07. Kinematics, inverse kinematics. Programming a simulated robot in joint space and task space

Warning

ZH2 (Roslaunch, ROS parameter szerver. ROS service. ROS action. Kinematics, inverse kinematics) and **project presentation**: **December 6.**

Rehearsal

3D transformations

•

Position: 3D offset vector

• Orientation: 3 x 3 rotation matrix

• further orientation representations: Euler-angles, RPY, angle axis, quaternion

• **Pose**: 4 × 4 (homogenous) transformation matrix

• Frame: origin, 3 axes, 3 base vectors, right hand rule

• **Homogenous transformation:** rotation and translation in one transfromation

• e.g., for the rotation (\mathbf{R}) and translation (\mathbf{v}) :

 $$$ \mathbf{T} = \left[\mathbf{R} & \mathbf{0} & 1 \right] = \left[\mathbf{T}_{1,1} & r_{1,2} & r_{1,3} & v_x \right] = \left[\mathbf{T}_{3,1} & r_{3,2} & r_{3,3} & v_x \right] \\ v_y \left[3,1 \right] & r_{3,2} & r_{3,3} & v_x \right] \\$

• Homogenous coordinates:

- Vector: extended with 0, \(\mathbf{a_H}=\left[\mathrm{\Delta_H}_{a_H}\right] \ 0\ | a_x \\ a_x \\ a_x \\ a_x \\ 0}\right] \(\)
- **Point:** extended by 1, $\ | p_H = \left[\max {p_k \ 1}\right] = \left[\max {p_x \ p_y \ p_z \ 1}\right]$
- Applying transforrations is much easier:

 $$$ \left(\mathbf{q} = \mathbf{R}\right) + \mathbf{v} \to \left(\mathbf{q} \right) = \left(\mathbf{R} \right) + \mathbf{v} \in \left(\mathbf{q} \right) = \left(\mathbf{R} & \mathbf{v}\right) \in \left(0\} & 1 \right) \left(\mathbf{q} \right) + \left(\mathbf{q} \right$

• **Degrees of Freedom** (DoF): the number of independent parameters.

Principles of robotics

- Robots are built of: **segments** (or links) és **joints**
- Task space (or cartesian space):
 - 3D space around us, where the task, endpoint trajectories, obstacles are defined.

- TCP (Tool Center Point): Frame fixed to the end effector of the robot.
- · Base frame, world frame
- Joint space:
 - Properties or values regarding the joints.
 - Low-level controller.
 - Joint angles, joint velocities, accelerations, torques....

Lecture

Kinematics, inverse kinematics

Def. Kinematics

Calculation of the pose of the TCP from joint angles. (From joint space to task space)

- Kinematic model
 - Denavit--Hartenberg (HD) convention
 - URDF (Unified Robotics Description Format, XML-based)

If the frames attached to each segment are named \(base, 1, 2, 3, ..., TCP\), transformations between two neighboring segments \(i\) and \(i+1\)---dependent on the angle of the joint enclosed by them---are named \(T_{i+1,i}(q_{i+1})\), the transformation from the base frame to the TCP can be calculated as follows for a robot with \(n\) joints:

 $T_{TCP,base}(q_1, \cdot, q_n) = T_{TCP,n-1}(q_{n}) \cdot T_{n-1,n-2}(q_{n-1}) \cdot T_{2,1}(q_2) \cdot T_{1,base}(q_1) \cdot S_{2,1}(q_2) \cdot T_{2,1}(q_2) \cdot T_{2$

Def. Inverse kinematics

Calculation of the joint angles in order to reach desired (or any) TCP pose. (From task space to joint space)

Differential inverse kinematics

Def. Differential inverse kinematics

How to change the joint angles to achieve the desired **small** change in TCP pose (including rotation and translation).

• **Jacobian matrix** (Jacobian): The Jacobian matrix of a vector-valued function of several variables is the matrix of all its first-order partial derivatives.

```
 $$ \left[ \mathbf{J} = \left[ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_3} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_3} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_3} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_1} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf{x_1} \right] & \frac{1} & \frac{1} & \frac{1} \\ \mathbf{x_2} \right] \\ \left[ \mathbf
```

• **Jacobian matrix in robotics**: defines the relationship between the joint velocities and the velocity of the TCP:

```
 $$ \left[ \left[ \operatorname{\mathcal{T}} \right] \right] = \mathbb{J} (\mathbb{q}) \cdot \mathbb{q} \]
```

If $\(\Delta\{t\}\)$ is small enough:

Differential inverse kinematics using Jacobian inverse

- 2. Calculate the rotation between the current orientation and the desired orientation: $\(\Delta\mathbf{R} = \mathbb{R}_{desired}\mathbb{R}_{0}^{T} \)$, majd konvertáljuk át axis angle reprezentációba $\(\mathbf{t},\phi)\)$

