CENG 102 Project Submission Sheet

Plant for Hydrodealkylation of Toluene to Benzene

Team Name:	

Student ID #	Project Contribution
	(General or Specific)
	Student ID #

If groups have members from both CENG 100 sections, please clarify in the table above which section (professor) you have!

Problem #		Solution
1	Hydrogen Compression: Work & Final Temperature	Work (kW): Temperature (K):
2	Hydrogen Non-idealities	Residual 1 (J/mol): Residual 2 (J/mol): New Work (kW): Ideal gas? Why or why not?
3	Toluene Heating (kW)	Q =
4	Toluene Compression	Work (kW): Temperature (K)
5	Toluene Vapor Non-Ideality	Residual 1 (J/mol): Residual 2 (J/mol): New Work (kW): Ideal gas? Why or why not?
6	Mixing Temperature (K)	T =
7	Pre-Reactor Compression	Work (kW): Temperature (K)
8	Pre-Reactor Heating (kW)	Q =

9	Reactor Heat (kW)	Q =
10	Adiabatic Temperature	T =
11	Influence on Equilibrium	a.) K ₁ =
12	Pre-Separation Pressure Reduction	a.) T (K) = b.) W (kW) = T (K) =
13	Flash I (1) = Toluene; (2) = Hydrogen (3) = Benzene; (4) = Methane; (5) = Biphenyl	V (mol/s) = L (mol/s) = $x_1 = $ $y_1 = $

	R = recovery fraction	x ₂ = y ₂ =
		x ₃ = y ₃ =
		x ₄ = y ₄ =
		x ₅ = y ₅ =
		$R_{2,V} = \underline{\qquad} \qquad R_{4,V} = \underline{\qquad}$
		$R_{1,L} = \underline{\qquad} R_{3,L} = \underline{\qquad}$
		$R_{5,L} = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$
14	Flash II (1) = Toluene; (2) = Hydrogen (3) = Benzene; (4) = Methane; (5) = Biphenyl	$V ext{ (mol/s)} = $ $L ext{ (mol/s)} = $ $x_1 = $ $y_1 = $ $x_2 = $ $y_2 = $ $x_3 = $ $y_3 = $ $x_4 = $ $y_4 = $ $x_5 = $ $y_5 = $ Benzene Purge (mol/s) = Value of Flash II:

15	Flash III (Ideal) (1) = Toluene; (2) = Biphenyl	a.) $x_{1} = \underline{\qquad} y_{1} = \underline{\qquad}$ $x_{2} = \underline{\qquad} y_{2} = \underline{\qquad}$ b.) $V \text{ (mol/s)} = \underline{\qquad}$ $L \text{ (mol/s)} = \underline{\qquad}$ c.) $P \text{ (bar)} = \underline{\qquad} y_{1} = \underline{\qquad}$ $V \text{ (mol/s)} = \underline{\qquad}$ $L \text{ (mol/s)} = \underline{\qquad}$
16	Flash III (Non-Ideal) (1) = Toluene; (2) = Biphenyl	a.) $x_{1} = \underline{\qquad} y_{1} = \underline{\qquad}$ $x_{2} = \underline{\qquad} y_{2} = \underline{\qquad}$ b.) $V \text{ (mol/s)} = \underline{\qquad}$ $L \text{ (mol/s)} = \underline{\qquad}$
17	Final Question: Value of Flash III	

	$W_1 = \underline{\qquad} W_2 = \underline{\qquad}$
	$W_3 = $ $W_4 = $
Extra Credit I: Compression with Inter-Stage Cooling	b.) All in K
	$T_{F1} = \underline{\hspace{1cm}} T_{F2} = \underline{\hspace{1cm}}$
	$T_{F3} = \underline{\hspace{1cm}} T_{F4} = \underline{\hspace{1cm}}$
	c.) All in kW
	$Q_1 = $ $Q_2 = $
	$Q_3 = $
Extra Credit II: Mixing Temperature with Residuals	T (K) =
Extra Credit III: Non-Ideal Flash Pressure	P (bar) = y ₁ = V (mol/s) = L (mol/s) =
	Compression with Inter-Stage Cooling Extra Credit II: Mixing Temperature with Residuals Extra Credit III: