

Introdução a Modelagem Estatística

MODELOS ESTATÍSTICOS

https://www.linkedin.com/pulse/dados-intelig%C3%AAncia-transforma%C3%A7%C3%A3o-digital-o-que-mais-castro-cip-/?originalSubdomain=pt

- □Objetivo: Explorar o papel fundamental dos modelos estatísticos na análise de dados e na tomada de decisões;
- ☐ Estudar a relação entre as variáveis
- ☐Os modelos podem fornecer insights valiosos e prever tendências, auxiliando em diversos contextos.

OS 5 PRINCIPAIS MODELOS ESTATÍSTICOS

Regressão Linear

Análise de Variância (ANOVA)

Regressão Logística

Análise de Sobrevivência

Séries Temporais

O QUE É UM MODELO ESTATÍSTICO

- Representação simplificada e abstrata de um fenômeno ou sistema real que se baseia em princípios estatísticos e matemáticos.
- Descreve a relação entre variáveis e fornece uma estrutura para entender, analisar e prever dados.
- São amplamente utilizados em ciências de dados para compreender padrões, explorar relações e tomar decisões informadas com base em evidências quantitativas.

Porque modelar

Compreensão do fenômeno

Entender como diferentes variáveis se interagem e se influenciam. Retirar insights sobre o fenômeno estudado, permitindo uma compreensão mais profunda.

Previsão e predição

Prever resultados futuros com base em dados históricos. Essas previsões podem ser valiosas para tomada de decisões e planejamento estratégico.

Teste de hipóteses

Testar hipóteses e avaliar a significância estatística de diferentes fatores. Eles ajudam a determinar se uma relação observada entre variáveis é estatisticamente significativa ou simplesmente resultado do acaso.

OBJETIVOS DA MODELAGEM ESTATÍSTICA

Descrição

• Descrever e resumir os dados, identificando padrões, tendências e características importantes. Ajudam a comunicar informações complexas de forma concisa.

Inferência

• Permitem fazer inferências sobre a população com base em uma amostra. Eles ajudam a generalizar conclusões e insights para além dos dados observados.

Previsão

Prever eventos futuros com base em dados históricos.
 Fornecem uma base para tomar decisões informadas e antecipar resultados.

Controle e otimização

 Otimizar processos e controlar variáveis importantes. Eles ajudam a identificar os fatores-chave que influenciam um resultado específico e fornecem uma base para a melhoria contínua.

Formulação do Problema

Interpretação dos resultados

Validação do modelo

Etapas da modelagem estatística

Coleta de Dados

Exploração de dados

Estimação do

Parâmetros

Seleção do modelo

FUNDAMENTOS PARA MODELOS DE REGRESSAO LINEAR

FUNDAMENTOS PARA MODELOS DE REGRESSÃO

MEDIDAS RESUMO

MEDIDAS DE ASSOCIAÇÃO

Variáveis discretas → suporte em um conjunto de valores enumeráveis (finitos ou infinitos)

Variáveis contínuas → suporte em um conjunto não enumerável de valores

MEDIDAS DE ASSOCIAÇÃO

Correlação linear

Determinado através de gráficos de dispersão e do coeficiente de variação

MEDIDAS DE ASSOCIAÇÃO

Correlação linear

Força da Correlação

CARACTERÍSTICAS DA CORRELAÇÃO

Pode ser um valor entre -1 e 1

Mostra a força e a direção entre as variáveis

A correlação de A ~ B é a mesma que B ~ A

COVARIÂNCIA E CORRELAÇÃO

☐ A covariância amostral entre duas variáveis Y1 e Y2 é:

$$Cov(y_1, y_2) = \frac{1}{n-1} \sum_{i=1}^{n} (y_{1i} - \overline{y_1}) \cdot (y_{2i} - \overline{y_2})$$

☐ A correlação amostral entre duas variáveis Y1 e Y2 é (Coeficiente de Pearson):

$$r = \frac{\sum_{i=1}^{n} (y_{1i} - \overline{y_1}) \cdot (y_{2i} - \overline{y_2})}{\sqrt{\sum_{i=1}^{n} (y_{1i} - \overline{y_1})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_{2i} - \overline{y_2})^2}} = \frac{Cov(y_1, y_2)}{\sqrt{V(y_1) \cdot V(y_2)}}$$

FORÇA DA CORRELAÇÃO

É usado para determinar se existe relação linear entre variáveis aleatórias quantitativas.

