CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars

A phrase structure grammar

Context Free Grammar (回想Compiler)

 $S \rightarrow NP VP$

 $N \rightarrow people$

 $VP \rightarrow V NP$

 $N \rightarrow fish$

 $VP \rightarrow V NP PP$

 $N \rightarrow tanks$

 $NP \rightarrow NP NP$

 $N \rightarrow rods$

 $NP \rightarrow NP PP$

 $V \rightarrow people$

 $NP \rightarrow N$

 $V \rightarrow fish$

 $NP \rightarrow e$

 $V \rightarrow tanks$

 $PP \rightarrow P NP$

 $P \rightarrow with$

people fish tanks
people fish with rods

Phrase structure grammars = context-free grammars (CFGs)

- G = (T, N, S, R)
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup T)^*$
- A grammar G generates a language L.

Phrase structure grammars in NLP

T: 無法再拆成更小單位的符號,只會出現在RHS

可以再拆成更小單位的符號,出現在LHS或RHS

G = (T, C, N, S, L, R)

S: Start Symbol,代表句子的開頭

● T is a set of terminal symbols L: Phrase改寫成特定的字,例如DT -> the, NN -> man R: Phrase改寫成Phrase, 例如NP -> DT NN

C is a set of preterminal symbols

- N is a set of nonterminal symbols
- S is the start symbol ($S \subseteq N$)
- L is the lexicon, a set of items of the form $X \rightarrow x$
 - $X \in P$ and $x \in T$
- R is the grammar, a set of items of the form $X \rightarrow \gamma$
 - $X \subseteq N$ and $\gamma \subseteq (N \cup C)^*$
- By usual convention, S is the start symbol, but in statistical NLP, we usually have an extra node at the top (ROOT, TOP)
- We usually write e for an empty sequence, rather than nothing e代表Empty Symbol,代表句子的結束

A phrase structure grammar

Grammar

$$S \rightarrow NP VP$$

$$VP \rightarrow V NP$$

$$VP \rightarrow V NP PP$$

$$NP \rightarrow NP NP$$

$$NP \rightarrow NP PP$$

$$NP \rightarrow N$$

$$NP \rightarrow e$$

$$PP \rightarrow P NP$$

Lexicon

$$N \rightarrow people$$

$$N \rightarrow fish$$

$$N \rightarrow tanks$$

$$N \rightarrow rods$$

$$V \rightarrow people$$

$$V \rightarrow fish$$

$$V \rightarrow tanks$$

$$P \rightarrow with$$

people fish tanks
people fish with rods

Probabilistic – or stochastic – context-free grammars (PCFGs)

對於每一組Grammar Rule

找出機率和最高的組合

- **G** = (T, N, S, R, P) 來代表這一句話的詞性結構
 - T is a set of terminal symbols
 - N is a set of nonterminal symbols
 - S is the start symbol ($S \subseteq N$)
 - R is a set of rules/productions of the form $X \rightarrow \gamma$
 - P is a probability function
 - P: R \rightarrow [0,1]

•
$$\forall X \in \mathbb{N}, \sum_{X \to \gamma \in \mathbb{R}} P(X \to \gamma) = 1$$

A grammar G generates a language model L.

$$\sum_{\gamma \in T^*} P(\gamma) = 1$$

Christopher Manning

A PCFG

$S \rightarrow NP VP$	1.0	N → people	0.5
$VP \rightarrow V NP$	0.6	$N \rightarrow fish$	0.2
$VP \rightarrow V NP PP$	0.4	N → tanks	0.2
$NP \rightarrow NP NP$	0.1	$N \rightarrow rods$	0.1
$NP \rightarrow NP PP$	0.2	$V \rightarrow people$	0.1
$NP \rightarrow N$	0.7	$V \rightarrow fish$	0.6
$PP \rightarrow P NP$	1.0	V → tanks	0.3
		$P \rightarrow with$	1.0

[With empty NP removed so less ambiguous]

The probability of trees and strings

- P(t) The probability of a tree t is the product of the probabilities of the rules used to generate it.
- P(s) The probability of the string s is the sum of the probabilities of the trees which have that string as their yield

$$P(s) = \Sigma_j P(s, t)$$
 where t is a parse of s
= $\Sigma_j P(t)$

P(t)代表這一句話的詞性結構所畫出的樹為t的機率,用前一頁的機率去算 P(s)代表這一句話具有正確文法結構的機率 (?)

