

FORM PTO-1390
(Rev. 10-96)

U.S. DEPARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE

ATTORNEY'S DOCKET NUMBER

**TRANSMITTAL LETTER TO THE UNITED STATES
DESIGNATED/ELECTED OFFICE (DO/EO/US)
CONCERNING A FILING UNDER 35 U.S.C. 371(f)**

001560-350

U.S. APPLICATION NO. (If known, see 37 CFR 1.5)

Unassigned

09/147955INTERNATIONAL APPLICATION NO.
PCT/JP98/03199INTERNATIONAL FILING DATE
16 July 1998PRIORITY DATE CLAIMED
25 July 1997

TITLE OF INVENTION

GENE CODING FOR A PROTEIN HAVING GLYCOSIDE TRANSFER ACTIVITY

APPLICANT(S) FOR DO/EO/US

Masako MIZUTANI, Yoshikazu TANAKA, Takaaki KUSUMI, Kazuki SAITO, Mami YAMAZAKI, and Gong ZHIZHONG

Applicant herewith submits to the United States Designated/Elected Office (DO/EO/US) the following items and other information:

1. This is a **FIRST** submission of items concerning a filing under 35 U.S.C. 371.
2. This is a **SECOND** or **SUBSEQUENT** submission of items concerning a filing under 35 U.S.C. 371.
3. This is an express request to begin national examination procedures (35 U.S.C. 371(f)) at any time rather than delay examination until the expiration of the applicable time limit set in 35 U.S.C. 371(b) and the PCT Articles 22 and 39(1).
4. A proper Demand for International Preliminary Examination was made by the 19th month from the earliest claimed priority date.
5. A copy of the International Application as filed (35 U.S.C. 371(c)(2))
 - a. is transmitted herewith (required only if not transmitted by the International Bureau).
 - b. has been transmitted by the International Bureau.
 - c. is not required, as the application was filed in the United States Receiving Office (RO/US)
6. A translation of the International Application into English (35 U.S.C. 371(c)(2)).
7. Amendments to the claims of the International Application under PCT Article 19 (35 U.S.C. 371(c)(3))
 - a. are transmitted herewith (required only if not transmitted by the International Bureau).
 - b. have been transmitted by the International Bureau.
 - c. have not been made; however, the time limit for making such amendments has NOT expired.
 - d. have not been made and will not be made.
8. A translation of the amendments to the claims under PCT Article 19 (35 U.S.C. 371(c)(3)).
9. An oath or declaration of the inventor(s) (35 U.S.C. 371(c)(4)).
10. A translation of the annexes to the International Preliminary Examination Report under PCT Article 36 (35 U.S.C. 371(c)(5)).

Items 11. to 16. below concern other document(s) or information included:

11. An Information Disclosure Statement under 37 CFR 1.97 and 1.98.
12. An assignment document for recording. A separate cover sheet in compliance with 37 CFR 3.28 and 3.31 is included.
13. A **FIRST** preliminary amendment.
 A **SECOND** or **SUBSEQUENT** preliminary amendment.
14. A substitute specification.
15. A change of power of attorney and/or address letter.
16. Other items or information:

Copy of International Search Report, and a copy of Notice Informing Applicant of the Communication of the International Application to the Designated Offices.

U.S. APPLICATION NO. (If known, see 37 C.F.R. 1.50)
Unassigned

INTERNATIONAL APPLICATION NO.
PCT\JP 98\03199

ATTORNEY'S DOCKET NUMBER
001560-350

17. <input checked="" type="checkbox"/> The following fees are submitted:		CALCULATIONS	PTO USE ONLY
Basic National Fee (37 CFR 1.492(a)(1)-(5)):			
Search Report has been prepared by the EPO or JPO \$840.00			
International preliminary examination fee paid to USPTO (37 CFR 1.482) \$670.00			
No international preliminary examination fee paid to USPTO (37 CFR 1.482) but international search fee paid to USPTO (37 CFR 1.445(a)(2)) \$760.00			
Neither international preliminary examination fee (37 CFR 1.482) nor international search fee (37 CFR 1.445(a)(2)) paid to USPTO \$970.00			
International preliminary examination fee paid to USPTO (37 CFR 1.482) and all claims satisfied provisions of PCT Article 33(2)-(4) \$96.00			
ENTER APPROPRIATE BASIC FEE AMOUNT =		\$ 840.00	
Surcharge of \$130.00 for furnishing the oath or declaration later than months from the earliest claimed priority date (37 CFR 1.492(e)). <input type="checkbox"/> 20 <input type="checkbox"/> 30		\$	
Claims	Number Filed	Number Extra	Rate
Total Claims	19 -20 =	0	X\$18.00 \$ 0.00
Independent Claims	1 - 3 =	0	X\$78.00 \$ 0.00
Multiple dependent claim(s) (if applicable)		+ \$260.00	\$ 0.00
TOTAL OF ABOVE CALCULATIONS =		\$ 840.00	
Reduction for 1/2 for filing by small entity, if applicable. Verified Small Entity statement must also be filed. (Note 37 CFR 1.9, 1.27, 1.28).		\$ 0.00	
SUBTOTAL =		\$ 840.00	
Processing fee of \$130.00 for furnishing the English translation later than months from the earliest claimed priority date (37 CFR 1.492(f)). <input type="checkbox"/> 20 <input type="checkbox"/> 30 +		\$ 0.00	
TOTAL NATIONAL FEE =		\$ 840.00	
Fee for recording the enclosed assignment (37 CFR 1.21(h)). The assignment must be accompanied by an appropriate cover sheet (37 CFR 3.28, 3.31). \$40.00 per property +		\$ 40.00	
TOTAL FEES ENCLOSED =		\$ 880.00	
		Amount to be: refunded	\$
		charged	\$
a. <input checked="" type="checkbox"/> A check in the amount of \$ 880.00 to cover the above fees is enclosed.			
b. <input type="checkbox"/> Please charge my Deposit Account No. <u>02-4800</u> in the amount of \$ _____ to cover the above fees. A duplicate copy of this sheet is enclosed.			
c. <input checked="" type="checkbox"/> The Commissioner is hereby authorized to charge any additional fees which may be required, or credit any overpayment to Deposit Account No. <u>02-4800</u> . A duplicate copy of this sheet is enclosed.			
NOTE: Where an appropriate time limit under 37 CFR 1.494 or 1.495 has not been met, a petition to revive (37 CFR 1.137(a) or (b)) must be filed and granted to restore the application to pending status.			
SEND ALL CORRESPONDENCE TO:			
<p>Ronald L. Grudziecki, Esq. BURNS, DOANE, SWECKER & MATHIS, L.L.P. P.O. Box 1404 * Alexandria, Virginia 22313-1404</p>			
 SIGNATURE			
Donna M. Meuth NAME			
36,607 REGISTRATION NUMBER			

09/147955
510 Rec'd PCT/PTO 24 MAR 1999

Patent
Attorney's Docket No. 001560-350

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Patent Application of)
Masako MIZUTANI et al) Group Art Unit: Unassigned
Application No.: Unassigned) Examiner: Unassigned
Corresponding to PCT/JP 98/03199)
Filed: March 24, 1999)
For: GENE CODING FOR A PROTEIN)
HAVING GLYCOSIDE TRANSFER)
ACTIVITY)

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

Sir:

Prior to examination on the merits, please amend the above identified application as follows:

IN THE SPECIFICATION:

In compliance with 37 C.F.R. § 1.823(a), please substitute the attached copy of the "Sequence Listing" for the current "Sequence Listing" at pages 22-39 of the above-identified application.

IN THE CLAIMS:

Please amend claims 6, 8 and 10 as follows:

In claim 6, lines 1 and 2, please delete "any one of claims 1 through 5" and insert therefore --claim 1--.

In claim 8, lines 1 and 2, please delete "any one of claims 1 through 5" and insert therefore --claim 1--.

In claim 10, line 2, please delete "any one of claims 1 through 5" and insert therefore --claim 1--.

Please insert the following new claims 12-19 as follows:

--12. A protein encoded by a gene as set forth in claim 2.
13. A protein encoded by a gene as set forth in claim 3.
14. A protein encoded by a gene as set forth in claim 4.
15. A protein encoded by a gene as set forth in claim 5.
16. A plant into which is introduced a gene as set forth in claim 2, or its progeny or tissue having identical properties.

17. A plant into which is introduced a gene as set forth in claim 3, or its progeny or tissue having identical properties.

18. A plant into which is introduced a gene as set forth in claim 4, or its progeny or tissue having identical properties.

19. A plant into which is introduced a gene as set forth in claim 5, or its progeny or tissue having identical properties.--

REMARKS

Entry of the foregoing and examination of the above-identified application is respectfully requested.

The paper copy of the Sequence Listing for the subject application, is by this amendment, substituted for the current Sequence Listing at pages 22-39 and before the claims of the above-identified application. Please renumber the pages accordingly.

Claims 6, 8 and 10 have been amended to eliminate the multiple dependency of the claims and to place them in better form in accordance with U.S. practice. New claims 12-19 have been added directed to preferred embodiments. Support for these claims may be found at the very least in original claims 8 and 10.

Early and favorable action in the form of Notice of Allowance is respectfully requested.

Application No. Unassigned
Attorney's Docket No. 001560-350

In the event that there are any questions relating to this amendment or the application in general, it would be appreciated if the Examiner would contact the undersigned attorney by telephone so that prosecution would be expedited.

Respectfully submitted,

BURNS, DOANE, SWECKER & MATHIS, L.L.P.

By:

Donna M. Meuth
Registration No. 36,607

P.O. Box 1404
Alexandria, Virginia 22313-1404
(703) 836-6620

Date: March 24, 1999

09/147955

STY-F846/PCT

- 510 Rec'd PCT/PTO 24 MAR 1999

SPECIFICATION

GENE CODING FOR A PROTEIN HAVING GLYCOSIDE TRANSFER
ACTIVITY

5 Technical Field

The present invention relates to a gene coding for a protein having activity that transfers a glycoside to the 5 position of a flavonoid, and a process utilizing that gene.

10

Background Art

The flower industry strives to develop various new varieties. Changing the color of a flower is one way of effectively breeding a new variety. A wide range of colors have been successfully produced for nearly all commercial varieties using classical breeding methods. With these methods, however, since there are restrictions on the gene pool for each species, it is rare for a single species to have a broad range of colored varieties.

20

Flower colors are based on two types of pigments, namely flavonoids and carotenoids. Flavonoids contribute to color tones ranging from yellow to red and blue, while carotenoids contribute to color tones of orange or yellow. Flavonoid molecules that primarily contribute to flower color are anthocyanins which are glycosides of cyanidin, delphinidin, petunidin, peonidin, malvidin and pelargonidin, and different anthocyanins cause remarkable changes in flower color. Moreover, flower color is also affected by auxiliary coloring by colorless flavonoids, metal complex formation, glucosylation, acylation, methylation and vacuolar pH (Forkmann, Plant Breeding, 106, 1, 1991).

25

The biosynthesis route of anthocyanins, which begins with phenylalanine, has been well understood (e.g., Plant Cell, 7, 1071-1083, 1995), and nearly all genes involved in the biosynthesis have been cloned. For example, among those genes thought to be involved in biosynthesis of

malonylshisonin (3-O-(6-O-(p-cumaloyl)- β -D-glucosyl)-5-O-(6-O-malonyl- β -D-glucosyl)-cyanidin), which is an anthocyanin of Perilla, those genes for which homologues have not yet been reported are only the flavonoid-3'-hydroxylase, UDP-glucose:anthocyanin (flavonoid) 5-O-glucosyl transferase (abbreviated as 5GT) and malonyl group transferase genes.

Among these, flavonoid-3'-hydroxylase is known to belong to the cytochrome P450 gene family (Plant Cell, 7, 10 1071-1083, 1995), and cytochrome P450 genes are surmised to demonstrate structural homology.

The hydroxyl group at the 3 position of flavonoid molecules is typically modified by glucose, and generally glucosylation and other modifications by glycoside are considered to increase the stability and solubility of 15 anthocyanins (The Flavonoids, Chapman & Hall, 1994).

Genes coding for the UDP-glucose:anthocyanidin or flavonoid-3-glucosyl transferase (abbreviated as 3GT) that catalyze this reaction are obtained from numerous plants such as corn, barley, snapdragons and gentians, and their amino acid sequences mutually demonstrate significant 20 homology. For example, the homology between the 3GT amino acid sequences of monocotyledonous corn and dicotyledoneous gentian is 32%, that between the 3GT amino acid sequences of monocotyledonous corn and 25 monocotyledonous barley is 73%, and that between the 3GT amino acid sequences of dicotyledonous gentian and dicotyledonous eggplant is 46%.

In addition, the gene coding for UDP-30 ramnose:anthocyanidin 3-glucosidoramnosyl transferase (3RT) of petunias has also been cloned.

However, even though the hydroxyl group at the 5 position of the flavonoids of numerous plants is glucosylated, a gene for the enzyme (5GT) that catalyzes 35 this reaction has yet to be obtained.

In addition, although there are examples of measuring the reaction by which glycoside is transferred to the 5'

position of petunia and stock anthocyanins (Planta, 160, 341-347, 1984, Planta, 168, 586-591, 1986), these reports only describe the investigation of enzymological properties using crude extracts or partially purified products of flower petals, and there are no examples of this enzyme being purified to its pure form. In addition, since glycosyltransferases are typically biochemically unstable, enzyme purification is difficult.

Although there are hardly any cases in which color tone is changed by addition of glycoside to a flavonoid molecule, since aromatic acyl groups that have a significant effect on color tone are linked to a glucose molecule or rhamnose molecule within an anthocyanin, regulation of the glycoside transfer reaction is important in terms of controlling anthocyanin biosynthesis, and ultimately in controlling flower color. Furthermore, as an example of changing flower color by regulating the expression of glycosyltransferase gene, the reaction by petunia 3RT has been controlled in transformed petunia to modify flower color.

Plant species, which can be transformed with a foreign gene, include, for example, roses, chrysanthemums, carnations, daisies, petunias, torenia, bellflowers, calanchoes, tulips and gladiolas.

25

Disclosure of the Invention

The inventors of the present invention therefore sought to obtain a gene that codes for a protein having activity that transfers a glycoside to the 5 position of a flavonoid, thereby leading to completion of the present invention.

For example, the 5 position hydroxyl group of the anthocyanins of chrysanthemums and some of the anthocyanins of roses and carnations are not glucosylated. The anthocyanin structure can be changed by introducing the 5GT gene obtained by the present invention into these plants.

In addition, although it is possible to change flower color and stabilize flavonoids by acylating flavonoids using the acyl group transferase gene described in International Publication No. WO96/25500, since the acyl group does not bond directly with the flavonoid, but rather bonds by way of a sugar, simply introducing an acyl group transferase gene alone is not sufficient for changing flower color and may even cause the flavonoid not to become stable.

However, by introducing the 5GT gene in combination with an acyl group transferase gene, sugar is bounded to the 5 position of the flavonoid thereby further allowing the flavonoid to be acylated. This can be expected to change the anthocyanin structure and cause the flower color to become bluish.

In addition, if expression of 5GT gene of a plant in which the 5 position of anthocyanin is glucosylated is suppressed with the antisense method or co-suppression method and so forth, transfer of glucose residue to 5 position can be inhibited. So that, flower color can be changed. For example, suppressing 5GT activity in gentian or bellflower can be expected to cause flower color to become reddish.

The inventors of the present invention isolated cDNA of 5GT from Perilla, torenia, verbena and petunia plants using gene recombination technology, and determined the nucleotide sequence of the structural gene. Namely, the inventors of the present invention provide a DNA sequence that codes for 5GT present in the tissue that expresses anthocyanins in these plants. Moreover, since this enzyme transfers glycoside to the 5 position of anthocyanin pigment, it can be used to change flower color and increase anthocyanin stability.

35 Embodiment for Carrying Out the Invention

The method of differential displacement, for example, can be used to obtain DNA that codes for the enzyme of the

present invention. In *Perilla* (*Perilla frutescens*), for example, there are varieties that accumulate anthocyanins (e.g., red forma) and those that do not (e.g., green forma). By cloning DNA present in varieties that 5 accumulate anthocyanins but not present in varieties that do not, it is possible to obtain the DNA that codes for the enzyme of the present invention.

More specifically, RNA is extracted from the leaves of red forma and green forma, and cDNA is synthesized in 10 accordance with standard methods. This is then separated by electrophoresis to isolate cDNA present in the cDNA library of red forma but not present in the cDNA library of green forma. Next, the red forma cDNA library is screened using the resulting cDNA as a probe to obtain the 15 cDNA that codes for the enzyme of the present invention.

Once cDNA that codes for the enzyme of the present invention is obtained in the manner described above, this cDNA or its fragment is used as a probe to screening the cDNA libraries of other plants. As a result, the DNA that 20 codes for the enzyme of the present invention can be obtained from those plants.

As an example of the screening, in the present invention, the DNA coding for the enzyme of the present invention is cloned from *Perilla* by the differential display method (Example 1). Next, DNA that codes for the 25 enzyme of the present invention is obtained from verbena by screening of cDNAs from verbena (*Verbena hybrida*) using the cloned DNA of Example 1 as a probe (Example 2). Moreover, DNA coding for the enzyme of the present 30 invention is obtained from torenia in the same manner (Example 3).

Then, it was confirmed that the proteins encoded in these DNAs have the enzymatic activity of the present invention.

Moreover, the DNA coding for the enzyme of the present 35 invention was obtained from petunia (Example 4).

Examples of the DNAs of the present invention include

that which codes for the amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12. However, proteins having an amino acid sequence modified by addition and/or deletion of one or more amino acids and/or substitutions by one or more other amino acids are also known to maintain enzymatic activity similar to the original protein. Thus, genes coding for a protein that has an amino acid sequence modified by addition and/or deletions of one or more amino acids and/or substitutions by one or more other amino acids relative to the amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12, and still maintains activity of transferring a glycoside to the 5 position of a flavonoid, also belong to the present invention.

The present invention also relates to a gene coding for a protein which gene hybridizes to a nucleotide sequence described in any one of SEQ ID NOS: 1 through 4 or 6, or to a nucleotide sequence that codes for an amino acid sequence described therein or to their portions, for example a portion coding for at least six amino acids of a consensus region, under conditions of 2 to 5 x SSC, and for example, 5 x SSC, and 50°C, and that has activity of transferring a glycoside to the 5 position of a flavonoid. Furthermore, the optimum hybridization temperature varies according to the nucleotide sequence and its length, and it is preferable that the hybridization temperature be lower the shorter the nucleotide sequence. For example, a temperature of 50°C or lower is preferable in the case of a nucleotide sequence (18 bases) coding for six amino acids.

Although examples of genes selected by hybridization in this manner include those which are naturally-occurring such as those derived from plants, examples of which include a gene derived from verbena and torenia, they may also be those derived from other plants, examples of which include petunias, roses, carnations and hyacinths. In addition, genes selected by hybridization may also be cDNA or genomic DNA.

Moreover, the present invention also relates to a gene coding for a protein having an amino acid sequence having homology of 30% or more, preferably 50% or more, for example 60% or 70% or more, and in some cases, 90% or more relative to an amino acid sequence of any of SEQ ID NOS: 7 through 10 or 12, and having activity that transfers a glycoside to the 5 position of a flavonoid. Namely, as indicated in Examples, DNA coding for the enzyme of the present invention demonstrates homology of 20 to 30% in comparison with other glycosyltransferase genes. Thus, the present invention includes genes coding for a protein that having homology of 30% or more with an amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12, and has glycosyltransferase activity.

In addition, as is clear from a comparison of the results of Examples 1 through 4, the amino acid sequence of the enzyme of the present invention varies according to the species, with interspecies homology being 50% or more (see Examples 3 and 4), and for example 60 to 70% (see Example 2), while the homology of the amino acid sequences of the enzymes derived from the same species is 90% or more (see Example 1). Thus, genes coding for a protein that has an amino acid sequence having homology of 50% or more, for example 60-70% or more, and in some cases, 90% or more, relative to an amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12, and maintains the glycosyltransferase activity of the present invention are included in the present invention.

As is described in detail in Examples, DNA having a native nucleotide sequence is obtained by, for example, screening of a cDNA library.

In addition, DNA coding for an enzyme having a modified amino acid sequence can be synthesized using ordinary site-specific mutagenesis and PCR based on the nucleotide sequence of a native DNA. For example, a DNA fragment containing a site at which a modification is desired to be introduced is obtained by restriction enzyme

digestion of cDNA or genomic DNA obtained as described above. By using this as a template, site-specific mutagenesis or PCR is performed using a primer containing the desired mutation to obtain a DNA fragment containing 5 the desired modification. This is then ligated to DNA coding for another portion of the target enzyme.

Alternatively, in order to obtain DNA coding for an enzyme having a shortened amino acid sequence, for example, DNA coding for an amino acid sequence that is 10 longer than the target amino acid sequence, for example that coding for the entire amino acid sequence, is digested by a desired restriction enzyme, and in the case 15 the resulting DNA fragment does not code for the entire target amino acid sequence, the deficient portion should be supplemented by ligating synthetic DNA.

In addition, by expressing this clone using a gene expression system in E. coli or yeast and measuring enzyme activity, the resulting gene can be confirmed to code for glycosyltransferase, and by clarifying the translation 20 region of glycosyltransferase gene that transfers glycoside to the 5 position of a flavonoid, a gene is obtained that codes for the glycosyltransferase claimed in the present invention. Moreover, by expressing said gene, 25 the target transferase protein that transfers a glycoside to the 5 position of a flavonoid can be obtained.

Alternatively, the protein can be obtained by using antibody to an amino acid sequence described in any one of SEQ ID NOs: 7 through 10 or 12.

Thus, the present invention also relates to a 30 recombinant vector containing the above-mentioned DNA, and more particularly, to an expression vector and a host transformed with the vector. Both prokaryotes and eukaryotes can be used for the host. Examples of prokaryotes that can be routinely used for the host 35 include bacteria, for example, the genus Escherichia such as Escherichia coli, and the genus Bacillus such as Bacillus subtilis.

Examples of eukaryotes that can be used include lower eukaryotes such as eucaryotic microorganisms including fungi such as yeast or mold. Examples of yeast includes the genus Saccharomyces such as Saccharomyces cerevisiae, 5 while examples of molds include the genus Aspergillus such as Aspergillus oryzae and Aspergillus niger, as well as the genus Penicillium. Moreover, animal or plant cells can also be used, examples of animal cells including mouse, hamster, monkey and human cell systems. Moreover, 10 insect cells such as silkworm cells or adult silkworms themselves can be used as hosts.

The expression vectors of the present invention contain an expression control region, such as a promoter, terminator or an origin of replication, depending on the 15 type of host in which they are to be introduced. Examples of promoters of bacterial expression vectors include conventionally used promoters such as trc promoter, tac promoter and lac promoter, while examples of yeast promoters include glyceraldehyde triphosphate dehydrogenase promoter and PH05 promoter. Examples of 20 mold promoters include amylase and trpC. In addition, examples of promoters for animal cell hosts include viral promoters such as SV40 early promoter and SV40 late promoter.

25 Preparation of expression vector can be performed in accordance with standard methods using restriction enzyme, ligase and so forth. In addition, transformation of a host by an expression vector can also be performed in accordance with standard methods.

30 In the process for producing the above-mentioned protein, a host transformed with the expression vector is cultured, cultivated or bred, the target protein can be recovered and purified from the resulting culture in accordance with standard methods, examples of which 35 include filtration, centrifugation, cell homogenation, gel filtration chromatography and ion exchange chromatography.

Furthermore, although the present specification

describes transferases derived from Perilla, verbena, torenia and petunia wherein the transferases that transfer glycoside to the 5 position of a flavonoid (which may be simply referred to as "glycosyltransferase" in the present invention), a gene that codes for said enzyme can be cloned, by entirely or partially altering the purification method of said enzyme so as to purify a glycosyltransferase of another plant, and determining the amino acid sequence of said enzyme. Moreover, by using cDNA of the glycosyltransferase derived from Perilla of the present invention as a probe, cDNA of a different glycosyltransferase was able to be obtained from Perilla, and cDNA of a different glycosyltransferase was able to be obtained from a different plant. Thus, other glycosyltransferase genes can be obtained by using a portion or the entirety of a glycosyltransferase gene.

In addition, as indicated in the present specification, by purifying glycosyltransferase from Perilla, verbena, torenia and petunia to obtain antibody to said enzyme in accordance with standard methods, cDNA or chromosomal DNA produces protein which reacts with that antibody that can be cloned. Thus, the present invention is not limited to only genes of glycosyltransferases derived from Perilla, verbena, torenia and petunia, but also relates to glycosyltransferase in the broad sense.

Moreover, the present invention also relates to a plant, its progeny or their tissue for which color has been adjusted by introduction of glycosyltransferase gene, and their form may be that of cut flowers as well.

In addition, UDP-glucose is an example of a glycoside donor in the glycoside transfer reaction of glycoside that include anthocyanin in the present specification.

Examples

The following provides a detailed explanation of the present invention based on Examples. Unless specified otherwise, the experimental procedure was performed in

accordance with the methods described in Molecular Cloning (Cold Spring Harbor, 1989), New Biochemistry Experimental Manual (Kagaku Dojin, 1996) and International Patent Laid-Open Publication No. WO96/25500.

5 Example 1 Cloning of a Gene Specifically Expressed in
Red Forma

(1) Differential Display

Perilla (Perilla frutescens) includes varieties that accumulate anthocyanins in their leaves (for example, red forma (Sakata-no-tane)), and varieties that do not accumulate anthocyanins (for example, blue forma (Sakata-no-tane)). The structure of the major anthocyanin is reported to be malonylshisonin (3-O-(6-O-(p-cumaloyl)- β -D-glucosyl)-5-O-(6-O-malonyl- β -D-glucosyl)-cyanidin) (Agri. Biol. Chem., 53:197-198, 1989).

Differential display is a method reported in Science, 257, 967-971 (1992), and is used, for example, to obtain genes that are expressed tissue-specifically.

Total RNA was extracted from the leaves of the above-mentioned two types of Perilla by the hot phenol method (Plant Molecular Biology Manual, Kluwer Academic Publishers, 1994, pp. D5/1-13). Poly A + RNA was purified from the resulting total RNA using an mRNA separator kit (Clonetech). 0.9 μ g of poly A + RNA were reverse-transcribed in 33 μ l of reaction mixture using oligo-dT primer added an anchor (GenHunter, H-T11G, H-T11A and H-T11C) to obtain single strand cDNA. Using this cDNA as a template, PCR was performed using the same oligo-dT primer added an anchor and synthetic primers (GenHunter, H-AP1 through 8) as primers.

The volume of the PCR reaction mixture was 20 μ l, and it contained 2 μ l of cDNA solution, 0.2 μ M of any one of H-T11G, H-T11A or H-T11C primer, 0.2 μ M of any primer from H-AP1 through H-AP8, 0.12 μ M dNTP, 5 or 10 μ Ci of [32 P]dCTP, 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.01% Triton X-100, 1.25 mM MgCl₂, and 1 unit of Taq polymerase. The reaction conditions comprised holding the temperature at

72°C for 20 seconds followed by repeating the reaction for 40 cycles with one cycle comprising raising the temperature to 94°C for 30 seconds, lowering to 40°C for 2 minutes and raising to 72°C for 30 seconds, and then holding the temperature at 72°C for 5 minutes.

The DNA fragments amplified in this manner were separated by the same polyacrylamide gel electrophoresis as used for DNA Sequencing. After drying the gel, the gel was exposed to X-ray film. Among the resulting approximately 2,600 bands, there were 36 bands observed only in the red forma as a result of comparing the two varieties. They were cut out of the dried gel and eluted into 100 µl of water. The eluted DNA was precipitated with ethanol and dissolved in 20 µl of water. Using a half amount of each DNA as a template, the PCR reaction was performed as described above, and amplified fragments were obtained for 33 of DNA fragments. Library screening and northern analysis were then performed using these DNA fragments.

(2) Northern Analysis

Northern analysis was performed according to the method described below using the above 33 types of DNA probes. After separating poly A + RNA derived from red forma and green forma with formamide gel containing 1.2% agarose, the poly A + RNA was transferred to a Nylon membrane. This membrane was hybridized with the above-mentioned DNA probes labeled with [³²P] for overnight at 65°C in the presence of 5XSSPE, 5X Denholt's solution, 0.5% SDS and 20 µg/ml of denatured salmon sperm DNA. The hybridized membrane was washed at 65°C in 1XSSPE and 0.1% SDS solution and subjected to autoradiography. As a result, only five probes were specifically expressed in red forma. These clones are predicted to be genes involved in the biosynthesis of anthocyanins.

(3) Screening of cDNA Library

A cDNA library with λgt10 as a vector was prepared using the poly A + RNA obtained from the leaves of red

forma and the Complete Rapid Cloning System λgt10 (Amersham). This cDNA library was screened with the five DNA fragments described above to obtain cDNA corresponding to each fragment. Among these, a clone named 3R5 was
5 obtained using a DNA fragment obtained by H-T11A and H-AP3 primers, and this clone demonstrated homology of approximately 26% at the amino acid level with previously reported corn flavonoid-3-O-glucosyl transferase.

In addition, clones designated as 3R4 and 3R6 were
10 obtained by library screening using the same probes, and these demonstrated an extremely high level of homology with 3R5. The complete nucleotide sequences and deduced amino acid sequences of 3R4 and 3R6 are shown in SEQ ID NO: 1 and SEQ ID NO: 2 of the Sequence Listing,
15 respectively. In addition, the deduced amino acid sequences of the proteins encoded by 3R4 and 3R6 demonstrated homology of 92%.

A clone designated as 8R6 was obtained using a DNA fragment obtained by H-T11G and H-AP8 primers, and this
20 clone did not demonstrate significant homology with any sequences reported so far. This sequence is shown in SEQ ID NO: 5 of the Sequence Listing. Although there is a strong possibility that 8R6 is a gene involved in the biosynthesis of anthocyanins, since its structure lacks
25 homology with genes reported so far, it is predicted to be a new gene involved in anthocyanin biosynthesis.

In consideration of the anthocyanin structure in *Perilla* (the previously mentioned malonylshisonin), it is predicted that this gene is a malonyl transferase. In
30 order to verify this, this gene should be expressed in yeast and E. coli followed by reacting with anthocyanin and malonyl-CoA as substrates. Such an experiment can be carried out using, for example, the method described in International Publication No. WO96/25500. Malonyl
35 transferase gene is useful in terms of artificially altering anthocyanin structure.

(4) Expression of 3R4 cDNA in Yeast

An approximately 1.5 kb DNA fragment obtained by blunting the BstXI cleavaged site of p3R4 using T4 DNA polymerase (Takara Shuzo) and then cutting out at the BamHI cleavage site in the adapter, and an approximately 8 kb DNA fragment obtained by blunting the EcoRI cleaved end of pYE22m and then digesting with BamHI were ligated to obtain a plasmid that was designated as pY3R4.

Furthermore, *E. coli* strain JM109 having pYE22m was named *Escherichia coli* SBM335, and deposited at the National Institute of Bioscience and Human-Technology Agency of Industrial Science and Technology as FERM BP-5435. In pY3R4, cDNA coding for glycosyltransferase has been ligated downstream of the promoter for glyceroaldehyde triphosphate dehydrogenase lone of the constitutive yeast promoter, and transcription is controlled by this promoter.

Using pY3R4, yeast *Saccharomyces cerevisiae* G1315 (Ashikari, et al., Appl. Microbiol. Biotechnol., 30, 515-520, 1989) was transformed according to the method of Ito, et al. (Ito, et al., J. Bacteriol., 153, 163-168, 1983). The transformed yeast was selected according to recovery of tryptophan synthesis ability. The resulting transformed strain was cultured for 24 hours at 30°C with shaking in 10 ml of Burkholder's medium (Burkholder, Amer. J. Bot., 30, 206-210) containing 1% casamino acids.

In order to conduct a control experiment, yeast that spontaneously recovered tryptophan synthesis ability was also cultured in the same manner. After collecting the yeast, the cells were suspended in suspension buffer (100 mM phosphate buffer (pH 8.5), 0.1% (v/v) 2-mercaptoethanol, 10 μM APMSF and 100 μM UDP-glucose) followed by the addition of glass beads (Glass Beads, 425-600 microns Acid-Wash, Sigma) and vigorous shaking to crush the cells. The crushed cells were then centrifuged for 20 minutes at 15,000 rpm and the supernatant was used as a crude enzyme solution for the measurement of enzyme activity described below.

(5) Measurement of Enzymatic Activity

After allowing 50 μ l of reaction mixture containing 20 μ l of crude enzyme solution (100 mM phosphate buffer (pH 8.5), 670 μ M cyanidin-3-glucoside, 1 mM UDP-glucose) for 5 10 minutes at 30 °C, 50 μ l of 50% acetonitrile solution containing 0.1% TFA was added to stop the reaction. Supernatant obtained by centrifuging for 5 minutes at 15,000 rpm was passed through a Samprep LCR4(T)-LC filter (Millipore) so as to remove impurities. This was then 10 analyzed by high-performance liquid chromatography (HPLC). Analysis was performed using a reverse phase column (Asahipak ODP-50, 4.6 mm diameter x 250 mm, Showa Denko), the mobile phase consisted of 0.5% TFA/H₂O for solution A and 0.5% TFA 50% CH₃CN for solution B. The flow rate was 15 0.6 ml/min. and the fractions were eluted at a gradient of B20% → B100% (20 min) followed by holding at B100% for 5 minutes.

20 μ l of reaction mixture was used for analysis. A520 nm, AUFS 0.5 (Shimadzu SPD-10A) and a photodiode array detector (Shimadzu SPD-M6A) at an absorbance of 600-250 nm were used for detection. In the case of reaction of yeast crude enzyme solution that expressed pY3R4, in addition to the substrate cyanidin-3-glucoside (retention time: 17 minutes), a new peak was observed at retention time of 25 14.5 minutes. Since it was not observed in the case of reaction of yeast crude enzyme solution of the control experiment, this new peak was considered to be generated due to the activity of protein originated from pY3R4. As a result of co-chromatography with cyanidin-3,5-diglucoside, the retention time of this peak coincided 30 with that of cyanidin-3,5-diglucoside, and their absorption spectra were also identical to each other. Based on these observations, 3R4 cDNA of Perilla was found to code for 5GT.

35 Example 2 Cloning of 5GT Gene of Verbena hybrida

(1) Preparation of cDNA Library

Petals were collected from Verbena variety Hanatemari

violet (Suntory) and ground by a mortar and pestle in liquid nitrogen. RNA was extracted from the ground tissues according to a method using guanidine thiocyanate/cesium chloride, and poly A + RNA was obtained
5 by the method recommended by the manufacturer using Oligotex (Takara Shuzo). The method using guanidine thiocyanate/cesium chloride was carried out in accordance with the method described in detail in Methods in Molecular Biology, Vol. 2 (Humana Press Inc., 1984) by R.
10 McGookin and Robert J. Slater, et al.

Using the resulting poly A + RNA as a template, double-stranded cDNA was synthesized using the ZAP-cDNA synthesis kit (Stratagene), then, a cDNA library was prepared using the Uni-ZAP XR Cloning Kit (Stratagene)
15 according to the method recommended by the manufacturer.

(2) Cloning of 5GT cDNA

The λ phage library obtained as described above was screened in the following manner using the p3R4 cDNA of Perilla as a probe. The filters were maintained at 42°C
20 for 1 hour in hybridization buffer (5X SSC, 30% formamide, 50 mM sodium phosphate buffer (pH 7.0), 3% SDS 2% blocking reagent (Boehringer), 0.1% lauroylsarcosine, 80 μ g/ml of salmon sperm DNA). DIG-labeled Perilla 5GT cDNA, p3R4
25 cDNA, fragment was added to the hybridization solution and the filters were incubated for further 16 hours.

After washing the filters with washing solution (5X SSC 50°C, 1% SDS), the positive clones labeled with anti-DIG-alkaline phosphate were immunologically detected using 5-bromo-4-chloro-3-indolylphosphate and nitro blue tetrazolium salt according to the method described by the manufacturer (Boehringer).
30

As a result, seven positive clones were obtained. These cDNA were excised on plasmid pBluescript SK using the method recommended by Stratagene. When the lengths of
35 the cDNA were investigated by agarose gel electrophoresis, insertion of a maximum length of 2.0 kb was observed.

(3) Determination of Nucleotide Sequence

Plasmids were extracted from the resulting clones, and the nucleotide sequences near the 3' and 5' ends of the cDNA were determined according to the dideoxy sequence method using fluorescent reagent as recommended by Perkin-
5 Elmer with the ABI 373A sequencer (Perkin-Elmer). As a result, five of the seven clones had mutually same nucleotide sequences although the lengths of the cDNA were different. The entire nucleotide sequence of pSHGT8 was determined. Determination of nucleotide sequences was
10 performed as described above by either using the Kilo-Sequence Deletion Kit (Takara Shuzo) to obtain a series of deleted cDNA clones, or by using an oligoprimer specific for the internal sequence of pSHGT8.

15 (4) Comparison of the Nucleotide Sequence and the Amino Acid Sequence

The cDNA inserted into pSHGT8 had the length of 2062 bp, and included an open reading frame (ORF) consisting of 1386 bp in length (including a stop codon). This sequence is shown in SEQ ID NO: 3. The amino acid sequence of this
20 ORF had homology of 68% with the amino acid sequence of Perilla 5GT encoded by p3R4, and homology of 64% with that encoded by p3R6. In addition, it also had homology of 22 to 25% with the 3GTs of monocotyledonous and dicotyledoneous plants, and homology of 21% with petunia
25 3RT.

(5) Expression in Yeast and Measurement of Enzymatic Activity

An approximately 2.0 kb DNA fragment obtained by digesting pSHGT8 with BamHI/XhoI, and an approximately 8
30 kb DNA fragment obtained by digesting pYE22m with BamHI/SalI were ligated, and the resulting plasmid was designated as pYHGT8. pYHGT8 was expressed in yeast cells in the same manner as Example 1, and the enzymatic activity of the protein encoded by pSHGT8 was measured.
35 As a result, in the reaction mixture containing the crude enzyme solution of yeast transformed with pYHGT8, a product was obtained that coincided with cyanidin-3,5-

diglucoside in both retention time and absorption spectrum. Based on this observation, the pSHGT8 cDNA of Verbena was determined to code for 5GT.

Example 3 Cloning of Trenia 5GT Gene

5 (1) Preparation of cDNA Library

Petals were collected from torenia variety Summer Wave Blue (Suntory) and ground in a mortar and pestle in liquid nitrogen. RNA was extracted from the ground tissues according to a method using guanidine thiocyanate/cesium 10 chloride, and poly A + RNA was obtained by the method recommended by the manufacturer using Oligotex (Takara Shuzo). The method using guanidine thiocyanate/cesium chloride was carried out in accordance with the method described in detail in Methods in Molecular Biology, Vol. 15 2 (Humana Press Inc., 1984) by R. McGookin and Robert J. Slater, et al.

Using the resulting poly A + RNA as a template, double-strand cDNA was synthesized using the ZAP-cDNA synthesis kit of Strategene, then, a cDNA library was 20 prepared using the Uni-ZAP XR Cloning Kit (Stratagene) according to the method recommended by the manufacturer.

(2) Cloning of 5GT cDNA

The λ phage library obtained as described above was screened in the same manner as Example 2 using the p3R4 25 cDNA of Perilla as a probe. As a result, eight positive clones were obtained. After excision of the cDNA on plasmid pBluescript SK, the lengths of the cDNA were investigated by agarose gel electrophoresis, which revealed that a maximum length of insertion was 1.6 kb.

30 (3) Determination of Nucleotide Sequence

Plasmids were extracted from the resulting clones, and the nucleotide sequences near both 5' and 3' ends were determined in the same manner as Example 2. As a result, six of the eight clones were considered to have mutually 35 same nucleotide sequences although the lengths of the cDNA were different. The entire nucleotide sequence of pSTGT5 cDNA was determined.

(4) Comparison of the Nucleotide Sequence and the Amino Acid Sequence

The cDNA encoded in pSTGT5 was of 1671 bp in length, and included an open reading frame (ORF) consisting of 1437 bp in length (including a stop codon). This sequence is shown in SEQ ID NO: 4. The amino acid sequence of this ORF had homology of 58% with the amino acid sequence of Perilla 5GT encoded by p3R4, and homology of 57% with that encoded by p3R6, and, homology of 57% with that encoded by Verbena pSHGT8. In addition, it also had homology of 19 to 23% with the 3GT of monocotyledonous and dicotyledoneous plants, and homology of 20% with petunia 3RT.

(5) Expression of 5GT gene in Yeast

An approximately 1.6 kb DNA fragment obtained by digesting pSTGT5 with SmaI/KpnI, and an approximately 8 kb DNA fragment obtained by blunting the EcoRI-digested site of pYE22m and then digesting with KpnI were ligated, and the resulting plasmid was designated as pYTGT5. pYTGT5 was expressed in yeast cells in the same manner as Example 1, and the enzymatic activity of the protein encoded by pSTGT5 was measured. As a result, in the reaction mixture containing the crude enzyme solution of yeast transformed with pYTGT5, a product was obtained that coincided with cyanidin-3,5-diglucoside in both retention time and absorption spectrum. Based on this observation, the pSTGT5 cDNA of Torenia was determined to code for 5GT.

