Telecommunications and Information Exchange Between Systems ISO/IEC JTC 1/SC 6

Document Number:	N13969
Date:	2009-05-22
Replaces:	
Document Type:	Liaison Organisation Contribution
Document Title:	Ecma International's report to the SC6 Tokyo meeting on Proxying,
	VL-NFC, Personal Networks and TV WS
Document Source:	Ecma International
Project Number:	
Document Status:	For report to the SC 6 Tokyo meeting.
Action ID:	FYI
Due Date:	
No. of Pages:	14

ISO/IEC JTC1/SC6 Secretariat Ms. Jooran Lee, KSA (on behalf of KATS)

Korea Technology Center #701-7 Yeoksam-dong, Gangnam-gu, Seoul, 135-513, Republic of Korea;

Telephone: +82 2 6009 4808; Facsimile: +82 2 6009 4819; Email: jooran@kisi.or.kr

Liaison Report on New work to SC 06, Tokyo, 3 June Proxying, VL-NFC, Personal Networks and TV WS

Ecma International

TC32-TG21 Network Proxy Goals

Proxies maintain Network presence so sleeping, higher powered, ICT Hosts reduce energy consumption:

Goals:

- Specify Proxy behavior in Ecma/ISO/IEC Worldwide standard
- Adoption by US Energy Star (Computers) v06 in 2010/11
- EU Lot 26 Sleep State Regulations

Experts from Terra Novum (Chair), LBNL (Vice Chair), Intel (Editor), AMD, Microsoft, Sony, Realtek, Apple, Oce, Lexmark....

TC32-TG21 Proxy Extensive scope

Hosts

Usages/Functional

PC Desktops/Laptops

Remote Desktop, Consumer

Manageability, File/Media Sharing

Printers

On-Demand Print

Media PCs, TV,

Wake-On User Trigger

Game Consoles

On-demand downloads

Application and Services

Distributed Apps (SIP, Teredo, Bonjour)

TC32-TG21 Proxy

INTERNATIONAL Demand for 24/7 Access to ICT

The Energy Challenge

Energy consumption has become key worldwide while desktop PCs waste nearly half their energy¹⁾

Broadband connected PCs are left in an active state 25% more, increasing energy use by 417% since 2001²⁾

TC32-TG21 Proxy Annualised Energy Saving

ICT/Desktop	Annual Energy
"Always On" in SO	430-610 kWh*
24 X 7 Responsive	
S0 + 70% in S3	150-210 kWh
24 X 7 Responsive	
Annual Energy Savings	400 kWh (\$40)**
150+ Million PCs*	60+ TWh Generating Cap (\$6B)
PLUS Millions of "Networked Devices"	Huge Energy savings potential using Network Proxy
(Printers, Game Consoles, TVs, etc.)	

^{*} Source: Energy Star Computer System Data

^{**} Assuming 10c per kWh

Visual Light NFC

Visual Light NFC

Ecma TC32-PNF From Personal Area Networks to Personal Networks

Personal Area Network (PAN)

Network connecting devices in the close vicinity of a person/personal entity \rightarrow local scope

Personal Network (PN)

Overlay network on network infrastructure in reach connecting information & communication resources of a person/private entity independent of their location

- User centred
- Secure and trustworthy
- Virtual vicinity of local and remote resources
- Self-organisation of network connections
- Heterogeneity of technologies

Ecma TC32-PNF Example: PNs & their federations

Ecma TC32-PNF Activities

TC32 established Editor Group on 'Personal Networks (PN) and their Federations (PNF)' in August 2008

Develop Technical Reports that analyse standardization needs:

- Umbrella TR (Architecture, terms, scenarios, regaps,)
- Networking TR (addressing & routing, interfaces, trust)
- Enabling Services TR (Identity/access mgnt, service discovery)
- Federations TR (PN/Service interworking)

Collaboration with TC32-TG17 (IP-based Communications)

Involved companies/organisations:

TU Delft, IBBT, CSEM, TNO, SEN

Objective: TG or TC to specify standards on PNs

Ecma TC48-TG1 TV White Spaces Standard

- Is a high-speed wireless networking standard for use in the Television White Spaces: broadcast television spectrum not being used by licensed services at a given location;
- takes advantage of the superior propagation characteristics of the UHF-TV bands;
- Delivers more robust wireless connectivity, extend the coverage range and result in cost effective networking solutions, both indoors and outdoors.
- Complies with personal/portable device FCC rules to allow unlicensed radio transmitters to operate in spectrum white spaces. Others, e.g. OFCOM in the UK, are working on similar regulations;
- Uses cognitive radio technology to avoid interference with licensed services and other incumbent users; and
- Is based on the contribution from Cognitive Networking Alliance (CogNeA) that promotes white space devices in a collaborative and complementary fashion with Ecma's standard development.

Ecma TC48-TG1 Internet Access application

- Television white spaces will provide more widely available and cost effective access to the internet in underserved markets.
- The superior propagation characteristics provide much greater coverage range than existing unlicensed technologies.

Ecma TC48-TG1 Whole Home application

- Television white spaces will enable wireless distribution of high-quality high-definition television for whole home, vastly improving the DTV experience.
- •The new standard will provide reliable and robust coverage anywhere in a home, while consuming much lower power.

