Mode d'emploi

Stéphane Capdevielle

10 avril 2018

Table des matières

1	Installation et utilisation	1
	1.1 Installation	1
	1.1 Installation	1
2	Théorèmes	1
	2.1 Théorèmes, propriétés, corollaires, lemmes	2
	2.2 Définitions	3
	2.3 Commandes	
	2.4 Exercices	
3	Macros	5
	3.1 Mathématiques	E
	3.1.1 Macros	
	3.2 Ensembles	6
	3.2.1 Opérateurs	
4	Python	6
5	Tableaux de variation	7

1 Installation et utilisation

1.1 Installation

Copier le répertoire texlab n'importe où sur votre disque (la racine de votre project latex peut être une bonne idée). Dans ce manuel, ce répertoire sera copié dans C:, et ses fichiers sont donc accessibles dans C:\texlab.

Pour utiliser toutes les fonctionnalités de texlab, python doit être installé sur votre système, ainsi que le package pygments, que l'on peut installer avec la commande

```
pip install pygments
```

1.2 Mise en place

Pour utiliser texlab, il suffit de créer un document et de commencer son préambule comme suit :

```
\newcommand{\templatesroot}{C:/texlab}
\input{\templatesroot/templates/article}
```

2 Théorèmes

Le style général des théorèmes est le suivant :

```
\text{begin{theorem}{}}{} \text{Voici un théorème merveilleux : $$1^2=\pth{-1}^2$$ \end{theorem} \text{Théorème 2.1} \text{Voici un théorème merveilleux : } 1^2=(-1)^2
```

Ils peuvent avoir des noms:

```
\text{begin{theorem}{Formule d'Euler}{} \text{Pour tout réel $x$ : $$e^{ix} = \cos\pth{x} + \sin\pth{x}$$$ \end{theorem} \text{Théorème 2.2 - Formule d'Euler} \text{Pour tout réel $x$ : } e^{ix} = \cos(x) + \sin(x) \text{Pour tout réel $x$} \text{Pour tout
```

Ils peuvent être référencés :

```
begin{property}{}{cov}
Soient $X$ et $Y$ deux variables aléatoires discrètes, définies sur un même espace
probabilisé, et admettant un moment d'ordre $2$. Si $X$ et $Y$ sont
indépendantes, alors $\cov\pth{X,Y} = 0$.

end{property}

La propriété \cref{properties:cov} permet de prouver que, si $X$ et $Y$ sont deux
variables aléatoires discrètes définies sur un même espace probabilisé et admettant
un moment d'ordre $2$, alors $X+Y$ admet une variance et $$V\pth{X+Y} = V\pth{X} +
V\pth{Y}$$$
Propriété 2.3
```

Soient X et Y deux variables aléatoires discrètes, définies sur un même espace probabilisé, et admettant un moment d'ordre 2. Si X et Y sont indépendantes, alors Cov(X,Y)=0.

La propriété Propriété 2.3 permet de prouver que, si X et Y sont deux variables aléatoires discrètes définies sur un même espace probabilisé et admettant un moment d'ordre 2, alors X+Y admet une variance et

$$V\left(X+Y\right)=V\left(X\right)+V\left(Y\right)$$

Voici les environnements de type théorème définis :

2.1 Théorèmes, propriétés, corollaires, lemmes

```
begin{theorem}{}{}

Ceci est un théorème.
| hend{theorem}
```

Théorème 2.4 Ceci est un théorème. \begin{property}{}{} Ceci est une propriété. 3 \end{property} Propriété 2.5 Ceci est une propriété. \begin{lemma}{}{} Ceci est un lemme 3 \end{lemma} **Lemme 2.6** Ceci est un lemme \begin{corollary}{}{} Ceci est un corollaire. \end{corollary} Corollaire 2.7 Ceci est un corollaire. 1 \begin{proof} Ceci est sa démonstration.

2.2 Définitions

■ Démonstration. Ceci est sa démonstration.

