2024 新高考 II 卷高考真题

数

本试卷共10页,19小题,满分150分.

注意事项:

- 1. 答题前, 先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上, 并将准考证号条形码粘 贴在答题卡上的指定位置.
- 2. 选择题的作答: 每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑. 写在试卷、草稿纸 和答题卡上的非答题区域均无效.
- 3. 填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内. 写在试卷、草稿纸和答题 卡上的非答题区域均无效.
- 4. 考试结束后,请将本试卷和答题卡一并上交.
- 一、单项选择题: 本大题共 8 小题,每小题 5 分,共 40 分. 在每小题给出的四个选项中,只有一个选 项是正确的. 请把正确的选项填涂在答题卡相应的位置上.
- 1. 已知z = -1 i,则|z| = (

C. $\sqrt{2}$

- D. 2
- 2. 已知命题 *p*: $\forall x \in \mathbf{R}$, |x+1| > 1; 命题 *q*: $\exists x > 0$, $x^3 = x$, 则(
- A. p和 q都是真命题

B. $\neg p$ 和 q 都是真命题

C. p和 $\neg q$ 都是真命题

- D. $\neg p$ 和 $\neg q$ 都是真命题
- 3. 已知向量 \vec{a} , \vec{b} 满足 $|\vec{a}| = 1$, $|\vec{a} + 2\vec{b}| = 2$, 且 $(\vec{b} 2\vec{a}) \perp \vec{b}$, 则 $|\vec{b}| = ($

- B. $\frac{\sqrt{2}}{2}$ C. $\frac{\sqrt{3}}{2}$
- D. 1
- 4. 某农业研究部门在面积相等的 100 块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位: kg)并 部分整理下表

亩产	[900,	[950,	[1000,	[1100,	[1150,
量	950)	1000)	1050)	1150)	1200)
频数	6	12	18	24	10

据表中数据,结论中正确的是()

- A. 100 块稻田亩产量的中位数小于 1050kg
- B. 100 块稻田中亩产量低于 1100kg 的稻田所占比例超过 80%
- C. 100 块稻田亩产量的极差介于 200kg 至 300kg 之间
- D. 100 块稻田亩产量的平均值介于 900kg 至 1000kg 之间
- 5. 已知曲线 C: $x^2 + y^2 = 16$ (y > 0),从 C上任意一点 P向 x轴作垂线段 PP', P'为垂足,则线段 PP'

的中点 M的轨迹方程为()

A.
$$\frac{x^2}{16} + \frac{y^2}{4} = 1 \quad (y > 0)$$

B.
$$\frac{x^2}{16} + \frac{y^2}{8} = 1 \quad (y > 0)$$

C.
$$\frac{y^2}{16} + \frac{x^2}{4} = 1 \quad (y > 0)$$

D.
$$\frac{y^2}{16} + \frac{x^2}{8} = 1 \quad (y > 0)$$

6. 设函数 $f(x) = a(x+1)^2 - 1$, $g(x) = \cos x + 2ax$, 当 $x \in (-1,1)$ 时, 曲线 y = f(x) 与 y = g(x) 恰有一个交点,则 a = ()

A. -1

B. $\frac{1}{2}$

C. 1

D. 2

7. 已知正三棱台 $ABC - A_1B_1C_1$ 的体积为 $\frac{52}{3}$, AB = 6 , $A_1B_1 = 2$, 则 A_1A 与平面 ABC 所成角的正切值为

()

A. $\frac{1}{2}$

B. 1

C. 2

D. 3

8. 设函数 $f(x) = (x+a)\ln(x+b)$, 若 $f(x) \ge 0$, 则 $a^2 + b^2$ 的最小值为 ()

A. $\frac{1}{8}$

B. $\frac{1}{4}$

C. $\frac{1}{2}$

D. 1

二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得 6 分,选对但不全的得部分分,有选错的得 0 分.

- 9. 对于函数 $f(x) = \sin 2x$ 和 $g(x) = \sin(2x \frac{\pi}{4})$,下列正确的有(
- A. f(x)与g(x)有相同零点

- B. f(x)与g(x)有相同最大值
- C. f(x) 与 g(x) 有相同的最小正周期
- D. f(x) 与 g(x) 的图像有相同的对称轴

10. 抛物线 C: $y^2 = 4x$ 的准线为 I, P 为 C 上的动点,过 P 作 $\odot A$: $x^2 + (y-4)^2 = 1$ 的一条切线,Q 为切

- 点,过 P作 1 的垂线,垂足为 B,则()
- A. 1与 ⊙A 相切
- B. 当 P, A, B三点共线时, $|PQ| = \sqrt{15}$
- C. 当|PB|=2时, $PA \perp AB$
- D. 满足|PA|=|PB|的点P有且仅有2个
- 11. 设函数 $f(x) = 2x^3 3ax^2 + 1$, 则 ()
- A. 当a > 1时, f(x)有三个零点
- B. 当a < 0时, x = 0是f(x)的极大值点
- C. 存在 a, b, 使得 x = b 为曲线 y = f(x) 的对称轴
- D. 存在 a, 使得点(1, f(1))为曲线y = f(x)的对称中心

- 三、填空题: 本大题共 3 小题,每小题 5 分,共 15 分.
- 12. 记 S_n 为等差数列 $\{a_n\}$ 的前n项和,若 $a_3+a_4=7$, $3a_2+a_5=5$,则 $S_{10}=$ ______.
- 13. 己知 α 为第一象限角, β 为第三象限角, $\tan \alpha + \tan \beta = 4$, $\tan \alpha \tan \beta = \sqrt{2} + 1$,则 $\sin(\alpha + \beta) = 1$

14. 在如图的 4×4 方格表中选 4 个方格,要求每行和每列均恰有一个方格被选中,则共有_____种选

法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是

11	21	31	40
12	22	33	42
13	22	33	43
15	24	34	44

四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.

15. 记 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin A + \sqrt{3} \cos A = 2$.

- (1) 求 A.
- 16. 已知函数 $f(x) = e^x ax a^3$.
- (1) 当a = 1时,求曲线y = f(x)在点(1, f(1))处的切线方程;
- (2) 若 f(x) 有极小值, 且极小值小于 0, 求 a 的取值范围.

17. 如图,平面四边形 ABCD中, AB=8 , CD=3 , $AD=5\sqrt{3}$, $\angle ADC=90^\circ$, $\angle BAD=30^\circ$, 点 E , F 满足 $\overrightarrow{AE}=\frac{2}{5}\overrightarrow{AD}$, $\overrightarrow{AF}=\frac{1}{2}\overrightarrow{AB}$, 将 $\triangle AEF$ 沿 EF 对折至 $\triangle PEF$, 使得 $PC=4\sqrt{3}$.

- (1) 证明: *EF* ⊥*PD*;
- (2) 求面 PCD 与面 PBF 所成的二面角的正弦值.

18. 某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮 3 次,若 3 次都未投中,则该队被淘汰,比赛成员为 0 分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮 3 次,每次投中得 5 分,未投中得 0 分. 该队的比赛成绩为第二阶段的得分总和. 某参赛队由甲、乙两名队员组成,设甲每次投中的概率为 p,乙每次投中的概率为 q,各次投中与否相互独立.

- (1) 若 p = 0.4, q = 0.5, 甲参加第一阶段比赛, 求甲、乙所在队的比赛成绩不少于 5 分的概率.
- (2) 假设0 ,
- (i) 为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?
- (ii) 为使得甲、乙, 所在队的比赛成绩的数学期望最大, 应该由谁参加第一阶段比赛?
- 19. 已知双曲线 $C: x^2 y^2 = m(m > 0)$,点 $P_1(5,4)$ 在 C 上, k 为常数, 0 < k < 1. 按照如下方式依次构造点 $P_n(n = 2,3,...)$,过 P_{n-1} 作斜率为 k 的直线与 C 的左支交于点 Q_{n-1} ,令 P_n 为 Q_{n-1} 关于 y 轴的对称点,记 P_n 的坐标为 (x_n, y_n) .

