

Math 515 Essential Perturbation Theory and Asymptotic Analysis Chapter 06

Steven M. Wise

swise1@.utk.edu University of Tennessee

Spring 2024

Chapter 06, Part 2 of 2 The WKB Method

The Quantum Harmonic Oscillator

The Time-Dependent Schrödinger Equation

The time-dependent Schrödinger equation is given by

$$i\hbar \frac{\partial \Psi}{\partial t} = -\frac{\hbar^2}{2m} \frac{\partial^2 \Psi}{\partial x^2} + V(x)\Psi, \quad x \in (-\infty, \infty), \tag{1}$$

where \hbar is Planck's constant, m is the mass of the particle, V(x) is the potential energy of the particle, and Ψ is a the wave function, which satisfies the normalization

$$\int_{-\infty}^{\infty} |\Psi(x,t)|^2 dx = 1.$$

We assume that the following separation of variables is valid:

$$\Psi(x, t) = \psi(x) T(t).$$

It follows that

$$i\hbar \frac{1}{T} \frac{dT}{dt} = -\frac{\hbar^2}{2m} \frac{1}{\psi} \frac{d^2 \psi}{dx^2} + V.$$

Separation

Since the function on the left is only a function of t and the function on the right is only a function of x, there must be a separation constant E such that

$$i\hbar \frac{1}{T} \frac{dT}{dt} = E = -\frac{\hbar^2}{2m} \frac{1}{\psi} \frac{d^2 \psi}{dx^2} + V.$$

Though it is not clear at the moment, it will follow that E > 0. Furthermore,

$$T(t)=e^{-iEt/\hbar},$$

and

$$-\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2}=\frac{2m}{\hbar^2}\left(E-V(x)\right)\psi.$$

The potential is that of a harmonic oscilator:

$$V(x) = \frac{1}{2}m\omega^2 x^2,$$

where $\omega > 0$ is a constant. Thus, we seek a solution to the equation

$$-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2\psi}{\mathrm{d}x^2} + \frac{1}{2}m\omega^2x^2\psi = E\psi.$$

Boundary and Normalization Conditions

What are the boundary conditions? We require that

$$\lim_{x\to\pm\infty}\psi(x)=0.$$

Furthermore, recalling the normalization of the wave function, we need to have

$$1 = \int_{-\infty}^{\infty} |\Psi(x, t)|^{2} dx$$

$$= \int_{-\infty}^{\infty} e^{-iEt/\hbar} \psi(x) \overline{\psi(x)} e^{iEt/\hbar} dx$$

$$= \int_{-\infty}^{\infty} |\psi(x)|^{2} dx.$$

In other words, ψ should also be normalized.

Solution via Hermite Polynomials

Thus, we have an eigenvalue problem. The solution to this problem is well-known and involves the Hermite polynomials. We find that eigenvalues are

$$E_n = \left(n + \frac{1}{2}\right)\hbar\omega, \quad n = 0, 1, 2, \dots, \tag{2}$$

and the corresponding eigenfunctions are

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \frac{1}{\sqrt{2^n n!}} H_n(\xi) e^{-\xi^2/2}, \quad \xi = \sqrt{\frac{m\omega}{\hbar}} x, \tag{3}$$

where H_n is the n^{th} Hermite polynomial. See Table 1. These form an orthogonal family of polynomials and satisfy the orthonormality condition

$$\int_{-\infty}^{\infty} H_n(x)H_m(x)e^{-x^2} dx = \sqrt{\pi}2^n n! \delta_{m,n}, \quad n, m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}.$$
 (4)

$$\begin{array}{ll} n & H_n(x) \\ \hline 0 & H_0(x) = 1 \\ 1 & H_1(x) = 2x \\ 2 & H_2(x) = 4x^2 - 2 \\ 3 & H_3(x) = 8x^3 - 12x \\ 4 & H_4(x) = 16x^4 - 48x^2 + 12 \\ 5 & H_5(x) = 32x^5 - 160x^3 + 120 \\ 6 & H_6(x) = 64x^6 - 480x^4 + 720x^2 - 120 \\ 7 & H_7(x) = 128x^7 - 1344x^5 + 3360x^3 - 1680x \\ 8 & H_8(x) = 256x^8 - 3584x^6 + 13440x^4 - 13440x^2 + 1680 \\ 9 & H_9(x) = 512x^9 - 9216x^7 + 48384x^5 - 80640x^3 + 30240x \\ \end{array}$$

Table: The first ten Hermite polynomials.

