1

Vector Properties

G V V Sharma*

CONTENTS

Abstract—This book provides a computational approach to school geometry based on the NCERT textbooks from Class 6-12. Links to sample Python codes are available in the text.

1 DIRECTION VECTOR

- 1.1. Find the slope of a line, which passes through the origin, and the mid-point of the line segment joining the points $\mathbf{P} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 \\ -4 \end{pmatrix}$
 - $\begin{pmatrix} 8 \\ 0 \end{pmatrix}$. Solution:
- 1.2. The slope of a line is double of the slope of another line. If the tangent of the angle between them is $\frac{1}{3}$, find the slopes of the lines. **Solution:**
- 1.3. Find a unit vector that makes an angle of 90°, 60° and 30° with the positive x, y and z axis respectively.

Solution: The direction vector is

$$\mathbf{x} = \begin{pmatrix} \cos 90^{\circ} \\ \cos 60^{\circ} \\ \cos 30^{\circ} \end{pmatrix} = \begin{pmatrix} 0 \\ \frac{1}{2} \\ \frac{\sqrt{3}}{2} \end{pmatrix}$$
 (1.3.1)

- $\|\mathbf{x}\| = 1$, it is the desired unit vector.
- 1.4. Find the direction vectors and slopes of the lines passing through the points

a)
$$\begin{pmatrix} 3 \\ -2 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \\ 4 \end{pmatrix}$.
b) $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 7 \\ -2 \end{pmatrix}$.

- c) $\begin{pmatrix} 3 \\ -2 \end{pmatrix}$ and $\begin{pmatrix} 3 \\ 4 \end{pmatrix}$.
- d) Making an inclination of 60° with the positive direction of the x-axis.

Solution:

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

a) If the direction vector is

$$\begin{pmatrix} 1 \\ m \end{pmatrix}, \tag{1.4.1}$$

the slope is m. Thus, the direction vector is

$$\begin{pmatrix} -1\\4 \end{pmatrix} - \begin{pmatrix} 3\\-2 \end{pmatrix} = \begin{pmatrix} -4\\6 \end{pmatrix} = -\frac{1}{4} \begin{pmatrix} -4\\6 \end{pmatrix}$$

$$= \begin{pmatrix} 1\\-\frac{3}{2} \end{pmatrix} \implies m = -\frac{3}{2}$$

$$(1.4.3)$$

b) The direction vector is

$$\begin{pmatrix} 7 \\ -2 \end{pmatrix} - \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \implies m = 0$$

$$(1.4.5)$$

c) The direction vector is

$$\begin{pmatrix} 3\\4 \end{pmatrix} - \begin{pmatrix} 3\\-2 \end{pmatrix} = \begin{pmatrix} 0\\6 \end{pmatrix} \qquad (1.4.6)$$

$$= \begin{pmatrix} 1\\\infty \end{pmatrix} \implies m = \infty$$

$$(1.4.7)$$

d) The slope is $m = \tan 60^{\circ} = \sqrt{3}$ and the direction vector is

$$\begin{pmatrix} 1\\\sqrt{3} \end{pmatrix} \tag{1.4.8}$$

1.5. If the angle between two lines is $\frac{\pi}{4}$ and the slope of one of the lines is $\frac{1}{4}$ find the slope of the other line.

Solution: The angle θ between two lines is given by

$$\tan \theta = \frac{m_1 - m_2}{1 + m_1 m_2} \tag{1.5.1}$$

$$\implies 1 = \frac{m_1 - \frac{1}{4}}{1 + \frac{m_1}{4}} \tag{1.5.2}$$

or
$$m_1 = \frac{5}{3}$$
 (1.5.3)

- 1.6. If the points $\mathbf{A} = \begin{pmatrix} 6 \\ 1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 8 \\ 2 \end{pmatrix}$, $\mathbf{C} = \begin{pmatrix} 9 \\ 4 \end{pmatrix}$, $\mathbf{D} = \begin{pmatrix} p \\ 3 \end{pmatrix}$ are the vertices of a parallelogram, taken in order, find the value of p. **Solution:** In the parallelogram ABCD, AC and BD bisect each other. This can be used to find p.
- 1.7. Without using distance formula, show that points $\begin{pmatrix} -2 \\ -1 \end{pmatrix}$, $\begin{pmatrix} 4 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ are the vertices of a parallelogram.

Solution:

1.8. The two opposite vertices of a square are $\begin{pmatrix} -1 \\ 2 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$. Find the coordinates of the other two vertices.

Solution:

1.9. Find the direction vectors of the sides of a triangle with vertices $\mathbf{A} = \begin{pmatrix} 3 \\ 5 \\ -4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} -5 \\ -5 \\ -2 \end{pmatrix}$

1.10. Find a unit vector in the direction of

$$\begin{pmatrix} 1\\1\\-2 \end{pmatrix}. \tag{1.10.1}$$

Solution:

1.11. Find a unit vector in the direction of $\begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix}$.

Solution:

1.12. Find a unit vector in the direction of the line passing through $\begin{pmatrix} -2\\4\\-5 \end{pmatrix}$ and $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$.

Solution:

2 Norm

2.1. Find the unit normal vector of the plane

$$(6 -3 -2) \mathbf{x} = 1.$$
 (2.1.1)

Solution: The normal vector is

$$\mathbf{n} = \begin{pmatrix} 6 & -3 & -2 \end{pmatrix} \tag{2.1.2}$$

$$\therefore \|\mathbf{n}\| = 7, \tag{2.1.3}$$

the unit normal vector is

$$\frac{\mathbf{n}}{\|\mathbf{n}\|} = \frac{1}{7} \begin{pmatrix} 6 & -3 & -2 \end{pmatrix} \tag{2.1.4}$$

2.2. Find the condition for $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ to be equidistant from the points $\begin{pmatrix} 7 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \end{pmatrix}$.

Solution: From the given information,

$$\left\|\mathbf{x} - \begin{pmatrix} 7\\1 \end{pmatrix}\right\|^2 = \left\|\mathbf{x} - \begin{pmatrix} 3\\5 \end{pmatrix}\right\|^2 \tag{2.2.1}$$

$$\implies \|\mathbf{x}\|^2 + \left\| \begin{pmatrix} 7 \\ 1 \end{pmatrix} \right\|^2 - 2 \begin{pmatrix} 7 & 1 \end{pmatrix} \mathbf{x}$$
$$= \|\mathbf{x}\|^2 + \left\| \begin{pmatrix} 3 \\ 5 \end{pmatrix} \right\|^2 - 2 \begin{pmatrix} 3 & 5 \end{pmatrix} \mathbf{x} \quad (2.2.2)$$

which can be simplified to obtain

$$\begin{pmatrix} 1 & -1 \end{pmatrix} \mathbf{x} = 2 \tag{2.2.3}$$

which is the desired condition. The following code plots Fig. ??clearly showing that the above equation is the perpendicular bisector of AB.

codes/line/line_perp_bisect.py

2.3. Find a point on the y-axis which is equidistant from the points $\mathbf{A} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$.

Solution:

2.4. Find the equation of set of points **P** such that $PA^2 + PB^2 = 2k^2, \qquad (2.4.1)$

$$\mathbf{A} = \begin{pmatrix} 3\\4\\5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -1\\3\\-7 \end{pmatrix}, \tag{2.4.2}$$

respectively. **Solution:**

2.5. Find the equation of the set of points P such that its distances from the points A =

$$\begin{pmatrix} 3 \\ 4 \\ -5 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} -2 \\ 1 \\ 4 \end{pmatrix} \text{ are equal.}$$

Solution: