Quantitative Equity Trading Strategies

Krutarth Haveliwala

DATASET

Source - Bloomberg Terminal

Pool of assets - SPDR and constituent ETFs

Frequency - Minute by Minute

Timeframe - 6 months

Technical Indicators

List of Technical Indicators used:

- 1) RSI
- 2) Bollinger Bands
- 3) MACD
- 4) Stochastic Oscillator
- 5) Money Flow Index

RSI - Relative Strength Index

- It is a momentum indicator.
- RSI measures the speed and magnitude of a security's recent price changes to evaluate overvalued or undervalued conditions in the price of that security.
- We have chosen a period of 14 for our signal.

$$RSI_{ ext{step one}} = 100 - \left\lfloor rac{100}{1 + rac{ ext{Average gain}}{ ext{Average loss}}}
ight
floor$$

MACD - Moving Average Convergence Divergence

Example: MACD=12-Period EMA – 26-Period EMA

The result of that calculation is the MACD line.

A nine-day EMA of the MACD line is called the signal line, which is then plotted on top of the MACD line, functions as a trigger for buy or sell signals.

Stochastic Oscillator

Formula:

$$\%K = \left(\frac{C - L14}{H14 - L14}\right) \times 100$$

where:

C =The most recent closing price

L14 = The lowest price traded of the 14 previous trading sessions

H14 = The highest price traded during the same

The stochastic oscillator is range-bound, meaning it is always between 0 and 100. This makes it a useful indicator of overbought and oversold conditions.

Bollinger Band

- Bollinger Bands® are a technical analysis tool developed by John Bollinger for generating oversold or overbought signals.
- There are three lines that compose Bollinger Bands: A simple moving average (middle band) and an upper and lower band.
- The upper and lower bands are typically 2 standard deviations +/- from a 20-day simple moving average (which is the center line), but they can be modified.

```
\begin{aligned} & \text{BOLU} = \text{MA}(\text{TP}, n) + m * \sigma[\text{TP}, n] \\ & \text{BOLD} = \text{MA}(\text{TP}, n) - m * \sigma[\text{TP}, n] \\ & \textbf{where:} \\ & \text{BOLU} = \text{Upper Bollinger Band} \\ & \text{BOLD} = \text{Lower Bollinger Band} \\ & \text{MA} = \text{Moving average} \\ & \text{TP (typical price)} = (\text{High} + \text{Low} + \text{Close}) \div 3 \\ & n = \text{Number of days in smoothing period (typically 20)} \\ & m = \text{Number of standard deviations (typically 2)} \\ & \sigma[\text{TP}, n] = \text{Standard Deviation over last } n \text{ periods of TP} \end{aligned}
```


Money Flow Index

This indicator measures the flow of money into and out of a security over a specified period of time.

It incorporates volume while RSI only considers price.

$$Money\ Flow\ Index = 100 - \frac{100}{1 + Money\ Flow\ Ratio}$$

where:

Money Flow Ratio =
$$\frac{14 \text{ Period Positive Money Flow}}{14 \text{ Period Negative Money Flow}}$$

Raw Money Flow = Typical Price * Volume

Typical Price =
$$\frac{\text{High} + \text{Low} + \text{Close}}{3}$$

Testing Indicator Performance

```
total_buy = all_analysis[all_analysis['order_type'] == 'BUY'].shape[0]
print("Number of total times we go long - " + str(total_buy))
total_sell = all_analysis[all_analysis['order_type'] == 'SELL'].shape[0]
print("Number of total times we go short - " + str(total_sell))
total_buy_perc = (int(total_buy) / 33995) * 100
print("Percentage of total times we go long - " + str(total_buy_perc))
total_sell_perc = (int(total_sell) / 33995) * 100
print("Percentage of total times we go short - " + str(total_sell_perc))

Number of total times we go long - 24266
Number of total times we go long - 71.3810854537432
Percentage of total times we go short - 28.618914546256804
```

I have tested the indicators on our dataset and have calculated the profit generated by each signal given by the indicators

0]: et	etf2_combined.iloc[15:25]											
[180]: St		Strategy	close_datetime	open_datetime	order_type	profit	status	Ticker				
2	203	Bollinger Bands	10/25/22 15:26	10/10/22 9:43	SELL	-5289.219945	closed	VGT				
1	734	RSI	10/11/22 10:03	10/11/22 10:00	BUY	-112.571429	closed	VGT				
2	189	MACD	10/25/22 9:30	10/11/22 10:05	BUY	6347.063934	closed	VGT				
1	735	RSI	10/11/22 12:23	10/11/22 12:20	SELL	70.535714	closed	VGT				
1	736	RSI	10/11/22 13:16	10/11/22 13:15	BUY	-43.000000	closed	VGT				
1	737	RSI	10/11/22 13:17	10/11/22 13:16	BUY	47.642857	closed	VGT				
1	738	RSI	10/11/22 13:18	10/11/22 13:17	BUY	48.357143	closed	VGT				
1	739	RSI	10/11/22 14:45	10/11/22 14:44	BUY	-71.071429	closed	VGT				
1	740	RSI	10/11/22 14:46	10/11/22 14:45	BUY	-80.000000	closed	VGT				
1	741	RSI	10/11/22 14:48	10/11/22 14:46	BUY	-87.857143	closed	VGT				

Merging and Processing Data

Fitting Models

I trained and tested the combined data on the following set of classification models to predict buy/sell signals

0	best_model_portfolio = compare_models(n_select=3, sort = 'Precision', turbo = True)									
₽	Model		Accuracy	AUC	Recall	Prec.	F1	Kappa	мсс	TT (Sec)
	ada	Ada Boost Classifier	0.7049	0.4787	0.0160	0.9061	0.0250	0.0078	0.0453	2.0720
	Ir	Logistic Regression	0.7125	0.6373	0.0300	0.7099	0.0573	0.0344	0.1013	5.4500
	ridge	Ridge Classifier	0.7124	0.0000	0.0298	0.7063	0.0570	0.0340	0.1006	1.2470
	lda	Linear Discriminant Analysis	0.7139	0.6400	0.0386	0.7030	0.0730	0.0440	0.1147	1.7050
	nb	Naive Bayes	0.7160	0.6298	0.0597	0.6609	0.1095	0.0643	0.1335	1.9130
	rf	Random Forest Classifier	0.7080	0.6020	0.0432	0.5933	0.0766	0.0357	0.0873	2.8700
	et	Extra Trees Classifier	0.7047	0.6090	0.0290	0.4833	0.0504	0.0177	0.0468	2.3280
	knn	K Neighbors Classifier	0.6973	0.6499	0.3275	0.4746	0.3874	0.1954	0.2013	2.0390
	svm	SVM - Linear Kernel	0.5710	0.0000	0.2819	0.3491	0.2481	-0.0249	-0.0107	1.2820
	qda	Quadratic Discriminant Analysis	0.4175	0.4953	0.7053	0.2888	0.3648	0.0035	-0.0066	1.6940
	dt	Decision Tree Classifier	0.7039	0.5011	0.0124	0.0840	0.0183	0.0028	0.0006	1.7420
	gbc	Gradient Boosting Classifier	0.7040	0.5303	0.0122	0.0338	0.0179	0.0029	0.0034	2.5820
	lightgbm	Light Gradient Boosting Machine	0.7040	0.4784	0.0122	0.0338	0.0179	0.0029	0.0034	1.9210
	dummy	Dummy Classifier	0.7074	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	1.6810

Selecting the Best Models:

```
ada = create_model('ada')
\Box
           Accuracy
                        AUC Recall Prec.
                                                F1 Kappa
                                                              MCC
     Fold
              0.6742 0.4931
                              0.1272  0.3463  0.1861  0.0342  0.0409
      0
              0.7078 0.4838
                              0.0018 1.0000
                                            0.0036
                                                    0.0025
                                                           0.0356
      2
              0.7083 0.4539
                              0.0036 1.0000 0.0071
                                                    0.0051
                                                           0.0504
              0.7092 0.4867
      3
                              0.0054 1.0000
                                            0.0107
                                                    0.0076
                                                           0.0618
              0.7087 0.4717
                              0.0036 1.0000 0.0072 0.0051 0.0504
      4
      5
              0.7081 0.4628
                              0.0018 1.0000 0.0036 0.0025
                                                           0.0357
              0.7087 0.4956
                              0.0036 1.0000 0.0072 0.0051
      7
              0.7081 0.4563
                              0.0018 1.0000 0.0036 0.0025
                                                           0.0357
      8
              0.7076 0.4913
                              0.0018 1.0000 0.0036 0.0025 0.0356
      9
              0.7087 0.4916
                              0.0090 0.7143 0.0177 0.0105 0.0562
     Mean
                     0.4787
                                                           0.0453
     Std
              0.0103 0.0153
                              0.0372 0.2051
                                            0.0539 0.0091 0.0093
```

0	logreg	= create	_model('lr')					
₽		Accuracy	AUC	Recall	Prec	. г	1 Кар	pa	мсс
	Fold								
	0	0.7188	0.6532	0.0520	0.805	6 0.097	76 0.06	644 0.	1564
	1	0.7093	0.6138	0.0215	0.600	0 0.041	15 0.02	217 0.0	0695
	2	0.7088	0.6583	0.0161	0.600	0 0.03	14 0.01	63 0.0	0601
	3	0.7108	0.6400	0.0323	0.600	0 0.06	13 0.03	324 0.0	0855
	4	0.7144	0.6464	0.0395	0.709	7 0.074	18 0.04	154 0.	1180
	5	0.7087	0.6301	0.0287	0.533	3 0.054	15 0.02	254 0.0	0670
	6	0.7150	0.6186	0.0305	0.850	0.058	39 0.03	395 0.	1263
	7	0.7129	0.6666	0.0251	0.777	8 0.048	37 0.03	310 0.	1042
	8	0.7134	0.6223	0.0269	0.833	3 0.052	21 0.03	344 0.	1160
	9	0.7129	0.6238	0.0269	0.789	5 0.052	20 0.03	333 0.	1095
	Mean	0.7125	0.6373	0.0300	0.709	9 0.057	73 0.03	344 0.	1013
	Std	0.0030	0.0173	0.0094	0.110	6 0.017	73 0.01	28 0.0	0289
[]	ridge	= create_m	nodel('r	idge')					
		Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	
	Fold								
	0	0.7172	0.0000	0.0466	0.7879	0.0880	0.0572	0.1444	
	1	0.7093	0.0000	0.0215	0.6000	0.0415	0.0217	0.0695	
	2	0.7067	0.0000	0.0143	0.4706	0.0278	0.0107	0.0371	
	3	0.7108	0.0000	0.0323	0.6000	0.0613	0.0324	0.0855	
	4	0.7144	0.0000	0.0395	0.7097	0.0748	0.0454	0.1180	
	5	0.7087	0.0000	0.0287	0.5333	0.0545	0.0254	0.0670	
	6	0.7160	0.0000	0.0323	0.9000	0.0624	0.0430	0.1376	
	7	0.7134	0.0000	0.0269	0.7895	0.0521	0.0334	0.1097	
	8	0.7150	0.0000	0.0305	0.8947	0.0589	0.0404	0.1327	
	9	0.7123	0.0000	0.0251	0.7778	0.0486	0.0309	0.1041	
	Mean	0.7124	0.0000	0.0298	0.7063	0.0570	0.0340	0.1006	
	Std	0.0033	0.0000	0.0085	0.1414	0.0159	0.0125	0.0333	

Creating a new model

I have combined the previous 3 best performing models into one

[]	blendl	= blend_m	odels(e	stimator	_list=[[ada, l	ogreg,	ridge],	optimize=	'Precision')
		Accuracy	AUC	Recall	Prec.	F1	Карра	мсс		
	Fold									
	0	0.7177	0.0000	0.0466	0.8125	0.0881	0.0582	0.1493		
	1	0.7083	0.0000	0.0179	0.5556	0.0347	0.0167	0.0564		
	2	0.7083	0.0000	0.0143	0.5714	0.0280	0.0138	0.0527		
	3	0.7108	0.0000	0.0323	0.6000	0.0613	0.0324	0.0855		
	4	0.7150	0.0000	0.0395	0.7333	0.0750	0.0465	0.1226		
	5	0.7081	0.0000	0.0269	0.5172	0.0512	0.0229	0.0615		
	6	0.7150	0.0000	0.0287	0.8889	0.0557	0.0380	0.1281		
	7	0.7123	0.0000	0.0233	0.7647	0.0453	0.0285	0.0985		
	8	0.7139	0.0000	0.0269	0.8824	0.0522	0.0355	0.1229		
	9	0.7123	0.0000	0.0251	0.7778	0.0486	0.0309	0.1041		
	Mean	0.7122	0.0000	0.0282	0.7104	0.0540	0.0323	0.0982		
	Std	0.0031	0.0000	0.0090	0.1314	0.0168	0.0127	0.0317		

Accuracy of the Final Model

The Final Model yields an accuracy of 72.27% on the training dataset and 73.97% on the testing dataset

Model Accuracy

AUC Recall Prec F1 Kanna

O Voting Classifier 0.7227

```
from pycaret.classification import *
#Loading the stored model
loading = load_model("mode12");
#Making Predictions
prediction = predict_model(loading,data = prediction_data)
```

Transformation Pipeline and Model Successfully Loaded

		couruc ₁		MOGULI			парра		
0	Voting Classifier	0.7397	0.5016	0	0	0	0.0046	0.0293	

Final Results of the Model

results_predicted.tail(15)

_}

		Ticker	Strategy	order_type	prediction_label
	6759	VCR	RSI	SELL	BUY
	6760	VHT	RSI	BUY	BUY
	6761	VCR	RSI	SELL	SELL
	6762	VHT	RSI	BUY	BUY
	6763	VHT	RSI	BUY	BUY
	6764	VPU	RSI	BUY	BUY
	6765	VFH	RSI	SELL	SELL
	6766	VCR	RSI	SELL	BUY
	6767	VCR	RSI	SELL	BUY
	6768	VGT	RSI	BUY	BUY
	6769	VCR	RSI	SELL	BUY
	6770	VGT	RSI	BUY	BUY
	6771	VHT	Bollinger Bands	BUY	SELL
	6772	VCR	RSI	SELL	BUY
	6773	VGT	RSI	BUY	BUY

Performance

Profit: 8.85% on Notional

Sharpe : 2.44

Thank you!