

Generalized Equivariance and Preferential Labeling for GNN Node Classification

Zeyu Sun

Wenjie Zhang

Lili Mou

Qihao Zhu

Yingfei Xiong

Lu Zhang

Peking University

PART ONE

• Graphs are a widely used type of data structure in computer science.

- Graphs are a widely used type of data structure in computer science.
 - Existing GNNs highly rely on node embeddings.

- Graphs are a widely used type of data structure in computer science.
 - Existing GNNs highly rely on node embeddings.
 - However, the nodes in a graph may not be attributed.

- Unattributed graph.
 - Previous methods typically adopt an arbitrary labeling for nodes and represent them by embeddings.

- Unattributed graph.
 - Previous methods typically adopt an arbitrary labeling for nodes and represent them by embeddings --> artefacts

- Unattributed graph.
 - Some approaches have realized that such artefacts are undesired, and assign all nodes with the same embedding.

- Unattributed graph.
 - Some approaches have realized that such artefacts are undesired, and assign all nodes with the same embedding. --> GNN becomes insensitive to the nodes

• In this work, we analyze unattributed node classification tasks.

- In this work, we analyze unattributed node classification tasks.
 - Such tasks require *equivariance*, i.e., the change of node labels should be reflected correspondingly in the output.

- In this work, we analyze unattributed node classification tasks.
 - Such tasks require *equivariance*, i.e., the change of node labels should be reflected correspondingly in the output.

• Equivariance.

 An equivariant GNN is unable to solve equivariant node classification problems where multiple outputs are appropriate for an input graph.

- We propose
 - a *generalized equivariance property* that is more suited to unattributed node classification.

- We propose
 - a generalized equivariance property that is more suited to unattributed node classification.
 - a Preferential Labeling approach that asymptotically achieves our generalized equivariance property.

PARI IWO

Methodology

Problem Formulation

Equivariance Property

$$f(\pi(X)) = \pi(f(X))$$

- π denotes the permutation on X / f(X).
- f denotes the GNN model.
- X denotes the input graph.

Limitations of Existing GNNs on Unattributed Graphs

- Node Distinction
 - The SOTA approaches assign all nodes with the same embedding.

Limitations of Existing GNNs on Unattributed Graphs

- Node Distinction
- Equivariance Property
 - If the node index changes, the output would change accordingly.

Limitations of Existing GNNs on Unattributed Graphs

- Node Distinction
- Equivariance Property
 - If the node index changes, the output would change accordingly.

Figure 2: Graph C_4 , a circle of length 4. This graph is auto-isomorphic under $\pi: 1 \mapsto 2, 2 \mapsto 3, 3 \mapsto 4, 4 \mapsto 1$.

- Consider the maximum independent set (MIS) problem.
 - {1,3} and {2,4} --> {1,3} and {2,4}
 - $f(X) = \pi (f(X))$

- A naive attempt
 - For node distinction, a naive idea is to assign embeddings by random labeling.
 - For training, node labels are assigned randomly.
 - During inference, it assigns multiple random labels and uses an average ensemble for prediction.

- A naive attempt
 - For node distinction, a naive idea is to assign embeddings by random labeling.
 - For training, node labels are assigned randomly.
 - During inference, it assigns multiple random labels and uses an average ensemble for prediction.
 - We found it still suffer from the limitation of the Equivariance Property.

• To address this issue, we propose a desired *generalized equivariance property*.

• To address this issue, we propose a desired *generalized equivariance property*.

$$X = \pi(X_*)$$

$$\gamma(X_*) = X_*$$
 and $f(\pi(X_*)) = \pi \gamma(f(X_*)).$

- π and γ denote the permutation on X / f(X).
- f denotes the GNN model.
- X denotes the input graph.

• We further propose a simple yet effective approach, *Preferential Labeling*, which asymptotically satisfies *generalized equivariance property*.

• We further propose a simple yet effective approach, *Preferential Labeling*, which asymptotically satisfies *generalized equivariance property.*

 We further propose a simple yet effective approach, Preferential Labeling, which asymptotically satisfies generalized equivariance property.

• We further propose a simple yet effective approach, *Preferential Labeling*, which asymptotically satisfies *generalized equivariance property.*

• We further propose a simple yet effective approach, *Preferential Labeling*, which asymptotically satisfies *generalized equivariance property*.

- We further propose a simple yet effective approach, *Preferential Labeling*, which asymptotically satisfies *generalized equivariance property*.
 - Theoretical Analysis

PART THREE

Experiments

Competing Methods

- Static Labeling. The static labeling assigns an embedding based on the identity of a node.
- Same Embedding. This baseline assigns all nodes in the unattributed graph with the same embedding.
- Random Labeling. The random labeling assigns an embedding randomly during training and inference.
- **Degree Feature**. We use 1/(d + 1) as a one-dimensional, non-learnable embedding feature.
- **Degree Ranking Embedding**. We sort all nodes by the degrees in descending order, and a node having i-th largest degree is encoded by i-th embedding vector.

MIS Solving

- Solving the maximum independent set (MIS).
- Model. In this experiment, we adopt the state-of-the-art model GCN.

MIS Solving

- Solving the maximum independent set (MIS).
- Model. In this experiment, we adopt the state-of-the-art model GCN.

Row #	GCN (Li, Chen, and Koltun 2018)	Accuracy	
1	Same	75.59%	
2	Degree Feature	73.22%	
3	Degree Ranking Embedding	71.58%	
4	Static Labeling	74.57%	
5	Random Labeling	75.28%	
6	Preferential Labeling-10	85.04%	

SAT Solving

- Solving the propositional satisfiability problem (SAT).
- Model. The GNN model and settings are generally adopted from the state-of-theart NLocalSAT.

SAT Solving

- Solving the propositional satisfiability problem (SAT).
- Model. The GNN model and settings are generally adopted from the state-of-theart NLocalSAT.

		Error Rate				
Row#	NLocalSAT (Zhang et al. 2020)	Test-5	Test-10	Test-20	Test-40	Avg.
1	Same	5.26%	8.17%	15.03%	27.62%	14.02%
2	Degree Feature	5.31%	8.37%	14.25%	24.94%	13.22%
3	Degree Ranking Embedding	5.45%	10.23%	16.17%	28.04%	14.97%
4	Static	6.11%	9.86%	16.89%	28.88%	15.44%
5	Static & Inference-10 (Averaging)	5.00%	8.77%	15.74%	29.70%	14.80%
6	Static & Inference-10 (Max Prob.)	1.77%	3.65%	7.86%	16.22%	7.38%
7	Random	3.38%	6.17%	12.70%	23.66%	11.48%
8	Random & Inference-10 (Averaging)	3.39%	6.07%	12.42%	23.34%	11.31%
9	Random & Inference-10 (Max Prob.)	2.72%	5.03%	11.37%	22.06%	10.30%
10	Preferential Labeling-10 (Max Prob.)	1.13%	1.68%	1.81%	5.24%	2.47%

Conclusion

- We analyze the limitations of existing GNNs.
- We propose a generalized equivariance property and Preferential Labeling.

Thanks

Generalized Equivariance and Preferential Labeling for GNN Node Classification Zeyu Sun, Wenjie Zhang, Lili Mou, Qihao Zhu, Yingfei Xiong, Lu Zhang szy_@pku.edu.cn