Variable aléatoire discrète

M3 - Chapitre 2

I. Variable aléatoire

1. Définition

$$X: \Omega \to A \subset \mathbb{R}$$
 $(X = a) = \{\omega \in \Omega, X(\omega) = a\} = X^{-1}(\{a\})$ $X(\Omega) = A$ $\omega \to X(\omega)$

2. Loi de probabilité d'une VA

$$P_X: X(\omega) \rightarrow [0,1]$$
 $P_X(x) = P(X = x)$
 $x \rightarrow P(X = x)$

3. Esperance

a. Définition

$$E(X) = \sum_{i=1}^{n} x_i P(X = x_i)$$

b. Théorème de transfert

$$E(g \circ X) = \sum_{i=1}^{n} g(x_i) P(X = x_i)$$

c. Propriétés

- $X \ge 0 \Rightarrow E(X) \ge 0$
- $E(X) = 0 \Leftrightarrow P(X = 0) = 1$ (VA centrée)
- $\bullet \quad E(aX+b)=aE(X)+b$

4. Variance et écart type

a. Définition

$$V(X) = E\left(\left(X - E(X)\right)^{2}\right) = \sum_{i=1}^{n} (x_{i} - E(X))^{2} P(X = x_{i})$$

$$V(X) = E(X^{2}) - E(X)^{2}$$
Formule de Koenig-Huygens
$$\sigma(X) = \sqrt{V(X)}$$

b. Propriétés

- $V(aX+b) = a^2V(X)$
- $\sigma(aX + b) = |a|\sigma(X)$
- $V(X) = 0 \Leftrightarrow P(X = E(X)) = 1$

•
$$X^*$$
 centrée $(E=0)$ réduite $(V=1)$: $X^* = \frac{X - E(X)}{\sigma(X)}$

5. Fonction de répartition

a. Définition

$$F_X: \mathbb{R} \to \mathbb{R}$$
$$x \to P(X \le x)$$

Variable aléatoire discrète

M3 – Chapitre 2

b. Propriétés

 F_X est croissante continue à droite $\forall x$ continue à gauche $\forall x \mid P(X = x) \neq 0$

$$P(X = x_i) = F_X(x_i) - F_X(x_{i-1})$$

II. Loi discrète usuelle

1. Loi de Bernoulli

Soit
$$X$$
 v.a. $X(\Omega) = \{0; 1\}$ $P(X = 1) = p$ $X \hookrightarrow \mathcal{B}(1, p)$
$$X = 1_{[0;p]} \circ U$$