Московский Физико-Технический Институт

Кафедра Общей физики Лабораторная работа №5.1.1

Экспериментальная проверка уравнения Эйнштейна для фотоэффекта

Маршрут VII

31 октября 2019 г. 7 ноября 2019 г.

Работу выполнил Ринат Валиев, 715 гр.

Под руководством А.И. Миланича

Постановка эксперимента

Цель работы: провести проверку уравнения Эйнштейна для фотоэффекта, определить экспериментально значение постоянной Планка.

Рис. 1: Схема экспериментальной установки

Схема установки, используемой в работе, показана на рисунке 1. Приведем некоторые формулы, используемые в работе:

Энергетический баланс:

$$\hbar\omega = E_{max} + W$$

Запирающий потенциал:

$$E_{max} = eV_0$$

$$eV_0 = \hbar\omega - W$$

Наклон графика $V_0(\omega)$:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e}$$

Выполнение работы

Прокалибруем барабан монохроматора по спектру неоновой лампы, снимем зависимость фототока от потенциала катода для 6-8 длин волн в диапазоне 540-700 нм, по результатам измерений определим постоянную Планка и оценим работу выхода материала катода.

1. Градуировка барабана монохроматора:

λ, \mathring{A}	5400	5852	6143	6217	6402	6717
x, дел	2242	2502	2634	2694	2750	2865

Таблица 1: Градуировка

Рис. 2: $y = 0.011x^2 - 3.7581x + 8072.8$

2. Снимем зависимости тока от запирающего потенциала для разных частот:

λ,\mathring{A}	5400		6717		5852		6143		6402	
х, дел	2242		2865		2502		2634		2750	
	$U_{\rm 3an}$	$U_{\text{фототок}}$	$U_{\rm 3an}$	$U_{\phi \text{ототок}}$	$U_{\rm 3an}$	$U_{\text{фототок}}$	$U_{3a\pi}$	$U_{\text{фототок}}$	$U_{\rm 3an}$	$U_{\text{фототок}}$
	5,37	$0,\!550$	5,42	0,598	5,41	$0,\!569$	5,426	$0,\!579$	5,42	0,589
	5,05	$0,\!544$	5,09	0,594	4,99	$0,\!564$	4,771	$0,\!572$	4,97	0,583
	4,49	$0,\!538$	4,55	$0,\!587$	4,43	$0,\!557$	4,087	$0,\!564$	4,51	0,578
	3,95	$0,\!529$	4,00	$0,\!578$	4,00	0,551	3,546	$0,\!555$	3,95	0,573
	3,52	$0,\!520$	3,51	$0,\!560$	3,55	$0,\!544$	2,998	$0,\!545$	3,43	$0,\!561$
	2,94	0,508	3,04	$0,\!559$	3,09	$0,\!536$	2,554	0,534	2,71	0,545
	2,01	$0,\!479$	2,42	$0,\!542$	2,45	$0,\!521$	1,960	$0,\!515$	2,08	0,526
	1,05	0,409	1,94	$0,\!523$	1,95	0,504	1,373	0,489	1,29	0,486
	0,39	0,172	1,32	0,484	1,48	0,486	1,036	$0,\!465$	0,72	$0,\!427$
	0,07	$0,\!137$	0,63	0,380	0,87	$0,\!437$	0,704	$0,\!425$	0,35	0,186
	-0,05	0,112	0,43	$0,\!298$	0,35	$0,\!325$	0,360	0,334	-0,03	0,058
	-0,12	0,086	0,33	$0,\!254$	-0,03	$0,\!125$	0,026	$0,\!159$	-0,20	0,000
	-0,18	0,069	0,18	0,173	-0,35	0,000	-0,044	0,090	-0,51	-0,104
	-0,30	0,029	0,02	0,088	-0,97	-0,175	-0,290	-0,050	-0,78	-0,197
	-0,40	0,000	-0,15	0,000	-1,45	-0,338	-0,492	-0,172	-1,06	-0,291

3. Для каждой длины волны линеаризуем зависимость $U_{\text{фототок}}(U_{\text{зап}})$. Для этого построим графики $\sqrt{U_{\text{фототок}}}(U_{\text{зап}})$. Для каждого найдем коэффициенты уравнения прямой: y=ax+b, затем коэффициент наклона b/a. Результаты внесем в таблицу:

λ, \mathring{A}	5852	6143	5400	6402	6717
$V_0 = b/a$, B					
ω , $10^{15} \ \mathrm{c}^{-1}$	3.22	3.07	3.49	2.94	2.80

Рис. 3: y = 0.6139x - 1.264

Итоги

Исследовали фотоэффект, проверили формулу Эйнштейна. По наклону графика определили постоянную Планка $\hbar=0.99\cdot 10^{-34}~\rm Дж\cdot c.$