SOOS005 D3012, JULY 1986

- Compatible with TTL Inputs
- High Current Transfer Ratio . . . 800% Typ at I_F = 0.5 mA
- High-Speed Switching . . . 100 kbit/s Typ
- High Common-Mode Transient Immunity . . . 500 V/μs Τγρ
- High-Voltage Electrical Insulation . . . 3000 V DC Min
- High Output Current Rating of 60 mA
- UL Recognized . . . File Number 65085

description

These devices are useful where large common-mode input signals exist, and in applications that require high-voltage isolation between circuits. Applications include line receivers, telephone ring detectors, power line monitors, high-voltage status indicators, and circuits that require isolation between input and output.

The 6N138 and 6N139 high-gain optocouplers each consists of a GaAsP light-emitting diode and an integrated high-gain photon detector composed of a photodiode and a split-Darlington output stage. The VCC and output terminals may be tied together to achieve conventional photodarlington operation. A separate base access terminal allows gain-bandwidth adjustments.

The 6N138 is designed for use primarily in TTL applications. An LED input current of 1.6 milliamperes and a current-transfer ratio of 300% from 0°C to 70°C allows operation with one TTL load input and one TTL load output utilizing a 2.2-k Ω pullup resistor.

The 6N139 is designed for use in CMOS, LSTTL, or other low-power applications. This device has a minimum current-transfer ratio of 400% for only 0.5 milliampere input current over an operating temperature range of 0°C to 70°C.

*mechanical data

*JEDEC registered data. This data sheet contains all applicable registered data in effect at the time of publication

6N138, 6N139 OPTOCOUPLERS/OPTOISOLATORS

schematic

*absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)

Supply and output voltage range, VCC and VO: 6N138 0.5 V to 7 V
6N139
Reverse input voltage
Emitter-base reverse voltage
Peak input forward current (pulse duration = 1 ms, 50% duty cycle)
Peak transient input forward current (pulse duration ≤ 1 µs, 300 pps) 1 A
Average forward input current at (or below) 50 °C free-air temperature (see Note 1) 20 mA
Output current at (or below) 25 °C free-air temperature (see Note 2) 60 mA
Input power dissipation at (or below) 50 °C free-air temperature (see Note 3)
Output power dissipation at (or below) 25 °C free-air temperature (see Note 4) 100 mW
Storage temperature range
Operating temperature range
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds

- NOTES 1. Denate linearly above 50 °C free-air temperature at a rate of 0.4 mA/ °C. 2. Denate linearly above 25 °C free air temperature at a rate of 0.8 mA/ °C.

 - 3. Denate linearly above 50 °C free air temperature at a rate of 0.7 mW/ °C.
 - 4. Derate linearly above 25 °C free-air temperature at a rate of 1.33 mW: °C.
- *JEDEC registered data.

electrical characteristics over operating free-air temperature range of 0 °C to 70 °C (unless otherwise noted)

	OAD AMETED	TEST CONDITIONS			6N138			6N139		
	PARAMETER			MIN	MIN TYPT MAX		MIN TYPT MAX		UNIT	
*VF	Input forward voltage	lp = 1.6 mA,	TA = 25°C		1.5	1.7		1.5	1.7	V
αVF	Temperature coefficient of forward voltage	IF = 1.6 mA			-1.8			- 1.8		mV/°C
*VBR	Input breakdown voltage	IR = 10 μA,		5			5			V
V _O L	Low-level output voltage	V _{CC} = 4.5 V, I _{OL} = 4.8 mA,	•		0.1	0.4				
		$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 6.4 \text{ mA},$	I _B = 0					0.1	0.4	٧
		$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 15 \text{ mA},$	ig = 0					0.1	0.4	
		$V_{CC} = 4.5 \text{ V},$ $I_{OL} = 24 \text{ mA},$	I _B = 0					0.2	0.4	
*Іон	High-level output current	$V_{CC} = 7 V$, $I_F = 0$,	$V_O = 7 V$, $I_B = 0$		0.1	250			<u>.</u>	μΑ
-011		$V_{CC} = 18 V$, $I_F = 0$,	IB = 0					0.05	100	
*ICCH	Supply current, high-level output	V _{CC} = 5 V, I _F = 0,	le = 0		10			10		nA
^I CCL	Supply current, low-level output	V _{CC} = 5 V, I _F = 1.6 mA,	IB = 0		0.2			0.2		mA
*CTR	Current transfer ratio	V _{CC} ≈ 4.5 V, I _F = 0.5 mA, See Note 5	_		<u></u>		400%	1650%		
		V _{CC} = 4.5 V, I _F = 1.6 mA, See Note 5	_	300%	1300%		500%	1400%		
rio .	Input-output resistance	V _{IO} = 500 V	See Note 6		1012			1012	·	Ω
•110	Input-output insulation leakage current	V _{IO} = 3000 V, T _A = 25°C, See Note 6				1			1	μΑ
Ci	Input capacitance	V _F = 0.	f = 1 MHz		60	·		60		pF
Cio	Input-output capacitance	f = 1 MHz,	See Note 6	1	0.6			0.6		pF

^{*}JEDEC registered data † All typical values are at V_{CC} = 5 V, T_A = 25 °C, unless otherwise noted. NOTES. 5. Current transfer ratio is defined as the ratio of output collector current I_O to the forward LED input current I_F times 100%.

^{6.} These parameters are measured between pins 2 and 3 shorted together and pins 5, 6, 7, and 8 shorted together.

6N138, 6N139 OPTOCOUPLERS/OPTOISOLATORS

*switching characteristics at VCC = 5 V, TA = 25 °C

	0.00000	TEST COMPLETIONS		6N138			6N139			
PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	UNIT
*tPHL	Propagation delay time, high-to-low level output	lp = 1.6 mA,	$R_L = 2.2 k\Omega$,		2	10			·	
		See Figure 1			2	10	İ			
		lf = 0.5 mA,	$R_L = 4.7 \text{ k}\Omega$,					4	25	_
		See Figure 1						4	23	μS
		IF = 12 mA,	R _L = 270 Ω,			0.3	1			
		See Figure 1						0.3	'	
	Propagation delay time,	lp = 1.6 mA,	$R_L = 2.2 \text{ k}\Omega$			35				
		See Figure 1		4	35					
44		$l_F = 0.5 \text{ mA},$	$R_L = 4.7 k\Omega$					10	60	μS
*tPLH		See Figure 1		ļ						
		lç = 12 mA,	$R_L = 270 \Omega$,					3.5	7	
		See Figure 1						4.5	. ,	
dVa.	Common-mode input	$V_{CM} = 10 \text{ Vp-p}$	le = 0,							
dVCM (H)	Transient immunity,	$R_L = 2.2 \text{ k}\Omega$.	See Notes 7 and 8.		500			500		V/μ5
Oi.	high-level output	See Figure 2								
d)/ora	Common-mode input	V _{CM} = Vp-p, See Figure 2,						500		
dt ILI	transient immunity,		$R_L = 2.2 \text{ k}\Omega$, See Notes 7 and 8		- 500					V/µs
	low-level output									

^{*}JEDEC registered data

NOTES: 7. Common-mode transient immunity, high-level output, is the maximum rate of rise of the common-mode input voltage that does not cause the output voltage to drop below 2 V. Common mode input transient immunity, low level output, is the maximum rate of fall of the common mode input voltage that does not cause the output voltage to rise above 0 8 V.

8. In applications where dV/d1 may exceed 50,000 V/µs (such as static discharge) a series resistor, R_{CC}, should be included to protect the detector IC from destructively high surge currents. The recommended value is:

$$R_{CC} \approx \frac{1}{0.15 \, (\text{p (mA)})} \, k\Omega$$

PARAMETER MEASUREMENT INFORMATION

NOTE A. $C_{\rm L}$ includes probe and stray capacitances.

FIGURE 1. SWITCHING TEST CIRCUIT AND WAVEFORMS

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTE A: In applications where dV/dt may exceed 50,000 $V_{\ell\mu}s$ (such as static discharge) a series resistor, R_{CC}, should be included to protect the detector IC from destructively high surge currents. The recommended value is:

$$R_{CC} = -\frac{1}{0.15 \, I_F \, (mA)} \, k \Omega$$

FIGURE 2. TRANSIENT IMMUNITY TEST CIRCUIT AND WAVEFORMS

TYPICAL CHARACTERISTICS

6N138 CURRENT TRANSFER RATIO

6N139 CURRENT TRANSFER CHARACTERISTICS

6N139 CURRENT TRANSFER RATIO vs

FIGURE 4

IF—Input Diode Forward Current—mA FIGURE 6

TYPICAL CHARACTERISTICS

6N139

INPUT DIODE FORWARD CURRENT

6N138 PROPAGATION DELAY TIMES VS

FIGURE 8

FIGURE 10

TYPICAL CHARACTERISTICS

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated