```
In [1]: include("/home/nicole/Jupyter/SSBRJ/src/SSBR.jl")
         using SSBR
 In [2]: function getPos(ped,IDs)
             posAi = Array(Int64, size(IDs, 1))
             for (i,id) = enumerate(IDs[:,1])
                 posAi[i] = ped.idMap[id].seqID
             end
             return posAi
         end
Out[2]: getPos (generic function with 1 method)
 In [3]: | ; cd Data/0.1/G/5
         /home/nicole/Jupyter/JG3/Data/0.1/G/5
 In [4]:
         ;ls
         GenNF.txt
         PedAll.txt
         Phe.txt
         PheAll.txt
In [5]: |;awk '{print $1}' PedAll.txt | sort -b > all.ID
In [6]: | ;awk '{print $1}' GenNF.txt | sort -b > genotype.ID
In [7]:
         ; join -v1 all.ID genotype.ID > noGenotype.ID
In [8]:
         ;awk '{print $1,$2}' Phe.txt > sim.phenotype
         ;awk '{print $1,$3}' PheAll.txt > sim.bv
In [9]:
In [10]: | ; awk 'NR >=1 && NR <=8000 {print $1}' PedAll.txt | sort -b > G0.ID
         ; awk 'NR >=8001 && NR <=16000 {print $1}' PedAll.txt | sort -b > G1.ID
In [11]:
         ; awk 'NR >=16001 && NR <=24000 {print $1}' PedAll.txt | sort -b > G2.ID
In [12]:
         ; awk 'NR >=24001 && NR <=32000 {print $1}' PedAll.txt | sort -b > G3.ID
In [13]:
In [14]: ; awk 'NR >=32001 && NR <=40000 {print $1}' PedAll.txt | sort -b > G4.ID
In [15]: ; awk 'NR >=40001 && NR <=48000 {print $1}' PedAll.txt | sort -b > G5.ID
In [16]:
         ; join G0.ID genotype.ID > G0.Genotype.ID
```

```
;join G1.ID genotype.ID > G1.Genotype.ID
         ;join G2.ID genotype.ID > G2.Genotype.ID
In [18]:
In [19]:
         ; join G3.ID genotype.ID > G3.Genotype.ID
         ; join G4.ID genotype.ID > G4.Genotype.ID
In [20]:
In [21]:
         ; join G5.ID genotype.ID > G5.Genotype.ID
         ;join -v1 G0.ID genotype.ID > G0.noGenotype.ID
In [22]:
         ; join -v1 G1.ID genotype.ID > G1.noGenotype.ID
In [23]:
In [24]:
         ; join -v1 G2.ID genotype.ID > G2.noGenotype.ID
         ;join -v1 G3.ID genotype.ID > G3.noGenotype.ID
In [25]:
In [26]:
         ;join -v1 G4.ID genotype.ID > G4.noGenotype.ID
In [27]:
         ; join -v1 G5.ID genotype.ID > G5.noGenotype.ID
         ;wc G0.Genotype.ID;wc G1.Genotype.ID;wc G2.Genotype.ID;wc G3.Genotype.ID;wc (
In [28]:
               200 1200 GO.Genotype.ID
          200 200 1200 G1.Genotype.ID
          200 200 1200 G2.Genotype.ID
          200 200 1200 G3.Genotype.ID
          200 200 1200 G4.Genotype.ID
          8000 8000 48000 G5.Genotype.ID
In [29]: ;wc G0.noGenotype.ID;wc G1.noGenotype.ID;wc G2.noGenotype.ID;wc G3.noGenotype
          7800
                7800 46800 G0.noGenotype.ID
          7800
                7800 46800 Gl.noGenotype.ID
          7800
                7800 46800 G2.noGenotype.ID
          7800
                7800 46800 G3.noGenotype.ID
          7800 7800 46800 G4.noGenotype.ID
         0 0 0 G5.noGenotype.ID
In [30]:
         ped,A Mats,numSSBayes = calc Ai("PedAll.txt", "genotype.ID", calculateInbreedia
         nothing
                = read genotypes("GenNF.txt", numSSBayes)
         M Mats = make MMats(df,A Mats,ped,center=true);
                                                                                  # wit
         y_Vecs = make_yVecs("sim.phenotype",ped,numSSBayes)
         J Vecs = make JVecs(numSSBayes, A Mats)
         Z_Mats = make_ZMats(ped,y_Vecs,numSSBayes)
         X Mats, W Mats = make XWMats(J Vecs, Z Mats, M Mats, numSSBayes)
                                                                                  # wit
         nothing
```

```
In [31]:
         vRes
                = 0.872
                = 7.848
         vG
         nIter = 50000
         @time aHat1,alphaHat,betaHat,epsiHat =
         ssGibbs(M_Mats,y_Vecs,J_Vecs,Z_Mats,X_Mats,W_Mats,A_Mats, numSSBayes,vRes,vG
         nothing
         This is iteration 5000
         This is iteration 10000
         This is iteration 15000
         This is iteration 20000
         This is iteration 25000
         This is iteration 30000
         This is iteration 35000
         This is iteration 40000
         This is iteration 45000
         This is iteration 50000
         3828.607908 seconds (23.03 G allocations: 723.344 GB, 7.07% gc time)
In [32]: betaHat
Out[32]: 2-element Array{Float64,1}:
          13.7958
           1.6672
In [33]: using DataFrames
