Fondamenti di Internet e Reti – SOLUZIONE!!!

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina 3° Appello – 13 Settembre 2019

1 1011. 111 Supone, 111 Sesuna, 1 1 11 usumeen, 111 1 usu		<u> </u>	Perro	e sectem	DI C 2017
Cognome e nome:				(sta	mpatello)
				(firma l	leggibile)
Matricola:	Es.1	Es.2	Es.3	Ques.	Lab.

Esercizio 1*
(7 punti)

La società *BovisaNet* possiede la rete rappresentata nella figura sottostante, costituita da host fissi e mobili, switch, Access Point WiFi e router. Per poter indirizzare tutti gli utenti della rete, la società *BovisaNet* si rivolge ad un ISP, che dispone complessivamente dello spazio di indirizzamento CIDR **51.22.0.0/18**. L'ISP fornisce alla società *BovisaNet* un blocco di dimensioni minime sufficiente a soddisfarne le esigenze di indirizzamento, a partire dagli indirizzi con numerazione più bassa.

- a) Si indichino graficamente le sottoreti IP evidenziando nella figura sottostante i confini di ciascuna sottorete e si assegni a ciascuna sottorete una etichetta del tipo *NET x* (*x*=*A*, *B*, *C*, ...) seguendo l'ordine alfabetico e partendo dalle sottoreti con maggior numero di indirizzi IP usati (<u>Suggerimento</u>: fare attenzione alla presenza dei collegamenti punto-punto all'interno della rete della società *BovisaNet*).
- b) Per ciascuna sottorete si inserisca nella Tabella 1 sottostante il numero di indirizzi IP occupati, ivi compresi gli eventuali indirizzi IP speciali necessari nella sottorete (<u>Suggerimento</u>: fare attenzione alla presenza dei router).
- c) Si indichi di seguito il blocco CIDR assegnato alla società *BovisaNet*, usando la notazione decimale puntata con maschera di rete in notazione /n.

51.22.0.0	/ 21

- d) Si effettui il piano di indirizzamento per la società *BovisaNet* usando la tecnica VLSM, **assegnando gli** indirizzi alle sottoreti a partire da quelli più bassi del blocco ottenuto al punto c). Per ciascuna sottorete, si inseriscano nella **Tabella 1** l'indirizzo di rete, la *netmask* (notazione /n) e l'indirizzo di *broadcast diretto*.
- e) Assegnare a ogni interfaccia dei router <u>l'indirizzo più piccolo possibile</u> compatibilmente con i vincoli sugli indirizzi speciali, compilando la **Tabella 2**. Si usi la notazione "*RnX*" (n=1,2,3,4,5; X=A, B, ...) per indicare l'interfaccia del router Rn verso la rete X.
- f) Scrivere nella **Tabella 3** la tabella di inoltro (**diretto e indiretto**) del router R5 <u>nel modo più compatto possibile e che in ogni caso minimizzi il numero di salti per raggiungere la rete di destinazione</u>. Si preveda l'utilizzo di un'opportuna rotta per indirizzare le (sotto)reti al di fuori della società *BovisaNet*.

^{*} NOTA BENE: Per TUTTI GLI ESERCIZI si adotta il <u>PUNTO (".") come separatore delle cifre decimali</u>. Non si usa separatore per le migliaia.

Tabella 1 (Usare la notazione decimale puntata)

Rete	Numero di indirizzi IP	Netmask	Indirizzo di rete	Ind. broadcast diretto
[NET x]	(incluso indirizzi speciali)	/n		
NET A	1022 = 1018 (host) + 2 (router) + 2 (speciali)	/22	51.22.0.0	51.22.3.255
NET B	253 = 250 (host) + 1 (router) + 2 (speciali)	/24	51.22.4.0	51.22.4.255
NET C	203 = 200 (host) + 1 (router) + 2 (speciali)	/24	51.22.5.0	51.22.5.255
NET D	128 = 125 (host) + 1 (router) + 2 (speciali)	/25	51.22.6.0	51.22.6.127
NET E	126 = 120 (host) + 4 (router) + 2 (speciali)	/25	51.22.6.128	51.22.6.255
NET F	63 = 60 (host) + 1 (router) + 2 (speciali)	/26	51.22.7.0	51.22.7.63
NET G	16 = 13 (host) + 1 (router) + 2 (speciali)	/28	51.22.7.64	51.22.7.79
NET H	4 = 2 (router) $+ 2$ (speciali)	/30	51.22.7.80	51.22.7.83
NET I	4 = 2 (router) $+ 2$ (speciali)	/30	51.22.7.84	51.22.7.87

