Particulate trap for diesel engine

Patent Number:

EP0745759, A3, B1

Publication date:

1996-12-04

Inventor(s):

NAGAI YOUICHI (JP); BAN SYUNSUKE (JP); IHARA TOMOHIKO (JP); KOBASHI KIYOSHI (JP);

YANAGIHARA HIROMICHI (JP)

Applicant(s):

SUMITOMO ELECTRIC INDUSTRIES (JP); TOYOTA MOTOR CO LTD (JP)

Requested

Patent:

JP9049420

Application

Number:

EP19960108020 19960520

Priority Number

IPC

JP19950131810 19950530; JP19960098118 19960419

(s):

Classification:

F01N3/02: F01N3/28

EC Classification: <u>B01D46/24F</u>, <u>F01N3/022B</u>, <u>F01N3/022E</u>, <u>F01N3/28B8</u>

Equivalents:

DE69610019D, DE69610019T, JP3378432B2, W US5863311

Cited Documents: EP0640382; EP0606071; DE4012719; DE4130629; EP0469277; EP0501138; JP62149316;

JP58137423; JP1304022; JP4339120; JP58045715

Abstract

A particulate trap (1) for diesel engine use which is less likely to vibrate or deform under exhaust pressures, and which achieves goods results in all of the particulate trapping properties, pressure drop, durability and regenerating properties. This trap has a filter element comprising a plurality of flat or cylindrical filters (5). Longitudinally extending exhaust incoming (3) and outgoing spaces (4) are defined alternately between the adjacent filters by alternately closing the inlet and outlet ends of the spaces between the adjacent filters. Gas permeable reinforcing members (2-1) are inserted in the exhaust outgoing spaces (4) to prevent the filter from being deformed due to the difference between the pressure upstream and downstream of each filter produced when exhausts pass through the filters. Similar gas permeable reinforcing members (2-2) may also be inserted in the exhaust incoming spaces or at both ends of the filter element to more positively prevent vibration of the filters.

Data supplied from the esp@cenet database - 12

Best Available Copy

THIS PAGE BLANK (USPTO)

(19) 日本国特許庁(J P)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-49420

(43)公開日 平成9年(1997)2月18日

(51) Int.Cl.*	談別記号	庁内整理番号	FΙ		•		•	技術表示箇所
F01N 3/02	301		F01	N	3/02		301A	
	ZAB						ZAB	
B 0 1 D 39/20	ZAB		B 0 1	D 3	39/20		ZABA	
46/00	302			4	46/00		302	
46/02	ZAB	9441 -4D		4	16/02	•	ZABZ	
		審查請求	未離求	がない。	項の数13	OL	(全 21 頁)	最終頁に続く
(21)出願番号	特願平8-98118		(71)	人類出	000002	130		
() [住友電	集工泉	株式会社	•
(22)出顧日	平成8年(1996)4	月19日			大阪府	大阪市	中央区北浜四	丁目 5 番33号
	·		(71)	人類出	000003	207		
(31)優先権主張番号	特願平7-131810	•	İ		トヨタ	自動車	株式会社	
(32) 優先日	平7 (1995) 5 月30	日			愛知県	中田豊	トヨタ町1番	地
(33)優先権主張国	日本(JP)		(72)	発明者		冯 —		
					伊丹市	昆陽北	一丁目1番1	号 住友電気工
					菜株式	会社伊	丹製作所内	
			(72)	発明者	坂俊	祐		
					伊丹市	昆陽北	一丁目1番1	号 住友電気工
					菜株式	会社伊	丹製作所内	
	•		(74)	人野伊	#理士	鎌田	文二 (外	2名)
								最終頁に続く

(54) 【発明の名称】 ディーゼルエンジン用パティキュレートトラップ

(57)【要約】

【課題】 排気ガスの圧力によるフィルタ変形とフィルタ振動を抑制して、捕集性能、圧損、耐久性、再生性能の総てを満足させたディーゼルエンジン用パティキュレートトラップを提供するととである。

【解決手段】 耐熱製金属繊維の不織布で作られる平板或いは筒状フィルタを用い、各フィルタ間の空間の入口側と出口側を交互に行き止まりにして長手方向に入り込む排気ガスの導入空間3を導出空間4を交互に生じさせた構造のフィルタエレメント1を作る。そして、このフィルタエレメントの排気ガス導出空間4内に通気性のある補強材2-1を設けて空間3、4間のフィルタが排気ガス通過時に生じる前後の差圧で変形しないようにする。また、必要に応じ、排気ガスの導入空間3にも通気性のある補強材を入れ、場合によってはフィルタエレメント1の両端部も補強材で受けてフィルタ振動を防止する。

【特許請求の範囲】

【請求項1】 長手方向に入り込んだ、出口側が行き止 まりの排気ガス導入空間と入口側が行き止まりの排気ガ ス導出空間を、金属繊維の不織布から成るフィルタで両 空間の間を仕切って交互に形成してあるフィルタエレメ ントを有し、そのフィルタエレメントを排気系の途中に 設置される容器内に装着して構成されるパティキュレー トトラップにおいて、

前記排気ガス導出空間、フィルタ端部もしくは排気ガス 導出空間とフィルタ端部の双方に排気ガスの透過が可能 10 なフィルタ補強材を設けたことを特徴とするディーゼル エンジン用パティキュレートトラップ。

【請求項2】 前記排気ガス導入空間に排気ガスの透過 が可能なフィルタ補強材を設けたことを特徴とする請求 項1記載のディーゼルエンジン用パティキュレートトラ ップ。

【請求項3】 前記補強材を、前記排出ガス導出空間の 全域に挿入してある請求項1記載のディーゼルエンジン 用パティキュレートトラップ。

【請求項4】 前記補強材を、前記排気ガス導入空間の 20 全域に挿入してある請求項2記載のディーゼルエンジン 用パティキュレートトラップ。

【請求項5】 前記補強材を、フィルタエレメントの両 端部に凹凸嵌合させて設けてある請求項1記載のディー ゼルエンジン用パティキュレートトラップ。

【請求項6】 前記補強材を、材料充填率が30%以下 の耐熱金属から成る3次元網状構造多孔体、金網、金属 繊維不織布、波板、パンチングメタルのいずれかで形成 してある請求項1乃至5のいずれかに記載のディーゼル エンジン用パティキュレートトラップ。

【請求項7】 金属繊維の不織布で複数個の異径直円筒 状もしくは異径テーパ円筒状のフィルタを構成し、その 複数個の異径円筒状フィルタを同心的に組み合わせ、各 円筒状フィルタ間の隙間と最小径円筒状フィルタの一端 を交互に閉じて長手方向に入り込んだ出口側が行き止ま りの排気ガス導入空間と入口側が行き止まりの排気ガス 導出空間を同心上に交互に生じさせた多重円筒状フィル タエレメントを有し、そのフィルタエレメントを排気系 の途中に設置される容器内に装着して構成されるパティ キュレートトラップにおいて、前記フィルタエレメント 40 を構成する円筒状フィルタを円筒半径の大きい外側のフ ィルタほど肉厚にしたことを特徴とするディーゼルエン ジン用パティキュレートトラップ。

【請求項8】 厚みの厚い外側の円筒状フィルタほど目 孔を粗くした請求項7記載のディーゼルエンジン用パテ ィキュレートトラップ。

【請求項9】 孔径に差のある少なくとも2種類のフィ ルタ材を孔径の大きいものほど排気ガス流入側にあるよ うに組み合せた材料で前記フィルタエレメントを構成し 用パティキュレートトラップ。

【請求項10】 各筒状フィルタ間の排気ガス出入口部 の隙間寸法を10mm以下にした請求項1~9のいずれ かに記載のディーゼルエンジン用パティキュレートトラ

【請求項11】 フィルタエレメントを構成するフィル タ材の片面もしくは両面に触媒を担持させた請求項1~ 11のいずれかに記載のディーゼルエンジン用バティキ。 ュレートトラップ。

【請求項12】 フィルタエレメントを構成するフィル タ材の片面もしくは両面に、連続孔を有する耐熱性金属。 骨格から成る3次元網状構造多孔体を設置し、この3次 元網状構造多孔体に触媒を担持させた請求項1~11の いずれかに記載のディーゼルエンジン用パティキュレー トトラップ。

【請求項13】 フィルタエレメントを構成するフィル タ材の骨格表面にアルミナウィスカーを生成させた請求 項1~12のいずれかに記載のディーゼルエンジン用バ ティキュレートトラップ。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明はディーゼルエンジンの排 気ガス中のカーボン等の微粒子(パティキュレート)を 捕集・除去するためのパティキュレートトラップに関す

[0002]

【従来の技術】自動車の排気ガスは、大気汚染の大きな 原因の一つで、排気ガスに含まれる有害成分を除去する 技術は極めて重要である。特にディーゼルエンジン車に 30 おいては、主にNOxとカーボンを主体とするパティキ ュレートの除去が重要な課題である。

【0003】とれらの有害成分を除去するために、排気 通路に排気トラップを設置し、パティキュレートをトラ ップによって捕集し、後処理により除去することが提案 されている(特開昭58-51235号公報等)。ほか にも、排気再循環(EGR)をかけたり、燃料噴射系の 改善を行ったり、エンジン側での努力も行われている が、抜本的な決め手がなく、現在まで、前述のトラップ による後処理法が最も実用的であると考えられ、検討が 続けられている。

【0004】ところで、ディーゼルエンジン排気に含ま れるパティキュレートを捕集するためのパティキュレー トトラップとしては、使用される条件から、次のような 性能を満足する必要がある。

【0005】**①** 捕集性能

先ず第1に排気ガスの清浄度を満足させるだけの、パテ ィキュレートの捕集効率をもっていることが必要であ る。パティキュレート排出量は、ディーゼルエンジンの 排気量や負荷等により変化するが、ディーゼルエンジン た請求項1~8のいずれかに記載のディーゼルエンジン 50 からの排出量の平均60%以上を捕集できることが必要

であると言われている。また、パティキュレートの中で も粒径2 µm以下の浮遊性微粒子が人体肺胞に入り易く 肺ガンの原因になるとの報告もあり、この浮遊性微粒子 を十分に捕集できることも必要となっている。

【0006】② 圧損

第2には、排気ガスに対する圧力損失が小さいことであ る。圧力損失が大きいとエンジンに背圧がかかり燃費の 悪化をもたらす。従って、パティキュレートトラップは 初期圧力損失(パティキュレートを捕集していない状態 ィキュレートが捕集されるに従ってトラップは目詰まり を起としていくので圧力損失は大きくなっていく。その ため、排気ガスを通過させパティキュレートが捕集され ても圧力損失が上がりにくいことも必要である。

【0007】3 再生

第3には、低エネルギーでの再生が可能なことである。 パティキュレートトラップはパティキュレート捕集後、 それを燃焼し再生することによって繰り返し使用する必 要がある。再生方法としては電気ヒータや軽油バーナを 利用した再生方法が検討されている。

[0008] 4 耐久性

第4には、優れた耐久性を持つことである。高温の排気 ガスに対する高い耐食性と、パティキュレート燃焼再生 時に発生するヒートショックに対する耐久性が要求され る。

【0009】5 触媒コンバータとの一体化

第5には、触媒コンバータとの一体化が必要である。現 在排気ガス中の有毒ガス成分を除去するために、有毒ガ ス除去触媒を担持した触媒コンバータをエンジン排気系 に設置することがある。併せてパティキュレートトラッ ブを設置しようとする場合、エンジン排気系に設置スペ ースがなかったり、また後処理装置を2種類設置するた めのコスト増が問題となっている。

【0010】従来、上記の要件を満足するフィルタエレ メント材料として、コーディエライトセラミックスのウ ォールフロー式のハニカム状多孔体が最も実用に近いと 考えられてきた。

【0011】 しかしながら、これは、パティキュレート が局所にたまりやすく、また、コーディエライトセラミ ックは熱伝導率が小さいため、再生時にヒートスポット 40 昇が得られないことがある。 ができやすく、フィルタが溶損したり、熱応力によって クラックを生じたりすることがあり、耐久性が確保でき なかった。また、特開平4-265411号公報のよう に再生ヒータ配置方法の適正化によりセラミックフォー ムフィルタの均一加熱を図る構造でも、フィルタエレメ ントの保持部分が比較的小さいため、振動や排ガスの圧 力に対しハニカム状多孔体程の耐久性が得られないと考 えられる。さらに、最近注目されているセラミックファ イバをキャンドル状に形成したセラミックファイバトラ

バの破壊が発生するため、耐久性の確保が難しいと言わ

【0012】そこで、熱伝導率が高く再生時にヒートス ポット、クラックを生じ難く、また高温排気ガス中でも 優れた耐食性を示す金属製トラップ(特開平6-257 422、特開平6-294313、特開平7-731、 特開平7-51522)が現在注目されている。

[0013]

れている。

【発明が解決しようとする課題】従来の金属製トラップ での圧力損失)が小さくなければならない。また、パテ 10 の課題を、上記要件Φ∼Бに関連させて以下に述べる。 従来の金属製トラップは上記要件の、3を基本的に満足 する。しかし、上記要件Φの粒径2 μm以下の浮遊性微 粒子の捕集に関しては、より一層の性能向上を図る必要 がある。

> 【0014】上記要件②に関しては、パティキュレート 捕集時の圧力損失が比較的高いという問題があり、エン ジン背圧を特に低くしたいという場合、その要求性能を 満足できない場合があった。パティキュレート捕集時の 圧力損失を小さくするためには、排気ガスが流入できる 20 フィルタエレメントの表面積を大きくすることが必要で あるが、従来の金属製トラップでフィルタエレメントの 表面積(濾過面積)を大きくしようとするとパティキュ レートトラップは非常に大型なものになってしまう。

【0015】また、従来の金属製トラップでは上記要件 のに関し、

・排気ガス導入時に発生する圧力でフィルタエレメント が微小変形し、その変形に伴う応力によって破壊が起こ

・トラップは排気系に装着されるので振動にさらされ 30 る。そのため、フィルタエレメントも振動し破壊が起こ る.

【0016】という問題が特に過酷な耐久性試験におい ては発生するという問題がある。

【0017】また、従来の金属製トラップは上記要件5 に関し、触媒コンバータとの一体化が必要な場合があ る。従来DPFとして開発されてきたコーディエライト セラミックのウォールフロー式のハニカム状多孔体は触 媒との一体化が検討されているが、熱容量が大きいため 昇温スピードが遅く、触媒が作用するのに十分な温度上

【0018】本発明は以上述べた問題点の全てを解決 し、従来の技術の欄に挙げた要件●~⑤を全て満足する ディーゼルパティキュレートトラップを得ることを課題 としている。

[0019]

【課題を解決するための手段】上記の課題を解決するた め、本発明においては、長手方向に入り込んだ、出口側 が行き止まりの排気ガス導入空間と入口側が行き止まり の排気ガス導出空間を、金属繊維の不織布から成るフィ ップも、高温の排気ガス中で強度劣化を起とし、ファイ 50 ルタで両空間の間を仕切って交互に形成してあるフィル

タエレメントを有し、そのフィルタエレメントを排気系 の途中に設置される容器内に装着して構成されるバティ キュレートトラップにおいて、前記排気ガス導出空間又 はフィルタ端部に排気ガスの透過が可能なフィルタ補強 材を設けたのである。

【0020】或は、前記排ガス導入空間にも補強材を設けたのである。

【0021】補強材は、排気ガス導出空間の全域、或いは排気ガス導入空間の全域に挿入してもよいし、フィルタエレメントの両端部に凹凸嵌合させて設けてもよい。 【0022】排気ガス導出空間、導入空間の少なくともどちらか一方の補強材とフィルタエレメント両端部の補強材を組合わせた形にして設けることも勿論可能である。

【0023】この補強材は、フィルタよりも目の粗いものを用いる。また、できるだけ軽量で熱容量も小さなものが望ましく、体積に占める材料充填率が30%以下の耐熱金属から成る3次元網状構造多孔体、金網、金属繊維不織布、波板、パンチングメタル等が適している。

【0024】なお、耐熱性金属は、700℃の排気ガス 20中に100時間放置しても劣化のないもので、例えば、Fe、Ni或いはCoに、CrやAlもしくはその両方を添加したものが適している。また、ディーゼルエンジンの種類や使用条件によっては、さらに過酷な耐熱性が要求されることも考えられるため、好ましくは800℃の排気ガス中放置でも劣化の生じないFe-Cr-Al、Ni-Cr-Alを使用するのがよい。

【0025】フィルタを構成する金属としては、例えば、Fe-Cr-Al、Ni-Cr-Alなど、耐熱性に優れたものが用いられる。パティキュレート燃焼再生 30時に熱膨張差による応力がフィルタエレメントに働かないようにするためには、補強材をフィルタと同種の金属又はそれと熱膨張係数にあまり差のない金属で形成するのがよく、この点でも、Fe-Cr-AlやNi-Cr-Alが特に適している。

