Exercise 1.1

Let $A \subset B$ be an integral extension of rings and assume that B is an integral domain. Suppose $\mathfrak{q} \subset B$ is a prime ideal and let $\mathfrak{p} := \mathfrak{q} \cap A \subset A$.

1. Prove that A is a field if and only if B is a field.

Proof. Assume A is a field and let's do this a little different. Let \mathfrak{m} be a maximal ideal in B and fix a nonzero element $b \in \mathfrak{m}$. Because b is integral over A, we have an expression

$$0 = a_0 + a_1b + a_2b^2 + \dots + a_nb^n \iff -a_0 = a_1b + a_2b^2 + \dots + a_nb^n.$$

On the right side, for each $1 \le i \le n$, we have that $a_i b^i$ is in \mathfrak{m} , so the whole sum is in \mathfrak{m} . This implies the absurdity that $-a_0$, an unit, is contained in \mathfrak{m} . So there is no such thing as nonzero b in \mathfrak{m} and B is a field.

For the other direction of the implication, we will do it traditionally. Let B be a field and fix an $x \in A$. x is a unit in B, so there is a $y \in B$ with xy = 1. Again, for y we have the expression

$$0 = a_0 + a_1 y + a_2 y^2 + \dots + a_n y^n$$

and if we multiply x^{n-1} on both sides, we yield

$$0 = a_0 x^{n-1} + a_1 x^{n-2} + a_2 x^{n-3} + a_n y$$

$$\iff -a_0 x^{n-1} - a_1 x^{n-2} - a_2 x^{n-3} = a_n y$$

$$\iff a_n^{-1} (-a_0 x^{n-1} - a_1 x^{n-2} - a_2 x^{n-3}) = y$$

In other words, y is in A or in different words, A is a field.

2. Show that \mathfrak{p} is a prime ideal of A and that A/\mathfrak{p} can be viewed as a subring of B/\mathfrak{q} .