Lecture 2: Data Frame, Matrix, List

Abhijit Dasgupta September 19, 2016

Practice makes perfect

- Start using RSeek
- Other resources on website http://www.araastat.com/BIOF339_PracticalR
- Beg, Borrow, Steal code that you need
 - R is open-source, so is meant to be shared

R coding conventions

```
# This is a comment, which doesn't get evaluated

1:3 # This is also a comment

## [1] 1 2 3

# Multi-line code

x <- c(1, 2, 3, 4, 5, 6, 7)

x
```

[1] 1 2 3 4 5 6 7

Google has a style guide for how to write R code

R packages

R packages live on CRAN and its mirrors. To install an R package:

```
install.packages('dplyr', repos='http://cran.r-project.org')
```

or

```
knitr::include_graphics('lecture2_img/install_package.png')
```

R Packages

To use a package, or rather, use the functions from the package, you have to load it into R

library(dplyr)

We'll talk about packages later in the semester.

We will concentrate now on what is known as **Base R**, that is, the functions that are available when R is installed

Loading data

We will usually load CSV files, since they are the easiest for R. The typical suggestion if you have Excel data is to save the sheet as a CSV and then import it into R.

You can also load Excel files directly using either the readxl or rio packages

The structure of data sets

Tables

- Data is typically in a rectangular format
 - spreadsheet, database table
 - CSV (comma-separated values) or TSV (tab-separated values) files
- Characteristic
 - Rows are observations
 - Columns are variables
 - Each column has the same number of observations

Tidy data is a particularly amenable format for data analysis.

Lecture 2: Data Frame, Matrix, List

An example GEO dataset

Lower back pain symptoms dataset on Kaggle.com

Lecture 2: Data Frame, Matrix, List

Breast Cancer Proteome dataset on Kaggle.com

Let's look at a dataset

Let's look at a dataset

```
data_spine <- read.csv('lecture2_data/Dataset_spine.csv')</pre>
```

head(data spine)

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
            63.02782
                       22.552586
                                             39.60912
                                                          40.47523
## 2
                                                          28.99596
            39.05695
                       10.060991
                                             25.01538
## 3
            68.83202
                       22.218482
                                             50.09219 46.61354
## 4
            69.29701
                       24.652878
                                             44.31124 44.64413
## 5
                                                        40.06078
            49.71286
                      9.652075
                                             28.31741
## 6
            40.25020
                       13.921907
                                             25.12495
                                                          26.32829
    Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
         98.67292
                                             0.7445035
                                                           12.5661
                                 -0.254400
## 2
                                                           12.8874
       114.40543
                                 4.564259
                                             0.4151857
## 3
       105.98514
                                 -3.530317
                                             0.4748892
                                                           26.8343
## 4
                                                           23.5603
      101.86850
                                11.211523
                                             0.3693453
                                             0.5433605
## 5
       108.16872
                                 7.918501
                                                           35,4940
## 6
        130.32787
                                  2.230652
                                             0.7899929
                                                           29.3230
##
    Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
                                  -28.658501
## 1
                        15.30468
           14.5386
                                                     43.5123
```

Let's look at a dataset

- · Assumes that the first row has variable names
- · Replaces spaces with .
- · Keeps numeric and character variables together

Let's look at a dataset

View(data spine) ## It looks like a matrix

knitr::include graphics('lecture2 img/View.png')

Let's look at a dataset

str(data spine) ## Structure of a dataset

