Learning Robust Representations via Multi-View Information Bottleneck

Marco Federici¹, Anjan Dutta², Patrick Forré¹, Nate Kushman³, Zeynep Akata⁴

> ¹University of Amsterdam ²University of Exeter ³Microsoft Research Cambridge ⁴University of Tübingen

> > May 4, 2020

Table of Contents

- 1 Introduction and Motivation
- 2 Framework
- 3 Method
- 4 Model
- 5 Experiments
- 6 Conclusions

Model

Which Representation?

Let z be a representation of x

Which z is useful?

Which Representation?

- Which z is useful?
 - Disentangled

- Which z is useful?
 - Disentangled
 - Compositional

Model

Which Representation?

- Which z is useful?
 - Disentangled
 - Compositional
 - Abstract

- Which z is useful?
 - Disentangled
 - Compositional
 - Abstract
 - "Human"

"cat" laying on "laptop"

Z

Introduction and Motivation

"cat" laying on "laptop"

Z

Task:

Z

"cat" laying on "laptop"

Task:

Is there a chair?

Introduction and Motivation

Z

"cat" laying on "laptop"

Task:

- Is there a chair?
- How many black pixels are in the picture?

Which z is useful

Which Representation?

Which **z** is useful for predicting **y**?

Model

Which **z** is useful for predicting **y**?

z contains **all** the information regarding **y**

Model

Which **z** is useful for predicting \mathbf{y} ?

- **z** contains **all** the information regarding **y**
- **z** contains **only** information regarding **y**

Sufficiency

Sufficiency

Definition

A representation **z** of **x** is **sufficient** for **y** if and only if $I(\mathbf{x};\mathbf{y}) = I(\mathbf{z};\mathbf{y})$

z contains **all** the information about **y**

Minimality

$$I(\mathbf{z}; \mathbf{x}) = I(\mathbf{z}; \mathbf{y}) + I(\mathbf{x}; \mathbf{z}|\mathbf{y})$$

Minimality

$$I(z; x) = \underbrace{I(z; y)}_{\substack{\text{predictive} \\ \text{information in } z}} + I(x; z|y)$$

Minimality

$$I(z; x) = \underbrace{I(z; y)}_{\substack{\text{predictive information in } z}} + \underbrace{I(x; z|y)}_{\substack{\text{superfluous information}}}$$

$$I(\mathbf{y}; \mathbf{z}) = I(\mathbf{x}; \mathbf{y})$$

InfoMax?

InfoMax?

■ *β*-VAE?

■ *β*-VAE?

■ *β*-VAE?

Can we do better without label supervision?

Can we do better without label supervision?

Can we do better without label supervision? Yes!

Can we do better without label supervision? Yes! By exploiting redundant information and properties of the task.

Common

Not Common

 \mathbf{v}_2

Common

- Pointy Ears
- Paws
- Fur

Common

- Pointy Ears
- Paws
- Fur

Not Common

- Laptop
- Table
- Sofa

Definition

A view \mathbf{v}_1 is **redundant** with respect to \mathbf{v}_2 for \mathbf{v} if and only if $I(\mathbf{v}_1;\mathbf{y}|\mathbf{v}_2)=0$

Definition

A view \mathbf{v}_1 is **redundant** with respect to \mathbf{v}_2 for \mathbf{v} if and only if $I(\mathbf{v}_1;\mathbf{y}|\mathbf{v}_2)=0$

$$I(\mathbf{v}_1; \mathbf{y} | \mathbf{v}_2) = 0 \iff p(\mathbf{y} | \mathbf{v}_2) = p(\mathbf{y} | \mathbf{v}_1, \mathbf{v}_2)$$

Definition

A view \mathbf{v}_1 is **redundant** with respect to \mathbf{v}_2 for \mathbf{v} if and only if $I(\mathbf{v}_1; \mathbf{y} | \mathbf{v}_2) = 0$

$$I(\mathbf{v}_1; \mathbf{y} | \mathbf{v}_2) = 0 \iff p(\mathbf{y} | \mathbf{v}_2) = p(\mathbf{y} | \mathbf{v}_1, \mathbf{v}_2)$$

