- 1. During the two previous decades, the number of earthquakes in an area average 1.4 per year. In the current 5 year period, the number of earthquakes in this area have been 0.1.1.0.1.
 - (a) With $\alpha \leq 0.1$, formulate a test of the null hypothesis that the current earthquake rate is the same in the last 5 years as it was before against the alternative that the rate is different.
 - (b) What conclusion can you draw from the above data?
 - (c) Graph the power curve of your test.
- 2. Suppose that the serious accidents along a certain stretch of highway follow a Poisson distribution with a mean of 1.2 accident per week. After a reduction in the speed limit along this stretch of highway, it is hoped that this average has decreased. Construct a test for reduction based on a five-week count with $\alpha \leq 0.07$.
- 3. Suppose that the moisture content per pound of a dehydrated protein concentrate is normally distributed with a mean of 3.5 and a standard deviation of 0.5. A random sample of 16 specimens, each consisting of one pound of this concentrate, is to be tested. Letting \bar{X} denote the sample mean of these measurements of moisture content:
 - (a) What is the distribution of \bar{X} ? Is it the exact or an approximate distribution?
 - (b) What is the probability that:
 - i. \bar{X} will exceed 3.7?
 - ii. \bar{X} will between 3.34 and 3.66?

of time to detect any drift in the process mean.)

- 4. Quality control: A shoe factory owns a machine that cuts pieces from slabs of compressed rubber to be used as soles on a certain brand of men's shoe. The thickness measurement of these soles are normally distributed with the standard deviation $\sigma=0.2$ millimeters. Occasionally, for some unforeseeable reason, the mean changes from its target setting of $\mu=25$ millimeters. To be able to take timely corrective measures, such as readjusting the machine's setting, it is important to monitor product quality by measuring the thickness of a random sample of soles taken periodically from the machine's output. Suppose that the following plan is used to monitor the product quality. The thickness measurement for a random sample of 5 soles are observed, and the sample mean \bar{X} is recorded. If $\bar{X} < 24.8$ or $\bar{X} > 25.2$, the machine is considered to be out of control. Production is then halted and the machine is readjust.
 - (a) When the true mean is $\mu = 25$ millimeters, what is the probability that a sample will indicate "out of control"?
 - (b) Suppose that the true mean has changed to $\mu=25.3$ millimeters. What is the probability that a sample will indicate "out of control"? (Note: In practical operations, control charts are plotted to show the \bar{x} values at successive points
- 5. A computer is programmed to make 100 draws at random with replacement from $\{0,0,0,0,1\}$, and take their sum. It does this 144 times; the average of the 144 sums is 21.13. The program is working fine. Or is it?