Complexity Analysis – Practice questions

Data Structures

Question 1. Write the tight big-O for the following expressions and find c and no

1. 9n³+400n²

Solution:

Proof:

Since,

$$T(n) \le cf(n)$$

$$9n^3 + 400n^2 \le c(n^3)$$
 ----- (1)

$$(9n^3 + 400n^2)/(n^3) \le c$$

Put n=2:

$$(9*2^3+400*2^2)/(2^3) \le c$$

$$(72 + 1600)/(8) \le c$$

$$c >= 209$$

Putting c=209 and n=2 in Eq(1):

$$9*2^3 + 400*2^2 \le 209(2^3)$$

1672<= 1672 (hold true)

$$C=209 n_0=2$$

Hence, proved.

2. $n^32^n + n^23^n$

Solution:

Proof:

Since,

$$T(n) \le cf(n)$$

$$n^3 2^n + n^2 3^n \le c(n^2 3^n)$$
 ------(1)

$$(n^32^n+n^23^n)/(n^23^n) <= c$$

Put n=2:

```
(2^32^2+2^23^2)/(2^23^2) \le c
(32 + 36)/36) <= c
68/36 <=c
1.89 <= c
c >= 1.89 ~2
Putting c=2 and n=2 in Eq(1):
2^32^2+2^23^2 \le 2(2^23^2)
68<= 72 (hold true)
The above equation holds true for all n>=1.
C=2 n_0=1
Hence, proved.
    3. n^2/logn + n
Solution:
Proof:
Since,
T(n) \le cf(n)
n^2/logn + n \le c(n^2/logn) ----- (1)
(n^2/logn + n)/(n^2/logn) \le c
Put n=2:
(2^2/\log 2 + 2)/(2^2/\log 2) \le c
15.29/13.29 <= c
1.15 <=c
1.15 <= c
c >= 1.15 ~2
Putting c=2 and n=2 in Eq(1):
(2^2/\log 2 + 2) \le 2(2^2/\log 2)
15.29<= 26.58 (hold true)
```

4. nk+a+2n

 $C=2 n_0=2$

Hence, proved.

Proof:

Since,

$$T(n) \le cf(n)$$

$$n^{k+a}+2^n \le c(2^n)$$
 -----(1)

$$(n^{k+a}+2^n)/2^n \le c$$

Put n=2;

$$(2^{k+a}+2^2)/2^2 \le c$$

$$(2^{k+a-2}+1) <= c$$

Putting $c=2^{k+a-2}+1$ and n=2 in Eq. (1):

$$(2^{k+a}+2^2) \le 2^{k+a-2}+1*(2^2)$$

$$(2^{k+a}+2^2) \le 2^{k+a-2+2}+2^2$$

$$(2^{k+a}+2^2) \le 2^{k+a}+2^2$$
 (holds true)

$$C=(2^{k+a-2}+1) n_0=2$$

Hence, proved.

5. $n^{k+a}+n^k \log n$

Solution:

Proof:

Since,

$$T(n) \le cf(n)$$

$$n^{k+a}+n^{k}logn \le c(n^{k+a})$$
 -----(1)

$$(n^{k+a}+n^k log n) / n^{k+a} \le c$$

Put n=2;

$$(2^{k+a}+2^klog2) / 2^{k+a} \le c$$

$$(2^{k+a-k-a}+2^{k-k-a}log2) \le c$$

Putting $c=(1+2^{-a}\log 2)$ and n=2 in Eq. (1):

$$2^{k+a}+2^{k}\log 2 \le (1+2^{-a}\log 2)(2^{k+a})$$

$$2^{k+a}+2^{k}\log 2 \le (2^{k+a}+(2^{-a}\log 2)^* 2^{k+a})$$

$$2^{k+a}+2^{k}\log 2 \le 2^{k+a}+2^{k}\log 2$$
 (holds true)

$$C=(1+2^{-a}log2) n_0=2$$

Hence, proved.

```
6. 5n^3 + \sqrt{n} \log n + n^* (2n + n \log n)
```

```
Proof:
```

