

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

10/04/2000
SACO

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

BERICHTIGTE FASSUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
22. Februar 2001 (22.02.2001)

PCT

(10) Internationale Veröffentlichungsnummer
WO 01/12827 A3

(51) Internationale Patentklassifikation⁷: **C12N 15/53, 15/82, 9/02, 1/21, A01H 5/00, C07D 311/72, C12P 17/06**

(21) Internationales Aktenzeichen: PCT/EP00/07807

(22) Internationales Anmeldedatum:
10. August 2000 (10.08.2000)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
199 37 957.2 11. August 1999 (11.08.1999) DE

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): **SUNGENE GMBH & CO. KGAA [DE/DE]; Corrensstrasse 3, D-06466 Gatersleben (DE)**.

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): **EBNETH, Marcus [DE/DE]; Münzenberg 25, D-06484 Quedlinburg (DE). HERBERS, Karin [DE/DE]; Am Hange 6, D-06484 Quedlinburg (DE). GEIGER, Michael [DE/DE]; Neuer Weg 15, D-06484 Quedlinburg (DE). SAALBACH, Is Ide [DE/DE]; Liebigweg 11, D-06484 Quedlinburg (DE).**

[Fortsetzung auf der nächsten Seite]

(54) Title: METHOD FOR PRODUCTION OF TRANSGENIC PLANTS WITH INCREASED TOCOPHEROL CONTENT

(54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG TRANSGENER PFLANZEN MIT ERHÖHTEM TOCOPHEROL-GEHALT

Tocopherolsynthese

(57) Abstract: The invention relates to a new type of expression cassettes which, under genetic control, contain regulating nucleic acid sequences a) nucleic acid sequence coding for 4-hydroxyphenylpyruvate dioxygenase (HPPD) or for one of its functional equivalents; and/or b) at least one nucleic acid sequence (anti-HGD), which can inhibit the homogentisate-dioxygenase (HGD) activity. The invention also relates to vectors which are suitable for the production of plants having an increased tocopherol content, to transgenic plants produced therewith, and to a method for the production of transgenic plants having an increased tocopherol content.

(57) Zusammenfassung: Die Erfindung betrifft neuartige Expressionskassetten, enthaltend unter genetischer Kontrolle regulativer Nukleinsäuresequenzen a) die kodierende Nukleinsäuresequenz für 4-Hydroxyphenylpyruvat-Dioxygenase (HPPD) oder für ein funktionales Äquivalent davon; und/oder b) wenigstens eine Nukleinsäuresequenz (anti-HGD), welche zu einer Inhibition der Homogentisat-Dioxygenase (HGD)-Aktivität befähigt ist, sowie Vektoren, die zur Herstellung von Pflanzen mit erhöhtem Tocopherol-Gehalt geeignet sind, darmit hergestellte transgene Pflanzen sowie Verfahren zur Herstellung transgener Pflanzen mit erhöhtem Tocopherol-Gehalt.

(74) **Anwälte:** KINZEBACH, Werner usw.; Reitstötter, Kinzebach & Partner, Postfach 86 06 49, D-81633 München (DE).

Veröffentlicht:

— mit internationalem Recherchenbericht

(81) **Bestimmungsstaaten (national):** AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(88) **Veröffentlichungsdatum des internationalen Recherchenberichts:**

23. August 2001

(84) **Bestimmungsstaaten (regional):** ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

(48) **Datum der Veröffentlichung dieser berichtigten Fassung:**

10. Mai 2002

(15) Informationen zur Berichtigung:

siehe PCT Gazette Nr. 19/2002 vom 10. Mai 2002, Section II

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

VERFAHREN ZUR HERSTELLUNG TRANSGENER PFLANZEN MIT ERHÖHTEM TOCOPHEROL-GE HALT

Die vorliegende Erfindung betrifft neuartige genetische Konstrukte, wie Expressionskassetten und Vektoren, zur Herstellung von Pflanzen mit erhöhtem Tocopherol-Gehalt, damit hergestellte transgene Pflanzen sowie Verfahren zur Herstellung transgener Pflanzen mit erhöhtem Tocopherol-Gehalt.

Ein wichtiges Ziel pflanzenmolekulargenetischer Arbeiten ist die Erzeugung von Pflanzen mit erhöhtem Gehalt an Zuckern, Enzymen und Aminosäuren. Wirtschaftlich interessant ist jedoch auch die Entwicklung von Pflanzen mit erhöhtem Gehalt an Vitaminen, wie z.B. mit erhöhtem Tocopherol (Vitamin E)-Gehalt.

15 Die in der Natur vorkommenden acht Verbindungen mit Vitamin E-Aktivität sind Derivate des 6-Chromanols (Ullmann's Encyclopedia of Industrial Chemistry, Vol. A 27 (1996), VCH Verlagsgesellschaft, Chapter 4., 478-488, Vitamin E). Die erste Gruppe (1a-d) umfaßt 20 die Tocopherole (I), die zweite Gruppe (2a-d) umfaßt die Tocotrienole (II):

30 1a, α -Tocopherol: $R^1 = R^2 = R^3 = CH_3$,
 1b, β -Tocopherol: $R^1 = R^3 = CH_3$, $R^2 = H$
 1c, γ -Tocopherol: $R^1 = H$, $R^2 = R^3 = CH_3$
 1d, δ -Tocopherol: $R^1 = R^2 = H$, $R^3 = CH_3$

40 2a, α -Tocotrienol: $R^1 = R^2 = R^3 = CH_3$,
 2b, β -Tocotrienol: $R^1 = R^3 = CH_3$, $R^2 = H$
 45 2c, γ -Tocotrienol: $R^1 = H$, $R^2 = R^3 = CH_3$
 2d, δ -Tocotrienol: $R^1 = R^2 = H$, $R^3 = CH_3$

wobei

R¹ , R² und R³ wie oben definiert sind.

Wirtschaftlich größte Bedeutung besitzt derzeit alpha-Tocopherol.

5

Der Entwicklung von Kulturpflanzen mit erhöhtem Tocopherol-Gehalt durch Gewebekultur oder Samenmutagenese und natürliche Auswahl sind Grenzen gesetzt. So muß einerseits der Tocopherol-Gehalt bereits in Gewebekultur erfaßbar sein und andererseits können nur 10 diejenigen Pflanzen über Gewebekulturtechniken manipuliert werden, deren Regeneration zu ganzen Pflanzen aus Zellkulturen gelingt. Außerdem können Kulturpflanzen nach Mutagenese und Selektion unerwünschte Eigenschaften zeigen, die durch teilweise mehrmalige Rückkreuzungen wieder beseitigt werden müssen. Auch 15 wäre die Erhöhung des Tocopherol-Gehaltes durch Kreuzung auf Pflanzen der selben Art beschränkt.

Aus diesen Gründen ist das gentechnische Vorgehen, die für die Tocopherol-Syntheseleistung kodierenden, essentiellen

20 Biosynthesegene zu isolieren und in Kulturpflanzen gezielt zu übertragen, dem klassischen Züchtungsverfahren überlegen. Dieses Verfahren setzt voraus, daß die Biosynthesewege und deren Regulation bekannt sind und daß Gene, die die Biosyntheseleistung beeinflussen, identifiziert werden.

25

Der Tocopherolsyntheseweg in Pflanzen ist schematisch in beiliegender Figur 1 dargestellt. Im Stand der Technik gibt es bisher keinen brauchbaren Ansatz, der eine gezielte Erhöhung der Tocopherol-Biosynthese in Pflanzen gestattet.

30

Kurze Beschreibung der Erfindung:

Es ist deshalb Aufgabe der Erfindung Mittel bereitzustellen, mit deren Hilfe eine verbesserte Tocopherol-Biosynthese erreicht 35 werden kann.

Diese Aufgabe konnte erfindungsgemäß überraschenderweise durch die Bereitstellung von genetischen Konstrukten gelöst werden, mit deren Hilfe die Biosynthese von Homogentisat, einem 40 Tocopherol-Vorläufer, und damit die Bildung von Tocopherol erhöht werden kann. Gleichzeitig kann erfindungsgemäß der unerwünschte Abfluß von Homogentisat zu Maleylacetoacetat unterbunden und damit die Tocopherolsynthese weiter verbessert werden.

Ein erster Gegenstand der Erfindung betrifft daher eine Expressionskass tte, enthaltend unter genetischer Kontrolle regulativer Nukleinsäuresequenzen

5 a) die kodierende Nukleinsäuresequenz für 4- Hydroxyphenylpyru-
vat-Dioxygenase (HPPD) oder für ein funktionales Äquivalent
davon, wodurch bei Expression die Homogentisat-Biosynthese-
rate erhöht wird; und/oder
b) wenigstens eine Nukleinsäuresequenz (anti-HGD), welche zu ei-
10 ner Inhibition der Homogentisat-Dioxygenase(HGD)-Aktivität
befähigt ist.

"Inhibition" ist in diesem Zusammenhang weit auszulegen und
umfaßt die teilweise oder im wesentlichen vollständige, auf
15 unterschiedliche zellbiologische Mechanismen beruhende
Unterbindung oder Blockierung der HGD-Enzymaktivität in der mit
einem erfindungsgemäßen anti-HGD-Konstrukt transformierten
Pflanze oder dem Pflanzenteil oder Gewebe. Eine Inhibition im
Sinne der Erfindung umfaßt auch eine mengenmäßige Verringerung
20 von aktiver HGD in der Pflanze, bis hin zu einem im wesentlichen
vollständigen Fehlen (d.h. fehlende Nachweisbarkeit von
HGD-Enzymaktivität oder fehlende immunologische Nachweisbarkeit
von HGD) von HGD-Protein.

25 Erfindungsgemäß sind verschiedene Strategien zur Verringerung
oder Inhibition der HGD-Aktivität umfasst. Der Fachmann erkennt,
dass eine Reihe verschiedener Methoden zur Verfügung steht, um
die HGD-Genexpression in gewünschter Weise zu beeinflussen.

30 Die erfindungsgemäß bevorzugte Strategie umfasst die Verwendung
einer Nukleinsäuresequenz (anti-HGD), welche zu einer antisense-
Nukleinsäuresequenz transkribierbar ist, die zur Inhibition der
Homogentisat-Dioxygenase (HGD)-Aktivität befähigt ist, z. B. in-
dem sie die Expression von endogener HGD inhibiert.

