Leksioni 5

Endri Raco

05 May, 2024

Endri Raco Leksioni 5 05 May, 2024 1 / 79

- 1 Të dhënat Raster (vazhdim)
- 2 Algjebra e Hartave

Endri Raco Leksioni 5 05 May, 2024 2 / 79

Section 1

Të dhënat Raster (vazhdim)

Endri Raco Leksioni 5 05 May, 2024 3 / 79

Analiza e Pikave dhe Vlerësimi i Dendësisë së Kernelit (KDE)

import urllib.request

Shkarkoni të dhënat e anijeve të mbytura historike

url_shipwrecks = 'https://github.com/endri81/instatgis/blob/master/data/gis4/darmc_historical_shipwrecks_500bce
file_name_shipwrecks = 'data/darmc_historical_shipwrecks_500bce_1500ce.geojson'
urllib.request.urlretrieve(url_shipwrecks, file_name_shipwrecks)

Shkarkoni qjithashtu kufijtë e vendeve

w Distribute glottestate wayerte to be december url_boundaries = 'https://github.com/endri81/instatgis/blob/master/data/gis4/natural_earth_world_boundaries_50m file_name_boundaries = 'data/natural_earth_world_boundaries_50m_2018.geojson' urllib.request.urlretrieve(url_boundaries, file_name_boundaries)

Endri Raco Leksioni 5 05 May, 2024 4 / 79

Ngarkimi dhe Projekti i Dataset-eve

```
import geopandas as gpd

# Ngarkoni dataset-in dhe projektoni në 3035 (Lambert, i përshtatshëm për Evropën)
ship_df = gpd.read_file('data/darmc_historical_shipwrecks_500bce_1500ce.geojson').to_crs(3035)
countries_df = gpd.read_file('data/natural_earth_world_boundaries_50m_2018.geojson').to_crs(3035)
```


Shfaqni një shembull të të dhënave

 $ship_df.sample(5)$

Endri Raco Leksioni 5 05 May, 2024 6/79

Shfaqni një shembull të të dhënave

	2010_wre	ck_id	name_1	name_2	start_date	end_date	year_found	depth	depth_q	length	width	cargo_1	type_1	cargo_2	type_2	cargo_3	type_3	other_ca
66	60	482.0	Macchia Tonda, La	None	50.0	100.0	None	12.0	None	None	NaN	amphoras	Dr14, pear- shaped; flat- bottomed amphora	None	None	None	None	N
27	6	702.0	Pomègues 1	None	200.0	300.0	None	7.0	None	None	NaN	amphoras	Almagro 50 and LaubenheimerG4	ceramic	pottery medallion	coins	sestertius of Antoninus Pius (145- 161), middle	laı
14	7	369.0	Grazel 2	None	631.0	631.0	None	NaN	None	None	NaN	metal	bronze pots, box, strainer, lamp, fittings	coins	coins ending 630-1 AD	None	None	N
89	1 .	428.0	Kornat	None	1.0	100.0	None	NaN	None	None	NaN	amphoras	None	None	None	None	None	N
90	19 1	009.0	Vis 7	None	1.0	500.0	None	NaN	None	None	NaN	amphoras	None	None	None	None	None	N

Endri Raco Leksioni 5 05 May, 2024 7 / 79

Vizualizimi i Pikave

```
import geoplot
import matplotlib.pvplot as plt
# Përkufizoni kanavacën
f, ax = plt.subplots(figsize=(10,7))
# Vizualizoni dy shtresa
countries_df.plot(ax=ax, color='lightgray', edgecolor="none", linewidth=.5)
geoplot.pointplot(ship_df, s=2, color='red', ax=ax, alpha=.1)
# Vendosni kufijtë e hartës
# Krijoni një buffer për të shtuar një margjinë
buff = ship_df.buffer(1)
xlim = ([buff.total bounds[0], buff.total bounds[2]])
vlim = ([buff.total bounds[1], buff.total bounds[3]])
ax.set_xlim(xlim)
ax.set_ylim(ylim)
# Vendosni titullin e hartës
ax.set_title('Anije të Mbytura (500 p.e.s. - 1500 e.s.)')
# Shfaqni rezultatet
plt.show()
```


Vizualizimi i Pikave

Endri Raco Leksioni 5 05 May, 2024

• Një mënyrë më e mirë për të përfaqësuar një densitet hapësinor është një histogram dy-dimensional (hist2d), i njohur gjithashtu si një grafik rrjeti.