【0026】また、もうひとつの課題解決策として、金属繊維の不織布で複数個の異径直円筒状もしくは異径テーパ円筒状のフィルタを構成し、その複数個の異径円筒状フィルタ間の隙間と最小径円筒状フィルタの一端を交互に閉じて長40手方向に入り込んだ出口側が行き止まりの排気ガス導入空間と入口側が行き止まりの排気ガス導出空間を同心上に交互に生じさせた図2、図3の如きフィルタエレメントを用いるパティキュレートトラップにおいて、前記フィルタエレメントを構成する円筒状フィルタを円筒半径の大きい外側のフィルタほど肉厚にしたのである。

【0027】なお、このフィルタエレメントを構成する 円筒状フィルタは、厚みの厚い外側のフィルタほど目孔 を粗くするのが望ましい。

【0028】また、好ましくは、

(1)円筒半径が35mm未満のフィルタには、排気ガス入口側の繊維直径が40μm出口側の繊維直径が30μmであり、厚さが0.5mmの金属繊維の不織布

(2)円筒半径が35mm以上、70mm未満のフィルタには、排気ガス入口側の繊維直径が30μm出口側の繊維直径が20μmであり、厚さが1.0mmの金属繊維の不織布

(3) 円筒半径が70 mm以上、105 mm未満のフィルルタには、排気ガス入口側の繊維直径が20μm出口側 の繊維直径が15μmであり、厚さが1.5 mmの金属繊維の不織布

を使用するのがよい。

【0029】また、上記いずれのフィルタエレメントも、フィルタを構成する耐熱性金属繊維の骨格表面にアルミナウィスカーを生成させてよく、これは、浮遊性微粒子を捕集するのに有効なことである。

【0030】さらに、上記いずれのフィルタエレメントもフィルタ材に触媒を担持することによってパティキュレートトラップと触媒コンバータを一体化させることができる。触媒は、フィルタ材である耐熱性金属繊維の不織布の片面又は両面に担持させる方法、或は前記不織布の片面又は両面に連続孔を有する耐熱金属骨格からなる3次元網状構造多孔体を設置してこの多孔体に担持させる方法がある。

[0031]

【作用】

・請求項1

本発明のバティキュレートトラップは、長手方向に入り込んだ、出口側が行き止まりの排気ガス導入空間と入口側が行き止まりの排気ガス導入空間と入口側が行き止まりの排気ガス導出空間を、金属繊維の不織布から成るフィルタで両空間の間を仕切って交互に形成している。そのため、平板フィルタ間の隙間を小さくすれば非常に少ない設置スペースで平板フィルタ面積を増加させることができ、非常に小型でありながらフィルタエレメントの表面積を大きく確保し得る。また、排気ガス導出空間又はフィルタ端部に設置するフィルタ補強材は排気ガスの透過が可能で、その金属充填率がフィルタエレメントに対して十分小さい為、排気の通過時に新なに発生する圧力損失は十分小さい。従って、高い捕集効率を得るように孔径を小さくしても、表面積の増加による単位面積当たりの捕集量の減少により目詰まりを少なくして圧力損失を小さくすることができる。

【0032】また、排気ガス通過時の圧力によるフィルタの微細変形が補強材による補強によって防止される。そのためフィルタに変形による応力が発生せず、フィルタエレメントの応力による破壊が減って耐久性が向上する。排気ガス通過時のフィルタ前後での圧力差によるフィルタ変形は、排気ガス導入空間が緩やかな曲線を画いて膨らみ、導出空間が膨らみに対応して凹むように起こるので、排気ガス導出空間の全域に補強材を挿入したも

の(請求項3)はフィルタ変形の抑止効果が高い。 【0033】・請求項2

また、排気ガス導入空間及び導出空間の両方に補強材を設けたものは、フィルタが補強材によりフィルタ面の垂直方向に拘束されているため、振動によるフィルタのフィルタ面垂直方向の変形が防止される。そのためフィルタに変形による応力が発生せず、フィルタエレメントの応力による破壊が減って耐久性が向上する。また、振動によるフィルタのフィルタ面垂直方向の変形は、排ガス導入空間の膨らみと凹みが交互に繰返し起こり、導出空間がそれに対応して凹みと膨らみが交互に繰返し起こるので、排気ガス導入空間及び導出空間の全域の補強材を挿入したもの(請求項4)はフィルタ変形の抑止効果が高い。

[0034]また、フィルタ端部を補強材で支持したもの(請求項5)は、非支持の自由端がなくなってフィルタ振動が効果的に防止され、振動による疲労破壊が減少する。従って、これ等を組合わせ、変形、振動の双方に対応する構成にしたものは、耐久性向上に関して特に大きな効果を期待できる。

【0035】なお、補強材は材料充填率の低い目の粗いものを用いれば(請求項6)、補強材の目詰まりによる圧力損失の大きな上昇は起こらず、捕集性能に与える悪影響は少ない。また、この補強材の金属充填率が低ければ、パティキュレートの重量増、熱容量増が抑えられるので、補強材追設による再生エネルギーの増加等も少ない。

【0036】:請求項7

通常、薄い円筒設構造の外圧による発生応力はその円筒 殷の半径に比例して大きく、座屈変形も円筒設半径の増大に伴って発生し易くなる(座屈発生圧力は径の1~3 乗に比例する)。請求項7のパティキュレートトラップ に用いるフィルタエレメントは、より大きな応力が生じ、しかもより低い圧力で座屈を生じる外側の円筒状フィルタほど厚みの大きいフィルタ材で形成しているので、円筒半径の大きいフィルタを発生する応力を円筒半径のより小さいフィルタ並みに小さくすることができ、座屈も抑制できる。発生応力はフィルタの厚みに反比例し、また、座屈発生圧力はフィルタ厚みの1~3乗に反比例するので、フィルタ厚みに差をつければ円筒半径の違いによる発生応力の差、耐座屈性の差が吸収されて小さくなり、変形、座屈の生じ易い部分がなくなる。

【0037】なお、厚みの厚い外径のフィルタほど目孔を粗くすれば(請求項8)、フィルタ厚みの増加による圧力損失の増加を抑制できる。また、フィルタ厚みを円筒半径に応じたものにすれば、過剰厚みのフィルタが無くなってトラップ全体の重量増、熱容量増が小さく抑えられ、均一厚みのフィルタを用いる場合と同程度の再生エネルギーで、パティキュレートを燃焼させてフィルタを再生すると言ったことも可能になる。

【0038】·請求項9

また、フィルタエレメントの孔径を排気ガスの流入側から流出側に向けて徐々に小さくしたものは、フィルタの厚み方向の全域でパティキュレートが平均的に捕集されるため、圧力損失の上昇度合いが小さく、差圧寿命がより一層延長される。

【0039】:請求項10

応力による破壊が減って耐久性が向上する。また、振動 各フィルタ間の隙間寸法について10mm以下が好ましたよるフィルタのフィルタ面垂直方向の変形は、排ガス いとしたのは、限られたスペース内でフィルタ表面積を 導入空間の膨らみと凹みが交互に繰返し起こり、導出空 10 大きく確保するためには隙間寸法は小さいほどよく、ト間がそれに対応して凹みと膨らみが交互に繰返し起こる ラップの小型化の効率が高まるからである。

【0040】また、フィルタ材である耐熱性金属繊維の不織布の片面あるいは両面に、或いは耐熱性金属繊維の不織布の片面あるいは両面に連続孔を有する耐熱金属骨格からなる3次元網状構造多孔体を設置してこの3次元網状構造多孔体に触媒を担持する(請求項11及び12)ことにより、パティキュレートトラップと触媒コンバータの一体化が実現できる。そして触媒担体が充填率の低い金属であるため熱容量が小さく、その結果、排気20ガスによる触媒の昇温スピードが速くなり、触媒が作用するのに十分な温度を得ることが容易となる。

【0041】·請求項13

フィルタ材である耐熱性金属繊維の表面にアルミナウィスカーを生成させることにより、金属繊維間のフィルタ 孔をより小さくすることができる。その結果パティキュレートの中でも粒径2 μm以下の浮遊性微粒子を捕集することが可能になる。

【0042】なお、前述のアルミナウィスカーは、それを生成させた後触媒を担持させると触媒の担持面積を増大させるのにも役立つ。

[0043]

【発明の実施の形態】図4乃至図7に、本発明の請求項1のパティキュレートトラップに用いるフィルタエレメントの実施例を示す。これ等は、図1乃至図3のフィルタエレメンント1、11、21に補強材を加えたものである。

