Laboratorio 3

Paso 1: ataque hipotético (identificar el Vector de Ataque Inicial):

Identificación de los primeros signos del incidente Información que reunir:

• Mensajes o correos electrónicos sospechosos recibidos recientemente

o Asunto, remitente, contenido, enlaces o archivos adjuntos.

• Fallos en sistemas específicos:

- Inicios de sesión inusuales o desde ubicaciones geográficas no comunes.
- o Bloqueos, ralentizaciones o errores inesperados en aplicaciones críticas.
- o Alertas del antivirus o EDR (Endpoint Detection & Response).

• Cambios no autorizados en configuraciones o archivos:

- o Scripts desconocidos ejecutándose en segundo plano.
- Archivos modificados recientemente sin justificación.

Actividad de red anómala:

- Conexiones salientes a direcciones IP inusuales.
- o Transferencias de datos masivas fuera del horario habitual.

Recolección de información para identificar el vector de ataque (Phishing)

Fuentes de información:

Logs de correos electrónicos:

 Revisar encabezados de correos, enlaces incluidos, nombre del archivo adjunto.

Análisis de archivos adjuntos:

Hash MD5/SHA1, firmas, comportamiento en entorno sandbox.

Usuarios afectados:

o ¿Quién abrió el correo? ¿Quién descargó o ejecutó el archivo?

Historial de navegación y clics en enlaces:

o Registrar URLs visitadas desde correos sospechosos.

• Capturas o transcripciones de mensajes (correo, chat):

 Textos engañosos que suplantan identidad de bancos, RRHH, soporte técnico, etc.

Si el phishing es identificado: ¿Qué se debe buscar? Parámetros clave:

- Remitente falsificado o similar a uno legítimo (spoofing):
 - o ej. soporte@microsOft.com en vez de support@microsoft.com.
- Presión emocional o urgencia en el mensaje:
 - o "Tu cuenta será bloqueada en 24 horas..."
- Solicitudes de ingreso de credenciales o descarga de archivos.
- Archivos adjuntos comunes usados en phishing:
 - .docm, .xlsm, .zip, .exe, con nombres como Factura_12345.docm
- Ejecución de macros maliciosas o scripts de PowerShell.
- Redirección a páginas falsas (phishing web):
 - o Clon de sitios legítimos con formularios falsos de login.

Resultado esperado: Parámetros para identificar el vector inicial

Parámetro	Descripción
Tipo de correo	Phishing con archivo adjunto o enlace
Formato del adjunto	.zip, .docm, .exe, etc.
Actividad del usuario	Apertura del archivo, habilitación de macros, clic en enlaces
Indicadores en	Infecciones detectadas, ejecución de scripts desconocidos
sistemas	
Logs de red	Comunicación con dominio/IP sospechoso tras la apertura del
	archivo
Identificación de	Hash del archivo, análisis de comportamiento, familia de malware
malware	asociada
Usuario objetivo o	¿Fue un ataque dirigido? ¿Phishing masivo?
víctima	

Paso 2: Analizar los Logs del Sistema para Encontrar Evidencias de Actividad Maliciosa

Recolección de Logs: ¿Qué revisar en cada sistema?Logs del Servidor de Correo Electrónico

Objetivo: Detectar correos de phishing o actividad inusual relacionada con los mismos.

¿Qué buscar?

- Correos con archivos adjuntos o enlaces sospechosos.
- Remitentes falsificados (spoofing) o inusuales.
- Tiempos de recepción fuera del horario laboral.
- Usuarios que hicieron clic en enlaces o descargaron archivos.
- Errores de autenticación (SMTP/IMAP).
- Alta frecuencia de envío de un mismo dominio (posible spam).
- Mensajes marcados como spam o rechazados por filtros.

Ejemplo de log (Postfix, Exchange, etc.):

Jan 12 10:23:14 mailserver postfix/smtpd[10123]: connect from unknown[203.0.113.55]

Logs del Sistema de Bases de Datos (DBMS)

Objetivo: Verificar accesos no autorizados o extracción de datos.

¿Qué se debería identificar?

