Selecting Inequalities for Sharp Identification in Models with Set-Valued Predictions

(work in progress)

Kirill Ponomarev

UCLA

This version: January 10, 2022

Outline

Motivation and Literature Review

Random Sets and Core-Determining Classes

Special Case: Discrete Random Sets

Other Tools for Dimensionality Reduction

Further Research

Motivation

- Many partially identified models have the following structure:
 - -Y outcome, X covariates, U latent variables.
 - The model gives a set-valued prediction such that, by assumption,

$$Y \in G(U|X;\theta)$$
 a.s.

- The sharp identified set contains all θ such that the observed $P_{Y|X}$ corresponds to the distribution of some $Y \in G(U|X;\theta)$.
- The sharp identified set is characterized by Artstein's inequalities:
 - Using all of the inequalities is often infeasible in practice.
 - But: many of them are actually not informative.

Question: Which inequalities should we choose for identification?

Relevant Applications

- Entry games with multiple equilibria
 - Tamer 2003; Ciliberto and Tamer 2009;
- Network formation models
 - de Paula, Richards-Shubik, Tamer 2018; Sheng 2020;
- Discrete choice with heterogeneous or counterfactual choice sets
 - Barseghyan, Coughlin, Molinari, and Teitelbaum 2021;
 - Manski 2007;
- Discrete choice with endogenous explanatory variables and IVs
 - Chesher and Rosen 2017;
- Auctions
 - Haile and Tamer 2003;

Related Literature

- Theory of random sets for identification
 - Beresteanu and Molinari 2008;
 - Beresteanu, Molchanov, and Molinari 2011;
- Core-determining classes
 - Galichon and Henry 2011;
 - Chesher and Rosen 2017;
 - Luo and Wang 2018;
- Review articles
 - Ho and Rosen 2015;
 - Molinari 2019;
 - Chesher and Rosen 2019;

Example 1: Static Entry Game

• N firms choose $y_j \in \{0,1\}$ and receive payoffs:

$$\pi_j(\boldsymbol{y}, \varepsilon_j, \theta) = y_j \cdot (\alpha_j + \delta_j(N(\boldsymbol{y}) - 1) + \varepsilon_j),$$

where N(y) is the number of firms on the market.

- Assume $\delta_j < 0$, and $U = (\varepsilon_1, \dots, \varepsilon_N) \sim F(\cdot; \gamma)$ on \mathbb{R}^N , observed by the players but not the researcher. Denote $\theta = (\alpha, \beta, \gamma)$.
- The set-valued prediction $G(U;\theta)$ corresponds to the set of pure strategy Nash Equilibria, i.e., $\boldsymbol{y}=(y_1,\ldots,y_N)$ satisfying

$$y_j = \mathbb{1}\left\{\alpha_j + \delta_j(N(\boldsymbol{y}) - 1) + \varepsilon_j \geqslant 0\right\}$$

for all $j = 1, \ldots, N$.

Illustration: Static Entry Game with Two Players Values of $G(U; \theta)$

Example 2: English Auction

- A symmetric ascending auction with N bidders:
 - $-U = (V_{1:N}, \dots, V_{N:N}) \sim F$ on $[0, \overline{v}]^N$ ordered valuations.
 - $-(B_{1:N},\ldots,B_{N:N})$ ordered final bids.
 - No reserve price, no minimal bid increment.
- Assume that bidders:
 - 1. Do not bid above their valuation: $B_{j:N} \leq V_{j:N}$.
 - 2. Do not let the others win at an acceptable price: $V_{N-1:N} \leq B_{N:N}$.
- The set-valued prediction corresponds to the set of bids satisfying assumptions 1 and 2:

$$G(U; F) = S \cap \prod_{j=1}^{N-1} [\underline{v}, V_{j:N}] \times [V_{N-1:N}, V_N],$$

where
$$S = \{x \in [0, \overline{v}]^N : x_1 \leqslant \cdots \leqslant x_N\}.$$

Illustration: English Auction with Two Players

Example realization of G(U; F)

Outline

Motivation and Literature Review

Random Sets and Core-Determining Classes

Special Case: Discrete Random Sets

Other Tools for Dimensionality Reduction

Further Research

Formal Setup

- I abstract away from (i.e. condition on) the covariates.
- Basics:
 - (Ω, \mathcal{F}, P) a probability space; Θ a parameter space;
 - $-\ Y:\Omega
 ightarrow (\mathcal{Y},\mathcal{A}) \subseteq \mathbb{R}^{d_Y}$ an observed outcome with $Y \sim P_Y$;
 - $-\ U:\Omega o \mathcal{U}\subseteq \mathbb{R}^{d_U}$ latent variables with $U\sim F_{ heta}$;
- Set-valued predictions:
 - $-G: \mathcal{U} \times \Theta \to \mathcal{Y}$ is a measurable correspondence;
 - $-Y \in G(U;\theta)$ a.s. by the model's assumptions;
 - The distribution of G is given by:

$$C_{G(U;\theta)}(A) \equiv P(G(U;\theta) \subseteq A) = \int \mathbf{1}(G(u;\theta) \subseteq A) dF_{\theta}(u)$$

• I will suppress the dependence of G and C_G from θ .

Some Terminology

• Let G be a random set defined on (Ω, \mathcal{F}, P) . Its distribution can be caracterized by the containment functional:

$$C_G(A) = P(G \subseteq A).$$

- A selection of G is a random variable Y with $Y(w) \in G(w)$ P-a.s. The set of distributions of all selections of G is called the core.
- A fundamental result due to Artstein (1983):

$$\mu \in \mathsf{Core}(G) \iff \mu(A) \geqslant C_G(A) \text{ for all } A \in \mathcal{A},$$

where μ denotes a probability distribution on $(\mathcal{Y}, \mathcal{A})$.

Identification Via Artstein's Inequalities

- The model produces a set-valued prediction G, while the researcher observes a single outcome $Y \in (\mathcal{Y}, \mathcal{A})$.
- The sharp identified set contains all θ such that the observed P_Y corresponds to the distribution of a selection of G:

$$\Theta_I = \{ \theta \in \Theta : P_Y(A) \geqslant C_G(A), \text{ for all } A \in \mathcal{A} \}$$

- Note that:
 - Continuous $Y \implies$ infinite number of inequalities;
 - Discrete $Y \implies$ finite number of inequalities;
 - In both cases, many of the inequalities may be not informative.

Core-Determining Classes

• A class $C \subset A$ of subsets of Y is core-determining if

$$\mu(A) \geqslant C_G(A) \quad \forall A \in \mathcal{C} \iff \mu(A) \geqslant C_G(A) \quad \forall A \in \mathcal{A}$$

for any probability distribution μ on $(\mathcal{Y}, \mathcal{A})$.

- In words: given C, all other subsets of \mathcal{Y} are not informative.
- Such $\mathcal C$ may have a much smaller cardinality then $\mathcal A$. To obtain such class, we need to identify redundant inequalities.

Identifying Redundant Sets (1)

- Let supp(G) denote the support of G, and U_G denote the set of all unions of elements in supp(G).
- For an arbitrary $A \subseteq \mathcal{Y}$, consider $\tilde{A} \in \mathsf{U}_G$ defined as

$$\tilde{A} = \bigcup \{B \mid B \subseteq A, B \in \mathsf{supp}(G)\}.$$

• Then, A is redundant given \tilde{A} , because:

$$\mu(A) \geqslant \mu(\tilde{A}) \geqslant C_G(\tilde{A}) = C_G(A).$$

• Therefore, U_G is core-determining.

Identifying Redundant Sets (2)

- Denote $G^-(A) = \{u : G(u) \subseteq A\}.$
- Suppose that, for some $A \in U_G$, there are $A_1, A_2 \in U_G$ such that:
 - 1. $A_1 \cap A_2 = \emptyset$;
 - 2. $A_1 \cup A_2 = A$;
 - 3. $G^-(A_1 \cup A_2) = G^-(A_1) \cup G^-(A_2);$
- Then, A is redundant given A_1 and A_2 , because

$$\mu(A) = \mu(A_1) + \mu(A_2) \geqslant C_G(A_1) + C_G(A_2) = C_G(A)$$

• Therefore, a class $\mathcal C$ such that for every $A \in \mathsf{U}_G \backslash \mathcal C$ there exist $A_1, A_2 \in \mathcal C$ satisfying 1, 2, 3 above is core-determining.

A Core-Determining Class

Theorem 1

Let U_G denote the set of all unions of elements of the support of a random set G. Let $\mathcal{C} \subseteq U_G$ be a class of sets such that for every $A \in U_G \setminus \mathcal{C}$ there exist $A_1, A_2 \in \mathcal{C}$:

- 1. $A_1 \cap A_2 = \emptyset$;
- 2. $A_1 \cup A_2 = A$;
- 3. $G^-(A) = G^-(A_1) \cup G^-(A_2);$

Then, C is core-determining.

