```
PHY256 PS 2
1)2)B18>= 6,14>.
( Expediction value of B is LB> = 6.
        is mertainly of B 3 AB =0.
        (18) IV) is a eigenstate of 87;
             B3 (14) = B[B1A5]
                     = 8 [6:142]
                     = 6. B14>
                     = b; 187.
        iv) Uncertainty of B2 is DB2 = 0.
            We are certain that (82) = 0;2.
       b) 147= = { = 142 - 2 |3p) + 412p) + (1-i) 11s).
         i) Messua 11s7 state:
            (15/47 = 123 { i (15/48) - 2 (18/30) + 4/15/20) + (1-i) (18/18)}
                  = 1-1
            ((s/y)12 = 1-i 12 = 2
         i) Once measured & found in 1187, 147 > 14 new = 1187
            State collaps into 1157 State.
           A) You would never find the new state in 13d7,
               So (32/14/new) = (32/18)12 = 0.
           B) (412/m) = (4/18) = (18/4) = 123. 50 KAIIR) = 3
               8+111.
```

```
PHY 256 PS2
2) 3) [52, 5,] = 5, 8, - 5, 8,
                                =\frac{1}{2}\left(\begin{array}{c}1&0\\0&-i\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}0&-i\\i&0\end{array}\right)-\frac{1}{2}\left(\begin{array}{c}0&-i\\0&-i\end{array}\right)\frac{1}{2}\left(\begin{array}{c}1&0\\0&-i\end{array}\right)
                                = - 2 i k2 (61)
                               =- i % Sx
      b) [Sy, Sy] = Sy Sy - Sy Sy
      C) [Sz, Sy] = Sz Sy - Sy Sz
              By properties of Herwitian Matrices, S_{*}^{2} = I.
                               = SzI - IS2
                               = Sz - Sz
      d) [M,D] = MD - DM
                        = \begin{pmatrix} 2 & b \\ c & d \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} - \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & b \\ c & d \end{pmatrix}
                         = 2MI - 2IM
                         = 2M-2M
                          =0
```

