Inteligência Artificial

Agentes Inteligentes

Capítulo 2 – Russell & Norvig

Agentes

- Software que reúne informações sobre um ambiente e toma ações baseadas nessas informações
- Ex
 - o robô
 - programa de compra online
 - fábrica
 - sistema de controle de tráfego
- Características:
 - pequeno programa
 - propósito específico
 - independente de entrada do usuário
 - geralmente roda continuamente

Agentes

• Um agente é algo capaz de perceber seu ambiente por meio de sensores e de agir sobre esse ambiente por meio de atuadores.

- Agente humano
 - Sensores: Olhos, ouvidos e outros órgãos.
 - Atuadores: Mãos, pernas, boca e outras partes do corpo.
- Agente robótico
 - Sensores: câmeras e detectores de infravermelho.
 - Atuadores: vários motores.
- Agente de software
 - Sensores: entrada do teclado, conteúdo de arquivos e pacotes vindos da rede.
 - Atuadores: tela, disco, envio de pacotes pela rede.

Mapeando percepções em ações

- Sequência de percepções: história completa de tudo que o agente percebeu.
- O comportamento do agente é dado abstratamente pela função do agente:

$$[f: \mathcal{P}^{\star} \to \mathcal{A}]$$

onde é a \mathcal{P}^* é uma sequência de percepções e \mathcal{A} é uma ação.

- O programa do agente roda em uma arquitetura física para produzir f.
- Agente = arquitetura + programa.

Exemplo: O mundo do aspirador de pó

- Percepções: local e conteúdo
 - Exemplo: [A, sujo]
- Ações: Esquerda, Direita, Aspirar, NoOp

Uma função para o agente aspirador de pó

Sequência de Percepções	Ação
[A, Limpo]	Direita
[A, Sujo]	Aspirar
[B, Limpo]	Esquerda
[B, Sujo]	Aspirar
[A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Sujo]	Aspirar
•••	
[A, Limpo], [A, Limpo], [A, Limpo]	Direita
[A, Limpo], [A, Limpo], [A, Sujo]	Aspirar

Programa: Se o quadrado atual estiver sujo, então aspirar, caso contrário mover para o outro lado.

Agentes Racionais

- Como preencher corretamente a tabela de ações do agente para cada situação?
- O agente deve tomar a <u>ação "correta"</u> baseado no que ele percebe para <u>ter sucesso</u>.
 - O conceito de sucesso do agente depende uma medida de desempenho objetiva.
 - Exemplos: quantidade de sujeira aspirada, gasto de energia, gasto de tempo, quantidade de barulho gerado, etc.
 - A medida de desempenho deve refletir o resultado realmente desejado.

Agentes Racionais

- Agente racional: para cada sequência de percepções possíveis, deve-se selecionar uma ação que se espera que venha a <u>maximizar sua medida de desempenho</u>, dada a evidência fornecida pela sequência de percepções e por qualquer conhecimento interno do agente.
 - Exercício: para que medida de desempenho o agente aspirador de pó é racional?

Agentes Racionais

- Racionalidade é diferente de perfeição.
 - A racionalidade maximiza o desempenho esperado, enquanto a perfeição maximiza o desempenho real.
 - A escolha racional só depende das <u>percepções até o momento</u>.
- Mas os agentes podem (e devem!) executar ações para <u>coleta</u> <u>de informações</u>.
 - Um tipo importante de coleta de informação é a exploração de um ambiente desconhecido.
- O agente também pode (e deve!) <u>aprender</u>, ou seja, modificar seu comportamento dependendo do que ele percebe ao longo do tempo.
 - Nesse caso o agente é chamado de <u>autônomo</u>.
 - Um agente que aprende pode ter sucesso em uma ampla variedade de ambientes.

PEAS

- Ao projetar um agente, a primeira etapa deve ser sempre especificar o ambiente de tarefa.
 - Performance = Medida de Desempenho
 - Environment = Ambiente
 - Actuators = Atuadores
 - Sensors = Sensores

Exemplo de PEAS: Motorista de Táxi Automatizado

- Medida de desempenho:
- Ambiente:
- Atuadores:
- Sensores:

Exemplo de PEAS: Motorista de Táxi Automatizado

- Medida de desempenho: viagem segura, rápida, sem violações às leis de trânsito, confortável para os passageiros, maximizando os lucros.
- Ambiente: ruas, estradas, outros veículos, pedestres, clientes.
- Atuadores: direção, acelerador, freio, embreagem, marcha, seta, buzina.
- Sensores: câmera, sonar, velocímetro, GPS, hodômetro, acelerômetro, sensores do motor, teclado ou microfone.

Exemplo de PEAS: Sistema de Diagnóstico Médico

- Medida de desempenho:
- Ambiente:
- Atuadores:
- Sensores:

Exemplo de PEAS: Sistema de Diagnóstico Médico

- Medida de desempenho: paciente saudável, minimizar custos, processos judiciais.
- Ambiente: paciente, hospital, equipe.
- Atuadores: exibir na tela perguntas, testes, diagnósticos, tratamentos.
- Sensores: entrada pelo teclado para sintomas, descobertas, respostas do paciente.

Exemplo de PEAS: Robô de seleção de peças

- Medida de desempenho:
- Ambiente:
- Atuadores:
- Sensores:

Exemplo de PEAS: Robô de seleção de peças

- Medida de desempenho: porcentagem de peças em bandejas corretas.
- Ambiente: correia transportadora com peças; bandejas.
- Atuadores: braço e mão articulados.
- Sensores: câmera, sensores angulares articulados.

Exemplo de PEAS: Instrutor de Inglês Interativo

- Medida de desempenho:
- Ambiente:
- Atuadores:
- Sensores:

Exemplo de PEAS: Instrutor de Inglês Interativo

- Medida de desempenho: maximizar nota de aluno em teste.
- Ambiente: conjunto de alunos.
- Atuadores: exibir exercícios, sugestões, correções.
- Sensores: entrada pelo teclado.

Propriedades de ambientes de tarefa

- Completamente observável (versus parcialmente observável)
 - Os sensores do agente d\u00e3o acesso ao estado completo do ambiente em cada instante.
 - Todos os aspectos relevantes do ambiente são acessíveis.
- Determinístico (versus estocástico)
 - O próximo estado do ambiente é completamente determinado pelo estado atual e pela ação executada pelo agente.
 - Se o ambiente é determinístico exceto pelas ações de outros agentes, dizemos que o ambiente é estratégico.

Propriedades de ambientes de tarefa

- Episódico (versus sequencial)
 - A experiência do agente pode ser dividida em episódios (percepção e execução de uma única ação).
 - A escolha da ação em cada episódio só depende do próprio episódio.
- Estático (versus dinâmico)
 - O ambiente não muda enquanto o agente pensa.
 - O ambiente é semidinâmico se ele não muda com a passagem do tempo, mas o nível de desempenho do agente se altera.

Propriedades de ambientes de tarefa

- Discreto (versus contínuo)
 - Um número limitado e claramente definido de percepções e ações.
- Agente único (versus multi-agente)
 - Um único agente operando sozinho no ambiente.
 - No caso multi-agente podemos ter
 - Multi-agente cooperativo
 - Multi-agente competitivo

	Xadrez com relógio	Xadrez sem relógio	Direção de Táxi
Completamente observável			
Determinístico			
Episódico			
Estático			
Discreto			
Agente único			

 O tipo de ambiente e de tarefa determina em grande parte o projeto do agente.

	Xadrez com relógio	Xadrez sem relógio	Direção de Táxi
Completamente observável	Sim		
Determinístico	Sim		
Episódico	Não		
Estático	Semi		
Discreto	Sim		
Agente único	Não		

• O tipo de ambiente e de tarefa determina em grande parte o projeto do agente.

	Xadrez com relógio	Xadrez sem relógio	Direção de Táxi
Completamente observável	Sim	Sim	
Determinístico	Sim	Sim	
Episódico	Não	Não	
Estático	Semi	Sim	
Discreto	Sim	Sim	
Agente único	Não	Não	

• O tipo de ambiente e de tarefa determina em grande parte o projeto do agente.

	Xadrez com relógio	Xadrez sem relógio	Direção de Táxi
Completamente observável	Sim	Sim	Não
Determinístico	Sim	Sim	Não
Episódico	Não	Não	Não
Estático	Semi	Sim	Não
Discreto	Sim	Sim	Não
Agente único	Não	Não	Não

- O tipo de ambiente e de tarefa determina em grande parte o projeto do agente.
- O mundo real?

	Xadrez com relógio	Xadrez sem relógio	Direção de Táxi
Completamente observável	Sim	Sim	Não
Determinístico	Sim	Sim	Não
Episódico	Não	Não	Não
Estático	Semi	Sim	Não
Discreto	Sim	Sim	Não
Agente único	Não	Não	Não

- O tipo de ambiente e de tarefa determina em grande parte o projeto do agente.
- O mundo real é parcialmente observável, estocástico, sequencial, dinâmico, contínuo, multi-agente.

Programas e funções de agentes

- Um agente é completamente especificado pela função de agente que mapeia sequências de percepções em ações.
- Uma única função de agente (ou uma única classe de funções equivalentes) é racional.
- Objetivo: encontrar uma maneira de representar a função racional do agente concisamente.

Tipos básicos de agentes

- Quatro tipos básicos, do mais simples ao mais geral
 - Agente dirigido por tabela
 - Agentes reativos simples
 - Agentes reativos baseados em modelos
 - Agentes baseados em objetivos
 - Agentes baseados na utilidade
 - Agente com aprendizagem

Tipos básicos de agentes

- Quatro tipos básicos, do mais simples ao mais geral
 - Agente dirigido por tabela
 - Agentes reativos simples
 - Agentes reativos baseados em modelos
 - Agentes baseados em objetivos
 - Agentes baseados na utilidade
 - Agente com aprendizagem

Agente Dirigido por Tabela

Função AGENTE-DIRIGIDO-POR-TABELA (percepção) retorna uma ação

Variáveis estáticas:

- percepções, uma sequência, inicialmente vazia
- tabela, uma tabela de ações, indexada por sequências de percepções, de início completamente especificada anexar percepção ao fim de percepções ação ← ACESSAR(percepções, tabela) retornar ação

Desvantagens:

- Tabela gigante (xadrez = 10^{150} entradas)
- Tempo longo para construir a tabela
- Não tem autonomia
- Mesmo com aprendizado demoraria muito para aprender a tabela.

Agente Reativo Simples

Exemplo: Agente Reativo Simples

Função

AGENTE-ASPIRADOR-DE-PÓ-REATIVO ([posição, estado]) retorna uma ação

se estado = Sujo então
retorna Aspirar

senão se posição = A então
retorna Direita

senão se posição = B então
retorna Esquerda

Exemplo: Agente Reativo Simples

```
Função AGENTE-ASPIRADOR-DE-PÓ-REATIVO([posição, estado])
   retorna uma ação
   se estado = Sujo então retorna Aspirar
   senão se posição = A então retorna Direita
   senão se posição = B então retorna Esquerda
```

- Regras condição-ação (regras se-então) fazem uma ligação direta entre a percepção atual e a ação.
- O agente funciona apenas se o ambiente for <u>completamente</u> <u>observável</u> e a decisão correta puder ser tomada com base apenas na percepção atual.
 - Ex:
 - Taxi breca quando o carro da frente breca
 - Se as luzes de freio do carro da frente estão quebradas
 - Se o robô está sem sensor de localização

Exemplo: Agente Reativo Simples

- Regras condição-ação (regras se-então) fazem uma ligação direta entre a percepção atual e a ação.
- O agente funciona apenas se o ambiente for <u>completamente</u> <u>observável</u> e a decisão correta puder ser tomada com base apenas na percepção atual.
 - Ex:
 - Taxi breca quando o carro da frente breca
 - Se as luzes de freio do carro da frente estão quebradas
 - Se o robô está sem sensor de localização

Agentes reativos baseados em modelos

- Necessários quando um histórico é necessário, além da informação dos sensores
- A <u>percepção atual</u> é combinada com o <u>estado interno</u> <u>antigo</u> para gerar uma descrição atualizada do <u>estado</u> <u>atual</u>
 - Baseado no modelo de como o mundo funciona
- A ação é decidida da mesma maneira do agente reativo

Agentes reativos baseados em modelos

Agentes reativos baseados em modelos

• Ex. Localização em um ambiente, presença de objetos

Agentes reativos baseados em modelo

Função AGENTE-REATIVO-COM-ESTADOS(*percepção*) **retorna** uma *ação*

Variáveis estáticas:

estado, uma descrição do estado atual do mundo regras, um conjunto de regras condição-ação ação, a ação mais recente, inicialmente nenhuma estado ← ATUALIZA-ESTADO(estado, ação, percepção) regra ← REGRA-CORRESPONDENTE(estado, regras) ação ← AÇÃO-DA-REGRA[regra] retornar ação

Agentes reativos baseados em modelo

Função AGENTE-REATIVO-COM-ESTADOS(*percepção*) **retorna** uma *ação*

Variáveis estáticas:

```
estado, uma descrição do estado atual do mundo regras, um conjunto de regras condição-ação ação, a ação mais recente, inicialmente nenhuma estado ← ATUALIZA-ESTADO(estado, ação, percepção) regra ← REGRA-CORRESPONDENTE(estado, regras) ação ← AÇÃO-DA-REGRA[regra] retornar ação
```

Ex. Localização em um ambiente, presença de objetos

Agentes reativos baseados em objetivos

- O conhecimento do estado nem sempre é suficiente
 - Exemplo do taxi:
 - Em um cruzamento, tanto faz direita, esquerda ou em frente
- Escolhem a ação que (eventualmente) levará a um dos objetivos
- Problema: sequência de ações para atingir um objetivo
 - Planejamento

Agentes reativos baseados em objetivos

Agentes reativos baseados na utilidade

- Muitas sequências de ações podem levar a um dos objetivos
 - Algumas são melhores do que outras
 - + rápidas, + seguras, + confiáveis
 - Objetivos apenas fornecem informações sobre "feliz" ou "infeliz"
- Agente escolhe a ação que maximiza a utilidade
 - Útil em caso de:
 - objetivos conflitantes
 - Nenhum objetivo pode ser alcançado no momento
 - Ex. jogos

Agentes reativos baseados na utilidade

- Permite que o agente opere em ambientes desconhecidos
 - Exemplos serão vistos durante o curso
- Elemento de performance:
 - Agente em si:
 - Recebe percepções e decide ações
- Elemento de aprendizagem:
 - Utiliza o feedback do crítico
 - Realiza melhorias
 - Modifica o elemento de performance

- Gerador de problemas:
 - Exemplo do taxi:
 - Se ele realiza uma curva por 3 pistas
 - O crítico observa os xingamentos
 - O elemento de aprendizagem formula uma regra Isso é uma má ação
 - O elemento de performance instala a nova regra
 - Pode tentar a performance dos freios em diferentes condições
 - Robô enviado a outros planetas
 - Desconhece características de atrito, etc.

Resumo

- Agentes <u>interagem</u> com ambientes através de <u>atuadores e</u> <u>sensores</u>
- A <u>função</u> descreve o que o agente faz em todas as circunstâncias
- A medida de **performance** avalia a sequência de **ambiente**
- As descrições <u>PEAS</u> definem o ambiente da tarefa
- Ambientes são categorizados por meio de diversas dimensões:
 - Observável, determinístico, episódico, estático, discreto, único agente, etc.

Referências

Cap 2 livro Russel e Norvig

Prof. Ronaldo Prati, UFABC

Jacson Rodrigues Correia da Silva, CCA-UFES

Hwee Tou Ng, Singapore

Leslie Pack Kaelbling, MIT