

Introduction to networks

Network Analysis in Plant Pathology Research Workshop

Aaron I. Plex Sulá and the Garrett Lab

Learning objectives for this presentation

At the end of this lecture, we should be able to...

Define what we mean by network

Be familiar with networks in plant pathology

Learn basic metrics in network analysis

Define a network for your pathosystem

What is a network?

- Link weight: level of interaction between at least a pair of nodes.
- Dynamic nature: link weights change over space and time.

Infinite possibilities for network model structures

Nodes could be

- Locations in spatial networks (counties, fields, plants, leaves, cells, organelles, microbes,...)
- Entities (individual people, species like in food webs or phytobiomes, genes or molecules)

Links could be

- Strength or likelihood of influence, triggering, information flow, ...
- Dependent on environmental variables

For the system you work, what could nodes represent and what would links represent?

Translating Ethiopian potato seed networks: identifying strategic intervention points for managing bacterial wilt and other diseases $bioR\chi iv$

Derea A. Etherton, Aaron I. Plex Sulá, Romaric A. Mouafo-Tchinda, Rogers Kakuhenzire, Haileah A. Kassaye Frezer Asfaw Vasilios S. Kosmakos Richard W. McCov D. Yanru Xing, Jiahe Yao

Haileab A. Kassaye, D Frezer Asfaw, Vasilios S. Kosmakos, Richard W. McCoy, D Yanru Xing, Jiahe Yao,

🔟 Kalpana Sharma, 🔟 Karen A. Garrett

doi: https://doi.org/10.1101/2024.02.12.579952

Stakeholder interaction network

Nodes

Potato system stakeholders

Links

Interaction and communication level

THE PREPRINT SERVER FOR BIOLOGY

Forecasting global spread of invasive pests and pathogens ECOSPHERE

Emerging Technologies

ARTICLE

through international trade

Kellyn Montgomery^{1,2} | Chelsey Walden-Schreiner¹ | Ariel Saffer¹ Chris Jones | Benjamin J. Seliger | Thom Worm | Laura Tateosian | Makiko Shukunobe¹ | Sunil Kumar² | Ross K. Meentemeyer¹

Simulated spotted lanternfly transmission network

- **Nodes**
 - Countries
- Link weights
 - Directional
 - Transmission likelihood Belgium
 - Dashed lines emphasize links with the USA.

Raising the Stakes: Cassava Seed Networks at Multiple Scales in Erik Del Maria El Cambodia and Vietnam Seed Networks at Multiple Scales in Prik Del Maria El Maria E

- Seed exchange network
- Nodes
 - Provinces (grey circles)
 - Countries (black squares)
- Link weights
 - Directional exchange of cassava stakes

Erik Delaquis¹, Kelsey F. Andersen², Nami Minato¹, Thuy Thi Le Cu¹, Maria Eleanor Karssenberg³, Sophearith Sok¹, Kris A. G. Wyckhuys^{4,5,6}, Jonathan C. Newby¹, Dharani Dhar Burra¹, Pao Srean⁷, Iv Phirun⁸, Niem Duc Le⁹, Nhan Thi Pham¹⁰, Karen A. Garrett², Conny J. M. Almekinders³, Paul C. Struik¹¹ and Stef de Haan^{1*}

Population Biology

Population Analyses Reveal Two Host-Adapted Clades of *Pseudoperonospora* cubensis, the Causal Agent of Cucurbit Downy Mildew, on Commercial and Wild Cucurbits

E. C. Wallace, K. N. D'Arcangelo, and L. M. Quesada-Ocampo†

- Minimum spanning network
- Nodes
 - Multilocus genotypes (MLGs)
 - Frequency (size)
 - Hosts (color)
- Link length and brightness
 - Bruvo's genetic distance

A sugarcane smut fungus effector simulates the host endogenous elicitor peptide to suppress plant immunity

Hui Ling^{1,2}* (D), Xueqin Fu¹*, Ning Huang²*, Zaofa Zhong¹, Weihua Su¹, Wenxiong Lin¹, Haitao Cui¹ (D) and Youxiong Que¹ (D)

