Data sheet

BMC150 6-axis eCompass

Bosch Sensortec

BMC150: Data sheet

Document revision 1.0

Document release date 14 July 2014

Document number BST-BMC150-DS000-04

Technical reference code(s) 0 273 141 156

Notes Product photos and pictures are for illustration purposes only and may

differ from the real product's appearance.

BMC150

ECOMPASS WITH 3-AXIS GEOMAGNETIC SENSOR AND 12 BIT 3-AXIS ACCELEROMETER

Key features

Three-axis magnetic field sensor and 12bit three-axis accelerometer in one package

Accelerometer can still be used independently from magnetometer operation

Ultra-Small package
 14-Pin LGA package, footprint 2.2 × 2.2mm²,

height 0.95 mm

• Digital interface SPI (4-wire, 3-wire), I²C, 4 interrupt pins

(2 acceleration sensor, 2 magnetic sensor interrupt pins)

• Low voltage operation V_{DD} supply voltage range: 1.62V to 3.6V

 $\ensuremath{V_{\text{DDIO}}}$ interface voltage range: 1.2V to 3.6V

Flexible functionality
 Acceleration ranges ±2g/±4g/±8g/±16g

Acceleration Low-pass filter bandwidths 1 kHz - <8Hz

• Magnetic field range $\pm 1300 \mu T$ (x, y-axis), $\pm 2500 \mu T$ (z-axis)

Magnetic field resolution of ~0.3µT

On-chip FIFO
 Integrated FIFO with a depth of 32 frames

On-chip interrupt controller
 Motion-triggered interrupt-signal generation for

- new data (separate for accelerometer and magnetometer)

- any-motion (slope) detection

- tap sensing (single tap / double tap)

- orientation recognition

- flat detection

- low-g/high-g detection

- magnetic Low-/High-Threshold detection

Ultra-low power
 Low current consumption (190µA @ 10 Hz including

accelerometer and magnetic sensor in low power preset), short wake-up time, advanced features for system power

management

Temperature range -40 °C ... +85 °C

Temperature sensor

· RoHS compliant, halogen-free

Typical applications

- Tilt-compensated electronic compass for map rotation, navigation and augmented reality
- 6-axis orientation for gaming
- · Display profile switching
- Menu scrolling, tap / double tap sensing
- Pedometer / step counting
- Free-fall detection
- · Drop detection for warranty logging
- Advanced system power management for mobile applications
- Gaming

Page 3

General Description

The BMC150 is an integrated electronic compass solution for consumer market applications. It comprises a 12bit leading edge triaxial, low-g acceleration sensor and an ultra-low power, high precision triaxial magnetic field sensor. It allows measurements of acceleration and magnetic field in three perpendicular axes. Performance and features of both sensing technologies are carefully tuned and perfectly match the demanding requirements of all 6-axis mobile applications such as electronic compass, navigation or augmented reality.

An evaluation circuitry (ASIC) converts the output of the micromechanical sensing structures (MEMS) to digital results which can be read out over the industry standard digital interfaces.

Package and interfaces of the BMC150 have been designed to match a multitude of hardware requirements. As the sensor features an ultra-small footprint and a flat package, it is ingeniously suited for mobile applications.

The BMC150 offers ultra-low voltage operation (V_{DD} voltage range from 1.62V to 3.6V, V_{DDIO} voltage range 1.2V to 3.6V) and can be programmed to optimize functionality, performance and power consumption in customer specific applications. The programmable interrupt engine sets new standards in terms of flexibility.

The BMC150 senses orientation, tilt, motion, shock, vibration and heading in cell phones, handhelds, computer peripherals, man-machine interfaces, virtual reality features and game controllers.

Index of Contents

1	. SPECIFICATION	7
	1.1 COMPASS ELECTRICAL SPECIFICATION	7
	1.2 Accelerometer specification	
	1.3 MAGNETOMETER SPECIFICATION	
_		
2	. ABSOLUTE MAXIMUM RATINGS	.15
3	BLOCK DIAGRAM	.16
4	FUNCTIONAL DESCRIPTION	.17
	4.1 SUPPLY VOLTAGE AND POWER MANAGEMENT	17
	4.2 POWER MODES	17
	4.2.1 ACCELEROMETER POWER MODES	. 18
	4.2.2 MAGNETOMETER POWER MODES	
	4.2.3 BMC150 OVERALL POWER CONSUMPTION	
	4.3 SENSOR DATA	
	4.3.1 Acceleration data	
	4.3.2 TEMPERATURE SENSOR	
	4.3.4 MAGNETIC FIELD DATA TEMPERATURE COMPENSATION	
	4.4 SELF-TEST	
	4.4.1 Accelerometer self-test	. 30
	4.4.2 Magnetometer self-test	. 31
	4.5 ACCELEROMETER OFFSET COMPENSATION	33
	4.5.1 SLOW COMPENSATION	
	4.5.2 FAST COMPENSATION	
	4.5.3 Manual compensation	
	4.6 Non-volatile memory	
	4.6.1 ACCELEROMETER NON-VOLATILE MEMORY	_
		-
	4.7 ACCELEROMETER INTERRUPT CONTROLLER	
	4.7.1 GENERAL FEATURES	
	4.7.2 MAPPING TO PHYSICAL INTERRUPT PINS (INTTYPE TO INT PIN#)	
	4.7.4 NEW DATA INTERRUPT	
	4.7.5 SLOPE / ANY-MOTION DETECTION	41
	4.7.6 TAP SENSING	
	4.7.7 ORIENTATION RECOGNITION	
	4.7.8 FLAT DETECTION	
	4.7.10 High-g interrupt	
	4.7.11 NO-MOTION / SLOW MOTION DETECTION	

Page 5

4.8 ACCELEROMETER SOFTRESET	56
4.9 MAGNETOMETER INTERRUPT CONTROLLER	57
4.9.1 GENERAL FEATURES	
4.9.2 ELECTRICAL BEHAVIOR OF MAGNETIC INTERRUPT PINS 4.9.3 DATA READY / DRDY INTERRUPT	
4.9.4 LOW-THRESHOLD INTERRUPT	59
4.9.5 HIGH-THRESHOLD INTERRUPT4.9.6 OVERFLOW	
5. FIFO OPERATION	62
5.1 FIFO OPERATING MODES	62
5.2 FIFO DATA READOUT	63
5.3 FIFO FRAME COUNTER AND OVERRUN FLAG	63
5.4 FIFO INTERRUPTS	64
6. ACCELEROMETER REGISTER DESCRIPTION	65
6.1 GENERAL REMARKS	65
6.2 REGISTER MAP	66
6.3 CHIP ID	67
6.4 Acceleration data	68
6.5 Temperature data	72
6.6 Status registers	73
6.7 g-range selection	77
6.8 BANDWIDTHS	78
6.9 Power modes	79
6.10 SPECIAL CONTROL SETTINGS	81
6.11 Interrupt settings	83
6.12 SELF-TEST	96
6.13 Non-volatile MEMORY CONTROL (EEPROM)	97
6.14 Interface configuration	98
6.15 Offset compensation	99
6.16 NON-VOLATILE MEMORY BACK-UP	102
6.17 FIFO CONFIGURATION AND FIFO DATA	103
7. MAGNETOMETER REGISTER DESCRIPTION	105
7.1 GENERAL REMARKS	105
7.2 REGISTER MAP	105
7.3 CHIP ID	106
7 / MACNETIC FIELD DATA	106

Page 6

7.5 Interrupt status register	109
7.6 POWER AND OPERATION MODES, SELF-TEST AND DATA OUTPUT RATE CONTROL	REGISTERS 110
7.7 INTERRUPT AND AXIS ENABLE SETTINGS CONTROL REGISTERS	112
7.8 NUMBER OF REPETITIONS CONTROL REGISTERS	114
8. DIGITAL INTERFACES	116
8.1 SERIAL PERIPHERAL INTERFACE (SPI)	117
8.2 Inter-Integrated Circuit (I ² C)	121
8.2.1 SPI AND I ² C Access Restrictions	126
9. PIN-OUT AND CONNECTION DIAGRAM	127
9.1 PIN-OUT	127
9.2 CONNECTION DIAGRAM 4-WIRE SPI	128
9.3 CONNECTION DIAGRAM 3-WIRE SPI	129
9.4 Connection diagram I ² C	130
10. PACKAGE	131
10.1 OUTLINE DIMENSIONS	131
10.2 SENSING AXES ORIENTATION	132
10.3 Android axes orientation	133
10.4 LANDING PATTERN RECOMMENDATION	135
10.5 Marking	136
10.5.1 Mass production devices	
10.6 SOLDERING GUIDELINES	137
10.7 HANDLING INSTRUCTIONS	138
10.8 TAPE AND REEL SPECIFICATION	139
10.8.1 Tape and reel dimensions	
10.9 Environmental safety	140
10.9.1 HALOGEN CONTENT	
11. LEGAL DISCLAIMER	141
11.1 Engineering samples	141
11.2 PRODUCT USE	141
11.3 APPLICATION EXAMPLES AND HINTS	141
12. DOCUMENT HISTORY AND MODIFICATION	142

1. Specification

If not stated otherwise, the given values are over lifetime and full performance temperature and voltage ranges, minimum/maximum values are $\pm 3\sigma$. The specifications are split into accelerometer part and magnetometer part of BMC150.

1.1 Compass electrical specification

Table 1: Compass electrical parameter specification

Compass Operating Conditions							
Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Supply Voltage Internal Domains	V_{DD}		1.62	2.4	3.6	V	
Supply Voltage I/O Domain	V_{DDIO}		1.2	1.8	3.6	V	
Voltage Input Low Level	$V_{IL,a}$	SPI & I ² C			0.3V _{DDIO}	-	
Voltage Input High Level	$V_{\text{IH,a}}$	SPI & I ² C	$0.7V_{\text{DDIO}}$			-	
Voltage Output Low Level	V _{OL}	$V_{DDIO} = 1.2V$ $I_{OL} = 3mA, SPI \& I^2C$			0.2V _{DDIO}	-	
Voltage Output High Level	V_{OH}	V_{DDIO} = 1.62V I_{OH} = 2mA, SPI & I ² C	0.8V _{DDIO}			-	

1.2 Accelerometer specification

Table 2: Accelerometer parameter specification

ACCELEROMETER Operating Conditions								
Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Acceleration Range	gFS2g gFS4g gFS8g gFS16g	Selectable via serial digital interface		±2 ±4 ±8 ±16		g g g		
Total Supply Current in Normal Mode	I _{DD}	$T_A=25$ °C, bw = 1kHz $V_{DD} = V_{DDIO} = 2.4V$		130		μΑ		
Total Supply Current in Low-Power Mode 1	I _{DDlp1}	T_A =25°C, bw = 1kHz V_{DD} = V_{DDIO} = 2.4V sleep duration = 25ms		6.5		μΑ		
Total Supply Current in Low-Power Mode 2	I _{DDIp2}	T_A =25°C, bw = 1kHz V_{DD} = V_{DDIO} = 2.4V sleep duration = 25ms		66		μА		
Total Supply Current in Deep Suspend Mode	I _{DDsm,a}	$T_A=25^{\circ}C$ $V_{DD}=V_{DDIO}=2.4V$		1		μΑ		
Total Supply Current in Suspend Mode	I _{DDsum}	$T_A=25^{\circ}C$ $V_{DD}=V_{DDIO}=2.4V$		2.1		μΑ		
Total Supply Current in Standby Mode	I_{DDsbm}	$T_A=25^{\circ}C$ $V_{DD}=V_{DDIO}=2.4V$		62		μΑ		
Wake-Up Time 1	$t_{w_up,a1}$	from Low-power Mode 1 or Suspend Mode or Deep Suspend Mode bw = 1kHz		1.3	1.8	ms		
Wake-Up Time 2	t _{w_up,a2}	from Low-power Mode 2 or Stand-by Mode bw = 1kHz		1.0	1.2	μs		
Start-Up Time	t _{s_up,a}	POR, bw = 1kHz			3	ms		
Non-volatile memory (NVM) write-cycles	n _{NVM}				15	cycles		

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Bosch Sensortec

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.

Note: Specifications within this document are subject to change without notice. Not intended for publication.

Page 9

Operating Temperature	T _A	Same for accelerometer and magnetometer	-40		+85	°C			
	ACCELEROMETER OUTPUT SIGNAL								
Parameter	Symbol	Condition	Min	Тур	Max	Unit			
Device Resolution	$D_{res,a}$	g _{FS2g}		0.98		mg			
	S_{2g}	g_{FS2g} , $T_A=25$ °C		1024		LSB/g			
Sensitivity	S_{4g}	g_{FS4g} , $T_A=25$ °C		512		LSB/g			
Sensitivity	S _{8g}	g _{FS8g} , T _A =25°C		256		LSB/g			
	S _{16g}	g_{FS16g} , $T_A=25$ °C		128		LSB/g			
Sensitivity Temperature Drift	TCS _a	g_{FS2g} , Nominal V_{DD} supplies		±0.02		%/K			
Zero-g Offset	Off	g_{FS2g} , T_A =25°C, nominal V_{DD} supplies, over life-time		±80		mg			
Zero-g Offset Temperature Drift	TCO	g_{FS2g} , Nominal V_{DD} supplies		±1		mg/K			
	bw ₈			8		Hz			
	bw ₁₆			16		Hz			
	bw ₃₁	and I su		31		Hz			
Bandwidth	bw ₆₃	2 nd order filter, bandwidth		63		Hz			
Danawidin	bw ₁₂₅	programmable		125		Hz			
	bw ₂₅₀	, -		250		Hz			
	bw ₅₀₀			500		Hz			
	bw ₁₀₀₀			1000		Hz			
Nonlinearity	$NL_{,a}$	best fit straight line, g_{FS2g}		±0.5		%FS			
Output Noise Density	n _{rms,a}	g_{FS2g} , T_A =25°C Nominal V_{DD} supplies Normal mode		150		µg/√Hz			

Page 10

Temperature Sensor Measurement Range ¹	Ts		-40		85	°C
Temperature Sensor Slope ¹	dTs			0.5		K/LSB
Temperature Sensor Offset ¹	OTs			±2		K
	ACCELER	ROMETER MECHANICAL	CHARACT	ERISTICS		
Parameter	Symbol	Condition	Min	Тур	Max	Unit
Cross Axis Sensitivity	Sa	relative contribution between any two of the three axes		1		%
Alignment Error	E _{A,a}	relative to package outline		±0.5		0

¹ Tentative value

1.3 Magnetometer specification

Table 3: Magnetometer Parameter Specification

	MAGNETOMETER Operating Conditions							
Parameter	Symbol	Condition	Min	Тур	Max	Unit		
Magnetic field range	$B_{rg,xy}$ $B_{rg,z}$	T _A =25°C ²		±1300 ±2500		μT μT		
Magnetometer heading accuracy ³	Acheading	30µT horizontal geomagnetic field component, T _A =25°C			±2.5	degree		
System heading accuracy ⁴	As _{heading}	$30\mu T$ horizontal geomagnetic field component, T_A =25°C			±3.0	degree		
	$I_{\mathrm{DD,lp,m}}$	Low power preset Nominal V_{DD} supplies T_A =25°C, ODR=10Hz		170		μΑ		
Supply Current in	$I_{\mathrm{DD,rg,m}}$	Regular preset Nominal V_{DD} supplies T_A =25°C, ODR=10Hz		0.5		mA		
Active Mode (average) ⁵	I _{DD,eh,m}	Enhanced regular preset Nominal V _{DD} supplies T _A =25°C, ODR=10Hz		0.8		mA		
	I _{DD,ha,m}	High accuracy preset Nominal V_{DD} supplies T_A =25°C, ODR=20Hz		4.9		mA		
Supply Current in Suspend Mode	$I_{DDsm,m}$	Nominal V_{DD}/V_{DDIO} supplies, T_A =25°C		1		μΑ		
Peak supply current in Active Mode	$I_{DDpk,m}$	In measurement phase Nominal V_{DD} supplies T_A =25°C		18		mA		
Peak logic supply current in active mode	$I_{ m DDIOpk,m}$	Only during measurement phase Nominal V _{DDIO} supplies T _A =25°C		210		μΑ		

² Full linear measurement range considering sensor offsets.

_

³ The heading accuracy depends both on hardware and software. For detailed information of the software performance please contact Bosch Sensortec.

⁴ Heading accuracy of the tilt-compensated 6-axis eCompass system, assuming calibration with Bosch Sensortec eCompass software (only available for Android and Windows operating sytems and requires the conclusion of a software licence agreement). Average value over various device orientations (typical device usage).

⁵ For details on magnetometer current consumption calculation refer to chapter 4.2.2 and 4.2.3.

Page 12

POR time	t _{w_up,m}	from OFF to Suspend; time starts when VDD>1.5V and VDDIO>1.1V		1.0	ms
Start-Up Time	$t_{s_up,m}$	from Suspend to sleep		3.0	ms

MAGNETOMETER OUTPUT SIGNAL							
Parameter	Symbol	Condition	Min	Тур	Max	Unit	
Device Resolution	$D_{\text{res,m}}$	T _A =25°C		0.3		μΤ	
Gain error ⁶	$G_{err,m}$	After API temperature compensation $T_A=25^{\circ}C$ Nominal V_{DD} supplies		±2		%	
Sensitivity Temperature Drift	TCS _m	After API temperature compensation $-40^{\circ}\text{C} \le T_{\text{A}} \le +85^{\circ}\text{C}$ Nominal V_{DD} supplies		±0.01		%/K	
Zero-B offset	OFF _m	T _A =25°C		±40		μΤ	
Zero-B offset	$OFF_{m,cal}$	After software calibration with Bosch Sensortec eCompass software ⁷ $-40^{\circ}\text{C} \leq T_{A} \leq +85^{\circ}\text{C}$		±2		μΤ	
Zero-B offset Temperature Drift	TCO _m	-40 °C $\leq T_A \leq +85$ °C Nominal V _{DD} supplies		±0.07		μT/K	
	odr _{lp}	Low power preset		10		Hz	
ODR (data	odr_{rg}	Regular preset		10		Hz	
output rate), normal mode	odr _{eh}	Enhanced regular preset		10		Hz	
	odr _{ha}	High accuracy preset		20		Hz	
	odr _{lp}	Low power preset	0		>300	Hz	
ODR (data	odr_{rg}	Regular preset	0		100	Hz	
output rate), forced mode	odr _{eh}	Enhanced regular preset	0		60	Hz	
	odr_{ha}	High accuracy preset	0		20	Hz	
Full-scale Nonlinearity	NL _{m, FS}	best fit straight line			1	%FS	
Output Noise	$n_{\text{rms,lp,m,xy}}$	Low power preset x , y-axis, T_A =25°C Nominal V_{DD} supplies		1.0		μΤ	

 $^{^{6}}$ Definition: gain error = ((measured field after API compensation) / (applied field)) - 1

⁷Magnetic zero-B offset assuming calibration with Bosch Sensortec eCompass software (only available for Android and Windows operating sytems and requires the conclusion of a software licence agreement). Typical value after applying calibration movements containing various device orientations (typical device usage).

Page 14

	n _{rms,lp,m,z}	Low power preset z-axis, T_A =25°C Nominal V_{DD} supplies	1.4	μΤ
	$n_{rms,rg,m}$	Regular preset T_A =25°C Nominal V_{DD} supplies	0.6	μΤ
	n _{rms,eh,m}	Enhanced regular preset T _A =25°C Nominal V _{DD} supplies	0.5	μТ
	n _{rms,ha,m}	High accuracy preset T_A =25°C Nominal V_{DD} supplies	0.3	μΤ
Power Supply Rejection Rate	PSRR _m	T_A =25°C Nominal V _{DD} supplies	±0.5	μT/V

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Bosch Sensortec

2. Absolute maximum ratings

The absolute maximum ratings provided in Table 4 apply to both the accelerometer and magnetometer part of BMC150. At or above these maximum ratings operability is not given. The specification limits in Chapter 1 only apply under normal operating conditions.

Table 4: Absolute maximum ratings

Parameter	Condition	Min	Max	Unit
V 1	V_{DD} Pin	-0.3	4.0	V
Voltage at Supply Pin	V _{DDIO} Pin	-0.3	4.0	V
Voltage at any Logic Pad	Non-Supply Pin	-0.3	VDDIO + 0.3	V
Operating Temperature, T _A	Active operation	-40	+85	°C
Passive Storage Temp. Range	≤ 65% rel. H.	-50	+150	°C
None-volatile memory (NVM) Data Retention	T = 85°C, after 15 cycles	10		year
	Duration ≤ 200µs		10,000	g
Mechanical Shock	Duration ≤ 1.0ms		2,000	g
Wednanical Shock	Free fall onto hard surfaces		1.8	m
	HBM, at any Pin		2	kV
ESD	CDM		500	V
	MM		200	V
Magnetic field	Any direction		> 7	T

Note:

Stress above these limits may cause damage to the device. Exceeding the specified limits may affect the device reliability or cause malfunction.

3. Block diagram

Figure 1 shows the basic building blocks of the BMC150:

Figure 1: Block diagram of BMC150

Page 17

4. Functional description

BMC150 is a SiP (system in package) integration of a triaxial accelerometer (Sensing element and ASIC) and a triaxial geomagnetic sensor (Sensing element and ASIC) in one package. The two ASICs act as two separate slave devices on the digital bus (with different I²C address in I²C mode), which allows an independent operation of accelerometer and magnetometer parts in order to fit into a wide range of usage scenarios.

4.1 Supply voltage and power management

The BMC150 has two distinct power supply pins which supply both the acceleration sensor part and the magnetometer sensor part:

- V_{DD} is the main power supply for all internal analog and digital functional blocks;
- V_{DDIO} is a separate power supply pin, used for the supply of the digital interface as well as the magnetic sensor's logic.

There are no limitations on the voltage levels of both pins relative to each other, as long as each of them lies within its operating range. Furthermore, the device can be completely switched off $(V_{DD} = 0V)$ while keeping the V_{DDIO} supply within operating range or vice versa.

It is absolutely prohibited to keep any interface at a logical high level when V_{DDIO} is switched off. Such a configuration will permanently damage the device (i.e. if $V_{DDIO} = 0 \rightarrow [SDI \& SDO \& SCK \& CSB] \neq high)$.

The device contains a power on reset (POR) generator for each of the sensor parts, accelerometer part and magnetometer part. It resets the logic part and the register values of the concerned ASIC after powering-on V_{DD} and V_{DDIO} . Please note, that all application specific settings which are not equal to the default settings (refer to register maps chapter 6.2 and 7.2), must be re-set to its designated values after POR.

There are no constraints on the sequence of switching on both supply voltages. In case the I^2C interface is used, a direct electrical connection between V_{DDIO} supply and the PS pin is needed in order to ensure reliable protocol selection. For SPI interface mode the PS pin must be directly connected to GND.

4.2 Power modes

The BMC150 features separately configurable power modes for the accelerometer and the magnetometer part. The advantage is that different characteristics regarding optimum system power saving of the two sensor types are exploited, and that the accelerometer part may also be used alone in certain usage scenarios where no magnetic field data is required. In such an example, the magnetometer part is able to suspend and save power during the time in which it is not required.

In the following chapters, power modes for both accelerometer and magnetometer part are described.

4.2.1 Accelerometer power modes

The BMC150 accelerometer part has six different power modes (see Figure 2). Besides normal mode, which represents the fully operational state of the device, there are five energy saving modes: deep-suspend mode, suspend mode, standby mode, low-power mode 1 and low-power mode 2.

The possible transitions between the power modes are illustrated in Figure 2:

Figure 2: Power mode transition diagram

After power-up the accelerometer part of BMC150 is in normal mode so that this part is held powered-up and data acquisition is performed continuously.