In [34]: df = readtable("sim.bv", eltypes =[UTF8String, Float64], separator = ' ',head
         a = Array(Float64, numSSBayes.num ped)
         for (i,ID) in enumerate(df[:,1])
             j = ped.idMap[ID].seqID
             a[j] = df[i,2]
         end
In [35]: IDs = readtable("all.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg1 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - all.ID : correlation = %6.3f\n", cor1 ) # with (
         @printf("SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = %6.3f\n",
         JCAll = cor1
         SSBRJC from Gibbs - all.ID : correlation = 0.527
         SSBRJC from Gibbs - all.ID : regression of TBV on GEBV = 0.251
Out[35]: 0.5274634178713639
In [36]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[36]: -1.5101173586231182
```

```
In [37]: IDs = readtable("genotype.ID", eltypes =[UTF8String], separator = ' ',header:
         posAi = getPos(ped,IDs)
         cor2 = cor(a[posAi],aHat1[posAi])[1,1]
         reg2 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - genotype.ID : correlation = %6.3f\n", cor2 ) # |
         @printf("SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = %6.3:
         JCAll = cor2
         SSBRJC from Gibbs - genotype.ID : correlation = 0.869
         SSBRJC from Gibbs - genotype.ID : regression of TBV on GEBV = 0.838
Out[37]: 0.8690209784599972
In [38]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[38]: 0.505425934506189
In [39]: IDs = readtable("noGenotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         cor3 = cor(a[posAi],aHat1[posAi])[1,1]
         reg3 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - noGenotype.ID : correlation = %6.3f\n", cor3 );
         @printf("SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = %6
         JCAll = cor3
         SSBRJC from Gibbs - noGenotype.ID : correlation = 0.433
         SSBRJC from Gibbs - noGenotype.ID : regression of TBV on GEBV = 0.206
Out[39]: 0.43306055735735915
In [40]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[40]: -1.9752427339606506
In [41]: IDs = readtable("G0.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.ID : correlation = %6.3f\n", cor4 ) # with ep
         @printf("SSBRJC from Gibbs - G0.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G0.ID : correlation = 0.698
         SSBRJC from Gibbs - G0.ID: regression of TBV on GEBV = 0.527
Out[41]: 0.6981340619003465
In [42]: GEBV = aHat1[posAi]
         GOGEBV=mean(GEBV)
Out[42]: -2.8275787405579096
```

```
In [43]: IDs = readtable("G1.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor4 = cor(a[posAi],aHat1[posAi])[1,1]
         reg4 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.ID : correlation = %6.3f\n", cor4 ) # with ei
         @printf("SSBRJC from Gibbs - G1.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor4
         SSBRJC from Gibbs - G1.ID : correlation = 0.337
         SSBRJC from Gibbs - G1.ID: regression of TBV on GEBV = 0.133
Out[43]: 0.33740830519406767
In [44]: GEBV = aHat1[posAi]
         G1GEBV=mean(GEBV)
Out[44]: -2.1234513719958126
In [45]: IDs = readtable("G2.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor5 = cor(a[posAi],aHat1[posAi])[1,1]
         reg5 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.ID : correlation = %6.3f\n", cor5 ) # with e;
         @printf("SSBRJC from Gibbs - G2.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor5
         SSBRJC from Gibbs - G2.ID : correlation = 0.343
         SSBRJC from Gibbs - G2.ID: regression of TBV on GEBV = 0.136
Out[45]: 0.3426996755532598
In [46]: GEBV = aHat1[posAi]
         G2GEBV=mean(GEBV)
Out[46]: -1.8607234604049658
In [47]: IDs = readtable("G3.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor6 = cor(a[posAi],aHat1[posAi])[1,1]
         reg6 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.ID : correlation = %6.3f\n", cor6 ) # with ep
         @printf("SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor6
         SSBRJC from Gibbs - G3.ID : correlation = 0.352
         SSBRJC from Gibbs - G3.ID : regression of TBV on GEBV = 0.144
Out[47]: 0.352295495996459
In [48]: GEBV = aHat1[posAi]
         G3GEBV=mean(GEBV)
Out[48]: -1.5933512119892634
```

```
In [49]: IDs = readtable("G4.ID", eltypes =[UTF8String], separator = ' ', header=false
         posAi = getPos(ped,IDs)
