			Question	A3		Page 1/2
						Marks
a)	Bromine, Br ₂ (I) can be produced by a variety of methods					
	 The first method involves reacting chlorine gas, Cl₂(g), with a solution of potassium bromide, KBr(aq). 					
	 A second method uses manganese(IV) oxide, MnO₂(s), with a solution of potassium bromide, KBr(aq), in acidic conditions. 					
	•	platinun	d is the electrolysis of a s n electrodes. Bromine is p ammable gas being prod	produced at the positiv	e electrode,	
	i.		ne equation for the reaction anges in oxidation numberaction.			2 marks
	The s	econd m	ethod involves the two re	dox couples		
			Br₂(aq)/Br⁻(aq) and	MnO ₂ (s)/Mn ²⁺ (aq)		
	ii.	 ii. Use these couples to write the chemical equation for the reaction, and give the changes in oxidation numbers for bromine and manganese during the reaction. The table below gives the electrode potentials for the likely couples involved under the conditions experienced in the third method using the electrolysis cell. 				3 marks
	under		w gives the electrode pot	entials for the likely co	•	
	under		w gives the electrode pot	entials for the likely co	•	
	under		w gives the electrode pot ditions experienced in the	entials for the likely co third method using the	•	
	under		w gives the electrode pot ditions experienced in the Couples	entials for the likely co third method using the	•	
	under		w gives the electrode pot ditions experienced in the Couples K ⁺ (aq) / K(s)	entials for the likely co third method using the <i>E I V</i> - 2.93	•	
	under		w gives the electrode pot ditions experienced in the $\frac{\text{Couples}}{\text{K}^{+}(\text{aq}) / \text{K(s)}}$ $\frac{\text{H}_{2}\text{O(I)} / \text{H}_{2}(\text{g})}{\text{H}_{2}(\text{g})}$	entials for the likely co third method using the E / V - 2.93 - 0.41	•	
	under	Draw a	w gives the electrode pot ditions experienced in the $\mathbf{Couples}$ $\mathbf{K}^{+}(aq) \ / \ K(s)$ $H_2O(I) \ / \ H_2(g)$ $O_2(g) \ / \ H_2O(aq)$	entials for the likely conthird method using the E / V - 2.93 - 0.41 + 0.81 + 1.09 electrolysis experimentows to show the move	t as described	3 marks

		Question A3	Page 2/2
			Marks
	In practice, it is found that bromine is one of the substances.		
	V.	Write the overall equation for the reaction taking place during this electrolysis and calculate the minimum voltage that must be applied during the electrolysis to produce bromine.	2 marks
	vi.	Calculate the time taken for the electrolysis to produce a mass of 1.00 kg of bromine, $Br_2(I)$, if a steady current of 12.0 A is passed.	2 marks
	Given:	1 Faraday= 9.65 x 10 ⁴ C mol ⁻¹ Molar atomic mass (in g mol ⁻¹) : Br : 79.9	
b)		e, $\text{Br}_2(I)$, is used in the manufacture of potassium hypobromite, eq), which is used as a disinfectant.	
	The pro	ocess involves two stages.	
	 Step 1: bromine reacts with water to produce hydrobromic acid, HBr(aq), and hypobromous acid, HBrO(aq). 		
	· -	Step 2: the hypobromous acid from step1 reacts with an aqueous solution of potassium hydroxide, KOH(aq).	
	Give th	ne equations for the reactions occurring in step 1 and in step 2.	2 marks
c)	$25.0~{\rm cm^3}$ of $1.00~{\rm x}~10^{\text{-1}}$ mol dm ⁻³ hypobromous acid solution is titrated with an aqueous solution of sodium hydroxide, NaOH(aq) with a concentration of $8.00~{\rm x}~10^{\text{-2}}$ mol dm ⁻³ .		
	i.	Give the equation for the reaction taking place during the titration.	1 mark
	ii.	Calculate the volume of the sodium hydroxide solution that must be added to reach the equivalence point.	2 marks
	iii.	Calculate the initial pH of the solution of hypobromous acid at 25 °C.	2 marks
	iv.	Calculate the pH at the equivalence point of the titration at 25 °C.	4 marks
	Given:	K_a , for hypobromous acid at 25 °C : 2.00 x 10 ⁻⁹ .	
		p $K_{\rm w}$ of water at 25 $^{\circ}{\rm C}$: 14.0	

Question B1			
			Marks
a)	A secondary alcohol has the molecular formula C ₅ H ₁₂ O.		
	i.	Give the three possible structural formulas of the secondary alcohol isomers of $C_5H_{12}O$.	3 marks
	One of the isomers you have drawn is not optically active.		
	ii.	Give the IUPAC name of this isomer and explain why it is not optically active.	3 marks
	The alcohol pentan-2-ol is oxidized by an acidified aqueous solution of potassium dichromate, $K_2Cr_2O_7(aq)$.		
	iii.	Give the equation for the reaction and give the IUPAC name of the organic product.	3 marks
	Given:	The half-equation for the oxidizing agent is:	
		$Cr_2O_7^{2-}(aq) + 14H^+(aq) + 6e^- \rightarrow 2Cr^{3+}(aq) + 7H_2O(I)$	
	iv.	Calculate the minimum volume of 2.00 x 10 ⁻¹ mol dm ⁻³ aqueous potassium dichromate solution required to oxidize 25.0 cm ³ of pentan-2-ol.	3 marks
	Given:	The density of pentan-2-ol: $8.09 \times 10^{-1} \text{ g cm}^{-3}$. Molar atomic masses (in g mol ⁻¹): H: 1.01 C: 12.0 O: 16.0	
b)	Esterification reactions, represented by the general equation below, are reversible:		
	acid + alcohol		
	i.	Suggest two different ways in which the yield of ester could be increased.	2 marks
	ii.	Give the mechanism for the esterification reaction between ethanoic acid and methanol.	4 marks
	iii.	Explain why a strong acid is used to catalyze this reaction.	1 mark

		Question B1	Page 2/2	
			Marks	
c)	An organic compound, X is a liquid at room temperature and is produced by oxidizing a saturated alcohol.			
		of compound X is totally combusted in air to give 9.01 g of water and n^3 of carbon dioxide, measured at 25 °C and a pressure of 1.01 x 10^5		
	i.	Calculate the molar ratio of carbon to hydrogen in compound X .	3 marks	
	ii.	Assuming that the molar mass is 58.1 g mol ⁻¹ give the molecular formula of X .	1 mark	
	iii.	Give the structural formulas and the names of the two isomers of ${\bf X}$.	2 marks	
	Given: Molar atomic masses (g mol ⁻¹):			
		H: 1.01 C: 12.0 O: 16.0		
		Molar volume of a gas at 25 °C and 1.01 x 10 ⁵ Pa : 24.5 dm ³ mol ⁻¹		