

Il Modello Relazionale

Basi di Dati

Corso di Laurea in Informatica per il Management

Alma Mater Studiorum - Università di Bologna

Prof. Marco Di Felice

Dipartimento di Informatica – Scienza e Ingegneria marco.difelice3@unibo.it

Livelli di astrazione

In gran parte dei DBMS, i dati sono articolati su **tre livelli** di astrazione:

- Schema Esterno → descrive come i dati appaiono per un utente o un gruppo di utenti.
- Schema Logico → descrive l'organizzazione logica dei dati (dettagli a breve ...)
- Schema Fisico

 descrive come i dati sono memorizzati su memoria secondaria.

Livelli di astrazione

In gran parte dei DBMS, i dati sono articolati su **tre livelli** di astrazione:

 Schema Esterno → descrive come i dati appaiono per un utente o un gruppo di utenti.

- Schema Logico → descrive l'organizzazione logica dei dati (dettagli a breve ...)
- Schema Fisico

 descrive come i dati sono memorizzati su memoria secondaria.

Modello Logico

In cosa consiste in pratica il Modello logico?

1. Insieme di **concetti** per **strutturare/organizzare** i dati relativi ad un certo dominio d'interesse.

Esempi di concetti ...

Record a **struttura fissa**

<A,B,C,D,E,F,G,H,I> <A,B,C,D,E,F,G,H,I> <A,B,C,D,E,F,G,H,I> <A,B,C,D,E,F,G,H,I>

Record a struttura variabile

<A,B,C,D,E,F,G,H,I> <A,B,C,D> <A> <A,B,C,F,G,H,I>

Grafi

Modello Logico

In cosa consiste in pratica il **Modello logico**?

2. Insieme di **regole** per modellare eventuali vincoli e restrizioni sui dati.

Esempio di vincolo sui dati: *Il voto d'esame deve essere un numero intero compreso tra 18 e 30.*

Regole e Concetti generali → indipendenti dal dominio d'interesse che si sta considerando ...

Proprietà dei livelli

Proprietà (auspicabili) dei livelli in un DBMS:

- Indipendenza fisica → interagire con il modello logico in modo indipendente dallo schema fisico.
- Indipendenza logica → interagire con il livello esterno in modo indipendente dallo schema logico dei dati.

Modelli Logici

- Sono stati proposti diversi modelli logici ...
- I DBMS possono differire sulla base del modello logico dei dati che supportano:
 - Modello Relazionale
 - Modello Gerarchico
 - Modello Reticolare
 - Modello ad Oggetti
 - Modelli scheme-less (famiglia di approcci)

- Proposto nel 1970 da E.F. Codd, ricercatore dell'IBM di San Jose, CA.
- Attualmente il più utilizzato tra i modelli logici disponibili.
- Garantisce l'indipendenza tra i livelli (esterno/fisico).
- Intuitivo, e basato su nozioni di algebra di base.
- DBMS basati sul modello relazionale → RDBMS (Oracle, MySQL, DB2, SQL Server etc)

DEF. informale

Modello Relazionale → i dati sono organizzati in record di dimensione fissa, e divisi in tabelle (**relazioni**).

Nome	Codice Corso	Nome Docente
Basi di dati	0121	M. Di Felice
Programmazione	1213	C. Laneve
Sistemi Operativi	1455	D. Sangiorgi

- Colonne della tabella (Proprietà di interesse) → Attributi
- Intestazione della tabella (i.e. nome tabella + nome attributi) →
 Schema della relazione
- \circ *Righe* della tabella \rightarrow **Istanze** della relazione

CORSI

Nome	Codice Corso	Nome Docente
Basi di dati	0121	M. Di Felice
Programmazione	1213	C. Laneve
Sistemi Operativi	1455	D. Sangiorgi

Nome della relazione: CORSI

o Attributi: Nome, Codice del Corso, Nome Docente

Schema della relazione:

CORSI(Nome, Codice del Corso, Nome Docente)

Istanze della relazione:

<Basi di dati, 0121, M. Di Felice>

CORSI

Nome	Codice Corso	Nome Docente
Basi di dati	0121	M. Di Felice
Programmazione	1213	C. Laneve
Sistemi Operativi	1455	D. Sangiorgi

VINCOLI sull'ordine dei dati:

- L'ordinamento delle righe è irrilevante
- L'ordinamento delle colonne è irrilevante.

	CORSI		(1)			
	Nome		Codice Corso	Nome Docente	Nome Docente	
	11/01/2012		0121	M. Di Felice	M. Di Felice	
(3)	Programmazion	ne	0123	C. Laneve	C. Laneve	
	Sistemi Operati	vi	1455	D. Sangiorgi	R. Davoli	
4	Sistemi Operati	vi	1455	D. Sangiorgi	R. Davoli	
(2)						1

VINCOLI sui dati della relazione

- Non possono esistere attributi uguali (1).
- Non possono esistere righe uguali (2).
- I dati di una colonna devono essere omogenei (3).

