© Laurent Garcin MP Dumont d'Urville

Devoir surveillé n°01

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Série de restes

Soient $n \in \mathbb{N}$ et $\sum_{n \ge n_0} a_n$ une série à termes réels. Dans le cas où cette série converge, on note R_n le reste de

rang n de cette série, c'est-à-dire $R_n = \sum_{k=n+1}^{+\infty} a_k$ pour tout entier $n \ge n_0$.

On souhaite étudier la convergence de la série $\sum_{n \in \mathbb{N}} R_n$ dans plusieurs cas.

I Cas d'une série géométrique

On se donne $q \in \mathbb{R}$ et on pose $a_n = q^n$ pour $n \in \mathbb{N}$ (on a donc $n_0 = 0$).

- Pour quelles valeurs de q la série $\sum_{n \in \mathbb{N}} a_n$ converge-t-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- 2 Exprimer R_n en fonction de q et n.
- 3 En déduire que la série $\sum_{n \in \mathbb{N}} R_n$ converge et calculer sa somme.

II Cas d'une série de Riemann

On se donne dans cette partie $\alpha \in \mathbb{R}$ et on pose $a_n = \frac{1}{n^{\alpha}}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$).

- 4 Pour quelles valeurs de α la série $\sum_{n \in \mathbb{N}^*} a_n$ converge-t-elle? On suppose cette condition vérifiée dans la suite de cette partie.
- $\boxed{\mathbf{5}}$ A l'aide d'une comparaison série/intégrale, montrer que $R_n \underset{n \to +\infty}{\sim} \frac{1}{(\alpha 1)n^{\alpha 1}}$.
- **6** En déduire une condition nécessaire et suffisante sur α pour que la série $\sum_{n \in \mathbb{N}^*} R_n$ converge.

III Cas de la série harmonique alternée

Dans cette partie, on pose $a_n = \frac{(-1)^n}{n}$ pour $n \in \mathbb{N}^*$ (on a donc $n_0 = 1$). On note également S_n la somme partielle de rang n de la série $\sum_{n \in \mathbb{N}^*} a_n$, c'est-à-dire $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- $\boxed{7} \text{ Calculer } \int_0^1 x^n \, \mathrm{d}x \text{ pour } n \in \mathbb{N}.$
- 8 En déduire que $S_n = -\ln(2) + (-1)^n \int_0^1 \frac{x^n}{1+x} dx$.
- **9** En déduire la convergence et la somme de la série $\sum_{n \in \mathbb{N}^*} a_n$.
- Exprimer R_n à l'aide d'une intégrale puis, à l'aide d'une intégration par parties, déterminer deux constantes réelles α et β telles que $\alpha > 1$ et $R_n = \frac{(-1)^{n+1}\beta}{n+1} + \mathcal{O}\left(\frac{1}{n^{\alpha}}\right)$.
- 11 En déduire la nature de la série $\sum_{n \in \mathbb{N}^*} R_n$.

Problème 2 – Puissances de matrices

I Un anneau de matrices

On note \mathcal{A} l'ensemble des matrices $\begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & -c & b \end{pmatrix}$ avec $a, b, c \in \mathbb{R}$.

- 1 Montrer que \mathcal{A} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$ et préciser sa dimension.
- $\boxed{\mathbf{2}}$ Montrer que \mathcal{A} est un sous-anneau commutatif de $\mathcal{M}_3(\mathbb{R})$.
- 3 On pose $M = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -1 & 1 \end{pmatrix}$. Justifier que (I_3, M, M^2) est une base de \mathcal{A} .
- **4** Exprimer M^3 en fonction de I_3 et M.

II Trace de puissances

On définit une suite (u_n) par $u_0=3$, $u_1=0$, $u_2=4$ et par la relation de récurrence : $\forall n\in\mathbb{N}, u_{n+3}=2u_{n+1}-4u_n$.

- $\boxed{\textbf{5}} \text{ Justifier que pour tout } k \in \mathbb{N}, \text{ il existe des réels } a_k, b_k, c_k \text{ tels que } \mathbf{M}^k = \begin{pmatrix} a_k & 0 & 0 \\ 0 & b_k & c_k \\ 0 & -c_k & b_k \end{pmatrix}.$
- Déterminer une relation de récurrence vérifiée par la suite (a_k) et deux relations de récurrence liant les suites (b_k) et (c_k) .
- 7 Pour tout $k \in \mathbb{N}$, on appelle z_k le nombre complexe $z_k = b_k + ic_k$. Exprimer z_{k+1} en fonction de z_k et montrer que $b_k = \text{Re}((1+i)^k)$.
- **8** Retrouver ce dernier résultat en trouvant une relation de récurrence d'ordre 2 vérifiée par la suite (b_k) .
- 9 Montrer que la suite (u_n) est à valeurs entières.
- 10 Justifier que pour tout $n \in \mathbb{N}$, $u_n = \operatorname{tr}(M^n)$.
- 11 Soit p un nombre premier. Montrer que pour $k \in [1, p-1]$, p divise $\binom{p}{k}$.
- **12** En déduire que p divise u_p .

Exercice 1 ★★

Sommation d'Abel (d'après CCP MP 2014)

Soient $(a_n)_{n\geq n_0}$ et $(B_n)_{n\geq n_0}$ deux suites complexes. On définit alors deux suites $(A_n)_{n\geq n_0}$ et $(b_n)_{n\geq n_0}$ de la manière suivante :

$$\forall n \ge n_0, \ \mathbf{A}_n = \sum_{k=n_0}^n a_k$$

$$\forall n \ge n_0, \ b_n = \mathbf{B}_{n+1} - \mathbf{B}_n$$

- 1. Montrer que $\sum_{k=n_0}^n a_k \mathbf{B}_k = \mathbf{A}_n \mathbf{B}_n \sum_{k=n_0}^{n-1} \mathbf{A}_k b_k$ pour tout entier $n \ge n_0$.
- 2. Dans cette question, on suppose que la suite (A_n) est bornée et que (B_n) est une suite réelle décroissante de limite nulle.
 - **a.** Montrer que la série $\sum_{n\geq n_0} b_n$ converge.
 - **b.** En déduire que la série $\sum_{n\geq n_0} a_n \mathbf{B}_n$ converge.
 - **c.** En déduire en particulier que la série $\sum_{n\geq n_0} (-1)^n \mathbf{B}_n$ converge. On n'utilisera pas le critère spécial des séries alternées.
- 3. Soient $\theta \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et $\alpha \in \mathbb{R}$.
 - **a.** Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=1}^n e^{ik\theta}$. On donnera le résultat sous la forme $re^{i\varphi}$ où $(r,\varphi) \in \mathbb{R}^2$.
 - **b.** Discuter en fonction du réel α la nature de la série $\sum_{n \in \mathbb{N}^*} \frac{e^{ni\theta}}{n^{\alpha}}$. On précisera notamment dans les cas de convergence s'il s'agit ou non de convergence absolue. De même, dans les cas de divergence, on précisera s'il s'agit ou non de divergence grossière.
- **4.** Montrer que si la suite (B_n) converge vers 0, si la suite (A_n) est bornée et si la série $\sum_{n\geq n_0} b_n$ est absolument convergente, alors la série $\sum_{n\geq n_0} a_n B_n$ est convergente.