	COMPUTER SCI CIAL INTELLIG		DEPARTMENT OF COMPUTER SCIENCE ENGINEERING	
Program Name: B. Tech		Assignment Type: Lab		Academic Year: 2025-26
Course Coordinator Name		Dr.Vairachilai Shenbagavel		
Instructor(s) Name		Srinivas Komakula		
Course Code	23CA201SE402	Course Title	Explainable AI (P)	
Year/Sem	III/V	Regulation	R24	
Date and Day of Assignment	28-08-2025	Time(s)	09:00AM -05:00PM	
Duration	2 Hours	Applicable to Batch	23CSBTB33	

Assignment Number: 04

Q. No.	Question	Expected Time to complete
1	Iris (Multiclass Classification	

Objectives:

- Use Permutation Importance to determine which flower measurements matter globally.
- Apply SHAP to visualize species-specific influences.
- Use LIME to explain local predictions for two flowers.
- Compare alignment and divergence between methods.

Assignment Details:

Goal: Understand which features drive predictions of flower species.

Data: sklearn.datasets.load_iris() Model: RandomForestClassifier

Steps:

- Train RandomForestClassifier.
- Permutation Importance: Rank features globally.
- SHAP: Produce beeswarm plot and one local explanation for Setosa.
- LIME: Explain two predictions (Setosa vs Virginica).
- Compare across methods.

Deliverables:

- Permutation Importance plot.
- **♣** SHAP beeswarm + 1 local force plot.
- **↓** LIME explanations for 2 samples.
- Comparative analysis across PI, SHAP, and LIME.

Submission Requirements:

- Short methods summary (3–5 lines).
- Clean, runnable code/notebook.
- All required plots (PI, SHAP global + local, LIME local).
- 5–10 bullet insights highlighting consistencies and differences.