Capítulo 1 Representação da Informação

Márcio Brandão – CIC/UnB Circuitos Digitais

×

1. Representação de Informação

- 1.1 Sistemas de numeração
 - □ Notação numérica posicional
 - ☐ Sistemas binário, octal e hexadecimal
 - ☐ Aritmética em base binária

Márcio Brandão - CIC/UnB

- Notação Numérica posicional
 - \square Sistema numérico na base B
 - Utiliza os algarismos {0, 1, ..., B-1}
 - A localização de um algarismo a_i no número determina seu peso B^i
 - O valor do algarismo a_i é o produto $algarismo \times peso$ $a_i \times B^i$
 - O valor *x* do número é a soma dos produtos *algarismo* × *peso*

$$x = \sum_{i=0}^{n} a_i \times B^i = a_n \times B^n + a_{n-1} \times B^{n-1} + \dots + a_0 \times B^0$$

- Notação Numérica posicional exemplo
 - ☐ Sistema decimal (base 10)
 - Utiliza os algarismos {0, 1, 2, ,3 , 4, 5, 6, 7, 8, 9}
 - A localização de um algarismo no número determina seu peso:

$$367_{10} = 3 \times 10^{2} + 6 \times 10^{1} + 7 \times 10^{0}$$

1 1 Ciatago e de Marco es

1.1 Sistemas de Numeração

- Notação Numérica posicional exemplo
 - ☐ Sistema binário (base 2)
 - Utiliza os algarismos {0, 1}
 - A localização de um algarismo no número determina seu peso:

$$101101111_{2} = 1 \times 2^{8} + 1 \times 2^{6} + 1 \times 2^{5} + 1 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 367_{10}$$

- Notação Numérica posicional exemplo
 - ☐ Sistema octal (base 8)
 - Utiliza os algarismos {0, 1, 2, 3, 4, 5, 6, 7}
 - A localização de um algarismo no número determina seu peso:

$$557_8 = 5 \times 8^2 + 5 \times 8^1 + 7 \times 8^0 = 367_{10}$$

- Notação Numérica posicional exemplo
 - ☐ Sistema hexadecimal (base 16)
 - Utiliza os algarismos {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
 - A localização de um algarismo no número determina seu peso:

$$16F_{16} = 1 \times 16^{2} + 6 \times 16^{1} + 15 \times 16^{0} = 367_{10}$$

w

1.1 Sistemas de Numeração

Notação Numérica posicional para números com parte fracionária:

$$x = \sum_{i=-m}^{n} a_i \times B^i = a_n \times B^n + a_{n-1} \times B^{n-1} + \dots + a_{-m} \times B^{-m}$$

□ Exemplo (B=10):

$$5,875_{10} = 5 \times 10^{0} + 8 \times 10^{-1} + 7 \times 10^{-2} + 5 \times 10^{-3}$$

 \square Exemplo (B=2):

$$101,111_2 = 1 \times 2^2 + 1 \times 2^0 + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} = 5,875_{10}$$

- Conversão entre os sistemas binário (base 2),
 octal (base 8) e hexadecimal (base 16)
 - □ A conversão entre esses sistemas de numeração é simplificada pela relação entre eles:
 - $8 = 2^3$
 - **■** 16 = 24

- Sistema octal (base 8)
 - ☐ Um dígito octal corresponde a um número binário com 3 bits (binary digits)

Binário			Dígito Octal
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	4
1	0	1	5
1	1	0	6
1	1	1	7

Márcio Brandão – CIC/UnB Circuitos Digitais

- Conversão do sistema *binário* para o sistema *octal* (e vice-versa)
 - Começando à direita do número binário (caso o número seja inteiro), ou a partir da vírgula, agrupase os dígitos binários em grupos de 3 bits
 - ☐ Associa-se a cada agrupamento ao dígito octal correspondente

Márcio Brandão – CIC/UnB Circuitos Digitais

- Sistema hexadecimal (base 16)
 - ☐ Um dígito hexadecimal corresponde a um número binário com 4 bits.

Binácio				Digito Hexadecimal
0	D	0	0	0
0	D	O	1	1
0	D	L	0	2
0	D	L	1	3
0	Ι	0	0	4
0	1	D	1	5
0	Τ	L	0	6
0	Τ	L	1	7
	D	0	0	8
	D	D	1	9
	D	L	0	A
	D	L	1	В
	Τ	D	0	С
	1	0	1	D
	1	L	D	E
	1	I	1	F

- Conversão do sistema *binário* para o sistema *hexadecimal* (e vice-versa)
 - Começando à direita do número binário (caso o número seja inteiro), ou a partir da vírgula, agrupase os dígitos binários em grupos de 4 bits
 - ☐ Associa-se a cada agrupamento ao dígito hexadecimal correspondente

Márcio Brandão – CIC/UnB Circuitos Digitais

1.1 Sistemas de Numeração

- Conversão do sistema octal para o hexadecimal (e vice-versa)
 - □ Converte-se inicialmente o número para o sistema binário:

Márcio Brandão – CIC/UnB Circuitos Digitais

- Aritmética na base-2
 - □ Tabelas de *adição* e *multiplicação*

+	0	1	
0	0	L	
1	I	10	

\times	0	1
0	0	0
1	0	1

.

1.1 Sistemas de Numeração

Adição na base-2

$$11010_2 + 1011_2 = 100101_2$$

Márcio Brandão - CIC/UnB

Subtração na base-2

$$1001_2 - 0111_2 = 0010_2$$

r.

1.1 Sistemas de Numeração

Multiplicação na base-2

Márcio Brandão – CIC/UnB Circuitos Digitais

Divisão na base-2

1. Representação da Informação

- 1.2 Representação de Nos Negativos
 - 1.2.1 Representação complemento-a-dois
 - 1.2.2 Outras representações
- 1.3 Representação de Números Reais
 - 1.3.1 Representação em ponto fixo
 - 1.3.2 Representação em ponto flutuante
 - 1.3.3 Representação binária em ponto flutuante

1.2.1 Representação complemento-a-dois

■ Valor associado a um número de *n* bits:

$$Valor = -x_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

$$x_{n-1} = \begin{cases} 1 \text{ para números } negativos \\ 0 \text{ para números } positivos \end{cases}$$

 O dígito mais significativo – MSB (Most Significant Bit) – sinaliza o sinal

y.

1.2.1 Representação complemento-a-dois

■ Valor associado a um número de *n* bits:

$$Valor = -x_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} x_i 2^i$$

$$-2^{n-1} \le Valor \le 2^{n-1} - 1$$

1.2.1 Representação complemento-a-dois

Largura de palavra n = 4

E	3in	áгі	Valor	
0	0	0	0	0
0	0	0	1	1
0	0	I	0	2
0	0	I	1	3
0	I	0	0	4
0	I	0	1	5
0	I	I	0	6
0	I	I	1	7
1	0	0	0	-8
1	0	0	1	-7
1	0	I	0	-6
1	0	I	1	-5
1	I	0	0	-4
1	I	0	1	-3
1	I	I	0	-2
1	I	I	1	-1

1.2.1 Representação complemento-a-dois

O *complemento-a-dois* de um número nessa representação corresponde ao mesmo número com *sinal oposto*

.

- Complemento-a-dois por complemento e adição binária
 - 1. Complementar todos os bits do número X
 - 2. Adicionar um ao resultado

$$(Valor = +6) \longrightarrow 0 \ 1 \ 1 \ 0$$
 $(Valor = -3) \longrightarrow 1 \ 1 \ 0 \ 1$ Complemento bit-a-bit $0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 0$ $0 \ 0 \ 1 \ 0$ $0 \ 0 \ 1 \ 0$ $0 \ 0 \ 1 \ 0$ $0 \ 0 \ 1 \ 0$ $0 \ 0 \ 1 \ 1$ $0 \ 0 \ 0 \ 1 \ 1$

1.2.1 Representação complemento-a-dois

- Operação de subtração
 - □ Podem ser realizadas através da *soma* do *minuendo* com o *complemento-a-dois* do *subtraendo*:

 \square Exemplo (n=4):

$$3-5=3+(-5)=-2$$

$$(Valor = +3)$$
 0 0 1 1 $(Valor = -5)$ 1 0 1 1 $+$ $(Valor = -2)$ 1 1 1 0

1.2.1 Representação complemento-a-dois

Operação de subtração

$$4-3=4+(-3)=1$$

$$(X = +3)$$
 0 0 1 1 $(Valor = +4)$ 0 1 0 0 $(Valor = -3)$ 1 1 0 1 $(Valor = -4)$ 0 0 0 1 0 0 $(Valor = -3)$ 1 1 0 1 $(Valor = -4)$ 0 0 0 1

Esse *carry* pode ser descartado nos casos em que não ocorrer *overflow*, ou seja, quando o valor do resultado estiver dentro da faixa de valores representáveis pela largura da palavra.

r.

1.2.1 Representação complemento-a-dois

Operação de subtração

×

- Operação de soma/subtração
 - □ O *overflow* pode ser identificado através da inconsistência do sinal do resultado

- Operação de soma/subtração
 - □ O *overflow* pode ser identificado através da inconsistência do sinal do resultado:

$$5 + 6 = 11$$

- Operação de soma/subtração
 - □ O *overflow* ocorre quando o *carry-in* para o MSB difere do *carry-out* proveniente do MSB.

- Operação de soma/subtração
 - □ O *overflow* ocorre quando o *carry-in* para o MSB difere do *carry-out* proveniente do MSB.

