Basic conventions							
Minkowski metric tensor	Totally antisymmetric tensor	Four-momentum	Four-momentum norm	Massive rest-frame			
$\eta_{\mu u}$	$\epsilon \eta_{\mu \nu ho \sigma}$	k^{μ}	$k^2 == k_{\mu} k^{\mu}$	$n^{\mu} == \frac{k^{\mu}}{k}$			

Fundamental field	Symmetries	Decomposition in SO(3) irreps	Source
$\Gamma_{lphaeta\chi}$	Symmetry[3, Γ ^{●1●2●3} ,	$-\frac{1}{2} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#1} + \frac{1}{2} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#1} + \frac{4}{3} \Gamma_{2^{-}\beta\chi\alpha}^{\#1} + \frac{1}{2} \Gamma_{2^{-}\alpha\beta\chi}^{\#2} + \frac{1}{2} \Gamma_{2^{-}\alpha\chi\beta}^{\#2} + \Gamma_{3^{-}\alpha\beta\chi}^{\#1} + \frac{1}{3} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#6} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#6} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#6} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#4} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#4} + \Gamma_{1^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{9} \eta_{\beta\chi} \Gamma_{0^{+}}^{\#3} \eta_{\alpha} + \frac{1}{3} \Gamma_{2^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{2}{3} \Gamma_{2^{+}\beta\chi}^{\#3} \eta_{\alpha} + \frac{2}{3} \Gamma_{2^{+}\beta\chi}^{\#3} \eta_{\alpha} + \frac{2}{3} \Gamma_{2^{+}\beta\chi}^{\#3} \eta_{\alpha} + \frac{2}{9} \eta_{\beta\chi} \Gamma_{0^{+}}^{\#6} \eta_{\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{0^{+}}^{\#4} \eta_{\beta} - \Gamma_{1^{+}\alpha\chi}^{\#4} \eta_{\beta} + \frac{1}{3} \Gamma_{1^{+}\alpha\chi}^{\#2} \eta_{\beta} + \frac{1}{3} \Gamma_{1^{+}\alpha\chi}^{\#2} \eta_{\beta} + \frac{1}{3} \Gamma_{2^{+}\alpha\chi}^{\#2} \eta_{\beta} - \frac{1}{3} \Gamma_{2^{+}\alpha\chi}^{\#3} \eta_{\beta} - \frac{1}{9} \eta_{\alpha\chi} \Gamma_{0^{+}\eta}^{\#4} \eta_{\beta} - \frac{1}{2} \Gamma_{1^{-}\chi}^{\#3} \eta_{\alpha} \eta_{\beta} + \frac{1}{6} \Gamma_{1^{-}\chi}^{\#6} \eta_{\alpha} + \frac{1}{3} \Gamma_{1^{-}\chi}^{\#3} \eta_{\alpha} \eta_{\beta} - \frac{1}{3} \Gamma_{1^{-}\chi}^{\#3} \eta_{\alpha} \eta_{\alpha} - \frac{1}{3} \Gamma_{1^{-}\chi}^{\#3} \eta_{\alpha}$	$\Delta_{lphaeta\chi}$

		Expansion in terms of the fundamental field	Source
	Symmetry[0, $\Gamma_{0+}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \Gamma_{\alpha}^{\alpha \beta} n_{\beta} + \frac{1}{2} \Gamma_{\alpha}^{\alpha \beta} n_{\beta}$	$\Delta_{0}^{\#1}$
		$\Gamma^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	Δ#2
	Symmetry[0, Γ_{0+}^{3} , {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} n_{\alpha} + \Gamma^{\alpha\beta}_{\ \alpha} n_{\beta} + \Gamma^{\alpha\beta}_{\ \alpha} n_{\beta} - 3 \Gamma^{\alpha\beta\chi}_{\ \alpha} n_{\alpha} n_{\beta} n_{\chi}$	Δ ₀ ^{#3}
	Symmetry[0, $\Gamma_{0}^{\#4}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\beta} n_{\alpha}^{-\frac{1}{2}} \Gamma^{\alpha\beta}_{\alpha} n_{\beta}^{-\frac{1}{2}} \Gamma^{\alpha\beta}_{\alpha} n_{\beta}$	Δ#4
		$\epsilon \eta_{\alpha\beta\chi\delta} \Gamma^{\alpha\beta\chi} n^{\delta}$	Δ#1
$^{\prime}$ 1 ⁺ $\alpha\beta$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$\frac{1}{4} \Gamma_{\alpha\beta}^{} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\alpha\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\beta\alpha}^{\alpha} n_{\alpha\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\alpha}^{\beta} n_{\alpha\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\alpha}^{\beta} n_{\alpha\alpha} n_{\beta\alpha} n_{\beta\alpha} n_{\beta\alpha} n_{\alpha\alpha} n_{\beta\alpha} n_{\beta\alpha} n_{\alpha\alpha} n_{\alpha} n_{\alpha\alpha} n_{\alpha\alpha} n_{\alpha\alpha} n_{\alpha\alpha} n_{\alpha\alpha} n_{\alpha\alpha$	$\Delta_{1}^{\#1}{}_{lphaeta}$
$\Gamma^{\#2}_{1}^{+} \alpha \beta$	Symmetry[2, $\Gamma_{1}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{2} \Gamma^{\chi}_{\alpha\beta} n_{\chi} - \frac{1}{2} \Gamma^{\chi}_{\beta\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\chi}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#2}{}_{\alpha\beta}$
