ASSIGNMENT 4

PNT2022TMID38188

SUBMITTED BY SHARMILA.B

Ultrasonic sensor simulation in Wokwi

Question:

Write a code and connections in wokwi for the ultrasonic sensor. Whenever the distance is less than 100cms send an "Alert" to IBM cloud and display in the device recent events.

Code:

```
char token[] = TOKEN; char clientId[] = "d:" ORG ":"
 DEVICE_TYPE ":" DEVICE_ID;
 WiFiClient wifiClient;
 PubSubClient client(server, 1883, callback ,wifiClient);
 const int trigPin = 5; const int echoPin = 18; #define
 SOUND SPEED 0.034 long duration; float distance; void
 setup() { Serial.begin(115200); pinMode(trigPin,
 OUTPUT); pinMode(echoPin, INPUT); wificonnect();
 mqttconnect(); } void loop() { digitalWrite(trigPin,
          delayMicroseconds(2); digitalWrite(trigPin,
 LOW);
 HIGH); delayMicroseconds(10); digitalWrite(trigPin,
 LOW); duration = pulseIn(echoPin, HIGH); distance =
 duration * SOUND SPEED/2; Serial.print("Distance (cm):
 "); Serial.println(distance); if(distance<100)
 Serial.println("ALERT!!");
 delay(1000);
```

```
PublishData(distance)
    ; delay(1000); if
    (!client.loop()) {
    mqttconnect(); } }
    delay(1000); } void
    PublishData(float dist)
    { mqttconnect();
    String payload = "{\"Distance\":"; payload += dist; payload
    += ",\"ALERT!!\":""\"Distance less than 100cms\""; payload
    += "}";
                                                           ");
    Serial.print("Sending
                                      payload:
    Serial.println(payload);
if (client.publish(publishTopic, (char*) payload.c_str())) {
    Serial.println("Publish ok");
    } else {
    Serial.println("Publish failed");
    } } void mattconnect() { if
    (!client.connected()) {
    Serial.print("Reconnecting
                                     client
                                                           ");
                                                  to
    Serial.println(server); while
    (!!!client.connect(clientId, authMethod, token)) {
    Serial.print("."); delay(500);
    }
initManagedDevice();
Serial.println();
} } void
wificonnect()
Serial.println(); Serial.print("Connecting to ");
WiFi.begin("Wokwi-GUEST", "", 6); while (WiFi.status() !=
WL CONNECTED) { delay(500);
Serial.print(".");
Serial.println(""); Serial.println("WiFi connected"); Serial.println("IP
address: "); Serial.println(WiFi.localIP());
} void initManagedDevice() {
if
```

```
(client.subscribe(subscribetopic)) {
Serial.println((subscribetopic)); Serial.println("subscribe to
cmd OK");
} else {
Serial.println("subscribe to cmd FAILED");
} } void callback(char* subscribetopic, byte* payload, unsigned int
payloadLength) {
Serial.print("callback invoked for topic: ");
Serial.println(subscribetopic); for (int i =
      i <
                 payloadLength; i++) {
//Serial.print((char)payload[i]); data3 +=
(char)payload[i];
    }
    Serial.println("data: "+ data3);
    data3="";
    Diagram.json:
      "version": 1,
      "author": "sweetysharon",
      "editor": "wokwi",
      "parts": [
        { "type": "wokwi-esp32-devkit-v1", "id": "esp", "top": -4.67, "left": -114.67, "attrs": {}
        },
        { "type": "wokwi-hc-sr04", "id": "ultrasonic1", "top": 15.96, "left": 89.17, "attrs": {} }
      "connections": [
        [ "esp:TX0", "$serialMonitor:RX", "", [] ],
        [ "esp:RX0", "$serialMonitor:TX", "", [] ],
          "esp:VIN",
          "ultrasonic1:VCC",
          "red",
```

```
[ "h-37.16", "v-178.79", "h200", "v173.33", "h100.67" ] ],
[ "esp:GND.1", "ultrasonic1:GND", "black", [ "h39.87", "v44.04", "h170" ] ],
[ "esp:D5", "ultrasonic1:TRIG", "green", [ "h54.54", "v85.07", "h130.67" ] ],
[ "esp:D18", "ultrasonic1:ECHO", "green", [ "h77.87", "v80.01", "h110" ] ]
]
]
```

Wokwi simulation link:

https://wokwi.com/projects/346508314441417298

Circuit Diagram:

Output:

Wokwi output:

```
Connecting to ....
WiFi connected
IP address:
10.10.0.2
Reconnecting client to ytluse.messaging.internetofthings.ibmcloud.com
iot-2/cmd/test/fmt/String
subscribe to cmd OK

Distance (cm): 399.92
Distance (cm): 399.96
Distance (cm): 399.98
Distance (cm): 399.98
Distance (cm): 399.98
Distance (cm): 399.94
Distance (cm): 399.92
Distance (cm): 399.92
```

IBM cloud output:

