SHEET 5

1. Determine the location & order of the zeros for the following functions:

- (a) $(z + 16i)^3$
- (b) $\cot z$
- (c) $\cos z$
- (d) $(3z^2+1)e^{-z}$
- (e) $(z^2-1)^2(z+4)$

2. Find all the singularities and the corresponding residues of the following:

- (a) $\frac{1}{z^2 + 4}$
- (b) $\frac{\cos z}{z^3}$ (c) $\frac{z^2 + 1}{z^2 2}$
- (d) $\tan z$
- (e) $\frac{z^2}{z^4-1}$
- (f) $\frac{2z+1}{z^2-z-2}$

3. Show that all singular points of each of the following functions are poles. Also, determine the order of each pole and the residue of the function at the pole.

- (a) $\tan z$
- (b) $\frac{1 e^{2z}}{r^4}$
- (c) $\frac{e^z}{z^2 + \pi^2}$
- (d) $\frac{1 \cosh z}{z^3}$

4. Show that

- (a) $\underset{z=-1}{Res} \frac{z^{\frac{1}{4}}}{z+1} = \frac{1+i}{\sqrt{2}}$ |z| > 0, $0 < \arg z < 2\pi$
- (b) $\underset{z=i}{\text{Res}} \frac{\text{Log } z}{(z^2+1)^2} = \frac{\pi+2i}{8}$

(c)
$$\underset{z=\pi i}{Res} \frac{e^z}{\sinh z} + \underset{z=-\pi i}{Res} \frac{e^z}{\sinh z} = -2\cos\pi$$

5. Use Cauchy's residue theorem to evaluate the following:

(a)
$$\oint_C \frac{\sin \pi z}{z^4} \ dz$$

where C is the circle |z - i| = 2, described in the positive sense.

(b)
$$\oint_C \frac{1}{(z-1)^3(z+4)} dz$$

where C is the circle |z|=3, described in the positive sense.

(c)
$$\oint_C \frac{z+10}{6z^2+5z+1} dz$$

where C is the circle:

i.
$$|z| = 1$$

ii.
$$|z| = 2$$

iii.
$$|z| = 3$$

(d)
$$\oint_C e^{-\frac{1}{z}} \sin \frac{1}{z} dz$$

where C is the circle |z| = 1, described in the positive sense.

(e)
$$\oint_C \frac{e^{-z}}{(z-1)^5} dz$$

where C is the circle |z|=2, described in the positive sense.

6. Find the value of

$$\oint_C \frac{3z^2 + 2}{(z - 1)(z^2 + 9)} \, dz$$

2

taken counterclockwise around the circle:

(a)
$$|z-2|=2$$

(b)
$$|z| = 4$$

7. If C is the circle |z| = 1 described in the positive sense, show that:

(a)
$$\oint_C \frac{e^{-z}}{z^2} dz = -2\pi i$$

(b)
$$\oint_C z e^{\frac{1}{z}} dz = \pi i$$