Digital Forensics Lecture Week 7

Windows Artifacts

Readings
Nelson Chapter 5

Objectives

- To understand Windows Artifacts
- To identify Volatile Forensic Data
- To identify non-Volatile Forensic Data
- To understand computer profiling

The Scenario

- We are asked to examine a digital device
- We suspect it has been involved in an attack
- We suspect there may be evidence left
 - And traces of any malware used
- We wish to capture the evidence immediately
- We will first capture the volatile evidence
- Then we will capture the non-Volatile evidence

Device Variation

- Each device has completely different artifacts
- Depends on the OS
 - Windows, Apple, MAC iOS, Android
- Depends on the Virtualisation
 - Native Host, Virtual Machine, Cloud based services
- Depends on the installed Apps
 - Browsers, Office, VPNs

Client Operating Systems

- What OS is the suspect likely to use?
- w3schools.com collect web browser statistics
 OS Platform Statistics

2020	Win10	Win8	Win7	WinXP	Linux	Mac	Chrome OS	<u>Mobile</u>
May	60.1%	3.1%	7.2%	0.1%	4.9%	11.9%	0.4%	12.3%
April	60.1%	3.2%	7.4%	0.1%	4.8%	12.4%	0.4%	11.8%
March	60.6%	3.2%	8.5%	0.1%	5.4%	11.1%	0.4%	10.8%
February	59.1%	3.5%	9.8%	0.2%	5.9%	9.9%	0.0%	11.4%
January	58.1%	3.6%	10.6%	0.2%	6.4%	9.7%	0.4%	11.2%

We will look at Windows 10 now and later Linux

Windows Artifacts

- The suspect uses a Windows device to:
 - Send and receive emails
 - Visit web sites and use social networking
 - Download and collect data
- By accident or design, there may be malware
- What does Windows collect about her activity?
 - Where will we find this information?
 - In what order should we search?

Using the Web Client

- We use a browser to ident the device
- The http request string is an example
- This is called device fingerprinting
 - Remember Browserleaks.

We use this to guide our investigation

Browser Characteristic	bits of identifying information
User Agent	10.14
HTTP_ACCEPT Headers	9.55
Browser Plugin Details	15.38
Time Zone	7.15
Screen Size and Color Depth	4.5
System Fonts	19.08
Are Cookies Enabled?	0.43
Limited supercookie test	0.96

Windows Profiling

- An important forensics process
- We collect state information from normal behaviour
- We consider abnormal behaviour as being of forensic interest
- What is normal?
- We collect and average behaviour for a variety of combinations
- We vary browsers, applications, users, time of day, etc ...
 - See later section on profiling

Windows Artifact tools

- We can use WMI to scan a PC to determine its configuration
- We can use python or Windows PowerShell to run commands
- We can use forensic tools
 - OSForensics
 - ProDiscover
 - Autopsy
 - Encase

OSForensics

Objectives

- To understand Windows Artifacts
- To identify Volatile Forensic Data
- To identify non-Volatile Forensic Data
- To understand computer profiling

Volatile Forensics

- Examiners use a routine in their initial investigation
 - Profile check to detect unusual artifacts
- We will do a cut down version today
 - Date and Time
 - Current Network sessions
 - Running Processes
 - Prefetch activity

Volatile Evidence collection items

- Date and Time of our investigation
 - very important in a court of law
 - easy to obtain from built in Windows commands
 - Include the current time zone
- We check current network connections
 - Using the built-in netstat command
- We will see many connections
 - browsing and cloud services
 - How do we know which ones are normal?

Open tcp and udp ports

- Netstat shows open ports listening
- Listening for what?
- We use forensic tools to link the open ports to the executable program that launched them
- We examine the exes to see if they have been altered
- How?
 - We can look at the file publisher information
 - We can look at the published file hash sets
 - www.nsrl.nist.gov 4GB!
 - some forensic tools have a copy of these hashes in a SQLite db

Netstat on Windows 10

(idle, no user apps open)

```
Netstat on Windows 10 (idle)
C:\WINDOWS\system32>netstat -bno
 Proto Local Address Foreign Address State
                                                               PTD
 TCP 10.10.10.3:19702 111.221.29.162:443
                                                  ESTABLISHED
                                                               10548
 [OneDrive.exe] Microsoft cloud file hosting service
 TCP 10.10.10.3:19724
                              111.221.29.106:443
                                                  ESTABL TSHED
                                                               3476
 WpnService
                Windows push notification service
 [svchost.exe]
 TCP
        10.10.10.3:19797
                              111.221.29.254:443
                                                  ESTABL TSHED
                                                               3216
 DiagTrack
                 Diagnostic Tracking service
 [svchost.exe]
nslookup 111.221.29.xxx
Name: xxx.wns.windows.com
```

Processes, Services and dlls

- We met these in Week 6
 - See the CPU and Memory Lecture
- These are of forensic interest when chasing malware
- Use the pslist and listdlls tools
- Look for strange process names
- Look for strange exe locations

Viewing dlls

```
C:\Forensics Graham>Listdlls.exe cmd.exe
Listdlls v3.2 - Listdlls
Copyright (C) 1997-2016 Mark Russinovich
Sysinternals
cmd.exe pid: 8800
                                                                   dll description
Command line: "C:\WINDOWS\system32\cmd.exe"
                    Size
Base
                              Path
                                                                  Windows Command Processor
                              C:\WINDOWS\system32\cmd.exe
0x0000000057960000
                    0x68000
                                                                   NT Layer dll
0x000000000a71b0000
                   0x1f9000 C:\WINDOWS\SYSTEM32\ntdl1.dll
                                                                   Windows BASE API Client dll
0x000000000a66e0000
                   0xbc000
                              C:\WINDOWS\System32\KERNEL32.DLL
                                                                   Windows BASE API Client dll
0x00000000a4b20000 0x2cc000 C:\WINDOWS\System32\KERNELBASE.dll
                                                                   Windows C Runtime dll
0x00000000a6380000 0xa1000
                              C:\WINDOWS\System32\msvcrt.dll
                                                                   MS COM for windows
0x00000000a69b0000 0x356000 C:\WINDOWS\System32\combase.dll
                                                                   C run time library
0x000000000a4f50000
                   0x100000 C:\WINDOWS\System32\ucrtbase.dll
                                                                   Remote Procedure Call run time
0x000000000a6fe0000
                    0x11b000
                              C:\WINDOWS\System32\RPCRT4.dll
                                                                   Windows Branding
                    0x37000
0x0000000008e1f0000
                              C:\WINDOWS\SYSTEM32\winbrand.dll
                   0xad000
                              C:\WINDOWS\System32\shcore.dll
0x000000000a5230000
                                                                   Host for SCM/LSA lookup
0x00000000a5ae0000 0x9b000
                              C:\WINDOWS\System32\sechost.dll
C:\Forensics Graham>Listdlls.exe cmd.exe | find /c "dll"
                                                                   There are 11 dlls in cmd.exe
11
```

AutoStart/Autorun #1

• Covered in Week 6

Name	Publisher	Status	Start-up impact
Windows Security notification icon	Microsoft Corporation	Enabled	Low
Windows host process (Rundll32)	Microsoft Corporation	Enabled	High
Windows Command Processor	Microsoft Corporation	Enabled	Medium
Send to OneNote Tool	Microsoft Corporation	Enabled	Low
Realtek HD Audio Universal Service	Realtek Semiconductor	Enabled	Low
Microsoft OneDrive	Microsoft Corporation	Enabled	High

AutoStart/Autorun #2

Use the SysInternals Autoruns tool

Prefetch

- When an app runs, it needs various objects loaded into memory.
- Prefetch collects this information and preloads these objects for the next time the app starts.
 - Kept in C:\Windows\prefetch
 - the hash includes the name, date and file path.

```
prefetch file name | times ran | last run | path\appname | IEXPLORE.EXE-4B6C9215.pf | 139 | 11/11/13 | \INTERNET EXPLORER\IEXPLORE.EXE | WINWORD.EXE-7D220BFE.pf | 113 | 11/11/13 | \MICROSOFT OFFICE\OFFICE14\WINWORD.EXE | ACRORD32.EXE-D066635E.pf | 111 | 11/11/13 | \ADOBE\READER 11.0\READER\ACRORD32.EXE
```

- Provides evidence of when an app was used.
- Also how often it was opened.

