પ્રશ્ન 1(અ) [3 ગુણ]

Human learning વ્યાખ્યાયિત કરો અને સમજાવો કે machine learning human learning થી કેવી રીતે અલગ છે? જવાબ:

Human Learning ଦ୍ର Machine Learning sìષ્ટક:

પાસાં	Human Learning	Machine Learning
પદ્ધતિ	અનુભવ, પ્રયાસ અને ભૂલ	ડેટા અને અલ્ગોરિધમ
ઝડપ	ધીમી, ક્રમશઃ	ઝડપી પ્રોસેસિંગ
ડેટા જરૂરિયાત	મર્યાદિત ઉદાહરણો જોઈએ	મોટા ડેટાસેટ જરૂરી

- Human Learning: અનુભવ, અવલોકન અને તર્ક દ્વારા જ્ઞાન મેળવવાની પ્રક્રિયા
- Machine Learning: ડેટામાં પેટર્ન ઓળખવા માટે અલ્ગોરિધમનો ઉપયોગ કરીને આપોઆપ શીખવાની પ્રક્રિયા

મેમરી ટ્રીક: "Humans Experience, Machines Analyze Data" (HEMAD)

પ્રશ્ન 1(બ) [4 ગુણ]

ફાઇનાન્સ અને બેંકિંગમાં મશીન લર્નિંગના ઉપયોગનું વર્ણન કરો.

જવાબ:

ફાઇનાન્સ અને બેંકિંગમાં ઉપયોગો:

ઉપયોગ	હેતુ	ફાયદો
Fraud Detection	શંકાસ્પદ ટ્રાન્ઝેક્શન ઓળખવા	નાણાકીય નુકસાન ઘટાડવું
Credit Scoring	લોન ડિફોલ્ટ રિસ્ક આંકવી	વધુ સારા લેન્ડિંગ નિર્ણયો
Algorithmic Trading	આપોઆપ ટ્રેડિંગ નિર્ણયો	ઝડપી માર્કેટ રિસ્પોન્સ

- Risk Assessment: ગ્રાહકની ક્રેડિટવર્થીનેસની આગાહી માટે ML ડેટાનું વિશ્લેષણ કરે છે
- Customer Service: NLP નો ઉપયોગ કરીને ચેટબોટ્સ 24/7 સપોર્ટ આપે છે
- Regulatory Compliance: શંકાસ્પદ પ્રવૃત્તિઓ માટે આપોઆપ મોનિટરિંગ

મેમરી ટ્રીક: "Finance Needs Smart Analysis" (FNSA)

પ્રશ્ન 1(ક) [7 ગુણ]

સુપરવાઇઝ્ડ લર્નિંગ, અનસુપરવાઇઝ્ડ લર્નિંગ અને રિઇન્ફોર્સમેન્ટ લર્નિંગ વચ્ચે તફાવત આપો.

જવાબ:

તુલનાત્મક કોષ્ટક:

લક્ષણ	Supervised Learning	Unsupervised Learning	Reinforcement Learning
ડેટા પ્રકાર	લેબલ્ક ડેટા	અનલેબલ્ક ડેટા	પર્યાવરણ ઇન્ટરેક્શન
લક્ષ્ય	આઉટપુટની આગાહી	પેટર્નો શોધવા	રિવોર્ડ વધારવા
ઉદાહરણો	Classification, Regression	Clustering, Association	Game playing, Robotics
Feedback	તાત્કાલિક	કંઈ નહીં	વિલંબિત પુરસ્કારો

મુખ્ય લાક્ષણિકતાઓ:

- Supervised Learning: સાચા જવાબો સાથે શિક્ષક દ્વારા માર્ગદર્શિત શીખવું
- Unsupervised Learning: ડેટામાં છુપાયેલા પેટર્નોની સ્વ-શોધ
- Reinforcement Learning: પુરસ્કાર/દંડ સાથે ટ્રાયલ અને એરર દ્વારા શીખવું

મેમરી ટ્રીક: "Supervised Teachers, Unsupervised Explores, Reinforcement Rewards" (STUER)

પ્રશ્ન 1(ક OR) [7 ગુણ]

મશીન લર્નિંગમાં વપરાતા વિવિદ્ય TOOLS અને ટેકનોલોજી સમજાવો.

જવાબ:

ML Tools અને Technologies:

કેટેગરી	Tools	હેતુ
Programming	Python, R, Java	અલ્ગોરિદ્યમ ઇમ્પ્લિમેન્ટેશન
Libraries	Scikit-learn, TensorFlow	તૈયાર અલ્ગોરિધમ
Visualization	Matplotlib, Seaborn	ડેટા વિઝ્યુઅલાઇઝેશન
Data Processing	Pandas, NumPy	ડેટા મેનિપ્યુલેશન

મુખ્ય ટેકનોલોજીઓ:

- Cloud Platforms: AWS, Google Cloud સ્કેલેબલ કમ્પ્યુટિંગ માટે
- Development Environments: Jupyter Notebook, Google Colab
- Big Data Tools: મોટા ડેટાસેટ માટે Spark, Hadoop

મેમરી ટ્રીક: "Python Libraries Visualize Data Effectively" (PLVDE)

પ્રશ્ન 2(અ) [3 ગુણ]

એક ઉદાહરણ સાથે outliers ને વ્યાખ્યાયિત કરો.

જવાબ:

વ્યાખ્યા: Outliers એવા ડેટા પોઇન્ટ્સ છે જે ડેટાસેટમાં અન્ય અવલોકનોથી નોંધપાત્ર રીતે અલગ હોય છે.

ઉદાહરણ કોષ્ટક:

વિદ્યાર્થીઓની ઊંચાઈ (cm)	વર્ગીકરણ
165, 170, 168, 172	સામાન્ય મૂલ્યો
195	Outlier (ખૂબ ઊંચું)
140	Outlier (ખૂબ નીચું)

• **શોધ**: Quartiles થી 1.5 × IQR થી વધુ મૂલ્યો

• અસર: આંકડાકીય વિશ્લેષણ અને મોડલ પર્ફોર્મન્સને અસર કરી શકે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Outliers Stand Apart" (OSA)

પ્રશ્ન 2(બ) [4 ગુણ]

રીગ્રેશન સ્ટેપ્સ વિગતવાર સમજાવો.

જવાલ:

રીગ્રેશન પ્રોસેસ સ્ટેપ્સ:

વિગતવાર સ્ટેપ્સ:

- Data Collection: ઇનપુટ-આઉટપુટ જોડી સાથે સંબંધિત ડેટાસેટ એકત્રિત કરવું
- **Preprocessing**: ડેટા સાફ કરવું, ખોવાયેલા મૂલ્યો સંભાળવા, features ને normalize કરવા
- Feature Selection: લક્ષ્યને અસર કરતા સંબંધિત variables પસંદ કરવા
- Model Training: આગાહીની ભૂલો ન્યૂનતમ કરવા માટે રીગ્રેશન લાઇન ફિટ કરવી

મેમરી ટ્રીક: "Data Preprocessing Features Train Evaluation Predicts" (DPFTEP)

પ્રશ્ન 2(ક) [7 ગુણ]

ચોકસાઈ વ્યાખ્યાયિત કરો અને નીચેના binary classifier ની confusion matrix માટે વિવિધ માપન પરિમાણો શોધો જેમ કે 1. Accuracy 2. Precision.

જવાબ:

Confusion Matrix વિશ્લેષણ:

	અનુમાનિત ના	અનુમાનિત હા
વાસ્તવિક ના	10 (TN)	3 (FP)
વાસ્તવિક હા	2 (FN)	15 (TP)

ગણતરીઓ:

મેટ્રિક	ફોર્મ્યુલા	ગણતરી	પરિણામ
Accuracy	(TP+TN)/(TP+TN+FP+FN)	(15+10)/(15+10+3+2)	83.33%
Precision	TP/(TP+FP)	15/(15+3)	83.33%

વ્યાખ્યાઓ:

• Accuracy: કુલ આગાહીઓમાંથી સાચી આગાહીઓનું પ્રમાણ

• **Precision**: બધી positive આગાહીઓમાંથી true positive આગાહીઓનું પ્રમાણ

મેમરી ટ્રીક: "Accuracy Counts All, Precision Picks Positives" (ACAPP)

પ્રશ્ન 2(અ OR) [3 ગુણ]

Feature સબસેટ પસંદગીના મૂળભૂત પગલાઓને ઓળખો.

જવાબ:

Feature Subset Selection સ્ટેપ્સ:

મૂળભૂત પગલાઓ:

• Generation: Features ના વિવિધ સંયોજનો બનાવવા

• **Evaluation**: પ્રત્યેક સબસેટને પર્ફોર્મન્સ મેટ્રિક્સ વાપરીને ટેસ્ટ કરવા

• Selection: માપદંડોના આધારે શ્રેષ્ઠ સબસેટ પસંદ કરવા

ਮੇਮਣੀ ਟ੍ਰੀs: "Generate, Evaluate, Select" (GES)

પ્રશ્ન 2(બ OR) [4 ગુણ]

KNN અલ્ગોરિધમની તાકાત અને નબળાઈની ચર્ચા કરો.

જવાબ:

KNN અલ્ગોરિધમ વિશ્લેષણ:

તાકાતો	નબળાઈઓ
સમજવામાં સરળ	કમ્પ્યુટેશનલી મોંઘું
Training ની જરૂર નથી	અપ્રસ્તુત features ને સંવેદનશીલ
Non-linear ડેટા સાથે કામ કરે	High dimensions સાથે performance ઘટે
નાના ડેટાસેટ માટે અસરકારક	શ્રેષ્ઠ K value પસંદગી જરૂરી

મુખ્ય મુદ્દાઓ:

• Lazy Learning: સ્પષ્ટ training phase ની જરૂર નથી

• Distance-Based: પડોશીની નજીકતા આધારિત વર્ગીકરણ

• Memory-Intensive: સંપૂર્ણ training ડેટાસેટ સ્ટોર કરે છે

મેમરી ટ્રીક: "Simple but Slow, Effective but Expensive" (SBSEBE)

પ્રશ્ન 2(ક OR) [7 ગુણ]

ભૂલ-દર વ્યાખ્યાયિત કરો અને નીચેના binary classifier ની confusion matrix માટે વિવિધ માપન પરિમાણો શોધો જેમ કે 1. Error value 2. Recall.

જવાબ:

Confusion Matrix વિશ્લેષણ:

	અનુમાનિત ના	અનુમાનિત હા
વાસ્તવિક ના	20 (TN)	3 (FP)
વાસ્તવિક હા	2 (FN)	15 (TP)

ગણતરીઓ:

મેટ્રિક	ફોર્મ્યુલા	ગણતરી	પરિણામ
Error Rate	(FP+FN)/(TP+TN+FP+FN)	(3+2)/(15+20+3+2)	12.5%
Recall	TP/(TP+FN)	15/(15+2)	88.24%

વ્યાખ્યાઓ:

• Error Rate: કુલ આગાહીઓમાંથી ખોટી આગાહીઓનું પ્રમાણ

• Recall: વાસ્તવિક positives માંથી સાચી રીતે ઓળખાયેલાનું પ્રમાણ

મેમરી ટ્રીક: "Error Excludes, Recall Retrieves" (EERR)

પ્રશ્ન 3(અ) [3 ગુણ]

Unsupervised learning ના કોઈ પણ ત્રણ ઉદાહરણો આપો.

જવાબ:

Unsupervised Learning GEเ๔२ยเโ:

ઉદાહરણ	વર્ણન	ઉપયોગ
Customer Segmentation	વર્તન દ્વારા ગ્રાહકોને જૂથબદ્ધ કરવા	માર્કેટિંગ વ્યૂહરચના
Document Classification	વિષયો દ્વારા દસ્તાવેજો ગોઠવવા	માહિતી પુનઃપ્રાપ્તિ
Gene Sequencing	સમાન DNA પેટર્ન જૂથબદ્ધ કરવા	તબીબી સંશોધન

• Market Basket Analysis: ઉત્પાદન ખરીદીના પેટર્ન શોધવા

• Social Network Analysis: સમુદાયની રચનાઓ ઓળખવી

• Anomaly Detection: ડેટામાં અસામાન્ય પેટર્ન શોધવા

મેમરી ટ્રીક: "Customers, Documents, Genes Group Automatically" (CDGGA)

પ્રશ્ન 3(બ) [4 ગુણ]

નીચેના ડેટા માટે સરેરાશ અને મધ્યક શોધો: 4,6,7,8,9,12,14,15,20

જવાબ:

આંકડાકીય ગણતરીઓ:

આંકડા	ગણતરી	પરિણામ
સરેરાશ (Mean)	(4+6+7+8+9+12+14+15+20)/9	10.56
મધ્યક (Median)	મધ્ય મૂલ્ય (5મી સ્થિતિ)	9

પગલું-દર-પગલું:

• ડેટા: પહેલેથી જ સાર્ટ થયેલ: 4,6,7,8,9,12,14,15,20

• **સરેરાશ**: બધા મૂલ્યોનો સરવાળો ÷ ગણતરી = 95 ÷ 9 = 10.56

• મધ્યક: સૉર્ટ કરેલ યાદીમાં મધ્ય મૂલ્ય = 9 (5મી સ્થિતિ)

મેમરી ટ્રીક: "Mean Averages All, Median Middle Value" (MAAMV)

પ્રશ્ન 3(ક) [7 ગુણ]

k-ફોલ્ડ ક્રોસ વેલિડેશન પદ્ધતિનું વિગતવાર વર્ણન કરો.

