Regression and Simulation Methods

Week 6: Generalised Linear Models

What has been covered over the last week?

- The Poisson distribution
- Logistic regression
- Exponential family
- GLMs

Exponential Family

Definition

$$f(y; \theta) = \exp(a(y)b(\theta) + c(\theta) + d(y))$$

a(y) - Canonical link function b(theta) - natural parameter

Expectation and Variance

Proposition 6.2. For a random variable Y in exponential family form (6.3),

(i)
$$\mathbb{E}(a(Y)) = \frac{-c'(\theta)}{b'(\theta)}$$

(ii)
$$\operatorname{var}(a(Y)) = \frac{b''(\theta)c'(\theta)-c''(\theta)b'(\theta)}{[b'(\theta)]^3}$$

Example

The Gaussian distribution

The (univariate) Gaussian density can be written as follows (where the underlying measure is Lebesgue measure):

$$p(x \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{-\frac{1}{2\sigma^2}(x - \mu)^2\right\}$$
 (8.19)

$$= \frac{1}{\sqrt{2\pi}} \exp\left\{ \frac{\mu}{\sigma^2} x - \frac{1}{2\sigma^2} x^2 - \frac{1}{2\sigma^2} \mu^2 - \log \sigma \right\}. \tag{8.20}$$

This is in the exponential family form, with:

$$= T(x) = \begin{bmatrix} x \\ x^2 \end{bmatrix}$$
 (8.22)

c(theta)
$$= \frac{\mu^2}{2\sigma^2} + \log \sigma = -\frac{\eta_1^2}{4\eta_2} - \frac{1}{2}\log(-2\eta_2)$$
 (8.23)

NOT d(y)
$$h(x) = \frac{1}{\sqrt{2\pi}}. \tag{8.24}$$

Definition

Definition 2: Generalised Linear Model

A generalised linear model (GLM) consists of the following three components:

- 1. A (common) distribution from the exponential family for the independent response variables $Y_1, ..., Y_n$.
- 2. A linear predictor

$$\eta_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_p x_{ip}.$$

3. A differentiable, strictly monotone link function such that,

$$g(\mu_i) = \eta_i$$

where $\mu_i = \mathbb{E}[Y_i]$

Rest of the tutorial...

In pairs work on the sixth notebook.
Paired programming will continue!

Rest of the week...

Once you have finished the R-Script go ahead and answer 6-1 through 6-4 from the SMSTC resources.

Additional Questions

1. The gamma pdf of a random variable Y is given by:

$$f(y) = (s^a \Gamma(a))^{-1} y^{a-1} e^{-y/s}$$

where $y \ge 0$, s is the scale parameter, a the shape parameter, and Γ the gamma function. (If a is integer then $\Gamma(a) = (a-1)!$)

- (a) Reparameterise this pdf by setting $a = 1/\phi$ and $s = \mu \phi$, and hence show that it is a member of the exponential family.
- (b) Deduce that the canonical link for the gamma is $\theta = \frac{1}{\mu} = \eta = \mathbf{X}\beta$.
- (c) Using the result above, compute $b''(\theta)$.
- (d) Compute V[Y] (hint: you can use Proposition 6.2).
- (e) How does this last result help if you want to assess whether data are best modelled as a normal, overdispersed Poisson or gamma distribution?