【0044】図1のフィルタエレメント1は、平板フィルタ5を複数枚平行に並べて各平板フィルタ間の空間の排気ガス入口側と出口側を端板6で交互に行き止まりにし、さらに、ライナ7(これは6と一体のものでよい)で空間の両側部を閉じて長手方向に入り込む排気ガスの導入空間3と導出空間4を交互に生じさせている。

【0045】また、図2のフィルタエレメント11は、 断面相似形の異径直筒状(図は円筒状)のフィルタ8を 複数個同心的に配置し、最小径のフィルタの一端と各筒 状フィルタの間の空間を端板6で交互に行き止まりにし て前述の導入空間3と導出空間4を交互に生じさせてい

[0046] さらに、図3のフィルタエレメント21 50 は、複数個の断面相似形の異径テーパ筒状(図は円錐

8

筒)フィルタ9をテーパの向きを交互に逆にして同心的 に配置し、断面がジグザグになるように各フィルタ9の 一端と他端をつないで導入空間3と導出空間4を交互に 生じさせている。

【0047】各フィルタエレメント1、11、21のフ ィルタは、勿論、金属繊維の不織布で作られている。各 フィルタの間の隙間寸法(空間3、4の厚さ)は、小型 化、ヒータによる再生効率の観点から10mm以下が好 ましい。

ィルタエレメント1、11又は21(図には代表して符 号1のみを示す)の排気ガス導出空間4内に通気性のあ る補強材2-1を挿入し、この補強材2-1で空間4を間に して対向したフィルタを支えている。また、図5のフィ ルタエレメントは、両端に補強材2-スを凹凸嵌合させて 取付けている。さらに、図6のフィルタエレメントは、 図4、図5の補強材2-1、2-2を組合わせて設けてい る。

【0049】また、図7のフィルタエレメントは、図3 のフィルタエレメント又は平板フィルタをジグザグに曲 20 る。 げて断面が図3(b)と同じようになるようにし、空間 の両側部をライナで塞いだエレメントの両側に補強材2 」、を設けている。

【0050】なお、図5、図6、図7のフィルタエレメ ントは、空間3、4の行き止まり点の位置を部分的に変 えて両端に補強材2-1を凹凸嵌合させているが、補強材 2-2の形状を変えれば、このようなことをしなくてもフ ィルタエレメントの両端に補強材を凹凸嵌合させて各フ ィルタを安定して支持することができる。

【0051】図8のフィルタエレメントは、上述したフ ィルタエレメント1、11又は21(図には代表して符 号1のみを示す)の排気ガス導入空間3内及び導出空間 4内にそれぞれ通気性のある補強材2.1及び2.1を挿入 して、この補強材2-1及び2-1でフィルタエレメントを 支えている。また、図9のフィルタエレメントは、図8 のフィルタエレメントに補強材2-1、2-2及び2-3を組 合わせて設けている。

【0052】補強材2-1、2-1の構成金属は、700* Cの排気ガスに100時間曝しても劣化が生じないもの がよく、フィルタ材料として用いるFe-Cr-Al合 40 Bと条件を揃えた。 金、Ni-Cr-Al合金等が適している。また、フィ ルタ前後の圧力差を考えると、700°Cの温度下で 0.3 kg/cm²の圧力に耐える強度をもたせるのが よい。そのためには、金属の種類にもよるが金属充填率 を極端に下げないようにする。との補強材としては、充 填率が30%以下の3次元網状構造多孔体、金網、金属

不織布、パンチングメタル、波板などを用いる。波板に ついては、それがきっちりと納まる方形空間をその体積 と考える。

【0053】また、補強材2.,についても、上述の理由 から、材料充填率が30%以下の3次元網状構造多孔 体、金網、金属繊維の不織布、パンチングメタル、波板 などを用い、波板については、それがきっちりと納まる 方形空間をその体積と考える。

【0054】また、フィルタ材料には、図10に示すよ 【0048】図4のフィルタエレメントは、上述したフ 10 うに、その繊維の骨格FBに、骨格よりも微細なアルミ ナウィスカー401を多数付加することにより、小さな、 孔を多数設けることも考えられる。

> 【0055】図11は、フィルタ1、11及び21の拡 大図である。フィルタ1、11及び21には、上記のフ ィルタ材料で作られたパティキュレートを捕集する層3 01に加えて、触媒を担持する為の層(図では一例とし て、302や303で示す。)を複数層設けた材料を使 用することも考えられる。

【0056】以下に、より詳細な実施例について述べ

【0057】図12に捕集効率、パティキュレート捕集 時の圧力損失及び耐久性の評価を行う実験装置示す。と の装置は、3400 c c、4気筒の直噴射式のディーゼ ルエンジン車、シャシダイナモメータ及びダイリューシ ョントンネルからなる。

【0058】後述するNOの浄化率及びSOFの浄化率 の評価もとの図12の装置を用いて行った。

【0059】-実施例1-下記3種の試料を準備した。

30 A:図1のフィルタエレメントの排気ガス導入空間4に 補強材2-1を入れた図4の構造のフィルタエレメント (発明品)。

B:図1の補強材無しのフィルタエレメント (比較 品)。

1: 捕集性能に関しては十分であると云われているハニ カム構造のフィルタエレメント(材質コーディエライ ト、日本ガイシ製、PHC-221) (比較品)。

【0060】これ等の試料の詳細を表1に示す。なお、 試料 [については容積を2.5 リットルとして試料A、

【0061】試料Aに用いた補強材は、住友電気工業 (株)製Ni基3次元網状構造多孔体(商品名:セルメ ット#1)をNi-Cr-Al化したものである。 [0062]

【表1】

10

	フィ	フィルタエレメント					
	材料	材質	厚さ	充塡率	總過面積		
試料A(発明品)	金属不統布 (繊維直径20 µm)	Fe-Cr-Al	0.5 mm	20%	1. 3m²		
試料B(比較品)	金属不織布 (繊維直径20 μm)	Fe-Cr-Al	0.5 mm.	20%	1.3m²		
試料 I(比較品)	コーディエライト	MgO-A1201-S102	0.5 ccm	50%	2. 3m²		

[0063]

* * (表2)

	材料	材質	充塡率	耐熱性	強度
試料Aの 補強材	\$\$\$1\ #1	NI-Cr-Al	5%	排気ガス 700℃×100 時間で劣化無し	700℃排気ガスによる圧力 (0.3Kg/cm²) で破壊無し

セルシット の#1は品番で、単位長さ(1インチ)の横切るセル数が6~11個であることを示す。

【0064】これ等の試料を容器に納めてできるパティ の排気ガスを長時間流したときのフィルタエレメントの 破壊状況を調べた。その結果を表3に示す。

[0065]

【表3】

試料No.	耐久試験結果(トラップ入口排気ガス温度700℃)
A PACE	150時間後で破壊無し
試料B	120時間後に破壊が認められた
政府 I	150時間後で破壊無し

【0066】試料Aと【は破壊が生じていないが、試料 Bではその破壊が起こっている。

【0067】次に、再生時の耐久性を評価した。ディー ゼルエンジンより排出されるガス中のパティキュレート を15g捕集した後、エンジンをアイドリング状態に し、600° Cのガスがトラップに導入されるようにし て、フィルタの捕集面の全面に対向させて設置した電気 ヒータで捕集パティキュレートを燃焼させた。各試料に ついてこの再生を5回づつ行い、その後試料の破壊状況 40 を調べた。結果を表4に示す。

[0068]

【表4】

再生盆粉枝

	再生試験結果
試料A(発明品)	破壊無し
試料B(比较品)	破壊無し
試料! (比較品)	クラック発生

【0069】試料A、Bは破壊しなかったが、試料Iに キュレートトラップ10を図12の装置に組込み、高温 20 はクラックが生じた。とのほか、捕集効率、捕集に伴う 差圧(圧損)上昇等の捕集性能についても試価したが、 とれについては3試料とも差が認められなかった。

> 【0070】以上の実験結果から、本発明品Aは、比較 品B、Iと異なり、捕集性能、耐久性、再生性能のいず れをも満足することが判る。

【0071】-実施例2-

下記の試料C、Dと、実施例1で用いた試料1を準備し 7c.