જવાબ:

K-Fold Cross Validation પ્રોસેસ:

પ્રોસેસ સ્ટેપ્સ:

પગલું	นณ์ฯ	હેતુ
1. કેટા વિભાજન	ડેટાને K સમાન ભાગોમાં વહેંચવું	સંતુલિત પરીક્ષણ સુનિશ્ચિત કરવું
2. પુનરાવર્તિત Training	Training માટે K-1 folds નો ઉપયોગ	મહત્તમ ડેટા ઉપયોગ
3. Validation	બાકીના fold પર ટેસ્ટ કરવું	નિષ્પક્ષ મૂલ્યાંકન
4. સરેરાશ	સરેરાશ performance ગણવું	મજબૂત performance અંદાજ

કાયદાઓ:

- નિષ્પક્ષ અંદાજ: દરેક ડેટા પોઇન્ટ training અને testing બંને માટે વાપરાય
- Overfitting ઘટાડવું: અનેક validation રાઉન્ડ વિશ્વસનીયતા વધારે
- **કાર્યક્ષમ ડેટા ઉપયોગ**: બધો ડેટા training અને validation બંને માટે ઉપયોગ

મેમરી ટ્રીક: "K-fold Keeps Keen Knowledge" (KKKK)

પ્રશ્ન 3(અ OR) [3 ગુણ]

Multiple linear રીગ્રેશનની કોઈ પણ ત્રણ એપ્લિકેશન આપો.

જવાબ:

Multiple Linear Regression એપ્લિકેશન:

એપ્લિકેશન	Variables	હેતુ
House Price Prediction	Size, location, age	રિયલ એસ્ટેટ વેલ્યુએશન
Sales Forecasting	Marketing spend, season, economy	બિઝનેસ પ્લાનિંગ
Medical Diagnosis	Symptoms, age, history	રોગની આગાહી

- Stock Market Analysis: અનેક આર્થિક સૂચકાંકો શેર કિંમતોની આગાહી કરે
- Academic Performance: અભ્યાસના કલાકો, હાજરી, અગાઉના ગ્રેડ સ્કોરની આગાહી
- Marketing ROI: વિવિધ માર્કેટિંગ ચેનલો વેચાણ આવક પર અસર કરે

મેમરી ટ્રીક: "Houses, Sales, Medicine Predict Multiple Variables" (HSMPV)

પ્રશ્ન 3(બ OR) [4 ગુણ]

નીચેના ડેટા માટે માનક વિચલન શોદ્યો: 4,15,20,28,35,45

જવાબ:

માનક વિચલન ગણતરી:

પગલું	ગણતરી	મૂલ્ય
સરેરાશ	(4+15+20+28+35+45)/6	24.5
Variance	Σ(xi-mean)²/n	178.92
Std Dev	√Variance	13.38

વિગતવાર ગણતરી:

• **સરેરાશથી વિચલન**: (-20.5)², (-9.5)², (-4.5)², (3.5)², (10.5)², (20.5)²

• વર્ગ વિચલન: 420.25, 90.25, 20.25, 12.25, 110.25, 420.25

• સરવાળો: 1073.5

Variance: 1073.5/6 = 178.92
 มเคร Qิขตา: √178.92 = 13.38

ਮੇਮਰੀ ਟ੍ਰੀs: "Deviation Measures Data Spread" (DMDS)

પ્રશ્ન 3(ક OR) [7 ગુણ]

બેગિંગ અને બૂસ્ટિંગને વિગતવાર સમજાવો.

જવાબ:

Ensemble Methods तुसना:

પાસું	Bagging	Boosting
વ્યૂહરચના	સમાંતર training	ક્રમિક training
ડેટા સેમ્પલિંગ	રેન્ડમ with replacement	વેઇટેડ સેમ્પલિંગ
સંયોજન	સરળ સરેરાશ/voting	વેઇટેડ સંયોજન
Bias-Variance	Variance ยะเร้	Bias ยะเร้

Bagging (Bootstrap Aggregating):

Boosting પ્રોસેસ:

- ક્રમિક શીખવું: દરેક મોડલ અગાઉના મોડલની ભૂલોમાંથી શીખે છે
- વેઇટ એડજસ્ટમેન્ટ: ખોટા વર્ગીકૃત ઉદાહરણોનું વેઇટ વધારવું
- અંતિમ આગાહી: બધા મોડત્સનું વેઇટેડ સંયોજન

મુખ્ય તફાવતો:

- Bagging: સ્વતંત્ર મોડલ્સ સમાંતરમાં trained, overfitting ઘટાડે
- Boosting: આશ્રિત મોડલ્સ ક્રમિક trained, accuracy સુધારે

મેમરી ટ્રીક: "Bagging Builds Parallel, Boosting Builds Sequential" (BBPBS)

પ્રશ્ન 4(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો: Support, Confidence.

