Computer Science & IT

Discrete Mathematics

Mathematical Logic

Lecture No. 03

Recap of Previous Lecture

Topic: Logical Implication / Implication

Let P and Q are any two propositional functions.

Whenever P is true if Q is also true then P logically implies Q. is true. If there exist any cone for which P is true but Q is Palze, then P logically implies Q. if and only if P \rightarrow Q is a tautology. is invalid

15. P does not ? logically implied

Topic: Logical Equivalence / Equivalence

- If P and Q are any two propositional functions, then P equivalent to Q is written as P≡Q.
 or P≅Q
- P and Q are said to be equivalent if and only if they have same truth table. $P = \sim 0 \lor b$ $Q = 0 \rightarrow b$
- P≡Q if and only if P↔Q is a tautology.
- · P=Q if and only if. Plogically implies Q and Q logically implies P.
- * P > Q is a tautology if and only if P > Q is a tautology.

Topic: Some important equivalences

(Prg)
$$r = Pr(grr) + Associative$$

(Prg) $r = Pr(grr) + Associative$

Topic: Some important equivalences

(4)
$$P \wedge (g \vee R) \equiv (P \wedge g) \vee (P \wedge R)$$
 Pistributive.
 $P \vee (g \wedge R) \equiv (P \vee g) \wedge (P \vee R)$

(5)
$$\sim (P \land Q) \equiv \sim P \land \sim Q$$
 De' Morgan's $\sim (P \lor Q) \equiv \sim P \land \sim Q$

Topic: Some important equivalences

*6
$$P \wedge (P \vee Q) \equiv P$$
 $P \vee (P \wedge Q) \equiv P$

$$9PNT = P$$

$$PVF = P$$

Some important Équivalences:

- $0 \quad P \rightarrow Q = -P \vee Q$

Topic: Some important statements

1. Pimplies
$$Q = P \rightarrow Q$$

2. If P then
$$Q = P \rightarrow Q$$

*3. Ponly if
$$Q = P \rightarrow Q$$

- 4. P is sufficient condition for $Q = P \rightarrow Q$
- 5. Q is necessary condition for $P = P \rightarrow Q$ Continuity is necessary for differentiability = Differentiability = Continuity

* 9 follows from P = P -> 9

Topic: Some important statements

7. P when
$$Q = Q \rightarrow P$$

8. P follows from
$$Q = Q \rightarrow P$$

9. Punless
$$\sim Q = \sim (\sim Q) \rightarrow P = Q \rightarrow P$$

Simply deplace unless by $V = PV \sim Q = \sim QVP = Q \rightarrow P$

can not crack gate unless Jou appear If you do not appear prigate then you can not crack gate Punless 9 = ~ 9 -> P

you can not crock gate unless you appear for gate

If you cracked gate then you appeared for gate = ~P -> 9

Topic: Argument / Inference

The statement that,
"A set of premises { P1, P2, P3,.....,Pn}
yields another proposition Q" is called
an argument.

Q is called conclusion of the argument.

given afatements (i) If today is Sujay's B'day then today is 13th Aug? (ii) Today is 13th Aug. i. Today is Sujay's B'day Conclusion Argument { it may be a valid argument? an invalid argument

Topic: Argument / Inference

Argument may be valid or invalid.

The process of reasoning whether the argument is valid or invalid is called inference.

If conclusion Q can be inferred from the set of premises by applying some rules of inference and equivalences, then argument is said to be valid otherwise invalid.

Topic: Argument / Inference

Following statements are equivalent,

- Argument {P1, P2, P3,....,Pn} $\vdash Q$ is valid.
- P1, P2, P3,.....,Pn} Logically implies Q is true/valid.
- $\{P1 \land P2 \land P3 \land \land Pn\} \rightarrow Q \text{ is a tautology.}$

Any valid reasoning is rule of inference.

1. Simplification

- * (PNQ) logically implies P is Valid
- * (PNQ) -> P is a tantelogy.

* P logically implies PV9.

P > (PVQ) is a toutology.

3. Conjunction

4. Disjunctive Syllogism

5. Conjunctive Syllogism

$$\frac{P \wedge Q}{P + P} = \frac{P \vee Q}{P + P}$$
is valid
$$\frac{P}{P} = \frac{P}{P} = \frac{P}{P} = \frac{P}{P}$$
is valid

Pw

6. Modus Ponens

7. Fallacy of affirming the consequent

Mistake

8. Modus Tollen's

9. Fallacy of denying the antecedent

10. Transitivity

11. Dilemma

12. Constructive Dilemma

13. Destructive Dilemma

14. Resolution

15. Non Sequitur

Simplify the following statement {(~PN~9)NY} V { (PV9) N8} {~(brd) Vs} 1 {(brd) Vs} { ~ (pvq) v (pvq) } ~ ~

 a: Simplify the Pollowing Expression [(PVQ)/~~{~P/~R)} V [(~P/~Q) V (~P/~R)] $[(PVQ) \land \{(PVQ) \land (PVR)\}] \lor \sim [PV \land (Q \land R)]$ (PVQ) N(PVR) [PV(GNR)] V~ {PV(GNR)}

Which of the following 18/are valid?

(Prg) logically implies (P - g) (prg)

(Prg) (Prg)

(Prg) (P+Jg) logically implies (P-Jg)=T3: value 1 logically implies (?-) = T}: Valid

139. Which of the following Propositional formula is/are tautology $(P \land g) \longrightarrow (P \leftrightarrow g)$ $(P \longleftrightarrow Q) \longrightarrow (P \longrightarrow Q)$

$$\bigcirc (P \leftrightarrow Q) \longrightarrow (P \rightarrow \sim Q)$$

159. Which of the following begical implications are valid.

 $\bigcirc (P \land g) \longrightarrow (P \leftrightarrow g)$

 $\mathscr{G}(P \longleftrightarrow g) \longrightarrow (P \longrightarrow g)$

 $\bigcirc (P \leftrightarrow g) \longrightarrow (P \rightarrow \sim g)$

Q - (P-3Q)

9. Which of the Pollowing is/are tantology.

$$\chi \otimes \begin{pmatrix} L \wedge P \\ G \wedge P \end{pmatrix} \xrightarrow{L} \begin{pmatrix} P \vee P \\ P \end{pmatrix} E$$

$$(2 \vee 5) \longrightarrow (5 \vee 5) = 1$$

$$\chi(d)$$
 $(a \rightarrow b) \rightarrow (b \rightarrow c)$
? $T = T$ $T \rightarrow F = F$

Consider two Statements $S_1: \{(A \land B) \rightarrow C\} = \{(A \rightarrow C) \land (B \rightarrow C)\}$ S_2 : $\{(A \vee B) \rightarrow C\} = \{(A \rightarrow C) \vee (B \rightarrow C)\}$ which cel the Pollowing is true a Both S1 & S2 are Valid (b) S1 is valid, S2 is invalid

© SI is invalid & S2 is Valid 18 Both S1 & S2 are invalid.

P logically implies 9 9 logically implies P.

Statements two Consider $\{(A \wedge B) \rightarrow C\} = \{(A \rightarrow C) \wedge (B \rightarrow C)\} \cdot (F)$ $\left\{ \left(\begin{array}{c} A \rightarrow C \right) \vee \left(\begin{array}{c} B \rightarrow C \right) \\ F \rightarrow F \rightarrow T \end{array} \right) = T$ $\{(A \lor B) \rightarrow C\} \equiv$ LHS = (ANB) -> C L·Hs = (AVB) -> C ~ (AVB) V C ~(ANB) V C (~An~B) V C ~AV~BVC ~AV~BV CVC (~Avc) 1 (~Bvc) (~BVC) V (~BVC) $(A \rightarrow C) \land (B \rightarrow C)$ # Rins. $(A \rightarrow C) \vee (B \rightarrow C)$ ≠ R.H.S.

which of the following is/one $\{a \rightarrow (bvc)\} \equiv \{(a \land \neg b) \rightarrow c\}$ $(\mathcal{C}) \{ (P \rightarrow Q) \land (R \rightarrow Q) \} \equiv \{ (P \lor R) \rightarrow Q \}$ Pocrious question $\mathcal{O}(P - Q) \vee (R - Q) = \{(P \wedge R) - Q\}$ 145. - a - (buc) ~avbvc (~avb) v c ~ (annb) V C

(and) -> (zRMs.

9. The propositional statement $\{P - (gvR)\} \longrightarrow \{P / Q) \longrightarrow R\}$ is (a) Satisfiable but not a tautology = Contingency X6 Valid = Always true = Tantology XC Contradiction = Always Palse (d) (ant be defined

The propositional statement -7P-(QVR) (1 → (F v F))=F -P=T, 49=R=F, i. Can not be Contradiction When P=9=T&R=F R.H.s. can be false only when Lites. is T->(TVF)=T i. not a tautology

2 mins Summary

Topic Rules of inference

Topic Practice questions

Topic Proof by contradiction

Topic Conditional proof rule

THANK - YOU