

Making an Impact Over Four Decades

It's all part of how we deliver a clearer vision of what's possible with better air – and turns the invisible into something incredible.

95% of the top 30 MEP firms by revenue have specified AtmosAir.

300M+ 200M+

Square Feet Installed

Square Feet Installed

Clean Air Group

- Headquartered in Fairfield, CT.
- Established in 1982
- CAG branded patented bipolar ionization (BPI) air treatment technology as AtmosAir in 2004
- 500M+ Square Ft Installed
- Partnered with KeyTronicEMS manufacturing
- Granted 10+ technology patents with 20+ pending patents.
- Offices in Arizona, London, Dubai, Shanghai

Comprehensive Air Cleaning and Monitoring Technology Portfolio

AtmosAir Solutions

- AtmosAir ™ Bi-Polar Ionization Tube Dielectric Barrier Discharge
- AtmosSmart ™ IOT
- AtmosAware ™
- AtmosAware Mini
- Indoor Air Quality Sensors

Bioclimatic Air Systems

- Bioclimatic ActiveOx™ BPI
- Biotronic ™ Filters Powered Hi-E Particulate Filtration
- Bioclimatic Compact Ceiling Units (MC Series)
- Bioclimatic UV Germicidal Irraditaion
- Bioclimatic Chemical Media
- Bioclimatic PCO (Photocatalytic Oxidation)
- Bioclimatic Kitchen Exhaust Odor and Grease Control Units
- Bioclimatic Custom Air Handling and Filtration Solutions

AtmosAir Selected World Class Customers in Core Market Verticals

FARGO

COMCAST

AVISON

YOUNG

KILROY

REALTY

COMPOSATION

HERBALIFE

SPACEX

Gensler

Banknorth

us bankstadium

WELLS FARGO

KAMBER

S ULCYCLE Brands

INOVA

strvker

M+ Middlesex Health

How It Works | AtmosAir Bi-Polar Ionization

- AtmosAir leverages a patented and proprietary Dielectric Barrier Discharge (DBD) Bi-Polar Ionization technology to generate positively and negatively charged air ions.
- AC Current applied to a controlled electrode (AtmosAir composite tube) produces a plasma across tube (Ionization Field), much like a Light Bulb Filament creates light.
- AtmosAir BPI increases ion concentration by 3-4x ambient (500-1500 ions/cm3) replicating ion rates found in pristine outdoor environments.
- AtmosAir Ion Lifespan: 300 seconds
- Verified Ozone Free Technology UL 2998/UL867A Certified

How It Works | AtmosAir Bi-Polar Ionization

AGGLOMERATION

Snowflakes are a product of ice crystal agglomeration. Ice crystals build up, become heavier than air, then precipitate to the ground. This same principle applies to dust agglomeration via air ions.

Image Credit: Marc Newberry / Unsplash

STERILIZATION

Bacteria, like E. Coli shown above, are neutralized when air ions pull hydrogen molecules away from the cell wall, dehydrating the cell and hindering its ability to interact with other organisms.

Image Credit: Eric Erbe, USDA / Wikimedia commons

OXIDATION

The iconic green patina on the Statue of Liberty is not original. It formed naturally over time from the same chemical process that breaks down VOCs and other noxious gasses in the atmospehere.

Image Credit: Brandon Mowinkel / Unsplash

Active Virus Inactivation | AtmosAir Bi-Polar Ionization

How AtmosAir Inactivates Viruses:

Positive (+) and negative (-) ions are introduced into the air via the AtmosAir system. OH radicals are formed when ions attach to the proteins that protrude from the membrane of a virus.

The OH radicals steal hydrogen from the virus, and return to the air as water, leaving holes in the membrane.

The destroyed proteins leave holes in the membrane, inactivating the virus.

AtmosAir 500 Series | Large AHUs and RTUs

Voltage	110/250 V
Frequency	
Power Consumption	
Current Draw	
Internal Fuse	500 mA
Field Electrical Connection	Junction Box

500F C

Large Induct Systems					
	508FC	500FC			
Number of Tubes	8	5			
CFM	16,000	10,000			

AtmosAir 500 Series Installation | Large AHUs and RTUs

AtmosAir can be mounted in an AHU or RTU, or it can also be mounted in a supply duct.