Tree and String Probabilities

s = people fish tanks with rods

•
$$P(t_1) = 1.0 \times 0.7 \times 0.4 \times 0.5 \times 0.6 \times 0.7$$

 $\times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$

Verb attach

= 0.0008232

•
$$P(t_2) = 1.0 \times 0.7 \times 0.6 \times 0.5 \times 0.6 \times 0.2$$

 $\times 0.7 \times 1.0 \times 0.2 \times 1.0 \times 0.7 \times 0.1$

Noun attach

• $P(s) = P(t_1) + P(t_2)$ = 0.0008232 + 0.00024696 = 0.00107016

= 0.00024696

P(t1) > P(t2) 所以t1會是比較可能的詞性排列組合

CFGs and PCFGs

(Probabilistic)
Context-Free
Grammars

Grammar Transforms

Restricting the grammar form for efficient parsing

Chomsky Normal Form

試著把大量的Rules做合併 做出數量較少的Rules

- All rules are of the form $X \rightarrow YZ$ or $X \rightarrow w$
 - X, Y, Z ∈ N and w ∈ T
- A transformation to this form doesn't change the weak generative capacity of a CFG
 - That is, it recognizes the same language
 - But maybe with different trees
- Empties and unaries are removed recursively
- n-ary rules are divided by introducing new nonterminals (n > 2)

修改規則:

- 1. RHS只有e的要被拿掉
- 2. RHS只有一項,且可以被改寫為terminal的,要改寫
- 3. RHS有三項或以上的,要改成兩項

結果:所有Rules的RHS都應該只有兩項,或是只有一項terminal

A phrase structure grammar


```
S \rightarrow NP VP
VP \rightarrow V NP S \rightarrow V NP

VP \rightarrow V S \rightarrow V NP PP

VP \rightarrow V NP PP S \rightarrow V PP
 NP \rightarrow NP NP
 NP \rightarrow NP
 NP \rightarrow NP PP
 NP \rightarrow PP
 NP \rightarrow N
 PP \rightarrow P NP
 PP \rightarrow P
```

```
N \rightarrow people
N \rightarrow fish
N \rightarrow tanks
N \rightarrow rods
V \rightarrow people
V \rightarrow fish
V \rightarrow tanks
P \rightarrow with
```



```
S \rightarrow NP VP
                                                                                             N \rightarrow people
VP \rightarrow V NP
                                                                                            N \rightarrow fish
S \rightarrow V NP
                                                                                             N \rightarrow tanks
VP \rightarrow V
                                                                                             N \rightarrow rods
VP \rightarrow V NP PP
                                                                                           V \rightarrow people S -> people 
 V \rightarrow fish S -> tanks 
 V \rightarrow tanks
S \rightarrow V NP PP
VP \rightarrow VPP
S \rightarrow V PP
NP \rightarrow NP NP
NP \rightarrow NP
                                                                                             P \rightarrow with
NP \rightarrow NP PP
NP \rightarrow PP
NP \rightarrow N
PP \rightarrow P NP
PP \rightarrow P
```


Christopher Manning

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

把RHS有三項的改成兩項

VP VNP PP VP -> V @VP_V

 $S \rightarrow V NP PP$ @VP_V -> NP PP

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $PP \rightarrow with$

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP_V \rightarrow NPP$

 $V \rightarrow V @S_V$

 $@S_V \rightarrow NPP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$ $VP \rightarrow fish$

