

CV Lab Project, Lab 2: Intermediate Results

Group A0: Pablo Díez Arrizabalaga, Christian Willdoner, René H. Reich, Laura Legat and Daniel Schatzl

JOHANNES KEPLER UNIVERSITY LINZ

Altenberger Straße 69 4040 Linz, Austria jku.at

First approach

Autoencoder → Bad reproduction of RGB images

Good reproduction of Anomaly images (Binary images)

Problems extracting more info

Modified mahalanobis RX detector

Overview of results

- > Average precision: 43.33%
- Execution time*: ~1sec
 [* image merging time excluded]
- No learning included
- Detection of most of the static objects are excluded
- Problems detecting people with slight movement respect to the background

No detection

Slowly moving person not detected

Successful detection

Approach overview

- Anomalies from Mahalanobis distance
- ➤ Using timesteps 0, 3 and 6 to detect static/moving objects
- Remove anomalies that are similar to background using first-order statistics
- Possible improvement: use of all timesteps to detect moving objects more accurately

Unfiltered anomaly image

Anomaly image mask

JOHANNES KEPLER UNIVERSITY LINZ

Anomaly detection algorithm

