CSC363 Tutorial #2

Primitive Recursive Functions

► What's a "function"?

- ► What's a "function"?
- ► What are the primitive recursive functions?

- ▶ What's a "function"?
- ▶ What are the primitive recursive functions?
- ▶ How can I use composition and primitive recursion?

- ► What's a "function"?
- ▶ What are the primitive recursive functions?
- ▶ How can I use composition and primitive recursion?
- ► Could I get a hint for A1 Q3?

- ► What's a "function"?
- ▶ What are the primitive recursive functions?
- How can I use composition and primitive recursion?
- Could I get a hint for A1 Q3? No, but you may cite these slides for your homework.¹

¹Citation: Paul "sjorv" Zhang. "CSC363 Tutorial #2. Primitive Recursive Functions. Five the primitive recursive scheme among us vr.". Chungus Publishing, 2023.

In the previous tutorial (Turing machines), functions were from Σ^* to Σ^* .

In the previous tutorial (Turing machines), functions were from Σ^* to Σ^* . computer science!!!!!

In this tutorial, all functions are from \mathbb{N} to \mathbb{N} (or from \mathbb{N}^k to \mathbb{N}).

In the previous tutorial (Turing machines), functions were from Σ^* to Σ^* . computer science!!!!!

In this tutorial, all functions are from \mathbb{N} to \mathbb{N} (or from \mathbb{N}^k to \mathbb{N}). (\mathbb{N} includes 0 in this course.)

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

1. The following initial functions are in PRIM:

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

- 1. The following initial functions are in PRIM:
 - ▶ The zero function $Z : \mathbb{N} \to \mathbb{N}$, Z(n) = 0.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

- 1. The following initial functions are in PRIM:
 - ▶ The zero function $Z : \mathbb{N} \to \mathbb{N}$, Z(n) = 0.
 - ▶ The successor function $S : \mathbb{N} \to \mathbb{N}$, S(n) = n + 1.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

- 1. The following initial functions are in PRIM:
 - ▶ The zero function $Z : \mathbb{N} \to \mathbb{N}$, Z(n) = 0.
 - ▶ The successor function $S : \mathbb{N} \to \mathbb{N}$, S(n) = n + 1.
 - For each $k \in \mathbb{N}$ and i = 1, ..., k, the projection function $C_i^k : \mathbb{N}^k \to \mathbb{N}$, $C_i^k(n_1, n_2, ..., n_k) = n_i$.

²In other words, $\overline{C_i^k}$ takes in k arguments, and returns the ith one.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

2. The following structural recursion rules:

 $^{^{3}\}vec{m}\in\mathbb{N}^{\ell}$.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

- 2. The following structural recursion rules:
 - Composition: If $g: \mathbb{N}^k \to \mathbb{N}$ and $h_1, h_2, \dots, h_k: \mathbb{N}^\ell \to \mathbb{N}$ are in PRIM, then $f: \mathbb{N}^\ell \to \mathbb{N}$ given by³

$$f(\vec{m}) = g(h_1(\vec{m}), \ldots, h_k(\vec{m}))$$

is primitive recursive.

 $^{^{3}\}vec{m}\in\mathbb{N}^{\ell}$.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

- 2. The following structural recursion rules:
 - Composition: If $g: \mathbb{N}^k \to \mathbb{N}$ and $h_1, h_2, \dots, h_k: \mathbb{N}^\ell \to \mathbb{N}$ are in PRIM, then $f: \mathbb{N}^\ell \to \mathbb{N}$ given by³

$$f(\vec{m}) = g(h_1(\vec{m}), \ldots, h_k(\vec{m}))$$

is primitive recursive. In other words, you can compose primitive recursive functions.

 $^{^{3}\}vec{m}\in\mathbb{N}^{\ell}$.

The primitive recursive functions (PRIM) are a collection of functions $f: \mathbb{N}^k \to \mathbb{N}$ defined using structural recursion.

Rules:

- 2. The following structural recursion rules:
 - ▶ Composition: If $g: \mathbb{N}^k \to \mathbb{N}$ and $h_1, h_2, \dots, h_k: \mathbb{N}^\ell \to \mathbb{N}$ are in PRIM, then $f: \mathbb{N}^\ell \to \mathbb{N}$ given by³

$$f(\vec{m}) = g(h_1(\vec{m}), \ldots, h_k(\vec{m}))$$

is primitive recursive. In other words, you can compose primitive recursive functions.

Primitive Recursion: If $g: \mathbb{N}^{\ell} \to \mathbb{N}$ and $h: \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f: \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m},0) = g(\vec{m})$$

 $f(\vec{m},n+1) = h(\vec{m},n,f(\vec{m},n))$

is primitive recursive.

 $^{^{3}\}vec{m}\in\mathbb{N}^{\ell}$.

Primitive Recursion

Primitive Recursion: If $g: \mathbb{N}^\ell \to \mathbb{N}$ and $h: \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f: \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m},0) = g(\vec{m})$$

 $f(\vec{m},n+1) = h(\vec{m},n,f(\vec{m},n))$

is primitive recursive.

Primitive Recursion

Primitive Recursion: If $g: \mathbb{N}^{\ell} \to \mathbb{N}$ and $h: \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f: \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m}, 0) = g(\vec{m})$$

 $f(\vec{m}, n + 1) = h(\vec{m}, n, f(\vec{m}, n))$

is primitive recursive.

In other words, you can use for-loops.

Primitive Recursion

Primitive Recursion: If $g: \mathbb{N}^\ell \to \mathbb{N}$ and $h: \mathbb{N}^{\ell+2} \to \mathbb{N}$ are in PRIM, then $f: \mathbb{N}^{\ell+1} \to \mathbb{N}$ given by

$$f(\vec{m},0) = g(\vec{m})$$

 $f(\vec{m},n+1) = h(\vec{m},n,f(\vec{m},n))$

is primitive recursive.

In other words, you can use for-loops.

```
f(m, n):
    curr = g(m)
    for i in 1..n:
        curr = h(m, i-1, curr)
    return curr
```

This is very powerful!

Addition is in PRIM

The function $+: \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m + n is in PRIM, due to primitive recursion:

```
+(m, n):
    curr = C^1_1(m)
    for i in 1..n:
        curr = S(C^3_3(m, i-1, curr))
    return curr
```

 $^{^4}$ Unfortunately, we have to put some PRIM function in place of g, according to template...

Addition is in PRIM

The function $+: \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m + n is in PRIM, due to primitive recursion:

```
+(m, n):
    curr = C^1_1(m)
    for i in 1..n:
        curr = S(C^3_3(m, i-1, curr))
    return curr
```

Explanation:

- $ightharpoonup C_1^1$ is the identity function: $C_1^1(m) = m$. ⁴
- curr = S(C^3_3(m, i-1, curr)) adds 1 to curr:

$$C_3^3(m, i-1, \text{curr}) = \text{curr}$$

$$S(\text{curr}) = \text{curr} + 1$$

 $^{^4}$ Unfortunately, we have to put some PRIM function in place of g, according to template...

Addition is in PRIM

The function $+: \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m + n is in PRIM, due to primitive recursion:

```
+(m, n):
    curr = C^1_1(m)
    for i in 1..n:
        curr = S(C^3_3(m, i-1, curr))
    return curr
```

Formally,

$$+(m,0) = C_1^1(\vec{m})$$

 $+(m,n+1) = S(C_3^3(m,n,+(m,n))).$

Multiplication is in PRIM

Your turn! Show that the function $f: \mathbb{N}^2 \to \mathbb{N}$, $f(m, n) = m \cdot n$ is in PRIM.

Multiplication is in PRIM

Your turn! Show that the function $f: \mathbb{N}^2 \to \mathbb{N}$, $f(m, n) = m \cdot n$ is in PRIM.

Here's the template for primitive recursion again:

```
f(m, n):
    curr = g(m)
    for i in 1..n:
        curr = h(m, i-1, curr)
    return curr
```

Hint: You know that the addition function $+: \mathbb{N}^2 \to \mathbb{N}, +(m,n) = m+n$ is in PRIM now.

If you're finished, try showing $f: \mathbb{N}^2 \to \mathbb{N}$, $f(m,n) = m^n$ is in PRIM too.

Show that $f : \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Show that $f: \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Unfortunately, the above function is not $\mathbb{N} \to \mathbb{N}$. You can't output negative numbers!

Show that $f: \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Unfortunately, the above function is not $\mathbb{N} \to \mathbb{N}$. You can't output negative numbers!

Try this instead. Task: Show that the "try to subtract 1" function

$$\delta: \mathbb{N} \to \mathbb{N}, \delta(m) = egin{cases} m-1 & m>0 \ 0 & m=0 \end{cases}$$

is in PRIM.

Show that $f: \mathbb{N}^2 \to \mathbb{N}$, f(m, n) = m - n is in PRIM.

Unfortunately, the above function is not $\mathbb{N} \to \mathbb{N}$. You can't output negative numbers!

Try this instead. Task: Show that the "try to subtract 1" function

$$\delta: \mathbb{N} o \mathbb{N}, \delta(m) = egin{cases} m-1 & m>0 \ 0 & m=0 \end{cases}$$

is in PRIM.

Hint 1: Try to prove $f: \mathbb{N}^2 \to \mathbb{N}$, $f(m, n) = \delta(n)$ is in PRIM.

```
f(m, n):
    curr = g(m)
    for i in 1..n:
        curr = h(m, i-1, curr)
    return curr
```

Hint 2: In the above, h won't need the value of m or curr.

Task: Show that the "try to subtract" function

$$\dot{-}: \mathbb{N}^2 \to \mathbb{N}, \dot{-}(m,n) = \begin{cases} m-n & m \geq n \\ 0 & m < n \end{cases}$$

is in PRIM.

Task: Show that the "try to subtract" function

$$\dot{-}: \mathbb{N}^2 \to \mathbb{N}, \dot{-}(m,n) = \begin{cases} m-n & m \geq n \\ 0 & m < n \end{cases}$$

is in PRIM.

```
f(m, n):
    curr = g(m)
    for i in 1..n:
        curr = h(m, i-1, curr)
    return curr
```

Hint: Use the "try to subtract 1" function δ .

Task: Show that the "is greater than zero?" function

$$\operatorname{sg}: \mathbb{N} \to \mathbb{N}, \operatorname{sg}(n) = egin{cases} 0 & n = 0 \\ 1 & n > 0 \end{cases}$$

is in PRIM.

```
f(m, n):
    curr = g(m)
    for i in 1..n:
        curr = h(m, i-1, curr)
    return curr
```

More PRIM functions!

Task: Show that the "is equal than zero?" function

$$\overline{\operatorname{sg}}: \mathbb{N} \to \mathbb{N}, \overline{\operatorname{sg}}(n) = \begin{cases} 1 & n = 0 \\ 0 & n > 0 \end{cases}$$

is in PRIM.

Hint: You could do this using primitive recursion, but a shorter solution would be to use sg .

- **▶** +,

- **▶** +
- **▶** ·,
- Exponentiation,

- **▶** +
- **.**
- Exponentiation,
- $ightharpoonup \delta$

- **▶** +
- **▶** •
- Exponentiation,
- \triangleright δ ,

- **▶** +
- **▶** •
- Exponentiation,
- \triangleright δ
- **▶** .
- ightharpoonup sg, \overline{sg} .

- **▶** +
- **▶** •
- Exponentiation,
- \triangleright δ
- **▶** .
- ightharpoonup sg, \overline{sg} .

We've shown that the following functions are in PRIM:

- **▶** +
- **.**
- Exponentiation,
- \triangleright δ ,
- **▶** ∴
- ightharpoonup sg, $\overline{\text{sg}}$.

Note that sg, \overline{sg} allow you to use "if-statements".

