NORMALIZATION AND STANDARDIZATION

NORMALIZAITION MEANS SCALING DOWN VALUES BETWEEN 0 TO 1

STANDARDIZATION MEANS SCALING DOWN VALUES ACCORDING TO STANDARD NORMAL DISTRIBUTION WHERE MEAN=0 AND STANDARD DEVIATION = 1 (MEANS HIGHLY CORRELATED)

```
In [1]: import pandas as pd
   DF=pd.read_csv('housing.csv')
In [2]: DF
```

Out[2]:

Addre	Price	Area Population	Avg. Area Number of Bedrooms	Avg. Area Number of Rooms	Avg. Area House Age	Avg. Area Income	
208 Michael Ferry Ap 674\nLaurabury, N 3701	1.059034e+06	23086.80050	4.09	7.009188	5.682861	79545.45857	0
188 Johnson Viev Suite 079\nLak Kathleen, CA	1.505891e+06	40173.07217	3.09	6.730821	6.002900	79248.64245	1
9127 Elizabet Stravenue\nDanieltow WI 06482	1.058988e+06	36882.15940	5.13	8.512727	5.865890	61287.06718	2
USS Barnett\nFPO A 4482	1.260617e+06	34310.24283	3.26	5.586729	7.188236	63345.24005	3
USNS Raymond\nFP AE 0938	6.309435e+05	26354.10947	4.23	7.839388	5.040555	59982.19723	4
	•••	•••	•••			•••	•••
USNS Williams\nFP AP 30153-765	1.060194e+06	22837.36103	3.46	6.137356	7.830362	60567.94414	4995
PSC 9258, Bc 8489\nAPO AA 4299° 335	1.482618e+06	25616.11549	4.02	6.576763	6.999135	78491.27543	4996
4215 Tracy Garde Suite 076\nJoshualan VA 01	1.030730e+06	33266.14549	2.13	4.805081	7.250591	63390.68689	4997
USS Wallace\nFPO A 7331	1.198657e+06	42625.62016	5.44	7.130144	5.534388	68001.33124	4998
37778 George Ridge Apt. 509\nEast Holl NV 2	1.298950e+06	46501.28380	4.07	6.792336	5.992305	65510.58180	4999

Avg.

5000 rows × 7 columns

In [7]: nofanr#nofanr= normalization of area and room

```
Out[7]: 0
```

0.441986 0.501502

0.488538 0.464501

0.468609 0.701350

0.660956 0.312430

0.348556 0.611851

•••

0.754359 0.385619

0.633450 0.444024

0.670026 0.208534

0.420389 0.517579

0.486997 0.472678

5000 rows × 2 columns

```
In [8]: import plotly.figure_factory as ff
import plotly.graph_objects as go
import plotly.express as px
import numpy as np

x = nofanr[0]
hist_data = [x]
group_labels = ['Avg. Area House Age'] # name of the dataset

mean = np.mean(x)
stdev_pluss = np.std(x)
stdev_minus = np.std(x)*-1

fig = ff.create_distplot(hist_data, group_labels, curve_type='kde')
fig.update_layout(template = 'plotly_dark')
fig.show()
```



```
In [9]: import plotly.figure_factory as ff
import plotly.graph_objects as go
import plotly.express as px
import numpy as np

x = nofanr[1]
hist_data = [x]
group_labels = ['Avg. Area Number of Rooms'] # name of the dataset

mean = np.mean(x)
stdev_pluss = np.std(x)
stdev_minus = np.std(x)*-1

fig = ff.create_distplot(hist_data, group_labels, curve_type='kde')
fig.update_layout(template = 'plotly_dark')
fig.show()
```



```
In [10]: #in above plots we can understand that our maximum values lies between 0.15 to 8.5

In []:
```

Standarization

here all features will transform in a way that it will have properties of standard normal distribution where mean=0 and standard deviation=1

```
In [13]: from sklearn.preprocessing import StandardScaler
In [14]: Standardization= StandardScaler()
In [15]: SNDofanr=pd.DataFrame(Standardization.fit_transform(DF[['Avg. Area House Age','Avg.
```

```
In [16]:
         SNDofanr
Out[16]:
                      0
                               1
             0 -0.296927 0.021274
                0.025902 -0.255506
             2 -0.112303
                        1.516243
                1.221572 -1.393077
             4 -0.944834
                         0.846742
          4995
                1.869297 -0.845588
          4996
                1.030822 -0.408686
          4997
                1.284470 -2.170269
          4998
               -0.446694 0.141541
          4999
                0.015215 -0.194342
         5000 rows × 2 columns
In [17]: pip install plotly
         Requirement already satisfied: plotly in c:\users\acer\appdata\local\programs\pyth
         on\python310\lib\site-packages (5.14.1)
          Requirement already satisfied: packaging in c:\users\acer\appdata\local\programs\p
         ython\python310\lib\site-packages (from plotly) (22.0)
         Requirement already satisfied: tenacity>=6.2.0 in c:\users\acer\appdata\local\prog
          rams\python\python310\lib\site-packages (from plotly) (8.2.2)
         Note: you may need to restart the kernel to use updated packages.
          [notice] A new release of pip available: 22.3.1 -> 23.0.1
          [notice] To update, run: python.exe -m pip install --upgrade pip
In [18]: import plotly.figure_factory as ff
          import plotly.graph_objects as go
          import plotly.express as px
          import numpy as np
         x = SNDofanr[0]
          hist data = [x]
          group labels = ['Avg. Area House Age'] # name of the dataset
         mean = np.mean(x)
          stdev_pluss = np.std(x)
          stdev_minus = np.std(x)*-1
         fig = ff.create_distplot(hist_data, group_labels, curve_type='kde')
          fig.update_layout(template = 'plotly_dark')
```

fig.show()


```
import plotly.figure_factory as ff
import plotly.graph_objects as go
import plotly.express as px
import numpy as np

x = SNDofanr[1]
hist_data = [x]
group_labels = ['Avg. Area Number of Rooms'] # name of the dataset

mean = np.mean(x)
stdev_pluss = np.std(x)
stdev_minus = np.std(x)*-1

fig = ff.create_distplot(hist_data, group_labels, curve_type='kde')
fig.update_layout(template = 'plotly_dark')
fig.show()
```


by visualizing above 2 graphs we can understand that the are some values which are beyon 3 standard deviation avay from mean and will be considered as outlier according to empirical that 99.7% values lies between +-3 standard deviation from the mean

```
In [ ]:
In [ ]:
```