一份超甜的微积分习题集

曲豆豆 码字 欢迎给曲豆豆投喂题目! 2019年7月7日 第00-9稿

图: 毕业季的曲豆豆在合肥南七技校东区图书馆五楼自习室 拍摄于 2017.3.12 - 13: 42

曲豆豆的高数讨论 qq 群: 1022388218 本文持续更新中······

曲豆豆新坑《近代分析基础》零基础入门度量空间、赋范空间,即将开坑!

目录

1	数列极限	4
2	连续函数	13
3	一元微分学	21
	3.1 导数的基本概念与计算	21
	3.2 泰勒公式与极限的计算	24
	3.3 隐函数与参数方程的求导	28
	3.4 微分中值定理	30
	3.5 用导数研究函数的单调性与最值	36
4	一元积分学	38
	4.1 不定积分的计算	38
	4.2 定积分的计算	40
	4.3 定积分的估计与放缩	46
	4.4 Good kernel 及其应用	51
5	无穷级数与反常积分	56
6	多元微分学	61
7	多重积分	69
8	曲线积分与曲面积分	79

每日一题 -日期索引

2019-05-07, 71	2019-06-05, 8
2019-05-08, 25	2019-06-06, 11
2019-05-09, 43	2019-06-07, 40
2019-05-10, 75	2019-06-08, 32
2019-05-11, 85	2019-06-09, 56
2019-05-12, 48, 49	2019-06-10, 65
2019-05-13, 31	2019-06-11, 83
2019-05-14, 4	2019-06-12, 67
2019-05-15, 26	2019-06-13, 66
2019-05-16, 51	2019-06-14, 46
2019-05-17, 52	2019-06-15, 64
2019-05-18, 5	2019-06-16, 57
2019-05-19, 47	2019-06-17, 83
2019-05-20, 70	2019-06-18, 57
2019-05-21, 61	2019-06-19, 29
2019-05-22, 16	2019-06-20, 10
2019-05-23, 41	2019-06-21, 51
2019-05-24, 73	2019-06-22, 27
2019-05-25, 14	2019-06-23, 71
2019-05-26, 86	2019-06-24 至 2019-06-30 暂停更新一周, 1
2019-05-27, 33	2019-07-01 第二季开始, 36
2019-05-28, 72	2019-07-02, 7
2019-05-29, 75	2019-07-03, 56
2019-05-30, 34	2019-07-04, 59
2019-05-31, 81	2019-07-05, 70
2019-06-01, 26	2019-07-06, 28
2019-06-02, 43	2019-07-07, 23
2019-06-03, 65	
2019-06-04, 58	

第1章 数列极限

习题 1. 已知正数列 $\{a_n\}$ 收敛, 且 $\lim_{n \to \infty} a_n = A > 0$,

- (1) 证明: 数列 $\{a_n\}$ 存在正的下界 (换句话说,存在 $\epsilon>0$,使得 $a_n\geq \epsilon$ 对任意 $n\geq 1$ 都成立);
 - (2) 举例说明数列 {an} 之中可能没有最小数。

证明. **(1)**由数列极限的定义,存在正整数 N,使得对任意 n > N,都有 $a_n > \frac{A}{2}$; 对于这个 N,注意 $a_1, a_2, ..., a_N$ 都为正数,从而考虑

$$\varepsilon := \min\{a_1, a_2, ..., a_N; \frac{A}{2}\}$$

易知如此的 ε 是数列 $\{a_n\}$ 的一个正下界。

(2) 例如
$$a_n = A + \frac{1}{n}$$
.

习题 2. 已知正数列 $\{a_n\}$ 满足 $\lim_{n\to+\infty}a_n=0$, 证明: 存在正数列 $\{b_n\}$ 使得 $\lim_{n\to+\infty}b_n=0$, 并且 $\lim_{n\to+\infty}\frac{b_n}{a_n}=+\infty$.

证明. 因为 $\lim_{n\to+\infty} a_n = 0$,从而存在正整数 N_1 ,使得当 $n > N_1$ 时, $a_n < \frac{1}{1^2}$. 之后考虑子列 $\{a_n\}_{n=N_1}^{+\infty}$,该数列也趋于 0,从而存在正整数 $N_2 > N_1$,使得当 $n > N_2$ 时, $a_n < \frac{1}{2^2}$.

如此不断地归纳构造下去,可得到一列 $N_1 < N_2 < N_3 < \cdots$,使得对任意 $k \ge 1$,若 $n > N_k$,则 $a_n < \frac{1}{k^2}$. 注意到对任何正整数 n,要么 $n \le N_1$,要么存在唯一的 $k \ge 1$,使得 $N_k < n \le N_{k+1}$. 构造数列 $\{b_n\}$ 如下:

$$b_n = \begin{cases} a_n & n \le N_1 \\ ka_n & N_k < n \le N_{k+1} \end{cases}$$

则当 $N_k < n \le N_{k+1}$ 时, $b_n = ka_n < k \cdot \frac{1}{k^2} = \frac{1}{k}$,于是易知 $\lim_{n \to +\infty} b_n = 0$;又因为 $N_k < n \le N_{k+1}$ 时, $\frac{b_n}{a_n} = k$,由此易知 $\lim_{n \to +\infty} \frac{b_n}{a_n} = +\infty$.

另一种更直接的构造是 $b_n = \sqrt{a_n}$ 。

此题表明,不存在"收敛速度最慢"的数列。

习题 3. 设 $a_1, a_2, ..., a_N$ 是 N 个给定的正数,证明:

$$\lim_{n \to +\infty} \left(a_1^n + a_2^n + \dots + a_N^n \right)^{\frac{1}{n}} = \max\{a_1, a_2, ..., a_N\}$$

证明. 令 $A := \max\{a_1, a_2, ..., a_N\}$,则一方面有

$$(a_1^n + a_2^n + \dots + a_N^n)^{\frac{1}{n}} \le (NA^n)^{\frac{1}{n}} = \sqrt[n]{N}A \to A \qquad (n \to +\infty)$$

另一方面, $\left\{a_i\middle|1\leq i\leq N\right\}$ 之中至少有一个为 A,从而

$$(a_1^n + a_2^n + \dots + a_N^n)^{\frac{1}{n}} \ge (A^n)^{\frac{1}{n}} = A$$

从而由夹逼原理, $\lim_{n \to +\infty} (a_1^n + a_2^n + \dots + a_N^n)^{\frac{1}{n}} = A = \max\{a_1, a_2, ..., a_N\}$

习题 4. 已知数列 $\{a_n\}$ 使得 $\lim_{n\to+\infty} \frac{a_1+a_2+\cdots+a_n}{n}$ 存在,证明 $\lim_{n\to+\infty} \frac{a_n}{n}=0$.

证明. 记数列 $\{a_n\}$ 的部分和 $S_n:=a_1+a_2+\cdots+a_n$,则由题意 $A:=\lim_{n\to+\infty}\frac{S_n}{n}$ 存在。从而有

$$\lim_{n \to +\infty} \frac{a_n}{n} = \lim_{n \to +\infty} \frac{S_n - S_{n-1}}{n} = \lim_{n \to +\infty} \left(\frac{S_n}{n} - \frac{n-1}{n} \cdot \frac{S_{n-1}}{n-1} \right) = A - 1 \cdot A = 0$$

习题 5. 计算极限:

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{n+1-k}{n\binom{n}{k}}$$

解.: 对于 $n \ge 2$, 注意对任意的 $2 \le k \le n-2$, 成立

$$\binom{n}{k} \ge \binom{n}{2} = \frac{n(n-1)}{2}$$

因此对于 $n \ge 4$, 成立

$$\sum_{k=1}^{n} \frac{n+1-k}{n\binom{n}{k}} = \frac{2}{n} + \frac{2}{n^2} + \sum_{k=2}^{n-2} \frac{n+1-k}{n\binom{n}{k}}$$

$$\leq \frac{2}{n} + \frac{2}{n^2} + \sum_{k=2}^{n-2} \frac{n}{n\frac{n(n-1)}{2}}$$

$$= \frac{2}{n} + \frac{2}{n^2} + \frac{2(n-4)}{n(n-1)}$$

令 $n \to \infty$, 则上式右边趋于 0; 又因为 $\sum_{k=1}^{n} \frac{n+1-k}{n\binom{n}{k}} > 0$,从而由夹逼原理知

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{n+1-k}{n\binom{n}{k}}=0$$

习题 6. 计算极限:

$$\lim_{n\to+\infty} \left(\frac{1+\frac{1}{1}}{n^2+n+1} + \frac{2+\frac{1}{2}}{n^2+n+2} + \frac{3+\frac{1}{3}}{n^2+n+3} + \dots + \frac{n+\frac{1}{n}}{n^2+n+n} \right)$$

解. 使用夹逼原理。对于 $n \ge 1$, 注意到

$$\sum_{k=1}^{n} \frac{k + \frac{1}{k}}{n^2 + n + k} = \sum_{k=1}^{n} \frac{k}{n^2 + n + k} + \sum_{k=1}^{n} \frac{\frac{1}{k}}{n^2 + n + k} \le \sum_{k=1}^{n} \frac{k}{n^2 + n} + \sum_{k=1}^{n} \frac{1}{n^2 + n}$$
$$= \frac{1}{2} + \frac{1}{n+1} \to \frac{1}{2} \quad (n \to +\infty)$$

另一方面, 我们还有

$$\sum_{k=1}^{n} \frac{k + \frac{1}{k}}{n^2 + n + k} \geq \sum_{k=1}^{n} \frac{k}{n^2 + n + k} \geq \sum_{k=1}^{n} \frac{k}{n^2 + 2n} = \frac{n+1}{2(n+2)} \rightarrow \frac{1}{2} \qquad (n \to +\infty)$$

因此由夹逼原理,原极限存在,并且等于 ½.

习题 7. 计算极限:

$$\lim_{n\to+\infty} \left(\sin\frac{1}{n^2} + \sin\frac{3}{n^2} + \dots + \sin\frac{2n-1}{n^2} \right)$$

证明. 对于 x > 0, 注意不等式 $x - \frac{1}{6}x^3 < \sin x < x$, 从而有

$$\sum_{k=1}^{n} \sin \frac{2k-1}{n^2} \le \sum_{k=1}^{n} \frac{2k-1}{n^2} = 1$$

$$1 - \left(\sum_{k=1}^{n} \sin \frac{2k-1}{n^2}\right) < \frac{1}{6} \sum_{k=1}^{n} \left(\frac{2k-1}{n^2}\right)^3 < \frac{1}{6n^6} \sum_{k=1}^{2n} k^3$$
$$< \frac{1}{6n^6} \int_{1}^{2n+1} x^3 dx < \frac{(3n)^4}{24n^6} \to 0 \qquad (n \to +\infty)$$

于是由夹逼原理立刻得到 $\lim_{n\to+\infty} \left(\sin\frac{1}{n^2} + \sin\frac{3}{n^2} + \dots + \sin\frac{2n-1}{n^2}\right) = 1.$

另证. 首先仍由 $\sin x \le x$ 得出 $\sum_{k=1}^{n} \sin \frac{2k-1}{n^2} \le 1$. 不过另一边不等号可以这样估计: 注意到极限 $\lim_{x\to 0} \frac{\sin x}{x} = 1$,从而对任意 $\varepsilon > 0$,存在 $\delta > 0$,使得对任意 $|x| < \delta$,都有 $\frac{\sin x}{x} > 1 - \varepsilon$,即 $\sin x > x - \varepsilon x$. 现在取足够大的 N,使得 $N > \frac{2}{\delta}$,则对任意 n > N, $\frac{1}{n^2}$, $\frac{3}{n^2}$,…, $\frac{2n-1}{n^2}$ 都小于 δ ,因此有

$$\sum_{k=1}^{n} \sin \frac{2k-1}{n^2} \ge \sum_{k=1}^{n} \left(\frac{2k-1}{n^2} - \varepsilon \frac{2k-1}{n^2} \right) = 1 - \varepsilon$$

因此由数列极限的定义,即得 $\lim_{n\to+\infty} \left(\sin\frac{1}{n^2} + \sin\frac{3}{n^2} + \dots + \sin\frac{2n-1}{n^2}\right) = 1.$

习题 8. 计算极限:

$$\lim_{n \to +\infty} \left(\sqrt{n^2 + n} + n \sum_{k=1}^{n} \cos \frac{k\pi}{n} \right)$$

解. 首先注意到

$$\sum_{k=0}^{n} \cos \frac{k\pi}{n} = \frac{1}{2} \left(\sum_{k=0}^{n} \cos \frac{k\pi}{n} + \sum_{k=0}^{n} \cos \frac{(n-k)\pi}{n} \right) = \frac{1}{2} \sum_{k=0}^{n} \left(\cos \frac{k\pi}{n} + \cos \frac{(n-k)\pi}{n} \right) = 0$$

因此

原式 =
$$\lim_{n \to +\infty} \left(\sqrt{n^2 + n} + n \left(\sum_{k=0}^{n} \cos \frac{k\pi}{n} - \cos \frac{0 \cdot \pi}{n} \right) \right)$$

= $\lim_{n \to +\infty} \left(\sqrt{n^2 + n} - n \right) = \lim_{n \to +\infty} \frac{n}{\sqrt{n^2 + n} + n} = \frac{1}{2}$

习题 9. 已知数列 $\{a_n\}$ 满足

$$a_n = \sqrt{\frac{1}{1^2} + \sqrt{\frac{1}{2^2} + \sqrt{\dots + \sqrt{\frac{1}{n^2}}}}}$$

证明: $\lim_{n\to+\infty} a_n$ 存在, 并且

$$\lim_{n\to+\infty} a_n < 1.471$$

证明. 显然 $\{a_n\}$ 是单调递增数列,为证其极限存在,只需再证它有上界。我们令

$$b_n := \underbrace{\sqrt{1 + \sqrt{1 + \sqrt{\dots + \sqrt{1}}}}}_{n \, \land \, \text{\tiny filter}}$$

显然 $a_n \leq b_n$,以及递推关系 $b_{n+1} = \sqrt{1+b_n}$. 断言对任意 $n \geq 1$,都有 $b_n < \frac{\sqrt{5}+1}{2}$,这是因为 $b_1 = 1 < \frac{\sqrt{5}+1}{2}$,并且由数学归纳法 $b_{n+1} = \sqrt{1+b_n} < \sqrt{1+\frac{\sqrt{5}+1}{2}} = \frac{\sqrt{5}+1}{2}$. 从而对任意 $n \geq 1$, $a_n \leq b_n < \frac{\sqrt{5}+1}{2}$. 从而 $\{a_n\}$ 是单调递增的有界数列,故极限存在。并且我们得到

$$\lim_{n \to +\infty} a_n \le \frac{\sqrt{5} + 1}{2} = 1.61803 \dots < 1.619$$

为得到 $\lim_{n\to+\infty} a_n$ 更精确的估计,对于 $n\geq 3$,令

$$c_n := \underbrace{\sqrt{\frac{1}{3^2} + \sqrt{\frac{1}{4^2} + \sqrt{\dots + \sqrt{\frac{1}{n^2}}}}}_{n-2} \stackrel{\wedge}{\wedge} \mathbb{A} \mathbb{B}}$$

则有 $a_n = \sqrt{1 + \sqrt{\frac{1}{4} + c_n}}$. 注意到

$$c_n \le \sqrt{\frac{1}{3^2} + \sqrt{\frac{1}{3^2} + \sqrt{\dots + \sqrt{\frac{1}{3^2}}}}} =: d_n$$

而类似地,我们知道 $\{d_n\}$ 单调递增且极限存在,并且其极限 d>0 满足 $d^2=\frac{1}{3^2}+d$,从而 $d=\frac{3+\sqrt{13}}{6}$. 因此有 $c_n\leq d=\frac{3+\sqrt{13}}{6}$. 因此

$$\lim_{n \to +\infty} a_n \le \sqrt{1 + \sqrt{\frac{1}{4} + d}} = \sqrt{1 + \sqrt{\frac{1}{4} + \frac{3 + \sqrt{13}}{6}}} = 1.47047 \dots < 1.471$$

习题 10. 设 a > 0, $x_1 > 0$, 数列 $\{x_n\}$ 满足递推关系

$$x_{n+1} = \frac{1}{4} \left(3x_n + \frac{a}{x_n^3} \right) \quad \forall n \ge 1$$

试证明 $\lim_{n\to\infty} x_n$ 存在, 并求其值。

解. 首先注意 $x_1 > 0$ 以及 a > 0,用数学归纳法已知 $x_n > 0$ 对任意 $n \ge 1$ 成立,因此数列 $\{x_n\}$ 有下界。对任意 $n \ge 2$,使用平均值不等式可知

$$x_{n} = \frac{1}{4} \left(3x_{n-1} + \frac{a}{x_{n-1}^{3}} \right) = \frac{1}{4} \left(x_{n-1} + x_{n-1} + x_{n-1} + \frac{a}{x_{n-1}^{3}} \right)$$

$$\geq \sqrt[4]{x_{n-1} \cdot x_{n-1} \cdot x_{n-1} \cdot \frac{a}{x_{n-1}^{3}}} = \sqrt[4]{a}$$

因此对任意 $n \ge 2$, $x_n \ge \sqrt[4]{a}$, 进而

$$x_{n+1} - x_n = \frac{1}{4} \left(\frac{a}{x_n^3} - x_n \right) < 0$$

这表明数列 $\{x_n\}$ 在 $n\geq 2$ 是单调递减的。又因为此数列有下界,从而极限 $\lim_{n\to\infty}x_n$ 存在。设其极限值为 x,则对 $x_{n+1}=\frac{1}{4}\left(3x_n+\frac{a}{x_n^2}\right)$ 两边取 $n\to\infty$,得

$$x = \frac{1}{4} \left(3x + \frac{a}{x^3} \right)$$

由因为每个 $x_n > 0$,故极限值 $x \ge 0$,因此从上式解得 $x = \sqrt[4]{a}$. 即 $\lim_{n \to \infty} x_n = \sqrt[4]{a}$.

习题 11. 已知数列 $\{a_n\}$ 满足递推公式 $a_{n+1}=a_n+\frac{n}{a_n}$, 并且 $a_1>0$. 证明: 极限 $\lim_{n\to+\infty}n(a_n-n)$ 存在。

证明. 由 $a_{n+1} = a_n + \frac{n}{a_n}$ 可知,

$$a_{n+1} - (n+1) = a_n - n + \frac{n - a_n}{a_n} = \left(1 - \frac{1}{a_n}\right)(a_n - n)$$

 $a_n - n = (a_2 - 2) \prod_{k=2}^{n-1} \left(1 - \frac{1}{a_k}\right)$

对于 $n \geq 2$,由平均值不等式与数学归纳法, $a_n = a_{n-1} + \frac{n-1}{a_{n-1}} \geq 2\sqrt{n-1} \geq 2$,从而 $0 < 1 - \frac{1}{a_n} < 1$,从而数列 $\left\{ \prod_{k=2}^{n-1} \left(1 - \frac{1}{a_k}\right) \right\}$ 单调递减且有下界 0,故极限存在。记

$$b := \prod_{k=0}^{+\infty} \left(1 - \frac{1}{a_k} \right)$$

则 $\lim_{n\to+\infty}(a_n-n)=(a_2-2)b$,于是

$$\frac{1/n}{1/a_n} = \frac{a_n}{n} = \frac{a_n - n}{n} + 1 \to 1 \quad (n \to +\infty)$$

又因为级数 $\sum\limits_{n=1}^{+\infty}\frac{1}{n}$ 发散,从而由比较判别法知级数 $\sum\limits_{n=1}^{+\infty}\frac{1}{a_n}$ 发散,从而无穷乘积 $\prod\limits_{k=2}^{+\infty}\left(1-\frac{1}{a_k}\right)$ 发散于 0,即 b=0,从而 $\lim\limits_{n\to +\infty}(a_n-n)=0$.

因此存在 N > 0,使得对任意 $n \ge N$,成立 $a_n < n + \frac{1}{2}$. 再注意到

$$(n+1) [a_{n+1} - (n+1)] = \left(1 + \frac{1}{n}\right) \left(1 - \frac{1}{a_n}\right) n(a_n - n)$$

$$n(a_n - n) = N(a_N - N) \prod_{k=N}^{n-1} \left(1 + \frac{1}{k}\right) \left(1 - \frac{1}{a_k}\right) \quad (n \ge N)$$

注意到 n > N 是成立 $a_n < n + \frac{1}{2}$,从而

$$\left(1 + \frac{1}{n}\right) \left(1 - \frac{1}{a_n}\right) < \left(1 + \frac{1}{n}\right) \left(1 - \frac{1}{n + \frac{1}{2}}\right) = 1 - \frac{1}{n(2n+1)} < 1$$

于是数列 $\{n(a_n-n)\}$ 在 n 充分大 (>N) 时是单调递减的,并且有下界 0,从而极限存在。 \square

习题 12. 记 $H_n := \frac{1}{1} + \frac{1}{2} + \cdots + \frac{1}{n}$,则众所周知,极限 $\lim_{n \to +\infty} (H_n - \ln n)$ 存在,并且其极限值为 Euler 常数 $\gamma \approx 0.577$. 证明:存在常数 α, β ,使得当 $n \to +\infty$ 时成立

$$H_n = \ln n + \gamma + \frac{\alpha}{n} + \frac{\beta}{n^2} + o(\frac{1}{n^2})$$

并求出 α , β 的值。

解. 注意到 $\lim_{n\to+\infty}(H_n-\ln n-\gamma)=0$,从而使用 Stolz 定理,有

$$\lim_{n \to +\infty} n(H_n - \ln n - \gamma) = \lim_{n \to +\infty} \frac{H_n - \ln n - \gamma}{1 - \frac{1}{n}} \xrightarrow{\text{Stolz}} \lim_{n \to +\infty} \frac{\frac{1}{n+1} - \ln(1 + \frac{1}{n})}{\frac{1}{n+1} - \frac{1}{n}}$$

$$= \lim_{n \to +\infty} \frac{\ln(1 + \frac{1}{n}) - \frac{1}{n+1}}{\frac{1}{n^2}} = \lim_{n \to +\infty} \frac{\frac{1}{n} - \frac{1}{2n^2} - \frac{1}{n+1} + o(\frac{1}{n^2})}{\frac{1}{n^2}} = \frac{1}{2}$$

接下来我们继续考虑:

$$\begin{split} \lim_{n \to +\infty} n^2 (H_n - \ln n - \gamma - \frac{1}{2n}) &= \lim_{n \to +\infty} \frac{H_n - \ln n - \gamma - \frac{1}{2n}}{\frac{1}{n^2}} \xrightarrow{\text{Stolz}} \lim_{n \to +\infty} \frac{\frac{1}{n+1} - \ln(1 + \frac{1}{n}) - \frac{1}{2} \left(\frac{1}{n+1} - \frac{1}{n}\right)}{\frac{1}{(n+1)^2} - \frac{1}{n^2}} \\ &= -\frac{1}{2} \lim_{n \to +\infty} \frac{\frac{1}{n} + \frac{1}{n+1} - 2 \ln(1 + \frac{1}{n})}{\frac{1}{n^2} - \frac{1}{(n+1)^2}} \end{split}$$

接下来的计算过程中(灵活使用等价无穷小、泰勒展开可简化计算),注意当 $n \to +\infty$ 时,

$$\frac{1}{n^2} - \frac{1}{(n+1)^2} = \frac{2n+1}{n^2(n+1)^2} \sim \frac{2}{n^3}$$

$$\frac{1}{n+1} = \frac{1}{n} \cdot \frac{1}{1+\frac{1}{n}} = \frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} + o(\frac{1}{n^3})$$

$$\ln(1+\frac{1}{n}) = \frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3} + o(\frac{1}{n^3})$$

因此有

原式 =
$$-\frac{1}{2} \lim_{n \to +\infty} \frac{\frac{1}{n} + \frac{1}{n} - \frac{1}{n^2} + \frac{1}{n^3} - 2\left(\frac{1}{n} - \frac{1}{2n^2} + \frac{1}{3n^3}\right) + o\left(\frac{1}{n^3}\right)}{\frac{2}{n^3}} = -\frac{1}{12}$$

因此可知, $H_n = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + o(\frac{1}{n^2})$,特别地, $\alpha = \frac{1}{2}$, $\beta = -\frac{1}{12}$.

习题 13. 已知数列 $\{x_n\}$, $\{y_n\}$ 满足 $x_{n+1} = y_n + \theta x_n \ (\forall n \ge 1)$, 其中 $0 < \theta < 1$ 为常数。证明: $\lim_{n \to +\infty} x_n$ 存在当且仅当 $\lim_{n \to +\infty} y_n$ 存在。

证明. 如果 $\lim_{n\to+\infty} x_n$ 存在,注意到 $y_n=x_{n+1}-\theta x_n$,两边取极限立刻知道 $\lim_{n\to+\infty} y_n$ 存在。

我们只需考察另一方面,如果 $\lim_{n\to +\infty}y_n$ 存在,记其极限值为 y,则对 $x_{n+1}=y_n+\theta x_n$ ($\forall n\geq 1$) 两边取上、下极限,有

$$\overline{\lim}_{n \to +\infty} x_n = \overline{\lim}_{n \to +\infty} (y_n + \theta x_n) \leq \overline{\lim}_{n \to +\infty} y_n + \theta \overline{\lim}_{n \to +\infty} x_n = y + \theta \overline{\lim}_{n \to +\infty} x_n$$

$$\underline{\lim}_{n \to +\infty} x_n = \underline{\lim}_{n \to +\infty} (y_n + \theta x_n) \geq \underline{\lim}_{n \to +\infty} y_n + \theta \underline{\lim}_{n \to +\infty} x_n = y + \theta \underline{\lim}_{n \to +\infty} x_n$$

再注意到 $\{y_n\}$ 收敛,从而为有界数列,记 M 为 $\{y_n\}$ 的一个上界,从而 $|x_{n+1}| \leq |y_n| + \theta |x_n| \leq M + \theta |x_n|$. 由数学归纳法易知 $|x_n| \leq \frac{M}{1-\theta}$,因此 $\{x_n\}$ 为有界数列,从而 $\lim_{n \to +\infty} x_n$ 与 $\lim_{n \to +\infty} x_n$ 为有限值,从而有

$$\frac{1}{1-\theta}y \le \lim_{n \to +\infty} x_n \le \overline{\lim}_{n \to +\infty} x_n \le \frac{1}{1-\theta}y$$

因此极限 $\lim_{n\to+\infty} x_n$ 存在,且极限值为 $\frac{y}{1-\theta}$.

第2章 连续函数

习题 14. 已知函数

$$f(x) = \sqrt{x^2 - x + 1} - \sqrt{x^2 + x + 1}$$

求 f(x) 的自然定义域以及值域;

解法一. 由二次函数知识, $x^2 \pm x + 1$ 恒大于 0,从而 f 的自然定义域为全体实数。接下来我们证明 f 的值域为 (-1,1). 一方面,注意到

$$f^{2}(x) = \left(\sqrt{x^{2} - x + 1} - \sqrt{x^{2} + x + 1}\right)^{2}$$

$$= 2x^{2} + 2 - 2\sqrt{(x^{2} - x + 1)(x^{2} + x + 1)}$$

$$= 2\left(\sqrt{(x^{2} + 1)^{2}} - \sqrt{(x^{2} + 1)^{2} - x^{2}}\right)$$

$$= 2\frac{x^{2}}{x^{2} + 1 + \sqrt{(x^{2} + 1)^{2} - x^{2}}}$$

$$< 2\frac{x^{2}}{x^{2} + x^{2}}$$

$$= 1$$

因此有 |f(x)| < 1 恒成立,也就是说 $-1 \le f(x) \le 1$. 另一方面,由于

$$f(x) = \sqrt{x^2 - x + 1} - \sqrt{x^2 + x + 1} = \frac{-2x}{\sqrt{x^2 - x + 1} + \sqrt{x^2 + x + 1}}$$

可知,

$$\lim_{x \to +\infty} f(x) = -1 \qquad \lim_{x \to -\infty} f(x) = 1$$

再由 f 的连续性,可知 f(x) 的值域为 (-1,1).

