NSCAP Homework #4

Author: 0816146 韋詠祥

Part A. OSPF

Q1. Show how you implement the flooding algorithm.

由於題目要求只能透過前一次結果迭代,而非常見的動態調整、計算,因此決定透過分析的方式,以演算法解題的角度完成本次作業

首先是最終的 link_cost,每輪尋找兩個節點之間如果透過第三點轉送,是否能縮短距離。並考慮到最壞狀況,執行 N 次保證找到最佳解

對於「以字典序排序的紀錄檔」,透過正常流程難以取得輸出,或是需要把程式碼寫得很 醜,因此經由分析發現,有相互連線的主機在第一輪一定會輸出,先做特例處理 對於後續輪次,很反常地說要以「中介節點」來排序,而非絕大多數情況所得到的以「最小 花費」排序,因此在演算法中將 for i, for j, for k 順序調換為 for k, for i, for j,以符合出題者心中的答案

從此題目要求的輸出,難以用正常方式解釋、實作,因此請參閱程式碼以便判讀正確性

Q2. What factor will affect the convergence time of OSPF?

在此題目中,因為 (1) 單純使用演算法模擬而非 Packet Tracer 等虛擬機、(2) 測資數量非常小,因此時間上不該出現顯著差異

在實際網路中,拓樸的型態(鏈狀、樹狀)、拓樸半徑、網通設備處理速度、OSPF timer 設定等,都會影響收斂速度

Part B. RIP

Q1. Show how you implement the distance vector exchange mechanism.

同上題,在實時更新的網路中,或是 Python 通常的模擬狀態下,並不會出現此題目要求的「全部跑完一輪再一起跑下一輪」,又因為所謂歷程檔要求過於特殊,因此難以在達成需求的同時寫出能學習網路運作知識的程式碼

雖然 RIP 通常不會對鏈路設定 cost,但假設有網管真的如此設定,那對於收斂後的連通性及路徑權重,理應與 OSPF 得到的結果一樣,因此採用相同的演算法實作

對於歷程檔,仿照數位電路實驗中使用 Verilog 寫 sequential circuit 的思維,於程式碼中定義 now_cost 與 next_cost 兩個變數, 只在每輪更新後寫進暫存器在每輪運算完畢時,檢查哪些節點的路徑有更新,並讓有更新過路徑權重的節點對鄰居廣播

Q2. What factor will affect the convergence time of RIP?

於模擬中,同上述理由,合理情境下速度不該出現顯著差異

實務上,也與上述相同,只要是愈複雜的網路、愈大的網路拓樸,通常就需要愈久的時間才能收斂完成