

НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ «ХАРКІВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ» Кафедра «Комп'ютерної інженерії та програмування»

ФОРМАЛЬНІ МОВИ, ГРАМАТИКИ І АВТОМАТИ

Лекція 9

ВИСХІДНІ LR(K) – РОЗПІЗНАВАЧІ

Гавриленко Світлана Юріївна +380664088551 (Viber) +380632864663 (Telegram) Gavrilenko08@gmail.com 306BK

LR(k) – граматики

Розпізнавачі можна розділити на дві категорій: спадні і висхідні. В основі роботи висхідних розпізнавачів лежить операція згортки – заміна правої частини правила граматики на відповідний лівий нетермінал. Висхідні аналізатори використовують нижні правила раніш тих, що розташовані вище. Детерміновані висхідні розпізнавачі, так само як і спадні, можуть бути побудовані не для всякої КВ-граматики, а тільки для визначених підкласів таких граматик. Найбільш поширеним підкласом КВ-граматик є LR(k)граматики. Ці граматики забезпечують розпізнавання ланцюжка при перегляді зліва направо, про що свідчить буква L (Left) у назві граматики, і дозволяють виконати правобічну згортку, що показує буква R (Right) у назві. Параметр k свідчить про те, що для визначення правила граматики, яке потрібно застосувати для згортання ланцюжка, буде потрібно переглянути не більш ніж k ще не прочитаних символів вхідного ланцюжка. На практиці найчастіше використовують підкласи LR(k)-граматик: LR(0) та LR(1)граматики, що дозволяють відносно просто виконувати побудову висхідних позпізнаваців

Типи of LR-розпізнавачів (Parsers). Частина 1

Типи LR парсерів:

- 1. LR(0) Parser
- 2. Simple LR-Parser (SLR)
- 3. LALR (Look-Ahead LR) Parser.
- 4. Canonical LR Parser (CLR) or LR(1) parser
- 5. Operator Precedence parsing

Типи of LR-розпізнавачів (Parsers). Частина 2

Основні типи LR-парсерів:

- LR(0) парсер: Найпростіший тип LR-парсерів. Не аналізує наступний символ у вхідному потоці при прийнятті рішень. Часто має конфлікти, що обмежує їх застосування.
- SLR (Simple LR) парсер: Є розширенням LR(0) парсерів. Аналізує наступний символ у вхідному потоці при прийнятті рішень. Більш потужний, ніж LR(0) парсер, але все ще має обмеження застосування.
- LALR (Look-Ahead LR) парсер: Поєднує в собі простоту SLR парсерів та потужність LR(0) парсерів. Використовує обмежений аналіз наступних символів у вхідному потоці при прийнятті рішень для розв'язання більшості конфліктів. Широко використовуються на практиці завдяки своїй ефективності та можливостям.
- Канонічний аналізатор LR або LR(1): аналізатор, який використовує таблиці переходів та керуючу таблицю для визначення наступної дії на основі поточного стану та вхідного символу. Це потужний інструмент для розбору контекстно-вільних граматик.

LR-розпізнавач (parser)

Граматичні символи та граматичні входження. Частина 1

Граматичні символи — це символи повного словника граматики (Vт U VA). Кожен граматичний символ може входити в різні правила граматики і, більш того, з'являтися в тому самому правилі кілька разів. При цьому положення символу в правилі граматики може показувати, яку дію потрібно виконати — перенос чи згортку, а також, які граматичні символи можуть за ним випливати. Для зручності подальших міркувань визначимо поняття граматичного входження.

Граматичне входження символу граматики задається номером правила і номером позиції, що вказує місце символу в правій частині правила, вважаючи, що самий лівий символ правої частини правила є першим символом. Умовимося позначати граматичні входження символів, що входять у праву частину правила тільки один раз, за допомогою одного індексу, що співпадає з номером правила. Крім того, кожна граматика містить граматичне входження **І**0, яке є початковим символом граматики.

Граматичні символи та граматичні входження. Частина 2

Маємо правила граматики:

- 1. $I \rightarrow A b c A$
- 2. $A \rightarrow d$

Перетворимо граматику використовуючи граматичні входження

- 1. $I_0 \rightarrow A_{11}b_{12} c_{13} A_{14}$
- 2. $A \rightarrow d_{21}$

Спростимо правила граматики таким чином: якщо граматичні входження використовуються в одному правилі граматики один раз, то другий індекс можемо не ставити. Якщо граматичні символи використовуються один раз у всіх правилах граматики, то індекс можемо використовувати або не використовувати.