AtmosAir 500 Series Installations | Large AHUs and RTUs

Figure 2

AtmosAir Matterhorn Series | AHUs 12-tons and Less

Matterhorn 1000 (1-tube)

Matterhorn1002 (2-tubes)

Size

D

Number

(2)

(2)

(CFM)

2,000

4,000

5,000

of WG

0.2032mm

0.0080" 0.6121mm

0,0241" 1.2243mm

0.0482" 1.7348mm

0.0683"

Steady

State mA

34.00

35.00

37.00

2.00

12.00

AtmosAir Matterhorn Series | AHUs 12-tons and Less

Matterhorn 1000 (1-tube)

Matterhorn1002 (2-tubes)

AtmosAir FC Series | Fan Coils, PTAC, Univents, Heat Pumps

AtmosAir FC400

AtmosAir FC400-FM

AtmosAir FC400

SPECIFICATIONS
Air Flow Capacityup to 1,400 CFM
Pressure DropMinimal (see Fig. 1)
Housing MaterialABS UL94-V0
Weight
Maximum Operation Temperature150° F (65.5° C)
ELECTRICAL
Voltage12 VAC
Frequency50/60 Hz
Power Consumption5 watts
Current Draw0.1 amps
Internal FuseN/A
Field Electrical ConnectionI 10V/220V Receptacle
IONIZATION TUBE
MaterialGlass, Stainless Steel
NumberOne (I)
SizeB (3")
Tube Life8,800 Hours
Options: Air Switch, universal stainless steel mounting bracket

AtmosAir FC Series Installations

- FC400 wires easily across the low voltage thermostat controls
 (24V). Wire parallel to the "call for fan" which is industry wide the green and red wires. Unit runs when the fan comes on.
- The FC400 can also tapped into the fan motor leads (120/240 VAC) and the unit will come on with the fan.

AtmosSmart IoT

- Continuously & actively measures 10 parameters of IAQ
 - Measures outdoor AQI as displayed from EPA data
- LTE Cellular Gateway for wireless communication
 - System does not require Wi-Fi or Ethernet connectivi
- Long range communication enabled via LoRa™ WAN
 - Accessible through web portal or mobile application
- Up to 8 AtmosAir[™] ionization systems actively monitored controlled
 - 500 Series & Matterhorn Series compatible

NEW AtmosSmart IoT Value Add Benefits

- RESET Certified
- Cellular Gateway for independent communication
- No Wi-Fi or Ethernet needed
- BMS compatible via BACnet; BTL Certified
- Fully remotely programmable
- Only in-duct IAQ Monitor that monitors 10 parameters of air quality; plus, outdoor AQI
- Only device that can actively control BPI levels to changes in air quality (patent pending)
- Field serviceable to replace individual sensor cards or sensor bank try; no need to dismount the fin installed into the duct work; no full unit replacement needed

Clean Air Group Health Air as a Service IoT Platform

- All-in-one: Equipment, Installation, Monitoring, Maintenance & Service
- User can access their IAQ data and control devices from any internet connected device
- Web/Mobile App View for IAQ
 Data and device administration
- Manage Connected Device Alerts & Export Data Reports

AtmosAware Sensedge In-Room Air Quality Monitoring

24/7 ACCURATE REAL TIME IAQ MONITORING

- PM2.5
- AQI
- TVOC
- **CO2**
- Temperature
- Humidity

DISPLAY

- Local Outdoor Air Quality
- Indoor Air Quality
- Phone App, BACnet, WiFi, Ethernet

AtmosAware Mini

AtmosAware™ Mini sensors measure and validate indoor air quality on a real time basis.

The AtmosAware Mini Indoor Air Quality (IAQ) monitoring system measures the same points AtmosAware does without a screen.

Extra Features:

- The mini has additional installation options
- Stores the last hour of information
- Dashboard & app plus an open API, cloud storage, wi-fi, ethernet modbus option
- Option for an O3 sensor

Check current measurements or analyze historical levels to detect important changes. Provides data reports on air quality.