Normalization of the Wave Function

As a consequence, we see clearly that

$$\begin{split} \int_{-\infty}^{\infty} |\psi_n(x)|^2 \, \mathrm{d}x &= \sqrt{\frac{m\omega}{\pi\hbar}} \int_{x=-\infty}^{x=\infty} H_n^2(\xi) \mathrm{e}^{-\xi^2} \, \mathrm{d}x \\ &= \sqrt{\frac{\hbar}{m\omega}} \sqrt{\frac{m\omega}{\pi\hbar}} \frac{1}{2^n n!} \int_{\xi=-\infty}^{\xi=\infty} H_n^2(\xi) \mathrm{e}^{-\xi^2} \, \mathrm{d}\xi \\ &= \sqrt{\frac{\hbar}{m\omega}} \sqrt{\frac{m\omega}{\pi\hbar}} \frac{1}{2^n n!} \sqrt{\pi} 2^n n! \\ &= 1, \end{split}$$

as desired. More generally, we have

$$\int_{-\infty}^{\infty} \psi_n(x) \psi_m(x) \, \mathrm{d}x = \delta_{m,n}.$$

A Solution to the Time-Dependent Problem

Thus, the energy levels are quantized, and a general solution to the time-dependent Schrödinger equation may be given by the principle of superposition:

$$\Psi(x,t) = \sum_{k=0}^{\infty} c_k e^{-iE_k t/\hbar} \psi_k(x). \tag{5}$$

The coefficients in the expansion are given by the initial data, as follows:

$$f(x) = \Psi(x, t = 0) = \sum_{k=0}^{\infty} c_k \psi_k(x).$$

Using the orthonormality condition, we have

$$c_{\ell} = \int_{-\infty}^{\infty} f(x)\psi_{\ell}(x) dx, \quad \ell = 0, 1, 2, \dots$$

These numbers, c_{ℓ} , are sometimes called the Fourier coefficients.

A Dimensionless Time-Independent Problem

The non-dimensional version of the problem is as follows:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}\xi^2} = (\xi^2 - K)y(\xi), \quad \xi = \sqrt{\frac{m\omega}{\hbar}}x,\tag{6}$$

where

$$K=\frac{2E}{\hbar\omega}>0.$$

This problem has two turning points. Setting $q(\xi) = \xi^2 - K$, we have turning points at

$$\xi = \pm \sqrt{K}$$
.

In the next section, we will use the WKB method to approximate solutions to a generalized version of this problem.

The Two-Turning-Point Eigenvalue Problem

Two Turning Points

Consider the following Schrödinger equation

$$\varepsilon^2 y''(x) - q(x)y(x) = 0, \quad -\infty < x < \infty, \tag{7}$$

where $\varepsilon \in (0, 1)$, with the "boundary" conditions

$$\lim_{x \searrow -\infty} y(x) = 0 \quad \text{and} \quad \lim_{x \nearrow \infty} y(x) = 0. \tag{8}$$

In this section, we address the case that q changes sign twice on the domain $\Omega = (-\infty, \infty)$.

Single-Well Potential

Specifically, we assume that

$$q(x) = V(x) - E,$$

where

- **1** $V(x) \ge 0$;
- 2 V(x) has a global minimum at x = c;
- **8** V(c) = 0;
- **4** V(r) is monotonically increasing as r increases, where r = |x c|;
- $\bullet \quad \lim_{x \nearrow \infty} V(x) = \infty;$
- $\bullet \lim_{x \searrow -\infty} V(x) = \infty.$

For example, for any p > 0, the function

$$V(x) = |x - c|^p$$

satisfies the conditions. A potential V that satisfies these conditions is called a **single-well potential energy**.

Three Regions

It follows that, if E > 0, then there are exactly two points $x = \alpha = \alpha(E) < c$ and $x = \beta = \beta(E) > c$, such that

$$V(\alpha) = E$$
 and $V(\beta) = E$.

