Cvičení 11 - 12.12.2024

červené - spolu

modré - samostatně

učebnice s. 162

Obsah plochy + nevlastní integrál

7. Vypočtěte obsah plochy omezené grafy funkcí f a g:

(a)
$$f(x) = \sqrt{x}, g(x) = x^2,$$

(b)
$$f(x) = 4x$$
, $g(x) = x^2 + 2x - 3$,

(c)
$$f(x) = 3 - x^2$$
, $g(x) = x^2 + 1$,

(d)
$$f(x) = x^2 + 1$$
, $g(x) = 2x^2$,

(e)
$$f(x) = x^2$$
, $g(x) = 4$,

(f)
$$f(x) = 9 - x^2$$
, $g(x) = 2x^2$.

8. Vypočtěte nevlastní integrály

$$(a) \int_1^\infty \frac{4}{1+x^2} \, dx$$

(b)
$$\int_0^\infty x^2 e^{-x} dx$$

$$\bigcirc \int_0^1 \frac{1}{x^2} \, dx$$

$$(e) \int_0^\infty \frac{\arctan^2 x}{x^2 + 1} \, dx$$

$$\oint \int_0^4 \frac{1}{\sqrt{x}} \, dx$$

$$\oint_{1}^{e} \frac{1}{x\sqrt{\ln x}} \, dx$$

$$(j) \int_{-\infty}^{0} 2^x \, dx$$

$$(k) \int_0^1 \frac{1}{x-1} dx$$

$$(l) \int_0^\infty \frac{1}{(2x+1)^3} \, dx$$

Výsledky

- 7. (a) $\frac{1}{3}$, (b) $\frac{32}{3}$, (c) $\frac{8}{3}$, (d) $\frac{4}{3}$, (e) $\frac{32}{3}$, (f) $12\sqrt{3}$.
- 8. (a) π , (b) $\Gamma(3) = 2! = 2$, (c) ∞ , (d) 1, (e) $\frac{1}{24}\pi^3$, (f) 4, (g) -1, ...
 - (h) 2, (i) $\frac{51}{10}$, (j) $\frac{1}{\ln 2}$, (k) $-\infty$, (l) $\frac{1}{4}$.