Reti di calcolatori (a.a. 2006/07 – quarto appello)

Per la soluzione <u>usare al più un foglio protocollo</u>, indicando in alto e in STAMPATELLO: cognome, nome, numero di matricola e corso (A o B). Non è consentito usare materiale didattico di alcun tipo.

Quesiti - Rispondere in maniera concisa ma esauriente ai seguenti quesiti.

- Q1) Indicare quali sono le invocazioni di primitive (offerte da altri servizi) effettuate dal TCP di un server S per accettare una richiesta di connessione.
- Q2) Si spieghi quale è il ruolo di ARP.
- Q3) Si spieghi in che cosa consiste la tecnica di "spoofing".

Esercizio 1.

Si assuma che un mittente TCP rappresenti il suo buffer (di uscita) mediante un array out di byte e mediante due indici base e next, indicanti rispettivamente il byte piu vecchio ancora "in volo" e il prossimo numero di byte utilizzabile. Si assuma inoltre che la dimensione corrente della finestra di congestione sia mantenuta in una variabile cw.

Si scriva un frammento di <u>pseudo-codice</u> che illustri come vengono modificati OUT, base, next e CW:

- a) quando TCP riceve una richiesta di inviare un array R contenente R.size() byte di dati. e
- b) quando TCP riceve un riscontro positivo per il byte con numero di sequenza x.

Per semplicita si ignori il meccanismo di controllo del flusso.

Esercizio 2.

Si consideri la seguente rete, i cui nodi utilizzano un algoritmo di routing distance vector (senza poisoned reverse):

- a) Si illustri la tabella delle distanze (comprensiva dei vettori ricevuti dagli altri nodi) del nodo E nel momento in cui tutti i nodi hanno raggiunto uno stato di quiescenza.
- b) Si supponga adesso che il costo del link DE diventi 3. Si illustri il primo aggiornamento della tabella delle distanze effettuato dal nodo E.

Traccia della soluzione

Q1) Il TCP di S, attenderà di ricevere un primo segmento S1 di syn, a cui risponderà con un segmento S2 di syn+ack per attendere infine di ricevere un segmento S3 (di riscontro di S2). La spedizione e la ricezione di segmenti avverrà utilizzando le primitive offerte dal servizio sottostante IP, per cui le invocazioni effettuate dal TCP di S saranno del tipo:

```
<indirizzo_client,S1> = IP_receive(6);
IP_send (indirizzo_client, 6, S2);
<indirizzo_client,S3> = IP_receive(6);
```

- **Q2)** Il ruolo del protocollo ARP è convertire indirizzi di livello network in indirizzi di livello link, tipicamente indirizzi IP in indirizzi MAC.
- Q3) La tecnica di "spoofing" consiste nel generare pacchetti IP direttamente dal livello applicazione, inserendo come indirizzo IP sorgente un indirizzo diverso da quello della macchina che lo ha generato.

Esercizio 1.

```
Ignoriamo per semplicità la circolarità del buffer.
```

```
if ((next+R.size(-base)<=CW) {</pre>
     //se controllo congestione consente di spedire l'intero array
     for (i=0;i<R.size();i++)</pre>
           OUT[next+i] = R[i]; //memorizzo byte spediti in OUT
     next = next + R.size(); //aggiorno next
}
else if ((next-base)<=CW) {</pre>
           //se posso spedire solo parte dell'array
           for (i=0;i<CW-(next-base);i++){</pre>
                OUT[next+i] = R[i]; //memorizzo byte spediti in OUT
                next = next + 1; //aggiorno next
b)
if ((x>base)&&(x<=next)){//se si tratta di un riscontro positivo</pre>
                           //aggiorno next
     base = x;
     if (slowStart==1)
                           //aggiorno CW
           CW = CW + MSS;
     else CW = CW + MSS*(MSS/CW);
}
```

Esercizio 2.

(a)	Α	В	С	D
С	1	2	0	1
D	2	3	1	0
Е	3_{D}	4 _D	2 _D	1 _D

(b)	Α	В	C	D
С	1	2	0	1
D	2	3	1	0
E	4 _C	5 _C	3 _C	3_D