МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

«ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Информационных систем

ПРАКТИЧЕСКАЯ РАБОТА

по дисциплине «Теория принятия решений»

Тема: Применение методов линейного и динамического программирования для решения практических задач (по вариантам)

ВАРИАНТ: **39**

Студент гр. 0372	Масленников К.М
Преподаватель	 Степуленок Д.О.

Санкт-Петербург

введение

Целью данной работы является нахождение оптимального решения представленной задачи линейного программирования, а также ознакомление со средой GNU Octave.

Задача 1

1.1 Условие задачи

Запасы товара на трех складах торговой компании, составляют 112, 143, и 131. Компания имеет пункты реализации товара в пяти населенных пунктах, причем средние транспортные затраты на перевозку единицы товара из складов в населенные пункты, а также спрос на товар в каждом из пунктов указаны в табл. 1. Для стимуляции спроса торговая компания может провести рекламную акцию в каждом из пунктов. Потенциальный эффект от рекламной акции (увеличение спроса на единицу стоимости рекламной акции) зависит от бюджета рекламной акции. Параметры зависимости различны для городов и сведены в табл. 2. Следует обратить внимание, что эффект характеризуется убывающей отдачей (что в определенной степени моделирует насыщение рынка). Так, например, при бюджете рекламной акции 120, увеличение спроса в первом городе будет вычисляться следующим образом: 0.5*40 + 0.4*60 + 0.3*(120 - 40 - 60).

Требуется:

- 1. Определить минимальные издержки на реализацию всего товара.
- 2. Выявить населенные пункты, требующие максимальный и минимальный рекламный бюджет.
- 3. Провести анализ чувствительности оптимальной стратегии к стоимости перевозок между складом 2 и населенным пунктом 3.

Таблица 1: Транспортные расходы

Склад\Город	1	2	3	4	5
1	5	5	8	9	7
2	7	10	5	9	6
3	9	6	8	10	6
Спрос	63	63	34	41	35

Таблица 2: Эффективность рекламных акций

Стоимость акции	1	2	3	4	5
до 40	0.5	0.4	0.6	0.6	0.3
до 100	0.4	0.3	0.5	0.5	0.2
более 100	0.3	0.2	0.4	0.4	0.1

1.2 Формализация задачи

Данная задача является задачей линейного программирования. Для решения задачи введем переменную xi, отвечающую за количество перевезенного товара со склада в город. Составим таблицу с xi.

Таблица 3

Склад/Город	1	2	3	4	5	Запасы
1	$5(x_1)$	$5(x_2)$	8(<i>x</i> ₃)	$9(x_4)$	$7(x_5)$	112
2	$7(x_6)$	$10(x_7)$	$5(x_8)$	$9(x_9)$	$6(x_{10})$	143
3	$9(x_{11})$	$6(x_{12})$	$8(x_{13})$	$10(x_{14})$	$6(x_{15})$	131
Спрос	63	63	34	41	35	

Посчитаем сумму спроса и запасов и вычислим их разницу: запасы = 386, спрос = 236 разница = 150.

Т.к. количество запасов превосходит спрос, а нам необходимо реализовать все единицы товара, то для этого необходимо повысить спрос с помощью проведения рекламных акций. Составим таблицу, где s_i —повышенный спрос за счет p_i средств:

Таблица 4: повышение спроса

Склад/Город	1	2	3	4	5
Спрос	$63 + s_1$	56+ s ₂	34+ s ₃	41+ s ₄	35+ s ₅

Пропишем функцию цели:

$$F = \sum_{1}^{15} ci * xi + \sum_{1}^{5} pi \rightarrow min$$

Где c_i – стоимость перевозки со склада в город, а p_j – средства, ушедшие на рекламные акции.

