Consider 2. It is desired to verify 0x = 0. From the definition of the additive identity and the distributive law it follows that

$$0x = (0+0)x = 0x + 0x.$$

From the existence of the additive inverse and the associative law it follows

$$0 = (-0x) + 0x = (-0x) + (0x + 0x)$$
$$= ((-0x) + 0x) + 0x = 0 + 0x = 0x$$

To verify the second claim in 2, it suffices to show x acts like the additive inverse of -x in order to conclude that -(-x) = x. This is because it has just been shown that additive inverses are unique. By the definition of additive inverse, x + (-x) = 0 and so x = -(-x) as claimed.

To demonstrate 3, (-1)(1+(-1))=(-1)0=0 and so using the definition of the multiplicative identity, and the distributive law, (-1)+(-1)(-1)=0. It follows from 1. and 2. that 1 = -(-1) = (-1)(-1). To verify (-1)x = -x, use 2. and the distributive law to write

$$x + (-1) x = x (1 + (-1)) = x0 = 0.$$

Therefore, by the uniqueness of the additive inverse proved in 1., it follows (-1) x = -x

To verify 4., suppose $x \neq 0$. Then x^{-1} exists by the axiom about the existence of multiplicative inverses. Therefore, by 2. and the associative law for multiplication,

$$y = (x^{-1}x) y = x^{-1} (xy) = x^{-1}0 = 0.$$

This proves 4. \blacksquare

Recall the notion of something raised to an integer power. Thus $y^2 = y \times y$ and $b^{-3} = \frac{1}{b^3}$ etc.

Also, there are a few **conventions** related to the order in which operations are performed. Exponents are always done before multiplication. Thus $xy^2 = x(y^2)$ and is not equal to $(xy)^2$. Division or multiplication is always done before addition or subtraction. Thus x - y(z + w) = x - [y(z + w)] and is not equal to (x - y)(z + w). Parentheses are done before anything else. Be very careful of such things since they are a source of mistakes. When you have doubts, insert parentheses to resolve the ambiguities.

Also recall summation notation.

Definition 2.1.11 Let x_1, x_2, \dots, x_m be numbers. Then $\sum_{j=1}^m x_j \equiv x_1 + x_2 + \dots + x_m$. Thus this symbol, $\sum_{j=1}^m x_j$ means to take all the numbers, x_1, x_2, \dots, x_m and add them all together. Note the use of the j as a generic variable which takes values from 1 up to m. This notation will be used whenever there are things which can be added, not just numbers.

As an example of the use of this notation, you should verify the following.

Example 2.1.12
$$\sum_{k=1}^{6} (2k+1) = 48.$$

Be sure you understand why $\sum_{k=1}^{m+1} x_k = \sum_{k=1}^m x_k + x_{m+1}$. As a slight generalization of this notation, $\sum_{j=k}^m x_j \equiv x_k + \dots + x_m$. It is also possible to change the variable of summation. $\sum_{j=1}^{m} x_j = x_1 + x_2 + \cdots + x_m$ while if r is an integer, the notation requires $\sum_{j=1+r}^{m+r} x_{j-r} = x_1 + x_2 + \dots + x_m \text{ and so } \sum_{j=1}^m x_j = \sum_{j=1+r}^{m+r} x_{j-r}.$ Summation notation will be used throughout the book whenever it is convenient to

Example 2.1.13 Add the fractions, $\frac{x}{x^2+y} + \frac{y}{x-1}$.