Tabella 2 (Usare la notazione decimale puntata)

Router	Interfaccia [RnX]	Indirizzo IP e maschera /n							
R1	R1E	51.22.6.129 / 25							
ΚI	R1H	51.22.7.81 / 30							
	R2D	51.22.6.1 / 24							
R2	R2E	51.22.6.130 / 25							
KΖ	R2G	51.22.7.65 /28							
	R2H	51.22.7.82 / 30							
R3	R3A	51.22.0.1 / 22							
KS	R3E	51.22.6.131 / 25							
	R4C	51.22.5.1 / 24							
R4	R4E	51.22.6.132 / 25							
K4	R4F	51.22.7.1 / 26							
	R4I	51.22.7.85 / 30							
	R5A	51.22.0.2 / 22							
R5	R5B	51.22.4.1 / 24							
	R5I	51.22.7.86 / 30							

Tabella 3 (Usare la notazione decimale puntata)

Tabella di Routing di R5

Reti [NET x, NET y, NET z]	Indirizzo IP del blocco CIDR	Indirizzo IP del next-hop
NET A	51.22.0.0 / 22	direct
NET B	51.22.4.0 / 24	direct
default	0.0.0.0 / 0	51.22.7.85 (R4I)

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

3° Appello – 13 Settembre 2019

Cognome e nome: (stampatello) (firma leggibile)

Matricola:

SOLUZIONE

51.22.00000xxx.xxxxxxxx/21

Esercizio 2

(6 punti)

Nella rete in figura sono rappresentati 3 router (R1, R2 e R3), un client (H), un proxy (P) e un server (S) HTTP. Accanto ad ogni collegamento è indicata la capacità di trasmissione del canale e il ritardo di propagazione del collegamento stesso. Nella rete sono presenti anche 4 ulteriori host (A, B, C, D) tra cui sono stati istaurati i seguenti flussi interferenti di lunga durata: 4 tra A e C, 5 tra B e D.

Il client vuole scaricare dal server una pagina web composta da una pagina HTML di dimensione L_{html}=3 kbyte e 10 oggetti JPEG richiamati nella pagina HTML, di dimensione L_{ogg}=300 kbyte ciascuno. <u>Il client H è configurato in modo</u> da utilizzare sempre il proxy P.

Assumendo che i messaggi di controllo usati per aprire una connessione TCP ed i messaggi di GET HTTP abbiano lunghezza trascurabile, si chiede di calcolare il tempo di trasferimento dell'intera pagina web (documento base e 10 oggetti JPEG) nei seguenti casi (<u>riportare i tre risultati numerici finali nelle righe al disotto della figura sottostante</u>):

- a) il proxy possiede tutti i file (documento base e 10 oggetti) all'interno della sua cache locale e il client H utilizza un'unica connessione TCP persistente;
- b) il proxy non ha alcun file disponibile nella propria cache locale e tutte le necessarie <u>connessioni TCP sono</u> <u>non persistenti</u>; quando possibile, esse possono essere aperte <u>in parallelo</u> nel massimo numero possibile.
- c) il proxy non ha alcun file disponibile nella propria cache locale; inoltre, tutte le necessarie <u>connessioni TCP</u> <u>aperte dal client sono persistenti e il proxy ha già aperto con il server una connessione TCP persistente,</u> che viene mantenuta per tutta la durata della trasmissione.

N.B. Per il calcolo delle velocità di trasmissione utilizzabili dalle varie connessioni TCP, si assuma il principio di condivisione equa delle risorse.