A correlação r assume valores entre -1 e 1.

- \square Quando r > 0, então existe uma associação (linear) positiva.
- \square Quando r < 0, então existe uma associação (linear) negativa.
- \square Quando r=0, então não existe uma associação (linear).

TESTE DE HIPÓTESE PARA A CORRELAÇÃO

Sejam as hipóteses nula e alternativa:

H0: r = 0.

 $Ha: r \neq 0$

$$t = \frac{r}{\sigma_r} = \frac{r}{\sqrt{\frac{1 - r^2}{n - 2}}}$$

Teste t

Graus de Liberdade

$$gl = n - 2$$

TIPOS DE CORRELAÇÃO

Pearson

PARAMÉTRICO

NÃO
PARAMÉTRICO

Kendall

COEFICIENTE DE PEARSON

- Forma mais precisa de medir a correlação linear entre duas grandezas
- Teste paramétrico -> temos que ter variáveis normais

$$\mathbf{r} = \frac{\sum_{i=1}^{n} (y_{1i} - \overline{y_1}) \cdot (y_{2i} - \overline{y_2})}{\sqrt{\sum_{i=1}^{n} (y_{1i} - \overline{y_1})^2} \cdot \sqrt{\sum_{i=1}^{n} (y_{2i} - \overline{y_2})^2}} = \frac{Cov(y_1, y_2)}{\sqrt{V(y_1) \cdot V(y_2)}}$$

COEFICIENTE DE SPEARMAN – CORRELAÇÃO DE POSTOS

- Teste não paramétrico -> pode ser aplicado em variáveis não normais
- ☐ Mede a força da relação entre duas variáveis (lineares ou não lineares)
- Utiliza os postos de entradas de amostras de dados pareados
- Pode ser utilizado para dados contínuos e ordinais

$$r_R = 1 - \frac{6\sum_i d_i^2}{n(n^2 - 1)}$$

 $r_R = 1 - \frac{6\sum_i d_i^2}{n(n^2 - 1)}$ $n = n^0$ de amostras d_i diferença de alcance de cada elemento

X	Υ
83	82
75	92
75	54
73	70
72	88
62	64
60	80
58	62
54	62
52	69
51	83
48	79

Postos

$$r_R = 1 - \frac{6\sum_i d_i^2}{n(n^2 - 1)}$$

X	Υ
12	9
10,5	12
10,5	1
9	6
8	11
7	4
6	8
5	2,5
4	2,5
3	5
2	10
1	7

d² $(12-9)^2$ (10,5 - $12)^{2}$ $(10,5-1)^2$ $(9-6)^2$ $(8-11)^2$ $(7-4)^2$ $(6-8)^2$ $(5-2,5)^2$ $(4-2,5)^2$ $(3-5)^2$ $(2-10)^2$ $(1-7)^2$

 d^2

CORRELAÇÃO DE KENDALL

- ☐ Teste não paramétrico -> quando temos amostras pequenas (<30)
- Populações com grandes quantidade de empates (valores repetidos)
- ☐ Pode ser utilizado juntamente com o spearman para comparação
- Pode ser utilizado para dados contínuos e ordinais

CORRELAÇÃO DE KENDALL

REGRESSAO LINEAR

MODELOS DE REGRESSÃO

Regressão de Componentes Principais

Regressão por Mínimos Quadrados

Regressão Vetorial de Suporte

Regressão Ordinal

Regressão de Poisson

Regressão Binomial Negativa

Regressão Quasi- Poisson

Outliers

ESCOLHENDO O TIPO DE REGRESSÃO

Valores discrepantes

Normalidade dos resíduos

Distribuição simétrica com as medidas de centralidade tendendo a igualdade

Multicolinearidade

Variáveis independentes altamente correlacionadas

Homocesticidade

Homogeneidade de variância

Underfitting

Algoritmo não se encaixa com os dados de entrada

Overfitting

• Algoritmos ótimo para os dados de entrada mas ruim para teste

INTRODUÇÃO SOBRE AJUSTE DE MODELOS

REGRESSÃO LINEAR

- Técnica estatística que visa modelar a relação entre uma variável
 dependente (ou resposta) e uma ou mais variáveis independentes (ou
 preditoras).
- Utilizada para prever valores contínuos e entender a relação linear entre as variáveis.
- O termo "linear" se refere ao fato de que a **relação entre as variáveis é modelada através de uma linha reta.**

Uma variável independente x explica a variação em outra variável, que é chamada de variável dependente y.

Este relacionamento existe em apenas uma direção: variável independente (x) -> variável dependente (y).

Modelos de

Regressão

REGRESSÃO LINEAR

Regressão Linear Simples

Regressão Linear Múltipla 1 variável dependente Y

1 variável independente X

1 variável dependente Y

Duas ou mais variáveis independente X

REGRESSÃO LINEAR SIMPLES

Altura	Peso
165	55
168	57
170	65
175	68
178	71

$$Y = a + bx$$

REGRESSÃO LINEAR SIMPLES

Componente Linear

Componente do Erro Aleatório

REGRESSÃO LINEAR SIMPLES

PREMISSAS DA REGRESSÃO LINEAR SIMPLES

- O relacionamento entre as variáveis independentes e a variável dependente devem ser linear.
- Correlação de moderada a forte

ESTIMAÇÃO DOS PARÂMETROS

ESTIMADORES DOS COEFICIENTES DA REGRESSÃO

Estimadores dos Coeficientes de Regressão Forma algébrica;

Forma matricial.

FUNDAMENTOS TEÓRICOS

Regras de Derivação

- i) Se f(x) = a, então f'(x) = 0.
- ii) Se f(x) = ax, então f'(x) = a.
- iii) (Regra do tombo) Se $f(x) = x^a$, então $f'(x) = a \cdot x^{a-1}$.
- iv) (Derivada da soma) [f(x) + g(x)]' = f'(x) + g'(x).

$$f'(x) = x^3$$
 $f'(x) = 3x^{3-1} = 3x^2$

$$f'(x) = 3x^4$$
 $f'(x) = 4 .3x^{4-1} = 12x^3$

ESTIMATIVA DOS COEFICIENTES: FORMA ALGEBRICA

Equação da reta
$$\theta = \beta_0 + \beta_1 X$$

Modelo de Regressão Linear $Y = \beta_0 + \beta_1 X + e$

$$Y = \beta_0 + \beta_1 X + e$$

Queremos encontrar uma função que minimize os erros.

1º Passo: Definir o Erro Quadrático Total

$$EQT = e_1^2 + e_2^2 + e_3^2 + e_4^2 + e_5^2$$

$$EQT = (Y_1 - \theta)^2 + (Y_2 - \theta)^2 + (Y_3 - \theta)^2 + (Y_4 - \theta)^2 + (Y_5 - \theta)^2$$

EQT =
$$\sum_{i=1}^{5} (Y_i - \theta)^2$$

Para uma amostra de tamanho n teremos:

$$Y_i = \hat{\theta} + \widehat{e_i}$$
 EQT = $\sum_{i=1}^n \widehat{e_i^2} = \sum_{i=1}^n (Y_i - \hat{\theta})^2$

ESTIMATIVA DOS COEFICIENTES: FORMA ALGEBRICA

2° Passo: Encontrar $\widehat{\boldsymbol{\theta}}$ que Minimize o EQT

$$\frac{dEQT}{d\hat{\theta}} = 0$$

$$\frac{dEQT}{d\hat{\theta}} = 0 \qquad \qquad \text{EQT} = \sum_{i=1}^{n} (Y_i - \hat{\theta})^2$$

$$\frac{dEQT}{d\hat{\theta}} = \sum_{i=1}^{n} 2(Y_i - \hat{\theta}) (-1) = -2 \sum_{i=1}^{n} Y_i + 2 \sum_{i=1}^{n} \hat{\theta}$$

