Workshop: R for datascience

Laurent Rouvière

2019, september

CONTENTS

Introduction	2
Some examples	3
Outline	7
Rstudio, Rmarkdown and R-packages	8
R objects (Review)	9
Reading data from files	13
Data manipulation with Dplyr	16
Visualize data	21
Visualization with ggplot2	23
Mapping with leaflet	28
Regression models with R	31
Conclusion	35
Overview	
— Prerequisites: Basics on R, probability, statistics and computer programming	
— Objectives: be able to control classical tools for datascience	
 import and concatenate datasets, manipulate individuals and variables visualize data implement some of the most important statistical algorithms on real data (IML lecture) 	
— Teacher: Laurent Rouvière, laurent.rouviere@univ-rennes2.fr	
 Research interests: nonparametric statistics, statistical learning Teaching: statistics and probability (University and engineer school) Consulting: energy (ERDE), banks, marketing 	

Resources

- Slides and sheets (1 sheet=1 or 2 concepts+exercises) available on https://lrouviere.github.io/ R-for-datascience-lecture/
- The web
- Book: R for statistics, Chapman & Hall

INTRODUCTION

Why R?

- More and more *data* available in many fields (energy, health, sport, economy....)
- Data science collects all the tools which allow to extract informations from data. It includes:
 - to import (merge) datasets
 - to manipulate data (Data Mining)
 - to visualize data (Data Mining+Visualization)
 - to choose and fit models (Data Mining+statistical learning)
 - to visualize models (models are more and more complex...)
 - to return and visualize results (web applications)

Important remark

- All these topics can be addressed with R.
- Today, R (data scientits) and Python (computer scientists) are the most important softwares to make data science.

Few words about R

- R is a free software for statistical computing and graphics.
- It is freely distributed by CRAN (Comprehensive R Archive Network) at the following address: https://www.r-project.org.
- Each statistician *contributes* (everybody can create functions and distribute these functions for the community).

Consequence

- The software is always up to date.
- Clearly one of the reasons of the R success.

SOME EXAMPLES

Example: Fisher's iris

```
> data(iris)
> summary(iris)
                  Sepal. Width
## Sepal.Length
                               Petal.Length
                                              Petal.Width
## Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100
## 1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300
## Median :5.800 Median :3.000 Median :4.350 Median :1.300
## Mean :5.843
                 Mean :3.057
                               Mean :3.758
                                             Mean :1.199
## 3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
## Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
##
        Species
## setosa :50
## versicolor:50
## virginica :50
##
##
##
```

Objectives

Goal

Explain *species* by the other variables.

- Species is a categorical variable.
- We are faced with a *supervised classification* problem.

Manipulate the data

```
> apply(iris[,1:4],2,mean)

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 5.843333 3.057333 3.758000 1.199333

> apply(iris[,1:4],2,var)

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 0.6856935 0.1899794 3.1162779 0.5810063
```

Remark

Non-informative for the problem (highlight differences between species).

Data manipulation with dplyr

— dplyr is powerful R-package to transform and summarize tabular data with rows and columns.

```
> library(dplyr)
> iris %>% group_by(Species) %>% summarise_all(mean)
## # A tibble: 3 x 5
## Species Sepal.Length Sepal.Width Petal.Length Petal.Width ## \langle fct \rangle \langle dbl \rangle \langle dbl \rangle \langle dbl \rangle
                                                      <db1>
## 1 setosa
                              5.01
                                             3.43
                                                              1.46
                                                                            0.246
## 2 versicolor
                                             2.77
                                                                            1.33
                              5.94
                                                              4.26
## 3 virginica
                               6.59
                                              2.97
                                                              5.55
                                                                            2.03
```

— *More informative*: we obtain means for each species.

Visualization

> boxplot(Sepal.Length~Species,data=iris)

${\bf Visualization\ with\ ggplot 2}$

```
> library(ggplot2)
> ggplot(iris)+aes(x=Species,y=Sepal.Length)+geom_boxplot()
```


Modelling

```
> library(rpart)
> tree <- rpart(Species~.,data=iris)
> library(rpart.plot)
> rpart.plot(tree)
```


Maps with ggmap

— Goal: draw a map of the temperatures for france.

Load the data + background map

— Data are downloaded from meteofrance (temperatures for about 60 stations).

