$11n_{91} (K11n_{91})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -10091257321u^{20} + 17716980292u^{19} + \dots + 366196956382b + 49796914345, \\ & 591910942537u^{20} - 2794488596145u^{19} + \dots + 4394363476584a - 481484753828, \\ & u^{21} - 3u^{20} + \dots - 2u - 3 \rangle \\ I_2^u &= \langle b^2 + 2, \ a^2 - a + 1, \ u + 1 \rangle \\ I_3^u &= \langle b, \ a^2 - a + 1, \ u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 27 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle -1.01 \times 10^{10} u^{20} + 1.77 \times 10^{10} u^{19} + \dots + 3.66 \times 10^{11} b + 4.98 \times 10^{10}, \ 5.92 \times 10^{11} u^{20} - 2.79 \times 10^{12} u^{19} + \dots + 4.39 \times 10^{12} a - 4.81 \times 10^{11}, \ u^{21} - 3u^{20} + \dots - 2u - 3 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.134698u^{20} + 0.635926u^{19} + \dots - 0.0316545u + 0.109569 \\ 0.0275569u^{20} - 0.0483810u^{19} + \dots - 1.11621u - 0.135984 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.0599090u^{20} + 0.413165u^{19} + \dots - 1.26842u + 0.402548 \\ 0.129090u^{20} - 0.405931u^{19} + \dots - 1.14509u - 0.299649 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0944207u^{20} + 0.398371u^{19} + \dots + 0.793023u - 0.448119 \\ 0.0612997u^{20} - 0.138407u^{19} + \dots + 0.143901u - 0.565085 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.340816u^{20} - 1.13692u^{19} + \dots - 0.307450u - 1.55518 \\ 0.154312u^{20} - 0.484554u^{19} + \dots - 0.533633u - 0.125533 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.188362u^{20} + 0.626385u^{19} + \dots + 2.11578u + 0.520624 \\ 0.0158081u^{20} + 0.0256218u^{19} + \dots + 0.586386u - 0.748984 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.186504u^{20} + 0.652367u^{19} + \dots - 0.226183u + 1.42965 \\ -0.154312u^{20} + 0.484554u^{19} + \dots + 0.533633u + 0.125533 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.186504u^{20} + 0.652367u^{19} + \dots - 0.226183u + 1.42965 \\ -0.154312u^{20} + 0.484554u^{19} + \dots + 0.533633u + 0.125533 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.186504u^{20} + 0.652367u^{19} + \dots - 0.226183u + 1.42965 \\ -0.154312u^{20} + 0.484554u^{19} + \dots + 0.533633u + 0.125533 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{57646172449}{732393912764}u^{20} + \frac{387941164973}{732393912764}u^{19} + \dots + \frac{4279700760483}{732393912764}u + \frac{1134852296901}{183098478191}$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_5	$u^{21} - 2u^{20} + \dots + 7u - 3$
c_2	$u^{21} + 14u^{20} + \dots + 49u - 9$
c_3,c_8,c_9	$u^{21} + u^{20} + \dots + 8u - 4$
C ₄	$u^{21} - u^{20} + \dots - 64u - 548$
c_6	$u^{21} + 2u^{20} + \dots + 19u - 3$
c_7, c_{10}	$u^{21} - 3u^{20} + \dots - 2u - 3$
c_{11}	$u^{21} - 3u^{20} + \dots + 22u - 9$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{21} + 14y^{20} + \dots + 49y - 9$
c_2	$y^{21} - 10y^{20} + \dots + 7117y - 81$
c_3, c_8, c_9	$y^{21} + 31y^{20} + \dots - 160y - 16$
C4	$y^{21} + 91y^{20} + \dots - 4121248y - 300304$
<i>C</i> ₆	$y^{21} - 34y^{20} + \dots + 193y - 9$
c_7,c_{10}	$y^{21} - 3y^{20} + \dots + 22y - 9$
c_{11}	$y^{21} + 37y^{20} + \dots + 2158y - 81$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.678453 + 0.688147I		
a = 0.845365 + 0.796760I	-2.57223 - 2.30104I	5.12347 + 3.68698I
b = -0.271568 + 1.062540I		
u = -0.678453 - 0.688147I		
a = 0.845365 - 0.796760I	-2.57223 + 2.30104I	5.12347 - 3.68698I
b = -0.271568 - 1.062540I		
u = 0.316999 + 0.813917I		
a = -0.403688 + 0.492380I	-2.21076 + 2.09468I	3.00496 - 3.91489I
b = 0.713808 + 0.270061I		
u = 0.316999 - 0.813917I		
a = -0.403688 - 0.492380I	-2.21076 - 2.09468I	3.00496 + 3.91489I
b = 0.713808 - 0.270061I		
u = 1.145710 + 0.140166I		
a = 0.239466 - 0.410115I	1.11524 + 1.37460I	4.04933 + 2.02582I
b = -0.264392 + 0.442489I		
u = 1.145710 - 0.140166I		
a = 0.239466 + 0.410115I	1.11524 - 1.37460I	4.04933 - 2.02582I
b = -0.264392 - 0.442489I		
u = -1.134400 + 0.465760I		
a = -0.130701 - 0.200335I	-5.12357 + 0.62763I	1.407681 + 0.031302I
b = -0.21844 - 1.42669I		
u = -1.134400 - 0.465760I		
a = -0.130701 + 0.200335I	-5.12357 - 0.62763I	1.407681 - 0.031302I
b = -0.21844 + 1.42669I		
u = -0.831921 + 0.976886I		
a = -0.814769 - 0.824529I	-6.41753 - 6.55364I	2.05255 + 5.68240I
b = 0.567067 - 1.129180I		
u = -0.831921 - 0.976886I		
a = -0.814769 + 0.824529I	-6.41753 + 6.55364I	2.05255 - 5.68240I
b = 0.567067 + 1.129180I		