1.
$$I_0 \rightarrow A_{11}b_1c_1A_{14}$$
 afo $I_0 \rightarrow A_{11}b \ cA_{14}$

2.
$$A \rightarrow d_2$$
 afo $A \rightarrow d$

Функції ВПЕРШ (Ү) та ВПІСЛЯ (Ү)

Функція ВПЕРШ(Y) за аналогією з функцією ПЕРШ(Y) визначає множину граматичних входжень, що можуть стояти на першому місці в ланцюжках, виведених з Y. Ця множина будується в такий спосіб: у нього входить символ Y і всі символи, що починають проміжні ланцюжки, виведені з Y без застосування правил, що анулюють.

Функція **ВПІСЛЯ**(Y) є аналогом функції **СЛІД** (Y). Вона визначає множину граматичних входжень, що можуть зустрічатися безпосередньо після Y у ланцюжках, виведених з початкового символу граматики. Правило визначення функції ВПІСЛЯ (Y) можна записати так: якщо в правій частині деякого правила після Y безпосередньо слідує Z, то

$$B\Pi ICЛЯ(Y) = B\Pi EP \coprod (Z).$$

При побудові розпізнавачів необхідно враховувати наявність маркера дна h_0 , для якого сформулюємо ще одне правило визначення цієї функції: якщо $Y \in \mathbb{R}$ маркером дна магазина, то

BПІСЛЯ
$$(h_{\theta})$$
 = ВПЕРШ (I_{θ}) ,

Приклад 9.1. Для заданої граматики $\Gamma_{9.1}$ побудувати функції ВПЕРШ (Y) та ВПІСЛЯ (Y)

```
\Gamma_{9.1}: 1.I \rightarrow aIIb, 2.I \rightarrow c
Граматика з граматичними
                                                    B\Pi ICЛЯ(a_1) = B\Pi EP \coprod (I_{12}) =
 входженнями:
                                                    \{I_{12},a_1,c_2\},\
1. I_0 \rightarrow a_1 I_{12} I_{13} b_{14}, 2. I \rightarrow c_2
                                                    B\Pi ICЛЯ(I_{12}) = B\Pi EP \coprod (I_{13}) =
 B\Pi EP \coprod (a_1) = \{a_1\},
                                                    \{I_{13},a_1,c_2\},\
                                                    ВПІСЛЯ(I_{13}) = \{b_1\},
 B\Pi EP \coprod (I_{12}) = \{I_{12}, a_1, c_2\},\
                                                    BПІСЛЯ(b_1) = \$,
 ВПЕРШ(I_{13}) = {I_{13}, a_1, c_2},
                                                    ВПІСЛЯ(c_2) = \$,
 B\Pi EP \coprod (b_1) = \{b_1\},\
                                                    BПІСЛЯ(I_0) = \$,
 B\Pi EP \coprod (c_2) = \{c_2\},\
                                                    BПІСЛЯ(h_0) = BПЕРШ(I_0) =
 B\Pi EP \coprod (I_0) = \{I_0, a_1, c_2\}.
                                                    \{I_0,a_1,c_2\}.
```

Побудова таблиць розпізнавача. Таблиця переходів (GO TO TABLE)

Таблиця переходів будується наступним чином. Кожному граматичному входженню відповідає один рядок таблиці, а кожному граматичному символу – один стовпець. Клітини таблиці заповнюються елементами функцій ВПІСЛЯ таким чином, що елемент $Xk \in$ ВПІСЛЯ(Yi) заноситься в клітку, що знаходиться на перетині рядка Y_j і стовпця, позначеного граматичним символом X.

Побудова таблиці переходів для граматики Г7.1

ВПЕРШ $(a_1) = \{a_1\}$, ВПЕРШ $(I_{12}) = \{I_{12}, a_1, c_2\}$, ВПЕРШ $(I_{13}) = \{I_{13}, a_1, c_2\}$, ВПЕРШ $(b_1) = \{b_1\}$, ВПЕРШ $(C_2) = \{c_2\}$, ВПЕРШ $(I_0) = \{I_0, a_1, c_2\}$.

ВПІСЛЯ $(a_1) = \{I_{12}, a_1, c_2\}$, ВПІСЛЯ $(I_{12}) = \{I_{13}, a_1, c_2\}$, ВПІСЛЯ $(I_{13}) = \{b_1\}$, ВПІСЛЯ $(b_1) = \{\$\}$, ВПІСЛЯ $(c_2) = \{\$\}$, ВПІСЛЯ $(I_0) = \{\$\}$, ВПІСЛЯ $(h_0) = \{I_0, a_1, c_2\}$.

Граматичні		Граматичні символи											
входження	a	b	\mathcal{C}	I									
a_1	a_1		c_2	I_{12}									
I_{12}	a_1		c_2	I_{13}									
I_{13}		b_1											
b_I													
c_2													
h_0	a_1		C_2	I_0									
I_0													

Керуюча таблиця (Action Table)

У цій таблиці позначимо дію переносу символів із вхідного ланцюжка в магазин символом Π (перенос), а дії, зв'язані зі згорткою ланцюжків, що відповідають правим частинам правил, позначимо символом 3 (\mathbb{N}_2), де \mathbb{N}_2 — номер використаного правила. Для позначення дій, що здійснюють передачу на вихід результатів роботи розпізнавача, умовимося використовувати початкові букви слів "допустити" (Π) і "відкинути" (Π).

Позначимо рядки таблиці граматичними входженнями, а стовпці — термінальними символами граматики і символом кінця ланцюжка $\bot_{K} = \$ = \epsilon$.

Підставою для заповнення таблиці є наступні два положення.

- 1. Операція згортка 3(№) повинна виконуватися незалежно від вхідного символу завжди, якщо у вершині магазина знаходиться саме праве граматичне входження деякого правила. Для таких граматичних входжень значення функції ВПІСЛЯ є порожньою множиною.
- 2. Якщо у вершині магазина знаходиться граматичне входження, що не є самим правим входженням якого-небудь правила, то варто виконати перенос чергового символу вхідного ланцюжка в магазин.
- 3. Процес розпізнавання закінчується успішно при виявленні символу \bot_{κ} на вході і граматичного входження I_o в магазині. В інших випадках, що залишилися, вхідний ланцюжок повинен бути відкинутий.

Побудова керуючої таблиці для граматики Г_{7.1}

 $\Gamma_{9.1}:1. I_0 \to a_1 I_{12} I_{13} b_{11}, \quad 2. I \to c_2$

ВПЕРШ $(a_1) = \{a_1\}$, ВПЕРШ $(I_{12}) = \{I_{12}, a_1, c_2\}$, ВПЕРШ $(I_{13}) = \{I_{13}, a_1, c_2\}$, ВПЕРШ $(b_1) = \{b_1\}$, ВПЕРШ $(C_2) = \{c_2\}$, ВПЕРШ $(I_0) = \{I_0, a_1, c_2\}$.

ВПІСЛЯ $(a_1) = \{I_{12}, a_1, c_2\}$, ВПІСЛЯ $(I_{12}) = \{I_{13}, a_1, c_2\}$, ВПІСЛЯ $(I_{13}) = \{b_1\}$, ВПІСЛЯ $(b_1) = \$$, ВПІСЛЯ $(C_2) = \$$, ВПІСЛЯ $(I_0) = \$$, ВПІСЛЯ $(h_0) = \{I_0, a_1, c_2\}$.

Граматичні	/	Термінальні символи										
входження	a	b	c	📗 🗘 к (кінець рядка)								
a_1	П	П	П	В								
I_{12} /	П	П	П	В								
I_{13}	П	П	П	В								
b_1	3(1)	3(1)	3(1)	3(1)								
c_2	3(2)	3(2)	3(2)	3(2)								
h_0	Π	П	П	В								
I_0	В	В	В	Д								

Алгоритм роботи висхідного розпізнавача

- 1. Прочитати черговий символ вхідного ланцюжка х.
- 2. Прочитати символ стану, що знаходиться у вершині магазина V_{κ_1} .
- 3. Прочитати значення елемента керуючої таблиці, що знаходиться в рядку V_{κ_I} і стовпці x.
- 4. Якщо прочитане значення є В чи Д, то роботу варто закінчити, оскільки результат отриманий.
- 5. Якщо прочитане значення визначає операцію Перенос, то прочитати в таблиці переходів елемент x_{ij} , що знаходиться в рядку Y_{KI} і стовпці x. Записати символ x_{ij} у магазин.
- 6. Якщо прочитане значення визначає операцію $3(N_2)$ в нетермінал Z(Z лівий ненермінальнийсимвол правила граматики з номером N_2), то прочитати в таблиці переходів елемент Z_{ij} , що знаходиться в стовпці Z і рядку, який відповідає верхньому символу магазина, що не приймає участі у згортці.

Використовуючи описаний алгоритм, роботу розпізнавача, можна подати у вигляді зміни 14

Приклад роботи розпізнавача

 $\Gamma_{9.1}: 1.I_0 \to a_1 I_{12} I_{13} b_1$, 2. $I \to c_2$

Граматичн	ıi		Таблиця переходів					Керуюча таблиця					
входження	Я		Грамат	гичні сим	воли	Термінальні символи							
		a	b	c		√ a	b		c	\perp_{κ}			
a_1		a_1		c_2	I_{12}	П	П		П	В			
I_{12}		a_1		c_2	I_{13}	П	П		П	В			
I_{13}			b_1			П	N		П	В			
b ₁						3(1)	3(1))	3(1)	3(1)			
c_2						3(2)	3(2))	3(2)	3(2)			
h_0		a_1		c_2	I_0	T	П		Π	В			
Вхід	Mai	азин	Дія		Вхід	В Магазин	В	Дія	В	<mark>Д</mark>			
a accbcb⊥	h_0		П		$bcb\bot$	$h_0 a_1 a_1 I_{12} I$	13	П					
accbcbot	h_0a	1	П		cbot	$h_0 a_1 a_1 I_{12} I_1$	13 <u>b</u> 1	3(1)					
ccbcbot	h_0a	a_1a_1	П		cbot	$h_0 a_1 I_{12}$		П					
cbcbot	_ \	$a_1 c_2$ 3(2)			$b\bot$	$h_0a_1I_{12}c_2$		3(2)					
cbcbot		$a_1a_1I_{12}$ Π			$b\bot$	$h_0 a_1 I_{12} I_{13}$		П					
bcbot	h_0a	$a_1 a_1 I_{12} c_2$	3(2)		\perp_{κ}	$h_0 a_1 I_{12} I_{13} b_1$		3(1)					
						h_0I_0		Д			15		

Алгоритм побудови висхідного розпізнавача

- 1. Побудувати правила граматики. Визначити граматичні входження. Визначити для даної граматики функції ВПЕРШ (Y) та ВПІСЛЯ (Y).
- 2. Побудувати детерміновану таблицю переходів, що має по одному стовпцю для кожного граматичного символу і по одному рядку для кожного граматичного входження та маркера дна h_o . Кожний рядок таблиці R_j заповнюється елементами, які належать функції ВПІСЛЯ (R_j) . При цьому, якщо $C_K \mathfrak{D}$ ВПІСЛЯ (R_j) , то C_K заноситься в осередок, який знаходиться на перетині рядка R_j та стовбця C.
- 3. Якщо таблиця, побудована на кроці 2, виходить недермінованою, то потрібно перетворити цю таблицю в детермінованну, розглядаючи її як недетерміновану таблицю переходів кінцевого автомата з початковим станом $h_{\rm o}$.
- 4. Стани, отримані на кроці 3 (крім стану, що відповідає порожній множині), варто використовувати як магазинні символи. Отримана таблиця переходів може містити переходи в порожню множину. Такі елементи варто розуміти як заборонені і розглядати переходи в них як помилки.
- 5. Керуючу таблицю заповнюють рядок за рядком відповідно до множини граматичних входжень, що позначають рядки, в такий спосіб:

Алгоритм побудови висхідного розпізнавача. Продовження

- 5.1. Якщо рядок позначений початковим входженням I_0 , то в стовпець, що відповідає маркеру кінця рядка \bot к, заноситься операція Д, а в усі інші стовбці операція В.
- 5.2. Якщо рядок відзначений маркером дна h_0 , або якщо всі граматичні входження, що входять у множину, яка позначає рядок, та не є самими правими символами у своїх правилах, то в стовпець, позначений кінцевим маркером рядка, заноситься операція B, а у всі інші стовпці операція Π .
- 5.3. Якщо рядок позначений граматичним входженням, що ϵ самим правим входженням у правилі з номером k, то у всі елементи рядка заноситься операція 3(k).
- 5.4. Якщо множина, що позначає рядок після перетворення НКА, містить початкове входження і хоча б одне входження, відмінне від початкового, але не містить жодного самого правого входження, то в стовпець, позначений символом кінця рядка, потрібно помістити операцію Д, а в інші стовпці П.

Наведена процедура забезпечує побудову розпізнавача, тільки у разі, якщо задана граматика належить до підкласу LR(0), оскільки дії в кожному рядку керуючої таблиці однакові, тобто не залежать від вхідного символу. Якщо ж у процесі побудови виявляється, що хоча б один з пунктів виконати неможливо, то це означає, що для заданої граматики неможливо побудувати LR(0)-розпізнавач і що вона не є LR(0)-

Приклад побудови LR(0)-розпізнавача для граматики $\Gamma_{9.2}$

Розглянемо побудову розпізнавача для наступної граматики $\Gamma_{9.2}$:

$$1. E \rightarrow E + T$$

$$2. E \rightarrow T$$

3.
$$T \rightarrow (E)$$

4.
$$T \rightarrow i$$

$$1.E_0 \rightarrow E_1 + T_1$$

$$2. E \rightarrow T_2$$

3.
$$T \rightarrow (E_3)$$

4.
$$T \rightarrow i$$
.

BΠΕΡШ(
$$E_1$$
)={ E_1 , T_2 ,(i),

BПЕРШ
$$(T_l)$$
= $\{T_l,(i,i)\}$,

$$B\Pi EP \coprod (+) = \{+\},\$$

ВПЕРШ
$$(T_2) = \{T_2, (i)\},\$$

BПЕРШ
$$(i) = \{i\},$$

$$B\Pi EP \coprod (() = \{()\},$$

$$B\Pi EP \coprod ()) = \{ \}$$
,

ВПЕРШ(
$$E_3$$
)={ E_3 , E_1 , T_2 ,(, i },

ВПЕРШ(
$$E_0$$
)={ E_0 , E_1 , T_2 ,(, i },

BПІСЛЯ
$$(E_1) = \{+\},$$

BПІСЛЯ(+) =
$$\{T_1, (i)\}$$
,

BПІСЛЯ
$$(T_l) = \{\$\}$$
,

ВПІСЛЯ
$$(T_2) = \{\$\},$$

ВПІСЛЯ(
$$i$$
) = {\$},

ВПІСЛЯ(()=
$$\{E_1, E_3, T_2, (i, i)\}$$

$$B\Pi ICЛЯ()) = {\$},$$

ВПІСЛЯ
$$(E_0) = \{\$\},\$$

ВПІСЛЯ
$$(h_0) = \{E_0, E_1, T_2, (i, i)\},\$$

BПІСЛЯ
$$(E_3) = \{\}$$
.

Побудова таблиці переходів для граматики Г_{9.2}

BПІСЛЯ $(E_l) = \{+\},$
BПІСЛЯ $(T_l) = \{\$\}$,
BПІСЛЯ $(T_2) = \{ \$ \},$
BПІСЛЯ $(+) = \{T_I, (i)\},$
BПІСЛЯ $(i) = \{\$\},$
ВПІСЛЯ(()= $\{E_1, E_3, T_2, (,i)\}$
$B\Pi C\Pi H()) = \{\$\},$
BПІСЛЯ $(E_0) = \{\$\},$
ВПІСЛЯ $(h_0) = \{ E_0, E_1, T_2, (,i) \},$
BПІСЛЯ $(E_3) = \{\}$.

Граматичні	Граматичні символи											
входження	E	T	+	()	i						
E_0												
E_I			+									
T_I												
T_2												
+		T_{I}		(i						
i												
($E_1 E_3$	T_2		(i						
)												
h_0	$E_I E_0$	T_2		(i						
E_3					<u>)</u>							

Таблиця є недермінованою.

Позначимо множину станів $(E_0, E_1) = E_x i (E_1, E_3) = E_y$

Побудова детермінованої таблиці переходів для граматики $\Gamma_{9.2}$

Граматичні	Граматичні символи										
входження	E	T	+	()	i					
E_x			+								
E_{y}			+)						
T_{I}											
T_2											
+		T_{I}		(i					
(E_{y}	T_2		(i					
)											
h_0	E_x	T_2		(i					
i											

Побудова керуючої таблиці для граматики Г_{9.2}

$$1. E_0 \rightarrow E_1 + T_1$$

$$2. E \rightarrow T_2$$

$$3.T \rightarrow (E_3)$$

4.
$$T \rightarrow i$$

$$(E_0, E_1) = E_x$$

 $(E_1, E_3) = E_y$

$$1. E_x \rightarrow E_x + T_1$$

$$2. E \rightarrow T_2$$

$$3.T \rightarrow (E_y)$$

4.
$$T \rightarrow i$$

Граматичні	Термінальні символи										
входження	<u></u>	+	()	i						
E_x	Д	П	П	П	П						
E_y	В	П	П	П	П						
T_I	3 (1)	3 (1)	3 (1)	3 (1)	3 (1)						
T_2	3 (2)	3 (2)	3 (2)	3 (2)	3 (2)						
+	В	П	П	П	П						
i	3 (4)	3 (4)	3 (4)	3 (4)	3 (4)						
(В	П	П	П	П						
)	3 (3)	3 (3)	3 (3)	3 (3)	3 (3)						
h_0	В	П	П	П	П						