$T_{tot,a} = $	
$T_{tot,b} =$	
$T_{tot c} =$	

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

3° Appello – 13 Settembre 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

SOLUZIONE

$$RTT_{HP} = 6 \text{ ms}$$

 $RTT_{PS} = 6 \text{ ms}$

a) $C_{HP,html}=C_{HP,ogg}=6 \text{ Mbit/s} (=C_{R1-R2}-C_{R2-C})$

$$\begin{split} T_{HP,html} &= L_{html}/C_{HP,html} = 24 [kbit] \; / \; 6 [Mbit/s] = 4 \; ms \\ T_{HP,ogg} &= L_{ogg}/C_{HP,ogg} = 2400 [kbit] \; / \; 6 [Mbit/s] = 400 \; ms \end{split}$$

$$T_{tot,a} = RTT_{HP} + (RTT_{HP} + T_{HP,html}) + 10 (RTT_{HP} + T_{HP,ogg}) = 4076 \text{ ms}$$

b) $C_{HP,html} = 6 \text{ Mbit/s} (=C_{R1-R2} - C_{R2-C})$

 $C_{HP,ogg} = 10/14 \text{ Mbit/s} (=C_{R1-R2}/14)$

 $C_{PS,html} = 20 \text{ Mbit/s} (=C_{R2-R3} - C_{R3-D})$

 $C_{PS,ogg} = 4 \text{ Mbit/s} (=C_{R2-R3}/15)$

 $T_{HP,html} = L_{html} \ / \ C_{HP,html} = 4 \ ms$

 $T_{PS,html} = L_{html} / C_{PS,html} = 1.2 \text{ ms}$

 $T_{HP,ogg} = L_{ogg} / C_{HP,ogg} = 3360 \text{ ms}$

 $T_{PS,ogg} = L_{ogg} / C_{PS,ogg} = 600 \text{ ms}$

c) Le capacità trasmissive delle connessioni TCP tra client e proxy e tra proxy e server sono le stesse che si hanno al punto b) nella fase di trasmissione della pagina html, ovvero

$$C_{HP} = C_{HP,html} = C_{HP,ogg} = 6 \text{ Mbit/s } (=C_{R1-R2} - C_{R2-C})$$

 $C_{PS} = C_{PS,html} = C_{PS,ogg} = 20 \text{ Mbit/s } (=C_{R2-R3} - C_{R3-D})$

$$T_{HP,html} = L_{html} / C_{HP,html} = 4 \text{ ms}$$

$$T_{PS,html} = L_{html} / C_{PS,html} = 1.2 \text{ ms}$$

$$T_{HP,ogg} = L_{ogg} / C_{HP,ogg} = 400 \text{ ms}$$

$$T_{PS,ogg} = L_{ogg} \, / \, C_{PS,ogg} = 120 \ ms$$

Esercizio 3

(4 punti)

Si consideri il grafo in figura, che rappresenta una rete costituita da 7 router ed i costi dei relativi collegamenti.

- a) Si trovi l'albero dei cammini minimi (MST) avente come **radice il nodo B** usando l'algoritmo di *Bellman-Ford* e, ipotizzando che gli stessi nodi siano le destinazioni da raggiungere, si riporti nella tabella sottostante la corrispondente tabella di routing del nodo B ad ogni step dell'algoritmo (nel caso ad un dato step vi siano più percorsi di ugual costo, si scelga il Next hop seguendo l'ordine alfabetico).
- b) Si disegni, a fianco al grafo, il MST finale, indicando anche i costi dei collegamenti inclusi nel MST.
- c) A partire dal MST ottenuto e ipotizzando che gli stessi nodi siano le destinazioni da raggiungere, si chiede di indicare i *Distance Vector* (DV) inviati dal nodo B nei casi in cui: (1) si usi la modalità senza *Split Horizon*; (2) si usi la modalità *Split Horizon* base; (3) si usi la modalità *Split Horizon with Poisonous reverse* (attenzione: per ciascun DV inviato, si indichi il contenuto e il destinatario del DV).

Nod	o B – Si	tep 1	Node	o B - St	tep 2	Nod	o B – Si	tep 3	Nod	o B - St	ep 4	Nodo B – Step 5				
Dest	Cost	Next hop	Dest	Cost	Next hop	Dest	Dest Cost		Dest	Cost	Next hop	Dest	Cost	Next hop		
A	1	A	A	1	A	A	1	A	A	1	A	A	1	A		
C	12	С	С	12	С	С	10	G	С	10	G	С	7.5	G		
			D	9	G	D	9	G	D	6.5	G	D	6.5	G		
						E	4.5	G	E	4.5	G	E	4.5	G		
			F	3.5	G	F	3.5	G	F	3.5	G	F	3.5	G		
G	3	G	G	3	G	G	3	G	G	3	G	G	3	G		

SOLUZIONE

(c1) DV B \rightarrow A = DV B \rightarrow C = DV B \rightarrow G = A-1, B-0, C-7.5, D-6.5, E-4.5, F-3.5, G-3

(c2) DV B \rightarrow A = B-0, C-7.5, D-6.5, E-4.5, F-3.5, G-3 DV B \rightarrow C = A-1, B-0, C-7.5, D-6.5, E-4.5, F-3.5, G-3 DV B \rightarrow G = A-1, B-0

(c3) DV B \rightarrow A = A-inf, B-0, C-7.5, D-6.5, E-4.5, F-3.5, G-3 DV B \rightarrow C = A-1, B-0, C-7.5, D-6.5, E-4.5, F-3.5, G-3 DV B \rightarrow G = A-1, B-0, C-inf, D-inf, E-inf, F-inf, G-inf

Fondamenti di Internet e Reti

Proff. A. Capone, M. Cesana, F. Musumeci, A. Pattavina

3° Appello – 13 Settembre 2019

Cognome e nome:

(stampatello) (firma leggibile)

Matricola:

Esercizio 4 - Domande

(9 punti)

a) Si calcoli il checksum secondo la modalità del protocollo UDP della seguente sequenza di bit:

(3 punti)

SOLUZIONE

La stringa deve essere organizzata in blocchi da 16 bit

			1	0	0	0	0	1	0	0	0	1	0	0	0	1	0	1
			1	1	0	1	0	1	0	1	0	1	0	0	1	1	0	1
			1	1	1	0	0	1	1	0	0	1	1	0	1	1	1	0
Sum	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
																	1	0
SwC			0	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Checksum			1	0	1	1	1	1	1	1	1	1	1	1	1	1	0	1

- b) Indicare se le seguenti osservazioni sono <u>vere</u> o <u>false</u> motivando la risposta. RISPOSTE NON MOTIVATE SARANNO CONSIDERATE ERRATE.
 - 1 L'uso di NAT/NAPT consente di utilizzare lo stesso indirizzo IP pubblico per host di reti private distinte.
 - 2 In una rete locale che usa CSMA/CD esiste un limite massimo alla dimensione delle trame, in funzione del numero di utenti (stazioni) della rete locale
 - 3 In risposta ad una *request http* che usa il metodo HEAD, il server http invia solo le informazioni di base della pagina web richiesta, a meno che essa non sia stata modificata dopo una certa data specificata nella *request*.

(3 punti)

SOLUZIONE

- 1 FALSO, NAT/NAPT consente il riutilizzo di indirizzi privati.
- 2 FALSO, esiste invece un limite minimo, che dipende dalla capacità trasmissiva, dall'estensione della rete e dalla velocità di propagazione nel mezzo trasmissivo usato.
- 3 FALSO, viene in ogni caso restituito il solo contenuto dell'header della pagina web
- C) Un trasmettitore invia in un canale radio di capacità C = 100 Mbit/s un pacchetto di lunghezza L = 75 Byte. Quanti metri "occupa" il pacchetto sul canale radio? (quale distanza ha percorso il primo bit al termine della trasmissione del pacchetto?) Qual è la durata della trasmissione del pacchetto?

(3 punti)

SOLUZIONE

Il pacchetto viene trasmesso in un tempo pari a

$$T = L/C = 6 \mu s$$

Trascorso T, il primo bit inviato dal trasmettitore ha viaggiato alla velocità della luce (v=300~000~km/s) percorrendo una distanza pari a

$$d = v * T = 1800 m$$

I risultati richiesti dall'esercizio sono *d* e *T*, rispettivamente.