Chapter 1: Introduction

Operating System Concepts – 9th Edition Silberschatz, Galvin and Gagne ©2013

Computer System Architecture

- Single-Processor System
 - One main CPU capable of executing a general purpose instruction set
 - Almost all system has special purpose processor
 - Special purpose processors are mostly device specific processors. (Disk, keyboard, Graphics controller, etc.)
 - In mainframe, one of the special purpose processor is the I/O processor
 - 4 I/O processors moves data rapidly among the components of the computer.
 - All the special purpose processors run limited instruction sets.
 - Special purpose processors do not run user processes.
 - Some times Special purpose processors are managed by the operating system
 - 4 OS sends them information about their next task and monitors their status.
 - In Other system, special purpose processors are the low level components built in the hardware.
 - 4 The operating system can not communicate with these processor.
 - 4 They do their jobs autonomously.
 - Special purpose processors do not make the system into a multiprocessor

- Multi-processor Systems
 - Also known as Parallel Systems or Tightly Coupled Systems.
 - Systems have two (2) or more processors in close communication.
 - Share the computer bus, and sometimes the clock, memory and peripheral devices.
 - Have three (3) main advantages
 - 4 Increased throughput
 - The Speed-up ratio with N processors is not N (less than N)
 - 4 Economy of scale
 - Can cost less than equivalent multiple single-processor systems.
 - They can share peripherals, mass storage, and power supplies.
 - 4 Increased reliability
 - The failure of one processor will not halt the system.

- Graceful Degradation
 - The ability to continue providing service proportional to the level of surviving hardware.
- Fault Tolerant
 - The ability to continue operating without interrupting when one or more components fail
 - Requires a mechanism to allow the failure to be detected, diagnosed and, if possible, corrected.

- Multiple-processor Systems
 - Are of two (2) types
 - 4 Asymmetric Multiprocessing
 - Master Slave relationship
 - Master processor controls the system; the other processors either look to the master for instruction or have predefined tasks.
 - Master processor schedules and allocates works to the slave processors
 - 4 Symmetric Multiprocessing (SMP)
 - Most common systems use SMP
 - Each processors can perform all the task within the OS.
 - No Master-Slave relationship exists between processors.

Symmetric Multiprocessing Architecture

Symmetric Multiprocessing Architecture

Notes

- Must carefully control I/O to ensure that the data reach the appropriate processors
- Load should also be balanced carefully
 - 4 Resources should be shared dynamically
 - 4 System must be written carefully
- Uniform Memory Access (UMA) vs Non-Uniform Memory Access (NUMA)
 - 4 Access to any RAM from any CPU takes same amount of time with UMA
 - 4 Some parts take longer time than other parts, creating a performance penalty.
 - Can minimize penalty through resource management.

Multi-Core vs Multi-Processor

- Multi-Core vs Multi-Processor
 - Multiple cores on a single chip (multiprocessor chips) in Multi-core while each chips are separated from one another in Multi-processor.
 - On chip communication is faster than between-chip communication
 - One chips with multiple cores uses significantly less power than multiple single-core chips.
 - Multicore systems are especially well suited for server systems (Database and Web Server)

- Clustered Systems
 - They are composed of two or more individual systems
 - Clustered computers share storage.
 - Closely linked via a Local Area Network (LAN)
 - Usually used to provide **high-availability service**.
 - A layer of cluster software run on the cluster nodes.
 - Clustering can be structured asymmetrically or symmetrically
 - In Asymmetric Clustering, one machine is in **Hot-Standby Mode** while others run the applications.
 - In Symmetric Mode, two or more nodes run the applications and monitor each other.
 - Other form of Clusters include parallel clusters and clustering over wide-area network.

• Clustered Systems

Thank you

