

CÁLCULO DIFERENCIAL

Tecnología en Desarrollo de Software Facultad de Ingeniería

Sesión 4. INTRODUCCIÓN AL LÍMITE DE UNA FUNCIÓN

Docente: María Isabel García

Dada la siguiente función

$$f(x) = \frac{2x^2 + x - 3}{x - 1}$$

Observe que esta función no está definida para x=1, esto es, f(1) no existe. Sin embargo la función está definida para cualquier otro número real.

Se investigarán los valores de la función cuando x se aproxima a 1, pero sin llegar a ser 1.

x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$
0	3
0,25	3,5
0,5	4
0,75	4,5
0,9	4,8
0,99	4,98
0,999	4,998
0,9999	4,9998
0,99999	4,99998

x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$
2	7
1,75	6,5
1,5	6
1,25	5,5
1,1	5,2
1,01	5,02
1,001	5,002
1,0001	5,0002
1,00001	5,00002

Observe que en las dos tablas conforme x se aproxima cada vez más a 1, f(x) se acerca más y más a 5.

Observe que si se factoriza el numerador

$$f(x) = \frac{(2x+3)(x-1)}{x-1}$$

$$f(x) = 2x + 3$$

Su gráfica es una recta que no está definida para x = 1.

x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$
0	3
0,25	3,5
0,5	4
0,75	4,5
0,9	4,8
0,99	4,98
0,999	4,998
0,9999	4,9998
0,99999	4,99998

x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$
2	7
1,75	6,5
1,5	6
1,25	5,5
1,1	5,2
1,01	5,02
1,001	5,002
1,0001	5,0002
1,00001	5,00002

Definición intuitiva de límite

Sea f una función definida en cada número de algún intervalo que contiene a a, excepto posiblemente al número a mismo. El límite de f(x) conforme x se aproxima a a es L, lo que se escribe como

$$\lim_{x \to a} f(x) = L$$

Donde la notación $x \to a$ se lee "x tiende a a".

Si al aproximar x lo suficientemente cerca de un numero a (sin ser a) tanto del lado izquierdo como del derecho, f(x) se aproxima a un numero L, entonces el limite cuando x tiende al numero a es a.

Límite lateral por la izquierda

Para decir que: "tiende a a por la izquierda" se utiliza $x \to a^-$

$$\lim_{x \to a^{-}} f(x) = L$$

Para el ejemplo anterior:

$$\lim_{x \to 1^{-}} f(x) = 5$$

x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$
0	3
0,25	3,5
0,5	4
0,75	4,5
0,9	4,8
0,99	4,98
0,999	4,998
0,9999	4,9998
0,99999	4,99998

Límite lateral por la derecha

Para decir que: "tiende a a por la derecha" se utiliza $x \to a^+$

$$\lim_{x \to a^+} f(x) = L$$

Para el ejemplo anterior:

$$\lim_{x \to 1^+} f(x) = 5$$

x	$f(x) = \frac{2x^2 + x - 3}{x - 1}$
2	7
1,75	6,5
1,5	6
1,25	5,5
1,1	5,2
1,01	5,02
1,001	5,002
1,0001	5,0002
1,00001	5,00002

Límites laterales

Si los limites laterales existen y tienden a un mismo número L entonces el limite cuando tiende al número a es L.

$$\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L \text{ entonces } \lim_{x \to a} f(x) = L$$

Para que el limite exista no se necesita que la función este definida para el numero a, basta que este definida para valores muy cercanos.

Por ejemplo: La función
$$f(x)=\frac{2x^2+x-3}{x-1}$$
 no está definida para en $x=1$, pero $\lim_{x\to 1}f(x)=5$

Ejemplo 1:

Sea la función $f(x) = x^2 + 3x - 1$. Analicemos el límite cuando x se aproxima al número -2.

Note que en este caso, la función sí está definida en x = -2.

$$f(-2) = (-2)^2 + 3(-2) - 1$$
 \Rightarrow $f(-2) = -3$

x	$f(x) = x^2 + 3x - 1$
-3	-1
-2,75	-1,6875
-2,5	-2,25
-2,25	-2,6875
-2,1	-2,89
-2,01	-2,9899
-2,001	-2,998999
-2,0001	-2,99989999
-2,00001	-2,99999

$f(x) = x^2 + 3x - 1$
-3
-3,1875
-3,25
-3,1875
-3,09
-3,0099
-3,000999
-3,00009999
-3,00001

Entonces:

$$\lim_{x \to -2} f(x) = -3$$

También:

$$\lim_{x \to -2} f(x) = f(-2)$$
$$= -3$$

Prueba gráfica del ejemplo 1

$$f(x) = x^2 + 3x - 1$$
$$f(-2) = -3$$

Como:

$$\lim_{x \to -2^-} f(x) = -3$$

$$\lim_{x \to -2^+} f(x) = -3$$

Entonces

$$\lim_{x \to -2} f(x) = -3$$

Ejemplo 2:

Sea la función $g(x) = 4e^{3x} + 1$. Analicemos el límite cuando x se aproxima a cero.