参考答案

一、单项选择题:本大题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.

1. 【答案】C

【分析】由复数模的计算公式直接计算即可.

【详解】若
$$z = -1 - i$$
,则 $|z| = \sqrt{(-1)^2 + (-1)^2} = \sqrt{2}$.

故选: C

2. 【答案】B

【分析】对于两个命题而言,可分别取 x=-1、 x=1,再结合命题及其否定的真假性相反即可得解.

【详解】对于 p 而言, 取 x=-1, 则有 |x+1|=0<1, 故 p 是假命题, $\neg p$ 是真命题,

对于q而言,取x=1,则有 $x^3=1^3=1=x$,故q是真命题, $\neg q$ 是假命题,

综上, $\neg p$ 和 q 都是真命题.

故选: B.

3. 【答案】B

【分析】由 $(\vec{b}-2\vec{a})$ $\perp \vec{b}$ 得 $\vec{b}^2 = 2\vec{a} \cdot \vec{b}$,结合 $|\vec{a}| = 1$, $|\vec{a}+2\vec{b}| = 2$,得 $1+4\vec{a} \cdot \vec{b}+4\vec{b}^2 = 1+6\vec{b}^2 = 4$,由此即可得解.

【详解】因为 $(\vec{b}-2\vec{a})\perp\vec{b}$,所以 $(\vec{b}-2\vec{a})\cdot\vec{b}=0$,即 $\vec{b}^2=2\vec{a}\cdot\vec{b}$,

又因为 $|\vec{a}| = 1, |\vec{a} + 2\vec{b}| = 2$,

所以 $1+4\vec{a}\cdot\vec{b}+4\vec{b}^2=1+6\vec{b}^2=4$,

从而
$$\left| \vec{b} \right| = \frac{\sqrt{2}}{2}$$
.

故选: B.

4. 【答案】C

【分析】计算出前三段频数即可判断 A; 计算出低于 1100kg 的频数, 再计算比例即可判断 B; 根据极差计算方法即可判断 C; 根据平均值计算公式即可判断 D.

【详解】对于 A, 根据频数分布表可知, 6+12+18=36<50,

所以亩产量的中位数不小于 1050kg, 故 A 错误;

对于 B, 亩产量不低于1100kg的频数为24+10=34,

所以低于1100kg 的稻田占比为 $\frac{100-34}{100}$ =66%, 故 B 错误;

对于 C,稻田亩产量的极差最大为1200-900=300,最小为1150-950=200,故 C 正确;

对于 D, 由频数分布表可得, 亩产量在[1050,1100]的频数为100-(6+12+18+24+10)=30,

所以平均值为 $\frac{1}{100}$ ×(6×925+12×975+18×1025+30×1075+24×1125+10×1175)=1067,故 D 错

误.

故选; C.

5. 【答案】A

【分析】设点M(x,y), 由题意, 根据中点的坐标表示可得P(x,2y), 代入圆的方程即可求解.

【详解】设点M(x,y),则 $P(x,y_0),P'(x,0)$,

因为M为PP'的中点,所以 $y_0 = 2y$,即P(x,2y),

又P在圆 $x^2 + y^2 = 16(y > 0)$ 上,

即点 *M* 的轨迹方程为 $\frac{x^2}{16} + \frac{y^2}{4} = 1(y > 0)$.

故选: A

6. 【答案】D

【分析】解法一: 令 $F(x) = ax^2 + a - 1$, $G(x) = \cos x$,分析可知曲线 y = F(x) 与 y = G(x) 恰有一个交点,结合偶函数的对称性可知该交点只能在 y 轴上,即可得 a = 2,并代入检验即可;解法二: 令 h(x) = f(x) - g(x), $x \in (-1,1)$,可知 h(x) 为偶函数,根据偶函数的对称性可知 h(x) 的零点只能为 0,即可得 a = 2,并代入检验即可.

【详解】解法一: 令 f(x) = g(x), 即 $a(x+1)^2 - 1 = \cos x + 2ax$, 可得 $ax^2 + a - 1 = \cos x$,

$$\Leftrightarrow F(x) = ax^2 + a - 1, G(x) = \cos x,$$

原题意等价于当 $x \in (-1,1)$ 时,曲线y = F(x)与y = G(x)恰有一个交点,

注意到F(x),G(x)均为偶函数,可知该交点只能在y轴上,

可得F(0) = G(0), 即a-1=1, 解得a=2,

若
$$a=2$$
, 令 $F(x)=G(x)$, 可得 $2x^2+1-\cos x=0$

因为 $x \in (-1,1)$,则 $2x^2 \ge 0.1 - \cos x \ge 0$,当且仅当x = 0时,等号成立,

可得 $2x^2 + 1 - \cos x \ge 0$, 当且仅当 x = 0 时,等号成立,

则方程 $2x^2 + 1 - \cos x = 0$ 有且仅有一个实根 0, 即曲线 y = F(x) 与 y = G(x) 恰有一个交点,

所以a=2符合题意;

综上所述: a=2.

原题意等价于h(x)有且仅有一个零点,

因为
$$h(-x) = a(-x)^2 + a - 1 - \cos(-x) = ax^2 + a - 1 - \cos x = h(x)$$
,

则h(x)为偶函数,

根据偶函数的对称性可知h(x)的零点只能为0,

即
$$h(0) = a - 2 = 0$$
,解得 $a = 2$,

若
$$a = 2$$
, 则 $h(x) = 2x^2 + 1 - \cos x, x \in (-1,1)$,

又因为 $2x^2 \ge 0.1 - \cos x \ge 0$ 当且仅当x = 0时,等号成立,

可得 $h(x) \ge 0$, 当且仅当x = 0时, 等号成立,

即h(x)有且仅有一个零点0,所以a=2符合题意;

故选: D.

7. 【答案】B

【分析】解法一:根据台体的体积公式可得三棱台的高 $h = \frac{4\sqrt{3}}{3}$,做辅助线,结合正三棱台的结构特征求

得 $AM = \frac{4\sqrt{3}}{3}$,进而根据线面夹角的定义分析求解;解法二:将正三棱台 $ABC - A_1B_1C_1$ 补成正三棱锥

P-ABC , A_1A 与平面 ABC 所成角即为 PA 与平面 ABC 所成角,根据比例关系可得 $V_{P-ABC}=18$,进而可求正三棱锥 P-ABC 的高,即可得结果.

【详解】解法一: 分别取 BC, B_1C_1 的中点 D, D_1 ,则 $AD = 3\sqrt{3}$, $A_1D_1 = \sqrt{3}$,

可知
$$S_{\triangle ABC} = \frac{1}{2} \times 6 \times 6 \times \frac{\sqrt{3}}{2} = 9\sqrt{3}, S_{\triangle A_1B_1C_1} = \frac{1}{2} \times 2 \times \sqrt{3} = \sqrt{3}$$
,

设正三棱台 $ABC - A_lB_lC_l$ 的为 h,

则
$$V_{ABC-A_1B_1C_1} = \frac{1}{3} \left(9\sqrt{3} + \sqrt{3} + \sqrt{9\sqrt{3} \times \sqrt{3}} \right) h = \frac{52}{3}$$
,解得 $h = \frac{4\sqrt{3}}{3}$,

如图,分别过 A_1, D_1 作底面垂线,垂足为M, N,设AM = x,

$$\text{MI } AA_1 = \sqrt{AM^2 + A_1M^2} = \sqrt{x^2 + \frac{16}{3}}, \quad DN = AD - AM - MN = 2\sqrt{3} - x,$$

可得
$$DD_1 = \sqrt{DN^2 + D_1N^2} = \sqrt{\left(2\sqrt{3} - x\right)^2 + \frac{16}{3}}$$

结合等腰梯形 BCC_1B_1 可得 $BB_1^2 = \left(\frac{6-2}{2}\right)^2 + DD_1^2$,

即
$$x^2 + \frac{16}{3} = (2\sqrt{3} - x)^2 + \frac{16}{3} + 4$$
,解得 $x = \frac{4\sqrt{3}}{3}$,