Objectives

- To understand Windows Artifacts
- To identify Volatile Forensic Data
- To identify non-Volatile Forensic Data
- To understand computer profiling

Non-Volatile Forensics

- Examiners use a routine in their initial investigation
 - Profile check to detect unusual artifacts
- We will do a cut down version today
 - OS Patch level
 - Browser Add-ons
 - User accounts
 - Time Lines
 - MRUs
 - Registry
 - Restore points
 - Logs

Collecting System Data

- Checking for Malware:
- The attacks possible on a device depend heavily on which OS patches have been applied
- We need to collect the patch level of the OS
- This includes patches for applications
 - Browsers
 - Office
 - Adobe, etc ...
- We use the Forensic tool PsInfo or similar

Browser add-ons

- Customised browsers can reveal a lot about the suspect
- The chosen add-ons or extensions reveal a lot
- Found on Google or Apple store
- Check for:
 - anonymous proxies
 - VPNs
 - TOR

Chrome extensions

Viewing User Accounts with WMIC

- Windows Management Instrumentation Command (WMIC)
- Can see Windows Internals
- wmic alias list brief show all available commands
- wmic useraccount list brief show common item headings
- wmic useraccount get disabled, name show selected items

```
wmic alias list brief
FriendlyName
-----
NICConfig
SysDriver
TapeDrive
NTEventLog
UserAccount
```

```
wmic useraccount get disabled, name
Disabled Name
TRUE Administrator
TRUE DefaultAccount

FALSE graha
FALSE group11
TRUE Guest
TRUE WDAGUtilityAccount
```

Find the last login for a user

Use a pipe (|) to pass the output of net user into find

```
C:\Users\graha>net user group11 | find "Last"
Last logon 9/01/2018 4:31:10 PM

C:\Users\graha>net user graha | find "Last"
Last logon Never
```

- What If the answer is Never?
 - the user logged in using a Microsoft cloud account

Timelines

- Timelines track the Incident events step by step.
- You may find suspicious events in a log file.
- Other evidence may point to the suspect's activity around this time.
- It is of forensic interest to assemble all activity around this time.
 - On the PC, network and phones
 - You must allow for different server Time Zones
- See Forensic toolkits for timeline reconstruction.

Collecting a Time Line

- Previous investigations will reveal the date and time of attacks.
- We can collect date and time information about every file on the device.
- We can then examine the files in use during the attack.
- There are three dates for each file
 - Created, Modified, Opened
- We use a Linux utility called find to examine file data
- (this is **not** the same as the Windows find used earlier)
- We export this to Excel for sorting

Thumbnail Caches

 Windows can create a Thumbs.db of image files in each directory for quick viewing

 Deleting an image does not delete its entry in thumbs.db

Recent Files

- A list of recently opened data files and folders can be found in C:\Users\xxx\Recent
- To see recently used apps use UserAssist
 - See next slide

The Windows Registry

- Covered in Week 6
- Contains many items of forensic interest
- AutoStart/AutoRun
- UserAssist Records the number of uses of exes
- USBStore Records USB devices used
- Lists of Most Recently Used items (MRUs)
 - See next slide

MRUs

Windows keeps several Most Recently Used lists

(MRUs)

- Files opened
- Apps started
- Web Pages visited
- Office docs opened

- These all indicate what the suspect did recently
- https://www.nirsoft.net/utils/recent_files_view.html

The USBStor Key

- Records every device connected by USB
- Backed up at each restore point see week 6

```
USBSTOR

Disk&Ven_&Prod_USB_DISK_3.0&Rev_PMAP

Disk&Ven_HTC&Prod_Android_Phone&Rev_0000

Disk&Ven_HTC&Prod_Android_Phone&Rev_0100

Disk&Ven_JetFlash&Prod_Transcend_4GB&Rev_1100

Disk&Ven_JetFlash&Prod_Transcend_8GB&Rev_1100

Disk&Ven_JetFlash&Prod_Transcend_8GB&Rev_1100

Disk&Ven_OLYMPUS&Prod_FE340_X855_C560&Rev_1

Disk&Ven_SanDisk&Prod_Cruzer_Glide&Rev_1.26

Disk&Ven_Verbatim&Prod_STORE_N_GO&Rev_5.00
```

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Enum\USBSTOR

USB Oblivion

- Removes (most) traces of USB usage from the registry
- The act of running this tool is forensic evidence

http://www.cherubicsoft.com/en/projects/usboblivion#.VefLVjZ--Hs

Restore Points

- Save a snapshot of registry and system configs
- Used before trying something dangerous
- Can rollback if something goes wrong
- Find Restore in System Properties
- Can recover deleted apps and registry keys

Windows logs

- Integrated into the Operating System
- Come with their own GUI Viewer
- Runs as the Event Viewer snap—in for the MMC
 - Microsoft Management Console (MMC)
- You can open the Event Viewer three ways
 - From the command line run eventywr
 - From File Explorer select This PC, right click and select manage
 - From the Control Panel, select Administrative Tools, Event Viewer

Accessing Windows Logs

- File Explorer
- Right click on This PC
- Select Manage
- Select Event Viewer

Windows Logging

- There are three main logs
 - Application
 - Security
 - System
- Not all logging is enabled by default
- Logs default to 20MB and then roll over
 - Right click and select properties

Event List

Security Number of even s: 24,100				
Keywords	Date and Time	Source	Event ID	Task Category
Audit Success	9/01/2018 2:50:53 PM	Microsoft Windows security auditing.	4672	Special Logon
Audit Success	9/01/2018 2:50:53 PM	Microsoft Windows security auditing.	4624	Logon
Audit Success	9/01/2018 2:49:52 PM	Microsoft Windows security auditing.	4672	Special Logon
Audit Success	9/01/2018 2:49:52 PM	Microsoft Windows security auditing.	4624	Logon

- Many MBs of Events in each of the three main logs
- We can Sort, Search and Filter the list

Log viewer Control Pane

Use to Sort, Search and Filter the list

Objectives

- To understand Windows Artifacts
- To identify Volatile Forensic Data
- To identify non-Volatile Forensic Data
- To understand computer profiling

Computer Profiling

- Once we have examined a device's artifacts and its forensics data we can reconstruct the user's activity.
- From this activity we can abstract a view of the user.
- This is called computer profiling.
 - (This is NOT a user profile as used in social media)
- This is a user level view of the device
- We use this computer profile to confirm or deny allegations about the user.
- When we have a new device to examine we can use previous profiles to focus on key areas of investigation.

Hypothesis testing

- Using the computer profile, the investigator hypothesises an action by the subject.
- For example, downloading a pornographic image.
- She then tests this hypothesis using forensic examination.
- She is trying to attribute the download to one particular person.
- (See attribution week 2)

Some computer profiles

- Innocent (apparently)
 - Nothing to see, 'as new' install.
- Media professional
 - Image manipulation, heavy social media activity
- IT Professional
 - Use of Linux, VMs and VPNs.
- Hiding from forensics
 - Use of the dark web, metadata scrubbing, secure deletion.

Some artifacts used in profiling

(examples in braces)

- Logons detected
 - Private (home), work (company), educational (uni), restricted (dark web). Other users.
- Other people non login
 - Contacts. (Friends in divorce investigations), (Customers in illegally obtained data sales).
- Apps installed
 - Photo manipulation (photoshop, GIMP)
- Incognito Browsers and search engines used
 - (Chrome Incognito), (duckduckgo), (tor browser)
- Linux VMs installed
 - (Ubuntu, Kali)
- Use of VPNs
 - (Openvpn, TOR)

References

OS Support for Students by an expert in the field http://www.computersciencestudent.com/

Background in forensic profiling

B. Carrier, "A Hypothesis-Based Approach to Digital Forensic Investigations," in Center for Education and Research in Information Assurance and Security West Lafayette: Purdue University, 2006, p. 169.

FIN