Sol	utions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.68	84877 + 0.126673I		
a = 0.23	8002 + 1.72236I	0.91652 - 2.35539I	2.06528 + 5.30676I
b = -0.03	33686 + 0.472962I		
u = -0.68	84877 - 0.126673I		
a = 0.28	8002 - 1.72236I	0.91652 + 2.35539I	2.06528 - 5.30676I
b = -0.03	33686 - 0.472962I		
u = -0.18	53992 + 0.545893I		
a = -1.93	3201 - 1.20990I	-5.17740 + 1.74265I	0.53526 - 2.03708I
	30919 - 1.391490I		
u = -0.18	53992 - 0.545893I		
a = -1.93	3201 + 1.20990I	-5.17740 - 1.74265I	0.53526 + 2.03708I
	30919 + 1.391490I		
u = 0.5	515961		
a = 0.7	25450	0.754310	13.3550
b = -0.4			
	06707 + 1.07605I		
a = 0.3	80534 - 1.32502I	-12.95410 + 3.94853I	4.46142 - 1.91994I
	08814 - 1.77927I		
	06707 - 1.07605I		
a = 0.8	80534 + 1.32502I	-12.95410 - 3.94853I	4.46142 + 1.91994I
	08814 + 1.77927I		
	2823 + 1.31603I		
a = -0.40	65176 + 1.276900I	-17.8929 - 1.4476I	1.24285 + 0.69389I
	1070 + 1.85472I		
	2823 - 1.31603I		
	65176 - 1.276900I	-17.8929 + 1.4476I	1.24285 - 0.69389I
	1070 - 1.85472I		
	26765 + 1.02698I		
	95325 + 1.07681I	-16.6802 + 9.9035I	2.37944 - 4.78800I
b = 0.	18378 + 1.78761I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.26765 - 1.02698I		
a = -0.95325 - 1.07681I	-16.6802 - 9.9035I	2.37944 + 4.78800I
b = 0.18378 - 1.78761I		

II.
$$I_2^u = \langle b^2 + 2, \ a^2 - a + 1, \ u + 1 \rangle$$

(i) Arc colorings

$$a_7 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$
$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a \\ b-a \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a \\ b-a \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -a+1 \\ -ba-1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a \\ -b \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a \\ -b \end{pmatrix}$$

$$a_9 = \begin{pmatrix} ba+1 \\ -2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} b - a \\ -b \end{pmatrix}$$

$$a_4 = \begin{pmatrix} b-a \\ -b \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4a + 4

