Topoi with enough points

Ivan Di Liberti

Logic Colloquium 24 June 2024, Gothenburg.

Topoi with enough points, ArXiv:2403.15338.

Topoi with enough points, ArXiv:2403.15338.

• Topoi with enough points, ArXiv:2403.15338.

Plan

Logical aspects of duality theory,

• Topoi with enough points, ArXiv:2403.15338.

- Logical aspects of duality theory,
- Classifying topoi,

• Topoi with enough points, ArXiv:2403.15338.

- Logical aspects of duality theory,
- Classifying topoi,
- Topoi with enough points

• Topoi with enough points, ArXiv:2403.15338.

- Logical aspects of duality theory,
- Classifying topoi,
- Topoi with enough points (new stuff),

• Topoi with enough points, ArXiv:2403.15338.

- Logical aspects of duality theory,
- Classifying topoi,
- Topoi with enough points (new stuff),

Boole introduced boolean algebras in 1847,

Boole introduced boolean algebras in 1847, starting a program that nowadays we may call *algebraization of logic*.

Boole introduced boolean algebras in 1847, starting a program that nowadays we may call *algebraization of logic*.

$$\mathbb{B} = (B, \top, \bot, \neg, \vee, \wedge).$$

Boole introduced boolean algebras in 1847, starting a program that nowadays we may call *algebraization of logic*.

$$\mathbb{B} = (B, \top, \bot, \neg, \vee, \wedge).$$

Motto:

Boole introduced boolean algebras in 1847, starting a program that nowadays we may call *algebraization of logic*.

$$\mathbb{B} = (B, \top, \bot, \neg, \vee, \wedge).$$

Motto:propositional first order theories \equiv Boolean algebras

Models of a propositional theory (boolean algebras) are assignments of truth values to its formulas,

Models of a propositional theory (boolean algebras) are assignments of truth values to its formulas, and can be understood as homomorphisms into $\mathbb{T} = \{0 < 1\}$.

$$M:\mathbb{B}\to\mathbb{T}$$

Models of a propositional theory (boolean algebras) are assignments of truth values to its formulas, and can be understood as homomorphisms into $\mathbb{T} = \{0 < 1\}$.

$$M:\mathbb{B}\to\mathbb{T}$$

$$\phi \mapsto [\phi]$$

Models of a propositional theory (boolean algebras) are assignments of truth values to its formulas, and can be understood as homomorphisms into $\mathbb{T} = \{0 < 1\}$.

$$M:\mathbb{B}\to\mathbb{T}$$

$$\phi \mapsto [\phi]$$

Question: can we recover a boolean algebra (a propositional theory) from its models?

Question: can we recover a boolean algebra (a propositional theory) from its models? **Yes, we can.**

Question: can we recover a boolean algebra (a propositional theory) from its models?

Yes, we can. Provability can indeed be tested semantically.

Question: can we recover a boolean algebra (a propositional theory) from its models?

Yes, we can. Provability can indeed be tested semantically. (Completeness theorem.)

Question: can we recover a boolean algebra (a propositional theory) from its models?

Yes, we can. Provability can indeed be tested semantically. (Completeness theorem.)

Stone duality

Question: can we recover a boolean algebra (a propositional theory) from its models?

Yes, we can. Provability can indeed be tested semantically. (Completeness theorem.)

Stone duality

There is a dual adjunction between boolean algebras (theories) and stone spaces

Question: can we recover a boolean algebra (a propositional theory) from its models?

Yes, we can. Provability can indeed be tested semantically. (Completeness theorem.)

Stone duality

There is a dual adjunction between boolean algebras (theories) and stone spaces (sets of models *equipped with a topology*).

Question: can we recover a boolean algebra (a propositional theory) from its models?

Yes, we can. Provability can indeed be tested semantically. (Completeness theorem.)

Stone duality

There is a dual adjunction between boolean algebras (theories) and stone spaces (sets of models *equipped with a topology*).

 Stone-type dualities is a cluster of theorems that relates classes of posets (propositional logics) to classes of spaces (their models)

- Stone-type dualities is a cluster of theorems that relates classes of posets (propositional logics) to classes of spaces (their models).
- One of the aims is to reconstruct the theory from its models (completeness theorem)

- Stone-type dualities is a cluster of theorems that relates classes of posets (propositional logics) to classes of spaces (their models).
- One of the aims is to reconstruct the theory from its models (completeness theorem) .
- Boolean algebras are the posets of propositional first order logic.

- Stone-type dualities is a cluster of theorems that relates classes of posets (propositional logics) to classes of spaces (their models).
- One of the aims is to reconstruct the theory from its models (completeness theorem) .
- Boolean algebras are the posets of propositional first order logic.

