

Description

These N-Channel enhancement mode power field effect transistors are using split gate trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and with stand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

Features

- ♦ 85V,120A, $R_{DS(ON).max}$ =5.5mΩ@VGS = 10V
- Improved dv/dt capability
- Fast switching
- ♦ 100% EAS Guaranteed
- Green device available

Applications

- Motor Drives
- UPS
- ♦ DC-DC Converter

Product Summary

 $\begin{array}{ll} V_{DSS} & 85V \\ R_{DS(on).max} \textcircled{0} \ V_{GS} = 10V & 5.5 m\Omega \\ I_D & 120A \end{array}$

Pin Configuration

Absolute Maximum Ratings T_C = 25°C unless otherwise noted

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V _{DSS}	85	V
Continuous drain current (T _C = 25°C) ¹⁾		120	A
Continuous drain current (T _C = 100°C) ¹⁾	I _D	87	A
Pulsed drain current ²⁾	I _{DM}	480	A
Gate-Source voltage	V _{GSS}	±20	V
Avalanche energy ³⁾	E _{AS}	144	mJ
Power Dissipation (T _C = 25°C) TO-220C /TO-263	В	189	W
Power Dissipation (T _C = 25°C) TO-220F	P _D	56	W
Storage Temperature Range	T _{STG}	-55 to +150	°C
Operating Junction Temperature Range	TJ	-55 to +150	°C

Thermal Characteristics

Parameter	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case TO-220C /TO-263	R _{eJC}	0.66	°C/W
Thermal Resistance, Junction-to-Case TO-220F		2.2	°C/W
Thermal Resistance, Junction-to-Ambient TO-220C /TO-263	R _{θJA}	62	°C/W
Thermal Resistance, Junction-to-Case TO-220F		80	°C/W

Package Marking and Ordering Information

Device	Device Package	Marking
VST08N055-T3	TO-263	VST08N055-T3
VST08N055-TF	TO-220F	VST08N055-TF
VST08N055-TC	TO-220C	VST08N055-TC

Electrical Characteristics T_J = 25°C unless otherwise noted

Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Unit
Static characteristics						
Drain-source breakdown voltage	BV _{DSS}	V _{GS} =0 V, I _D =250uA	85			V
Gate threshold voltage	V _{GS(th)}	V _{DS} =V _{GS} , I _D =250uA	2.0	3.0	4.0	V
Drain-source leakage current	I _{DSS}	V _{DS} =85 V, V _{GS} =0 V, T _J = 25°C			1	μA
		V _{DS} =85 V, V _{GS} =0 V, T _J = 125°C			10	μA
Gate leakage current, Forward	I _{GSSF}	V _{GS} =20 V, V _{DS} =0 V			100	nA
Gate leakage current, Reverse	I _{GSSR}	V _{GS} =-20 V, V _{DS} =0 V			-100	nA
Drain-source on-state resistance	R _{DS(on)}	V _{GS} =10 V, I _D =50 A		4.6	5.5	mΩ
Forward transconductance	g _{fs}	V _{DS} =5 V , I _D =50A		84.2		S
Dynamic characteristics	·					
Input capacitance	C _{iss}	101/11/101/11		3948		pF
Output capacitance	C _{oss}	$V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V},$		888		
Reverse transfer capacitance	C _{rss}	- F = 1MHz		9		
Turn-on delay time	t _{d(on)}			20.1		- ns
Rise time	t _r	V _{DD} = 40V,V _{GS} =10V, I _D = 13A		38.9		
Turn-off delay time	t _{d(off)}			45.1		
Fall time	t _f			22.8		
Gate resistance	R _g	V _{GS} =0V, V _{DS} =0V, F=1MHz		4.0		Ω
Gate charge characteristics	'					•
Gate to source charge	Q _{gs}	\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		16		
Gate to drain charge	Q _{gd}	V_{DS} =40 V, I_{D} =50A, V_{GS} = 10 V		10		nC
Gate charge total	Qg			46		1
Drain-Source diode characteris	tics and Maxi	mum Ratings				
Continuous Source Current	Is				120	А
Pulsed Source Current ⁴⁾	I _{SM}				480	А
Diode Forward Voltage	V _{SD}	V _{GS} =0V, I _S =50A, T _J =25℃		0.95	1.4	V
Reverse Recovery Time	t _{rr}	I _s =20A, di/dt=60A/us, T _J =25℃		107		ns
Reverse Recovery Charge	Q _{rr}			123		nC

Notes:

- 1: The maximum junction current rating is package limited.
- 2: Repetitive Rating: Pulse width limited by maximum junction temperature.
- 3: $V_{DD} = 50V,\, V_{GS} = 10V,\, L = 0.5 mH,\, I_{AS} = 24A,\, R_G = 25\Omega,\, Starting\,\, T_J = 25\,^{\circ}\!\! C\,.$
- 4: Pulse Test: Pulse Width ${\leqslant}300~\mu$ s, Duty Cycle ${\leqslant}2\%.$

Electrical Characteristics Diagrams

Figure 1. Typ. Output Characteristics

Figure 3. Capacitance Characteristics

Figure 5. Body-Diode Characteristics

Figure 2. Transfer Characteristics

Figure 4. Gate Charge Waveform

Figure 6. Rdson-Drain Current

Figure 7. Rdson-Junction Temperature(°C)

Figure 8. Maximum Safe Operating Area

Figure 6. Normalized Maximum Transient Thermal Impedance (RthJC)

Test Circuit & Waveform

Figure 8. Gate Charge Test Circuit & Waveform

Figure 9. Resistive Switching Test Circuit & Waveforms

Figure 10. Unclamped Inductive Switching (UIS) Test Circuit & Waveform

Figure 11. Diode Recovery Circuit & Waveform

