9.1	Functions
9.2	Algebraic Operations on Functions
	Definition 9.2 Given two functions $g: D_g \to \mathbb{R}$ and $f: D_f \to \mathbb{R}$, we define their composition $f \circ g: D_{f \circ g} \to \mathbb{R}$ by $ (3) \qquad (f \circ g)(a) = f(g(a)), a \in D_{f \circ g}; $
	$D_{f \circ g} = \{a \in \mathbb{R} : g ext{ is defined at } a ext{ and } f ext{ is defined at } g(a)\}$.
	Note that $f \circ g$ is read from right to left: first the mapping g is performed, then the mapping f ; it is this convention that makes (3) true.
	Two compositions interpreted geometrically by using the graph G_f of $f(x)$: translation if $a > 0$, the graph of $f(x + a)$ is the graph G_f moved to the left a unitary
	the graph of $f(x+a)$ is the graph G_f moved to the left a units; the graph of $f(x-a)$ is the graph G_f moved to the right a units; change of scale if $a>1$,
	the graph of $f(x/a)$ is the graph G_f expanded horizontally by the factor a ; the graph of $f(ax)$ is the graph G_f compressed horizontally by $1/a$.
9.3	Some Properties of Functions
	Definition 9.3A Let $f(x)$ be a function with domain D . We say f is
	increasing if $f(a) \le f(b)$ for all pairs $a < b$ in D ; strictly increasing if $f(a) < f(b)$ for all pairs $a < b$ in D ; decreasing if $f(a) \ge f(b)$ for all pairs $a < b$ in D ;
	strictly decreasing if $f(a) > f(b)$ for all pairs $a < b$ in D ; monotone if f is either increasing in D or decreasing in D ;
	strictly monotone if f is strictly increasing or strictly decreasing in D .
	Definition 9.3B $f(x) \text{ is even if } f(-x) = f(x) \qquad \text{for all } x \in D_f ;$
	$f(x)$ is odd if $f(-x) = -f(x)$ for all $x \in D_f$. For both definitions the domain D_f of the function must be symmetric about
	the point 0 (i.e., $x \in D_f \Leftrightarrow -x \in D_f$), otherwise the equality makes no sense. Geometrically, an even function is one whose graph is symmetric about the y -axis; an odd function is one whose graph is symmetric about the origin.
	Definition 9.3C We say $f(x)$ is periodic if there is a $c > 0$ such that
	$f(x+c) = f(x)$ for all $x \in D_f$. The number c is called a period of f ; the smallest such c (if it exists) is called the <i>minimal period</i> of f , or simply the <i>period</i> of f .
9.4	Inverse Functions
9,5	The Elementary Functions
	(a) the rational functions: those writable in the form $p(x)/q(x)$, where $p(x)$ and $q(x)$ are polynomials;
	(b) the basic trigonometric functions: $\cos x$, $\sin x$, $\tan x$, their three reciprocals, and the six inverses $\cos^{-1} x$, $\sin^{-1} x$,;
	(c) the exponential function e^x and its inverse, $\ln x$; (d) the elgebraic functions: those functions $y = y(x)$ which satisfy an equa-
	tion of the form $(12) y^n + a_1(x)y^{n-1} + + a_n(x) = 0$
	- The elementary functions are then all functions that you can get from the four classes above by
	addition, multiplication, division, and composition of functions