 E' possibile avere uno schema di relazioni senza istanze (es. in fase di creazione del DB) ...

Il viceversa è impossibile ...

Sistemi Operativi	1455	D. Sangiorgi	R. Davoli
Sistemi Operativi	1451	D. Sangiorgi	R. Davoli

CORSI

Nome	Codice Corso	Nome Docente
Basi di dati	0121	M. Di Felice
Programmazione	1213	C. Laneve
Sistemi Operativi	1455	D. Sangiorgi

 Ogni attributo dispone di un **DOMINIO** che definisce l'insieme di valori validi per quell'attributo.

Es. dom(Nome) = string

E' possibile avere domini ripetuti nella stessa relazione!

Una relazione si dice in **Prima Forma Normale** (PFN) se tutti gli attributi sono definiti su domini atomici e non su domini complessi.

CORSI		Relaz	ione NON in Prima Forma Normale!
Nome	Codice Corso		Info Docente
Basi di dati	2121	y	M. Di Felice, Professore, Codice: 13435
Programmazione	1213		C. Laneve, Professore, Codice:6575
Sistemi Operativi	1455		D. Sangiorgi, Professore, Codice: 43242

Una relazione si dice in **Prima Forma Normale** (PFN) se tutti gli attributi sono definiti su domini atomici e non su domini complessi.

I dati gestiti dal modello relazionale sono dati strutturati.

CORSI

Nome	Codice Corso	Docente	Numero Crediti	Semestre
Basi di dati	2121	M. Di Felice	9	1
Programmazione	1213	C. Laneve	12	1
Sistemi Operativi	1455	D. Sangiorgi	9	2

- Tutte le istanze presenti nella relazione condividono la stessa struttura:
 Nome, Codice Corso, Docente, Numero Crediti, Semestre>
- Non è possibile gestire istanze che abbiano un numero diverso/variabile di attributi e/o domini.

Una base di dati può essere costituita da molte tabelle...

CORSI		
Nome Corso	Codice Corso	Codice Docente
Basi di dati	0121	00
Programmazione	1213	01
Sistemi Operativi	1455	02

ESAMI				
Corso	Studente	Voto		
0121	4324235245	30L		
1213	4324235245	25		
1213	9854456565	18		

STUDENTI			
Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Giorgio	12/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Verdi	Marco	11/04/1988

 Spesso, le informazioni contenute in relazioni diverse sono correlate logicamente tra loro ...

<Nome del corso, Codice docente >

<Matricola, Cognome, Nome, Data di Nascita >

Nel modello relazionale, i **riferimenti tra dati in relazioni differenti** sono espressi mediante **valori**.

Nella **pratica**, quando si inizia a progettare una base di dati di un certo dominio d'interesse, le informazioni NON sono già tradotte in dati del modello relazionale...

Es. Realizzazione di un sistema informativo che gestisce i dati di una società immobiliare.

- Quali dati devono essere gestiti?
- O Quali/quante tabelle usare?

Es. Realizzazione di un sistema informativo che gestisce i dati di una società immobiliare.

- D. Quante relazioni/tabelle utilizzare?
- Es. Sistema informativo di una banca.

D: Perchè si chiama modello relazionale?

R: Una relazione sui dati può essere vista come una relazione matematica! (con una leggera variazione).

D2:... Com' è definita una relazione matematica (nella *teoria degli insiemi*)?

DEF. Dati n insiemi D_1 , D_2 , ... D_n , una relazione matematica sugli insiemi D_1 , D_2 , ... D_n è definita come un sottoinsieme del prodotto cartesiano $D_1 \times D_2 \times ... \times D_n$.

DEF. Il **prodotto cartesiano** degli insiemi D_1 , D_2 , ... D_n è definito come **l'insieme delle tuple ordinate** $(d_1, d_2, ... d_n)$, con $d_i \in D_i$, $\forall i = 1, 2, ..., n$

Esempi di relazione (n=2):

$$A = \{a,b,c,d,e\}, B = \{1,2,3\}$$

Prod. Cartesiano
$$A \times B = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3),(c,1),(c,2),(c,3),(d,1),(d,2),(d,3),(e,1),(e,2),(e,3)\}$$

Relazione
$$r_1 \subseteq A \times B = \{(a,1),(a,2),(a,3)\}$$

Relazione
$$r_2 \subseteq A \times B = \{(a,2),(b,1),(d,3),(e,3)\}$$

Relazione
$$r_3 \subseteq A \times B = \{(d,2)\}$$

Se applichiamo la definizione classica di *relazione matematica* nel modello relazionale dei dati:

CORSI

Nome	Codice Corso	Nome Docente
Basi di dati	2121	M. Di Felice
Programmazione	1213	C. Laneve
Sistemi Operativi	1455	D. Sangiorgi

$$CORSI \subseteq string \times int \times string$$

Problema: Ordinamento delle tuple in una relazione ...

