ME5413: Autonomous Mobile Robot

Homework 1: Perception

AY2023/24-Sem 2

Due date: 22 February 2024, 2359 (Thurs, Week 6)

Important note: All homework is meant to be done in Python. Late submission be penalised. No Plagiarism is allowed.

Introduction: The aim of this assignment is to get students to familiarise themselves with perception algorithms and ROS.

Requirements: Python 3.9(preferred) and ROS Noetic

Task 1: Single Object Tracking

The object of interest is provided. Implement a Single Object Tracking algorithm on a series of images.

- i. Template Matching
- ii. Using Kalman Filter
- iii. Evaluate the performance of the Single object tracking algorithm for each of the 5 sequences.
- iv. Visualise & Analyse the result

Task 2: Multi Object Prediction

- 1. Using constant velocity model to predict the future (1s,2s,3s) trajectories of the target agent and calculate the ADE and FDE.
- 2. Using constant acceleration model to predict the future (1s,2s,3s) trajectories of the target agent and calculate the ADE and FDE.
- 3. Briefly discuss the observations from your results.

Bonus Task: Single Object Tracking in ROS

Using your best algorithm from Task 1, apply single object tracking to the given set of rosbags.

	Published Topics Description	Message Type
1	Visualize tracked object vision_msgs/Detection2D	
2	Visualize ground truth objects	vision_msgs/Detection2D
3	Publish Matric Number (i.e. number starting with A0)	std_msgs/String

Submitting your completed Homework Assignment:

Generate a zipfile of this folder and upload it to CANVAS – under Assignment 1. We will use the latest version, regardless of who uploads.

Name of Zipfile: "YourNusNetID_Homework1.zip" (e.g. e0123456_Homework1.zip)

Submission Details:

1.	Report	1. Name
		2. Matric number (i.e. number starting with A0)
		3. Maximum number of 5 pages for the report (+2 pages for the bonus
		task, and not including front cover page)
		Font Times New Roman, 11pt
		Single Spaced
2.	README.txt	Provide Instructions on how to run your code in a README file,
	requirements.txt	Python version and required packages for installation in the requirements.txt.
		(marks will be deducted if your code cannot be implemented)
3.	Folder: Task 1	1. Code (Jupyter notebook)
		2. Results: Location of tracked object in each frame (.txt file)
4	Folder: Task 2	1. Code (Jupyter notebook)
5.	Folder: Bonus Task	1. Code
		2. Rosbag file with published topics