Афинни подпространства

Линейни подпространства – припомняне

- **Твърдение 1** 1. Множеството V от решенията на хомогенна линейна система Ax = 0 с n неизвестни e(n-r)-мерно линейно подпространство на \mathbb{R}^n , където r е рангът на A.
 - 2. Ако V е k-мерно линейно подпространство на \mathbb{R}^n , то съществува хомогенна линейна система Ax = 0 с n неизвестни, такава че V е множеството от решенията \mathring{u} . При това системата може да се вземе с n-k уравнения (това е минималният възможен брой).

Твърдение 2 Нека Ax = b е съвместима линейна система с n неизвестни и $x_0 \in \mathbb{R}^n$ е едно нейно решение. Тогава $x \in \mathbb{R}^n$ е решение на системата тогава и само тогава, когато $x = x_0 + v$ за някое решение v на съответната хомогенна система Ax = 0, тоест, в означенията от Определение 2 по-долу, множеството от решенията на Ax = b е $x_0 + V$, където V е линейното подпространство на \mathbb{R}^n от решенията на Ax = 0.

Твърдение 3 Произволно сечение на линейни подпространства е линейно подпространство.

Афинни подпространства

Нека \mathcal{A} е афинно пространство, моделирано върху линейното пространство U.

Определение 1 Подмножеството B на \mathcal{A} се нарича $a\phi$ инно подпространство на \mathcal{A} , ако $B = \left\{Q \in \mathcal{A} : \overrightarrow{P_0Q} \in V\right\}$, където V е линейно подпространство на U и $P_0 \in \mathcal{A}$, тоест ако за някое линейно подпространство V на U и някоя точка $P_0 \in \mathcal{A}$ е изпълнено $Q \in B \Leftrightarrow \overrightarrow{P_0Q} \in V$.

Твърдение 4 Нека B е афинното подпространство на A, зададено с линейното подпространство V на U и точката $P_0 \in A$, тоест $B = \left\{Q \in \mathcal{A} : \overline{P_0Q} \in V\right\}$. Тогава:

- 1. $P_0 \in B$. В частност, B не е празно множество.
- 2. За всяка точка $P \in B$ имаме $B = \left\{ Q \in \mathcal{A} : \overrightarrow{PQ} \in V \right\}$.
- 3. $V = \left\{\overrightarrow{PQ}: P, Q \in B\right\}$ и дори за всяка точка $P \in B$ имаме $V = \left\{\overrightarrow{PQ}: Q \in B\right\}$.
- 4. Линейното подпространство V се определя еднозначно от B.
- $5. \ B \ e \ aфинно \ npocmpaнcmbo, моделирано в<math>pxy$ линейното $nodnpocmpancmbo \ V.$

Твърдение 5 0-мерните афинни подпространства са едноточковите подмножества.

Твърдение 6 \mathcal{A} е афинно подпространство на себе си. При това, ако $\dim \mathcal{A} = n$ е крайна, то \mathcal{A} е единственото n-мерно афинно подпространство на \mathcal{A} .

Определение 2 Нека U е линейно пространство, V е линейно подпространство на U и $u_0 \in U$. Означаваме $u_0 + V = \{u_0 + v : v \in V\}$.

Твърдение 7 Афинните подпространства на линейното пространство U са точно подмножествата от вида u_0+V , където V е линейно подпространство на U и $u_0 \in U$, като при това u_0+V е афинното подпространство през u_0 с направляващо пространство V. В частност, афинните подпространства на U през 0 са точно линейните подпространства на U.

- **Твърдение 8** 1. Множесството B от решенията на съвместима линейна система Ax = b с n неизвестни e (n-r)-мерно афинно подпространство на \mathbb{R}^n , моделирано върху линейното подпространство V от решенията на съответната хомогенна система Ax = 0, където r е рангът на A.
 - 2. Ако B е k-мерно афинно подпространство на \mathbb{R}^n , то съществува линейна система Ax = b с n неизвестни, такава че B е множеството от решенията \hat{u} . При това системата може да се вземе с n-k уравнения (това е минималният възможен брой).

Твърдение 9 Нека B и B' са афинни подпространства на A, моделирани съответно върху линейните подпространства V и V' на U. Тогава:

- 1. Ako $B \subset B'$, mo $V \subset V'$.
- 2. Aro $V \subset V'$ $u B \cap B' \neq \emptyset$, mo $B \subset B'$.
- 3. Aro $B \subset B'$, mo dim $B \leq \dim B'$.
- 4. Ако $B \subset B'$ $u \dim B = \dim B'$ e крайна, то B = B'.

Определение 3 Нека B е афинно подпространство на A, моделирано върху V. Векторите $v \in V$ наричаме ycnopedhu на B и пишем $v \parallel B$.

