LISTA DE EXERCÍCIOS DE CÁLCULO - 3

PROF. DANIEL VIAIS NETO

EXERCÍCIO

1. Derive as funções abaixo:

a)
$$f(x) = \frac{1}{\sqrt{2}} \cdot e^{sen2\pi}$$

b)
$$f(x) = 21 - \sqrt{3}x$$

c)
$$f(x) = -\frac{3}{8}x^4 + 2x$$

d)
$$f(x) = 2 + 2x + 2x^2 + 2x^4 + 2x^8$$

e)
$$f(x) = \sqrt[3]{x+1}$$

EXERCÍCIO

2. Derive as funções abaixo:

a)
$$f(x) = \frac{2x-3}{x+5}$$

b)
$$f(x) = (5x - 2)^3$$

c)
$$f(x) = -x^4 - \frac{3}{2}x^2 + 3x - 4$$

d)
$$f(x) = 4x^2(3x+2)^{10}$$

EXERCÍCIO

3. Encontre f'(x) no ponto dado.

a)
$$f(x) = (x^2 - x + 1)(2x - 6)^5$$
, $x = 2$

b)
$$f(x) = \frac{2x-1}{x^2+3x-5}$$
, $x = 1$

c)
$$f(x) = -2\sqrt{3x^2 - 12x + 21}$$
, $x = -1$

d)
$$f(x) = -\frac{x^3}{3} + 5x + 10, x = -1$$

e)
$$f(x) = 7x \cdot (2x - 1)^3$$
, $x = 1$

f)
$$f(x) = \frac{x^2 + 3x - 1}{5 - 2x}$$
, $x = 2$

EXERCÍCIOS

- **4.** Considere uma partícula se deslocando linearmente, sua posição s (em metros) é dada pela função $s(t) = 0.25t^3 + 2t + 1$, onde t significa o tempo (em segundos). Qual a taxa de variação média da posição em relação ao intervalo [2, 4]?
- a) 9 m/s b) -9 m/s c) 16 m/s d) -16 m/s e) 16 m/s²
- 5. Considere uma partícula se deslocando linearmente, sua posição s (em metros) é dada pela função $s(t) = 0.25t^3 + 2t + 1$, onde t significa o tempo (em segundos). Qual a velocidade da partícula em t = 3?
- a) 15,5 m/s b) 8,75 m/s c) 9,75 m/s d) 9,75 m/s² e) 8,75 m/s²

EXERCÍCIOS

6. Considere uma partícula se deslocando linearmente, sua posição s (em metros) é dada pela função $s(t) = 0.25t^3 + 2t + 1$, onde t significa o tempo (em segundos). Em que momento a partícula atinge a velocidade $29 \, m/s$?

a) 4 s b) 5 s c) 5,5 s d) 6 s e) 6,5 s

7. Considere uma partícula se deslocando sobre uma reta, sua posição s (em metros) é dada pela função $S(t) = 2t^3 - 4t^2 + 6t - 13$, onde t significa o tempo (em segundos). Qual a taxa de variação média da velocidade em relação ao intervalo [1, 5]?

a) 28 m/s b) 44 m/s² c) 30 m/s² d) 44 m/s e) 28 m/s²

EXERCÍCIOS

8. Considere uma partícula se deslocando sobre uma reta, sua posição s (em metros) é dada pela função $S(t) = 2t^3 - 4t^2 + 6t - 13$, onde t significa o tempo (em segundos). Qual aceleração quando t = 2 s?

- a) 4 m/s^2 b) 16 m/s^2 c) 18 m/s^2 d) 28 m/s^2 e) 30 m/s^2

9. Considere uma partícula se deslocando linearmente, sua posição s (em metros) é dada pela função $s(t) = 0.5t^3 + 2t + 1$, onde t significa o tempo (em segundos). Em que momento a partícula atinge a velocidade 26 m/s?

- a) 4 s b) 5 s c) 5,5 s d) 6 s e) 6,5 s

≤ Gabarito

1.

a)
$$f'(x) = 0$$

b)
$$f'(x) = -\sqrt{3}$$

c)
$$f'(x) = -\frac{3}{2}x^3 + 2$$

d)
$$f'(x) = 2 + 4x + 8x^3 + 16x^7$$

e)
$$f'(x) = \frac{1}{3}(x+1)^{-2/3}$$

2.

a)
$$f'(x) = \frac{2.(x+5)-(2x-3).1}{(x+5)^2} = \frac{13}{(x+5)^2}$$

b)
$$f'(x) = 3.(5x - 2)^2.5 = 15.(5x - 2)^2$$

c)
$$f'(x) = -4x^3 - 3x + 3$$

d)
$$f'(x) = 8x \cdot (3x + 2)^{10} + 120x^2 \cdot (3x + 2)^9$$

3

a)
$$f'(2) = 384$$

b)
$$f'(1) = -7$$

c)
$$f'(-1) = 3$$

d)
$$f'(-1) = 4$$

e)
$$f'(1) = 49$$

f)
$$f'(2) = 25$$