Comunicação em Datacenters

Gerência de Redes

Leandro Souza da Silva Luís Felipe Mattos

IC - Unicamp

06 de Dezembro de 2016

- 🚺 Introdução
- Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

Introdução

- Com o crescimento da computação em nuvem, os datacenters passaram a receber funções novas.
- Certas aplicações necessitam de certos requisitos:
 - ► Escalabilidade
 - ► Tolerância a Falhas
 - Latêcia
 - ► Capacidade da Rede
 - ▶ Virtualização

3 / 43

- Introdução
- Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

O consumo de dados pelos usuários está crescendo exponencialmente a cada ano.

Figure: Consumo de dados e voz

Por causa disso, o número de servidores em Data Centers deve crescer exponencialmente para acompanhar a demanda, o que traz dificuldades em desenvolver redes eficientes e de baixo custo.

Figure: Número de servidores racks

Disponibilidade de dados e segurança se tornaram aplicações críticas.

Por outro lado, a criação de novas tecnologias faz com que o custo dos componentes seja cada vez menor.

Figure: Custo de tecnologias

- Introdução
- Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunta

- Introdução
- Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

Topologias Tradicionais

- Baseadas em Árvores:
 - ► CLOS
 - ▶ Basic Tree
 - ► Fat-Tree
 - ▶ VL2
- Recursivas:
 - Dcell
 - Bcube
 - ► FiConn
 - ► FlatNet
 - ▶ SprintNet

Topologias Tradicionais

Topologias baseadas em árvores

Topologias Tradicionais

Topologias recursivas

Topologias Recursivas: Dcell

Baseada em células interligadas entre servidores

Topologias Recursivas: Bcube

Baseada em células interligadas entre switches

Topologias Recursivas: FiConn

Semelhante à Dcell, mas o grau de cada célula é sempre 2

Topologias Recursivas: FlatNet

Semelhante ao BCube, porém é mais escalável

Topologias Recursivas: SprintNet

Semelhante à DCell, porém as células são compostas por 4 servidores e 2 switches de 6 portas

Comparação

	Fat Tree (3 layers)	VL2 (3 layers)	DCell (2 layers)	BCube (2 layers)	FlatNet (2 layers)	SprintNet (2 layers)
Servers Number	$\frac{n^3}{4}$	$\frac{(n-2)n^2}{4}$	n(n+1)	n^2	n^3	$(\frac{c}{c+1})^2 n^2 + \frac{c}{c+1} n$
Links Number	$\frac{3n^3}{4}$	$\frac{(n+2)n^2}{4}$	$\frac{3n(n+1)}{2}$	$2n^2$	$2n^3$	$\frac{c^2 n^2}{c+1} + cn$
per Server	3	$\frac{n+2}{n-2}$	$\frac{3}{2}$	2	2	≥ 2
Switches Number	$\frac{5n^2}{4}$	$\frac{n^2}{4} + \frac{3n}{2}$	n+1	2n	$2n^2$	$\frac{c^2}{c+1}n + c$
per Server	5 n	$\frac{n+6}{n^2-2n}$	$\frac{1}{n}$	$\frac{2}{n}$	$\frac{2}{n}$	$\frac{c+1}{n}$
Bisection Bandwidth	$\frac{n^3}{8}$	$\frac{n^2}{4}$	$\frac{n^2}{4} + \frac{n}{2}$	$\frac{n^2}{2}$	$\frac{n^3}{4}$	$\frac{c^2n^2}{2(c+1)^2} + cn$
per Server	$\frac{1}{2}$	$\frac{1}{n-2}$	$\approx \frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{2} + \frac{(2c+1)(c+1)}{2(cn+c+1)}$
Network Diameter	6	6	5	4	8	4

- Introdução
- Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

20 / 43

SDN em Datacenters

Com o avanço do SDN, a ideia mais básica é definir servidores virtualizados e criar uma rede virtualizada

SDN Inside The Data Center

SDN adds missing piece to the virtualization puzzle: Network virtualization.

4 - - 4 - - 4 - - 4 -

SDN em Datacenters

Esta técnica já é utilizada atualmente (PayPal por exemplo)

DATACENTER ARCHITECTURE

DATACENTER ARCHITECTURE WITH OPENFLOW VSWITCHES

PayPal"

SDN em Datacenters

- Introdução
- 2 Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

Protocolos

- Introdução
- 2 Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunta

- Introdução
- 2 Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

Protocolos de Comunicação

- Deadline-Agnostic:
 - ightharpoonup DCTCP
 - ightharpoonup MPTCP
 - ightharpoonup ICTCP
- Deadline-Aware:
 - $\triangleright D^3$
 - $ightharpoonup D^2TCP$
 - ightharpoonup DeTail
 - ightharpoonup PDQ

Protocolos de Comunicação

Protocolos Deadline-Agnostic

Deadline-Aware: D^3

- Recebe a informação do tamanho do fluxo e o deadline
- Algoritmo guloso para tentar cumprir o máximo de deadlines possíveis
- Roteadores tentam alocar uma taxa adequada para cada fluxo
- Emissor envia dados com a mínima taxa alocada no próximo RTT
- A fonte periodicamente requisita uma nova taxa baseada no deadline e o tamanho do fluxo restante

Deadline-Aware: D^3

- Switches precisam de modificações para lidar com as requisições
- Não é compatível com o TCP tradicional, por causa da alocação de largura banda baseado em prioridades sem a informação do deadline no header
- Alocação com algoritmo guloso pode alocar largura de banda para fluxos com deadlines distantes ao invés de deadlines próximos, o que pode causar maior perda de deadlines
- Requisições constantes de taxas tem um overhead

Deadline-Aware: D^2TCP

- Baseado no DCTCP, mas leva o deadline em consideração para redimensionar a janela de congestionamento
- Se a maioria dos deadlines são próximos, ainda pode ocorrer congestionamento
- Se a maioria dos deadlines s\u00e3o distantes, ocorrer\u00e1 a sub-utiliza\u00e7\u00e3o da rede e baixa taxa de transfer\u00e9ncia
- Se todos os deadlines são próximos, estão competindo pela largura de banda e nenhum fluxo é adiado, todos os deadlines não serão cumpridos. Caso um fluxo seja adiado, todos os outros podem ser cumpridos.
- O problema é saber qual fluxo sacrificar para satisfazer o máximo de deadlines possíveis

- Fluxos são associados com prioridades e os switches usam filas de prioridades nas portas de saída e de entrada
- Cada camada da abstração da rede tem uma função

Enlace:

- Controle de fluxo "hop-by-hop"
- Tenta amenizar o bloqueio de "head-of-line" (HOL)
- Recebe informações da camada de rede em relação ao balanco de carga adaptativo
- Recebe informações da camada de transporte sobre o estado do ECN

Rede:

- Balanço de carga adaptativo baseado em pacotes de acordo com o nível de congestionamento
- Pode transmitir pacotes por caminhos que estão com pouca carga

Rede:

- Usa o ECN para marcar fluxos de baixa prioridade quando os bytes transmitidos para o destino ultrapassam um certo limiar
- Previne congestionamento persistente

Aplicação:

• Seleciona as prioridades de cada fluxo baseado na sensibilidade de latência

Deadline-Aware: PDQ

- Semelhante ao D^3 , mas ao contrário do D^3 , escalona taxas de acordo com a criticalidade dos fluxos ao invés da política "first-come first-serve"
- Duas políticas de alocação, implementadas de forma totalmente distribuída:
 - ► EDF (Earliest Deadline First)
 - ► SJF (Shortest Job First)

- Introdução
- 2 Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

Ponha aqui seu texto

- Introdução
- 2 Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunt

Ponha aqui seu texto

- Introdução
- Motivação
- Topologias
 - Tradicionais
 - SDN
- Protocolos
 - Roteamento
 - Comunicação
- Tendências
- Conclusão
- Pergunta

Ponha aqui seu texto

