Seminario Teórico

División de Ciencias e Ingenierías. UG

Estabilidad de las Newtonian ℓ -boson stars ante perturbaciones lineales

División de Ciencias e Ingenierías, UGTO, 2021

Dr. Armando A. Roque Estrada

Colaboradores:

MSc. Emmanuel Chávez Nambo

Dr. Olivier Sarbach

Dr. Alberto Diez-Tejedor

Dr. Juan Barranco

Estructura

- I. ¿Qué es una ℓ -boson star?
 - A. Estabilidad de las ℓ -boson star
- II. No relativistas N-boson stars
 - A. No relativistas ℓ -boson stars
 - B. Perturbaciones (radiales) Lineales
 - C. Perturbaciones lineales no esféricas
- III. Conclusión

¿Qué es una ℓ -boson star?

$$\mathcal{L} = \frac{R}{16\pi} - \frac{1}{2} \sum_{m=-\ell}^{\ell} \left(\nabla_{\mu} \Phi_{\ell m} \nabla^{\mu} \Phi_{\ell m}^* + \mu^2 |\Phi_{\ell m}|^2 \right)$$

$$m=-\ell,\ldots,\ell$$
 $N=2\ell+1$ of complex scalar

$$\Phi_{\ell m}(t, r, \vartheta, \varphi) = e^{i\omega t} \psi_{\ell}(r) Y^{\ell m}(\vartheta, \varphi),$$

¿Qué tiene de especial? ¡¡Se mantiene la simetría esférica!!

$$\begin{split} M' &= \frac{\kappa_\ell r^2}{2} \left[\frac{\psi_\ell'^2}{\gamma^2} + \left(\mu^2 + \frac{\omega^2}{\alpha^2} + \frac{\ell(\ell+1)}{r^2} \right) \psi_\ell^2 \right] = 4\pi r^2 \rho, \\ \frac{(\alpha \gamma)'}{\alpha \gamma^3} &= \kappa_\ell r \left[\frac{\psi_\ell'^2}{\gamma^2} + \frac{\omega^2}{\alpha^2} \psi_\ell^2 \right] = 4\pi r (\rho + p_r), \quad \text{Klein-Gordon} \\ \frac{1}{r^2 \alpha \gamma} \left(\frac{r^2 \alpha}{\gamma} \psi_\ell' \right)' &= \left(\mu^2 - \frac{\omega^2}{\alpha^2} + \frac{\ell(\ell+1)}{r^2} \right) \psi_\ell, \end{split}$$

ℓ -Boson stars

Miguel Alcubierre, ¹ Juan Barranco, ² Argelia Bernal, ² Juan Carlos Degollado, ³
Alberto Diez-Tejedor, ² Miguel Megevand, ⁴ Darío Núñez, ¹ and Olivier Sarbach ⁵

¹ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,

Circuito Exterior C.U., A.P. 70-543, México D.F. 04510, México

² Departamento de Física, División de Ciencias e Ingenierías,

Campus León, Universidad de Guanajuato, León 37150, México

³ Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,

Apdo. Postal 48-3, 62251, Cuernavaca, Morelos, México

⁴ Instituto de Física Enrique Gaviola, CONICET. Ciudad Universitaria, 5000 Córdoba, Argentina

⁵ Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,

Edificio C-3, Ciudad Universitaria, 58040 Morelia, Michoacán, México

(Dated: August 31, 2018)

Un único campo

Boson stars and their relatives in semiclassical gravity

Miguel Alcubierre, ¹ Juan Barranco, ² Argelia Bernal, ² Juan Carlos Degollado, ³ Alberto Diez-Tejedor, ² Miguel Megevand, ⁴ Darío Núñez, ¹ and Olivier Sarbach ⁵

Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
 Circuito Exterior C.U., A.P. 70-543, México D.F. 04510, México
 Departamento de Física, División de Ciencias e Ingenierías,
 Campus León, Universidad de Guanajuato, León 37150, México
 Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,
 Apdo. Postal 48-3, 62251, Cuernavaca, Morelos, México
 Instituto de Física Enrique Gaviola, CONICET. Ciudad Universitaria, 5000 Córdoba, Argentina
 Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo,
 Edificio C-3, Ciudad Universitaria, 58040 Morelia, Michoacán, México
 (Dated: February 21, 2023)