35 Weitere Methoden zur Inhibition der HGD-Expression umfassen die
zu Kosuppression führende Überexpression homologer HGD-Nuklein-
säuresequenzen (Jorgensen et al. (1996): "Chalcone synthase co-
suppression phenotypes in petunia flowers: Comparison of sense
40 vs. antisense constructs and single copy vs. complex T-DNA se-
quences.", Plant Mol. Biol. 31 (5): 957-973.), die Induktion des
spezifischen RNA-Abbaus durch die Pflanze mit Hilfe eines viralen
Expressionssystems (Amplikon) (Angell, S. M., Baulcombe, D. C.
(1999): "Technical advance: Potato virus x amplicon mediated si-
45 lencing of nuclear genes." Plant J. 20 (3): 357-362.), die Ein-
führung von Nonsense-Mutationen in das Endogen mittels Einführung
von RNA/DNA-Oligonukleotiden in die Pflanze (Zhu et al. (2000):

"Engineering herbicide resistant maize using chimeric RNA/DNA oligonucleotides." Nat. Biotechnol. 18 (5): 555-558.) oder die Generierung von Knockout-Mutanten mit Hilfe von z. B. T-DNA-Mutagenese (Koncz et al. (1992): "T-DNA insertional mutagenesis in 5 Arabidopsis." Plant Mol. Biol. 20 (5): 963-976.) oder homologer Rekombination (Hohn, B.; Puchta, H. (1999): "Gene therapy in plants." Proc. Natl. Acad. Sci. USA 96: 8321-8323.).

Auf die oben beschriebenen Druckschriften und die darin offenbar-
ten Methoden zur Regulation der pflanzlichen Genexpression wird hiermit ausdrücklich Bezug genommen.

Eine anti-HGD-Sequenz im Sinne der vorliegenden Erfindung ist so-
mit insbesondere ausgewählt unter:

- 15 a) antisense-Nukleinsäuresequenzen;
- b) für homologe HGD kodierende und zu Kosuppression führende Nukleinsäuresequenzen
- c) HGD-RNA-Abbau bewirkende virale Nukleinsäuresequenzen und Expressionskonstrukte;
- 20 d) Nonsense-Mutanten von endogenen HGD kodierenden Nukleinsäuresequenzen;
- e) für Knockout-Mutanten kodierende Nukleinsäuresequenzen;
- f) zu homologer Rekombination geeignete Nukleinsäuresequenzen;

wobei die Expression jeder einzelner dieser Sequenzen eine "Inhibition" der HGD-Aktivität im Sinne der Erfindung bewirken kann.

Auch eine kombinierte Anwendung solcher Sequenzen ist denkbar.

Erfindungsgemäß bevorzugt wird die kodierende HPPD-Sequenz mit der kodierenden Sequenz eines Pflanzenorganell-spezifischen 30 Transitpeptids funktional verknüpft. Das Transitpeptid besitzt dabei vorzugsweise Spezifität für die Samen oder die Plastiden, wie z.B. die Chloroplasten, Chromoplasten und/oder Leukoplasten, der Pflanze. Das Transitpeptid lenkt die exprimierte HPPD-Aktivität an den gewünschten Zielort in der Pflanze und wird 35 nach dessen Erreichen vom HPPD-Proteinteil vorzugsweise proteolytisch abgespalten. Die kodierende Transitpeptid-Sequenz befindet sich im erfindungsgemäßen Expressionskonstrukt vorzugsweise 5'-stromaufwärts von der kodierenden HPPD-Sequenz.

40 In einer weiteren bevorzugten Ausführungsform stehen die kodierende HPPD-Sequenz und die anti-HGD-Sequenz jeweils unter der genetischen Kontrolle eines pflanzenspezifischen Promotors.

Erfindungsgemäß besonders bevorzugte Expressionskassetten 45 umfassen eine kodierende HPPD-Nukleinsäuresequenz, welche für ein Protein, enthaltend eine Aminosäuresequenz gemäß SEQ ID NO:15 oder ein funktionelles Äquivalent davon kodiert, oder die eine

Nukleinsäures quenz von einschließlich Nukleotid in Position 8 bis einschließlich Nukleotid in Position 1153 gemäß SEQ ID NO:14 oder ein funktionelles Äquivalent davon umfaßt.

5 Die anti-HGD-Nukleinsäuresequenz kann gemäß einer bevorzugten Ausführungsform die in antisense-Orientierung insertierte kodierende Nukleinsäuresequenz von Homogentisat-Dioxygenase oder ein funktionales Fragment davon enthalten. Eine bevorzugte Ausführungsform der erfindungsgemäßen Expressionskassetten umfaßt

10 eine HGD-Sequenzmotiv gemäß SEQ ID NO:1 in antisense-Orientierung. Dies führt zur vermehrten Transkription von Nukleinsäuresequenzen in der transgenen Pflanze, welche komplementär zur endogenen kodierenden HGD-Sequenz oder einem Teil davon sind und mit dieser auf DNA- oder RNA-Ebene

15 hybridisieren.

Ein weiterer Gegenstand der Erfindung betrifft rekombinante Vektoren, umfassend wenigstens eine Expressionskassette gemäß obiger Definition. Beispiele erfindungsgemäßer Vektoren umfassen

20 wenigstens ein Expressionskonstrukt folgenden Typs:

5'-Pflanzenspezifischer Promotor/HPPD oder anti-HGD/Terminator-3'. Hierbei kann die kodierende HPPD-Sequenz auch durch eine kodierende Sequenz für ein Fusionsprotein aus

25 Transitpeptid und HPPD ersetzt sein.

Bevorzugte Beispiele umfassen monomere Vektoren, enthaltend eines der folgenden Expressionskonstrukte:

30 a) 5'-35S-Promotor/anti-HGD/OCS-Terminator-3';
b1) 5'-LeguminB-Promotor/HPPD/NOS-Terminator-3';
b2) 5'-LeguminB-Promotor/Transitpeptid-HPPD/NOS-Terminator-3'.

Die Konstrukte a) und b) erfordern eine Kotransformation der

35 Pflanze mit beiden Vektoren, d.h. mit a) und b1) bzw. b2).

Bevorzugte Beispiel umfassen außerdem binäre Vektoren, enthaltend folgendes Konstrukt:

40 c1) 5'-35S-Promotor/anti-HGD/OCS-Terminator/LeguminB-Promotor/HPPD/NOS-Terminator-3'; und
c2) 5'-35S-Promotor/anti-HGD/OCS-Terminator/LeguminB-Promotor/Transitpeptid-HPPD/NOS-Terminator-3'.

45 Konstrukt c1) bzw. c2) erlaubt die gleichzeitige Transformation der Pflanze mit HPPD und anti-HGD.

Ein weiterer Gegenstand der Erfindung betrifft Mikroorganismen, enthaltend wenigstens einen erfindungsgemäßen rekombinanten Vektor. Bevorzugt sind solche Organismen, welche zur Infektion von Pflanzen und damit zur Übertragung der erfindungsgemäßen Konstrukte befähigt sind.

Bevorzugte Mikroorganismus sind solche aus der Gattung *Agrobacterium* und insbesondere der Art *Agrobacterium tumefaciens*.

10 Ein weiterer Gegenstand der Erfindung betrifft die Verwendung eines erfindungsgemäßen Vektors oder Mikroorganismus zur Transformation von Pflanzen, Pflanzenzellen, -geweben oder -teilen insbesondere mit dem Ziel, diese zu einer verbesserten Tocopherol-Synthese zu befähigen.

15 Ein anderer Gegenstand der Erfindung betrifft transgene Pflanze, transformiert mit wenigstens einem erfindungsgemäßen Vektor oder Mikroorganismus und transgene Zellen, Gewebe, Teile oder transgenes Vermehrungsgut von solchen Pflanzen.

20 Die erfindungsgemäßen transgenen Pflanzen sind insbesondere ausgewählt unter Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat, wie Kresse, und den 25 verschiedenen Baum-, Nuß- und Weinspecies.

Gegenstand der Erfindung ist weiterhin ein Verfahren zur Herstellung von transgenen Pflanzen mit verbesserter Tocopherolproduktion, wobei man Pflanzen, die zur 30 Tocopherolproduktion befähigt sind, oder Pflanzenzellen, -gewebe oder -teile oder Protoplasten davon mit wenigstens einem erfindungsgemäßen Vektor oder wenigstens einem erfindungsgemäßen Mikroorganismus transformiert, die transformierten Zellen, Gewebe, Pflanzenteile oder Protoplasten in einem Wachstumsmedium 35 kultiviert und gegebenenfalls aus der Kultur Pflanzen regeneriert.

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung einer Expressionskassette, eines Vektors, eines Mikroorganismus 40 oder einer transgenen Pflanze gemäß obiger Definition zur Gewinnung von Pflanzenmetaboliten, insbesondere Tocopherolen.

Ein letzter Gegenstand der Erfindung betrifft schließlich ein Verfahren zur Herstellung von Tocopherolen, das dadurch gekenn- 45 zeichnet ist, daß man aus einer Kultur einer erfindungsgemäß

transformieren Pflanze das gewünschte Tocopherol in an sich bekannter Weise isoliert.

Ausführliche Beschreibung der Erfindung:

5

Die erfindungsgemäße Transformation von Pflanzen mit einem HPPD kodierenden Konstrukt führt zur Überexpression dieses Proteins und damit zur Steigerung der Homogentisatbildung. Durch gleichzeitige Transformation mit anti-HGD, insbesondere dem 10 antisense-HGD Konstrukt wird ein unerwünschter Abfluß dieses Metaboliten zu Maleylacetoacetat vermieden. Eine erhöhte Homogentisatmenge steht in der transgenen Pflanze somit zur Bildung von Tocopherolen über die Intermediate Methyl-6-phytylquinol und 2,3-Dimethyl-phytylquinol (vgl. Figur 15 1) zur Verfügung.

Unter einer Nukleotid- oder Nukleinsäure-Sequenz versteht man erfindungsgemäß beispielsweise eine genomische oder eine komplementäre DNA-Sequenz oder eine RNA-Sequenz sowie halb- oder 20 vollsynthetische Analoga davon.

Die HPPD- oder anti-HGD-Nukleotidsequenzen der erfindungsgemäßen Konstrukte können synthetisch hergestellt oder natürlich gewonnen werden oder eine Mischung aus synthetischen und natürlichen 25 DNA-Bestandteilen enthalten, sowie aus verschiedenen heterologen HGD bzw. HPPD-Genabschnitten verschiedener Organismen bestehen. Die anti-HGD-Sequenz kann von einem oder mehreren Exons und/oder Introns, insbesondere Exons des HGD-Gens abgeleitet sein.