\right]\), where the inverse could be substituted by pseudo-inverse or transpose

4. Change joint angles: $\mbox{\mbox{$\backslash$}} = \mbox{\mbox{$\backslash$}} = \mbox{\mbox{$\backslash$}} + \mbox{\mbox{$\backslash$}} = \mbox{\mbox{$\backslash$}} =$

Practice

1: Install rrr-arm

1. Install dependencies:

sudo apt update sudo apt-get install ros-noetic-effort-controllers sudo apt-get install ros-noetic-position-controllers sudo apt-get install ros-noetic-gazebo-ros-control sudo apt-get install ros-noetic-gazebo-ros pip3 install kinpy rosdep update

Tip

We will use the package kinpy to calculate forward kinematics. Download the source of the package kinpy and study the API: https://pypi.org/project/kinpy/

2. Clone and build the repo:

```
cd ~/catkin_ws/src
git clone https://github.com/Robotawi/rrr-arm.git
cd ..
catkin build
```

3. Launch the simulator and move the arm:

 $roslaunch \ rrr_arm \ view_arm_gazebo_control_empty_world.launch$

 $rostopic\ pub\ /rrr_arm/joint1_position_controller/command\ std_msgs/Float64\ "data:\ 1.0"\\ \&\ rostopic\ pub\ /rrr_arm/joint2_position_controller/command\ std_msgs/Float64\ "data:\ 1.0"\\ &\ rostopic\ pub\ /rrr_arm/joint2_position_controlle$

 $1.0"~\&~rostopic~pub~/rrr_arm/joint3_position_controller/command~std_msgs/Float64~data: 1.5" & rostopic~pub~/rrr_arm/joint4_position_controller/command~std_msgs/Float64~data: 1.5"$

Tip

The simulator might raise errors like "No p gain specified for pid...", but those can be ignored as won't cause any issues.

4. Build the URDF file describes the robot:

cd ~/catkin_ws/src/rrr-arm/urdf rosrun xacro xacro rrr_arm.xacro > rrr_arm.xacro.urdf

2: Move the arm in joint space

1. Create a new file named rrr_arm_node in the scripts folder. Add it to the CMakeLists.txt, as usual. Subscribe to the topic which publishes the joint angles (configuration) of the robot. Create publishers to the 4 topics setting the joint angles of the arm. Use the previous Python scripts as a template.

Warning

Gazebo and kinpy organized the joints in different orders: 1.

[gripper_joint_1, gripper_joint_2, joint_1, joint_2, joint_3, joint_4] - topic /rrr_arm/joint_states - method kp.jacobian.calc_jacobian(...)

- 2. [joint_1, joint_2, joint_3, joint_4, gripper_joint_1, gripper_joint_2] method chain.forward_kinematics(...) method chain.inverse_kinematics(...)
- 2. Send the arm to the configuration [1.0, 1.0, 1.5, 1.5].

3. Kinematic task

1. Import kinpy and read the URDF of the robot:

```
import kinpy as kp

chain = kp.build_serial_chain_from_urdf(open("/home/<USERNAME>/catkin_ws/src/
rrr-arm/urdf/rrr_arm.xacro.urdf").read(), "gripper_frame_cp")
print(chain)
print(chain.get_joint_parameter_names())
```

2. Calculate the TCP pose in the current configuration using kinpy. The example at https://pypi.org/project/kinpy/ is wrong, use the following example:

```
th1 = np.random.rand(2)
tg = chain.forward_kinematics(th1)
th2 = chain.inverse_kinematics(tg)
self.assertTrue(np.allclose(th1, th2, atol=1.0e-6))
```

4: Inverse kinematics using Jacobian inverse

Implement a method calculating inverse kinematics using Jacobian inverse for the robot. Ignore the orientation for now. Move the TCP to position (0.59840159, -0.21191189, 0.42244937).

- 1. Write a while loop stopping if the length of delta_r is below threshold or rospy.is shutdown().
- 2. Calculate the difference of the desired and current TCP positions ($delta_r$). Scale by constant $\,k$ 1 .
- 3. Let phi dot t be [0.0, 0.0, 0.0] (ignore the orientation).
- 4. Concatenate delta_r and phi_dot_t -t.

- 5. Calculate the Jacobian matrix in the current configuration using the method kp.jacobian.calc_jacobian(...).
- 6. Calculate the pseudo inverse of the Jacobian using np.linalg.pinv(...).
- 7. Calculate delta_q, use the .dot(...) method from Numpy.
- 8. Increase the joint angles by $delta_q$.

Bonus exercise: Inverse kinematics with orientation

Extend the previous exercise by calculating both the TCP position and orientation.

Useful links

- rrr-arm model
- https://pypi.org/project/kinpy/
- https://en.wikipedia.org/wiki/Axis%E2%80%93angle representation
- https://www.rosroboticslearning.com/jacobian