જવાબ:

Association Rule મેટ્રિક્સ:

મેટ્રિક	વ્યાખ્યા	ફોર્મ્યુલા
Support	ટ્રાન્ઝેક્શનમાં itemset ની આવર્તન	Support(A) = Count(A)/કુલ ટ્રાન્ઝેક્શન
Confidence	નિયમની શરતી સંભાવના	Confidence($A \rightarrow B$) = Support($A \cup B$)/Support(A)

ઉદાહરણ:

- **Support(Bread)** = 0.6 (60% ટ્રાન્ઝેક્શનમાં બ્રેડ છે)
- Confidence(Bread \rightarrow Butter) = 0.8 (80% બ્રેડ ખરીદનારા બટર પણ ખરીદે છે)

ઉપયોગો:

- Market Basket Analysis: ઉત્પાદન સંબંધો શોધવા
- Recommendation Systems: સંબંધિત વસ્તુઓ સૂચવવી

મેમરી ટ્રીક: "Support Shows Frequency, Confidence Shows Connection" (SSFC)

પ્રશ્ન 4(બ) [4 ગુણ]

લોજિસ્ટિક રીગ્રેશનની કોઈ પણ બે એપ્લિકેશનને સમજાવો.

જવાલ:

Logistic Regression એપ્લિકેશન:

એપ્લિકેશન	Input Variables	Output	ઉપયોગનો કેસ
Email Spam Detection	શબ્દ આવર્તન, sender, subject	Spam/Not Spam	Email filtering
Medical Diagnosis	લક્ષણો, ઉંમર, ટેસ્ટ પરિણામો	રોગ/કોઈ રોગ નથી	આરોગ્યસેવા

મુખ્ય લાક્ષણિકતાઓ:

• Binary Classification: 0 અને 1 વચ્ચે સંભાવના આગાહી કરે છે

• S-shaped Curve: સંભાવના અંદાજ માટે sigmoid function વાપરે છે

• Linear Decision Boundary: linear boundary સાથે વર્ગો અલગ કરે છે

વાસ્તવિક જીવનના ઉદાહરણો:

• Marketing: demographics આધારે ગ્રાહક ખરીદીની સંભાવના

• Finance: ક્રેડિટ હિસ્ટ્રી અને આવક આધારે ક્રેડિટ મંજૂરી

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Logistic Limits Linear Logic" (LLLL)

પ્રશ્ન 4(ક) [7 ગુણ]

Machine learning માં Numpy અને Pandas ના મુખ્ય હેતુની ચર્ચા કરો.

જવાબ:

ML માં NumPy અને Pandas:

Library	હેતુ	મુખ્ય લાક્ષણિકતાઓ
NumPy	Numerical computing	Arrays, mathematical functions
Pandas	Data manipulation	DataFrames, data cleaning

NumPy Functions:

Pandas ક્ષમતાઓ:

- Data Import/Export: CSV, Excel, JSON ફાઇલો વાંચવી
- Data Cleaning: ખોવાચેલા મૂલ્યો, duplicates સંભાળવા
- Data Transformation: Group, merge, pivot operations
- Statistical Analysis: વર્ણનાત્મક આંકડા, correlation

ML સાથે Integration:

- Data Preprocessing: અલ્ગોરિધમ માટે ડેટા સાફ અને તૈયાર કરવો
- Feature Engineering: હાલના ડેટામાંથી નવા features બનાવવા
- Model Input: ML અલ્ગોરિધમ દ્વારા જરૂરી ફોર્મેટમાં ડેટા કન્વર્ટ કરવો

મુખ્ય ફાયદાઓ:

- Performance: ઝડપ માટે C/C++ backend optimized
- Memory Efficiency: કાર્યક્ષમ ડેટા સ્ટોરેજ અને manipulation
- Ecosystem Integration: scikit-learn, matplotlib સાથે seamlessly કામ કરે

મેમરી ટ્રીક: "NumPy Numbers, Pandas Processes Data" (NNPD)

પ્રશ્ન 4(અ OR) [3 ગુણ]

સુપરવાઇઝ્ડ લર્નિંગના કોઈ પણ ત્રણ ઉદાહરણો આપો.

