Large-Scale Convex Optimization Stadelmann Silvan silvasta@ethz.ch

June 18, 2025

1 Introduction

Large Scale Problem of dimension n but iterations

 $\ll n$ desired **Convex** One of the only problem classes that are

"solvable" **Mathematical Optimization**

minimize f(x)

$$ext{s.t.} g_i(x) \leq 0, \quad i = 1, \dots, n_g$$

 $h_i(x) = 0, \quad i = 1, \dots, n_h$

$$-x = (x_1, ..., x_n) \in \mathbb{R}^n$$
 decision variable (most of our algorithms also work for $n \to \infty$) - f objective function

- $-\mathcal{C} = \{\xi \in \mathbb{R}^n : g(\xi) \leq 0, \ h(\xi) = 0\}$ fesabile set
- 1.1 Important Definitions - x^* is a global minimum if $f(x^*) < f(x)$
- x^* is a local minimum if there exists $\epsilon > 0$ s.t.

$$f(x^*) < f(x) \quad \forall x \in C \cap B_{\epsilon}(x^*)$$

$$B_{\epsilon}(x^{\star}):=\{\xi\in\mathbb{R}^n: |\xi-x^{\star}|<\epsilon\}$$
 open ball,

1.2 Existance of minimum

center x^{\star} , radius ϵ

1.2.1 Counter examples

- a) unbounded level sets, f.e. 1/xb) C open f.e. (0,1) but minimum at f.e. 0
- c) f not l.s.c. (lower semi-continuous)

Proposition 1. f (lower-semi-)continuous, $f(x) \rightarrow$

 ∞ for $|x| \to \infty$, C closed $\Rightarrow \exists$ minimizer of (4) described by: $\min_{x \in \mathcal{C}} f(x)$ and $\operatorname{argmin} f(x)$

1.2.2 Examples

- assets in a portfolio

- control inputs

 schedule assignment resource allocation

- all possible trade assets

- actuation limits

 cost (negative returns) deviaton from target - waiting times / delas

risk (a certain resource fails)

1.2.3 First Order Algorithmus Initialize x_0

for k = 0,...,#iterations -1 $(f(x_k), \nabla f(x_k)) \leftarrow \text{call first-order oracle}$ Determine x_{k+1} based on .. f.. end **Definition 1** (Lipschitz continuity). ... $q: R^m \rightarrow$

ists a problem in P, such that achieving

|f(xN)-f(x)| < requires

$$|q(x)-q(y)| \leq L|x-y| \forall x,y \in R^m$$
 ...definition P...

Proposition 2. For any algorithm, there ex-

 $N > (upper(L/2\epsilon))^n - 1$

Example

(for L=1, ϵ = 0.0005, n=27, N larger than #atoms in universe)

Proof. Idea Construct f where $(f(x_0)) =$ $0, \nabla f(x_0) = 0$, $(f(x_1) = 0, \nabla f(x_1) = 0), \dots$ but the actual $min_{x \in C} f(x)$ is small. Grid(x1,x2)

raster 1/3, 9 boxes in (1,1), for $N \leq 7$ (8 steps) one grid cell is not visited Hence $f(x_i) = 0, i \in [0, 7]$ but $f(x^*) = -L/6$ Generalization

- Partition unit cube into s^n small boxes with side length 1/s and $min_x inC = -L/2s$ - therefore $f(x_i) - f(x_s tar) \ge L/2s \text{ for } i = 0...s^n - 2$ roughly ... - therefore N = ...

Definition 2. The optimization problem 4 is convex if f and g_i are convex functions, $i = 1, ..., n_g$, and h is affine.

1.2.4 Software Frameworks

Proposition 3. x^* local minimum of (4), if (4) convex, then x^* global minimum of (4) half-spaces that contains $\mathcal{C} \Rightarrow x$ is also contained *Proof* . Counter example, $\exists y \neq x^* \in C$ such that

 $f(y) \le f(x^*)$ 1.3 Recitation By the Seperating Hyperplane Theorem there exists

LOOK AT SLIDES or FIND r1.md

- CVX Python - Yalmip

2 Convex sets and convex functions

Definition 4 (Convex Set). A set C is convex if and only if $\forall x, y \in \mathcal{C}$ and $\forall \theta \in [0, 1]$: $\theta x + (1 - \theta)y \in \mathcal{C}$

Examples of convex sets: • hyperplane $\{x \in \mathbb{R}^n \mid a^\mathsf{T} x = b\}$

• half-space $\{x \in \mathbb{R}^n \mid a^\mathsf{T} x \leq b\}$ • polyhedron $\{x \in \mathbb{R}^n \mid Ax \leq b, Cx = d\}$

 $A \in \mathbb{R}^{q \times n}, \ C \in \mathbb{R}^{r \times n}, \ b \in \mathbb{R}^q, \ d \in \mathbb{R}^r$...more...

2.1 Operations that preserve convexity (sets) • Intersection C_1, C_2 convex $\Rightarrow C_1 \cap C_2$ convex • Image under affine map $\mathcal{C} \subset \mathbb{R}^n$ convex

 $\Rightarrow \{Ax + b \mid x \in \mathcal{C}\}$ convex inverse image of an affine map: ...

2.2 Separating Hyperplane Theorem **Theorem 1.** $\mathcal{C} \subseteq \mathbb{R}^n$ non-empty closed con-

vex set, $y \notin \mathcal{C} \rightarrow \exists a \neq 0, b \in \mathbb{R}$ s. t. $a^{\mathsf{T}}x + b < a^{\mathsf{T}}y + b, \forall x \in \mathcal{C}$

Proof of claim |x-y| has bounded level sets, C is non-empty and closed $\Rightarrow \exists \hat{x} \in \operatorname{argmin}|x-y|$

Proof. Claim $\exists \ \hat{x} \in C \text{ s.t. } |\hat{x} - y| \leq |x - y| \quad \forall x \in C \text{ s.t. } |\hat{x} - y| \quad \forall x \in C$

Hyperplane, we choose $a := y - \hat{x}, b := -a^{\mathsf{T}} \hat{x} =$ $-(y-\hat{x})^{\mathsf{T}}\hat{x}$

As a result, $a^{\mathsf{T}}x + b = (y - \hat{x})^{\mathsf{T}}(x - \hat{x})$ and therefore $a^{\mathsf{T}}y + b = |y - \hat{x}|^2 > 0$. The following claim shows that the hyperplane $a^{\mathsf{T}}y + b$ seperates $\mathcal C$ and Claim $a^{\mathsf{T}}y + b < 0 \quad \forall x \in \mathcal{C}$

Proof of claim Assume not. $\rightarrow \exists x \in \mathcal{C}$ s.t. $(y-\hat{x})^{\mathsf{T}}(x-\hat{x})>0$ PARAMETRIZE θ Contradiction \hat{x} nearest point to y

(Details in Lecture notes)

Corollary 1. A closed convex set $\mathcal{C} = \mathbb{R}^n$ is the intersection of the closed half-spaces that contain

Proof. S intersection of closed half-spaces that contain \mathcal{C} 1) $\mathcal{C} \subseteq \mathcal{S} : x \in \mathcal{C} \Rightarrow x$ is contained in every

a hyperplane that seperates \hat{x} from C. That means

there exists a closed half-space that contains \mathcal{C} but

Idea represent any closed convex set by its sup-

in the intersections of half-spaces that contains $\mathcal C$ $\Rightarrow x \in \mathcal{S}$ 2) $S \subseteq C$: Assume not $\rightarrow \exists \hat{x} \in S$ with $\hat{x} \notin C$.

not \hat{x} , hence $\hat{x} \notin \mathcal{C}$, contradiction. 2.3 Support function

porting hyperplanes

 \mathcal{C} .

Support Function: $\sigma_{\mathcal{C}}(a) = \sup_{a \in \mathcal{C}} a^T x$ **CALCULATION EXAMPLE** If we know the $\sigma_{\mathcal{C}}(a)$, we arrive at at

> $C = \bigcap_{a \in \mathbb{R}^n} \{ x \in \mathbb{R}^n \mid a^\mathsf{T} x - \sigma_c(a) \le 0 \}$ $= \{ x \in \mathbb{R}^n \mid \sup_{a \in \mathbb{R}^n} a^\mathsf{T} x - \sigma_{\mathcal{C}}(a) \le 0 \}$

Definition 5. A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if its epigraph is a convex set, where $epi(f) := \{(x, t) \in \mathbb{R}^{n+1} | f(x) \le t\}$

$$\rightarrow$$
 this provides a link between convex sets and

2.4 Operations that preserve convexity (functions) the pointwise maximum of convex functions is

 the sum of convex functions is convex • f(Ax + b) is convex if f is convex

2.4.1 How to check if f is convex?

• if $f: \mathbb{R}^n \to \mathbb{R}$ twice differentiable, $\partial^2 f/\partial x^2 \succeq$ $0 \, \forall \, x \in \mathbb{R}^n$ • if $g: \mathbb{R} \to \mathbb{R}$ with g(t) = f(x + tv) convex in

 $t \ \forall \ x, v \in \mathbb{R}^n$, then f is convex

functions

convex

 composition of simple convex function with convexity preserving operations

Extended real numbers $\mathbb{\bar{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$

if $x \in \mathcal{C}$

 $+\infty$ if $x \notin \mathcal{C} \ge 0$ Indicator function $\psi_{\mathcal{C}}(x) :=$

