National University of Computer and Emerging Sciences, Lahore Campus

Course: Digital Logic Design Lab
Program: BS(Computer Science)

Duration: 60 Minutes
Paper Date: 11-June-2020
Section: E1

Exam: Quiz 3

Course Code: EL-227
Semester: Spring 2020
Total Marks: 10
Weight 5

Page(s):

1

Instruction/Notes:

- 1. You may solve this on an A4 size paper or assignment sheets or any presentable paper.
- 2. You have to submit a single PDF file of the solution on the Google Classroom. You may take pictures of the handwritten solution and convert them into a single PDF file. Consider using CamScanner or similar app. Rename the PDF with your roll number. Other than PDF no other file format is acceptable.
- 3. The quiz is closed book and notes. You are not allowed to take help from anyone. Use of any other unfair mean is strictly prohibited.
- 4. Late submissions will not be allowed. So, make sure you have a back-up ready in case of power failure.

Question: A R-S flip-flop behaves as follows:

If RS = 00, the flip-flop is set to Q = 1.

If RS = 01, the flip-flop change state.

If RS = 10, the flip-flop doesn't change state.

If RS = 11, the flip-flop is set to Q = 0

Draw the State Table

(2 Marks)

R	S	Q(t)	Q(t+1)		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	1		
1	1	0	0		
1	1	1	0		

Complete the following table (use don't-cares when possible):

(4	\mathbf{N}	[ar	ks)
17	1V.	Lai.	r_{o}

Present State Q	Next State Q	R	S
0	0	1	x
0	1	0	x
1	0	x	1
1	1	x	0

Drive the Characteristic Equation/ Next State Equation.

(4 Marks)

first of all make K-map of (R, S, Q(t)) for output of Q(t+1) (next state)

Q(t+1) = S'Q + R'Q' (Not is denoted with mark above it)