Пропишем ограничения, опираясь на условие задачи, описанные нами данные и функцию цели:

1. По запасам

$$X_1 + X_2 + X_3 + X_4 + X_5 = 112$$

$$X_6 + X_7 + X_8 + X_9 + X_{10} = 143$$

$$X_{11} + X_{12} + X_{13} + X_{14} + X_{15} = 131$$

2. По спросу

$$X_1 + X_6 + X_{11} - S_1 = 63$$

$$X_2 + X_7 + X_{12} - S_2 = 63$$

$$X_3 + X_8 + X_{13} - S_3 = 34$$

$$X_4 + X_9 + X_{14} - S_4 = 41$$

$$X_5 + X_{10} + X_{15} - S_5 = 35$$

3. Повышенный спрос и разница

$$S_1 + S_2 + S_3 + S_4 + S_5 = 150$$

4. Выписываем из «Таблицы 2: эффективность рекламных акций» ограничения:

 s_i — повышенный спрос за счет p_i (затраты на рекламные акции) средств Для 1 пункта:

Стоимость рекламных акций до 40: $S_1 - 0.5P_1 <= 0$

Стоимость рекламных акций до 100: $S_1 - 0.4P_1 <=4$

Стоимость рекламных акций больше 100: S_1 – 0,3 P_1 <=14

Для 2 пункта:

$$S_2 - 0.4P_2 <= 0$$

$$S_2 - 0.3P_2 <=4$$

$$S_2 - 0.2P_2 \le 14$$

Для 3 пункта:

$$S_3 - 0.6P_3 <= 0$$

$$S_3 - 0.5P_3 < =4$$

$$S_3 - 0.4P_3 \le 14$$

Для 4 пункта:

$$S_4 - 0.6P_4 <= 0$$

$$S_4 - 0.5P_4 <=4$$

$$S_4 - 0,4P_4 <= 14$$

Для 5 пункта:

$$S_5 - 0.3P_5 <= 0$$

$$S_5 - 0.2P_5 <=4$$

$$S_5 - 0.1P_5 <= 14$$

1.3 Решение задачи

Для определения минимальных издержек, максимального и минимального бюджета в городах реализуем код в среде GNU Octave с помощью основной функции glpk.

Посмотрим на результаты:

Рис. 1. Результаты

```
>> xmin =
    89
    23
     0
     0
     0
     0
     0
   142
     1
     0
     0
    56
     0
    40
    35
    55
    40
   235
     0
     0
    26
    16
   108
     0
     0
fmin = 2555
error code = 0
```

Анализ результатов:

Пояснение:

$$X_1=89; X_2=23; X_8=142 X_9=1; X_{12}=56; X_{14}=40, X_{15}=35$$

Затраты на рекламные акции:

$$P_1=55$$
; $P_2=40$; $P_3=235$.

Вывод:

Минимальные издержки на реализацию всего товар равны 2555 (значение fMin).

Минимальный бюджет это 4 и 5 города бюджет здесь равен нулю, а максимальный бюджет в городе 3 равный 235.

Теперь проведем анализ чувствительности оптимальной стратегии к стоимости перевозок между складом 2 и населенным пунктом 3 и сделаем графики. Для решения будем изменять стоимость от 1 до 10. (10 макс. стоимость).

Рис. 2. Анализ чувствительности изменения издержек.

ans = 1984

ans = 2127

ans = 2270

ans = 2413

ans = 2555

ans = 2676

ans = 2776

ans = 2864

ans = 2890

ans = 2890

Рис 3. График 1 - изменения издержек.

Видно, что издержки меняются от 1984 единиц до 2890 единиц.

Посмотрим, что происходит с перевозками при разных ценах

Рис. 4. Анализ чувствительности изменения цен

ans = 143 ans = 143 ans = 143 ans = 142 ans = 102 ans = 89 ans = 88 ans = 0 ans = 0

Рис.5. График 2 (изменение цен)

При стоимости от 1 до 4 включительно в город поставляют 143 единицы товара; при стоимости 5 - 142 единицы товара; при стоимости 6 - 102 единицы, при 7 - 89 единиц, при 8 - 88 единиц; при стоимости 9 и 10 перевозки не выполняются.

В ходе выполнения работы мы получили оптимальное решение поставленной задачи линейного программирования, а также познакомились со средой GNU Octave.