Since,

$$T(n) \le cf(n)$$

$$5n^3 + n^1/2*logn + 5n^2 + n^2logn <= c(n^3)$$
 -----(1)

$$(5n^3 + n^1/2*logn + 5n^2 + n^2logn) / n^3 \le c$$

Put n=2;

$$(40+1.41*1+20+4*1)/8 \le c$$

8.17 <=c

Putting c=9 and n=2 in Eq.(1):

$$C=9 n_0=2$$

Hence, proved.

7. (100n+logn) * (25n+log n)

Solution:

$$T(n) = (100n + logn) * (25n + logn)$$

$$T(n) = 2500n^2 + 100nlogn + 25nlogn + (logn)^2$$

The order of T(n) is $O(n^2)$.

Proof:

Since,

$$T(n) \le cf(n)$$

$$2500n^2 + 100nlogn + 25nlogn + (logn)^2 <= c(n^2)$$
 -----(1)

$$(2500n^2 + 100nlogn + 25nlogn + (logn)^2)/n^2 <= c$$

Put n=2;

$$(2500*4 + 100*2*1 + 25*2*1 + 1)/4 \le c$$

```
Putting c=2563 and n=2 in Eq. (1):
(2500*4 + 100*2*1 + 25*2*1 +1) <= 2563 * 4
10251 <= 10252 (holds true)
The above equation holds true for all n>=1.
C=2563 n<sub>0</sub>=1
Hence, proved.
    8. n^3 + 4n + 2^n
Solution:
Proof:
Since,
T(n) \le cf(n)
n^3 + 4n + 2^n \le c(2^n) ----- (1)
(n^3 + 4n + 2^n)/(2^n) \le c
Put n=2:
(2^3+4*2+2^2)/(2^2) \le c
28/4 <=c
7 <= c
c >= 7
Putting c=7 and n=2 in Eq(1):
(2^3+4*2+2^2) \le 7(2^2)
28<= 28 (hold true)
The above equation holds true for all n>=1.
C=7 n_0=1
```

Hence, proved.

Question 2. For each of the following program fragments give an analysis of the running time in T(N) and as well as in tight Big-O.

TO DO: Dry run the code for different values of N in rough before estimating. Assume cost of cout<< is 1.

```
a)
for (int i=1; i <= n; i = i * 2)
{
    for (j = 1; j <= i; j = j * 2)
        {
            cout <<"*";
        }
}
```

n	i	possible values of j	Frequency of cout stmt
1	1	1	1
2	1,2	1, 1,2	1+2 =3
4	1,2,4	1, 1,2, 1,2,4	1+2+3=6
8	1,2,4,8	1, 1,2, 1,2,4, 1,2,4,8	1+2+3+4=10
1	1,2,4,8,16	1 ,1,2, 1,2,4, 1,2,4,8, 1,2,4,8,16	1+2+3+4+5=15
6			
3	1,2,4,8,16,3	1, 1,2, 1,2,4, 1,2,4,8, 1,2,4,8,16,	1+2+3+4+5+6=21
2	2	1,2,4,8,16,32	
n	1,2,4,8,,n	1, 1,2, 1,2,4,	$1+2+3+(1+\log_2 n) =$
		1,2,4,8(n)	$(1 + \log_2 n)(2 + \log_2 n)$
)/2

Steps	Step Counts
Int i=0	1
i <= n	$\log_2 n \log_2 n + 2$
i = i * 2	$\log_2 n \log_2 n + 1$
j = 1	$\log_2 n \log_2 n + 1$
j <= i	$(1 + \log_2 n)(2 + \log_2 n)/2 + \log_2 n + 1$
j = j * 2	$(1 + \log_2 n)(2 + \log_2 n)/2$
Cout << "*"	$(1 + \log_2 n)(2 + \log_2 n)/2$