解法二. 我们还可以用别的方法求 f(x) 的值域。首先用第一种解法得 $\lim_{x\to\pm\infty}f(x)=\mp 1$,之后再断言 f 为单调递减函数,再由 f 的连续性也可证明 f 的值域恰为 (-1,1). 接下来我们证明 f 单调递减。注意到

$$f'(x) = \frac{2x-1}{2\sqrt{x^2 - x + 1}} - \frac{2x+1}{2\sqrt{x^2 + x + 1}}$$
$$f'(x) < 0 \iff \left(x - \frac{1}{2}\right)\sqrt{x^2 + x + 1} < \left(x + \frac{1}{2}\right)\sqrt{x^2 - x + 1} \tag{*}$$

当 $-\frac{1}{2} < x < \frac{1}{2}$ 时,(*) 式左边为负,右边为正,从而该不等式成立;而 $|x| \ge \frac{1}{2}$ 时,不妨 $x \ge \frac{1}{2}$ $(x < -\frac{1}{2}$ 的情形类似),此时只需证明

$$\left(\left(x - \frac{1}{2}\right)\sqrt{x^2 + x + 1}\right)^2 < \left(\left(x + \frac{1}{2}\right)\sqrt{x^2 - x + 1}\right)^2$$

把平方打开,整理得

$$x^4 + \frac{1}{4}x^2 - \frac{3}{4}x + \frac{1}{4} < x^4 + \frac{1}{4}x^2 + \frac{3}{4}x + \frac{1}{4}$$

而当 $x \geq \frac{1}{2}$ 时此式明显成立。证毕。

习题 15. 设函数 $f: \mathbb{R} \to \mathbb{R}$, 回答以下问题:

- (1) 若每个实数都是 $f \circ f$ 的不动点(也就是说,f(f(x)) = x 对所有 $x \in \mathbb{R}$ 都成立),则满足此条件的 f 有多少个?
 - (2) 在 (1) 的条件下,若 f(x) 还是单调递增的,求 f(x).

(3) 如果
$$f \circ f$$
 只有两个不动点 $a,b(a \neq b)$,那么只可能
$$\begin{cases} f(a) = a \\ f(b) = b \end{cases}$$
 或者
$$\begin{cases} f(a) = b \\ f(b) = a \end{cases}$$
.

解. (1)有无穷多个。比如对任意
$$a < b$$
,考虑函数 $f_{ab}(x) =$
$$\begin{cases} b & (x = a) \\ a & (x = b) \end{cases}$$
,则如此的 $f_{ab}(x)$
$$x & (x \neq a,b) \end{cases}$$

均满足题设,这样的函数有无穷多个。

(2)此时必有 f(x) = x. 这是因为,如果存在 $a \in \mathbb{R}$ 使得 $f(a) \neq a$,我们分 f(a) > a 与 f(a) < a 两种情况考虑。若 f(a) > a,则由 f 单调递增知 $f(f(a)) \geq f(a)$,再注意任何实数都是 $f \circ f$ 的不动点,特别地 f(f(a)) = a,因此

$$a = f(f(a)) \ge f(a)$$

这与 f(a) > a 矛盾。而 f(a) < a 的情形也类似得到矛盾。因此必有 f(x) = x.

(3)不妨 a < b. 按逻辑讲,有且仅有以下三种情况: f(a) = a, f(a) = b, 以及 $f(a) \neq a, b$.

如果 f(a) = a,那么我们记 c := f(b),注意 $f(f(c)) = f(f(f(b))) = f(f \circ f(b)) = f(b) = c$,也就是说 c 是 f 的不动点,因此由题设可知 c = a 或 c = b. 但此时 c = a 不成立,因为如果 c = a,则 b = f(f(b)) = f(c) = f(a) = a,与 $a \neq b$ 矛盾,所以必有 c = b,因此 $\begin{cases} f(a) = a \\ f(b) = b \end{cases}$

如果
$$f(a) = b$$
,那么 $a = f(f(a)) = f(b)$,所以
$$\begin{cases} f(a) = b \\ f(b) = a \end{cases}$$

如果 $f(a) \neq a, b$,记 d := f(a),则由(1)中的讨论,知 d 也为 $f \circ f$ 的不动点,因此由题设 d = a 或 d = b,这与 $d = f(a) \neq a, b$ 矛盾。因此这种情况不存在。综上得证。

习题 16. 用函数极限的定义直接证明:

$$\lim_{x \to 1} \frac{3x}{2x - 1} = 3$$

证明. 首先注意到,如果 $|x-1|<\frac{1}{3}$,那么 $x>\frac{2}{3}$,因此 $2x-1>\frac{1}{3}$. 现在,对于任意 $\varepsilon>0$,取 $\delta:=\min\{\frac{1}{3},\frac{\varepsilon}{9}\}$,则对于任意的 x,若 $|x-1|<\delta$,则有

$$\left| \frac{3x}{2x-1} - 3 \right| = \frac{3|x-1|}{2x-1} < \frac{3\delta}{1/3} = 9\delta \le 9 \cdot \frac{\varepsilon}{9} = \varepsilon$$

从而证毕。

如果在考场上,出于对出题人、阅卷人的嘲讽,曲豆豆更倾向于下述证法:

特别傻逼的另证. 首先注意到,如果 $|x-1|<\frac{1}{2}-\frac{1}{4666}$,那么 $x>\frac{1}{2}+\frac{1}{4666}$,因此 $2x-1>\frac{1}{2333}$. 现在,对于任意 $\varepsilon>0$,取 $\delta:=\min\{\frac{1}{2}-\frac{1}{4666},\frac{\varepsilon}{6999}\}$,则对于任意的 x,若 $|x-1|<\delta$,则有

$$\left| \frac{3x}{2x - 1} - 3 \right| = \frac{3|x - 1|}{2x - 1} < \frac{3\delta}{1/2333} = 6999\delta \le 6999 \cdot \frac{\varepsilon}{6999} = \varepsilon$$

从而证毕。

习题 17. 用函数极限的定义直接证明:

$$\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}}}{2} = +\infty$$

证明. 对任意 M > 0,令 $N := 4M^2$,则对任意 x > N,都有

$$\frac{\sqrt{x+\sqrt{x+\sqrt{x+\sqrt{x}}}}}{2} \ge \frac{\sqrt{x}}{2} \ge \frac{\sqrt{4M^2}}{2} = M$$

从而由函数极限的定义知 $\lim_{x \to +\infty} \frac{\sqrt{x + \sqrt{x + \sqrt{x + \sqrt{x}}}}}{2} = +\infty.$

习题 18. (黎曼函数) 考虑闭区间 [0,1] 上的函数

$$R(x) = \begin{cases} \frac{1}{q} & \exists x = \frac{p}{q}, \text{ 其中 } p \text{ 与 } q \text{ 为互素的整数, } \mathbb{1}q \geq 0 \\ 0 & \exists x \text{ 为无理数} \end{cases}$$

则 R(x) 在哪些点连续,在哪些点不连续?

证明. R(x) 在 $x_0 \in [0,1]$ 处连续,当且仅当 x_0 是无理数。这可用连续性的定义直接验证。

(1) 若 $x_0 \in [0,1]$ 为无理数,断言 R(x) 在 x_0 处连续,也就是说 $\lim_{x \to x_0} R(x) = R(x_0) = 0.$ 对任意 $\varepsilon > 0$, 注意到集合 $X_\varepsilon := \left\{ \frac{p}{q} \middle| q \ge 1, \frac{1}{q} > \varepsilon, 0 \le p \le q \right\}$ 是有限集,且该集合包括所有的分母小于 $\frac{1}{\varepsilon}$ 的有理数。注意 x_0 为无理数,从而 $x_0 \not\in X_\varepsilon$. 于是

$$\delta := \min\left\{ |x_0 - r| \middle| r \in X_{\varepsilon} \right\} > 0$$

取定这个 δ ,则对于任意的 $x \in [0,1]$,如果 $|x-x_0| < \delta$,若 x 为无理数, R(x) = 0,从而 $|R(x) - R(x_0)| < \varepsilon$ 自动成立;而 x 为有理数时,由 δ 的定义,不难知道此时 $R(x) < \varepsilon$,因此总之有 $|R(x) - R(x_0)| = |R(x)| < \varepsilon$,从而 R(x) 在无理点 x_0 处连续。

(2)若 $x_0 \in [0,1]$ 为有理数,显然 R(x) 在 x_0 不连续。因为此时 $R(x_0) > 0$,但另一方面取一列趋近于 x_0 的无理数序列 $\{x_n\}$,注意 $R(x_n) = 0$ 对任意 $n \geq 0$ 成立,从而 $\lim_{n \to +\infty} R(x_n) = 0 \neq R(x_0)$,因此 R(x) 在 x_0 不连续。

习题 19. 记 $C[0,+\infty)$ 为定义在非负实轴上的连续函数之全体。对于 $f,g \in C[0,+\infty)$, 如果

$$\exists x_0 > 0, \forall x > x_0, |f(x) - g(x)| < 1$$

则称 f"猥亵"g; 而如果

$$\forall x_0 > 0, \exists x > x_0, |f(x) - g(x)| < 1$$

则称 f"骚扰"g. 判断以下命题的正误, 并说明理由或举出反例:

- (1) 任意 $f,g \in C[0,+\infty)$, 如果 f 猥亵 g, 那么 g 猥亵 f;
- (2) 任意 $f,g \in C[0,+\infty)$, 如果 f 骚扰 g, 那么 g 骚扰 f;
- (3) 任意 $f,g \in C[0,+\infty)$, 如果 f 猥亵 g, 那么 f 骚扰 g;
- (4) 任意 $f,g \in C[0,+\infty)$, 如果 f 骚扰 g, 那么 f 猥亵 g;
- (5) 任意 $f,g,h \in C[0,+\infty)$, 如果 f 猥亵 g 且 g 猥亵 h, 那么 f 猥亵 h;
- (6) 任意 $f,g,h \in C[0,+\infty)$, 如果 f 骚扰 g 且 g 骚扰 h, 那么 f 骚扰 h.
- (7)任意 $f,g\in C[0,+\infty)$,如果 f 猥亵 g,那么存在 $h\in C[0,+\infty)$,使得 f,g,h 之中任何两个都猥亵。
 - (8) 任意 $f,g \in C[0,+\infty)$, 如果 $\lim_{x \to +\infty} (f(x) g(x))$ 存在且绝对值小于 1, 则 f 猥亵 g.
 - (9) 任意 $f,g \in C[0,+\infty)$, 如果 $\lim_{x \to +\infty} (f(x) g(x)) = 1$, 则 f 猥亵 g.
- 解. (1)(2)显然正确,因为 $|f(x)-g(x)|<1\iff |g(x)-f(x)|<1$.
- (3) 正确,(4) 错误。由"骚扰"与"猥亵"的定义,显然猥亵一定骚扰; 但反之未必,例如 $f(x) = 2\sin x$,g(x) = 0 是"骚扰而不猥亵"的例子。
- (5)(6)都错误,例如 f(x) = 0.6,g(x) = 0,h(x) = -0.6 均为常函数,易验证 f 猥亵 (骚扰)g, g 猥亵 (骚扰)h, 但 f 并不猥亵 (骚扰)h.
 - (7) 正确,比如可以取 h(x) = f(x).
- (8) 正确,记 $A = \lim_{x \to +\infty} (f(x) g(x))$,则 |A| < 1,从而存在(足够小的)正数 ε ,使得 $-1 < A \varepsilon < A + \varepsilon < 1$,则由函数极限的定义,存在 $x_0 > 0$,使得对任意 $x > x_0$,

$$A - \varepsilon \le f(x) - g(x) \le A + \varepsilon$$

因此对于此 x_0 ,若 $x > x_0$,则 |f(x) - g(x)| < 1. 从而 f 猥亵 g.

(9) 错误,例如 $f(x) = 1 + \frac{1}{x+1}$, $g(x) = -\frac{1}{x+1}$,则 $\lim_{x \to +\infty} (f(x) - g(x)) = 1$,但是由于 |f(x) - g(x)| 恒大于 1,故 f 不可能猥亵 g.

纯逻辑题,关键是理解"猥亵"与"骚扰"的定义。建议思考一下,若 f 骚扰(猥亵)g,则 f 与 g 的函数图像之间有何位置关系,这可以加深直观认识。

习题 20. 概念、记号同上题。设 $\{f_k | k \ge 1\}$ 为任意给定的一列 $C[0, +\infty)$ 中的函数,证明:存在 $g \in C[0, +\infty)$,使得 g 骚扰所有的 f_k (也就是说,任意 $k \ge 1$,g 骚扰 f_k)。

证明. 我们具体构造一个满足题设的 g. 对于任意正整数 p,以及正整数 k,如果 $k \le p$,我们定义正实数

$$x_{pk} := p + \frac{k-1}{p}$$

则我们得到点列 $\{x_{p,k} | p \geq 1, 1 \leq k \leq p\}$ (将这些数从小到大依次排列); 之后定义函数 $g \in C[0,+\infty)$ 如下: g 的函数图像是以 (0,0) 为起点,顺次连接端点 $(x_{pk},f_k(x_{pk}))$ 所得到的无穷 折线段,那么 g 显然连续,并且 g 骚扰每一个 f_n .

对于 $f_n(x) = n$ 为常函数的具体例子,请读者画出如此构造的 g 的函数图像作为练习。

习题 21. 设 f(x) 为 [0,1] 上的连续函数,且 f(0) = f(1). 证明: 对任意 $0 < \alpha < 1$,存在 $x \in (0,1]$,使得 $f(x) = f(\alpha x)$.

证明. 不妨 f(0) = f(1) = 0. 考虑 [0,1] 上的连续函数

$$g(x) := f(x) - f(\alpha x)$$

只需要证明 g(x) 在 (0,1] 上有零点。由于 f(x) 在闭区间 [0,1] 连续,从而 f(x) 能取到最大值或者最小值。不妨 f 的最值不在端点 x=0,1 取到(否则 f 是常函数)。

令 $\beta \in (0,1)$ 为 f 的一个最大值点,则 $g(\beta) = f(\beta) - f(\alpha\beta) \ge 0$. 如果再有 $g(1) \le 0$,那么由 g 的介值性,g(x) 在 $[\beta,1]$ 之中存在零点。

令 $\gamma \in (0,1)$ 为 f 的一个最小值点,则 $g(\gamma) = f(\gamma) - f(\alpha \gamma) \le 0$. 如果再有 $g(1) \ge 0$,那么由 g 的介值性,g(x) 在 $[\gamma,1]$ 之中存在零点。

综上所述, 无论 $g(1) \le 0$ 还是 $g(1) \ge 0$, g(x) 在 (0,1] 都存在零点。从而证毕。

习题 22. 设 f 为定义在 [0,1] 上的函数, f(0)=1, f(1)=0, 并且存在 [0,1] 上的连续函数 g(x) 使得 f(x)+g(x) 在 [0,1] 单调递增。

- (1) f 一定是连续函数吗?说明理由。
- (2) 证明: f(x) 可以取到 [0,1] 当中的任何值。

证明. **(1)**满足题设的 f 不一定是连续函数。例如 $f(x) = \begin{cases} -2333x + 1 & x \in [0,1) \\ 0 & x = 1 \end{cases}$,则 f(0) = 1, f(1) = 0. 考虑连续函数 g(x) = 23333x,则 f(x) + g(x) 在 [0,1] 单调递增——但是 f(x) 并不是连续函数,因为在 x = 1 处间断。

(2) 由于 f+g 单调递增,所以对任意 $x_0 \in (0,1)$,左、右极限 $\lim_{x \to x_0^-} (f(x)+g(x))$ 与 $\lim_{x \to x_0^+} (f(x)+g(x))$ 都存在,并且

$$\lim_{x \to x_0^-} (f(x) + g(x)) \le f(x_0) + g(x_0) \le \lim_{x \to x_0^+} (f(x) + g(x))$$

又因为 g(x) 连续,从而由极限的运算性质可知

$$\lim_{x \to x_0^-} f(x) \le f(x_0) \le \lim_{x \to x_0^+} f(x) \tag{*}$$

对任意的 $x_0 \in (0,1)$ 都成立。

现在我们要证明 f(x) 的值域包含 [0,1]. 我们已经知道 f(0) = 1, f(1) = 0,即 0,1 在 f 的值域中,故只需再证 (0,1) 位于 f 的值域。反证法,假设存在 $y_0 \in (0,1)$,使得 y_0 不位于 f 的值域,则考虑集合

$$\mathcal{L} := \left\{ x \in [0,1] \middle| \forall 0 \le t \le x, \ f(t) > y_0 \right\}$$

则显然 $0 \in \mathcal{L}$, 故 $\mathcal{L} \neq \emptyset$. 由确界存在原理, 考虑 \mathcal{L} 的上确界

$$x_0 := \sup \mathcal{L}$$

则 $0 \le x_0 \le 1$. 先断言 $x_0 \in \mathcal{L}$. 这是因为,如果 $x_0 \notin \mathcal{L}$,则由集合 \mathcal{L} 的定义可知 $f(x_0) \le y_0$. 而又由集合 \mathcal{L} 的定义,易知 $\lim_{x \to x_0^-} f(x) \ge y_0$,再注意 (*) 式左边的不等号,从而有

$$y_0 \ge f(x_0) \ge \lim_{x \to x_0^-} f(x) \ge y_0$$

这迫使 $f(x_0) = y_0$,这与 y_0 不在 f 的值域的假设矛盾。因此 $x_0 \in \mathcal{L}$,特别地 $f(x_0) > y_0$.

再断言 $x_0 = 1$. 如果 $x_0 < 1$,则由上确界 x_0 的定义可知,存在一列 $\{x_n\}_{n\geq 1}$,使得 $x_k \in (x_0, x_0 + \frac{1}{k})$, $f(x_k) \leq y_0$ 对任意 $k \geq 1$ 成立,因此 $\lim_{x \to x_0^+} f(x) \leq y_0$. 再注意 $f(x_0) > y_0$,从而与 (*) 式矛盾。

因此有 $1 = x_0 \in \mathcal{L}$,特别地 $f(1) > y_0 > 0$,与 f(1) = 0 矛盾。上述一系列矛盾表明,最初的假设 "存在 $y_0 \in (0,1)$ 不位于 f 的值域"是错的,因此原命题得证。

习题 23. 设 f(x) 为闭区间 [0,1] 上的连续函数, $f(0) \neq f(1)$. 证明: 存在 $x_0 \in (0,1)$, 使得 x_0 不是 f 的极值点。

证明. 不妨 f(0) < f(1). 对于 $s \in (0,1)$, 我们称 s 为函数 f 的"阳光点", 如果

$$\forall t \in [0, s), \quad f(t) < f(s)$$

一方面,对于任意 $y \in (f(0), f(1))$,由连续函数介值原理,集合

$$f^{-1}(y) := \left\{ x \in (0,1) \middle| f(x) = y \right\}$$

非空,因此由确界存在原理,考虑 $s_y := \inf f^{-1}(y) \in (0,1)$,则由有关定义容易验证 $f(s_y) = y$,并且 s_y 为阳光点。也就是说,对每个 $y \in (f(0),f(1))$,我们都能至少找到一个相应的阳光点 s_y ,并且显然不同的 y 对应不同的阳光点 s_y . 特别地,f 有不可数个阳光点。

另一方面,假设 (0,1) 当中所有的点都是 f 的极值点,则阳光点只能是极大值点。因此对于 f 的任何一个阳光点 s,存在 s 的右邻域 $I_s:=(s,s+\delta_s)$,使得对任意 $x\in I_s$, $f(x)\leq f(s)$ 。从而区间 I_s 中的所有点都**不是**f 的阳光点。因此,对于 f 的任何两个不同的阳光点 s_1 与 s_2 , $I_{s_1}\cap I_{s_2}=\varnothing$. 也就是说集合族

$$\mathcal{S} := \left\{ I_s \middle| s \in (0,1)$$
是 f 的阳光点 $\right\}$

是一族两两不交的开区间,从而是至多可数集。特别地,f的阳光点至多可数个。

综上两方面,得到矛盾。此矛盾表明假设"(0,1) 当中所有的点都是 f 的极值点"不正确,从而原命题得证。

习题 24. 计算极限

$$\lim_{x \to 0} \frac{\left(1 + \frac{e^{2x} - 1}{2}\right)^{\sin 2x} - 1}{1 - \cos x}$$

解. 等价无穷小量的运用:

$$\lim_{x \to 0} \frac{\left(1 + \frac{e^{2x} - 1}{2}\right)^{\sin 2x} - 1}{1 - \cos x} = \lim_{x \to 0} \frac{e^{\sin 2x \ln\left(1 + \frac{e^{2x} - 1}{2}\right)} - 1}{\frac{1}{2}x^2} = \lim_{x \to 0} 2 \cdot \frac{\sin 2x \ln\left(1 + \frac{e^{2x} - 1}{2}\right)}{x^2}$$
$$= \lim_{x \to 0} 2 \cdot \frac{2x \frac{e^{2x} - 1}{2}}{x^2} = \lim_{x \to 0} 2 \cdot \frac{e^{2x} - 1}{x} = 4$$

第3章 一元微分学

导数的基本概念与计算 3.1

习题 25. 对于任意给定的定义在 x=0 某邻域的函数 f(x), 如果 f(x) 在 x=0 的某去心邻域上 可导, 试判断下列命题的对错:

- (1) 如果 $\lim_{x\to 0} f'(x) = A$,则 f'(0) 存在并且 f'(0) = A; (2) 如果 f'(0) 存在并且 f'(0) = A,则 $\lim_{x\to 0} f'(x) = A$;
- (3) $\lim_{x\to 0} f'(x) = \infty$, 则 f'(0) 不存在; (4) 如果 f'(0) 不存在,则 $\lim_{x\to 0} f'(x) = \infty$.

证明. (3) 正确, (1)(2)(4) 不正确。原因如下:

首先考虑函数 $f(x) := \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$,则 f(x) 满足题设(即在 x = 0 某邻域有定义,在 x = 0某去心邻域可导)。注意这个 f(x) 满足 $\lim_{x\to 0} f'(x)=0$,但是 f'(0) 不存在,这个反例说明了 (1)不正确;再注意此时 $\lim_{x\to 0} f'(x) = 0 \neq \infty$,从而(4)不正确。

再考虑另一个例子 $f(x) := \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$,则 $f'(0) = \lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{x} = \lim_{x \to 0} x \sin \frac{1}{x} = 0$;但 是对于 $x \neq 0$, $f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$, 易知 $\lim_{x \to 0} f'(x)$ 不存在。这个反例说明(2)不正确。

最后断言(3)正确。采用反证法,假设 f'(0) 存在,令 $A := f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x}$. 于是由极 限的定义知,存在 $\delta > 0$,使得对任意 $0 < |x| < \delta$ 都成立

$$\left| \frac{f(x) - f(0)}{x} \right| \le |A| + 1$$

于是对任意的 $0 < |x| < \delta$,有

$$\left| \frac{f(x) - f(\frac{x}{2})}{\frac{x}{2}} \right| = \left| 2 \frac{f(x) - f(0)}{x} - \frac{f(\frac{x}{2}) - f(0)}{\frac{x}{2}} \right| \le 2 \left| \frac{f(x) - f(0)}{x} \right| + \left| \frac{f(\frac{x}{2}) - f(0)}{\frac{x}{2}} \right| \le 3(|A| + 1)$$

而由拉格朗日中值定理,存在介于 $\frac{x}{2}$ 与 x 之间的 ξ ,使得 $f'(\xi) = \frac{f(x) - f(\frac{x}{2})}{x}$.

以上论述表明,任意 x > 0,存在 ξ 使得 $0 < |\xi| < x$,并且 $|f^{i}(\xi)| \le 3(|A|+1)$. 而这与 $\lim_{x \to 0} f'(x) = \infty$ 的定义矛盾。

注记: 在 (1) 中,如果额外增加条件 "f(x) 在 x=0 处连续",则此时 (1) 正确。这是因为此时有

注意额外增加的条件保证了使用洛必达法则的合法性。

习题 26. 设函数 f(x) 在 x=0 附近有定义,在 x=0 处可导,并且满足 f(0)=0, f'(0)=1. 计算极限

$$\lim_{n\to\infty} \left(f(\frac{1}{n^2}) + f(\frac{2}{n^2}) + \dots + f(\frac{n}{n^2}) \right)$$

解. 对于足够大的 n > 1 (使得 $[0, \frac{1}{n}]$ 位于 f 的定义域中), 定义数列

$$a_n := f(\frac{1}{n^2}) + f(\frac{2}{n^2}) + \dots + f(\frac{n}{n^2})$$

 $b_n := \frac{1}{n^2} + \frac{2}{n^2} + \dots + \frac{n}{n^2}$

则有 $b_n = \frac{n+1}{2n}$, 因此 $\lim_{n \to \infty} b_n = \frac{1}{2}$. 如果我们证明了 $\lim_{n \to \infty} (a_n - b_n) = 0$, 那么就有

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} [(a_n - b_n) + b_n] = \lim_{n \to \infty} (a_n - b_n) + \lim_{n \to \infty} b_n = 0 + \frac{1}{2} = \frac{1}{2}$$

接下来我们证明 $\lim_{n\to\infty}(a_n-b_n)=0$,从而完成本题。对于任意 $\epsilon>0$,由于 f'(0)=1,从而存在 N>0,使得对任意 $0< x<\frac{1}{N}$,成立

$$\left| \frac{f(x) - f(0)}{x - 0} - 1 \right| < \varepsilon$$

即 $|f(x)-x|<\varepsilon x$. 特别地,对任意 n>N 以及任意 $1\leq k\leq N$,成立

$$\left| f(\frac{k}{n^2}) - \frac{k}{n^2} \right| < \varepsilon \frac{k}{n^2}$$

因此对于任意 n > N,有

$$|a_n - b_n| = \left| \sum_{k=1}^n \left(f(\frac{k}{n^2}) - \frac{k}{n^2} \right) \right| \le \sum_{k=1}^n \left| f(\frac{k}{n^2}) - \frac{k}{n^2} \right|$$

$$<$$
 $\varepsilon \sum_{k=1}^{n} \frac{k}{n^2} = \varepsilon \frac{n+1}{2n} \le \varepsilon$

这表明 $\lim_{n\to\infty} (a_n - b_n) = 0.$

习题 27. 已知函数 f(x) 在 \mathbb{R} 上连续可导, $A \in \mathbb{R}$ 为常数。

- (1) 如果 $\lim_{x \to +\infty} f(x) + f'(x) = A$, 证明 $\lim_{x \to +\infty} f(x) = A$. (2) 如果 $\lim_{x \to +\infty} f(x) + xf'(x) \ln x = A$, 证明 $\lim_{x \to +\infty} f(x) = A$.

证明. (1) 注意到

$$\lim_{x \to +\infty} \frac{(f(x)e^x)'}{(e^x)'} = \lim_{x \to +\infty} f(x) + f'(x) = A$$

又因为 $\lim_{x\to +\infty} e^x = +\infty$, 从而由洛必达法则,

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{f(x)e^x}{e^x} = \lim_{x \to +\infty} \frac{(f(x)e^x)'}{(e^x)'} = A$$

(2) 与(1) 完全类似,只需注意 $f(x) = \frac{f(x) \ln x}{\ln x}$.

