0n souhaite modéliser le profil d'un toboggan, de hauteur $1{,}2\,\mathrm{m}$ et de longueur $2\,\mathrm{m}$, par la courbe $\mathscr C$ d'une fonction f dont l'expression est de de la forme $f(x)=ax^3+bx^2+cx+d$ où a, b, c et d sont des réels.

On se propose de déterminer les valeurs des coefficients $a,\ b,\ c$ et d tels que : la courbe $\mathscr C$ passe par les points $A(0\ ;\ 1,2),\ B(2\ ;\ 0)$; en ces deux points A et B, la tangente à la courbe $\mathscr C$ soit horizontale.

- **a.** Exprimez f'(x) en fonction de x et de paramètres.
- **b.** Déterminez f(0) et f'(0).
- **c.** En déduire c et d.
- **d.** Que vaut f(2) et f'(2) ?
- e. Montrez que les réels a et b sont les solutions du système d'équations suivant : $\left\{ \begin{array}{l} 12a+4b=1,2\\ 8a+4b+1,2=0 \end{array} \right.$
- f. Résoudre le système d'équations précédent.
- **g.** En déduire l'expression de f(x).

La fonction f est définie sur $\mathbb R$ par $f(x)=ax^2+bx+c$ et admet pour représentation graphique la courbe $\mathscr P.$ tels que : elle coupe l'axe des abscisses au point A d'abscisse 3 ; elle coupe l'axe des ordonnées au point B d'ordonnée 2 ; elle admet pour tangente en B la droite d'équation y=2x+2.

- **a.** Déterminez a, b et c.
- $\mathbf{b.}$ Indiquez l'abscisse du second point d'intersection de la courbe $\mathcal P$ avec l'axe des abscisses.

On considère la suite de listes (E_n) définie par $E_1=[1,1]$ et pour tout entier naturel n, E_{n+1} est obtenu à partir de E_n en insérant entre chaque terme $E_n(i)$ et $E_n(i+1)$ la somme $E_n(i)+E_n(i+1)$. Voici les premiers termes de la suite (E_n) :

```
E_1=[1, 1]

E_2=[1, 2, 1]

E_3=[1, 3, 2, 3, 1]

E_4=[1, 4, 3, 5, 2, 5, 3, 4, 1]

E_5=[1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4
```

Notons a_n le nombre de termes de la liste E_n , S_n la somme des termes de la liste E_n .

- On a donc $a_1=2$, $S_1=2$, $a_2=3$, $S_2=4$, $a_3=5$, $S_3=10$, $a_4=9$, $S_4=28$, $a_5=17$, $S_5=82$.
- **a.** Déterminez E_6 , a_6 et S_6 .
- **b.** Expliquez pourquoi que la suite (b_n) définie par $b_n=a_n-1$ est une suite géométrique de raison 2.
- **c.** En déduire l'expression de a_n en fonction de n.
- **d.** On admet que pour tout n, $S_{n+1}=3S_n-2$. Quelle est la nature de la suite (T_n) définie pour tout entier naturel non nul par $T_n=S_n-1$?
- ${f e.}$ Exprimez T_n en fonction de n.
- **f.** En déduire l'expression de S_n en fonction de n.
- **g.** Calculez la somme des 10 premiers termes de la suite (b_n) .
- **h.** En déduire la somme des 10 premiers termes de la suite (a_n) .
- **i.** Calculez la somme des 10 premiers termes de la suite (T_n) .
- **j.** En déduire la somme des 10 premiers termes de la suite (S_n) .