Δ

Estabilidad de las

ℓ -boson star

arXiv:1805.11488v2

Boson stars driven to the brink of black hole formation

Scott H. Hawley¹ * and Matthew W. Choptuik^{1,2} †

¹Center for Relativity, Department of Physics, University of Texas at Austin, Austin, TX 78712-1081 USA

² CIAR Gravity and Cosmology Program, Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

On the linear stability of ℓ -boson stars with respect to radial perturbations

Miguel Alcubierre, Juan Barranco, Argelia Bernal, Juan Carlos Degollado, Alberto Diez-Tejedor, Miguel Megevand, Darío Núñez, and Olivier Sarbach Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510, México Departamento de Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, León 37150, México

taria, 5000 Córdoba, Argentina

Michoacán, México

Dynamical evolutions of ℓ -boson stars in spherical symmetry

Miguel Alcubierre, ¹ Juan Barranco, ² Argelia Bernal, ² Juan Carlos Degollado, ³ Alberto Diez-Tejedor, ² Miguel Megevand, ⁴ Darío Núñez, ¹ and Olivier Sarbach ⁵

¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior C.U., A.P. 70-543, México D.F. 04510, México ²Departamento de Física, División de Ciencias e Ingenierías, Campus León, Universidad de Guanajuato, León 37150, México ³Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos, México

Dynamical ℓ -boson stars: generic stability and evidence for non-spherical solutions $de\ San\ Nicol\'{a}s\ de\ Hidalgo$,

Víctor Jaramillo,¹ Nicolas Sanchis-Gual,² Juan Barranco,³ Argelia Bernal,³ Juan Carlos Degollado,⁴ Carlos Herdeiro,⁵ and Darío Núñez¹

¹Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México,
Circuito Exterior C.U., A.P. 70-543, México D.F. 04510, México

²Centro de Astrofísica e Gravitação - CENTRA, Departamento de Física, Instituto Superior Técnico - IST,
Universidade de Lisboa - UL, Avenida Rovisco Pais 1, 1049-001, Portugal

³Departamento de Física, División de Ciencias e Ingenierías,
Campus León, Universidad de Guanajuato, León 37150, México

⁴Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,
Apdo. Postal 48-3, 62251, Cuernavaca, Morelos, México

⁵Departamento de Matemática da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, Portugal

(Dated: April, 2020)

Córdoba, Argentina lás de Hidalgo, México

¿Y las demás? ¿Es general?

No relativistas N-boson stars

Radial linear stability of nonrelativistic \mathcal{E} -boson stars

Armando A. Roque[®], ^{1,2} Emmanuel Chávez Nambo[®], ¹ and Olivier Sarbach[®] ¹Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitar0ia, 58040 Morelia, Michoacán, México ²Unidad Académica de Física, Universidad Autónoma de Zacatecas, 98060 Zacatecas, México

Mecánica Cuántica

Caso Estacionario = Hartree

- i) N-partículas idénticas de igual masa
- ii) Solo interactúan a través del potencial gravitatorio generado por ellas. N-particles Schrödinger-Poisson
- i) Partículas idénticas con spin nulo
- ii) No correlacionadas y sus
 - funciones de onda son ortornomales

$$\Psi = \sqrt{\frac{N!}{N_1!N_2!\cdots N_J!}} \hat{S}\left(\psi_1^{N_1} \otimes \psi_2^{N_2} \otimes \cdots \otimes \psi_J^{N_J}\right),$$

$$(\psi_{j}, \psi_{k}) = \delta_{jk}$$
. $\hat{S} = \sum_{\pi \in \sigma(N)} P_{\pi}/N! \quad \sum_{j=1}^{J} N_{j} = N.$

$$i\hbar \frac{\partial \Psi(t,X)}{\partial t} = \sum_{i=1}^{N} \left(-\frac{\hbar^2}{2\mu} \nabla_{\vec{x}_i}^2 + \mu \mathbf{U}(t,\vec{x}_i) \right) \Psi(t,X),$$

