

# AD-A233 979

NPS-PH-91-003

# NAVAL POSTGRADUATE SCHOOL Monterey, California



### PRIMES

THE FIRST TWO THOUSAND FOUR HUNDRED PRIME NUMBERS

GILBERT FORD KINNEY

DECEMBER 1990

Technical Report

Approved for public release; distribution unlimited.

Prepared for: Naval Postgraduate School Monterey, CA 93943

两下

L 25.

, 5

### Naval Postgraduate School Monterey, California

Rear Admiral R. W. West, Jr. Superintendent

H. Shull Provost

The work reported herein was unfunded by the Naval Postgra uate School.

Reproduction of all or part of this report is authorized.

This report was prepared by:

GILBERT FORD KINNEY

Distinguished Professor Emeritus

Reviewed by:

FINZ E. WOEHLER

Chairman, Department of Physics

Released by:

PAUL T WARTO

Dean of Research

| REPORT I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | OOCUMENTATIO                        | N PAGE                                                                   | -                    |            | Form Approved<br>OMB No 0704:0188 |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------|----------------------|------------|-----------------------------------|--|--|--|--|
| 1a REPORT SECURITY CLASS FICATION UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                     | 16 RESTRICTIVE                                                           | MARK NGS             |            |                                   |  |  |  |  |
| 2a SECURITY CLASS-FICATION AUTHORITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | I .                                                                      | AVAILABILITY OF      |            |                                   |  |  |  |  |
| 26 DECLASSIFICATION DOWNGRADING SCHEDU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LÉ                                  | Approved for public release; distribution is unlimited.                  |                      |            |                                   |  |  |  |  |
| 4 PERFORMING ORGANIZATION REPORT NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | R(S)                                | 5 MONITORING ORGANIZATION REPORT NUMBER(S)                               |                      |            |                                   |  |  |  |  |
| NPS-PH-91-003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                                                                          |                      |            |                                   |  |  |  |  |
| 6a NAME OF PERFORMING ORGANIZATION  Naval Postgraduate School                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6b OFFICE SYMBOL (If applicable) PH | 7a NAME OF M                                                             | ONITORING ORGAN      | ZATION     |                                   |  |  |  |  |
| 6c. ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u> </u>                            | 7b ADDRESS (Cr                                                           | ty, State, and ZIP C | ode)       |                                   |  |  |  |  |
| Naval Postgraduate School<br>Physics Department (Code PH)<br>Monterey, CA 93943-5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                          | y, siote, and an e   | 550,       |                                   |  |  |  |  |
| 8a NAME OF FUNDING / SPONSORING ORGANIZATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8b OFFICE SYMBOL (If applicable)    | 9 PROCUREMEN                                                             | T INSTRUMENT IDE     | NTIFICAT   | ION NUMBER                        |  |  |  |  |
| unfunded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <u> </u>                            | 10.60/1965.05                                                            | 5. 1.0.1.6.1         |            |                                   |  |  |  |  |
| Bc. ADDRESS (City, State, and ZIP Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                     | PROGRAM                                                                  | PROJECT              | TASK       | WORK UNIT                         |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | ELEMENT NO                                                               | NO                   | NO         | ACCESSION NO                      |  |  |  |  |
| 11 TITLE (Include Security Classification) PRIMES - THE FIRST TWO THOUS  12 PERSONAL AUTHOR(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SAND FOUR HUNDRI                    | ED PRIME NUM                                                             | 1BERS                |            |                                   |  |  |  |  |
| Gilbert Ford Kinney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                     |                                                                          |                      |            |                                   |  |  |  |  |
| 13a TYPE OF REPORT 13b TIME CO<br>Technical FROM No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | overed<br>v 89 to <u>Nov 9</u> 0    | 14 DATE OF REPC<br>901126                                                | IRT (Year Month F    | Pay)       | PAGE COUNT<br>52                  |  |  |  |  |
| 16 SUPPLEMENTARY NOTATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                     |                                                                          |                      |            |                                   |  |  |  |  |
| 17 COSA* CODES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18 SUBJECT TERMS (                  | Continue on revers                                                       | se if necessary and  | identify i | by block number)                  |  |  |  |  |
| FIELD GROUP SUB-GROUP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                                                                          |                      |            |                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> </u>                            |                                                                          |                      |            |                                   |  |  |  |  |
| These simple and mathematically elegant but practically useless prime number listings could have an appeal for afficionados of elementary number theory. They were prepared using a computer adaptation of the Sieve of Aratosthenes of Alexandria and the computations made on a small personal computer with an 8-bit microprocessor, a 64K random access memory, and a 2-megahertz clock. Computing time for checking 21,380 integers and identifying the included 2400 prime numbers was about thirty minutes. This computational effort is quite modest compared to others such as two which are reported to have examined the first ten million integers. But the mere 2400 primes reported here, plus related items such as the number of prime twins and the integer gap between successive primes, are presented in tangible form. |                                     |                                                                          |                      |            |                                   |  |  |  |  |
| 20 DISTRIBUTION AVAILABILITY OF ABSTRACT  XX UNCLASSIFIED: UNLIMITED   SAME AS R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PT DTIC USERS                       | 21 ABSTRACT SECURITY CLASSIFICATION SERS UNCLASSIFIED                    |                      |            |                                   |  |  |  |  |
| 22a NAME OF RESPONSIBLE INDIVIDUAL Gilbert Ford Kinney                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U O IC OSER)                        | 22b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL (408) 646-2107 PH/Ky |                      |            |                                   |  |  |  |  |

### PRIMES

The First Two Thousand Four Hundred Frime Numbers

Gilbert Ford Kinney Distinguished Professor Emeritus

P-1

Department of Physics Naval Postgraduate School Monterey, California

#### i

# PRIMES

The First Two Thousand
Four Hundred Prime Numbers

#### PREFACE

These simple and mathematically elegant but practically useless prime number listings could have an appeal for afficionados of elementary number theory. They were prepared using a computer adaptation of the Sieve of Aratosthenes of Alexandria and the computations made a small personal computer with an 8-bit microprocesssor, a 64K random access memory, and 2-megahertz clock. Computing time checking 21.380 integers and identifying the included 2400 prime numbers was about thirty This computational effort is quite minutes. modest compared to others such as two which are reported to have examined the first ten million integers. But the mere 2400 primes reported here, plus related items such as the number and the integer gap prime twins between successive primes, are presented in tangible form.

# Table of Contents

|    | Preface                             | <b>v</b> |
|----|-------------------------------------|----------|
|    | Bibliography                        | viii     |
|    | Introduction                        | i×       |
| 1. | The First 2400 Prime Numbers        | 1        |
| 2. | Frime-Number Twins                  | 9        |
| J. | The Integer Gap                     | 13       |
| 4. | The "Prime Theorem" Conjecture      | 17       |
| 5. | Factorization                       | 21       |
| 6. | Inverses and Hamming-Kinney Numbers | 27       |
| 7. | Reciprocals                         | 31       |
| 8. | Fermat Numbers                      | 35       |
| 9_ | That Final Digit                    | 37       |

### Bibliography

- "Frime Number", F.T.B., Encyclopedia Britannica, volume 18, pp 518-519 (1967)
- "The Enjoyment of Mathematics", Hans Rademacher and Otto Toeplitz, Princeton University Press (1957)
- "Number Theory and its History", Oystein Ore, McGraw-Hill Book Company (1948)
- "Mathematical Recreations and Essays",
  W. W. Rouse Ball, Tenth edition, Macmillian
  and Co. (1922)

- viii -

prime, adj. [fr. L. primus first]
5. Nath. Divisible by no number except
itself or unity; as, 7 is a prime number.
6. n. Arith. A prime number.

#### Introduction

Prime numbers, also termed primes, are divisible only by themselves and unity. Frime numbers often have been thought to have mystical significance. For example the prime number 7 is assigned special significance in the first chapter of the first book of the Bible. The prime number 7 is often considered lucky, and the prime number 13 unlucky.

Mathematical interest in the prime numbers dates from about 300 B.C. when the famous Greek geometer Euclid of Alexandria showed that there is no limit to the number of About a century later the primes. astronomer Eratosthenes, also of Alexandria, provided a method for identifying prime numbers and determining the number of primes not greater than some specified integer. (Eratosthenes also determined the earth's circumference ρΛ measuring the distance along the meridian from Alexanderia to the equator.)

The study of prime numbers is a part of number theory (sometimes called "the higher arithmetic"). Modern study of number theory began with the French lawyer and mathematician Pierre de Fermat in the seventeenth century. Fermat himself published very little and knowledge ٥f his work comes from his with mathematically inclined correspondence Fermat developed a method friends. factorization of large integers. incidently permitting identification of those which are primes. An antedote about him is that he once was asked was the integer 100,895,598,169 a prime number. He replied that it was not, and that it was the product of two prime numbers 898,423 and 112,303. Fermat's famous last theorem, which is still unproven, is that there are no integral values for x, y, and z in the equation  $x \wedge n + y \wedge n = z \wedge n$  where n is an integer larger than 2.

Later the prolific French scientist Leonhard Euler devised an additional factorization Then early in the nineteenth century method. the mathematicians Adrien Marie Legendre and Karl Frederick Gauss conjected a "Prime-number Theorem" providing formulas for determining which very large integers are also prime numbers, and the number of primes not greater than a specified large integer. This "Primenumber Theorem" conjecture is the basis for a subsequent section. It was some years later that the French mathematician J. Hadanard and the Belgian mathematician C. J. de la Vallee-Poussin acting independently proved that this theorem is correct.

The largest integer that until recently had been verified as being a prime number was found in 1876 by the French mathematician Lucas. This prime number has 39 digits and is reported here as a show of erudition:

170,141,183,460,469,231,731,687,303,715,884,105,727 .

Since then the range of known prime numbers has been greatly extended by use of modern computers. Currently, the largest known prime, indentified in 1987, is the 65,050 digit integer that would require twenty or more closely typed pages for its presentation. There is no reason to believe that even larger primes await to be discovered.

Recently a list of 850 very large prime numbers each with one thousand digits or more and which can be represented algebraically in a single typed line, has been published. These of course constitute a small fraction of the total number of primes within this range. Thus the prime theorem conjecture, mentioned subsequently, indicates that there are something in the order of  $4.3 \times 10^{4}96$  prime numbers with no more than one thousand digits, many of which would require at least one third of a typed page for presentation.