习题 28. 设 f(x) 为定义在 \mathbb{R} 上的可微函数, 并且满足 f(f(x)) = f(x). 证明: $f(x) \equiv x$.

证明. 令 R(f) 为 f 的值域。由于 f 可微知 f 连续,从而 R(f) 为 \mathbb{R} 的连通子集。由 f(f(x)) =f(x) 立刻得到,任意 $x \in R(f)$,成立 f(x) = x. 从而只需证明 $R(f) = \mathbb{R}$.

记 $A := \sup R(f)$ 为 f 的值域的上确界,断言 $A = +\infty$. 如果 $A < +\infty$,则由 f(x) = x 在 R(f) 上成立以及 f 的连续性可知 f(A) = A,特别地 $A \in R(f)$. 再注意 f 在 x = A 可微,以 及在 x = A 的足够小的左邻域当中成立 f(x) = x,从而必然 f'(A) = 1. 因此存在 $\delta > 0$,使得 $f(A+\delta) \ge f(A) + \frac{1}{2}\delta > A$,这与 A 的定义矛盾。此矛盾表明 $A = +\infty$.

同理
$$\inf R(f) = -\infty$$
. 从而由 $R(f)$ 的连通性可知 $R(f) = \mathbb{R}$ 。

习题 29. 已知函数 $f(x) = \frac{\arcsin x}{\sqrt{1-x^2}}$, 计算 f 的 n 阶导函数 $f^{(n)}(x)$.

解. 注意到 $\sqrt{1-x^2}f(x) = \arcsin x$,两边求导有

$$-\frac{x}{\sqrt{1-x^2}}f(x) + \sqrt{1-x^2}f'(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\Rightarrow (1-x^2)f'(x) - xf(x) = 1$$

对上式两边求 (n-1) 阶导,注意使用对乘积求高阶导数的 Leibniz 法则,得到

$$(1-x^2)f^{(n)}(x) - 2(n-1)xf^{(n-1)}(x) - 2\binom{n-1}{2}f^{(n-2)}(x) - xf^{(n-1)}(x) - (n-1)f^{(n-2)}(x) = 0$$

令 x=0,可以得到递推关系 $f^{(n)}(0)=(n-1)^2f^{(n-2)}(0)$,由此递推关系容易得到

$$f^{(n)}(0) = \begin{cases} [(2k)!!]^2 & n = 2k+1\\ 0 & n = 2k \end{cases}$$

3.2 泰勒公式与极限的计算

习题 30. 已知定义在 $0 \in \mathbb{R}$ 附近的函数 f(x) 满足 f(0) = 0, 并且 f'(0) 存在, 试计算

$$\lim_{x \to 0} \frac{f(1 - \cos x)}{1 - \cos x \sqrt{\cos 2x}}$$

解. 因为 f(0) = 0 且 f'(0) 存在, 所以对于 $x \to 0$, 有

$$f(x) = xf'(0) + o(x)$$

因此使用等价无穷小代换,有

$$\lim_{x \to 0} \frac{f(1 - \cos x)}{1 - \cos x \sqrt{\cos 2x}} = \lim_{x \to 0} \frac{(1 - \cos x)f'(0)}{1 - \cos x + \cos x (1 - \sqrt{\cos 2x})}$$

$$= \lim_{x \to 0} f'(0) \frac{1}{1 + \cos x \frac{1 - \sqrt{\cos 2x}}{1 - \cos x}}$$

$$= \frac{f'(0)}{1 + \lim_{x \to 0} \frac{1 - \sqrt{\cos 2x}}{1 - \cos x}}$$

又因为

$$\lim_{x \to 0} \frac{1 - \sqrt{\cos 2x}}{1 - \cos x} = \lim_{x \to 0} \frac{1 - \sqrt{1 - 2x^2 + o(x^3)}}{\frac{1}{2}x^2} = \lim_{x \to 0} \frac{1 - (1 - x^2 + o(x^3))}{\frac{1}{2}x^2} = 2$$

从而原式 = $\frac{1}{3}f'(0)$.

习题 31. 计算极限:

$$\lim_{x \to 0} \frac{e^{e^x - 1} - \sin x + 2\cos x - 3}{\tan x - \sin x}$$

解. 首先注意到 $x \to 0$ 时

$$\tan x - \sin x = \sin x \left(\frac{1}{\cos x} - 1\right) = \left(x - \frac{1}{6}x^3 + o(x^3)\right) \left(\frac{1}{1 - \frac{x^2}{2} + o(x^3)} - 1\right)$$
$$= \left(x - \frac{1}{6}x^3 + o(x^3)\right) \left(\frac{x^2}{2} + o(x^3)\right) = \frac{1}{2}x^3 + o(x^3)$$

即得等价无穷小量 $\tan x - \sin x \sim \frac{1}{2}x^3 \quad (x \to 0)$. 再注意到

$$e^{e^{x}-1} = e^{x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o(x^{3})}$$

$$= 1+\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o(x^{3})\right)+\frac{1}{2}\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o(x^{3})\right)^{2}$$

$$+\frac{1}{6}\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+o(x^{3})\right)^{3}+o(x^{3})$$

$$= 1+\left(x+\frac{x^{2}}{2}+\frac{x^{3}}{6}\right)+\frac{1}{2}(x^{2}+x^{3})+\frac{1}{6}x^{3}+o(x^{3})$$

$$= 1+x+x^{2}+\frac{5}{6}x^{3}+o(x^{3})$$

所以有

$$e^{e^x - 1} - \sin x + 2\cos x - 3 = \left(1 + x + x^2 + \frac{5}{6}x^3\right) - \left(x - \frac{1}{6}x^3\right) + 2\left(1 - \frac{x^2}{2}\right) - 3 + o(x^3)$$
$$= x^3 + o(x^3)$$

因此

$$\lim_{x \to 0} \frac{e^{e^x - 1} - \sin x + 2\cos x - 3}{\tan x - \sin x} = \lim_{x \to 0} \frac{x^3}{\frac{1}{2}x^3} = 2$$

习题 32. 已知实数 α, β 满足

$$\lim_{x \to +\infty} x^{\alpha} \left(1 - \left(x + \frac{1}{2} \right) \ln\left(1 + \frac{1}{x}\right) \right) = \beta$$

并且 $\beta \neq 0$. 求 α 与 β .

解. 注意到当 $x \to +\infty$ 时,有泰勒展开 $\ln(1+\frac{1}{x}) = \frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + o(\frac{1}{x^3})$,从而有

$$1 - (x + \frac{1}{2}) \ln(1 + \frac{1}{x}) = 1 - \left(x + \frac{1}{2}\right) \left(\frac{1}{x} - \frac{1}{2x^2} + \frac{1}{3x^3} + o(\frac{1}{x^3})\right)$$
$$= 1 - \left(1 - \frac{1}{2x} + \frac{1}{3x^2} + \frac{1}{2x} - \frac{1}{4x^2} + o(\frac{1}{x^2})\right)$$
$$= -\frac{1}{12x^2} + o(\frac{1}{x^2})$$

因此立刻得到 $\alpha = 2, \beta = -\frac{1}{12}$.

习题 33. 计算极限:

$$\lim_{n\to+\infty}\frac{(2\sqrt[n]{n}-\sqrt[n]{2})^n}{n^2}$$

解. 只需先计算其对数的极限 $\lim_{n\to+\infty}\left[n\ln(2\sqrt[n]{n}-\sqrt[n]{2})-2\ln n\right]$. 注意到

$$n\ln(2\sqrt[n]{n} - \sqrt[n]{2}) - 2\ln n = \ln 2 + n\ln\left[1 + 2\left(\sqrt[n]{\frac{n}{2}} - 1\right)\right] - 2\ln n$$

$$\sqrt[n]{\frac{n}{2}} - 1 = e^{\frac{1}{n}\ln\frac{n}{2}} - 1 = \frac{1}{n}\ln\frac{n}{2} + \frac{1}{2n^2}\ln^2\frac{n}{2} + o\left(\frac{1}{n^2}\ln^2\frac{n}{2}\right) \qquad (n \to +\infty)$$

因此有

$$\lim_{n \to +\infty} \left[n \ln(2\sqrt[n]{n} - \sqrt[n]{2}) - 2 \ln n \right] = \lim_{n \to +\infty} \left[\ln 2 + n \ln\left(1 + \frac{2}{n} \ln\frac{n}{2} + \frac{1}{n^2} \ln^2\frac{n}{2} + o\left(\frac{1}{n^2} \ln^2\frac{n}{2}\right) \right) - 2 \ln n \right]$$

$$= \ln \frac{1}{2} + \lim_{n \to +\infty} \left[\frac{1}{n} \ln^2\frac{n}{2} + o\left(\frac{1}{n} \ln^2\frac{n}{2}\right) \right] = \ln \frac{1}{2}$$

因此原极限 = $\exp\left(\ln\frac{1}{2}\right) = \frac{1}{2}$.

习题 34. 考虑平面上的边长为 1 的正方形 ABCD, E 为线段 AB 上的任意一点, 点 P 与点 B 关于线段 CE 对称, 直线 BP 交线段 AD 于 N, 过 N 作 BC 的垂线, 垂足为 M. 过 E 作 MN 的垂线, 垂足为 I, 直线 EI 交 PC 于 L. 记 O 为 MN 与 PC 的交点; 以 O 为圆心, ON 为半径作圆, 该圆交 OC 于 I.

- (1) 证明: LI = LI, 并且 BM + ON = OC;
- (2) 记 CE 与 CA 所夹的锐角为 φ ,线段 ON 的长度为 R,线段 LI 的长度为 r; 将 R 与 r 视为 φ 的函数。证明当 $\varphi \to 0^+$ 时有等价无穷小

$$R(\varphi) \sim \varphi$$
, $r(\varphi) \sim 2\varphi^2$

习题34示意图

证明. 记 $\angle BCE = \theta$,则 $\theta = \frac{\pi}{4} - \varphi$ (φ 的定义见第 2 问),以及 $\angle OCM = 2\theta$.

(1): 直接计算可知 $BE = \tan \theta$,从而 $CM = 1 - \tan \theta$,所以

$$OC = \frac{CM}{\cos 2\theta} = \frac{1 - \tan \theta}{\cos 2\theta}$$

$$ON = 1 - OM = 1 - OC \sin 2\theta = 1 - (1 - \tan \theta) \tan 2\theta$$

因此有

$$OC - ON - BM = \frac{1 - \tan \theta}{\cos 2\theta} - (1 - (1 - \tan \theta) \tan 2\theta) - \tan \theta$$

$$\frac{t = \tan \theta}{\frac{1-t}{1+t^2}} - \left(1 - \frac{(1-t) \cdot 2t}{1-t^2}\right) - t$$

$$= \frac{1+t^2}{1+t} - \frac{1-t}{1+t} - t = 0$$

这就证明了 OC = ON + BM. 再注意到 ON = OI, BM = EI, 从而

$$OC = ON + BM = OI + EI$$

因此 EJ = CI. 又由 $\angle LCE = \angle ECB = \angle LEC$ 得到 LE = LC, 因此 LE - EJ = LC - CI, 即 LJ = LI.

(2): 直接计算得

$$R = 1 - (1 - \tan \theta) \tan 2\theta = 1 - \left[1 - \tan(\frac{\pi}{4} - \varphi)\right] \tan(\frac{\pi}{2} - 2\varphi)$$
$$= 1 - \left(1 - \frac{1 - \tan \varphi}{1 + \tan \varphi}\right) \frac{1 - \tan^2 \varphi}{2 \tan \varphi} = \tan \varphi \sim \varphi$$

以及

$$r = LI = LJ = EL - EJ = \frac{EC}{2\cos 2\theta} - BM$$

$$= \frac{1}{1 + \cos 2\theta} - \tan \theta = \frac{1}{1 + \sin 2\varphi} - \frac{1 - \tan \varphi}{1 + \tan \varphi}$$

$$= \frac{2\tan^2 \varphi}{(1 + \tan \varphi)^2} \sim 2\varphi^2$$

3.3 隐函数与参数方程的求导

习题 35. 设 $0 < \varepsilon < 1$, 函数 y = y(x) 由方程 $y - \varepsilon \sin y = x$ 决定, 试求 y''(x).

证明. 将方程两边对 x 求导,得 $y'-\varepsilon\cos y\cdot y'=1$,从而 $y'=\frac{1}{1-\varepsilon\cos y}$. 再求导,得

$$y'' = \frac{\mathrm{d}}{\mathrm{d}x} \frac{1}{1 - \varepsilon \cos y} = -\frac{\varepsilon \sin y \cdot y'}{(1 - \varepsilon \cos y)^2} = -\frac{\varepsilon \sin y}{(1 - \varepsilon \cos y)^3}$$

习题 36. 设函数 $y = \varphi(x)$ 定义在 x = 0 附近, 在 x = 0 处可导, 且满足方程

$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{xy}{c^2} \tag{*}$$

其中 a,b,c>0 为常数。证明: 当 $x\to 0$ 时,成立

$$\varphi(x) = a^{-4}c^2x^3 + o(x^3)$$

证明. 考虑广义极坐标换元 $\left\{ \begin{array}{l} x = ar\cos\theta \\ y = br\sin\theta \end{array} \right. , \quad \text{则约束方程} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} \right)^2 = \frac{xy}{c^2} \text{ 化为 } r^2 = \frac{ab}{c^2}\sin\theta\cos\theta, \\ \text{因此函数 } y(x) \text{ 具有参数表示} \end{array}$

$$\begin{cases} x = a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\sin^{\frac{1}{2}}\theta\cos^{\frac{3}{2}}\theta \\ y = a^{\frac{1}{2}}b^{\frac{3}{2}}c^{-1}\sin^{\frac{3}{2}}\theta\cos^{\frac{1}{2}}\theta \end{cases}$$

特别地, $\theta \to 0^+$ 时有等价无穷小

$$x \sim a^{\frac{3}{2}} b^{\frac{1}{2}} c^{-1} \theta^{\frac{1}{2}} \tag{**}$$

注意由 (*) 的对称性可知隐函数 y=y(x) 为偶函数,由 y'(0) 存在可知 x 在 0 附近时,参数 θ 在 0 附近(而不是 $\frac{\pi}{2}$ 附近)从而我们只需考虑 y(x) 在参数 $\theta=0$ 处的右导数即可。我们只需要求出 $\frac{\mathrm{d}^3 y}{\mathrm{d} x^3}\Big|_{x=0}$,之后用泰勒公式即可。

首先 y(0) = 0,从而由定义,

$$\frac{\mathrm{d}y}{\mathrm{d}x}\bigg|_{x=0} = \lim_{x \to 0^+} \frac{y}{x} = \lim_{\theta \to 0^+} \frac{a^{\frac{1}{2}}b^{\frac{3}{2}}c^{-1}\sin^{\frac{3}{2}}\theta\cos^{\frac{1}{2}}\theta}{a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\sin^{\frac{1}{2}}\theta\cos^{\frac{3}{2}}\theta} = \lim_{\theta \to 0^+} \frac{b}{a}\tan\theta = 0$$

而对于 $x = 0(\theta = 0)$ 附近的点,由参数方程求导法则,容易得到

$$\frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} = a^{-1}b \frac{\frac{3}{2}\sin^{\frac{1}{2}}\theta\cos^{\frac{3}{2}}\theta - \frac{1}{2}\sin^{\frac{5}{2}}\theta\cos^{-\frac{1}{2}}\theta}{\frac{1}{2}\sin^{-\frac{1}{2}}\theta\cos^{\frac{5}{2}}\theta - \frac{3}{2}\sin^{\frac{3}{2}}\theta\cos^{\frac{1}{2}}\theta}$$
$$= a^{-1}b \frac{3\sin\theta\cos^{2}\theta - \sin^{3}\theta}{\cos^{3}\theta - 3\sin^{2}\theta\cos^{2}\theta} \sim 3a^{-1}b\theta \qquad (\theta \to 0^{+})$$

从而由二阶导数的定义直接计算,

$$\frac{d^2y}{dx^2}\bigg|_{x=0} = \lim_{x \to 0^+} \frac{y'(x)}{x} = \lim_{\theta \to 0^+} \frac{3a^{-1}b\theta}{a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\theta^{\frac{1}{2}}} = 0$$

图: 隐函数 y = y(x) 的图像为原点附近"贴近"x-轴的那一支

我们继续计算 y(x) 在 x=0 处的三阶导数。在 $x=0(\theta=0)$ 附近,有

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) = \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{\mathrm{d}y}{\mathrm{d}x} \right) \frac{\mathrm{d}\theta}{\mathrm{d}x}$$

$$= a^{-1}b \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\frac{3\sin\theta\cos^2\theta - \sin^3\theta}{\cos^3\theta - 3\sin^2\theta\cos^2\theta} \right) \cdot 2a^{-\frac{3}{2}}b^{-\frac{1}{2}}c \cdot \frac{\sin^{\frac{1}{2}}\theta\cos^{\frac{1}{2}}\theta}{\cos^3\theta - 3\sin^2\theta\cos\theta}$$

$$= 2a^{-\frac{5}{2}}b^{\frac{1}{2}}c\sin^{\frac{1}{2}}\theta\cos^{\frac{1}{2}}\theta \times \left(\frac{(3\cos^3\theta - 6\sin^2\theta\cos\theta - 3\sin^2\theta\cos\theta)(\cos^3\theta - 3\sin^2\theta\cos\theta)}{(\cos^3\theta - 3\sin^2\theta\cos\theta)^3} \right)$$

$$- \frac{(-3\cos^2\theta\sin\theta - 6\sin\theta\cos^2\theta + 3\sin^3\theta)(3\sin\theta\cos^2\theta - \sin^3\theta)}{(\cos^3\theta - 3\sin^2\theta\cos\theta)^3}$$

$$= 6a^{-\frac{5}{2}}b^{\frac{1}{2}}c\sin^{\frac{1}{2}}\theta\cos^{\frac{1}{2}}\theta \times \frac{(\cos^3\theta - 3\sin^2\theta\cos\theta)^2 + (\sin^3\theta - 3\sin\theta\cos^2\theta)^2}{(\cos^3\theta - 3\sin^2\theta\cos\theta)^3}$$

$$\sim 6a^{-\frac{5}{2}}b^{\frac{1}{2}}c\theta^{\frac{1}{2}} \quad (\theta \to 0^+)$$

从而直接由三阶导数的定义,有

$$y'''(0) = \lim_{x \to 0} \frac{y''(x) - y''(0)}{x} = \lim_{\theta \to 0^+} \frac{6a^{-\frac{5}{2}}b^{\frac{1}{2}}c\theta^{\frac{1}{2}}}{a^{\frac{3}{2}}b^{\frac{1}{2}}c^{-1}\theta^{\frac{1}{2}}} = 6a^{-4}c^2$$

因此由 y(x) 在 x = 0 处的 Taylor 展开,

$$y(x) = y(0) + y'(0)x + \frac{1}{2}y''(0)x^2 + \frac{1}{6}y'''(0)x^3 + o(x^3) = a^{-4}c^2x^3 + o(x^3)$$

3.4 微分中值定理

习题 37. 设函数 f(x) 在区间 (a,b) 处处可导。

(1) 是否对于每个 $x_0 \in (a,b)$, 都一定存在 $\xi, \eta \in (a,b)$, 使得 $\xi \neq \eta$, 并且 $\frac{f(\xi)-f(\eta)}{\xi-\eta} = f'(x_0)$?

(2) 对于 $x_0 \in (a,b)$, 如果 f 在 x_0 处二阶可导,并且 $f''(x_0) \neq 0$, 证明: 存在 $\xi, \eta \in (a,b)$, 使得 $\xi \neq \eta$, 并且

$$\frac{f(\xi) - f(\eta)}{\xi - \eta} = f'(x_0)$$

证明. **(1)**这不一定。例如 (a,b) = (-1,1), $x_0 = 0$,考虑函数 $f(x) = x^3$,则 $f'(x_0) = 0$;但是注意到对任意的 $\xi, \eta \in (-1,1)$,如果 $\xi \neq \eta$,那么一定有 $f(\xi) \neq f(\eta)$,从而

$$\frac{f(\xi) - f(\eta)}{\xi - \eta} \neq 0 = f'(x_0)$$

因此不存在如此的 ξ , η .

(2)此时,不妨 $f''(x_0) > 0$ (若 $f''(x_0) < 0$,则我们考虑 -f(x),完全类似)。我们定义新的函数

$$g(x) := f(x) - f'(x_0)x$$

则 $g'(x_0) = f'(x_0) - f'(x_0) = 0$,以及 $g''(x_0) = f''(x_0) > 0$. 因此, x_0 是函数 g(x) 的严格极小值点。也就是说,存在 x_0 的邻域 $(x_0 - \varepsilon, x_0 + \varepsilon) \subseteq (a, b)$,使得 $g(x) > g(x_0)$ 对任何满足 $0 < |x - x_0| < \varepsilon$ 的 x 都成立。记

$$M_{-} := g(x_0 - \frac{\varepsilon}{2})$$
 $M_{+} := g(x_0 + \frac{\varepsilon}{2})$

则 M_- 与 M_+ 都大于 $g(x_0)$,从而 $\min\{M_-, M_+\} > g(x_0)$. 之后,分别在区间 $(x_0 - \frac{\varepsilon}{2}, x_0)$ 与 $(x_0, x_0 + \frac{\varepsilon}{2})$ 当中对 g(x) 使用连续函数介值原理,可知存在 $\xi \in (x_0 - \frac{\varepsilon}{2}, x_0)$ 以及 $\eta \in (x_0, x_0 + \frac{\varepsilon}{2})$,使得

$$g(\xi) = g(\eta) = \frac{\min\{M_-, M_+\} + f(x_0)}{2}$$

所以有

$$\frac{g(\xi) - g(\eta)}{\xi - \eta} = 0 = g'(x_0)$$

易验证上式等价于

$$\frac{f(\xi) - f(\eta)}{\xi - \eta} = f'(x_0)$$

从而证毕。

习题 38. 设 f(x) 为 [0,1] 上的连续函数,并且 f(0) = f(1),给定常数 $\alpha \in (0,1)$. 在习题21中我们已经证明了存在 $x \in (0,1]$ 使得 $f(x) = f(\alpha x)$. 现在,若再假定 f(x) 在 (0,1) 可导,并且对任意 $x \neq y \in (0,1)$ 成立 $f'(x) \neq \alpha f'(y)$. 证明: 使得 $f(x) = f(\alpha x)$ 的 $x \in (0,1]$ 是唯一的。

证明. 反证法, 假设存在 $x_1 \neq x_2 \in (0,1]$ 使得 $f(x_i) = f(\alpha x_i)$, (i = 1,2). 不妨 $x_1 < x_2$.

Case1: 如果 $x_1 \le \alpha x_2$,则开区间 $(\alpha x_1, x_1)$ 与 $(\alpha x_2, x_2)$ 不交。由罗尔定理,取 $\eta_1 \in (\alpha x_1, x_1)$ 以及 $\eta_2 \in (\alpha x_2, x_2)$,使得 $f'(\eta_1) = f'(\eta_2) = 0$. 显然 $\eta_1 \ne \eta_2$,但是 $f'(\eta_1) = 0 = \alpha f'(\eta_2)$,从而与 题设矛盾。

Case2: 如果 $x_1 > \alpha x_2$,则有 $0 < \alpha x_1 < \alpha x_2 < x_1 < x_2 \le 1$. 此时令 $f(x_i) = f(\alpha x_i) = A_i$, (i = 1, 2),则由拉格朗日中值定理:

$$\exists \xi \in (x_1, x_2), \qquad f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{A_2 - A_1}{x_2 - x_1}$$
$$\exists \eta \in (\alpha x_1, \alpha x_2), \qquad f'(\eta) = \frac{f(\alpha x_2) - f(\alpha x_1)}{\alpha x_2 - \alpha x_1} = \frac{1}{\alpha} \cdot \frac{A_2 - A_1}{x_2 - x_1}$$

则 $\xi \neq \eta$,但是 $f'(\xi) = \alpha f'(\eta)$,从而与题设矛盾。综上证毕。

习题 **39.** 已知函数 f(x) 在 [0,1] 连续,在 (0,1) 可导,f(0)=0, $f(1)=\frac{1}{2}$. 证明:存在 $\xi\in[0,1]$ 以及 $\eta\in(0,1)$,使得

$$f(\xi) + f'(\eta) = \xi + \eta$$

证明. 令 $g(x) := f(x) - \frac{1}{2}x$,则 g(0) = g(1) = 0. 我们只需要证明: 存在 $\xi, \eta \in (0,1)$,使得

$$g(\xi) - \frac{1}{2}\xi = \eta - g'(\eta) - \frac{1}{2}$$

Case1 如果存在 $\eta \in (0,1)$,使得 $-\frac{1}{2} < \eta - g'(\eta) - \frac{1}{2} < 0$,则注意到 $g(0) - \frac{1}{2} \cdot 0 = 0$ 以及 $g(1) - \frac{1}{2} \cdot 1 = -\frac{1}{2}$,从而对连续函数 $x \mapsto g(x) - \frac{1}{2}x$ 使用介值原理即可找到满足题设的 ξ .

Case2 如果 Case1 不成立,那么只可能有以下两种情况:

$$\begin{cases} \forall x \in (0,1), \ x - g'(x) - \frac{1}{2} \le -\frac{1}{2} & (2.1) \\ \forall x \in (0,1), \ x - g'(x) - \frac{1}{2} \ge 0 & (2.2) \end{cases}$$

如果 (2.1) 成立,即 $g'(x) \ge x$ 对任意 $x \in (0,1)$ 成立;但是另一方面对 g(x) 使用罗尔定理,存在 $x_0 \in (0,1)$ 使得 $g'(x_0) = 0 < x_0$,产生矛盾,即 (2.1) 不可能发生。

若 (2.2) 成立, 即 $g'(x) \le x - \frac{1}{2}$ 对任意 $x \in (0,1)$ 成立, 因此

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(g(x) - \frac{x^2 - x}{2}\right) \le 0 \qquad \Rightarrow \qquad g(x) \le \frac{x^2 - x}{2}$$

特别地 $g(1) \leq \frac{1^2-1}{2} = 0$. 又因为 g(0) = 0,上述不等式取到等号迫使 $g(x) = \frac{x^2-x}{2}$. 此时取 $\xi = 0$,任取 $\eta \in (0,1)$ 即可满足题设。

综上,证毕。

习题 40. 设函数 f(x) 在 $[0,\frac{1}{2}]$ 二阶可导,f(0)=f'(0),并且 $f(\frac{1}{2})=0$. 证明:存在 $\xi\in(0,\frac{1}{2})$,使得

$$f''(\xi) = \frac{3f'(\xi)}{1 - 2\xi}$$

证明. 考虑函数

$$g(x) := (1 - 2x)f'(x) - f(x)$$

则 g(x) 在 $[0,\frac{1}{2}]$ 可导,并且 g(0)=f'(0)-f(0)=0 以及 $g(\frac{1}{2})=0\times f'(0)-f(\frac{1}{2})=0$. 从而由罗尔定理,存在 $\xi\in(0,\frac{1}{2})$ 使得 $g'(\xi)=0$,即 $-2f'(\xi)+(1-2\xi)f''(\xi)-f'(\xi)=0$,整理得

$$f''(\xi) = \frac{3f'(\xi)}{1 - 2\xi}$$

....

