Pour $\sigma \in S_n$, on note $P_{\sigma} := (\delta_{i,\sigma(j)})_{1 \le i,j \le n}$.

Théorème 0.0.1:

Soit \mathbb{K} un corps de caractéristique nulle, $\sigma, \tau \in S_n, n \geq 2$. σ et τ sont conjuguées si et seulement si P_{σ} et P_{τ} sont semblables dans $\mathcal{M}_n(\mathbb{K})$.

Tout d'abord, notons que $\phi: \sigma \in S_n \mapsto P_{\sigma} \in GL_n(\mathbb{K})$ est un morphisme de groupes. Donc si σ et τ sont conjuguées dans S_n , alors P_{σ} et P_{τ} sont semblables dans $GL_n(\mathbb{K})$.

Réciproquement, soit $\sigma, \tau \in S_n$. Supposons que P_{σ} et P_{τ} soient semblables dans $GL_n(\mathbb{K})$. Pour $p \in [\![1,n]\!]$, on note $c_p(\sigma)$ le nombre de p-cycles dans la décomposition en cycles à support disjoint de σ .

Remarque : $c_1(\sigma)$ désigne le nombre de points fixes de σ .

 $c_p(\sigma)$ est le nombre d'orbites de cardinal p pour l'action naturelle de $\sigma > \sup [1, n]$.

Notons $v := (c_p(\sigma) - c_p(\tau))_{1 \le p \le n}$. Notre but est de trouver $B \in GL_n(\mathbb{K})$ telle que Bv = 0. On aura alors que $\forall p \in [\![1,n]\!], \ c_p(\sigma) = c_p(\tau)$, i.e. σ et τ sont conjuguées.

L'hypothèse donne que pour tout $k \geq 1$, P_{σ^k} et P_{τ^k} sont semblables. Donc si l'on note $n_{\sigma} := \dim \ker (P_{\sigma} - I_n)$, on a $\forall k \geq 1$, $n_{\sigma^k} = n_{\tau^k}$.

On remarque que $w \in \ker(P_{\sigma} - I_n)$ si et seulement si $\forall i, \ w_{\sigma^{-1}(i)} = w_i$, si et seulement si $w_i = w_j$ dès lors que i et j appartiennent à la même orbite sous l'action de $<\sigma>$ sur $[\![1,n]\!]$. Donc n_{σ} correspond au nombre d'orbites sous l'action de $<\sigma>$ sur $[\![1,n]\!]$, et donc $n_{\sigma}=\sum_{p=1}^n c_p(\sigma)$.

Lemme 0.0.2:

Soit $k \geq 1$ et $c = (a_1 \cdots a_p) \in S_n$ un p-cycle. Alors c^k se décompose en produit de $p \wedge k$ cycles à supports disjoints de longueur $p/(p \wedge k)$.

Démonstration. L'orbite de a_i sous l'action de c^k est $\{a_{i+nk}|_{[p]} \mid n \in \mathbb{Z}\}$, de cardinal le plus petit entier $r \geq 1$ tel que kr = 0 [p]. Or

$$p \mid rk \; \Leftrightarrow \; \frac{p}{p \wedge k} \mid r \frac{k}{p \wedge k} \; \Leftrightarrow \; \frac{p}{p \wedge k} \mid r \; (\text{lemme de Gauss})$$

Donc $r = p/(p \wedge k)$.

Ainsi, on obtient pour tout $k \ge 1$, $n_{\tau^k} = n_{\sigma^k} = \sum_{p=1}^n c_p(\sigma)(p \wedge k)$, ce qui sécrit matriciellement sous la forme Bv = 0, avec $B = (i \wedge j)_{1 \le i,j \le n}$.

Lemme 0.0.3:

B est inversible.

Démonstration. On écrit, en notant ϕ l'indicatrice d'Euler et $a_{n,m} = \mathbf{1}_{n\mathbb{Z}}(m)$:

$$i \wedge j = \sum_{d \mid (i \wedge j)} \phi(d) = \sum_{d=1}^{n} \phi(d) a_{d,i} a_{d,j}$$

En particulier, si l'on pose $A=(a_{i,j})_{1\leq i,j\leq n}$ (matrice triangulaire supérieure avec des 1 sur la diagonale) et $\Phi=\operatorname{diag}(\phi(1),\cdots,\phi(n))$, on obtient $B=A\Phi A^T$. Donc $\operatorname{det}(B)=\prod_{k=1}^n\phi(k)\neq 0$.