序号: 26	专业:	机器人工程
T 5: 40	₹W:	

姓名: 学号:

日期: 2023/11/24

地点: 紫金港东 3-202

洲沙人学实验报告

实验目的和要求

- 1. 实验目的:
- (1) 学习三极管 9013 基极 b, 集电极 c, 发射极 e 的判别;
- (2) 学习 PNP 管和 NPN 管的判别;
- (3) 学习硅(Si)、锗(Ge)管的判别;
- (4) 三极管 9013 的伏安特性曲线测量。
- 2. 实验要求:
- (1) 能够使用数字式万用表的 hfe 档判断三极管的基极 b, 集电极 c 和发射极 e;
- (2) 测量三极管 9013 的伏安特性曲线;
- (3) 比较万用表测量的三极管放大系数以及伏安特性表示出的放大系数。
- 一、实验内容和原理
- 1. 实验原理:
- A. 二极管伏安特性

利用二极管的伏安特性图,可以判断二极管的阳极和阴极,根据导通电压可以判断二极管的类型(Si, Ge)。

相关二极管的伏安特性曲线图

B. 三极管的结构示意和图形符号

双极晶体管(Bipolar Junction Transistor, 简称 BJT) 常简称为晶体管(晶体三极管、三极管)。属于电流控制型器件("CCCS")。三极管分为 PNP 型和 NPN 型两种。本次实验中所用的三极管 9013 为 NPN 管,而 9012 为 PNP 管。

C. 三极管的输入和输出特性曲线:

2. 实验内容:

A. 用万用表判断三极管 9013 的基极 b、集电极 c、发射极 e 以及三极管类型和三极管相关的直流电流放大系数。(放大工作状态约为 202, 倒置工作状态约为 13)

- B. 设计反相器(电子开关)电路,测量三极管的参数。
- C. 设计三极管输入特性曲线实验电路,实现并测取三极管的输入特性曲线(当 UCE 为若干典型值时)。
- D. 设计三极管输出特性曲线实验电路,实现并测取三极管的输出特性曲线(当 IB 为若干典型值时)

二、主要仪器设备

1. 实验箱; 2.数字万用表; 3.示波器; 4.信号源; 5.9013 三极管。

三、操作方法和实验步骤

- 1. 判断三极管相关工作极以及相关直流电流放大系数:
- (1) 用万用表的→ 档判别出任意一个三极管的基极 b。判别该三极管的类型(Si 管、Ge 管, NPN 管、PNP 管)。
- (2) 用万用表的 hFE 档测出任意一个三极管的直流电流放大系数(即 hFE)。判别出该三极管的发射极 e 、集电极 c。(根据放大工作状态约为 202,倒置工作状态约为 13 进行判断)
- 2. 设计反相器(电子开关)电路,测量三极管的参数:
- (1) 根据以下实验电路图在实验箱上连接实验电路。图中的两个直流电压源的作用: VBB 为基极偏置电源(或供电电源); Vcc 为集电极偏置电源(或供电电源)。

反相器实验电路

(2) 利用万用表测量 V_{BB} 分别为 15V 和 0V 时基极与发射极之间的电压 V_{BE} 和集电极与发射极之间的电压 V_{CE} ,记录数据。

(3) 计算电流 IB 和 IC, 并计算放大系数 B, 记录数据。

$$I_{\rm B} = \frac{V_{\rm BB} - V_{\rm BE}}{R_{\rm b}}$$
 $I_{\rm C} = \frac{V_{\rm CC} - V_{\rm CE}}{R_{\rm c}}$ $\overline{\beta} \approx I_{\rm C} / I_{\rm B}$

- 3. 设计三极管输入特性曲线实验电路,实现并测取三极管的输入特性曲线(当 UCE 为若干典型值时):
- (1) 根据以下实验电路图在实验箱上连接实验电路。

测量三极管输入特性曲线实验电路图

- (2) 固定 VCE = 5V,利用信号发生器输出直流电源,调节信号发生器上的输出电压设定值,用数字万用表测量基极和发射极之间电压 VBE 和基极电压 VBB,记录数据。
- (3) 计算电流 IB, 记录数据。
- (4) 更改并固定 VCE=0V, 重复上述步骤。
- (5) 根据测量出的 VCE 分别为 5V 和 0 时的数据,绘制相应的三极管输入伏安特性曲线。

三极管理论输入伏安特性曲线图 (参考)

- 4. 设计三极管输出特性曲线实验电路,实现并测取三极管的输出特性曲线(当 IB 为若干典型值时):
- (1) 根据以下实验电路图在实验箱上连接实验电路。

- (2) 选取多个 IB 值,在保持 IB 不变的情况下用数字万用表测量基极与发射极之间电压 VBE、基极电压 VBB 和集电极与发射极之间的电压 VCE,记录实验数据。
- (3) 计算电流 IB 和电流 Ic, 记录数据。

