AstroStatistics and Cosmology Homework

Jacopo Tissino

2020-12-01

1 November exercises

Exercise 4

After being given a probability distribution $\mathbb{P}(x)$, we define the *characteristic function* ϕ as its Fourier transform, which can also be expressed as the expectation value of $\exp(-i\vec{k}\cdot\vec{x})$:

$$\phi(\vec{k}) = \int d^n x \exp\left(-i\vec{k} \cdot \vec{x}\right) \mathbb{P}(x) = \mathbb{E}\left[\exp\left(-i\vec{k} \cdot \vec{x}\right)\right]. \tag{1.1}$$

Claim 1.1. A multivariate normal distribution

$$\mathcal{N}(\vec{x}|\vec{\mu},C) = \frac{1}{(2\pi)^{n/2}\sqrt{\det C}} \exp\left(-\frac{1}{2}\vec{y}^{\top}C^{-1}\vec{y}\right)\Big|_{\vec{y}=\vec{x}-\vec{\mu}},$$
(1.2)

has a characteristic function equal to

$$\phi(\vec{k}) = \exp\left(-i\vec{\mu}\cdot\vec{k} - \frac{1}{2}\vec{k}^{\top}C\vec{k}\right). \tag{1.3}$$

Proof: completing the square. The integral we need to compute is given, absorbing the normalization into a factor N, by

$$\phi(\vec{k}) = N \int d^n x \, \exp\left(-i\vec{k} \cdot \vec{x} - \frac{1}{2} \vec{y}^\top C^{-1} \vec{y}\right) \bigg|_{\vec{y} = \vec{x} - \vec{\mu}} \,. \tag{1.4}$$

The only integrals we really know how to do are Gaussian ones, so we want to rewrite the argument of the exponential so that it is a quadratic form. The manipulation goes as follows, considering the opposite of the argument the exponential in order to have less minus signs and defining the symmetric matrix $V = C^{-1}$:

$$i\vec{k} \cdot \vec{x} + \frac{1}{2}\vec{y}^{\top}V\vec{y} = i\vec{k} \cdot \vec{x} + \frac{1}{2}\vec{x}^{\top}V\vec{x} - \vec{x}^{\top}V\vec{\mu} + \frac{1}{2}\vec{\mu}^{\top}V\vec{\mu}$$
 (1.5)

$$= \frac{1}{2}\vec{x}^{\top}V\vec{x} + \vec{x}^{\top}(i\vec{k} - V\vec{\mu}) + \frac{1}{2}\vec{\mu}^{\top}V\vec{\mu}$$
 (1.6)

$$= \underbrace{\frac{1}{2} \left(\vec{x} + V^{-1} (i\vec{k} - V\vec{\mu}) \right)^{\top} V \left(\vec{x} + V^{-1} (i\vec{k} - V\vec{\mu}) \right)}_{\text{(1)}} + \underbrace{-\frac{1}{2} \left(i\vec{k} - V\vec{\mu} \right)^{\top} V^{-1} \left(i\vec{k} - V\vec{\mu} \right) + \frac{1}{2} \vec{\mu}^{\top} V\vec{\mu}}_{\text{(2)}},$$
(1.7)

which we can now integrate, since it is now a quadratic form in terms of a shifted variable, $\vec{x} + \vec{p}$, where the constant (with respect to \vec{x}) vector \vec{p} is given by $V^{-1}(i\vec{k} - V\vec{\mu})$.

Now, shifting the integral from one in $d^n x$ to one in $d^n (x + p)$ does not change the measure, since the Jacobian of a shift is the identity. Then, we have

$$\phi(\vec{k}) = N \int d^n(x+p) \exp\left(-(1)-(2)\right)$$
(1.12)

$$= N\sqrt{\frac{(2\pi)^n}{\det V}}\exp\left(-\boxed{2}\right) \tag{1.13}$$

$$=\underbrace{\frac{1}{\sqrt{\det V \det C}}}_{=1} \exp\left(-2\right),\tag{1.14}$$

since the determinant of the inverse is the inverse of the determinant.

Now, we only need to simplify 2:

$$=\frac{1}{2}\vec{k}^{\top}C\vec{k}+i\vec{\mu}^{\top}\vec{k}\,,\tag{1.16}$$

inserting which into the exponent yields the desired result.

Proof: by diagonalization. We now follow a different approach: the covariance matrix C is symmetric, so we will always be able to find an orthogonal matrix O (satisfying $O^{\top} = O^{-1}$) such that $C = O^{\top}DO$, where D is diagonal. We will then also have $V = C^{-1} = O^{\top}D^{-1}O$. Let us denote the eigenvalues of D as λ_i , and the eigenvalues of D^{-1} as $d_i = \lambda_i^{-1}$.

Defining $\vec{z} = O\vec{x}$, $\vec{m} = O\vec{\mu}$, $\vec{u} = O\vec{k}$ the negative of the argument of the integral becomes:

$$i\vec{k} \cdot \vec{x} + \frac{1}{2} (\vec{x} - \vec{\mu})^{\top} C^{-1} (\vec{x} - \vec{\mu}) = i\vec{u} \cdot \vec{z} + \frac{1}{2} (\vec{z} - \vec{m})^{\top} D^{-1} (\vec{z} - \vec{m})$$
(1.17)

$$\frac{1}{2} \left(\vec{x} + A^{-1} \vec{b} \right)^{\top} A \left(\vec{x} + A^{-1} \vec{b} \right) - \frac{1}{2} \vec{b}^{\top} A^{-1} \vec{b} = \tag{1.8}$$

$$= \frac{1}{2} \left[\vec{x}^{\top} A \vec{x} + \vec{x}^{\top} A A^{-1} \vec{b} + \left(A^{-1} \vec{b} \right)^{\top} A \vec{x} + \left(A^{-1} \vec{b} \right)^{\top} A A^{-1} \vec{b} - \vec{b}^{\top} A^{-1} \vec{b} \right]$$
(1.9)

$$= \frac{1}{2} \left[\vec{x}^{\top} A \vec{x} + \vec{x}^{\top} \vec{b} + \vec{b}^{\top} (A^{-1})^{\top} A \vec{x} + \vec{b}^{\top} (A^{-1})^{\top} \vec{b} - \vec{b}^{\top} A^{-1} \vec{b} \right]$$
(1.10)

$$=\frac{1}{2}\vec{x}^{\top}A\vec{x}+\vec{b}^{\top}\vec{x},\tag{1.11}$$

which we used with $\vec{b} = i\vec{k} - V\vec{\mu}$.

¹ In the last step we applied the matrix square completion formula: for a symmetric matrix A and vectors \vec{x} , \vec{b} we have

$$= i\vec{u} \cdot \vec{z} + \frac{1}{2} \sum_{i} d_{i} (z_{i} - m_{i})^{2}$$
 (1.18)

$$= \sum_{i} \left[i u_{i} z_{i} + \frac{d_{i}}{2} \left(z_{i}^{2} + m_{i}^{2} - 2 m_{i} z_{i} \right) \right]$$
 (1.19)

$$= \sum_{i} \left[z_i^2 \frac{d_i}{2} + z_i (iu_i - m_i d_i) + \frac{d_i}{2} m_i^2 \right]. \tag{1.20}$$

With this, and since by $\det O = 1$ we have $d^n z = d^n x$, we can decompose our Gaussian integral into a product of Gaussian integrals:

$$\phi(\vec{k}) = N \int d^n x \exp\left(-i\vec{k} \cdot \vec{x} - \frac{1}{2}(\vec{x} - \vec{\mu})^{\top} C^{-1}(\vec{x} - \vec{\mu})\right)$$
(1.21)

$$= N \int d^{n}z \exp\left(-\sum_{i} \left[z_{i}^{2} \frac{d_{i}}{2} + z_{i}(iu_{i} - m_{i}d_{i}) + \frac{d_{i}}{2}m_{i}^{2}\right]\right)$$
(1.22)

$$= N \prod_{i} \int dz_{i} \exp\left(-z_{i}^{2} \frac{d_{i}}{2} - z_{i} (iu_{i} - m_{i}d_{i}) - \frac{d_{i}}{2} m_{i}^{2}\right)$$
(1.23)

$$= N \prod_{i} \sqrt{\frac{2\pi}{d_{i}}} \exp\left(\frac{(iu_{i} - m_{i}d_{i})^{2}}{2d_{i}} - \frac{d_{i}m_{i}^{2}}{2}\right)$$
(1.24)

$$= \frac{1}{\sqrt{\det C \det V}} \prod_{i} \exp\left(\frac{-u_i^2 + m_i^2 d_i^2 - 2iu_i m_i d_i}{2d_i} - \frac{d_i m_i^2}{2}\right)$$
(1.25)

$$= \exp\left(\sum_{i} \left[-\frac{u_i^2}{2d_i} - iu_i m_i \right] \right) \tag{1.26}$$

$$= \exp\left(-\frac{1}{2}\vec{u}^{\top}C\vec{u} - i\vec{u}\cdot\vec{m}\right) \tag{1.27}$$

$$= \exp\left(-\frac{1}{2}\vec{k}^{\top}C\vec{k} - i\vec{k}\cdot\vec{\mu}\right),\tag{1.28}$$

where we have used the expression for the single-variable Gaussian integral:

$$\int dz \exp\left(-az^2 + bz + c\right) = \sqrt{\frac{\pi}{a}} \exp\left(\frac{b^2}{4a} + c\right), \tag{1.29}$$

which comes from the one-variable completion of the square:

$$-az^{2} + bz + c = -a\left(z - \frac{b}{2a}\right)^{2} + \frac{b^{2}}{4a} + c.$$
 (1.30)

Also, we used the fact that orthogonal transformation do not change fully-contracted objects, such as scalar products or bilinear forms.

Exercise 5

We can calculate the moments of a distribution through its characteristic function:

$$\mathbb{E}\left[x_{\alpha}^{n_{\alpha}} \dots x_{\beta}^{n_{\beta}}\right] = \left. \frac{\partial^{n_{\alpha} \dots n_{\beta}} \phi(\vec{k})}{\partial (-ik_{\alpha})^{n_{\alpha}} \dots \partial (-ik_{\beta})^{n_{\beta}}} \right|_{\vec{k}=0}.$$
 (1.31)

In the multivariate Gaussian case we can then calculate the mean (component by component) as

$$\mathbb{E}(x_{\alpha}) = \left. \frac{\partial \phi(\vec{k})}{\partial (-ik_{\alpha})} \right|_{\vec{k} = 0} \tag{1.32}$$

$$= \frac{\partial}{\partial (-ik_{\alpha})} \bigg|_{\vec{k}=0} \exp\left(-\frac{1}{2}\vec{k}^{\top}C\vec{k} - i\vec{k} \cdot \vec{\mu}\right)$$
(1.33)

$$= \left[-i \sum_{\beta} k_{\beta} C_{\beta\alpha} + \mu_{\alpha} \right] \exp \left(-\frac{1}{2} \vec{k}^{\top} C \vec{k} - i \vec{k} \cdot \vec{\mu} \right) \bigg|_{\vec{k} = 0}$$
(1.34)

$$=\mu_{\alpha}\,,\tag{1.35}$$

where we used the fact that the differentiation of a symmetric bilinear form is as follows:

$$\frac{\partial}{\partial k_{\alpha}} \left(\sum_{\beta \gamma} k_{\beta} k_{\gamma} C_{\beta \gamma} \right) = 2 \sum_{\beta \gamma} \delta_{\beta \alpha} k_{\gamma} C_{\beta \gamma} = 2 \sum_{\gamma} k_{\gamma} C_{\alpha \gamma}. \tag{1.36}$$

