Quiz 1

11th September, 2025

Time: 2 hrs **Marks:** ____/20

On the real line \mathbb{R} , consider the collection of subsets

$$\mathcal{T}_{\to} := \{\emptyset, \mathbb{R}\} \bigcup \{(a, \infty) \mid a \in \mathbb{R}\}.$$

Attempt any question. You can get maximum 20.

- Q1. Show that $\mathcal{T}_{
 ightarrow}$ is a topology on \mathbb{R} .
- Q2. Compare (i.e., strictly fine, strictly coarse or incomparable) $\mathcal{T}_{\rightarrow}$ with the following. $[1 \times 3 = 3]$

[2]

- i) The usual topology on \mathbb{R} .
- ii) The lower limit topology \mathbb{R}_l .
- iii) The upper limit topology \mathbb{R}_u .
- Q3. Determine (with justification) the closures of the following sets in $(\mathbb{R}, \mathcal{T}_{\rightarrow})$. $[1 \times 5 = 5]$
 - i) $(0,\infty)$.
 - ii) $(-\infty, 0)$.
 - iii) $\{0\}$.
 - iv) $A = \{1, 2, \dots\}.$
 - v) $B = \{-1, -2, \dots\}.$
- Q4. Determine (with justification) whether $(\mathbb{R}, \mathcal{T}_{\rightarrow})$ is T_0, T_1 , or T_2 . $[1 \times 3 = 3]$
- Q5. Prove or give counter-example to the following statements. $[1 \times 2 = 2]$
 - i) If a sequence (x_n) converges to x in the usual topology, then $x_n \to x$ in $(\mathbb{R}, \mathcal{T}_{\to})$ as well.
 - ii) If a sequence (x_n) converges to x in $(\mathbb{R}, \mathcal{T}_{\to})$, then $x_n \to x$ in the usual topology as well.
- Q6. Given a T_1 -space (X, \mathcal{T}) (with at least two points), prove that any continuous map $f: (\mathbb{R}, \mathcal{T}_{\to}) \to (X, \mathcal{T})$ is constant. Give an example of a space (Y, \mathcal{S}) with $Y = \{0, 1\}$, and a nonconstant continuous map $f: (\mathbb{R}, \mathcal{T}_{\to}) \to (Y, \mathcal{S})$. [2+1=3]
- Q7. Consider the equivalence relation : $a \sim b$ if and only if $a b \in \mathbb{Z}$. Show that the induced quotient space is an indiscrete space. [4]
- Q8. Consider the equivalence relation : $a \sim b$ if and only if either

$$a, b \in \mathbb{R} \setminus \mathbb{Z}$$
, and $a = b$, or, $a, b \in \mathbb{Z}$.

Show that the induced quotient space is an indiscrete space. [4]

Definitions

- 1. The *lower limit topology* on \mathbb{R} is generated by the basis $\{[a,b) \mid a,b \in \mathbb{R}\}.$
- 2. The *upper limit topology* on \mathbb{R} is generated by the basis $\{(a,b] \mid a,b \in \mathbb{R}\}.$
- 3. Let \mathcal{T}_1 and \mathcal{T}_2 be two topologies on X. If $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say \mathcal{T}_1 is coarser than \mathcal{T}_2 (and \mathcal{T}_2 is finer than \mathcal{T}_1). If $\mathcal{T}_1 \not\subset \mathcal{T}_2$ and $\mathcal{T}_2 \not\subset \mathcal{T}_1$, then they are incomparable.
- 4. Given a space X, we say
 - (a) X is T_0 if given any two points $x \neq y \in X$, there exists some open set $U \subset X$ such that either $x \in U, y \notin U$ or $x \notin U, y \in U$ (i.e., U contains exactly one of $\{x, y\}$).
 - (b) X is T_1 if any singleton subset of X is closed.
 - (c) X is T_2 if given any two $x \neq y \in x$, there are open neighborhoods $x \in U, y \in V$ such that $U \cap V = \emptyset$.
- 5. A sequence $\{x_n\}$ in a topological space X converges to some point $x \in X$ if for any open neighborhood $x \in U \subset X$, we have some number $N = N_U \ge 1$, such that $x_n \in U$ for all $n \ge N$.
- 6. Given any equivalence relation \sim on a space (X, \mathcal{T}) , the induced quotient space is

$$X/_{\sim} := \{ [x] := \{ y \in X \mid x \sim y \} \mid x \in X \},$$

with the quotient topology

$$\mathcal{T}_q := \{ U \subset X/_{\sim} \mid q^{-1}(U) \in \mathcal{T} \},$$

where $q: X \to X/_{\sim}$, given by q(x) = [x], is the quotient map.