Definition 3. Function $q: \mathbb{R}^n \to \mathbb{R}$ is convex (affine) if for any $x, y \in \mathbb{R}^n$

 $q(\theta x + (1-\theta)y) \le \theta q(x) + (1-\theta)q(y) \quad \forall \theta \in [0,1]$

→ this provides another link between convex sets and functions

is bounded below and if $\exists x \in \mathbb{R}^n$ s. t. $f(x) < \infty$

We can write $\min_{x \in \mathcal{C}} f(x)$ as $\min_{x \in \mathbb{R}^n} f(x) +$ $\psi_{\mathcal{C}}(x)$ **Definition 6** (3). $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is called proper if f

Definition 7 (Legendre Transformation). The conjugate function of $f:\mathbb{R}^n \to \bar{\mathbb{R}}$ is defined as $f^{\star}(y) = \sup y^{\mathsf{T}}x - f(x)$ **IMAGE F-STAR**

2.5 Summary of Concepts

2.6.1 Convex Sets A set \mathcal{C} is convex if and only if for all $x, y \in \mathcal{C}$ and

2.6 Recitation

Theorem 2

$$\theta \in [0, 1]$$
:
$$\theta x + (1 - \theta)y \in \mathcal{C}$$

2.6.2 Convex Cone

conic combination

Given
$$x_1, ..., x_n$$
 any point of the for

Given
$$x_1, ..., x_n$$

any point of the form:
 $\theta_1 x_1, ..., \theta_n x_n$

any point of the form
$$\theta_1 x_1, ..., \theta_n x_n$$

$$\theta_1 x_1, ..., \theta_n x_n$$
 $\theta_i \geq 0$
convex cone
XXX

Positive Semidefinite Cone 2.6.3

Notation \mathbb{S}^n set of symetric nxn matrices

 \mathbb{S}^n_{\perp} HHH \mathbb{S}^n_{++} HHH not convex cone Example

Sylvester Condition

Definition

2.6.5 Methods for establishing convexity

- 1. Verify from definition
- 2. Second order condition 3. Operations that preserve convexity
- 2.6.6 Log-Sum-Exp $f(x) = log(e_1^x + ... + e_n^x)$

 $\cdots + w_m f_m$ convex

Examples

Second-order condition $\nabla^2 f > 0$ 2.6.7 Nonnegative Weighted Sum

$\alpha(f_1+f_2)$ convex if f_1,f_2 convex, $\alpha>0$ f_1,\ldots,f_m convex, $w_1,\ldots,w_m\geq 0 \Rightarrow w_1f_1+$

2.6.8 Composition with Affine Function

g(x) = f(Ax + b)

Log barrier for linear inequalities \rightarrow transforms

Norm Function 2.6.9 Composition

f(x) = h(g(x))

3 KKT and Lagrange Duality

3.1 Example

Optimization problem: $\min_{x \in \mathbb{R}^2} f(x)$ s.t. h(x) = 0h(x) = 0 $otan \nabla h(x^*)$ level sets of f $\nabla f(x^{\star})$

2.6.4 Convex Functions

colinear $\Leftrightarrow \exists \nu^{\star} \in \mathbb{R} : \nabla f(x^{\star}) + \nu^{\star} \nabla h(x^{\star}) = 0$ $f(x) + \nu^* h(x)$ is stationary at x^* , where ν^* can be interpreted as cost of violationg constraint

We note the following: $\nabla f(x^*)$ and $\nabla h(x^*)$ are

3.2 Generalization Generalization to $n \geq 2$ and presence of inequality constraints

 $f^\star = \inf_{x \in \mathbb{R}^n} f(x)$ s.t. $h(x) = 0, \ g(x) \le 0$ with corresponding Lagrange function

tial of
$$f$$
 at \bar{x} is: $\partial f(\bar{x}) := \{\lambda \in \mathbb{R}^n \mid f...\}$
 $\mathcal{L}(x,\lambda,\nu) = f(x) + \lambda^\mathsf{T} g(x) + \nu^\mathsf{T} h(x)$ (3) Proposition 6. $f: \mathbb{R}^n \to \mathbb{R}$ convex. $x^\star \in \mathbb{R}^n$ where $\lambda_i \geq 0, \nu_i \in \mathbb{R}$ are the dual variables or multipliers that can be interpreted as cost for viola-

tiong constraints. Proposition 4 (Weak Duality). The dual function $d(\lambda, \nu) = \inf \mathcal{L}(x, \lambda, \nu)$ satisfies $d(\lambda, \nu) \leq f^{\star}, \ \forall \lambda \geq 0, \ \nu \in \mathbb{R}^{n_h}$

Proof. SHORT

Proposition 5 (Strong Duality). If Slater's condition

holds and (2) is convex then $\exists \lambda > 0, \nu \in \mathbb{R}^{n_h}$ s.t.

