Exact Inference

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

Concepts review

What we have already seen:

- ► The probabilistic approach to Al
- What are PGMs? (Representation)
 - ► Bayesian networks
 - Markov networks
 - Template models (videos)

Now: Exact Inference

- Conditional probability queries
- Variable Elimination
- Message Passing

$Conditional\ probability\ queries$

Definition

Given

- ▶ a probability distribution $P(X) = P(X_1, ..., X_n)$,
- a partition of X = (Y, H, E) into three disjoint subsets of variables, and
- ▶ an assignment **e** to the variables in **E**,

the objective of a *conditional probability query* is to find the probability distribution:

$$P(Y|E=e)$$

Conditional probability queries Complexity

Complexity

In the general case, this can be rewritten as the following formula:

$$P(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = \sum_{\mathbf{h}} P(\mathbf{Y}, \mathbf{H}=\mathbf{h} \mid \mathbf{E}=\mathbf{e})$$

Exponential complexity!

$Conditional\ probability\ queries$ ${\it Complexity}$

Complexity

In the general case, this can be rewritten as the following formula:

$$P(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = \sum_{\mathbf{h}} P(\mathbf{Y}, \mathbf{H}=\mathbf{h} \mid \mathbf{E}=\mathbf{e})$$

Exponential complexity!

If P follows a PGM, does complexity reduce?

Conditional probability queries Complexity

Factorization

We know that if P factorizes according to a graph, \mathcal{H} ,

$$P_{\mathcal{H}}(\mathbf{X}) = \frac{1}{\Theta} \prod_{i=1}^{f} \phi_i(\mathbf{X}_{\phi_i}) = \frac{1}{\Theta} \prod_{i=1}^{f} \phi_i$$

the query can be rewritten as,

$$P_{\mathcal{H}}(\mathbf{Y}|\mathbf{E} = \mathbf{e}) = \sum_{\mathbf{h}} P_{\mathcal{H}}(\mathbf{Y}, \mathbf{H} = \mathbf{h} \mid \mathbf{E} = \mathbf{e})$$

$$= \frac{1}{\Theta} \sum_{\mathbf{h}} \prod_{i=1}^{f} \phi_i [\mathbf{E} = \mathbf{e}]$$

Conditional probability queries Complexity

Non polynomial

In the general case, even using PGMs, the query

$$egin{aligned} P_{\mathcal{H}}(m{Y}|m{E}=m{e}) &= \sum_{m{h}} P_{\mathcal{H}}(m{Y},m{H}=m{h}\midm{E}=m{e}) \ &= rac{1}{\Theta} \sum_{m{k}} \prod_{i=1}^f \phi_i [m{E}=m{e}] \end{aligned}$$

cannot be performed with exact inference in polynomial time

Conditional probability queries Complexity

Non polynomial

In the general case, even using PGMs, the query

$$egin{aligned} P_{\mathcal{H}}(\mathbf{Y}|\mathbf{E}=\mathbf{e}) &= \sum_{\mathbf{h}} P_{\mathcal{H}}(\mathbf{Y},\mathbf{H}=\mathbf{h}\mid \mathbf{E}=\mathbf{e}) \ &= rac{1}{\Theta} \sum_{\mathbf{h}} \prod_{i=1}^f \phi_i [\mathbf{E}=\mathbf{e}] \end{aligned}$$

cannot be performed with exact inference in polynomial time

Only for certain specific types of graphs, exact inference is polynomial

Inference

Answering conditional probability queries

- Variable elimination (a single query)
- Message Passing over clique trees (many queries)

Exact Inference

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

Inference

Answering conditional probability queries

- ► Variable elimination (a single query)
- Message Passing over clique trees (many queries)

Product

Product of factors

Given two factors ϕ and ψ , their product $\phi \times \psi$ is a new factor whose scope is the union of the scopes of ϕ and ψ ($\Omega_{X_{\phi}} \cup \Omega_{X_{\psi}}$) and whose value is the product of ϕ and ψ .

X	Y	ϕ
0	0	3
0	1	2
1	0	4
1	1	1

Y	Z	ψ
0	0	5
0	1	4
0	2	1
1	0	2
1	1	0
1	2	6

X	Y	Z	$\phi \times \psi$
0	0	0	15
0	0	1	12
0	0	2	3
0	1	0	4
0	1	1	0
0	1	2	12
1	0	0	20
1	0	1	16
1	0	2	4
1	1	0	2
1	1	1	0
1	1	2	6

Reduction

Reduction of a factor

The reduction of a factor ϕ for an assignment of values $\boldsymbol{U}=\boldsymbol{u}$ is a new factor $\phi[\boldsymbol{u}]$ whose scope is $\boldsymbol{V}=\boldsymbol{X}_{\phi}\backslash\boldsymbol{U}$ and whose value for the assignment $\boldsymbol{V}=\boldsymbol{v},\ \phi[\boldsymbol{u}](\boldsymbol{v}),$ is the value of ϕ for the joint assignment of \boldsymbol{u} and $\boldsymbol{v},\ \phi[\boldsymbol{u}](\boldsymbol{v})=\phi(\boldsymbol{u},\boldsymbol{v}).$

