Reality of net multimedia support

Mountains & Minds

421

Network support for multimedia

Approach	Granularity	Guarantee	Mechanisms	Complex	Deployed?
Making best	All traffic	None or	No network	low	everywhere
of best effort	treated	soft	support (all at		
service	equally		application)		
Differentiated	Traffic	None of	Packet market,	med	some
service	"class"	soft	scheduling,		
			policing.		
Per-	Per-	Soft or hard	Packet market,	high	little to
connection	connection	after flow	scheduling,		none
QoS	flow	admitted	policing, call		
			admission		

Mountains & Minds

Deployment of network QoS

- Why are not Intserv and Diffserv widely deployed?
 - Cost of complexity
 - End-to-end peering problems
 - Difficult to negotiate service classes across ISPs
 - Could standardize service classes, but would complicate ISP peering agreements
 - Still only a best effort service no guarantee QoS or 'gold' service met!
 - QoS does not work well under severely constrained resources
 - QoS has no impact when capacity plentiful
 - Cheaper to keep core fast and dumb than to deploy QoS
 - Application layer mechanisms can adjust for network shortcomings
- Main area where diffserv ideas see traction are cellular networks. Why?

Mountains & Minds 423

423

Multiple classes of service

- Thus far: making the best of best effort service
 - One-size fits all service model
- Alternative: multiple classes of service
 - Partition traffic into classes
 - Network treats different classes of traffic differently
- Granularity:
 - Differential service among multiple classes, not among individual connections

Mountains & Minds

Multiple classes of service

Mountains & Minds

425

Multiple classes of service

425

- 1Mbps VoIP and 0.5 Mbps HTTP share 1.5 Mbps link
- What's the problem?
 - HTTP bursts can congest router, cause audio loss
 - Want to give priority to audio over HTTP

Insight 1: Packet marking needed for router to distinguish between different classes; and new router policy to treat packets accordingly

Mountains & Minds 426

426

Packet marking

- What happens if VoIP sends higher than declared rate?
- Policing: force source adherence to bandwidth allocations
- Where should the packets be marked? (routers or end hosts)

Insight 2: Provide protection (isolation) for one class from others

Mountains & Minds

427

Strict isolation

- Allocate fixed (non-sharable) bandwidth to each flow
- What's the problem?
 - Inefficient use of bandwidth if flows does not use its allocation

Insight 3: While providing isolation, it is desirable to use resources as efficiently as possible

Mountains & Minds

Scheduling and Policing

Scheduling

Which queued packet to send next?

How to constrain flow over-sending?

Mountains & Minds

429

Policing

429

Scheduling disciplines

- FIFO (first in first out) scheduling: send in order of arrival to queue
 - Real-world example?
 - Discard policy: if packet arrives to full queue: who to discard?
 - Tail drop: drop arriving packet
 - Priority: drop/remove on priority basis
 - Random: drop/remove randomly

Mountains & Minds

Scheduling disciplines

- Priority scheduling:
 - Send highest priority queued packet first
- Multiple classes, with different priorities
 - Class may depend on marking or other header info, e.g. IP source/dest, port numbers, etc.
 - Real world example?

Mountains & Minds

431

Scheduling policies

- Round Robin (RR) scheduling:
 - Multiple classes
 - Cyclically scan class queues, sending one complete packet from each class (if available)
- Weighted Fair Queuing (WFQ):
 - Generalized Round Robin
 - Each class gets weighted amount of service in each cycle

Work conserving disciplines:

If class queue empty go to next one

In WFQ each queue gets a share of the link rate proportional to its weight $w_i/\sum w_i$

432

431

Policing criteria

- Goal: limit traffic to not exceed **declared** parameters
- Three common-used criteria:
 - (long term) average rate: how many pkts can be sent per unit time (in the long run)
 - Crucial question: what is the interval length?
 - 100 packets per sec or 6000 packets per min have same average!
 - Peak rate: e.g., 6000 pkts per min (ppm) avg.; 1500 pps peak rate
 - (max.) burst size: max number of pkts sent consecutively (with no intervening idle)

Mountains & Minds 433

433

Policing mechanisms

Policing question

Design a token bucket policing mechanism that limits average rate to v packets and peak rate to p packets in an interval t.

Mountains & Minds 435

435

436

Guarantee of delay

R

• Token bucket and WFQ mechanisms can be combined to guarantee an upper bound on delay

What is the minimum forwarding rate for traffic class (queue) 1?

Answer: $R \times w_1/\sum w_i$

What is the maximum queuing delay of packets in queue 1 following a token bucket shaper with token generation rate r_1 and capacity b_1 ?

Answer: $d_{\text{max}} = \frac{b_1}{R \times w_1 / \sum w_i}$

What happens to d_{\max} when $r_1 > R \times w_1/\sum w_i$?

Mountains & Minds