Definition 8 (Constraint qualification). C convex, Slaters Condition holds if $\exists \hat{x} \in \mathbb{R}^n$ s.t. $h(\hat{x}) = 0$ and $q(\hat{x}) < 0$

 $d(\lambda, \nu) = f^*$ Proof. EXTENDED GRAPHIC

3.3 KKT **Theorem 2** (KKT Conditions). Slater's condition

holds and (2) is convex. Then $x^{\star} \in \mathbb{R}^n$ is a minimizer of the primal (2) and $(\lambda^{\star} > 0, \nu^{\star}) \in$

 $\mathbb{R}^{n_g} \times \mathbb{R}^{n_h}$ is a maximizer of the dual if and only if:

KKT - 1 (Stationary Lagrangian)

 $\nabla_x \mathcal{L}(x^\star, \lambda^\star, \nu^\star) = 0$

KKT - 2 (primal feasibility)

 $q(x^*) < 0, h(x^*) = 0$ KKT - 3 (dual feasibility)

 $\lambda^{\star} < 0, \nu^{\star} \in \mathbb{R}^{n_h}$

 $\lambda^{*} q(x^{*}) = 0, \ \nu^{*} h(x^{*}) = 0$

In addition we have: INF = SUP

KKT - 4 (complementary slackness)

i = 1, 2, ..., N

OUESTION Proof?

FORCE BALLANCE

3.5 Subdifferential

for convex f...

argmin...

fication.

3.6.3 SVM

3.6 Recitation 3

3.6.1 Information ML

3.6.2 Hard Margin SVM

3.4 What if f, g not differentiable?

where (l_1) -norm not differentiable at 0

Example $inf |Ax - b|^2 + |x|_1$

Remark Without Slater, KKT 1 to 4 still implies x^*

minimizer maximizer that do not satisfy KKT1-4

minimizes (2) and (λ, ν) maximizes the dual, but the converse is no longer true, there can be primal/dual

Definition 9. $f: \mathbb{R}^n \to \bar{\mathbb{R}}$ convex, the subdifferen-

convex, epi(f) closed: $y \in \partial f(x) \leftrightarrow x \in \delta f^*(y)$

☐ Use hyperplane and support vectors for data classi-

Find the Maximum-Margin Hyperplane

3.6.4 Solve the Optimization Problem

• Introduce Lagrange multiplier $\alpha_i > 0$ for

 Introduce some slackness ξ Point 2

• Solve α^* by Strong Duality

3.6.5 Soft Margin SVM

• Obtain w^* and b^* using KKT

3.6.6

Kernel Methods: Break the linearity Introduce Nonlinear feature map $\phi(x): \mathbb{R}^n \to \mathbb{R}^m$ Kernel $K(x_i, x_i) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$

constrained problem in unconstrained

4 Convex Optimization Problem

Recall general optimization Problem minimize f(x)

s.t.
$$g_i(x) \leq 0, \quad i=1,\dots,n_g$$
 (4) $h_i(x)=0, \quad i=1,\dots,n_h$ OPTIMAL VALUE

4.1 Feasibility Problem

minimize
$$s$$

$$\text{s.t.} g_i(x) \leq s, \quad i=1,\dots,n_g \quad \text{(5)}$$

$$h_i(x)=0, \quad i=1,\dots,n_h$$

4.2 Linear Programming

$$\begin{array}{lll} \text{Step 1: } \mathcal{L}(x,\lambda_1,\lambda_2) &= c^{\mathsf{T}}x - \lambda_1^{\mathsf{T}}(Ax-b) - \lambda_2^{\mathsf{T}}x, \ \lambda_i \geq 0 \\ \text{Step 2: } \inf_{x \in \mathbb{R}^n} \mathcal{L}(x,\lambda_1,\lambda_2) &= \end{array}$$

minimize $c^{\mathsf{T}}x$ s.t. Ax - b > 0, x > 0

$$\begin{cases} \lambda_1^{\mathsf{T}}b & \text{if } c - A^{\mathsf{T}}\lambda_1 - \lambda_2 = 0\\ -\infty & \text{if } c - A^{\mathsf{T}}\lambda_1 - \lambda_2 = 0 \end{cases}$$

$$\text{maximize } \boldsymbol{b}^{\mathsf{T}} \boldsymbol{\lambda} \quad \text{s.t. } \boldsymbol{c} - \boldsymbol{A}^{\mathsf{T}} \boldsymbol{\lambda} \geq \boldsymbol{0}, \; \boldsymbol{\lambda} \geq \boldsymbol{0}$$

4.2.1 Skech

- Polyhedron c-vector normal gives 'Levelsets'

Optimal solution in or trough a corner (if exists)

Proposition 8. The optimal solution of a linear program (if it exists) lies always on the boundary of the feasible set and there exists an optimal solution that is a vertex of the feasible set.

