	1	2	3	4	5	6	Σ
IMBAC				IME I PREZI	ME.		

Teorija brojeva 2. kolokvij, 28.6.2023.

NAPOMENE: Vrijeme rješavanja je 120 minuta. Ima ukupno šest zadataka. Zadaci se rješavaju na ovim papirima. Odmah se **čitljivo** potpišite. Dozvoljeno je korištenje kalkulatora i dva papira A4 s formulama.

1. Nađite reduciranu kvadratnu formu ekvivalentnu sa $103x^2 + 81xy + 16y^2$.

2. Odredite $h(-135)$, te nađite sve reducirane kvadratne forme s diskriminantom $d=-135$.

- 3. Neka je f aritmetička funkcija. Je li f multiplikativna ako je, za svaki prirodni broj n, f(n) jednako broju pozitivnih djelitelja broja n koji se mogu prikazati kao zbroj dvaju
 - (a) kvadrata cijelih brojeva;
 - (b) četvrtih potencija cijelih brojeva?

Obrazložite svoje tvrdnje.

- 4. Odredite razvoj u jednostavni verižni razlomak brojeva $\frac{845}{381}$ i $\frac{5+\sqrt{14}}{6}.$

5.	Nađite sve	Pitagorine	trokute u	kojima	je jedna	stranica ,	jednaka 1	116.	

Rješenja:

- 1. $2x^2 xy + 4y^2$
- 2. h(-135) = 8, $x^2 + xy + 34y^2$, $2x^2 xy + 17y^2$, $2x^2 + xy + 17y^2$, $3x^2 + 3xy + 12y^2$, $4x^2 3xy + 9y^2$, $4x^2 + 3xy + 9y^2$, $5x^2 + 5xy + 8y^2$, $6x^2 + 3xy + 6y^2$
 - 3. (a) Tvrdimo da je f multiplikativna. Zaista, uočimo da je $f(n) = \sum_{d|n} g(d)$, gdje definiramo

$$g(d) = \begin{cases} 1 & \text{ako je } d \text{ zbroj dvaju kvadrata cijelih brojeva} \\ 0 & \text{inače} \end{cases}$$

pa je dovoljno pokazati da je g multiplikativna. Neka su zato m i n relativno prosti prirodni brojevi. Neka su $m = \prod_{p} p^{\alpha(p)}$ te $n = \prod_{p} p^{\beta(p)}$ rastavi brojeva m i n na proste faktore. Tada je mn = $\prod_n p^{\alpha(p)+\beta(p)}$. Dakle, po Teoremu 4.7 is skripte imamo da je g(mn)=1 ako i samo ako je $\alpha(p)+\beta(p)$ parno za sve proste $p \equiv 3 \pmod{4}$. No za svaki p vrijedi $\alpha(p) = 0$ ili $\beta(p) = 0$ pa ovo vrijedi ako i samo ako su za svaki $p \equiv 3 \pmod{4}$ oba broja $\alpha(p)$, $\beta(p)$ parna. Ponovnom primjenom Teorema 4.7 zaključujemo da ovo vrijedi ako i samo ako je g(m) = 1 i g(n) = 1, odnosno g(m)g(n) = 1. Time smo dokazali da vrijedi g(mn) = g(m)g(n), odakle slijedi tvrdnja.

- (b) Tvrdimo da f nije multiplikativna. Zaista, promotrimo brojeve m=2 i n=17. Budući da je $1 = 0^4 + 1^4$, $2 = 1^4 + 1^4$, $17 = 1^4 + 2^4$, zaključujemo da je f(m) = 2 i f(n) = 2. Međutim, broj $mn = 2 \cdot 17 = 34$ ne može se prikazati kao zbroj dvaju četvrtih potencija cijelih brojeva. Naime, ako $x^4 + y^4 = 34$ za $x, y \in \mathbb{Z}$, tada $x^4 \le 34$ pa mora biti $|x| \in \{0, 1, 2\}$. Dakle, $x^4 \in \{0, 1, 16\}$ pa $y^4 \in \{18, 33, 34\}$, što nije moguće. To znači da je f(mn) = 3, dakle $f(mn) \neq f(m)f(n)$ iako su m i n relativno prosti.
 - 4. $\frac{845}{381} = [2, 4, 1, 1, 2, 3, 1, 3], \frac{5 + \sqrt{14}}{6} = [1, 2, \overline{5, 3, 3, 1, 3, 3}]$ 5. $(80, 84, 116), (33\underline{63}, 116, 3365), (1680, 116, 1684), (837, 116, 845), (87, 116, 145)$
- 6. Razvoj broja $\sqrt{153}$ u jednostavni verižni razlomak je $[12, \overline{2, 1, 2, 2, 2, 1, 2, 24}]$. Period r = 8 je paran pa jednadžba $x^2 - 153y^2 = -1$ nema rješenja. Najmanje rješenje jednadže $x^2 - 153y^2 = 1$ je $(p_7, q_7) = (2177, 176).$