Endri Raco Leksioni 5 05 May, 2024 10 / 79

• Vini re se një nga avantazhet e Python është mundësia e ndryshimit të parametrave të një funksioni përmes një cikli for (për shembull, numri i shtyllave në një histogram) dhe krahasimi i rezultateve.

Endri Raco Leksioni 5 05 May, 2024 11 / 79

```
# riprojektojmë në lon/lat për të pasur koordinata më të interpretueshme
ship_df = ship_df.to_crs(4326)

# le të luajmë me numrin e bins:
for bin_n in [10,20,30,40]:
    print("bin_n",bin_n)
h = plt.hist2d(ship_df.geometry.x, ship_df.geometry.y, bins=bin_n, density=False)
    plt.colorbar(h[3])
    plt.title('2D histograma e anijeve (bins='+str(bin_n)+")")
    plt.show()
```


Këto grafikë tregojnë praninë e një zone me densitet jashtëzakonisht të lartë midis Francës, Korsikës dhe Italisë:

Endri Raco Leksioni 5 05 May, 2024 13 / 79

Grafiku KDE

- Një qasje më shkencore është vlerësimi i densitetit të bërthamës (KDE).
- **geoplot.kdeplot(...)** mund të vizatojë një KDE duke u nisur nga të dhënat e pikës.

Endri Raco Leksioni 5 05 May, 2024 14 / 79,

Grafiku KDE

• Një parametër vendimtar është **bandwidth** (bw), që është pragu i distancës që përdoret për të prodhuar sipërfaqen (distancat më të shkurtra rezultojnë në një sipërfaqe më të detajuar):

Endri Raco Leksioni 5 05 May, 2024 15 / 79

```
# transformojmë në lon/lat
ship_df_ll = ship_df.to_crs(4326)

# gjenerojmë KDE me bandwidth të ndryshëm
for bandwidth in [.1, .2, .3, .4]:
    print("bandwidth:",bandwidth)
    # konturet e KDE
    ax = geoplot.kdeplot(ship_df_ll, shade=False, bw=bandwidth, figsize=(12, 12), alpha=.5)
    # shtojmë visjën bregdetare
    countries_df.to_crs(4326).plot(ax=ax, color='lightgray', edgecolor="none", linewidth=.5)
    # shtojmë titull
    plt.title('Dendësia e mbytjeve të anijeve (KDE, bw='+str(bandwidth)+")", fontsize=18)
    # figura
    plt.show()
```


Grafiku KDE

Analiza e të dhënave

- Këta grafikë KDE tregojnë se dataset-i ka një përqendrim shumë të lartë të pikave në Detin Mesdhe, midis Francës Jugore, Korsikës dhe Bregut Perëndimor të Italisë.
- Në të gjitha grafikët, kjo qendër graviteti shfaqet qartë.

Endri Raco Leksioni 5 05 May, 2024 18 / 79

Analiza e të dhënave

• Në aspektin shkencor, kjo mund të tregojë se kishte shumë më tepër mbytje anijesh aty se gjetkë, ose (më e mundshme) që të dhënat historike janë më të pasura dhe më të hollësishme për atë zonë.

