$$u(t) = A cos(ut) \implies y(t) = \frac{A}{2} \left(H(\hat{j}_{u}) e^{jut} + H(-j_{u}) e^{-jut} \right)$$

Transient & Steady-state Response.

$$y = -\frac{1}{2}e^{t} + \frac{1}{12}c_{5}(t - \frac{7}{4})$$

transient steady-state

Differentiation in &

$$\chi\{f'(t)\}=s^2f(s)-sf(w)-f(w)=\chi\{f'(t)\}$$

The Final Value Theorem.	
	l of t
If all poles of $sY(s)$ are strictly stable or lie in the open t half-plane (OLHP), i.e., have $Re(s) < 0$, then	eji
$y(\infty) = \lim_{s \to 0} sY(s)$	