Supplementary Material: Accounting for Imputation Uncertainty During Neural Network Training

May 30, 2023

Abstract

This is the supplementary material for the research paper: Accounting for Imputation Uncertainty During Neural Network Training. In this paper we are interested in dealing with missing values in a machine learning context, and more especially when training a neural network. We focus on improving neural network training by reducing the potential biases that can occur during the training phase on artificially imputed datasets. We do so by taking into account the between-variance that can be observed between multiple imputations. We propose two new imputation frameworks, S-HOT and M-HOT, that can be used to train neural networks on completed data in a less biased way, leading to models able of more generalization, and so, to better inference results. We perform extensive comparative experiments and statistically assess the results on both benchmark and real-world datasets. We show that our frameworks compete against and even outperform existing imputation frameworks, while being both useful in different settings. We make our entire code publicly accessible to facilitate reproduction of our experimental results.

Method	IRIS	STAT	WINE	PIMA	ABAL
MISSFOREST	1.1965%	2.8167%	1.6140%	1.8177%	0.9456%
SOFTIMPUTE	10.8808%	9.9198%	7.5060%	7.7407%	5.3656%
GAIN	1.6804%	9.3976%	1.3125%	1.3669%	1.6819%
MIDA	1.1673%	1.0666%	0.9283%	0.6446%	0.5293%
SINKHORN	1.1053%	4.3111%	0.7496%	1.2742%	1.2218%

Table 1: Average imputation standard deviation (uncertainty) for each tested imputation method on each dataset

Dataset	Pattern		SI		MI		S-HOT		M-HOT	
		10%	0.9972681	(4)	0.9976699	(2)	0.9973865	(3)	0.9976913	(1)
	MCAR	15%	0.9942281	(4)	0.9946880	(2)	0.9944422	(3)	0.9947552	(1)
		25%	0.9835323	(4)	0.9841479	(2)	0.9839692	(3)	0.9843596	(1)
		10%	0.9975236	(3)	0.9978336	(2)	0.9974886	(4)	0.9978845	(1)
IRIS	MAR	15%	0.9970188	(3)	0.9973150	(1)	0.9970006	(4)	0.9973097	(2)
		25%	0.9941960	(4)	0.9943643	(2)	0.9943554	(3)	0.9943890	(1)
		10%	0.9972209	(4)	0.9973548	(1)	0.9972343	(3)	0.9973011	(2)
	MNAR	15%	0.9937917	(4)	0.9941570	(2)	0.9938451	(3)	0.9941622	(1)
		25%	0.9891964	(4)	0.9905233	(2)	0.9902221	(3)	0.9907251	(1)
		10%	0.9105582	(4)	0.9132492	(1)	0.9106386	(3)	0.9132475	(2)
	MCAR	15%	0.9060337	(4)	0.9091019	(2)	0.9066862	(3)	0.9091584	(1)
		25%	0.9047888	(4)	0.9077214	(2)	0.9059597	(3)	0.9078041	(1)
		10%	0.9127799	(3)	0.9144097	(1)	0.9127328	(4)	0.9142985	(2)
STAT	MAR	15%	0.9079620	(3)	0.9093156	(1)	0.9078667	(4)	0.9092031	(2)
		25%	0.8959471	(4)	0.8990894	(2)	0.8968849	(3)	0.8992881	(1)
		10%	0.9070192	(4)	0.9095510	(2)	0.9071004	(3)	0.9095576	(1)
	MNAR	15%	0.9040681	(4)	0.9061872	(1)	0.9042151	(3)	0.9060699	(2)
		25%	0.8951658	(4)	0.8992252	(2)	0.8967363	(3)	0.8992736	(1)
		10%	0.9987736	(4)	0.9989672	(2)	0.9988008	(3)	0.9989811	(1)
	MCAR	15%	0.9955454	(4)	0.9960062	(2)	0.9956407	(3)	0.9960307	(1)
		25%	0.9910498	(4)	0.9919927	(2)	0.9914148	(3)	0.9923485	(1)
		10%	0.9961058	(4)	0.9965056	(2)	0.9961142	(3)	0.9965060	(1)
WINE	MAR	15%	0.9977720	(4)	0.9982010	(1)	0.9978677	(3)	0.9981809	(2)
		25%	0.9952116	(4)	0.9965157	(2)	0.9959576	(3)	0.9968702	(1)
		10%	0.9987205	(3)	0.9988244	(1)	0.9987058	(4)	0.9988131	(2)
	MNAR	15%	0.9974746	(4)	0.9976465	(2)	0.9974850	(3)	0.9976683	(1)
		25%	0.9808498	(4)	0.9841291	(2)	0.9822719	(3)	0.9844587	(1)
		10%	0.8193054	(4)	0.8211340	(1)	0.8196586	(3)	0.8211193	(2)
	MCAR	15%	0.8073739	(4)	0.8095505	(2)	0.8078378	(3)	0.8095824	(1)
		25%	0.8029002	(4)	0.8060367	(2)	0.8043589	(3)	0.8065611	(1)
		10%	0.8238900	(4)	0.8257089	(1)	0.8242472	(3)	0.8256414	(2)
PIMA	MAR	15%	0.8045918	(4)	0.8080830	(2)	0.8061503	(3)	0.8083194	(1)
		25%	0.8017568	(4)	0.8041203	(1)	0.8025144	(3)	0.8040062	(2)
		10%	0.8280685	(4)	0.8302729	(2)	0.8284115	(3)	0.8303076	(1)
	MNAR	15%	0.8279577	(4)	0.8298929	(2)	0.8283792	(3)	0.8300464	(1)
		25%	0.8005008	(4)	0.8043448	(2)	0.8021749	(3)	0.8047250	(1)
		10%	0.8737739	(4)	0.8748059	(2)	0.8740180	(3)	0.8749393	(1)
	MCAR	15%	0.8714861	(4)	0.8725539	(2)	0.8717831	(3)	0.8726250	(1)
		25%	0.8663833	(4)	0.8674332	(2)	0.8666186	(3)	0.8675645	(1)
		10%	0.8742551	(4)	0.8751972	(2)	0.8743399	(3)	0.8753671	(1)
ABAL	MAR	15%	0.8720722	(4)	0.8731502	(2)	0.8721856	(3)	0.8731739	(1)
		25%	0.8697060	(4)	0.8708046	(2)	0.8699619	(3)	0.8709102	(1)
		10%	0.8760444	(4)	0.8768033	(2)	0.8760447	(3)	0.8769350	(1)
	MNAR	15%	0.8753217	(4)	0.8763271	(2)	0.8754605	(3)	0.8764456	(1)
		25%	0.8683507	(4)	0.8696780	(2)	0.8690281	(3)	0.8697714	(1)
Average	Average rank		3.8889	(*)	1.7556	(-)	3.1111	(3)	1.2444	(+)
50			3.0000		550		3.1111			

