Novo Espaço – Matemática A 11.º ano

Apoio à avaliação [outubro - 2023]

1. Na figura está representado um triângulo isósceles [ABC].

Sabe-se que:

- $B\hat{A}C = 30^{\circ}$
- $\bullet \quad \overline{AC} = \overline{CB}$
- $\overline{AB} = 2\sqrt{3}$ cm

Determina, em cm^2 , o valor exato da área do triângulo [ABC].

2. Na figura está representado, em referencial o. n. Oxy, um hexágono inscrito numa circunferência de centro O. Qual é a imagem do ponto B pela rotação de centro O e

amplitude -1920°?

- **(B)** Ponto D
- (C) Ponto E
- **(D)** Ponto F

3. Na figura estão representados, em referencial o. n. Oxy, a circunferência trigonométrica, o triângulo [ABC] e a reta r de equação x = 1.

Sabe-se que:

- o ponto *A* tem coordenadas (1,0);
- o ponto *C* pertence à reta *r*;
- o ponto B é o ponto de interseção da semirreta $\dot{O}C$ com a circunferência trigonométrica;

1

• $A\hat{O}C = 60^{\circ}$

Qual é o valor exato da medida da área do triângulo [ABC]?

- (A) $\frac{-3+2\sqrt{3}}{4}$ (B) $\frac{3+2\sqrt{3}}{4}$ (C) $\frac{\sqrt{3}}{4}$ (D) $\frac{3\sqrt{3}}{4}$

- **4.** Numa dada circunferência, considera um ângulo ao centro com 4, 2 radianos de amplitude. Sabe-se que o arco que lhe corresponde tem 7 cm de comprimento.
 - Qual é o comprimento, em centímetros, do raio dessa circunferência?
 - (A) 0,6
- **(B)** $\frac{5}{3}$
- (C) 0.6π
- **(D)** $\frac{5}{2}\pi$

- **5.** Considera as afirmações:
 - I. Se $\tan \alpha = \frac{\sqrt{2}}{2}$, então $\sin \alpha = \sqrt{2}$ e $\cos \alpha = 2$.
 - II. Se α e β são dois ângulos de amplitudes pertencentes ao intervalo $\left|\frac{21\pi}{2},11\pi\right|$ tais que $\alpha < \beta$, então $\cos \alpha < \cos \beta$.

III.
$$\sin^2(\alpha) + \sin^2(\alpha - \frac{\pi}{2}) = 0$$

Para cada uma das três afirmações, indica uma razão que justifique que são falsas.

6. Na figura estão representados, em referencial o.n. Oxy, a circunferência trigonométrica e um ângulo α , cujo lado origem é o semieixo positivo Ox e cujo lado extremidade é a semirreta OP.

Sabe-se que o ponto P tem coordenadas $(k, -\sqrt{3}k)$, $k \in \mathbb{R}^+$.

Em qual das opções se encontra, em função de k, o valor de $\cos \alpha \times \sin \alpha - \tan \alpha$?

- (A) $-\sqrt{3}(k^2-1)$ (B) $-\sqrt{3}(k^2+1)$ (C) $\sqrt{3}(k^2-1)$ (D) $\sqrt{3}(k^2+1)$

7. Seja a um número real tal que $\cos\left(\frac{\pi}{7}\right) = a$.

Determina, em função de a, o valor de $\sin\left(\frac{15\pi}{7}\right)$.

Apresenta todos os cálculos e justificações necessários.

8. No referencial o. n. Oxy da figura estão representados a circunferência trigonométrica e o quadrilátero $\begin{bmatrix} ABCD \end{bmatrix}$.

Sabe-se que:

- A é um ponto móvel pertencente à circunferência trigonométrica;
- B pertence a Ox e tem abcissa igual à de A;
- C tem coordenadas (1,0);

Para cada posição do ponto A, seja α a amplitude do ângulo orientado que tem por lado origem o semieixo positivo Ox e lado extremidade e semirreta OA, com $\alpha \in \left[0, \frac{\pi}{2}\right]$.

8.1. Mostra que a medida da área do quadrilátero [ABCD], em função da área, é dada por:

$$A(\alpha) = \frac{\tan \alpha - \sin \alpha \cos \alpha}{2}$$

- **8.2.** Recorre ao resultado anterior e determina a medida da área do quadrilátero [ABCD], no caso $\tan \alpha = 2$.
- **8.3.** Recorre às capacidades gráficas da calculadora e determina o valor de α , em radianos, arredondado às centésimas, para o qual a medida da área do quadrilátero [ABCD] é igual ao triplo da medida da área do triângulo [AOB].

Na tua resolução deves apresentar:

- uma equação que traduza o problema;
- num referencial, o(s) gráfico(s) da(s) função(ões), visualizado(s) na calculadora, que te permite(m) resolver a equação, incluindo a janela de visualização;
- a resposta com o arredondamento indicado.

9. Sabe-se que $\cos\left(\frac{\pi}{2} + \alpha\right) = \frac{1}{3}$ e que $\alpha \in \left[\pi, \frac{3\pi}{2}\right]$.

Determina, sem recorrer à calculadora, o valor exato de $\sin\left(-\frac{13\pi}{2} + \alpha\right) - 4\tan\left(3\pi - \alpha\right)$.

Apresenta o resultado na forma $\frac{a\sqrt{b}}{c}$, com $a \in \mathbb{R}$ e $b, c \in \mathbb{R}^+$.

10. Mostra que, para qualquer valor da variável x em que as expressões têm significado, é válida a seguinte igualdade:

$$\frac{1-\cos x}{\sin x} + \frac{\sin x}{1+\cos x} = \frac{2\sin x}{1+\cos x}$$

FIM

Cotações

Questões	1.	2.	3.	4.	5.	6.	
Cotação (pontos)	18	14	14	14	18	14	
Questões	7.	8.1.	8.2.	8.3.	9.	10.	Total
Cotação (pontos)	18	18	18	18	18	18	200