# Introduction to C477 & Applications-Based Introduction to Optimisation

Ruth Misener r.misener@imperial.ac.uk

Panos Parpas p.parpas@imperial.ac.uk

Computational Optimisation Group
Department of Computing

Imperial College London



10 October 2016

## Course Basics: Who we are & how to contact us

#### Course Leaders

Ruth Misener Huxley 379 r.misener@imperial.ac.uk
Panos Parpas Huxley 357 p.parpas@imperial.ac.uk

• Tutorial Helpers (both in Huxley 302)

Georgia Kouyialis

g.kouyialis14@imperial.ac.uk

Radu Baltean-Lugojan

radu.baltean-lugojan09@imperial.ac.uk

#### How to access us

- ▶ Office hours: By appointment
- ► Piazza:

https://piazza.com/imperial.ac.uk/fall2016/477/home

Anonymous Feedback: https://www.surveymonkey.co.uk/r/SV2FSTH

## Course Basics: Assessment



- Lecture slides, additional notes & tutorials available on CATE
- Tutorial answers available one week after tutorial sheet is given
- Two assessed courseworks (MEng: CW: 15%, Exam: 85%; MRes/MSc: CW: 10%, Exam: 90%).
  - ► CW 1: Available 28 Oct, Due 11 Nov;
  - ► CW 2: Available 18 Nov, Due 28 Nov (provisional)
- Active participation expected/encouraged
  - ▶ Participation on Piazza counts as active participation

### Course Basics: External Students

## How to register for C477 as an external student

- Apply at: https://dbc.doc.ic.ac.uk/externalreg/
- 2 Your department's endorser will approve/reject your application
- If approved, DoC's External Student Liaison will approve/reject your application
- If approved (again!):
  - ► Students will get access to DoC resources (DoC account, CATE, ...)
  - ► No access after a few days? Check status of approval and contact relevant person(s)
- 6 Key Dates:
  - Exam registration opens end January for 2-3 weeks
  - ► Exams for DoC 3rd/4th yr. courses take place at the end of the Term in which the course is taught courses that are co-scheduled on the time-table will have their exams co-scheduled
- Questions? See here: https://dbc.doc.ic.ac.uk/externalreg/

#### Course Basics: Piazza

## https://piazza.com/imperial.ac.uk/fall2016/477/home

- All non-personal C477-related traffic will go to Piazza. We will even repost (suitably anonymised) email questions on Piazza;
- We aim to address time-critical or administrative messages within 1 working day;
- All other posts will be left for at least 1 working day before an instructor response; this is to encourage student-led discussions.



## Course Basics: SOLE



AM I GETTING THE SKILLS
I'LL NEED TO EFFECTIVELY
COMPETE IN A TOUGH, GLOBAL
COMPATE A HIGHPAYING JOB WHEN I GET OUT
OF HERE! I WANT OPPORTUNITY!



## We need your feedback!

- We are continually changing C477 based on feedback given during class, on Piazza, and on SOLE;
- ullet Students last year asked that we add a bit more to the module, so we have extended the discussions on 0<sup>th</sup>- and 1<sup>st</sup>-order methods;
- Please help us continually improve C477 by giving feedback, both positive and negative! We need to know: What should change? What should stay the same?

# What is optimisation?

$$\min f(\boldsymbol{x})$$

$$g_i(\boldsymbol{x}) \le 0, \quad i = 1, \dots, m.$$

 $m{x} = [x_1, \, \dots, \, x_n]^{ op}$  Optimisation, decision, design variables  $f: \mathbb{R}^n \mapsto R$  Objective function  $g_i(m{x}) \leq 0$  Constraints

- A vector  $x^*$  is optimal if it is feasible,  $g_i(x^*) \leq 0$ , i = 1, ..., m and has lower objective function value  $f(x^*) \leq f(x)$  for all other feasible points x;
- Modelling: Formulating real world problems into optimisation models
- Optimisation Algorithms: Computational methods solving optimisation models

# **Example:** Robust Principal Component Analysis (PCA)

Challenge: Given  $X = \mathbf{A} + \mathbf{E}$ , recover  $\mathbf{A} \& \mathbf{E}$ 



**Optimisation problem:** What is the lowest rank matrix that agrees with the data up to some sparse error?

$$\min_{\mathbf{A}, \mathbf{E}} \operatorname{rank}(\mathbf{A}) + \lambda \|\mathbf{E}\|_{0}$$
$$X = \mathbf{A} + \mathbf{E}$$

This is an NP-hard problem, but using convexity allows us to recover almost any matrix of rank  $\mathcal{O}(m/log^2n)$  from errors corrupting  $\mathcal{O}(m\ n)$  of the observations [At Imperial: Pantic, Zafeiriou].

# Example: Bayesian Optimisation

Challenge: How can we test biological hypotheses for microalgae metabolism without doing too many costly, real-world experiments?



Use Bayesian optimisation, a type of black-box optimisation, to estimate parameters by minimising the squared error between model & experimental data points.

