- 1. Compute
 - 1. $\sum_{i=0}^{n} \sum_{k=0}^{i} 2^k$

$$\sum_{i=0}^{n} \sum_{k=0}^{i} 2^{k} = \sum_{i=0}^{n} (2^{i+1} - 1)$$

$$= \sum_{i=0}^{n} 2^{i+1} - \sum_{i=0}^{n} 1$$

$$= 2 \cdot \sum_{i=0}^{n} 2^{i} - \sum_{i=0}^{n} 1$$

$$= 2 \cdot (2^{n+1} - 1) - (n - 1)$$

2. $4^{\log_2(5)} + \log^2(8^3)$

$$4^{log_2(5)} + log^2(8^3) = 2^{log_2(5^2)} + 3^2 \cdot log_2^2(8)$$
$$= 25 + 3^2 \cdot 3^2$$
$$= 25 + 3^4$$

2. Use L'Hopital's rule to determine the limit of:

$$\lim_{x \to \infty} \frac{x \cdot \ln x^5 + 4}{(3 \cdot x + 1)^2} = \lim_{x \to \infty} \frac{5 \cdot x \cdot \ln(x) + 4}{9 \cdot x^2 + 6 \cdot x + 1}$$

= 0

3. What is the definition of $f(n) = \Omega(g(n))$.

$$f(n) = \Omega(g(n)) \quad \Longleftrightarrow \quad \exists c > 0, \exists k \geq 0 \, s.t \, f(n) \geq c \cdot g(n) \, \forall n \geq k$$

4. What is the growth of the below function

$$f(n) = n \cdot 2^{\log_2(n)} + \sqrt{n} + 5 \cdot n \cdot \log^3(n) + \log^2(n^n)$$

- 1. $\Theta(n^2)$
- 2. $\Theta(n \cdot log^3(n))$

- 3. $\Theta(\sqrt{n})$
- 4. $\Theta(n^2 \cdot log^2(n))$
- 5. Neither!

$$f(n) = n \cdot 2^{\log_2(n)} + \sqrt{n} + 5 \cdot n \cdot \log^3(n) + \log^2(n^n)$$

= $n^2 + \sqrt{n} + 5 \cdot n \cdot \log^3(n) + n^2 \cdot \log^2(n)$
= $\Theta(n^2 \cdot \log^2(n))$

- (4) is the correct answer.
- **5.** What is the growth of the below function

$$f(n) = 6 \cdot log(n) + 4 \cdot log^4 log^3(n) + 3 \cdot log(n^2) + log^2(n)$$

- 1. $\Theta(log(n))$
- 2. $\Theta(log(n^2))$
- 3. $\Theta(\log^4 \log^3(n))$
- 4. $\Theta(log^2(n))$
- 5. Neither!

$$f(n) = \Theta(\log^2(n))$$

- (4) is the correct answer.
- **8.** Prove that $f(n) = 2 \cdot n \cdot log(n^2) 6 \cdot log^2(n) + \sqrt{n}$ is $O(n \cdot log(n))$, provide the appropriate C and k constants.

$$\begin{array}{lcl} 2 \cdot n \cdot \log(n^2) - 6 \cdot \log^2(n) + \sqrt{n} & = & 4 \cdot n \cdot \log(n) - 6 \cdot \log^2(n) + \sqrt{n} \\ & \leq & 4 \cdot n \cdot \log(n) + 6 \cdot n \cdot \log(n) + \sqrt{n} \\ & \leq & 4 \cdot n \cdot \log(n) + 6 \cdot n \cdot \log(n) + n \cdot \log(n) \\ & = & 11 \cdot n \cdot \log(n), n \geq 4 \end{array}$$

Let c = 11 and k = 4 then the statement translates to

$$2 \cdot log(n^2) - 6 \cdot log^2(n) + \sqrt{n} \quad \leq \quad c \cdot n \cdot log(n), n \geq k$$

which by the definition of big-O notation, $2 \cdot n \cdot log(n^2) - 6 \cdot log^2(n) + \sqrt{n}$ is $O(n \cdot log(n))$.

