

管理类联考 公式汇总

适用于MBA、MPA、MPAcc、MEM

目 录

第一章	数与式	1
第二章	应用题	9
第三章	函数方程和不等式	. 17
第四章	平面几何	. 23
	立体几何	
	数列	
第七章	解析几何	. 35
第八章	排列组合	. 41
第九章	概率	. 44

第一章 数与式

一、实数

1. 常见整除的特点

能被2整除的数	个位为 0, 2, 4, 6, 8
能被3整除的数	各数位数字之和必能被3整除
能被4整除的数	末两位(个位和十位)数字必能被4整除
能被5整除的数	个位为0或5
能被6整除的数	同时满足能彼2利3整除的条件
能被9整除的数	各数位数字之和必能被 9 整除
能被 10 整除的数	个位必为 0
能被11整除的数	从右向左,奇数位数字之和减去偶数位数字之和能被11整除(包括0)
能被 n! 整除的数	连续 n 个正整数的乘积能被 $n!$ 整除 $n!=1\times2\times3\times\cdots\times n$,读作 n 的阶乘

2. 倍数、约数

当a能被b整除时,称a是b的倍数,b是a的约数.

 $(a,b)\times[a,b]=ab$, 其中(a,b)表示最大公约数, [a,b]表示最小公倍数.

- 3. 已知整数a能被整数b整除,则ka能被b整除. ($a \times b \times k$ 均为整数).
- 4. 已知 ka 是 b 的倍数,且 k 和 b 互质,则 a 是 b 的倍数. (a、b、k 均为整数).
- 5. 已知 k 被 a 除的余数以及 k 被 b 除的余数,则可以确定 k 被 [a,b] 除的余数. ([a,b]表示最小公倍数,其余确定不了).
 - 6. 有理数和无理数的运算规则
 - (1) 有理数之间的加减乘除,结果必为有理数;
 - (2) 有理数与无理数的乘除为0或无理数;
 - (3) 有理数与无理数的加减必为无理数;
 - (4) 若a,b为有理数, λ 为无理数,且满足 $a+b\lambda=0$,则有a=b=0.
 - (5) 常见的无理数:

π	e	$\sqrt{2}$	$\sqrt{3}$	$\sqrt{5}$	$\sqrt{6}$	$\sqrt{7}$	$\sqrt{8}$	$\sqrt{10}$
3. 142	2. 718	1. 414	1. 732	2. 236	2. 449	2. 646	2.828	3. 162

7. 奇数与偶数的运算

奇数士奇数=偶数; 奇数士偶数=奇数; 偶数士偶数=偶数(加减: 同偶异奇) 奇数×偶数=偶数; 奇数×奇数=奇数; 偶数×偶数=偶数(乘法: 有偶则偶) 注意: 0 是偶数. 两个相邻整数必为一奇一偶.

二、质数、合数

- 1.1 既不是质数也不是合数.
- 2.2 是最小的质数, 也是唯一的偶质数, 也就是说, 除了 2 以外剩下的质数都为奇数.
- 3.4是最小的合数.
- 4.30 以内的质数: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.
- 5.97 是最大的两位数的质数.

三、集合

1. 常见的数集的表示符号

N* (或N ₊)	表示正整数集.	
N	表示非负整数集,即自然数集.	
Z	表示整数集.	
Q	表示有理数集.	
R	表示实数集.	
С	表示复数集.	
说明:根据国家标准, "0"是自然数.		

2. 集合中元素的性质

集合中的元素必须满足:确定性、互异性、无序性.

3. 集合的表示方法

列举法、描述法、图示法.

4. 集合与集合的关系

乙佳	如果集合 A 的任何一个元素都是集合 B 的元素,则称 A 是 B 的子集,记为 A⊆B	
子集	或 B⊇A, 读作 "A 包含于 B"或 "B 包含 A".	
相等的集合 若 A⊆B, 且 B⊆A, 则称 A=B.		

真子集	若 A⊆B 且 A≠B,则称 A 是 B 的真子集,记作 A⊊ B (或 B⊋ A).
空集	空集是任何集合的子集;空集是任何非空集合的真子集. (Ø)
交集	由所有属于集合 A 且属于集合 B 的元素所组成的集合,叫做 A 与 B 的交集,记作
文 集	$A \cap B$.
并集	由所有属于集合 A 或属于集合 B 的元素所组成的集合,叫做 A 与 B 的并集,记作
开 来	$A \cup B$.
补集	对于集合 S, 若集合 A⊆S, 那么由 S 中所有不属于 A 的元素组成的集合, 叫做 S
	中子集 A 的补集(或余集),记作 C_sA ,或简记作 CA .
全集	若一个集合含有所要研究的各个集合的全部元素,那么这个集合就可以看作一个
土朱	全集,全集记作 U.

注意:由n个元素所组成的集合,其子集的个数为2"个,真子集的个数为2"-1个,非空子集的个数为2"-1个,非空真子集的个数为2"-2个.

四、数据描述

1. 算术平均值

设有n个数 x_1, x_2, \dots, x_n ,称 $\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$ 为这n个数的算术平均值,简记为

$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

2. 几何平均值

设有n个正数 x_1, x_2, \cdots, x_n ,称 $x_g = \sqrt[n]{x_1 x_2 \cdots x_n}$ 为这n个正数的几何平均值,简记为

$$x_g = \sqrt[n]{\prod_{i=1}^n x_i}$$

注意:几何平均值是对于正数而言的.

3. 方差

设一组样本数据 x_1, x_2, \dots, x_n , 其平均数为 \overline{x} , 则称

$$S^2 = \frac{1}{n}[(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2] = \frac{1}{n}\sum_{i=1}^n(x_i - \bar{x})^2$$
为这个样本的方差.

(反映数据的波动大小,方差大,波动大;方差小,波动小)

扩展公式:
$$S^2 = \frac{1}{n}[(x_1 - x)^2 + (x_2 - x)^2 + \dots + (x_n - x)^2] = \frac{x_1^2 + x_2^2 + \dots + x_n^2}{n} - (\frac{x_1 + x_2 + \dots + x_n}{n})^2$$
.

4. 标准差

因为方差和原始数据的单位不同,且平方后可能夸大了离差的程度,将方差的算术平方根称为这组数据的标准差,即 $S = \sqrt{\frac{1}{n}[(x_1-\bar{x})^2+(x_2-\bar{x})^2+\dots+(x_n-\bar{x})^2]}$ (反映数据的波动大小,标准差大,波动大;标准差小,波动小).

- 5. 众数
- 一组数据中出现次数最多的数据. 反映数据的集中趋势.
- 6. 中位数

反映数据的中间值.

7. 平均数

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$
 (反映数据的平均水平).

五、平均数和方差计算技巧

- 1. 算术平均值的求法
- (1) 利用计算公式: $\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$.
- (2) 利用性质: $\ddot{a} x_1, x_2, \cdots, x_n$ 的平均数为 \ddot{x} ,则 $kx_1 + b, kx_2 + b, \cdots, kx_n + b$ 的平均数是 $\ddot{kx} + b$.
- 2. 方差的求法

(1) 利用计算公式:
$$S^2 = \frac{1}{n}[(x_1 - \bar{x})^2 + (x_2 - \bar{x})^2 + \dots + (x_n - \bar{x})^2] = \frac{1}{n}\sum_{i=1}^n(x_i - \bar{x})^2$$
.

- (2) 利用性质: 如果一组数 x_1, x_2, \dots, x_n 的平均数是 \bar{x} ,方差为 S^2 ,那么
- ①新数据 ax_1, ax_2, \dots, ax_n 的平均数是 ax,方差为 a^2S^2 .
- ②新数据 $x_1 + b, x_2 + b, \dots, x_n + b$ 的平均数是x + b,方差为 x^2 .
- ③新数据 $ax_1 + b$, $ax_2 + b$, $ax_n + b$ 的平均数是 ax + b, 方差为 a^2S^2 .

六、比例的基本性质

- 1. $a:b=c:d \Leftrightarrow ad=bc$
- 2. $a:b=c:d \Leftrightarrow b:a=d:c \Leftrightarrow b:d=a:c \Leftrightarrow d:b=c:a$

3. 重要定理

合比定理	$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a+b}{b} = \frac{c+d}{d}$
分比定理	$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a-b}{b} = \frac{c-d}{d}$
合分比定理	$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a+b}{a-b} = \frac{c+d}{c-d}$
等比定理	$\frac{a}{b} = \frac{c}{d} = \dots = \frac{m}{k} = \frac{a+c+\dots+m}{b+d+\dots+k} = \frac{a}{b}(b+d+\dots+k \neq 0)$

七、绝对值

$$1. |a| = \begin{cases} a & a \ge 0 \\ -a & a < 0 \end{cases}.$$

2. 对称性: |-a|=|a|, 互为相反数的两个数的绝对值相等.

3. 等价性:
$$\sqrt{a^2} = |a|$$
, $|a|^2 = |a^2| = a^2$ ($a \in R$).

4. 自比性:
$$\frac{|x|}{x} = \frac{x}{|x|} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \end{cases}$$
.

5. 非负性: 即 $|a| \ge 0$, 任何实数a 的绝对值非负.

6.
$$|a \cdot b| = |a| \cdot |b|$$
, $\left| \frac{b}{a} \right| = \frac{|b|}{|a|}$

7. 绝对值三角不等式

(1) 基本形式: $||a|-|b|| \le |a\pm b| \le |a|+|b|$

(2) 等号成立条件:

表达式	成立条件	示例
a + b = a+b	$ab \ge 0$	-3 + -5 = -3-5
a + b = a-b	$ab \leq 0$	3 + -5 = 3+5
a - b = a+b	$ab \leq 0$	-5 - 3 = -5+3
a - b = a-b	$ab \ge 0$	-5 - -3 = -5+3

(3) 大小成立条件:

表达式	成立条件	示例
a + b > a+b	ab < 0	-3 + 5 > -3+5
a + b > a-b	<i>ab</i> > 0	-3 + -5 > -3+5
a - b < a+b	<i>ab</i> > 0	-5 - -3 < -5-3
a - b < a-b	ab < 0	-5 - 3 < -5-3

8. 绝对值的几何意义

- (1) 平底锅型: f(x)=|x-a|+|x-b|,此种函数表达式,没有最大值,只有最小值. 且在两个零点之间取得最小值|a-b|. 图像的表现为两头高,中间平,类似于平底锅.
- (2) "Z"字型: f(x)=|x-a|-|x-b|此种函数表达式,既有最大值也有最小值,分别在零点的两侧取得且两个最值为 $\pm |a-b|$. 图像的表现为两头平,中间斜.

9. 根号有意义与根式非负性

$\sqrt{a} \Rightarrow a \ge 0, \sqrt{a} \ge 0$	$\sqrt{a^2} = a $
$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b} \Rightarrow a \ge 0, b \ge 0$	$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}} \Rightarrow a \ge 0, b \ge 0$

10.

a、b、c 的正负性			Ī	$\frac{a}{ a } + \frac{b}{ b } + \frac{c}{ c }$ 的值	
a、b、c中 3 个都为正			3		
a、b、c中	a、b、c中2个为正1个为负			1	
a、b、c中 1 个为正 2 个为负			-1		
a、b、c中	3个都为负			- 3	
a+b+c>0		a+b+	+c=0	a+b+c<0	
$abc > 0$ $a \cdot b \cdot c$ 中 3 正 $/1$ 正 2 负 $a \cdot b \cdot c$ 中		71正2负	<i>a、b、c</i> 中1正2负		
<i>abc</i> < 0		$a, b, c \dashv$	コ2正1负	a、b、c中3负/2正1负	

八、因式分解⇔ 整式的乘法

1.
$$(a+b)(a-b)=a^2-b^2$$
 (平方差公式)

2.
$$(a \pm b)^2 = a^2 \pm 2ab + b^2$$
 (完全平方公式)

3.
$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ca$$
 (配方公式)

4.
$$\frac{1}{2}[(a+b)^2+(b+c)^2+(c+a)^2]=a^2+b^2+c^2+ab+bc+ca$$
(配方公式)

5.
$$\frac{1}{2}[(a-b)^2+(b-c)^2+(c-a)^2]=a^2+b^2+c^2-ab-bc-ca$$
(配方公式)

6.
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$
 (立方公式)

7.
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$
 (立方公式)

8.
$$(a+b)(a^2-ab+b^2)=a^3+b^3$$
 (立方和公式)

9.
$$(a-b)(a^2+ab+b^2)=a^3-b^3$$
 (立方差公式)

10.
$$(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=a^3+b^3+c^3-3abc$$

11.
$$(a^2+b^2)(a+b)(a-b)=a^4-b^4$$

九、分式裂项运算

1. 基本公式

$$\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

$$\frac{1}{n(n+k)} = \frac{1}{k} \left(\frac{1}{n} - \frac{1}{n+k} \right)$$

$$\frac{1}{x(x+1)(x+2)} = \frac{1}{2} \left[\frac{1}{x(x+1)} - \frac{1}{(x+1)(x+2)} \right]$$

$$\frac{1}{\sqrt{n+1}+\sqrt{n}} = \sqrt{n+1} - \sqrt{n}$$
 (分母有理化, 再消项)

$$\frac{1}{\sqrt{n+k} + \sqrt{n}} = \frac{1}{k} \left(\sqrt{n+k} - \sqrt{n} \right) (分母有理化,再消项)$$

2. 多个括号求积: 凑平方差公式法

$$(a+1)(a^2+1)(a^4+1)(a^8+1)(a^{16}+1)(a^{32}+1) = \frac{a^{64}-1}{a-1}(a \ne 1)$$

3. 因式定理与余式定理

若整式 f(x) 除以 (x-a) 所得的商式为 h(x), 余式为 r(x),

则有
$$f(x) = (x-a) \cdot h(x) + r(x)$$
,此时 $f(a) = r(a)$.

如果r(x)=0, 称为整式f(x)能被(x-a)整除,或(x-a)是f(x)的因式,

此时 f(a) = 0.

4. 分式重要定理

合比定理	$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a+b}{b} = \frac{c+d}{d} $ (等式左右同加 1)
分比定理	$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a-b}{b} = \frac{c-d}{d} $ (等式左右同减 1)
等比定理	$\frac{a}{b} = \frac{c}{d} = \dots = \frac{m}{k} = \frac{a+c+\dots+m}{b+d+\dots+k} = \frac{a}{b}(b+d+\dots+k \neq 0)$
更比定理	$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{a}{c} = \frac{b}{d}$
反比定理	$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \frac{b}{a} = \frac{d}{c}$

增减性变化关系: 若a > b > 0, m > 0, 则 $\frac{b}{a} < \frac{b+m}{a+m}$.

5. 经典代数运算

已知 $x+\frac{1}{x}=3$,可以推出以下结论:

(1)
$$x^2 + \frac{1}{x^2} = \left(x + \frac{1}{x}\right)^2 - 2 = 7$$

(2)
$$x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)\left(x^2 + \frac{1}{x^2} - 1\right) = 18$$

(3)
$$x - \frac{1}{x} = \pm \sqrt{\left(x + \frac{1}{x}\right)^2 - 4} = \pm \sqrt{5}$$

第二章 应用题

一、比例问题

变化率 =
$$\frac{$$
变化量}{变前量} \times 100% = $\frac{\left| 现值 - 原值 \right|}{\mathbb{R}} \times 100\% = \frac{\left| \mathcal{U} \right|}{\mathbb{R}} \times 100\% = \frac{\left| \mathcal{U}$

注意:变化率包括增长率和下降率,所以上式用绝对值表示.

1. 增加率 p% — \mathbb{R}^{fid} — 现值 a(1+p%); 下降率 p% — \mathbb{R}^{fid} — 现值 a(1-p%).

注意: 一件商品先提价 p% 再降价 p% ,或者先降价 p% 再提价 p% ,回不到原价,应该比原价小,因为 a(1+p%)(1-p%)=a(1-p%)(1+p%)< a .

2. 增减性 (a,b,m>0)

当
$$\frac{a}{b} > 1$$
时,则 $\frac{a+m}{b+m} < \frac{a}{b}$; 当 $0 < \frac{a}{b} < 1$ 时,则 $\frac{a+m}{b+m} > \frac{a}{b}$.

- 3. 恢复原值: 原值先降 p%, 再增 $\frac{p\%}{1-p\%}$ 才能恢复原值; 或者先增 p% 再降 $\frac{p\%}{1+p\%}$ 才能恢复原值.
 - 4. (1) 甲比乙大 $p\% \Leftrightarrow \frac{\mathbb{H} \mathbb{Z}}{\mathbb{Z}} = p\% \Leftrightarrow \mathbb{H} = \mathbb{Z}(1 + p\%);$
 - (2) 甲比乙少p% ⇔甲=乙(1-p%);
 - (3) 甲是乙的p% ⇔甲=乙·p%.

注意: 甲比乙大p% \neq 乙比甲小p% (因为基准量不同), 甲比乙大p% \Leftrightarrow 乙比甲小 $\frac{p\%}{1+p\%}$.

6. 数量÷该数量对应的比例=单位1;单位1×比例=该比例对应的数量.