With respect to the value of E, the points $x = \alpha(E)$ and $x = \beta(E)$ represent the unique turning points for q(x), and we have, precisely,

$$q(x) > 0, \quad \forall x \in (-\infty, \alpha);$$

$$q(x) < 0, \quad \forall x \in (\alpha, \beta);$$

$$q(x) > 0, \quad \forall x \in (\beta, \infty).$$

We can use our connection formulae to construct approximate solutions. In fact, all that is important for the determination of the eigenvalues, E_k , are the connection formulae in the interval (α, β) , where the solution is expected to be oscillatory.

The Connection Formulae Near $x = \beta$

Near $x = \beta$ the connection formulae satisfy

$$y(x;\varepsilon) \sim \begin{cases} \frac{2A_{\beta}}{4\sqrt{-q(x)}} \sin\left(\frac{1}{\varepsilon} \int_{x}^{\beta} \sqrt{-q(t)} dt + \frac{\pi}{4}\right), & x \in (\alpha, \beta), \\ \frac{2\sqrt{\pi}A_{\beta}}{(\varepsilon a_{\beta})^{1/6}} \operatorname{Ai}\left(\frac{a_{\beta}^{1/3}}{\varepsilon^{2/3}}(x - \beta)\right), & x \in \Omega_{l,\beta}, \\ \frac{A_{\beta}}{4\sqrt{q(x)}} \exp\left(-\frac{1}{\varepsilon} \int_{\beta}^{x} \sqrt{q(t)} dt\right), & x \in (\beta, \infty), \end{cases}$$
(9)

where, as $x \to \beta$,

$$q(x) = a_{\beta}(x - \beta) + O((x - \beta)^2),$$

with $a_{\beta} > 0$. The constant A_{β} is undetermined.

The Connection Formulae Near $x = \alpha$

To find the connection formulae near $x=\alpha$, we need to be a bit more careful. We have

$$y(x;\varepsilon) \sim \begin{cases} \frac{A_{\alpha}}{\sqrt[4]{q(x)}} \exp\left(-\frac{1}{\varepsilon} \int_{x}^{\alpha} \sqrt{q(t)} \, dt\right), & x \in (-\infty, \alpha), \\ \frac{2\sqrt{\pi}A_{\alpha}}{(\varepsilon a_{\beta})^{1/6}} \operatorname{Ai}\left(\frac{a_{\alpha}^{1/3}}{\varepsilon^{2/3}} (\alpha - x)\right), & x \in \Omega_{I,\alpha}, \\ \frac{2A_{\alpha}}{\sqrt[4]{-q(x)}} \sin\left(\frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, dt + \frac{\pi}{4}\right), & x \in (\alpha, \beta), \end{cases}$$
(10)

where, as $x \to \alpha$,

$$q(x) = -a_{\alpha}(x - \alpha) + O((x - \alpha)^{2}),$$

with $a_{\alpha} > 0$.

Joining Solutions in (α, β)

In order to join these two sets of connection formulae, the respective solutions in the region (α, β) must agree precisely. In other words, we need to enforce

$$2A_{\beta} \frac{\sin\left(\frac{1}{\varepsilon} \int_{x}^{\beta} \sqrt{-q(t)} \, dt + \frac{\pi}{4}\right)}{\sqrt[4]{-q(x)}} = 2A_{\alpha} \frac{\sin\left(\frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, dt + \frac{\pi}{4}\right)}{\sqrt[4]{-q(x)}}, \quad (11)$$

for all $x \in (\alpha, \beta)$, which we call the *quantization condition*, because, as we will see, this forces a quantization of the energy levels.

Some Definitions

Define

$$\begin{split} & \mathcal{K}_{\alpha,\beta} := \frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{2}; \\ & l_{\beta}(x) := \sin\left(\frac{1}{\varepsilon} \int_{x}^{\beta} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4}\right); \\ & l_{\alpha}(x) := \sin\left(\frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4}\right). \end{split}$$

Then, the quantization condition (11) is equivalent to

$$A_{\beta}I_{\beta}(x) = A_{\alpha}I_{\alpha}(x), \tag{12}$$

for all $x \in (\alpha, \beta)$.