In deep-suspend mode the device reaches the lowest possible power consumption. Only the interface section is kept alive. No data acquisition is performed and the content of the configuration registers is lost. Deep suspend mode is entered (left) by writing '1' ('0') to the (0x11) deep_suspend bit while (0x11) suspend bit is set to '0'. The I^2C watchdog timer remains functional. The (0x11) deep_suspend bit, the (0x34) spi3 bit, (0x34) $i2c_wdt_en$ bit and the (0x34) $i2c_wdt_sel$ bit are functional in deep-suspend mode. Equally the interrupt level and driver configuration registers (0x20) int1_lvl, (0x20) int1_od, (0x20) int2_lvl, and (0x20) int2_od are accessible. Still it is possible to enter normal mode by performing a softreset as described in chapter 4.8. Please note, that all application specific settings which are not equal to the default settings (refer to 6.2), must be re-set to its designated values after leaving deep-suspend mode.

In **suspend mode** the whole analog part is powered down. No data acquisition is performed. While in suspend mode the latest acceleration data and the content of all configuration registers are kept. Writing to and reading from registers is supported except from the (0x3E)

Page 19

fifo_config_1, (0x30) fifo_config_0 and (0x3F) fifo_data register. It is possible to enter normal mode by performing a softreset as described in chapter.7.6.

Suspend mode is entered (left) by writing '1' ('0') to the (0x11) suspend bit after bit (0x12) lowpower_mode has been set to '0'. Although write access to registers is supported at the full interface clock speed (SCL or SCK), a waiting period must be inserted between two consecutive write cycles (please refer also to section 8.2.1).

In **standby mode** the analog part is powered down, while the digital part remains largely operational. No data acquisition is performed. Reading and writing registers is supported without any restrictions. The latest acceleration data and the content of all configuration registers are kept. Standby mode is entered (left) by writing '1' ('0') to the (0x11) suspend bit after bit (0x12) lowpower_mode has been set to '1'. It is also possible to enter normal mode by performing a softreset as described in chapter 7.6.

In **low-power mode 1**, the device is periodically switching between a sleep phase and a wake-up phase. The wake-up phase essentially corresponds to operation in normal mode with complete power-up of the circuitry. The sleep phase essentially corresponds to operation in suspend mode. Low-power mode is entered (left) by writing '1' ('0') to the (0x11) lowpower_en bit after bit (0x12) lowpower_mode has been set to '0'. Read access to registers is possible except from the (0x3F) fifo_data register. However, unless the register access is synchronised with the wake-up phase, the restrictions of the suspend mode apply.

Low-power mode 2 is very similar to low-power mode 1, but register access is possible at any time without restrictions. It consumes more power than low-power mode 1. In low-power mode 2 the device is periodically switching between a sleep phase and a wake-up phase. The wake-up phase essentially corresponds to operation in normal mode with complete power-up of the circuitry. The sleep phase essentially corresponds to operation in standby mode. Low-power mode is entered (left) by writing '1' ('0') to the (0x11) lowpower_en bit with bit (0x12) lowpower_mode set to '1'.

The timing behaviour of the low-power modes 1 and 2 depends on the setting of the (0x12) sleeptimer_mode bit. When (0x12) sleeptimer_mode is set to '0', the event-driven time-base mode (EDT) is selected. In EDT the duration of the wake-up phase depends on the number of samples required by the enabled interrupt engines. If an interrupt is detected, the device stays in the wake-up phase as long as the interrupt condition endures (non-latched interrupt), or until the latch time expires (temporary interrupt), or until the interrupt is reset (latched interrupt). If no interrupt is detected, the device enters the sleep phase immediately after the required number of acceleration samples have been taken and an active interface access cycle has ended. The EDT mode is recommended for power-critical applications which do not use the FIFO. Also, EDT mode is compatible with legacy BST sensors.

Figure 3 shows the timing diagram for low-power modes 1 and 2 when EDT is selected.

Figure 3: Timing Diagram for low-power mode ½, EDT

When (0x12) sleeptimer_mode is set to '1', the equidistant-sampling mode (EST) is selected. The use of the EST mode is recommended when the FIFO is used since it ensures that equidistant samples are sampled into the FIFO regardless of whether the active phase is extended by active interrupt engines or interface activity. In EST mode the sleep time $t_{SLEEP,a}$ is defined as shown in Figure 4. The FIFO sampling time $t_{SAMPLE,a}$ is the sum of the sleep time $t_{SLEEP,a}$ and the sensor data sampling time $t_{SSMP,a}$. Since interrupt engines can extend the active phase to exceed the sleep time $t_{SLEEP,a}$, equidistant sampling is only guaranteed if the bandwidth has been chosen such that $1/(2 * bw) = n * t_{SLEEP,a}$ where n is an integer. If this condition is infringed, equidistant sampling is not possible. Once the sleep time has elapsed the device will store the next available sample in the FIFO. This set-up condition is not recommended as it may result in timing jitter.

Figure 4: Timing Diagram for low-power mode ½, EST

The sleep time for lower-power mode 1 and 2 is set by the (0x11) sleep_dur bits as shown in the following table:

Table 5: Sleep phase duration settings

(0x11) sleep_dur	Sleep Phase Duration t _{SLEEP,a}
0000b	0.5ms
0001b	0.5ms
0010b	0.5ms
0011b	0.5ms
0100b	0.5ms
0101b	0.5ms
0110b	1ms
0111b	2ms
1000b	4ms
1001b	6ms
1010b	10ms
1011b	25ms
1100b	50ms
1101b	100ms
1110b	500ms
1111b	1 s

The current consumption of the BMC150 accelerometer part in low-power mode 1 (I_{DDlp1}) and low-power mode 2 (I_{DDlp2}) can be estimated with the following formulae:

$$I_{DDlp1,a} \approx \frac{t_{sleep,a} \cdot I_{DDsum,a} + t_{active,a} \cdot I_{DD,a}}{t_{sleep,a} + t_{active,a}}$$

$$I_{DDlp2,a} \approx \frac{t_{sleep,a} \cdot I_{DDsbm,a} + t_{active,a} \cdot I_{DD,a}}{t_{sleep,a} + t_{active,a}}$$

When estimating the length of the wake-up phase t_{active} , the corresponding typical wake-up time, $t_{w,up1}$ or $t_{w,up2}$ and t_{ut} (given in table 5) have to be considered:

If bandwidth is >=31.25 Hz:
$$t_{active} = t_{ut} + t_{w,up1} - 0.9 \text{ ms}$$
 (or $t_{active} = t_{ut} + t_{w,up2} - 0.9 \text{ ms}$) else: $t_{active} = 4 t_{ut} + t_{w,up1} - 0.9 \text{ ms}$ (or $t_{active} = 4 t_{ut} + t_{w,up2} - 0.9 \text{ ms}$)

During the wake-up phase all analog modules are held powered-up, while during the sleep phase most analog modules are powered down. Consequently, a wake-up time of at least $t_{w,up1}$ ($t_{w,up2}$) is needed to settle the analog modules so that reliable acceleration data are generated.

Page 22

4.2.2 Magnetometer power modes

The BMC150 magnetometer part features configurable power modes. The four power modes of the BMC150 magnetometer are decribed in the following chapters.

Power off mode

In Power off mode, V_{DD} and/or V_{DDIO} are unpowered. The magnetometer part does not operate in this mode. When only one of V_{DD} or V_{DDIO} is supplied, the magnetic sensor will still be in Power off mode. Power on reset is performed after both V_{DD} and V_{DDIO} have risen above their detection thresholds.

Suspend mode

Suspend mode is the default power mode of BMC150 magnetometer part after the chip is powered. When VDD and VDDIO are turned on the POR (power on reset) circuits operate and the device's registers are initialized. After POR becomes inactive, a start up sequence is executed. In this sequence NVM content is downloaded to shadow registers located in the device core. After the start up sequence the device is put in the Suspend mode. In this mode only registers which store power control bit information and SPI 3 wire enable can be accessed by the user. In this mode only registers supplied directly by VDDIO which store I²C slave device address, power control bit information and some others can be accessed by the user. No other registers can be accessed in Suspend mode. All registers loose their content, except the control register (0x4B). In particular, in this mode a Chip ID read (register 0x40) returns "0x00" (I²C) or high-Z (SPI).

Sleep mode

The user puts device from suspend into Sleep mode by setting the Power bit to "1", or from active modes (normal or forced) by setting OpMode bits to "11". In this state the user has full access to the device registers. In particular, the Chip ID can be read. Setting the power control bit to "0" (register 0x4B bit0) will bring the device back into Suspend mode. From the Sleep mode the user can put the device back into Suspend mode or into Active mode.

Active mode

The device can switch into Active mode from Sleep mode by setting OpMode bits (register 0x4C). In active mode the magnetic field measurements are performed. In active mode, all registers are accessible.

In active mode, two operation modes can be distinguished:

- Normal mode: selected channels are periodically measured according to settings set in user registers. After measurements are completed, output data is put into data registers and the device waits for the next measurement period, which is set by programmed output data rate (ODR). From normal mode, the user can return to sleep mode by setting OpMode to "11" or by performing a soft reset (see chapter 7.6). Suspend mode can be entered by setting power control bit to "0".
- Forced mode (single measurement): When set by the host, the selected channels are measured according to settings programmed in user registers. After measurements are completed, output data is put into data registers, OpMode register value returns to "11" and the device returns to sleep mode. The forced mode is useful to achieve synchronized operation between host microcontroller and BMC150. Also, different data output rates from the ones selectable in normal mode can be achieved using forced mode.

Figure 5: Magnetometer power mode transition diagram

In Active Mode and normal operation, in principle any desired balance between output noise and active time (hence power consumption) can be adjusted by the repetition settings for x/y-axis and z-axis and the output data rate ODR. The average power consumption depends on the ratio of high current phase time (during data acquisition) and low current phase time (between

Page 24

data acquisitions). Hence, the more repetitions are acquired to generate one magnetic field data point, the longer the active time ratio in one sample phase, and the higher the average current. Thanks to longer internal averaging, the noise level of the output data reduces with increasing number of repetitions.

By using forced mode, it is possible to trigger new measurements at any rate. The user can therefore trigger measurements in a shorter interval than it takes for a measurement cycle to complete. If a measurement cycle is not allowed to complete, the resulting data will not be written into the data registers. To prevent this, the manually triggered measurement intervals must not be shorter than the active measurement time which is a function of the selected number of repetitions. The maximum selectable read-out frequency in forced mode can be calculated as follows:

$$f_{\text{max},ODR} \approx \frac{1}{145\mu s \times nXY + 500\mu s \times nZ + 980\mu s}$$

Hereby nXY is the number of repetitions on X/Y-axis (not the register value) and nZ the number of repetitions on Z-axis (not the register value) (see description of XY_REP and Z_REP registers in chapter 7).

Although the repetition numbers for X/Y and Z axis and the ODR can be adjusted independently and in a wide range, there are four recommended presets (High accuracy preset, Enhanced regular preset, Regular preset, Low power preset) which reflect the most common usage scenarios, i.e. required output accuracy at a given current consumption, of the BMC150 magnetometer part.

The four presets consist of the below register configurations, which are automatically set by the BMC150 API or driver provided by Bosch Sensortec when a preset is selected. Table 6 shows the recommended presets and the resulting magnetic field output noise and magnetometer part current consumption:

Table 6: Magnetometer presets in Active operation and normal mode:

Preset	X/Y rep	Z rep	ODR	ODR _{max} (forced mode)	RMS Noise x/y/z	Average current consumption
Low power preset	3	3	10 Hz	>300 Hz	1.0/1.0/1.4 μΤ	170 μΑ
Regular preset	9	15	10 Hz	100 Hz	0.6/0.6/0.6 μΤ	0.5 mA
Enhanced regular preset	15	27	10 Hz	60 Hz	0.5/0.5/0.5 μΤ	0.8 mA
High accuracy preset	47	83	20 Hz	20 Hz	0.3/0.3/0.3 μΤ	4.9 mA

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Bosch Sensortec

4.2.3 BMC150 overall power consumption

Below, Table 7 shows the overall current consumption of BMC150 (sum of accelerometer and magnetometer part) in typical scenarios such as a tilt-compensated electronic compass application.

Table 7: BMC150 overall current consumption in typical usage scenarios:

Compass preset	Acc. Active / sleep interval	Acc. BW / DOR	Mag. Avg. current	Acc. avg. current	Total average current
Low power preset	8 / 50 ms	62.5 / 17 Hz	170 μΑ	20 μΑ	190 μΑ
Regular preset	16 / 50 ms	31 / 15 Hz	0.5 mA	35 μΑ	0.54 mA
Enhanced regular preset	16 / 50 ms	31 / 15 Hz	0.8 mA	35 μΑ	0.84 mA
High accuracy preset	16 /25 ms	31 / 24 Hz	4.9 mA	55 μΑ	5.0 mA

4.3 Sensor data

4.3.1 Acceleration data

The width of acceleration data is 12 bits given in two's complement representation. The 12 bits for each axis are split into an MSB upper part (one byte containing bits 11 to 4) and an LSB lower part (one byte containing bits 3 to 0 of acceleration and a (0x02, 0x04, 0x06) new_data flag). Reading the acceleration data registers shall always start with the LSB part. In order to ensure the integrity of the acceleration data, the content of an MSB register is locked by reading the corresponding LSB register (shadowing procedure). When shadowing is enabled, the MSB must always be read in order to remove the data lock. The shadowing procedure can be disabled (enabled) by writing '1' ('0') to the bit shadow_dis. With shadowing disabled, the content of both MSB and LSB registers is updated by a new value immediately. Unused bits of the LSB registers may have any value and should be ignored. The (0x02, 0x04, 0x06) new_data flag of each LSB register is set if the data registers have been updated. The flag is reset if either the corresponding MSB or LSB part is read.

Two different streams of acceleration data are available, unfiltered and filtered. The unfiltered data is sampled with 2kHz. The sampling rate of the filtered data depends on the selected filter bandwidth and is always twice the selected bandwidth (BW = ODR/2). Which kind of data is stored in the acceleration data registers depends on bit (0x13) data_high_bw. If (0x13) data_high_bw is '0' ('1'), then filtered (unfiltered) data is stored in the registers. Both data streams are offset-compensated.

The bandwidth of filtered acceleration data is determined by setting the (0x10) bw bit as followed:

bw	Bandwidth	Update Time t _{ut}
00xxx	*)	-
01000	7.81Hz	64ms
01001	15.63Hz	32ms
01010	31.25Hz	16ms
01011	62.5Hz	8ms
01100	125Hz	4ms
01101	250Hz	2ms
01110	500Hz	1ms
01111	1000Hz	0.5ms
1xxxx	*)	-

Table 8: Bandwidth configuration

*) Note:

Settings 00xxx result in a bandwidth of 7.81 Hz; settings 1xxxx result in a bandwidth of 1000 Hz. It is recommended to actively use the range from '01000b' to '01111b' only in order to be compatible with future products.

Page 27

The BMC150's accelerometer part supports four different acceleration measurement ranges. A measurement range is selected by setting the (0x0F) range bits as follows:

Acceleration measurement Range Resolution range 0011 0.98mg/LSB ±2g 0101 1.95mg/LSB ±4g 1000 ±8g 3.91mg/LSB 1100 7.81mg/LSB ±16g others reserved

Table 9: Range selection

4.3.2 Temperature sensor

The width of temperature data is 8 bits given in two's complement representation. Temperature values are available in the (0x08) temp register.

The slope of the temperature sensor is 0.5 K/LSB, its center temperature is 23 °C [(0x08) temp = 0x00].

4.3.3 Magnetic field data

The representation of magnetic field data is different between X/Y-axis and Z-axis. The width of X- and Y-axis magnetic field data is 13 bits each and stored in two's complement. DATAX_LSB (0x42) contains 5-bit LSB part [4:0] of the 13 bit output data of the X-channel. DATAX_MSB (0x43) contains 8-bit MSB part [12:5] of the 13 bit output data of the Y-channel. DATAY_LSB (0x44) contains 5-bit LSB part [4:0] of the 13 bit output data of the Y-channel. DATAY_MSB (0x45) contains 8-bit MSB part [12:5] of the 13 bit output data of the Y-channel.

The width of the Z-axis magnetic field data is 15 bit word stored in two's complement. DATAZ_LSB (0x46) contains 7-bit LSB part [6:0] of the 15 bit output data of the Z-channel. DATAZ_MSB (0x47) contains 8-bit MSB part [14:7] of the 15 bit output data of the Z-channel.

For all axes, temperature compensation on the host is used to get ideally matching sensitivity over the full temperature range. The temperature compensation is based on a resistance measurement of the hall sensor plate. The resistance value is represented by a 14 bit unsigned output word.

RHALL_LSB (0x48) contains 6-bit LSB part [5:0] of the 14 bit output data of the RHALL-channel.

RHALL_MSB (0x49) contains 8-bit MSB part [13:6] of the 14 bit output data of the RHALL-channel.

All signed register values are in two's complement representation. Bits which are marked "reserved" can have different values or can in some cases not be read at all (read will return 0x00 in I²C mode and high-Z in SPI mode).

Data register readout and shadowing is implemented as follows:

Page 28

After all enabled axes have been measured, complete data packages consisting of DATAX, DATAY, DATAZ and RHALL are updated at once in the data registers. This way, it is prevented that a following axis is updated while the first axis is still being read (axis mix-up) or that MSB part of an axis is updated while LSB part is being read.

While reading from any data register, data register update is blocked. Instead, incoming new data is written into shadow registers which will be written to data registers after the previous read sequence is completed (i.e. upon stop condition in I²C mode, or CSB going high in SPI mode, respectively). Hence, it is recommended to read out at all data at once (0x42 to 0x49 or 0x4A if status bits are also required) with a burst read.

Single bytes or axes can be read out, while in this case it is not assured that adjacent registers are not updated during readout sequence.

The "Data ready status" bit (register 0x48 bit0) is set "1" when the data registers have been updated but the data was not yet read out over digital interface. Data ready is cleared (set "0") directly after completed read out of any of the data registers and subsequent stop condition (I²C) or lifting of CSB (SPI).

In addition, when enabled the "Data overrun" bit (register 0x4A bit7) turns "1" whenever data registers are updated internally, but the old data was not yet read out over digital interface (i.e. data ready bit was still high). The "Data overrun" bit is cleared when the interrupt status register 0x4A is read out. This function needs to be enabled separately by setting the "Data overrun En" bit (register 0x4D bit7)).

Note:

Please also see chapter 7 for detailed register descriptions.

4.3.4 Magnetic field data temperature compensation

The raw register values DATAX, DATAY, DATAZ and RHALL are read out from the host processor using the BMC150 API/driver which is provided by Bosch Sensortec. The API/driver performs an off-chip temperature compensation and outputs x/y/z magnetic field data in 16 LSB/ μ T to the upper application layer:

Figure 6: Calculation flow of magnetic field data from raw BMC150 register data

The API/driver performs all calculations using highly optimized fixed-point C-code arithmetic. For platforms that do not support C code, a floating-point formula is available as well.

4.4 Self-test

4.4.1 Accelerometer self-test

This feature permits to check the BMC150's accelerometer part functionality by applying electrostatic forces to the sensor core instead of external accelerations. By actually deflecting the seismic mass, the entire signal path of the sensor can be tested. Activating the self-test results in a static offset of the acceleration data; any external acceleration or gravitational force applied to the sensor during active self-test will be observed in the output as a superposition of both acceleration and self-test signal.

Before the self-test is enabled the g-range should be set to 8 g.The self-test is activated individually for each axis by writing the proper value to the (0x32) self_test_axis bits ('01b' for x-axis, '10b' for y-axis, '11b' for z-axis, '00b' to deactivate self-test). It is possible to control the direction of the deflection through bit (0x32) self_test_sign. The excitation occurs in negative (positive) direction if (0x32) self_test_sign = '0b' ('1b'). The amplitude of the deflection has to be set high by writing (0x32) self_test_amp='1b'. After the self-test is enabled, the user should wait 50ms before interpreting the acceleration data.

In order to ensure a proper interpretation of the self-test signal it is recommended to perform the self-test for both (positive and negative) directions and then to calculate the difference of the resulting acceleration values. Table 10 shows the minimum differences for each axis. The actually measured signal differences can be significantly larger.

Table 10: Self-test difference values

	x-axis signal	y-axis signal	z-axis signal
resulting minimum difference signal	800 mg	800 mg	400 mg

It is recommended to perform a reset of the device after a self-test has been performed. If the reset cannot be performed, the following sequence must be kept to prevent unwanted interrupt generation: disable interrupts, change parameters of interrupts, wait for at least 50ms, enable desired interrupts.

Page 31

4.4.2 Magnetometer self-test

BMC150 supports two self-tests modes for the magnetometer part: Normal self-test and advanced self-test.

Normal self test

During normal self-test, the following verifications are performed:

- FlipCore signal path is verified by generating signals on-chip. These are processed through the signal path and the measurement result is compared to known thresholds.
- FlipCore (X and Y) bondwires to ASIC are checked for connectivity
- FlipCore (X and Y) bondwires and MEMS are checked for shorts
- Hall sensor connectivity is checked for open and shorted connections
- Hall sensor signal path and hall sensor element offset are checked for overflow.

To perform a self test, the sensor must first be put into sleep mode (OpMode = "11"). Self-test mode is then entered by setting the bit "Self test" (register 0x4C bit0) to "1". After performing self test, this bit is set back to "0". When self-test is successful, the corresponding self-test result bits are set to "1" ("X-Self-Test" register 0x42 bit0, "Y-Self-Test" register 0x44 bit0, "Z-Self-Test" register 0x46 bit0). If self-test fails for an axis, the corresponding result bit returns "0".

Advanced self test

Advanced self test performs a verification of the Z channel signal path functionality and sensitivity. An on-chip coil wound around the hall sensor can be driven in both directions with a calibrated current to generate a positive or negative field of around 100 μ T.

Advanced self test is an option that is active in parallel to the other operation modes. The only difference is that during the active measurement phase, the coil current is enabled. The recommended usage of advanced self test is the following:

- 1. Set sleep mode
- 2. Disable X, Y axis
- 3. Set Z repetitions to desired level
- 4. Enable positive advanced self test current
- 5. Set forced mode, readout Z and R channel after measurement is finished
- 6. Enable negative advanced self test current
- 7. Set forced mode, readout Z and R channel after measurement is finished
- 8. Disable advanced self test current (this must be done manually)
- 9. Calculate difference between the two compensated field values. This difference should be around 200 μT with some margins.
- 10. Perform a soft reset of manually restore desired settings

Please refer to the corresponding application note for the exact thresholds to evaluate advanced self-test.

Page 32

Below table describes how the advanced self-test is controlled:

Table 11: Magnetometer advanced self-test control

(0x4C) Adv.ST <1:0>	Configuration
00b	Normal operation (no self-test), default
01b	Reserved, do not use
10b	Negative on-chip magnetic field generation
11b	Positive on-chip magnetic field generation

The BMC150 API/driver provided by Bosch Sensortec provides a comfortable way to perform both self-tests and to directly obtain the result without further calculations. It is recommended to use this as a reference.

4.5 Accelerometer offset compensation

Offsets in measured acceleration signals can have several causes but they are always unwanted and disturbing in many cases. Therefore, the accelerometer part of BMC150 offers an advanced set of four digital offset compensation methods which are closely matched to each other. These are slow, fast, and manual compensation, and inline calibration.

The compensation is performed with unfiltered data, and is then applied to both, unfiltered and filtered data. If necessary the result of this computation is saturated to prevent any overflow errors (the smallest or biggest possible value is set, depending on the sign). However, the registers used to read and write compensation values have only a width of 8 bits.

An overview of the offset compensation principle is given in Figure 7:

Figure 7: Principle of offset compensation

Page 34

The public offset compensation registers (0x38) offset_x, (0x39) offset_y, (0x3A) offset_z are images of the corresponding registers in the NVM. With each image update (see section 4.6 for details) the contents of the NVM registers are written to the public registers. The public register can be over-written by the user at any time. After changing the contents of the public registers by either an image update or manually, all 8bit values are extended to 12bit values for internal computation. In the opposite direction, if an internally computed value changes it is converted to an 8bit value and stored in the public register.

Depending on the selected g-range the conversion from 12bit to 8bit values can result in a loss of accuracy of one to several LSB. This is shown in Figure 7.

In case an internally computed compensation value is too small or too large to fit into the corresponding register, it is saturated in order to prevent an overflow error.

By writing '1' to the (0x36) offset_reset bit, all offset compensation registers are reset to zero.

4.5.1 Slow compensation

Slow compensation is based on a 1^{st} order high-pass filter, which continuously drives the average value of the output data stream of each axis to zero. The bandwidth of the high-pass filter is configured with bit (0x37) cut off according to .

Table 12: Compensation period settings

(0x37) cut_off	high-pass filter bandwidth	Example bw = 500 Hz
0b	$\frac{1Hz \times bw *}{1000 Hz}$	$\frac{1Hz \times 500 Hz}{1000 Hz} = 0.5 Hz$
1b	$\frac{10Hz \times bw *}{1000 Hz}$	$\frac{10Hz \times 500 Hz}{1000 Hz} = 5 Hz$

^{*}bw: please insert selected decimal data bandwidth value [Hz] from table 8

The slow compensation can be enabled (disabled) for each axis independently by setting the bits $(0x36) hp_xen, hp_yen, hp_zen$ to '1' ('0'), respectively.

Slow compensation should not be used in combination with low-power mode. In low-power mode the conditions (availability of necessary data) for proper function of slow compensation are not fulfilled.

4.5.2 Fast compensation

Fast compensation is a one-shot process by which the compensation value is set in such a way that when added to the raw acceleration, the resulting acceleration value of each axis approches the target value. This is best suited for "end-of-line trimming" with the customer's device positioned in a well-defined orientation. For fast compensation the g-range has to be switched to 2g.

The algorithm in detail: An average of 16 consecutive acceleration values is computed and the difference between target value and computed value is written to (0x38, 0x39, 0x34) offset_filt_x/y/z. The public registers (0x38, 0x39, 0x34) offset_filt_x/y/z are updated with the contents of the internal registers (using saturation if necessary) and can be read by the user.

Fast compensation is triggered for each axis individually by setting the (0x36) cal_trigger bits as shown in Table 13:

Table 13: Fast compensation axis selection

(0x36) cal_trigger	Selected Axis
00b	none
01b	X
10b	у
11b	Z

Page 36

Register (0x36) cal trigger is a write-only register. Once triggered, the status of the fast correction process is reflected in the status bit (0x36) cal rdy. Bit (0x36) cal rdy is '0' while the correction is in progress. Otherwise it is '1'. Bit (0x36) cal_rdy is '0' when (0x36) cal_trigger is not '00'.

For the fast offset compensation, the compensation target can be chosen by setting the bits (0x37) offset_target_x, (0x37) offset_target_y, and (0x37) offset_target_z according to Table 14:

Table 14: Offset target settings

(0x37)**Target value** offset target x/y/z

00b 0g 01b +1g 10b -1g

0g

Fast compensation should not be used in combination with any of the low-power modes. In lowpower mode the conditions (availability of necessary data) for proper function of fast compensation are not fulfilled.

4.5.3 Manual compensation

11b

The contents of the public compensation registers (0x38, 0x39, 0x3A) offset filt x/y/z can be set manually via the digital interface. It is recommended to write into these registers directly after a new data interrupt has occurred in order not to disturb running offset computations.

Writing to the offset compensation registers is not allowed while the fast compensation procedure is running.

4.5.4 Inline calibration

For certain applications, it is often desirable to calibrate the offset once and to store the compensation values permanently. This can be achieved by using one of the aforementioned offset compensation methods to determine the proper compensation values and then storing these values permanently in the NVM. See chapter 4.6.1 for details of the storing procedure.

Each time the device is reset, the compensation values are loaded from the non-volatile memory into the image registers and used for offset compensation until they are possibly overwritten using one of the other compensation methods.

Page 37

4.6 Non-volatile memory

4.6.1 Accelerometer non-volatile memory

The memory of the accelerometer part of BMC150 consists of three different kinds of registers: hard-wired, volatile, and non-volatile. Part of it can be both read and written by the user. Access to non-volatile memory is only possible through (volatile) image registers.

Altogether, there are eight registers (octets) with NVM backup which are accessible by the user. The addresses of the image registers range from 0x38 to 0x3C. While the addresses up to 0x3A are used for offset compensation (see section 4.5), addresses 0x3B and 0x3C are general purpose registers not linked to any sensor-specific functionality.

The content of the NVM is loaded to the image registers after a reset (either POR or soft reset) or after a user request which is performed by writing '1' to the write-only bit (0x33) nvm_load . As long as the image update is in progress, bit (0x33) nvm_load .

The image registers can be read and written like any other register.

Writing to the NVM is a three-step procedure:

- 1. Write the new contents to the image registers.
- 2. Write '1' to bit (0x33) nvm prog mode in order to unlock the NVM.
- 3. Write '1' to bit (0x33) nvm_prog_trig and keep '1' in bit (0x33) nvm_prog_mode in order to trigger the write process.

Writing to the NVM always renews the entire NVM contents. It is possible to check the write status by reading bit (0x33) nvm_rdy . While (0x33) $nvm_rdy = '0'$, the write process is still in progress; if (0x33) $nvm_rdy = '1'$, then writing is completed. As long as the write process is ongoing, no change of power mode and image registers is allowed. Also, the NVM write cycle must not be initiated while image registers are updated, in low-power mode, and in suspend mode.

Please note that the number of permitted NVM write-cycles is limited as specified in Table 2. The number of remaining write-cycles can be obtained by reading bits (0x33) nvm_remain .

4.6.2 Magnetometer non-volatile memory

Some of the memory of the BMC150 magnetometer is non-volatile memory (NVM). This NVM is pre-programmed in Bosch Sensortec fabrication line and cannot be modified afterwards. It contains trimming data which are required for sensor operation and sensor data compensation, thus it is read out by the BMC150 API/driver during initialization.

4.7 Accelerometer interrupt controller

The accelerometer part of BMC150 is equipped with eight programmable interrupt engines. Each interrupt can be independently enabled and configured. If the trigger condition of an enabled interrupt is fulfilled, the corresponding status bit is set to '1' and the selected interrupt pin is activated. There are two interrupt pins for the accelerometer part, INT1 and INT2; interrupts can be freely mapped to any of these pins. The state of a specific interrupt pin is derived from a logic 'or' combination of all interrupts mapped to it.

The interrupt status registers are updated when a new data word is written into the acceleration data registers. If an interrupt is disabled, all active status bits associated with it are immediately reset.

4.7.1 General features

An interrupt is cleared depending on the selected interrupt mode, which is common to all interrupts. There are three different interrupt modes: non-latched, latched, and temporary. The mode is selected by the (0x21) latch_int bits according to Table 15.

Table 15 : Accelerometer interrupt mode selection

(0x21) atch_int	Interrupt mode
0000b	non-latched
0001b	temporary, 250ms
0010b	temporary, 500ms
0011b	temporary, 1s
0100b	temporary, 2s
0101b	temporary, 4s
0110b	temporary, 8s
0111b	latched
1000b	non-latched
1001b	temporary, 250µs
1010b	temporary, 500µs
1011b	temporary, 1ms
1100b	temporary, 12.5ms
1101b	temporary, 25ms
1110b	temporary, 50ms
1111b	latched

An interrupt is generated if its activation condition is met. It cannot be cleared as long as the activation condition is fulfilled. In the non-latched mode the interrupt status bit and the selected pin (the contribution to the 'or' condition for INT1 and/or INT2) are cleared as soon as the activation condition is no more valid. Exceptions to this behavior are the new data, orientation, and flat interrupts, which are automatically reset after a fixed time.

Page 39

In latched mode an asserted interrupt status and the selected pin are cleared by writing '1' to bit (0x21) reset_int. If the activation condition still holds when it is cleared, the interrupt status is asserted again with the next change of the acceleration registers.

In the temporary mode an asserted interrupt and selected pin are cleared after a defined period of time. The behavior of the different interrupt modes is shown graphically in Figure 8. The timings in this mode are subject to the same tolerances as the bandwidths (see Table 2).

Figure 8: Interrupt modes

Several interrupt engines can use either unfiltered or filtered acceleration data as their input. For these interrupts, the source can be selected with the bits in register (0x1E). These are (0x1E) int_src_data , (0x1E) int_src_tap , (0x1E) $int_src_slo_no_mot$, (0x1E) int_src_slope , (0x1E) int_src_low . Setting the respective bits to '0' ('1') selects filtered (unfiltered) data as input. The orientation recognition and flat detection interrupt always use filtered input data.

It is strongly recommended to set interrupt parameters prior to enabling the interrupt. Changing parameters of an already enabled interrupt may cause unwanted interrupt generation and generation of a false interrupt history. A safe way to change parameters of an enabled interrupt is to keep the following sequence: disable the desired interrupt, change parameters, wait for at least 10ms, and then re-enable the desired interrupt.

4.7.2 Mapping to physical interrupt pins (inttype to INT Pin#)

Registers (0x19) to (0x1B) are dedicated to mapping of interrupts to the interrupt pins "INT1" or "INT2". Setting (0x19) int1_"inttype" to '1' ('0') maps (unmaps) "inttype" to pin "INT1". Correspondingly setting (0x1B) int2_"inttype" to '1' ('0') maps (unmaps) "inttype" to pin "INT2".

Note:

"inttype" to be replaced with the precise notation, given in the memory map in chapter 5.

Example: For flat interrupt (int1 flat): Setting (0x19) int1 flat to '1' maps int1 flat to pin "INT1".

Page 40

4.7.3 Electrical behavior (INT pin# to open-drive or push-pull)

Both interrupt pins can be configured to show the desired electrical behavior. The 'active' level of each interrupt pin is determined by the (0x20) int1_lvl and (0x20) int2_lvl bits.

If (0x20) $int1_lvl = '1'$ ('0') / (0x20) $int2_lvl = '1'$ ('0'), then pin "INT1" / pin "INT2" is active '1' ('0'). The characteristic of the output driver of the interrupt pins may be configured with bits (0x20) $int1_lod$ and (0x20) $int2_lod$. By setting bits (0x20) $int1_lod$ / (0x20) $int2_lod$ to '1', the output driver shows open-drive characteristic, by setting the configuration bits to '0', the output driver shows push-pull characteristic. When open-drive characteristic is selected in the design, external pull-up or pull-down resistor should be applied according the int |v| configuration.

4.7.4 New data interrupt

This interrupt serves for synchronous reading of acceleration data. It is generated after storing a new value of z-axis acceleration data in the data register. The interrupt is cleared automatically when the next data acquisition cycle starts. The interrupt status is '0' for at least 50µs.

The interrupt mode of the new data interrupt is fixed to non-latched.

It is enabled (disabled) by writing '1' ('0') to bit (0x17) data_en. The interrupt status is stored in bit (0x0A) data_int.

Due to the settling time of the filter, the first interrupt after wake-up from suspend or standby mode will take longer than the update time

4.7.5 Slope / any-motion detection

Slope / any-motion detection uses the slope between successive acceleration signals to detect changes in motion. An interrupt is generated when the slope (absolute value of acceleration difference) exceeds a preset threshold. It is cleared as soon as the slope falls below the threshold. The principle is made clear in Figure 9.

Figure 9: Principle of any-motion detection

The threshold is defined through register (0x28) slope_th. In terms of scaling 1 LSB of (0x28) slope_th corresponds to 3.91 mg in 2g-range (7.81 mg in 4g-range, 15.6 mg in 8g-range and 31.3 mg in 16g-range). Therefore the maximum value is 996 mg in 2g-range (1.99g in 4g-range, 3.98g in 8g-range and 7.97g in 16g-range).

The time difference between the successive acceleration signals depends on the selected bandwidth and equates to 1/(2*bandwidth) (t=1/(2*bw)). In order to suppress false triggers, the interrupt is only generated (cleared) if a certain number N of consecutive slope data points is larger (smaller) than the slope threshold given by (0x28) slope_th. This number is set by the (0x27) slope dur bits. It is N = (0x27) slope dur + 1 for (0x27).

Example: (0x27) slope_dur = 00b, ..., 11b = 1decimal, ..., 4decimal.

Page 42

4.7.5.1 Enabling (disabling) for each axis

Any-motion detection can be enabled (disabled) for each axis separately by writing '1' ('0') to bits (0x16) $slope_en_x$, (0x16) $slope_en_y$, (0x16) $slope_en_z$. The criteria for any-motion detection are fulfilled and the slope interrupt is generated if the slope of any of the enabled axes exceeds the threshold (0x28) $slope_th$ for [(0x27) $slope_dur +1]$ consecutive times. As soon as the slopes of all enabled axes fall or stay below this threshold for [(0x27) $slope_dur +1]$ consecutive times the interrupt is cleared unless interrupt signal is latched.

4.7.5.2 Axis and sign information of slope / any motion interrupt

The interrupt status is stored in bit (0x09) $slope_int$. The any-motion interrupt supplies additional information about the detected slope. The axis which triggered the interrupt is given by that one of bits (0x0B) $slope_first_x$, (0x0B) $slope_first_y$, (0x0B) $slope_first_z$ that contains a value of '1'. The sign of the triggering slope is held in bit (0x0B) $slope_sign$ until the interrupt is retriggered. If (0x0B) $slope_sign = '0'$ ('1'), the sign is positive (negative).

4.7.6 Tap sensing

Tap sensing has a functional similarity with a common laptop touch-pad or clicking keys of a computer mouse. A tap event is detected if a pre-defined slope of the acceleration of at least one axis is exceeded. Two different tap events are distinguished: A 'single tap' is a single event within a certain time, followed by a certain quiet time. A 'double tap' consists of a first such event followed by a second event within a defined time frame.

Single tap interrupt is enabled (disabled) by writing "1" ("0") to bit (0x16) s_tap_en. Double tap interrupt is enabled (disabled) by writing "1" ("0") to bit (0x16) d_tap_en. While temporary latching is used do not simultaneously enable single tap interrupt and double tap interrupt.

The status of the single tap interrupt is stored in bit (0x09) s_tap_int, the status of the double tap interrupt is stored in bit (0x09) d_tap_int.

The slope threshold for detecting a tap event is set by bits (0x2B) tap_th. The meaning of (0x2B) tap_th depends on the range setting. 1 LSB of (0x2B) tap_th corresponds to a slope of 62.5mg in 2g-range, 125mg in 4g-range, 250mg in 8g-range, and 500mg in 16g-range.

In Figure 10 the meaning of the different timing parameters is visualized:

Figure 10: Timing of tap detection

Page 44

The parameters (0x2A) tap_shock and (0x2A) tap_quiet apply to both single tap and double tap detection, while (0x2A) tap_dur applies to double tap detection only. Within the duration of (0x2A) tap_shock any slope exceeding (0x2B) tap_th after the first event is ignored. Contrary to this, within the duration of (0x2A) tap_quiet no slope exceeding (0x2B) tap_th must occur, otherwise the first event will be cancelled.

4.7.6.1 Single tap detection

A single tap is detected and the single tap interrupt is generated after the combined durations of (0x2A) tap_shock and (0x2A) tap_quiet , if the corresponding slope conditions are fulfilled. The interrupt is cleared after a delay of 12.5 ms. Do not map single-tap to any INT pin if you do not want to use it.

4.7.6.2 Double tap detection

A double tap interrupt is generated if an event fulfilling the conditions for a single tap occurs within the set duration in (0x2A) tap_dur after the completion of the first tap event. The interrupt is automatically cleared after a delay of 12.5 ms.

4.7.6.3 Selecting the timing of tap detection

For each of parameters (0x2A) tap_shock and (0x2A) tap_quiet two values are selectable. By writing '0' ('1') to bit (0x2A) tap_shock the duration of (0x2A) tap_shock is set to 50 ms (75 ms). By writing '0' ('1') to bit (0x2A) tap_quiet the duration of (0x2A) tap_quiet is set to 30 ms (20 ms).

The length of (0x2A) tap_dur can be selected by setting the (0x2A) tap_dur bits according to Table 16:

(0x2A) tap_dur length of tap_dur 000b 50 ms 001b 100 ms 010b 150 ms 011b 200 ms 100b 250 ms 101b 375 ms 110b 500 ms 111b 700 ms

Table 16: Selection of tap dur

Page 45

4.7.6.4 Axis and sign information of tap sensing

The sign of the slope of the first tap which triggered the interrupt is stored in bit (0x0B) tap_sign ('0' means positive sign, '1' means negative sign). The value of this bit persists after clearing the interrupt.

The axis which triggered the interrupt is indicated by bits (0x0B) tap_first_x , (0x0B) tap_first_y , and (0x0B) tap first z.

The bit corresponding to the triggering axis contains a '1' while the other bits hold a '0'. These bits are cleared together with clearing the interrupt status.

4.7.6.5 Tap sensing in low power mode

In low-power mode, a limited number of samples is processed after wake-up to decide whether an interrupt condition is fulfilled. The number of samples is selected by bits (0x2B) tap_samp according to Table 17.

Table 17: Meaning of (0x2B) tap_samp

(0x2B) tap_samp	Number of Samples
00b	2
01b	4
10b	8
11b	16

4.7.7 Orientation recognition

The orientation recognition feature informs on an orientation change of the sensor with respect to the gravitational field vector 'g'. The measured acceleration vector components with respect to the gravitational field are defined as shown in Figure 11.

Figure 11: Definition of vector components

Therefore, the magnitudes of the acceleration vectors are calculated as follows:

$$acc_x = 1g \times sin\theta \times cos\phi$$

 $acc_y = -1g \times sin\theta \times sin\phi$
 $acc_z = 1g \times cos\theta$
 $acc_y/acc_x = -tan\phi$

Depending on the magnitudes of the acceleration vectors the orientation of the device in the space is determined and stored in the three (0x0C) orient bits. These bits may not be reset in the sleep phase of low-power mode. There are three orientation calculation modes with different thresholds for switching between different orientations: symmetrical, high-asymmetrical, and low-asymmetrical. The mode is selected by setting the (0x2C) orient_mode bits as given in Table 18.

Table 18: Orientation mode settings

(0x2C) orient_mode	Orientation Mode
00b	symmetrical
01b	high-asymmetrical
10b	low-asymmetrical
11b	symmetrical

Page 47

For each orientation mode the (0x0C) orient bits have a different meaning as shown in Table 19 to Table 21:

Table 19: Meaning of the (0x0C) orient bits in symmetrical mode

(0x0C) orient	Name	Angle	Condition
x00	portrait upright	315° < φ < 45°	$ acc_y < acc_x - 'hyst'$ and $acc_x - 'hyst'' \ge 0$
x01	portrait upside down	135° < φ < 225°	acc_y < acc_x - 'hyst' and acc_x + 'hyst' < 0
x10	landscape left	45° < φ < 135°	acc_y ≥ acc_x + 'hyst' and acc_y < 0
x11	landscape right	225° < φ < 315°	$ acc_y \ge acc_x + 'hyst'$ and $acc_y \ge 0$

Table 20: Meaning of the (0x0C) orient bits in high-asymmetrical mode

(0x0C) orient	Name	Angle	Condition
x00	portrait upright	297° < φ < 63°	$ acc_y < 2 \cdot acc_x - 'hyst'$ and $acc_x - 'hyst' \ge 0$
x01	portrait upside down	117° < φ < 243°	$ acc_y < 2 \cdot acc_x - 'hyst'$ and $acc_x + 'hyst' < 0$
x10	landscape left	63° < φ < 117°	$ acc_y \ge 2 \cdot acc_x + \text{'hyst'}$ and $acc_y < 0$
x11	landscape right	243° < φ < 297°	$ acc_y \ge 2 \cdot acc_x + \text{'hyst'}$ and $acc_y \ge 0$

Table 21: Meaning of the (0x0C) orient bits in low-asymmetrical mode

(0x0C) orient	Name	Angle	Condition
x00	portrait upright	333° < φ < 27°	$ acc_y < 0.5 \cdot acc_x - 'hyst'$ and $acc_x - 'hyst' \ge 0$
x01	portrait upside down	153° < φ < 207°	$ acc_y < 0.5 \cdot acc_x - 'hyst'$ and $acc_x + 'hyst' < 0$
x10	landscape left	27° < φ < 153°	$ acc_y \ge 0.5 \cdot acc_x +$ 'hyst' and acc_y < 0
x11	landscape right	207° < φ < 333°	$ acc_y \ge 0.5 \cdot acc_x +$ 'hyst' and $acc_y \ge 0$

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Bosch Sensortec

In the preceding tables, the parameter 'hyst' stands for a hysteresis, which can be selected by setting the (0x2C) orient hyst bits. 1 LSB of (0x2C) orient hyst always corresponds to 62.5 mg, in any g-range (i.e. increment is independent from g-range setting). It is important to note that by using a hysteresis ≠ 0 the actual switching angles become different from the angles given in the tables since there is an overlap between the different orientations.

The most significant bit of the (0x0C) orient bits (which is displayed as an 'x' in the above given tables) contains information about the direction of the z-axis. It is set to '0' ('1') if acc $z \ge 0$ (acc z < 0).

Figure 12 shows the typical switching conditions between the four different orientations for the symmetrical mode i.e. without hysteresis:

Figure 12: Typical orientation switching conditions w/o hysteresis

The orientation interrupt is enabled (disabled) by writing '1' ('0') to bit (0x16) orient en. The interrupt is generated if the value of (0x0C) orient has changed. It is automatically cleared after one stable period of the (0x0C) orient value. The interrupt status is stored in the (0x09)orient int bit. The register (0x0C) orient always reflects the current orientation of the device, irrespective of which interrupt mode has been selected. Bit (0x0C) orient<2> reflects the device orientation with respect to the z-axis. The bits (0x0C) orient<1:0> reflect the device orientation in the x-y-plane. The conventions associated with register (0x0C) orient are detailed in chapter 5.

4.7.7.1 Orientation blocking

The change of the (0x0C) orient value and – as a consequence – the generation of the interrupt can be blocked according to conditions selected by setting the value of the (0x2C) orient_blocking bits as described by Table 22.

(0x2C) orient_blocking **Conditions** 00b no blocking theta blocking 01b or acceleration in any axis > 1.5g theta blocking 10b acceleration slope in any axis > 0.2 g acceleration in any axis > 1.5g theta blocking acceleration slope in any axis > 0.4 g 11b acceleration in any axis > 1.5g and value of orient is not stable for at least

Table 22: Blocking conditions for orientation recognition

The theta blocking is defined by the following inequality:

$$|\tan \theta| < \frac{\sqrt{blocking _theta}}{8}.$$

100 ms

The parameter *blocking_theta* of the above given equation stands for the contents of the *(0x2D) orient_theta* bits. It is possible to define a blocking angle between 0° and 44.8°. The internal blocking algorithm saturates the acceleration values before further processing. As a consequence, the blocking angles are strictly valid only for a device at rest; they can be different if the device is moved.

Example:

To get a maximum blocking angle of 19° the parameter *blocking_theta* is determined in the following way: $(8 * tan(19°))^2 = 7.588$, therefore, *blocking_value* = 8dec = 001000b has to be chosen.

In order to avoid unwanted generation of the orientation interrupt in a nearly flat position ($z \sim 0$, sign change due to small movements or noise), a hysteresis of 0.2 g is implemented for the z-axis, i. e. a after a sign change the interrupt is only generated after |z| > 0.2 g.

Page 50

4.7.7.2 Up-Down Interrupt Suppression Flag

Per default an orientation interrupt is triggered when any of the bits in register (0x0C) orient changes state. The BMA255 can be configured to trigger orientation interrupts only when the device position changes in the x-y-plane while orientation changes with respect to the z-axis are ignored. A change of the orientation of the z-axis, and hence a state change of bit (0x0C) orient<2> is ignored (considered) when bit (0x2D) orient_ud_en is set to '0' ('1').

4.7.8 Flat detection

The flat detection feature gives information about the orientation of the devices' z-axis relative to the g-vector, i. e. it recognizes whether the device is in a flat position or not.

