

Infocommunication Video broadcasting

Dr. Mohammed Salah Al-Radhi Dr. Tamás Gábor Csapó

malradhi@tmit.bme.hu

Copyright

 This lecture material was created by Tamás Gábor CSAPÓ from the Budapest University of Technology and Economics. Using the materials without explicit permission is considered copyright infringement.

ANALOG TV

Video Broadcasting

Limits of human eye

Flickering

Line interlacing

Example for interlacing

Upper field (top) - all odd lines (1,3,5,7, etc.) now all even lines are drawn first.

Lower field (bottom) -(2,4,6,8, etc.) are drawn.

As looking at the TV one recognizes a picture like the one above.

Number of lines on TV

```
3 \times 3 \times 3 \times 5 = 405 (United Kingdom)

3 \times 5 \times 5 \times 7 = 525 USA, Japan, ...

5 \times 5 \times 5 \times 5 = 625 EU, Australia, Africa,

Asia, ...

3 \times 3 \times 7 \times 13 = 819 (France)
```

Signal Conversion

picture I brightness + 3 colors

luminance:
$$Y = 0.3 \cdot R + 0.59 \cdot G + 0.11 \cdot B$$
 $0 = 0.3 \cdot (R - Y) + 0.53 \cdot (G - Y) + 0.11 \cdot (B - Y)$

first TV: BW, grayscale $\rightarrow Y$ $Y(x,y) \rightarrow Y(t)$ tracing

late TV: Compatible w. BW

 $R - Y = \frac{G - Y}{G - Y} = \frac{G - Y}{B - Y}$ color difference signal CR

 $CR = \frac{G - Y}{G - Y} = \frac{G$

Color difference signals

$$Y = 0.3 \cdot R + 0.59 \cdot G + 0.11 \cdot B$$

$$-(R-Y) = \frac{0.59}{0.3} \cdot (G-Y) + \frac{0.11}{0.3} \cdot (B-Y)$$

$$-(G-Y) = \frac{0.3}{0.59} \cdot (R-Y) + \frac{0.11}{0.59} \cdot (B-Y)$$

$$-(B-Y) = \frac{0.3}{0.11} \cdot (R-Y) + \frac{0.59}{0.11} \cdot (G-Y)$$

C_R and C_B

PAL, NTSC, SECAM color difference signals

• PAL:

$$-Y + QAM\{u,\pm v\}$$

• NTSC:

$$-Y + QAM\{I,Q\}$$

• SECAM:

$$- Y + FM1\{u\} \setminus FM2\{v\}$$

$$u = \frac{(B - Y)}{2.03}$$

$$v = \frac{\left(R - Y\right)}{1.14}$$

$$I = -u \cdot \sin(33^\circ) + v \cdot \cos(33^\circ)$$

$$Q = +u \cdot \cos(33^\circ) + v \cdot \sin(33^\circ)$$

Source: http://alpha.tmit.bme.hu/vitma301/gyak09 foliak.pdf

Source: http://cnyack.homestead.com/files/modulation/ntsc sig.htm

Baseband time function of analog TV

Baseband time function of analog TV

Source: http://alpha.tmit.bme.hu/vitma301/gyak08.pdf

Spectrum of analog TV signal

Time function of color signal

Oscillogram of composite PAL signal—two lines

Analog TV systems by nation

Satellite transmission (analog)

- Geostationary, ~36.000 km above ground [terrestrial antenna: 100-150 km - vs. 36k km => large diff!]
- Very small SNR, FM
- 6 MHz frequency deviation
- 8-10 audio channels
- Baseband BW: 7.25 MHz
- Carson-rule: B = 2 * (7.25 + 6) = 27 MHz raster
- Vertical / horizontal polarization

DIGITAL TV

Digital TV, DVB

- DVB = Digital Video Broadcasting
- Why?
 - Better quality?
 - More channels?
 - Better encryption?
 - Better error control?

- What is needed for DVB?
 - Source coding
 - Encryption coding
 - Error tolerant coding
 - Modulation

Source coding

- YUV / YIQ signal
- Resolution?
 - 1920x1080 (HD)
 - -1280x720 (SD)
 - 1440x1080 (Hungary)
 - 720x576 (Hungary)
- Progressive vs. interlaced

- Coding: MPEG group
 - In live videos, strong contours are rare
 - Enough to code & transmit the varying content

Modulation

- QAM + OFDM
- + good against ISI
- + Single Frequency Network
- + high spectral efficiency
- sensitive to Doppler effect
- - large delay (5-6 sec)

DVB-C (Community)

- Cable provider:
 - change some analog channels to digital -> same 8 MHz raster
- 8 MHZ, QAM-64 (6 bit/symbol)
- Elementary function: 15% raised cosine
- ~ 6 Mbaud signal, ~38 Mbps channel
 - − HD: ~ 6-8 Mbps
 - − SD: ~ 2 Mbps
 - Several digital channels in one 8 MHz freq. band

DVB-S (Satellite)

- worse SNR than DVB-C
- QPSK modulation
- same 38 Mbps multiplex channel as in DVB-C
 - requires 37 MHz
 - (no problem, in GHz region)
- for sparsely populated areas

DVB-H (Handheld)

- Mobile TV
- access to service while in moving vehicle
- display size: larger postal stamp
- tuner consumes much power
- not widespread (lack of business model)

DVB-T (Terrestrial)

- problems:
 - multipath propagation, dispersion
 - ISI (vs. analog: ghost image)
- Forward error correction
- Cyclic error correction
 - Reed-Solomon code, RS(204, 188)
- OFDM with ~8000 subcarriers
 - QAM-16
- different from country to country
 - Hungary: MPEG-4, H.264 source coding

Digital TV systems by nation

DVB-T coverage in Hungary

Infocommunication Video broadcasting

Dr. Mohammed Salah Al-Radhi Dr. Tamás Gábor Csapó

malradhi@tmit.bme.hu

The END

