DL LAB6 REPORT

1.Introduction

在 CV 的 Condition-to-Image 任務中, Diffusion Probabilistic Models簡稱 DDPM是用來解這個任務的一種模型。其基本原理是通過一個 forward noising process,將真實圖像逐步添加random noise,直到變成純noise,然後再通過 reverse denoising process 根據學習到的參數,逐步去除噪聲,最終恢復出高品質的圖像。這兩階段的過程透過馬可夫鏈來逼近資料分佈,這樣才能夠生成很相似的output。相比於更老的GAN, DDPM 在訓練上比較穩定,且不易發生 mode collapse。此外, DDPM 在 image generation, image inpainting, super-resolution 等任務中表現也比較好,特別適合需要高質量且diverse的圖像輸出,雖然 sampling speed 相對較慢。在這次的lab中,我們給定條件(如 "red sphere", "yellow cube", "gray cylinder"),實做了完整的 DDPM pipeline,從 noise schedule、模型架構設計到 sampling algorithm。我學到了如何調整 noise schedule、選擇 appropriate loss functions,收穫很多。

2. Implementation details

DDPM: ConditionalDDPM class 中我有使用 Diffusers 套件的 DDPMScheduler 負責添加 forwardnoise和backward denoise,用一個基於 Unet model當做 noise predictor;再加上 evaluation_model 做驗證;也有自己寫了 DataLoader 去讀取 iclevrDataset 的data。Optimizer 採用 Adam,並配合一個 cosine warmup learning-rate scheduler。在 train()裡,對每個 batch 先用 scheduler add noise、再讓 U-Net predict noise,計算 MSE loss,back propagate 後更新參數,同時調整 learning rate,並且在每個 epoch 結束時計算一次eval acc,根據表現儲存最佳模型,最後把訓練過程(loss、accuracy)和參數都寫入 record.txt 以便後續分析。程式碼如下圖所示。

```
•
 class ConditionalDDPM():
      def __init__(self, args):
            self.args = args
            self.device = args.device
           self.epoch = args.epoch
self.lr = args.lr
            self.batch_size = args.batch_size
            self.num_train_timestamps = args.num_train_timestamps
            self.save_root = args.save_root
            self.label_embeding_size = args.label_embeding_size
           self.noise_scheduler = DDPMScheduler(num_train_timesteps=self.num_train_timestamps, beta_schedule="squaredcos_cap_v2")
self.noise_predicter = Unet(labels_num=24, embedding_label_size=self.label_embedding_size).to(self.device)
            self.eval_model = evaluation_model()
            self.train_dataset = iclevrDataset(root=".../dataset/iclevr", mode="train")
           self.train_loader = Dataloader(self.train_dataset, batch_size=self.batch_size, shuffle=True) self.optimizer = torch.optim.Adam(self.noise_predicter.parameters(), lr=self.lr)
            self.lr_scheduler = get_cosine_schedule_with_warmup(
                optimizer=self.optimizer,
num_warmup_steps=args.lr_warmup_steps,
                 num_training_steps=len(self.train_loader) * self.epoch,
                 num_cycles=50
```

```
train_loss = []
 test_acc = []
 bestacc = 0
for epoch in range(1, self.epoch+1):
      r epoch in range(1, self.epoch+1):
  epoch_loss = 0
for x, y in tqdm(self.train_loader):
    x = x.to(self.device)
    y = y.to(self.device)
               noise = torch.randn_like(x)
             timestamp = torch.randint(0, self.num_train_timestamps - 1, (x.shape[0], ), device=self.device).long()
noise_x = self.noise_scheduler.add_noise(x, noise, timestamp)
perd_noise = self.noise_predicter(noise_x, timestamp, y)
             loss = loss_criterion(perd_noise, noise)
loss.backward()
             nn.utils.clip_grad_value_(self.noise_predicter.parameters(), 1.0)
             self.optimizer.zero_grad()
              self.lr = self.lr_scheduler.get_last_lr()[0]
             epoch_loss += loss.item()
  epocn_loss += loss.item()
epoch_loss /= len(self.train_loader)
train_loss.append(epoch_loss)
print('Epoch' + str(epoch) + ' Loss: ' + str(epoch_loss))
# acc = self.evaluate(epoch, testing_dataset="test")
    acc = self.evaluate( testing_dataset="test")
test_acc.append(acc)
     print('Epoch ' + str(epoch) + ' Accuracy: ' + str(acc))
if acc > bestacc or acc > 0.8 :
             bestacc = acc
self.save(os.path.join(self.args.ckpt_root, f"epoch={epoch}.ckpt"), epoch)
f = open(os.path.join(self.args.ckpt_root, f"record.txt"), 'w')
print('Arguments:', file=f)
for arg, value in vars(self.args).items():
    print(f"{arg}: {value}", file=f)
print(file=f)
 for i in range(self.epoch):
      print(train_loss[i], ',', end=' ', file=f)
print(file=f)
print(file=f)
 print('Accuracy', file=f)
for i in range(self.epoch):
    print(test_acc[i], ',', end=' ', file=f)
 print(file=f)
print(file=f)
  f.close()
```

