

Swiss Federal Institute of Technology Zurich

Cause-Effect Pairs Challenge

Isabelle Guyon
ChaLearn

Thanks

Initial impulse: Joris Mooij, Dominik Janzing, and Bernhard Schölkopf, from the Max Planck.

Examples of algorithms and data: Povilas Daniušis, Arthur Gretton, Patrik O. Hoyer, Dominik Janzing, Antti Kerminen, Joris Mooij, Jonas Peters, Bernhard Schölkopf, Shohei Shimizu, Oliver Stegle, and Kun Zhang, Jakob Zscheischler.

Datasets and result analysis: Isabelle Guyon + Mehreen Saeed + {Mikael Henaff, Sisi Ma, and Alexander Statnikov}, from NYU.

Website and sample code: Isabelle Guyon + Ben Hamner (Kaggle).

Review, testing: Marc Boullé, Hugo Jair Escalant, Frederick Eberhardt, Seth Flaxman, Patrik Hoyer, Dominik Janzing, Richard Kennaway, Vincent Lemaire, Joris Mooij, Jonas Peters, Florin, Peter Spirtes, Ioannis Tsamardinos, Jianxin Yin, Kun Zhang.

Causal discovery without overfitting?

Causation coefficient

C can be used to

- RANK pairs of variables and prioritize experiments
- Orient edges in degenerate causal graphs

ROC curves for A->B

Winners

- 1. ProtoML (Rank 1): Diogo Moitinho de Almeida.
- 2. Jarfo (Rank 2): José Adrián Rodríguez Fonollosa.
- 3. FirfID (Rank 4): Spyridon Samothrakis.

#	Δ1w	Team Name ‡model uploaded * in the money	Score @	Entries
1	↑190	ProtoML # ‡ *	0.81960	25
2	↑68	jarfo ‡	0.81052	123
3	↑157	HiDLoN № ‡	0.80720	59
4	↑116	FirfiD # ‡	0.79957	221
5	11	mouse ‡	0.78782	30
6	↑31	Domcastro & Sayani 🆺 ‡	0.78133	324
7	↑222	nor ‡	0.77595	20
8	15	LucaToni ‡	0.77081	126
9	↑105	Rangel Dokov ‡	0.76780	32
10	↑16	liubenyuan & Abhishek 🃭 ‡	0.76502	70
11	↑73	Saeh & Xing # ‡	0.76181	33
12	↑133	Rahan ‡	0.75666	48

Data

Cause-effect pairs method

Test whether $A \rightarrow B$ is a better explanation than $A \leftarrow B$ comparing two hypotheses:

$$B = f(A, noise)$$

 $A = f(B, noise)$

Causality Workbench clopinet.com/causality

Setting of the challenge

Causality Workbench clopinet.com/causality

Setting

- No feed-back loops.
- No explicit time information.
- A variable can be though of as an aggregate statistic, like life expectancy of a population, or a measurement like temperature.
- We consider pairs of variables $\{A, B\}$ for which A->B means B=f (A, noise).
- Pairs are independent of each other.

Data provided

SampleID	A	В
train1	-6348 4599 -9340 -13170 8456 -10079 -68 7957 -44	676777771777177733777677771177
train2	-6462 7666 19406 -2299 -22045 -6262 24734 -8854	3455543745541544545555514144455
train3	12800 -6791 -539 -9092 9818 1646 13806 324 -6031	-7469 38799 -6292 2224 -11357 -10823 -8578 -5095 -
train4	14 580 -6627 10738 13938 -13793 -17467 -1269 -84	11883 -82 -3086 3150 -7775 -5290 1338 8765 5267 11
train5	1100101110101000111111111111010	111111111111111011111111111111111
train6	222131223312322212222222212133	-1705 -772 4741 3431 -8435 -6487 -9733 7563 -3063 -
train7	44447454572244442447442444474	3449 14747 -21631 -4777 -13084 4257 -3262 15538 -2
train8	-15214 -4766 6890 129 14304 -8366 -5836 2902 -47	10161 14740 2615 1491 -6601 24004 -1357 -2027 -951
train9	-8062 19980 -12068 -6059 -50 9965 -10065 5959 -1	6074 -10065 -50 -6059 -12068 3956 11968 -50 -2053 15

SampleID	Target [1 f	Details [1
train1	0	4
train2	1	1
train3	1	1
train4	1	1
train5	0	3
train6	1	1
train7	0	4
train8	0	4
train9	0	3

RealData [

train1	INDEP	Α	В	NA	NA	NA	NA	NA	NA	577	Numerica	Categorica	0
train2	ARTIFCE	Α	В	atanh	preadd	0.25	NA	NA	NA	3017	Numerica	Categorica	0
train3	ARTIFCE	Α	В	sine	postadd	1	NA	NA	NA	2728	Numerica	Numerica	0
train4	ARTIFCE	Α	В	cubic	postmult	0.5	NA	NA	NA	802	Numerica	Numerica	0
train5	RELATED	Α	В	tanh	postadd	1	sine	premult		1 611	Binary	Binary	0
train6	CAR	org	Weight	NA	NA	NA	NA	NA	NA	406	Categorica	Numerica	1
train7	INDEP	Α	В	NA	NA	NA	NA	NA	NA	4056	Categorica	Numerica	0
train8	INDEP	Α	В	NA	NA	NA	NA	NA	NA	2017	Numerica	Numerica	0
train9	RELATED	Α	В	atanh	premult	2	line	postadd		1 7503	Numerica	Numerica	0