Isbell duality

- Stone-type dualities is a cluster of theorems that relates classes of posets (propositional logics) to classes of spaces (their models).
- One of the aims is to reconstruct the theory from its models (completeness theorem) .
- Boolean algebras are the posets of propositional first order logic.

Isbell duality

There is a very general duality in which every other embeds,

- Stone-type dualities is a cluster of theorems that relates classes of posets (propositional logics) to classes of spaces (their models).
- One of the aims is to reconstruct the theory from its models (completeness theorem) .
- Boolean algebras are the posets of propositional first order logic.

Isbell duality

There is a very general duality in which every other embeds, the duality between frames and topological spaces.

Frames

Frames

A frame is a complete lattice where the *infinitary distributivity rule* holds,

$$(\bigvee x_i) \wedge y = \bigvee (x_i \wedge y).$$

A frame homomorphism is a morphism f preserving suprema (\bigvee) and finite meets (\wedge).

Frames

A frame is a complete lattice where the *infinitary distributivity rule* holds,

$$(\bigvee x_i) \wedge y = \bigvee (x_i \wedge y).$$

A frame homomorphism is a morphism f preserving suprema (\bigvee) and finite meets (\wedge).

Topologies are frames

Frames

A frame is a complete lattice where the *infinitary distributivity rule* holds,

$$(\bigvee x_i) \wedge y = \bigvee (x_i \wedge y).$$

A frame homomorphism is a morphism f preserving suprema (\bigvee) and finite meets (\land).

Topologies are frames

The canonical example of frame is a topology. When (X, τ) is a topological space, τ is a frame.

$$\mathsf{O}:\mathsf{Top}\to\mathsf{Frm}^\mathsf{op}$$

For $\ensuremath{\mathcal{L}}$ a frame we can study its models, as we did for boolean algebras,

$$M:\mathcal{L}\to\mathbb{T}$$

For $\ensuremath{\mathcal{L}}$ a frame we can study its models, as we did for boolean algebras,

$$M:\mathcal{L}\to\mathbb{T}$$

this will be a frame homomorphism into truth values.

For $\ensuremath{\mathcal{L}}$ a frame we can study its models, as we did for boolean algebras,

$$M:\mathcal{L}\to\mathbb{T}$$

this will be a frame homomorphism into truth values. The set of models can be topologised, providing a dual adjunction.

For $\ensuremath{\mathcal{L}}$ a frame we can study its models, as we did for boolean algebras,

$$M:\mathcal{L}\to\mathbb{T}$$

this will be a frame homomorphism into truth values. The set of models can be topologised, providing a dual adjunction.

Isbell duality

For $\ensuremath{\mathcal{L}}$ a frame we can study its models, as we did for boolean algebras,

$$M:\mathcal{L}\to\mathbb{T}$$

this will be a frame homomorphism into truth values. The set of models can be topologised, providing a dual adjunction.

Isbell duality

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Question: Can we recover a frame from its space of models?

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Question: Can we recover a frame from its space of models? **Not always** this adjunction is too general to hope for such a result. But...

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Question: Can we recover a frame from its space of models? **Not always** this adjunction is too general to hope for such a result. But...

Definition: frames with enough points

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Question: Can we recover a frame from its space of models? **Not always** this adjunction is too general to hope for such a result. But...

Definition: frames with enough points

A frame has enough points when given two (different) formulas in it $\phi < \psi$ there exists a model M such that $M(\phi) = 0$ and $M(\psi) = 1$.

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Question: Can we recover a frame from its space of models? **Not always** this adjunction is too general to hope for such a result. But...

Definition: frames with enough points

A frame has enough points when given two (different) formulas in it $\phi < \psi$ there exists a model M such that $M(\phi) = 0$ and $M(\psi) = 1$.

Thm

Boolean algebras are to first order logic what frames are to *geometric logic*, a logic of infinitary disjunction, finitary conjunction and infinitary distributivity rule.

Question: Can we recover a frame from its space of models? **Not always** this adjunction is too general to hope for such a result. But...

Definition: frames with enough points

A frame has enough points when given two (different) formulas in it $\phi < \psi$ there exists a model M such that $M(\phi) = 0$ and $M(\psi) = 1$.

Thm

When a frame has enough points, then $Opt(\mathcal{L}) \cong \mathcal{L}$.

Posets are perfect to handle propositional logic.

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle *first order logic*?

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle first order

logic?

Question: Can we recover a Stone-type duality for first order

logic?

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle *first order logic*?

Question: Can we recover a Stone-type duality for first order logic?

Classifying topoi

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle *first order logic*?

Question: Can we recover a Stone-type duality for first order logic?

Classifying topoi

Yes.

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle *first order logic*?

Question: Can we recover a Stone-type duality for first order

logic?

Classifying topoi

Yes. The previous picture can be recovered by replacing frames with **topoi**.

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle *first order logic*?

Question: Can we recover a Stone-type duality for first order

logic?

Classifying topoi

Yes. The previous picture can be recovered by replacing frames with **topoi**. A topos is a category (as opposed to poset) with all colimits (suprema), finite limits (wedges) and a good interaction between them (infinitary distributivity rule).

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle *first order logic*?

Question: Can we recover a Stone-type duality for first order

logic?

Classifying topoi

Yes. The previous picture can be recovered by replacing frames with **topoi**. A topos is a category (as opposed to poset) with all colimits (suprema), finite limits (wedges) and a good interaction between them (infinitary distributivity rule).

DL 2020, a Stone-type duality

Posets are perfect to handle propositional logic.

Question: What algebraic gadget can we use to handle *first order logic*?

Question: Can we recover a Stone-type duality for first order logic?

Classifying topoi

Yes. The previous picture can be recovered by replacing frames with **topoi**. A topos is a category (as opposed to poset) with all colimits (suprema), finite limits (wedges) and a good interaction between them (infinitary distributivity rule).

DL 2020, a Stone-type duality

A topos $\mathcal E$ has enough points when given a proper subobject $f:X\hookrightarrow Y$ there exists a model $M:\mathcal E\to \operatorname{Set}$ such that M(f) is not an isomorphism.

A topos $\mathcal E$ has enough points when given a proper subobject $f:X\hookrightarrow Y$ there exists a model $M:\mathcal E\to \operatorname{Set}$ such that M(f) is not an isomorphism.

Deligne (1970s), Godel completeness theorem

A topos $\mathcal E$ has enough points when given a proper subobject $f:X\hookrightarrow Y$ there exists a model $M:\mathcal E\to \operatorname{Set}$ such that M(f) is not an isomorphism.

Deligne (1970s), Godel completeness theorem

Coherent topoi have enough points.

A topos $\mathcal E$ has enough points when given a proper subobject $f:X\hookrightarrow Y$ there exists a model $M:\mathcal E\to \operatorname{Set}$ such that M(f) is not an isomorphism.

Deligne (1970s), Godel completeness theorem

Coherent topoi have enough points.

Makkai and Reyes (1980s), Fourman-Grayson completeness theorem

A topos $\mathcal E$ has enough points when given a proper subobject $f:X\hookrightarrow Y$ there exists a model $M:\mathcal E\to \operatorname{Set}$ such that M(f) is not an isomorphism.

Deligne (1970s), Godel completeness theorem

Coherent topoi have enough points.

Makkai and Reyes (1980s), Fourman-Grayson completeness theorem

Separable topoi have enough points.

A topos $\mathcal E$ has enough points when given a proper subobject $f:X\hookrightarrow Y$ there exists a model $M:\mathcal E\to \operatorname{Set}$ such that M(f) is not an isomorphism.

Deligne (1970s), Godel completeness theorem

Coherent topoi have enough points.

Makkai and Reyes (1980s), Fourman-Grayson completeness theorem

Separable topoi have enough points.

Question: Are these the same theorem?

A topos $\mathcal E$ has enough points when given a proper subobject $f:X\hookrightarrow Y$ there exists a model $M:\mathcal E\to \operatorname{Set}$ such that M(f) is not an isomorphism.

Deligne (1970s), Godel completeness theorem

Coherent topoi have enough points.

Makkai and Reyes (1980s), Fourman-Grayson completeness theorem

Separable topoi have enough points.

Question: Are these the same theorem?

Question: Can we push to the extreme the technology of Deligne

and unify every completeness theorem?

Yes.

Yes. We generalise the technology of Deligne and offer a general theorem that implies both Deligne's and Makkai-Reyes theorem.

Yes. We generalise the technology of Deligne and offer a general theorem that implies both Deligne's and Makkai-Reyes theorem.

Thm. DL and Rogers.

Yes. We generalise the technology of Deligne and offer a general theorem that implies both Deligne's and Makkai-Reyes theorem.

Thm. DL and Rogers.

A closed subtopos of a topos with enough points has enough points.

Yes. We generalise the technology of Deligne and offer a general theorem that implies both Deligne's and Makkai-Reyes theorem.

Thm. DL and Rogers.

A closed subtopos of a topos with enough points has enough points.

