Técnicas de Programação e Análise de Algoritmos

Prof. Dr. Lucas Rodrigues Costa

Aula 8: Análise de Algoritmos

lucas.costa@idp.edu.br

@lucasrodri

www.linkedin.com/in/lucas-rodri

OBJETIVOS

- → Compreender o conceito de notação assintótica
- → Conhecer os diferentes tipos de análise assintótica
- → Conhecendo algumas classes de problemas

RECORDANDO...

- → Vimos na aula passada
 - O conceito de algoritmo eficiente
 - O conceito de complexidade computacional
 - Abordagens empírica, matemática e assintótica

Tipos de Análise Assintótica

Notação Big-O

- → A notação big-O é a forma mais conhecida e utilizada de análise assintótica
 - Complexidade do nosso algoritmo no pior caso
 - Seja de tempo ou de espaço
 - É o caso mais fácil de se identificar
 - Limite superior sobre o tempo de execução do algoritmo
 - Para diversos algoritmos o pior caso ocorre com frequência

- → No entanto, existem várias formas de análise assintótica
 - Notação big-Omega, Ω
 - Notação big-O, O
 - Notação big-Theta, Θ
 - Notação little-o, o
 - Notação little-omega, ω
- → A seguir, são matematicamente descritas outras formas de análise assintótica.

- ightharpoonup Notação big-Omega, Ω
 - Descreve o limite assintótico inferior
 - É utilizada para analisar o melhor caso do algoritmo
 - A notação $\Omega(n^2)$ nos diz que o custo do algoritmo é, assintoticamente, maior ou igual a n^2
 - Ou seja, o custo do algoritmo original é no mínimo tão ruim quanto n²

- ightharpoonup Notação big-Omega, Ω
 - \circ Matematicamente, a notação Ω é assim definida
 - Uma função custo f(n) é $\Omega(g(n))$ se existem duas constantes positivas c e m tais que
 - Para $n \ge m$, temos $f(n) \ge c.g(n)$
 - Confuso?

- ightarrow Notação big-Omega, Ω
 - Em outras palavras, para todos os valores de n à direita de m, o resultado da função custo f(n) é sempre maior ou igual ao valor da função usada na notação Ω, g(n), multiplicada por uma constante c

ightharpoonup Notação big-Omega, Ω

$$f(n) = 3n^2 + n \in \Omega(n)$$

- Temos que encontrar constantes c e m tais que:
- \circ 3n² + n \geq cn
- Dividindo por n², temos:
- \circ 3 + 1/n \geq c/n
- Considerando c=4 e n>0, temos que $f(n) = 3n^2 + n \in \Omega(n)$

- → Notação big-O, O
 - Descreve o limite assintótico superior
 - É utilizada para analisar o pior caso do algoritmo
 - A notação O(n²) nos diz que o custo do algoritmo é, assintoticamente, menor ou igual a n²
 - Ou seja, o custo do algoritmo original é no máximo tão ruim quanto n²

- → Notação big-O, O
 - Matematicamente, a notação O é assim definida
 - Uma função custo **f(n)** é **O(g(n))** se existem duas constantes positivas **c** e **m** tais que
 - Para $n \ge m$, temos $f(n) \le c.g(n)$
 - Confuso?

- → Notação big-O, O
 - Em outras palavras, para todos os valores de n à direita de m, o resultado da função custo f(n) é sempre menor ou igual ao valor da função usada na notação O, g(n), multiplicada por uma constante c.

→ Notação big-O, O

$$f(n) = 2n^2 + 10 \in O(n^3)$$

- Temos que encontrar constantes c e m tais que:
- \circ 2n² + 10 \leq cn³
- Dividindo por n³, temos:
- \circ 2/n + 10/n³ \leq c
- Considerando c=1 e n≥4, temos que $f(n) = 2n^2 + 10 \text{ é } O(n^3)$
 - Dá para melhorar essa análise!

