

MIMO-OTFS Communication System

Marco Salvatori

Simone Catenacci

Sommario

Introduzione alla modulazione OTFS

Introduzione alle tecniche MIMO

Sistema MIMO-OTFS

Risultati

Conclusioni e sviluppi futuri

OTFS: High-mobility wireless channel

- È un canale dove trasmettitori, ricevitori e vari riflettori, si muovono con velocità e direzioni differenti
- Il problema è che i segnali trasmessi sono afflitti da multipli Doppler shift e ritardi

OTFS: Dominio delay-Doppler

In questo contesto, una rappresentazione nel dominio delay-Doppler, assumendo un numero limitato di riflettori nelle vicinanze del ricevitore, permette di avere una rappresentazione compatta del canale fisico.

Nella modulazione OTFS, i simboli di informazione sono posizionati nel frame nel dominio delay-Doppler.

OTFS: Modulazione e demodulazione

Per MIMO ci si riferisce all'insieme delle tecniche di signal processing che sono state sviluppate per migliorare le performance dei sistemi di comunicazione wireless, usando molteplici antenne sia in trasmissione che in ricezione.

[1] Jerry R. Hampton, Introduction to MIMO Communications, 2014

MIMO-OTFS: Sistema di comunicazione

MIMO-OTFS: Relazioni Input-Output

$$\bar{g}^{(r,t)}[l,q] = \sum_{i=1}^{p^{(r,t)}} g_i^{(r,t)} z^{(q-l)\kappa_i^{(r,t)}} \delta[l-l_i^{(r,t)}] \implies \mathbf{G}^{(r,t)}[m+nM,m+nM-l] = \bar{g}^{(r,t)}[l,m+n(M+L_{\mathrm{ZP}})], \quad m \ge l,$$

$$\begin{bmatrix}
\mathbf{r}^{(1)} \\
\mathbf{r}^{(2)} \\
\vdots \\
\mathbf{r}^{(n_{R})}
\end{bmatrix} = \begin{bmatrix}
\mathbf{G}^{(1,1)} & \mathbf{G}^{(1,2)} & \cdots & \mathbf{G}^{(1,n_{T})} \\
\mathbf{G}^{(2,1)} & \mathbf{G}^{(2,2)} & \cdots & \mathbf{G}^{(2,n_{T})} \\
\vdots & \ddots & \ddots & \vdots \\
\mathbf{G}^{(n_{R},1)} & \mathbf{G}^{(n_{R},2)} & \cdots & \mathbf{G}^{(n_{R},n_{T})}
\end{bmatrix} \begin{bmatrix}
\mathbf{s}^{(1)} \\
\mathbf{s}^{(2)} \\
\vdots \\
\mathbf{s}^{(n_{T})}
\end{bmatrix} + \begin{bmatrix}
\mathbf{w}^{(1)} \\
\mathbf{w}^{(2)} \\
\vdots \\
\mathbf{w}^{(n_{R})}
\end{bmatrix}$$

$$\mathbf{r}_{\text{MIMO}}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

$$\mathbf{g}$$

[2] Yi Hong, Tharaj Thaj, Emanuele Viterbo, Delay-Doppler Communications: Principles and Applications, 2022

MIMO-OTFS: Relazioni Input-Output

$$\mathbf{x}^{(t)} = \operatorname{vec}\left((\mathbf{X}^{(t)})^{\mathrm{T}}\right) \longrightarrow \mathbf{H}^{(r,t)} = (\mathbf{I}_{M} \otimes \mathbf{F}_{N}) \cdot (\mathbf{P}^{\mathrm{T}} \cdot \mathbf{G}^{(r,t)} \cdot \mathbf{P}) \cdot (\mathbf{I}_{M} \otimes \mathbf{F}_{N}^{\dagger}) \in \mathbb{C}^{NM \times NM}$$
$$\mathbf{z}^{(r)} = (\mathbf{I}_{M} \otimes \mathbf{F}_{N}) \cdot (\mathbf{P}^{\mathrm{T}} \cdot \mathbf{w}^{(r)}) \in \mathbb{C}^{NM \times 1}$$

$$\begin{bmatrix} \mathbf{y}^{(1)} \\ \mathbf{y}^{(2)} \\ \vdots \\ \mathbf{y}^{(n_{R})} \end{bmatrix} = \begin{bmatrix} \mathbf{H}^{(1,1)} & \mathbf{H}^{(1,2)} & \cdots & \mathbf{H}^{(1,n_{T})} \\ \mathbf{H}^{(2,1)} & \mathbf{H}^{(2,2)} & \cdots & \mathbf{H}^{(2,n_{T})} \\ \vdots & \ddots & \ddots & \vdots \\ \mathbf{H}^{(n_{R},1)} & \mathbf{H}^{(n_{R},2)} & \cdots & \mathbf{H}^{(n_{R},n_{T})} \end{bmatrix} \underbrace{\begin{bmatrix} \mathbf{x}^{(1)} \\ \mathbf{x}^{(2)} \\ \vdots \\ \mathbf{x}^{(n_{T})} \end{bmatrix}}_{\mathbf{x}_{\text{MIMO}} + \underbrace{\begin{bmatrix} \mathbf{z}^{(1)} \\ \mathbf{z}^{(2)} \\ \vdots \\ \mathbf{z}^{(n_{R})} \end{bmatrix}}_{\mathbf{z}_{\text{MIMO}}$$

[2] Yi Hong, Tharaj Thaj, Emanuele Viterbo, Delay-Doppler Communications: Principles and Applications, 2022

MIMO-OTFS: Pilot Placement

A7 1											
N-1	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇
	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇
	∇	∇	∇	∇	∇	∇	∇	∇	∇	\Diamond	∇
$k_p + k_{\nu}$	∇	∇	∇	\blacksquare	\Box	\boxtimes	\boxtimes	\otimes	\otimes	\Diamond	∇
k_p	∇	\triangleright	∇	\blacksquare	\Box	\boxtimes	\boxtimes	\otimes	\otimes	∇	∇
$k_p - k_{\nu}$	∇	∇	∇			\boxtimes	\boxtimes	\otimes	\otimes	∇	∇
	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇
	∇	∇	∇	∇	\triangleright	∇	∇	\triangleright	\triangleright	∇	∇
0	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇	∇
	0			l_p	l_p	$+l_{\tau}$	+1			Λ	1 –

[3] P. Raviteja, Khoa T. Phan, Yi Hong, Embedded Pilot-Aided Channel Estimation For OTFS in Delay-Doppler Channel, 2019

[4] M. Kollengode Ramachandran, A. Chockalingam, MIMO-OTFS in High-Doppler Fading Channels: Signal Detection and Channel Estimation, 2018

MIMO-OTFS: Risultati Tx Frame – 2x1

MIMO-OTFS: Channel Response – 2x1

Path (1,1)	g	ι	k
1	0.4466	3	-2
2	0.1136	2	1
3	0.3769	1	2
4	0.9091	0	-3

Path (1,2)	g	ι	k
1	0.6095	2	3
2	0.0545	0	-2
3	0.6533	1	1
4	0.3528	2	-3

MIMO-OTFS: Risultati Rx Frame – 2x1

MIMO-OTFS: Channel Response – 2x2

MIMO-OTFS: Risultati Rx Frame – 2x2

MIMO-OTFS: Risultati Tx Frame – 4x4

MIMO-OTFS: Risultati Rx Frame – 4x4

Channel Estimation - Algorithm

$$b[l, k] = \begin{cases} 1, & |\mathbf{Y}[m_p + l, n_p + k]| \ge \mathcal{T} \\ 0, & \text{otherwise} \end{cases}$$

$$z = \frac{2 \cdot \pi \cdot j}{N \cdot M}$$

$$\hat{g}[l,k] = \frac{\mathbf{Y}[m_p + l, n_p + k]}{x_p z^{km_p}}$$

[2] Yi Hong, Tharaj Thaj, Emanuele Viterbo, Delay-Doppler Communications: Principles and Applications, 2022

Channel Response h^(1,1) 0.8 0.6 0.4 0.2 0 Doppler 25 Delay

Channel Response h^(2,1) 0.8 0.6 0.4 0.2 0 0 Doppler 25 Delay

Conclusioni e sviluppi futuri

Conclusioni

- Implementazione MIMO-OTFS NtxNr tramite Matlab
- Analisi risultati di trasmissione
- Implementazione Channel Estimation
- Analisi Channel Estimation

Sviluppi Futuri

- Detection Algorithm
- Fractional Delay-Doppler
- Massive MIMO Multiuser
- Machine Learning (CNN)