Математическая логика *КТ ИТМО, осень 2025 года*

Что такое правильное рассуждение?

- ▶ Органон, Аристотель: 384-322 гг. до н.э.
- ▶ Средневековье («фигуры», терминология).
- Например, категорический силлогизм:

Каждый человек смертен Сократ есть человек Сократ смертен

 Это не формальная логика — сделать неформальный текст на естественном языке понятным.

Пример

(Приводится по учебнику Ивлева Ю.В. «Логика», 2006 год) Определите состав, фигуру, модус силлогизма и проверьте его.

Некоторые учащиеся являются троечниками. Все студенты — учащиеся. Следовательно, некоторые студенты — троечники.

Математический анализ и его формализация

Вейерштрасс — вещественные числа

- Ньютон, Лейбниц неформальная идея (1664+).
 (Критика: Джордж Беркли. Аналитик, или Рассуждение, адресованное неверующему математику. Опыт новой теории зрения)
 ▶ Коши последовательности вместо бесконечно-малых, пределы
- ▶ Кантор теория множеств (1875), формализующая вещественные числа.
- ▶ Парадокс Рассела (1901). «Никто не изгонит нас из рая, который основал Кантор» (Давид Гильберт).

8 [8] [0,...3 [x/x²>0] —

Tex u TOLLERO TEX

► На некотором острове живёт брадобрей, который бреет всеж, кто не бреется сам. Бреется ли сам брадобрей?

- ► На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

то что можно сказать про

$$X \in X$$

▶ Пусть $X \in X$. Тогда $X : X \notin X$

- ▶ На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ Пусть $X \in X$. Тогда $X : X \notin X$
 - lacktriangle Пусть X
 otin X . Тогда X должен принадлежать X

- ► На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ Пусть $X \in X$. Тогда $X : X \notin X$
 - ightharpoonup Пусть X
 otin X . Тогда X должен принадлежать X
- ightharpoonup Не совсем парадокс: откуда мы знаем, что X существует?

- ► На некотором острове живёт брадобрей, который бреет всех, кто не бреется сам. Бреется ли сам брадобрей?
- Если

$$X = \{x \mid x \notin x\}$$

$$X \in X$$

- ▶ Пусть $X \in X$. Тогда $X : X \notin X$
 - ightharpoonup Пусть $X \notin X$. Тогда X должен принадлежать X
- Не совсем парадокс: откуда мы знаем, что X существует? Не совсем разрешение парадокса: а откуда мы знаем, что вещественные числа существуют?

Программа Гильберта

- Программа Гильберта: полностью формализовать математику, доказать непротиворечивость: Neubegründung der Mathematik: Erste Mitteilung", Abhandlungen aus dem Seminar der Hamburgischen Universität, 1: 157–177. Series of talks given at the University of Hamburg, July 25–27, 1921
 - формализация всей математики;
 - доказательство полноты формализации (все факты могут быть доказаны в формализации);
 - непротиворечивость (невозможно вывести противоречие);
 - консервативность (любое доказательство о реальных объектах может быть сформулировано без использования идеальных объектов);
 - разрешимость (существует алгоритм, проверяющий истинность любого математического факта).
- Теоремы Гёделя о неполноте формальной арифметики (1930) не дали реализовать её.

- Ucencaenne Generajulanui (x+2x²)=1+4x < L, M, D> ROXLON. KON 30K.

Rpegnethin ASHK - 25MK U.B.

(UC7. BGICK)

Высказывание — это строка, сформированная по следующим правилам.