[Ulmasov, MSc Thesis, 2015]

C477 does not require probability or statistics as a prerequisite, so we cannot cover all of BayesOpt. But we will cover several zeroth order optimisation algorithms including DIRECT which is used within BayesianOpt frameworks.

# Applications of Global Optimisation

In engineering applications, accurate mathematical modelling may require discrete decisions and nonlinear relationships

- Engineering design & manufacturing
  - ► Product & process design
  - Production planning/scheduling/logistics
- Computational chemistry
  - Chemical & phase equilibria
  - Molecular design
- Biochemistry & biochemical sciences:
  - Molecular (protein) structure prediction
  - Diagnosis, e.g., cancer



Figure 1: Singer et al., 2006

# **Example:** Sparse Logistic Regression

Challenge: How can we classify hand-written digits from images?

$$\min_{\boldsymbol{\beta_1}, \dots, \boldsymbol{\beta_{10}}} \ \sum_{i=1}^m \left( \log \sum_{k=1}^{10} \exp(\boldsymbol{x_i}^\top \boldsymbol{\beta_k}) - \boldsymbol{x_i}^\top \boldsymbol{\beta_{y_i}} \right) + \lambda \sum_{k=1}^{10} \|\boldsymbol{\beta_k}\|_1$$

Where  $x_i \in \mathbb{R}^n$  and  $y_i = \{0, 1, \ldots, 9\}$  are the input features and output label, respectively, for each training example,  $i \in \{1, 2, \ldots, m\}$ . There are also feature weights,  $\beta_k \in \mathbb{R}^n$ , for  $k = \{0, 1, \ldots, 9\}$ 

Use first-order, gradient-based methods, to solve this example.

## Prerequisites

## Required

- C145 Mathematical Methods (for DoC MEng / BEng students) or similar for MSc students;
- C145 develops familiarity with linear algebra, functions of several variables, multivariable calculus.
- You can read/write simple MATLAB programs (10-20 lines)

## Highly Recommended

- C233: Computational Techniques (or similar)
- C343: Operations Research (or similar)
- C496: Mathematics for Inference and Machine Learning (or similar)

# How to prepare for C477

#### Self-assess & Get feedback

- Self-assess your level-of-preparation with Mathematics Background handout and quiz;
- Post to Piazza: https://piazza.com/imperial.ac.uk/fall2016/477/home;
- Quiz 0 posted on CATE does not affect your mark. The answers to the quiz will be posted on the morning of 14 October.

## Remember that this is an optimisation course

We'll cover several applications of optimisation including engineering, machine learning, and finance. But C477 prioritises modelling and solving the optimisation problems over understanding the application.

# Any questions on the review sheet or quiz?



# Sanity Check

Does one of the paths on the left represent  $\|\cdot\|_1$ ? Or  $\|\cdot\|_2$ ? Or  $\|\cdot\|_\infty$ ?

#### **Recall Definitions**

1-norm

$$\|\boldsymbol{x}\|_1 = |x_1| + |x_2| + \ldots + |x_n|$$

2-norm

$$\|\boldsymbol{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2}$$

 $\infty$ -norm

$$\|\boldsymbol{x}\|_{\infty} = \max_{i} |x_{i}|$$

http://xkcd.com/85/

# Optimisation in C477

- Functions with <u>n dimensions</u>, e.g., many assets, many flights, ...
- Constraints, e.g., budget constraints, maximum wait time, ...
- No closed form solutions, we will study numerical algorithms
- Applications
  - Computer Science, e.g., Bayesian Optimisation, Neural Networks, Support Vector Machines, Genetic Programming;
  - ► Engineering, e.g., Capacity Expansion, Uncertainty & Energy;
  - ► Finance, e.g., Portfolio Optimisation.

### Aims of C477

#### Goals

- 1. Understand the basic concepts of mathematical optimisation:
  - a) Formulate model given a description
  - b) Conditions under which a candidate decision is optimal
  - c) Know the class of optimisation models that are tractable
- Computational optimisation algorithms: Know the main classes of algorithms and which algorithm to apply to which problem
- 3. **Develop small code** (10-50 lines) for modelling & algorithm development

#### Planned Course Outline

- 1. Classifying types of optimisation problems
- 2. Convexity
  - ► **Applications:** Energy efficiency, solver software, Robust principal component analysis
- 3. Optimisation & Optimality Conditions
- 4. One Dimensional Search Algorithms
- 5. Unconstrained Optimisation
  - ► Classes of methods: Zeroth, First, & Second Order
  - ▶ Algorithms: Steepest Descent, Newton-Raphson, . . .
  - Applications: Bayesian Optimisation, Sparse Logistic Regression, Neural Networks, . . .
- 6. Constrained Optimisation
  - ► Theory: Optimality Conditions
  - ► Applications: Portfolio selection in finance
  - ► Algorithms: Lagrangian & Penalty methods

#### Recommended Book

- Most material covered in C477 is also covered by Chong & Żak;
- Mathematical levels of C477
   & Chong & Żak are similar;
- Matlab code is very useful;
- Exercises there are useful.



### Second Recommended Book

- Covers more material than C477:
- More mathematically rigorous than C477;
- Fewer applications in this book.

