CS151 Intro to Data Structures

Hashmaps & Sorting

Announcements

HW06 due next Wednesday 11/29 Lab08 due next Wednesday too

No lab this week

HW07 due 12/05

Need to leave office hours around 3:15 today

Outline

Review

MergeSort

Arbitrary Objects

Collision Handling

Collison: keys mapped to same hash value

A hash function does not guarantee one-to-one mapping

no hash function does

Separate chaining: Each index holds a collection of entries

Open addressing

Linear/Quadratic probing

Double hasing

Open Addressing vs Chaining

- Probing is significantly faster in practice
- locality of references much faster to access a series of elements in an array than to follow the same number of pointers in a linked list
- Efficient probing requires soft/lazy deletions tombstoning, why?
- May require graveyard defragmenting

Performance Analysis

- In the worst case, searches, insertions and removals take $\mathcal{O}(n)$ time
 - when all the keys collide
- The load factor $\alpha = n/N$ affects the performance of a hash table
 - expected number of probes for an insertion with open addressing is $\frac{1}{1-\alpha}$
- Expected time of all operations is O(1) provided α is not close to 100%

Probing Tradeoffs

- Linear probing best cache performance but most sensitive to clustering
- Double hashing poor cache performance but exhibits virtually no clustering
- Quadratic inbetween

- As load factor approaches 100%, number of probes rises dramatically
- Even with good hash functions, keep load factor 80% or below (50% is typical)
- Other open addressing methods besides probing

Performance of Hashtable

	Hash Expected	Hash Worst
search		
insert		
remove		
min/max		

	Unsorted array	Sorted array	Unsorted list	Sorted list	BST balanced	Hash Expected
search	$O(n)^*$	O(logn)	O(n)	O(n)	O(logn)	0(1)
insert	$O(1)^*$	O(n)	0(1)	O(n)	O(logn)	0(1)
remove	$O(1)^*$	O(n)	0(1)	0(1)	O(logn)	0(1)
min/max	O(n)	0(1)	O(n)	0(1)	O(logn)	O(n)

Performance of Hashtable

	Hash Expected	Hash Worst	
search	0(1)	O(n)	
insert	0(1)	O(n)	
remove	0(1)	O(n)	
min/max	O(n)	O(n)	

	Unsorted array	Sorted array	Unsorted list	Sorted list	BST balanced	Hash Expected
search	$O(n)^*$	O(logn)	O(n)	O(n)	O(logn)	0(1)
insert	$O(1)^*$	O(n)	0(1)	O(n)	O(logn)	0(1)
remove	$O(1)^*$	O(n)	0(1)	0(1)	O(logn)	0(1)
min/max	O(n)	0(1)	O(n)	0(1)	O(logn)	O(n)

Hashtable vs Array

- A hashtable is an unsorted array with a fast search O(1) expected
- An array is more memory efficient, but slower for searching (without key-index pairing)
- If your data has natural indexing (a way to assign/associate an ID/unique integer to each entry), then you are better off using an array. You have a hash function with 1-to-1 mapping and guaranteed no collisions

Hashtable Size

Should be a prime

twice the size of max number of keys

- or 1.3 times if n is very large
- 1/1.333 = 75% load factor

Keep track of load factor and expand (rehash) the hash table when necessary

Outline

Review

MergeSort

Divide-and-Conquer

Divide – the problem (input) into smaller pieces

Conquer – solve each piece individually, usually recursively

Combine – the piecewise solutions into a global solution

Usually involves recursion

Analysis usually involves solving recurrence relations

Merge Sort

Sort a sequence of numbers A, |A| = n

Base: |A| = 1, then it's already sorted

General

- divide: split A into two halves, each of size $\frac{n}{2}(\left\lfloor \frac{n}{2} \right\rfloor)$ and $\left\lceil \frac{n}{2} \right\rceil$)
- conquer: sort each half (by calling mergeSort recursively)
- combine: merge the two sorted halves into a single sorted list

6 8 4 1 7 2 5 3

6 | 8 | 4 | 1

7 | 2 | 5 | 3

6 8 4 1 7 2 5 3

6 | 8 | 4 | 1

7 | 2 | 5 | 3

6 | 8 |

4 | 1

7 | 2

5 | 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 4 1 7 2 5 3

6 8 1 4 2 7 3 5

6

 1
 4
 6
 8

 6
 8
 1
 4
 2
 7
 3
 5

 8
 4
 1
 7
 2
 5
 3

1 | 4 | 6 | 8

2 | 3 | 5 | 7

6 | 8 | 1 | 4

2 7 3 5

1 2 3 4 5 6 7 8

1 | 4 | 6 | 8 |

2 | 3 | 5 | 7

6 | 8 | 1 | 4

2 7 3 5

Example - summary

Merge Sort

Sort a sequence of numbers A, |A| = n

Base: |A| = 1, then it's already sorted

General

- divide: split A into two halves, each of size $\frac{n}{2} \left(\left\lfloor \frac{n}{2} \right\rfloor$ and $\left\lceil \frac{n}{2} \right\rceil \right)$
- conquer: sort each half (by calling mergeSort recursively)
- combine: merge the two sorted halves into a single sorted list

Algorithm

```
mergeSort(S):
  if ...
  else
```

Algorithm

```
mergeSort(S):
  if S.size() <= 1
    return
  else
    s1 = S[0, n/2]
    s2 = S[n/2+1, n-1]
    mergeSort(s1)
    mergeSort(s2)
    S = merge(s1, s2)
```

The Merge

The key is the merging process

How does one merge two sorted lists?

• Each element in $A \cup B$ is considered once

• O(n)

```
Algorithm merge (A, B)
  Input sorted A and B
  Output sorted A U B
  S = empty sequence
  while (!A.isEmpty() and
        !B.isEmpty())
     if A.first() < B.first()</pre>
       S.addLast(A.removeFirst())
     else
       S.addLast(B.removeFirst())
  while (!A.isEmpty())
     S.addLast(A.removeFirst())
  while (!B.isEmpty())
     S.addLast(B.removeFirst())
  return S
```

In-place Merge

What if we don't want to use new lists?

How does one merge two sorted lists A[p, ..., m] and A[m+1, ..., r]?

Use a temp array ${\mathbb B}$ and maintain two indices ${\tt i}$ and ${\tt j}$, one for each subarray

Array mergeSort

```
mergeSort(A, p, r) {
   if (p<r) {
      m = (p+r)/2
      mergeSort(A, p, m)
      mergeSort(A, m+1, r)
      merge(A, p, m, r)
   }
}</pre>
```

```
merge(A, p, m, r) {
    new B[0, r-p]
```

```
mergeSort(A, p, r) {
   if (p<r) {
      m = (p+r)/2
      mergeSort(A, p, m)
      mergeSort(A, m+1, r)
      merge(A, p, m, r)
   }
}</pre>
```

```
merge(A, p, m, r) {
    new B[0, r-p]
    i=p; j=m+1; k=0
```

```
mergeSort(A, p, r) {
   if (p<r) {
      m = (p+r)/2
      mergeSort(A, p, m)
      mergeSort(A, m+1, r)
      merge (A, p, m, r)
   }
}</pre>
```

```
merge(A, p, m, r) {
  new B[0, r-p]
    i=p; j=m+1; k=0
    while(i<=m and j<=r) {
        mergeSort(A, p, r) {
        if (p<r) {
            m = (p+r)/2
            mergeSort(A, p, m)
            merge(A, p, m, r)
        }
    }
}</pre>
```

```
merge(A, p, m, r) {
  new B[0, r-p]
  i=p; j=m+1; k=0
  while(i<=m and j<=r) {
    if (A[i]<=A[j])

    else
}</pre>
```

```
mergeSort(A, p, r) {
   if (p<r) {
      m = (p+r)/2
      mergeSort(A, p, m)
      mergeSort(A, m+1, r)
      merge(A, p, m, r)
   }
}</pre>
```

```
merge(A, p, m, r) {
  new B[0, r-p]
  i=p; j=m+1; k=0
  while(i<=m and j<=r) {
    if (A[i]<=A[j])
       B[k++] = A[i++]
    else
       B[k++] = A[j++]
}</pre>
```

```
mergeSort(A, p, r) {
    if (p<r) {
        m = (p+r)/2
        mergeSort(A, p, m)
        mergeSort(A, m+1, r)
        merge(A, p, m, r)
    }
}</pre>
```

```
merge(A, p, m, r) {
  new B[0, r-p]
  i=p; j=m+1; k=0
  while (i \le m and j \le r) {
    if (A[i] \leq A[j])
      B[k++] = A[i++]
    else
      B[k++] = A[j++]
  while (i \le m) B[k++]=A[i++]
  while (j \le r) B[k++]=A[j++]
  copy B back to A[p, r]
```

```
mergeSort(A, p, r) {
  if (p<r) {
    m = (p+r)/2
    mergeSort(A, p, m)
    mergeSort(A, m+1, r)
    merge(A, p, m, r)
```

Analysis

merge:

$$O(r-p+1) \rightarrow O(n)$$

Let T(n) denote the worse case running time of mergeSort on an input of size n

$$T(n) = \begin{cases} 1, & n = 1 \\ 2T\left(\frac{n}{2}\right) + n, & n > 1 \end{cases}$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

$$\bullet = 2\left(2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)\right) + n$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

• =
$$2\left(2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

• $= 2\left(2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$
• $= 2\left(2\left(2T\left(\frac{n}{8}\right) + \left(\frac{n}{4}\right)\right) + \left(\frac{n}{2}\right)\right) + n$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

• =
$$2\left(2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

• =
$$2\left(2\left(2T\left(\frac{n}{8}\right) + \left(\frac{n}{4}\right)\right) + \left(\frac{n}{2}\right)\right) + n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

• =
$$2\left(2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

• =
$$2\left(2\left(2T\left(\frac{n}{8}\right) + \left(\frac{n}{4}\right)\right) + \left(\frac{n}{2}\right)\right) + n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

• = ...

•
$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

• =
$$2\left(2T\left(\frac{n}{4}\right) + \left(\frac{n}{2}\right)\right) + n = 2^2T\left(\frac{n}{2^2}\right) + 2n$$

• =
$$2\left(2\left(2T\left(\frac{n}{8}\right) + \left(\frac{n}{4}\right)\right) + \left(\frac{n}{2}\right)\right) + n = 2^3T\left(\frac{n}{2^3}\right) + 3n$$

- = ...
- $\bullet = 2^k T\left(\frac{n}{2^k}\right) + kn$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

- $n = 2^k$
- k = logn

•
$$T(n) = 2^{logn} \cdot T(1) + logn \times n$$

= $n + nlogn$

 $\bullet = O(n \log n)$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

•
$$n = 2^k$$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

- $n = 2^k$
- k = logn

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

- $n = 2^k$
- k = logn

T(n)

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

- $n = 2^k$
- k = logn

$$T(n) = 2^{\log n} \cdot T(1) + \log n \times n$$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

- $n = 2^k$
- k = logn

$$T(n) = 2^{logn} \cdot T(1) + logn \times n$$
$$= n + nlogn$$

$$T(n) = 2^k T\left(\frac{n}{2^k}\right) + kn$$

•
$$\frac{n}{2^k} = 1$$

- $n = 2^k$
- k = logn

$$T(n) = 2^{logn} \cdot T(1) + logn \times n$$
$$= n + nlogn$$
$$= O(n \log n)$$

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
insertion-sort	$O(n^2)$	slowin-placefor small data sets (< 1K)
heap-sort	O(nlogn)	fastin-placefor large data sets (1K — 1M)
merge-sort	O(nlogn)	fastsequential data accessfor huge data sets (> 1M)