【0072】C:図1のフィルタエレメントとほぼ同様 30 のエレメント(空間行き止まり点の位置を部分的に変え てある)の排気ガス導出空間4と両端に補強材2-1、2 _,を設けた図6に示す断面構造のフィルタエレメント (発明品)。

D:補強材が無く、他は試料Cと同じフィルタエレメン ト(比較品)。

【0073】表5に各試料の詳細を示す。また、表6 に、試料Cに用いた補強材2-1、2-1の詳細を示す。 [0074]

【表5】

	71	フィルタエレメント				
	材料	材質	厚さ	充塡率	滤過面積	
試料C(発明品)	金属不織布 (繊維直径20 μm)	Fe-Cr-Al	0.5 mm	20%	1. 3m²	
試料D(比較品)	金属不織布 (繊維直径20μm)	Fe-Cr-Al	0.5 mm.	20%	1. 3m²	
試料 I(比較品)	コーディエライト	MgO-A1 ₂ 0 ₃ -SiO ₂	0.5 mm	50%	2. 3m²	

[0075]

* *【表6】

	材料	材質	充填率	耐熱性	強度
補強材 2-1	金網	Fe-Cr-Al	20%	排気ガス 700℃×100 時間で劣化無し	700℃排気ガスによる圧力 (0.3Kg/cm²) で破壊無し
補強材 2 - 2	セルメット #2	Ni-Cr-Al	5 %	排気ガス 700℃×100 時間で劣化無し	700°C排気ガスによる圧力 (0.3Kg/cm²) で破壊無し

セルタット の#2は品番で、単位長さ(1インチ)の横切るセル数が11~17個であることを示す。

【0076】実施例1と同様にして行った各試料の耐久 試験結果を表7に示す。

[0077]

【表7】

耐久試験結果

	耐久試験結果(トラップ入口挤気ガス温度 800°C)
数料C	120時間後で破壊無し
試料D	100時間後に破壊が認められた
ators i	1 2 0 時間後で破壊無し

【0078】また、実施例1と同一条件でパティキュレートの燃焼再生を行って再生時の耐久性を調べた結果を表8に示す。

[0079]

【表8】

再生試験結果

	再生試験結果
試料C(発明品)	破壊無し
試料D(比较品)	破壊無し
試料 [(比較品)	クラック発生

【0080】との表7、8から判るように、試料Dは耐久試験結果が、また、試料Iは再生試験結果が悪いが、発明品(試料C)は耐久性、再生性能ともに優れている。なお、捕集性能は各試料とも良く、優位差は認められなかった。

【0081】-実施例3-

下記する試料E、Fと、前述の試料Iを準備した。

【0082】E:図2のように、異径円筒状フィルタを 30 同心配置して作ったフィルタエレメントの排気ガス導出 空間4と両端に、補強材2-1、2-1を設けた図6に示す 断面構造のフィルタエレメント(発明品)。

F:補強材が無く、他は試料Eと同じフィルタエレメント(比較品)。

【0083】表9にこれ等の試料の詳細を、また、表1 0に試料Eに用いた補強材2.1、2.2の詳細を各々示す。

[0084]

【表9】

40

	7	フィルタエレメント					
	材料	材質	厚さ	充填率	濾過面積		
試料E(発明品)	金属不織布 (繊維直径20 µm)	Fe-Cr-Al	0.5 mm	20%	1. 3m²		
試料F(比較品)	金属不織布 (繊維直径20 µm)	Fe-Cr-Al	0.5 mm	20%	1. 3m²		
試料I(比較品)	コーディエライト	Mg0-A1203-SiO2	0.5 000	50%	2. 3m²		

[0085]

* *【表10】

	材料	材質	充塡率	耐熱性	強度
補強材 2-;	\$\$\$\$\$ #2	Ni-Cr-Al	5 %	排気ガス 700℃×100 時間で劣化無し	700℃排気ガスによる圧力 (0.3Kg/cm²) で破壊無し
補強材 2-1	れンチングシラカ	Fe-Cr-Al	15%	排気ガス 700℃×100 時間で劣化無し	700℃排気ガスによる圧力 (0.3Kg/cm²) で破壊無し

【0086】各試料について、実施例1で行ったのと同様の耐久試験、再生試験を行った。その結果を表11、表12に示す。なお、捕集性能は3者とも差がなかった。

[0087]

【表11】

耐久试验结果

試料No.	耐久試験結果(トラップ入口排気ガス温度800℃)
試料E	120時間後で破壊無し
at parties	100時間後に破壊が認められた
以 科 工	120時間後で破壊無し

[8800]

【表12】

再生試験結果

	再生試験結果
試料E(発明品)	破壊無し
試料F(比較品)	破場無し
試料[(比较品)	クラック発生

【0089】結果は、実施例1、2と全く同様であり、 20 捕集性能、耐久性、再生性能の各特性を総て満足するの は試料Eの発明品だけであった。

【0090】-実施例4-

下記の試料G、Hと前記試料Iを準備した。

【0091】G: 図3のフィルタエレメントの両端に補強材<math>2-、を設けた図7の断面構造のフィルタエレメント(発明品)。

H:図3の補強材無しのフィルタエレメント(比較品)。

【0092】これ等の試料の詳細と、試料Gに用いた補 30 強材2..の詳細を表13、表14に示す。

[0093]

【表13】

	フィルタ	アエレメント			フィルタ
	材料	材質	厚さ	充填率	濾過面積
試料G(発明品)	金属不械布(繊維直径:排気 が入口側40μm, 出口側20μm)	Fe-Cr-Al	0.5 mm	20%	1. 3m²
試料日(比較品)	金属不織布(繊維直径:排気 fx入口側40 μm, 出口側20 μm)	Fe-Cr-Ai	0.5 mm	20%	1. 3m²
試料I(比較品)	コーディエライト	MgO-A1:0:-SiO:	0.5 mm	50%	2. 3m ²

[0094]

* * 【表14】

	材料	材質	充填率	耐熱性	強度
試料Gの 補強材	t\$/+} (#1)	NI-Cr-AI		排気ガス 700℃×100 時間で劣化無し	700℃排気ガスによる圧力 (0, 3Kg/cm²) で破壊無し

【0095】これ等の試料についても、実施例1と同じ耐久試験、再生試験を行った。その結果を表15、表16に示す。

[0096]

【表15】

耐久試験結果

試料No.	耐久試験結果(トラップ人口排気ガス温度700℃)
BO FF G	150時間後で破壊無し
HAXE	120時間後に破壊が駆められた
試料 I	150時間後で破壊無し

[0097]

【表16】

再生肽験結果

	再生試験結果
試料G(発明品)	破壊無し
試料H(比較品)	破壊無し
試料 I(比較品)	クラック発生

【0098】 このように、耐久性、再生性能の評価結果は、実施例1、2、3と同様である。捕集性能の評価結果には差がなかった。

【0099】なお、以上の各実施例から判るように、本 発明の構造は、図1、図2、図3の形態のフィルタエレ メントのいずれにおいても、その有効性を発揮する。 【0100】次に、請求項7のパティキュレートトラップに用いるフィルタエレメントの具体例を図13、図14に示す。

20 【0101】図13のフィルタエレメント31は、図2 のフィルタエレメントを改善したもの、また、図14の フィルタエレメント41は、図3のフィルタエレメント を改善したものである。

【0102】これ等のフィルタエレメント31、41は、ここでは、円筒半径の大きい外側の筒状フィルタの原みを数個ずつ段階的に厚くしている。全てのフィルタが、外側のものほど徐々に厚くなる構成がより好ましいことは言うまでもない。

【0103】以下に、図13、図14のフィルタエレメ 30 ントのより詳細な実施例について述べる。

【0104】-実施例5-

下記3種の試料を準備した。

J: 異径直円筒状の11個のフィルタを同心的に配置して作った図13に示すような構造の、フィルタ厚みを5段階に変化させたフィルタエレメント(発明品)。

K: 同心配置した11個の異径直円筒状フィルタの厚みを全て等しくしたフィルタエレメント(比較品)。

I:実施例1~4で用いたものと同一品(比較品)。

【0105】とれ等の試料の詳細を表17に示す。な

40 お、試料 I については容積を2.5リットルとして試料 J、Kと条件を揃えた。

[0106]

