Reciprocal basis

Let $\{e_i\} \subset V$ be a basis and $\cdot : V \times V \to \mathbb{R}$ a bilinear form.

A reciprocal basis $\{\overline{e}_i\} \subset V$ with respect to $\{e_i\}$ and \cdot satisfies $e_i \cdot \overline{e}_i = \delta_{ij}$.

The basis $\{e_i\}$ need not be orthogonal.

Solving for the reciprocal basis

There exists some matrix A such that $u \cdot v = u^T A v$.

Using matrix notation, $E=(e_1 \cdots e_n)$ is an $n \times n$ matrix.

Define:

$$G = E^T A E \iff G_{ij} = e_i^T A e_j = e_i \cdot e_j$$

We want to find $\overline{E} = (\overline{e}_1 \cdots \overline{e}_n)$ so that:

$$I = E^T A \overline{E} \iff \delta_{ij} = e_i^T A \overline{e}_j = e_i \cdot \overline{e}_j$$

Solve this as $\overline{E} = \left(E^TA\right)^{-1}I = \left(E^TAEE^{-1}\right)^{-1} = \left(GE^{-1}\right)^{-1} = EG^{-1} \Leftrightarrow \overline{e}_i = e_iG^{-1}.$

$$\overline{E} = EG^{-1} \Longleftrightarrow \overline{e}_k = e_k \big[e_i \cdot e_j \big]_{ij}^{-1}$$

See [reciprocal-basis-test] for Julia example.