Controle inteligente de centrais de água gelada utilizando deep learning aplicado a dados sintéticos para o comando de acionamento dos equipamentos

Pablo Ricardo de Abreu Regina Ávila Santos

Sumário

- Introdução
- Objetivos
- Metodologia
 - > Visão Geral
 - > Geração de Dados
 - > Arquitetura da Rede Neural
 - > Funções de Ativação
 - > Processo de Treinamento
 - > Simulações e Carga Térmica
- Resultados
- Discussão dos Resultados
- Conclusão
- Trabalhos Futuros

Introdução

Contexto: Elevado consumo de energia em sistemas HVAC.

Importância dos Chillers: Componentes centrais e grandes consumidores.

Problema: Operação imprópria leva a desperdício de energia.

Justificativa: Necessidade de estratégias de controle inteligentes.

Proposta: Uso de Redes Neurais Artificiais (RNAs) para otimizar o setpoint do chiller.

Objetivos

Objetivo Geral:

Desenvolver e avaliar um sistema de controle inteligente para chillers, baseado em redes neurais, visando eficiência energética.

Objetivos Específicos:

- Modelar o comportamento de um sistema chiller.
- Treinar uma RNA para predizer ajuste de setpoint e comando de habilitação.
- Simular o desempenho da RNA em cenários sintéticos e com dados reais.
- Analisar o potencial de economia de energia.

Metodologia - Visão Geral

Fluxo do Projeto:

- Geração de Dados Sintéticos
- Pré-processamento dos Dados
- Modelagem e Treinamento da Rede Neural
- Simulações (Valores Específicos, 100 Cenários Aleatórios, Dados Reais SBC)
- Cálculo de Carga Térmica e Análise de Economia
- Avaliação dos Resultados

Metodologia - Geração de Dados

Dataset sintético para diversas condições operacionais.

Entradas: Temp. ambiente, Temp. entrada/saída água, Pressão, Setpoint inicial, Status de bombas/válvulas.

Saídas (Alvo): Ajuste no setpoint, Comando de habilitação do chiller.

Script de referência: create_dataset.py

Metodologia - Arquitetura da Rede Neural (Python/Keras)

Tipo: Multilayer Perceptron (MLP).

Entradas: 8 variáveis normalizadas.

Camadas Ocultas: 128 neurônios (ReLU) -> 64 neurônios (ReLU) -> 32 neurônios (ReLU).

Saídas:

Ajuste do Setpoint: 1 neurônio (Linear).

Comando de Habilitação: 1 neurônio (Sigmoid).

Software: Python com TensorFlow/Keras.

Script de referência: train_nn_python.py

Arquitetura da Rede Neural

Metodologia - Funções de Ativação

ReLU (Rectified Linear Unit):
$$f(x) = max(0, x)$$

Usada nas camadas ocultas para não-linearidade e eficiência.

$$Linear: f(x) = x$$

Usada na saída de regressão (ajuste do setpoint).

Sigmoid:
$$f(x) = 1 / (1 + e^{-x})$$

Usada na saída de classificação (comando de habilitação) para probabilidade.

Metodologia - Processo de Treinamento

Pré-processamento: Normalização (StandardScaler).

Divisão: 80% treino, 20% teste.

Otimizador: Adam.

Funções de Perda: MSE (setpoint), Binary Crossentropy (habilitação).

Métricas: MAE (setpoint), Accuracy (habilitação).

Épocas: 200 (com Early Stopping, paciência 10).

Batch Size: 32.

Metodologia - Simulações e Carga Térmica

Simulações Realizadas:

- Valores específicos (teste inicial).
- 100 Cenários Aleatórios (avaliação ampla).
- Dados Reais de SBC (temperaturas horárias 10/05/2024).

Cálculo da Carga Térmica (Q):

Q (kW) = vazão_mássica * calor_específico * delta_T

Comparação: Carga com setpoint inicial vs. Carga com setpoint da rede.

Resultados - Desempenho do Modelo (Treinamento)

Modelo treinado com sucesso, evitando overfitting significativo devido ao Early Stopping.

