Closure of Attribute Sets

Attribute Closure

Given a set of attributes α , define the *closure* of α under F (denoted by α^*) as the set of attributes that are functionally determined by α under F

$$R(ABCD)$$

$$F = \{A \rightarrow B, B \rightarrow C, C \rightarrow D\}$$

$$F \rightarrow D$$

$$A^{\dagger} = ABCD$$

$$A^{\dagger} = ABCD$$

$$A \rightarrow A \mid A \rightarrow BC \mid A \rightarrow ABCD$$

$$A \rightarrow C \mid A \rightarrow CD \mid A \rightarrow CD$$

F:
$$\begin{cases} AB \rightarrow CD, AF \rightarrow D, DE \rightarrow F, C \rightarrow G, F \rightarrow E, \\ G \rightarrow A \end{cases}$$

$$(CF)^{\dagger} = CFGADE$$

$$(BG)^{\dagger} = BGACD$$

$$(AB)^{\dagger} = ABCDG$$

Uses of Attribute Closure

There are several uses of the attribute closure algorithm:

- Testing for superkey:
- To test if α is a superkey, we compute α⁺ and check if α⁺ contains all attributes of R.
- Testing functional dependencies
 - To check if a functional dependency α → β holds (or, in other words, is in F⁺), just check if β ⊆ α⁺.
 - That is, we compute α^+ by using attribute closure, and then check if it contains β .
 - Is a simple and cheap test, and very useful
- Computing closure of F
- ✓ For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Candidate key and Super key using Attribute Closure

K → R means K+ determines all the attributes of the relation R

K is a superkey for relation schema R if and only if $K \to R$ K is a candidate key for R if and only if

•
$$K \rightarrow R$$
, and
• for no $\alpha \subset K$, $\alpha \rightarrow R$

$$(K: SK) () (K \rightarrow R) \wedge (minum God'')$$

$$(K: CK) () (K \rightarrow R) \wedge (Minum God'')$$

$$(K: CK) () (K \rightarrow R) \wedge (Minum God'')$$

$$\begin{array}{c} F(ABCD) \\ F \rightarrow R \\ F \rightarrow ABCD \\ \end{array}$$

$$\begin{array}{c} P \rightleftharpoons Q \\ \hline T \rightarrow F \\ F \rightarrow T \\ \end{array}$$

$$\begin{array}{c} F \rightarrow Q \\ \hline T \rightarrow F \\ F \rightarrow T \\ \end{array}$$

$$\begin{array}{c} F \rightarrow Q \\ \hline T \rightarrow F \\ F \rightarrow T \\ \end{array}$$

R(ABCD)
$$F := \{A \rightarrow B, B \rightarrow (, (\rightarrow D)\}$$

C(c: A $A^{\dagger} = ABCD \text{ or } R$
 $S(c: A)$ $A \rightarrow R$

$$R(ABCDE) \qquad \begin{cases} AB \rightarrow C, C \rightarrow D, B \rightarrow E \end{cases}$$

$$(AB)^{\dagger} = AB CDE = R \qquad AB \rightarrow R$$

$$S \cdot k \cdot :- AB$$

$$C' k :- AB$$

$$B + = AB$$

$$C' k :- AB$$

$$A \leftarrow R$$

$$A \leftarrow R$$

$$(AD)^{+} = R$$

$$A^{+} = A$$

$$g^{\dagger} = R$$

$$A^{+}=R$$

$$B \rightarrow F / D \rightarrow E$$

$$(SC)^{\dagger} = R \qquad (BC)^{\dagger} = BCADEF$$

$$(BC)^{\dagger} = BF$$

$$(BC)^{\dagger} = BF$$

$$(AB)^{\dagger} = R$$

R(ABCDE)

CK! AN CDE

K(ABCDE)

F:
$$\int$$

CK: ABCDE

 $ADCDE \rightarrow R$
 $R(ABCDE)$
 $A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A$
 $CK: AE, BE, CE, DE$
 $R(ABCDEH)$
 $A \rightarrow B, BC \rightarrow D, E \rightarrow C, D \rightarrow A$
 $R(ABCDEH)$
 REH
 REH

C.t. = AR