MA323: Lab 2 Report

Udit Jethva (220123067)

12 August 2024

Q1

First requirement of solving this question is finding out F(x). It is given to us that:

$$f(x) = \begin{cases} 3(1-x)^2 & \text{if } 0 < x < 1\\ 0 & \text{otherwise} \end{cases}$$

We know that $f(x) = \frac{d}{dx}(F(x))$. So we can conclude that :

$$F(t) = \int_0^t 3(1-x)^2 dx$$

when 0 < t < 1.

Solving we obtain : $F(t) = (t-1)^3 + 1 \implies F^{-1}(x) = (x-1)^{\frac{1}{3}} + 1$

We can use this result to generate numbers from this distribution from Uniform distribution.

Calculating Mean and Variance

$$E[X] = \int_0^1 3x(1-x)^2 dx = 0.25$$

$$E[X^2] = \int_0^1 3x^2 (1-x)^2 dx = 0.10$$

$$\mu = E[X] = 0.25$$

$$\sigma^2 = E[X^2] - (E[X])^2 = 0.0375$$

Obtained experimental values :

N	μ	σ^2
10	0.18825	0.02763
100	0.24606	0.04105
1000	0.25761	0.03873
10000	0.24874	0.03691
100000	0.25010	0.03771
1000000	0.24988	0.03740

We can observe that the experimental values of μ and σ^2 are converging to the theoretical values.

CDF Plots on next page

CDF Plots

$\mathbf{Q2}$

F(x) is already given to us so we just need to find out the inverse function which goes like this:

$$F^{-1}(x) = \begin{cases} -\ln(1-x) & 0 < x \le 1 - \frac{1}{e} \\ \frac{1}{2}(1 - \ln(1-x)) & 1 - \frac{1}{e} \le x \end{cases}$$

The random variables were generated and the following plots of the CDF were obtained :

Calculating Mean and Variance

We know that $f(x) = \frac{d}{dx}F(x)$. Probability density function of the given distribution is given by:

$$f(x) = \begin{cases} e^{-x} & 0 < x \le 1\\ 2e^{-(2x-1)} & 1 < x \end{cases}$$

We use this to calculate the theoretical mean and variance which come out as :

$$\mu = 1 - \frac{1}{2e} \approx 0.81606$$
, $\sigma^2 = -\frac{1}{4e^2} - \frac{3}{2e} + 1 \approx 0.41435$

Observed values :

N	μ	σ^2
10	0.76712	0.24112
100	0.81685	0.35996
1000	0.82792	0.41040
10000	0.81767	0.41263
100000	0.81690	0.41449
1000000	0.81634	0.41473

Q3

The code generates the values and the frequencies are tabulated in frequencies.csv