2IC30: Computer Systems
Registers,
Random-Access Memories and
Finite State Automata.

Jan Friso Groote

Technische Universiteit Eindhoven University of Technology

Where innovation starts

A microprocessor stores data in registers

Clocked D-Flip-Flop (or: Edge-Triggered FF)

edge-triggered D-flip-flop

on $C \uparrow$ then Q := D and $Q' := \neg D$: the outputs copy D on every *upgoing transition* on C.

Requirement:

Input *D* must be *stable* only during a short interval around $C \uparrow$: the *setup-and-hold interval*.

Clocked D-Flip-Flop with Enable

- on $C \uparrow$ then Q := D and $Q' := \neg D$: the outputs copy D on every *upgoing transition* on C, but *only if* E = 1. When E = 0 transitions on C have no effect.
- Application: to build *registers* that must not assume new values on every clock transition.

Building a Register

Register

- Collection of Flip-Flops, with
- common clock and enable signals.

n-bits register:

• Register containing *n* Flip-Flops.

Application

• Number processing systems, like computers

Example: a 4-bit Register

4-bit clocked register, with enable

symbol

alternative symbol

n-bit registers connected to the same input and output buses.

n-bit registers connected to the same input and output buses.

A microprocessor stores data in registers

Simple Processor: Data Path

• Abus: IP or RA

• Bbus: IP, IR, ΣR, RB or RAB

• REGS: 2 Reads and 1 Write, simultaneously,

ra[1..0] and rb[1..0] select registers

3-State Outputs

CMOS output stage...

output value "Z": not connected, high impedance

... behaves like switches

a	b	output
0	0	1
1	0	Z
1	1	0
0	1	(short circuit!)

3-State Outputs: Use

symbol

3-state buffer

truth table

OE	in	out
0	0	Z
0	1	Z
1	0	0
1	1	1

- Application: 3-state outputs may be connected together, *provided* at any moment in time *at most one* of the OE-inputs is 1.
- If all OE-inputs are 0: the output equals Z.
- If one OE-input is 1: the output equals the "corresponding" input.
- Thus, cheap and extensible multiplexers can be built.

3-State Outputs: building a 4-input Multiplexer

4-input MUX (symbol)

- problem: how to connect the OE-signals?
- solution: use a 2>4-decoder!

4-input MUX from 3-state buffers

2+4 -decoder

2→4 decoder (symbol)

truth table

E		s_0	d_3	d_2	d_1	d_0
0	X	X	0	0	0	0
1	0	0	0	0	0	1
1	0	1	0	0	1	0
1	1	0	0	1	0	0
1	1	X 0 1 0	1	0	0	0

2+4 decoder: circuit

more general: $n \rightarrow 2^n$ decoder

Application: 4-input Multiplexer, with enable

4-input MUX from 3-state buffers

D-Latch with 3-state outputs

Property

• The *output buffers* are placed *behind* the latch and its internal feedback wiring: the latch can be changed state *even* if the outputs are *disabled*.

RAM: Random-Access Memory

Questions?

Systems with memory

- ☐ Combinatorial circuits have no memory: output values only depend on on current input values
- ☐ To allow behaviour to depend on (values from) the past, we need different circuits: *sequential circuits*
- ☐ A sequential lock only opens if a series of input values is presented in a very specific order

Behaviour of a system (circuit) is determined by the current input values and (input) values from the past

Finite Automata: the On-Off Switch

Specification

If the push button is pressed, the light goes "on", and stays "on"; if the same button is pressed again the light goes "off", and stays "off", and so on indefinitely.

Variables

 $\neg p$: the push button is "open"

p: the push button is "closed"

 $\neg x$: the light is "off"

x: the light is "on"

if p the automaton remains in state B

in this state the output x equals 1

if $\neg p$ the automaton makes a *transition* from state B to state C

Finite Automata: Considerations

Different states are needed whenever different behaviour is required
for the <i>same</i> input values.
States may be <i>named</i> arbitrarily: letters, numbers,; a binary representation is chosen later. The <i>starting state</i> , or: <i>initial state</i> , must be clearly indicated.
<i>Transitions</i> between states are labelled with Boolean expressions, called <i>guards</i> : a transition from one state to a next happens only if the guard of that transition is true .
<i>Moore Machine</i> : the outputs depend on the state only, not (directly) on the inputs (we mainly use Moore Machines).
<i>Mealy Machine</i> : the outputs may depend on the state and on the inputs.

Example: the On-Off Switch (1)

Specification

If the push button is pressed, the light goes "on", and stays "on"; if the same button is pressed again the light goes "off", and stays "off", and so on indefinitely.

p x = 1 $\neg p$ x=0x=p $\neg p$

Variables

 $\neg p$: the push button is "open"

p: the push button is "closed"

 $\neg x$: the light is "off"

x: the light is "on"

Convention

- If, in any state, no outgoing transition is enabled —has a true guard—, then the automaton remains in its current state;
- Transitions from a state to itself often are not drawn: yields a cleaner drawing.