જવાબ:

Supervised Learning ઉદાહરણો:

ઉદાહરણ	SISK	Input → Output
Email Classification	Classification	Email features → Spam/Not Spam
House Price Prediction	Regression	House features → ਭਿੰਮਰ
Image Recognition	Classification	Pixel values → Object class

- Medical Diagnosis: દર્દીના લક્ષણો → રોગ વર્ગીકરણ
- Stock Price Prediction: માર્કેટ સૂચકાંકો → ભાવિ કિંમત
- **Speech Recognition**: Audio signals → Text transcription

મેમરી ટ્રીક: "Emails, Houses, Images Learn Supervised" (EHILS)

પ્રશ્ન 4(બ OR) [4 ગુણ]

એપ્રિઓરી અલ્ગોરિદ્યમના કોઈ પણ બે એપ્લિકેશનો સમજાવો.

જવાલ:

Apriori Algorithm એપ્લિકેશન:

એપ્લિકેશન	นณ์ฯ	બિઝનેસ વેલ્યુ
Market Basket Analysis	એકસાથે ખરીદાતા ઉત્પાદનો શોધવા	Cross-selling વ્યૂહરચના
Web Usage Mining	વેબસાઇટ navigation પેટર્ન શોધવા	વપરાશકર્તા અનુભવ સુધારવો

Market Basket Analysis:

• ઉદાહરણ: "બ્રેડ અને મિલ્ક ખરીદનારા ગ્રાહકો ઈંડા પણ ખરીદે છે"

• બિઝનેસ અસર: ઉત્પાદન પ્લેસમેન્ટ, પ્રમોશનલ ઓફર

• Implementation: frequent itemsets શોધવા માટે transaction ડેટાનું વિશ્લેષણ

Web Usage Mining:

• **ઉદાહરણ**: "પેજ A visit કરનારા users ઘણીવાર આગળ પેજ B visit કરે છે"

• વેબસાઇટ Optimization: navigation સુધારવી, content recommend કરવું

• User Experience: વ્યક્તિગત વેબસાઇટ layouts

Algorithm પ્રોસેસ:

• **Generate Candidates**: frequent itemsets બનાવવા

• **Prune**: infrequent items દૂર કરવા

• Generate Rules: confidence સાથે association rules બનાવવા

મેમરી ટ્રીક: "Apriori Analyzes Associations Automatically" (AAAA)

પ્રશ્ન 4(ક OR) [7 ગુણ]

Matplotlib ની વિશેષતાઓ અને એપ્લિકેશનો સમજાવો.

જવાબ:

Matplotlib Features અને Applications:

Feature કેટેગરી	ક્ષમતાઓ	એપ્લિકેશન
Plot Types	Line, bar, scatter, histogram	sेटा exploration
Customization	રંગો, labels, styles	વ્યવસાયિક presentations
Subplots	એક figure માં અનેક plots	તુલનાત્મક વિશ્લેષણ
3D Plotting	ત્રિ-પરિમાણીય visualizations	वैज्ञानिङ modeling

મુખ્ય Features:

Machine Learning માં Applications:

- Data Exploration: ડેટા વિતરણ અને પેટર્ન visualize કરવા
- Model Performance: training દરમિયાન accuracy, loss curves plot કરવા
- Feature Analysis: Correlation matrices, feature importance plots

અદ્યતન ક્ષમતાઓ:

- Animation: time-series ડેટા માટે animated plots બનાવવા
- Interactive Widgets: વપરાશકર્તા interaction માટે sliders, buttons ઉમેરવા
- Integration: Jupyter notebooks, web applications સાથે કામ કરે છે

કાયદાઓ:

- Flexibility: અત્યંત customizable plotting options
- Community: વ્યાપક documentation સાથે મોટો વપરાશકર્તા આધાર
- Compatibility: NumPy, Pandas સાથે seamlessly integrate થાય છે

મેમરી ટ્રીક: "Matplotlib Makes Meaningful Visual Displays" (MMVD)

પ્રશ્ન 5(અ) [3 ગુણ]

Numpy ના મુખ્ય features ની યાદી બનાવો.

જવાબ:

NumPy મુખ્ય Features:

Feature	વર્ણન	ફાયદો
N-dimensional Arrays	કાર્યક્ષમ array operations	ઝડપી mathematical computations
Broadcasting	વિવિધ size ના arrays પર operations	લવચીક array manipulation
Linear Algebra	Matrix operations, decompositions	वैज्ञानिङ computing support

- Universal Functions: arrays **42** element-wise operations
- Memory Efficiency: ઝડપ માટે contiguous memory layout
- C/C++ Integration: compiled languages સાથે interface

મેમરી ટ્રીક: "NumPy Numbers Need Neat Operations" (NNNNO)

પ્રશ્ન 5(બ) [4 ગુણ]

પ્રોગ્રામમાં iris ડેટાસેટ Pandas Dataframe કેવી રીતે લોડ કરવો? ઉદાહરણ સાથે સમજાવો.

