١. همگرايي يا واگرايي هريك از سريهاي زير را با ذكر دليل تعيين كنيد.

$$\sum_{n=1}^{\infty} \frac{(-1)^n n}{\ln n}$$
 (الف

(۱ نمره) بنابراین $\lim_{n\to +\infty} \frac{\ln x}{x} = \infty$ نمره). $\lim_{n\to +\infty} \frac{\ln x}{x} = \infty$ بنابراین $\lim_{n\to +\infty} \frac{\ln x}{x} = \infty$ اگر و فقط اگر $\lim_{n\to +\infty} \frac{1}{a_n}$ نتیجه میگیریم $\lim_{n\to +\infty} \frac{1}{a_n}$ نتیجه میگیریم (۱ نمره)

به این ترتیب $\{\frac{(-1)^n n}{\ln n}\}$ دنباله ای کراندار نیست و در نتیجه نمیتواند همگرا باشد. (۱ نمره)

به ویژه $\frac{(-1)^n n}{\ln n}$ همگرا به صفر نیست، پس بنا به آزمون جمله عمومي، سري داده شده واگرا است. (۲ نمره)

$\sum_{n=1}^{\infty} \frac{n}{\cosh n}$ (پ

پاسخ. روش اول:

$$\frac{n}{\cosh n} = \frac{n}{\frac{e^n + e^{-n}}{r}} = \frac{r}{e^n + e^{-n}} \le \frac{r}{e^n} \qquad (1)$$

(۲ نمره) ادعا میکنیم $\sum_{n=1}^{\infty} \frac{n}{e^n} > \infty$ همگرا است. براي اثبات بنا بر آزمون نسبت و این که $\sum_{n=1}^{\infty} \frac{n}{e^n}$ داریم

$$\lim \frac{\frac{n+1}{e^{n+1}}}{\frac{n}{e^n}} = \lim \frac{n+1}{n} \times \frac{1}{e} = \frac{1}{e} < 1$$

پس سري $\frac{n}{\cosh n}$ همگرا است. (۲ نمره) اکنون از رابطه (۱) و آزمون مقایسه نتیجه میشود سري داده شده همگرا است. (۱ نمره)

روش دوم:

 $\frac{n}{\cosh n} > 0$ آزمون نسبت را میتوانیم مستقیماً به کار ببریم،

$$\lim \frac{\frac{n+1}{\cosh(n+1)}}{\frac{n}{\cosh n}} = \lim \frac{n+1}{n} \times \frac{\cosh n}{\cosh(n+1)}$$

$$=\lim\frac{n+1}{n}\times\frac{e^n+e^{-n}}{e^{n+1}+e^{-(n+1)}}=\lim\frac{n+1}{n}\times\frac{1+e^{-7n}}{e+e^{-7n-1}}=\frac{1}{e}<1$$

زیرا $e^x=\lim_{x\to -\infty}e^x$ و $\lim_{n\to +\infty}\frac{n+1}{n}$ در نتیجه سري داده شده بنا بر آزمون نسبت همگرا است. (۵ نمره)

$$\sum_{n=1}^{\infty} \frac{1}{n^{r} + \cos n} \left(\mathbf{c} \right)$$

پاسخ.

روش اول:

باً توجه به اینکه برای هر $x \in R$ با توجه به اینکه برای هر

$$\forall n \in N, \quad \circ < \frac{1}{n^{\mathsf{Y}} + \cos n} \le \frac{1}{n^{\mathsf{Y}} - 1}$$

(۲ نمره)

اکنون با توجه به اینکه $\sum_{n=1}^{\infty} \frac{1}{n^{Y}-1}$ همگراست، بنابر آزمون مقایسه از همگرایی اکنون با توجه به اینکه $\sum_{n=1}^{\infty} \frac{1}{n^{Y}+\cos n}$ نتیجه میشود. (۲ نمره) همگرایی سری $\sum_{n=1}^{\infty} \frac{1}{n^{Y}+\cos n}$ از آزمون مقایسه حدی با توجه به اینکه $\sum_{n=1}^{\infty} \frac{1}{n^{Y}-1}$ و همگرایی سری $\sum_{n=1}^{\infty} \frac{1}{n^{Y}-1}$ به دست می آید. (۱ نمره)

روش دوم:

 $\circ < rac{1}{n^{4} + \cos n}$ با توجه به اینکه $1 \leq \cos x \leq 1$ نتیجه میگیریم از سوی دیگر داریم

$$\lim \frac{\frac{1}{n^{r} + \cos n}}{\frac{1}{n^{r}}} = \lim \frac{n^{r}}{n^{r} + \cos n} = \lim \frac{1}{1 + \frac{\cos n}{n^{r}}} = 1 > 0$$

