Announcements

- Exam 2
 - Take-home portion due today at 7pm
 - Deliver the hard-copy in person or email me a pdf of everything (including the signed cover page!)
- Homework
 - I'm trying to get Homework 11 out today, due after Thanksgiving
 - On all the Ch 6 material
 - Only 1 more homework after that!

A very long silver (diamagnetic) rod carries a uniformly distributed current \mathcal{I} along the $+\hat{z}$ direction. What is the direction of the bound volume current?

$$A. +\hat{z}$$

$$\mathsf{C}$$
. $+\epsilon$

D.
$$-\dot{q}$$

A very long silver (diamagnetic) rod carries a uniformly distributed current \mathcal{I} along the $+\hat{z}$ direction. What is the direction of the bound volume current?

$$A. +\hat{z}$$

B.
$$-2$$

D.
$$-\dot{q}$$

In the same long silver (diamagnetic) rod, what would be the direction of the auxiliary field $\vec{\mathbf{H}}$ and $\vec{\mathbf{M}}$?

- A. Both in the $\hat{\phi}$ direction
- B. Both in the $-\hat{\phi}$ direction
- C. $\vec{\mathbf{H}}$ in $\hat{\phi}$ direction, but $\vec{\mathbf{M}}$ in $-\hat{\phi}$ direction
- D. $\vec{\mathbf{H}}$ in $-\hat{\phi}$ direction, but $\vec{\mathbf{M}}$ in $\hat{\phi}$ direction

In the same long silver (diamagnetic) rod, what would be the direction of the auxiliary field $\vec{\mathbf{H}}$ and $\vec{\mathbf{M}}$?

- A. Both in the $\hat{\phi}$ direction
- B. Both in the $-\hat{\phi}$ direction
- C. $\vec{\mathbf{H}}$ in $\hat{\phi}$ direction, but $\vec{\mathbf{M}}$ in $-\hat{\phi}$ direction
- D. $\vec{\mathbf{H}}$ in $-\hat{\boldsymbol{\phi}}$ direction, but $\vec{\mathbf{M}}$ in $\hat{\boldsymbol{\phi}}$ direction

Say you wanted to determine the magnitude of $\vec{\mathbf{H}}$ inside the rod using an Amperian loop. What would be the most useful loop to draw?

Say you wanted to determine the magnitude of $\vec{\mathbf{H}}$ inside the rod using an Amperian loop. What would be the most useful loop to draw?

Take the case of a short, cylindrical iron magnet, which has some baked-in magnetization pointing in the \hat{z} direction. What can you conclude about the auxiliary field \vec{H} ?

- A. $\vec{\mathbf{H}} = 0$
- $\vec{\mathbf{H}} = \vec{\mathbf{M}}$
- $\mathbf{C}.\ \vec{\mathbf{H}}=-\vec{\mathbf{M}}$
- D. None of the above

Take the case of a short, cylindrical iron magnet, which has some baked-in magnetization pointing in the \hat{z} direction. What can you conclude about the auxiliary field \vec{H} ?

- A. $\vec{\mathbf{H}} = 0$
- $\vec{\mathbf{H}} = \vec{\mathbf{M}}$
- $\mathbf{C}.\ \vec{\mathbf{H}}=-\vec{\mathbf{M}}$
- D. None of the above

Take an infinitely long, cylindrical (radius= R), iron magnet with a "frozen-in" magnetization given by:

$$\vec{\mathbf{M}} = M_0 \hat{\boldsymbol{z}}$$

What is the magnitude of the magnetic field outside the magnet?

- A. 0
- B. $\mu_0 M_0$
- $C. \mu_0 M_0 R$
- D. $\mu_0 \frac{M_0 R}{s}$

Take an infinitely long, cylindrical (radius= R), iron magnet with a "frozen-in" magnetization given by:

$$\vec{\mathbf{M}} = M_0 \mathbf{\hat{z}}$$

What is the magnitude of the magnetic field outside the magnet?

- A. 0
- B. $\mu_0 M_0$
- $C. \mu_0 M_0 R$
- D. $\mu_0 \frac{M_0 R}{s}$