$$\frac{dEQT}{d\hat{\theta}} = -2\sum_{i=1}^{n} Y_i + 2n\hat{\theta} = 0$$

$$\hat{\theta} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

$$\hat{\theta} = \frac{\sum_{i=1}^{n} Y_i}{n}$$

Para encontrar os valores que minimizam o EQT:

$$\frac{dEQT}{d\hat{\alpha}} = -2\sum_{i=1}^{n} [Y_i - (\hat{\alpha} + \hat{\beta} X_i)](-1) = 0$$

$$\widehat{\alpha} = \overline{Y} - \widehat{\beta_1} \, \overline{X}$$

Para encontrar os valores que minimizam o EQT:

$$\frac{dEQT}{d\hat{\beta}} = -2\sum_{i=1}^{n} [Y_i - (\hat{\alpha} + \hat{\beta} X_i)](-1) = 0$$

$$\hat{\beta} = \frac{\sum_{i=1}^{n} X_{i} Y_{i} - n \, \bar{X} \bar{Y}}{\sum_{i=1}^{n} X_{i}^{2} - n \, \bar{X}^{2}}$$

ESTIMATIVA DOS COEFICIENTES: FORMA ALGEBRICA

Definindo β_0 e β_1 que minimizam o EQT:

$$\mathbf{Y} = \beta_0 + \beta_1 \, X + e$$

$$\widehat{\beta_1} = \frac{\sum_{i=1}^n (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^n (X_i - \bar{X})^2} = \frac{\widehat{Cov}(X, Y)}{\widehat{Var}(X)}$$

$$\widehat{\beta_0} = \overline{Y} - \widehat{\beta_1} \, \overline{X}$$

$$\widehat{\beta_0} = \overline{Y} - \widehat{\beta_1} \, \overline{X}$$

$$\widehat{Y}_i = \widehat{\beta}_o + \widehat{\beta}_1 X_i + e_i$$

$$SQR = e'e = (Y-XB)'(Y-XB)$$

$$= Y'Y - 2BX'Y + B'X'XB$$

$$\frac{\partial SQR}{\partial B} = -2X'Y + 2B'X'X \equiv 0$$

$$-2X'Y + 2B'X'X = 0$$

$$\widehat{B} = (X'X)^{-1}X'Y$$

PREMISSAS DA REGRESSAO LINEAR SIMPLES

PREMISSAS DA REGRESSÃO LINEAR SIMPLES

- ☐ Análise de Outiliers de resíduos
- Homocedasticidade
- Normalmente distribuído

Média = 0

Variância constante

Covariância = 0

ANÁLISE DE OUTLIERS

Gráfico de Resíduos padronizados vs Valores ajustados

NORMALIDADE DOS RESÍDUOS

Teste de Shapiro Wilk

 H_0 = distribuição normal : p > 0.05

 H_1 = distribuição não normal : p <= 0.05

ANÁLISE DA HOMOCEDASTICIDADE DOS RESÍDUOS

Homocedasticidade: A variância dos erros e, condicionada aos valores das variáveis explanatórias, será constante.

Teste Breusch-Pagan (Homocedasticidade)

Ho = existe homocedasticidade : p > 0.05

Ha = não existe homocedasticidade : p <= 0.05

Homocedasticidade

Heterocedasticidade

Minas

Heterocedasticidade

Heterocedasticidade

TESTE - T

Avaliando a significância de cada parâmetro \(\beta \) do modelo

$$H_0: \beta = 0$$

$$H_1: \beta \neq 0$$

$$\widehat{Y}_i = \widehat{\beta}_o + \widehat{\beta}_1 X_i + e_i$$

$$H_0: p - valor \ge 0.05$$

$$H_1$$
: $p - valor < 0.05$

TESTE – T – FORMULAÇÃO DAS HIPÓTESES

- Para cada coeficiente de regressão β , a hipótese nula (H_0) geralmente afirma que não há efeito significativo.
- A hipótese alternativa (H_1) , por outro lado, afirma que há um efeito significativo.
- Os testes s\u00e3o bilaterais

$$H_0: \beta_1 = 0$$

$$H_1: \beta_1 \neq 0$$

TESTE – T – ESTATÍSTICA DE TESTE

A estatística do teste é calculada usando a estimativa do coeficiente ($\widehat{\beta}_1$) e seu erro padrão ($SE(\widehat{\beta}_1)$).

