- 1. 트랜잭션의 ACID 특성 중 DBMS의 회복(recovery) 기능과 가장 밀접한 관련이 있는 특성을 옳게 짝지은 것은?
 - ① 원자성(atomicity), 일관성(consistency)
 - ② 일관성(consistency), 격리성(isolation)
 - ③ 격리성(isolation), 영속성(durability)
 - ④ 영속성(durability), 원자성(atomicity)
- 2. <보기>에서 학생 테이블과 학생 테이블을 참조하는 테이블을 함께 삭제하기 위한 SQL문에 들어갈 단어를 옳게 짝지은 것은?

3. 데이터베이스 설계 단계를 순서대로 바르게 나열한 것은?

CASCADE

- ① 요구사항 분석 → 개념적 설계 → 논리적 설계 → 물리적 설계 → 구현
- ② 요구사항 분석 → 개념적 설계 → 물리적 설계 → 논리적 설계 → 구현
- ③ 요구사항 분석 → 논리적 설계 → 물리적 설계 → 개념적 설계 → 구현
- ④ 요구사항 분석 \rightarrow 논리적 설계 \rightarrow 개념적 설계 \rightarrow 물리적 설계 \rightarrow 구현
- 4. 키의 관계로 가장 옳지 않은 것은?
 - ① 후보키 ⊃ 기본키

4 DELETE

- ② 후보키 ⊃ 대체키
- ③ 대체키 ⊃ 기본키
- ④ 슈퍼키 ⊃ 후보키
- 5. 파일 처리 시스템과 비교하여 데이터베이스 시스템이 갖는 장점으로 옳은 것들을 <보기>에서 모두 고른 것은?

一<보기>一

- 기. 데이터의 일관성(consistency)을 유지하는 것이 용이하다.
- L. 데이터의 무결성(integrity)을 유지하는 것이 용이 하다.
- 다. 다수의 사용자들이 동시에, 동일한 데이터에 접근 하는 상황을 잘 처리한다.
- ① 7, ㄴ
- ② 7, ⊏
- ③ ∟, ⊏
- ④ ¬, ∟, ⊏

6. <보기 1>의 두 릴레이션 C, O에 대한 연산 후 <보기 2>의 결과 릴레이션을 얻기 위한 연산자로 가장 옳은 것은?

----<보기 1>---

ID	NAME	AGE	GRADE
AAA	TOM	22	S
BBB	JAMES	23	A
CCC	AMY	21	В
DDD	ANNE	20	В

NO	ID	ORDER	AMOUNT
10001	AAA	BOOK	2
10002	CCC	PIZZA	1
10003	BBB	SNACK	10

- <보기 2>-결과 릴레이션 ID NAME AGE GRADE NO ORDER AMOUNT AAA TOM 22 10001 BOOK S BBB JAMES 23 10003 SNACK 10 Α CCC AMY 10002 PIZZA 21 В 1

① σ

 \bigcirc

③ ÷

- \bigcirc π
- 7. 〈보기〉의 내용을 표현한 ER 다이어그램으로 가장 옳은 것은?

모든 기계는 최소 한 종류 이상의 물품을 생산한다. 모든 종류의 물품은 기계를 사용하지 않고 생산되거나, 최대 하나의 기계에서만 생산된다.

- 8. 데이터 사전 및 데이터 디렉터리에 대한 설명으로 가장 옳은 것은?
 - ① 데이터 사전은 DBMS가 스스로 생성하고 유지한다.
 - ② 데이터 사전은 데이터에 접근하는 데 필요한 위치 정보를 관리한다.
 - ③ 데이터 사전에 DBMS는 접근할 수 있지만, 일반 사용자는 접근할 수 없다.
 - ④ 데이터 디렉터리에는 일반 사용자가 접근할 수 있다.

데이터베이스론(7급)

B책형

2/3쪽

9. 데이터베이스 스키마(database schema)가 <보기>와 같을 때, 문법적으로 가장 옳지 않은 관계 대수(relational algebra) 식은?