所以 A_1A 与平面ABC所成角的正切值为 $\tan \angle A_1AD = \frac{A_1M}{AM} = 1$;

解法二:将正三棱台 $ABC - A_1B_1C_1$ 补成正三棱锥 P - ABC,

则 A_iA 与平面 ABC 所成角即为 PA 与平面 ABC 所成角,

因为
$$\frac{PA_1}{PA} = \frac{A_1B_1}{AB} = \frac{1}{3}$$
,则 $\frac{V_{P-A_1B_1C_1}}{V_{P-ABC}} = \frac{1}{27}$,

可知
$$V_{ABC-A_1B_1C_1}=rac{26}{27}V_{P-ABC}=rac{52}{3}$$
,则 $V_{P-ABC}=18$,

设正三棱锥
$$P-ABC$$
 的高为 d ,则 $V_{P-ABC}=\frac{1}{3}d\times\frac{1}{2}\times6\times6\times\frac{\sqrt{3}}{2}=18$,解得 $d=2\sqrt{3}$,

取底面 ABC的中心为O,则 PO \bot 底面 ABC,且 $AO = 2\sqrt{3}$,

所以 PA 与平面 ABC 所成角的正切值 $tan \angle PAO = \frac{PO}{AO} = 1$.

故选: B.

8. 【答案】C

【分析】解法一:由题意可知: f(x)的定义域为 $\left(-b,+\infty\right)$,分类讨论-a与-b,1-b的大小关系,结合符号分析判断,即可得b=a+1,代入可得最值;解法二:根据对数函数的性质分析 $\ln(x+b)$ 的符号,进而可得x+a的符号,即可得b=a+1,代入可得最值.

【详解】解法一:由题意可知: f(x)的定义域为 $(-b, +\infty)$,

若 $-a \le -b$, 当 $x \in (-b,1-b)$ 时, 可知 $x+a > 0, \ln(x+b) < 0$,

此时 f(x) < 0,不合题意;

若-b < -a < 1-b, 当 $x \in (-a,1-b)$ 时, 可知 $x+a > 0, \ln(x+b) < 0$,

此时 f(x) < 0,不合题意;

若-a=1-b, 当 $x \in (-b,1-b)$ 时, 可知 $x+a < 0, \ln(x+b) < 0$, 此时f(x) > 0;

当 $x \in [1-b,+\infty)$ 时,可知 $x+a \ge 0, \ln(x+b) \ge 0$,此时 $f(x) \ge 0$;

可知若-a=1-b,符合题意;

若-a>1-b, 当 $x\in(1-b,-a)$ 时, 可知 $x+a<0,\ln(x+b)>0$,

此时 f(x) < 0,不合题意;

综上所述: -a=1-b, 即 b=a+1,

则
$$a^2 + b^2 = a^2 + (a+1)^2 = 2\left(a + \frac{1}{2}\right)^2 + \frac{1}{2} \ge \frac{1}{2}$$
, 当且仅当 $a = -\frac{1}{2}$, 与导成立,

所以 $a^2 + b^2$ 的最小值为 $\frac{1}{2}$;

解法二:由题意可知: f(x)的定义域为 $(-b,+\infty)$,

则当 $x \in (-b,1-b)$ 时, $\ln(x+b) < 0$,故 $x+a \le 0$,所以 $1-b+a \le 0$;

 $x \in (1-b, +\infty)$ 时, $\ln(x+b) > 0$,故 $x+a \ge 0$, 所以 $1-b+a \ge 0$;

故
$$1-b+a=0$$
,则 $a^2+b^2=a^2+\left(a+1\right)^2=2\left(a+\frac{1}{2}\right)^2+\frac{1}{2}\geq \frac{1}{2}$,

当且仅当 $a = -\frac{1}{2}, b = \frac{1}{2}$ 时,等号成立,

所以 $a^2 + b^2$ 的最小值为 $\frac{1}{2}$.

故选: C.

【点睛】关键点点睛:分别求 x + a = 0、 $\ln(x + b) = 0$ 的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.

二、多项选择题:本大题共 3 小题,每小题 6 分,共 18 分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得 6 分,选对但不全的得部分分,有选错的得 0 分.

9. 【答案】BC

【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.

【详解】A 选项, 令
$$f(x) = \sin 2x = 0$$
, 解得 $x = \frac{k\pi}{2}$, $k \in \mathbb{Z}$, 即为 $f(x)$ 零点,

令
$$g(x) = \sin(2x - \frac{\pi}{4}) = 0$$
,解得 $x = \frac{k\pi}{2} + \frac{\pi}{8}, k \in \mathbb{Z}$,即为 $g(x)$ 零点,

显然 f(x), g(x) 零点不同, A 选项错误;

B 选项,显然 $f(x)_{max} = g(x)_{max} = 1$, B 选项正确;

C 选项, 根据周期公式, f(x), g(x) 的周期均为 $\frac{2\pi}{2} = \pi$, C 选项正确;

D 选项,根据正弦函数的性质 f(x) 的对称轴满足 $2x = k\pi + \frac{\pi}{2} \Leftrightarrow x = \frac{k\pi}{2} + \frac{\pi}{4}, k \in \mathbb{Z}$,

$$g(x)$$
 的对称轴满足 $2x - \frac{\pi}{4} = k\pi + \frac{\pi}{2} \Leftrightarrow x = \frac{k\pi}{2} + \frac{3\pi}{8}, k \in \mathbf{Z}$,

显然 f(x), g(x) 图像的对称轴不同, D 选项错误.

故选: BC

10. 【答案】ABD

【分析】A 选项,抛物线准线为 x=-1,根据圆心到准线的距离来判断;B 选项,P,A,B 三点共线时,先求出 P 的坐标,进而得出切线长;C 选项,根据 |PB|=2 先算出 P 的坐标,然后验证 $k_{PA}k_{AB}=-1$ 是否成立;D 选项,根据抛物线的定义,|PB|=|PF|,于是问题转化成 |PA|=|PF| 的 P 点的存在性问题,此时考察 AF 的中垂线和抛物线的交点个数即可,亦可直接设 P 点坐标进行求解.

【详解】A 选项, 抛物线 $y^2 = 4x$ 的准线为 x = -1,

 $\bigcirc A$ 的圆心(0,4)到直线 x=-1 的距离显然是1,等于圆的半径,

故准线l和 $\bigcirc A$ 相切,A 选项正确;

B 选项, P, A, B 三点共线时, 即 $PA \perp l$, 则 P 的纵坐标 $y_P = 4$,

由 $y_P^2 = 4x_P$,得到 $x_P = 4$,故 P(4,4),

此时切线长
$$|PQ| = \sqrt{|PA|^2 - r^2} = \sqrt{4^2 - 1^2} = \sqrt{15}$$
, B选项正确;

C 选项, 当|PB| = 2时, $x_p = 1$, 此时 $y_p^2 = 4x_p = 4$, 故 P(1,2) 或 P(1,-2),

当
$$P(1,2)$$
时, $A(0,4),B(-1,2)$, $k_{PA} = \frac{4-2}{0-1} = -2$, $k_{AB} = \frac{4-2}{0-(-1)} = 2$,

不满足 $k_{PA}k_{AB} = -1$;

当
$$P(1,-2)$$
 时, $A(0,4), B(-1,2)$, $k_{PA} = \frac{4-(-2)}{0-1} = -6$, $k_{AB} = \frac{4-(-2)}{0-(-1)} = 6$,

不满足 $k_{PA}k_{AB} = -1$;

于是 $PA \perp AB$ 不成立, C选项错误;

D选项,方法一:利用抛物线定义转化

根据抛物线的定义, |PB| = |PF|, 这里 F(1,0),

于是|PA| = |PB|时 P 点的存在性问题转化成|PA| = |PF|时 P 点的存在性问题,

$$A(0,4), F(1,0)$$
, AF 中点 $\left(\frac{1}{2}, 2\right)$, AF 中垂线的斜率为 $-\frac{1}{k_{AF}} = \frac{1}{4}$,

于是 AF 的中垂线方程为: $y = \frac{2x+15}{8}$, 与抛物线 $y^2 = 4x$ 联立可得 $y^2 - 16y + 30 = 0$,

 $\Delta = 16^2 - 4 \times 30 = 136 > 0$,即 AF 的中垂线和抛物线有两个交点,即存在两个 P 点,使得 |PA| = |PF|,D 选项正确.

