WORKSHEET - 1

1. Let $f(x) = \sqrt{x+1}$ and g(x) = 1/x. Determine the functions $g \circ f$ and $f \circ g$, their natural domains and the respective ranges.

2. Given the graph of the function y = f(x) below, sketch the graph of the indicated functions (a) – (h).

- (a) f(x) + 2
- (b) f(x) 1
- (c) 3f(x)
- (d) -f(x)
- (e) f(x+2)
- (f) f(x-1)
- (g) f(-x)
- (h) -f(x+1)+1

2. Is it possible that the graphs of f and g are not straight lines but the graph of $g \circ f$ is a straight line?

3. Let f(x) be a function with a domain D that is symmetric about the origin (if $x \in D$, then $-x \in D$). Show that there is an even function $E_f(x)$ and and odd function $O_f(x)$ such that $f = E_f + O_f$ on D.

The following problems require abstract mathematical reasoning.

- 4. Let $f: X \to Y$ and $g: Y \to X$ be such that. $g \circ f$ is identity on X and $f \circ g$ is identity on Y. Prove that f is bijective with $g = f^{-1}$. Does the same conclusion hold if one of $g \circ f$ and $f \circ g$ is not an identity function?
- 5. Let x and y are arbitrary positive real numbers. Use AP to show that there is a natural number n such that nx > y.
- 6. Let x > 0 be a positive real number. Using AP show that there is a natural number n such that $1/2^n < x$.
- 7. Show that every interval contains infinitely many rational numbers.
- 8. Prove that between any two real numbers there is an irrational number.
- 9. Suppose x is a real number satisfying 0 < x < 1. Show that there is a natural number n such that $1/n < x \le 1/(n-1)$.
- 10. Let $X \subset \mathbb{R}$ be a nonempty finite set. Suppose $f: X \to X$ is a function satisfying $f(x) \leq x$ for every $x \in X$. Argue as to why there is a $x \in X$ such that f(x) = x.