3 \end{proof}

```
| begin{definition}{}{}
| Ceci est une définition. |
| with the control of the co
```

2.3 Commandes

```
| begin{command}{}{}
| Ceci est une commande. |
| which is a command to comma
```

2.4 Exercices

```
| begin{exercise}{}{}
| Ceci est un exercice.
| begin{exercise}
| Exercice 2.10 |
| Ceci est un exercice.
```

```
| begin{correction}
| Et ceci est sa correction.
| a correction |
| Correction. Et ceci est sa correction.
```

```
| begin{example}
| Ceci est un exemple. |
| end{example}
| Exemple 2.11 - C |
| ci est un exemple. |
```

```
begin{method}{Montrer qu'une famille est libre}{}

Test.
lend{method}
```


3 Macros

3.1 Mathématiques

3.1.1 Macros

1 \$\itv{c}{c}{3}{4}\$	[3;4]
1 \$\itv{o}{c}{{3}}{{4}}\$]3;4]
1	$\left[\frac{3+\sqrt{15}}{5};4\right[$
1 \$\itv{o}{o}{3}{4}\$]3;4[
1	$\ u\ $
1	\overrightarrow{AB}
1 \$\conj{a+ib}\$	$\overline{a+ib}$
1 \$\comp{A}\$	\overline{A}

3.2 Ensembles

1	\$\setN\$	N
1	\$\setZ\$	\mathbb{Z}
1	\$\setD\$	
1	\$\setQ\$	Q
1	\$\setR\$	

3.2.1 Opérateurs

1	<pre>\$\cov\pth{X,Y}\$</pre>	$\mathrm{Cov}\left(X,Y ight)$		
1	% \vect\pth{e_1,e_2,e_3} \$	$\operatorname{Vect}\left(e_{1},e_{2},e_{3} ight)$		

4 Python

Pour utiliser python, il faut ajouter les lignes suivantes au préambule :

```
input{\templatesroot/imports/python/python}
login{pycode}
import sys
sys.path.insert(0, '<chemin_vers_texlab>/imports/python')
login{pycode}
```

```
1 \begin{pycode}
2 from sympy import Matrix, latex, symbols, S
g from linear_algebra.linear_system import System
x,y,z = symbols('x y z')
A = Matrix(3,3,[1,2,3,4,5,6,7,8,9])
_{7} X = Matrix(3,1,[x,y,z])
Y = Matrix(3,1,[4,5,-5])
syst = System(A,X,Y)
11 \end{pycode}
               \begin{align*}
12
                     \py{syst.to_latex()} & \iff \pyc{syst.transvection(2,1,-4)}
13
                          \pyc{syst.transvection(3,1,-7)}
14
                          \py{syst.to_latex()} \\
15
                                                  & \iff \pyc{syst.multiply(2, S(-1)/3)}
16
                          \pyc{syst.multiply(3,S(-1)/6)}
17
                          \py{syst.to_latex()} \\
18
                                                  & \iff \pyc{syst.transvection(3,2,-1)}
19
                          \py{syst.to_latex()}
               \end{align*}
21
                      \begin{cases} x + 2y + 3z = 4 \\ 4x + 5y + 6z = 5 \\ 7x + 8y + 9z = -5 \end{cases} \iff \begin{cases} x + 2y + 3z = 4 \\ -3y - 6z = -11 \\ -6y - 12z = -33 \end{cases} 
                                                             \iff \begin{cases} x + 2y + 3z = 4 \\ y + 2z = \frac{11}{3} \\ y + 2z = \frac{11}{2} \end{cases}
\iff \begin{cases} x + 2y + 3z = 4 \\ y + 2z = \frac{11}{3} \\ 0 = \frac{11}{6} \end{cases}
```

5 Tableaux de variation

Voir ce tutoriel.

```
1 \begin{tikzpicture}
2   \tkzTabInit[color]{$x$ / 1 , $f'(x)$ / 1, $f$ / 2} % Lignes (nom / taille)
3   {$0$, $2$, $5$, $+\infty$}
4   \tkzTabLine{z, -, d, h, d, +, }
5   \tkzTabVar{+ / $13$, -DH / $4$, D- / $\frac{\pi}{12}$, + / 15 }
6   \tkzTabVal{3}{4}{0.5}{$\frac{\sqrt{3}}{2}$}{$7$}
7 \end{tikzpicture}
```

x	0	2	5	$\frac{\sqrt{3}}{2}$	$+\infty$	
f'(x)	0 -			+		
f	13	4	$\frac{\pi}{12}$	_7	15	