

Softwareprojektpraktikum Maschinelle Übersetzung

Matthias Huck, Markus Freitag {huck,freitag}@i6.informatik.rwth-aachen.de

Vorbesprechung 6. Aufgabe 30. Juni 2011

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

1	Sprachmodell	
2	Übung 6	24
3	SRI LM Toolkit	2

1 Sprachmodell

- ▶ Problem: insbesondere an Phrasengrenzen können Fehler auftreten
- **▶** Beispiel:

 - > Phrasentabelle:
 - 2 2 # Dear # Sehr geehrte
 - 3 3 # Dear # Sehr geehrter
 - o 2 2 # Mr. Stone # Herr Stein
 - **⊳** Ergebnis:
 - Sehr geehrte | Herr Stein (Kosten: 4)
 - Sehr geehrter | Herr Stein (Kosten: 5)

Warum Sprachmodell?

▶ Bewertung durch ein Bigramm-Sprachmodell:

- ▶ Das obere Beispiel wird größere Kosten verursachen (z.B. 5)
- ▶ Das untere Beispiel wird bessere Kosten verursachen (z.B. 2)
- **▶** Neues Ergebnis:
 - ⊳ Sehr geehrter | Herr Stein (Kosten: 5+2)
 - ⊳ Sehr geehrte | Herr Stein (Kosten: 4+5)

Ergebnisse in der Spracherkennung

- ullet Allgemeine Formel: $Pr(e_1^I) = \prod_{i=1}^I Pr(e_i|e_1^{i-1})$
- lacktriangle In der Praxis Beschränkung auf n-1 letzte Wörter, die sogenannte History h
- $lackbox{ iny} h=e_{i-n+1}^{i-1}$, typischerweise für $n\in\{3,\dots,7\}$

► Testergebnisse auf dem Wall Street Journal 5k Task:

	Phoneme Error	Word Error
	Rate [%]	Rate [%]
Ohne Sprachmodell	13.9	40.0
+ Sprachmodell: 1-gram	8.4	22.9
2-gram	2.8	6.9
3-gram	1.9	4.5

Einfluss des Sprachmodells in der Spracherkennung

Beispiel aus dem Wall Street Journal 5k Task:

LM	recognized	errors
0-gram	h ih t s eh n uh t ur z n ih g oh sh ee ey t ih ng — — s ey l — — s ur t un aa s eh t s aw n t uh b r oh k ur ih j y ooh n ih t s	11
	HIT SENATORS — — NEGOTIATING — SALE — CERTAIN ASSETS ONTO — BROKERAGE UNIT'S	9
1-gram	ih t s s eh n ih t ih z n ih g oh sh ee ey t ih ng — — s ey l — — s ur t un aa s eh t s aw v dh uh b r oh k ur ih j y ooh n ih t	6
	ITS SENATE — IS NEGOTIATING — SALE — CERTAIN ASSETS OF THE BROKERAGE UNIT	5
2-gram	ih t s eh d ih t ih z n ih g oh sh ee ey t ih ng dh uh s ey l aw v s ur t un aa s eh t s aw v dh uh b r oh k ur ih j y ooh n ih t	0
	IT SAID IT IS NEGOTIATING THE SALE OF CERTAIN ASSETS OF THE BROKERAGE UNIT	0

Ergebnisse in der maschinellen Übersetzung

► Multi-reference word error rate (mWER) für vier Sprachmodelle mit unterschiedlicher Kontextlänge (Verbmobil Deutsch-Englisch):

Sprachmodell	mWER[%]	
0-gram	77.1	
1-gram	38.8	
2-gram	25.6	
3-gram	24.7	

Maximum Likelihood und Lagrange Multiplikator

- ▶ Berechnung: Maximum Likelihood
 - Wahrscheinlichkeiten soll auf unseren Trainingsdaten maximal sein
 - ightharpoonup Bestimmung der besten Wahrscheinlichkeitsparameter θ

$$lacksymbol{ iny}$$
 Gesucht: $rg \max_{ heta} \left\{ \prod\limits_{i=1}^{I} p_{ heta}(e_i|h_i)
ight\}$

- $lackbox{ extbf{N}ebenbedingung:} \sum\limits_{w} p(w|h) = 1 \qquad orall h$
- ▶ Methode: Lagrange Multiplikator

Lagrange Multiplikator

- ► Aufgabe: Kuh melken
- Vorher: Eimer im Fluss waschen
- ► Gesucht: Kürzester Weg f(P) = Weg(Ich, P) + Weg(P, Elsa)
- ▶ Nebenbedingung: P ist im Fluss g(P) = AbstandFluss(P) = 0

Lagrange Multiplikator

- ▶ Jede Ellipse: Gleiche Werte für f(P)
- **▶** Gesucht: kleinste tangentiale Ellipse

$$rac{\partial f}{\partial P} = \lambda rac{\partial g}{\partial P}$$

► Neue (Lagrange-)Funktion:

$$F(P,\lambda) = f(P) + \lambda g(P)$$

Setzen der Partiellen Ableitung gleich 0, danach lösen des DLG

Konventionelle Berechnung des Sprachmodells

- Rechnen im Logarithmus:
 - ▶ Keine Änderung des Maximums (monoton für positive Werte)
 - Einfachere Handhabung

$$egin{aligned} rg \max_{ heta} \left\{ \prod_{i=1}^{I} p_{ heta}(e_i|h_i)
ight\} &= rg \max_{ heta} \left\{ \log \prod_{i=1}^{I} p_{ heta}(e_i|h_i)
ight\} \ &= rg \max_{ heta} \left\{ \sum_{i=1}^{I} \log \ p_{ heta}(e_i|h_i)
ight\} \ &= rg \max_{ heta} \left\{ \sum_{hw} N(h,w) \log \ p_{ heta}(w|h)
ight\} \end{aligned}$$

mit

$$N(h,w) := \sum_{i:(h,w)=(h_i,e_i)} 1$$

Konventionelle Berechnung des Sprachmodells

Lagrange Multiplikatoren:

$$ilde{F}(\{p_{ heta}(w|h); \lambda_h\}) \ = \sum_{hw} N(h,w) \log \ p_{ heta}(w|h) + \sum_h \lambda_h \left[\sum_w p_{ heta}(w|h) - 1
ight]$$

▶ Partielle Ableitungen:

$$egin{aligned} rac{\partial ilde{F}}{\partial p_{ heta}(w|h)} &= rac{N(h,w)}{p_{ heta}(w|h)} + \lambda_h = 0 \ rac{\partial ilde{F}}{\partial \lambda_h} &= \sum_w p_{ heta}(w|h) - 1 = 0 \end{aligned}$$

► Ergebnisse der Maximum Likelihood Schätzung:

$$p(w|h) = rac{N(h,w)}{\sum\limits_{w'} N(h,w')} = rac{N(h,w)}{N(h,\cdot)}$$

▶ Wie wahrscheinlich ist ein Spatz der Farbe x?

► Konventioneller Ansatz: Relative Häufigkeit

▶ Welches von beiden Modellen ist stabiler?

▶ Was passiert mit ungesehenen Ereignissen? Wie wahrscheinlich sind sie?

▶ Was passiert mit ungesehenen Ereignissen? Wie wahrscheinlich sind sie?

▶ Was passiert mit ungesehenen Ereignissen? Wie wahrscheinlich sind sie?

Spärliche Trainingsdaten für n-gram Sprachmodelle

- **▶** Typisches Beispiel:
 - \triangleright Anzahl der laufenden Wörter im Training: $10 \cdot 10^6$
 - **▶ Vokabulargröße:** 2 · 10⁴
- ► Art des Sprachmodells:
 - ▶ Bigramm
 Anzahl der möglichen Ereignisse: |Vokabular| $^2 = 4 \cdot 10^8$ ⇒ 10/400 = 2.5% können gesehen werden

▶ Problem:

- ▶ Trainingskorpus enthält Trigramm 'Angela Merkel könnte', aber nicht 'Angela Merkel kann'
- ightharpoonup auch das zweite Trigramm sollte eine Wahrscheinlichkeit >0 zugewiesen bekommen

Linear Discounting

- Discounting: Verschiebe einen Teil der Wahrscheinlichkeitsmasse zu ungesehenen Ereignissen
- Linear: Proportional für jeden Count N(h, w)

$$p(w|h) = \left\{ egin{aligned} (1-\mu_h) \cdot rac{N(h,w)}{N(h,\cdot)} & ext{für } N(h,w) > 0 \ & \ \mu_h \cdot rac{eta(w|\overline{h})}{\sum\limits_{w':N(h,w')=0} eta(w'|\overline{h})} & ext{für } N(h,w) = 0 \end{aligned}
ight.$$

- $\blacktriangleright \mu_h$: komplette Wahrscheinlichkeitsmasse für ungesehene Ereignisse:
- $ightharpoonup eta(w|\overline{h})$: Renormalisierung für zweite (Backoff-)Wahrscheinlichkeit
- $ightharpoonup \mu_h$ und $eta(w|\overline{h})$ müssen ebenfalls aus den Trainingsdaten gelernt werden

Leaving-One-Out für spärliche Trainingsdaten

- ▶ Generelle Idee: Ungesehene Ereignisse simulieren, indem man Trainingsdaten in zwei Teile aufteilt
- ► Leaving-One-Out: Jede einzelne Beobachtung gilt als Testbeobachtung
- die übrigen Beobachtungen dienen zum Training
- lacktriangle Sprachmodell: jeweils ein Ereignis $(h_i,e_i),\ i=1,\ldots,I$ wird zurückbehalten

