Случайные события A, B, C, . . . (Random events)

$$\Omega = \begin{bmatrix} (1,1) & (2,1) & (3,1) & (4,1) & (5,1) & (6,1) \\ (1,2) & (2,2) & (3,2) & (4,2) & (5,2) & (6,2) \\ (1,3) & (2,3) & (3,3) & (4,3) & (5,3) & (6,3) \\ (1,4) & (2,4) & (3,4) & (4,4) & (5,4) & (6,4) \\ (1,5) & (2,5) & (3,5) & (4,5) & (5,5) & (6,5) \\ (1,6) & (2,6) & (3,6) & (4,6) & (5,6) & (6,6) \end{bmatrix}$$

Событие
$$C = \{\text{"сумма очков равна 8"}\} = \{(2,6), (3,5), (4,4), (5,3), (6,2)\}$$

Событие $D = \{\text{"выпало одинаковое число очков"}\} = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$

Случайное событие A — подмножество Ω : $A \subseteq \Omega$ Если Ω — дискретно, то $\forall A \subseteq \Omega$ можно считать событием "Событие A произошло" значит произошло элементарное событие ω из A, т.е. $\omega \in A$

Операции над событиями

• объединение (union) $A \cup B$: "A или B или оба"

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots \cup A_n$$

• пересечение (intersection) $A \cap B$: "A и B"

$$\bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

 \emptyset – пустое множество (empty set), невозможное событие (impossible event);

 $A \cap B = \emptyset$: *A* и B – *несовместные* события (mutually exclusive events);

 Ω – достоверное событие (certain or sure event).

Коммутативность: $A \cap B = B \cap A$, $A \cup B = B \cup A$

Ассоциативность: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$

Дистрибутивность: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$,

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$

Операции над событиями

• разность A и B (difference of A and B) $A \ B$: "A без B"

• дополнение (complement) $\overline{A} = A^c$: "не A", $A^c = \Omega \backslash A$. \overline{A} , $A^c -$ противоположное к A событие

$$A \cup A^c = \Omega$$
, $A \cap A^c = \emptyset$, $(A^c)^c = A$

Множество событий, заданных на Ω , будем обозначать F .

$$C = \{(2,6), (3,5), (4,4), (5,3), (6,2)\} \qquad D = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$$

$$C \cup D = \{(2,6), (3,5), (4,4), (5,3), (6,2), (1,1), (2,2), (3,3), (5,5), (6,6)\}$$

$$C \cap D = \{(4,4)\} \qquad C \setminus D = \{(2,6), (3,5), (5,3), (6,2)\}$$

$$\overline{D} = \{(i,j), i = \overline{1,6}, j = \overline{1,6}, i \neq j\}$$