Aula 02- Conjunto de dados

1001524 – Aprendizado de Máquina I 2023/1 - Turmas A, B e C Prof. Dr. Murilo Naldi

Agradecimentos

- Parte do material utilizado nesta aula foi cedido pelos professores André C.P.L.F de Carvalho e Ricardo J.G.B.
 Campello e, por esse motivo, o crédito deste material é deles
- Parte do material utilizado nesta aula foi disponibilizado por M.
 Kumar no endereço:
 - www-users.cs.umn.edu/~kumar/dmbook/index.php
- Agradecimentos a Intel Software e a Intel IA Academy pelo material disponibilizado e recursos didáticos

Copyright © 2017, Intel Corporation. All rights reserved.

Conjunto de dados

- São a essência de aprendizado de máquina
- Gerados por diversas áreas do conhecimento, por exemplo:
 - Negócios
 - Genética
 - Economia
 - Medicina
 - Internet

- Em um projeto de mineração participam uma médica, uma estatística e um profissional de mineração de dados
- A médica envia dados sobre pacientes, sem tempo de fazer a mínima explanação
- O profissional abre o conjunto de dados se tem uma surpresa:

012	232	33,5	0	10,7
020	121	16,9	2	210,1
027	165	24,0	0	427,6

- O profissional aplica as técnicas de mineração diretamente nos dados e não observa nenhum resultado estranho ao prever o último atributo
- Dias depois, ele leva os resultados até uma reunião da equipe do projeto

012	232	33,5	0	10,7
020	121	16,9	2	210,1
027	165	24,0	0	427,6

- No reunião, conversando com a estatística ele descobre que:
 - O resultado é melhor quando o campo 5 é normalizado
 - O campo 4 deveria ter valores de 1 a 10 e 0 quando não tinha valor presente. Por um erro, utilizaram 0 para definir 10
 - Os campos 2 e 3 eram praticamente os mesmos
 - O campo 1 é o ID e foi ordenado de acordo com o campo 5, o que gera a falsa relação encontrada pelo profissional de MD

- Em resumo, os resultados obtidos sobre tais dados não possuíam significado genuíno
- Portanto, é preciso compreender os dados antes de começar a utilizá-los!

Tipos de atributos

- Atributos qualitativos ou categóricos:
- Nominais: representam características que não possuem ordem intrínseca.
 - Exemplos: cor dos olhos, profissão.
- Ordinais: representam qualidades/propriedades que refletem uma sequência ou ordem.
 - Exemplos: quente e frio, ou ruim, regular e bom.

Tipos de atributos

- Atributos quantitativos ou numéricos:
- Contínuos: número infinito e não enumerável de valores.
 - Exemplo: altura, peso.
- Discretos: número finito ou infinito porém enumerável de valores.
 - Exemplo: número de rodas, número de pessoas, números ímpares.

Exercício

Quais são os tipos de atributos dos dados abaixo?

I D	Proprietário	E. Civil	Renda	Investe
1	Sim	Solteiro	1.500,00	Pouco
2	Não	Casado	812,00	Muito
3	Não	Solteiro	2.345,67	Não
4	Sim	Casado	4.768,00	Muito
5	Não	Divorciado	734,00	Não
6	Não	Casado	3.900,00	Pouco
7	Sim	Divorciado	2.100,00	Muito

Tipos de dados

- Os três tipos de dados mais comuns em tarefas de mineração de dados são:
 - Dados de registro
 - Dados baseados em grafos
 - Dados ordenados

Dados de registro (estruturados)

- Composto de uma coleção de registros, organizados verticalmente
- Exemplos:
 - dados de registro
 - matriz de dados
 - dados de transação
 - matriz de documentos

Exemplo de registros

ID	Proprietário	E. Civil	Renda	Investe
1	Sim	Solteiro	1.500,00	Pouco
2	Não	Casado	812,00	Muito
3	Não	Solteiro	2.345,67	Não
4	Sim	Casado	4.768,00	Muito
5	Não	Divorciado	734,00	Não
6	Não	Casado	3.900,00	Pouco
7	Sim	Divorciado	2.100,00	Muito