$$\nabla^2 \mathbf{U}(t,\vec{x}) = 4\pi G \mu \sum_{i=1}^N \int |\Psi(t,X)|^2 \delta^{(3)}(\vec{x}-\vec{x}_i) d^{3N}X,$$

$$X = (\vec{x}_1,\vec{x}_2,...,\vec{x}_N)$$
Un 3N vector que parametriza el espacio de configuraciones

$$i\hbar\frac{\partial\psi_{j}(t,\vec{x})}{\partial t} = \left(-\frac{\hbar^{2}}{2\mu}\nabla^{2} + \mu\mathbf{U}(t,\vec{x})\right)\psi_{j}(t,\vec{x}),$$

$$abla^2 \mathbf{U}(t, \vec{x}) = 4\pi G \mu \sum_{j=1}^J N_j |\psi_j(t, \vec{x})|^2.$$

No relativistas L-boson stars

Simetría esférica

Simetha estenca

$$\psi_j(t, \vec{x}) \coloneqq f_{\ell}(t, r) Y^{\ell m}(\vartheta, \varphi).$$

$$j = m + \ell + 1.$$

Sistema estacionario

$$f_{\mathscr{E}}(t,r) = e^{-iE_{\mathscr{E}}t}\sigma_{\mathscr{E}}^{(0)}(r),$$

 (n, \mathcal{E}, m)

$$N=KJ=K(2\mathscr{E}+1).$$

$$\nabla_s^2 := \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 \frac{\partial}{\partial r})$$

$$\hat{\mathcal{H}}_{\ell}^{(0)}\sigma_{\ell}^{(0)}=E_{\ell}\sigma_{\ell}^{(0)},$$

$$E_{\ell}^{\text{phys}} = 2\mu v_c^2 (K\Lambda)^2 E_{\ell}.$$

$$\hat{\mathcal{H}}_{\ell}^{(0)} \coloneqq \left[-\nabla_{s}^{2} + \frac{\ell'(\ell'+1)}{r^{2}} + \Delta_{s}^{-1}(|\sigma_{\ell'}^{(0)}|^{2}) \right]$$

$$\Lambda := \frac{2\ell + 1}{\int_0^\infty |k_\ell(t, r)|^2 r^2 dr}.$$

$$1 = \int |\psi_j(t, \vec{x})|^2 d^3x = \frac{\Lambda}{2\ell + 1} \int_0^\infty |f_{\ell}(t, r)|^2 r^2 dr.$$

Variables Adimensionales

$$d_c \coloneqq \frac{\hbar^2}{2G\mu^3} \quad t_c \coloneqq \frac{\hbar^3}{2G^2\mu^5}$$

$$f_{\ell} = K^{3/2} \Lambda^2 \bar{f}_{\ell} / \sqrt{(2\ell+1)d_c^3}, \quad t = t_c \bar{t} / (K\Lambda)^2,$$

$$r = d_c \bar{r}/(K\Lambda), \quad \mathbf{U} = 2v_c^2(K\Lambda)^2 \bar{U},$$

$$\begin{split} \mathcal{E}_{\ell}[f] &= \int_0^\infty \left[|\partial_r f(r)|^2 + \frac{\ell'(\ell'+1)|f(r)|^2}{r^2} \right] r^2 dr \\ &- \frac{1}{2} \int_0^\infty \int_0^\infty \frac{|f(r)|^2 |f(\tilde{r})|^2}{r_>} r^2 \tilde{r}^2 dr d\tilde{r}. \end{split}$$

$$\mathcal{E}^{\text{phys}} = K \frac{2\ell + 1}{3} E_{\ell}^{\text{phys}}.$$

Algunos perfiles

$$\sigma(r=0) = \sigma_0, \quad \frac{d\sigma}{dr}(r=0) = 0,$$
 $u^{(0)}(r=0) = u_0, \quad \frac{du^{(0)}}{dr}(r=0) = 0,$

