UNIMODALITY IDEAS

AARON LANDESMAN

1. Directions to move

- (1) Look at generalising p_i^r for general r.
- (2) Generalizing to q analog of cyclic group.
- (3) Try relating p_i, q_i .
- (4) Coding which groups G we have $p_i = q_i$.
- (5) When are $p_i = q_i$.
- (6) Try to compute q_i .
- (7) Look at simple groups, and maybe solvable groups, try quotienting by normal subgroups?
- (8) Are there any ways to combine G_1, G_2 where G_i are groups with $p_i = q_i$.
- (9) Are there some characterisations of groups with q_i, p_i .
- (10) How to use sage, what can we do with groups?

2. Cyclic group edges

Remark 2.0.1. All subscripts will be taken \pmod{n} .

Theorem 2.0.2. The statistic p_i as Zijian defined are unimodal for the necklace poset.

Proof. \square Lemma 2.0.3. $q_i = \binom{n-1}{i-1}$. \square Proof. \square

Lemma 2.0.4. The difference $p_i - q_i$ is the number of pairs $(x, y), x \le y$, such that there exists σ so that $\sigma x \le y$, but there does not exist g with $gx = \sigma x, gy = y$.

Proof.

Definition 2.0.5. We call (x, y) a special pair if there exists σ so that $\sigma x \leq y$, but there does not exist g with $gx = \sigma x, gy = y$.

Lemma 2.0.6. $p_i - q_i$ is the number of orbits of special pairs

Proof. \Box

Remark 2.0.7. We are restricting to the cyclic group C_n , and so we are assuming that all elements are generated by the permutation $c = (12 \cdots n)$. We now wish to bound the number of orbits of special pairs.

Remark 2.0.8. To compute the number of orbits of special pairs, we can always assume $x = \{t_1, t_2, \ldots, t_{i-1}\}_{<}$ and $y = \{t_1, t_2, \ldots, t_i\}_{<}$ by simply composing with an element of C_n in order to make the missing t_i the biggest element of the set. We may as well assume $t_1 = 1$.

Lemma 2.0.9. Suppose (x, y) is a special pair, as in 2.0.8 with $\sigma x \leq y$ Then, σ is the permutation sending t_1 to t_2 or t_1 to t_i .

Proof. Suppose otherwise, that it sent t_1 to t_k for $k \neq 2, i$. Then, since the relative ordering of the elements are preserved, we must have t_l is sent to t_{l+k-1} . Since we can only act by elements of C_n , this gives us that the values $t_{l+1} - t_l = t_{k+l} - t_{k+l-1}$. for all $l \in [i]$. However, this means that $\sigma y = y$, (THAT IS THE TRICKIEST PART TO SEE) so x, y is not a special pair.

Lemma 2.0.10. Any special pair (x, y) must have $y = \{t_1, t_1 + a, t_1 + 2a, \dots, t_1 + (i-1)a\}$ for some a < n.

Proof. By 2.0.9 we must have that σ sends t_1 to t_2 or t_i . Let's assume it sends t_1 to t_2 , the other case is similar. However, this means we must send t_l to t_{l+1} , which means $t_l - t_{l-1} = t_{l+1} - t_l$, which means that y is of the claimed form.

Lemma 2.0.11. The number of orbits of special pairs is between n-1 and $\frac{n}{2}-1$.

Proof. By the above, there are at most n orbits (as determined by the value of a) which can have special pairs. However, it is clear that a=i and a=n-i lie in the same orbit. Therefore, we have $\frac{n}{2}$ identifications, which tells us $p_i-q_i\geq \frac{n}{2}-1$. On the other hand, in the worst possible case, we have all n orbits are equivalent, which implies $p_i-q_i\leq n$.

Lemma 2.0.12. The p_i statistics are unimodal.

Proof. By 2.0.3 we know the differences of the q_i on the nose it is obvious that $q_i - q_{i-1} \ge \frac{n}{2}$. However, by 2.0.11 we have $n-1 \ge (q_i - p_i) \ge \frac{n}{2} - 1$. Therefore, $p_i - p_{i-1} \ge \frac{n}{2} - \frac{n}{2} \ge 0$.