Sorting and Algorithm Analysis

Computer Science S-111
Harvard University

David G. Sullivan, Ph.D.

Sorting an Array of Integers

- · Ground rules:
 - · sort the values in increasing order
 - · sort "in place," using only a small amount of additional storage
- · Terminology:
 - · position: one of the memory locations in the array
 - element: one of the data items stored in the array
 - · element i: the element at position i
- Goal: minimize the number of **comparisons** *C* and the number of **moves** *M* needed to sort the array.
 - move = copying an element from one position to another example: arr[3] = arr[5];

Defining a Class for our Sort Methods

- Our Sort class is simply a collection of methods like Java's built-in Math class.
- Because we never create Sort objects, all of the methods in the class must be *static*.
 - outside the class, we invoke them using the class name: e.g., Sort.bubbleSort(arr)

Defining a Swap Method

- It would be helpful to have a method that swaps two elements of the array.
- Why won't the following work?

```
public static void swap(int a, int b) {
   int temp = a;
   a = b;
   b = temp;
}
```

An Incorrect Swap Method

```
public static void swap(int a, int b) {
   int temp = a;
   a = b;
   b = temp;
}
```

Trace through the following lines to see the problem:

A Correct Swap Method

· This method works:

```
public static void swap(int[] arr, int a, int b) {
   int temp = arr[a];
   arr[a] = arr[b];
   arr[b] = temp;
}
```

 Trace through the following with a memory diagram to convince yourself that it works:

```
int[] arr = {15, 7, ...};
swap(arr, 0, 1);
```

Selection Sort

- · Basic idea:
 - · consider the positions in the array from left to right
 - for each position, find the element that belongs there and put it in place by swapping it with the element that's currently there
- · Example:

Why don't we need to consider position 4?

Selecting an Element

When we consider position i, the elements in positions
 0 through i - 1 are already in their final positions.

example for i = 3:

0	1	2	3	4	5	6
2	4	7	21	25	10	17

- To select an element for position i:
 - consider elements i, i+1,i+2,...,arr.length 1, and keep track of indexMin, the index of the smallest element seen thus far

indexMin: 3, 5

_	0	1	2	3	4	5	6
	2	4	7	21	25	<i>10</i>	17

- when we finish this pass, indexMin is the index of the element that belongs in position i.
- swap arr[i] and arr[indexMin]:

0	1	2	3	4	5	6				
2	4	7	10	25	21	17				

Implementation of Selection Sort

• Use a helper method to find the index of the smallest element:

```
private static int indexSmallest(int[] arr, int start) {
   int indexMin = start;

   for (int i = start + 1; i < arr.length; i++) {
      if (arr[i] < arr[indexMin]) {
        indexMin = i;
      }
   }
   return indexMin;
}</pre>
```

The actual sort method is very simple:

```
public static void selectionSort(int[] arr) {
    for (int i = 0; i < arr.length - 1; i++) {
        int j = indexSmallest(arr, i);
        swap(arr, i, j);
    }
}</pre>
```

Time Analysis

- Some algorithms are much more efficient than others.
- The *time efficiency* or *time complexity* of an algorithm is some measure of the number of operations that it performs.
 - for sorting, we'll focus on comparisons and moves
- We want to characterize how the number of operations depends on the size, n, of the input to the algorithm.
 - for sorting, n is the length of the array
 - how does the number of operations grow as n grows?
- We'll express the number of operations as functions of n
 - C(n) = number of comparisons for an array of length n
 - M(n) = number of moves for an array of length n

Counting Comparisons by Selection Sort

```
private static int indexSmallest(int[] arr, int start){
   int indexMin = start;

for (int i = start + 1; i < arr.length; i++) {
      if (arr[i] < arr[indexMin]) {
        indexMin = i;
      }
   }

   return indexMin;
}

public static void selectionSort(int[] arr) {
   for (int i = 0; i < arr.length - 1; i++) {
      int j = indexSmallest(arr, i);
      swap(arr, i, j);
   }
}</pre>
```

- To sort n elements, selection sort performs n 1 passes:
 on 1st pass, it performs _____ comparisons to find indexSmallest
 on 2nd pass, it performs ____ comparisons
 - on the (n-1)st pass, it performs 1 comparison
- Adding them up: C(n) = 1 + 2 + ... + (n 2) + (n 1)

Counting Comparisons by Selection Sort (cont.)

 The resulting formula for C(n) is the sum of an arithmetic sequence:

$$C(n) = 1 + 2 + ... + (n - 2) + (n - 1) = \sum_{i=1}^{n-1} i$$

• Formula for the sum of this type of arithmetic sequence:

$$\sum_{i=1}^m i = \frac{m(m+1)}{2}$$

• Thus, we can simplify our expression for C(n) as follows:

$$C(n) = \sum_{i=1}^{n-1} i$$

$$= \frac{(n-1)((n-1)+1)}{2}$$

$$= \frac{(n-1)n}{2}$$

$$C(n) = n^{2}/2 - n/2$$

Focusing on the Largest Term

- When n is large, mathematical expressions of n are dominated by their "largest" term — i.e., the term that grows fastest as a function of n.
- In characterizing the time complexity of an algorithm, we'll focus on the largest term in its operation-count expression.
 - for selection sort, $C(n) = n^2/2 n/2 \approx n^2/2$
- In addition, we'll typically ignore the coefficient of the largest term (e.g., n²/2 → n²).

Big-O Notation

- We specify the largest term using big-O notation.
 - e.g., we say that $C(n) = n^2/2 n/2$ is $O(n^2)$
- Common classes of algorithms:

	<u>name</u>	example expressions	big-O notation
	constant time	1, 7, 10	0(1)
	logarithmic time	$3\log_{10}n$, $\log_2 n + 5$	O(log n)
5	linear time	5n, 10n - 2log ₂ n	O(n)
	nlogn time	$4n\log_2 n$, $n\log_2 n + n$	O(nlog n)
	quadratic time	$2n^2 + 3n, n^2 - 1$	$O(n^2)$
Ť	exponential time	2^{n} , $5e^{n} + 2n^{2}$	$O(c^n)$

- For large inputs, efficiency matters more than CPU speed.
 - e.g., an O(log n) algorithm on a slow machine will outperform an O(n) algorithm on a fast machine

Big-O Time Analysis of Selection Sort

- Comparisons: we showed that $C(n) = \frac{n^2}{2} \frac{n}{2}$
 - selection sort performs $O(n^2)$ comparisons
- Moves: after each of the n-1 passes, the algorithm does one swap.
 - n-1 swaps, 3 moves per swap
 - M(n) = 3(n-1) = 3n-3
 - selection sort performs O(n) moves.
- Running time (i.e., total operations): ?

Mathematical Definition of Big-O Notation

- f(n) = O(g(n)) if there exist positive constants c and n₀ such that f(n) <= cg(n) for all n >= n₀
- Example: $f(n) = n^2/2 n/2$ is $O(n^2)$, because $n^2/2 n/2 \le n^2$ for all $n \ge 0$. c = 1

 Big-O notation specifies an upper bound on a function f(n) as n grows large.

Big-O Notation and Tight Bounds

- Strictly speaking, big-O notation provides an upper bound, *not* a tight bound (upper and lower).
- · Example:
 - 3n 3 is $O(n^2)$ because $3n 3 \le n^2$ for all $n \ge 1$
 - 3n 3 is also $O(2^n)$ because $3n 3 \le 2^n$ for all $n \ge 1$
- However, it is common to use big-O notation to characterize a function as closely as possible – as if it specified a tight bound.
 - for our example, we would say that 3n 3 is O(n)
 - · this is how you should use big-O in this class!

Insertion Sort

- · Basic idea:
 - going from left to right, "insert" each element into its proper place with respect to the elements to its left
 - · "slide over" other elements to make room
- · Example:

Comparing Selection and Insertion Strategies

- In selection sort, we start with the *positions* in the array and *select* the correct elements to fill them.
- In insertion sort, we start with the *elements* and determine where to *insert* them in the array.
- Here's an example that illustrates the difference:

0_	1	2	3	4	5	6
18	12	15	9	25	2	17

- · Sorting by selection:
 - consider position 0: find the element (2) that belongs there
 - consider position 1: find the element (9) that belongs there
 - ..
- Sorting by insertion:
 - consider the 12: determine where to insert it
 - consider the 15; determine where to insert it
 - ...

Inserting an Element

When we consider element i, elements 0 through i – 1
are already sorted with respect to each other.

example for
$$i = 3$$
: $\begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 6 & 14 & 19 & 9 & ... \end{bmatrix}$

- To insert element i:
 - make a copy of element i, storing it in the variable toInsert:

- consider elements i-1, i-2, ...
 - if an element > toInsert, slide it over to the right
 - stop at the first element <= toInsert

		0	1	2	3
toInsert	9	6		14	19

• copy toInsert into the resulting "hole": 6

Insertion Sort Example (done together)

description of steps

					_
12	5	2	13	18	4

Implementation of Insertion Sort

Time Analysis of Insertion Sort

- The number of operations depends on the contents of the array.
- best case: array is sorted
 - · each element is only compared to the element to its left
 - we never execute the do-while loop!
 - C(n) =_____, M(n) = _____, running time = also true if array is almost sorted
- worst case: array is in reverse order
 - each element is compared to all of the elements to its left: arr[1] is compared to 1 element (arr[0]) arr[2] is compared to 2 elements (arr[0] and arr[1]) arr[n-1] is compared to n-1 elements
 - C(n) = 1 + 2 + ... + (n 1) =
 - similarly, $M(n) = \underline{\hspace{1cm}}$, running time = $\underline{\hspace{1cm}}$
- average case: elements are randomly arranged
 - on average, each element is compared to half of the elements to its left
 - still get C(n) = M(n) = ______, running time = _

Shell Sort

- Developed by Donald Shell
- Improves on insertion sort
 - takes advantage of the fact that it's fast for almost-sorted arrays
 - eliminates a key disadvantage: an element may need to move many times to get to where it belongs.
- Example: if the largest element starts out at the beginning of the array, it moves one place to the right on every insertion!

0	1	2	3	4	5	 1000
999	42	56	30	18	23	 11

Shell sort uses larger moves that allow elements to quickly get close to where they belong in the sorted array.

Sorting Subarrays

- · Basic idea:
 - use insertion sort on subarrays that contain elements separated by some increment incr
 - increments allow the data items to make larger "jumps"
 - repeat using a decreasing sequence of increments
- Example for an initial increment of 3:

0	1	2	3	4	5	6	7
36	<u>18</u>	10	27	<u>3</u>	20	9	<u>8</u>

- · three subarrays:
 - 1) elements 0, 3, 6
- 2) elements 1, 4, 7
- 3) elements 2 and 5
- Sort the subarrays using insertion sort to get the following:

_	0	1	2	3	4	5	6	7
	9	<u>3</u>	10	27	<u>8</u>	20	36	<u>18</u>

· Next, we complete the process using an increment of 1.

Shell Sort: A Single Pass

- We don't actually consider the subarrays one at a time.
- For each element from position incr to the end of the array, we insert the element into its proper place with respect to the elements *from its subarray* that come before it.
- The same example (incr = 3):

0	_1_	_2	3	4	5	6	7
36	18	10	27	3	20	9	8
27	18	10	36	<i>3</i>	20	9	8
27	3	<i>10</i>	36	18	20	9	8
27	3	10	<i>36</i>	18	20	9	8
			-				
9	3	10	27	18	20	36	8
9	<u>3</u>	10	27	8	20	36	<u>18</u>

Inserting an Element in a Subarray

• When we consider element i, the other elements in its subarray are already sorted with respect to each other.

example for i = 6: (incr = 3)

the other element's in 9's subarray (the 27 and 36) are already sorted with respect to each other

- To insert element i:
 - make a copy of element i, storing it in the variable toInsert:

		0	1	2	3	4	5	6	7
toInsert	9	27	3	10	<i>36</i>	18	20	9	8

- consider elements i-incr, i-(2*incr), i-(3*incr),...
 - if an element > toInsert, slide it right within the subarray
 - stop at the first element <= toInsert

toInsert 9 0 1 2 3 4 5 6 7 10 27 18 20 36 8

• copy toInsert into the "hole": 9 3 10 27 18 ...

The Sequence of Increments

- Different sequences of decreasing increments can be used.
- Our version uses values that are one less than a power of two.
 - 2^k 1 for some k
 - ... 63, 31, 15, 7, 3, 1
 - can get to the next lower increment using integer division:

$$incr = incr/2;$$

- Should avoid numbers that are multiples of each other.
 - otherwise, elements that are sorted with respect to each other in one pass are grouped together again in subsequent passes
 - · repeat comparisons unnecessarily
 - get fewer of the large jumps that speed up later passes
 - example of a bad sequence: 64, 32, 16, 8, 4, 2, 1
 - what happens if the largest values are all in odd positions?

Implementation of Shell Sort public static void shellSort(int[] arr) { int incr = 1; while (2 * incr <= arr.length) {</pre> incr = 2 * incr; incr = incr - 1; while (incr >= 1) { for (int i = incr; i < arr.length; i++) { if (arr[i] < arr[i-incr]) { int toInsert = arr[i]; }</pre> int j = i; do { arr[j] = arr[j-incr]; j = j - incr; } while (j > incr-1 && toInsert < arr[j-incr]);</pre> arr[j] = toInsert; (If you replace incr with 1 in the for-loop, you get the code for insertion sort.) incr = incr/2; }

Time Analysis of Shell Sort

- · Difficult to analyze precisely
 - typically use experiments to measure its efficiency
- With a bad interval sequence, it's $O(n^2)$ in the worst case.
- With a good interval sequence, it's better than O(n²).
 - at least O(n^{1.5}) in the average and worst case
 - some experiments have shown average-case running times of O(n^{1.25}) or even O(n^{7/6})
- Significantly better than insertion or selection for large n:

n	n ²	n ^{1.5}	n ^{1.25}
10	100	31.6	17.8
100	10,000	1000	316
10,000	100,000,000	1,000,000	100,000
10 ⁶	10 ¹²	10 ⁹	3.16×10^7

 We've wrapped insertion sort in another loop and increased its efficiency! The key is in the larger jumps that Shell sort allows.

Practicing Time Analysis

• Consider the following static method:

 What is the big-O expression for the number of times that statement 1 is executed as a function of the input n?

What about now?

· Consider the following static method:

 What is the big-O expression for the number of times that statement 1 is executed as a function of the input n?

Practicing Time Analysis

• Consider the following static method:

 What is the big-O expression for the number of times that statement 2 is executed as a function of the input n?
 value of i
 number of times statement 2 is executed

Bubble Sort

- · Perform a sequence of passes from left to right
 - · each pass swaps adjacent elements if they are out of order
 - larger elements "bubble up" to the end of the array
- At the end of the kth pass:

after the fourth:

- the k rightmost elements are in their final positions
- we don't need to consider them in subsequent passes.

Example:	0	1	2	3	4
	28	24	37	15	5
after the first pass:	24	28	15	5	<i>37</i>
after the second:	24	15	5	28	<i>37</i>
after the third:	15	5	24	28	<i>37</i>

5

15

28

37

Implementation of Bubble Sort

- Nested loops:
 - the inner loop performs a single pass
 - the outer loop governs:
 - the number of passes (arr.length 1)
 - the ending point of each pass (the current value of i)

Time Analysis of Bubble Sort

- Comparisons (n = length of array):
 - they are performed in the inner loop
 - how many repetitions does each execution of the inner loop perform?

```
value of i
                     number of comparisons
  n – 1
                                   n – 1
  n-2
                                   n-2
                                                  1 + 2 + ... + n – 1 =
    . . .
                                     . . .
     2
                                     2
     1
                 public static void bubbleSort(int[] arr) {
                      for (int i = arr.length - 1; i > 0; i--) {
    for (int j = 0; j < i; j++) {
        if (arr[j] > arr[j+1]) {
                                       swap(arr, j, j+1);
                            }
                      }
                 }
```

Time Analysis of Bubble Sort

- Comparisons: the kth pass performs n k comparisons, so we get $C(n) = \sum_{i=1}^{n-1} i = n^2/2 n/2 = O(n^2)$
- · Moves: depends on the contents of the array
 - · in the worst case:
 - M(n) =
 - · in the best case:
- Running time:
 - C(n) is always $O(n^2)$, M(n) is never worse than $O(n^2)$
 - therefore, the largest term of C(n) + M(n) is $O(n^2)$
- Bubble sort is a quadratic-time or O(n²) algorithm.
 - · can't do much worse than bubble!

Quicksort

- Like bubble sort, quicksort uses an approach based on swapping out-of-order elements, but it's more efficient.
- A recursive, divide-and-conquer algorithm:
 - *divide:* rearrange the elements so that we end up with two subarrays that meet the following criterion:

each element in left array <= each element in right array

example:

- *conquer:* apply quicksort recursively to the subarrays, stopping when a subarray has a single element
- *combine:* nothing needs to be done, because of the way we formed the subarrays

Partitioning an Array Using a Pivot

- The process that quicksort uses to rearrange the elements is known as *partitioning* the array.
- It uses one of the values in the array as a *pivot*, rearranging the elements to produce two subarrays:
 - left subarray: all values <= pivot equivalent to
 - right subarray: all values >= pivot

equivalent to the criterion on the previous page.

- The subarrays will not always have the same length.
- This approach to partitioning is one of several variants.

Possible Pivot Values

- · First element or last element
 - · risky, can lead to terrible worst-case behavior
 - · especially poor if the array is almost sorted

- Middle element (what we will use)
- · Randomly chosen element
- Median of three elements
 - · left, center, and right elements
 - · three randomly selected elements
 - taking the median of three decreases the probability of getting a poor pivot

Partitioning an Array: An Example

• Maintain indices i and j, starting them "outside" the array:

- Find "out of place" elements:
 - increment i until arr[i] >= pivot
 - decrement j until arr[j] <= pivot

Swap arr[i] and arr[j]:

	i					j	
7	9	4	9	6	18	15	12

Partitioning Example (cont.)

- Find: 7 9 4 9 6 18 15 12
- Swap: 7 9 4 6 9 18 15 12
- Find:
 7
 9
 4
 6
 9
 18
 15
 12

 and now the indices have crossed, so we return j.
- Subarrays: left = from first to j, right = from j+1 to last

first			j	i			last
7	9	4	6	9	18	15	12

Partitioning Example 2

j

- Start (pivot = 13): 24 5 2 13 18 4 20 19
- Find: 24 5 2 13 18 4 20 19
- Swap:

 | This is a continuous of the continuo
- Find:

 4 5 2 13 18 24 20 19

 and now the indices are equal, so we return j.
- Subarrays: 4 5 2 13 18 24 20 19

Partitioning Example 3 (done together)

- Start j j (pivot = 5): 4 14 7 5 2 19 26 6
- Find: 4 14 7 5 2 19 26 6

Partitioning Example 4

• Start i j j (pivot = 15): 8 10 7 15 20 9 6 18

• Find: 8 10 7 15 20 9 6 18

```
partition() Helper Method
private static int partition(int[] arr, int first, int last)
    int pivot = arr[(first + last)/2];
    int i = first - 1; // index going left to right
int j = last + 1; // index going right to left
    while (true) {
         do {
         } while (arr[i] < pivot);</pre>
         do {
         } while (arr[j] > pivot);
         if (i < j) {
             swap(arr, i, j);
         } else {
             return j; // arr[j] = end of left array
    }
}
              first
                                              last
                   15
                         4
                             9
                                  6
                                      18
                                               12
```

Implementation of Quicksort

split first (i) last									
	first (j) last								
	7	9	4	6	9	18	15	12	

A Quick Review of Logarithms

- log_bn = the exponent to which b must be raised to get n
 - $log_b n = p$ if $b^p = n$
 - examples: $\log_2 8 = 3$ because $2^3 = 8$ $\log_{10} 10000 = 4$ because $10^4 = 10000$
- Another way of looking at logs:
 - let's say that you repeatedly divide n by b (using integer division)
 - log_bn is an upper bound on the number of divisions needed to reach 1
 - example: log_218 is approx. 4.17 18/2 = 9 9/2 = 4 4/2 = 2 2/2 = 1

A Quick Review of Logs (cont.)

- O(log n) algorithm one in which the number of operations is proportional to log_bn for any base b
- log_bn grows much more slowly than n

n	log₂n
2	1
1024 (1K)	10
1024*1024 (1M)	20
1024*1024*1024 (1G)	30

- Thus, for large values of n:
 - a O(log n) algorithm is much faster than a O(n) algorithm

$$\cdot \log n \ll n$$

- a $O(n \log n)$ algorithm is much faster than a $O(n^2)$ algorithm
 - n * log n << n * n n log n << n²

it's also faster than a $O(n^{1.5})$ algorithm like Shell sort

Time Analysis of Quicksort

- Partitioning an array requires approx. n comparisons.
 - most elements are compared with the pivot once; a few twice
- best case: partitioning always divides the array in half
 - repeated recursive calls give:

- at each "row" except the bottom, we perform n comparisons
- there are _____ rows that include comparisons
- C(n) = ?
- Similarly, M(n) and running time are both ______

Time Analysis of Quicksort (cont.)

- worst case: pivot is always the smallest or largest element
 - one subarray has 1 element, the other has n 1
 - · repeated recursive calls give:

- $C(n) = \sum_{i=2}^{n} i = O(n^2)$. M(n) and run time are also $O(n^2)$.
- average case is harder to analyze
 - $C(n) > n \log_2 n$, but it's still $O(n \log n)$

Mergesort

- The algorithms we've seen so far have sorted the array in place.
 - · use only a small amount of additional memory
- Mergesort requires an additional temporary array of the same size as the original one.
 - it needs O(n) additional space, where n is the array size
- It is based on the process of merging two sorted arrays.
 - · example:

Merging Sorted Arrays

• To merge sorted arrays A and B into an array C, we maintain three indices, which start out on the first elements of the arrays:

- We repeatedly do the following:
 - compare A[i] and B[j]
 - copy the smaller of the two to C[k]
 - · increment the index of the array whose element was copied
 - increment k

Merging Sorted Arrays (cont.)

• Starting point:

After the first copy:

• After the second copy:

• After the sixth copy:

• There's nothing left in B, so we simply copy the remaining elements from A:

Divide and Conquer

- Like quicksort, mergesort is a divide-and-conquer algorithm.
 - divide: split the array in half, forming two subarrays
 - *conquer:* apply mergesort recursively to the subarrays, stopping when a subarray has a single element
 - combine: merge the sorted subarrays

Tracing the Calls to Mergesort

the initial call is made to sort the entire array:

split into two 4-element subarrays, and make a recursive call to sort the left subarray:

split into two 2-element subarrays, and make a recursive call to sort the left subarray:

split into two 1-element subarrays, and make a recursive call to sort the left subarray:

base case, so return to the call for the subarray {12, 8}:

Tracing the Calls to Mergesort

make a recursive call to sort its right subarray:

base case, so return to the call for the subarray {12, 8}:

merge the sorted halves of {12, 8}:

end of the method, so return to the call for the 4-element subarray, which now has a sorted left subarray:

Tracing the Calls to Mergesort

make a recursive call to sort the right subarray of the 4-element subarray

split it into two 1-element subarrays, and make a recursive call to sort the left subarray:

return to the call for the subarray {14, 4}:

make a recursive call to sort its right subarray:

Tracing the Calls to Mergesort

return to the call for the subarray {14, 4}:

merge the sorted halves of {14, 4}:

merge the 2-element subarrays:

Tracing the Calls to Mergesort

end of the method, so return to the call for the original array, which now has a sorted left subarray:

perform a similar set of recursive calls to sort the right subarray. here's the result:

finally, merge the sorted 4-element subarrays to get a fully sorted 8-element array:

Implementing Mergesort

- In theory, we could create new arrays for each new pair of subarrays, and merge them back into the array that was split.
- Instead, we'll create a temp. array of the same size as the original.
 - · pass it to each call of the recursive mergesort method
 - · use it when merging subarrays of the original array:

• after each merge, copy the result back into the original array:

A Method for Merging Subarrays

```
private static void merge(int[] arr, int[] temp,
  int leftStart, int leftEnd, int rightStart, int rightEnd) {
  int i = leftStart; // index into left subarray
      int j = rightStart;  // index into right subarray
int k = leftStart;  // index into temp
      while (i <= leftEnd && j <= rightEnd) {
   if (arr[i] < arr[j]) {</pre>
                 temp[k] = arr[i];
            i++; k++;
} else {
                 temp[k] = arr[j];
                 j++; k++;
            }
       while (i <= leftEnd) {
            temp[k] = arr[i];
            i++; k++;
      while (j <= rightEnd) {
            temp[k] = arr[j];
            j++; k++;
       for (i = leftStart; i <= rightEnd; i++) {</pre>
            arr[i] = temp[i];
}
```


Methods for Mergesort

```
· Here's the key recursive method:
   private static void mSort(int[] arr, int[] temp, int start, int end){
       if (start >= end) { // base case: subarray of length 0 or 1
           return;
      } else {
           int middle = (start + end)/2;
          mSort(arr, temp, start, middle);
          mSort(arr, temp, middle + 1, end);
          merge(arr, temp, start, middle, middle + 1, end);
      }
  }
             start
                                                         end
              12
                                                   2
                                                         27
 arr:
                     8
                          14
                                 4
                                       6
                                             33
temp:
```

Methods for Mergesort

· Here's the key recursive method:

 We use a "wrapper" method to create the temp array, and to make the initial call to the recursive method:

```
public static void mergeSort(int[] arr) {
   int[] temp = new int[arr.length];
   mSort(arr, temp, 0, arr.length - 1);
}
```

Time Analysis of Mergesort

- Merging two halves of an array of size n requires 2n moves.
 Why?
- Mergesort repeatedly divides the array in half, so we have the following call tree (showing the sizes of the arrays):

- at all but the last level of the call tree, there are 2n moves
- · how many levels are there?
- M(n) = ?
- C(n) = ?

Summary: Sorting Algorithms

algorithm	best case	avg case	worst case	extra memory
selection sort	O(n ²)	O(n ²)	O(n ²)	0(1)
insertion sort	O(n)	O(n ²)	O(n ²)	0(1)
Shell sort	O(n log n)	$O(n^{1.5})$	$O(n^{1.5})$	0(1)
bubble sort	O(n ²)	O(n ²)	O(n ²)	0(1)
quicksort	O(n log n)	O(n log n)	O(n ²)	best/avg: O(log n) worst: O(n)
mergesort	O(n log n)	O(n log n)	O(nlogn)	O(n)

- · Insertion sort is best for nearly sorted arrays.
- Mergesort has the best worst-case complexity, but requires
 O(n) extra memory and moves to and from the temp. array.
- · Quicksort is comparable to mergesort in the best/average case.
 - efficiency is also O(n log n), but less memory and fewer moves
 - · its extra memory is from...
 - with a reasonable pivot choice, its worst case is seldom seen

Comparison-Based vs. Distributive Sorting

- All of the sorting algorithms we've considered have been comparison-based:
 - treat the keys as wholes (comparing them)
 - don't "take them apart" in any way
 - all that matters is the relative order of the keys, not their actual values
- No comparison-based sorting algorithm can do better than O(n log₂n) on an array of length n.
 - $O(n \log_2 n)$ is a *lower bound* for such algorithms.
- Distributive sorting algorithms do more than compare keys; they perform calculations on the values of individual keys.
- Moving beyond comparisons allows us to overcome the lower bound.
 - tradeoff: use more memory.

Distributive Sorting Example: Radix Sort

 Relies on the representation of the data as a sequence of m quantities with k possible values.

Examples: m k
 integer in range 0 ... 999 3 10
 string of 15 upper-case letters 15 26
 32-bit integer 32 2 (in binary)
 4 256 (as bytes)

 Strategy: Distribute according to the last element in the sequence, then concatenate the results:

> 33 41 12 24 31 14 13 42 34 get: 41 31 | 12 42 | 33 13 | 24 14 34

• Repeat, moving back one digit each time:

get: | |

Analysis of Radix Sort

- Recall that we treat the values as a sequence of m quantities with k possible values.
- Number of operations is O(n*m) for an array with n elements
 - better than $O(n \log n)$ when $m < \log n$
- · Memory usage increases as k increases.
 - k tends to increase as m decreases
 - · tradeoff: increased speed requires increased memory usage

Big-O Notation Revisited

- We've seen that we can group functions into classes by focusing on the fastest-growing term in the expression for the number of operations that they perform.
 - e.g., an algorithm that performs $n^2/2 n/2$ operations is a $O(n^2)$ -time or quadratic-time algorithm
- · Common classes of algorithms:

	<u>name</u>	example expressions	big-O notation
	constant time	1, 7, 10	0(1)
	logarithmic time	3log ₁₀ n, log ₂ n + 5	O(log n)
	linear time	5n, 10n - 2log ₂ n	O(n)
_	nlogn time	$4n\log_2 n$, $n\log_2 n + n$	O(nlog n)
slower	quadratic time	$2n^2 + 3n$, $n^2 - 1$	$O(n^2)$
S	cubic time	$n^2 + 3n^3$, $5n^3 - 5$	$O(n^3)$
*	exponential time	2^{n} , $5e^{n} + 2n^{2}$	$O(c^n)$
	factorial time	3n!, 5n + n!	O(n!)

How Does the Number of Operations Scale?

- Let's say that we have a problem size of 1000, and we measure the number of operations performed by a given algorithm.
- If we double the problem size to 2000, how would the number of operations performed by an algorithm increase if it is:
 - O(n)-time
 - O(n2)-time
 - O(n³)-time
 - O(log₂n)-time
 - O(2ⁿ)-time

How Does the Actual Running Time Scale?

- How much time is required to solve a problem of size n?
 - assume that each operation requires 1 μsec (1 x 10⁻⁶ sec)

	time	problem size (n)							
fu	ınction	10	20	30	40	50	60		
	n	.00001 s	.00002 s	.00003 s	.00004 s	.00005 s	.00006 s		
	n ²	.0001 s	.0004 s	.0009 s	.0016 s	.0025 s	.0036 s		
	n ⁵	.1 s	3.2 s	24.3 s	1.7 min	5.2 min	13.0 min		
	2 ⁿ	.001 s	1.0 s	17.9 min	12.7 days	35.7 yrs	36,600 yrs		

- · sample computations:
 - when n = 10, an n² algorithm performs 10^2 operations. $10^2 * (1 \times 10^{-6} \text{ sec}) = .0001 \text{ sec}$
 - when n = 30, a 2^n algorithm performs 2^{30} operations. 2^{30} * (1 x 10^{-6} sec) = 1073 sec = 17.9 min

What's the Largest Problem That Can Be Solved?

• What's the largest problem size n that can be solved in a given time T? (again assume 1 μ sec per operation)

time	time available (T)							
function	1 min	1 hour	1 week	1 year				
n	60,000,000	3.6 x 10 ⁹	6.0 x 10 ¹¹	3.1 x 10 ¹³				
n ²	7745	60,000	777,688	5,615,692				
n ⁵	35	81	227	500				
2 ⁿ	25	31	39	44				

- sample computations:
 - 1 hour = 3600 sec that's enough time for $3600/(1 \times 10^{-6}) = 3.6 \times 10^{9}$ operations
 - n² algorithm:

$$n^2 = 3.6 \times 10^9$$
 \rightarrow $n = (3.6 \times 10^9)^{1/2} = 60,000$

• 2ⁿ algorithm:

$$2^{n} = 3.6 \times 10^{9} \rightarrow n = \log_{2}(3.6 \times 10^{9}) \sim 31$$