Matriz de documentos

- Uma das formas mais tradicionais de tratar documentos de texto é utilizando o método bag-of-words
 - Consiste em "contar" o número de aparições de cada palavra em cada texto
 - term-frequency
 - Existem diversas variações da medida

Matriz de documentos

Documento	Abacate	Avião	Beterraba	Casa	Dados
1	213	0	35	0	0
2	18	0	123	0	0
3	0	0	0	0	0
4	0	7	0	3	7
5	0	2	0	5	15
6	14	0	0	17	0
7	0	0	12	0	0

Dados baseados em grafos

- Grafo pode ser uma representação poderosa para dados
- O grafo é capaz de:
 - capturar o relacionamento entre os objetos
 - contém os dados dentro do próprio grafo

Conjunto de dados Iris

- Consiste de informações sobre 150 flores Iris,
 50 de 3 espécies, com 5 atributos:
- Comprimento de sépala
- Largura de sépala
- Comprimento de pétala
- Largura de pétala
- 3 Classes, 50 objetos cada
 - (Setosa, Multicolor, Virgínica)

Usando Pandas para ler Iris

Código

```
# Localização do arquivo
filepath = 'Iris_Data.csv'
# Importando os dados
data = pd.read_csv(filepath)
# Imprimindo as cinco primeras linhas
print(data.iloc[:5])
```

Saída

	sepal_length	sepal_widt	h petal_length p	etal_width	species
0	5.1	3.5	1.4	0.2	Iris-setosa
1	4.9	3.0	1.4	0.2	Iris-setosa
2	4.7	3.2	1.3	0.2	Iris-setosa
3	4.6	3.1	1.5	0.2	Iris-setosa
4	5.0	3.6	1.4	0.2	Iris-setosa

Usando Pandas obter novos dados

Código

```
# Calculando a área da sépala
data['sepal_area'] = data.sepal_length *
data.sepal_width

# Imprimindo algumas linhas e colunas
print (data.iloc[:5, -3:])
```

Saída

```
      petal_width
      species
      sepal_area

      0
      0.2 Iris-setosa
      17.85

      1
      0.2 Iris-setosa
      14.70

      2
      0.2 Iris-setosa
      15.04

      3
      0.2 Iris-setosa
      14.26

      4
      0.2 Iris-setosa
      18.00
```

Levantando estatísticas

Código

```
# Usando o método size com DataFrame
# Para séries, usar o método .value_counts
group_sizes = (data.groupby('species').size())
print(group_sizes)
```

Saída

species

Iris-setosa 50

Iris-versicolor 50

Iris-virginica 50

dtype: int64

Dados ordenados

- Os atributos têm relacionamentos que envolvem ordenação de tempo e espaço
- Exemplos:
 - Dadossequenciais,sériestemporais

Qualidade dos dados

- A maioria dos dados são coletados para um propósito diferente de mineração
- Nem sempre é possível evitar problemas com a qualidade dos dados
- Duas possíveis alternativas:
 - Detecção e correção de problemas
 - Uso de algoritmos que toleram a baixa qualidade dos dados

Erros de medição e coleta

- Os mais comuns são:
 - Omissão de objetos ou valores de atributos
 - Inclusão inapropriada de objetos
 - Erros resultantes de medição
 - Erros de entrada
- Podem ser evitados com:
 - Programas que detectam e forçam a entrada de dados corretos
 - Várias medidas

Ruídos e artefatos

- Ruído é componente aleatório de um erro de medição
- Artefato são distorções determinísticas

Ruídos e artefatos

15 10 5 0 -5 10 15 0 0.2 0.4 0.6 0.8 1 Time (seconds)

Duas senóides

Duas senóides com ruído

Ruídos e artefatos

Exemplo de fotografias com artefato Fotos por Antônio Bartocci Queiroz

Externos

- Externos (outliers) são objetos que possuem características diferentes da maioria dos outros objetos do conjunto
- Também é usado
 - para valores que sejam incomuns a um determinado atributo

Externos

- Externo não é (necessariamente) um erro.
 - Assume-se que ele é um objeto legítimo
- Externos podem ser importantes, pois podem indicar:
 - Comportamentos anômalos
 - Intrusão
 - Exceções

Valores faltantes

- E comum encontrar valores faltantes em conjuntos de dados
 - Especialmente em procedimentos caros
- Preciso lidar com esses objetos
 - Muitas técnicas não são capazes de trabalhar com valores faltantes
- O que fazer?

Valores faltantes

- Dentre as possíveis soluções, podemos:
 - Eliminar objetos ou atributos
 - Se o conjunto for grande o suficiente
 - Estimar os valores faltantes
 - Técnicas de inputação
 - Ignorar valores faltantes (caso especial)
 - Nem sempre é possível, devido a restrições da técnica aplicada

Valores inconsistentes

- Quando um valor não é consistente com o atributo em questão
- Devem ser detectados e eliminados
- Exemplos:
 - Idade: masculino ou 234 anos
 - Altura: -12
 - Cor: depende

Dados duplicados

- É possível que haja objetos semelhantes ou idênticos no mesmo conjunto de dados
- Neste caso, é preciso que tais objetos sejam combinados
- Objetos duplicados (multiplicados) podem resultar na redução de eficiência do algoritmo de mineração

Padronização

- Consiste em uma transformação aplicada nos valores dos atributos
- Normalização
 - Transformar em um vetor normado, ou seja, em um vetor de comprimento unitário (1).
 - Projetar os dados em um novo intervalo
 - Exemplo: para padronizar um número x que está no intervalo [menor₁,maior₁] para o intervalo [menor₂,maior₂] usamos

$$n(x) = (x - menor_1) \times \frac{maior_2 - menor_2}{maior_1 - menor_1} + menor_2$$

Explorando dados

- Uma boa forma de conhecer os dados é explorando suas características
- A exploração dos dados consiste em uma investigação preliminar dos dados com o intuito de compreender melhor suas características
- Exemplo:
 - Estatísticas resumidas
 - Visualização

Estatísticas de Resumo

- São informações que capturam diversas características de uma grande quantidade de valores
- Exemplos:
 - Frequência e moda
 - Medidas de localização (média, mediana)
 - Porcentagem
 - Medidas de dispersão (variação e variância)

Levantando estatísticas

Código

```
# Média sobre o DataFrame
print (data.mean())
# Média sobre série
print (data.petal_length.median())
# Moda calculada sobre série
print (data.petal_length.mode())
```

Saída

```
      sepal_length
      5.843333
      • Saída

      sepal_width
      3.054000
      4.35

      petal_length
      3.758667

      petal_width
      1.198667
      0 1.5

      sepal_area
      17.806533
      dtype: float64
```

dtype: float64

Levantando estatísticas

```
Código
 # Desvio padrão, variância, e desvio padrão da média
print(data.petal_length.std(), data.petal_length.var(),
data.petal_length.sem())
 # Retorna quartis
print (data.quantile(0))
   Saída
1.7644204199522617 3.1131794183445156 0.1440643240210084
sepal_length
             4.3
sepal_width
            2.0
petal_length
            1.0
petal_width
            0.1
sepal_area
            10.0
Name: 0, dtype: float64
```

Descrevendo os dados

Código
Desvio padrão, variância, e desvio padrão da média
print (data.describe())

Saída

sepal_length sepal_width petal_length petal_width sepal_area					
count	150.0000	150.0000	150.0000	150.0000	150.00000
mean	5.843333	3.054000	3.758667	1.198667	17.806533
std	0.828066	0.433594	1.764420	0.763161	3.368693
min	4.300000	2.000000	1.000000	0.100000	10.000000
25%	5.100000	2.800000	1.600000	0.300000	15.645000
50%	5.800000	3.000000	4.350000	1.300000	17.660000
75%	6.400000	3.300000	5.100000	1.800000	20.325000
max	7.900000	4.400000	6.900000	2.500000	30.020000

Variância

 A variância é preferida dentre as medidas de dispersão pois representa melhor valores que estão dentro da faixa (diferença entre o valor máximo e mínimo de um atributo).

$$s_x^2 = variancia(x) = \frac{1}{a-1} \sum_{i=1}^{a} (x_i - \bar{x})^2$$

Múltiplas variáveis

- Estatísticas de resumo podem ser aplicadas em múltiplas variáveis
- Para variáveis contínuas, a dispersão dos dados é capturada pela matriz de co-variância
- A co-variância de dois atributos é a medida do grau no qual dois atributos variam juntos
 - Não padronizada
 - Caso contrário, possuiria esperança zero e variância 1.

