Couriges des exemples du cours sur la produit scalaire dans l'espace

🥒 Capacité 1 Calculer un produit scalaire

Soit ABCDEFGH un cube de côté a, I le milieu de [BF] et J le milieu de [DH].

Calculer les produits scalaires suivants :

1.
$$\overrightarrow{AD} \cdot \overrightarrow{AE}$$

1.
$$\overrightarrow{AD} \cdot \overrightarrow{AE}$$
 3. $\overrightarrow{AD} \cdot \overrightarrow{AJ}$

5.
$$\overrightarrow{AC} \cdot \overrightarrow{FH}$$

7.
$$\overrightarrow{AC} \cdot \overrightarrow{GE}$$

2.
$$\overrightarrow{AD} \cdot \overrightarrow{AH}$$

4.
$$\overrightarrow{AI} \cdot \overrightarrow{BF}$$

6.
$$\overrightarrow{AC} \cdot \overrightarrow{EG}$$

8.
$$\overrightarrow{AC} \cdot \overrightarrow{BF}$$

🧷 Capacité 2 Démontrer que des vecteurs sont orthogonaux avec le produit scalaire

Les arêtes d'un tétraèdre régulier sont toutes de même longueur.

On considère un tétraèdre régulier ABCD, on appelle I le milieu de [AB] et on note a la longueur de l'arête [AB].

- 1. Exprimer le produit scalaire $\overrightarrow{AD} \cdot \overrightarrow{AB}$ en fonction de a.
- **2.** Exprimer le produit scalaire $\overrightarrow{CA} \cdot \overrightarrow{AB}$ en fonction de a.
- 3. En déduire que le vecteur \overrightarrow{CD} est orthogonal au vecteur \overrightarrow{AB} .

1) ABD equilational done
$$\overrightarrow{AB} \cdot \overrightarrow{AD} = AB \times AD \times (os)(\overrightarrow{BAD})$$
 $\overrightarrow{AB} \cdot \overrightarrow{AD} = a \times a \times (os)(\overrightarrow{B}) = a^2$

2) $\overrightarrow{CA} \cdot \overrightarrow{AB} = (-\overrightarrow{AC}) \cdot \overrightarrow{AB} = -\overrightarrow{AC} \cdot \overrightarrow{AB}$
 $\overrightarrow{CA} \cdot \overrightarrow{AB} = -AC \times AB \times (os)(\overrightarrow{BAC}) = -a^2$

3) $\overrightarrow{CD} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$
 $\overrightarrow{CB} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$
 $\overrightarrow{CB} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$
 $\overrightarrow{CB} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$
 $\overrightarrow{CB} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$
 $\overrightarrow{CB} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$
 $\overrightarrow{CB} \cdot \overrightarrow{AB} = (\overrightarrow{CA} + \overrightarrow{AD}) \cdot \overrightarrow{AB}$

$$dan(CD, AB) = -\frac{2}{2} + \frac{a^2}{2} = 0$$

En en déduit que (D'est outrogonal au veclour TB.

🥒 Capacité 4 Utiliser le produit scalaire pour démontrer une orthogonalité, calculer une longueur ou un angle

L'espace est muni d'un repère orthonormé $(0, \vec{\iota}, \vec{\jmath}, \vec{k})$.

Soit les points E(7; 2; 3), F(0; 1; 4) et G(0; 4; -2). Les droites (EF) et (EG) sont-elles perpendicu-

Page 7/17

https://frederic-junier.org/

Orthogonalité dans l'espace

SpéMaths

- **2.** Dans un repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$ soit les points R (2;0;0), S $(1; \frac{1}{\sqrt{3}}; \frac{4}{\sqrt{6}})$ et T $(1; \sqrt{3}; 0)$. Calculer les distances OR, RS, ST et TO. Les points O, R, S et T sont-ils les sommets d'un los ange?
- 3. Antilles juin 2017

On considère les points A(-1; 2; 0), B(1; 2; 4) et C(-1; 1; 1).

