Lecture-04-CMSC351
Rigorous Time:
• In the simplest case, the time complexity of code depends on some <i>n</i> , which could
be the length of a list or the number of times a loop iterates, etc
 Our goal is to imagine a function, T(n), that could tell us how much time the code
takes for any n , and then find a simple n such that $T(n) = \text{theta}(n)$ when possible
Assignments (var = value) take constant time
The time complexity of a loop can be reduced to the highest degree function
 Assignments, for loops, while loops, and conditionals all take time to perform
 In a worst-case scenario a conditional is assumed to be true and the entire
conditional can be replaced by the time the body takes
 Able to ignore maintenance line when evaluating time complexity of loops, only
evaluate loop body instead