In generale: $A \times B \neq B \times A$

Dal punto di vista dei dati, i due schemi sono uguali, ma non lo sono se consideriamo la definizione di relazione matematica!

Nome	Codice	Docente
Basi di dati	2121	M. Di Felice
Programmazione	1213	C. Laneve
Sistemi Operativi	1455	D. Sangiorgi

CORSI	\subseteq	string	× int×	string
CONSI	=	Suring	~ IIIt/	Suring

Codice	Docente	Nome
2121	M. Di Felice	Basi di dati
1213	C. Laneve	Programmazione
1455	D. Sangiorgi	Sistemi Operativi

 $CORSI \subseteq int \times string \times string$

Soluzione: Usare rappresentazione NON posizionale, mediante gli attributi ...

Volendo fornire una definizione rigorosa di relazione nel modello relazionale ...

Schema di relazione:

un nome **R** con un insieme di attributi $A_1, ..., A_n$: **R** $(A_1, ..., A_n)$

Corso	Codice	Docente
Basi di dati	2121	M. Di Felice
Programmazione	1213	C. Laneve
Sistemi Operativi	1455	D. Sangiorgi

Schema di relazione:

CORSI(Corso, Codice, Docente)

Volendo fornire una definizione rigorosa di relazione nel modello relazionale ...

- Una ennupla su un insieme di attributi X è una funzione che associa a ciascun attributo A in X un valore del dominio di A.
- o **t[A]** denota il valore della ennupla t sull'attributo A.
- Istanza di relazione su uno schema R(X): insieme r di ennuple su X.

Volendo fornire una definizione rigorosa di relazione nel modello relazionale ...

	Corso	Codice	Docente
$t_1 \longrightarrow$	Basi di dati	2121	M. Di Felice
$t_2 \longrightarrow$	Programmazione	1213	C. Laneve
$t_3 \longrightarrow$	Sistemi Operativi	1455	D. Sangiorgi

```
t1[Corso] = "Basi di dati"
t1[Codice]="2121"
t3[Docente]="D. Sangiorgi"
Istanza di CORSI(Corso, Codice, Docente)= {t<sub>1</sub>,t<sub>2</sub>,t<sub>3</sub>}
```

Altre **componenti** del <u>modello relazionale</u>:

- Informazioni incomplete
- Vincoli di integrità
 - Vincoli intra-relazionali
 - Vincoli inter-relazionali

In una relazione, le **ennuple di dati** devono essere **omogenee** (ossia avere tutte le stessa struttura).

PROBLEMA (1): Che accade se il valore di un attributo per una certa ennupla non è noto?

IMPIEGATI

Codice	Nome	Cognome	Data di Nascita
21	Mario	Rossi	12/4/1956
22	Vittorio	Bianchi	????

In una relazione, le **ennuple di dati** devono essere **omogenee** (ossia avere tutte le stessa struttura).

PROBLEMA (2): Che accade se il valore di un attributo per una certa ennupla è inesistente?

ESAMI			
Codice	Anno di Studi	Corso	Codice Docente
21	3	Basi di dati	0121
22	3	Idoneita' inglese	????

In una relazione, le **ennuple di dati** devono essere **omogenee** (ossia avere tutte le stessa struttura).

PROBLEMA (3): Che accade se il valore di un attributo per una certa ennupla è senza informazione?

- Il valore dell'attributo non esiste. (CASO2)
- Esiste ma non è noto al momento della creazione della ennupla. (CASO1)

Una possibile soluzione per tutti e tre i casi potrebbe essere quella di colmare le informazioni mancanti usando "valori speciali".

Codice	Anno di Studi	Corso	Codice Docente
21	3	Basi di dati	0121
22	3	Idoneita' inglese	0000

- Si richiedono valori speciali per ogni attributo.
- Si richiede di conoscere la semantica dei valori "speciali" da parte delle applicazioni.

In alternativa: le informazioni mancanti sono etichettate con il valore NULL.

- > t[A], per ogni attributo A, è un valore del dominio dom(A) oppure il valore NULL.
- Tramite valori NULL, è possibile gestire i 3 casi visti in precedenza (valori non noti, inesistenti o senza informazione), senza necessità di operare distinzione tra gli stessi.

