SET - 1

III B. Tech II Semester Regular Examinations, June-2022 **DATA STRUCTURES**

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any FIVE Questions ONE Question from Each unit All Questions Carry Equal Marks

		UNIT-I	
1	a)	What is an Abstract Data Type? Write ADT for stacks and	[8M]
		explain in detail.	
	b)	How to calculate time complexity of a program? Explain time	[7M]
		complexity calculation for matrix addition program.	
0	,	(OR)	[0] [
2	a)	What is a multi-dimensional array? How is it different from	[8M]
		regular array? What are the advantages of multi-dimensional array? Explain in detail.	
	b)	What are the applications of stacks? Explain postfix evaluation	[7M]
	D)	with an example.	[711]
		UNIT-II	
3	a)	What is a Pointer? Explain about pointer arrays with	[8M]
		examples.	
	b)	What are the advantages and disadvantages of Arrays? Why	[7M]
		do we choose linked lists over Arrays?	
4	,	(OR)	[0] [1]
4	a)	Write an algorithm to insert a node at the beginning of a	[8M]
	b)	linked list. Explain with an example as well. Write an algorithm to implement Queue as a linked list.	[7M]
	D)		[7141]
5.	a)	<u>UNIT-III</u> What is the difference between binary tree and binary search	[8M]
٥.	aj	tree? Construct a binary search tree with the following	[OWI]
		elements and illustrate the same step-by-step:	
		45, 26,27,58,42,56,77,16,90	
	b)	What are the different traversal techniques implemented in	[7M]
		tree data structure? Explain each of them with example.	
_		(OR)	
6	a)	Construct a full binary tree using the following preorder and	[8M]
		postorder traversal of a given tree:	

Preorder traversal: { 1, 2, 4, 5, 3, 6, 8, 9, 7 } Postorder traversal: { 4, 5, 2, 8, 9, 6, 7, 3, 1 }

b) What are the operations that can be performed on a binary [7M] search tree? Explain with an example.

R19

SET - 1

[8M]

UNIT-IV

- 7 a) What is the terminology used in Graph Theory? Explain about [8M] shortest path routing algorithm with example.
 - b) Differentiate DFS versus BFS algorithm in graph traversals. [7M]

(OR)

8 a) Illustrate Matrix representation for the following graph in [8M] Fig.1.

Fig. 1 Undirected Graph

- (i) adjacency Matrix representation
- (ii) Cut-set Matrix representation
- b) What is a minimum cost spanning tree? Write a suitable [7M] algorithm to calculate minimum cost spanning tree for a given graph. Explain with a neat diagram.

IINIT₋V

9 a) Write Algorithm for Linear Search.

Illustrate search criteria in the given list of elements:

13 9 25 11 38 64 42 20

- (i) Search for 38 (ii) Search for 69
- b) What is Hashing? What are the different techniques used in [7M] hashing? Explain.

(OR)

- 10 a) Illustrate Quick sort for the following elements step by step [8M] and explain: 23,56,14,34,58,97,72,69,36.
 - b) Compare shell sort and heap sort with a suitable example. [7M]

SET - 2

III B. Tech II Semester Regular Examinations, June-2022 DATA STRUCTURES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

		UNIT-I	
1	a)	Define Abstract Data Type. Write ADT for Queues and explain in	[8M]
		detail.	
	b)	What are the operations that can be performed on a linear	[7M]
		Array? Explain with examples.	
0	۵)	(OR)	[0][
2	a)	Write an algorithm for solving towers of honai problem.	[8M]
	b)	What are the disadvantages of a regular Queue? How can we overcome them using circular Queue. Explain with an example. UNIT-II	[7M]
3	a)	Define pointer. Differentiate pointer arrays and array of pointers.	[8M]
		Explain each of them with an example.	[== 6]
	b)	What are the operations that can be performed on a linked-list?	[7M]
	,	(OR)	[0] [1
4	a)	What is a circular linked-list? Explain with an example.	[8M]
	b)	Write pseudo code for deleting an element from the linked list in the middle.	[7M]
		<u>UNIT-III</u>	
5.	a)	Define Tree data structure. What is a binary Tree? Explain about	[8M]
	1\	terminology used in tree data structure?	[/7]] [[
	b)	What is meant by threaded binary tree? Explain the impact of	[7M]
		such a representation on the tree traversal procedure. (OR)	
6	a)	What is a Height-balanced tree? Explain LL rotation and RR	[8M]
U	aj	rotation in AVL trees.	[OIVI]
	b)	Construct binary tree given the pre-order traversal and in-order	[7M]
	- ,	traversal as follows:	r J
		Pre-order traversal: G B Q A C K F P D E R H	

1 of 2

In-order traversal : Q B K C F A G P E D H R

R19

SET - 2

[8M]

UNIT-IV

- 7 a) Write an algorithm to traverse the graph using depth first search [8M] (DFS) with a suitable example.
 - b) Find the minimum cost spanning tree using prims algorithm for [7M] the following graph in Fig.1.

Fig.1

(OR)

8 a) Illustrate the BFS traversal for the given graph in, Fig.2, using [8M] Queues.

Fig.2

b) Write and explain about Dijkstra's algorithm to find the shortest [7M] path of a given graph.

UNIT-V

- 9 a) Write Algorithm for Binary Search.

 Illustrate search criteria in the given list of elements:

 13 19 25 31 38 42 51 65 77 95
 - (i) Search for 77 (ii) Search for 12
 - b) Explain about Double Hashing and Quadratic Hashing with an [7M] example.

(OR)

10 a) Write algorithm for Insertion sort. Perform Insertion sort for the [8M] following elements:

23, 56, 14, 34, 58, 97, 72, 69, 36.

b) Explain about Recursive merge sort with suitable example. [7M]

R19

SET - 3

III B. Tech II Semester Regular Examinations, June-2022 DATA STRUCTURES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit** All Questions Carry Equal Marks

		All Questions Carry Equal Marks *****	

		UNIT-I	
1	a)	Write an algorithm for implementing stacks using Arrays.	[8M]
	,	Explain with an example.	
	b)	Explain the concept of priority queues with an example. What	[7M]
		are the advantages of priority queues?	
		(OR)	
2	a)	illustrate the following postfix expression evaluation step by step	[8M]
		using stack data structure: 5 6 + 7 4 - *	[= 2.6]
	b)	How is a double-ended Queues different from regular queues?	[7M]
		Explain with an example.	
2	۵۱	UNIT-II Explain the precedure of exprehing an element in the linked list	[0][
3	a)	Explain the procedure of searching an element in the linked-list. Explain with an example.	[8M]
	b)	What are the advantages and disadvantages of a single linked	[7M]
	D)	list? Why do we use doubly linked-lists?	[/1/1]
		(OR)	
4	a)	Write an algorithm to insert a node at a specified position in the	[8M]
	,	middle of the linked-list. Explain with an example.	. ,
	b)	What is the difference between implementation of stack using	[7M]
	·	arrays and implementation of stacks using linked-list? Explain	
		in detail.	
		<u>UNIT-III</u>	
5.	a)	With the help of the diagrams construct a binary search tree	[8M]
		(BST) with the following keys: 86,12,42,69,38,57,74,6,49,71.	
		Also delete 42 from the constructed BST.	
	b)	Explain about the procedure for deleting a node having 2 sub-	[7M]
		trees; in Binary search tree with an example.	
6	۵۱	(OR)	[0][
6	a)	How does the height balance condition managed in AVL tree while inserting a node? Explain with an example.	[8M]
	b)	Illustrate about insertion and deletion operation in Max-heap	[7M]
	IJ	with suitable examples.	[, 1,1]
		1 of 2	

R19

SET - 3

UNIT-IV

- 7 a) Write an algorithm to traverse the graph using Breadth first [8M] search (BFS) with a suitable example.
 - b) Draw a complete undirected graph having five nodes. Explain [7M] the adjacency matrix representation of the same graph.

(OR)

8 a) Find the minimum spanning tree for the given graph, in Fig.1, [8M] using Kruskal's algorithm.

Fig.1

b) What is transitive clouser of a directed graph? How to determine [7M] the transitive clouser of a graph using Warshall's Algorithm? Explain with an example.

UNIT-V

9 a) Write Algorithm for Fibanocci Search. [8M]
Illustrate search criteria in the given list of elements:

13 19 25 31 38 42 51 65 77 95

- (i) Search for 66
- (ii) Search for 13
- b) Explain about Separate chaining and Open addressing for [7M] Collision Handling in Hashing with examples.

(OR)

10 a) Write algorithm for Selection sort. Perform Selection sort for the [8M] following elements:

23, 56, 14, 34, 58, 97, 72, 69, 36.

b) Explain about iterative merge sort with a suitable example. [7M]

SET - 4

III B. Tech II Semester Regular Examinations, June-2022 DATA STRUCTURES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions **ONE** Question from **Each unit**All Questions Carry Equal Marks

		UNIT-I	
1	a)	What is space complexity? How to calculate the space complexity	[8M]
	b)	of a program for finding factorial of a number using recursion? Explain about String as an ADT. What are the different	[7][1]
	b)	operations that can be performed on strings?	[7M]
		(OR)	
2	a)	Convert the following infix expression to post-fix expression using Stack data structure: A + B - C*D + (P^Q) * R/S/T * X + Y	[10M]
	b)	What are the operations that can be performed on a stack? Explain with examples.	[5M]
		<u>UNIT-II</u>	
3	a)	Write an algorithm for inserting a node in the middle of the Doubly linked-list.	[8M]
	b)	How to search for an element in the single linked list? Explain with example.	[7M]
		(OR)	
4	a)	Write pseudo code for deleting an element from the circular linked-list.	[8M]
	b)	What are the applications of Linked-lists? How to implement sparse matrix using linked-lists. Explain.	[7M]
		<u>UNIT-III</u>	
5.	a)	What is the difference between Max-heap and Min-Heap? Explain with an example.	[8M]
	b)	Explain about B-Trees insertion operation with an example.	[7M]
		(OR)	
6	a)	Explain about RL rotation in AVL trees by illustrating an example.	[8M]
	b)	Write about m-way search trees and operations on it in brief.	[7M]

R19

SET - 4

UNIT-IV

- 7 a) Write the Kruskal's algorithm for finding minimum cost [8M] spanning tree or a given graph. Explain with an example.
 - b) Explain about DFS traversal for the given graph, in Fig.1, using [7M] stacks.

Fig.1

(OR)

8 a) What are the different ways available for representing graphs? [8M] Give all the representations for the given graph in Fig.2.

Fig.2

b) Write and explain about All-pairs shortest path algorithm with an example. [7M]

UNIT-V

- 9 a) Compare and illustrate Linear search, Binary search and [8M] Fibonacci search algorithms with an example.
 - b) What is hashing? Explain about Double hashing and rehashing [7M] with suitable examples.

(OR)

10 a) Write algorithm for Bubble sort. Perform bubble sort for the [8M] following elements:

23, 56, 14, 34, 58, 97, 72, 69, 36

b) Write algorithm for Quick sort and explain with an example. [7M]
