Assignment 1

Due Date: Aug 8, 2025 – 11:59pm

<u>Instructions</u>

- 1. Read problems carefully
- 2. You can NOT get help from other or online sources
- 3. You can use python for your calculation if needed. Add your python codes, output of your codes, and figures (if you are asked to plot) with your solution
- 4. Submit your PDF solution to TA

Problems

P-1: [Marks: 5]: Consider hyperplane $h(w) = a + b^T w$, and a starting point w^0 . Find $w^1 = w^0 + d$ where $||d||_2 = 1$, such that $h(w^1)$ is minimum.

P-2: [Marks: 5]: Consider the function $f(x) = x_1^2 + x_2$.

- a) Express the Hessian of the function.
- b) Is the function convex? Prove your answer.

P-3 [Marks: 9]: Distance travelled in free fall is given by $d = \frac{g}{2}t^2$ where g is the acceleration of gravity, d denotes the distance, and t denotes the time. You are planning to estimate g using regression. Someone has designed an experiment to measure the distance travelled in free fall and to record corresponding time. He/she has tried with four different values of distances and recorded t^2 for each trial (three trials for each distance) from his/her experiment as listed below:

d (cm)	100	100	100	127	127	127	152	152	152	178	178	178
$t^2 (s^2)$	0.36	0.38	0.46	0.46	0.49	0.51	0.50	0.53	0.56	0.55	0.58	0.61

- 1) You are going to design regression model to fit a line through the given data. Write python code to make a scatter plot of the given data. You need to plot t^2 in y-axis and distance d in x-axis. (Marks: 2)
- 2) Calculate the parameters (slope and intercept) that minimize the mean square error (MSE). Print these parameters' values with four digits after decimal point. **Marks: 2**
- 3) From the calculated optimal slope in 2), estimate g [hint: $d = \frac{g}{2}t^2$]. Compare with the typical value of g the acceleration of gravity. Marks: 5

Assignment 1

P-4 [Marks: 8]: Say you were given with P=20 data points. You used polynomial regression of the form $w_0 + w_1x_1 + w_2x_1^2 + ... + w_Dx_1^D = y$ to model the relationship between input and output. At first, you used polynomial of order D=2. The parameters that minimize mean square error (MSE) for this polynomial regression are $w_0=5$, $w_1=1.5$, and $w_2=0.03$. Then you used polynomial order of D=3. The parameters for this polynomial regression are $w_0=2$, $w_1=0.5$, $w_2=0.01$, and $w_3=-0.001$ that minimize MSE. You are also given 4 data points to validate and compare your models' results in the following table.

Input feature x ₁	Output label y ₁		
4	10		
8	20		

9	25
14	35

- 1. Calculate MSE for the given data set for both of your regression models (models with D=2 and D=3) (Marks: 4)
- 2. Compare your models' validation MSEs and make a conclusion which one of these models (model with *D*=2 or model with *D*=3) is more appropriate for your regression problem. (Marks: 4)

Assignment 1

P-5 (Marks: 9)	

Python code is posted below. In this problem, you will design hyper parameter which is a learning rate (a). Consider a function $f(w_0) = w_0^4 - 5w_0^2 - 3w_0$. You plan to find the minimum for this function using gradient descent algorithm. In this problem, you will investigate the effect of starting point for w_0 for gradient descent iteration. Assume your initial guess/starting point $w_0 = -2.0$.

- 1. Calculate w_0 for next two iterations assuming step size $\alpha=0.1$. Show all steps. (Marks: 2)
- 2. Calculate the optimal w_0 using gradient descent for a given learning rate. Try different values of α e.g., 0.2, 0.1, 0.01, 0.001 (assume initial value of $w_0 = -2.0$). (Marks: 2)
 - a. Report the optimal value of w_0 for each α (if there is no optimal value is obtained for a given α , you can mention "no optimal value is obtained") and the minimum value of the function for each α using the gradient descent algorithm. (Marks: 2)
 - b. For your answer in a (previous question), did you obtain the **global optimal** value of w_0 ? If not, mention and show how would you get the global optimal value of w_0 ? (**Marks:** 3) import numpy as np

Function and its derivative f = lambda v: v**4 - 5*v**2 - 3*v f_derivative = lambda w: 4*w**3 - 10*w - 3

import matplotlib.pyplot as plt

max_no_iteration = 10000 alpha = 0.2 epsilon = 0.001 w = np.zeros(max_no_iteration) w[0] = 0

Dr. J. Hossain

Assignment 1

```
# Gradient Descent
for i in range(1, max_no_iteration):
    w[i] = w[i-1] - alpha * f_derivative(w[i-1])
    if abs(f_derivative(w[i-1])) < epsilon:
        print(f'Convergence after {i} iterations.')
        print(f'The value of v at convergence is approximately: {w[i]:.10f}')
        break</pre>
```