### 1. The First 2400 Prime Numbers

The first 21,380 consecutive integers that are considered in this program include two thousand four hundred integers that also are prime numbers. These prime numbers are listed here in the following six pages in sets of 10, 50, and 400.

| 1    | 2    | 3    | 5     | 7     |   | 11    | 13         | 17         | :19               | .23           |
|------|------|------|-------|-------|---|-------|------------|------------|-------------------|---------------|
| 29   | 31   | 37   | 41    | 43    |   | 47    | <b>5</b> 3 | <b>5</b> 9 | 61                | 67            |
| 71   | 73   | 79   | 83    | 89    |   | 97    | 101        | 103        | 107               | 109           |
| 113  | 127  | 131  | 137   | 139   | , | 149   | 151        | 157        |                   | 167           |
| 173  | 179  | 181  | 191   | 193   |   | 197   | 199        | 211        | 223               | 227           |
|      |      |      |       | .,0   |   | • , , | .,,        | 211        | 223               | 221           |
| 229  | 233  | 239  | 241   | 251   |   | 257   | 253        | 269        | . 271 <sup></sup> | 277           |
| 281  | 283  | 293  | 307   | 311   | ; | 313   | 317        | 331        | 337               | 347           |
| 349  | 353  | 359  | 367   | 373   |   | 379   |            | 389        | 397               |               |
| 409  | 419  | 421  | 431   | 433   |   | 439   | 443        | 449        |                   | 461           |
| 463  | 467  | 479  | 487   | 491   |   | 499   | 503        | 509        |                   | 523           |
|      |      | •    |       | •     |   |       |            |            |                   |               |
| 541  | 547  | 557  | 563   | 569   |   | 571   | 577        | 587        | <b>59</b> 3.      | 599           |
| 601  | 607  | 613  | 617   | 619   |   | 631   | 641        | 643        | 647               | 653           |
| 659  | 661  | 673  | 677   | 683   |   | 691   | 701        | 709        | 719               | 727           |
| 733  | 739  | 743  | 751   | 757   |   | 761   | 769        | 773        | 787               | 797           |
| 809  | 811  | 821  | · 823 | 827   |   | 829   | 839        | 853        | 857               | 859           |
|      |      |      |       |       |   |       |            |            |                   |               |
| 863  | 877  | 881  | 883   | 887   |   | 907   | 911        | 919        | 1929              | 937           |
| 941  | 947  | 953  | 967   | 971   |   | 977   | 983        | 991        | 997 ;             | 1009          |
| 1013 | 1019 | 1021 | 1031  | 1033  | : | 1039  | 1049       | 1051       | 1061              |               |
| 1069 | 1087 | 1091 | 1093  | 1097  |   | 1103  | 1109       | 1117       | 1123              | 1129          |
| 1151 | 1153 | 1163 | 1171  | 1181  |   | 1187  | 1193       | 1201       | 1213              | 1217          |
|      |      |      |       |       |   |       |            |            |                   |               |
| 1223 | 1229 | 1231 | 1237  | 1249  |   | 1259  | 1277       | 1279       | 1283              | 1289          |
| 1291 | 1297 | 1301 | 1303  | 1307  |   | 1319  | 1321       | 1327       | 1361              | 1367          |
| 1373 | 1381 | 1399 | 1409  | 1423  |   | 1427  | 1429       | 1433       |                   |               |
| 1451 | 1453 | 1459 | 1471  | 1481  |   | 1483  | 1487       | 1489       | 1493              | 1499          |
| 1511 | 1523 | 1531 | 1543  | 1549  |   | 1553  | 1559       | 1567       |                   | 1579          |
|      |      |      |       |       |   |       |            |            | _                 |               |
| 1583 | 1597 | 1601 | 1607  | 1609  |   | 1613  | 1619       | 1621       | 1627              | 1637          |
| 1657 | 1663 | 1667 | 1669  | 1693  |   | 1697  | 1699       | 1709       | 1721              | 1723          |
| 1733 | 1741 | 1747 | 1753  | 1759  |   | 1777  | 1783       | 1787       | 1789              | 1801          |
| 1811 | 1823 | 1831 | 1847  | 1861  |   | 1867  | 1871       | 1873       | 1877              | 1879          |
| 1889 | 1901 | 1907 | 1913  | 1931  |   | 1933  | 1949       | 1951       | 1973              | 1979          |
|      |      |      |       |       |   |       |            |            |                   | 7.            |
| 1987 | 1993 | 1997 | 1999) | (2003 |   | 2011  | 2017       | 2027       | 2029              | 2039          |
| 2053 | 2063 | 2069 | 2081  | 2083  |   | 2087  | 2089       | 2099       | 2111              | 2113          |
| 2129 | 2131 | 2137 | 2141  | 2143  |   | 2153  | 2161       | 2179       | 2203              | 2207          |
| 2213 | 2221 | 2237 | 2239  | 2243  |   | 2251  | 2267       | 2269       | 2273              | 2281          |
| 2287 | 2293 | 2297 | 2309  | 2311  |   | 2333  | 2339       | 2341       | 2347              | 2351          |
|      |      |      |       | =     |   |       |            |            |                   |               |
| 2357 | 2371 | 2377 | 2381  | 2383  | * | 2389  | 2393       |            | 2411              |               |
| 2423 | 2437 | 2441 | 2447  | 2459  |   | 2467  | 2473       | 2477       | 2503:             | 2521          |
| 2531 | 2539 | 2543 | 2549  | 2551  |   | 2557  | 2579       | 2591       | 2593 2            | 2521;<br>2609 |
| 2617 | 2621 | 2633 | 2647  | 2657  |   | 2659  | 2663       | 2671       |                   | 2683          |
| 2687 | 2689 | 2693 | 2699  | 2707  |   | 2711  | 2713       | 2719       | <b>2729</b> (     |               |
|      |      |      |       |       |   |       |            |            |                   |               |

1!

# The First 2400 Prime Numbers (in sets of 400)

# The First 2400 Prime Numbers (in sets of 400)

| 6133 | 6143  | 6151         | 6163         | 6173               | 6197         | 6199    | 6203          | 6211         | 6217 |
|------|-------|--------------|--------------|--------------------|--------------|---------|---------------|--------------|------|
| 6221 | 6229  | 6247         | 6257         | 6263               | 6269         | 6271    | 6277          | 6287         | 6299 |
| 6301 | 6311  | 6317         |              | 6329               | 6337         | 6343    |               | 6359         | 6361 |
| 6367 | 6373  | 6379         | 6389         | 6397               | 6421         | 6427    | 6449          | 6451         | 6469 |
| 6473 | 6481  | 6491         | 6521         | 6529               | 6547         | 6551    | 6553          | 6563         | 6569 |
|      |       |              |              |                    | <b></b>      | 0001    | 0000          | 6363         | 6367 |
| 6571 | 6577  | 6581         | 6599         | 6607               | 6619         | 6637    | 6653          | 6659         | 6661 |
| 6673 | 6679  | 6689         |              | 6701               | 6703         | 6709    | 6719          | 6733         | 6737 |
| 6761 | 6763  | 6779         |              | 6791               | 6793         | 6803    | 6823          | 6827         | 6829 |
| 6833 | 6841  | 6857         | 6863         | 6869               | 6871         | 6883    | 6879          | 6907         | 6911 |
| 6917 | 6947  | 6949         | 6959         | 6961               | 6967         | 6971    | 6977          | 69B3         | 6991 |
|      |       |              |              |                    | 0.0.         | 0       | <i>G</i> ,,,, | 0703         | 6771 |
| 6997 | /7001 | 7013         | 7019         | 7027               | 7039         | 7043    | 7057          | 7069         | 7079 |
| 7103 | 7109  | 7121         | 7127         | 7129               | 7151         | 7159    | 7177          | 7187         | 7193 |
| 7207 | 7211  | 7213         | 7219         | 7229               | 7237         | 7243    | 7247          | 7253         | 7283 |
| 7297 | 7307  | 7309         | 7321         | 7331               | 7333         | 7349    | 7351          | 7369         | 7393 |
| 7411 | 7417  | 7433         | 7451         | 7457               | 7459         | 7477    | 7481          | 7487         | 7489 |
|      |       |              |              |                    | , ,,,,       | , , , , | 7401          | / 40/        | /407 |
| 7499 | 7507  | 7517         | 7523         | 7529               | 7537         | 7541    | 7547          | 7549         | 7559 |
| 7561 | 7573  | 7577         | 7583         | 7589               | 7591         | 7603    | 7607          | 7621         | 7639 |
| 7643 | 7649  | 7669         | 7673         | 7681               | 7687         | 7691    | 7699          | 7703         | 7717 |
| 7723 | 7727  | 7741         | 7753         | 7757`              | 7759         | 7789    | 7793          | 7817         | 7823 |
| 7829 | 7841  | 7853         | 7867         | 7873               | 7877         | 7879    | 7883          | 7901         | 7907 |
|      |       |              |              | •                  |              | , , ,   | , 000         | ,,01         | ,,0, |
| 7919 | 7927  | 7933         | 7937         | 7949               | 7951         | 7963    | 7993、         | x 8009       | 8011 |
| 8017 | B039  | 8053         | 8059         | 8069               | 8081         | 8087    |               | 8093         | B101 |
| 8111 | 8117  | 8123         | 8147         | 8161               | 8167         | B171    | B179          | 8191         | B209 |
| 8219 | 8221  | 8231         | <b>B</b> 233 | 8237               | 8243         | 8263    | 8269          | 8273         | 8287 |
| 6291 | 8293  | 8297         | 8311         | 8317               | 832 <b>9</b> | 8353    | 8363          | 8369         | B377 |
|      |       |              |              |                    |              |         |               |              |      |
| 8387 | 8389  | B419         | 8423         | 8429               | 8431         | 8443    | 8447          | 8461         | 8467 |
| B501 | 8513  | 8521         | 8527         | B537               | 8539         | 8543    | B563          | 8573         | 8581 |
| 8597 | 8599  | 860 <b>9</b> | 8623         | 8627               | 8629         | 8641    | B647          | 8663         | 8669 |
| 8677 | 8681  | 8689         | 8693         | 8699               | <b>8707</b>  | 8713    | B719 .        |              | 8737 |
| 8741 | 8747  | 8753         | 8761         | 8779               | 8783         | 8803    | 8807          | 8819         | 8821 |
|      |       |              |              |                    |              |         |               | ,            |      |
| 8831 | 8837  | 8839         | 8849         | B861               | 8862         | 8867    | <b>B</b> 887  | <b>B</b> B93 | 8923 |
| 8929 | 8933  | 8941         | 8951         | 8963               | 8969         | 8971    | B999 >        |              | 9007 |
| 9011 | 9013  | 9029         | 9041         | 9043               | 9049         | 9059    | 9067          | 9091         | 9103 |
| 9109 | 9127  | 9133         | 9137         | 9151               | 9157         | 9161    | 9173          | 9181         | 9187 |
| 9199 | 9203  | 9209         | 9221         | 9227               | 9239         | 9241    | 9257          | 9277         | 9281 |
|      |       |              | - <b></b>    | · — <del>- •</del> |              |         | ,,            |              | ,201 |
| 9283 | 9293  | 9311         | 9319         | 9323               | 9337         | 9341    | 9343          | 9349         | 9371 |
| 9377 | 9391  | 9397         | 9403         | 9413               | 9419         | 9421    | 9431          | 9433         | 9437 |
| 9439 | 9461  | 9463         | 9467         | 9473               | 9479         | 9491    | 9497          | 9511         | 9521 |
| 9533 | 9539  | 9547         | 9551         | 9587               | 9601         | 9613    | 9619          | 9623         | 9629 |
| 9631 | 9643  | 9649         | 9661         | 9677               | 9679         | 9689    | 9697          | 9719         | 9721 |
| -    |       |              | ·            |                    |              | ,       | , _ , ,       |              |      |

### The First 2400 Prime Numbers

(in sets of 400)

|           |       |       |       | •     |        |        |       |       |        |
|-----------|-------|-------|-------|-------|--------|--------|-------|-------|--------|
| 9733      | 9739  | 9743  | 9749  | 9767  | 9769   | 9781   | 9787  | 9791  | 9803   |
| 9811      | 9817  | 9829  | 9833  | 9839  | 9851   | 9857   | 9859  | 9871  | 9883   |
| 9887      |       | 9907  | 9923  | 9929  | 9931   | 9941   | 9949  | 9967  | 9973   |
| 10007     |       |       | 10039 | 10061 | 10067  | 10069  | 10079 | 10091 | 10093  |
| 10097     |       |       | 10133 | 10139 | 10141  | 10151  | 10159 | 10163 |        |
| 10077     | 10103 | 10111 | 10133 | 10107 | 10141  | 10131  | 10137 | 10103 | 10107  |
| 10177     | 10181 | 10193 | 10211 | 10223 | 10243  | 10247  | 10253 | 10259 | 10267  |
| 10271     | 10273 |       | 10301 | 10303 | •      | 10321  | 10233 | 10237 | 10237  |
|           |       |       | 10301 | 10303 |        | 10321  |       |       |        |
| 10343     |       |       |       |       |        |        | 10433 | 10453 |        |
| 10459     |       |       | 10487 | 10499 | 10501  | 10513  | 10529 | 10531 | 10559  |
| 10567     | 10589 | 10597 | 10601 | 10607 | 10613  | 10627  | 10631 | 10639 | 10651  |
|           |       |       |       |       |        |        |       |       |        |
| 10657     |       | 10667 | 10687 | 10691 |        | 10711  | 10723 | 10729 | 10733  |
| 10739     | 10753 |       | 10781 | 10789 | 10799  | 10831  | 10837 | 10847 | 10853  |
| 10859     | 10861 | 10867 | 10883 | 10887 | 10891  | 10903  | 10909 | 10937 | 10939  |
| 10949     | 10957 | 10973 | 10979 | 10987 | 109931 | £11003 | 11027 | 11047 | 11057  |
| 11059     | 11069 | 11071 | 11083 | 11087 | 11093  | 11113  | 11117 | 11119 | 11131  |
|           |       |       |       |       |        |        |       |       |        |
| 11149     | 11159 | 11161 | 11171 | 11173 | 11177  | 11197  | 11213 | 11239 | 11243  |
| 11251     | 11257 | 11261 | 11273 | 11279 | 11287  |        | 11311 | 11317 | 11321  |
| 11329     | 11351 | 11353 | 11369 | 11383 | 11393  | 11399  | 11411 | 11423 | 11437  |
|           |       |       |       |       |        |        |       |       |        |
| 11443     | 11447 | 11467 | 11471 | 11483 | 11489  |        | 11497 | 11503 | 11519  |
| 11527     | 11549 | 11551 | 11579 | 11587 | 11593  | 11597  | 11617 | 11621 | 11633  |
|           |       |       |       |       |        |        |       |       |        |
| 11657     | 11677 | 11681 | 11689 | 11699 | 11701  | 11717  | 11719 |       | 11743  |
| 11777     | 11779 | 11783 | 11789 | 11801 | 11807  |        | 11821 | 11827 | 11831  |
| 11833     | 11839 | 11863 | 11867 | 11887 | 11897  | 11903  | 11909 | 11923 | 11927  |
| 11933     | 11939 | 11941 | 11953 | 11959 | 11969  | 11971  | 11981 | 11987 | ×12007 |
| 12011     | 12037 | 12041 | 12043 | 12049 | 12071  | 12073  | 12097 | 12101 | 12107  |
|           |       |       |       |       |        |        |       |       |        |
| 12109     | 12113 | 12119 | 12143 | 12149 | 12157  | 12161  | 12163 | 12197 | 12203  |
| 12211     | 12227 | 12239 | 12241 | 12251 |        | 12263  | 12269 | 12277 | 12281  |
| 12289     | 12301 | 12323 | 12329 | 12343 |        | 12373  | 12377 | 12379 | 12391  |
| 12401     | 12409 | 12413 | 12421 | 12433 | 12437  | 12451  | 12457 | 12473 | 12479  |
|           |       |       | 12503 | 12433 |        |        |       | 12541 | 12547  |
| 12487     | 12491 | 12497 | 12502 | 12511 | 12517  | 12527  | 12539 | 12541 | 12547  |
| 10557     | 105/0 | 10577 | 10507 | 10500 | 15/01  |        | 10/17 | 12/12 | 40477  |
|           |       |       |       | 12589 |        |        |       |       |        |
|           |       |       |       | 12671 |        |        |       |       |        |
|           |       |       |       | 12781 |        |        |       |       |        |
|           |       |       |       | 12893 |        |        |       |       |        |
| 12923     | 12941 | 12953 | 12959 | 12967 | 12973  | 12979  | 12983 | 13001 | 13003  |
|           |       |       |       |       |        |        |       |       |        |
|           |       | 13033 |       |       | 13049  | 13063  | 13093 | 13099 | 13103  |
|           |       |       |       | 13151 | 13159  | 13163  | 13171 | 13177 | 13183  |
|           |       |       |       | 13241 |        |        |       |       |        |
|           |       |       |       |       | 13339  |        |       |       |        |
| 13411     | 13417 | 13421 | 17441 | 13451 | 13457  | 17447  | 17440 | 13477 | 13497  |
| * 0 4 1 1 | 1071/ | 13741 | 10771 | 10701 | 1040/  | 13703  | 10701 |       | -5 +6/ |

# The First 2400 Prime Numbers

(in sets of 400)

| 13499 | 13513 | 13523 | 13537         | 13553 | 13567 | 7 13577 | 13591 | 13597 | 13613   |
|-------|-------|-------|---------------|-------|-------|---------|-------|-------|---------|
|       |       |       |               | 13669 |       | 13681   |       |       | 13693   |
|       |       |       |               | 13723 |       | 13751   |       |       | 13763   |
|       |       |       |               | 13829 |       | _       |       |       | 13877   |
|       |       |       |               | 13907 |       | 3 13921 |       |       |         |
| 136/4 | 12883 | 12401 | 12402         | 13707 | 12412 | 12471   | 13931 | 12422 | 13963   |
|       | 47007 | 47000 | /1 4000       | 44044 | 4.400 | ,       |       |       |         |
|       |       |       | <b>14009</b>  |       |       | 14033   |       |       | 14071   |
| 14081 |       |       |               | 14143 | 14149 |         |       | 14173 |         |
|       |       |       |               | 14249 | 14251 |         | 14293 |       | 14321   |
|       |       |       |               | 14369 | 14387 |         | 14401 |       | 14411   |
| 14419 | 14423 | 14431 | 14437         | 14447 | 14449 | 14461   | 14479 | 14489 | 14503   |
|       |       |       |               |       |       |         |       |       |         |
| 14519 | 14533 | 14537 | 14543         | 14549 | 14551 | 14557   | 14561 | 14563 | 14591   |
| 14593 | 14621 | 14627 | 14629         | 14633 | 14639 | 14653   | 14657 | 14669 | 14683   |
| 14699 | 14713 | 14717 | 14723         | 14731 | 14737 | 14741   | 14747 | 14753 | 14759   |
| 14767 | 14771 | 14779 | 14783         | 14797 |       | 14821   |       |       | 14843   |
|       |       |       | 14879         |       |       | 14897   |       |       | 14939   |
|       |       |       |               |       |       | 1,077   | 2     | 17,4, | 24,0,   |
| 14947 | 14951 | 14957 | 14969         | 14997 | 15017 | 15017   | 15071 | 15057 | 15041   |
|       | 15077 |       | 15091         |       |       | 15121   | -     |       | 15139   |
|       | 15161 | _     |               | 15193 |       |         |       |       |         |
|       |       |       |               |       | •     | 15217   |       |       | 15241   |
|       | 15263 |       | 15271         | 15277 |       | 15289   |       |       | 15313   |
| 15319 | 15329 | 15551 | 15349         | 15359 | 15361 | 15373   | 15377 | 15383 | 15391   |
|       | . = = |       |               | ·     |       |         |       |       |         |
|       |       |       | 15439         |       |       | 15461   |       |       |         |
|       |       |       | 15541         |       |       | 15569   |       |       |         |
|       |       |       | 15641         | 15643 |       | 15649   | 15661 | 15667 | 15671   |
| 15679 | 15683 | 15727 | 15731         | 15733 | 15737 | 15739   | 15749 | 15761 | 15767   |
| 15773 | 15787 | 15791 | 15797         | 15803 | 15809 | 15817   | 15823 | 15859 | 15877   |
|       |       |       |               |       |       |         |       |       |         |
| 15881 | 15887 | 15889 | 15901         | 15907 | 15913 | 15919   | 15923 | 15937 | 15959   |
| 15971 | 15973 | 15991 | <b>716001</b> | 16007 | 16033 | 16057   | 16061 | 16063 | 16067   |
| 16069 |       | 16087 |               | 16097 |       | 16111   |       | 16139 |         |
| 16183 | 16187 |       | 16193         | 16217 |       | 16229   | 16231 | 16249 |         |
|       |       | 16301 |               | 16333 |       | 16349   | 16361 | 16363 |         |
|       |       |       |               | -5555 | 20007 | 1004,   | 10001 | 10000 | 10007   |
| 16381 | 16411 | 16417 | 16421         | 16427 | 16477 | 16447   | 16451 | 14453 | 14477   |
|       |       |       |               | 16529 |       | 16553   |       |       |         |
|       |       |       |               |       | 16649 |         |       |       |         |
|       |       |       |               | 16729 |       |         |       |       |         |
|       |       |       |               |       |       | 16747   |       |       |         |
| 19811 | 16872 | 16827 | 16831         | 16843 | 168/1 | 16879   | 16883 | 16889 | 16901   |
|       |       |       |               |       |       |         |       |       |         |
|       |       |       |               |       | 16943 |         |       |       |         |
|       |       |       |               |       | 17033 |         |       |       |         |
|       |       |       | 17117         |       |       |         |       |       | 17189 ! |
|       |       |       | 17209         |       | 17239 |         |       |       |         |
| 17317 | 17321 | 17327 | 17333         | 17341 | 17351 | 17359   | 17377 | 17383 | 17387   |
|       |       |       |               |       |       |         | •     |       | •       |

