CS241 Lecture 11

Graham Cooper

June 10th, 2015

See notes for NFA

NFA Trace: caba

read	unread	states
ϵ	caba	{1}
\mathbf{c}	aba	$\{2,6\}$
ca	ba	$\{3,5\}$
cab	a	$\{4,5\}$
caba	ϵ	{6 }

Build a DFA via the subset construction, see note

Accepting: any set that includes an accepting state from the original NFA.

Obvious Fact: Every DFA is implicitly an NFA.

Also: every NFA can be converted to a DFA for the same language

So: DFA's and NFA's accept the same class of languages

ϵ -NFA's

What if we let ourselves change states without reading a character?

 ϵ -transitions: state $\stackrel{\epsilon}{\to}$ state

- "free pass" to a new state without reading a character
- makes it easy to glue smaller automata together

See picture of ϵ -NFA on notes

Read	Unread	states
ϵ	caba	{1,2,6}
$^{\mathrm{c}}$	aba	${3,6}$
ca	ba	$\{4,7\}$
cab	a	$\{5, 7\}$
caba	ϵ	{6}

- \therefore By the same renaming trick as before, every ϵ -NFA has an equivalent DFA.
- ... NFA's recognize the same class of languages as DFA's
- The converstion can be automated

If we can find an ϵ -NFA for every regular expression, then we have one direction of kleene's theorem. (Regular expression $->\epsilon$ -NFA -> DFA)

Regular Expression Types

- 1. \emptyset ϵ -NFA: non-accepting starting state.
- 2. ϵ ϵ -NFA: Single accepting starting state.
- 3. a ϵ -NFA: non-accepting starting state $\stackrel{a}{\rightarrow}$ accepting state
- 4. $E_1|E_2$ ϵ -NFA: See paper
- 5. E_1E_2 ϵ -NFA: See paper, E1's accepting states go to E2 and are no longer accepting.
- 6. E^* ϵ -NFA: See Paper

 \therefore every regular expression has an equivalent ϵ -NFA, and \therefore an equivalent DFA. and the conversion can be automated ie. can write tools to convert regular expressions to DFA's.

Scanning

Is C a regular language? Well, C keywords:

ids

- literals
- operators
- commends
- punctiation

: sequences of these are also regular since the above are all regular

So we can use finite automata to do scanning (tokenization). Ordinary DFA's answer yes/no to $w \in L$?

We need:

- Input string w
- break into $w_1, w_2, ... w_n$ such that each $w_i \in L$ else error
- output each w_i

<u>Consider:</u> L = {valid c tokens} is regular. Let M_L = some machine, be the DFA that recognizes L

Then, M_L (with ϵ transitions going from end states to start state) recognizes LL^*

Add an action to each ϵ move (See separate paper)

- The machine is now non-deterministic because ϵ moves are always optional.

SO: does this scheme represent a unique decomposition $w = w_1, w_2...w_n$?

NO! Consider the id portion: (See paper) input abab could be interpreted as 1,2,3 or 4 tokens

What do we do about this?

- Decide to take the ϵ move only if there is no other choice.
- \implies always return the longest possible next token
- could mean that valid matches are missed
- consider $L = \{aa, aaa\}, w = aaaa$
- If you take the longest token first, aka aaa, then you will only be left with a which is not a token.
- The a left over cannot be matched : (poor a.