1. Time period for which the data is given

Query:

SELECT

MIN(order_purchase_timestamp) AS start_time_period,

MAX(order_purchase_timestamp) AS end_time_period

FROM `target-scaler-360317.customers.orders`

2. Cities and States covered in the dataset

Query:

SELECT DISTINCT geolocation_city,geolocation_state FROM geolocation

Query:

SELECT COUNT(DISTINCT geolocation_city) AS Number_of_cities FROM geolocation;

Query:

SELECT COUNT(DISTINCT geolocation_state) AS Number_of_states FROM .geolocation

In-depth Exploration:

1. Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

Month-Wise

```
WITH month_purchase AS
(

SELECT EXTRACT(MONTH FROM order_purchase_timestamp) AS Month_wise
FROM orders
)

SELECT Month_wise,COUNT(Month_wise) AS Number_of_purchases
from month_purchase
GROUP BY Month_wise
ORDER BY COUNT(Month_wise) DESC;
```

Row	Month_wise	Number_of_purchases
1	8	10843
2	5	10573
3	<mark>-7</mark>	10318
4	3	9893
5	6	9412
6	4	9343
7	2	8508
8	1	8069
9	11	7544
10	12	5674
11	10	4959
12	9	4305

- ➤ As we see in the Screenshot 8,5,7 month have more number of purchases compares to other months and 9th month have lowest purchases.
- if we observer it seems like there is pattern according to different quarters in the year.

Quarter - wise

Query:

```
WITH month_purchase AS
(
SELECT EXTRACT(MONTH FROM order_purchase_timestamp) AS Month_wise
FROM orders
),
quarter_purchse AS
(
SELECT CASE
WHEN Month_wise IN (1,2,3,4) THEN "1st Quarter"
WHEN Month_wise IN (5,6,7,8) THEN "2nd Quarter"
ELSE "3RD Quarter"
END AS Quarters
FROM month_purchase
)

SELECT Quarters,COUNT(Quarters) AS Number_of_purchases
from quarter_purchse
GROUP BY Quarters
ORDER BY COUNT(Quarters) DESC;
```

Quarters	Number_of_purchases
2nd Quarter	41146
1st Quarter	35813
3RD Quarter	22482

3rd Quarter purchases are very low compares to other quarters ,2nd quarter have high purchases counts.

2. What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

```
WITH time_purchase AS
(
SELECT EXTRACT(TIME FROM order_purchase_timestamp) AS time_wise
FROM orders
),
```

```
category AS (
SELECT
CASE
WHEN time wise BETWEEN "02:01:00" AND "06:00:00"
THEN "DAWN"
WHEN time wise BETWEEN "06:01:00" AND "12:00:00"
THEN "MORNING"
WHEN time wise BETWEEN "12:01:00" AND "15:00:00"
THEN "AFTERNOON"
WHEN time wise BETWEEN "15:01:00" AND "19:00:00"
THEN "EVENING"
ELSE "NIGHT"
END AS Time_category
FROM time_purchase
SELECT Time category,
COUNT(Time_category) AS Number_of_purchases
FROM category
GROUP BY Time category
ORDER BY COUNT(Time category) DESC;
```

Time_category	Number_of
NIGHT	32136
EVENING	24931
MORNING	22235
AFTERNOON	18973
DAWN	1166

It clearly makes sense as most of the people will be free at evening and night times that's why at that time we see increase in number of purchases.

