

Can Prompt Probe Pretrained Language Models? Understanding the Invisible Risk from a Causal View

Boxi Cao, Hongyu Lin, Xianpei Han, Fangchao Liu, Le Sun

Institute of Software, Chinese Academy of Sciences, Beijing, China {boxi2020,hongyu,xianpei,fangchao2017,sunle}@iscas.ac.cn

Introduction

> Conventional evaluation in machine learning:

- I. The evaluated hypotheses are raised independent of train/test data generation.
- II. The impact of correlations is transparent, controllable and equal for all the hypotheses.

>PLM evaluation via prompt-based probing:

- I. Evaluated PLMs are bundled with pretraining corpus.
- II. There exist implicit correlations between the pretraining corpus, prompt and probing data which will mislead evaluation.

Structural Causal Model

There are three backdoor paths in the structural causal model, and each backdoor path corresponds to one bias.

Prompt Preference Bias

The model performance will be affected by both the task ability of PLM and preference fitness of a prompt.

Sample Disparity Bias

The performance difference between different PLMs may due to the sample disparity of their pretraining corpus, rather than the ability divergence.

$\gamma\%$	BERT-base	BERT-large	GPT2-base	GPT2-medium
0%	30.54	33.08	15.22	22.11
20%	35.77	39.56	22.02	28.21
40%	38.68	39.75	24.32	30.29
60%	38.72	40.68	25.42	31.16
80%	39.79	41.48	25.65	31.88
100%	40.15	42.51	26.82	33.12
None	37.13	39.08	16.88	22.60

Instance Verbalization Bias

Different PLMs may prefer different verbalizations due to mention coverage, expression overlap, etc.

Relation	Mention	Prediction	
	America	Chicago	
Conital of	the U.S.	Washington	
Capital of	China	Beijing	
	Cathay	Bangkok	
	Einstein	Berlin	
Dirthalogo	Albert Einstein	Vienna	
Birthplace	Isaac Newton	London	
	Sir Isaac Newton	town	

Bias Elimination

- Causal intervention can significantly improve the evaluation consistency.
- Propose to reduce bias via backdoor adjustment. $\mathcal{P}(E|do(M=m), R=r) = \sum \sum \mathcal{P}(p,x)\mathcal{P}(E|m,r,p,x).$

Model	Original	Random	+Intervention
BERT-base	56.4	45.4	86.5
BERT-large	100.0	78.1	100.0
RoBERTa-base	75.7	44.0	77.8
RoBERTa-large	56.1	42.2	86.5
GPT2-medium	63.5	40.7	98.2
GPT2-x1	74.2	35.7	77.8
BART-base	63.4	61.6	98.2
BART-large	97.7	61.3	100.0
Overall Rank	25.5	5.5	68.5

Conclusion

 $p \in P \ x \in X$

- > A causal analysis framework is proposed to effectively identify, interpret and eliminate evaluation biases with a theoretical guarantee.
- > Our conclusions echo that we need to rethink the criteria for identifying better PLMs.