Reporting and Analytics

Cadenced Weekly Auto Generated Reports

Custom Digital Displays and IAQ Reporting

Academic Studies and Peer-Reviewed Research | Bi-Polar Ionization

Over 50 peer-reviewed studies support the science of controlled air ionization for improvement of indoor environmental quality.

While sometimes referred to as an "emerging technology," bi-polar ionization generated by dielectric-barrier discharge has a long history of reducing airborne particles and aerosols within a built environment.

Many academic and public institutions around the world are developing BPI technologies for improvement of indoor environmental quality.

Study Report - Coronavirus 229E

Test Report | Microchem Laboratory

Study Title

Virucidal Efficacy of a Test Substance For Use on Inanimate, Nonporous Surfaces

Standarized Test Method

ASTM E1053

Maximum Ionization Rate

1.500 ions cm/3

Test Result

The presence of coronavirus was reduced by 99.92% within 30 minutes of exposure to DBD BPI

Test Results at 30 minutes

		Test Results Replicate 1 30 minutes	Test Results Replicate 2 30 minutes	Test Results Replicate 3 30 minutes			
Cell Co	ontrol	0000	0000	0000			
	10-1	000+	000+	0000			
	10-2	0000	0000	0000			
Dilution	10-3	0000	0000	0000			
	10-4	0000	0000	0000			
	10-5	0000	0000	0000			
TCID ₅₀ per	0.1 ml	0.75 Log ₁₀	0.75 Log ₁₀	≤0.50 Log ₁₀			
TCID ₅₀ per Carrier		1.05 Log ₁₀	≤0.80 Log ₁₀				
Average Log ₁₀ Redu	ıction	2.78 Log ₁₀					
verage Percent Redu	ıction	99.92%					

Key: + = Virus recovered; 0 = Virus not recovered and/or no cytotoxicity observed;

T = Cytotoxicity observed; †Taking cytotoxicity and neutralization controls into account.

Air Ionization for Indoor Environments for the Control of Volatile and Particulate Contaminants with Nonthermal Plasmas Generated by Dielectric-Barrier Discharge

Peer Review Publication: IEEE, Plasma Science, Volume 30, August 2002

Dr. Stacy L. Daniels, PhD. and Professor of chemical and environmental engineering at University of Michigan is an expert in Indoor Environmental Quality (IEQ). He also was associated with The Dow Chemical Co. in a variety of environmental positions.

'Air Ionization for Indoor Environments' is one of the most in-depth papers that has been written on the chemistry and physics of dielectric-barrier discharge bi-polar air ionization with over 90 citations.

Real-world case studies and data are detailed.

Intelligent AtmosAir BPI technology closely relates to the DBD technology discussed in this paper.

https://ieeexplore.ieee.org/document/1167642

Ionizing air affects influenza virus infectivity and prevents airborne-transmission

Peer Review Publication: Nature Portfolio, Scientific Reports, 2015

This study showed that an ionization system can remove influenza A virus infection from the air.

In a study completed with guinea pigs, in a room with an ionizer where the virus was released into the air, none of the guinea pigs were infected.

This study concluded 'the device enables unique possibilities for rapid and simple removal of virus from air and offers possibilities to simultaneously identify and prevent airborne transmission of viruses.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4477231/

Application of corona discharge-generated air ions for filtration of aerosolized virus and inactivation of filtered virus

Peer Review Publication: Journal of Aerosol Science, 2017

The research team studied the effect of corona discharge-generated air ions on the filtration of aerosolized bacteriophage MS2.

An ionization system was installed upstream of a medium-efficiency air filter to generate air ions, which were used to charge the virus aerosols and increase their filtration efficiency. After the virus aerosols were captured by the filter for a certain time interval, they were exposed to a newly incoming air ion flow. Captured virus particles were detached from the filter by sonication, and their antiviral efficiency due to air ions was calculated by counting the plaque-forming units. The antiviral efficiency increased with ion exposure time and ion concentration. When the concentration of positive air ions was 107 ions/cm3, the antiviral efficiencies were 46.1, 78.8, and 83.7% with exposure times of 15, 30, and 45 min, respectively.

When the ionization system was operated in bipolar mode, the number concentrations of positive and negative ions were 6.6×106 and 3.4×106 ions/cm3, respectively, and the antiviral efficiencies were 64.3, 89.1, and 97.4% with exposure times of 15, 30, and 45 min, respectively.