X	Y	Z	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11
0	1	1	2
0	1	2	1
1	0	0	4
1	0	1	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

Y	Z	$\phi[X=0]$
0	0	4
0	1	3
0	2	5
1	0	11
1	1	2
1	2	1

Χ	$\phi[Y=1,Z=2]$
0	1
1	9

Marginalization

Marginal

Given a factor ϕ and a set of variables ${\pmb V}$ to remove, the marginal $\sum_{{\pmb V}} \phi$ is a factor ψ with scope ${\pmb U} = {\pmb X}_\phi \setminus {\pmb V}$, defined by $\psi({\pmb u}) = \sum_{{\pmb V}} \phi({\pmb u},{\pmb V})$ **sometimes written as $\phi^{\downarrow {\pmb U}}$

X	Y	Z	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11 2
0	1	1	2
0	1	2	1
1	0	0	4 5
1	0	1 2	5
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

X	Ζ	$\sum_{Y} \phi$
0	0	15
0	1	5
0	2	6
1	0	8
1	1	6
1	2	21

X	$\sum_{Y,Z} \phi$
0	26
1	35

Normalization

Marginal

Given a factor ϕ , its normalization

$$\mathit{Norm}(\phi)(\pmb{x}) = \frac{1}{\Theta}\phi(\pmb{x})$$

where
$$Z_{\phi} = \sum_{\mathbf{x}} \phi(\mathbf{x})$$

Y	Z	ψ	$\mathit{Norm}(\psi)$
0	0	2	2/17
0	1	5	5/17
0	2	2	2/17
1	0	4	4/17
1	1	3	3/17
1	2	1	1/17

Z	ϕ	$Norm(\phi)$
0	8	8/10=0.8
1	2	2/10=0.2

Relationships of the product

Product and reduction:

Let ϕ_1 and ϕ_2 be two factors, and $\boldsymbol{U} = \boldsymbol{u}$ an assignment of values to variables:

$$(\phi_1 \times \phi_2)[\boldsymbol{U} = \boldsymbol{u}] = \phi_1[\boldsymbol{U} = \boldsymbol{u}] \times \phi_2[\boldsymbol{U} = \boldsymbol{u}]$$

Apply only to the affected factors

Product and marginalization:

Let ϕ_1 and ϕ_2 be two factors, if $X \not\in Scope(\phi_1)$:

$$\sum_{X} (\phi_1 \times \phi_2) = \phi_1 \times \sum_{X} \phi_2$$

Move it towards the affected factors

Exercise

Variable elimination

Given the following MN

$$P(A, B, C, D) = \frac{1}{\Theta} \phi_A(A) \phi_B(B) \phi_C(C) \phi_D(D)$$

where its factors are:

Α	ϕ_{A}
0	4
1	5

В	$\phi_{\mathcal{B}}$
0	3
1	2

С	$\phi_{\mathcal{C}}$
0	1
1	2

D	ϕ_D
0	6
1	9

Compute:

$$P(D) = \sum_{A,B,C} P(A,B,C,D)$$

Exercise

Variable elimination

Given the following MN

$$P(A, B, C) = \frac{1}{\Theta}\phi_1(A, B)\phi_2(B, C)$$

where its factors are:

Α	В	ϕ_1
0	0	2
0	1	6
1	0	1
1	1	4

В	С	ϕ_2
0	0	1
0	1	4
1	0	2
1	1	3

Compute:

$$P(C) = \sum_{A,B} P(A,B,C)$$

A marginalization problem: sum-product

Problem

Given a distribution P(X) that factorizes according to a graph, \mathcal{H} ,

$$P(\mathbf{X}) = \frac{1}{\Theta} \prod_{i=1}^{f} \phi_i(\mathbf{X}_i).$$

and $\boldsymbol{Y} \subset \boldsymbol{X}$, assess

$$P(\mathbf{Y}) = \sum_{\mathbf{z}} P(\mathbf{Y}, \mathbf{Z}) = \frac{1}{\Theta} \sum_{\mathbf{z}} \prod_{i=1}^{f} \phi_i(\mathbf{X}_i, \mathbf{Z}_i)$$

where $oldsymbol{Z} = oldsymbol{X} ackslash oldsymbol{Y}$

Problem

Given
$$P_{\mathcal{H}}(\mathbf{X})$$
 assess $P(\mathbf{Y})$ as $\textit{Norm}(\sum_{\mathbf{x}\setminus\mathbf{y}}\prod_{i=1}^f\phi_i)$ where $\mathbf{Y}\subset\mathbf{X}$

```
1: procedure VE(\Phi, X, Y)
2: Z \leftarrow X \setminus Y
2: \Phi_V \leftarrow \{\phi \in \Phi : V \in Scope(\phi)\}
3: \Phi_{-V} \leftarrow \Phi \setminus \Phi_V
4: \Phi \leftarrow \text{Eliminate}(\Phi, Z_i)
5: end for
6: return Norm(\prod_{\phi \in \Phi} \phi)
7: end procedure

1: procedure \text{Eliminate}(\Phi, V)
2: \Phi_V \leftarrow \{\phi \in \Phi : V \in Scope(\phi)\}
4: \psi \leftarrow \prod_{\phi \in \Phi_V} \phi \quad \triangleright \text{ product}
6: \tau \leftarrow \sum_V \psi \quad \triangleright \text{ marginalize}
7: end procedure

7: end procedure
```

$Visualizing\ VE$

Assess $P(X_5)$

Given
$$p(\mathbf{X}) \propto \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \phi_4(X_4, X_5) \cdot \phi_5(X_4, X_6, X_7) \cdot \phi_6(X_6, X_8)$$

Visualizing VE

Assess $P(X_5)$

Given
$$p(\mathbf{X}) \propto \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \phi_4(X_4, X_5) \cdot \phi_5(X_4, X_6, X_7) \cdot \phi_6(X_6, X_8)$$

$$P(X_5) \propto \sum_{x_1, x_2, x_3, x_4, x_6, x_7, x_8} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \phi_4(X_4, X_5) \cdot \phi_5(X_4, X_6, X_7) \cdot \phi_6(X_6, X_8)$$

Visualizing VE

Assess $P(X_5)$

$$\begin{array}{c} p(X_5) \propto \sum_{x_1, x_2, x_3, x_4, x_6, x_7} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \\ \phi_4(X_4, X_5) \cdot \phi_5(X_4, X_6, X_7) \cdot \sum_{x_8} \phi_6(X_6, X_8) \end{array}$$

Visualizing VE

Assess $P(X_5)$

$$\begin{array}{c} p(X_5) \propto \sum_{x_1, x_2, x_3, x_4, x_6, x_7} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \\ \phi_4(X_4, X_5) \cdot \phi_5(X_4, X_6, X_7) \cdot \tau_7(X_6) \end{array}$$

Visualizing VE

Assess $P(X_5)$

$$\begin{array}{c} p(X_5) \propto \sum_{x_1, x_2, x_3, x_4, x_7} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \\ \phi_4(X_4, X_5) \cdot \sum_{x_6} \phi_5(X_4, X_6, X_7) \times \tau_7(X_6) \end{array}$$

Visualizing VE

Assess $P(X_5)$

Eliminate X₆

$$\begin{array}{c} p(X_5) \propto \sum_{x_1, x_2, x_3, x_4, x_7} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \\ \phi_4(X_4, X_5) \cdot \tau_8(X_4, X_7) \end{array}$$

Visualizing VE

Assess $P(X_5)$

Eliminate X₇

$$\begin{array}{c} p(X_5) \propto \sum_{x_1, x_2, x_3, x_4} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \\ \phi_4(X_4, X_5) \cdot \sum_{x_7} \tau_8(X_4, X_7) \end{array}$$

Visualizing VE

Assess $P(X_5)$

$$\begin{array}{c} p(X_5) \propto \sum_{X_1, X_2, X_3, X_4} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \\ \phi_4(X_4, X_5) \cdot \tau_9(X_4) \end{array}$$

Visualizing VE

Assess $P(X_5)$

$$p(X_5) \propto \sum_{X_2, X_3, X_4} \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \phi_4(X_4, X_5) \cdot \tau_9(X_4) \cdot \sum_{X_1} \phi_1(X_1, X_2)$$

Visualizing VE

Assess $P(X_5)$

$$p(X_5) \propto \sum_{x_2, x_3, x_4} \phi_2(X_2, X_3, X_5) \cdot \phi_3(X_2, X_4) \cdot \phi_4(X_4, X_5) \cdot \tau_9(X_4) \cdot \tau_{10}(X_2)$$

Visualizing VE

Assess $P(X_5)$

$$p(X_5) \propto \sum_{x_3,x_4} \phi_4(X_4,X_5) \cdot \tau_9(X_4) \cdot \sum_{x_2} \phi_2(X_2,X_3,X_5) \times \phi_3(X_2,X_4) \times \tau_{10}(X_2)$$

$Visualizing\ VE$

Assess $P(X_5)$

Eliminate X₂

$$p(X_5) \propto \sum_{X_3, X_4} \phi_4(X_4, X_5) \cdot \tau_9(X_4) \cdot \tau_{11}(X_3, X_4, X_5)$$

Assess
$$P(X_5)$$

Eliminate X_3
 $p(X_5) \propto au_{13}(X_5)$

Variable elimination

 $Visualizing\ VE$

Assess
$$P(X_5)$$

Eliminate X_3
 $p(X_5) = Norm[\tau_{13}(X_5)]$

Variable elimination Visualizing VE

Induced graph for ordering $\{X_8, X_6, X_7, X_1, X_2, X_4, X_3\}$ $X_1 \qquad X_2 \qquad X_3 \qquad X_4 \qquad X_5$ $X_8 \qquad X_6 \qquad X_7$