$$E_{\ell}^{\text{phys}} = -\frac{\alpha}{(n+\beta)^{\gamma}} \times [K^{2}\mu v_{c}^{2}], \\ \frac{\ell_{\text{-values:}}}{0} \frac{\ell_{\text{-values:}}}{3} \left[\frac{2\ell_{1}+1)^{2}}{(2\ell_{2}+1)^{2}} E_{2} - E_{1} \right], \\ \frac{\ell_{\text{-values:}}}{2} \frac{\ell_{\text{-values:}}}{3} \left[\frac{(2\ell_{1}+1)^{2}}{(2\ell_{2}+1)^{2}} E_{2} - E_{1} \right], \\ \frac{\ell_{\text{-values:}}}{2} \frac{\ell_{\text{-values:}}}{2} \frac{\ell_{\text{-values:}}}{2} \frac{(2\ell_{1}+1)^{2}}{(2\ell_{2}+1)^{2}} E_{2} - E_{1} \right], \\ \frac{\ell_{\text{-values:}}}{2} \frac{\ell_{\text$$

Perturbaciones (radiales) Lineales

$$f_{\ell}(t,r) = e^{-iE_{\ell}t}[\sigma_{\ell}^{(0)}(r) + \epsilon\sigma_{\ell}(t,r) + \mathcal{O}(\epsilon^2)],$$

Propiedades

$$i\frac{\partial f_{\ell}(t,r)}{\partial t} = \hat{\mathcal{H}}_{\ell}f_{\ell}(t,r),$$

Orden cero

$$\hat{\mathcal{H}}_{\ell}^{(0)}\sigma_{\ell}^{(0)}=E_{\ell}\sigma_{\ell}^{(0)},$$

$$(-\lambda, A, -B), \qquad (\lambda^*, A^*, -B^*), \qquad (-\lambda^*, A^*, B^*).$$

$$\lambda^2 |(A, B)_{L^2}|^2 \in \mathbb{R}$$
,

$$i\lambda(A,B)_{L^2} = \frac{1}{2}\delta^2\mathcal{E}_{\ell}[A_R] + \frac{1}{2}\delta^2\mathcal{E}_{\ell}[A_I],$$

Orden uno

$$i\lambda A = (\hat{\mathcal{H}}_{\ell}^{(0)} - E_{\ell})B$$
,

$$i\lambda B = (\hat{\mathcal{H}}_{\ell}^{(0)} - E_{\ell})A + 2\sigma_{\ell}^{(0)} \triangle_s^{-1}[\sigma_{\ell}^{(0)}A].$$

cantidad compleja

$$\sigma_{\ell}(t,r) = [A(r) + B(r)]e^{\lambda t} + [A(r) - B(r)]^*e^{\lambda^*t},$$

- (i) $\lambda_R = 0, \lambda_I = 0$: This is the zero mode solution we have already discussed above.
- (ii) $\lambda_R > 0, \lambda_I = 0$: In this case, λ is real and from Eq. (26) we can assume that $A = A_R$ and $B = iB_I$. It follows from Eq. (39a) that $\delta^2 \mathcal{E}_{\ell}[A_R] = -2\lambda(A_R, B_I)_{L^2}$, such that the sign of the second variation of \mathcal{E}_{ℓ} is opposite to the sign of the product $(A_R, B_I)_{L^2}$.
- (iii) $\lambda_R = 0, \lambda_I > 0$: In this case, λ is purely imaginary and we can assume that both A and B are real. It follows from Eq. (39a) that the sign of $\delta^2 \mathcal{E}_{\ell}[A_R]$ is opposite to the sign of $(A_R, B_R)_{L^2}$.
- (iv) $\lambda_R > 0$, $\lambda_I > 0$: In this case, $\lambda^2 \neq \mathbb{R}$, and from the previous points it follows that $(A, B)_{L^2} = 0$. In this case, it follows from Eq. (33) that

$$\delta^2 \mathcal{E}_{\ell}[A_R] + \delta^2 \mathcal{E}_{\ell}[A_I] = 0, \tag{40}$$

such that the condition $\delta^2 \mathcal{E}_{\ell}[A_R] \neq 0$ [which can be verified using Eq. (39a)] implies that the background solution $\sigma_{\ell}^{(0)}$ corresponds to a critical saddle point of the energy functional.