- Operação de soma/subtração
 - □ Não há *overflow* quando o *carry-in* para o MSB é igual ao *carry-out* proveniente do MSB.

- Operação de soma/subtração
 - □ Não há *overflow* quando o *carry-in* para o MSB é igual ao *carry-out* proveniente do MSB.

1.3 Representação de Números Reais

- Representação em ponto fixo
 - Reserva-se um número de bits para representar a parte fracionária
 - Assume-se uma posição fixa para o *ponto binário* (que não é armazenado explicitamente).

1.3.1 Representação em Ponto Fixo

Binário								Valor Decimal
1	0	1	0	0	1	1	1.	167
1	0	1	0	0	1	1	1	83.5
1	0	1	0	0	1	1	1	41.75
1	0	1	0	0	1	1	1	20.875
1	0	1	0	0	1	1	1	10.4375
1	0	1	0	0	1	1	1	5.21875
1	0	1	0	0	1	1	1	2.609375
1	0	1	0	0	1	1	1	1.3046875
1	0	1	0	0	1	1	1	0.65234375

×

1.3.1 Representação em Ponto Fixo

- Note que, para números de n bits, a quantidade de valores representáveis é 2^n
- Supondo
 - $\Box i$ bits para a parte inteira
 - $\Box f$ bits para a parte fracionária
 - $\square_{n=i+f}$
- Separação entre números: 2-f
- Maior número positivo: $(2^{n-1}-1)/2$ -f
- Número mais negativo: -2ⁿ⁻¹/2-f

1.3.1 Representação em Ponto Fixo

Para palavras de largura n=8

n	i	f	Valores	Menor valor	Maior valor	Intervalo
8	8	0	256	-128	127	1
8	7	1	256	-64	63.5	0.5
8	6	2	256	-32	31.75	0.25
8	5	3	256	-16	15.875	0.125.
8	4	4	256	-8	7.9375	0.0625
8	3	5	256	-4	3.96875	0.03125
8	2	6	256	-2	1.984375	0.015625
8	1	7	256	-1	0.9921875	0.0078125
8	0	8	256	-0.5	0.4960937 5	0.0039062 5

- Um número representado em ponto flutuante apresenta quatro partes
 - □ Sinal
 - □ Mantissa
 - □Base
 - □ Expoente
- Esses quatro componentes se combinam para formar o valor X:

 $X = sinal * mantissa * base^{expoente}$

Números em ponto flutuante podem ser representados de diversas maneiras

 \square Exemplo: X=-3

Sinal	Mantiss a	Expoent e
-1	30	-1
-1	3	0
-1	0.3	1
-1	0.03	2

Para números *normalizados*, a mantissa está na faixa

$$\frac{1}{base} \le mantissa \le 1$$

7

1.3.2 Representação em Ponto Flutuante

Números *normalizados* apresentam uma mantissa com um dígito não-nulo imediatamente à direita da vírgula, e o dígito nulo imediatamente à esquerda da vírgula.

$$\frac{1}{base} \le mantissa \le 1$$

Note que não há representação normalizada para o valor 0 (zero).

1.3.2 Representação Binária em Ponto Flutuante

- Padrão IEEE 754, de 1985
 - □ Precisão simples 32 bits
 - □ Precisão dupla 64 bits
- A base 2 é implícita, e apenas o sinal, a mantissa e o expoente são armazenados

Número de bits:

Precisã o	Sinal	Expoent e	Mantiss a
Simples	1	8	23
Dupla	1	11	52

1.3.2 Representação Binária em Ponto Flutuante

Sinal

- □ *1* indica número negativo
- $\Box 0$ indica número positivo

Mantissa

- □ A posição do ponto binário é assumida como sendo aquela adotada na *notação científica normalizada*, com exatamente um dígito diferente de zero <u>antes</u> do ponto binário
- □ Como esse dígito tem que necessariamente ser "1", ele não é armazenado (bit implícito), o que aumenta em um bit a precisão do número!

M

1.3.2 Representação Binária em Ponto Flutuante

Atribuição dos bits para precisão simples:

27 26 25 24 23 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 2-22 2-23

S	Expoente (E)	Fração (F)
1 bit	8 bits	23 bits

Valor decimal correspondente:

$$Y = (-1)^{S} (1+F) * 2^{E-127}$$

Para números normalizados:

$$1 \le E \le 254$$

■ Ou seja: $-126 \le e \le 127$

Expoente

- □ Note que foi adicionada uma polarização (bias) que deve ser somada ao *expoente real* (e) para obter o *expoente armazenado (E)*:
- □ Valor da polarização
 - 127 na precisão simples:

$$E = e + 127$$

 \square Precisão simples: E = e + 127

Expoente armazenado (E)						ado	(E)	Expoente real (e)
0	0	0	0	0 0	0	0	0	-126
0 0 1	1 1 0		1	1 1 0	1	1 1 0	0 1 0	-1 0 Reservados para valores especiais +1
			,	:				:
1 1	1 1	1	1 1	1	1 1	1 1	0 1	+127