Variable elimination

A different ordering

Assess $P(X_5)$

Eliminate X₄

$$\begin{array}{c} p(X_5) \propto \sum_{x_1, x_2, x_3, x_6, x_7, x_8} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_6(X_6, X_8) \cdot \\ \sum_{x_4} \phi_3(X_2, X_4) \times \phi_4(X_4, X_5) \times \phi_5(X_4, X_6, X_7) \end{array}$$

Variable elimination

A different ordering

Assess $P(X_5)$

Eliminate X₄

$$p(X_5) \propto \sum_{X_1, X_2, X_3, X_6, X_7, X_8} \phi_1(X_1, X_2) \cdot \phi_2(X_2, X_3, X_5) \cdot \phi_6(X_6, X_8) \cdot \tau_7(X_2, X_5, X_6, X_7)$$

Variable elimination Visualizing VE

Induced graphs

Complexity strongly depends on the order of elimination!

Complexity defined in terms of the size of the largest intermediate factor

VE ordering

Which is an optimal ordering for assessing $P(X_5)$ in a distribution that factorizes over the following graph?

VE ordering

Which is an optimal ordering for assessing $P(X_4)$ in a distribution that factorizes over the following graph?

Variable elimination

Conditional Probability Query with evidence

Problem

Given a distribution P(X) that factorizes according to a graph, \mathcal{H} ,

$$P(\mathbf{X}) = \frac{1}{\Theta} \prod_{i=1}^{f} \phi_i(\mathbf{X}_i).$$

 $m{Y} \subset m{X}$, $m{E} \subset m{X}$, and an assignment $m{e}$ for $m{E}$, assess

$$P(\mathbf{Y}|\mathbf{E}=\mathbf{e}) = \sum_{\mathbf{z}} P(\mathbf{Y}, \mathbf{Z}|\mathbf{E}=\mathbf{e}) = \frac{1}{\Theta} \sum_{\mathbf{z}} \prod_{i=1}^{f} \phi_i(\mathbf{Z}_i, \mathbf{Y}_i, \mathbf{E}_i = \mathbf{e}_i)$$

where $\mathbf{Z} = \mathbf{X} \backslash \mathbf{Y} \backslash \mathbf{E}$

Variable elimination

Conditional Probability Query with evidence

Problem

Given
$$P_{\mathcal{H}}(\mathbf{X})$$
 assess $P(\mathbf{Y}|\mathbf{E}=\mathbf{e})$ as $Norm(\sum_{\mathbf{z}}\prod_{i=1}^{f}\phi_{i}[\mathbf{E}=\mathbf{e}])$ where $\mathbf{Y}\subset\mathbf{X}$, $\mathbf{E}\subset\mathbf{X}$ and $\mathbf{Y}\cup\mathbf{E}=\emptyset$

- 1: **procedure** Evidence-VE $(\Phi, X, Y, E = e)$
- 2: $\Phi \leftarrow \{\phi[\mathbf{E} = \mathbf{e}], \forall \phi \in \Phi\}$
- 3: $\phi \leftarrow \forall \mathsf{E}(\Phi, X \backslash E, Y)$
- 4: return ϕ
- 5: end procedure

Intermediate Factors

Consider running variable elimination on this Bayesian network.

Which of the nodes, if eliminated first, results in the largest intermediate factor?

Uses of Variable Elimination

Which of the following quantities can be computed using the sum-product variable elimination algorithm?

- a) p(X|E=e) in a Bayesian network
- b) p(X) in a Bayesian network
- c) The most likely assignment to the variables in a Markov network.
- d) The partition function for a Markov network

Induced graphs

If we perform variable elimination in the BN in the left with the variable ordering $X_2, X_1, X_3, X_6, X_5, X_4$, which is the induced graph?

Variable elimination for MAP

Max-Sum

Problem

Given
$$P_{\mathcal{H}}(\mathbf{X})$$
 assess arg máx_z $P(\mathbf{z})$ as arg máx_z $\prod_{i=1}^{f} \phi_i[\mathbf{X} = \mathbf{x}] = \arg\max_{\mathbf{z}} \sum_{i=1}^{f} \log\phi_i[\mathbf{X} = \mathbf{x}]$

```
1: procedure Elim-Max(\Phi, V)
                                                       2: \Phi_V \leftarrow \{\phi \in \Phi : V \in Scope(\phi)\}
1: procedure VE-max(\Phi, X)
                                                       3: \Phi_{-V} \leftarrow \Phi \backslash \Phi_{V}
2:
        \log \Phi
                                                       4: \psi \leftarrow \sum_{\phi \in \Phi_{V}} \phi

    Sum

3:
   for i \in \{1, ..., |X|\} do
                                                       5: \tau \leftarrow \max_{V} \psi > Max-marg.
4: \Phi; \psi_i \leftarrow \text{Elim-Max}(\Phi, X_i)
                                                       6: return \Phi_{-V} \cup \{\tau\}; \psi
5: end for
                                                       7: end procedure
6: \mathbf{x} \leftarrow \mathsf{findMAP}(\{\psi_i\})
                                                        1: procedure findMAP(\{\psi_i\})
   return x
                                                       2: for i \in \{|X|, ..., 1\} do
8: end procedure
                                                       3:
                                                                     \mathbf{u} \leftarrow \mathbf{x}^* < Scope(\psi_i) \backslash X_i >
                                                       4: x_i^* \leftarrow \arg \max_{x_i} \psi_i(x_i, \boldsymbol{u})
                                                       5: end for
                                                       6: return x*
```

7: end procedure

35 / 65

$Factor\ algebra$

Sum

Sum of factors

Given two factors ϕ and ψ , their sum $\phi + \psi$ is a new factor whose scope is the union of the scopes of ϕ and ψ ($\Omega_{X_{\phi}} \cup \Omega_{X_{\psi}}$) and whose value is the sum of ϕ and ψ .

Χ	Y	ϕ
0	0	3
0	1	2
1	0	4
1	1	1

Y	Ζ	ψ
0	0	5
0	1	4
0	2	1
1	0	2
1	1	0
1	2	6

X	Y	Z	$\phi + \psi$
0	0	0	8
0	0	1	7
0	0	2	4
0	1	0	4
0	1	1	2
0	1	2	8
1	0	0	9
1	0	1	8
1	0	2	5
1	1	0	3
1	1	1	1
1	1	2	7

Factor algebra

 ${\it Max-Marginalization}$

Max-marginal

Given a factor ϕ and a set of variables ${\bf V}$ to remove, the max-marginal máx $_{{\bf V}} \phi$ is a factor ψ with scope ${\bf U} = {\bf X}_{\phi} \setminus {\bf V}$, defined by $\psi({\bf u}) = \text{máx}_{{\bf v}} \phi({\bf u},{\bf v})$

X	Y	Z	ϕ
0	0	0	4
0	0	1	3
0	0	2	5
0	1	0	11 2
0	1	1	2
0	1	2	1
1	0	l .	1 4 5
1	0	1	
1	0	2	12
1	1	0	4
1	1	1	1
1	1	2	9

X	Z	$m\acute{a}x_Y\phi$
0	0	11
0	1	3
0	2	5
1	0	4
1	1	5
1	2	12

X	$m\acute{a}x_{Y,Z}\phi$
0	11
1	12

Variable elimination

Summary

- ► Variable elimination marginalizes
- Answers conditional probability queries too
- It takes as input:
 - 1. PGM, \mathcal{H}
 - 2. Variables to marginalize out
 - 3. -optional- Observed variables
 - 4. Elimination ordering
- Its complexity is exponential in the width of the graph induced by the elimination ordering chosen

Exact Inference

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

Belief propagation: message passing

Belief propagation: message passing

Alternative representation of the probability distribution

Cluster graph for a set of variables, X

A cluster graph $\mathcal{U} = (V_{\mathcal{U}}, E_{\mathcal{U}})$ over **X** is an undirected graph s.t.:

- ▶ Each node i is associated with a subset $C_i \subset X$ (cluster)
- ▶ Each edge i, j between clusters C_i and C_j is associated with a sepset $S_{ij} \subseteq C_i \cap C_j$
- ► A set of beliefs is considered:
 - ▶ There is a factor β_i over C_i for each cluster C_i
 - ▶ There is a factor μ_{ij} over S_{ij} for each sepset S_{ij}
- ► The encoded probability distribution is:

$$P_{\mathcal{U}}(X) \propto \frac{\prod_{i \in V_{\mathcal{U}}} \beta_i(\mathbf{C}_i)}{\prod_{\{i,j\} \in \mathcal{E}_{\mathcal{U}}} \mu_{ij}(\mathbf{S}_{i,j})} = \prod_{i=1}^f \phi_f$$

$$P(X,Y,Z) \propto \frac{\beta_1(X,Y) \times \beta_2(Y,Z)}{\mu_{12}(Y)}$$

$$P(X,Y,Z) \propto \frac{\beta_1(X,Y) \times \beta_2(Y,Z)}{\mu_{12}(Y)}$$

$$P(X,Y,Z) \propto \frac{\beta_1(X,Y) \times \beta_2(Y,Z) \times \beta_3(Z,X)}{\mu_{12}(Y) \times \mu_{13}(X) \times \mu_{23}(Z)}$$

$$P(X,Y,Z) \propto \frac{\beta_1(X,Y) \times \beta_2(Y,Z)}{\mu_{12}(Y)}$$

$$P(X,Y,Z) \propto \frac{\beta_1(X,Y) \times \beta_2(Y,Z) \times \beta_3(Z,X)}{\mu_{12}(Y) \times \mu_{13}(X) \times \mu_{23}(Z)}$$

$$P(X,Y,Z,A) \propto \frac{\beta_1(X,Y,Z) \times \beta_2(Y,Z,A)}{\mu_{12}(Y,Z)}$$

$$P(X,Y,Z) \propto \frac{\beta_1(X,Y) \times \beta_2(Y,Z)}{\mu_{12}(Y)}$$

$$P(X,Y,Z) \propto \frac{\beta_1(X,Y) \times \beta_2(Y,Z) \times \beta_3(Z,X)}{\mu_{12}(Y) \times \mu_{13}(X) \times \mu_{23}(Z)}$$

$$P(X,Y,Z,A) \propto \frac{\beta_1(X,Y,Z) \times \beta_2(Y,Z,A)}{\mu_{12}(Y,Z)}$$

$$P(X,Y,Z,A,B) \propto \frac{\beta_1(X,Y,Z) \times \beta_2(Y,Z,A) \times \beta_3(A,B,X)}{\mu_{12}(Y,Z) \times \mu_{23}(A)}$$

