

- L'examen est à livre ouvert, ce qui signifie que vous pouvez consulter tout les documents. Toutefois au cas où vous trouvez une référence qui répond à l'une des questions, vous devrez reformuler les calculs ou raisonnements avec vos mots et notations. Si votre réponse est très semblable à une référence externe vous êtes encouragé à citer cette source, il n'y aura pas de pénalité pour cela (par contre le plagiat n'est pas acceptable).
- Merci de rédiger vos réponses à la main, sur feuilles A4 recto uniquement (pas de recto-verso), en utilisant une plume un stylo ou un feutre assez foncé (noir, bleu).
- Pour chaque question principale utilisez une nouvelle feuille. Numérotez vos feuilles et indiquez votre nom sur chaque feuille. N'oubliez pas de rappeler le numéro de la question.
- Tous les raisonnements et calculs doivent être présentés dans votre rédaction.
- Lorsque vous avez terminé, faites des photos/scan de votre rédaction et convertissez en pdf (il existe des applications de scan pour smartphone (https://www.codeur.com/blog/application-scanner/). Vous devriez rassembler votre rédaction en un fichier pdf unique.
- Vous devez travailler de façon individuelle. Il est interdit de communiquer avec un autre étudiant ou toute autre personne pendant toutes la durée de l'examen.
- En remettant votre copie, vous vous engagez au respect du règlement EPFL sur les examens.
- L'enseignant pourra questionner les étudiants pour s'assurer qu'ils sont bien à l'origine du travail fourni (cela ne signifie pas forcément qu'il y a un soupçon de triche).
- Bon travail et bonne chance.

1. (10 points)

- (a) State the smooth manifold chart Lemma. Show that the topology that is given by this Lemma is Hausdorff and second countable.
- (b) Define the Grassman manifold $G_2(\mathbf{R}^3)$ and the smooth charts on it that satisfy the conditions of the smooth manifold chart Lemma. What is the dimension of this manifold?

NOTE: You do not have to prove that the charts you describe for $G_2(\mathbf{R}^3)$ satisfy the smooth manifold chart Lemma, you simply have to define the charts.

2. (10 points) Describe \mathbf{S}^{n-1} as a level set of a smooth map $\mathbf{R}^n \to \mathbf{R}$. Apply a theorem covered in the course to show that this provides a smooth structure on \mathbf{S}^{n-1} that makes it a codimension 1 embedded submanifold in \mathbf{R}^n .

NOTE: You need to check the hypothesis of the theorem you apply holds in this situation. You do not need to prove the theorem.

- 3. (15 points) Give examples of topological spaces with the following properties. In each case, prove that the properties hold.
 - (a) A space X that is second countable, Hausdorff but not locally Euclidean.
 - (b) A space X that is locally Euclidean, Hausdorff but not second countable.
 - (c) A space X that is locally Euclidean, second countable but not Hausdorff.
- 4. (10 points) Let $\alpha, \beta, \gamma \in \Omega^1(\mathbb{R}^3)$ be given by

$$\alpha = xdx + ydy + zdz$$
 $\beta = zdx + xdy + ydz$ $\gamma = xydz$

and $\phi: \mathbb{R}^2 \to \mathbb{R}^3$ given by

$$\phi(x,y) = (x+y, x^2, xy^2)$$

Compute

- (a) $\alpha \wedge \beta$
- (b) $\alpha \wedge \gamma$
- (c) $\alpha \wedge \beta \wedge dx$
- (d) $d\alpha \wedge \gamma$
- (e) $\phi^* \alpha$
- 5. (15 points) Prove the following.
 - (a) Let $f: \mathbf{R}^n \to \mathbf{R}$ be a smooth function. Show that $d^2f = 0$. (Here d is the exterior derivative.)
 - (b) Let $\omega = y\cos(xy)dx + x\cos(xy)dy$ be a 1-form on \mathbf{R}^2 . Prove that ω is exact.
 - (c) Let $\nu = x\cos(xy)dx + y\cos(xy)dy$ be a 1-form on \mathbb{R}^2 . Prove that ν is not exact.
- 6. (10 points) Let M be an k-dimensional topological manifold. We define the set of ordered n-tuples of distinct points as

$$Conf_n(M) = \{(x_1, ..., x_n) \mid x_1, ..., x_n \in M \text{ and } x_i \neq x_j \text{ whenever } i \neq j, 1 \leq i, j \leq n \}$$

Show that $Conf_n(M)$ is naturally a topological manifold. Compute the dimension of $Conf_n(M)$.

7. (15 points) In this problem you will follow the steps below to prove the following theorem. The fixed point theorem states that given the ball

$$B^n = \{x = (x_1, ..., x_n) \in \mathbf{R}^n \mid ||x|| \le 1\}$$

each smooth map $g: B^n \to B^n$ has a fixed point, i.e. there exists $x \in B^n$ such that g(x) = x.

- (a) Let M be a compact n-dimensional, orientable, smooth manifold with boundary $\partial M \neq \emptyset$. Using partitions of unity, construct a differential (n-1)-form $\omega \in \Omega^{(n-1)}(\partial M)$ which is nowhere vanishing and satisfies that $d\omega = 0$.
- (b) Apply the Stokes theorem using the differential form constructed in the previous part to show that there does not exist a smooth map

$$f: M \to \partial M$$

whose restriction to ∂M equals the identity.

(c) Show that every differentiable map $g: B^n \to B^n$ has a fixed point. Assume by way of contradiction that this is not the case. For each $x \in B^n$, consider the unique line that passes through x, g(x). Use this to define a point $y_x \in \partial B^n$ and a map

$$B^n \to \partial B^n \qquad x \to y_x$$

that contradicts part 2.

Note: A proof by drawing a picture is sufficient. You do not need to write an explicit function.

8. (15 points) Let M be a connected differentiable n-manifold. For each $p \in M$, we denote by \mathcal{O}_p as the set consisting of the two possible orientations on $T_p(M)$. Each element $O \in \mathcal{O}_p$ is called an *orientation at* p.

Define a manifold

$$\tilde{M} = \{ (p, O) \mid p \in M, O \in \mathcal{O}_p \}$$

with the following charts. Given a chart (U, ϕ) for M, we define two charts (U_1, ϕ_1) and (U_2, ϕ_1) for \tilde{M} as follows. Denote the two possible orientations on $U \subset M$ as O^1, O^2 . Denote the restriction $O^i \upharpoonright T_p(M)$ as O^i_p for each $p \in U$.

We define for each $1 \le i \le 2$

$$U_i = \{(p, O_p^i) \mid p \in U\}$$

and

$$\phi_i: U_i \to \mathbf{R}^n \qquad \phi_i(p, O_p^i) = \phi(p)$$

(a) Check that the sets

$$\{U_1, U_2 \mid (U, \phi) \text{ is a chart for } M\}$$

form a basis for a topology on \tilde{M} .

(b) Check that the map

$$\pi: \tilde{M} \to M$$
 $\pi(p, O) = p$

is a generalised covering map, i.e. for each $p \in M$, there is an open set U containing p such that $\pi^{-1}(U)$ is a union of disjoint open sets in \tilde{M} , each of which is mapped homeomorphically to U via π .

(c) Show that \tilde{M} is orientable.