t - Distribution

1

t-Distribution

If the sample size is small (<30), the variance of the population is not adequately captured by the variance of the sample. Instead of z-distribution, t-distribution is used.

It is also the appropriate distribution to be used when population variance is not known, irrespective of sample size.

t-Distribution

Density of the *t*-distribution (red) for 1, 2, 3, 5, 10, and 30 degrees of freedom compared to the standard normal distribution (blue).

Previous plots shown in green.

t-Distribution

t statistic (or t score),
$$t = \frac{\bar{x} - \mu}{\frac{S}{\sqrt{n}}}$$

Degrees of freedom, v: # of independent observations for a source of variation minus the number of independent parameters estimated in computing the variation.*

When estimating mean or proportion from a single sample, the # of independent observations is equal to n-1.

^{*} Roger E. Kirk, Experimental Design: Procedures for the Behavioral Sciences. Belmont, California: Brooks/Cole, 1968.

Properties of t-Distribution

The standard normal distribution (z-Distribution) has mean of zero and a variance of 1.

t-Distribution has slightly different properties

- Mean of the distribution = 0
- Variance = $\frac{v}{v-2}$, where v > 2
- Variance is always greater than 1, although it is close to 1 when there are many degrees of freedom (sample size is large)
- With infinite degrees of freedom, t distribution is the same as the standard normal distribution

Confidence Interval to Estimate μ

 Population standard deviation UNKNOWN and the population normally distributed.

$$\bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

- Sample mean, standard deviation and size can be calculated from the data; t value can be read from the table or obtained from software.
- $-\alpha$ is the area in the tail of the distribution. For 90% Confidence Level, α =0.10. In a Confidence Interval, this area is symmetrically distributed between the 2 tails ($\frac{\alpha}{2}$ in each tail).

t-table

Percentage Points of the *t* Distribution; $t_{v,\alpha}$ $P(T > t_{v,\alpha}) = \alpha$

В

								α						
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322	636.590
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3,690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2.527	2.764	2.932	3.169	3.581	4.587
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	72.328	2.491	2.718	2.879	3.106	3.497	4.437
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	0.259	0.538	0.870	1.079	1,350	1,771	2.160	2.282	2.436	2.650	2.801	3.012	3.372	4.221
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	0.258	0.536	0,866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	0.257	0.533	0.861	1.066	1.328	1,729	2.093	2,205	2.346	2.539	2.674	2.861	3.174	3.883
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2,320	2.508	2.639	2.819	3.119	3.792
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2,620	2.797	3.091	3.745
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860	3.373
90	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2.170	2.326	2.432	2.576	2.807	3.291

The labeled density of a chocolate is 1325 kg/m3. As per the quality control specifications, 10 chocolates are randomly assayed.

A researcher wants to estimate the interval for the true mean of the batch of chocolates with 95% confidence. Assume the potency is normally distributed.

Data are as follows (in kg/m3):

1323.6	1327.1	1325.7	1327.0	1322.0
1328.4	1323.9	1326.6	1328.9	1330.2

Mean, $\bar{x} = 1326.34 \, mg$

Standard deviation, s = 2.48

$$n = 10$$

$$v = 10 - 1 = 9$$

At 95% level, $\alpha = 0.05$, and $\therefore \frac{\alpha}{2} = 0.025$

t-table

Percentage Points of the t Distribution; $t_{v,\alpha}$ $P(T>t_{v,\alpha}) = \alpha$

 $t_{9,0.025}$

= 2.262

_													
								α					
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322
2	0.289	0.617	1.061	1.386	1.886	2.920	4.303	4.849	5,643	6.965	8.073	9.925	14.089
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453
4	0.271	0.569	0.941	1.190	1.533	2.132	2,776	2.999	3.298	3.747	4.088	4.604	5.598
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833
9	0.261	0.543	0,883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2,998	3.250	3.690
10	0.260	0.542	0.879	1.093	1.372	1.812	2,228	2.359	2.527	2.764	2.932	3.169	3.581
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2.328	2.491	2.718	2.879	3.106	3.497
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2.436	2.650	2.801	3.012	3.372
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2,602	2.746	2.947	3.286
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2,328	2,518	2.649	2.831	3.135
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2,320	2.508	2.639	2.819	3.119
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091
25	0.256	0.531	0.856	1.058	1.316	1.708	2.060	2.167	2.301	2.485	2.612	2.787	3.078
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2,586	2.756	3.038
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2,971
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860
90	0.253	0.524	0.842	1.036	1.282	1.645	1,960	2.054	2.170	2.326	2.432	2.576	2.807

Innovation is our Tradition

Mean, $\bar{x} = 1326.34 \ mg$, Standard deviation., $s = 2.48 \ n = 10, v = 10 - 1 = 9$

$$\bar{x} - t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

$$1326.34 - 2.262 * \frac{2.48}{\sqrt{10}} \le \mu \le 1326.34 + 2.262 * \frac{2.48}{\sqrt{10}}$$

$$1324.56 \le \mu \le 1328.11$$

The batch mean is 101.24 mg with an error of +/-1.77 mg. The researcher is95% confident that the average potency of the batch of tablets is between 99.47 mg and 103.01 mg.