The covariance matrix can be computed by linearity as

$$\widetilde{C}_{\alpha\beta} = \mathbb{E}\left[\left(x_{\alpha} - \mathbb{E}(x_{\alpha})\right)\left(x_{\beta} - \mathbb{E}(x_{\beta})\right)\right] = \mathbb{E}\left[x_{\alpha}x_{\beta}\right] - \mu_{\alpha}\mu_{\beta}, \tag{1.37}$$

the first term of which reads as follows:

$$\mathbb{E}[x_{\alpha}x_{\beta}] = \left. \frac{\partial^2 \phi(\vec{k})}{\partial (-ik_{\beta})\partial (-ik_{\alpha})} \right|_{\vec{k}=0} \tag{1.38}$$

$$= \frac{\partial}{\partial (-ik_{\beta})} \bigg|_{\vec{k}=0} \bigg| -i\sum_{\beta} k_{\beta} C_{\beta\alpha} + \mu_{\alpha} \bigg| \exp \bigg(-\frac{1}{2} \vec{k}^{\top} C \vec{k} - i \vec{k} \cdot \vec{\mu} \bigg)$$
 (1.39)

$$=C_{\alpha\beta}+\mu_{\alpha}\mu_{\beta}\,,\tag{1.40}$$

therefore, as expected, $\widetilde{C}_{\alpha\beta}$ is indeed $C_{\alpha\beta}$.

Exercise 6

Claim 1.2. The characteristic function of a multivariate Gaussian is, up to normalization, a multivariate Gaussian.

Proof. The characteristic function is the exponential of (minus)

$$\frac{1}{2}\vec{k}^{\top}C\vec{k} + i\vec{k} \cdot \vec{\mu} = \frac{1}{2} \left(\vec{k} + iC^{-1}\vec{\mu} \right)^{\top} C \left(\vec{k} + iC^{-1}\vec{\mu} \right) + \frac{1}{2}\vec{\mu}^{\top}C^{-1}\vec{\mu} , \qquad (1.41)$$

which means that the characteristic function is in the form

$$\phi(\vec{k}) = \text{const} \times \exp\left(-\frac{1}{2}(\vec{k} - \vec{m})^{\top}C(\vec{k} - \vec{m})\right), \tag{1.42}$$

a multivariate normal with mean $\vec{m} = -iC^{-1}\vec{\mu}$ and covariance matrix C^{-1} , the inverse of the covariance matrix of the corresponding MVN.

Exercise 8

For clarity, we denote with Greek indices those ranging from 1 to *N*, the size of the vector of data; and with Latin indices those ranging from 1 to *M*, the number of templates.

We are assuming that the data have a Gaussian distribution with a covariance matrix C, and we are modelling their mean μ_{α} as a sum of templates $t_{i\alpha}$ with coefficients A_i :

$$\mu_{\alpha} = t_{i\alpha} A_i \,, \tag{1.43}$$

where the Einstein summation convention has been used. Therefore, the likelihood is proportional to

$$\mathscr{L}(d_{\alpha}|A_{i}) \propto \exp\left(-\frac{1}{2}(d_{\alpha} - A_{i}t_{i\alpha})C_{\alpha\beta}^{-1}\left(d_{\beta} - A_{j}t_{j\beta}\right)\right). \tag{1.44}$$

The normalization only depends on the covariance matrix $C_{\alpha\beta}$, which we assume is fixed. Therefore, maximizing the likelihood² is equivalent to minimizing the χ^2 , which reads

$$\chi^2 = (d_{\alpha} - A_i t_{i\alpha}) C_{\alpha\beta}^{-1} \left(d_{\beta} - A_j t_{j\beta} \right). \tag{1.45}$$

We want to minimize this as the amplitudes vary: therefore, we set the derivative with respect to A_k to zero,³

$$\frac{\partial \chi^2}{\partial A_k} = -2t_{k\alpha} C_{\alpha\beta}^{-1} \left(d_{\beta} - A_j t_{j\beta} \right) = 0, \qquad (1.47)$$

which means that

$$t_{k\alpha}C_{\alpha\beta}^{-1}d_{\beta} = (t_{k\alpha}C_{\alpha\beta}^{-1}t_{j\beta})A_{j}, \qquad (1.48)$$

$$\frac{\partial^2 \chi^2}{\partial A_k \partial A_m} = 2t_{k\alpha} C_{\alpha\beta}^{-1} t_{m\beta} \,, \tag{1.46}$$

and recalling that the inverse of the covariance matrix is positive definite.

² Which is equivalent to maximizing the posterior if we are using a flat prior.

³ The fact that the stationary point we will find is indeed a minimum can be checked by looking at the second derivative of χ^2 :

a linear system of M equations (indexed by k) in the M variables A_j . If we denote the evaluations of bilinear forms in the data (N-dimensional) space with brackets, as $a_{\alpha}C_{\alpha\beta}b_{\beta}\stackrel{\text{def}}{=}$ (a|C|b), this reads

$$(t|C^{-1}|d)_k = (t|C^{-1}|t)_{kj}A_j (1.49)$$

$$\left[(t|C^{-1}|t)^{-1} \right]_{mk} (t|C^{-1}|d)_k = \underbrace{\left[(t|C^{-1}|t)^{-1} \right]_{mk} (t|C^{-1}|t)_{kj}}_{=\delta_{mj}} A_j = A_m$$
 (1.50)

$$A_m = \left[(t|C^{-1}|t)^{-1} \right]_{mk} (t|C^{-1}|d)_k, \qquad (1.51)$$

where the inverse of $(t|C^{-1}|t)$ is to be computed in the *M*-dimensional vector space.

Exercise 9

Our model for the mean value is in the form $\mu(\Theta, A) = A\overline{x}(\Theta)$, where \overline{x} is a generic function of Θ , while A is our scale parameter. Our likelihood then reads

$$\mathscr{L}(x|\Theta,A) = \underbrace{\frac{1}{(2\pi)^{N/2}\sqrt{\det C}}}_{B_1} \exp\left(-\frac{1}{2}(x - A\overline{x}(\Theta))^{\top}C^{-1}(x - A\overline{x}(\Theta))\right). \tag{1.52}$$

If the priors for both A and Θ are flat, this corresponds to the joint posterior $P(\Theta, A|x)$. We want to marginalize over A, which amounts to integrating over it: dropping the dependence on Θ of \overline{x} and defining $V = C^{-1}$ we find

$$P(\Theta|x) = B_1 \int \exp\left(-\frac{1}{2}(x - A\overline{x})^{\top}V(x - A\overline{x})\right) dA$$
 (1.53)

$$= B_1 \int \exp\left(-\frac{1}{2}\left(x^\top V x - 2A\overline{x}^\top V x + A^2\overline{x}^\top V \overline{x}\right)\right) dA .$$
 Used the symmetry of V .

The amplitude being negative makes little sense in a typical physical context, however the Gaussian integral can be done analytically only over the whole of \mathbb{R} .

In order to get analytical results, here we will marginalize by integrating over negative amplitudes as well $(A \in \mathbb{R})$; the last figure (1) will show how only integrating over positive amplitudes only would have looked (by numerical calculation) in a simple case. In general if one wishes to perform the integral over $A \in (0, +\infty)$ the tabulated values of the error function may be used.

Applying the formula for the single-variable Gaussian integral (1.29) (the bilinear forms are all evaluated to yield scalars, we are only integrating over the scalar A!) we then get

$$P(\Theta|x) = \underbrace{B_1 \exp\left(-\frac{1}{2}x^\top V x\right)}_{B_2} \exp\left(\frac{(\overline{x}^\top V x)^2}{(\overline{x}^\top V \overline{x})}\right) \sqrt{\frac{2\pi}{\overline{x}^\top V \overline{x}}}$$
(1.55)

⁴ This is not specified in the problem, but it seems natural to think that $|\overline{x}(\Theta)|$ is a constant for varying Θ .