```
'data.frame':
                    310 obs. of 13 variables:
    $ Pelvic.incidence
                              : num 63 39.1 68.8 69.3 49.7 ...
   $ Pelvic.tilt
                              : num 22.55 10.06 22.22 24.65 9.65 ...
   $ Lumbar.lordosis.angle
                              : num 39.6 25 50.1 44.3 28.3 ...
##
   $ Sacral.slope
                              : num 40.5 29 46.6 44.6 40.1 ...
   $ Pelvic.radius
##
                              : num 98.7 114.4 106 101.9 108.2 ...
    $ Degree.spondylolisthesis: num -0.254 4.564 -3.53 11.212 7.919 ...
##
   $ Pelvic.slope
##
                              : num 0.745 0.415 0.475 0.369 0.543 ...
   $ Direct.tilt
                              : num 12.6 12.9 26.8 23.6 35.5 ...
##
   $ Thoracic.slope
                              : num 14.5 17.5 17.5 12.7 16 ...
##
   $ Cervical.tilt
##
                              : num 15.3 16.78 16.66 11.42 8.87 ...
   $ Sacrum.angle
                              : num -28.7 -25.5 -29 -30.5 -16.4 ...
   $ Scoliosis.slope
                              : num 43.5 16.1 19.2 18.8 24.9 ...
##
                              : Factor w/ 2 levels "Abnormal", "Normal": 1 1 1 1 1 1 1 1 1 1 ...
   $ Class.attribute
```

So this is a $\mathtt{data.frame}$ object with 310 observations and 13 variables, of which one is a \mathtt{factor} and the rest are $\mathtt{numeric}$

It looks like a **list of things**

Dataframes

Dataframes are the primary mode of storing datasets in R

They were revolutionary in that they kept heterogeneous data together

They share properties of both a matrix and a list

```
class(data spine)
```

```
## [1] "data.frame"
```

Technically, a data.frame is a list of vectors (or objects, generally) of the same length

Lecture 2: Data Frame, Matrix, List

Matrices

A matrix is a rectangular array of data of the same type

```
matrix(0, nrow=2, ncol=4)
       [,1] [,2] [,3] [,4]
## [1,]
## [2,]
          0 0 0
matrix(letters, nrow=2)
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [2,] "b" "d" "f" "h" "i" "l" "n" "p" "r"
matrix(letters, nrow=2, byrow=T)
##
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
## [1,] "a"
                                                                                   19/52
            "o" "p" "q" "r" "s" "t" "u" "v"
## [2,] "n"
```

Matrices

You can create a matrix from a set of vectors of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put columns together

```
cbind(c(1,2,3,4), c(10,20,30,40)) ## Column bind
```

```
## [,1] [,2]

## [1,] 1 10

## [2,] 2 20

## [3,] 3 30

## [4,] 4 40
```

Matrices

You can create a matrix from a set of vectors of the same length

```
x \leftarrow c(1,2,3,4)

y \leftarrow c(10,20,30,40)
```

Put rows together

```
example_matrix <- rbind(c(1,2,3,4), c(10,20,30,40)) \# Row bind example_matrix
```

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

Extracting elements

example matrix

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

example matrix[1,] ## Extracts 1st row

```
## [1] 1 2 3 4
```

example matrix[,2:3] ## extracts 2nd & 3rd columns

```
## [,1] [,2]
## [1,] 2 3
## [2,] 20 30
```

example_matrix[1,4]

Matrix properties

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40

nrow(example_matrix) ## Number of rows

## [1] 2

ncol(example_matrix) ## Number of columns

## [1] 4
```

[1] 2 4

dim(example matrix) ## shortcut for above

Matrix arithmetic

example matrix

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

example_matrix + 5 ## Add 5 to each element

```
## [,1] [,2] [,3] [,4]
## [1,] 6 7 8 9
## [2,] 15 25 35 45
```

example_matrix * 2 ## Multiply each element by 2

```
## [,1] [,2] [,3] [,4]
## [1,] 2 4 6 8
## [2,] 20 40 60 80
```

Two matrices

example matrix

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

```
example_matrix2 <- rbind(3:6, 9:12)
example_matrix2</pre>
```

```
## [,1] [,2] [,3] [,4]
## [1,] 3 4 5 6
## [2,] 9 10 11 12
```

example_matrix + example_matrix2

```
## [,1] [,2] [,3] [,4]
## [1,] 4 6 8 10
## [2,] 19 30 41 52
```

Two matrices

example matrix

```
## [,1] [,2] [,3] [,4]
## [1,] 1 2 3 4
## [2,] 10 20 30 40
```

example matrix2

```
## [,1] [,2] [,3] [,4]
## [1,] 3 4 5 6
## [2,] 9 10 11 12
```

example_matrix * example_matrix2 ## Not matrix multiplication, but element-wise multiplication

