

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 3_1_2 »

С тудент группы	ИНБО-07-21	Михайлюк Д.С.
Руководитель практики	Ассистент	Асадова Ю.С.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Постановка задачи	5
Метод решения	6
Описание алгоритма	8
Блок-схема алгоритма	11
Код программы	12
Тестирование	14
ЗАКЛЮЧЕНИЕ	15
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	16

введение

Постановка задачи

Создать объект первого типа, у которого одно целочисленное свойство. Значение данного свойства определяется посредством параметризированного конструктора.

Создать объект второго типа, у которого две целочисленных свойства. Значение данных свойств определяется посредством метода объекта. Реализовать дружественную функцию, которая находит максимальное значение полей объекта первого типа и полей объекта второго типа.

Написать программу:

- 1. Вводит значение для поля объекта первого типа.
- 2. Создает объект первого типа.
- 3. Вводит значения полей для полей объекта второго типа.
- 4. Создает объект второго типа.
- 5. Определяет значения полей объекта второго типа.
- 6. Определяет максимальное значение полей, созданных двух объектов разного типа посредством дружественной функции.
- 7. Выводит полученный результат.

Описание входных данных

Первая строка:

«целое число в десятичном формате»

Вторая строка:

«целое число в десятичном формате» «целое число в десятичном формате»

Описание выходных данных

Первая строка, с первой позиции:

max = «целочисленное значение в десятеричном формате»

Метод решения

Для решения поставленной задачи необходимо использовать:

- объекты стандартных потоков класса iostream для ввода и вывода информации на экран (cin и cout);
- объекты о1 и о2 класса Foo.

Класс Foo:

- свойства/поля:
 - Поле хранит значение объекта о1
 - Наименование pole_obj1;
 - Тип целочисленный;
 - Модификатор доступа private;
 - Поле хранит первое значение объекта о2
 - Наименование pole_obj2_1;
 - Тип целочисленный;
 - Модификатор доступа private;
 - Поле хранит второе значение объекта о2
 - Наименование pole_obj2_2;
 - Тип целочисленный;
 - Модификатор доступа private;
- Функционал:
 - Метод Foo;
 - Функционал параметризированный конструктор с целочисленным параметром определяющий поле этого

параметра

- Метод Foo;
 - Функционал параметризированный конструктор с целочисленными параметромами определяющий 2 поля этого параметра
- объявленная дружественная функция serchmax();

Описание алгоритма

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Функция: main

Функционал: основоной алгоритм программы

Параметры: отсутствуют

Возвращаемое значение: целочисленный код возврата

Алгоритм функции представлен в таблице 1.

Таблица 1. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		объявление целочисленных переменных a, b	2	
2		считывание а с клавиатуры	3	
3		создание объекта о1 класса Foo	4	
4		считывание a, b с клавиатуры	5	
5		создание объекта о2 класса Foo	6	
6		Вывод "max = " значение функции serchmax	Ø	

Функция: serchmax

Функционал: поиск максимума из полученных значений

Параметры: Ссылки на о1 и о2 - объекты класса Foo

Возвращаемое значение: целочисленный - максимум от 3х значений

Алгоритм функции представлен в таблице 2.

Таблица 2. Алгоритм функции serchmax

N₂	Предикат	Действия	№ перехода	Комментарий
1		вернуть максимум от поля объекта о1 или от 1 поля объекта о2 или от 2 поля объекта о2	Ø	

Класс объекта: Foo

Модификатор доступа: public

Метод: Foo

Функционал: параметризированный конструктор

Параметры: целочисленная а

Возвращаемое значение: отсутствет

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода Foo класса Foo

N₂	Предикат	Действия	№ перехода	Комментарий
1		присвоение pole_obj1 значения а	Ø	

Класс объекта: Foo

Модификатор доступа: public

Метод: Foo

Функционал: параметризированный конструктор

Параметры: целочисленные a, b

Возвращаемое значение: отсутствет

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода Foo класса Foo

N₂	Предикат	Действия	№ перехода	Комментарий
1		присвоение ple_obj2_1 значения a	2	
2		присвоение ple_obj2_2 значения b	Ø	

Блок-схема алгоритма

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл Foo.cpp

```
#include "Foo.h"

Foo::Foo(int a)
{
         pole_obj1 = a;
}

Foo::Foo(int a, int b)
{
         pole_obj2_1 = a;
         pole_obj2_2 = b;
}
```

Файл Foo.h

Файл main.cpp

```
#include "Foo.h"
#include <iostream>
using namespace std;
int serchmax(Foo& o1, Foo& o2)
```

```
{
          return max(o1.pole_obj1, max(o2.pole_obj2_1, o2.pole_obj2_2));
}
int main()
{
          int a, b;
          cin >> a;
          Foo o1(a);
          cin >> a >> b;
          Foo o2(a, b);
          cout << "max = " << serchmax(o1, o2);
}</pre>
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
123	max = 3	max = 3
132 2534 36	max = 2534	max = 2534
354 0 -3	max = 354	max = 354

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).