TUGAS KELOMPOK MINGGU 2 KALKULUS II

Kelompok 6:

CS Dipindal dengan CamScanner

- 1. G1401211010 Mutiara Andhini
- 2. G1401211024 Davina Rachmadyanti
- 3. G1401211035 Dinda Khamila Nurfatimah
- 4. G1401211037 Zulfa Hafizhoh
- 5. G1401211056 Naswa Nabila Zahrani
- 6. G1401211063 Alfiah Ayu Hapsari
- 7. G1401211070 Kaylila Kireinahana
- 8. G1401211086 Ubaidillah Al Hakim
- 9. G1401211107 Yasmin Azimah Wafa

SOAL LATIHAN
1. an = n
3n-1
o> Kekonvergenan
$\lim_{n\to\infty} \frac{n}{3n-1} \Rightarrow \text{bentuk } \infty$
n→0 3n-1 00
$= \lim_{n \to \infty} \frac{1}{3} = \frac{1}{3}$
n→∞ 3 3 1/
Barisan {an} konvergen he 1/3.
o> Kemonotonan
$a_{n}-a_{n+1}=n-n+1=n(3n+2)-(3n-1)(n+1)$
3n-1 3(n+1)-1 3n-1 3n+2 (3n-1)(3n+2)
$= 3n^2 + 2n - 3n^2 - 2n + 1 = 1 > 0$
$9n^2 + 3n - 2$ $9n^2 + 3n - 2$
an > anti, maka barisan monoton turun

(n+1)3				-		•	
lim N3+3N2+3	n H lim 3	n2+6n+3	냌	lim .	6n+6	= 1	Konvergen
n→∞ (nt1)3	N-00	3 (ntl)2	8	N≠00	6 (nt1)		menuju
Kemonotonan	u = n3+9	50° +30	٧ =	(ntt)) 3		
an < anti	dv = 3n2-		dV :	3(11	1)2		2 6
Pembuktian : a'	(x) = (BU+	6n+3)(n+1)	3-1	3 (1+1)z)(U3+31	12+31)	
		; ((n)	1)3)3	_		
	= (302+6	n+3)(n3+3n2	+ 3n t	1)-(3 (102+211+	1))(13-	3n2+3n)
				1117			
7.	= 1302+	6n +8) ((n3+	1302	+3n+1)-	- (n3+3n+	3n)	
				n+1)6			
tast-n	= 1	P)4 >0	n n	aik .			
	(III	111	-	-		-	

3). an = cos (nx)	* Kemonotonan
n	TOSMA - COS (n+1)A
=) -1 \(\perp \cosn \pi \leq 1\)	1 11
$-1 \leq tosn\pi \leq \bot$	- (n+1) cosmo - n cos (n+1) n
n n n	$n^2 + n$
	=) tidak naik dan
1 lim _ 1 = 07 konvergen	tidak turun
nto n 9 ke	
lim 1 = 0 J 0	
n-ra n	

(4)
$$a_{n} = e^{-n} \cdot \sin(n)$$

$$= \lim_{n \to \infty} (e^{-n} \cdot \sin(n))$$

$$= \lim_{n \to \infty} (\frac{\sin(n)}{e^{n}})$$

$$= 0 \quad (\text{konvekeaen})$$

$$\begin{array}{ccc}
\Delta n - \Delta_{n+1} &= \left(e^{-n} \sin n\right) - \left(e^{-n+1} \cdot \sin (n+1)\right) \\
&= \frac{e \sin(n)}{e^{n+1}} & > 0
\end{array}$$

• kekonvergenan

• kemonotonan

$$\lim_{n \to \infty} \frac{1}{n^3} = 0$$
• $\frac{\partial n}{\partial n+1} = \frac{1}{(n+1)^3}$

$$\frac{\partial n}{\partial n+1} = \frac{[n+1]^3}{n^3}$$

$$= \frac{n^3 + 3n^2 + 3n + 1}{n^3} > 1 \text{ (Turun)}$$

$$\begin{array}{lll}
& \frac{1}{2^{2}} \cdot \frac{1}{2^{3}} \cdot \frac{1}{2^{4}} \cdot \dots \\
& \text{Un} = 0 \cdot \Gamma^{n-1} & \lim_{n \to \infty} \frac{1}{2^{n+1}} = 0 \text{ konvergen} \\
& = \frac{1}{2^{2}} \cdot \left(\frac{1}{2}\right)^{n-1} \\
& = \frac{1}{2^{2}} \cdot \frac{1}{2^{n-1}} \\
& = \frac{1}{2^{2+n-1}} = \frac{1}{2^{n+1}}
\end{array}$$

7. Sin 1, 2 sin \(\frac{1}{2}\), 3 sin \(\frac{1}{3}\), 4 sin \(\frac{1}{4}\),

to rumus eksplisit

an : n Sin n i, n = 1, 2, 3, ...

to keton vergenan

lim n sin n - b ton \(\frac{1}{2}\) sin \(\frac{1}{2}\) = 1

an \(\frac{1}{2}\)

Sehingga an = n sin n konvergen

lee 1.

· 0.1, 0.11, 0.111, 0.1111,	
3	* Fe konvergenan
1 (1-0.1, 1-0.01,1-0.001,)	n-00 g (1-(10) n)
9	n-100 g
1 (1 - (10)")	1 (1-0)
3	3
* Rumus exsplisit	<u>l</u> (1)
1 [, - /1/1]	3
9 [1 (10)]	Konvergen menuju a