Assignment 5

Sushmitha Mohan Raj sxm144630 Sreesha Nagaraj sxn146630

Yacht Hydrodynamics

Below is the R code:

```
attach(yacht_hydrodynamics)
#K=1
cv.error=rep (0,6)
for (i in 1:6){
 glm.fit=glm(V7~poly(V6,i),data=yacht_hydrodynamics)
 cv.error[i]=cv.glm (yacht_hydrodynamics ,glm.fit)$delta [1]
cv.error
plot(cv.error,type="o",col="black")
#K=2
cv.error=rep (0,6)
for (i in 1:6){
 glm.fit=glm(V7~poly(V6 ,i),data=yacht_hydrodynamics)
 cv.error[i] = cv.glm\ (yacht\_hydrodynamics\ ,glm.fit,K=2) \\ \$ delta\ [1]
cv.error
plot(cv.error,type="o",col="black")
#K=5
cv.error=rep (0,6)
for (i in 1:6){
 glm.fit=glm(V7~poly(V6,i),data=yacht_hydrodynamics)
 cv.error[i]=cv.glm (yacht_hydrodynamics ,glm.fit,K=5)$delta [1]
```

cv.error

```
plot(cv.error,type="o",col="black")

#K=10

cv.error=rep (0,6)

for (i in 1:6){
    glm.fit=glm(V7~poly(V6 ,i),data=yacht_hydrodynamics)
    cv.error[i]=cv.glm (yacht_hydrodynamics ,glm.fit,K=10)$delta [1]
}

cv.error

plot(cv.error,type="o",col="black")
```

Plots for k = 1, 2, 5 and 10 from left to right & top to bottom

for K = 1

cv.error was

80.144679 17.575935 3.917786 2.665399 2.689602

From the above observations, we see that degree 4 polynomial model has the least value. Hence degree 4 model is the model that predicts best.

for K = 2

cv.error was

79.602674 17.406799 3.872209 2.533129 3.067306

From the above observations, we see that degree 4 polynomial model has the least value. Hence degree 4 model is the model that predicts best.

for K = 5

cv.error was

79.558299 17.461399 3.863968 2.574458 2.642308

From the above observations, we see that degree 4 polynomial model has the least value. Hence degree 4 model is the model that predicts best.

for K = 10

cv.error was

81.456069 17.632990 3.969703 2.604383 2.711004

From the above observations, we see that degree 4 polynomial model has the least value. Hence degree 4 model is the model that predicts best.

Banknote Authentication:

```
#Multi-linear model
```

```
glm.fit=glm(class~ variance+skewness,data = bankData, family = binomial)
coef(glm.fit)
(Intercept) variance skewness curtosis entropy
 7.321805 -7.859330 -4.190963 -5.287431 -0.605319
cv.error=cv.glm(bankData,glm.fit)
[1] 0.08524051
glm.fitML1=glm(class~ skewness+curtosis,data = bankData, family = binomial)
coef(glm.fitML1)
(Intercept) skewness curtosis
 0.8777085 -0.4166583 -0.3553684
cv.errorML1=cv.glm(bankData,glm.fitML1)
cv.errorML1$delta[1]
[1] 0.166769
glm.fitML2=glm(class~ curtosis+entropy,data = bankData, family = binomial)
coef(glm.fitML2)
(Intercept) curtosis entropy
```

[1] 0.240565

cv.errorML2\$delta[1]

-0.44195030 0.08730419 -0.08020583

cv.errorML2=cv.glm(bankData,glm.fitML2)

The Multi-linear model was built with two predictors. More than two predictors throws warning s.

