九州大学大学院数理学府 平成18年度修士課程入学試験 数学専門科目問題(数学コース)

- 注意 ●問題 [1][2][3][4][5][6][7][8][9] の中から2題を選択して解答せよ.
 - 解答用紙は、問題番号・受験番号・氏名を記入したものを必ず 2 題分 提出すること.
 - 以下 $\mathbb N$ は自然数の全体, $\mathbb Z$ は整数の全体, $\mathbb Q$ は有理数の全体, $\mathbb R$ は実数の全体, $\mathbb C$ は複素数の全体を表す.

$$\begin{bmatrix} \mathbf{1} \end{bmatrix} \quad G = \left\{ \left(\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right) \middle| a, b, c \in \mathbb{R} \right\}$$
とおく.

- (1) Gは行列の乗法に関して群をなすことを示せ.
- (2) G の中心 $Z = \{x \in G \mid xy = yx, \forall y \in G\}$ を求めよ.
- (3) 商群 G/Z は加法群 $\mathbb{R} \times \mathbb{R}$ と同型であることを示せ.
- [2] p を素数とし、 $\mathbb{Z}[x]$ を \mathbb{Z} 係数の一変数多項式環とする.
 - (1) $\mathbb{Z}[x]$ において p で生成されるイデアル (p) は素イデアルであることを示せ.
 - (2) $\mathbb{Z}[x]$ の極大イデアル I で, $(p) \subset I$ であるものの例を一つあげよ.
 - (3) $\mathbb{Z}[x]$ のモニックな元

$$f(x) = x^{n} + \sum_{i=0}^{n-1} a_{i} x^{i}$$

(ただし, $i=0,1,\ldots,n-1$ に対し $a_i\in\mathbb{Z}$ である) が次の条件をみたすとする:

 p^2 は a_0 を割らないが、p はすべての a_i (i = 0, 1, ..., n-1) を割る.

このとき f(x) は既約であることを示せ.

(4) $\mathbb{Z}[x]$ の元 $\sum_{i=0}^{p-1} x^i$ は既約であることを示せ.

- (1) $\alpha + \beta$, $\alpha\beta \in \mathbb{Q}$ となることを示せ.
- (2) 拡大次数 $[\mathbb{Q}(\alpha):\mathbb{Q}]$ を求めよ.
- (3) $\gamma + \delta + \varepsilon$, $\gamma \delta + \delta \varepsilon + \varepsilon \gamma$, $\gamma \delta \varepsilon \in \mathbb{Q}$ となることを示せ.
- (4) 拡大次数 $[\mathbb{Q}(\varepsilon):\mathbb{Q}]$ を求めよ.
- [4] $(x,y), (x',y') \in \mathbb{R}^2$ に対して

$$(x,y) \sim (x',y') \Leftrightarrow (x-x',y-y') \in \mathbb{Z}^2$$

により同値関係を定め、この同値関係による商空間を $T^2=\mathbb{R}^2/\sim$ とおく、 $(x,y)\in\mathbb{R}^2$ を含む同値類を $[x,y]\in T^2$ と書き,p(x,y)=[x,y] で写像 $p:\mathbb{R}^2\to T^2$ を定める。

次に, T^2 上に

$$[x,y] \simeq [x',y'] \Leftrightarrow [x,y] = [x',y']$$
 あるいは $[x,y] = [-x',-y']$

により同値関係を定め、この同値関係による商空間を $X=T^2/\simeq$ とおく、 $[x,y]\in T^2$ を含む同値類を $[[x,y]]\in X$ と書き、 $\pi[x,y]=[[x,y]]$ で写像 $\pi:T^2\to X$ を定める.

- (1) p e I \times I \subset \mathbb{R}^2 に制限した写像は T^2 への連続な全射となり, \mathring{I} \times \mathring{I} に制限した写像は単射となることを示せ.ただし,I は閉区間 [0,1] を表し, \mathring{I} は開区間 [0,1] を表す.
- (2) $\pi \circ p : \mathbb{R}^2 \to X$ を $\{(x,y) \in \mathbb{R}^2 \mid x \geq 0, y \geq 0, x+y \leq 1\}$ に制限した写像は X への連続な全射となり, $\{(x,y) \in \mathbb{R}^2 \mid x > 0, y > 0, x+y < 1\}$ に制限した写像は単射となることを示せ.
- $(3) \ (x,y) \in \{(x,y) \in \mathbb{R}^2 \, | \, x+y=1, \, x>0, \, y>0 \}$ とする.

$$\pi[x,y] = \pi[x',y']$$

となるすべての $[x',y'] \in T^2$ を求めよ、次に、このような点が自分自身(すなわち [x,y])に限るような T^2 の点をすべて求めよ、

- (4) X がコンパクトになることを示せ.
- (5) *X* が 2 次元球面と同相となることを示せ.