SOLUTION FOR HOMEWORK ASSIGNMENT NO. 05

Nils Hoyer, Maurice Morgenthaler

Exercise 5.1

We are asked to find the position α for a given distance $\beta = 30$. To do this we maximize a likelihood function based on the probability $p(x; \alpha, \beta)$ which is given as

$$p(x; \alpha, \beta) = \frac{\beta}{\pi \cdot \left((x - \alpha)^2 + \beta^2 \right)}.$$
 (1)

Theerefore,

$$l(\alpha, \beta; x) = \ln \left(\prod_{i=1}^{n} \frac{\beta}{\pi \cdot \left((x_i - \alpha)^2 + \beta^2 \right)} \right)$$
$$= \sum_{i=1}^{n} \left(\ln \left(\frac{\beta}{\pi \cdot \left((x_i - \alpha)^2 + \beta^2 \right)} \right) \right).$$

Please find the results of the maximisation in table 1. The graphical visualisation can be found in figure 1.

Figure 1: *Top*: Distribution of α for fixed β .

Bottom: Three dimensional graphic showind the loglikelihood value for given α in range between 5 and 15 and β in range between 25 and 34.

Table 1: Summary of parameters α and β .

Parameter	Value	
	fixed β	variable β
α	11.017	11.056
β	30	28.844

Exercise 5.2

After importing the dataset we plotted it to confirm that we indeed have a gaussian distribution

$$p(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}.$$
 (2)

The negative loglikelihood function then looks like

$$l(\mu, \sigma; x) = \ln \left(\prod_{i=1}^{n} p(x_i; \mu, \sigma) \right)$$
$$= \sum_{i=1}^{n} \left(-\ln \left(\sigma \sqrt{2\pi} \right) - \frac{(x - \mu)^2}{2\sigma^2} \right)$$
$$= -\sum_{i=1}^{n} \left(\ln \left(\sigma \sqrt{2\pi} \right) + \frac{(x - \mu)^2}{2\sigma^2} \right).$$

The resulting plot is illustrated in figure 2. The output by the fit is given in table 2.

Figure 2: Distribution of data points given in the file 'data_05.h'. The distribution of points seem to follow a gaussian distribution.

Table 2: Summary of parameters μ and σ found while fitting.

Parameter	Value	
	fixed σ	variable σ
μ	39.916	39.916
σ	0.15	0.089