

Group 8: Ana Torres, Inês Gonçalves, Matias Luna

Problem Definition

Binary Classification Problem

Original Attributes:

"id","region","district","municipality","parish","lat","lon","origin","alert_date","alert_hour","extinct ion_date","extinction_hour","firstInterv_date","firstInterv_hour","alert_source","village_area","veg etation_area","farming_area","village_veget_area","total_area".

Target Variable: "intentional_cause"

- 0 -> no
- 1 -> yes

Output of the Classification Model: probability of a fire being intentional

Data Understanding

Type of Data

- Tabular
- Nondependency-oriented data

Types and Scales of Attributes

id	region	district	municipality	parish	lat	lon	origin	alert_date	alert_hour	extinction_dat e
Numerical	Categorical	Categorical	Categorical	Categorical	Numerical	Numerical	Categorical	Numerical	Numerical	Numerical
Ratio	Nominal	Nominal	Nominal	Nominal	Ratio	Ratio	Nominal	Interval	Ratio	Interval

extintion_hou r	fistInterv_date	firstInterv_hour	alert_source	village_area	vegetation_area	farming_area	village_veget_a rea	total_area	intentional_caus e
Numerical	Numerical	Numerical	NA	Numerical	Numerical	Numerical	Numerical	Numerical	Categorical
Ratio	Interval	Ratio	NA	Ratio	Ratio	Ratio	Ratio	Ratio	Nominal

Data Preparation | Data Quality Issues

Missing values

- Variables with some missing values (region, extinction_date, firstInterv_date).
- In the case
 of alert_source, all the
 values are missing values.

Inconsistent or incorrect values

- Values of region having " ".
- Diferent ways of naming the same district ("Viana do Castelo" and "Viana Do Castelo").
- The coordinates are not represented in the same way.
- Some of the coordinates values have "," instead of ".", which is not used in R.

Data Preparation | Data Pre-processing

Data Cleaning – Handling Missing Values

alert_source Mode:logical NA's:10309

"Alert source" has been withdrawn since all values are missing values.

firstInterv_date

:2014-01-11 00:00:00.00 1st ou.:2014-09-12 01:00:00.00 Median :2015-05-19 01:00:00.00 :2015-03-15 06:27:50.03 3rd ou.:2015-08-02 01:00:00.00 :2015-12-27 00:00:00.00 Max. NA's :309

Since "firstInterv date" and "alert date" have remaining equal dates values, it was assigned the value of the respective "alert date" to the missing values in "firstIntery date".

extinction_date :2014-01-12 00:00:00.0

1st ou.:2014-09-11 13:00:00.0 Median :2015-05-19 01:00:00.0 :2015-03-15 03:40:02.7 3rd Qu.:2015-08-01 01:00:00.0 Max. :2015-12-28 00:00:00.0

NA's :10

The average duration of a fire was calculated, the result of which was about 0.96 (one day). In this way, it was added one day to "alert date", to fill the missing values of "extinction date".

Data Preparation | Data Pre-processing

Data Cleaning – Handling Incorrect Values

```
Naming the same district
# Two Possible Values for district Viana do Castelo
fires$district[(fires$district=='Viana Do Castelo')] <- 'Viana do Castelo'
                                                                                                               in the same way.
# Fill Missing Region values
fires$region[(fires$region=='-' & fires$district=='Aveiro')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Coimbra')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Leiria')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Viseu')] <- 'Beira Litoral'
fires$region[(fires$region=='-' & fires$district=='Castelo Branco')] <- 'Beira Interior'
fires$region[(fires$region=='-' & fires$district=='Guarda')] <- 'Beira Interior'
fires$region[(fires$region=='-' & fires$district=='Santarém')] <- 'Ribatejo e Oeste'
                                                                                                              Assigning respective
fires$region[(fires$region=='-' & fires$district=='Faro')] <- 'Algarve'
fires$region[(fires$region=='-' & fires$district=='Bragança')] <- 'Trás-os-Montes'
                                                                                                              regions to region values
fires$region[(fires$region=='-' & fires$district=='Vila Real')] <- 'Trás-os-Montes'
fires$region[(fires$region=='-' & fires$district=='Viana do Castelo')] <- 'Entre Douro e Minho'
                                                                                                              that have "-".
fires$region[(fires$region=='-' & fires$district=='Braga')] <- 'Entre Douro e Minho'
fires$region[(fires$region=='-' & fires$district=='Porto')] <- 'Entre Douro e Minho'
fires$region[(fires$region=='-' & fires$district=='Beja')] <- 'Alentejo'
fires$region[(fires$region=='-' & fires$district=='Évora')] <- 'Alentejo'
fires$region[(fires$region=='-' & fires$district=='Portalegre')] <- 'Alentejo'
fires$region[(fires$region=='-' & fires$district=='Lisboa')] <- 'Lisboa e Vale do Tejo'
fires$region[(fires$region=='-' & fires$district=='Setúbal')] <- 'Lisboa e Vale do Tejo'
# Substituir ',', por '.' em valores
fires$lat <- chartr(',', '.', fires$lat)
fires$lon <- chartr(',', '.', fires$lon)</pre>
                                                                                                               Substitution of "," by "."
                                                                                                               in the coordinate values.
```

Data Preparation | Data Pre-processing

Data transformation

Conversion of all coordinates to the decimal form.