Endri Raco Leksioni 5 05 May, 2024 19 / 79

Section 2

Algjebra e Hartave

Endri Raco Leksioni 5 05 May, 2024 20 / 79

Algjebra e Hartave

- Termi "algjebra e hartave" i referohet idesë së aplikimit të operacioneve algjebrike në dataset-e raster.
- Për shembull, mund të dëshirojmë të zbresim nga njëri- tjetri dy rastera të temperaturës të kapur në kohë të ndryshme për të vëzhguar ndryshimin e temperaturës:

Endri Raco Leksioni 5 05 May, 2024 21 / 79

Algjebra e Hartave

Endri Raco Leksioni 5 05 May, 2024 22/79

Algjebra e Hartave

Në praktikë, ky është një operacion aritmetik i aplikuar në çdo qelizë të të dy raster-ve:

Endri Raco Leksioni 5 05 May, 2024 23 / 79

Algjebra e hartave në Python

- Kur aksesojmë raster me **rasterio** ose **gdal**, ne mund të kryejmë çdo lloj llogaritjeje algjebrike lineare mbi të dhënat duke përdorur **numpy**, **scipy** dhe shumë paketa të tjera të fuqishme të Python.
- Statistikat zonale suportohen në librarinë rasterstats.

Endri Raco Leksioni 5 05 May, 2024 24 / 79

Algjebra e hartave në Python

• Kjo është arsyeja kryesore pse Python përdoret gjerësisht në komunitetet e remote sensing, machine learning, dhe AI.

Endri Raco Leksioni 5 05 May, 2024 25 / 79

 Si një shembull, le të shkarkojmë dhe vizualizojmë dy datasete raster që përfaqësojnë temperaturën mesatare në vitin 2000 dhe 2017.

Endri Raco Leksioni 5 05 May, 2024 26 / 79

```
import urllib.request

# Define new URLs and file names
url_2000 = "https://github.com/endri81/instatgis/blob/master/data/gis4/air_temp_2000-average.tif?raw=true"
url_2017 = "https://github.com/endri81/instatgis/blob/master/data/gis4/air_temp_2017-average.tif?raw=true"
file_name_2000 = 'data/air_temp_2000-average.tif'
file_name_2017 = 'data/air_temp_2017-average.tif'

# Download the files
urllib.request.urlretrieve(url_2000, file_name_2000)
urllib.request.urlretrieve(url_2017, file_name_2017)
```


Endri Raco Leksioni 5 05 May, 2024 27 / 79

```
temp00 = rasterio.open('data/air_temp_2000-average.tif')
print(temp00.meta)
temp17 = rasterio.open('data/air_temp_2017-average.tif')
print(temp17.meta)
```


'RdYlBu r', diverge zero=True)

Endri Raco Leksioni 5 05 May, 2024 30 / 79

- Vizualisht, nuk është e mundur të dallohen ndryshimet midis të dhënave të vitit 2000 dhe atyre të vitit 2017.
- Prandaj, do të zbresim dy rasterat e temperaturës, duke përdorur Algjebrën e Hartave.

Endri Raco Leksioni 5 05 May, 2024 31 / 79

- Në praktikë, Python lejon të bëhet kjo në mënyrë intuitive si raster_vals2 - raster_vals1.
- Këto janë operacione algjebrike lineare të aplikuara në çdo qelizë të matricave.

Endri Raco Leksioni 5 05 May, 2024 32 / 79

• Pastaj do të ndërtojmë një histogram të vlerave dhe raster-it, duke treguar se temperaturat mesatare janë më të larta me 0.5 gradë, me disa raste ekstreme pozitive dhe negative që mund të shkaktohen nga gabimet e sensorëve.

Endri Raco Leksioni 5 05 May, 2024 33 / 79

Rezultati do të ruhet në një skedar të ri raster, duke ripërdorur metadatat nga raster-at hyrës.

