Lab Assignment – Chapter 3: Model Training and Evaluation

Q1. Data Holdout

Load the dataset auto-mpg.csv and perform the following tasks:

- 1. Print the shape of the dataset.
- 2. Split the dataset into training (80%) and testing (20%) subsets.
- 3. Use a random state for reproducibility.
- 4. Print the training and test sets and their length.

Q2. Implementing 5-Fold Cross-Validation

Using the dataset btissue.csv, do the following:

- 1. Create a 5-fold cross-validation.
- 2. For each fold (starting with 0), print:
 - fold number
 - indices of the training set
 - indices of the test set
- 3. Print the training set and test set and their length for the 3rd iteration.

Q3. Bootstrap Sampling

With the dataset btissue.csv, perform the following:

- 1. Extract the predictors.
- 2. Generate a bootstrap sample of size 100.
- 3. Display the first 10 rows of the resampled data.

Q4. Random Forest Classification and Evaluation

Using the dataset btissue.csv, carry out the steps below:

- 1. Separate predictors and target.
- 2. Perform a holdout split (80% training, 20% testing).
- 3. Train a Random Forest Classifier.
- 4. Evaluate the model using:
 - accuracy_score
 - confusion matrix

Q5. Regression and Evaluation

Load the dataset auto mpg.csv and perform the following tasks:

- 1. Remove all rows where value of any column is 'NaN'.
- 2. Separate predictors and target.

- 3. Perform a holdout split (80% training, 20% testing).
- 4. Train a Linear Regression Model.
- 5. Evaluate the model using:
 - mean_squared_error
 - r2_score

Q6. Clustering and Quality Measures

Using the dataset Dataset_spine.csv:

- 1. Exclude the class (last) column to form predictor variables.
- 2. Apply K-Means clustering with n_clusters=3 and random_state=123.
- 3. Compute and print:
 - v-measure score
 - Silhouette score