 $VP \rightarrow fish$ $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $PP \rightarrow with$

A phrase structure grammar

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $VP \rightarrow V NP PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow N$

 $NP \rightarrow e$

 $PP \rightarrow P NP$

 $N \rightarrow people$

 $N \rightarrow fish$

 $N \rightarrow tanks$

 $N \rightarrow rods$

 $V \rightarrow people$

 $V \rightarrow fish$

 $V \rightarrow tanks$

 $P \rightarrow with$

Christopher Manning

Chomsky Normal Form steps

 $S \rightarrow NP VP$

 $VP \rightarrow V NP$

 $S \rightarrow V NP$

 $VP \rightarrow V @VP_V$

 $@VP V \rightarrow NP PP$

 $S \rightarrow V @S_V$

 $@S_V \rightarrow NPPP$

 $VP \rightarrow VPP$

 $S \rightarrow V PP$

 $NP \rightarrow NP NP$

 $NP \rightarrow NP PP$

 $NP \rightarrow P NP$

 $PP \rightarrow P NP$

 $NP \rightarrow people$

 $NP \rightarrow fish$

 $NP \rightarrow tanks$

 $NP \rightarrow rods$

 $V \rightarrow people$

 $S \rightarrow people$

 $VP \rightarrow people$

 $V \rightarrow fish$

 $S \rightarrow fish$

 $VP \rightarrow fish$

 $V \rightarrow tanks$

 $S \rightarrow tanks$

 $VP \rightarrow tanks$

 $P \rightarrow with$

 $PP \rightarrow with$

Chomsky Normal Form

- You should think of this as a transformation for efficient parsing
- With some extra book-keeping in symbol names, you can even reconstruct the same trees with a detransform
- In practice full Chomsky Normal Form is a pain
 - Reconstructing n-aries is easy
 - Reconstructing unaries/empties is trickier
- Binarization is crucial for cubic time CFG parsing

 The rest isn't necessary; it just makes the algorithms cleaner and a bit quicker

An example: before binarization...

After binarization...

Treebank: empties and unaries

PTB Tree

NoFuncTags

NoEmpties

High Low NoUnaries

原始的Treebank

Unary rules: alchemy in the land of treebanks

Same-Span Reachability

Grammar Transforms

Restricting the grammar form for efficient parsing

CKY Parsing

Exact polynomial time parsing of (P)CFGs

Constituency Parsing

PCFG

Rule Prob θ_i				
$S \rightarrow NP VP$	Θ_{0}			
$NP \rightarrow NP NP$	Θ_1			
$N \rightarrow fish$	θ_{42}			
$N \rightarrow people$	θ_{43}			
$V \rightarrow fish$	θ_{44}			

Cocke-Kasami-Younger (CKY) Constituency Parsing

Parse Triangle / Chart

fish people fish tanks

Viterbi (Max) Scores

Viterbi (Max) Scores

Extended CKY parsing

- Unaries can be incorporated into the algorithm
 - Messy, but doesn't increase algorithmic complexity
- Empties can be incorporated
 - Use fenceposts 把s加到句子最前面,所以那張Chart的邊長就會是n+1
 - Doesn't increase complexity; essentially like unaries
- Binarization is vital
 - Without binarization, you don't get parsing cubic in the length of the sentence and in the number of nonterminals in the grammar
 - Binarization may be an explicit transformation or implicit in how the parser works (Early-style dotted rules), but it's always there.

