

Advanced Topics in Software Verification

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

Gerwin Klein, June Andronick, Miki Tanaka, Johannes Åman Pohjola

https://tutores.com
T3/2022

Content

程序代写代做 CS编程辅导

→ Foundations & Principles	
 Intro, Lambe natural deduction 	[1,2]
• Higher Orde 🔭 🔭 🔭 (part 1)	$[2,3^a]$
Term rewritile Term rewritil	[3,4]
→ Proof & Specification Techniques	
 Proof & Specification Techniques Inductively defined sets, rule induction 	[4,5]
 Datatype industipen primitipe of seursionam Help 	[5,7]
 General recursive functions, termination proofs 	$[7^b]$
 Proof automationilisant(part @)163.com 	[8]
 Hoare logic, proofs about programs, invariants 	[8,9]
• C verificatio QQ: 749389476	[9,10]
 Practice, questions, exam prep https://tutorcs.com 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

General Recursion

程序代写代做 CS编程辅导

- - primrec

WeChat: cstutorcs

- High expressiveness, termination proof may fail Assignment Project Exam Help
 - fun

Email: tutorcs@163.com

- → High expressiveness, tweakable, termination proof manual
 - function QQ: 749389476

fun — examples

程序代写代做 CS编程辅导

```
fun sep :: "'a ⇒ 'a 🗒
where
   "sep a (x # y # 🔳 💢 🗗 a # sep a (y # zs)" |
   "sep a xs = xs"
fun ack :: "nat ⇒ natssignament Project Exam Help
where
   "ack 0 n = Suc n Email: tutorcs@163.com
   "ack (Suc m) 0 + @ck7#9389476
   "ack (Suc m) (Suc n) = ack m (ack (Suc m) n)"
                  https://tutorcs.com
```

fun

程序代写代做 CS编程辅导

- → More permissive t
 - pattern mat
 parameters

 - reads equation tially like in Haskell (top to bottom)
 - proves termination automatically in many cases (tries lexicog we lith arder tutores
- → Generates more theorems than the primeet Exam Help
- → May fail to prove termination:
 - use function (sequential) instead
 - allows you to prove termination manually
 - https://tutorcs.com

fun — induction principle

程序代写代做 CS编程辅导

- → Each fun definitic an induction principle
- → For each equation show P holds for P holds for each recursive call on rhs
- → Example sep.induct: WeChat: cstutorcs $\bigwedge a \ w. \ P \ a \ [w]$ Assignment Project Exam Help $\bigwedge a \times y \ zs. \ P \ a \ (y\#zs) \Longrightarrow P \ a \ (x\#y\#zs);$
 - $\blacksquare \Rightarrow P \text{ a xs}$

Email: tutorcs@163.com

OO: 749389476

Termination

程序代写代做 CS编程辅导 Isabelle tries to prove termination automatically

- → For most function swith a lexicographic termination relation.
- → Sometimes not ⇒ Sometimes n
- → You can prove termination separately.

```
function (sequential) divisions function (sequential)
quicksort [] = []
quicksort (x \# xs) = quicksort | mentx Project | Q x | Q q I del sort
[v \leftarrow xs.x < v]
by pat_completeness a Finail: tutorcs@163.com
termination
                        OO: 749389476
by (relation "measure length") (auto simp: less_Suc_eq_le)
```

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

How does fun/function work?

程序代写代做 CS编程辅导

Recall **primrec**:

- → defined one recurs or per datatype D
- \rightarrow inductive definition $(x, f x) \in D_{-rel}$
- \rightarrow prove totality: $\forall x = 0$, $(x,y) \in D_rel$
- \rightarrow prove uniqueness: $(x, y) \in D_rel \Rightarrow (x, z) \in D_rel \Rightarrow y = z$
- \rightarrow recursion operator for datatype D_rec , defined via THE.
- → primrec: apply dataxing requisio Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

How does fun/function work?

程序代写代做 CS编程辅导

Similar strategy for f

- \Rightarrow a new inductive degree and f each fun f
- \rightarrow extract recursion f equations in f
- \rightarrow define graph f_re \bigcirc define graph f_re \bigcirc define graph f_re
- → prove totality (= termination) WeChat: cstutorcs
- → prove uniqueness (automatic)
- → derive original equations from Pebject Exam Help

→ export induction scheme from f_rel

Email: tutorcs@163.com

QQ: 749389476

How does fun/function work?

