Unified Framework Notation

 $\label{eq:manuel-Arnold} \mbox{Humboldt-Universit"at zu Berlin}$

Unified Framework Notation

Contents

1 Introduction 2

1 Introduction

This document is intended to facilitate a better understanding of the code used in the backend. Terminology and notation are not meant to be used in the frontend or in the paper.

Following Usami et al., I limit the scope to single-indicator models. Furthermore, I assume stationarity meaning that all models parameters are time-invariant.

I specify the unified framework in reticular action model (RAM) notation. In RAM notation, SEMs are described by a symmetrical \mathbf{S} matrix of dimensions $V \times V$, an asymmetrical matrix \mathbf{A} of dimensions $V \times V$, a filter matrix \mathbf{F} of dimensions $M \times V$, and a mean vector \mathbf{m} of length V, where M denotes the number of manifest variables and V the total number of variables including latent variables from the model.

Usami et al. use a element-wise notation of the unified framework. In the following, I will convert to Usami et al.'s notation to matrix notation so that is easier for programming. First, we look at the dimensions of the RAM matrices. Let \mathbf{y}_t be a J-variate vector of manifest variables that are measured at the time points $t = 1 \dots, T$. Thus, the total number of manifest variables is JT = V. The unified framework contains the following latent variables: \mathbf{f}_t ($J \times 1$) are latent true scores for the measurements $t = 1, \dots, T$. \mathbf{f}_t^* ($J \times 1$) are temporal deviation terms from group means that are measured at $t = 1, \dots, T$. $\mathbf{R} = [\mathbf{I}^\mathsf{T}, \mathbf{S}^\mathsf{T}]^\mathsf{T}$ ($2J \times 1$) are random effects, where \mathbf{I} ($J \times 1$) is a random intercept and \mathbf{S} ($J \times 1$) is a random slope. Finally, $\mathbf{C} = [\mathbf{A}^\mathsf{T}, \mathbf{B}^\mathsf{T}]^\mathsf{T}$ ($2J \times 1$) are accumulating factors, where \mathbf{A} ($J \times 1$) has a constant effect over time and \mathbf{B} ($J \times 1$) has a changing effect over time. Hence, the total number of latent variables is 2JT + 4J = 2J(T + 2) = V. I sort all variables in the following order: $\mathbf{y}_1, \dots, \mathbf{y}_T, \mathbf{f}_1, \dots, \mathbf{f}_T, \mathbf{f}_1^*, \dots, \mathbf{f}_T^*, \mathbf{I}, \mathbf{S}, \mathbf{A}, \mathbf{B}$.

Table 1 summarizes the building blocks of the unified framework. I ignored the

mean structure in my first draft. $\tau_{\mathbf{y}}$ and $\tau_{\mathbf{A}}$ are uninteresting in stationary models and could be replaced by centering. $\tau_{\mathbf{B}}$ contains potentially interesting parameters. I suppose that I and S also have means but Usami et al. do not mention them. I am open to including a mean structure later. Because we only consider single-indicator models, $\Lambda_{\mathbf{f}}$ and $\Lambda_{\mathbf{f}^*}$ are identity matrices of size $J \times J$.

Symbol	$Usami^1$	Description	Used in model
$ au_{ m y}$	μ_{xt}	observed means	CLPM, FCLPM, RICLPM, STARTS
$\Lambda_{ m f}$	-	Factor loadings of \mathbf{f}_t	all
$\Lambda_{\mathbf{f}^\star}$	-	Factor loadings of \mathbf{f}_t^{\star}	all
Γ	β_x, γ	ARCLP	all but LCS
Ω	same	residual var/cov	all
Ψ	same	unique var/cov	FCLPM, STARTS, LCS
$\Phi_{ m I}$	-	random intercepts var/cov	RICLPM, STARTS, LCMSR
$\Phi_{ m S}$	-	random slopes var/cov	LCMSR
$\Phi_{ extbf{I}, extbf{S}}$	-	covariance between RE	LCMSR
$ au_{ m A}$	-	constant accumulating factors mean	ALT, LCS
$\Phi_{\mathbf{A}}$	-	constant accumulating factors var/cov	ALT, LCS
$ au_{ m B}$	-	changing accumulating factors mean	ALT
$\Phi_{ m B}$	-	changing accumulating factors var/cov	ALT
$\Phi_{\mathbf{A},\mathbf{B}}$	-	covariance between CF	ALT
Γ^{\star}	$\beta_x^{\star}, \gamma_x^{\star}$	LCS ARCLP	LCS
		Not used. See below.	

Table 1

The matrices $\Phi_{\mathbf{I}}$, $\Phi_{\mathbf{S}}$, $\Phi_{\mathbf{A}}$, and $\Phi_{\mathbf{A}}$ are symmetrical variance-covariance matrices and are structured similarly. Consider a bivariate process with two random intercepts

^{1:} Notation used in Usami et al.

named I_1 and I_2 . Then, it follows that

$$oldsymbol{\Phi_I} = egin{bmatrix} \mathrm{Cov}(I_1,I_1) & \mathrm{Cov}(I_2,I_1) \ \mathrm{Cov}(I_2,I_1) & \mathrm{Cov}(I_2,I_2) \end{bmatrix}$$

Conversely, $\Phi_{I,S}$ and $\Phi_{I,S}$ are not symmetrical. Both matrices have the following pattern (example given for a bivariate process with random intercepts and slopes):

$$\mathbf{\Phi_{I,S}} = \begin{bmatrix} \operatorname{Cov}(I_1, S_1) & \operatorname{Cov}(I_1, S_2) \\ \operatorname{Cov}(I_2, S_1) & \operatorname{Cov}(I_2, S_2) \end{bmatrix}$$

We use the endogenous version of the ALT model where the factor loadings of the constant accumulating factors \mathbf{A} and the factor loadings of the changing accumulating factors \mathbf{B} are constrained at the first time point t=1. The factor loadings of \mathbf{A} are constrained to $(\mathbf{I}_J - \mathbf{\Gamma})^{-1}$ at t=1 and are \mathbf{I}_J for $t \in 2, \ldots, T$. The factor loadings of \mathbf{B} are constrained to $\mathbf{\Gamma}[(\mathbf{I}_J - \mathbf{\Gamma})(\mathbf{I}_J - \mathbf{\Gamma})]^{-1}$ at t=1 and to $(t-1)\mathbf{I}_J$ for $t \in 2, \ldots, T$.

The LCS model can be respecified as an ALT model by removing the changing accumulating factors \mathbf{B} from the ALT model and using $\mathbf{\Gamma}^* = \mathbf{\Gamma} + \mathbf{I}_J$. Thus, it is not necessary to use $\mathbf{\Gamma}^*$ in the backend.