方法二:(设点直接求解)

设
$$P\left(\frac{t^2}{4},t\right)$$
,由 $PB \perp l$ 可得 $B\left(-1,t\right)$,又 $A(0,4)$,又 $\left|PA\right| = \left|PB\right|$,

根据两点间的距离公式, $\sqrt{\frac{t^4}{16} + (t-4)^2} = \frac{t^2}{4} + 1$,整理得 $t^2 - 16t + 30 = 0$,

 $\Delta = 16^2 - 4 \times 30 = 136 > 0$,则关于t的方程有两个解,

即存在两个这样的P点,D选项正确.

故选: ABD

11. 【答案】AD

【分析】A 选项,先分析出函数的极值点为 x=0, x=a ,根据零点存在定理和极值的符号判断出 f(x) 在 (-1,0),(0,a),(a,2a) 上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的 a,b ,使得 x=b 为 f(x) 的对称轴,则 f(x)=f(2b-x) 为恒等式,据此计算判断;D 选项,若存在这样的 a ,使得 (1,3-3a) 为 f(x) 的对称中心,则 f(x)+f(2-x)=6-6a ,据此进行计算判断,亦可利用拐点结论直接求解.

【详解】A 选项, $f'(x) = 6x^2 - 6ax = 6x(x-a)$, 由于 a > 1,

故 $x \in (-\infty,0) \cup (a,+\infty)$ 时f'(x) > 0,故f(x)在 $(-\infty,0)$, $(a,+\infty)$ 上单调递增,

 $x \in (0,a)$ 时, f'(x) < 0, f(x) 单调递减,

则 f(x) 在 x = 0 处取到极大值, 在 x = a 处取到极小值,

由 f(0) = 1 > 0, $f(a) = 1 - a^3 < 0$, 则 f(0) f(a) < 0,

根据零点存在定理 f(x) 在 (0,a) 上有一个零点,

又 f(-1) = -1 - 3a < 0, $f(2a) = 4a^3 + 1 > 0$, 则 f(-1)f(0) < 0, f(a)f(2a) < 0,

则 f(x) 在 (-1,0), (a,2a) 上各有一个零点,于是 a > 1 时, f(x) 有三个零点,A 选项正确;

B 选项, f'(x) = 6x(x-a), a < 0 时, $x \in (a,0)$, f'(x) < 0, f(x) 单调递减,

 $x \in (0, +\infty)$ 时 f'(x) > 0 , f(x) 单调递增,

此时 f(x) 在 x = 0 处取到极小值, B 选项错误;

 \mathbb{C} 选项, 假设存在这样的 a,b, 使得 $\mathbf{x} = \mathbf{b}$ 为 f(x) 的对称轴,

即存在这样的a,b使得f(x) = f(2b-x),

$$\mathbb{E}[2x^3 - 3ax^2 + 1] = 2(2b - x)^3 - 3a(2b - x)^2 + 1,$$

根据二项式定理,等式右边 $(2b-x)^3$ 展开式含有 x^3 的项为 $2C_3^3(2b)^0(-x)^3=-2x^3$,

于是等式左右两边 x3 的系数都不相等, 原等式不可能恒成立,

于是不存在这样的a,b,使得 $\mathbf{x} = \mathbf{b}$ 为 $f(\mathbf{x})$ 的对称轴,C选项错误;D选项,

f(1) = 3 - 3a, 若存在这样的 a, 使得 (1,3-3a) 为 f(x) 的对称中心,

则
$$f(x) + f(2-x) = 6-6a$$
, 事实上,

$$f(x) + f(2-x) = 2x^3 - 3ax^2 + 1 + 2(2-x)^3 - 3a(2-x)^2 + 1 = (12-6a)x^2 + (12a-24)x + 18-12a$$

于是
$$6-6a = (12-6a)x^2 + (12a-24)x + 18-12a$$

即
$$\begin{cases} 12-6a=0 \\ 12a-24=0 \end{cases}$$
 ,解得 $a=2$,即存在 $a=2$ 使得 $(1,f(1))$ 是 $f(x)$ 的对称中心,D 选项正确. $18-12a=6-6a$

方法二:直接利用拐点结论

任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,

$$f(x) = 2x^3 - 3ax^2 + 1$$
, $f'(x) = 6x^2 - 6ax$, $f''(x) = 12x - 6a$,

由
$$f''(x) = 0 \Leftrightarrow x = \frac{a}{2}$$
,于是该三次函数的对称中心为 $\left(\frac{a}{2}, f\left(\frac{a}{2}\right)\right)$,

由题意 (1, f(1)) 也是对称中心, 故 $\frac{a}{2} = 1 \Leftrightarrow a = 2$,

即存在a=2使得(1, f(1))是f(x)的对称中心, D选项正确.

故选: AD

【点睛】结论点睛: (1) f(x) 的对称轴为 $x = b \Leftrightarrow f(x) = f(2b - x)$; (2) f(x) 关于 (a,b) 对称 $\Leftrightarrow f(x) + f(2a - x) = 2b$; (3) 任何三次函数 $f(x) = ax^3 + bx^2 + cx + d$ 都有对称中心,对称中心是三次

函数的拐点,对称中心的横坐标是 f''(x) = 0 的解,即 $\left(-\frac{b}{3a}, f\left(-\frac{b}{3a}\right)\right)$ 是三次函数的对称中心

三、填空题: 本大题共 3 小题,每小题 5 分,共 15 分.

12. 【答案】95

【分析】利用等差数列通项公式得到方程组,解出 a_1,d ,再利用等差数列的求和公式节即可得到答案.

【详解】因为数列
$$a_n$$
 为等差数列,则由题意得
$$\begin{cases} a_1 + 2d + a_1 + 3d = 7 \\ 3(a_1 + d) + a_1 + 4d = 5 \end{cases}, \quad \text{解得} \begin{cases} a_1 = -4 \\ d = 3 \end{cases},$$

则
$$S_{10} = 10a_1 + \frac{10 \times 9}{2}d = 10 \times (-4) + 45 \times 3 = 95$$
.

故答案为: 95.

13. 【答案】
$$-\frac{2\sqrt{2}}{3}$$

【分析】法一:根据两角和与差的正切公式得 $\tan(\alpha + \beta) = -2\sqrt{2}$,再缩小 $\alpha + \beta$ 的范围,最后结合同角的平方和关系即可得到答案:法二:利用弦化切的方法即可得到答案.

【详解】法一: 由题意得
$$\tan(\alpha+\beta) = \frac{\tan\alpha+\tan\beta}{1-\tan\alpha\tan\beta} = \frac{4}{1-(\sqrt{2}+1)} = -2\sqrt{2}$$
,

因为
$$\alpha \in \left(2k\pi, 2k\pi + \frac{\pi}{2}\right), \beta \in \left(2m\pi + \pi, 2m\pi + \frac{3\pi}{2}\right), k, m \in \mathbb{Z},$$

则
$$\alpha + \beta \in ((2m+2k)\pi + \pi, (2m+2k)\pi + 2\pi), k, m \in \mathbb{Z}$$
,

又因为 $\tan(\alpha+\beta)=-2\sqrt{2}<0$,

则
$$\alpha + \beta \in \left((2m+2k)\pi + \frac{3\pi}{2}, (2m+2k)\pi + 2\pi \right), \quad k, m \in \mathbb{Z}, \quad \text{则 } \sin(\alpha + \beta) < 0,$$

则
$$\frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = -2\sqrt{2}$$
,联立 $\sin^2(\alpha+\beta) + \cos^2(\alpha+\beta) = 1$,解得 $\sin(\alpha+\beta) = -\frac{2\sqrt{2}}{3}$.