- Consultas inusuales o masivas (SELECT * ... WHERE 1=1).
- Accesos fuera del horario habitual.
- Errores de autenticación (login fallidos).
- Usuarios accediendo a tablas que normalmente no usan.
- Cambios o eliminaciones masivas de registros.
- Creación de nuevos usuarios sin justificación.

Ejemplo de log (MySQL):

```
Access denied for user 'admin'@'10.0.0.5' (using password: YES)
```

Logs de Seguridad (SIEM, SO, firewall, endpoint, etc.)

Objetivo: Identificar alertas de comportamiento malicioso.

¿Qué se debe revisar?

- Alertas de antivirus o EDR (malware detectado).
- Ejecutables desconocidos iniciados por el usuario.

- Conexiones a IPs o dominios sospechosos.
- Instalación de software no autorizado.
- Escalamiento de privilegios o modificación de permisos.
- Cambios en archivos de sistema.
- Tareas programadas nuevas o scripts ejecutados sin justificación.

Ejemplo de log (Windows Event Viewer):

Security Event ID 4625 - An account failed to log on.

Análisis de la Actividad Maliciosa

¿Qué patrones buscar?

- Frecuencia anormal de accesos en corto tiempo.
- Mismo usuario accediendo desde múltiples IPs geográficamente distantes.
- Usuarios con permisos bajos accediendo a recursos restringidos.
- Mismo archivo ejecutado en múltiples terminales.
- Transacciones o comandos repetitivos (indicador de automatización).
- Secuencia temporal sospechosa (por ejemplo: login + modificación + logout rápida).

Herramientas de Análisis Recomendadas

Análisis de Logs (Manual y Automatizado)

- **Splunk**: Análisis de grandes volúmenes de logs, alertas y correlación de eventos.
- ELK Stack (Elasticsearch, Logstash, Kibana): Visualización y análisis centralizado de logs.
- **Graylog**: Alternativa ligera a ELK para centralizar y buscar en logs.
- Wireshark: Si se sospecha exfiltración de datos o conexiones extrañas.
- OSSEC / Wazuh: Detección de intrusos en logs en tiempo real.
- PowerShell (Windows) o Grep/Awk (Linux) para análisis puntual.

Resultado Esperado:

Una correlación de eventos extraídos de distintos logs que:

- Confirme el ingreso inicial (por ejemplo, apertura de un correo con adjunto malicioso).
- Identifique al usuario afectado y sus acciones posteriores.
- Permita trazar el movimiento lateral o ejecución del malware.
- Proporcione evidencia para aplicar medidas correctivas y preventivas.

Paso 3: Determinar el Alcance del Compromiso y los Sistemas Afectados

Identificación de Sistemas Comprometidos

¿Qué se debe realizar al identificar sistemas comprometidos?

Paso 1: Aislar los sistemas afectados

- Desconectar de la red los equipos comprometidos para evitar propagación.
- Preservar los datos para análisis forense (no reiniciar ni formatear aún).

Revisa los sistemas interconectados:

- Verifica si hay conexiones desde/hacia el sistema comprometido.
 - ¿Qué otros dispositivos se comunicaron con él recientemente?
- Evalúa si hay movimiento lateral del atacante (por ejemplo, uso de credenciales robadas).
- Revisa logs de red, RDP, SMB, VPN y otros servicios compartidos.

Evalúa el impacto en la infraestructura crítica:

- ¿Afecta sistemas clave como controladores de dominio, servidores de archivos, bases de datos, correo electrónico, etc.?
- ¿Se interrumpieron servicios esenciales del negocio?
- ¿Se puso en riesgo la seguridad de las copias de respaldo?

Evaluación del Impacto

¿Qué tener en cuenta para evaluar el impacto en la triada CIA?

Disponibilidad:

- ¿Los sistemas afectados están caídos, lentos o inaccesibles?
- ¿Se perdió acceso a servicios esenciales (por ejemplo, correo, ERP, sitio web)?
- ¿Se alteraron cronogramas o se detuvieron procesos críticos?
- ¿Se activó algún ransomware o DoS?

Integridad:

- ¿Se modificaron archivos sin autorización?
- ¿Se alteraron bases de datos o registros de sistema?
- ¿Hay pérdida de precisión o confiabilidad de la información?
- ¿Hay cambios en configuraciones, scripts o políticas de acceso?

Confidencialidad:

- ¿Se exfiltraron datos sensibles (clientes, empleados, finanzas)?
- ¿Se accedió a información clasificada o confidencial sin autorización?
- ¿Se detectaron conexiones a sitios de Command & Control (C2)?
- ¿Se filtraron contraseñas, tokens o llaves privadas?

Resultado Esperado:

Un informe claro que:

- Enumere todos los **sistemas comprometidos** y los **sistemas interconectados potencialmente afectados**.
- Determine si hay impacto en la operación (disponibilidad), los datos (integridad) o la privacidad (confidencialidad).
- Clasifique el impacto en bajo / medio / alto riesgo, basado en el análisis de los sistemas y datos afectados.
- Sirva como base para las decisiones de contención, recuperación y comunicación interna y externa.

Paso 4: Proponer Medidas de Contención Inmediatas

Medidas de Contención Inmediatas

Actividad: Medidas para detener el ataque y prevenir propagación

Desconectar sistemas comprometidos:

- Aislar de la red cualquier equipo afectado (WiFi, Ethernet, VPN).
- Suspender sesiones activas sospechosas.
- Usar firewalls para bloquear tráfico malicioso.

Actualización de Sistemas:

- Aplicar parches de seguridad a SO, aplicaciones y firmware.
- Actualizar definiciones de antivirus/EDR.
- Reinstalar software si fue modificado o comprometido.

Cambio de Credenciales:

- Obligar a cambiar contraseñas en cuentas comprometidas o sospechosas.
- Revocar tokens/API keys que pudieron haber sido expuestos.
- Revisar grupos de permisos en cuentas con privilegios elevados.

4.2 Plan de Recuperación

Actividad: Restaurar sistemas afectados y volver a operación normal

Restauración desde Copias de Seguridad:

- Verificar integridad de las copias antes de restaurar.
- Restaurar solo desde backups previos al incidente.
- Validar la restauración en un entorno controlado antes de poner en producción.

Monitoreo y Validación:

- Habilitar monitoreo continuo en sistemas restaurados.
- Implementar alertas sobre comportamiento anómalo.

• Analizar tráfico de red, actividad de usuarios y registros del sistema.

Evaluación Post-Incidente:

- Realizar una reunión de cierre (post-mortem) para documentar:
 - Vector de ataque.
 - o Tiempo de detección y contención.
 - o Medidas tomadas y tiempos de respuesta.
 - o Lecciones aprendidas y mejoras al plan de respuesta a incidentes.

4.3 Comunicación

Actividad: A quién informar y qué comunicar

Grupos clave:

- Internamente:
 - o Equipo de TI / Ciberseguridad.
 - o Gerencia / Dirección.
 - Usuarios afectados.
- Externamente (si aplica):
 - o Clientes.
 - o Proveedores.
 - Entidades regulatorias.
 - o CERT nacional o sectorial.

Transparencia – ¿Qué se debe realizar?

- Comunicar hechos, no suposiciones.
- Explicar las medidas de contención y recuperación.
- Informar qué datos pudieron verse comprometidos.
- Detallar los pasos a seguir (cambios de contraseña, revisión de sistemas, etc.).
- Mantener actualizaciones periódicas mientras se resuelve el incidente.

Lista de Verificación (Ejemplo para Entrega Académica)

- 1. Revisar los conceptos en **Cisco Academy** (ciberseguridad, respuesta a incidentes, etc.).
- 2. Documentar todas las actividades realizadas en formato PDF:
 - a. Análisis de logs.
 - b. Determinación del alcance.
 - c. Medidas de contención y recuperación.
 - d. Comunicación y evaluación post-incidente.
- 3. Subir el documento al **apartado de tarea** en la plataforma indicada.
- 4. Incluir capturas, evidencias o simulaciones si fueron realizadas.