30 Beispielsweise können synthetische Nukleotid-Sequenzen mit Kodons erzeugt werden, die von den zu transformierenden Pflanzen bevorzugt werden. Diese von Pflanzen bevorzugten Kodons können anhand der Kodonnutzung in üblicher Weise für die Pflanze bestimmt werden. Bei der Präparation einer Expressionskassette können verschiedene 35 DNA-Fragmente so manipuliert werden, daß eine Nukleotid-Sequenz mit korrekter Leserichtung und korrektem Leseraster erhalten wird. Für die Verbindung der Nukleinsäure-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden.

40

Funktionale Äquivalente des HPPD-Gens sind solche Sequenzen, welche trotz abweichender Nukleotidsequenz noch für ein Protein mit der erfindungsgemäß gewünschten Funktionen kodieren, d.h für ein Enzym mit Homogentisat-bildender Aktivität.

45

Funktionale Äquivalente von anti-HGD umfassen solche Nukleotidsequenzen welche die HGD-Enzymfunktion in der transgenen Pflanze in ausreichendem Maße unterbinden. Dies kann z.B. durch Behinderung oder Unterbindung der HGD-Prozessierung, des

5 Transports von HGD oder deren mRNA, Hemmung der Ribosomenanlagerung, Hemmung des RNA-Spleißens, Induktion eines RNA-abbauenden Enzyms und/oder Hemmung der Translationselongation oder -termination erfolgen.

10 Funktionale Äquivalente umfassen allgemein natürlich vorkommende Varianten der hierin beschriebenen Sequenzen sowie künstliche, z.B. durch chemische Synthese erhaltene, an den Kodon-Gebrauch einer Pflanze angepaßte, künstliche Nukleotidsequenzen.

15 Unter einem funktionalen Äquivalent versteht man insbesondere auch natürliche oder künstliche Mutationen einer ursprünglich isolierten für HGD oder HPPD kodierenden Sequenz, welche weiterhin die gewünschte Funktion zeigen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Vertauschungen oder

20 Insertionen eines oder mehrerer Nukleotidreste. Somit werden beispielsweise auch solche Nukleotidsequenzen durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation der HGD- bzw. HPPD-Nukleotidsequenz erhält. Ziel einer solchen Modifikation kann z.B. die weitere Eingrenzung der darin

25 enthaltenen kodierenden Sequenz oder z.B. auch die Einfügung weiterer Restriktionsenzym-Schnittstellen sein.

Funktionale Äquivalente umfassen auch solche Varianten, deren Funktion, verglichen mit dem Ausgangsgen bzw. Genfragment,

30 abgeschwächt oder verstärkt ist, also beispielsweise solche HPPD-Gene welche für eine HPPD-Variante mit niedrigerer oder höherer enzymatischer Aktivität als der des Ursprungsgens kodieren.

35 Außerdem sind artifizielle Nukleinsäuresequenzen geeignet, solange sie, wie oben beschrieben, die gewünschte Eigenschaft beispielsweise der Erhöhung des Tocopherol-Gehaltes in der Pflanze durch Überexpression des HPPD-Gens oder Expression einer anti-HGD-Sequenz in Kulturpflanzen vermitteln. Solche

40 artifiziellen Nukleotid-Sequenzen können beispielsweise durch Rückübersetzung mittels Molecular Modelling konstruierter Proteine, die HGD- bzw. HPPD-Aktivität aufweisen oder durch in vitro-Selektion ermittelt werden. Besonders geeignet sind kodierende Nukleotid-Sequenzen, die durch Rückübersetzung einer

45 Polypeptidsequenz gemäß der für die Wirtspflanze spezifischen Kodon-Nutzung erhalten wurden. Die spezifische Kodon-Nutzung kann ein mit pflanzengenetischen Methoden vertrauter Fachmann durch

Computerauswertungen anderer, bekannter Gene der zu transformierenden Pflanze leicht ermitteln. Um unerwünschte pflanzliche Regulationsmechanismen zu umgehen, kann man beispielsweise ausgehend von der Aminosäuresequenz einer 5 bakteriellen HPPD und unter Berücksichtigung der pflanzlichen Kodon-Nutzung DNA-Fragmente rückübersetzen und daraus die vollständige, für einen Einsatz in der Pflanze optimierte exogene HPPD-Sequenz herstellen. Daraus wird ein HPPD-Enzym exprimiert, welches der pflanzlichen Regulation nicht oder nur unzureichend 10 zugänglich ist, wodurch die Überexpression von Enzymaktivität voll zur Geltung gelangen kann.

Als weitere geeignete äquivalente Nukleinsäure-Sequenzen sind 15 Sequenzen zu nennen, welche für Fusionsproteine kodieren, wobei Bestandteil des Fusionsproteins z.B. ein HPPD-Polypeptid oder ein funktionell äquivalenter Teil davon ist. Der zweite Teil des Fusionsproteins kann z.B. ein weiteres Polypeptid mit enzymatischer Aktivität sein oder eine antigene Polypeptidsequenz, mit deren Hilfe ein Nachweis der HPPD-Expression möglich ist (z.B. 20 myc-tag oder his-tag). Bevorzugt handelt es sich dabei jedoch um eine regulative Proteinsequenz, wie z.B. ein Signal- oder Transitpeptid, das das HPPD-Protein an den gewünschten Wirkort leitet.

25 Eine Erhöhung des Tocopherol-Gehaltes in der Pflanze bedeutet im Rahmen der vorliegenden Erfindung die künstlich erworbene Fähigkeit einer erhöhten Biosyntheseleistung wenigstens einer Verbindung aus der Gruppe der Tocopherole und Tocotrienole gemäß obiger 30 Definition in der Pflanze gegenüber der nicht gentechnisch modifizierten Pflanze für die Dauer mindestens einer Pflanzengeneration.

Der Biosyntheseort von Tocopherol ist im allgemeinen das Blattgewebe aber auch der Samen, so daß eine blattspezifische 35 und/oder samenspezifische Expression insbesondere des HPPD-Gens und gegebenenfalls von anti-HGD sinnvoll ist. Es ist jedoch naheliegend, daß die Tocopherol-Biosynthese nicht auf den Samen beschränkt sein muß, sondern auch in allen übrigen Teilen der Pflanze gewebespezifisch erfolgen kann.

40 Darüberhinaus ist eine konstitutive Expression des exogenen Gens von Vorteil. Andererseits kann aber auch eine induzierbare Expression wünschenswert sein.

45 Die in den erfindungsgemäßen Expressionskassetten enthaltenen regulativen Nukleinsäuresequenzen steuern die Expression der kodierenden Sequenzen (wie der HPPD-Sequenz, gegebenenfalls

10

fusioniert mit einer Transitpeptid-Sequenz) und der anti-HGD-Sequenz. Vorzugsweise umfassen die erfindungsgemäßen Konstrukte 5'-stromaufwärts von der jeweiligen kodierenden Sequenz einen Promotor und 3'-stromabwärts eine Terminator-sequenz, sowie gegebenenfalls weitere übliche regulative Elemente, und zwar jeweils operativ verknüpft mit der kodierenden Sequenz. Unter einer operativen Verknüpfung versteht man die sequentiellen Anordnung von Promotor, kodierender Sequenz, Terminator und ggf. weiterer regulativer Elemente derart, daß jedes der regulativen Elemente seine Funktion bei der Expression der kodierenden Sequenz oder der antisense-Sequenz bestimmungsgemäß erfüllen kann. Beispiele für operativ verknüpfbare Sequenzen sind weitere, von den Transitpeptid kodierenden Sequenzen verschiedene, Targeting-Sequenzen zur Gewährleistung der subzellulären Lokalisation im Apoplasten, in der Vakuole, in Plastiden, im Mitochondrium, im Endoplasmatischen Retikulum (ER), im Zellkern, in Ölkörperchen oder anderen Kompartimenten; sowie Translationsverstärker wie die 5'-Leadersequenz aus dem Tabak-Mosaik-Virus (Gallie et al., Nucl. Acids Res. 15 (1987), 8693 -8711), und dergleichen.

Geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA-Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere des Gens 3 der T-DNA (Octopin Synthase) des Ti-Plasmids pTiACHS entsprechen (Gielen et al., EMBO J. 3 (1984), 835 ff) oder funktionelle Äquivalente davon. Beispiele für besonders geeignete Terminatorsequenzen sind der OCS (Octopin-Synthase)-Terminator und der NOS (Nopaline-Synthase)-Terminator.

Als Promotoren für die Expressionskassetten ist grundsätzlich jeder Promotor geeignet, der die Expression von Genen, insbesondere Fremdgenen, in Pflanzen steuern kann. Vorzugsweise verwendet man insbesondere einen pflanzlichen Promotor oder einen Promotor, der einem Pflanzenvirus entstammt. Insbesondere bevorzugt ist der CaMV 35S-Promotor aus dem Blumenkohl-Mosaik-Virus (Franck et al., Cell 21 (1980), 285 - 294). Dieser Promotor enthält bekanntlich unterschiedliche Erkennungssequenzen für transkriptionale Effektoren, die in ihrer Gesamtheit zu einer permanenten und konstitutiven Expression des eingeführten Gens führen (Benfey et al., EMBO J. 8 (1989), 2195-2202). Ein weiteres Beispiel eines geeigneten Promotors ist der LeguminB-Promotor (Accessionnr. X03677).

11

Die Expressionskassette kann auch einen chemisch induzierbaren Promotor enthalten, durch den die Expression des exogenen Gens in der Pflanze zu einem bestimmten Zeitpunkt gesteuert werden kann. Derartige Promotoren, wie z.B. der PRP1Promotor (Ward et al., 5 Plant. Mol. Biol. 22 (1993), 361-366), ein durch Salicylsäure induzierbarer (WO 95/19443), ein durch Benzolsulfonamid-induzierbarer (EP-A-0388186), ein durch Tetrazyklin-induzierbarer (Gatz et al., (1992) Plant J. 2, 397404), ein durch Abscisinsäure-induzierbarer (EP-A 335528) bzw. ein durch Ethanol- oder 10 Cyclohexanon-induzierbarer (WO 93/21334) Promotor können ebenfalls verwendet werden.

Weiterhin sind insbesonders solche Promotoren bevorzugt, die die Expression in Geweben oder Pflanzenteilen sicherstellen, in denen 15 die Biosynthese von Tocopherol bzw. dessen Vorstufen stattfindet. Insbesondere zu nennen sind Promotoren, die eine blattspezifische Expression gewährleisten. Zu nennen sind der Promotor der cytosolischen FBPase aus Kartoffel oder der ST-LSI Promotor aus Kartoffel (Stockhaus et al., EMBO J. 8 (1989), 2445 - 245). 20 Beispiele für samenspezifische Promotoren sind der Phaseolin-Promotor (US 5504200), der USP-Promotor (Baumlein, H. et al., Mol. Gen. Genet. (1991) 225 (3), 459 - 467) oder der LEB4-Promotor (Fiedler, U. et al., Biotechnology (NY) (1995), 13 (10) 1090) zusammen mit dem LEB4-Signalpeptid.

25 Die Herstellung einer Expressionskassette erfolgt durch Fusion eines geeigneten Promotors mit einer geeigneten anti-HDG- bzw. HPPD-Nukleotidsequenz, gegebenenfalls einer für eine Transitpeptid kodierenden Sequenz, welche vorzugsweise zwischen dem 30 Promotor und der HPPD-Sequenz angeordnet ist, sowie einem Terminator- oder Polyadenylierungssignal. Dazu verwendet man gängige Rekombinations- und Klonierungstechniken, wie sie beispielsweise in T. Maniatis, E.F. Fritsch und J. Sambrook, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor 35 Laboratory, Cold Spring Harbor, NY (1989) sowie in T.J. Silhavy, M.L. Berman und L.W. Enquist, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (1984) und in Ausubel, F.M. et al., Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience (1987) 40 beschrieben sind.

Wie bereits erwähnt, können auch Expressionskassetten verwendet werden, deren DNA-Sequenz für ein HPPD-Fusionsprotein kodiert, wobei ein Teil des Fusionsproteins ein Transitpeptid ist, das die 45 Translokation des Polypeptides steuert. Als Beispiel können genannt werden: Chloroplasten-spezifische Transitpeptide, welche

nach Translokation HPPD-Gens in die Chloroplasten vom HPPD-Teil enzymatisch abgespalten werden.

Insbesondere ist zu nennen das Transitpeptid, das von der 5 plastidären Transketolase (TK) oder einem funktionellen Äquivalent dieses Transitpeptids (z.B. dem Transitpeptid der kleinen Untereinheit der RubisCO oder der Ferredoxin:NADP Oxidoreduktase) abgeleitet ist.

10 Zweckmäßigerweise können die Promotor- und die Terminator-Regionen in Transkriptionsrichtung mit einem Linker oder Polylinker, der eine oder mehrere Restriktionsstellen für die Insertion dieser Sequenz enthält, versehen werden. In der Regel hat der Linker 1 bis 10, meistens 1 bis 8, vorzugsweise 2 bis 6 15 Restriktionsstellen. Im allgemeinen hat der Linker innerhalb der regulatorischen Bereiche eine Größe von weniger als 100 bp, häufig weniger als 60 bp, mindestens jedoch 5 bp.

Promotor, Terminator sowie die anderen regulativen Elemente 20 können sowohl nativ (homolog) als auch fremdartig (heterolog) zur Wirtspflanze sein.

Ferner können genetische Manipulationen, die passende Restriktionsschnittstellen bereitstellen oder die überflüssige 25 DNA oder Restriktionsschnittstellen entfernen, im Rahmen der Erfindung eingesetzt werden. Wo Insertionen, Deletionen oder Substitutionen, wie z.B. Transitionen und Transversionen, in Frage kommen, können an sich bekannte Techniken, wie in vitro-Mutagenese, "primer repair", Restriktion oder Ligation 30 verwendet werden. Durch Manipulationen, wie z.B. Restriktion, "chewing-back" oder Auffüllen von Überhängen für "blunt ends" können komplementäre Enden der Fragmente für die Ligation zur Verfügung gestellt werden.

35 Die erfindungsgemäßen Expressionskassetten werden bevorzugt in geeignete Transformationsvektoren insertiert. Geeignete Vektoren sind unter anderem in "Methods in Plant Molecular Biology and Biotechnology" (CRC Press), Kap. 6/7, S. 71 - 119 (1993) beschrieben.

40 Vorzugsweise werden sie in einen Vektor, wie beispielsweise pBin19, pBinAR, pPZP200 oder pPTV, kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren. Die mit einem solchen Vektor transformierten Agrobakterien können dann in 45 bekannter Weise zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie z.B. von Tabakpflanzen, verwendet werden, indem beispielsweise verwundete Blätter oder Blattstücke in einer

Agrobakterienlösung gebadet und anschließend in geeigneten Medien kultiviert werden. Die Transformation von Pflanzen durch Agrobakterien ist unter anderem bekannt aus F.F. White, Vectors for Gene Transfer in Higher Plants; in Transgenic Plants, Vol. 1, 5 Engineering and Utilization, herausgegeben von S.D. Kung und R. Wu, Academic Press, 1993, S. 15 - 38.

Aus den transformierten Zellen der verwundeten Blätter bzw. Blattstücke können in bekannter Weise transgene Pflanzen 10 regeneriert werden.

Die Übertragung von Fremdgenen in das Genom einer Pflanze wird als Transformation bezeichnet. Es werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus 15 Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone, die sogenannte particle bombardment Methode, die Elektroporation, die 20 Inkubation trockener Embryonen in DNA-haltiger Lösung, die Mikroinjektion und der durch Agrobacterium vermittelte Gentransfer. Die genannten Verfahren sind beispielsweise in B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von 25 S.D. Kung und R. Wu, Academic Press (1993), 128 - 143 sowie in Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205 - 225) beschrieben. Vorzugsweise wird das zu exprimierende Konstrukt in einen Vektor kloniert, der geeignet ist, Agrobacterium tumefaciens zu transformieren, beispielsweise 30 pBin19 (Bevan et al., Nucl. Acids Res. 12 (1984), 8711).

Mit einer Expressionskassette transformierte Agrobakterien können, ebenfalls in bekannter Weise, zur Transformation von Pflanzen, insbesondere von Kulturpflanzen, wie Getreide, Mais, 35 Hafer, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Plachs, Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und den verschiedenen Baum-, Nuß- und Weinspezies, verwendet werden, z.B. indem verwundete Blätter oder Blattstücke in einer Agrobakterienlösung gebadet und anschließend in geeigneten Medien 40 kultiviert werden.

Gegenstand der Erfindung sind außerdem transgene Pflanzen, transformiert mit einer erfindungsgemäßen Expressionskassette, sowie transgene Zellen, Gewebe, Teile und Vermehrungsgut solcher 45 Pflanzen. Besonders bevorzugt sind dabei transgene Kulturpflanzen, wie z.B. Gerste, Weizen, Rogg n, Mais, Hafer, Soja, Reis, Baumwolle, Zuckerrübe, Canola, Sonnenblume, Flachs,

14

Hanf, Kartoffel, Tabak, Tomate, Raps, Alfalfa, Salat und die verschiedenen Baum-, Nuß- und Weinspezies. Pflanzen im Sinne der Erfindung sind mono- und dikotyle Pflanzen oder Algen.

5 Die Erfindung wird nun in den folgenden Ausführungsbeispielen unter Bezugnahme auf die beiliegenden Figuren näher erläutert. Dabei zeigt:

Figur 1 eine schematische Darstellung des
10 Tocopherolbiosyntheseweges in Pflanzen; PP steht dabei für Pyrophosphat; wird in der Pflanze Homogentisat mit Geranyl-geranyl-PP umgesetzt (nicht gezeigt) so werden in analoger Weise die entsprechenden Tocotrienole gebildet;

15 Figur 2 einen binären Transformations-Vektor, welcher die HPPDop in Samen transformierter Pflanzen exprimiert und gleichzeitig die Expression der endogenen HGD unterdrückt: A = 35S-Promotor; B = HGD in antisense-Orientierung; C = OCS Terminator; D = Legumin B-Promotor; E = Transitpeptid der FNR; F = HPPDop; G = NOS-Terminator;

Figur 3 Konstruktionsschemata der HPPD kodierenden Plasmide pUC19HPPDop und pCRScriptHPPDop;

25 Figur 4 Konstruktionsschemata der antiHGD kodierenden Plasmide pBinARHGDanti und pCRScriptHGDanti; und

Figur 5 Konstruktionsschemata der Transformationsvektoren pPTVHGDanti und pZP200HPPD.

30 Allgemeine Methoden:

a) Allgemeine Klonierungsverfahren

35 Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen, AgaroseGelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien,
40 Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA wurden wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt.

b) Sequenzanalyse rekombinanter DNA

Die Sequenzierung rekombinanter DNA-Moleküle erfolgte mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma Licor (Vertrieb durch 5 MWG Biotech, Ebersbach) nach der Methode von Sanger (Sanger et al., Proc. Natl. Acad. Sci. USA 74 (1977), 5463 - 5467).

Beispiel 1: Klonierung einer Hydroxyphenylpyruvat-Dioxygenase (HPPD) mit für Expression in *Brassica napus* optimierter 10 DNA-Sequenz

Die Aminosäuresequenz der Hydroxyphenylpyruvat-Dioxygenase (HPPD) aus *Streptomyces avermitilis* (Accessionnr. U11864) wurde unter Berücksichtigung der Codonverwendung in *Brassica napus* (Raps) in 15 eine DNA-Sequenz zurück übersetzt. Die Codonusage wurde mittels der Datenbank <http://www.dna.affrc.go.jp/~nakamura/index.html> bestimmt. Die abgeleitete Sequenz wurde unter Anheftung von SalI Schnittstellen durch Ligation überlappender Oligonukleotide mit anschließender PCR-Amplifikation (Rouwendal, GJA; et al, (1997) 20 PMB 33: 989-999) synthetisiert (SEQ ID NO:14). Die Richtigkeit der Sequenz des synthetischen Gens wurde durch Sequenzierung überprüft. Das synthetische Gen wurde in den Vektor pBluescript II SK+ (Stratagene) kloniert.

