1 Отображения

Определение. Отображение f множества X в множество Y - это правило (или способ) сопоставления каждому элементу множества x множества X некоторого элемента y множества Y, при этом пишем y=f(x), y - значение отображения f.

Обозначения. $f: X \to Y, X \xrightarrow{f} Y, \ y = f(x)$ в точке x. $\{f_x\}, \ x \in X$ - задано семейство.

Отображение - тройка (X, Y, f), где

X - область (множество) определения,

Y - множество прибытия,

f - правило сопоставления.

Определение. Отображения $f:X\to Y$ и $\tilde f:\tilde X\to \tilde Y$ совпадают $\Leftrightarrow X=\tilde X,\ Y=\tilde Y$ и $f=\tilde f\ \forall x\in X\ f(x)=\tilde f(x)$

Пример.

$$f: (-\infty; +\infty) \to (-\infty; +\infty) \ f(x) = x^2$$

$$f_1: (-\infty; +\infty) \to [0; +\infty) \ f(x) = x^2$$

$$f \neq f_1$$

Определение. Графиком отображения $f:X \to Y$ называется множество

$$\Gamma_f = \{(x,y): x \in X \ \& \ y \in Y \ \& \ y = f(x)\} =$$

$$\{(x,f(x)): x \in X\}$$

$$\Gamma_f \subset X \times Y$$

Свойства.

1.
$$f_1, f_2: X \to Y$$
, to $f_1 = f_2 \Rightarrow \Gamma_{f_1} = \Gamma_{f_2}$

Утверждение. Пусть $\Gamma \subset X \times Y \Rightarrow$ след. свойства эквивалентны.

1. Γ - график некоторого отображения f. 2.

$$\begin{cases}
\forall x \in X \ \exists y \in Y \ : (x, y) \in \Gamma \\
(x_1, y_1) \in \Gamma \ \& \ (x_1, y_2) \in \Gamma \Rightarrow y_1 = y_2
\end{cases} \tag{1}$$

Доказательство.

 $\mathbf{1} \Rightarrow \mathbf{2}$. Пусть $\Gamma = \Gamma_f$ - график $f: X \to Y_1$ тогда $\forall x \in X$ определен f(x) = y и $(x_1, f(x)) \in \Gamma$ то есть $\forall x \in X \exists y =$ f(x), такие что $(x,y) \in \Gamma$.

$$(x,y_1) \in \Gamma_f$$
 и $(x,y_2) \in \Gamma_f$. Тогда $y1 = f(x)$ и $y_2 = f(x) \Rightarrow y_1 = y_2$.

 $\mathbf{2} \Rightarrow \mathbf{1}$. Пусть Γ удовлетворяет свойству $2 \Rightarrow \forall x \in X$ найдется $y \in Y$, такой, что $(x,y) \in \Gamma$. Определим f(x) = y. Поскольку точка с первой координатой единственна, то правило соответствия задано корректно (значение f в точке x задано единственным образом).

Примеры:

- 1. $Y=\mathbb{R},\mathbb{C},\mathbb{N},\mathbb{Z},f:X o Y$ функция.
- 2. $X = \mathbb{N}, f: X \to Y$ последовательность.

$$f_n = f(n) \quad \{f_n\}_{n=1}^{\infty}$$

- 3. $X=\{1,2,\dots,\},\ f:X\to Y$ конечная последовательность. 4. $X=\mathbb{Z},\ f:X\to Y$ двустороняя последовательность.
- 5. X = Y и $\forall x \ f(x) = x$ тождественное отображение.

$$f = id_x = id$$

6. $\exists c \in Y : \forall x \ f(x) = c \Rightarrow f$ - постоянное отображение.

$$f \equiv c, f - const$$

Определение. $f: X \to Y, A \subset X, B \subset Y$

Образом множества A при отображении f называется множество

$$f(A) = \{ f(x) : x \in A \}$$

Прообразом множества B при отображении f называется множество

$$f^{-1}(B) = \{x : f(x) \in B\}$$

Свойства:

- $\begin{aligned} &1.\ f(\varnothing)=\varnothing,\ f^{-1}(\varnothing)=\varnothing.\\ &2.\ f(A)\subset Y,\ f^{-1}(B)\subset X. \end{aligned}$
- 3. $A \neq \emptyset \Rightarrow f(A) \neq \emptyset$.
- $A. B \neq \emptyset \Rightarrow f^{-1}(B) \neq \emptyset.$

$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = x^2$

$$f^{-1}(\{-1\}) = \emptyset$$

- 5. $B \cap f(x) \neq \emptyset \Rightarrow f^{-1}(B) \neq \emptyset$.
- Определение. $f: X \to Y$
 - 1. f инъективно, если

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2 \ (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$$

2. f - сюръективно(отображение на), если

$$f(X) = Y$$
, то есть, $\forall y \in Y \ \exists x \in X : f(x) = y$

- $3. \ f$ биективно, если оно инъективно и сюръективно.
- Замечания.

 - 1. Отображение $f:X\to f(x)$ сюръективно. 2. $f:X\to Y\Rightarrow f=x^2$ $f(1)=f(-1)=1:\mathbb{R}\to\mathbb{R}$ не инъективно, но $f:[0;+\infty)\to[0;+\infty)$ инъективно (даже биективно)

 - \Rightarrow $\exists \tilde{X} \subset X$, такое, что $\tilde{f}: \tilde{X} \to Y$ инъективно.
 - $\tilde{f}(\tilde{X}) = f(X), \ \tilde{f}(x) = f(x) \ \forall x \in \tilde{X}.$
- **Определение.** $f: X \to Y, \tilde{X} \subset X.$ Отображение $\tilde{f}L\tilde{X} \to Y$ называется сужением отображения f на $\tilde{X},$ если $\forall x \in \tilde{X}$ $\tilde{f}(x) = f(x).$

 - Обозначается: $\tilde{f} = f|_{\tilde{x}}$