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
   if m = 0:
     return n + 1
   if n = 0:
     return Ackermann(m - 1, 1)
   return Ackermann(m-1, Ackermann(m, n-1))
```

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
   if m = 0:
     return n + 1
   if n = 0:
     return Ackermann(m - 1, 1)
   return Ackermann(m-1, Ackermann(m, n-1))
```

m n	0	1	2	3	4	n
0	1	2	3	4	5	n+1
1	2	3	4	5	6	n+2=2+(n+3)-3
2	3	5	7	9	11	$2n+3=2\cdot(n+3)-3$
3	5	13	29	61	125	$2^{(n+3)} - 3$
4	13 $= 2^{2^{2}} - 3$ $= 2 \uparrow \uparrow 3 - 3$	65533 $= 2^{2^{2^2}} - 3$ $= 2 \uparrow \uparrow 4 - 3$	$2^{65536} - 3$ $= 2^{2^{2^{2^{3}}}} - 3$ $= 2 \uparrow \uparrow 5 - 3$	$\begin{aligned} 2^{2^{655395}} - 3 \\ &= 2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{2^{3^{2}}}}}}}}}}$	$\begin{array}{l} 2^{2^{2^{60009}}} - 3 \\ \\ = 2^{2^{2^{2^{2^{2^{2}}}}}} - 3 \\ \\ = 2 \uparrow \uparrow 7 - 3 \end{array}$	$\underbrace{\frac{2^{2^{n+3}}}_{n+3}}^{2} - 3$ $= 2 \uparrow \uparrow (n+3) - 3$
	65533 $= 2 \uparrow \uparrow (2 \uparrow \uparrow 2) - 3$ $= 2 \uparrow \uparrow \uparrow 3 - 3$	$2\uparrow\uparrow\uparrow 4-3$	$2\uparrow\uparrow\uparrow 5-3$	$2\uparrow\uparrow\uparrow 6-3$	2 ↑↑↑ 7 − 3	$2\uparrow\uparrow\uparrow(n+3)-3$
6	$2\uparrow\uparrow\uparrow\uparrow$ $3-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow 4-3$	$2\uparrow\uparrow\uparrow\uparrow 5-3$	$2\uparrow\uparrow\uparrow\uparrow 6-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow7-3$	$2\uparrow\uparrow\uparrow\uparrow\uparrow(n+3)-3$
m	(2 ightarrow3 ightarrow(m-2))-3	(2 ightarrow 4 ightarrow (m-2)) - 3	(2 ightarrow 5 ightarrow (m-2)) - 3	(2 ightarrow 6 ightarrow (m-2))-3	(2 ightarrow7 ightarrow(m-2))-3	(2 ightarrow(n+3) ightarrow(m-2))-3

It grows too quickly to be captured using for-loops.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
   if m = 0:
     return n + 1
   if n = 0:
     return Ackermann(m - 1, 1)
   return Ackermann(m-1, Ackermann(m, n-1))
```

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
   if m = 0:
     return n + 1
   if n = 0:
     return Ackermann(m - 1, 1)
   return Ackermann(m-1, Ackermann(m, n-1))
```

Proof (hard!): show that the set of functions

$$\mathcal{A} = \{f : \exists t \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathbb{N}, f(x_1, \dots, x_n) < A(t, \max_i x_i)\}$$

contains all PRIM functions, via structural induction.

Nope. Some functions, such as the Ackermann Function, are not in PRIM unfortunately.

```
Ackermann(m, n):
   if m = 0:
     return n + 1
   if n = 0:
     return Ackermann(m - 1, 1)
   return Ackermann(m-1, Ackermann(m, n-1))
```

Proof (hard!): show that the set of functions

$$\mathcal{A} = \{f : \exists t \in \mathbb{N}, \forall x_1, \dots, x_n \in \mathbb{N}, f(x_1, \dots, x_n) < A(t, \max_i x_i)\}$$

contains all PRIM functions, via structural induction. This shows that A(m, n) grows strictly faster than any PRIM function, and hence cannot be PRIM itself.

⁵In other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.

Nope.

⁵In other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.

Nope. Some other functions, such as the halting problem, are not even computable! 5

⁵In other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.

Nope. Some other functions, such as the halting problem, are not even computable! 5

To avoid spoiling content, I am legally required to not speak any further on the halting problem.

⁵In other words, you can't write a Turing machine (or equivalently a Python program) to compute the halting problem.