Example

Definition

A view \mathbf{v}_1 is **redundant** with respect to \mathbf{v}_2 for \mathbf{y} if and only if $I(\mathbf{v}_1; \mathbf{y} | \mathbf{v}_2) = 0$

$$I(\mathbf{v}_1; \mathbf{y} | \mathbf{v}_2) = 0 \iff p(\mathbf{y} | \mathbf{v}_2) = p(\mathbf{y} | \mathbf{v}_1, \mathbf{v}_2)$$

Example

■ \mathbf{v}_1 : abstract of a paper

Definition

A view \mathbf{v}_1 is **redundant** with respect to \mathbf{v}_2 for \mathbf{v} if and only if $I(\mathbf{v}_1;\mathbf{y}|\mathbf{v}_2)=0$

$$I(\mathbf{v}_1; \mathbf{y} | \mathbf{v}_2) = 0 \iff p(\mathbf{y} | \mathbf{v}_2) = p(\mathbf{y} | \mathbf{v}_1, \mathbf{v}_2)$$

Example

- \mathbf{v}_1 : abstract of a paper
- \mathbf{v}_2 : full text of the same paper

Definition

A view \mathbf{v}_1 is **redundant** with respect to \mathbf{v}_2 for \mathbf{v} if and only if $I(\mathbf{v}_1;\mathbf{y}|\mathbf{v}_2)=0$

$$I(\mathbf{v}_1; \mathbf{y} | \mathbf{v}_2) = 0 \iff p(\mathbf{y} | \mathbf{v}_2) = p(\mathbf{y} | \mathbf{v}_1, \mathbf{v}_2)$$

Example

- \mathbf{v}_1 : abstract of a paper
- \mathbf{v}_2 : full text of the same paper
- **y**: score assigned by reviewer 3

Definition

Two views \mathbf{v}_1 and \mathbf{v}_2 are **mutually redundant** for \mathbf{y} if and only if \mathbf{v}_1 is redundant with respect to \mathbf{v}_2 for \mathbf{y} and vice-versa

Mutual Redundancy

Definition

Two views \mathbf{v}_1 and \mathbf{v}_2 are **mutually redundant** for \mathbf{y} if and only if \mathbf{v}_1 is redundant with respect to \mathbf{v}_2 for \mathbf{y} and vice-versa

Example

 \mathbf{v}_1 : sentence in French

Mutual Redundancy

Definition

Two views \mathbf{v}_1 and \mathbf{v}_2 are **mutually redundant** for \mathbf{y} if and only if \mathbf{v}_1 is redundant with respect to \mathbf{v}_2 for \mathbf{y} and vice-versa

Example

- \mathbf{v}_1 : sentence in French
- \mathbf{v}_2 : same sentence in English

Mutual Redundancy

Definition

Two views \mathbf{v}_1 and \mathbf{v}_2 are **mutually redundant** for \mathbf{v} if and only if \mathbf{v}_1 is redundant with respect to \mathbf{v}_2 for \mathbf{v} and vice-versa

Example

- **v**₁: sentence in French
- v₂: same sentence in English
- y: semantics

Mutual Redundancy and Sufficiency

Theorem

Let \mathbf{v}_1 and \mathbf{v}_2 be two mutually redundant views for a target \mathbf{y} and let \mathbf{z}_1 be a representation of \mathbf{v}_1 . If \mathbf{z}_1 is sufficient for \mathbf{v}_2 $(I(\mathbf{v}_1; \mathbf{v}_2) = I(\mathbf{z}_1; \mathbf{v}_2))$ then \mathbf{z}_1 is as predictive for \mathbf{y} as the joint observation of the two views $(I(\mathbf{v}_1\mathbf{v}_2; \mathbf{y}) = I(\mathbf{y}; \mathbf{z}_1))$.