---<보기>-

professor (id, name, department, tel) teach(id, course_id, section_id, semester, year) section(course_id, section_id, semester, year, classroom_no)

- ① $\pi_{\text{name}}(\sigma_{\text{department='Biology'}})$ (professor))
- ② $\pi_{\text{id, name, tel}}(\text{professor})$
- ③ $\pi_{\text{course_id}}(\sigma_{\text{semester='Fall'}} \land \text{year=2020}(\text{section}))$ U $\pi_{\text{course_id, section_id}}(\sigma_{\text{semester='Spring'} \land \text{year=2021}}(\text{section}))$
- $\bigoplus \sigma_{\text{professor.id=teach.id}}(\text{professor} \times \text{teach})$
- 10. 2단계 로킹 규약(2PLP: two-phase locking protocol)을 준수하여 <보기>의 연산을 실행하기 위하여 ⊙, ⊙, ⊙, ②에 들어갈 용어를 가장 옳게 짝지은 것은? (단, lock-X는 배타로크이고, lock-S는 공유로크이다.)

 \bigcirc

(L)

 \Box

- \bigcirc lock-X(B) lock-X(A) unlock(B) unlock(A)
- ② lock-S(B) lock-X(A) unlock(B) unlock(A)
- ③ lock-X(B) unlock(B) lock-S(A) unlock(A)
- 4 lock-S(B) unlock(B) lock-S(A) unlock(A)
- 11. 데이터 마이닝(data mining)의 연관규칙(association rules)에 대한 〈보기〉의 설명에서, (개와 (내가 설명하는 용어로 가장 옳은 것은?

-----<보기>---

- (개) 전체 거래 중에서 항목집합 X와 Y를 모두 포함하는 거래의 비율
- (나) 항목집합 X를 포함하는 거래 중에서 항목집합 Y도 포함하는 거래의 비율

(7)

 (\downarrow)

- 지지도(support) 1
- 향상도(lift)
- 2 지지도(support)
- ③ 신뢰도(confidence) ④ 신뢰도(confidence)
- 향상도(lift)
- 신뢰도(confidence) 지지도(support)

12. 릴레이션 R(A, B, C, D, E)에 대해서 <보기>와 같이 함수적 종속성(functional dependency)이 있을 때, 릴레이션 R을 릴레이션 R1과 R2로 나눈 것 중 무손실 분해(lossless decomposition) 성질을 만족하는 것은?

> -<보기>- $A \rightarrow CD$

- ① R1(A, C, D), R2(A, B, E)
- ② R1(A, C, D), R2(B, C, E)
- ③ R1(A, D, E), R2(A, B, C)
- 4 R1(A, D, E), R2(B, C, D)
- 13. 관계형 데이터베이스 관리 시스템(RDBMS)에 해당 하지 않는 것은?
 - ① Oracle
- ② IMS
- 3 MySQL
- ④ DB2
- 14. <보기 1>의 customer 릴레이션에서 <보기 2>의 SQL 질의를 수행할 때 예상되는 출력 결과는?

customer							
id	name	field_interest	point				
1	Sally	Comp. Sci.	7,000				
3	Mozart	Music	1,000				
8	Nick	History	2,200				
12	Brook	Fiction	5,800				
13	Katz	Finance	6,000				
16	Jenny	Health	5,300				
19	Einstein	Physics	3,100				
20	Crick	Music	2,500				
24	Ella	Comp. Sci.	8,000				
27	James	History	4,200				
31	Hailey	Fiction	3,700				
34	El Said	Finance	1,100				

-<보기 2>

select count (distinct id) from customer where field_interest like '%ic%';

① 1

② 3

3 5

- 4 7
- 15. 빅데이터(big data)를 저장, 처리 및 관리하기 위해 사용되는 기술을 <보기>에서 모두 고른 것은?