3. Evolution of E-commerce orders in the Brazil region:

1. Get month on month orders by states

```
WITH monthadd AS(

SELECT *,EXTRACT(MONTH FROM order_purchase_timestamp) AS month
FROM orders
)
```

SELECT c.customer_state,o.month,COUNT(o.order_id) AS Number_of_purchases FROM monthadd AS o
JOIN customers AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_state,o.month
ORDER BY COUNT(o.order_id) DESC ,c.customer_state;

Row	customer_state	month //	Number_of
1	SP	8	4982
2	SP	5	4632
3	SP	7	4381
4	SP	6	4104
5	SP	3	4047
6	SP	4	3967
7	SP	2	3357
8	SP	1	3351
9	SP	11	3012
10	SP	12	2357
11	SP	10	1908
12	SP	9	1648
13	RJ	5	1321
14	RJ	8	1307
15	RJ	3	1302
16	RJ	7	1288
17	MG	3	1237

SP – state have clearly very high number of purchases in all months

City Wise – Highest and Lowest number of purchases , 5 Cities in each case.

Query:

TOP 5:

SELECT c.customer_city,COUNT(o.order_id) AS Number_of_purchases FROM orders AS o
JOIN customers AS c
ON o.customer_id = c.customer_id

GROUP BY c.customer_city ORDER BY COUNT(o.order_id) DESC LIMIT 5;

Row	customer_city	Number_of
1	sao paulo	15540
2	rio de janeiro	6882
3	belo horizonte	2773
4	brasilia	2131
5	curitiba	1521

Least 5

```
SELECT c.customer_city,COUNT(o.order_id) AS Number_of_purchases
FROM orders AS o
JOIN customers AS c
ON o.customer_id = c.customer_id
GROUP BY c.customer_city
ORDER BY COUNT(o.order_id)
LIMIT 5;
```

Row	customer_city //	Number_of
1	itacurussa	1
2	baguari	1
3	boquim	1
4	dores de guanhaes	1
5	muliterno	1

Sao Paulo have the highest number of purchases by far – This also makes sense as Sao Paulo is populous city in Brazil

2. How are customers distributed in Brazil

```
SELECT customer_state, COUNT(customer_unique_id)
FROM customers
GROUP BY customer_state
ORDER BY COUNT(customer_unique_id) DESC;
```

Row	customer_state	f0_	1.
1	SP		41746
2	RJ		12852
3	MG		11635
4	RS		5466
5	PR		5045
6	SC		3637
7	BA		3380
8	DF		2140
9	ES		2033
10	GO		2020
11	PE		1652
12	CE		1336
13	PA		975
14	MT		907
15	MA		747
16	MS		715
17	PB		536
18	PI		495
19	RN		485
20	AL		413
21	SE		350
22	TO		280
23	RO		253
24	AM		148
25	AC		81
26	AP		68
27	RR		46

As we saw above SP had more purchases it links well here as more number of customers, more number of purchases.

Impact on Economy: Analyze the money movemented by ecommerce by looking at order prices, freight and others.

1. Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only)

QUERY:

```
WITH monthyearadd AS(
 SELECT *, EXTRACT (MONTH FROM order purchase timestamp) AS month,
EXTRACT(YEAR FROM order purchase timestamp) AS year
FROM orders
),
year_wise AS(
SELECT m.year, SUM(p.payment value) AS total payment
FROM monthyearadd AS m
JOIN payments AS p
ON m.order_id = p.order_id
WHERE m.year in (2017,2018) AND m.month BETWEEN 1 AND 8
GROUP BY m.year
)
SELECT *,LAG(total_payment) OVER(order by year) AS previous_year,
(total payment-
(LAG(total payment) OVER(order by year)))/(LAG(total payment) OVER(order by year))*100
AS Increased Percentage
FROM year_wise;
```

Row	year //	total_payment	previous_year	Increases_Peercent
1	2018	8694733.83999979	3669022.1200000118	136.97687164665447
2	2017	3669022.1200000118	nuli	nulı

We have 136% Increase in payments from 2017 to 2018 (include months between Jan to Aug only)

2. Mean & Sum of price and freight value by customer state

QUERY:

```
SELECT c.customer_state,
SUM(ot.price) AS Total_Price ,
AVG(ot.price) AS Mean_Price ,
SUM(ot.freight_value) AS Total_Freight_Value ,
AVG(ot.freight_value) AS Mean_Freight_Value
FROM order_items AS ot
JOIN orders AS o
```

```
ON ot.order_id = o.order_id

JOIN customers AS c

ON o.customer_id = c.customer_id

GROUP BY c.customer_state
```

Row	customer_state	Total_Price	Mean_Price	Total_Freight_Value //
1	MT	156453.5299999991	148.2971848341233	29715.430000000
2	MA	119648.219999999	145.204150485436	31523.770000000
3	AL	80314.81	180.889211711711	15914.589999999
4	SP	5202955.05000145	109.653629159729	718723.06999998
5	MG	1585308.02999987	120.748574148830	270853.46000000
6	PE	262788.029999996	145.508322259135	59449.6599999999
7	RJ	1824092.66999981	125.117818094519	305589.31000000
8	DF	302603.939999997	125.770548628428	50625.499999999
9	RS	750304.020000023	120.337453087409	135522.74000000
10	SE	58920.8500000001	153.041168831168	14111.469999999
11	PR	683083.760000020	119.004139372822	117851.68000000
12	PA	178947.809999998	165.692416666666	38699.300000000

Analysis on sales, freight and delivery time

1. Calculate days between purchasing, delivering and estimated delivery

```
WITH diff AS(

SELECT *,order_delivered_customer_date-
order_purchase_timestamp AS time_to_delivery,
order_estimated_delivery_date-order_delivered_customer_date AS diff_estimated_delivery
FROM orders
WHERE (order_delivered_customer_date IS NOT NULL AND order_purchase_timestamp IS N
OT NULL) AND order_estimated_delivery_date IS NOT NULL
)

SELECT c.customer_state,AVG(ot.freight_value) AS AVG_freight_value,
AVG(o.time_to_delivery) AS AVG_time_to_delivery, AVG(o.diff_estimated_delivery) AS AVG
_diff_estimated_delivery
FROM customers AS c
JOIN diff AS o
```

```
ON c.customer_id = o.customer_id

JOIN order_items AS ot

ON o.order_id = ot.order_id

GROUP BY c.customer_state
```

customer_state //	AVG_freight_value	AVG_time_to_delivery	AVG_diff_estimated_d
RS	21.614270340779406	0-0 0 364:31:28.185227458	0-0 0 322:22:41.06962
SC	21.506627623230809	0-0 0 360:2:8.653001464	0-0 0 260:57:4.348462
SP	15.114994078763157	0-0 0 209:22:12.151669788	0-0 0 252:19:53.63348
MG	20.625837268715792	0-0 0 287:36:45.814043508	0-0 0 303:21:17.88340
BA	26.487556339940284	0-0 0 461:56:31.164811295	0-0 0 246:56:4.414879
RJ	20.909784391347475	0-0 0 363:33:43.763608087	0-0 0 271:24:39.93355
GO	22.562867808519968	0-0 0 369:40:45.217391304	0-0 0 278:18:41.13306
MA	38.492712499999996	0-0 0 519:34:2.325	0-0 0 221:24:36.975
PE	32.693333333333406	0-0 0 438:42:4.948453608	0-0 0 306:21:20.61855
PB	43.091689419795223	0-0 0 494:8:17.406143344	0-0 0 296:55:38.08873
ES	22.02897977528087	0-0 0 375:34:35.325842696	0-0 0 238:47:25.51011
PR	20.471816250663831	0-0 0 286:43:56.048858204	0-0 0 307:1:5.0026553
RO	41.330549450549405	0-0 0 473:44:40	0-0 0 464:11:44.17582
MS	23.350900123304552	0-0 0 372:48:58.816276202	0-0 0 252:41:45.57336
PA	35.6290132827325	0-0 0 570:5:46.337760910	0-0 0 325:40:26.01518
ТО	37.435032258064524	0-0 0 418:45:37.161290322	0-0 0 279:37:1.741935
MT	27 00601/175506260	0 0 0 421-4-46 207267405	U U U 333-3U-EU 4E333