习题 41. 设函数 f(x) 在 [0,1] 上二阶可导,f(0) = f(1),并且对任意 $x \in [0,1]$ 成立 $|f''(x)| \le A$,其中 A 为常数。证明:

$$|f'(x)| \le \frac{A}{2}, \quad \forall x \in [0,1]$$

证明. 对于任意 $x \in [0,1]$, 分别将 f(1) 与 f(0) 在 x 处作泰勒展开, 有

$$f(1) = f(x) + f'(x)(1-x) + \frac{1}{2}f''(\xi)(1-x)^2$$

$$f(0) = f(x) + f'(x)(-x) + \frac{1}{2}f''(\eta)(-x)^2$$

其中 $\xi \in [x,1]$ 以及 $\eta \in [0,x]$. 将以上两式相减,注意 f(0)=f(1),整理得

$$f'(x) + \frac{1}{2}f''(\xi)(1-x)^2 - \frac{1}{2}f''(\eta)(-x)^2 = 0$$

因此有

$$|f'(x)| = \frac{1}{2} |f''(\xi)(1-x)^2 - f''(\eta)x^2| \le \frac{1}{2} (|f''(\xi)|(1-x)^2 + |f''(\eta)|x^2)$$

$$\le \frac{A}{2} ((1-x)^2 + x^2) \le \frac{A}{2}$$

习题 42. 设函数 f(x) 在 $[0,+\infty)$ 二阶可导,并且 f''(x) 有界。证明: 若 $\lim_{x\to +\infty} f(x)=0$,则 $\lim_{x\to +\infty} f'(x)=0$. 此外,如果去掉"f''(x) 有界"的条件,那么要证明的结论还一定成立吗?

证明. 由于 f''(x) 有界,从而存在 M>0,使得 $|f''(x)| \leq M$ 对任意 $x\geq 0$ 成立。对任意 $\varepsilon>0$,记 $h:=\frac{2\varepsilon}{3M}$. 由于 $\lim_{x\to +\infty} f(x)=0$,因此存在 N>0,使得对任意 x>N 都成立 $|f(x)|\leq \frac{h}{3}\varepsilon$. 因此对于任意 x>N,由泰勒公式得

$$f(x+h) = f(x) + hf'(x) + \frac{1}{2}h^2f''(\xi)$$

其中 $\xi \in (x, x+h)$. 因此有

$$|f'(x)| = \left| \frac{1}{h} \left(f(x+h) - f(x) \right) - \frac{1}{2} h f''(\xi) \right|$$

$$\leq \frac{1}{h} \left(|f(x+h)| + |f(x)| \right) + \frac{1}{2} h |f''(\xi)|$$

$$\leq \frac{1}{h} \left(\frac{h}{3} \varepsilon + \frac{h}{3} \varepsilon \right) + \frac{1}{2} \cdot \frac{2\varepsilon}{3M} M$$

$$= \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

这就证明了 $\lim_{x \to +\infty} f'(x) = 0$.

如果去掉条件 "f''(x) 有界"的条件,则 $\lim_{x\to +\infty} f'(x)=0$ 未必成立。例如考虑函数

$$f(x) = \frac{1}{x+1}\sin(x^2)$$

容易验证 f(x) 在 $[0,+\infty)$ 二阶可导,并且 $\lim_{x\to+\infty}f(x)=0$,但是 $\lim_{x\to+\infty}f'(x)$ 不存在。

习题 43. 已知函数 f(x) 在 [0,1] 连续, 在 (0,1) 二阶可导, 并且成立

$$\lim_{x \to 0^+} \frac{f(x)}{x} = 1, \qquad \lim_{x \to 1^-} \frac{f(x)}{x - 1} = 2,$$

- (1) 证明:存在 $\xi \in (0,1)$,使得 $f(\xi) = 0$;
- (2) 证明: 存在 $\eta \in (0,1)$, 使得 $f(\eta) = f''(\eta)$.

- (1) 由极限 $\lim_{x\to 0^+} \frac{f(x)}{x} = 1$ 的定义可知,存在 $0 < \delta < 1$,使得对任意 $x \in (0,\delta)$,都有 $f(x) > \frac{1}{2}x$. 特别地,存在 $x_1 \in (0,\frac{1}{2})$,使得 $f(x_1) > 0$. 同理由 $\lim_{x\to 1^-} \frac{f(x)}{x-1} = 2$ 可知,存在 $x_2 \in (\frac{1}{2},1)$,使得 $f(x_2) < 0$. 因此由连续函数介值原理,存在 $\xi \in (x_1,x_2) \subseteq (0,1)$,使得 $f(\xi) = 0$.
- (2) 反证法。如果不存在 $\eta \in (0,1)$ 使得 $f(\eta) = f''(\eta)$,则由 f'' 与 f 的介值性可知,要么 f''(x) > f(x) 在 (0,1) 恒成立,要么 f''(x) < f(x) 在 (0,1) 恒成立。
- (2.1) 如果 f''(x) > f(x),则由之前所述的 f'(x) 在 x = 0 处的连续性可知存在(x = 0 附近的) $y_1 \in (0,1)$,使得 $\begin{cases} f(y_1) > 0 \\ f'(y_1) > 0 \end{cases}$. 考虑集合

$$S := \left\{ x \in [y_1, 1] \middle| f(t) \ge f(y_1), \, \forall t \in [y_1, x] \right\}$$

则由 f(x) 的连续性,S 为 $[y_1,1]$ 的闭子集。又 $y_1 \in S$,从而 S 非空。

再断言 \mathcal{S} 是 $[y_1,1]$ 的开子集。对于任意 $x \in \mathcal{S}$ (不妨 $x \neq 1$),则 $f(t) \geq f(y_1) > 0$ 在 $[y_1,x]$ 成立,又因为 f'' > f,从而 f''(t) > f(t) > 0 在 $[y_1,x]$ 成立,从而 f'(t) 在 $[y_1,x]$ 单调递增,特别地 $f'(x) \geq f'(y_1) > 0$. 从而存在 $\delta > 0$,使得 $f(t) \geq f(x) \geq f(y_1)$ 在 $t \in [x,x+\delta)$ 成立。这就证明了 \mathcal{S} 为 $[y_1,1]$ 的开子集。从而 \mathcal{S} 非空,且在 $[y_1,1]$ 中既开又闭,因此由 $[y_1,1]$ 的连通性,必有 $\mathcal{S} = [y_1,1]$,特别地 $1 \in \mathcal{S}$,从而 $f(1) \geq f(y_1) > 0$,与 f(1) = 0 矛盾。

(2.2)如果 f''(x) < f(x) 在 (0,1) 成立,则由 f' 在 x = 1 的连续性,存在 (x = 1 附近的) $y_2 \in (0,1)$,使得 $\begin{cases} f(y_2) < 0 \\ f'(y_2) > 0 \end{cases}$. 与上一种情况类似,考虑集合

$$\mathcal{T} := \left\{ x \in [0, y_2] \middle| f(t) \le f(y_2), \, \forall t \in [x, y_2] \right\}$$

完全类似的方法可说明 $\mathcal{T} = [0, y_2]$,从而 $0 \in \mathcal{T}$,从而 $f(0) \leq f(y_2) < 0$,与 f(0) = 0 矛盾。 以上矛盾可知,必存在 $\eta \in (0, 1)$ 使得 $f(\eta) = f''(\eta)$,从而证毕。 这种做法适用于一般的 $\begin{cases} \lim_{x\to 0^+} \frac{f(x)}{x} = A > 0 \\ \lim_{x\to 1^-} \frac{f(x)}{x-1} = B > 0 \end{cases}$ 的情形,而此题是 A=1, B=2 的特例。对于

A = 1, B = 2 的特殊情形 (事实上是 $\frac{B}{e} < A < Be$ 的情形), 我们有**奇技淫巧**的做法如下:

第(2)问的另证. 取辅助函数 $\begin{cases} g(x) := e^{-x}(f(x) + f'(x)) \\ h(x) := e^{x}(f(x) - f'(x)) \end{cases}$,则由之前论述已知 g 与 h 在 [0,1] 连续,在 (0,1) 可导。如果存在 $\eta \in (0,1)$ 使得 $g'(\eta) = 0$ 或者 $h'(\eta) = 0$,那么如此的 η 即为所求。现在,采用反证法,假设对任意 $x \in (0,1)$, $g'(x) \neq 0$ 且 $h'(x) \neq 0$ 。

由于对任意 $x \in (0,1)$, $g'(x) = e^{-x}(f''(x) - f(x)) \neq 0$,则由导函数的介值性,g'(x) 恒正或者恒负。由拉格朗日中值定理,存在 $y_1 \in (0,1)$ 使得 $g'(y_1) = g(1) - g(0) = \frac{2}{e} - 1 < 0$,因此 g'(x) < 0 在 (0,1) 成立,从而得出 f''(x) < f(x) 在 (0,1) 成立。类似地,由于对任意 $x \in (0,1)$, $h'(x) = e^x(f(x) - f''(x)) \neq 0$,注意 h(1) - h(0) = (-2e) - (-1) < 0,从而必有 h'(x) 在 (0,1) 恒负,这表明 f(x) < f''(x) 在 (0,1) 成立。

因此得出对任意 $x \in (0,1)$, f''(x) < f(x) 且 f(x) < f''(x),这是自相矛盾的。从而证毕。 \square

3.5 用导数研究函数的单调性与最值

习题 44. 求平面曲线 $y = \frac{1}{2}x^2$ 上的点 A, 使得该曲线在点 A 处的法线被该曲线所截得线段的长度最短。

证明. 对于曲线 $y = \frac{1}{2}x^2$ 上的一点 $A: (x_0, \frac{1}{2}x_0^2)$,由关于 y 轴的对称性,不妨 $x_0 > 0$. 容易求出该曲线在 A 处的法线 ℓ 的方程为

$$y - \frac{1}{2}x_0^2 = -\frac{1}{x_0}(x - x_0)$$

记 ℓ 与该曲线的另一个交点为 $C:(x_1,y_1)$,则联立曲线方程与法线 ℓ 的方程,可知 x_1 满足方程

$$x^2 + \frac{2}{x_0}x - (x_0^2 + 2) = 0$$

此方程的两个根为 x_0 与 x_1 ,由韦达定理有 $x_0+x_1=-\frac{2}{x_0}$,从而点 C 的横坐标 $x_1=-\frac{2}{x_0}-x_0$. 从而线段 AC 的长度

$$l(x_0) = |x_1 - x_0| \sqrt{1 + \frac{1}{x_0^2}} = 2\sqrt{1 + x_0^2} \left(1 + \frac{1}{x_0}\right)$$

只需求 $x_0 > 0$ 时 $l(x_0)$ 的最小值点。求导得

$$l'(x_0) = 2\left(\frac{x_0}{\sqrt{1+x_0^2}} \frac{1+x_0^2}{x_0^2} - 2\frac{\sqrt{1+x_0^2}}{x_0^3}\right) = \frac{2\sqrt{1+x_0^2}}{x_0^3}(x_0^2 - 2)$$

从而 $x_0 = \sqrt{2}$ 为驻点,且易验证为 $x_0 > 0$ 当中的最小值点。因此 $(\sqrt{2},1)$ 为所求;由对称性, $(-\sqrt{2},1)$ 也为所求。因此 A 的坐标为 $(\pm\sqrt{2},1)$.

第4章 一元积分学

4.1 不定积分的计算

习题 45. 计算不定积分

$$\int e^{\sqrt[3]{x}} \mathrm{d}x$$

证明. 考虑换元 $x = t^3$, 从而有

$$\int e^{\sqrt[3]{x}} dx = \int e^t d(t^3) = 3 \int t^2 de^t = 3 \left(t^2 e^t - \int e^t dt^2 \right)$$

$$= 3t^2 e^t - 6 \int t de^t = 3t^2 e^t - 6 \left(t e^t - \int e^t dt \right)$$

$$= (3t^2 - 6t + 6)e^t + C$$

$$= (3x^{\frac{2}{3}} - 6x^{\frac{1}{3}} + 6)e^{\sqrt[3]{x}} + C$$

习题 46. 计算不定积分:

$$\int \cos 2x \cos 3x \cos 4x dx$$

解. 注意使用三角函数的积化和差公式 $\cos\alpha\cos\beta = \frac{1}{2}(\cos(\alpha+\beta) + \cos(\alpha-\beta))$,从而有

$$\int \cos 2x \cos 3x \cos 4x dx = \frac{1}{2} \int (\cos 5x + \cos x) \cos 4x dx$$
$$= \frac{1}{4} \int (\cos 9x + \cos x + \cos 5x + \cos 3x) dx$$

$$= \frac{1}{4}\sin x + \frac{1}{12}\sin 3x + \frac{1}{20}\sin 5x + \frac{1}{36}\sin 9x + C$$

习题 47. 计算不定积分:

$$\int \frac{\sqrt{x-1}\arctan\sqrt{x-1}}{x} dx$$

解. 考虑换元 $u = \sqrt{x-1}$, 有

$$\int \frac{\sqrt{x-1} \arctan \sqrt{x-1}}{x} dx = \int \frac{u \arctan u}{u^2+1} 2u du$$

$$= 2 \int \arctan u du - 2 \int \frac{\arctan u}{u^2+1} du$$

$$= 2 \left(u \arctan u - \int \frac{u}{u^2+1} du \right) - \arctan^2 u + C$$

$$= 2u \arctan u - \ln|u^2+1| - \arctan^2 u + C$$

$$= 2\sqrt{x-1} \arctan \sqrt{x-1} - \ln|x| - \arctan^2 \sqrt{x-1} + C$$

习题 48. 计算不定积分:

$$\int x \arctan x \ln(1+x^2) dx$$

解. 我们首先注意到

$$\int x \arctan x dx = \frac{1}{2} \int \arctan x d(x^2) = \frac{1}{2} \left(x^2 \arctan x - \int \frac{x^2}{1 + x^2} dx \right)$$
$$= \frac{1}{2} [(1 + x^2) \arctan x - x] + C$$

注意利用上述结果,我们有

$$\int x \arctan x \ln(1+x^2) dx = \frac{1}{2} \int \ln(1+x^2) d[(1+x^2) \arctan x - x]$$

$$= \frac{1}{2} \left([(1+x^2) \arctan x - x] \ln(1+x^2) - \int \left(2x \arctan x - \frac{2x^2}{1+x^2} \right) dx \right)$$

$$= \frac{(1+x^2)\arctan x - x}{2}\ln(1+x^2) - \int x\arctan x dx + \int \frac{x^2}{1+x^2} dx$$

$$= \frac{(1+x^2)\arctan x - x}{2}[\ln(1+x^2) - 1] + x - \arctan x + C$$

定积分的计算 4.2

习题 49. 用定积分的定义证明 Dirichlet 函数

在闭区间 [0,1] 上不可积。

证明. 注意到函数 D(x) 的值域为 $\{0,1\}$, 并且满足性质: 对任何开区间 $(a,b) \subset [0,1]$, 存在 $\xi, \eta \in (a, b)$,使得 $D(\xi) = 0$ 以及 $D(\eta) = 1$ (也就是说函数值为 0,1 的点都在定义域中稠密)。

注意到对区间 [0,1] 的任何一个划分

$$0 = x_0 < x_1 < \cdots < x_N = 1$$

则对任意 k = 1, 2, ..., N,总可以在 (x_{k-1}, x_k) 当中取一点 ξ_k ,使得 $D(\xi_k) = 0$,于是有

$$\sum_{k=0}^{N} (x_k - x_{k-1}) D(\xi_k) = 0$$

于是由定积分的定义可知,如果 $\int_0^1 D(x) dx$ 存在,则必有 $\int_0^1 D(x) dx = 0$. 但是另一方面,同样也 总可以在 (x_{k-1}, x_k) 当中取标记点 η_k 使得 $D(\eta_k) = 1$,因此

$$\sum_{k=0}^{N} (x_k - x_{k-1}) D(\eta_k) = \sum_{k=0}^{N} (x_k - x_{k-1}) \cdot 1 = 1$$

从而推出: 如果 $\int_0^1 D(x) dx$ 存在,则必有 $\int_0^1 D(x) dx = 1$. 综上,如果 $\int_0^1 D(x) dx$ 存在,则 $\int_0^1 D(x) dx = 0$ 并且 $\int_0^1 D(x) dx = 1$,自相矛盾。因此 $\int_0^1 D(x) dx$ 不存在,即 D(x) 在 [0,1] 不可积。

习题 50. 回顾我们在习题18当中定义的 [0,1] 上的函数

$$R(x) = \begin{cases} \frac{1}{q} & \exists x = \frac{p}{q}, \text{ 其中 } p \text{ 与 } q \text{ 为互素的整数, } \mathbb{1}q \geq 0 \\ 0 & \exists x \text{ 为无理数} \end{cases}$$

请用定积分的定义直接证明: R(x) 在 [0,1] 上是可积的, 并且

$$\int_0^1 R(x) \mathrm{d}x = 0$$

证明. 对任意 $\varepsilon > 0$,注意到集合 $A := \left\{ x \in [0,1] \middle| R(x) \geq \frac{\varepsilon}{2} \right\}$ 是有限集,记 A 的元素个数为 N,取 $\delta := \frac{\varepsilon}{2N}$ 。则对于 [0,1] 的任何带标记点的分割

$$(\pi, \xi) : 0 = x_0 < x_1 < \dots < x_M = 1$$

 $\xi_i \in [x_{i-1}, x_i], \ \forall 1 < i < M$

如果 $\max\left\{|x_i-x_{i-1}|\left|1\leq i\leq M\right.\right\}<\delta$,那么注意到集合划分

$$\{1,2,...,M\} = \left\{1 \le i \le M \middle| [x_{i-1},x_i] \cap A \ne \varnothing\right\} \bigsqcup \left\{1 \le i \le M \middle| [x_{i-1},x_i] \cap A = \varnothing\right\}$$

将上式右边的两个集合分别记为 B_1 , B_2 , 则显然 B_1 的元素个数 $\leq A$ 的元素个数 (=N). 再注意到 $0 \leq R(x) \leq 1$ 总成立,从而我们对函数 R(x) 关于划分 (π,ξ) 的黎曼和有如下估计:

$$0 \leq \sum_{i=1}^{M} (x_i - x_{i-1}) R(\xi_i) = \sum_{i \in B_1} (x_i - x_{i-1}) R(\xi_i) + \sum_{i \in B_2} (x_i - x_{i-1}) R(\xi_i)$$

$$\leq \sum_{i \in B_1} \delta \cdot 1 + \sum_{i \in B_2} (x_i - x_{i-1}) \cdot \frac{\varepsilon}{2}$$

$$\leq |B_1| \cdot \delta + 1 \cdot \frac{\varepsilon}{2} \leq N \cdot \frac{\varepsilon}{2N} + \frac{\varepsilon}{2} = \varepsilon$$

这就证明了 R(x) 为 [0,1] 上的可积函数, 并且 $\int_0^1 R(x) dx = 0$.

习题 51. 对于常数 a > 1, 计算定积分:

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a-x} dx$$

解. 考虑三角换元 $x = \sin t$,则

$$\int_{-1}^{1} \frac{\sqrt{1-x^2}}{a-x} dx = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos^2 t}{a-\sin t} dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1-\sin^2 t}{a-\sin t} dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\sin t + a + \frac{1-a^2}{a-\sin t}\right) dt$$
$$= \pi a + (1-a^2) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a-\sin t} dt$$

使用万能代换 $u = \arctan \frac{t}{2}$,有

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt = \int_{-1}^{1} \frac{1}{a - \frac{2}{1 + u^{2}}} \frac{2}{1 + u^{2}} du = \frac{2}{a} \int_{-1}^{1} \frac{1}{\left(u - \frac{1}{a}\right)^{2} + 1 - \frac{1}{a^{2}}} du$$

$$= \frac{2}{a} \int_{-1 - \frac{1}{a}}^{1 - \frac{1}{a}} \frac{1}{v^{2} + \left(1 - \frac{1}{a^{2}}\right)} dv$$

$$= \frac{2}{a} \frac{1}{\sqrt{1 - \frac{1}{a^{2}}}} \arctan \frac{v}{\sqrt{1 - \frac{1}{a^{2}}}} \Big|_{-1 - \frac{1}{a}}^{1 - \frac{1}{a}}$$

$$= \frac{2}{\sqrt{a^{2} - 1}} \left(\arctan \sqrt{\frac{a - 1}{a + 1}} + \arctan \sqrt{\frac{a + 1}{a - 1}}\right) = \frac{\pi}{\sqrt{a^{2} - 1}}$$

从而:

原式 =
$$\pi a + (1 - a^2) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt = \pi a + (1 - a^2) \frac{\pi}{\sqrt{a^2 - 1}} = \frac{\pi}{a + \sqrt{a^2 - 1}}$$

注记 52. 我们可以利用对称性技巧处理积分 $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a-\sin t} \mathrm{d}t$,使得简化计算。考虑换元 $t\mapsto -t$,易知

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a + \sin t} dt$$

因此有

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a - \sin t} dt = \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\frac{1}{a - \sin t} + \frac{1}{a + \sin t} \right) dt$$

$$= a \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a^2 - \sin^2 t} dt = a \int_{-\infty}^{+\infty} \frac{1}{a^2 - \frac{u^2}{1 + u^2}} \frac{1}{1 + u^2} du$$

$$= \frac{a}{a^2 - 1} \int_{-\infty}^{+\infty} \frac{1}{u^2 + \frac{a^2}{a^2 - 1}} du = \frac{a}{a^2 - 1} \frac{\sqrt{a^2 - 1}}{a} \pi = \frac{\pi}{\sqrt{a^2 - 1}}$$

习题 53. 设常数 d>r>0, 计算定积分

$$\int_0^{2\pi} \frac{\cos \theta}{d + r \cos \theta} \mathrm{d}\theta$$

解. 直接考虑万能代换 $t = \tan \frac{\theta}{2}$, 得到

$$\begin{split} \int_0^{2\pi} \frac{\cos \theta}{d + r \cos \theta} \mathrm{d}\theta &= 2 \int_0^{\pi} \frac{\cos \theta}{d + r \cos \theta} \mathrm{d}\theta \stackrel{t = \tan \frac{\theta}{2}}{=} 2 \int_0^{+\infty} \frac{\frac{1 - t^2}{1 + t^2}}{d + r \frac{1 - t^2}{1 + t^2}} \cdot \frac{2}{1 + t^2} \mathrm{d}t \\ &= 4 \int_0^{+\infty} \frac{1}{(d - r)t^2 + (d + r)} \frac{1 - t^2}{1 + t^2} \mathrm{d}t \\ &= \frac{8}{d - r} \int_0^{+\infty} \frac{1}{t^2 + \frac{d + r}{d - r}} \cdot \frac{1}{t^2 + 1} \mathrm{d}t - \frac{4}{d - r} \int_0^{+\infty} \frac{1}{t^2 + \frac{d + r}{d - r}} \\ &= \frac{8}{d - r} \cdot \frac{d - r}{2r} \int_0^{+\infty} \left(\frac{1}{t^2 + 1} - \frac{1}{t^2 + \frac{d + r}{d - r}}\right) \mathrm{d}t - \frac{4}{d - r} \int_0^{+\infty} \frac{1}{t^2 + \frac{d + r}{d - r}} \\ &= \frac{4}{r} \left(\frac{\pi}{2} - \frac{\pi}{2\sqrt{\frac{d + r}{d - r}}}\right) - \frac{2\pi}{\sqrt{d^2 - r^2}} = \frac{2\pi}{r} \left(1 - \frac{d}{\sqrt{d^2 - r^2}}\right) \end{split}$$

习题 54. 已知定义在 x=0 附近的函数

$$F(x) := \int_0^{x^2} t^2 \sin \sqrt{x^2 - t^2} dt$$

求极限:

$$\lim_{x \to 0^+} \frac{F(x)}{x^7}$$

曲豆豆试过,企图对F(x)求导用洛必达,非常难算。甚至不可能算出来。

解. 只需注意到

$$\frac{F(x)}{x^7} \le \frac{1}{x^7} \int_0^{x^2} t^2 \sin x dt \le \frac{1}{x^6} \int_0^{x^2} t^2 dt = \frac{1}{3}$$

$$\frac{F(x)}{x^7} \geq \frac{\sin\sqrt{x^2 - x^4}}{x^7} \int_0^{x^2} t^2 dt = \frac{1}{3} \frac{\sin(x\sqrt{1 - x^2})}{x} \to \frac{1}{3} \quad (x \to 0^+)$$

从而由夹逼原理, $\lim_{x\to 0^+} \frac{F(x)}{x^7} = \frac{1}{3}$.

习题 55. 计算极限:

$$\lim_{x\to+\infty} \left(\int_0^x e^{t^2} \mathrm{d}t \right)^{\frac{1}{x^2}}$$

解. 先取对数,

$$\begin{split} \lim_{x \to +\infty} \ln \left[\left(\int_0^x e^{t^2} \mathrm{d}t \right)^{\frac{1}{x^2}} \right] &= \lim_{x \to +\infty} \frac{\ln \int_0^x e^{t^2} \mathrm{d}t}{x^2} = \underbrace{\frac{\ln \omega}{2x}}_{x \to +\infty} \lim_{x \to +\infty} \frac{e^{x^2}}{2x \int_0^x e^{t^2} \mathrm{d}t} \\ &= \lim_{x \to +\infty} \frac{\frac{1}{2x} e^{x^2}}{\int_0^x e^{t^2} \mathrm{d}t} = \lim_{x \to +\infty} \frac{-\frac{1}{2x^2} e^{x^2} + e^{x^2}}{e^{x^2}} = 1 \end{split}$$

所以有

$$\lim_{x \to +\infty} \left(\int_0^x e^{t^2} dt \right)^{\frac{1}{x^2}} = \exp \left(\lim_{x \to +\infty} \ln \left[\left(\int_0^x e^{t^2} dt \right)^{\frac{1}{x^2}} \right] \right) = e$$

习题 56. 计算极限:

$$\lim_{n\to+\infty} ne^{n^2} \int_n^{n+1} e^{-t^2} dt$$

解. 令函数 $f(x) = xe^{x^2} \int_x^{x+1} e^{-t^2} dt \ (x \ge 0)$,若 $\lim_{x \to +\infty} f(x)$ 存在,则该极限等于原极限。而

$$\begin{split} \lim_{x \to +\infty} f(x) &= \lim_{x \to +\infty} \frac{\int_{x}^{x+1} e^{-t^{2}} \mathrm{d}t}{\frac{1}{x} e^{-x^{2}}} \xrightarrow{\text{ins.}} \lim_{x \to +\infty} \frac{e^{-x^{2}} - e^{-(x+1)^{2}}}{2e^{-x^{2}} + \frac{1}{x^{2}} e^{-x^{2}}} \\ &= \lim_{x \to +\infty} \frac{1 - e^{-2x - 1}}{2 + \frac{1}{x^{2}}} = \frac{1}{2} \end{split}$$

习题 57. 设函数 f(x) 连续, 且满足

$$f(x) = x\sin x + \int_0^x (x - t)f(t)dt \tag{*}$$

求 f(x).

