

CONSTANT FRACTION DISCRIMINATOR

F. Loddo & C. Tamma - INFN Bari

Principle of Operation

Creation of a variable threshold tracking the signal always at a certain fraction of its amplitude

$$V_{OUT}(t) = V_{IN}(t - T_d) - f * V_{IN}(t)$$

The output bipolar signal has a zero crossing time T_0 depending only on network parameters (T_d, f)

T_d > (1-f) * T_p TRUE CONSTANT FRACTION TIMING TCF

T_d < (1-f) * T_D AMPLITUDE AND RISE TIME COMPENSATED TIMING ARC

Proposed Shaping Network

Cross coupling topology

Main Advantage:

The fully differential structure provides very good rejection of common mode noise injected in the substrate by the switching digital logic

S. Garbolino, S. Martoiu and A. Rivetti

Implementantion of Constant-Fraction-Discriminators (CFD) in Sub-micron CMOS Technologies 2011 IEEE Nuclear Science Symposium Conference Record

Shaping Network

To minimize timing jitter, the rms noise must be minimized while the signal slope through the threshold crossing must be maximized

$$\begin{cases}
f = 0.5 \\
Td = 50\% Tp
\end{cases}$$

To matches the peak of the input signal Tp and the amplitude tracking threshold is set to the 50% of the amplitude of the input signal

Shaping Network

Cross coupling topology

Moreover, once the fraction is fixed a higher order filter has a higher slope (less jitter)

Design Specifications:

- filter order n = 3 as compromise between timing precision and area occupied
- fraction factor f = 0.4
- Time delay Td = 0.6* Tp programmable with Tp through switches
- TCF configuration with Crossing Time T0 = Tp
- Use of polysilicon resistors and vertical natural capacitors
- New: Possibility to compensate parameter process variations using additional capacitors (enabled by switches)

Shaping Network

One or more "S₁" analog switches can be closed to reach the desired T_d.

Optimization of T_d with process variations

• +3σ case:

S_{1i} closed.

 S_{2i} and S_{3i} opened.

S_{1i} and S_{2i} closed.

S_{3i} opened.

• -3σ case:

 S_{1i} , S_{2i} and S_{3i} closed.

Example: $T_p = 75 \text{ ns}$

Crossing time T ₀	75.12 ns	
Delay time T _d	43.41 ns	
Fraction factor f	0.422	

Example: $T_p = 75 \text{ ns}$

Expressions

time (ns)

Amplitude Compensation

$$V_{IN}$$

Amplitude = 10 ÷ 1000 mV
 $T_p = 75 \text{ ns}$

T _o	74.98 ÷ 75.12 ns	
Δ Τ ₀	0.14 ns	

Expressions

T _p [ns]	Crossing Time T ₀ [ns]	Delay Time T _d [ns]	Fraction Factor	ΔT ₀ [ns] (10 ÷ 1000 mV)
25	24.75	15	0.393	0.07
50	49.77	29.07	0.416	0.07
75	75.12	43.41	0.422	0.14
100	100.45	57.82	0.424	0.1
200	199.96	114	0.429	0.1

CFD block diagram

• Based on two identical comparators with hysteresis (60 μA + digital inverters)

CFD simulations ($T_p = 75 \text{ ns}$)

- Time walk < 1 ns in all configurations: ($T_p = 25$ ns, 50 ns, 75 ns, 100 ns and 200 ns)
- In case of T_p = 400 ns, using the CFD settings for 200 ns we get $\Delta T_0 \sim 3$ ns

CFD Status

- CFD preliminary results look promising
- The Zero-crossing section quite mature (corner simulations looks fine)
- Arming section: 2 options
 Single-ended shaper output (and AC coupling)
 Differential outputs (same as CFD shaping network)
- We are working on Threshold network for option 2
- Probably not ready for August submission