	Utech
Name:	
Roll No.:	A Sprag (y Exercising and Explana)
Invigilator's Signature :	

0

BIOREACTOR DESIGN & ANALYSIS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP – A (Multiple Choice Type Questions)

1.	Choose the	correct a	llternatives	for any	ten of	the follo	wing:
						10 0	o 1 = 1

- i) The molecularity of any reaction will be
 - a) integral number b) fractional number
 - c) both (a) & (b) d) constant.
- ii) The order of any reaction will be
 - a) integral number b) fractional number
 - c) both (a) & (b) d) constant.
- iii) Which of the following is the steady state reactor?
 - a) Batch reactor b) CSTR
 - c) Plug flow reactor d) Both (b) & (c).

55218 [Turn over

- iv) The unit of 2nd order reaction constant when partial pressure will be used in place of concentration is
 - a) atm $^{-2}$

- b) time $^{-1}$ atm $^{-2}$
- c) time $^{-1}$ atm $^{-1}$
- d) atm $^{-1}$.
- v) Animal cell culture is best carried out in which type of reactor?
 - a) Batch reactor
 - b) Stirred tank reactor
 - c) Air-lift fermenter
 - d) Bubble column reactor.
- vi) Sherwood number is given by the expression
 - a) $K_L d_f / D_{AB}$
- b) $K_L d_b / D_{AB}$
- c) $K_L L_C /D$
- d) $K_L \rho / D_{AB}$
- vii) A non-ideal reactor is characterized by
 - a) Residence time distribution
 - b) Peclet number
 - c) Combination of reactor
 - d) Segregated model.
- viii) Air-lift fermenter is used for production of
 - a) alcohol
- b) penicillin G
- c) enzymes
- d) mabs.

- ix) Perfusion reactor is used for
 - a) Vaccine formation
 - b) Animal cell culture
 - c) Alcohol production
 - d) Biomass production.
- x) Monod model for cell mass growth is a/an
 - a) Mechanistic model
 - b) Deterministic model
 - c) Unstructured model
 - d) Structured model.
- xi) Microbial fermentation is best carried out for high yield of cell mass by
 - a) Plug flow reactor
 - b) Fed batch reactor
 - c) Back-mixed reactor
 - d) Fluidized bed reactor.
- xii) Maximum growth of *E.coli* is obtained by which of the following combinations of reactors ?
 - a) two plug flow reactors in series
 - b) two CSTRs in series
 - c) a CSTR followed by plug flow reactor
 - d) plug flow reactor followed by a CSTR.

(Short Answer Type Questions)

Answer any three of the following.

- 2. The pyrolysis of ethane proceeds with an activation energy of 300 kJ/mol. How much fast is the decomposition at 65° C than at 500° C?
- 3. For the elementary reaction in series :

A
$$\xrightarrow{k_1}$$
 B $\xrightarrow{k_2}$ C, $k_1 = k_2$, at $t = 0$ $\begin{cases} C_A = C_{A_0} \\ C_{B_0} = C_{S_0} = 0 \end{cases}$

Find the maximum concentration of *B*. When is it reached?

- 4. Write short notes on trickle bed reactor & d membrane reactor.
- 5. After 8 minutes in a batch reactor, reactant A (C_{A_0} = 1 mol./lt.) is 80% converted; after 18 minutes conversion is 90%. Find a rate equation to represent this reaction.
- 6. Consider the scale up of a fermenter from a 10 lt. to 10,000 lt. vessel. The small fermenter has a height to diameter ratio of 3. The impeller diameter is 30% of the tank diameter. Agitator speed is 500 rpm. Determine the dimension of large fermenter (D_t , D_i & H) by using geometric similarity.

55218 4

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \propto 15 = 45$

7. a) Find the overall order of the irreversible reaction

$$2H_2 + 2NO \longrightarrow N_2 + 2H_2O$$

from the following constant volume data using equimolar amounts of hydrogen & nitric oxide :

Total pressure, mm Hg	200	240	280	320	360
Half-life, sec	265	186	115	104	67

8

b) Gaseous reactant A decomposes as follows:

$$A \varnothing 3R$$
 $-r_A = (0.6 \text{ min}^{-1}) C_A$

Find the conversion of A in a 50% A – 50% inert feed (v_0 = 180 lt/min, C_{A_0} = 300 mmol/lt to a 1m 3 mixed

flow reactor.

7

- 8. a) A value of $k_L a = 30 \ h^{-1}$ has been determined for a fermenter at its maximum practical agitator rotational speed and with air being sparged at 0.5 lt gas/lt reactor volume-min. *E. coli* with a q_{o_2} of 10 mmol
 - ${\rm O}_2$ / g-dry wt.-h are to be cultured. The critical dissolved oxygen concentration is 0·2 mg/lt. The solubility of oxygen from air in the fermentation broth is 7·3 mg/lt at 30°C.
 - i) What maximum concentration of *E. coli* can be sustained in this fermenter under aerobic conditions?
 - ii) What concentration should be maintained if pure oxygen was used to sparge the reactor?
 - b) Describe the operation of a CSTR with a perfusion system to obtain the high field of product in an animal cell culture.

55218

5

[Turn over

where,

$$S_0 = 10 \text{ g/lt } K_s = 1 \text{ g/lt}$$
 $I = 0.05 \text{ g/lt}$ $Y_{x/s}^M = 0.1 \text{ g}$ cells/g subs

$$X_0 = 0$$
 $K_I = 0.01 \text{ g/lt } \mu_m = 0.5 h^{-1} k_d = 0$

- i) Determine X and S as a function of D when I = 0
- ii) With inhibitor added to a chemostat, determine the effluent substrate concentration and X as a function of D.
- iii) Determine the cell productivity, *DX*, as a function of dilution rate.
- b) Describe the method of determining $k_L a$ by the steady state method where the oxygen uptake rate (OUR) is $q_{o_2} X$.
- 10. a) How does dispersion number correlate with the degree of mixing in a bioreactor?
 - b) A 1st order reaction is carried out in a reactor with specific reaction rate of 0.25 min $^{-\,1}$.

Following are the results of a tracer test carried out in this reactor :

Time	0	1	2	3	4	5	6	7	8	9	10	12	14
(sec)													
Concentration	0	1	5	8	10	8	6	4	3	2.2	1.5	0.6	0
of Tracer													
(mg/lt)													

Calculate conversion using closed vessel dispersion model.

- 11. Attempt any three of the following:
- What are the advantages & disadvantages of a bubble a) column reactor for aerobic microbial fermentation?
- b) What do you know about the perfusion reactor system for animal cell culture?
- Describe an air-lift bioreactor with a neat diagram. c) What are its specific advantages over other conventional bioreactors?
- d) Derive the design equation for CSTR & PFR.

55218 7 [Turn over