Mathematics 25.08.22 (1) Notes

Eason Shao, Mr Finch-Noyes

25.08.22 (1)

Contents

1	Sets
2	Unit Conversion
	2.1 General Unit Conversion
	2.2 Time Conversion
	2.3 Bounds

Section 1 Sets

Problem 1.1. In a group of 20 students, 12 study History, 10 study Geography, 3 study neither. How many study both?

Solution. Let x be the number of students who study both History and Geography. According to the Inclusion-Exclusion Principle

$$n(A \cup B) = n(A) + n(B) - n(A \cap B),$$

where $n(A \cup B) = 20 - 3 = 17, n(A) = 12, n(B) = 10, n(A \cap B) = x$. Simplify, we have

$$17 = 12 + 10 - x$$

therefore we have x = 5, which means 5 people study both.

Definition 1.2. (Set Builder Notation) The notation $A = \{x : P\}$ means that the set A includes and only includes all possible x which satisfies P.

Example 1.3. (Set Builder Notation) What does $\{x: 1 \le x \le 6, x \in \mathbb{N}\}$ mean? All values (a set). How is it different to $x \in \{1, 2, 3, 4, 5, 6\}$? One value of x.

Problem 1.4. What is the difference between $\{x : 1 < x < 2\}$ and $x \in (1,2)$?

Solution. The first one is all possible values, while the second one is a notation which means a single x is within the interval (1,2).

Example 1.5. (Set of Points) Find the equation of the following line. Describe the set of coordinates of points on this line in set build notation.

The line is $y = -\frac{1}{3}x + 3$; the set will be $\{(x, y) : y = -\frac{1}{3}x + 3\}$.

Section 2 Unit Conversion

§2.1 General Unit Conversion

```
Example 2.1. (Unit Conversion, Length) 1 \text{ m} = 1 \times 10^2 \text{ cm} = 1 \times 10^3 \text{ mm}.

Example 2.2. (Unit Conversion, Squared, Hectares) 1 \text{ m}^2 = 1 \times 10^4 \text{ cm}^2 = 1 \times 10^6 \text{ mm}^2 = 1 \times 10^{-4} \text{ ha}.

Example 2.3. (Unit Conversion, Cubed) 1 \text{ m}^3 = 1 \times 10^6 \text{ cm}^3 = 1 \times 10^9 \text{ mm}^3.

Example 2.4. (Unit Conversion, Km) 1 \text{ km} = 1 \times 10^3 \text{ m}.

Example 2.5. (Unit Conversion, Grams) 1 \text{ kg} = 1 \times 10^3 \text{ g} = 1 \times 10^{-3} \text{ t}.

Example 2.6. (Unit Conversion, Litres) 1 \text{ L} = 1 \times 10^{-3} \text{ m}^3 = 1 \times 10^3 \text{ mL1} \times 10^2 \text{ cL}.
```

§2.2 Time Conversion

Problem 2.7. A plane leaves London at 21:15. It lands in Singapore at 17:45. Given Singapore is 7 hours ahead, find the flight time.

```
Solution. 21:15_{\text{London}}=28:15_{\text{Singapore}}=4:15_{\text{Singapore},+1}. 17:45_{\text{Singapore}}-4:15_{\text{Singapore}=13:30}. 13 hours and 30 minutes.
```

§2.3 Bounds

```
Example 2.8. (Significant Figures) x = 47 to 2 significant figures, so we have x \in [46.5, 47.5). Definition 2.9. (Lower Bound) The lower bound for the previous example is 46.5. Definition 2.10. (Upper Bound) The upper bound for the previous example is 47.5.
```

```
Problem 2.11. a=23.10 to 2 decimal points. Bounds. Solution. Lower bound is 23.095, upper bound is 23.105.
```

Problem 2.12. b = 700 to 2 significant figures. Bounds. Solution. Lower bound is 695, upper bound is 705.

Problem 2.13. State the upper and lower bounds of

```
(1) a + b;
Solution. Lower: 23.095 + 695; Upper: 23.105 + 705.
```

- (2) b-a; Solution. Lower: 695-23.105; Upper: 705-23.095.
- (3) ab; Solution. Lower: 695×23.095 ; Upper: 705×23.105 .
- (4) $\frac{b}{a}$. Solution. Lower: 695/23.105; Upper: 705/23.095.