法二: 因为 α 为第一象限角, β 为第三象限角,则 $\cos \alpha > 0$, $\cos \beta < 0$,

$$\cos \alpha = \frac{\cos \alpha}{\sqrt{\sin^2 \alpha + \cos^2 \alpha}} = \frac{1}{\sqrt{1 + \tan^2 \alpha}}, \quad \cos \beta = \frac{\cos \beta}{\sqrt{\sin^2 \beta + \cos^2 \beta}} = \frac{-1}{\sqrt{1 + \tan^2 \beta}},$$

则 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \cos \alpha \cos \beta (\tan \alpha + \tan \beta)$

$$= 4\cos\alpha\cos\beta = \frac{-4}{\sqrt{1 + \tan^2\alpha}\sqrt{1 + \tan^2\beta}} = \frac{-4}{\sqrt{(\tan\alpha + \tan\beta)^2 + (\tan\alpha\tan\beta - 1)^2}} = \frac{-4}{\sqrt{4^2 + 2}} = -\frac{2\sqrt{2}}{3}$$

故答案为: $-\frac{2\sqrt{2}}{3}$.

14. 【答案】 (1). 24 (2). 112

【分析】由题意可知第一、二、三、四列分别有 4、3、2、1 个方格可选;利用列举法写出所有的可能结果,即可求解.

【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,

则第一列有4个方格可选,第二列有3个方格可选,

第三列有2个方格可选,第四列有1个方格可选,

所以共有 4×3×2×1=24 种选法;

每种选法可标记为(a,b,c,d), a,b,c,d分别表示第一、二、三、四列的数字,则所有的可能结果为:

(11, 22, 33, 44), (11, 22, 34, 43), (11, 22, 33, 44), (11, 22, 34, 42), (11, 24, 33, 43), (11, 24, 33, 42)

(12, 21, 33, 44), (12, 21, 34, 43), (12, 22, 31, 44), (12, 22, 34, 40), (12, 24, 31, 43), (12, 24, 33, 40)

(13, 21, 33, 44), (13, 21, 34, 42), (13, 22, 31, 44), (13, 22, 34, 40), (13, 24, 31, 42), (13, 24, 33, 40)

(15, 21, 33, 43), (15, 21, 33, 42), (15, 22, 31, 43), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 31, 42), (15, 22, 33, 40), (15, 22, 32, 40), (15, 22, 32, 40), (15, 22, 32, 40), (15, 22, 32, 40), (15, 22, 32, 40), (15, 22, 32, 40), (15, 22, 32, 40), (15, 22, 32, 40), (15, 22, 2

所以选中的方格中, (15,21,33,43) 的 4 个数之和最大, 为15+21+33+43=112.

故答案为: 24; 112

【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有 4、3、2、1 个方格可选,利用列举法写出所有的可能结果.

四、解答题: 本题共 5 小题, 共 77 分. 解答应写出文字说明、证明过程或演算步骤.

15. 【答案】(1)
$$A = \frac{\pi}{6}$$

(2)
$$2+\sqrt{6}+3\sqrt{2}$$

【分析】(1) 根据辅助角公式对条件 $\sin A + \sqrt{3} \cos A = 2$ 进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决:

(2) 先根据正弦定理边角互化算出B,然后根据正弦定理算出b,c即可得出周长.

【小问1详解】

方法一: 常规方法 (辅助角公式)

曲
$$\sin A + \sqrt{3}\cos A = 2$$
 可得 $\frac{1}{2}\sin A + \frac{\sqrt{3}}{2}\cos A = 1$,即 $\sin(A + \frac{\pi}{3}) = 1$,

由于
$$A \in (0,\pi) \Rightarrow A + \frac{\pi}{3} \in (\frac{\pi}{3}, \frac{4\pi}{3})$$
,故 $A + \frac{\pi}{3} = \frac{\pi}{2}$,解得 $A = \frac{\pi}{6}$

方法二: 常规方法(同角三角函数的基本关系)

由 $\sin A + \sqrt{3}\cos A = 2$,又 $\sin^2 A + \cos^2 A = 1$,消去 $\sin A$ 得到:

$$4\cos^2 A - 4\sqrt{3}\cos A + 3 = 0 \Leftrightarrow (2\cos A - \sqrt{3})^2 = 0$$
, $\Re \cos A = \frac{\sqrt{3}}{2}$,

$$abla A \in (0,\pi), \quad \text{id} A = \frac{\pi}{6}$$

方法三: 利用极值点求解

设
$$f(x) = \sin x + \sqrt{3}\cos x (0 < x < \pi)$$
,则 $f(x) = 2\sin\left(x + \frac{\pi}{3}\right)(0 < x < \pi)$,

显然
$$x = \frac{\pi}{6}$$
 时, $f(x)_{\text{max}} = 2$,注意到 $f(A) = \sin A + \sqrt{3}\cos A = 2 = 2\sin(A + \frac{\pi}{3})$,

 $f(x)_{\text{max}} = f(A)$, 在开区间 $(0,\pi)$ 上取到最大值,于是x = A必定是极值点,

$$\mathbb{P} f'(A) = 0 = \cos A - \sqrt{3} \sin A$$
, $\mathbb{P} \tan A = \frac{\sqrt{3}}{3}$,

$$abla A \in (0,\pi), \quad \text{th } A = \frac{\pi}{6}$$

方法四:利用向量数量积公式(柯西不等式)

设
$$\vec{a} = (1, \sqrt{3}), \vec{b} = (\sin A, \cos A)$$
,由题意, $\vec{a} \cdot \vec{b} = \sin A + \sqrt{3}\cos A = 2$,

根据向量的数量积公式,
$$\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \langle \vec{a}, \vec{b} \rangle = 2\cos \langle \vec{a}, \vec{b} \rangle$$
,

则
$$2\cos\vec{a},\vec{b}=2\Leftrightarrow\cos\vec{a},\vec{b}=1$$
,此时 $\vec{a},\vec{b}=0$,即 \vec{a},\vec{b} 同向共线,

根据向量共线条件,
$$1 \cdot \cos A = \sqrt{3} \cdot \sin A \Leftrightarrow \tan A = \frac{\sqrt{3}}{3}$$
,

$$abla A \in (0,\pi), \quad \text{id} A = \frac{\pi}{6}$$

方法五: 利用万能公式求解

设
$$t = \tan \frac{A}{2}$$
,根据万能公式, $\sin A + \sqrt{3}\cos A = 2 = \frac{2t}{1+t^2} + \frac{\sqrt{3}(1-t^2)}{1+t^2}$,

整理可得,
$$t^2-2(2-\sqrt{3})t+(2-\sqrt{3})^2=0=(t-(2-\sqrt{3}))^2$$
,

解得
$$\tan \frac{A}{2} = t = 2 - \sqrt{3}$$
 ,根据二倍角公式, $\tan A = \frac{2t}{1-t^2} = \frac{\sqrt{3}}{3}$,

$$abla A \in (0,\pi), \quad \text{th } A = \frac{\pi}{6}$$

【小问2详解】

由题设条件和正弦定理

$$\sqrt{2}b\sin C = c\sin 2B \Leftrightarrow \sqrt{2}\sin B\sin C = 2\sin C\sin B\cos B$$

又
$$B, C \in (0,\pi)$$
 ,则 $\sin B \sin C \neq 0$,进而 $\cos B = \frac{\sqrt{2}}{2}$,得到 $B = \frac{\pi}{4}$,

于是
$$C = \pi - A - B = \frac{7\pi}{12}$$
,

$$\sin C = \sin(\pi - A - B) = \sin(A + B) = \sin A \cos B + \sin B \cos A = \frac{\sqrt{2} + \sqrt{6}}{4}$$

由正弦定理可得,
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
,即 $\frac{2}{\sin \frac{\pi}{6}} = \frac{b}{\sin \frac{\pi}{4}} = \frac{c}{\sin \frac{7\pi}{12}}$,

解得 $b = 2\sqrt{2}, c = \sqrt{6} + \sqrt{2}$,

故 $\triangle ABC$ 的周长为 $2+\sqrt{6}+3\sqrt{2}$

16. 【答案】(1)
$$(e-1)x-y-1=0$$

 $(2) (1,+\infty)$

【分析】(1) 求导,结合导数的几何意义求切线方程;

(2)解法一:求导,分析 $a \le 0$ 和 a > 0 两种情况,利用导数判断单调性和极值,分析可得 $a^2 + \ln a - 1 > 0$,构建函数解不等式即可;解法二:求导,可知 $f'(x) = e^x - a$ 有零点,可得 a > 0,进而利用导数求 f(x) 的单调性和极值,分析可得 $a^2 + \ln a - 1 > 0$,构建函数解不等式即可.