- (4) 根据测量出的相应实验数据,绘制三极管 9013 的输出伏安特性曲线。
- (5) 分析 VCE 增大时 VBE 的变化。
- (6)分析 VCE 增大时放大系数 β 的变化。

五、实验数据记录和处理

1. 反相器(电子开关):

1.1

表 1	$V_{BB} =$	15V

V_{BE}	I_{B}	V_{CE}	$I_{\rm C}$	β
0.64V	72uA	0.037	1.5mA	20.83

1.2

表 2
$$V_{BB} = 0V$$

V_{BE}	I_B	V_{CE}	I_{C}	β
10	0	15.01V	0	20.83

2. 输入伏安特性:

2.1

表 3
$$U_{CE} = 5V$$

I _B /uA	0.0	0.0	0.2	11.7	20.2	38.4	86.0	134.0
V _{BE} /V	0.180	0.470	0.550	0.582	0.596	0.608	0.633	0.640

2.2

I _B /uA	0.0	0.0	0.4	3.9	10.9	28.2	46.0	142.0
V _{BE} /V	0.280	0.360	0.394	0.460	0.490	0.510	0.520	0.550

3. 输出特性

3.1

表 5
$$I_B = 46.5 uA$$

V _{BE}	V_{CE}	I_{C}	β
0.648	0.065	2.72579	58.60449
0.652	0.07	3.15721	67.88002
0.654	0.076	3.64746	78.42039
0.657	0.079	3.98083	85.58785
0.661	0.091	5.17704	111.3064
0.673	0.116	7.60868	163.5866
0.684	0.23	11.3738	244.5367
0.698	1.666	11.88366	255.4987
0.66	2.85	12.3543	265.6175
0.65	3.83	12.64845	271.9417
0.64	4.81	12.90338	277.4227
0.63	6.83	13.5309	290.9144
0.61	9.75	14.33491	308.2006
0.56	13.76	15.92332	342.3514

3.2

	表 6 I _B	= 22uA	
0.61	0.1	1.74529	79.33216
0.63	0.38	2.90228	131.9231
0.63	0.64	2.96111	134.5973
0.63	2.15	2.98072	135.4886
0.63	2.97	3.00033	136.38
0.63	4.43	3.03955	138.1627
0.63	7	3.09838	140.8369
0.62	10.61	3.17682	144.4024
0.62	12.83	3.23565	147.0765
0.61	14.87	3.29448	149.7506

六、实验结果与分析

1. 反相器:

 $V_{BB=} = 15V$ 时,相当于打开状态, I_C 支路处于饱和到放大区(实验中是饱和区)。

 $V_{BB=}=0V$ 时,相当于关闭状态,三极管截至, I_{C} 支路电流为 0。

2. 输入特性曲线:

当 Vce=0 时,曲线与二极管的正向特性相似(此时相当于集电极与发射极短路, I_B 与 V_{BE} 的伏安特性即为一个 PN 结的伏安特性)。当 Vce 逐渐从 0 开始增加后,曲线逐渐右移。故可以用二级管的伏安特性函数进行拟合,得到下图。从图中还可以看出,输入特性有一个"死区",在"死区"内, V_{BE} 虽然已经大于 0,但 i_B 几乎仍为 0。当 V_{BE} 大于某一值后, I_B 才随 V_{BE} 的增加而明显增大。

图 1 Vce 为常数时的 9013 的输入特性曲线

3. 输出特性曲线

从图中可以看出,当 V_{CE} 较小时,IC 的增长速率较快且与 I_B 无比例关系,此时称三极管进入饱和区。而当 V_{CE} 大于某一值后(晶体管的饱和压降,约为 0.7V), I_C 的增长速率变缓。理论上随着 V_{CE} 的增长, I_C 应基本不变,实验中 $I_B=22~\mu$ A 时 I_C 在放大去基本不变,但是 $I_B=46.5~\mu$ A 时, β 将持续增大,滑动变阻器达到最大阻值时也没有趋于平缓。这可能与实验中 V_{CE} 会影响 I_B 的值以及实验中电阻、9013的参数误差和一些偶然误差有关。不过总体的变化趋势是与理论值相符的。

图 2 I_B 为常数时的 9013 的输出特性曲线

七、讨论、心得心得:

通过这次试验我熟悉了 9013 晶体管的特性,通过动手实践发现了理论输出伏安特性曲线和实际输出 伏安特性曲线的不同点。学会了使用万用表判断三极管各级、估计放大区 β。