【表17】

No.	7	ィルクエレ	メント			フィルタ
NO.	材料	材質	厚さ	充填率	使用したフィルクエレメント	進過面積
	金属不概布1(繊維直径:排気 50入口側50μm、出口側35μm)	Fe-Cr-Al	0.4 mn	20%	円筒半径が10及び 15mの74.対エレチント	
	金属不磁布 2(磁矩直径:排気 が入口関35 μm、出口則25 μm)	Fe-Cr-Al	0.6 mm	20%	円筒半径が20及び 25mmの7/18/17/7	
試料」	金属不概布 3(資程直径:排気 が入口側25 μm、出口側20 μm)	Fe-Cr-Al	0.8 mm	20%	円筒半径が30及び 35mmの71が1V/가	l. lm²
Genius.	金属不磁布 4(繊維直径:排気 丸入口側20 μm、出口側15 μm)	Fe-Cr-Al	1.0 ma	20%	円筒半径が40及び 45mmの7(1/11/1/)	
	金属不織布5(繊維直径:排気 が入口側15μm、出口側10μm)	Fe-Cr-Al	1, 2 mm	20%	円筒半径が50,55及 び60mmの7/1/11///	
試料K (比較品)	金属不磁布 6(磁維直径:排気 永入口側40 μm、出口側30 μm)	Fe-Cr-Al	0.5 mm	20%	全ての7/肘エルリント	l. lm²
試料 I (比較品)	コーディエライト	MgO-Al 20s-SiO2	0.5 can	50%	全ての74分エルナト	2.3m²

【0107】上記の試料のうち、J、Kについて排気ガスの圧力によってフィルタエレメントの座屈が発生する時の圧力値を計算解析により求めた。その結果を表18に示す。また、排気ガスの初期圧力によって試料J、Kの各筒状フィルタに生じる最大応力とフィルタ径との関係を図15に示す。

19

[0108]

	座屈発生圧力(KPa)
試料 J (発明品)	200
試料 K (比较品)	4 0

【0109】試料Kは、フィルタの径が大きくなるにつれて発生応力が比例して大きくなっているが試料Jは、フィルタ厚みを大きくした外側のフィルタの最大発生応力が小さく抑えられ、座屈に対する耐性も非常に大きくなっている。

【0110】次に、試料J、K、1を容器に納めて出来るパティキュレートトラップ10を図12の装置の排気系に組込み、高温の排気ガスを長時間流したときのフィルタエレメントの破壊状況を調べた。その結果を表19に示す。

【0111】 【表19】

耐久試驗結果

id≱No.	耐久試験結果(トラップ人口排気ガス温度800°C)
試料J	150時間後で破壊無し
EXPL	100時間後に破壊が認められた
BON4 I	150時間後で破壊無し

【0112】試料JとIは破壊が生じていないが、試料 Kではその破壊が起こっている。

30 【0113】次に、再生時の耐久性を評価した。ディーゼルエンジンより排出されるガス中のパティキュレートを15g捕集した後、エンジンをアイドリング状態にし、600℃のガスがトラップに導入されるようにして、フィルタの捕集面の全面に対向させて設置した電気ヒータで捕集パティキュレートを燃焼させた。各試料についてこの再生を5回づつ行い、その後試料の破壊状況を調べた。結果を表20に示す。

【0114】 【表20】

40

再生試驗納!

	再生試験結果
試料」(発明品)	破壊無し
試料K (比較品)	破壊無し
試料! (比較品)	クラック発生

【0115】試料J、Kは破壊しなかったが、試料Iにはクラックが生じた。とのほか、捕集効率、捕集に伴う差圧(圧損)上昇等の捕集性能についても評価したが、これについては3試料とも差が認められなかった。

50 【0116】-実施例6-

下記の試料L、Mと、実施例5で用いた試料 | を準備した

【0117】L:異径テーバ円筒状のフィルタを8個テーパの向きを交互に逆にして図14のように組み合わせ、かつ、各筒状フィルタの厚みを3段階に変化させたフィルタエレメント(発明品)。

*M: 試料 L と同様にして組み合わせた8個の異径テーパ 円筒状フィルタを全て同一厚みにしたもの(比較品)。

【0118】表21に各試料の詳細を示す。

[0119]

【表21】

No.	フィルタニレメント					
NO.	· 材料	材質	厚さ	充塡李	使用したフォルタエレノント	建過面积
	金属不統布1(機維直径 : 辞気ガス入口側40 μm、出口側30μm)	Fe-Cr-Al	0.5 mm	20%	円筒の半径が、小径 0 大径 20mm及び小径20大径30mm の74M31M31	
試料L (発明品)	金属不織布2(繊維直径 : 排気ガス入口側20 μm、出口側15μ)	Fe-Cr-Al	1. 0 mm	20%	円筒の半径が、小径30大径 40mm及び小径40大径50mm及び 小径50大径60mmの74が11/1)	1. 2m²
(Hir/Icit)	金属不織布3(機維直径 :排気ガス入口側15 μm、出口側10μm)	Fe-Cr-Al	1.5 mm	20%	円筒の半径が、小径60大径 70mm及び小径70大径80mm及び 小径80大径90mmの71が1りか	
試料M (比較品)	金属不織布1(繊維宣径 : 排気ガス入口側40 μm、出口側20μm)	Fe-Cr-Al	0.5 mm	20%	全でのフィルクエレメント	l. 2m²
=====================================	コーディエライト	Mg0-A1,0,-SiO2	0.5 mm	50%	全てのアイルタエレイント	2.3m²

【0120】試料L、Mの座屈圧力計算結果を表22に示す。また、排気ガス初期圧力による各フィルタの最大発生応力とフィルタ径の関係を図16に示す。さらに、これ等の試料L、M、Iについて実施例5と同様にして行った耐久性評価試験結果を表23に、実施例1と同一条件で行った再生時の耐久性評価試験結果を表24に各々示す。

【0121】 【表22】

医屈圧力 計算結果

	連届発生圧力(K P a)
試料L(発明品)	1 4 0
試料M(比較品)	1 5

【0122】 【表23】

耐久 試験 结果

₩No.	前久試験結果(トラップ入口排気ガス温度800°C)
試料L	1 2 0 時間後で破壊無し
MAM	100時間後に敵域が認められた
ECN I	1 2 0時間後で破壊無し

【0123】 【表24】

40

再 生 試 験 結 果

	再生試験結果
試料L(発明品)	破壊無し
試料M(比較品)	破増無し
試料 1 (比較品)	クラック発生

【0124】との実験でも、実施例5と同様の結果が得られている。捕集性能は各試料とも良く、優位差がなかった。

【0125】-実施例7-

下記4種の試料を準備した。

【0126】N、O:図1のフィルタエレメントの排気 50 ガス導入空間4に補強材2-1を入れた図4の構造のフィ

ルタエレメント(発明品)。

P:図1の補強材無しのフィルタエレメント(比較品)。

Ⅰ:捕集性能に関しては充分であると云われているハニカム構造のフィルタエレメント(材質コーディエライト、日本ガイシ製、PHC-221)(比較品)。

【0127】 これ等の試料の詳細を表25 に示す。なお、試料 【 については容積を2.5 リットルとして試料 N、O、Pと条件を揃えた。

【①128】試料N、Oに用いた補強材は、住友電気工 10 業(株)製Ni基3次元網状構図多孔体(商品名:セル メット#1)をNi-Cr-Al化したものである。

【0129】試料Nのフィルタエレメント1は、NOx 触媒を担持している層(図11の302)、パティキュ* *レートを捕集する層(図11の301)及びNOx触媒を担持している層(図11の303)の3層で構成されている。NOx触媒層は、Fe-Cr-A1の金属不織布の骨格に触媒担持用のアーアルミナを金属不織布1リットル当り100gコートし、その後触媒としてCuを金属不織布1リットル当り1.0gの量で均一に担持させて作製した。

【0130】また、試料Oについては補強材(図402_1)の骨格にNOx触媒担持用の γ -アルミナをセルメット1リットル当り100gコートし、その後触媒としてCuを金属不織布1リットル当り1.0gの量で均一に担持させて作製した。

【0131】 【表25】

	フィルタエレメント				
	材 料	材質	厚さ	/ドィ↓↓レート 捕集部の充塡率	フィルタ 濾過面積
試料N (発明品)	(1)金属不織布(繊維直径 100 μα) + γ-A I ₁ O ₃ +C α (2)金属不織布(繊維直径 20 μα) (3)金属不織布(繊維直径 100 μα) + γ-A I ₁ O ₃ +C μ の 3 層	(1)Fe-Cr-Al+ 1-Al ₂ O ₃ +Cu (2)Fe-Cr-Al (3)Fe-Cr-Al+ 1-Al ₂ O ₃ +Cu	1. O mm	20%	1. 3m²
試料O (発明品)	金属不磁布 (繊維直径20μm)	Fe-Cr-Al	1.0 mm	20%	1. 3m²
試料P (比較品)	金属不織布 (繊維直径20μm)	Fe-Cr-Al	1.0 mm	20%	1. 3m²
試料 [(比較品)	コーディエライト	MgO-Al ₂ O ₈ -SlO ₂	1.0 cm	50%	2. 3m²