A first map

Model

— model of nearest neighbors to estimate temperatures for all longitudes and latitudes.

```
> library(FNN)
> mod <- knn.reg(train=D[,.(Latitude,Longitude)],y=D[,t],
+ test=Test1[,.(Latitude,Longitude)],k=1)$pred</pre>
```

— Visualisation with ggmap.

```
> library(ggmap)
> ggmap(fond)+geom_polygon(data=Test5,
+ aes(y=Latitude,x=Longitude,
+ fill=temp1,color=temp1,group=dept),size=1)+
+ scale_fill_continuous(low="yellow",high="red")+
+ scale_color_continuous(low="yellow",high="red")
```

The temperature map

Interactive web apps with shiny

- Shiny is a R package that makes it easy to build interactive web apps straight from R.
- Example: basic graphics for a dataset.
- > library(shiny)
 > runApp('desc_app.R')

OUTLINE

In this workshop

- 15 hours for 5 (or 6) topics
- 1 topic = slides + sheet (notebook) to complete (add comments and do exercises)

R Notebook

- document which combines R code and comments.
- code can be executed independently and interactively, with output visible immediately beneath the input.
- very nice to make high quality reports.

Schedule

— Introduction to R lecture: basics of R (objects, apply, matrices, date, control flow statements)

R for datascience

- Tuto 1: Rstudio (notebook and presentations) (1 hour)
- Tuto 2: R objects (review, 1 or 2 hours)
- Tuto 3: data manipulation with dplyr (4 hours)
- Tuto 4: data visualization with ggplot2 (4 hours)
- Tuto 5: mapping with leaflet (2 hours)
- Tuto 6: modeling with R (transition with the ISL lecture, 2 hours).

Assessment

- When ???
- combined with the machine learning lecture
 - Multiple choice test (50%)
 - Data science project (50%)

Working

- Require personal efforts.
- To Practice, to make mistakes and to correct these mistakes: only way to learn a sofware.
- You need to work alone between the sessions.
- Everyone can develop at its own pace (the goal is to progress, not to become a specialist of R in 15 hours), and ask questions during the sessions.
- I'm here to (try) to answer.

RSTUDIO, RMARKDOWN AND R-PACKAGES

Rstudio

- **RStudio** is an *integrated development environment* for R.
- It makes **R** easier to practice.
- It includes a console, syntax-highlighting editor that supports direct code execution, tools for plotting, history, debugging and workspace management.
- It is also freely distributed at the address https://www.rstudio.com.

The screen is divided into 4 windows:

- Console: where you enter command and see output
- Workspace and History: show the active object
- Files Plots...: show all files and folders in the workspace, see output graph, install packages...
- R script: where you keep a record of your work. Don't forget to regularly save this files!

Rmarkdown

What is Rmarkdown

- An Rmarkdown (.Rmd) file is a record of your work.
- It contains code, output and comments of your work.
- It produces high quality report in many format (text documents, slides, etc...).
- These slides have been made with *Rmarkdwon*.
- Reproducible Research: at the click of a button, you can rerun the code in an R Markdown file to reproduce your work and export the results as a finished report.
- *Dynamic Documents*: you can choose to export the finished report in a wide range of outputs, including html, pdf, MS Word, or RTF documents; html or pdf based slides, Notebooks, and more.

Packages

- Set of R programs which supplements and enhances the functions of R
- Generally reserved for specific methods or fields of applications
- More than 15 000 packages
- Clearly one of the reasons of the success of R.

2 steps

- Installation: install.packages(package.name) (just one time)
- Loading: library(package.name) (each time)
- You can also use the package icon in Rstudio.
- \implies work on *Tuto 1*.

Tuto 1

- Download the .Rmd file Tuto1.Rmd in https://lrouviere.github.io/stat_grand_dim/
- Open the file in Rstudio.
- Click on File + Reopen with encoding and select utf8
- Add in the begining of the file

```
---
title: 'Tuto 1: RStudio environment'
output: html_notebook
---
```

- Save the file in the repository of your choice and click on *Preview*.
- Read the tutorial and do exercices.

R OBJECTS (REVIEW)

Numeric and characters

— Numeric (easy)

```
> x <- pi
> x
## [1] 3.141593
> is.numeric(x)
## [1] TRUE
```

— Characters

```
> b <- "X"
> paste(b,1:5,sep="")
## [1] "X1" "X2" "X3" "X4" "X5"
```

Vectors

— Creation: c, seq, rep

```
> x1 <- c(1,3,4)
> x2 <- 1:5
> x3 <- seq(0,10,by=2)
> x4 <- rep(x1,3)
> x5 <- rep(x1,3,each=3)</pre>
```

— Extraction:

```
> x3[c(1,3,4)] # same as x3[x1]
## [1] 0 4 6
```

Logical

```
> 1<2
## [1] TRUE
> 1==2
## [1] FALSE
> 1!=2
## [1] TRUE

> x <- 1:3
> test <- c(TRUE, FALSE, TRUE)
> x[test]
## [1] 1 3
```

Problem

Select size more than 174.

```
> size>174
## [1] TRUE TRUE TRUE TRUE FALSE
> size[size>174]
## [1] 178.8362 185.0309 180.4393 185.4450
```

Factors

— For categorical variables in datasets:

```
> x1 <- factor(c("a","b","b","a","a"))
> x1
## [1] a b b a a
## Levels: a b
> levels(x1)
## [1] "a" "b"
```

Data not properly collected

— Assume that data are collected: 0=man, 1=woman

```
> X <- c(1,1,0,0,1)

> summary(X)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.0 0.0 1.0 0.6 1.0 1.0
```

- Problem: **R** reads X as a continuous vector \Longrightarrow it could generate problem for satisfical study.
- Solution:

```
> X <- as.factor(X)
> levels(X) <- c("man","woman")
> X
## [1] woman woman man man woman
## Levels: man woman
> summary(X)
## man woman
## 2 3
```

Matrix

— Creation

```
> m <- matrix(1:4,nrow=2,byrow=TRUE)
> m
## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
```

— Extraction

```
> m[1,2]
> m[1,] #First row
> m[,2] #Second column
```

List

— Allow to manage different objects

```
> mylist <- list(vector=1:5,mat=matrix(1:8,nrow=2))
> mylist
## $vector
## [1] 1 2 3 4 5
##
## $mat
##  [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8
```

— Extraction:

```
> mylist[[1]]
> mylist$vector
> mylist[["vector"]]
```

Dataframe

— Objects for representing data in R

Problem

Here sex is considered as a numeric variable. It is a categorical variable.

Problem

Here **name** is considered as a *variable*. It is the individual names (the ID of individuals)!

Conclusion

We always have to check that data are correctly interpreted by R (with summary for instance).

Tibbles

- A *tibble* is a modern reimagining of the *data.frame*, keeping what time has proven to be effective, and throwing out what is not.
- We need to load the package *tidyverse* to use tibble.

Example: data frame

```
> name <- c("Paul", "Mary", "Steven", "Charlotte", "Peter")
> sex <- c(0,1,0,1,0)
> size <- c(180,165,168,170,175)
> age <- c("old", "young", "young", "old", "old")
> data <- data.frame(name,sex,size,age)
> summary(data)
## name sex size age
## Charlotte:1 Min. :0.0 Min. :165.0 old :3
## Mary :1 1st Qu.:0.0 1st Qu.:168.0 young:2
## Paul :1 Median :0.0 Median :170.0
## Peter :1 Mean :0.4 Mean :171.6
## Steven :1 3rd Qu.:1.0 3rd Qu.:175.0
##
```

Example: tibble

```
> library(tidyverse)
> data1 <- tibble(name,sex,size,age)</pre>
> summary(data1)
##
        name
                                         size
                                                        age
## Length:5
                      Min. :0.0
                                  Min. :165.0
                                                   Length:5
## Class :character
                      1st Qu.:0.0
                                   1st Qu.:168.0
                                                    Class : character
##
    Mode :character
                      Median : 0.0
                                    Median :170.0
                                                    Mode : character
                       Mean :0.4
##
                                    Mean :171.6
##
                       3rd Qu.:1.0
                                    3rd Qu.:175.0
##
                                    Max. :180.0
                       Max. :1.0
```

dataframe vs tibbles

Main difference: no factor in tibbles.

 \implies work on tuto 2.

READING DATA FROM FILES

- Data is generally contained within a *file* in which individuals are presented in rows and variables in columns.
- Functions **read.table** and **read.csv** allow to import data from .txt or .csv files.
- .xls files need to be *converted* into .csv files.

```
> data <- read.table("file",...)
> data <- read.csv("file",...)</pre>
```

— ... corresponds to many options. Options are *very important* since the date file always contains *specificities* (missing data, names of the variables...)

Indicating the path

- The data file needs to be located in the working directory. Otherwise, we have to indicate the path in read.table.
- Example: Read the file data.csv located in /lectureR/Part1:
 - Change the working directory

```
> setwd("~/lectureR/Part1")
> df <- read.csv("data.csv",...)</pre>
```

— Specify the directory in **read.csv**

```
> df <- read.csv("~/lecture_R/Part1/data.csv",...)</pre>
```

— Use the **file.path** function

```
> path <- file.path("~/lecture_R/Part1/", "data.csv")
> df <- read.csv(path,...)</pre>
```

Some important options

The are many important options in read.table and read.csv:

- **sep**: the field separation character (space, comma...)
- **dec**: the character used for decimal points (comma, points...)
- header: a logical value indicating whether the file contains the names of the variables as its first line
- **row.names**: a vector of row names (to identify indivuals if needed)
- na.strings: a character vector of strings which are to be interpreted as NA values.

— ..

Example

```
— File data imp.txt
```

```
name;size;age
John;174;32
Peter;?;28
Mary;165.5;NA
```

Characteristics

- 3 variables
- First line=name of the variables
- Missing values: NA,?

First try

Problem

R considers four line with one column!

Solution

```
> df <- read.table(path,header=TRUE,sep=";",dec=".",</pre>
                    na.strings = c("NA","?"),row.names = 1)
> df
##
          size age
## John 174.0 32
## Peter NA 28
## Mary 165.5 NA
> summary(df)
##
        size
## Min. :165.5 Min. :28
## 1st Qu.:167.6 1st Qu.:29
## Median :169.8 Median :30
## Mean :169.8 Mean :30
## 3rd Qu.:171.9 3rd Qu.:31
## Max. :174.0 Max. :32
## NA's :1
                     NA's :1
```

readr package

- This package makes data importation easier.
- It includes **read_table** and **read_csv** functions instead of **read.table** and **read.csv** (underscores instead of points).
- In *Rstudio*, we can read data with readr by clicking on the **Import Dataset** icon (it does not work when things are too complicated).

Other tools to import data

```
readxl: for xls files
sas7bdat: for sas dataset
foreign: for SPSS or STATA datasets
jsonlite: for json files
rvest: webscrapping (to import data from website)
```

Combine tables

- Information comes (always) from several data tables.
- We need to *correctly merge these tables* before a statistical analysis.
- Standard R functions: rbind, cbind, cbind.data.frame, merge...
- *Tidyverse functions*: bind_rows, bind_cols, left_join, inner_join (from *dplyr* or *tidyverse* package).

An example with 2 tables

```
> df1
## # A tibble: 4 x 2
## name nation
## <chr> <chr> 
## 1 Peter USA
## 2 Mary GB
## 3 John Aus
## 4 Linda USA
> df2
## # A tibble: 3 x 2
## name age
## <chr> <dbl> <dh>> dbl> <dbl> 
## 1 John 35
## 2 Mary 41
## 3 Fred 28
```

Goal

One dataset with three columns: name, nation and age.

$\mathbf{bind_rows}$

 \implies not a safe choice here (two lines for some individuals).

full join

⇒ we keep all the individuals (NA are added for missing data)

left_join

```
> left_join(df1,df2)
## # A tibble: 4 x 3
## name nation age
## <chr> <chr> <chr> <chr> <dbl>
## 1 Peter USA NA
## 2 Mary GB 41
## 3 John Aus 35
## 4 Linda USA NA
```

⇒ we keep only individuals of the first (left) dataset.

inner_join

 \implies we keep only individuals for which both nation and age are observed.

Conclusion

- Many options to merge datasets.
- Find the good function according to our problem.
- \implies work on tuto 3 Part 1

DATA MANIPULATION WITH DPLYR

- dplyr is a powerful R-package to transform and summarize tabular data with rows and columns.
- It offers a clear syntax (based on a grammar) to manipulate data.
- For instance, to compute the mean of Sepal.Length for setosa, we usually use

```
> mean(iris[iris$Species=="setosa",]$Sepal.Length)
## [1] 5.006
```

— We can do the same with dplyr

```
> library(dplyr)
> iris %>% filter(Species=="setosa") %>%
+ summarise(mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

Grammar

dplyr contains a *grammar* with the following verbs:

```
select() select columns (variables)
filter() filter rows (individuals)
arrange() re-order or arrange rows
mutate() create new columns (new variables)
summarise() summarise values (compute statistics summaries)
group_by() allows for group operations in the "split-apply-combine" concept
```

Dont't forget to look at the cheat sheet

Select

Goal

To select variables.

```
> df <- select(iris,Sepal.Length,Petal.Length)</pre>
> head(df)
## Sepal.Length Petal.Length
## 1
       5.1
                   1.4
## 2
                         1.4
             4.9
            4.7
## 3
                         1.3
## 4
            4.6
                        1.5
## 5
             5.0
                         1.4
## 6
                         1.7
```

Filter

Goal

To filter individuals.

```
> df <- filter(iris,Species=="versicolor")</pre>
> head(df)
\textit{\#\#} \quad \textit{Sepal.Length Sepal.Width Petal.Length Petal.Width} \quad \textit{Species}
## 1
        7.0 3.2 4.7 1.4 versicolor
                                      4.5
## 2
             6.4
                         3.2
                                                  1.5 versicolor
## 3
             6.9
                         3.1
                                      4.9
                                                  1.5 versicolor
## 4
                                      4.0
                                                  1.3 versicolor
             5.5
                         2.3
## 5
                                      4.6
              6.5
                          2.8
                                                  1.5 versicolor
## 6
                          2.8
                                       4.5
                                                   1.3 versicolor
```

Arrange

Goal

To order individuals according to a variable.

```
> df <- arrange(iris,Sepal.Length)</pre>
> head(df)
## Sepal.Length Sepal.Width Petal.Length Petal.Width Species
           4.3
## 1
                  3.0 1.1 0.1 setosa
## 2
                                             0.2 setosa
             4.4
                       2.9
                                  1.4
## 3
                       3.0
                                  1.3
                                             0.2 setosa
            4.4
## 4
                                             0.2 setosa
                       3.2
                                  1.3
            4.4
## 5
            4.5
                       2.3
                                  1.3
                                             0.3 setosa
## 6
            4.6
                                   1.5
                                             0.2 setosa
```

Mutate

Goal

To define new variables in the dataset.

```
> df <- mutate(iris,diff_petal=Petal.Length-Petal.Width)</pre>
> head(select(df,Petal.Length,Petal.Width,diff_petal))
## Petal.Length Petal.Width diff_petal
## 1
                       0.2
         1.4
                                  1.2
## 2
                        0.2
                                   1.2
            1.4
## 3
             1.3
                         0.2
                                   1.1
## 4
            1.5
                         0.2
                                   1.3
                         0.2
## 5
             1.4
                                   1.2
## 6
                         0.4
                                   1.3
```

Summarise

Goal

To compute statistical summaries.

```
> summarise(iris,mean=mean(Petal.Length),var=var(Petal.Length))
## mean var
## 1 3.758 3.116278
```

group_by

Goal

To apply operations for group of data.

The pipe operator

- The pipe operator %>% allows to organize commands step by step.
- For instance, to calculate the **mean** of variable **Sepal.Length** for **setosa**, we can do

```
> mean(iris[iris$Species=="setosa","Sepal.Length"])
## [1] 5.006
```

or (more readable)

```
> df1 <- iris[iris$Species=="setosa",]
> df2 <- df1$Sepal.Length
> mean(df2)
## [1] 5.006
```

or (more readable with **dplyr**)

```
> df1 <- filter(iris,Species=="setosa")
> df2 <- select(df1,Sepal.Length)
> summarize(df2,mean(Sepal.Length))
## mean(Sepal.Length)
## 1 5.006
```

- With the *pipe operator*, we expand the operations:
- 1. the data
- > iris
 - 2. Filter individuals according to setosa specie

```
> iris %>% filter(Species=="setosa")
```

3. Select the variable of interest

```
> iris %>% filter(Species=="setosa") %>% select(Sepal.Length)
```

4. Compute the mean

```
> iris %>% filter(Species=="setosa") %>%
+ select(Sepal.Length)%>% summarize_all(mean)
## Sepal.Length
## 1 5.006
```

More generally

— The pipe opartor %>% merge the left object with the first component of the right object.

```
> X <- as.numeric(c(1:10,"NA"))
> mean(X,na.rm = TRUE)
## [1] 5.5
```

or equivalently

```
> X %>% mean(na.rm=TRUE)
## [1] 5.5
```

Reshaping data

- Some statistical analysis requires a particular shape for the data
- A toy example

```
> df <- iris %>% group_by(Species) %>%
    summarize_all(funs(mean))
> head(df)
## # A tibble: 3 x 5
## Species Sepal.Length Sepal.Width Petal.Length Petal.Width ## \langle fct \rangle \langle dbl \rangle \langle dbl \rangle \langle dbl \rangle
## 1 setosa
                              5.01
                                             3.43
                                                              1.46
                                                                            0.246
## 2 versicolor
                              5.94
                                             2.77
                                                              4.26
                                                                            1.33
## 3 virginica
                                              2.97
                                                                            2.03
                               6.59
                                                              5.55
```

gather

— Gather columns into rows with gather:

Remark

Same information with a different shape.

Spread

— Spread rows into columns with *spread*:

```
> df1 %>% spread(variable,value)
## # A tibble: 3 x 5
## Species Petal.Length Petal.Width Sepal.Length Sepal.Width
## <fct> <dbl> <dbl> <dbl> <dbl>
                    <db1>
                                            <db1>
                                                          <dbl>
3.43
## 1 setosa
                       1.46
                                    0.246
                                                  5.01
                                                  5.94
                        4.26
                                    1.33
## 2 versicolor
                                                              2.77
## 3 virginica
                         5.55
                                    2.03
                                                   6.59
                                                               2.97
```

Separate

— Separate one column into several

```
> df1 <- df %>% separate(date,into = c("year","month","day"))
> df1
## # A tibble: 3 x 4
## year month day temp
## <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> 5 18 21
## 3 2018 09 14 15
```

Unite

— *Unite* several columns into one

 \implies work on tuto 3, part 2.

VISUALIZE DATA

- Graphs are often the starting point for statistical analysis.
- One of the main advantages of \mathbf{R} is how *easy* it is for the user to create many different kinds of graphs.
- We begin by a (short) review on conventional graphs,
- followed by an examination of some more complex representations, especially with ggplot2 package.

The plot function

- It is a *generic* function to represent all kind of data.
- For a scatter plot, we have to specify a vector for the x-axis and a vector for the y axis.

```
> x <- seq(-2*pi,2*pi,by=0.1)
> plot(x,sin(x),type="l",xlab="x",ylab="sin(x)")
> abline(h=c(-1,1))
```


Graphs for datasets

- Many kind of representations are needed according to the variables we want to visualize.
- Histogram for continuous variables, barplot for categorical variables.
- scatterplot for 2 continous variables.
- boxplot to visualize distributions.

Fortunately

There is a R function for all the representations.

Scatter plot for dataset

> plot(Sepal.Length~Sepal.Width,data=iris)

Histogram for continous variable

> hist(iris\$Sepal.Length,col="red")

Histogram of iris\$Sepal.Length

Barplot for categorical variables

> barplot(table(iris\$Species))

Boxplot

> boxplot(Sepal.Length~Species,data=iris)

VISUALIZATION WITH GGPLOT2

- ggplot2 is a plotting system for R based on the grammar of graphics (as dplyr to manipulate data).
- Graphs ggplot are clearly nice looking (conventionnal R graphs are not always very nice).

For a given dataset, a graph is defined from many layers. We have to specify:

- the data
- the *variables* we want to plot
- the type of representation (scatterplot, boxplot...).

Ggplot graphs are defined from these layers. We indicate

- the data with \mathbf{ggplot}
- the variables with **aes** (aesthetics)
- the type of representation with **geom**

The grammar

Main elements of the grammar are:

- Data (ggplot): the dataset, it should be a dataframe or a tibble
- Aesthetics (aes): to describe the way that *variables* in the data are mapped. All the variables used in the graph should be specified in **aes**
- Geometrics (geom_...): to control the type of plot
- Statistics (stat_...): to describe transformation of the data
- Scales (scale ...): to control the mapping from data to aesthetic attributes (change colors, size...)

All these elements are combined with a + ...

An example

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()
```


Color and size

Color by (categorical) variable

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Species)+geom_point()
```


Color by (continous) variable

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()
```


Color by (continous) variable

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width,
+ color=Petal.Width)+geom_point()+
+ scale_color_continuous(low="yellow",high="red")
```


Histogram

> ggplot(iris)+aes(x=Sepal.Length)+geom_histogram(fill="red")

Barplot

```
> ggplot(iris)+aes(x=Species)+geom_bar(fill="blue")
```


Facetting (more complex)

```
> ggplot(iris)+aes(x=Sepal.Length,y=Sepal.Width)+geom_point()+
+ geom_smooth(method="lm")+facet_wrap(~Species)
```


Combining ggplot with dplyr

- One has to build a good dataframe (or tibble) to obtain an efficient graph.
- For instance

```
> head(df)
## # A tibble: 6 x 3
##
      size weight.20 weight.50
##
               <dbl>
                          <dbl>
     <dbl>
## 1
      153
                61.2
                          81.4
       169
## 2
                67.5
                          81.4
## 3
       168
                69.4
                          80.3
## 4
       169
                66.1
                          81.9
       176
                          79.2
## 5
                70.4
## 6
       169
                67.6
                          88.9
```

Goal

dplyr step

— Gather column weight.M and weight.W into one column weight:

```
> df1 <- df %>% gather(key=age,value=weight,-size)
> df1 %>% head()
## # A tibble: 6 x 3
##
     size age
                     weight
##
     <dbl> <chr>
                      <dbl>
## 1 153 weight.20
                      61.2
## 2
       169 weight.20
                       67.5
## 3
      168 weight.20
                      69.4
## 4
      169 weight.20
                       66.1
## 5
      176 weight.20
                       70.4
## 6 169 weight.20
                      67.6
> df1 <- df1 %>% mutate(age=recode(age,
     "weight.20"="20","weight.50"="50"))
```

ggplot step

```
> ggplot(df1)+aes(x=size,y=weight,color=age)+
+ geom_point()+geom_smooth(method="lm")+theme_classic()
```


Complement: some demos

```
> demo(image)
> example(contour)
> demo(persp)
> library("lattice");demo(lattice)
> example(wireframe)
> library("rgl");demo(rgl)
> example(persp3d)
> demo(plotmath);demo(Hershey)
```

 \implies Work on tuto 4.

MAPPING WITH LEAFLET

Introduction

- In many applications, it could be interesting to make *mapping* to *visualize* a dataset or the result of a model.
- A lot of R packages: ggmap, RgoogleMaps, maps...
- In this part: leaflet.

Background map

- Leaflet is one of the most popular open-source JavaScript libraries for interactive maps.
- Documentation: here
- > library(leaflet)
 > leaflet() %>% addTiles()

Many background style

```
> Paris <- c(2.35222,48.856614)
> leaflet() %>% addTiles() %>%
+ setView(lng = Paris[1], lat = Paris[2],zoom=12)
```



```
> leaflet() %>% addProviderTiles("Stamen.Toner") %>%
+ setView(lng = Paris[1], lat = Paris[2], zoom = 12)
```


Leaflet with dataset

— Location of 1000 seismics event near Fiji

```
> data(quakes)
> head(quakes)
## lat long depth mag stations
## 1 -20.42 181.62 562 4.8
## 2 -20.62 181.03 650 4.2
                                    41
                                     15
## 3 -26.00 184.10
                      42 5.4
                                     43
## 4 -17.97 181.66
                     626 4.1
                                     19
## 5 -20.42 181.96
                      649 4.0
                                     11
## 6 -19.68 184.31
                     195 4.0
                                     12
```

Visualize seismics with magnitude more then 5.5

```
> quakes1 <- quakes %>% filter(mag>5.5)
> leaflet(data = quakes1) %>% addTiles() %>%
+ addMarkers(~long, ~lat, popup = ~as.character(mag))
```


Remark

When you click on a marker, you visualize the magnitude.

addCircleMarkers

```
> leaflet(data = quakes1) %>% addTiles() %>%
+ addCircleMarkers(~long, ~lat, popup=~as.character(mag),
+ radius=3,fillOpacity = 0.8,color="red")
```


 \implies work on tuto 5.

REGRESSION MODELS WITH R

- Goal: present classical functions to make regression with R.
- Transition with the Machine Learning lecture.
- Focus on *R tools*, mathematical tools will be (or have been) presented in other lectures (statistical model, data mining, machine learning).

Data

Goal

Explain or predict output Y by inputs X_1, \ldots, X_p .

Example: ozone

Goal

Explain or predict the daily maximum one-hour-average ozone (maxO3 column) by the other variables.

Statistical model

— There exists an unknown function $m: \mathbb{R}^p \to \mathbb{R}$ such that

$$Y = m(X_1, \dots, X_p) + \varepsilon.$$

- ε : error terms (as small as possible).
- Statistician's job: find a good estimate \widehat{m} of m from the data $(x_1, y_1), \ldots, (x_n, y_n)$ where $x_i \in \mathbb{R}^p$ and $y_i \in \mathbb{R}$.

$Statistical\ models$

Allow to find such estimates.

An example: the linear model

— Assumption: the unknwon function is linear

$$Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon,$$

 $\beta = (\beta_0, \beta_1, \dots, \beta_p)$ are the unknown parameters.

— Least square estimates:

$$\widehat{\beta} = (X^t X)^{-1} X^t Y.$$

— Estimate of m:

$$\widehat{m}(x) = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \dots \widehat{\beta}_p x_p.$$

Models with R

— Models on **R** are always fitted in the same way:

> method(formula,data=...,options)

where

- *method* refers to the name of the model
- formula specifies the input Y and the outputs X_j
- -- data is the name of the dataset
- options refers to many options depending on the method.

Methods

Remark

Each model corresponds to a R function.

R function	algorithm	Package	Problem
$\overline{ m lm}$	linear model		Reg
$_{ m glm}$	logistic model		Class
lda	linear discriminant analysis	MASS	Class
svm	Support Vector Machine	e1071	Class
knn.reg	nearest neighbor	FNN	Reg
knn	nearest neighbor	class	Class
rpart	tree	rpart	Reg and Class
\mathbf{glmnet}	ridge and lasso 32	glmnet	Reg and Class

Formula

Remark

To specify input and outputs.