解. 对 (*) 两边对 x 求导两次,得到

$$f'(x) = \sin x + x \cos x + \int_0^x f(t) dt$$

$$f''(x) = 2 \cos x - x \sin x + f(x)$$

在 (*) 式与上式当中令 x = 0 即可得到 f(0) = f'(0) = 0. 因此函数 f(x) 满足如下的初值问题:

$$\begin{cases} f''(x) - f(x) = 2\cos x - x\sin x \\ f(0) = 0 \\ f'(0) = 0 \end{cases}$$

该微分方程的齐次部分 f''(x) - f(x) = 0 通解为 $f(x) = C_1 e^x + C_2 e^{-x}$; 为求原方程的一个特解,采用待定系数法,令

$$f(x) = (Ax + B)\cos x + (Cx + D)\sin x$$

代入方程
$$f''(x) - f(x) = 2\cos x - x\sin x$$
 比较有关系数得
$$\begin{cases} C - A &= 0 \\ A + D - B &= 2 \\ -A - C &= -1 \\ C - B - D &= 0 \end{cases}$$
 从而
$$\begin{cases} A &= \frac{1}{2} \\ B &= -\frac{1}{2} \\ C &= \frac{1}{2} \\ D &= 1 \end{cases}$$

因此原方程有特解 $f(x) = \frac{(x-1)\cos x + (x+2)\sin x}{2}$. 由线性常微分方程的理论,原方程的通解形如

$$f(x) = C_1 e^x + C_2 e^{-x} + \frac{(x-1)\cos x + (x+2)\sin x}{2}$$

再将上式代入初值条件 f(0) = f'(0) = 0,即可确定常数 $C_1 = \frac{1}{2}$, $C_2 = -1$,从而

$$f(x) = \frac{1}{2}e^x - e^{-x} + \frac{(x-1)\cos x + (x+2)\sin x}{2}$$

4.3 定积分的估计与放缩

习题 58. 证明对任意 $n \ge 1$, 成立不等式

$$\frac{3n+1}{2n+2} < \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n}{n}\right)^n < \frac{2n+1}{n+1}$$

证明. 考虑定义在 [0,1] 上的函数 $f(x) = nx^n$,则 f 为单调递增的严格凸函数。我们考虑"阶梯函数" $g(x) := f(\frac{k}{n})$ (如果 $x \in [\frac{k}{n}, \frac{k+1}{n}), k \in \mathbb{Z}$);以及"折线函数" h(x) 定义为:h(x) 的图像是依次连接点 $(0,f(0)), (\frac{1}{n},f(\frac{1}{n})),..., (\frac{n}{n},f(\frac{n}{n}))$ 所得的折线。则易知 g(x) < f(x) < h(x),从而知 $\int_0^1 g(x) dx < \int_0^1 f(x) dx < \int_0^1 h(x) dx$,也就是

$$\frac{1}{n}\sum_{k=0}^{n-1}n\left(\frac{k}{n}\right)^n < \int_0^1nx^n\mathrm{d}x < \frac{1}{n}\sum_{k=1}^n\frac{n}{2}\cdot\left[\left(\frac{k}{n}\right)^n + \left(\frac{k-1}{n}\right)^n\right]$$

整理上式即得 $\frac{3n+1}{2n+2} < \left(\frac{1}{n}\right)^n + \left(\frac{2}{n}\right)^n + \dots + \left(\frac{n}{n}\right)^n < \frac{2n+1}{n+1}$.

习题 59. 证明:

$$(\sqrt{2}-1)(\ln 2 - \frac{1}{2}) + \frac{1}{2} \le \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx \le \frac{\pi}{8} + \frac{3\sqrt{3} - \pi}{6} \ln 2$$

(提示:对于函数 $f(x)=\sin x$,考虑连接 $(\frac{\pi}{4},f(\frac{\pi}{4}))$ 与 $(\frac{\pi}{2},f(\frac{\pi}{2}))$ 两点的线段; 再考虑 f 在点 $(\frac{\pi}{3},f(\frac{\pi}{3}))$ 处的切线)

证明. 考虑函数 $f(x) = \sin x, x \in [\frac{\pi}{4}, \frac{\pi}{2}]$,则 $f''(x) \leq 0$ 在 $[\frac{\pi}{4}, \frac{\pi}{2}]$ 成立。考虑连接 $(\frac{\pi}{4}, f(\frac{\pi}{4}))$ 与 $(\frac{\pi}{2}, f(\frac{\pi}{2}))$ 两点的线段,易求该线段所在直线的解析式为 $y = \frac{4-2\sqrt{2}}{\pi}x + (\sqrt{2}-1)$. 再考虑 $\frac{\pi}{3} \in [\frac{\pi}{4}, \frac{\pi}{2}]$,易求 f(x) 的图像在 $(\frac{\pi}{3}, f(\frac{\pi}{3}))$ 处的切线方程为 $y = \frac{1}{2}x + \frac{3\sqrt{3}-\pi}{6}$. 于是由 f(x) 在 $[\frac{\pi}{4}, \frac{\pi}{2}]$ 上的凸性可知,对于 $x \in [\frac{\pi}{4}, \frac{\pi}{2}]$,成立

$$\sin x \geq \frac{4 - 2\sqrt{2}}{\pi}x + (\sqrt{2} - 1)$$

$$\sin x \leq \frac{1}{2}x + \frac{3\sqrt{3} - \pi}{6}$$

习题59示意图

将此式代入积分 $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\sin x}{x} dx$ 当中即可。

习题 60. 设函数 f(x) 在闭区间 [a,b] 连续且非负,证明

$$\lim_{n \to +\infty} \left(\int_a^b f^n(x) dx \right)^{\frac{1}{n}} = \max \left\{ f(x) \middle| a \le x \le b \right\}$$

证明. 记 $A := \{f(x) | a \le x \le b\}$,由于 f(x) 为闭区间 [a,b] 上的连续函数,从而存在 $x_0 \in [a,b]$,使得 f 在 x_0 处取到最大值 A.

对任意 $\varepsilon > 0$,注意函数 f(x) 在 x_0 处连续,从而存在 x_0 的邻域 $x_0 \in [a',b'] \subseteq [a,b]$,使得当 $f(x) > A - \frac{\varepsilon}{2}$ 在 [a',b'] 成立。记 $\delta := b' - a' > 0$ 为此区间的长度。从而有

$$\left(\int_a^b f^n(x) \mathrm{d}x\right)^{\frac{1}{n}} \ge \left(\int_{a'}^{b'} f^n(x) \mathrm{d}x\right)^{\frac{1}{n}} \ge \delta^{\frac{1}{n}} (A - \frac{\varepsilon}{2})$$

$$\left(\int_a^b f^n(x) \mathrm{d}x\right)^{\frac{1}{n}} \le \left(\int_a^b A^n \mathrm{d}x\right)^{\frac{1}{n}} \le (b-a)^{\frac{1}{n}}A$$

由于 $\lim_{n\to+\infty}\delta^{\frac{1}{n}}=1=\lim_{n\to+\infty}(b-a)^{\frac{1}{n}}$,因此存在 N>0,使得对于任意 $n\geq N$,都有

$$A - \varepsilon \le \left(\int_a^b f^n(x) \mathrm{d}x \right)^{\frac{1}{n}} \le A + \varepsilon$$

从而证毕。

习题 61. 证明:

$$\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = 0$$

证法一. (分部积分直接计算)

令 $I_n := \int_0^{\frac{\pi}{2}} \sin^n x dx$,注意到对于 $0 \le x \le \frac{\pi}{2}$ 总有 $0 \le \sin^{n+1} x \le \sin^n x$,所以 $I_n \ge I_{n+1} \ge 0$,即 $\{I_n\}$ 为单调递减的非负数列。再注意

$$I_{n} = \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx = -\int_{0}^{\frac{\pi}{2}} \sin^{n-1} x d\cos x$$

$$= (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x \cos^{2} x dx - \sin^{n-1} x \cos x \Big|_{0}^{\frac{\pi}{2}}$$

$$= (n-1) \int_{0}^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^{2} x) dx = (n-1)(I_{n-2} - I_{n})$$

从而得到递推关系 $I_n=\frac{n-1}{n}I_{n-2}$. 因此对任意 $n\geq 1$,注意存在唯一的 $k\geq 0$ 使得 $2k\leq n\leq 2k+1$,从而

$$I_n \leq I_{2k} = \frac{2k-1}{2k} I_{2k-2} = \dots = \frac{2k-1}{2k} \cdot \frac{2k-3}{2k-2} \cdot \dots \cdot \frac{1}{2} I_0$$
$$= e^{\sum_{m=1}^{k} \ln\left(1 - \frac{1}{2m}\right)} I_0 < e^{-\sum_{m=1}^{k} \frac{1}{2m}} I_0$$

注意当 $n\to +\infty$ 时, $k\to +\infty$,从而 $\sum\limits_{m=1}^k \frac{1}{2m}\to +\infty$. 因此当 $n\to +\infty$ 时,上式最右端趋于 0;又 因为 $I_n\geq 0$,从而由夹逼原理知

$$\lim_{n\to\infty}\int_0^{\frac{\pi}{2}}\sin^n x dx = \lim_{n\to\infty}I_n = 0$$

证法二. (放缩估计)

直接用数列极限的定义证明之。对于任意 $\varepsilon > 0$ (不妨 $\varepsilon < 1$), 取足够大的正整数 N 使得

$$\left(\cos\frac{\varepsilon}{2}\right)^N < \frac{\varepsilon}{\pi}$$

则对于任意 $n \ge N$,成立

$$0 \le \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2} - \frac{\varepsilon}{2}} \sin^n x dx + \int_{\frac{\pi}{2} - \frac{\varepsilon}{2}}^{\frac{\pi}{2}} \sin^n x dx$$

$$\leq \int_{0}^{\frac{\pi}{2} - \frac{\varepsilon}{2}} \sin^{n} \left(\frac{\pi}{2} - \frac{\varepsilon}{2} \right) dx + \int_{\frac{\pi}{2} - \frac{\varepsilon}{2}}^{\frac{\pi}{2}} 1 \cdot dx$$

$$\leq \int_{0}^{\frac{\pi}{2} - \frac{\varepsilon}{2}} \left(\cos \frac{\varepsilon}{2} \right)^{N} dx + \frac{\varepsilon}{2}$$

$$\leq \frac{\varepsilon}{\pi} \left(\frac{\pi}{2} - \frac{\varepsilon}{2} \right) + \frac{\varepsilon}{2} \leq \varepsilon$$

所以 $\lim_{n\to\infty} \int_0^{\frac{\pi}{2}} \sin^n x dx = 0.$

习题 62. 证明:

$$\lim_{n\to\infty}\int_0^{\frac{\pi}{2}}\sin(x^n)\mathrm{d}x=0$$

此题与上题很像,但远比上题困难。这个积分一般无法直接计算。

证法一. (利用积分第二中值定理)

对于正整数 n, 注意到

$$\int_0^{\frac{\pi}{2}} \sin(x^n) dx = \int_0^1 \sin(x^n) dx + \int_1^{\frac{\pi}{2}} \sin(x^n) dx$$

$$\int_{1}^{\frac{\pi}{2}} \sin(x^{n}) dx = \int_{1}^{\frac{\pi}{2}} \frac{1}{nx^{n-1}} \cdot nx^{n-1} \sin(x^{n}) dx \xrightarrow{\text{#\text{#}}} \frac{1}{n} \int_{1}^{\xi_{n}} nx^{n-1} \sin(x^{n}) dx$$
$$= \frac{1}{n} \int_{1}^{\xi_{n}} (-\cos(x^{n}))' dx = \frac{1}{n} (-\cos(\xi_{n}^{n}) + \cos 1)$$

其中 $\xi_n \in [1, \frac{\pi}{2}]$ 为某个与 n 有关的常数。从而有

$$\left| \int_0^{\frac{\pi}{2}} \sin(x^n) dx \right| \le \int_0^1 \sin(x^n) dx + \frac{1}{n} |-\cos(\xi_n^n) + \cos 1|$$

$$\le \int_0^1 x^n dx + \frac{2}{n} = \frac{1}{n+1} + \frac{2}{n}$$

令 $n \to \infty$,则上式右端趋于 0,于是由夹逼原理知 $\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin(x^n) dx = 0$.

上述证法巧妙使用积分第二中值定理。若不熟悉此定理,或者想不到它,还可以有如下常规做法:

证法二. (换元, 然后划分区间)

对于 $n \ge 1$, 首先注意到

$$\int_0^{\frac{\pi}{2}} \sin(x^n) dx = \frac{x^n = t}{n} \int_0^{(\frac{\pi}{2})^n} t^{\frac{1}{n} - 1} \sin t dt$$

对于 $n \ge 2$, 注意到对于 $n \ge 0$, 存在唯一正整数 M_n , 使得

$$2M_n\pi \leq (\frac{\pi}{2})^n < 2(M_n+1)\pi$$

此时有 $\left| \left(\frac{\pi}{2} \right)^n - 2M_n \pi \right| \le 2\pi$, 并且 $\lim_{n \to \infty} M_n = +\infty$. 注意到:

$$\frac{1}{n} \int_0^{(\frac{\pi}{2})^n} t^{\frac{1}{n}-1} \sin t dt = \frac{1}{n} \sum_{k=1}^{M_n} \left(\int_{(2k-2)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t dt \right) + \frac{1}{n} \int_{2M_n\pi}^{(\frac{\pi}{2})^n} t^{\frac{1}{n}-1} \sin t dt \tag{*}$$

$$\int_{(2k-2)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t dt = \int_{(2k-2)\pi}^{(2k-1)\pi} t^{\frac{1}{n}-1} \sin t dt + \int_{(2k-1)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t dt$$
$$= \int_{(2k-1)\pi}^{2k\pi} -\sin t \left((t-\pi)^{\frac{1}{n}-1} - t^{\frac{1}{n}-1} \right) dt$$

固定上式的 n 与 k, 当 $k \ge 2$ 时,对于 $(2k-1)\pi \le t \le 2k\pi$,对函数 $f(u) = u^{\frac{1}{n}-1}$ 在 $[t-\pi,t]$ 使用拉格朗日中值定理,得

$$\begin{aligned} \left| (t - \pi)^{\frac{1}{n} - 1} - t^{\frac{1}{n} - 1} \right| &= \left(1 - \frac{1}{n} \right) \xi^{\frac{1}{n} - 2} \le (t - \pi)^{\frac{1}{n} - 2} \\ &\le \left((2k - 2)\pi \right)^{\frac{1}{n} - 2} \le \frac{1}{\pi^2 (2k - 2)^2} (M_n \pi)^{\frac{1}{n}} \\ &\le \frac{1}{\pi^2 (2k - 2)^2} \frac{\pi}{2} = \frac{1}{2\pi (2k - 2)^2} \end{aligned}$$

而 k=1 时,有估计

$$\left| \int_0^{2\pi} t^{\frac{1}{n}-1} \sin t \mathrm{d}t \right| \quad \leq \quad \int_0^{2\pi} \left| \frac{\sin x}{x} \right| t^{\frac{1}{n}} \mathrm{d}t \leq \int_0^{2\pi} t^{\frac{1}{n}} \mathrm{d}t \leq \int_0^{2\pi} (2\pi)^{\frac{1}{n}} \mathrm{d}t \leq \int_0^{2\pi} 2\pi \mathrm{d}t = 4\pi^2$$

综上所述,有

$$\begin{split} \left| \int_{0}^{\frac{\pi}{2}} \sin^{n} x \mathrm{d}x \right| &= \left| \frac{1}{n} \sum_{k=1}^{M_{n}} \left(\int_{(2k-2)\pi}^{2k\pi} t^{\frac{1}{n}-1} \sin t \mathrm{d}t \right) + \frac{1}{n} \int_{2M_{n}\pi}^{(\frac{\pi}{2})^{n}} t^{\frac{1}{n}-1} \sin t \mathrm{d}t \right| \\ &\leq \frac{1}{n} \sum_{k=2}^{M_{n}} \int_{(2k-1)\pi}^{2k\pi} |\sin t| \cdot \left| (t-\pi)^{\frac{1}{n}-1} - t^{\frac{1}{n}-1} \right| \mathrm{d}t + \frac{1}{n} \left| \int_{0}^{2\pi} t^{\frac{1}{n}-1} \sin t \mathrm{d}t \right| + \frac{1}{n} \int_{2M_{n}\pi}^{(\frac{\pi}{2})^{n}} t^{\frac{1}{n}-1} |\sin t| \mathrm{d}t \\ &\leq \frac{1}{n} \sum_{k=2}^{M_{n}} \int_{(2k-1)\pi}^{2k\pi} \frac{1}{2\pi (2k-2)^{2}} \mathrm{d}t + \frac{4\pi^{2}}{n} + \frac{2\pi}{n} \leq \frac{1}{8n} \left(\sum_{k=1}^{\infty} \frac{1}{k^{2}} \right) + \frac{4\pi^{2}}{n} + \frac{2\pi}{n} \end{split}$$

可见 $n \to \infty$ 时,上式右端趋于 0. 于是由夹逼原理可知 $\lim_{n \to \infty} \int_0^{\frac{\pi}{2}} \sin(x^n) dx = 0$.

习题 63. 设 f(x) 是 [0,1] 上的非负、严格单调递增的连续函数。对于任意 $n \ge 1$,由积分中值定理,存在 $x_n \in [0,1]$,使得

$$f^n(x_n) = \int_0^1 f^n(t) dt$$

则由 f 的单调性容易知道 x_n 是唯一的。

试求极限 $\lim_{n\to+\infty} x_n$.

证明. 注意到 x_n 满足

$$f(x_n) = \left(\int_0^1 f^n(t) dt\right)^{\frac{1}{n}}$$

利用习题60的结论,有

$$\lim_{n \to +\infty} f(x_n) = \lim_{n \to +\infty} \left(\int_0^1 f^n(t) dt \right)^{\frac{1}{n}} = \max_{x \in [0,1]} f(x) = f(1)$$

再由 f 的单调性与连续性,可得 $\lim_{n\to+\infty} x_n = 1$.

4.4 Good kernel 及其应用

习题 64. 设 $\{f_n | n \ge 1\}$ 是一族定义在闭区间 [-1,1] 上的连续函数,并且满足以下条件:

- (1) $\int_{-1}^{1} f_n(x) dx = 1$ 对任何 $n \ge 1$ 都成立;
- (2) 存在 M > 0,使得对任意 $n \ge 1$,都有 $\int_{-1}^{1} |f_n(x)| dx \le M$;
- (3) 对任意的 $0 < \delta < 1$,都有 $\lim_{n \to +\infty} \int_{\delta \le |x| \le 1} |f_n(x)| dx = 0$.

证明:对于任何定义于 [-1,1] 的连续函数 g(x), 都成立

$$\lim_{n \to +\infty} \int_{-1}^{1} f_n(x)g(x)dx = g(0)$$

证明. 对于在 [-1,1] 上的连续函数 g(x), 记 M' 为 g(x) 在 [-1,1] 上的最大值。

对于任意 $\varepsilon > 0$,由于 g(x) 在 x = 0 处连续,从而存在 $\delta > 0$,使得对任意 $x \in [-1,1]$,如果 $|x| \le \delta$,就有 $|g(x) - g(0)| < \frac{\varepsilon}{2M}$. (其中 M 为条件 (2) 中的那个). 不妨 $\delta < 1$. 对于如此的 δ ,

由条件(3)可知存在正整数 N, 使得对于任意 n > N,

$$\int_{\delta \le |x| \le 1} |f_n(x)| \mathrm{d}x < \frac{\varepsilon}{4M'}$$

于是,对于任意的n > N,注意到条件(1),我们有:

$$\left| \int_{-1}^{1} f_n(x)g(x) dx - g(0) \right| = \left| \int_{-1}^{1} f_n(x)(g(x) - g(0)) dx \right|$$

$$= \left| \left(\int_{|x| \le \delta} + \int_{\delta \le |x| \le 1} \right) f_n(x)(g(x) - g(0)) dx \right|$$

$$\le \int_{|x| \le \delta} |f_n(x)| \cdot |g(x) - g(0)| dx + \int_{\delta \le |x| \le 1} |f_n(x)| \cdot |g(x) - g(0)| dx$$

$$\le \frac{\varepsilon}{2M} \int_{|x| < \delta} |f_n(x)| dx + 2M' \int_{\delta \le |x| \le 1} |f_n(x)| dx$$

$$\le \frac{\varepsilon}{2M} M + 2M' \frac{\varepsilon}{4M'} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

从而证毕。

习题 65. 设 f(x) 为定义在 [-1,1] 上的连续函数,证明:

$$\lim_{n \to +\infty} \frac{\int_{-1}^{1} (1 - x^2)^n f(x) dx}{\int_{-1}^{1} (1 - x^2)^n dx} = f(0)$$

证明. 我们利用上一题(习题64)的结论来做。令

$$\varphi_n(x) := \frac{(1 - x^2)^n}{\int_{-1}^1 (1 - x^2)^n dx}$$

我们只需要验证函数族 $\left\{ \varphi_n(x) \middle| n \geq 1 \right\}$ 满足习题64的条件(1)(2)(3). 而(1)(2)是显然成立的,我们只剩下(3).

现在,对于任意给定的 $0 < \delta < 1$,我们需要证明:

$$\lim_{n \to +\infty} \frac{\int_{\delta \le |x| \le 1} (1 - x^2)^n dx}{\int_{-1}^1 (1 - x^2)^n dx} = \lim_{n \to +\infty} \frac{\int_{\delta}^1 (1 - x^2)^n dx}{\int_{0}^1 (1 - x^2)^n dx} = 0$$

易知有不等式
$$\begin{cases} 1 - x^2 \ge -\delta x + 1 & (0 \le x \le \delta) \\ 1 - x^2 \le 1 - \delta^2 & (\delta \le x \le 1) \end{cases}$$
 , 从而有
$$\int_{\epsilon}^{1} (1 - x^2)^n dx \le (1 - \delta^2)^n$$

$$\int_0^{\delta} (1 - x^2)^n dx \ge \int_0^{\delta} (1 - \delta x)^n dx = \frac{1}{\delta} \frac{1}{n+1} \left[1 - (1 - \delta^2)^n \right]$$

因此有如下估计:

$$\frac{\int_{0}^{1} (1 - x^{2})^{n} dx}{\int_{\delta}^{1} (1 - x^{2})^{n} dx} = 1 + \frac{\int_{0}^{\delta} (1 - x^{2})^{n} dx}{\int_{\delta}^{1} (1 - x^{2})^{n} dx} \ge 1 + \frac{\frac{1}{\delta} \frac{1}{n+1} \left(1 - (1 - \delta^{2})^{n}\right)}{(1 - \delta^{2})^{n}}$$

$$= 1 - \frac{1}{(n+1)\delta} + \frac{1}{\delta(n+1)(1 - \delta^{2})^{n}}$$

注意 $0 < 1 - \delta^2 < 1$,从而当 $n \to +\infty$ 时,上式右端趋于 $+\infty$,从而 $\lim_{n \to +\infty} \frac{\int_0^1 (1-x^2)^n dx}{\int_\delta^1 (1-x^2)^n dx} = +\infty$,也 就是说, $\lim_{n \to +\infty} \frac{\int_\delta^1 (1-x^2)^n dx}{\int_\delta^1 (1-x^2)^n dx} = 0$,从而证毕。

习题 66. 计算极限:

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x dx$$

证明. **Step1** 首先注意到当 $x \in [0, \frac{\pi}{2}]$ 时, $\sin x \le x \le \tan x$,从而

$$n \int_0^{\frac{\pi}{2}} \sin x \cos^n x dx \le n \int_0^{\frac{\pi}{2}} x \cos^n x dx \le n \int_0^{\frac{\pi}{2}} \sin x \cos^{n-1} x dx$$

上式最左边和最右边的积分可以通过换元法直接计算。令 $n \to +\infty$,由夹逼原理不难知道

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \cos^n x dx = 1$$

因此有

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x dx = \lim_{n \to +\infty} \frac{\int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x dx}{\int_0^{\frac{\pi}{2}} x \cos^n x dx}$$

Step2 令 $\varphi_n(x) := \frac{x \cos^n x}{\int_0^{\frac{\pi}{2}} x \cos^n x dx}$,则我们只需计算 $\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} \varphi_n(x) \ln\left(1 + \frac{\sin x}{x}\right) dx$.