Co-variância

 A co-variância dos atributos de índice i e j é dada por

$$s_{ij} = co - variância(x_i, x_j)$$

E a co-variância é dada por

$$co - variancia(x, y) = \frac{1}{a-1} \sum_{i=1}^{a} (x_i - \bar{x})(y_i - \bar{y})$$

Propriedades da Co-variância

- Para quaisquer variáveis aleatórias X, Y, Z e uma constante c, temos:
 - co-variância(X,X) = variância(X)
 - co-variância(X,Y) = co-variância(Y,X)
 - co-variância(cX,Y) = c . co-variância(X,Y)
 - co-variância(X, Y+Z) = co-variância(X,Y) + co-variância(X,Z)

Propriedades da Co-variância

- Se X e Y são variáveis aleatórias independentes, então:
 - co-variância(X,Y) = 0

- Porém co-variância(X,Y) = 0 não implica em independência!
- Sinal positivo indica que X e Y se desenvolvem juntas
 - Negativo implica no contrário

Obtendo a covariância Iris

• Código # Análise da covariância entre os atributos Iris print(data.cov())

Saída

	sepal_length	sepal_width	petal_length	petal_width	sepal_area
sepal_length	า 0.685694	-0.039268	1.273682	0.516904	1.906238
sepal_width	-0.039268	0.188004	-0.321713	-0.117981	0.942732
petal_length	1.273682	-0.321713	3.113179	1.296387	2.178896
petal_width	0.516904	-0.117981	1.296387	0.582414	0.965009
sepal_area	1.906238	0.942732	2.178896	0.965009	11.348090

Covariância e Correlação

- Não é possível julgar o grau de relacionamento entre dois atributos apenas pela covariância
 - Pois ela não é padronizada
 - Qual valor é suficientemente alto?

Nestes casos a correlação é preferida

Correlação

- Não é possível julgar o grau de relacionamento entre dois atributos apenas pela covariância
 - Pois ela não é padronizada
- Nestes casos a correlação é preferida, dada por:

$$correlacão(s_i, x_j) = \frac{co - variância(s_i, x_j)}{s_i \cdot x_j}$$

Obtendo a correlação Iris

• Código
Análise da correlação entre os atributos Iris
print(data.corr())

Saída

	sepal_length	sepal_width	petal_length	petal_width	sepal_area
sepal_length	1.000000	-0.109369	0.871754	0.817954	0.683362
sepal_width	-0.109369	1.000000	-0.420516	-0.356544	0.645421
petal_length	0.871754	-0.420516	1.000000	0.962757	0.366584
petal_width	0.817954	-0.356544	0.962757	1.000000	0.375365
sepal_area	0.683362	0.645421	0.366584	0.375365	1.000000

Medidas de similaridade

- Também conhecidas como medidas de semelhança ou proximidade
- Consiste em medidas utilizadas para mensurar quão similar um objeto do conjunto de dados é de outro
- Quando usado para medir diferenças, é chamado de medida de dissimilaridade

Medidas de similaridade

- Também utilizadas para calcular similares em geral (entre grupos, centroides, objetos vizinhos)
- Essenciais para
 - tarefas de mineração
- Exemplo:
 - Agrupamento
 - Vizinhos mais próximos
 - Detecção de anomalia

Medidas para atributos qualitativos

- Atributos binários
- Sendo x_i e x_j objetos, e na^{ab} o número de atributos em x_i que sejam a e em x_j sejam b
- Podemos utilizar a medida de casamento simples, dada por:

$$s(\mathbf{x}_i, \mathbf{x}_j) = \frac{n_a^{\{11\}} + n_a^{\{00\}}}{n_a^{\{00\}} + n_a^{\{01\}} + n_a^{\{10\}} + n_a^{\{11\}}}$$