Journal of Aerosol Science

Application of corona discharge-generated air

ions for filtration of aerosolized virus and

Evaluation of a bipolar ionization device in inactivation of antimicrobial resistant bacteria, yeast, Aspergillus and human coronavirus

Peer Review Publication: Journal of Hospital Infection, 2022

A 4 h exposure to bipolar ionisation showed a 1.23 to 4.76 log reduction corresponding to a 94.2 to >99.9% cfu/gauze reduction for Clostridioides. difficile, KPC-producing Klebsiella pneumoniae, meticillin-resistant Staphylococcus aureus and multidrug-resistant Staphylococcus aureus. Against human coronavirus, a 1.2 log TCID50 reduction was observed after 2 h.

The assessment of bipolar <u>ionisation</u> systems merits further investigation as an infection control measure.

Ozone levels measured were below levels reported to inactivate microorganisms.

https://pubmed.ncbi.nlm.nih.gov/35452719/

https://pubmed.ncbi.nlm.nih.gov/32226115/

2022 ASHRAE Funded Study on DBD BPI

2022 ASHRAE Funded Study on AtmosAir BPI

- In February, 2022 data was released from the first ever ASHRAE funded research study involving Bi-Polar Ionization. AtmosAir Dielectric Barrier Discharge (DBD) technology was tested.
- MERV 13 physical air filter combined with AtmosAir (DBD device) closely matched the performance of a HEPA high efficiency filter in filtering fine particulate matter.
- BPI air treatment devices combined with a physical mechanical filter generally delivered a better performance in reducing VOCs, formaldehyde, CO2, and PM 2.5 concentrations at the supply air duct compared with those filters without any BPI device.

ASHRAE

Tony Abate is Clean Air Group's Co-Founder and Chief Technology Officer.

Dan Mason is Clean Air Group's Senior Product Specialist and is an ASHRAE Life Member.

Tony and Dan have each been working in ASHRAE within the air filtration category for over 20 years. Tony and Dan remain members, liaisons, and/or voting members on various ASHRAE committees, most recently working on:

- ASHRAE Funded Research Study on Air Cleaners including Bi-Polar Ionization | Fresno State University (2022)
- · Chairman SSPC 145 | NEW Standard 145.2 now includes electronic air cleaners including BPI technologies
- Member TRG2.RAST | NEW standard and test procedure around electronic air cleaning technologies
- Voting member TC2.3 |Gaseous Air Contaminants and Gas Contaminant Removal Equipment
- Voting Member TRG 4 IAQP | NEW Committee developing guidance to allow users to apply the ASHRAE 62.1
 IAQP method)
- Member SSPC 185 | Developing NEW 185.3 test method (Laboratory Test Method of Testing In-Room Devices and Systems for Microorganism Removal or Inactivation in a Chamber)
- Member AHAM AC-5 | NEW Microbial Reduction Task Force Committee
- Voting Member of TC4.3 |Ventilation and Filtration in buildings
- Committee member | ASHRAE Position on Filtration Document
- Mamber ASHDAE 2 O. I. Iltraviolet Air and Surface Treatment

AtmosAir Products Are Certified Ozone Free

UL2998 Certified

UL867 and UL867A Certified

Continuous Monitoring with
AtmosSmart

Patented AtmosAir non-thermal
plasma discharge by a
dielectric barrier discharge.

ASHRAE/CDC: BPI Systems may emit ozone. Manufacturers are likely to have ozone generation test data. When considering the acquisition and use verify that the equipment meets UL 867 standard certification (Standard for Electrostatic Air Cleaners) for production of acceptable levels of ozone, or UL 2998 standard certification (Environmental Claim Validation Procedure (ECVP) for Zero Ozone Emissions from Air Cleaners) which is intended to validate that no ozone is produced.

AtmosAir Real World Testing USA

Client	CO ₂ Before (PPM)	CO ₂ After (PPM)	PM10 Before (ug/m³)	PM10 After (ug/m³)	PM2.5 Before (ug/m³)	PM2.5 After (ug/m³)	TVOC Before (PPM)	TVOC After (PPM)	Laboratory Mold Testing	Indiv. VOC Element Testing	Ozone Before	Ozone After	Energy Project
US Department of Defense	614	576	24	7	19	5	n/a	n/a	✓ (-41%)	n/a	n/a	n/a	~
California Public School	847.5	798.5	23.1	31.37	6.65	6.2	69.25	1.65	~	n/a	0	0	×
Arena - Los Angeles, CA	560	470	25	19	n/a	n/a	13	0	×	Yes	0.015	0	
Global Banking Institution 1 - New York, NY	991	1006	6	4	1	1	40	21	×	n/a	0	0	×
Florida-based Power Utility Company - Plantantion, FL	1046	693	15	6	10	4	5	0	×	n/a	0	0	•
Largest Global Architecture Firm - Los Angeles, CA	639	609	6	2	5	3	25	8	×	n/a	0.024	0	×
Fairfield County Public Schools - Westport, CT	1007	769	12	7	7	1	2	0	✓ (-95%)	n/a	0.001	0	×
Global Hotel & Resort - New York, NY	491	477	7	6	5	4	10	0	×	n/a	0	0	~
Global Banking Institution 2 - New York, NY	485	689	4	2	3	2	8	1	×	n/a	0	0	×
Global Banking Institution 3 - New York, NY	726	736	7	8	4	1	150	2	×	n/a	0.005	0.004	×
Casino (100k Sq Ft Gaming Space) - Pittsburgh, PA	589	799	91	88	88	96	150	28	×	n/a	0	0	×
Vivarium - New York	3000	2995	13	14	1	1	150	116	×	n/a	0	0	~
Research - Los Angeles, CA	1087	776	62	17	2	1	22	8	×	n/a	0	0	×
Private Research University - Los Angeles, CA	n/a	n/a	9	2	14	2	17	2	×	n/a	0	0	~
Medical Center - New York	1268	1074	12	n	10	5	116	61	n/a	n/a	0.01	0.01	×
West Coast Real Estate Conglomerate - CA	620	691	6	7	4	6	9	6	n/a	•	0	0	~
Arena - Nashville, TN	488	385	9	10	9	9	25	1	n/a	n/a	0.008	0	×
Global Mass Media Company - New York, NY	804	829	5	2	6	2	150	20	n/a	n/a	0	0	×
Big 4 Accounting Firm - Westlake, TC	508	514	9	7	7	6	150	53	n/a	n/a	0	0	×
Global Bank Institution 4 - New Jersey	847	989	30	4	28	2	48	30	n/a	n/a	0	0	×
American Multinational Hospitality Company - Chicago, IL	475	503	4	5	4	4	150	10	n/a	n/a	0	0	×
Minnesota Public School	904	580	34	12	11	3	6	3	n/a	n/a	0	0	~
Major Casino - Hollywood, FL			101	55	97	50	119	24	n/a	n/a	0	0	
Tower 45 - 120 West 45th St	1182	1200	6	3	5	2	18	11	n/a	n/a	0	0	~

New Rochelle School District Study

Guth DeConzo Consulting Engineers led a detailed study and tested over one hundred locations with AtmosAir installed.

