

去哪网数据库架构发展历程

Qunar数据库架构师 黄勇

自我介绍

2007~2011, Oracle DBA: 智联、淘宝

去IOE大潮下的改变

2011~now, MySQL DBA: 百度、去哪

thunderbird.huang@gmail.com

wx: elnino_1114

Contents

1

早期的Qunar数据库 - MMM

2

自我革新的开始 - PXC

3

另一把利器的诞生 - QMHA

4

多种数据存储技术

5

我们的平台 - 补天

Qunar数据库的四个时代

跨机房 QMHA架构 2015底~now Qunar平稳期 同机房 异地机房部署保证 PXC架构 高可用和安全性 2013底~now Qunar飞速发展期 单机房内的 利用PXC保证集群 MMM 强一致性 2011~2013 Qunar发展期 单机房内的 简单的VIP高可用 **MySQL** 2005~2011

Qunar萌芽期

"小作坊模式"

Qunar数据存储时间历程大事记

HBase数据库 单机MySQL Redis提供缓存和存储 实时在线写入和读取 SATA\SAS 192GB内存/万兆网卡 SATA/SAS 2015年 2011年前 2014年 2011年 2013年 2013年底 QMHA高可用 PXC高可用 **MMM** SAS/PCIe-SSD SATA/SAS **PCIe-SSD** 跨机房高可用容灾

Qunar数据库架构的组成

MMM的基本架构

MMM架构的缺点

运维复杂

绑定VIP 部署和修改配置文件 周边监控工具匮乏

网络分区

Master"假死"导致误切换数据库双写,导致数据错乱VIP没有漂移或者漂移失败

无法跨网段

VIP不能跨网段 VIP不能跨机房 机房容灾根本无从谈起

新特性的不支持

2012年已经停止版本更新 MySQL5.6以上版本新特性的不支持 落后的高可用无法匹配新技术的发展

PXC的基本架构

PXC架构特点

自动切换

自动failover 手动switchover

读写分离

读写分离 负载均衡

全局服务

namespace服务

全局唯一、透明

扩容、迁移和升级

PXC的性能

PXC单节点读取可达5W qps PXC单节点写入可达15K qps 以7:3的读写比,单节点可达3W qps

PXC的缺点

PXC

缺点

Flow Control

01

03

02

节点间机器木桶短板 流量控制,客户端容易雪崩

大事务

大事务和密集事务 PXC节点压力高,fc产生

> DDL操作 DDL杀死其他事务 DDL不能取消

多节点写入 相互校验,写入

06

相互校验,写入性能下降 切换时不影响前端写入 但尽量不要长时间多写

集群节点跨机房

机房间网络延迟高 影响客户端QPS 且机器节点越多QPS影响越大

DBA运维起点高

PXC和MGR等新兴结构 DBA学习成本高 长期的学习和经验

QMHA的基本架构

QMHA的技术特点

QMHA/PXC解决的问题

无网络分区

多机房的分布式哨兵判断 MySQL实例的健康情况

0事务丢失

在failover和switchover时, 没有事务丢失 且PXC的集群数据强一致性, QMHA的弱之但性能较好,而且 机器越多同步越快

集中配置管理

后台数据库配置中心存储 和维护线上所有PXC和

跨机房网段

QMHA的特点,多机房部 署提高节点间的同步效率 提高机房容灾的安全性

快速切换

failover切换只需要8-16s且 没有误切换 switchover只需要2秒内

切换逻辑可控

切换逻辑可以由情况和参数而定, 大事务或者主从延迟时不发生 switchover和不提供线上服务等

自动补全 binlog

MHA可以自动补全binlog, PXC可以IST

QMHA需要能在failover后自动补全binlog给原master节点

某个从库因为某种原因出现延迟时,需要特殊处理 所有从库都出现延迟又该如何?

延迟处理

权重控制

PXC和QMHA都需要做到:

只读数据源可以根据权重配比进行流控,有助于对特殊 机器的特殊处理

MMM、PXC和QMHA的对比

各个架构 对比	MMM/ MHA	PXC	QMHA
一致性	——舟殳	强一致	较好
可用性	一般,受网络影响	一般,受网络影响	很好,网络 影响小,可
数据丢失	主从切换可 能会数据丢	O数据丢失	semi-sync时 0数据丢失
运维成本	至少2台,运 维要求低	至少3台, PXC运维门	至少2台,运 维要求低

两手抓, 两手都要硬

关系型数据库 PXC和QMHA 非关系型数据库 Redis和HBase

我们的平台 - 补天

我们的平台 - 补天

数据库基础平台

PXC管理

QMHA管理

MMM管理

REDIS管理

HBASE管理

机器资源

账号管理

备份归档

DBA值班

DBA工具

工单申请

SQL审核

数据库申请

账号权限

数据库迁移

DBA运维

数据库巡检

慢查询分析

监控报警

自助信息查询

内部服务

内部服务监控

DBA小工具

需求反馈吐槽

一键初始化

The Future