A estatística do teste segue uma distribuição t de Student.

$$t = \frac{\widehat{\beta}_1}{SE(\widehat{\beta}_1)}$$

TESTE - T - ESTATÍSTICA DE TESTE

O desvio padrão do estimador de um coeficiente de regressão ($SE(\widehat{\beta}_1)$) pode ser calculado usando a seguinte fórmula:

$$SE(\widehat{\beta}_1) = \frac{S}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}$$

onde:

- s é o desvio padrão dos resíduos do modelo (erro padrão residual),
- n é o número de observações,
- x_i são os valores da variável independente,
- \bar{x}_i é a média dos valores da variável independente.

TESTE - T - ESTATÍSTICA DE TESTE

$$s = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \widehat{y_i})^2}{n-2}}$$

onde:

 y_i são os valores observados da variável dependente,

 \widehat{y}_i são os valores previstos pela regressão.

TESTE - F

Avalia a significância global de um modelo de regressão linear, ou seja, para testar se pelo menos uma das variáveis independentes tem um efeito significativo sobre a variável dependente.

O teste F é comumente usado em modelos de regressão múltipla.

$$H_0: \beta_1 = \beta_2 = \beta_3 = \dots = \beta_k = 0$$

 H_1 : Pelo menos um β_j é diferente de zero

$$H_0 = F_{Calc} \le F_{Critico} \text{ ou } p - valor \ge 0.05$$

 $H_1 = F_{Calc} > F_{Critico} \text{ ou } p - valor < 0.05$

TESTE – F – ESTATÍSTICA DE TESTE

A estatística do teste F é calculada como:

$$F = \frac{(SQR/q)}{(SQE/(n-k-1))}$$

Onde:

- SQR é a soma dos quadrados da regressão
- q é o número de coeficientes a serem testados (neste caso, q=k),
- **SQE** é a soma dos quadrados dos resíduos
- n é o número de observações,
- k é o número de variáveis independentes no modelo.

TESTE - F - ESTATÍSTICA DE TESTE

Soma dos Quadrados da Regressão (SQR):

$$SQR = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2$$

 $\widehat{y_i}$ são os valores previstos pela regressão para a observação \overline{y} é a média dos valores observados da variável dependente. SQR, mais o modelo está explicando a variabilidade nos dados.

TESTE – F – ESTATÍSTICA DE TESTE

Soma dos Quadrados dos Erros (SQE):

$$SQE = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

onde:

 y_i são os valores observados da variável dependente,

 \widehat{y}_i são os valores previstos pela regressão para a observação

COEFICIENTE DE DETERMINAÇÃO (R2)

Como avaliar o modelo?

O coeficiente de determinação (R²) estima a proporção da variabilidade da variável dependente (Y) que é explicada pelas(s) variáveis independente do modelo de regressão.

$$R^{2} = \frac{SQR}{SQT} = \frac{\sum_{i=1}^{n} (\widehat{Y_{i}} - \overline{Y})^{2}}{\sum_{i=1}^{n} (Y_{i} - \overline{Y})^{2}} = 1 - \frac{\sum_{i=1}^{n} \widehat{e_{i}}^{2}}{\sum_{i=1}^{n} y_{i}^{2}} = \widehat{\beta_{1}}^{2} \frac{\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} y_{i}^{2}}$$

Escala de R²:

0 independência linear

A significância das escalas depende muito da natureza da variável dependente 1 relação linear exata

```
Call
                                                 Modelo a ser
m(formula = custo \sim idade, data = dados)
                                                 criado
Residuals:
           10 Median 30
                                   Max
 463.37 -277.04 -45.04 218.15 751.27
                                              Teste -t
coefficients: Coeficientes estimados
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -558.949 368.759 -1.516 0.168
            61.868 8.582 7.209 9.16e-05 ***
idade
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 389.7 on 8 degrees of freedom
Multiple R-squared: 0.8666, R<sup>2</sup> Adjusted R-squared: 0.8499
F-statistic: 51.98 on 1 and 8 DF, p-value: 9.161e-05
                                                        Teste F
```

OLS Regression Results

