We claim:

1) Compounds of the general formula (I)

$$H_3C - S = M$$

$$N = N$$

$$A$$

$$(I)$$

5 where

M represents two hydrogen atoms or one metal ion selected from the group consisting of Cu, Co, Ni, Mn, Zn and Al;

A is

10

15

$$\begin{bmatrix} SO_3 \cdot J_n & X_n^+ \\ X_n & X_n \end{bmatrix} = \begin{bmatrix} SO_3 \cdot J_n & X_n^+ \\ X_n & X_n \end{bmatrix}$$

 R^1 is H, OH or -NH-(CH₂)_a-SO₃-X⁺ where a is from 1 to 6;

R² is H or a radical of the formulae

$$-N = N$$
 R^1
 $[SO_3^-]_n X_n^+$

$$- N = N - D - N = N$$

$$[SO_3^-]_n X_n^+$$

5 D is C_6H_4 , C_6H_3 (OH) or C_6H_3 (OCH₃); X is H, alkali metal, NH₄, C_1 - C_{18} -alkyl-NH₃, $(C_1$ - C_{18} -alkyl)₂NH₂, $(C_1$ - C_{18} -alkyl)₃NH, $(C_1$ - C_{18} -alkyl)₃CNH₃, $(C_1$ - C_{18} -alkyl)₂CHNH₃, or $(C_1$ - C_{18} -alkyl)₄N, and n is from 1 to 4.

10

2) A compound as claimed in claim 1, characterized by the formulae (IIa) to (IIf)

$$H_3C - S$$

$$N = N$$

$$[SO_3 \cdot]_n \quad X_n^+$$

$$H_3C - S$$

$$N = N$$

$$[SO_3^-]_n \quad X_n^+$$

$$H_3C - S$$

$$N = N$$

$$SO_3X$$
(IIc)

$$H_3C - S$$
 $N = N$
 $N = N$
 SO_3 - $J_n X_n$

$$H_3C - S$$

$$N = N$$

$$H_3C$$

$$[SO_3-]_n X_n^+$$

$$H_3C$$
 NH
 $N = N$
 $N = N$

3) A compound as claimed in claim 1, characterized by the formulae (IIIa) or (IIIb)

$$H_3C - S$$

$$N = N$$

$$SO_3X$$

$$(IIIa)$$

4) A compound as claimed in claim 1, characterized by the formula (IVa) or (IVb)

$$H_3C$$
 $N = N$
 $N = N$
 SO_3X
 SO_3X
 SO_3X
 SO_3X
 SO_3X
 SO_3X

$$H_3C$$
 NH
 $N = N$
 $N = N$
 SO_3X
 SO_3X
 SO_3X
 SO_3X
 SO_3X

5

10

15

- 5) A process for preparing a compound as claimed in one or more of claims 1 to 4, which comprises 2-di(methanesulfonyl)amidoaniline being diazotized, the resulting diazonium salt being coupled with a coupling component corresponding to ring system A, one of the two methanesulfonamide groups being detached and optionally the resulting azo compound being reacted with a Cu, Co, Ni, Mn, Zn or Al salt.
- 6) The use of a compound as claimed in one or more of claims 1 to 4 for dyeing and printing natural or synthetic fiber materials, for recording script and images on recording media, for pulp coloring paper or celluloses and also as a colorant in printing inks, lacquers, paints, plastics, rubber materials, office articles, wood coatings and cleaners and artists' colors.
- 7) The use of claim 6 as a colorant in inkjet inks and electrophotographic toners.

8) A recording fluid including 0.1 to 50% by weight in total of at least one compound as claimed in one or more of claims 1 to 4 and also optionally of a shading colorant, reckoned as dry weight, 0 to 99% by weight of water and 0.5 to 99.5% by weight of organic solvent and/or humectant.

5

9) The use of a recording fluid as claimed in claim 8 in an ink set consisting of the colors black, yellow, cyan, magenta, optionally orange and optionally green.