

Classification vs Regression

- Differs in Mapping function: C = f(D).
- Class variable in Classification is categorical / discrete in nature while in Regression, it is continuous / numerical in nature.

INTRODUCTION TO CLASSIFICATION AND REGRESSION I

The key objective of supervised learning to make predictions. More formally, in supervised learning the aim to lean a function f based on input variables, X to get an outcome or target variable, C, refer Equation 6.

- The two techniques of supervised learning are
 - 1. Classification are
 - 2. Regression

Classification and Regression differs in the data type of target feature C. In case of Classification, variable C is categorical in nature where, Regression works only when C is numerical.

INTRODUCTION TO CLASSIFICATION AND REGRESSION II

Example of Classification

1 Classification

2 Regression

INTRODUCTION TO CLASSIFICATION AND REGRESSION III

Example of Regression

1 Classification

2 Regression

INTRODUCTION TO CLASSIFICATION AND REGRESSION IV

What differ between supervised algorithms are their approach in learning function f from the data to give the best results

Figure 29: Different models (or learning function f) from the same data set

CAREERS OF TOMORROW

INTRODUCTION TO CLASSIFICATION AND REGRESSION V

The key characteristics of learning function f

1. Simple:

- Easy to interpret
- Represents the true nature of data,
- Efficient and good performance

X ₁	X ₂	C
	-	-
Dataset		

INTRODUCTION TO CLASSIFICATION AND REGRESSION VI

2. Robust:

- Simple
- Represents the true nature of data
- Efficient with consistent/stable performance

Figure 31: Inconsistency in performance of Machine Learning (ML) model on different data set of same application

