Insights into Cystic Fibrosis

Jamie Morton, University of California, San Diego

Review on Regression

Review on Regression

n = number of measurements

p = number of variables measured

Assumptions

Over-determined system (n>>p)

• Independence between measurements

Compositionality

Assumptions

Over-determined system (n>>p)

• Independence between measurements

Compositionality

Occams Razor

High dimensional variables

- Genetic data
 - Thousands of variables
 - Hundreds of samples

- Two solutions
 - 1. Regularization wisely choose a subset of variables
 - 2. Multivariate response

High dimensional variables

- Genetic data
 - Thousands of variables
 - Hundreds of samples

- Two solutions
 - 1. Regularization wisely choose a subset of variables
 - 2. Multivariate response

Univariate response

n = number of measurements

p = number of variables measured

Only one variable at a time!

Multivariate response

Y =

y_{00}	<i>y</i> ₀₁	•••	y_{0D}	
y ₁₀	y ₁₁	•••	y_{1D}	
•••	•••	•••	•••	_
y_{n0}	y_{n1}		y_{nD}	

n x 1

Response

(gene abundances)

n = number of measurements

p = number of covariates measured

D = number of variables measured

X

1	<i>x</i> ₁₁	•••	x_{1p}
•••	•••	•••	
1	x_{n1}	•••	x_{np}

В

β_{00}	β_{01}	•••	β_{0D}
β_{10}	β_{11}	•••	β_{0D}
	•••		•••
β_{p0}	β_{p1}		β_{pD}

nxp

Covariates

(BMI, age, sex, ...)

 $p \times D$

Coefficients

Can encode categorical variables

Advantages

- Effectively avoids over parameterization
 - n >> p
 - But always try to run cross validation to confirm
 - Train model on subset of measurements
 - Try to predict the remaining measurements

Build models with many covariates

Assumptions

Over-determined system (n>>p)

• Independence between measurements

Compositionality

Independence

...

• Independence is violated

•••

- Samples depend on person
 - Drawn from different distributions

Time 1

Time 2

Time t

Linear Mixed Effects Models

$$Y = X\beta + e$$

Linear Regression

$$Y = X\beta + Z\mu + e$$
 Linear Mixed Effects Model

Fixed effects

Random effects

(i.e. sex)

(i.e. test score)

Fixed effect: constant value

Random effect: value varies

Linear Mixed Effects Models

- Fit multiple regressions
 - One per individual

Assumptions

Over-determined system (n>>p)

• Independence between measurements

Compositionality

Compositionality

We're dealing with proportions

• Thus all of the our samples live in the simplex

Compositionality

This breaks regression

- Cannot predict who's growing/dying
- Solutions must be restricted to the simplex

Time point 2

The isometric log ratio transform

$$b_i = \sqrt{\frac{|i_L||i_R|}{|i_L| + |i_R|}} \log \left(\frac{g(i_L)}{g(i_R)}\right)$$

$$g(x) = \sqrt[k]{x_1 \dots x_k}$$
 Geo

Geometric mean

Recap

• Multivariate response resolves Occam's razor

• Linear mixed effects models resolves sample dependence issue

• ILR transform resolves compositionality problem

Lesson Plan

- Perform ILR transform
 - Build tree based on pH hierarchical clustering
 - i.e. group organisms that live in similar pH together
- Build Multivariate Response Linear Mixed Effects Model

$$Y = X\beta + Z\mu + e$$

Microbial proportions pH Patient id

Software

https://biocore.github.io/gneiss/