Medidas para atributos qualitativos

- Nominais ou ordinais
 - É preciso definir um índice de discordância para um atributo z

$$\delta_z(\mathbf{x}_i,\mathbf{x}_j)$$

- Poderia ser 1 se os valores forem iguais ou 0 se forem diferentes
- No caso de ordinais, é preciso estabelecer uma ordem entre os valores n_{σ}

$$d(\mathbf{x}_i, \mathbf{x}_j) = \sum_{i=1}^{n} \delta_z(\mathbf{x}_i, \mathbf{x}_j)$$

Medidas para atributos quantitativos

- Métricas de Minkowski
- Baseadas na equação:

$$d(\mathbf{x}_i, \mathbf{x}_j) = (\sum_{z=1}^{n_a} w_z^{\rho} | \mathbf{x}_i(z) - \mathbf{x}_j(z) |^{\rho})^{1/\rho}$$

- Em que w_z é o peso do z-ésimo atributo e p é um parâmetro positivo
- Quando é p = 1, a medida é chamada distância de Manhattan ou de blocos
- Quando é p = 2, a medida é chamada distância Euclidiana

Medidas de correlação

- Medidas baseadas em informações sobre a magnitude relativa de diferentes atributos
 - A separação angular é calculada por meio do cosseno do ângulo formado entre dois vetores que representam os objetos

$$\phi(\mathbf{x}_i, \mathbf{x}_j) = \frac{\sum_{z=1}^{n_a} \mathbf{x}_i(z) \mathbf{x}_j(z)}{\sqrt{\sum_{z=1}^{n_a} \mathbf{x}_i(z)^2 \sum_{z=1}^{n_a} \mathbf{x}_j(z)^2}}$$
$$d(\mathbf{x}_i, \mathbf{x}_j) = \frac{1 - \phi(\mathbf{x}_i, \mathbf{x}_j)}{2}$$

Medidas de correlação

- Coeficiente de correlação de Pearson:
 - Correlação é útil quando se deseja medir a tendência de duas sequências para as quais os valores de magnitude absolutos não são relevantes, apenas os valores relativos

$$\overline{\mathbf{x}}_{i} = \frac{1}{n_{a}} \sum_{z=1}^{N_{a}} \mathbf{x}_{i}(z)$$

$$\phi(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{\sum_{z=1}^{n_{a}} (\mathbf{x}_{i}(z) - \overline{\mathbf{x}}_{i}) (\mathbf{x}_{j}(z) - \overline{\mathbf{x}}_{j})}{\sqrt{\sum_{z=1}^{n_{a}} (\mathbf{x}_{i}(z) - \overline{\mathbf{x}}_{i})^{2} \sum_{z=1}^{n_{a}} (\mathbf{x}_{j}(z) - \overline{\mathbf{x}}_{j})^{2}}}$$

$$d(\mathbf{x}_{i}, \mathbf{x}_{j}) = \frac{1 - \phi(\mathbf{x}_{i}, \mathbf{x}_{j})}{2}$$
₅₄

Visualização

- Visualização é uma exibição dos dados me forma de gráfico ou tabela
- Para isso é preciso converter os dados em formas visuais, de forma que suas principais características sejam apresentadas
- A principal motivação da visualização é que o expectador possa absorver rapidamente grandes quantidades de informações

Exemplo

- A figura abaixo apresenta a temperatura do mar no mês de agosto de 2004
- Nela estão presentes milhares de valores

Fonte: www.zamg.ac.at

Mapeando dados

- Dados são geralmente representados de três formas:
 - Se apenas um atributo é categorizado por objeto, então os dados são agrupados segundo este atributo (tabela de tabulação cruzada e gráficos de barras)
 - Se os objetos são representados por mais de um atributo, ele pode ser exibido como linha em uma tabela ou gráfico
 - Pode ser apresentado graficamente como um ponto em um espaço bi ou tri-dimensional

Organização

 A forma em que os dados são organizados influenciam em sua interpretação

	1	2	3	4	5
1	0	1	0	1	1
2	1	0	1	0	0
3	0	1	0	1	1
4	1	0	1	0	0
5	0	1	0	1	1
6	1	0	1	0	0
7	0	1	0	1	1
8	1	0	1	0	0