4.2.2 Shortest Path

Analogie with Fluid

Soltuion greater 0, not optimal edges = 0

4.3 Quadratic Programming

minimmize $\frac{1}{2}x^{\mathsf{T}}Px + q^{\mathsf{T}}x$ s.t. $Gx \leq h, Ax = b$ If $P = P^{\mathsf{T}}$ is positive semi-definite then the problem is convex. Example [optimal control] (basis for mpc)

minimmize $f^{\mathsf{T}}x$ s.t. $|A_ix+b| \leq c_i^{\mathsf{T}}x+d_i$, Fx=g

4.3.1 Second-order cone program (SOCP)

• n number of assets/stocks x_i relative value of asset i

• p_i price change of stock i • $p^T x$ overall return Constraints

• $x^T \mathbf{1} = B$, total amount • x > 0, no short position CALCULATIONS

4.4 Semidefinite programming (SDP) minimmize $c^{\mathsf{T}}x$ s.t. $x_1F_1, \dots + x_nF_n \le 0$ and Ax - b = b

 \rightarrow the 'standard' form $\min_{x \in \mathbb{R}^{n*n}} tr(CX)$

4.5 Recitation 4 4.5.1 Geometric Programming

Motivation

- Summary Change of variables, transformation of objectives and constraints →convex problem in standard form

- Monomial function

- Posynomial function

- Problem formulation - Example

- Technique Variable transformation $y_i = \log x_i$ on objective

and constraints.

4.5.2 Sum of Squares

- Transformation

 Polynomial Optimization $\rightarrow f, q_i, h_i$ polynomials General case intractable

GRAFIK \rightarrow chose γ very high, results in sum of squares **Definition** A polynomial f(x) is a sum of squares (SOS), if it can be written as

$$f(x) = \sum_i g_i^2(x) \quad g_i \mbox{: polynomial}$$
 - Verification

z(x) as vector that contains all polynomials of deqree < d**Theorem 3** (SOS). p(x) is an SOS if and only if $\exists Q$ such that Q >= 0 and $p(x) = z(x)^{\mathsf{T}}Qz(x)$

find largest γ such that $f(x) - \gamma$ nonnegative, NP

SOS for Lyapunov Stability Analysis Dvnamic $\dot{x}_1 = -x_1^3 + x_2$

Proof

Example

- Nonnegative polynomials

Small adaption with γ

$$\dot{x}_2 = -x_1 - x_2$$
 Equilibrium $x = (x_1, x_2) = (0, 0)$ $V(x) = ax1^2 + bx2^2$ vdot = dVf(x) = [2ax1,2bx2]*dynvec verify vx>0,-vdot>0

5 Gradient methods - Part I

$\mathbb{R}^n \to \mathbb{R}$ is L-smooth if $\nabla f(x)$ satisfies $|\nabla f(x) - \nabla f(y)| \le L|x - y| \quad \forall x, y \in \mathbb{R}^n$

Definition 10 (smoothness). The function f:

This result (with Taylors'Theorem) in:

$$f(x) < f(x) + \nabla f(x) T(x, x) + L$$

Definition 11 (strong convexity). The function $f: \mathbb{R}^n \to \mathbb{R}$ is μ -strongly convex if it satisfies

$$T^* = \frac{2}{L+\mu}$$

Convergence rate

$$\rho(T^*) = |1 - \frac{2L}{L+\mu}| = \frac{L-\mu}{L+\mu}$$

therefore with stepsize T^* $|x_N - x^{\star}| \le \epsilon \text{ if } N \ge \frac{\kappa + 1}{2} \ln(\frac{|x_0 - x^{\star}|}{\epsilon})$ 5.2 Momentum-based methods

$$q_{k+1} = q_k + T_{p_{k+1}}$$

$$p_{k+1} = (1 - 2dT)p_k - T\nabla f(q_k + \beta p_k)/L$$
 (8)

SPRING DAMPER ANALOGY

EIGENVALUE analysis

Nesterovs accelerated gradient methods - for $T=1, d=\frac{1}{\sqrt{k}+1}, \beta=\frac{\sqrt{k}-1}{\sqrt{k}+1}$ Heavy Ball (tuned quadratics)

- for $T=\frac{2\sqrt{k}}{\sqrt{k}+1}, d=\frac{1}{\sqrt{k}+1}, \beta=0$ What is the convergence rate? **EXAMPLE DIAGONALIZATION**

ROOT Locus - Nesterov on circle $c=(r/0), r=\lambda_i/L=\mu/L$ - Heavy ball circle $c=((\lambda-L)/2,0), r=\lambda+L$