A researcher wants to examine blood platelets counts for the patients at clinic. A random sample of 20 patients is selected and measures their platelets count. Calculate a 95% CI for population mean given the following sample results:

Variable	n	\overline{x}	SE of mean	2	Min	Q_1	Median	Q_3	Max
CD4 (cells)	20	321400	14800	73800	208000	261000	325000	394000	449000

Variable	n	\overline{x}	SE of mean	S	Min	Q_1	Median	Q_3	Max
CD4 (cells)	20	321400	14800	73800	208000	261000	325000	394000	449000

Margin of Error ME =
$$t_{n-1,\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$$

CI (0.05):
$$\bar{x} - ME \le \mu \le \bar{x} + ME$$

$$321400 - ME \le \mu \le 321400 + ME$$

$$ME = t_{20-1, \frac{0.05}{2}} \frac{73800}{\sqrt{35}}$$

t - table

Percentage Points of the *t* Distribution; $t_{\nu,\alpha}$ $P(T > t_{\nu,\alpha}) = \alpha$

								Ct.						
v	0.40	0.30	0.20	0.15	0.10	0.05	0.025	0.02	0.015	0.01	0.0075	0.005	0.0025	0.0005
1	0.325	0.727	1.376	1.963	3.078	6.314	12.706	15.895	21.205	31.821	42.434	63.657	127.322	636.590
2	0.289	0.617	1.061	1.386	1.886	2.920	4,303	4.849	5.643	6.965	8.073	9.925	14.089	31.598
3	0.277	0.584	0.978	1.250	1.638	2.353	3.182	3.482	3.896	4.541	5.047	5.841	7.453	12.924
4	0.271	0.569	0.941	1.190	1.533	2.132	2.776	2.999	3.298	3.747	4.088	4.604	5.598	8.610
5	0.267	0.559	0.920	1.156	1.476	2.015	2.571	2.757	3.003	3.365	3.634	4.032	4.773	6.869
6	0.265	0.553	0.906	1.134	1.440	1.943	2.447	2.612	2.829	3.143	3.372	3.707	4.317	5.959
7	0.263	0.549	0.896	1.119	1.415	1.895	2.365	2.517	2.715	2.998	3.203	3.499	4.029	5.408
8	0.262	0.546	0.889	1.108	1.397	1.860	2.306	2.449	2.634	2.896	3.085	3.355	3.833	5.041
9	0.261	0.543	0.883	1.100	1.383	1.833	2.262	2.398	2.574	2.821	2.998	3.250	3.690	4.781
10	0.260	0.542	0.879	1.093	1.372	1.812	2.228	2.359	2,527	2.764	2.932	3.169	3.581	4.587
11	0.260	0.540	0.876	1.088	1.363	1.796	2.201	2,328	2.491	2.718	2.879	3.106	3.497	4.437
12	0.259	0.539	0.873	1.083	1.356	1.782	2.179	2.303	2.461	2.681	2.836	3.055	3.428	4.318
13	0.259	0.538	0.870	1.079	1.350	1.771	2.160	2.282	2,436	2.650	2.801	3.012	3,372	4.221
14	0.258	0.537	0.868	1.076	1.345	1.761	2.145	2.264	2.415	2.624	2.771	2.977	3.326	4.140
15	0.258	0.536	0.866	1.074	1.341	1.753	2.131	2.249	2.397	2.602	2.746	2.947	3.286	4.073
16	0.258	0.535	0.865	1.071	1.337	1.746	2.120	2.235	2.382	2.583	2.724	2.921	3.252	4.015
17	0.257	0.534	0.863	1.069	1.333	1.740	2.110	2.224	2.368	2.567	2.706	2.898	3.222	3.965
18	0.257	0.534	0.862	1.067	1.330	1.734	2.101	2.214	2.356	2.552	2.689	2.878	3.197	3.922
19	0.257	0.533	0.861	1.066	1.328	1.729	2.093	2.205	2.346	2.539	2.674	2.861	3.174	3.883
20	0.257	0.533	0.860	1.064	1.325	1.725	2.086	2.197	2.336	2.528	2.661	2.845	3.153	3.850
21	0.257	0.532	0.859	1.063	1.323	1.721	2.080	2.189	2.328	2.518	2.649	2.831	3.135	3.819
22	0.256	0.532	0.858	1.061	1.321	1.717	2.074	2.183	2.320	2.508	2.639	2.819	3.119	3.792
23	0.256	0.532	0.858	1.060	1.319	1.714	2.069	2.177	2.313	2.500	2.629	2.807	3.104	3.768
24	0.256	0.531	0.857	1.059	1.318	1.711	2.064	2.172	2.307	2.492	2.620	2.797	3.091	3.745
25	0.256	0.531	0.856	1.058	1.316	1.708	2,060	2.167	2.301	2.485	2.612	2.787	3.078	3.725
26	0.256	0.531	0.856	1.058	1.315	1.706	2.056	2.162	2.296	2.479	2.605	2.779	3.067	3.707
27	0.256	0.531	0.855	1.057	1.314	1.703	2.052	2.158	2.291	2.473	2.598	2.771	3.057	3.690
28	0.256	0.530	0.855	1.056	1.313	1.701	2.048	2.154	2.286	2.467	2.592	2.763	3.047	3.674
29	0.256	0.530	0.854	1.055	1.311	1.699	2.045	2.150	2.282	2.462	2.586	2.756	3.038	3.659
30	0.256	0.530	0.854	1.055	1.310	1.697	2.042	2.147	2.278	2.457	2.581	2.750	3.030	3.646
40	0.255	0.529	0.851	1.050	1.303	1.684	2.021	2.123	2.250	2.423	2.542	2.704	2.971	3.551
60	0.254	0.527	0.848	1.045	1.296	1.671	2.000	2.099	2.223	2.390	2.504	2.660	2.915	3.460
120	0.254	0.526	0.845	1.041	1.289	1.658	1.980	2.076	2.196	2.358	2.468	2.617	2.860	3.373
90	0.253	0.524	0.842	1.036	1.282	1.645	1.960	2.054	2,170	2.326	2.432	2.576	2.807	3.291