The CKY algorithm (1960/1965) ... extended to unaries

```
function CKY(words, grammar) returns [most_probable_parse,prob]
  score = new double[#(words)+1][#(words)+1][#(nonterms)]
  back = new Pair[#(words)+1][#(words)+1][#nonterms]]
  for i=0; i<#(words); i++
    for A in nonterms
                                   A -> terminal 0.3
      if A -> words[i] in grammar
        score[i][i+1][A] = P(A \rightarrow words[i])
    //handle unaries
    boolean added = true
                             unary rules
    while added
      added = false
      for A, B in nonterms
        if score[i][i+1][B] > 0 && A->B in grammar
          prob = P(A->B)*score[i][i+1][B]
          if prob > score[i][i+1][A]
            score[i][i+1][A] = prob
            back[i][i+1][A] = B
            added = true
```


The CKY algorithm (1960/1965) ... extended to unaries

```
for span = 2 to #(words) start from length >= 2
  for begin = 0 to #(words) - span 從左到右
    end = begin + span
    for split = begin+1 to end-1
      for A,B,C in nonterms
        prob=score[begin][split][B]*score[split][end][C]*P(A->BC)
binary
       if prob > score[begin][end][A]
rules
          score[begin]end][A] = prob
          back[begin][end][A] = new Triple(split,B,C)
   //handle unaries
    boolean added = true
   while added
      added = false unaries rules
      for A, B in nonterms
        prob = P(A->B)*score[begin][end][B];
        if prob > score[begin][end][A]
          score[begin][end][A] = prob
          back[begin][end][A] = B
          added = true
return buildTree(score, back)
```


Quiz Question!

CKY Parsing

Exact polynomial time parsing of (P)CFGs

CKY Parsing

A worked example

Christopher Manning

 $S \rightarrow NP VP$

 $NP \rightarrow N$

 $PP \rightarrow P NP$

The grammar: Binary, no epsilons,

0.9

0.7

1.0

J FINI VI	0.5
$S \rightarrow VP$	0.1
$VP \rightarrow V NP$	0.5
$VP \rightarrow V$	0.1
$VP \rightarrow V @VP_V$	0.3
$VP \rightarrow VPP$	0.1
$@VP_V \rightarrow NPPP$	1.0
$NP \rightarrow NP NP$	0.1
$NP \rightarrow NP PP$	0.2

$$N \rightarrow people$$
 0.5
 $N \rightarrow fish$ 0.2
 $N \rightarrow tanks$ 0.2
 $N \rightarrow rods$ 0.1
 $V \rightarrow people$ 0.1
 $V \rightarrow fish$ 0.6
 $V \rightarrow tanks$ 0.3
 $P \rightarrow with$ 1.0

0_	fish 1	L people	2 fish	3 tanks 4
1	score[0][1]	score[0][2]	score[0][3]	score[0][4]
2		score[1][2]	score[1][3]	score[1][4]
3			score[2][3]	score[2][4]
4				score[3][4]

			3 tanks 4
$S \rightarrow NP VP$	0.9	0	
$S \rightarrow VP$	0.1	$N \rightarrow \text{fish } 0.2$	
$VP \rightarrow V NP$	0.5	$V \rightarrow \text{fish } 0.6$ $S \rightarrow VP = 0.006$	
$VP \rightarrow V$	0.1	$VP \rightarrow V = 0.06$	
$VP \rightarrow V @VP_V$	0.3	$1^{NP->N} = 0.14$	
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people 0.5}$	
$@VP_V \rightarrow NPPP$	1.0	V → people 0.1	
$NP \rightarrow NP NP$	0.1		
$NP \rightarrow NP PP$	0.2		
$NP \rightarrow N$	0.7	2	
$PP \rightarrow P NP$	1.0	N → fish 0.2 對於長度為1的 V → fish 0.6	
		到於長度為I的 V → fish 0.6 遞迴向前改寫所有grammar V → fish 0.6	
$N \rightarrow people$	0.5	rules的可能	
$N \rightarrow fish$	0.2	// handle unaries	
$N \rightarrow tanks$	0.2	boolean added = true while added	N → tanks 0.2
$N \rightarrow rods$	0.1	added = false	V → tanks 0.1
$V \rightarrow people$	0.1	for A, B in nonterms if score[i][i+1][B] > 0 && A->B in grammar	
$V \rightarrow fish$	0.6	prob = P(A->B)*score[i][i+1][B] if(prob > score[i][i+1][A])	
$V \rightarrow tanks$	0.3	score[i][i+1][A] = prob	
$P \rightarrow with$	1.0	back[i][i+1][A] = B added = true	