我们对 $\{\varphi_n(x)\}$ 利用习题64的结论(把区间 [-1,1] 改为 $[0,\frac{\pi}{2}]$,完全类似),只需再证明:对任意 $0<\delta<\frac{\pi}{2}$,都有 $\lim_{n\to+\infty}\int_{\delta}^{\frac{\pi}{2}}\varphi_n(x)\mathrm{d}x=0$ 即可。如果这个成立,我们将立刻得到

原极限 =
$$\ln\left(1 + \frac{\sin x}{x}\right)\Big|_{x\to 0} = \ln 2$$

Step3对于给定的 $0 < \delta < \frac{\pi}{2}$,注意到 $\lim_{n \to +\infty} \int_{\delta}^{\frac{\pi}{2}} \varphi_n(x) dx = 0$ 等价于

$$\lim_{n \to +\infty} \frac{\int_0^{\delta} x \cos^n x dx}{\int_{\delta}^{\frac{\pi}{2}} x \cos^n x dx} = +\infty$$
 (*)

我们考察函数 $f_n(x) := x \cos^n x$ 在 $[0, \frac{\pi}{2}]$ 上的单调性。注意

$$f'_n(x) = \cos^n x - nx \cos^{n-1} x \sin x = (\cos x)^{n-1} (\cos x - nx \sin x)$$

从而易知 $f_n(x)$ 在 $[0,\frac{\pi}{2}]$ 上有唯一的极大值点,记为 x_n ,并且 $f_n(x)$ 在 $[0,x_n]$ 单调递增,在 $[x_n,\frac{\pi}{2}]$ 单调递减。其中 x_n 满足方程 $\cos x_n = nx_n \sin x_n$,从而

$$\frac{1}{nx_n} = \tan x_n \ge x_n$$

所以极大值点 $x_n \leq \frac{1}{\sqrt{n}}$,特别地 $\lim_{n \to +\infty} x_n = 0$. 于是对于 $\delta > 0$,当 n 足够大时, $x_n < \delta$,从而 $x \cos^n x$ 在 $[\delta, \frac{\pi}{2}]$ 单调递减,因此有

$$\int_{\delta}^{\frac{\pi}{2}} x \cos^n x dx \le \int_{\delta}^{\frac{\pi}{2}} \delta \cos^n \delta dx \le \frac{\pi \delta}{2} \cos^n \delta \tag{**}$$

Step4 断言对于足够大的 n, $f_n''(x) \le 0$ 在 $[0, \frac{1}{\sqrt{n}}]$ 上成立,并且 $\frac{1}{\sqrt{n}} < \frac{\delta}{2}$. 从而 f(x) 在 $[0, \frac{1}{\sqrt{n}}]$ 上是凸函数。我们先假定这个断言成立(将在后文 Step 5 给出证明),则由凸函数的性质,当 n 足够大的时候成立

$$\int_{0}^{\delta} x \cos^{n} x dx \ge \int_{0}^{\frac{1}{\sqrt{n}}} x \cos^{n} x dx \ge \int_{0}^{\frac{1}{\sqrt{n}}} \left(\frac{1}{\sqrt{n}} \cos^{n} \frac{1}{\sqrt{n}} \right) x dx = \frac{1}{2n} \cos^{n} \frac{1}{\sqrt{n}} \ge \frac{1}{2n} \cos^{n} \frac{\delta}{2} \quad (***)$$

因此由 (**) 与 (***) 可知,

$$\frac{\int_0^\delta x \cos^n x dx}{\int_\delta^{\frac{\pi}{2}} x \cos^n x dx} \ge \frac{1}{n\pi\delta} \left(\frac{\cos\frac{\delta}{2}}{\cos\delta} \right)^n \to +\infty \qquad (n \to +\infty)$$

这就证明了(*),从而完成。

Step5 至此,我们只剩下:对于足够大的 n, $f''_n(x) \le 0$ 在 $[0, \frac{1}{\sqrt{n}}]$ 成立。直接计算 $f_n(x)$ 的二阶导数,有

$$f_n''(x) = nx \cos^{n-2} x \left(-2 \frac{\sin x}{x} - \cos^2 x + (n-1) \sin^2 x \right)$$

当 $x \in [0, \frac{1}{\sqrt{n}}]$ 时, $(n-1)\sin^2 x \le (n-1)\sin^2 \frac{1}{\sqrt{n}} \le \frac{n-1}{n} < 1$; 另一方面,当 n 足够大时,对任意的 $x \in [0, \frac{1}{\sqrt{n}}]$ 都有

$$2\frac{\sin x}{x} + \cos^2 x \ge 2 \cdot \frac{1}{2} + \frac{1}{2} = \frac{3}{2}$$

(这利用了 $\lim_{x\to 0} \frac{\sin x}{x} = 1$ 以及 $\lim_{x\to 0} \cos^2 x = 1$ 的定义)。因此,当 n 足够大时,对任意 $x\in [0,\frac{1}{\sqrt{n}}]$,成立

$$-2\frac{\sin x}{x} - \cos^2 x + (n-1)\sin^2 x \le -\frac{3}{2} + 1 = -\frac{1}{2} < 0$$

从而 f''(x) < 0. 完成了断言的证明。

总结: 综合 Step1-5, 得到

$$\lim_{n \to +\infty} n \int_0^{\frac{\pi}{2}} x \ln\left(1 + \frac{\sin x}{x}\right) \cos^n x dx = \ln 2$$

此题还有其它解法,详见 http://tieba.baidu.com/p/4923216320?share=9105&fr=shar e&see_lz=0&sfc=qqfriend&client_type=2&client_version=10.2.8.0&st=1558143174&unique=0CEDEA7D19F2AB0E21408D38406AE031

第5章 无穷级数与反常积分

习题 67. 设 $\{x_n\}_{n\geq 1}$ 为正数列, $S_n:=x_1+x_2+\cdots+x_n$ 为其部分和。证明:对任意 $\varepsilon>0$,级数 $\sum\limits_{k=1}^{+\infty}\frac{x_k}{S_k^{1+\varepsilon}}$ 收敛。

证明. 如果
$$\sum_{k=1}^{+\infty} x_k = a < +\infty$$
,则 $\sum_{k=1}^{+\infty} \frac{x_k}{S_k^{1+\varepsilon}} \le \sum_{k=1}^{+\infty} \frac{x_k}{x_1^{1+\varepsilon}} = \frac{a}{x_1^{1+\varepsilon}} < +\infty$. 故不妨 $\sum_{k=1}^{+\infty} x_k = +\infty$. 注意到
$$\frac{x_k}{S_k^{1+\varepsilon}} = \frac{1}{S_k^{1+\varepsilon}} (S_k - S_{k-1}) = \int_{S_k}^{S_{k-1}} \frac{1}{S_k^{1+\varepsilon}} \mathrm{d}x \le \int_{S_k}^{S_{k-1}} \frac{1}{x^{1+\varepsilon}} \mathrm{d}x$$

$$\sum_{k=1}^{+\infty} \frac{x_k}{S_k^{1+\varepsilon}} \le \frac{x_1}{S_1^{1+\varepsilon}} + \sum_{k=2}^{+\infty} \int_{S_{k-1}}^{S_k} \frac{1}{x^{1+\varepsilon}} \mathrm{d}x = \frac{1}{x_1^{\varepsilon}} + \int_{S_1}^{+\infty} \frac{1}{x^{1+\varepsilon}} < +\infty$$

因此级数 $\sum_{k=1}^{+\infty} \frac{x_k}{S_k^{1+\varepsilon}}$ 收敛。

习题 68. 判断下列级数的敛散性:

(1)
$$\sum_{n=3}^{\infty} \frac{1}{(\ln \ln n)^{\ln n}}$$
 (2) $\sum_{n=3}^{\infty} \frac{1}{(\ln \ln n)^{\ln \ln n}}$

证明. (1)注意到 $(\ln \ln n)^{\ln n}=e^{\ln n \cdot \ln \ln \ln n}=n^{\ln \ln \ln n}$. 当 $n>e^{e^{e^2}}$ 时, $\ln \ln \ln n>2$,因此 $n^{\ln \ln \ln n}>n^2$,从而

$$\frac{1}{(\ln \ln n)^{\ln n}} < \frac{1}{n^2}$$

而级数 $\sum_{n=1}^{\infty} \frac{1}{n^2}$ 收敛,从而原级数收敛。

(2)注意到

 $\ln[(\ln \ln n)^{\ln \ln n}] = \ln \ln n \cdot \ln \ln \ln n < [\ln \ln n]^2$

而对于足够大的实数 x, 总有 $\ln x < \sqrt{x}$. 取 $x = \ln n$ (n 足够大), 则 $\ln \ln n < \sqrt{\ln n}$, 所以 $[\ln \ln n]^2 < \ln n$,因此有

$$\frac{1}{(\ln \ln n)^{\ln \ln n}} = \frac{1}{e^{\ln [(\ln \ln n)^{\ln \ln n}]}} > \frac{1}{e^{[\ln \ln n]^2}} > \frac{1}{e^{\ln n}} = \frac{1}{n}$$

由于 $\sum_{n=1}^{\infty} \frac{1}{n}$ 发散,从而原级数发散。

习题 69. 设 a > 0 为常数, 试讨论级数 $\sum_{n=2}^{+\infty} x_n$ 的敛散性, 其中:

(1)
$$x_n = \frac{\ln 2 \cdot \ln 3 \cdots \ln n}{\ln (2+a) \cdot \ln (3+a) \cdots \ln (n+a)}$$
 (2) $x_n = (2-\sqrt{a})(2-\sqrt[3]{a}) \cdots (2-\sqrt[n]{a})$

证明. 注意当 n 足够大时,(1) (2) 中的 x_n 都不再变号。 (1): 此时有 $\frac{x_n}{x_{n+1}} = \frac{\ln(n+2+a)}{\ln(n+2)}$,从而

$$\lim_{n \to +\infty} n \left(\frac{x_n}{x_{n+1}} - 1 \right) = \lim_{n \to +\infty} \frac{n \ln(1 + \frac{a}{n+2})}{\ln(n+2)} = \lim_{n \to +\infty} \frac{\frac{n}{n+2}a + o(1)}{\ln(n+2)} = 0$$

有 Rabbe 判别法可知级数(1)发散。

(2): 若 $0 < a \le 1$, 则易知 $x_n \ge 1$ 对任意 $n \ge 2$ 都成立,从而原级数发散。于是不妨 a > 1. 注意到 $\frac{x_n}{x_{n+1}} = \frac{1}{2^{-n+1\sqrt{a}}}$,从而

$$\lim_{n\to+\infty} n\left(\frac{x_n}{x_{n+1}}-1\right) = \lim_{n\to+\infty} \frac{n\left(\sqrt[n+1]{a}-1\right)}{2-\sqrt[n+1]{a}} = \lim_{n\to+\infty} n\cdot\frac{\ln a}{n+1} = \ln a$$

从而有 Rabbe 判别法可知, 当 $\ln a > 1$ 即 a > e 时, 原级数收敛; 1 < a < e 是原级数发散。而 a = e 时 Rabbe 判别法失效,于是采用更精细的 Gauss 判别法如下:

$$\lim_{n \to +\infty} \ln n \left(n \left(\frac{x_n}{x_{n+1}} - 1 \right) - 1 \right) = \lim_{n \to +\infty} \ln n \cdot \frac{n e^{\frac{1}{n+1}} - n - 2 + e^{\frac{1}{n+1}}}{2 - e^{\frac{1}{n+1}}} = \lim_{n \to +\infty} \ln n \left(\frac{1}{2(n+1)} + o(\frac{1}{n}) \right) = 0$$

从而有 Gauss 判别法知 a=e 时原级数发散。综上,原级数在 $0 < a \le e$ 时发散,在 a > e 时收 敛。

习题 70. 对于常数 p,q>0, 讨论以下级数的的敛散性:

$$\sum_{n=1}^{+\infty} \frac{n! n^{-p}}{q(q+1)(q+2)\cdots(q+n)}$$

解. 我们令

$$a_n := \sum_{n=1}^{+\infty} \frac{n! n^{-p}}{q(q+1)(q+2)\cdots(q+n)} = \frac{1}{qn^p} \left(\frac{1}{q+1} \cdot \frac{2}{q+2} \cdots \frac{n}{q+n} \right)$$

注意到该级数是正项级数, 考虑 $\frac{a_n}{a_{n+1}} = \left(\frac{n+1}{n}\right)^p \cdot \frac{n+q}{n}$, 从而

$$\lim_{n \to +\infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = \lim_{n \to +\infty} n \left[(1 + \frac{1}{n})^p \cdot (1 + \frac{q}{n}) - 1 \right]$$

$$= \lim_{n \to +\infty} n \left[\left((1 + \frac{1}{n})^p - 1 \right) \cdot (1 + \frac{q}{n}) + \frac{q}{n} \right] = p + q$$

于是由 Raabe 判别法可知当 p+q>1 时原级数收敛; p+q<1 时原级数发散。而 p+q=1 时Raabe 判别法失效,我们考虑更精细的 Gauss 判别法: 此时

$$\begin{split} \lim_{n \to +\infty} \ln n \left[n \left(\frac{a_n}{a_{n+1}} - 1 \right) - 1 \right] &= \lim_{n \to +\infty} \ln n \left[n \left((1 + \frac{1}{n})^p - 1 \right) \left(1 + \frac{q}{n} \right) - p \right] \\ &= \lim_{n \to +\infty} \ln n \left[\left(n \left((1 + \frac{1}{n})^p - 1 \right) - p \right) \left(1 + \frac{q}{n} \right) + p \cdot \frac{q}{n} \right] \\ &= \lim_{n \to +\infty} \left[pq \cdot \frac{\ln n}{n} + \ln n \left(\frac{p(p-1)}{2n} + o(\frac{1}{n}) \right) \left(1 + \frac{q}{n} \right) \right] \\ &= 0 \end{split}$$

从而 p+q=1 时原级数发散。综上,当 p+q>1 时原级数收敛, $p+q\leq 1$ 时原级数发散。 $\ \square$

习题 71. 已知数列 $\{a_n\}$ 满足 $a_n=\int_0^{\frac{\pi}{4}}\tan^nx\mathrm{d}x,\ p>0$ 为正实数。讨论级数 $\sum\limits_{n=1}^{\infty}a_n^p$ 的敛散性。

证明. 该级数在 p>1 时收敛,在 $0< p\leq 1$ 时发散。我们先断言当 $0< x< \frac{\pi}{4}$ 时成立

$$\frac{16}{\pi^2}x^2 \le \tan x \le \frac{4}{\pi}x$$

令 $g(x) := \frac{16}{\pi^2} x^2$ 以及 $h(x) := \frac{4}{\pi} x$,则注意到 $g(0) = \tan 0 = h(0) = 0$ 以及 $g(\frac{\pi}{4}) = \tan \frac{\pi}{4} = h(\frac{\pi}{4}) = 1$. 容易求导验证 $\begin{cases} \frac{\mathrm{d}}{\mathrm{d}x}|_{x=0} (\tan x - g(x)) > 0 \\ \frac{\mathrm{d}}{\mathrm{d}x}|_{x=\frac{\pi}{4}} (\tan x - g(x)) < 0 \\ \frac{\mathrm{d}^2}{\mathrm{d}x^2} (\tan x - g(x)) \leq 0, \ \forall x \in [0, \frac{\pi}{4}] \end{cases}$,因此 $\tan x \geq g(x) = \frac{16}{\pi^2} x^2$. 而

 $\tan x \leq \frac{4}{\pi}x$ 更容易验证。因此有

$$a_n \geq \int_0^{\frac{\pi}{4}} (\frac{16}{\pi^2} x^2)^n dx = \frac{\pi}{4} \cdot \frac{1}{2n+1}$$

$$a_n \le \int_0^{\frac{\pi}{4}} (\frac{4}{\pi}x)^n dx = \frac{\pi}{4} \cdot \frac{1}{n+1}$$

因此,若 p > 1,则 $\sum_{n=1}^{\infty} a_n^p \le (\frac{\pi}{4})^p \sum_{n=1}^{\infty} \frac{1}{(n+1)^p} < +\infty$,因此原级数收敛;而当 $0 时, <math>\sum_{n=1}^{\infty} a_n^p \ge (\frac{\pi}{4})^p \sum_{n=1}^{\infty} \frac{1}{(2n+1)^p} = +\infty$,因此原级数发散。

习题 72. 求幂级数 $\sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n+1}}{n^2-1}$ 的和函数。

证明. 直接计算之, 有

$$\begin{split} \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n+1}}{n^2 - 1} &= \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n+1}}{2} \left(\frac{1}{n-1} - \frac{1}{n+1} \right) \\ &= \frac{x^2}{2} \sum_{n=2}^{+\infty} (-1)^{n-1} \frac{x^{n-1}}{n-1} - \frac{1}{2} \sum_{n=2}^{+\infty} (-1)^{n+1} \frac{x^{n+1}}{n+1} \\ &= \frac{x^2 - 1}{2} \sum_{k=1}^{+\infty} (-1)^k \frac{x^k}{k} + \frac{1}{2} \left(-x + \frac{x^2}{2} \right) \\ &= \frac{1 - x^2}{2} \ln(1 + x) - \frac{x}{2} + \frac{x^2}{4} \end{split}$$

习题 73. 设 f(x) 在 $[0, +\infty)$ 连续,其零点为 $0 = x_0 < x_1 < \cdots < x_n < \cdots$,并且 $\lim_{n \to +\infty} x_n = +\infty$. 证明: 如果级数 $\sum_{n=0}^{+\infty} \int_{x_n}^{x_{n+1}} f(x) dx$ 收敛,则反常积分 $\int_0^{+\infty} f(x) dx$ 收敛。

证明. 我们用 Cauchy 收敛准则来说明反常积分 $\int_0^{+\infty} f(x) \mathrm{d}x$ 收敛。

对任意 $\varepsilon > 0$,由级数 $\sum_{n=0}^{+\infty} \int_{x_n}^{x_{n+1}} f(x) dx$ 收敛的 Cauchy 收敛准则可知存在 N > 0,使得对任意 $n_2 > n_1 \ge N$,都有

$$\left| \sum_{k=n_1}^{n_2} \int_{x_k}^{x_{k+1}} f(x) \mathrm{d}x \right| \le \frac{\varepsilon}{3}$$

再注意到 $\{x_k\}$ 为连续函数 f(x) 的全部零点,从而由连续函数的性质可知对任意 $k \geq 0$, f(x) 在 区间 (x_k, x_{k+1}) 不变号,从而对于 (x_k, x_{k+1}) 的任何一个子区间 (x'_k, x'_{k+1}) ,必有

$$\left| \int_{x'_k}^{x'_{k+1}} f(x) \mathrm{d}x \right| \le \left| \int_{x_k}^{x_{k+1}} f(x) \mathrm{d}x \right|$$

回顾我们已经取定的 N,现在我们令 $M:=x_{N+1}$,则对于任意 $a_2>a_1\geq M$,必存在唯一的 n_1 ,使得 $a_1\in[x_{n_1-1},x_{n_1})$;以及唯一的 n_2 ,使得 $a_2\in[x_{n_2},x_{n_2+1})$.容易知道 $n_1,n_2\geq N+1$.从而 有

$$\left| \int_{a_{1}}^{a_{2}} f(x) dx \right| = \left| \int_{a_{1}}^{x_{n_{1}}} f(x) dx + \sum_{k=n_{1}}^{n_{2}-1} \int_{x_{k}}^{x_{k+1}} f(x) dx + \int_{x_{n_{2}}}^{a_{2}} f(x) dx \right|$$

$$\leq \left| \int_{a_{1}}^{x_{n_{1}}} f(x) dx \right| + \left| \sum_{k=n_{1}}^{n_{2}-1} \int_{x_{k}}^{x_{k+1}} f(x) dx \right| + \left| \int_{x_{n_{2}}}^{a_{2}} f(x) dx \right|$$

$$\leq \left| \int_{x_{n-1}}^{x_{n_{1}}} f(x) dx \right| + \left| \sum_{k=n_{1}}^{n_{2}-1} \int_{x_{k}}^{x_{k+1}} f(x) dx \right| + \left| \int_{x_{n_{2}}}^{x_{n_{2}+1}} f(x) dx \right|$$

$$\leq \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

从而反常积分 $\int_0^{+\infty} f(x) dx$ 收敛。

第6章 多元微分学

习题 74. 已知函数 $f(x,y,z)=x^{y^z}$, 求偏导 $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$.

解. 易求 $\frac{\partial f}{\partial x} = y^z x^{y^z - 1}$. 再看 f 关于 y,z 的偏导。注意到

$$f(x,y,z) = x^{y^z} = e^{y^z \ln x}$$

从而

$$\begin{array}{lcl} \frac{\partial f}{\partial y} & = & e^{y^z \ln x} \frac{\partial}{\partial y} (y^z \ln x) = x^{y^z} \ln x \cdot z y^{z-1} = x^{y^z} y^{z-1} z \ln x \\ \frac{\partial f}{\partial z} & = & e^{y^z \ln x} \frac{\partial}{\partial z} (y^z \ln x) = x^{y^z} \ln x \cdot y^z \ln y = x^{y^z} y^z \ln x \cdot \ln y \end{array}$$

习题 75. 令 $r:=\sqrt{x^2+y^2+z^2}$ 为 \mathbb{R}^3 上的函数, $\varphi(x)$ 与 $\psi(x)$ 为 \mathbb{R} 上的可微函数, 令

$$u(x,y,z;t) := \frac{1}{r}(\varphi(r-at) + \psi(r+at))$$

其中 $a \in \mathbb{R}$ 为常数。证明: u 满足波方程

$$\frac{\partial^2 u}{\partial t^2} - a^2 \triangle u = 0$$

证明. 无非是直接求偏导验证,注意利用 $\frac{\partial r}{\partial x} = \frac{x}{r}$ (以及对 y,z 求偏导的类似情形)。一方面

$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial}{\partial t} \left(\frac{a}{r} [\psi'(r+at) - \varphi'(r-at)] \right) = \frac{a^2}{r} [\psi''(r+at) + \varphi''(r-at)]$$

另一方面,我们计算 $\triangle u$. 注意到

$$\begin{array}{lcl} \frac{\partial u}{\partial x} & = & -\frac{x}{r^3}[\varphi(r-at)+\psi(r+at)]+\frac{1}{r}\left(\varphi'(r-at)\cdot\frac{x}{r}+\psi'(r+at)\cdot\frac{x}{r}\right)\\ & = & -\frac{x}{r^3}[\varphi(r-at)+\psi(r+at)]+\frac{x}{r^2}\left(\varphi'(r-at)+\psi'(r+at)\right) \end{array}$$

$$\frac{\partial^{2} u}{\partial x^{2}} = -\frac{r^{3} - 3r^{2} \cdot \frac{x^{2}}{r}}{r^{6}} [\varphi(r - at) + \psi(r + at)] - \frac{x}{r^{3}} \cdot \frac{x}{r} [\varphi'(r - at) + \psi'(r + at)]
+ \frac{r^{2} - 2r \cdot \frac{x^{2}}{r}}{r^{4}} [\varphi'(r - at) + \psi'(r + at)] + \frac{x}{r^{2}} \cdot \frac{x}{r} [\varphi''(r - at) + \psi''(r + at)]
= \frac{3x^{2} - r^{2}}{r^{5}} [\varphi(r - at) + \psi(r + at)] + \frac{r^{2} - 3x^{2}}{r^{4}} [\varphi'(r - at) + \psi'(r + at)] + \frac{x^{2}}{r^{3}} [\varphi''(r - at) + \psi''(r + at)]$$

同理可计算出 $\frac{\partial^2 u}{\partial y^2}$ 与 $\frac{\partial^2 u}{\partial z^2}$,只需要将上式中的 x 分别替换成 y,z 即可。注意到 $x^2+y^2+z^2=r^2$,从而直接得到

$$\triangle u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = \frac{1}{r} [\varphi''(r - at) + \psi''(r + at)]$$

从而 $a^2 \triangle u = \frac{\partial u}{\partial t}$, 证毕。

习题 76. 已知二元函数 $f(x,y) = (1+e^y)\cos x - ye^y$. 证明: f(x,y) 有无穷多个极大值点,但没有极小值点。

证明. 由于 f(x,y) 可微, 故若 (x_0,y_0) 为 f 的极值点, 则必有 $\left\{\begin{array}{l} \frac{\partial f}{\partial x}(x_0,y_0)=0\\ \frac{\partial f}{\partial y}(x_0,y_0)=0 \end{array}\right.$, 于是

$$\begin{cases} \frac{\partial f}{\partial x}(x_0, y_0) = (1 - e^{y_0}) \sin x_0 \\ \frac{\partial f}{\partial y}(x_0, y_0) = e^{y_0}(\cos x_0 - y_0 - 1) \end{cases} \Rightarrow \begin{cases} (1 - e^{y_0}) \sin x_0 = 0 \\ \cos x_0 - y_0 - 1 = 0 \end{cases}$$

解得如下两组解(驻点):

$$(x_0, y_0) = (2k\pi, 0) \quad (k \in \mathbb{Z}) \qquad \text{sign} \qquad (x_0, y_0) = ((2k+1)\pi, -2) \quad (k \in \mathbb{Z})$$

接下来验证 f 在这些驻点附近的行为。 f 的 Hessian 为

$$\operatorname{Hess}(f)(x,y) = \begin{pmatrix} (1 - e^y)\cos x & -e^y\sin x \\ -e^y\sin x & e^y(\cos x - y - 2) \end{pmatrix}$$

Case 1若 $(x_0,y_0)=(2k\pi,0)$,则 f 的 Hessian 满足

Hess
$$(f)(x_0, y_0) = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \le 0$$

从而 $(2k\pi,0)$ 为 f 的极大值点 $(\forall k \in \mathbb{Z})$;

Case 1若 $(x_0, y_0) = ((2k+1)\pi, 0)$,则 f 的 Hessian 满足

Hess
$$(f)(x_0, y_0) = \begin{pmatrix} e^{-2} - 1 & 0\\ 0 & -e^{-2} \end{pmatrix} \le 0$$

从而 $((2k+1)\pi, -2)$ 为 f 的极大值点 $(\forall k \in \mathbb{Z})$.

综上, f 有无数个极大值点, 无极小值点。

习题 77. 设 f(x,y) 与 $\varphi(x,y)$ 为二元连续可微函数,且 $\frac{\partial \varphi}{\partial y}(0,0) \neq 0$. 已知点 (0,0) 为函数 f(x,y) 在约束条件 $\varphi(x,y)=0$ 下的条件极值点,判断下列命题正误:

- (1) 若 $\frac{\partial f}{\partial x}(0,0) = 0$,则 $\frac{\partial f}{\partial y}(0,0) = 0$;
- (2) 若 $\frac{\partial f}{\partial x}(0,0) = 0$, 则 $\frac{\partial f}{\partial y}(0,0) \neq 0$;
- (3) 若 $\frac{\partial f}{\partial x}(0,0) \neq 0$, 则 $\frac{\partial f}{\partial y}(0,0) = 0$;
- (4) 若 $\frac{\partial f}{\partial x}(0,0) \neq 0$,则 $\frac{\partial f}{\partial y}(0,0) \neq 0$;

证明. 注意到 $\frac{\partial \varphi}{\partial y}(0,0) \neq 0$,所以由隐函数定理,存在定义于 x=0 附近的连续可微函数 $\psi(x)$,使得 $\varphi(x,\psi(x))=0$ 在 x=0 附近恒成立,特别地 $\psi(0)=0$ 。也就是说,约束条件 $\varphi(x,y)=0$ 等价于 $y=\psi(x)$. 于是 x=0 是单变量函数

$$x \mapsto f(x, \psi(x))$$

的极值点, 因此

$$0 = \frac{\mathrm{d}}{\mathrm{d}x}\bigg|_{x=0} f(x, \psi(x)) = \frac{\partial f}{\partial x}(0, 0) + \frac{\partial f}{\partial y}(0, 0)\psi'(0)$$

由上式容易判断(4)正确,(3)一定不正确,(1)(2)不一定正确。

习题 78. 设方程组 $\begin{cases} x = u + vz \\ y = -u^2 + v + z \end{cases}$ 在点 (x,y,z) = (2,1,1) 的某一邻域内确定了隐函数 u(x,y,z) 与 v(x,y,z),并且 u(2,1,1) > 0. 试计算 $\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z}\right)\Big|_{(2,1,1)}$ 的值。

解. 解方程组容易算出 u(2,1,1) = v(2,1,1) = 1. 令函数

$$\begin{cases} F_1(x, y, z; u, v) = x - u - vz \\ F_2(x, y, z; u, v) = y + u^2 - v - z \end{cases}$$

则关于 x,y,z 的隐函数 u,v 由 $F_1=F_2=0$ 决定。由隐映射定理,直接计算之,

$$\begin{vmatrix}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z}
\end{vmatrix}\Big|_{(2,1,1)} = - \begin{pmatrix} \frac{\partial F_1}{\partial u} & \frac{\partial F_1}{\partial v} \\
\frac{\partial F_2}{\partial u} & \frac{\partial F_2}{\partial v} & \frac{\partial F_2}{\partial v}
\end{pmatrix}^{-1}\Big|_{(2,1,1)} \begin{pmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} & \frac{\partial F_1}{\partial z} \\
\frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} & \frac{\partial F_2}{\partial z}
\end{pmatrix}\Big|_{(2,1,1)}$$

$$= - \begin{pmatrix} -1 & -z \\ 2u & -1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 0 & -v \\ 0 & 1 & -1 \end{pmatrix}\Big|_{(u,v)=(1,1)}$$

$$= \frac{1}{3} \begin{pmatrix} 1 & -1 & 0 \\ 2 & 1 & -3 \end{pmatrix}$$

因此有 $\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial u}{\partial z}\right)\Big|_{(2,1,1)} = \frac{1}{3}(1+1+0) = \frac{2}{3}.$

习题 79. 设 u(x,y,z) 与 F(x,y,z) 均为 \mathbb{R}^3 上的可微函数, 其中 u(x,y,z) 是由方程 $F(u^2-x^2,u^2-y^2,u^2-z^2)=0$ 决定的隐函数。证明: u(x,y,z) 满足偏微分方程

$$\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} + \frac{1}{z}\frac{\partial u}{\partial z} = \frac{1}{u}$$

证明. 设四元函数 $G(x,y,z,u) := F(u^2 - x^2, u^2 - y^2, u^2 - z^2)$,则 u(x,y,z) 是由方程 G(x,y,z,u) = 0 确定的隐函数,从而有隐映射定理直接写出

$$\frac{\partial u}{\partial x} = -\frac{\partial G/\partial x}{\partial G/\partial u} = -\frac{-2x\frac{\partial F}{\partial x}}{2u\frac{\partial F}{\partial x} + 2u\frac{\partial F}{\partial y} + 2u\frac{\partial F}{\partial z}} = \frac{x}{u} \cdot \frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}}$$

同理可得

$$\frac{\partial u}{\partial y} = \frac{y}{u} \cdot \frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}} \qquad \frac{\partial u}{\partial x} = \frac{z}{u} \cdot \frac{\frac{\partial F}{\partial z}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}}$$

因此有

$$\frac{1}{x}\frac{\partial u}{\partial x} + \frac{1}{y}\frac{\partial u}{\partial y} + \frac{1}{z}\frac{\partial u}{\partial z} = \frac{1}{u}\frac{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}} = \frac{1}{u}$$

习题 80. 设 F(x,y,z) 是 \mathbb{R}^3 上的可微函数。如果方程 F(x,y,z)=0 决定了可微的隐函数 x=x(y,z)、y=y(x,z) 以及 z=z(x,y),证明:

$$\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1$$

证明. 由关于 x = x(y,z) 的隐映射定理,有

$$\frac{\partial x}{\partial y} = -\left(\frac{\partial F}{\partial x}\right)^{-1} \frac{\partial F}{\partial y} = -\frac{\partial F/\partial y}{\partial F/\partial x}$$

同理也有 $\frac{\partial y}{\partial z} = -\frac{\partial F/\partial z}{\partial F/\partial y}$ 以及 $\frac{\partial z}{\partial x} = -\frac{\partial F/\partial x}{\partial F/\partial z}$. 因此 $\frac{\partial x}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial x} = -1$.

