SYMMETRIC GROUPS CONTINUED..

Cosets

Author

Tom Jeong

October 7, 2024

${\bf Contents}$

1 symmetric group

3

1 symmetric group

last time: we talked about inversions. n_{σ}

$$sgn: S_n \to \{1, -1\}$$

$$A_n = ker(sgn)$$

$$|A_n| = \frac{n!}{2}$$

example: $A_2 = \{id\}$

Proposition 1.1 (2.9.17).

let $n \geq 2$ then

- 1. a transposition $\tau = (ij) \in S_n$ is an odd permutation
- 2. the sign of a k cycle $(x_1x_2...x_k)$ is $(-1)^{k-1}$

Proof.

1. let $(xy) \in S_n$ be a transposition. Then $\exists \sigma \in S_n$ s.t. $\sigma(1) = x$ and $\sigma(2) = y$. so $\sigma(12)\sigma^{-1} = (xy)$. (lemma 2.9.8)

so
$$sgn(xy) = sgn(\sigma(12)\sigma^{-1}) = sgn(\sigma)sgn(12)sgn(\sigma^{-1}) = sgn(12) = -1$$

2.
$$(x_1x_2...x_k) = (x_1x_k)(x_1x_{k-1})...(x_1x_3)(x_1x_2)$$

so
$$sgn(x_1x_2...x_k) = (-1)^{k-1}$$

ex. $\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 4 & 6 & 1 & 7 & 2 & 5 \end{bmatrix} = (13624)(57)$

$$sgn(\sigma) = (-1)^4(-1)^1 = -1$$

Q: Why are symmetric groups important?

Theorem 1.2 (Cayley's Theorem).

Every finite group G is isomorphic to a subgroupp of S_n or $S_{|G|}$ for some n. where n = |G|.

Proof.

Let S_G be the group of permutations on the set G.

Define a map $f: G \to S_G$ by $f(x) = \phi_x$ where $\phi_x: G \to G$ is defined by $\phi_x(g) = xg$.

inverse of ϕ_x is $\phi_{x^{-1}}$

similarly $\phi_x^{-1}\phi_x(g) = g$.

 ϕ_x is a bijection, since ϕ_x^{-1} is its left and right inverse

1. f is a homomorphism: $f(x) \cdot f(y) = \phi_x \cdot \phi_y = \phi_x \circ \phi_y = \phi_{xy} = f(xy)$

2. f is injective: $f(x) = f(y) \implies \phi_x = \phi_y \implies \phi_x(e) = \phi_y(e) \implies x = y$

So $f: G \to S_G$ is an bijective homomorphism. ie an isomorphism. (co domain is the image so it is surjective by definition)

ex. $\mathbb{Z}/n\mathbb{Z}$ is isomorphic to a subgroup of S_n .

$$f: \mathbb{Z}/n\mathbb{Z}$$

$$f(k) = \phi_k \text{ where } \phi_k(x) = k = x$$

$$\mathbb{Z}/n\mathbb{Z} \cong < (1234...n) > \subseteq S_n$$
Ex2. $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ where $|G| = 4$

$$f : \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \to S_4$$

$$f((0,0)) = id$$

$$f((1,0)) = (12)$$

$$f((0,1)) = (34)$$

$$f((1,1)) = (12)(34)$$

Actions of groups

Recall: consider the symmetric group S_n and the set $M_n = \{1, 2, ..., n\}$. we kow

1.
$$e(i) = i \forall i \in M_n$$

2.
$$(\tau \sigma)(i) = \tau(\sigma(i))$$

This is a special case of more general phenomenon.

Definition 1.1 (2.10.1).

Let G be a group and S set. We say that G acts (from the left) on S if there is a map

$$\alpha: G \times S \to S$$

such that

1.
$$e \cdot s = s \forall s \in S$$

2.
$$(gh) \cdot s = g \cdot (h \cdot s) \forall g, h \in G, s \in S$$

example S_n acts on M_n notation: we write $S_n
ightharpoonup M_n$ "acts on "

Idea: if G acts on S that is like saying that at least some of the symmetries of S are described by G.

EX. recall $D_3 = \{\text{symmetris of equilateral triangle}\}$ and Let $S = \{\text{Points on an equilateral triangle}\}$ we can say that $D_3 \circlearrowright S$

$$\langle s_1 \rangle \cong \mathbb{Z}/2\mathbb{Z}$$

 $\mathbb{Z}/2\mathbb{Z} \circlearrowleft S$ in the following way:

$$\alpha: \mathbb{Z}/2\mathbb{Z} \times S \to S$$

$$\alpha([n], p) \to s_1^n(p)$$

$$\alpha([0], p) \to p$$

$$\alpha([1], p) \to s_1(p)$$

Definition 1.2. Let G act on a set S and let $X \subseteq S$ and $s \in S$

- 1. fix $s \in S$ then $G \cdot s = Gs = \{g \cdot s | g \in G\}$ is called the <u>orbit</u> of s under the action of G
- 2. The set of <u>orbits</u> $\{Gs|S\in S\}$ is denoted S/G
- 3. Fix $g \in G$ let $g \cdot X = gX = \{gx | x \in X\}$ Then, $G_x = \{g \in G | g \cdot X = X\}$ is called the <u>stabilizer</u> of x under the action of G. if $X = \{x\}$, we deote G_x by G_x
- 4. We say $s \in S$ is a fixed Point for the action of G on S if $g \cdot s = s \forall g \in G$. The set of fixed points of G is denoted S^G

<u>remark</u>: Can define an equivalence relation on S. given $s,t\in S$ we say $s\sim t$ if $\exists g\in G$ such that $g\cdot s=t$. We will see that the orbit is the equivalence class of s. and the set of orbits of S is the partition of S induced by the equivalence relation \sim ex: $S_n \circlearrowright M_n$ by $\alpha: S_n \times M_n \to M_n$ and $\alpha(\sigma,i)=\sigma(i)$

the orbit $S_n \cdot i = {\sigma(i) | \sigma \in S_n} \subseteq M_n = M_n$ since $\forall j \in M_n \ \exists \sigma \in S_n$ such that $\sigma(i) = j$

ex. fix
$$\sigma \in S_n$$
 and let $H = <\sigma> = \{\sigma^k | k \in \mathbb{Z}\}$
Then $H \circlearrowleft M_n$
 $\alpha : H \times M_n \to M_n$
 $\alpha(\sigma^k, i) = \sigma^k(i)$
 $M_n/H \leftrightarrow \text{ dijoint cycles of } \sigma$
e.g. $\sigma = (123)(56) \in S_6$
 $H = <\sigma> H \cdot 1 = \{1, 2, 3\} = H \cdot 2 = H \cdot 3$
 $H \cdot 4 = \{4\}$
 $H \cdot 5 = \{5, 6\} = H \cdot 6$

sets of orbits
$$H_{M_6} = \{h \in H | h \cdot M_6 = M_6\} = H$$

$$H_{\{H\}} = \{\sigma^2, \sigma^4, e\}$$

$$M_6^H = \{4\}$$