【小问1详解】

当
$$a=1$$
时,则 $f(x)=e^x-x-1$, $f'(x)=e^x-1$,

可得 f(1) = e - 2, f'(1) = e - 1,

即切点坐标为(1,e-2), 切线斜率k=e-1,

所以切线方程为y-(e-2)=(e-1)(x-1),即(e-1)x-y-1=0.

【小问2详解】

解法一: 因为 f(x) 的定义域为 **R**, 且 $f'(x) = e^x - a$,

若 $a \le 0$,则 $f'(x) \ge 0$ 对任意 $x \in \mathbf{R}$ 恒成立,

可知 f(x) 在 \mathbf{R} 上单调递增,无极值,不合题意;

若 a > 0, 令 f'(x) > 0, 解得 $x > \ln a$; 令 f'(x) < 0, 解得 $x < \ln a$;

可知 f(x) 在 $\left(-\infty, \ln a\right)$ 内单调递减, 在 $\left(\ln a, +\infty\right)$ 内单调递增,

则 f(x) 有极小值 $f(\ln a) = a - a \ln a - a^3$, 无极大值,

由题意可得: $f(\ln a) = a - a \ln a - a^3 < 0$, 即 $a^2 + \ln a - 1 > 0$,

构建
$$g(a) = a^2 + \ln a - 1, a > 0$$
,则 $g'(a) = 2a + \frac{1}{a} > 0$,

可知g(a)在 $(0,+\infty)$ 内单调递增,且g(1)=0,

不等式 $a^2 + \ln a - 1 > 0$ 等价于g(a) > g(1),解得a > 1,

所以 a 的取值范围为 $(1,+\infty)$;

解法二: 因为f(x)的定义域为 \mathbf{R} , 且 $f'(x) = e^x - a$,

若 f(x) 有极小值,则 $f'(x) = e^x - a$ 有零点,

令 $f'(x) = e^x - a = 0$,可得 $e^x = a$,

可知 $y = e^x$ 与 y = a 有交点,则 a > 0,

若 a > 0 , 令 f'(x) > 0 , 解得 $x > \ln a$; 令 f'(x) < 0 , 解得 $x < \ln a$;

可知 f(x) 在 $(-\infty, \ln a)$ 内单调递减, 在 $(\ln a, +\infty)$ 内单调递增,

则 f(x) 有极小值 $f(\ln a) = a - a \ln a - a^3$, 无极大值, 符合题意,

由题意可得: $f(\ln a) = a - a \ln a - a^3 < 0$, 即 $a^2 + \ln a - 1 > 0$,

构建 $g(a) = a^2 + \ln a - 1, a > 0$,

因为则 $y = a^2$, $y = \ln a - 1$ 在 $(0, +\infty)$ 内单调递增,

可知 g(a) 在 $(0,+\infty)$ 内单调递增,且 g(1)=0,

不等式 $a^2 + \ln a - 1 > 0$ 等价于g(a) > g(1),解得a > 1,

(2)
$$\frac{8\sqrt{65}}{65}$$

(2) 由 (1),根据线面垂直的判定定理与性质可证明 $PE \perp ED$,建立如图空间直角坐标系 E - xyz,利用空间向量法求解面面角即可.

【小问1详解】

$$\boxplus AB = 8, AD = 5\sqrt{3}, \overrightarrow{AE} = \frac{2}{5}\overrightarrow{AD}, \overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB}$$
,

得 $AE = 2\sqrt{3}$, AF = 4,又 $\angle BAD = 30^{\circ}$,在 $\triangle AEF$ 中,

由余弦定理得
$$EF = \sqrt{AE^2 + AF^2 - 2AE \cdot AF \cos \angle BAD} = \sqrt{16 + 12 - 2 \cdot 4 \cdot 2\sqrt{3} \cdot \frac{\sqrt{3}}{2}} = 2$$
,

所以 $AE^2 + EF^2 = AF^2$,则 $AE \perp EF$,即 $EF \perp AD$,

所以 $EF \perp PE, EF \perp DE$, 又 $PE \cap DE = E, PE$ 、 $DE \subset$ 平面PDE,

所以 $EF \perp$ 平面PDE,又PD \subset 平面PDE,

故 $EF \perp PD$;

【小问2详解】

连接 CE,由 $\angle ADC = 90^{\circ}$, $ED = 3\sqrt{3}$, CD = 3,则 $CE^2 = ED^2 + CD^2 = 36$,

在 $\triangle PEC$ 中, $PC = 4\sqrt{3}, PE = 2\sqrt{3}, EC = 6$, 得 $EC^2 + PE^2 = PC^2$,

所以 $PE \perp EC$,由(1)知 $PE \perp EF$,又 $EC \cap EF = E, EC \setminus EF \subset$ 平面ABCD,

所以PE 上平面ABCD,又ED \subset 平面ABCD,

所以 $PE \perp ED$,则 PE, EF, ED 两两垂直,建立如图空间直角坐标系 E - xyz ,

则 E(0,0,0), $P(0,0,2\sqrt{3})$, $D(0,3\sqrt{3},0)$, $C(3,3\sqrt{3},0)$, F(2,0,0), $A(0,-2\sqrt{3},0)$,

由 $F \neq AB$ 的中点,得 $B(4,2\sqrt{3},0)$,

所以 $\overrightarrow{PC} = (3, 3\sqrt{3}, -2\sqrt{3}), \overrightarrow{PD} = (0, 3\sqrt{3}, -2\sqrt{3}), \overrightarrow{PB} = (4, 2\sqrt{3}, -2\sqrt{3}), \overrightarrow{PF} = (2, 0, -2\sqrt{3})$,

设平面 *PCD* 和平面 *PBF* 的一个法向量分别为 $\vec{n} = (x_1, y_1, z_1), \vec{m} = (x_2, y_2, z_2),$

$$|\vec{y}| \begin{cases} \vec{n} \cdot \overrightarrow{PC} = 3x_1 + 3\sqrt{3}y_1 - 2\sqrt{3}z_1 = 0 \\ \vec{n} \cdot \overrightarrow{PD} = 3\sqrt{3}y_1 - 2\sqrt{3}z_1 = 0 \end{cases}, \begin{cases} \vec{m} \cdot \overrightarrow{PB} = 4x_2 + 2\sqrt{3}y_2 - 2\sqrt{3}z_2 = 0 \\ \vec{m} \cdot \overrightarrow{PF} = 2x_2 - 2\sqrt{3}z_2 = 0 \end{cases},$$

所以 $\vec{n} = (0,2,3), \vec{m} = (\sqrt{3},-1,1)$,

所以
$$|\cos \vec{m}, \vec{n}| = \frac{|\vec{m} \cdot \vec{n}|}{|\vec{m}||\vec{n}|} = \frac{1}{\sqrt{5} \cdot \sqrt{13}} = \frac{\sqrt{65}}{65}$$
,

设平面 PCD 和平面 PBF 所成角为 θ ,则 $\sin \theta = \sqrt{1-\cos^2 \theta} = \frac{8\sqrt{65}}{65}$

即平面 PCD 和平面 PBF 所成角的正弦值为 $\frac{8\sqrt{65}}{65}$.

