## 大学物理 II 期末考试题(大面积)

- 一、单选题(共11小题,每题3分,共33分)
- 1、边长为 l 的正方形线圈中通有电流 I,此线圈在 A 点(见图) 产生的磁感强度B为



- (B)  $\frac{\sqrt{2}\mu_0 I}{2\pi l}.$
- (D) 以上均不对.



2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为 R, x 坐标轴 垂直圆筒轴线,原点在中心轴线上.图(A) $\sim$ (E)哪一条曲线表示B-x的关系?





- 3、长直电流 I<sub>2</sub> 与圆形电流 I<sub>1</sub> 共面,并与其一直径相重合如图(但 两者间绝缘),设长直电流不动,则圆形电流将
  - (A) 绕 I<sub>2</sub>旋转.
- (B) 向左运动.
- (C) 向右运动.
- (D) 向上运动.
- (E) 不动.



Γ 

- 4、图示一测定水平方向匀强磁场的磁感强度  $\bar{B}$  (方向见图)的实验装置. 位于竖直 面内且横边水平的矩形线框是一个多匝的线圈. 线框挂在天平的右盘下, 框的下 端横边位于待测磁场中.线框没有通电时,将天平调节平衡;通电后,由于磁场 对线框的作用力而破坏了天平的平衡,须在天平左盘中加砝码m才能使天平重新 平衡. 若待测磁场的磁感强度增为原来的 3 倍, 而通过线圈的电流减为原来的 1/2,
- 磁场和电流方向保持不变,则要使天平重新平衡,其左盘中加的砝码质量应为
  - (A) 6m.
- (B) 3m/2.
- (C) 2m/3.
- (D) m/6.
- (E) 9m/2.



|                                                                                |                               |                                         |                            | ]             |       |
|--------------------------------------------------------------------------------|-------------------------------|-----------------------------------------|----------------------------|---------------|-------|
| 5、半径为 a 的圆线圈置于磁感强                                                              |                               |                                         |                            |               |       |
| 线圈电阻为 R; 当把线圈转动使                                                               |                               | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 60°时,                      | 线圈中运          | 通过的电荷 |
| 与线圈面积及转动所用的时间的                                                                 | • • • • • • •                 | _                                       |                            |               |       |
| (A) 与线圈面积成正比,与                                                                 | • • • • • •                   | •                                       |                            |               |       |
| (B) 与线圈面积成正比,与                                                                 |                               |                                         |                            |               |       |
| (C) 与线圈面积成反比,与                                                                 | • • • • • • • • •             | –                                       |                            |               |       |
| (D) 与线圈面积成反比,与                                                                 | 可时间尤                          | 天.                                      |                            | г             | ٦     |
|                                                                                |                               |                                         |                            |               | ]     |
| 6、将形状完全相同的铜环和木环                                                                | 环静止放                          | 效置,并使通过 <sup>*</sup>                    | 两环面的                       | 磁通量隔          | 随时间的变 |
| 化率相等,则不计自感时                                                                    |                               |                                         |                            |               |       |
| (A) 铜环中有感应电动势,                                                                 |                               |                                         |                            |               |       |
| (B) 铜环中感应电动势大,                                                                 | 木环中                           | 感应电动势小.                                 |                            |               |       |
| (C) 铜环中感应电动势小,                                                                 | 木环中                           | 感应电动势大.                                 |                            |               |       |
| (D) 两环中感应电动势相等                                                                 | 至.                            |                                         |                            |               |       |
|                                                                                |                               |                                         |                            |               | ]     |
| 7、用频率为 \(\mu_1\) 的单色光照射某<br>光照射该金属时,测得饱和电流<br>(A) \(\mu_1 > \(\mu_2\).         |                               | 若 $I_1 > I_2$ ,则                        | 流为 <i>I</i> <sub>1</sub> , | 以频率           | 为吃的单色 |
| ` '                                                                            | •                             | 12.<br>512的关系还不                         | 能确定                        |               |       |
| $(C)  V_1 - V_2. \tag{D}$                                                      | ) VI ¬                        |                                         | 10 H) 11 /C •              | [             | ]     |
| 8、用强度为 $I$ ,波长为 $\lambda$ 的 $X$ 第在同一散射角下测得康普顿散射对应的强度分别为 $I_{Li}$ 和 $I_{Fe}$ ,且 | 付的 X 身                        | 付线波长分别为                                 |                            |               |       |
| ` '                                                                            | $\lambda_{Li} = \lambda_{Fe}$ |                                         |                            |               |       |
| (C) $\lambda_{Li} < \lambda_F$ (D)                                             | 不能确定                          | 定两个波长的关                                 | 系                          | _             | _     |
|                                                                                |                               |                                         |                            |               | ]     |
| 9、要使处于基态的氢原子受激<br>谱线组成的谱线系)的最长波长的                                              |                               |                                         |                            |               |       |
| (A)  1.5  eV.                                                                  | (B)                           | 3.4 eV.                                 |                            |               |       |
| (C) $10.2 \text{ eV}$ .                                                        | (D)                           | 13.6 eV.                                |                            |               |       |
|                                                                                |                               |                                         |                            |               | ]     |
| $10$ 、若 $\alpha$ 粒子(电荷为 $2e$ )在磁感动,则 $\alpha$ 粒子的德布罗意波的波                       |                               | 为 B 均匀磁场。                               | 中沿半径                       | 为 <b>R</b> 的[ | 圆形轨道运 |
| (A) $(2eRB)/h$ .                                                               | (B)                           | (eRB)/h.                                |                            |               |       |
| (C) $(2eRBh)$ .                                                                | ` ′                           | (eRBh).                                 |                            |               |       |