Endri Raco Leksioni 5 05 May, 2024 34 / 79

```
vals17 = temp17.read(1, masked=True)
vals00 = temp00.read(1, masked=True)
```


Endri Raco Leksioni 5 05 May, 2024 35 / 79

```
# zbresim tê dy raster-at
vals_diff = vals17 - vals00
print("Statistikat e Diferencës:", vals_diff.min(), round(vals_diff.mean(), 2), vals_diff.max())
print("Diferenca midis mesatareve:", round(vals17.mean()-vals00.mean(), 3))
```


Krahasimi i të dhënave raster

```
# vizatoni histogramin
show_hist(vals_diff, bins=30, lw=0.2, stacked=False, alpha=0.8, label='Nr i qelizave',
histtype='stepfilled', title="Dallimi në temperaturën mesatare (2000-2017)")
```


Endri Raco Leksioni 5 05 May, 2024 37 / 79

Krahasimi i të dhënave raster

38 / 79

Ndërtojmë rasterin

• Cmap (Purple - White - Orange) thekson vlerat ekstreme, duke fshehur zonat ku vlerat nuk divergojnë.

Endri Raco Leksioni 5 05 May, 2024 39 / 79

Ndërtojmë rasterin

Endri Raco Leksioni 5 05 May, 2024 40 / 79

Ndërtojmë rasterin

Ruani rezultatin në një skedar raster

• Është e rëndësishme të specifikohen metadatat nga skedarët hyrës, përfshirë CRS, vlerën NODATA dhe transformimin e koordinatave gjeografike:

Endri Raco Leksioni 5 05 May, 2024 42 / 79

Ruani rezultatin në një skedar raster

```
fout = 'tmp/air_temp_diff_2000_2017.tif'
ds = rasterio.open(fout, 'w',
    driver='GTiff', # formati i skedarit të daljes
    height=vals_diff.shape[0], # madhësia e matricës
    width=vals_diff.shape[1], # madhësia e matricës
    count=1, # numri i bandave
    dtype=vals_diff.dtype, # lloji i të dhënave (p.sh., pikë lundruese)
    crs=temp17.crs, # CRS (p.sh., Lambert, WGS&4, UTM, etj.)
    nodata=temp17.nodata, # vlera e përdorur për të përfaqësuar NO DATA
    transform=temp17.transform # transformimi i koordinatave gjeografike
)

ds.write(vals_diff, 1)
ds.close()
print("Raster u ruajt te", fout, '.')
```


Statistikat zonale

- Kur dëshirojmë të llogarisim statistikat raster bazuar në një zonë gjeografike, na duhen **statistikat zonale**.
- Për shembull, mund të dëshirojmë të llogarisim lartësinë mesatare (vlerat) e çdo rrethi (zonave) në Angli.

Endri Raco Leksioni 5 05 May, 2024 44 / 79

Statistikat zonale

• Si skedar **input**, statistikat zonale kanë nevojë për një raster që përfaqëson vlerat dhe një grup tjetër të dhënash që përfaqëson zonat për të cilat duam të llogarisim statistikat:

Endri Raco Leksioni 5 05 May, 2024 45 / 79

Statistikat zonale

Statistikat zonale

• Në këtë shembull, ne do të përdorim të dhënat evropiane të NOx të përdorura më sipër si vlera dhe zonat statistikore evropiane (NUTS)

Endri Raco Leksioni 5 05 May, 2024 46 / 79

Shkarkojmë datat

```
# shkarkoni kufijtë rajonalë të BE-së (niveli NUTS 2, 2021)
nuts2_file = 'data/NUTS RG_01M_2021_4326_LEVL_2.geojson.gz'
url = 'https://raw.githubusercontent.com/endri81/instatgis/master/data/gis4/NUTS_RG_01M_2021_4326_LEVL_2.geojso
urllib.request.ur/retrieve(url, nuts2_file)
```


Endri Raco Leksioni 5 05 May, 2024 47 / 79

Shkarkojmë datat

Skedari është gzip dhe mund ta hapim direkt me **gzip.open**(...)

```
import geopandas as gpd
import gzip
nuts2_df = gpd.read_file(gzip.open(nuts2_file))
nuts2_df.plot()
```


Endri Raco Leksioni 5 05 May, 2024 48 / 79

Shkarkojmë datat

Endri Raco Leksioni 5 05 May, 2024 49 / 79

Kontrollojmë

nuts2_df.sample(5)

Endri Raco Leksioni 5 05 May, 2024 50 / 79

• Duke qenë se nuk kemi të dhëna për Guyana Franceze dhe territore të tjera më të vogla, mund t'i heqim ato nga dataset-i.

