RECEIVED CENTRAL FAX CENTER

P.05

NOV 1 2 2004

PAT-NO:

JP410223719A

DOCUMENT-IDENTIFIER:

JP 10223719 A

TITLE:

SUBSTRATE CARRIER SYSTEM, SUBSTRATE

PROCESSOR AND

SUBSTRATE CARRIER METHOD

PUBN-DATE:

August 21, 1998

INVENTOR-INFORMATION:

NAME

CHIBA, TAKATOSHI NAKAJIMA, TOSHIHIRO

ASSIGNEE-INFORMATION:

NAME

DAINIPPON SCREEN MFG CO LTD

COUNTRY

N/A

APPL-NO:

JP09000980

APPL-DATE:

January 7, 1997

INT-CL (IPC): H01L021/68, H01L021/02

ABSTRACT:

PROBLEM TO BE SOLVED: To provide a substrate carrier system, a substrate processor and substrate carrier method with the system, capable of increasing the throughput and cutting down the cost in the substrate processing, while sustaining the clean carrier atmosphere of the substrate.

SOLUTION: A path-forming member 52 which forms a path externally extending from an aperture part 14, is provided outside a carrier chamber 1. A slit valve 53 is provided between the aperture part 14 and the path forming member

BEST AVAILABLE COPY

52. A purge gas feeding port 54 is provided in the carrier chamber 1, while an exhaust port 58 is provided on the front end of the path-forming member 52. Further, in order to deliver a substrate to a delivery part 2, the purge gas is fed to the carrier chamber 1, while opening the slit valve 53 to be exhausted from an exhaust port 58. At this time, the flow rate of the purge gas is controlled to positive-pressurize the inside of the carrier chamber 1, so as to excite the purge gas flow running outwards from the carrier chamber 1 through the path inside the path-forming member 52.

COPYRIGHT: (C) 1998, JPO

(19) 日本国特部 (JP) (12) 公開特許公報 (A)

(11)特許出版公園番号

特開平10-223719

(48)公開日 平成10年(1998) 8月21日

(51) Int CL*

量別記分

ΡI

HO1L 21/68 21/02

H01L 21/68

21/02

審査請求 未請求 請求項の数14 OL (会 12 頁)

(21) 出勤各号

特顯平9--930

(22)出廣日

平成9年(1997) 1月7日

(31) 低先指主责备号 特數平8-328922

(32) 任先日 (33) 任先推主要国 平8 (1996)12月6日 日本(JP)

(71)出版人 000207581

大日本スクリーン製造株式会社

京都府京都市上京区煤川进寺之内上54丁

日天神北町1番地の1

(72) 兒明者 千葉 ▲陰▼後

京都市伏见区羽中阿古川町322番地 大日

本スクリーン製造株式会社常四事業所内

(72) 宛明省 中島 絵博

. 京都市伏见区羽京阿古川町322番地 大日

本スクリーン製造株式会社帝西事業所内

(74)代型人 弁理士 福島 祥人

(54) 【発明の名称】 基板搬送装置、基板処理装置泊よび基板搬送方法

(57)【要約】

【課題】 基板の処理におけるスルーフットを向上させ るとともに基板の処理コストを低減しつつ基板の提送界 囲気を清浄に保つことが可能な基板撤送装置およびそれ を備えた基板処理装置ならびに基板批送方法を提供する ことである.

【解決手段】 搬送室1の外側に閉口部14から外方に 延びる週路を形成する通路形成部材52が設けられる。 開口部14と通路形成部材52との間にはスリットバル ブ53が設けられる。 搬送室1にはパージガス供給口5 4か設けられ、通路形成部材52の先端部には排気口5 8が設けられる。受け渡し部2との間で基板の受け渡し を行う際には、搬送室1内にパージガスを供給するとと もに、スリットバルプ53を開き、排気口58から排気 を行う。このとを、搬送第1内が外部に対して陽圧にな るようにパージガスの流量を調整し、撤送室1内から通 スの流れを形成する。

(2)

特開平1-0-223719

1

【特許前求の範囲】

【請求項1】 基板を搬送する基板搬送装置であって、 開口部を有する扱送室と、

前配板送室内に配置され、基板を搬送するとともに前配 謝口部を介して外部との間で基板の受け渡しを行う扱送 手段と、

前記掛送室内に防定の気体を供給するとともに、前記盤 送手段により前記第口部を介して基根の受け渡しが行わ れるときに前記扱送室の内部から前配開口部を通して外 たことを特徴とする差板搬送装置。

【請求項2】 前記気体供給手段は、前記搬送手段によ り前配閉口部を介して基板の受け渡しが行われるときに 前配般送室内を外部に対して陽圧にすることを特徴とす る請求項1配数の基板搬送装置。

【請求項3】 前配級送室の前配閉口部に設けられ、前 配搬送室内を外部と遠断する開閉自在な開閉部材をさら に備えたことを特徴とする請求項1または2記載の基板 摄送装置。

【助求項4】 前記搬送室の前記期口部から外部に延び 20 形成する気体供給手段とを含み、 る遺路を形成する遺路形成部材をさらに備えたことを特 徴とする請求項1または2記載の基板報送裝置。

【請求項5】 前記通路形成部材に設けられ、前記搬送 室の内部と外部を遮断する開閉自在な開閉部材をさらに 備えたことを特徴とする請求項4記載の基板搬送装置。

【請求項6】 前記搬送手段により前記腕口部を介して 基板の受け渡しが行われるときに前配通路形成部材によ り形成される週路中に外部に向かう気体の流れが形成さ れるように排気を行う排気部をさらに備えたことを特徴 とする前求項4または5記載の基板搬送装置。

