Image Skeletonisation

A performance comparison with Thrust

Fall 2014 Marco Antognini

What is it?

A method to reduce a binary image to its minimal representation

Useful for

- blood analysis
- classification of fingerprints
- text recognition
- geometrical shape analysis

) ...

What is it?

Serial Algorithm

M times

H a sub-iteration

- blue ⇒ first sub-cycle
- red ⇒ second sub-cycle

I the marked pixels are deleted

After *M* iterations the image has converged to its skeleton

For each sub-cycle

For each pixel p in the image

- If some predicates on the 8 direct neighbours don't hold
- then p is marked for deletion

M depends on the shape

• the bigger the widest arm of the shape is, the bigger M will be

Implementation: Thrust

- → A C++03 general purpose library by Nvidia
- → GPU and CPU backends with the same code
 - CUDA, OpenMP, Threading Building Blocks
- → API very similar to STL
- Based on high level functional algorithms
 - transform, reduce, copy, count, search, partition, ...
- → But can't do everything...
 - e.g. matrix multiplication

Parallel Algorithm

Each pixel can be marked regardless of the other pixels in a sub-cycle

- → We use *K* workers to split the job
- → With double buffering (buffer **①** and **②**)
- → Instead of marking we delete in ②

- **B** send data to *device* memory, buffer **0**
- C synchronise buffers 1 and 2
- **D/E** launch kernel function on device
 - blue ⇒ first sub-cycle, red ⇒ second sub-cycle
- **F** copy data back to *host*

Theoretical Speedup

Work split on K workers

- → CUDA on GeForce GT 650M, Kepler GK110 architecture
 - ▶ 2 Multiprocessors (MP) @ 900 MHz with 192 cores each
 - Max 2048 threads per MP understand: resource available for max 2048 threads
 - But only 4 warps executing instructions simultaneously per MP
 - \rightarrow 2 MP * 4 warps * 32 threads / warps = K = 256
- → OMP/TBB on Core i7 3720QM
 - 4 cores @ 2600 MHz with Hyper-Threading Technology
 - $\rightarrow K = 8$

Clock ratio

 \rightarrow $\lambda \approx 2.88$

Memory speed depends on transferred size

See final report

Theoretical Speedup

$$Speedup(N,M,K) = \frac{t_{ser}}{t_{par}} = \frac{t_{ser}}{\frac{N}{H \to D_s} + \frac{N}{D \leftrightarrow D_s} + 2M\left(\frac{\lambda}{K}t_{sub} + \frac{N}{D \leftrightarrow D_s}\right) + \frac{N}{D \to H_s}}$$

- The number of pixels, N
- ▶ The number of required iterations, M
- The number of worker threads, K

Theoretical speedup in function of iterations for tree.png

The Reality

- → The speedups are much smaller
- → CUDA still offer significant speedup, though
- → CUDA can be slower when M is too small
 - Can't always compensate for transfer times and slower GPU clock

The Reality: Why?

The model doesn't take into account several important points

- → Resource availability
 - Memory Banks: queuing when memory bus is busy
 - Cache Misses: potentially huge delays
 - Limited ALUs: operations delayed when no available ALU
 - → 32-bits VS 64-bits operations: up to 2/3 performance lost
- → Thread divergence
- → Data Structure ⇔ Stridden Memory
 - If not carefully designed, accessing data kill bandwidth
 - E.g. stride-two access imply a 50% bandwidth penalty

Such model would be too difficult to use...

What's not there?

- → Speedup VS Iterations
 - Other images show similar behaviour than tree.png
- → Speedup VS Image Size
 - What happens when N varies but not M?
- → Memory Bandwidth
 - Speed varies with transferred size

Questions?