Top 5 states with highest/lowest average freight value:

Highest:

```
WITH diff AS(
SELECT *,order_delivered_customer_date-
order_purchase_timestamp AS time_to_delivery,
order_estimated_delivery_date-order_delivered_customer_date AS diff_estimated_delivery
FROM orders
WHERE (order_delivered_customer_date IS NOT NULL AND order_purchase_timestamp IS N
OT NULL) AND order_estimated_delivery_date IS NOT NULL
)
SELECT c.customer_state,AVG(ot.freight_value) AS AVG_freight_value,
AVG(o.time_to_delivery) AS AVG_time_to_delivery, AVG(o.diff_estimated_delivery) AS AVG_diff_estimated_delivery
```

```
FROM customers AS c

JOIN diff AS o

ON c.customer_id = o.customer_id

JOIN order_items AS ot

ON o.order_id = ot.order_id

GROUP BY c.customer_state

ORDER BY AVG(ot.freight_value) DESC

LIMIT 5
```

Row	customer_state	AVG_freight	AVG_time_to_delivery	AVG_diff_estimated_d
1	PB	43.0916894	0-0 0 494:8:17.406143344	0-0 0 296:55:38.08873
2	RR	43.0880434	0-0 0 677:32:35.217391304	0-0 0 422:51:1.304347
3	RO	41.3305494	0-0 0 473:44:40	0-0 0 464:11:44.17582
4	AC	40.0479120	0-0 0 497:10:20.439560439	0-0 0 487:59:50.10989
5	PI	39.1150860	0-0 0 465:13:54.722753346	0-0 0 260:27:40.03824

Lowest:

```
WITH diff AS(
SELECT *, order delivered customer date-
order purchase timestamp AS time to delivery,
order estimated delivery date-order delivered customer date AS diff estimated delivery
FROM orders
WHERE (order delivered customer date IS NOT NULL AND order purchase timestamp IS N
OT NULL) AND order_estimated_delivery_date IS NOT NULL
SELECT c.customer state, AVG (ot.freight value) AS AVG freight value,
AVG(o.time to delivery) AS AVG time to delivery, AVG(o.diff estimated delivery) AS AVG
_diff_estimated_delivery
FROM customers AS c
JOIN diff AS o
ON c.customer_id = o.customer_id
JOIN order items AS ot
ON o.order_id = ot.order_id
GROUP BY c.customer state
ORDER BY AVG(ot.freight value)
LIMIT 5
```

Row	customer_state	AVG_freight	AVG_time_to_delivery	AVG_diff_estimated_de
1	SP	15.1149940	0-0 0 209:22:12.151669788	0-0 0 252:19:53.633486
2	PR	20.4718162	0-0 0 286:43:56.048858204	0-0 0 307:1:5.00265533
3	MG	20.6258372	0-0 0 287:36:45.814043508	0-0 0 303:21:17.883409
4	RJ	20.9097843	0-0 0 363:33:43.763608087	0-0 0 271:24:39.933550
5	DF	21.0721613	0-0 0 311:0:52.458598726	0-0 0 275:50:33.426751

Top 5 states with highest/lowest average time to delivery

Highest:

```
WITH diff AS(
SELECT *,order_delivered_customer_date-
order purchase timestamp AS time to delivery,
order_estimated_delivery_date-order_delivered_customer_date AS diff_estimated_delivery
FROM orders
WHERE (order_delivered_customer_date IS NOT NULL AND order_purchase_timestamp IS N
OT NULL) AND order_estimated_delivery_date IS NOT NULL
)
SELECT c.customer state,
AVG(o.time_to_delivery) AS AVG_time_to_delivery, AVG(o.diff_estimated_delivery) AS AVG
_diff_estimated_delivery
FROM customers AS c
JOIN diff AS o
ON c.customer id = o.customer id
JOIN order_items AS ot
ON o.order_id = ot.order_id
GROUP BY c.customer state
ORDER BY AVG(o.time to delivery) DESC
LIMIT 5
```

