Tutorial Sheet 1

Mathematical Preliminaries

1. Let L be a real number and let $\{a_n\}$ be a sequence of real numbers. If there exists a positive integer N and a $\mu \in (0,1)$ such that

$$|a_n - L| \le \mu |a_{n-1} - L|$$

holds for all $n \geq N$, then show that $a_n \to L$ as $n \to \infty$.

- 2. Show that the equation $\sin x + x^2 = 1$ has at least one solution in the interval [0, 1].
- 3. Let f(x) be a continuous function on [a, b], let x_1, \ldots, x_n be points in [a, b], and let g_1, \ldots, g_n be non-positive real numbers. Then show that

$$\sum_{i=1}^{n} f(x_i)g_i = f(\xi)\sum_{i=1}^{n} g_i, \text{ for some } \xi \in [a, b].$$

- 4. Let $f:[a,b] \to [a,b]$ be a continuous function. Prove that the equation f(x) = x has at least one solution lying in the interval [a,b] (Note: A solution of this equation is called a *fixed point* of the function f). Further if $\max_{x \in [a,b]} |f'(x)| < 1$, then show that the equation f(x) = x has a unique solution in [a,b].
- 5. Let g be a continuously differentiable function (C^1 function) such that the equation g(x) = 0 has at least n distinct roots. Show that the equation g'(x) = 0 has at least n-1 distinct roots.
- 6. Evaluate an approximate value of the function $f(x) = e^{x^2}$ at x = 1 using $T_2(x)$ about the point a = 0. Obtain the remainder $R_2(1)$ in terms of some unknown real number ξ . Compute (approximately) a possible value of ξ .
- 7. For every $x \in \mathbb{R}$, show that there exists a $\xi_x \in \mathbb{R}$

$$\cos(x) = 1 - \frac{x^2}{2} + \frac{x^4}{24} - \frac{\cos(\xi_x)}{6!}x^6.$$

8. Determine the best value of $\alpha \in \mathbb{R}$ in the equation

$$\tan^{-1} x = x + O(x^{\alpha})$$
 as $x \to 0$

9. Let $F:[0,1] \to [0,1]$ be a differentiable function. Let a sequence $\{x_n\}$ defined inductively by $x_{n+1} = F(x_n)$ be such that $\lim_{n\to\infty} x_n$ exists and denote the limit by x. Further assume that F'(x) = 0. Show that

$$x_{n+2} - x_{n+1} = o(x_{n+1} - x_n) \text{ as } n \to \infty.$$

10. Prove or disprove:

(i)
$$\frac{n+1}{n^2} = O\left(\frac{1}{n}\right)$$
 as $n \to \infty$ (ii) $\frac{1}{\ln n} = o\left(\frac{1}{n}\right)$ as $n \to \infty$