Real Analysis Notes

Rational Numbers and Bounds

If $\frac{a}{h}$, $\frac{c}{d} \in \mathbb{Q}$, then

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \qquad \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \qquad \qquad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} \div \frac{c}{d} = \frac{ad}{bc}$$

$$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$$

$$\frac{a}{h} \div \frac{c}{d} = \frac{ad}{hc}$$

provided that $\frac{c}{d} \neq \frac{0}{1}$.

Note. Strictly speaking, we need to show that these operations are **well-defined** or that they don't depend on the choice of representatives from the equivalence classes.

Definition. Suppose *S* is an ordered set, and $E \subseteq S$. If there exists $\beta \in S$ such that $x \leq \beta$ for every $x \in E$, we say E is **bounded above** and we call β an **upper bound**. The terms **bounded below** and lower bound are defined similarly.

Definition. Suppose S is an ordered set, $E \subseteq S$, and E is bounded above. Suppose there exists $\alpha \in S$ such that α is an upper bound for E and if $\gamma < \alpha$, then γ is not an upper bound for E, then α is the **least upper bound** of E or the **supremum** of E, and we write $\alpha = \sup E$. The **greatest lower bound** and **infimum** (inf *E*) are defined similarly.

Example. Consider the set $\{r \in \mathbb{Q} : r^2 < 2\}$, which has no supremum in \mathbb{Q} .

Definition. An ordered set *S* has the **least-upper-bound property** if the following is true: if $E \subseteq S$, *E* is not empty, and *E* is bounded above, then sup *E* exists in *S*.

Proposition. If an ordered set has the least-upper-bound property, then it also has the greatestlower-bound property.

Definition. There exists an ordered field \mathbb{R} (called the **real numbers**) which has the least-upperbound property, and it contains an isomorphic copy of Q.

Note. Finite ordered fields do not exist. Consider $0 \le 1 \le 1+1 \le \dots$ which can't be a finite chain.

Dedekind Cuts

- 1. Define the elements of \mathbb{R} as subsets of \mathbb{Q} called <u>cuts</u>, where a cut is a subset α of \mathbb{Q} such that
 - (a) α is a nonempty proper subset of \mathbb{Q} ($\alpha \neq \emptyset$ and $\alpha \neq \mathbb{Q}$).
 - (b) If $p \in \alpha$, $q \in \mathbb{Q}$, and q < p, then $q \in \alpha$.

- (c) If $p \in \alpha$, then p < r for some $r \in \alpha$ (can't be in the set and be an upper bound).
- 2. Define an order on \mathbb{R} where $\alpha < \beta$ if and only if α is a proper subset of β .
- 3. Show that the ordered set \mathbb{R} has the least-upper-bound property. To do this, suppose A is a nonempty subset of \mathbb{R} that is bounded above. Let γ be the union of all $\alpha \in A$. Then show $\gamma \in \mathbb{R}$ and $\gamma = \sup A$.
- 4. For $\alpha, \beta \in \mathbb{R}$, define the sum $\alpha + \beta$ to be the set of all sums r + s where $r \in \alpha$ and $s \in \beta$. Define $0^* = \{t \in \mathbb{Q} : t < 0\}$ then show axioms for addition in fields hold for \mathbb{R} , and that 0^* is the additive identity.
- 5. Show that if α , β , $\gamma \in \mathbb{R}$ and $\beta < \gamma$, then $\alpha + \beta < \alpha + \gamma$. This is part of showing that \mathbb{R} is an ordered field.
- 6. For $\alpha, \beta \in \mathbb{R}$, where $\alpha > 0^*$ and $\beta > 0^*$, define the product $\alpha\beta$ to be $\{p \in \mathbb{Q} : q \le rs, r \in \alpha, s \in \beta, r > 0, s > 0\}$. Note that $\alpha\beta > 0^*$ if $\alpha > 0^*$ and $\beta > 0^*$, which is part of showing that \mathbb{R} is an ordered field.
- 7. Extend the definition of multiplication to all of $\mathbb R$ by setting, for all $\alpha, \beta \in \mathbb R$, $\alpha 0^* = 0^* \alpha = 0^*$ and

$$\alpha\beta = \begin{cases} (-\alpha)(-\beta) & \alpha < 0^*, \beta < 0^* \\ -[(-\alpha)(\beta)] & \alpha < 0^*, \beta > 0^* \\ -[(\alpha)(-\beta)] & \alpha > 0^*, \beta < 0^* \end{cases}$$

then prove the distributive law.

- 8. Associate to each $r \in \mathbb{Q}$ the real number $r^* = \{t \in \mathbb{Q} : t < r\}$ and let $\mathbb{Q}^* = \{r^* : r \in \mathbb{Q}\}$. These are the rational cuts in \mathbb{R} .
- 9. Show that \mathbb{Q} is isomorphic to \mathbb{Q}^* as ordered fields.

Properties of Real Numbers

Theorem. Any two ordered fields with the least upper-bound-property are isomorphic.

Theorem. If $x, y \in \mathbb{R}$, and x > 0, then there is a positive integer n such that nx > y. This is called the **Archimedean property** of \mathbb{R} .

Proof. Let $A = \{nx : n \in \mathbb{Z}^+\}$ and suppose the Archimedean property is false. Then y would be an upper bound of A. But then A would have a least upper bound. Say $\alpha = \sup A$. Since x > 0, $\alpha - x < \alpha$, and $\alpha - x$ is not an upper bound. Thus, $\alpha - x < mx$ for some $m \in \mathbb{Z}^+$. But then $\alpha < (m+1)x$, which contradicts the fact that α is an upper bound of A. Thus, the Archimedean property must be true.

Theorem. If $x, y \in \mathbb{R}$ and x < y, then there exists $p \in \mathbb{Q}$ such that $x . We say that <math>\mathbb{Q}$ is **dense** in \mathbb{R} .

Theorem. For every positive real number x and every positive integer n, there is exactly one positive real number y such that $y^n = x$.

Proof. There is at most one since $0 < y_1 < y_2$ implies $y_1^n < y_2^n$. Let $E = \{t \in \mathbb{R} : t > 0, t^n < x\}$. Then E is nonempty since $t = \frac{x}{1+x} \implies 0 < t < 1 \implies t^n < t < x \implies t \in E$. We also know E is bounded above since $t > 1 + x \implies t^n > t > x \implies t \notin E$ and t is an upper bound. Define $y = \sup E$. We can then show that $y^n < x$ and $y^n > x$ each lead to contradictions.

Question. Given a real number in decimal form, what is its associated Dedekind cut?

Cardinality of Sets

Definition. Let A and B be sets. If there is a bijection from A to B, then we say A and B have the same **cardinality** (or 'size') and write $A \sim B$. We also write |A| = |B| where |A| denotes the cardinality of A.

Definition. Let \mathbb{N} denote the natural numbers $\{1,2,3,\ldots\}$, also denoted \mathbb{Z}^+ . For $n \in \mathbb{N}$, let $J_n = \{1,2,\ldots,n\}$ and $J_0 = \emptyset$. For any set A,

- 1. *A* is **finite** if $A \sim J_n$ for some $n \in \mathbb{N} \cup \{0\}$.
- 2. *A* is **infinite** if it is not finite.
- 3. *A* is **countable** if $A \sim \mathbb{N}$.
- 4. *A* is **uncountable** if *A* is neither finite nor countable.
- 5. *A* is **at most countable** if *A* is finite or countable.

Note. We can put an order on the cardinalities where $|A| \leq |B|$ if and only if there exists an injection from A to B.

Proposition. Every infinite subset of a countable set is countable.

Proposition. Let $\{E_n\}$ where $n \in \mathbb{Z}^+$ be a sequence of countable sets. If $S = \bigcup_{n=1}^{\infty} E_n$, then S is countable.

Proof. Let the elements of E_i be as follows

$$E_1 = \{x_{11}, x_{12}, x_{13}, \ldots\}$$

$$E_2 = \{x_{21}, x_{22}, x_{23}, \ldots\}$$

$$\ldots$$

$$E_i = \{x_{i1}, x_{i2}, x_{i3}, \ldots\}$$

We can traverse these elements diagonally to get $S = \{x_{11}, x_{21}, x_{12}, x_{31}, x_{22}, x_{13}, x_{41}, \ldots\}$. Since S is at most countable and $E_1 \subseteq S$ is countable, we have that S is countable.

Proposition. Let *A* be a countable set and B_n be the set of all *n*-tuples $(a_1, a_2, ..., a_n)$ where $a_k \in A$ for k = 1, 2, ..., n. Then B_n is countable for all $n \in \mathbb{N}$.

Theorem. Let *A* be the set of all sequences of 0's and 1's. Then *A* is uncountable.

Proof. Let $E = \{e_1, e_2, ...\}$ be a countable subset of A. For each e_i , we analyze its ith digit. We then construct $e \in A$ such that the ith digit of e is the opposite of the ith digit of e_i . For example, if we have

$$e_1 = (\boxed{0}, 1, 0, 1, 1, 1, 0, 1, ...)$$

$$e_2 = (1, \boxed{1}, 0, 1, 0, 1, 1, 0, ...)$$

$$e_3 = (0, 0, \boxed{1}, 1, 0, 0, 1, 1, ...)$$

$$e_4 = (1, 0, 1, \boxed{0}, 1, 0, 1, 1, ...)$$

Then e = (1, 0, 0, 1, ...). Since $e \notin E$ but $e \in A$, every countable subset of A is a proper subset of A. Thus, A is uncountable.

Metric Spaces

Definition. A set X, whose elements we will call **points**, is a **metric space** if there is a function $d: X \times X \to \mathbb{R}$ such that $\forall p, q \in X$

- 1. d(p,q) > 0 if $p \neq q$, and d(p,p) = 0.
- 2. d(p,q) = d(q,p).
- 3. $d(p,q) \le d(p,r) + d(r,q)$, $\forall r \in X$ (triangle inequality).

Definition. The number d(p,q) is the **distance** from p to q, and d is a **metric**.

Note. \mathbb{R}^k is a metric space with the usual metric d(x,y) = |x - y|, $x, y \in \mathbb{R}^k$.

Proposition. Every subset *Y* of a metric space *X* is also a metric space where we restrict the metric of *X* to points in *Y*.

Open and Closed Sets

Definition. Let *X* be a metric space, $p \in X$, and $E \subseteq X$.

- 1. Let $r \in \mathbb{R}^+$. The **neighborhood** of p with **radius** p is the set $N_r(p) = \{q \in X : d(p,q) < r\}$.
- 2. The point p is a **limit point** of E if every neighborhood of p contains a point $q \in E$ and $q \neq p$.
- 3. If $p \in E$ and p is not a limit point of E, then p is an **isolated point** of E.
- 4. E is **closed** if every limit point of E is in E.

- 5. If $p \in E$ and there is an $r \in \mathbb{R}^+$ such that $N_r(p) \subseteq E$, then p is an **interior point** of E.
- 6. *E* is **open** if every point of *E* is an interior point of *E*.
- 7. The **complement** of *E* in *X* is the set $E^c = \{x \in X : x \notin E\}$.
- 8. *E* is **perfect** if it is closed and if every point of *E* is a limit point of *E*.
- 9. *E* is **bounded** if there exists a number $M \in \mathbb{R}^+$ and a point $q \in X$ such that d(p,q) < M for all $p \in E$.
- 10. *E* is <u>dense</u> in *X* if every point of *X* is in *E* or a limit of *E* (or both).

Proposition. Every neighborhood is an open set.