Example 4 Cloning of Petunia 5GT Gene

(1) Preparation of cDNA Library

A cDNA library was prepared by RNA extracted from petals of the Petunia variety Old Glory Blue in the manner described in detail by T. Holton, et al. (Plant Journal, 1993 4: 1003-1010)

(2) Cloning of 5GT cDNA

The cDNA library was screened in the same manner as Example 2 using the mixture of 5GT cDNAs of Perilla, torenia and verbena obtained in the manner described above

as probes. As a result, four positive cDNA clones were obtained and excised on plasmid pBluescript SK. The lengths of the cDNA were investigated by agarose gel electrophoresis, cDNA of a maximum length of 2.0 kb was observed.

5 (3) Determination of the Nucleotide Sequence
Plasmids were extracted from the resulting clones, and the nucleotide sequence near the 5' end was determined in the same manner as Example 2. As a result, two of the 10 four clones, pSPGT1, were appeared to code an amino acid sequence with a high degree of homology with those of 5GT from Perilla, torenia and verbena obtained thus far. Therefore, the entire nucleotide sequence of pSPGT1 was determined.

15 (4) Comparison of the Nucleotide Sequence and the Amino Acid Sequence

The pSPGT1 cDNA was 2015 bp in length, and included an open reading frame (ORF) consisting of 1407 bp (including a stop codon). This sequence is shown in SEQ ID NO: 6. 20 The amino acid sequence of this ORF had homology of 57% with that of 5GT encoded by p3R4 of Perilla, homology of 54% with that encoded by p3R6, 55% with that encoded by pSHGT8 of verbena, and 51% of that encoded by pTGT5 of torenia. In addition, it also had homology of 20 to 29% 25 with the 3GT of monocotyledonous and dicotyledoneous plants, and homology of 20% with petunia 3RT. Based on this observation, pSPGT1 cDNA obtained from petunia is considered to code for 5GT.

30 Industrial Applicability

As has been described above, cDNA coding for enzymes that transfer a glycoside to the 5 position of a flavonoid originating in Perilla, verbena, torenia and petunia were cloned and their nucleotide sequences were determined. In 35 addition, the isolated cDNAs were clearly shown to code for 5GT by the enzymatic activity of their protein expressed in yeast. Introducing of these cDNAs into a

suitable plant expression vector and transferring the resulting expression constructs into a plant makes it possible to provide, increase or decrease 5GT activity in the transformed plant, which leads to regulation of flower color. In addition, by using this enzyme, the structure of anthocyanins can be altered or more stable anthocyanins can be synthesized either in plants or in vitro.

CLAIMS

1. A gene coding for a protein having activity that transfers a glycoside to the 5 position of a flavonoid.
2. A gene as set forth in claim 1 that codes for a protein having an amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12 and having activity that transfers a glycoside to the 5 position of a flavonoid, or a protein having an amino acid sequence modified by addition and/or deletion of one or more amino acids and/or substitutions by one or more other amino acids relative to said amino acids and maintains activity that transfers a glycoside to the 5 position of a flavonoid.
10
3. A gene as set forth in claim 1 that codes for a protein having an amino acid sequence that has homology of 30% or more with an amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12, and has activity that transfers a glycoside to the 5 position of a flavonoid.
15
4. A gene as set forth in claim 1 that codes for a protein having an amino acid sequence that has homology of 50% or more with an amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12, and has activity that transfers a glycoside to the 5 position of a flavonoid.
20
- 25 5. A gene as set forth in claim 1 that codes for a protein, wherein said gene can be hybridized under conditions of 5 x SCC and 50°C with all or a portion of a nucleotide sequence that codes for an amino acid sequence described in any one of SEQ ID NOS: 7 through 10 or 12, and has activity that transfers a glycoside to the 5 position of a flavonoid.
30
6. A vector containing a gene as set forth in any one of claims 1 through 5.
7. A host transformed with a vector as set forth in
35 claim 6.
8. A protein encoded by a gene as set forth in any one of claims 1 through 5.

9. A process for producing a protein comprising culturing or breeding a host as set forth in claim 7, and recovering a protein having activity that transfers a glycoside to the 5 position of a flavonoid from said host.

5 10. A plant into which is introduced a gene as set forth in any one of claims 1 through 5, or its progeny or tissue having identical properties.

11. A cut flower of the plant as set forth in claim 10 or its progeny having identical properties.

ABSTRACT

The present invention provides a gene that codes for a protein having an amino acid sequence described in any of
5 SEQ ID NOS: 7 through 10 or 12 and having activity that transfers a glycoside to the 5 position of a flavonoid, a gene that codes for a protein having a modified amino acid sequence relative to the above amino acid sequence and having activity that transfers a glycoside to the 5
10 position of a flavonoid, and a process for producing the above protein using said gene. This gene can be used to artificially alter the color of plants.

SEQUENCE LISTING

<110> Suntory Limited
 <120> Gene Coding for Protein Having Sugar-Transfer Activity
 <130> STY-F846-PCT
 <150> JP PH9-200571
 <151> 1997-07-25
 <160> 11
 <210> 1
 <211> 1507
 <212> DNA
 <213> *Perilla frutescens*
 <400> 1

gaaaatttcc acaaaaa atg gtc cgc cgc cgc gtg ctg cta gca acg ttt	49
Met Val Arg Arg Val Leu Leu Ala Thr Phe	
1 5 10	
cct gcg caa ggc cac ata aat ccc gcc ctc caa ttc gcc aag aga ctc	97
Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln Phe Ala Lys Arg Leu	
15 20 25	
cta aaa gcc ggc act gac gtc aca ttt ttc acg agc gtt tat gca tgg	145
Leu Lys Ala Gly Thr Asp Val Thr Phe Phe Thr Ser Val Tyr Ala Trp	
30 35 40	
cgc cgc atg gcc aac aca gcc tcc gcc gct gcc gga aac cca ccg ggc	193
Arg Arg Met Ala Asn Thr Ala Ser Ala Ala Gly Asn Pro Pro Gly	
45 50 55	
ctc gac ttc gtg gcg ttc tcc gac ggc tac gac gac ggg ctg aag ccc	241
Leu Asp Phe Val Ala Phe Ser Asp Gly Tyr Asp Asp Gly Leu Lys Pro	
60 65 70 75	
tgc ggc gac ggg aag cgc tac atg tcc gag atg aaa gcc cgc ggc tcc	289
Cys Gly Asp Gly Lys Arg Tyr Met Ser Glu Met Lys Ala Arg Gly Ser	
80 85 90	
gag gcc tta aga aac ctc ctt ctc aac aac cac gac gtc acg ttc gtc	337
Glu Ala Leu Arg Asn Leu Leu Asn Asn His Asp Val Thr Phe Val	
95 100 105	
gtc tac tcc cac ctc ttt gca tgg gcg gcg gag gtg gcg cgt gag tcc	385
Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala Arg Glu Ser	
110 115 120	

cag	gtc	ccg	agc	gcc	ctt	ctc	tgg	gtc	gag	ccc	gcc	acc	gtg	ctg	tgc		433
Gln	Val	Pro	Ser	Ala	Leu	Leu	Trp	Val	Glu	Pro	Ala	Thr	Val	Leu	Cys		
125																135	
ata	tat	tac	ttc	tac	ttc	aac	ggc	tac	gca	gac	gag	atc	gac	gcc	ggt		481
Ile	Tyr	Tyr	Phe	Tyr	Phe	Asn	Gly	Tyr	Ala	Asp	Glu	Ile	Asp	Ala	Gly		
140																150	155
tcc	gac	gaa	att	cag	ctc	cct	cg	ctt	cca	ccc	ctg	gag	cag	cg	agt		529
Ser	Asp	Glu	Ile	Gln	Leu	Pro	Arg	Leu	Pro	Pro	Leu	Glu	Gln	Arg	Ser		
																160	165
																	170
ctt	ccg	acc	ttt	ctg	ctg	ccg	gag	aca	ccg	gag	aga	ttc	cg	ttg	atg		577
Leu	Pro	Thr	Phe	Leu	Leu	Pro	Glu	Thr	Pro	Glu	Arg	Phe	Arg	Leu	Met		
																175	180
																	185
atg	aag	gag	aag	ctg	gaa	act	tta	gac	ggt	gaa	gag	aag	g	aaa	gtg		625
Met	Lys	Glu	Lys	Leu	Glu	Thr	Leu	Asp	Gly	Glu	Glu	Lys	Ala	Lys	Val		
																190	195
																	200
ttg	gtg	aac	acg	ttt	gat	g	ccg	ttg	gag	ccc	gat	gca	ctc	acg	gct		673
Leu	Val	Asn	Thr	Phe	Asp	Ala	Leu	Glu	Pro	Asp	Ala	Leu	Thr	Ala	Ile		
																205	210
																	215
gat	agg	tat	gag	ttg	atc	ggg	atc	ggg	ccg	ttg	att	ccc	tcc	gcc	ttc		721
Asp	Arg	Tyr	Glu	Leu	Ile	Gly	Ile	Gly	Pro	Leu	Ile	Pro	Ser	Ala	Phe		
																220	225
																	235
ttg	gac	ggc	gga	gat	ccc	tcc	gaa	acg	tct	tac	ggc	ggc	gat	ctt	ttc		769
Leu	Asp	Gly	Asp	Pro	Ser	Glu	Thr	Ser	Tyr	Gly	Gly	Asp	Leu	Phe			
																240	245
																	250
gaa	aaa	tcg	gag	gag	aat	aac	tgc	gtg	gag	tgg	ttg	gac	acg	aag	ccg		817
Glu	Lys	Ser	Glu	Glu	Asn	Asn	Cys	Val	Glu	Trp	Leu	Asp	Thr	Lys	Pro		
																255	260
																	265
aaa	tct	tcg	gtg	gtg	tat	gtg	tgc	ttt	ggg	agc	gtt	ttg	agg	ttt	cca		865
Lys	Ser	Ser	Val	Val	Tyr	Val	Ser	Phe	Gly	Ser	Val	Leu	Arg	Phe	Pro		
																270	275
																	280
aag	gca	caa	atg	gaa	gag	att	ggg	aaa	ggg	cta	tta	gcc	tgc	gga	agg		913
Lys	Ala	Gln	Met	Glu	Glu	Ile	Gly	Lys	Gly	Leu	Leu	Ala	Cys	Gly	Arg		
																285	290
																	295
ccg	ttt	tta	tgg	atg	ata	cga	gaa	cag	aag	aat	gac	gac	ggc	gaa	gaa		961
Pro	Phe	Leu	Trp	Met	Ile	Arg	Glu	Gln	Lys	Asn	Asp	Asp	Gly	Glu	Glu		
																300	305
																	310
																	315

gaa gaa gaa gag ttg agt tgc att ggg gaa ttg aaa aaa atg ggg aaa		1009	
Glu Glu Glu Glu Leu Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys			
320	325	330	
ata gtt tcg tgg tgc tcg cag ttg gag gtt ctg gcg cac cct gcg ttg		1057	
Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu			
335	340	345	
gga tgt ttc gtg acg cat tgt ggg tgg aac tcg gct gtg gag agc ttg		1105	
Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu			
350	355	360	
agt tgc ggg gtt ccg gtg gcg gtg ccg cag tgg ttt gat cag acg		1153	
Ser Cys Gly Val Pro Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr			
365	370	375	
acg aat gcg aag ctg att gag gat gcg tgg ggg aca ggg gtg aga gtg		1201	
Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val			
380	385	390	395
aga atg aat gaa ggg ggt ggg gtt gat gga tct gag ata gag agg tgt		1249	
Arg Met Asn Glu Gly Gly Val Asp Gly Ser Glu Ile Glu Arg Cys			
400	405	410	
gtg gag atg gtg atg gat ggg ggt gag aag agc aaa cta gtg aga gaa		1297	
Val Glu Met Val Met Asp Gly Gly Glu Lys Ser Lys Leu Val Arg Glu			
415	420	425	
aat gcc ata aaa tgg aag act ttg gcc aga gaa gcc atg gga gag gat		1345	
Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Glu Ala Met Gly Glu Asp			
430	435	440	
gga tct tca ctc aag aat ctc aac gcc ttt ctt cat caa gtt gca cgt		1393	
Gly Ser Ser Leu Lys Asn Leu Asn Ala Phe Leu His Gln Val Ala Arg			
445	450	455	
gct taatacacaa aatggcttcc cacttttaat ctactcaaacc accggttcaa		1446	
Ala			
460			
ataaatatcc cttccactt cttctattt cactatcaca tttataattt tagtaacaaa		1506	
a		1507	
<210> 2			
<211> 1470			
<212> DNA			
<213> Perilla frutescens			
<400> 2			

accaaacc aaacaaaattt ccacaaaa atg gtc cgc cgc cgc gtg ctg cta	48
Met Val Arg Arg Arg Val Leu Leu	
1 5	
gca acg ttt ccg gcg caa ggc cac ata aat ccc gcc ctc caa ttc gcc	96
Ala Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln Phe Ala	
10 15 20	
aag aga ctc cta aaa gcc ggc act gac gtc acg ttt ttc acg acg gtt	144
Lys Arg Leu Leu Lys Ala Gly Thr Asp Val Thr Phe Phe Thr Ser Val	
25 30 35 40	
tat gca tgg cgc cgc atg gcc aac aca gcc tcc gcc gct gcc gga aac	192
Tyr Ala Trp Arg Arg Met Ala Asn Thr Ala Ser Ala Ala Ala Gly Asn	
45 50 55	
cca ccg ggc ctc gac ttc gtg gcg ttc tcc gac ggc tac gac gac ggg	240
Pro Pro Gly Leu Asp Phe Val Ala Phe Ser Asp Gly Tyr Asp Asp Gly	
60 65 70	
ctg aag ccc ggc ggc gac ggg aag cgc tac atg tcc gag atg aaa gcc	288
Leu Lys Pro Gly Gly Asp Gly Lys Arg Tyr Met Ser Glu Met Lys Ala	
75 80 85	
cgc ggc tcc gag gcc tta aga aac ctc ctt ctc aac aac gac gac gtc	336
Arg Gly Ser Glu Ala Leu Arg Asn Leu Leu Leu Asn Asn Asp Asp Val	
90 95 100	
act ttc gtc gtc tac tcc cac ctc ttt gca tgg gcg gcg gag gtg gcg	384
Thr Phe Val Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala	
105 110 115 120	
cgt ttg tcc cac gtc ccg acc gcc ctt ctc tgg gtc gag ccc gcc acc	432
Arg Leu Ser His Val Pro Thr Ala Leu Leu Trp Val Glu Pro Ala Thr	
125 130 135	
gtg ctg tgc ata tac cac ttc tac ttc aac ggc tac gca gac gag atc	480
Val Leu Cys Ile Tyr His Phe Tyr Phe Asn Gly Tyr Ala Asp Glu Ile	
140 145 150	
gac gcc ggt tcc aat gaa att cag ctc cct cgg ctt cca tcc ctg gag	528
Asp Ala Gly Ser Asn Glu Ile Gln Leu Pro Arg Leu Pro Ser Leu Glu	
155 160 165	
cag cgc agt ctt ccg acg ttt ctg ctg cct gcg acg ccg gag aga ttc	576
Gln Arg Ser Leu Pro Thr Phe Leu Leu Pro Ala Thr Pro Glu Arg Phe	
170 175 180	

tgg ttt gat cag acg acg aat gcg aag ctg att gag gat gcg tgg ggg			1200
Trp Phe Asp Gln Thr Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly			
380	385	390	
aca ggg gtg aga gtg aga atg aat gaa ggg ggt ggg gtt gat gga tgt			1248
Thr Gly Val Arg Val Arg Met Asn Glu Gly Gly Val Asp Gly Cys			
395	400	405	
gag ata gaa agg tgt gtg gag atg gtg atg gat ggg ggt gac aag acc			1296
Glu Ile Glu Arg Cys Val Glu Met Val Met Asp Gly Gly Asp Lys Thr			
410	415	420	
aaa cta gtg aga gaa aat gcc atc aaa tgg aag act ttg gcc aga caa			1344
Lys Leu Val Arg Glu Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Gln			
425	430	435	440
gcc atg gga taggatggat cttcactcaa caatctcaac gcctttcttc			1393
Ala Met Gly			
443			
gtcaagttgc acacttttaa tctgctcaaa cagcggttca aataaatatc cccttccact			1453
taaaaaaaaaa aaaaaaaaaa			1470
<210> 3			
<211> 2062			
<212> DNA			
<213> Verbena hybrida			
<400> 3			
attttaccaa aaaaataaaaaa aaaaaa atg agc aga gct cac gtc ctc ttg gcc			52
Met Ser Arg Ala His Val Leu Leu Ala			
1	5		
aca ttc cca gca cag gga cac ata aat ccc gcc ctt caa ttc gcc aag			100
Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln Phe Ala Lys			
10	15	20	25
cgt ctc gca aat gcc gac att caa gtc aca ttc ttc acc agc gtc tac			148
Arg Leu Ala Asn Ala Asp Ile Gln Val Thr Phe Phe Thr Ser Val Tyr			
30	35	40	
gca tgg cgc cgc atg tcc aga acc gcc gct ggc tca aac ggg ctc atc			196
Ala Trp Arg Arg Met Ser Arg Thr Ala Ala Gly Ser Asn Gly Leu Ile			
45	50	55	
aat ttt gtg tcg ttt tcc gac ggg tat gac gac ggg tta cag ccc gga			244
Asn Phe Val Ser Phe Ser Asp Gly Tyr Asp Asp Gly Leu Gln Pro Gly			
60	65	70	

gac gat ggg aag aac tac atg tcg gag atg aaa agc aga ggt ata aaa			292
Asp Asp Gly Lys Asn Tyr Met Ser Glu Met Lys Ser Arg Gly Ile Lys			
75	80	85	
gcc ttg agc gat act ctt gca gcc aat aat gtc gat caa aaa agc agc			340
Ala Leu Ser Asp Thr Leu Ala Ala Asn Asn Val Asp Gln Lys Ser Ser			
90	95	100	105
aaa atc acg ttc gtg gtg tac tcc cac ctc ttt gca tgg gcg gcc aag			388
Lys Ile Thr Phe Val Val Tyr Ser His Leu Phe Ala Trp Ala Ala Lys			
110	115	120	
gtg gcg cgt gag ttc cat ctc cgg agc gcg cta ctc tgg att gag cca			436
Val Ala Arg Glu Phe His Leu Arg Ser Ala Leu Leu Trp Ile Glu Pro			
125	130	135	
gct acg gtg ttg gat ata ttt tac ttt tat ttc aac ggc tat agc gac			484
Ala Thr Val Leu Asp Ile Phe Tyr Phe Tyr Phe Asn Gly Tyr Ser Asp			
140	145	150	
gaa atc gat gcg ggt tcg gat gct att cac ttg ccc gga gga ctc cca			532
Glu Ile Asp Ala Gly Ser Asp Ala Ile His Leu Pro Gly Gly Leu Pro			
155	160	165	
gtg ctg gcc cag cgt gat tta ccg tct ttc ctt ctt cct tcc acg cat			580
Val Leu Ala Gln Arg Asp Leu Pro Ser Phe Leu Leu Pro Ser Thr His			
170	175	180	185
gag aga ttc cgt tca ctg atg aag gag aaa ttg gaa act tta gaa ggt			628
Glu Arg Phe Arg Ser Leu Met Lys Glu Lys Leu Glu Thr Leu Glu Gly			
190	195	200	
gaa gaa aaa cct aag gtc ttg gtg aac agc ttt gat gcg ttg gag cct			676
Glu Glu Lys Pro Lys Val Leu Val Asn Ser Phe Asp Ala Leu Glu Pro			
205	210	215	
gat gcg ctc aag gcc att gat aag tac gag atg att gca atc ggg ccg			724
Asp Ala Leu Lys Ala Ile Asp Lys Tyr Glu Met Ile Ala Ile Gly Pro			
220	225	230	
ttg att cct tcc gca ttc ttg gac ggt aaa gat cct tcg gac agg tct			772
Leu Ile Pro Ser Ala Phe Leu Asp Gly Lys Asp Pro Ser Asp Arg Ser			
235	240	245	
ttc ggc gga gat ttg ttc gag aaa ggg tcg aat gac gac gat tgc ctc			820
Phe Gly Gly Asp Leu Phe Glu Lys Gly Ser Asn Asp Asp Cys Leu			
250	255	260	265