$$A(r) := a(r)/r$$

$$B(r) := b(r)/r$$

$$b'' - U_{\text{eff}}b = -i\lambda a$$
,

$$a'' - U_{\text{eff}}a - 2\sigma_{\ell}^{(0)} \left(\frac{d^2}{dr^2}\right)^{-1} [\sigma_{\ell}^{(0)}a] = -i\lambda b,$$

$$\left(\frac{d^2}{dr^2}\right)^{-1} = r \triangle_s^{-1} r^{-1}$$

$$U_{\rm eff}(r) \coloneqq -u^{(0)}(r) + \ell(\ell+1)/r^2$$

Discretizando y utilizando método de Chebyshev $D_{c} := [-1, 1],$

$$\begin{pmatrix} \mathbf{0} & \tilde{\mathbb{D}}_{\mathsf{N}}^2 - U_{\mathrm{eff}} \\ \tilde{\mathbb{D}}_{\mathsf{N}}^2 - U_{\mathrm{eff}} - 2\Sigma_0 (\tilde{\mathbb{D}}_{\mathsf{N}}^2)^{-1} \Sigma_0 & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} = -i\lambda \begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix},$$

$$U_{\text{eff}} := \mathbf{diag}(U_{\text{eff}}(x_1), U_{\text{eff}}(x_2), ..., U_{\text{eff}}(x_{N-1})),$$

$$\Sigma_0 := \mathbf{diag}(\sigma_{\ell}^{(0)}(x_1), \sigma_{\ell}^{(0)}(x_2), ..., \sigma_{\ell}^{(0)}(x_{N-1}))$$

$$\begin{pmatrix} \mathbf{a} \\ \mathbf{b} \end{pmatrix} := (a(x_1), ..., a(x_{N-1}), b(x_1), ..., b(x_{N-1}))^T$$

$$x_j = \cos(j\pi/N), j = 0, 1, ..., N,$$

$$r = r_{\star}(x+1)/2$$

$$dr/dx = r_{\star}/2$$

$$N := 3r_{\star}/4$$

$$r_{\star} := 200(n + 1)$$

Inestable/Estable

$$\sigma_{\ell}(t,r) = 2e^{\lambda_R t} \cos(\lambda_I t) [A_R(r) + iB_I(r)] - 2e^{\lambda_R t} \sin(\lambda_I t) [A_I(r) - iB_R(r)],$$

b(r=0)=0.	$\lim_{r\to\infty}b(r)=0.$
-----------	----------------------------

$$a(r=0)=0$$
, $\lim_{r\to\infty}a(r)=0$,

ℓ -values n -nodes		$\lambda [K^2/t_c]$	$\frac{1}{2}\delta^2{\cal E}_{\ell'}[A_R]$	$\frac{1}{2}\delta^2 \mathcal{E}_{\mathscr{E}}[A_I]$
0	0	$0 \pm 0.03412558i$	0.00637265	0
	1	$0 \pm 0.00300045i$ $\pm 0.00148347 + 0.00979587i$	0.00039739 0.00011228	0 -0.00011228
1	0 1	$0 \pm 0.06385090i$ $0 \pm 0.01185117i$ $\pm 0.00619398 + 0.03340186i$	0.00787292 0.00098164 0.00028039	0 0 -0.00028043

Algunos Números

$$R_s^{\text{phys}} := 2GM^{\text{phys}}/c^2$$
, Validez

$$\frac{R_s^{\text{phys}}}{R_{99}^{\text{phys}}} = \frac{(2N)^2}{(2\ell+1)R_{99}} \left(\frac{\mu}{m_{\text{pl}}}\right)^4 \ll 1,$$

Y su modo más inestable:

 $\lambda_R = 0.00619398$

→ Y definamos que:

$$t_{\text{life}} := 1/\lambda_R$$

ultralight mass
$$N < 10^{99}$$

$$\mu = 10^{-22} \; {\rm eV}/c^2 \approx 1.78 \times 10^{-58} \; {\rm kg}$$
 materia oscura

$$N \approx 10^{98} \approx 10^{10} M_{\odot}$$
 and $R^{\rm phys} \approx 1 \, {\rm Kpc}$.