- a. Calculer le produit scalaire AB · AC .
- b. En déduire la mesure de l'angle BAC, arrondie au degré.

On détermine si EF et EF sont outhogonaux

(-1) + 2×(-1) + (-5)×1

🥜 Capacité 3 Calculer des longueurs ou des angles avec le produit scalaire

1. On considère un triangle EFG et on note les longueurs EF = g, FG = e et GE = f.

Compléter la fonction Python ci-dessous pour qu'elle renvoie le produit scalaire $\overrightarrow{EF} \cdot \overrightarrow{EG}$ en fonction des longueurs e, f et g passées en paramètre.

- On considère un tétraèdre régulier ABCD d'arête AB = 6 cm. On note I et J les milieux respectifs des arêtes [AC] et [CD].
 - **a.** Calculer les produits scalaires $\overrightarrow{AB} \cdot \overrightarrow{AC}$, $\overrightarrow{AB} \cdot \overrightarrow{AD}$ et $\overrightarrow{AC} \cdot \overrightarrow{AD}$.
 - b. Calculer les longueurs AI et AJ.
 - **c.** On admet que $\overrightarrow{AI} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{AC} \right)$ et $\overrightarrow{AJ} = \frac{1}{2} \left(\overrightarrow{AC} + \overrightarrow{AD} \right)$. Calculer $\overrightarrow{AI} \cdot \overrightarrow{AJ}$.
 - **d.** Exprimer le produit scalaire $\overrightarrow{AI} \cdot \overrightarrow{AJ}$ en fonction de $\cos(\widehat{IAJ})$ et en déduire une mesure en degrés de l'angle IAJ arrondie au dixième.

2)
a)
$$\vec{A}\vec{B} \cdot \vec{A}\vec{C} = \frac{1}{2} (AB^2 + AC^2 - (\vec{A}\vec{B} - \vec{A}\vec{C})^2)$$

$$\overrightarrow{AB} \cdot \overrightarrow{AD} = \frac{1}{2} (AB^2 + BD^2 - (\overrightarrow{AB} - \overrightarrow{AD})^2) = \frac{1}{2} (646^2 - 6^2) = 18$$

$$\overline{AC}$$
, $\overline{AD} = \frac{1}{2} \left(6^2 + 6^2 - 6^2 \right) = 18$
Autre mèthode: 2ABC equilabèrel danc.
 \overline{AB} , $\overline{AC} = AB \times AC \times cos(\overline{BAC}) = 6 \times 6 \times cos(\overline{D}) = 18$

5 milieu de [CD] et ACD équilatère l'donc L'après le théorème de Prythagere applique dans le triangle AID rectangle en I, on a:

$$AZ^2 = AD^2 - 3D^2 = 6^2 - \left(\frac{6}{2}\right)^2 = 36 - 9 = 27$$

🚀 Capacité 4 Utiliser le produit scalaire pour démontrer une orthogonalité, calculer une longueur ou un angle

L'espace est muni d'un repère orthonormé $(0, \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$.

1. Soit les points E(7;2;3), F(0;1;4) et G(0;4;-2). Les droites (EF) et (EG) sont-elles perpendicu-

Page 7/17

https://frederic-junier.org/

Orthogonalité dans l'espace

SpéMaths

- 2. Dans un repère orthonormal $(0, \vec{i}, \vec{j}, \vec{k})$ soit les points R (2;0;0), $S(1; \frac{1}{\sqrt{3}}; \frac{4}{\sqrt{6}})$ et $T(1; \sqrt{3}; 0)$. Calculer les distances OR, RS, ST et TO. Les points O, R, S et T sont-ils les sommets d'un lo sange?
- 3. Antilles juin 2017

On considère les points A(-1; 2; 0), B(1; 2; 4) et C(-1; 1; 1).

