Resultados del método East-West con All Triggers

Evelyn G. Coronel Tesis de Maestría en Ciencias Físicas Instituto Balseiro

(16 de noviembre de 2020)

COMO SE HACE EL CÁLCULO

- Definimos el rango de tiempo a estudiar, para estos resultados se utilizaron los límites: 1 de Enero del 2014 hasta el 1 de Enero del 2020.
- Se recorre cada evento que cumpla con las siguientes características:
 - Pertenezca el rango de energía a estudiar
 - \blacksquare Sea un evento 6T5 con ángulo cenital menor a 60^o
 - Se haya registrado en el rango de tiempo seleccionado

En cada evento se calcula los siguientes valores:

$$a' = \cos(X - \beta) \tag{1}$$

$$b' = \sin(X - \beta) \tag{2}$$

el valor de X depende la frecuencia a estudiar, la misma es igual a la ascensión recta del cenit α_i^0 al momento del evento si se estudia la frecuencia sidérea, en cambio para la frecuencia solar es igual al equivalente en grados de la hora local de Malargüe. El valor de β es depende si el evento provino del Este donde $\beta=180^o$ o $\beta=0$ caso contrario. Se intentó hacer un barrido de frecuencias análogo al análisis de Rayleigh pero la variable utilizada para generalizar el análisis a frecuencias arbitrarias:

$$\tilde{\alpha} = 2\pi f_r t_i + \alpha_i - \alpha_i^0(t_i) \tag{3}$$

es tal que la variable es igual a la ascensión recta del evento a estudiar y no al cenit como es el caso del EW.

 Una vez corridos todos los eventos se calculan los parámetros:

$$a_{EW} = \frac{2}{N} \sum_{i=1}^{N} a$$
 $b_{EW} = \frac{2}{N} \sum_{i=1}^{N} b$

que es equivalente a haber calculado

$$a_{EW} = \frac{2}{N} \sum_{i=1}^{N} \cos(\alpha_i^0 - \beta_i)$$

$$b_{EW} = \frac{2}{N} \sum_{i=1}^{N} \sin(\alpha_i^0 - \beta_i)$$

donde N indica la cantidad eventos considerados. La cantidad de eventos por rango de energía se muestran en la tabla I.

Con esto puedo calcular la amplitud asociada al análisis r_{EW} y la fase ϕ_{EW} :

$$r_{EW} = \sqrt{a_{EW}^2 + b_{EW}^2}$$

 $\phi_{EW} = \tan^{-1}(b_{EW}/a_{EW})$

Estos valores se traducen a los valores de amplitud r y fase ϕ del dípolo físico mediante las expresiones:

$$r = \frac{\pi}{2} \frac{\langle \cos \delta \rangle}{\langle \sin \theta \rangle} r_{EW} \qquad \phi = \phi_{EW} + \frac{\pi}{2}$$
$$d_{\perp} = \frac{\pi}{2\langle \sin \theta \rangle} r_{EW}$$

Se suma $\frac{\pi}{2}$ por el artificio de agregar π en los coeficientes para obtener la diferencia entre tasas del este y oeste. Los valores $\langle \cos \delta \rangle$ y $\langle \sin \delta \rangle$ son los valores medios de estas variables en los años estudiados.

4. Se calcula la amplitud límite r_{99} y la probabilidad de que las amplitudes calculadas sea ruido $P(r_{EW})$ mediante:

$$P(\geq r_{EW}) = \exp{-\frac{N}{4}r_{EW}^2}$$
$$r_{99} = \frac{\pi}{2} \frac{\langle \cos \delta \rangle}{\langle \sin \theta \rangle} \sqrt{\frac{4}{N} \ln(100)}$$

Por último, estos resultados se comparan con los valores obtenidos con el método EW en el trabajo [1], aplicado al conjunto de eventos del disparo estándar registrados entre el 1 de Enero del 2004 y el 1 de Agosto del 2018. Para esto se ejecutó el programa implementado en el trabajo mencionado sobre los datos utilizados en el mismo, estos se obtuvieron de *Publications Committee* de la colaboración Auger.

TABLA CANTIDAD DE EVENTOS PARA DISTINTOS RANGOS DE ENERGÍA

Los eventos son clasificados en los distintos rangos con la energía reportada el archivo del Herald de todos los disparos.

Rango $[EeV]$	Eventos	Energía Media
0.25 - 0.5	3 967 368	0.375
0.5 - 1	3 638 226 1 081 846	0.687
1 - 2	1081846	1.315

Tabla I: Tabla de eventos por rango de energía

Resultados en el rango $0.25~{\rm EeV}$ - $0.5~{\rm EeV}$

La referencia tiene $770\,323$ eventos con una energía media de 0.42.

Frecuencia:	365.25	366.25	366.25 [1]
Amplitud:		0.00123	
d_{\perp} :	0.00219	0.00156	0.00609
Probabilidad:	0.66	0.81	0.45
Fase:		279 ± 90	226 ± 50
r_{99} :	0.00580		0.0115
$d_{\perp,99}$	0.00732	0.00732	0.0147

Tabla II: Características para las frecuencias solar y sidérea con el método East-West en el primer armónico en rango de energía $0.25~{\rm EeV}$ - $0.5~{\rm EeV}$

Resultados en el rango 0.5 EeV - 1 EeV

En este rango de energía se observa una diferencia entre las probabilidades de este trabajo y [1] ne la frecuencia sidérea. Este valor dice cuando probable es que las amplitudes sean debido al ruido. Este trabajo obtiene que la amplitud en sidérea es significativa por un 6 %.

La referencia tiene $2\,388\,468$ eventos con una energía media de 0.71.

Frecuencia:			366.25[1]
Amplitud:	0.00428		
d_{\perp} :	0.00543	0.00561	0.00481
${\bf Probabilidad:}$	0.07	0.06	0.20
Fase:		260 ± 20	261 ± 30
	0.00556		0.00634
$d_{\perp,99}$	0.00706	0.00706	0.00809

Tabla III: Características para las frecuencias solar y sidérea con el método East-West en el primer armónico en rango de energía 0.5 EeV - 1 EeV

Resultados en el rango 1 EeV - 2 EeV

	Rayleigh	EW
Frecuencia:	365.25	365.25
Amplitud:	0.00385	0.00282
d_{\perp} :	-	0.00359
Probabilidad:	0.02	0.64
Fase:	288 ± 20	200±60
r99:	0.0041263	0.00916
$d_{\perp,99}$	_	0.0117

Tabla IV: Características para la frecuencia solar con los métodos de Rayleigh e East-West en el primer armónico.

	Rayleigh	EW	EW[1]
Frecuencia:	366.25	366.25	366.25
Amplitud:	0.00399	0.00495	0.00143
d_{\perp} :	-	0.00631	0.00182
Probabilidad:	0.0136	0.26	0.87
Fase:	336 ± 20	320 ± 30	291 ± 100
r99:	0.00413	0.00916	0.00837
$d_{\perp,99}$	-	0.0117	0.0107

Tabla V: Características para la frecuencia sidérea con los métodos de Rayleigh e East-West en el primer armónico.

La referencia tiene 1 243 098 eventos con una energía media de 1.34.