Halo galáctico de

$$t_{\text{life}} = 10^{13} s \approx 3.17 \times 10^5 \text{ yr},$$

mass
$$\mu = 10^{-3} \text{ eV}/c^2 \approx 1.78 \times 10^{-39} \text{ kg}$$
 $N < 10^{61}$ un planeta enano $N \approx 10^{55}$ $M^{\text{phys}} \approx 10^{16} \text{ kg}$ and $R^{\text{phys}} \approx 200 \text{ km}$.

$$t_{\rm life} \approx 10^4 s \approx 2.8 \text{h}.$$

Perturbaciones lineales no esféricas

$$\begin{split} i\frac{\partial\Psi(t,\vec{x})}{\partial t} &= \left[-\triangle + U(t,\vec{x})\right]\Psi(t,\vec{x}),\\ \triangle U(t,\vec{x}) &= |\Psi(t,\vec{x})|^2, \end{split}$$

$$\Psi(t, \vec{x}) = e^{-iEt} [\chi_0(\vec{x}) + \epsilon \chi(t, \vec{x}) + \mathcal{O}(\epsilon^2)],$$

$$\chi(t,\vec{x}) = e^{\lambda t} \left[\mathcal{A}(\vec{x}) + \mathcal{B}(\vec{x}) \right] + e^{\lambda^* t} \overline{\left[\mathcal{A}(\vec{x}) - \mathcal{B}(\vec{x}) \right]},$$

$$\chi_0(\vec{x}) = \sigma_\ell^{(0)}(r) \mathcal{Y}_\ell(\vartheta, \varphi).$$

$$\mathcal{Y}_{\ell} := \sqrt{\frac{4\pi}{2\ell+1}} (Y^{\ell,-\ell}, Y^{\ell,-\ell+1}, \dots, Y^{\ell,\ell})^T$$

Stability analysis of nonrelativistic ℓ -boson stars with respect to non-spherical linear perturbations

Emmanuel Chávez Nambo, 1 Armando A. Roque, 2 and Olivier Sarbach 1

¹Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, 58040 Morelia, Michoacán, México
²Unidad Académica de Física, Universidad Autónoma de Zacatecas, 98060, México.

$$i\lambda \mathcal{A} = (\hat{\mathcal{H}}_0 - E) \mathcal{B}$$

$$+ i \{ \Delta^{-1} [\chi_0^* (\mathcal{A} + \mathcal{B}) + \chi_0^T (\mathcal{A} - \mathcal{B})] \} \operatorname{Im} \{\chi_0\},$$

$$i\lambda \mathcal{B} = (\hat{\mathcal{H}}_0 - E) \mathcal{A}$$

$$+ \{ \Delta^{-1} [\chi_0^* (\mathcal{A} + \mathcal{B}) + \chi_0^T (\mathcal{A} - \mathcal{B})] \} \operatorname{Re} \{\chi_0\}.$$

$$(25a)$$

$$+ \{ \Delta^{-1} [\chi_0^* (\mathcal{A} + \mathcal{B}) + \chi_0^T (\mathcal{A} - \mathcal{B})] \} \operatorname{Re} \{\chi_0\}.$$

$$\mathcal{A} = \sum_{JLM} A_{JM}{}^{L}(r) Y^{JM}{}_{L\ell},$$

$$Y^{JM}_{L\ell}(\vartheta, \varphi) := \sum_{m,\sigma} C^{JM}_{Lm\ell\sigma} Y^{Lm}(\vartheta, \varphi) \chi^{\ell\sigma},$$

$$i\lambda A_{JM}^{L} = (\hat{\mathcal{H}}_{L}^{(0)} - E) B_{JM}^{L},$$

 $i\lambda B_{JM}^{L} = (\hat{\mathcal{H}}_{L}^{(0)} - E) A_{JM}^{L} + 2Q_{JM}^{L},$

$$L = |J - \ell|, \dots, J + \ell$$

$$M = -J, \dots, J$$

$$J = 0, 1, \dots$$

Propiedades

- Simetría en las soluciones
- Modos estacionario

$$(A_{JM}^{L}, B_{JM}^{L}) = \gamma_{JM}(0, S_{JM}^{L}),$$

$$(A_{JM}{}^{L}, B_{JM}{}^{L}) = \gamma_{JM}(0, S_{JM}{}^{L}), \qquad \chi(t, \vec{x}) = \sigma_{\ell}^{(0)}(r) \sum_{J=0}^{2\ell} \sum_{M=-J}^{J} \left[\gamma_{JM} Y^{JM}{}_{\ell\ell}(\vartheta, \varphi) - c.c. \right],$$

