Tabla Complejidades Algorítmicas

NOMBRE	USOS	COMPLEJIDAD
BFS	Distancias en (di)grafos no pesados	O(m+n)
DFS	Detección de componentes y ciclos	O(m+n)
Primm	Encuentra árbol generador mínimo(máximo)	$O(n^2)$ matriz $O(m\log(n))$ binary heap $O((m+n)\log(n))$
Kruskal	Encuentra árbol generador mínimo(máximo)	$O(m\log(n))^{-1}$
Dijkstra	Distancias en (di)grafos pesados uno a todos. No	$O((n+m)*log(n))$ cola de prio $O(n^2)$ vector
Bellman- Ford	Distancias en (di)grafos pesados uno a todos. Puede encontrar ciclos de costo negativo(con modificación)	O(n*m)
DAGs	Distancias en dags(directed acyclical graphs)	O(n+m)
Floyd- Warshall	Distancias en (di)grafos pesados de todos contra todos	$O(n^3)$
Johnson (NO DEBERÍA ENTRAR)	Distancias en (di)grafos pesados de todos contra todos	$O(n^2\log(n)+mn) \ O(n*m*log(n))$
Ford- Fulkerson	Encuentra flujo maximo para una red(Con capacidades racionales)	O(nmU)
Edmonds- Karp	Modificación al algoritmo de Ford- Fulkerson	$O(nm^2)$
Cancelacion de Ciclos	Dado un flujo, encuentra otro de mismo valor de flujo y de costo minimo.	$O(nm^2CU) \ O(\min\{nm\lg(nC),\ nm^2\lg(n)\})$
Succesive Shortest Paths	Encontrar un flujo maximo de costo minimo	$O(m \lg(U) * \min\{n^2, m \lg(n)\}) \ O(mn^2U)$

Propiedades

Caminos minimos y Relajaciones

```
1 RELAX( u, v, w):

2 if(v.d > u.d + w(u,v)):

3 v.d = u.d + w(u,v)

4 v.pred = u
```

- 1. Una arista v o w pertenece a un camino minimo entre s y t si d(s,v)+c(v o w)+d(w,t)=d(s,t)
- 2. **Desigualdad triangular:** Para toda arista $(u,v) \in E$, tenemos que $\delta(s,v) \leq \delta(s,u) + w(u,v)$
- 3. **Cota superior:** La distancia real es menor o igual a la estimada(.d) $v. d \geq \delta(s, v)$ para todo vertice, y cuando $v. d == \delta(s, v)$ no vuelve a cambiar
- 4. **No hay camino:** Si no hay camino entre s y v entonces $v.d == \delta(s,v) == \infty$
- 5. **Convergencia:** Si $s \to \ldots \to u \to v$ es un camino minimo en G para algun $u,v \in V$, y si $u.d = \delta(s,u)$ en algun momento antes de relajar el edge (u,v); entonces despues de relajar el edge $v.d = \delta(s,v)$ para siempre.
- 6. **Relajación de camino mínimo:** si $p=\langle s=v_0,v_1,\ldots,v_k\rangle$ es un camino minimo desde s a v_k y relajamos los edges de p en orden, entonces despues de todos las relajaciones v_k . $d=\delta(s,v_k)$. Esto pasa incluso si hay relajaciones en el medio que afecten a los nodos en p.
- 7. **Subgrafo de predecesores:** una vez que v. $d = \delta(s, v) \ \forall \ v \in V$ el subgrafo predecesor es un árbol de caminos mínimos enraizados en s.

Difference Constraints(SRD)

Se pueden reescribir ecuaciones para que queden de la forma $x_i - x_j \leq c$

- $1. x_i x_j \ge c \iff -x_i + x_j \le -c$
- 2. $x_i x_j = c \iff x_i x_j \le c \land x_i x_j \ge c$
- 3. $x_i + x_j \leq c$ agregamos una variable $y_j = -x_j \implies x_i y_j \leq c$
- 4. $x_i \leq c$ agregamos una variable z y las restricciones $x_i z \leq c \ \land \ z c_i \leq -1$

Si tenemos una solucion para un SRD x_1, \ldots, x_n entonces $x_1 + d, \ldots, x_n + d$ tambien es solución.

Flujos

- 1. Conservación: Salvo s y t, el flujo que entra es igual al que sale
- 2. Restricción capacidad
- 3. Red residual G_x del flujo x reemplazando cada arco $ij \in A$ por dos arcos ij y ji cumpliendo:
 - 1. El arco ij tien costo c_{ij} y capacidad residual $r_{ij} = u_{ij} x_{ij}$
 - 2. El arco ji tiene costo $-c_{ij}$ y capacidad residual $r_{ji}=x_{ij}$
- 4. Capacidad de un corte es la suma de las aristas que salen
- 5. El valor del flujo máximo es igual al corte con capacidad mínima.
- 6. Dado un flujo maximo podemos obtener el corte minimo: (practica/gfg)

- 1. Obtengo red residual en O(m)
- 2. Corro DFS desde s O(n+m)
- 3. Las aristas alcanzables son parte del corte minimo.

P vs NP

Es un problema de desición Π ,

- 1. Instancia Positiva: Aquellas para las que la respuesta a Π es SI
- 2. Instancia Negativa: Aquellas para las que la respuesta a Π es NO

Problema complemento: el problema $\bar{\Pi}$ donde la respuesta a las instancias positvas de Π es NO, y a las negativas de Π es SI

Reducción polinomial: transformación f de cualquier instancia de Π_1 a una instancia construida por nosotros del problema Π_2 en tiempo polinomial, tal que una instancia I es positiva de Π_1 si y solo si f(I) es una instancia positiva de Π_2 . ($\Pi_1 \leq_p \Pi_2$). Π_2 no es polinomialmente más dificil que Π_1 .

Clases:

- 1. **P:** problemas que se pueden resolver en tiempo polinomial en una maquina de Turing deterministica
- 2. **NP:** problemas que se pueden resolver en tiempo polinomial en una maquina de Turing no determistica, o que se puede certificar en tiempo polinomial una respuesta positiva en una maquina deterministica.
- 3. **CoNP:** Problemas que tienen un problema certificante negativo que se puede resolver en tiempo polinomial.

Relaciones:

- 1. $P \subseteq NP$, $P \subseteq CoNP$
- $2. \Pi \in P \iff \bar{\Pi} \in P$
- 3. $\Pi \in \mathsf{NP} \iff \bar{\Pi} \in \mathsf{CoNP}$

NP-Hard:

Un problema igual o más dificil que NP. Para todos los problemas en NP se pueden reducir polinomialmente a este.

NP-Complete:

Un problema que pertenece a NP y es NP-hard

^{1.} Tambien puede expresarse $O(m\log(m))$ pero como $m \leq n^2 \implies \log(m) \leq 2\log(n) \stackrel{\boldsymbol{\iota}}{=} 2\log(m)$