```
> lm(Y~X1+X3,data=df)
```

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3 + \varepsilon$$

> lm(Y~X1+I(X3^2),data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \beta_3 X_3^2 + \varepsilon$$

> lm(Y~.,data=df)

$$\implies Y = \beta_0 + \beta_1 X_1 + \ldots + \beta_p X_p + \varepsilon$$

Example

```
> mod.lin <- lm(max03~T12+Ne9,data=ozone)</pre>
> mod.lin
## Call:
## lm(formula = max03 ~ T12 + Ne9, data = ozone)
## Coefficients:
## (Intercept)
          7.638
                                    -2.696
                       4.457
```

Estimate of m

$$\widehat{m}(x) = 7.638 + 4.457 T12 - 2.696 Ne9.$$

Making predictions

— Once the model has been fitted, we can use it to make *predictions*.

Example

- Meteofrance predicts for tomorrow: T12=20 and Ne9=4.9.
- What does our model predict for the ozone concentration?
- Answer:

$$\widehat{m}(T12 = 20, Ne9 = 4.9) = 7.638 + 4.457 * 20 - 2.696 * 4.9 = 83.5676$$

Predict function

— predict is a generic function: we can use it to make predictions for all models (linear, logistic, tree...)

- > predict(model.name,newdata=newdataset,...)
 - Example

```
> new.df <- data.frame(T12=20,Ne9=4.9)
> predict(mod.lin,newdata=new.df)
## 1
## 83.57509
```

Very important

Use the same structure for both dataframes.

Estimating the mean square error (ISL lecture)

— The performance of an estimate \hat{m} can be measured by its mean square error:

$$MSE(\widehat{m}) = E[(Y - \widehat{m}(X))^2].$$

- This (unknown) error is generally estimated by validation hold out:
 - Split the data into a train set and a test set
 - Fit the model on the train set $\Longrightarrow \widehat{m}$
 - Estimate the MSE by

$$\frac{1}{n_{test}} \sum_{i \in test} (y_i - \widehat{m}(x_i))^2.$$

An example

— Data splitting

```
> library(caret)
> set.seed(12345)
> index.train <- createDataPartition(1:nrow(ozone),p=2/3)
> train <- ozone %>% slice(index.train$Resample1)
> test <- ozone %>% slice(-index.train$Resample1)
```

— Model fitting

```
> mod <- lm(max03~.,data=train)</pre>
```

— Estimated MSE

In practice

- Very useful to choose one model.
- Example: many models (linear, tree, random forest...)

Method

- 1. Estimate MSE for all algorithms;
- 2. Choose the algorithm with the smallest MSE.
- \Longrightarrow Work on tuto 6.

CONCLUSION

Project

- Group of 3 or 4
- Find a dataset for a *supervised learning problem* (explain one variable by other variables). This dataset should contain at least 800 individuals and 30 variables (continuous or categorical)
- There are many datasets on the web, you can look at the following websites for instance:
 - UCI machine learning repository
 - kaggle datasets (you have to register but it's free)
 - other websites of your choice
- You will address the following topics in the study
 - identify the practical problem
 - translate the practical problem into a mathematical problem
 - describe the dataset according to the problem (with dplyr)
 - visualize the dataset according to the problem (with ggplot)
 - develop machine learning methods (nearest neighbor, linear/logistic models, penalized linear/logistic models, trees, random forest). You should provide a brief description of each algorithm in the context of your problem.
 - make a comparison of the different models (quadratic error, misclassification error, ROC curves, AUC...)
- From now on, you can:
 - choose the dataset
 - make the description of the dataset (**dplyr**) and the visualization of the dataset (**ggplot**).

Be careful

- The goal is **not** to provide a **list** of statistical summaries or graphs.
- Find relevant summaries and you should explain the output (with text!).
- Each group should provide a notebook (.rmd file) and send by email (laurent.rouviere@univ-rennes2.fr):
 - the notebook (only the .rmd file, not the html file)
 - the dataset (txt or csv file)
- I will run all the chunks of the notebook (the notebook should be complete!), if there is a problem with one chunk, I will not be able to see the output.

Balance sheet

- Many (modern) tools to manipulate data.
- Sufficient to perform a wide range of statistical analysis.
- Many lectures where you will use R.
- Try to force yourself to use these tools (when you want to make a graph, try to do it in ggplot).

Thank you