【請求項7】 前配搬送室の中央部に関して互いに反対 側の位置に気体の導入部および気体の排出部が設けられ たことを特徴とする請求項1~6のいずれかに記載の基 板撞送装置。

【請求項8】 前記版送室の前配開口部に対して反対側 の位置に気体の導入部が設けられたことを特徴とする諸 求項1~6のいずれかに記載の基板撤送装置。

【請求項9】 前記拠送室の前配開口部に対して反対側 の位置に気体の導入部が設けられ、前配通路形成部材に 気体の排出部が設けられたことを特徴とする請求項6記 40 板拠送方法に関する。 盆の基板粉送装置。

【請求項10】 基板を搬送する基板搬送装置であっ て、

期口部を有する提送室と、

前記機送室内に配置され、基板を鍛送するとともに前記 開口部を介して外部との間で基板の受け渡しを行う搬送 手段とを備え、

前配搬送路の中央部に関して互いに反対側の位置に気体 の導入部および気体の排出部が設けられたことを特徴と する葢板扱送装置。

【請求項11】 前記気体の導入部に気体の流流を低減 させて気体を拡散させる流速低減拡散手段が設けられた ことを特徴とする前求項7~10のいずれかに記載の基

【館求項12】 基板に所定の処理を行う処理室、基板 の受け渡しを行う受け渡し都および基板を提送する基板 搬送装置を備え、

前記基板搬送装置は、

板搬送装置。

前記処理室に接続される開閉自在な第1の開口部および 部に向かう気体の流れを形成する気体供給手段とを備え 10 前配受け渡し部間に設けられた第2の閉口部を有する扱 送室と、

> 前記機送室内に配置され、差板を搬送するとともに、前 配第1の閉口部を介して前記処理室に対して基板の搬入 および撤出を行い、前記第2の開口邸を介して前記受け 波し部との間で基板の受け渡しを行う盤送手段と、

> 前配搬送室内に所定の気体を供給するとともに、前配搬 送手段により前記第2の開口部を介して前記受け渡し部 との間で差板の受け渡しが行われるときに前配搬送室の 内部から前配頭口部を通して外部に向かう気体の流れを

> 前記受け渡し部は、1または複数の基板を保持する基板 保持手段を含むことを特徴とする基板処理装置。

> 【請求項13】 閉口部を有する機送室内で基板を搬送 するとともに前配閉口部を介して外部との間で基板の受 け渡しを行う基板搬送方法において、前記搬送室内に所 定の気体を供給するとともに前記拠送室の一端部から他 端部方向に向かう気体の流れを形成することを特徴とす る基板振送方法。

【請求項14】 閉口部を有する搬送室内で基板を搬送 30 するとともに前記頭口部を介して外部との間で基板の受 付渡しを行う基板搬送方法において、前配搬送室の前配 開口部を介して基板の受け渡しを行うときに、前記撤送 室内に所定の気体を供給するとともに前記鑑送室の内部 から前記開口部を通して外部に向かう気体の流れを形成 することを特徴とする基板搬送方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、基板を搬送する基 板板送装置およびそれを備えた基板処理装置ならびに基

[00021

【從来の技術】半導体ウエハ、液晶表示装置用ガラス基 板、フォトマスク用ガラス基板等の基板に種々の処理を 行うために基板処理装置が用いられている。基板処理装 置の処理室で処理される基板は周囲の雰囲気に大きな影 響を受けるので、処理室内は清浄な状態に保たれる。

【0003】処理室内で処理された基板を直ちに大気中 に撤出すると、処理された基板が大気の影響を受けるこ とになる。特に、処理室内で加熱された基板を直ちに大 50 気中に提出すると、基板が大気中の酸素、反応性ガス、・

(3)

特選平10-223719

汚染物質等と反応して基板の酸化や汚染が生じ、プロセ スの品質や安定性を損ねる要因となる。基板を処理室内 で十分に冷却してから提出することも可能であるが、蓋 彼の冷却のための時間が必要となるので、スループット が低下する。特に、処理室自体も蓄熱している場合に は、基根の冷却に長い時間がかかる。

【0004】また、処理室内に基板を扱入する際には、 処理室内に基板とともに大気が侵入し、処理室の内部が 汚染される。処理の開始前にガスパージや減圧等により 処理室内をガスで置換する処理を行うと、プロセスの安 10 定化やスループットの向上が妨げられる。

【0005】そこで、処理室の基板の出入口に密閉空間 である搬送室を接続し、振送室内に望業等の不活性ガス を充填する、あるいは真空に保持しておくことにより処 理室への基板の搬入および搬出時ならびに搬送工程にお ける基板の汚染を防止している。

【0006】図8は処理率および搬送室を備えた従来の クラスタ型の基板処理装置の一例を示す平面図であり、 図9は図8の基板処理装置の機略簡面図である。

囲に4つの処理室3および2つの受け渡し室(ロードロ ック)8が放射状に接続されている。搬送室12内に は、2つの基板保持部(基板保持アーム)12を有する 搬送機構11が設けられている。搬送機構11は、受け 渡し室8と処理室3との間および処理室3間で基板を扱 送する。

【0008】図9に示すように、撥送室1aには、処理 室3に対して蒸板を搬入および搬出するための開口部1 3および受け渡し室8との間で基板の受け渡しを行うた スの流通を遮断可能なスリットパルプ51が設けられ、 |関口部14にも、同様にガスの流通を遮断可能なスリッ トパルブ81が設けられている。

【0009】この搬送室1aには、パージガス供給口? 1および排気口72が設けられている。パージガス供給 ロ71は配管73およびパルブ74を介してパージガス 供給源に接続され、排気口72は配管75を介して排気 滅圧によるガス置換またはNz 等の不活性ガスによる大 気圧下または準大気圧下でのパージが可能となってい

【0010】受け波し迄8内には、カセット保持部83 が真空エレベーダ84により昇降可能に設けられてい る、このカセット保持部83上には複数の基板100を 保持するカセット85が載置される。また、受け渡し室 8には、外部との間でカセット85を扱入および搬出す るための第口部91が形成され、この開口部91にガス の流通を遮断可能なゲートバルブ82が設けられてい

86および排気口87が設けられている。パージガス供 拾口86は配管89およびパルブ88を介してパージガ ス供給液に接続され、排気口87位配管90を介して排 気手段に接続されている。 これにより、 受付渡し 室8内 は、滅圧によるガス置換または不活性ガスによる大気圧 下または準大気圧下でのパージが可能となっている。

【0012】基板の処理前に、受け渡し選8のゲートバ ルブ82を閉き、閉口部91を介して外部から受け渡し 室8内のカセット保持部83にカセット85を撤入す る。ゲートバルブ82を閉じた後、受け渡し室8内に侵 入した大気を清浄な状態にするために、波圧によるガス 置換または不活性ガスによるパージを行う。

【0013】基板の松送時には、搬送室1aと受け渡し 室8との間のスリットバルプ81を開く。 仮送室1 a内 の搬送機構11が、並収保持部12を伸張して受け渡し 室8内のカセット85に保持された基板を受け取った。 後、1つの処理室3内に搬送する。処理室3内で処理さ れた基板は、搬送機構11により他の処理室3に搬送さ れる。あるいは、同様の処理が並行して行われる。この 【0007】図8の基板処理装置では、搬送室1aの周 20 とき、搬送室1a内は減圧下に保たれ、あるいはN2 等 の不活性ガスにより大気圧または準大気圧下でパージさ れている。

> 【0014】 このようにして、1つの基板が4つの処理 室3に順次扱送され、各処理室3において所定の処理が 行われる。あるいは、同様の処理が並行して行われる。 すべての処理が終了した基板は、搬送機構11により他 方の受け渡し室8内のカセット85に格納される。 . [0015]

【発明が解決しようとする課題】従来の基板処理装置に めの開口部14が形成されている。閉口部13には、ガーシーおいては、上記のように、受け渡し室8内に侵入した大 気を清浄な状態にするために受け渡し室8内を減圧によ りガス恒換し、またはNz 等の不活性ガスによりパージ する必要があった。そのため、スループットが低下す

> 【0016】また、受け彼し虽8には、ガスシール性お よび耐圧を有する構造および機構が必要となり、かつ真 空排気のために、配管、バルブ、ボンブ等の機構が必要 となる。さらに、搬送室1aと受け渡し室8との間およ び受け渡し室8と外部との間にガスの流通を運断可能な 40 シール性の高いバルブが必要となる。これらの結果、基 「板の処理コストが高くなるという問題がある。

【0017】一方、搬送室1a内で例えば直径8インチ の基板を扱送する場合には、撤送室12の容積は50℃ (リットル)程度となる。この振送室1a内の雰囲気を 10ppm以下の純度まで不活性ガスで置換するために は、搬送室1a内を150L/分の流量でパージしても 1日以上かかる。このように、振送室1a内を高純度の ガス雰囲気に置換するために非常に長時間を要するた め、実用性が低い。

【0011】この受け渡し室8には、パージガス供給口 50 【0018】また、搬送室1a内を残圧排気した後に不

(4)

特謝平10-223719

活性ガスでパージすることにより、ガス置換を行う方法 もあるが、撮送室1aや優送機構11を減圧対応とする ために耐圧構造、真空排気機構およびガスシール構造を 設けなければならない。これにより、コストが上昇す る.

【0019】本発明の目的は、基板の処理におけるスル ープットを向上させるとともに基板の処理コストを低減 しつつ基板の搬送雰囲気を清浄に保つことが可能な基板 撤送装置およびそれを備えた基板処理装置ならびに基板 鐵送方法を提供することである。

【0020】本発明の他の目的は、低コストで扱送室内 を短時間で清浄な雰囲気に置換することが可能な基板級 送装置を提供することである。

[0021]

【課題を解決するための手段および発明の効果】第1の 発明に係る基板搬送装置は、基板を搬送する基板搬送装 置であって、関口部を有する搬送室と、搬送室内に配置 されて基板を提送するとともに開口部を介して外部との 同で基板の受け渡しを行う撤送手段と、撤送室内に所定 の気体を供給するとともに散送手段により開口部を介し 20 流量を低減することが可能となる。 て基板の受け渡しが行われるときに鉛送室の内部から開 口部を通して外部に向かう気体の流れを形成する気体供 給手段とを備えたものである。

【0022】本発明に係る基板搬送装置においては、搬 送手段により搬送室の開口部を介して外部との間で基板 の受け渡しが行われるときに、搬送室の内部から開口部 を通して外部に向かう気体の流れが形成されるので、数 送室内に外気が侵入することが防止される。

【0023】それにより、数送室の外部に設けられる基 板の受け渡し部を密閉空間として残圧によるガス置換ま 30 る。 たは不活性ガスによるパージを行う必要がなくなり、受 け渡し部にガスシール性および耐圧を有する機構および 真空排気のための機構が不要となる。したがって、基板 の処理におけるスループットを向上させるとともに基板 の処理コストを低減しつつ基板の搬送雰囲気を清浄に保 つことが可能となる.