25 Beispiel 2: Klonierung einer Homogentisat-Dioxygenase (HGD) aus *Brassica napus*

a) Isolierung von gesamt-RNA aus Blüten von *Brassica napus*

30 Von *Brassica napus* var. Westa wurden offene Blüten geerntet und in flüssigem Stickstoff eingefroren. Das Material wurde anschliessend im Mörser pulverisiert und in Z6-Puffer (8 M Guanidinium-Hydrochlorid, 20 mM MES, 20 mM EDTA, auf pH 7,0 mit NaOH eingestellt; versetzt mit 400 µl Mercaptoethanol/100 ml 35 Puffer unmittelbar vor Gebrauch) aufgenommen. Die Suspension wurde dann in Reaktionsgefässe überführt und mit einem Volumen Phenol/Chloroform/Isoamylalkohol 25:24:1 ausgeschüttelt. Nach 10 minütiger Zentrifugation bei 15000 U wurde der Überstand in ein neues Reaktionsgefäß überführt und mit 1/20 Volumen 1N Essigsäure 40 und 0,7 Volumen Ethanol (absolut) die RNA gefällt. Nach erneuter Zentrifugation wurde das Pellet zunächst in 3M Natriumacetatlösung und nach einer weiteren Zentrifugation in 70 % Ethanol gewaschen. Anschliessend wurde das Pellet in DEPC (Diethylpyrocarbonat) Wasser gelöst und die RNA-Konzentration 45 photometrisch bestimmt.

b) Herstellung von cDNA aus gesamt RNA aus Blüten von *Brassica napus*

20 µg Gesamt-RNA wurden zunächst mit 3,3 µl 3M

5 Natriumacetatlösung, 2 µl 1M Magnesiumsulfatlösung versetzt und auf 10 µl Endvolumen mit DEPC Wasser aufgefüllt. Dazu wurde 1 µl RNase-freie DNase (Boehringer Mannheim) gegeben und 45 min bei 37 Grad inkubiert. Nach Entfernen des Enzyms durch Ausschütteln mit Phenol/Chloroform/Isoamylalkohol wurde die RNA mit Ethanol

10 gefällt und das Pellet in 100 µl DEPC Wasser aufgenommen. 2,5 µg RNA aus dieser Lösung wurden mittels eines cDNA-Kits (Gibco BRL) nach Herstellerangaben in cDNA umgeschrieben.

c) PCR-Amplifikation eines Teilfragments der HGD aus *Brassica napus*

15 Durch Vergleich der DNA-Sequenzen der bekannten Homogentisat-Dioxygenasen (HGD) aus *Arabidopsis thaliana* (Accessionnr. U80668), *Homo sapiens* (Accessionnr. U63008) und *Mus musculus* (Accessionnr. U58988) wurden für eine PCR Oligonukleotide abgeleitet, denen am 5'-Ende eine SalI und am 3'-Ende eine Asp718 Restriktionsschnittstelle angefügt worden war. Das Oligonukleotid am 5'-Ende umfaßt die Sequenz:

25 GTCGACGGNCCNATNGGNGCNAANGG (SEQ ID NO:2),

beginnend mit der Base 661 des *Arabidopsis*-Gens. Das Oligonukleotid am 3'-Ende umfaßt die Sequenz:

30 GGTACCTCRAACATRAANGCCATNGTNCC (SEQ ID NO:3),

beginnend mit der Base 1223 des *Arabidopsis*-Gens, wobei N jeweils Inosin bedeutet und R für den Einbau von A oder G in das Oligonukleotid steht.

35

Die PCR-Reaktion wurde mit der Taq-Polymerase von TAKARA nach Herstellerangaben durchgeführt. Als Template wurden 0,3 µg der cDNA eingesetzt. Das PCR-Programm lautete:

40	1 Zyklus:	94 Grad	1 min
	5 Zyklen:	94 Grad	4 sec
		50 Grad	30 sec
		72 Grad	1 min
	5 Zyklen:	94 Grad	4 sec
45		48 Grad	30 sec
		72 Grad	1 min
	25 Zyklen:	94 Grad	4 sec

17

46 Grad 30 sec
72 Grad 1 min
1 Zyklus: 72 Grad 30 min

5 Das Fragment wurde mittels NucleoSpin Extract (Machery und Nagel) gereinigt und nach Herstellerangaben in den Vektor pGEMT (Promega) kloniert.

Die Richtigkeit des Fragments wurde durch Sequenzierung
10 überprüft.

Beispiel 3: Herstellung eines Pflanzentransformations-Konstrukts zur Überexpression der HPPD mit optimierter DNA-Sequenz (HPPDop) und Ausschaltung der HGD

15 Zur Herstellung von Pflanzen, welche die HPPDop in Samen exprimieren und in denen die Expression der endogenen HGD mittels antisense-Technik unterdrückt ist, wurde ein binärer Vektor angefertigt, der beide Gensequenzen enthält (Figur 2, Konstrukt
20 VI).

a) Herstellung einer HPPDop-Expressionskassette

Dazu wurden zunächst die Komponenten der Kassette zur Expression
25 der HPPDop, bestehend aus dem LeguminB-Promotor (Accessionnr. X03677), dem Transitpeptid der Ferredoxin:NADP+ Oxidoreduktase aus Spinat (FNR; Jansen, T, et al (1988) Current Genetics 13, 517-522) und dem NOS-Terminator (enthalten im pBI101 Accessionnr. U12668) mittels PCR mit den benötigten Restriktionsschnittstellen
30 versehen.

Der Legumin-Promotor wurde aus dem Plasmid pLEPOCS (Bäumlein, H, et al. (1986) Plant J. 24, 233-239) mit dem stromaufwärts-Oligonukleotid:

35 GAATTCGATCTGTCGTCTCAAACTC (SEQ ID NO: 4)

und dem stromabwärts-Oligonukleotid:

40 GGTACCGTGATAGTAAACAACTAATG (SEQ ID NO: 5)

mittels PCR amplifiziert und in den Vektor PCR-Script (Stratagene) nach Herstellerangaben kloniert.

45

18

Das Transitpeptid wurde aus dem Plasmid pSK-FNR (Andrea Babette Regierer "Molekulargenetische Ansätze zur Veränderung der Phosphat-Nutzungseffizienz von höheren Pflanzen", P+H Wissenschaftlicher Verlag, Berlin 1998 ISBN: 3-9805474-9-3) mittels PCR 5 mit dem 5'-Oligonukleotid:

ATGGTACCTTTGCATAAAGTATCTTCATAG (SEQ ID NO: 6)

und dem 3'-Oligonukleotid:

10

ATGTCGACCCGGGATCCAGGGCCCTGATGGGTCCCATTTCCC (SEQ ID NO: 7)

amplifiziert.

15 Der NOS-Terminator wurde aus dem Plasmid pBI101 (Jefferson, R.A., et al (1987) EMBO J. 6 (13), 3901-3907) mittels PCR mit dem 5'-Oligonukleotid:

GTCGACGAATTCGGATCGTTC: (SEQ ID NO: 8)

20

und dem 3'-Oligonukleotid

AAGCTTCCGATCTAGTAACATAGA (SEQ ID NO: 9)

25 amplifiziert.

Das Amplikon wurde jeweils in den Vektor pCR-Script (Stratagene) nach Herstellerangaben kloniert.

30 Für die Expressionskassette wurde zunächst der NOS-Terminator als SalI/HindIII-Fragment in einen entsprechend geschnittenen pUC19-Vektor (Yanisch-Perron, C., et al (1985) Gene 33, 103-119) umkloniert. In dieses Plasmid wurde anschließend das Transitpeptid als Asp718/SalI-Fragment eingeführt. Der 35 Legumin-Promotor wurde dann als EcoRI/Asp718 Fragment einkloniert. Das Gen HPPDop wurde als SalI-Fragment in dieses Konstrukt eingeführt (Figur 3, Konstrukt III).

40 Die fertige Kassette in pUC19 wurde als Template für eine PCR verwendet, wozu für den Leguminpromotor das Oligonukleotid:

AAGCTTGATCTGCGTCTAAACTC (SEQ ID NO: 10)

und für den Nos-Terminator das Oligonukleotid:

45

AAGCTTCCGATCTAGTAACATAGA (SEQ ID NO: 11)

verwendet wurden. Das Amplikon wurde in pCR-Script kloniert und pCR-ScriptHPPDop genannt (Figur 3, Konstrukt IV).

b) Herstellung einer antiHGD-Expressionskassette

5

Für die Ausschaltung der HGD mit antisense-Technik wurde das Genfragment als SalI/Asp718-Fragment in den Vektor pBinAR (Höfgen, R. und Willmitzer, L., (1990) Plant Sci. 66: 221-230) kloniert, in dem der 35S-Promotor und der OCS-Terminator vorliegen (Figur 4, Konstrukt I). Das Konstrukt diente als Vorlage für eine PCR Reaktion mit dem Oligonukleotid:

ATTCTAGACATGGAGTCAAAGATTCAAATAGA (SEQ ID NO: 12),

15 spezifisch für die 35S-Promotor-Sequenz;
und dem Oligonukleotid:

ATTCTAGAGGACAATCAGTAAATTGAAACGGAG (SEQ ID NO: 13).

20 spezifisch für OCS-Terminator-Sequenz

Das Amplikon wurde in den Vektor PCR-Script (Stratagene) kloniert und HGDanti genannt (Figur 3, Konstrukt II).

25 c) Herstellung des binären Vektors

Zur Erstellung eines binären Vektors zur Raps-Transformation wurde zunächst das Konstrukt HGDanti aus pCRScriptHGDanti als XbaI-Fragment in den Vektor pPTV (Becker, D., (1992) PMB 20, 30 1195-1197) kloniert (Abbildung 5, Konstrukt V). In dieses Plasmid wurde das Konstrukt LegHPPDop aus pCRScriptHPPDop als HindIII-Fragment eingefügt. Dieses Plasmid wurde mit pPTVHPPD/HGDanti bezeichnet (Figur 2, Konstrukt VI).

35 Beispiel 4: Herstellung von Konstrukten zur Kotransformation zur Überexpression von HPPDop und Ausschaltung von HGD in *Brassica napus* Pflanzen

Zur Kotransformation von Pflanzen mit HPPDop und antiHGD wurde 40 das Konstrukt LeguminB-Promotor/Tansitpeptid/HPPDop/NOS aus dem Vektor pCRScriptHPPDop (Figur 3, Konstrukt IV) als HindIII-Fragment herausgeschnitten und in den entsprechend geschnittenen Vektor pPZP200 (Hajdukiewicz, P., et al., (1994) PMB 25(6): 989-94) eingefügt (Figur 5, Konstrukt VII). Dieses 45 Plasmid diente später zur Kotransformation von Pflanzen zusammen

20

mit dem Vektor pPTVHGDAnti (Figur 5, Konstrukt V) aus Beispiel 3 c).

Beispiel 5: Herstellung transgener *Brassica napus* Pflanzen

5

Die Herstellung transgener Raps Pflanzen orientierte sich an einem Protokoll von Bade, J.B. und Damm, B. (in Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., Hrsg., Springer Lab Manual, Springer Verlag, 1995, 30-38), in welchem auch die

10 Zusammensetzung der verwendeten Medien und Puffer angegeben ist.

Die Transformation erfolgte mit dem *Agrobacterium tumefaciens* Stamm EHA105 (Li, X.Q., et al., PMB (1992) 20, 1037). Zur Transformation wurde entweder das oben genannte Plasmid

15 pPTVHPPDopHGDAnti (Figur 2) oder nach Anzucht gemischte Kulturen von Agrobakterien mit den Plasmiden pPTVHGDAnti und pPZP200HPPDop (Figur 5) verwendet.

Samen von *Brassica napus* var. Westar wurden mit 70% Ethanol (v/v)

20 oberflächensteril gemacht, 10 Minuten bei 55°C in Wasser gewaschen, in 1%iger Hypochlorit-Lösung (25% v/v Teepol, 0,1% v/v Tween 20) 20 Minuten inkubiert und sechsmal mit steriles Wasser jeweils 20 Minuten gewaschen. Die Samen wurden drei Tage auf Filterpapier getrocknet und 10-15 Samen in einem Glaskolben mit
25 15 ml Keimungsmedium zur Keimung gebracht. Von mehreren Keimlingen (ca. 10 cm groß) wurden die Wurzeln und Apices entfernt und die verbleibenden Hypokotyle in ca. 6 mm lange Stücke geschnitten. Die so gewonnenen ca. 600 Explantate wurden 30 Minuten mit 50 ml Basalmedium gewaschen und in einem 300 ml
30 Kolben überführt. Nach Zugabe von 100 ml Kallusinduktionsmedium wurden die Kulturen für 24 Stunden bei 100 U/min inkubiert.

Von den *Agrobacterium* Stämmen wurden Übernachtkulturen bei 29°C in Luria Broth-Medium mit Kanamycin (20mg/l) angesetzt, davon 2ml in

35 50 ml Luria Broth-Medium ohne Kanamycin für 4 Stunden bei 29°C bis zu einer OD₆₀₀ von 0,4-0,5 inkubiert. Nach der Pelletierung der Kultur bei 2000 U/min für 25 min wurde das Zellpellet in 25 ml Basalmedium resuspendiert. Die Konzentration der Bakterien in der Lösung wurde durch Zugabe von weiterem Basalmedium auf eine OD₆₀₀
40 von 0,3 eingestellt. Zur Kotransformation wurde die Lösung der beiden Stämme zu gleichen Teilen vermischt.

Aus den Raps-Explanten wurde das Kallus-Induktionsmedium mit sterilen Pipetten entfernt, 50 ml *Agrobacterium*-Lösung

45 hinzugefügt, vorsichtig gemischt und 20 min inkubiert. Die *Agrobacterien*-Suspension wurde entfernt, die Raps-Explantate 1 min mit 50 ml Kallus-Induktionsmedium gewaschen und anschließend

21

100 ml Kallus-Induktionsmedium hinzugefügt. Die Co-Kultivierung wurde 24 h auf einem Rotationsschüttler bei 100 U/min durchgeführt. Die Co-Kultivierung wurde durch Wegnahme des Kallus-Induktionsmediums gestoppt und die Explantate zweimal für 5 jeweils 1 min mit 25 ml und zweimal für 60 min mit jeweils 100 ml Waschmedium bei 100 U/min gewaschen. Das Waschmedium mit den Explantaten wurde in 15 cm Petrischalen überführt und das Medium mit sterilen Pipetten entfernt.

10 Zur Regeneration wurden jeweils 20-30 Explantate in 90 mm Petrischalen überführt, welche 25 ml Sproß-Induktionsmedium mit Phosphinotricin enthielten. Die Petrischalen wurden mit 2 Lagen Leukopor verschlossen und bei 25 °C und 2000 lux bei Photoperioden von 16 Stunden Licht/ 8 Stunden Dunkelheit inkubiert. Alle 12 15 Tage wurden die sich entwickelnden Kalli auf frische Petrischalen mit Sproß-Induktionsmedium umgesetzt. Alle weiteren Schritte zur Regeneration ganzer Pflanzen wurde wie von Bade, J.B und Damm, B. (in: Gene Transfer to Plants, Potrykus, I. und Spangenberg, G., Hrsg., Springer Lab Manual, Springer Verlag, 1995, 30-38) 20 beschrieben durchgeführt.

25

30

35

40

45

Patentansprüche

1. Expressionskassette, enthaltend unter genetischer Kontrolle
5 regulativer Nukleinsäuresequenzen
 - a) die kodierende Nukleinsäuresequenz für 4- Hydroxyphenyl-pyruvat-Dioxygenase (HPPD) oder für ein funktionales Äquivalent davon; und/oder
 - 10 b) wenigstens eine Nukleinsäuresequenz (anti-HGD), welche zu einer Inhibition der Homogentisat-Dioxygenase(HGD)-Aktivität befähigt ist.
- 15 2. Expressionskassette nach Anspruch 1, dadurch gekennzeichnet, dass die anti-HGD-Sequenz zu einer antisense-Nukleinsäuresequenz transkribierbar ist, die zur Inhibition der HGD-Aktivität befähigt ist.
- 20 3. Expressionskassette nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die kodierende HPPD-Sequenz mit der kodierenden Sequenz eines Pflanzenorganell-spezifischen Transitpeptids funktional verknüpft ist.
- 25 4. Expressionskassette nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kodierende HPPD-Sequenz und die anti-HGD-Sequenz jeweils unter der genetischen Kontrolle eines pflanzenspezifischen Promotors stehen.
- 30 5. Expressionskassette nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die kodierende HPPD-Nukleinsäuresequenz für ein Protein enthaltend eine Aminosäuresequenz gemäß SEQ ID NO:15 oder ein funktionales Äquivalent davon kodiert oder eine Nukleinsäuresequenz von Rest 8 bis Rest 1153 gemäß SEQ ID NO:14 oder ein funktionales Äquivalent davon umfaßt.
- 35 6. Expressionskassette nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß sie ein HGD-Sequenzmotiv gemäß SEQ ID NO:1 in antisense-Orientierung umfaßt.
- 40 7. Rekombinanter Vektor, umfassend wenigstens eine Expressionskassette nach einem der Ansprüche 1 bis 6.
- 45 8. Vektor nach Anspruch 7, umfassend wenigstens ein Expressionskonstrukt des Typs:

5' -Pflanzenspezifischer Promotor/HPPD oder anti-HGD/
Terminator-3',

5 wobei die Einzelemente miteinander funktional verknüpft
sind und wobei HPPD gegebenenfalls für ein Fusionsprotein,
umfassend ein abspaltbares Transitpeptid und ein Polypeptid
mit HPPD-Aktivität, kodiert.

9. Vektor nach Anspruch 8, umfassend eines der folgenden Expressionskonstrukte:
10

a) 35S-Promotor/anti-HGD/OCS-Terminator

b) LeguminB-Promotor/HPPD/NOS-Terminator

15 c) 35S-Promotor/anti-HGD/OCS-Terminator/LeguminB-Promotor/
HPPD/NOS-Terminator

10. Mikroorganismus, enthaltend einen rekombinanten Vektor nach
20 einem der Ansprüche 7 bis 9.

11. Mikroorganismus nach Anspruch 10 aus der Gattung
Agrobacterium und insbesondere der Art Agrobacterium
tumefaciens.

25 12. Verwendung eines Vektors nach einem der Ansprüche 7 bis 9
oder eines Mikroorganismus nach einem der Ansprüche 10 und 11
zur Transformation von Pflanzen, Pflanzenzellen, -geweben
oder -teilen.

30 13. Verwendung nach Anspruch 12, wobei die Pflanzen,
Pflanzenzellen, -gewebe oder -teile zu einer verbesserten
Tocopherol-Synthese befähigt werden.

35 14. Transgene Pflanze, transformiert mit einem Vektor gemäß einem
der Ansprüche 7 bis 9 oder mit einem Mikroorganismus gemäß
einem der Ansprüche 10 und 11, oder transgene Zellen, Gewebe,
Teile oder transgenes Vermehrungsgut davon.

40 15. Transgene Pflanze nach Anspruch 14, ausgewählt unter
Kulturpflanzen, wie Getreide, Mais, Soja, Reis, Baumwolle,
Zuckerrübe, Canola, Sonnenblume, Flachs, Kartoffel, Tabak,
Tomate, Raps, Alfalfa, Salat, wie Kresse, und den
verschiedenen Baum-, Nuß- und Weinspecies.

16. Verfahren zur Herstellung von transgenen Pflanzen nach einem der Ansprüche 14 und 15, dadurch gekennzeichnet, daß man Pflanzenzellen, -gewebe oder -teile oder Protoplasten mit einem Vektor gemäß einem der Ansprüche 7 bis 9 oder mit einem 5 Mikroorganismus gemäß einem der Ansprüche 10 und 11 transformiert, die transformierten Zellen, Gewebe, Pflanzenteile oder Protoplasten in einem Wachstumsmedium kultiviert und gegebenenfalls aus der Kultur Pflanzen regeneriert.

10 17. Verwendung einer Expressionskassette nach einem der Ansprüche 1 bis 6, eines Vektors nach einem der Ansprüche 7 bis 9, eines Mikroorganismus nach einem der Ansprüche 10 oder 11 oder einer transgenen Pflanze nach einem der Ansprüche 14 und 15 zur Gewinnung von Pflanzenmetaboliten, insbesondere Tocopherolen.

15 18. Verfahren zur Herstellung von Tocopherolen, dadurch gekennzeichnet, daß man aus einer Kultur einer transformierten Pflanze nach einem der Ansprüche 14 und 15 das Tocopherol isoliert.

25

30

35

40

45

Tocopherolsynthese

Fig. 1

THIS PAGE BLANK (USPTO)

Fig.2

THIS PAGE BLANK (USPTO)

Fig.3

THIS PAGE BLANK (USPTO)

Fig.4

THIS PAGE BLANK (USPTO)

Fig.5

THIS PAGE BLANK (USPTO)

SEQUENCE LISTING

<110> BASF Aktiengesellschaft
<120> Homogentisat-Dioxygenase
<130> M/40226
<140> 19937957.2
<141> 1999-08-11
<160> 15
<170> PatentIn Ver. 2.1
<210> 1
<211> 575
<212> DNA
<213> Brassica napus
<220>
<221> misc_feature
<222> (1)..(6)
<223> /function= "Restriktionsschnittstelle"
<220>
<221> misc_feature
<222> (570)..(575)
<223> /function = "Restriktionsschnittstelle"
<400> 1
gtcgacgggc cgatggggc gaagggtctt gctgcaccaa gagattttct tgcaccaacg 60
gcatggtttgc aggaagggtt acggcctgac tacactattt ttcagaagg ttggcggtgaa 120
ctctttactg ctaaacaaga tttctctccg ttcaatgtgg ttgcctggca tggcaattac 180
gtgccttata agtatgaccc gcacaaggttc tgtccataaca acactgtcct tgttagaccat 240
ggagatccat ctgtaaataac agtcttgaca gcaccaacgg ataaacacctgg tgtggccttg 300
cttgattttgc tcataatcccc tcctcgttgg ttgggtgctg agcataacctt tcgacacctt 360
tactaccatc gtaactgcat gaggtaattt atgggcctaa tctatggtgc ttacgaggcc 420
aaagctgtatg gatttctacc tggtggcgca agtcttcaca gttgtatgac acctcatggt 480
ccagatacaa ccacatacga ggcgacgatt gctcggtaa atgcaatggc tccttataag 540
ctcacaggca ccatggcctt catgtttgag gtacc 575

<210> 2
<211> 26
<212> DNA
<213> Künstliche Sequenz
<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"
<220>
<221> misc_feature
<222> (9)
<223> /mod_base = i

THIS PAGE BLANK (USPTO)

```
<220>
<221> misc_feature
<222> (12)
<223> /mod_base = i

<220>
<221> misc_feature
<222> (15)
<223> /mod_base = i

<220>
<221> misc_feature
<222> (18)
<223> /mod_base = i

<220>
<221> misc_feature
<222> (21)
<223> /mod_base = i

<220>
<221> misc_feature
<222> (24)
<223> /mod_base = i

<400> 2
gtcgacggnc cnatnggngc naangg
```

26

```
<210> 3
<211> 29
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
      "Oligonukleotid"

<220>
<221> misc_feature
<222> (18)
<223> /mod_base = i

<220>
<221> misc_feature
<222> (24)
<223> /mod_base = i

<220>
<221> misc_feature
<222> (27)
<223> /mod_base = i

<400> 3
ggtacctcra acattraangc catngtncc
```

29

THIS PAGE BLANK (USPTO)

<210> 4
<211> 25
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 4
gaattcgtatc tgtcgatca aactc 25

<210> 5
<211> 26
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 5
ggtaccgtga tagtaaacaa ctaatg 26

<210> 6
<211> 34
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 6
atggtagcc ttgtgcataa acttatcttc atag 34

<210> 7
<211> 43
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 7
atgtcgaccc gggatccagg gccctgatgg gtcccatttt ccc 43

<210> 8
<211> 25

THIS PAGE BLANK (USPTO)

<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 8
gtcgacgaat ttcccccgaat cgttc 25

<210> 9
<211> 24
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 9
aagcttccga tctagtaaca taga 24

<210> 10
<211> 25
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 10
aagcttgatc tgtcgtctca aactc 25

<210> 11
<211> 24
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 11
aagcttccga tctagtaaca taga 24

<210> 12
<211> 32
<212> DNA
<213> Künstliche Sequenz

<220>

THIS PAGE BLANK (USPTO)

<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 12
attctagaca tggagtcaaa gattcaaata ga

32

<210> 13
<211> 32
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"Oligonukleotid"

<400> 13
attctagagg acaatcagta aattgaacgg ag

32

<210> 14
<211> 1159
<212> DNA
<213> Künstliche Sequenz

<220>
<223> Beschreibung der künstlichen Sequenz: /desc =
"DNA"

<220>
<221> misc_feature
<222> (1)..(6)
<223> /function = "Restriktionsschnittstelle"

<220>
<221> CDS
<222> (8)..(1153)

<220>
<221> misc_feature
<222> (1154)..(1159)
<223> /function = "Restriktionsschnittstelle"

<400> 14
gtcgact atg act caa act act cat cat act cca gat act gct aga caa 49
Met Thr Gln Thr Thr His His Thr Pro Asp Thr Ala Arg Gln
1 5 10

gct gat cct ttt cca gtt aag gga atg gat gct gtt ttc gct gtt 97
Ala Asp Pro Phe Pro Val Lys Gly Met Asp Ala Val Val Phe Ala Val
15 20 25 30

gga aac gct aag caa gct gct cat tac tac tct act gct ttc gga atg 145
Gly Asn Ala Lys Gln Ala Ala His Tyr Tyr Ser Thr Ala Phe Gly Met
35 40 45

THIS PAGE BLANK (USPTO)

caa ctt gtt gct tac tct gga cca gaa aac gga tct aga gaa act gct	193
Gln Leu Val Ala Tyr Ser Gly Pro Glu Asn Gly Ser Arg Glu Thr Ala	
50 55 60	
tct tac gtt ctt act aac gga tct gct aga ttc gtt ctt act tct gtt	241
Ser Tyr Val Leu Thr Asn Gly Ser Ala Arg Phe Val Leu Thr Ser Val	
65 70 75	
att aag cca gct acc cca tgg gga cat ttc ctt gct gat cac gtt gct	289
Ile Lys Pro Ala Thr Pro Trp Gly His Phe Leu Ala Asp His Val Ala	
80 85 90	
gaa cac gga gat gga gtt gat ctt gct att gaa gtt cca gat gct	337
Glu His Gly Asp Gly Val Val Asp Leu Ala Ile Glu Val Pro Asp Ala	
95 100 105 110	
aga gct gct cat gct tac gct att gaa cat gga gct aga tct gtt gct	385
Arg Ala Ala His Ala Tyr Ala Ile Glu His Gly Ala Arg Ser Val Ala	
115 120 125	
gaa cca tac gaa ctt aag gat gaa cat gga act gtt gtt ctt gct gct	433
Glu Pro Tyr Glu Leu Lys Asp Glu His Gly Thr Val Val Leu Ala Ala	
130 135 140	
att gct act tac gga aag act aga cat act ctt gtt gat aga act gga	481
Ile Ala Thr Tyr Gly Lys Thr Arg His Thr Leu Val Asp Arg Thr Gly	
145 150 155	
tac gat gga cca tac ctt cca gga tac gtt gct gct gct cca att gtt	529
Tyr Asp Gly Pro Tyr Leu Pro Gly Tyr Val Ala Ala Pro Ile Val	
160 165 170	
gaa cca cca gct cat aga acc ttc caa gct att gac cat tgt gtt ggt	577
Glu Pro Pro Ala His Arg Thr Phe Gln Ala Ile Asp His Cys Val Gly	
175 180 185 190	
aac gtt gaa ctc gga aga atg aac gaa tgg gtt gga ttc tac aac aag	625
Asn Val Glu Leu Gly Arg Met Asn Glu Trp Val Gly Phe Tyr Asn Lys	
195 200 205	
gtt atg gga ttc act aac atg aag gaa ttc gtt gga gat gat att gct	673
Val Met Gly Phe Thr Asn Met Lys Glu Phe Val Gly Asp Asp Ile Ala	
210 215 220	
act gag tac tct gct ctt atg tct aag gtt gtt gct gat gga act ctt	721
Thr Glu Tyr Ser Ala Leu Met Ser Lys Val Val Ala Asp Gly Thr Leu	
225 230 235	
aag gtt aaa ttc cca att aat gaa cca gct ctt gct aag aag aag tct	769
Lys Val Lys Phe Pro Ile Asn Glu Pro Ala Leu Ala Lys Lys Lys Ser	
240 245 250	
cag att gat gaa tac ctt gag ttc tac gga gga gct gga gtt caa cat	817
Gln Ile Asp Glu Tyr Leu Glu Phe Tyr Gly Gly Ala Gly Val Gln His	
255 260 265 270	

THIS PAGE BLANK (USPTO)

att gct ctt aac act gga gat atc gtg gaa act gtt aga act atg aga	865		
Ile Ala Leu Asn Thr Gly Asp Ile Val Glu Thr Val Arg Thr Met Arg			
275	280	285	
gct gca gga gtt caa ttc ctt gat act cca gat tct tac tac gat act	913		
Ala Ala Gly Val Gln Phe Leu Asp Thr Pro Asp Ser Tyr Tyr Asp Thr			
290	295	300	
ctt ggt gaa tgg gtt gga gat act aga gtt cca gtt gat act ctt aga	961		
Leu Gly Glu Trp Val Gly Asp Thr Arg Val Pro Val Asp Thr Leu Arg			
305	310	315	
gaa ctt aag att ctt gct gat aga gat gaa gat gga tac ctt ctt caa	1009		
Glu Leu Lys Ile Leu Ala Asp Arg Asp Glu Asp Gly Tyr Leu Leu Gln			
320	325	330	
atc ttc act aag cca gtt caa gat aga cca act gtg ttc ttc gaa atc	1057		
Ile Phe Thr Lys Pro Val Gln Asp Arg Pro Thr Val Phe Phe Glu Ile			
335	340	345	350
att gaa aga cat gga tct atg gga ttc gga aag ggt aac ttc aag gct	1105		
Ile Glu Arg His Gly Ser Met Gly Phe Gly Lys Gly Asn Phe Lys Ala			
355	360	365	
ctt ttc gaa gct att gaa aga gaa caa gag aag aga gga aac ctt tag	1153		
Leu Phe Glu Ala Ile Glu Arg Glu Gln Glu Lys Arg Gly Asn Leu			
370	375	380	
gtcgac	1159		

<210> 15			
<211> 381			
<212> PRT			
<213> Künstliche Sequenz			
<223> Beschreibung der künstlichen Sequenz: /desc =			
"DNA"			
<400> 15			
Met Thr Gln Thr Thr His His Thr Pro Asp Thr Ala Arg Gln Ala Asp			
1	5	10	15
Pro Phe Pro Val Lys Gly Met Asp Ala Val Val Phe Ala Val Gly Asn			
20	25	30	
Ala Lys Gln Ala Ala His Tyr Tyr Ser Thr Ala Phe Gly Met Gln Leu			
35	40	45	
Val Ala Tyr Ser Gly Pro Glu Asn Gly Ser Arg Glu Thr Ala Ser Tyr			
50	55	60	
Val Leu Thr Asn Gly Ser Ala Arg Phe Val Leu Thr Ser Val Ile Lys			
65	70	75	80
Pro Ala Thr Pr Trp Gly His Phe Leu Ala Asp His Val Ala Glu His			
85	90	95	

THIS PAGE BLANK (USPTO)

Gly Asp Gly Val Val Asp Leu Ala Ile Glu Val Pro Asp Ala Arg Ala
100 105 110

Ala His Ala Tyr Ala Ile Glu His Gly Ala Arg Ser Val Ala Glu Pro
115 120 125

Tyr Glu Leu Lys Asp Glu His Gly Thr Val Val Leu Ala Ala Ile Ala
130 135 140

Thr Tyr Gly Lys Thr Arg His Thr Leu Val Asp Arg Thr Gly Tyr Asp
145 150 155 160

Gly Pro Tyr Leu Pro Gly Tyr Val Ala Ala Ala Pro Ile Val Glu Pro
165 170 175

Pro Ala His Arg Thr Phe Gln Ala Ile Asp His Cys Val Gly Asn Val
180 185 190

Glu Leu Gly Arg Met Asn Glu Trp Val Gly Phe Tyr Asn Lys Val Met
195 200 205

Gly Phe Thr Asn Met Lys Glu Phe Val Gly Asp Asp Ile Ala Thr Glu
210 215 220

Tyr Ser Ala Leu Met Ser Lys Val Val Ala Asp Gly Thr Leu Lys Val
225 230 235 240

Lys Phe Pro Ile Asn Glu Pro Ala Leu Ala Lys Lys Ser Gln Ile
245 250 255

Asp Glu Tyr Leu Glu Phe Tyr Gly Gly Ala Gly Val Gln His Ile Ala
260 265 270

Leu Asn Thr Gly Asp Ile Val Glu Thr Val Arg Thr Met Arg Ala Ala
275 280 285

Gly Val Gln Phe Leu Asp Thr Pro Asp Ser Tyr Tyr Asp Thr Leu Gly
290 295 300

Glu Trp Val Gly Asp Thr Arg Val Pro Val Asp Thr Leu Arg Glu Leu
305 310 315 320

Lys Ile Leu Ala Asp Arg Asp Glu Asp Gly Tyr Leu Leu Gln Ile Phe
325 330 335

Thr Lys Pro Val Gln Asp Arg Pro Thr Val Phe Phe Glu Ile Ile Glu
340 345 350

Arg His Gly Ser Met Gly Phe Gly Lys Gly Asn Phe Lys Ala Leu Phe
355 360 365

Glu Ala Ile Glu Arg Glu Gln Glu Lys Arg Gly Asn Leu
370 375 380

THIS PAGE BLANK (USPTO)

INTERNATIONAL SEARCH REPORT

Inte	rnational Application No
PCT/EP 00/07807	

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C12N15/53 C12N15/82 C12N9/02 C12N1/21 A01H5/00 C07D311/72 C12P17/06					
--	--	--	--	--	--

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N A01H C07D C12P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, STRAND, WPI Data, PAJ, CHEM ABS Data, BIOSIS, MEDLINE, EMBASE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 99 04021 A (SEULBERGER HARALD ;BASF AG (DE); LERCHL JENS (DE); FALK JON (DE);) 28 January 1999 (1999-01-28) the whole document ---	1,3-5,7, 8,10-18
X	WO 98 04685 A (HIRAYAMA LYNNE MIYO ;SINGH BIJAY (US); BASCOMB NEWELL (US); STURNE) 5 February 1998 (1998-02-05) the whole document ---	1,5,7,8, 10,11
P,X	FR 2 778 527 A (RHONE POULENC AGROCHIMIE) 19 November 1999 (1999-11-19) the whole document ---	1,3-5,7, 8,10-18
P,X	WO 00 08169 A (EBNETH MARCUS ;HERBERS KARIN (DE); REINDL ANDREAS (DE); SUNGENE GM) 17 February 2000 (2000-02-17) the whole document ---	1,3-5,7, 8,10-18
	-/-	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the international search

12 March 2001

Date of mailing of the international search report

23/03/2001

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Blanco Urquiza, B

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/07807

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication where appropriate, of the relevant passages	Relevant to claim No.
A	<p>DENOYA C D ET AL: "A STREPTOMYCES AVERMITILIS GENE ENCODING A 4-HYDROXYPHENYL PYRUVIC ACID DIOXYGENASE-LIKE PROTEIN THAT DIRECTS THE PRODUCTION OF HOMOGENTISIC ACID AND AN OCHRONOTIC PIGMENT IN <i>ESCHERICHIA COLI</i>" JOURNAL OF BACTERIOLOGY, US, WASHINGTON, DC, vol. 176, no. 17, 1 September 1994 (1994-09-01), pages 5312-5319, XP002028042 ISSN: 0021-9193 the whole document</p> <p style="text-align: center;">---</p>	
A	<p>DATABASE EMBL 'Online' Acc no. U80668, 6 January 1999 (1999-01-06)</p> <p>SCHMIDT S.R. ET AL.: "Arabidopsis thaliana homogentisate 1,2-dioxygenase mRNA, complete cds" XP002162586 HGD Sequenz</p> <p>& NEWMAN T ET AL: "GENES GALORE: A SUMMARY OF METHODS FOR ACCESSING RESULTS FROM LARGE-SCALE PARTIAL SEQUENCING OF ANONYMOUS ARABIDOPSIS CDNA CLONES" PLANT PHYSIOLOGY, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, vol. 106, 1994, pages 1241-1255, XP000571449</p> <p style="text-align: center;">-----</p>	

INTERNATIONAL SEARCH REPORT

Information on patent family members

Inte	dional Application No
	PCT/EP 00/07807

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9904021	A 28-01-1999	DE 19730066 A AU 8216998 A BR 9811006 A CN 1270636 T EP 1009841 A		21-01-1999 10-02-1999 22-08-2000 18-10-2000 21-06-2000
WO 9804685	A 05-02-1998	AU 4231197 A BG 103206 A CN 1238008 A CZ 9900226 A EP 0938546 A HU 0000053 A JP 2001500005 T NO 990296 A PL 331346 A SK 10199 A TR 9900200 T TR 9900776 T US 6118050 A		20-02-1998 30-06-2000 08-12-1999 11-08-1999 01-09-1999 28-05-2000 09-01-2001 16-02-1999 05-07-1999 08-10-1999 21-04-1999 21-06-1999 12-09-2000
FR 2778527	A 19-11-1999	NONE		
WO 0008169	A 17-02-2000	DE 19835219 A DE 19845216 A DE 19845231 A DE 19845224 A AU 5415799 A		10-02-2000 06-04-2000 06-04-2000 06-04-2000 28-02-2000

THIS PAGE BLANK (USPTO)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen
PCT/EP 00/07807

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C12N15/53 C12N15/82 C12N9/02 C12N1/21 A01H5/00
C07D311/72 C12P17/06

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C12N A01H C07D C12P

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, STRAND, WPI Data, PAJ, CHEM ABS Data, BIOSIS, MEDLINE, EMBASE

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 99 04021 A (SEULBERGER HARALD ; BASF AG (DE); LERCHL JENS (DE); FALK JON (DE);) 28. Januar 1999 (1999-01-28) das ganze Dokument ---	1, 3-5, 7, 8, 10-18
X	WO 98 04685 A (HIRAYAMA LYNNE MIYO ; SINGH BIJAY (US); BASCOMB NEWELL (US); STURNE) 5. Februar 1998 (1998-02-05) das ganze Dokument ---	1, 5, 7, 8, 10, 11
P, X	FR 2 778 527 A (RHONE POULENC AGROCHIMIE) 19. November 1999 (1999-11-19) das ganze Dokument ---	1, 3-5, 7, 8, 10-18
P, X	WO 00 08169 A (EBNETH MARCUS ; HERBERS KARIN (DE); REINDL ANDREAS (DE); SUNGENE GM) 17. Februar 2000 (2000-02-17) das ganze Dokument ---	1, 3-5, 7, 8, 10-18
		-/-

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- Besondere Kategorien von angegebenen Veröffentlichungen :
- A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- & Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche Absendedatum des internationalen Recherchenberichts

12. März 2001

23/03/2001

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel: (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Blanco Urgoiti, B

INTERNATIONALER RECHERCHENBERICHT

Inte	tionales Aktenzeichen
PCT/EP 00/07807	

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	<p>DENOYA C D ET AL: "A STREPTOMYCES AVERMITILIS GENE ENCODING A 4-HYDROXYPHENYL PYRUVIC ACID DIOXYGENASE-LIKE PROTEIN THAT DIRECTS THE PRODUCTION OF HOMOGENTISIC ACID AND AN OCHRONOTIC PIGMENT IN ESCHERICHIA COLI" JOURNAL OF BACTERIOLOGY, US, WASHINGTON, DC, Bd. 176, Nr. 17, 1. September 1994 (1994-09-01), Seiten 5312-5319, XP002028042 ISSN: 0021-9193 das ganze Dokument</p> <p>---</p>	
A	<p>DATABASE EMBL 'Online!' Acc no. U80668, 6. Januar 1999 (1999-01-06)</p> <p>SCHMIDT S.R. ET AL.: "Arabidopsis thaliana homogentisate 1,2-dioxygenase mRNA, complete cds" XP002162586 HGD Sequenz</p> <p>& NEWMAN T ET AL: "GENES GALORE: A SUMMARY OF METHODS FOR ACCESSING RESULTS FROM LARGE-SCALE PARTIAL SEQUENCING OF ANONYMOUS ARABIDOPSIS CDNA CLONES" PLANT PHYSIOLOGY, US, AMERICAN SOCIETY OF PLANT PHYSIOLOGISTS, ROCKVILLE, MD, Bd. 106, 1994, Seiten 1241-1255, XP000571449</p> <p>-----</p>	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 00/07807

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9904021 A	28-01-1999	DE	19730066 A	21-01-1999
		AU	8216998 A	10-02-1999
		BR	9811006 A	22-08-2000
		CN	1270636 T	18-10-2000
		EP	1009841 A	21-06-2000
WO 9804685 A	05-02-1998	AU	4231197 A	20-02-1998
		BG	103206 A	30-06-2000
		CN	1238008 A	08-12-1999
		CZ	9900226 A	11-08-1999
		EP	0938546 A	01-09-1999
		HU	0000053 A	28-05-2000
		JP	2001500005 T	09-01-2001
		NO	990296 A	16-02-1999
		PL	331346 A	05-07-1999
		SK	10199 A	08-10-1999
		TR	9900200 T	21-04-1999
		TR	9900776 T	21-06-1999
		US	6118050 A	12-09-2000
FR 2778527 A	19-11-1999	KEINE		
WO 0008169 A	17-02-2000	DE	19835219 A	10-02-2000
		DE	19845216 A	06-04-2000
		DE	19845231 A	06-04-2000
		DE	19845224 A	06-04-2000
		AU	5415799 A	28-02-2000

THIS PAGE BLANK (USPTO)