Row	customer_state	AVG_time_to_delivery	AVG_diff_estimated_delivery
1	RR	0-0 0 677:32:35.217391304	0-0 0 422:51:1.304347826
2	AP	0-0 0 676:56:28.148148148	0-0 0 426:27:4.444444444
3	AM	0-0 0 633:22:57.791411042	0-0 0 461:26:2.208588957
4	AL	0-0 0 587:44:17.845433255	0-0 0 193:23:7.728337236
5	PA	0-0 0 570:5:46.337760910	0-0 0 325:40:26.015180265

Lowest:

```
WITH diff AS(
SELECT *, order delivered customer date-
order purchase timestamp AS time to delivery,
order estimated delivery date-order delivered customer date AS diff estimated delivery
FROM orders
WHERE (order delivered customer date IS NOT NULL AND order purchase timestamp IS N
OT NULL) AND order estimated delivery date IS NOT NULL
)
SELECT c.customer state,
AVG(o.time_to_delivery) AS AVG_time_to_delivery, AVG(o.diff_estimated_delivery) AS AVG
diff estimated delivery
FROM customers AS c
JOIN diff AS o
ON c.customer id = o.customer id
JOIN order items AS ot
ON o.order id = ot.order id
GROUP BY c.customer state
ORDER BY AVG(o.time_to_delivery)
LIMIT 5
```

Row	customer_state	AVG_time_to_delivery	AVG_diff_estimated_delivery
1	SP	0-0 0 209:22:12.151669788	0-0 0 252:19:53.633486208
2	PR	0-0 0 286:43:56.048858204	0-0 0 307:1:5.002655337
3	MG	0-0 0 287:36:45.814043508	0-0 0 303:21:17.883409460
4	DF	0-0 0 311:0:52.458598726	0-0 0 275:50:33.426751592
5	SC	0-0 0 360:2:8.653001464	0-0 0 260:57:4.348462664

Top 5 states where delivery is really fast/ not so fast compared to estimated date

Really Fast:

```
WITH diff AS(

SELECT *,order_delivered_customer_date-
order_purchase_timestamp AS time_to_delivery,
order_estimated_delivery_date-order_delivered_customer_date AS diff_estimated_delivery
FROM orders
WHERE (order_delivered_customer_date IS NOT NULL AND order_purchase_timestamp IS N
OT NULL) AND order_estimated_delivery_date IS NOT NULL
)
SELECT c.customer_state,
AVG(o.diff_estimated_delivery) AS AVG_diff_estimated_delivery
```

```
FROM customers AS c

JOIN diff AS o

ON c.customer_id = o.customer_id

JOIN order_items AS ot

ON o.order_id = ot.order_id

GROUP BY c.customer_state

ORDER BY AVG(o.diff_estimated_delivery)

LIMIT 5
```

Row	customer_state	AVG_diff_estimated_delivery
1	AL	0-0 0 193:23:7.728337236
2	MA	0-0 0 221:24:36.975
3	SE	0-0 0 223:49:34.400
4	ES	0-0 0 238:47:25.510112359
5	BA	0-0 0 246:56:4.414879174

Not So Fast:

```
WITH diff AS(
SELECT *, order delivered customer date-
order purchase timestamp AS time to delivery,
order_estimated_delivery_date-order_delivered_customer_date AS diff_estimated_delivery
FROM orders
WHERE (order delivered customer date IS NOT NULL AND order purchase timestamp IS N
OT NULL) AND order_estimated_delivery_date IS NOT NULL
)
SELECT c.customer state,
AVG(o.diff estimated delivery) AS AVG diff estimated delivery
FROM customers AS c
JOIN diff AS o
ON c.customer_id = o.customer_id
JOIN order items AS ot
ON o.order_id = ot.order_id
GROUP BY c.customer state
ORDER BY AVG(o.diff estimated delivery) DESC
LIMIT 5
```