▶ Атомарное высказывание — пропозициональная переменная: A, B', C_{1234}

- lacktriangle Атомарное высказывание пропозициональная переменная: A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - ▶ Отрицание: (¬α)

- ightharpoonup Атомарное высказывание пропозициональная переменная: A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: (¬α)
 - ightharpoonup Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$

- ▶ Атомарное высказывание пропозициональная переменная: A, B', C_{1234}
- ightharpoonup Составное высказывание: если lpha и eta высказывания, то высказываниями являются:

 - Отрицание: (¬ α)
 Конъюнкция: ($\alpha \& \beta$) или ($\alpha \land \beta$)
 - ightharpoonup Дизъюнкция: $(\alpha \lor \beta)$

- ightharpoonup Атомарное высказывание пропозициональная переменная: A, B', C_{1234}
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - **▶** Отрицание: $(\neg \alpha)$
 - ► Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - ightharpoonup Дизъюнкция: $(\alpha \lor \beta)$
 - ightharpoonup Импликация: (lpha
 ightharpoonup eta) или $(lpha \supset eta)$

Высказывание — это строка, сформированная по следующим правилам.

- ▶ Атомарное высказывание пропозициональная переменная: A, B', C₁₂₃₄
- lacktriangle Составное высказывание: если lpha и eta высказывания, то высказываниями являются:
 - ightharpoonup Отрицание: $(\neg lpha)$
 - ► Конъюнкция: $(\alpha \& \beta)$ или $(\alpha \land \beta)$
 - ightharpoonup Дизъюнкция: $(\alpha \lor \beta)$
 - ightharpoonup Импликация: $(\alpha o \beta)$ или $(\alpha o \beta)$

Corpayenue-Meta Dzbir B npegnethom Bee Chodry

Пример:

$$(((A \rightarrow B) \lor (B \rightarrow C)) \lor (C \rightarrow A))$$

Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Если lpha — высказывание, то $(\neg lpha)$ — высказывание

(7C) (7D) (7E)

Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Если α — высказывание, то $(\neg \alpha)$ — высказывание

Метапеременные для пропозициональных переменных:

$$X, Y_n, Z'$$

Метапеременные:

$$\alpha, \beta, \gamma, \dots$$

Если α — высказывание, то $(\neg \alpha)$ — высказывание

Метапеременные для пропозициональных переменных:

$$X, Y_n, Z'$$

Пусть дана пропозициональная переменная X, тогда $(X \& (\neg X))$ — высказывание

Способы упростить запись

Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация

Способы упростить запись

- Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация
- Ассоциативность: левая для конъюнкции и дизъюнкции, правая для импликации

Способы упростить запись

- Приоритет связок: отрицание, конъюнкция, дизъюнкция, импликация
- Ассоциативность: левая для конъюнкции и дизъюнкции, правая для импликации

Пример:

$$((((A
ightarrow B) \& Q) \lor (((\neg B)
ightarrow B)
ightarrow C)) \lor (C
ightarrow (C
ightarrow A))) -$$
 Hzbik

можем записать так:

$$\left(\left(A \to B \right) \& Q \lor \left(\left(B \to B \right) \to C \right) \lor \left(C \to C \to A \right) \right)$$

Давайте попробуем оценить высказывание (A o B) o (B o A).

Давайте попробуем оценить высказывание (A o B) o (B o A).

Если из A следует B, то из B следует A.

Давайте попробуем оценить высказывание (A o B) o (B o A).

Если из A следует B, то из B следует A.

Наверное, в общем случае это неверно. Например, пусть:

 $1. \ A$ означает «у меня есть кот»;

Давайте попробуем оценить высказывание (A o B) o (B o A).

Если из A следует B, то из B следует A.

Наверное, в общем случае это неверно. Например, пусть:

- $1. \ A$ означает «у меня есть кот»;
- 2. B означает «у меня есть животное».

Давайте попробуем оценить высказывание (A o B) o (B o A).

Если из A следует B, то из B следует A.

Наверное, в общем случае это неверно. Например, пусть:

- $1. \ A$ означает «у меня есть кот»;
- 2. B означает «у меня есть животное».

Тогда:

1.~~A o B выполнена всегда;

Давайте попробуем оценить высказывание (A o B) o (B o A).

Если из A следует B, то из B следует A.