习题 81. 证明球面上的曲线

$$\tan\left(\frac{\pi}{4} + \frac{\psi}{2}\right) = e^{k\varphi}$$

与该球面上的每一条经线相交成定角。其中 φ 为经度, ψ 为纬度,k为常数。

证明. 建立空间直角坐标系, 使得该球面以原点为球心, 北极点坐标为 (0,0,1). 于是该球面有参

数方程 $\begin{cases} x = \cos \psi \cos \varphi \\ y = \cos \psi \sin \varphi \end{cases}$ 对该球面上任何一点 $\mathbf{r}(\varphi, \psi)$,考虑球面在该点处的切向量 $z = \sin \psi$

$$\frac{\partial \mathbf{r}}{\partial \varphi} = (-\cos \psi \sin \varphi, \cos \psi \cos \varphi, 0)$$

$$\frac{\partial \mathbf{r}}{\partial \psi} = (-\sin \psi \cos \varphi, -\sin \psi \sin \varphi, \cos \psi)$$

容易验证 $\frac{\partial r}{\partial \varphi}$ 与 $\frac{\partial r}{\partial \psi}$ 垂直,并且 $\left\|\frac{\partial r}{\partial \varphi}\right\| = \cos \psi$, $\left\|\frac{\partial r}{\partial \psi}\right\| = 1$.

对曲线方程两边微分,得

$$\frac{\mathrm{d}\psi}{2\cos^2\left(\frac{\pi}{4} + \frac{\psi}{2}\right)} = ke^{k\varphi}\mathrm{d}\varphi$$

$$\frac{\mathrm{d}\psi}{\mathrm{d}\varphi} = 2ke^{k\varphi}\cos^2\left(\frac{\pi}{4} + \frac{\psi}{2}\right) = k\sin\left(\frac{\pi}{2} + \psi\right) = k\cos\psi$$

从而对于曲线上的一点 $\mathbf{r}(\varphi,\psi)$,曲线在该点处的切向量不妨为 $\mathbf{v}:=\frac{\partial \mathbf{r}}{\partial \varphi}+k\cos\psi\frac{\partial \mathbf{r}}{\partial \varphi}$. 而与经线的夹角 θ 即为切向量 \mathbf{v} 与 $\frac{\partial \mathbf{r}}{\partial \varphi}$ 的夹角,其余弦值

$$\cos \theta = \frac{\langle \boldsymbol{v}, \frac{\partial \boldsymbol{r}}{\partial \psi} \rangle}{\|\boldsymbol{v}\| \cdot \left\| \frac{\partial \boldsymbol{r}}{\partial \psi} \right\|} = \frac{k \cos \psi}{\sqrt{k^2 + 1} \cos \psi} = \frac{k}{\sqrt{1 + k^2}}$$

为定值。从而证毕。

习题 82. (电偶极子) 考虑三维空间中的点电荷 A_1,A_2 , 它们的位置分别为 I,-I (即关于原点对称), 电荷量分别为 Q,-Q. 对于位置为 r、电荷量为 q 的点电荷 B, 证明 A_1,A_2 对 B 的总静电力 F 满足如下近似公式: 当 $r:=\|r\|\to +\infty$ 时,

$$F = \frac{q}{4\pi\varepsilon_0} \left(\frac{3p \cdot r}{r^5} r - \frac{p}{r^3} \right) + o\left(\frac{1}{r^3} \right)$$

其中 p := 2Ql 为点电荷系统 $\{A_1, A_2\}$ 的电偶极矩, ϵ_0 为常数(真空介电常数)。

提示 (库仑定律): 若点电荷 A_1,A_2 的位置分别为 r_1,r_2 ,电荷量分别为 q_1,q_2 ,则 A_2 所受 A_1 的静电力为

$$F = \frac{q_1 q_2}{4\pi\varepsilon_0} \cdot \frac{r_2 - r_1}{\|r_2 - r_1\|^3}$$

证明. 记 $e_r := \frac{r}{r}$, 以及 $\varepsilon := \frac{l}{r}$, 则由库伦定律直接计算之,

$$F = \frac{Qq}{4\pi\varepsilon_0} \left(\frac{r-l}{\|r-l\|^3} - \frac{r+l}{\|r+l\|^3} \right) = \frac{Qq}{4\pi\varepsilon_0 r^2} \left(\frac{e_r - \varepsilon}{\|e_r - \varepsilon\|^3} - \frac{e_r + \varepsilon}{\|e_r + \varepsilon\|^3} \right)$$
$$= \frac{Qq}{4\pi\varepsilon_0 r^2} \left[\left(\frac{1}{\|e_r - \varepsilon\|^3} - \frac{1}{\|e_r + \varepsilon\|^3} \right) e_r - \left(\frac{1}{\|e_r - \varepsilon\|^3} + \frac{1}{\|e_r + \varepsilon\|^3} \right) \varepsilon \right]$$

注意到

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} = (1 + 2\boldsymbol{e}_r \cdot \boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}^2)^{-\frac{3}{2}}$$

而当点电荷 B 到原点的距离 r 趋于无穷时, $\varepsilon = \frac{1}{r}$ 为无穷小量,从而 $2e_r \cdot \varepsilon + \varepsilon^2$ 也为无穷小量。利用 Taylor 展开式 $(1+x)^{-\frac{3}{2}} = 1 - \frac{3}{2}x + o(x)$,可得

$$\begin{array}{rcl} \frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} & = & 1 - 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r + o(\frac{1}{r}) \\ \frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} & = & 1 + 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r + o(\frac{1}{r}) \end{array}$$

代入 F 的表达式,得到

$$F = \frac{Qq}{4\pi\varepsilon_0 r^2} \left[\left(\frac{1}{\|e_r - \varepsilon\|^3} - \frac{1}{\|e_r + \varepsilon\|^3} \right) e_r - \left(\frac{1}{\|e_r - \varepsilon\|^3} + \frac{1}{\|e_r + \varepsilon\|^3} \right) \varepsilon \right]$$

$$= \frac{Qq}{4\pi\varepsilon_0 r^2} \left((6\varepsilon \cdot e_r) e_r - 2\varepsilon + o(\frac{1}{r}) \right)$$

$$= \frac{Qq}{4\pi\varepsilon_0 r^2} \left(\frac{(6l \cdot r)r}{r^3} - \frac{2l}{r} \right) + o(\frac{1}{r^3})$$

$$= \frac{q}{4\pi\varepsilon_0} \left(\frac{3p \cdot r}{r^5} r - \frac{p}{r^3} \right) + o(\frac{1}{r^3})$$

习题 83. 考虑三维空间中关于原点对称分布的两个质点 A_1,A_2 ,它们的质量均为 m. 记 A_1 的位置为 I, 则 A_2 的位置为 I. 现在,对空间中的质量为 I 的质点 I ,其位置向量为 I ,我们企图计算质点 I 和 I 的总引力 I 的。有一种偷懒的方法是,用 I 和 I 和 I 的,其位置的质心对 I 的引力来近似替代,也就是说考虑位于原点、质量为 I 和 的质点 I 和 I 的引力 I 的引力 I 的引力 I 的引力 I 的引力 I 的总引力 I ,其中 I : I : I :

证明: 当 r 很大时, 成立

$$F = -\frac{2GMm}{r^2}e_r - \frac{GMm}{r^4} \left[(15(e_r \cdot l)^2 - 3l \cdot l) e_r - 6l(e_r \cdot l)e_l \right] + o(\frac{1}{r^4})$$

其中 $l := ||l||, e_l := \frac{l}{l}$.

证明. 我们记 $\varepsilon := \frac{l}{r} = \frac{l}{r} e_l$. 由众所周知的牛顿万有引力定律,质点 A_1, A_2 对 B 的总引力 F 为

$$F = -GMm \left(\frac{r-l}{\|r-l\|^3} + \frac{r+l}{\|r+l\|^3} \right)$$

$$= -\frac{GMm}{r^2} e_r - GMm \left(\frac{r-l}{\|r-l\|^3} + \frac{r+l}{\|r+l\|^3} - \frac{2r}{r^3} \right)$$

$$= -\frac{GMm}{r^2} e_r - \frac{GMm}{r^2} \left(\frac{e_r - \varepsilon}{\|e_r - \varepsilon\|^3} + \frac{e_r + \varepsilon}{\|e_r + \varepsilon\|^3} - 2e_r \right)$$

$$= -\frac{GMm}{r^2} e_r - \frac{GMm}{r^2} \left[\left(\frac{1}{\|e_r - \varepsilon\|^3} + \frac{1}{\|e_r + \varepsilon\|^3} - 2 \right) e_r + \left(\frac{1}{\|e_r + \varepsilon\|^3} - \frac{1}{\|e_r - \varepsilon\|^3} \right) \varepsilon \right]$$

注意到

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} = (1 + 2\boldsymbol{e}_r \cdot \boldsymbol{\varepsilon} + \boldsymbol{\varepsilon}^2)^{-\frac{3}{2}}$$

而当质点 B 到原点的距离 r 趋于无穷时, $\varepsilon = \frac{1}{r}$ 为无穷小量,从而 $2e_r \cdot \varepsilon + \varepsilon^2$ 也为无穷小量。利用 Taylor 展开式 $(1+x)^{-\frac{3}{2}} = 1 - \frac{3}{2}x + \frac{15}{8}x^2 + o(x^2)$,可得

$$\frac{1}{\|\boldsymbol{e}_r + \boldsymbol{\varepsilon}\|^3} = 1 - 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r - \frac{3}{2}\boldsymbol{\varepsilon}^2 + \frac{15}{2}(\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r)^2 + o(\frac{1}{r^2})$$

$$\frac{1}{\|\boldsymbol{e}_r - \boldsymbol{\varepsilon}\|^3} = 1 + 3\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r - \frac{3}{2}\boldsymbol{\varepsilon}^2 + \frac{15}{2}(\boldsymbol{\varepsilon} \cdot \boldsymbol{e}_r)^2 + o(\frac{1}{r^2})$$

从而得到

$$\frac{1}{\|e_r + \varepsilon\|^3} + \frac{1}{\|e_r - \varepsilon\|^3} - 2 = -3\varepsilon^2 + 15(\varepsilon \cdot e_r)^2 + o(\frac{1}{r^2})$$

$$\frac{1}{\|e_r + \varepsilon\|^3} - \frac{1}{\|e_r - \varepsilon\|^3} = -6\varepsilon \cdot e_r + o(\frac{1}{r^2})$$

将它们代回 F 的表达式,有

$$F = -\frac{GMm}{r^{2}}e_{r} - \frac{GMm}{r^{2}} \left[\left(\frac{1}{\|e_{r} - \varepsilon\|^{3}} + \frac{1}{\|e_{r} + \varepsilon\|^{3}} - 2 \right) e_{r} + \left(\frac{1}{\|e_{r} + \varepsilon\|^{3}} - \frac{1}{\|e_{r} - \varepsilon\|^{3}} \right) \varepsilon \right]$$

$$= -\frac{GMm}{r^{2}}e_{r} - \frac{GMm}{r^{2}} \left[\left(-3\varepsilon^{2} + 15(\varepsilon \cdot e_{r})^{2} + o(\frac{1}{r^{2}}) \right) e_{r} + \left(-6\varepsilon \cdot e_{r} + o(\frac{1}{r^{2}}) \right) \varepsilon \right]$$

$$= -\frac{2GMm}{r^{2}}e_{r} - \frac{GMm}{r^{4}} \left[\left(15(e_{r} \cdot \mathbf{l})^{2} - 3\mathbf{l} \cdot \mathbf{l} \right) e_{r} - 6\mathbf{l}(e_{r} \cdot \mathbf{l}) e_{l} \right] + o(\frac{1}{r^{4}})$$

第7章 多重积分

习题 84. 设 a > 0, 计算二重积分

$$\int_0^{2a} dx \int_0^{\sqrt{2ax - x^2}} (x + y)^2 dy$$

解. 先将该累次积分写为二重积分, 易知积分区域为 $D:=\left\{(x,y)\in\mathbb{R}^2 \middle| (x-a)^2+y^2< a,y>0\right\}$.

习题84积分区域 D 示意图

考虑极坐标换元 $\left\{ \begin{array}{l} x=r\cos\theta \\ y=r\sin\theta \end{array} \right.$,则变换后的积分区域为 $D':=\left\{ (r,\theta)\in\mathbb{R}^2 \middle| \theta\in(0,\frac{\pi}{2}),r\in(0,2a\cos\theta) \right\}$. 因此有

$$\int_0^{2a} dx \int_0^{\sqrt{2ax-x^2}} (x+y)^2 dy = \iint_D (x+y)^2 dx dy = \iint_{D'} r^2 (\cos\theta + \sin\theta)^2 \cdot r dr d\theta$$
$$= \int_0^{\frac{\pi}{2}} (1 + 2\cos\theta \sin\theta) d\theta \int_0^{2a\cos\theta} r^3 d\theta$$

$$= 4a^4 \int_0^{\frac{\pi}{2}} \cos^4 \theta (1 + 2\cos\theta\sin\theta) d\theta$$
$$= 4a^4 \left(\frac{3}{4} \cdot \frac{\pi}{4} + 2\int_0^1 t^5 dt\right) = 4a^4 \left(\frac{3\pi}{16} + \frac{1}{3}\right)$$

习题 85. 计算平面上的二重积分:

$$\iint_{\mathbb{R}^2} e^{-(x^2 + y^2)} \cos(x^2 + y^2) dx dy$$

解. 考虑极坐标换元 $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases}, \quad \mathcal{M}$

原式 =
$$\int_0^{2\pi} \int_0^{+\infty} e^{-r^2} \cos(r^2) \cdot r dr d\theta$$

= $2\pi \int_0^{+\infty} r e^{-r^2} \cos(r^2) dr = \pi \int_0^{+\infty} e^{-u} \cos u du$
= $\frac{\pi}{2} e^{-u} (\sin u - \cos u) \Big|_{u=0}^{u=+\infty} = \frac{\pi}{2}$

习题 86. 设 \mathbb{H} 为上半平面 $\{(x,y) \in \mathbb{R}^2 | y > 0\}$, 计算重积分

$$\iint_{\mathbb{H}} \frac{y}{(x^2 + y^2)((x - 1)^2 + y^2)} dxdy$$

解. 极坐标换元,有

$$\iint_{\mathbb{H}} \frac{y}{(x^2 + y^2)((x - 1)^2 + y^2)} dxdy = \int_0^{+\infty} \int_0^{\pi} \frac{r \sin \theta}{r^2 (r^2 - 2r \cos \theta + 1)} r d\theta dr$$

$$= \int_0^{\pi} \sin \theta d\theta \int_0^{+\infty} \frac{1}{r^2 - 2r \cos \theta + 1} dr = \int_0^{\pi} \sin \theta d\theta \cdot \frac{1}{\sin \theta} \arctan \frac{x}{\sin \theta} \Big|_{-\cos \theta}^{+\infty}$$

$$= \int_0^{\pi} (\pi - \theta) d\theta = \frac{\pi^2}{2}$$

习题 87. 对于常数 a > 0, 计算重积分

$$\iint_{D} \frac{1}{(a^2 + x^2 + y^2)^{\frac{3}{2}}} \mathrm{d}x \mathrm{d}y$$

其中区域 $D := \{(x,y) \in \mathbb{R}^2 | 0 < x, y < a \}.$

证明. 先通过伸缩换元把积分区域化为单位正方形 (0,1)×(0,1), 再直接累次积分, 有

原式
$$= \frac{1}{a} \int_0^1 dx \int_0^1 \frac{1}{(1+x^2+y^2)^{\frac{3}{2}}} dy = \frac{1}{a} \int_0^1 \frac{dx}{(1+x^2)^{\frac{3}{2}}} \int_0^1 \frac{1}{(1+\frac{y^2}{1+x^2})^{\frac{3}{2}}} dy$$

$$= \frac{y=\sqrt{1+x^2}t}{a} \int_0^1 \frac{dx}{(1+x^2)^{\frac{3}{2}}} \int_0^{\frac{1}{\sqrt{1+x^2}}} \frac{1}{(1+t^2)^{\frac{3}{2}}} \sqrt{1+x^2} dt$$

$$= \frac{1}{a} \int_0^1 \frac{dx}{1+x^2} \int_0^{\frac{1}{\sqrt{1+x^2}}} \frac{1}{(1+t^2)^{\frac{3}{2}}} dt$$

$$= \frac{t=\tan\theta}{a} \int_0^1 \frac{dx}{1+x^2} \int_0^{\arctan\frac{1}{\sqrt{1+x^2}}} \cos\theta d\theta = \frac{1}{a} \int_0^1 \frac{dx}{1+x^2} \cdot \frac{1}{\sqrt{2+x^2}}$$

$$= \frac{x=\tan\varphi}{a} \int_0^{\frac{\pi}{4}} \frac{\cos\varphi}{\sqrt{1+\cos^2\varphi}} d\varphi = \frac{u=\sin\varphi}{a} \int_0^{\frac{\pi}{2}} \frac{du}{\sqrt{2-u^2}} = \frac{1}{a} \arcsin\frac{1}{2} = \frac{\pi}{6a}$$

习题 88. 设 a > 0, 平面区域 D 是旋轮线

$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases} \quad 0 \le t \le 2\pi$$

与 x 轴围成的区域, 试计算重积分

$$\iint_D y^2 \mathrm{d}x \mathrm{d}y$$

解, 考虑变量替换

$$\begin{cases} x = a(t - \sin t) \\ y = \lambda a(1 - \cos t) \end{cases} (t, \lambda) \in [0, 2\pi] \times [0, 1]$$

其 Jacobi 行列式为

$$\frac{\partial(x,y)}{\partial(t,\lambda)} = \det\begin{pmatrix} a(1-\cos t) & 0\\ * & a(1-\cos t) \end{pmatrix} = a^2(1-\cos t)^4$$

因此有

$$\iint_{D} y^{2} dx dy = \int_{0}^{1} \int_{0}^{2\pi} \lambda^{2} a^{2} (1 - \cos t)^{2} \left| \frac{\partial(x, y)}{\partial(t, \lambda)} \right| dt d\lambda = a^{4} \int_{0}^{1} \lambda^{2} d\lambda \int_{0}^{2\pi} (1 - \cos t)^{4} dt$$
$$= \frac{32}{3} a^{4} \int_{0}^{\pi} \sin^{8} \frac{t}{2} dt = \frac{64}{3} a^{4} \int_{0}^{\frac{\pi}{2}} \sin^{8} u du = \frac{64}{3} a^{4} \frac{7!!}{8!!} \frac{\pi}{2} = \frac{35}{12} \pi a^{4}$$

习题 89. 计算平面曲线

$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{xy}{c^2} \qquad (a, b, c > 0)$$

所围成区域的面积 S.

解. 从曲线表达式容易看出该曲线不经过第二、四象限,并且位于第一、三象限的部分关于原点中心对称。从而我们只需考虑该曲线所围成的区域在第一象限的部分(记为 D)即可。

考虑坐标变换 $\left\{ \begin{array}{l} x = ar\cos\theta \\ y = br\sin\theta \end{array} \right. , \quad \text{则区域 } D \text{ 变为 } D' := \left\{ (r,\theta) \middle| \theta \in (0,\frac{\pi}{2}), \, r \in (0,\sqrt{\frac{ab}{c^2}}\sin\theta\cos\theta) \right\}.$ 因此有

$$S = 2 \iint_D dxdy = 2 \iint_{D'} abr dr d\theta = 2ab \int_0^{\frac{\pi}{2}} d\theta \int_0^{\sqrt{\frac{ab}{c^2}} \sin\theta \cos\theta} r dr$$
$$= \frac{a^2b^2}{c^2} \int_0^{\frac{\pi}{2}} \sin\theta \cos\theta d\theta = \frac{a^2b^2}{2c^2}$$

习题89示意图

习题 90. 对于常数 b > a > 0, 计算三重积分

$$\iiint_D (x^2 + y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

其中 \mathbb{R}^3 中的区域 $D := \{(x,y,z) \in \mathbb{R}^3 | z \ge 0, a^2 \le x^2 + y^2 + z^2 \le b^2 \}.$

解. 考虑球坐标换元 $\left\{ \begin{array}{l} x = r \sin \theta \cos \varphi \\ y = r \sin \theta \sin \varphi \end{array} \right. , \ \ \mbox{其中} \left(r, \theta, \varphi \right) \in [a, b] \times [0, \frac{\pi}{2}] \times [0, 2\pi]. \ \ \mbox{从而} \\ z = r \cos \theta \end{array} \right.$

$$\int \int \int_{D} (x^{2} + y^{2}) dx dy dz = \int_{0}^{2\pi} \int_{0}^{\frac{\pi}{2}} \int_{a}^{b} r^{2} \sin^{2}\theta \cdot r^{2} \sin\theta dr d\theta d\varphi$$
$$= \int_{a}^{b} r^{4} dr \int_{0}^{\frac{\pi}{2}} \sin^{3}\theta d\theta \int_{0}^{2\pi} d\varphi$$
$$= \frac{4\pi}{15} (b^{5} - a^{5})$$

习题 91. 计算由曲面 $z = 6 - x^2 - y^2$ 与曲面 $z = \sqrt{x^2 + y^2}$ 所围成区域的体积。

证明. 如图所示,易知该空间区域为图中绿色阴影部分绕 y 轴旋转所得的旋转体。从而该旋转体的体积为

$$V = \int_0^2 2\pi x dx \int_x^{6-x^2} dy = 2\pi \int_0^2 (-x^3 - x^2 + 6x) dx = \frac{32}{3}\pi$$

习题 92. 计算极限:

$$\lim_{x \to 0} \int_{-\frac{x}{2}}^{0} dt \int_{-\frac{x}{2}}^{t} \frac{e^{-(t-u)^{2}}}{1 - e^{-\frac{x^{2}}{4}}} du$$

解. 首先注意等价无穷小 $1-e^{-\frac{x^2}{4}}\sim \frac{x^2}{4}$ $(x\to 0)$,从而

$$\lim_{x \to 0} \int_{-\frac{x}{2}}^{0} dt \int_{-\frac{x}{2}}^{t} \frac{e^{-(t-u)^{2}}}{1 - e^{-\frac{x^{2}}{4}}} du = \lim_{x \to 0} \frac{4}{x^{2}} \iint_{D_{x}} e^{-(t-u)^{2}} dt du$$

其中积分区域 D_x 是以 $\left(-\frac{x}{2},-\frac{x}{2}\right)$, $\left(0,0\right)$, $\left(0,-\frac{x}{2}\right)$ 这三个点为顶点的三角形区域。注意积分区域 D_x 的面积为 $\frac{x^2}{8}$.

习题92: 积分区域 D_x 示意图

从而由积分中值定理知,对任意 x,存在点 $(t_x,u_x) \in D_x$ 使得

$$\iint_{D_x} e^{-(t-u)^2} dt du = \frac{x^2}{8} e^{-(t_x - u_x)^2}$$

而 $x \to 0$ 时, $(t_x, u_x) \to (0, 0)$,由此可知原极限 $= \frac{1}{2}e^{-(0-0)^2} = \frac{1}{2}$.