$$(E_0, E_1) = E_x$$

 $(E_1, E_3) = E_y$

1.	E_x -	$\rightarrow E_x + T_I$
2	$oldsymbol{L}$	$\setminus T$

 $2. E \rightarrow T_2$

3. $T \rightarrow (E_y)$

4. $T \rightarrow i$.

Таблиця переходів Керуюча таблиця Граматичні символи Термінальні символи Е Т + () і і L_{K} + () ј і E_{X} + Д П П П П П П П П П П П П П П П П П П П																	
ВХОДЖЕННЯ E T $+$ $+$ $+$ $+$ $+$ $+$ $+$		Г	Таблиця переходів								Керуюча таблиця						
E_{x}		•	Граматичні символи							Термінальні символи							
E_{v}	_	входження	E	T	+	()		i	\perp_{κ}		+)	i	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Γ	E_x			+							П	П		П	Π	I
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					+)			В		П	П		П	Π	I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T								3 (1)	3(1)	3 ((1)	3(1)	3	(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		T_2								3 (2)	3 (2)					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	+		T_{I}		(i			П			П	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		i								3 (4)	3 (4)	3 (<u>(4)</u>	3 (4)	3	(4)
h_0 E_x T_2 Приклад роботи розпізнавача В П П П П П П П П П П П П П П П П П П П			E_{v}	T_2		(i	В		П			П		
h_0 E_x T_2 Приклад роботи розпізнавача В П П П П П П П П П П П П П П П П П П П)								3 (3)	3 (3)	3 ((3)	3 (3)	3	(3)
Вхід Магазин Дія Вхід Магазин Дія $((i+i)+i)+i$ h_0 Π $+i)+i$ $h_0(E_v)$ Π $(i+i)+i)+i$ h_0 $(\Pi$ $i)+i$ $h_0(E_v)$ Π $i+i)+i)+i$ h_0 $((iv)$ $3(4)$ $)+i$ $h_0(E_v)$ $3(4)$ $+i)+i)+i$ h_0 $((iv)$ $3(2)$ $)+i$ $h_0(E_v)$ Π $+i)+i)+i$ h_0 $((iv)$ $3(2)$ $)+i$ $h_0(E_v)$ Π $+i)+i)+i$ h_0 $((iv)$ $3(2)$ $)+i$ $h_0(E_v)$ Π $+i)+i)+i$ h_0 $((E_v)$ Π $+i$ $h_0(E_v)$ Π $+i)+i$ h_0 $((E_v)$ Π $+i$ h_0E_x Π $+i)+i$ h_0 $((E_v)$ Π (E_v) (E_v) (E_v) $+i)+i$ $+i$ h_0 (E_v) (E_v) (E_v) (E_v) $+i$		h_0	E_x	T_2		(-		i		В		П			П		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		D ·					и ро							т.			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				БИН										' ' '	Я		ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		((i+i)+i)+i				П П		+i)+i			$h_0 (E_y + I_y)$						ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(i+i)+i)+i	h_0 (П									3(4)			ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		i+i)+i)+i	h_0		П												ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+i)+i)+i	h_0 ((i)		<mark>3(</mark>)+ <i>i</i>									ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+i)+i)+i			3((2)			i)+ i		· ·						I
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		+i)+i)+i						+i						3(.	3)		ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		i)+i)+i	$h_0 ((E_y + i) + i)$ $h_0 ((E_y + i) + i)$ $h_0 ((E_y + T_I) + i)$		П				+i					3(2	2)		ı
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)+i)+i			3((4)			+i		h_0	E_x		П			İ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)+i)+i			3((1)			$i \perp_{\kappa}$				П			ı	
)+i)+i			П								3(4)				
$ + i \rangle + i \qquad h_0 \langle T_2 \rangle \qquad 3(2) \qquad \perp_{\kappa} \qquad h_0 E_x \qquad \Pi \rangle$		+i)+i	h_0 ((E		3((3)					h_0	$E_x + T_1$		3(1)		I
		+i)+i	$h_0(T_2)$		3((2)							Д			i	

Дякую за увагу