Taller sistemas de ecuaciones

Punto 1

A. En el sistema de ecuaciones que nos presentan se puede evidenciar que la matriz no es diagonalmente dominante.

$$\begin{pmatrix} 1 & -8 & -2 \\ 1 & 1 & 5 \\ 3 & -1 & 1 \end{pmatrix}$$

Se reorganizo de tal manera que cumpliera con la condición para lo cual se reorganizaron todas las filas quedando de la siguiente manera.

$$\begin{pmatrix}
3 & -1 & 1 \\
1 & -8 & -2 \\
1 & 1 & 5
\end{pmatrix}$$

```
In [6]: runfile('C:/Users/david/OneDrive/Documentos/taller 2 analisis numerico/punto
1A.py', wdir='C:/Users/david/OneDrive/Documentos/taller 2 analisis numerico')
Matriz original:
no es diagonal dominante
Matriz intercambiando filas:
es diagonal dominante
```

B. La matriz de transición encontrada a través del método de Jacobi es la siguiente:

La convergencia del método se verificó a través a través de 3 matrices las cuales son: la matriz diagonal, la matriz diagonal superior y la matriz diagonal inferior con lo cual se puede concluir que el método de Jacobi si converge.

C. Realizando la implementación de los métodos de Jacobi y Gauss-Seidel, se ha hecho la comparación de ambos métodos haciendo 50 iteraciones en cada uno y se ha podido llegar a la conclusión de que el método de Gauss-Seidel converge más rápido que el método de Jacobi.

Jacobi

```
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
solucion: [-1.24489796 -0.57142857 1.16326531]
solucions: 50
```

Gauss-Seidel

```
-1.24489796 -0.57142857 1.16326531
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
-1.24489796 -0.57142857 1.16326531
[-1.24489796 -0.57142857 1.16326531]
[-1.24489796 -0.57142857 1.16326531]
solucion: [-1.24489796 -0.57142857 1.16326531]
iteraciones: 50
```

D.

Omega 1.01

Omega 1.15

Omega 1.06

Omega 1.23

Omega 1.3

Omega 1.37

Omega 1.44

Omega 1.5

Omega 1.58

Omega 1.66

E. Para realizar el calculo del omega(w) óptimo la función utiliza un ciclo incrementando w en 0.01 iniciando en 0.01 y finalizando en 1.99 calculando la función sor_solver en cada iteración y validando la cantidad de iteraciones utilizadas.

```
function [w] = w_optimo (A, b, X0, tol, num_max_it)
it_aux = 100;
w= 0.01;
for i = 0.01 : 0.01 : 1.99

[ x , nit , err acum ] = sor_solver (A, b, i, X0, tol, T, num_max_it);
if ( nit < it_aux )
w=i;
it_aux=nit;
endif
endfor
endfunction</pre>
```