Dimensionality Reduction - Feature Selection

- id
- alert_date
- firstInterv_hour
- extinction_hour
- alert_source

Feature Engineering

- temp (temperatura média)
- tempMax (temperatura máxima)
- windGust (rajada de vento)
- windVelocity (velocidade do vento)

Irrelevant variables were removed.

Through the values of the coordinates ("lat" and "lon") and the alert date ("alert_date") a few more variables were added.

Which is the region where most fires take place?

Number of fires that occur on each region

What are the districts of the region "Entre Douro e Minho" where most fires take place?

Number of fires that occur on region "Entre Douro e Minho"

What are the regions where the fires have burned the most area?

Amount of total area burned by the fires per region

What are the origin of the fires that were intentional?

Intentional cause and origin of fires

How many fires were intentional on each region?

Intentional cause of fires per region

What are the origin of the fires on each region?

Origin of fires per region

What are the origin and intentional cause of the fires on each region?

Intentional cause and origin of fires per region

What are the times of the year where most fires take place?

Months of the year when fires took place

Months when fires took place

What are the hours of the day where most fires take place?

Hours of the day when fires took place

What are the origin and intentional cause of fires during the year?

Origin and Intentional Cause of fires that occur during the month

What are the origin and intentional cause of fires during the day?

Origin and Intentional Cause of fires that occur during the day

What are the origin and intentional cause of the fires that burned the most land?

Region and intentional cause of the 50 fires that burned the most area

Predictive Modelling

- Evaluation Metric: AUC (Area under the Curve)
- Train and Test Split (70% 30%)
- k-fold Cross Validation
- Applied recipes where:
 - + Too Disperse predictors -> removed
 - + Categorical predictors -> converted to numeric values
 - + Numeric predictors -> centered and scaled
 - + Date predictors -> sometimes included (depends on the model)
 - + Variables with large correlations to others -> removed

Predictive Modelling | Best Results

Model	Engino		Poc Auc			
iviouei	Engine	Tur	ned	Decided	Roc_Auc	
Logistic Regression	glmnet	Penalty:	0.00053	-	0.731835	
Decision Trees CART	rpart	Tree_depth: 4	Min_n:2	-	0.555673	
K-Nearest Neighbors	kknn	Neighbors: 10	Dist_power: 1	-	0.720147	
Neural Network	nnet	Hidden_units: 7	Penalty: 1	Epochs: 10	0.723100	
Naive Bayes	klaR	Smoothness: 0.75	Laplace: 0	-	0.694749	
Random Forest	ranger	Mtry: 4	Min_n: 20	Trees: 100	0.763972	
Boosted Trees	xgboost	Mtry: 4	Min_n: 11	Trees: 100	0.744530	

Predictive Modelling | Last Fit

Random Forest

- mtry = 4
- min_n = 20
- trees = 100
- Engine: ranger
- -> Roc auc: 0.7627880

Most Important Features

Clustering

For Clustering, the following methods were implemented:

- K-Means
- PAM
- CLARA
- DBSCAN

In the dataset, some variables were removed because:

- They were not usable in this kind of methods (id, region, district, municipality, parish, origin, alert_date, alert_hour, extinction_date, firstInterv_date, intentional_cause)
- They were irrelevant (lon, lat)

Unfortunately, we were unable to achieve good or meaningful results with any of these methods.

DBSCAN

Conclusions, Limitations and Future Work

- The model that achieved the most AUC was Random Forest.
- According to the last fit model, the variables that matter the most (above 25% of importance)
 are: tempMax; total_area; village_area; windGust; vegetation_area.
- According to the obtained results, the clustering models didn't show any relation between the variables.
- One of the limitations was making the data tidy and working in the correct formats that the models needed.
- For future work, more variations of features could be selected for other models to produce better results. Also, different tuning of the parameters could be performed.

AUC of the best model of each type

Logistic Regression Results

Decision Trees CART Results

K-Nearest Neighbors Results

Neural Network Results

Naive Bayes Results

Random Forest Results

Boosted Trees Results

Results for K-Means

Results for PAM

Results for CLARA

Results for DBSCAN