## The First 2400 Prime Numbers

(in sets of 400)

| 17389                                   | 17393 | 17401                                   | 17417  | 17419 |   | 17431 | 17443 | 17449 | 17467 | 17471  |
|-----------------------------------------|-------|-----------------------------------------|--------|-------|---|-------|-------|-------|-------|--------|
| 17477                                   |       |                                         |        |       |   | 17509 |       |       |       | 17569  |
| 17573                                   |       |                                         | 17597  |       |   | 17609 |       |       |       |        |
| 17669                                   |       |                                         |        |       |   | 17729 |       | _     | _     |        |
|                                         |       |                                         |        |       |   |       |       |       |       |        |
| 17783                                   | 17789 | 17791                                   | 17807  | 17827 |   | 17837 | 17839 | 17851 | 17863 | 17881  |
| 17891                                   | 17903 | 17909                                   | 17911  | 17921 |   | 17923 | 17929 | 17939 | 17957 | 17959  |
| 17971                                   |       |                                         | 17987  |       |   | 18013 |       | 18043 |       |        |
| 18059                                   |       | -                                       |        |       |   | 18119 |       | 18127 | 18131 | 18133  |
| 18143                                   |       |                                         |        |       |   | 18199 |       | 18217 | 18223 |        |
| 18233                                   |       |                                         |        |       |   | 18287 |       |       | 18307 |        |
| 10255                                   | 10231 | 10233                                   | 10237  | 10207 |   | 10207 | 10207 | 16501 | 16307 | 10211  |
| 18313                                   | 18329 | 18341                                   | 18253  | 18367 |   | 18371 | 18379 | 18397 | 18401 | 18413  |
| 18427                                   | 18433 | 18439                                   | 18443  | 18451 |   | 18457 | 18461 | 18481 | 18493 | 18503  |
| 18517                                   | 18521 | 18523                                   | 18539  | 18541 |   | 18553 | 18583 | 18587 | 18593 | 18617  |
| 18637                                   | 18661 | 18671                                   | 18679  | 18691 |   | 18701 | 18713 | 18719 | 18731 | 18743  |
| 18749                                   |       |                                         | 18787  |       |   | 18797 |       | 18839 | 18859 | 18869  |
|                                         |       |                                         |        | 10.70 | • |       | 20000 |       |       | 1000,  |
| 18899                                   | 18911 | 18913                                   | 18917  | 18919 |   | 18947 | 18959 | 18973 | 18979 | ×19001 |
| 19009                                   |       | 19031                                   | 19037  | 19051 | • | 19069 |       | 19079 | 19081 | 19087  |
| 19121                                   | 19139 |                                         | 19157  | 19163 |   | 19181 | 191B3 | 19207 | 19211 | 19213  |
| 19219                                   |       | 19237                                   | 19249  | 19259 |   | 19267 |       | 19289 | 19301 | 19309  |
| 19319                                   |       |                                         | 19379  | 19381 |   | 19387 |       | 19403 | 19417 | 19421  |
|                                         | - /   | 2.0.0                                   |        | 1,001 |   | 1.00, | ,.    | 27100 |       | . /    |
| 19423                                   | 19427 | 19429                                   | 19433  | 19441 |   | 19447 | 19457 | 19463 | 19469 | 19471  |
| 19477                                   | 19483 | 19489                                   | 19501  | 19507 | • | 19531 | 19541 | 19543 | 19553 | 19559  |
| 19571                                   | 19577 | 19583                                   | 19597  | 19603 |   | 19609 | 19661 | 19681 | 19687 | 19697  |
| 19699                                   | 19709 | 19717                                   | 19727  | 19739 |   | 19751 | 19753 | 19759 | 19763 | 19777  |
| 19793                                   | 19801 | 19813                                   | 19819  | 19841 |   | 19843 | 19853 | 19861 | 19867 | 19889  |
| • • • • • • • • • • • • • • • • • • • • |       | • • • • • • • • • • • • • • • • • • • • |        |       |   |       |       |       |       |        |
| 19891                                   | 19913 | 19919                                   | 19927  | 19937 |   | 19949 | 19961 | 19963 | 19973 | 19979  |
| 19991                                   | 19993 | 19997                                   | /20011 | 20021 |   | 20023 | 20029 | 20047 | 20051 | 20063  |
| 20071                                   | 20089 | 20101                                   | 20107  | 20113 |   | 20117 | 20123 | 20129 | 20143 | 20147  |
| 20149                                   | 20161 | 20173                                   | 20177  | 20183 |   | 20201 | 20219 | 20231 | 20233 | 20249  |
| 20261                                   | 20269 | 20287                                   | 20297  | 20023 | : | 20327 | 20333 | 20341 | 20347 | 20353  |
|                                         |       |                                         |        |       |   |       |       |       |       | •      |
| 20357                                   | 20359 | 20369                                   | 20389  | 20393 |   | 20399 | 20407 | 20411 | 20431 | 20441  |
| 20443                                   | 20477 | 20479                                   | 204B3  | 20507 | : | 20509 | 20521 | 20233 | 20543 | 20549  |
| 20551                                   | 20563 | 20593                                   | 20599  | 20611 | : | 20627 | 20639 | 20641 | 20663 | 20681  |
| 20693                                   | 20707 | 20717                                   | 20719  | 20731 |   |       |       | 20749 |       |        |
|                                         |       |                                         |        | 20809 |   |       |       | 20873 |       |        |
|                                         |       | · <del>- ·</del>                        | ·      |       | • |       |       |       |       |        |
| 20897                                   | 20899 | 20903                                   | 20921  | 20929 | : | 20939 | 20947 | 20959 | 20963 | 20981  |
| 20983                                   | 21001 | 21011                                   | 21013  | 21017 |   |       |       | 21031 |       |        |
|                                         |       |                                         |        | 21121 |   |       |       | 21149 |       |        |
|                                         |       |                                         |        | 21193 |   |       |       | 21227 |       |        |
|                                         |       |                                         |        | 21319 |   |       |       | 21347 |       |        |
| :                                       |       |                                         |        |       | _ |       |       |       |       |        |

(identified by the integer

between two successive primes)

A striking feature of the sequence of prime numbers is that many of them occur in pairs separated by a single integer. These pairs constitute prime-number twins. The first pair of such prime-number twins are the primes 3 and 5. Other examples include 11 and 13, 29 and 31, and 2687 and 2689. The integer separating these primes is necessarily an even number and the mean of the two prime numbers, and for the twins above this separating integer is 4, 12, 30, or 2688.

The accompanying table lists the separating integer for all pairs of twins occurring within the first 2400 prime numbers.

Thus the non-prime integer 19752 identifies the pair of prime number-twins 19751 and 19753.

There are no prime-number "triplets" for integers larger than 5. Here the three successive odd-numbered integers always include

one that is divisible by 2 or by 5. Primes not greater than 5 are all special cases. Thus the integer 1 often is not considered to be a prime number, the prime number 2 is the only even-numbered prime, the prime number 3 is the only prime divisible by three, and 5 the only prime divisible by five.

This table for prime-number twins lists the separating integer in the first 368 pairs of twins for the first 2400 prime numbers (or the first 21,380 integers). These twinned primes constitute about 30% of the total number, and about 31/5% of the number of integers. Both the number of primes and of prime-number twins increase with increasing numbers of integers, but at a somewhat irregular rate. For example there are 169 primes and 35 pairs of twins in the first set of 1000 integers, but only 104 primes and 15 pairs of twins in the twentieth set of 1000 integers.

Frime-number Twins
----(the integer between two successive primes)

| 4      | 6     | 12           | 18            | 30          | 42    | 60    | 72    | 102   | 108   |
|--------|-------|--------------|---------------|-------------|-------|-------|-------|-------|-------|
| 138    | 150   | 180          | 192           | 198         | 228   | 240   | 270   | 282   | 312   |
| 348    | 420   | 432          | 462           | 522         | 570   | 600   | 618   | 642   | 660   |
| 810    | 822   | 828          | 858           | 882         | 1020  | 1032  | 1050  | 1062  | 1092  |
| 1152   | 1230  | 1278         | 1290          | 1302        | 1320  | 1428  | 1452  | 1482  | 1488  |
|        |       |              |               |             |       |       |       |       |       |
| 1608   | 1620  | 1668         | 1698          | 1722        | 1788  | 1872  | 1878  | 1932  | 1950  |
| 1978   | 2028  | 2082         | 2088          | 2112        | 2130  | 2142  | 2238  | 2268  | 2310  |
| 2340   | 2382  | 2550         | 2592          | 2658        | 2688  | 2712  | 2730  | 2790  | 2802  |
| 2970   | 3000  | 3120         | 3168          | 3252        | 3258  | 3300  | 3330  | 3360  | 3372  |
| 3390   | 3462  | 3468         | 3 <b>5</b> 28 | 3540        | 3558  | 3582  | 3672  | 376B  | 3822  |
| 2270   | 2402  | 3400         | SUED          | 2040        | 2220  | 2002  | 36/2  | 3/66  | 3022  |
| 3852   | 3918  | 3930         | 4002          | 4020        | 4050  | 4092  | 4128  | 4158  | 4218  |
| 4230   | 4242  | 4260         | 4272          | 4338        | 4422  | 4482  | 4518  | 4548  | 4638  |
|        | 4722  | 4788         | 4800          | 4932        | 4968  | 5010  | 5022  | 5100  | 5232  |
| 4650   |       |              |               |             |       |       |       |       |       |
| 5280   | 5418  | 5442         | 5478          | 5502        | 5520  | 5640  | 5652  | 5658  | 5742  |
| 5850   | 5868  | <b>588</b> 0 | 6090          | 6132        | 6198  | 6270  | 9300  | 6360  | 6450  |
|        |       |              |               | 4-30-5      |       |       |       |       |       |
| 6552   | 6570  | 6660         | 6690          | 6702        | 6762  | 6780  | 6792  | 6828  | 6870  |
| 6948   | 6960  | 7128         | 7212          | 7308        | 7332  | 7350  | 7458  | 7488  | 7548  |
| 7560   | 7590  | 7758         | 7878          | 7950        | 8010  | 8088  | 8220  | 8232  | 8292  |
| 8388   | 8430  | 8538         | 8598          | 8628        | 8820  | 8828  | 8862  | 8970  | 900Q  |
| 9012   | 9042  | 9240         | 9282          | 9342        | 9420  | 9432  | 9438  | 9462  | 9630  |
|        |       |              |               |             |       |       |       |       |       |
| 9678   | 9720  | 9768         | 7858          | 9930        | 10008 | 1003B | 10068 | 10072 | 10140 |
| 10272  | 10302 | 10332        | 10428         | 10458       |       | 10530 | 10710 | 10860 | 10890 |
| 10938  | 1105B | 11070        | 11118         | 11160       | 11172 | 11352 | 11490 | 11550 | 11700 |
| 11718  | 11778 | 11832        | 11940         | 11970       | 12042 | 12072 | 12108 | 12162 | 12240 |
| 12252  | 12378 | 12540        | 12612         | 12822       | 12918 | 13002 | 13008 | 13218 | 13338 |
|        |       |              |               |             |       |       |       |       |       |
| 13398  | 13680 | 13692        | 13710         | 13722       | 13758 | 13830 | 13878 | 13902 | 13932 |
| 13998  | 14010 | 14082        |               | 14322       | 14388 | 14448 | 14550 | 14562 | 14592 |
|        | 14868 | 15138        | 15270         | 15288       |       | 15360 | 15582 | 15642 | 15648 |
| 15732  | 15738 | 15888        | 15972         | 16062       | 16068 | 16140 | 16188 | 16230 | 16362 |
| 16452  | 16632 | 16650        | 16692         | 16830       |       | 16980 | 17028 | 17190 | 17208 |
| 10.02  | 10001 | 10000        | 10072         | 1000        | 20,02 | 10.00 |       |       |       |
| 17292  | 17388 | 17418        | 17490         | 17580       | 17598 | 17658 | 17682 | 1774B | 17790 |
|        |       |              |               |             | 18042 |       |       |       |       |
| 18757  | 10700 | 18317        | 10577         | 18540       | 18912 | 18019 | 19080 | 19140 | 19197 |
| 10212  | 10700 | 10012        | 10072         | 19470       | 19542 | 10400 | 19752 | 19942 | 19990 |
| 100/0  | 10000 | スクサムム        | 70170         | 1747U       | 20358 | 20442 | 20479 | 20500 | 20550 |
| 17762  | 17772 | 20022        | 20148         | لدائالداباك | ∠∪358 | 20442 | 204/0 | 20308 | 20330 |
| 204.40 | 20710 | 20740        | ついフフコ         | 20000       | 20898 | 20002 | 21012 | 21019 | 21040 |
|        |       |              | 20//2         | Z0000       | 20078 | ZU70Z | 21012 | 21010 | ~100U |
| 21172  | 21318 | <b>-13/B</b> |               |             |       |       |       |       |       |