Comments:

- This is a simplified version of Theorem 3 in Chesher/Rosen 2017.
- In words: the unions of "small" sets are redundant.
- Very helpful, but we can do even better.

Identifying Redundant Sets (3)

- Suppose that, for some $A \in U_G$, there are $A_1, A_2 \in U_G$ such that:
 - 1. $A_1 \cap A_2 = A$;
 - 2. $A_1 \cup A_2 = \mathcal{Y}$;
 - 3. $G^-(A) = G^-(A_1) \cap G^-(A_2)$;
- Then, A is redundant given A_1 and A_2 , because:

$$1 + \mu(A) = \mu(A_1) + \mu(A_2) \geqslant C_G(A_1) + C_G(A_2) = 1 + C_G(A).$$

- Comment: Denote $G^{-1}(A) = \{u : G(u) \cap A \neq \emptyset\}$. Then:
 - Condition 3 is equivalent to $G^{-1}(A^c) = G^{-1}(A_1^c) \cup G^{-1}(A_2^c)$.
 - If $\mathcal{Y} = \mathcal{Y}_1 \cup \mathcal{Y}_2$: $\mathcal{Y}_1 \cap \mathcal{Y}_2 = \emptyset$, and $G^-(\mathcal{Y}) = G^-(\mathcal{Y}_1) \cup G^-(\mathcal{Y}_2)$, the above argument can be applied within \mathcal{Y}_1 and \mathcal{Y}_2 (or further partitions) separately.

A New Core-Determining Class

First Main Result

Theorem 2

Suppose that there are no $\mathcal{Y}_1, \mathcal{Y}_2$ with $\mathcal{Y}_1 \cup \mathcal{Y}_2 = \mathcal{Y}$, $\mathcal{Y}_1 \cap \mathcal{Y}_2 = \varnothing$, $G^-(\mathcal{Y}) = G^-(\mathcal{Y}_1) \cup G^-(\mathcal{Y}_2)$. Let $\mathcal{C} \subseteq \mathsf{U}_G$ be a class of sets such that for each $A \in \mathsf{U}_G \backslash \mathcal{C}$ there exist $A_1, A_2 \in \mathcal{C}$ for which at least one of the following sets of conditions holds:

- 1. $A_1 \cap A_2 = \emptyset$; $A_1 \cup A_2 = A$; $G^-(A) = G^-(A_1) \cup G^-(A_2)$.
- 2. $A_1 \cap A_2 = A$; $A_1 \cup A_2 = \mathcal{Y}$; $G^-(A) = G^-(A_1) \cap G^-(A_2)$.

Then C is core-determining.

Comments:

- In words: the intersections of "large" sets are also redundant.
- Useful in practice: may not observe data in small subsets of $\mathcal{Y}.$
- If ${\mathcal Y}$ does not satisfy the stated assumption, can work with ${\mathcal Y}_i.$

Example: English Auction

- Recall: F is the joint distribution of $U = (V_{1:N}, \dots, V_{N:N})$.
- The model delivers a set-valued prediction:

$$G(U; F) = S \cap \prod_{j=1}^{N-1} [\underline{v}, V_{j:N}] \times [V_{N-1:N}, V_N].$$

By assumption, $B = (B_{1:N}, \ldots, B_{N:N}) \in G(U; F)$.

- Let \mathcal{F} be a set of distributions of U satisfying some assumptions on the information structure (e.g., IPV, affiliated values, etc.)
- The sharp identified set for F is:

$$\mathcal{F}_I = \{ F \in \mathcal{F} : P(B \in A) \geqslant P(G(U; F) \subseteq A), \text{ for all } A \subseteq S \}$$

where
$$S = \{x \in [0, \overline{v}]^N : x_1 \leqslant \cdots \leqslant x_N\}.$$

Illustration: English Auction with 2 Players

Examples of sets in $U_{\it G}$

Illustration: English Auction with 2 Players

Unions of "Small" Sets: A is redundant given A_1 and A_2 .

Illustration: English Auction with 2 Players

Intersections of "Large" Sets: A is redundant given A_1 and A_2 .

