Parallel and Distributed Computing: Singular Value Decomposition in the context of massive online Latent Semantic Analysis

Bahena, Zavaleta

CINVESTAV - ORACLE

August, 2015

Matrix Decompositions

Decomposition	Expression	Components		
LU Decomposition	A = LU	L is a lower triangular matrix;		
		$\it U$ is a upper triangular matrix		
Rank Factorization	A = CF	C is an $m \times r$ full column		
		rank matrix;		
		F is a $r \times n$ full row		
		rank matrix		
Cholesky	$A = U^T U$	<i>U</i> is upper triangular with positive		
Decomposition	A = 0 0	diagonal entries		
QR Decomposition	A = QR	Q is an orthogonal matrix mxm;		
		R is an upper		
		triangular matrix $m \times n$		
Eigendecomposition	$A = Q \Lambda Q^{-1}$	D is a diagonal matrix formed		
		from eigenvalues of A ;		
		V are the corresponding		
		eigenvectors		

SVD Decomposition

$A = U\Sigma V^T$

- U and V are orthogonal matrices
- ▶ Σ is a diagonal matrix that contain the *singular values* σ_i of A; $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$

In the 20th century, focus was on obtaining efficient algorithms for SVD computation

- Several implementations of SVD solvers
 - SVDPACK(C)
 - SVDLIBC
 - LAPACK
 - **•** ...
- Gensim contains the SVD solver that best matches our problem (as far as we could investigate)

Latent Semantic Indexing

Documents are encoded using the Vector Space Model

- ▶ A matrix A of size $m \times n$
- m indexed terms
- n documents

The VSM can not handle ambiguity:

- Synonymity
 - Polysemy

Latent Semantic Indexing

	d1	d2	d3	d4	d5	d6
ship	1	0	1	0	0	0
boat	0	1	0	0	0	0
ocean	1	1	0	0	0	0
voyage	1	0	0	1	1	0
trip	0	0	0	1	0	1

Table: Terms-Documents matrix

Latent Semantic Indexing and the Truncated SVD

According to Deerwester et al. there is a latent space where documents and indexed terms are expressed with r features.

- $\rightarrow A = U\Sigma V^T$
- U is the matrix of terms
- V is the matrix of documents
- \triangleright Σ contains r singular values

The smallest singular values are actually noise and we can get rid of them

- ▶ By doing so we get $A_k = U_k \Sigma_k V_k^T$
- ▶ This step is justified by Eckart-Young-Mirsky theorem

$$\min_{\{Z|rank(Z)=k\}} \|A - Z\|_2 = \|A - A_k\|_2 = \sigma_{k+1} \tag{1}$$

Latent Semantic Indexing and the Truncated SVD

1) In this space, to compare two terms:

$$A_k A_k^T = U_k \Sigma_k^2 U_k^T \tag{2}$$

2) To compare two documents:

$$A_k^T A_k = V_k \Sigma_k^2 V_k^T \tag{3}$$

3) The association between a term i and a document j is given by the value in position ij in matrix A_k

$$U = \begin{pmatrix} -0.45 & -0.30 & 0.57 & 0.58 & 0.25 \\ -0.13 & -0.33 & -0.59 & 0 & 0.73 \\ -0.48 & -0.51 & -0.37 & 0 & -0.61 \\ -0.70 & 0.35 & 0.15 & -0.58 & 0.16 \\ -0.26 & 0.65 & -0.41 & 0.58 & -0.09 \end{pmatrix}$$
(4)

$$\Sigma = \begin{pmatrix} 2.16 & 0 & 0 & 0 & 0 \\ 0 & 1.59 & 0 & 0 & 0 \\ 0 & 0 & 1.28 & 0 & 0 \\ 0 & 0 & 0 & 1.00 & 0 \\ 0 & 0 & 0 & 0 & 0.39 \end{pmatrix} \tag{5}$$

$$V^{T} = \begin{pmatrix} -0.75 & -0.28 & -0.20 & -0.45 & -0.33 & -0.12 \\ -0.29 & -0.53 & -0.19 & 0.63 & 0.22 & 0.41 \\ 0.28 & -0.75 & 0.45 & -0.20 & 0.12 & -0.33 \\ 0 & 0 & 0.58 & 0 & -0.58 & 0.58 \\ -0.53 & 0.29 & 0.63 & 0.19 & 0.41 & -0.22 \end{pmatrix}$$
 (6)

$$\Sigma_2 = \begin{pmatrix} 2.16 & 0.00 \\ 0.00 & 1.59 \end{pmatrix} \tag{7}$$

$$A_2 = \begin{pmatrix} 1.0199 & 0.0060 & 1.0112 & 0.0095 & 0.0069 & -0.0047 \\ 0.0004 & 1.0057 & -0.0046 & 0.0009 & 0.0033 & 0.0052 \\ 1.0062 & 1.0063 & -0.0016 & 0.0052 & 0.0094 & 0.0006 \\ 0.9933 & 0.0025 & -0.0140 & 1.0045 & 1.0064 & -0.0039 \\ -0.0069 & -0.0071 & -0.0059 & 1.0021 & -0.0011 & 1.0084 \end{pmatrix}$$

$$(8)$$

$$||A - A_k||_2 = 1.28 (9)$$

$$\Sigma_2 V_2^{\mathcal{T}} = \begin{pmatrix} -1.62 & -0.60 & -0.44 & -0.97 & -0.70 & -0.26 \\ -0.46 & -0.84 & -0.30 & 1.00 & 0.35 & 0.65 \end{pmatrix}$$
 (10)

$$q = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \tag{11}$$

$$q_k = \begin{pmatrix} -0.06\\ -0.21 \end{pmatrix} \tag{12}$$

How did we come up with this idea?