         cor7 = cor(a[posAi],aHat1[posAi])[1,1]
         reg7 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.ID : correlation = %6.3f\n", cor7 ) # with ei
         @printf("SSBRJC from Gibbs - G4.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor7
         SSBRJC from Gibbs - G4.ID : correlation = 0.355
         SSBRJC from Gibbs - G4.ID: regression of TBV on GEBV = 0.138
Out[49]: 0.355362248357319
In [50]: GEBV = aHat1[posAi]
         G4GEBV=mean(GEBV)
Out[50]: -1.1917791839892202
In [51]: IDs = readtable("G5.ID", eltypes =[UTF8String], separator = ' ',header=false
         posAi = getPos(ped,IDs)
         cor8 = cor(a[posAi],aHat1[posAi])[1,1]
         reg8 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.ID : correlation = %6.3f\n", cor8 ) # with e;
         @printf("SSBRJC from Gibbs - G5.ID : regression of TBV on GEBV = %6.3f\n", re
         JCAll = cor8
         SSBRJC from Gibbs - G5.ID : correlation = 0.865
         SSBRJC from Gibbs - G5.ID: regression of TBV on GEBV = 0.840
Out[51]: 0.8646059885938248
In [52]: GEBV = aHat1[posAi]
         G5GEBV=mean(GEBV)
Out[52]: 0.5361798171984615
In [53]: IDs = readtable("G0.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G0.Genotype.ID : correlation = 0.867
         SSBRJC from Gibbs - G0.Genotype.ID : regression of TBV on GEBV = 0.810
Out[53]: 0.8669993091088397
In [54]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[54]: -0.133406770308836
```

```
In [55]: IDs = readtable("G1.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor9 = cor(a[posAi],aHat1[posAi])[1,1]
         reg9 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : correlation = %6.3f\n", cor9 )
         @printf("SSBRJC from Gibbs - G1.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor9
         SSBRJC from Gibbs - G1.Genotype.ID : correlation = 0.887
         SSBRJC from Gibbs - G1.Genotype.ID: regression of TBV on GEBV = 0.859
Out[55]: 0.8866301342656008
In [56]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[56]: -0.12151877781297525
In [57]: IDs = readtable("G2.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor10 = cor(a[posAi],aHat1[posAi])[1,1]
         reg10 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : correlation = %6.3f\n", cor10
         @printf("SSBRJC from Gibbs - G2.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor10
         SSBRJC from Gibbs - G2.Genotype.ID : correlation = 0.917
         SSBRJC from Gibbs - G2.Genotype.ID: regression of TBV on GEBV = 0.924
Out[57]: 0.9171994601389878
In [58]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[58]: 0.14976124109384664
In [59]: IDs = readtable("G3.Genotype.ID", eltypes =[UTF8String], separator = ' ',head
         posAi = getPos(ped,IDs)
         corl1 = cor(a[posAi],aHat1[posAi])[1,1]
         reg11 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : correlation = %6.3f\n", corll
         @printf("SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor11
         SSBRJC from Gibbs - G3.Genotype.ID : correlation =
         SSBRJC from Gibbs - G3.Genotype.ID : regression of TBV on GEBV = 0.850
Out[59]: 0.9039692878834502
In [60]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[60]: 0.5324764877559894
```

```
In [61]: IDs = readtable("G4.Genotype.ID", eltypes =[UTF8String], separator = ' ',heac
         posAi = getPos(ped,IDs)
         cor12 = cor(a[posAi],aHat1[posAi])[1,1]
         reg12 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : correlation = %6.3f\n", cor12
         @printf("SSBRJC from Gibbs - G4.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor12
         SSBRJC from Gibbs - G4.Genotype.ID : correlation = 0.855
         SSBRJC from Gibbs - G4.Genotype.ID: regression of TBV on GEBV = 0.839
Out[61]: 0.855318474370475
In [62]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[62]: 0.869662184112023
In [63]: IDs = readtable("G5.Genotype.ID", eltypes =[UTF8String], separator = ' ', head
         posAi = getPos(ped,IDs)
         cor13 = cor(a[posAi],aHat1[posAi])[1,1]
         reg13 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : correlation = %6.3f\n", cor13
         @printf("SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = %6
         JCAll = cor13
         SSBRJC from Gibbs - G5.Genotype.ID : correlation = 0.865
         SSBRJC from Gibbs - G5.Genotype.ID : regression of TBV on GEBV = 0.840