The flat angle Θ is adjustable by (0x2E) flat_theta from 0° to 44.8° . The flat angle can be set according to following formula:

$$\Theta = \operatorname{atan}\left(\frac{1}{8}\sqrt{\operatorname{flat_theta}}\right)$$

A hysteresis of the flat detection can be enabled by (0x2F) flat_hy bits. In this case the flat position is set if the angle drops below following threshold:

$$\Theta_{hyst,ll} = \operatorname{atan}\left(\frac{1}{8}\sqrt{\operatorname{flat_theta}\cdot\left(1 - \frac{\operatorname{flat_hy}}{1024}\right) - \frac{\operatorname{flat_hy}}{16}}\right)$$

The flat position is reset if the angle exceeds the following threshold:

$$\Theta_{hyst,ul} = \operatorname{atan}\left(\frac{1}{8}\sqrt{\operatorname{flat_theta}\cdot\left(1 + \frac{flat_hy}{1024}\right) + \frac{flat_hy}{16}}\right)$$

The flat interrupt is enabled (disabled) by writing '1' ('0') to bit (0x16) flat_en. The flat value is stored in the (0x0C) flat bit if the interrupt is enabled. This value is '1' if the device is in the flat position, it is '0' otherwise. The flat interrupt is generated if the flat value has changed and the new value is stable for at least the time given by the (0x2F) flat_hold_time bits. A flat interrupt may be also generated if the flat interrupt is enabled. The actual status of the interrupt is stored in the (0x09) flat_int bit. The flat orientation of the sensor can always be determined from reading the (0x0C) flat bit after interrupt generation. If unlatched interrupt mode is used, the (0x09) flat_int value and hence the interrupt is automatically cleared after one sample period. If temporary or latched interrupt mode is used, the (0x09) flat_int value is kept fixed until the latch time expires or the interrupt is reset.

The meaning of the (0x2F) flat_hold_time bits can be seen from Table 23.

Table 23: Meaning of flat_hold_time

(0x2F) flat_hold_time	Time
00b	0
01b	512 ms
10b	1024 ms
11b	2048 ms

Page 52

4.7.9 Low-g interrupt

This interrupt is based on the comparison of acceleration data against a low-g threshold, which is most useful for free-fall detection.

The interrupt is enabled (disabled) by writing "1" ("0") to the (0x17) low_en bit. There are two modes available, 'single' mode and 'sum' mode. In 'single' mode, the acceleration of each axis is compared with the threshold; in 'sum' mode, the sum of absolute values of all accelerations $|acc_x| + |acc_y| + |acc_z|$ is compared with the threshold. The mode is selected by the contents of the (0x24) low_mode bit: "0" means 'single' mode, "1" means 'sum' mode.

The low-g threshold is set through the (0x23) low_th register. 1 LSB of (0x23) low_th always corresponds to an acceleration of 7.81 mg (i.e. increment is independent from g-range setting).

A hysteresis can be selected by setting the (0x24) low_hy bits. 1 LSB of (0x24) low_hy always corresponds to an acceleration difference of 125 mg in any g-range (as well, increment is independent from g-range setting).

The low-g interrupt is generated if the absolute values of the acceleration of all axes ('and' relation, in case of single mode) or their sum (in case of sum mode) are lower than the threshold for at least the time defined by the (0x22) low_dur register. The interrupt is reset if the absolute value of the acceleration of at least one axis ('or' relation, in case of single mode) or the sum of absolute values (in case of sum mode) is higher than the threshold plus the hysteresis for at least one data acquisition. In bit (0x09) low_int the interrupt status is stored.

The relation between the content of (0x22) low_dur and the actual delay of the interrupt generation is: delay [ms] = [(0x22) $low_dur + 1] \cdot 2$ ms. Therefore, possible delay times range from 2 ms to 512 ms.

Page 53

4.7.10 High-g interrupt

This interrupt is based on the comparison of acceleration data against a high-g threshold for the detection of shock or other high-acceleration events.

The high-g interrupt is enabled (disabled) per axis by writing "1" ("0") to bits (0x17) high_en_x, (0x17) high_en_y, and (0x17) high_en_z, respectively. The high-g threshold is set through the (0x26) high_th register. The meaning of an LSB of (0x26) high_th depends on the selected grange: it corresponds to 7.81 mg in 2g-range, 15.63 mg in 4g-range, 31.25 mg in 8g-range, and 62.5 mg in 16g-range (i.e. increment depends from g-range setting).

A hysteresis can be selected by setting the (0x24) high_hy bits. Analogously to (0x26) high_th, the meaning of an LSB of (0x24) high_hy is g-range dependent: it corresponds to an acceleration difference of 125 mg in 2g-range, 250 mg in 4g-range, 500 mg in 8g-range, and 1000mg in 16g-range (as well, increment depends from g-range setting).

The high-g interrupt is generated if the absolute value of the acceleration of at least one of the enabled axes ('or' relation) is higher than the threshold for at least the time defined by the (0x25) high_dur register. The interrupt is reset if the absolute value of the acceleration of all enabled axes ('and' relation) is lower than the threshold minus the hysteresis for at least the time defined by the (0x25) high_dur register. In bit (0x09) high_int the interrupt status is stored. The relation between the content of (0x25) high_dur and the actual delay of the interrupt generation is delay [ms] = [(0x22) low_dur + 1] • 2 ms. Therefore, possible delay times range from 2 ms to 512 ms. The interrupt will be cleared immediately once acceleration is lower than threshold.

4.7.10.1 Axis and sign information of high-g interrupt

The axis which triggered the interrupt is indicated by bits (0x0C) high_first_x, (0x0C) high_first_y, and (0x0C) high_first_z. The bit corresponding to the triggering axis contains a "1" while the other bits hold a "0". These bits are cleared together with clearing the interrupt status. The sign of the triggering acceleration is stored in bit (0x0C) high_sign. If (0x0C) high_sign = "0" ("1"), the sign is positive (negative).

4.7.11 No-motion / slow motion detection

The slow-motion/no-motion interrupt engine can be configured in two modes.

In slow-motion mode an interrupt is triggered when the measured slope of at least one enabled axis exceeds the programmable slope threshold for a programmable number of samples. Hence the engine behaves similar to the any-motion interrupt, but with a different set of parameters. In order to suppress false triggers, the interrupt is only generated (cleared) if a certain number N of consecutive slope data points is larger (smaller) than the slope threshold given by (0x27) $slo_no_mot_dur<1:0>$. The number is $N = (0x27) slo_no_mot_dur<1:0> + 1$.

In no-motion mode an interrupt is generated if the slope on all selected axes remains smaller than a programmable threshold for a programmable delay time. Figure 13 shows the timing diagram for the no-motion interrupt. The scaling of the threshold value is identical to that of the slow-motion interrupt. However, in no-motion mode register (0x27) slo_no_mot_dur defines the delay time before the no-motion interrupt is triggered. Table 24 lists the delay times adjustable with register (0x27) slo_no_mot_dur. The timer tick period is 1 second. Hence using short delay times can result in considerable timing uncertainty.

If bit (0x18) $slo_no_mot_sel$ is set to '1' ('0') the no-motion/slow-motion interrupt engine is configured in the no-motion (slow-motion) mode. Common to both modes, the engine monitors the slopes of the axes that have been enabled with bits (0x18) $slo_no_mot_en_x$, (0x18) $slo_no_mot_en_y$, and (0x18) $slo_no_mot_en_z$ for the x-axis, y-axis and z-axis, respectively. The measured slope values are continuously compared against the threshold value defined in register (0x29) $slo_no_mot_th$. The scaling is such that 1 LSB of (0x29) $slo_no_mot_th$ corresponds to 3.91 mg in 2g-range (7.81 mg in 4g-range, 15.6 mg in 8g-range and 31.3 mg in 16g-range). Therefore the maximum value is 996 mg in 2g-range (1.99g in 4g-range, 3.98g in 8g-range and 7.97g in 16g-range). The time difference between the successive acceleration samples depends on the selected bandwidth and equates to 1/(2*bw).

Table 24: No-motion time-out periods

(0x27) slo_no_mot_dur	Delay time	(0x27) slo_no_mot_dur	Delay time	(0x27) slo_no_mot_dur	Delay Time
0	1 s	16	40 s	32	88 s
1	2 s	17	48 s	33	96 s
2	3 s	18	56 s	34	104 s
•••	•••	19	64 s.	•••	
14	15 s	20	72 s	62	328 s
15	16 s	21	80 s	63	336 s

Note: slo no mot dur values 22 to 31 are not specified

Figure 13: Timing of No-motion interrupt

Page 56

4.8 Accelerometer softreset

A softreset causes all user configuration settings to be overwritten with their default value and the sensor to enter normal mode.

A softreset is initiated by means of writing value 0xB6 to register (0x14) softreset. Subsequently a waiting time of $t_{w,up1}$ (max.) is required prior to accessing any configuration registers.

Page 57

4.9 Magnetometer interrupt controller

Four magnetometer based interrupt engines are integrated in the magnetometer part of BMC150: Low-Threshold, High-Threshold, Overflow and Data Ready (DRDY). Each interrupt can be enabled independently.

When enabled, an interrupt sets the corresponding status bit in the interrupt status register (0x4A) when its condition is satisfied.

When the "Interrupt Pin Enable" bit (register 0x4E bit6) is set, any occurring activated interrupts are flagged on the BMC150's INT3 output pin. By default, the interrupt pin is disabled (high-Z status).

Low-Threshold, High-Threshold and Overflow interrupts are mapped to the INT3 pin when enabled, Data Ready (DRDY) interrupt is mapped to the DRDY pin of BMC150 when enabled. For High- and Low-Threshold interrupts each axis X/Y/Z can be enabled separately for interrupt detection in the registers "High Int Z en", "High Int Y en", "High Int X en", "Low Int Z en", "Low Int Y En" and "Low Int X En" in register *0x4D bit5-bit0*. Overflow interrupt is shared for X, Y and Z axis.

When the "Data Ready Pin En" bit (register 0x4E bit7) is set, the Data Ready (DRDY) interrupt event is flagged on the BMC150's DRDY output pin (by default the "Data Ready Pin En" bit is not set and DRDY pin is in high-Z state).

The interrupt status registers are updated together with writing new data into the magnetic field data registers. The status bits for Low-/High-Threshold interrupts are located in register 0x4A, the Data Ready (DRDY) status flag is located at register 0x48 bit0.

If an interrupt is disabled, all active status bits and pins are reset after the next measurement was performed.

4.9.1 General features

An interrupt is cleared depending on the selected interrupt mode, which is common to all interrupts. There are two different interrupt modes: non-latched and latched. All interrupts (except Data Ready) can be latched or non-latched. Data Ready (DRDY) is always cleared after readout of data registers ends.

A non-latched interrupt will be cleared on a new measurement when the interrupt condition is not valid anymore, whereas a latched interrupt will stay high until the interrupts status register (0x4A) is read out. After reading the interrupt status, both the interrupt status bits and the interrupt pin are reset. The mode is selected by the "Interrupt latch" bit (register 0x4A bit1), where the default setting of "1" means latched. Figure 14 shows the difference between the modes for the example Low-Threshold interrupt.

INT3 and DRDY pin polarity can be changed by the "Interrupt polarity" bit (register 0x4E bit0) and "DR polarity" (register 0x4E bit2), from the default high active ("1") to low active ("0").

Page 58

Figure 14: Interrupt latched and non-latched mode

4.9.2 Electrical behavior of magnetic interrupt pins

Both interrupt pins INT3 and DRDY are push/pull when the corresponding interrupt pin enable bit is set, and are floating (High-Z) when the corresponding interrupt pin enable bit is disabled (default).

4.9.3 **Data ready / DRDY interrupt**

This interrupt serves for synchronous reading of magnetometer data. It is generated after storing a new set of values (DATAX, DATAY, DATAZ, RHALL) in the data registers:

Figure 15: Data acquisition and DRDY operation (DRDY in "high active" polarity)

The interrupt mode of the Data Ready (DRDY) interrupt is fixed to non-latched. It is enabled (disabled) by writing "1" ("0") to "Data Ready pin En" in register 0x4E bit7.

DRDY pin polarity can be changed by the "DR polarity" bit (register 0x4E bit2), from the default high active ("1") to low active ("0").

4.9.4 Low-threshold interrupt

When the data registers' (DATAX, DATAY and DATAZ) values drop below the threshold level defined by the "Low Threshold register (0x4F), the corresponding interrupt status bits for those axes are set ("Low Int X", "Low Int Y" and "Low Int Z" in register 0x4A). This is done for each axis independently. Please note that the X and Y axis value for overflow is -4096. However, no interrupt is generated on these values. See chapter 4.9.6 for more information on overflow.

Hereby, one bit in "Low Threshold" corresponds to roughly 6µT (not exactly, as the raw magnetic field values DATAX, DATAY and DATAZ are not temperature compensated).

The Low-threshold interrupt is issued on INT3 pin when one or more values of the data registers DATAX, DATAY and DATAZ drop below the threshold level defined by the "Low Threshold" register (0x4F), and when the axis where the threshold was exceeded is enabled for interrupt generation:

Result = (DATAX < "Low Threshold" x 16) AND "Low Int X en" is "0" OR (DATAY < "Low Threshold" x 16) AND "Low Int Y en" is "0" OR (DATAZ < "Low Threshold" x 16) AND "Low Int Z en" is "0"

Note: Threshold interrupt enable bits ("Low INT [XYZ] en") are active low and "1" (disabled) by default.

Figure 16: Low-threshold interrupt function

Page 60

4.9.5 High-threshold interrupt

When the data registers' (DATAX, DATAY and DATAZ) values exceed the threshold level defined by the "High Threshold register (0x50), the corresponding interrupt status bits for those axes are set ("High Int X", "High Int Y" and "High Int Z" in register 0x4A). This is done for each axis independently.

Hereby, one bit in "High Threshold" corresponds to roughly $6\mu T$ (not exactly, as the raw magnetic field values DATAX, DATAY and DATAZ are not temperature compensated).

The High-threshold interrupt is issued on INT3 pin when one or more values of the data registers DATAX, DATAY and DATAZ exceed the threshold level defined by the "High Threshold" register (0x50), and when the axis where the threshold was exceeded is enabled for interrupt generation:

Result = (DATAX > "High Threshold" x 16) AND "High Int X en" is "0" OR (DATAY > "High Threshold" x 16) AND "High Int Y en" is "0" OR (DATAZ > "High Threshold" x 16) AND "High Int Z en" is "0"

Note:

Threshold interrupt enable bits ("High INT [XYZ] en") are active low and "1" (disabled) by default.

Figure 17: High-threshold interrupt function

Page 61

4.9.6 Overflow

When a measurement axis had an overflow, the corresponding data register is saturated to the most negative value. For X and Y axis, the data register is set to the value -4096. For the Z axis, the data register is set to the value -16384.

The "Overflow" flag (register 0x4A bit6) indicates that the measured magnetic field raw data of one or more axes exceeded maximum range of the device. The overflow condition can be flagged on the INT3 pin by setting the bit "overflow int enable" (register 0x4D bit6, active high, default value "0"). The channel on which overflow occurred can by determined by assessing the DATAX/Y/Z registers.

5. FIFO Operation

5.1 FIFO Operating Modes

The IC of the accelerometer part of BMC150 features an integrated FIFO memory capable of storing up to 32 frames. Conceptually each frame consists of three 16-bit words corresponding to the x, y and z- axis, which are sampled at the same point in time. At the core of the FIFO is a buffer memory, which can be configured to operate in the following modes:

- **FIFO Mode:** In FIFO mode the acceleration data of the selected axes are stored in the buffer memory. If enabled, a watermark interrupt is triggered when the buffer has filled up to a configurable level. The buffer will be continuously filled until the fill level reaches 32 frames. When it is full the data collection is stopped, and all additional samples are ignored. Once the buffer is full, a FIFO-full interrupt is generated if it has been enabled.
- STREAM Mode: In STREAM mode the acceleration data of the selected axes are stored in the buffer until it is full. The buffer has a depth of 31 frames. When the buffer is full the data collection continues and oldest entry is discarded. If enabled, a watermark interrupt is triggered when the buffer is filled to a configurable level. Once the buffer is full, a FIFO-full interrupt is generated if it has been enabled.
- **BYPASS Mode:** In bypass mode, only the current sensor data can be read out from the FIFO address. Essentially, the FIFO behaves like the STREAM mode with a depth of 1. Compared to reading the data from the normal data registers, the advantage to the user is that the packages X, Y, Z are from the same timestamp, while the data registers are updated sequentially and hence mixing of data from different axes can occur.

The primary FIFO operating mode is selected with register (0x3E) fifo_mode according to '00b' for BYPASS mode, '01b' for FIFO mode, and '10b' for STREAM mode. Writing to register (0x3E) clears the buffer content and resets the FIFO-full and watermark interrupts. When reading register (0x3E) fifo mode always contains the current operating mode.

5.2 FIFO Data Readout

The FIFO stores the data that are also available at the acceleration read-out registers (0x02) to (0x07). Thus, all configuration settings apply to the FIFO data as well as the acceleration data readout registers. The FIFO read out is possible through register (0x3F). The readout can be performed using burst mode since the read address counter is no longer incremented, when it has reached address (0x3F). This implies that the trapping also occurs when the burst read access starts below address (0x3F). A single burst can read out one or more frames at a time. Register (0x3E) fifo_data_select controls the acceleration data of which axes are stored in the FIFO. Possible settings for register (0x3E) fifo_data_select are '00b' for x, y- and z-axis, '01b' for x-axis only, '10b' for y-axis, '11b' for z-axis only. The depth of the FIFO is independent of whether all or a single axis have been selected. Writing to register (0x3E) clears the buffer content and resets the FIFO-full and watermark interrupts.

If all axes are enabled, the format of the data read-out from register (0x3F) is as follows:

If only one axis is enabled, the format of the data read-out from register (0x3F) is as follows (example shown: y-axis only, other axes are equivalent).

If a frame is not completely read due to an incomplete read operation, the remaining part of the frame is discarded. In this case the FIFO aligns to the next frame during the next read operation. In order for the discarding mechanism to operate correctly, there must be a delay of at least 1.5 us between the last data bit of the partially read frame and the first address bit of the next FIFO read access. Otherwise frames must not be read out partially.

If the FIFO is read beyond the FIFO fill level zeroes (0) will be read. If the FIFO is read beyond the FIFO fill level the read or burst read access time must not exceed the sampling time t_{SAMPLE} . Otherwise frames may be lost.

5.3 FIFO Frame Counter and Overrun Flag

Register (0x0E) fifo_frame_counter reflects the current fill level of the buffer. If additional frames are written to the buffer although the FIFO is full, the (0x0E) fifo_overrun bit is set to '1'. The FIFO buffer is cleared, the FIFO fill level indicated in register (0x0E) fifo_frame_counter and the (0x0E) fifo_overrun bit are both set to '0' each time one a write access to one of the FIFO configuration registers (0x3E) or (0x30) occurs. The (0x0E) fifo_overrun bit is not reset when the FIFO fill level (0x0E) fifo_frame_counter has decremented to '0' due to reading from register (0x3F).

Page 64

5.4 FIFO Interrupts

The FIFO controller can generate two different interrupt events, a FIFO-full and a watermark event. The FIFO-full and watermark interrupts are functional in all FIFO operating modes. The watermark interrupt is asserted when the fill level in the buffer has reached the frame count defined by register (0x30) fifo_water_mark_trigger_retain. In order to enable (disable) the watermark interrupt, the (0x17) int_fwm_en bit must be set to '1' ('0'). To map the watermark interrupt signal to INT1 pin (INT2 pin), (0x1A) int1_fwm ((0x1A) int2_fwm) bit must be set to '1'. The status of the watermark interrupt may be read back through the (0x0A) fifo_wm_int bit. Writing to register (0x30) fifo_water_mark_trigger_retain clears the FIFO buffer.

The FIFO-full interrupt is triggered when the buffer has been completely filled. In FIFO mode this occurs 32, in STREAM mode 31 samples, and in BYPASS mode 1 sample after the buffer has been cleared. In order to enable the FIFO-full interrupt, bit (0x17) int_ffull_en as well as one or both of bits (0x1A) int1_fful or (0x1A) int2_fful must also be set to '1'. The status of the FIFO-full interrupt may be read back through bit (0x0A) fifo full int.

6. Accelerometer register description

6.1 General remarks

The entire communication with the device is performed by reading from and writing to registers. Registers have a width of 8 bits; they are mapped to a common space of 64 addresses from (0x00) up to (0x3F). Within the used range there are several registers which are either completely or partially marked as 'reserved'. Any reserved bit is ignored when it is written and no specific value is guaranteed when read. It is recommended not to use registers at all which are completely marked as 'reserved'. Furthermore it is recommended to mask out (logical and with zero) reserved bits of registers which are partially marked as reserved.

Registers with addresses from (0x00) up to (0x0E) are read-only. Any attempt to write to these registers is ignored. There are bits within some registers that trigger internal sequences. These bits are configured for write-only access, e. g. (0x21) reset_int or the entire (0x14) softreset register, and read as value '0'.

6.2 Register map

Register Address	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0	Access	Default
0x3F				fifo data outo	ut_register<7:0>				ro	0x00
0x3E	fifo mo	de<1:0>			<u>-</u>		fifo data s	select<1:0>	w/r	0x00
0x3D									w/r	0xFF
0x3C					<7:0>				w/r	0x00
0x3B					<7:0>				w/r	0x00
0x3A					_z<7:0>				w/r	0x00
0x39					_y<7:0> x<7:0>				w/r	0x00
0x38 0x37		offset_targ	not 7 = 1:0		_x<7:0> get_y<1:0>	offset_targ	rot v-1:0-	cut off	w/r w/r	0x00 0x00
0x36	offset reset		ger_2<1:0>	cal rdy	get_y<1.0>	hp z en	hp y en	hp x en	w/r	0x10
0x35	UllSet_leSet	cai_uig	jer<1.0>	cai_ruy		np_z_en	np_y_en	I IIP_X_eII	w/r	0x00
0x34						i2c wdt en	i2c_wdt_sel	spi3	w/r	0x00
0x33		nvm_ren	nain<3:0>		nvm_load	nvm_rdy	nvm_prog_trig	nvm_prog_mode	w/r	0xF0
0x32				self_test_amp		self_test_sign	self_test_	_axis<1:0>	w/r	0x00
0x31									w/r	0xFF
0x30					fifo_water_mark_leve	el_trigger_retain<5:0>			w/r	0x00
0x2F			flat_hold_	time<1:0>			flat_hy<2:0>		w/r	0x11
0x2E		and and soul a			flat_the				w/r	0x08
0x2D 0x2C		orient_ud_en	prient bust 200			eta<5:0>	asiant	nodo +1:0>	w/r	0x48 0x18
0x2C 0x2B	tan nor	np<1:0>	orient_hyst<2:0>		orient_bloo	tap_th<4:0>	orient_m	ode<1:0>	w/r w/r	0x18 0x0A
0x2B 0x2A	tap_sar tap_quiet	tap_shock				ιαμ_u1<4.0>	tap_dur<2:0>		w/r	0x0A 0x04
0x2A 0x29	tap_quiet	tap_snock		slo no m	not_th<7:0>		tap_dui<2.0>		w/r	0x04 0x14
0x28					th<7:0>				w/r	0x14
0x27			slo_no_mo				slone d	dur<1:0>	w/r	0x00
0x26			0.00		th<7:0>		0.000_0	341.07	w/r	0xC0
0x25					lur<7:0>				w/r	0x0F
0x24	high_h	ıy<1:0>		<u> </u>		low_mode	low_h	y<1:0>	w/r	0x81
0x23				low_t	h<7:0>				w/r	0x30
0x22				low_d	ur<7:0>				w/r	0x09
0x21	reset_int					latch_ii			w/r	0x00
0x20					int2_od	int2_l/l	int1_od	int1_lvl	w/r	0x05
0x1F					I				w/r	0xFF
0x1E			int_src_data	int_src_tap	int_src_slo_no_mot	int_src_slope	int_src_high	int_src_low	w/r	0x00
0x1D									w/r	0xFF
0x1C 0x1B	int2 flat	int2 orient	int2 s tap	int2 d tap	int2 slo no mot	int2 slope	int2 high	int2 low	w/r w/r	0xFF 0x00
0x1A	int2_nat	int2_fwm	int2_s_tap	IIIIZ_U_Iap	11112_510_110_11101	int1_stope	int1_fwm	int1 data	w/r	0x00
0x19	int1_flat	int1_orient	int1_s_tap	int1_d_tap	int1_slo_no_mot	int1_slope	int1_high	int1_low	w/r	0x00
0x18	iiii _iiii	III _OHOTE	min_o_tap	iiiti_d_tap	slo_no_mot_sel	slo_no_mot_en_z	slo_no_mot_en_y	slo_no_mot_en_x	w/r	0x00
0x17		int_fwm_en	int_ffull_en	data_en	low_en	high_en_z	high_en_y	high_en_x	w/r	0x00
0x16	flat_en	orient_en	s_tap_en	d_tap_en		slope_en_z	slope_en_y	slope_en_x	w/r	0x00
0x15									w/r	0xFF
0x14				sof	treset				WO	0x00
0x13	data_high_bw	shadow_dis							w/r	0x00
0x12	au an an al	lowpower_mode	sleeptimer_mode		-10	h 0.0			w/r	0x00
0x11 0x10	suspend	lowpower_en	deep_suspend		sleep_d	lur<3:0> bw<4:0>			w/r w/r	0x00 0x0F
0x0F						range	×3·0>		w/r	0x0F
0x0E	fifo_overrun			f	ifo_frame_counter<6:0		~0.02		ro	0x00
0x0D	.no_overruit				<u>amo_oounier</u> <0.0				w/r	0xFF
0x0C	flat		orient<2:0>		high_sign	high_first_z	high_first_y	high_first_x	ro	0x00
0x0B	tap_sign	tap_first_z	tap_first_y	tap_first_x	slope_sign	slope_first_z	slope_first_y	slope_first_x	ro	0x00
0x0A	data_int	fifo_wm_int	fifo_full_int						ro	0x00
0x09	flat_int	orient_int	s_tap_int	d_tap_int	slo_no_mot_int	slope_int	high_int	low_int	ro	0x00
0x08					>7:0>				ro	0x00
0x07				acc_z_n	nsb<11:4>				ro	0x00
0x06		acc_z_	sb<3:0>					new_data_z	ro	0x00
0x05	acc_y_msb<11:4>					ro	0x00			
0x04		acc_y_	sb<3:0>					new_data_y	ro	0x00
0x03			-h 0:0	acc_x_n	nsb<11:4>				ro	0x00
0x02		acc_x_l	SD<3:U>					new_data_x	01	0x00
0x01 0x00				ohin	id<7:0>				ro	0xFA
0,00				- criip_	IU~1.02				10	OVIV

common w/r registers: Application specific settings which are not equal to the default settings, must be re-set to its designated values after POR, soft-reset and wake up from deep suspend.

user w/r registers: Initial default content = 0x00. Freely programmable by the user.