Number of Frimes and Frime-Number Twins

(for sets of integers)

| <u> Ŗa</u> : | 095 | es of | the  | <u>Int</u> | <b>e</b> ge | ĽS | <u>C</u> | ոառ Մ | ati | īλē   | Ic | <u>tal</u> | 5  |
|--------------|-----|-------|------|------------|-------------|----|----------|-------|-----|-------|----|------------|----|
| R            | anç | ge    | Prim | es         | Twi         | ns | Inte     | eger  | Pr  | -i me | ?5 | Twi        | ns |
|              |     |       |      |            |             |    |          |       |     |       |    |            |    |
| 1            | _   | 1,00  | OO.  | 169        | 3           | 5  | :        | 1,00  | O   | 16    | 59 | 3          | 5  |
| 1,001        | _   | 2,00  | OQ.  | 135        | 2           | 6  |          | 2,00  | O   | 30    | )4 | 6          | 1  |
| 2,001        | -   | 3,00  | O    | 127        | . 2         | Q. | ;        | 3,00  | 0   | 43    | 31 | 8          | 1  |
| 3,001        |     | 4,00  | OO O | 120        | 2           | 3  | 4        | 4,00  | Q   | 55    | 51 | 10         | 3  |
| 4,001        | -   | 5,00  | O.   | 119        | 2           | 3  | ,        | 5,00  | 0   | 67    | 70 | 12         | 6  |
| 5,001        | _   | 6,00  | 00   | 114        | 1           | 7  |          | 5,00  | Ó   | 78    | 34 | 14         | 3  |
| 6,001        | _   | 7,00  | ΟQ   | 117        | 1           | 9  | -        | 7,00  | O   | 90    | )1 | 16         | 2  |
| 7,001        | -   | 8,00  | OO . | 107        | 1           | 3  | 8        | 3,00  | Ò   | 100   | 9  | 17         | 5  |
| 8,001        | -   | 9,00  | )Q   | 110        | 1           | 4  | •        | 9,00  | Ō   | 111   | 18 | 18         | 9  |
| 9,001        | -   | 10,00 | Ö    | 112        | 1           | 6  | 10       | 5,00  | Ō   | 123   | 30 | 20         | 5  |
| 10,001       | _   | 11,00 | OQ.  | 106        | 1           | 6  | 1:       | ,00   | Ö   | 133   | 56 | 22         | 1  |
| 11,001       | -   | 12,00 | ıÖ.  | 103        | 1           | 4  | 12       | 2,00  | D.  | 143   | 59 | 23         | 5  |
| 12,001       | -   | 13,00 | O.   | 109        | 1           | 1  | 10       | 3,00  | 0   | 154   | 18 | 24         | 6  |
| 13,001       | -   | 14,00 | Ю    | 105        | 1           | 5  | 14       | 4,00  | 0   | 165   | 53 | 26         | 1  |
| 14,001       | -   | 15,00 | O.   | 102        | 1           | 1  | 15       | 5,00  | 0   | 175   | 55 | 27         | 2  |
| 15,001       | _   | 16,00 | Ö    | 108        | 1           | 2  | 16       | 5,000 | o   | 186   | 3  | 28         | 4  |
| 16,001       | _   | 17,00 | Ó    | 98         | 1           | 3  | 17       | 7,000 | 0   | 196   | 1  | 29         | 7  |
| 17,001       | _   | 18,00 | 0    | 104        | 1           | 8  | 18       | 3,000 | 0   | 206   | 5  | 31         | 5  |
| 18,001       | -   | 19,00 | O.   | 94         | 1           | 2  |          | 9,000 |     | 215   | 59 | 32         | 7  |
| 19,001       |     | •     |      | 104        | 1           | 5  |          | 0,000 |     | 226   | 3  | 34         | 2  |
| 20,001       |     | 21,00 | 0    | 98         | 1           | 5  | 2:       | 1,00  | 3   | 236   | 1  | 35         | 7  |

#### The Integer Gap

3.

Complexity of the sequence of prime numbers leads to many and varied integer gaps between successive primes. In general these gaps become larger as the successive prime numbers become larger, for the increasing number of separating integers provides more possible divisors. It has been shown that this integer gap increases without limit.

Maximum integer gaps between successive prime numbers are tabulated here for the primes occuring within the sequence of integers up to 21,380 and are presented for steps of one hundred successive primes. Also shown is the maximum gap that occurs for successive groups of one hundred primes for this range of integers.

The integer gap is always an odd number of integers. Although the gap increases with increasing size of the primes, the rate of increase is somewhat irregular. This is shown particularly in the table for the gaps within successive groups of one hundred primes.

# Maximum Gaps Between Successive Primes (for groups of primes)

|          |         | •   |             |                   |      |             |
|----------|---------|-----|-------------|-------------------|------|-------------|
|          | otal    | Max | Bracketing  | Range of          | Max  | Bracketing  |
| primes i | ntegers | gap | primes      | primes            | gap  | primes      |
| 100      | 523     | 13  | 113- 127    | 1- 100            | . 13 | 113- 127    |
| 200      | 1217    | 21  | 1129- 1151  | 101- 200          | 21   | 1129- 1151  |
| 300      | 1979    | 33  | 1327- 1361  | 201- 300          | 33   | 1327- 1361  |
| 400      | 2731    | 33  | 1327- 1361  | 301- 400          | 25   | 2477- 2503  |
| 500      | 3559    | 33  | 1327- 1361  | 401- 500          | 27   | 2971- 2999  |
| 600      | 4397    | 33  | 1327- 1361  | 501- 600          | 29   | 4297- 4327  |
| 700      | 5273    | 33  | 1327- 1361  | 601- 700          | 29   | 4831- 4861  |
| 800      | 6131    | 33  | 1327- 1361  | 70 <b>1- 8</b> 00 | 31   | 5591- 5623  |
| 900      | 6991    | 33  | 1327- 1361  | B01- 900          | 29   | 6491- 6521  |
| 1000     | 7907    | 33  | 1327- 1361  | 901-1000          | 29   | 7253- 7283  |
| 1100     | 8821    | 33  | 1327- 1361  | 1001-1100         | 33   | 8467- 8501  |
| 1200     | 9721    | 35  | 9551- 9587  | 1101-1200         | 35   | 9551- 9587  |
| 1300     | 10651   | 35  | 9551- 9587  | 1201-1300         | 33   | 9973-10007  |
| 1400     | 11633   | 35  | 9551- 9587  | 1301-1400         | 31   | 10799-10831 |
| 1500     | 12547   | 35  | 9551- 9587  | 1401-1500         | 33   | 11743-11777 |
| 1600     | 13487   | 35  | 9551- 9587  | 1501-1600         | 35   | 12853-12889 |
| 1700     | 14503   | 35  | 9551- 9587  | 1601-1700         | 35   | 14107-14143 |
| 1800     | 15391   | 35  | 9551- 9587  | 1701-1800         | 29   | 14983-15013 |
| 1900     | 16369   | 43  | 15683-15727 | 1801-1900         | 43   | 15683-15727 |
| 2000.    | 17387   | 43  | 15683-15727 | 1901-2000         | 33   | 17257-17291 |
| 2100     | 18311   | 43  | 15683-15727 | 2001-2100         | 29   | 17627-17657 |
| 2200     | 19421   | 43  | 15683-15727 | 2101-2200         | 39   | 19333-19373 |
| 2300     | 20353   | 51  | 19609-19661 | 2201-2300         | 51   | 19609-19661 |
| 2400     | 21379   | 51  | 19609-19661 | 2301-2400         | 39   | 20809-20849 |

### 4. The "Frime Theorem" Conjecture

Legendre and Gauss in the early nineteenth century conjectured that the number of primes not greater than some large integer would be given by the term n/ln n, where n is the integer and ln n its natural logarithm. The tables presented here compare this conjectured number of primes with the actual number of primes for twenty one groups of one thousand integers, up to the limiting integer of 21,000.

This prime theorem conjecture can also be applied to small groups of large integers. For a group of large integers ranging from n1 to n2, the increment in the number of primes is given as n2/ln n2 - n1/ln n1. The proportion of prime numbers in this group can so be expressed, closely, as 1/ln n, where n is a representative intermediate integer within the group

The conjected number of primes occurring within a specified range of integers is less than the actual number of primes, but otherwise the two agree reasonably well. Both conjected and actual number of primes increase as the limiting integer is increased,

but at decreasing rates. This is shown accompanying tables of actual and conjectured primes the frequency with which they occur successive groups of one thousand integers. The rate of decrease in the number of conjected primes is based on a monotoni, transendental mathematical relation and is quite regular (except for slight irregularities introduced by rounding). In contrast, the rate of decrease in the actual number of primes, although similar to that for conjected primes, is irregular. The table also shows the conjectured number of primes not greater that the large integer in as given by the term n/ln n, and the proportion of primes 1/ln n for groups of integers that include this integer.

The prime theorem conjecture also states that the product of an integer and its natural logarithm, rounded to the nearest odd number, is a prime. From accompanying sample tables for conjectured primes presented in the format of the table for actual primes, it is evident that the conjectured number of primes is greater than the actual number. Thus none of the first one hundred conjectured primes are

greater than the integer 461, while the first one hundred actual primes include the integer 523.

The tables for conjectured primes include those ending with the digit '5', and these can not be actual primes for they necessarily are divisible by five. They can be termed "false positives". Since the digit '5' constitutes one fifth the odd numbered digits, these false positives constitute, statistically, one fifth the conjected primes. In addition, other false positives, for example 27, 323, and 17487, are indicated. Included also are some false negatives where actual primes are not indicated in the list of conjectured primes. Examples are 43, 457, and 18191.

Some of these false positives and false negatives correspond to "near misses". For example the number 355 is a conjectured prime but obviously is not an actual prime, while neighboring odd numbers 353 and 359 are actual primes but not conjectured primes.

