CSE 15 Discrete Mathematics

Lecture 13 – Growth of Functions

Announcement

- HW #6 out
 - Due 5pm 10/30 (Tues) with 1 extra day of re-submission.
 - Write NEATLY!!!
- Reading assignment
 - ∘ Ch. 4.1 4.3 of textbook

Some Important Points about Big-O Notation

- If one pair of witnesses is found, then there are infinitely many pairs.
- ▶ E.g., we can always make the k or the C larger and still maintain the inequality $|f(x)| \le C|g(x)|$.
 - Any pair C' and k' where C < C' and k < k' is also a pair of witnesses since $|f(x)| \le C|g(x)| \le C'|g(x)|$ whenever x > k' > k.
- You may see "f(x) = O(g(x))" instead of "f(x) is O(g(x))."
- It is ok to write $f(x) \in O(g(x))$, because O(g(x)) represents the set of functions that are O(g(x)).
- Usually, we will drop the absolute value sign since we will always deal with functions that take on positive values.

Using the Definition of Big-O Notation

Example: Show that $f(x) = x^2 + 2x + 1$ is $O(x^2)$.

Solution: Since when x > 1, $x < x^2$ and $1 < x^2$

$$0 < x^2 + 2x + 1 < x^2 + 2x^2 + x^2 = 4x^2$$

- Can take C = 4 and k = 1 as witnesses to show that f(x) is $O(x^2)$ (see graph on next slide)
- ▶ Alternatively, when x > 2, we have $2x \le x^2$ and $1 < x^2$. Hence, $0 \le x^2 + 2x + 1 \le x^2 + x^2 + x^2 = 3x^2$ when x > 2.
 - Can take C = 3 and k = 2 as witnesses instead.

Illustration of Big-O Notation

$$f(x) = x^2 + 2x + 1$$
 is $O(x^2)$

The part of the graph of $f(x) = x^2 + 2x + 1$ that satisfies $f(x) < 4x^2$ is shown in blue.

Big-O Notation

- ▶ Both $f(x) = x^2 + 2x + 1$ and $g(x) = x^2$ are such that f(x) is O(g(x)) and g(x) is O(f(x)). We say that the two functions are of the *same order*. (More on this later)
- If f(x) is O(g(x)) and h(x) is larger than g(x) for all positive real numbers, then f(x) is O(h(x)).
 - •Note that if $|f(x)| \le C|g(x)|$ for x > k and if |h(x)| > |g(x)| for all x, then $|f(x)| \le C|h(x)|$ if x > k. Hence, f(x) is O(h(x)).
- The goal is to select the function g(x) in O(g(x)) as small as possible (up to multiplication by a constant, of course).

Big-O Estimates for Polynomials

Example: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$. Then f(x) is $O(x^n)$.

$$\begin{aligned} \textbf{Proof:} \quad |f(\mathbf{x})| &= |a_n x^n + a_{n-1} \ x^{n-1} + \dots + a_1 x^1 + a_0| & \text{Uses triangle inequality, an exercise} \\ &\leq |a_n| \ x^n + |a_{n-1}| \ x^{n-1} + \dots + |a_1| \ x^1 + |a_0| & \text{in Section 1.8.} \\ &= x^n \left(|a_n| + |a_{n-1}| \ /x + \dots + |a_1| \ /x^{n-1} + |a_0| \ /x^n \right) \\ &\text{Assuming $x > 1$} &\leq x^n \left(|a_n| + |a_{n-1}| + \dots + |a_1| + |a_0| \right) \end{aligned}$$

- Take $C = |a_n| + |a_{n-1}| + \dots + |a_1| + |a_0|$ and k = 1. Then f(x) is $O(x^n)$.
- The leading term $a_n x^n$ of a polynomial dominates its growth.

Big-O Estimates for some Important Functions

Example: Use big-O notation to estimate the sum of the first n positive integers.

Solution:
$$1 + 2 + \cdots + n \le n + n + \cdots + n = n^2$$

 $1 + 2 + \cdots + n$ is $O(n^2)$ taking $C = 1$ and $k = 1$.

Example: Use big-O notation to estimate the factorial function

Solution:
$$f(n) = n! = 1 \times 2 \times \cdots \times n$$
.

$$n! = 1 \times 2 \times \cdots \times n < n \times n \times \cdots \times n = n^n$$

$$n!$$
 is $O(n^n)$ taking $C=1$ and $k=1$.

Big-O Estimates for some Important Functions

Example: Use big-O notation to estimate log(n!)

Solution: Given that $n! \leq n^n$ (previous slide)

then $\log(n!) \leq n \cdot \log(n)$

Hence, $\log(n!)$ is $O(n \cdot \log(n))$ taking C = 1 and k = 1.