									Test Resu	ilts					A
	Т	esting Description		27 1 5	Average Negative Ion Concentration	Ozone Concentration	VOC Concentration	Formaldehyde Concentration			Particle Count	(per 1 ft³)			Engineer's
Room	Trial	Start Time	End Time	Ionizer Type	(per cm³)	(ppb)	(ppm)	(ppm)	0.3µm	0.5µm	1.0µm	2.0µm	5.0µm	10.0µm	illiudis
Music Room 43	Baseline	9/8/2021 1:20	9/8/2021 1:35	N/A	1,120	0.86	2.51	0.23	2,718,161	218,922	25,938	3,592	210	64	NEH
Music Room 43	Operating	9/8/2021 9:46	9/8/2021 10:01	Matterhorn	2,115	1.29	2.44	0.21	1,540,326	113,950	10,780	2,515	170	73	NEH
	Percen	t Change from Bas	seline		89%	50%	-3%	-9%	-43%	-48%	-58%	-30%	-19%	14%	NEH
Cafeteria	Baseline	9/8/2021 1:38	9/8/2021 1:53	N/A	1,320	1.45	2.22	0.23	2,617,871	165,114	11,837	1,492	342	124	NEH
Careteria	Operating	9/8/2021 10:15	9/8/2021 10:30	Matterhorn	1,991	1.49	1.92	0.19	1,359,461	87,057	5,144	975	183	133	NEH
	Percen	t Change from Bas	seline		51%	3%	-14%	-17%	-48%	-47%	-57%	-35%	-46%	7%	NEH
as Class Challenge	Baseline	9/8/2021 1:57	9/8/2021 2:12	N/A	984	1.13	2.21	0.2	3,917,922	429,324	20,179	2,198	230	112	NEH
Ist Floor Hallway	Operating	9/8/2021 10:34	9/8/2021 10:49	Matterhorn	1,840	1.15	2.2	0.16	2,842,917	219,662	11,488	1,721	236	140	NEH
	Percen	t Change from Bas	seline		87%	2%	0%	-20%	-27%	-49%	-43%	-22%	3%	25%	NEH
Audio Visual 116	Baseline	9/23/2021 4:04	9/23/2021 4:19	N/A	1,021	1.45	2.33	0.21	2,415,669	214,556	22,105	2,366	266	131	NEH
Audio Visual 116	Operating	9/23/2021 1:01	9/23/2021 1:16	Matterhorn	1,623	1.45	1.98	0.21	1,488,752	110,665	7,650	1,359	201	88	NEH
	Percen	t Change from Bas	seline		59%	0%	-15%	0%	-38%	-48%	-65%	-43%	-24%	-33%	NEH
nd Floor Hallway	Baseline	9/8/2021 2:15	9/8/2021 2:30	N/A	1,210	0.83	2.05	0.23	4,109,165	410,198	19,273	2,689	1,532	243	NEH
nu riour naliway	Operating	9/8/2021 11:15		Matterhorn	1,690	0.84	10151	0.2	2,272,896	186,500	9,123	1,800	941	154	NEH
	Percen	t Change from Bas	seline		40%	1%	-4%	-13%	-45%	-55%	-53%	-33%	-39%	-37%	NEH
Room 107	Baseline	9/8/2021 2:33	9/8/2021 2:38	N/A	1,305	0.46	2.03	0.22	2,010,933	111,901	6,292	872	107	79	NEH
ROOM 107	Operating	9/8/2021 11:41	9/8/2021 11:56	Matterhorn	2,544	0.57		0.18	994,117	58,769	3,720	705	76	89	NEH
	Percen	t Change from Bas	seline		95%	24%	-14%	-18%	-51%	-47%	-41%	-19%	-29%	13%	NEH
Room 109	Baseline	9/8/2021 2:41	9/8/2021 2:56	N/A	1,212	0.61		0.21	1,879,091	90,901	5,829	762	98	71	NEH
NOOH 103	Operating	9/8/2021 11:58		Matterhorn	2,375	0.55		0.18	935,646	55,947	3,610	610	78	101	NEH
	Percen	t Change from Bas	seline		96%	-10%	-6%	-14%	-50%	-38%	-38%	-20%	-20%	42%	NEH
Room 108	Baseline	9/8/2021 3:01	1.74	N/A	875	0.54		0.23	2,001,982	96,101	9,937	1,002	80	54	NEH
MOOIII 100	Operating	9/8/2021 12:35	9/8/2021 12:50	Matterhorn	1,876	0.58		0.19	921,534	56,121	3,750	672	69	66	NEH
	Percen	t Change from Bas	seline		114%	7%	-32%	-17%	-54%	-42%	-62%	-33%	-14%	22%	NEH
Auditorium	Baseline	9/8/2021 3:20	9/8/2021 3:35	N/A	810	0.54		0.25	3,899,710	356,876	41,937	18,029	1,543	251	NEH
Addito/Idill	Operating	9/8/2021 12:18	9/8/2021 12:33	Matterhorn	1,268	0.58	2.06	0.23	2,191,710	162,185	18,398	7,223	1,312	247	NEH
	Percen	t Change from Bas	seline		57%	7%	-2%	-8%	-44%	-55%	-56%	-60%	-15%	-2%	NEH

Keurig Dr. Pepper | Case Study Results

KDP led a detailed study and tested over 27 locations with AtmosAir installed over 5 weeks.