Example: the On-Off Switch (2)

Output table and State-transition table

From the state-transition diagram we derive an *output table* and an (abstract) *state-transition table*, in terms of the (abstract) names assigned to the states.

output table

state	X
A	0
В	1
C	1
D	0

state-transition table

state	p	state _{new}
A	0	A
A	1	В
В	1	В
В	0	C
C	0	C
C	1	D
D	1	D
D	0	A

Example: the On-Off Switch (3)

State assignment

Several different state assignments are possible; binary representation of 4 states requires *at least* 2 bits, for example:

just counting		Gray o	Gray code		one-hot encoding	
state	s t	state	s t	state	$S_{\rm A}$ $S_{\rm B}$ $S_{\rm C}$ $S_{\rm D}$	
A	0 0	A	0 0	A	1 0 0 0	
В	0 1	В	1 0	В	$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$	
\mathbf{C}	1 0	C	1 1	C	0 0 1 0	
D	1 1	D	0 1	D	0 0 0 1	

Gray code: because the states A, B, C, D are passed *cyclically*, in a Gray encoding only a *single state variable* changes in each transition.

On-Off Switch example: the Gray encoding is very attractive because now:

 $s=1 \iff x=1$, so the output x just equals state variable s.

One-hot encoding: In every state, *exactly one* state variable has value 1; although this requires more variables, hence: more D-flip-flops, this may yield simpler combinatorial circuits.

Example: the On-Off Switch (4)

Boolean Functions

We choose the Gray encoding for the states, because this makes the function for the output simple. From the (abstract) state-transition table we derive a (concrete) state-transition table:

		4		_	4
\cap	u	Т1	n	11	Т
v	u	u	U	u	ı
_		- 1	_		

t	\mathcal{X}
0	0
0	1
1	1
1	0
	0 0 1

output function: x = s

new states

state	p	state _{new}
A	0	A
A	1	В
В	1	В
\mathbf{B}	0	C
C	0	C
C	1	D
D	1	D
D	0	A

new states

S	t	p	S_{new}	t_{new}
0	0	0	0	0
0	0	1	1	0
1	0	1	1	0
1	0	0	1	1
1	1	0	1	1
1	1	1	0	1
0	1	1	0	1
0	1	0	0	0
			l	

Example: the On-Off Switch (5)

Karnaugh-map for s_{new}

just a 2-input MUX:

$$s_{\text{new}} = p \land \neg t \lor \neg p \land s$$

Karnaugh-map for t_{new}

another 2-input MUX:

$$t_{\text{new}} = \neg p \land s \lor p \land t$$

Observe risk for glitches!

Example: the On-Off Switch (6)

Asynchronous sequential circuit

Just two 2-input multiplexers with feedback:

$$s_{\text{new}} = p \land \neg t \lor \neg p \land s$$

 $t_{\text{new}} = \neg p \land s \lor p \land t$

Advantages

- Very fast responses to input changes
- Very compact circuits
- No clock needed
- Low power consumption

Disadvantages

- Requires *extremely careful* design:
- Very sensitive to glitches.
- Particularly glitch sensitive if several state variables change simultaneously.
 (Hence the Gray code!)

Example: the On-Off Switch

State-transition diagram

Example: the On-Off Switch (7)

Synchronous sequential circuit: driven by a periodic "clock"

The same circuit with feedback, but via D-Flip-Flops:

$$s_{\text{new}} = p \land \neg t \lor \neg p \land s$$

$$t_{\text{new}} = \neg p \land s \lor p \land t$$

Example: the On-Off Switch (8)

Synchronous sequential circuit:

The same circuit with feedback, but via D-Flip-Flops.

Properties:

- response speed to input changes increases with the clock frequency: the faster the better.
- but: the maximal clock frequency f_{max} is limited by: $f_{\text{max}} \leq 1/T$, where

```
(*).... t_{pdc} + t_{pdf} + t_{su} = T; here:

t_{pdc} = "propagation delay of the combinatorial circuit",

t_{pdf} = "propagation delay of the D-Flip-Flop",

t_{su} = "setup time of the D-Flip-Flop".
```

• if requirement (*) is met: glitches in the combinatorial circuit are harmless: they will have died out before the next clock transition.

Example: the On-Off Switch with a double clock

Synchronous sequential circuit: driven by a double "clock"

 $s_{\text{new}} = p \land \neg t \lor \neg p \land s$

The same circuit with feedback, but via four D-Flip-Flops:

 $t_{\text{new}} = \neg p \land s \lor p \land t$

Summary

What did you learn:

- Registers are made from multiple flip-flops.
- Using an input enable signal registers can be instructed to read.
- Using three state outputs and an output enable results from multiple register can be selected.
- Specify machines with memory as state machines.
- Implement state machines using flip-flops and combinatorial circuit.
- Mealy machine transfer their input directly to the output. This is faster than Moore machines, and generally leads to a smaller number of states.