- Gene co-expression network
- Nodes
 - Sugarcane kinase DEGs (differentially expressed genes)
 - Smut secreted protein genes
- Link color
 - Negative and positive correlations between genes

Analyzing quantifiable traits of networks

Node-level traits

- Degree centrality
- Closeness centrality
- Betweenness centrality

Edge-level traits

Weight, direction

Whole-network traits

- Network density
- Cluster identification
- Network types

Analyzing traits of networks

Node degree

- The <u>number of links</u> a node has to other nodes in the network
- Both incoming and outgoing links (in- & out-degree)

Node strength

- The sum of the weights of links a node has to other nodes in the network
- Node in- and out-strength

What is the **total degree** of each node?

What is the **out-strength** of each node?

Analyzing traits of networks

Node betweenness

The <u>number of shortest paths*</u> through the network of which a node is a part

Node closeness

The inverse of the average length of the shortest path to and from all the other nodes in the network ("accessibility").

What is the **betweenness centrality** of each node?

Quantifying airborne dispersal routes of pathogens over continents to safeguard global wheat supply LETTERS

TTERS

1038/s41477-017-0017-5

nature plants

M. Meyer 1, J. A. Cox, M. D. T. Hitchings, L. Burgin, M. C. Hort, D. P. Hodson and C. A. Gilligan 1, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan 1, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, L. Burgin, M. C. Hort, D. P. Hodson, and C. A. Gilligan, M. C. Hort, D. Burgin, M. B

Clusters

- A group of nodes that are more connected to each other than they are to the rest of the network.
- How many 'communities' are in the Pgt dispersal network?

Others

Network density, transitivity

Impact network analysis and the INA R package: Decision support for regional management interventions

Socioeconomic network

Exchange of information among decision makers, affecting management adoption

Biophysical network

Dispersal of a focus bioentity, with establishment influenced by management adoption

Coexistence of nestedness and modularity in host-pathogen infection networks

Sergi Valverde ^{1,2 ⋈}, Blai Vidiella ³, Raúl Montañez³, Aurora Fraile⁴, Soledad Sacristán⁴ and

Fernando García-Arenal [□] ⁴

GeoHealth

RESEARCH ARTICLE

10.1029/2023GH000885

Key Points:

• The movement of air masses within the troposphere generate air highway

Fall armyworm presence times wind connectivity

Computing Geographical Networks Generated by Air-Mass Movement

H. Richard¹, D. Martinetti¹, D. Lercier², Y. Fouillat³, B. Hadi⁴, M. Elkahky⁴, J. Ding⁴, L. Michel⁵, C. E. Morris⁶, K. Berthier⁶, F. Maupas⁷, and S. Soubeyrand¹

What traits of collaboration networks are associated with project success? The case of two CGIAR agricultural research programs for development

Aaron I. Plex Sulá^{a,b,*}, Valentina De Col^c, Berea A. Etherton^{a,b}, Yanru Xing^{a,b}, Amogh Agarwal^{a,b}, Lejla Ramić^{a,b}, Enrico Bonaiuti^{c,d}, Michael Friedmann^d, Claudio Proietti^e,

Package 'geohabnet'

June 27, 2024

Title Geographical Risk Analysis Based on Habitat Connectivity

Version 2.1.3

Date 2024-06-26

Author Krishna Keshav [aut, cre],

Aaron Plex [aut] (https://orcid.org/0000-0001-7317-3090),

Garrett Lab [ctb] (https://garrettlab.com),

Karen Garrett [aut] (https://orcid.org/0000-0002-6578-1616),

University of Florida [cph, fnd] (https://www.ufl.edu)

Maintainer Krishna Keshav <kkeshav@ufl.edu>

Repository CRAN

Methods | Likely roles of locations in habitat networks

Cropland (habitat) networks

- Geographic locations (nodes)
- Geographic connections (links)

Geographic priorities