Example: Best fit: A -> B

 $A \rightarrow B$

A <- B

Large dataset

- Real data (18%):
 - Altitude -> Temperature
 - − Age → Wages
 - Car color -> Price
 - Country -> Infant mortality
- Artificial data (82%):

$$B = f(A, noise)$$

Set	Num pairs
FINAL TRAIN	4050
FINAL VALID	4050
FINAL TEST	4050

Set	Num pairs
SUP1 [numerical]	5998
SUP2 [mixed]	5989
SUP3 [numerical+binary]	162

Real variables

Demographics:

Sex -> Height

Age -> Wages

Native country -> Education

Latitude -> Infant mortality

Ecology:

City elevation -> Temperature Water level -> Algal frequency

Elevation -> Vegetation type

Distance to hydrology -> Fire

Econometrics:

Mileage -> Car resell price Number of rooms -> House price Trace price last day -> Trade price

Medicine:

Cancer volume -> Recurrence

Metastasis -> Prognosis

Age -> Blood pressure

Genomics (mRNA level):

transcription factor -> protein induced

Engineering:

Car model year -> Horsepower

Number of cylinders -> MPG

Cache memory -> Compute power

Roof area -> Heating load

Cement used -> Compressive strength

Real variables

Artificial data

Causality Workbench clopinet.com/causality

Data browser and sample code

Result analysis

Model-based methods

- Additive Noise Model (ANM): Best fit, compare independence of input and residual.
- Latent variable models (LINGAM): Enforce independence of input and residual, compare model weights.
- Complexity-based models: Select simplest explanation of the data (GPI and IGCI).

http://webdav.tuebingen.mpg.de/causality/

Causality Workbench clopinet.com/causality

Empirical methods

- 267 teams and 4578 entries.
- All baseline methods outperformed!
- Code of 3 winners available.

# ∆1w	Team Name ‡model uploaded * in the money	Score @ Entries	Last Submission UTC (Best – Last Submission)
1 ↑8	ProtoML # ‡ *	0.81960 25	Tue, 27 Aug 2013 13:33:43
2 ↑ 7	jarfo ‡	0.81052 123	Tue, 27 Aug 2013 10:40:37
3 ↑6	HiDLoN № ‡	0.80720 59	Mon, 02 Sep 2013 05:44:45
4 ↑5	FirfiD 4 ‡	0.79957 221	Tue, 27 Aug 2013 13:28:46
5 J1	mouse ‡	0.78782 30	Wed, 28 Aug 2013 20:21:42
6 ↑3	Domcastro & Sayani 🛂 ‡	0.78133 324	Wed, 28 Aug 2013 15:18:27

Causality Workbench clopinet.com/causality

No overfitting

Result comparison

Artificial data						
Rank	Team	Dependency	Confounding	Causality	Score	
1	$\operatorname{ProtoML}$	0.95372	0.76944	0.90946	0.84206	
2	jarfo	0.98063	0.83663	0.89425	0.83499	
3	HiDloN	0.94416	0.76777	0.89466	0.82883	
4	FirfiD	0.97644	0.80086	0.88644	0.82249	
5	mouse	0.94966	0.75831	0.86722	0.80620	
6	Domcasto & Sayani	0.91789	0.72655	0.86299	0.79507	

Real data						
Rank	Team	Dependency	Confounding	Causality	Score	
1	ProtoML	0.88057	0.65432	0.75756	0.70420	
2	jarfo	0.95721	0.70386	0.73312	0.68642	
3	HiDloN	0.91476	0.69209	0.74774	0.69669	
4	FirfiD	0.92352	0.69547	0.73960	0.68274	
5	mouse	0.87689	0.64211	0.75008	0.69259	
6	Domcasto & Sayani	0.85339	0.65786	0.78075	0.71355	

Statistical significance

Causation coefficient distribution

Causation coefficient distribution

Post-challenge verifications

3648 cause effect pairs from GeneNetWeaver 3.0

(http://gnw.sourceforge.net/) based on E. Coli

transcriptional regulatory network.

Experiment 1: no retraining

Experiment 2: train ½, test ½.

		Experiment 1	Experiment 2
	Jarfo	0.873	0.9972
	<u> FirfiD</u>	0.5963	0.9845
AUC	ProtoML	0.8085*	0.9908
	Jarfo	~ 5 hrs	~ 5 hrs
	<u>FirfiD</u>	~ 7 hrs	~ 8 hrs
Time	ProtoML	~ 10 hrs*	~ 12 hrs

Alexander Statnikov and Sisi Ma

Survey (27 responses)

Preprocessing

Feature extraction

Dimensionality reduction

Recognition

Classifier

Implementation

Time spent

- 1. Yes
- 2. No, but I cannot spend more time
- 3. No, but I wish to enter round 2 of the challenge

Cause-Effect Pairs Challenge

http://clopinet.com/causality