Table 2: Comparison of the results from the four $SI,\,MI,\,S\text{-}HOT$ and M-HOT frameworks using the MISSFOREST imputation method.

Dataset	Pattern		SI		MI		S-HOT		M-HOT	
		10%	0.9799937	(4)	0.9833994	(2)	0.9817654	(3)	0.9840372	(1)
	MCAR	15%	0.9768163	(4)	0.9823092	(2)	0.9808358	(3)	0.9831680	(1)
		25%	0.9669967	(4)	0.9761056	(2)	0.9722641	(3)	0.9770136	(1)
		10%	0.9957063	(4)	0.9965493	(2)	0.9961878	(3)	0.9966640	(1)
IRIS	MAR	15%	0.9942239	(4)	0.9960484	(2)	0.9952689	(3)	0.9961207	(1)
		25%	0.9893513	(4)	0.9915209	(2)	0.9910596	(3)	0.9920205	(1)
		10%	0.9936567	(4)	0.9956014	(2)	0.9950805	(3)	0.9956776	(1)
	MNAR	15%	0.9724648	(4)	0.9802625	(2)	0.9761291	(3)	0.9819184	(1)
		25%	0.9412312	(4)	0.9571874	(2)	0.9464214	(3)	0.9600941	(1)
		10%	0.9080227	(4)	0.9134026	(2)	0.9102585	(3)	0.9137060	(1)
	MCAR	15%	0.8998590	(4)	0.9064267	(2)	0.9028497	(3)	0.9067930	(1)
		25%	0.8908900	(4)	0.8980645	(2)	0.8956605	(3)	0.8989371	(1)
		10%	0.9084245	(4)	0.9112693	(1)	0.9090188	(3)	0.9111061	(2)
STAT	MAR	15%	0.9051054	(4)	0.9078594	(2)	0.9063680	(3)	0.9078908	(1)
		25%	0.8991662	(4)	0.9058215	(2)	0.9027334	(3)	0.9061238	(1)
		10%	0.9030340	(4)	0.9067615	(2)	0.9040986	(3)	0.9071034	(1)
	MNAR	15%	0.9035329	(4)	0.9079736	(2)	0.9052432	(3)	0.9082962	(1)
		25%	0.8905727	(4)	0.8966984	(2)	0.8944715	(3)	0.8972140	(1)
		10%	0.9981833	(4)	0.9985619	(2)	0.9983207	(3)	0.9985971	(1)
	MCAR	15%	0.9962062	(4)	0.9976257	(2)	0.9971960	(3)	0.9976910	(1)
		25%	0.9904914	(4)	0.9943642	(1)	0.9934990	(3)	0.9942573	(2)
		10%	0.9943647	(4)	0.9955126	(2)	0.9948008	(3)	0.9957826	(1)
	MAR	15%	0.9966424	(4)	0.9974876	(1)	0.9970709	(3)	0.9974503	(2)
***************************************	111111	25%	0.9937316	(4)	0.9956761	(2)	0.9952213	(3)	0.9961109	(1)
		10%	0.9986522	(4)	0.9989886	(1)	0.9989077	(3)	0.9989613	(2)
	MNAR	15%	0.9970764	(4)	0.9976771	(2)	0.9974153	(3)	0.9976784	(1)
	1,11,1110	25%	0.9868731	(4)	0.9929763	(1)	0.9913767	(3)	0.9929660	(2)
		10%	0.8064355	(4)	0.8126446	(2)	0.8108632	(3)	0.8147203	(1)
	MCAR	15%	0.7905122	(4)	0.7985624	(2)	0.7956762	(3)	0.8004567	(1)
	11101110	25%	0.7636735	(4)	0.7740310	(2)	0.7701991	(3)	0.7771393	(1)
		10%	0.8059250	(4)	0.8113151	(2)	0.8086973	(3)	0.8127776	(1)
PIMA	MAR	15%	0.7872220	(4)	0.7931241	(2)	0.7918551	(3)	0.7958718	(1)
1 11/11/1	1,11111	25%	0.7785481	(4)	0.7866454	(2)	0.7832708	(3)	0.7903447	(1)
		10%	0.8172368	(4)	0.8234770	(2)	0.8209724	(3)	0.8245369	(1)
	MNAR	15%	0.8045201	(4)	0.8113161	(2)	0.8093813	(3)	0.8130785	(1)
	111111111	25%	0.7636845	(4)	0.7734528	(2)	0.7714932	(3)	0.7806867	(1)
		10%	0.8640126	(4)	0.8664509	(2)	0.8656192	(3)	0.8665868	(1)
	MCAR	15%	0.8574107	(4)	0.8606084	(2)	0.8602595	(3)	0.8607058	(1)
	WICHIL	25%	0.8414577	(4)	0.8464660	(2)	0.8459436	(3)	0.8465174	(1)
		10%	0.8655842	(4)	0.8670096	(2)	0.8664084	(3)	0.8670916	(1)
ABAL	MAR	15%	0.8589554	(4)	0.8613812	(2) (2)	0.8604034	(3)	0.8614189	(1)
	MITAIL	$\frac{15\%}{25\%}$	0.8487023	(4) (4)	0.8532367	(1)	0.8504022 0.8521187	(3)	0.8530732	(2)
		10%	0.8487023	(4)	0.8670122	(2)	0.8657062	(3)	0.8670726	(1)
	MNAR	15%	0.8592630	(4)	0.8625236	(2) (2)	0.8613171	(3)	0.8625561	(1)
		$\frac{15\%}{25\%}$	0.8392030	(4) (4)	0.8023230	(1)	0.8449781	(3)	0.8481437	(2)
Average	Average rank		4.0000	(4)	1.8444	(1)	3.0000	(0)	1.1556	(4)
Average	ıanı		4.0000		1.0444		3.0000		1.1000	

