Analysis I und Lineare Algebra für Ingenieurwissenschaften Hausaufgabe 01 - Al-Maweri 13

Daniel Geinets (), Christopher Neumann (), Dennis Schulze (458415) November 13, 2020

Contents

Aufga	be	2																	2
a)																			2
b)																			2
Aufga	be	3																	2
a)																			2
b)																			2
Aufga	be	4																	3
a)																			3
,																			
,																			
Aufga	be	5																	5
a)																			5
,	a																		5
	b																		6
b)																			6
/	a																		6
	h																		

Aufgabe 2

a)

$$9x^4 + 12zyx^2 + 4z^2y^2$$

$$\Leftrightarrow (3x^2 + 2yz)^2$$

b)

$$x^{-2} - 36y^6$$

 $\Leftrightarrow (x^{-1} + 6y^3)(x^{-1} - 6y^3)$

c)

$$y^{-2} - 2 + y^2$$
$$\Leftrightarrow (y^{-1} - y)^2$$

Aufgabe 3

a)

```
 \begin{aligned} & (\{\,x,y\,\} \times \{\,blau,rot,gelb\,\}) \setminus \{\,(x,y,z),z,x,(y,rot),(x,blau,rot),(gelb,y)\,\} \\ \Leftrightarrow & (\{\,x,y\,\} \times \{\,blau,rot,gelb\,\}) \setminus \{\,(y,rot)\,\} \\ \Leftrightarrow & \{\,(x,blau),(x,rot),(x,gelb),(y,blau),(y,gelb)\,\} \end{aligned}
```

b)

$$[6,11] \setminus ([4,6] \setminus [5,7])$$

$$\Leftrightarrow [6,11] \setminus [4,5[$$

$$\Leftrightarrow [6,11]$$

 $\mathbf{c})$

$$([6,11] \setminus [4,6]) \setminus [5,7]$$

 $\Leftrightarrow]6,11] \setminus [5,7]$
 $\Leftrightarrow]7,11]$

d)

$$\{x \in \mathbb{R} \mid x^6 > 1\} \cap \{x \in \mathbb{R} \mid x \le 0\}$$

$$\Leftrightarrow (\mathbb{R} \setminus [-1, 1]) \cap] - \infty, 0]$$

$$\Leftrightarrow] - \infty, -1[$$

Aufgabe 4

a)

$$\frac{3x}{x-5} < 2, x \neq 5$$

Fall 1: $x - 5 > 0 \Rightarrow x > 5$

$$\frac{3x}{x-5} < 2$$

$$\Leftrightarrow 3x < 2(x-5)$$

$$\Leftrightarrow 3x < 2x - 10$$

$$\Leftrightarrow x < -10$$

Widerspruch zwischen x < -10 und x > 5. Fall 2: $x - 5 < 0 \Rightarrow x < 5$

$$\frac{3x}{x-5} < 2$$

$$\Leftrightarrow 3x > 2(x-5)$$

$$\Leftrightarrow 3x > 2x - 10$$

$$\Leftrightarrow x > -10$$

Damit gilt für die Lösungsmenge L

$$L =]-10, 5[$$

$$\frac{x^2 - 1}{6x - 9} \ge 1, x \ne \frac{3}{2}$$

Fall 1: $6x - 9 > 0 \Rightarrow x > \frac{3}{2}$

$$\frac{x^2 - 1}{6x - 9} \ge 1$$

$$\Leftrightarrow x^2 - 1 \ge 6x - 9$$

$$\Leftrightarrow x^2 - 6x + 8 \ge 0$$

$$\Leftrightarrow (x - 2)(x - 4) \ge 0$$

Subfall 1: $x-2 \ge 0$ und $x-4 \ge 0 \Rightarrow x \ge 4$ Subfall 2: $x-2 \le 0$ und $x-4 \le 0 \Rightarrow x \le 2$

Damit gilt für die Lösungsmenge ${\cal L}_1$ dieses Falls

$$L_1 =]\frac{3}{2}, 2] \cup [4, \infty[$$

Fall 2: $6x - 9 < 0 \Rightarrow x < \frac{3}{2}$

$$\frac{x^2 - 1}{6x - 9} \ge 1$$

$$\Leftrightarrow x^2 - 1 \le 6x - 9$$

$$\Leftrightarrow x^2 - 6x + 8 \le 0$$

$$\Leftrightarrow (x - 2)(x - 4) \le 0$$

Subfall 1: $x-2 \le 0$ und $x-4 \ge 0 \Rightarrow x \le 2$ und $x \ge 4$ (Widerspruch) Subfall 2: $x-2 \ge 0$ und $x-4 \le 0 \Rightarrow x \ge 2$ und $x \le 4$ (Widerspruch zur Annahme)

Damit gilt für die Lösungsmenge L_2 dieses Falls

$$L_2 = \{\}$$

Dann gilt für die Lösungsmenge L

$$L=]\frac{3}{2},2]\cup [4,\infty[$$

 $\mathbf{c})$

$$|2x+3| \le 5x-3$$

Fall 1: $2x + 3 \ge 0 \Rightarrow x \ge \frac{-3}{2}$

$$|2x + 3| \le 5x - 3$$

$$\Leftrightarrow 2x + 3 \le 5x - 3$$

$$\Leftrightarrow 6 \le 3x$$

$$\Leftrightarrow 2 \le x$$

Daraus folgt

$$L_1 = [2, \infty[$$

Fall 2: $2x + 3 < 0 \Rightarrow x < \frac{-3}{2}$

$$|2x + 3| \le 5x - 3$$

$$\Leftrightarrow -(2x + 3) \le 5x - 3$$

$$\Leftrightarrow -2x - 3 \le 5x - 3$$

$$\Leftrightarrow 0 \le 7x$$

$$\Leftrightarrow 0 \le x$$

Daraus folgt

$$L_2 = \{\}$$

Damit gilt für die Lösungsmenge L

$$L = L_1 \cup L_2 = [2, \infty[$$

Aufgabe 5

a)

 \mathbf{a}

$$\sum_{k=4}^{7} 2(k-3)^2 \Leftrightarrow \sum_{k=1}^{4} 2k^2$$
$$\Leftrightarrow 2+8+18+32 \Leftrightarrow 60$$

 \mathbf{b}

$$\prod_{k=0}^{3} k! \Leftrightarrow 0! \cdot 1! \cdot 2! \cdot 3!$$

$$\Leftrightarrow 1 \cdot 1 \cdot 2 \cdot 6 \Leftrightarrow 12$$

b)

a

$$\sum_{k=0}^{n} 2 \cdot 2^{k} \Leftrightarrow 2 \sum_{k=0}^{n} 2^{k}$$
$$\Leftrightarrow 2 \cdot \frac{1 - 2^{n+1}}{1 - 2} \Leftrightarrow 2^{n+2} - 2$$

b

$$\sum_{k=0}^{n} (-\frac{1}{5})^k \Leftrightarrow \frac{1 - (-\frac{1}{5})^{n+1}}{1 + \frac{1}{5}} \Leftrightarrow \frac{1 - (-\frac{1}{5})^{n+1}}{\frac{6}{5}} \Leftrightarrow \frac{5 + (-\frac{1}{5})^n}{6}$$