Chapitre 12. Réduction des endomorphismes

1 Sous-espaces stables. Polynômes d'endomorphisme

Exemples de sous-espaces stables

Définition 1.1. Soit $u \in \mathcal{L}(E)$, F un sev de E

On dit que F est stable sous u su $u(F) \subset F$

On note alors u_F l'induit de u sur F

Proposition 1.2. Si $P \in K[X]$, P(u) laisse stable F et $P(u)_F = P(u_F)$

Exemples de sous-espaces stables

- Premier type : Soit E un K-ev, $u \in \mathcal{L}(E)$, $e \in E$ Alors $F_e = \operatorname{Vect}(u^k(e))$ est un sev stable par u, c'est même le plus petit sev stable contenant e
- Deuxième type : $\ker P(u)$ et im P(u)

Proposition 1.3. Soit $u, v \in \mathcal{L}(E)$ aveec $u \circ v = v \circ u$

Alors $\ker v$ et im v sont stables par u

Corollaire 1.4. Soit *E* un *K*-ev, $u \in \mathcal{L}(E)$ et $P \in K[X]$

Alors $\ker P(u)$ et im P(u) sont stables par u

Théorème de décomposition des noyaux

Théorème 1.5 (Théorème de décomposition des noyaux).

Soit *E* un *K*-ev, $u \in \mathcal{L}(E)$ et $P, Q \in K[X]$ Premiers entre eux.

Alors

$$\ker PQ(u) = \ker P(u) \oplus \ker Q(u)$$

Corollaire 1.6. Soit E un K-ev, $u \in \mathcal{L}(E)$ et $P_1, ..., P_r \in K[X]$ premiers entre eux 2 à 2

Alors

$$\ker P_1 P_2 ... P_r(u) = \bigoplus_{i=1}^r \ker P_i(u)$$

1

1.4 Polynôme minimal d'un endomorphisme

Théorème 1.7. Soit E est de dimension finie et Φ : $\begin{cases} K[X] \to \mathcal{L}(E) \\ P \mapsto P(u) \end{cases}$ un morphisme d'algèbres.

Alors ker $\Phi \neq \{0\}$ et il existe un unique polynôme unitaire μ_u (ou π_u) tel que ker $\Phi = \mu_u K[X]$

Si $P \in K[X]$ alors $P(u) = 0 \iff \mu_n \mid P$

 μ_u est donc le polynôme unitaire de plus petit degré (non nul) qui annule u

Par ailleurs im $\Phi=K[u]=\mathop{\rm Vect}_{k\in\mathbb N}(u^k)$ est une sous-algèbre de $\mathcal L(E)$ (commutative)

de dimension deg $\mu_u = d$ et de base (Id, u, ..., u^{d-1})

Définition 1.8. Avec ces notations, μ_u s'appelle polynôme minimal de u

Proposition 1.9. Si *E* de dimension finie

$$\bullet \quad \mu_u = 1 \iff E = \{0\}$$

•
$$\mu_u = 1 \iff E = \{0\}$$

• $\mu_u = X - \lambda \iff u = \lambda \operatorname{Id}_E, E \neq \{0\}$

Théorème 1.10. Soit $A \in M_n(K)$

Alors
$$\Phi: \begin{cases} K[X] \to M_n(K) \\ P \mapsto P(A) \end{cases}$$
 est un morphisme d'algèbres non injectif.

Donc ker Φ est un idéal différent de $\{0\}$ qui s'écrit $\mu_A K[X]$

Si
$$P \in K[X]$$
, $P(A) = 0 \iff \mu_A = P$

et μ_A est donc le polynôme unitaire différent de 0 de plus petit degré annulant A

Par ailleurs, si $d = \deg \mu_A$, K[A] est une sous-algèbre commutative de $M_n(K)$ de dimension d, de base $(Id, A, ..., A^{d-1})$

Définition 1.11. μ_A est appelé polynôme minimal de A (aussi noté μ_A)

Racines de polynôme minimal

Proposition 1.12. Soit *E* un *K*-ev, $u \in \mathcal{L}(E)$, $Q \in K[X]$

Si (e, λ) un couple propre de u alors

$$Q(u)(e) = Q(\lambda)e$$

Proposition 1.13.

- Soit *E* un *K*-ev de dimension finie, $u \in \mathcal{L}(E)$, *P* un polynôme annulateur de u, $\lambda \in \operatorname{Sp}(u)$ Alors λ est racine de P : $Sp_u \in Z(P)$
- Soit $A \in M_n(K)$, $\lambda \in \operatorname{Sp}(A)$, $P \in K[X]$ avec P(A) = 0Alors λ est racine de P

Proposition 1.14.

• Soit *E* un *K*-ev de dim finie, $u \in \mathcal{L}(E)$ Les racines de μ_u sont exactement les valeurs propres de u

$$\boxed{\operatorname{Sp} u = Z(\mu_u)}$$

• Soit $A \in M_n(K)$ Les racines de μ_A sont exactement les valeurs propres de A

$$\boxed{\operatorname{Sp} A = Z(\mu_A)}$$

Diagonalisabilité 2

Endomorphismes diagonalisables

Définition 2.1. Soit *E* un *K*-ev de dim finie, $u \in \mathcal{L}(E)$

On dit que u est diagonalisable s'il existe une base \mathcal{B} de E telle que

$$\operatorname{Mat}_{\mathcal{B}}(u) = \begin{pmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{pmatrix} \in D_n(K)$$

Autrement dit, s'il existe une base de vecteurs propres.

