INDR 371 Fall 2022 HOMEWORK 5

1. In Table 1, the locations of eight existing facility units and their weights are given.

Facility	a_i	b_i	W		
D1	2	3	5		
D2	4	4	10		
D3	3	5	8		
D4	1	3	7		
D5	2	6	6		
D6	4	6	10		
D7	1	5	6		
D8	5	5	5		
Table:1 Existing facility units					

- a. (15 pts) Solve the minisum location problem to determine the location of a new repair show to serve all these existing facilities.
- **b.** (15 pts) Solve the minimax location problem to determine the location of a fire department to serve all existing facilities and the new repair shop considered in part a.
- c. (20 pts) Now assume two fire stations will be placed, but the coordinates should be an integer (indicating the central locations in a grid partition). Formulate a linear programming model that can be used to find the locations of the new fire stations.

2. (50 pts) Consider the layout planning problem over a three-by-four grid (shown in Figure 1) where the facility units each require a single cell in the grid.

Α	В	С	D
Е	F	G	Н
ı	J	К	L

Figure 1: grid layout

The flow between the five facility units we need to place is given in Table 2.

	D1	D2	D3	D4	D5
D1	-	100	50	0	0
D2	75	-	50	50	25
D3	100	25	-	0	0
D4	0	0	50	-	50
D5	50	0	50	25	-
Table 2: Flow amounts between facility units					

- Table 2: Flow amounts between facility units
- a. (20 pts) Consider the following limitations and write a quadratic assignment formulation to solve the layout planning problem.
- D1 and D4 cannot share an edge
- D1, D2, and D5 cannot be placed in grids A,D,L, or I.
- D3 cannot be placed in grid locations other than A,D,L, and I.
- b. (30 pts) Solve the model you produced in part a with your favorite math solver (10 pts bonus for the solution with the minimum solution value).