【0024】第2の発明に係る基板搬送装置は、第1の 発明に係る基板搬送装置の構成において、気体供給手段 が、撤送手段により開口部を介して基板の受け渡しが行 われるときに批送室内を外部に対して陽圧にするもので 40 ある。これにより、振送室内から外部に向かう気体の液 れが形成される。

【0025】第3の発明に係る基盤送装置は、第1また は第2の発明に係る基板搬送装置の構成において、搬送 室の開口部に設けられて搬送室内を外部と強断する開閉 自在な関閉部材をさらに備えたものである。

【〇〇26】この場合、閉口部を介して外部との間で基 板の受け波しが行われるときに開閉部材が開かれ、基板 の受け渡し時以外に開閉部材が閉じられる。それによ

【0027】第4の発明に係る基板搬送装置は、第1ま たは第2の発明に係る基板搬送装置の構成において、銀 送底の関ロ部から外部に悪びる通路を形成する通路形成 部材をさらに備えたものである。

流量を低減することが可能となる。

が抑制される。

【0028】この場合、関口部を介して外部との間で基 板の受け渡しが行われるときに、搬送室内から外部に向 かう長い気体の流れが形成されるので、基板とともに外 気が吸送室内に引き込まれることが防止される。また、 10 外気の流れの乱れにより外気が搬送室内に侵入すること

【0029】第5の発明に係る基板搬送装置は、第4の 発明に係る基板搬送装置の構成において、通路形成部材 に設けられて振送室の内部を外部と遮断する開閉自在な 開閉部材をさらに備えたものである。

【0090】この場合、開口部を介して外部との間で基 板の受け渡しが行われるときに開閉部材が開かれ、基板 の受け渡し時以外に関閉部材が閉じられる。それによ り、基板の受け渡し時以外に搬送室内に供給する気体の

【0031】第6の発明に係る基板搬送装置は、第4ま たは第5の発明に係る基板拠送装置の構成において、盤 送手段により関口部を介して基板の受け渡しが行われる ときに過路形成部材により形成される週路中に外部に向 かう気体の流れが形成されるように排気を行う排気部を さらに備えたものである。

【0032】この場合、開口部から基板の受け渡し部へ のガスの流出量を削減し、不要なガスの排出を低減した りパーティクルの巻き上げを低減することが可能とな

【0033】第7の発明に係る基板振送装置は、第1~ 第6のいずれかの発明に係る基板拠送設置の構成におい・ て、鍛送室の中央部に関して互いに反対側の位置に気体 の導入部および気体の排出部が設けられたものである。 【0034】この場合、気体の導入部から拠送室内に導 入された気体が振送室内の中央部を通って反対側に配置 された気体の辨出部から排出されるので、気体が搬送室 内の全体に効率良く行き渡る。したがって、減圧排気を 行うことなく、低コストで搬送装置内を高純度の気体界 囲気に短時間で置換することができる。

【0035】第8の発明に係る基板処理装置は、第1~ 第6のいずれかの発明に係る基板搬送設置の構成におい て、批送室の隣口部に対して反対側の位置に気体の導入 部が設けられたものである。

【0036】この場合、気体の導入部から搬送室内に導 入された気体が撤送室内の中央部を通って反対側に配置 された閉口部から排出されるので、気体が搬送室内の全 体に効率良く行き渡る。したがって、減圧排気を行うこ となく、低コストで扱送室内を高純度の気体雰囲気に短 り、基板の受け渡し時以外に搬送室内に供給する気体の 50 時間で置換することができる。

(5)

【0037】第9の発明に係る基板撤送装置は、第6の 発明に係る基板撤送装置の構成において、扱送室の関ロ 部に対して反対側の位置に気体の導入部が設けられ、通 路形成部材に気体の排出部が設けられたものである。

7

【0038】この場合、気体の導入部から搬送室内に導 入された気体が扱送室内の中央部を通って反対側に配置 された開口部から排出され、さらに通路形成部材の内部 を通って気体の排出部から排出されるので、気体が撤送 室内の全体に効率良く行き渡る。したがって、減圧排気 囲気に短時間で置換することができる。

【0039】第10の発明に係る基权撥送装置は、基权 を搬送する基板搬送装置であって、閉口部を有する搬送 室と、掛送室内に配置されて基板を搬送するとともに開 口部を介して外部との間で基板の受け渡しを行う振送手 段とを備え、搬送室の中央部に関して互いに反対側の位 置に気体の導入部および気体の構出部が設けられたもの である.

【0040】この場合、気体の導入部から撤送室内に導 された気体の排出部から排出されるので、気体が撤送室 内の全体に効率良く行き渡る。したがって、減圧排気を 行うことなく、低コストで搬送室内を高純度の気体雰囲 気に知時間で置換することができる。

【0041】第11の発明に係る基板扱送装置は、第7 ~第10のいずれかの発明に係る基板撤送装置の構成に おいて、気体の導入部に気体の流速を低減させて気体を 拡散させる流速低減拡散手段が設けられたものである。 【0042】これにより、気体の導入部から搬送室内に **導入される気体が搬送室内の一部の領域に集中すること 30** が防止され、気体が撤送室内の全体に容易に行き渡る。 それにより、搬送室内をより短時間で高純皮の気体雰囲 気に置換することができる.

