# MATEMÁTICA DISCRETA

Conceptos Básicos de la Teoría de Conjuntos (Parte I)

# Conceptos Básicos de la Teoría de Conjuntos (P-I)

- Conjuntos y Elementos.
- Subconjuntos.
- Conjunto potencia de un conjunto.

### Conjuntos y Elementos

- (Intuitivamente), un conjunto es una lista o colección de objetos bien definida.
  - Suelen denotarse con letras mayúsculas: A, B, X, Y, ...
- Se llama elemento de un conjunto a cada uno de los objetos que lo componen.
  - Suelen denotarse con letras minúsculas: a, b, x, y, . . .
  - Si x es un elemento de X, se dice que x pertenece a X, y se escribe: x ∈ X.
  - Si x NO es un elemento de X, se dice que x no pertenece a X, y se escribe: x ∉ X.

## Conjuntos y Elementos

- (Esencialmente), existen dos formas de representar un conjunto:
  - (1) Si es posible, se puede representar listando sus elementos (separados por comas y encerrados entre llaves). Por ejemplo,  $A = \{1, 2, 3, 4, 5\}$  es el conjunto cuyos elementos son los números enteros 1, 2, 3, 4 y 5.
  - (2) Se puede representar describiendo las propiedades o norma que caracterizan los elementos en el conjunto.Por ejemplo, B = {x : x es un entero positivo} es el conjunto cuyos elementos son los números enteros positivos.

Ejemplo 1: El conjunto  $B = \{x : x \text{ es un entero positivo}\}$  también se puede escribir como sigue:  $B = \{1, 2, 3, \ldots\}$ .

$$100 \in B$$
,  $-5 \notin B$ ,  $\frac{5}{2} \notin B$ ,  $a \notin B$ .

Ejemplo 2: El conjunto  $Z = \{x \in \mathbb{R} : x^2 - 3x + 2 = 0\}$  también se puede escribir como sigue:  $Z = \{1, 2\}$ .

$$0 \notin Z$$
,  $* \notin Z$ ,  $1 \in Z$ ,  $x \notin Z$ .



# Conjuntos y Elementos

- Dos conjuntos A y B son iguales (y se escribe A = B) si, y sólo si, tienen los mismos elementos.
- Los conjuntos se pueden clasificar en finitos o infinitos. Un conjunto es finito si contiene exactamente n diferentes elementos (n es un entero positivo).
  - Si X es un conjunto finito, entonces al número de elementos diferentes de X se le llama cardinal del conjunto X y se denota por Card(X) o |X|.

Ejemplo 3: Sea 
$$Z = \{x \in \mathbb{R} : x^2 - 3x + 2 = 0\}, Y = \{1, 2, \frac{6}{3}, 2\}.$$
  
 $Z = \{1, 2\}, Y = \{1, 2\}, |Z| = |Y| = 2, Z = Y.$ 

Ejemplo 4: El conjunto  $C = \{2,4,6,\ldots\} = \{x \in \mathbb{N} : x \text{ es par}\}$  es un conjunto infinito.

Ejemplo 5:  $D = \{2, 4, 6, \dots, 100\} = \{x \in \mathbb{N} : x \text{ es par, } x \leq 100\}$  es un conjunto finito de cardinalidad |D| = 50.



## Subconjuntos

Sean A y B dos conjuntos.

- Se dice que A es un subconjunto de B si, y sólo si, todo elemento de A es también un elemento de B, i.e.  $\forall x (x \in A \rightarrow x \in B)$ . La notación  $A \subseteq B$  indica que A es un subconjunto de B.
- A no es un subconjunto de B si y sólo si, existe un elemento  $x \in A$  tal que  $x \notin B$ , i.e.  $\exists x (x \in A \land x \notin B)$ . La notación  $A \not\subseteq B$  indica que A no es un subconjunto de B.

Ejemplo 6:  $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R}$ .

Ejemplo 7: Dados los conjuntos  $A=\{1,3,5,\ldots\}$ ,  $B=\{5,10,15,\ldots\}$  y  $C=\{x\in\mathbb{N}: \text{ x es primo}, x>2\}$ . Observa que:

$$C \subseteq A$$
,  $B \nsubseteq A (20 \in B \text{ y } 20 \notin A)$ 

Ejemplo 8: Todo conjunto A satisface que  $A \subseteq A$ .



#### Resultados

- Dos conjuntos A y B son iguales si, y sólo si,  $A \subseteq B$  y  $B \subseteq A$ .
- Sean A, B y C conjuntos. Si  $A \subseteq B$  y  $B \subseteq C$ , entonces  $A \subseteq C$ .

#### Resultados

- El conjunto vacío (denotado por  $\emptyset$ ) es el conjunto que no contiene elementos. Sea  $V = \{x \in \mathbb{Z} : x^2 = 4 \text{ y } x \text{ es impar}\}$ . Observa que  $V = \emptyset$ .
- Todo conjunto A tiene dos subconjuntos triviales: el conjunto vacío y el propio conjunto A.
- Si  $B \subseteq A$  y  $B \notin \{A, \emptyset\}$ , entonces B se conoce como subconjunto no trivial de A.

### Conjunto potencia de un conjunto

- Sea A un conjunto. El conjunto potencia de A, denotado por  $\mathcal{P}(A)$ , es el conjunto formado por todos los subconjuntos de A.
- $B \subseteq A$  si y sólo si  $B \in \mathcal{P}(A)$ .
- Si A es finito y |A| = n, entonces  $|\mathcal{P}(A)| = 2^n$ .

Ejemplo 9: Sea  $A = \{a, b, c\}$  un conjunto. Obtenga  $\mathcal{P}(A)$  y  $|\mathcal{P}(A)|$ .

- Como |A| = 3, se tiene que  $|P(A)| = 2^3 = 8$ .
- $\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, A\}.$