Endri Raco Leksioni 5 05 May, 2024 51 / 79

Në dataframe pandas, mund të shkruajmë kushte në mënyra të ndryshme:

- column.str.contains(string) kryen një përputhje të pjesshme në një kolonë me format tekst
- column.isin(list) kryen një përputhje të saktë në përmbajtjen e një kolone ndaj një liste
- ~ do të thotë "jo" (vetëm në kontekstin e pandas)

Endri Raco Leksioni 5 05 May, 2024 52 / 79

- Do projektojmë kufijtë dhe ti ruajmë ato në një GeoPackage.
- Kini parasysh se GeoJSON lejon vetëm gjeometri në WGS84 (4326).
- Kur keni një CRS tjetër, duhet të përdorni një GeoPackage.

Endri Raco Leksioni 5 05 May, 2024 53 / 79

```
# Kjo shprehje do të thotë:
# zgjidhni rreshta ku NUTS_ID nuk përmban 'FRY'
nuts2_df = nuts2_df[-nuts2_df['NUTS_ID'].str.contains("FRY")]

# hiqni rreshta me kode që korrespondojnë me ishujt për të cilët nuk kemi të dhëna:
nuts2_df = nuts2_df[-nuts2_df['NUTS_ID'].isin(['PT20','PT30','ES70','N00B'])]

# projektoni në Lambert (i përshtatshëm për Evropën)
nuts2_df = nuts2_df.to_crs(3035)
nuts2_df.info()

# Ky është një rregullim: dataframe gjeo kanë nevojë që FID të jetë i tipit integer
nuts2_df['FID'] = nuts2_df.index
```


Endri Raco Leksioni 5 05 May, 2024 54 / 79

Ruani këtë dataset në një skedar

```
nuts2_clean_file = "tmp/nuts2_boundaries.gpkg"
nuts2_df.to_file(nuts2_clean_file, driver="GPKG")
```


Vizatoni gjeometrinë

nuts2_df.plot(figsize=(10,10))

Endri Raco Leksioni 5 05 May, 2024 56/79

Vizatoni gjeometrinë

Indri Raço

Endri Raco Leksioni 5 05 May, 2024 5

- Statistikat zonale mund të llogariten me funksionin rasterstats.zonal stats
- Parametri stats tregon cilat statistika dëshirojmë të llogariten në çdo zonë.

Endri Raco Leksioni 5 05 May, 2024 58 / 79

• Do të llogarisim disa statistika zonale dhe do ta ruajmë rezultatin në një GeoPackage dhe një skedar CSV:

Endri Raco Leksioni 5 05 May, 2024 59 / 79

- Rezultati është një listë e fjalorëve që përmban statistikat për çdo rresht të skedarit hyrës të vektorit
- Këto rezultate mund të konvertohen në një kornizë të të dhënave gjeo kështu:

Endri Raco Leksioni 5 05 May, 2024 61 / 79

	geometry	id	COAST_TYPE	MOUNT_TYPE	NAME_LATN	CNTR_CODE	NUTS_ID	NUTS_NAME	LEVL_CODE	URBN_TYPE
56	MULTIPOLYGON (((3735722.439 1899591.154, 37359	ES53	NaN	0	Illes Balears	ES	ES53	Illes Balears	2	NaN
90	POLYGON ((5080508.322 3065872.586, 5080260.235	PL21	NaN	0	Małopolskie	PL	PL21	Małopolskie	2	NaN
111	POLYGON ((4384447.442 3167714.424, 4384669.555	DEG0	NaN	0	Thüringen	DE	DEG0	Thüringen	2	NaN
185	MULTIPOLYGON (((4545500.129 2265401.004, 45461	ITI2	NaN	0	Umbria	IT	ITI2	Umbria	2	NaN

Endri Raco Leksioni 5 05 May, 2024 63 / 79

```
# ruajmë rezultatin në një geopackage
stats_df.to_file('tmp/eu_nox_2016_nuts2.gpkg', driver="GPKG")

# për lehtësi ruajmë tabelën e atributeve si CSV
stats_df.drop(columns=['geometry']).to_csv('tmp/eu_nox_2016_nuts2.csv', index=False)
print("results saved.")
```


- Tani, ne mund të eksplorojmë dhe vizualizojmë rezultatet.
- Funksioni .rank() i pandas na lejon të renditim vlerat.

Endri Raco Leksioni 5 05 May, 2024 65 / 79

- Shpesh është një ide e mirë të ndajmë në qeliza të ndryshme llogaritjet dhe vizualizimet e gjata.
- Në këtë rast, nëse dëshirojmë të ekzekutojmë vizualizime të ndryshme, nuk kemi nevojë të rikthejmë llogaritjet zonale në qelizën e mëparshme.

Endri Raco Leksioni 5 05 May, 2024 66 / 79

```
nox_nuts2_df = gpd.read_file('tmp/eu_nox_2016_nuts2.gpkg')
print(nox_nuts2_df.describe())
print(nox_nuts2_df.columns)
```


Endri Raco Leksioni 5 05 May, 2024 67 / 79

56773,000000

54.289036

max

	COAST_TYPE	MOUNT_TYPE	LEVL_CODE	URBN_TYPE	nox_min	nox_max
count	6.0	325.0	325.0	6.0	325.000000	325.000000
mean	0.0	0.0	2.0	0.0	4.336815	29.984501
std	0.0	0.0	0.0	0.0	5.983261	18.589846
min	0.0	0.0	2.0	0.0	0.050000	1.061000
25%	0.0	0.0	2.0	0.0	0.050000	18.127001
50%	0.0	0.0	2.0	0.0	1.395000	23.889000
75%	0.0	0.0	2.0	0.0	7.528000	34.648998
max	0.0	0.0	2.0	0.0	47.188000	118.250999
	nox_mean	nox_count	nox_media	an		
count	325.000000	325.000000	325.00000	aa		
mean	11.772977	4428.744615	11.4073	28		
std	7.030471	5540.615930	6.9496	15		
min	0.083497	3.000000	0.05000	aa		
25%	7.030450	1301.000000	6.78400	aa		
50%	10.620482	2840.000000	10.45300	aa		
75%	13.782574	5964.000000	13.59050	aa		

Endri Raco Leksioni 5 05 May, 2024 68 / 79

52.843498

```
# Rendisni rajonet: 1 = vlera mē e lartē
nox_nuts2_df['nox_mean_rank'] = nox_nuts2_df['nox_mean'].rank(ascending=False)
nox_nuts2_df['nox_max_rank'] = nox_nuts2_df['nox_max'].rank(ascending=False)
```



```
# E vérteté nése vlera > 40
nox_nuts2_df['nox_max_high'] = nox_nuts2_df['nox_max'] > 40
```


Endri Raco Leksioni 5 05 May, 2024 71 / 79

	NUTS_ID	NUTS_NAME	nox_mean	nox_max	nox_mean_rank	nox_max_rank	nox_max_high
234	UKI3	Inner London — West	54.289036	60.915001	1.0	23.0	True
235	UKI4	Inner London — East	48.673785	60.771000	2.0	24.0	True
233	UKI7	Outer London — West and North West	42.045606	60.487999	3.0	25.0	True
41	BE10	Région de Bruxelles-Capitale/ Brussels Hoofdst	40.851095	49.681000	4.0	40.0	True
236	UKI5	Outer London — East and North East	33.673233	53.467999	5.0	34.0	True
42	BE21	Prov. Antwerpen	30.655168	86.754997	6.0	6.0	True
171	NL33	Zuid-Holland	29.971545	79.961998	7.0	13.0	True
286	UKI6	Outer London — South	29.414680	52.473000	8.0	36.0	True
138	DEA1	Düsseldorf	29.366611	53.619999	9.0	33.0	True
232	UKG3	West Midlands	28.163673	35.469002	10.0	76.0	False
177	ITC4	Lombardia	26.701113	84.431000	11.0	8.0	True
230	UKD7	Merseyside	26.619785	59.910000	12.0	27.0	True
102	ES63	Ciudad de Ceuta	26.568334	33.310001	13.0	93.0	False
169	NL31	Utrecht	26.447465	37.550999	14.0	67.0	False
322	R10	İstanbul	25.629883	118.250999	15.0	1.0	True
242	UKD3	Greater Manchester	25.620574	42.200001	16.0	57.0	True
217	NL41	Noord-Brabant	24.854877	81.477997	17.0	12.0	True
153	HU11	Budapest	24.001561	30.010000	18.0	113.0	False
218	NL42	Limburg (NL)	23.951939	30.733000	19.0	107.0	False
45		dri Raco Wien	23.914827 Leksion	34.138000 i 5	20.0	86.0 05 May,	False 2024

72 / 79 05 May, 2024

- Vini re se si renditja për nox_max dhe nox_mean mund të ndryshojë:
- Për shembull, Inner London West ("UKI3") ka nivelin më të lartë të NOx në mesatare, por është vetëm i 23-ti për sa i përket vlerës maksimale.

Endri Raco Leksioni 5 05 May, 2024 73 / 79

• Mund të vizatojmë vlerat e grumbulluara me një choropleth:

```
nox_nuts2_df.plot(column='nox_max', figsize=(12,9), scheme='equalinterval', cmap='OrRd', k=5,
   edgecolor="lightgrey", linewidth=0.4,
   legend=True, legend_kwds={'loc': 'upper right', 'title': 'NOx Maksimale (2016) - NUTS 2'},
   missing_kwds={'color': "lightgrey"})
```


Endri Raco Leksioni 5 05 May, 2024 74 / 79

- Shpërndarja e NOx është shumë heterogjene hapësinore (dmth., ndryshon shumë në çdo vend).
- Ne mund të përdorim **groupby** për të gjetur njësinë kryesore të NUTS për çdo vend për sa i përket NOx maksimale:

Endri Raco Leksioni 5 05 May, 2024 76 / 79

```
nox_nuts2_df['nox_max_country_rank'] = nox_nuts2_df.groupby('CNTR_CODE')['nox_max'].rank(ascending=False)

# për çdo vend, njësitë renditen në mënyrë të brendshme
sel_df = nox_nuts2_df[['NUTS_ID','NUTS_NAME','nox_max','nox_max_country_rank']]
sel df
```


Endri Raco Leksioni 5 05 May, 2024 77 / 79

```
# Zgjidhni vetëm njësinë kryesore për çdo vend (rank==1) dhe rendisni ato sipas NOx maksimale:
top_df = sel_df[sel_df['nox_max_country_rank']==1]
top_df.sort_values('nox_max', ascending=False)
```


Endri Raco Leksioni 5 05 May, 2024 78 / 79

	NUTS_ID	NUTS_NAME	nox_max	nox_max_country_rank
322	TR10	İstanbul	118.250999	1.0
14	ES51	Cataluña	108.094002	1.0
74	EL30	Αττική	106.764000	1.0
136	FR10	Ile-de-France	99.392998	1.0
42	BE21	Prov. Antwerpen	86.754997	1.0
177	ITC4	Lombardia	84.431000	1.0
43	BG42	Южен централен	83.987000	1.0
204	NL34	Zeeland	81.850998	1.0
85	DE71	Darmstadt	73.099998	1.0
234	UKI3	Inner London — West	60.915001	1.0
26	CH04	Zürich	56.997002	1.0
213	MK00	Северна Македонија	49.800999	1.0

Endri Raco Leksioni 5 05 May, 2024

79 / 79