

Universidad Nacional Autónoma de México Facultad de Ciencias Almacenes y Minería de Datos

Árboles de decisión: CART

Gerardo Avilés Rosas gar@ciencias.unam.mx

 En 1984 (L. Breiman, J. Friedman, R.Olshen y C.Stone) publicaron el libro Árboles de Clasificación y Regresión (CART), el cual describe la generación de un árbol de decisión binario.

- Este algoritmo se caracteriza fundamentalmente, por realizar particiones binarias utilizando una estrategia de poda basada en el criterio de costo-complejidad.
- Las particiones se realizan de modo que "la impureza" de los subconjunto hijos sea menor que la partición original.
- El objetivo es dividir la respuesta en grupos homogéneos y a la vez mantener el árbol razonablemente pequeño.

- La metodología CART utiliza datos históricos para construir el árbol de clasificación o de regresión.
- Estos árboles pueden manipular fácilmente variables numéricas y/o categóricas.
- Entre otras ventajas está su robustez a outliers, la invarianza en la estructura de sus árboles de clasificación a transformaciones monótonas de las variables independientes, y sobre todo, su interpretabilidad.
- Busca minimizar el **error de resustitución** (probabilidad de equivocarse en la clasificación de una muestra).

CART: GINI Index

 Esta medida es utilizada en el algoritmo CART y su objetivo es medir la impureza de D que puede ser una partición de datos o bien un conjunto de tuplas de entrenamiento.

Gini(D) =
$$1 - \sum_{i=1}^{m} p_i^2$$

Donde:

- $oldsymbol{\square}$ $oldsymbol{p_i}$ es la probabilidad de que una tupla en $oldsymbol{D}$ pertenezca a una clase $oldsymbol{C_i}$, se estima a partir de $oldsymbol{|C_{i,D}|/|D|}$
- La suma se calcula sobre m clases
- Esta medida considera solo particiones binarias para cada atributo.

...CART: GINI Index

- Vamos a considerar el caso cuando $\bf A$ es un atributo que tiene valores discretos, teniendo $\bf n$ distintos valores $\{a_1,a_2,...,a_n\}$.
- Para determinar la mejor partición binaria sobre A, es necesario examinar todos los posible subconjuntos que pueden formarse usando los valores conocidos de A.
- Cada subconjunto S_A , puede ser considerado como una prueba binaria sobre el atributo A, tomando la forma:

- Si A tiene n posibles valores, tendríamos entonces 2ⁿ posibles subconjuntos, lo cual generaría en principio un subconjunto con todos los atributos y un subconjunto sin ningún atributo; los cuales se eliminan debido a que conceptualmente ninguno de los dos representa una partición.
- De esta forma tendríamos 2ⁿ 2 formas de crear particiones binarias.

- Cuando se considera una partición binaria, es necesario calcular una suma ponderada de la impureza de cada partición resultante.
- Por ejemplo, sin una partición binaria sobre $\bf A$ divide a $\bf D$ en $\bf D_1$ y $\bf D_2$, el $\bf GNI$ Index de cada partición está dado por:

$$Gini_{A}(D) = \frac{|D_{1}|}{|D|}Gini(D_{1}) + \frac{|D_{2}|}{|D|}Gini(D_{2})$$

- El cálculo se hace para cada atributo y para el caso de valores discretos, el subconjunto que proporcione el menor GINI Index se selecciona como atributo de partición.
- Para atributos que tienen valores continuos, cada posible punto de partición debe considerarse y se utiliza la misma estrategia que para la ganancia de información.

...CART: GINI Index

 La reducción de impureza que se podría tener al realizar particiones binarias en atributos con valores continuos o discretos esta dada por:

$$\Delta Gini(A) = Gini(D) - Gini_A(D)$$

■ De esta forma, el atributo que **maximice la reducción de impureza** se selecciona como atributo de partición.

Ejemplo: GINI Index

Regresando al ejemplo que se analizó para el árbol C4.5:

ID edad	ingreso	estudiante	calificacion_credito	comprar_computadora
1 youth	high	no	fair	no
2 youth	high	no	excellent	no
3 middle_aged	high	no	fair	yes
4 senior	medium	no	fair	yes
5 senior	low	yes	fair	yes
6 senior	low	yes	excellent	no
7 middle_aged	low	yes	excellent	yes
8 youth	medium	no	fair	no
9 youth	low	yes	fair	yes
10 senior	medium	yes	fair	yes
11 youth	medium	yes	excellent	yes
12 middle_aged	medium	no	excellent	yes
13 middle_aged	high	yes	fair	yes
14 senior	medium	no	excellent	no

...Ejemplo: GINI Index

El calculo de impureza de D es:

Gini(D) =
$$1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$$

- Para encontrar el criterio de partición en D se necesita calcular el GINI Index de cada atributo:
 - ☐ Si tomamos el atributo **ingreso**, es necesario considerar todos sus posibles subconjuntos de partición:
 - √ {low,medium,high}
 - √ {low,medium}
 - √ {low,high}
 - √ {medium,high}
 - √ {low}
 - √ {medium}
 - √ {high}
 - **√** {}

...Ejemplo: GINI Index

☐ Si consideramos el subconjunto {low,medium}, resulta que se tienen 10 tuplas en D₁ que satisfacen la condición:

¿ingreso ∈ {low,medium}?

ID	edad	ingreso	estudiante	calificacion_credito	comprar_computadora
1	youth	high	no	fair	no
2	youth	high	no	excellent	no
3	middle_aged	high	no	fair	yes
4	senior	medium	no	fair	yes
5	senior	low	yes	fair	yes
6	senior	low	yes	excellent	no
7	middle_aged	low	yes	excellent	yes
8	youth	medium	no	fair	no
9	youth	low	yes	fair	yes
10	senior	medium	yes	fair	yes
11	youth	medium	yes	excellent	yes
12	middle_aged	medium	no	excellent	yes
13	middle_aged	high	yes	fair	yes
14	senior	medium	no	excellent	no

 \square Las 4 tuplas restantes se asignan a la partición D_2 .

☐ De esta forma:

Gini_{ingreso \in \{low,medium\}}(D) =
$$\frac{10}{14}$$
Gini $(D_1) + \frac{4}{14}$ Gini (D_2)

☐ La distribución entre las personas que sí comprarían y las que no es:

ID edad	ingreso	estudiante	calificacion_credito	comprar_computadora
1 youth	high	no	fair	no
2 youth	high	no	excellent	no
3 middle_aged	high	no	fair	yes
4 senior	medium	no	fair	yes
5 senior	low	yes	fair	yes
6 senior	low	yes	excellent	no
7 middle_aged	low	yes	excellent	yes
8 youth	medium	no	fair	no
9 youth	low	yes	fair	yes
10 senior	medium	yes	fair	yes
11 youth	medium	yes	excellent	yes
middle_aged	medium	no	excellent	yes
middle_aged	high	yes	fair	yes
14 senior	medium	no	excellent	no

☐ Entonces:

☐ Por otro lado, es fácil notar que:

$$Gini_{ingreso \in \{low, medium\}}(D) = Gini_{ingreso \in \{high\}}(D)$$

CART: GINI Index

$$Gini_{ingreso \in \{low, high\}}(D) =$$

$$\frac{8}{14} \left(1 - \left(\frac{5}{8} \right)^2 - \left(\frac{3}{8} \right)^2 \right) + \frac{6}{14} \left(1 - \left(\frac{4}{6} \right)^2 - \left(\frac{2}{6} \right)^2 \right)$$

 $Gini_{ingreso \in \{low, high\}}(D) = 0.458 = Gini_{ingreso \in \{medium\}}(D)$

$$Gini_{ingreso \in \{medium, high\}}(D) =$$

$$\frac{10}{14} \left(1 - \left(\frac{6}{10} \right)^2 - \left(\frac{4}{10} \right)^2 \right) + \frac{4}{14} \left(1 - \left(\frac{3}{4} \right)^2 - \left(\frac{1}{4} \right)^2 \right)$$

$$Gini_{ingreso \in \{medium, high\}}(D) = Gini_{ingreso \in \{low\}}(D) = 0.450$$

