Expected Utility

Wang Wei Mun

Lee Kong Chian School of Business Singapore Management University

October 7, 2018

Decision Theory

- Aim is to develop framework for theory of decision-making process, especially when outcome is random
- Interpret lottery as investment with two or more potential fixed outcomes, as represented by probability distribution
- Preference: $P^* \succeq P$ when P^* is preferred to P
- Strict preference: $P^* \succ P$ when $P^* \succeq P$ and $P \npreceq P^*$
- Indifference: $P^* \sim P$ when $P^* \succeq P$ and $P \succeq P^*$

Preference Relation

- Completeness: \succeq is **complete** when either $P^* \succeq P$ or $P \succeq P^*$ (or both) for all lotteries P and P^*
- Transitivity:

 is transitive when P**

 P* and P*

 P imply that P**

 P for all lotteries P, P* and P**
- If

 is complete and transitive binary relation, then it represents preference relation
- Let H be real-valued utility function that assigns value of H(P) to any lottery P
- If \succeq is preference relation, then it can represented by utility function: $P^* \succeq P$ iff $H(P^*) \ge H(P)$ for all P and P^*

Expected Utility

Continuity

- So far, (simple) lotteries where outcomes are fixed
- But what if you flip a coin to decide between two lotteries?
- Represents compound lottery where each of two possible outcomes is (simple) lottery
- More generally, if $\lambda \in [0,1]$, then $\lambda P^{**} + (1-\lambda)P$ is compound lottery with probability λ of receiving P^{**} and probability $(1-\lambda)$ of receiving P
- Continuity: \succeq is **continuous** if when $P^{**} \succeq P^* \succeq P$, there exists some $\lambda \in [0,1]$ such that $P^* \sim \lambda P^{**} + (1-\lambda)P$

Independence

• Independence: let P and P^* be any two lotteries with $P^* \succeq P$, then for all $\lambda \in (0,1]$ and all other lotteries P^{**} :

$$\lambda P^* + (1 - \lambda) P^{**} \succeq \lambda P + (1 - \lambda) P^{**}$$

- Preference of P* over P is independent of other potential outcome in compound lottery
- Also known as substitution axiom or "no regret" axiom
- In reality, experimental evidence of systematic violations of independence axiom

Expected Utility

• Define **expected utility function** *V*:

$$V(P) = E[U(\tilde{x})]$$

- Here $E[\cdot]$ is expectation operator while \tilde{x} is random variable that represents probability distribution for lottery P
- Then *U* is **von Neumann–Morgenstern utility function**, which measures utility for individual outcomes
- If ≥ is continuous preference relation that satisfies independence axiom, then it can be represented by V:
 P* ≥ P iff V(P*) ≥ V(P) for all P and P*

Risk Aversion

- Suppose that lottery $\tilde{\epsilon}$ has probability p of gaining $\epsilon_+>0$ and probability 1-p of losing $\epsilon_-<0$
- ullet Fair lottery must have expected gain of $p\epsilon_+ + (1-p)\,\epsilon_- = 0$
- Suppose that investor is risk averse, in sense of being unwilling to accept fair lottery
- Then utility of investor's existing wealth W must exceed expected utility of accepting fair lottery:

$$U(W) = U(p(W + \epsilon_{+}) + (1 - p)(W + \epsilon_{-})) \ge E[U(W + \tilde{\epsilon})] = pU(W + \epsilon_{+}) + (1 - p)U(W + \epsilon_{-})$$

Hence risk aversion implies that utility function is concave

Risk Premium

• Define (absolute) **risk premium** π_a for fair lottery $\tilde{\epsilon}$ as

$$U(W - \pi_a) = E[U(W + \tilde{\epsilon})]$$

• Suppose that utility function is twice differentiable, and that $\tilde{\epsilon}$ is "small", so take Taylor series approximations:

$$U(W - \pi_a) \approx U(W) - \pi_a U'(W)$$

$$E[U(W + \tilde{\epsilon})] \approx E\left[U(W) + \tilde{\epsilon}U'(W) + \frac{1}{2}\tilde{\epsilon}^2 U''(W)\right]$$

$$= U(W) + \frac{1}{2}\sigma_{\epsilon}^2 U''(W)$$

Absolute Risk Aversion

- Suppose that utility function is strictly increasing and marginal utility is strictly positive: U'(W) > 0, so investor will never be satiated
- Equate results to obtain expression for risk premium:

$$\pi_{\mathsf{a}} = -\frac{1}{2}\sigma_{\epsilon}^2 \frac{U''(W)}{U'(W)} = \frac{1}{2}\sigma_{\epsilon}^2 R_{\mathsf{a}}(W)$$