9. Compare the growth of $f(n) = 4^{2^{\log_2(n)}}$ and $g(n) = 2^{n + \log(n)}$

$$f(n) = 4^n$$

$$g(n) = n \cdot 2^n$$

$$\lim_{n \to \infty} \frac{2^{2 \cdot n}}{n \cdot 2^n} = \lim_{n \to \infty} \frac{2^n}{n}$$
$$= \infty$$

 $f(n) = \omega(g(n))$ this implies $f(n) = \Omega(g(n))$. We also know then that g(n) = O(f(n)).

10. Prove transitivity of big-O: if f(n) = O(g(n)), and g(n) = O(h(n)), then f(n) = O(h(n)).

Since f(n) = O(g(n)) and g(n) = O(h(n)) we have the equalities

$$f(n) \le c_1 \cdot g(n), n \ge k_1$$

 $g(n) \le c_2 \cdot h(n), n \ge k_2$

From this we obtain

$$f(n) \leq c_1 \cdot c_2 \cdot h(n), n \geq k'$$

where $k' = max(k_1, k_2)$. Let $c = c_1 \cdot c_2$ and k = k' the statement then translate to

$$f(n) < c \cdot h(n), n > k$$

which by the definition of O notation, f(n) = O(h(n)).

11. What is the growth of $n^2 + 2 \cdot n^2 + 3 \cdot n^2 + 4 \cdot n^2 + \ldots + n^5$?

$$\sum_{i=1}^{n^3} i \cdot n^2 = n^2 \cdot \sum_{i=1}^{n^3} i$$

$$= n^2 \cdot \frac{(n^3) \cdot (n^3 + 1)}{2}$$

$$= \frac{n^8 + n^5}{2}$$

$$= \Theta(n^8)$$

12. Prove $\forall k > 0, \epsilon > 0 \implies loq^k(n) = o(n^{\epsilon}).$

We prove this by induction on k, let ϵ be a real number greater than 0. When k=1 we have

$$\lim_{n \to \infty} \frac{\log(n)}{n^{\epsilon}} = \lim_{n \to \infty} \frac{\frac{1}{n \cdot \ln(2)}}{\epsilon \cdot n^{\epsilon - 1}}$$
$$= \lim_{n \to \infty} \frac{1}{\epsilon \cdot \ln(2) \cdot n^{\epsilon}}$$
$$= 0$$

Assume that the result holds for all integers n less than or equal to some integer k, we show it must also hold for the k+1 integer.

$$\lim_{n \to \infty} \frac{\log^{k+1}(n)}{n^{\epsilon}} = \lim_{n \to \infty} \frac{(k+1) \cdot \log^{k}(n) \cdot \frac{1}{n \cdot \ln(2)}}{\epsilon \cdot n^{\epsilon-1}}$$
$$= \lim_{n \to \infty} \frac{(k+1) \cdot \log^{k}(n)}{\epsilon \cdot \ln(2) \cdot n^{\epsilon}}$$
$$= 0$$

which is what we wanted to show. Hence by the principle of mathematical induction the result holds for all n > 0 and $\epsilon > 0$.

13. Use to the definition of big-O to prove that $f(n) + g(n) = O(\max(f(n), g(n)))$.

$$f(n) + g(n) \le 2 \cdot max(f(n), g(n)), n \ge 1$$

which by the definition of big-O notation, f(n) + g(n) = O(max(f(n), g(n))).

14. Prove or disprove $(n!)^{log(n)} = \omega(n^{2^{log(n)}})$

$$log(lim_{n\to\infty} \frac{n!^{log(n)}}{n^n}) = lim_{n\to\infty} log(n) \cdot log(n!) - n \cdot log(n)$$

$$= lim_{n\to\infty} \Theta(n \cdot log_2^2(n)) - n \cdot log_2(n)$$

$$= \infty$$

$$2^{\infty} = \infty$$

which by the definition of little- ω notation, $n!^{log(n)} = \omega(n^{2^{log(n)}})$.