It has been suggested that the prime number theorem might be reworded to something like "large integers are either composite numbers which can be factored into prime numbers, or themselves are prime

numbers which can be represented, closely, by the expression N ln N, where N is a smaller integer and ln its natural logarithm". Thus the large integer of the anecdote concerning Fermat (Introduction) is a composite number that can be factored into two prime numbers, 112,303 and 898,423, and these can be represented, closely, as 112,303 ~ 11,961 ln 11,961, and 898423 ~ 79,913 ln 79,913.

|            | TH  | ne Firs    | st One | Hundred | Conject | ured | Primes     |             |     |
|------------|-----|------------|--------|---------|---------|------|------------|-------------|-----|
| 1          | 1   | 3          | 5      | 9       | 11      | 13   | 17         | 19          | 23  |
| 27         | 29  | <b>3</b> 3 | 37     | 41      | 45      | 49   | <b>5</b> 3 | <b>5</b> 5  | 59  |
| 63         | 69  | 73         | 77     | 81      | 85      | 89   | 93         | 97          | 103 |
| 107        | 111 | 115        | 119    | 125     | 129     | 133  | 139        | 143         | 147 |
| 153        | 157 | 161        | 167    | 171     | 177     | 181  | 185        | 191         | 195 |
| 201        | 205 | 211        | 215    | 221     | 225     | 231  | 235        | 241         | 245 |
| 251        | 255 | 261        | 267    | 271     | 277 ·   | 281  | 287        | <b>29</b> 3 | 297 |
| 303        | 307 | 313        | 319    | 323     | 329     | 335  | 339        | 345         | 351 |
| <b>355</b> | 361 | 367        | 373    | 377     | 383     | 389  | 395        | 399         | 405 |
| 411        | 417 | 421        | 427    | 433     | 439     | 443  | 449        | 455         | 461 |

| The Twenty  | -fourth Grou | p of One | Hundred | Conje | ctured | Prime | 25    |
|-------------|--------------|----------|---------|-------|--------|-------|-------|
|             |              |          |         |       |        |       |       |
|             |              |          |         |       |        |       |       |
| 17813 17821 | 17829 17839  | 17847    | 17855   | 17865 | 17873  | 17883 | 17891 |
| 17899 17909 | 17917 17925  | 17935    | 17943   | 17953 | 17961  | 17969 | 17979 |
| 17987 17995 | 18005 18013  | 18023    | 18031   | 18039 | 18049  | 18057 | 18065 |
| 18075 18083 | 18093 18101  | 18109    | 18119   | 18127 | 18135  | 18145 | 18153 |
| 18163 18171 | 18179 18189  | 18197    | 18207   | 18215 | 18223  | 18233 | 18241 |
|             |              |          |         |       |        |       |       |
| 18249 18259 | 18267 18277  | 18285    | 18293   | 18303 | 18311  | 18319 | 18329 |
| 18337 18347 | 18355 18363  | 18373    | 18381   | 18391 | 18399  | 18407 | 18417 |
| 18425 18433 | 18443 18451  | 18461    | 18469   | 18477 | 18487  | 18495 | 18505 |
| 18513 18521 | 18531 18539  | 18549    | 18557   | 18565 | 18575  | 18583 | 18591 |
| 18601 18609 | 18619 18627  | 18635    | 18645   | 18653 | 18663  | 18671 | 18679 |
|             |              |          |         |       |        |       |       |

.

### Conjectured Number of Primes and Number of Conjectured Primes

| Limit<br>integer | Conj.<br>no.of<br>primes | Actual<br>no.of<br>primes | no. of conj. primes | integer<br>range   | Conj.<br>no.of<br>primes | Actual<br>no.of<br>primes | no. of conj. primes |
|------------------|--------------------------|---------------------------|---------------------|--------------------|--------------------------|---------------------------|---------------------|
| 1000             | 145                      | 169                       | 190                 | 1- 1000            | 145                      | 169                       | 190                 |
| 2000             | 263                      | 304                       | 342                 | 1001- 2000         | 118                      | 135                       | 152                 |
| 3000             | 375                      | 431                       | 486                 | 2001- 3000         | 112                      | 127                       | 143                 |
| 4000             | 482                      | 551                       | 621                 | 3001- 4000         | 107                      | 120                       | 136                 |
| 5000             | 587                      | 670                       | 754                 | 4001- 5000         | 105                      | 119                       | 133                 |
| 6000             | 690                      | 784                       | 884                 | 5001- 6000         | 103                      | 114                       | 130                 |
| 7000             | 791                      | 901                       | 1011                | 6001-7000          | 101                      | 117                       | 127                 |
| 8000             | <b>8</b> 90              | 1008                      | 1136                | 7001- <b>B</b> 000 | 99                       | 107                       | 125                 |
| 9000             | <b>9</b> 88              | 1118                      | 1260                | B001- 9000         | 98                       | 110                       | 124                 |
| 10000            | 1086                     | 1230                      | 1382                | 9001-10000         | 98                       | 112                       | 122                 |
| 11000            | 1182                     | 1336                      | 1503                | 10001-11000        | 96                       | 106                       | 121                 |
| 12000            | 1278                     | 1439                      | 1623                | 11001-12000        | 96                       | 103                       | 120                 |
| 13000            | 1372                     | 1548                      | 1741                | 12001-13000        | 94                       | 109                       | 118                 |
| 14000            | 1466                     | 1653                      | 1859                | 13001-14000        | 94                       | 105                       | 118                 |
| 15000            | 1560                     | 1755                      | 1976                | 14001-15000        | 94                       | 102                       | 117                 |
| 16000            | 1653                     | 1863                      | 2092                | 15001-16000        | 93                       | 108                       | 116                 |
| 17000            | 1745                     | 1961                      | 2207                | 16001-17000        | 92                       | 98                        | 115                 |
| 18000            | 1837                     | 2065                      | 2322                | 17001-18000        | 92                       | 104                       | 115                 |
| 19000            | 1929                     | 2159                      | 2436                | 18001-19000        | <b>9</b> 2               | 94                        | 114                 |
| 20000            | 2019                     | 2263                      | 2549                | 19001-20000        | <b>9</b> 0               | 104                       | 113                 |
| 21000            | 2110                     | 2361                      | 2262                | 20001-21000        | 91                       | · 98                      | 113                 |

#### <u>Factorization</u>

5.

A composite number can be factored into smaller numbers: a prime number cannot. Thus a method for factorization can not only identify the factors for a composite number, but also those integers which are prime numbers.

A straightforward procedure for factorization consists in trying out as possible divisors all these prime numbers not greater than the square root of a specified integer. This trial—and—error method is relatively satis—factory for smaller integers such as those with no more than four or five digits, but for larger integers the effort can become overwhelming.

The classical method for factorization is that of Fermat, based on the algebraic relation  $x^2 - y^2 = (x+y)*(x-y)$ . Both trial-and-error and Fermat methods are readily adapted to computer use; however many computers do not have a capability for dealing with very large integers.

The two thousand four hundred prime numbers presented in these tables involve integers up to 21,380; these are readily handled here. For this the trial-and-error method may have an advantage, particularly for factoring composite integers with more than a small number of factors.

The accompanying factorizations illustrate the trial-and-error method. These include the maximum integer of interest here, 21,380, an integer with a relatively large number of factors, integers known to be primes, and the Eucludian integer 300031. Also included is the integer 11961 that from the Prime Theorem Conjecture should represent the Fermat prime number 112,303. It does not, for here the term N ln N, rounded to an odd number, is 112,307. (This might be regarded as a "near miss".) It can be noted that the integer 11961 is a composite rather than a prime number, as

 $27 \times 443 = 11961$ 

### Factorizations

Integer to be factored: 21380

| 1 | Integer | Factor | Quotient |
|---|---------|--------|----------|
|   | 21380   | 2      | 10690    |
| • | 10690   | 2      | 5345     |
|   | 5345    | 5      | 1069     |
|   | 1069    | 1069   | 1        |

The integer 21380 can be factored into

2 2 5 1069

Integer to be factored: 15120

| Integer   | Factor | Quotient  |
|-----------|--------|-----------|
| 15120     | 2      | 7560      |
| 7560      | 2      | 3780      |
| 3780      | 2      | 1890      |
| 1890      | 2      | 945       |
| 945       | 3      | 315       |
| 315       | 3      | 105       |
| 105       | 3      | <b>35</b> |
| <b>35</b> | 5      | 7         |
| 7         | 7      | 1         |

The integer 15120 can be factored into

2 2 2 2 3 3 3 5 7

Integer to be factored: 21379

Integer Factor Quotient

21379 21379 1

The integer 21379 is a prime number

# Factorization, (continued)

Integer to be factored: 365

| Integer     | Factor | Quotient |
|-------------|--------|----------|
| 36 <b>5</b> | 5      | 73       |
| 73          | 73     | 1        |

The integer 365 can be factored into

5 73

Integer to be factored: 1728

| Integer | Factor | Quotient  |  |
|---------|--------|-----------|--|
| 1728    | 2      | 864       |  |
| 864     | 2      | 432       |  |
| 452     | 2      | 216.      |  |
| 216     | 2      | 108       |  |
| 108     | 2      | 54        |  |
| 54      | 2      | <b>27</b> |  |
| 27      | 3      | 9         |  |
| 9       | 3      | 3         |  |
| 3       | 3      | 1         |  |

The integer 1728 can be factored into

2 2 2 2 2 2 3 3 3

Integer to be factored: 893

| Integer | Factor | Quotient |
|---------|--------|----------|
| 893     | 19     | 47       |
| 47      | 47     | 1        |

The integer 893 can be factored into

19 47

### Factorization, (continued)

للعمية والدمينون والأراب

Integer to be factored: 11961

| Integer Factor |     | Quotient |
|----------------|-----|----------|
| 11961          | 3   | 3987     |
| 3987           | 3   | 1329     |
| 1329           | 3   | 443      |
| 443            | 443 | 1        |

The integer 11961 can be factored into

3 3 3 443

Integer to be factored: 19

| Integer | Factor | Quotient |
|---------|--------|----------|
| 19      | 19     | 1        |

The integer 19 is a prime number

Integer to be factored: 50031

| Integer | Factor | Quotient |
|---------|--------|----------|
| 50031   | 59     | 509      |
| 509     | 509    | 1        |

The integer 30031 can be factored into

59 509

### Factorization, (continued)

Integer to be factored: 5280

| Integer | Factor | Ouotient |
|---------|--------|----------|
| 5260    | 2      | 2640     |
| 2640    | 2      | 1320     |
| 1320    | 2      | 660      |
| 660     | 2      | 330      |
| 330     | 2      | 165      |
| 145     | ₫      | 55       |
| 55      | 5      | 1.1      |
| 11      | 1 1    | 1        |

The integer 5280 can be factored into

2 2 2 2 2 3 5 11

Integer to be factored: 9211

61 151

| Integer | Factor | Owotient |
|---------|--------|----------|
| 9211    | 61     | 151      |
| 151     | 151    | 1        |

The integer 9211 can be factored into

Integer to be factored: 19321

| lntearr | Factor | Ouotient |
|---------|--------|----------|
| 19321   | 137    | 139      |
| 139     | 137    | 1        |

The integer 19321 can be fectored into

139 109

#### 6. Inverses and Hamming-Kinney Numbers

The inverse of a number has its same digits but in inverse order. Thus inverse of the integer 12,345 is 54,321, and vice versa. Special cases where the inverse of a number is also the number itself, for example 12,321 and its inverse 12,321, are termed "palindromes". A palindrome that also is a prime, for example 17,471, is a Hamming-Kinney palindrome.

An accompanying table lists the forty seven Hamming-Kinney palindromes included in the 2,400 primes of this report. Five of these primes have only one digit. There are twenty one two-digit primes, only one of which is a Hamming-Kinney palindrome. There are one hundred forty three three-digit primes; only fifteen of these are Hamming-Kinney palindromes. There are no four-digit Hamming-Kinney palindromes. The seven hundred primes with five digits, as listed in this report, include the twenty six Hamming-Kinney palindromes.

Frimes whose inverses are also primes are Hamming-Kinney numbers. An example is the prime number 1979, whose inverse 9791 is also a prime. Such pairs of primes form Hamming-Kinney pairs. Examples are 13 and 31, 7219 and 9127, etc. There are four Hamming-Kinney pairs in the twenty one two-digit primes. The nine hundred consecutive three digit integers include one hundred forty

three primes, and thirty of these form fifteen Hamming-Kinney pairs. The nine thousand four digit integers have one thousand thirty prime numbers, including one hundred one Hamming-Kinney pairs. These Hamming-Kinney pairs are listed in an accompanying table, where the smaller integer of the pair is given first.

It has been observed that inverses of some primes are also primes, and that this occurs more often than might be expected. An extreme example is provided by prime numbers in the one fourteen consecutive integers between seven hundred and eight hundred. Of these fourteen primes, twelve have inverses that also are primes, as opposed to a perhaps expected total of three or four. Another example is afforded by the one hundred integers from thirty two hundred to thirty three hundred. Here there are eleven prime numbers of which six, or slightly more than half, have inverses that also are prime numbers. This contrasts sharply with the one or two suggested by the prime theorem conjecture of section 4.

The Hamming hypothesis states that there is some rule, analogous perhaps to the rule of three, that describes this unusual situation. (The rule of three states that if the sum of digits in an integer is divisible by three, the integer itself is div.sible by

A possible explanation for the unusual situation here is that the final digit of a prime number (when expressed decimally to base ten) must be a 1, 3, 7, or 9. Thus the initial digit of its inverse must also be one of these four selected digits. Thus inverses are bunched into groups with an initial digit that is one of these pre-selected four. This is illustrated in accompanying table. There the forty five primes between integers 600 through 900, along with their inverses, are Those inverses that also are primes underlined. Here the bunching effect is quite evident. It so becomes apparent that the sequences of primes in the two examples above, and in similiar situations on which the Hamming hypothesis is based, are not randomly chosen samples, but ones which inadvertantly were especially selected.

# Hamming-Kinney Palindromes (included in the first 2,400 prime numbers)

| 1     | 2     | 3     | 5     | 7     | 1 1                  | 101   |
|-------|-------|-------|-------|-------|----------------------|-------|
| 131   | 151   | 181   | 191   | 313   | 353                  | 373   |
| 383   | 727   | 757   | 787   | 797   | 919                  | 929   |
| 10301 | 10501 | 10601 | 11311 | 11411 | 12421                | 12721 |
| 12821 | 13331 | 13831 | 13931 | 14341 | 14741                | 15451 |
| 15551 | 16061 | 16361 | 16561 | 16661 | 17471                | 17971 |
| 18181 | 18481 | 19391 | 19891 | 19991 | · · · · <del>-</del> |       |

# <u>Hamming-Kinney Pairs</u> (included in the first 10,000 integers)

| 13-31                                            | 17-71                                            | 37-73                                            | 79-97                                            | 107-701                             |
|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|-------------------------------------|
| 113-311                                          | 159-941                                          | 157-751                                          | 167-761                                          | 179-971                             |
| 199-991                                          | 337-733                                          | 347-743                                          | 359-953                                          | 389-983                             |
| 709-907                                          | 739-937                                          | 769-967                                          | 1013-3101                                        | 1021-1201                           |
| 1031-1301                                        | 1033-3301                                        | 1061-1601                                        | 1069-9601                                        | 1091-1901                           |
| 1097-7901                                        | 1103-3011                                        | 1109-9011                                        | 1151-1511                                        | 1153-3511                           |
| 1181-1811                                        | 1193-3911                                        | 1213-3121                                        | 1217-7121                                        | 1223-3221                           |
| 1229-9221                                        | 1231-1321                                        | 1237-7321                                        | 1249-9421                                        | 1259-9521                           |
| 1279-9721                                        | 1283-3821                                        | 1381-1831                                        | 1399-9931                                        | 1409-9041                           |
| 1439-9314                                        | 1451-1541                                        | 1471-1741                                        | 1487-7841                                        | 1499-9941                           |
| 1523-3251                                        | 1559-9551                                        | 1583-3851                                        | 1597-7951                                        | 1619-9161                           |
| 1657-7561                                        | 1669-9661                                        | 1723-3271                                        | 1733-3371                                        | 1753-3571                           |
| 1789-9371                                        | 1847-7481                                        | 1867-7681                                        | 1879-9781                                        | 1913-3191                           |
| 1937-7391                                        | 1949-9491                                        | 1973-3791                                        | 1979-9791                                        | 3019-9103                           |
| 3023-3203                                        | 3037-7303                                        | 3049-9403                                        | 3067-7603                                        | 3083-3803                           |
| 3089-9803                                        | 3109-9013                                        | 3163-3613                                        | 3169-9613                                        | 3257-7523                           |
| 3299-9923                                        | 3319-9133                                        | 3343-3433                                        | 3347-7433                                        | 3359-5933                           |
| 3373-3733                                        | 3389-9833                                        | 3463-3643                                        | 3467-7643                                        | 3469-9643                           |
| 3 <b>527-72</b> 53                               | 3583-3853                                        | 3697-7963                                        | 3719-9173                                        | 3767-7673                           |
| 3889-9833                                        | 3917-7193                                        | 3929-9293                                        | 7027-7207                                        | 7057-5707                           |
| 7129-9217<br>7457-7547<br>7649-9467<br>9029-9029 | 7187-7817<br>7459-9547<br>7687-7867<br>9349-9439 | 7229-9227<br>7529-9257<br>7699-9967<br>9479-9749 | 7297-7927<br>7577-7757<br>7879-9787<br>9679-9769 | 7349-9437<br>7589-9857<br>7949-9497 |

#### <u>Inverses of Primes</u> (in the Integer Range 600-900)

| 601-106        | 607-706         | 613-316 | 617-716        | 619-916 |
|----------------|-----------------|---------|----------------|---------|
| 631-136        | 641-146         | 643-346 | 647-746        | 653-356 |
| 659-956        | 661-166         | 673-376 | 677-776        | 683-386 |
| 691-916        | 7 <u>01-107</u> | 709-907 | 719-917        | 727-727 |
| <u>733-337</u> | 7 <u>39-937</u> | 743-347 | <b>751-157</b> | 757-757 |
| <u>761-167</u> | 7 <u>69-967</u> | 773-377 | <b>787-787</b> | 797-797 |
| 809-908        | 811-118         | 821-128 | 823-328        | 827-728 |
| 829-928        | 839-938         | 853-358 | 857-758        | 859-958 |
| 863-368        | 877-778         | 881-188 | 883-388        | 887-788 |

#### <u>Reciprocals</u>

Reciprocals of the prime numbers are repeating decimal fractions (primes 1, 2, and 5 excepted). These repeating fractions show a number of initial zeros (after the decimal point) that equals the number of digits in the prime number minus one. For example, the reciprocal of 7 is

0.142,857,142,857,142,857 . . .

with zero initial zeros (1-1 = 0). Reciprocal of the prime number 271 is

0.003,690,036,900,369,003 . . .

with 3-1 = 2 initial zeros.

7.

The repeating portion of these decimal fractions is the "period integer" and its number of digits the "period length". Period integer for the prime number 7 is 142,857, and the period length is 6, an even number. The (reciprocal of the) prime number 271 has the period integer 36,900 and the period length of 5 digits, an odd number. The accompanying table shows selected sequences of twenty prime numbers with their respective period lengths. (These period lengths are taken from the listing for the first 1,370,471 primes tabulated by Samuel Yates in 1975.)

The maximum number of digits in a period integer is one less than the prime number itself. Thus the maximum period length for the prime number 7 is 6, and that for the prime number 271 is 270. Actual period lengths may be less than maximum, but necessarily are sub-multiples of it. For the prime number 271 the

actual period length is 54, so that the sub-multiple is 270/54 = 5. For the prime number 7 the sub-multiple is 6/6 = 1, indicating a "full period" integer. Statistically, three eights (closely) of all period integers have full periods. For the smallish number of period integers in the accompanying table, the actual fraction of full period integers is three and one half eights, in satisfactory agreement with the value for very large numbers of such integers.

Two thirds, or nearly 67 percent, of all period integers are even numbered, with the rest being odd numbered. The actual percentage of even numbered period integers in the accompanying table with eighty items is 69 percent, in substantial agreement with the statistical value pertaining to very large numbers.

Included in the table for reciprocals are the associated sub-multiples, the ratios of maximum to actual values for period lengths. Maximum sub-multiple for the reciprocals of the 2400 primes presented here is 374, given by the ratio 21,318/57 for the 2395th prime number 21,319. Of interest is the near-by pair of prime number twins separated by the integer 21,648. Here one of the twins has a period length of 21,646 digits, the other only 11 digits. Corresponding sub-multiples 1 and 1938 show a rather remarkable difference for two prime numbers that otherwise seem quite similar.