-----<보기>-----

- ¬. HDFS(Hadoop Distributed File System)
- ∟. MapReduce
- ⊏. ZooKeeper
- \bigcirc

② ¬, ⊏

- ③ ∟, ⊏
- ④ ¬, ∟, ⊏

- 16. 데이터베이스 시스템의 회복(recovery)에 대한 설명 으로 가장 옳지 않은 것은?
 - ① 장애로 인해 손상된 데이터베이스를 손상되기 이전의 정상적 상태로 복구하는 것이다.
 - ② SW 오류는 물론 HW 오류까지 대비한다.
 - ③ 검사점(checkpoint) 기법의 목적은 복구 작업에 소요 되는 시간을 줄이기 위한 것이다.
 - ④ WAL(Write-Ahead Logging) 기법은 데이터를 갱신한 후에, 로그에 기록을 남기는 방법이다.
- 17. <보기>에서 설명하는 생년월일, 주소의 속성 종류는?

- < 보기>-

- 고객 개체의 <u>생년월일</u> 속성은 연, 월, 일로 의미를 세분화할 수 있다.
- 고객 개체의 <u>주소</u> 속성은 시(도), 구(군), 동, 우편번호 등으로 의미를 세분화할 수 있다.
- ① 단일 값 속성
- ② 다중 값 속성
- ③ 단순 속성
- ④ 복합 속성
- 18. <보기>의 트랜잭션의 무제어 동시 공용 사례 (개)와 (나)에서, 각각에 해당하는 문제점을 옳게 짝지은 것은?

		<.	보기>ㅡ		
	T_1	T ₂		T ₁	T ₂
(71)	read(x) $x \leftarrow x + 300$ write(x)	read(x) x←x * 5	(LH)	read(x) $x \leftarrow x + 300$ write(x)	read(x) x ← x * 5 write(x)
		write(x)		read(y) rollback T ₁	

<u>(7})</u>

 (\downarrow)

① 갱신 분실 (lost update)

모순성 (inconsistency)

모순성
(inconsistency)

연쇄 복귀 (cascading rollback)

③ 갱신 분실 (lost update)

연쇄 복귀 (cascading rollback)

④ 연쇄 복귀 (cascading rollback)

갱신 분실 (lost update)

- 19. OLAP(online analytical processing)시스템이 갖추어야 할 요건으로 가장 옳지 않은 것은?
 - ① 사용자는 OLAP 데이터에 대해 다차원 뷰를 가질 수 있어야 한다.
 - ② 사용자는 차원의 수에 관계없이 같은 연산을 실행시킬 수 있어야 한다.
 - ③ 주제 지향적이고, 통합적이고, 비소멸성이며, 시간에 따라 변화하는 데이터베이스로서 의사결정 지원을 제공해야 한다.
 - ④ 차원의 수가 증가하더라도 검색 성능이 저하되어서는 안 된다.
- 20. <보기 1>과 <보기 2>는 데이터베이스 시스템 내에서 질의를 수행할 때 사용하는 수행계획(query evaluation plan)을 나타낸 것이다. 가장 옳지 않은 설명은?

- ① 〈보기 1〉과 〈보기 2〉의 수행계획은 같은 결과를 출력한다.
- ② 〈보기 1〉의 수행계획은 조인(join) 연산을 먼저 수행한다음 선택(selection) 연산을 수행하고, 〈보기 2〉의수행계획은 선택 연산을 먼저 수행하고 조인 연산을수행한다.
- ③ 〈보기 1〉의 수행계획은 테이블에 색인이 있을 경우 조인 과정에서 이를 활용할 수 있다.
- ④ 〈보기 2〉의 수행계획은 선택 연산의 조건을 만족하는 레코드들로 중간결과 테이블을 만든 다음 조인을 수행해야 하기 때문에 일반적으로 〈보기 1〉의 수행계획에 비해서 성능저하가 크다.

이 면은 여백입니다.