Отчёт по лабораторной работе

Лабораторная №2 по имитационному моделированию

Дзахмишев Камбулат Заурович

Содержание

1	цель работы	٤
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выполнение лабораторной работы	8
5	Выполнение лабораторной работы	9
6	Выполнение лабораторной работы	10
7	Выполнение лабораторной работы	11
8	Выполнение лабораторной работы	12
9	Выполнение лабораторной работы	13
10	Выполнение лабораторной работы	14
11	Выполнение лабораторной работы	15
12	Выводы	16
Спі	исок литературы	17

Список иллюстраций

3.1	Создание модели по приведённому коду
4.1	Создание модели по приведённому коду
5.1	Создание модели по приведённому коду
6.1	Создание модели по приведённому коду
7.1	Создание модели по приведённому коду
9.1	График агента Reno
10.1	График агента NewReno
11.1	График агента Vegas

Список таблиц

1 Цель работы

Описание моделируемой сети: – сеть состоит из 6 узлов; – между всеми узлами установлено дуплексное соединение с различными пропуск- ной способностью и задержкой 10 мс (см. рис. 2.4); – узел г1 использует очередь с дисциплиной RED для накопления пакетов, макси- мальный размер которой составляет 25; – ТСР-источники на узлах s1 и s2 подключаются к ТСР-приёмнику на узле s3; – генераторы трафика FTР прикреплены к ТСР-агентам.

2 Задание

Требуется разработать сценарий, реализующий модель согласно рис. 2.4, построить в Xgraph график изменения TCP-окна, график изменения длины очереди и средней длины очереди

```
/home/openmodeli
Файл Правка Поиск Вид Документ Справка
# создание объекта Simulator
set ns [new Simulator]
# открытие на запись файла out.nam для визуализатора nam
set nf [open out.nam w]
# все результаты моделирования будут записаны в переменную nf
$ns namtrace-all $nf
# открытие на запись файла трассировки out.tr
# для регистрации всех событий
set f [open out.tr w]
# все регистрируемые события будут записаны в переменную f
$ns trace-all $f
# Процедура finish:
proc finish {} {
global tchan
set awkCode {
if ($1 == "Q" && NF>2) {
print $2, $3 >> "temp.q";
set end $2
else if ($1 == "a" && NF>2)
print $2, $3 >> "temp.a";
set f [open temp.queue w]
puts $f "TitleText: Reno"
puts $f "Device: Postscript"
puts $f "0.Color: Blue"
puts $f "1.Color: Green"
if { [info exists tchan] } {
close $tchan
exec rm -f temp.q temp.a
exec touch temp.a temp.q
exec awk $awkCode all.q
```

Рис. 3.1: Создание модели по приведённому коду.

```
exec awk $awkCode all.q
puts $f \"queue Reno
exec cat temp.q >@ $f
puts $f \n\"ave_queue Reno
exec cat temp.a >@ $f
close $f
exec xgraph -bb -tk -x time -t "TCPRenoCWND" WindowVsTimeReno &
exec xgraph -bb -tk -x time -y queue temp.queue &
exit 0
# Формирование файла с данными о размере окна ТСР:
proc plotWindow {tcpSource file} {
global ns
set time 0.01
set now [$ns now]
set cwnd [$tcpSource set cwnd ]
puts $file "$now $cwnd"
$ns at [expr $now+$time] "plotWindow $tcpSource $file"
# Узлы сети:
set N 5
for {set i 1} {$i < $N} {incr i} {</pre>
set node_(s$i) [$ns node]
set node_(r1) [$ns node]
set node_(r2) [$ns node]
# Соединения:
$ns duplex-link $node (s1) $node (r1) 10Mb 2ms DropTail
$ns duplex-link $node_(s2) $node_(r1) 10Mb 3ms DropTail
$ns duplex-link $node_(r1) $node_(r2) 1.5Mb 20ms RED
$ns queue-limit $node_(r1) $node_(r2) 25
$ns queue-limit $node_(r2) $node_(r1) 25
$ns duplex-link $node_(s3) $node_(r2) 10Mb 4ms DropTail
$ns duplex-link $node_(s4) $node_(r2) 10Mb 5ms DropTail
# Агенты и приложения:
                          section TCD/Bone trade (c1) TCDCink trade (c2) Al
```

Рис. 4.1: Создание модели по приведённому коду.

```
# Соединения:
$ns duplex-link $node_(s1) $node_(r1) 10Mb 2ms DropTail
$ns duplex-link $node_(s2) $node_(r1) 10Mb 3ms DropTail
$ns duplex-link $node_(r1) $node_(r2) 1.5Mb 20ms RED
$ns queue-limit $node_(r1) $node_(r2) 25
$ns queue-limit $node_(r2) $node_(r1) 25
$ns duplex-link $node_(s3) $node_(r2) 10Mb 4ms DropTail
$ns duplex-link $node_(s4) $node_(r2) 10Mb 5ms DropTail
# Агенты и приложения:
set tcp1 [$ns create-connection TCP/Reno $node_(s1) TCPSink $node_(s3) 0]
$tcp1 set window_ 15
set tcp2 [$ns create-connection TCP/Reno $node_(s2) TCPSink $node_(s3) 1]
$tcp2 set window_ 15
set ftp1 [$tcp1 attach-source FTP]
set ftp2 [$tcp2 attach-source FTP]
# Мониторинг размера окна ТСР:
set windowVsTime [open WindowVsTimeReno w]
puts $windowVsTime "0.Color: White'
puts $windowVsTime \"Window_size"
set qmon [$ns monitor-queue $node_(r1) $node_(r2) [open qm.out w] 0.1];
[$ns link $node_(r1) $node_(r2)] queue-sample-timeout;
# Мониторинг очереди:
set redq [[$ns link $node_(r1) $node_(r2)] queue]
set tchan_ [open all.q w]
$redq trace curq
$redq trace ave
$redq attach $tchan
# Добавление at-событий:
$ns at 0.0 "$ftpl start"
$ns at 1.1 "plotWindow $tcp1 $windowVsTime"
$ns at 3.0 "$ftp2 start"
$ns at 10 "finish"
# запуск модели
$ns run
```

Рис. 5.1: Создание модели по приведённому коду.

```
# // Property from the first of the first o
```

Рис. 6.1: Создание модели по приведённому коду.

```
# Соединения:

# Соединения:

# Соединения:

# Коединения:

# Кое
```

Рис. 7.1: Создание модели по приведённому коду.

Рис. 9.1: График агента Reno

Рис. 10.1: График агента NewReno

Рис. 11.1: График агента Vegas

12 Выводы

В ходе данной лабораторной работы составил графики трафика разных агентов и провел сравнительный анализ каждого из них, а также поменял цвета отображаемых показателей и заголовки.

Список литературы