Remains unchanged after POR, soft-reset and wake up from deep suspend.

Figure 18: Register map

Page 67

6.3 Chip ID

Register 0x00 (BGW_CHIPID)

The register contains the chip identification code.

Name	0x00	BGW_CHIPID			
Bit	7	6	5	4	
Read/Write	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	
Content	chip_id<7:4>				
Bit	3	2	1	0	
Read/Write	R	R	R	R	
Reset Value	n/a	n/a	n/a	n/a	
Content	chip_id<3:0>				

chip_id<7:0>: Fixed value b'1111'1010

6.4 Acceleration data

Register 0x02 (ACCD_X_LSB)

The register contains the least-significant bits of the X-channel acceleration readout value. When reading out X-channel acceleration values, data consistency is guaranteed if the ACCD_X_LSB is read out before the ACCD_X_MSB and shadow_dis='0'. In this case, after the ACCD_X_LSB has been read, the value in the ACCD_X_MSB register is locked until the ACCD_X_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_X_LSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x02	ACCD_X_LSB				
Bit	7	6	5	4		
Read/Write	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a		
Content	acc_x_lsb<3:0>					
Bit	3	2	1	0		
Read/Write	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a		
Content	undefined	undefined	' 0'	new_data_x		

acc x lsb<3:0>: Least significant 4 bits of acceleration read-back value; (two's-complement

format)

undefined: random data; to be ignored.

New data x: '0': acceleration value has not been updated since it has been read out last

'1': acceleration value has been updated since it has been read out last

Register 0x03 (ACCD_X_MSB)

The register contains the most-significant bits of the X-channel acceleration readout value. When reading out X-channel acceleration values, data consistency is guaranteed if the ACCD_X_LSB is read out before the ACCD_X_MSB and shadow_dis='0'. In this case, after the ACCD_X_LSB has been read, the value in the ACCD_X_MSB register is locked until the ACCD_X_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_X_MSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x03	ACCD_X_MSB				
Bit	7	6	5	4		
Read/Write	R	R	R	R		
Reset Value	n/a	n/a	n/a	n/a		
Content	acc_x_msb<11:8>					

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Bosch Sensortec

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_x_msb<7:4>			

acc_x_msb<11:4>: Most significant 8 bits of acceleration readback value (two's-complement format)

Register 0x04 (ACCD_Y_LSB)

The register contains the least-significant bits of the Y-channel acceleration readout value. When reading out Y-channel acceleration values, data consistency is guaranteed if the ACCD_Y_LSB is read out before the ACCD_Y_MSB and shadow_dis='0'. In this case, after the ACCD_Y_LSB has been read, the value in the ACCD_Y_MSB register is locked until the ACCD_Y_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Y_LSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x04	ACCD_Y_LSB		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_y_lsb<3:0>			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	undefined	undefined	' 0'	new_data_y

acc y lsb<3:0>: Least significant 4 bits of acceleration readback value; (two's-complement

format)

undefined: random data; to be ignored

new_data_y: '0': acceleration value has not been updated since it has been read out last

'1': acceleration value has been updated since it has been read out last

Register 0x05 (ACCD_Y_MSB)

The register contains the most-significant bits of the Y-channel acceleration readout value. When reading out Y-channel acceleration values, data consistency is guaranteed if the ACCD_Y_LSB is read out before the ACCD_Y_MSB and shadow_dis='0'. In this case, after the ACCD_Y_LSB has been read, the value in the ACCD_Y_MSB register is locked until the ACCD_Y_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Y_MSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x05	ACCD_Y_MSB		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_y_msb<11:8>			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_y_msb<7:4>			

acc_y_msb<11:4>: Most significant 8 bits of acceleration readback value (two's-complement format)

Register 0x06 (ACCD_Z_LSB)

The register contains the least-significant bits of the Z-channel acceleration readout value. When reading out Z-channel acceleration values, data consistency is guaranteed if the ACCD_Z_LSB is read out before the ACCD_Z_MSB and shadow_dis='0'. In this case, after the ACCD_Z_LSB has been read, the value in the ACCD_Z_MSB register is locked until the ACCD_Z_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Z_LSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x06	ACCD_Z_LSB		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_z_lsb<3:0>			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	undefined	undefined	' 0'	new_data_z

Page 71

Acc z lsb<3:0>: Least significant 4 bits of acceleration readback value; (two's-complement

format)

undefined: random data; to be ignored

new_data_z: '0': acceleration value has not been updated since it has been read out last

'1': acceleration value has been updated since it has been read out last

Register 0x07 (ACCD_Z_MSB)

The register contains the most-significant bits of the Z-channel acceleration readout value. When reading out Z-channel acceleration values, data consistency is guaranteed if the ACCD_Z_LSB is read out before the ACCD_Z_MSB and shadow_dis='0'. In this case, after the ACCD_Z_LSB has been read, the value in the ACCD_Z_MSB register is locked until the ACCD_Z_MSB has been read. This condition is inherently fulfilled if a burst-mode read access is performed. Acceleration data may be read from register ACCD_Z_MSB at any time except during power-up and in DEEP_SUSPEND mode.

Name	0x07	ACCD_Z_MSB		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_z_msb<11:8>			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	acc_z_msb<7:4>			

acc_z_msb<11:4>: Most significant 8 bits of acceleration readback value (two's-complement format)

6.5 Temperature data

Register 0x08 (ACCD_TEMP)

The register contains the current chip temperature represented in two's complement format. A readout value of temp<7:0>=0x00 corresponds to a temperature of 24°C.

Name	0x08	ACCD_TEMP		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	temp<7:4>			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	temp<3:0>			

temp<7:0>: Temperature value (two s-complement format)

6.6 Status registers

Register 0x09 (INT_STATUS_0)

The register contains interrupt status flags. Each flag is associated with a specific interrupt function. It is set when the associated interrupt triggers. The setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	0x09		INT_STATUS_0	
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	flat_int	orient_int	s_tap_int	d_tap_int
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	slo_no_mot_int	slope_int	high_int	low_int

flat_int: flat interrupt status: '0'→inactive, '1' →active

orient_int: orientation interrupt status: '0' \rightarrow inactive, '1' \rightarrow active s_tap_int: single tap interrupt status: '0' \rightarrow inactive, '1' \rightarrow active d_tap_int double tap interrupt status: '0' \rightarrow inactive, '1' \rightarrow active slo not mot int: slow/no-motion interrupt status: '0' \rightarrow inactive, '1' \rightarrow active

slope_int: slope interrupt status: '0' \rightarrow inactive, '1' \rightarrow active high_int: high-g interrupt status: '0' \rightarrow inactive, '1' \rightarrow active low_int: low-g interrupt status: '0' \rightarrow inactive, '1' \rightarrow active

Register 0x0A (INT_STATUS_1)

The register contains interrupt status flags. Each flag is associated with a specific interrupt function. It is set when the associated interrupt engine triggers. The setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	0x0A	INT_STATUS_1		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	data_int	fifo_wm_int	fifo_full_int	reserved

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

BOSCH	Datasheet eCompass BMC150	Page 74

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	reserved			

data_int: data ready interrupt status: '0'→inactive, '1' →active fifo_wm_int: FIFO watermark interrupt status: '0'→inactive, '1' →active

fifo_full_int: FIFO full interrupt status: '0'→inactive, '1' →active

reserved; reserved, write to '0'

Register 0x0B (INT_STATUS_2)

The register contains interrupt status flags. Each flag is associated with a specific interrupt engine. It is set when the associated interrupt engine triggers. The setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	0x0B		INT_STATUS_2	
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	tap_sign	tap_first_z	tap_first_y	tap_first_x
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	slope_sign	slope_first_z	slope_first_y	slope_first_x

tap_sign:	sign of single/double tap triggering signal was '0'→positive, or '1' →negative
tap_first_z:	single/double tap interrupt: '1' → triggered by, or '0'→not triggered by z-axis
tap_first_y:	single/double tap interrupt: '1' → triggered by, or '0' → not triggered by y-axis
tap_first_x:	single/double tap interrupt: '1' → triggered by, or '0' → not triggered by x-axis
slope_sign:	slope sign of slope tap triggering signal was '0'→positive, or '1' →negative
slope_first_z:	slope interrupt: '1' → triggered by, or '0' → not triggered by z-axis
slope_first_y:	slope interrupt: '1' → triggered by, or '0'→not triggered by y-axis
slope_first_x:	slope interrupt: '1' \rightarrow triggered by, or '0' \rightarrow not triggered by x-axis

Register 0x0C (INT_STATUS_3)

The register contains interrupt status flags. Each flag is associated with a specific interrupt engine. It is set when the associated interrupt engine triggers. With the exception of orient<3:0> the setting of latch_int<3:0> controls if the interrupt signal and hence the respective interrupt

Page 75

flag will be permanently latched, temporarily latched or not latched. The interrupt function associated with a specific status flag must be enabled.

Name	0x0C	INT_STATUS_3		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	flat	orient<2:0>		
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	high_sign	high_first_z	high_first_y	high_first_x

flat: device is in '1' \rightarrow flat, or '0' \rightarrow non flat position;

only valid if (0x16) flat_en = '1'

orient<2>: Orientation value of z-axis: $0' \rightarrow$ upward looking, or $1' \rightarrow$ downward

looking. The flag always reflect the current orientation status, independent of

the setting of latch_int<3:0>. The flag is not updated as long as an

orientation blocking condition is active.

Orient<1:0>: orientation value of x-y-plane:

'00'→portrait upright; '01'→portrait upside down; '10'→landscape left; '11'→landscape right;

The flags always reflect the current orientation status, independent of the setting of latch int<3:0>. The flag is not updated as long as an orientation

blocking condition is active.

High sign: sign of acceleration signal that triggered high-g interrupt was '0'→positive, '1'

→negative

high_first_z: high-g interrupt: '1' \rightarrow triggered by, or '0' \rightarrow not triggered by z-axis high_first_y: high-g interrupt: '1' \rightarrow triggered by, or '0' \rightarrow not triggered by y-axis high-g interrupt: '1' \rightarrow triggered by, or '0' \rightarrow not triggered by x-axis

Register 0x0E (FIFO_STATUS)

The register contains FIFO status flags.

Name	0x0E	FIFO_STATUS		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	fifo_overrun	fifo_frame_counter<6:4>		

Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	fifo_frame_counter<3:0>			

fifo_overrun: FIFO overrun condition has '1' \rightarrow occurred, or '0' \rightarrow not occurred; flag can be

cleared by writing to the FIFO configuration register FIFO_CONFIG_1 only

fifo_frame_counter<6:4>: Current fill level of FIFO buffer. An empty FIFO corresponds to 0x00. The frame counter can be cleared by reading out all frames from the

FIFO buffer or writing to the FIFO configuration register FIFO_CONFIG_1.

6.7 g-range selection

Register 0x0F (PMU_RANGE)

The register allows the selection of the accelerometer g-range.

Name	0x0F	PMU_RANGE			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content		reserved			
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	1	1	
Content	range<3:0>				

range<3:0>: Selection of accelerometer g-range:

'0011b' \rightarrow ±2g range; '0101b' \rightarrow ±4g range; '1000b' \rightarrow ±8g range; '1100b' \rightarrow ±16g range; all other settings \rightarrow reserved (do not use)

reserved: write '0'

Page 78

6.8 Bandwidths

Register 0x10 (PMU_BW)

The register allows the selection of the acceleration data filter bandwidth.

Name	0x10		PMU_BW	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		reserved		bw<4>
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	1	1	1
Content	bw<3:0>			

bw<4:0>: Selection of data filter bandwidth:

 $\begin{tabular}{llll} \begin{tabular}{lllll} \begin{tabular}{lllll} \begin{tabular}{llll} \begin{tabular}{lllll} \begin{tabular}{lllll} \begin{tabular}{llll} \begin{tabular}{lllll} \begin{ta$

'1xxxxb' → 1000 Hz

reserved: write '0'

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

6.9 Power modes

Register 0x11 (PMU_LPW)

Selection of the main power modes and the low power sleep period.

Name	0x11		PMU_LPW	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	suspend	lowpower_en	deep_suspend	sleep_dur<3>
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		sleep_dur<2:0>		reserved

suspend, low_power_en, deep_suspend:

Main power mode configuration setting {suspend; lowpower_en;

deep_suspend}:

 $\{0; 0; 0\} \rightarrow NORMAL mode;$

 $\{0; 0; 1\} \rightarrow$ DEEP_SUSPEND mode; $\{0; 1; 0\} \rightarrow$ LOW_POWER mode;

 $\{1; 0; 0\} \rightarrow$ SUSPEND mode;

{all other} → illegal

Please note that only certain power mode transitions are permitted.

Sleep_dur<3:0>: Configures the sleep phase duration in LOW_POWER mode:

 '0000b' to '0101b'
 \rightarrow 0.5 ms,
 '0110b' \rightarrow 1 ms,

 '0111b'
 \rightarrow 2 ms,
 '1000b' \rightarrow 4 ms,

 '1001b'
 \rightarrow 6 ms,
 '1010b' \rightarrow 10 ms,

 '1011b'
 \rightarrow 25 ms,
 '1100b' \rightarrow 500 ms,

 '1101b'
 \rightarrow 100 ms,
 '1110b' \rightarrow 500 ms,

′1111b′ → 1 s

Register 0x12 (PMU_LOW_POWER)

Configuration settings for low power mode.

Name	0x12	PMU_LOW_POWER		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	lowpower_mode	sleeptimer_mode	reserved

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Page 80

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			

lowpower mode: select '0' → LPM1, or '1' → LPM2 configuration for SUSPEND and

LOW_POWER mode. In the LPM1 configuration the power consumption in LOW_POWER mode and SUSPEND mode is significantly reduced when compared to LPM2 configuration, but the FIFO is not accessible and writing to registers must be slowed down. In the LPM2 configuration the power consumption in LOW_POWER mode is reduced compared to NORMAL mode, but the FIFO is fully accessible and registers can be written to at full

speed.

Sleeptimer_mode: when in LOW_POWER mode '0' → use event-driven time-base mode

(compatible with BMA250), or '1' \rightarrow use equidistant sampling time-base mode. Equidistant sampling of data into the FIFO is maintained in equidistant

time-base mode only.

Reserved: write '0'

6.10 Special control settings

Register 0x13 (ACCD HBW)

Acceleration data acquisition and data output format.

Name	0x13	ACCD_HBW		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0 (1 in 8-bit mode)	0	0
Content	data_high_bw	shadow_dis	reserved	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		rese	rved	

data_high_bw: select whether '1' \rightarrow unfiltered, or '0' \rightarrow filtered data may be read from the

acceleration data registers.

Shadow_dis: $(1) \rightarrow \text{disable}$, or $(0) \rightarrow \text{the shadowing mechanism for the acceleration data}$

output registers. When shadowing is enabled, the content of the acceleration data component in the MSB register is locked, when the component in the LSB is read, thereby ensuring the integrity of the acceleration data during

read-out. The lock is removed when the MSB is read.

Reserved: write '1'

Register 0x14 (BGW_SOFTRESET)

Controls user triggered reset of the sensor.

Name	0x14	BGW_SOFTRESET		
Bit	7	6	5	4
Read/Write	W	W	W	W
Reset Value	0	0	0	0
Content	softreset			
Bit	3	2	1	0
Read/Write	W	W	W	W
Reset Value	0	0	0	0
Content		softr	reset	

softreset: $0xB6 \rightarrow triggers$ a reset. Other values are ignored. Following a delay, all user

configuration settings are overwritten with their default state or the setting stored in the NVM, wherever applicable. This register is functional in all

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Page 82

operation modes. Please note that all application specific settings which are not equal to the default settings (refer to chapter 6.2), must be reconfigured to their designated values.

6.11 Interrupt settings

Register 0x16 (INT_EN_0)

Controls which interrupt engines in group 0 are enabled.

Name	0x16		INT_EN_0	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	flat_en	orient_en	s_tap_en	d_tap_en
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	slope_en_z	slope_en_y	slope_en_x

flat_en: flat interrupt: '0'→disabled, or '1' →enabled

orient_en: orientation interrupt: '0'→disabled, or '1' →enabled s_tap_en: single tap interrupt: '0'→disabled, or '1' →enabled double tap interrupt: '0'→disabled, or '1' →enabled

reserved: write '0'

slope_en_z: slope interrupt, z-axis component: '0' \rightarrow disabled, or '1' \rightarrow enabled slope_en_y: slope interrupt, y-axis component: '0' \rightarrow disabled, or '1' \rightarrow enabled slope_en_x: slope interrupt, x-axis component: '0' \rightarrow disabled, or '1' \rightarrow enabled

Register 0x17 (INT_EN_1)

Controls which interrupt engines in group 1 are enabled.

Name	0x17	INT_EN_1		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	int_fwm_en	int_ffull_en	data_en
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	low_en	high_en_z	high_en_y	high_en_x

reserved: write '0'

Page 84

int fwm en: FIFO watermark interrupt: '0' → disabled, or '1' → enabled

int_ffull_en: FIFO full interrupt: '0'→disabled, or '1' →enabled data_en data ready interrupt: '0'→disabled, or '1' →enabled low_en: low-g interrupt: '0'→disabled, or '1' →enabled

high_en_z: high-g interrupt, z-axis component: '0'→disabled, or '1' →enabled high_en_y: high-g interrupt, y-axis component: '0'→disabled, or '1' →enabled high-en_x: high-g interrupt, x-axis component: '0'→disabled, or '1' →enabled

Register 0x18 (INT_EN_2)

Controls which interrupt engines in group 2 are enabled.

Name	0x18	INT_EN_2		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	slo_no_mot_sel	slo_no_mot_en_z	slo_no_mot_en_y	slo_no_mot_en_x

reserved: write '0'

slo_no_mot_sel: select '0'→slow-motion, '1' →no-motion interrupt function slo_no_mot_en_z: slow/n-motion interrupt, z-axis component: '0'→disabled, or '1' →enabled slo_no_mot_en_y: slow/n-motion interrupt, y-axis component: '0'→disabled, or '1' →enabled slo_no_mot_en_x: slow/n-motion interrupt, x-axis component: '0'→disabled, or '1' →enabled

Register 0x19 (INT MAP 0)

Controls which interrupt signals are mapped to the INT1 pin.

Name	0x19	INT_MAP_0		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int1_flat	int1_orient	int1_s_tap	int1_d_tap

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Page 85

Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int1_slo_no_mot	int1_slope	int1_high	int1_low

int1 flat: map flat interrupt to INT1 pin: '0' → disabled, or '1' → enabled

int1_orient: map orientation interrupt to INT1 pin: '0' \rightarrow disabled, or '1' \rightarrow enabled int1_s_tap: map single tap interrupt to INT1 pin: '0' \rightarrow disabled, or '1' \rightarrow enabled int1_d_tap: map double tap interrupt to INT1 pin: '0' \rightarrow disabled, or '1' \rightarrow enabled int1_slo_no_mot: map slow/no-motion interrupt to INT1 pin: '0' \rightarrow disabled, or '1' \rightarrow enabled

int1_slope: map slope interrupt to INT1 pin: '0'→disabled, or '1' →enabled

int1_high: map high-g to INT1 pin: '0'→disabled, or '1' →enabled int1_low: map low-g to INT1 pin: '0'→disabled, or '1' →enabled

Register 0x1A (INT_MAP_1)

Controls which interrupt signals are mapped to the INT1 and INT2 pins.

Name	0x1A		INT_MAP_1		
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	int2_data	int2_fwm	int2_ffull	reserved	
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content	reserved	int1_ffull	int1_fwm	int1_data	

int2_data: map data ready interrupt to INT2 pin: '0'→disabled, or '1' →enabled int2_fwm: map FIFO watermark interrupt to INT2 pin: '0'→disabled, or '1' →enabled

int2_ffull: map FIFO full interrupt to INT2 pin: '0'→disabled, or '1' →enabled

reserved: write '0'

int1_ffull: map FIFO full interrupt to INT1 pin: '0'→disabled, or '1' →enabled

int1_fwm: map FIFO watermark interrupt to INT1 pin: '0'→disabled, or '1' →enabled

int1_data: map data ready interrupt to INT1 pin: '0'→disabled, or '1' →enabled

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Page 86

Register 0x1B (INT_MAP_2)

Controls which interrupt signals are mapped to the INT2 pin.

Name	0x1B		INT_MAP_2	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int2_flat	int2_orient	int2_s_tap	int2_d_tap
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int2_slo_no_mot	int2_slope	int2_high	int2_low

int2_flat: map flat interrupt to INT2 pin: '0'→disabled, or '1' →enabled

int2_orient: map orientation interrupt to INT2 pin: '0'→disabled, or '1' →enabled int2_s_tap: map single tap interrupt to INT2 pin: '0'→disabled, or '1' →enabled int2_d_tap: map double tap interrupt to INT2 pin: '0'→disabled, or '1' →enabled int2_slo_no_mot: map slow/no-motion interrupt to INT2 pin: '0'→disabled, or '1' →enabled

int2_slope: map slope interrupt to INT2 pin: '0'→disabled, or '1' →enabled

int2_high: map high-g to INT2 pin: '0'→disabled, or '1' →enabled int2_low: map low-g to INT2 pin: '0'→disabled, or '1' →enabled

Register 0x1E (INT_SRC)

Contains the data source definition for interrupts with selectable data source.

Name	0x1E	INT_SRC		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved		int_src_data	int_src_tap
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	int_src_slo_no_m ot	int_src_slope	int_src_high	int_src_low

reserved: write '0'

int_src_data: select '0'→filtered, or '1' →unfiltered data for new data interrupt

int_src_tap: select '0'→filtered, or '1' →unfiltered data for single-/double tap interrupt

Page 87

int_src_slo_no_mot: select '0'→filtered, or '1' →unfiltered data for slow/no-motion interrupt

int_src_slope: select '0'→filtered, or '1' →unfiltered data for slope interrupt int_src_high: select '0'→filtered, or '1' →unfiltered data for high-g interrupt int_src_low: select '0'→filtered, or '1' →unfiltered data for low-g interrupt

Register 0x20 (INT_OUT_CTRL)

Contains the behavioural configuration (electrical 87ehavior) of the interrupt pins.

Name	0x20	INT_OUT_CTRL		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	1
Content	int2_od	int2_lvl	int1_od	int1_lvl

reserved: write '0'

int2_od: select '0'→push-pull, or '1' →open drain behavior for INT2 pin int2_lvl: select '0'→active low, or '1'→active high level for INT2 pin int1_od: select '0'→push-pull, or '1' →open drain behavior for INT1 pin int1_lvl: select '0'→active low, or '1'→active high level for INT1 pin

Register 0x21 (INT_RST_LATCH)

Contains the interrupt reset bit and the interrupt mode selection.

Name	0x21	INT_RST_LATCH		
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reset_int	reserved		
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	latch_int<3:0>			

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Page 88

reset int: write '1' \rightarrow clear any latched interrupts, or '0' \rightarrow keep latched interrupts

active

reserved: write '0'

latch_int<3:0>: '0000b' \rightarrow non-latched, '0001b' \rightarrow temporary, 250 ms,

 $'0010b' \rightarrow \text{temporary}$, 500 ms, $'0011b' \rightarrow \text{temporary}$, 1 s, $'0100b' \rightarrow \text{temporary}$, 2 s, $'0101b' \rightarrow \text{temporary}$, 4 s,

 $'0110b' \rightarrow \text{temporary}, 8 \text{ s}, \qquad '0111b' \rightarrow \text{latched},$

'1000b' → non-latched, '1001b' → temporary, 250 μs, '1010b' → temporary, 500 μs, '1011b' → temporary, 1 ms, '1100b' → temporary, 12.5 ms, '1101b' → temporary, 25 ms,

'1110b' \rightarrow temporary, 50 ms, '1111b' \rightarrow latched

Register 0x22 (INT_0)

Contains the delay time definition for the low-g interrupt.

Name	0x22	INT_0		
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	low_dur<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	1
Content		low_du	ır<3:0>	

low_dur<7:0>: low-g interrupt trigger delay according to [low_dur<7:0> + 1] • 2 ms in a

range from 2 ms to 512 ms; the default corresponds to a delay of 20 ms.

Register 0x23 (INT_1)

Contains the threshold definition for the low-g interrupt.

Name	0x23		INT_1	
Bit	7	6	5	4
Read/Write	W	R/W	R/W	R/W
Reset Value	0	0	1	1
Content	low_th<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	low_th<3:0>			

Page 89

low_th<7:0>:

low-g interrupt trigger threshold according to $low_th < 7:0 > \cdot 7.81$ mg in a range from 0 g to 1.992 g; the default value corresponds to an acceleration of 375 mg

Register 0x24 (INT_2)

Contains the low-g interrupt mode selection, the low-g interrupt hysteresis setting, and the high-g interrupt hysteresis setting.

Name	0x24		INT_2	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	high_h	y<1:0>	reserved	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved	low_mode	low_h	y<1:0>

high_hy<1:0>: hysteresis of high-g interrupt according to high_hy<1:0> · 125 mg (2-g

range), high_hy<1:0> \cdot 250 mg (4-g range), high_hy<1:0> \cdot 500 mg (8-g

range), or high_hy<1:0> · 1000 mg (16-g range)

low_mode: select low-g interrupt '0' single-axis mode, or '1' axis-summing mode

low hy<1:0>: hysteresis of low-g interrupt according to low hy<1:0> · 125 mg independent

of the selected accelerometer g-range

Register 0x25 (INT_3)

Contains the delay time definition for the high-g interrupt.

Name	0x25	INT_3			
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	0	
Content		high_dur<7:4>			
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	1	1	1	1	
Content		high_dı	ur<3:0>		

high_dur<7:0>: high-g interrupt trigger delay according to [high_dur<7:0> + 1] • 2 ms in a range from 2 ms to 512 ms; the default corresponds to a delay of 32 ms.

Page 90

Register 0x26 (INT_4)

Contains the threshold definition for the high-g interrupt.

Name	0x26	INT_4		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	1	0	0
Content	high_th<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		high_th<3:0>		

high_th<7:0>:

threshold of high-g interrupt according to high_th<7:0> \cdot 7.81 mg (2-g range), high_th<7:0> \cdot 15.63 mg (4-g range), high_th<7:0> \cdot 31.25 mg (8-g range), or high th<7:0> \cdot 62.5 mg (16-g range)

Register 0x27 (INT_5)

Contains the definition of the number of samples to be evaluated for the slope interrupt (anymotion detection) and the slow/no-motion interrupt trigger delay.

Name	0x27		INT_5	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	slo_no_mot_dur<5:2>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	slo_no_mo	t_dur<1:0>	slope_dur<1:0>	

slo_no_mot_dur<5:0>: Function depends on whether the slow-motion or no-motion interrupt function has been selected. If the slow-motion interrupt function has been enabled (slo_no_mot_sel = '0') then [slo_no_mot_dur<1:0>+1] consecutive slope data points must be above the slow/no-motion threshold (slo_no_mot_th) for the slow-/no-motion interrupt to trigger. If the no-motion interrupt function has been enabled (slo_no_mot_sel = '1') then slo_no_motion_dur<5:0> defines the time for which no slope data points must exceed the slow/no-motion threshold (slo_no_mot_th) for the slow/no-motion interrupt to trigger. The delay time in seconds may be calculated according with the following equation:

Page 91

slo_no_mot_dur<5:4>='b00' \rightarrow [slo_no_mot_dur<3:0> + 1] slo_no_mot_dur<5:4>='b01' \rightarrow [slo_no_mot_dur<3:0> · 4 + 20] slo_no_mot_dur<5>='1' \rightarrow [slo_no_mot_dur<4:0> · 8 + 88]

slope_dur<1:0>:

slope interrupt triggers if [slope_dur<1:0>+1] consecutive slope data points are above the slope interrupt threshold slope_th<7:0>

Register 0x28 (INT_6)

Contains the threshold definition for the any-motion interrupt.

Name	0x28	INT_6		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	slope_th<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content		slope_t	:h<3:0>	

slope_th<7:0>: Threshold of the any-motion interrupt. It is range-dependent and defined as a

sample-to-sample difference according to slope_th<7:0> · 3.91 mg (2-g range) / slope_th<7:0> · 7.81 mg (4-g range) / slope_th<7:0> · 15.63 mg (8-g range) /

slope_th<7:0> · 31.25 mg (16-g range)

Register 0x29 (INT_7)

Contains the threshold definition for the slow/no-motion interrupt.

Name	0x29	INT_7		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	slo_no_mot_th<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content		slo_no_mo	ot_th<3:0>	

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Page 92

slo_no_mot_th<7:0>: Threshold of slow/no-motion interrupt. It is range-dependent and defined

as a sample-to-sample difference according to $slo_no_mot_th<7:0>\cdot 3..91$ mg (2-g range), $slo_no_mot_th<7:0>\cdot 7.81$ mg (4-g range), $slo_no_mot_th<7:0>\cdot 15.63$ mg (8-g range), $slo_no_mot_th<7:0>\cdot 31,25$ mg (16-g range)

Register 0x2A (INT_8)

Contains the timing definitions for the single tap and double tap interrupts.

Name	0x2A		INT_8	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	tap_quiet	tap_shock	reserved	reserved
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	1	0	0
Content	reserved		tap_dur<2:0>	

tap_quiet: selects a tap quiet duration of '0' \rightarrow 30 ms, '1' \rightarrow 20 ms tap_shock: selects a tap shock duration of '0' \rightarrow 50 ms, '1' \rightarrow 75 ms

reserved: write '0'

tap_dur<2:0>: selects the length of the time window for the second shock event for double

tap detection according to '000b' \Rightarrow 50 ms, '001b' \Rightarrow 100 ms, '010b' \Rightarrow 150 ms, '011b' \Rightarrow 200 ms, '100b' \Rightarrow 250 ms, '101b' \Rightarrow 375 ms, '110b' \Rightarrow 500

ms, '111b' \rightarrow 700 ms.

Register 0x2B (INT_9)

Contains the definition of the number of samples processed by the single / double-tap interrupt engine after wake-up in low-power mode. It also defines the threshold definition for the single and double tap interrupts.

Name	0x2B		INT_9	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	tap_san	np<1:0>	reserved	tap_th<4>
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset	1	0	1	0

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Page 93

Value			
Content	tap_th	ı<3:0>	

tap_samp<1:0>: selects the number of samples that are processed after wake-up in the low-

power mode according to '00b' \rightarrow 2 samples, '01b' \rightarrow 4 samples, '10b' \rightarrow 8

samples, and '11b' \rightarrow 16 samples

reserved: write '0'

tap th<4:0>: threshold of the single/double-tap interrupt corresponding to an acceleration

difference of tap_th<4:0> \cdot 62.5mg (2g-range), tap_th<4:0> \cdot 125mg (4g-range), tap_th<4:0> \cdot 250mg (8g-range), and tap_th<4:0> \cdot 500mg (16g-

range).

Register 0x2C (INT_A)

Contains the definition of hysteresis, blocking, and mode for the orientation interrupt

Name	0x2C		INT_A	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	1
Content	reserved		orient_hyst<2:0>	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content	orient_bloo	cking<1:0>	orient_m	ode<1:0>

reserved: write '0'

orient_hyst<2:0>: sets the hysteresis of the orientation interrupt; 1 LSB corresponds to 62.5 mg

irrespective of the selected g-range

orient blocking<1:0>: selects the blocking mode that is used for the generation of the

orientation interrupt. The following blocking modes are available:

'00b' → no blocking,

 $'01b' \rightarrow$ theta blocking or acceleration in any axis > 1.5g,

'10b' → ,theta blocking or acceleration slope in any axis > 0.2 g or

acceleration in any axis > 1.5g

'11b' → theta blocking or acceleration slope in any axis > 0.4 g or

acceleration in any axis > 1.5g and value of orient is not stable for

at least 100ms

orient_mode<1:0>: sets the thresholds for switching between the different orientations. The settings: '00b' \rightarrow symmetrical, '01b' \rightarrow high-asymmetrical, '10b' \rightarrow low-

asymmetrical, '11b' → symmetrical.

Page 94

Register 0x2D (INT_B)

Contains the definition of the axis orientation, up/down masking, and the theta blocking angle for the orientation interrupt.

Name	0x2D		INT_B	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	n/a	1	0	0
Content	reserved	orient_ud_en	orient_th	eta<5:4>
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	1	0	0	0
Content		orient_th	eta<3:0>	

orient_ud_en: change of up/down-bit '1' \rightarrow generates an orientation interrupt, '0' \rightarrow is

ignored and will not generate an orientation interrupt

orient_theta<5:0>: defines a blocking angle between 0° and 44.8°

Register 0x2E (INT_C)

Contains the definition of the flat threshold angle for the flat interrupt.

Name	0x2E		INT_C		
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	n/a	n/a	0	0	
Content	rese	reserved		flat_theta<5:4>	
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	1	0	0	0	
Content		flat_the	ta<3:0>		

reserved: write '0'

flat_theta<5:0>: defines threshold for detection of flat position in range from 0° to 44.8°.

Page 95

Register 0x2F (INT_D)

Contains the definition of the flat interrupt hold time and flat interrupt hysteresis.

Name	0x2F		INT_D		
Bit	7	6	5	4	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	1	
Content	rese	reserved		flat_hold_time<1:0>	
Bit	3	2	1	0	
Read/Write	R/W	R/W	R/W	R/W	
Reset Value	0	0	0	1	
Content	reserved		flat_hy<2:0>		

reserved: write '0'

flat_hold_time<1:0>: delay time for which the flat value must remain stable for the flat interrupt

to be generated: '00b' \rightarrow 0 ms, '01b' \rightarrow 512 ms, '10b' \rightarrow 1024 ms,

'11b' → 2048 ms

flat_hy<2:0>: defines flat interrupt hysteresis; flat value must change by more than twice

the value of flat interrupt hysteresis to detect a state change. For details see

chapter 4.7.8.

'000b' → hysteresis of the flat detection disabled

Page 96

6.12 Self-test

Register 0x32 (PMU_SELF_TEST)

Contains the settings for the sensor self-test configuration and trigger.

Name	0x32		PMU_SELF_TEST	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		reserved		self_test_amp
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved_0	self_test_sign	self_test-	axis<1:0>

reserved: write '0x0' reserved_0: write '0x0'

self_test_amp; select amplitude of the selftest deflection '1' \rightarrow high,

default value is low ('0')

self_test_sign: select sign of self-test excitation as '1' \rightarrow positive, or '0' \rightarrow negative

self test axis: select axis to be self-tested: '00b' → self-test disabled, '01b' → x-axis, '10b'

 \rightarrow y-axis, or '11b' \rightarrow z-axis; when a self-test is performed, only the

acceleration data readout value of the selected axis is valid; after the self-test has been enabled a delay of a least 50 ms is necessary for the read-out

value to settle

Page 97

6.13 Non-volatile memory control (EEPROM)

Register 0x33 (TRIM_NVM_CTRL)

Contains the control settings for the few-time programmable non-volatile memory (NVM).

Name	0x33	TRIM_NVM_CTRL		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	nvm_remain<3:0>			
Bit	3	2	1	0
Read/Write	R/W	R	W	R/W
Reset Value	0	n/a	0	0
Content	nvm_load	nvm_rdy	nvm_prog_trig	nvm_prog_mode

nvm remain<3:0>:number of remaining write cycles permitted for NVM; the number is

decremented each time a write to the NVM is triggered

nvm_load: $1' \rightarrow \text{trigger}$, or '0' $\rightarrow \text{do not trigger}$ an update of all configuration registers

from NVM; the nvm_rdy flag must be '1' prior to triggering the update

nvm rdy: status of NVM controller: '0' → NVM write / NVM update operation is in

progress, '1' → NVM is ready to accept a new write or update trigger

nvm_prog_trig: '1' → trigger, or '0' → do not trigger an NVM write operation; the trigger is only

accepted if the NVM was unlocked before and nvm remain<3:0> is greater

than '0'; flag nvm_rdy must be '1' prior to triggering the write cycle

nvm prog mode: '1' → unlock, or '0' → lock NVM write operation

Page 98

6.14 Interface configuration

Register 0x34 (BGW_SPI3_WDT)

Contains settings for the digital interfaces.

Name	0x34	BGW_SPI3_WDT		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	Reserved			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	i2c wdt en	i2c wdt sel	spi3

reserved: write '0'

i2c_wdt_en: if I2C interface mode is selected then '1' \rightarrow enable, or '0' \rightarrow disables the

watchdog at the SDI pin (= SDA for I2C)

i2c_wdt_sel: select an I2C watchdog timer period of '0' \rightarrow 1 ms, or '1' \rightarrow 50 ms

spi3: select '0' \rightarrow 4-wire SPI, or '1' \rightarrow 3-wire SPI mode

6.15 Offset compensation

Register 0x36 (OFC_CTRL)

Contains control signals and configuration settings for the fast and the slow offset compensation.

Name	0x36	OFC_CTRL		
Bit	7	6	5	4
Read/Write	W	W	W	R
Reset Value	0	0	0	0
Content	offset_reset	cal_trigger<1:0>		cal_rdy
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	hp_z_en	hp_y_en	hp_x_en

offset_reset: '1' \rightarrow set all offset compensation registers (0x38 to 0x3A) to zero, or '0' \rightarrow

keep their values

offset_trigger<1:0>: trigger fast compensation for '01b' \rightarrow x-axis, '10b' \rightarrow y-axis, or '11b' \rightarrow

z-axis; '00b' → do not trigger offset compensation; offset compensation must

not be triggered when cal_rdy is '0'

cal_rdy: indicates the state of the fast compensation: $0 \rightarrow 0$ offset compensation is in

progress, or '1' \rightarrow offset compensation is ready to be retriggered

reserved: write '0'

hp_z_en: '1' \rightarrow enable, or '0' \rightarrow disable slow offset compensation for the z-axis hp_y_en: '1' \rightarrow enable, or '0' \rightarrow disable slow offset compensation for the y-axis hp_x_en: '1' \rightarrow enable, or '0' \rightarrow disable slow offset compensation for the x-axis

Register 0x37 (OFC_SETTING)

Contains configuration settings for the fast and the slow offset compensation.

Name	0x37	OFC_SETTING		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	reserved	offset_targe	offset_target_y<1>	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_target_y<0	offset_targe	et_x<1:0>	cut_off

reserved: write '0'

offset_target_z<1:0>: offset compensation target value for z-axis is '00b' \rightarrow 0 g, '01b' \rightarrow +1 g, '10b' \rightarrow -1 g, or '11b' \rightarrow 0 g

offset_target_y<1:0>: offset compensation target value for y-axis is '00b' \rightarrow 0 g, '01b' \rightarrow +1 g, '10b' \rightarrow -1 g, or '11b' \rightarrow 0 g

offset_target_x<1:0>: offset compensation target value for x-axis is '00b' \rightarrow 0 g, '01b' \rightarrow +1 g, '10b' \rightarrow -1 g, or '11b' \rightarrow 0 g

cut_off:

(0x37) cut_off	high-pass filter bandwidth	Example bw = 500 Hz
0b	$\frac{1Hz \times bw *}{1000 Hz}$	$\frac{1Hz \times 500 Hz}{1000 Hz} = 0.5 Hz$
1b	$\frac{10Hz \times bw *}{1000 Hz}$	$\frac{10Hz \times 500 Hz}{1000 Hz} = 5 Hz$

^{*}bw: please insert selected decimal data bandwidth value [Hz] from table 8

Register 0x38 (OFC_OFFSET_X)

Contains the offset compensation value for x-axis acceleration readout data.

Name	0x38	OFC_OFFSET_X		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		offset_x<7:4>		
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset x<3:0>			

offset x<7:0>:

offset value, which is subtracted from the internal filtered and unfiltered x-axis acceleration data; the offset value is represented with two's complement notation, with a mapping of $+127 \rightarrow +0.992$ g, $0 \rightarrow 0$ g, and $-128 \rightarrow -1$ g; the scaling is independent of the selected g-range; the content of the offset_x<7:0> may be written to the NVM; it is automatically restored from the NVM after each power-on or softreset; offset_x<7:0> may be written directly by the user; it is generated automatically after triggering the fast offset compensation procedure for the x-axis

Page 101

Register 0x39 (OFC_OFFSET_Y)

Contains the offset compensation value for y-axis acceleration readout data.

Name	0x39	OFC_OFFSET_Y		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		offset_y<7:4>		
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset_y<3:0>			

offset_y<7:0>:

offset value, which is subtracted from the internal filtered and unfiltered y-axis acceleration data; the offset value is represented with two's complement notation, with a mapping of $+127 \rightarrow +0.992$ g, $0 \rightarrow 0$ g, and $-128 \rightarrow -1$ g; the scaling is independent of the selected g-range; the content of the offset_y<7:0> may be written to the NVM; it is automatically restored from the NVM after each power-on or softreset; offset_y<7:0> may be written directly by the user; it is generated automatically after triggering the fast offset compensation procedure for the y-axis

Register 0x3A (OFC_OFFSET_Z)

Contains the offset compensation value for z-axis acceleration readout data.

Name	0x3A	OFC_OFFSET_Z		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		offset_z<7:4>		
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	offset z<3:0>			

offset_z<7:0>:

offset value, which is subtracted from the internal filtered and unfiltered z-axis acceleration data; the offset value is represented with two's complement notation, with a mapping of $+127 \rightarrow +0.992$ g, $0 \rightarrow 0$ g, and $-128 \rightarrow -1$ g; the scaling is independent of the selected g-range; the content of the offset_z<7:0> may be written to the NVM; it is automatically restored from the NVM after each power-on or softreset; offset_z<7:0> may be written directly by the user; it is generated automatically after triggering the fast offset compensation procedure for the z-axis

6.16 Non-volatile memory back-up

Register 0x3B (TRIM_GP0)

Contains general purpose data register with NVM back-up.

Name	0x3B	TRIM_GP0		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		GP0<7:4>		
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		GP0<	<3:0>	

GP0<7:0>:

general purpose NVM image register not linked to any sensor-specific functionality; register may be written to NVM and is restored after each power-up or softreset

Register 0x3C (TRIM_GP1)

Contains general purpose data register with NVM back-up.

Name	0x3C	TRIM_GP1		
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	GP1<7:4>			
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content		GP1	<3:0>	

GP1<7:0>:

general purpose NVM image register not linked to any sensor-specific functionality; register may be written to NVM and is restored after each power-up or softreset

6.17 FIFO configuration and FIFO data

Register 0x30 (FIFO_CONFIG_0)

Contains the FIFO watermark level.

Name	0x30		FIFO_CONFIG_0	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	n/a	n/a	0	0
Content	Reserved		fifo_water_mark_level_trigger_ retain<5:4>	
Bit	3	2	1	0
Read/Write	R/W R/W		R/W	R/W
Reset Value	0		0	0
Content	fifo_water_mark_le	vel_trigger_retain<3:	0>	

reserved: write '0'

fifo_water_mark_level_trigger_retain<5:0>:

fifo_water_mark_level_trigger_retain<5:0> defines the FIFO watermark level. An interrupt will be generated, when the number of entries in the FIFO is equal to fifo_water_mark_level_trigger_retain<5:0>;

Register 0x3E (FIFO_CONFIG_1)

Contains FIFO configuration settings. The FIFO buffer memory is cleared and the fifo-full flag is cleared when writing to FIFO_CONFIG_1 register.

Name	0x3E		FIFO_CONFIG_1	
Bit	7	6	5	4
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	fifo_mode<1:0>		Reserved	
Bit	3	2	1	0
Read/Write	R/W	R/W	R/W	R/W
Reset Value	0	0	0	0
Content	Reserved		fifo_data_select<1:0>	

fifo mode<1:0>: selects the FIFO operating mode:

'00b' → BYPASS (buffer depth of 1 frame; old data is discarded),

'01b' → FIFO (data collection stops when buffer is filled with 32 frames), '10b' → STREAM (sampling continues when buffer is full; old is discarded),

'11b' → reserved, do not use

Page 104

fifo_data_select<1:0>: selects whether '00b' \rightarrow X+Y+Z, '01b' \rightarrow X only, '10b' \rightarrow Y only, '11b' \rightarrow Z only acceleration data are stored in the FIFO.

Register 0x3F (FIFO_DATA)

FIFO data readout register. The format of the LSB and MSB components corresponds to that of the acceleration data readout registers. The new data flag is preserved. Read burst access may be used since the address counter will not increment when the read burst is started at the address of FIFO_DATA. The entire frame is discarded when a fame is only partially read out.

Name	0x3F	FIFO_DATA		
Bit	7	6	5	4
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content	fifo_data_output_register<7:4>			
Bit	3	2	1	0
Read/Write	R	R	R	R
Reset Value	n/a	n/a	n/a	n/a
Content		fifo_data_output_register<3:0>		

fifo_data_output_register<7:0>: FIFO data readout; data format depends on the setting of register fifo_data_select<1:0>:

if X+Y+Z data are selected, the data of frame n is reading out in the order of X-lsb(n), X-msb(n), Y-lsb(n), Y-msb(n), Z-lsb(n), Z-msb(n); if X-only is selected, the data of frame n and n+1 are reading out in the order

of X-only is selected, the data of frame n and n+1 are reading out in the order of X-lsb(n), X-msb(n), X-lsb(n+1), X-msb(n+1); the Y-only and Z-only modes behave analogously

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

7. Magnetometer register description

7.1 General remarks

The entire communication with the device's magnetometer part is performed by reading from and writing to registers. Registers have a width of 8 bits; they are mapped to a common space of 50 addresses from (0x40) up to (0x71). Within the used range there are several registers which are marked as 'reserved'. Any reserved bit is ignored when it is written and no specific value is guaranteed when read. Especially, in SPI mode the SDO pin may stay in high-Z state when reading some of these registers.

