Using PCM in order to reduce temperature inside telecommunication outdoor cabinet

Stéphane Le Masson Orange Labs 05 Décembre 2011

Plan

- 1 Introduction –
- 2 Cooling solutions
- 3 Phase change material
- 4 Problem to solve
- 4 Results

1. Introduction – Contexte des armoires outdoor

Télecommunication equipements are located in outdoor cabinet

The Loads:

- → External température
- → Solar

 radiation
 → Internal power => Telecommunication
 Equipements

par exemple 100W à 1kW

Internal temperatures are limited

(55 °C at the intrance)

2 – Cooling solutions

Classical solutions:

Climatisation

Ventilation

Heat exchange

"Passives" Solutions : PCM based on Molecular Alloys (MCPAM)

3 Phase Change Materials

Material whose molecular structure change with temperature Tpc Tpc Phase Change Temperature

Material accumulate energy when the phase change From Solid => Liquid

PCM are useful in order to reduce temperature when material is melting

A)	_
Drissance (mW)	7
Produit Rubitherm RT58	
	70

Alcanes	Masse molaire (g/mol)	Température de fusion (°C)	Enthalpie de fusion (J/g)
C24H50	338,66	49,7±0,3	157±18
C25H52	352,69	52,7±0,3	160±17
C26H54	366,71	55,6±0,3	163±17
C27H56	380,73	58,5±	164±
C28H58	394,76	60,5±0,3	165±18

4 Problem to solve ?? Model in order to predict velocity et thermal field...

5 PCM: Experimental examples

Experimental setup

5- Numerical simulation One dimension case

$$k_{s} \frac{\partial T_{s}(x,t)}{\partial x} - k_{l} \frac{\partial T_{l}(x,t)}{\partial x} = \rho L \frac{ds(t)}{dt}$$

5. 3D experimental

Coupe en (xy)

Coupe en (yz)

5. Comparison between experimental and numerical

- expérimental
- numérical

5. Changement de phase solide/liquide

Température uniforme initiale 10°C. Température imposée par un échangeur en cuivre 60°C

60°C

Etude MCPAM °52C

10°C

Etude MCPAM °52C

- ⇒Boundary is not vertical
- ⇒ Our "simple model" is not adapted to this case
- ⇒We need another model