PHYDSIS	YS 2
3) 2)	Know that Ptot = P, + P2 = 1
	Suppose P = IIP, e i 0, 12
	2nd P2 = 1P2 e i 02 2
(0	First event occurring Park = IP, e'g, + IP, e'g, + IP, e'g,
	Since path 1 and path 2 are indistinguishable.
	Police (TP, eig, + JPz eigz) (JP, eig, + JPz e-ig)
	= P, eise eise + P2 eise + JP, JP2 eise + JP, JP2 eise
	$= P_1 + P_2 + \sqrt{P_1 P_2} \left(e^{i(\phi_1 - \phi_2)} + e^{-i(\phi_1 - \phi_2)} \right)$
	Ø1-92 = DØ is relative phase. This Polick is only
	dependent on DØ.
	$= P_1 + P_2 + \sqrt{P_1 P_2} \left(\cos(\Delta \emptyset) + i \sin(\Delta \emptyset) + \cos(\Delta \emptyset) - i \sin(\Delta \emptyset) \right)$
	$= P_1 + P_2 + 2\sqrt{P_1P_2} \cos(\Delta \emptyset)$
c)	$P_{click}(\Delta 0) = \int_{0}^{2\pi} d\Delta 0 \left(P_{click}(\Delta 0) \right)$
	00 20
	$= 2\pi \left(P_1 + P_2 + 2 \sqrt{P_1 P_2} \cos(\Delta \emptyset) \right) d\Delta \emptyset$
	$= \frac{1}{2\pi} \left[(P_1 + P_2 + 2\sqrt{P_1 P_2}) \cos(\Delta \emptyset) \right] d\Delta \emptyset$ $= \frac{1}{2\pi} \left[(P_1 + P_2 + 2\sqrt{P_1 P_2}) \cos(\Delta \emptyset) \right] d\Delta \emptyset$ $= \frac{1}{2\pi} \left[(2\pi P_1 + 2\pi P_2 + 2\sqrt{P_1 P_2}) \sin(\Delta \emptyset) \right] d\Delta \emptyset$ $= \frac{1}{2\pi} \left[(2\pi P_1 + 2\pi P_2 + 2\sqrt{P_1 P_2}) \sin(\Delta \emptyset) \right] d\Delta \emptyset$
	$= P_1 + P_2$

```
PHY 256 PS2
    4) 12P>= N { 3 1- 2> - 4:1-x>}
( 2) Need (4) P) = 1:
           < 4147 = N (3(-21+4i(-x1)N(31-2)-4i1-x))
                   = N2 9 (-21-2) - 16i2 (-X1-X) - 12i(-21-x) + 12i(-x1-27)
                 1 = N2 (9 + 16)
             \Rightarrow N^2 = \frac{1}{25} \Rightarrow N = \frac{1}{5}. (More generally, N = \frac{1}{5})
      (D) Oz in Direc Notation is 1+27(+21-1-27 <-21.
           Know (-x) = \( \frac{1}{17} \) (+2) - \( \frac{1}{12} \). Then (47 becomes
              (P) = = [31-2> - 4; = [42> -1-2)]
                   = = [-2/2:(+2)+(3+2/2:)1-2)
           Find (+2/4): = (-2/21) (+2/+2) +0
                  (+212p) = -2\sqrt{2}\frac{1}{5}, then (2p1+z) = \frac{2\sqrt{2}}{5}i.
           Find (-21 27: 5 (3+2/2i) (-21-2)
                  (-21 4) = 3+252i, then (41-2) = 3-25zi
          Evaluate (201 02127):
           = (N1 1+5) (+51 - 1-5) (-51) IA) =
          = (4) [1+2) (+21 P7 - 1-2) (-212) = (41 1+2) (-254) - 1-2) (3+2021)
          = (2/2 i) - (2/2 i) - (2/2 i) - (3+2/2 i) = (2/2 i) - (3-2/2 i) (3+2/2 i)
          =\frac{4.2}{25}-\frac{9}{25}
```

		p-	= -9 - 25	-	(022°) = <	I)=	-1,	در				
			- (-47		(000-								
		1 40			(3ppn			11)
()			421 +			Using	Solve	results	trou	VSV+	6),		
		12	(410.		-	10.00							
		L	7/42/		-								
			2) (+21				1						
			(+5/1/2)										
		5	1) (-2	5	5	(3.	5						
			1.2		- 4/12								
			= -		/ -	2						0	
			> = - !		Lox	7 =	(7)	= 1					
	∆0x	= 1	- (-)										
		- 1 5	25	C	Sphox.)							
					- 1								
													7

P-142	56 1	P\$ 2				3 7				
	3 25es	· /v>			1					
	107	\A> :	D>= 1/2	H> - 1	- N>	\A>= j	= 141> -	- 1/2	N	
	117,	18> :	12>= 1	1417 -	<u>1</u> V>	(R)=	1 1H)	+ 1/2	\v>.	
		HHRV	OV	LL,	THD.	2			88	
		HV	0/	A	12/1		Bob		ne2501	
	0	1 (H/T/) ==	1	(VIH			Ц		of em	0 %
		1(1111013		\\V\!			H			0
		1 (H) R>12	= 1/2	12011	$2) ^2 = \frac{1}{2}$		50% R	, L	C	50'/.
		1 (HIN)13	= D	1 (1)	N = 1		V			01.
	0	(010)15	= 1	/(AI			D			01.
		(D/A)/5			1/2/5 = 7		50%			50%
		10117/2 =			17/15 = 3		50%			50%
	3	(R1L)12 =			14712=		L			0'/.
		< 1 H>12 =		1/1	141712 =	2	50'/.	H,V		50%
		1(R10)12=	Ž	1(L)	0)12 = 3	2	50.1.	D, A		50%
		1 (R1R712			1K>12 = C		R			01.
		al, Bob			0.5		cha)/((C	Of	
b	eing	in disay	reamont	with	Alice					