The Cross-Validation above shows that the linear model with variance and skewness has the least MSE

```
#Linear Models - LOOCV (For all 4 predictors – variance, skewness, curtosis, entropy)
```

The table below highlights in bold all the least MSE's built using the linear model using each pre dictor. The i- value represents the polynomial degree.

```
for (i in 1:5) {
    glm.fitLM=glm(class~ poly(variance,i),data = bankData, family = binomial)
    cv.errorLM1[i]=cv.glm(bankData,glm.fitLM)$delta[1]
}
```

	Variance	Skewness	Curtosis	Entropy
i=1	0.1091576	0.2023483	0.2415724	0.2475175
i=2	0.1080863	0.2004354	0.2299115	0.2474628
i=3	0.1078766	0.1777716	0.2272558	0.2472388
i=4	0.1079556	0.1719493	0.2261582	0.2474882
i=5	0.1078390	0.1719637	0.2249622	0.2473234

#Linear Models – k- Fold CV (For all 4 predictors – variance, skewness, curtosis, entropy)

```
set.seed(17)
cv.errorKF=rep(0,10)
for (i in 1:10) {
   glm.fitKF=glm(class~ poly(variance,i),data = bankData, family = binomial)
   cv.errorKF[i]=cv.glm(bankData,glm.fitKF, K = 10)$delta[1]
}
```

K = 10

	Variance	Skewness	Curtosis	Entropy
i=1	0.1094151	0.2033552	0.2424584	0.2478877
i=2	0.1082462	0.2010359	0.2301815	0.2475096
i=3	0.1078833	0.1780798	0.2273132	0.2473215
i=4	0.1079143	0.1719947	0.2263181	0.2473750
i=5	0.1085608	0.1723291	0.2257085	0.2474401
i=6	0.1752029	0.1721942	0.2117189	0.2434012
i=7	0.1533065	0.1728757	0.2104414	0.2444057
i=8	0.1088239	0.1716548	0.2087226	0.2443718
i=9	0.1531503	0.1630493	0.3014444	0.2448072
i=10	0.2252187	0.3456002	0.3752178	0.2443845

#Concrete Strength

#Linear Models – LOOCV

```
cv.errorLM=rep(0,5)

for (i in 1:5) {
    glm.fit=glm(Concrete~ poly(Age,i), data = concreteData)
    cv.errorLM[i]=cv.glm(concreteData,glm.fit)$delta[1]
}
```

	Cement	Blast.Fu rnace	Fly.Ash	Water	Superpl asticizer	Coarse. Aggrega te	Fine.Ag gregate	Age
i=1	210.494	274.863	276.739	256.507	242.375	272.353	272.030	249.81
	8	0	4	2	1	4	0	19
i=2	210.834	269.208	274.382	242.349	242.673	270.105	271.527	208.32
	8	5	6	6	3	8	4	34
i=3	211.210	267.311	274.749	231.192	242.994	268.066	271.291	191.45
	8	8	4	4	9	0	7	39
i=4	211.334	265.163 0	273.062 9	226.622 5	243.110 3	267.962 4	271.839 9	183.15 07
i=5	209.951	263.987 1	273.341 5	226.830 8	243.501 1	267.168 9	271.413 0	183.32 28

#Linear Models – k- Fold CV

```
set.seed(17)

cv.errorKF=rep(0,10)

for (i in 1:10) {
    glm.fitKF=glm(Concrete~ poly(Fine.Aggregate,i),data = concreteData)
    cv.errorKF[i]=cv.glm(concreteData,glm.fitKF, K = 10)$delta[1]
}
```

K = 10

	Cement	Blast.Fu rnace	Fly.Ash	Water	Superpl asticizer	Coarse. Aggrega te	Fine.Ag gregate	Age
i=1	210.463	274.111	276.153	255.986	241.992	271.880	271.615	249.26
	7	5	0	3	2	6	1	49
i=2	211.336	269.408	274.480	242.551	242.866	270.337	272.324	208.60
	9	3	2	5	1	9	1	59
i=3	211.393	267.587	275.144	231.774	243.292	267.936	270.964	191.35
	9	1	6	7	0	5	2	63
i=4	211.588	264.773	273.659	226.983	243.488	268.020	273.957	183.12
	4	8	5	2	1	2	3	11
i=5	210.434	264.900	273.843	227.781	243.502	267.008	271.656	182.97
	4	9	0	1	1	9	6	39

