Pregunta 1 (3 puntos)

Dados tres subconjuntos cualesquiera $A,\ B$ y C de un conjunto no vacío U, demuestre que

a)
$$A \triangle B = A \cap B \iff A = B = \emptyset;$$

- b) $A \triangle B = \emptyset \iff A = B$;
- c) $A \triangle C = B \triangle C \iff A = B$.

Pregunta 2 (2 puntos) Se dice que un conjunto ordenado (U, \preceq) es un retículo si existen el supremo y el ínfimo de dos elementos cualesquiera a y b de U.

Dado los grafos dirigidos (V, G) y (V, G') de la figura, donde $V = \{1, 2, 3, 4, 5\}$, $G = \{21, 32, 42, 53, 54\}$ y $G' = \{21, 42, 53, 54\}$, se consideran los pseudo-grafos obtenidos al añadir las aristas que unen cada punto con sí mismo. Se define en V las relaciones $\leqslant_G y \leqslant_{G'}$ mediante:

$$G: \quad \begin{array}{cc} 5 \longrightarrow 4 \\ \downarrow & \downarrow \\ 3 \longrightarrow 2 \longrightarrow 1 \end{array}$$

$$G': \quad \begin{array}{ccc} 5 \longrightarrow 4 \longrightarrow 2 \\ \downarrow & \downarrow \\ 3 & 1 \end{array}$$

 $x \leq_G y$ (respectivamente $x \leq_{G'} y$) si y sólo si existe un camino que empieza en x y termina en y en el pseudografo de G (respectivamente de G').

- a) Compruebe si (V, \leq_G) es un retículo.
- b) Compruebe si $(V, \leq_{G'})$ es un retículo.

Pregunta 3 (2,5 puntos) Determine razonadamente si los siguientes conjuntos con la operación considerada forman un grupo.

a)
$$A = (-1, 1)$$
 y la operación * definida mediante $x * y = \frac{x + y}{1 + xy}$.

b) $B = \{z \in \mathbb{C} \mid |z| = 2\}$ con el producto usual de números complejos.

Pregunta 4 (2,5 puntos)

- a) Sean ω_1 , ω_2 y ω_3 las tres raíces cúbicas, distintas entre sí, de un mismo número complejo. Determine razonadamente ω_2 y ω_3 en función de ω_1 .
- b) Resuelva en \mathbb{C} la ecuación $z^6 (1+2i)z^3 + i 1 = 0$.