BERT

Pre-training of Deep Bidirectional Transformers For Language Understanding

Hunner Markus 01503441 Meier Ronja 12433721 Steinegger Benno 12117772

Bidirectional Encoder Representations from Transformers

» Encoder-Only model

¹Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" 2019.

Bidirectional Encoder Representations from Transformers

» Encoder-Only model

¹Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" 2019.

Bidirectional Encoder Representations from Transformers

- » Encoder-Only model using bidirectional attention
 - Deep understanding of input text
 - Excels at NLP tasks like text classification or question answering

¹Devlin, Jacob, et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding" 2019.

» WordPiece Tokenization

- "unhappiness" \rightarrow ["un", "##happiness"], "playing" \rightarrow ["play", "##ing"]
- Small vocabulary → Efficient mapping of text to embeddings & covering of infrequent terms

» Special tokens

- [CLS] Classification token, used as pooling operator to get a single vector per sequence
- [SEP] Used to indicate a second sentence
- [MASK] Used in the masked language model, to predict this word
- [PAD] Added to sequences to ensure all inputs in a batch have the same length

BERT - Model

» Model architecture:

- n layers of stacked transformers
- Every transformer's layer receives as input the output of the previous layer
- Model head depending on problem

» Pre-training & workflow

- Pre-training a large model on huge datasets needs a lot of computation
- Download a pre-trained model, attach a head fit for the problem task, and fine-tune on own dataset

Pre-Training - Motivation

- » For many tasks we do not have much training data
- » Large models need a lot of data to work well

Solution: Train unsupervised on task-agnostic data

- » Train model about meaning of words and patterns in language
- » Train without labels, and instead predict word and sentence positions

- » Take any large text corpus ...
- » ... and form sentence pairs
 - 50% of the time B is the actual next sentence that follows A (labeled as *IsNext*), and 50% of the time it is a random sentence from the corpus (labeled as *NotNext*).

- » Take any large text corpus ...
- » ... and form sentence pairs
 - 50% of the time B is the actual next sentence that follows A (labeled as *IsNext*), and 50% of the time it is a random sentence from the corpus (labeled as *NotNext*).
- » ... and replace 15% of all tokens by [MASK]

- » ... send it through the model and
- » ... give [CLS] token result to Next-Sentence-Prediction (NSP) classifier
- » ... give [MASK] token results to Masked-Language-Modeling (MLM) classifier

- » ... send it through the model and
- » ... all classifier contribute to the loss. \rightarrow They do not learn separately!

- » Someone with lots of compute and time pre-trains a large model ...
- » ... and we download it and fine-tune on our own data.

Fine-Tuning

- » To fine-tune BERT we simply replace the model heads with task-specific ones.
- » For example: Add a Sequence Classification onto the [CLS] token output.
 - We do not need a pooling layer, as we trained the model to encode all necessary information in the [CLS] vector output.
- » Fine-tuning for 2 to 4 epochs is usually sufficient.

Figure: Illustrations of Fine-tuning BERT on Different Tasks.

Figure 4 in [1]

ModernBERT

Important architectural changes

ModernBERT³ - Structural Changes

» Bias Terms

- Disable bias in all linear layers expect the in final decoder linear layer
- Disable in Layer Norms

» Positional Embeddings

Rotary positional Embeddings (RoPE) instead of absolute positional embeddings

» Activation

- GeGLU based on original BERT's GeLU
- Gated-Linear Units based

» Normalization

Pre-normalization block & standard layer normalization to stabilize training

ModernBERT - Model Design

- » Remove NSP
- » Masked Language Modeling (30% instead of 15%; from MosaicBERT)
- » Tokenizer
 - BPE tokenizer based on OLMo
 - Same special tokens (e.g. [CLS], [SEP], ...)
- » Deeper & Narrow Layer
 - 22 (base), 28 (large) layers
- » Higher Context Length of 8192
- » Learning Rate & Batch Size Scheduler

ModernBERT - Efficiency Improvements

- » Attention
 - Alternating Attention: alternates between global and a sliding window attention
 - Flash Attention 3
- » Unpadding
 - Remove padding tokens
- » Use torch.compile

GLUE Fine-tuning

General Language Understanding Evaluation

GLUE²

General Language Understanding Evaluation

- » A whole suite of 9 sentence classification problems in English.
 - 6 classification problems with 2 labels (CoLA, MRPC, QNLI, QQP, RTE, SST2)
 - 2 classification problems with 3 labels (MNLI-m, MNLI-mm)
 - 1 regression problem within values of 1 to 5 (STSB)
- » A set of standardized public datasets.
 - 8 training datasets (Problems MNLI-m, MNLI-mm share a train set)
 - 9 validation datasets
 - 9 tests sets with censored labels

General Language Understanding Evaluation

- » A whole suite of **9 sentence classification problems** in English.
 - 6 classification problems with 2 labels (CoLA, MRPC, QNLI, QQP, RTE, SST2)
 - 2 classification problems with 3 labels (MNLI-m, MNLI-mm)
 - 1 regression problem within values of 1 to 5 (STSB)
- » A set of standardized public datasets.
 - training datasets (Problems MNLI-m, MNLI-mm share a train set)
 - 9 validation datasets
 - 9 tests sets with censored labels

We need a labeled test set to provide results ...

Solution: Extract a holdout from labeled training or validation set to serve as new test set

GLUE - Results of original Paper

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
BERTLARGE	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

"Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set. BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks." [1]

System	$\frac{\mathrm{MNLI}\;(\mathrm{m/mm})}{392\mathrm{k}}$	$\begin{array}{c} { m QQP} \\ { m 363k} \end{array}$	QNLI 108k	$\frac{\text{SST-2}}{67\text{k}}$	CoLA 8.5k	STS-B 5.7k	$\frac{\text{MRPC}}{3.5\text{k}}$	$\begin{array}{c} \text{RTE} \\ \text{2.5k} \end{array}$	Avg.
Current Top 3 Mod	els according to G	LUE lea	aderboard	d:					
Turing ULR v6	92.5/92.1	76.4	96.7	97.5	73.3	93.1	94.2	93.6	89.9
Vega v1	92.1/91.9	76.7	96.7	97.9	73.8	93.1	94.5	92.4	89.9
Turing NLR v5	92.6/92.4	76.4	97.9	97.6	72.6	93.3	93.8	94.1	90.0
Models compared to	o in original paper	:							
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
Results of original I	BERT paper:								
$BERT_{BASE}$	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1
Our reproduction:									
$BERT_{BASE}$	86.4/84.2	87.7	89.4	94.6	54.8	84.9	85.6	64.7	81.4
$\mathrm{BERT}_{\mathrm{LARGE}}$	88.2/85.3	88.2	90.5	94.7	58.8	87.6	88.1	67.5	83.2
Our comparison wit	h ModernBERT:								
$ModernBERT_{BASE}$	88.4/86.9	88.3	90.6	94.1	58.9	89.0	89.7	76.3	84.7
$ModernBERT_{LARGE}$	89.2/87.6	88.7	91.5	94.2	60.2	90.6	90.5	83.1	86.2

System	$\begin{array}{c} \mathrm{MNLI}\;(\mathrm{m/mm}) \\ \mathrm{392k} \end{array}$	$\begin{array}{c} \rm QQP \\ 363k \end{array}$	QNLI 108k	$\frac{\text{SST-2}}{67\text{k}}$	CoLA 8.5k	$\begin{array}{c} {\rm STS\text{-}B} \\ {\rm 5.7k} \end{array}$	$\begin{array}{c} \mathrm{MRPC} \\ \mathrm{3.5k} \end{array}$	RTE 2.5k	Avg.
Current Top 3 Mod	ids according to C	LUE bo	derhouse	ii.					
Turing ULR +6	92.5/92.1	76.4	96.7		73.3	90.3	94.2	90.6	160:0
Weggs will	90.1791.9	76.7	96.7	97.0	73.8	98.1	94.5	90.4	660:0
Turing NER v5	99-6/99-4	76.4	97.9	97.6	72.6	99.3	1803.09	94.1	90.0
Models compared to									
Pre-OpenAl SOTA	90.6790.1	66.1	852.31			961.40	H6:01	40.7	79.0
Bill STM+EL Mo+Ama	76.4/76.1	64.9	756.66	90.4	265:01	70.0	84.9	766.00	
OpmAl GPT	82.1/91.4	70.3	9877.4	99.0	45.4	90:0	90.3	56.0	75.1
Results of original l	BERT paper:								
$BERT_{BASE}$	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1
Our reproduction:									
$BERT_{BASE}$	86.4/84.2	87.7	89.4	94.6	54.8	84.9	85.6	64.7	81.4
$\mathrm{BERT}_{\mathrm{LARGE}}$	88.2/85.3	88.2	90.5	94.7	58.8	87.6	88.1	67.5	83.2
Our comparison wit	th MademaRERT								
Modern/BERT post	98-4/96-9	985.25	90.6	90.1	36.9	660:01	80.7	76.3	86.7
ModernBERT LARGE	90-2/97-6	66.7		94.2	60.2	90.6	90.5	603.3	96.2

System	MNLI (m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Avg.
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Current Top 3 Mod	ick according to G	LUE bu	oleri komeri	h .					
Turing ULR of	92.5/92.1	76.4	96.7		73.3	98.1	94.2	90.6	160:0
Wissen will	98.1791.9	76.7	96.7	97.9	73.8		94.5	90.4	680:0
Overall, we achie	ve comparable	e predi	ction p	erforma	ance.				
Overall, we define	ve comparable	, predi	ction p	CITOITII	aricc.				
Pre-OpenAl SOTA	90.6/90.1	665.1	HS.3		Marin			60.7	79.0
Bid.SCT M - Ed. Me - Actua	76-4/76-1	64.9	79.6	90.4	36:0			766.0	
OpenAl GPT	82.1/81.4	70.3	相节:4	98.2	45.4	90:0			75.1
Results of original l	BERT paper:								
	04 6 /09 4	71.0	00 =	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{BASE}$	84.6/83.4	71.2	90.5	95.5	02.1	00.0	00.9	00.1	19.0
$\frac{\text{BERT}_{\text{BASE}}}{\text{BERT}_{\text{LARGE}}}$	86.7/85.9	71.2 72.1	90.5	94.9	60.5	86.5	89.3	70.1	82.1
									7.0.373
BERT _{LARGE}									7.0.373

Not a valid comparison: We do not evaluate on the same test dataset!

Results of origin	al BERT paper:								
$BERT_{BASE}$	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1
Our reproductio	n:								
$BERT_{BASE}$	86.4/84.2	87.7	89.4	94.6	54.8	84.9	85.6	64.7	81.4
$\mathrm{BERT}_{\mathrm{LARGE}}$	88.2/85.3	88.2	90.5	94.7	58.8	87.6	88.1	67.5	83.2

Not a valid comparison: We do not evaluate on the same test dataset!