Théorème 2.2. Soit *E* un *K*-ev de dimension finie $n, u \in \mathcal{L}(E)$

Les 5 conditions suivantes sont équivalentes :

- (i) u est diagonalisable.
- (ii) Il existe λ_1 , ..., $\lambda_r \in K$ 2 à 2 distincts tels que

$$E = \bigoplus_{i=1}^{r} \ker\left(u - \lambda_{i} \mathrm{Id}_{E}\right)$$

(iii) Il existe λ_1 , ..., $\lambda_r \in K$ 2 à 2 distincts tels que

$$\prod_{i=1}^{r} (u - \lambda_i \mathrm{Id}_E) = 0$$

- (iv) Il existe $P \in K[X]$ scindé à racines simples annulant u
- (v) μ_u est scindé à racines simples.

Dans ces conditions

$$E = \bigoplus_{\lambda \in \operatorname{Sp} u} \ker (u - \lambda \operatorname{Id}_E)$$

$$\mu_u = \prod_{\lambda \in \operatorname{Sp} u} (X - \lambda)$$

(On dit que "la somme des sev propres rejoint *E*")

Proposition 2.3. Soit *E* un *K*-ev de dimension finie, $u \in \mathcal{L}(E)$ diagonalisable et *F* un sev de *E* stable par *u* Alors u_F est aussi diagonalisable et $|\mu_{u_F}|$ $|\mu_u|$

Matrices carrés diagonalisables

Définition 2.4. Soit $A \in M_n(K)$

A est diagonalisable si u_A : $\begin{cases} K^n \to K^n \\ X \mapsto AX \end{cases}$ est diagonalisable.

Proposition 2.5. Soit $A \in M_n(K)$

Alors A diagonalisable $\iff A$ est semblable à une matrice diagonalisable.

Proposition 2.6. Soit $A \in M_n(K)$

Les 5 conditions suivantes sont équivalents :

- (i) A est diagonalisable.
- (ii) Il existe $P \in GL_n(K)$ tel que $P^{-1}AP \in D_n(K)$
- (iii) Il existe λ_1 , ..., $\lambda_r \in K$ 2 à 2 distincts tels que

$$K^n = \bigoplus_{i=1}^r \ker\left(A - \lambda_i I_n\right)$$

- (iv) Il existe $Q \in K[X]$ scindé à racines simples annulant A
- (v) μ_A est scindé à racines simples.

Dans ces conditions

$$K^{n} = \bigoplus_{\lambda \in \operatorname{Sp} A} \ker (u - \lambda I_{n})$$

$$\mu_{A} = \prod_{\lambda \in \operatorname{Sp} A} (X - \lambda)$$

$$\mu_A = \prod_{\lambda \in \operatorname{Sp} A} (X - \lambda)$$

3

Proposition 2.7. Soit E un K-ev de dim finie, $u \in \mathcal{L}(E)$, \mathcal{B} base de E et $A = \underset{\mathcal{B}}{\text{Mat}}(u)$

Alors |u| diagonalisable $\iff A$ diagonalisable

Proposition 2.8. Soit

$$M = \begin{pmatrix} \boxed{A_1} & & 0 \\ & \ddots & \\ 0 & & \boxed{A_r} \end{pmatrix}$$

Alors

M diagonalisable $\iff A_1,...,A_r$ diagonalisable

2.3 Diagonalisabilité du polynôme caractéristique

Proposition 2.9.

• Soit E un K-ev de dim finie, $u \in \mathcal{L}(E)$ Si χ_u est scindé à racines simples, u est diagonalisable.

• Soit $A \in M_n(K)$ et χ_A scindé à racines simples Alors A est diagonalisable.

Proposition 2.10. Soit E un K-ev de dimension finie, $u \in \mathcal{L}(E)$ et λ une valeur propre de u On note α l'ordre de λ comme racine de χ_u : multiplicité algébrique de λ comme valeur propre de u On note β la dimension de $E_{\lambda} = \ker (u - \lambda \operatorname{Id})$: multiplicité géométrique de λ Alors $1 \le \beta \le \alpha$

Théorème 2.11. Soit $u \in \mathcal{L}(E)$, E K-ev de dim finie et Sp $u = \{\lambda_1, ..., \lambda_r\}$ avec λ_i 2 à 2 distincts.

Pour $1 \le i \le r$ on note :

 $\beta_i = \dim \ker (u - \lambda \operatorname{Id})$: multiplicité géométrique

 α_i l'ordre de λ_i comme racine de χ_u : multiplicité algébrique

Alors

$$u$$
 diagonalisable $\iff \begin{cases} \chi_u \text{ scind\'e} \\ \forall i \in [1, r], \ \beta_i = \alpha_i \end{cases}$

Définition 2.12.

Diagonaliser un endomorphisme c'est trouver une base de vecteurs propres et les valeurs propres associés. diagonaliser une matrice A c'est trouvé $P \in GL_n(K)$ et $D \in D_n(K)$ tels que $P^{-1}AP = D$

Proposition 2.13. Si C_1 , ..., C_n sont une base de vecteurs propres pour A et $AC_i = \lambda_i C_i$ Si

$$P = (C_1 \mid \cdots \mid C_n) = \text{Mat}(b.c., (C_1 \mid \cdots \mid C_n))$$

Alors

$$P^{-1}AP = \operatorname{Mat}_{(C_1, \dots, C_n)}(u_A) = \begin{pmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} = D$$

3 Exercices classiques (1ère série)