Наверное, в общем случае это неверно. Например, пусть:

- $1. \ A$ означает «у меня есть кот»;
- 2. В означает «у меня есть животное».

Тогда:

- $1. \ A o B$ выполнена всегда;
- 2. B o A может не выполняться: скажем, у меня есть жираф, но нет кота.

Высказывание (A o B) o (B o A) ложно, если, например:

- ▶ A «у меня есть кот»;
- ▶ В «у меня есть животное»;
- у меня есть жираф, но нет кота.

Высказывание (A o B) o (B o A) ложно, если, например:

- ▶ A «у меня есть кот»;
- ▶ В «у меня есть животное»;
- у меня есть жираф, но нет кота.

Иначе: A ложно, B истинно, тогда высказывание ложно.

Высказывание (A o B) o (B o A) ложно, если, например:

- ▶ A «у меня есть кот»;
- ▶ В «у меня есть животное»;
- ▶ у меня есть жираф, но нет кота.

Иначе: A ложно, B истинно, тогда высказывание ложно.

Чтобы задать оценку высказываний:

lacktriangle Зафиксируем множество истинностных значений $V=\{\mathcal{U},\mathcal{J}\}$

Высказывание (A o B) o (B o A) ложно, если, например:

- ▶ A «у меня есть кот»;
- ▶ В «у меня есть животное»;
- у меня есть жираф, но нет кота.

Иначе: A ложно, B истинно, тогда высказывание ложно.

Чтобы задать оценку высказываний:

- lacktriangle Зафиксируем множество истинностных значений $V=\{\mathcal{U},\mathcal{J}\}$
- Определим функцию оценки переменных (интерпретацию) f : P
 V
 (P множество пропозициональных переменных).

Высказывание (A o B) o (B o A) ложно, если, например:

- ▶ A «у меня есть кот»;
- ▶ В «у меня есть животное»;
- у меня есть жираф, но нет кота.

Иначе: A ложно, B истинно, тогда высказывание ложно.

Чтобы задать оценку высказываний:

- lacktriangle Зафиксируем множество истинностных значений $V=\{\mathcal{U},\mathcal{J}\}$

Если
$$\llbracket A \rrbracket = \mathcal{I}$$
 и $\llbracket B \rrbracket = \mathcal{U}$, то $\underline{\llbracket (A o B) o (B o A) \rrbracket} = \mathcal{I}$

Указание функции оценки (метаязык)

▶ Синтаксис для указания функции оценки переменных

$$\llbracket \alpha \rrbracket^{X_1:=v_1, \dots, X_n:=v_n}$$

▶ Это всё метаязык — потому полагаемся на здравый смысл

$$[A \& B \& (C \to C)]^{A:=V, B:=[\neg A]}$$

Переменные

$$[\![X]\!] = f(X) \qquad [\![X]\!]^{X:=a} = a$$

$$||X||^{A \cdot -a} = 1$$

Переменные

$$[\![X]\!] = f(X)$$
 $[\![X]\!]^{X:=a} = a$

Отрицание

$$\llbracket \neg \alpha \rrbracket = \left\{ egin{array}{ll} \mathcal{J}, & \textit{если } \llbracket \alpha \rrbracket = \mathcal{U} \\ \mathcal{U}, & \textit{иначе} \end{array} \right.$$

Переменные

$$[X] = f(X)$$
 $[X]^{X:=a} = a$

Отрицание

$$\llbracket \neg \alpha
\rrbracket = \left\{ egin{array}{ll} \mathcal{I}, & \textit{если } \llbracket \alpha
\rrbracket = \mathcal{U} \ \mathcal{U}, & \textit{иначе} \end{array}
ight.$$

Конъюнкция

$$\llbracket \alpha \& \beta \rrbracket = \left\{ egin{array}{ll} \mathcal{U}, & \mathit{если} \ \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \mathcal{U} \\ \mathcal{J}, & \mathit{иначe} \end{array} \right.$$

Переменные

$$[X] = f(X)$$
 $[X]^{X:=a} = a$

Отрицание

$$\llbracket \neg \alpha
\rrbracket = \left\{ egin{array}{ll} ec{\mathcal{J}}, & \mathit{если} \ \llbracket lpha
\rrbracket = \mathcal{U} \ \mathcal{U}, & \mathit{иначе} \end{array}
ight.$$

Конъюнкция

$$\llbracket \alpha \& \beta \rrbracket = \left\{ egin{array}{ll} \mathcal{U}, & \mathit{если} \ \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = \mathcal{U} \\ \mathcal{J}, & \mathit{иначе} \end{array} \right.$$

Дизъюнкция

$$\llbracket \alpha \lor \beta \rrbracket = \left\{ egin{array}{ll} arPi, & \mathit{если} \ \llbracket \alpha \rrbracket = \llbracket \beta \rrbracket = arPi \end{matrix} \right.$$
 И, иначе

$$[X] = f(X) \qquad [X]^{X:=a} = a$$

$$\llbracket
eg lpha
rbracket = \left\{egin{array}{ll} alpha, & ext{если } \llbracket lpha
rbracket = arRayket \ arRayket & ext{иначе} \end{array}
ight.$$

$$\llbracket \alpha \& \beta
rbracket = \left\{egin{array}{ll} \mathcal{U}, & \mathit{если} \ \llbracket \alpha
rbracket = \llbracket \beta
rbracket = \mathcal{U} \\ \mathcal{J}, & \mathit{иначе} \end{array}\right.$$

Дизъюнкция
$$\llbracket lpha ee eta
Vert = \left\{egin{array}{ll} ec{J}, & \mathit{если} \ \llbracket lpha
Vert
Vert = \llbracket eta
Vert = \mathcal{J}, \\ ec{J}, & \mathit{иначе} \end{array}
ight.$$

Импликация

$$\llbracket \alpha o \beta
rbracket = \left\{ egin{array}{ll} alphi, & \mbox{если } \llbracket lpha
rbracket = arphi, & \llbracket eta
rbracket = arphi \ arphi, & \mbox{иначе} \end{array}
ight.$$

Тавтологии формула (синопим выск.)

Если α истинна при любой оценке переменных, то она *общезначима* (является *тавтологией*):

 $\models \alpha$

Тавтологии

Если α истинна при любой оценке переменных, то она *общезначима* (является *тавтологией*):

$$\models \alpha$$

Выражение $A \to A$ — тавтология. Переберём все возможные значения единственной переменной A:

$$[A \to A]^{A:=\mathcal{U}} = \mathcal{U}$$
$$[A \to A]^{A:=\mathcal{I}} = \mathcal{U}$$

Тавтологии

Если α истинна при любой оценке переменных, то она *общезначима* (является *тавтологией*):

$$\models \alpha$$

Выражение $A \to A$ — тавтология. Переберём все возможные значения единственной переменной A:

$$[A \to A]^{A:=N} = N$$

$$[A \to A]^{A:=\Pi} = N$$

$$(A \to A)$$

Выражение A o
eg A тавтологией не является:

$$[A \rightarrow \neg A]^{A:=N} = \Pi$$

$$A:= A \longrightarrow A \quad \text{for } A:= A \longrightarrow A \quad \text{for } A$$

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n\models\alpha$$

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n\models\alpha$$

Истинна при какой-нибудь оценке — выполнима.

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1, \ldots, \gamma_n \models \alpha$$

- Истинна при какой-нибудь оценке выполнима.
- ▶ Не истинна ни при какой оценке невыполнима.

Если α истинна при любой оценке переменных, при которой истинны высказывания $\gamma_1, \ldots, \gamma_n$, будем говорить, что α — *следствие* этих высказываний:

$$\gamma_1,\ldots,\gamma_n \models \alpha$$

- Истинна при какой-нибудь оценке выполнима.
- ▶ Не истинна ни при какой оценке невыполнима.
- ▶ Не истинна при какой-нибудь оценке опровержима.

