Model Answer

Second Mid-term Exam

GE 402 Management of Engineering Projects – 1st Semester 1431- 32H

Sunday, 13 Muharram 1342 H – 19 December 2010 Time allowed: 1.5 hrs

Student name	
Student number	
Section	
Student No. in class	

Total number of Questions: 2 Attempt all questions

Questions	Maximum Marks	Marks obtained
Q # 1	50	
Q # 2	50	
	100	

Total marks obtained (in words):_____

Question 1 (50% of max. credit)

The initial AON diagram for a small engineering project is shown below with its planned activity times in days. At the end of the 10th day, the field progress report gives you the following information:

- Activity "P" was completed on schedule.
- Activity "T" was completed one day later than planned.
- Activity "W" started as planned but two days were lost due to waiting for the required materials.
- Remaining duration of Activity "Q" is 2 days.
- Estimated percentage of completion of activity "U" equals 80%.
- Estimated percentage of completion of activity "X" is 50%.
- Activity "A" cannot start until the morning of day 13.
- Due to owner requirement the volume of work of activity "Z" will be increased by 50%.
- Correct duration of activity "S" is found to be 5 days
- Due to owner requirement the volume of work of activity "B" will be decreased by 25%.
- Activity "B" must depend on activities "R" and "A" instead of activities "V" and "A".
- Duration of activity "C" will be reduced to 2 days instead of 3 days.

Required:

- a. Construct the updated AON diagram, calculate new activity times, total flat and free float, and indicate the critical path(s).
- b. If there is a delay in the completion date of the project, what is your recommended action?

Answer Question No. 1

a)

							0			3						
	3	10	0 3	12		12	3	17	17	3	22					
	P	· 		12		12	R		+''	S	22					
			Q	45		45					05	\vdash				
	0	1:	3 2	15		15	5	20	20	5	25					
			0				10							0		
	5	10	10	11		11	10	15					25		25	
Start	Т		U				V							End		
	0	2	0 1	21		21	4	25		5			25	0	25	
									17	5	20					
			0				0			В						
	8	10	_	11	1	12	5	17	22	3	25					
_	W	+-	X	1		<u> </u>	A									
		-		44		47		00								
	0	10	0 1	11		17	5	22								
		I					_			_						
		i	0	144		44	0	22	22	0	25					
		1 10	0 0 Y	11		11	0 Z	23	23	0 C	25		<u> </u>	ES	FF	EF
		1	_	11		11	12	23	23	2	25				ctivi	
		1 1	J 1	1 ' '		 ' ' 	12	23	23		20			LS	D	LF
														LS	U	뜨

b) The project will be delayed by 5 days. We should determine the party who is responsible for delay. If the contractor is responsible for delay, he should use time-cost trade-off to reduce the project duration time. If the owner is responsible for delay (like activity Z), he should extend the project time and pay overhead costs.

Question 2 (50% of max. credit)

The arrow network for an engineering project and the time-cost trade-off data are given below.

Activity	Norn	nal	Cras	l		
	Time (days)	Cost (SR)	Time (days)	Cost (SR)		
A (0, 1)	8	840	6	1120		
B (0, 2)	16	1600	12	2240		
C (1, 2)	12	2000	8	2400		
D (1, 4)	18	2160	14	2400		
E(2, 3)	8	2000	2	4400		
F(2, 4)	10	600	8	960		
G (3, 5)	6	600	6	600		
H (4, 5)	14	2400	12	3000		

Compute the minimum total cost of the project if its indirect cost rate is SR 250/day and its desired to be completed as early as possible (reduce project time from normal to crash duration).

Answer Question No. 2

Network paths are:

Network path	Normal time (day)	Crash time (day)
ACEG	8+12+8+6=34	6 + 8 + 2 + 6 = 22
ADH	8 + 18 + 14 = 40	6 + 14 + 12 = 32
ACFH	8 + 12 + 10 + 14 = 44	6 + 8 + 8 + 12 = 34
BEG	16 + 8 + 6 = 30	12 + 2 + 6 = 20
BFH	16 + 10 + 14 = 40	12+8+12=32

> Crash the project from 44 days (normal time) to 34 days (crash time) using Modified Siemens Algorithm.

Activity	vity Normal Crash		Cost Slope	Time		
	Time (days)	Cost (SR)	Time (days)	Cost (SR)	(SR/day)	Reduction Available (day)
A (0, 1)	8	840	6	1120	140	2
B (0, 2)	16	1600	12	2240	160	4
C (1, 2)	12	2000	8	2400	100	4
D (1, 4)	18	2160	14	2400	60	4
E(2, 3)	8	2000	2	4400	400	6
F(2, 4)	10	600	8	960	180	2
G (3, 5)	6	600	6	600		
H (4, 5)	14	2400	12	3000	300	2

Activity	Path s I	Requiring Re	duction	Cost	Effective	Time
	A-C-F-H	A-D-H	B-F-H	Slope	Cost Slope	Reduction
						Available
A (0,1)	2	2		140	70	2 0
B (0,2)			2	160	160	4 2
C (1,2)	4			100	100	4 0
D (1,4)		2		60	60	4 2
F (2,4)	2		2	180	90	2 0
H (4,5)	2	2	2	300	100	2 0

Initial Path	44	40	40	Iteration	Action	Iteration	Cumulative
Length						Cost	Direct Cost
Remaining	10	6	6	0			12200
time	8	4	6	1	Cut A by 2 days	280	12480
reduction	6	4	4	2	Cut F by 2 days	360	12840
required (34	4	2	2	3	Cut H by 2 days	600	13440
day project	0	2	2	4	Cut C by 4 days	400	13840
duration)	0	0	2	5	Cut D by 2 days	120	13960
	0	0	0	6	Cut B by 2 days	320	14280

 $[\]triangleright$ Min. Total cost of the project = 14280 + 34*250 = SR 22780