Notes on Recursion Theory

Xin Chen Last update: February 27, 2023

N.J. Cutland, Computability: An introduction to recursive function theory, Cambridge University Press, 198

Contents

	Con	Computable functions					
	1.1	Algorithms, effective procedures	2				
	1.2	URM: the unlimited register machine (无限寄存器)	2				
	1.3	computable functions	2				

Prerequisites

basic notations of sets and functions:

- $A \subseteq B$, $A \subset B$, $A \cup B$, $A \cap B$,
- $A \setminus B := \{x \mid x \in A, x \notin B\}$
- $\overline{A} := \mathbb{N} \setminus A$
- ordered pair: (x, y)
- Cartesian product: $A \times B := \{(x, y) \mid x \in A, y \in B\}$
- $A^n := A \times \cdots \times A$ (n times)
- function $f:(x,y),(x,z)\in f\Longrightarrow y=z$
- $Dom(f) := \{x : f(x) \text{ is defined } \}$
- $Ran(f) := \{f(x) \mid x \in Dom(f)\}$
- $f: A \rightarrow B: Dom(f) = A$
- f is injective: $\forall x, y \in Dom(f), x \neq y \Longrightarrow f(x) \neq f(y)$.
- surjective:
- bijective: injective + surjective
- restriction f|X (or f|X):
- composition $f \circ g$
- inverse image:
- total function:
- partial function:
- Zero function $0: \mathbb{N} \to \mathbb{N}$
- $m: \mathbb{N} \to \mathbb{N}$
- equivalence relation, equivalence class
- partial order: irreflexivity(禁自反) + transitivity

1 Computable functions

- 1.1 Algorithms, effective procedures
- 1.2 URM: the unlimited register machine (无限寄存器)
- 1.3 computable functions

Exercise 2.2 (p14) Carry out the computation under the program of example 2.1 with initial configuration $8, 4, 2, 0, 0, \ldots$

Answer: The program of example 2.1 is:

I_1	J(1, 2, 6)	I_4	J(1, 2, 6)
I_2	S(2)	I_5	J(1, 1, 2)
I_3	S(3)	I_6	T(3,1)

	R_1	R_2	R_3	R_4	R_5	Next instruction
Initial configuration	8	4	2	0	0	 $\mid I_1 \mid$
	8	4	2	0	0	 I_2 (since $r_1 \neq r_2$)
	8	5	2	0	0	 I_3
	8	5	3	0	0	 I_4
	8	5	3	0	0	 I_5 (since $r_1 \neq r_2$)
	8	5	3	0	0	 $I_2 \text{ (since } r_1 = r_1 \text{)}$
	8	6	3	0	0	 I_3
	8	6	4	0	0	 I_4
	8	6	4	0	0	 I_5 (since $r_1 \neq r_2$)
	8	6	4	0	0	 $I_2 \text{ (since } r_1 = r_1 \text{)}$
	8	7	4	0	0	 $\mid I_3 \mid$
	8	7	5	0	0	 $\mid I_4 \mid$
	8	7	5	0	0	 I_5 (since $r_1 \neq r_2$)
	8	7	5	0	0	 $I_2 \text{ (since } r_1 = r_1 \text{)}$
	8	8	5	0	0	 I_3
	8	8	6	0	0	 I_4
	8	8	6	0	0	 I_6 (since $r_1 = r_2$)
Final configuration	6	8	6	0	0	 I_7 : STOP