CSE 541: Database Systems I

Memory Hierarchy and Storage Devices

Big Picture

Application (declarative)

Application that uses a DBMS to access databases (typically SQL)

Database
Management
System (DBMS)

Software system that handles access to databases (records, tables) in storage devices

OS, runtime libraries

Tools for building a DBMS: file systems, synchronization primitives...

Hardware

CPU, memory, storage devices, network...

Memory & Storage

What's the <u>perfect</u> device to store data (in dream)?

- Capacity: unlimited
- Bandwidth: unlimited
- Access speed: instant
- Price: free
- Data retention: forever
- Reliability: never fails

Nah, impossible......

Tradeoffs among performance, capacity, endurance and cost

Memory/Storage Hierarchy

Must bring data from storage to memory for CPU to access

Relative Speed - an Analogy

Storage

Permanent home of data

- Hard disk
- SSD (solid state drive)
- Storage is much cheaper that memory
 - 3GB memory or 2000GB disk about the same cost
 - Access time for disk is at least one order of magnitude slower than for memory

Block Devices

Most storage devices used today are block devices.

- Disks has a **sector**-addressable address space.
 - Array of sectors (Typically 512B or 4096B)
 - Sector is the unit of atomicity.
- Main operations: read + write to sectors

• The nature of its "slower" access makes management "interesting".

HDD Organization

- Coated with magnetic material that encodes bits
 - Capacity increases come from improvements in bit density
- Logically divided into:
 - Track: ring on a platter
 - Sector: unit of r/w, portion of a track
 - Cylinders: stacks of tracks
- Read/write data (overview):
 - Position disk head over track
 - Seek time
 - Wait for sector to rotate under head
 - Rotational delay
 - Read/write data from/to sector
 - Transfer time
 - Total Delay =

Seek + Rotation + Transfer

HDD Organization

- Disk physics:
 - Modern disks spin at 5400, 7200, 10000, and 15000 rpm
 - Outside edge of 3.5" disk spins at over 150 mph
 - Disk head "floats" on very thin cushion of air above platter
 - Bernoulli effect used to "fly" as close as possible
 - Head crash is exactly that → disk head contacts the surface
- Disks organized as stacks of platters:
 - Disk heads mounted on "combs" → often heads on both sides
 - Disk arms/heads have a single actuator; they must move together
- Disk controller
 - Managing arm/head movements
 - Contains RAM to cache disk contents from/to disk
 - Accepts commands from CPU → responds using DMA/interrupts

CC BY-SA 3.0 Eric Gaba, Wikimedia Commons user <u>Sting</u>

HDD Performance Model

- Seek: Move head to the right track.
 - Slow, 4-10ms.
- Rotate: Rotate to the starting sector.
 - Slow, depends on RPM, ~4ms
- Transfer: Transfer the data out through I/O bus.
 - Fast, depends on RPM.

Sequential vs. Random Access.

Flash Memory / SSDs

- Solid State
- Non-volatile
- No moving parts
 - More reliable
 - More shock-resistant
- Much faster than HDD
- Much slower than DRAM

Flash SSD Internals

Flash/SSD Operations

- Read, Write and Erase
- Typical ~4KB pages for read/write
- ~256 blocks for erase (64 pages per block)
- Erase: reset all bits in a block to 1s
- Write: clear some bits in a page to 0s
 - Cannot change a 0 to a 1(requires erase first!!!)
- Read: read a single 4KB page

- 4KB Page Read
 - 20 to 100μs (> 100μs from application point of view)
 - > 500MB/s bandwidth (parallel access across banks)
- 4KB Page Write
 - 200µs
 - > 500MB/s bandwidth
- 256KB Block Erase
 - 2ms
 - Ever write takes 2ms?!

Flash Wear

- Cells become unreliable after certain number of erase cycles
- About 100K erases for SLC NAND
- About 10K for MLC NAND
- About 3K for TLC, about 1K for QLC
- Some blocks are written more frequently than others
- What can we do about high churn blocks? (e.g. file system bitmap? FAT?)
- Don't want a device that only last as long as its weakest cell

Flash Translation Layers (FTL)

- Idea: can't rewrite a block in place quickly, instead write new contents to a pre-erased page
- How: indirection, map virtual page numbers to physical pages
- While at it, recycle blocks with the lowest erase count first
 - Rapid updates to single VPN backed by different PPNs

Write Amplification

(Device-level Block Writes) / (Host-level Block Writes)

WA = 2 blocks / 1 blocks = 2.0x

(Flash-based) SSD Performance Model

- Parallel Access: Queue Depth (can up to 64)
- No seek time: Better Random I/O → 10k 1M IOPS
- Higher Bandwidth: up to 7GB on PCIe 4.0, ~500MB on SATA.

- Asymmetric Read/Write
- Aging in Performance

Recent PCM based SSD (Intel Optane) is even more astonishing.

Main Memory

DRAM - dynamic random access memory

- Need constant current to retain data
- Volatile: contents lost when power is out
- Current street price: ~\$7-30/GB
- Lifetime: can be programmed > 10¹⁶ times

Media Comparison

- HDD
 - Highest density
 - Millisecond scale latency
 - 100s of IOPS, ~100MB/s bandwidth
- SSD
 - Moderate density
 - Several hundred microsecond scale latency
 - 100Ks of IOPS, up to 7GB/s bandwidth
- Main Memory
 - Low density
 - ~100ns latency
 - Bandwidth can easily hit > 40GB/s

^{*} Let's forget persistent memory (storage-class memory) for now.