T(n) = sum of all terms in the last column = (compute this yourself)

```
\mathsf{T}(\mathsf{n}) = \mathsf{O}((\log_2 n)^2)
```

```
b)
for (i=n; i>1; i=i\4){
    cout << i;
    for (j=0; j<n; j=j+2)
        sum++
}</pre>
```

Solution:

Statement	Number of times executed
I=n	1
i>1	log ₄ n+1
I=i\4	log ₄ n
cout< <i< td=""><td>log₄n</td></i<>	log₄n
j=0	log₄n
J <n< td=""><td>$log_4 n(n/2+1) = log_4 n(n/2) + log_4 n$</td></n<>	$log_4 n(n/2+1) = log_4 n(n/2) + log_4 n$
J=j+2	$log_4 n(n/2)$

sum++	log₄n(n/2)	
Total	5 log ₄ n +3 log ₄ n(n/2) +2	
$T(n) = 5 \log_4 n + 3 \log_{4n}(n/2) + 2$, $T(n) = O(\log_4 n(n/2))$]

```
c)
int sum, i, j;
sum = 0;
for (i=n;i>=1;i=i-3)
for (j=n;j>0;j--)
sum++;
```

Statement	Number of times executed
sum=0	1
i=n	1
i>=1	n/3+1
i=i-3	n/3
j=n	n/3
j>0	$n/3(n+1) = n^2/3 + n/3$
j	$n/3(n) = n^2/3$
sum++	$n/3(n) = n^2/3$
Total	n ² +4n/3+3
	$T(n) = n^2 + 4n/3 + 3$, $T(n) = O(n^2)$

```
d)

sum = 0;

for( i = 1; i < n; ++i )

    for( j = 1; j < i * i; ++j )

    for( k = 0; k < n; ++k )

    ++sum;
```

Solution:

```
values of i: 1,2,3,4,5,6,7,....,n iterations of j: 1^2+2^2+3^2+4^2+5^2+6^2+7^2+...+n^2 iterations of k: n*1^2+n*2^2+n*3^2+n*4^2+n*5^2+n*6^2+n*7^2+...+n*n^2
```

<u>Series for j</u>: $1^2+2^2+3^2+4^2+5^2+6^2+7^2+\dots+n^2$

Formula:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \text{ (for n >= 1)}$$

$$1^2+2^2+3^2+4^2+5^2+6^2+7^2+\dots+n^2 = (n(n+1)(2n+1))/6 = (2n^3+3n^2+n)/6$$

Series for k:
$$n*1^2+n*2^2+n*3^2+n*4^2+n*5^2+n*6^2+n*7^2+\dots+n*n^2 = n(1^2+2^2+3^2+4^2+5^2+6^2+7^2+\dots+n^2)$$
 Formula:

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6} \text{ (for n >= 1)}$$

l	$n(1^2+2^2+3^2+4^2+5^2+6^2+7^2+$	+n²)= n(n(n+1)(2n+1))/6	$6 = n(2n^3 + 3n^2 + n)/6 = 2n^4 + 3n^3 + n^2/6$
---	----------------------------------	-------------------------	--

Statement	Number of times executed
sum=0	1
i=1	1
I <n< td=""><td>n+1</td></n<>	n+1
i=i++	n
j=1	n
J <i*i< td=""><td>$((2n^3 + 3n^2 + n)/6)+n+1)$</td></i*i<>	$((2n^3 + 3n^2 + n)/6)+n+1)$
J++	$(2n^3 + 3n^2 + n)/6$
if(j % i == 0)	$(2n^3 + 3n^2 + n)/6)$
K=0	$(2n^3 + 3n^2 + n)/6)$
K <j< td=""><td>$2n^4+3n^3+n^2/6+(2n^3+3n^2+n)/6)+1$</td></j<>	$2n^4+3n^3+n^2/6+(2n^3+3n^2+n)/6)+1$
K++	2n ⁴ +3n ³ +n ² /6
Sum++	2n ⁴ +3n ³ +n ² /6
Total	$(6n^4 + 19n^3 + 18n^2 + 5n)/6) + 4n + 5$
	$T(n) = (6n^4 + 19n^3 + 18n^2 + 5n)/6) + 4n + 5 = O(n^4)$

Question 3. Find out what does each of the following algorithm do. Then estimate the <u>best-case</u> and the <u>worst-case</u> running time in term of tight big Oh for each of the following codes

```
a)
int Func(int n)
{
    int i;
    i = 0;
    while (n%3 == 0) {
        n = n/3;
        i++;
    }
return i;
}

Solution:
```

Best case n is not multiple of 3 O(1) Worst case n is multiple of 3 ... log₃n

```
length = i2 - i1 + 1;
}
```

Best case is O(n)

Worst Case:

```
values of i: 0,1,2,3,4,5,6,7,....,n-1
iterations of j: n-1 + n-2 + n-3 + n-4 + ......+ 2+1 = 1+2+3+.....+n-1
```

Formula:

$$\sum_{i=1}^n i = \frac{n}{2}(n+1)$$

Series of j = 1+2+3+.....+n-1 = $(n-1)(n/2) = n^2/2 - n/2$

Statement	Number of times executed
Len=1	1
i=0	1
i <n-1< td=""><td>n-1 + 1 =n</td></n-1<>	n-1 + 1 =n
j++	n-1
I1 = i2=i	n-1
j=i	n-1
j <n-1 &&="" a[j]<a[j+1]<="" td=""><td>$n^2/2 - n/2 + n-1$</td></n-1>	$n^2/2 - n/2 + n-1$
J++,i2++	$n^2/2 - n/2$
if (len < i2 - i1 + 1)	$n^2/2 - n/2$
length = i2 - i1 + 1;	$n^2/2 - n/2$
Total	2n ² + 3n - 3
	$T(n) = 2n^2 + 3n - 3$, $T(n) = O(n^2)$

Solution:

Best case and Worst Case:

```
values of i: 0,1,2,3,4,5,6,7,....., asize -1
iterations of j: asize -1 + asize -2 + asize -3 + asize -4 + ......+ 2+1 = 1+2+3+.....+ asize -1
```

Formula:

$$\sum_{i=1}^{n} i = \frac{n}{2}(n+1)$$

Series of j = 1+2+3+... + asize -1 = ((asize -1)(asize))/2= asize 2 /2 - asize /2

Statement	Number of times executed
mSum = 0;	1
i=0	1
i< asize -1	asize -1
j++	asize -2
thisSum = 0	asize -2
j=i	asize -2
j < asize	asize $^2/2$ – asize $/2$ + asize -2
j++	asize ² /2 – asize /2
thisSum += a[j];	asize ² /2 – asize /2
if(thisSum>mSum)	asize ² /2 – asize /2
mSum = thisSum;	asize $^2/2$ – asize $/2$
Total	2 asize ² + asize ² /2 +2 asize -6
	T(n)= 2 asize 2 + asize 2 /2 +2 asize -6= O(asize 2)

Question 4. Write an algorithm for following problems and derive tight Big-O of your algorithm

- Reverse an array of size n: O(n)
- Find if the given array is a palindrome or not
- Sort array using bubble sort
- Sort array using selection sort
- Sort array using insertion sort
- Print a square matrix of size nxn: O(n²)
- Sum two matrices of size nxn: O(n²)
- Product of two matrices of size nxn: O(n³)
- Transpose of a matrix
- Printing all numbers that can be represented by n bits: O(2ⁿ)
- Printing all subsets of numbers in an array of size n: O(2ⁿ)
- Printing all permutations of numbers in array of size n: O(n!)