二、利润问题

1. 利润=售价一进价

2. 利润率 =
$$\frac{利润}{进价} \times 100\% = \frac{售价 - 进价}{进价} \times 100\% = \left(\frac{售价}{进价} - 1\right) \times 100\%$$

- 3. 售价=进价×(1+利润率)=进价+利润
- 4. 总销售额=单个销售额×销量

三、路程问题

- 1. 路程S、速度v、时间t之间的关系: S = vt, $t = \frac{S}{v}$, $v = \frac{S}{t}$.
- 2. 相遇、追及问题
- (1) 直线相遇: 路程=速度和×时间, $S_{H遇} = S_1 + S_2 = v_1 t + v_2 t = (v_1 + v_2)t$.
- (3) 环形相遇n次: n 倍环形周长=速度和×时间, $nC = (v_1 + v_2) \times t$.
- (4) 环形追及n次: n倍环形周长=速度差×时间, $nC = (v_1 v_2) \times t$.
- 3.3 个情境
- (1) 绕圈问题
- ①圆圈型的路程问题(从同一起点同时出发,周长为S,第一次相遇时间为t):

反向运动:
$$S = S_1 + S_2 = v_1 t + v_2 t = (v_1 + v_2)t$$

同向运动:
$$S = S_1 - S_2 = v_1 t - v_2 t = (v_1 - v_2)t$$

②t一定

反向绕圈: $\frac{S_{\parallel}}{S_z} = \frac{v_{\parallel}}{v_z}$; 每相遇一次,二者共同跑完一圈;

同向绕圈: $\frac{S_{\parallel}}{S_{Z}} = \frac{v_{\parallel}}{v_{Z}}$; 每追上一次,快的比慢的多一圈.

(2) 行船问题

设船在静水中的速度为 v_{M} ,水流的速度为 v_{x} ,

(顺水问题) 船在顺流而下时的速度为 $v_{mx} = v_{nn} + v_{nn}$;

(逆水问题) 船在逆流而上时的速度为 $v_{ijk} = v_{kl} - v_{kl}$.

在水中的相遇和追及问题,和一般直线相遇追及公式相同.(因为水速被抵消)

(3) 火车问题

火车经过电线杆/静止的行人: $S = L_{\text{y}_{\text{+}}} = v_{\text{y}_{\text{+}}} t$.

火车经过移动的行人: 相遇 $S=L_{\rm y, p}=\left(v_{\rm y, p}+v_{\rm y}\right)t$; 追及 $S=L_{\rm y, p}=\left(v_{\rm y, p}-v_{\rm y}\right)t$

火车经过桥/隧道: $S = L_{\text{火}\text{\tiny \pm}} + L_{\text{\tiny $\#$}} = v_{\text{\tiny χ\tiny \pm}} t$.

火车经过火车: 相遇 $S = L_{\chi_{\pm 1}} + L_{\chi_{\pm 2}} = (v_{\chi_{\pm 1}} + v_{\chi_{\pm 2}})t$;

追及 $S = L_{\chi_{\pm 1}} - L_{\chi_{\pm 2}} = (v_{\chi_{\pm 1}} - v_{\chi_{\pm 2}})t$.

4. 相对速度(两个物体运动时,可将一个作为参照物,看成相对静止的)

同向运动: $v_{\text{pip}} = v_1 - v_2$.

相向运动: $v_{\text{Hid}} = v_1 + v_2$.

【拓展】: 相对运动

适用范围:两个对象同时运动时,可使用相对运动.

相对路程:选择其中一个对象作为参照物(静止).

相对速度: 迎面而来,速度相加; 同向而去,速度相减.

四、工程问题

1. 基本公式

工作总量=工作效率×工作时间;

工作时间=工作总量÷工作效率;

工作效率=工作总量÷工作时间.

2. 单位"1"法

在处理工程问题时,可以将总的工作量看做"1",若甲单独完成需要m天,乙单独完成需要n天,则有以下结论:

甲的效率为 $\frac{1}{m}$, 乙的效率为 $\frac{1}{n}$;

甲乙合作的效率为 $\frac{1}{m} + \frac{1}{n}$;

甲乙合作完成需要的时间为 $\frac{1}{\frac{1}{m} + \frac{1}{n}} = \frac{mn}{m+n}$.

3. 效率取整

使用条件:题目给出不同个体单独完成的工作时间;做题策略:将工作总量取为工作时间的最小公倍数.

4. 等工作量法

使用条件: 题目给出不同个体合作完成的工作时间:

做题策略:将不同工作主体的工作时间拆开表达;通过对比找到不同主体完成相同工作所用的时间比;放大或缩小相应倍数.

五、交叉法(平均值问题)

1. 总数相等法:

全体人数×全体平均分=男生人数×男生平均分+女生人数×女生平均分

2. 加权平均法:

全体平均分=男生平均分×男生人数占比+女生平均分×女生人数占比

3. 十字交叉法

(例如:全班平均分为80分,男生平均成绩为83分,女生平均成绩为78分)

六、浓度问题

1. 基本公式

溶液=溶质+溶剂

浓度 =
$$\frac{溶质}{溶液} \times 100\% = \frac{溶质}{溶质 + 溶剂} \times 100\%$$

盐水=盐+水

医用酒精=纯酒精+水

2. 蒸发/加水/加浓问题

特征: 仅有溶质或溶剂的量发生变化, 抓不变量, 转换为"比例变化问题".

方法 1: 溶质/溶液守恒列方程.

方法 2: 看作"比例变化问题", 统一不变量.

3. 溶液配比/混合问题

方法1:溶质守恒列方程.

方法 2: 十字交叉法.

- 4. 溶液配比相关的确定性问题
- (1)已知甲、乙、丙三杯盐水溶液的浓度和溶液质量之比,可确定甲、乙、丙混合后的盐水浓度.
- (2)已知甲、乙两溶液按照各种比例关系混合所得溶液浓度间的比例关系,无法确定甲、 乙溶液的浓度.
- (3)已知甲、乙两溶液按照两种不同比例关系混合所得溶液的浓度的具体值,可确定甲、 乙溶液的浓度.
 - 5. 反复注水问题(直接套用公式)
 - (1) 原来浓度为x的溶液a升,倒出b升后,再用水加满,浓度变为 $x\left(1-\frac{b}{a}\right)$,上述操作

重复n次,浓度变为 $x\left(1-\frac{b}{a}\right)^{n}$.

(3)设已知溶液质量为M,每次操作中先倒入 M_0 **g**溶剂(清水),再倒出 M_0 **g**溶液,

重复n次,
$$c_n = c_0 (\frac{M}{M + M_0})^n$$
.

七、集合问题

1. 两个集合

 $A \cup B = A + B - A \cap B$

- 2. 三个集合
- (1) $A \cup B \cup C = A + B + C A \cap B B \cap C A \cap C + A \cap B \cap C$
- (2) 设M 只有一种证,N 只有两种证,P 为三种证齐全:

 $A \cup B \cup C = M + N + P$; A + B + C = M + 2N + 3P; $A + B + C = A \cup B \cup C + N + 2P$.

3. 图示

x, y, z分别表示只会篮球、足球、排球的人数.

a,b,c 分别表示只会篮球排球、足球排球、篮球足球的人数.

m 表示篮球、足球、排球都会的人数.

x+y+z表示只会一种球类的人数.

a+b+c 表示只会两种球类的人数.

x+y+z+a+b+c+m表示至少会一种球类的人数.

a+b+c+m表示至少会两种球类的人数.

八、线性规划问题

1. 线性规划的解题步骤:

总结起来可以分三步,即"三步法":

第一步,根据题目写出限定条件对应的不等式组.

第二步,将不等式转化为方程,解出边界交点.

第三步,若交点为整数,则直接代入目标函数求出最值.若交点不是整数,则讨论取整,然后再代入目标函数求出最值.

2. 交点为整数点

如果交点为整数点,比较简单,则直接代入目标函数分析即可.

3. 交点为非整数点

如果交点为非整数点,需要讨论其附近的两个整数,得到四个点(x 有两种情况,y 有两种情况),再将其中能满足要求的点代入目标函数分析即可.

九、不定方程问题

- 1. 不定方程的求解
- (1) 未知数个数>方程个数的方程,但限定解为整数或正整数.
- (2) 解法: 奇偶性; 整除; 代入验证; 结合不等式.
- 2. 整式不定方程

先根据题目转化为ax+by=c形式的不定方程,然后结合整除、倍数和奇偶特征分析讨论求解.

3. 分式不定方程

对于分式不定方程 $\frac{a}{x} + \frac{b}{y} = c$,先转化为整式方程,进行因式分解,然后讨论取值.

4. 平方不定方程

结合平方的非负性及平方数的特征进行分析求解.

5. 整体取值不定方程

类型不定方程不是分析某一个变量的取值,而是分析某个表达式整体的取值情况,其方法 是先由题得到一个等式,然后对系数做变换,转化为不等式,进而讨论范围得到答案.

十、至多至少问题

1. 分蛋糕原理

对于总量固定的题型,要确定某一部分至少(多)的数量,转化为其他部分最多(少)的数量.

2. 平均原理

先求出所有人全部答对或答错的情况,然后按照标准平均分配,根据分完以后多余的数量 来求解至少或至多问题.

3. 表达式变形

涉及多个变量的表达式问题,其模板是: 若已知 ax + by + cz = d,求 x + y + z 的至少或至多时,将 ax + by + cz = d 变形为: 所求十剩余= d,这样就可以分析至少或至多了.

十一、分段计费问题

- 1. 求费用
- 已知原值,按照所给的区间,分别计算费用,再求总费用.
- 2. 求原值

已知费用求原值的题目要难一些,因为要逆向思维.首先需要求出分界点的数值,判断所给的费用对应的区间,再根据计费方式求解费用.