Theorem 4 (NOT Nesterovs). $f\mu$ strongly convex,

L smooth Nesterovs Method satisfies

$$|x_N - x^*| \le (1 - \frac{2}{\sqrt{k} + 1})|x_0 - x^*| \forall k \ge 0$$

proof with H Function $f(y) \leq f(x) + \nabla f(x)^{\mathsf{T}} (y-x) + \frac{L}{2} |x-y|^2 \quad \forall x,y \in \mathbb{R}^{\mathbf{5}.\mathbf{3}}$ Recital 5 - More on Gradient Descent

5.3.1 Proberties of Smooth Functions

- L-smoothnes:

 $f(y) \geq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{\mu}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \nabla f(x)^\mathsf{T}(y-x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{R} \\ f(y) \leq f(x) + \frac{L}{2}|x-y|^2 \quad \forall x,y \in \mathbb{$

5.1 Gradient Descent

Given x_0 and stepsize T > 0

 $\mu \leq h \leq L$

 $x_{k+1} = x_k - T\nabla f(x_k) \quad \text{for } k = (k_0, \dots, k_N)$ HERLEITUNG **Optimal Step Size**

5.3.2 Gradien Descent

 Smooth and Convex xstar argmin f f is also L-smooth select $\eta = \frac{1}{2L}$

Today: exploit parallesization

$$\min_{x_1,...,x_m} \sum_{i=1}^m f_i(x_i) \text{ s.t. } x = (x_1,\ldots,x_m) \quad \text{(10)}$$

8.1 Dual ascent

Start with:

$$\min_{x \in \mathbb{R}^n} f_i(x) \text{ s.t. } Ax = b \tag{11}$$

Derive dual:

$$\mathcal{L}(x,\lambda) = f(x) + \lambda^{\mathsf{T}}(Ax - b)$$

$$\inf_{x \in \mathbb{R}^n} \mathcal{L}(x, \lambda) = -\sup_{x \in \mathbb{R}^n} \{ (-\lambda^{\mathsf{T}} A) x - f(x) \} - \lambda^{\mathsf{T}} b$$

d(lambda)

fstar

The subgradient is given by:

$$\partial d(\lambda) = A \partial f^{\star}(-A^{\mathsf{T}}\lambda) - b$$

optimizer satisfies... BOX

Two results in dual subgradient ascent

 $\lambda_{k+1} = \lambda_k + T_k(Ax_k - b)$, $x_k \in A$

8.2 Example 1

Starting from (9) and with Ax = 0 s.t. $x_1 - x_2 =$

BLACKBOARD

 $x_2 - x_3 = \dots = x_m - x_1 = 0$

 $x_k \in \mathop{\rm argmin}_{x_1,\dots,x_m \in \mathbb{R}^n} (\sum_{i=1}^m f_i(x)) + \lambda_1(x1-x2) + \lambda_2(x2-x3) + \dots$

$$x_{k_i} \in \operatorname*{argmin}_{\hat{x_i} \in \mathbb{R}^n} \{f_i(\hat{x_i}) - \lambda_{k_{i-1}}^\mathsf{T} \hat{x_i} + \lambda_{k_i}^\mathsf{T} \hat{x_i}\}$$

for $i=2,3,\ldots,m-1$ in parallel $\lambda_{k+1,i} = \lambda_{k,i} + T_k(x_{k_i} - x_{k_{i+1}})$

8.3 Real life examples

Video Quadcopter

Not attached Pendulum

Nonconvex OP

- Trajectory offline computed

 Table tennis - Very flexibel arm Dynamic control of magnetic navigation Balance stick on 4 magnets - Precise control of fields 8.4 Example 2

- Track it with time-variying LQR feedback controller

Video Robotarm

 $f(x =) \sum_{i=1}^{m} f_i(x_i)$ with Ax = b(11) $x = (x_1, \dots, x_n)$ and $A = [A_1, \dots, A_m]$ Dual subgradient becomes

 $x_{k_i} \in \operatorname*{argmin}_{\hat{x_i}} \{f_i(\hat{x_i}) + \lambda_k^{\mathsf{T}} A_i \hat{x_i}\}$ (local minimization)

 $\lambda_{k+1} = \lambda_k + T_k(\sum_{i=1}^m A_i x_{k_i} - b)$ (broadcasting) **Proposition 13.** f convex with closed epigraph,

smooth. From that we conclude $d(\lambda) = -f^{\star}(-A^{\mathsf{T}}\lambda) - \lambda^{\mathsf{T}}$ f μ -strongly convex $\to f^*$ is $1/\mu$ smooth $\to d(\lambda)$ is $\bar{\sigma}(AA^{\mathsf{T}}) 1/\mu$ -smooth

f is μ -strongly convex if and only if f^* is $1/\mu$ -

f is L-smooth $\to f^{\star}$ is 1/L strongly convex $\rightarrow d(\lambda)$ is $\bar{\sigma}(AA^{\mathsf{T}})$ 1/L-smoothly convex Problem $f \mu$ -strongly convex is hardly restricting condition

