1 <u>CLAIMS:</u>

- 2 1. A wet-friction, composite material suitable for use in
- 3 applications selected from the class consisting of wet
- 4 transmission couplings, automatic lockers, limited slip
- 5 differentials, smart clutches, synchronizers, brakes and the
- 6 like, comprising: a carbon or graphite fabric formed from a
- 7 woven, continuous, untwisted filament yarn and impregnated with
- 8 modified cyanate ester resin or oligomers which are subsequently
- 9 cured.

10

- 11 2. The composite material of Claim 1, in which the modified,
- 12 cured cyanate ester resin weight in the fabric is at least about
- 13 10% by weight of the cured resin based on the combined weight of
- 14 fabric and cured resin.

15

- 16 3. The composite material of Claim 1, in which the modified
- 17 cyanate ester resin in the fabric is about 10% 50% by weight of
- 18 the cured resin based on the combined weight of fabric and cured
- 19 resin.

20

- 21 4. The composite material of Claim 1, in which the modified
- 22 cyanate ester resin in the fabric is about 10% 35% by weight of
- 23 the cured resin based on the combined weight of fabric and cured
- 24 resin.

- 1 5. The composite material of Claim 1, in which the modified
- 2 cyanate ester resin weight in the fabric is about 10% 25% by
- 3 weight of the cured resin based on the combined weight of fabric
- 4 and cured resin.

- 6. The composite material of Claim 1, in which the modified
- 7 cyanate ester resin in the fabric is about 10% 18% by weight of
- 8 the cured resin based on the combined weight of fabric and cured
- 9 resin.

10

- 11 7. The composite material of Claim 1, in which the modified
- 12 cyanate ester resin in the fabric is about 12% 17% by weight of
- 13 the cured resin based on the combined weight of fabric and cured
- 14 resin.

15

- 16 8. The composite material of Claim 1, in which the modified
- 17 cyanate ester resin in the fabric is about 40% 50% by weight of
- 18 the cured resin based on the combined weight of fabric and cured
- 19 resin.

20

- 21 9. The composite material of Claim 1, provided as a supplied
- 22 product including an adhesive coating for applying to a metal
- 23 surface, an adhesive film for application to a metal surface, or
- 24 a cured fabric without an adhesive coating.

1	10. The composite material of Claim 1, in which the fabric is
2	formed as a continuous spiral, cut to size and bonded to the
3	transmission in one piece.
4	
5	
6	11. The composite material of Claim 1, in which the fabric
7	material is selected from the class consisting of carbon,
8	graphite, ceramics, boron, aramid fiber, glass, quartz, silica,
9	and mixtures thereof.
10	
11	12. The composite material of Claim 1, in which the fabric weave
12	is a plain weave.
13	
14	13. The composite material of Claim 1, in which the fabric weave
15	includes: braided, 5 and 8 harness satin, basket, twill and,
16	crowfoot satin.
17	
18	
19	
20	
21	
22	

- 1 14. The composite material of Claim 1, formed from a prepreg in
- 2 which the modified cyanate ester resin or oligomer is selected
- 3 from the class consisting of: polycyanate ester modified with
- 4 silicone elastomer, polycyanate ester modified with epoxy resin,
- 5 polycyanate ester modified with polyetherimide, polycyanate ester
- 6 modified with polyphenoxy resin, polycyanate ester modified with
- 7 polysulfone or polyether sulfone resins, polycyanate ester
- 8 modified with polyimide resins, polycyanate ester modified with
- 9 polycarbonate resins, polycyanate ester modified with diglycidyl
- 10 ether of novolac resins, and polycyanate ester modified with
- 11 cresol novolac resins.

- 13 15. A wet friction material for transmission couplings
- 14 comprising a modified cyanate ester cured fabric formed from a
- 15 braided fabric from continuous, untwisted filament yarn.

16

- 17 **16.** The transmission coupling of Claim 15, in which the modified
- 18 cyanate ester resin content in the fabric as cured is about
- 19 10% 18% by weight of the cured resin based on the combined
- 20 weight of fabric and cured resin.

- 22 17. The transmission coupling of Claim 12, in which the modified
- 23 cyanate ester resin content in the fabric as cured is about
- 24 12% 17% by weight of the cured resin based on the combined
- 25 weight of fabric and cured resin.

- 1 18. The composite material of Claim 1, comprising a yarn end
- 2 count of 1,000 24,000 continuous filaments.

- 4 19. The composite material of Claim 1, comprising a yarn end
- 5 count of about 3,000 12000 continuous filaments.

6

- 7 20. The composite material of Claim 1, comprising a cured
- 8 material thickness of about 0.015 0.080 inches.

9

- 10 21. The composite material of Claim 1, comprising a cured
- 11 material thickness of about 0.024 0.028 inches.

12

- 13 22. The composite material of Claim 1, comprising a cured
- 14 material thickness of about 0.015 0.080 inches and an end count
- of about 3,000 12,000 continuous filaments.

16

- 17 23. The composite material of Claim 1, comprising a cured
- 18 material thickness of about 0.024 0.028 inches, and an end
- 19 count of about 6,000 12,000 continuous filaments.

20

- 21 24. The composite material of Claim 1, in which the modified,
- 22 cyanate ester resin or oligomer is cured.

23

24

- 1 25. The composite material of Claim 1, comprising at least two
- 2 layers of material adhesively bonded together.

- 4 26. A method of forming a composite suitable for use as a wet
- 5 friction coupling in applications selected from the class
- 6 consisting of transmission couplings, automatic lockers, limited
- 7 slip differentials, smart clutches, synchronizers, brakes and the
- 8 like, comprising impregnating a plain woven fabric with a
- 9 modified cyanate ester oligomer, the fabric being formed from a
- 10 continuous, untwisted carbon filament yarn having an end count of
- 11 about 3,000 12,000, the modified cyanate ester resin or
- 12 oligomer as cured in the fabric being about 10% 50% based on
- 13 the weight of the fabric and cured resin, and the composite
- 14 thickness being about 0.015 0.080 inches.

1	WOVEN FABRIC WITH A MODIFIED CYANATE ESTER
2	RESIN FOR USE AS A WET FRICTION LINER:
3	
4	
5	
6	BY: EDUARD P. BABAYAN,
7	MICHAEL C. BURKITT AND,
8	DAVID W. GIBSON.
9	
10	ABSTRACT OF THE DISCLOSURE:
11	Woven fabric of continuous, untwisted carbon yarn is
12	impregnated with a modified cyanate ester resin or oligomer,
13	preferably at least about 10% by weight of the combined weight of
14	the cured resin and fabric. The cured fabric may be employed as
15	a wet friction material suitable for use in transmission fluid
16	couplings, and the like. The cured composite sheet can be backed
17	with an adhesive film or liquid bonding paste for ease of bonding
18	to one side of the metal portion of the transmission or clutch.
19	Where thicker material is required, two or more cured composite
20	sheets can be bonded together for applications such as
21	transmissions.
22	
23	
2.4	