Line Sweep Algorithm.

Classes:

- 1. PlaneSweep: main class.
- 2. Point: (double x, double y) representing a point.
- 3. Segment: point a, point b representing a segment.
- 4. Event: String (type of event), segment a, segment b, point (event point)

 Type of events: Start of segment, end of segment, intersection of two segments.
- 5. EventQ: TreeSet that stores Events ordered with increasing x.
- 6. SweepLineStatus: Tree set for sweepline status.

Data Structures:

- 1. EventQ and
- 2. SweeplineStatus.

Using TreeSet data structures for the above two. This is important as they are needed to be ordered with respect to increasing x.

Run Time:

The runtime depends primarily on the eventQ, which is a TreeSet and thus any function performed on it takes O(Log(n)) time.

For the algorithm we take $O((2n+I)\log n)$ where I is the number of intersections.

This happens n times because of n events in the EventQ.

Number of Segments

Brute Force:

Classes:

1. BruteForce: main class.

2. Point: (double x, double y) representing a point.

3. Segment: point a, point b representing a segment.

Data Structures:

1. HashSet: stores the calculated intersection points between segments.

Run Time:

We check each segment's equation with other segment's equation. Thus we check n^2 times. Giving us a $O(n^2)$

Number of Segments