Symulowanie Procesów Losowych - Kule i Urny

Jakub Kogut

1 Wstęp

Sprawozdanie do zadania domowego 2.

2 Opis Zadania

Należało zaprojektować oraz zaimplementować probalistyczny model kul i urn. Kolejne m kul wrzucanych jest niezależnie oraz jednostajnie do n ponumernowanych urn. Celem zadania było eksperymentalne wyznaczenie następujących wartości:

- 1. B_n moment pierwszej kolizji
- 2. U_n liczba ur
n, które pozostają puste po wrzuceniu n kul
- 3. C_n minimalna liczba rzutów, po której w każdej z ur
n znajduje się co najmniej jedna kula
- 4. D_n minimalna liczba rzutów, po której w każdej z urn znajduje się co najmniej dwie kule (równocześnie jest to warunek końcowy symulacji)
- 5. $D_n C_n$ ilość rzutów potrzebna do uzyskania drugiej kuli w każdej z urn, po tym jak w każdej jest już minimum jedna kula

3 Metodologia

Podana była ustalona wartość k=50 niezależnych symulacji dla każdego n z zakresu $n\in\{1000,2000,...,100000\}$. W trakcie wykonywania jej, na bierząco zapisywane były szukane wartości. Następnie wypisywano wyniki do pliku, liczono średnie oraz generowano wykresy.

Przy generowaniu liczb losowych użyłem generatora Mersenne Twister

4 Wnioski

Na podstawie przeprowadzonych symulacji i wygenerowanych wykresów można wyciągnąć następujące wnioski dotyczące badanych zmiennych:

1. Moment pierwszej kolizji (B_n)

Wartości momentu pierwszej kolizji rosną w miarę zwiększania liczby urn, co jest zgodne z intuicją wynikającą z paradoksu urodzinowego. Wykres średnich wartości B_n względem n wskazuje na niską koncentrację wyników wokół wartości średnich, zmniejszającą się wraz ze wzrostem n.

Wykres ciągu B_n podzielonego przez podane funkcje n oraz \sqrt{n} sugeruje, że asymptotyka B_n jest zbliżona do O(n).

2. Liczba pustych urn (U_n)

Liczba pustych urn po wrzuceniu n kul zwiększa się wraz ze wzrostem n, dobrze odzwierciedlając wykres y=n. Wykres U_n przedstawia wartości poszczególnych symulacji mocno skoncentrowane wokół średniej. Wykresy ilorazu U_n/n wskazują, że wartości te są asymptotycznie zbliżone do stałej wartości O(n).

3. Minimalna liczba rzutów do zapełnienia urn (C_n)

Na wykresie C_n widoczna jest dobra koncentraca wyników poszczególnych symulacji do wartości średniej, choć zmniejszającą się wraz z n. Wykresy ilorazów $\frac{C_n}{n}$, $\frac{C_n}{\ln n}$ wskazują, że wartości te są asymptotycznie zbliżone do stałej wartości O(n).

4. Minimalna liczba rzutów do dwóch kul w każdej urnie (D_n)

Aby każda urna zawierała przynajmniej dwie kule, potrzebna jest większa liczba rzutów niż w przypadku C_n . Wyniki symulacji pokazują, że wartości D_n rosną szybciej niż C_n . Wykres D_n pokazuję, że wartości D_n są podobnie skoncentrowane wokół wartości średnich jak C_n . Z Wykresów ilorazów $\frac{D_n}{n}$, $\frac{D_n}{n \ln n}$, $\frac{D_n}{n \ln \ln n}$ można jednoznaczni stwierdzić, że wartości D_n są asymptotycznie zbliżone do $O(n \ln n)$.

5. Różnica między D_n a C_n

Wartości $D_n - C_n$ reprezentują dodatkowy wysiłek wymagany, aby każda urna zawierała co najmniej dwie kule po osiągnięciu pełnego zapełnienia przynajmniej jedną kulą. Wykres $D_n - C_n$ pokazuje, że wartości te rosną w miarę zwiększania n. Wykresy ilorazów $\frac{D_n - C_n}{n}$, $\frac{D_n - C_n}{n \ln n}$, $\frac{D_n - C_n}{n \ln \ln n}$ nie jedoznacznie sugerują, że wartości te są asymptotycznie zbliżone do $O(n \ln n)$ lub $O(n \ln n)$.

6. Intuicje związane z nazwami problemów

1. Paradox urodzinowy (B_n) : Intuicja opiera się na zaskakująco małej liczbie kul potrzebnych do pierwszej kolizji, co jest analogiczne do problemu dwóch osób dzielących tę samą datę urodzin.

2. Problem kolekcjonera kuponów (C_n) : Minimalna liczba rzutów do zapełnienia urn przypomina problem zebrania pełnego zestawu kuponów w przypadku losowego wybierania.

7. Znaczenie w kontekście funkcji haszujących

Paradox urodzinowy ma istotne zastosowanie w kryptografii, szczególnie w kontekście funkcji haszujących. Mała liczba rzutów prowadząca do kolizji podkreśla konieczność stosowania funkcji haszujących o dużej przestrzeni wyjściowej w celu minimalizacji ryzyka kolizji.

5 Podsumowanie

Przeprowadzone symulacje potwierdzają teoretyczne właściwości modelu kul i urn, w tym asymptotykę badanych zmiennych oraz intuicje związane z ich nazewnictwem. Dodatkowo, zastosowanie generatora Mersenne Twister zapewniło stabilność i wiarygodność wyników.

6 Wykresy

Rysunek 1: Wykres Wykreswartości \mathcal{B}_n

Rysunek 2: Wykres wartości U_n

Rysunek 3: Wykres wartości ${\cal C}_n$

Rysunek 4: Wykres wartości \mathcal{D}_n

Rysunek 5: Wykres wartości ${\cal D}_n - {\cal C}_n$

Rysunek 6: Wykres wartości ${\cal B}_n$ podzielone przez noraz sqrt(n)

Rysunek 7: Wykres wartości ${\cal U}_n$ podzielone przez n

Rysunek 8: Wykres wartości C_n podzielone przez $n,\, n \ln n$ oraz n^2

Rysunek 9: Wykres wartości D_n podzielone przez $n,\, n \ln n,\, n \ln \ln n$

Rysunek 10: Wykres wartości D_n-C_n podzielone przez $n,\, n\ln n,\, n\ln \ln n$