

07/848574

Attorney Docket No. 13119-1-2

PATENT APPLICATION

BACKFLOW PREVENTOR WITH ADJUSTABLE OUTFLOW DIRECTION

Inventors:

Charles W. Dunmire
10697 N. Lighthouse Drive
Fresno, California 93720
U.S. Citizen

Dennis G. Whitelaw
3429 West Fedona Avenue
Fresno, California 93722
U.S. Citizen

Assignee:

CMB INDUSTRIES, INC.
1550 N. Peach
Fresno, California 93747

MAIL ROOM

TOWNSEND and TOWNSEND
Steuart Street Tower, 20th Floor
One Market Plaza
San Francisco, California 94105
(415) 543-9600

14

A
L/M
7/2004
PATENT

Attorney Docket No. 13119-1-2

BACKFLOW PREVENTOR WITH ADJUSTABLE OUTFLOW DIRECTION

This application is a continuation-in-part of Serial No. 07/650,799, filed February 5, 1991, for N-Shaped Backflow Preventor, which is a continuation-in-part of Serial No. 07/435,870, filed November 13, 1989, for Check Valve with Reduced Hold-Open Pressure, ^{now U.S. Pat. No. 5,167,888,} ~~to be issued as~~ U.S. Patent No. 4,989,635, on February 5, 1991.

The present invention relates to a backflow preventor and, in particular, to a preventor with a provision for adjusting the outlet direction.

15 BACKGROUND OF THE INVENTION

Check valves are well known for use in assuring that a flow through a conduit occurs only in a predefined direction. Check valves are used, for example, in backflow prevention assemblies to prevent backflow of one fluid body into another. Backflow prevention is often used in connection with protecting potable water supplies from contaminants which could otherwise be introduced into it via back-siphonage or back-pressure. Many backflow preventors are designed to accommodate pressure commonly encountered in municipal water supplies, such as 150 psi (1030 kPa) or more.

B25 Several factors are important in designing or selecting a backflow preventor for a particular use, including performance (e.g., minimizing pressure drop), serviceability, and ease and cost of installation.

30 Many backflow preventors are configured such that the direction of inlet and the direction of outlet flow are predetermined. In these devices, when it is desired to provide an outlet flow direction that is different (with respect to the inlet flow direction) from the predetermined direction, 35 additional fittings such as elbows, U-joints, L-joints, T-joints and the like, must be connected. These additional fittings not only add to the cost of parts, labor and design involved in installing these devices, but also contribute to

2

undesirable pressure loss. These additional fittings further take up volume and thus are impractical in applications having close clearances. Such pressure loss can be particularly troublesome in applications where maintenance of pressure is important such as in fire protection systems and high rise buildings.

In previous devices, maximizing serviceability has been incompatible with also maximizing the performance and installation factors. Thus, in past devices, efforts to increase the performance and ease of installation has produced devices with decreased serviceability. Fig. 6 depicts, schematically, a previous backflow preventor 110 which attempted to provide ease of serviceability by including both valves in 112a, 112b in a vertical configuration and a cover 114 which, when removed, permits access to the valves 112a, 112b (e.g., for maintenance purposes) in a vertical direction. The device shown in Fig. 6, however, provides a less than optimal performance. This is at least partially because, owing to the orientation of the valves 112a, 112b with respect to the inlet opening 116 and outlet opening 118 flow through the valve openings 116, 118 is forced to follow a divergent path (indicated by solid arrow streamlines 120a, 120b). The blocking action of the valve disks 122a, 122b, causing this divergent flow 120a, 120b, provides resistance to flow through the backflow preventor 110 and increases the pressure drop which the backflow preventor produces.

The device depicted in Fig. 6 also has deficiencies from the point of view of installation. In general terms, the cost of installation is least when the backflow preventor occupies the smallest amount of space. Thus, when a backflow preventor is installed in a building, it is desired to minimize the floor space required for installation. When the backflow preventor is installed outside a building, the expense of installation is related to the size of the enclosure required (e.g., enclosure 132 depicted in Fig. 7). When the backflow preventor is installed underground, it is desirable to minimize the size of the trench (not shown) required for underground installation.

As seen in Fig. 6, the inlet conduit and outlet conduit 124, 126 occupy a horizontal distance 128 which determines the minimum amount of space theoretically needed for installation of a backflow preventor. The upper portion 134 of the backflow preventor 110 occupies a horizontal extent 136 which is only slightly greater than theoretically minimum horizontal extent 128 required for installation. However, the lower portion 138 has a minimum horizontal extent 142 which is substantially greater, principally because the handle portions 144a, 144b of the shutoff valves extend outward from the housing 146 in a direction which is parallel to the axis of the conduits 124, 126 (i.e., parallel to a line passing through the conduits 124, 126). Moreover, an even larger horizontal expanse 148 is required to accommodate opening of the shutoff valves since the handles 144a, 144b move in a direction parallel to the axis of the conduits 124, 126.

Fig. 7 depicts another configuration for a backflow preventor which also has certain deficiencies. The axes 152a, 152b along which the first and second check valves 154a, 154b extend (defined, for these purposes, as a line passing through the center of the inlet port of the valves 154a, 154b and parallel to the direction of flow into the valves) are parallel and both extend at an angle of about 45° to vertical. Access for maintenance is obtained by removing covers 156a, 156b to provide openings. The openings lie in planes 158a, 158b which are inclined to the horizontal by about 45°. Because neither of the openings lies in a horizontal plane, the device does not provide for access in a vertical direction. This represents a drawback to the serviceability of the device in Fig. 7.

Installation of the device shown in Fig. 7 also has certain drawbacks. Installation requires certain additional parts such as 90° elbows 162a, 162b to change the flow direction from the upward and downward flow of the inlet and outlet conduits 124, 126 to the horizontal flow direction of a backflow preventor 164. The size of the enclosure 132 required is relatively large to accommodate the extra parts 162a, 162b and since the two shutoff valves 166a, 166b and check valves 154a, 154b are generally linearly arrayed. Because of the

I change in flow direction, the flanges 168a, 168b for installing the backflow preventor 164 are vertically oriented. This requires provision of supports 172a, 172b for supporting and positioning the backflow preventor 164 at least during installation. As with the device depicted in Fig. 6, the check valves 154a, 154b of the device in Fig. 7 are of a type requiring that the flow through the valves be divergent 120a, 120b around the edges of the valve disks.

Fig. 8 depicts another type of previously-provided backflow preventor also having certain deficiencies.

The axes 152c, 152d, along which the first and second check valves 154a, 154b extend, are perpendicular and both extend at an angle of 45° to vertical. Covers 156c, 156d cover access openings which lie in planes 158c, 158d, neither of which lies in a horizontal plane. Additional parts such as elbows 162c, 162d are required for installation. The two shutoff valves 166c, 166d and the two check valves 154c, 154d are generally linearly arrayed. The means for connection 168c, 168d of the inlet and outlet of the stop valves 166c, 166d are vertically oriented. The check valves 154c, 154d are of a type requiring that the flow through the valves be divergent 120a, 120b around the edges of the valve disks.

Typically, a check valve is designed to maintain its open configuration as long as there is flow through the valve. Once the flow stops or drops below a predetermined value, the check valve closes. Typically, check valves are designed so that, once the valve is closed, the inlet pressure must exceed a predetermined threshold before the valve will open. Usually, a single structure, typically a spring, is used both to provide the force to hold the valve closed (until the threshold is reached), and to provide the biasing force which moves the valve from the opened to the closed position. Because the biasing device provides some force tending to close the valve, even during normal flow conditions, a countervailing force must be provided to counteract the closing force and maintain the valve open, during normal flow conditions. Typically, the countervailing force is provided by the fluid moving through the valve.

Accordingly, as the pressurized fluid moves through the valve, some amount of work is expended in holding the valve in the open position in opposition to the biasing force tending to close the valve. This expenditure of work causes a pressure drop across the check valve, so that the check valve itself necessarily creates a certain amount of loss of the pressure head. The amount of pressure minimally required at the inlet in order to maintain the valve in the open position is termed the "hold-open pressure." It is desirable to minimize the pressure drop or head loss during transit through the check valve, and, thus, it is desirable to reduce the hold-open force. Particularly, it is desirable that the hold-open force should be less than that from the threshold pressure.

Accordingly, a number of previous check valves having a biasing device have been produced, which create a greater force on the valve when it is in the closed position than when in the open position.

Many previous designs for reduced hold-open pressure check valves involve providing a linkage of one or more rigid pivoting arms connecting the clapper to the wall or body of the valve. U.S. Patent No. 980,188, issued January 3, 1911, to Blauvelt, for example, discloses a flap or swing-type valve having a clapper which can pivot toward or away from a valve seat. The clapper is pivotally connected to a rigid link or arm which, in turn, is pivotally connected to a spring.

Other valving devices include a knuckle or toggle-type linkage having two or more relatively pivoting arms or links.

30

SUMMARY OF THE INVENTION

The present invention includes the recognition of problems in previous devices, including those described above. According to the present invention, a backflow preventor is provided which permits adjustment of the outflow direction with respect to the inflow direction, preferably among an infinite number of outlet flow directions. In one embodiment, adjustment is provided by making the portion of the housing which houses the second backflow preventor valve movable or

6

rotatable with respect to the section of housing which houses the first backflow preventor valve. In one embodiment, a cylindrical region of the housing connects the two valves and this cylindrical region can be separated to permit rotation of
5 a portion of the cylindrical housing region with respect to the other portion. In one embodiment, the cylindrical portion includes annular shouldered flats for accommodating a pipe coupling. In one embodiment, the housing is provided as a single casting which can be separated, between the flats, by
10 sawing or otherwise cutting through the cylindrical portion of the housing.

It has been found that performance of backflow preventors is degraded when the number of changes in flow direction is increased. An increase in the number of changes
15 in average streamline flow direction tends to increase pressure drop and degrade performance of a backflow preventor. As used herein, average streamlines can be considered to pass through the center of valve inlets, pass along a direction from an upstream valve outlet to a downstream valve inlet and pass
20 along the centers of conduits elsewhere. Although the above-defined average streamline is used for purposes of explanation and analysis, it is recognized that actual flow will typically contain some amount of turbulence. Nevertheless, for purposes of explanation of the present invention, the defined and
25 depicted streamlines approximate the general flow direction and are believed to approximate the actual streamlines averaged in space and time.

Fig. 7 depicts the average streamline 182 as dotted arrows. Tracing the flow from the upper flow in the inlet conduit 182 the downward flow in the outlet conduit 126, there is a 90° change 184a at the first elbow joint 162a, a 45° change 184b just prior to the inlet port of the first valve 154a, 90° change 184c between the inlet and outlet of the first valve 154a, a 45° change 184d downstream of the outlet of the first valve 154a, a 45° change 184e upstream of the inlet to the second valve 154b, a 90° change 184f between the inlet and the outlet of the second check valve 154b, a 45° change 184g downstream of the outlet from the second check valve 154b and a
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
91

BT 90° change 184h at the second elbow 162b. Thus, average streamline analysis shows that there is a total of 540° of change between the inlet conduit 124 and the outlet conduit 126.

BT 5 Fig. 8 shows the average streamline 182 for the configuration depicted therein. There is a 90° change 186a at the first elbow joint 162c, a 45° change 186b prior to the inlet part of the first valve 154c, a 90° change 186c between LB the inlet and outlet of the first valve 154c, a 90° change 186d between the inlet and outlet of the second check valve 154d, a 45° change 186e downstream of the outlet from the second check valve 154d, and a 90° change 186f at the second elbow 162d. I 10 Thus, average streamline analysis shows that there is a total of 450° of change between the inlet conduit 124 and the outlet conduit 126. B 15

B A corresponding streamline analysis of the device shown in Fig. 6 indicates a total flow change of about 180°.

B 20 The present invention provides for increased performance without unacceptably degrading serviceability or installation factors. The present invention provides for a flow through open valves without requiring the flow to diverge around the edges of the valve disks. The valve components of the present invention, rather than inhibiting flow by requiring divergence as the flow moves through the valves, tends to 25 enhance the desired flow by directing flow along the desired path. The present invention has an average streamline flow change of direction totalling about 180°. According to an embodiment of the present invention access to one of the check valves is in a vertical direction while access to the other is in a horizontal direction. The valves preferably extend along 30 axes which are oriented at 90° to one another.

B Valves containing a relatively large number of moving parts, such as pivoting rigid arms, are typically susceptible to wear or deterioration, particularly in corrosive, 35 contaminated, or depositional environments, such as in hard water. Furthermore, rigid linkage systems are relatively expensive to design, produce, install, and maintain.

Installation and maintenance often require use of special tools.

The present invention includes a spring which connects the valve clapper to the valve body. Preferably the spring connects the clapper to a removable cover portion of the valve body. The spring can be viewed as taking the place of one or more of the rigid links of previous devices. Preferably, the spring is directly connected to the clapper device, i.e., without an intervening linkage, and forms the sole connection between the clapper device and the valve wall (preferably the cover portion of the valve wall). The spring pivots with respect to the clapper about a pivot point, with the pivot point remaining in a fixed position with respect to both the end of the spring and the clapper device during opening and closing of the valve. The spring provides a force along its longitudinal axis without a lateral component.

DRCL
P
20 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a cross-sectional view through a check valving device showing a closed check valve and an opened check valve;

13 Fig. 1A is a partial cross-sectional view corresponding to Fig. 1, but showing another embodiment;

25 Fig. 2 is a cross-sectional view taken along line 2-2 of Fig. 1; and

Figs 3A and 3B depict, schematically, the triangles formed by the pivoting or attachment axes or points in the closed and opened configurations, respectively;

30 Figs. 4A and 4B depict, schematically, an unstressed helical spring and a compressed and bowed helical spring;

Fig. 5 is a schematic cross-sectional view of a backflow preventor according to a previous device;

35 Fig. 6 is a schematic cross-sectional view of an enclosed backflow preventor according to a previous device;

Fig. 8 is a schematic cross-sectional view of a backflow preventor according to a previous device;

Fig. 9 is a side elevational view, partly in cross-section, of a backflow preventor;

5 Fig. 10 is a side-elevational view of a backflow preventor; and

Fig. 11 is a side-elevational view of a backflow preventor;

10 Fig. 12 is a side-elevational view, partly in cross-section, of a backflow preventor, according to one embodiment of the present invention;

Fig. 13 is a side-elevational view of a backflow preventor, according to one embodiment of the present invention;

15 Fig. 14 is a cross-sectional view of portions of a backflow preventor housing coupled by a coupler according to one embodiment of the present invention;

13 Fig. 15 is a cross-sectional view taken along line 15-15 of Fig. 14;

20 Fig. 16A is a schematic simplified view of the apparatus depicted in Fig. 13;

Fig. 16B is an end view of the apparatus of Fig. 16A;

B 25 Fig. 17A is a side-elevational view of the apparatus of Fig. 16A, but with the outlet flow direction changed by 90° ;

Fig. 17B is an end view of the apparatus of Fig. 17A;

B 30 Fig. 18A is a side-elevational view of the apparatus of Fig. 16A, but with the outlet flow direction rotated by 180° ; and

Fig. 18B is an end view of the apparatus of Fig. 18A.

DECL 30 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

P 35 A backflow preventor 212, according to one embodiment of the present invention, is depicted in Fig. 12. The backflow preventor 212 includes first and second shutoff valves 214a, 214b and first and second check valves 12, 14. Valves 214a, 214, 12, 14 are encased in a housing 216. A conduit 228 provides fluid communication between the first check valve 12 and the second check valve 14. The first and second check

valves 12, 14 are positioned generally vertically above the inlet and outlet stop valves 218, 220 and the second check valve and shutoff valve 14, 214b are substantially level, but horizontally displaced from the first check valve and shutoff valve 12, 214a. Thus, the flow from the first shutoff valve 214a to the first check valve 12 and the second check valve 14 and the second shutoff valve 214b is in a generally inverted U-shape, as opposed to a linear shape.

During the operation, fluid enters the first shutoff valve 14a from the inlet conduit 124 in a first flow direction 268. When the flow reaches the first check valve 12 there is a 90° change of direction 274. The flow 272b flows through the conduit 228 towards the second check valve 14. When the flow 272b reaches the second check valve 14, there is a second 90° change in flow direction 282 of the average streamline 272. As can be seen from Fig. 12, the total change in direction of the average streamline 272 is the sum of the two changes of direction 274, 282, both of which are approximately 90° , providing a total of about 180° of change in direction. In the configuration depicted in Fig. 12, the direction of outflow 272c is substantially parallel to, spaced from, and opposite in direction from the direction of inflow 272a.

As depicted in Fig. 12, conduit 228 is provided with a device for permitting adjustment of the outflow direction. In the embodiment of Fig. 12, this device includes first and second spaced-apart annular flats 312, 314. In external, as shown in Fig. 13, the annular flats 312, 314 appear as ribs or ridges spaced apart by a groove 316. The outer faces 318, 320 of the flats 312, 314 are substantially cylindrical. The shoulders 322, 324 connecting the flats 312, 314 to the main portion of the conduit 228 are preferably slightly curved. In the embodiment of Figs. 12 and 13 the conduit 228 and both flats 312 and 314 are integrally formed such as from a single casting. In this way, the backflow preventor of the present invention can be used in a first configuration with the inflow direction 272a and outflow direction 272c parallel and opposite, as shown in Fig. 12, or can be reconfigured to provide a different outflow direction. In order to provide

such different outflow direction, the conduit 228 is cut such as by sawing along the groove 316. Preferably, the kerf created by the cut will leave substantially flat faces. Such cutting divides the conduit 228 into a first portion 326 and a second portion 328. After cutting, the first and second portions 326, 328 are separated. The second portion 328 can now be moved, such as by being rotated, with respect to the first portion 326, as described more fully below. After rotating, the first portion and second portion 326, 328 are connected, such as by using a coupling device 330 such as that depicted in Figs. 14 and 15. The coupling 330 depicted in Figs. 14 and 15 includes a gasket, such as a rubber gasket 332, a key 334 and a housing 336. The gasket 332 may be substantially annular in shape. Preferably, the key 334 and housing 336 are of a split-ring type which can be drawn and held together by a connector such as bolts 338 and nuts 340. The key 334 includes ledges 342, 344 which engage the shoulders 322, 324 of the flats 312, 314. The coupler 330 is configured to provide a leak-free connection between the first and second portions 326, 328 of the conduit 228.

As depicted in Fig. 16A, when the conduit 228 is uncut, the inlet flow direction 272a and outlet flow direction 272c, respectively defined by the valve inlet opening 350 and outlet opening 352 are substantially parallel and opposite.

After the conduit 228 is cut, as described above, the valve can be reconfigured to provide a different outflow direction. For example, as depicted in Fig. 17A, the right hand portion of the conduit 228 can be rotated to an angle 354 of about 90° to provide an outlet opening 352 defining an outflow direction 272d which is different from the first outflow direction 272c.

In the configuration depicted in Figs. 17A and 17B, the outflow direction 272d is substantially at right angles to the inflow direction 272a. Because the outlet opening 352 can be placed in a plurality of different positions, by rotating different

angles, a plurality of outflow directions, preferably an infinite number of outflow directions, can be provided. In the depicted embodiment, all of the outflow directions lie in a plane parallel to the inflow direction 272a. In the

12

B
E
configuration depicted in Figs. 18A and 18B, the outflow opening 352 has been rotated through an angle 356 of about 180° to provide an outflow direction 272e which is parallel to and in the same direction as the inflow direction 272a.

I
5 A backflow preventor 212 is depicted in Fig. 9. The backflow preventor 212 includes first and second shutoff valves 214a, 214b and first and second check valves 12, 14. The shutoff valves can be any of a number of well-known valve designs, including a ball valve, a gate valve, or, preferably, a globe valve. Preferably, the shutoff valves can be manually opened or closed by moving external handles 269a, 296b. The valves 214a, 214b, 12, 14 are encased in a housing 216 which includes an inlet lower portion 218, a valve body 16, and an outlet lower portion 220. A conduit 222 leads from the first shutoff valve 214a to the inlet port 224 of the first check valve 12. The inlet port 224 is preferably circular in shape and surrounded by a valve seat 28. The inlet port 224 can be closed by the clapper or valve disk 32. The valve disk 32 is movable between a closed configuration or position (Fig. 1) and an open configuration as depicted in Fig. 9. The flow exits the first valve region 12 through an outlet port 226 and enters a conduit 228 which provides fluid communication between the first check valve 12 and the second check valve 14. In the embodiment depicted in Fig. 9, the conduit 228 contains a first downward sloping portion 232 imparting a shape to the apparatus similar to the letter "N". At the downstream end of the conduit 228 is an inlet port 234 of the second check valve 14. Surrounding the inlet port 234 is a valve seat 76. The second check valve 14 operates in a manner substantially similar to that of the first check valve 12 as described more fully below. Flow leaves the second check valve 14 to an outlet port 236 and is conveyed by a conduit 238 to a second shutoff valve 214b.
I
10
I
15
I
20
I
25
I
30
I
35
I
I
I

As seen in Fig. 9, the first and second check valves 12, 14 are positioned generally vertically above the inlet and outlet stop valves 218, 220 and the second check valve and shutoff valve 14, 214b are substantially level, but horizontally displaced from the first check valve and shutoff valve 12, 214a. Thus, the flow from the first shutoff valve

13

E 214a to the first check valve 12, the second check valve 12 and the second shutoff valve 214b is in a generally inverted-U shaped, as opposed to a linear shape such as that depicted in Figs. 7 and 8. In this way, the horizontal extent 262 of the 5 backflow preventor 212 is reduced, compared to linear configurations such as those in Figs. 7 and 8. As can be seen from Fig. 9, the horizontal extent 262 of the backflow preventor 212 is also reduced, compared to a configuration such as that depicted in Fig. 6, since the handles 264a, 264b by which the shutoff valves 214a, 214b are operated, extend in a direction perpendicular to a line connecting the inlet and outlet conduits 124, 126. The direction in which the handles 264a, 264b move as the shutoff valves 214a, 214b are opened and closed, is a direction perpendicular to a line connecting the conduits 124, 126. By providing shutoff valve handles 264a, 264b which extend and move in a direction perpendicular to the line connecting the conduits 124, 126, the horizontal extent of the backflow preventor 212, in a direction along the line connecting the conduits 124, 126 is reduced, compared to 20 devices such as that depicted in Fig. 6.

B The first check valve 12 extends generally along an axis 242. The second check valve 14 extends along an axis 244. In the embodiment depicted in Fig. 9, the second check valve extends along an axis 244 which is at approximately 90° to the 25 axis 242 of the first check valve 12.

I An opening 246 is provided in the housing 216 in the 30 region of the first check valve 12, covered by a covering 248. The covering 248 (Fig. 10) is removably held in place by bolts 252a, 252b. When access to the first check valve 12 is desired, such as for maintenance or installation, the bolts 258a, 258b are removed and the covering 248 is removed to expose the first check valve 12 through the opening 246. As can be seen from Fig. 9, access to the first check valve 12 is along a vertical direction.

I A second opening 254 is provided in the housing 216 in the region of the second check valve 14. The opening 254 is 35 covered by a covering 256 removably held in place by bolts 258a, 258b. When access to the second check valve 14 is

desired, the covering 256 is removed. As can be seen from Fig. 9, access to the second check valve 214 is in a horizontal direction.

The lower portion of the backflow preventor 212 includes flanges 266a, 266b for connection to the inlet and outlet conduits 124, 126. Because the flanges 266a, 266b are horizontally oriented, the backflow preventor 212 can be positioned to rest on the inlet and outlet conduits 124, 126 during installation, thus avoiding the need for supports such as those 172a, 172b depicted in Fig. 7.

During operation, fluid enters the first shutoff valve 214a from the inlet conduit 124 in a first flow direction 268. The average streamline flow 272a continues through the conduit 222 and through the inlet port 224 without substantial change in direction until it reaches the valve disk or clapper 32. As shown in Fig. 9, because of the configuration of the valve disk 32 flows through the inlet port 224 is substantially straight 276 and non-divergent. When the flow reaches the clapper 32 (i.e., when any fluid "parcel" component of the flow reaches the clapper 32) there is a 90° change of direction 274. When the clapper 32 is in the open configuration, as depicted in Fig. 9, it is positioned so as to direct the flow (as analyzed by the position of the average streamline) from the first direction 272a (i.e., substantially vertically upward) to a second direction, 272b (i.e., substantially horizontally toward the second check valve 14). In the embodiment depicted in Fig. 9, the clapper 32 acts as a flow director because it forms a surface positioned substantially at an angle with respect to the upward flow 272a.

The flow 272b which has been redirected by the clapper 32 exits the outlet port 226 and flows through the conduit 228 towards the second check valve 14. The flow 272b passes through the inlet port 234 of the second check valve 14. During such passage, the flow is substantially straight and non-divergent 278. The flow 272b proceeds from the first check valve 12 to the second check valve 14 substantially without change of direction until it reaches the clapper 72 of the second check valve 14. The clapper 72 acts as a flow director,

E
B in a manner similar to that of the first clapper 32, redirecting the flow 272b to a vertically downward direction to 272c. Thus, there is a second 90° change in flow direction 282 of the average streamline 272. As can be seen from Fig. 9, the 5 total change in direction of the average streamline 272 is the sum of the two changes of direction 274, 282, both of which are B approximately 90°, providing a total of about 180° of change in direction.

Fig. 11 depicts a backflow preventor 286. The 10 backflow preventor 286 depicted in Fig. 11 is substantially similar to the backflow preventor depicted in Fig. 10 except for the addition of a relief valve 288 and a conduit 292. The relief valve 288 is provided in order to discharge possibly contaminated water into the atmosphere to prevent its entering 15 the water source. A number of relief valves of types well-known in the art can be used. The relief valve 288 and conduit 292 are connected to the housing 216 in two places. The conduit 292 connects the relief valve 288 to a portion of the housing 293 which is upstream of the first check valve 12. The 20 relief valve 288 is also connected to a region 296 (Fig. 9) which is downstream of the first check valve 12. For proper operation, the region 296 should be a distance 298 below the level 299 of the inlet port 224 for the first check valve 12. This change in level 298 is provided by the downward sloping 25 portion 232. In operation, when pressure at the upstream location 293 falls below a predetermined level with respect to pressure in the valve interior, the valve 288 opens to permit discharge of water.

I Test cocks 297a, 297b, 297c are connected to the 30 housing 216 in order to provide a position for pressure testing, e.g., by connecting a differential pressure gauge.

As depicted in Fig. 1, a check valving device 10 is provided having a first check valve 12 and a second check valve 14. A number of valves can be used for the check valves, 35 including those depicted in Figs. 1 and 2. When pivoting valves are used, such as the valves depicted in Figs. 1 and 2, it is anticipated such valve with experience least wear when configured in the vertical up or vertical down positions (with

horizontal pivot axes). Thus, when it is desired to avoid wear, the preferred configurations for the adjustable outlet, using such valves, will be those depicted in Figs. 16A and 18A.

5 If other orientations are desired, and wear is to be avoided, it would be preferable to mount the valves within the housing in a position such that, after adjusting outlet direction, the valve orientation will be vertically upward or downward.

10 Alternatively, it may be possible to use another type of valve which is less susceptible to wear in other positions. Although Fig. 1 depicts the first check valve 12 in a closed position, and the second check valve 14 in an open position, in actual operation, as described more fully below, the first and second valves 12, 14 will open and close substantially simultaneously or within a short time interval of one another. The valving

15 device includes a valve body 16 made up of a wall 18. The valve body 16 can be formed of a number of materials, including ductile iron, brass, stainless, steel, or other metals, plastic, resin, glass, and/or ceramic and the like. The valve body 16 defines an inlet port 22 and an outlet port 24,

20 preferably having a substantially circular cross-section.

Preferably, the inlet port and outlet port include devices, such as flanges 26, for connecting the valving device 10 to fluid conduits. Adjacent to the inlet port 22 is a valve seat 28, such as an annular seat formed, for example, of iron.

25 A disk-shaped clapper 32 is rigidly connected, such as by using a bolt 34 and nut 36, to a clapper arm 38. A first end 39 of the arm 38 is pivotally mounted adjacent the valve seat 28 by connection to a portion of the valve body 16 by a pivot joint 42a, 42b to permit pivoting of the arm 38, and rigidly attached to disk 32 about a first axis 43.

30
The lower surface of the clapper 32 includes a seat disk 44 configured to sealingly mate with the valve seat 28 when the clapper 32 is pivoted to its closed position, as depicted in the left portion of Fig. 1. The disk 44 can be 35 made of a number of materials, including plastic, rubber, resin, and the like, and is preferably a soft (such as about 40 durometer) elastomer material, such as a synthetic rubber e.g., EPDM (ethylene-propylene terpolymer). The disk 44 is

B reversible so that after it experiences wear, it can be removed, rotated 180° about a horizontal plane, and reinstalled.

The second end 48 of the clapper arm 38 is pivotally connected to a spring 52. The spring 52 is contained between first and second spring seats 54, 56. The spring 52 is preferably a helical spring which is compressional, i.e., is reduced in length as the valve 12 opens. The spring 52 can be formed of a number of materials, such as spring steel, plastic, or rubber. A single helical spring 52', such as that depicted in Fig. 4A, is commonly subject to deformation when compressed. As shown in Fig. 4B, a compressed helical spring commonly assumes a bowed or arcuate configuration. Although such a spring can be used in accordance with the present invention, according to the preferred embodiment, two springs 52A, 52B are joined end-to-end by connection to a plate-like or annular device, such as a washer 53, as depicted in Fig. 5A. Upon compression, as depicted in Fig. 5B, such a spring 52 tends to maintain its linear configuration and is not subject to bowing or distortion to the degree an ordinary helical spring 52B is.

The first spring seat 54 is pivotally attached to the second end 48 of the clapper arm 38 to permit pivoting of the spring 52 about a second axis 64.

The second spring seat 56 is pivotally connected to the valve body wall 18. In the preferred embodiment, the portion of the valve wall which the second spring seat 56 connects to is a removable cover 65 which can be attached to the remainder of the valve body wall 18, by e.g., bolts, screws, clamps, or the like (not shown). As shown in Fig. 1, the second spring seat 56 can be connected within a pocket 58 at an attachment point 62, to permit pivotal movement of the spring 52 about a third axis 66.

In the embodiment depicted in Fig. 1, the second valve 14 is positioned downstream from the first valve 12. Preferably, the second valve 14 is identical in construction to the first valve 12, and includes a clapper 72, a biasing device, such as a spring 74, and a valve seat 76. It will be understood, however, that the present invention can be used in

single check valve configurations or other types of valve configurations.

Viewed in cross-section, each of the two valves 12, 14 define a triangle having vertices at the first axis 43, 43', second axis 64, 64', and third axis 66, 66', respectfully. When the valve 12 is closed, the spring biasing device 52 provides a force to the clapper 32, tending to hold the clapper 32 in the closed position. The amount of force is dependent upon two factors: (1) the magnitude of the longitudinal force provided by the spring 52; and (2) the component of that force which acts in a direction tending to close the clapper 32. As depicted in Figs. 3A and 3B, the spring closing force can be described as

$$\sin(180^\circ - \alpha) \cdot \bar{F} \quad (1)$$

*TIB316AT
TM 15
PS60/10* where α 77, 77' is the angle formed between the lines containing the first and second axes 43, 64, and the line containing the second and third axes 64, 66, and \bar{F} 79, 79' is the vector force provided by the spring along the longitudinal spring axis which intersects the second axis 64 and third axis 66.

When the inlet pressure exceeds the outlet pressure, an opening force is created. When the opening force on the clapper 32 exceeds the spring closing force (shown in equation (1)) plus any closing forces provided by other sources, such as fluid pressure the clapper 32 moves away from the valve seat 28, opening the valve 12 to provide fluid communication between the inlet port and the outlet port 24. During the opening movement of the valve 12, the position of the second axis 64 changes with respect to the valve body 10, but does not change with respect to the clapper 32 or with respect to the adjacent end of the spring 52.

*60B
35B
40* As the clapper 32 pivots about the first axis 43, the angle α increases from a value of about 118° 77 in the configuration shown on the left-hand portion of Fig. 1 (depicted schematically in Fig. 3A) to a value of about 164° 77' when in the fully opened configuration of the valve 14, shown on the right-hand portion of Fig. 1 (depicted

schematically in Fig. 3B). The magnitude of the closing force provided to the clapper 32 thus changes from about 87% of that of the spring force \bar{F} 79 to about 27% of that of the spring force \bar{F} 79'. However, during this time, the magnitude of spring force \bar{F} also changes, since it is proportional to the length of the spring 52, becoming larger as the valve 12 opens. In order to produce a valve 12 having a reduced hold-open force, the extreme values of the angle α 77, 77', the distance between the first and third axes 43, 66, and first and second axes 43, 64 are selected so that equation (1) yields a smaller closing force in the opened position of the valve (Fig. 3B) than in the closed position of the valve (Fig. 3A).

The particular values for the hold-open force, maximum tolerable head loss, and the threshold opening pressure will depend upon the particular use or application of the valving device 10. In one embodiment of the present invention, valving device 10 opens when the inlet pressure exceeds the outlet pressure by about 2-5 psi (about 14-35 kPa), and closes when the outlet pressure equals or exceeds the inlet pressure. Preferably, this embodiment has a head loss of less than 2 psi in a static or no-flow (limiting) condition, and there is little increase in head loss as the flow increases, such as a head loss of about 3 psi (about 20 kPa), with an operational flow velocity of about 7.5 ft./sec. (about 2.3 meters/sec.), or a rated flow velocity, e.g., 18 ft./sec. (about 5.5 meters/sec.) In another embodiment, the static condition head loss is about 8 psi (about 56 kPa), and the head loss during flow conditions remains below about 10 psi (about 70 kPa).

Based on the above description, a number of advantages of the present invention are apparent. The backflow preventor in the present invention has enhanced performance, such as lower pressure drop, and has a decreased number of changes of flow direction. By providing a device in which the valves are aligned 90° to each other and in which the total change of direction is about 180°, a backflow preventor is provided which has enhanced performance without substantial degradation of serviceability.

By using the apparatus of the present invention, a backflow preventor can be provided which provides outflow in any of a plurality of directions without the pressure loss and expense of providing additional fittings. For example, it is possible to provide inflow and outflow which are both directed vertically upward while reducing pressure loss in pressure-sensitive applications such as fire protection and high rise buildings. By providing a housing which can be cast as a unitary piece and, if desired, cut, the same body casting can be used, uncut in a standard device, as is used in the adjustable outlet when cut.

A number of modifications and variations of the invention can be used. The backflow preventor described above, in particular the housing and flow configuration, can be used in conjunction with check valves other than the check valves described, such as flapper valves with other types of biasing mechanisms. The check valve of the present invention can be used in combination with other valves or fluid-control devices. The valve can be used with fluids other than liquids. The valve can be configured without using a clapper arm, such as by directly pivoting the spring to the clapper and/or directly pivoting the clapper adjacent the valve seat. Other shapes and geometries of the clapper, ports, valve seats, and other components can be used. Other types of biasing devices can be used, including springs other than helical springs, hydraulic biasing devices, and the like. The present invention can be used employing other types of couplers for joining the separated portions of the conduit than those described and can be constructed of a variety of materials. The present invention can provide for movement of the outlet opening using devices other than the annular flats, such as by using a rotatable sealed joint. Although in one embodiment the housing is provided as a unitary piece which can be cut to achieve a rotation, the housing can also be provided in two or more separate pieces, e.g., joined by a coupling, so that it is not necessary to cut the housing in order to perform rotation.

Although the description of the invention has included a description of a preferred embodiment and certain

modifications and variations, other modifications and variations can also be used, within the scope of the invention, which are described by the following claims.

CM What is claimed is:

22