System	$\begin{array}{c} \mathrm{MNLI}\;(\mathrm{m/mm})\\ \mathrm{392k} \end{array}$	$\begin{array}{c} \rm QQP \\ 363k \end{array}$	QNLI 108k	SST-2 67k	CoLA 8.5k	$\frac{\text{STS-B}}{5.7\text{k}}$	$\begin{array}{c} \mathrm{MRPC} \\ \mathrm{3.5k} \end{array}$	RTE 2.5k	Avg
Current Top 3 Mod	ids according to G	LUE bo	oderilanai	di-					
Turing ULR of	92.5/92.1	76.4	96.7		73.8	90.1	94.2	90.0	160:0
Visga v1	90.1791.9	76.7	96.7	97.9	75.8	90.1	94.5	19120	160:0
Turing NER v5	92.6/92.4	76.4	97.9	997.46	72.6	99.3	1803.09	94.1	90.0
Models compared to	o in original paper								
Pre-OpenAl SOTA	90.6/90.1	665.1	60.0			961.48	96:01	40.7	79,0
Bid_SCT'M+EL Most Anna	76.4/76.1	64.9	750.00	90.4	36:0	79.3	94.9	766-29	
OpmAl GPT	82.1/91.4	70.3	967:4	95.3	45.4	90:0	H2.3	56/0	75.1
Results of original 1	BERT paper:								
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1
Our reproduction:									
$BERT_{BASE}$	86.4/84.2	87.7	89.4	94.6	54.8	84.9	85.6	64.7	81.4
$\mathrm{BERT}_{\mathrm{LARGE}}$	88.2/85.3	88.2	90.5	94.7	58.8	87.6	88.1	67.5	83.2
Our comparison wit	th ModernBERT:								
$ModernBERT_{BASE}$	88.4/86.9	88.3	90.6	94.1	58.9	89.0	89.7	76.3	84.7
$ModernBERT_{LARGE}$	89.2/87.6	88.7	91.5	94.2	60.2	90.6	90.5	83.1	86.2

System	$\begin{array}{c} \mathrm{MNLI}\;(\mathrm{m/mm}) \\ \mathrm{392k} \end{array}$	$\begin{array}{c} \rm QQP \\ 363k \end{array}$	QNLI 108k	$\frac{\text{SST-2}}{67\text{k}}$	CoLA 8.5k	$\frac{\text{STS-B}}{5.7\text{k}}$	$\frac{\mathrm{MRPC}}{\mathrm{3.5k}}$	RTE 2.5k	Avg.
Current Top 3 Mo	dels according to G	LUE bu	ulerikouse						
Toring ULR of	90.5/90.1	76.4	96.7		79.0	90.1	94.2	90.0	980:0
Vega v1	90.1/91.9	76.7	96.7	97.9	75.8	98.1	94.5	192.4	950:10
Turing NER v5	92.6/92.4	76.4	97:9	97.6	72.6	99.3	903.00	94.1	90.0
Models compared									
ModernBERT	_{ASE} achieves pre	edictio	n perfo	rmanc	e comp	oarable [•]	to BERT	LARGE	
Opening carry	762.1/761.4	781.25	7877 - 48	791.0	40.0	(990):07	752.0	390/01	79.1
Results of original	BERT paper:								
$BERT_{BASE}$	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$\mathrm{BERT}_{\mathrm{LARGE}}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1
Our reproduction:									
$BERT_{BASE}$	86.4/84.2	87.7	89.4	94.6	54.8	84.9	85.6	64.7	81.4
$\mathrm{BERT}_{\mathrm{LARGE}}$	88.2/85.3	88.2	90.5	94.7	58.8	87.6	88.1	67.5	83.2
Our comparison w	ith ModernBERT:								
$ModernBERT_{BASE}$	88.4/86.9	88.3	90.6	94.1	58.9	89.0	89.7	76.3	84.7
$ModernBERT_{LARGE}$	89.2/87.6	88.7	91.5	94.2	60.2	90.6	90.5	83.1	86.2

System	$\begin{array}{c} \mathrm{MNLI}\;(\mathrm{m/mm}) \\ \mathrm{392k} \end{array}$	$\begin{array}{c} \rm QQP \\ 363k \end{array}$	QNLI 108k	$\frac{\text{SST-2}}{67\text{k}}$	CoLA 8.5k	$\begin{array}{c} {\rm STS\text{-}B} \\ {\rm 5.7k} \end{array}$	$\frac{\mathrm{MRPC}}{3.5\mathrm{k}}$	$ m RTE \\ 2.5k$	Avg
Current Top 8 Me	dels arounding to G	LUE bo	uherhouse	i .					
Turing ULR v6	92.5/92.1	76.4	96.7	97.5	73.3	90.1	94.2	90.6	60.0
Turing NLR v5	92.6/92.4	76-4	97.9	97.6	72.6	99.3	90.8	94.1	90.0
Models compared									
🎉 ModernBERT _B	_{ASE} achieves pre	edictio	n perfo	rmance	e comp	arable [.]	to BERT	LARGE	
Openas Gra	89.1/81.4	77801-28	物作:每	793.18	90-9	(980):01	ME. 0	7889/87	79:1
ModernBERT BERT BASE	_{BASE} achieves siç	gnifica	ntly be	tter run	itime p	erforma	nce tha	n	
									10000-0
Our reproduction:									7788-0
BERT BASE	96.4/84.2	87.7	99.4	94.6	54.6	84.9	95.6	64.7	81.4
Our reproduction: BERT _{LARGE}	88.2/85.3	88.2	90.5	94.7	58.8	87.6	88.1	67.5	83.2
$\mathrm{BERT}_{\mathrm{LARGE}}$	96.4/84.2	88.2	90.5	94.7	58.8	87.6	88.1	67.5	83.2
$\mathrm{BERT}_{\mathrm{LARGE}}$	88.2/85.3	88.2 88.3	90.5	94.7	58.8 58.9	87.6 89.0	88.1 89.7	67.5	83.2
BERT _{LARGE} Our comparison w	88.2/85.3 rith ModernBERT: 88.4/86.9	0,00,0,000,000	9/9/308444	1908 1907 1003	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	30 30 (139-20-50-5)	100 mm	4.10000

System	$\begin{array}{c} \mathrm{MNLI}\;(\mathrm{m/mm}) \\ \mathrm{392k} \end{array}$	$\begin{array}{c} \rm QQP \\ 363k \end{array}$	QNLI 108k	$\frac{\text{SST-2}}{67\text{k}}$	CoLA 8.5k	STS-B 5.7k	$\frac{\mathrm{MRPC}}{3.5\mathrm{k}}$	RTE 2.5k	Avg
Current Top 3 Mod	els according to G	LUE lea	derboar	d:					
Turing ULR v6	92.5/92.1	76.4	96.7	97.5	73.3	93.1	94.2	93.6	89.9
Vega v1	92.1/91.9	76.7	96.7	97.9	73.8	93.1	94.5	92.4	89.9
Turing NLR v5	92.6/92.4	76.4	97.9	97.6	72.6	93.3	93.8	94.1	90.0
Models compared to	o in original paper								
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
Bosolts of original	MERCE property								
BERT HAR	84.6783.4	71.2	90.5		50.1	95.8	886.39	66.4	790:60
DESTABLE	96.7/95.9		992.7	94:9	600:5	96.5	891.3	70.1	62.1
Our reproduction:									
BERTMAN	96.4/94.7	47.7	90.4	94.6	54.6	94.9	95.6	94.7	80.4
BERT LARGE	88-2/85-3	88.2	90.5	94.7	38.6	87.6	66.1	67.5	60.2
Our comparison wit	th ModernBERT								
ModernBERTmose	98-4/96-9	86.3	380.6	94.1	56:9	60:0	89.7	76.3	84.7
Modern/BERT LABOR	80-2797.0	88.7		94.2	60.2	961.61	90.5	60.3	96.2

outs of original BESET or

System	$\begin{array}{c} \mathrm{MNLI}\;(\mathrm{m/mm}) \\ \mathrm{392k} \end{array}$	$\begin{array}{c} \rm QQP \\ 363k \end{array}$	QNLI 108k	$\frac{\text{SST-2}}{67\text{k}}$	CoLA 8.5k	STS-B 5.7k	$\begin{array}{c} \mathrm{MRPC} \\ \mathrm{3.5k} \end{array}$	RTE 2.5k	Avg.
Current Top 3 Mod	els according to G	LUE lea	derboard	d:					
Turing ULR v6	92.5/92.1	76.4	96.7	97.5	73.3	93.1	94.2	93.6	89.9
Vega v1	92.1/91.9	76.7	96.7	97.9	73.8	93.1	94.5	92.4	89.9
Turing NLR v5	92.6/92.4	76.4	97.9	97.6	72.6	93.3	93.8	94.1	90.0
Models compared to	o in original paper								
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1

Many of the task in the GLUE benchmark can not be considered particularly "hard" problems anymore.