18. 【答案】(1) 0.686

(2)(i)由甲参加第一阶段比赛;(i)由甲参加第一阶段比赛;

【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;

(2)(i) 首先各自计算出 $P_{\mathbb{H}} = \left[1 - (1-p)^3\right]q^3$, $P_{\mathbb{L}} = \left[1 - (1-q)^3\right] \cdot p^3$, 再作差因式分解即可判断;

(ii)首先得到 X 和 Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.

【小问1详解】

甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,

:: 比赛成绩不少于 5 分的概率 $P = (1-0.6^3)(1-0.5^3) = 0.686$.

【小问2详解】

(i) 若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为 15 分的概率为 $P_{\mathbb{H}} = \left[1 - (1-p)^3\right]q^3$,

若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为 15 分的概率为 $P_{\rm Z} = \left\lceil 1 - (1-q)^3 \right\rceil \cdot p^3$,

$$\therefore 0 ,$$

$$\therefore P_{\mathbb{H}} - P_{Z_1} = q^3 - (q - pq)^3 - p^3 + (p - pq)^3$$

$$= (q-p)(q^2+pq+p^2)+(p-q)\cdot \left[(p-pq)^2+(q-pq)^2+(p-pq)(q-pq) \right]$$

$$= (p-q)(3p^2q^2 - 3p^2q - 3pq^2)$$

$$=3pq(p-q)(pq-p-q)=3pq(p-q)[(1-p)(1-q)-1]>0$$
,

 $\therefore P_{\mathbb{H}} > P_{\mathbb{H}}$, 应该由甲参加第一阶段比赛.

(ii)若甲先参加第一阶段比赛,数学成绩X的所有可能取值为0,5,10,15,

$$P(X = 0) = (1-p)^3 + \left[1 - (1-p)^3\right] \cdot (1-q)^3$$
,

$$P(X = 5) = \left[1 - (1 - p)^{32}\right] C_3^1 q \cdot (1 - q)^2$$
,

$$P(X=10) = [1-(1-p)^3] \cdot C_3^2 q^2 (1-q)$$
,

$$P(X = 15) = [1 - (1 - p)^3] \cdot q^3$$
,

$$\therefore E(X) = 15 [1 - (1 - p)^3] q = 15 (p^3 - 3p^2 + 3p) \cdot q$$

同理
$$E(Y) = 15(q^3 - 3q^2 + 3q) \cdot p$$

$$E(X) - E(Y) = 15[pq(p+q)(p-q) - 3pq(p-q)]$$

$$=15(p-q)pq(p+q-3)$$
,

因为
$$0 ,则 $p - q < 0$, $p + q - 3 < 1 + 1 - 3 < 0$,$$

则
$$(p-q)pq(p+q-3)>0$$
,

::应该由甲参加第一阶段比赛.

【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.

19. 【答案】(1)
$$x_2 = 3$$
, $y_2 = 0$

(2) 证明见解析 (3) 证明见解析

【分析】(1) 直接根据题目中的构造方式计算出 P_2 的坐标即可;

- (2) 根据等比数列的定义即可验证结论;
- (3) 思路一: 使用平面向量数量积和等比数列工具,证明 S_n 的取值为与n无关的定值即可. 思路二: 使用等差数列工具,证明 S_n 的取值为与n无关的定值即可.

【小问1详解】

由己知有 $m=5^2-4^2=9$,故C的方程为 $x^2-y^2=9$.

当
$$k = \frac{1}{2}$$
 时,过 $P_1(5,4)$ 且斜率为 $\frac{1}{2}$ 的直线为 $y = \frac{x+3}{2}$,与 $x^2 - y^2 = 9$ 联立得到 $x^2 - \left(\frac{x+3}{2}\right)^2 = 9$.

解得x=-3或x=5, 所以该直线与C的不同于 P_1 的交点为 $Q_1(-3,0)$, 该点显然在C的左支上.

故 $P_2(3,0)$,从而 $x_2=3$, $y_2=0$.

【小问2详解】

由于过 $P_n(x_n, y_n)$ 且斜率为k的直线为 $y = k(x - x_n) + y_n$,与 $x^2 - y^2 = 9$ 联立,得到方程 $x^2 - (k(x - x_n) + y_n)^2 = 9.$

展开即得 $(1-k^2)x^2-2k(y_n-kx_n)x-(y_n-kx_n)^2-9=0$,由于 $P_n(x_n,y_n)$ 已经是直线 $y=k(x-x_n)+y_n$ 和 $x^2-y^2=9$ 的公共点,故方程必有一根 $x=x_n$.

从而根据韦达定理,另一根 $x = \frac{2k(y_n - kx_n)}{1 - k^2} - x_n = \frac{2ky_n - x_n - k^2x_n}{1 - k^2}$,相应的

$$y = k(x - x_n) + y_n = \frac{y_n + k^2 y_n - 2kx_n}{1 - k^2}$$

所以该直线与C的不同于 P_n 的交点为 Q_n $\left(\frac{2ky_n-x_n-k^2x_n}{1-k^2},\frac{y_n+k^2y_n-2kx_n}{1-k^2}\right)$, 而注意到 Q_n 的横坐标亦

可通过韦达定理表示为 $\frac{-\left(y_n-kx_n\right)^2-9}{\left(1-k^2\right)x_n}$, 故 Q_n 一定在 C 的左支上.

所以
$$P_{n+1} \left(\frac{x_n + k^2 x_n - 2k y_n}{1 - k^2}, \frac{y_n + k^2 y_n - 2k x_n}{1 - k^2} \right).$$

这就得到
$$x_{n+1} = \frac{x_n + k^2 x_n - 2k y_n}{1 - k^2}$$
, $y_{n+1} = \frac{y_n + k^2 y_n - 2k x_n}{1 - k^2}$.

所以
$$x_{n+1} - y_{n+1} = \frac{x_n + k^2 x_n - 2k y_n}{1 - k^2} - \frac{y_n + k^2 y_n - 2k x_n}{1 - k^2}$$

$$=\frac{x_n+k^2x_n+2kx_n}{1-k^2}-\frac{y_n+k^2y_n+2ky_n}{1-k^2}=\frac{1+k^2+2k}{1-k^2}\big(x_n-y_n\big)=\frac{1+k}{1-k}\big(x_n-y_n\big).$$

再由 $x_1^2 - y_1^2 = 9$, 就知道 $x_1 - y_1 \neq 0$, 所以数列 $\{x_n - y_n\}$ 是公比为 $\frac{1+k}{1-k}$ 的等比数列.

【小问3详解】

方法一: 先证明一个结论: 对平面上三个点U,V,W, 若 $\overrightarrow{UV}=(a,b)$, $\overrightarrow{UW}=(c,d)$, 则

$$S_{\Delta UVW} = \frac{1}{2} \left| ad - bc \right|$$
. (若 U, V, W 在同一条直线上,约定 $S_{\Delta UVW} = 0$)

证明:
$$S_{\triangle UVW} = \frac{1}{2} |\overrightarrow{UV}| \cdot |\overrightarrow{UW}| \sin \overrightarrow{UV}, \overrightarrow{UW} = \frac{1}{2} |\overrightarrow{UV}| \cdot |\overrightarrow{UW}| \sqrt{1 - \cos^2 \overrightarrow{UV}, \overrightarrow{UW}}$$

$$=\frac{1}{2}\left|\overrightarrow{UV}\right|\cdot\left|\overrightarrow{UW}\right|\sqrt{1-\left(\frac{\overrightarrow{UV}\cdot\overrightarrow{UW}}{\left|\overrightarrow{UV}\right|\cdot\left|\overrightarrow{UW}\right|}\right)^{2}}=\frac{1}{2}\sqrt{\left|\overrightarrow{UV}\right|^{2}\cdot\left|\overrightarrow{UW}\right|^{2}-\left(\overrightarrow{UV}\cdot\overrightarrow{UW}\right)^{2}}$$

$$\begin{split} &= \frac{1}{2} \sqrt{\left(a^2 + b^2\right) \left(c^2 + d^2\right) - \left(ac + bd\right)^2} \\ &= \frac{1}{2} \sqrt{a^2 c^2 + a^2 d^2 + b^2 c^2 + b^2 d^2 - a^2 c^2 - b^2 d^2 - 2abcd} \\ &= \frac{1}{2} \sqrt{a^2 d^2 + b^2 c^2 - 2abcd} = \frac{1}{2} \sqrt{\left(ad - bc\right)^2} = \frac{1}{2} |ad - bc|. \end{split}$$

证毕,回到原题.