Parameterabschätzung mit Leaving-One-Out

▶ Log-Likelihood Funktion:

$$egin{aligned} F(\{\mu_h\},\{eta(w|\overline{h})\}) &= \ &= \sum_{hw:N(h,w)>1} N(h,w) \cdot \left[\log\left(1-\mu_h
ight) + \lograc{N(h,w)-1}{N(h,\cdot)-1}
ight] \ &+ \sum_{hw:N(h,w)=1} 1 \cdot \left[\log\mu_h + \lograc{eta(w|\overline{h})}{\sum\limits_{w'}eta(w'|\overline{h})}
ight] \ &= \ldots \ &= F(\{\mu_h\}) \, + \, F(\{eta(w|\overline{h})\}) \, + \, \mathrm{const}(\{\mu_h\},\{eta(w|\overline{h})\}) \end{aligned}$$

► Ergebnis: Unabhängige Optimierung der beiden Funktionen

Parameterschätzungen für Lineares Discounting

- ightharpoonup Sei $N_1(h,\cdot)$ die Anzahl aller einmal gesehenen Ereignisse
- Discounting Parameter:

$$riangleright$$
 History-abhängig: $\mu_h = rac{N_1(h, \cdot)}{N(h, \cdot)}$

- riangleright History-unabhängig: $\mu = rac{N_1(\cdot, \cdot)}{N(\cdot, \cdot)}$
- $ightharpoonup eta(w|\overline{h})$:
 - ightharpoonup Sprachmodell mit kleinerer History \overline{h}

2 Übung 6

- ► Trainieren eines Bigramm-Sprachmodells für Englisch mit Hilfe des SRI LM Toolkits
- ► Reranking der *n*-best-Listen mit Sprachmodell

3 SRI LM Toolkit

► SRI Language Modeling Toolkit frei verfügbar für nicht gewerbliche Zwecke unter

http://www.speech.sri.com/projects/srilm/

trainieren mit Kneser-Ney Smoothing

```
ngram-count -order 2 -lm e.lm.gz -text e -kndiscount1 -kndiscount2
```


Aufbau SRI Language Model

ARPA LM Format:

```
\data\
ngram 1=n1
ngram 2=n2
ngram N=nN
\1-grams:
                [bow]
р
     W
\2-grams:
  w1 w2
                [bow]
р
\N-grams:
     w1 ... wN
р
\end
```


Ansteuern des SRI Language Models

Einbinden der SRI Language Model Bibliothek

- ► Einbinden von <Ngram.h> und <Vocab.h> im Programmcode.
- ► Kompilieren: Pfad der SRI Header Dateien (include/) angeben
 - ▷ -IPATH_TO_HEADER
- ► Kompilieren: Library includen mit den Optionen
 - > -loolm -ldstruct -lflm -lmisc
 - ▷ -LPATH_TO_LIBRARY
- ► Anlegen der Klassen für
 - Vocabulars (Vocab)kann statt der alten Lexikon Klasse genutzt werden
 - ▶ Language Model (Ngram)

Die Vocab Klasse

- **▶** Lexikon für das Language Model
- **▶** die wichtigsten Befehle:

Vocab()	Konstruktor
string getWord(unsigned index)	gibt den String für index
unsigned addWord(char* Word)	fügt ein (falls unbekannt)
	und gibt den index zurück
int numWords()	Anzahl der Wörter
ssIndex()	Satzanfangszeichen
seIndex()	Satzendzeichen
unklndex()	Index für das unbekannte Wort

Der Buffer

- vom Typ *Vocablndex
- muß initialisiert werden, z.B. vocabBuffer (new VocabIndex [50])
- evtl. muß auch die Größe neu angepasst werden (mit realloc)
- Satzformat:
 - Satzanfangs- und Satzendmarker (s. vorherige Folie)
 - umgekehrte Wortreihenfolge
 - ▶ mit Vocab_None abschließen
- ► Beispiel: "'Ich habe Hunger"' wird zu

- Berechnung: vom Satzendmarker (position 0) bis einschließlich dem ersten Wort
- ▶ also fürs obige Beispiel 4 Anfragen mit jeweiligem Kontext: </s>, Hunger, habe, Ich

Die Ngram Klasse

- ► Funktionalität für das Language Model
- **▶** die wichtigsten Befehle:

Ngram(Vocab *vocabulary, int ImOrder)	Konstruktor
read(File, boolean expandVocabulary)	liest ein Language Model ein
double wordProb(buf[pos], &buf[pos+1])	bewertet ein Wort
	an Position pos mit seinem Kontext
	Rückgabe: log-Score (negativ)

Fragen?

Wenn ihr jetzt immer noch nicht wisst, wo unser Büro ist, haben wir was falsch gemacht :-)