(۳ نمره)

(۱ نمره) $\lim \frac{\cos n}{n^{\rm t}} = \circ$ کر اندار و دنباله $\{\frac{1}{n^{\rm t}}\}$ همگرا به صفر است، پس $\frac{\cos n}{n^{\rm t}}$ کر اندار و دنباله $\sum_{n=1}^{\infty} \frac{1}{n^{\rm t}}$ بنابر آزمون مقایسه حدي نتیجه میشود سري داده شده همگرا است. (۱ نمره)

با نابطه زیر در $x=\circ$ پیوسته باشد. $f:R \to R$ پیوسته باشد. c

$$f(x) = \begin{cases} |x|^{\frac{1}{x^{\gamma}}} & x \neq 0 \\ c & x = 0 \end{cases}$$

 $\lim_{x \to \circ} f(x) = f(\circ) = c$ پاسخ. باید داشته باشیم

$$\lim_{x \to \circ} f(x) = \lim_{x \to \circ} |x|^{\frac{1}{x^{\mathsf{T}}}} = \lim_{x \to \circ} e^{\frac{\ln|x|}{x^{\mathsf{T}}}}$$

(۱نمره)

ابتدا نشأن میدهیم $a_n o \circ$ اگر $a_n o \circ$ اگر $a_n o \circ$ آنگاه $a_n o \circ$ ابتدا نشأن میدهیم $a_n o \circ$ انگاه $a_n o \circ$ ابتدا نشأن میدهیم $a_n o \circ$ انگاه $a_n o$ انگاه $a_n o \circ$ انگاه $a_n o$ انگاه $a_n o \circ$ انگاه $a_n o \circ$ انگاه $a_n o \circ$ انگاه a_n

علاوه بر این $\ln |a_n| o -\infty$ علاوه بر این $\lim_{x o \circ^+} \ln x = -\infty$ نتیجه میگیریم $\lim_{x o o^+} \ln \frac{\ln |a_n|}{a_n^{\rm v}} = -\infty$

از سوي ديگر $e^x=\lim_{x\to -\infty}e^{\frac{\ln|a_n|}{a_n^\gamma}}$ پس $e^x=\lim_{x\to -\infty}e^x=0$ و اين يعني براي پيوستگي تابع داده شده بايد $e^{\frac{\ln|x|}{a_n^\gamma}}=\lim_{x\to \infty}e^{\frac{\ln|x|}{a_n^\gamma}}=0$ تابع داده شده بايد $e^x=\lim_{x\to \infty}e^{\frac{\ln|x|}{a_n^\gamma}}=0$

۳. الف) نشان دهید تابع f با ضابطه $f(x)=\ln(\Upsilon^x+1)$ بر f پیوسته است. $c^{\Upsilon}=\ln(\Upsilon^c+1)$ وجود دارد که $c\in R$ باسخ.

الف) میدانیم که تابع $h(x)=\ln x$ و تابع $g(x)=\mathsf{r}^x+\mathsf{l}=e^{x\ln\mathsf{r}}+\mathsf{l}$ پیوسته هستند در نتیجه بنا به قضیه پیوستگی ترکیب توابع، f(x)=(hog)(x) تابعی پیوسته است. (۲ نمره)

ب) قرار میدهیم $g(x) = \ln(\mathsf{T}^x + \mathsf{I}) - x^\mathsf{T}$ نمره) با توجه به قسمت قبل و پیوستگی تابع g(x) x^T تابعی پیوسته است. (۱ نمره) بازه بسته $[\circ,\mathsf{T}]$ را در نظر بگیرید. $[\circ,\mathsf{T}]$ و $[\circ,\mathsf{T}]$ و $[\circ,\mathsf{T}]$ را در نظر بگیرید. $[\circ,\mathsf{T}]$ و $[\circ,\mathsf{T}]$ و $[\circ,\mathsf{T}]$ بازه بسته $[\circ,\mathsf{T}]$ را در نظر بگیرید. $[\circ,\mathsf{T}]$ و تابع $[\circ,\mathsf{T}]$ تابعی اکیدا صعودی است، داریم از $[\circ,\mathsf{T}]$ و $[\circ,\mathsf{T}]$ و $[\circ,\mathsf{T}]$ و $[\circ,\mathsf{T}]$ بیوسته و $[\circ,\mathsf{T}]$ بیوسته و $[\circ,\mathsf{T}]$ پیوسته و $[\circ,\mathsf{T}]$ بیوسته و $[\circ,\mathsf{T}]$ بیمنی و $[\circ,\mathsf{T}]$ بیوسته و

توجه: نتیجه فوق روی بازه های بسته [-1, 1] و [1, 7] نیز برقرار است.