	9/10/2020	9/30/2020	10/7/2020	10/14/2020
Performance Metric	Week 0 (installation)	Week 3	Week 4	Week 5
% Reduction of mean baseline ATP - Floor 1	19,390 RLU (baseline)	57.6%	63%	83%
No. (%) of sites swabbed showing LOWER ATP values vs. week zero - Floor 1 (n = 27 sites)	N/A	18 sites (67%)	19 sites (70%)	24 sites (89%)
% Reduction of mean baseline ATP - Floor 2	12,751 RLU (baseline)	61%	70%	69%
No. (%) of sites swabbed showing LOWER ATP values vs. week zero - Floor 2 (n = 22 sites)	N/A	16 sites (73%)	19 (86%)	20 (91%)

Clean Air Delivery Rate (CADR) Test vs. Particulate Matter (0.3 Micron)

Clean Air Delivery Rate Testing - Third Party Testing Against Particulate Matter (PM) with ETL.

Study Summary

To an ANSI and AHAM structured CADR test vs. ultra-fine particulate matter (PM0.3), AtmosAir proved to reduce particles by 86% relative to natural dissipation within 15 minutes.

AtmosAir tested to a 125 Dust CADR and a 158 test CADR.

AtmosAir Mold Clean Air Delivery Rate (CADR) Testing at ETL Labs.

Engineering Guidance – Third Party Articles and Mentior

90% of top 30 MEP firms are specifying AtmosAir

<u>HDR</u>	https://www.hdrinc.com/insights/ventilation-and-transmission-hvac-and-adapting-covid-19
<u>Gensler</u>	Gensler Architects – AtmosAir 'How it Works' Video: https://www.youtube.com/watch?v=A-b7vDnFv6k
<u>NYU</u>	NYU Langone Medical Center: Cleaning the Air Using Bi Polar Ionization Technology - NYU Langone Medical Center - Dr. Philip Tierno Jr. (2017) (AtmosAir Mentioned)
<u>HGA</u>	HGA Architects and Engineers – Informative video on how bi-polar ionization and ultraviolet C work to disinfect the air. https://hga.com/engineering-i-v-air-disinfection/?fbclid=lwAR38BCCFfnIUrNKZeif7aeS9rrw8Sf5bIKFDOHOBayhHEKpv1B2a9 aZna0
<u>Bala</u>	BALA Consulting Engineers - Consulting Specifying Engineer Magazine Effective COVID-19 mitigation for HVAC systems: https://www.csemag.com/articles/covid-19-and-the-impacts-to-the-workplace/?fbclid=lwAR2nw6R4_5BldBCY6gpPB7GLUWwYueATt2MszqGTt0422pOnCXswzlKMNBs https://www.bala.com/sites/default/files/2020-05/%20Bala_COVID-19-Webinar_0.pdf
SSR	Smith Seckman Reid Consulting Engineers - Consulting Specifying Engineer Magazine Effective COVID-19 mitigation for HVAC systems: https://www.csemag.com/articles/effective-covid-19-mitigation-for-hvac-systems/
Terrapin Bright Green	Terrapin Bright Green Whitepaper: The Nature of Air: Economics of Indoor Air Quality and Bio-Inspired Innovation by Bill Browning of Terrapin Bright Green (AtmosAir mentioned in whitepaper)
<u>Jacobs</u>	Jacobs Engineering Jacobs Engineering accelerating retrofits of COVID-19 vaccine manufacturing facilities
Gannet Fleming	American Inst. of Architects, Gannet Fleming Consulting Engineers – Accelerating Recovery with Bi-Polar Ionization; https://aiapa.org/2020/05/31/accelerating-recovery-with-bipolar-ionization/
<u>CMTA</u>	CMTA Consulting Engineers and M+A Architects: https://www.ma-architects.com/news-insights/articles/take-a-deep-breath-we-ve-got-you-covered
<u>Cosentini</u>	Cosentini Associates AtmosAir Case Study: To Bring the Office Workforce Back Safely, the Science Backs Bi-polar Ionization - https://commercialobserver.com/2021/06/to-bring-the-office-workforce-back-safely-the-science-backs-bi-polar-ionization/
Newman Consulting Group	Newman Consulting Group - Three Coronavirus Prevention Techniques for Your Building - a Comparison: https://www.newmanconsultinggroup.us/green-building-blog/coronavirus-prevention-techniques JLL: A Look Inside JLL's New WELL-Built Offices in New York City
Hilton	Hilton Engineering AtmosAir Bi-Polar Ionization Case Study: Hilton Bulletin Featuring AtmosAir Testing Results by Hilton Engineering
Facilites Guideline Institute	Facilities Guidelines Institute - Guidance for Designing Healthcare Facilities
SHP	https://shp.com/2020/07/16/three-strategies-for-improving-infectious-disease-control-through-indoor-air-quality/
<u>Stantec</u>	https://www.stantec.com/en/ideas/engineering-our-return-to-the-workplace-after-covid-19
	https://www.stantec.com/content/dam/stantec/files/PDFAssets/2020/getting-back-to-business-quidebook-full.pdf
<u>Arup</u>	https://www.csemag.com/articles/how-covid-19-is-affecting-air-guality-smart-buildings/
<u>AEI</u>	https://www.csemag.com/articles/what-hvac-changes-are-required-by-covid-19-learn-from-aei-experts/
<u>EXP</u>	https://www.71above.com/files/covid19/EXP-White-Paper-for-Restaurants.pdf
Henderson	https://www.hendersonengineers.com/insight_article/infection-control-technologies-for-building-design/
Peter Basso	https://www.csemag.com/articles/technology-drives-k-12-school-changes/
Salas O'Brien	https://www.csemag.com/articles/technology-drives-k-12-school-changes/
Gannet Fleming	https://docs.acec.org/pub/742851FB-1866-DAAC-99FB-62FD239A2E61
Perkins and Will	https://www.belmont-ma.gov/sites/g/files/vyhlif6831/f/uploads/2020_0121 - iag_improvement_r1.pdf