Proof. Consider the neighborhood $E = N_r(p)$, and let $q \in E$. Then $r - d(p,q) \in \mathbb{R}^+$. For all points s such that d(q,s) < r - d(p,q), we have $d(p,s) \le d(p,q) + d(q,s) < d(p,q) + (r - d(p,q)) = r$, implying $s \in N_r(p)$. Thus, q is an interior point of E, and the result follows.

Proposition. If p is a limit point of E, then every neighborhood of p contains infinitely many points of E.

Proposition. Let *X* be a metric space and suppose $E \subseteq X$. The set *E* is open in *X* if and only if its complement is closed.

Proof. We first prove the forward direction then the backward direction.

(⇒) Suppose *E* is open. If *x* is a limit point of E^c , then every neighborhood of *x* contains a point of E^c . In this case, *x* can't be an interior point of *E*, and because *E* is open, $x \in E^c$. Thus, E^c is closed. (⇐) Now suppose E^c is closed. If $x \in E$ then $x \notin E^c$ and is thus not a limit point of E^c . In this case, there is a neighborhood N(x) such that $N(x) \cap E^c = \emptyset$, implying that $N(x) \subseteq E$. Thus, *x* is an interior point and *E* is open.

Theorem. Consider the following statements regarding unions and intersections of open and closed sets.

- 1. For any collection $\{G_{\alpha}\}$ of open sets, $\bigcup_{\alpha} G_{\alpha}$ is open.
- 2. For any collection $\{F_{\alpha}\}$ of closed sets, $\cap_{\alpha} F_{\alpha}$ is closed.
- 3. For any finite collection G_1, G_2, \ldots, G_n of open sets, $\bigcap_{i=1}^n G_i$ is open.
- 4. For any finite collection F_1, F_2, \ldots, F_n of closed sets, $\bigcup_{i=1}^n F_i$ is closed.

Definition. Let *X* be a metric space. If $E \subseteq X$, let E' be the set of limit points of *E*. The **closure** of *E* is the set $\overline{E} = E \cup E'$.

Proposition. If *X* is a metric space and $E \subseteq X$, then

- 1. \overline{E} is closed.
- 2. $E = \overline{E}$ if and only if *E* is closed.
- 3. $\overline{E} \subseteq F$ for every closed subset F of X such that $E \subseteq F$.

Note. \overline{E} is the smallest closed set that contains E.

Compactness

Jacky Lee

Definition. Let X be a metric space, and let $E \subseteq X$. An **open cover** of E is a collection $\{G_{\alpha}\}$ of open subsets of X such that $E \subseteq \bigcup_{\alpha} G_{\alpha}$.

Definition. If $\{G_{\alpha}\}$ is an open cover of E, then a subset of $\{G_{\alpha}\}$ that is also an open cover of E is called a **subcover** of $\{G_{\alpha}\}$.

Definition. A subset K of a metric space is **compact** if every open cover of K contains a finite subcover.

Proposition. Every finite set in a metric space is compact.

Proposition. Compact subsets are closed.

Proof. Let K be a compact subset of a metric space X. We will show that K is closed by showing that K^c is open. Suppose $p \in K^c$. We will show that K^c is open by showing that p is an interior point of K^c . For each $q \in K$, let V_q and W_q be neighborhoods of p and q, of radius less than half the distance between p and q. Since K is compact, there are finitely many points, say q_1, \ldots, q_n in K such that if $W = W_{q_1} \cup W_{q_2} \cup \ldots \cup W_{q_n}$, then $K \subseteq W$. If $V = V_{q_1} \cap V_{q_2} \cap \ldots \cap V_{q_n}$, then V is a neighborhood of p that does not intersect W, which covers K. Thus, $V \subseteq K^c$, and p is therefore an interior point of K^c .

Proposition. Suppose $K \subseteq X \subseteq Y$. Then K is compact relative to X if and only if K is compact relative to Y.

Proposition. Closed subsets of compact sets are compact.

Proposition. If *F* is closed and *K* is compact, then $F \cap K$ is compact.

