Vaja 16: Vztrajnostni moment

Matevž Demšar

Januar 2024

Opis. Pri vaji smo opazovali vrtenje različnih sistemov pri stalnem navoru.

Uvod. Vrteči sistem je bilo kolo z radijem r_k , na katerega smo pritrjevali dodatne uteži in s tem spreminjali njegov vztrajnostni moment. Zunanji navor smo ustvarili z utežjo z maso m_u , obešeno na vrv, tako da je sila gravitacije ustvarjala stalen navor $M = F_g \cdot r_m$. Vztrajnostni moment nato izrazimo iz zakona $M = J \cdot \alpha$.

Merili smo vztrajnostni moment treh sistemov: pri prvem poskusu je bilo kolo neobteženo, pri drugem smo nanj na togo pritrdili valja z maso m_v in radijem r_v na razdalji s od osi vrtenja, pri tretjem pa smo ista valja pritrdili v kroglična ležaja na enaki oddaljenost od osi.

$$r_k = 14,9 \ cm$$

 $m_u = 50 \ g$
 $r_m = 2,0 \ cm$
 $r_v = 4,9 \ cm$
 $s = 7,6 \ cm$
 $m_v = 514 \ g$

Ker bo na vrtenje kolesa vplivala tudi sila trenja, želimo oceniti njen navor. To storimo tako, da kolo zavrtimo brez zunanjih navorov in izmerimo njegov kotni pojemek α_t .

$$\alpha_t = -0.08 \ s^{-2}$$

Meritve. Meritve opravljamo s programom LoggerPro. Na obodu kolesa so na enakomernih razdaljah narejene zareze. Z optičnimi vrati, povezanimi z merilnikom časa lahko izračunamo tangentno in tangentni pospešek kolesa. Kotni pospešek nato izračunamo po formuli:

$$\alpha_{tr} = \frac{a_t}{r_k}$$

Opravimo šest meritev z dvema različnima zunanjima navoroma: $M_1=mgr_m$ in $M_2=2mgr_m$, nato postopek ponovimo s pritrjenima valjema.

Brez valjev.	α	$\Delta \alpha$
	$0.33 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
$M_1 = 9.8 \times 10^{-3} Nm$	$0,33 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
	$0.25 \ s^{-2}$	$\pm 0,04 \ s^{-2}$
	$0.71 \ s^{-2}$	$\pm 0,04 \ s^{-2}$
$M_2 = 19,6 \times 10^{-3} Nm$	$0,75 \ s^{-2}$	$\pm 0,04 \ s^{-2}$
	$0,73 \ s^{-2}$	$\pm 0,04 \ s^{-2}$
Togo vpeta valja.		
	$0,22 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
$M_1 = 9.8 \times 10^{-3} Nm$	$0,22 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
	$0,22 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
	$0,47 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
$M_2 = 19,6 \times 10^{-3} Nm$	$0,47 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
	$0,47 \ s^{-2}$	$\pm 0,04 \ s^{-2}$
Gibljivo vpeta valja.		
	$0,23 \ s^{-2}$	$\pm 0,02 \ s^{-2}$
$M_1 = 9.8 \times 10^{-3} Nm$	$0,22 \ s^{-2}$	$\pm 0,02 \ s^{-2}$
	$0,23 \ s^{-2}$	$\pm 0,02 \ s^{-2}$
	$0,45 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
$M_2 = 19,6 \times 10^{-3} Nm$	$0,45 \ s^{-2}$	$\pm 0,03 \ s^{-2}$
	$0,43 \ s^{-2}$	$\pm 0,03 \ s^{-2}$

Izračuni. Vztrajnostni moment sistema izračunamo po formuli $J=M/\alpha$. Vrednosti α moramo prišteti še izgube, ki so nastale zaradi trenja. V kontrolnem poskusu smo velikost teh izgub ocenili na $\alpha_{tr}=0,08~s^{-2}$. Vztrajnostni moment pa lahko določimo tudi računsko:

$$J_T = J + \frac{1}{2}m_v r_v^2 + m_v s^2$$
$$J_G = J + m_v s^2$$

Vrednosti J z izmerjenimi podatki ne moremo izračunati, zato uporabimo povprečje izmerjenih vrednosti.

Brez valjev.		
$M_1 = 9.8 \times 10^{-3} \ Nm$	$\alpha_1 = 0.38 \ s^{-2}$	$J_1 = 25,8 \times 10^{-3} \ kgm^2$
$M_2 = 19,6 \times 10^{-3} Nm$	$\overline{\alpha_2} = 0.81 \ s^{-2}$	$J_2 = 24, 2 \times 10^{-3} \ kgm^2$
Togo vpeta valja.		
$M_{T1} = 9.8 \times 10^{-3} \ Nm$	$\alpha_{T1} = 0.30 \ s^{-2}$	$J_{T1} = 32,7 \times 10^{-3} \ kgm^2$
$M_{T2} = 19,6 \times 10^{-3} Nm$	$\alpha_{T2} = 0.55 \ s^{-2}$	$J_{T2} = 35,6 \times 10^{-3} \ kgm^2$
Gibljivo vpeta valja.		
$M_{G1} = 9.8 \times 10^{-3} \ Nm$	$\alpha_{G1} = 0.31 \ s^{-1}$	$J_{G1} = 31,6 \times 10^{-3} \ kgm^2$
$M_{G2} = 19,6 \times 10^{-3} Nm$	$\alpha_{G2} = 0.52 \ s{-}1$	$J_{G2} = 37,7 \times 10^{-3} \ kgm^2$

Primerjava s pričakovanimi vrednostmi.

Izračunane vrednosti.	Izmerjene vrednosti.	
$J_T = 28,6 \times 10^{-3} \ kgm^2$	$J_{T1} = 32,7 \times 10^{-3} \ kgm^2$	
	$J_{T2} = 35, 6 \times 10^{-3} \ kgm^2$	
$J_G = 28,0 \times 10^{-3} \ kgm^2$	$J_{G1} = 31,6 \times 10^{-3} \ kgm^2$	
	$J_{G2} = 37,7 \times 10^{-3} \ kgm^2$	

Zapis rezultata z napako. Do napake je lahko prišlo pri meritvah r_k, r_m, r_u in s ter m_v in m_u . Vrednost napak dolžin ocenimo na $\pm 1 \ mm$,

vrednosti napak mas pa na $\pm 1~g$. Program Logger Pro je rezultate za
okrožil na dve decimalni mesti, kar je vodilo do napake pri izmerjenem pospešku a.

$$\frac{\Delta J}{J} = \frac{\Delta M}{M} + \frac{\Delta \alpha}{\alpha}$$

$$\frac{\Delta M}{M} = \frac{\Delta m_u}{m_u} + \frac{\Delta r_m}{r_m}$$

$$\Delta \alpha = (\frac{\Delta a}{a} + \frac{\Delta r_k}{r_k}) \cdot \alpha + \Delta \alpha_{tr}$$

$$\frac{\Delta J}{J} = 0,36$$

$$J = 0,025 \ kgm^2 \pm 0,009 \ kgm^2$$

$$J_T = 0,034 \ kgm^2 \pm 0,012 \ kgm^2$$

$$J_G = 0,035 \ kgm^2 \pm 0,012 \ kgm^2$$

Zaključek. Razlika med izmerjeno in izračunano vrednostjo je v okviru napake. Najbolj je na natančnost meritev vplivala občutljivost merilnika LoggerPro, saj je pri merjenju izgube pospeška zaradi majhne občutljivosti prišlo do velike relativne napake.