જવાલ:

Iris ડેટાસેટ લોડ કરવું:

```
import pandas as pd

# पद्धित 1: श्रष्टसमंथी सोंड इस्युं

df = pd.read_csv('iris.csv')

# पद्धित 2: sklearn मांथी सोंड इस्युं

from sklearn.datasets import load_iris

iris = load_iris()

df = pd.DataFrame(iris.data, columns=iris.feature_names)

df['target'] = iris.target

# मूलसूत माखिती हेमाइसी

print(df.head())

print(df.head())

print(df.info())

print(df.describe())
```

કોડ સમજાવટ:

- pd.read_csv(): CSV ફાઇલને DataFrame માં વાંચે છે
- columns parameter: column નામો assign કરે છે
- **head()**: પ્રથમ 5 rows બતાવે છે
- info(): data types અને memory usage બતાવે છે

મેમરી ટ્રીક: "Pandas Reads CSV Files Easily" (PRCFE)

પ્રશ્ન 5(ક) [7 ગુણ]

સુપરવાઇઝ્ડ લર્નિંગ અને અનસુપરવાઇઝ્ડ લર્નિંગની સરખામણી કરો અને કોન્ટ્રાસ્ટ કરો.

જવાબ:

વ્યાપક તુલના:

પાસું	Supervised Learning	Unsupervised Learning
ડેટા પ્રકાર	Labeled (input-output જોડી)	Unlabeled (भात्र input)
શીખવાનું લક્ષ્ય	Target variable ની આગાહી કરવી	છુપાયેલા પેટર્ન શોધવા
મૂલ્યાંકન	Accuracy, precision, recall	Silhouette score, inertia
જટિલતા	મૂલ્યાંકન માટે ઓછું જટિલ	validate કરવું વધુ જટિલ
એપ્લિકેશન	Classification, regression	Clustering, dimensionality reduction

વિગતવાર તુલના:

Supervised Learning લાક્ષણિકતાઓ:

- Training પ્રોસેસ: જાણીતા સાચા જવાબો સાથેના ઉદાહરણોમાંથી શીખવું
- Performance Measurement: વાસ્તવિક પરિણામો સાથે સીધી તુલના
- सामान्य Algorithms: Decision trees, SVM, neural networks
- બિઝનેસ એપ્લિકેશન: Fraud detection, medical diagnosis, price prediction

Unsupervised Learning લાક્ષણિકતાઓ:

- Exploration: માર્ગદર્શન વિના અજાણ્યા પેટર્ન શોધવા
- Validation Challenges: સીધી તુલના માટે ground truth નથી
- सामान्य Algorithms: K-means, hierarchical clustering, PCA
- બિઝનેસ એપ્લિકેશન: Customer segmentation, market research, anomaly detection

મુખ્ય કોન્ટ્રાસ્ટ:

- Feedback: Supervised માં તાત્કાલિક feedback, unsupervised domain expertise પર આધાર રાખે
- ડેટા જરૂરિયાતો: Supervised ને મોંઘા labeled ડેટાની જરૂર, unsupervised સહેલાઈથી ઉપલબ્ધ unlabeled ડેટા વાપરે
- **સમસ્યાના પ્રકારો**: Supervised prediction સમસ્યાઓ હલ કરે, unsupervised discovery સમસ્યાઓ હલ કરે

મેમરી ટ્રીક: "Supervised Seeks Specific Solutions, Unsupervised Uncovers Unknown" (SSSUU)

પ્રશ્ન 5(અ OR) [3 ગુણ]

Pandas ની એપ્લિકેશન્સની યાદી બનાવો.

જવાબ:

Pandas એપ્લિકેશન:

એપ્લિકેશન	વર્ણન	ઇન્ડસ્ટ્રી
Data Cleaning	ખોવાયેલા મૂલ્યો, duplicates સંભાળવા	બધા industries
Financial Analysis	Stock market, trading Szı	ફાઇનાન્સ
Business Intelligence	Sales reports, KPI analysis	બિઝનેસ

• Scientific Research: પ્રાયોગિક ડેટા વિશ્લેષણ

• Web Analytics: વેબસાઇટ ટ્રાફિક, વપરાશકર્તા વર્તન વિશ્લેષણ

• Healthcare: દર્દીના રેકોર્ડ, clinical trial ડેટા

મેમરી ટ્રીક: "Pandas Processes Data Perfectly" (PPDP)

પ્રશ્ન 5(બ OR) [4 ગુણ]

Matplotlib લાઇબ્રેરીનો ઉપયોગ કરીને આકૃતિ કેવી રીતે બનાવવી? ઉદાહરણ સાથે સમજાવો.

જવાબ:

Matplotlib Line Plotting:

```
import matplotlib.pyplot as plt
import numpy as np

# क्षेम्पल Sel लनाववुं

x = np.linspace(0, 10, 100)

y = np.sin(x)

# मुण्य curve plot seqi
plt.plot(x, y, label='sin(x)')

# x = 5 પર વર્ટિકલ લાઇન
```

```
plt.axvline(x=5, color='red', linestyle='--', label='Vertical Line')

# y = 0.5 પર હોરિઝોન્ટલ લાઇન
plt.axhline(y=0.5, color='green', linestyle=':', label='Horizontal Line')

# 황ੱમેંટિંગ
plt.xlabel('X-axis')
plt.ylabel('Y-axis')
plt.legend()
plt.title('Vertical અને Horizontal Lines')
plt.grid(True)
plt.show()
```

મુખ્ય Functions:

- axvline(): નિર્દિષ્ટ x-coordinate પર vertical line બનાવે
- axhline(): નિર્દિષ્ટ y-coordinate પર horizontal line બનાવે
- Parameters: color, linestyle, linewidth, alpha

મેમરી ટ્રીક: "Matplotlib Makes Lines Easily" (MMLE)

પ્રશ્ન 5(ક OR) [7 ગુણ]

યોગ્ય વાસ્તવિક વિશ્વ ઉદાહરણોનો ઉપયોગ કરીને clustering ના concept નું વર્ણન કરો.

જવાબ:

Clustering Concept અને Applications:

Clustering प्रझर	વાસ્તવિક જીવનનું ઉદાહરણ	બિઝનેસ અસર
Customer Segmentation	ખરીદી વર્તન દ્વારા ગ્રાહકોને જૂથબદ્ધ કરવા	Targeted marketing campaigns
Image Segmentation	ગાંઠ શોધવા માટે medical imaging	સુધારેલ નિદાન accuracy
Gene Analysis	સમાન expression સાથે genes ને જૂથબદ્ધ કરવા	દવા શોધ અને સારવાર

Clustering પ્રોસેસ:

વિગતવાર ઉદાહરણો:

1. Customer Segmentation:

- ડેટા: ખરીદીનો ઇતિહાસ, demographics, વેબસાઇટ વર્તન
- Clusters: ઉચ્ચ-મૂલ્યના ગ્રાહકો, કિંમત-સંવેદનશીલ ખરીદદારો, પ્રસંગોપાત દુકાનદારો

• **બિઝનેસ વેલ્યુ**: કસ્ટમાઇઝ્ડ માર્કેટિંગ, ઉત્પાદન સિફારિશો, retention વ્યૂહરથના

2. Social Media Analysis:

- કેટા: વપરાશકર્તા interactions, post topics, engagement પેટર્ન
- Clusters: Influencers, casual users, brand advocates
- એપ્લિકેશન: Viral marketing, content વ્યૂહરચના, community management

3. Market Research:

- **ડેટા**: Survey responses, ઉત્પાદન પસંદગીઓ, demographics
- Clusters: સમાન જરૂરિયાતો સાથેના માર્કેટ segments
- Insights: ઉત્પાદન વિકાસ, કિંમત વ્યૂહરચના, માર્કેટ positioning

Clustering Algorithms:

- K-Means: ડેટાને k clusters માં વિભાજિત કરે છે
- Hierarchical: વૃક્ષ-જેવું cluster structure બનાવે છે
- DBSCAN: વિવિધ ઘનતાના clusters શોધે છે

Validation પદ્ધતિઓ:

- Silhouette Score: cluster ગુણવત્તા માપે છે
- Elbow Method: optimal clusters ની સંખ્યા નક્કી કરે છે
- Domain Expertise: બિઝનેસ જ્ઞાન validation

કાયદાઓ:

- Pattern Discovery: છુપાયેલ ડેટા structures જાહેર કરે છે
- **Decision Support**: બિઝનેસ નિર્ણયો માટે insights પ્રદાન કરે છે
- Automation: manual ડેટા વિશ્લેષણનો પ્રયાસ ઘટાડે છે

મેમરી ટ્રીક: "Clustering Creates Clear Categories" (CCCC)