

TIES483 Nonlinear Optimization

Lecture 13 (Part B)

Decision-making under Uncertainty

Spring 2023

Babooshka Shavazipour, PhD Babooshka.b.shavazipour@jyu.fi

Contents

- Uncertainty
- Different types of uncertainty
- Why it should be treated
- How to handle uncertainty
- Dealing with uncertainty in (MO)O
- Traditional and novel approaches

Learning outcomes

- To understand the importance of handling uncertainty in real-world problems
- To understand different types of uncertainty in (MO)OPs
- To understand how to deal with uncertainty in (MO)OPs
- Example approaches

Decision-making under uncertainty

- So far, we assumed that all the required information are certainty known.
- I.e., all the parameters, objectives, constraints are certain without any variation.
- However, most of the decisions in real-life problems need to be made in the absence of complete knowledge about the consequences of the decision.
- The presence of uncertainty brings more complexity to the problem.

- If a complete detailed map were reached; i.e. we know everything, with absolute certainty
- Consequences of all alternatives could be seen and compared → Choose the most preferred one.
- However, sometimes, the decisions need to be made when the complete, detailed map is unavailable.
- Lack of any details in the map could be viewed as uncertainty.

Different definitions of uncertainty

- "Any deviation from the unachievable ideal of completely deterministic knowledge
- of the relevant system" [Walker et al., 2003].
- "At a most fundamental level, uncertainty relates to a state of the human mind,
- i.e. lack of complete knowledge about something" [Stewart, 2005].
- "Incomplete information about a particular subject" [Ascough II et al., 2008].
- "Lack of confidence in knowledge related to a specific question" [Sigel et al., 2010].
- "In general, uncertainty can be defined as limited knowledge about the future, the
- past, or current events" [Walker et al., 2013a].

Important note!

- Uncertainties are not merely caused by the lack of knowledge and information
- Uncertainty can exist in a situation where lots of information are available
- However, new knowledge can either increase or decrease uncertainty
- New information and knowledge on a complex process can unfold previously unknown uncertainties
- In this case, more knowledge clarifies that the processes are more complex or that our cognition is more limited than previously thought

- Three sources/dimensions of uncertainty related to modelbased decision support exercises:
 - Nature:
 - Variability (Aleatory) Alea (Latin) → Dice
 - Epistemic (Limited knowledge)

Different sources of the nature of uncertainty

Three sources/dimensions of uncertainty related to model-based decision support exercises:

- Nature:

- Variability (Aleatory) Alea (Latin) → Dice
- Epistemic (Limited knowledge)

Location:

The where the uncertainty manifests itself within the model complex (Models, Outcomes, Weights, etc.)

- Internal (DM judgement and preferences)
- External (lack of knowledge about outcomes)

Author(s)	Different categories				
	Uncertainties expressed during	What might happen or what can be done			
	modeling	Meaning/ambiguity			
		Related decisions			
		Physical randomness or lack of knowledge			
Eveneb [1005]	Uncertainties expressed during	The evolution of future beliefs and performances			
French [1995]	exploration of the models	Judgments			
	 	The accuracy of calculations			
	Uncertainty expressed during	Appropriateness of a descriptive model			
	interpretation	Appropriateness of a normative model			
	·	the depth of analysis			
	Context				
	37 11	Structure			
	Model	Technology			
Walker et al. [2003]		Controllable			
	Input	Uncontrollable			
	parameter				
	Model outcome				
C4 [000E]	Internal				
Stewart [2005]	External				
	Internal variability of the systen	n			
Hawkins and Sutton [2009]	Model Uncertainty				
	Scenario Uncertainty				
	The value system(s) to be used	to rank alternative policies			
Marchau et al. [2010]	The system models				
	How the future will develop				
	External Forces				
	Relations within a system				
Kwakkel and Walker [2010]	Outcomes of interest				
	Weights				
	Context				
	System model				
Walker et al. [2013b]	System Outcome				
	Weights				
	Weights on outcome				
	weights on outcome	<u></u>			

Different classifications of the location of uncertainty.

UNIVERSITY OF IYVÄSKYI

- Three sources/dimensions of uncertainty related to modelbased decision support exercises:
 - Nature:
 - Variability (Aleatory)
 - Epistemic (Limited knowledge)
 - Location:

The where the uncertainty manifests itself within the model complex (Models, Outcomes, Weights, etc.)

- Internal (DM judgement and preferences)
- External (lack of knowledge about outcomes)
- Depth or Level:

The where the uncertainty manifests itself along the spectrum between absolute certainty and total ignorance.

Shavazipour [2018]	ıty)	Mild uncertain	ty (First-degree)	Moderate uncertainty (Second-degree)		Deep uncertainty (Third-degree)	
Walker et al. [2013a]	ecrtair	Level 1 (A clear enough future)	Level 2 (Alternate futures with probabilities)	Level 3 (Alternate futures with ranking)	Level 4 (Multiplicity of futures)	Level 5 (Unknown future)	al ignora
Walker et al. [2003]	plete	statistical uncertainty		scenario uncertainty	Recog Reducible	gnized ignorance Irreducible	(tota
Kwakkel et al. [2010]	(con	Shallow Uncertainty (Level 1)		Medium Uncertainty (Level 2)	Deep Uncertainty (Level 3)	Recognized Ignorance (Level 4)	ainty
Courtney [2001]	f degree 0	Level 1 (so low that the traditional methods that employ point forecasts can be used with great success)	Level 2 (manager can identify a set of distinct possible outcomes, one of which will occur)	Level 3 (manager can bound the range of possible outcomes)		Level 4 (analysis cannot even bound the range of possibilities)	of uncerta
Morgan et al. [1992]	nty o	Uncertainties can be treated through probabilities Uncertainties cannot be			tainties cannot be treated pro-	probabilistically	
Quade [1989]	ertai	Stochastic uncertainty			Real uncertainty	ity de	
Knight [1921]	$\mathbf{U}_{\mathbf{nc}}$	Risk				Uncertainty	Infinity

Different classifications of the depth of uncertainty.

- > We use the term degree of uncertainty as depth or level of uncertainty.
- ➤ Uncertainty of degree '0' as absolute certainty or deterministic knowledge.
- ➤ Uncertainty of infinity degree as total ignorance.

Degrees of Uncertainty

- Absolute Certainty (clear enough future deterministic)
- Mild uncertainty (1st): Outcomes can be enumerated, and probabilities (or probability distribution) are specified (probable futures).

 Moderate uncertainty (2nd): Outcomes can be enumerated but probabilities are difficult to specify generally (few possible/plausible futures).

• Deep uncertainty (3rd): Outcomes cannot be completely enumerated, so that, probabilities are not definable (many plausible futures).

No nothing

Absolute Certainty	Mild	Moderate	Deep	$Total \ Ignorance$
0	1	2	3	∞

A more general definition of Deep Uncertainty

• A situation in which the relevant actors do not know or cannot agree upon:

- how likely or plausible various future states are
- how the system works (or would work)
- how to value the various outcomes of interest

Dealing with uncertainty

Why must uncertainty be treated?

Dealing with uncertainty

Why must uncertainty be treated?

- Many people have ignored uncertainty for many years
- Still, some try to avoid the higher degrees of uncertainty
- However, they must face this challenge eventually

Why must uncertainty be treated?