- Here $R_a(W) = -\frac{U''(W)}{U'(W)}$ is (Arrow-Pratt) measure (or coefficient) of absolute risk aversion
- If investor is risk averse, then utility function is concave, so $U''(W) \leq 0$ and $\pi_a \geq 0$

Relative Risk Aversion

• Define **relative risk premium** π_r for proportional lottery $\tilde{\epsilon}_r$:

$$U(W - \pi_r W) = E[U(W + \tilde{\epsilon}_r W)]$$

Take Taylor series approximations and equate results:

$$\pi_r = -\frac{1}{2}\sigma_{\epsilon_r}^2 W \frac{U''(W)}{U'(W)} = \frac{1}{2}\sigma_{\epsilon_r}^2 R_r(W)$$

• Here $R_r(W) = -W \frac{U''(W)}{U'(W)} = WR_a(W)$ is (Arrow-Pratt) measure (or coefficient) of relative risk aversion

Quadratic Utility

Quadratic utility function:

$$U(W)=W-\frac{1}{2}bW^2, \quad b>0$$

- Marginal utility is U'(W) = 1 bW, so utility function is increasing for $W \le 1/b$ and decreasing otherwise
- Absolute risk aversion is increasing:

$$R_a(W) = \frac{b}{1 - bW}$$
 \Rightarrow $\frac{dR_a(W)}{dW} = \frac{b^2}{(1 - bW)^2} > 0$

Exponential Utility

Exponential utility function:

$$U(W) = -e^{-bW}, \quad b > 0$$

- Utility function is strictly increasing, and marginal utility is strictly positive: $U'(W) = be^{-bW} > 0$
- Utility function is strictly concave, and marginal utility is strictly decreasing: $U''(W) = -b^2 e^{-bW} < 0$
- Absolute risk aversion is constant: $R_a(W) = b$
- Relative risk aversion is increasing: $R_r(W) = bW$

Power Utility

Power utility function:

$$U(W) = \frac{1}{1-\gamma}W^{1-\gamma}, \quad \gamma > 0$$

- Utility function is strictly increasing, and marginal utility is strictly positive: $U'(W) = W^{-\gamma} > 0$
- Utility function is strictly concave, and marginal utility is strictly decreasing: $U''(W) = -\gamma W^{-(\gamma+1)} < 0$
- Absolute risk aversion is decreasing: $R_a(W) = \frac{\gamma}{W}$
- Relative risk aversion is constant: $R_r(W) = \gamma$

- Let \tilde{R}_p be (one plus) random return on investor's portfolio, so that end-of-period wealth is given by $\tilde{W}=W_0\tilde{R}_p$
- WLOG, set $W_0 = 1$, and take Taylor series expansion of utility function around mean return of μ_p :

$$U(\tilde{R}_{p}) = U(\mu_{p}) + U'(\mu_{p}) \left(\tilde{R}_{p} - \mu_{p}\right) + \frac{1}{2}U''(\mu_{p}) \left(\tilde{R}_{p} - \mu_{p}\right)^{2} + \cdots$$

$$\Rightarrow E\left[U(\tilde{R}_{p})\right] = U(\mu_{p}) + \frac{1}{2}\sigma_{p}^{2}U''(\mu_{p}) + \cdots$$

- If utility function is quadratic, then expected utility only depends on mean and variance of return
- Implies satiation and increasing absolute risk aversion
- For other preferences, expected return will also depend on higher moments of return (such as skewness and kurtosis)
- Unless return distribution only depends on mean and variance, and is stable under addition
- Only stable distribution with finite variance is normal
- But normal distribution is unbounded from below, which violates limited liability

• Let $\tilde{x} = \frac{R_p - \mu_p}{\sigma_p}$ be standard normal variable, so expected utility of end-of-period wealth:

$$E\left[U\left(\tilde{R}_{p}\right)\right] = \int_{-\infty}^{\infty} U(\mu_{p} + x\sigma_{p}) \,\phi(x) \,dx$$