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием— вместо пропозициональных переменных можно указывать маленькие греческие буквы.

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием— вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием — вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Пример

$$\blacktriangleright (A \to \alpha) \lor (\beta \to B)$$

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием — вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Пример

- $\blacktriangleright (A \to \alpha) \lor (\beta \to B)$
- $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$

Определение (схема высказывания)

Строка, строящаяся по правилам для построения высказываний, с одним отличием — вместо пропозициональных переменных можно указывать маленькие греческие буквы.

По-простому: схемы высказываний — высказывания с метапеременными

Пример

- $\blacktriangleright (A \to \alpha) \lor (\beta \to B)$
- $(\alpha \to \beta) \to (\neg \beta \to \neg \alpha)$
- ► A ∨ B & A

Схемы высказываний: определение

Определение

Будем говорить, что высказывание σ строится (иначе: задаётся) по схеме Ш, если существует такая замена метапеременных $u_1, u_2, ..., u_n$ в схеме Ш на какие-либо выражения $\varphi_1, \varphi_2, ..., \varphi_n$, что после её проведения получается высказывание σ :

$$\sigma = \coprod [\mathsf{u}_1 := \varphi_1][\mathsf{u}_2 := \varphi_2]...[\mathsf{u}_n := \varphi_n]$$

Схемы высказываний: примеры

Схема

$$A \to (\alpha) \lor B \lor (\alpha)$$

задаёт, к примеру, следующие высказывания:

$$lackbox{A} o X ee B ee X$$
, при $lpha := X$.

$$igwedge A o X ee B ee X$$
, при $lpha := X$. $igwedge A o (M o N) ee B ee (M o N)$, при $lpha := (M o N)$

Схемы высказываний: примеры

Схема

$$A \rightarrow \alpha \lor B \lor \alpha$$

задаёт, к примеру, следующие высказывания:

- $ightharpoonup A
 ightarrow X \lor B \lor X$, при $\alpha := X$.
- ▶ $A \to (M \to N) \lor B \lor (M \to N)$, при $\alpha := M \to N$.

и НЕ задаёт следующие высказывания:

- $ightharpoonup A
 ightharpoonup X \lor B \lor Y$ все вхождения lpha должны заменяться одинаково во всём выражении.
- ▶ $(A \to (M \to N) \lor B \lor M) \to N$ структура скобок должна сохраняться.

Аксиомы исчисления высказываний

 $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$

 $\neg \neg \alpha \rightarrow \alpha$

((A+B)+A)- redcx. ALB-B (5cx)

Определение

(10)

Назовём следующие схемы высказываний схемами аксиом исчисления

Все высказывания, которые задаются схемами аксиом, назовём аксиомами исчисления высказываний.

Правило вывода Modus Ponens

Первый, упомянувший правило — Теофраст (древнегреческий философ, IV-III век до н.э.).

Правило вывода Modus Ponens

Первый, упомянувший правило — Теофраст (древнегреческий философ, IV-III век до н.э.).

Переход по следствию: «сейчас сентябрь; если сейчас сентябрь, то сейчас осень; следовательно, сейчас осень».

Правило вывода Modus Ponens

Первый, упомянувший правило — Теофраст (древнегреческий философ, IV-III век до н.э.).

Переход по следствию: «сейчас сентябрь; если сейчас сентябрь, то сейчас осень; следовательно, сейчас осень».