Valore di attributo non noto:

IMPIEGATI

Codice	Nome	Cognome	Data di Nascita
21	Mario	Rossi	12/4/1956
22	Vittorio	Bianchi	NULL

Valore di attributo inesistente:

ESA	М	Π

Codice	Anno di Studi	Corso	Codice Docente
21	3	Basi di dati	0121
22	3	Idoneita' inglese	NULL

E' fondamentale limitare il numero di valori NULL in una relazione ... perche'?

STIPENDI

Codice	Nome	Cognome	Qualifica	Stipendio
21	Marco	Rossi	Α	12000
22	Marco	NULL	NULL	14000
NULL	NULL	NULL	С	16000
12	Michele	Verdi	D	NULL
NULL	Marco	Rossi	Α	24000

Trade-off tra numero di tabelle e valori NULL.

Sistema informativo di un negozio: alcuni clienti (non tutti) possono essere "abbonati" e disporre di una fidelity card (numero, data_sottoscrizione, importo).

CLIENTI

Codice	Nome	Cognome	NumeroCarta	DataCarta	ImportoCarta
21	Marco	Rossi	12234	1/1/2014	100
22	Michele	Bianchi	15678	1/2/2014	200
23	Maria	Verdi	NULL	NULL	NULL
24	Mauro	Rossi	NULL	NULL	NULL
25	Michela	Bianchi	NULL	NULL	NULL

Trade-off tra numero di tabelle e valori NULL.

Sistema informativo di un negozio: alcuni clienti (non tutti) possono essere "abbonati" e disporre di una fidelity card (numero, data_sottoscrizione, importo).

CLIENTI

Codice	Nome	Cognome
21	Marco	Rossi
22	Michele	Bianchi
23	Maria	Verdi
24	Mauro	Rossi
25	Michela	Bianchi

ABBONAMENTI

Codice	NumeroCarta	DataCarta	ImportoCarta
21	12234	1/1/2014	100
22	15678	1/2/2014	200

Per definizione, **NULL <> NULL**

			1	Righe distinte, no du	uplicati!	
	STIPENDI					
	Codice	Nome	Cognome /	Qualifica	Stipendio	
	21	Marco	Rossi	Α	12000	
	22	Marco	NULL	С	14000	
_	22	Marco	NULL	С	14000	
	NULL	Michele	Verdi	D	24000	
	NULL	Michele	Verdi	D	24000	

Righe distinte, **no duplicati**!

Altre **componenti** del <u>modello relazionale</u>:

- Informazioni incomplete
- Vincoli di integrità

- Vincoli intra-relazionali
- Vincoli inter-relazionali

Non tutte le istanze di una relazione (o di una base di dati) possono considerarsi lecite!

CORSI

Nome Corso	Codice Corso	Codice Docente
Basi di dati	0121	00
Programmazione	1213	01
Sistemi Operativi	1455	02

ESAMI

Corso	Studente	Voto	
0121	4324235245	30L	
1213	4324235245	45	
1213	9854456565	18L	

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Giorgio	12/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Verdi	Marco	11/04/1988

Non tutte le istanze di una relazione (o di una base di dati) possono considerarsi lecite!

CORSI

Nome Corso	Codice Corso	Codice Docente
Basi di dati	0121	00
Programmazione	1213	01
Sistemi Operativi	1455	02

ESAMI

Corso	Studente	Voto
0121	4324235245	30L
1213	4324235245	45
1213	9854456565	18L

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Giorgio	12/12/1987
4324235245	Bianchi	Michele	04/12/1987
9854456565	Verdi	Marco	11/04/1988

Non tutte le istanze di una relazione (o di una base di dati) possono considerarsi lecite!

CORSI		
Nome Corso	Codice Corso	Codice Docente
Basi di dati	0121	00
Programmazione	1213	01
Sistemi Operativi	1455	02

	ESAMI		
	Corso	Studente	Voto
A	0121	4324235245	30L
	1217	4324235245	25
	1213	5555456565	18

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Giorgio	12/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Verdi	Marco	11/04/1988

Un **vincolo** è una funzione booleana, che associa ad una istanza r di una base di dati definita su uno schema $R = \{R_1(X_1), ..., R_k(X_k)\}$ un **valore di verità** (*true*/*false*).

<u>Istanza lecita</u> → *Instanza che soddisfa tutti i vincoli*.

- Vincoli intra-relazionali (su ciascuna relazione)
 - Vincoli di ennupla
 - Vincoli di chiave
- Vincoli inter-relazionali (tra relazioni diverse)

Altre **componenti** del <u>modello relazionale</u>:

- Informazioni incomplete
- Vincoli di integrità

- Vincoli intra-relazionali
 - Vincoli di ennupla
 - Vincoli di chiave
- Vincoli inter-relazionali

I **vincoli di ennupla** esprimono condizioni su ciascuna ennupla, considerata singolarmente.

Possono essere espressi mediante **espressioni algebriche** o **espressioni booleane**.

c1:
$$(voto \ge 18) and (voto \le 30)$$

c2:
$$NOT((lode = SI)and(voto \neq 30))$$

Corso	Studente	Voto	Lode
1213	4324235245	45	NO
1213	9854456565	18	SI

I **vincoli di ennupla** esprimono condizioni su ciascuna ennupla, considerata singolarmente.

$$C1:$$
 (Saldo = Entrate – Uscite)

Data	Entrate	Uscite	Saldo
10/02/2012	500	0	500
11/02/2012	0	180	-180
12/02/2012	0	0	0
13/02/2012	700	200	500
14/02/2012	800	0	800
15/02/2012	200	200	0

I **vincoli di ennupla** esprimono condizioni su ciascuna ennupla, considerata singolarmente.

 Come esprimere la condizione che il saldo di un giorno sia dipendente dal saldo del giorno precedente ...

$$(Saldo(GiornoX + 1) = Entrate - Uscite + Saldo(GiornoX))$$

Non posso farlo con i vincoli di ennupla visti fin qui!

Altre **componenti** del <u>modello relazionale</u>:

- Informazioni incomplete
- Vincoli di integrità
 - Vincoli intra-relazionali
 - Vincoli di ennupla

- Vincoli di chiave
- Vincoli inter-relazionali

(<u>Def. Informale</u>) Una **chiave** è un insieme di attributi che consente di <u>identificare in maniera univoca le ennuple di una relazione.</u>

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Giorgio	12/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Verdi	Marco	11/04/1988

- Non esistono due studenti con la stessa matricola.
- Data la matricola di uno studente, è possibile risalire a tutti i suoi dati (cognome/nome/data di nascita).

Un sottoinsieme K di attributi di una relazione è una **superchiave** se NON contiene due ennuple distinte t1 e t2 con t1[K]=t2[K]e.

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Giorgio	04/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Bianchi	Marco	11/04/1988

- 1. {Matricola} è una superchiave
- 2. {Cognome} NON è una superchiave
- 3. {Matricola, Cognome} è una superchiave
- 4. {Cognome, Nome} è una superchiave

Una **chiave** di una relazione r è una superchiave minimale di r (ossia non esiste un'altra superchiave K' che sia contenuta in K).

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Marco	04/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Bianchi	Marco	11/04/1988

- 1. {Matricola} è una chiave
- 2. {Cognome} NON è una chiave
- 3. {Matricola, Cognome} NON e' una chiave
- 4. {Cognome, Nome} è una chiave

D1: Esiste sempre almeno una superchiave per ogni relazione? **SI'** (perche'?)

D2: Possono esistere più superchiavi per la stessa relazione? SI' (esempio sotto)

STUDENTI

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Marco	04/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Bianchi	Marco	11/04/1988
5456565653	Verdi	Giovanni	12/5/1990
3223234444	Verdi	Matteo	12/07/1990

{Matricola}
{Cognome, Nome}
{Matricola, Cognome}
{Maricola, Nome,
Cognome}

Q1: Esiste sempre almeno una chiave per ogni relazione?

SI' (perche'?)

Q2: Possono esistere più chiavi per la stessa relazione?

SI' (esempio sotto)

STUDENTI

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Marco	04/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Bianchi	Marco	11/04/1988
5456565653	Verdi	Giovanni	12/5/1990
3223234444	Verdi	Matteo	12/07/1990

{Matricola} {Cognome, Nome}

••••

Verdi

STUDENTI

3223234444

In fase di progettazione, le chiavi dovrebbero essere definite a livello di schema, e non di istanza.

Matricola	Cognome	Nome	Data Nascita
4324235245	Rossi	Giorgio	04/12/1987
6247673587	Bianchi	Michele	04/12/1987
9854456565	Bianchi	Marco	11/04/1988
5456565653	Verdi	Giovanni	12/5/1990

Matteo

{Nome} e' una chiave in questa istanza, ma è un caso fortuito ...

12/07/1990

Come regola generale, le chiavi dovrebbero essere definite a livello di schema, e non di istanza.

STUDENTI				
Matricola	Cognome	Nome	Data Nascita	
4324235245	Rossi	Giorgio	04/12/1987	
6247673587	Bianchi	Michele	04/12/1987	
9854456565	Bianchi	Marco	11/04/1988	
5456565653	Verdi	Giovanni	12/5/1990	
3223234444	Verdi	Matteo	12/07/1990	

 Per definire una chiave a livello di schema, servono informazioni aggiuntive sul dominio dei dati ...

A che servono le chiavi?

- Per accedere a ciascuna ennupla della base di dati, in maniera univoca.
- Per correlare dati tra relazioni differenti.

Che accade se una chiave ha valori NULL?

 In questo caso, potrebbero NON essere garantiti l'indirizzamento univoco delle ennuple, e le correlazioni tra tabelle diverse...

STUDENTI				
Matricola	Cognome	Nome	Data Nascita	
4324235245	Rossi	Giorgio	04/12/1987	
NULL	Bianchi	Marco	04/12/1987	
9854456565	Bianchi	Marco	NULL	
5456565653	Verdi	Giovanni	12/5/1990	
NULL	Verdi	Matteo	12/07/1990	

Chiave primaria \rightarrow chiave di un relazione su cui NON sono ammessi valori NULL.

Gli <u>attributi</u> che formano la chiave primaria sono –per convenzioneindicati con una <u>sottolineatura</u>.

<u>Matricola</u>	Cognome	Nome	DataNascita
4324235245	Rossi	Giorgio	04/12/1987
NULL	Bianchi	Marco	04/12/1987
9854456565	Bianchi	Marco	NULL
5456565653	Verdi	Giovanni	12/5/1990
3223234444	Verdi	Matteo	12/07/1990

Chiave primaria → chiave di un relazione su cui NON sono ammessi valori NULL.

Gli <u>attributi</u> che formano la chiave primaria sono –per convenzioneindicati con una <u>sottolineatura</u>.

STUDENTI

<u>Matricola</u>	Cognome	Nome	DataNascita
4324235245	Rossi	Giorgio	04/12/1987

STUDENTI(Matricola, Cognome, Nome, DataNascita)

Ogni relazione deve disporre di una chiave primaria.

Come fare nel caso tutte le chiavi presentino dei valori NULL? Aggiungere codici o **identificativi progressivi** ...

RICOVERI

<u>Codice</u>	Nome	Cognome	Reparto	Data ricovero	Data dimissione
1	NULL	NULL	Rianimazione	NULL	10/02/2012
2	Bianchi	Marco	Dermatologia	NULL	10/04/2012
3	Bianchi	Marco	Ortopedia	08/01/2011	10/02/2012
4	Verdi	Giovanni	Ortopedia	08/01/2011	NULL
5	Verdi	Matteo	Ortopedia	23/01/2011	NULL

Una chiave può essere composta da più attributi.

PARTITA

Squadra1	Squadra2	<u>Data</u>	Punti1	Punti2
Pol. Rossi	Pol. Bianchi	10/04/2012	70	80
Pol. Verdi	Pol. Rossi	10/06/2012	65	102
Virtus	Palestra Grigi	10/09/2012	100	50

PARTITA(Squadra1, Squadra2, Data, Punti1, Punti2)

Una chiave può essere composta da piu' attributi.

PARTITA

Squadra1	Squadra2	<u>Data</u>	Punti1	Punti2
Pol. Rossi	Pol. Bianchi	10/04/2012	70	80
Pol. Rossi	Pol. Bianchi	NULL	65	102
Virtus	Palestra Grigi	10/09/2012	0	50

PARTITA

<u>Squadra1</u>	Squadra2	Data	Punti1	Punti2
Pol. Rossi	Pol. Bianchi	10/04/2012	70	80
Pol. Rossi	Pol. Bianchi	10/06/2012	65	102
Virtus	Palestra Grigi	10/09/2012	100	50

Altre **componenti** del <u>modello relazionale</u>:

- Informazioni incomplete
- Vincoli di integrità
 - Vincoli intra-relazionali
 - Vincoli di ennupla
 - Vincoli di chiave

Vincoli inter-relazionali

- Nel modello relazionale, una base di dati può essere composta da molte relazioni collegate tra loro.
- Collegamenti tra relazioni differenti sono espresse mediante valori comuni in attributi replicati.

VIGILI

<u>Matricola</u>	Nome	Cognome
12345	Michele	Rossi
67890	Luca	Bianchi
12123	Nicola	Gialli
1233	Luca	Gialli
12567	Michele	Rosi

AUTO

<u>Provincia</u>	<u>Numero</u>	Proprietario
ВО	3F7634	Pietro Verdi
RM	4G2121	Luca Verdi
FI	23G234	Tony Ricci

INFRAZIONI

<u>Codice</u>	Data	Agente	Provincia	Numero
C123	05/02/2012	748748	ВО	3F7634
C345	07/09/2012	67890	MI	2746H7
C466	09/09/2012	12567	FI	23G234

In molti scenari d'uso, risulta utile imporre un vincolo sulle dipendenze tra relazioni.

 Ogni riga della tabella referenziante si collega al massimo ad una riga della riga della tabella referenziata, sulla base dei valori comuni nell'attributo/negli attributi replicati.