Alternative representation of the probability distribution

Result:

We build cluster factors β_i such that:

$$p(X_j) = \frac{1}{Z} \sum_{X \setminus X_j} \prod_{l=1}^f \phi_l$$
$$= \frac{1}{Z} \sum_{C_i \setminus X_j} \beta_i(C_i)$$

such that $X_j \in \mathbf{C}_i$ (and usually $|\mathbf{C}_i| << |\mathbf{X}|$).

Alternative representation of the probability distribution

Result:

We build cluster factors β_i such that:

$$p(X_j) = \frac{1}{Z} \sum_{X \setminus X_j} \prod_{l=1}^f \phi_l$$
$$= \frac{1}{Z} \sum_{C_i \setminus X_j} \beta_i(C_i)$$

such that $X_j \in \mathbf{C}_i$ (and usually $|\mathbf{C}_i| << |\mathbf{X}|$).

So, how we build these cluster factors, β_i ?

Family preservation property

Let P(X) be a distribution that factorizes as follow,

$$P(\mathbf{X}) = \frac{1}{\Theta} \prod_{\phi \in \Phi} \phi$$

To represent a probability distribution P(X) by means of a cluster graph U, family preservation is required:

Each factor $\phi \in \Phi$ is associated with a cluster C_i such that $Scope(\phi) \subseteq C_i$

Family preservation property

Cluster graph for
$$X = \{A, B, C, D, E, F\}$$

$$P(X) \propto$$

$$\phi_1(A, B, C)\phi_2(B, C)\phi_3(B, D)\phi_4(D, E)\phi_5(B, E)\phi_6(B, D, F)$$

$$C_1: A, B, C \longrightarrow B \longrightarrow C_4: B, E \longrightarrow B$$

$$C \longrightarrow B \longrightarrow E \longrightarrow C_3: B, D, F$$

$$C_2: B, C, D \longrightarrow D \longrightarrow C_5: D, E$$

Running intersection property (RIP)

A cluster graph $\mathcal U$ satisfies the running intersection property if,

for any variable X such that $X \in C_i$ and $X \in C_j$ ($C_i \neq C_j$),

there exists a unique path between C_i and C_j $(C_i, C_k, C_{k+1}, \dots, C_{k+l}, C_i)$

such that *X* is in every intermediate cluster and sepset:

- \triangleright $X \in C_k$, for all $\{k, k+1, \dots\}$
- lacksquare $X \in m{S}_{k,k+1}$, for all $\{k,k+1,\dots\}$ and $X \in m{S}_{ik} \land X \in m{S}_{k+l,j}$

Cluster graph Running intersection property (RIP)

Cluster graph for
$$X = \{A, B, C, D, E, F\}$$

$$C_1: A, B, C - B - C_4: B, E$$

$$C_2: B, C, D - D - C_5: D, E$$

Running intersection property (RIP)

Cluster graph for $\mathbf{X} = \{A, B, C, D, E, F\}$

$$C_1 : A, B, C - B - C_4 : B, E$$
 C
 B
 E
 $C_3 : B, D, F$
 $C_4 : B, E$
 $C_5 : C_7 : C_8 : C_$

E.g.,
$$X = D$$

Graphical viewpoint:

If we build a subgraph by removing all the clusters and sepsets that do not contain X, the remaining subgraph is connected and has no loop

Cluster graph Running intersection property (RIP)

Cluster graph for
$$\mathbf{X} = \{A, B, C, D, E, F\}$$

$$C_1:A,B,C_1-B-C_4:B,E_1$$
 C
 E
 $C_3:B,D,F$
 C
 $C_5:D,E$

No path for B from C_2 in this new cluster graph

Cluster graph Running intersection property (RIP)

Cluster graph for $\mathbf{X} = \{A, B, C, D, E, F\}$

$$|C_1:A,B,C| - B - |C_4:B,E|$$
 $|C_3:B,C,D|$
 $|C_2:B,C,D|$
 $|C_3:D,E|$

Loop for B in $\emph{\textbf{C}}_1, \emph{\textbf{C}}_2, \emph{\textbf{C}}_4$ (path not unique) in this new cluster graph

Cluster Graph construction

Given the following MN,

which is a valid cluster graph for it?

$$(A,B,D,E)$$
 (B,C,E,F)

Family Preservation

Suppose we have a factor P(A|C) that we wish to include in our sum-product message passing inference. We should:

- a) Assign the factor to all cliques that contain A or C
- b) Assign the factor to all cliques that contain A and C
- c) Assign the factor to one clique that contain A and C
- d) None of these

Clique tree

Definition

A clique tree, \mathcal{T} , is a cluster tree that satisfies the *running* intersection property.