Если имеет место α и $\alpha \to \beta$, то имеет место β .

$$\frac{\alpha \quad \alpha \rightarrow \beta}{\beta}$$

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$,

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

ightharpoonup является аксиомой — существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

- ightharpoonup является аксиомой существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо
- ▶ получается из $\delta_1,\dots,\delta_{i-1}$ по правилу Modus Ponens существуют такие индексы j< i и k< i, что $\delta_k\equiv (\delta_j\to \delta_i)$

Определение (доказательство в исчислении высказываний)

Доказательством (выводом) назовём конечную последовательность высказываний $\delta_1, \delta_2, \dots, \delta_n$, причём каждое δ_i либо:

- ightharpoonup является аксиомой существует замена метапеременных для какой-либо схемы аксиом, позволяющая получить формулу δ_i , либо
- lacktriangle получается из $\delta_1,\ldots,\delta_{i-1}$ по правилу Modus Ponens существуют такие индексы j< i и k< i, что $\delta_k\equiv \delta_j \to \delta_i$.

Пример:

$$A \rightarrow (A \rightarrow A),$$

 $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A),$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A),$
 $A \rightarrow ((A \rightarrow A) \rightarrow A),$
 $A \rightarrow A$

Почему это доказательство? То же подробнее:

(1)
$$A \rightarrow (A \rightarrow A)$$

 $\alpha \rightarrow \beta \rightarrow \alpha \ [\alpha, \beta := A]$

Cx. akc. 1

(1)
$$A \to (A \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha, \beta := A]$

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma) [\alpha, \gamma := A; \beta := A \to A]$

(1)
$$\underbrace{A \to (A \to A)}_{\alpha \to \beta \to \alpha} [\alpha, \beta := A]$$
 Cx. akc. 1

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$ $[\alpha, \gamma := A; \beta := A \to A]$

(3)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$
 M.P. 1,2
 $A \rightarrow (A \rightarrow A) \quad (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$

(1)
$$A o (A o A)$$
 Cx. akc. 1 $\alpha o \beta o \alpha \ [\alpha, \beta := A]$

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma) [\alpha, \gamma := A; \beta := A \to A]$

(3)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$
 M.P. 1,2
 $A \rightarrow (A \rightarrow A) \quad (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$

(4)
$$A \to ((A \to A) \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha := A, \beta := A \to A]$

(1)
$$A \to (A \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha, \beta := A]$

(2)
$$(A \to (A \to A)) \to (A \to ((A \to A) \to A)) \to (A \to A)$$
 Cx. akc. 2 $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma) [\alpha, \gamma := A; \beta := A \to A]$

(3)
$$(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$$
 M.P. 1,2
 $A \rightarrow (A \rightarrow A) \quad (A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$
 $(A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$

(4)
$$A \to ((A \to A) \to A)$$
 Cx. akc. 1 $\alpha \to \beta \to \alpha \ [\alpha := A, \beta := A \to A]$

(5)
$$A \rightarrow A$$
 M.P. 4,3 $A \rightarrow ((A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow ((A \rightarrow A) \rightarrow A)) \rightarrow (A \rightarrow A)$ M.P. 4,3 $A \rightarrow A$

Дополнительные определения

Определение (доказательство формулы α)

— такое доказательство (вывод) $\delta_1, \delta_2, \dots, \delta_n$, что $\alpha \equiv \delta_n$. Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

Дополнительные определения

Определение (доказательство формулы lpha)

— такое доказательство (вывод) $\delta_1,\delta_2,\ldots,\delta_n$, что $\alpha\equiv\delta_n.$

Формула α доказуема (выводима), если существует её доказательство. Обозначение:

 $\vdash \alpha$

Определение (вывод формулы lpha из гипотез γ_1,\ldots,γ_k)

- такая последовательность $\delta_1, \ldots, \delta_n$, причём каждое δ_i либо:
 - является аксиомой;
 - либо получается по правилу Modus Ponens из предыдущих;
 - lacktriangle либо является одной из гипотез: существует $t:\delta_i\equiv\gamma_t.$

Формула α выводима из гипотез γ_1,\dots,γ_k , если существует её вывод. Обозначение:

$$1, \ldots, \gamma_k \vdash \alpha$$

Корректность и полнота

U.B:

1) Rzwe (npegm) + prep meto

Определение (корректность теории) 3 Теория док-до-варвов Теория корректна, если любое доказуемое в ней утверждение общезначимо. То

есть, $\vdash \alpha$ влечёт $\models \alpha$.

