CLAIMS:

1. A method of incorporating nitrogen into a silicon-oxide-containing layer, comprising:

exposing the silicon-oxide-containing layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into the layer; the layer being maintained at less than or equal to 400°C during the exposing; and

thermally annealing the nitrogen within the layer to bond at least some of the nitrogen to silicon proximate the nitrogen.

- 2. The method of claim 1 wherein the layer is maintained at a temperature of from 50°C to 400°C during the exposing.
- 3. The method of claim 1 wherein the plasma is maintained with a power of from about 500 watts to about 5000 watts during the exposing.
- 4. The method of claim 1 wherein the plasma is maintained with a power of from about 500 watts to about 3000 watts during the exposing.

1	5. The method of claim 1 wherein the exposing occurs within
2	a reactor, and wherein a pressure within the reactor is from about
3	5 mTorr to about 10 mTorr during the exposing.
4	
5	6. The method of claim 1 wherein the exposing occurs for a
6	time of less than or equal to about 1 minute.
7	
8	7. The method of claim 1 wherein the exposing occurs for a
9	time of from about 3 seconds to about 1 minute.
10	
11	8. The method of claim 1 wherein the exposing occurs for a
12	time of from about 10 seconds to about 15 seconds.
13	
14	9. The method of claim 1 wherein the annealing comprises
15	rapid thermal processing at a ramp rate of at least about 50°C/sec to
16	a temperature of less than 1000°C, with such temperature being
17	maintained for at least about 30 seconds.
18	
19	10. The method of claim 1 wherein the annealing comprises
20	thermal processing at temperature of less than 1100°C for a time of at
21	least 3 seconds.

Sup (

5

7

8

10

11

15

16

17

11. A method of forming a nitrogen-enriched region within a silicon-oxide-containing layer, comprising:

providing the silicon-oxide-containing layer over a substrate; the layer having an upper surface above the substrate and a lower surface on the substrate;

exposing the layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into the layer and form a nitrogen-enriched region, the nitrogen enriched region being only in an upper half of the silicon-oxide-containing layer; and

thermally annealing the nitrogen within the nitrogen-enriched region to bond at least some of the nitrogen to silicon proximate the nitrogen; the nitrogen-enriched region remaining confined to the upper half of the silicon-oxide-containing layer during the annealing; the thermal annealing comprising either (1) thermal processing at a temperature of less than 1100°C for a time of at least 3 seconds, or (2) rapid thermal processing at a ramp rate of at least about 50°C/sec to a process temperature of less than 1000°C, with the process temperature being maintained for at least about 30 seconds.

50B21

12. The method of claim 11 wherein the nitrogen-enriched region is formed only in the upper third of the silicon-oxide layer by the exposing.

 - -
Lī
IJ
**
U
æ
į.
<u>ļ</u>
IJ1

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The method of claim 11 wherein the nitrogen-enriched region is formed only in the upper third of the silicon-oxide layer by the exposing and remains confined to the upper third of the silicon-oxide containing layer during the annealing.

- The method of claim 11 wherein the nitrogen-enriched region 14. is formed only in the upper fourth of the silicon-oxide layer by the exposing and remains confined to the upper fourth of the silicon-oxide containing layer during the annealing.
- 15. The method of claim 11 wherein the nitrogen-enriched region is formed only in the upper fifth of the silicon-oxide layer by the exposing and remains confined to the upper fifth of the silicon-oxide containing layer during the annealing.
- The method of claim 11 wherein the layer is maintained at 16. a temperature of less than 400°C during the exposing.
- The method of claim 11 wherein the plasma is maintained 17. with a power of from about 500 watts to about 5000 watts during the exposing.

UT
IJ
7
Ш
B
ļ.
UT
ΠI

<u> </u>	
1	i
L	Ę,,,
I	
L L	-
Ų	1
7.	į

6

7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

	1	8.	The	method	of	claim	11	wherein	the	exposin	g	occurs	within
a	reac	tor,	and	wherein	a	pressu	re	within	the	reactor	is	from	about
5	mTo	rr to	abo	ut 10 m7	Γor	r durin	ıg t	the expo	sing.				

The method of claim 11 wherein the exposing occurs for a 19 time of less than or equal to about 1 minute.

20. A method of forming a transistor, comprising

forming a gate oxide layer over a semiconductive substrate, the gate oxide layer comprising silicon dioxide;

exposing the gate oxide layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into the layer, the layer being maintained at less than of equal to 400°C during the exposing;

thermally annealing the nitrogen within the layer to bond at least a majority of the nitrogen to silicon proximate the nitrogen;

forming at least one conductive layer over the gate oxide; and forming source/drain regions within the semiconductive substrate; the source/drain regions being gatedly connected to one another by the conductive layer.