	1	3	2	5	4
4	1	1	0	0	0
2	1	1	0	0	0
6	1	1	0	0	0
8	1	1	0	0	0
5	0	0	1	1	1
3	0	0	1	1	1
1	0	0	1	1	1
7	0	0	1	1	1

Análise de atributos

- Dados que possuem 2 ou 3 atributos podem ser plotados em gráficos
- Quando possível, pode-se selecionar um subconjunto de atributos para análise
- Código
 # Comparando comprimento com
 largura da sépala
 import matplotlib.pyplot as plt
 plt.plot(data.sepal_length,
 data.sepal_width,ls='', marker='o')

Análise de atributos

- Também é possível sobrepor comparações
 - Por exemplo, comparar pétala e sépala ao mesmo tempo por meio do seu tamanho

```
Código
# Comparando comprimento com
largura da sépala e pétala
plt.plot(data.sepal_length,
data.sepal_width, ls ='', marker='o',
label='sepal')
plt.plot(data.petal_length,
data.petal_width, ls ='', marker='o',
label='petal')
```


Análise de atributos

```
Código
# Comparando comprimento com largura da sépala e pétala
em três dimensões
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
plt.plot(data.sepal_length, data.sepal_width,ls ='',
marker='o', label='sepal')
plt.plot(data.petal_length, data.petal_width,ls ='',
marker='+', label='petal')
ax.set_xlabel('Comprimento')
ax.set_ylabel('Largura')
plt.show()
```

0.04 0.02 0.00 -0.02 -0.04

Histograma

- Contém a contagem de valores ou a frequência relativa
 - Divide os valores em cestos
- Código
 # Histograma com largura de sépala
 plt.hist(data.sepal_width, bins=25)

Histograma

 Histogramas podem ser utilizados para comparar múltiplos atributos ao mesmo tempo

Configurando gráfico

Código

Gráfico de setores

- Usado para comparar valores relativos a um atributo
- Muito simples, pouco informativo
 - Menos preferido em trabalhos técnicos

Código

Diagrama caule e folhas

- Usados para fornecer informações sobre a distribuição dos dados contínuos ou inteiros unidimensionais
- São um tipo de histograma, em os atributos são divididos em intervalo de valores os números indicam os valores representados

Caule	Folha
3	7
4	289
5	35789
6	022345689
7	01234556778899
8	00134456789
9	0023589

Diagrama caule e folhas

Comprimento de sépala em ordem crescente

Gráfico caule e folha do comprimento de sépala

4:3444566667788888999999

5:

000000000111111111222234444445555555666666777777778888888999

6:000001111112222333333334444444555556677777778889999

7:0122234677779

Gráfico de densidade

- Utilizado para estudo das características dos dados, sua distribuição e relação
 - Semelhante aos histogramas, mas sem cestos e podem ser sobrepostos no mesmo gráfico
- Código

#Gráfico de densidade para o atributo comprimento de sépala sns.FacetGrid(data, hue="species").map(sns.kdeplot, "sepal_length").add_legend()

Gráficos de dispersão

- Usados para duas finalidades principais:
 - Mostram graficamente o relacionamento entre dois atributos (avaliação do grau de correlação linear)
 - Quando as classes são conhecidas, podem ser utilizados para investigar o grau no qual os atributos separam as classes

Gráfico de caixas (box plots)

- Box plots são usados para permitir a visualização da distribuição de valores de um único atributo numérico
- Mínimo (Q₀ ou percentil 0): o ponto de dados mais baixo no conjunto de dados, excluindo quaisquer outliers
- Máximo (Q₄ ou 100° percentil): o ponto de dados mais alto no conjunto de dados, excluindo quaisquer outliers

Gráfico de caixas (box plots)

- Mediana (Q₂ ou percentil 50): o valor médio no conjunto de dados
- Primeiro quartil (Q₁ ou percentil 25): também conhecido como quartil inferior q_n(0,25), é a mediana da metade inferior do conjunto de dados.
- Terceiro quartil (Q₃ ou percentil 75): também conhecido como quartil superior q₀(0,75), é a mediana da metade superior do conjunto de dados.

Gráfico de caixas (box plots)

- Exemplo para conjunto de dados de íris, comprimento da sépala
 - É possível visualizar outliers!