Métricas no conjunto de teste (valores aproximados, verificar logs):

MAE (Ajuste Setpoint): ~0.5 - 1.5 °C (Exemplo, verificar valor real)

Acurácia (Habilitação): ~90-98% (Exemplo, verificar valor real)

Gráficos de Perda/Métricas do treinamento

Resultados - Simulação com 100 Cenários Aleatórios

Avaliação do modelo em 100 cenários com entradas geradas aleatoriamente.

Para essa simulação, foi simulado como se um operador colocasse o set point inicial e a nossa rede neural ajustasse a partir desse setpoint.

O primeiro gráfico das 100 análises algumas o chiller foi habilitado pela nossa rede, no segundo gráfico forçamos o chiller ligar em todos os cenários.

Objetivo: Verificar a capacidade de generalização e o potencial de economia em diversas condições.

Resultados: indicaram potencial de economia em uma parcela pequena dos cenários, pois nossa rede neural é mais precisa, corrige as entradas avaliando o sistema e somando ou subtraindo essa correção baseado no valor do setpoint inicial, na maioria das vezes não conseguimos economia, mas um mais gasto de energia.

Comparativo de Carga Térmica (Chiller Habilitado pela Rede): Setpoint Inicial vs. Setpoint da Rede

10

Economia de Energia (%)

-10

20

30

Resultados - Simulação com Dados de Temperatura de SBC

Simulação com temperaturas horárias reais de São Bernardo do Campo (10/05/2024). A fonte dos dados de temperatura de SBC utilizados na simulação é a API Open-Meteo.

Análise de Consumo (Chiller Habilitado pela Rede):

Cenários (Chiller Ligado pela Rede): 24

Carga Inicial Total: 40732.11 kW Carga Rede Total: 40905.03 kW

A abordagem com a REDE NEURAL consumiu MAIS energia. Aumento de consumo com a rede: 172.93 kW

(0.42% a mais).

Resultados: Seguindo a mesma premissa anterior, verificamos que em uma situação real da entrada de temperatura ambiente, não altera o comportamento da rede neural, não gerando uma economia significativa.

1,00

Cenário Filtrado (Hora da Medição em 2024-05-10)

14:00

01:00 01:00 03:00

4:00 8:00 4:00 1:00 8:00

2:00

1:00 to 10:00 Die 5:00

Discussão dos Resultados

Eficácia da Rede Neural:

Modelo demonstrou capacidade de aprendizado e predição de setpoints e habilitação.

Potencial de Economia de Energia:

Simulação com 100 cenários: indicou potencial em pequenas condições.

Simulação SBC (Chiller Habilitado): rede consumiu ligeiramente MAIS energia (0.42%).

Possíveis causas: dados específicos do dia, necessidade de mais entradas ou otimizações no modelo para dados reais.

Limitações do Estudo:

Treinamento majoritariamente com dados sintéticos.

Simulação não abrange todas as dinâmicas de sistemas reais.

Resultados - Simulação com 100 Cenários Aleatórios Versão 2

Avaliação do modelo em 100 cenários com entradas geradas aleatoriamente. Para a Versão 2 fizemos a nossa rede neural encontrar o setpoint ótimo para o sistema. No Primeiro gráfico a rede habilita o chiller e no segundo forçamos todos os cenários estarem habilitados.

Objetivo: Verificar a capacidade de generalização e o potencial de economia em diversas condições, colocar condições ótimas e não adicionar condições de contorno como conforto térmico nos ambientes ou desgaste dos equipamentos .

Resultados: resultou em um aumento de consumo total de aproximadamente 3433.20 kW em relação ao uso do setpoint inicial original nos 8 cenários em que o chiller foi habilitado pela rede. Isso sugere que, com base na heurística usada para definir o "setpoint ótimo" no novo dataset, a rede aprendeu a operar de uma forma que, embora talvez busque outras otimizações, acaba consumindo mais energia do que simplesmente usar o setpoint inicial original nesses cenários específicos.

Comparativo de Carga Térmica: Setpoint Original vs. Rede Neural V2 (Aumento Consumo (Rede V2 vs Original): 3433.20 kW)

Comparativo de Carga Térmica (Equipamentos Forçados ON) (Aumento Consumo (Rede V2 vs Original): 25458.23 kW)

Discussão dos Resultados Versão 2

Eficácia da Rede Neural:

Modelo demonstrou capacidade de aprendizado e predição de setpoints e habilitação.

