Übungen zur Linearen Algebra und Analytischen Geometrie Sommersemester 2025 Esentepe-Gharbi

Blatt 5

- (1) Seien V ein euklidischer Vektorraum, U ein Unterraum von V mit dim $U < \infty$ und $\pi \colon V \to V$ die orthogonale Projektion von V auf U. Zeigen Sie
 - (a) Bild(U) = U,
 - (b) $\ker(U) = U^{\perp}$,
 - (c) $\pi \circ \pi = \pi$.
- (2) Es seien V der Vektorraum der 2×2 Matrizen mit Koeffizienten in \mathbb{R} mit $\langle A, B \rangle := \operatorname{Spur}(A^TB)$. Sei

$$U = \mathcal{L} \left\{ \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} \right\}.$$

Berechnen Sie die Projektionmatrix von V auf U.

- (3) Es seien V der Vektorraum der 6×6 Matrizen mit Koeffizienten in \mathbb{R} mit $\langle A, B \rangle := \operatorname{Spur}(A^TB)$. Bestimmen Sie die Dimension des orthogonalen Komplements des Unterraums der diagonalen Matrizen.
- (4) Es seien V der Vektorraum der 2×2 Matrizen mit Koeffizienten in \mathbb{R} mit $\langle A, B \rangle := \operatorname{Spur}(A^TB)$. Seien

$$U = \{A \in V : \operatorname{Spur}(A) = 0\}$$

und $\pi\colon V\to V$ die orthogonale Projektion von V auf U. Finden Sie eine Basis $\mathcal B$ von V, sodass

$$[\pi]_{\mathcal{B},\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

gilt.

(5) Es seien $V = \{a + bx + cx^2 + dx^3 + ex^4 + fx^5 : a, b, c, d, e, f \in \mathbb{R}\}$ der Vektorraum der Polynome mit Koeffizienten in \mathbb{R} vom Grad ≤ 5 mit

$$\langle p, q \rangle = \int_{-\pi}^{\sqrt{2}} p(t)q(t)dt.$$

Gegeben ist $U = \mathcal{L}\left\{x^3 - \pi x^4 + 17x^5, \sqrt{3} + x^5, \sqrt{5} - x^5\right\}$. Es seien $W = U^{\perp}$, $P \colon V \to V$ die orthogonale Projektion von V auf U und $Q \colon V \to V$ die orthogonale Projektion von V auf W. Es sei $F \colon V \to V$ mit F(p) = P(p) + Q(p) für alle $p \in V$. Für $\mathcal{B} = (1, 1+x, 1+x+x^2, 1+x+x^2+x^3, 1+x+x^2+x^3+x^4, 1+x+x^2+x^3+x^4+x^5)$, finden Sie Spur($[F]_{\mathcal{B}\mathcal{B}}$).