2020年度大問3

hari64boli64 (hari64boli64@gmail.com)

2023年5月1日

1 問題

$$L = K[x_1, x_2, \cdots, x_n, x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}]$$

$$R = K[x_1, x_2, \cdots, x_n, y_1, y_2, \cdots, y_n]$$

2 解答

(1)

以下の二つを言えばよい。

- $\varphi^{-1}(J)$ は加法について部分群である J も加法について L の部分群であるので明らか。
- $r \in \varphi^{-1}(J), x \in R \Rightarrow rx \in \varphi^{-1}(J)$ $\varphi(rx) = \varphi(r)\varphi(x) \in J \quad (: \varphi(r) \in J, \varphi(x) \in L) \text{ より従う}.$
- (2)

自明

(3)

 $I \subset \text{Ker}\varphi$ は代入すれば明らか。

 $\mathrm{Ker} \varphi \subset I$ は、(2) より $r \neq 0$ ならば $\varphi(p) \neq 0$ が言えればよい。 説明が難しいが、 x_i と x_j,y_j が無関係だということを言えば ok? (自信なし) 後半は準同型定理より、

$$R/\mathrm{Ker}\varphi \cong \mathrm{Im}\varphi$$

 $\Rightarrow R/I \cong L$

3 知識

斜体ならば可換性を課さないが、体ならば可換性がある。 体の定義は以下の通り。

定義(体)-

空でない集合 K が体 (field) であるとは、

- 1. K が単位元を持つ可換環
- 2. K の 0 でない任意の元が乗法逆元を持つ, すなわち, $a \neq 0$ に対し, $aa^{-1} = 1$ となるものが存在する。言い換えると $K^{\times} = K \setminus \{0\}$ である
- の 2 つが成り立つことをいう。ただし, K^{\times} とは K の乗法群を指す。

この時、右イデアルと左イデアルは同じになる。

イデアルの定義は以下の通り。

定義 (イデアル) -

Rを環とし、 $I \subset R$ とする。I について、

- 1. I は加法について部分群である
- $2. r \in R, x \in I \Rightarrow rx \in I$
- 3. $r \in R, x \in I \Rightarrow xr \in I$
- ...(中略)...,1,2,3 が成り立つとき, 両側イデアル (two-sided ideal) という。

 $S(\subset R)$ から生成された有限生成イデアルの一般形は以下の通り。

$$(S) = \{r_1 s_1 + \dots + r_n s_n | r_k \in R, s_k \in S, n \ge 1\}$$

群の準同型定理の主張は以下の通り。

群準同型 $f:G_1\to G_2$ に対して、写像 $F:G_1/\mathrm{Ker}f\to\mathrm{Im}f$ は群準同型であり、特に、 $G_1/\mathrm{Ker}f\cong\mathrm{Im}f$ である。

参考文献

[1] 数学の景色. "体の定義と具体例 4 つ".2022 年 6 月 13 日.https://mathlandscape.com/field/

[2] 数学の景色. "イデアル (環論) とは〜定義・具体例・基本的性質の証明〜".2022 年 6 月 19日.https://mathlandscape.com/ideal/