Row	customer_state	AVG_diff_estimated_delivery
1	AC	0-0 0 487:59:50.109890109
2	RO	0-0 0 464:11:44.175824175
3	AM	0-0 0 461:26:2.208588957
4	AP	0-0 0 426:27:4.44444444
5	RR	0-0 0 422:51:1.304347826

Payment type analysis:

1. Month over Month count of orders for different payment types

Over Payment types

QUERY:

```
WITH monthadd AS(

SELECT *,EXTRACT(MONTH FROM order_purchase_timestamp) AS month
FROM orders
)

SELECT p.payment_type,COUNT(m.order_id) AS Number_of_orders
FROM monthadd AS m
JOIN payments AS p
ON m.order_id = p.order_id
GROUP BY p.payment_type
ORDER BY p.payment_type,COUNT(m.order_id);
```

payment_type	6	Number_of_ //
UPI		19784
credit_card		76795
debit_card		1529
not_defined		3
voucher		5775

Over payments and months:

```
WITH monthadd AS(
SELECT *,EXTRACT(MONTH FROM order_purchase_timestamp) AS month
FROM orders
)
```

```
SELECT p.payment_type,m.month,COUNT(m.order_id) AS Number_of_orders FROM monthadd AS m

JOIN payments AS p

ON m.order_id = p.order_id

GROUP BY p.payment_type,m.month

ORDER BY p.payment_type,COUNT(m.order_id);
```

Row	payment_type	month //	Number_of_orders
1	UPI	9	903
2	UPI	10	1056
3	UPI	12	1160
4	UPI	11	1509
5	UPI	1	1715
6	UPI	2	1723
7	UPI	4	1783
8	UPI	6	1807
9	UPI	3	1942
10	UPI	5	2035
11	UPI	7	2074
12	UPI	8	2077
13	credit_card	9	3286
14	credit_card	10	3778
15	credit_card	12	4378
16	credit_card	11	5897
17	credit card	1	6103

2. Distribution of payment installments and count of orders

Query:

SELECT payment_installments,COUNT(order_id) AS Number_of_orders FROM payments
GROUP BY payment_installments
ORDER BY COUNT(order_id) DESC

Row	payment_in	Number_of
1	1	52546
2	2	12413
3	3	10461
4	4	7098
5	10	5328
6	5	5239
7	8	4268
8	6	3920
9	7	1626
10	9	644
11	12	133
12	15	74
13	18	27
14	11	23
15	24	18
16	20	17
17	13	16

Distribution – Most of our payment installments are between 1 to 10.

Actionable Insights and Recommendations:

- ➤ Comparing 2017- 2018 growth rate is above 100 percent in sales which implies we need to increase the physical workforce and branches in the cities where most sales happened.
- AS 2nd quarter have more sales basically in a year hiring the intern or temporary workers for that month will be good.
- ➤ Sao Paulo have the highest number of purchases by far -- Increase the workforce in the stores open new branch in the city.
- > SP state have lowest freight value (lowest cost to transport goods) and also have most number of sales which means here we can derive maximum profit should set up more resource towards this state.
- AL,MA,SE are the states where the delivery are done fast (here fast means how much less difference in delivered time and estimated time), Call a meeting with this state managers and analyse to find out how they deliver fast and try to replicate in other states as well.

- Most of the payments are done using Credit cards, if able to get credit data find out which bank card is used most and try to have a partnership with the bank might help in increase revenue.
- Most used payment installments by users are 1,2,3,4,10. Increasing these installments to be valid for many products as possible will increase the interest in customers.
- Evening and Night times we see increase in purchases, Alerting the employees in the store to have better focus and have best employee at sight in this period of time.