07- 5-29:15:50 ; TAIYO, NAKAJIMA&KATO

Amendment to the claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of claims:

- 1. (currently amended) An image forming method for forming an image including a step of imagewise exposure of a photothermographic material and a step of heating the imagewise exposed photothermographic material with an image recording apparatus including laser irradiation means for scan exposing, with a laser beam, a photothermographic material comprising a photosensitive silver halide, a nonphotosensitive organic silver salt, a reducing agent and a binder on at least one surface of a support, and means for transporting the photothermographic material in a sub scanning direction and guiding it to a thermal developing portion, wherein:
- 1) the photothermographic material comprises at least one compound selected from compounds represented by the following formulae (1a), (1b) and (1c); and
- a distance between a scanning exposure position of the laser irradiation means and an insertion part of the thermal developing portion is 50 cm or less:

Formula (1a)

$$R-Y_1-(L_1)_{n_1}-CX_1X_2X_3$$

wherein, X_1 , X_2 and X_3 each independently represent a hydrogen atom or a substituent, provided that at least one of X1, X2 and X3 is a halogen atom; L1 represents a sulfonyl group; n1 represents 0 or 1; Y_1 represents $-N(R_1)$ -, a sulfur atom, an oxygen atom, a selenium atom, or -(R₂)C=C(R₃)-; R₁, R₂ and R₃ each independently represent a hydrogen atom or a substituent; and R represents a hydrogen atom, a halogen atom, an aliphatic group, an aryl group or a heterocyclic group;

Formula (1b)

$$R-Y_2-L_2-CX_1X_2X_3$$

07- 5-29:15:50 ; TALYO, NAKAJIMA&KATO

wherein, X_1 , X_2 and X_3 each independently represent a hydrogen atom or a substituent, provided that at least one of X_1 , X_2 and X_3 is a halogen atom; L_2 represents a carbonyl group or a sulfinyl group; Y_2 represents -N(R_1)-, a sulfur atom, an oxygen atom, a selenium atom, or -(R_2)C=C(R_3)-; R_1 , R_2 and R_3 each independently represent a hydrogen atom or a substituent; and R represents a hydrogen atom, a halogen atom, an aliphatic group, an aryl group or a heterocyclic group; and

Formula (1c)

$$R-Y_3-(L_3)_{n2}-CX_1X_2X_3$$

wherein, X_1 , X_2 and X_3 each independently represent a hydrogen atom or a substituent, provided that at least one of X_1 , X_2 and X_3 is a halogen atom; L_3 represents a sulfonyl group, a carbonyl group or a sulfinyl group; n2 represents 2 or 3; Y_3 represents a single bond, $-N(R_1)$ -, a sulfur atom, an oxygen atom, a selenium atom, or $-(R_2)C=C(R_3)$ -; R_1 , R_2 and R_3 each independently represent a hydrogen atom or a substituent; and R represents a hydrogen atom, a halogen atom, an aliphatic group, an aryl group or a heterocyclic group.

- 2. (original) An image forming method according to claim 1, wherein R is an alkyl group.
- 3. (original) An image forming method according to claim 1, wherein at least one of X_1 , X_2 and X_3 is Br.
- 4. (original) An image forming method according to claim 1, wherein Y_1 is $N(R_1)$ -.
 - 5. (original) An image forming method according to claim 4, wherein R_1 is an

alkyl group.

- 6. (original) An image forming method according to claim 1, wherein Y_2 is $N(R_1)$ -.
- 7. (original) An image forming method according to claim 6, wherein R_1 is a hydrogen atom.
- 8. (original) An image forming method according to claim 1, wherein Y_3 is a single bond.
- 9. (original) An image forming method according to claim 1, wherein n2 represents 2.
- 10. (original) An image forming method according to claim 1, wherein R and R_1 , or R and R_3 form a ring.
- 11. (original) An image forming method according to claim 10, wherein the ring is an alicyclic group.
- 12. (original) An image forming method according to claim 1, wherein the distance between the scanning exposure position and the insertion part of the thermal developing portion is 45 cm or less.
- 13. (original) An image forming method according to claim 1, wherein the photothermographic material has a silver coating amount of 1.9 g or less per 1 m² of the photothermographic material.

- 14. (original) An image forming method according to claim 1, wherein thermal development is carried out for 6 seconds to 14 seconds.
 - 15. (cancelled)
 - 16. (cancelled)
 - 17. (cancelled)
 - 18. (cancelled)
 - 19. (cancelled)
 - 20. (cancelled)
 - 21. (cancelled)
 - 22. (cancelled)
 - 23. (cancelled)
 - 24. (cancelled)
 - 25. (cancelled)
 - 26. (cancelled)

- 27. (cancelled)
- 28. (cancelled)
- 29. (cancelled)
- 30. (cancelled)
- 31. (cancelled)
- 32. (cancelled)
- 33. (cancelled)
- 34. (cancelled)
- 35. (cancelled)