【0043】第12の発明に係る基板処理装置は、基板 に所定の処理を行う処理室、基板の受け渡しを行う受け 渡し部および遊板を搬送する基板振送装置を備える。基 板掛送装置は、搬送室、搬送手段および気体供給手段を 合み、受け渡し部は、1または複数の基板を保持する基 板保持手段を合む。

【0044】搬送室は、処理室に接続される開閉自在な 第1の開口部および受け渡し部側に設けられた第2の開 口部を有する。撤送手段は、撤送室内に配置され、基板 を撤送するとともに、第1の閉口部を介して処理室に対 して基板の搬入および撤出を行い、第2の閉口部を介し て受け渡し部との間で基板の受け渡しを行う。気体供給 手段は、撤送室内に所定の気体を供給するとともに、扱 送手段により第2の閉口部を介して受け渡し部との間で 基板の受け渡しが行われるときに搬送室の内部から閉口 部を通して外部に向かう気体の流れを形成する。

【0045】本発明に係る基板処理装置においては、基 50 【0054】図1の基板処理装置では、搬送室1の周囲

板製送装置の振送手段により搬送室の開口部を介して受 け渡し部との間で基板の受け渡しが行われるときに、撤 送室の内部から閉口部を通して外部に向かう気体の流れ が形成されるので、独送室内に外気が侵入することが防 止される.

【0046】それにより、受け渡し部を密閉空間として 波圧によるガス湿換または不活性ガスによるパージを行 う必要がなくなり、受け渡し部にガスシール性および耐 圧を有する機構および真空排気のための機構が不要とな を行うことなく、低コストで搬送室内を高純度の気体界 10 る。したがって、悲釈の処理におけるスループットを向 上させるとともに基板の処理コストを低減しつつ基板の 撤送雰囲気を清浄に保つことが可能となる。

> 【0047】第13の発明に係る基板撤送方法は、閉口 部を有する搬送室内で基板を搬送するとともに開口部を 介して外部との同で基板の受け渡しを行う基板製送方法 において、扱送室内に所定の気体を供給するとともに数 送室の一端部から他端部方向に向かう気体の流れを形成 するものである。

【0048】本発明に係る基板搬送方法においては、搬 入された気体が豊送室内の中央部を通って反対側に配置 20 送室内に所定の気体を供給するとともに扱送室の一場部 から他端部の方向に向かう気体の流れが形成される。

> 【0049】それにより、批送室内の全体に効率よく気 体が行き渡る。したがって、基板の処理におけるスルー プットを向上させるとともに、基板の処理コストを低減 しつつ基板の搬送券団気を清浄に保つことができる。

【0050】第14の発明に係る基板振送方法は、開口 部を有する搬送室内で基板を搬送するとともに閉口部を 介して外部との間で基板の受け渡しを行う基板搬送方法 において、蝦送室の開口部を介して基板の受け渡しを行 うときに、搬送室内に所定の気体を供給するとともに、 搬送室の内部から開口部を通して外部に向かう気体の流 れを形成するものである.

【0051】本発明に係る基板撤送方法においては、搬 送室の閉口部を介して外部との間で基板の受け渡しを行 うときに、搬送室の内部から開口部を選して外部に向か う気体の流れを形成することにより、搬送室内に外気が 侵入することが防止される.

【0052】それにより、遊送室の外部に設けられる基 板の受け渡し部を密閉空間として減圧によるガス電換ま たは不活性ガスによるパージを行う必要がなくなり、受 け渡し部にガスシール性をおよび耐圧を有する機構およ び真空排気のための機構が不要となる。したがって、基 板の処理におけるスループットを向上させるとともに基 板の処理コストを低減しつつ基板の搬送雰囲気を清浄に 保つことが可能となる。

[0053]

【発明の実施の形態】図1は本発明の第1の実施例にお けるクラスタ型の基板処理設置を示す平面図であり、図 2は図1の基板処理装置の駅略断面図である。

(6)

特開平10-223719

に3つの処理室3、2つの受け渡し部(インタフェース 部)2およびパッファ部15が放射状に設けられてい る。撤送室1内には、2つの基板保持部(基板保持アー) ム) 12を有する搬送機構11が設けられている。機送 機構11の2つの基板保持部12は、鉛直方向の軸の回 りで回転可能かつスライド機構により伸縮可能に構成さ れている。この投送機構11は、受け渡し部2と処理室 3との間および処理室3両で基板を推送する。また、バ ッファ部15は基板を一時的に保持する。

【0055】図2に示すように、搬送室1には、処理室 10 3に対して基板を扱入および撤出するための開口部13 および受け渡し部2との間で基板の受け渡しを行うため の閉口部14が形成されている。関口部13には、ロリ ング等によりガスの流通を遮断可能なスリットパルプラ 1が設けられている。

【0056】松送室1の外側には、別口部14から外方 に延びる断面短形状の道路を形成する通路形成部材(覆 い状部材) 52が設けられている。閉口部14と通路形 成部材52との間には、ロリング等によりガスの流通を 這断可能なスリットバルブ53が設けられている。

【0057】投送室1には、パージガス供給口54が投 けられている。パージガス供給ロ54は、配管55、閉 閉バルブ56および流量調整可能なバイパスパルブ57 を介してガス供給装置110に接続されている。例即バ ルブ56およびバイパスパルブ57は並列に接続されて いる。また、通路形成部材52の先端部に排気口58が 設けられている。排気口58は、配管59を介して排気 装置120に接続されている。

【0058】このような構成により、搬送窗1内は、所 ージが可能となっている。パージガスとしては、可燃 性、毒性および腐蝕性を有さないガスを選択し、例えば N: 等の不活性ガスやO: 等の所望のガスを用いる。 【0059】 受け渡し部2はカセットモジュールであ り、昇降装置21およびカセット保持部22からなる。 昇降装置21はカセット保持部22を昇降させる。カセ ット保持部22上には、複数の基板100を保持するカ セット23が戦置される。また、このカセット保持部2 2には、カセット23および基板100の有無を検出す tra Low Penetration Air 〉フィルタ等のクリーニング ユニットを設けてもよい。

【0060】本実施例では、パージガス供給口54がガ スの導入部に相当し、排気口58がガスの排出部に相当 する.

【0061】搬送室1内は、スリットバルブ53を開い た状態で、排気口58から排気を行いつつ開閉パルプ5 6および配管55を介してガス供給装置110により供 給されるパージガスにより大気圧下または準大気圧下で **バージされる。**

【0062】このとき、パージガス供給ロ54と排気口 58とが儀送窓1の中央部に関して互いに反対期の位置 (対向する位置) に配置されているので、パージガス侠 始口54から撤送室1内に導入されたパージガスが搬送 室1内の中央部を通って排気口58から排出される。こ れにより、提送室1内の全体にパージガスが効率良く行 き渡る。したがって、撤送室1内を高純度のガス雰囲気

10

【0063】例えば、搬送室1内の雰囲気を150L/ 分の流量で数十分間パージすることにより10ppm以 下の高純度のガス雰囲気を得ることができる。

に短時間で置換することができる。

【0064】ガスパージ後、スリットバルブ53が同止 され、拠送室1内はほぼ大気圧のパージガスの雰囲気に 保たれる。これにより、外部の受け渡し部2との間での 差板の受け渡し時以外に、提送室1内に供給するパージ ガスの流量を減らすことができる。

【0065】なお、イオン注入活性化アニールやメタル シリサイデーションのように放棄を用いるプロセスでは 協送室1内を登案雰囲気に保ち、酸化処理のように酸素 20 を用いるプロセスでは搬送室1内を酸素雰囲気に保つこ とが好ましい。

【0066】銀送室1と受け渡し部2との間で基板の受 け渡しを行う際には、関閉パルブラ6および配管55を 介して搬送室1内にパージガスを供給するとともに、ス リットバルブ53を閉き、排気ロ58から排気を行うこ とにより、塩送室1内をパージする。このとき、塩送室 1内が外部に対して陽圧になるように、バイパスバルブ 57でパージガスの液量を調整する。これにより、搬送 **第1の内部から第口部14および通路形成部材52内の** 定のパージガスにより大気圧下または準大気圧下でのパ 30 通路を通って外部へ向かうパージガスの流れが形成され

> 【0067】この状態で、搬送機構11の基板保持部1 2が通路形成部材52内の通路を通って外部に突出し、 受け渡し部2のカセット23に保持された基板100を 受け取って扱送室1内に戻り、あるいは基板を保持した 基板保持部12が通路形成部材52内の通路を通って外 部に突出し、受け渡し部2のカセット23に基板を格納 して投送室1内に戻る。

【0068】この場合、搬送室1の内部から通路形成部 る検出器が設けられる。受け渡し部2に、ULPA(UI 40 材52内の週路を通って外部へ向かうパージガスの流れ により、外気が撤送室1内に侵入することが防止され る。また、通路形成部材52の長さにわたって外部に向 かうパージガスの流れが形成されるので、基板保持部1 2が外部から掛送室1内に戻る際に、遊板の表面や基板 保持部12の細部に存在する大気が外部に押し戻され る。したがって、基板の受け渡し時に受け渡し部2に特 別な雰囲気制御を行う必要はない。

> 【0069】基板の受け渡しの終了後、スリットバルブ 53が閉止される。差板の搬送時には、搬送室1内はほ 50 は大気圧のパージガスの雰囲気に保たれる。搬送機構1

PAGE 12/29 * RCVD AT 11/12/2004 12:26:22 PM [Eastern Standard Time] * SVR:USPTO-EFXRF-1/1 * DNIS:8729306 * CSID:5098383424 * DURATION (mm-ss):09-08

(7)

特開平10-223719

11

1は、受け渡し部2から受け取った基板を1つの処理室 3内に搬送し、処理室3内で処理された基板を他の処理 室3に振送する。すべての処理が終了した基板は、搬送 機構11により上記の方法で受け渡し部2のカセット2 3に格納される。

【0070】特に、処理至3内で高温に加熱された基板は一旦複数枚保持可能なバッファ部15(図1参照)内に載置され、冷却された後に他の処理部3に搬送され、あるいは外部の受け渡し部2に提出される。

【0071】本実施例の基板処理装置では、銀送機構1 1により搬送室1の閉口部14を介して受け液し部2と の間で基板の受け液しが行われるときに、搬送室1の内 部から通路形成部材52を通して外部に向かうパージガ スの流れが形成されるので、搬送室1内に外気が侵入す ることが防止される。それにより、受け渡し部2を密閉 空間として減圧によるガス置換または不活性ガスによる パージを行う必要がなくなる。

【0072】したがって、搬送室1と受け渡し部2との間にガスリークが極めて少ない(シール性の高い)高価なスリットバルブやゲートバルブを用いることなく、編 20 送室1内を所望の純度のガス雰囲気に保ちながら外部との間で基板の受け渡しが可能となる。

