CS M51A and EE M16 Summer 2016 Section 1 Logic Design of Digital Systems

Dr. Yutao He

Verilog Lab #2 - Design of Combinational Systems

Due: July 31st, 2016

(1)	Name:	Zhou	∟ Mingh	ong
J 850		Last	First	_
			424670	
	Signature	: Mugl	rong	-
(2)	Name:	Wu	Michael	
		Last	First	
	Student I	D: 404	1751542	
	Signature	· Mud	Lod ruy	_
Date	e:	07/23	3/16	

Result	
Correctness	
Creativity	
Report	
Total Score	

Abstract

The objective of this project is to build a BCD-to-seven-segment display decoder. This display decoder is normally used in billboards for displaying a decimal digit. It consists of 7 different components whose output are dependent on the input of the decimal digit. The decimal digit is encoded by 4 binary bits. Therefore, for each component, there are 4 inputs denoted by X3,X2,X1 and X0, which dictate whether the component is on (1) or off (0).

The Switching Function of the Circuit

$$b = ((X2' + X1 + X0')' + (X2' + X1' + X0)')'$$

$$c = ((X2 + X1' + X0)' + 0)'$$

$$d = ((X2' + X1 + X0)' + (X2' + X1' + X0')' + (X3 + X2 + X1 + X0')')'$$

$$g = ((X3 + X2 + X1)' + (X2' + X1' + X0')')'$$

$$e = (X0 + (X2' + X1)')'$$

$$f = ((X1' + X0')' + (X2 + X1')' + (X3 + X2 + X0')')$$

The Verilog Code of the Circuit

```
//csm51a_proj2.v
//Michael Wu, ID: 404751542
//Minghong Zhou, ID: 004424670
`timescale 1ns / 1ps
module csm51a_proj2(
      input [3:0]x,
      output a,
      output b,
      output c,
      output d,
      output e,
      output f,
      output g
      );
wire term0=\sim(\sim x[2]|\sim x[1]|\sim x[0]);
assign a=\sim(\sim(\sim x[2]|x[1]|x[0])|\sim(x[3]|x[2]|x[1]|\sim x[0]));
assign b=\sim(\sim(\sim x[2]|x[1]|\sim x[0])|\sim(\sim x[2]|\sim x[1]|x[0]));
assign c=((x[2]|x[1]|x[0])|0);
assign d=(((x[2]|x[1]|x[0])|term0|(x[3]|x[2]|x[1]|(x[0]));
assign e=\sim(x[0]|\sim(\sim x[2]|x[1]));
assign f=((x[1]|x[0])|(x[2]|x[1])|(x[3]|x[2]|x[0]));
assign g=\sim(\sim(x[3]|x[2]|x[1])|term0);
endmodule
```

The Simulation Result

This test bench tested the module for the decimal digits 0 to 9. It converts the decimal values to binary, then plugs it into the module. The top row shows the values of the input, and the waveforms below show the output of a,b,c,d,e,f, and g. The first row is a, the second row is b, the third row is c, etc. When the waveform is high it corresponds to an output of 1, and when it is low it corresponds to an output of 0. The waveforms correctly represent the associated truth table that we were trying to implement.

The Design Review

This project was fairly straightforward. We broke the project into two separate steps. First we determined the minimum two level OR-AND switching function for each component from a to g using k-maps. Then we converted these switching functions to NOR-NOR circuit networks. This divide-and-conquer approach simplified the project and minimized the number of mistakes we made in the implementation. In the implementation, we attempted to use the least amount of gates as possible. Therefore, we examined the switching function for each component to see if there were any repeating terms that we could implement with a single NOR gate. We realized that component d and g share the same term (X2' + X1' + X0'). This observation enabled us to reduce the number of gates used by 1.

We learned how to design a module that has practical use in real life. This project taught us to be very careful when implementing a digital network, and helped us practice minimization. The most important aspects of the project for us was the minimization. That was the part we spent the most time on. The actual code did not take very long, because all we had to do was copy the switching functions we wrote with pencil and paper.

		hetailed design worksheet
`	inputs and	loytpues
	16 10 16 10 10	
	4 bit input 7 bit output	
	•	
	encoding sun	eme
	input	
	decimal digit	binary bits
	U	0000
	1	0001
	2	2011
	4	0 190
<u></u>	5	0101
	7	0.111
	<u> </u>	1000
	q	1001
	OUTPUT	
	LED state	binary bit
	01	binary bit
	off	<u>ව</u>
		v ble
	THE STATE OF THE S	put -
	AT A A	

tr	4th table
inout	a bidefy
X - X X X X X	a bidefy
03000	1 11 1116
0001.	0 11 2000
0 0 10	1 1 01101
0 0 1 1	111001
0 100	0 1 1 0 0 1 1
0 1 0 1	1011011
0 4 10	1011111
2 4 11	111000
1000	111111
4001	1111011
1 0 10	
1 0 1 1	
1.100	
1 101	
1110	- ^
1111	~
	·
	~
(A) 1 (A)	
	· .
	· ·