A cluster tree is a cluster graph without loops. It satisfies the RIP if this equality always holds

$$S_{ij} = C_i \cap C_j$$

Independence

$$extbf{ extit{W}}_i = igcup_{k ext{ has path to } i ext{ and } k
eq j} extbf{ extit{C}}_k extbf{ extit{W}}_j = igcup_{k ext{ has path to } j ext{ and } k
eq i$$

Then,

$$\{ \boldsymbol{W}_i \backslash \boldsymbol{S}_{ij} \} \perp \{ \boldsymbol{W}_j \backslash \boldsymbol{S}_{ij} \} | \boldsymbol{S}_{ij} \}$$

$Clique\ tree$

Definition

A clique tree, \mathcal{T} , is a cluster tree that satisfies the *running* intersection property.

A cluster tree is a cluster graph without loops. It satisfies the RIP if this equality always holds

$$\mathbf{S}_{ij} = \mathbf{C}_i \cap \mathbf{C}_j$$

Exact Inference

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González

Belief propagation: message passing Sum-Product algorithm over Clique trees

Whereas in VE variables are removed one by one, BP provides a more general way to assess marginals

It can be easily extended to multiple simultaneous queries

Sum-Product algorithm over Clique trees

Cluster factor

$$\psi_i(\mathbf{C}_i) = \prod_{\alpha(\phi) = \mathbf{C}_i} \phi$$

where $\alpha(\phi)$ is a function that assigns each factor ϕ in the original model \mathcal{H} to a cluster C_i in \mathcal{T}

Message

$$\delta_{i o j}(oldsymbol{S}_{ij}) = \sum_{oldsymbol{C}_i \setminus oldsymbol{S}_{ij}} \left(\psi_i \prod_{k \in \{oldsymbol{d}_i - j\}} \delta_{k o i}
ight)$$

where d_i is the set of clusters directly connected to C_i

Sum-Product algorithm over Clique trees

Sum-Product algorithm over Clique trees

- 1. Select a root clique C_r
- 2. Starting from the leaves and up to the root, each node pass the messages:

$$\delta_{i\to j} = \sum_{\mathbf{C}_i \setminus \mathbf{S}_{ij}} \left(\psi_i \prod_{k \in \{\mathbf{d}_i - j\}} \delta_{k \to i} \right)$$

- 3. Select another root and repeat the process until messages are passed in both direction throughout all edges
- 4. The cluster and sepset beliefs are assessed, resp., as

$$\beta_i(\mathbf{C}_i) = \psi_i \prod_{i \in d_i} \delta_{j \to i}$$
 $\mu_{ij}(\mathbf{S}_{ij}) = \delta_{i \to j} \delta_{j \to i}$

Message Ordering

In this clique tree

which of the following starting message passing orders is/are valid?

a)
$$C_1
ightarrow C_2$$
, $C_2
ightarrow C_3$, $C_3
ightarrow C_4$, $C_3
ightarrow C_5$

b)
$$C_4 \rightarrow C_3$$
, $C_3 \rightarrow C_2$, $C_2 \rightarrow C_1$

c)
$$C_4 \to C_3$$
, $C_5 \to C_3$, $C_2 \to C_3$

d)
$$C_1 o C_2$$
, $C_2 o C_3$, $C_5 o C_3$, $C_3 o C_4$

Message Passing in a Clique Tree

In this clique tree

Which is the correct form of the message from clique 3 to clique 2, $\delta_{3\rightarrow2}$, where $\psi_i(C_i)$ is the initial potential of clique i?

- a) $\sum_{G,H} \psi_3(C_3) \times \delta_{4\rightarrow 3} \times \delta_{5\rightarrow 3}$
- b) $\sum_{B,D} \psi_3(C_3) \times \delta_{4\rightarrow 3} \times \delta_{5\rightarrow 3}$
- c) $\sum_{B,D,G,H} \psi_3(C_3) \times \delta_{4\rightarrow 3} \times \delta_{5\rightarrow 3}$
- d) $\sum_{G,H} \psi_3(C_3) \times \delta_{2\rightarrow 3}$

Message Passing in a Cluster Graph

To perform inference in this MN, we use this Cluster Graph:

Which expression correctly represents the message $\delta_{3\rightarrow 6}$?