Note que en este caso la función g(x) está definida en cero.

$$g(0) = 4e^{3(0)} + 1$$

$$g(0) = 4e^{3(0)} + 1$$
 \Rightarrow $g(0) = 4(1) + 1$ \Rightarrow $g(0) = 5$

х	$g(x) = 4e^{3x} + 1$
-1	1,19914846
-0,75	1,42159719
-0,5	1,89252105
-0,25	2,88946664
-0,1	3,96327315
-0,01	4,88178217
-0,001	4,98801799
-0,0001	4,99880018
-0,00001	4,99988

х	$g(x) = 4e^{3x} + 1$
1	81,3420742
0,75	38,9509173
0,5	18,9267481
0,25	9,46799813
0,1	6,39943474
0,01	5,1218181
0,001	5,01201801
0,0001	5,00120018
0,00001	5,00012

Entonces:

$$\lim_{x\to 0}g(x)=5$$

También:

$$\lim_{x \to 0} g(x) = g(0)$$

$$= 5$$

Prueba gráfica del ejemplo 2

$$g(x) = 4e^{3x} + 1$$
$$g(0) = 5$$

Como:

$$\lim_{x \to 0^{-}} 4e^{3x} + 1 = 5$$

$$\lim_{x \to 0^+} 4e^{3x} + 1 = 5$$

Entonces

$$\lim_{x \to 0} 4e^{3x} + 1 = 5$$

Ejercicios:

Utilizando una tabla de valores muy cercanos al valor que tiende el límite, calcular:

a)
$$\lim_{x \to 1} x^2 - 3x + 1$$

d)
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$

b)
$$\lim_{x \to 3} \frac{x-3}{x^2-9}$$

e)
$$\lim_{x \to 0} \frac{\tan x}{\sin x}$$

c)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x - 2}$$

e)
$$\lim_{x\to -1} \sqrt{x+4}$$

Dada una función f(x) cuya gráfica es la que se muestra a continuación

Determinar:

$$\lim_{x\to -5} f(x)$$

$$\lim_{x\to -3} f(x)$$

$$\lim_{x\to 1} f(x)$$

$$\lim_{x\to 2} f(x)$$

$$\lim_{x\to 4} f(x)$$

Para determinar $\lim_{x\to -5} f(x)$, se analizan los límites laterales, esto es:

$$\lim_{x \to -5^-} f(x) = 4$$

$$\lim_{x \to -5^+} f(x) = 4$$

Como los límites laterales son iguales, entonces

$$\lim_{x \to -5} f(x) = 4$$

Para determinar $\lim_{x\to -3} f(x)$, se analizan los límites laterales, esto es:

$$\lim_{x \to -3^-} f(x) = 4$$

$$\lim_{x \to -3^+} f(x) = 2$$

Como los límites laterales no son iguales, entonces diremos que el límite no existe.

$$\lim_{x\to -3} f(x)$$
 No existe

Para determinar $\lim_{x\to 1} f(x)$, se analizan los límites laterales, esto es:

$$\lim_{x \to 1^-} f(x) = -3$$

$$\lim_{x \to 1^+} f(x) = 1$$

Como los límites laterales no son iguales, entonces diremos que el límite no existe.

$$\lim_{x\to 1} f(x)$$
 No existe

Para determinar $\lim_{x\to 2} f(x)$, se analizan los límites laterales, esto es:

$$\lim_{x \to 2^{-}} f(x) = 2$$

$$\lim_{x \to 2^+} f(x) = 2$$

Como los límites laterales son iguales, entonces

$$\lim_{x \to 2} f(x) = 2$$

Para determinar $\lim_{x\to 4} f(x)$, se analizan los límites laterales, esto es:

$$\lim_{x \to 4^-} f(x) = 3$$

$$\lim_{x \to 4^+} f(x) = 3$$

Como los límites laterales son iguales, entonces

$$\lim_{x \to 4} f(x) = 3$$

Teoremas

1.
$$\lim_{x \to a} c = c$$

$$2. \quad \lim_{x \to a} x = a$$

Si f(x) y g(x) son funciones, c es una constante y n un número real, entonces

$$x \rightarrow a$$

3.
$$\lim_{x \to a} c \cdot f(x) = c \cdot \lim_{x \to a} f(x)$$
4.
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

5.
$$\lim_{x \to a} [f(x) \cdot g(x)] = \lim_{x \to a} f(x) \cdot \lim_{x \to a} g(x)$$

6.
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)} \text{ con } \lim_{x \to a} g(x) \neq 0$$

7.
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x) \right]^n$$

Ejercicios:

Utilice los teoremas anteriores para calcular los siguientes límites:

a)
$$\lim_{x\to 5} (3x - 7)$$

b)
$$\lim_{x\to 2}(x^2+2x-1)$$

c)
$$\lim_{z \to -2} (z^3 + 8)$$

d)
$$\lim_{y \to -1} (y^3 - 2y^2 + 3y - 4)$$

e)
$$\lim_{x\to 3} \frac{4x-5}{5x-1}$$

$$f) \lim_{t \to 2} \frac{t^2 - 5}{2t^3 + 6}$$

$$g) \lim_{x \to 1} \sqrt{\frac{8x+1}{x+3}}$$

h)
$$\lim_{x \to 4} \sqrt[3]{\frac{x^2 - 3x + 4}{2x^2 - x - 1}}$$

i)
$$\lim_{x \to 7} \frac{x^2 - 49}{x - 7}$$

Somos Institución de Educación Superior Pública sujeta a inspección y vigilancia por MinEducación