Principal Component Analysis with Spotify Data

# Why use PCA?

- Reduces the dimensionality of data (helping performance of ML algorithms)
- Visualize data in 2 or 3 dimensions
- Helps find the main axes of variance
- Help find underlying features in data



### **Data Cleansing**

- Converting columns to desired data types
- When working with data its important to scan through the data, weeding out any data that doesn't belong, such as:

```
track_name
                             object
     artist(s) name
                             object
     artist count
                              int64
     released year
                              int64
for released month
                              int64
  i released_day
                              int64
                                         x)
     in_spotify_playlists
                              int64
     in_spotify_charts
                              int64
                             object
     streams
                                         lence75Energy69Acousticness7Instrumentalness0Liveness17Speechiness3
BPM1 in_apple_playlists
                              int64
     in apple charts
                              int64
     in deezer playlists
                             object
     in deezer charts
                              int64
```

### Standardizing the Data

- Before running PCA we standardize the data to have a mean of 0 and a standard deviation of 1
- This procedure subtracts the data by the mean and divides it by the standard deviation
- Purpose of this is to ensure the results are not biased by the scale of the data

$$Z=rac{x-\mu}{\sigma}$$

### Computing the Covariance Matrix

 The covariance matrix finds the correlation between features in the data

$$covar(f1, f2) = \frac{\sum_{i=1}^{n} (f1_i - \overline{f1})(f2_i - \overline{f2})}{n-1}$$

|                   | Streams<br>(f1)            | BPM(f2)                    |    | (f <sub>N</sub> )                       |
|-------------------|----------------------------|----------------------------|----|-----------------------------------------|
| Streams<br>(f1)   | covar(f1, f1)              | covar(f1, f2)              |    | covar(f1, f <sub>N</sub> )              |
| BPM (f2)          | covar(f2,<br>f1)           | covar(f2, f2)              |    | covar(f <sub>N</sub> , f2)              |
| i                 | i                          | I                          | ٠. | i i                                     |
| (f <sub>N</sub> ) | covar(f <sub>N</sub> , f1) | covar(f <sub>N</sub> , f2) |    | covar(f <sub>N</sub> , f <sub>N</sub> ) |

### Eigenvectors and Eigenvalues to Find Principal Components

- Now we find the principal components that fit the highest variance of the data
- To find the principal components is equivalent to finding the eigenvalues and eigenvectors of the covariance matrix



# Recasting Data on Principal Components





# Combining PCA and Regression



Principal component regression is a regression technique that has the same goal as standard linear regression which is to model the relationship between a target variable and the predictor variables

Our goal: Model the relationship between streams and the other integer variables (predictor variables)



## Principal Component Regression Steps

1. Apply PCA to generate principal components from the predictor variables

2. Keep the first k principal components that explain most of the variance (where k < p), where k is determined by cross-validation

3. Fit a linear regression model on these k principal components

### Pros/Cons

#### Pros:

Fits a linear regression model on k principal components instead of all the original features, thus helping to reduce overfitting

Eliminate multicollinearity in the data by removing principal components associated with small eigenvalues

#### Cons:

Does not consider the target variable when determining principal components

Not considered a feature selection method because the principal components used in the regression are linear combinations of the original features

# Train/Test Split

- Y, our target variable, is 'Streams' and X is all integer predictor variables
- Training set is 80% of of our original data
- Test set is 20% of our original data



### **Cross Validation**

Used K Fold function to define 10 cross validation folds

Training data is divided into 10 folds.
 The model is trained and evaluated 10 times, using a different fold as the validation set each time



### **Benchmarks**

To evaluate the performance of the PCR model, we run three baseline models (Standard Linear Regression, Lasso Regression, and Ridge Regression) and save the RMSE scores.



### **Linear Regression**

- Use least-squares to fit a line to the data
- Sum up the squared residuals
- Find the rotation with the "least squares"



lin\_reg = LinearRegression().fit(X\_train\_scaled, y\_train)

## Lasso Regression

- Least squares + Lambda(|Slope|)
  - Least Squares: minimized sum of the squared residuals
  - Lambda is determined by cross validation

lasso\_reg = LassoCV().fit(X\_train\_scaled, y\_train)

## Ridge Regression

- Least squares + the "Ridge Regression Penalty"
  - Least Squares: minimized sum of the squared residuals
  - Ridge Regression Penalty: Lamba + slope<sup>2</sup>

ridge\_reg = RidgeCV().fit(X\_train\_scaled, y\_train)

### RMSE vs Number of Principal Components



Training set performance of PCR improves (RMSE decreases) with more principal components.
Lowest RMSE is with 15 principal components

### **RMSE Train Set**

| RMSE (T | rain Set) |
|---------|-----------|
|---------|-----------|

|                     | 1111102 (11 all 1 00 t) |
|---------------------|-------------------------|
| Linear Regression   | 3.066110e+08            |
| Lasso Regression    | 3.063346e+08            |
| Ridge Regression    | 3.061236e+08            |
| PCR (15 components) | 3.493991e+08            |

### **RMSE Test Set**

### RMSE (Test Set)

|                     | 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 17.00 1 |
|---------------------|---------------------------------------------------------------------------------------------------------------|
| Linear Regression   | 2.927741e+08                                                                                                  |
| Lasso Regression    | 2.905677e+08                                                                                                  |
| Ridge Regression    | 2.910445e+08                                                                                                  |
| PCR (15 components) | 3.142983e+08                                                                                                  |

# Why are the RMSEs so high?

- RMSE measures the average difference between values predicted by a model and the actual values
  - High RMSE means large distance between predicted and actual values
- Multicollinearity
  - It's possible the spotify playlist and apple music playlist variables are correlated so the principal components may inherit these issues
- Streams data points are separated far from each other

### **Works Cited**

- Karunakaran, Dhanoop. "Principal Component Analysis(Pca)." *Medium*, Intro to Artificial Intelligence, 10 July 2023, medium.com/intro-to-artificial-intelligence/principal-component-analysis-pca-cd282196b7d5.
- Desai, Utsav. "Mastering Dimensionality Reduction: Exploring PCA and SVD Methods." *Medium*, Medium, 3 May 2023, utsavdesai26.medium.com/mastering-dimensionality-reduction-exploring-pca-and-svd-methods-f7d55c9ca3c9.
- Leung, Kenneth. "Principal Component Regression-Clearly Explained and Implemented." Medium, Towards Data Science, 14 Sept. 2022 towardsdatascience.com/principal-component-regression-clearly-explained-and-implemented-608471530a2f.

https://github.com/kennethleungty/Principal-Component-Regression/blob/main/notebooks/Principal Component Regression Wine Quality.ipynb

https://www.mygreatlearning.com/blog/understanding-of-lasso-regression/#ridge-and-lasso-regression