Some Manipulation

T

Observe that

$$\begin{split} l_{\beta}(x) &= \sin\left(\frac{1}{\varepsilon} \int_{x}^{\beta} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4}\right) \\ &= \sin\left(\frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{-q(t)} \, \mathrm{d}t - \frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4}\right) \\ &= -\sin\left(-\frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{-q(t)} \, \mathrm{d}t + \frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, \mathrm{d}t - \frac{\pi}{4}\right) \\ &= -\sin\left(\frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4} - \frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{-q(t)} \, \mathrm{d}t - \frac{\pi}{2}\right) \\ &= -\sin\left(\frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4}\right) \cos(K_{\alpha,\beta}) \\ &+ \cos\left(\frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4}\right) \sin(K_{\alpha,\beta}) \\ &= l_{\alpha}(x) \cos(K_{\alpha,\beta}) + \cos\left(\frac{1}{\varepsilon} \int_{\alpha}^{x} \sqrt{-q(t)} \, \mathrm{d}t + \frac{\pi}{4}\right) \sin(K_{\alpha,\beta}). \end{split}$$

Energy Quantization

To ensure that (12) holds, we require that

$$\sin(K_{\alpha,\beta})=0.$$

This implies that

$$K_{\alpha,\beta} = rac{1}{arepsilon} \int_{lpha}^{eta} \sqrt{-q(t)} \, \mathrm{d}t + rac{\pi}{2} = k\pi,$$

where k is an integer. Since $K_{\alpha,\beta} > 0$, k must be a positive integer. Thus,

$$\frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{-q(t)} \, \mathrm{d}t = \left(k - \frac{1}{2}\right) \pi, \quad k = 1, 2, \dots,$$

or, equivalently,

$$\frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{E_k - V(x)} \, \mathrm{d}t = \left(k - \frac{1}{2}\right) \pi, \quad k = 1, 2, \dots.$$

The First and Second Quantization Rules

The last equation,

$$\frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{E_k - V(x)} \, \mathrm{d}t = \left(k - \frac{1}{2}\right) \pi, \quad k = 1, 2, \dots, \tag{13}$$

indicates that the energy levels must be quantized! This last relation, Equation (13), is called the *first quantization rule*.

To finish up, we have

$$I_{\beta} = I_{\alpha} \cos(k\pi) = I_{\alpha}(-1)^{k}, \quad k \in \mathbb{N},$$

and, therefore

$$A_{\beta}I_{\beta}=A_{\alpha}I_{\alpha}$$
,

iff

$$A_{\beta}(-1)^{k} = A_{\alpha}, \tag{14}$$

which we refer to as the second quantization rule.

WKB Validity

Finally, we point out that our WKB approximations herein are valid, provided either

- \bullet $\epsilon \searrow 0$, that is, ϵ is small, and/or,
- **2** $k \nearrow \infty$, that is, the energy levels are high.

Example

In this example, we examine a non-dimensional version of the quantum harmonic oscillator. Suppose that $V(x)=x^2$ and $\varepsilon=1$. Then, in this case,

$$\alpha = -\sqrt{E_k}$$
 and $\beta = \sqrt{E_k}$,

and

$$\frac{1}{\varepsilon} \int_{\alpha}^{\beta} \sqrt{E_k - V(x)} \, dt = \sqrt{E_k} \int_{-\sqrt{E_k}}^{\sqrt{E_k}} \sqrt{1 - \left(\frac{x}{\sqrt{E_k}}\right)^2} \, dt$$
$$= E_k \frac{\pi}{2}.$$

The quantization rule (13) implies that

$$E_k = 2\left(k - \frac{1}{2}\right), \quad k = 1, 2, \dots$$

Example (Cont.)

In this example, (7) can be written as

$$-y''(x) + x^2 y(x) = Ey(x), (15)$$

and the boundary conditions are

$$\lim_{x \searrow -\infty} y(x) = 0 \quad \text{and} \quad \lim_{x \nearrow \infty} y(x) = 0. \tag{16}$$

The exact eigenvalues are

$$E_k = 2\left(k + \frac{1}{2}\right), \quad k = 0, 1, 2, \dots,$$

and the associated eigenfunctions are

$$y_k(x) = \frac{1}{\pi^{1/4}} \frac{1}{\sqrt{2^k k!}} H_k(x) e^{-x^2/2}, \quad k = 0, 1, 2, \dots,$$

using the normalization

$$\int_{-\infty}^{\infty} |y_k(x)|^2 \, \mathrm{d}x = 1.$$

Example (Cont.)

So, we observe that, for this example, our WBK approximation, yields the exact eigenvalues.