$S \rightarrow NP VP$	<mark>0.9</mark> -	$_{0}$ fish 1 people 2 fish 3	tanks 4
$S \rightarrow VP$	0.1	$N \rightarrow \text{fish } 0.2$ $= 0.9*0.14*0.01$	
VP → V NP	0.5	$V \rightarrow \Pi S N U.6$ $VP = V NP$	
$VP \rightarrow V$	0.1	$ \begin{array}{c} NP \to N \ 0.14 \\ VP \to V \ 0.06 \end{array} $	
$VP \rightarrow V @VP_V$	0.3	$1 \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people 0.5}$	
$@VP_V \rightarrow NPPP$	1.0	V → people 0.1	
$NP \rightarrow NP NP$	0.1	NP → N 0.35	
$NP \rightarrow NP PP$	0.2	$\frac{VP \rightarrow V \ 0.01}{S \rightarrow VP \ 0.001}$	
$NP \rightarrow N$	0.7	$S \rightarrow VP \ 0.001$	
$PP \rightarrow P NP$	1.0	$N \rightarrow \text{fish } 0.2$	
N → people N → fish	0.5 0.2	fish和people 都有可能是 N, V, NP, VP, S找出所有可能 向前改寫的排列組合,並算機率 V → fish 0.6 NP → N 0.14 VP → V 0.06 S → VP 0.006	
$N \rightarrow tanks$	0.2		→ tanks 0.2
$N \rightarrow rods$	0.1	If (prob > score[begin[lend][A])	→ tanks 0.1
$V \rightarrow people$	0.1	score[begin]end][A] = prob	$P \rightarrow N \ 0.14$
$V \rightarrow fish$	0.6	C.	$P \rightarrow V 0.03$ $\rightarrow VP 0.003$
$V \rightarrow tanks$	0.3	4	- VF U.UU3
$P \rightarrow with$	1.0		

S → NP VP	0.9	0.	fish 1	l people	2 fish	3 tanks 4
$S \rightarrow VP$	<mark>0.1</mark>		$N \rightarrow \text{fish } 0.2$ V $\rightarrow \text{fish } 0.6$	$NP \rightarrow NP NP$ 0.0049 $S \rightarrow V NP$.VD	
$VP \rightarrow V NP$ $VP \rightarrow V$ $VP \rightarrow V @VP V$	0.5 0.1 0.3	1	$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$0.105 = 0$. $S \rightarrow NP VP$ 所以	105*0.1>0.0012 地原本的S->NP V	
$VP \rightarrow VPP$	0.1	Τl		0.00126 N → people 0.5	NP → NP NP	
$@VP_V \rightarrow NPPP$ $NP \rightarrow NPNP$	1.0 0.1			$V \rightarrow \text{people } 0.1$ NP \rightarrow N 0.35	$\begin{array}{c} 0.0049 \\ VP \rightarrow V NP \\ 0.007 \end{array}$	
$NP \rightarrow NP PP$ $NP \rightarrow N$	0.2 0.7	2		$VP \rightarrow V \ 0.01$ $S \rightarrow VP \ 0.001$	$S \rightarrow NP VP$ 0.0189	
PP → P NP	1.0				$N \rightarrow \text{fish } 0.2$ $V \rightarrow \text{fish } 0.6$	$NP \rightarrow NP NP$ 0.00196 $VP \rightarrow V NP$
$N \rightarrow people$	0.5		//handle unaries		$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$	0.042
$N \rightarrow fish$	0.2	3	boolean added = tru while added	ie	$S \rightarrow VP 0.006$	$S \rightarrow NP VP 0.00378$
$N \rightarrow tanks$	0.2	3	added = false			N → tanks 0.2
$N \rightarrow rods$	0.1			for A, B in nonterms prob = P(A->B)*score[begin][end][B];		V → tanks 0.1
$V \rightarrow people$	0.1		if prob > score[be	gin][end][A]		$NP \rightarrow N \ 0.14$
$V \rightarrow fish$	0.6		score[begin][end][A] = prob back[begin][end][A] = B			$VP \rightarrow V 0.03$
$V \rightarrow tanks$	0.3	4	added = true	1. 1 –		$S \rightarrow VP 0.003$
$P \rightarrow with$	1.0					