Proposition. If *E* is an infinite subset of a compact set *K*, then *E* has a limit point in *K*.

Proof. Suppose no point of K is a limit point of E. Then each point $q \in K$ would have a neighborhood V_q that contains at most one point of E (namely q, if $q \in E$). But then no finite subset of $\{V_q\}$ can cover E, and the same is true for K because $E \subseteq K$. This contradicts the fact that K is compact. Thus, the theorem follows.

Theorem

Let *E* be a subset of \mathbb{R}^k (viewed as a metric space with the usual metric). The following are equivalent.

- 1. *E* is closed and bounded.
- 2. *E* is compact.
- 3. Every infinite subset of *E* has a limit point in *E*.

Note. The Heine-Borel Theorem is "(1) if and only if (2)" for \mathbb{R}^k .

Note. For all metric spaces, "(2) if and only if (3)" holds.

Perfect Sets

Definition. Let *X* be a metric space, and *E* be a subset of *X*. We say *E* is **perfect** if

- 1. E is closed and
- 2. Every point of *E* is a limit point of *E*.

Proposition. If *P* is a nonempty perfect set in \mathbb{R}^k , then *P* is uncountable.

Proof. Since P has limit points, we know P is infinite. Suppose P is countable and define the points of P by x_1, x_2, \ldots Let V_1 be any neighborhood of x_1 . If V_1 has radius r, note that $\overline{V_1} = \{y \in \mathbb{R}^k : |y - x_1| \le r\}$. We will use V_1 to recursively construct a sequence $\{V_n\}$ of neighborhoods as follows. Suppose V_n has been constructed so that $V_n \cap P$ is not empty. Since every point of P is a limit point of P, there is a neighborhood V_{n+1} such that $\overline{V_{n+1}} \subseteq V_n$, $x_n \notin \overline{V_{n+1}}$, and $V_{n+1} \cap P \neq \{\}$. By the last condition, our recursive construction can proceed to give us a sequence $\{V_n\}$ of neighborhoods. Let $K_n = \overline{V_n} \cap P$. Since $\overline{V_n}$ is closed and bounded, $\overline{V_n}$ is compact and K_n is compact. Since $x_n \notin \overline{V_{n+1}}$, no point of P is contained in $\bigcap_{n=1}^{\infty} K_n$. But since $K_n \subseteq P$, this implies that $\bigcap_{n=1}^{\infty} K_n$ is empty. But each K_n is not empty by the fact that $V_{n+1} \cap P \neq \{\}$ and $K_n \supseteq K_{n+1}$. But this contradicts the corollary that if $\{K_n\}$ is a sequence of nonempty compact sets such that $K_n \supseteq K_{n+1}$, then $\bigcap_{n=1}^{\infty} K_n$ is not empty. The theorem follows.

Proposition. Let $a, b \in \mathbb{R}$ and a < b. Then the interval [a, b] is uncountable. Also, \mathbb{R} is uncountable.

Note. There are, however, perfect sets in \mathbb{R} that contain no intervals.

Example. Let E_0 be the interval [0,1]. Remove the segment $(\frac{1}{3},\frac{2}{3})$ and let $E_1 = [0,\frac{1}{3}] \cup [\frac{2}{3},1]$. Removing the middle thirds from these intervals yields $E_2 = [0,\frac{1}{9}] \cup [\frac{2}{9},\frac{3}{9}] \cup [\frac{6}{9},\frac{7}{9}] \cup [\frac{8}{9},1]$. Continuing gives us a sequence $\{E_n\}$ of compact sets such that

- 1. $E_1 \supseteq E_2 \supseteq E_3 \supseteq \dots$ and
- 2. E_n is the union of 2^n disjoint intervals, each of length $\frac{1}{3^n}$.

Then the set $P = \bigcap_{n=1}^{\infty} E_n$ is called the **Cantor set**. Note that P is compact. Also, it is not empty. P contains no intervals and P is perfect.