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_6	$(u^2 - u + 1)^2$
c_2, c_5	$(u^2+u+1)^2$
c_3, c_4, c_8 c_9	$(u^2+2)^2$
c_7, c_{11}	$(u-1)^4$
c_{10}	$(u+1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_5 c_6	$(y^2+y+1)^2$	
c_3, c_4, c_8 c_9	$(y+2)^4$	
c_7, c_{10}, c_{11}	$(y-1)^4$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 0.500000 + 0.866025I	-3.28987 - 2.02988I	6.00000 + 3.46410I
b = 1.414210I		
u = -1.00000		
a = 0.500000 + 0.866025I	-3.28987 - 2.02988I	6.00000 + 3.46410I
b = -1.414210I		
u = -1.00000		
a = 0.500000 - 0.866025I	-3.28987 + 2.02988I	6.00000 - 3.46410I
b = 1.414210I		
u = -1.00000		
a = 0.500000 - 0.866025I	-3.28987 + 2.02988I	6.00000 - 3.46410I
b = -1.414210I		

III.
$$I_3^u = \langle b, a^2 - a + 1, u - 1 \rangle$$

(i) Arc colorings

$$a_7 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a \\ -a \end{pmatrix}$$

$$a_6 = \begin{pmatrix} a-1\\1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 4a + 10

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_6	$u^2 + u + 1$
c_3, c_4, c_8 c_9	u^2
<i>C</i> 5	$u^2 - u + 1$
c_7	$(u+1)^2$
c_{10}, c_{11}	$(u-1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_2, c_5 c_6	$y^2 + y + 1$	
c_3, c_4, c_8 c_9	y^2	
c_7, c_{10}, c_{11}	$(y-1)^2$	

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000		
a =	0.500000 + 0.866025I	1.64493 - 2.02988I	12.00000 + 3.46410I
b =	0		
u =	1.00000		
a =	0.500000 - 0.866025I	1.64493 + 2.02988I	12.00000 - 3.46410I
b =	0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$((u^{2}-u+1)^{2})(u^{2}+u+1)(u^{21}-2u^{20}+\cdots+7u-3)$	
c_2	$((u^2 + u + 1)^3)(u^{21} + 14u^{20} + \dots + 49u - 9)$	
c_3, c_8, c_9	$u^{2}(u^{2}+2)^{2}(u^{21}+u^{20}+\cdots+8u-4)$	
c_4	$u^{2}(u^{2}+2)^{2}(u^{21}-u^{20}+\cdots-64u-548)$	
<i>C</i> ₅	$(u^{2} - u + 1)(u^{2} + u + 1)^{2}(u^{21} - 2u^{20} + \dots + 7u - 3)$	
c_6	$((u^2 - u + 1)^2)(u^2 + u + 1)(u^{21} + 2u^{20} + \dots + 19u - 3)$	
c_7	$((u-1)^4)(u+1)^2(u^{21}-3u^{20}+\cdots-2u-3)$	
c_{10}	$((u-1)^2)(u+1)^4(u^{21}-3u^{20}+\cdots-2u-3)$	
c_{11}	$((u-1)^6)(u^{21} - 3u^{20} + \dots + 22u - 9)$	

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$((y^2 + y + 1)^3)(y^{21} + 14y^{20} + \dots + 49y - 9)$
c_2	$((y^2 + y + 1)^3)(y^{21} - 10y^{20} + \dots + 7117y - 81)$
c_3, c_8, c_9	$y^{2}(y+2)^{4}(y^{21}+31y^{20}+\cdots-160y-16)$
C4	$y^{2}(y+2)^{4}(y^{21}+91y^{20}+\cdots-4121248y-300304)$
c_6	$((y^2 + y + 1)^3)(y^{21} - 34y^{20} + \dots + 193y - 9)$
c_7, c_{10}	$((y-1)^6)(y^{21} - 3y^{20} + \dots + 22y - 9)$
c_{11}	$((y-1)^6)(y^{21} + 37y^{20} + \dots + 2158y - 81)$