$$= B_2 \sqrt{\frac{2\pi}{\overline{x}^{\top} V \overline{x}}} \exp\left(\frac{\overline{x}^{\top} \Omega \overline{x}}{\overline{x}^{\top} V \overline{x}}\right), \qquad (1.56)$$

where we defined the bilinear form $\Omega = Vxx^{\top}V^{\top}.5$

An application of posterior marginalization in this fashion

Let us consider a simple example of this as a sanity check: suppose that x is two-dimensional, and $\overline{x}(\Theta) = (\cos \Theta, \sin \Theta)^{\top}$; further, suppose that V is diagonal, so that

$$V = \begin{bmatrix} \sigma_x^{-2} & 0\\ 0 & \sigma_y^{-2} \end{bmatrix}. \tag{1.57}$$

Also, suppose that the observed data parameter is

$$x = A_x \begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}. \tag{1.58}$$

Then, the multiplicative constant in front of the marginalized posterior reads

$$B_2 = B_1 \exp\left(-\frac{1}{2}A_x^2 \left(\frac{\cos^2 \varphi}{\sigma_x^2} + \frac{\sin^2 \varphi}{\sigma_y^2}\right)\right); \tag{1.59}$$

while the bilinear form Ω is

$$\Omega = A_x^2 \begin{bmatrix} \sigma_x^{-2} & 0 \\ 0 & \sigma_y^{-2} \end{bmatrix} \begin{bmatrix} \cos^2 \varphi & \cos \varphi \sin \varphi \\ \cos \varphi \sin \varphi & \sin^2 \varphi \end{bmatrix} \begin{bmatrix} \sigma_x^{-2} & 0 \\ 0 & \sigma_y^{-2} \end{bmatrix}$$
(1.60)

$$= A_x^2 \begin{bmatrix} \cos^2 \varphi / \sigma_x^4 & \cos \varphi \sin \varphi / \sigma_x^2 \sigma_y^2 \\ \cos \varphi \sin \varphi / \sigma_x^2 \sigma_y^2 & \sin^2 \varphi / \sigma_y^4 \end{bmatrix} . \tag{1.61}$$

Then, when we evaluate the marginalized posterior we will find something in the form

$$P(\Theta|x) = B_1 \sqrt{2\pi} \left(\frac{\cos^2 \Theta}{\sigma_x^2} + \frac{\sin^2 \Theta}{\sigma_y^2} \right)^{-1/2} \exp\left(A_x^2 F(\Theta, \varphi) \right), \tag{1.62}$$

where $F(\Theta, \varphi)$ is some function whose specific form does not really matter.⁶

The amplitude of the observed data vector, A_x , appears in a rather simple way, as a multiplicative prefactor in the exponent: it can affect the shape of the distribution, but not its mean. Specifically, we can see that scaling A_x is equivalent to scaling σ_x and σ_y simultaneously in the opposite direction — this is rather intuitive, since the angular size of the distribution as seen from the origin is smaller if it is further away.

$$F(\Theta, \varphi) = -\frac{1}{2} \left(\frac{\cos^2 \varphi}{\sigma_x^2} + \frac{\sin^2 \varphi}{\sigma_y^2} \right) + \left(\frac{\cos^2 \Theta}{\sigma_x^2} + \frac{\sin^2 \Theta}{\sigma_y^2} \right)^{-1} \left[\frac{\cos^2 \Theta \cos^2 \varphi}{\sigma_x^4} + 2 \frac{\cos \Theta \sin \Theta \cos \varphi \sin \varphi}{\sigma_x^2 \sigma_y^2} + \frac{\sin^2 \Theta \sin^2 \varphi}{\sigma_y^4} \right].$$

$$(1.63)$$

⁵ With explicit indices, $\Omega_{im} = V_{ij}x_ix_kV_{km}$.

