Topological Data Analysis

2022-2023

Solutions of Exercises

24 November 2022

Suppose that $f:(V,\pi) \to (V',\pi')$ is an isomorphism. Then there is a morphism $g:(V',\pi') \to (V,\pi)$ such that $g\circ f=idV$ and $f\circ g=idV'$. Therefore, for all $t\in \mathbb{R}$,

$$\begin{cases}
9 + 0 & \text{ft} = (9 \circ f)_{t} = (i d_{v})_{t} = i d_{v_{t}} \\
f_{t} \circ g_{t} = (f \circ g)_{t} = (i d_{v'})_{t} = i d_{v'_{t}}
\end{cases}$$

This implies that $f_t: V_t \rightarrow V_t$ and $g_t: V_t' \rightarrow V_t$ are mutually inverse isomorphisms.

Conversely, suppose that $f_t: V_t \to V_t'$ is an isomorphism for all t. Pick an inverse $g_t: V_t' \to V_t$ for each t. We need to prove that $g_t' \in V_t$ is a morphism of persistence modules. Indeed, since $f_t' \in V_t' \in V$

πs,togs=gtoπs,tofsogs; πs,togs=gtoπs,t sogisa morphism.

Moreover, gof=idv since gtoft=idvt tt, and likewise fog=idv'.

(2) Let (V, π) and (V', π') be persistence modules of finite type and suppose that $f: V \to V'$ is an isomorphism.

Let A and A be the respective spectra.

Let $a \in A$. We need to prove that $a \in A'$. Suppose the contrary. If $a \notin A'$, then there is a $\delta > 0$ such that $\pi s'$, is an isomorphism for $a - \delta < s \le t < a + \delta$. Since $a \in A$, there is an $\epsilon > 0$ such that $\pi s_{\beta,a}$ is not an isomorphism for $a - \epsilon < s < a$.

Now we have, for $\lambda = \min\{\delta, \epsilon\}$ and $a - \lambda < s < a$, that

$$V_{s} \xrightarrow{\pi_{s,a}} V_{a}$$

$$\downarrow_{s} \cong \downarrow_{f_{a}}$$

fao $\pi_{s,a} = \pi'_{s,a} \circ f_s$ where fa, f_s and $\pi'_{s,a}$ are isomorphisms while $\pi_{s,a}$ is not.

This is a contradiction.

This argument shows that ASA, and A'SA by symmetry.

• If $c \in a < d \leq b$, we define $f: F[a,b) \to F[c,d)$ as follows:

$$f_t = \begin{cases} id_F & \text{if } a \leq t < d \\ 0 & \text{otherwise.} \end{cases}$$

Then $fto \pi s, t = \pi s, to fs \forall s \leq t$.

• If akc, then for akske either and ckt kd we have either

F[a,b) F[c,d) $T^{l}s,t$ A

TTS, t

which forces ft = 0 for c \(\pm t < d \) and hence \(f = 0 \).

• If $c \le a$ and b < d, then for $a \le s < b$ and $b \le t < d$ we have

which forces $f_s = 0$ for $a \leq s < b$ and therefore f = 0.

• If $d \le a$, then necessarily $f_t = 0$ for all t. Hence f = 0 is the only possibility.

