$\partial_{\chi}\mathcal{R}_{\alpha\beta}^{\chi}\Big] - 4 f_{\alpha\beta}^{\alpha} \partial_{\chi}\mathcal{R}_{\beta}^{\beta\chi} - 2 \partial_{\beta}f_{\alpha\beta}^{\alpha\beta} \partial_{\chi}f_{\alpha}^{\chi} + 4 \partial^{\beta}f_{\alpha\beta}^{\alpha} \partial_{\chi}f_{\beta}^{\chi} + 4 \mathcal{R}_{\alpha\chi\beta} \partial^{\chi}f_{\alpha\beta}^{\alpha\beta} - 2 \partial_{\beta}f_{\alpha\beta}^{\alpha\beta} \partial_{\chi}f_{\alpha\beta}^{\chi} + 4 \partial^{\beta}f_{\alpha\beta}^{\alpha} \partial_{\chi}f_{\beta}^{\chi} + 4 \partial^{\beta}f_{\alpha\beta}^{\chi} \partial_{\chi}f_{\beta}^{\chi} \partial_{\chi}f_{\beta}^{\chi} \partial_{\chi}f_{\beta}^{\chi} + 4 \partial^{\beta}f_{\alpha\beta}^{\chi} \partial_{\chi}f_{\beta}^{\chi} \partial_{\chi}f_{\gamma}^{\chi} \partial_{\chi$ $2\ \partial_{\alpha}f_{\beta\chi}\ \partial^{\chi}f^{\alpha\beta} - \partial_{\alpha}f_{\chi\beta}\ \partial^{\chi}f^{\alpha\beta} + \partial_{\beta}f_{\alpha\chi}\ \partial^{\chi}f^{\alpha\beta} + \partial_{\chi}f_{\alpha\beta}\ \partial^{\chi}f^{\alpha\beta} + \partial_{\chi}f_{\beta\alpha}\ \partial^{\chi}f^{\alpha\beta} + \partial_{\chi}f_{\alpha\beta}\ \partial^{$ $\frac{1}{3} \alpha_{3} \left(4 \partial_{\beta} \mathcal{A}_{\alpha \chi \delta} - 2 \partial_{\beta} \mathcal{A}_{\alpha \delta \chi} + 2 \partial_{\beta} \mathcal{A}_{\chi \delta \alpha} - \partial_{\chi} \mathcal{A}_{\alpha \beta \delta} + \partial_{\delta} \mathcal{A}_{\alpha \beta \chi} - 2 \partial_{\delta} \mathcal{A}_{\alpha \chi \beta}\right) \partial^{\delta} \mathcal{A}^{\alpha \beta \chi} \left[t, \, x, \, y, \, z\right] dz \, dy \, dx \, dt$ **Wave operator**

^{0⁺}# † $0^+f^{\parallel} + 0 -4 \beta_1 k^2 = 0$

 $0^+f^{\perp} \uparrow 0 0 0$

0

PSALTer results panel

 $0^+\tau^{\perp} \uparrow 0 0 0$

• '	0	0		O										
${\stackrel{\scriptscriptstyle{0^{-}}}{\cdot}}\sigma^{\parallel}$ †	Θ	0	0	$\frac{1}{\alpha_{\cdot} k^2}$	$\begin{vmatrix} 1^+ \sigma^{\parallel} & \alpha \beta \end{vmatrix}$	$^{1^{+}}_{\bullet}\sigma^{\perp}_{\alpha\beta}$	$^{1^{+}}_{\bullet}\tau^{\parallel}{}_{\alpha\beta}$	$^{1^{-}}\sigma^{\parallel}_{\alpha}$	$^{1^{-}}\sigma^{\perp}{}_{\alpha}$	$1^{-}_{\bullet}\tau^{\parallel}_{\alpha}$	$^{1^{-}}_{\bullet}\tau^{\perp}_{\alpha}$			
				$^{1^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$		0	Θ	0	0	0	0			
				$^{1^{+}}\sigma^{\perp}$ $^{+}$		0	0	0	0	0	0			
				$^{1^+}\tau^{\parallel}$ † $^{\alpha\beta}$	Θ	0	0	0	0	0	0			
				1 $^{-}\sigma^{\parallel}$ $^{+}$	Θ	0	0	0	0	0	0			
				1 $^{-}$ σ^{\perp} \dagger^{α}		0	Θ	0	0	0	0			
				$^{1^{-}}\tau^{\parallel}$ †	Θ	0	0	0	0	0	0			
				$\frac{1}{\cdot}\tau^{\perp}\uparrow^{\alpha}$	0	0	0	0	0	0	0	$^{2^{+}}\sigma^{\parallel}_{\alpha\beta}$	$2^{+}_{\bullet}\tau^{\parallel}_{\alpha\beta}$	$^{2^{-}}_{\bullet}\sigma^{\parallel}_{\alpha\beta\chi}$
											$^{2^{+}}\sigma^{\parallel}$ † $^{\alpha\beta}$	0	0	0
											$^{2^{+}}_{\bullet}\tau^{\parallel}\uparrow^{lphaeta}$		$\frac{1}{2\beta_{i}k^{2}}$	0
											$^{2^{-}}\sigma^{\parallel}$ † $^{\alpha\beta\chi}$	0	0	0
Source constraints														
Spii	n-pa	rity for	m C	ovarian	t form									

Spin-parity forn	Covariant form	Multiplicities			
0 ⁺ τ [⊥] == 0	$\partial_{\beta}\partial_{\alpha\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta}==0$	1			
⁰⁺ σ == 0	$\partial_{\beta}\sigma^{\alpha}_{\alpha}^{\beta} = 0$	1			
1- _t ^{\(\alpha\)} == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau \left(\Delta+\mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau \left(\Delta+\mathcal{K}\right)^{\alpha\beta}$	3			
1- _t ^α == 0	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}_{\tau} \left(\Delta + \mathcal{K}\right)^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta\tau} \left(\Delta + \mathcal{K}\right)^{\beta\alpha}$	3			
1- _σ α == 0	$\partial_{\chi}\partial_{\beta}\sigma^{\beta\alpha\chi} = 0$	3			
1 ⁻ _σ ^α == 0	$\partial_{\delta}\partial^{\alpha}\sigma_{\chi}^{\chi} \stackrel{\delta}{\sim} + \partial_{\delta}\partial^{\delta}\sigma_{\chi}^{\alpha} = \partial_{\delta}\partial_{\chi}\sigma_{\chi}^{\chi\alpha\delta}$	3			
$\frac{1_{\bullet}^{+} \tau^{\parallel} \alpha \beta}{1_{\bullet}^{+} \tau^{\parallel}} = 0$	$\partial_{\chi}\partial^{\alpha}_{\tau}\left(\Delta+\mathcal{K}\right)^{\beta\chi} + \partial_{\chi}\partial^{\beta}_{\tau}\left(\Delta+\mathcal{K}\right)^{\chi\alpha} + \partial_{\chi}\partial^{\chi}_{\tau}\left(\Delta+\mathcal{K}\right)^{\alpha\beta} ==$	3			
	$\partial_{\chi}\partial^{\alpha}\tau\left(\Delta+\mathcal{K}\right)^{\chi\beta}+\partial_{\chi}\partial^{\beta}\tau\left(\Delta+\mathcal{K}\right)^{\alpha\chi}+\partial_{\chi}\partial^{\chi}\tau\left(\Delta+\mathcal{K}\right)^{\beta\alpha}$				
$1^{+}_{\bullet}\sigma^{\perp}{}^{\alpha\beta} = 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\chi\alpha\beta} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta}$	3			
$1^{+}_{\bullet}\sigma^{\parallel}^{\alpha\beta} = 0$	$\partial_{\delta}\partial_{\chi}\partial^{\alpha}\sigma^{\chi\beta\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\beta\alpha\chi} = \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\chi\alpha\delta} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\sigma^{\alpha\beta\chi}$	3			
$2^{-}_{\bullet}\sigma^{\parallel}^{\alpha\beta\chi}=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\delta \beta}_{ $	5			
	$2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\beta}\sigma^{\delta\alpha\chi} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\beta\alpha\delta} + 4\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\chi}\sigma^{\delta\alpha\beta} + 2\ \partial_{\epsilon}\partial^{\epsilon}\partial_{\delta}\partial^{\delta}\sigma^{\alpha\beta\chi} +$				
	$3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta}_{\ \ \delta} + 3 \ \eta^{\alpha \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta \beta \epsilon} + 3 \ \eta^{\beta \chi} \ \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta \alpha}_{\ \ \delta} =$				
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\delta \alpha}_{\delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \beta \delta} +$				
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\delta \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \alpha \chi} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\chi \alpha \beta} +$				
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\beta} \sigma^{\delta}_{\delta} {}^{\epsilon} + 3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{\delta} \sigma^{\delta\alpha\epsilon} + 3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial^{\epsilon} \sigma^{\delta\beta}_{\delta}$				
$\frac{2^{+} \sigma^{\parallel}^{\alpha\beta}}{2^{+} \sigma^{\parallel}} = 0$	$3 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\chi \beta \delta} + 3 \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\chi \alpha \delta} + 2 \eta^{\alpha \beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \sigma^{\chi}_{\chi}^{\delta} = $	5			
	$2 \partial_{\delta} \partial^{\beta} \partial^{\alpha} \sigma_{\chi}^{\chi} {}^{\delta} + 3 \left(\partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} + \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\beta \alpha \chi} \right)$				
Total expected gauge generators: 33					

(No particles)

Massive spectrum

Massless spectrum

Pole residue: $\left| \frac{p^2}{\beta} \right| > 0$

	Polarisations:	2	
L	Jnitarity c	ondit	ions

 $\beta_{\stackrel{\bullet}{1}} > 0$