⁶ For completeness, here is the full expression:

Figure 1: Marginalization: the left plot shows the full likelihood in terms of A and Θ ; the middle plot shows the result of marginalization as shown in the previous calculation (the posterior as a function of Θ); the right plot shows the result of the more physically meaningful marginalization over $A \in (0, +\infty)$ only. Here the likelihood is a diagonal Gaussian with $\sigma_x = 1.2$ and $\sigma_y = 1.8$, centered in $A_x = 2.5$ and $\varphi = 1$ rad.

Likelihood marginalization

So far we have considered the posterior $P(\Theta|x)$, the marginalized posterior, a function of the parameter(s) Θ ; however we may also be interested in the marginalized likelihood $\mathcal{L}(x|\Theta)$, whose expression is the same as the one we found for $P(\Theta|x)$; further, we do not even need to assume a form for the prior on Θ in order to arrive at that expression. Let us write it in a way which makes the dependence on x more explicit:

$$\mathscr{L}(x|\Theta) = \underbrace{B_1 \sqrt{\frac{2\pi}{\overline{x}^\top V \overline{x}}}}_{B_3} \exp\left(-\frac{1}{2} x^\top V x + \frac{(\overline{x}^\top V x)^2}{\overline{x}^\top V \overline{x}}\right), \tag{1.64}$$

which can be simplified by making use of the fact that the best-fit template amplitude we found in the last exercise (equation (1.51)) can be applied here, with the single template $t = \overline{x}$, the single amplitude A, the data d = x, and the inverse covariance matrix $C^{-1} = V$: the fitting value for A is

$$\hat{A} = \frac{\overline{x}^{\top} V x}{\overline{x}^{\top} V \overline{x}}; \tag{1.65}$$

therefore the likelihood is

$$\mathscr{L}(x|\Theta) = B_3 \exp\left(-\frac{1}{2}x^\top V x + \hat{A}\overline{x}^\top V x\right). \tag{1.66}$$

This can be rewritten in the canonical MVN form by making use of the matrix square completion formula (1.8), with A = -V and $\vec{b}^{\top} = \hat{A} \overline{x}^{\top} V$:

$$-\frac{1}{2}x^{\top}Vx + \hat{A}\overline{x}^{\top}Vx = -\frac{1}{2}\left(x - V^{-1}\hat{A}(\overline{x}^{\top}V)^{\top}\right)^{\top}V\left(x - V^{-1}\hat{A}(\overline{x}^{\top}V)^{\top}\right) + \frac{1}{2}\hat{A}^{2}(\overline{x}^{\top}V)V^{-1}(\overline{x}^{\top}V)^{\top}$$

$$(1.67)$$

$$= -\frac{1}{2} \left(x - \hat{A}\overline{x} \right)^{\top} V \left(x - \hat{A}\overline{x} \right) + \frac{1}{2} \hat{A}^2 \overline{x}^{\top} V \overline{x}. \tag{1.68}$$

Therefore, the marginalized likelihood reads

$$\mathscr{L}(x|\Theta) = B_3 \exp\left(\frac{1}{2}\hat{A}^2 \overline{x}^\top V \overline{x}\right) \exp\left(-\frac{1}{2}\left(x - \hat{A}\overline{x}\right)^\top V \left(x - \hat{A}\overline{x}\right)\right). \tag{1.69}$$

We must be careful with this expression: it looks like a multivariate normal in x, however \hat{A} is definitely *not* independent of x, as it is in fact a linear function of it.

A clearer way to see that this is indeed still a MVN is to come back to the original expression (1.64), and to write it as

$$\mathscr{L}(x|\Theta) = B_3 \exp\left(-\frac{1}{2}x^{\top} \left(V - 2\frac{V\overline{x}\overline{x}^{\top}V}{\overline{x}^{\top}V\overline{x}}\right)x\right), \tag{1.70}$$

thus showing that the likelihood is a zero-mean MVN with covariance given by

$$\left[V - 2\frac{V\overline{x}\overline{x}^{\top}V}{\overline{x}^{\top}V\overline{x}}\right]^{-1}.$$
(1.71)