NO AMOTA

Определение (полнота теории)

CEMAHTURICKAI

Теория полна, если любое общезначимое в ней утверждение доказуемо. То есть, $\models \alpha$ влечёт $\vdash \alpha$.

Корректность исчисления высказываний

Лемма (корректность) Если $\vdash \alpha$, $\tau o \models \alpha$ FL, TO ECTL
81.... Sn=L

Доказательство.

Индукция по длине вывода n. Для каждого высказывания δ_n из вывода разбор случаев:

- 1. Аксиома убедиться, что все аксиомы общезначимы.
- 2. Modus Ponens $j,\ k$ убедиться, что если $\models \delta_j$ и $\models \delta_j o \delta_n$, то $\models \delta_n$.

Общезначимость схемы аксиом №9

Общезначимость схемы аксиом — истинность каждой аксиомы, задаваемой данной схемой, при любой оценке:

$$\llbracket (\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha \rrbracket = \mathsf{M}$$

Построим таблицу истинности формулы в зависимости от оценки α и β :

$[\![\alpha]\!]$	$\llbracket\beta\rrbracket$	$[\neg \alpha]$	$\llbracket \alpha \to \beta \rrbracket$	$[\![\alpha \to \neg \beta]\!]$	$\llbracket (\alpha \to \neg \beta) \to \neg \alpha \rrbracket$	$\llbracket (lpha ightarrow eta) ightarrow (lpha ightarrow \lnot eta) ightarrow \lnot lpha rbracket$
Л	Л	И	И	И	И	И
Л	И	И	И	И	И	И
И	Л	Л	Л	И	Л	И
И	И	Л	И	Л	И	И

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Пусть в выводе есть формулы $\delta_j,\; \delta_k = \delta_j o \delta_n,\; \delta_n$ (причём j < n и k < n).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_n$ общезначимы. Поэтому при данной оценке $[\![\delta_i]\!] = \mathcal{N}$ и $[\![\delta_i]\!] = \mathcal{N}$.

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_n$ общезначимы. Поэтому при данной оценке $[\![\delta_j]\!] = \mathsf{И}$ и $[\![\delta_j \to \delta_n]\!] = \mathsf{I}$.

Построим таблицу истинности для импликации:

$[\![\delta_{n}]\!]$	$[\![\delta_j \to \delta_n]\!]$
Л	И
И	И
Л	Л
И	И
	л И Л

Пусть в выводе есть формулы δ_j , $\delta_k = \delta_j \to \delta_n$, δ_n (причём j < n и k < n).

Фиксируем какую-нибудь оценку. По индукционному предположению, δ_j и $\delta_j \to \delta_n$ общезначимы. Поэтому при данной оценке $[\![\delta_j]\!] = \mathsf{N}$ и $[\![\delta_j \to \delta_n]\!] = \mathsf{N}$.

Построим таблицу истинности для импликации:

$$[\delta_j]$$
 $[\delta_n]$
 $[\delta_j \to \delta_n]$

 Л
 Л
 И

 Л
 И
 И

 И
 Л
 П

 И
 И
 И

Из таблицы видно, что $[\![\delta_n]\!]=\Pi$ только если $[\![\delta_j\to\delta_n]\!]=\Pi$ или $[\![\delta_j]\!]=\Pi$. Значит, это невозможно, и $[\![\delta_n]\!]=\Pi$

 $\Gamma = \chi_1 \dots \chi_n$ 1) Kopp. + 2) NORMOTA U.B. (Apopon 193x) Teopa na o <u>Deggrynn</u> Ecm nepecapoemen