Table 3: Comparison of the results from the four $SI,\,MI,\,S\text{-}HOT$ and M-HOT frameworks using the SOFTIMPUTE imputation method.

Dataset	Pattern		SI		MI		S-HOT		M-HOT	
		10%	0.9857773	(4)	0.9925170	(1)	0.9895060	(3)	0.9924744	(2)
	MCAR	15%	0.9875209	(4)	0.9909667	(2)	0.9899045	(3)	0.9916338	(1)
		25%	0.9836152	(4)	0.9881549	(2)	0.9869794	(3)	0.9888826	(1)
		10%	0.9964254	(4)	0.9977066	(2)	0.9972233	(3)	0.9977583	(1)
IRIS	MAR	15%	0.9959845	(4)	0.9971628	(2)	0.9967155	(3)	0.9973015	(1)
		25%	0.9941741	(4)	0.9949109	(2)	0.9948820	(3)	0.9952507	(1)
		10%	0.9931132	(4)	0.9960869	(2)	0.9951754	(3)	0.9961488	(1)
	MNAR	15%	0.9882231	(4)	0.9923640	(2)	0.9913868	(3)	0.9925256	(1)
		25%	0.9751727	(4)	0.9824279	(2)	0.9801958	(3)	0.9839101	(1)
		10%	0.9020429	(4)	0.9160128	(2)	0.9123281	(3)	0.9161932	(1)
	MCAR	15%	0.8856269	(4)	0.9079333	(2)	0.9045924	(3)	0.9081124	(1)
		25%	0.8769033	(4)	0.9020794	(2)	0.8993412	(3)	0.9025791	(1)
		10%	0.9087615	(4)	0.9173822	(2)	0.9145394	(3)	0.9180998	(1)
STAT	MAR	15%	0.8998852	(4)	0.9114664	(1)	0.9082186	(3)	0.9108804	(2)
		25%	0.8807372	(4)	0.8983544	(1)	0.8956080	(3)	0.8977701	(2)
		10%	0.8935386	(4)	0.9037203	(2)	0.9006735	(3)	0.9044389	(1)
	MNAR	15%	0.8939280	(4)	0.9062339	(2)	0.9030125	(3)	0.9063437	(1)
	111111111	25%	0.8601279	(4)	0.8908618	(2)	0.8868338	(3)	0.8913759	(1)
		10%	0.9983811	(4)	0.9987367	(1)	0.9986075	(3)	0.9987216	(2)
	MCAR	15%	0.9966068	(4)	0.9976465	(3)	0.9976643	(2)	0.9979061	(1)
	MOM	25%	0.9915570	(4)	0.9947619	(2)	0.9946475	(3)	0.9951303	(1)
		10%	0.9965180	(4)	0.9977893	(1)	0.9975478	(3)	0.9977813	$\frac{(1)}{(2)}$
	MAR	15%	0.9970171	(4)	0.9978439	(2)	0.9975442	(3)	0.9978859	(1)
WIND	111111	25%	0.9962614	(4)	0.9977948	(2)	0.9975461	(3)	0.9979197	(1)
		10%	0.9983833	(4)	0.9987648	$\frac{(2)}{(2)}$	0.9986169	(3)	0.9987725	(1)
	MNAR	15%	0.9975738	(4)	0.9979271	(2)	0.9977293	(3)	0.9979903	(1)
	MINAIL	25%	0.9910734	(4)	0.9934225	(2) (2)	0.9911293	(3)	0.9936716	(1)
		10%	0.9910734	(4)	0.9934223	(2) (2)	0.9929808	(3)	0.8223632	(1)
	MCAR	15%	0.8127048	` ′	0.8210201	(2) (2)	0.8116789	(/	0.8223032	\ /
	MCAR	$\frac{15\%}{25\%}$		(4) (4)		(1)	0.8110789	(3) (3)		(1)
		10%	0.8003100		0.8081799				0.8080758	(2)
DIMA	MAD		0.8155870	(4)	0.8213601	(1)	0.8189119	(3)	0.8208527	(2)
PIMA	MAR	15% $25%$	0.8036819	(4)	0.8095054 0.8024029	(2)	0.8082194	(3)	0.8097639	(1)
			0.7948673	(4)		(1)	0.8006539	(3)	0.8016825	(2)
	MATAD	10%	0.8203723	(4)	0.8253893	(1)	0.8231400	(3)	0.8252170	(2)
	MNAR	15%	0.8199156	(4)	0.8259666	(1)	0.8240971	(3)	0.8256314	(2)
		25%	0.7939407	(4)	0.8020002	(1)	0.7999276	(3)	0.8018077	(2)
	MOAD	10%	0.8648877	(4)	0.8674506	(2)	0.8670693	(3)	0.8674665	(1)
	MCAR	15%	0.8629564	(4)	0.8658764	(1)	0.8653915	(3)	0.8658450	(2)
		25%	0.8567035	(4)	0.8607069	(2)	0.8608724	(1)	0.8606392	(3)
ABAL	3.54.5	10%	0.8657632	(4)	0.8679247	(1)	0.8673467	(3)	0.8678653	(2)
	MAR	15%	0.8644014	(4)	0.8666815	(1)	0.8662844	(3)	0.8666551	(2)
		25%	0.8593164	(4)	0.8621055	(1)	0.8617823	(3)	0.8619164	(2)
		10%	0.8678301	(4)	0.8699069	(2)	0.8695650	(3)	0.8699575	(1)
	MNAR	15%	0.8660991	(4)	0.8690043	(1)	0.8684580	(3)	0.8689099	(2)
		25%	0.8569403	(4)	0.8600201	(1)	0.8595820	(3)	0.8599013	(2)
Average	rank		4.0000		1.6444		2.9333		1.4222	