[0132]

※ ※【表26】

	材料	材質	充塡率	耐熱性	強度
試料Nの 補強材	th/1}	Ni-Cr-Al	5 %	排気ガス 700℃×100 時間で劣化なし	700 ℃排気ガスによる圧力 (0.3kg/cm²) で破壊なし
試料()の 補強材	tb/11 #1	Ni-Cr-Al + r-Al ₂ O ₃ +Cu	5 %	排気ガス 700℃×100 時間で劣化なし	700 ℃排気ガスによる圧力 (0.3kg/cm²) で破壊なし

とルタットル1は品番で、単位長さ(1インチ)の横切るセル数が6~11個であることを示す。

【0133】各試料について、実施例1で行ったのと同様の耐久試験、再生試験を行った。その結果を表27、

た。

[0134]

表28に示す。なお、捕集性能は3者とも差がなかっ

50 【表27】

至 25 耐久試験結果

504No.	耐久試験結果(トラップ人口排気ガス温度 700°C)
試料N	150時間後で破壊無し
裁料O	150時間後で破壊無し
試料P	120時間後に破壊が認められた
試料I	150時間後で破壊無し

【0135】 【表28】

再生試験結果

MANO.	再生試験結果
BON N	破壊無し
成料 0	破壊無し
SCHP	破壊無し
ECH I	クラック発生

【0136】捕集性能、耐久性、再生性能の各特性を総て満足するのは試料N、Oの発明品であった。

【0137】試料N、Oについては、更に、NOの浄化率の評価を行った。

【0138】遠元剤としてC、H、を排気ガス中に導入した。排気ガス条件を表29に示す。

[0139]

【表29】

項目	条.件		
排気ガス中NO濃度	1000ppm		
排気ガス中C₂H、濃度	250ppm		
排気ガス中〇』濃度	2 %		
排気ガス温度	250℃		

【0140】また、排気ガス温度を250℃に維持した 後、2分間のNO濃度を測定した。その平均値を表30 に示す。

[0141]

【表30】

	NO森度
試料N	500ppm
試料〇	500ppm

【0142】このように、試料N、Oの使用時にはNO 濃度が半減している。

【0143】以上の実験結果から、本発明品N及びOは、比較品P、Iと異なり、捕集性能、耐久性能、再生性能のいずれをも満足するととが判る。さらに、それに加えて、NOを低減する機能も有しているため、触媒コンバータを他に設ける必要がなく、ディーゼル排気ガス後処理装置のトータル面での省スペース化、低コスト化・が実現できる。

10 - 実施例8-

下記する4種の試料を準備した。

【0144】Q、R:図2のように、異径円筒状フィルタを同心配置して作ったフィルタエレメントの排気ガス導出空間4と両端に、補強材2.1、2.1を設けた図6に示す断面構造のフィルタエレメント(発明品)。

S:補強材が無く、他は試料Q、Rと同じフィルタエレメント(比較品)。

I:捕集性能に関しては充分であると云われているハニカム構造のフィルタエレメント(材質コーディエライ20 ト、日本ガイシ製、PHC-221)(比較品)。

【0145】 これ等の試料の詳細を表31 に、また、試料Q、Rに用いた補強材 2_1 、 2_2 の詳細を表32 に各々示す。なお、試料 1 については容積を2.5 リットルとして試料Q、R、Sと条件を揃えた。

【0146】試料Qのフィルタエレメント11は、SOF触媒を担持している層(図11の302)、パティキュレートを捕集する層(図11の301)及びSOF触媒を担持している層(図11の303)の3層で構成されている。SOF触媒層は、Fe-Cr-A1の金属不総布の骨格に触媒担持用のアーアルミナを金属不織布1リットル当り150gコートし、その後触媒としてPtを金属不織布1リットル当り1.5gの量で均一に担持させて作製した。

【01.47】また、試料Rについては補強材(図6の2.1)の骨格にSOF触媒担持用のアーアルミナをセルメット1リットル当り150gコートし、その後触媒としてPtをセルメット1リットル当り1.5gの量で均一に担持させて作製した。

[0148]

40 【表31】

26

_	
-,	

	フィルタエレメント				
	材料	材質	厚さ	/トィキュレー} 捕集部の充塡率	フィルタ 濾過面積
試料Q (発明品)	(1)金属不緻布(繊維直径 100 μm)+1-Al ₂ O ₃ +Pt (2)金属不緻布(繊維直径 20 μm) (3)金属不織布(繊維直径 100 μm)+1-Al ₂ O ₃ +Pt の 3層	(1)Fe-Cr-A1+ r-A1 ₂ O ₃ +Pt (2)Fe-Cr-A1 (3)Fe-Cr-A1+ 1-A1 ₂ O ₃ +Pt	1.0 mm	20%	1. 3m²
試料R (発明品)	金属不微布 (繊維直径20 μm)	Fe-Cr-Ai	1.0 mm	20%	1. 3m²
試料S (比較品)	金属不織布 (繊維直径20μm)	Fe-Cr-Al	1.0 nm	20%	1. 3m²
試料 [(比較品)	コーディエライト	MgD-Al ₂ O ₃ -SiO ₂	1.0 cm	50%	2. 3m²

[0149]

* * 【表32】

	材料	材質	充塡率	耐熱性	強度
試料Qの 補強材 2 - 1	金網	Fe-Cr-Al	20%	排気ガス 700℃×100 時間で劣化なし	700 ℃排気ガスによる圧力 (0.3kg/cm²) で破壊なし
試料Qの 補強材 2 - 2	thin} #2	Ni-Cr-Al	5%	排気ガス 700℃×100 時間で劣化なし	700 ℃排気ガスによる圧力 (0.3kg/cm³) で破壊なし
試料Rの 補強材 2-1	金網	Fe-Cr-Al	20%	排気ガス 700℃×100 時間で劣化なし	700 ℃排気ガスによる圧力 (0.3kg/cm²) で破壊なし
試料Rの 補強材 2-2	th/1) #2	Ni-Cr-A1 + r-A1 ₂ O ₃ +Pt	5 %	排気ガス 700℃×100 時間で劣化なし	700 ℃排気ガスによる圧力 (0.3kg/cm³) で破壊なし

セルノット#2は品番で、単位長さ(1インチ)の横切るセル数が11~17個であることを示す。

【0150】各試料について、実施例1で行ったのと同 40 様の耐久試験、再生試験を行った。その結果を表33、 表34に示す。なお、捕集性能は3者とも差がなかっ た。

【0151】 【表33】

耐久試験結果

MANO.	耐久試験結果(トラップ人口排気ガス温度 700℃)
は特に	150時間後で破壊無し
試料R	150時間後で破壊無し
試料S	120時間後に破壊が認められた
143	150時間後で破壊無し

[0152]

再生試験結果

試料No	再生試験結果
SCR Q	破壊無し
試料R	破壊無し
数料S	破壊無し
試料I	クラック発生

【0153】捕集性能、耐久性、再生性能の各特性を総 て満足するのは試料Q、Rの発明品であった。

【0154】試料Q、Rについては、更に、SOFの浄 化率の評価を行った。

【0155】排気ガス温度が250℃および350℃で の評価結果を表35に示す。

[0156]

【表35】

	SOF浄化率(%)		
排気ガス温度 2 5 0 ℃		350℃	
試料Q	4 0	5 0	
試料R	4 0	5 0	

【0157】このように、Ptを触媒として担持させた 試料Q、RではSOF濃度を40%或は50%低減する ことができた。

【0158】以上の実験結果から、本発明品Q及びR は、比較品S、 I と異なり、捕集性能、耐久性能、再生 30 【0164】 性能のいずれをも満足することが判る。さらに、それに 加えて、SOFを低減する機能も有しているため、触媒*

* コンバータを他に設ける必要がなく、ディーゼル排気ガ ス後処理装置のトータル面での省スペース化、低コスト 化が実現できる。

30

【0159】-実施例9-

下記する4種の試料を準備した。

【0160】T、U:図2のように、異径円筒状フィル タを同心配置して作ったフィルタエレメントの排気ガス 導入空間3、導出空間4及び両端に、補強材2-3、2-1 及び2-1を設けた図8に示す断面構造のフィルタエレメ 10 ント(発明品)。

V:補強材が無く、他は試料T、Uと同じフィルタエレー メント(比較品)。

1:捕集性能に関しては充分であると云われているハニ カム構造のフィルタエレメント(材質コーディエライ ト、日本ガイシ製、PHC-221) (比較品)。

【0161】これ等の試料の詳細を表36に、また、試 料T、Uに用いた補強材2.1、2.2及び2.3の詳細を表 37に各々示す。なお、試料 【については容積を2.5 リットルとして試料T、U、Vと条件を揃えた。

20 【0162】また、試料Tの補強材(図8の2-1及び2 -,) は、その骨格にNOx触媒担持用のγ-アルミナを セルメット1リットル当り100gコートし、その後触 媒としてCuをセルメット1リットル当り1.0gの量 で均一に担持させて作製した。

【0163】また、試料Uの補強材(図8の2.1及び2· -」)は、その骨格にSOF触媒担持用のγ-アルミナを セルメット1リットル当り150gコートし、その後触 媒としてPtをセルメット1リットル当り1.5gの量 で均一に担持させて作製した。

【表36】

	フィルタエレメント				フィルタ
	材 料	材質	厚さ	充填率	滤過面積
試料T (発明品)	金属不微布 (繊維直径20 μm)	Fe-Cr-Al	0.5 mm	20%	1. 3m²
試料 U (発明品)	金属不機布 (繊維直径20 μm)	Fe-Cr-Al	0.5 nun	20%	1. 3m²
試料V (比較品)	金属不織布 (繊維直径20 μm)	Fe-Cr-Al	0.5 mm	20%	1. 3m²
試料 [(比較品)	コーディエライト	MgO-Al ₂ O ₃ -SiO ₂	0.5 maga	50%	2. 3m²

	材料	材質	充塡率	耐熱性	強度
試料Tの 補強材 2-1、2-3	th/1}	Ni-Cr-Ai + 1-Al ₂ O ₃ +Cu	5%	排気ガス 700℃×100 時間で劣化なし	700 ℃排気ガスによる圧力 (0.3kg/cn²) で破壊なし
試料Uの 補強材 2-1、2-3	セルメット #2	Ni-Cr-Al + r-Al ₂ O ₉ +Pt	5%	排気ガス 700℃×100 時間で劣化なし	700. ℃排気ガスによる圧力 (0.3kg/cm²) で破壊なし

20

セルタット#2は品番で、単位長さ(1インチ)の横切るセル数が11~17個であることを示す。

【0166】各試料について、実施例1で行ったのと同様の耐久試験、再生試験を行った。その結果を表38、表39に示す。なお、捕集性能は3者とも差がなかった。

[0167]

【表38】

耐久試験結果

EXM No.	耐久試験結果(トラップ人口舒気ガス温度 700℃)
試料T	150時間後で破壊無し
BUNNU	150時間後で破壊無し
版料V	120時間後に破壊が認められた
数料 I	150時間後で破壊無し

【0168】 【表39】

再生试験結果

試料No.	再生試験結果
世科 丁	破壊無し
試料リ	敬地無し
. ECRIV	破壊無し
I 科迪	クラック発生

【0169】捕集性能、耐久性、再生性能の各特性を総 て満足するのは試料T、Uの発明品であった。

【0170】試料Tについては、更に、NOの浄化率の評価を行った。

【0171】還元剤としてC、H、を排気ガス中に導入 40 した。排気ガス条件を表40に示す。

[0172]

【表40】

項目	条 件 .
排気ガス中NO濃度	1000pm
排気ガス中C₂H₄ 濃度	250ppm
排気ガス中O ₁ 濃度	2 %
排気ガス温度	250℃

【0173】また、排気ガス温度を250℃に維持した 後、2分間のNO濃度を測定した。その平均値を表41 に示す。

[0174]

【表41】

	NO蟲度
松料丁	500ppm

30 【0175】とのように、試料Tの使用時にはNO濃度 が半減している。

[0176] 試料Uについては、更に、SOFの浄化率の評価を行った。

[0177] 排気ガス温度が250℃および350℃での評価結果を表42に示す。

[0178]

【表42】

	SOF浄化率(%)		
	排気ガス温度250℃	350℃	
ECR TU	4 0	5 0	

【0179】とのように、Ptを触媒として担持させた 試料UではSOF 濃度を40%或は50%低減すること ができた。

【0180】以上の実験結果から、本発明品T及びUは、比較品V、Iと異なり、捕集性能、耐久性能、再生性能のいずれをも満足することが判る。さらに、それに加えて、NOxを低減する機能(発明品T)やSOFを50低減する機能(発明品U)も有しているため、触媒コン

バータを他に設ける必要がなく、ディーゼル排気ガス後 処理装置のトータル面での省スペース化、低コスト化が 実現できる。

33

[0181]

【発明の効果】以上述べたように、本発明のバティキュレートトラップは、耐熱性に優れ、また、小型のもので捕集面積を広く確保できる反面、ガス圧や振動に弱かったフィルタエレメントに、ガス透過の可能な補強材によるフィルタ補強で耐圧性、耐久性を付与したので、また、多重円筒構造のフィルタエレメントに見られる弱点、即ち、排気ガス圧での変形、座屈が生じ易いと言う問題点を、円筒半径の大きい外側の円筒状フィルタの肉圧を増加させることによって解消したので、ディーゼルエンジン用バティキュレートトラップに対する要求特性、即ち、捕集性能、圧損、再生性能、耐久性の総てを満たすものを実現して提供できる。

【0182】また、金属繊維の不織布から成るフィルタ 材の骨格表面にアルミナウィスカーを生成させたもの は、フィルタの目孔がより小さくなり、粒径2μm以下 の浮遊性徴粒子の捕集が可能となる。

【0183】さらに、フィルタ材に、或はそのフィルタ材の片面又は両面に金属製3次元網状構造多孔体を設けてその多孔体に触媒を担持させたものは触媒コンパータを別に設ける必要がなくなるので、排気ガス後処理装置の簡素化、低コスト化も図れる。また、フィルタ骨格部の熱容量が小さいため、触媒の働きも確実になり、環境浄化に関してより優れた効果を期待できる。

【図面の簡単な説明】

【図1】(a): 改善対象のフィルタエレメントの一例 を示す斜視図

(b):同上の縦断断面図

【図2】(a): 改善対象のフィルタエレメントの他の例を示す斜視図

(b):同上の縦断断面図

【図3】(a):改善対象のフィルタエレメントの更に 他の例を示す斜視図

(b): 同上の縦断断面図

*【図4】本発明のパティキュレートトラップ用フィルタ エレメントの実施形態の断面図

【図5】フィルタエレメントの他の実施形態の断面図

【図6】フィルタエレメントの他の実施形態の断面図

【図7】フィルタエレメントの他の実施形態の断面図

【図8】フィルタエレメントの他の実施形態の断面図

【図9】フィルタエレメントの他の実施形態の断面図

【図10】フィルタ骨格にアルミナウィスカーを生成させた状態の模式図

10 【図11】フィルタ断面の拡大概念図

【図12】性能評価用実験装置の概略構成図

【図13】(a):請求項7のフィルタエレメントの一例の概略構成図

(b):請求項7のフィルタエレメントの一例の断面図 【図14】(a):請求項7のフィルタエレメントの他 の例の概略構成図

(b):請求項7のフィルタエレメントの他の例の断面 図

【図15】試料J、Kの最大発生応力とフィルタ半径の 20 関係を示す図表

【図16】試料L、Mの最大発生応力とフィルタ半径の 関係を示す図表

【符号の説明】

1、11、21、31、41 フィルタエレメント 2-1、2-1、2-1、補強材

3 排気ガス導入空間

4 排気ガス導出空間

5 平板フィルタ

6 端板

30 7 ライナ

8 直筒状フィルタ

9 テーパ筒状フィルタ

10 パティキュレートトラップ

301 パティキュレートフィルタ部

302、303 触媒担持部

401 アルミナウィスカー

FB フィルタ骨格

【図4】

【図5】

【図13】

フロントページの続き

(51)Int.Cl.⁶

識別記号 庁内整理番号

FΙ

技術表示箇所

B 0 1 D 46/10

9441-4D

B 0 1 D 46/10

(72)発明者 井原 寛彦

伊丹市昆陽北一丁目1番1号 住友電気工

業株式会社伊丹製作所内

(72)発明者 小端 喜代志

豊田市トヨタ町1番地 トヨタ自動車株式

会社内

(72)発明者 柳原 弘道

豊田市トヨタ町1番地 トヨタ自動車株式

会社内

THIS PAGE BLANK (USPTO)

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)