gaa tgg ttg agc acg aat cct cga tct tcg gtg gtt tac gtt tcg ttc			868
Glu Trp Leu Ser Thr Asn Pro Arg Ser Ser Val Val Tyr Val Ser Phe			
270	275	280	
gga agc ttc gtt aat acg acg aag tcg caa atg gaa gag ata gca aga			916
Gly Ser Phe Val Asn Thr Thr Lys Ser Gln Met Glu Glu Ile Ala Arg			
285	290	295	
ggg ctg tta gat tgt ggg agg ccg ttt ttg tgg gtg gta aga gta aac			964
Gly Leu Leu Asp Cys Gly Arg Pro Phe Leu Trp Val Val Arg Val Asn			
300	305	310	
gaa gga gaa gag gta ttg ata agt tgc atg gag gag ttg aaa cga gtg			1012
Glu Gly Glu Val Leu Ile Ser Cys Met Glu Glu Leu Lys Arg Val			
315	320	325	
ggg aaa att gta tct tgg tgt tct caa ttg gaa gtc ctg acg cat ccc			1060
Gly Lys Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Thr His Pro			
330	335	340	345
tcg ttg gga tgt ttc gtg aca cac tgc ggg tgg aat tcg act cta gag			1108
Ser Leu Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Thr Leu Glu			
350	355	360	
agt ata tct ttc ggg gtt ccg atg gtg gct ttt ccg cag tgg ttc gat			1156
Ser Ile Ser Phe Gly Val Pro Met Val Ala Phe Pro Gln Trp Phe Asp			
365	370	375	
caa ggg acg aat gcg aag ctg atg gag gat gtg tgg agg acg ggt gtg			1204
Gln Gly Thr Asn Ala Lys Leu Met Glu Asp Val Trp Arg Thr Gly Val			
380	385	390	
aga gtg aga gct aat gag gag ggt agc gtc gtt gat ggt gat gaa att			1252
Arg Val Arg Ala Asn Glu Glu Gly Ser Val Val Asp Gly Asp Glu Ile			
395	400	405	
agg aga tgt att gag gag gtt atg gat ggg gga gaa aag agt agg aaa			1300
Arg Arg Cys Ile Glu Glu Val Met Asp Gly Gly Glu Lys Ser Arg Lys			
410	415	420	425
ctt aga gag agt gct ggc aag tgg aag gat ttg gca aga aaa gct atg			1348
Leu Arg Glu Ser Ala Gly Lys Trp Lys Asp Leu Ala Arg Lys Ala Met			
430	435	440	
gag gaa gat gga tct tca gtt aac aac ctc aag gtc ttt ctt gat gag			1396
Glu Glu Asp Gly Ser Ser Val Asn Asn Leu Lys Val Phe Leu Asp Glu			
445	450	455	

tac gat gat ggc tta aag aaa ggc gac gat ggc aaa aac tac atg tcg			293
Tyr Asp Asp Gly Leu Lys Lys Gly Asp Asp Gly Lys Asn Tyr Met Ser			
70	75	80	
gag atg aga aag cgc gga acg aag gcc tta aag gac act ctt att aag			341
Glu Met Arg Lys Arg Gly Thr Lys Ala Leu Lys Asp Thr Leu Ile Lys			
85	90	95	
ctc aac gat gct gcg atg gga agt gaa tgt tac aat cgc gtg agc ttt			389
Leu Asn Asp Ala Ala Met Gly Ser Glu Cys Tyr Asn Arg Val Ser Phe			
100	105	110	115
gtg gtg tac tct cat cta ttt tcg tgg gca gct gaa gtg gcg cgt gaa			437
Val Val Tyr Ser His Leu Phe Ser Trp Ala Ala Glu Val Ala Arg Glu			
120	125	130	
gtc gac gtg ccg agt gcc ctt ctt tgg att gaa ccg gct acg gtt ttc			485
Val Asp Val Pro Ser Ala Leu Leu Trp Ile Glu Pro Ala Thr Val Phe			
135	140	145	
gat gtg tac tat ttt tac ttc aat ggg tat gcc gat gat atc gat gcg			533
Asp Val Tyr Tyr Phe Tyr Phe Asn Gly Tyr Ala Asp Asp Ile Asp Ala			
150	155	160	
ggc tca gat caa atc caa ctg ccc aat ctt ccg cag ctc tcc aag caa			581
Gly Ser Asp Gln Ile Gln Leu Pro Asn Leu Pro Gln Leu Ser Lys Gln			
165	170	175	
gat ctc ccc tct ttc cta ctc cct tcg agc ccc gcg aga ttc cga acc			629
Asp Leu Pro Ser Phe Leu Leu Pro Ser Ser Pro Ala Arg Phe Arg Thr			
180	185	190	195
cta atg aaa gaa aag ttc gac acg ctc gac aaa gaa ccg aaa gcg aag			677
Leu Met Lys Glu Lys Phe Asp Thr Leu Asp Lys Glu Pro Lys Ala Lys			
200	205	210	
gtc ttg ata aac acg ttc gac gca tta gaa acc gaa caa ctc aaa gcc			725
Val Leu Ile Asn Thr Phe Asp Ala Leu Glu Thr Glu Gln Leu Lys Ala			
215	220	225	
atc gac agg tat gaa cta ata tcc atc ggc cca tta atc cca tca tcg			773
Ile Asp Arg Tyr Glu Leu Ile Ser Ile Gly Pro Leu Ile Pro Ser Ser			
230	235	240	
ata ttc tca gat ggc aac gac ccc tca tca agc aac aaa tcc tac ggt			821
Ile Phe Ser Asp Gly Asn Asp Pro Ser Ser Asn Lys Ser Tyr Gly			
245	250	255	

gga gac ctc ttc aga aaa gcc gat gaa act tac atg gac tgg cta aac			869
Gly Asp Leu Phe Arg Lys Ala Asp Glu Thr Tyr Met Asp Trp Leu Asn			
260	265	270	275
tca aaa ccc gaa tca tcg gtc gtt tac gtt tcg ttc ggg agc ctc ctg			917
Ser Lys Pro Glu Ser Ser Val Val Tyr Val Ser Phe Gly Ser Leu Leu			
280	285	290	
agg ctc ccg aaa ccc caa atg gaa gaa ata gca ata ggg ctt tca gac			965
Arg Leu Pro Lys Pro Gln Met Glu Glu Ile Ala Ile Gly Leu Ser Asp			
295	300	305	
acc aaa tcg cca gtt ctc tgg gtg ata aga aga aac gaa gag ggc gac			1013
Thr Lys Ser Pro Val Leu Trp Val Ile Arg Arg Asn Glu Glu Gly Asp			
310	315	320	
gaa caa gag caa gca gaa gaa gag aag ctg ctg agc ttc ttt gat			1061
Glu Gln Glu Gln Ala Glu Glu Glu Lys Leu Leu Ser Phe Phe Asp			
325	330	335	
cgt cac gga act gaa cga ctc ggg aaa atc gtg aca tgg tgc tca caa			1109
Arg His Gly Thr Glu Arg Leu Gly Lys Ile Val Thr Trp Cys Ser Gln			
340	345	350	355
ttg gat gtt ctg acg cat aag tcg gtg gga tgc ttc gtg acg cat tgc			1157
Leu Asp Val Leu Thr His Lys Ser Val Gly Cys Phe Val Thr His Cys			
360	365	370	
ggt tgg aat tct gct atc gag agc ctg gct tgt ggt gtg ccc gtg gtg			1205
Gly Trp Asn Ser Ala Ile Glu Ser Leu Ala Cys Gly Val Pro Val Val			
375	380	385	
tgc ttt cct caa tgg ttc gat caa ggg act aat gcg aag atg atc gaa			1253
Cys Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys Met Ile Glu			
390	395	400	
gat gtg tgg agg agt ggt gtg aga gtc aga gtg aat gag gaa ggc ggc			1301
Asp Val Trp Arg Ser Gly Val Arg Val Arg Val Asn Glu Glu Gly Gly			
405	410	415	
gtt gtt gat agg cgt gag att aag agg tgc gtc tcg gag gtt ata aag			1349
Val Val Asp Arg Arg Glu Ile Lys Arg Cys Val Ser Glu Val Ile Lys			
420	425	430	435
agt cga gag ttg aga gaa agc gca atg atg tgg aag ggt ttg gct aaa			1397
Ser Arg Glu Leu Arg Glu Ser Ala Met Met Trp Lys Gly Leu Ala Lys			
440	445	450	

gaa gct atg gat gaa gaa cgt gga tca tca atg aac aat ctg aag aat			1445
Glu Ala Met Asp Glu Glu Arg Gly Ser Ser Met Asn Asn Leu Lys Asn			
455	460	465	
ttt att act agg att att aat gaa aat gcc tca taagttgtac			1488
Phe Ile Thr Arg Ile Ile Asn Glu Asn Ala Ser			
470	475	478	
tatatatgtt attattgttg ttatggacgt cgaattaagt attagttaaa tgatatgtat			1548
ttagaggaag gccaaaacgg gctacaccccg gcaggccacg gggtggaaaa gccccccatg			1608
atttaaaata tatatttaa aataaatatt ttctactatt aaactaaaaa aaaaaaaaaa			1668
aaa			1671
<210> 5			
<211> 1437			
<212> DNA			
<213> <i>Perilla frutescens</i>			
<400> 5			
ttcaaaaactc ataacgtgat tgagctaattg tgcacatctt cctttcaaa gtctacagt			60
tcatcctacc agcatcatca tgatcaatct cttaataatg aggagaatgg agtaacaagg			120
agtgggtttt gttactcagc ttcaacctac gtacgtacta ctactgactc aactctcaag			180
agaatgaata taatatataa tggcgatag atctttgtag atatgttagt gtagcctgca			240
ggtgtttaat taatttcgg tgtggaaaa taaataaata aataaatata gcg atg agc			299
Met Ser			
1			
agc agc agc aga agg tgg aga gag aat gag ggg atg cga agg aca			347
Ser Ser Ser Arg Arg Trp Arg Glu Asn Glu Gly Met Arg Arg Thr			
5 10 15			
ttg ctg ggg ttg ggt ttg ggg cag ttg gtt tct ttc gat ttg gct atc			395
Leu Leu Gly Leu Gly Gln Leu Val Ser Phe Asp Leu Ala Ile			
20 25 30			
atg acc ttt tct gct tct ttg gtt tca acc aca gtg gat gca cca ctt			443
Met Thr Phe Ser Ala Ser Leu Val Ser Thr Thr Val Asp Ala Pro Leu			
35 40 45 50			
act atg tcg ttc act aca tac act gtt gtg gcc ctg ctc tat gga acc			491
Thr Met Ser Phe Thr Thr Tyr Thr Val Val Ala Leu Leu Tyr Gly Thr			
55 60 65			
atc ttg ctt tac cgc cgc cac aaa ttc ttg gtt cca tgg tac tgg tat			539
Ile Leu Leu Tyr Arg Arg His Lys Phe Leu Val Pro Trp Tyr Trp Tyr			
70 75 80			

gct ctc ctg ggg ttc gtg gac gtc cac ggc aat tat ctt gtt aat aaa			587
Ala Leu Leu Gly Phe Val Asp Val His Gly Asn Tyr Leu Val Asn Lys			
85	90	95	
gca ttc gag ttg aca tcg att acg agt gtg agc ata ctg gat tgt tgg			635
Ala Phe Glu Leu Thr Ser Ile Thr Ser Val Ser Ile Leu Asp Cys Trp			
100	105	110	
aca atc gtg tgg tcc atc atc ttt aca tgg atg ttc cta ggc aca aaa			683
Thr Ile Val Trp Ser Ile Ile Phe Thr Trp Met Phe Leu Gly Thr Lys			
115	120	125	130
tac tct gta tac cag ttt gtc ggt gct gct att tgt gta gga ggc ctc			731
Tyr Ser Val Tyr Gln Phe Val Gly Ala Ala Ile Cys Val Gly Gly Leu			
135	140	145	
ctc ctc gtg ctt ctt tcc gac tca ggg gtc act gct gct ggt tcg aat			779
Leu Leu Val Leu Leu Ser Asp Ser Gly Val Thr Ala Ala Gly Ser Asn			
150	155	160	
cct ctt ttg ggt gat ttt ctt gtc ata aca ggc tct att ttg ttc aca			827
Pro Leu Leu Gly Asp Phe Leu Val Ile Thr Gly Ser Ile Leu Phe Thr			
165	170	175	
ctc agc act gtt ggt cag gaa tac tgc gtg aag agg aaa gat cgt att			875
Leu Ser Thr Val Gly Gln Glu Tyr Cys Val Lys Arg Lys Asp Arg Ile			
180	185	190	
gaa gta gta gca atg atc ggt gta ttt ggt atg ctc atc agt gca acc			923
Glu Val Val Ala Met Ile Gly Val Phe Gly Met Leu Ile Ser Ala Thr			
195	200	205	210
gag att act gtg ctg gag agg aat gcc ctc tca tca atg cag tgg tct			971
Glu Ile Thr Val Leu Glu Arg Asn Ala Leu Ser Ser Met Gln Trp Ser			
215	220	225	
act gga ctt ttg gca gcc tat gtt gtt tat gca ctg tcc agc ttc ctc			1019
Thr Gly Leu Leu Ala Ala Tyr Val Val Tyr Ala Leu Ser Ser Phe Leu			
230	235	240	
ttc tgc aca ctc acc cct ttt ctt ctc aag atg agt ggc gct gca ttt			1067
Phe Cys Thr Leu Thr Pro Phe Leu Leu Lys Met Ser Gly Ala Ala Phe			
245	250	255	
ttc aat ctt tcc atg ctt aca tct gat atg tgg gct gtt gca att agg			1115
Phe Asn Leu Ser Met Leu Thr Ser Asp Met Trp Ala Val Ala Ile Arg			
260	265	270	

aca ttc ata tac aac cag gag gtt gat tgg tta tac tat ttg gcc ttt			1163
Thr Phe Ile Tyr Asn Gln Glu Val Asp Trp Leu Tyr Tyr Leu Ala Phe			
275	280	285	290
tgt ctc gtt gtt gga ata ttc ata tat aca aaa aca gag aag gat			1211
Cys Leu Val Val Val Gly Ile Phe Ile Tyr Thr Lys Thr Glu Lys Asp			
295	300	305	
cct aac aat acg aga gcc ctt gag aat gga aac ttg gat cat gaa tat			1259
Pro Asn Asn Thr Arg Ala Leu Glu Asn Gly Asn Leu Asp His Glu Tyr			
310	315	320	
agt ctc ctt gag gat caa gat gac aca cca aga aaa cca tagcttagtt			1308
Ser Leu Leu Glu Asp Gln Asp Asp Thr Pro Arg Lys Pro			
325	330	335	
tgcacacaat ctttcatca acagtttaa ataattcgtg agggggagag agatcgagat			1368
actaattaat ggacgtctat tatatagttg gaggttttg ttttatttat ttatggat			1428
aaaaaaaaaa			1437
<210> 6			
<211> 2105			
<212> DNA			
<213> Petunia hybrida			
<400> 6			
agtgagcgca acgcaattaa tgtgagttag ctcactcatt aggccccca ggctttacac			60
tttatgcttc cggctcgat gttgtgtgga attgtgagcg gataacaatt tcacacagga			120
aacagctatg accatgatta cgccaaagtc gaaattaacc ctcactaaag ggaacaaaag			180
ctggagctcc acgcggtgtgc ggccgctcta gaactagttgg atccccggg ctgcaggaat			240
tccgttgctg tcgccacaat ttacaaacca agaaattaag catcccttc ccccccctaa			300
aaaacataca agtttttaat tttcactaa gcaagaaaat atg gtg cag cct cat gtc			358
Met Val Gln Pro His Val			
	1	5	
atc tta aca aca ttt cca gca caa ggc cat att aat cca gca ctt caa			406
Ile Leu Thr Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln			
10	15	20	
ttt gcc aag aat ctt gtc aag atg ggc ata gaa gtg aca ttt tct aca			454
Phe Ala Lys Asn Leu Val Lys Met Gly Ile Glu Val Thr Phe Ser Thr			
25	30	35	
agc att tat gcc caa agc cgt atg gat gaa aaa tcc att ctt aat gca			502
Ser Ile Tyr Ala Gln Ser Arg Met Asp Glu Lys Ser Ile Leu Asn Ala			
40	45	50	

cca aaa gga ttg aat ttc att cca ttt tcc gat ggc ttt gat gaa ggt			550
Pro Lys Gly Leu Asn Phe Ile Pro Phe Ser Asp Gly Phe Asp Glu Gly			
55	60	65	70
ttt gat cat tca aaa gac cct gta ttt tac atg tca caa ctt cgt aaa			598
Phe Asp His Ser Lys Asp Pro Val Phe Tyr Met Ser Gln Leu Arg Lys			
75	80	85	
tgt gga agt gaa act gtc aaa aaa ata att ctc act tgc tct gaa aat			646
Cys Gly Ser Glu Thr Val Lys Lys Ile Ile Leu Thr Cys Ser Glu Asn			
90	95	100	
gga cag cct ata act tgc cta ctt tac tcc att ttc ctt cct tgg gca			694
Gly Gln Pro Ile Thr Cys Leu Leu Tyr Ser Ile Phe Leu Pro Trp Ala			
105	110	115	
gca gag gta gca cgt gaa gtt cac atc cct tct gct ctt ctt tgg agt			742
Ala Glu Val Ala Arg Glu Val His Ile Pro Ser Ala Leu Leu Trp Ser			
120	125	130	
caa cca gca aca ata ttg gac ata tat tac ttc aac ttt cat gga tat			790
Gln Pro Ala Thr Ile Leu Asp Ile Tyr Tyr Phe Asn Phe His Gly Tyr			
135	140	145	150
gaa aaa gct atg gct aat gaa tcc aat gat cca aat tgg tcc att caa			838
Glu Lys Ala Met Ala Asn Glu Ser Asn Asp Pro Asn Trp Ser Ile Gln			
155	160	165	
ctt ccc ggg ctt cca cta ctg gaa act cga gat ctt cct tca ttt tta			886
Leu Pro Gly Leu Pro Leu Leu Glu Thr Arg Asp Leu Pro Ser Phe Leu			
170	175	180	
ctt cct tat ggt gca aaa ggg agt ctt cga gtt gca ctt cca cca ttc			934
Leu Pro Tyr Gly Ala Lys Gly Ser Leu Arg Val Ala Leu Pro Pro Phe			
185	190	195	
aaa gaa ttg ata gac aca tta gat gct gaa acc act cct aag att ctt			982
Lys Glu Leu Ile Asp Thr Leu Asp Ala Glu Thr Thr Pro Lys Ile Leu			
200	205	210	
gtg aat aca ttt gat gaa tta gag cct gag gca ctc aat gca att gaa			1030
Val Asn Thr Phe Asp Glu Leu Glu Pro Glu Ala Leu Asn Ala Ile Glu			
215	220	225	230
ggt tat aag ttt tat gga att gga ccg ttg att cct tct gct ttc ttg			1078
Gly Tyr Lys Phe Tyr Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu			
235	240	245	

ggt gga aat gac cct tta gat gct tca ttt ggt gat ctt ttt caa			1126
Gly Gly Asn Asp Pro Leu Asp Ala Ser Phe Gly Gly Asp Leu Phe Gln			
250	255	260	
aat tca aat gac tat atg gaa tgg tta aac tca aag cca aat tca tca			1174
Asn Ser Asn Asp Tyr Met Glu Trp Leu Asn Ser Lys Pro Asn Ser Ser			
265	270	275	
gtt gtt tat ata tct ttt ggg agt cta atg aat cca tct att agc caa			1222
Val Val Tyr Ile Ser Phe Gly Ser Leu Met Asn Pro Ser Ile Ser Gln			
280	285	290	
atg gag gag ata tca aaa ggg ttg ata gac ata gga agg ccg ttt tta			1270
Met Glu Glu Ile Ser Lys Gly Leu Ile Asp Ile Gly Arg Pro Phe Leu			
295	300	305	310
tgg gtg ata aaa gaa aat gaa aaa ggc aaa gaa gaa gag aat aaa aag			1318
Trp Val Ile Lys Glu Asn Glu Lys Gly Lys Glu Glu Asn Lys Lys			
315	320	325	
ctt ggt tgt att gaa gaa ttg gaa aaa ata gga aaa ata gtt cca tgg			1366
Leu Gly Cys Ile Glu Glu Leu Glu Lys Ile Gly Lys Ile Val Pro Trp			
330	335	340	
tgt tca caa ctt gaa gtt cta aaa cat cca tct tta gga tgt ttt gtt			1414
Cys Ser Gln Leu Glu Val Leu Lys His Pro Ser Leu Gly Cys Phe Val			
345	350	355	
tct cat tgt gga tgg aat tca gcc tta gag agt tta gct tgt gga gtg			1462
Ser His Cys Gly Trp Asn Ser Ala Leu Glu Ser Leu Ala Cys Gly Val			
360	365	370	
cca gtt gtg gca ttt cct caa tgg aca gat caa atg aca aat gcc aaa			1510
Pro Val Val Ala Phe Pro Gln Trp Thr Asp Gln Met Thr Asn Ala Lys			
375	380	385	390
caa gtt gaa gat gtg tgg aaa agt gga gta aga gtg aga ata aat gaa			1558
Gln Val Glu Asp Val Trp Lys Ser Gly Val Arg Val Arg Ile Asn Glu			
395	400	405	
gat ggt gtt gtt gaa agt gag gaa atc aaa agg tgt att gaa ttg gta			1606
Asp Gly Val Val Glu Ser Glu Glu Ile Lys Arg Cys Ile Glu Leu Val			
410	415	420	
atg gat gga gga gag aaa ggg gaa gaa ttg aga aag aat gct aag aaa			1654
Met Asp Gly Gly Glu Lys Gly Glu Glu Leu Arg Lys Asn Ala Lys Lys			
425	430	435	

