Student Na	me:										
Student Nu	mber:										
School:											
Year of Entr	ance:										
				_		_					
Sha	nghai	Tech	Unive	ersity	Final	Exam	inatio	on Co	ver Sh	neet	
Academic Ye	ear:		2020	to 20	21		Term:	Spring	<u> </u>		
Course-offe	ring Sch	iool:	School of Information Science and Technology								
Instructor:			Lu Sun								
Course Nam											
Course Num	ber:		SI151								
cheating is p 2. Other tha notes, tablet 3. Students t They must co of materials.	nation ru prohibite n allowa s and an aking op omplete	alles musted. Able mathemathemathemathemathemathemathemathe	st be str terials, s r electro ok tests	students onic dev s may us	s taking vices in se allow	closed places c able ma	-book t lesignat terials a	ests mused by the	st place ne exam ed by th	iners. e examiners.	
For Marker'				l		T	T	T			
Section	I	II	III	IV	V	VI	VII	VIII	IX	Total	
Marks											
Recheck											
Marker's Signature: Date:						Rechecker's Signature: Date:					

I Basics [20 points]

Note: in the following questions, you may mark one or more than one of the choices.

- 1. [2 points] Linear regression estimator has the smallest variance among all unbiased estimators.
 - (a) True
 - (b) False
- 2. [2 points] Since classification is a special case of regression, logistic regression is a special case of linear regression.
 - (a) True
 - (b) False
- 3. [2 points] The training error of 1-nearest neighbor classifier is 0.
 - (a) True
 - (b) False
- 4. [2 points] Suppose that you have a dataset with 3 categorical input attributes A, B and C. There is one categorical output attribute Y. You are trying to learn a Naive Bayes Classifier for predicting Y. Which of these Bayes Net diagrams represent(s) the naive bayes classifier assumption?

(a)

(b)

(c)

(d)

- 5. [2 points] In each round of AdaBoost, the misclassification penalty for a particular training observation is increased going from round t to round t + 1 if the observation was:
 - (a) classified incorrectly by the weak learner trained in round t.
 - (b) classified incorrectly by the full ensemble trained up to round t.
 - (c) classified incorrectly by a majority of the weak learners trained up to round t.
- 6. [2 points] AdaBoost minimizes an exponential loss function.
 - (a) True

- (b) False
- 7. [2 points] What statement(s) are true about the expectation-maximization (EM) algorithm?
 - (a) It requires some assumption about the latent probability distribution.
 - (b) Comparing to a gradient descent algorithm that optimizes the same objective function as EM, EM may only find a local optima whereas the gradient descent will always find the global optima.
 - (c) The EM algorithm maximizes a lower bound of the marginal likelihood $P(\mathcal{D}; \boldsymbol{\theta})$
 - (d) The algorithm assumes some that some of the data generated by the probability distribution is not observed.
- 8. [2 points] The SVM learning algorithm is guaranteed to find the globally optimal hypothesis with respect to its object function.
 - (a) True
 - (b) False
- 9. [2 points] Which statement(s) are true about the K-means algorithm?
 - (a) It is a clustering algorithm.
 - (b) It is an EM algorithm.
 - (c) It assumes the data is from a mixture of Gaussian distributions.
 - (d) It is a soft EM algorithm, where all possible hidden attributes are considered in the E step.
 - (e) It is guaranteed to converge to the global optimum.
 - (f) It is a convex optimization problem.
- 10. [2 points] Query strategy plays a key role in active learning. Generally, the following query strategies can be selected: uncertainty sampling, query-by-committee, expected model change, expected error reduction, variance reduction, density-weighted methods. Which of the following option(s) is(are) reasonable method(s) of query strategies?
 - (a) Least confident method, which is to select samples that have a low maximum classification probability.
 - (b) Margin sampling method, which is to select samples of data that can easily be classified into two categories, or that have a similar probability of being classified into two categories.
 - (c) Entropy method, which is to select samples of data that have high entropy in a particular system. (The definition of entropy is $-\sum_{i} P_{\theta}(y_{i} \mid x) \cdot \ln P_{\theta}(y_{i} \mid x)$.)
 - (d) Expected loss method, which is to select samples of data that will cause the loss function to reduce the least by adding a sample.

II REGRESSION AND PROBABILITY ESTIMATION [12 points]

Consider real-valued variables X and Y, in which Y is generated conditional on X according to

$$Y = aX + \epsilon$$
, where $\epsilon \sim \mathcal{N}(0, \sigma^2)$.

Here ϵ is an independent variable, called a noise term, which is drawn from a Gaussian distribution with mean 0, and variance σ^2 . This is a single variable linear regression model, where a is the only weight parameter. The conditional probability of Y has distribution $p(Y|X,a) \sim \mathcal{N}(aX,\sigma^2)$, so it can be written as:

$$p(Y|X,a) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2}(Y - aX)^2\right).$$

The following questions are all about this model.

- 1. [4 points] Assume we have a training dataset of n pairs (X_i, Y_i) , i = 1, 2, ..., n. Which one(s) of the following equations correctly represent(s) the Maximum Likelihood Estimation (MLE) problem for estimating a? (You may mark one or more than one of the choices.)
 - (a) $\arg \max_{a} \sum_{i} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^2} \left(Y_i aX_i\right)^2\right)$
 - (b) $\arg \max_{a} \prod_{i} \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{1}{2\sigma^{2}} (Y_{i} aX_{i})^{2}\right)$
 - (c) $\arg \max_{a} \sum_{i} \exp \left(-\frac{1}{2\sigma^{2}} \left(Y_{i} aX_{i}\right)^{2}\right)$
 - (d) $\arg \max_{a} \prod_{i} \exp \left(-\frac{1}{2\sigma^{2}} \left(Y_{i} aX_{i}\right)^{2}\right)$
 - (e) $\arg \max_{a} \frac{1}{2} \sum_{i} (Y_i aX_i)^2$
 - (f) $\operatorname{arg\,min}_{a} \frac{1}{2} \sum_{i} (Y_i aX_i)^2$
- 2. [4 points] Derive the maximum likelihood estimate of the parameter a in terms of the training data (X_i, Y_i) , i = 1, 2, ..., n. You are recommended to start with the simplest form of the problem you found above.
- 3. [4 points] Let's put a prior on a, for example, $a \sim \mathcal{N}(0, \lambda^2)$, i.e.,

$$p(a|\lambda) = \frac{1}{\sqrt{2\pi}\lambda} \exp(-\frac{1}{2\lambda^2}a^2).$$

- (a) Under which case(s) that the estimated value with MLE and Maximum A Posterior (MAP) will become closer, in other words, $|a^{MLE} a^{MAP}|$ will decrease? (You may mark one or more than one of the choices.)
 - i. As $\lambda \to \infty$
 - ii. As $\lambda \to 0$
 - iii. Fix λ and as number of training samples $n \to \infty$
- (b) Assume $\sigma = 1$, and a fixed prior parameter λ . Solve for the MAP estimate of a:

$$\arg \max_{a} \left[\log p(Y_1, ..., Y_n | X_1, ..., X_n, a) + \log p(a | \lambda) \right].$$

Your solution should be in terms of X_i 's Y_i 's and λ .

III LINEAR CLASSIFICATION [10 points]

Given the input continuous variable X and the output categorical variable Y, suppose that:

- We know $P(Y = k) = \pi_k$ exactly.
- $P(X = \mathbf{x} \mid Y = k)$ is multivariate normal distribution with density:

$$f_k(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} e^{-\frac{1}{2}(\mathbf{x} - \mu_k)^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mu_k)}, \quad \mathbf{x} \in \mathbb{R}^p,$$

where μ_k is the mean of the inputs for category k and Σ is the covariance matrix.

Answer the questions below:

- 1. [3 points] What is the Bayes classifier (maximize the probability of category k, given the input \mathbf{x})?
- 2. [3 points] Please derive the linear discriminant function $\delta_k(\mathbf{x})$, and explain how to predict the category of input \mathbf{x} .
- 3. [4 points] Show what is the decision boundary between category k and l given the input \mathbf{x} . For some vectors \mathbf{w} and scalar b, the decision boundary can be expressed as $\mathbf{w}^T\mathbf{x} + b = 0$. Find the entries of the vector \mathbf{w} and the value of b in terms of class priors and parameters.

IV Graphical Model [10 points]

Consider the following Bayesian Network, in which all variables are boolean.

Figure 1: Bayesian network with seven boolean variables.

- 1. [4 points] Write the expression for the joint likelihood of the network in its factorized form.
- 2. [3 points] Let $X = \{C\}, Y = \{B, D\}, Z = \{A, E, F, G\}$. Is $X \perp Z|Y$?, If yes, explain why. If no, show a path from X to Z is not blocked.
- 3. [3 points] Directly prove that $A \perp C|B$ without using D-separation.

V Kernel Methods [8 points]

Kernel functions implicitly define some mapping function $\phi(\cdot)$ that transforms an input instance $x \in \mathbb{R}^d$ to a high dimensional feature space Q, by giving the form of dot product in $Q: K(x_i, x_j) = \phi(x_i)\dot{\phi}(x_j)$. Assume we use radial basis kernel function

 $K(\mathbf{x}_i, \mathbf{x}_j) = \exp\left(-\frac{1}{2} \|\mathbf{x}_i - \mathbf{x}_j\|^2\right).$

1. [4 points] Prove that for arbitrary two input instances x_i and x_j , the squared Euclidean distance of their corresponding points in the feature space Q is less than 2, i.e.,

$$\|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_i)\|^2 < 2.$$

- 2. [2 points] The dimensionality of the feature map generated by radial basis kernel is infinity.
 - (a) True
 - (b) False
- 3. [2 points] The dimensionality of the feature map generated by polynomial kernel (e.g., $K(x,y) = (1 + xy)^d$) is polynomial w.r.t. the power d of the polynomial kernel.
 - (a) True
 - (b) False