11、已知粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi(x) = B\cos\frac{3\pi x}{2a}, \quad (-a \le x \le a)$$

]

|                       |                                                  | (B) 2<br>(D) 1/        |                        |                       |                    |                                  |              |              |
|-----------------------|--------------------------------------------------|------------------------|------------------------|-----------------------|--------------------|----------------------------------|--------------|--------------|
| (C)                   | <i>\\ 2 \ \\ \alpha</i> .                        | ( <b>D</b> ) 1/        | <b>ν</b> α.            |                       |                    |                                  |              | ]            |
| 12、若空则该磁场             | 只能用安培环<br>可以直接用安                                 | B长直载流<br>路定理来<br>培环路定  | 导线,空<br>计算.<br>理求出.    |                       | 分布就を               | 不具有領                             | <b>育单的</b> 对 | <b>寸称性</b> , |
| (D)                   |                                                  | , ,                    |                        | 的叠加原                  | 運求出.               | [                                |              | ]            |
|                       | f光电管上电势;<br>て初动能 <i>E₀、</i> 饱                    |                        |                        |                       |                    |                                  |              |              |
| (A)                   | $E_0$ 不变, $I_s$ 增 $E_0$ 增大, $I_s$ 不              |                        | ` '                    | $E_0$ 不变, $E_0$ 不变,   |                    |                                  |              | ]            |
| 14、置于磁场方向<br>其相对磁     | 医题(共3题,是磁场中的磁介。<br>一磁场中的磁介。<br>同和外磁场方向<br>接导率    | 质,介质表<br>              | 表面形成<br>(关键词:<br>大于 1, | 磁化电流。<br>相同,<br>小于 1, | 相反,垂<br>等于 1)      | 直);<br>;若是                       | 若是顺<br>铁磁质   | 磁质,<br>, 其磁  |
|                       | <sup>2</sup> 波长为 <i>λ</i> ,则非<br>                | <b>↓</b> 能量=<br>・      |                        | ; 动量                  | 的大小                | =                                |              | ; 质          |
| 16、写出                 | 二维定态薛定谔                                          | 景方程式                   |                        |                       |                    |                                  |              | 0            |
| 17、(本<br>匀外磁场<br>场的情况 | (E, A, E,    | 线圈的半径<br>在不考虑<br>线上的张力 | 载流圆约                   | <b>戈</b> 圈本身所         |                    | •                                | R/           | $\vec{B}$    |
| 三角形区                  | $(ar{x}$ 题 $(5, 0)$ 有一。<br>$(ar{k}$ 为 $(z)$ 轴方向单 | 度为 $\vec{B} = B$       | $_0x^2ye^{-at}\bar{k}$ | , 式中 <i>I</i>         | B <sub>0</sub> 和 a | <i>y</i> \( <i>b</i> \) <i>O</i> | b            | <b>→</b> x   |