Display of Growth of Functions

Note the difference in behavior of functions as *n* gets larger

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.
 - See next slide for proof
- If $f_1(x)$ and $f_2(x)$ are both O(g(x)) then $(f_1 + f_2)(x)$ is O(g(x)).
 - See text for argument
- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1f_2)(x)$ is $O(g_1(x)g_2(x))$.
 - See text for argument

Combinations of Functions

- If $f_1(x)$ is $O(g_1(x))$ and $f_2(x)$ is $O(g_2(x))$ then $(f_1 + f_2)(x)$ is $O(\max(|g_1(x)|, |g_2(x)|))$.
 - By the definition of big-O notation, there are constants C_1, C_2, k_1, k_2 such that $|f_1(x)| \le C_1 |g_1(x)|$ when $x > k_1$ and $|f_2(x)| \le C_2 |g_2(x)|$ when $x > k_2$. $|(f_1 + f_2)(x)| = |f_1(x) + f_2(x)|$ by the triangle inequality $|a + b| \le |a| + |b|$ $|f_1(x)| + |f_2(x)| \le C_1 |g_1(x)| + C_2 |g_2(x)|$ $\le C_1 |g(x)| + C_2 |g(x)|$ where $g(x) = \max(|g_1(x)|, |g_2(x)|)$ $= (C_1 + C_2) |g(x)|$ where $C = C_1 + C_2$
 - Therefore $|(f_1 + f_2)(x)| \le C/g(x)|$ whenever x > k, where $k = \max(k_1, k_2)$.

Big-Omega Notation

 Ω is the upper case version of the lower case Greek letter ω .

Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. We say that f(x) is $\Omega(g(x))$

if there are constants C and k such that

$$|f(x)| \ge C|g(x)|$$
 when $x > k$.

- We say that "f(x) is big-Omega of g(x)."
- ▶ Big-O gives an upper bound on the growth of a function, while Big-Omega gives a lower bound. Big-Omega tells us that a function grows at least as fast as another.
- f(x) is $\Omega(g(x))$ if and only if g(x) is O(f(x)). This follows from the definitions. See the text for details.

Big-Omega Notation

Example: Show that $f(x) = 8x^3 + 5x^2 + 7$ is $\Omega(g(x))$ where $g(x) = x^3$.

Solution: $f(x) = 8x^3 + 5x^2 + 7 \ge 8x^3$ for all positive real numbers x.

• Is it also the case that $g(x) = x^3$ is $O(8x^3 + 5x^2 + 7)$?

Big-Theta Notation

 Θ is the upper case version of the lower case Greek letter θ .

Definition: Let f and g be functions from the set of integers or the set of real numbers to the set of real numbers. The function f(x) is $\Theta(g(x))$ if f(x) is O(g(x)) and f(x) is $\Omega(g(x))$.

• f(x) is $\Theta(g(x))$ if and only if there exists constants C_1 , C_2 and k such that $C_1g(x) < f(x) < C_2g(x)$ if x > k. This follows from the definitions of big-O and big-Omega.

Big Theta Notation

Example: Show that the sum of the first n positive integers is $\Theta(n^2)$.

Solution: Let $f(n) = 1 + 2 + \cdots + n$.

- We have already shown that f(n) is $O(n^2)$.
- To show that f(n) is $\Omega(n^2)$, we need a positive constant C such that $f(n) > Cn^2$ for sufficiently large n. Summing only the terms greater than n/2 we obtain the inequality

$$1 + 2 + \dots + n \ge \lceil n/2 \rceil + (\lceil n/2 \rceil + 1) + \dots + n$$

$$\ge \lceil n/2 \rceil + \lceil n/2 \rceil + \dots + \lceil n/2 \rceil$$

$$= (n - \lceil n/2 \rceil + 1) \lceil n/2 \rceil$$

$$\ge (n/2)(n/2) = n^2/4$$

Taking $C = \frac{1}{4}$, $f(n) > Cn^2$ for all positive integers n. Hence, f(n) is $\Omega(n^2)$, and we can conclude that f(n) is $\Theta(n^2)$.

Big-Theta Notation

Example: Show that $f(x) = 3x^2 + 8x \log x$ is $\Theta(x^2)$.

Solution:

- $3x^2 + 8x \log x \le 11x^2 \text{ for } x > 1$, since $0 \le 8x \log x \le 8x^2$.
 - Hence, $3x^2 + 8x \log x$ is $O(x^2)$.
- x^2 is clearly $O(3x^2 + 8x \log x)$ \leftarrow O should be OMEGA
- Hence, $3x^2 + 8x \log x$ is $\Theta(x^2)$.

Big-Theta Estimates for Polynomials

Theorem: Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_o$ where a_0, a_1, \ldots, a_n are real numbers with $a_n \neq 0$. Then f(x) is of order x^n (or $\Theta(x^n)$). (The proof is an exercise.)

Example:

The polynomial $f(x) = 8x^5 + 5x^2 + 10$ is order of x^5 (or $\Theta(x^5)$).

The polynomial $f(x) = 8x^{199} + 7x^{100} + x^{99} + 5x^2 + 25$ is order of x^{199} (or $\Theta(x^{199})$).