PÁGINA 138

PRACTICA

Interpretación de gráficas

1 Pepe y Susana han medido y pesado a su hijo, David, cada mes desde que nació hasta los 21 meses. Estas son las gráficas de la longitud y del peso de David en función de la edad:

- a) ¿Cuánto medía y pesaba David cuando nació?
- b) ¿Cuánto creció David los seis primeros meses? ¿Y de los seis a los veintiún meses? ¿En qué meses fue mayor su crecimiento?
- c) ¿Cuánto aumentó de peso David los dos primeros meses? ¿Y del mes 12 al mes 18?
- d) ¿Cuánto pesaba David cuando medía 80 cm? ¿Qué edad tenía entonces?
- a) Al nacer, David medía 52 cm y pesaba 3,5 kg.
- b) En los seis primeros meses creció, aproximadamente, 20 cm.
 - De los meses 6 a 21 creció, aproximadamente, 18 cm.
 - Su crecimiento fue mayor en los dos primeros meses.
- c) Los dos primersos meses aumentó su peso 3,5 kg.
 - Del mes 12 al mes 18 aumentó su peso, aproximadamente, 400 gramos.
- d) Cuando David medía 80 cm tenía 11 meses y a esa edad pesaba 13,2 kg.

Pág. 2

2 DE Esta es la gráfica de la evolución de la temperatura de un enfermo:

- a) ¿Cuánto tiempo estuvo en observación?
- b) ¿En qué día la temperatura alcanza un máximo? ¿Y un mínimo?
- c) ¿En qué intervalos de tiempo crece la temperatura y en cuáles decrece?
- d) ¿Qué tendencia tiene la temperatura?
- e) Elabora un pequeño informe interpretando tus resultados.
- a) Estuvo en observación 7 días.
- b) El segundo día la temperatura alcanzó un máximo.
 El quinto día la temperatura alcanzó un mínimo.
- c) La temperatura crece en $(1, 2) \cup (5; 5,5)$. La temperatura decrece en $(2; 2,5) \cup (3,5; 5)$.
- d) La temperatura tiende a estabilizarse en torno a los 36,5 °C.
- e) Durante el primer día de observación, la temperatura del paciente se mantiene constante en 36,5 °C. A lo largo del segundo día sube hasta alcanzar, al final del día, una temperatura máxima de 39,5 °C. El tercer día, comienza a bajar hasta situarse en 39 °C a la mitad del día. Permanece constante en esos 39 °C hasta mediodía del día siguiente (cuarto día de la observación). A partir de este momento baja paulatinamente hasta que se sitúa, al final del quinto día, en una temperatura mínima de 36 °C. En el inicio del día sexto, la temperatura sube medio grado y, a partir de ahí, se estabiliza en 36,5 °C hasta el final del séptimo día, momento en el que finaliza la observación.
- 3 —— Hemos sacado de la nevera un vaso con agua y lo hemos dejado sobre la mesa de la cocina. Esta gráfica muestra la temperatura del agua en grados centígrados al pasar el tiempo.

Pág. 3

- a) ¿A qué temperatura está el interior de la nevera?
- b) ¿A qué temperatura está la habitación?
- c) Imagina que en ese mismo momento sacamos del microondas un vaso con agua a 98 °C y lo dejamos sobre la mesa. Dibuja una gráfica aproximada que muestre la temperatura del agua en este segundo vaso al pasar el tiempo.
- a) El interior de la nevera está a 2 °C.
- b) La habitación está a 22 °C.

Gráficas, fórmulas y tablas

4 Un nadador se deja caer desde un trampolín. Su entrenador ha medido el espacio que recorre cada cuatro décimas de segundo mediante un método fotográfico. Obtiene la siguiente tabla:

TIEMPO (S)	0	0,4	0,8	1,2	1,6	2	2,4
ESPACIO (m)	0	0,78	3,13	7,05	12,5	12,58	16,6

El nadador se ha detenido a los 17 metros.

- a) Representa la gráfica espacio-tiempo.
- b) ¿Sabrías decir en qué momento entró en el agua?
- c) ¿Qué velocidad estimas que llevaba en el momento de entrar en el agua?
- d) ¿Qué altura tiene el trampolín?