a)
$$\delta_{3\to 6}(E) = \sum_{B} \phi_{B,E}(B,E) \cdot \delta_{2\to 3}(B) \cdot \delta_{4\to 3}(B) \cdot \delta_{7\to 3}(E) \cdot \delta_{6\to 3}(B)$$

b)
$$\delta_{3\to 6}(E) = \sum_{B} \phi_{B,E}(B,E) \cdot \delta_{2\to 3}(B) \cdot \delta_{4\to 3}(B) \cdot \delta_{7\to 3}(E)$$

c)
$$\delta_{3\rightarrow 6}(B,E) = \phi_{B,E}(B,E) \cdot \delta_{2\rightarrow 3}(B) \cdot \delta_{4\rightarrow 3}(B) \cdot \delta_{7\rightarrow 3}(E)$$

d)
$$\delta_{3\rightarrow 6}(E) = \sum_{B} \delta_{2\rightarrow 3}(B) \cdot \delta_{4\rightarrow 3}(B) \cdot \delta_{7\rightarrow 3}(E)$$

^{*} Assume that the vars. in the sepsets are equal to the intersection of the vars. in the linked cliques

Sum-Product algorithm over Clique trees

Cluster graph (rev.)

► The encoded probability distribution is:

$$P_{\mathcal{U}}(X) \propto \frac{\prod_{i \in V_{\mathcal{U}}} \beta_i(\boldsymbol{C}_i)}{\prod_{\{i,j\} \in E_{\mathcal{U}}} \mu_{ij}(\boldsymbol{S}_{ij})}$$

Expanded as

$$P_{\mathcal{U}}(X) \propto \frac{\prod_{i \in V_{\mathcal{U}}} \psi_i \prod_{j \in d_i} \delta_{j \to i}}{\prod_{\{i,j\} \in \mathcal{E}_{\mathcal{U}}} \delta_{i \to j} \delta_{j \to i}}$$

$$= \prod_{i \in V_{\mathcal{U}}} \psi_i = \prod_{\mathbf{C}_i} \prod_{\alpha(\phi) = \mathbf{C}_i} \phi$$

$$= \prod_{i=1}^f \phi_i$$

Sum-Product algorithm over Clique trees

Calibration

An egde i, j in a clique tree T is calibrated when:

$$\sum_{\boldsymbol{C}_i \setminus \boldsymbol{S}_{i,j}} \beta_i = \sum_{\boldsymbol{C}_j \setminus \boldsymbol{S}_{i,j}} \beta_j$$

A clique tree $\mathcal T$ is calibrated when all its edges are calibrated

Queries in a calibrated clique tree:

- the marginal p(X) is simply the marginalized and normalized belief β_i of a clique that contains X ($X \in C_i$): $p(X) = Norm[\sum_{C_i \setminus X} \beta_i(C_i)]$
- ▶ the conditional query p(X|E=e) can also be assessed efficiently (two cases: same clique or not)

Belief propagation: message passing Sum-Product algorithm over Clique trees

Clique Tree algorithm, up to our knowledge,

- Can solve the same queries as variable elimination.
- Only takes a small advantage of the opportunity to remove several variables at once.

Then, why did we get into this clique tree business?

Sum-Product algorithm over Clique trees

Many simultaneous CPQ

Given a distribution P(X) that factorizes as

$$P(\mathbf{X}) = \frac{1}{\Theta} \prod_{i=1}^{f} \phi_i.$$

a set of queries $\{\mathbf{Y}_1, \dots \mathbf{Y}_k\}$ and $\mathbf{Z}_j = \mathbf{X} \setminus \mathbf{Y}_j$, assess

$$P(\mathbf{Y}_j) = \sum_{\mathbf{Z}_j} P(\mathbf{Y}_j, \mathbf{Z}_j) = \sum_{\mathbf{Z}_j} \prod_{i=1}^f \phi_i \quad \forall j \in \{1, \dots, k\}$$

Calibrated clique trees are very efficient to assess many different marginals of the same distribution

Summary

Inference, or answering a conditional probability query

Exact inference: Only with induced graphs of reduced width

- ▶ VE answers a conditional probability query in polynomial time
- ▶ If we have more than one CPQ over the same distribution:
 - 1. Represent the distribution as a clique tree
 - 2. Calibrate the tree
 - 3. Use it to efficiently answer the queries
- In the general case, inference is not polynomial

Belief propagation: message passing General case

Loopy belief propagation in cluster graphs

- Assign each factor ϕ_i to a cluster $C_{\alpha(\phi_i)}$
- Construct factors $\psi_i(\mathbf{C}_i) = \prod_{\phi:\alpha(\phi)=\mathbf{C}_i} \phi$
- ▶ Initialize all messages to 1
- Repeat
 - ► Select an edge *i*, *j*
 - ▶ Pass message $\delta_{i \to j}(\mathbf{S}_{ij}) = \sum_{\mathbf{C}_i \setminus \mathbf{S}_{ij}} \left(\psi_i \prod_{k \in \{\mathbf{d}_i j\}} \delta_{k \to i} \right)$
- ▶ Obtain beliefs $\beta_i(\mathbf{C}_i) = \psi_i(\mathbf{C}_i) \prod_{k \in \mathbf{d}_i} \delta_{k \to i}$

** Approximate in most cases

Exact Inference

 $Probabilistic \ Graphical \ Models$

Jerónimo Hernández-González