UNIVERSITY OF VICTORIA EXAMINATIONS FALL 2012

C SC 230 - Introduction to Computer Architecture and Assembly Language - A01 CRN# 12749 and A02 CRN# 12750

STUDENT NUMBER:	 	
TIME: 3 hours		
INSTRUCTOR: M. Serra		

TO BE ANSWERED ON THE PAPER

TOTAL MARKS: 102

Question No.	Value	Mark	Question No.	Value	Mark
1	. 6		11	2	
· 2	6		12	4	
3	5		13	4	
4	4 .		14	4	
5	4		15	4	
6	4		. 16	6	
7	6		17	8	
8	4	,	18	8	
9	4		19	13	
10	6		TOTAL	102	

INSTRUCTIONS:

- 1. STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR
- 2. This examination paper consists of 16 pages including this cover page.
- 3. No aids are permitted. However, a handout describing the ARM instruction set is provided for your use.
- 4. The marks assigned to each question are shown within square brackets. Partial marks are available for all questions.
- 5. Please be precise but brief, and use point form where appropriate.
- 6. It is strongly recommended that you read the entire exam through from beginning to end before beginning to answer the questions.

Question 1. [6] Fill in the table below with the appropriate information about the instructions. The column "Bus used?" refers ONLY to the execution phase, not the fetch phase.

Instruction	Addressing Mode of Source Operand	Bus used ?	What it does (be precise)
TST r1,#1 .			
LDR r1,[r2,r3,ls1 #2]!			
MOV r1,r2,asr #4			

Question 2. [6] You have a system with Virtual memory, a DMA, a Page Table, a TLB, RAM memory, disks, and two levels of cache L1 and L2, with L1 being further subdivided into an L1 Data cache and an L1 Instruction cache.

			•	
			•	
. •				

•			
	•		
•	,		
	•		
	;		
•			

Question 3. [5] (a) [4] The top portion of the Flynn taxonomy is shown below. State the *definitions* only for the four categories.

			,		
•			•	•	
			_		
				•	
	•		•		
FRONT	BA	CK	Question 4. [4] (a) [3] The figure ${ m s}$	nows the struct
ource END		מע 🔻	of a compiler	decomposed into nd" with <i>Interme</i>	a "Front End"
code	code	target code			
*			•	etween. Explain	
rm, what the pl	nases are in the f	ront end, tha	t is, when the high	level source cod	e is translated i
ermediate code	e. In an interview	v situation, y	ou should not take	more than 2 min	nutes; be simila
ncise and preci	se.				·
•		×			
			•		
		•			
				,	
			•.		
			•		

	ayrıan	uc mu	king wo	 					
		•							
					-				•
			•						
				•					
						•			
				•					
									•
									•
		•							
								•	
					•				
		•							
,									
		٠							
								÷	
									·

the possil of clear a	ole series o nd precise	f events whi diagram. Fo	ch follow by r each step v	drawing a fl ou should no	owchart or a ot write a long	vice interface process chart detailed exp akes it clear th	or some so lanation.
and unde	rstand wha	at is suppose	ed to happer	in the interr	upt process s	equence of ste	eps.
				·			
						·	
						,	
							•
		•					
•	,						
				٠			
			•				,
,							
						•	
) [1] After a	an exception	on or interru	pt has been j	orocessed, it	may be the ca	ase that norma	al processi
Cari resum	ie willill i	пе аррпсанс	on. Give one	example in v	which this is r	tot tile case.	
•						29	
				•	-		

Question 7. [6] The following initialization loop is included in the C code that solves a vector processing algorithm:

```
for (i=0; i++; i<50)
 V[i] = -85 *i;
```

You are in the process of converting this algorithm to ARM assembly language. In the data section, 50 words have been reserved for the vector V and, in the code section, the address of V has been loaded into R0 (as shown below). This code is in the middle of a complex routine that uses all registers except R7 and R9. Using these two available registers and no more than six ARM instructions, write the initialization loop. (Six instructions is optimal, however answers with more instructions are also accepted with minimal penalty).