十二、其它问题

1. 植树问题

非封闭区域: 棵数=段数+1; 封闭区域: 棵数=段数.

2. 年龄问题

同步增长,差值不变.

第三章 函数方程和不等式

一、函数

1. 一元二次函数

(1) 基本公式

一般式: $y=ax^2+bx+c$ ($a\neq 0$)

顶点式:
$$y = a\left(x + \frac{b}{2a}\right)^2 + \frac{4ac - b^2}{4a} \quad (a \neq 0)$$

交点式: $y=a(x-x_1)(x-x_2)$ ($a\neq 0$)

(2) 函数 $y=ax^2+bx+c$ ($a\neq 0$) 的图像和性质

一元二次函数			
函数式	$y = ax^2 + bx + c \ (a \neq 0)$		
a的取值	a > 0	a < 0	
定义域	R	R	
开口方向	开口向上	开口向下	
图像	$\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$	$(-\frac{b}{2a}, \frac{4ac - b^2}{4a})$	
顶点坐标	$\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$		
y轴截距	y=c(当 $c=0$ 时,一元二	二次函数图像过坐标原点)	
与y轴的交点	(0, c)	(0, -c)	
对称轴	关于直线 $x = -\frac{b}{2a}$ 对称(当 $b = 0$ 时,一元二次函数图像关于 y 轴对称)		
单调性	在 $x \le -\frac{b}{2a}$ 上单调递减在 $x > -\frac{b}{2a}$ 上单调递增	在 $x \le -\frac{b}{2a}$ 上单调递增	
最大值与最小值	当 $x = -\frac{b}{2a}$ 时, $y_{\text{最小值}} = \frac{4ac - b^2}{4a}$	当 $x = -\frac{b}{2a}$ 时, $y_{\text{最大值}} = \frac{4ac - b^2}{4a}$	

注意: $y = ax^2$ 是二次函数的特殊形式,即b、c=0 的情况. $y = ax^2$ 关于y轴对称,顶点坐标是 (0,0) .

2. 指数函数与对数函数

(1) 指数函数与对数函数的图像和性质

		指数函数	对数函数
函数式		$y = a^x \left(a > 0, a \neq 1 \right)$	$y = \log_a x \ (a > 0, a \neq 1)$
定义域 R (0,		(0, +∞)	
值域 (0, +∞)		$(0, +\infty)$	R
图像 $ (0,1) $ $ 0 $ $ y = \log_a x $		0 x	
两者	两者关系 $y = a^x = \log_a x$ 互为反函数,两者图像关于 $y = x$ 对称		数,两者图像关于 $y = x$ 对称
奇偶性		非奇	非偶
	1	y > 0 (图像在 x 轴上方)	x > 0 (图像在 y 轴右方)
	2	$a^0 = 1$ 【图像恒过(0, 1)】	log _a 1=0【图像恒过(1,0)】
		$a > 1 \text{ H}, a^x \begin{cases} > 1, (x > 0) \\ = 1, (x = 0) \\ < 1, (x < 0) \end{cases}$	$a > 1$ Fig. $\log_a x \begin{cases} > 0, (x > 1) \\ = 0, (x = 1) \\ < 0, (0 < x < 1) \end{cases}$
性质	3	0 < a < 1 F , $a^x \begin{cases} <1, (x > 0) \\ =1, (x = 0) \\ >1, (x < 0) \end{cases}$	0 < a < 1 时, $\log_a x \begin{cases} <0, (x > 1) \\ =0, (x = 1) \\ >0, (0 < x < 1) \end{cases}$
	4	a>1时,在R上是单调递增 0 <a<1时,在r上是单调递减< th=""><th><i>a</i> > 1 时,在 (0,+∞) 上是单调递增</th></a<1时,在r上是单调递减<>	<i>a</i> > 1 时,在 (0,+∞) 上是单调递增
		0〜は〜1+1, 上八十 yg 25 yg	0 < a < 1 时,在(0,+∞)上是单调递减
	5	a>1时,底数越大,图像越靠近y轴 0 <a<1时,底数越小,图像越靠近y轴< td=""></a<1时,底数越小,图像越靠近y轴<>	a>1时,底数越大,图像越靠近x轴 0 <a<1时,底数越小,图像越靠近x轴< td=""></a<1时,底数越小,图像越靠近x轴<>

(2) 指数函数运算公式

$a^m \cdot a^n = a^{m+n} \qquad a^m \div a^n = a^{m-n} \qquad (a^m)^n = a^m$	$(ab)^n = a^n b^n$	$\left(\frac{b}{a}\right)^n = \frac{b^n}{a^n}$	$a^0 = 1 \ (a \neq 0)$
--	--------------------	--	------------------------

$$a^{rac{n}{m}}=\sqrt[m]{a^n}$$
,特别的 $\left(\sqrt[n]{a}
ight)^n=\sqrt[n]{a^m}$, $\sqrt[np]{a^{mp}}=\sqrt[n]{a^m}$ $\left(a\geq 0
ight)$

$$a^{-n} = \frac{1}{a^n}$$
,特别的 $\left(\frac{b}{a}\right)^{-n} = \left(\frac{a}{b}\right)^n$

(3) 对数函数运算公式

设a>0, $a\neq 1$, b,m,n>0, 那么有如下计算法则:

同底对数	$\log_a m + \log_a n = \log_a mn \; ; \log_a m - \log_a n = \log_a \frac{m}{n}$
幂的对数	$\log_a m^n = n \log_a m; \log_{a^m} b^n = \frac{n}{m} \log_a b$
换底公式	$\log_a b = \frac{\log_c b}{\log_c a}, - 般 c \mathbf{N} 10 \mathbf{Q} e$
对数恒等式	$a^{\log_a n} = n \; ; \log_a a^m = m$

二、一元二次方程

1. 基本性质

一般形式	$ax^2 + bx + c = 0 \ (a \neq 0)$
一般形式的解	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \left(\Delta = b^2 - 4ac \ge 0 \right)$
根的判别式	$\Delta > 0$ 有两个不相等的实数根 $x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}, x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ $\Delta = b^2 - 4ac \begin{cases} \Delta = 0 \end{cases}$ 有两个相等的实数根 $x_1 = x_2 = -\frac{b}{2a}$ $\Delta < 0$ 没有实数根
根与系数关系	$x_1 + x_2 = -\frac{b}{a}$; $x_1 x_2 = \frac{c}{a}$
(韦达定理)	a , $\alpha_1 \alpha_2 - a$, $\alpha_1 \alpha_2 - a$

2. 运算公式 (韦达定理拓展)

$$\frac{1}{x_1} + \frac{1}{x_2} = \frac{x_1 + x_2}{x_1 x_2} = -\frac{b}{c}$$

$$\frac{1}{x_1^2} + \frac{1}{x_2^2} = \frac{(x_1 + x_2)^2 - 2x_1x_2}{(x_1x_2)^2} = \frac{b^2 - 2ac}{c^2}$$

$$|x_1 - x_2| = \sqrt{(x_1 + x_2)^2 - 4x_1x_2} = \sqrt{\frac{b^2}{a^2} - \frac{4c}{a}} = \frac{\sqrt{b^2 - 4ac}}{|a|}$$

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2 = \frac{b^2 - 2ac}{a^2}$$

$$x_1^2 - x_2^2 = (x_1 + x_2)(x_1 - x_2)$$

$$x_1^3 + x_2^3 = (x_1 + x_2)(x_1^2 + x_2^2 - x_1x_2)$$

- 3. 两根的符号情况 $ax^2 + bx + c = 0 (a \neq 0)$
- (1) 方程有两个正根 $\begin{cases} x_1 + x_2 > 0 \\ x_1 x_2 > 0 \\ \Delta \ge 0 \end{cases}$.
- (2) 方程有两个负根 $\begin{cases} x_1+x_2<0\\ x_1x_2>0\\ \Delta\geq 0 \end{cases}$, 可简化为a,b,c同号且 $\Delta\geq 0$.
- (3) 方程有一正根一负根 $\begin{cases} x_1x_2 < 0 \\ \Delta > 0 \end{cases}$,可简化为a,c异号即可.

若再要求 | 正根 | > | 负根 | ,有 $\begin{cases} x_1 + x_2 > 0 \\ x_1 x_2 < 0 \\ \Delta > 0 \end{cases}$.

三、不等式

- 1. 基本性质
 - (1) 传递性: $a > b, b > c \Rightarrow a > c$.
 - (2) 同向相加性: $\begin{cases} a > b \\ c > d \end{cases} \Rightarrow a + c > b + d$.
 - (3) 同向皆正相乘性: $\begin{cases} a > b > 0 \\ c > d > 0 \end{cases} \Rightarrow ac > bd$.