- a. Calculer le produit scalaire AB ⋅AC.
- b. En déduire la mesure de l'angle BAC, arrondie au degré.

2).
$$\overline{OR} \begin{pmatrix} 2-0 \\ 0-0 \\ 0-0 \end{pmatrix}$$
 $\overline{OR} \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$
 $\overline{OR} \cdot \overline{OR} = 2^2 + 0^2 + 0^2 = 4 \text{ danc} ||\overline{OR}||| = 4 \text{ danc} ||\overline{OR}|| = 4 \text{ danc} ||\overline{OR}||| = 4 \text{ danc} ||$

Les trais points O(0;0,0) R(2:0; et 7(1;53;0) sont dans le plan $(0,T,\overline{z})$ d'équation z=0 Mari es points 0; R, S, T ne sont oplanciones, donc même si OR= ORST n'est pas un losange.

3) onnées ignes alignes soi il existe un récl tal que AB = {

denc
$$AB^2 = 20$$

danc $AB = \sqrt{20} = 2\sqrt{5}$

De même $AC = 0 + (-1) + 1$
 $AC \cdot AC = 2$

danc $AC^2 = 2$

danc $AC^2 = 2$

Con deduit de l'égalite (*) que:

 $A = 2\sqrt{5} \times \sqrt{2} \times \cos(BAC)$

danc cas $BAC = \frac{1}{2\sqrt{5}} \times \sqrt{2} \times \sqrt{2}$

on en deduit que:

 $BAC = \arccos(\sqrt{50}) \sim 51$

Capacité 5 Étudier des problèmes de configuration dans l'espace : orthogonalité de deux droites

Soit \mathcal{D} une droite de représentation paramétrique $\begin{cases} x = 4+3t \\ y = -2+t \\ z = 1-5t \end{cases}$, $t \in \mathbb{R}$

- 1. Le point B(7; -1; -4) appartient-il à \mathcal{D} ?
- **2.** Soit E(9;3;-2) et F(11;2;-1). Les droites \mathcal{D} et (BE) sont-elles orthogonales? Les droites \mathcal{D} et (BF) sont-elles orthogonales?
- 3. Quelle propriété vraie dans le plan n'est plus vraie dans l'espace?

1) B(7:-1;-4) apparlient à 2 soi il escrite un réel + Lel que:

On résout le système S:

$$S = \frac{3}{3} = \frac{1}{1} = \frac{1}{1}$$

le susteme admet une solution, dont le point Bappartient à la doite D.

2) D'après la représentation para trique de la droite D'donnée dans l'évance, un vedeur

draite 2 mois ne sont pas parelles. Si (BE), (BF) et-Darwient 2 te coplanaires on unait pu affirmer que (BE)/(BF). 3) Soit D'Il représentation paramètrique: $3) \begin{cases} n = 5t \\ y = 5t \end{cases} - ER$ 3 = htUn vedeur directeur de Dest Un vectour directour de Dest w (3) -s) w. v = 5x3 + 5x1 + 4x(-5)

draite 2 mais ne sont par parelles Si (BE), (BF) et-Darwient 2 te coplanaires en unait pu affirmer que (BE)/(BF). 3) Soit D' de representation
paramètrique:

3, Sx=5t

4=5t

8=ht

Un redien directeur de D'est

Un redien directeur de D'est

1, Sx=5t

Le système n'a pas de solution car la première égalete n'est-per venfiée. On en déduit que les droites Det D' ront-man caplanaues (donc non se canbles). et elles sont-ordres comme en Mammed es precedemment.

🦼 Capacité 6 Étudier des problèmes de configuration dans l'espace : orthogonalité d'une droite et d'un plan

Amérique du sud novembre 2017.

On considère un cube ABCDEFGH (voir la figure de la capacité 1).

- Simplifier le vecteur AC + AE.
- Sans utiliser de coordonnées, en déduire que AG · BD = 0.
- 3. En choisissant un repère orthonormal du plan, démontrer que $\overrightarrow{AG} \cdot \overrightarrow{BE} = 0$.
- Démontrer que la droite (AG) est orthogonale au plan (BDE).

1) On a
$$\overrightarrow{AE} = \overrightarrow{CF}$$
 Lone $\overrightarrow{AC} + \overrightarrow{AE} = \overrightarrow{AC} + \overrightarrow{CF} = \overrightarrow{AG}$

Le plus FE L FB) denc FE outhouseral au FE 2 L FD) plan (BD) FE est danc outhogenal à tout vectour de la direction du plan (ABD) donc:

om déduit- de (*) et (**) que:

3) (m munit-l'espece du repére authonormal
3) On munit-l'espece du repère authonourmal (A, AB, FD, FE)
A(v;o;o) B(1;o;o) D(o;1;o) E(o;v;1) G(1;1;1)
E(0;0;1) G(1;1;1)
AG'(1) BE'(-1)
om a donc AG. BE = -1 x1 + 1x0 +1x1 = 0
_
et don FG autrogenal à BE.
3
L) D'aprie 21 on a AF. BD=0 denc AGLBB
D'après 31 on a AG. BE=0 donc AG_I BE
BE et BD ne sont pas colindaries dans Cornent une base du plan (BED)
farment une loss de plan (BFD)
Construction of the second of
Con en déduit que PG est un recleur normal eu plan (BDE) et danc (AG) est outrogenale ou plan (BDE).
ou elan (BDE) et Janc (AG) est outrouenale
lan (BDE).

🚀 Capacité 7 Utiliser la projection orthogonale pour déterminer la distance d'un point à une droite.

Soit \mathcal{D} la droite passant par A(2;0;1) et de vecteur directeur $\overrightarrow{u}(1;1;1)$.

- 1. Donner une représentation paramétrique de D.
- 2. Soit le point B (3; 2; 4).
 - a. Montrer que B n'appartient pas à la droite \mathcal{D} .
 - **b.** Déterminer les coordonnées du projeté orthogonal H de B sur \mathcal{D} , c'est-à-dire du point H de \mathcal{D} tel que $\overrightarrow{BH} \perp \overrightarrow{u}$.

1) D passe par le point A (2;0;1)

D admet pour vecteur directeur II (1)

Lone D admet comme représentation

 $M(n;y;z) \in J = J = t \in \mathbb{R}, AM = t M$ Se-2A = t MM 3-3A = t MM avec + CR

$$(=)\begin{cases} x = x_A + t x_{\overline{x}} \\ x = x_A + t x_{\overline{x}} \end{cases}$$

$$(=) \begin{cases} x = x_A + t x_{\overline{x}} \\ x = x_A + t x_{\overline{x}} \end{cases}$$
where $t \in \mathbb{R}$

$$M(x.1.3)E2 = 5 = 2+t$$

 $3 = 2+t$
 $3 = 1+t$

2) a Soit le point B (3;2;4).

Bapparbient à Dosi il enste un reel tel que.

$$\begin{cases} 3 = 2 + t \\ 2 = 0 + t \end{cases} = t$$
 $\begin{cases} 4 = 1 + t \\ 3 = t \end{cases}$

Ce système n'a pas de solution dans B(2;3;4) n'appositiont pas à la droite I.

b) H mogete outhor enolde B sur I est l'uniquel pount de D tel que BH I re. BH I W (=) BH . W = 0 Hest un point de 2 donc il eniste un reel t que: $H\left(\frac{2+t}{t}\right)$ Con a BH $\left(\frac{t-1}{t-2}\right)$ $\left(\frac{t-2}{t-3}\right)$ BH. M = 0 (=) t-1+t-2+t-3=0 (35 - (1+2+3) = 0 $(3t-3\times(1+3))=0$

🦪 Capacité 11 Déterminer l'équation cartésienne d'un plan dont on connaît un vecteur normal et un point

 $\text{Dans l'espace muni d'un repère orthonormal } \left(\text{O}, \overrightarrow{\iota}, \overrightarrow{J}, \overrightarrow{k} \right), \text{ soit } A (3; -1; 4), B (2; 1; 4) \text{ et } C (3; -2; 0).$

- 1. Déterminer une équation de chacun des trois plans de base de repères respectifs $(O; \vec{i}, \vec{j})$, $(O; \overrightarrow{\iota}, \overrightarrow{k}), (O; \overrightarrow{\jmath}, \overrightarrow{k}).$
- **2.** Déterminer une équation cartésienne du plan \mathcal{P}_1 passant par B et de vecteur normal \overrightarrow{n} (4; -3; 1).

Page 14/17

https://frederic-junier.org/

Orthogonalité dans l'espace

SpéMaths

- 3. Déterminer une équation cartésienne du plan \mathcal{P}_2 passant par A et orthogonal à la droite (BC).
- Déterminer une équation cartésienne du plan P₃ passant par C et parallèle au plan P₂.
- Démontrer que les points A, B, C définissent un plan.
 - **b.** Équation du plan (ABC), 1ère méthode

Déterminer les coordonnées d'un vecteur \overrightarrow{n} (a; b; c) orthogonal à \overrightarrow{AB} et \overrightarrow{AC} en résolvant un système de deux équations linéaires à trois inconnues. En déduire une équation du plan (ABC).

Équation du plan (ABC), 2ème méthode

Résoudre le système de trois équations à quatre inconnues a, b, c, d: $\begin{cases} ax_A + by_A + cz_A + d = 0 \\ ax_B + by_B + cz_B + d = 0 \\ ax_C + by_C + cz_C + d = 0 \end{cases}$

En déduire une équation du plan (ABC).

Le plan (0, t), x) est l'ensem

- ble des points M(x: M;0)

donc il a pour équation: 2=0 e plan (0, t, k) est l'ensemble Les points M(x; 0) donc il a pour équation 2 = 0. le plan (0, 7, k) est l'ensem ble des points M(0, 2; 3) donc il a pour équation 3(1) 3) Soit I le plan passant par le pourt B(2:,1;4) et de vecteur noumal m (4:-3:1). . Une équation de Trest de la Je plus B(2;1;4) apparlienta 4x2-3x1+4+d=0 => 9+2=0

(=) 3+6+d=0 (=) d=-s Une équation de 52 est-donc: 3x - 3y - 4y - 9 = 0(ABC). 6) b) foit n (b) un vecteur normal ou plan c (ABC). marmel au plan (ABC) soi (M. AB = 6 (-1) AC (-1) (M. AC = 0 $(\vec{n}.\vec{AB}=0)$ (-a+2b=0) (a=2b)et (=>) (-b-4c=0) $(=-\frac{1}{4}b)$ On on déduit que:

The avec breel normal

Boer b = 4 m, (4) est normal

Une Équation de (PBC) est dans de la Courne: 8 x + hng - z + d=0

🥒 Capacité 12 Déterminer l'intersection d'une droite et d'un plan

Dans un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$ de l'espace, on considère la droite \mathcal{D} de représentation paramétrique :

$$\begin{cases} x = -7 + t \\ y = 4 + 2t, t \in \mathbb{R} \\ z = -5 - t \end{cases}$$

et le plan \mathscr{P} d'équation -2x-3y+z-6=0

- Déterminer si la droite D et le plan P sont sécants.
- Si D et P sont sécants, calculer les coordonnées de leur point d'intersection.

