Beispiel: Kragarm mit 2 Punktmassen

Inhaltsverzeichnis

1	Aufgabenstellung				
2	Musterlösung				
	2.1	Formf	unktion	3	
	2.2	Allgen	neine Bewegungsgleichung	3	
	2.3	Eigenl	kreisfrequenz	3	
		2.3.1	Bestimmung der Masse	4	
		2.3.2	Bestimmung der Steifigkeit	4	
		2.3.3	Grundfrequenz	5	
		2.3.4	Auswertung des Spezialfalls	5	

1 Aufgabenstellung

Das in Abbildung 1 dargestellte System stellt einen Kragarm mit verteilter Masse und 2 Punktmassen dar. Eine mögliche Formfunktion ist rechts daneben gezeigt.

Abbildung 1: Kragarm mit verteilter Masse und zwei Punktmassen

Gesucht:

- Grundfrequenz (1. Eigenfrequenz ω_n) des Systems, berechnet mit dem Rayleigh-Quotienten.

Gegeben:

- Randbedingungen für den Spezialfall: $m_{const}=0$ und $m_1=m_2=m$
- Formfunktion:

$$\Psi(x) = 1 - \cos(\frac{\pi x}{2L})$$

Parameter	
m = 0	$m_1 = m$
$m_2 = m$	

2 Musterlösung

2.1 Formfunktion

$$\Psi(x) = 1 - \cos\left(\frac{\pi x}{2L}\right) \tag{1}$$

2.2 Allgemeine Bewegungsgleichung

Mithilfe der in der Vorlesung hergeleiteten Bewegungsgleichung kann anhand der Formfunktion Ψ die erste Eigenkreisfrequenz ermittelt werden. Der Rayleigh-Quotient ist eine Energiebetrachtung. Er setzt die potentielle, maximale Energie $E_{pot,max}$ zur kinetischen, maximalen Energie $E_{kin,max}$ ins Verhältnis. Daraus lässt sich die Kreisfrequenz ω_n herauslösen.

$$m_{star} = m_1 \Psi^2(L) + m_2 \Psi^2 \bigg(\frac{L}{2}\bigg) + \int\limits_0^L m \Psi^2(x) \, dx \eqno(2)$$

$$k_{star} = \int_{0}^{L} EI\left(\frac{d^2}{dx^2}\Psi(x)\right)^2 dx \tag{3}$$

$$f(x,t) = k_{star}u + m_{star}\frac{d^2}{dx^2}u \tag{4}$$

$$f(x,t) = u \int_{0}^{L} EI\left(\frac{d^{2}}{dx^{2}}\Psi(x)\right)^{2} dx + \left(m_{1}\Psi^{2}(L) + m_{2}\Psi^{2}\left(\frac{L}{2}\right) + \int_{0}^{L} m\Psi^{2}(x) dx\right) \frac{d^{2}}{dx^{2}}u \quad (5)$$

Substituiert mit Massen- und Steifigkeitsvariable:

2.3 Eigenkreisfrequenz

Aus der Bewegungsgleichung kann die Eigenkreisfrequenz ermittelt werden:

$$\omega_1 = \sqrt{\frac{k_{star}}{m_{star}}} \tag{6}$$

2.3.1 Bestimmung der Masse

Die Masse kann mittels der Lösung des Integrals bestimmt werden. Dabei sind die Punktmassen mittels der entsprechenden Deformation an den Stellen L und $\frac{L}{2}$ zu berücksichtigen, sowie die verteilte Masse über die gesamte Länge.

$$\Psi(L) = 1 \tag{7}$$

$$\Psi\left(\frac{L}{2}\right) = 1 - \frac{\sqrt{2}}{2} \tag{8}$$

$$\Psi^2(x) = \left(1 - \cos\left(\frac{\pi x}{2L}\right)\right)^2 \tag{9}$$

$$m_{star} = m_1 + m_2 \left(1 - \frac{\sqrt{2}}{2}\right)^2 + \int_0^L m \left(1 - \cos\left(\frac{\pi x}{2L}\right)\right)^2 dx \tag{10}$$

$$m_{star} = m \left(-\frac{4L}{\pi} + \frac{3L}{2} \right) + m_1 + m_2 \left(1 - \frac{\sqrt{2}}{2} \right)^2 \tag{11}$$

2.3.2 Bestimmung der Steifigkeit

Die Steifigkeit in kann mittels der Lösung des Integrals in bestimmt werden. Zur Ermittlung der Steifigkeit k^* muss zuerst der Ansatz zweimal nach x abgeleitet werden.

$$\Psi(x) = 1 - \cos\left(\frac{\pi x}{2L}\right) \tag{12}$$

$$\frac{d}{dx}\Psi(x) = \frac{\pi \sin\left(\frac{\pi x}{2L}\right)}{2L} \tag{13}$$

$$\frac{d^2}{dx^2}\Psi(x) = \frac{\pi^2 \cos\left(\frac{\pi x}{2L}\right)}{4L^2} \tag{14}$$

Danach bedingt es lediglich das einsetzen:

$$k_{star} = \frac{\pi^4 EI}{32L^3} \tag{15}$$

$$k_{star} = \int_{0}^{L} EI\left(\frac{\partial^{2}}{\partial x^{2}} \left(1 - \cos\left(\frac{\pi x}{2L}\right)\right)\right)^{2} dx \tag{16}$$

$$k_{star} = \frac{\pi^4 EI}{32L^3} \tag{17}$$

2.3.3 Grundfrequenz

Letztlich kann die Grundfrequenz bestimmt werden:

$$\omega_1 = \frac{\sqrt{2}\pi^2 \sqrt{\frac{EI}{4m(-\frac{4L}{\pi} + \frac{3L}{2}) + 4m_1 + m_2(-2 + \sqrt{2})^2}}}{4L^{\frac{3}{2}}}$$
(18)

2.3.4 Auswertung des Spezialfalls

Mit Hilfe der Randbedingungen für den Spezialfall aus der Aufgabenstellung resultiert die Grundfrequenz zu:

$$\omega_1 = \frac{1.67 \left(\frac{EI}{m}\right)^{0.5}}{L^{1.5}} \tag{19}$$