

1 Honors Seminor S

DEPT. OF PHYS., GRADUATE SCHOOL OF SCI., PROF. ONOGI, TETSUYA

1.1 The Monopole fields and Gauge symmetricity

DEPT. OF PHYS., FACULTY OF SCI., B2 KIM, DOHYUN

1.2 Summary

The former model of monopoles are have some problem of absense of explanation about electric charge-monopole interaction. Our group studied about following tree models: U(1) gauge model on interaction of identical particles¹, SU(2) gauge model on general interactions and $U(1)\times U(1)$ for action-reaction symmetry breaking.

U(1) Gauge groups Here we suppose that each electron, dyon, monopole are spin $s = \frac{1}{2}$ particle system. Then we denote the Lagrangian density of system by considering interaction with scalar particles² like:

$$\mathcal{L}_{\mathrm{U}(1)} = -\frac{1}{4(q_e^2 + q_g^2)} [D^{\mu}, D^{\nu}]^2 + \bar{\psi}(i\not D - m)\psi + (D_{\mu}\Phi)^*(D^{\mu}\Phi) - m^2(\Phi^*\Phi). \tag{1}$$

Here we define the Covariant derivate:

$$D_{\mu} \equiv \partial_{\mu} + iq_e A_{\mu} + iq_q B_{\mu}. \tag{2}$$

where, A_{μ} , B_{μ} are each four-vectors from electron and monopole.

SU(2) Gauge groups Here we define the SU(2) gauge field \mathbf{W}_{μ} of general interaction model following:

$$\mathbf{W}_{\mu} = (W_{\mu}^{1}, W_{\mu}^{2}, W_{\mu}^{3}) = (q_{e}A_{\mu} + q_{g}B_{\mu}, 0, q_{e}A_{\mu} + q_{g}B_{\mu}) , \qquad (3)$$

$$D_{\mu} = \partial_{\mu} + i \begin{pmatrix} W_{\mu}^{3} & W_{\mu}^{1} - iW_{\mu}^{2} \\ W_{\mu}^{1} + iW_{\mu}^{2} & -W_{\mu}^{3} \end{pmatrix}.$$
 (4)

Then, the Lagrangian density also given by:

$$\mathcal{L}_{SU(2)} = \bar{\psi}_e \left(i \partial \!\!\!/ - q_e \!\!\!/ \!\!\!A - q_g \!\!\!/ \!\!\!B - m \right) \psi_e - \bar{\psi}_e (q_e \!\!\!/ \!\!\!A + q_g \!\!\!/ \!\!\!B) \psi_{\nu_{eg}}$$

$$+ \bar{\psi}_{\nu_{eg}} \left(i \partial \!\!\!/ + q_e A \!\!\!/ + q_g B \!\!\!/ - m \right) \psi_{\nu_{eg}} - \bar{\psi}_{\nu_{eg}} (q_e A \!\!\!/ + q_g B \!\!\!/) \psi_e - \frac{1}{8 (q_e^2 + q_g^2)} [D^\mu, D^\nu]^2.$$

From using Hamilton's principles, we get the generalized Maxwell equations.

¹electron-electron or dyon-dyon, etc.

²But, we ignore Yukawa interaction.

 $U(1)\times U(1)$ Gauge groups To determine the gauge group, here we adopt differential forms on Lorentz manifold $\mathcal{M}_L(\dim(\mathcal{M}_L)=4)$. Then, Electromagnetic tensor on Dyon field $G=\frac{1}{2!}G_{\mu\nu}\ dx^{\mu}\wedge dx^{\nu}$ only possible for³:

$$G = dA - \star dB = \frac{1}{2!} \left(\partial_{[\mu} A_{\nu]} - \frac{\sqrt{-g}}{2} \theta(x) \epsilon_{\mu\nu\rho\sigma} \partial^{\rho} B^{\sigma} \right) dx^{\mu} \wedge dx^{\nu}.$$
 (5)

The Lagrangian density of gauge field also given by

$$\mathcal{L}_{\mathrm{U}(1)\times\mathrm{U}(1)}^{\mathrm{field}} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{\theta^{2}(x)}{4}E_{\mu\nu}E^{\mu\nu} + \frac{1}{2}\partial_{\mu}(\theta(x))B_{\nu}\tilde{F}^{\mu\nu}.$$
 (6)

Here we can check "Witten effects" again.

We need to examine each model on Scattering calculation, next semester.

³by Hodge decomposition Theorem