Potencial de Economia de Energia:

Simulação com 100 cenários: indicou um gasto de energia maior que o teste anterior.

Possíveis causas: dados específicos do dia, necessidade de mais entradas ou otimizações no modelo para dados reais com condições de contorno atribuindo um viés voltado para a economia e não precisão.

Limitações do Estudo:

Treinamento majoritariamente com dados sintéticos.

Simulação não abrange todas as dinâmicas de sistemas reais.

Conclusão

Principais Achados:

Viabilidade do uso de RNA para controle inteligente de chillers confirmada.

Modelo capaz de aprender e realizar predições complexas.

Potencial de economia de energia é condicional e depende dos dados e cenários.

Simulação com dados reais (SBC) mostrou que a otimização não é garantida em todos os casos e o modelo pode precisar de refinamento para cenários específicos.

Contribuições:

Metodologia para desenvolvimento de controlador inteligente.

Análise de desempenho em diferentes cenários simulados.

Trabalhos Futuros

- Validação em sistema chiller físico ou com dados operacionais reais mais extensos.
- Inclusão de mais variáveis (umidade, carga térmica predita, custo de energia).
- Exploração de outras arquiteturas de IA (LSTMs, Reinforcement Learning).
- Desenvolvimento de interface de usuário para monitoramento.
- Análise de sensibilidade dos parâmetros.

Referências

- XVI CONBRAVA Congresso Brasileiro de Refrigeração, ar-condicionado, ventilação, aquecimento e tratamento do ar São Paulo Expo 10 a 13 de setembro de 2019. Disponível em:https://schenautomacao.com.br/abrava/anais/files/trabalhocompleto 54.pdf> Acesso em: 30 março 2024.
- Rafael Augusto Fiametti. Estudo de caso: eficiência energética em sistemas de climatização por água gelada. 2018. Disponível em: https://repositorio.utfpr.edu.br/jspui/bitstream/1/18500/1/CT_CEEFE_V_2016_05.pdf. Acesso em: 01 abril 2024.
- Flávio Quiel de Azevedo neto. Automação de uma central de água gelada para climatização de salas de cinemas: um estudo de caso. 2023. Disponível em: https://www.monografias.ufop.br/bitstream/35400000/6001/6/MONOGRAFIA_Automa%c3%a7%c3%a3oCentral%c3%81gua.pdf. Acesso em: 01 abril 2024.
- Åström, Karl Johan, e Richard M. Murray. Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, 2008.
- Disponível em: https://www.cds.caltech.edu/~murray/books/AM05/pdf/am08-complete_28Sep12.pdf. Acesso em: 01 abril 2024.
- Maithra Raghu, e Eric Schmidt. 2020 A Survey of Deep Learning for Scientific Discovery. Disponível em: https://arxiv.org/pdf/2003.11755.pdf Acesso em: 30 março 2024.
- Remessa Online. Linguagem R: entenda como funciona e principais aplicações. Remessa Online, 1 Maio 2023. Disponível em:https://www.remessaonline.com.br/blog/linguagem-r-entenda-como-funciona-e-principais-aplicacoes/> Acesso em: 1 abril 2024.
- Ronaldo Almeida. Como definir uma CAG eficiente? Portal EA. Engenharia e Arquitetura, 23 Janeiro 2020. Disponível em:https://www.engenhariaearquitetura.com.br/2020/01/como-definir-uma-cag-eficiente. Acesso em: 30 março 2024.
- ASHRAE (2019). Handbook—HVAC Applications. Atlanta: ASHRAE.
- Afram, A., & Janabi-Sharifi, F. (2014). Artificial neural network-based control of HVAC systems. Energy and Buildings, 77, 403-414.
- Leonilton Tomaz Cleto Análise de desempenho e retrocomissionamento de sistemas disponivel em:https://www.engenhariaearquitetura.com.br/2022/08/analise-de-desempenho-e-retrocomissionamento-de-sistemas Acesso 29 de maio de 2025

Obrigado!

Pablo Ricardo de Abreu Regina Ávila Santos