Shuhan Zhang

Aspen Capital

10/25/2022

# Take-home Data Science Case

# **CONCLUSION**

1. The top 10 zip codes to focus on property investment are: 92652, 94024, 94027, 10577, 10043, 94022, 94020, 94301, 90272, 94925. These are the top 10 zip codes which have a high forecasted index value based on the consideration of both the median home value and median rent for year 2023. By plotting both the median home value and median rent, we can tell there is a huge lift from 2012 to 2017. Let's look at an example of zip code 92652.



2. We can observe from the results that almost all the 10 zip codes are from the same state which is California, with 2 from New York. Also, we can notice that the zip codes are pretty close to each other. Also, based on the clustering result from the KMeans model, we can see that physically close zip codes got assigned to the same clusters for almost

2015

2016

2017

each individual year from 2012 to 2017 (see pics below). So, we can observe a trend that zip codes which are close to each other will have a relatively similar mutual effect on each other, positive or negative.

| Zip Code: 92      | 652.0              | Zip Cod | le: 1 | 0043.0             |         |       |   |
|-------------------|--------------------|---------|-------|--------------------|---------|-------|---|
| Year              | Cluster_assignment | -       | Year  | Cluster assignment |         |       |   |
| 120863 2012       | 1                  |         | 2012  | _ 1                |         |       |   |
| 120864 2013       | 1                  | 10804   | 2013  | 1                  |         |       |   |
| 120865 2014       | 1                  | 10805   | 2014  | 1                  |         |       |   |
| 120866 2015       | 3                  | 10806   | 2015  | 3                  |         |       |   |
| 120867 2016       | 3                  | 10807   | 2016  | 3                  |         |       |   |
| 120868 2017       | 3                  | 10808   | 2017  | 3                  |         |       |   |
| Zip Code: 94024.0 |                    | Zip Cod | le: 9 | 4022.0             |         |       |   |
| Year              | Cluster assignment | -       | Year  | Cluster_assignment |         |       |   |
| 122804 2012       | 1                  | 122798  |       |                    |         |       |   |
| 122805 2013       | 1                  | 122799  | 2013  | 1                  |         |       |   |
| 122806 2014       | 1                  | 122800  | 2014  | 1                  |         |       |   |
| 122807 2015       | 3                  | 122801  | 2015  | 3                  |         |       |   |
| 122808 2016       | 3                  | 122802  | 2016  | 3                  |         |       |   |
| 122809 2017       | 3                  | 122803  | 2017  | 3                  |         |       |   |
| Zip Code: 94      | 027.0              | Zip Cod | le: 9 | 4020.0             |         |       |   |
|                   | Cluster assignment |         | Year  | Cluster_assignment |         |       |   |
| 122816 2012       | 1                  | 122792  |       |                    | Zip Cod | le: 9 | , |
| 122817 2013       | 1                  | 122793  | 2013  | 1                  | •       | Year  |   |
| 122818 2014       | 1                  | 122794  | 2014  | 1                  | 117643  | 2012  |   |
| 122819 2015       | 3                  | 122795  | 2015  | -                  |         |       |   |
| 122820 2016       | 3                  | 122796  | 2016  |                    | 117644  | 2013  |   |
| 122821 2017       | 3                  | 122797  |       |                    | 117645  | 2014  |   |
| Zip Code: 10      | 577.0              | Zip Cod | le: 9 | 4301.0             | 117646  | 2015  | į |
| -                 | Cluster assignment |         |       | Cluster_assignment | 117647  | 2016  | j |
| 11391 2012        | 1                  | 123116  |       |                    | 117648  | 2017  | 1 |
| 11392 2013        | 1                  | 123117  | 2013  |                    | Zip Cod |       |   |
| 11393 2014        | 1                  | 123118  | 2014  |                    | 31p cou |       |   |
| 11394 2015        | 3                  | 123119  | 2015  |                    | 102014  | Year  |   |
| 11395 2016        | 3                  | 123120  | 2016  |                    | 123914  | 2012  |   |
| 11396 2017        | 3                  | 123121  |       |                    | 123915  | 2013  |   |
| Zip Code: 10      | _                  | Zip Cod |       |                    | 123916  | 2014  | į |
| -                 | Cluster_assignment |         |       | Cluster_assignment | 123917  | 2015  | , |
| 10803 2012        | 1                  | 117643  | 2012  |                    | 123918  | 2016  |   |
| 10803 2012        | 1                  | 117644  | 2013  |                    | 123919  | 2017  |   |
| 10004 2013        | <u>,</u>           | 117645  | 2014  | 1                  | 123919  | 201   | 1 |

# **MAIN APPROACH**

To answer the questions of what are the zip codes which should be focused on investing, the first thing is to analyze the dataset. The census dataset consists of different attributes of one zip code at different tract number from year 2012 to 2017 like the population, the home value, the income level, the average rent etc. For the sake of this project, I decided to mainly focus on the **home** value and **rent** as the two key metrics.

As I want to consider both home value and rent, I decide to generate a new index which combines these two metrics together. The new investment index is  $i = home \ value \times rent$ .

The main approach is to build a time series first-order **ARIMA** model to forecast the future investment index value of each zip code by using the census data from 2012 to 2017.

## **ASSUMPTIONS**

- 1. The housing market doesn't fluctuate a lot because of the pandemic. I am only able to model the data which is from 2012 to 2017 to forecast the future value after 2017.
- The cost of the property investment remains constant or irrelevant. In a more realistic situation, it would be better to take into account the cost factors.
- 3. There is no huge inflation or deflation.

## **FUTURE WORK TO BE DONE**

- Data Preprocessing. In the data preprocessing step, I decided to drop the rows as long as
  it has one empty data entries. However, if I have more time, I would only drop the rows
  where the zip code is missing, and check each column to see what are the feature is and
  decide a way to impute missing values.
- 2. Metric Selection. Here in this project, due to time constraints, I only selected home value and rent as the two main factors to look at and keep track of. However, I do believe that there is a better way to come up with a new investment index by figuring out what are the key components of property investment with investment experts and business experts. If there is more room for this project, I also would suggest to collect the direct investment data which includes the information of property investment returns. In this way, we can build supervised learning model to explore the most important factors which could lead to the highest investment returns.

- 3. Time Series Model. Currently, I'm using the first order auto-regressive time series model because it is relatively more simple. If I have more time, I would try several additional time series settings, and check whether the forecasting result is consistent across different models, so to ensure the stability.
- 4. Closeness of zip codes. To answer the second question of what is observed for zip codes which are close together, if there is more time, I would try several more clustering models and see whether physically close zip codes will fall into the same cluster or relatively far away clusters.
- 5. Forecasting for more years. If I can have more time and more data, I would forecast the index values for 5 more years instead of only 2023.

## **APPENDIX**

You can find my code here:

https://github.com/nahuhs/Property-Investment-Modeling/blob/main/ShuhanZhang\_workbook.ipynb
(The code probably takes too long to render, but you can download the file and change the suffix to .ipynb, and it should work fine)