Теорема 1 Нека $P_0 \in \mathcal{A}$, а $v_1, \ldots, v_k \in U$. Тогава най-малкото афинно подпространство на \mathcal{A} , което съдържа точката P_0 и на което векторите v_1, \ldots, v_k са успоредни, е афинното подпространство B, породено от P_0 и $V = l(v_1, \ldots, v_k)$, тоест

$$B = \{ P \in \mathcal{A} : \overrightarrow{P_0P} \in l(v_1, \dots, v_k) \} = \{ P \in \mathcal{A} : \exists \lambda_1, \dots, \lambda_k \in \mathbb{R} : \overrightarrow{P_0P} = \lambda_1 v_1 + \dots + \lambda_k v_k \}.$$

(Че е най-малкото означава, че всяко афинно подпространство с тия свойства го съдгржа.)

Ако освен това v_1, \ldots, v_k са линейно независими, то горното B е единственото k-мерно афинно подпространство на A, което съдържа P_0 и на което v_1, \ldots, v_k са успоредни.

Забележка 1 Ако в горната теорема v_1, \ldots, v_k са линейно зависими, то dim B < k.

Теорема 2 Нека $P_0, ..., P_k \in \mathcal{A}$. Тогава най-малкото афинно подпространство на \mathcal{A} , което <u>ги</u> съдържа, е афинното подпространство породено от точката P_0 и $V = l(\overrightarrow{P_0P_1}, ..., \overrightarrow{P_0P_k})$, тоест

$$B = \{P \in \mathcal{A} : \overrightarrow{P_0P} \in l(\overrightarrow{P_0P_1}, \dots, \overrightarrow{P_0P_k})\} = \left\{P \in \mathcal{A} : \exists \lambda_1, \dots, \lambda_k \in \mathbb{R} : \overrightarrow{P_0P} = \sum_{i=1}^k \lambda_i \overrightarrow{P_0P_i}\right\}.$$

Ако освен това $P_0, \ldots, P_k \in \mathcal{A}$ не лежат в афинно подпространство на \mathcal{A} с размерност строго по-малка от k, то горното B е единственото k-мерно афинно подпространство на \mathcal{A} , което ги съдържа.

Забележка 2 Ако в горната теорема P_0, \ldots, P_k лежат в афинно подпространство на \mathcal{A} с размерност строго по-малка от k, то dim B < k.

Твърдение 10 Нека B е k-мерно афинно подпространство на A. Тогава съществуват точки $P_0, \ldots, P_k \in B$, които не лежат в афинно подпространство на A с размерност строго по-малка от k.

Пример 1 k = 1.

2=k+1 точки лежат в афинно подпространство с размерност строго по-малка от k=1, тоест в 0-мерно афинно подпространство, \Leftrightarrow съвпадат, защото 0-мерните афинни подпространства са едноточковите подмножества.

Твърдение 11 1. В геометричната равнина и в геометричното пространство 1-мерните афинни подпространства са правите.

2. В геометричното пространство 2-мерните афинни подпространства са равнините.

Определение 4 1-мерните афинни подпространства на произволно афинно пространство \mathcal{A} се наричат *прави*, 2-мерните — *равнини*, а ако dim $\mathcal{A}=n$ е крайна, то (n-1)-мерните афинни подпространства се наричат *хиперравнини*.

Пример 2 Нека \mathcal{A} е n-мерно. Тогава хиперравнините са:

- 1. при n = 1 точките.
- 2. при n = 2 правите.
- 3. при n = 3 равнините.

Частни случаи на Теорема 2:

- 1. k=1: През две различни точки в афинно пространство минава точно една права.
- $2. \ k=2$: През три различни точки в афинно пространство, които не лежат на една права, минава точно една равнина.
- 3. k = n 1: През n точки в n-мерно афинно пространство, които не лежат в (n-2)-мерно афинно подпространство, минава точно една хиперравнина.

Твърдение 12 Aко B_i са афинни подпространства на \mathcal{A} , моделирани върху V_i , $i \in I$, $u B = \bigcap_{i \in I} B_i$ е непразно множество, то B е афинно подпространство на \mathcal{A} , моделирано върху $\bigcap_{i \in I} V_i$.

Забележка 3 Всичко дотук очевидно остава в сила и ако вместо \mathbb{R} се вземе произволно поле F, тоест ако U е линейно пространство над произволно поле.

Твърдение 13 Нека A е евклидово афинно пространство (тоест U е евклидово линейно пространство) и B е афинно подпространство на A, моделирано върху линейното подпространство V на U. Тогава знаем, че V е евклидово линейно пространство C наследеното от C скаларно произведение и следователно C е евклидово афинно пространство.

Забележка 4 Винаги ще разглеждаме афинните подпространства на евклидово афинно пространство като евклидови афинни пространства по начина от горното твърдение, освен ако изрично не е казано друго.