1) De vectour direction $\overline{\mu}^{2}(1;2;-1)$ The vectour normal $\overline{n}^{2}(-2;-3;1)$

m. u=-2+(-6)+(-1)=-5≠0 donc Dest sécente avec le plan

2) Pour déterminer le point d'intersection de

La droite Det Ce plant sont secantes ou joint Le coordonnées (-8; 2; -4)

Ť	Capacité 13 Calculer la distance d'un point à un plan par projection orthogonale on considère un cube ABC de côté 1 (voir figure de la capacité 1). On note L , I et J les milieux respectifs des segments $[AD]$, $[EF]$ et $[HG]$ et K le centre du carré $BCGF$.
	1. Justifier que $(A, \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ est un repère orthonormé de l'espace. On exprime désormais toutes les coordonnées dans ce repère.
	2. a. Déterminer les coordonnées des vecteurs \overrightarrow{LK} , \overrightarrow{BI} et \overrightarrow{BC} \overrightarrow{BD}
	b. En déduire que la droite (<i>LK</i>) est orthogonale au plan (<i>IJB</i>).
	c. Déterminer une représentation paramétrique de la droite (LK) .
	d. Déterminer une équation du plan (<i>IJB</i>).
	e. En résolvant un système d'équations linéaires, déterminer les coordonnées du point R projeté orthogonal du point L sur le plan (IJB) .
	f. En déduire la distance du point L au plan (IJB) .
	3. Calculer le volume de la pyramide <i>LIJCB</i> .
,	1) ABCD EFGH est un cube donc (ABLAD) 1. ABCD EFGH est un cube donc (ABLAE) 1. AB = AD = AE = 1, donc (A, AB, AD) AE 1. Lace of the part of expare.
	ed un repère alhonoune de l'espace.
	2) a) L(0;0,5;0) K(1,0,5;0,5)
	done [K (1:0:0s)
	B(1:0:0) et ± (0,5:0:1) donc BI(-0,5:0:1)

e) Rest-le projeté arthogonal du paint [
sur la plan (TTB)

Principal LK) est orthogonale au plan (TTB)

on en déduit- pre le point R est le point :

d'intersection de la droite (K) et-du plan (TTB) on en déduit que R(4,1.2). E) la distance du point [au plan (IJB) oot, for propriété du projeté anthogonal, la distance LR: L(0;0,5;0) et R(5,0,5;2) danc $LR^2 = \begin{pmatrix} \frac{1}{5} & \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{2}{5} & \frac{2}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \frac{1}{5} & \frac$

Or F5 (U.1.0) el-BC (U;1,0) Long IS = BC den (ISCB facellelogramme. De plus BI (-0,5;0;1) Jan (BI. IS) _ 0 denc IICB est un rectangle L'aire de IJCB est don égale à: $BC \times BI = 1 \times \sqrt{(0.5)^2 + 1^2} = 1 \times \frac{\sqrt{3}}{2}$ Finalement le volume de la pyramide LIJCB est ègal à: $\frac{1}{3} \times \frac{\sqrt{3}}{2} \times \frac{2\sqrt{5}}{5} = \frac{\sqrt{15}}{15}$

Capacité 8, p. 95

On considère les points A(8; -1; 3), B(19; 10; 4) et le vecteur $\vec{n}(2; 2; 1)$. On note \mathcal{P} le plan passant par A et de vecteur normal n.

- **1.** Démontrer que le point H(9; 0; -1) appartient à \mathcal{P} .
- **2. a.** Démontrer que H est le projeté orthogonal de B sur \mathcal{P} .
- **b.** En déduire la distance du point B au plan \mathcal{P} .
- **3.** Soit C(9; 6; 7).
- a. Justifier que C est le projeté orthogonal de H sur la droite (BC).
- **b.** Calculer la distance du point H à la droite (BC).

AH? (3-8) AH (1)

Alan passant par Ast de verteur

roumel m? (2;2;1)

l'are one projecte du ours, le plan I pour de les les mountes nouvell m'est l'ensemble eles pour le l'espace tels que ATM. m'= o

distance du point H à le divite BC)
est- CH.

CH (0) donc (H=10,