# **Dream Text Forge – AI based Story Generator**

## 1. Project Overview

**DreamText Forge** is an interactive web app built with **Streamlit** that lets you turn your ideas into AI-generated text magic. You can choose from curated story prompts or create your own, then watch the AI weave them into creative narratives.

### 2. Features

- **Prompt Suggestions** Start with one of the built-in story starters.
- Custom Prompt Input Write your own ideas from scratch.
- Adjustable Output Length Fine-tune the maximum length of generated text.
- **Real-Time Generation** Get AI-generated text instantly.
- **Lightweight UI** Clean and easy-to-use Streamlit interface.
- Cached Model Loading Faster performance thanks to caching.

#### 3. How It Works

## i. Model Loading

- a. When you first start the app, it loads the GPT-2 model from Hugging Face's transformers library using the pipeline("text-generation") API.
- b. This is wrapped in @st.cache\_resource so the model stays in memory between runs, making subsequent generations much faster.

### ii. User Prompt Selection

- a. You can either:
  - i. Pick from one of the built-in prompt suggestions (story starters), or
  - ii. Write your own from scratch.
- b. The selected or written prompt is editable before submission.

#### iii. Parameter Configuration

a. You can control how long the generated text will be using the Max Length slider.

b. In the code, other parameters like temperature (creativity) and repetition\_penalty (avoid repeated phrases) are preset but can be changed in the source.

#### iv. Text Generation

- a. When you click Generate, the app sends your prompt to the GPT-2 model.
- b. GPT-2 predicts the next words in the sequence until it reaches the max\_length or the end-of-sequence token.

## v. Result Display

- a. The generated text is displayed immediately below in a clean, scrollable format.
- b. If no prompt is entered, a warning is shown.

### vi. Caching for Speed

a. Because load\_model() is cached, the heavy GPT-2 model is only loaded once, greatly reducing response time after the first generation.

# 4. Code Explanation



Fig1: Input Snapshot

# 5. Output Snapshots



Fig2: Output Snapshot 1



Fig3: Output Snapshot 2



Fig4: Output Snapshot 3