noise predictor 的部分我寫在<u>unet.py</u>中,如下圖。

程式碼中有使用diffuser的UNet2DModel。Unet的input 有RGB還有condition,所以對condition進行shapeexpand 來allign input image shape,之後再將他們concatenate,因此input channel會是3(RGB)+24(Condition)。timeembedding 則直接將 timestamp 輸入到Unet2DModel,model 便

會自動處理。我實作noise predicter的程式碼如下頁圖所示。

```
class Unet(nn.Module):
         def __init__(self, labels_num = 24, embedding_label_size=4) -> None:
             super().__init__()
self.label_embedding = nn.Embedding(labels_num, embedding_label_size)
              self.model = UNet2DModel(
                  sample_size = 64,
                  in_channels = 3 + labels_num,
                  out_channels = 3,
                  time_embedding_type = "positional",
                  layers_per_block = 2, block_out_channels = (128, 128, 256, 256, 512, 512), # number of output channels for each UNet block
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
                  down_block_types = (
                       "DownBlock2D",
                      "DownBlock2D", # a ResNet downsampling block with spatial self-attention
                  up_block_types = (
                       "UpBlock2D", # a regular ResNet upsampling block
"AttnUpBlock2D", # a ResNet upsampling block with spatial self-attention
         def forward(self, x, t, label):
             bs, c, w, h = x.shape
             embeded_label = label.view(bs, label.shape[1], 1, 1).expand(bs, label.shape[1], w, h)
             unet_input = torch.cat((x, embeded_label), 1)
             unet_output = self.model(unet_input, t).sample
              return unet_output
```

3. Results and discussion

- Show your synthetic image grids (total 16%: 8% * 2 testing data)
 - o test.json

o new_test.json

• denoising process image with the label set ["red sphere", "cyan cylinder", "cyan cube"]

● Discussion of your extra implementations or experiments (10%) 有測試了兩組hyperparameters,其結果如下面四張圖可以看到, 基本上epoch 150 已經能夠達到還不錯的accuracy,只是再繼續train到300其實大約就能 從Acc 0.7左右提升至Acc 0.8 左右,可以觀察到DDPM其實相較於GAN很好train,不會因為hyper parameters 的一點點差異就導致model collapse。

lr	1e-4	2e-4
epoch	150	300
acc curve	Accuracy Curve 0.8 0.7 0.6 0.5 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.6 0.7 0.7	Accuracy Curve 0.9 0.8 0.7 0.6 0.7 0.6 0.7 0.7 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9

4. Experimental results

test.json acc: 0.819

new_test.json acc: 0.905

```
(base) winston@gpu9:/project2/winston/lab/lab6/DDPM$ python main.py --test True --ckpt_path ./epoch=220.ckpt --ckpt_root ./save_model/2
In testing mode : True
testing_dataset : test
1000it [00:37, 26.99it/s]
DDPM test.json Accuracy : 0.819
testing_dataset : new_test
1000it [00:36, 27.36it/s]
DDPM new_test.json Accuracy : 0.905
1000it [00:10, 94.39it/s]
```