Question 8. [4] Fill in the right column of the table with your answers.

The range of decimal values that can be represented as unsigned 16 bit integers is (answer in decimal):	(
)
Given 8 binary bits, the largest positive integer that can be represented using a 2's complement representation is (answer in decimal):	
Given 16 binary bits, the largest negative integer that can be represented using a signed magnitude representation is:	•
The hexadecimal value FFE corresponds to the 12-bit binary:	
The hexadecimal value FFE viewed as a 12-bit integer in a 2's complement context, corresponds to the decimal:	
Convert the decimal integer -23 to 8-bit binary in 2's complement	
Convert the decimal integer -23 to 3-digit hexadecimal in 2's complement	
The 2-digit hexadecimal quantity AA is even and negative (TRUE/FALSE/NEITHER)	· ·

Question 9. [4] A computer system has a RAM containing 64K bytes, each of which needs its own distinct address. Moreover it has 4 peripherals and they each require 2⁴ distinct addresses in order to interface properly.

(a) How many distinct addresses in total are necessary in this system? Write the total number in the centre of the expression below on the left. (Feel free to leave it as sum of powers).

(b) Place the number of addresses just computed between the appropriate powers of two in the expression on the left, by writing the correct exponent in the boxes (for example, if the result were 18, you would have $2^4 < 18 < 2^5$ by writing the exponents 4 and 5.

(c) How many	y lines does an a	address bus for this	system require,	given that it must	t be able to ca	rry all
	d values for the		, ,			,

Question 10. [6] Consider two different machines, with two different instruction sets, and with the same clock rate of 200MHz. The following measurements are recorded on the two machines running a given set of benchmark programs:

Instruction type	Instruction count (millions)	Cycles per instruction
Machine A		
Arithmetic and logic	8	1 .
Load and store	4	3
Branch	4	2
Others	4	3
Machine B		
Arithmetic and logic	10	1
Load and store	8	2
Branch	2	4
Others	4	. 3

[2] Determine the effec	tive CPI for each	machine (sho	w your calcul	ations).	
	•				
		٠.			
	,				
				*	

^{1.} Hz is cycles/sec. MHz = (cycles/sec) x 10^6 . 1 second = 10^9 ns.

(b) [2] Compute the execution time in ns of the benchmarks for each machine (show your wor	rk).
	•
[2] A common measure of performance for a processor is the rate at which instructions are executed, expressed as millions of instructions per second (MIPS), referred to as the MIPS We can express the MIPS rate in terms of the clock rate and CPI as follows:	e rate.
$MIPS \text{ rate } = \frac{\text{Clock rate}}{\text{CPI} \times 10^6}$	•
State the MIPS rate for each machine above (at least show the complete equation for the cation, even if you cannot handle the computation).	alcula
Question 11. [2] While browsing at a computer store, you overhear a customer asking a salest what is the fastest computer in the store that can be purchased. The employee replies: "You are tanding and looking at the moment at our Macintoshes. The fastest Mac here runs at a clock of 1.2 GHz. If you really want the fastest machine, you should buy our 2.4 GHz Intel Pentium astead." Is the salesperson correct? What would you say to help the customer?	re spee

Question 12. [4] For a system with two levels of cache, define the following:
T_{C1} = first-level cache access time;
T_{C2} = second-level cache access time;
T_M = memory access time;
H_1 = first-level cache hit ratio;
H_2 = combined first/second level cache hit ratio.
Provide an equation for T, the total cache access time for a read operation.
Question 13. [4] When evaluating the performance of a pipeline, we calculate the possible speedup as the ratio:
$Speedup = \frac{T_{serial}}{T_{pipeline}} = \frac{m \times N}{m + N - 1}$
An old processor (very similar to the Intel 8088) consists of a bus interface unit (BIU) and an execution unit (EU), which form a 2-stage pipeline. The BIU fetches instructions into a 4-byte instruction queue. The BIU also participates in address calculation, fetches operands, and writes results in memory as requested by the EU. If no such requests are outstanding and the bus is free, the BIU fills any vacancies in the instruction queue. When the EU completes execution of an instruction, it passes any results to the BIU (destined for memory or I/O) and proceeds to the next instruction.
(a) [2] Suppose the tasks performed by the BIU and the EU take about equal time. By what factor does pipelining improve the performance of this processor? Ignore any consideration of branch instructions. Show your work.
(b) [2] Repeat the evaluation assuming that the EU takes twice as long as the BIU. Show your work.

Question 14. [4] A comp	outer has a cache,	main memory, a	nd a disk used i	for virtual mem	ory. If a ref-
erenced word is in the ca	ache, 20ns are regi	uired to access it	. If it is in main	memory but no	ot in the
cache, 60 ns are needed t	o load it into the o	cache, and then t	he reference is s	tarted again. If	the word is
not in main memory, 12 the cache, and then the r	ms are required to	o reton the word	rrom aisk, rolla a bit ratio is 0.00	wed by 60 ns to	copy it to
ratio is 0.9. What is the a	ererence is stanted verage fime in ns	required to acce	e illi iallo is 0.50 ss a referenced i	word on this sy	stem (show
your work in detail)? ¹	reage time in no	required to dece.	35 a referencea	word on and by	occini (ontow
your work in actury:					
				•	
				•	
İ					
				•	}
		•			
(b) [1] State what periph	eral interfaces are	.			
	·				
			*		
	•				

^{1.} 1 s = 1,000 ms = 1,000,000,000 ns. Thus $1 \text{ ms} = 10^6 \text{ ns}$

			•	
		•		
			•	
	•			
	•			

Question 16. [6] Make comparisons between caches and virtual memory with respect to: purpose, unit of data transfer, and method of implementation:

	Cache	Virtual Memory
purpose		
unit of data transfer	,	
method of implementation: hardware or software or both		

Question 17. [8] Consider a memory of 64K words (= 2^{16} words), addressable by 16-bit addresses, to be viewed as 4K blocks (= 2^{12} blocks) of 16 words each (2^{12} blocks x 2^4 words = 2^{16} words). Consider also a cache consisting of 128 blocks of 16 words each, for a total of 2048 (2K) words. Assume that a direct mapping configuration is used for the cache organization, as shown in one part of figure 1.

									•
							+		
	,								
I Show	that you understa	nd the s	strateov	hv givin	o the cad	rhe bloc	rk numh	ore accio	ned to
llowing	g sequence of blocks	s fetched	I from m	iemory –	the blo	cks are	fetched i	in the ord	der as v
	to right (there mig								
	Mamory Block #	0	1	65	200	202	128	129	٦
	Memory Block #	١ ٠	T	65	200	202	128	129	
	A			ł		1		1	7
ts of 4	Cache Block # ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured dis	same cac fferently	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ts of 4	ne now that a set a blocks each. Descr	ibe prec	isely hor	w the ma	apping i	is used s config	l for the gured di	same cac	he, see from d
ets of 4	ne now that a set a blocks each. Descr	ibe prec so at the	isely hov	w the ma	apping i	s config	gured di	fferently	from d

Memory Block #	0	1	65	200	202	128	129
Cache Set #							
Cache Block #							

Question 18. [8] Give brief definition for the following concepts related to virtual memory:

Concept/Term	Definition
Page	
Page fault	
TLB (Translation Lookaside Buffer)	
MMU (Memory Management Unit)	

Question 19. [13] Write a procedure to sort an array of 32-bit integers using the bubble sort method. The array is called ARR1 (declared by main in .DATA) and its size is stored in ARCNT. Assume that the main routine calls an external function INIT which, given the address of the array, returns it filled with data and with its current size in R0. The main program passes the address of ARR and its size from ARCNT as parameters to the procedure BubbleSort in R1 and R0 respectively. You are supposed to write the whole program. The flowchart for the algorithm of BubbleSort is given below. Test it manually first on a small example to understand well what you are supposed to be coding. In the flowchart, N denotes the number of elements in the array and A1 is the label for the array itself.

^{1.} Should you think there is any problem with the algorithm and/or the flowchart, disregard for the moment and just proceed to code as shown.

Ope	Operand 2
Immediate value	# <immed_8></immed_8>
Logical shift left immediate	Rm, LSL # <immed_5></immed_5>
Logical shift right immediate	Rm, LSR # <immed_5></immed_5>
Arithmetic shift right immediate	Rm, ASR # <immed_5></immed_5>
Rotate right immediate	Rm, ROR # <immed_5></immed_5>
Register	Rm
Rotate right extended	Rm, RRX
Logical shift left register	Rm, LSL Rs
Logical shift right register	Rm, LSR Rs
Arithmetic shift right register	Rm, ASR Rs
Rotate right register	Rm, ROR Rs

		Condition Field
	ΕÓ	Equal
	Ä	Not equal
-	SS	Carry Set
	ည	Carry clear
	MI	Negative
	PL	Positive or zero
	ΝS	Overflow
	. AC	No overflow
•	Ш	Unsigned higher
	S'I	Unsigned lower or same
	GE	Signed greater or equal
	П	Signed less than
	GT	Signed greater than
	a 7	Signed less than or equal
	ΤV	Always
•		

Dec	Bin	Нех
0	00000000	. 00
	00000001	01
2	01000000	02
3	00000011	03
4	000000100	04
5	00000101	05
9	00000110	90 .
7	00000111	07
8	000010000	80
6	00001001	60
10	00001010	0A
11	00001011	0B
12	00001100	0C
13	00001101	QD
14	00001110	OE
15	00001111	0F

			1			O	0			3
Data Transfer	dod	Full Descending	Empty Descending	Full Ascending	Empty Ascending	qsnd	Empty Ascending	Full Ascending	Empty Descending	Full Descending
Aultiple	Stack pop	FD	ED	FA	EA	Stack push	EA	FA	ED	FD
Addressing Mode 4 - Multiple Data Transfer	load	Increment After	Increment Before	Decrement After	Decrement Before	store	Increment After	Increment Before	Decrement After	Decrement Before
Ā	Block load	IA	IB	DA .	DB	Block store	IA	IB	DA	DB

D	BIN	H	D	BIN	н	D	BIN	H	q	BIN	H
0	00000000	00	4	000000100	04	8	000010000	08 12	12	00001100	၁
1	00000001	01	5	00000101	05 9	6	00001001	60	13	00001101	8
2	00000010	05	9	00000110	06 10	10	00001010 0A	VO	14	00001110	E
3	00000011	03	7	00000111	07 11		00001011 0B 15 00001111	0B	15.	00001111	OF.

