TUM·adl4cv | Advanced Deep Learning for Computer Vision(2020)

adl4cv (2020)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码 作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV1Tf4y1L7wg

| 课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/adl4cv

神经网络可解释性 GNN transformer 相似度与度量学习

GAN Transfer learning 迁移学习 自注意力 model interpretability 图神经网络 Siamese neural network

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP20+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]

Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

FID (Frechet inception distance) on 50k gen. images -> Architecture is similar to Progressive Growing GAN

Interesting analysis about design choices!

- https://arxiv.org/pdf/1912.04958.pdf
- https://github.com/NVlabs/stylegan2
- https://youtu.be/c-NJtVgJvp0FID

Autoregressive Models

Autoregressive Models vs GANs

- GANs learn implicit data distribution
 - i.e., output are samples (distribution is in model)

- Autoregressive models learn an explicit distribution governed by a prior imposed by model structure
 - i.e., outputs are probabilities (e.g., softmax)

Prof. Leal-Taixé and Prof. Niessner

- Goal: model distribution of natural images
- Interpret pixels of an image as product of conditional distributions
 - Modeling an image → sequence problem
 - Predict one pixel at a time
 - Next pixel determined by all previously predicted pixels
 - > Use a Recurrent Neural Network

x_1				$ x_n $
		$ x_i $		
				x_{n^2}

$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i|x_1, ..., x_{i-1})$$

$$x_i \in [0,255]$$

 $\rightarrow 256$ -way softmax

- Row LSTM model architecture
- Image processed row by row
- Hidden state of pixel depends on the 3 pixels above it
 - Can compute pixels in row in parallel
- Incomplete context for each pixel

- Diagonal BiLSTM model architecture
- Solve incomplete context problem
- Hidden state of pixel $p_{i,j}$ depends on $p_{i,j-1}$ and $p_{i-1,j}$
- Image processed by diagonals

- Masked Convolutions
- Only previously predicted values can be used as context
- Mask A: restrict context during 1st conv
- Mask B: subsequent convs
- Masking by zeroing out values

Generated

 64x64 images,
 trained on
 ImageNet

PixelCNN

- Row and Diagonal LSTM layers have potentially unbounded dependency range within the receptive field
 - Can be very computationally costly
- > PixelCNN:
 - standard convs capture a bounded receptive field
 - All pixel features can be computed at once (during training)

PixelCNN

- Model preserves spatial dimensions
- Masked convolutions to avoid seeing future context

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

softmax

Mask A

Gated PixelCNN

- Gated blocks
- Imitate multiplicative complexity of PixelRNNs to reduce performance gap between PixelCNN and PixelRNN
- Replace ReLU with gated block of sigmoid, tanh

 $y = \tanh(W_{k,f} * x) \odot \sigma(W_{k,g} * x)$ element-wise product convolution

PixelCNN Blind Spot

1	1	1	1	1
1	1	1	1	1
1	1	0	0	0
0	0	0	0	0
0	0	0	0	0

5x5 image / 3x3 conv

Receptive Field

Unseen context

PixelCNN: Eliminating Blind Spot

- Split convolution to two stacks
- Horizontal stack conditions on current row

Vertical stack conditions on pixels above

Horizontal stack

Conditional PixelCNN

- Conditional image generation
- E.g., condition on semantic class, text description

latent vector to be conditioned on

$$y = \tanh(W_{k,f} * x + V_{k,f}^T h) \odot \sigma(W_{k,g} * x + V_{k,g}^T h)$$

Conditional PixelCNN

Coral Reef

Sorrel horse

Autoregressive Models vs GANs

- Advantages of autoregressive:
 - Explicitly model probability densities
 - More stable training
 - Can be applied to both discrete and continuous data
- Advantages of GANs:
 - Have been empirically demonstrated to produce higher quality images
 - Faster to train

Autoregressive Models

• State of the art is pretty impressive @

Generating Diverse High-Fidelity Images with VQ-VAE-2 https://arxiv.org/pdf/1906.00446.pdf [Razavi et al. 19]

Generative Models on Videos

GANs on Videos

Two options

- Single random variable z seeds entire video (all frames)
 - Very high dimensional output
 - How to do for variable length?
 - Future frames deterministic given past
- Random variable z for each frame of the video
 - Need conditioning for future from the past
 - How to get combination of past frames + random vectors during training

General issues

- Temporal coherency
- Drift over time (many models collapse to mean image)

GANs on Videos: DVD-GAN

GANs on Videos: DVD-GAN

GANs on Videos: DVD-GAN

- Trained on Kinetics-600 dataset
 - 256 x 256, 128 x 128, and 64 x 64
 - Lengths of up 48 frames

- -> This is state of the art!
- -> Videos from scratch still incredibly challenging

Conditional GANs on Videos

- Challenge:
 - Each frame is high quality, but temporally inconsistent

Prof. Leal-Taixé and Prof. Niessner

Sequential Generator:

$$p(\tilde{\mathbf{x}}_1^T | \mathbf{s}_1^T) = \prod_{t=1}^T p(\tilde{\mathbf{x}}_t | \tilde{\mathbf{x}}_{t-L}^{t-1}, \mathbf{s}_{t-L}^t).$$

past L generated frames past L source frames (set L = 2)

- ullet Conditional Image Discriminator D_i (is it real image)
- Conditional Video Discriminator D_{v} (temp. consistency via flow)

Full Learning Objective:
$$\min_{F} \left(\max_{D_I} \mathcal{L}_I(F, D_I) + \max_{D_V} \mathcal{L}_V(F, D_V) \right) + \lambda_W \mathcal{L}_W(F),$$

- Key ideas:
 - Separate discriminator for temporal parts
 - In this case based on optical flow

- Consider recent history of prev. frames
- Train all of it jointly

Similar to "Image-to-Image Translation" (Pix2Pix) [Isola et al.]

Neural Network converts synthetic data to realistic video

Interactive Video Editing

2x speed

Deep Video Portraits: Insights

- Synthetic data for tracking is great anchor / stabilizer
- Overfitting on small datasets works pretty well
- Need to stay within training set w.r.t. motions
- No real learning; essentially, optimizing the problem with SGD
 - -> should be pretty interesting for future directions

- cGANs work with different input

- Requires consistent input i.e., accurate tracking

Network has no explicit3D notion

[Chan et al. '18] Everybody Dance Now

Everybody Dance Now: Insights

Conditioning via tracking seems promising!

- Tracking quality translates to resulting image quality

- Tracking human skeletons is less developed than faces
 - Temporally it's not stable... (e.g., OpenPose etc.)
- Fun fact, there were like 4 papers with a similar idea that appeared around the same time...

Next Lectures

- Next Lectures:
 - Neural Rendering
 - 3D Deep Learning

Keep working on the projects!

Prof. Leal-Taixé and Prof. Niessner

See you next week ©

Prof. Leal-Taixé and Prof. Niessner

TUM·adl4cv | Advanced Deep Learning for Computer Vision(2020)

adl4cv (2020)·课程资料包 @ShowMeAl

视频 中英双语字幕

课件 一键打包下载

笔记 官方筆记翻译

代码 作业项目解析

视频·B 站[扫码或点击链接]

https://www.bilibili.com/video/BV1Tf4y1L7wg

| 课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/adl4cv

神经网络可解释性 GNN transformer 相似度与度量学习

GAN Transfer learning 迁移学习 自注意力 model interpretability 图神经网络 Siamese neural network

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP20+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称,跳转至课程**资料包**页面,一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏

称为 **AI 内容创作者?** 回复[添砖加瓦]