| Prime  | <u>Reciprocal</u> | Feriod Lengths | Sub-     |
|--------|-------------------|----------------|----------|
| number | actual            | maximum        | multiple |
| 3      | 1                 | 2              | 2        |
| 7      | 6                 | 6              | 1        |
| 11     | 2                 | 10             | 5        |
| 13     | 6                 | 12             | 2        |
| 17     | 16                | 16             | 1        |
| 19     | 18                | 18             | 1        |
| 23     | 22                | 22             | 1        |
| 29     | 28                | 28             | 1        |
| 31     | 15                | 30             | 2        |
| 37     | 3                 | 36             | 12       |
| 41     | 5                 | 40             | 8        |
| 43     | 21                | 42             | 2        |
| 47     | 46                | 46             | 1        |
| 53     | 13                | 52             | 4        |
| 59     | · 58              | 58             | 1        |
| 61     | 60                | 60             | 1        |
| 67     | 33                | 66             | 2        |
| 71     | 35                | 70             | 2        |
| 73     | 8                 | 72             | 9        |
| 79     | 13                | 78             | 6        |
| 6163   | 79                | 6162           | 78       |
| 6173   | 3086              | 6172           | 2        |
| 6197   | 3098              | 6196           | 2        |
| 6199   | 3099              | 6198           | 2        |
| 6203   | 443               | 6202           | 14       |
| 6211   | 6230              | 6230           | 1        |
| 6217   | 6216              | 6216           | 1        |
| 6221   | 6220              | 6220           | 1        |
| 6229   | 2076              | 6228           | 3        |
| 6247   | 6246              | 6246           | 1        |
| 6257   | 6256              | 6256           | 1        |
| 6263   | 6262              | 6262           | 1        |
| 6269   | 6268              | 6268           | 1        |
| 6271   | 1045              | 6270           | 6        |
| 6277   | 1569              | 6276           | 4        |
| 6287   | 6286              | 6286           | 1        |
| 6299   | 94                | 6298           | 67       |
| 6301   | 6300              | 6300           | 1        |
| 6311   | 3155              | 6310           | 2        |
| 6317   | 3158              | 6316           | 2        |

| Prime                                     | <u>Reciprocal</u>                         | <u>Feriod Lengths</u>                     | Sub-             |
|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------|
| number                                    | actual                                    | maximum                                   | multiple         |
| 13331<br>13337<br>13339<br>13367<br>13381 | 13330<br>13336<br>13338<br>13366<br>13380 | 13330<br>13336<br>13338<br>13366<br>13380 | 1<br>1<br>1<br>1 |
| 13397                                     | 6698                                      | 13396                                     | 2                |
| 13399                                     | 957                                       | 13398                                     | 14               |
| 13411                                     | 13410                                     | 13410                                     | 1                |
| 13417                                     | 4472                                      | 13416                                     | 3                |
| 13421                                     | 13420                                     | 13420                                     | 1                |
| 13441<br>13451<br>13457<br>13463<br>13469 | 6720<br>13450<br>13456<br>13462<br>13468  | 13440<br>13450<br>13456<br>13462<br>13468 | 2<br>1<br>1<br>1 |
| 13477                                     | 6738                                      | 13476                                     | 2                |
| 13487                                     | 13486                                     | 13486                                     | 1                |
| 13499                                     | 13498                                     | 13498                                     | 1                |
| 13513                                     | 4504                                      | 13512                                     | 2                |
| 13523                                     | 6761                                      | 13522                                     | 2                |
| 21169                                     | 1323                                      | 21168                                     | 16               |
| 21179                                     | 21178                                     | 21178                                     | 1                |
| 21187                                     | 1177                                      | 21186                                     | 18               |
| 21191                                     | 2119                                      | 21190                                     | 10               |
| 21193                                     | 7064                                      | 21192                                     | 3                |
| 21211                                     | 21210                                     | 21210                                     | 1                |
| 21221                                     | 4246                                      | 21220                                     | 5                |
| 21227                                     | 10613                                     | 21226                                     | 2                |
| 21247                                     | 21246                                     | 21246                                     | 1                |
| 21269                                     | 21268                                     | 21268                                     | 1                |
| 21277                                     | 1182                                      | 21276                                     | 18               |
| 21283                                     | 3547                                      | 21282                                     | 6                |
| 21313                                     | 2368                                      | 21312                                     | 9                |
| 21317                                     | 10658                                     | 21316                                     | 2                |
| 21319                                     | 57                                        | 21318                                     | 374              |
| 21323                                     | 10661                                     | 21322                                     | 2                |
| 21341                                     | 4268                                      | 21340                                     | 5                |
| 21347                                     | 10673                                     | 21346                                     | 2                |
| 21377                                     | 21376                                     | 21376                                     | 1                |
| 21379                                     | 3054                                      | 21378                                     | 7                |

#### **EERMAI NUMBERS**

Ð.

The great French mathematician Pierre de Fermat (1601-1665) asserted that numbers of the  $\frac{n}{2}$  form (2 + 1) are primes, but added that he could not prove it. This assertion is now known as the Fermat Theorem of Binary Powers: such integers are now identified as Fermat numbers. For example the fifth Fermat number, where n = 5 and 2 = 32, is the ten-digit integer 4,294,967,297.

Then in 1723 the famous Swiss mathematician Leonard Euler showed, perhaps by congruence methods and noting that factors of many Fermat numbers are of the form (64n + 1), that this fifth Fermat number is a composite rather than a prime, and that it can be factored into 641 times 6,700,417.

Fermat numbers can become very large. The ninth Fermat number has 155 digits, and would require about three ordinary typewritten lines for a print-out. In general each successive Fermat number has twice as many digits as its predecessor, so that ordinarily only the first five Fermat numbers can be displayed on an personal computer.

|        | Γì  |                     |           |
|--------|-----|---------------------|-----------|
| П      | 2   | Fermat number       | nature    |
|        |     |                     |           |
| 1      | 2   | 5                   | prime     |
| 2<br>3 | 4   | 17                  | prime     |
| 3      | 8   | 257                 | prime     |
| 4      | 16  | <b>65,</b> 537      | prime     |
| 5      | 32  | 4,294,957,297       | composite |
| 6      | 64  | (20 digit integer)  | composite |
|        |     | •••                 |           |
| 9      | 512 | (155 digit integer) | composite |

It has been reported that of the first seventy three Fermat numbers at least twelve are composites (numbers 5, 6, 7, 8, 9, 11, 12, 18, 23, 36, 38, and 73). For example, the ninth Fermat number, as indicated in the table, is a composite integer with one hundred fifty five digits. Only recently, and after considerable computer effort, has this been factored into three prime numbers.

#### 9. That Final Digit

The final digit of a multi~digit prime number cannot be a five or a zero, for then it would be a a composite number divisible by five. Nor can this final digit be an even number, for then it would be a composite divisible by two. Thus the final digit for any prime number must be a one, three, seven, or nine (in decimal notation).

The above observation indicates that simple inspection of the final digit of any decimal integer, no matter how large, can in some circumstances identify it as a composite number. This leads to speculation that perhaps there is some method whereby prime numbers can be identified simply and directly.

In search for this method, it first is noted that the initial one hundred consecutive multi-digit primes contain twenty four with one as the final digit, twenty six with the final digit three, twenty five with a seven, and twenty five with a nine. This approximately even distribution agrees with expectation. It also is noted that these four possible final digits constitute only four out of the ten digits. Thus about sixty percent of a large group of consecutive integers are composites, and the remaining forty percent might, or might not, be primes.

This simple inspection method for identifying composites can be augmented by the well-known "rule of three". This states that if the sum of the digits in an integer is divisible by three, the integer itself is divisible by three and hence it is not a prime number. Somewhat similar, but perhaps less well known, is the "rule of eleven". This states that if the algebraic sum obtained by alternately adding and subtracting successive digits of an integer is zero or some multiple of eleven, the integer is divisible by eleven. Hence it is a composite number and is not a prime.

Example. Classify each of the following integers
as a composite or a primes:

- (a) 1066, (b) 1775, (c) 3351, (d) 9031,
- (e) 12,847, (f) 21,319, (g) 40,497.

Answer. The final digit of the integer 1066 is an even number, hence 1066 is divisible by two and is not a prime. The final digit of the integer 1775 is divisible by 5, hence 1775 also is not a prime.

Sum of digits for the third and subsequent integers above is 12, 13, 22, 16, or 24. Of these, the sums 12 and 24 are divisible by three, so that the integers 3351 and 40,947 are not prime numbers.

For the remaining three integers, 9031, 12,887, and 21,319, each has a final digit that might indicate a prime number. Also, none of their digit sums are divisible by three. Hence each of these three integers might be a prime number. But alternating digit sums for these are 11, -4, and 13 respectively; hence the integer 9031 is a multiple of eleven, and so is a composite. Neither of the other two integers, 12,847 and 21,319, can be classified\* as either a prime or a composite by these simple methods.

The screening methods above can identify about three quarters (actually 75.7575 . . %) of all decimal integers, no matter how large, as being composites (non-primes). Each of the remaining one quarter integers is individually a possible prime, but it could be a composite.

These screening methods pertain to integers in decimal form. But it can be noted that prime numbers do not depend on the number base; thus the duodecimal (base twelve) prime number 5287 is also the decimal prime number 9031, and the decimal composite number 1775 is also the duodecimal composite number 1 0 3 (11). Sometimes algebraic manipulations are simpler with

 $<sup>*12,847 = 29 \</sup>times 443;$  21,318 is a prime number.

numbers to base twelve than with the corresponding numbers to base ten. In the search for prime numbers, it can be noted that only those duodecimal numbers with a final digit of 1, 5, 7, or 11, (four out of twelve) can be primes. Hence here the final digit can indentify two thirds of all duodecimal integers as composites, versus only four out of ten for decimal numbers. Conversion of a decimal number to duodecimal thus might offer some simplification for identification of large prime numbers.

To examine the final digit of a duodecimal integer, conversion of an entire decimal integer is not necessary. Simple division of the decimal integer by twelve and examination of the remainder suffices. For example, the decimal integer 2151 when divided by twelve gives the quotient 179, plus a remainder of 3/12. The final duodecimal digit thus is 3, so that this decimal integer 2151 is not a prime number. (The "modulo" command MOD, available on many computers, provides such remainders; thus 2151 MOD (12) = 3).

In this connection it can be noted that the duodecimal integer 1 2 (11) 3 has a final digit that indicates a composite number, while the final digit of the decimal equivalent 2151 indicates a possible prime.

(However, sum of the decimal digits is nine, indicating

that 2151 actually is a composite.) Then the decimal number 1775 has a final digit that shows a composite, whereas in duodecimal form, 1 0 3 (11), the final digit indicates a possible prime. It so seems that duodecimal notation might offer advantage in some situations, while decimal notations may be advantageous in others. Thus it appears that there is no real benefit offered by duodecimal notation in the search for very large prime numbers.

In conclusion, as of now there seems to be no simple method for identifying integers which actually are primes. But as a final thought it can be observed that advances in number theory continue, so that in the future

## ¿Quién sabe?

#### DISTRIBUTION LIST

| 1. | Library (Code 1424)<br>Naval Postgraduate School<br>Monterey, CA 93943-5000                               | 4  |
|----|-----------------------------------------------------------------------------------------------------------|----|
| 2. | Research Administration (Code 81) Naval Postgraduate School Monterey, CA 93943-5000                       | 1  |
| 3. | Defense Technical Information Center<br>Cameron Station<br>Alexandria, VA 22314                           | 2  |
| 4. | Superintendent (Code 00)<br>Naval Postgraduate School<br>Monterey, CA 93943-5000                          | 1  |
| 5. | Provost (Code 01)<br>Naval Postgraduate School<br>Monterey, CA 93943-5000                                 | 1  |
| 6. | Dean of Faculty and Graduate<br>Studies (Code 07)<br>Naval Postgraduate School<br>Monterey, CA 93943-5000 | 1  |
| 7. | Chairman, Department of Physics<br>(Code Ph/Wh)<br>Naval Postgraduate School<br>Monterey, CA 93943-5000   | 5  |
| 8. | Naval Weapons Center<br>Engineering Science Division<br>China Lake, CA 93555                              | 7  |
| 9. | Professor G. F. Kinney<br>(Code PH/Ky)<br>Naval Postgraduate School<br>Monterey, CA 93943-5000            | 35 |