Trigger Scale Factors

for the $HH \to bb au au$ resonant analysis

Bruno Alves¹ 28th January 2022

¹LLR, École Polytechnique, Paris

Overview

- The HH o bb au au analysis is targetting ICHEP 2022 **(optimistic)**
- This requires establishing a method for calculating and applying trigger scale factors
- This presentation covers one MET trigger:
 HLT_PFMETNoMu120_PFMHTNoMu120_IDTight_v
- We considered UL 2018 samples (MET and TT)
- A standalone framework has been developped:
 - Starts from skimmed KLUB ntuples
 - Defines an equal-width binning, removing the top 5% quantile (outliers)
 - · An optimal binning can be later defined manually
 - · Calculates efficiencies and scale factors on HTCondor
 - Plots distributions, efficiencies and scale factors (results here
 - Steps are chained with luigi and should work with any trigger

The Orthogonal Dataset Method

- A Reference Trigger (**Ref**) is chosen:
 - Orthogonal to the trigger of interest X (Trig_X)
 - Its trigger scale factors are already known
- · Data and MC efficiencies:

$$\epsilon_{\text{Data,MC}} = \frac{\text{pass(Ref) \&\& pass(Trig_X)}}{\text{pass(Ref)}}$$

· Scale factors:

$$SF = \epsilon_{Data}/\epsilon_{MC}$$

- · Ref takes precedence over Trig when applying the scale factors (next slides)
- It is important to carefuly define:
 - · Which events are used to calculate the scale factors
 - To events are those same scale factors later applied

Calculate Scale Factors

- Use events that pass **both** the reference trigger and the trigger of interest
- · Additionally apply cuts on trigger variables to avoid the turn-on curve
- Example: HLT_PFMETNoMu120_PFMHTNoMu120_IDTight_v
 - METNoMu > 200GeV && MHTNoMu > 200GeV
 - · The values must be tuned
- Detail: cuts are not applied on variables as a function of which scale factors are calculated.
- Example
 SF as a function of metnomu_et:
 only mhtnomu_et > 200 GeV is
 applied

Apply Scale Factors

- · If the events passes **Ref**, the reference scale factors are applied
- If the event does not pass Ref but passes the trigger of interest Trig, the new scale factors of interest are applied
- This assumes events captured by both triggers are uncorrelated (orthogonal)

Event loop

- 1: if passes(Ref) then
- 2: apply(SF_{Ref})
- 3: else if passes(Trig)
 then
- 4: apply(SF_{Trig})
- 5: ...
- 6: end if

Orthogonal Method: MET Example

- A lepton trigger (**Lep**) is chosen:
 - · Orthogonal to the MET trigger
 - · Lepton trigger scale factors are well known
- · Data and MC MET efficiencies:

$$\epsilon_{\text{Data,MC(MET)}} = \frac{\text{pass(Lep) \&\& pass(MET)}}{\text{pass(Lep)}}$$

Scale factors (intersection of triggers):

$$\mathrm{SF}_{\mathrm{MET}} = \epsilon_{\mathrm{Data}(\mathrm{MET})}/\epsilon_{\mathrm{MC}(\mathrm{MET})}$$

 Lep takes precedence over MET when applying the scale factors

Event loop

- 1: **if** passes(Lep) **then**
- 2: apply(SF_{Lep})
- 3: else if passes(MET)
 then
- 4: apply(SF_{MET})
- 5: end if

Generalization to multiple triggers: Calculating Scale Factors

- The method can be generalized to N triggers of interest
- Efficiencies only depend on Ref and on their own trigger of interest k:

$$\epsilon_{\mathsf{Data},\mathsf{MC}(k)} = \frac{\mathsf{pass}(\mathsf{Ref}) \ \&\& \ \mathsf{pass}(\mathsf{Trig}_k)}{\mathsf{pass}(\mathsf{Ref})}$$

• The picture shows 3 for convenience $(N = 2, k \in 1, 2)$

Generalization to multiple triggers: Applying Scale Factors

Scale factors are applied in order of trigger acceptance

· Each subsequent SF is applied to fewer and fewer events

Event loop

- 1: **if** passes(**Ref**) **then**
- 2: apply(SF_{Ref})
- 3: **else** if passes(**Trig**₁) then
- 4: apply(SF_{Trig1})
- 5: else if passes(Trig₂) then
- 6: apply(SF_{Trig2})
- 7: ...
- 8: end if

Preliminary metnomu_et and mhtnomu_et 1D Results: $\mu \tau_h$ channel

mhtnomu_et > 200 GeV

metnomu_et > 200 GeV

Preliminary metnomu_et vs mhtnomu_et 2D Results: $\mu \tau_h$ channel

- · Orange shows how many events passed the trigger of interest (per bin)
- Red shows how many events there were in total (per bin)
- For the scale factors the color scale was capped

Study the impact of trigger variable cuts

- Test several cuts on 1D efficiencies
- · A strong dependence favours the 2D binning approach
- The framework allows a quick systematic study

Example: $mhtnou_et$ ($\mu\tau_h$ channel)

Study the impact of MET cuts

met_et > 180GeV

met_et > 200GeV

Conclusions & Next Steps

- We presented a *flexible framework for trigger scale factors:* testing triggers, cuts, variables, channels and datasets should be straightforward
- Decide whether to use 1D or 2D scale factors
 - · 2D has less statistics per bin but
 - · It does not get potentially biased by one additional cut
- · Decide which ones should be used:
 - met_et vs metnomu_et
 - · mht_et vs mhtnomu_et
- We used the MET dataset to study the MET trigger. A better approach might be to use a dataset orthogonal to the MET trigger: SingleMuon
- Should we fit the efficiencies to smoothen the scale factors out?

Differences for different channels

Skimmed KLUB ntuples: met_et vs mht_et

Differences for different channels

Skimmed KLUB ntuples: met_et vs metnomu_et

Lepton trigger:

- (one of the $e\tau_h/\mu\tau_h/\tau_h\tau_h$ OR single e/μ triggers is fired)
- AND the event contains reconstructed leptons matched to the trigger requirement

Different statistics after Ref trigger:

	(-)
Channel	# pass(Ref)
$\mathrm{e} au_{h}$	~5500
μau_{h}	~19000
$ au_h au_h$	~400