Posibles soluciones estacionarias fuera de simetría esférica

Desaparecen los modos inestables cuando J es lo suficientemente grande.

Sistema Discreto

$$\begin{pmatrix} \mathbf{0} & \mathbb{D}^2 - \mathbb{U}_{\ell J} \\ \mathbb{D}^2 - \mathbb{U}_{\ell J} - 2\Sigma_{\ell} \mathbb{Z}_{\ell J} (\mathbb{D}^2 - \mathbb{V}_J)^{-1} \Sigma_{\ell} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{a}_{JM} \\ \mathbf{b}_{JM} \end{pmatrix} = -i\lambda \begin{pmatrix} \mathbf{a}_{JM} \\ \mathbf{b}_{JM} \end{pmatrix}, \qquad \begin{aligned} & 2c_1(N-1) \times 2c_1(N-1) \\ & c_1 = J+1 \text{ if } J < \ell \\ & c_1 = \ell+1 \text{ if } J \ge \ell \end{aligned}$$

$$2c_1(N-1) \times 2c_1(N-1)$$

$$c_1 = J+1 \text{ if } J < \ell$$

$$c_1 = \ell + 1 \text{ if } J > \ell$$

Sistema n = 0, $\ell = 1$

	$\lambda \left[1/t_c \right]$		$\lambda \ [1/t_c]$	
	Components		Components	
J	Real Imaginary	J	Real	Imaginary
	$0 1.05201 \times 10^{-5}$		0	0.11368481
0	0.06385090	4	0	0.16030883
	0 0.14328038	-	0	0.18097544
	0.00086601		0	0.15468802
1	0 0.05499307	5	0	0.18203923
1	0.08194250	9	0	0.19756177
	$0 2.11418 \times 10^{-6}$		0	0.18105790
_	0 0.09613376	6	0	0.19765391
2	0 0.10590972		ő	0.20832581
	0.20000.2			
	0 0.05557199		0	0.19756669
3	0 0.13196275	7	0	0.20833027
	0 0.15373565		0	0.21570444

Sistema n = 0, $\ell \neq 1$

		$\ell = 0, \lambda [1/t_c]$	$\ell = 2, \lambda [1/t_c]$		$\ell = 3, \lambda [1/t_c]$	
I	Components		Components		Components	
	J	Real Imaginary	Real	Imaginary	Real	Imaginary
		$0 4.321 \times 10^{-6}$	0	8.766×10^{-6}	0	1.637×10^{-5}
I	0	0.03412558	0	0.06408695	0	0.05903587
		0.06030198	0	0.16575905	0	0.16827468
		0.00049999	0	0.00111802	0	0.00132286
	1	0 0.05 $v(t, \bar{x})$	$f(t) = e^{\lambda t} [A$	$(p(\vec{x}) + iB_D)$	$(\vec{x})],$	0.05925506
		0.066.75.25	, - [-	in(w) iD1	(~)],	0.06609698
2				2.63×10^{-15}		The state of the s
	2	0.06564270	0.00644373	-5.11×10^{-13}	0.00907756	2.1×10^{-12}
		0.07136165	0	0.10237935	0	0.09954769
		0.06571493	0	0.05550210	0.00363560	0.05313153
	3	0.07135829	0	0.06147704	0	0.05910000
		0.07442765	0	0.07000546	0.00085739	0.05953874

Falta realizar el estudio de los tiempos de vida

Conclusiones

Pareciera que las únicas configuraciones estables son $n=0, \ell=0,1$.

Gracias!