由于上一小问已经得到
$$x_{n+1} = \frac{x_n + k^2 x_n - 2k y_n}{1 - k^2}$$
, $y_{n+1} = \frac{y_n + k^2 y_n - 2k x_n}{1 - k^2}$,

故
$$x_{n+1} + y_{n+1} = \frac{x_n + k^2 x_n - 2k y_n}{1 - k^2} + \frac{y_n + k^2 y_n - 2k x_n}{1 - k^2} = \frac{1 + k^2 - 2k}{1 - k^2} (x_n + y_n) = \frac{1 - k}{1 + k} (x_n + y_n).$$

再由 $x_1^2 - y_1^2 = 9$, 就知道 $x_1 + y_1 \neq 0$, 所以数列 $\left\{x_n + y_n\right\}$ 是公比为 $\frac{1-k}{1+k}$ 的等比数列.

所以对任意的正整数m,都有

$$x_n y_{n+m} - y_n x_{n+m}$$

$$= \frac{1}{2} ((x_n x_{n+m} - y_n y_{n+m}) + (x_n y_{n+m} - y_n x_{n+m})) - \frac{1}{2} ((x_n x_{n+m} - y_n y_{n+m}) - (x_n y_{n+m} - y_n x_{n+m}))$$

$$= \frac{1}{2} (x_n - y_n) (x_{n+m} + y_{n+m}) - \frac{1}{2} (x_n + y_n) (x_{n+m} - y_{n+m})$$

$$= \frac{1}{2} (\frac{1-k}{1+k})^m (x_n - y_n) (x_n + y_n) - \frac{1}{2} (\frac{1+k}{1-k})^m (x_n + y_n) (x_n - y_n)$$

$$= \frac{1}{2} ((\frac{1-k}{1+k})^m - (\frac{1+k}{1-k})^m) (x_n^2 - y_n^2)$$

$$=\frac{9}{2}\Bigg(\left(\frac{1-k}{1+k}\right)^m-\left(\frac{1+k}{1-k}\right)^m\Bigg).$$

而又有
$$\overrightarrow{P_{n+1}P_n} = (-(x_{n+1}-x_n), -(y_{n+1}-y_n)), \overrightarrow{P_{n+1}P_{n+2}} = (x_{n+2}-x_{n+1}, y_{n+2}-y_{n+1}),$$

故利用前面已经证明的结论即得

$$S_{n} = S_{\Delta P_{n}P_{n+1}P_{n+2}} = \frac{1}{2} \left| -(x_{n+1} - x_{n})(y_{n+2} - y_{n+1}) + (y_{n+1} - y_{n})(x_{n+2} - x_{n+1}) \right|$$

$$= \frac{1}{2} \left| (x_{n+1} - x_{n})(y_{n+2} - y_{n+1}) - (y_{n+1} - y_{n})(x_{n+2} - x_{n+1}) \right|$$

$$= \frac{1}{2} \left| (x_{n+1}y_{n+2} - y_{n+1}x_{n+2}) + (x_{n}y_{n+1} - y_{n}x_{n+1}) - (x_{n}y_{n+2} - y_{n}x_{n+2}) \right|$$

$$= \frac{1}{2} \left| \frac{9}{2} \left(\frac{1-k}{1+k} - \frac{1+k}{1-k} \right) + \frac{9}{2} \left(\frac{1-k}{1+k} - \frac{1+k}{1-k} \right) - \frac{9}{2} \left(\left(\frac{1-k}{1+k} \right)^{2} - \left(\frac{1+k}{1-k} \right)^{2} \right) \right|.$$

这就表明 S_n 的取值是与n无关的定值,所以 $S_n = S_{n+1}$.

方法二: 由于上一小问已经得到
$$x_{n+1} = \frac{x_n + k^2 x_n - 2k y_n}{1 - k^2}$$
 , $y_{n+1} = \frac{y_n + k^2 y_n - 2k x_n}{1 - k^2}$,

故
$$x_{n+1} + y_{n+1} = \frac{x_n + k^2 x_n - 2k y_n}{1 - k^2} + \frac{y_n + k^2 y_n - 2k x_n}{1 - k^2} = \frac{1 + k^2 - 2k}{1 - k^2} (x_n + y_n) = \frac{1 - k}{1 + k} (x_n + y_n)$$
.

再由
$$x_1^2 - y_1^2 = 9$$
, 就知道 $x_1 + y_1 \neq 0$, 所以数列 $\{x_n + y_n\}$ 是公比为 $\frac{1-k}{1+k}$ 的等比数列.

所以对任意的正整数m,都有

$$x_n y_{n+m} - y_n x_{n+m}$$

$$= \frac{1}{2} \left((x_n x_{n+m} - y_n y_{n+m}) + (x_n y_{n+m} - y_n x_{n+m}) \right) - \frac{1}{2} \left((x_n x_{n+m} - y_n y_{n+m}) - (x_n y_{n+m} - y_n x_{n+m}) \right)$$

$$= \frac{1}{2} (x_n - y_n) (x_{n+m} + y_{n+m}) - \frac{1}{2} (x_n + y_n) (x_{n+m} - y_{n+m})$$

$$= \frac{1}{2} \left(\frac{1-k}{1+k} \right)^m (x_n - y_n) (x_n + y_n) - \frac{1}{2} \left(\frac{1+k}{1-k} \right)^m (x_n + y_n) (x_n - y_n)$$

$$= \frac{1}{2} \left(\left(\frac{1-k}{1+k} \right)^m - \left(\frac{1+k}{1-k} \right)^m \right) (x_n^2 - y_n^2)$$

$$= \frac{9}{2} \left(\left(\frac{1-k}{1+k} \right)^m - \left(\frac{1+k}{1-k} \right)^m \right).$$

这就得到
$$x_{n+2}y_{n+3} - y_{n+2}x_{n+3} = \frac{9}{2} \left(\frac{1-k}{1+k} - \frac{1+k}{1-k} \right) = x_n y_{n+1} - y_n x_{n+1}$$
,

以及
$$x_{n+1}y_{n+3} - y_{n+1}x_{n+3} = \frac{9}{2} \left(\left(\frac{1-k}{1+k} \right)^2 - \left(\frac{1+k}{1-k} \right)^2 \right) = x_n y_{n+2} - y_n x_{n+2}.$$

两式相减,即得 $(x_{n+2}y_{n+3}-y_{n+2}x_{n+3})-(x_{n+1}y_{n+3}-y_{n+1}x_{n+3})=(x_ny_{n+1}-y_nx_{n+1})-(x_ny_{n+2}-y_nx_{n+2}).$

移项得到 $x_{n+2}y_{n+3}-y_nx_{n+2}-x_{n+1}y_{n+3}+y_nx_{n+1}=y_{n+2}x_{n+3}-x_ny_{n+2}-y_{n+1}x_{n+3}+x_ny_{n+1}$.

故
$$(y_{n+3}-y_n)(x_{n+2}-x_{n+1})=(y_{n+2}-y_{n+1})(x_{n+3}-x_n).$$

$$\overrightarrow{\text{mi}} \overrightarrow{P_{n}P_{n+3}} = \left(x_{n+3} - x_{n}, y_{n+3} - y_{n}\right), \quad \overrightarrow{P_{n+1}P_{n+2}} = \left(x_{n+2} - x_{n+1}, y_{n+2} - y_{n+1}\right).$$

所以
$$\overrightarrow{P_nP_{n+3}}$$
和 $\overrightarrow{P_{n+1}P_{n+2}}$ 平行,这就得到 $S_{{}_{\Delta P_nP_{n+1}P_{n+2}}}=S_{{}_{\Delta P_{n+1}P_{n+2}P_{n+3}}}$,即 $S_n=S_{n+1}$.

【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.