$$f(n) = 2n^2 + 10 \in O(n^2)$$

- Temos que encontrar constantes c e m tais que:
- \circ 2n² + 10 \leq cn²
- Dividindo por n², temos:
- \circ 2 + 10/n² \leq c
- Considerando c=12 e n>0, temos que $f(n) = 2n^2 + 10 \text{ é } O(n^2)$

$$f(n) = 4n + 7 \in O(n)$$

- Temos que encontrar constantes c e m tais que:
- \circ 4n + 7 \leq cn
- Dividindo por n, temos:
- \circ 4 + 7/n \leq c
- \circ Considerando c=8 e n>1, temos que f(n) = 4n + 7 é O(n)

$$f(n) = n^2 n\tilde{a}o \in O(n)$$

- Temos que encontrar constantes c e m tais que:
- \circ $n^2 \leq cn$
- Dividindo por n, temos:
- \circ n \leq c
- A desigualdade é inválida!
 - O valor de n está limitado pela constante c
 - A análise assintótica não é possível (entrada tendendo ao infinito)

- → Notação big-O, O
 - Essa notação possui algumas operações
 - A mais importante é a regra da soma
 - Permite a análise da complexidade de diferentes algoritmos em sequência
 - Definição
 - Se dois algoritmos são executados em sequência, a complexidade será dada pela complexidade do maior deles

 $O(f(n)) + O(g(n)) = O(\max(f(n),g(n)))$

- → Notação big-O, O
 - o Exemplo da **regra da soma**. Se temos
 - Dois algoritmos cujos tempos de execução são O(n) e
 O(n²), a execução deles em sequência será O(max(n,n²))
 que é O(n²)
 - Dois algoritmos cujos tempos de execução são O(n) e
 O(n log n), a execução deles em sequência será
 O(max(n,n log n)) que é O(n log n)

- → Notação big-Theta, Θ
 - Descreve o limite assintótico firme
 - É utilizada para analisar o limite inferior e superior do algoritmo
 - A notação Θ(n²) nos diz que o custo do algoritmo é, assintoticamente, igual a n²
 - Ou seja, o custo do algoritmo original é n² dentro de um fator constante acima e abaixo

- → Notação big-Theta, **Θ**
 - Matematicamente, a notação Θ é assim definida
 - Uma função custo f(n) é $\Theta(g(n))$ se existem três constantes positivas c_1 , c_2 e m tais que
 - Para $n \ge m$, temos $c_1 g(n) \le f(n) \le c_2 g(n)$
 - Confuso?

- → Notação big-Theta, **Θ**
 - Em outras palavras, para todos os valores de n à direita de m, o resultado da função custo f(n) é sempre igual ao valor da função usada na notação Θ, g(n), quando está é multiplicada por constantes c₁ e c₂

→ Notação big-Theta, **Θ**

$$f(n) = 1/2 n^2 - 3n \in \Theta(n^2)$$

- Temos que encontrar constantes c1 e c2 e m tais que:
- $c_1 n^2 \le 1/2 n^2 3n \le c_2 n^2$
- Dividindo por n², temos
- $c_1 \le 1/2 3/n \le c_2$

$$f(n) = 1/2 n^2 - 3n \in \Theta(n^2)$$

- $c_1 \le 1/2 3/n \le c_2$
- A desigualdade do lado direito é válida para n ≥ 1
 escolhendo c, ≥ 1/2
- A desigualdade do lado esquerdo é válida para n ≥ 7
 escolhendo c₁ ≥ 1/14
- Assim, para $c_1 \ge 1/14$, $c_2 \ge \frac{1}{2}$ e $n \ge 7$, f(n) = 1/2 $n^2 3n \in \Theta$ (n^2)

$$f(n) = 6n^3 não é \Theta(n^2)$$

- Temos que encontrar constantes c1 e c2 e m tais que:
- $c_1 n^2 \le 6n^3 \le c_2 n^2$
- Dividindo por n², temos
- \circ $c_1 \le 6n \le c_2$

 \rightarrow Exemplo: mostrar que a função custo $f(n) = 6n^3$ não é $\Theta(n^2)$

- $\circ c_1 n^2 \le 6n^3 \le c_2 n^2$
- A desigualdade do lado direito é inválida!
- \circ n \leq c₂/6
- O valor de **n** está limitado pela constante c₂
- A análise assintótica não é possível (entrada tendendo ao infinito)

- → Notação little-o, o, e little-omega, ω
 - Parecidas com as notações big-O e big-Omega
 - As notações big-O e big-Omega possuem uma relação de menor ou igual e maior ou igual
 - As notações little-o e little-omega possuem uma relação de menor e maior