$$I(\mathbf{z}_1; \mathbf{v}_1)$$

Multi-View Minimality

$$I(\mathbf{z}_1; \mathbf{v}_1) = \underbrace{I(\mathbf{z}_1; \mathbf{v}_2)}_{\text{predictive information for } \mathbf{v}_2} + \underbrace{I(\mathbf{v}_1; \mathbf{z}_1 | \mathbf{v}_2)}_{\text{superfluous information for } \mathbf{v}_2}$$

$$I(\mathbf{z}_1; \mathbf{v}_1) = \underbrace{I(\mathbf{z}_1; \mathbf{v}_2)}_{\text{predictive information for } \mathbf{v}_2} + \underbrace{I(\mathbf{v}_1; \mathbf{z}_1 | \mathbf{v}_2)}_{\text{superfluous information for } \mathbf{v}_2}$$

Loss function for a parametric encoder $p_{\theta}(\mathbf{z}_1|\mathbf{v}_1)$:

Multi-View Minimality

$$I(\mathbf{z}_1; \mathbf{v}_1) = \underbrace{I(\mathbf{z}_1; \mathbf{v}_2)}_{\text{predictive}} + \underbrace{I(\mathbf{v}_1; \mathbf{z}_1 | \mathbf{v}_2)}_{\text{superfluous}}$$
information for \mathbf{v}_2 information for \mathbf{v}_2

Loss function for a parametric encoder $p_{\theta}(\mathbf{z}_1|\mathbf{v}_1)$:

$$\mathcal{L}(\theta; \lambda) = \underbrace{I_{\theta}(\mathbf{v}_1; \mathbf{z}_1 | \mathbf{v}_2)}_{\text{minimality of } \mathbf{z}_1 \text{ for } \mathbf{v}_2} - \lambda \underbrace{I_{\theta}(\mathbf{v}_2; \mathbf{z}_1)}_{\text{sufficiency of } \mathbf{z}_1 \text{ for } \mathbf{v}_2}$$

$$\mathcal{L}_1(\theta; \lambda_1) = I_{\theta}(\mathbf{v}_1; \mathbf{z}_1 | \mathbf{v}_2) - \lambda_1 \ I_{\theta}(\mathbf{v}_2; \mathbf{z}_1)$$

$$\mathcal{L}_2(\psi; \lambda_2) = I_{\psi}(\mathbf{v}_2; \mathbf{z}_2 | \mathbf{v}_1) - \lambda_2 \ I_{\theta}(\mathbf{v}_1; \mathbf{z}_2)$$

MIB Loss function

$$\mathcal{L}_{1}(\theta; \lambda_{1}) = I_{\theta}(\mathbf{v}_{1}; \mathbf{z}_{1}|\mathbf{v}_{2}) - \lambda_{1} I_{\theta}(\mathbf{v}_{2}; \mathbf{z}_{1})$$

$$\mathcal{L}_{2}(\psi; \lambda_{2}) = I_{\psi}(\mathbf{v}_{2}; \mathbf{z}_{2}|\mathbf{v}_{1}) - \lambda_{2} I_{\theta}(\mathbf{v}_{1}; \mathbf{z}_{2})$$

$$\frac{1}{2}\mathcal{L}_1(\theta;\lambda_1) + \frac{1}{2}\mathcal{L}_2(\psi;\lambda_2) \le$$

MIB Loss function

$$\begin{split} \mathcal{L}_{1}(\theta;\lambda_{1}) &= \textit{I}_{\theta}(\mathbf{v}_{1};\mathbf{z}_{1}|\mathbf{v}_{2}) - \lambda_{1} \textit{I}_{\theta}(\mathbf{v}_{2};\mathbf{z}_{1}) \\ \mathcal{L}_{2}(\psi;\lambda_{2}) &= \textit{I}_{\psi}(\mathbf{v}_{2};\mathbf{z}_{2}|\mathbf{v}_{1}) - \lambda_{2} \textit{I}_{\theta}(\mathbf{v}_{1};\mathbf{z}_{2}) \\ &\frac{1}{2}\mathcal{L}_{1}(\theta;\lambda_{1}) + \frac{1}{2}\mathcal{L}_{2}(\psi;\lambda_{2}) \leq \\ -\textit{I}_{\theta\psi}(\mathbf{z}_{1};\mathbf{z}_{2}) + \beta \textit{D}_{SKL}(p_{\theta}(\mathbf{z}_{1}|\mathbf{v}_{1})||p_{\psi}(\mathbf{z}_{2}|\mathbf{v}_{2})) \end{split}$$

