

BUSINESS REPORT

ABSTRACT

The dataset contains information about the matches team India has played. The BCCI wants to make predictions regarding the winning prospects to make team India win.

Yashveer Kothari. A

Post Graduate Programme in Data Science & Business Analytics

LIST OF CONTENTS							
QUESTIONS / PROCESS	CONTENT	PAGE #					
INTRODUCTION	PROBLEM STATEMENT	3					
	DATA DICTIONARY	3					
	NEED TO SOLVE THE PROBLEM	4					
DATA CLEANING &	VARIABLE MODIFICATION	9					
PRE-PROCESSING	MISSING VALUE TREATMENT	11					
	OUTLIER TREATMENT	12					
EXPLORATORY	UNIVARIATE AND BI-VARIATE	15					
DATA	ANALYSIS						
ANALYSIS	MULTIVARIATE ANALYSIS	24					
MODEL BUILDING	ENCODING THE DATASET	25					
	SPLITTING THE DATASET	25					
	FEATURE SELECTION	25					
MODEL	ALL MODEL COMPARISION AND	26					
VALIDATION	INSIGHTS						
INTERPRETATION	BUSSINESS RECOMMENDATION	27					

	LIST OF FIGURES	
FIGURE	FIGURE NAME	PAGE
#		#
1	BOXPLOT	12
2	MATCH LIGHT	14
3	MATCH FORMAT	14
4	FIRST SELECTION	14
5	OPPONENT	15
6	SEASON	15
7	OFFSHORE	16
8	SCATTER PLOT	17
9	BOXPLOT – RESULT AND EXTRA BOWLS OPPONENT	18
10	BOXPLOT – RESULT AND EXTRA BOWLS BOWLED	18
11	BARPLOT – RESULT AND PLAYER HIGHEST WICKET	19
12	BARPLOT – RESULT AND AVG TEAM AGE	19
13	BARPLOT – RESULT & OFFSHORE	20
14	BARPLOT – RESULT & FIRST SELECTION	20
15	BARPLOT – RESULT & ALL ROUNDER IN TEAM	21
16	BARPLOT – RESULT & OPPONENT IN TEAM	21
17	BARPLOT – RESULT & MATCH FORMAT IN TEAM	22
18	BARPLOT – RESULT & PLAYER SCORED ZERO	22
19	HEATMAP	23

	LIST OF TABLES	
TABLE #	TABLE NAME	PAGE #
1	TOP 5 DATA SAMPLE	4
2	LAST 5 DATA SAMPLE	5
3	SHAPE OF THE DATASET	6
4	DATASET INFORMATION	6
5	DATASET DESCRIPTION	7
6	DATASET DUPLICATES	7
7	MISSING DATA	8
8	UNIQUE COUNT	9
9	DATA INFORMATION AFTER MODIFICATION	10
10	REPLACING THE MISSING VALUES	11
11	SKEWNESS	13
12	MATCH LIGHT	14
13	MATCH FORMAT	14
14	FIRST SELECTION	14
15	OPPONENT	15
16	SEASON	15
17	OFFSHORE	16
18	PLAYERS SCORED ZERO	16
19	PLAYER HIGHEST WICKET	16
20	ALL MODEL COMPARISION	25

PROBLEM STATEMENT

BCCI has hired an external analytics consulting firm for data analytics. The major objective of this tie up is to extract actionable insights from the historical match data and make strategic changes to make India win. Primary objective is to create Machine Learning models which correctly predicts a win for the Indian Cricket Team. Once a model is developed then you have to extract actionable insights and recommendation. Also, below are the details of the next 10 matches, India is going to play. You have to predict the result of the matches and if you are getting prediction as a Loss then suggest some changes and re-run your model again until you are getting Win as a prediction. You cannot use the same strategy in the entire series, because opponent will get to know your strategy and they can come with counter strategy. Hence for all the below 5 matches you have to suggest unique strategies to make India win.

DATA DICTIONARY

VARIABLES	DESCRIPTION
Game_number	Unique ID for each match
Result	Final result of the match
Avg_team_Age	Average age of the playing 11 players for that match
Match_light_type	type of match: Day, night or day & night
Match_format	Format of the match: T20, ODI or test
Bowlers_in_team	how many full-time bowlers has been player in the team
Wicket_keeper_in_team	how many full-time wicket keepers has been player in the team
All_rounder_in_team	how many full-time all-rounders has been player in the team
First_selection	First inning of team: batting or bowling
Opponent	Opponent team in the match
Season	What is the season of the city, where match has been played
Audience_number	Total number of audiences in the stadium
Offshore	Match played within country or outside of the country
Max_run_scored_lover	Maximum run scored in 1 over by team
Max_wicket_taken_1over	Maximum wicket taken in 1 over by team
Extra_bowls_bowled	Total number of extras bowled by team
Min_run_given_1over	Minimum run given by the bowler in one over
Min_run_scored_1over	Minimum run scored in 1 over by team

Max_run_given_1over	Maximum run given by the bowler in one over
extra_bowls_opponent	Total number of extras bowled by opponent
player_highest_run	Highest score in the match by one player
Players_scored_zero	Number of players out on zero run
player_highest_wicket	Highest wickets taken by single player in match

NEED TO SOLVE THE PROBLEM

- 1. To increase the chances of winning
- 2. Help in selecting the right team for the right match
- 3. It also helps the management to know which conditions are favourable for the team, so that the chances of winning are high.

TABLE 1: TOP 5 DATASET SAMPLE

	Game_number	Result	Avg_team_Age	Match_light_type	Match_format	Bowlers_in_team	Wicket_keeper_in_team	All_rounder_in_team	First_selection
0	Game_1	Loss	18.0	Day	ODI	3.0	1	3.0	Bowling
1	Game_2	Win	24.0	Day	T20	3.0	1	4.0	Batting
2	Game_3	Loss	24.0	Day and Night	T20	3.0	1	2.0	Bowling
3	Game_4	Win	24.0	NaN	ODI	2.0	1	2.0	Bowling
4	Game_5	Loss	24.0	Night	ODI	1.0	1	3.0	Bowling

Opponent	Season	Audience_number	Offshore	Max_run_scored_1over	Max_wicket_taken_1over	Extra_bowls_bowled	Min_run_given_1over
Srilanka	Summer	9940.0	No	13.0	3	0.0	2
Zimbabwe	Summer	8400.0	No	12.0	1	0.0	0
Zimbabwe	NaN	13146.0	Yes	14.0	4	0.0	0
Kenya	Summer	7357.0	No	15.0	4	0.0	2
Srilanka	Summer	13328.0	No	12.0	4	0.0	0

Min_run_scored_1over	Max_run_given_1over	extra_bowls_opponent	player_highest_run	Players_scored_zero	player_highest_wicket
3.0	6.0	0	54.0	3	1
3.0	6.0	0	69.0	2	1
3.0	6.0	0	69.0	3	1
3.0	6.0	0	73.0	3	1
3.0	6.0	0	80.0	3	1

TABLE 2: LAST 5 DATASET SAMPLE

	Game_number	Result	Avg_team_Age	Match_light_type	Match_format	Bowlers_in_team	Wicket_keeper_in_team	All_rounder_in_team	First_selection
2925	Game_2926	Win	30.0	Day	T20	3.0	1	4.0	Batting
2926	Game_2927	Win	30.0	Day	ODI	4.0	1	3.0	Bowling
2927	Game_2928	Win	30.0	Day and Night	ODI	4.0	1	3.0	Bowling
2928	Game_2929	Win	30.0	Day	ODI	4.0	1	3.0	Batting
2929	Game_2930	Win	30.0	Day	ODI	4.0	1	3.0	Batting

Opponent	Season	Audience_number	Offshore	Max_run_scored_1over	Max_wicket_taken_1over	Extra_bowls_bowled	Min_run_given_1over
South Africa	Summer	33950.0	No	15.0	3	8.0	0
Kenya	Summer	19663.0	No	14.0	4	8.0	2
Pakistan	Rainy	39823.0	Yes	14.0	4	10.0	2
Kenya	Rainy	14007.0	No	14.0	2	20.0	2
Kenya	Rainy	20839.0	No	12.0	4	4.0	5

Min_run_scored_1over	Max_run_given_1over	extra_bowls_opponent	player_highest_run	Players_scored_zero	player_highest_wicket
3.0	6.0	3	50.0	3	2
3.0	6.0	2	52.0	2	1
4.0	10.0	2	80.0	3	2
3.0	6.0	3	98.0	3	1
3.0	6.0	3	62.0	1	1

TABLE 3: SHAPE OF THE DATASET

The number of rows and columns in the dataset is (2930, 23) respectively

TABLE 4: DATASET INFORMATION

```
RangeIndex: 2930 entries, 0 to 2929
Data columns (total 23 columns):
     Column
                                 Non-Null Count Dtype
                                 -----
 0
    Game_number
                                2930 non-null object
                                2930 non-null object
     Result
    Avg_team_Age
                               2833 non-null float64
                               2878 non-null object
2860 non-null object
    Match_light_type
 3
 4
    Match_format
 5
     Bowlers_in_team
                           2848 non-null float64
    Wicket_keeper_in_team 2930 non-null int64
    All_rounder_in_team 2890 non-null float64
 7
    First_selection
                               2871 non-null object
 9 Opponent
                               2894 non-null object
                               2868 non-null object
 10 Season
 11 Audience_number 2849 non-null float64
12 Offshore 2866 non-null object
 13 Max_run_scored_1over 2902 non-null float64
 14 Max_wicket_taken_1over 2930 non-null int64
                               2901 non-null float64
 15 Extra_bowls_bowled
16 Min_run_given_lover 2930 non-null int64
17 Min_run_scored_lover 2903 non-null float64
18 Max_run_given_lover 2896 non-null float64
19 extra_bowls_opponent 2930 non-null int64
20 player_highest_run 2902 non-null float64
21 Players_scored_zero 2930 non-null object
 22 player_highest_wicket 2930 non-null object
dtypes: float64(9), int64(4), object(10)
```

- 1. There are 2930 rows and 13 columns in the dataset.
- 2. There are 10 variables with object data type.
- 3. There are 4 datatypes with integer data type.
- 4. There are 9 datatypes with float data type.

TABLE 5: DATASET DESCRIPTION

	count	mean	std	min	25%	50%	75%	max
Avg_team_Age	2833.0	29.242852	2.264230	12.0	30.0	30.0	30.00	70.0
Bowlers_in_team	2848.0	2.913624	1.023907	1.0	2.0	3.0	4.00	5.0
Wicket_keeper_in_team	2930.0	1.000000	0.000000	1.0	1.0	1.0	1.00	1.0
All_rounder_in_team	2890.0	2.722491	1.092699	1.0	2.0	3.0	4.00	4.0
Audience_number	2849.0	46267.960688	48599.581459	7063.0	20363.0	34349.0	57876.00	1399930.0
Max_run_scored_1over	2902.0	15.199862	3.661010	11.0	12.0	14.0	18.00	25.0
Max_wicket_taken_1over	2930.0	2.713993	1.080623	1.0	2.0	3.0	4.00	4.0
Extra_bowls_bowled	2901.0	11.252671	7.780829	0.0	6.0	10.0	15.00	40.0
Min_run_given_1over	2930.0	1.952560	1.678332	0.0	0.0	2.0	3.00	6.0
Min_run_scored_1over	2903.0	2.762659	0.705759	1.0	2.0	3.0	3.00	4.0
Max_run_given_1over	2896.0	8.669199	5.003525	6.0	6.0	6.0	9.25	40.0
extra_bowls_opponent	2930.0	4.229693	3.626108	0.0	2.0	3.0	7.00	18.0
player_highest_run	2902.0	65.889387	20.331614	30.0	48.0	66.0	84.00	100.0

TABLE 6: DATASET DUPLICATES

The dataset contains 0 duplicate entries

• There are no duplicates in the dataset.

TABLE 7: MISSING DATA

There are 789 missing values in the dataset

Game_number	0
Result	0
Avg_team_Age	97
Match_light_type	52
Match_format	70
Bowlers_in_team	82
Wicket_keeper_in_team	0
All_rounder_in_team	40
First_selection	59
Opponent	36
Season	62
Audience_number	81
Offshore	64
Max_run_scored_1over	28
Max_wicket_taken_1over	0
Extra_bowls_bowled	29
Min_run_given_1over	0
Min_run_scored_1over	27
Max_run_given_1over	34
extra_bowls_opponent	0
player_highest_run	28
Players_scored_zero	0
player_highest_wicket	0

• We replace the missing value in the dataset with median and mode for Numerical variables and categorical variables respectively. (Refer Table 10)

TABLE 8: UNIQUE COUNT

```
unique count of Game_number
['Game_1' 'Game_2' 'Game_3' ... 'Game_2928' 'Game_2929' 'Game_2930']
unique count of Result
['Loss' 'Win']
unique count of Match_light_type
['Day' 'Day and Night' nan 'Night']
unique count of Match_format
['ODI' 'T20' 'Test' '20-20' nan]
unique count of First_selection
['Bowling' 'Batting' 'Bat' nan]
unique count of Opponent
['Srilanka' 'Zimbabwe' 'Kenya' 'Australia' 'England' 'South Africa'
 'Pakistan' 'West Indies' 'Bangladesh' nan]
unique count of Season
['Summer' nan 'Winter' 'Rainy']
unique count of Offshore
['No' 'Yes' nan]
unique count of Players_scored_zero
[3 2 1 4 'Three']
unique count of player_highest_wicket
[1 2 3 4 'Three' 5]
```

• Modifying few unique data names:

- 1. 20-20: 'T20' (The original name can be understood as a numerical datatype by the system automatically, this helps in understanding the variable precisely and easily)
- 2. Bat: 'Batting' (Since the major data values are "batting", to get accurate results we are converting the same.
- 3. Three: '3' in both 'Players_scored_zero' and 'player_highest_wicket' columns (Since the major data values are numerical "3", to get accurate results we are converting the same.)

Modified names in the dataset:

```
['ODI' 'T20' 'Test' nan]
['Bowling' 'Batting' nan]
[3 2 1 4]
[1 2 3 4 5]
```

Modifying few data types:

1. 'Players scored zero' and 'player highest wicket' to integer type ('int64').

TABLE 9: DATA INFORMATION AFTER MODIFICATION

```
RangeIndex: 2930 entries, 0 to 2929
Data columns (total 23 columns):
     Column
                                    Non-Null Count Dtype
--- -----
                                      -----
 0
    Game_number
                                    2930 non-null object
 1 Result
                                   2930 non-null object
                                  2833 non-null float64
2878 non-null object
 2 Avg_team_Age
    Match_light_type
                                   2860 non-null object
2848 non-null float64
 5 Bowlers_in_team
    Match_format
    Wicket_keeper_in_team 2930 non-null int64
 6
     All_rounder_in_team 2890 non-null float64
First_selection 2871 non-null object
 7
 8 First_selection
 9 Opponent
                                    2894 non-null object
 10 Season 2868 non-null object
11 Audience_number 2849 non-null float64
12 Offshore
 12 Offshore
                                    2866 non-null object
 13 Max_run_scored_1over 2902 non-null float64
 14 Max_wicket_taken_1over 2930 non-null int64
15 Extra_bowls_bowled 2901 non-null float64
16 Min_run_given_lover 2930 non-null int64
17 Min_run_scored_lover 2903 non-null float64
18 Max_run_given_lover 2896 non-null float64
19 extra_bowls_opponent 2930 non-null int64
20 player_highest_run 2902 non-null float64
21 Players_scored_zero 2930 non-null int64
 22 player_highest_wicket 2930 non-null int64
dtypes: float64(9), int64(6), object(8)
```

TABLE 10: REPLACING THE MISSING VALUES

Result Avg_team_Age 0 0 Match_light_type Match_format 0 0 Bowlers_in_team All_rounder_in_team 0 0 First selection 0 Opponent 0 Season Audience_number 0 Offshore Max_run_scored_1over 0 Max_wicket_taken_1over 0 0 Extra_bowls_bowled Min_run_given_1over 0 Min_run_scored_1over 0 0 Max_run_given_1over 0 extra_bowls_opponent 0 player_highest_run Players_scored_zero 0 player_highest_wicket 0 dtype: int64

• The missing data in the dataset has been replaced as per the datatype using the median and mode. Hence There are no missing values in the dataset.

Numerical data

Categorical data

Avg_team_Age	0
Bowlers_in_team	0
All_rounder_in_team	0
Audience_number	0
Max_run_scored_1over	0
Max_wicket_taken_1over	0
Extra_bowls_bowled	0
Min_run_given_1over	0
Min_run_scored_1over	0
Max_run_given_1over	0
extra_bowls_opponent	0
player_highest_run	0
Players_scored_zero	0
player_highest_wicket	0
	_

- 1. Variable 'avg_team_age' is close to normal distribution as mean and median are similar though it has outliers.
- 2. Variable 'Bowlers_in_team' is normally distributed as mean and median are almost same, no outliers are present.
- 3. Variable 'All_rounder_in_team' is slightly left skewed as there is difference in mean and median and also 75 percentile and the maximum value are equal, no outliers are present.
- 4. Variable 'audience number' is right skewed as mean is affected due to outliers present.
- 5. Variable 'Max run scored lover' is slightly right skewed, no outliers are present.
- 6. Variable 'Max_wicket_taken_lover' is slightly left skewed as mean is less than median and also 75 percentile and the maximum value are same, no outliers are present.
- 7. Variable 'Extra bowls bowled' is right skewed as mean is higher than median, outliers are present.
- 8. Variable 'Min_run_given_lover' is close to normal and minimum value and 25 percentiles are equal, no outliers are present.
- 9. Variable 'Min_run_scored_lover' is slightly left skewed, 50 and 75 percentiles are equal, no outliers are present.
- 10. Variable 'Max_run_given_lover' is right skewed, minimum value,25,50 percentile has same values, outliers are present.
- 11. Variable 'extra bowls opponent' is right skewed, outliers are present.
- 12. Variable 'player_highest_run' is normally distributed, no outliers are present.
- 13. Variable 'Players_scored_zero' is slightly left skewed, 50 and 75 percentiles have the same value, no outliers are present.
- 14. Variable 'player_highest_wicket' is normally distributed, minimum value and 25 percentiles are equal.

TABLE 11: SKEWNESS

Avg_team_Age	5.068403
Bowlers_in_team	-0.296492
All_rounder_in_team	-0.335012
Audience_number	15.782867
Max_run_scored_1over	0.838907
Max_wicket_taken_1over	-0.305597
Extra_bowls_bowled	1.132432
Min_run_given_1over	0.433859
Min_run_scored_1over	-0.568821
Max_run_given_1over	2.692147
extra_bowls_opponent	0.916295
player_highest_run	-0.031472
Players_scored_zero	-0.505491
player_highest_wicket	1.026090

1. Outliers have effect on mean. It increases the mean. If it is a distance-based calculations, then the modelling may be affected. So, it is necessary to treat outliers.

1.5

- 2. Box plot is used to find the outliers.
- 3. Variables avg_team_age, audience number, extra bowls bowled, maximum run given in one over, extra bowls opponent have outliers. We use Inter Quartile Range method to treat the outliers.

TABLE 12 & FIGURE 2: MATCH LIGHT

Result	Loss	Win
Match_light_type		
Day	314	1779
Day and Night	135	406
Night	24	272

TABLE 13 & FIGURE 3: MATCH FORMAT

Result Match_format	Loss	Win
ODI	269	1666
T20	180	690
Test	24	101

TABLE 14 & FIGURE 4: FIRST SELECTION

Result	Loss	Win
First_selection		
Batting	172	977
Bowling	301	1480

TABLE 15 & FIGURE 5: OPPONENT

Result	Loss	Win
Opponent		
Australia	24	80
Bangladesh	10	194
England	18	265
Kenya	93	483
Pakistan	17	236
South Africa	117	559
Srilanka	124	389
West Indies	4	154
Zimbabwe	66	97

TABLE 16 & FIGURE 6: SEASON

Result Season	Loss	Win
Rainy	170	1201
Summer	238	680
Winter	65	576

TABLE 17 & FIGURE 7: OFFSHORE

TABLE 18: PLAYERS SCORED ZERO

Result	Loss	Win
Players_scored_zero		
1	56	110
2	141	603
3	250	1485
4	26	259

TABLE 19: PLAYER HIGHEST WICKET

Result	Loss	Win
player_highest_wicket		
1	286	798
2	104	959
3	63	371
4	10	201
5	10	128

FIGURE 8: SCATTER PLOT

• MAX_RUN_GIVEN_10VER & EXTRA_BOWLS_BOWLED

• It shows the linear relationship between maximum run given in one over and extra bowls bowled. Highest value of both the variables results in loss.

• PLAYER_HIGHEST_WICKET & EXTRA_BOWLS_BOWLED

• The highest results also end up in a loss.

FIGURE 9: BOXPLOT – RESULT AND EXTRA BOWLS OPPONENT

- The median of extra bowls opponents is higher for win, If the extra bowls opponents is higher than 16 then India will win the match as per the data set.
- If the extra bowls opponents are higher than 10 then chances of winning the match is more.

FIGURE 10: BOXPLOT – RESULT AND EXTRA BOWLS BOWLED

• As per data when you bowl 40 extra bowls India is definitely will lose the match.

FIGURE 11: BARPLOT – RESULT AND PLAYER HIGHEST WICKET

• The chances of winning the match are high when the 2 wickets are taken by a single player

FIGURE 12: BARPLOT – RESULT AND AVG TEAM AGE

• India has the highest win with average team age at 30.

FIGURE 13: BARPLOT – RESULT & OFFSHORE

• The performance of the Indian team is good when played on the home ground.

FIGURE 14: BARPLOT – RESULT & FIRST SELECTION

• Most of the matches are won when selected to bowl first.

FIGURE 15: BARPLOT – RESULT & ALL ROUNDER IN TEAM

• Winning percentage is higher when matches are played with 3 to 4 all-rounders in the team.

FIGURE 16: BARPLOT – RESULT & OPPONENT IN TEAM

• India team is performing well against West Indies, Bangladesh, England and Pakistan India team wining rate is less against South Africa, Sri Lanka, Zimbabwe and Australia.

FIGURE 17: BARPLOT – RESULT & MATCH FORMAT IN TEAM

• Indian team has a good performance in ODI format as compared to both the formats Winning rate is higher in ODI format and lesser in T20 and test.

FIGURE 18: BARPLOT – RESULT & PLAYER SCORED ZERO

• Indian team has the highest wining rate when there are 3 players scored zero and lowest when there is one player scored zero.

FIGURE 19: HEATMAP

INSIGHTS ON EDA

- Around 72% of matches are played in India and only 28% are played out off India.
- Most of the matches are played in Rainy Season.
- Majority of the matches are played against South Africa (676).
- Around 71% ODI Matches are played in Day light.
- Team have win around 83% of the matches.
- 60% of the time team gets chance to bat first.
- Most of the matches are played against south Africa in which 531 times India secure to win.
- 1781-time team have opted to bowl first out of which 1480 have win the match.
- On average, 19% of the time when playing outside the country, and 65% when playing within the country, team manage to win.
- Extra_bowls_opponent has help team to win the matches.
- Inexperienced team (young player) has the higher chances to lose the match.
- We can see data is imbalance we have to do smote to resolve this issue. (EFFECT OF EDA ON THE PROCESS)
- During the bowling contest, the team won 51% Matches while Batting 33%.
- Team has won 57% of ODI matches and 24% of T20 matches.

- Variables maximum runs given in one over' and extra bowls bowled have a good relation which results
 in win or loss of the match. More number of runs given in one over and extra bowls bowled chances
 of losing is high
- Variable extra bowl's opponent can add value to the prediction. More extra bowls opponent more is chance of the winning
- Variable offshore also predict the win. If the number of matches played on home ground are more chances of winning is high
- Variable first selection also impact on the result. If the first selection is bowling the chances of winning is high
- Variable all-rounder in team has impact on the result. Having 3 to 4 all-rounders in the team may result into win.

TABLE 20: ENCODING THE DATASET

- As many machine learning models cannot work with string values we will encode the categorical variables and convert their datatypes to integer type.
- For variable like 'Result', 'Offshore' and 'First_selection' I have used simple categorical conversion technique This will convert the values into 0 and 1. As there is no level or order in the subcategory any encoding will give the same result.
- For remaining variable we have used dummies encoding technique.
- We can see the value count of this variable after encoding as below.

SPLITTING THE DATASET

- Our target variable is 'Result. As we can see that there is a data imbalance in the variable.
- So, here I will be using the oversampling technique (i.e., SMOTE) and check whether it improves our model performance or not.
- We have stored all the predictor in x and target variable in y.

FEATURE SELECTION

- Chi-square test is used to determine the relationship between the predictor and target variable.
- In Feature selection, we aim to select the features which are highly dependent on the target variable.
- Higher the chi-square value indicate that the feature is more dependent on the target variable and can be select for model training.

- Chi-square score for Game number is null. So, we eliminate non-significant variable Game number.
- After second iteration we find Wicket keeper as non-significant variable as per chi-square test and same we can in the heat map. So, both the variable has been eliminated to train our model with remaining predictor.

MODEL SELECTION

- For this classification the following models have been used:
 - i. Logistic Regression
 - ii. Linear Discriminant Analysis (LDA)
 - iii. KNN
 - iv. Decision Tree (CART)
 - v. Random Forest
 - vi. Naïve Bayes
 - vii. ANN.

TABLE 20: ALL MODEL COMPARISION

	LR- TRAIN	LR- TEST	LR(Tune)- TRAIN	LR(Tune)- TEST	LDA- Train	LDA- Test	LDA(Tu ne)- Train	LDA(Tu ne)- Test	KNN- Train	KNN- Test	NB- Train	NB- Test
Accuracy	84	84	88	87	87	87	87	87	90	87	76	78
F1 Score	48	47	70	70	70	71	70	70	77	71	62	66
Recall	51	51	66	66	66	67	66	66	72	68	65	70
Precision	78	92	83	79	80	79	80	78	88	79	61	65
AUC	73	73	83	82	82	83	82	83	95	83	76	78

	CART- TR	CART- TEST	RF- TRAIN	RF- TEST	ANN -rain	ANN -Test	Baggi ng- Train	Bag ging- Test	Ada- train	Ada- Test	GB- Train	GB- Test	Sm ote -rf	Smo te-rf- test
Accuracy	86	85	87	86	84	84	88	87	88	87	93	90	91	83
F1 Score	60	57	63	59	46	46	70	70	71	70	85	76	91	70
Recall	58	56	60	58	50	50	66	66	67	66	80	70	91	71
Precision	80	81	91	91	42	42	83	79	82	82	94	89	91	70
AUC	83	82	92	89	76	75	90	87	87	85	95	89	96	83

1. In this classification problem the most important measurement matrix we see is Recall, precision, accuracy, and F1-Score.

- 2. In this case, precision is the total predicted win and loss. Recall is total Actually win and loss.
- 3. F1- score is the harmonic mean of precision and recall.
- 4. In this case our most important matrix is Recall because we must predict winning for the Indian team and must reduce the false positive rate.
- 5. Comparing all models, going with 'Gradient Boosting Model' for this Case study.
- 6. This model is just like the ADA Boosting model. Gradient Boosting works by sequentially adding the misidentified predictors and under-fitted predictions to the ensemble, ensuring the errors identified previously are corrected.
- 7. This method tries to fit the new predictor to the residual errors made by the previous one.
- 8. Gradient Boost Model have less False '+ve' and False '-ve' for both win and loss Classes. Compare to other model it has Higher Precision, Recall and Accuracy for both Train and Test.

BUSINESS RECOMMENDATION

- 1. Try to collect more some more predictor, like total score, bowling style etc. for better Model.
- 2. Try to add more than 3 all-rounders in the team that will improve the team performance.
- 3. Test match with England in England. All the match are day matches. In England, it will be rainy season at the time to match.

STRATEGIES RECOMMENDED:

- a. **Average team age:** Team average age should not be above 34. above age 34 we may lose the match.
- b. **All-rounder's in team**: There should be at least 3 all-rounders' in team.
- c. **First selection**: The first selection should be bowling.
- d. **Bowlers in team:** There should be at least one bowler in the team.
- e. **Players scored zero:** There should be no player scored zero.
- 4. T20 match with Australia in India. All the match are Day and Night matches. In India, it will be winter season at the time to match.

1ST STRATEGY RECOMMENDED:

- **a. Average team age:** Team average age should be 31. If it is greater 31 then we may lose the match.
- **b. All-rounder's in team:** There should be at least 3 all-rounders' in team, less than 3 all-rounders may lose the match.
- **c. First selection:** The first selection should be bowling.
- **d. Bowlers in team:** There should be 3 bowlers in team.
- **e.** Extra bowls opponents: It should be greater than 14. if it is 14 we may lose the match 31.

- **f. Maximum runs given in one over**: It should be less than 9 runs. If it is 9 or greater then we may lose the match.
- **g.** Player scored zero: There should be at least 2 players scored zero.

2nd STRATEGY RECOMMENDED:

- a. **Average team age:** Team average age should be 32. If it is greater than 32 we may lose the match.
- b. **All-rounder's in team:** There should be at least one all-rounder's in team. Playing with no all-rounders can lose the match.
- c. **First selection:** The first selection should be batting.
- d. **Bowlers in team:** There should be 2 bowlers in team.
- e. **Extra bowls opponents:** It should be greater than 14. If it is 14 we may lose the match.
- f. **Maximum runs given in one over**: It should not be greater than 4. If it is greater than 4 then we may lose the match.
- g. **Player scored zero:** There should be at least 3 players scored zero.
- 5. ODI match with Sri Lanka in India. All the match are Day and Night matches. In India, it will be winter season at the time to match.

1st STRATEGY RECOMMENDED:

- **a.** Average team age: Team average age should be less than 36. if it is 36 we may lose the match
- **b. All-rounder's in team:** There should be at least 2 all-rounders' in team.
- **c. First selection:** The first selection should be bowling.
- **d.** Bowlers in team: There should be 2 bowlers in team.
- **e. Maximum runs given in one over:** It should be less than 13. If it is 13 or greater than that we may lose the match.
- **f.** Extra bowls opponents: It should be greater than 4. If it is 5 we may lose the match.
- **g. Player scored zero:** We should be having at least two players scored zero. With one player scored zero we may lose the match.

2nd STRATEGY RECOMMENDED:

- **a.** Average team age: Team average age should be 34. If it is greater than 34 we may lose the match.
- **b. All-rounder's in team:** There should be at least 3 all-rounders' in team.
- **c.** First selection: The first selection should be batting.
- **d.** Bowlers in team: There should be 3 bowlers in team.
- **e. Maximum runs given in one over:** It should be 23. more than 23 runs will result into lost.
- **f.** Extra bowls opponents: It should be greater than 19. If it is 19 we may lose the match.

6. P	ayer scored zero: We should be having at least one player scored zero. With no players scored zero
W	e may lose the match.
	>>THE END <<
	29