(4) 皆正倒数性: $a > b > 0 \Rightarrow \frac{1}{b} > \frac{1}{a} > 0$

(5) 皆正乘 (开) 方性: $a > b > c \Rightarrow a^n > b^n > 0(n \in \mathbb{Z}_+)$

2. 分式不等式

$$\frac{f(x)}{g(x)} > 0 (<0) \Leftrightarrow f(x) \cdot g(x) > 0 (<0).$$

$$\frac{f(x)}{g(x)} \ge 0 (\le 0) \Leftrightarrow f(x) \cdot g(x) \ge 0 (\le 0) \coprod g(x) \ne 0.$$

3. 一元二次不等式

	Δ>0	Δ=0	Δ<0
$ax^2 + bx + c = 0 \ (a > 0)$ 的根	有两相异实根	有两相等实根	无实根
их тох те = 0 (и > 0) надак	$x_1, x_2 \big(x_1 < x_2 \big)$	$x_1 = x_2 = -\frac{b}{2a}$	儿头似
$ax^{2} + bx + c > 0 \ (a > 0)$ 的解集	$\left\{ x \middle x < x_1 \exists \vec{\Sigma} x > x_2 \right\}$	$\left\{x\middle x\neq-\frac{b}{2a}\right\}$	R
$ax^2 + bx + c < 0 \ (a > 0)$ 的解集	$\left\{ x \middle x_1 < x < x_2 \right\}$	Ø	Ø

四、均值不等式

1. 定义

当 x_1, x_2, \cdots, x_n 为 n 个 正 实 数 时 , 他 们 的 算 术 平 均 数 不 小 于 几 何 平 均 数 , 即 $\frac{x_1 + x_2 + \cdots + x_n}{n} \geq \sqrt[n]{x_1 x_2 \cdots x_n} \text{ , 当且仅当 } x_1 = x_2 = \cdots = x_n \text{ 时 , 等号成立.}$

成立条件:一正二定三相等

- 一正: 指的是所有数据均为正数.
- 二定:和定积最大;积定和最小.
- 三相等: 当且仅当 $x_1 = x_2 = \cdots = x_n$ 时, 等号成立.
- 2. 常见形式

(1)
$$a,b \in R^+ \Rightarrow a+b \ge 2\sqrt{ab}, ab \le \left(\frac{a+b}{2}\right)^2$$
, 当且仅当 $a=b$ 时等号成立.

- (2) $a,b,c \in \mathbb{R}^+ \Rightarrow a+b+c \ge 3\sqrt[3]{abc},abc \le \left(\frac{a+b+c}{3}\right)^3$,当且仅当a=b=c时等号成立
- (3) $a,b \in R \Rightarrow a^2 + b^2 \ge 2ab, ab \le \frac{a^2 + b^2}{2}$, 当且仅当a = b 时等号成立.
- (4) $a + \frac{1}{a} \ge 2(a > 0)$ (当且仅当a = 1时等号成立); $a + \frac{1}{a} \le -2(a < 0)$ (当且仅当a = -1时等号成立)
 - 3. 特殊
 - (1) 伯努利不等式: 设 $n \in N^+, n > 1, t > 0$, 则 $t^n \ge 1 + n(t-1)$, 当且仅当t = 1时等号成立.
- (2) 柯西不等式: 已知实数 a,b,c,d,则 $(a^2+b^2)(c^2+d^2) \ge (ac+bd)^2$, $\sqrt{(a^2+b^2)(c^2+d^2)} \ge |ac+bd|$,当且仅当 ad=bc 时等号成立.

第四章 平面几何

一、三角形

- 1. 三角形的边和角
- (1) 任意两边之和大于第三边,即a+b>c; 任意两边之差小于第三边,即a-b<c.
- (2) 三角形内角之和 180°, 外角等于不相邻的两个内角之和.
- (3) 三角形中大边对大角,大角对大边.
- (4) 直角三角形中,30°角的对应边是斜边的一半,三边之比为 $1:\sqrt{3}:2$.

直角三角形中,一个内角为 45° ,三边之比为 $1:1:\sqrt{2}$.

(5) 在锐角三角形中, 最长边的平方<剩余两边的平方和.

在直角三角形中,最长边的平方=剩余两边的平方和(勾股定理).

在钝角三角形中,最长边的平方>剩余两边的平方和.

2. 三角形的性质及相关公式

名称	一般三角形	直角三角形	等腰三角形	等边三角形
图形				B A a C
相关内容及公	$S = \frac{1}{2}ah$ $S = \frac{1}{2}ab\sin C$ $= \frac{1}{2}bc\sin A$ $= \frac{1}{2}ac\sin B$	(1) 勾股定理: $a^2 + b^2 = c^2$ (2) 常用的勾股数: (3, 4, 5); (6, 8, 10); (5, 12, 13); (7, 24, 25); (8, 15, 17)	等腰三角形的顶角平 分线、底边上的中线, 底边上的高重合,即 "三线合一"	$h = \frac{\sqrt{3}}{2}a$ $S = \frac{\sqrt{3}}{4}a^2$
式	$=\frac{-ac\sin B}{2}$	(3) 20) 21)		

3. 三角形的四心

名称	内心	外心	重心	垂心
定	内切圆的圆心;	外接圆的圆心;	底边中线的交	底边高线
义	顶角的角平分线的交点	底边中垂线的交点	点	的交点

名称	内心	外心	重心	垂心
图形			B D C	B C
相关性质	(1) 内心到各边距离相等; $S = \frac{1}{2}(a+b+c)r$ $= \frac{1}{2}rC_{\text{周长}}$ (3) $Rt\Delta$ 中: $r = \frac{a+b-c}{2}$	(1)外心到各顶点距离相等; (2)等边△的外接圆与内切 圆半径之比: $\frac{R}{r} = \frac{2}{1}$	$\frac{AG}{GD} = \frac{BG}{GE} = \frac{CG}{GF} = \frac{2}{1}$	/

4. 三角形全等与相似

(1) 全等、相似的判定

	全等的判定	相似的判定
SSS(边边边)	三边对应相等的三角形全等	对应边成比例,对应角相等
SAS (边角边)	两边及其夹角对应相等的三角形全等	刘应及成比例,刘应用相等
ASA (角边角)	两角及其夹边对应相等的三角形全等	
AAS(角角边)	两角及其一角的对边对应相等的三角形全 等	只需两对应角相等
HL (斜边、直角边)	斜边及一条直角边相等的直角三角形全等	只需一锐角相等

(2) 相似结论

相似三角形(相似图形)对应边的比相等(即为相似比). $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2} = k$.

相似三角形(相似图形)的高、中线、角平分线的比也等于相似比.

相似三角形(相似图形)的周长比等于相似比. $\frac{C_1}{C_2} = k$.

相似三角形(相似图形)的面积比等于相似比的平方. $\frac{S_1}{S_2} = k^2$.

3. 相似模型

3. 作似笑生	
图	模型
B C	A 字型: ΔADE~ΔABC
c B C D	8 字型: ΔABO~ΔDCO
	梯形: ΔADO~ΔCBO
M S_1 S_2 S_3 S_4 S_4 S_5 S_4 S_5 S_5 S_6 S_6 S_6 S_6	$\frac{AD}{CB} = \frac{AO}{CO} = \frac{DO}{BO} = \frac{a}{b} = \frac{S_1}{S_3} = \frac{S_4}{S_2}$
$B = \frac{S_2}{b}$	梯形面积三条性质: $\frac{S_1}{S_2} = \left(\frac{a}{b}\right)^2$, $S_3 = S_4$, $S_1S_2 = S_3S_4$
	$MN // AD, MN = \frac{2ab}{a+b}$ (调和平均数)
A C B D E	楼梯图形: ΔABC~ΔCDE
A D B A B B B B	双垂直图形: ΔACD~ΔCBD~ΔABC ΔADE~ΔABC

(4) (拓展) 余弦定理与鸟头定理

鸟头定理:	余弦定理	
B C	B C	a
$\frac{S_{\triangle ADE}}{S_{\triangle ABC}} = \frac{\frac{1}{2} \cdot AD \cdot AE \cdot \sin \angle A}{\frac{1}{2} \cdot AB \cdot AC \cdot \sin \angle A}$ $= \frac{AD \cdot AE}{AB \cdot AC}$	$\frac{S_{\triangle ADE}}{S_{\triangle ABC}} = \frac{\frac{1}{2} \cdot AD \cdot AE \cdot \sin \angle DAE}{\frac{1}{2} \cdot AB \cdot AC \cdot \sin \angle BAC}$ $= \frac{AD \cdot AE}{AB \cdot AC}$	$a^{2} = b^{2} + c^{2} - 2bc \cos A$ $b^{2} = a^{2} + c^{2} - 2ac \cos B$ $c^{2} = a^{2} + b^{2} - 2ab \cos C$ $a^{2} + b^{2} = c^{2} \Leftrightarrow 直角\Delta$ $a^{2} + b^{2} > c^{2} \Leftrightarrow 锐角\Delta$ $a^{2} + b^{2} < c^{2} \Leftrightarrow 钝角\Delta$

二、四边形

- 1. 边与角
- (1) n边形内角和: (n-2)×180°.
- (2) n 边形对角线条数: $\frac{(n-3)\times n}{2}$.
- 2. 四边形的性质及相关公式

名称	图形	相关内容及公式
平行四边形	S_1 S_2 E S_3 C	 (1) 定义: 一组对边平行且相等的四边形叫平行四边形 (2) 性质: ①两条对角线 AC 和 BD 互相平分 ②两条对角线 AC 和 BD 将整个平行四边形面积四等分 (3) 公式: S_{平行四边形} = 底边×高
矩形		 (1) 定义:有一个角是 90°的平行四边形叫做矩形 (2) 性质: ①平行四边形的所有性质都满足 ②矩形的对角线相等 (3) 公式: C_{周长} = 2·(a+b); S_{面积} = ab

名称	图形	相关内容及公式
菱形	$A \xrightarrow{D} \underbrace{I_1}_{B} C$	(1) 定义:有一组邻边相等的平行四边形叫做菱形 (2) 性质: ①两条对角线 AC 和 BD 互相垂直且平分 ②菱形面积等于对角线乘积的一半 (3) 公式: $S_{\S R} = \frac{1}{2} \cdot l_1 \cdot l_2$
正方形		(1) 定义: 四条边都相等、四个角都是直角的四边形是正方形 (2) 性质: ①对角线互相垂直,对角线相等且互相平分,每条对角线平分一组对角 ②既是中心对称图形,又是轴对称图形(有四条对称轴) ③正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是 45° ④正方形的两条对角线把正方形分成四个全等的等腰直角三角形 ⑤正方形具有平行四边形、菱形、矩形的一切性质与特性 (3) 公式: $C_{\text{周长}} = 4a$; $S_{\text{面积}} = a^2$; 对角线 $AC = BD = \sqrt{2}a$
梯形		(1) 定义: 只有一组对边平行的四边形叫梯形 (2) 性质: 两腰中点连线 EF 平行于上底和下底 (3) 公式: $EF = \frac{1}{2}(a+b)$; $S_{\mbox{\tiny \bar{k}}\mbox{\tiny \bar{k}}\mbox{\tiny \bar{k}}\mbox{\tiny $\mbox{\tiny \bar{k}}$}\mbox{\tiny \bar{k}}\mbox{\tiny $\mbox{\tiny \bar{k}}$}\mbox{\tiny $\mbox{\tiny $\mbox{\tiny \bar{k}}$}\mbox{\tiny $\mbox{\tiny \bar{k}}$}\mbox{\tiny $\mbox{\tiny $\mbox{\tiny \bar{k}}$}\mbox{\tiny $\mbox{\tiny $\mbox{\tiny \bar{k}}$}\tiny $\mbox{\tiny $\mbox{$
梯 形 (拓 展)	$\begin{array}{c c} D & a & C \\ \hline S_1 & S_2 & S_4 \\ \hline B & B \end{array}$	(1) $\frac{S_1}{S_2} = \left(\frac{a}{b}\right)^2$ (2) $S_3 = S_4$ (3) $S_1 S_2 = S_3 S_4$

三、圆与扇形

1. 定义

把圆弧长度和半径的比值称为对一个圆周角的弧度.

- 2. 度与弧度及常用的换算
- (1) 度与弧度的换算关系: 1 弧度 = $\frac{180^{\circ}}{\pi}$; 1° = $\frac{\pi}{180^{\circ}}$ 弧度.
- (2) 常用的换算:

角度	30°	45°	60°	90°	120°	150°	180°	360°
弧度	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{5\pi}{6}$	π	2π

3. 圆中的基本性质

(1) 弦: 过点 P 的最长弦为直径, 最短弦为过点 P 垂直于直径的弦.

(2) 同一段弦对应的圆周角相同,即 $\angle ACB = \angle ADB$;

同一段弦对应的圆心角是圆周角的 2 倍, 即 $\angle AOB = 2\angle ACB = 2\angle ADB$;

直径对应的圆周角为 90°, 即 $\angle ACB = \angle ADB = 90$ °.

4. 垂径定理(重要)

平面、立体、解析几何中,解决圆与弦(直线)的问题时使用,构造直角三角形,利用勾股定理解决问题.

直径 MN 平分且垂直 AB: $r^2 = d^2 + x^2$.

5. 圆、扇形、弓形

	• • • • • • • • • • • • • • • • • • • •	
	C	(1) 圆心为 0, 半径为 r
		(2) 公式: $C_{\text{周长}} = 2 \cdot \pi \cdot r$; $S_{\text{M}} = \pi \cdot r^2$
圆	$A \longrightarrow B$	(3)圆心角与圆周角:
		$\angle COB$ 为圆心角, $\angle CAB$ 为圆周角;
		圆心角等于圆周角的 2 倍,即 $\angle COB = 2 \angle CAB$
	C	(1) α为扇形角的角度, r 为扇形半径
٠,		(2) 公式:
扇	4 0	扇形弧长: $l = \frac{\alpha^{\circ}}{360^{\circ}} \cdot 2 \cdot \pi \cdot r$
形		
	`/	扇形面积: $S_{\scriptscriptstyle{eta \mathbb{R}}} = \frac{lpha^{\circ}}{360^{\circ}} \cdot \pi \cdot r^2 = \frac{1}{2} \cdot l \cdot r$
	c	
弓	4 0	公式: $S_{ m m g}_{ m H} = S_{ m ar{g}RAOC} - S_{\Delta AOC}$
形		

6. 拓展

相交弦定理	$A \underbrace{O \cdot O \cdot D}_{C \xrightarrow{P} B}$	$PA \cdot PB = PC \cdot PD$
切割线定理	P A B	$PT^2 = PA \cdot PB$
割线定理	P C O B	$PA \cdot PB = PC \cdot PD$

第五章 立体几何

一、长方体

设3条相邻的棱边长是a,b,c.

- 1. 全面积: F = 2(ab + bc + ac).
- 2. 体积: V = abc.
- 3. 体对角线: $d = \sqrt{a^2 + b^2 + c^2}$.
- 4. 所有棱长和: l = 4(a+b+c).

当a=b=c时的长方体称为正方体,且有 $S_{\pm}=6a^2, V=a^3, d=\sqrt{3}a$.

二、柱体

1. 柱体的分类

圆柱: 底面为圆的柱体称为圆柱.

棱柱: 底面对多边形的柱体称为棱柱, 底面为n边形的就称为n棱柱.

2. 柱体的一般公式

无论是圆柱还是棱柱,侧面展开图均为矩形,其中一边长为底面的周长,另一边为柱体的高.

侧面积: S =底面周长×高(展开矩形的面积).

体积: $V = 底面积 \times 高$.

3. 对于圆柱的公式

设高为h,底面半径为r.

体积: $V = \pi \cdot r^2 \cdot h$.

侧面积: $S = 2 \cdot \pi \cdot r \cdot h$ (其侧面展开图为一个长为 $2 \cdot \pi \cdot r$, 宽为h的长方形).

全面积: $F = S_{\emptyset} + 2S_{\mathbb{R}} = 2 \cdot \pi \cdot r \cdot h + 2 \cdot \pi \cdot r^2$.

三、球

1. 面积: $S_{\text{\tiny HB}} = 4\pi R^2$ (R为球半径).

2. 体积: $V_{\text{\tiny fl}} = \frac{4}{3} \pi R^3 \ (R 为球半径)$.

四、位置关系

设圆柱底面半径为r,球半径为R,圆柱的高为h.

几何体	内切球	外接球
长方体	无, 只有正方体才有	体对角线 <i>l</i> = 2 <i>R</i>
正方体	棱长 a = 2R	体对角线 $l=2R(2R=\sqrt{3}a)$
圆柱	只有轴截面是正方形的圆柱才有,此时有 $2r = h = 2R$	$\sqrt{h^2 + (2r)^2} = 2R$

(补充):

外接球(
半	正方体	长方体	圆柱	正三棱柱
径	(边长为a)	(三边长分别为 a,b,c)	(底面半径为 r , 高为 h)	(边长为a, 高为h)
为R)	$R = \frac{\sqrt{3}a}{2}$	$R = \frac{\sqrt{a^2 + b^2 + c^2}}{2}$	$(2R)^2 = (2r)^2 + h^2$	$R^2 = \left(\frac{\sqrt{3}a}{3}\right)^2 + \left(\frac{h}{2}\right)^2$

第六章 数列

一、等差数列

1. 通项公式: $a_n = a_1 + (n-1)d$; $a_m = a_n + (m-n)d$.

2. 前
$$n$$
 项和公式: $S_n = \frac{n(a_1 + a_n)}{2} = na_1 + \frac{n(n-1)}{2}d$.

3. 函数特征:
$$S_n = \frac{d}{2}n^2 + \left(a_1 - \frac{d}{2}\right)n$$
.

注意: 当公差 d 不为 0 时,可将其抽象成关于 n 的二次函数.

4. 性质

(1) a,b,c 成等差数列 $\rightarrow b$ 是 a和c 的等差中项 $\rightarrow 2b = a + c$.

(2) 若
$$m, n, p, q \in Z^+$$
, $m+n=p+q$, 则 $a_m+a_n=a_p+a_q$; 若 $m+n=2p$, 则 $a_m+a_n=2a_p$.

(3) 若 S_n 为等差数列的前 n 项和,则 S_n , $S_{2n}-S_n$, $S_{3n}-S_{2n}$, … 仍为等差数列,其公差 n^2d .

(4)
$$S_n = na_{\frac{(n+1)}{2}}$$
, $\emptyset \text{ yn } S_7 = 7a_{\frac{(7+1)}{2}} = 7a_4$.

(5) 两个等差数列前
$$n$$
 项和之比有: $\frac{S_{2n-1}}{T_{2n-1}} = \frac{a_n}{b_n}$.

二、等比数列

1. 通项公式: $a_n = a_1 q^{n-1}$; $a_m = a_n q^{m-n}$.

2. 前
$$n$$
 项和公式: $S_n = \begin{cases} na_1 & (q=1) \\ \frac{a_1(1-q^n)}{1-q} = \frac{a_1-a_nq}{1-q} & (q \neq 0$ 且 $q \neq 1$).

3. 函数特征:
$$S_n = \frac{a_1(1-q^n)}{1-q} = \frac{a_1}{1-q} - \frac{a_1}{1-q} \cdot q^n = B - Bq^n (q \neq 1)$$

4. 性质

(1) a,b,c 成等比数列 $\rightarrow b$ 是 a和c 的等比中项 $\rightarrow b^2 = ac$.

(3) 若 S_n 为等差比列的前n项和,则 S_n , $S_{2n}-S_n$, $S_{3n}-S_{2n}$,···仍为等比数列,其公比 q^n .

(4)
$$\stackrel{\underline{}}{=} q \neq 1 \text{ ft}, \quad \frac{S_m}{S_n} = \frac{1 - q^m}{1 - q^n}.$$

(5) 无穷等比数列所有项之和: $S = \frac{a_1}{1-q}(|q|<1)$.

三、 S_n 与 a_n 的关系

第七章 解析几何

一、平面直角坐标系

- 1. 点在平面直角坐标系中的表示: P(x,y).
- 2. 两点距离公式: 两点 $A(x_1, y_1)$ 与 $B(x_2, y_2)$ 之间的距离 $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$.
- 3. 中点坐标公式: 两点 $A(x_1, y_1)$ 与 $B(x_2, y_2)$ 的中点坐标 $\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$.
- 4. 点到直线的距离: 点 $P(x_1, y_1)$ 到直线 Ax + By + C = 0 的距离为 d,则 $d = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}$.
- 5. 两平行直线之间的距离:

设 l_1 : $ax + by + c_1 = 0$; l_2 : $ax + by + c_2 = 0$,那么 l_1 与 l_2 之间的距离为 $d = \frac{\left|c_1 - c_2\right|}{\sqrt{a^2 + b^2}}$.

二、平面直线的倾斜角和斜率

- 1. 倾斜角: 直线与x轴正方向所成的夹角, 称为倾斜角, 记为 α . 其中 $\alpha \in [0, \pi)$.
- 2. 斜率: 倾斜角的正切值为斜率,记为 $k = \tan \alpha, \left(\alpha \neq \frac{\pi}{2}\right)$.

倾斜角 α	0°	30° $(\frac{\pi}{6})$	45° $(\frac{\pi}{4})$	60° $(\frac{\pi}{3})$	90° $(\frac{\pi}{2})$	$\frac{120^{\circ}}{(\frac{2\pi}{3})}$	135° $(\frac{3\pi}{4})$	150° $(\frac{5\pi}{6})$	180° (2π)
斜率 $k = \tan \alpha$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	不存在	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	8

3. 两点斜率公式: 设直线 l 上有两个点 $P_1(x_1,y_1), P_2(x_2,y_2)$, 则 $k = \frac{y_2 - y_1}{x_2 - x_1}, (x_1 \neq x_2)$.

三、直线方程

名	已知条件	方程形式	说明
称	山州水田	刀性沙八	סקי שו
点			
斜	直线过点 $P_1(x_1,y_1)$ 和斜率 k	$y - y_0 = k(x - x_0)$	不包括 y 轴和平行于 y 轴的直线
式			
斜			
截	斜率k和直线在y轴的截距b	y = kx + b	不包括 y 轴和平行于 y 轴的直线
式			
截	古外方,,抗山山外栽取目。(2		不匀长从过度上的古外以及亚
距	直线在 x 轴上的截距是 $a(a \neq 0)$	$\frac{x}{a} + \frac{y}{b} = 1$	不包括经过原点的直线以及平
式	直线在 y 轴上的截距是 b ($b≠0$)	a b	行于坐标轴的直线
两	直线过点 $P_1(x_1,y_1)$ 和点		7 6 4 4 1 1 4 4 5 5 7 7 4 1 1 4 1
点	T 3/ 2/ // -[(·[j,j]) / //	$\frac{y-y_1}{y_1} = \frac{x-x_1}{y_1}$	不包括坐标轴和平行于坐标轴 ***
式	$P_2(x_2, y_2)(x_1 \neq x_2, y_1 \neq y_2)$	y_2-y_1 x_2-x_1	的直线
			<i>化同一及古州如司川军出出</i> 44
般	A、B不同时为零	Ax+By+C=0	任何一条直线都可以写成此种 _{EX +}
式			形式

四、圆的方程

1. 圆的标准方程

 $(x-a)^2+(y-b)^2=r^2$, 其中 (a, b) 是圆心的坐标, r是圆的半径.

2. 圆的一般方程

$$x^2 + y^2 + ax + by + c = 0.$$

配方后得到:
$$\left(x+\frac{a}{2}\right)^2+\left(y+\frac{b}{2}\right)^2=\frac{a^2+b^2-4c}{4}$$
, 要求 $a^2+b^2-4c>0$. 圆心坐标 $\left(-\frac{a}{2},-\frac{b}{2}\right)$,

半径
$$r = \frac{\sqrt{a^2 + b^2 - 4c}}{2} > 0$$
.

五、位置关系

1. 两条直线位置关系

	斜截式	一般式
两条直线的位置关系	$l_1: y = k_1 x + b_1$	$l_1: \ a_1 x + b_1 y + c_1 = 0$
	l_2 : $y = k_2 x + b_2$	$l_2: \ a_2x + b_2y + c_2 = 0$
平行	$l_1 // l_2 \iff k_1 = k_2, \ b_1 \neq b_2$	$l_1 // l_2 \Leftrightarrow \frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$
相交	$k_1 \neq k_2$	$\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$
垂直	$l_1 \perp l_2 \Leftrightarrow k_1 k_2 = -1$	$l_1 \perp l_2 \Leftrightarrow \frac{a_1}{b_1} \cdot \frac{a_2}{b_2} = -1 \Leftrightarrow a_1 a_2 + b_1 b_2 = 0$

2. 点与圆的位置关系

点
$$P(x_p, y_p)$$
 , 圆 $(x-x_0)^2 + (y-y_0)^2 = r^2$, 则 $(x_p-x_0)^2 + (y_p-y_0)^2$ $\begin{cases} < r^2,$ 点在圆内. $= r^2,$ 点在圆上. $> r^2,$ 点在圆外.

3. 直线与圆位置关系

直线l: y=kx+b; 圆 $0: (x-x_0)^2+(y-y_0)^2=r^2$,d为圆心 (x_0, y_0) 到直线l的距离.

直线与圆位置关系	图形	成立条件(几何表示)
直线与圆相离	0.	d > r
直线与圆相切	O	d = r
直线与圆相交		d < r

注意:在直线与圆的位置关系中,常常用到一个重要的三角形 RtΔOAB 做计算.

4. 圆与圆位置关系

圆
$$O_1$$
: $(x-x_1)^2+(y-y_1)^2=r_1^2$; 圆 O_2 : $(x-x_2)^2+(y-y_2)^2=r_2^2$

(设 $r_1 > r_2$); d为圆心 (x_1, y_1) 与 (x_2, y_2) 的圆心距.

两圆位置关系	图形	成立条件 (几何表示)	公共内切线条数	公共外切线条数
外离	O1• • O2	$d > r_1 + r_2$	2	2
外切	O1• • O2	$d = r_1 + r_2$	1	2
相交	O1• O2	$r_1 - r_2 < d < r_1 + r_2$	0	2
内切	O2 •O1	$d = r_1 - r_2$	0	1
内含	$O_2^{\bullet \bullet O_1}$	$d < r_1 - r_2$	0	0

5. 对称问题(五种基本对称)

(1) 点关于点对称

对称点为中点,利用中点坐标公式求解.

$$P(x,y)$$
 $A(x_0,y_0)$ $P'(2x_0-x,2y_0-y)$

(2) 点关于直线对称

A. pp'⊥l即斜率互为"负倒数".

B. p 和 p'的中点 A 在对称轴上即中点 A 满足对称轴方程.

(3) 直线关于点对称

A. l//l', 即 l': $ax + by + c_1 = 0$ (这里只含有 c_1 一个未知数).

B. 对称点 $A\left(x_{0},y_{0}\right)$ 到直线 l 和 l' 距离相等(再利用点到直线距离公式可求 c_{1}).

(4) 直线关于直线对称

A. 三线共点,联立l与l,求出点A坐标,其也满足l2方程.

B. 在 l_1 上任取一点B, 求点B关于直线l对称的点B', 点B'也满足 l_2 方程.

(5) 平行直线对称

将对称轴视为"中点",巧用中点坐标公式求解, $l^{\prime\prime}:~ax+by+(2c_{\scriptscriptstyle 0}-c)=0$.

(6) 拓展——五种特殊对称

对称方式	点 $p(x_0, y_0)$	直线 l : $ax + by + c = 0$	规律
关于 x 轴对称	$p'(x_0, -y_0)$	l': ax - by + c = 0	将y换成-y
关于 y 轴对称	$p'(-x_0, y_0)$	l': -ax + by + c = 0	将 x 换成 - x
关于原点对称	$p'(-x_0,-y_0)$	l': ax + by - c = 0	将 x 换成 - x , 将 y 换成 - y
关于 y = x 对称	$p'(y_0,x_0)$	l': ay + bx + c = 0	将 <i>x</i> 与 <i>y</i> 交换
关于 y = -x 对称	$p'(-y_0,-x_0)$	l': ay + bx - c = 0	将 x 换成 - y ,将 y 换成 - x

第八章 排列组合

一、组合数

1. 基本公式

- 2. 组合数的性质
- $(1) \quad C_n^m = C_n^{n-m}$
- (2) $C_{n+1}^m = C_n^m + C_n^{m-1}$

$$(3) C_n^x = C_n^y \Rightarrow x = y x + y = n$$

(4)
$$C_n^0 = C_n^n = 1$$
; $C_n^1 = C_n^{n-1} = n$

(5)
$$C_n^0 + C_n^1 + C_n^2 + \dots + C_n^n = 2^n$$

(6)
$$C_n^0 + C_n^2 + C_n^4 + \dots = C_n^1 + C_n^3 + C_n^5 + \dots = 2^{n-1}$$

二、排列数

1. 基本公式

$$P_n^m = A_n^m = n(n-1)(n-2)\cdots(n-m+1) = \frac{n!}{(n-m)!}$$

$$A_n^n = n(n-1)(n-2)\cdots 3\cdot 2\cdot 1 = n!$$

$$A_n^m = n(n-1)(n-2)\cdots(n-m+1) = \frac{n!}{(n-m)!} = C_n^m \cdot m!$$

三、常用方法及例题

- 1. 相邻问题的捆绑法
- 【例 1】6名同学排成一排,其中甲乙两人必须在一起的,不同排法共有多少种?
- 【解析】因甲、乙两人要排在一起,故将甲乙两人捆在一起,视做一人,与其余 4 人全排列. 共有 A_5^5 种方法,但甲乙两人之间的排列有 A_2^2 种方法,由分布乘法原理可知,共有 $A_5^5 \times A_2^2$ = 240 种不同的排法.
 - 2. 不相邻问题的插空法
 - 【例 2】6人站成一排,甲、乙、丙任何两人都不相邻的排法共有多少种?
- 【解析】第 1 步,除甲乙丙外,其他三个人的排法有 A_3^3 种;第 2 步,三个人共形成 4 个空,让甲乙丙三个人在这 4 个空中任选三个进行排列,其排法有 A_4^3 种,由分步乘法计数原理的共有 $A_3^3 \times A_4^3$ 种.
 - 3. 错排问题穷举法
- 2个元素错排共有1种排法;3个元素错排共有2种排法;4个元素错排共有9种排法;5个元素错排共有44种排法.
- 【例 3】小明带了1张5元、4张2元的纸币和8枚1元的硬币,现在他要买一本8元的小说,则他有____种付钱方式.
 - 【解析】按照题目的要求,采用枚举可以把所有的排法列出,具体如下:
- 8=5+2+1=5+1+1+1=2+2+2+2+2+2+1+1=2+2+1+1+1+1+1=2+1+1 +1+1+1+1=1+1+1+1+1+1+1+1+1. 一共7种.
 - 4. 定序问题
- 【例 4】某班新年联欢会,原定的 5 个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目当中,那么不同插法的总数为多少?
- 【解析】方法一:新增加的节目分别记为甲和乙,要完成这一事件,可分成两步:第1步把甲插入共有6种方法,第2步把乙插入共有7种方法,应用分步乘法计数原理可知共用6×7=42种方法.
- 方法二: 将7个节目进行全排列时,共有 A_7^7 种方法,而原有的5个节目全排列时共有 A_5^5 种方法,共排法种数为 $A_7^7 \div A_5^5 = 42$.
 - 5. 分组问题与分配问题
- 【例 5】3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 1 名医生和 2 名护士,则不同的分配方法共有 .
- 【解析】先将 3 名医生和 6 名护士平均分为 3 组,有 $C_6^2C_4^2$ =90 种分法,再分配给 3 所学校, 共有 90× A_3^3 =540 种不同的分配方法.

6. 隔板法

【例 6】10个相同的小球放到3个不同的盒子中,每个盒子都不空,共有___种不同的放 法.

【解析】10个相同的小球中有9个空档,从9个空档中任选2个插入隔板,将小球分成3 部分, 再相应地放入 3 个小盒中, 有 $C_0^2 = 36$ 种不同的放法.

四、二项式定理

1. 定义 (其中k=0, 1, 2, …, n):

1. 定义 (其中
$$k=0$$
, 1, 2, …, n):
$$(a+b)^n = \overbrace{(a+b)(a+b)\cdots(a+b)}^{n\uparrow} = C_n^0 a^n + C_n^1 a^{n-1}b + C_n^2 a^{n-2}b^2 + \dots + C_n^k a^{n-k}b^k + C_n^n b^n = \sum_{k=0}^n C_n^k a^{n-k}b^k$$

- 2. 通项公式
- 二项式展开式中,共有n+1 项(原因: k=0, 1, 2, …, n)

其中第k+1 项为 $T_{k+1} = C_n^k a^{n-k} b^k$ ($k=0, 1, 2, \dots, n$).

3. 总结归纳

二项式定理		公式 $(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + \dots + C_n^{n-1} a b^{n-1} + C_n^n b^n$ 所表示的定理称为二项式定理		
二项	通 项 公式	第 $k+1$ 项为 $T_{k+1} = C_n^k a^{n-k} b^k$ ($k=0, 1, 2, \dots, n$)		
式	项数	展开式共n+1项		
展	指数	a 的指数,由 $n \xrightarrow{\mathbb{Z}^{\sqrt{ml}}} 0$; b 的指数:由 $0 \xrightarrow{\mathbb{Z}^{\sqrt{ml}}} n$;各项 a 与 b 的指数之和为 n		
开式的	展开式的	当 n 为偶数时,则中间项 $\left(\hat{\pi} \frac{n}{2} + 1 \bar{\eta} \right)$ 系数 $C_n^{\frac{n}{2}}$ 最大;		
特征	最 大系数	当 n 为奇数时,则中间项 $\left(\hat{\pi} \frac{n+1}{2} \pi \frac{n+3}{2} \bar{\eta} \right)$ 系数 $C_n^{\frac{n+1}{2}}$ 最大		
展开式系数之间的关系		(1) $C_n^r = C_n^{n-r}$, 即与首末等距的两项系数相等;		
		(2) $C_n^0 + C_n^1 + \dots + C_n^n = 2^n$, 即展开式各项系数之和为 2^n ;		
		(3) $C_n^0 + C_n^2 + C_n^4 \cdots = C_n^1 + C_n^3 + C_n^5 \cdots = 2^{n-1}$, 即奇数项系数和等于偶数项系数和		

第九章 概率

一、古典概型

对于古典概型,如果随机事件A包含的基本事件个数为m,基本事件的总数为n,则 $P(A) = \frac{A \text{包含的基本事件的个数}}{\text{基本事件的总数}} = \frac{m}{n}.$

- (1) 抽奖、尝试密码
- (2) 不放回取球
- (3) 取出后放回(分房模型)
- (4) 至少和至多

二、独立事件

- 1. 独立不重复:设A, B是两相互独立事件,则P(AB) = P(A)P(B).
- 2. 对立事件:要么事件 A 发生,要么事件 B 发生,P(A)+P(B)=1.

提供"正难则反"的思想: $P(\mathbb{E}) = 1 - P(\mathbb{Q})$.

三、伯努利模型

- 1. 伯努利模型的常用背景
- (1) 连续的n次的射击;
- (2) 连续的掷n次硬币;
- (3) 连续的n次投篮.
- 2. 伯努利模型的公式
- (1) 设在一次试验中,事件 A 发生的概率为 p(0 ,则在 <math>n 重伯努利试验中,事件 A 恰好发生 k 次的概率为: $p_n(k) = C_n^k p^k (1-p)^{n-k}, (k=0,1,2,...,n)$.
- (2) 设在一次试验中,事件 A 首次发生的概率为 p(0 ,则在伯努利试验序列中,事件 <math>A 在第 k 次试验中才首次发生的概率为 $p(1-p)^{k-1}$,(k = 1,2,...).