Pág. 4

b) Entró en el agua a los 1,6 segundos de haber saltado.

c) Estimamos la velocidad calculando la T.V.M. en el intervalo [1,2; 1,6]:

T.V.M. [1,2; 1,6] =
$$\frac{12,5-7,05}{1,6-1,2} = \frac{5,45}{0,4} = 13,625$$

Estimamos que la velocidad era de 13,625 m/s.

d) El trampolín tiene unos 12 m de altura.

PÁGINA 139

5 Representa la función $y = x^3 - 3x + 2$ definida en [-2, 3]. Para ello, completa la tabla:

x	-2	-1	0	1	2	3
у						

¿Cuál es el recorrido de la función?

x	-2	-1	0	1	2	3
y	0	4	2	0	4	20

6 Tres deportistas han estado nadando durante media hora. Su entrenador ha medido las distancias recorridas cada 5 minutos y ha obtenido los siguientes datos:

TIEMPO (min)	5	10	15	20	25	30
DISTANCIA A (m)	95	235	425	650	875	1 100
DISTANCIA B (m)	250	500	750	1 000	1 250	1 500
DISTANCIA C (m)	360	710	1 020	1 300	1 490	1 600

a) Dibuja la gráfica que relaciona la distancia y el tiempo de cada nadador y descríbelas.

Pág. 5

- b) ¿Ha habido algún adelantamiento durante la media hora?
- c) Calcula la velocidad media de cada uno en todo el recorrido.
- d) ¿Cuál es el dominio y el recorrido de cada una de las tres funciones?

b) No ha habido ningún adelantamiento.

c)
$$V_m(A) = \frac{1100}{30} = 36,67 \text{ m/min}$$

$$V_m$$
 (B) = $\frac{1500}{30}$ = 50 m/min

$$V_m$$
 (C) = $\frac{1600}{30}$ = 53,3 m/min

d)
$$Dom A = Dom B = Dom C = [0, 30]$$

$$Rec A = [0, 1100]$$

$$Rec B = [0, 1500]$$

$$Rec C = [0, 1600]$$

- 7 Cuando una persona sana toma 50 g de glucosa en ayunas, su glucemia (% de glucosa en la sangre) se eleva, en una hora aproximadamente, desde 90 mg/dl, que es el nivel normal, hasta 120 mg/dl. Luego, en las 3 horas siguientes, disminuye hasta valores algo por debajo del nivel normal, y vuelve a la normalidad al cabo de 5 horas.
 - a) Representa la curva de glucemia de una persona sana.
 - b) Di cuál es su máximo, su mínimo y explica su tendencia.

b) El máximo es de 120 mg/dl al cabo de 1 h de iniciar la toma. El mínimo está ligeramente por debajo de 90 mg/dl y se alcanza a las 4 h de iniciar la toma. La tendencia de la función es 90 mg/dl (tener la glucemia en un nivel normal).

Pág. 6

8 La intensidad del sonido de un foco sonoro es menor a medida que nos alejamos de él.

a) Representa la intensidad del sonido en función de la distancia al foco sonoro.

b) ¿Cuál es la tendencia?

a) Una posible gráfica es:

b) La tendencia de la función es cero: la intensidad del sonido es prácticamente nula a medida que nos alejamos del foco.

PIENSA Y RESUELVE

9 Observa esta función dada gráficamente:

Calcula su T.V.M. en los intervalos [0, 4], [0, 5], [5, 7], [0, 7], [-4, 0] y [-4, -2].

Copia en tu cuaderno la gráfica y dibuja en cada caso el segmento del cual estás hallando la pendiente.

T.V.M.
$$[0, 4] = \frac{3+1}{4} = 1$$

T.V.M.
$$[0, 5] = \frac{4+1}{5} = 1$$

T.V.M.
$$[5, 7] = \frac{0-4}{7-5} = -2$$

T.V.M.
$$[0, 7] = \frac{0+1}{7} = \frac{1}{7}$$

T.V.M.
$$[-4, 0] = \frac{-1-6}{0+4} = \frac{-7}{4}$$

T.V.M.
$$[-4, -2] = \frac{0-6}{-2+4} = -3$$

Pág. 7

10 Halla la T.V.M. de la función:

$$y = 3x^3 + 9x^2 - 3x - 9$$

en los intervalos [-2, 0], [-1, 0], [-3, -1], [0, 1].

T.V.M.
$$[-2, 0] = \frac{-9 - 9}{0 + 2} = -9$$
 T.V.M. $[-1, 0] = \frac{-9 - 0}{0 + 1} = -9$

T.V.M.
$$[-1, 0] = \frac{-9 - 0}{0 + 1} = -9$$

T.V.M.
$$[-3, -1] = \frac{0-0}{-1+3} = 0$$
 T.V.M. $[0, 1] = \frac{0+9}{1} = 9$

T.V.M.
$$[0, 1] = \frac{0+9}{1} = 9$$

11 ___ La posición de una partícula viene dada por la función:

$$s = \frac{1}{2}(t^4 - 8t^3 + 18t^2)$$

Calcula la velocidad media de dicha partícula en los intervalos [2, 4], [1, 2], [1, 3], [2, 3].

T.V.M.
$$[2, 4] = \frac{16 - 12}{4 - 2} = 2$$

T.V.M.
$$[1, 2] = \frac{12 - 11/2}{1} = \frac{13}{2}$$

T.V.M. [1, 3] =
$$\frac{27/2 - 11/2}{2}$$
 = 4

T.V.M. [2, 3] =
$$\frac{27/2 - 12}{1} = \frac{3}{2}$$

12 De cada una de las siguientes funciones di:

- a) En qué intervalos es creciente y en cuáles es decreciente.
- b) Cuáles son sus máximos y sus mínimos relativos.

- a) ① crece en $(-2, 2) \cup (4, +\infty)$. Decrece en $(-\infty, -2) \cup (2, 4)$.
 - ① crece en $(-\infty, -3) \cup (0, 3)$. Decrece en $(-3, 0) \cup (3, 4) \cup (4, +\infty)$.
- b) (I) Mínimos relativos en los puntos (-2, 2) y (4, 2). Máximo relativo en el punto (2, 5).
 - (II) Mínimo relativo en el punto (0, -3). Máximos relativos en los puntos (-3, 2)y (3, 1).

PÁGINA 140

- 13 La gráfica adjunta describe el valor de una empresa desde que abrió. Responde:
 - a) ¿Cuál era su valor en el momento de la apertura?
 - b) ¿A cuánto se redujo su valor después de 4 meses?
 - c) ¿Cuál es la T.V.M. en el intervalo [4, 12]? Da el resultado en miles de euros por mes.
 - d) ;Cuál es la T.V.M. en [12, 14] y en [14, 20]?
 - e) Esta función tiene un máximo y dos mínimos relativos. Descríbelos.
 - f) ¿Cuál parece la tendencia de esta función para los próximos meses?
 - g) Haz una descripción global del valor de esta empresa en sus tres primeros años.

- a) El valor de la empresa en el momento de la apertura era de 600 000 €.
- b) Después de 4 meses su valor se redujo a 200 000 €.

c) T.V.M. [4, 12] =
$$\frac{1800000 - 200000}{12 - 4}$$
 = 200 000 €/mes

d) T.V.M. [12, 14] =
$$\frac{1600000 - 1800000}{14 - 12}$$
 = -100000 €/mes

T.V.M. [14, 20] =
$$\frac{2400000 - 1600000}{20 - 14}$$
 = 133 333 \in /mes

e) Máximo relativo en (12, 1800000)

Mínimos relativos en (4, 200 000) y (14, 1 600 000)

- f) Parece que el valor de la empresa, para los próximos meses, tiende a 2 600 000 €.
- g) El valor de la empresa tiene un brusco descenso en los cuatro primeros meses. A partir de aquí crece rápidamente durante 8 meses y tiene una ligera caída en los dos meses siguientes. A partir del mes 14.º crece rápidamente durante otros 6 meses y después cada vez más despacio. Su precio se aproxima a 2 600 000 €.

Pág. 9

14 ___ ¿Es periódica esta función? ¿Cuál es su periodo?

Averigua los valores de la función en los puntos de abscisas x = 1, x = 3, x = 20, x = 23 y x = 42.

La función es periódica de periodo 4.

$$f(1) = 2$$
; $f(3) = 2.5$; $f(20) = f(0) = 1$; $f(23) = f(3) = 2.5$; $f(42) = f(2) = 2.5$

15 Continúa esta gráfica sabiendo que se trata de una función periódica. Di cuál es su periodo.

Su periodo es 3,5.

16 Averigua si los puntos A(0,3), B(1,5) y C(-1,1) pertenecen a la gráfica de la función:

$$y = 3x^2 - x + 3$$

$$A(0, 3)$$
 $x = 0$ $\rightarrow y = 3 \cdot 0^2 - 0 + 3 = 3$

Sí pertenece.

$$B(1, 5)$$
 $x = 1$ $\rightarrow y = 3 \cdot 1^2 - 1 + 3 = 5$

Sí pertenece.

$$C(-1, 1)$$
 $x = -1$ $\rightarrow y = 3 \cdot (-1)^2 - (-1) + 3 = 7$

No pertenece

Los puntos A y B pertenecen a la función. El C, no

17 Observa la gráfica de la función y responde:

Pág. 10

- a) ¿Cuáles son su dominio de definición y su recorrido?
- b) ¿Tiene máximo y mínimo relativos? En caso afirmativo, ¿cuáles son?
- c) ¿Cuáles son los puntos de corte con los ejes?
- d) ¿En qué intervalos es la función creciente y en cuáles es decreciente?
- a) Dominio = [-4, 4). Recorrido = [-2, 4].
- b) Tiene un máximo relativo en el punto (-2, 4) y un mínimo relativo en (3, -2).
- c) Corta a los ejes en los puntos (0, 2) y (1, 0).
- d) Crece en $(-4, -2) \cup (3, 4)$. Decrece en (-2, 3).
- **18** \square a) Calcula la T.V.M. de la función y = 2x 3 en los intervalos [0, 1], [5, 6], [1, 5], [0, 7].
 - b) Observa que en todos los intervalos el valor obtenido es igual. ¿Con qué elemento característico de la recta coincide ese valor?
 - c) Generaliza completando la frase:
 - "En las funciones lineales, la T.V.M. en cualquier intervalo es igual a

a) T.V.M.
$$[0, 1] = \frac{-1+3}{1} = 2$$
 T.V.M. $[5, 6] = \frac{9-7}{1} = 2$

T.V.M.
$$[5, 6] = \frac{9-7}{1} = 2$$

T.V.M.
$$[1, 5] = \frac{7+1}{5-1} = 2$$
 T.V.M. $[0, 7] = \frac{11+3}{7} = 2$

T.V.M.
$$[0, 7] = \frac{11+3}{7} = 2$$

- b) Coincide con la pendiente de la recta y = 2x 3.
- c) En las funciones lineales, la T.V.M. en cualquier intervalo es igual a su pendiente.
- 19 Dos compañías telefónicas, A y B, tienen diferentes tarifas. Observa las gráficas y contesta:

- a) ¿Qué dos variables se relacionan en estas gráficas? ¿Cuál es la independiente y cuál la dependiente?
- b) Di si cada una de estas funciones es continua. Escribe los puntos de discontinuidad si es que los hay.

Pág. 11

- c) Di cuánto vale una llamada de 3 minutos con cada una de las dos compañías. ¿Y una de media hora?
- a) Tiempo: variable independiente.

Coste: variable dependiente.

b) A es discontinua en los puntos de abscisas 1, 2, 3, 4, 5, 6, 7,...

B es continua.

c) Tanto en *A* como en *B* el punto de abscisa 3 es (3; 0,5). Por tanto, en ambas compañías el coste de una llamada de 3 min es de 0,50 €.

Llamadas de media hora:

En A, $0.2 + 0.1 \cdot 30 = 3.20 \in$.

En B, cada 3 min aumenta $0.4 \in$. Por tanto, en 30 min:

$$0,1 + 4 = 4,10 \in$$