$\Gamma^{#3}_{1}^{+}{}_{lphaeta}$	Symmetry[2, $\Gamma_{1}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\begin{bmatrix} -\frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{2} \Gamma_{\alpha\beta}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{ X} n_{\chi} - \Gamma_{\beta}^{ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \\ \frac{1}{2} \Gamma_{\beta}^{ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta\alpha}^{ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha}^{ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\alpha}^{ X\delta} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\alpha}^{ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\alpha\alpha}^{ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\alpha}^{ X\delta} n_{\gamma} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\alpha}^{ X\delta} n_{\gamma} n_{\gamma} n_{\gamma} n_{\delta} - \frac{1}{2} \Gamma_{\alpha\alpha}^{ X\delta} n_{\gamma} n_{$	$\Delta_{1}^{\#3}{}_{lphaeta}$
${\Gamma_{1-\alpha}^{\#1}}$	Symmetry[1, $\Gamma_1^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$-\frac{1}{2}\Gamma^{\beta}_{\alpha\beta} + \frac{1}{2}\Gamma^{\beta}_{\beta\alpha} - \frac{1}{2}\Gamma^{\beta}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2}\Gamma^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2}\Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi} - \frac{1}{2}\Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	$\Delta_{1}^{\#1}{}_{\alpha}$
	Symmetry[1, $\Gamma_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		$\Delta_{1}^{#2}\alpha$
	Symmetry[1, $\Gamma_{1}^{\#3} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		Δ#3 α
		$ \Gamma_{\alpha\beta}^{\beta} + \Gamma_{\alpha\beta}^{\beta} + \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} - \Gamma_{\alpha}^{\gamma\chi} n_{\gamma} n$	$\Delta_{1}^{\#4}$
	Symmetry[1, $\Gamma_1^{\#_5 \bullet 1}$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$]		$\Delta_{1}^{\#5}\alpha$
		$ \Gamma_{\alpha \beta}^{\beta} - \frac{1}{2} \Gamma_{\alpha \beta}^{\beta} - \frac{1}{2} \Gamma_{\beta \alpha}^{\beta} - \Gamma_{\chi}^{\beta \chi} n_{\alpha} n_{\beta} + \frac{1}{2} \Gamma_{\beta}^{\beta \chi} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{\beta \chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta \chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta \chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta \chi} n_{\beta} n_{\chi} $	$\Delta_{1}^{*}\alpha$ $\Delta_{1}^{*6}\alpha$
			$\frac{\Delta_1}{\alpha}$
$\Gamma^{\#1}_{2}^{+}_{lphaeta}$	Symmetry[2, $\Gamma_{2^+}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$\begin{vmatrix} -\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{X \delta} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{X \delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\beta}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\beta}^{X \delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{X \delta} n_{\alpha} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\beta}^{X \delta} n_{\gamma} n_{\gamma}$	$\Delta_{2}^{\#1}{}_{lphaeta}$
Γ ^{#2} ₂ + αβ	Symmetry[2, $\Gamma_{2}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$\frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} n_{\chi} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ \ X} n_{\chi} n_{\chi} n_{\chi} n_{\chi} n_{\chi} - \Gamma_{\alpha\beta}^{\ \ \ \ X} n_{\chi} n$	$\Delta^{\#2}_{2^+ lphaeta}$
Γ ^{#3} 2 ⁺ αβ	Symmetry[2, $\Gamma_{2^{+}}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{3} \eta_{\alpha\beta} \Gamma_{\delta}^{\ X\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{\ X\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{\ X\delta} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\ X\delta} n_{\delta} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\ X\delta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{\ X\delta} n_{\alpha} n_{\beta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{\ X\delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{2} \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} $	$\Delta_{2}^{#3}{}_{\alpha\beta}$
