Deckblatt für die Abgabe der Übungsaufgaben IngMathC2

Name, Vorname:	Sadeghi, Sara				
StudOn-Kennung:	ky40jemy				
Blatt-Nummer:	01				
Übungsgruppen-Nr:	_07				
Die folgenden Aufgaben gebe ich zur Korrektur frei:					
	;				

23.5/24*33 = 32

\subset	
Jara	Sadegui

Α	4)
٠,		

	inf	sup	min	max	
a	-\3	√ 5	-\3	existient niceut	1/
Ь	14	3	4	3	11
c	0	1 2	existient nicht	1 2	W
d	_00	+∞	existiert nicht	existiert niclut	4,
e	0	1	existiert niclut	1	
P	3	+00	2	existient nicht	1
9	1	+∞	existient nicht	existient nicht	VIV.

i)
$$\frac{3n+4m}{5n^2+40} \stackrel{*}{\downarrow} \frac{3n+12n}{5n^2+40} = \frac{15n}{5n^2+40} = \frac{15n}{5n^2+40} = \frac{3}{5n} \Rightarrow \frac{3n+4m}{5n^2+40} \stackrel{\checkmark}{\downarrow} \frac{3}{n}$$

$$\lim_{N\to\infty} \left(\frac{1}{5n^2 + 10} \right) = \frac{1}{5n} = \frac{3}{5} \Rightarrow \frac{3}{5n^2 + 10}$$

ir)
$$\frac{n+m}{\frac{1}{2}-n} \le \frac{3n}{\frac{1}{2}-n} = \frac{3n}{\frac{1}{2}-n} = \frac{6n}{4-2n}$$
 from $\frac{6n}{4-2n} = -3 \Rightarrow \frac{n+m}{\frac{1}{2}-n} \le -3$

$$V) \frac{5n-m+3\cdot 2^{m}}{3n^{3}-m+3} \left\{ \frac{5n-3n+3\cdot 2}{3n^{3}-3n+3} - \frac{2n+3\cdot 2^{3}}{3n^{3}-3n+3} - \frac{3n}{3n^{3}-3n+3} \right\}$$

$$\frac{3n}{100} - \frac{3n}{100} - \frac{3n}{100} - \frac{3n}{100} + \frac{3$$

Sara Sodegii

A3)

a) i)
$$a_{n+1} - a_n = \frac{2(n+1)}{(n+1)+3} - \frac{2n}{n+3} = \frac{2(n+1)(n+3) - 2n(n+4)}{(n+4)(n+3)} = \frac{2n^2 + 8n + 6 - 2n^2 - 8n}{(n+4)(n+3)} = \frac{6}{(n+4)(n+3)}$$

ii) $b_{n+1} - b_n = \frac{n+1}{(n+1)} - \frac{n}{4} = \frac{n+1-4n}{4-4n} = \frac{-3n+1}{4-4n} = \frac{-3n+1}{4-4n}$

$$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} = \frac{1}{1} - \frac{1}{1} - \frac{1}{1} = \frac{1}{1} = \frac{1}{1} - \frac{1}{1} = \frac{1}$$

$$\frac{1}{n}$$
 <0 \Rightarrow monoton fallenel.

(b) i)
$$an = \frac{2n}{n+3} \Rightarrow \frac{2}{4}, \frac{4}{5}, \frac{6}{6}, \frac{8}{7}, \frac{40}{8}, \dots \rightarrow 2$$

$$(i)$$
 $\beta_n = \frac{n}{4^n} \Rightarrow \frac{1}{4}, \frac{2}{16}, \frac{3}{64}, \dots \rightarrow 0$

 $\lim_{n\to\infty} \left(\frac{2n}{n+3}\right) = 2$

$$\lim_{n\to\infty} \left(\frac{n}{4^n}\right) = 0$$

Se E beliebig vorgegoben Setze no:=...

Dann gilt Für alle
$$n > n_0$$
: $|a_{n-a}| = \left|\frac{2n}{n+3} - 2\right| = \left|\frac{2n-2n-6}{n+3}\right| = \left|\frac{-6}{n+3}\right| = \frac{|-6|}{|n+3|} = \frac{6}{n+3} \le \dots = 6$

 $\frac{6}{n+3} \leqslant \epsilon \iff \frac{1}{\epsilon} \leqslant \frac{n+3}{6} \iff \frac{6}{\epsilon} \leqslant n+3 \iff n \geqslant \frac{6}{\epsilon} - 3 \implies n_0 \geqslant \frac{6}{\epsilon} - 3 \iff n_0 := \left\lceil \frac{6}{\epsilon} - 3 \right\rceil$

vorsicht: bei e=3 wird deir

Sei 6>0 beliebig vorgegeben. Setze no:= [6 3]. Dann gilt für alle n>no: V

12) Vermutung: gayan O konvergiert.

Sei 6>0 beliebig vorgegeben. Setze no:= ...

Dann gilt for alle n > no :

$$\left| b n - b \right| = \left| \frac{\eta}{\eta^n} - 0 \right| = \frac{\eta}{\eta^n} \leqslant \dots = 6$$

 $\frac{n}{4^{n}} \leqslant \epsilon \iff \frac{2^{n}}{4^{n}} \leqslant \epsilon \iff \left(\frac{1}{2}\right)^{n} \leqslant \epsilon \iff kd \left(\frac{1}{2}\right)^{n} \leqslant kd \epsilon \Leftrightarrow n \not kd \stackrel{-1}{2} \leqslant kd \epsilon \Leftrightarrow n \not kd \stackrel{-1}{2} \leqslant kd \stackrel{-1$

No:= [-ld ∈] 1

Wenn man 2^n/4^n = 2^n/2^2n = 1/2^nvereinf