Linkage Disequilibrium

a statsTeachR resource

These slides were written for statsTeachR by Eric Reed.

Introduction

Linkage Disequilibrium refers a number of measures of association between **alleles**¹ at different **sites**² along the same **chromosome**³.

- ▶ It occurs as a result of genetic **recombination** across the chromosome.
 - Recombination is crossover between two homologous⁴ chromosomes during meiosis (see next slide).
 - Sites that are further apart, and have higher recombination rates between them have lower LD values.
- Linkage disequilibrium is not relevant between sites on different chromosomes, which segregate independently.

The identity of a genetic information at a specific location on the chromosome

² A specific location on the chromosome

³ A structure of DNA and protein that contains genetic information

⁴ Refers to either of the maternal or paternally inherited chromosomes that contain genetic information for the same set of sites

Recombination

Ploidy: The number of sets of homologous chromosomes in a particular cell

- Haploid: Consisting of one set of homologous chromosomes
- ▶ Diploid: Consisting of two sets of homologous chromosomes.
- Triploid: Seedless watermelon and bananas!

Haplotype Frequencies Under Independence

Under independence the distribution of **haplotypes**⁵. counts at two sites are as follows:

Site 2					
		В	b		
Site 1	Α	$P_A P_B$	$P_A P_b$	P_A	
	а	$P_a P_B$	$P_A P_b$ $P_a P_b$.	P_{a}	
		P_B	P_b	1	

⁵ The sequence of alleles located across a single chromosome

Haplotype Counts Under Independence

Since each individual n in a population, has two sets of homologous chromosomes, the total counts of haplotypes are equal to 2n.

Site 2						
		В	b			
Site 1	Α	NP_AP_B	NP_AP_b	NP_A		
	а	NP_AP_B NP_aP_B	NP_AP_b NP_aP_b .	NP_a		
		NP_B	NP_b	N=2n		

Haplotype Frequencies Under Linkage Disequilibrium

Under linkage disequilibrium observed haplotype counts depart from expected haplotype counts under independence by frequency *D*.

Site 2						
		В	b			
Site 1	Α	$N(P_AP_B+D)$ $N(P_aP_B-D)$	$N(P_AP_b-D)$	NP_A		
	а	$N(P_aP_B-D)$	$N(P_aP_b+D)$.	NP_a		
		NP_B	NP_b	N=2n		

Measuring LD with r^2

 r^2 is a commonly used measure of LD. It is the square of the correlation between two sites, and can be calculated via Pearson's χ^2 -statistic, with the form:

$$r^2 = \chi_1^2 / N$$
,

where

$$\chi_1^2 = \sum_{i,j} \frac{(O_{ij} - E_{ij})}{E_{ij}}.$$

i and j refer to the rows and columns respectively on the contingency tables for the observed haplotype counts O, and the haplotype counts expected under independence E.

- ▶ In cases where haplotype information on study participants is available this is straight-forward to calculate.
- More often genotype⁶ data is only available for study participants, in which case additional haplotype estimation steps are required.

⁶ Genetic information pertaining to the combination of alleles on both homologous chromosomes at a specific site

Now You Try!

In the accompanied labs we will calculate r^2 values directly using haplotype data, as well as employ the "genetics" package in R to estimate r^2 values from genotype data.