МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«КУБАНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» (ФГБОУ ВО «КубГУ»)

Факультет физико-технический

Кафедра теоретическая физика и компьютерные технологии

ПРОЕКТ

ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ АНАЛИЗА КОМЕТНЫХ ДАННЫХ

Работу выполнили: Антонова Мария Алексеевна, Мальцева Вероника Валерьевна, Никифорович Максим Александрович, Онегова Александра Динаровна

Курс 1

Направление подготовки: 09.03.02 Информационные системы и технологии

1. ВВЕДЕНИЕ

Настоящее техническое задание определяет цели, задачи, требования и этапы разработки четырёх заданий, направленных на моделирование и визуализацию движения тел под действием гравитационных сил. Все приложения ориентированы на использование в образовательных, исследовательских и инженерных целях.

1.1 Наименование системы

Полное: Программный комплекс для анализа кометных данных

"AstroCometAnalyzer"

Сокращенное: АСА-2025

Кодовое название: Project CometScope

1.2Основание для разработки

Разработка выполняется в рамках Астрономического Хакатона 2025

1.3 Назначение системы

Комплекс предназначен для:

- Определения физических параметров комет
- Анализа наблюдательных данных
- Визуализации результатов исследований
- Поддержки учебного процесса

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1 Функциональные требования

2.1.1 Основные модули:

Модуль	Язык	Время выполнения	Точность
Расчет массы	C++17	<0.1 сек	99.5%
Определение размеров	Python 3.9	<0.3 сек	98%
Визуализация данных	Python+C++	<0.5 сек	-

2.1.2 Поддерживаемые операции:

- Автоматическая обработка FITS-изображений

- Расчет по 3 независимым методикам
- Сравнительный анализ результатов
- Экспорт в форматы CSV, PNG, PDF

2.2 Требования к интерфейсу

2.2.1 GUI-компоненты:

- Главное окно с 4 вкладками
- Интерактивные графики (масштабирование, аннотации)
- 3D-визуализатор ядра кометы
- Панель управления расчетами

2.2.2 Навигация:

- Горячие клавиши
- История операций
- Система подсказок

2.3 Требования к данным

2.3.1 Входные форматы:

- FITS (с поддержкой WCS)
- CSV/TXT (автоопределение формата)
- JSON (для конфигураций)

2.3.2 Выходные форматы:

- Графика: PNG, SVG, PDF

- Данные: CSV, JSON, VOTable

3. ТЕХНОЛОГИЧЕСКИЙ СТЕК

3.1 Основные технологии

Компонент	Версия	Назначение
Python	3.9+	Основная логика

Компонент	Версия	Назначение
C++	17 стандарт	Вычисления
PyQt5	5.15+	Интерфейс
Astropy	5.0+	Астрономические данные

3.2 Архитектура системы

Общая блок-схема проекта AstroCometAnalyzer

4. ТРЕБОВАНИЯ К ПРОИЗВОДИТЕЛЬНОСТИ

4.1 Критерии производительности

Операция	Целевое время	Допустимая погрешность
Загрузка данных (10МВ)	≤0.3 сек	-
Расчет массы	≤0.1 сек	≤0.5%
Построение графика	≤0.5 сек	-

4.2 Аппаратные требования

Компонент	Минимально	Рекомендуется
CPU	2 ядра, 2.4 ГГц	4 ядра, 3.2 ГГц+
RAM	4 ГБ	8 ГБ+
GPU	OpenGL 3.3	OpenGL 4.6+
Диск	500 МБ	1 ГБ SSD

5. ЭТАПЫ РАЗРАБОТКИ

5.1 Календарный план

Этап	Срок	Результат
Проектирование	2 нед	Технический проект
Реализация ядра	4 нед	Вычислительные модули
Разработка GUI	3 нед	Интерфейс пользователя
Тестирование	2 нед	Отчет о тестировании
Документирование	1 нед	Руководства

5.2 Методика испытаний

- Модульные тесты
- Интеграционные тесты
- Верификация на реальных данных

6. ПОРЯДОК ПРИЕМКИ

6.1 Критерии приемки

- Выполнение 100% функциональных требований
- Соответствие производительности
- Полный комплект документации

6.2 Гарантийные обязательства

- 6 месяцев технической поддержки
- Бесплатные обновления в течение года

Все приложения разрабатываются как часть единого образовательного комплекса, с возможностью интеграции в одну платформу. Модули должны иметь общий стиль оформления, единый формат данных и общие принципы управления.