Two matrices

rbind(example matrix, example matrix2)

```
## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 10 20 30 40

## [3,] 3 4 5 6

## [4,] 9 10 11 12
```

cbind(example_matrix, example_matrix2)

Two matrices

```
dim(example_matrix2)

## [1] 2 4

t(example_matrix2) ## Transpose of a matrix

## [,1] [,2]
## [1,] 3 9
## [2,] 4 10
## [3,] 5 11
## [4,] 6 12
```

example_matrix %*% t(example_matrix2) ## Matrix multiplication

```
## [,1] [,2]
## [1,] 50 110
## [2,] 500 1100
```

Lists

Lists are collections of arbitrary objects in R

```
example list <- list(c('Andy', 'Brian', 'Harry'),</pre>
                     c(12, 16, 16),
                     c(TRUE, TRUE, FALSE),
                    matrix(1, nrow=2, ncol=3))
example list
## [[1]]
## [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
##
## [[3]]
## [1] TRUE TRUE FALSE
##
## [[4]]
   [,1] [,2] [,3]
## [1,] 1 1
                                                                                        29/52
```

[2,]

Extracting elements from lists

```
example_list[[3]]

## [1] TRUE TRUE FALSE

example_list[1:2]

## [[1]]
## [1] "Andy" "Brian" "Harry"
##
## [[2]]
## [1] 12 16 16
```

Extracting elements from lists

Named lists

```
example named list <- list('Names' = c('Andy', 'Brian', 'Harry'),
                     "YearsOfEducation" = c(12, 16, 16),
                     "Married" = c(TRUE, TRUE, FALSE),
                     'something' = matrix(1, nrow=2, ncol=3))
example named list[['Names']]
## [1] "Andy" "Brian" "Harry"
example named list$Names
## [1] "Andy" "Brian" "Harry"
example named list$Names[3]
## [1] "Harry"
```

Back to a Data Frame

A data.frame object is a **named list** where each element is of the same length You can use both *matrix* and *list* functions to operate on data.frame objects!!

Data Frames

head(data_spine)

##		Pelvic.incidence	e Pelvic.tilt	Lumbar.lordo	sis.angle S	Sacral.slope
##	1	63.02782	22.552586		39.60912	40.47523
##	2	39.05695	10.060991		25.01538	28.99596
##	3	68.83202	22.218482		50.09219	46.61354
##	4	69.29701	24.652878		44.31124	44.64413
##	5	49.71286	9.652075		28.31741	40.06078
##	6	40.25020	13.921907		25.12495	26.32829
##		Pelvic.radius De	egree.spondylo	olisthesis Pe	lvic.slope	Direct.tilt
##	1	98.67292		-0.254400	0.7445035	12.5661
##	2	114.40543		4.564259	0.4151857	12.8874
##	3	105.98514		-3.530317	0.4748892	26.8343
##	4	101.86850		11.211523	0.3693453	23.5603
##	5	108.16872		7.918501	0.5433605	35.4940
##	6	130.32787		2.230652	0.7899929	29.3230
##		Thoracic.slope (Cervical.tilt	Sacrum.angle	Scoliosis	slope
##	1	14.5386	15.30468	-28.658501	43	3.5123
##	2	17.5323	16.78486	-25.530607	16	5.1102
##	3	17.4861	16.65897	-29.031888	19	9.2221
##	4	12.7074	11.42447	-30.470246	18	3.8329

Data Frames

```
dim(data_spine)

## [1] 310 13

nrow(data_spine)

## [1] 310

data_spine_small <- data_spine[1:4,] ## Matrix operation</pre>
```

Data Frames

```
data spine small[,2] ## Matrix extraction by position
```

```
## [1] 22.55259 10.06099 22.21848 24.65288
```

```
data_spine_small[[2]] ## List extraction by position
```

```
## [1] 22.55259 10.06099 22.21848 24.65288
```

Data Frames

```
data_spine_small[['Pelvic.tilt']] ## Named list extraction

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small[,'Pelvic.tilt'] ## Data frame named column extraction

## [1] 22.55259 10.06099 22.21848 24.65288

data_spine_small$Pelvic.tilt ## Dollar sign extraction

## [1] 22.55259 10.06099 22.21848 24.65288
```