Un vincolo di integrità referenziale ("foreign key") fra gli attributi X di una relazione R_1 e un'altra relazione R_2 impone ai valori (diversi da NULL) su X in R_1 di comparire come valori della chiave primaria di R_2 .

In pratica: il vincolo consente di <u>collegare le informazioni tra</u> <u>tabelle diverse</u> attraverso valori comuni ...

VOLI

<u>Codice</u>	Data	Partenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	FCO	BOQ	Lufthansa	123
AZ21	10/02/2012	ATL	FCO	Alitalia	124
AF	11/02/2012	BOQ	FKT	Air France	123

PILOTI

<u>IdPilota</u>	Nome	Cognome
123	Mario	Rossi
124	Michele	Bianchi

AEROPORTI

<u>IdAeroporto</u>	Citta'	#Piste
FCO	Roma	10
BOQ	Bologna	5
ATL	Atlanta	40
		30

Vincolo di integrità referenziale tra:

Attributo Partenza della relazione VOLI e la relazione AEROPORTI.

VOLI

<u>Codice</u>	Data	Partenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	FCO	BOQ	Lufthansa	123
AZ21	10/02/2012	ATL	FCO	Alitalia	124
AF	11/02/2012	BOQ	FKT	Air France	123

PILOTI

<u>IdPilota</u>	Nome	Cognome
123	Mario	Rossi
124	Michele	Bianchi

AEROPORTI

<u>IdAeroporto</u>	Citta'	#Piste
FCO	Roma	10
BOQ	Bologna	5
ATL	Atlanta	40
		30

Vincolo di integrità referenziale tra:

Attributo Arrivo della relazione VOLI e la relazione AEROPORTI.

VOLI

<u>Codice</u>	Data	Partenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	FCO	BOQ	Lufthansa	123
AZ21	10/02/2012	ATL	MPX	Alitalia	124
AF	11/02/2012	BOQ	FKT	Air France	126

PILOTI

<u>IdPilota</u>	Nome	Cognome
123	Mario	Rossi
124	Michele	Bianchi

Vincoli di integrità referenziale VIOLATI!

AEROPORTI

<u>IdAeroporto</u>	Citta'	#Piste
FCO	Roma	10
BOQ	Bologna	5
ATL	Atlanta	40
FKF	Francoforte	30

VOLI					
Codice	<u>Data</u>	CittaPartenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	Roma	BOQ	Lufthansa	123
AZ21	10/02/2012	Bologna	MPX	Alitalia	124
AF	11/02/2012	Atlanta	FKT	Air France	126
PRENOTAZION	E				
<u>NrTicket</u>	CodiceVolo	DataVolo	Nome	Cognome	
123	LH21	10/02/2012	Mario	Rossi	
124	LH21	10/02/2012	Mario	Bianchi	

Vincoli di integrità tra PRENOTAZIONE.{CodiceVolo,DataVolo} → VOLI [Vincoli su piu' attributi!!!]

VOLI

<u>Codice</u>	Data	CittaPartenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	Roma	BOQ	Lufthansa	123
AZ21	10/02/2012	Bologna	MPX	Alitalia	124
AF	11/02/2012	Atlanta	FKT	Air France	126

PILOTI

<u>IdPilota</u>	Nome	Cognome
123	Mario	Rossi
124	Michele	Bianchi

AEROPORTI

<u>IdAeroporto</u>	Citta'	#Piste
FCO	Roma	10
СМР	Roma	5
ATL	Atlanta	40
FKF	Francoforte	30

Vincolo di integrità referenziale tra VOLI.CittaPartenza → AEROPORTI? NO!

- Il vincolo di integrita' referenziale è definito tra gli attributi di una tabella (interna) ed il nome della tabella referenziata.
- Es. Attributo Arrivo della relazione VOLI e la relazione AEROPORTI
- Nel modello relazionale (teorico) non è necessario definire l'attributo della relazione AEROPORTI, in quanto si suppone che la chiave primaria esista e sia unica.

Per definire il vincolo di integrità referenziale, occorre **esplicitare i nomi degli attributi** (su cui si applica il vincolo) di entrambe le tabelle:

VOLI.Arrivi → AEROPORTO.IdAeroporto

Notazione: SCHEMA.NomeAttributo

Può accadere che un'operazione di aggiornamento su una relazione causi violazioni di vincoli di integrità su altre relazioni.

Come reagire:

- Non consentire l'operazione.
- Eliminazione a cascata.
- Inserimento di valori NULL.

