SOC_Design

Lab03

M11102137 黄科皓

1. Block Diagram

一開始先將 coef 寫入 tap bram 中,然後確認寫入資料正確,然後傳 data 進去做 fir 的運算,計算完成後確認運算結果正確。由於要測試 ap_start、ap_idle 和 ap_done 是否正確,因此重複測試三次,然後結束測試。

Datapath 和 Control 設計如下,藉由 count 和 timer 來控制 bram pointer 的數值和運算要執行多久。

Datapath:

Start Write Peak kinded From Kataka Finish Start Write Coef Peak kinded From Peaks Finish Verify Coef (minist sourced) state would be an ready) Trad & check coef (minist source) state an world are ready) Trad & check coef (minist source) state are ready)

Control:

2. Describe Operation

A. How to receive data-in and tap parameters and place into SRAM:

同時接收 awvalid==1 和 awready==1 時將 aw_en 設為 1, 同時接收 wvalid==1 和 wready==1 時將 w_en 設為 1。當 aw_en 和 w_en 同時為 1 時將 wdata 存到 tap bram 位置為 awaddr*4 – 12'h20 的空間中。

B. How to access shiftram and tapRAM to do computation:

設置 pointer: timer 和 data_current, tapRAM 存取位置為 timer*4, shiftram 存取位置為((data_current - timer - 1)%Tap_num)*4。每個 clk 將 timer 加 1,使存取到的資料符合 fir 公式:

$$y[t] = \sum_{i} h[i] * x[t - i]$$

C. How ap_done is generated:

當 ss_tlast 為 1 時表示接收最後一筆資料,當這筆資料計算完成後將 sm_tlast 設為 1 表示準備送出最後一筆資料,同時將 ap_done 設為 1。

3. Resource Usage

Resource	Estimation		Available	Utilization %
LUT		317	53200	0.60
FF		155	106400	0.15
DSP		3	220	1.36
10		330	125	264.00
BUFG		1	32	3.13

4. Timing Report

Name

For period = 6

etup		Hold		Pulse Width				
Worst Negative Slack (WNS):	-0.953 ns	Worst Hold Slack (WHS):	0.070 ns	Worst Pulse Width Slack (WPWS):	0.500 ns			
Total Negative Slack (TNS):	-29.846 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns			
Number of Failing Endpoints:	34	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0			
Total Number of Endpoints:	257	Total Number of Endpoints:	257	Total Number of Endpoints:	158			

For period = 7 (maximum frequency)

Waveform

Setup		Hold		Pulse Width					
Worst Negative Slack (WNS):	0.047 ns	Worst Hold Slack (WHS):	0.070 ns	Worst Pulse Width Slack (WPWS):	1.500 ns				
Total Negative Slack (TNS):	0.000 ns	Total Hold Slack (THS):	0.000 ns	Total Pulse Width Negative Slack (TPWS):	0.000 ns				
Number of Failing Endpoints:	0	Number of Failing Endpoints:	0	Number of Failing Endpoints:	0				
Total Number of Endpoints:	257	Total Number of Endpoints:	257	Total Number of Endpoints:	158				
All user specified timing cons	traints are	met.							

a	axis_clk {0.000 5.000}				7.000		142.857								
Clock	Edges (WNS)	WNS (ns)	TNS (ns)	Failing Endpoints (TNS)	Total Endpoints (TNS)	Edges (WHS)	WHS (ns)	THS (ns)	Failing Endpoints (THS)		tal Endpoints	WPWS (ns)	TPWS (ns)	Failing Endpoints (TPWS)	Total Endpoints (TPWS)
Concrete Name	222 222	100000	0.000		25.7	200 200	0.070	0.000			257		0.000	0	150

Period (ns) Frequency (MHz)

5. Simulation Waveform

A. Coefficient program, and read back

B. Data-in stream-in

C. Data-out stream-out

D. RAM access control

E. FSM

