CORSO DI SICUREZZA INFORMATICA 1 (A.A. 2007/2008)

Prof. A. Armando

(3 Luglio 2008)

Si risponda alle domande utilizzando lo spazio apposito. Non è consentito l'utilizzo di libri, appunti, nè dispositivi elettronici di alcun tipo.

Nome e Cognome: _			
Matricola:			

1. Crittografia simmetrica

Si consideri l'algoritmo di cifratura a blocchi definito da:

$$C_0 = IV$$

$$C_i = E_K(C_{i-1}) \oplus P_i$$
(1)

dove IV e' il vettore di inizializzazione. Si definisca l'operazione di decifrazione.

Soluzione.

$$P_i = E_K(C_{i-1}) \oplus C_i$$

Infatti, se moltiplichiamo ambo il lati (1) di per $E_K(C_{i-1})$ otteniamo:

$$E_K(C_{i-1}) \oplus C_i = E_K(C_{i-1}) \oplus (E_K(C_{i-1}) \oplus P_i)$$

Sfruttando le proprietà dello ⊕ otteniamo:

$$E_K(C_{i-1}) \oplus C_i = P_i$$

2. Funzioni di Hash

Si consideri la seguente funzione di hash. I messaggi sono visti come sequenza di numeri $M=a_1a_2\cdots a_l$. La funzione di hash è calcolata nel seguente modo:

$$H(M) = \left(\sum_{i=1}^{l} a_i\right) \mod n$$

per un dato valore predefinito di n. Indicare quali delle seguenti proprietà sono soddisfatte dalla funzione H. Giustificare le risposte date.

Soluz	zione.
∇	H can be applied to a block of data of any size.
V	H produces a fixed-length output. se si considera la rappresentazione binaria dei numeri.
Ø	H(x) is relatively easy to compute for any given x . Il calcolo di H ha complessità lineare nella lunghezza di M .
	One-way property Se k appartiene all'intervallo $[0n-1]$ allora il messaggio M contentene comue unico numero k è tale che $H(M)=k$.
	Weak collision resistance Se M' è una permutazione di M , allora $H(M')=H(M)$, ma chiaramente $M'\neq M$.
	Strong collision resistance Vedi risposta alla domanda precedente.
	Weak collision resistance Se M' è una permutazione di M , allora $H(M')=H(M)$, ma chiaramente $M'\neq M$ Strong collision resistance

3. Protocolli di Sicurezza

Si consideri il Needham-Schroeder Secret-Key (NSSK) protocol presentato a lezione:

- 1. $A \rightarrow S : A, B, N_a$
- 2. $S \to A : \{N_a, B, K_{AB}, \{K_{AB}, A\}_{K_{BS}}\}_{K_{AS}}$
- 3. $A \to B : \{K_{AB}, A\}_{K_{BS}}$
- 4. $B \to A : \{N_b\}_{K_{AB}}$
- 5. $A \to B : \{N_b 1\}_{K_{AB}}$

dove N_a e N_b sono nonces, K_{AS} è la long term key tra A e S e K_{BS} è la long term key tra B e S e K_{AB} è una nuova chiave di sessione. Si assuma che il key server S sia fidato. L'obiettivo del protocollo è di generare una nuova chiave di sessione K_{AB} e far sì che sia condivisa tra A e B. Siccome K_{AB} può essere utilizzata per cifrare grosse moli di dati, al fine di contrastare possibili tentativi di ricostruirla tramite crittoanalisi, K_{AB} viene usata per un certo lasso di tempo scaduto il quale il protocollo viene rieseguito per generare una nuova chiave di sessione.

- (a) Si consideri la versione del protocollo NSSK ottenuta eliminando la nonce N_A dai primi due messaggi, ovvero:
 - 1. $A \rightarrow S : A, B$
 - 2. $S \to A : \{B, K_{AB}, \{K_{AB}, A\}_{K_{BS}}\}_{K_{AS}}$
 - 3. $A \to B : \{K_{AB}, A\}_{K_{BS}}$
 - 4. $B \rightarrow A : \{N_b\}_{K_{AB}}$
 - 5. $A \to B : \{N_b 1\}_{K_{AB}}$

e si discutano le possibili conseguenze negative di questa semplificazione.

Soluzione. A non è più in grado di stabilire la freshness della chiave K_{AB} ricevuta da S al passo 2. Un intruso I può dunque intercettare il messaggio mandato al passo 2 da S ad A e mandare al suo posto una vecchia versione dello stesso contenente una chiave di sessione che I è riuscito nel frattempo a ricostruire tramite crittoanalisi.

(b) Si dimostri che anche il protocollo orginale è vulnerabile ad un attacco simile a quello discusso nella domanda (a) e si discutano possibile modifiche al protocollo per prevenire

3

tale attacco.

Soluzione. B non ha modo di verificare la freschezza del messaggio che riceve al passo 3 e quindi è vulnerabile ad un attacco in cui un intruso gli invia un messaggio dello stesso tipo precedente inviato e di cui è riuscito a ricostruire la chiave di sessione in esso contenuta.

Una possibile soluzione è quella adottata in Kerberos, ovvero aggiungere una *timestamp* al messaggio scambiato al passo 3. Il protocollo risultate è:

- 1. $A \rightarrow S : A, B, N_a$
- 2. $S \to A : \{N_a, B, K_{AB}, \{T, K_{AB}, A\}_{K_{BS}}\}_{K_{AS}}$
- 3. $A \to B : \{T, K_{AB}, A\}_{K_{BS}}$
- 4. $B \rightarrow A : \{N_b\}_{K_{AB}}$
- 5. $A \to B : \{N_b 1\}_{K_{AB}}$

Ovviamente ciò comporta che B abbia un clock sincronizzato con S e quando riceve il messaggio al passo 3 deve verificare che T non sia troppo vecchia.

4. Crittografia II

Si completi il seguente schema crittografico disegnandone il trasmettitore.

- 5. Controllo degli Accessi Si consideri un sistema con tre utenti: Alice, Bob e Charlie. Alice possiede il file alice.bat che può essere letto sia da Bob che da Charlie. Charlie può leggere e scrivere il file bob.bat, che è posseduto da Bob, ma Alice lo può solo leggere. Solo Charlie può leggere il file charlie.bat che gli appartiene. Ogni file può essere eseguito dagli utenti che lo posseggono.
 - (a) Si scriva la matrice di controllo degli accessi corrispondente a tale situazione.

Soluzione.				
		alice.bat	bob.bat	charlie.bat
	Alice	ox	r	
	Bob	r	ox	
	Charlie	r	rw	orx

(b) Si scriva la matrice di controllo degli accessi che si ottiene se Charlie dà ad Alice il permesso di leggere charlie.bat e Alice revoca a Bob il permesso di leggere alice.bat.

				1 00
Soluzione.				
		alice.bat	bob.bat	charlie.bat
	Alice	ox	r	r
	Bob		ox	
	Charlie	r	rw	orx
			•	•