VOLI

<u>Codice</u>	Data	Partenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	FCO	BOQ	Lufthansa	123
AZ21	10/02/2012	ATL	FCO	Alitalia	124
AF	11/02/2012	BOQ	FKT	Air France	123

PILOTI

<u>IdPilota</u>	Nome	Cognome
123	Mario	Rossi
124	Michele	Bianchi

AEROPORTI

<u>IdAeroporto</u>	Citta'	#Piste
FCO	Roma	<u>10</u>
BOQ	Bologna	5
ATI	A.1 .	40
ATL	Atlanta	40
FKF	Francoforte	30
T IXI	Trancolorte	30

COSA accade se elimino una riga nella tabella AEROPORTI?

VOLI

<u>Codice</u>	Data	Partenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	ГСО	BOQ	Lufthansa	123
<u> </u>	10/02/2012	ATL	FCO	Alitalia	124
AF	11/02/2012	BOQ	FKT	Air France	123

PILOTI

<u>IdPilota</u>	Nome	Cognome
123	Mario	Rossi
124	Michele	Bianchi

SOLUZIONE 2: Eliminazione a cascata ...

AEROPORTI

<u>IdAeroporto</u>	Citta'	#Piste
FCO	Roma	10
BOQ	Bologna	5
ATL	Atlanta	40
FKF	Francoforte	30

VOLI

<u>Codice</u>	Data	Partenza	Arrivo	Compagnia	Pilota
LH21	10/02/2012	NULL	BOQ	Lufthansa	123
AZ21	10/02/2012	ATL	NULL	Alitalia	124
AF	11/02/2012	BOQ	FKT	Air France	123

PILOTI

<u>IdPilota</u>	Nome	Cognome
123	Mario	Rossi
124	Michele	Bianchi

SOLUZIONE 3: Inserimento di valori NULL ...

AEROPORTI

<u>IdAeroporto</u>	Citta'	#Piste
FCO	Roma	10
BOQ	Bologna	5
ATL	Atlanta	40
FKF	Francoforte	30

PRO

- Modello intuitivo
- Basato su proprietà dell'algebra relazionale
- Garantisce indipendenza dallo schema fisico
- Riflessività → meta-informazioni di una relazione sono gestite a loro volta attraverso relazioni.

CONS

- Poca flessibilità → Tutte le istanza di una relazione devono possedere la stessa struttura ...
- Ridondanza dei dati causata dai vincoli ...

Oltre al modello relazionale (proposto negli anni settanta), esistono altri modelli logici di organizzazione dei dati:

- Modello gerarchico
- Modello reticolare
- Modello ad oggetti
- Modello XML-based
- O ...

MODELLO GERARCHICO

- I dati sono rappresentati come record.
- Le associazioni tra tabelle sono rappresentate con puntatori in una struttura ad albero.

Esempi di puntatori (=riferimenti) in Java

```
public class Prova {
   public int a;
   Prova() {
      a=5;
   }

   public static void main(String[] argv) {
      Prova o1=new Prova();
      Prova o2=new Prova();
      o1.a=10;
      o2.a=5;
      System.out.println(o1.a+" "+o2.a);
   }
}
```

COSA STAMPA
IL PROGRAMMA?

Esempi di puntatori (=riferimenti) in Java

```
public class Prova {
   public int a;
   Prova() {
      a=5;
   }

   public static void main(String[] argv) {
      Prova o1=new Prova();
      Prova o2=new Prova();
      o1.a=10;
      o2.a=5;
      System.out.println(o1.a+" "+o2.a);
   }
}
```

COSA STAMPA
IL PROGRAMMA?

Esempi di puntatori (=riferimenti) in Java

```
public class Prova {
    public int a;
    Prova() {
        a=5;
    }

    public static void main(String[] argv) {
        Prova o1=new Prova();
        Prova o2=new Prova();
        o1.a=10;
        o2.a=5;
        System.out.println(o1.a+" "+o2.a);
    }
}
```


In molti modelli (es. *gerarchico, reticolare, oggetti*), i riferimenti tra tabelle sono definiti mediante **puntatori**.

MODELLO RETICOLARE

- I dati sono rappresentati come record.
- Le associazioni tra tabelle sono rappresentate con puntatori in una struttura a grafo complesso.

MODELLO AD OGGETTI

- Una base di dati è una collezione di oggetti.
- Ogni oggetto ha un indentificatore univoco (OID) gestito dal sistema (a differenza delle chiavi).
- Ogni oggetto ha uno stato, definito come una struttura complessa a partire da dati semplici.
- Ogni oggetto ha dei metodi che consentono di manipolare lo stato.
- Gli oggetti possono essere incapsulati in altri oggetti, estesi (mediante ereditarietà), etc

MODELLI **NO-SQL**

- Non un singolo modello, ma un insieme di approcci accomunati dal tentativo di superare la rigidità del modello relazionale, e di migliorare la scalabilità della gestione di una base di dati in ambienti distribuiti.
- Approcci Key/Value → Redis, BigTable, etc.
- Approcci document-oriented (JSON/XML)