【0073】また、受け渡し都2に、ガス雰囲気の追断およびガス領域が可能な耐圧性の高いロードロック機構が必要なくなる。したがって、受け渡し部2にロードロック室やガスリークの極めて少ない高値なゲートバルブ、ガス供給系、昇降装置のガスシール機構、真空ポンプ、これらの制御系等が不要となる。

【0074】さらに、排気口58がパージガス供給口54に対してほぼ反対側に配置されているので、搬送室1内を減圧排気することなく、大気圧下または準大気圧下で高純度のガス雰囲気に短時間で効率良く置換することができる。

【0075】これらの結果、基板の処理におけるスループットが向上するとともに、基板の処理コストを低減しつつ基板の搬送券団気を清浄に保つことが可能となる。 【0076】本実施例では、排気口58が通路形成部材52の先端部に設けられているので、スリットバルブ53を閉じることにより搬送室1内の排気を停止することができる。したがって、排気系にバルブを設けることな40く搬送室1内のガス電機を短時間で行うことができる。また、バージガスの消費量も低減できる。

【0077】なお、状況に応じてパイパスパルプラフによりパージガスの流量を調整することが好ましい。例えば、外気の侵入しやすい基板搬入出の際にはパージガスの流量を増やし、それ以外は流量を絞ることによりパージガスの消費を節約する。

【0078】図3は通路形成部材の他の例を示す概略断面図である。図3の例では、通路形成部材52の上部お上げ下部にそれぞれパージガスを供給する開催61 6

2を接続するとともに、通路形成部材52の上面および 下面に1または複数のパージガス供給口(図示せず)を

形成し、週路形成部材52の上面および下面から内部に パージガスを供給する。

【0079】これにより、通路形成都材52内の通路を通して受け液し部2との間で塗板の受け渡しを行う場合に、搬送機構11の細部や、基板と搬送機構11との間の細部のガスも充分にパージされる。その結果、搬送室1内への外気の引込みが十分に阻止される。

12

【0080】図4は通路形成部材のさらに他の例を示す 概略断面図である。図4の例では、通路形成部材52内 の通路に開閉自在な罪63が配設されている。この罪6 3は、支持部材64および1対のローラ65により上下 方向に移動可能となっている。また、通路形成部材52 のほぼ先端部の上面および下面にそれぞれ排気口68が 形成されている。排気口68は配管69を介して排気装置に接続される。

【0081】第63が閉じている状態で第63の周囲に 隙間67が形成されている。これにより、第63の閉止 状態で遺路形成部材52内の遺路中に開口部14個から 外部に向かうパージガスの流れが形成される。

【0082】図4の例では、扉63の開閉時に扉63が 周囲の部材と接触しないので、部材間の摩擦によるパー ディクル(粒子)の発生が防止される。また、排気口6 8が週路形成部材52の先端部に設けられているので、 扉63を閉じることにより提送室1内の排気をほぼ停止 することができる。したがって、排気系にバルブを設け ることなく搬送窓1内のガス置積を短時間で行うことが できる。また、パージガスの消費量も低減できる。

【0083】図5は本発明の第2の実施例におけるクラスタ型の基板処理装置の関略断面図である。

【0084】図5の基板処理装置が図1および図2の基板処理装置と異なるのは次の点である。配管55とパージガス供給口54との間にガス流速低減拡散部110が設けられている。また、排気口58が搬送室1の一場部にあるパージガス供給口54に対して反対側の位置(対向する位置)に設けられ、開口部14期の他場部にある排気口58が配管59を介して排気装置120に接続されている。他の部分の構成は、図1および図2の基板処理装置の構成と同様である。

【0085】図6はガス流速低減拡散部110の一例を示す断面図である。図6のガス流速低減拡散部110は、上面にガス入口112を有しかつ下面にガス出口113を有するハウジング111内にULPA(Ultra Low Penetration Air Filter)等のエアフィルタ114を収納することにより構成される。ガス流速低減拡散部110のガス入口112は配管55に接続され、ガス出口113は搬送室1のパージガス供給口54に配置される。

よび下部にそれぞれパージガスを供給する配管61,650【0086】このような構造により、配管55を通して

13

供給されるパージガスの流流がエアフィルタ114によ り低減されるとともに、その流動方向が拡散される。ま た、パージガス中の不純物がエアフィルタ114により 除去され、搬送室1内に清浄なパージガスが供給され ъ.

【0087】図7はガス流速低減拡散部110の他の例 を示す断面図である。図7のガス流速低減拡散部110 は、上面にガス入口112を有しかつ下面にガス出口1 13を有するハウジング111内に複数のバッフル板1 15を配置することにより構成される。ガス液速低減鉱 10 きる。この場合、閉口部14がガスの排出部に相当す 散部110のガス入口112は配管55に接続され、ガ ス出口113は搬送室1のパージガス供給口54に配置 される。

【0088】このような構造により、配管55を通して 供給されるパージガスの流速がバッフル仮15で低波さ れるとともに、その流動方向が拡散される。

【0089】なお、図6のエアフィルタ114または図 7のパッフル板115の代わりに、金属メッシュ、多孔 質セラミックス等の他のガス流遠低短拡散部材を用いて もよい。

【0090】図5の基板処理設置では、スリットパルブ 53を閉じた状態で排気口58から辨気を行いつつ開閉 パルプ56および配管55を介してガス供給装置110 によりパージガスを供給することにより搬送室1内が大 気圧下または準大気圧下でバージされる。

