IMPLEMENTATION OF SQL QUERY CONSTRUCTION TO IMPROVE DATABASE CONCEPT UNDERSTANDING WITH CLOSE-ENDED APPROACH

Thesis Advisor I

Putra Prima Arhandi, ST., M.Kom NIP. 198611032014041001

Student

Muhammad Ilham Adhim NIM. 1841720076

Thesis Advisor II

Muhammad Shulhan Khairy S.Kom., M.Kom NIP. 199205172019031020

01 INTRODUCTION

To make an effective query, students need to understand how to extract them, and it becomes harder as the database complexity grows.

(Phillip Garner, 2015).

The query complexity is **limited to the short-term memory of** the code writer when retrieving data.

(de Jong, 2010)

3 SQL Query Formulation can be a challenging task due to its declarative form of SQL syntax.

(Taipalus, 2019)

Problems

To increase understanding, the **practice should** not only be limited to code creation but also **reflects the student's thinking** by case study descriptions and problem-solving.

(Marion et al., 2007)

A close-ended approach that has **predefined answers allows**students to think logically about solving case studies within the appropriate context and scope of the problem.

(Lin & Lien, 2013).

A drag-and-drop implementation reduces typing errors and gives flexibility for the users to adjust code in order.

(Heift, 2003; Price & Barnes, 2015; C.Phewkum, 2019)

Solutions

Research Problem

How is the effect of SQL Code construction with drag-and-drop and close-ended approach on students' understanding of SQL SELECT Statements concepts?

02 Application Concept SQLearn

>

Application Concept - Students

Predefined options (Close-ended approach)

Application Concept - Lecturers

Create New Practice Set

03

RESEARCH METHODOLOGY

Data Collection | Design Experiment

Data Processing | Flow

04

SYSTEM DESIGN AND ANALYSIS

>

System Architecture

05 SYSTEM IMPLEMENTATION AND TESTING

Close-Ended SQL Hints (Lecturer)

* Teks Soal

🖭 Dosen ingin menampilkan daftar kode jadwal terurut berdasarkan jam

Cancel

Drag-and-Drop Implementation (Students)

Data Collected

06 RESULT AND DISCUSSION

Result | Normality Test

One-Sample Kolmogorov-Smirnov Test					
		Pre-Test	Post-Test		
N		25	25		
	Mean	64.0000	75.2000		
Normal Parameters	Std. Deviation	7.6376	7.7028		
Most Extreme Differences	Absolute	0.264	0.413		
	Positive	0.220	0.267		
	Negative	-0.264	-0.413		
Test Statistic		0.264	0.413		
Asymp. Sig. (2-tailed)		0.000	0.000		

Decision-Making Basis

- a. If the value of Asymp. Sig. (2-tailed) > 0,05. Data is normally distributed.
- b. If the value of Asymp. Sig. (2-tailed) < 0,05. Data is **not** normally distributed.

Result | Wilcoxon Test

Ranks					
		N	Mean Rank	Sum of Ranks	
Pre-Test & Post-Test	Negative Ranks	0	0.00	0.00	
	Positive Ranks	20	10.50	210.00	
	Ties	5			
	Total	25			

Test Statistics		
	PostTest - PreTest	
Z	-4.064	
Asymp. Sig. (2-tailed)	0.000	

Wilcoxon Signed Ranks Test

Wilcoxon Signed Ranks Test Statistics

Decision-Making Basis

- a. If the value of Asymp. Sig. (2-tailed) < 0,05. There is significance average difference between pre-test scores and post-test scores.
- b. If the value of Asymp. Sig. (2-tailed) > 0,05. There is **no** significance average difference between pre-test scores and post-test scores.

Discussion

O1 Drag-and-drop method and SQL Query construction in SQLearn can be used as SQL query exercise in database subject

Drag-and-drop method and SQL Query Construction with close-ended approach in SQLearn has significant positive impact towards students understanding in SQL Query topic in database subject

Conclusion

Based on this research result of SQL Query Construction practice with a closeended approach and drag-and-drop implementation, it is concluded that this method has a significant positive impact on students' post-test scores in SQL Queries topic in database subject.

Suggestion

O1 Logs recorded in the database can be optimized and being used for mapping students understanding in more detail.

Broaden drag-and-drop implementation so that it is not limited to SELECT statements.

Thank you