Intelligent Air Treatment | Advance Towards Net Zero

Moving and Conditioning Air Is Typically 40-50% of Total Building Energy Use

The Built Environment

The built environment generates nearly 50% of annual global CO2 emissions. Of those total emissions, building operations are responsible for 27%. Achieving zero emissions from the existing building stock will require leveraging innovative technology.

Intelligent Air Treatment Decarbonization Strategy

IoT technology and controls that measure and intelligently purify air can dynamically control ventilation systems to conserve energy and GHG emissions. DBD BPI will allow air handlers to be dynamically reduced to their optimal outside air position. DBD BPI creates significant improvement in filtration efficiency and air disinfection without pressure drop or the maintenance requirements of more restrictive filters. This energy savings strategy can result in 20-40% reduction in HVAC energy expenditures with a 4-8% reduction on a buildings utility bill. DBD will also extend life of HVAC filters and HVAC equipment while reducing chilled water consumption.

ASHRAE 62.1 Compliant Technology

DBD BPI is fully compliant to the ASHRAE 62.1 Indoor Air Quality Procedure. Advanced air cleaning enables using the IAQP to reduce ventilation while maintaining or improving indoor air quality. DBD intelligent air treatment and disinfection as a technology to remove contaminants of concern is an acceptable method to decrease airflow rates.

Cost Savings, Energy, Sustainability

Airside efficiency is typically the largest untapped opportunity for building owners. AtmosAir is an ASHRAE 62.1 Compliant IAQ Technology

AtmosAir Bi-polar Ionization:

- Reduces Outside Alr Requirements up to 50% within ASHRAE 62.1/IMC code
- Takes up little space within duct a duct or air handler.
- Has little to no pressure drop. Requires negligible power to operate.

Capex Benefits:

- 15% Reduction in Equipment.
- Collateral Cost Savings in Installation, Piping, Electrical, Ductwork
- Potential 20-30% Reduction in HVAC Tonnage/Plant Sizes
- Less of an opportunity to bring in pollution from outside.

Opex Benefits:

- 20-40% Reduction in HVAC Energy Expenditures
- 4-8% Reduction on ENTIRE utility bill.
- Pair with Cheaper Filters and Extend life of HVAC filters
- Extend life of HVAC equipment (sustainability)
- Reduced Water Consumption

