

LM555/LM555C Timer

General Description

The LM555 is a highly stable device for generating accurate time delays or oscillation. Additional terminals are provided for triggering or resetting if desired. In the time delay mode of operation, the time is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and duty cycle are accurately controlled with two external resistors and one capacitor. The circuit may be triggered and reset on falling waveforms, and the output circuit can source or sink up to 200 mA or drive TTL circuits

Features

- Direct replacement for SE555/NE555
- Timing from microseconds through hours
- Operates in both astable and monostable modes

- Adjustable duty cycle
- Output can source or sink 200 mA
- Output and supply TTL compatible
- Temperature stability better than 0.005% per °C
- Normally on and normally off output

Applications

- Precision timing
- Pulse generation
- Sequential timing
- Time delay generation
- Pulse width modulation
- Pulse position modulationLinear ramp generator

Schematic Diagram

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage

+18V

Power Dissipation (Note 1) LM555H, LM555CH LM555, LM555CN

760 mW 1180 mW

Operating Temperature Ranges

LM555C LM555 0°C to +70°C -55°C to + 125°C Storage Temperature Range

Soldering Information

Dual-In-Line Package

Soldering (10 Seconds) Small Outline Package

Vapor Phase (60 Seconds) Infrared (15 Seconds) 260°C

215°C 220°C

 -65°C to $+150^{\circ}\text{C}$

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Electrical Characteristics ($T_A = 25^{\circ}C$, $V_{CC} = +5V$ to +15V, unless othewise specified)