	a= M1,4)	Minimization	
_	Xo	$\alpha = (X_2 + X_1 + X_0)(X_3 + X_2 + X_1 + X_0)$	
_			
_	(0) 1 1 1 X ₂		
-	X3		
-	X,		

	b=M(J,61		
	Xo	$b = (X_2^1 + X_1 + X_0^1)(X_2^1 + X_1 + X_0)$	
			*
-	1 (0) 1 (0) X2		·····
	X		
_	XI		
	· ·		•
_	C= M(2)		***************************************
_	Xo	C = '3 - X2 + X1 + X0	
-			
-	V. - - X2		
1	1-X3 - A - A		
1	XI		
	d = M(1, 4, 7)		
-	<u></u>	$d = (x_2' + x_1 + x_0)(x_2' + x_1' + x_0')(x_3 + x_2 + x_1 + x_0)$	(a)
-			***************************************
1	X3 X2		
-			
	XI		

-

4

MiniMization of output 9.

Using K-maps
J Ya
X3x3 00 01 11 10 Prime implicates
00 @ 0 2 1 (X=+x=+X4) (X=+X1+X1)
01 1 0 1
11 Lessential prime implicates
20 1 1 (Xzt /2 tx2) (x2 tx2 tx3)
9= (X2+12+X1)(X2+12)+12)
Mini mization of output f
Using K-nups
$J_{,V}$
X3X5 00 01 DL 10 Frink 1Mp1,1005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
24 (X3+X2+X1)
10.1 1 FT escential prime
implicates
f=(x2+x1)(x2+x1)(x2+x1)(x2+x1), (x2+x1),
(Xz+Xz+X4)
MiniMization of outfute
USIACI K-marps prime implicates
(X ₀) (X ₂ +X ₄)
xxxxxx 00 01 21 10
00 1 0 0 1 essential prime
01 0002 implicates
10 1 0 (X6) (X2) + X0
$\mathcal{L} = (X_0')(X_1' + X_1)$
×,''

The code for the extra credit is below:

```
module mojo_top(
     // 50MHz clock input
     input clk,
     // Input from reset button (active low)
     input rst_n,
     // clock is high when AVR is ready
     input cclk,
     // We send the outputs to the 8 LEDs
     output[7:0]led,
     // AVR SPI connections
     output spi_miso,
     input spi_ss,
     input spi_mosi,
     input spi_sck,
     // AVR ADC channel select
     output [3:0] spi_channel,
     // Serial connections
     input avr_tx,
     output avr_rx,
     input avr_rx_busy
     );
wire rst = ~rst_n; // make reset active high
reg clk2 = 1'b0;
reg[3:0] x = 4'b000;
reg[23:0] ii = 24'b0;
//every press +1
always@(posedge clk)
begin
     if(ii<12500000)
          begin ii <= ii + 1; end
     else if(ii == 12500000)
           begin ii <= 24'b0 ; clk2 <= ~clk2; end
     end
     //4Hz signal
     always@(posedge clk2)
     begin
           if(rst)
                begin x <= x + 1; end
```

```
end
                               // these signals should be high-z when not used
                              assign spi_miso = 1'bz;
                              assign avr_rx = 1'bz;
                               assign spi_channel = 4'bzzzz;
                              assign led[7]=1'b0;
                              assign led[6] =\sim(\sim(x[3]|x[2]|x[1])|\sim(\sim x[2]|\sim x[1]|\sim x[0]));
                               assign led[5]
=\sim(\sim(\sim x[1]|\sim x[0])|\sim(x[2]|\sim x[1])|\sim(x[3]|x[2]|\sim x[0]));
                              assign led[4] = \sim (\sim(x[3]|\sim x[0])|\sim(x[2]|\sim x[0])|\sim(\sim x[2]|x[1]));
                               assign led[3]
                   = ((x[3]|x[2]|x[1]| \sim x[0]) | \sim (x[3]| \sim x[2]|x[1]|x[0]) | \sim (x[3]| \sim x[2]| 
                   x[1]|\sim x[0]);
                              assign led[2] =\sim(\sim(x[3]|x[2]|\sim x[1]|x[0])|0);
                              assign led[1]
                   =\sim(\sim(x[3])\sim x[2])\times[1]\sim x[0])\sim(x[3])\sim x[2]\sim x[1]\times[0]);
                              assign led[0] = \sim (
                  \sim (x[3]|x[2]|x[1]|\sim x[0])|\sim (x[3]|\sim x[2]|x[1]|x[0]));
endmodule
```

The outputs of the board are the leds on the right side, and the first 7 correspond to a,b,c,d,e,f, and g from top to bottom. The last led on the bottom is not used and is always off. Below are the pictures of the mojo board:

Input: 1

Input: 2

Input: 3

Input: 4

Input: 5

Input: 6

Input: 7

Input: 8

Input: 9