Outline

Motivation and Literature Review

Random Sets and Core-Determining Classes

Special Case: Discrete Random Sets

Other Tools for Dimensionality Reduction

Further Research

The Smallest Core Determining Class

- If \mathcal{Y} is finite, we can find the smallest core-determining class using linear programming.
- For every subset $A \subseteq \mathcal{Y}$, define the quantity:

$$\lambda(A) = \min_{\mu \in \Delta(\mathcal{Y})} \left\{ \mu(A) \; \middle| \; \mu(\tilde{A}) \geqslant C_G(\tilde{A}) \text{ for all } \tilde{A} \neq A \right\}$$

where $\Delta(\mathcal{Y})$ is the set of probability distributions on \mathcal{Y} .

• If $\lambda(A) < C_G(A)$, then A must belong to any core-determining class. In fact, the class of all such sets:

$$C^* = \{ A \subseteq \mathcal{Y} : \lambda(A) < C_G(A) \}$$

is the smallest core-determining class.1

¹Follows from the literature on redundancy in LP, e.g., Telgen 1983.

Illustration: Redundant Constraints

• Intuitively, if $\lambda(A) \geqslant C_G(A)$, we can remove the corresponding constraint without changing the feasible set. Blue constraints are critical, orange constraints are redundant.

Discrete Random Set as a Bipartite Graph

- The above characterization of C^* is nice, but:
 - It seems to depend on θ via $C_G(A) = P(G(U, \theta) \subseteq A)$. Therefore, we might need to compute \mathcal{C}^* for each θ , which is impractical.
 - How is this related to Theorem 2?
- If \mathcal{Y} is finite, so is $\operatorname{supp}(G) = \{G_1, \dots, G_K\}$, and we can partition the space of latent variables as $u_k \equiv \{u \in \mathcal{U} : G(u) = G_k\}$.
- G can be represented as an undirected bipartite graph \mathbf{B}_G with two groups of vertices $\mathcal{U} = \{u_1, \dots, u_K\}$ and $\mathcal{Y} = \{y_1, \dots, y_S\}$ and edges (u_k, y_s) if $y_s \in G(u_k)$.
- Then, the conditions of Theorem 2 can be translated into the properties of this graph.

Discrete Random Set as a Bipartite Graph

Example to Fix Ideas

- Here, $supp(G) = \{\{y_1\}, \{y_1, y_2, y_3\}, \{y_1, y_4\}, \{y_3\}, \{y_3, y_4, y_5\}, \{y_5\}\}.$
- For example, $G(u_1) = \{y_1\}$, and $G(u_5) = \{y_4, y_5\}$.
- If $A = \{y_1, y_4, y_5\}$, $G^-(A) = \{u_1, u_3, u_4, u_5\}$, $G^{-1}(A) = G^-(A) \cup \{u_2\}$.
- If $U \sim F$, then $C_G(A) = P(G^-(A)) = F(\{u_1, u_3, u_4, u_5\})$.

Redundant Sets and Bipartite Graphs

Condition 1: Only Elements of U_G Matter.

• Consider $A=\{y_1,y_2\}$, $\tilde{A}=\{y_1\}$. Then A is redundant given \tilde{A} :

$$\mu(A) \geqslant \mu(\tilde{A}) \geqslant C_G(\tilde{A}) = C_G(A)$$

• Note: the subgraph induced by $(A, G^{-}(A))$ is disconnected.

Redundant Sets and Bipartite Graphs

Condition 2: Unions of "Small" Sets Are Redundant.

• Consider $A=\{y_1,y_3\}$, $A_1=\{y_1\}$, and $A_2=\{y_3\}$. Then, A is redundant given A_1,A_2 :

$$\mu(A) = \mu(A_1) + \mu(A_2) \geqslant C_G(A_1) + C_G(A_2) = C_G(A)$$

• Note: the subgraph induced by $(A, G^{-}(A))$ is disconnected.

Redundant Sets and Bipartite Graphs

Condition 3: Intersections of Large Sets Are Redundant.

- Consider $A=\{y_3,y_4\}$, $A_1=\{y_1,y_2,y_3,y_4\}$ and $A_2=\{y_3,y_4,y_5\}$. Note that $A=A_1\cap A_2$, $A_1^c=\{y_5\}$ and $A_2^c=\{y_1,y_2\}$.
- Condition 2 in Theorem 2 equivalently: $G^{-1}(A_1^c) \cap G^{-1}(A_2^c) = \varnothing$. Therefore, A is redundant given A_1 and A_2 .
- Note: the subgraph induced by $(A^c, G^{-1}(A^c))$ is disconnected.

The Smallest Core-Determining Class

Second Main Result

Theorem 3

Let G be a discrete random set with the bipartite graph \mathbf{B}_G on $(\mathcal{U}, \mathcal{Y})$. Suppose that the distribution F on \mathcal{U} satisfies $F(\{u\}) > 0$ for all $u \in \mathcal{U}$. Then the class \mathcal{C} of subsets $A \subseteq \mathcal{Y}$ such that:

- 1. The subgraph induced by $(A, G^{-}(A))$ is connected.
- 2. The subgraph induced by $(A^c, G^{-1}(A^c))$ is connected.

is the smallest core-determining class, i.e. $\mathcal{C} = \mathcal{C}^*$.

Discussion

- Note that C is the same class of sets as in Theorem 2:
 - Much simpler characterization than that of Luo and Wang 2018 for discrete random sets.
 - Often dramatically smaller than $2^{\mathcal{Y}}$ and the class in Theorem 1.
- Provides a simple and practical characterization:
 - Recall that $F = F_{\theta}$, so that the values of $C_G(A)$ depend on θ .
 - However, \mathcal{C} does not depend on θ , provided that F_{θ} is non-degenerate. By definition, \mathcal{C} also does not depend on P_Y .
 - Therefore: the smallest core-determining class is the same in population and in finite samples.
- C is fully determined by simple properties of the bipartite graph:
 - It can be efficiently computed by parsing \mathbf{B}_G .
 - Note that we only need to compute it once.

Implications (1)

Corollary 3.1

Let G be a discrete random set with the bipartite graph \mathbf{B}_G on $(\mathcal{U},\mathcal{Y})$. Suppose that the distribution F on \mathcal{U} is non-degenerate, and the outcome space can be partitioned as $\mathcal{Y} = \bigcup_{k=1}^K \mathcal{Y}_k$ with (i) $\mathcal{Y}_i \cap \mathcal{Y}_j = \varnothing$ for $i \neq j$, and (ii) $G^{-1}(\mathcal{Y}_j) \cap G^{-1}(\mathcal{Y}_i) = \varnothing$. Let \mathcal{C}_i be the class of all subsets $A \subseteq \mathcal{Y}_i$ such that:

- 1. The subgraph induced by $(A, G^{-}(A))$ is connected.
- 2. The subgraph induced by $(\mathcal{Y}_i \setminus A, G^{-1}(\mathcal{Y}_i \setminus A))$ is connected.

Then, $C = \bigcup_{k=1}^{K} C_i$ is the smallest core-determining class.

Example: Entry Game with Substitutes

• N firms choosing $y_j \in \{0,1\}$, so that $\mathcal{Y} = \{0,1\}^N$, with payoffs:

$$\pi_j(\boldsymbol{y}, \varepsilon_j, \theta) = y_j \cdot (\alpha_j + (N(\boldsymbol{y}) - 1)\delta_j + \varepsilon_j),$$

where N(y) is the number of entrants. Assume that $\delta_j < 0$, $\varepsilon \sim F_{\varepsilon}(\cdot; \gamma)$ with full support.

- The set of Nash Equilibria can not contain two equilibria with different numbers of entrants ⇒ partition y accordingly.
- Characterizing sharp identified sets (same as in CR17):
 - -N=3: 254 inequalities in total /15 in the new class.
 - -N=4: 65534 inequalities in total /94 in the new class.
 - -N=5 is infeasible;

Example: Entry Game with Complementarities

• N firms choose $y_j \in \{0,1\}$ and receive payoffs:

$$\pi_j(\boldsymbol{y}, \varepsilon_j, \theta) = y_j \cdot (\alpha_j + \delta_j(N(\boldsymbol{y}) - 1) + \varepsilon_j),$$

where N(y) is the number of entrants. Assume that $\delta_j > 0$, $\varepsilon \sim F_{\varepsilon}(\cdot; \gamma)$ with full support.

- The set of Nash Equilibria only contains equilibria with different number of entrants.
- Characterizing sharp identified sets:
 - N=3: 254 in total / 85 in CR17 / 36 in the new class;
 - N=4: 65534 in total / 18667 in CR17 / 553 in the new class;
 - -N=5 is infeasible;

Implications (2)

Corollary 3.2

Let G be a discrete random set with the bipartite graph \mathbf{B}_G on $(\mathcal{U}, \mathcal{Y})$, and U_G denote the set of all unions of elements of $\mathsf{supp}(G)$. Suppose that there are linear orders $\succcurlyeq_{\mathcal{Y}}$ and $\succcurlyeq_{\mathcal{U}}$ such that:

$$u_{j} \succcurlyeq_{\mathcal{U}} u_{i} \implies \begin{cases} \min\{y \mid y \in G(u_{j})\} \succcurlyeq_{\mathcal{V}} \min\{y \mid y \in G(u_{i})\} \\ \max\{y \mid y \in G(u_{j})\} \succcurlyeq_{\mathcal{V}} \max\{y \mid y \in G(u_{j})\} \end{cases}$$

Then:

$$\mathcal{C} = \mathsf{U}_G \cap \{\{y_1, \dots, y_k\}, \{y_k, \dots, y_K\} : k = 1, \dots, K\}$$

is the smallest core-determining class.

• **Note:** This extends Theorem 4 in Galichon and Henry (2011) who also assume that that G(u) is a connected segment.

Outline

Motivation and Literature Review

Random Sets and Core-Determining Classes

Special Case: Discrete Random Sets

Other Tools for Dimensionality Reduction

Further Research

Main Idea

- Using the above results is helpful for many finite games, but sometimes even the smallest core-determining class is infeasible.
- Therefore, In practice, we will have to switch to some outer set.
 Which one?
- Approach: impose assumptions on the underlying selections in a way that if they are wrong, we still get a sensible outer set.
- Below, I focus on finite games.

Dimensionality Reduction

Local Games

- Suppose that a game Γ can be split into local games $\Gamma_1, \ldots, \Gamma_S$ according to the rule that "what happens in Γ_s stays in Γ_s :"
 - Payoffs from Γ_s depend only on the outcome of Γ_s .
 - Equilibrium in $\Gamma \iff$ Equilibria in all Γ_s .
- Example: Gualdani (2019)
 - Directed network formation / N players / Nash Equilibrium;
 - $-\Gamma_s$ is a "market entry" game with complementarities, in which (N-1) players decide whether to link to player s;
 - Payoffs are appropriately separable;
- In a general network formation game: $\approx 2^{2^{N^2}}$ inequalities.

Dimensionality Reduction

Local Games

- Assuming that the local games are statistically independent, including equilibrium selection rules, simplifies the analysis:
 - Gualdani 2019 shows that: $|\mathcal{C}(\Gamma)| = \sum_{s=1}^S |\mathcal{C}(\Gamma_s)|$ but eventually selects the inequalities by hand.
 - This paper: can identify and use the smallest $\mathcal{C}(\Gamma_s)$.
- Characterizing sharp identified sets:
 - -N=3: 254 inequalities in total / 15 in the smallest class.
 - $-\ N=4$: $\approx 2^{64}$ inequalities in total $/\ 144$ in the smallest class.
 - $-\ N=5:\approx 2^{1024}$ inequalities in total $/\ 2765$ in the smallest class.
- Side note: for inference with many inequalities, one can use the procedure from Chernozhukov/Chetverikov/Kato 2018.

Dimensionality Reduction

Some Thoughts on Exchangeability

- When N is moderate or large, it is common to label players with several known/observable types (e.g., $\delta = \delta(x_i)$ below).
- Consider an entry game with symmetric firms:

$$\pi_j(\boldsymbol{y}, \varepsilon_j, \theta) = y_j \cdot (\alpha + (N(\boldsymbol{y}) - 1)\delta + \varepsilon_j)$$

Assume $\delta < 0$, $\varepsilon \sim F(\cdot; \gamma)$ with full support, and $\theta = (\alpha, \delta, \gamma)$.

- Is observing y = (1, ..., 0) more informative than N(y) = 1?
 - If $F(\cdot)$ and the equilibrium selection mechanism are appropriately exchangeable, it should not be.
 - Aggregating outcomes this way dramatically simplifies the analysis.
 - Exchangeability is testable; If it fails, we get an outer set for Θ_I .

Outline

Motivation and Literature Review

Random Sets and Core-Determining Classes

Special Case: Discrete Random Sets

Other Tools for Dimensionality Reduction

Further Research

Conclusion / Further Research

This paper:

- Provided a simpler characterization for sharp identified set in a class of models with set-valued predictions.
- Proposed a new and simpler core-determining class;
- Derived the smallest possible core-determining class for discrete random sets, which can be efficiently computed.
- Discussed other tools for dimensionality reduction.

Further Research:

- An R package to compute the smallest core-determining class;
- The smallest core-determining class for continuous random sets?
- Can we aggregate outcomes by types without losing information?