- Here $\phi(\cdot)$ is standard normal probability density function
- If investor is not satiated, then increase in expected return will also increase expected utility:

$$\frac{\partial}{\partial \mu_p} E\Big[U\Big(\tilde{R}_p\Big)\Big] = \int_{-\infty}^{\infty} U'(\mu_p + x\sigma_p) \,\phi(x) \,dx > 0$$

• If investor is risk averse, then marginal utility is decreasing:

$$U'(\mu_p + x\sigma_p) < U'(\mu_p - x\sigma_p)$$
 for $x > 0$

 Standard normal distribution is symmetric around zero, so increase in standard deviation of return will reduce expected utility for risk-averse investor:

$$\begin{split} \frac{\partial}{\partial \sigma_{p}} E\Big[U\Big(\tilde{R}_{p}\Big)\Big] &= \int_{-\infty}^{\infty} U'(\mu_{p} + x\sigma_{p}) \, x\phi(x) \, dx \\ &= \int_{0}^{\infty} \Big(U'(\mu_{p} + x\sigma_{p}) - U'(\mu_{p} - x\sigma_{p})\Big) \, x\phi(x) \, dx < 0 \end{split}$$

Indifference Curve - Part 1

- What is shape of **indifference curve**, which represents combinations of (μ_p, σ_p) with same expected utility?
- Let P_1 and P_2 be two portfolios that lie on same indifference curve: $E\left[U\left(\tilde{R}_1\right)\right] = E\left[U\left(\tilde{R}_2\right)\right] = \overline{U}$
- Let P_3 be any convex combination of P_1 and P_2 : $\tilde{R}_3 = w\tilde{R}_1 + (1-w)\tilde{R}_2$, where $w \in [0,1]$
- P_3 lies to left of line joining P_1 and P_2 in mean–std dev space:

$$\mu_{3} = w\mu_{1} + (1 - w)\mu_{2}$$

$$\sigma_{3}^{2} = w^{2}\sigma_{1}^{2} + 2w(1 - w)\rho_{12}\sigma_{1}\sigma_{2} + (1 - w)^{2}\sigma_{2}^{2}$$

$$\Rightarrow \sigma_{3} \leq w\sigma_{1} + (1 - w)\sigma_{2}$$

Indifference Curve - Part 2

• If investor is risk averse, then utility function is concave:

$$U\Big(\tilde{R}_3\Big) = U\Big(w\tilde{R}_1 + (1-w)\,\tilde{R}_2\Big) \ge wU\Big(\tilde{R}_1\Big) + (1-w)\,U\Big(\tilde{R}_2\Big)$$

• Hence P_3 offers higher expected utility than P_1 and P_2 :

$$E\Big[\mathit{U}\Big(\tilde{R}_{3}\Big)\Big] \geq \mathit{wE}\Big[\mathit{U}\Big(\tilde{R}_{1}\Big)\Big] + (1-\mathit{w})\,E\Big[\mathit{U}\Big(\tilde{R}_{2}\Big)\Big] = \overline{\mathit{U}}$$

• P_3 lies to northwest of indifference curve containing P_1 and P_2 in mean–standard deviation space, so risk-averse investor has convex indifference curves

Indifference Curve - Part 3

 Expected utility is function of mean and standard deviation of return, so total derivative of equation for indifference curve:

$$dE\left[U\left(\tilde{R}_{p}\right)\right] = \frac{\partial}{\partial\mu_{p}}E\left[U\left(\tilde{R}_{p}\right)\right]d\mu_{p} + \frac{\partial}{\partial\sigma_{p}}E\left[U\left(\tilde{R}_{p}\right)\right]d\sigma_{p}$$

$$= 0$$

 Shows trade-off between risk and reward along indifference curve, and confirms that indifference curve has positive slope:

$$\frac{d\mu_{p}}{d\sigma_{p}} = -\frac{\partial}{\partial\sigma_{p}} E\Big[U\Big(\tilde{R}_{p}\Big)\Big] / \frac{\partial}{\partial\mu_{p}} E\Big[U\Big(\tilde{R}_{p}\Big)\Big] > 0$$