Data Frames

My preference is for

- data frame named column extraction data_spine_small[,'Pelvic.tilt'],
- 2. named list extraction data_spine_small[['Pelvic.tilt']]
- 3. Dollar-based extraction data_spine_small\$Pelvic.tilt

Data Frames

[7] "Pelvic.slope" "Direct.tilt"
[9] "Thoracic.slope" "Cervical.tilt"
[11] "Sacrum.angle" "Scoliosis.slope"

[13] "Class.attribute"

data spine small[,c('Pelvic.tilt', 'Pelvic.slope','Class.attribute')]

```
##
    Pelvic.tilt Pelvic.slope Class.attribute
## 1
       22.55259
                0.7445035
                                  Abnormal
## 2
     10.06099
                0.4151857
                                  Abnormal
## 3 22.21848
                                  Abnormal
                0.4748892
## 4
                                  Abnormal
      24.65288
                 0.3693453
```

Filtering data frames

Boolean operators

Operator	Meaning
I	Or
&	And
1	Not

Filtering data frames

data_spine[data_spine\$Pelvic.tilt > 20,]

##		Pelvic.incidence	Pelvic.tilt	Lumbar.lordosis.angle	Sacral.slope
##	1	63.02782	22.55259	39.60912	40.47523
##	3	68.83202	22.21848	50.09219	46.61354
##	4	69.29701	24.65288	44.31124	44.64413
##	14	53.57217	20.46083	33.10000	33.11134
##	15	57.30023	24.18888	47.00000	33.11134
##	17	63.83498	20.36251	54.55243	43.47247
##	22	54.91944	21.06233	42.20000	33.85711
##	23	63.07361	24.41380	54.00000	38.65981
##	25	36.12568	22.75875	29.00000	13.36693
##	26	54.12492	26.65049	35.32975	27.47443
##	29	44.55101	21.93115	26.78592	22.61986
##	30	66.87921	24.89200	49.27860	41.98721
##	35	59.59554	31.99824	46.56025	27.59730
##	39	55.84329	28.84745	47.69054	26.99584
##	44	66.28539	26.32784	47.50000	39.95755
##	46	50.91244	23.01517	47.00000	27.89727
##	47	48.33264	22.22778	36.18199	26.10485
##	51	55.28585	20.44012	34.00000	34.84573

Filtering data frames

data spine[data spine\$Pelvic.tilt > 20 & data spine\$Pelvic.slope > 0.85,]

##		Pelvic.incidence	Pelvic.tilt	Lumbar.lo	rdosis.angle S	Sacral.slope
##	26	54.12492	26.65049		35.32975	27.47443
##	76	70.22145	39.82272		68.11840	30.39873
##	84	81.10410	24.79417		77.88702	56.30993
##	99	77.65512	22.43295		93.89278	55.22217
##	106	65.00796	27.60261		50.94752	37.40536
##	112	84.99896	29.61010		83.35219	55.38886
##	129	90.51396	28.27250		69.81394	62.24146
##	179	80.65432	26.34438		60.89812	54.30994
##	231	65.61180	23.13792		62.58218	42.47388
##	303	54.60032	21.48897		29.36022	33.11134
##		Pelvic.radius Deg	gree.spondylo	olisthesis	Pelvic.slope	Direct.tilt
##	26	121.4470		1.571205	0.9286879	14.6686
##	76	148.5256	-	145.378143	0.9466106	10.3840
##	84	151.8399		65.214616	0.9720056	10.5715
##	99	123.0557		61.211187	0.9249029	14.9502
##	106	116.5811		7.015978	0.8673241	12.1292
##	112	126.9130		71.321175	0.9988267	7.0551
##	129	100.8922		58.823648	0.8814413	13.5739

Filtering data frames and selecting variables

```
##
       Direct.tilt Class.attribute
## 26
           14.6686
                          Abnormal
## 76
           10.3840
                          Abnormal
## 84
                          Abnormal
           10.5715
## 99
           14.9502
                          Abnormal
## 106
                          Abnormal
           12,1292
                          Abnormal
## 112
           7.0551
## 129
                          Abnormal
           13.5739
## 179
           20.0845
                          Abnormal
## 231
           30.0422
                             Normal
## 303
           30.8554
                             Normal
```

Adding a variable

```
data_spine_small[,'bad.angle'] <- c('No','Yes','No','No')
data_spine_small</pre>
```

```
##
     Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
## 1
             63.02782
                         22.55259
                                               39,60912
                                                            40.47523
## 2
             39.05695
                        10.06099
                                               25.01538
                                                            28.99596
## 3
             68.83202
                        22.21848
                                               50.09219
                                                            46.61354
## 4
             69.29701
                         24.65288
                                               44.31124
                                                            44.64413
     Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
          98.67292
                                               0.7445035
                                                             12.5661
                                  -0.254400
## 2
                                                             12.8874
         114.40543
                                   4.564259
                                               0.4151857
## 3
        105.98514
                                  -3.530317
                                               0.4748892
                                                             26.8343
## 4
         101.86850
                                  11.211523
                                               0.3693453
                                                             23.5603
     Thoracic.slope Cervical.tilt Sacrum.angle Scoliosis.slope
## 1
            14.5386
                                     -28.65850
                         15.30468
                                                       43.5123
            17.5323
                         16.78486
                                   -25.53061
                                                       16.1102
## 3
            17.4861
                        16.65897
                                   -29.03189
                                                       19.2221
## 4
            12.7074
                                     -30.47025
                         11.42447
                                                       18.8329
##
     Class.attribute bad.angle
## 1
            Abnormal
                            No
## 2
            Abnormal
                           Yes
```

Removing a variable

```
data_spine_small[, -c('Class.attribute', 'bad.angle')]

## The next two commands change the original data set

data_spine_small[c('Class.attribute', 'bad.angle')] <- NULL

data_spine_small[['bad.angle']] <- NULL</pre>
```

Creating derived variables

Creating derived variables

Lecture 2: Data Frame, Matrix, List

For deriving multiple variables into a data frame

head(mtcars)

##	Ł	mpg	cyl	disp	hp	drat	wt	qsec	VS	am	gear	carb
##	⁴ Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
##	⁴ Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
##	Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
##	Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
##	Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
##	⁴ Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

For deriving multiple variables into a data frame

9/26/16, 10:53 AM

For deriving multiple variables into a data frame

str(mtcars)

```
'data.frame':
                    32 obs. of 13 variables:
    $ mpg
                    21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
    $ cyl
                    6 6 4 6 8 6 8 4 4 6 ...
             : num
    $ disp
                    160 160 108 258 360 ...
             : num
##
    $ hp
                    110 110 93 110 175 105 245 62 95 123 ...
             : num
                    3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
    $ drat
             : num
##
    $ wt
                    2.62 2.88 2.32 3.21 3.44 ...
             : num
##
    $ qsec
                   16.5 17 18.6 19.4 17 ...
             : num
##
    $ vs
                    0 0 1 1 0 1 0 1 1 1 ...
             : num
    $ am
                    1 1 1 0 0 0 0 0 0 0 ...
             : num
##
                    4 4 4 3 3 3 3 4 4 4 ...
    $ gear
             : num
    $ carb
                    4 4 1 1 2 1 4 2 2 4 ...
             : num
                    33.6 33.6 36.5 34.2 29.9 ...
    $ kmpq
##
    $ low.mpg: Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 2 1 1 1 ...
```

Adding new data to a data frame

You can concatenate two data frames using rbind as long as the variable names and orders are the same

```
new_data = rbind(data_spine[1:4,], data_spine[c(8,22),])
new_data
```

```
Pelvic.incidence Pelvic.tilt Lumbar.lordosis.angle Sacral.slope
##
## 1
             63.02782
                                               39.60912
                                                            40.47523
                         22.55259
## 2
                       10.06099
                                               25.01538
             39.05695
                                                            28.99596
## 3
                       22.21848
                                               50.09219
             68.83202
                                                            46.61354
## 4
             69.29701
                       24.65288
                                                            44.64413
                                               44.31124
                                               29.03835
## 8
             45.36675
                       10.75561
                                                            34.61114
## 22
             54.91944
                         21.06233
                                               42.20000
                                                            33.85711
##
     Pelvic.radius Degree.spondylolisthesis Pelvic.slope Direct.tilt
## 1
           98.67292
                                               0.7445035
                                                             12.5661
                                  -0.254400
## 2
         114.40543
                                   4.564259
                                               0.4151857
                                                             12.8874
## 3
         105.98514
                                               0.4748892
                                                             26.8343
                                  -3.530317
## 4
                                                             23.5603
         101.86850
                                  11.211523
                                              0.3693453
## 8
         117.27007
                                 -10.675871
                                               0.1319726
                                                             28.8165
## 22
          125.21272
                                   2.432561
                                               0.1752446
                                                             23.0791
```

Adding new data to a data frame

You can add columns of a new data frame to an existing data frame using cbind as long as the columns have no common names

```
##
    Pelvic.slope Class.attribute Sex Race
## 1
       0.7445035
                        Abnormal
                                  M
                                       W
## 2 0.4151857
                       Abnormal
                                  F
                                       В
## 3 0.4748892
                        Abnormal
                                      As
## 4 0.3693453
                        Abnormal
                                       В
```

## 307	18.1972	7.08745	6.013843	43.8693	
## 308	13.5565	8.89572	3.564463	18.4151	
## Cla	ss.attribute				
## 1	Abnormal				
## 3	Abnormal				
## 4	Abnormal				
## 14	Abnormal				
<i>##</i> 15	Abnormal				
<i>##</i> 17	Abnormal				
## 22	Abnormal				
## 23	Abnormal				
## 25	Abnormal				
## 26	Abnormal				
## 29	Abnormal				
## 30	Abnormal				
## 35	Abnormal				
## 39	Abnormal				
## 44	Abnormal				
## 46	Abnormal				
## 47	Abnormal				
## 51	Abnormal				
## 52	Abnormal				
## 53	Abnormal				
## 61	Abnormal				
## 62	Abnormal				
## 64	Abnormal				
## 65	Abnormal				

## 6	6 Abnormal		
## 6	7 Abnormal		
## 7	2 Abnormal		
## 7	3 Abnormal		
## 7	4 Abnormal		
## 7	5 Abnormal		
<i>##</i> 7	6 Abnormal		
## 7	7 Abnormal		
## 8	1 Abnormal		
## 8	2 Abnormal		
## 8	3 Abnormal		
## 8	4 Abnormal		
## 8	5 Abnormal		
## 9	0 Abnormal		
## 9	1 Abnormal		
## 9	2 Abnormal		
## 9	6 Abnormal		
## 9	9 Abnormal		
## 1	01 Abnormal		
## 1	05 Abnormal		
## 1	06 Abnormal		
## 1	08 Abnormal		
## 1	12 Abnormal		
## 1	15 Abnormal		
## 1	18 Abnormal		
## 1	19 Abnormal		
## 1	22 Abnormal		

##	123	Abnormal
##	127	Abnormal
##	129	Abnormal
##	133	Abnormal
##	134	Abnormal
##	136	Abnormal
##	137	Abnormal
##	138	Abnormal
##	139	Abnormal
##	140	Abnormal
##	142	Abnormal
##	144	Abnormal
##	146	Abnormal
##	147	Abnormal
##	150	Abnormal
##	151	Abnormal
##	157	Abnormal
##	161	Abnormal
##	163	Abnormal
##	164	Abnormal
##	166	Abnormal
##	169	Abnormal
##	175	Abnormal
##	179	Abnormal
##	180	Abnormal
##	183	Abnormal
##	184	Abnormal

##	185	Abnormal
##	186	Abnormal
##	187	Abnormal
##	189	Abnormal
##	190	Abnormal
##	192	Abnormal
##	193	Abnormal
##	198	Abnormal
##	201	Abnormal
##	202	Abnormal
##	203	Abnormal
##	206	Abnormal
##	207	Abnormal
##	209	Abnormal
##	220	Normal
##	221	Normal
	225	Normal
	231	Normal
	245	Normal
	250	Normal
	254	Normal
	299	Normal
##	300	Normal
	302	Normal
	303	Normal
	307	Normal
##	308	Normal

subset(data_spine, Pelvic.tilt > 20) ## is equivalent