程序代写代做 CS编程辅导

function can separat

- → skip proof of tota
- \rightarrow instead derive equilibrium instead derive e
- → similarly, conditiol and a principle

- → the part that can Assignment Prities many steplelp
- \rightarrow termination = $\forall x. \ x \in f_dom$
- → still have conditional still have conditio

OO: 749389476

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Proving Termination

程序代写代做 CS编程辅导

termination fun_na

 $\forall x. \ x \in fun_name_dc$

Three main proof me

→ lexicographic_order (default tried by fun)

→ size_change (automated translation to simpler size-change graph 1)

→ relation R (manual proof via well-founded relation).
Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

¹C.S. Lee, N.D. Jones, A.M. Ben-Amram,

The Size-change Principle for Program Termination, POPL 2001.

Well Founded Orders

程序代写代做 CS编程辅导

Definition

$$<_r$$
 is well founded under unded induction holds $\operatorname{wf}(<_r) \equiv \forall P. \ (\forall x) \quad \exists x.P \ y) \longrightarrow P \ x) \longrightarrow (\forall x.P \ x)$

Well founded induction rule:

$$\frac{\text{wf}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeChat}}(<_r)^{\text{WeCha$$

Assignment Project Exam Help

Alternative definition (equivalent) @ 163.com

there are no infinite descending chains, or (equivalent): every nonempty set has a minimal element wrt $<_r$ min $(<_r)$ $Q \times$ $top (<math><_r$) $top (<math><_r$)

Well Founded Orders: Examples

程序代写代做 CS编程辅导

- → < on N is well founded indu mplete induction
- \rightarrow > and \leq on \mathbb{N} and \mathbb{N} and \mathbb{N} founded
- → $x <_r y = x$ dvd $y \stackrel{\blacksquare}{\wedge} x \not= 1$ on $\mathbb N$ is well founded the minimal elements are the prime numbers
- → $(a,b) <_r (x,y) = a <_1 x \lor a = x \land b <_2 y$ is well founded if $<_1$ and $<_2$ are Yells founded the Project Exam Help
- → $A <_r B = A \subset B \land \text{finite } B \text{ is well founded}$
- → ⊆ and ⊂ in general meil in the twents @ 163.com

More about well founded relations: Term Rewriting and All That https://tutorcs.com

Extracting the Recursion Scheme

程序代写代做 CS编程辅导

So far for termin at about the recursion scheme?

Not more as in **primrec**.

Examples:

→ fun fib where WeChat: cstutorcs
fib 0 = 1 |
fib (Suc 0) = 1 | Assignment Project Exam Help
fib (Suc (Suc n)) = fib n + fib (Suc n)
Email: tutorcs@163.com
Recursion: Suc (Suc n) ~> n, Suc (Suc n) ~> Suc n

 \rightarrow fun f where f x = (1:x749319647661se f (x - 1) * 2)

Recursion: $x \neq 0$ https://tutores.com

Extracting the Recursion Scheme

程序代写代做 CS编程辅导

Higher Order:

→ datatype 'a tree tree Branch 'a tree list

treemap fn (Leaf 🗐 🚾 (fn n) treemap fn (Branch I) = Branch (map (treemap fn) I) WeChat: csturorcs

Recursion: $x \in \text{set } l \Longrightarrow (\text{fn, Branch } l) \leadsto (\text{fn, x})$ Assignment Project Exam Help

How does Isabell Email: tutorgs @ 163 comion for the call?

OO: 749389476

Extracting the Recursion Scheme

程序代写代做 CS编程辅导

Recall rule **if_cong**: WeChat: cstutorcs

(if b then x else y) = (if c then u else v)

Email: tutorcs@163.com

Read: for transforming x, 7459389476 ontext information, for y use $\neg b$.

In fun_def: for recursions in x, the session x, the session x, and x is x, the session x, and x is x, the session x is x.

Congruence Rules for fun_defs

程序代写代做 CS编程辅导

WeChat: cstutorcs

Another example (higher-order):

 $[|xs=ys; \bigwedge x. x \in se^{k} sysignment Project Exampletes = map g ys$

Read: for recursive can fully sealed with elements of xs

QQ: 749389476

程序代写代做 CS编程辅导

Demo

WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476

Further Reading

程序代写代做 CS编程辅导

Alexander Krauss,

Automating Recursive Definitions and Termination Proofs in Higher-Order Logic.

PhD thesis, TU MuAishi,g20000nt Project Exam Help

https://www21.in_tum_de/okrawss/papers/krauss-thesis.pdf

QQ: 749389476

We have seen today ...

程序代写代做 CS编程辅导

- → General recursion
- → Induction over reconstant
- → How fun works
- → Termination, partial functions, congruence rules

 WeChat: cstutorcs

Assignment Project Exam Help

Email: tutorcs@163.com

QQ: 749389476