0
3
N
Ç
S
Ü
ŭ
A
Z
Ξ
д
9
4

Operation	Assembler	Action	
Move	MOV{S} Rd, <0prnd2>	Rd := Oprnd2 {CPSR}	Pre-indexed
	MVN{S} Rd, <oprnd2>.</oprnd2>	Rd := NOT Oprnd2 {CPSR}	
Arithmetic	ADD{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn + Oprnd2 {CPSR}	
	ADC{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn + Opmd2 + Carry {CPSR}	
	SUB{S} Rd, Rn, <opmd2></opmd2>	Rd := Rn - Opmd2 {CPSR}	
	SBC{S} Rd, Rn, <opmd2></opmd2>	Rd := Rn + Oprnd2 + Carry {CPSR}	
· · · · · · · · · · · · · · · · · · ·	RSB{S} Rd, Rn, <opmd2></opmd2>	Rd := Oprnd2 - Rn {CPSR}	
·	RSC{S} Rd, Rn, <opmd2></opmd2>	Rd := Oprnd2 - Rn - NOTCarry {CPSR}	
	MUL{S} Rd, Rm, Rs	Rd := Rm * Rs {CPSR}	Post-indexe
•	MLA{S} Rd, Rm, Rs, Rn	Rd := Rm * Rs + Rn {CPSR}	
	CLZ Rd, Rm	Rd := # leading zero in Rm	
Logical	AND{S} Rd, Rn, <opmd2></opmd2>	Rd := Rn AND Opmd2 {CPSR}	
	EOR{S} Rd, Rn, <opmd2></opmd2>	Rd := Rn EXOR Oprnd2 {CPSR}	
	ORR{S} Rd, Rn, <opmd2></opmd2>	Rd := Rn OR Oprnd2 {CPSR}	•
	TST Rn, <oprnd2></oprnd2>	Update CPSR on Rn AND Oprnd2	
	TEQ Rn, <opmd2></opmd2>	Update CPSR on Rn EOR Oprnd2	
	BIC{S} Rd, Rn, <oprnd2></oprnd2>	Rd := Rn AND NOT Oprnd2 {CPSR}	
	NOP	R0 := R0	
Compare	CMP Rd, <oprnd2></oprnd2>	Update CPSR on Rn - Opmd2	
Branch	B{cond} label	R15 := label	
•	BL{cond} label	R14 := R15-4; R15 := label	
Swap	SWP Rd, Rm	temp := Rn; Rn := Rm; Rd := temp	
Load	LDR Rd, <a_mode2></a_mode2>	Rd := address	
	LDM <a_mode4l> Rd{!}, <reglist></reglist></a_mode4l>	Load list of registers from [Rd]	
Store	STR Rd, <a_mode2></a_mode2>	[address]:= Rd	
	STM <a_mode4s> Rd{!}, <reglist></reglist></a_mode4s>	Store list of registers to [Rd]	,
IMS	SWI <immed_24></immed_24>	Software Interrupt	

-	Addressing Mode 2 - Data Transfer	- Data Transfer	
indexed	Immediate offset	[Rn, #+/- <immed_12>]{!}</immed_12>	{i
	Zero offset	[Rn]	
	Register offset	[Rn, +/-Rm]{!}	
	Scaled register offset	[Rn, +/-Rm, LSL # <immed_5>]{!}</immed_5>	red_5>]{!}
		[Rn, +/-Rm, LSR# <immed_5>]{!}</immed_5>	ed_5>]{!}
		[Rn, +/-Rm, ASR # <immed_5>]{!}</immed_5>	ned_5>]{!}
		[Rn, +/-Rm, ROR # <immed_5>]{!}</immed_5>	ned_5>]{!}
		[Rn, +/-Rm, RRX]{!}	
-indexed	Immediate offset	[Rn], #+/- <immed_12></immed_12>	
	Register offset	[Rn], +/-Rm	
· - -	Zero offset	[Rn]	
	Scaled register offset	[Rn], +/-Rm, LSL # <immed_5></immed_5>	ned_5>
		[Rn], +/-Rm, LSR # <immed_5></immed_5>	ned_5>
		[Rn], +/-Rm, ASR # <immed_5></immed_5>	med_5>
		[Rn], +/-Rm, ROR # <immed_5></immed_5>	med_5>
		[Rn], +/-Rm, RRX	
	Kay to tables	phlac	

Key to tables	See Condition Field	See Operand 2	Updates CPSR if present	Constant	See Addressing Mode 2	See Addressing Mode 4	List of registers with commas	Updates base register if present
	{puoɔ}	<opmd2></opmd2>	{S}	<immed></immed>	<a_mode2></a_mode2>	<a_mode4></a_mode4>	<reglist></reglist>	{i}