$ \text{are} \qquad \qquad \text{not} \qquad \qquad \text{all} \qquad \frac{\text{IN}}{(S_{adj} \backslash NP)/(S_{adj} \backslash NP) : \lambda x. \lambda y. \text{that}_{0.0}^0(x \ y)} \frac{\text{JJ}}{S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})} $	$_{ m IN}$
$ \text{all} \qquad \qquad \text{all} \qquad \frac{(S_{adj} \backslash NP)/(S_{adj} \backslash NP) : \lambda x. \lambda y. \text{that}_{0.0}^0(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{S_{adj} \backslash NP : \lambda y. \text{that}_{0.0}^0(x \ y) - S_{adj} \backslash NP : \lambda y. \text{that}_{0.$	
$S = \frac{S}{2} + \frac{ND}{2} + \frac{1}{2} +$	$\mathbf{all} \qquad \frac{(S_{adj} \backslash NP)/(S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. (x_{\circ 0.0})}{\sum_{i=1}^{n} (S_{adj} \backslash NP) : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. \mathrm{that}_{0.0}^{0}(x \ y) - S_{adj} \backslash NP : \lambda x. \lambda y. t$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RB DT $S_{adj} \setminus NP : \lambda y. \operatorname{that}_{0.0}^{0}(y_{\circ 0.0})$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$NP : \lambda x.(x_{\bullet 1.0})$ $NP : \text{all}_{0.0}$ $NP : \lambda y. \text{that}_{0.0}^{0}(y_{\circ 0.0})$
$\overline{NP_{nb}/N : \lambda x.x} \overline{N : \text{room}_{0.0}} \qquad (S_{dcl} \backslash NP)/NP : \lambda x.\lambda y.\text{be}_{1.0}^{0}(x,y) \qquad S_{X} \qquad NP : \text{that}_{0.0}^{0}(\text{all}_{0.0})$	$(0.5,y)$ $NP: \operatorname{that}_{0.0}^0(\operatorname{all}_{0.0})$
$NP_{nb}: \mathrm{room}_{0.0}$ $S_{dcl} \backslash NP: \lambda y. \mathrm{be}_{1.0}^{0}(\mathrm{that}_{0.0}^{0}(\mathrm{all}_{0.0}), y)$	$S_{dcl}\backslash NP: \lambda y. \mathrm{be}_{1.0}^{0}(\mathrm{that}_{0.0}^{0}(\mathrm{all}_{0.0}), y)$
$S_{dcl}: \mathrm{be}_{1.0}^{0}(\mathrm{that}_{0.0}^{0}(\mathrm{all}_{0.0}), \mathrm{room}_{0.0})$	$S_{dcl}: \mathrm{be}_{1.0}^{0}(\mathrm{that}_{0.0}^{0}(\mathrm{all}_{0.0}), \mathrm{room}_{0.0})$
$S_{dcl}: \mathrm{be}_{1.0}^{0}(\mathrm{that}_{0.0}^{0}(\mathrm{all}_{0.0}), \mathrm{room}_{0.0})$	$S_{dcl}: \mathrm{be}_{1.0}^{0}(\mathrm{that}_{0.0}^{0}(\mathrm{all}_{0.0}), \mathrm{room}_{0.0})$