Table 4: Comparison of the results from the four $SI,\,MI,\,S\text{-}HOT$ and M-HOT frameworks using the GAIN imputation method.

Dataset	Pattern		SI		MI		S-HOT		M-HOT	
		10%	0.9554177	(3)	0.9580418	(2)	0.9554087	(4)	0.9589565	(1)
	MCAR	15%	0.9530381	(4)	0.9550508	(2)	0.9537060	(3)	0.9556869	(1)
		25%	0.9453838	(4)	0.9483980	(2)	0.9467725	(3)	0.9495824	(1)
		10%	0.9905962	(4)	0.9912635	(2)	0.9908503	(3)	0.9913792	(1)
IRIS	MAR	15%	0.9895670	(4)	0.9906208	(2)	0.9901444	(3)	0.9911103	(1)
		25%	0.9852364	(4)	0.9863382	(2)	0.9855719	(3)	0.9874122	(1)
		10%	0.9845493	(4)	0.9857842	(2)	0.9847597	(3)	0.9862155	(1)
	MNAR	15%	0.9555301	(4)	0.9571348	(2)	0.9561772	(3)	0.9576568	(1)
		25%	0.9308975	(4)	0.9372261	(2)	0.9339321	(3)	0.9381131	(1)
		10%	0.9077575	(4)	0.9109495	(1)	0.9082601	(3)	0.9108722	(2)
	MCAR	15%	0.9007673	(4)	0.9037409	(1)	0.9010883	(3)	0.9035844	(2)
		25%	0.8931136	(4)	0.8962443	(1)	0.8936269	(3)	0.8960913	(2)
		10%	0.9077300	(3)	0.9099291	(1)	0.9076973	(4)	0.9097665	(2)
STAT	MAR	15%	0.9034708	(4)	0.9054812	(1)	0.9036366	(3)	0.9053064	(2)
0 1111	1,11110	25%	0.8998750	(4)	0.9030175	(1)	0.9000970	(3)	0.9029715	(2)
		10%	0.9049275	(4)	0.9073643	(1)	0.9052633	(3)	0.9073239	(2)
	MNAR	15%	0.9028127	(4)	0.9057320	(2)	0.9029637	(3)	0.9058654	(1)
	1111111111	25%	0.8902191	(4)	0.8927232	(1)	0.8907920	(3)	0.8926771	(2)
		10%	0.9960665	(4)	0.9966659	(2)	0.9964714	(3)	0.9967312	(1)
	MCAR	15%	0.9920738	(4)	0.9935617	(2)	0.9927122	(3)	0.9935720	(1)
, include	25%	0.9851423	(4)	0.9874086	(1)	0.9866744	(3)	0.9872919	(2)	
		10%	0.9956389	(4)	0.9965696	(2)	0.9962256	(3)	0.9965773	(1)
WINE M	MAR	15%	0.9918686	(4)	0.9929713	(2)	0.9925073	(3)	0.9931399	(1)
WINE	111111	25%	0.9945250	(4)	0.9952987	(1)	0.9948903	(3)	0.9952949	(2)
		10%	0.9978923	(4)	0.9982540	(2)	0.9981631	(3)	0.9982850	(1)
	MNAR	15%	0.9974959	(4)	0.9978945	(1)	0.9975922	(3)	0.9978659	(2)
	111111111	25%	0.9875513	(4)	0.9894476	(1)	0.9883172	(3)	0.9893522	(2)
		10%	0.8019355	(4)	0.8049024	(2)	0.8023523	(3)	0.8057123	(1)
	MCAR	15%	0.7873334	(4)	0.7913116	(2)	0.7881910	(3)	0.7926936	(1)
	101110	25%	0.7720143	(4)	0.7782346	(2)	0.7724599	(3)	0.7813148	(1)
		10%	0.8005373	(4)	0.8035979	(2)	0.8008901	(3)	0.8042388	(1)
PIMA	MAR	15%	0.7866671	(4)	0.7896857	(2)	0.7867853	(3)	0.7906564	(1)
1 111111	111111	25%	0.7748337	(4)	0.7792370	(2)	0.7761880	(3)	0.7808444	(1)
		10%	0.8129813	(4)	0.8156111	(2)	0.8135142	(3)	0.8163256	(1)
	MNAR	15%	0.7984465	(4)	0.8015427	(2)	0.7989641	(3)	0.8024684	(1)
	101111111	25%	0.7695292	(4)	0.7753233	(2) (2)	0.7704833	(3)	0.7778510	(1)
		10%	0.8468388	(3)	0.8497579	(2)	0.8465451	(4)	0.8499176	(1)
	MCAR	15%	0.8397988	(3)	0.8425319	(2) (2)	0.8393014	(4)	0.8427391	(1)
	MOAIL	25%	0.8263714	(3)	0.8295212	(2) (2)	0.8257296	(4)	0.8427391	(1)
		10%	0.8482142	(3)	0.8293212	(2)	0.8237230	(4)	0.8501366	(1)
ABAL N	MAR	15%	0.8410048	(3)	0.8424528	(2) (2)	0.8476160	(4)	0.8301300 0.8425750	(1) (1)
	MIAIL	25%	0.8348346	(3)	0.8424528	(2) (2)	0.8345719	(4)	0.8423730	(1)
		10%	0.8455356	(3)	0.8500263	(2)	0.8345719	(4)	0.8501793	(1)
	MNAD	15%	0.8443605	(3)	0.8463715	(2) (2)	0.8437819	(4)	0.8301793	(1) (1)
		$\frac{15\%}{25\%}$	0.8443003	(4)	0.8403713	(2) (2)	0.8457819 0.8252351	(3)	0.8404820 0.8283827	(1)
Average	Average rank		3.7778	(4)	1.7333	(4)	3.2222	(0)	1.2667	(1)
Tiverage	TOHE		5.1116		1.1000		9.2222		1.2001	

Table 5: Comparison of the results from the four SI, MI, S-HOT and M-HOT frameworks using the MIDA imputation method.