$S \rightarrow NP VP$	0.9		3 tanks 4
$S \rightarrow VP$	0.5	$N \rightarrow \text{fich } \Omega \Omega$ ND $\rightarrow \text{ND ND}$	
VP → V NP	0.5	$V \to \text{fish } 0.6$	
$VP \rightarrow V$	0.3	$NP \rightarrow N 0.14$	
$VP \rightarrow V @VP_V$	0.3	$VP \rightarrow V 0.00$ $S \rightarrow VP$	
$VP \rightarrow VPP$	0.1		
$@VP_V \rightarrow NPPP$	1.0	$V \rightarrow \text{people 0.1}$ 0.0049	
$NP \rightarrow NP NP$	0.1		
$NP \rightarrow NP PP$	0.2	$VP \rightarrow V 0.01$ $S \rightarrow NP VP$	
$NP \rightarrow N$	0.7		
$PP \rightarrow P NP$	1.0		$NP \rightarrow NP NP \\ 0.00196$
N → people N → fish	0.5 0.2	所以安约山垣柳組作的所有可能排列組占 (*) * * * * * * * * * * * * * * * * * *	$VP \rightarrow V NP$ 0.042 $S \rightarrow VP$ 0.0042
$N \rightarrow tanks$	0.2		N → tanks 0.2
$N \rightarrow rods$	0.1	for split = begin+1 to end-1 for A,B,C in nonterms	V → tanks 0.1
$V \rightarrow people$	0.1	prob=score[begin][split][B]*score[split][end][C]*P(A->BC)	$NP \rightarrow N \ 0.14$
$V \rightarrow fish$	0.6	score pegin end A = prop	$VP \rightarrow V 0.03$ $S \rightarrow VP 0.003$
$V \rightarrow tanks$	0.3	/ · · · · · · · · · · · · · · · · · · ·	3 / VF 0.003
$P \rightarrow with$	1.0		

6 110.170	0.0	0	fish 1	people	2 fish	3 tanks 4
$S \rightarrow NP VP$ $S \rightarrow VP$ $VP \rightarrow V NP$ $VP \rightarrow V$ $VP \rightarrow V @VP_V$ $VP \rightarrow V PP$ $@VP_V \rightarrow NP PP$ $NP \rightarrow NP NP$	0.9 0.1 0.5 0.1 0.3 0.1 1.0 0.1		V \rightarrow fish 0.6 NP \rightarrow N 0.14 VP \rightarrow V 0.06 S \rightarrow VP 0.006	$NP \rightarrow NP NP$ 0.0049 $VP \rightarrow V NP$ 0.105 $S \rightarrow VP$ 0.0105 $N \rightarrow people 0.5$ $V \rightarrow people 0.1$ $NP \rightarrow N 0.35$	$NP \rightarrow NP NP$ 0.0000686 $VP \rightarrow V NP$ 0.00147 $S \rightarrow NP VP$ 0.000882 $NP \rightarrow NP NP$ 0.0049 $VP \rightarrow V NP$	
$NP \rightarrow NP PP$ $NP \rightarrow N$ $PP \rightarrow P NP$ $N \rightarrow people$ $N \rightarrow fish$	0.1 0.2 0.7 1.0	2		VP → V 0.01 S → VP 0.001 一樣 E取代原本的	0.007 $S \rightarrow NP VP$ 0.0189 $N \rightarrow fish \ 0.2$ $V \rightarrow fish \ 0.6$ $NP \rightarrow N \ 0.14$ $VP \rightarrow V \ 0.06$ $S \rightarrow VP \ 0.006$	$NP \rightarrow NP NP$ 0.00196 $VP \rightarrow V NP$ 0.042 $S \rightarrow VP$ 0.0042
$N \rightarrow tanks$ $N \rightarrow rods$ $V \rightarrow people$ $V \rightarrow fish$ $V \rightarrow tanks$ $P \rightarrow with$	0.2 0.1 0.1 0.6 0.3 1.0	4	if prob > score[be score[begin]en	ms n][split][B]*score[split] egin][end][A]		N \rightarrow tanks 0.2 V \rightarrow tanks 0.1 NP \rightarrow N 0.14 VP \rightarrow V 0.03 S \rightarrow VP 0.003