i=6	209.463	264.584	273.994	224.436	243.310	267.286	272.845	182.68
	3	0	2	8	0	6	9	17
i=7	210.261	264.579	273.826	223.299	242.066	267.720	266.616	182.58
	5	5	0	4	1	8	2	06
i=8	210.577	300.346	274.590	228.100	242.346	270.696	264.155	182.28
	8	5	0	8	4	4	9	23
i=9	209.912	263.228 0	272.892 6	610.474 8	241.616 3	259.924 6	265.655 4	180.85 11
i=10	209.663 6	263.424 2	273.771 8	224.276 0	244.362 1	261.834 9	265.409	180.43 99

Plot for predictor Fine Aggregate. The rest can be interpreted from the above table

#Code used in the last two problems

```
bankData=read.csv("C:\\Users\\Sushmitha\\Documents\\Third Semester\\Comp Mthds Data
Science\\Assignment V\\Assign_5-Data\\data_banknote_authentication.csv",",",header=TRUE)
head(bankData)
attach(bankData)
library(boot)
#Logistic Regression
names(bankData)
class=factor(class)
is.factor(class)
#Multi-linear model
glm.fit=glm(class~ variance+skewness,data = bankData, family = binomial)
coef(glm.fit)
cv.error=cv.glm(bankData,glm.fit)
cv.error$delta[1]
glm.fitML1=glm(class~ skewness+curtosis,data = bankData, family = binomial)
coef(glm.fitML1)
cv.errorML1=cv.glm(bankData,glm.fitML1)
cv.errorML1$delta[1]
```

11

```
glm.fitML2=glm(class~ curtosis+entropy,data = bankData, family = binomial)
coef(glm.fitML2)
cv.errorML2=cv.glm(bankData,glm.fitML2)
cv.errorML2$delta[1]
#Linear Model
glm.fitLM1=glm(class~ variance,data = bankData, family = binomial)
coef(glm.fitLM1)
cv.errorLM1=cv.glm(bankData,glm.fitLM1)
cv.errorLM1$delta[1]
cv.errorLM=rep(0,5)
for (i in 1:5) {
 glm.fitLM=glm(class~ poly(entropy,i),data = bankData, family = binomial)
 cv.errorLM[i]=cv.glm(bankData,glm.fitLM)$delta[1]
}
 cv.errorLM
#k-Fold CV
set.seed(17)
cv.errorKF=rep(0,10)
for (i in 1:10) {
 glm.fitKF=glm(class~ poly(variance,i),data = bankData, family = binomial)
```

```
cv.errorKF[i]=cv.glm(bankData,glm.fitKF, K = 10)$delta[1]
}
cv.errorKF
#Concrete Strength
concreteData=read.csv("C:\\Users\\Sushmitha\\Documents\\Third Semester\\Comp Mthds Data
Science\\Assignment V\\Assign_5-Data\\Concrete_Data.csv",",",header=TRUE)
head(concreteData)
attach(concreteData)
names(concreteData)
glm.fit=glm(Concrete~ Cement,data = concreteData)
cv.errorLM=rep(0,5)
for (i in 1:5) {
 glm.fit=glm(Concrete~ poly(Age,i), data = concreteData)
 cv.errorLM[i]=cv.glm(concreteData,glm.fit)$delta[1]
}
cv.errorLM
set.seed(17)
cv.errorKF=rep(0,10)
for (i in 1:10) {
```

```
glm.fitKF=glm(Concrete~ poly(Fine.Aggregate,i),data = concreteData)

cv.errorKF[i]=cv.glm(concreteData,glm.fitKF, K = 10)$delta[1]
}

cv.errorKF
```