

Propagate

Evaluate

Normalize

Resample

F1 car tracking

• Initialization (k = 0)

 $w^2_1 = 0.125$

 $w_1^3 = 0.125$

$$w^4_1 = 0.125$$

 $w_1^5 = 0.125$

 $w_1^6 = 0.125$

 $w^7_1 = 0.125$

 $w_1^8 = 0.125$

F1 car tracking

Propagation at k=1

• UOC

```
■FOR i = 1:N
  I. Draw x_k^i \sim p(x_k | x_{k-1}^i)
                                                                              Propagate
    II. Calculate w_k^i = p(z_k/x_k^i)
                                                                              Evaluate
•END FOR
•Calculate total weight: t = SUM[\{w_k^i\}_{i=1:N_S}]
                                                                              Normalize
■FOR i = 1:N<sub>s</sub>
           Normalize w_k^i = t^{-1} w_k^i
•END FOR
                                                                              Resample
Resample
```

F1 car tracking

- Propagation at k=1
 - Draw (PREDICTION)
 - If $\varphi(\cdot)$ is know:

$$\mathbf{x}_{k}^{i} = \boldsymbol{\varphi}(\mathbf{x}_{k-1}^{i}, \boldsymbol{v}_{k-1}^{i}) [$$

Otherwise:

$$x_k^i = N(x_{k-1}^i, \sigma)$$

 $w_1^2 = 0.125$

 $w_1^3 = 0.125$

$$w_1^4 = 0.125$$

 $W^{5}_{1} = 0.125$

 $w^6_1 = 0.125$

 $w^7_1 = 0.125$

 $w_1^8 = 0.125$

F1 car tracking

Evaluation at k = 1

```
■FOR i = 1:N<sub>c</sub>
    I. Draw x_k^i p(x_k|x_{k-1}^i)
II. Calculate w_k^i = p(z_k|x_k^i)
                                                                           Propagate
                                                                          Evaluate
■END FOR
•Calculate total weight: t = SUM[\{w_k^i\}_{i=1:Ns}]
                                                                           Normalize
•FOR i = 1:N_s
        Normalize w_k^i = t^{-1} w_k^i
•END FOR
                                                                           Resample
Resample
```

F1 car tracking

- Evaluation at k=1
 - A new **measurement** arrives at time k = 1 *(UPDATE)* We haven't made use of the image at time k = 1 yet. $w_k^i \propto p(z_k \mid x_k^i)$
 - Likelihood measure

$$p(z_k \mid x_k^i) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{d^2}{2\sigma^2}}$$

$$d = \sqrt{1 - \sum_{u=1}^{m} \sqrt{p^{(u)} q^{(u)}}}$$

 $w_1^2 = 0.66$

 $w_1^3 = 0.81$

$$w_1^4 = 0.01$$

 $w_1^5 = 0.72$

 $w_1^6 = 0.14$

 $w_1^7 = 0.45$

 $w_1^8 = 0.85$

F1 car tracking

•⊒UOC

Normalization at k = 1

```
•FOR i = 1:N_s
                                                                             Propagate
      I. Draw x_k^i \sim p(x_k | x_{k-1}^i)
     II. Calculate w_k^i = p(z_k | x_k^i)
                                                                             Evaluate
■END FOR
•Calculate total weight: t = SUM[\{w_k^i\}_{i=1:Ns}]
                                                                             Normalize
•FOR i = 1:N_s
      I. Normalize w_k^i = t^{-1}w_k^i
END FOR
                                                                             Resample
Resample
```


$$w_1^2 = 0.18$$

 $w^3_1 = 0.22$

$$w_1^4 = 0.01$$

 $w_1^5 = 0.19$

 $w_1^6 = 0.04$

 $w_1^7 = 0.12$

 $w_1^8 = 0.23$

F1 car tracking

- Estimation at k=1
 - Mean state of the system

$$E[X_k] = \sum_{n=1}^{N_s} w_k^i x_k^i$$

- -Position -Width -Height
- Particle with higher weight

F1 car tracking

• SIR Particle Filter algorithm

```
•FOR i = 1:N_s
                                                                             Propagate
      I. Draw x_k^i \sim p(x_k | x_{k-1}^i)
     II. Calculate w_k^i = p(z_k/x_k^i)
                                                                             Evaluate
END FOR
•Calculate total weight: t = SUM[\{w_k^i\}_{i=1:N_S}]
                                                                             Normalize
•FOR i = 1:N_s
         Normalize w_k^i = t^{-1} w_k^i
•END FOR
                                                                             Resample
Resample
```

• UOC

F1 car tracking

Resampling at k=1

```
Algorithm 2: Resampling Algorithm
[\{\mathbf{x}_k^{j*}, w_k^j, i^j\}_{i=1}^{N_s}] = \text{RESAMPLE } [\{\mathbf{x}_k^i, w_k^i\}_{i=1}^{N_s}]
```

- Initialize the CDF: $c_1=0$
- FOR i=2: N_s
 - Construct CDF: $c_i = c_{i-1} + w_k^i$
- END FOR
- Start at the bottom of the CDF: i=1
- Draw a starting point: $u_1 \sim \mathbb{U}[0, N_s^{-1}]$
- FOR $j=1:N_s$
 - Move along the CDF: $u_j = u_1 + N_s^{-1}(j-1)$
 - WHILE $u_i > c_i$
 - * i = i + 1
 - END WHILE
 - Assign sample: $\mathbf{x}_k^{\jmath*} = \mathbf{x}_k^i$
 - Assign weight: $w_k^j = N_s^{-1}$
 - Assign parent: $i^j = i$
- END FOR

Sources: Arulampalam2002, Djuric2003

$$w_1^2 = 0.18$$

 $w^3_1 = 0.22$

$$w^4_1 = 0.22$$

 $w_1^5 = 0.19$

 $w_1^6 = 0.04$

 $w_1^7 = 0.19$

 $w_1^8 = 0.23$

 $w_1^2 = 0.125$

 $w_1^3 = 0.125$

$$w_1^4 = 0.125$$

 $w_1^5 = 0.125$

 $w_1^6 = 0.125$

 $w_1^7 = 0.125$

 $w_1^8 = 0.125$

Presentation Outline

- Introduction
- Problem statement: F1 car tracking
- Application: F1 car tracking
- References

References

- A.Doucet, N. de Freitas and N.Gordon (Editors),
 Sequential Monte Carlo methods in practice
 Springer, 2001
- P.M.Djuric, J.H.Kotecha, J.Zhang, Y.Huang, T.Ghirmai, M.F.Bugallo, J.Miguez "Particle filtering"
 IEEE Signal Processing Magazine, September 2003
- A.Doucet and X.Wang,
 "Monte Carlo Methods for Signal Processing"
 IEEE Signal Processing Magazine, November 2005
- X.Wang, R.Chen, J.S.Liu
 "Monte Carlo Bayesian signal processing for wireless communications" *Journal of VLSI Signal Processing, Vol.30, pp.89-105, 2002* Kluwer Academic Publishers
- S. Arulampalam, S. Maskell, N. Gordon, T. Clapp
 "A tutorial on Particle Filters for on-line non-linear/non-Gaussian Bayesian tracking" IEEE Trans. On Signal Processing, Feb. 2002.