SQuAD Fine-tuning

Stanford Question Answering Dataset

SQuAD dataset

- Reading comprehension dataset
- Questions posed by crowdworkers on a set of Wikipedia articles
- Training dataset: 87599 | Validation dataset: 10570
- Focus on SQuAD 1.1 task
 - Extract the correct answer from a context to a given question
- SQuAD 2.0
 - Extends 1.1 by considering the possibility that no short answer exists in the provided paragraph
 - → more realistic

SQuAD 1.1 results of the BERT paper

System	D	ev	Te	st
•	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	ed			
BiDAF+ELMo (Single)	_	85.6	-	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	_	_
BERT _{LARGE} (Single)	84.1	90.9	1-11	_
BERT _{LARGE} (Ensemble)	85.8	91.8	-	_
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	85.1	91.8
BERT _{LARGE} (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

SQuAD 1.1 results of the BERT paper

System	D	ev	Te	st
•	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-		82.3	91.2
#1 Ensemble - nlnet	=	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	ed			
BiDAF+ELMo (Single)	_	85.6	_	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	_	_
ToT _{LARGE} (Single)	84.1	90.9	_	_
BEKILARGE (Ensemble)	85.8	91.8	-	_
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	01 1	07.1	^-
PLNILARGE (Ens.+TriviaQA)	86.2	92.2	87.4	93.2

TriviaQA problem

with Training loss

Paper does not specify which 7 pre-training checkpoints and which fine-tuning seeds are used

SQuAD 1.1 results of the BERT paper

System	Dev		Test	
•	EM	F1	EM	F1
Top Leaderboard System	s (Dec	10th,	2018)	
Human	-	-	82.3	91.2
#1 Ensemble - nlnet	-	-	86.0	91.7
#2 Ensemble - QANet	-	-	84.5	90.5
Publishe	ed			
BiDAF+ELMo (Single)	_	85.6	-	85.8
R.M. Reader (Ensemble)	81.2	87.9	82.3	88.5
Ours				
BERT _{BASE} (Single)	80.8	88.5	_	_
BERT _{LARGE} (Single)	84.1	90.9	-	_
DERT _{LAKUE} (Ensemble)	85.8	91.8		
BERT _{LARGE} (Sgl.+TriviaQA)	84.2	91.1	95.1	01.9
BERT _{LARGE} (Ens. TriviaQA)	06.2	02.2	97.4	02.2

SQuAD 1.1 our results

Model	EM		F1	
	Paper	Our	Paper	Our
BERT-Base	80.8	79.9	88.5	87.7
BERT-Large	84.1	83.3	90.9	90.5

SWAG Fine-tuning

A Large-Scale Adversarial Dataset for Grounded Commonsense Inference

SWAG dataset

- » Situations With Adversarial Generations.
- » designed for grounded common sense inference
- » Predict next plausible sequence/situation
 - Generated from video captions
- » Multiple-choice format (1 out of 4 is correct)
 - AutoModelForMultipleChoice, own class for ModernBERT and GPT-2
 - Dropout, Linear Classifier (hidden dimension \rightarrow 4) and Soft max
- » Adversarial Filtering

SWAG results

Model	Validation		Test		Parameters	
	Paper	Our	Paper	Our		
BERT-Base	81.6	76.6	-	76.1	110M	
BERT-Large	86.6	79.3	86.3	80.8	340M	
OpenAI GPT	-	66.8	78.0	66.2	117M	
ModernBERT-base	-	77.6	-	77.8	149M	
${\bf ModernBERT\text{-}base}_{xavier}$	-	77.7	-	78.0	149M	
ModernBERT-large	-	82.0	-	82.1	395M	
DeBERTa-v3-base	-	83.6	-	83.4	100M	