Out[63]: 0.8646059885938248
In [64]: writedlm("Correlation.G5.G.JC.txt",cor13)
In [65]: writedlm("Regression.G5.G.JC.txt",reg13)
In [66]:
         TBVG5Gall = a[posAi]
         TBVG5G=mean(TBVG5Gall)
Out[66]: 12.725047124999998
In [67]: GEBVG5Gall = aHat1[posAi]
         GEBVG5G=mean(GEBVG5Gall)
Out[67]: 0.5361798171984615
```

```
In [68]: IDs = readtable("G0.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G0.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G0.noGenotype.ID : correlation = 0.678
         SSBRJC from Gibbs - G0.noGenotype.ID: regression of TBV on GEBV = 0.533
Out[68]: 0.6782079563713908
In [69]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[69]: -2.8966600731283982
In [70]: IDs = readtable("G1.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor14 = cor(a[posAi],aHat1[posAi])[1,1]
         reg14 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor14
         SSBRJC from Gibbs - G1.noGenotype.ID : correlation = 0.325
         SSBRJC from Gibbs - G1.noGenotype.ID : regression of TBV on GEBV = 0.127
Out[70]: 0.3252941002771874
In [71]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[71]: -2.1747829769748597
In [72]: IDs = readtable("G2.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor15 = cor(a[posAi],aHat1[posAi])[1,1]
         reg15 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : correlation = %6.3f\n", cor1!
         @printf("SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor15
         SSBRJC from Gibbs - G2.noGenotype.ID : correlation = 0.329
         SSBRJC from Gibbs - G2.noGenotype.ID : regression of TBV on GEBV = 0.130
Out[72]: 0.3293734954749777
In [73]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[73]: -1.9122743501869865
```

```
In [74]: IDs = readtable("G3.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor16 = cor(a[posAi],aHat1[posAi])[1,1]
         reg16 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : correlation = %6.3f\n", cor1
         @printf("SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor16
         SSBRJC from Gibbs - G3.noGenotype.ID : correlation = 0.339
         SSBRJC from Gibbs - G3.noGenotype.ID : regression of TBV on GEBV = 0.138
Out[74]: 0.3390624919044156
In [75]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[75]: -1.647859614546834
In [76]: IDs = readtable("G4.noGenotype.ID", eltypes =[UTF8String], separator = ' ',he
         posAi = getPos(ped,IDs)
         cor17 = cor(a[posAi],aHat1[posAi])[1,1]
         reg17 = linreg(aHat1[posAi], a[posAi])[2,1]
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : correlation = %6.3f\n", corl
         @printf("SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = '
         JCAll = cor17
         SSBRJC from Gibbs - G4.noGenotype.ID : correlation = 0.345
         SSBRJC from Gibbs - G4.noGenotype.ID : regression of TBV on GEBV = 0.134
Out[76]: 0.3449859457413491
In [77]: GEBV = aHat1[posAi]
         mean(GEBV)
Out[77]: -1.2446366549661754
In [78]: numSSBayes
Out[78]: SSBR.NumSSBayes(54874,45874,9000,40000,39000,1000,200)
```

```
J1 = sortrows(J_Vecs.J1)
In [79]:
Out[79]: 45874x1 Array{Float64,2}:
          -0.999675
          -0.987323
          -0.986174
          -0.985395
          -0.985332
          -0.984131
          -0.98413
          -0.982808
          -0.982653
          -0.982593
          -0.982364
          -0.982323
          -0.981637
            6.77188e-17
           7.393e-17
           7.4291e-17
           7.44698e-17
           8.3077e-17
            8.77235e-17
            8.87952e-17
           8.88495e-17
            1.04174e-16
            1.05731e-16
            1.07411e-16
            1.11144e-16
```

```
In [80]: J1[J1 .< 0.0,:]
Out[80]: 43825x1 Array{Float64,2}:
           -0.999675
          -0.987323
           -0.986174
          -0.985395
          -0.985332
           -0.984131
          -0.98413
          -0.982808
          -0.982653
          -0.982593
          -0.982364
          -0.982323
           -0.981637
           -5.41167e-36
           -5.4077e-36
          -7.63874e-65
          -7.60646e-65
          -7.60646e-65
          -3.81937e-65
          -3.80323e-65
          -2.90722e-65
          -2.59338e-65
          -6.99614e-66
           -9.01683e-67
          -1.78007e-67
```