C - ND VD	0.0	fish 1 people 2 fish 3 tanks 4
$S \rightarrow NP VP$ $S \rightarrow VP$	0.9 ($N \rightarrow \text{fish } 0.2$ $NP \rightarrow NP NP$ $NP \rightarrow NP NP$ 0.0000686 0.0000686
$VP \rightarrow V NP$ $VP \rightarrow V$	0.5 0.1 0.3	$\begin{array}{ c c c c c c }\hline NP \rightarrow N \ 0.14 & VP \rightarrow V \ NP & 0.105 & VP \rightarrow V \ NP & 0.00147 \\ S \rightarrow VP & S \rightarrow NP \ VP & S \rightarrow NP \ VP & S \rightarrow NP \ NP \ NP & S \rightarrow NP \ NP$
$VP \rightarrow V @VP_V$ $VP \rightarrow V PP$ $@VP V \rightarrow NP PP$	0.5 0.1 1.0	$S \rightarrow VP \ 0.006$ 0.0105 0.000882 $N \rightarrow people \ 0.5$ $V \rightarrow people \ 0.1$ 0.00049 0.0000686
$NP \rightarrow NP NP$	0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$NP \rightarrow NP PP$ $NP \rightarrow N$	0.7	$S \rightarrow NP \ VP$ $S \rightarrow NP \ VP$ 0.0189 0.01323 0.01323 0.01323 0.01323
PP → P NP	1.0	找出unaries $V \rightarrow \text{fish } 0.6$ $V \rightarrow V \text{NP}$
$N \rightarrow people$ $N \rightarrow fish$		例如S->VP = 0.1*0.000098<0.000882
N → tanks N → rods	0.2 0.1	for split = begin+1 to end-1 for A B C in ponterms $V \rightarrow \text{tanks } 0.2$ $V \rightarrow \text{tanks } 0.1$
$V \rightarrow people$ $V \rightarrow fish$	0.1	prob=score[begin][split][B]*score[split][end][C]*P(A->BC) if prob > score[begin][end][A] score[begin]end][A] = prob $S \rightarrow VP \ 0.003$
V → tanks P → with	0.3 1.0	back[begin][end][A] = new Triple(split,B,C)

$S \rightarrow NP VP$	0.9	fish 1 people 2 fish 3 tanks 4
$S \rightarrow VP$	0.3	$N \rightarrow \text{fish } 0.2$ $NP \rightarrow NP NP$ $NP \rightarrow NP NP$ $NP \rightarrow NP NP$
VP → V NP	0.1	$V \rightarrow \text{fish } 0.6$ 0.0009604 0.00000686 0.0000009604
VP → V VP → V	0.3	$NP \rightarrow N \ 0.14$ $VP \rightarrow V \ NP$ $VP \rightarrow V \ NP$ $VP \rightarrow V \ NP$ 0.105 0.00147 0.00002058
		$VP \rightarrow V 0.06$ $S \rightarrow VP$ $S \rightarrow NP VP$ $S \rightarrow NP VP$
$VP \rightarrow V @VP_V$	0.3	1 S \rightarrow VP 0.006 0.0105 0.000882 0.00018522
$VP \rightarrow VPP$	0.1	$N \rightarrow \text{people } 0.5 NP \rightarrow NP NP \qquad NP \rightarrow NP NP$
$@VP_V \rightarrow NPPP$	1.0	$V \rightarrow \text{people } 0.1$ 0.0049 0.0000686
$NP \rightarrow NP NP$	0.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$NP \rightarrow NP PP$	0.2	$ VP \rightarrow V 0.01$ $ S \rightarrow NP VP$ $ S \rightarrow NP VP$
$NP \rightarrow N$	0.7	2 這邊就像50頁那樣 S → VP 0.001 0.0189 0.01323
PP → P NP	1.0	fish people fish tanks $N \rightarrow \text{fish } 0.2$ $NP \rightarrow NP NP$
11 / 1 (V)	1.0	有以下三種解讀方法 V → fish 0.6 0.00196
		[fish people fish] [tanks] (紅框) NP → N 0.14 VP → V NP
$N \rightarrow people$	0.5	[fish people] [fish tanks] (綠框) VP → V 0.06 S → VP
$N \rightarrow fish$	0.2	
$N \rightarrow tanks$	0.2	一樣列出所有排列組合後,把機率最 高的填入
$N \rightarrow rods$	0.1	取後待到這可能的取住排列為3−>NP VP V/ → tanks 0.1
V → people	0.1	問題來了,TREE呢???? W
V → fish	0.6	哪一塊代表NP,哪一塊代表VP?
V → tanks	0.3	所以要呼叫最後一行的buildTree,進行backtracking S → VP 0.003 S → VP 0.003
		Call buildTree(score, back) to get the best parse
$P \rightarrow with$	1.0	Can build free(score, back) to get the best parse

CKY Parsing

A worked example

Constituency Parser Evaluation

Evaluating constituency parsing

Gold standard brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10) 這是正確解答(label) $\overline{\mathrm{VP}}$ NP NP NNS NNS **VBD** $\overline{\mathrm{VP}}$ NN . 11 **VBG** NP PP O Sales 1 executives 2 were yesterday 10 NNS 3 examining 4 the 5 figures 6 with 7 great 8 care 9 Candidate brackets: **S-(0:11)**, **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10) 這是parser出來的結果 這邊發現yesterday錯了 <u>但要怎麼</u>計算他的error $\overline{\mathrm{VP}}$ NP NNS NNS VΡ **VBD** • 11 ŃΡ PP VBG O Sales 1 executives 2 were ΙŃ 3 examining **NNS** NP 4 the 5 figures 6 with NN NN 7 great 8 care 9 yesterday 10

Evaluating constituency parsing

Gold standard brackets:

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), NP-(9:10)

Candidate brackets:

S-(0:11), **NP-(0:2)**, VP-(2:10), VP-(3:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)

Labeled Precision 3/7 = 42.9% 找到的7個有3個是全對的

Labeled Recall 3/8 = 37.5% 正解的8個有3個被找到了

LP/LR F1 40.0%

Tagging Accuracy 11/11 = 100.0% 總共11個字各自都標對了

缺點:像這個例子只錯了一個yesterday

但因為會導致其他tag的位置錯很多

所以效能會比預期低很多

How good are PCFGs?

- Penn WSJ parsing accuracy: about 73% LP/LR F1
- Robust
 - Usually admit everything, but with low probability
- Partial solution for grammar ambiguity
 - A PCFG gives some idea of the plausibility of a parse
 - But not so good because the independence assumptions are too strong
- Give a probabilistic language model
 - But in the simple case it performs worse than a trigram model
- The problem seems to be that PCFGs lack the lexicalization of a trigram model

Constituency Parser Evaluation