Γ ^{#1} ₂ _{αβχ}	Symmetry[3, $\Gamma_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$ \begin{array}{c} -\frac{1}{8} \Gamma_{\alpha\beta\chi} + \frac{1}{8} \Gamma_{\alpha\chi\beta} + \frac{1}{8} \Gamma_{\beta\alpha\chi} - \frac{1}{8} \Gamma_{\beta\chi\alpha} + \frac{1}{4} \Gamma_{\chi\alpha\beta} - \frac{1}{4} \Gamma_{\chi\beta\alpha} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\beta\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\alpha} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\beta} n_{\chi} - \frac{3}{16} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} + \frac{1}{8} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} + \frac{1}{4} \Gamma_{\chi\beta}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma_{\chi\alpha}^{\delta} n_{\beta} n_{\delta} + \frac{1}{4} \Gamma_{\chi\alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma_{\chi\alpha}^{\delta} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma_{\chi\beta}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\chi} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\beta\alpha} n_{\chi} n_{\delta} n_{\epsilon} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\chi} n_{\delta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{$	$\Delta_{2}^{#1}{}_{lphaeta\chi}$
Γ ^{#2} _{2 αβχ}	Symmetry[3, $\Gamma_2^{\#2} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{3} \Gamma_{\alpha\beta\chi} + \frac{1}{3} \Gamma_{\alpha\chi\beta} - \frac{1}{3} \eta_{\beta\chi} \Gamma_{\alpha}^{\delta} - \frac{1}{3} \Gamma_{\beta\alpha\chi} - \frac{1}{3} \Gamma_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\delta\alpha}^{\delta} - \frac{1}{3} \Gamma_{\beta\alpha}^{\delta} n_{\alpha} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\delta}^{\delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\delta\alpha}^{\delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\delta\alpha}^{\delta} n_{\beta} n_{\chi} + \frac{1}{3} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} + \frac{1}{3} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\delta} n_{\beta} n_{\chi} + \frac{1}{3} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\beta} n_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\delta} n_{\delta} n_{\delta} - \frac{1}{6} \Gamma_{\beta\chi}^{\delta} n_{\lambda} n_{\delta} - \frac{1}{6} \Gamma_{\beta\chi}^{\delta} n_{\lambda} n_{\delta} - \frac{1}{6} \Gamma_{\alpha\chi}^{\delta} n_{\lambda} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} - \frac{1}{6} \Gamma_{\alpha\chi}^{\delta} n_{\lambda} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_{\delta} n_$	$\Delta_{2}^{\#2}{}_{lphaeta\chi}$
Γ ^{#1} ₃ αβχ	Symmetry[3, $\Gamma_3^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2, 3 \}$, GenSet[$\{ 1, 2, 3 \}$]]]	$\frac{1}{6} \Gamma_{\alpha\beta\chi} + \frac{1}{6} \Gamma_{\alpha\chi\beta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} + \frac{1}{6} \Gamma_{\beta\alpha\chi} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\delta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} \Gamma_{\chi\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\alpha\delta}^{\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\alpha\delta}^{\delta} - \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\alpha} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\alpha} \eta_{\alpha} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\alpha} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\alpha} \eta_{\alpha} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\alpha} + \frac{1}{15} \Gamma_{\alpha\delta}^{\delta} \eta_{\alpha} \eta_{\alpha} \eta_{\alpha} + \frac{1}{15} \Gamma_$	$\Delta_3^{#1}_{\alpha\beta\chi}$