- → Notação little-o, o, e little-omega, ω
 - Ou seja, essas notações não representam limites próximos da função
 - Elas representam limites estritamente
 - superiores: sempre maior
 - o inferiores: sempre menor

- → A seguir, são apresentadas algumas classes de complexidade de problemas comumente usadas
 - O(1): ordem constante
 - As instruções são executadas um número fixo de vezes. Não depende do tamanho dos dados de entrada
 - O(log n): ordem logarítmica
 - Típica de algoritmos que resolvem um problema transformando-o em problemas menores
 - O(n): ordem linear
 - Em geral, uma certa quantidade de operações é realizada sobre cada um dos elementos de entrada

- → Mais classes de problemas
 - O(n log n): ordem log linear
 - Típica de algoritmos que trabalham com particionamento dos dados. Esses algoritmos resolvem um problema transformando-o em problemas menores, que são resolvidos de forma independente e depois unidos
 - O(n²): ordem quadrática
 - Normalmente ocorre quando os dados são processados aos pares.
 Uma característica deste tipo de algoritmos é a presença de um aninhamento de dois comandos de repetição

- → Mais classes de problemas
 - O(n³): ordem cúbica
 - É caracterizado pela presença de três estruturas de repetição aninhadas
 - O(2ⁿ): ordem exponencial
 - Geralmente ocorre quando se usa uma solução de **força bruta**. Não são úteis do ponto de vista prático
 - O(n!): ordem fatorial
 - Geralmente ocorre quando se usa uma solução de força bruta. Não são úteis do ponto de vista prático. Possui um comportamento muito pior que o exponencial

- → Comparação no tempo de execução
 - Computador executa 1 milhão de operações por segundo

f(n)	n = 10	n = 20	n = 30	n = 50	n = 100
n	1,0E-05	2,0E-05	4,0E-05	5,0E-05	6,0E-05
	segundos	segundos	segundos	segundos	segundos
n log n	3,3E-05	8,6E-05	2,1E-04	2,8E-04	3,5E-04
	segundos	segundos	segundos	segundos	segundos
n ²	1,0E-04	4,0E-04	1,6E-03	2,5E-03	3,6E-03
	segundos	segundos	segundos	segundos	segundos
n³	1,0E-03	8,0E-03	6,4E-02	0,13	0,22
	segundos	segundos	segundos	segundos	segundos
2 ⁿ	1,0E-03	1,0	2,8	35,7	365,6
	segundos	segundo	dias	anos	séculos
3 ⁿ	5,9E-02	58,1	3855,2	2,3E+08	1,3E+13
	segundos	minutos	séculos	séculos	séculos

- → Cuidado
 - Na análise assintótica as constantes de multiplicação são consideradas irrelevantes e descartadas
 - Porém, elas podem ser relevantes na prática, principalmente se o tamanho da entrada é pequeno
 - Exemplo: qual função tem menor custo?
 - $f(n) = 10^{100} * n$
 - \blacksquare g(n) = 10n log n

- → Cuidado
 - Análise assintótica: o primeiro é mais eficiente
 - f(n) = 10^{100} * n tem complexidade O(n)
 - \blacksquare g(n) = 10n log n tem complexidade O(n log n)
 - No entanto, 10¹⁰⁰ é um número muito grande
 - Neste caso, 10n log n > 10100 * n apenas para

$$n > 2^{1099}$$

Para qualquer valor menor de n o algoritmo de complexidade O(n log n) será melhor

Perguntas?

Exercícios de Fixação

Exercícios

- 1. O que significa dizer que uma função g(n) é O(f(n))?
- 2. O que significa dizer que uma função g(n) é $\Theta(f(n))$?
- 3. O que significa dizer que uma função g(n) é Ω (f(n))?
- 4. Suponha um algoritmo A e um algoritmo B com funções de complexidade de tempo $a(n) = n^2 n + 549$ e b(n) = 49n + 49, respectivamente. Determine quais são os valores de n pertencentes ao conjunto dos números naturais para os quais A leva menos tempo para executar do que B.

Justifique suas respostas!

Referências

- → BACKES, A. Ricardo. Algoritmos e estruturas de dados em linguagem C. 1. ed. Rio de Janeiro: LTC, 2023.
- → Prof. Dr. André Backes; Estrutura de Dados 2; 2012

lucas.costa@idp.edu.br

@lucasrodri

www.linkedin.com/in/lucas-rodri