□ Por lo tanto, la mejor partición binaria para el atributo ingreso sería {low,medium} (o {high})

Realizando las operaciones para los demás atributos:

Atributo	Combinación	gini	giniA	delta
Ingreso	{low,medium}	0.459	0.443	0.016
	{low,high}	0.459	0.458	0.001
	{medium,high}	0.459	0.450	0.009
	{low}	0.459	0.450	0.009
	{medium}		0.458	
	{high}	0.459	0.443	0.016

Atributo	Combinación	gini	giniA	delta
	{youth,middle}	0.459	0.457	0.002
	{youth,senior}	0.459	0.357	0.102
Edda	{middle,senior}	0.459	0.394	0.066
	{youth}	0.459	0.394	0.066
	{middle}	0.459	0.357	0.102
	{senior}	0.459	0.457	0.002

Atributo	Combinación	gini	giniA	delta
Califi_cred	{fair}	0.459	0.429	0.031
	{excellent}	0.459	0.429	0.031

Atributo	Combinación	gini	giniA	delta
estudiante	{si}	0.459	0.367	0.092
	{no}	0.459	0.367	0.092

CART: GINI Index

Poda de árboles

- Al construir árboles de decisión, muchas de las ramas podrían reflejar anomalías debidas a la presencia de ruido u outliers en los datos de entrenamiento.
- La poda de árboles es una metodología que permite enfrentar el problema de sobreajuste de los datos:
 - □ Estos métodos típicamente utilizan **medidas estadísticas** para remover las ramas menos fiables.
 - Los árboles podados tienden a ser más pequeños, menos complejos → más fáciles de comprender.
 - □ Suelen ser **más rápidos** y mejores para hacer clasificaciones independientemente de los datos de prueba.

Existen dos enfoques para podar árboles de decisión: pre-poda o post-

poda

- En este enfoque, el árbol se poda deteniendo su construcción desde el inicio (p.e. decidir no particionar más el subconjunto de tuplas de entrenamiento en un nodo dado).
- Al detener la construcción, el nodo se convierte en hoja (la cual puede contener las clase que con más frecuencia se presenta entre el subconjunto de tuplas o bien una distribución de probabilidad de esas tuplas).
- Los algoritmos de pre-poda no realizan literalmente "poda" porque nunca podan las ramas existentes de un árbol de decisión:
 - "podar" significa suprimir el crecimiento de una rama si no se espera una estructura adicional para aumentar la precisión.
- Este enfoque es referible debido a los efectos de interacción, ya que estos efectos son visibles en el árbol completamente crecido (efecto horizonte).

- Medidas como la significancia estadística, ganancia de información,
 GINI index, se utilizan para asegurar la correctud de una partición.
- Si una partición de tuplas en un nodo pudiera resultar en una partición que cae por debajo de un umbral especificado previamente, entonces las particiones adicionales se detienen:
- Es difícil sin embargo, elegir umbrales adecuados:
 - Un umbral alto podría resultar en un árbol simplificado.
 - Umbrales bajos podrían tener poca simplificación.

- Es el enfoque que se utiliza con mayor frecuencia.
- Su objetivo es remover sub-árboles de un árbol que ha crecido mucho:
 - ☐ Permite que los datos se **sobreajusten** y después se poda reemplazando sub-árboles por una hoja.
 - □ Para podar un sub-árbol en un nodo dado, se retiran todas sus ramas y se sustituye por un nodo hoja.
 - La hoja se etiqueta con la clase que con más frecuencia se presentó entre las clases del sub-árbol que fue reemplazado.
 - ☐ Se poda solo si el árbol podado resultante mejora o iguala el rendimiento del árbol original sobre el conjunto de prueba.
- El proceso es iterativo, escogiendo siempre el nodo a podar que mejore la precisión en el conjunto de prueba hasta que ya no convenga (momento en que la precisión disminuye).

Repetición y duplicación

- Aunque los árboles podados tienden a ser más compactos que sus contrapartes no podadas, éstos todavía pueden ser bastante grandes y complejos.
- Los árboles de decisión pueden sufrir de efectos de repetición y la duplicación.

Repetición y duplicación

