Doubly Robust Prediction and Evaluation Methods Improve Uplift Modeling for Observational Data

Sonet Media Networks Yuta Saito, Hayato Sakata, and Kazuhide Nakata

yuta saito@so-netmedia.jp, hayato sakata@so-netmedia.jp, nakata.k.ac@m.titech.ac.jp

Motivation

 Achieving optimal treatment assignments ex) Medical Treatment, Advertisement, Coupon Distribution

Should We Treat Them?

If we know the optimal treatment of each individual, We could achieve the best possible future (highest survival rates)

Problem Setting

 Uplift Modeling tries to find an optimal treatment by analyzing the causal effect using Potential Outcomes

Goal: Predict the **Individual Treatment Effect (ITE)**

$$au_{Bob} = Y_{Bob}^{(1)} -$$

Causal Effect of Treatment on Bob

Survival Rate With Treatment

Survival Rate Without Treatment

We have 2 options for gathering training and test data

randomized treatments for data gathering

Pros: Treatments and Features

are Independent **Cons**: Cost and time ineffective

Observational

historical log data depending on past policies

Pros: Cost and time effective **Cons**: Treatment assignments

depend on past policies

In this work, we focused on **observational data**, which is generally available and we can extend the applications

Related Work

Transformed Outcome (TO) as proxy ITE [Athey+ 2015]

$$Y_i^{TO} = \frac{W_i}{e_i} Y_i^{obs} - \frac{1 - W_i}{1 - e_i} Y_i^{obs}$$

- Y_i^{obs} is the observed outcome
- $W_i \in \{0, 1\}$ is the treatment assignment indicator
- $e_i = \mathbb{P}(W_i = 1 \mid X_i)$ is the true propensity score
- TO is an unbiased estimator for the ITE [Athey+ 2015]

$$\mathbb{E}[Y_i^{TO} \mid X_i] = \tau_i$$

Unbiasedness of the *TO* is desirable, but...

- True Propensity Score is often missing and TO can be biased with an estimated propensity score
- Variance of TO has yet to be analyzed thus *TO* can be inaccurate proxy ITE

Proposed Techniques

Doubly Robust Estimation

Incorporate Potential Outcome Models into TO

$$Y_{i}^{DR} = \frac{W_{i}}{e_{i}} (Y_{i}^{obs} - \widehat{\mu}_{i}^{(1)}) - \frac{1 - W_{i}}{1 - e_{i}} (Y_{i}^{obs} - \widehat{\mu}_{i}^{(0)}) + (\widehat{\mu}_{i}^{(1)} - \widehat{\mu}_{i}^{(0)})$$

$$\hat{\mu}_{i}^{(1)}, \hat{\mu}_{i}^{(0)} \text{ are predicted values of } Y_{i}^{(1)}, Y_{i}^{(0)}$$

Bias Analysis

Expectations of Potential Outcomes

Estimation Biases

$$Bias(Y_i^{TO} \mid X_i) = |\delta_i^{(1)}(\mu_i^{(1)}) + \frac{\hat{e}_i}{1 - \hat{e}_i}(\mu_i^{(0)})|$$

$$V$$

$$\hat{e}_i \qquad (VDR \mid Y_i) = |S_i^{(1)}(A_i^{(1)}) + \frac{\hat{e}_i}{1 - \hat{e}_i}(A_i^{(0)})|$$

Potential Outcome

We assume the condition below holds in theoretical analyses

$$\forall k \in \{0, 1\}$$

$$|a_i^{(k)}| = |\mu_i^{(k)} - \hat{\mu}_i^{(k)}| < |\mu_i^{(k)} - 0| = |\mu_i^{(k)}|$$

Potential Outcome Estimation Bias

Expectation of Zero Prediction Potential Outcome

Variance Analysis

Potential Outcomes

Potential Outcome Estimation Biases

Expectations of

Switching Technique

Substitute extreme propensity scores

Proposed Proxy: Switch Doubly Robust Outcome

Synthetic Experiment

<u>Setup</u>

- Used 8 data generating processes from [Powers+ 2017]
- For prediction methods:
- Compared TMA, TOM, SDRM ($\gamma = 0.0, 0.3, 0.5$) by ITE prediction performance
- For evaluation metrics:
- Compared μ -risk, τ -risk, TO-MSE, SDR-MSE ($\gamma = 0.0, 0.3, 0.5$) by model selection performance

Results

- Our prediction method (SDRM) demonstrated the best prediction accuracies in all scenarios
- 0.5 is the optimal value for hyper-parameter γ

- Our evaluation method (SDR-MSE) demonstrated the stable performance across the scenarios
- The effect of varying γ is relatively small but a positive value is better than zero

Real-World Experiment

<u>Setup</u>

- Right Heart Catheterization (RHC) data
- well-known public dataset
- 5,735 critically ill patients
- Average Treatment Effect of RHC was found to be **negative**

<u>Uplift Curve</u>

a widely used metric in Uplift modeling y-axis: Difference of Survival rates between the treated and the controlled

Results

Ours found 20% of positively affected patients