VI SUPPORT VECTOR MACHINES [10 points]

Support vector machines (SVM) are supervised learning models, that directly optimize for the maximum margin separator. Fig. 2 shows an example of maximum margin separator over a dataset $S = \{(x_i, y_i)\}_{i=1}^n$, in which $x_i \in \mathbb{R}^2$ and $y_i \in \{-1, 1\}$ denote the *i*-th sample and the *i*-th label ($\forall i$), respectively, in both separable case (Fig.2(a)) and non-separable case (Fig.2(b)). For simplicity, here we assume that the dataset S has been standardized, and thus the bias can be omitted in the linear model. In Fig. 2, "+" and "-" denote the samples with labels "1" and "-1", respectively, and \mathbf{w} is the normal vector of the maximum margin separator $\mathbf{w}^{\top}x = 0$. You need to derive the linear optimization problem of SVM in both separable case and non-separable case. Note: correctly giving the results without detailed derivation will get half the points.

Figure 2: Maximum margin separator.

- 1. [3 points] Derive the constraint optimization problem of SVM in the separable case shown in Fig. 2(a).
- 2. [3 points] Extend the results in (a) to handle the non-separable case shown in Fig. 2(b).
- 3. [4 points] Show the unconstraint form of the above problem and determine the convexity. You need to explain the reason for your answer.

VII PRINCIPAL COMPONENT ANALYSIS [9 points]

Given 3 data points in 2D space: (1,1), (2,2), (3,3), answer the following questions:

- 1. [3 points] What is the first principle component?
- 2. [3 points] If we want to project the original data points into 1D space by principle component you choose, what is the variance of the projected data?
- 3. [3 points] For the projected data in 1D space, now if we represent them in the original 2D space, what is the reconstruction error?

VIII NEURAL NETWORKS [9 points]

Consider the network shown in the figure. All of the hidden units use the rectified linear unit (ReLU): $h_i = \max(z_i, 0)$. We are trying to minimize a cost function C which depends only on the activation of the output unit y. The unit h_1 (marked with \star) receives an input of -1 on a particular training case, so its output is 0. Based only on this information, which of the following weight derivatives are guaranteed to be 0 for this training case? Write TRUE or FALSE for each. (Hint: don't work through the backpropagation computations, instead, think about what do the partial derivatives really mean.)

Note: correct answers without explanation will get half the points.

Figure 3: Neural Network with four layers. (Note: Each of w1, w2, and w3 refers to the weight on a single connection, not the whole layer.)

- 1. [3 points] $\partial C/\partial w_1 = 0$: ____, your explanation:
- 2. [3 points] $\partial C/\partial w_2 = 0$: _____, your explanation:
- 3. [3 points] $\partial C/\partial w_3 = 0$: ____, your explanation:

IX CONVEX SETS AND CONVEX FUNCTIONS [12 points]

In this problem, you should first write down whether the set or the function is convex or non-convex, then either prove the set or the function is convex or provide an example to show that it's non-convex.

Note: correct answers without proof will get half the points.

- 1. [6 points] Determine the convexity of the following sets:
 - (a) Polyhedra:

$$\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d}\},\$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$, $\mathbf{C} \in \mathbb{R}^{p \times n}$, and $\mathbf{d} \in \mathbb{R}^p$.

(b) Positive semidefinite cone:

$$\mathbb{S}_{+}^{n} = \{ \mathbf{X} \in \mathbb{S}^{n} \mid \mathbf{X} \succeq 0 \},$$

where \mathbb{S}^n denotes the set of symmetric matrices in $\mathbb{R}^{n \times n}$. Here $\mathbf{X} \succeq 0$ represents the generalized inequality on matrices, indicating $\mathbf{z}^{\top}\mathbf{X}\mathbf{z} \geq 0$, $\forall \mathbf{z} \in \mathbb{R}^n$.

- 2. [6 points] Determine the convexity of the following functions:
 - (a) Lasso objective:

$$f(\mathbf{x}) = ||\mathbf{A}\mathbf{x} - \mathbf{b}||^2 + \lambda ||\mathbf{x}||_1,$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ $(\mathbf{A}^{\top} \mathbf{A} \in \mathbb{S}^{n}_{+})$, $\mathbf{b} \in \mathbb{R}^{m}$, $\lambda > 0$, and $||\cdot||$ and $||\cdot||_{1}$ denote ℓ_{2} -norm and ℓ_{1} -norm, respectively.

(b) Weighted log barrier for linear inequalities:

$$f(\mathbf{x}) = -\sum_{i=1}^{m} c_i \log(b_i - \mathbf{a}_i^{\top} \mathbf{x}),$$

with $\mathbf{dom} f = \{\mathbf{x} \mid \mathbf{a}_i^{\top} \mathbf{x} < b_i, i = 1, 2, ..., m\}$. Here $\mathbf{a}_i, \mathbf{x} \in \mathbb{R}^n$, and $c_i > 0$ denotes the weighting coefficient, i = 1, 2, ..., m.