8.5 ADMM

$$\min_{x \in \mathbb{R}^n} f(x) + \frac{\rho}{2} |Ax - b|^2$$

s.t. Ax = b with $\rho > 0$

$$\lambda_{k+1} = A$$

ADVANTAGE DISADVANTAGE

SOLUTION 8.6 Alternating direction method of multipliers

CONSIDER f,q form augmented objective augmented Lagrangian **ADMM**

$$x_k = \underset{z = n}{\operatorname{argmin}} \mathcal{L}_p(x, z_{k-1}, \lambda_k)$$

 $z_k = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \mathcal{L}_p(x_k, z, \lambda_k)$

$$\lambda_{k+1} = \lambda_k + \rho(Ax_k + Bz_k - c)$$

EXAMPLE Images Low/High rank 8.7 Recitation

8.7.1 Recap

Optimization Problem min f,q Augmented Lagrangian ADMM

$$x_k = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \mathcal{L}_p(x, z_{k-1}, \lambda_k)$$

$$z_k = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \mathcal{L}_p(x_k, z, \lambda_k)$$

$$\lambda_{k+1} = \lambda_k + \rho (Ax_k + Bz_k - c)$$
 Wecan also consider completing the square in the

augmented Lagrangian as

$$\mathcal{L}_p(x,z,\lambda) = f(x) + g(z) + \frac{\rho}{2}|Ax + Bz - c + \frac{\lambda}{\rho}|^2 - \frac{1}{2\rho} \underset{z}{\text{Reformulation:}}$$

and introduce new dual variable $\mu = \frac{\lambda}{a}$ to obtain a scaledversion of ADMM. SYSTEM

 x_k z_k

 ν_{k+1}

Contrained optimization via ADMM

min...

Solve with ADMM:

- 1. Transform
- 2. Apply ADMM

8.7.3 Solving QPs with ADMM

0P

1. Transform to ADMM form: min f,g s.t. A...

2. Apply ADMM

 z_k

 ν_{k+1}

3. Simplify the minimization steps x-minimiztion is again QP with constraints - Lagrangian - KKT $\nabla_x \mathcal{L}(x,\mu) = \cdots = 0 \Leftrightarrow \mathsf{Matrix}$ system

z-minimiztion - since g indicator function ... - ..projection step..

$$z_k = \mathop{\mathrm{prox}}_{\mathbb{R}^n_+}(x_k + \mu_k)$$

9 Distributed optimization with ADMM

Motivation - Slides - Distributed computation - Vanilla vs averaging We start with:

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^m f_i(x)$$

Goal Solve problem such that each term can be handled by its own processor.

$$\min_{x_1,\dots,x_N\in\mathbb{R}^n,z\in\mathbb{Z}^n}\sum_{i=1}^N f_i(x_i)\quad\text{s.t.}\quad x_i=z,\quad i=1$$

and apply ADMM 9.1 Global consensus problem

Solve (12) with ADMM

Step 1: Form augmented Lagrangian $\mathcal{L}_{p}() = SUM$

Step 2: Formulate ADMM

GRAFIK

$$\lambda_i^{k+1} = \lambda_i^k + \rho(x_i^{k+1} - z^{k+1})$$

 $\begin{array}{l} \sum_{i=1}^{N} \lambda_i = \sum_{i=1}^{N} \{\lambda_i^k - \lambda_i^k\} = 0 \\ \text{therefore with } \lambda_i = 0 \text{ for } i = 1, \dots, N \end{array}$ $z^{k+1} = \dots$ this results in...

9.2 Sharing Problem

$$\min_{x_1,\dots,x_N\in\mathbb{R}^n}\sum_{i=1}^N f_i(x_i) + g(\sum_{i=1}^N x_i)$$

Apply ADMM:

$$x_i = z_i, \ i = 1, \dots, N$$

Step 1: Form augmented Lagrangian

$$\mathcal{L}_p(x_1,\dots,x_N,z_1,\dots,z_{\lambda},x_1,\dots,\lambda_N) = \sum_{i=1}^N f_i(x_i) + g(\sum_{i=1}^N z_i) + \rho \dots \min_{x \in \mathbb{R}^n} \sum_{i \in V} f_i(x)$$

Step 2: Formulate ADMM dynamics

$$x_i^{k+1}$$

$$z_i^{k+1} \tag{14}$$

$$\lambda_i^{k+1}$$
 (15)

Simplify (14) with $a_i = ...$

stationary contidions for (14) $O \in$

...greatly simplified by introducing averages \bar{z}^{k+1} , \bar{a} Step 1: Form augmented Lagrangian

Then we arrive at N stationary contidions...

NR

0 \bar{z}^{k+1}

 z^{k+1}

 λ_i^{k+1} all λ_i^{k+1} equal

FINAL DYNAMICS

$$x_i^{k+1}$$

$$\bar{z}^{k+1}$$

$$\lambda^{k+1}$$

Priciples: (not shown)

9.2.1 Dual of Sharing Problem

derivations (not shown)

9.3 Optimization over Graphs

q = (V, E) undirected graph with vertices V and edges ESolve

$$(x_i) + g(\sum_{i=1}^N z_i) + \rho \dots \min_{x \in \mathbb{R}^n} \sum_{i \in V} f_i(x)$$

where each vertex has local data and we would like to fit a model with shared parameters

(13) GRAFIK

Idea Reformulation with constraints

$$\min_{x_1,\dots,x_{|V|},z_1,\dots,z_{|V|}} \sum_{i\in V}^N f_i(x_i) \text{ s.t. } x_i = z_{ij}, x_j = z_{ij} \quad \forall (i,\text{PHe}(\underline{\textbf{p}})) = \begin{cases} u^2 & \text{if } |u| \geq M \\ 2Mu - M^2 & \text{if } |u| > M \end{cases}$$

 $\mathcal{L}_n() = SUM + SUMSUM$

Step 2: Formulate ADMM

DERIVATIONS

FINAL RESULTS

$$x_i^{k+1} \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} f_i(x_i) + SUM$$

9.4 Recitation

OUIZ Oestions

2023 1b) conjugate function

2020 2a) Hyperplane with dual-minimization

10 Signal denoising and regression

Linear equation $y = Ax, y \in \mathbb{R}^n, x \in \mathbb{R}^m, A \in$

- classic setting $m \gg n$
- modern setting $m \ll n$

10.1 Classic setting with outliers

$$\min_{x \in \mathbb{R}^n} |Ax - y|_2^2$$

uses l_2 -norm to penaliize large residuals **GRAFIK**

but as a result, outliers have a lot of weight Grafik

Weight of outliers can be reduced with l_1 -norm

$$\min_{x \in \mathbb{R}^n} |Ax - y|_2^2 \tag{16}$$

Rewrite (16) as convex program

min,sum,zi s.t.

AGAIN REformulate

-> linear program

For best of both worlds:

resulting OP: min,sum,fub,()

10.2 Modern setting

- Ax = y has infinetly many solutions
- Which one is the best?
- add regulizer

Tikhonov regulizer: $\min_{x \in \mathbb{R}^n} |Ax - y|_2^2 + \lambda |x|_2^2$ Least Absolute Shrinkage and Selecttion Operator:

 $\min_{x \in \mathbb{R}^n} |Ax - y|_2^2 + \lambda |x|_1$

is equalent to

 $\min_{x \in \mathbb{R}^n} |Ax - y|_2^2 \text{ s.t.} |x|_1 \le c$

10.2.1 **Example**

Audio signal, $f_1 = 102 \, \text{Hz}$, $f_2 = 305 \, \text{Hz}$

$$\tilde{x}(t) = \cos(2\pi f_1 t) + \cos(2\pi f_2 t) + n(t)$$
 (17)

Signal evaluated at 100 randomly selected points $t_i \in [0, 1]$

MATLAB script -> how choose λ ?

Projection on l_1 Ball Approach to solve $\min_{x \in \mathbb{R}^n} \frac{1}{2} |Ax - y|_2^2$ s.t. $|x|_1 \le c$ with projection:

$$\underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \frac{1}{2} |x-y|_2^2$$

results in Lagrange function:

$$\mathcal{L}(x,\lambda) = \frac{1}{2}|x - y|_2^2 - \lambda(c - |x|_1)$$
$$= (\sum_{i=1}^n (x_i - y_i)^2 + \lambda|x_i|) - \lambda c, \lambda \ge 0$$

where we set $l_i(x,\lambda) = \frac{1}{2}(x_i - y_i)^2 + \lambda |x_i|$ Figure of $\partial_x l_i$ with respect to x_i IMAGE Result:

$$\begin{aligned} x_i &= \{ \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \mathcal{L}(x,\lambda) \}_i &= \{t1\} \\ &= \{t1\} \\ &= \{t1\} \end{aligned}$$

-> how choose λ ?

if ... then ..

Example 3 Image denoising

Example 4 Face recognition

10.3 Recitation

11 Classification

 $\tilde{y}(\tilde{x})$ takes values in discrete categories

Setup: dataset of $(\tilde{x}_i, \tilde{y}_i)$, i = 1, ..., N with

 $\tilde{x}_i \in \mathbb{R}^n, \ \tilde{y}_i \in \{1, 2, ..., K\}$ Naive Approach

Classify with

 $f^{\mathsf{naive}}(\tilde{x}) =$

11.1 Recitation

12 Adaptive decision-making

12.1 Recitation