那么归一化常数 B 为

19、(本题 10 分)一个粒子在一维矩形无限深势阱中运动,其波函数为:

$$\psi_n(x) = \sqrt{2/a} \sin(n\pi x/a) \qquad (0 < x < a)$$

若粒子处于 n=2 的状态,确定概率密度最大和最小的位置,然后计算在 [0, a/3] 区间内粒子出现的概率是多少?

[提示: 
$$\int \sin^2 x \, dx = \frac{1}{2}x - (1/4)\sin 2x + C$$
 ]

20、(本题 10 分)波长为 $\lambda_0 = 0.500$  Å 的 X 射线被静止的自由电子所散射,若散射光的波长变为 $\lambda = 0.522$  Å,试求反冲电子的动能和动量的大小.

(普朗克常量  $h = 6.63 \times 10^{-34} \, \text{J} \cdot \text{s}$ )

五、说明题(共2题,共12分)

21、(本题 4 分) 如图,一个正电荷在 xy 平面内以速度  $\bar{v}_1$  ( $\bar{v}_1$  的方向与 x 轴正向夹角为 $\alpha$ )运动时,所受到的磁场作用力为  $\bar{F}_1$  ( $\bar{F}_1$ 的方向与 z 轴正向相反). 若该粒子沿 z 轴以速度  $\bar{v}_2$  运动时,所受到的磁场力为  $\bar{F}_2$  ( $\bar{F}_2$  的方向与 x 轴正向一致),问该磁场的磁感强度  $\bar{B}$  是什么方向?



22、(本题 8 分)何谓激光?它有哪些特性? 实现这些特性的实验装置是什么以及如何实现?

六、讨论题(共1题,共10分)

23、名词解释: (1) 涡旋电场; (2) 位移电流密度. 并写出与这两个概念相关的环路定理及其微分形式。

17. 一圆线圈的半径为R,载有电流I,置于均匀外 磁场 $\bar{B}$ 中(如图示). 在不考虑载流圆线圈本身所激发的 磁场的情况下, 求线圈导线上的张力.

(载流线圈的法线方向规定与 $\bar{B}$ 的方向相同.)



解: 考虑半圆形载流导线  $\widehat{CD}$  所受的安培力

$$F_m = IB \cdot 2R$$
 3  $\%$ 

列出力的平衡方程式  $IB \cdot 2R = 2T$ 

故: 
$$T = IBR$$



18 有一三角形闭合导线,如图放置.在这三角形区 域中的磁感强度为 $\vec{B} = B_0 x^2 y e^{-at} \vec{k}$ , 式中  $B_0$  和 a 是常量,  $\bar{k}$  为 z 轴方向单位矢量, 求导线中的感生电动势.



 $\Phi = B_0 e^{-at} \int_0^b \int_0^{b-x} x^2 y \, dy \, dx$ 2分 解:

$$= B_0 e^{-at} \int_0^b x^2 [(b-x)^2/2] dx$$
 1  $\mathcal{D}$ 

$$=(b^5/60) \cdot B_0 e^{-at}$$
 2  $\%$ 

\*的方向与 k 成右旋关系 1分

 $\varepsilon_0 = \frac{hc}{\lambda_0}$ 20 解: 入射光子的能量为 1

分

1分

散射光子的能量为  $\varepsilon = \frac{hc}{\lambda}$  反冲电子的动能为  $E_K = \varepsilon_0 - \varepsilon = hc(\frac{1}{\lambda_0} - \frac{1}{\lambda}) = 1.68 \times 10^{-16}$ 3分

23

答: 涡旋电场: 随时间变化的磁场所产生的电场, 其电场强度线为闭合曲线.

2分

位移电流密度: 位移电流是变化电场产生的, 其定义为: 电场中某点位移电 流密度等于该点电位移矢量的时间变化率. 3 分