

Assignment - 1

6/11/2024

Name: Sahil Narang

Course: B.Tech. C.S.E. Batch: 12

Sap.id.: 500119480

Enrollment no.: R2142230356

Instructor: Prof. C.M. Sherma

Topic

SDG13. Climate Action

Project Idea: Air Quality Prediction

Objective: The objective of this project is to predict the Air Quality Index (AQI) using data on various pollutants and time-based factors. The goal is to identify how different pollutants and seasonal patterns affect air quality and create a model that can forecast AQI values.

Detailed Methodology

1. Data Exploration:

- Examine the data to understand pollutant levels and patterns in AQI over time.
- Generate basic statistics (average, minimum, maximum values) for each pollutant and visualize trends, such as line charts of pollutant levels over time.

2. Data Cleaning:

- Handle missing values by filling them with appropriate estimates, like the mean of the column, or remove rows with excessive missing values.
- For instance, missing values in PM2.5 can be filled with the column's average PM2.5 value to ensure completeness.

3. Feature Engineering:

- Extract meaningful time-based features from the Date column to capture seasonal and temporal trends in air quality.
- This includes adding new columns for month and day of the week, allowing the model to account for seasonal variations in AQI.

4. Model Selection:

- Use two machine learning models:
 - Linear Regression: A simple model to predict continuous values, useful as a baseline for AQI prediction.
 - Random Forest Regressor: A more advanced model that often yields better accuracy and highlights which pollutants are most important in predicting AQI.

5. Model Validation:

• To evaluate model reliability, use **K-Fold Cross Validation**. This method splits the dataset into multiple parts (folds), trains the model on each part, and averages the results to provide a more accurate performance estimate.

6. Performance Metrics:

- **Mean Absolute Error (MAE)**: Measures the average prediction error to assess how close predictions are to the actual AQI values.
- R² Score: Evaluates the model's ability to explain the variation in AQI data, with a higher score indicating better model fit.

Summary of Objectives and Methodology

- Objective: Predict AQI based on pollutant levels and time-based features.
- Methodology Steps:
 - o **Data Exploration** to understand pollutant patterns.
 - Data Cleaning to handle missing values.
 - o Feature Engineering to add time-based information.
 - o **Model Selection** with Linear Regression and Random Forest.
 - Model Validation using K-Fold Cross Validation.
 - **Performance Evaluation** with MAE and R².