Dataset	Pattern		SI		MI		S-HOT		M-HOT	
		10%	0.9958323	(4)	0.9973218	(1)	0.9968544	(3)	0.9972525	(2)
	MCAR	15%	0.9947010	(4)	0.9967011	(2)	0.9961452	(3)	0.9967655	(1)
		25%	0.9879101	(4)	0.9931490	(2)	0.9920251	(3)	0.9933714	(1)
		10%	0.9977831	(4)	0.9983718	(1)	0.9980598	(3)	0.9983512	(2)
IRIS	MAR	15%	0.9964883	(4)	0.9969672	(2)	0.9966728	(3)	0.9970707	(1)
		25%	0.9934700	(4)	0.9940230	(2)	0.9937325	(3)	0.9940345	(1)
		10%	0.9968828	(4)	0.9975337	(2)	0.9969866	(3)	0.9975402	(1)
	MNAR	15%	0.9922183	(4)	0.9953051	(2)	0.9939836	(3)	0.9953053	(1)
		25%	0.9800315	(4)	0.9893560	(1)	0.9851027	(3)	0.9882223	(2)
		10%	0.9004228	(4)	0.9122272	(1)	0.9099691	(3)	0.9119025	(2)
	MCAR	15%	0.8893594	(4)	0.9048134	(2)	0.9026763	(3)	0.9050871	(1)
		25%	0.8766682	(4)	0.8979225	(2)	0.8956989	(3)	0.8987079	(1)
		10%	0.9075065	(4)	0.9157279	(1)	0.9135148	(3)	0.9153541	(2)
STATL	MAR	15%	0.9002249	(4)	0.9083954	(2)	0.9072489	(3)	0.9085098	(1)
		25%	0.8919708	(4)	0.9031956	(2)	0.9009516	(3)	0.9033104	(1)
		10%	0.8966214	(4)	0.9067652	(2)	0.9043305	(3)	0.9076346	(1)
	MNAR	15%	0.8953022	(4)	0.9072963	(2)	0.9049765	(3)	0.9077530	(1)
		25%	0.8724639	(4)	0.8940123	(2)	0.8917990	(3)	0.8946876	(1)
		10%	0.9986694	(4)	0.9988537	(2)	0.9987253	(3)	0.9988668	(1)
	MCAR	15%	0.9975506	(4)	0.9979885	(1)	0.9976749	(3)	0.9979830	(2)
WINE MAR		25%	0.9947814	(4)	0.9958397	(2)	0.9956436	(3)	0.9958428	(1)
		10%	0.9963918	(4)	0.9968344	(2)	0.9966461	(3)	0.9969354	(1)
	MAR	15%	0.9978826	(4)	0.9986410	(2)	0.9984737	(3)	0.9986593	(1)
		25%	0.9966551	(4)	0.9976426	(2)	0.9973227	(3)	0.9977587	(1)
		10%	0.9990950	(4)	0.9991486	(1)	0.9991137	(3)	0.9991412	(2)
	MNAR	15%	0.9981937	(4)	0.9984342	(2)	0.9982292	(3)	0.9984523	(1)
		25%	0.9901818	(4)	0.9948135	(2)	0.9940507	(3)	0.9948292	(1)
		10%	0.8183348	(4)	0.8225089	(2)	0.8207717	(3)	0.8225461	(1)
	MCAR	15%	0.8060807	(4)	0.8123862	(1)	0.8103984	(3)	0.8123352	(2)
		25%	0.7932394	(4)	0.8040140	(2)	0.8020177	(3)	0.8055621	(1)
DDAGA	3.5.4.75	10%	0.8201186	(4)	0.8235582	(1)	0.8218285	(3)	0.8235392	(2)
PIMA	MAR	15%	0.8078931	(4)	0.8143046	(1)	0.8127261	(3)	0.8142421	(2)
		25%	0.7989430	(4)	0.8072073	(1)	0.8058399	(3)	0.8071192	(2)
	AGNIAD	10%	0.8250540	(4)	0.8299199	(2)	0.8278898	(3)	0.8303720	(1)
	MNAR	15%	0.8137489	(4)	0.8211264	(2)	0.8189948	(3)	0.8213390	(1)
		25%	0.7916129	(4)	0.8035721	(2)	0.8011662	(3)	0.8036587	(1)
	MOAD	10%	0.8655977	(4)	0.8707151	(2)	0.8707402	(1)	0.8707068	(3)
	MCAR	15%	0.8604767	(4)	0.8674447	(2)	0.8680851	(1)	0.8673406	(3)
		25%	0.8495787	(4)	0.8596208	(2)	0.8621626	(1)	0.8592872	(3)
ADAT	MAD	10%	0.8665143	(4)	0.8708308	(2)	0.8711025	(1)	0.8708024	(3)
ABAL	MAR	15%	0.8613696	(4)	0.8678045	(2)	0.8689452	(1)	0.8676311	(3)
		25%	0.8518054	(4)	0.8612268	(2)	0.8642873	(1)	0.8608408	(3)
	MATAR	10%	0.8697805	(4)	0.8743051	(3)	0.8746136	(1)	0.8743183	(2)
		15%	0.8651282	(4)	0.8716987	(2)	0.8728212	(1)	0.8715489	(3)
A .	,	25%	0.8518229	(4)	0.8614111	(2)	0.8642183	(1)	0.8609479	(3)
Average	rank		4.0000		1.7778		2.6000		1.6222	

Table 6: Comparison of the results from the four $SI,\,MI,\,S\text{-}HOT$ and M-HOT frameworks using the SINK imputation method.

Dataset	Pattern		MICE	MICE Best Imputation Method								
Dataset	rattern		MICE		SI		MI		S-HOT		M-HOT	
		10%	0.9964543	(4)	0.9958323	(5)	0.9973218	(1)	0.9968544	(3)	0.9972525	(2)
	MCAR	15%	0.9916368	(5)	0.9947010	(4)	0.9967011	(2)	0.9961452	(3)	0.9967655	(1)
		25%	0.9878213	(5)	0.9879101	(4)	0.9931490	(2)	0.9920251	(3)	0.9933714	(1)
		10%	0.9963453	(5)	0.9977831	(4)	0.9983718	(1)	0.9980598	(3)	0.9983512	(2)
IRIS	MAR	15%	0.9968731	(3)	0.9964883	(5)	0.9969672	(2)	0.9966728	(4)	0.9970707	(1)
		25%	0.9972507	(1)	0.9934700	(5)	0.9940230	(3)	0.9937325	(4)	0.9940345	(2)
		10%	0.9973377	(3)	0.9968828	(5)	0.9975337	(2)	0.9969866	(4)	0.9975402	(1)
	MNAR	15%	0.9923837	(4)	0.9922183	(5)	0.9953051	(2)	0.9939836	(3)	0.9953053	(1)
		25%	0.9877847	(3)	0.9800315	(5)	0.9893560	(1)	0.9851027	(4)	0.9882223	(2)
		10%	0.9087270	(5)	0.9105582	(4)	0.9132492	(1)	0.9106386	(3)	0.9132475	(2)
	MCAR	15%	0.9038454	(5)	0.9060337	(4)	0.9091019	(2)	0.9066862	(3)	0.9091584	(1)
		25%	0.9013979	(5)	0.9047888	(4)	0.9077214	(2)	0.9059597	(3)	0.9078041	(1)
		10%	0.9058957	(5)	0.9127799	(3)	0.9144097	(1)	0.9127328	(4)	0.9142985	(2)
STAT	MAR	15%	0.9142847	(1)	0.9079620	(4)	0.9093156	(2)	0.9078667	(5)	0.9092031	(3)
		25%	0.8976313	(3)	0.8959471	(5)	0.8990894	(2)	0.8968849	(4)	0.8992881	(1)
		10%	0.9085572	(3)	0.9070192	(5)	0.9095510	(2)	0.9071004	(4)	0.9095576	(1)
	MNAR	15%	0.8998035	(5)	0.9040681	(4)	0.9061872	(1)	0.9042151	(3)	0.9060699	(2)
		25%	0.8998697	(1)	0.8951658	(5)	0.8992252	(3)	0.8967363	(4)	0.8992736	(2)
		10%	0.9987802	(3)	0.9986694	(5)	0.9988537	(2)	0.9987253	(4)	0.9988668	(1)
	MCAR	15%	0.9959565	(5)	0.9975506	(4)	0.9979885	(1)	0.9976749	(3)	0.9979830	(2)
		25%	0.9922771	(5)	0.9947814	(4)	0.9958397	(2)	0.9956436	(3)	0.9958428	(1)
		10%	0.9979961	(1)	0.9963918	(5)	0.9968344	(3)	0.9966461	(4)	0.9969354	(2)
WINE	MAR	15%	0.9980099	(4)	0.9978826	(5)	0.9986410	(2)	0.9984737	(3)	0.9986593	(1)
		25%	0.9950532	(5)	0.9966551	(4)	0.9976426	(2)	0.9973227	(3)	0.9977587	(1)
		10%	0.9972888	(5)	0.9990950	(4)	0.9991486	(1)	0.9991137	(3)	0.9991412	(2)
	MNAR	15%	0.9991038	(1)	0.9981937	(5)	0.9984342	(3)	0.9982292	(4)	0.9984523	(2)
		25%	0.9953236	(1)	0.9901818	(5)	0.9948135	(3)	0.9940507	(4)	0.9948292	(2)
		10%	0.8195130	(4)	0.8183348	(5)	0.8225089	(2)	0.8207717	(3)	0.8225461	(1)
	MCAR	15%	0.8097860	(4)	0.8060807	(5)	0.8123862	(1)	0.8103984	(3)	0.8123352	(2)
		25%	0.7993334	(4)	0.7932394	(5)	0.8040140	(2)	0.8020177	(3)	0.8055621	(1)
		10%	0.8252737	(1)	0.8201186	(5)	0.8235582	(2)	0.8218285	(4)	0.8235392	(3)
PIMA	MAR	15%	0.8147294	(1)	0.8078931	(5)	0.8143046	(2)	0.8127261	(4)	0.8142421	(3)
		25%	0.8007801	(4)	0.7989430	(5)	0.8072073	(1)	0.8058399	(3)	0.8071192	(2)
		10%	0.8211049	(5)	0.8250540	(4)	0.8299199	(2)	0.8278898	(3)	0.8303720	(1)
	MNAR	15%	0.8157382	(4)	0.8137489	(5)	0.8211264	(2)	0.8189948	(3)	0.8213390	(1)
		25%	0.7972827	(4)	0.7916129	(5)	0.8035721	(2)	0.8011662	(3)	0.8036587	(1)
		10%	0.8732051	(5)	0.8737739	(4)	0.8748059	(2)	0.8740180	(3)	0.8749393	(1)
	MCAR	15%	0.8717183	(4)	0.8714861	(5)	0.8725539	(2)	0.8717831	(3)	0.8726250	(1)
		25%	0.8649143	(5)	0.8663833	(4)	0.8674332	(2)	0.8666186	(3)	0.8675645	(1)
		10%	0.8752625	(2)	0.8742551	(5)	0.8751972	(3)	0.8743399	(4)	0.8753671	(1)
ABAL	MAR	15%	0.8716980	(5)	0.8720722	(4)	0.8731502	(2)	0.8721856	(3)	0.8731739	(1)
		25%	0.8680810	(5)	0.8697060	(4)	0.8708046	(2)	0.8699619	(3)	0.8709102	(1)
		10%	0.8748891	(5)	0.8760444	(4)	0.8768033	(2)	0.8760447	(3)	0.8769350	(1)
	MNAR	15%	0.8734301	(5)	0.8753217	(4)	0.8763271	(2)	0.8754605	(3)	0.8764456	(1)
		25%	0.8678228	(5)	0.8683507	(4)	0.8696780	(2)	0.8690281	(3)	0.8697714	(1)
Average	rank		3.7333		4.5111		1.9111		3.3778		1.4667	

Table 7: Comparison between MICE results and the results of the four SI, MI, S-HOT and M-HOT frameworks using the imputation method that gives the best results for each dataset.

Dataset	Metric	SI	S-HOT	MI	M-HOT
	bACC	88.6725	88.6654	88.7365	88.7617
COVI	AUC	0.9614745	0.9620376	0.9627426	0.9628588
	F1	88.7026	88.7527	88.7615	88.7998
	bACC	70.7693	70.9092	71.3911	71.6052
MYOC	AUC	0.8243456	0.8247766	0.8487178	0.8489546
	F1	85.7213	85.7094	86.4856	86.4783
	bACC	63.5868	63.7206	64.3151	64.3741
NHAN	AUC	0.7016346	0.7023302	0.7172432	0.7170467
	F1	63.3669	63.4867	64.0853	64.1244

Table 8: Comparison of the results on real-world medical datasets between SI and S-HOT on the left, and MI and M-HOT on the right using the MISSFOR-EST imputation method.