Looking for ideas for a Msc. Thesis

- ▶ Possibly apporting something to Oracle :)
- ▶ Oracle bought *Collaborative Intellect Inc.* in 2012
 - ► Analytics engine that processes conversations from Social Networks
 - Users of this product can know if user's posts in Social Networks are associated with certain topics
 - ► Tens of Millions of conversations in a day!
 - Social Networks produce Hundreds of Millions!
 - Requires LSI!

How did we come up with this idea?

Pre-Filter:

Start with Keyword Search on one word... that's all

 Narrow large data-sets for analysis with semantic processing

Speed to Insights:

Latent Semantic Analysis

- · High quality simliarity
- measures

 High performance for speed and precision
- Easier Maintenance
- Accurate Categorization
- Spam identification

Speech Analysis

Natural Languge Processing

- Parsing content to diagram speech
- Sentiment scoring

Statement of the Problem

Given the fact that modern LSI applications require end to end processing of hundreds of millions of documents every day, in a streamed updatable fashion, how can the particular SVD step be optimized through parallel or distributed computing?

Algorithm 1: Distributed-SVD: Distributed SVD for LSI (global)

Input: Truncation factor k, queue of jobs $A = [A_1, A_2, \dots]$

Output: Matrices $U^{m \times k}$ and $\Sigma^{k \times k}$, from the SVD decomp. of A

for all (node i in cluster) do

$$B_i \leftarrow \text{subset of the queue of jobs } [A_1, A_2, \dots]$$

 $P_i = (U_i, \Sigma_i) \leftarrow \text{SVD-Node}(k, B_i)$

$$(U, \Sigma) \leftarrow \mathsf{Reduce}(\mathsf{Merge-SVD}, [P_1, P_2, \dots])$$

return (U, Σ)

Algorithm 2: SVD-Node: Distributed SVD for LSI (node)

Input: Truncation factor k, queue of jobs A_1, A_2, \ldots

Output: Matrices $U^{m \times k}$ and $\Sigma^{k \times k}$, from the SVD of $[A_1, A_2, \dots]$

$$P = (U, \Sigma) \leftarrow 0^{m \times k} 0^{k \times k}$$

for each job A_i **do**

$$P' = (U', \Sigma') \leftarrow \text{Basecase-SVD}(k, A_i)$$

 $P = (U^{m \times k}, \Sigma^{k \times k}) \leftarrow \text{Merge-SVD}(k, P, P')$

$$\mathsf{return}\ (\mathit{U},\Sigma)$$

Algorithm 3: Merge-SVD: Merge of two SVD factorizations

Input : Truncation factor
$$k$$
, decay factor γ , $P_1 = (U_1^{m \times k_1}, \Sigma_1^{k_1 \times k_1})$,
$$P_2 = (U_2^{m \times k_2}, \Sigma_1^{k_2 \times k_2})$$
Output: $(U^{m \times k}, \Sigma^{k \times k})$

$$Z^{k_1 \times k_2} \leftarrow U_1^T U_2$$

$$U'R \xleftarrow{QR} U_2 - U_1 Z$$

$$U_R \Sigma V_R^T \xleftarrow{SVD_k} \begin{bmatrix} \gamma \Sigma_1 & Z \Sigma_2 \\ 0 & R \Sigma_2 \end{bmatrix}^{(k_1 + k_2) \times (k_1 + k_2)}$$

$$egin{bmatrix} R_1^{k_1 imes k} \ R_2^{k_2 imes k} \end{bmatrix} = U_R \ U \leftarrow U_1R_1 + U^{'}R_2 \
m return~(\textit{U},\Sigma) \ \end{pmatrix}$$

Distributed Algorithm

Complexity is according to him $O(mk^2)$

- Processed Wikipedia (3.2M documents, 100K words) in 2.5 hours in a 4 nodes cluster
- ► Using BLAS/LAPACK in the merge algorithm it took 1 hour and 41 minutes
- ► Another custom implementation of another SVD algorithm took 109 hours

Conclusions

We found that the following is still required:

- ► Enhance memory complexity study of Rehurek's algorithm
- Need a modern sensible experiment that compares best parallel/distributed algorithms taking into account the architecture of modern computers
 - Compare against Mahout, SLEPc, LingPipe, GraphLab, etc.
 - ▶ Use experiments similar to those that Rehurek did.
 - Need to use much more documents and more nodes in the cluster
 - Could get benchmark matrices used by Oracle's alternative
- ► For the case of Rehurek's, profiling experiments similar to those made by Berry, could help identify bottlenecks
 - Base case SVD
 - Merge Algorithm

Conclusions

- Need to research whether Rehurek's merge algorithm is optimal or not
- ▶ Need to try other merge alternatives
- Need an experiment with different implementations of the base case SVD solver
 - Could try parallel versions of SVDLIBC (BLAS/LAPACK)