Exemplo 1

$$Y = (-1)^{S} (1+F) * 2^{E-127} = (-1)^{1} (1+0.5) * 2^{127-127}$$

$$Y = -1.5$$

M

1.3.2 Representação Binária em Ponto Flutuante

Exemplo 2

$$2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6} ... 2^{-22} 2^{-23} 2^{-23} 2^{-1} 2^{-2} $2^$

$$Y = (-1)^{S} (1+F) * 2^{E-127} = (-1)^{0} (1+0.25) * 2^{129-127}$$

$$Y = 1.25 \times 2^2 = 5$$

1.3.2 Representação Binária em Ponto Flutuante

Exemplo 3

$$Y = 0.75 = \frac{1}{2} + \frac{1}{4} = \frac{3}{4} = 3 \times 2^{-2} = (11)_2 \times 2^{-2} = (1.1)_2 \times 2^{-1}$$

$$Y = (-1)^{S} (1+F) * 2^{e}$$
 $E = e+127$

$$e = -1$$

$$S = 0$$
 $E = 126$

$$F = 0.5$$

$$2^{7}$$
 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} 2^{-1} 2^{-2} 2^{-3} 2^{-4} 2^{-5} 2^{-6}

Expoente (8 bits)

Fração (23 bits)

Exemplo 4
$$Y = -2,625 = -\left(2 + \frac{1}{2} + \frac{1}{8}\right) = -\frac{21}{8}$$

$$Y = -21 \times 2^{-3} = -(10101)_2 \times 2^{-3} = -(1.0101)_2 \times 2^{1}$$

$$Y = (-1)^{S} (1+F) * 2^{e}$$
 $E = e+127$

$$S = 1$$
 $E = 128$

$$F = 2^{-2} + 2^{-4} = 0.3125$$

2-22 **2**-23

Expoente (8 bits) Sinal

Fração (23 bits)

Exemplo 5

$$Y = \frac{37}{32} = 37 \times 2^{-5}$$

$$Y = (100101)_2 \times 2^{-5} = (1.00101)_2 \times 2^{0}$$

$$Y = (-1)^{S} (1+F) * 2^{e}$$
 $E = e+127$

$$e = 0$$

$$S = 0$$
 $E = 127$

$$F = 2^{-3} + 2^{-5} = 0.15625$$

2-22 **2**-23

Sinal Expoente (8 bits)

Fração (23 bits)

1.3.2 Representação Binária em Ponto Flutuante

Atribuição dos bits para precisão dupla:

210 29 28 ... 22 21 20 2-1 2-2 2-3 2-4 2-5 2-6 ... 2-51 2-52

S	Expoente (E)	Fração (F)	
1 bit	t 11 bits	52 bits	

Valor decimal correspondente:

$$Y = (-1)^{S} (1+F) * 2^{E-1023}$$

Para números normalizados:

$$1 \le E \le 2046$$

Ou seja: $-1022 \le e \le 1023$

Table D-1 IEEE 754 Format Parameters

	Format			
Parameter	Single	Single- Extended	Double	Double- Extended
р	24	32	53	64
$e_{ m max}$	+127	1023	+1023	> 16383

Table D-1 IEEE 754 Format Parameters

	Format				
Parameter	Single	Single- Extended	Double	Double- Extended	
e_{\min}	-126	≤-1022	-1022	≤ -16382	
Exponent width in bits	8	≤ 11	11	15	
Format width in bits	32	43	64	79	

7

1.3.2 Representação Binária em Ponto Flutuante

Table D-2 IEEE 754 Special Values

Exponent	Fraction	Represents
$e = e_{\min} - 1$	f = 0	±0
$e = e_{\min} - 1$	f≠0	$0.f \times 2^{e_{min}}$
$e_{\min} \le e \le e_{\max}$	_	$1.f \times 2^e$
$e = e_{\text{max}} + 1$	f = 0	∞
$e = e_{\text{max}} + 1$	$f \neq 0$	NaN

Table D-3 Operations That Produce a NaN

Operation	NaN Produced By
+	∞ + (- ∞)
X	$0 \times \infty$
/	0/0, ∞/∞
REM	$x \text{ REM } 0, \infty \text{ REM } y$
	\sqrt{x} (when $x < 0$)

Referências

- Goldberg, David (March 1991), What every computer scientist should know about floating-point arithmetic, Computing Surveys. (http://www.validlab.com/goldberg/paper.ps)
- Pedroni, Volnei A. (2010), *Eletrônica Digital Moderna e VHDL*, Elsevier