ODDS AND ENDS

Overview

Very, brief history and discussion of data visualizations

Additional ggplot features and visual hypothesis test

Writing functions

If there is time: Q-Q plots

A very very brief history of data visualization

The age of modern statistical graphs began around the beginning of the 19th century

William Playfair (1759-1823)

According to Friendly, statistical graphics researched its golden age between 1850-1900

A very very brief history of data visualization

"Graphical dark ages" around 1950

Computer Age Statistical Inference, Efron and Hastie

Your visualizations

Your visualizations

Halloween Candy Ranking

Number of votes against (thumbs down) and for (thumbs up) each candy

votes

Additional features of ggplot

Review/continuation of ggplot

A Frame: Coordinate system on which data is placed

Glyphs: basic graphic unit representing cases or statistics

Scales and guides: shows how to interpret axes and other properties of the glyphs

Facets: allows for multiple side-by-side graphs based on a categorical variable

Layers: allows for more than one types of data to be mapped onto the same figure

Theme: contains finer points of display (e.g., font size, background color, etc.)

Review/continuation of ggplot

A Frame: Coordinate system on which data is placed

Glyphs: basic graphic unit representing cases or statistics

Scales and guides: shows how to interpret axes and other properties of the glyphs

Facets: allows for multiple side-by-side graphs based on a categorical variable

Layers: allows for more than one types of data to be mapped onto the same figure

Theme: contains finer points of display (e.g., font size, background color, etc.)

ggplot bonus features: emojis

There are also additional packages that add more geoms

```
> library(emoGG)
```

```
> ggplot(mtcars, aes(wt, mpg)) + geom_emoji(emoji="1f697")
```

ggplot bonus features: animation

We can create animated images (gifs) using the gganimate package

```
library(gganimate)
ggplot(gapminder, aes(gdpPercap, lifeExp,
       size = pop, col = continent)) +
 geom_point(alpha = 0.7, show.legend = FALSE) +
 scale_x_log10() +
 # Here comes the gganimate specific bits
  labs(title = 'Year: {frame_time}',
        x = 'GDP per capita', y = 'life expectancy') +
  transition_time(year) +
  ease_aes('linear')
```


Let's try it in R...

Visual hypothesis test

In visual hypothesis tests, we create data visualizations to try to assess whether particular relationships exist in our data.

One way this is done through a visual lineup.

Visual hypothesis test

Which plot shows the true relationship between a car's weight and the number of miles per gallon a car gets?

Let's try it in R...

Writing functions

We've used many R functions in this class

Let's explore writing our own functions!

Quantile-Quantile plots

Density functions

$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

A **density curves** are mathematical functions f(x) that are used to calculate probabilities

dnorm(x, 0, 1)
rand_data <- rnorm(100, 0, 1)
hist(rand_data)</pre>

How can you assess whether data comes from a particular distribution?

Quantiles

As you know, to get the probability (area) from a normal distribution we can use the pnorm function

```
pnorm(x, mu, sigma)
```

e.g.,
$$P(X < 9; \mu = 11, \sigma = 3)$$

pnorm(9, 11, 3) = 0.2525

The quantile function is the inverse of the probability functions.

For a given probably p, (area between 0 and 1), it tells us the x value such that P(X < x) = p.

```
qnorm(p, mu, sigma)
```

e.g.,
$$P(X < ?; \mu = 11, \sigma = 3) = 0.252$$

 $qnorm(.2525, 11, 3) = 9$

Quantile-quantile plots (Q-Q plots)

Quantile-quantile plots (Q-Q plots) can be used to assess whether a data sample comes from a particular distribution

Q-Q plots show the observed quantile values from a data sample against the theoretical quantile values from a known distribution

Sample from a normal distribution

Quantile-quantile plots (Q-Q plots)

Sample from a normal distribution

Let's try it in R...

Summary of R probability functions

Plot the actually density curve

dnorm(x_vec, mu, sigma)

Get the probability that we would get a random value less than x

pnorm(x_vec, mu, sigma)

Get the quantile value for a given proportion of the distribution

qnorm(area, mu, sigma)

Note: pnorm and qnorm are inverses of each other

- y = pnorm(x, mu, sigma)
- qnorm(y, mu, sigma)

the output value here is x