Registers with addresses from (0x40) up to (0x4A) are read-only. Any attempt to write to these registers is ignored.

7.2 Register map

Register Address	Default Value	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
0x71	N/A	DICI	Dito	Dito .	Dit i	Dito	DILE	Diti	Dito
0x70	N/A								
0x6F	N/A								
0x6E	N/A								
0x6D	N/A								
0x6C	N/A								
0x6B	N/A								
0x6A	N/A								
0x69	N/A								
0x68	N/A								
0x67	N/A								
0x66	N/A								
0x65	N/A								
0x64	N/A								
0x63	N/A								
0x62	N/A				rese	erved			
0x61	N/A								
0x60	N/A								
0x5F	N/A								
0x5E	N/A								
0x5D	N/A								
0x5C	N/A								
0x5B	N/A								
0x5A	N/A								
0x59	N/A								
0x58	N/A								
0x57	N/A								
0x56	N/A								
0x55	N/A								
0x54	N/A								
0x53	N/A								
0x52	0x00				REPZ Number Of Rep	etitions (valid for Z) [7:0]			
0x51	0x00					etitions (valid for XY) [7:0]			
0x50	0x00					shold [7:0]			
0x4F	0x00					shold [7:0]			
0x4E	0x07	Data Ready Pin En	Interrupt Pin En	Channel Z	Channel Y	Channel X	DR Polarity	Interrupt Latch	Interrupt Polarity
0X4D	0x3F	Data Overrun En	Overflow Int En	High Int Z en	High Int Y en	High Int X en	Low Int Z en	Low Int Y en	Low Int X en
0x4C	0x06		ST [1:0]		Data Rate [2:0]			de [1:0]	Self Test
0x4B	0x01	Soft Reset '1'	fixed '0'	fixed '0'	fixed '0'	fixed '0'	SPI3en	Soft Reset '1'	Power Control Bit
0x4A	0x00	Data Overrun	Overflow	High Int Z	High Int Y	High Int X	Low Int Z	Low Int Y	Low Int X
0x49	N/A					13:6] MSB			
0x48	N/A			RHALL I	[5:0] LSB			fixed '0'	Data Ready Status
0x47	N/A		DATA Z [14:7] MSB						
0x46	N/A	DATA Z [6:0] LSB Z-Self-Test							
0x45	N/A	DATA Y [12:5] MSB							
0x44	N/A	DATA Y [4:0] LSB fixed '0' fixed '0' Y-Self-Test							
0x43	N/A	DATA X [12:5] MSB							
0x42	N/A		DATA X [4:0] LSB fixed '0' fixed '0' X-Self-Test						
0x41	N/A				rese	erved			
0x40	0x32			Chi	ip ID = 0x32 (can only be	read if power control bit =	:"1")		

7.3 Chip ID

Register (0x40) Chip ID contains the magnetometer chip identification number, which is 0x32. This number can only be read if the power control bit (register 0x4B bit0) is enabled.

Table 25: Chip identification number, register (0x40)

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	1	1	0	0	1	0

Register (0x41) is reserved

7.4 Magnetic field data

Register (0x42) contains the LSB part of x-axis magnetic field data and the self-test result flag for the x-axis.

Table 26: LSB part of x-axis magnetic field, register (0x42)

(0x42) Bit	Name	Description
Bit 7	DATAX_lsb <4>	Bit 4 of x-axis magnetic field data
Bit 6	DATAX_lsb <3>	Bit 3 of x-axis magnetic field data
Bit 5	DATAX_lsb <2>	Bit 2 of x-axis magnetic field data
Bit 4	DATAX_lsb <1>	Bit 1 of x-axis magnetic field data
Bit 3	DATAX_lsb <0>	Bit 0 of x-axis magnetic field data = x LSB
Bit 2	-	(fixed to 0)
Bit 1	-	(fixed to 0)
Bit 0	SelfTestX	Self-test result flag for x-axis, default is "1"

Register (0x43) contains the MSB part of x-axis magnetic field data.

Table 27: MSB part of x-axis magnetic field, register (0x43)

(0x43) Bit	Name	Description
Bit 7	DATAX_msb <12>	Bit 12 of x-axis magnetic field data = x MSB
Bit 6	DATAX_msb <11>	Bit 11 of x-axis magnetic field data
Bit 5	DATAX_msb <10>	Bit 10 of x-axis magnetic field data
Bit 4	DATAX_msb <9>	Bit 9 of x-axis magnetic field data
Bit 3	DATAX_msb <8>	Bit 8 of x-axis magnetic field data
Bit 2	DATAX_msb <7>	Bit 7 of x-axis magnetic field data
Bit 1	DATAX_msb <6>	Bit 6 of x-axis magnetic field data
Bit 0	DATAX_msb <5>	Bit 5 of x-axis magnetic field data

Page 107

Register (0x44) contains the LSB part of y-axis magnetic field data and the self-test result flag for the y-axis.

Table 28: LSB part of y-axis magnetic field, register (0x44)

(0x44) Bit	Name	Description
Bit 7	DATAY_lsb <4>	Bit 4 of y-axis magnetic field data
Bit 6	DATAY_lsb <3>	Bit 3 of y-axis magnetic field data
Bit 5	DATAY_lsb <2>	Bit 2 of y-axis magnetic field data
Bit 4	DATAY_lsb <1>	Bit 1 of y-axis magnetic field data
Bit 3	DATAY_lsb <0>	Bit 0 of y-axis magnetic field data = y LSB
Bit 2	-	(fixed to 0)
Bit 1	-	(fixed to 0)
Bit 0	SelfTestY	Self-test result flag for y-axis, default is "1"

Register (0x45) contains the MSB part of y-axis magnetic field data.

Table 29: MSB part of y-axis magnetic field, register (0x45)

(0x45) Bit	Name	Description
Bit 7	DATAY_msb <12>	Bit 12 of y-axis magnetic field data = y MSB
Bit 6	DATAY_msb <11>	Bit 11 of y-axis magnetic field data
Bit 5	DATAY_msb <10>	Bit 10 of y-axis magnetic field data
Bit 4	DATAY_msb <9>	Bit 9 of y-axis magnetic field data
Bit 3	DATAY_msb <8>	Bit 8 of y-axis magnetic field data
Bit 2	DATAY_msb <7>	Bit 7 of y-axis magnetic field data
Bit 1	DATAY_msb <6>	Bit 6 of y-axis magnetic field data
Bit 0	DATAY_msb <5>	Bit 5 of y-axis magnetic field data

Register (0x46) contains the LSB part of z-axis magnetic field data and the self-test result flag for the z-axis.

Table 30: LSB part of z-axis magnetic field, register (0x46)

(0x46) Bit	Name	Description
Bit 7	DATAZ_lsb <6>	Bit 6 of z-axis magnetic field data
Bit 6	DATAZ_lsb <5>	Bit 5 of z-axis magnetic field data
Bit 5	DATAZ_lsb <4>	Bit 4 of z-axis magnetic field data
Bit 4	DATAZ_lsb <3>	Bit 3 of z-axis magnetic field data
Bit 3	DATAZ_lsb <2>	Bit 2 of z-axis magnetic field data
Bit 2	DATAZ_lsb <1>	Bit 1 of z-axis magnetic field data
Bit 1	DATAZ_lsb <0>	Bit 0 of z-axis magnetic field data = z LSB
Bit 0	SelfTestZ	Self-test result flag for z-axis, default is "1"

Register (0x47) contains the MSB part of z-axis magnetic field data.

Table 31: MSB part of z-axis magnetic field, register (0x47)

(0x47) Bit	Name	Description
Bit 7	DATAZ_msb <14>	Bit 14 of y-axis magnetic field data = z MSB
Bit 6	DATAZ_msb <13>	Bit 13 of y-axis magnetic field data
Bit 5	DATAZ_msb <12>	Bit 12 of y-axis magnetic field data
Bit 4	DATAZ_msb <11>	Bit 11 of y-axis magnetic field data
Bit 3	DATAZ_msb <10>	Bit 10 of y-axis magnetic field data
Bit 2	DATAZ_msb <9>	Bit 9 of y-axis magnetic field data
Bit 1	DATAZ_msb <8>	Bit 8 of y-axis magnetic field data
Bit 0	DATAZ_msb <7>	Bit 7 of y-axis magnetic field data

Register (0x48) contains the LSB part of hall resistance and the Data Ready (DRDY) status bit.

Table 32: LSB part of hall resistance, register (0x48)

(0x48) Bit	Name	Description
Bit 7	RHALL_lsb <5>	Bit 5 of hall resistance
Bit 6	RHALL_lsb <4>	Bit 4 of hall resistance
Bit 5	RHALL_lsb <3>	Bit 3 of hall resistance
Bit 4	RHALL_lsb <2>	Bit 2 of hall resistance
Bit 3	RHALL_lsb <1>	Bit 1 of hall resistance
Bit 2	RHALL_lsb <0>	Bit 0 of hall resistance = RHALL LSB
Bit 1		(fixed to 0)
Bit 0	Data Ready Status	Data ready (DRDY) status bit

Register (0x49) contains the MSB part of hall resistance.

Table 33: MSB part of hall resistance, register (0x49)

(0x49) Bit	Name	Description
Bit 7	RHALL_msb <13>	Bit 13 of hall resistance = RHALL MSB
Bit 6	RHALL_msb <12>	Bit 12 of hall resistance
Bit 5	RHALL_msb <11>	Bit 11 of hall resistance
Bit 4	RHALL_msb <10>	Bit 10 of hall resistance
Bit 3	RHALL_msb <9>	Bit 9 of hall resistance
Bit 2	RHALL_msb <8>	Bit 8 of hall resistance
Bit 1	RHALL_msb <7>	Bit 7 of hall resistance
Bit 0	RHALL_msb <6>	Bit 6 of hall resistance

Page 109

7.5 Interrupt status register

Register (0x4A) contains the states of all magnetometer interrupts.

Table 34: Interrupt status, register (0x4A)

(2 (2) 74		- · · ·
(0x4A) Bit	Name	Description
Bit 7	Data overrun	Data overrun status flag
Bit 6	Overflow	Overflow status flag
Bit 5	High Int Z	High-Threshold interrupt z-axis status flag
Bit 4	High Int Y	High-Threshold interrupt y-axis status flag
Bit 3	High Int X	High-Threshold interrupt x-axis status flag
Bit 2	Low Int Z	Low-Threshold interrupt z-axis status flag
Bit 1	Low Int Y	Low-Threshold interrupt y-axis status flag
Bit 0	Low Int X	Low-Threshold interrupt x-axis status flag

7.6 Power and operation modes, self-test and data output rate control registers

Register (0x4B) contains control bits for power control, soft reset and interface SPI mode selection. This special control register is also accessible in suspend mode.

Soft reset is executed when both bits (register 0x4B bit7 and bit1) are set "1". Soft reset does not execute a full POR sequence, but all registers are reset except for the "trim" registers above register 0x54 and the power control register (0x4B). Soft reset always brings the device into sleep mode. When device is in the suspend mode, soft reset is ignored and the device remains in suspend mode. The two "Soft Reset" bits are reset to "0" automatically after soft reset was completed. To perform a full POR reset, bring the device into suspend and then back into sleep mode.

When SPI mode is selected, the "SPI3En" bit enables SPI 3-wire mode when set "1". When "SPI3En" is set "0" (default), 4-wire SPI mode is selected.

Setting the "Power Control bit" to "1" brings the device up from Suspend mode to Sleep mode, when "Power Control bit" is set "0" the device returns to Suspend mode (see chapter 4.2.2 for details of magnetometer power modes).

Table 35: Power control, soft reset and SPI mode control register (0x4B)

(0x4B) Bit	Name	Description
Bit 7	Soft Reset '1'	One of the soft reset trigger bits.
Bit 6	-	(fixed to 0)
Bit 5	-	(fixed to 0)
Bit 4	-	(fixed to 0)
Bit 3	-	(fixed to 0)
Bit 2	SPI3en	Enable bit for SPI3 mode
Bit 1	Soft Reset '1'	One of the soft reset trigger bits.
Bit 0	Power Control bit	When set to "0", suspend mode is selected

Page 111

Register (0x4C) contains control bits for operation mode, output data rate and self-test.

The two "Adv. ST" bits control the on-chip advanced self-test (see chapter 4.4.2 for details of the magnetometer advanced self-test).

The three "Data rate" bits control the magnetometer output data rate according to below Table 37.

The two "Opmode" bits control the operation mode according to below Table 38 (see chapter 4.2.2 for a detailed description of magnetometer power modes).

Table 36: Operation mode, output data rate and self-test control register (0x4C)

(0x4C) Bit	Name	Description
Bit 7	Adv. ST <1>	Advanced self-test control bit 1
Bit 6	Adv. ST <0>	Advanced self-test control bit 0
Bit 5	Data rate <2>	Data rate control bit 2
Bit 4	Data rate <1>	Data rate control bit 1
Bit 3	Data rate <0>	Data rate control bit 0
Bit 2	Opmode <1>	Operation mode control bit 1
Bit 1	Opmode <0>	Operation mode control bit 0
Bit 0	Self Test	Normal self-test control bit

Three "Data rate" bits control the output data rate (ODR) of the BMC150 magnetometer part:

Table 37: Output data rate (ODR) setting (0x4C)

(0x4C) Data rate <2:0>	Magnetometer output data rate (ODR) [Hz]
000b	10 (default)
001b	2
010b	6
011b	8
100b	15
101b	20
110b	25
111b	30

Two "Opmode" bits control the operation mode of the BMC150 magnetometer part:

Table 38: Operation mode setting (0x4C)

(0x4C) Opmode <1:0>	Magnetometer operation mode ⁸
00b	Normal mode
01b	Forced mode
10b	Reserved, do not use
11b	Sleep Mode

⁸ See chapter 4.2.2 for a detailed description of magnetometer power modes.

7.7 Interrupt and axis enable settings control registers

Register (0x4D) contains control bits for interrupt settings. (Also refer to chapter 0 for the details of magnetometer interrupt operation).

Table 39: Interrupt settings control register (0x4D)

(0x4D) Bit	Name	Description
Bit 7	Data Overrun En	Enables data overrun indication in the "Data Overrun" flag (active high, default is "0" disabled)
Bit 6	Overflow Int En	Activates mapping of Overflow flag status to the INT3 pin (active high, default is "0" disabled)
Bit 5	High Int Z En	Enables the z-axis detection for High-Threshold interrupts (active low, default is "1" disabled)
Bit 4	High Int Y En	Enables the y-axis detection for High-Threshold interrupts (active low, default is "1" disabled)
Bit 3	High Int X En	Enables the x-axis detection for High-Threshold interrupts (active low, default is "1" disabled)
Bit 2	Low Int Z En	Enables the z-axis detection for Low-Threshold interrupts (active low, default is "1" disabled)
Bit 1	Low Int Y En	Enables the y-axis detection for Low-Threshold interrupts (active low, default is "1" disabled)
Bit 0	Low Int X En	Enables the x-axis detection for Low-Threshold interrupts (active low, default is "1" disabled)

Register (0x4E) contains control bits interrupt settings and axes enable bits. (Also refer to chapter 0 for the details of magnetometer interrupt operation). If a magnetic measurement channel is disabled, its last measured magnetic output values will remain in the data registers. If the Z channel is disabled, the resistance measurement will also be disabled and the resistance output value will be set to zero. If interrupts are set to trigger on an axis that has been disabled, these interrupts will still be asserted based on the last measured value.

Table 40: Interrupt settings and axes enable bits control register (0x4E)

(0x4E) Bit	Name	Description
Bit 7	Data Ready Pin En	Enables data ready status mapping on DRDY pin (active high, default is "0" disabled)
Bit 6	Interrupt Pin En	Enables interrupt status mapping on INT3 pin (active high, default is "0" disabled)
Bit 5	Channel Z	Enable z-axis and resistance measurement (active low, default is "0" enabled)
Bit 4	Channel Y	Enable y-axis (active low, default is "0" enabled)
Bit 3	Channel X	Enable x-axis (active low, default is "0" enabled)
Bit 2	DR Polarity	Data ready (DRDY) pin polarity ("0" is active low, "1" is active high, default is "1" active high)
Bit 1	Interrupt Latch	Interrupt latching ("0" means non-latched – interrupt pin is on as long as the condition is fulfilled, "1" means latched – interrupt pin is on until interrupt status register 0x4A is read, default is "1" latched)
Bit 0	Interrupt Polarity	Interrupt pin INT3 polarity selection ("1" – is active high, "0" is active low, default is "1" active high)

Register (0x4F) contains the Low-Threshold interrupt threshold setting. (Also refer to chapter 0 for the details of magnetometer interrupt operation and the threshold setting).

Table 41: Low-threshold interrupt threshold setting control register (0x4F)

(0x4F) Bit	Name	Description
Bit 7	LowThreshold <7>	Bit 7 of Low-Threshold interrupt threshold setting
Bit 6	LowThreshold <6>	Bit 6 of Low-Threshold interrupt threshold setting
Bit 5	LowThreshold <5>	Bit 5 of Low-Threshold interrupt threshold setting
Bit 4	LowThreshold <4>	Bit 4 of Low-Threshold interrupt threshold setting
Bit 3	LowThreshold <3>	Bit 3 of Low-Threshold interrupt threshold setting
Bit 2	LowThreshold <2>	Bit 2 of Low-Threshold interrupt threshold setting
Bit 1	LowThreshold <1>	Bit 1 of Low-Threshold interrupt threshold setting
Bit 0	LowThreshold <0>	Bit 0 of Low-Threshold interrupt threshold setting

Register (0x50) contains the High-Threshold interrupt threshold setting. (Also refer to chapter 0 for the details of magnetometer interrupt operation and the threshold setting).

Table 42: High-threshold interrupt threshold setting control register (0x4F)

(0x50) Bit	Name	Description
Bit 7	HighThreshold <7>	Bit 7 of High-Threshold interrupt threshold setting
Bit 6	HighThreshold <6>	Bit 6 of High-Threshold interrupt threshold setting
Bit 5	HighThreshold <5>	Bit 5 of High-Threshold interrupt threshold setting
Bit 4	HighThreshold <4>	Bit 4 of High-Threshold interrupt threshold setting
Bit 3	HighThreshold <3>	Bit 3 of High-Threshold interrupt threshold setting
Bit 2	HighThreshold <2>	Bit 2 of High-Threshold interrupt threshold setting
Bit 1	HighThreshold <1>	Bit 1 of High-Threshold interrupt threshold setting
Bit 0	HighThreshold <0>	Bit 0 of High-Threshold interrupt threshold setting

7.8 Number of repetitions control registers

Register (0x51) contains the number of repetitions for x/y-axis. Table 44 below shows the number of repetitions resulting out of the register configuration. The performed number of repetitions nXY can be calculated from unsigned register value as nXY = 1+2xREPXY as shown below, where b7-b0 are the bits 7 to 0 of register 0x51:

$$nXY = 1 + 2 \cdot (b7 \cdot 2^7 + b6 \cdot 2^6 + b5 \cdot 2^5 + b4 \cdot 2^4 + b3 \cdot 2^3 + b2 \cdot 2^2 + b1 \cdot 2^1 + b0 \cdot 2^0)$$

= 1 + 2 \cdot (REPXY)

Table 43: x/y-axis repetitions control register (0x51)

(0x51) Bit	Name	Description
Bit 7	REPXY <7>	Bit 7 of number of repetitions (valid for XY)
Bit 6	REPXY <6>	Bit 6 of number of repetitions (valid for XY)
Bit 5	REPXY <5>	Bit 5 of number of repetitions (valid for XY)
Bit 4	REPXY <4>	Bit 4 of number of repetitions (valid for XY)
Bit 3	REPXY <3>	Bit 3 of number of repetitions (valid for XY)
Bit 2	REPXY <2>	Bit 2 of number of repetitions (valid for XY)
Bit 1	REPXY <1>	Bit 1 of number of repetitions (valid for XY)
Bit 0	REPXY <0>	Bit 0 of number of repetitions (valid for XY)

Table 44: Numbers of repetition for x/y-axis depending on value of register (0x51)

(0x51) register value (binary)	(0x51) register value (hex)	Number of repetitions for x- and y-axis each
0000000b	0x00h	1
0000001b	0x01h	3
0000010b	0x02h	5
00000011b	0x03h	7
•••		
11111111b	0xFFh	511

Page 115

Register (0x52) contains the number of repetitions for z-axis. Table 46 below shows the number of repetitions resulting out of the register configuration. The performed number of repetitions nZ can be calculated from unsigned register value as nZ = 1+REPZ as shown below, where b7-b0 are the bits 7 to 0 of register 0x52:

$$nZ = 1 + 1 \cdot (b7 \cdot 2^7 + b6 \cdot 2^6 + b5 \cdot 2^5 + b4 \cdot 2^4 + b3 \cdot 2^3 + b2 \cdot 2^2 + b1 \cdot 2^1 + b0 \cdot 2^0)$$

= 1 + REPZ

Table 45: Z-axis repetitions control register (0x52)

(0x52) Bit	Name	Description
Bit 7	REPZ <7>	Bit 7 of number of repetitions (valid for Z)
Bit 6	REPZ <6>	Bit 6 of number of repetitions (valid for Z)
Bit 5	REPZ <5>	Bit 5 of number of repetitions (valid for Z)
Bit 4	REPZ <4>	Bit 4 of number of repetitions (valid for Z)
Bit 3	REPZ <3>	Bit 3 of number of repetitions (valid for Z)
Bit 2	REPZ <2>	Bit 2 of number of repetitions (valid for Z)
Bit 1	REPZ <1>	Bit 1 of number of repetitions (valid for Z)
Bit 0	REPZ <0>	Bit 0 of number of repetitions (valid for Z)

Table 46: Numbers of repetition for z-axis depending on value of register (0x52)

(0x52) register value (binary)	(0x52) register value (hex)	Number of repetitions for z-axis
0000000b	0x00h	1
0000001b	0x01h	2
00000010b	0x02h	3
00000011b	0x03h	4
•••		
11111111b	0xFFh	256

8. Digital interfaces

The BMC150 supports two serial digital interface protocols for communication as a slave with a host device for each of the accelerometer and magnetometer part: SPI and I²C. Accelerometer part and magnetometer part alone operate either both in I²C mode or either both in SPI mode, mixed communication protocols are not possible because the interface pins are shared.

The active interface is selected by the state of the "protocol select" pin (PS): "0" ("1") selects SPI (I²C).

By default, SPI operates in the standard 4-wire configuration. It can be re-configured by software to work in 3-wire mode instead of standard 4-wire mode for both the accelerometer part and magnetometer part.