• Código
Boxplot usando SeaBorn
sns.boxplot(x="species",
y="sepal_length", data=data)

Gráfico de caixas (box plots)

- IExemplo para conjunto de dados de íris, comprimento da sépala
 - É possível visualizar outliers!
 - E um gráfico de dispersão sobre o gráfico de caixa!

Gráfico de violinos

- Outro tipo interessante é o gráfico de violino
 - Ele possui as vantagens do gráfico de caixas e do gráfico de dispersão juntas!

```
• Código
# Violion plot do Seaborn
sns.violinplot(x="species", y="sepal_length", data=data, size=6)
```


Visualização de dados de alta dimensão

- As técnicas apresentadas anteriormente são voltadas para poucos atributos
- Gráficos de matrizes podem ser utilizados para visualização de múltiplos atributos
- Normalmente, os objetos são normalizados para evitar que um atributo domine o gráfico
- Especialmente útil quando os objetos são organizados de acordo com suas classes

Gráfico de calor

- Representa a matriz de números em forma de cores
 - Pode ser usada para expressar poucos valores

• Código #Aplicando mapa de calor para a correlação entre atributos Iris corr = data.corr() sns.heatmap(corr, xticklabels=corr.columns. values, yticklabels=corr.columns. values)

Gráfico Matrizes com Dendrograma

- Ou muitos dados!
 - Agrupamento hierárquico com dendrograma

```
• Código
#Aplicando agrupamento
hierárquico com
dendrograma
iris =
sns.load_dataset("iris")
species =
iris.pop("species")
g = sns.clustermap(iris)
```


Gráfico Matrizes com Dendrograma

- Ou muitos dados!
 - Agrupamento hierárquico com dendrograma
 - Agora, com correlação no lugar da similaridade

• **Código** #Aplicando agrupamento hierárquico com dendrograma sns.clustermap(iris, metric="correlation")

Coordenadas Paralelas

- Neste tipo de gráfico, cada atributo possui um eixo paralelo entre si em vez de perpendicular
 - Cada objeto é representado por uma linha
 - As linhas podem se agrupar representando classes

A ordem dos atributos é importante

• Código #Coordenadas Paralelas pd.plotting.parallel_coordin ates (data, "species")

Andrews' Curves

- Proposto por Andrews, D. (1972)
- Utiliza os atributos dos dados como os coeficientes de uma série de Fourier
- Curvas (objetos) similares se agrupam

Externos se destacam_{5.0}

• Código #Coordenadas Paralelas pd.plotting.andrews_curves(d ata, "species")

Animações

- Uma abordagem para lidar com sequências de dados, envolvendo o tempo ou não
- Contudo, é mais difícil ver detalhes

Temperatura do mar entre julho 2002 e agosto 2003. Fonte: NASA

Gráficos dados multivariados

- Radviz é uma forma de visualizar dados multivariados.
 - Cada ponto representa um atributo (normalizado)
 - Outros pontos são objetos
- Bom para ver a influência dos atributos nas classes

```
• Código

#Coordenadas Paralelas

pd.plotting.radviz(data,

"species")
```


Gráfico de radar

- Atributos expressos nos eixos
 - Geralmente utiliza círculos para indicar valores

```
Código
# Categorias e número de variáveis
categories=list (data) [0:4]
N = len(categories)
# Impressão do primeiro padrão do conjunto Iris
# É preciso repetir o primeiro valor para forma gráfico
values=data.loc[0].drop('species').values.flatten().tolis
values += values[:1]
values
# Monta o ângulo de cada exigo no gráfico
angles = [n / float(N) * 2 * np.pi for n in range(N)]
angles += angles[:1]
# Inicialia o gráfico
ax = plt.subplot(111, polar=True)
# Desenha um eixo por variável e insere os rótulos
plt.xticks(angles[:-1], categories, color='grey', size=8)
# Desenha os rótulos em Y
ax.set_rlabel_position(0)
plt.yticks([2,4,6], ["2","4","6"], color="grey", size=7)
plt.ylim(0,8)
# Plota os dados
ax.plot(angles, values, linewidth=1, linestyle='solid')
# Preenche a área interna
ax.fill(angles, values, 'b', alpha=0.1)
```


Gráfico de radar