【0091】この場合、採気ロ58がパージガス供給口 54に対して反対側に配置されているので、パージガス。 供給口54から搬送室1内に導入されたパージガスが振 送室1内の中央部を通って排気口58から排出される。 それにより、搬送室1内の全体にパージガスが効率良く 30 止してもよい。 行き渡る。したがって、浅圧排気を行うことなく、撮送 **第1内を高純度のガス雰囲気に短時間で置換することが** できる。

【0092】例えば、搬送室1内の雰囲気を150L/ 分の流量で数十分間パージすることにより10ppm以 下の高純度のガス雰囲気を得ることができる。

【0093】また、パージガス供給口54にガス流速低 減拡散部110が設けられているので、扱送室1内に排 入されるパージガスの流速が低減されるとともにその流 動方向が拡散される。それにより、パージガスが投送室 40 1内の一部の領域に集中せずに撤送室1内の全体に効率 良く行き渡り、扱送室1内を高純度のガス雰囲気により 短時間で置換することが可能となる。

【0094】なお、第1の実施例の基板処理装置におい ても、第2の実施例の基权処理設置と同様に、配管55 とパージガス供給口54との間にガス流速低減拡散部1 10を設けてもよい。

【0095】また、第1および第2の実施例の基板処理 装置において、扱送室1内をパージガスで運換する際に 14

は、搬送室1または通路形成部材52に排気口58を設 けなくてもよい。

【0096】この場合にも、閉口部14がパージガス供 給口54に対して反対側に配置されているので、パージ ガス保給ロ54から搬送室1内に導入されたパージガス が最送第1内の中央部を通って閉口部14から排出され る。これにより、パージガスが投送室1内の全体に効率 良く行き渡るため、搬送室1内を大気圧下または準大気 圧下で海純度のガス雰囲気に短時間で置換することがで

【0097】なお、上配第1および第2の実施例では、 蟴送室1内に隣接して基板を一時的に保持するパッファ 部15を設けているが、パッファ部15の代わりに基板 の中心を合わせる中心合わせ機構またはオリエンテーシ ョンフラット(直接状切欠き)やノッチ(円気状切欠 き)等の切欠き部の方向を合わせる結晶方位合わせ機構! を設けてもよく、バッファ部15に加えて中心合わせ機 構または結晶方位合わせ機構を設けてもよい。

20 【0098】また、スリットバルブ53の弁体収納部に パージガスを排気する排気口を設けてもよい。それによ 間で行うことが可能となる。

【0099】また、振送室1を耐圧容器により構成し、 搬送室1に真空排気系を設けることにより、搬送室1内 を減圧によるガス置換可能としてもよい。

【0100】また、搬送室1に排気系を設けてもよい。 この場合には、排気系にバルブを設け、搬送室1を外部 と連通させたときにバルブにより搬送室1内の排気を閉

【0101】さらに、スリットバルブ53を通路形成部 材52の先端部に設けてもよい。この場合、排気系にバ ルブを設け、鍛送室1を外部と運通させたときにバルブ により搬送室1内の排気を閉止してもよい。

【0102】上配第1および第2の実施例では、受け渡 し部2がカセットを保持するカセットモジュールである 場合を説明したが、受け渡し部2が基板を保持する基板 インタフェースモジュールであってもよい。この場合、 基板インタフェースモジュールは、基板の保持機構およ び基板の検出器により構成される。

【0103】また、松送機構11の構成は上記第1およ び第2の実施例の構成に限定されず、例えば、複数のア 一ム部材を関節機構により折り畳み自在に連結してなる **遊送機構を用いてもよい。**

【0104】本発明は、半導体ウエハや液晶象示芸置用 基板に加熱を伴う処理を行う基板処理装置、RTP(急 速枚葉祭処理)装置、RTCVD装置、バッチ炉、ベー クオーブン等の1つ以上の処理室を有する基板処理競 置、またはこれらの処理室と洗浄装置、PVD (物理的 パージガスを開口部14を通して外部に排出する場合に 50 気相成長)装置等の処理室を有しかつ連続的な処理を可

(9)

特開平10-223719

15

能とするクラスタ型の基板処理装置等の積々の基板処理 装置に適用することができる。

【図面の簡単な説明】

【図1】本発明の第1の実施例における基根処理装置の 平面図である。

【図2】図1の基板処理装置の機略断面図である。

【図9】通路形成部村の他の例を示す機略断面図である。

【図4】通路形成部材のさらに他の例を示す教略断面図である。

【図5】本発明の第2の実施例における基板処理装置の 平面図である。

【図6】ガス放速低減拡散部の一例を示す断面図である。

【図7】ガス流速低減拡散部の他の例を示す断面図であ *

【図8】従来のクラスタ型の基板処理技量の一例を示す 平面図である。

【図9】図8の基板処理装置の機略断面図である。 【符号の説明】

16

- 1 船送室
- 2 受け渡し部
- 3 処理室
- 11 搬送機構
- 13.14 関口部
- 23 カセット
- 51.53 スリットバルブ
- 10 52 通路形成部材
 - 54 パージガス供給口
 - 55, 59, 61, 62 配管
 - 56 開閉バルブ
 - 57 バイパスパルブ
 - 58.68 排気口
 - 63 薄
 - 110 ガス流速低減拡散部

【図1】

【図4】

(11)

特別平10-223719

特勝平10-223719 (12) 【図9】

WELLS ST JOHN PS

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

U OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.