tgg	aaa	gaa	ttg	gct	aga	gaa	gct	gtg	aag	gaa	ggt	gga	tct	tca	cac	1702	
Trp	Lys	Glu	Leu	Ala	Arg	Glu	Ala	Val	Lys	Glu	Gly	Gly	Ser	Ser	His		
440																450	
aag	aat	tta	aag	gct	ttt	att	gat	gat	gtt	gcc	aaa	ggg	ttt	taatatttac	1754		
Lys	Asn	Leu	Lys	Ala	Phe	Ile	Asp	Asp	Val	Ala	Lys	Gly	Phe				
455															468		
agg	ctt	tttgc	cgt	gat	atta	tttccc	ccctag	tttgc	gat	tttgc	act	tttgc	tg	gact	tttgc	1814	
aca	aaaaa	act	gag	ggaa	atgt	gct	taa	gac	ac	gct	taa	atgt	tc	taa	ggc	1874	
ttt	ga	ggc	c	ct	ttt	aa	aa	ttt	ttt	cca	ttt	ttt	ttt	ttt	ttt	ttt	1934
ctg	tct	c	tct	ttt	tttgc	tttgc	tttgc	tttgc	1994								
ta	cgt	gt	gt	tttgc	tttgc	tttgc	2054										
aatttcttaa	taaaatgcaa	gatgaaaaaag	tacaaaaaaa	aaaaaaa	aaaaaaa	2105											
<210>	7																
<211>	460																
<212>	PRT																
<213>	Perilla frutescens																
<400>	7																
Met	Val	Arg	Arg	Arg	Val	Leu	Leu	Ala	Thr	Phe	Pro	Ala	Gln	Gly	His		
1					5				10						15		
Ile	Asn	Pro	Ala	Leu	Gln	Phe	Ala	Lys	Arg	Leu	Leu	Lys	Ala	Gly	Thr		
					20				25						30		
Asp	Val	Thr	Phe	Phe	Thr	Ser	Val	Tyr	Ala	Trp	Arg	Arg	Met	Ala	Asn		
					35				40						45		
Thr	Ala	Ser	Ala	Ala	Ala	Gly	Asn	Pro	Pro	Gly	Leu	Asp	Phe	Val	Ala		
					50				55						60		
Phe	Ser	Asp	Gly	Tyr	Asp	Asp	Gly	Leu	Lys	Pro	Cys	Gly	Asp	Gly	Lys		
					65				70						80		
Arg	Tyr	Met	Ser	Glu	Met	Lys	Ala	Arg	Gly	Ser	Glu	Ala	Leu	Arg	Asn		
					85				90						95		
Leu	Leu	Leu	Asn	Asn	His	Asp	Val	Thr	Phe	Val	Val	Tyr	Ser	His	Leu		
					100				105						110		
Phe	Ala	Trp	Ala	Ala	Glu	Val	Ala	Arg	Glu	Ser	Gln	Val	Pro	Ser	Ala		
					115				120						125		
Leu	Leu	Trp	Val	Glu	Pro	Ala	Thr	Val	Leu	Cys	Ile	Tyr	Tyr	Phe	Tyr		
					130				135						140		

Phe Asn Gly Tyr Ala Asp Glu Ile Asp Ala Gly Ser Asp Glu Ile Gln
 145 150 155 160
 Leu Pro Arg Leu Pro Pro Leu Glu Gln Arg Ser Leu Pro Thr Phe Leu
 165 170 175
 Leu Pro Glu Thr Pro Glu Arg Phe Arg Leu Met Met Lys Glu Lys Leu
 180 185 190
 Glu Thr Leu Asp Gly Glu Lys Ala Lys Val Leu Val Asn Thr Phe
 195 200 205
 Asp Ala Leu Glu Pro Asp Ala Leu Thr Ala Ile Asp Arg Tyr Glu Leu
 210 215 220
 Ile Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu Asp Gly Gly Asp
 225 230 235 240
 Pro Ser Glu Thr Ser Tyr Gly Gly Asp Leu Phe Glu Lys Ser Glu Glu
 245 250 255
 Asn Asn Cys Val Glu Trp Leu Asp Thr Lys Pro Lys Ser Ser Val Val
 260 265 270
 Tyr Val Ser Phe Gly Ser Val Leu Arg Phe Pro Lys Ala Gln Met Glu
 275 280 285
 Glu Ile Gly Lys Gly Leu Leu Ala Cys Gly Arg Pro Phe Leu Trp Met
 290 295 300
 Ile Arg Glu Gln Lys Asn Asp Asp Gly Glu Glu Glu Glu Glu Leu
 305 310 315 320
 Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys Ile Val Ser Trp Cys
 325 330 335
 Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu Gly Cys Phe Val Thr
 340 345 350
 His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu Ser Cys Gly Val Pro
 355 360 365
 Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr Thr Asn Ala Lys Leu
 370 375 380
 Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val Arg Met Asn Glu Gly
 385 390 395 400
 Gly Gly Val Asp Gly Ser Glu Ile Glu Arg Cys Val Glu Met Val Met
 405 410 415

Asp Gly Gly Glu Lys Ser Lys Leu Val Arg Glu Asn Ala Ile Lys Trp
420 425 430
Lys Thr Leu Ala Arg Glu Ala Met Gly Glu Asp Gly Ser Ser Leu Lys
435 440 445
Asn Leu Asn Ala Phe Leu His Gln Val Ala Arg Ala
450 455 460
<210> 8
<211> 443
<212> PRT
<213> *Perilla frutescens*
<400> 8
Met Val Arg Arg Arg Val Leu Leu Ala Thr Phe Pro Ala Gln Gly His
1 5 10 15
Ile Asn Pro Ala Leu Gln Phe Ala Lys Arg Leu Leu Lys Ala Gly Thr
20 25 30
Asp Val Thr Phe Phe Thr Ser Val Tyr Ala Trp Arg Arg Met Ala Asn
35 40 45
Thr Ala Ser Ala Ala Ala Gly Asn Pro Pro Gly Leu Asp Phe Val Ala
50 55 60
Phe Ser Asp Gly Tyr Asp Asp Gly Leu Lys Pro Gly Gly Asp Gly Lys
65 70 75 80
Arg Tyr Met Ser Glu Met Lys Ala Arg Gly Ser Glu Ala Leu Arg Asn
85 90 95
Leu Leu Leu Asn Asn Asp Asp Val Thr Phe Val Val Tyr Ser His Leu
100 105 110
Phe Ala Trp Ala Ala Glu Val Ala Arg Leu Ser His Val Pro Thr Ala
115 120 125
Leu Leu Trp Val Glu Pro Ala Thr Val Leu Cys Ile Tyr His Phe Tyr
130 135 140
Phe Asn Gly Tyr Ala Asp Glu Ile Asp Ala Gly Ser Asn Glu Ile Gln
145 150 155 160
Leu Pro Arg Leu Pro Ser Leu Glu Gln Arg Ser Leu Pro Thr Phe Leu
165 170 175
Leu Pro Ala Thr Pro Glu Arg Phe Arg Leu Met Met Lys Glu Lys Leu
180 185 190

Glu Thr Leu Asp Gly Glu Glu Lys Ala Lys Val Leu Val Asn Thr Phe
 195 200 205
 Asp Ala Leu Glu Pro Asp Ala Leu Thr Ala Ile Asp Arg Tyr Glu Leu
 210 215 220
 Ile Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu Asp Gly Glu Asp
 225 230 235 240
 Pro Ser Glu Thr Ser Tyr Gly Gly Asp Leu Phe Glu Lys Ser Glu Glu
 245 250 255
 Asn Asn Cys Val Glu Trp Leu Asn Ser Lys Pro Lys Ser Ser Val Val
 260 265 270
 Tyr Val Ser Phe Gly Ser Val Leu Arg Phe Pro Lys Ala Gln Met Glu
 275 280 285
 Glu Ile Gly Lys Gly Leu Leu Ala Cys Gly Arg Pro Phe Leu Trp Met
 290 295 300
 Ile Arg Glu Gln Lys Asn Asp Asp Gly Glu Glu Glu Glu Glu Glu
 305 310 315 320
 Glu Leu Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys Ile Val Ser
 325 330 335
 Trp Cys Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu Gly Cys Phe
 340 345 350
 Val Thr His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu Ser Cys Gly
 355 360 365
 Ile Pro Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr Thr Asn Ala
 370 375 380
 Lys Leu Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val Arg Met Asn
 385 390 395 400
 Glu Gly Gly Val Asp Gly Cys Glu Ile Glu Arg Cys Val Glu Met
 405 410 415
 Val Met Asp Gly Gly Asp Lys Thr Lys Leu Val Arg Glu Asn Ala Ile
 420 425 430
 Lys Trp Lys Thr Leu Ala Arg Gln Ala Met Gly
 435 440 443
 <210> 9
 <211> 461
 <212> PRT
 <213> Verbena hybrida
 <400> 9

Met Ser Arg Ala His Val Leu Leu Ala Thr Phe Pro Ala Gln Gly His
1 5 10 15

Ile Asn Pro Ala Leu Gln Phe Ala Lys Arg Leu Ala Asn Ala Asp Ile
20 25 30

Gln Val Thr Phe Phe Thr Ser Val Tyr Ala Trp Arg Arg Met Ser Arg
35 40 45

Thr Ala Ala Gly Ser Asn Gly Leu Ile Asn Phe Val Ser Phe Ser Asp
50 55 60

Gly Tyr Asp Asp Gly Leu Gln Pro Gly Asp Asp Gly Lys Asn Tyr Met
65 70 75 80

Ser Glu Met Lys Ser Arg Gly Ile Lys Ala Leu Ser Asp Thr Leu Ala
85 90 95

Ala Asn Asn Val Asp Gln Lys Ser Ser Lys Ile Thr Phe Val Val Tyr
100 105 110

Ser His Leu Phe Ala Trp Ala Ala Lys Val Ala Arg Glu Phe His Leu
115 120 125

Arg Ser Ala Leu Leu Trp Ile Glu Pro Ala Thr Val Leu Asp Ile Phe
130 135 140

Tyr Phe Tyr Phe Asn Gly Tyr Ser Asp Glu Ile Asp Ala Gly Ser Asp
145 150 155 160

Ala Ile His Leu Pro Gly Gly Leu Pro Val Leu Ala Gln Arg Asp Leu
165 170 175

Pro Ser Phe Leu Leu Pro Ser Thr His Glu Arg Phe Arg Ser Leu Met
180 185 190

Lys Glu Lys Leu Glu Thr Leu Glu Gly Glu Lys Pro Lys Val Leu
195 200 205

Val Asn Ser Phe Asp Ala Leu Glu Pro Asp Ala Leu Lys Ala Ile Asp
210 215 220

Lys Tyr Glu Met Ile Ala Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu
225 230 235 240

Asp Gly Lys Asp Pro Ser Asp Arg Ser Phe Gly Gly Asp Leu Phe Glu
245 250 255

Lys Gly Ser Asn Asp Asp Cys Leu Glu Trp Leu Ser Thr Asn Pro
260 265 270

Arg Ser Ser Val Val Tyr Val Ser Phe Gly Ser Phe Val Asn Thr Thr			
275	280	285	
Lys Ser Gln Met Glu Glu Ile Ala Arg Gly Leu Leu Asp Cys Gly Arg			
290	295	300	
Pro Phe Leu Trp Val Val Arg Val Asn Glu Gly Glu Glu Val Leu Ile			
305	310	315	320
Ser Cys Met Glu Glu Leu Lys Arg Val Gly Lys Ile Val Ser Trp Cys			
325	330	335	
Ser Gln Leu Glu Val Leu Thr His Pro Ser Leu Gly Cys Phe Val Thr			
340	345	350	
His Cys Gly Trp Asn Ser Thr Leu Glu Ser Ile Ser Phe Gly Val Pro			
355	360	365	
Met Val Ala Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys Leu			
370	375	380	
Met Glu Asp Val Trp Arg Thr Gly Val Arg Val Arg Ala Asn Glu Glu			
385	390	395	400
Gly Ser Val Val Asp Gly Asp Glu Ile Arg Arg Cys Ile Glu Glu Val			
405	410	415	
Met Asp Gly Gly Glu Lys Ser Arg Lys Leu Arg Glu Ser Ala Gly Lys			
420	425	430	
Trp Lys Asp Leu Ala Arg Lys Ala Met Glu Glu Asp Gly Ser Ser Val			
435	440	445	
Asn Asn Leu Lys Val Phe Leu Asp Glu Val Val Gly Ile			
450	455	460	461
<210> 10			
<211> 478			
<212> PRT			
<213> Torenia hybrida			
<220>			
<221>			
<222>			
<223> Xaa (64) is Cys or Phe, Xaa (65) is Ser or Pro.			
<400> 10			
Met Val Asn Lys Arg His Ile Leu Leu Ala Thr Phe Pro Ala Gln Gly			
1	5	10	15

His	Ile	Asn	Pro	Ser	Leu	Glu	Phe	Ala	Lys	Arg	Leu	Leu	Asn	Thr	Gly
			20					25						30	
Tyr	Val	Asp	Gln	Val	Thr	Phe	Phe	Thr	Ser	Val	Tyr	Ala	Leu	Arg	Arg
			35					40						45	
Met	Arg	Phe	Glu	Thr	Asp	Pro	Ser	Ser	Arg	Ile	Asp	Phe	Val	Ala	Xaa
			50				55					60			
Xaa	Asp	Ser	Tyr	Asp	Asp	Gly	Leu	Lys	Lys	Gly	Asp	Asp	Gly	Lys	Asn
			65				70			75			80		
Tyr	Met	Ser	Glu	Met	Arg	Lys	Arg	Gly	Thr	Lys	Ala	Leu	Lys	Asp	Thr
			85					90						95	
Leu	Ile	Lys	Leu	Asn	Asp	Ala	Ala	Met	Gly	Ser	Glu	Cys	Tyr	Asn	Arg
			100					105				110			
Val	Ser	Phe	Val	Val	Tyr	Ser	His	Leu	Phe	Ser	Trp	Ala	Ala	Glu	Val
			115					120				125			
Ala	Arg	Glu	Val	Asp	Val	Pro	Ser	Ala	Leu	Leu	Trp	Ile	Glu	Pro	Ala
			130				135					140			
Thr	Val	Phe	Asp	Val	Tyr	Tyr	Phe	Tyr	Phe	Asn	Gly	Tyr	Ala	Asp	Asp
			145				150			155			160		
Ile	Asp	Ala	Gly	Ser	Asp	Gln	Ile	Gln	Leu	Pro	Asn	Leu	Pro	Gln	Leu
			165					170				175			
Ser	Lys	Gln	Asp	Leu	Pro	Ser	Phe	Leu	Leu	Pro	Ser	Ser	Pro	Ala	Arg
			180					185				190			
Phe	Arg	Thr	Leu	Met	Lys	Glu	Lys	Phe	Asp	Thr	Leu	Asp	Lys	Glu	Pro
			195					200				205			
Lys	Ala	Lys	Val	Leu	Ile	Asn	Thr	Phe	Asp	Ala	Leu	Glu	Thr	Glu	Gln
			210				215				220				
Leu	Lys	Ala	Ile	Asp	Arg	Tyr	Glu	Leu	Ile	Ser	Ile	Gly	Pro	Leu	Ile
			225				230			235			240		
Pro	Ser	Ser	Ile	Phe	Ser	Asp	Gly	Asn	Asp	Pro	Ser	Ser	Ser	Asn	Lys
			245					250					255		
Ser	Tyr	Gly	Gly	Asp	Leu	Phe	Arg	Lys	Ala	Asp	Glu	Thr	Tyr	Met	Asp
			260					265				270			
Trp	Leu	Asn	Ser	Lys	Pro	Glu	Ser	Ser	Val	Val	Tyr	Val	Ser	Phe	Gly
			275					280				285			

Ser Leu Leu Arg Leu Pro Lys Pro Gln Met Glu Glu Ile Ala Ile Gly
290 295 300
Leu Ser Asp Thr Lys Ser Pro Val Leu Trp Val Ile Arg Arg Asn Glu
305 310 315 320
Glu Gly Asp Glu Gln Glu Gln Ala Glu Glu Glu Lys Leu Leu Ser
325 330 335
Phe Phe Asp Arg His Gly Thr Glu Arg Leu Gly Lys Ile Val Thr Trp
340 345 350
Cys Ser Gln Leu Asp Val Leu Thr His Lys Ser Val Gly Cys Phe Val
355 360 365
Thr His Cys Gly Trp Asn Ser Ala Ile Glu Ser Leu Ala Cys Gly Val
370 375 380
Pro Val Val Cys Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys
385 390 395 400
Met Ile Glu Asp Val Trp Arg Ser Gly Val Arg Val Arg Val Asn Glu
405 410 415
Glu Gly Gly Val Val Asp Arg Arg Glu Ile Lys Arg Cys Val Ser Glu
420 425 430
Val Ile Lys Ser Arg Glu Leu Arg Glu Ser Ala Met Met Trp Lys Gly
435 440 445
Leu Ala Lys Glu Ala Met Asp Glu Glu Arg Gly Ser Ser Met Asn Asn
450 455 460
Leu Lys Asn Phe Ile Thr Arg Ile Ile Asn Glu Asn Ala Ser
465 470 475 478
<210> 11
<211> 335
<212> PRT
<213> **Perilla frutescens**
<400> 11
Met Ser Ser Ser Ser Arg Arg Trp Arg Glu Asn Glu Gly Met Arg
1 5 10 15
Arg Thr Leu Leu Gly Leu Gly Leu Gly Gln Leu Val Ser Phe Asp Leu
20 25 30
Ala Ile Met Thr Phe Ser Ala Ser Leu Val Ser Thr Thr Val Asp Ala
35 40 45

Pro Leu Thr Met Ser Phe Thr Thr Tyr Thr Val Val Ala Leu Leu Tyr
 50 55 60
 Gly Thr Ile Leu Leu Tyr Arg Arg His Lys Phe Leu Val Pro Trp Tyr
 65 70 75 80
 Trp Tyr Ala Leu Leu Gly Phe Val Asp Val His Gly Asn Tyr Leu Val
 85 90 95
 Asn Lys Ala Phe Glu Leu Thr Ser Ile Thr Ser Val Ser Ile Leu Asp
 100 105 110
 Cys Trp Thr Ile Val Trp Ser Ile Ile Phe Thr Trp Met Phe Leu Gly
 115 120 125
 Thr Lys Tyr Ser Val Tyr Gln Phe Val Gly Ala Ala Ile Cys Val Gly
 130 135 140
 Gly Leu Leu Leu Val Leu Leu Ser Asp Ser Gly Val Thr Ala Ala Gly
 145 150 155 160
 Ser Asn Pro Leu Leu Gly Asp Phe Leu Val Ile Thr Gly Ser Ile Leu
 165 170 175
 Phe Thr Leu Ser Thr Val Gly Gln Glu Tyr Cys Val Lys Arg Lys Asp
 180 185 190
 Arg Ile Glu Val Val Ala Met Ile Gly Val Phe Gly Met Leu Ile Ser
 195 200 205
 Ala Thr Glu Ile Thr Val Leu Glu Arg Asn Ala Leu Ser Ser Met Gln
 210 215 220
 Trp Ser Thr Gly Leu Leu Ala Ala Tyr Val Val Tyr Ala Leu Ser Ser
 225 230 235 240
 Phe Leu Phe Cys Thr Leu Thr Pro Phe Leu Leu Lys Met Ser Gly Ala
 245 250 255
 Ala Phe Phe Asn Leu Ser Met Leu Thr Ser Asp Met Trp Ala Val Ala
 260 265 270
 Ile Arg Thr Phe Ile Tyr Asn Gln Glu Val Asp Trp Leu Tyr Tyr Leu
 275 280 285
 Ala Phe Cys Leu Val Val Val Gly Ile Phe Ile Tyr Thr Lys Thr Glu
 290 295 300
 Lys Asp Pro Asn Asn Thr Arg Ala Leu Glu Asn Gly Asn Leu Asp His
 305 310 315 320
 Glu Tyr Ser Leu Leu Glu Asp Gln Asp Asp Thr Pro Arg Lys Pro
 325 330 335
 <210> 12
 <211> 468

<212> PRT

<213> Petunia hybrida

<400> 12

Met Val Gln Pro His Val Ile Leu Thr Thr Phe Pro Ala Gln Gly His
1 5 10 15
Ile Asn Pro Ala Leu Gln Phe Ala Lys Asn Leu Val Lys Met Gly Ile
20 25 30
Glu Val Thr Phe Ser Thr Ser Ile Tyr Ala Gln Ser Arg Met Asp Glu
35 40 45
Lys Ser Ile Leu Asn Ala Pro Lys Gly Leu Asn Phe Ile Pro Phe Ser
50 55 60
Asp Gly Phe Asp Glu Gly Phe Asp His Ser Lys Asp Pro Val Phe Tyr
65 70 75 80
Met Ser Gln Leu Arg Lys Cys Gly Ser Glu Thr Val Lys Lys Ile Ile
85 90 95
Leu Thr Cys Ser Glu Asn Gly Gln Pro Ile Thr Cys Leu Leu Tyr Ser
100 105 110
Ile Phe Leu Pro Trp Ala Ala Glu Val Ala Arg Glu Val His Ile Pro
115 120 125
Ser Ala Leu Leu Trp Ser Gln Pro Ala Thr Ile Leu Asp Ile Tyr Tyr
130 135 140
Phe Asn Phe His Gly Tyr Glu Lys Ala Met Ala Asn Glu Ser Asn Asp
145 150 155 160
Pro Asn Trp Ser Ile Gln Leu Pro Gly Leu Pro Leu Leu Glu Thr Arg
165 170 175
Asp Leu Pro Ser Phe Leu Leu Pro Tyr Gly Ala Lys Gly Ser Leu Arg
180 185 190
Val Ala Leu Pro Pro Phe Lys Glu Leu Ile Asp Thr Leu Asp Ala Glu
195 200 205
Thr Thr Pro Lys Ile Leu Val Asn Thr Phe Asp Glu Leu Glu Pro Glu
210 215 220
Ala Leu Asn Ala Ile Glu Gly Tyr Lys Phe Tyr Gly Ile Gly Pro Leu
225 230 235 240
Ile Pro Ser Ala Phe Leu Gly Gly Asn Asp Pro Leu Asp Ala Ser Phe
245 250 255
Gly Gly Asp Leu Phe Gln Asn Ser Asn Asp Tyr Met Glu Trp Leu Asn
260 265 270

Ser Lys Pro Asn Ser Ser Val Val Tyr Ile Ser Phe Gly Ser Leu Met
275 280 285
Asn Pro Ser Ile Ser Gln Met Glu Glu Ile Ser Lys Gly Leu Ile Asp
290 295 300
Ile Gly Arg Pro Phe Leu Trp Val Ile Lys Glu Asn Glu Lys Gly Lys
305 310 315 320
Glu Glu Glu Asn Lys Lys Leu Gly Cys Ile Glu Glu Leu Glu Lys Ile
325 330 335
Gly Lys Ile Val Pro Trp Cys Ser Gln Leu Glu Val Leu Lys His Pro
340 345 350
Ser Leu Gly Cys Phe Val Ser His Cys Gly Trp Asn Ser Ala Leu Glu
355 360 365
Ser Leu Ala Cys Gly Val Pro Val Val Ala Phe Pro Gln Trp Thr Asp
370 375 380
Gln Met Thr Asn Ala Lys Gln Val Glu Asp Val Trp Lys Ser Gly Val
385 390 395 400
Arg Val Arg Ile Asn Glu Asp Gly Val Val Glu Ser Glu Glu Ile Lys
405 410 415
Arg Cys Ile Glu Leu Val Met Asp Gly Gly Glu Lys Gly Glu Glu Leu
420 425 430
Arg Lys Asn Ala Lys Lys Trp Lys Glu Leu Ala Arg Glu Ala Val Lys
435 440 445
Glu Gly Gly Ser Ser His Lys Asn Leu Lys Ala Phe Ile Asp Asp Val
450 455 460
Ala Lys Gly Phe
465 468

Sequence

Sequence ID No.: 1

Sequence length: 1507

Sequence type: Nucleic acid

Number of strands: Double-strand

Topology: Straight chain

Source:

Biological name: Perilla (Perilla frutescens)

Tissue type: Leaf

Direct source:

Library name: cDNA library

Clone name: p3R4

Sequence:

GAAAATTC	ACAAAAA	ATG	GTC	CGC	CGC	CGC	GTG	CTG	CTA	GCA	ACG	TTT	49			
		Met	Val	Arg	Arg	Arg	Val	Leu	Leu	Ala	Thr	Phe				
1				5						10						
CCT	GCG	CAA	GGC	CAC	ATA	AAT	CCC	GCC	CTC	CAA	TTC	GCC	AAG	AGA	CTC	97
Pro	Ala	Gln	Gly	His	Ile	Asn	Pro	Ala	Leu	Gln	Phe	Ala	Lys	Arg	Leu	
15				20						25						
CTA	AAA	GCC	GGC	ACT	GAC	GTC	ACA	TTT	TTC	ACG	AGC	GTT	TAT	GCA	TGG	145
Leu	Lys	Ala	Gly	Thr	Asp	Val	Thr	Phe	Phe	Thr	Ser	Val	Tyr	Ala	Trp	
30				35						40						
CGC	CGC	ATG	GCC	AAC	ACA	GCC	TCC	GCC	GCT	GCC	GGA	AAC	CCA	CCG	GGC	193
Arg	Arg	Met	Ala	Asn	Thr	Ala	Ser	Ala	Ala	Ala	Gly	Asn	Pro	Pro	Gly	
45				50						55						
CTC	GAC	TTC	GTG	CGC	TTC	TCC	GAC	GGC	TAC	GAC	GAC	GGG	CTG	AAG	CCC	241
Leu	Asp	Phe	Val	Ala	Phe	Ser	Asp	Gly	Tyr	Asp	Asp	Gly	Leu	Lys	Pro	
60				65					70				75			
TGC	GGC	GAC	GGG	AAG	CGC	TAC	ATG	TCC	GAG	ATG	AAA	GCC	CGC	GGC	TCC	289
Cys	Gly	Asp	Gly	Lys	Arg	Tyr	Met	Ser	Glu	Met	Lys	Ala	Arg	Gly	Ser	
80				85					90							
GAG	GCC	TTA	AGA	AAC	CTC	CTT	CTC	AAC	AAC	CAC	GAC	GTC	ACG	TTC	GTC	337
Glu	Ala	Leu	Arg	Asn	Leu	Leu	Asn	Asn	His	Asp	Val	Thr	Phe	Val		
95				100						105						

GTC TAC TCC CAC CTC TTT GCA TGG GCC GCG GAG GTG GCG CGT GAG TCC	385
Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala Arg Glu Ser	
110 115 120	
CAG GTC CCG AGC GCC CTT CTC TGG GTC GAG CCC GCC ACC GTG CTG TGC	433
Gln Val Pro Ser Ala Leu Leu Trp Val Glu Pro Ala Thr Val Leu Cys	
125 130 135	
ATA TAT TAC TTC TAC AAC GGC TAC GCA GAC GAG ATC GAC GCC GGT	481
Ile Tyr Tyr Phe Tyr Phe Asn Gly Tyr Ala Asp Glu Ile Asp Ala Gly	
140 145 150 155	
TCC GAC GAA ATT CAG CTC CCT CGG CTT CCA CCC CTG GAG CAG CGC AGT	529
Ser Asp Glu Ile Gln Leu Pro Arg Leu Pro Pro Leu Glu Gln Arg Ser	
160 165 170	
CTT CCG ACC TTT CTG CTG CCG GAG ACA CCG GAG AGA TTC CGG TTG ATG	577
Leu Pro Thr Phe Leu Leu Pro Glu Thr Pro Glu Arg Phe Arg Leu Met	
175 180 185	
ATG AAG GAG AAG CTG GAA ACT TTA GAC GGT GAA GAG AAG GCG AAA GTG	625
Met Lys Glu Lys Leu Glu Thr Leu Asp Gly Glu Glu Lys Ala Lys Val	
190 195 200	
TTG GTG AAC ACG TTT GAT GCG TTG GAG CCC GAT GCA CTC ACG GCT ATT	673
Leu Val Asn Thr Phe Asp Ala Leu Glu Pro Asp Ala Leu Thr Ala Ile	
205 210 215	
GAT AGG TAT GAG TTG ATC GGG ATC GGG CCG TTG ATT CCC TCC GCC TTC	721
Asp Arg Tyr Glu Leu Ile Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe	
220 225 230 235	
TTG GAC GGC GGA GAT CCC TCC GAA ACG TCT TAC GGC GGC GAT CTT TTC	769
Leu Asp Gly Gly Asp Pro Ser Glu Thr Ser Tyr Gly Gly Asp Leu Phe	
240 245 250	
GAA AAA TCG GAG GAG AAT AAC TGC GTG GAG TGG TTG GAC ACG AAG CCG	817
Glu Lys Ser Glu Glu Asn Asn Cys Val Glu Trp Leu Asp Thr Lys Pro	
255 260 265	
AAA TCT TCG GTG GTG TAT GTG TCG TTT GGG AGC GTT TTG AGG TTT CCA	865
Lys Ser Ser Val Val Tyr Val Ser Phe Gly Ser Val Leu Arg Phe Pro	
270 275 280	
AAG GCA CAA ATG GAA GAG ATT GGG AAA GGG CTA TTA GCC TGC GGA AGG	913
Lys Ala Gln Met Glu Glu Ile Gly Lys Gly Leu Leu Ala Cys Gly Arg	
285 290 295	

CCG TTT TTA TGG ATG ATA CGA GAA CAG AAG AAT GAC GAC GGC GAA GAA 961
Pro Phe Leu Trp Met Ile Arg Glu Gln Lys Asn Asp Asp Gly Glu Glu
300 305 310 315
GAA GAA GAA GAG TTG AGT TGC ATT GGG GAA TTG AAA AAA ATG GGG AAA 1009
Glu Glu Glu Leu Ser Cys Ile Gly Glu Leu Lys Lys Met Gly Lys
320 325 330
ATA GTT TCG TGG TGC TCG CAG TTG GAG GTT CTG GCG CAC CCT GCG TTG 1057
Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Ala His Pro Ala Leu
335 340 345
GGA TGT TTC GTG ACG CAT TGT GGG TGG AAC TCG GCT GTG GAG AGC TTG 1105
Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Ala Val Glu Ser Leu
350 355 360
AGT TGC GGG GTT CCG GTG GTG GCG GTG CCG CAG TGG TTT GAT CAG ACG 1153
Ser Cys Gly Val Pro Val Val Ala Val Pro Gln Trp Phe Asp Gln Thr
365 370 375
ACG AAT GCG AAG CTG ATT GAG GAT GCG TGG GGG ACA GGG GTG AGA GTG 1201
Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly Thr Gly Val Arg Val
380 385 390 395
AGA ATG AAT GAA GGG GGT GGG GTT GAT GGA TCT GAG ATA GAG AGG TGT 1249
Arg Met Asn Glu Gly Gly Val Asp Gly Ser Glu Ile Glu Arg Cys
400 405 410
GTG GAG ATG GTG ATG GAT GGG GGT GAG AAG AGC AAA CTA GTG AGA GAA 1297
Val Glu Met Val Met Asp Gly Gly Glu Lys Ser Lys Leu Val Arg Glu
415 420 425
AAT GCC ATA AAA TGG AAG ACT TTG GCC AGA GAA GCC ATG GGA GAG GAT 1345
Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Glu Ala Met Gly Glu Asp
430 435 440
GGA TCT TCA CTC AAG AAT CTC AAC GCC TTT CTT CAT CAA GTT GCA CGT 1393
Gly Ser Ser Leu Lys Asn Leu Asn Ala Phe Leu His Gln Val Ala Arg
445 450 455
GCT TAATACACAA AATGGCTTTC CACTTTAAC TCACTCAAAC ACCGGTTCAA 1446
Ala
460
ATAAATATCC CCTTCCACTT CTTCTATT CACTATCACA TTTATAATT TAGTAACAAA 1506
A
Sequence ID No.: 2
Sequence length: 1470

Sequence type: Nucleic acid

Number of strands: Double-strand

Topology: Straight chain

Source:

Biological name: Perilla (*Perilla frutescens*)

Tissue type: Leaf

Direct source:

Library name: cDNA library

Clone name: p3R6

Sequence:

ACCAAAACCAA AACAAAATTT CCACAAAAA ATG GTC CGC CGC CGC GTG CTG CTA	48		
Met Val Arg Arg Arg Val Leu Leu			
1	5		
GCA ACG TTT CCG GCG CAA GGC CAC ATA AAT CCC GCC CTC CAA TTC GCC	96		
Ala Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln Phe Ala			
10	15	20	
AAG AGA CTC CTA AAA GCC GGC ACT GAC GTC ACG TTT TTC ACG AGC GTT	144		
Lys Arg Leu Leu Lys Ala Gly Thr Asp Val Thr Phe Phe Thr Ser Val			
25	30	35	40
TAT GCA TGG CGC CGC ATG GCC AAC ACA GCC TCC GCC GCT GCC GGA AAC	192		
Tyr Ala Trp Arg Arg Met Ala Asn Thr Ala Ser Ala Ala Gly Asn			
45	50	55	
CCA CCG GGC CTC GAC TTC GTG GCG TTC TCC GAC GGC TAC GAC GAC GGG	240		
Pro Pro Gly Leu Asp Phe Val Ala Phe Ser Asp Gly Tyr Asp Asp Gly			
60	65	70	
CTG AAG CCC GGC GGC GAC GGG AAG CGC TAC ATG TCC GAG ATG AAA GCC	288		
Leu Lys Pro Gly Gly Asp Gly Lys Arg Tyr Met Ser Glu Met Lys Ala			
75	80	85	
CGC GGC TCC GAG GCC TTA AGA AAC CTC CTT CTC AAC AAC GAC GAC GTC	336		
Arg Gly Ser Glu Ala Leu Arg Asn Leu Leu Leu Asn Asn Asp Asp Val			
90	95	100	
ACT TTC GTC GTC TAC TCC CAC CTC TTT GCA TGG GCG GCG GAG GTG GCG	384		
Thr Phe Val Val Tyr Ser His Leu Phe Ala Trp Ala Ala Glu Val Ala			
105	110	115	120

CGT TTG TCC CAC GTC CCG ACC GCC CTT CTC TGG GTC GAG CCC GCC ACC		432
Arg Leu Ser His Val Pro Thr Ala Leu Leu Trp Val Glu Pro Ala Thr		
125	130	135
GTG CTG TGC ATA TAC CAC TTC TAC TTC AAC GGC TAC GCA GAC GAG ATC		480
Val Leu Cys Ile Tyr His Phe Tyr Phe Asn Gly Tyr Ala Asp Glu Ile		
140	145	150
GAC GCC GGT TCC AAT GAA ATT CAG CTC CCT CGG CTT CCA TCC CTG GAG		528
Asp Ala Gly Ser Asn Glu Ile Gln Leu Pro Arg Leu Pro Ser Leu Glu		
155	160	165
CAG CGC AGT CTT CCG ACG TTT CTG CTG CCT GCG ACG CCG GAG AGA TTC		576
Gln Arg Ser Leu Pro Thr Phe Leu Leu Pro Ala Thr Pro Glu Arg Phe		
170	175	180
CGG TTG ATG ATG AAG GAG AAG CTG GAA ACT TTA GAC GGT GAA GAG AAG		624
Arg Leu Met Met Lys Glu Lys Leu Glu Thr Leu Asp Gly Glu Glu Lys		
185	190	195
195	200	
GCG AAA GTA TTG GTG AAC ACG TTT GAT GCG TTG GAG CCC GAT GCA CTC		672
Ala Lys Val Leu Val Asn Thr Phe Asp Ala Leu Glu Pro Asp Ala Leu		
205	210	215
ACG GCT ATT GAT AGG TAT GAG TTG ATC GGG ATC GGG CCG TTG ATT CCC		720
Thr Ala Ile Asp Arg Tyr Glu Leu Ile Gly Ile Gly Pro Leu Ile Pro		
220	225	230
TCC GCC TTC TTG GAC GGC GAA GAT CCC TCC GAA ACG TCT TAC GGC GGC		768
Ser Ala Phe Leu Asp Gly Glu Asp Pro Ser Glu Thr Ser Tyr Gly Gly		
235	240	245
GAT CTT TTC GAA AAA TCG GAG GAG AAT AAC TGC GTG GAG TGG TTG AAC		816
Asp Leu Phe Glu Lys Ser Glu Glu Asn Asn Cys Val Glu Trp Leu Asn		
250	255	260
260		
TCG AAG CCG AAA TCT TCG GTG GTG TAT GTG TCG TTT GGG AGC GTT TTG		864
Ser Lys Pro Lys Ser Ser Val Val Tyr Val Ser Phe Gly Ser Val Leu		
265	270	275
275	280	
AGG TTT CCA AAG GCA CAA ATG GAA GAG ATT GGG AAA GGG CTA TTA GCC		912
Arg Phe Pro Lys Ala Gln Met Glu Glu Ile Gly Lys Gly Leu Leu Ala		
285	290	295
TGC GGA AGG CCC TTT TTA TGG ATG ATA CGA GAA CAG AAG AAT GAC GAC		960
Cys Gly Arg Pro Phe Leu Trp Met Ile Arg Glu Gln Lys Asn Asp Asp		
300	305	310

GGC GAA GAA GAA GAA GAA GAG TTG AGT TGC ATT GGG GAA TTG 1008
Gly Glu Glu Glu Glu Glu Glu Leu Ser Cys Ile Gly Glu Leu
315 320 325
AAA AAA ATG GGG AAA ATA GTG TCG TGG TGC TCG CAG TTG GAG GTT CTG 1056
Lys Lys Met Gly Lys Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu
330 335 340
GCG CAC CCT GCG TTG GGA TGT TTC GTG ACG CAT TGT GGG TGG AAC TCG 1104
Ala His Pro Ala Leu Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser
345 350 355 360
GCT GTG GAG AGC TTG AGT TGC GGG ATT CCG GTG GTG GCG GTG CCG CAG 1152
Ala Val Glu Ser Leu Ser Cys Gly Ile Pro Val Val Ala Val Pro Gln
365 370 375
TGG TTT GAT CAG ACG ACG AAT GCG AAG CTG ATT GAG GAT GCG TGG GGG 1200
Trp Phe Asp Gln Thr Thr Asn Ala Lys Leu Ile Glu Asp Ala Trp Gly
380 385 390
ACA GGG GTG AGA GTG AGA ATG AAT GAA GGG GGT GGG GTT GAT GGA TGT 1248
Thr Gly Val Arg Val Arg Met Asn Glu Gly Gly Val Asp Gly Cys
395 400 405
GAG ATA GAA AGG TGT GTG GAG ATG GTG ATG GAT GGG GGT GAC AAG ACC 1296
Glu Ile Glu Arg Cys Val Glu Met Val Met Asp Gly Gly Asp Lys Thr
410 415 420
AAA CTA GTG AGA GAA AAT GCC ATC AAA TGG AAG ACT TTG GCC AGA CAA 1344
Lys Leu Val Arg Glu Asn Ala Ile Lys Trp Lys Thr Leu Ala Arg Gln
425 430 435 440
GCC ATG GGA TAGGATGGAT CTTCACTCAA CAATCTAAC GCCTTCTTC 1393
Ala Met Gly
443
GTCAAGTTGC ACACTTTAA TCTGCTAAA CAGCGGTTCA AATAAATATC CCCTTCCACT 1453
TAAAAAAAAA AAAAAAAA 1470

Sequence ID No.: 3

Sequence length: 2062

Sequence type: Nucleic acid

Number of strands: Double-strand

Topology: Straight chain

Source:

Biological name: Verbena (Verbena hybrida)

Tissue type: Petal

Direct source:

Library name: cDNA library

Clone name: pSHGT8

Sequence:

ATTTTACCAA	AAAAATAAAA	AAAAAA	ATG	AGC	AGA	GCT	CAC	GTC	CTC	TTG	GCC	52				
			Met	Ser	Arg	Ala	His	Val	Leu	Leu	Ala					
			1						5							
ACA	TTC	CCA	GCA	CAG	GGA	CAC	ATA	AAT	CCC	GCC	CTT	CAA	TTC	GCC	AAG	100
Thr	Phe	Pro	Ala	Gln	Gly	His	Ile	Asn	Pro	Ala	Leu	Gln	Phe	Ala	Lys	
10				15					20				25			
CGT	CTC	GCA	AAT	GCC	GAC	ATT	CAA	GTC	ACA	TTC	TTC	ACC	AGC	GTC	TAC	148
Arg	Leu	Ala	Asn	Ala	Asp	Ile	Gln	Val	Thr	Phe	Phe	Thr	Ser	Val	Tyr	
				30					35				40			
GCA	TGG	CGC	CGC	ATG	TCC	AGA	ACC	GCC	GCT	GGC	TCA	AAC	GGG	CTC	ATC	196
Ala	Trp	Arg	Arg	Met	Ser	Arg	Thr	Ala	Ala	Gly	Ser	Asn	Gly	Leu	Ile	
				45					50				55			
AAT	TTT	GTG	TCG	TTT	TCC	GAC	GGG	TAT	GAC	GAC	GGG	TTA	CAG	CCC	GGA	244
Asn	Phe	Val	Ser	Phe	Ser	Asp	Gly	Tyr	Asp	Asp	Gly	Leu	Gln	Pro	Gly	
				60					65				70			
GAC	GAT	GGG	AAG	AAC	TAC	ATG	TCG	GAG	ATG	AAA	AGC	AGA	GGT	ATA	AAA	292
Asp	Asp	Gly	Lys	Asn	Tyr	Met	Ser	Glu	Met	Lys	Ser	Arg	Gly	Ile	Lys	
				75					80				85			
GCC	TTG	AGC	GAT	ACT	CTT	GCA	GCC	AAT	AAT	GTC	GAT	CAA	AAA	AGC	AGC	340
Ala	Leu	Ser	Asp	Thr	Leu	Ala	Ala	Asn	Asn	Val	Asp	Gln	Lys	Ser	Ser	
				90					95				100			105
AAA	ATC	ACG	TTC	GTG	GTG	TAC	TCC	CAC	CTC	TTT	GCA	TGG	GCG	GCC	AAG	388
Lys	Ile	Thr	Phe	Val	Val	Tyr	Ser	His	Leu	Phe	Ala	Trp	Ala	Ala	Lys	
				110					115				120			
GTG	GCG	CGT	GAG	TTC	CAT	CTC	CGG	AGC	GCG	CTA	CTC	TGG	ATT	GAG	CCA	436
Val	Ala	Arg	Glu	Phe	His	Leu	Arg	Ser	Ala	Leu	Leu	Trp	Ile	Glu	Pro	
				125					130				135			
GCT	ACG	GTG	TTG	GAT	ATA	TTT	TAC	TTT	TAT	TTC	AAC	GGC	TAT	AGC	GAC	484
Ala	Thr	Val	Leu	Asp	Ile	Phe	Tyr	Phe	Tyr	Phe	Asn	Gly	Tyr	Ser	Asp	
				140					145				150			

GAA ATC GAT GCG GGT TCG GAT GCT ATT CAC TTG CCC GGA GGA CTC CCA		532
Glu Ile Asp Ala Gly Ser Asp Ala Ile His Leu Pro Gly Gly Leu Pro		
155	160	165
GTG CTG GCC CAG CGT GAT TTA CCG TCT TTC CTT CCT TCC ACG CAT		580
Val Leu Ala Gln Arg Asp Leu Pro Ser Phe Leu Leu Pro Ser Thr His		
170	175	180
GAG AGA TTC CGT TCA CTG ATG AAG GAG AAA TTG GAA ACT TTA GAA GGT		628
Glu Arg Phe Arg Ser Leu Met Lys Glu Lys Leu Glu Thr Leu Glu Gly		
190	195	200
GAA GAA AAA CCT AAG GTC TTG GTG AAC AGC TTT GAT GCG TTG GAG CCT		676
Glu Glu Lys Pro Lys Val Leu Val Asn Ser Phe Asp Ala Leu Glu Pro		
205	210	215
GAT GCG CTC AAG GCC ATT GAT AAG TAC GAG ATG ATT GCA ATC GGG CCG		724
Asp Ala Leu Lys Ala Ile Asp Lys Tyr Glu Met Ile Ala Ile Gly Pro		
220	225	230
TTG ATT CCT TCC GCA TTC TTG GAC GGT AAA GAT CCT TCG GAC AGG TCT		772
Leu Ile Pro Ser Ala Phe Leu Asp Gly Lys Asp Pro Ser Asp Arg Ser		
235	240	245
TTC GGC GGA GAT TTG TTC GAG AAA GGG TCG AAT GAC GAC GAT TGC CTC		820
Phe Gly Gly Asp Leu Phe Glu Lys Gly Ser Asn Asp Asp Asp Cys Leu		
250	255	260
GAA TGG TTG AGC ACG AAT CCT CGA TCT TCG GTG GTT TAC GTT TCG TTC		868
Glu Trp Leu Ser Thr Asn Pro Arg Ser Ser Val Val Tyr Val Ser Phe		
270	275	280
GGA AGC TTC GTT AAT ACG ACG AAG TCG CAA ATG GAA GAG ATA GCA AGA		916
Gly Ser Phe Val Asn Thr Thr Lys Ser Gln Met Glu Glu Ile Ala Arg		
285	290	295
GGG CTG TTA GAT TGT GGG AGG CCG TTT TTG TGG GTG GTA AGA GTA AAC		964
Gly Leu Leu Asp Cys Gly Arg Pro Phe Leu Trp Val Val Arg Val Asn		
300	305	310
GAA GGA GAA GAG GTA TTG ATA AGT TGC ATG GAG GAG TTG AAA CGA GTG		1012
Glu Gly Glu Glu Val Leu Ile Ser Cys Met Glu Glu Leu Lys Arg Val		
315	320	325
GGG AAA ATT GTA TCT TGG TGT TCT CAA TTG GAA GTC CTG ACG CAT CCC		1060
Gly Lys Ile Val Ser Trp Cys Ser Gln Leu Glu Val Leu Thr His Pro		
330	335	340
		345

TCG TTG GGA TGT TTC GTG ACA CAC TGC GGG TGG AAT TCG ACT CTA GAG 1108
Ser Leu Gly Cys Phe Val Thr His Cys Gly Trp Asn Ser Thr Leu Glu
350 355 360
AGT ATA TCT TTC GGG GTT CCG ATG GTG GCT TTT CCG CAG TGG TTC GAT 1156
Ser Ile Ser Phe Gly Val Pro Met Val Ala Phe Pro Gln Trp Phe Asp
365 370 375
CAA GGG ACG AAT GCG AAG CTG ATG GAG GAT GTG TGG AGG ACG GGT GTG 1204
Gln Gly Thr Asn Ala Lys Leu Met Glu Asp Val Trp Arg Thr Gly Val
380 385 390
AGA GTG AGA GCT AAT GAG GAG GGT AGC GTC GTT GAT GGT GAT GAA ATT 1252
Arg Val Arg Ala Asn Glu Glu Gly Ser Val Val Asp Gly Asp Glu Ile
395 400 405
AGG AGA TGT ATT GAG GAG GTT ATG GAT GGG GGA GAA AAG AGT AGG AAA 1300
Arg Arg Cys Ile Glu Glu Val Met Asp Gly Gly Glu Lys Ser Arg Lys
410 415 420 425
CTT AGA GAG AGT GCT GGC AAG TGG AAG GAT TTG GCA AGA AAA GCT ATG 1348
Leu Arg Glu Ser Ala Gly Lys Trp Lys Asp Leu Ala Arg Lys Ala Met
430 435 440
GAG GAA GAT GGA TCT TCA GTT AAC AAC CTC AAG GTC TTT CTT GAT GAG 1396
Glu Glu Asp Gly Ser Ser Val Asn Asn Leu Lys Val Phe Leu Asp Glu
445 450 455
GTT GTA GGT ATC TAAAGACGTA AATGAGGTCC CCATAGGCAA AATTGCAAAT 1448
Val Val Gly Ile
460 461
TTCATCTCGT AAGTTGAATA CTTTTGGCT TTAATTTGT TCGAGTTGT TTTTCAAAAT 1508
TTATCTTGTAA TTTTACATT GAGTGTAAAT TTAGTCTGAT TTTAACTGGA AAAATATAAA 1568
ATTCATTGTT GAGACTCTTC ATCAAAATCA TCTGATTCC TTTATTGTCT TGGTCAAAAT 1628
TCTCATATCA ATTGGAAAAA ATAAATTCA AAATCGTCCA ATTTGAACC AAGAAAGAAG 1688
TATAATTGA CAAAATAAT AAAAGGATTC AAGTGATCTT GATGAAGTGT CTGAGCGACG 1748
AGTTCTATAT TTTTCCACCG AATTCTAAC GAGTTTTGA ATTTTTTTA GCCAAAATCG 1808
GACTAACTTT GTACAAAATG AAAAGTTATA TGATGAAATT TTAAGGACA AACTCAGACA 1868
ATAATAAAGC CCGAAAGTAG TAAAATTACC TGACGAAATT TGCAATTTCG CCTCCTATTT 1928
TAATTTTTT GGTGTGTTA ATAAATCGGT TATTTTACTT TTAATTAAAA TAAAAGTGAG 1988
ATGCATGATA GCTTGGTGAG TATATATGAG TTGATGGTAA TGTACGATAT TTTCTAAAAA 2048
AAAAAAAAAA AAAA 2062

Sequence ID No.: 4

Sequence length: 1671

Sequence type: Nucleic acid

Number of strands: Double-strand

Topology: Straight chain

Source:

Biological name: Trenia

Tissue type: Petal

Direct source:

Library name: cDNA library

Clone name: pSTGT5

Sequence:

AACACATAAA	AAAAAAATAA	AAGAAGAAAT	AATTAAAAAA	AAAA	ATG	GTT	AAC	53
					Met	Val	Asn	
					1			
AAA	CGC	CAT	ATT	CTA	CTA	GCA	ACA	101
Lys	Arg	His	Ile	Leu	Leu	Ala	Thr	
5	10	15						
CCT	TCT	CTC	GAG	TTC	GCC	AAA	AGG	149
Pro	Ser	Leu	Glu	Phe	Ala	Lys	Arg	
20	25	30	35					
CAA	GTC	ACA	TTC	TTC	ACG	AGT	GTA	197
Gln	Val	Thr	Phe	Phe	Ser	Val	Tyr	
40	45	50						
GAA	ACC	GAT	CCG	AGC	AGC	AGA	ATC	245
Glu	Thr	Asp	Pro	Ser	Ser	Arg	Ile	
55	60	65						
TAC	GAT	GAT	GGC	TTA	AAG	AAA	GGC	293
Tyr	Asp	Asp	Gly	Leu	Lys	Lys	Gly	
70	75	80						
GAG	ATG	AGA	AAG	CGC	GGA	ACG	AAG	341
Glu	Met	Arg	Lys	Arg	Gly	Thr	Lys	
85	90	95						
CTC	AAC	GAT	GCT	GCG	ATG	GGA	AGT	389
Leu	Asn	Asp	Ala	Ala	Met	Gly	Ser	
100	105	110	115					

GTG GTG TAC TCT CAT CTA TTT TCG TGG GCA GCT GAA GTG GCG CGT GAA		437	
Val Val Tyr Ser His Leu Phe Ser Trp Ala Ala Glu Val Ala Arg Glu			
120	125	130	
GTC GAC GTG CCG AGT GCC CTT CTT TGG ATT GAA CCG GCT ACG GTT TTC		485	
Val Asp Val Pro Ser Ala Leu Leu Trp Ile Glu Pro Ala Thr Val Phe			
135	140	145	
GAT GTG TAC TAT TTT TAC TTC AAT GGG TAT GCC GAT GAT ATC GAT GCG		533	
Asp Val Tyr Tyr Phe Tyr Asn Gly Tyr Ala Asp Asp Ile Asp Ala			
150	155	160	
GGC TCA GAT CAA ATC CAA CTG CCC AAT CTT CCG CAG CTC TCC AAG CAA		581	
Gly Ser Asp Gln Ile Gln Leu Pro Asn Leu Pro Gln Leu Ser Lys Gln			
165	170	175	
GAT CTC CCC TCT TTC CTA CTC CCT TCG AGC CCC GCG AGA TTC CGA ACC		629	
Asp Leu Pro Ser Phe Leu Leu Pro Ser Ser Pro Ala Arg Phe Arg Thr			
180	185	190	195
CTA ATG AAA GAA AAG TTC GAC ACG CTC GAC AAA GAA CCG AAA GCG AAG		677	
Leu Met Lys Glu Lys Phe Asp Thr Leu Asp Lys Glu Pro Lys Ala Lys			
200	205	210	
GTC TTG ATA AAC ACG TTC GAC GCA TTA GAA ACC GAA CAA CTC AAA GCC		725	
Val Leu Ile Asn Thr Phe Asp Ala Leu Glu Thr Glu Gln Leu Lys Ala			
215	220	225	
ATC GAC AGG TAT GAA CTA ATA TCC ATC GGC CCA TTA ATC CCA TCA TCG		773	
Ile Asp Arg Tyr Glu Leu Ile Ser Ile Gly Pro Leu Ile Pro Ser Ser			
230	235	240	
ATA TTC TCA GAT GGC AAC GAC CCC TCA TCA AGC AAC AAA TCC TAC GGT		821	
Ile Phe Ser Asp Gly Asn Asp Pro Ser Ser Ser Asn Lys Ser Tyr Gly			
245	250	255	
GGA GAC CTC TTC AGA AAA GCC GAT GAA ACT TAC ATG GAC TGG CTA AAC		869	
Gly Asp Leu Phe Arg Lys Ala Asp Glu Thr Tyr Met Asp Trp Leu Asn			
260	265	270	275
TCA AAA CCC GAA TCA TCG GTC GTT TAC GTT TCG TTC GGG AGC CTC CTG		917	
Ser Lys Pro Glu Ser Ser Val Val Tyr Val Ser Phe Gly Ser Leu Leu			
280	285	290	
AGG CTC CCG AAA CCC CAA ATG GAA GAA ATA GCA ATA GGG CTT TCA GAC		965	
Arg Leu Pro Lys Pro Gln Met Glu Glu Ile Ala Ile Gly Leu Ser Asp			
295	300	305	

ACC AAA TCG CCA GTT CTC TGG GTG ATA AGA AGA AAC GAA GAG GGC GAC 1013
Thr Lys Ser Pro Val Leu Trp Val Ile Arg Arg Asn Glu Glu Gly Asp
310 315 320
GAA CAA GAG CAA GCA GAA GAA GAG AAG CTG CTG AGC TTC TTT GAT 1061
Glu Gln Glu Gln Ala Glu Glu Glu Lys Leu Leu Ser Phe Phe Asp
325 330 335
CGT CAC GGA ACT GAA CGA CTC GGG AAA ATC GTG ACA TGG TGC TCA CAA 1109
Arg His Gly Thr Glu Arg Leu Gly Lys Ile Val Thr Trp Cys Ser Gln
340 345 350 355
TTG GAT GTT CTG ACG CAT AAG TCG GTG GGA TGC TTC GTG ACG CAT TGC 1157
Leu Asp Val Leu Thr His Lys Ser Val Gly Cys Phe Val Thr His Cys
360 365 370
GGT TGG AAT TCT GCT ATC GAG AGC CTG GCT TGT GGT GTG CCC GTG GTG 1205
Gly Trp Asn Ser Ala Ile Glu Ser Leu Ala Cys Gly Val Pro Val Val
375 380 385
TGC TTT CCT CAA TGG TTC GAT CAA GGG ACT AAT GCG AAG ATG ATC GAA 1253
Cys Phe Pro Gln Trp Phe Asp Gln Gly Thr Asn Ala Lys Met Ile Glu
390 395 400
GAT GTG TGG AGG AGT GGT GTG AGA GTC AGA GTG AAT GAG GAA GGC GGC 1301
Asp Val Trp Arg Ser Gly Val Arg Val Arg Val Asn Glu Glu Gly Gly
405 410 415
GTT GTT GAT AGG CGT GAG ATT AAG AGG TGC GTC TCG GAG GTT ATA AAG 1349
Val Val Asp Arg Arg Glu Ile Lys Arg Cys Val Ser Glu Val Ile Lys
420 425 430 435
AGT CGA GAG TTG AGA GAA AGC GCA ATG ATG TGG AAG GGT TTG GCT AAA 1397
Ser Arg Glu Leu Arg Glu Ser Ala Met Met Trp Lys Gly Leu Ala Lys
440 445 450
GAA GCT ATG GAT GAA GAA CGT GGA TCA TCA ATG AAC AAT CTG AAG AAT 1445
Glu Ala Met Asp Glu Glu Arg Gly Ser Ser Met Asn Asn Leu Lys Asn
455 460 465
TTT ATT ACT AGG ATT ATT AAT GAA AAT GCC TCA TAAGTTGTAC 1488
Phe Ile Thr Arg Ile Ile Asn Glu Asn Ala Ser
470 475 478
TATATATGTT ATTATTGTTG TTATGGACGT CGAATTAAGT ATTAGTTAAA TGATATGTAT 1548
TTAGAGGAAG GCCAAAACGG GCTACACCCG GCAGGCCACG GGTTGGAAAA GCGCGCCATG 1608
ATTTAAAATA TATATTTAA AATAAAATATT TTCTACTATT AAACCTAAAAA AAAAAAAA 1668
AAA 1671

Sequence ID No.: 5

Sequence length: 1437

Sequence type: Nucleic acid

Number of strands: Double-strand

Topology: Straight chain

Source:

Biological name: Perilla (Perilla frutescens)

Tissue type: Leaf

Direct source:

Library name: cDNA library

Clone name: p8R6

Sequence:

TTCAAAACTC	ATAACGTGAT	TGAGCTAATG	TGCACATCTT	CCTCTTCAAA	GTCTACAGTG	60
TCATCCTACC	AGCATCATCA	TGATCAATCT	CTTTATAATG	AGGAGAACGG	AGTAACAAGG	120
AGTGGGTTTT	GTTACTCAGC	TTCAACCTAC	GTACGTACTA	CTACTGACTC	AACTCTCAAG	180
AGAATGAATA	TAATATATAA	TGGCGATAG	ATCTTGTAG	ATATGTAGGT	GTAGCCTGCA	240
GGTGGTTAAT	TAATTCCGG	TGTGGGAAAA	TAAATAAATA	AATAAATATA	GCG ATG AGC	299
					Met Ser	
					1	
AGC	AGC	AGC	AGC	AGA	AGG	347
Ser	Ser	Ser	Ser	Arg	Arg	
				Trp	Arg	
				Glu	Asn	
				Glu	Gly	
				Met	Arg	
				Arg	Arg	
				Thr		
5			10		15	
TTG	CTG	GGG	TTG	GGT	TTG	395
Leu	Leu	Gly	Leu	Gly	Gln	
					Leu	
					Val	
					Ser	
20			25		30	
ATG	ACC	TTT	TCT	TCT	TTG	443
Met	Thr	Phe	Ser	Ala	Ser	
					Leu	
					Val	
35			40		45	
ACT	ATG	TCG	TTC	ACT	ACA	491
Thr	Met	Ser	Phe	Thr	Thr	
					Tyr	
					Thr	
					Val	
					Val	
					Ala	
					Leu	
					Leu	
					Tyr	
					Gly	
					Thr	
55			60		65	
ATC	TTG	CTT	TAC	CGC	CGC	539
Ile	Leu	Leu	Tyr	Arg	Arg	
					His	
					Lys	
					Phe	
					Leu	
					Val	
					Pro	
					Trp	
					Tyr	
70			75		80	

GCT CTC CTG GGG TTC GTG GAC GTC CAC GGC AAT TAT CTT GTT AAT AAA			587
Ala Leu Leu Gly Phe Val Asp Val His Gly Asn Tyr Leu Val Asn Lys			
85	90	95	
GCA TTC GAG TTG ACA TCG ATT ACG AGT GTG AGC ATA CTG GAT TGT TGG			635
Ala Phe Glu Leu Thr Ser Ile Thr Ser Val Ser Ile Leu Asp Cys Trp			
100	105	110	
ACA ATC GTG TGG TCC ATC ATC TTT ACA TGG ATG TTC CTA GGC ACA AAA			683
Thr Ile Val Trp Ser Ile Ile Phe Thr Trp Met Phe Leu Gly Thr Lys			
115	120	125	130
TAC TCT GTA TAC CAG TTT GTC GGT GCT GCT ATT TGT GTA GGA GGC CTC			731
Tyr Ser Val Tyr Gln Phe Val Gly Ala Ala Ile Cys Val Gly Gly Leu			
135	140	145	
CTC CTC GTG CTT CTT TCC GAC TCA GGG GTC ACT GCT GCT GGT TCG AAT			779
Leu Leu Val Leu Leu Ser Asp Ser Gly Val Thr Ala Ala Gly Ser Asn			
150	155	160	
CCT CTT TTG GGT GAT TTT CTT GTC ATA ACA GGC TCT ATT TTG TTC ACA			827
Pro Leu Leu Gly Asp Phe Leu Val Ile Thr Gly Ser Ile Leu Phe Thr			
165	170	175	
CTC AGC ACT GTT GGT CAG GAA TAC TGC GTG AAG AGG AAA GAT CGT ATT			875
Leu Ser Thr Val Gly Gln Glu Tyr Cys Val Lys Arg Lys Asp Arg Ile			
180	185	190	
GAA GTA GTA GCA ATG ATC GGT GTA TTT GGT ATG CTC ATC AGT GCA ACC			923
Glu Val Val Ala Met Ile Gly Val Phe Gly Met Leu Ile Ser Ala Thr			
195	200	205	210
GAG ATT ACT GTG CTG GAG AGG AAT GCC CTC TCA TCA ATG CAG TGG TCT			971
Glu Ile Thr Val Leu Glu Arg Asn Ala Leu Ser Ser Met Gln Trp Ser			
215	220	225	
ACT GGA CTT TTG GCA GCC TAT GTT GTT TAT GCA CTG TCC AGC TTC CTC			1019
Thr Gly Leu Leu Ala Ala Tyr Val Val Tyr Ala Leu Ser Ser Phe Leu			
230	235	240	
TTC TGC ACA CTC ACC CCT TTT CTT CTC AAG ATG AGT GGC GCT GCA TTT			1067
Phe Cys Thr Leu Thr Pro Phe Leu Leu Lys Met Ser Gly Ala Ala Phe			
245	250	255	
TTC AAT CTT TCC ATG CTT ACA TCT GAT ATG TGG GCT GTT GCA ATT AGG			1115
Phe Asn Leu Ser Met Leu Thr Ser Asp Met Trp Ala Val Ala Ile Arg			
260	265	270	

ACA TTC ATA TAC AAC CAG GAG GTT GAT TGG TTA TAC TAT TTG GCC TTT	1163		
Thr Phe Ile Tyr Asn Gln Glu Val Asp Trp Leu Tyr Tyr Leu Ala Phe			
275	280	285	290
TGT CTC GTT GTT GGA ATA TTC ATA TAT ACA AAA ACA GAG AAG GAT	1211		
Cys Leu Val Val Val Gly Ile Phe Ile Tyr Thr Lys Thr Glu Lys Asp			
295	300	305	
CCT AAC AAT ACG AGA GCC CTT GAG AAT GGA AAC TTG GAT CAT GAA TAT	1259		
Pro Asn Asn Thr Arg Ala Leu Glu Asn Gly Asn Leu Asp His Glu Tyr			
310	315	320	
AGT CTC CTT GAG GAT CAA GAT GAC ACA CCA AGA AAA CCA TAGCTAGCTT	1308		
Ser Leu Leu Glu Asp Gln Asp Asp Thr Pro Arg Lys Pro			
325	330	335	
TGCCCACAAAT CTTTCATCA ACAGTTTAA ATAATTCTG AGGGGGAGAG AGATCGAGAT	1368		
ACTAATTAAT GGACGTCTAT TATATAGTTG GAGGTTTTG TTTTATTTAT TTATTTGAGT	1428		
AAAAAAAAAA	1437		

Sequence ID No.: 6

Sequence length: 2105

Sequence type: Nucleic acid

Number of strands: Double-strand

Topology: Straight chain

Source:

Biological name: Petunia

Tissue type: Leaf

Direct source:

Library name: cDNA library

Clone name: pSPGT1

Sequence:

AGTGAGCGCA ACGCAATTAA TGTGAGTTAG CTCACTCATT AGGCACCCCA GGCTTACAC	60
TTTATGCTTC CGGCTCGTAT GTTGTGTGGA ATTGTGAGCG GATAACAATT TCACACAGGA	120
AACAGCTATG ACCATGATTA CGCCAAGCTC GAAATTAACC CTCACTAAAG GGAACAAAAG	180
CTGGAGCTCC ACGCGGTGGC GGCCGCTCTA GAACTAGTGG ATCCCCGGG CTGCAGGAAT	240
TCCGTTGCTG TCGCCACAAT TTACAAACCA AGAAATTAAG CATCCCTTTC CCCCCCTTAA	300
AAAACATACA AGTTTTAAC TTTTCACTAA GCAAGAAAAT ATG GTG CAG CCT CAT GTC	358

Met Val Gln Pro His Val

ATC TTA ACA ACA TTT CCA GCA CAA GGC CAT ATT AAT CCA GCA CTT CAA			406
Ile Leu Thr Thr Phe Pro Ala Gln Gly His Ile Asn Pro Ala Leu Gln			
10	15	20	
TTT GCC AAG AAT CTT GTC AAG ATG GGC ATA GAA GTG ACA TTT TCT ACA			454
Phe Ala Lys Asn Leu Val Lys Met Gly Ile Glu Val Thr Phe Ser Thr			
25	30	35	
AGC ATT TAT GCC CAA AGC CGT ATG GAT GAA AAA TCC ATT CTT AAT GCA			502
Ser Ile Tyr Ala Gln Ser Arg Met Asp Glu Lys Ser Ile Leu Asn Ala			
40	45	50	
CCA AAA GGA TTG AAT TTC ATT CCA TTT TCC GAT GGC TTT GAT GAA GGT			550
Pro Lys Gly Leu Asn Phe Ile Pro Phe Ser Asp Gly Phe Asp Glu Gly			
55	60	65	70
TTT GAT CAT TCA AAA GAC CCT GTA TTT TAC ATG TCA CAA CTT CGT AAA			598
Phe Asp His Ser Lys Asp Pro Val Phe Tyr Met Ser Gln Leu Arg Lys			
75	80	85	
TGT GGA AGT GAA ACT GTC AAA AAA ATA ATT CTC ACT TGC TCT GAA AAT			646
Cys Gly Ser Glu Thr Val Lys Lys Ile Ile Leu Thr Cys Ser Glu Asn			
90	95	100	
GGA CAG CCT ATA ACT TGC CTA CTT TAC TCC ATT TTC CTT CCT TGG GCA			694
Gly Gln Pro Ile Thr Cys Leu Leu Tyr Ser Ile Phe Leu Pro Trp Ala			
105	110	115	
GCA GAG GTA GCA CGT GAA GTT CAC ATC CCT TCT GCT CTT CTT TGG AGT			742
Ala Glu Val Ala Arg Glu Val His Ile Pro Ser Ala Leu Leu Trp Ser			
120	125	130	
CAA CCA GCA ACA ATA TTG GAC ATA TAT TAC TTC AAC TTT CAT GGA TAT			790
Gln Pro Ala Thr Ile Leu Asp Ile Tyr Tyr Phe Asn Phe His Gly Tyr			
135	140	145	150
GAA AAA GCT ATG GCT AAT GAA TCC AAT GAT CCA AAT TGG TCC ATT CAA			838
Glu Lys Ala Met Ala Asn Glu Ser Asn Asp Pro Asn Trp Ser Ile Gln			
155	160	165	
CTT CCC GGG CTT CCA CTA CTG GAA ACT CGA GAT CTT CCT TCA TTT TTA			886
Leu Pro Gly Leu Pro Leu Leu Glu Thr Arg Asp Leu Pro Ser Phe Leu			
170	175	180	
CTT CCT TAT GGT GCA AAA GGG AGT CTT CGA GTT GCA CTT CCA CCA TTC			934
Leu Pro Tyr Gly Ala Lys Gly Ser Leu Arg Val Ala Leu Pro Pro Phe			
185	190	195	

AAA GAA TTG ATA GAC ACA TTA GAT GCT GAA ACC ACT CCT AAG ATT CTT			982
Lys Glu Leu Ile Asp Thr Leu Asp Ala Glu Thr Thr Pro Lys Ile Leu			
200	205	210	
GTG AAT ACA TTT GAT GAA TTA GAG CCT GAG GCA CTC AAT GCA ATT GAA			1030
Val Asn Thr Phe Asp Glu Leu Glu Pro Ala Leu Asn Ala Ile Glu			
215	220	225	230
GGT TAT AAG TTT TAT GGA ATT GGA CCG TTG ATT CCT TCT GCT TTC TTG			1078
Gly Tyr Lys Phe Tyr Gly Ile Gly Pro Leu Ile Pro Ser Ala Phe Leu			
235	240	245	
GGT GGA AAT GAC CCT TTA GAT GCT TCA TTT GGT GAT CTT TTT CAA			1126
Gly Gly Asn Asp Pro Leu Asp Ala Ser Phe Gly Gly Asp Leu Phe Gln			
250	255	260	
AAT TCA AAT GAC TAT ATG GAA TGG TTA AAC TCA AAG CCA AAT TCA TCA			1174
Asn Ser Asn Asp Tyr Met Glu Trp Leu Asn Ser Lys Pro Asn Ser Ser			
265	270	275	
GTT GTT TAT ATA TCT TTT GGG AGT CTA ATG AAT CCA TCT ATT AGC CAA			1222
Val Val Tyr Ile Ser Phe Gly Ser Leu Met Asn Pro Ser Ile Ser Gln			
280	285	290	
ATG GAG GAG ATA TCA AAA GGG TTG ATA GAC ATA GGA AGG CCG TTT TTA			1270
Met Glu Glu Ile Ser Lys Gly Leu Ile Asp Ile Gly Arg Pro Phe Leu			
295	300	305	310
TGG GTG ATA AAA GAA AAT GAA AAA GGC AAA GAA GAA GAG AAT AAA AAG			1318
Trp Val Ile Lys Glu Asn Glu Lys Gly Lys Glu Glu Glu Asn Lys Lys			
315	320	325	
CTT GGT TGT ATT GAA GAA TTG GAA AAA ATA GGA AAA ATA GTT CCA TGG			1366
Leu Gly Cys Ile Glu Glu Leu Glu Lys Ile Gly Lys Ile Val Pro Trp			
330	335	340	
TGT TCA CAA CTT GAA GTT CTA AAA CAT CCA TCT TTA GGA TGT TTT GTT			1414
Cys Ser Gln Leu Glu Val Leu Lys His Pro Ser Leu Gly Cys Phe Val			
345	350	355	
TCT CAT TGT GGA TGG AAT TCA GCC TTA GAG AGT TTA GCT TGT GGA GTG			1462
Ser His Cys Gly Trp Asn Ser Ala Leu Glu Ser Leu Ala Cys Gly Val			
360	365	370	
CCA GTT GTG GCA TTT CCT CAA TGG ACA GAT CAA ATG ACA AAT GCC AAA			1510
Pro Val Val Ala Phe Pro Gln Trp Thr Asp Gln Met Thr Asn Ala Lys			
375	380	385	390

CAA GTT GAA GAT GTG TGG AAA AGT GGA GTA AGA GTG AGA ATA AAT GAA 1558
Gln Val Glu Asp Val Trp Lys Ser Gly Val Arg Val Arg Ile Asn Glu
395 400 405
GAT GGT GTT GTT GAA AGT GAG GAA ATC AAA AGG TGT ATT GAA TTG GTA 1606
Asp Gly Val Val Glu Ser Glu Glu Ile Lys Arg Cys Ile Glu Leu Val
410 415 420
ATG GAT GGA GGA GAG AAA GGG GAA GAA TTG AGA AAG AAT GCT AAG AAA 1654
Met Asp Gly Gly Glu Lys Gly Glu Glu Leu Arg Lys Asn Ala Lys Lys
425 430 435
TGG AAA GAA TTG GCT AGA GAA GCT GTG AAG GAA GGT GGA TCT TCA CAC 1702
Trp Lys Glu Leu Ala Arg Glu Ala Val Lys Glu Gly Gly Ser Ser His
440 445 450
AAG AAT TTA AAG GCT TTT ATT GAT GAT GTT GCC AAA GGG TTT TAATATTAC 1754
Lys Asn Leu Lys Ala Phe Ile Asp Asp Val Ala Lys Gly Phe
455 460 465 468
AGGCTTTGC CGTGATATTA CTTCCCTAG TTGGCGATTG ACTCTTG TG GACTTGCTTG 1814
ACAAAAAAACT GAGGGAATGT GCTAAGACAC GCTAATGCTT TAAGAAGTCA TTTCCAAGGC 1874
TTGAAGCCTG CTTTTAAC TTATTAGCCA GTAATCTATA GGGTTCTCTT CTATTTTCT 1934
CTGTCTCTCT TTTAGCCTT TTTCTTCCA AGGTTAAGA ATAGCGTGAA CATAGCTTAG 1994
TACGTAGTCT TGGTATCTCT ATCTTACCAA GTGCAAGATT ATGCTTATGC TGTCCCTCTA 2054
AATTCTTAA TAAAATGCAA GATGAAAAAG TACAAAAAAA AAAAAAAA A 2105

Declaration and Power of Attorney For Patent Application

特許出願宣言書及び委任状

Japanese Language Declaration**日本語宣言書**

下記の氏名の発明者として、私は以下の通り宣言します。

As a below named inventor, I hereby declare that:

私の住所、私書箱、国籍は下記の私の氏名の後に記載された通りです。

My residence, post office address and citizenship are as stated next to my name.

下記の名称の発明に関して請求範囲に記載され、特許出願している発明内容について、私が最初かつ唯一の発明者（下記の氏名が一つの場合）もしくは最初かつ共同発明者であると（下記の名称が複数の場合）信じています。

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled

GENE CODING FOR A PROTEIN HAVING

GLYCOSIDE TRANSFER ACTIVITY

上記発明の明細書（下記の欄で×印がついていない場合は、本書に添付）は、

the specification of which is attached hereto unless the following box is checked:

一月一日に提出され、米国出願番号または特許協定条約国際出願番号を _____ とし。
(該当する場合) _____ に訂正されました。

was filed on July 16, 1998
as United States Application Number or
PCT International Application Number
PCT/JP98/03199 and was amended on
_____ (if applicable).

私は、特許請求範囲を含む上記訂正後の明細書を検討し、内容を理解していることをここに表明します。

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

私は、連邦規則法典第37編第1条56項に定義されるおり、特許資格の有無について重要な情報を開示する義務があることを認めます。

I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration (日本語宣言書)

私は、米国法典第35編119条(a)-(d)項又は365条(b)項に基づき下記の、米国以外の国の少なくとも一ヵ国を指定している特許協力条約365(a)項に基づく国際出願、又は外国での特許出願もしくは発明者証の出願についての外国優先権をここに主張するとともに、優先権を主張している、本出願の前に出願された特許または発明者証の外国出願を以下に、枠内をマークすることで、示しています。

Prior Foreign Application(s)

外国での先行出願

9-200571(Pat. Appln.)

Japan

(Country)
(国名)(Number)
(番号)(Number)
(番号)(Country)
(国名)

私は、第35編米国法典119条(e)項に基いて下記の米国特許出願規定に記載された権利をここに主張いたします。

(Application No.) (出願番号)	(Filing Date) (出願日)
-----------------------------	------------------------

私は、下記の米国法典第35編120条に基いて下記の米国特許出願に記載された権利、又は米国を指定している特許協力条約365条(c)に基づく権利をここに主張します。また、本出願の各請求範囲の内容が米国法典第35編112条第1項又は特許協力条約で規定された方法で先行する米国特許出願に開示されていない限り、その先行米国出願書提出日以降で本出願書の日本国内または特許協力条約国提出までの期間中に入手された、連邦規則法典第37編1条56項で定義された特許資格の有無に関する重要な情報について開示義務があることを認識しています。

(Application No.) (出願番号)	(Filing Date) (出願日)
-----------------------------	------------------------

私は、私自身の知識に基づいて本宣言書中で私が行なう表明が真実であり、かつ私の入手した情報と私の信じるところに基づく表明が全て真実であると信じていること、さらに故意になされた虚偽の表明及びそれと同等の行為は米国法典第18編第1001条に基づき、罰金または拘禁、もしくはその両方により処罰されること、そしてそのような故意による虚偽の声明を行なえば、出願した、又は既に許可された特許の有効性が失われることを認識し、よってここに上記のごとく宣誓を致します。

I hereby claim foreign priority under Title 35, United States Code, Section 119 (a)-(d) or 365(b) of any foreign application(s) for patent or inventor's certificate, or 365(a) of any PCT International application which designated at least one country other than the United States, listed below and have also identified below, by checking the box, any foreign application for patent or inventor's certificate, or PCT International application having a filing date before that of the application on which priority is claimed.

Priority Not Claimed

優先権主張なし

25/July/1997

(Day/Month/Year Filed)
(出願年月日)(Day/Month/Year Filed)
(出願年月日)

I hereby claim the benefit under Title 35, United States Code, Section 119(e) of any United States provisional application(s) listed below.

(Application No.) (出願番号)	(Filing Date) (出願日)
-----------------------------	------------------------

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s), or 365(c) of any PCT International application designating the United States, listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States or PCT International application in the manner provided by the first paragraph of Title 35, United States Code Section 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, Section 1.56 which became available between the filing date of the prior application and the national or PCT International filing date of application.

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

(Status: Patented, Pending, Abandoned) (現況: 特許許可済、係属中、放棄済)

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

Japanese Language Declaration (日本語宣言書)

委任状： 私は下記の発明者として、本出願に関する一切の手続きを米特許商標局に対して遂行する弁理士または代理人として、下記の者を指名いたします。（弁護士、または代理人の氏名及び登録番号を明記のこと）

POWER OF ATTORNEY: As a named inventor, I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and transact all business in the Patent and Trademark Office connected therewith (list name and registration number)

William L. Mathis	17,337	Robert G. Mukai	28,531	William H. Benz	25,952
Peter H. Smolka	15,913	George A. Hovanec, Jr.	28,223	Peter K. Skiff	31,917
Robert S. Swecker	19,885	James A. LaBarre	28,632	Richard J. McGrath	29,195
Platon N. Mandros	22,124	E. Joseph Gess	28,510	Matthew L. Schneider	32,814
Benton S. Duffett, Jr.	22,030	R. Danny Huntington	27,903	Michael G. Savage	32,596
Joseph R. Magnone	24,239	Eric H. Weisblatt	30,505	Gerald F. Swiss	30,113
Norman H. Steeno	22,716	James W. Peterson	26,057	Michael J. Ure	33,089
Ronald L. Grudziecki	24,970	Teresa Stanek Rea	30,427	Charles F. Wieland III	33,096
Frederick G. Michaud, Jr.	26,003	Robert E. Krebs	25,885	Bruce T. Wieder	33,815
Alan E. Kopecki	25,813	William C. Rowland	30,888	Todd R. Walters	34,040
Regis E. Slutter	26,999	T. Gene Dillahunt	25,423		
Samuel C. Miller, III	27,360	Patrick C. Keane	32,858		
Ralph L. Freeland, Jr.	16,110	Bruce J. Boggs, Jr.	32,344		

書類送付先

Send Correspondence to:

Ronald L. Grudziecki
BURNS, DOANE, SWECKER & MATHIS, L.L.P.
P.O. Box 1404
Alexandria, Virginia 22313-1404

直接電話連絡先：（名前及び電話番号）

Direct Telephone Calls to: (name and telephone number)

Ronald L. Grudziecki
at (703) 836-6620

唯一または第一発明者名		Full name of sole or first inventor	
		Masako Mizutani	
発明者の署名	日付	Inventor's signature	Date
		Masako Mizutani	March 12, 1999
住所	Residence		
Kyoto-shi, Kyoto, Japan			
国籍	Citizenship		
Japanese			
私書箱	Post Office Address		
53-60, Katsurainui-cho, Nishikyo-ku, Kyoto-shi, Kyoto, Japan			
第二共同発明者		Full name of second joint inventor, if any	
		Yoshikazu Tanaka	
第二共同発明者	日付	Second inventor's signature	Date
		Yoshikazu Tanaka	March 12, 1999
住所	Residence		
Otsu-shi, Shiga, Japan			
国籍	Citizenship		
Japanese			
私書箱	Post Office Address		
2-7-4, Oginosato, Otsu-shi, Shiga, Japan			

（第三以降の共同発明者についても同様に記載し、署名すること）

(Supply similar information and signature for third and subsequent joint inventors.)

第三共同発明者	Full name of third joint inventor, if any <u>Takaaki Kusumi</u>		
第三共同発明者	日付	Third inventor's signature	Date <u>March 12, 1999</u>
住 所	Residence <u>Suita-shi, Osaka, Japan</u>		
国 籍	Citizenship Japanese		
私書箱	Post Office Address 2-12-21-402, Yamate-cho, Suita-shi, Osaka,		
	Japan		
第四共同発明者	Full name of fourth joint inventor, if any <u>Kazuki Saito</u>		
第四共同発明者	日付	Fourth inventor's signature	Date <u>March 12, 1999</u>
住 所	Residence <u>Yachimata-shi, Chiba, Japan</u>		
国 籍	Citizenship Japanese		
私書箱	Post Office Address 663-86, Ekido, Yachimata-shi, Chiba, Japan		

第五共同発明者	Full name of fifth joint inventor, if any <u>Mami Yamazaki</u>		
第五共同発明者	日付	Fifth inventor's signature	Date <u>March 12, 1999</u>
住 所	Residence <u>Chiba-shi, Chiba, Japan</u>		
国 籍	Citizenship Japanese		
私書箱	Post Office Address 4-12-6, Benten, Chuo-ku, Chiba-shi, Chiba,		
	Japan		
第六共同発明者	Full name of sixth joint inventor, if any <u>Gong Zhizhong</u>		
第六共同発明者	日付	Sixth inventor's signature	Date <u>March 12, 1999</u>
住 所	Residence <u>Chiba-shi, Chiba, Japan</u>		
国 籍	Citizenship Chinese		
私書箱	Post Office Address 201, Namikikopo, 12-5, Inagehigashi 3-chome,		
	Inage-ku, Chiba-shi, Chiba, Japan		

(第七以降の共同発明者についても同様に記載し、署名をすること)

(Supply similar information and signature for seventh and subsequent joint inventors.)