The method of claim 20 wherein the conductive layer is formed on the gate oxide.

1	22. The method of claim 20 wherein the conductive layer is
2	formed after the annealing.
3	
4	23. The method of claim 20 wherein the source/drain regions are
5	formed after the annealing.
6	
7	24. The method of claim 20 wherein the conductive layer and
8	source/drain regions are formed after the annealing.
9	
10	25. The method of claim 20 wherein the plasma is maintained
11	with a power of from about 500 watts to about 5000 watts during the
12	exposing.
13	
14	26. The method of claim 20 wherein the exposing occurs within
15	a reactor, and wherein a pressure within the reactor is from about
16	5 mTorr to about 10 mTorr during the exposing.
17	
18	27. The method of claim 20 wherein the exposing occurs for a
19	time of less than or equal to about 1 minute.
20	
21	
22	

28. The method of claim 20 wherein the annealing comprises thermal processing at temperature of less than 1100°C for a time of at least 3 seconds.

29. A method of forming a transistor, comprising:
forming a gate oxide layer over a semiconductive substrate, the gate oxide layer comprising silicon dioxide, the gate oxide layer having

exposing the gate oxide layer to activated nitrogen species from a nitrogen-containing plasma to introduce nitrogen into the gate oxide layer and form a nitrogen-enriched region, the nitrogen enriched region being only in an upper half of the gate oxide layer;

an upper surface and a lower surface;

thermally annealing the nitrogen within the nitrogen-enriched region to bond at least a majority of the nitrogen to silicon proximate the nitrogen; the nitrogen-enriched region remaining confined to the upper half of the silicon-oxide-containing layer during the annealing;

forming at least one conductive layer over the gate oxide layer;

forming source/drain regions within the semiconductive substrate; the source/drain regions being gatedly connected to one another by the conductive layer.

	30.	The	me	thod	of clair	m 29 v	vher	ein	the nitrogen-	enriched	l region
is	formed	only	in	the	upper	third	of	the	silicon-oxide	e layer	by the
ex	posing.										

- 31. The method of claim 29 wherein the nitrogen-enriched region is formed only in the upper third of the silicon-oxide layer by the exposing and remains confined to the upper third of the silicon-oxide containing layer during the annealing.
- 32. The method of claim 29 wherein the layer is maintained at a temperature of less than 400°C during the exposing.
- 33. The method of claim 29 wherein the plasma is maintained with a power of from about 500 watts to about 5000 watts during the exposing.
- 34. The method of claim 29 wherein the exposing occurs within a reactor, and wherein a pressure within the reactor is from about 5 mTorr to about 10 mTorr during the exposing.
- 35. The method of claim 29 wherein the exposing occurs for a time of less than or equal to about 1 minute.

36. The method of claim 29 wherein the annealing comprises
thermal processing at temperature of less than 1100°C for a time of at
least 3 seconds.
37. The method of claim 29 wherein the conductive layer is
formed on the gate oxide.
$\langle \hat{A} \rangle$
38. The method of claim 29 wherein the conductive layer is
formed after the annealing.
39. The method of claim 29 wherein the source/drain regions are
formed after the annealing.
40. The method of claim 29 wherein the conductive layer and
source/drain regions are formed after the annealing.

41.	Δ	transistor	ctructure	comprising
41.	$\boldsymbol{\Gamma}$	transistor	structure,	Comprising.

a gate oxide layer over a semiconductive substrate, the gate oxide layer comprising silicon dioxide; the gate oxide layer having a nitrogen-enriched region which is only in an upper half of the gate oxide layer;

at least one conductive layer over the gate oxide layer; and source/drain regions within the semiconductive substrate; the source/drain regions being gatedly connected to one another by the conductive layer.

- 42. The structure of claim 41 wherein the conductive layer comprises conductively-doped silicon.
- 43. The structure of claim 41 wherein the conductive layer comprises p-type conductively-doped silicon.
- 44. The structure of claim 41 wherein the nitrogen-enriched region is only in the upper third of the gate oxide layer.
- 45. The structure of claim 41 wherein the nitrogen-enriched region is only in the upper fourth of the gate oxide layer.

- 46. The structure of claim 41 wherein the nitrogen-enriched region is only in the upper fifth of the gate oxide layer.
- 47. The structure of claim 41 wherein the gate oxide layer is at least about 5Å thick, and wherein the nitrogen-enriched region is only in the upper 50% of the gate oxide layer.

lad Ba