Dataset	Metric	SI	S-HOT	MI	M-HOT
	bACC	87.8585	88.3732	88.1767	88.3682
COVI	AUC	0.954733	0.9575914	0.9580374	0.9583938
	F1	87.9294	88.4383	88.2291	88.4105
	bACC	68.9386	69.1718	69.694	69.8195
MYOC	AUC	0.8031829	0.8034473	0.8330273	0.8321686
	F1	84.6802	84.7812	85.6378	85.6106
	bACC	62.9123	63.1646	63.9159	64.0496
NHAN	AUC	0.6919003	$\boxed{0.6973462}$	0.7115084	0.7135331
	F1	62.7138	62.9228	63.7059	63.796

Table 9: Comparison of the results on real-world medical datasets between SI and S-HOT on the left, and MI and M-HOT on the right using the SOFTIM-PUTE imputation method.

Dataset	Metric	SI	S-HOT	MI	M-HOT
	bACC	87.0045	88.4374	87.6717	88.4832
COVI	AUC	0.947926	0.9593048	0.9542347	0.9583125
	F1	87.0508	88.4577	87.6887	88.4995
	bACC	68.8914	69.518	69.5851	70.0704
MYOC	AUC	0.8073393	0.8144668	0.8474765	0.848819
	F1	84.8043	84.9436	85.8864	85.9842
	bACC	62.608	63.8408	64.7467	64.8621
NHAN	AUC	0.6860431	0.7065677	0.7220923	0.7268964
	F1	62.452	63.5959	64.6042	64.672

Table 10: Comparison of the results on real-world medical datasets between SI and S-HOT on the left, and MI and M-HOT on the right using the GAIN imputation method.

Dataset	Metric	SI	S-HOT	MI	M-HOT
	bACC	88.1085	88.2243	88.4101	88.3932
COVI	AUC	0.959175	0.9597053	0.9606792	0.9607641
	F1	88.1598	88.3403	88.473	88.4681
	bACC	69.6988	69.8614	70.0331	70.2846
MYOC	AUC	0.8126983	0.8143542	0.8419529	0.8424803
	F1	84.9747	84.9862	85.6655	85.7106
	bACC	63.4962	63.5197	64.2441	64.1943
NHAN	AUC	0.6982824	0.6984358	0.7141273	0.7137177
	F1	63.2441	63.2592	63.9746	63.9232

Table 11: Comparison of the results on real-world medical datasets between SI and S-HOT on the left, and MI and M-HOT on the right using the MIDA imputation method.

Dataset	Metric	SI	S-HOT	MI	M-HOT
	bACC	88.0521	88.7577	88.1914	88.5625
COVI	AUC	0.954824	0.9625726	0.9624413	0.9630812
	F1	88.0857	88.8315	88.2002	88.5704
	bACC	69.8555	70.0475	70.3021	70.4734
MYOC	AUC	0.8158175	0.8188904	0.8447799	0.8456001
	F1	85.1389	85.1642	85.9508	85.9812
	bACC	63.1886	63.3785	64.0025	63.9914
NHAN	AUC	0.6926347	0.6965183	0.709166	0.7095322
	F1	62.9453	63.0783	63.7281	63.7012

Table 12: Comparison of the results on real-world medical datasets between SI and S-HOT on the left, and MI and M-HOT on the right using the SINKHORN imputation method.

Dataset	Method	SI	MI	S-HOT	M-HOT
IRIS	MISS	10.61	212.30	212.30	212.30
	SOFT	0.02	0.34	0.34	0.34
	GAIN	17.76 0.62	355.12 12.13	355.12 0.60	355.12 12.60
	MIDA	21.02	420.40	420.40	420.40
	SINK	43.27	865.39	865.39	865.39
STAT	MISS	41.09	821.84	821.84	821.84
	SOFT	0.01	0.14	0.14	0.14
	GAIN	25.58 + 0.29	511.67 + 4.82	511.67 + 0.31	511.67 + 5.56
	MIDA	16.71 ¦	334.11	334.11	334.11
	SINK	46.62	932.40	932.40	932.40 +
WINE	MISS	35.74	714.80	714.80	714.80
	SOFT	0.01	0.13	0.13	0.13
	GAIN	21.48 0.58		429.58 0.60	429.58 12.51
	MIDA	16.89	337.80	337.80	337.80
	SINK	45.74	914.75	914.75	914.75
ABAL	MISS	21.99	439.77	439.77	439.77
	SOFT	0.01	0.18	0.18	0.18
	GAIN	19.48 5.98	389.58 123.53	389.58 6.45	389.58 127.83
	MIDA	17.94	358.85	358.85	358.85
	SINK	43.89	877.82	877.82	877.82
PIMA	MISS	24.84	496.75	496.75	496.75
	SOFT	0.01	0.12	0.12	0.12
	GAIN	20.87 1.31		417.40 1.33	
	MIDA	19.26	385.26	385.26	385.26
	SINK	46.61	932.21	932.21	932.21

Table 13: Average imputation (left) and training+test (right) computational times in seconds for each framework on each dataset using each tested imputation methods. The missingness setting was arbitrarily chosen to be MNAR 15% as it does not impact running time.