

On-policy Control with Approximation

Mohammad **Dehghani**

Mechanical and Industrial Engineering Department

Northeastern University

Introduction

Action values function approximation: Graphical representation

Introduction

Action values function approximation: Mathematical representation

Action Values Feature Representation

Action Values Feature Representation

Value functions: Tabular setting

State	values
State	Values
S_1	$v(S_1)$
S_2	$v(S_2)$
S_3	$v(S_3)$
S_4	$v(S_4)$
:	:

Action values

State	Action	Values
<i>S</i> ₁ -	A_1	$q(S_1, A_1)$
	A_2	$q(S_1, A_2)$
	A_3	$q(S_1, A_3)$
	A_4	$q(S_1, A_4)$
S_2	A_1	$q(S_2, A_1)$
	A_2	$q(S_2, A_2)$
	A_3	$q(S_2, A_3)$
	A_4	$q(S_2, A_4)$
•	:	:

Approximation

Values
$\hat{q}(S_1, A_1, \mathbf{w})$
$\hat{q}(S_1, A_2, \mathbf{w})$
$\hat{q}(S_1, A_3, \mathbf{w})$
$\hat{q}(S_1, A_4, \mathbf{w})$
$\hat{q}(S_2, A_1, \mathbf{w})$
$\hat{q}(S_2, A_2, \mathbf{w})$
$\hat{q}(S_2, A_3, \mathbf{w})$
$\hat{q}(S_2, A_4, \mathbf{w})$
:

Action Values Feature Representation

Stacking the features

$$\mathcal{A}(s)$$
 $\mathcal{A}(s) = \{a_0, a_1, a_2, a_3\}$

$$\mathcal{A}(s)=\{a_0,a_1,a_2,a_3\}$$
 $\mathbf{w}=$

- **Stacking the features**
 - Feature representation has to represent all actions for a given state. Using stacking the features, we can extend the original state feature vector and activate the features corresponding to that action.
- Calculate action values

Form a stacking feature vector for each action, and then calculate action values

$$\hat{q}(s, a, \mathbf{w}) \doteq \mathbf{w}^{\mathrm{T}} \mathbf{x}(s, a)$$

0.20

-0.7

0.87

0.00

0.33

0.02

-0.19

-2.11

0.08

0.00

0.98

1.80 -

Action Values Feature Representation

Neural Networks for action

Episodic Sarsa with Fn Approx.

Review: Sarsa Definition

Sarsa Update Equation

Sarsa Update Equation

 The theorems assuring the convergence of state values under TD(0) also apply to the corresponding algorithm for action values

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[\frac{R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})}{Q(S_t, A_t)} - Q(S_t, A_t) \right]$$

lacksquare This update is done after every transition from a nonterminal state S_t

Pseudocode: Semi-gradient Sarsa

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

- Input: a differentiable action-value function parameterization $\hat{q}: \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R}$
- Algorithm parameters: step size $\alpha > 0$, small $\varepsilon > 0$
 - Initialize value-function weights $\mathbf{w} \in \mathbb{R}^d$ arbitrarily (e.g., $\mathbf{w} = \mathbf{0}$)

Loop for each episode:

- $S, A \leftarrow \text{initial state}$ and action of episode (e.g., ε -greedy)
- Loop for each step of episode:
 - Take action A, observe R, S'

If S' is terminal:

- $(\mathbf{w} \leftarrow \mathbf{w} + \alpha [R \hat{q}(S, A, \mathbf{w})] \nabla \hat{q}(S, A, \mathbf{w}))$
- Go to next episode
- Choose A' as a function of $\hat{q}(S', \cdot, \mathbf{w})$ (e.g., ε -greedy)

$$\left(\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w})\right] \nabla \hat{q}(S, A, \mathbf{w})\right)$$

- $S \leftarrow S'$
- $A \leftarrow A'$

Sarsa Update

Example: Mountain Car

- The difficulty is that gravity is stronger than the car's engine
 - The only solution is to first move away from the goal and up the opposite slope on the left.
 - Then, by applying full throttle the car can build up enough inertia to carry it up the steep slope even though it is slowing down the whole way.

Feature Representation: Mountain Car

States

Car position

$$x_{t+1} \doteq bound[x_t + \dot{x}_{t+1}]$$
$$-1.2 \le x_{t+1} \le 0.5$$
$$x_0 \in [-0.6, -0.4]$$

Car velocity

$$\dot{x}_{t+1} \doteq bound[\dot{x}_t + 0.001A_t - 0.0025\cos(3x_t)] -0.07 \le \dot{x}_{t+1} \le 0.07$$

$$8 \times 8 \times 8$$

$$\hat{q}(s, a, \mathbf{w}) \doteq \mathbf{w}^{\mathrm{T}} x(s, a)$$

$$= \sum_{i=1}^{d} w_i \cdot x_i(s, a)$$

State Value Representation: Mountain Car

- This example has a two-dimensional continuous-valued state.
 - Ideally, it is desirable to plot the value function for every single state; but practically, it is not viable.
 - The number of states is an uncountably infinite, therefore, representing the state value for all possible states is not feasible.
- How we can represent state values?
 - We can sample state values.
 - We'll use the max value in each sample state.

cost-to-go function
$$- \max_{a} \hat{q}(s, a, \mathbf{w})$$

This number is the cost-to-go function, indicating the number of steps the agent assumes it will take to escape under its greedy policy.

Results: Mountain Car

- The initial action values were all zero, which was optimistic
 - We initialize the weights to zero.
 - All true values are negative in this task), causing extensive exploration to occur even though the exploration parameter, ϵ , was 0.
 - The agent can act greedily without any additional random exploration.
- "Step-428" Results
 - At this time not even one episode had been completed
 - Mowever, the car has oscillated back and forth in the valley, following circular trajectories in state space.

Results: Mountain Car

Off-Policy updates

Sarsa

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

Expected Sarsa

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma \sum_{a'} \pi (a' | S_{t+1}) Q(S_{t+1}, a') - Q(S_t, A_t)]$$

Q-Learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a'} Q(S_{t+1}, a') - Q(S_t, A_t) \right]$$

- The Mountain Car example
 - ► This figure shows the states values at the end of Episode 9000
- What states are corresponding to the blue arrow?
- What is your intuition about the blue highlighted states?
- **3** What is your intuition about the pink highlighted states?
- 4 What is indicated by the dashed-line?

Episodic Sarsa with

Q-learning

$$\mathbf{w} \leftarrow \mathbf{w} + \alpha \left(R_{t+1} + \gamma \max_{a'} \hat{q}(S_{t+1}, a', \mathbf{w}) - \hat{q}(S_t, A_t, \mathbf{w}) \right) \nabla \hat{q}(S_t, A_t, \mathbf{w})$$

Expected Sarsa and Q-Learning

$$\hat{q}(s, a, \mathbf{w}) \approx q_{\pi}(s, a)$$

Summary

