UASC-CEEI-UFCG Lista 7 - Grupos

- 1) O Z_3 , conjunto das classes residuais módulo 3, forma um grupo com relação à adição? E com relação à multiplicação?
- 2) As classes residuais não-zero módulo 4 formam um grupo em relação à multiplicação?
- 3) Prove: se $a,b,c \in G$, então $a \circ b = a \circ c$ (também, $b \circ a = c \circ a$) implica b = c.
- 4) Prove: quando $a,b \in G$, cada uma das equações $a \circ x = b$ e $y \circ a = b$ possuem uma solução única.
- 5) Prove: para qualquer $a \in G$, $a^m \circ a^n = a^{m+n}$, quando $m, n \in Z$.
- 6) O mapeamento $x \to x^2$ do grupo aditivo do conjunto dos reais no conjunto dos reais é um homomorfismo? Prove ou refute.
- 7) Determine as propriedades (comutatividade, associatividade, identidade, inverso, distributividade) das operações \circ e \diamond definidas em $S = \{a, b, c, d\}$ pelas tabelas seguintes:

Tabela 1							Tabela 2		
0	а	b	С	d	♦	а	b	С	d
а	а	b	С	d	а	d	а	С	d
b	b	С	d	а	b	а	С	b	d
С	С	d	а	b	С	b	d	а	С
d	d	а	b	С	d	С	b	d	а

8) Para as operações ∘ e ◊ definidas em S = {a, b, c, d, e} nas Tabelas 1 e 2, abaixo, assuma a associatividade e investigue as outras propriedades.

	Tabela 1						Tabela 2					
0	а	b	С	d	е		◊	а	b	С	d	е
а	а	d	а	d	е		а	а	С	С	а	а
b	d	b	b	d	е		b	С	С	С	b	b
С	а	b	С	d	е		С	С	С	С	С	С
d	d	d	d	d	е		d	а	b	С	d	d
е	е	е	е	е	е		е	а	b	С	d	е

9) Para a operação binária ∘ em S = {a, b, c, d, e, f, g, h} definida na Tabela abaixo, assuma a associatividade e investigue as outras propriedades.

0	а	b	С	d	е	f	g	h
а	а	b	С	d	е	f	g	h
b	b	С	d	а	h	g	е	f
С	С	d	а	b	f	е	h	g
d	d	а	b	С	g	h	g	е
е	е	g	f	h	а	С	b	d
f	f	h	е	g	С	а	d	b
g	g	f	h	е	d	b	а	С
h	h	е	g	f	b	d	С	а

10) Expresse cada uma das seguintes permutações em 8 símbolos como um produto de ciclos disjuntos e como um produto de transposições (número mínimo). Observação: as permutações estão escritas em forma de tabelas devido à impossibilidade de escrever os parênteses no Google Docs.

a)

1	2	3	4	5	6	7	8
2	3	4	1	5	6	7	8

b)

	1	2	3	4	5	6	7	8
	3	4	5	6	7	8	1	2
c)								
	1	2	3	4	5	6	7	8
	3	4	1	6	8	2	7	5

- d) (2468) o (348)
- e) (15) \circ (2468) \circ (37)(15468)
- f) (135) \circ (3456) \circ (4678)
- 11) Mostre que os ciclos (1357) e (2468) da questão 10.b são comutativos.
- 12) Quais dos seguintes conjuntos formam um grupo com relação à operação indicada?
 - a) $S = \{x \mid x \in Z, x < 0\}$; adição
 - b) $S = \{5x \mid x \in Z\}$; adição
 - c) $S = \{x \mid x \in Z, x \in impar\}$; multiplicação
 - d) $S = \{-2, -1, 1, 2\}$; multiplicação
 - e) $S = \{1, -1, i, -1\}$; multiplicação
- 13) Quais dos seguintes subconjuntos de $Z_{13}\,$ é um grupo em relação à multiplicação?
 - a) {[1], [12]}
 - b) {[1], [2], [4], [6], [8], [10], [12]}
 - c) {[1], [5], [8], [12]}
- 14) Considere o sistema de coordenadas retangulares no espaço. Denote por a, b,c respectivamente as rotações no sentido horário através de 180 graus sobre os eixos X, Y e Z e por u a sua posição original. Complete a tabela abaixo para mostrar que {u, a, b, c} é um grupo. Esse grupo é chamado de grupo de Klein de ordem 4.

0	u	а	b	С
u	u	а	b	С
а	а			
b	b	С		
С	С	b	а	

15) Mostre que o conjunto $\{x \mid x \in Z, 5 \text{ divide } x\}$ é um subgrupo do grupo aditivo Z.

Respostas.

- 6. Não é um homomorfismo
- 7. Tabela 1: a operação ∘ é comutativa e associativa, existe um elemento identidade e elementos inversos. Tabela 2: a operação ◊ não é comutativa, nem associativa, não tem identidade nem inversos.
- 10. a) (1234) = (14)(13)(12) c) (13)(246)(58) = (13)(26)(24)(58) d) (368)(24) = (38)(36)(24) f) (1345678) = (18)(17)(16)(15)(14)(13)
- 13. A e C