SWAG

SWAG results

Model	Validation		Test		Parameters	
	Paper	Our	Paper	Our		
BERT-Base	81.6	76.6	_	• We used a different and smaller version of GPT		$\overline{0}$ M
BERT-Large	86.6	79.3	86.3		ن 40M	
OpenAI GPT	-	66.8	78.0	66.2	117M	
ModernBERT-base	_	77.6	_	77.8	1	49M
${\bf ModernBERT\text{-}base}_{xavier}$	-	77.7	_	78.0	1	49M
${\bf Modern BERT\text{-} large}$	_	82.0	_	82.1	395M	
DeBERTa-v3-base	-	83.6	_	83.4	1	00M

SWAG results

Model	Validation		Test		Parameters
	Paper	Our	Paper	Our	
BERT-Base	81.6	76.6	_	76.1	110M
BERT-Large	86.6	79.3	86.3	80.8	340M
OpenAL GPT	_	66.8	78.0	66.2	117M
Current SOTA: DeBERTa-Large attention and an enhanced mas	angled	77.8	149M		
attention and an emianced mas		78.0	149M		
ModernBŁ. "ge	-	82.0	_	82.1	395M
DeBERTa-v3-base	-	83.6	_	83.4	100M

SNLI Fine-tuning

Stanford Natural Language Inference

SNLI dataset

- » Stanford Natural Language Inference
- » 570k human written English sentence pairs
- » Text + Hypothesis → Judgement (Contradiction, Neutral, Entailment)
- » Custom Class *NLIClassifier*
 - Adds a linear classification layer after BERT
 - ullet Would have been also possible with AutoModelForSequenceClassification

SNLI Results

» Very high accuracy for BERT_{BASE}: 90.4%

Due to the size (570k) and high performance of BERT_{BASE}, we didn't finetune BERT_{LARGE}

Thank you for your attention.

Implementation of experiments:

https://github.com/markhun/2024W-DLNLP-BERT

Pre-Training

- » ... send it through the model and
- » ... give [CLS] token result to Next-Sentence-Prediction (NSP) classifier

Pre-Training

- » ... send it through the model and
- » ... give [MASK] token results to Masked-Language-Modeling (MLM) classifier

GLUE Fine-tuning (extended)

General Language Understanding Evaluation

GLUE²

General Language Understanding Evaluation

- » A whole suite of 11 sentence classification problems in English.
 - 1 Diagnostic Set (AX)
 - 7 classification problems with 2 labels (CoLA, MRPC, QNLI, QQP, RTE, SST2, WNLI)
 - 2 classification problems with 3 labels (MNLI-m, MNLI-mm)
 - 1 regression problem within values of 0 to 5 (STSB)
- » A set of standardized public datasets.
 - 9 training datasets (Problems MNLI-m, MNLI-mm and AX share the same training dataset)
 - 10 validation datasets (No validation dataset provided for AX)
 - 11 tests sets with censored labels

GLUE²

General Language Understanding Evaluation

- » A whole suite of 11 sentence classification problems in English.
- Considered problematic as it includes adversarial items

- 1 Diagnostic Set (AX)
- 6 / classification problems with 2 labels (CoLA, MRPC, QNLI, QQP, RTE, SST2, WNLt)
- 2 classification problems with 3 labels (MNLI-m, MNLI-mm)
- 1 regression problem within values of 0 to 5 (STSB)
- » A set of standardized public datasets.
 - 9 training datasets (Problems MNLI-m, MNLI-mm and AX share the same training dataset)
 - 10 validation datasets (No validation dataset provided for AX)
 - 11 tests sets with censored labels

Input sequence for SQuAD 1.1

Example of the training dataset

```
"answers": {
  "answer_start": [1],
  "text": ["This is a test text"]
"context": "This is a test context.",
"id": "1",
"question": "Is this a test?",
"title": "train test"
```

 Validation dataset allows several possible answers for each sample