Both interfaces share the same pins. The mapping for each interface is given in the following table:

Table 47: Mapping of the interface pins

Pin#	Name	use w/ SPI	use w/ I ² C	Description
1	SDO	SDO	Accelerometer and magnetometer part I ² C address selection	SPI: Data Output (4-wire mode) I ² C: Used to set LSB of I ² C address of accelerometer part and magnetometer part
14	SDI	SDI	SDA	SPI: Data Input (4-wire mode) Data Input / Output (3-wire mode) I ² C: Serial Data
12	CSB	CSB	Magnetometer part I ² C address selection	SPI: Chip Select for accelerometer and magnetometer part (enable) I ² C: Used to set bit1 of I ² C address of magnetometer part, always high in I ² C mode
11	SCK	SCK	SCL	SPI: Serial Clock I ² C: Serial Clock

Page 117

The following table shows the electrical specifications of the interface pins:

Table 48: Electrical specification of the interface pins

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Pull-up Resistance CSB in SPI mode	$R_{\text{up,SPI}}$	Internal Pull-up Resistance to VDDIO	37	55	74	kΩ
Pull-up Resistance CSB in I2C mode	$R_{\text{up,I2C}}$	Internal Pull-up Resistance to VDDIO	70	120	190	kΩ
Input Capacitance	C_{in}				20	pF
I ² C Bus Load Capacitance (max. drive capability)	C_{I2C_Load}				400	pF

8.1 Serial peripheral interface (SPI)

The timing specification for SPI of the BMC150 is given in the following table:

Table 49: SPI timing for BMC150 accelerometer and magnetometer part

Parameter	Symbol	Condition	Min	Max	Units
Clock Frequency	f _{SPI}	Max. Load on SDI or SDO = 25pF, $V_{DDIO} \ge 1.62V$		10	MHz
		$V_{DDIO} < 1.62V$		7.5	MHz
SCK Low Pulse	t_{SCKL}		20		ns
SCK High Pulse	t _{sckh}		20		ns
SDI Setup Time	t_{SDI_setup}		20		ns
SDI Hold Time	t _{SDI_hold}		20		ns
		Load = 25pF, $V_{DDIO} \ge 1.62V$		30	ns
SDO Output Delay	t _{SDO_OD}	Load = $25pF$, $V_{DDIO} < 1.62V$		50	ns
		Load = 250pF, $V_{DDIO} > 2.4V$		40	ns
CSB Setup Time	t _{CSB_setup}		20		ns
CSB Hold Time	$t_{\text{CSB_hold}}$		40		ns
Idle time between write accesses, normal mode, standby mode, low-power mode 2	t _{IDLE_wacc_nm}		2		μs
Idle time between write accesses, suspend mode, low-power mode 1	t _{IDLE_wacc_sum}		450		μs

The following figure shows the definition of the SPI timings given in Table 49:

Figure 19: SPI timing diagram

The SPI interface of the BMC150 is compatible with two modes, "00" and "11". The automatic selection between [CPOL = "0" and CPHA = "0"] and [CPOL = "1" and CPHA = "1"] is done based on the value of SCK after a falling edge of CSB.

Two configurations of the SPI interface are supported by the BMC150: 4-wire and 3-wire. The same protocol is used by both configurations. The device operates in 4-wire configuration by default. It can be switched to 3-wire configuration by writing "1" to (0x34) "spi3" for the accelerometer part and writing "1" to (0x4B) "SPI3en" for the magnetometer part (after power control bit was set). Pin SDI is used as the common data pin in 3-wire configuration. For single byte read as well as write operations, 16-bit protocols are used. The BMC150 also

For single byte read as well as write operations, 16-bit protocols are used. The BMC150 also supports multiple-byte read operations.

In SPI 4-wire configuration CSB (chip select low active), SCK (serial clock), SDI (serial data input), and SDO (serial data output) pins are used. The communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI and SDO are driven at the falling edge of SCK and should be captured at the rising edge of SCK.

The basic write operation waveform for 4-wire configuration is depicted in Figure 20. During the entire write cycle SDO remains in high- impedance state.

Figure 20: 4-wire basic SPI write sequence (mode "11")

The basic read operation waveform for 4-wire configuration is depicted in Figure 21:

Figure 21: 4-wire basic SPI read sequence (mode "11")

The data bits are used as follows:

Bit0: Read/Write bit. When 0, the data SDI is written into the chip. When 1, the data SDO from the chip is read.

Bit1-7: Address AD(6:0).

Bit8-15: when in write mode, these are the data SDI, which will be written into the address. When in read mode, these are the data SDO, which are read from the address.

Multiple read operations are possible by keeping CSB low and continuing the data transfer. Only the first register address has to be written. Addresses are automatically incremented after each read access as long as CSB stays active low. Note that a complete burst read over accelerometer and magnetometer register addresses is not supported. Instead, a second burst read must be started at address 0x40 if the entire BMC150 memory map is to be read.

The principle of multiple read is shown in Figure 22:

	Control byte Data byte							Data byte						Data byte																			
Start	RW		F	Registe	er adre	ess (02	2h)				Oata r	egister	- adre	ess 02	!h				ata re	egister	- adre	ess 03	h				ata re	egister	- adre	ess 04	h		Stop
CSB = 0	1	0	0	0	0 I	0] 1]	0	х	х	X	х	Х	X	X I	х	х	х	Х	х	Х	х	Х	х	х	х	Х	Х	х	х	Х	х	CSB = 1

Figure 22: SPI multiple read

In SPI 3-wire configuration CSB (chip select low active), SCK (serial clock), and SDI (serial data input and output) pins are used. The communication starts when the CSB is pulled low by the SPI master and stops when CSB is pulled high. SCK is also controlled by SPI master. SDI is driven (when used as input of the device) at the falling edge of SCK and should be captured (when used as the output of the device) at the rising edge of SCK.

The protocol as such is the same in 3-wire configuration as it is in 4-wire configuration. The basic operation waveform (read or write access) for 3-wire configuration is depicted in Figure 23:

Figure 23: 3-wire basic SPI read or write sequence (mode "11")

Page 121

8.2 Inter-Integrated Circuit (I²C)

The I²C bus uses SCL (= SCK pin, serial clock) and SDA (= SDI pin, serial data input and output) signal lines. Both lines must be connected to V_{DDIO} externally via pull-up resistors so that they are pulled high when the bus is free.

The I²C interface of the BMC150 is compatible with the I²C Specification UM10204 Rev. 03 (19 June 2007), available at http://www.nxp.com. The BMC150 supports I²C standard mode and fast mode, only 7-bit address mode is supported.

An overview is given in the table below:

Table 50: BMC150 I2C addresses

CSB pin	SDO pin	Accelerometer part I ² C address	Magnetometer part I ² C address
VDDIO	GND	0x10	0x12
VDDIO	VDDIO	0x11	0x13

The timing specification for I²C of the BMC150 is given in:

Table 51: I²C timings

Parameter	Symbol	Condition	Min	Max	Units
Clock Frequency	f_{SCL}			400	kHz
SCL Low Period	t_{LOW}		1.3		
SCL High Period	t _{HIGH}		0.6		
SDA Setup Time	t _{SUDAT}		0.1		
SDA Hold Time	t_{HDDAT}		0.0		
Setup Time for a repeated Start Condition	t _{SUSTA}		0.6		
Hold Time for a Start Condition	t _{HDSTA}		0.6		
Setup Time for a Stop Condition	t _{susto}		0.6		
Time before a new Transmission can start	t _{BUF}		1.3		μs
Idle time between write accesses, normal mode, standby mode, low-power mode 2	t _{IDLE wacc n}		2		
Idle time between write accesses, suspend mode, low-power mode 1	t _{IDLE} wacc s		450		

Below Figure shows the definition of the I²C timings given in Table 51: I²C timings:

Figure 24: I2C timing diagram

Page 124

The I2C protocol works as follows:

START: Data transmission on the bus begins with a HIGH to LOW transition on the SDA line while SCL is held HIGH (start condition (S) indicated by I²C bus master). Once the START signal is transferred by the master, the bus is considered busy.

STOP: Each data transfer should be terminated by a Stop signal (P) generated by master. The STOP condition is a LOW to HIGH transition on SDA line while SCL is held HIGH.

ACK: Each byte of data transferred must be acknowledged. It is indicated by an acknowledge bit sent by the receiver. The transmitter must release the SDA line (no pull down) during the acknowledge pulse while the receiver must then pull the SDA line low so that it remains stable low during the high period of the acknowledge clock cycle.

In the following diagrams these abbreviations are used:

S Start P Stop

ACKS Acknowledge by slave
ACKM Acknowledge by master
NACKM Not acknowledge by master

RW Read / Write

A START immediately followed by a STOP (without SCK toggling from logic "1" to logic "0") is not supported. If such a combination occurs, the STOP is not recognized by the device.

Page 125

I²C write access:

I²C write access can be used to write a data byte in one sequence.

The sequence begins with start condition generated by the master, followed by 7 bits slave address and a write bit (RW = 0). The slave sends an acknowledge bit (ACK = 0) and releases the bus. Then the master sends the one byte register address. The slave again acknowledges the transmission and waits for the 8 bits of data which shall be written to the specified register address. After the slave acknowledges the data byte, the master generates a stop signal and terminates the writing protocol.

Example of an I²C write access:

Figure 25: Example of an I2C write access

I²C read access:

I²C read access also can be used to read one or multiple data bytes in one sequence.

A read sequence consists of a one-byte I²C write phase followed by the I²C read phase. The two parts of the transmission must be separated by a repeated start condition (Sr). The I²C write phase addresses the slave and sends the register address to be read. After slave acknowledges the transmission, the master generates again a start condition and sends the slave address together with a read bit (RW = 1). Then the master releases the bus and waits for the data bytes to be read out from slave. After each data byte the master has to generate an acknowledge bit (ACK = 0) to enable further data transfer. A NACKM (ACK = 1) from the master stops the data being transferred from the slave. The slave releases the bus so that the master can generate a STOP condition and terminate the transmission.

The register address is automatically incremented and, therefore, more than one byte can be sequentially read out. Once a new data read transmission starts, the start address will be set to the register address specified in the latest I²C write command. By default the start address is set at 0x00. In this way repetitive multi-bytes reads from the same starting address are possible.

In order to prevent the I^2C slave of the device to lock-up the I^2C bus, a watchdog timer (WDT) is implemented in the accelerometer part of BMC150. The WDT observes internal I^2C signals and resets the I^2C interface if the bus is locked-up by the BMC150 accelerometer part. The activity and the timer period of the WDT can be configured through the bits (0x34) $i2c_wdt_en$ and (0x34) $i2c_wdt_sel$.

Writing '1' ('0'") to (0x34) $i2c_wdt_en$ activates (de-activates) the WDT. Writing "0" ("1") to (0x34) $i2c_wdt_se$ selects a timer period of 1 ms (50 ms).

Page 126

Example of an I2C multiple read accesses:

Figure 26: Example of an I²C multiple read access

8.2.1 SPI and I²C Access Restrictions

In order to allow for the correct internal synchronisation of data written to the BMC150 accelerometer, certain access restrictions apply for consecutive write accesses or a write/read sequence through the SPI as well as I2C interface. The required waiting period depends on whether the device is operating in normal mode (or standby mode, or low-power mode 2) or suspend mode (or low-power mode 1).

As illustrated in figure 21, an interface idle time of at least 2 μ s is required following a write operation when the device operates in normal mode (or standby mode, or low-power mode 2). In suspend mode (or low-power mode 1) an interface idle time of least 450 μ s is required.

Figure 27: Post-Write Access Timing Constraints

For the magnetometer, only the power control bit can be accessed in suspend mode. After setting power control to '1', the user must wait $t_{s_up,m}$ before the other registers can be accessed. These can then be accessed without any restrictions.

9. Pin-out and connection diagram

9.1 Pin-out

Figure 28: Pin-out top view

Figure 29: Pin-out bottom view

Table 52: Pin description

Din	Pin Name I		Sensor	Description		Conne	ct to		
PIII	Ivaille	I/O Type	Selisui	Description	SPI4W	SPI3W	I ² C		
1	SDO	Out	Mag+Acc	SPI: Data out	SDO/ MISO	DNC (float)	GND for default address		
2	INT1	Out	Acc	Interrupt output #1	INT 1 input or DNC if unused				
3	INT2	Out	Acc	Interrupt output #2	INT2	input or D	NC if unused		
4	DRDY	Out	Mag	Data ready	DRDY	input or [ONC if unused		
5	INT3	Out	Mag	Interrupt output #3	INT3 input or DNC if unused				
6	GND	Supply	Mag+Acc	Ground	GND				
7	GND	Supply	Mag+Acc	Ground		GN	D		
8	VDD	Supply	Mag+Acc	Supply voltage		V_{D}	D		
9	GND	Supply	Mag+Acc	Ground		GN	D		
10	VDDIO	Supply	Mag+Acc	I/O voltage		$V_{ extsf{DD}}$	IO		
11	SCK	ln	Mag+Acc	Serial clock	SCK	SCK	SCL		
12	CSB	In	Mag+Acc	Chip Select	CSB	CSB	DNC (float) or V_{DDIO}		
13	PS	ln	Mag+Acc	Protocol select	GND	GND	V_{DDIO}		
14	SDI	In/Out	Mag+Acc	SPI: Data in, I ² C: Data	SDI/ MOSI	SDA	SDA		

BST-BMC150-DS000-04 | Revision 1.0 | July 2014

Bosch Sensortec

[©] Bosch Sensortec GmbH reserves all rights even in the event of industrial property rights. We reserve all rights of disposal such as copying and passing on to third parties. BOSCH and the symbol are registered trademarks of Robert Bosch GmbH, Germany.

Note: Specifications within this document are subject to change without notice. Not intended for publication.

9.2 Connection diagram 4-wire SPI

Figure 30: 4-wire SPI connection diagram

Note:

The recommended value for C_1 and C_2 is 100 nF.

9.3 Connection diagram 3-wire SPI

Figure 31: 3-wire SPI connection diagram

Note:

The recommended value for C_1 and C_2 is 100 nF.

9.4 Connection diagram I²C

Figure 32: I²C connection diagram

Note:

The recommended value for C_1 and C_2 is 100 nF.

10. Package

10.1 Outline dimensions

The sensor housing is a standard LGA 2.2 x 2.2 14-lead package. Its dimensions are the following:

Figure 33: Package outline dimensions

10.2 Sensing axes orientation

The magnetic and acceleration sensing axes of the BMC150 are matching.

If the sensor is accelerated in the indicated directions, the corresponding channel will deliver a positive acceleration signal (dynamic acceleration). If the sensor is at rest and the force of gravity is acting along the indicated directions, the output of the corresponding channel will be negative (static acceleration). If a positive magnetic field is applied in the indicated directions, the corresponding channel will deliver a positive acceleration signal.

Example: If the sensor is at rest or at uniform motion in a gravitational and magnetic field according to the figure given below, the output signals are

- 0 g for the X acceleration channel, 0 µT for the X magnetic channel
- 0 g for the Y acceleration channel, 0 µT for the Y magnetic channel
- +1 g for the Z acceleration channel, -|B| for the Z magnetic channel

Figure 34: Orientation of sensing axes (acceleration and magnetic)

Please note that the planet's North pole is a magnetic south pole. This means that when the BMC150's X axis points towards the North pole, the measured field will be negative.

The following table lists all corresponding output signals on X, Y, and Z while the sensor is at rest or at uniform motion in a gravity field under assumption of a ±2g range setting and a top down gravity and magnetic vector as shown above.

Sensor Orientation (gravity vector Ψ = upright ıngriqu acceleration vector 个, magnetic vector **√**) 0g / 0LSB 0g / OLSB 0g / OLSB 0g / OLSB -1g/-+1g/ Output Signal X 256LSB 256LSB 0 μΤ 0 μΤ 0 μT 0 μΤ -|B| μT +|B| µT 0g / 0LSB 0g / 0LSB 0g / 0LSB 0g / 0LSB -1g/-+1g / Output Signal Y 256LSB 256LSB 0 μΤ 0 μΤ 0 μΤ 0 μΤ -|Β| μT +|Β| μΤ 0g / OLSB 0g / 0LSB 0g / 0LSB 0g / 0LSB -1g/-Output Signal Z +1g/ 0 μΤ 0 μΤ 0 μΤ 0 μΤ 256LSB 256LSB -|B| µT +|B| µT

Table 53: Output signals depending on sensor orientation

10.3 Android axes orientation

The Android coordinate system is shown in Figure 35. The origin is in the lower-left corner with respect to the screen, with the X axis horizontal and pointing right, the Y axis vertical and pointing up and the Z axis pointing outside the front face of the screen. In this system, coordinates behind the screen have negative Z values.

Figure 35: Android coordinate system

Attitude terms are defined in the following way (see Figure 36):

- Heading / Azimuth angle between the magnetic north direction and the Y axis, around the Z axis (0° to 360°). 0° = North, 90° = East, 180° = South, 270° = West.
- Pitch rotation around X axis (-180° to 180°), with positive values when the z-axis moves toward the y-axis.
- Roll rotation around Y axis (-90° to 90°), with positive values when the x-axis moves toward the z-axis.

Figure 36: Heading, pitch and roll in Android coordinate frame

10.4 Landing pattern recommendation

For the design of the landing pattern, we recommend the following dimensioning:

Figure 37: Landing patterns relative to the device pins, dimensions are in mm

10.5 Marking

10.5.1 Mass production devices

Table 54: Marking of mass production samples

Labeling	Name	Symbol	Remark
	First letter of second row	Т	internal use
ccc	Second letter of second row	L	internal use
	Lot counter	ссс	Numerical counter
●TL	Pin 1 identifier	•	

10.5.2 Engineering samples

Table 55: Marking of engineering samples

Labeling	Name	Symbol	Remark
	Product number	Т	1 alphanumeric digit, fixed to identify product type, T = "C"
	Engineering lot	xx	2 alphanumerical digits to identify the engineering lot
TXX	Sample Stage	Y	"A" for A-samples, "C" for C-samples
●Y+	Sample status	Сх	x = Numerical counter
	Pin 1 identifier	•	

10.6 Soldering guidelines

The moisture sensitivity level of the BMC150 sensors corresponds to JEDEC Level 1, see also:

- IPC/JEDEC J-STD-020C "Joint Industry Standard: Moisture/Reflow Sensitivity Classification for non-hermetic Solid State Surface Mount Devices"
- IPC/JEDEC J-STD-033A "Joint Industry Standard: Handling, Packing, Shipping and Use of Moisture/Reflow Sensitive Surface Mount Devices".

The sensor fulfils the lead-free soldering requirements of the above-mentioned IPC/JEDEC standard, i.e. reflow soldering with a peak temperature up to 260°C.

Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Ts _{max} to Tp)	3° C/second max.
Preheat - Temperature Min (Ts _{min}) - Temperature Max (Ts _{max}) - Time (ts _{min} to ts _{max})	150 °C 200 °C 60-180 seconds
Time maintained above: - Temperature (T _L) - Time (t _L)	217 °C 60-150 seconds
Peak/Classification Temperature (Tp)	260 °C
Time within 5 °C of actual Peak Temperature (tp)	20-40 seconds
Ramp-Down Rate	6 °C/second max.
Time 25 °C to Peak Temperature	8 minutes max.

Note 1: All temperatures refer to topside of the package, measured on the package body surface.

Figure 38: Soldering profile

Page 138

10.7 Handling instructions

Micromechanical sensors are designed to sense acceleration with high accuracy even at low amplitudes and contain highly sensitive structures inside the sensor element. The MEMS sensor can tolerate mechanical shocks up to several thousand g. However, these limits might be exceeded in conditions with extreme shock loads such as e.g. hammer blow on or next to the sensor, dropping of the sensor onto hard surfaces etc.

We recommend avoiding g-forces beyond the specified limits during transport, handling and mounting of the sensors in a defined and qualified installation process.

This device has built-in protections against high electrostatic discharges or electric fields (e.g. 2kV HBM); however, anti-static precautions should be taken as for any other CMOS component. Unless otherwise specified, proper operation can only occur when all terminal voltages are kept within the supply voltage range. Unused inputs must always be tied to a defined logic voltage level.

10.8 Tape and reel specification

10.8.1 Tape and reel dimensions

The following picture describes the dimensions of the tape used for shipping the BMC150 sensor device. The material of the tape is made of conductive polystyrene (IV).

Figure 39: Tape and reel dimensions in mm

10.8.2 Orientation within the reel

→ Processing direction → TIL DDD

Figure 40: Orientation of the BMC150 devices relative to the tape

Page 140

10.9 Environmental safety

The BMC150 sensor meets the requirements of the EC restriction of hazardous substances (RoHS) directive, see also:

Directive 2002/95/EC of the European Parliament and of the Council of 8 September 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment.

10.9.1 Halogen content

The BMC150 is halogen-free. For more details on the analysis results please contact your Bosch Sensortec representative.

10.9.2 Internal package structure

Within the scope of Bosch Sensortec's ambition to improve its products and secure the mass product supply, Bosch Sensortec qualifies additional sources (e.g. 2nd source) for the LGA package of the BMC150.

While Bosch Sensortec took care that all of the technical packages parameters are described above are 100% identical for all sources, there can be differences in the chemical content and the internal structural between the different package sources.

However, as secured by the extensive product qualification process of Bosch Sensortec, this has no impact to the usage or to the quality of the BMC150 product.

11. Legal disclaimer

11.1 Engineering samples

Engineering Samples are marked with an asterisk (*) or (e) or (E). Samples may vary from the valid technical specifications of the product series contained in this data sheet. They are therefore not intended or fit for resale to third parties or for use in end products. Their sole purpose is internal client testing. The testing of an engineering sample may in no way replace the testing of a product series. Bosch Sensortec assumes no liability for the use of engineering samples. The Purchaser shall indemnify Bosch Sensortec from all claims arising from the use of engineering samples.

11.2 Product use

Bosch Sensortec products are developed for the consumer goods industry. They may only be used within the parameters of this product data sheet. They are not fit for use in life-sustaining or security sensitive systems. Security sensitive systems are those for which a malfunction is expected to lead to bodily harm or significant property damage. In addition, they are not fit for use in products which interact with motor vehicle systems.

The resale and/or use of products are at the purchaser's own risk and his own responsibility. The examination of fitness for the intended use is the sole responsibility of the Purchaser.

The purchaser shall indemnify Bosch Sensortec from all third party claims arising from any product use not covered by the parameters of this product data sheet or not approved by Bosch Sensortec and reimburse Bosch Sensortec for all costs in connection with such claims.

The purchaser must monitor the market for the purchased products, particularly with regard to product safety, and inform Bosch Sensortec without delay of all security relevant incidents.

11.3 Application examples and hints

With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Bosch Sensortec hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights or copyrights of any third party. The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. They are provided for illustrative purposes only and no evaluation regarding infringement of intellectual property rights or copyrights or regarding functionality, performance or error has been made.

12. Document history and modification

Rev. No	Chapter	Description of modification/changes	Date
0.1		Document creation	2012-07-30
		Page 1: Technical reference code corrected	
	9.1	Table 52: Pin description, corresponding sensor of CSB changed from Acc to Mag+Acc, PS from Mag to Mag+Acc (both pins are shared by accelerometer and magnetometer)	
	1.3	Table 56: "1300µT exchanged by "±1300µT"	-
	10.1	Figure 41: Contains position and dimensions of Pin1	-
0.2	10.1	marking	2012-11-06
	10.5	device marking updated	-
	10.8.1	Tape and reel specification added	-
	1.2	Table 2: dT _S and OT _S updated	-
	1.3	Table 3: B _{rg.z} updated	-
	8.2	Table 51: I ² C timings updated	-
	8	Table 47 updated	-
0.3	10	number of pins corrected	2012-12-06
0.0	6.2	Figure 18: Chip ID update	2012 12 00
0.4	0.2	Final status	2013-02-05
1.0	1.2	Updated current consumption in power mode	2014-07-14
1.0	1.3	Footnote heading accuracy edited	2014 07 14
	2	ESD MM specification added (was already available in	
		Qualification Report)	
	4.2.1	Power mode description update	
	4.3.1, 6.5	Center temperature update -> 23°C	
	4.5.1	Description of slow compensation updated	
	4.5.2	"Fast compensation" description improved	
	4.7.3	Electrical behavior updated	
	4.7.6	Description of tab interrupt updated	
	4.7.7	Typo corrected, orient_hyst ->(0x2c)	
	4.7.8, 6.11	Description of flat detection updated, (0x2F)	
	4.7.10	Description of high-g interrupt updated	
	6.7	Description g-range selection updated	
	6.9	PMU_LOW_NOISE renamed PMU_LOW_POWER	
	6.11	0x2B:tap_th<3:0> ->tap_tap_th<4:0>, 0x2F: flat_hy,	
		0x37: cut off updated	
	6.12	Typo in self test waiting time -> 50 ms	
	6.15	0x38, 0x39, 0x3A offset_target_x/y/z -> offset_x/y/z	
	8.1	SPI timings updated, VDDIO<1.62 V \rightarrow 7.5 MHz limit of	
		SPI frequency	
	8.2	I ² C description update, Figure 24: Update	
	10.1	Update package outline dimensions	
	10.9	Sensor fulfills newest EC restrictions (RoHS)	
l		Posch Sansartos Gr	1 1 1

Bosch Sensortec GmbH Gerhard-Kindler-Strasse 8 72770 Reutlingen / Germany

contact@bosch-sensortec.com www.bosch-sensortec.com

Modifications reserved | Printed in Germany Specifications subject to change without notice Document number: BST-BMC150-DS000-04 Version_1.0_072014