MIB Loss function

$$\begin{split} \mathcal{L}_1(\theta;\lambda_1) &= I_{\theta}(\mathbf{v}_1;\mathbf{z}_1|\mathbf{v}_2) - \lambda_1 \ I_{\theta}(\mathbf{v}_2;\mathbf{z}_1) \\ \mathcal{L}_2(\psi;\lambda_2) &= I_{\psi}(\mathbf{v}_2;\mathbf{z}_2|\mathbf{v}_1) - \lambda_2 \ I_{\theta}(\mathbf{v}_1;\mathbf{z}_2) \\ \mathcal{L}_{\mathsf{MIB}}(\theta,\psi;\beta) &:= -I_{\theta\psi}(\mathbf{z}_1;\mathbf{z}_2) + \beta \ D_{\mathsf{SKL}}(p_{\theta}(\mathbf{z}_1|\mathbf{v}_1)||p_{\psi}(\mathbf{z}_2|\mathbf{v}_2)) \end{split}$$

Multi-View

Model

Algorithm 1: Sampling

$$\label{eq:continuous_problem} \begin{split} & \text{if } \textit{Multi-View then} \\ & & \{ (\textbf{v}_1^{(i)}, \textbf{v}_2^{(i)}) \}_{i=1}^B \sim \textit{p}(\textbf{v}_1, \textbf{v}_2); \\ & \text{else} \\ & & \{ \textbf{x}^{(i)} \}_{i=1}^B \sim \textit{p}(\textbf{x}); \\ & \{ (t_1^{(i)}, t_2^{(i)}) \}_{i=1}^B \sim \textit{p}^2(\textbf{t}); \\ & \text{for } i \leftarrow 1 \text{ to } B \text{ do} \\ & & & | \textbf{v}_1^{(i)} \leftarrow t_1^{(i)}(\textbf{x}^{(i)}); \\ & & & | \textbf{v}_2^{(i)} \leftarrow t_2^{(i)}(\textbf{x}^{(i)}); \\ & & \text{end for} \\ \end{split}$$

Algorithm 2: $\mathcal{L}_{MIB}(\theta, \psi; \beta, B)$

for
$$i \leftarrow 1$$
 to B do

$$egin{aligned} \mathbf{z}_1^{(i)} &\sim p_{ heta}(\mathbf{z}_1|\mathbf{v}_1^{(i)}); \ \mathbf{z}_2^{(i)} &\sim p_{\psi}(\mathbf{z}_2|\mathbf{v}_2^{(i)}); \ \mathcal{L}_m^{(i)} &\leftarrow D_{SKL}(p_{ heta}(\mathbf{z}_1|\mathbf{v}_1^{(i)})||p_{\psi}(\mathbf{z}_2|\mathbf{v}_2^{(i)})); \end{aligned}$$

end for

$$\begin{aligned} &\mathcal{L}_s \leftarrow -\hat{l}_\xi(\{(\mathbf{z}_1^{(i)}, \mathbf{z}_2^{(i)})\}_{i=1}^B);\\ &\text{return } \mathcal{L}_s + \frac{\beta}{B}\sum_{i=1}^B \mathcal{L}_M^{(i)} \end{aligned}$$

MNIST: Task

MNIST: Task

$$\mathbf{v}_1 \in [0,1]^{28 \times 28}$$
 $\mathbf{v}_2 \in [0,1]^{28 \times 28}$ $\mathbf{y} \in [10]$ "3"

Task: Create a representation z_1 of v_1 to predict y

MNIST: Information Plane

MNIST Results

MNIST Results

MNIST Representation

MIR Flick: Task

■ Task: Learn a representation z₁ which is useful to predict y

MIR Flickr: Results

MIR Flickr: Results

Sketchy: Task

Sketchy: Task

■ **Task**: Retrieve images of the same class as the query sketch

Sketchy: Results

Discussion and Future Work

Future direction of exploration include:

Extending MIB to more than 2 views

Discussion and Future Work

Future direction of exploration include:

- Extending MIB to more than 2 views
- Connecting mutual redundancy with invariant neural networks

