Securing Dynamic Robotic Behavior in Unpredicted Environments: Enhancing Trust through Adaptive Learning and Cyber Defense

Giselle Roman | Dr. Yugyung Lee | 06/08/2025

Problem Statement Overview

As autonomous robots continue to operate in complex and unpredictable environments, their ability to adapt in real-time scenarios is important. By exploring learning-based methods like reinforcement and imitation learning, this project aims to optimize robotic behavior by developing both adaptive learning and highly secure cybersecurity.

Paper 1: Secure Robotics: Safety, Trust, and Cybersecurity

- Introduced the unified field of secure robotics
 - o Trust
 - Safety
 - Cybersecurity
- Trust as non-binary, shaped over time based on experience
 - Asimov's laws
 - Human values and ethics
- Provided taxonomy of trust failures
 - System Failure
 - User Failure

Paper 2: AI and ML Enhance Robot Decision-making

- Survey-style overview of AI/ML in robotics
- Emphasized real-time adaptation
 - Reinforcement Learning (RL): exploring its environment to receive feedback
 - Intimidation Learning (IL): data provided to learn from
- Showed case studies
 - Da Vinci Surgical System
 - Boston Dynamics' Spot Robot

Paper 3: Adversarial Attacks

- Deep Reinforcement Learning (DRL) agents
 - Vulnerable to small perturbations
- Focused on white-box vs black-box attacks
 - White-box: attacker has full access to the robot's model
 - Black-box: attacker has no internal knowledge
- Fast Gradient Sign Method (FGSM) attack method
 - Adversarial attacks during training and testing

AI Methods

- Reinforcement Learning (RL)
 - Adaptive decision-making
- Imitation Learning (IL)
 - Learning from demonstrations
- Adversarial Robustness
 - Attack simulations to test defenses
- Perspective API
 - Potential tool for modeling trust and feedback

Challenges

- Transitions from simulation to real world environments
- Trust feedback system
 - Measure and responding to users
- Implementing Runtime Adversarial Defenses
 - Best way to detect or defend against adversarial inputs
- System Integration
 - Learning models, cybersecurity tools, and trust

References

- Haskard, Adam, and Damith Herath. "Secure Robotics: Navigating Challenges at the Nexus of Safety, Trust, and Cybersecurity in Cyber-Physical Systems." *ACM Computing Surveys*, Association for Computing Machinery, Mar. 2025, https://doi.org/10.1145/3723050.
- Huang, Sandy, et al. "Adversarial Attacks on Neural Network Policies." ArXiv:1702.02284 [Cs, Stat], Feb.
 2017, arxiv.org/abs/1702.02284.
- Md Delwar Hussain, et al. "ARTIFICIAL INTELLIGENCE and MACHINE LEARNING ENHANCE ROBOT DECISION-MAKING ADAPTABILITY and LEARNING..." ResearchGate, unknown, 3 June 2024, www.researchgate.net/publication/381131067_ARTIFICIAL_INTELLIGENCE_AND_MACHINE_LEARNI NG_ENHANCE_ROBOT_DECISION-MAKING_ADAPTABILITY_AND_LEARNING_CAPABILITIES_ACROS S_VARIOUS_DOMAINS.