Conditions							
	LM555			LM555C			Units
	Min	Тур	Max	Min	Тур	Max	
	4.5		18	4.5		16	V
$V_{CC} = 5V, R_L = \infty$ $V_{CC} = 15V, R_L = \infty$ (Low State) (Note 2)		3 10	5 12		3 10	6 15	mA mA
$R_A=1$ k to 100 k Ω , $C=0.1~\mu F$, (Note 3)		0.5 30 1.5 0.05			1 50 1.5 0.1		% ppm/°C % %/V
R_A , $R_B=1k$ to 100 $k\Omega$, $C=0.1~\mu F$, (Note 3)		1.5 90 2.5			2.25 150 3.0		% ppm/°C %
							%/V
		0.667			0.667		x V _{CC}
$V_{CC} = 15V$ $V_{CC} = 5V$	4.8 1.45	5 1.67	5.2 1.9		5 1.67		V V
		0.01	0.5		0.5	0.9	μΑ
	0.4	0.5	1	0.4	0.5	1	V
		0.1	0.4		0.1	0.4	mA
(Note 4)		0.1	0.25		0.1	0.25	μΑ
V _{CC} = 15V V _{CC} = 5V	9.6 2.9	10 3.33	10.4 3.8	9 2.6	10 3.33	11 4	V V
		1	100		1	100	nA
$V_{CC} = 15V, I_7 = 15 \text{ mA}$		150 70	100		180 80		mV mV
	$V_{CC} = 5V, R_L = \infty \\ V_{CC} = 15V, R_L = \infty \\ (Low State) (Note 2)$ $R_A = 1k \text{ to } 100 \text{ k}\Omega, \\ C = 0.1 \mu\text{F}, (Note 3)$ $R_A, R_B = 1k \text{ to } 100 \text{ k}\Omega, \\ C = 0.1 \mu\text{F}, (Note 3)$ $V_{CC} = 15V \\ V_{CC} = 5V$ $V_{CC} = 15V \\ V_{CC} = 5V$ $V_{CC} = 15V, I_7 = 15 \text{ mA}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c } \hline \textbf{Conditions} & \hline \textbf{LM5555} & \hline \textbf{LM555C} \\ \hline \textbf{Min} & \textbf{Typ} & \textbf{Max} & \textbf{Min} & \textbf{Typ} \\ \hline \textbf{4.5} & 18 & 4.5 \\ \hline \textbf{V}_{CC} = 5V, R_L = \infty \\ \textbf{V}_{CC} = 15V, R_L = \infty \\ \textbf{(Low State) (Note 2)} & 10 & 12 & 10 \\ \hline \textbf{R}_A = 1k \text{ to } 100 \text{ k}\Omega, \\ \textbf{C} = 0.1 \mu\text{F, (Note 3)} & 1.5 \\ \textbf{0.05} & 0.15 & 1.5 \\ \textbf{0.05} & 0.15 & 0.30 \\ \hline \textbf{R}_{A}, R_B = 1k \text{ to } 100 \text{ k}\Omega, \\ \textbf{C} = 0.1 \mu\text{F, (Note 3)} & 2.25 \\ \textbf{0.15} & 0.05 & 0.30 \\ \hline \textbf{V}_{CC} = 15V & 4.8 & 5 & 5.2 \\ \textbf{V}_{CC} = 5V & 1.45 & 1.67 & 1.9 & 1.67 \\ \hline \textbf{0.01} & 0.5 & 0.5 \\ \hline \textbf{0.4} & 0.5 & 1 & 0.4 & 0.5 \\ \hline \textbf{0.1} & 0.4 & 0.5 & 0.1 \\ \hline \textbf{V}_{CC} = 15V & 9.6 & 10 & 10.4 & 9 & 10 \\ \textbf{V}_{CC} = 5V & 2.9 & 3.33 & 3.8 & 2.6 & 3.33 \\ \hline \textbf{V}_{CC} = 15V, I_7 = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, I_7 = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{N}_{CC} = 15V, I_7 = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{Min} & \textbf{Typ} & \textbf{Max} & \textbf{Min} & \textbf{Typ} \\ \textbf{A.5} & \textbf{A.5} & \textbf{A.5} & \textbf{A.5} & \textbf{A.5} \\ \textbf{A.5} & \textbf{A.5} & \textbf{A.5} & \textbf{A.5} & \textbf{A.5} \\ \textbf{A.5} & \textbf{A.5} & \textbf{A.5} & \textbf{A.5} \\ \textbf{A.5} & \textbf{A.5} & \textbf{A.5} & \textbf{A.5} \\ \textbf{A.5} & \textbf{A.5} & \textbf{A.5} $	$ \begin{array}{ c c c c c c c c } \hline \textbf{Min} & \textbf{Typ} & \textbf{Max} & \textbf{Min} & \textbf{Typ} & \textbf{Max} \\ \hline \textbf{Min} & \textbf{Typ} & \textbf{Max} & \textbf{Min} & \textbf{Typ} & \textbf{Max} \\ \hline \textbf{V}_{CC} = 5V, \textbf{P}_{L} = \infty & 3 & 5 & 3 & 6 \\ V_{CC} = 15V, \textbf{P}_{L} = \infty & 10 & 12 & 10 & 15 \\ \hline \textbf{V}_{CC} = 15V, \textbf{P}_{L} = \infty & 0.5 & 0.5 & 0.1 \\ \textbf{Low State}) (\textbf{Note 2}) & 0.5 & 0.5 & 0.1 \\ \hline \textbf{P}_{A} = 1k \text{ to } 100 \text{ k}Ω, \\ \textbf{C} = 0.1 \mu\text{F}, (\textbf{Note 3}) & 1.5 & 0.05 \\ \hline \textbf{C} = 0.1 \mu\text{F}, (\textbf{Note 3}) & 1.5 & 0.05 \\ \hline \textbf{Q}_{ODS} & 0.15 & 0.15 & 0.0667 \\ \hline \textbf{V}_{CC} = 15V & 4.8 & 5 & 5.2 & 5 \\ \textbf{V}_{CC} = 5V & 1.45 & 1.67 & 1.9 & 1.67 \\ \hline \textbf{V}_{CC} = 5V & 0.4 & 0.5 & 1 \\ \hline \textbf{Q}_{OD} & 0.5 & 0.5 & 0.9 \\ \hline \textbf{V}_{CC} = 15V & 0.4 & 0.5 & 1 \\ \hline \textbf{Q}_{OD} & 0.5 & 0.1 & 0.4 \\ \hline \textbf{V}_{CC} = 15V & 0.4 & 0.5 & 1 \\ \hline \textbf{Q}_{OD} & 0.25 & 0.1 & 0.25 \\ \hline \textbf{V}_{CC} = 5V & 0.6 & 10 & 10.4 & 9 & 10 & 11 \\ \hline \textbf{V}_{CC} = 5V & 0.9 & 0.33 & 3.8 & 2.6 & 3.33 & 4 \\ \hline \textbf{V}_{CC} = 5V & 0.1 & 100 & 1 & 100 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 & 180 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{7} = 15 \text{ mA} & 150 \\ \hline \textbf{V}_{CC} = 15V, \textbf{I}_{$

$\textbf{Electrical Characteristics} \ T_{A} = 25^{\circ}\text{C}, \ V_{CC} = +5\text{V to} + 15\text{V}, \ \text{(unless othewise specified) (Continued)}$

	Conditions	Limits						
Parameter		LM555			LM555C			Units
		Min	Тур	Max	Min	Тур	Max	
Output Voltage Drop (Low)	V _{CC} = 15V							
	I _{SINK} = 10 mA		0.1	0.15		0.1	0.25	V
	I _{SINK} = 50 mA		0.4	0.5		0.4	0.75	V
	I _{SINK} = 100 mA		2	2.2		2	2.5	V
	I _{SINK} = 200 mA		2.5			2.5		V
	$V_{CC} = 5V$							
	I _{SINK} = 8 mA		0.1	0.25				V
	I _{SINK} = 5 mA					0.25	0.35	V
Output Voltage Drop (High)	I _{SOURCE} = 200 mA, V _{CC} = 15V		12.5			12.5		V
	$I_{SOURCE} = 100 \text{ mA}, V_{CC} = 15V$	13	13.3		12.75	13.3		V
	$V_{CC} = 5V$	3	3.3		2.75	3.3		V
Rise Time of Output			100			100		ns
Fall Time of Output			100			100		ns

Note 1: For operating at elevated temperatures the device must be derated above 25°C based on a +150°C maximum junction temperature and a thermal resistance of 164°c/w (T0-5), 106°c/w (DIP) and 170°c/w (S0-8) junction to ambient.

Note 2: Supply current when output high typically 1 mA less at $V_{CC}\,=\,5V.$

Note 3: Tested at $V_{CC} = 5V$ and $V_{CC} = 15V$.

Note 4: This will determine the maximum value of RA + RB for 15V operation. The maximum total (RA + RB) is 20 M Ω .

Note 5: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

Note 6: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.

Connection Diagrams

Metal Can Package

TL/H/7851-2

Top View
Order Number LM555H or LM555CH
See NS Package Number H08C

Dual-In-Line and Small Outline Packages

TL/H/7851-3

Top View

Order Number LM555J, LM555CJ, LM555CM or LM555CN See NS Package Number J08A, M08A or N08E

Typical Performance Characteristics

TL/H/7851-4

Applications Information

MONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot (Figure 1). The external capacitor is initially held discharged by a transistor inside the timer. Upon application of a negative trigger pulse of less than 1/3 $\rm V_{CC}$ to pin 2, the flip-flop is set which both releases the short circuit across the capacitor and drives the output high.

TL/H/7851-5

FIGURE 1. Monostable

The voltage across the capacitor then increases exponentially for a period of $t=1.1\ R_A\ C$, at the end of which time the voltage equals 2/3 $V_{CC}.$ The comparator then resets the flip-flop which in turn discharges the capacitor and drives the output to its low state. Figure 2 shows the waveforms generated in this mode of operation. Since the charge and the threshold level of the comparator are both directly proportional to supply voltage, the timing internal is independent of supply.

$$\begin{split} &V_{CC} = 5V \\ &\text{TIME} = 0.1 \text{ ms/DIV}. \\ &R_A = 9.1 \text{ k}\Omega \end{split}$$

 $C = 0.01 \, \mu F$

TL/H/7851-6
Top Trace: Input 5V/Div.

Middle Trace: Output 5V/Div.
Bottom Trace: Capacitor Voltage 2V/Div.

FIGURE 2. Monostable Waveforms

During the timing cycle when the output is high, the further application of a trigger pulse will not effect the circuit so long as the trigger input is returned high at least 10 μs before the end of the timing interval. However the circuit can be reset during this time by the application of a negative pulse to the reset terminal (pin 4). The output will then remain in the low state until a trigger pulse is again applied.

When the reset function is not in use, it is recommended that it be connected to V_{CC} to avoid any possibility of false triggering.

Figure 3 is a nomograph for easy determination of R, C values for various time delays.

NOTE: In monostable operation, the trigger should be driven high before the end of timing cycle.

TL/H/7851-7

FIGURE 3. Time Delay

ASTABLE OPERATION

If the circuit is connected as shown in Figure 4 (pins 2 and 6 connected) it will trigger itself and free run as a multivibrator. The external capacitor charges through $\rm R_A + \rm R_B$ and discharges through $\rm R_B$. Thus the duty cycle may be precisely set by the ratio of these two resistors.

TL/H/7851-8

FIGURE 4. Astable

In this mode of operation, the capacitor charges and discharges between 1/3 $V_{\rm CC}$ and 2/3 $V_{\rm CC}$. As in the triggered mode, the charge and discharge times, and therefore the frequency are independent of the supply voltage.

Applications Information (Continued)

Figure 5 shows the waveforms generated in this mode of

TL/H/7851-9

 $V_{CC} = 5V$ TIME = 20 μ s/DIV. $R_A = 3.9 \text{ k}\Omega$ $R_B = 3 \text{ k}\Omega$ $C = 0.01 \mu\text{F}$

Top Trace: Output 5V/Div Bottom Trace: Capacitor Voltage 1V/Div.

FIGURE 5. Astable Waveforms

The charge time (output high) is given by:

$$t_1 = 0.693 (R_A + R_B) C$$

And the discharge time (output low) by:

$$t_2 = 0.693 \, (R_B) \, C$$

Thus the total period is:

$$T = t_1 + t_2 = 0.693 (R_A + 2R_B) C$$

The frequency of oscillation is:

$$f = \frac{1}{T} = \frac{1.44}{(R_A + 2\,R_B)\,C}$$

Figure 6 may be used for quick determination of these RC values.

The duty cycle is:

TL/H/7851-10

FIGURE 6. Free Running Frequency

FREQUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a frequency divider by adjusting the length of the timing cycle. Figure 7 shows the waveforms generated in a divide by three circuit.

TL/H/7851-11

 $V_{CC} = 5V$ $R_A = 9.1 \text{ k}\Omega$ $C = 0.01 \mu\text{F}$

TIME = 20 μ s/DIV. Middle Trace: Output 2V/Div. R_A = 9.1 k Ω Bottom Trace: Capacitor 2V/Div.

FIGURE 7. Frequency Divider

PULSE WIDTH MODULATOR

When the timer is connected in the monostable mode and triggered with a continuous pulse train, the output pulse width can be modulated by a signal applied to pin 5. Figure 8 shows the circuit, and in Figure 9 are some waveform examples.

TL/H/7851-12

FIGURE 8. Pulse Width Modulator

TL/H/7851-13

 $V_{CC} = 5V$ TIME = 0.2 ms/DIV. Top Trace: Modulation 1V/Div. Bottom Trace: Output Voltage 2V/Div. $R_A = 9.1 \text{ k}\Omega$ $C = 0.01 \mu\text{F}$

FIGURE 9. Pulse Width Modulator

PULSE POSITION MODULATOR

This application uses the timer connected for a stable operation, as in Figure 10, with a modulating signal again applied to the control voltage terminal. The pulse position varies with the modulating signal, since the threshold voltage and hence the time delay is varied. Figure 11 shows the waveforms generated for a triangle wave modulation signal.

Applications Information (Continued)

TL/H/7851-14

FIGURE 10. Pulse Position Modulator

TL/H/7851-15

 $V_{CC} = 5V$ TIME = 0.1 ms/DIV.

Top Trace: Modulation Input 1V/Div. Bottom Trace: Output 2V/Div.

 $R_A = 3.9 \text{ k}\Omega$ $R_B = 3 \text{ k}\Omega$ $C = 0.01 \mu\text{F}$

FIGURE 11. Pulse Position Modulator

LINEAR RAMP

When the pullup resistor, $\mathsf{R}_\mathsf{A}\!,$ in the monostable circuit is replaced by a constant current source, a linear ramp is generated. Figure 12 shows a circuit configuration that will perform this function.

FIGURE 12

Figure 13 shows waveforms generated by the linear ramp. The time interval is given by:

$$T = \frac{2/3 \, V_{CC} \, R_E \, (R_1 \, + \, R_2) \, C}{R_1 \, V_{CC} - V_{BE} \, (R_1 \, + \, R_2)} \\ V_{BE} \cong 0.6 V$$

TL/H/7851-17

 $V_{CC} = 5V$ Top Trace: Input 3V/Div. $v_{CC}=sv$ Top Trace: Input syr/biv. TIME = 20 $\mu s/DIV$. Middle Trace: Output 5V/Div. $R_1=47~k\Omega$ Bottom Trace: Capacitor Voltage 1V/Div. $R_2=100~k\Omega$ $R_2=2.7~k\Omega$ $C=0.01~\mu F$

FIGURE 13. Linear Ramp

50% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors $\rm R_A$ and $\rm R_B$ may be connected as in Figure 14. The time period for the out-

Applications Information (Continued)

put high is the same as previous, $t_1=0.693\ R_{\mbox{\scriptsize A}}$ C. For the output low it is $t_2=$

$$\left[(R_A\,R_B)/(R_A\,+\,R_B) \right] C\,\,\ell n \left[\frac{R_B-2R_A}{2R_B-R_A} \right]$$

Thus the frequency of oscillation is $f=\frac{1}{t_1\,+\,t_2}$

TL/H/7851-18 FIGURE 14. 50% Duty Cycle Oscillator

Note that this circuit will not oscillate if R_B is greater than 1/2 R_A because the junction of R_A and R_B cannot bring pin 2 down to 1/3 V_{CC} and trigger the lower comparator.

ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protect associated circuitry. Minimum recommended is 0.1 μF in parallel with 1 μF electrolytic.

Lower comparator storage time can be as long as 10 μ s when pin 2 is driven fully to ground for triggering. This limits the monostable pulse width to 10 μ s minimum.

Delay time reset to output is 0.47 μs typical. Minimum reset pulse width must be 0.3 μs , typical.

Pin 7 current switches within 30 ns of the output (pin 3) voltage.

Physical Dimensions inches (millimeters)

Physical Dimensions inches (millimeters) (Continued)

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor**

Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LM555 - http://www.ti.com/product/lm555?HQS=TI-null-null-dscatalog-df-pf-null-wwe

LM555C - http://www.ti.com/product/lm555c?HQS=TI-null-null-dscatalog-df-pf-null-wwe