1. Uvažujte slučku, ktorou preteká prúd *I* podľa obrázka. Slučku tvoria rovné časti a kruhové výseky, ktoré sú sústredené okolo bodu P. Nájdite veľkosť a smer *B* v bode P.

$$\left[\frac{\mu_0 I}{4}\left(\frac{1}{a}+\frac{1}{b}\right)$$
, do papiera $\right]$

2. Uvažujte slučku, ktorou preteká prúd *I* podľa obrázka. Slučku tvoria rovné časti a kruhové výseky, ktoré sú sústredené okolo bodu P. Nájdite veľkosť a smer *B* v bode P.

$$\left[\frac{\mu_0 l}{12} \left(\frac{1}{a} - \frac{1}{b}\right) von z papiera\right]$$

3. Na obrázku je rez dvoma dlhými vodičmi (zobrazené šedou farbou). Vnútorným vodičom preteká prúd I, vonkajším vodičom preteká opačným smerom prúd I. Prúd je v nich homogénne rozložený. Vypočítajte priebeh magnetickej indukcie B v mieste oboch vodičov, t.j.:

- a) vo vzdialenosti r < c
- **b**) vo vzdialenosti b < r < a.

$$\frac{\mu_0 I}{2\pi} \frac{r}{c^2}$$
; $\frac{\mu_0 I}{2\pi r} \frac{a^2 - r^2}{a^2 - b^2}$

4. Na obrázku je ukázaný prierez koaxiálnym káblom. Stredový vodič je obklopený gumovou vrstvou, ktorú obklopuje vonkajším vodičom, ktorý obklopuje ďalšia gumová vrstva. Vnútorným vodičom tečie prúd 1 A smerov von z papiera a vonkajším vodičom prúd 3 A smerom do papiera. Určte veľkosť a smer indukcie magnetického poľa v bodoch *a* a *b*.

[200 µT nahor k papieru; 133 µT nadol k papieru]

5. Dvoma koplanárnymi a koncentrickými kruhovými slučkami z drôtu tečú prúdy $I_1 = 5$ A a $I_2 = 3$ A v opačnom smere. Ak $r_1 = 12$ cm a $r_2 = 9$ cm, aká je

b) Nechajme r_1 fixné a nech r_2 sa môže meniť. Určte jeho hodnotu, pre ktorú bude \boldsymbol{B} uprostred slučiek nulové?

[5,24 µT do papiera]

- **6.** Kruhová drôtená slučka s polomerom r je umiestnená v homogénnom magnetickom poli, ktoré je kolmé na rovinu slučky (viď. obrázok). Magnetické pole sa mení časom ako B(t) = a + bt, kde a a b sú konštanty.
 - a) Vypočítajte magnetický tok pretekajúci cez slučku v čase t = 0.
 - **b**) Vypočítajte emn indukované v slučke.
 - c) Ak je odpor slučky R, aký prúd sa v nej indukuje?

$$\left[a\pi r^2; -b\pi r^2; -\frac{b\pi r^2}{R}\right]$$

7. Na obrázku je znázornená štvorcová slučka s dĺžkou strany a, ktorá sa nachádza v magnetickom poli s indukciou B. Magnetické pole B je kolmé na rovinu nákresne a jeho veľkosť sa mení s časom t a súradnicou y podľa vzťahu $B = At^5y^3$. Určte veľkosť indukovaného napätia a smer indukovanej intenzity elektrického poľa v slučke.

8. Obdĺžniková vodivá slučka s dĺžkou *D*, šírkou *L* a odporom *R* leží blízko nekonečne dlhého vodiča, ktorým tečie prúd I. Slučka sa vzďaľuje od vodiča konštantnou rýchlosťou *v*, pričom vzdialenosť osi slučky od vodiča je *r*.

- a) Určte smer a veľkosť indukovaného prúdu I_{ind} v slučke a svoju voľbu vysvetlite.
- **b**) Zakreslite smer ampérovej sily pôsobiacej na jednotlivé úseky slučky.
- c) Vypočítajte veľkosť ampérovej sily pôsobiacej na úsek vodiča vpravo s dĺžkou L (šípkou označená časť).

$$\left[I_{ind}\frac{\mu_0 I}{2\pi}\ln\left(\frac{r+L/2}{r-L/2}\right)\right]$$

9. Vodivá tyč dĺžky l sa pohybuje rýchlosťou v rovnobežne s dlhým drôtom, ktorým preteká stály prúd I. Os tyče je kolmá na drôt a jej bližší koniec je od drôtu vo vzdialenosti r (viď. obrázok). Aká je veľkosť emn indukovaného v tyči ?

$$\left[|\varepsilon| = \frac{\mu_0 l v}{2\pi} \ln\left(1 + \frac{l}{r}\right) \right]$$

10. Hliníkový prstenec s polomerom r_I a odporom R z kraja obkolesuje dlhý solenoid s n závitmi/m a polomerom r_2 . Predpokladajte, že axiálna zložka poľa vytváraného solenoidom je na jeho okraji polovičná ako uprostred solenoidu. Pole mimo solenoidu je zanedbateľné a prúd v solenoide narastá rýchlosťou $\Delta I/\Delta t$.

- a) Aký prúd sa indukuje v prstenci?
- **b**) Aká je veľkosť a smer magnetického poľa, ktoré sa vytvára uprostred prstenca v dôsledku tohto indukovaného prúdu ?

$$\left[\frac{\mu_0 n \pi r_2^2 \Delta I}{2R \Delta t}\right]$$

11. Štvorcový závit s rozmermi b je umiestnený mimo ideálneho solenoidu s polomerom R, s dĺžkovou koncentráciou závitov n. Solenoidom prechádza prúd, ktorý narastá s časom t ako $I = \alpha t^4$. Určte veľkosť indukovaného napätia U_i v závite.

Pozn: Solenoid môžete považovať za ideálny, t.j. magnetické pole je sústredené len v jeho vnútri a vektor magnetickej indukcie je rovnobežný v každom mieste s osou solenoidu.

 $[-4\mu_0\alpha t^3n\pi R^2]$