习题 93. 设 f(x,y) 为定义在 $[0,1] \times [0,1]$ 上的二元连续函数, 并且 f 在原点 (0,0) 处可微, 且 f(0,0) = 0. 计算极限:

$$\lim_{x \to 0^+} \frac{\int_0^{x^2} dt \int_{\sqrt{t}}^x f^2(t, u) du}{1 - e^{-\frac{1}{5}x^5}}$$

解.

$$\lim_{x \to 0^{+}} \frac{\int_{0}^{x^{2}} \mathrm{d}t \int_{\sqrt{t}}^{x} f^{2}(t, u) \mathrm{d}u}{1 - e^{-\frac{1}{5}x^{5}}} = \lim_{x \to 0^{+}} \frac{5 \int_{0}^{x^{2}} \mathrm{d}t \int_{\sqrt{t}}^{x} f^{2}(t, u) \mathrm{d}u}{x^{5}} \xrightarrow{\text{ABSERD}} \lim_{x \to 0^{+}} \frac{\frac{\mathrm{d}}{\mathrm{d}x} \int_{0}^{x^{2}} \mathrm{d}t \int_{\sqrt{t}}^{x} f^{2}(t, u) \mathrm{d}u}{x^{4}}$$

$$= \lim_{x \to 0^{+}} \frac{\int_{0}^{x^{2}} f^{2}(t, x) \mathrm{d}t}{x^{4}}$$

而当 $x\to 0^+$ 时,f 在原点可微表明 $f(t,x)=f'_xt+f'_yx+o(x)$,其中 $f'_x:=\frac{\partial f}{\partial x}(0,0)$, $f'_y:=\frac{\partial f}{\partial x}(0,0)$ 为 f 在原点处的偏导。因此

$$f^{2}(t,x) = (f'_{x})^{2}t^{2} + 2f'_{x}f'_{y}tx + (f'_{y})^{2}x^{2} + o(x^{2})$$

$$\int_{0}^{x^{2}} f^{2}(t,x)dt = \int_{0}^{x^{2}} \left((f'_{x})^{2}t^{2} + 2f'_{x}f'_{y}tx + (f'_{y})^{2}x^{2} + o(x^{2}) \right) dt = (f'_{y})^{2}x^{4} + o(x^{4})$$

因此有

$$\lim_{x \to 0^+} \frac{\int_0^{x^2} dt \int_{\sqrt{t}}^x f^2(t, u) du}{1 - e^{-\frac{1}{5}x^5}} = \lim_{x \to 0^+} \frac{\int_0^{x^2} f^2(t, x) dt}{x^4} = (f_y')^2 := \left[\frac{\partial f}{\partial y}(0, 0)\right]^2$$

习题 94. 设 f(x) 为 \mathbb{R} 上的连续函数, 证明: 对任意 $n \ge 1$ 以及任意 a > 0,

$$\int_0^a dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n-1}} f(x_1) f(x_2) \cdots f(x_n) dx_n = \frac{1}{n!} \left(\int_0^a f(t) dt \right)^n$$

常规做法. 对 n 使用数学归纳法。

起始步: n=1 是显然正确。

归纳步: 对于 n > 1,如果此命题对 n - 1 成立,则

$$\int_0^a dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n-1}} f(x_1) f(x_2) \cdots f(x_n) dx_n$$

从而证毕。

以上是此题的常规做法。话说对称性是好东西,我们早已见过很多【巧妙利用对称性化简计算】的例子。而对于此题,如果对称性用得好,就能够一眼看出它显然成立。以下给出利用对称性的做法:

另证. 考虑 \mathbb{R}^n 中的 n 维立方体区域

$$D := \left\{ (x_1, ..., x_n) \in \mathbb{R}^n \middle| 0 < x_i < a, \ \forall 1 \le i \le n \right\} = [0, a]^n$$

再考虑 n 维单纯形

$$\triangle := \left\{ (x_1, ..., x_n) \in \mathbb{R}^n \middle| 0 < x_n < x_{n-1} < \cdots < x_1 < a \right\}$$

容易知道以下两件事: 首先,题目中的累次积分化为n重积分,积分区域为 Δ ,即

$$\int_0^a dx_1 \int_0^{x_1} dx_2 \cdots \int_0^{x_{n-1}} f(x_1) f(x_2) \cdots f(x_n) dx_n = \int_{\triangle} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n$$

再注意到:

$$\int_D f(x_1)f(x_2)\cdots f(x_n)dx_1dx_2\cdots dx_n = \left(\int_0^a f(t)dt\right)^n$$

(前方高能预警,开始使用对称性了)

注意到对于任意 $\sigma \in S_n$, 其中 S_n 为 n 元置换群, 考虑变量代换

$$x_i := x'_{\sigma(i)} \qquad (1 \le i \le n)$$

则成立

$$\int_{\triangle} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n = \int_{\sigma(\triangle)} f(x_1') f(x_2') \cdots f(x_n') dx_1' dx_2' \cdots dx_n'$$

$$= \int_{\sigma(\triangle)} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n$$

上式右边的积分区域 $\sigma(\Delta)$ 为:

$$\sigma(\triangle) := \left\{ (x'_1, x'_2, ..., x'_n) \in \mathbb{R}^n \middle| 0 < x'_{\sigma(n)} < x'_{\sigma(n-1)} < \cdots < x'_{\sigma(1)} < a \right\}$$

至此,我们证明了,对任意 $\sigma \in S_n$,

$$\int_{\triangle} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n = \int_{\sigma(\triangle)} f(x_1) f(x_2) \cdots f(x_n) dx_1 dx_2 \cdots dx_n$$

上式左右两边的区别在于积分区域的变化。最后再注意到对于任意 $\sigma \neq \tau \in S_n, \sigma(\Delta) \cap \tau(\Delta) = \emptyset$,因此

$$\int_{0}^{a} dx_{1} \int_{0}^{x_{1}} dx_{2} \cdots \int_{0}^{x_{n-1}} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{n}$$

$$= \int_{\triangle} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \sum_{\sigma \in S_{n}} \int_{\sigma(\triangle)} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \int_{\bigcup_{\sigma \in S_{n}} \sigma(\triangle)} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \int_{D} f(x_{1}) f(x_{2}) \cdots f(x_{n}) dx_{1} dx_{2} \cdots dx_{n}$$

$$= \frac{1}{n!} \left(\int_{0}^{a} f(t) dt \right)^{n}$$

从而证毕。

以上证法可用六个字概括:"由对称性显然"。

习题 95. 设平面 \mathbb{R}^2 上的闭区域 $D:=\left\{(x,y)\in\mathbb{R}^2\Big|0\leq x,y\leq 1\right\}$,定义在 D 上的四次连续可微函数 f(x,y) 在 D 的边界处取值恒为 0,并且在 D 上成立

$$\left| \frac{\partial^4 f}{\partial x^2 \partial y^2} \right| \le b$$

其中 b > 0 为常数。证明:

$$\left| \iint_D f(x, y) \mathrm{d}x \mathrm{d}y \right| \le \frac{b}{144}$$

证明. 对于任意 $y \in [0,1]$, 注意到对任意实数 C_1, C_2 都成立

$$\int_{0}^{1} f(x,y) dx = (x+C_{1})f(x,y)\Big|_{x=0}^{x=1} - \int_{0}^{1} (x+C_{1}) \frac{\partial f}{\partial x}(x,y) dx
= -\left(\frac{1}{2}(x+C_{1})^{2} + C_{2}\right) \frac{\partial f}{\partial x}(x,y)\Big|_{x=0}^{x=1} - \int_{0}^{1} \left(\frac{1}{2}(x+C_{1})^{2} + C_{2}\right) \frac{\partial^{2} f}{\partial x^{2}}(x,y) dx
\Leftrightarrow \begin{cases} \frac{1}{2}(C_{1}+1)^{2} + C_{2} = 0 \\ \frac{1}{2}C_{1}^{2} + C_{2} = 0 \end{cases}, \quad \text{if } \begin{cases} C_{1} = -\frac{1}{2} \\ C_{2} = -\frac{1}{8} \end{cases}, \quad \text{if } \text{if } \begin{cases} C_{1} = -\frac{1}{2} \\ C_{2} = -\frac{1}{8} \end{cases}, \quad \text{if } \text{if } \end{cases}$$

$$\begin{pmatrix} C_{1} = -\frac{1}{2} \\ C_{2} = -\frac{1}{8} \end{pmatrix}, \quad \text{if } \text{if } \text{if } \begin{cases} C_{1} = -\frac{1}{2} \\ C_{2} = -\frac{1}{8} \end{cases}, \quad \text{if } \text{if }$$

$$\iint_D f(x,y) dx dy = \frac{1}{2} \int_0^1 dy \int_0^1 (x^2 - x) \frac{\partial^2 f}{\partial x^2}(x,y) dx = \frac{1}{2} \int_0^1 (x^2 - x) dx \int_0^1 \frac{\partial^2 f}{\partial x^2}(x,y) dy$$

注意到当 y=0 或 1 时,总有 $\frac{\partial^2 f}{\partial x^2}(x,y)=0$,从而类似 (*) 式,同理可得

$$\int_0^1 \frac{\partial^2 f}{\partial x^2}(x, y) \mathrm{d}y = \frac{1}{2} \int_0^1 (y^2 - y) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x, y) \mathrm{d}y$$

因此,

$$\begin{split} \left| \iint_D f(x,y) \mathrm{d}x \mathrm{d}y \right| &= \left| \frac{1}{4} \iint_D (x^2 - x) (y^2 - y) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x,y) \mathrm{d}x \mathrm{d}y \right| \\ &\leq \left| \frac{1}{4} \iint_D \left| (x^2 - x) (y^2 - y) \frac{\partial^4 f}{\partial x^2 \partial y^2}(x,y) \right| \mathrm{d}x \mathrm{d}y \\ &\leq \left| \frac{b}{4} \int_0^1 (x - x^2) \mathrm{d}x \int_0^1 (y - y^2) \mathrm{d}y \right| \\ &= \left| \frac{b}{144} \right| \end{split}$$

第8章 曲线积分与曲面积分

习题 96. 设 3 维欧氏空间中的曲线 $L: \left\{ \begin{array}{l} x^2+y^2+z^2=a^2 \\ x+y+z=0 \end{array} \right.$, 其中 a>0 为常数。求第一型曲线 积分

$$I := \int_{L} x^{2} ds$$

解. 首先注意到积分区域是在平面 x+y+z=0 上的以原点 (0,0,0) 为圆心,半径为 a 的圆周。再注意到积分区域关于 x,y,z 的对称性,由换元积分容易得到

$$\int_L x^2 \mathrm{d}s = \int_L y^2 \mathrm{d}s = \int_L z^2 \mathrm{d}s$$

因此有

$$\int_{L} x^{2} ds = \frac{1}{3} \int_{L} (x^{2} + y^{2} + z^{2}) ds = \frac{a^{2}}{3} \int_{L} 1 ds = \frac{a^{2}}{3} \cdot 2\pi a = \frac{2}{3} \pi a^{3}$$

这种对称性方法十分巧妙,大大简化计算。若没有想到对称性,直接用基础的"笨办法"求解也是可行的,如下:

*另*解. 我们暴力给出曲线 *L* 的参数方程,进而计算该曲线积分。注意到曲线 *L* 位于平面 *P* : x+y+z=0 上,而该平面有法向量 $\mathbf{n}=(1,1,1)$. 再注意到向量 $\mathbf{u}:=(1,-1,0)$ 位于平面 *P*,从而向量

$$\mathbf{v} := \mathbf{n} \times \mathbf{u} = (1, 1, -2)$$

也位于平面 P, 并且与 \mathbf{u} 垂直。

又因为曲线 L 位于平面 P,且是以原点为圆心,半径 a 的圆周,记 L 上的点为 $\mathbf{r}=(x,y,z)$,则直接写出 L 的参数方程

$$\mathbf{r} = \frac{a}{\sqrt{2}}\mathbf{u}\sin\theta + \frac{a}{\sqrt{6}}\mathbf{v}\cos\theta \qquad \theta \in [0, 2\pi]$$

$$\iff \begin{cases} x = \frac{a}{\sqrt{2}}\sin\theta + \frac{a}{\sqrt{6}}\cos\theta \\ y = -\frac{a}{\sqrt{2}}\sin\theta + \frac{a}{\sqrt{6}}\cos\theta \\ z = -2\frac{a}{\sqrt{6}}\cos\theta \end{cases}$$

因此有

$$ds = \left| \frac{d\mathbf{r}}{d\theta} \right| d\theta = \left| \frac{a}{\sqrt{2}} \mathbf{u} \cos \theta + \frac{a}{\sqrt{6}} \mathbf{v} \sin \theta \right| d\theta = \sqrt{\frac{a^2}{2} |\mathbf{u}|^2 \cos^2 \theta + \frac{a^2}{6} |\mathbf{v}|^2 \sin^2 \theta} d\theta = a d\theta$$

$$\int_{L} x^{2} ds = \int_{0}^{2\pi} \left(\frac{a}{\sqrt{2}} \sin \theta + \frac{a}{\sqrt{6}} \cos \theta \right)^{2} \cdot a d\theta$$

$$= a^{3} \int_{0}^{2\pi} \left(\frac{1}{2} \sin^{2} \theta + \frac{1}{6} \cos^{2} \theta + \frac{1}{\sqrt{3}} \sin \theta \cos \theta \right) d\theta = \frac{2}{3} \pi a^{3}$$

习题 97. 设三维空间中的曲面 S 是圆柱面 $x^2+y^2=9$ 夹在平面 z=0 与平面 z=2 之间的部分,计算积分

$$\iint_{S} (x^2y + z^2) \mathrm{d}S$$

解. 容易写出曲面 S 的参数方程

$$\begin{cases} x = 3\cos u \\ y = 3\sin u \\ z = v \end{cases} (u, v) \in [0, 2\pi] \times [0, 2]$$

则面积元 $dS = \left| \frac{\partial \mathbf{r}}{\partial u} \times \frac{\partial \mathbf{r}}{\partial v} \right| du dv = 3 du dv$. 因此有

$$\iint_{S} (x^{2}y + z^{2}) dS = \iint_{[0 \times 2\pi] \times [0,2]} (27 \cos^{2} u \sin u + v^{2}) \cdot 3 du dv$$
$$= 162 \int_{0}^{2\pi} \cos^{2} u \sin u du + 6\pi \int_{0}^{2} v^{2} dv = 16\pi$$

事实上,由积分区域关于 xOz 平面的对称性,直接看出 $\iint_S x^2y dS = 0$,从而原积分 = $\iint_S z^2 dS = 2\pi \times 3 \int_0^2 z^2 dz = 16\pi$,可以口算出来。

习题 98. 设 \mathbb{R}^3 中的曲面 Σ 是球面 $x^2+y^2+z^2=a^2$ 在圆柱面 $x^2+y^2=ax$ 内部的部分。求 Σ 的面积。

解. 注意到曲面 Σ 关于 xOy 平面是对称的,并且 Σ 在 xOy 的上半部分 Σ^+ 具有参数表示

$$z(x,y) = \sqrt{a^2 - x^2 - y^2}$$
 $(x - \frac{a}{2})^2 + y^2 < \frac{a^2}{4}$

记向量 $\mathbf{r}(x,y) = (x,y,z) \in \mathbb{R}^3$ 为曲面 Σ^+ 上的一点,则 $\left\{ \begin{array}{l} \frac{\partial \mathbf{r}}{\partial x} = (1,0,-\frac{x}{z}) \\ \frac{\partial \mathbf{r}}{\partial y} = (0,1,-\frac{y}{z}) \end{array} \right.$,从而面积元

$$dS = \left\| \frac{\partial \mathbf{r}}{\partial x} \times \frac{\partial \mathbf{r}}{\partial y} \right\| dxdy = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dxdy$$

其中 $(x,y)\in D:=\left\{(x,y)\in\mathbb{R}^2\Big|(x-\frac{a}{2})^2+y^2<\frac{a^2}{4}\right\}$. 再考虑极坐标变换 $\left\{\begin{array}{l} x=r\cos\theta\\ y=r\sin\theta \end{array}\right.$,则此变换将区域 D 变为 $D'=\left\{(r,\theta)\in\mathbb{R}^2\Big|\theta\in(-\frac{\pi}{2},\frac{\pi}{2}),r\in(0,a\cos\theta)\right\}$. 从而

$$\Sigma 的面积 = 2 \iint_{\Sigma^{+}} dS = 2 \iint_{D} \frac{a}{\sqrt{a^{2} - x^{2} - y^{2}}} dx dy$$

$$= 2a \iint_{D'} \frac{r}{\sqrt{a^{2} - r^{2}}} dr d\theta = 4a \int_{0}^{\frac{\pi}{2}} d\theta \int_{0}^{a \cos \theta} \frac{r}{\sqrt{a^{2} - r^{2}}} dr$$

$$= 4a^{2} \int_{0}^{\frac{\pi}{2}} (1 - \sin \theta) d\theta = 4a^{2} (\frac{\pi}{2} - 1)$$

习题 99. 求球面 $x^2 + y^2 + z^2 = 1$ 含在柱面 $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$ 内的部分的面积 S.

解. 考虑平面第一象限内的区域 $D:=\left\{(x,y)\in\mathbb{R}^2\left|x,y\geq 0,\,x^{\frac{2}{3}}+y^{\frac{2}{3}}<1\right\}$,则注意到题目中曲面的对称性,类似上一题,

$$S = 8 \iint_D \frac{1}{\sqrt{1 - x^2 - y^2}} \mathrm{d}x \mathrm{d}y$$

考虑变量代换 $\begin{cases} x = r\cos^3\theta \\ y = r\sin^3\theta \end{cases}$,则区域 D 变为 $D' := \left\{ (r,\theta) \in \mathbb{R}^2 \middle| r \in (0,1), \theta \in (0,\frac{\pi}{2}) \right\}$,并且该变换的 Jacobian 为

$$\frac{\partial(x,y)}{\partial(r,\theta)} = \det\begin{pmatrix} \cos^3\theta & -3r\cos^2\theta\sin\theta\\ \sin^3\theta & 3r\sin^2\theta\cos\theta \end{pmatrix} = 3r\sin^2\theta\cos^2\theta$$

使用此变换,可得

$$S = 8 \int_0^{\frac{\pi}{2}} d\theta \int_0^1 \frac{1}{\sqrt{1 - r^2(\cos^6\theta + \sin^6\theta)}} \cdot 3r \sin^2\theta \cos^2\theta dr$$

$$= 24 \int_0^{\frac{\pi}{2}} \cos^2\theta \sin^2\theta d\theta \int_0^1 \frac{r dr}{\sqrt{1 - r^2(\cos^6\theta + \sin^6\theta)}}$$

$$= 12 \int_0^{\frac{\pi}{2}} \cos^2\theta \sin^2\theta d\theta \cdot \frac{du}{\sqrt{1 - u(\cos^6\theta + \sin^6\theta)}}$$

$$= 12 \int_0^{\frac{\pi}{2}} \cos^2\theta \sin^2\theta d\theta \cdot \frac{2}{\cos^6\theta + \sin^6\theta} \left(1 - \sqrt{1 - (\cos^6\theta + \sin^6\theta)}\right)$$

再注意到

$$\cos^{6}\theta + \sin^{6}\theta = (\cos^{2}\theta + \sin^{2}\theta)(\cos^{4}\theta - \cos^{2}\theta\sin^{2}\theta + \sin^{4}\theta)$$
$$= (\cos^{2}\theta + \sin^{2}\theta)^{2} - 3\cos^{2}\theta\sin^{2}\theta$$
$$= 1 - 3\cos^{2}\theta\sin^{2}\theta$$

继续整理原式,得到

$$S = 24 \int_{0}^{\frac{\pi}{2}} \frac{\cos^{2}\theta \sin^{2}\theta}{1 - 3\cos^{2}\theta \sin^{2}\theta} \left(1 - \sqrt{3}\cos\theta \sin\theta\right) d\theta$$

$$= 12 \int_{0}^{\pi} \frac{\frac{1}{4}\sin^{2}\theta}{1 - \frac{3}{4}\sin^{2}\theta} \left(1 - \frac{\sqrt{3}}{2}\sin\theta\right) d\theta$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \left(\frac{1}{4 - 3\sin^{2}\theta} - \frac{1}{4}\right) \left(1 - \frac{\sqrt{3}}{2}\sin\theta\right) d\theta$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \frac{1}{4 - 3\sin^{2}\theta} d\theta - 16\sqrt{3} \int_{0}^{\frac{\pi}{2}} \frac{\sin\theta d\theta}{4 - 3\sin^{2}\theta} - 8 \int_{0}^{\frac{\pi}{2}} d\theta + 4\sqrt{3} \int_{0}^{\frac{\pi}{2}} \sin\theta d\theta$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + 3\cos^{2}\theta} d\theta - 16\sqrt{3} \int_{0}^{\frac{\pi}{2}} \frac{-d(\cos\theta)}{1 + 3\cos^{2}\theta} - 4\pi + 4\sqrt{3}$$

$$= 32 \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + 3\cos^{2}\theta} d\theta - 16\sqrt{3} \int_{0}^{1} \frac{1}{1 + 3t^{2}} dt - 4\pi + 4\sqrt{3}$$

再注意到

$$\int_0^1 \frac{1}{1+3t^2} dt \xrightarrow{u=\sqrt{3}t} \frac{1}{\sqrt{3}} \int_0^{\sqrt{3}} \frac{du}{1+u^2} = \frac{1}{\sqrt{3}} \arctan \sqrt{3} = \frac{\pi}{3\sqrt{3}}$$

$$\int_0^{\frac{\pi}{2}} \frac{1}{1+3\cos^2\theta} d\theta = \int_0^{\frac{\pi}{2}} \frac{2}{5+3\cos 2\theta} d\theta = \int_0^{\pi} \frac{d\theta}{5+3\cos \theta} = \int_0^{+\infty} \frac{1}{5+3\frac{1-t^2}{1+t^2}} \cdot \frac{2}{1+t^2} dt$$

$$= \int_0^{+\infty} \frac{\mathrm{d}t}{t^2 + 4} = \frac{\pi}{4}$$

代入原式,即可得到

$$S = 32 \cdot \frac{\pi}{4} - 16\sqrt{3} \cdot \frac{\pi}{3\sqrt{3}} - 4\pi + 4\sqrt{3} = 4(\sqrt{3} - \frac{\pi}{3})$$

习题 100. 设 Σ 为椭球面 $\frac{x^2}{2}+\frac{y^2}{2}+z^2=1$ 的上半部分。对于曲面 Σ 上的点 p=(x,y,z),记 Π_p 为曲面 Σ 在点 p 处的切平面,再记 $\rho(p)=\rho(x,y,z)$ 为原点到平面 Π_p 的距离。试计算曲面积分

$$\iint_{\Sigma} \frac{z}{\rho(x,y,z)} \mathrm{d}S$$

证明. 对于 $p_0=(x_0,y_0,z_0)\in \Sigma$,容易计算出切平面 Π_{p_0} 的方程为 $x_0x+y_0y+2z_0z=2$,因此

$$\rho(\mathbf{p}_0) = \frac{2}{\sqrt{x_0^2 + y_0^2 + (2z_0)^2}} = \frac{\sqrt{2}}{\sqrt{1 + z_0^2}}$$

考虑曲面 Σ 的参数表示 $\begin{cases} x = \sqrt{2}\cos\varphi\cos\theta \\ y = \sqrt{2}\cos\varphi\sin\theta \text{ , } \\ x = \sin\varphi \end{cases}$,其中 $(\theta,\varphi) \in [0,2\pi] \times [0,\frac{\pi}{2}]$ 则容易验证 $z = \sin\varphi$

切向量 $\frac{\partial p}{\partial \theta}$ 与 $\frac{\partial p}{\partial \varphi}$ 垂直,并且 $\left\|\frac{\partial p}{\partial \theta}\right\| = \sqrt{2}\cos\varphi$, $\left\|\frac{\partial p}{\partial \varphi}\right\| = \sqrt{1+\sin^2\varphi}$. 从而面积元 $\mathrm{d}S = \sqrt{2}\cos\varphi\sqrt{1+\sin^2\varphi}\,\mathrm{d}\theta\mathrm{d}\varphi$. 从而

$$\iint_{\Sigma} \frac{z}{\rho(x,y,z)} dS = \int_{0}^{2\pi} d\theta \int_{0}^{\frac{\pi}{2}} z \frac{\sqrt{1+z^{2}}}{\sqrt{2}} \cdot \sqrt{2} \cos \varphi \sqrt{1+\sin^{2} \varphi} d\varphi
= 2\pi \int_{0}^{\frac{\pi}{2}} \sin \varphi \cos \varphi (1+\sin^{2} \varphi) d\varphi = 2\pi \int_{0}^{1} t (1+t^{2}) dt = \frac{3}{2}\pi$$

习题 101. 设 Σ 为三维空间中质量分布均匀的曲面, 表达式为

$$x^{2} + y^{2} + z^{2} = a^{2}$$
 $(x, y, z \ge 0, x + y \le a)$

其中 a > 0 为常数。求 Σ 的重心的坐标。

解. 设 Σ 的重心坐标为 (x_0, y_0, z_0) . 由曲面 Σ 的对称性,容易看出 $x_0 = y_0$. 注意曲面 Σ 的参数表示 $z(x,y) = \sqrt{a^2 - x^2 - y^2}$,其中 $(x,y) \in \Delta := \left\{ (x,y) \in \mathbb{R}^2 \middle| x,y \geq 0, x + y \leq a \right\}$. 容易求出 Σ 在此参数下的面积元 $dS = \frac{a}{\sqrt{a^2 - x^2 - y^2}} dx dy$. 从而有

$$\begin{split} \iint_{\Sigma} \mathrm{d}S &= a \iint_{\triangle} \frac{\mathrm{d}x \mathrm{d}y}{\sqrt{a^2 - x^2 - y^2}} = a \int_{0}^{a} \mathrm{d}y \int_{0}^{a - y} \frac{1}{\sqrt{a^2 - x^2 - y^2}} \mathrm{d}x \\ &= a \int_{0}^{a} \arcsin \sqrt{\frac{a - y}{a + y}} \mathrm{d}y \xrightarrow{\frac{u = \arcsin \sqrt{\frac{a - y}{a + y}}}{a^2 + y}} a^2 \int_{\frac{\pi}{2}}^{0} u \mathrm{d} \frac{\cos^2 u}{1 + \sin^2 u} \\ &= -a^2 \left(\frac{u \cos^2 u}{1 + \sin^2 u} \Big|_{0}^{\frac{\pi}{2}} - \int_{\frac{\pi}{2}}^{0} \frac{\cos^2 u}{1 + \sin^2 u} \mathrm{d}u \right) \\ &= a^2 \int_{0}^{\frac{\pi}{2}} \left(\frac{2}{1 + \sin^2 u} - 1 \right) \mathrm{d}u \xrightarrow{\frac{t = \tan u}{u}} - \frac{\pi}{2} a^2 + 2a^2 \int_{0}^{+\infty} \frac{1}{1 + \frac{t^2}{1 + t^2}} \cdot \frac{1}{1 + t^2} \mathrm{d}t \\ &= -\frac{\pi}{2} a^2 + a^2 \int_{0}^{+\infty} \frac{1}{t^2 + \frac{1}{2}} \mathrm{d}t = \frac{\sqrt{2} - 1}{2} \pi a^2 \\ \iint_{\Sigma} x \mathrm{d}S &= a \int_{0}^{a} \mathrm{d}y \int_{0}^{a - y} \frac{x}{\sqrt{a^2 - y^2 - x^2}} \mathrm{d}x = \frac{a}{2} \int_{0}^{a} \mathrm{d}y \int_{0}^{(a - y)^2} \frac{1}{\sqrt{a^2 - y^2 - t}} \mathrm{d}t \\ &= a \int_{0}^{a} \left(\sqrt{a^2 - y^2} - \sqrt{2y(a - y)} \right) \mathrm{d}y = \frac{2 - \sqrt{2}}{8} \pi a^3 \\ \iint_{\Sigma} z \mathrm{d}S &= \iint_{\Delta} \frac{a \sqrt{a^2 - x^2 - y^2}}{\sqrt{a^2 - x^2 - y^2}} \mathrm{d}x \mathrm{d}y = a \iint_{\Delta} \mathrm{d}x \mathrm{d}y = \frac{1}{2} a^3 \end{split}$$

因此 Σ 的重心的坐标 (x_0, y_0, z_0) 满足

$$x_0 = y_0 = \frac{\iint_{\Sigma} x dS}{\iint_{\Sigma} dS} = \frac{\sqrt{2}}{4}a$$

$$z_0 = \frac{\iint_{\Sigma} z dS}{\iint_{\Sigma} dS} = \frac{\sqrt{2} + 1}{\pi}a$$

习题 102. (Poisson 积分公式)

设单变量连续函数 $f: \mathbb{R} \to \mathbb{R}$, a,b,c 为不全为零的常数, 记 $\rho = \sqrt{a^2 + b^2 + c^2}$.

(1) 若 S 为三维空间中的单位球面 $x^2 + y^2 + z^2 = 1$, 证明如下的 **Poisson** 积分公式:

$$\iint_{S} f(ax + by + cz) dS = 2\pi \int_{-1}^{1} f(\rho t) dt$$

(2) 设 B 为三维空间中的单位球体 $x^2 + y^2 + z^2 \le 1$, 证明:

$$\iiint_B f\left(\frac{ax + by + cz}{\sqrt{x^2 + y^2 + z^2}}\right) dxdydz = \frac{2}{3}\pi \int_{-1}^1 f(\rho t)dt$$

证明. **(1)**令三阶矩阵 $A = \begin{pmatrix} \frac{a}{\rho} & \frac{b}{\rho} & \frac{c}{\rho} \\ * & * & * \\ * & * & * \end{pmatrix}$,其中适当选取实数 * 使得 A 为正交矩阵。考虑变量代换

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix} = A \begin{pmatrix} x \\ y \\ z \end{pmatrix}. 注意积分区域 S 的旋转对称性,易知$$

$$\iint_{S} f(ax + by + cz) dS = \iint_{S} f(\rho u) dS$$

之后将 $\mathbb{R}^3 = \{(u, v, w)\}$ 中的单位球面(仍记为 S)视为绕 u 轴的旋转曲面,从而由旋转曲面的积分公式,

$$\iint_{S} f(\rho u) dS = \int_{-1}^{1} f(\rho u) \cdot 2\pi \sqrt{1 - u^{2}} \sqrt{1 + \left(\frac{d}{du} \sqrt{1 - u^{2}}\right)^{2}} du = 2\pi \int_{-1}^{1} f(\rho u) du$$

(2)记
$$r := \sqrt{x^2 + y^2 + z^2}$$
,则

$$\iiint_B f\left(\frac{ax+by+cz}{\sqrt{x^2+y^2+z^2}}\right) dxdydz = \int_0^1 dr \iint_{x^2+y^2+z^2=r^2} f\left(\frac{ax+by+cz}{r}\right) dS$$

对于每个 $0 \le r \le 1$,考虑变量代换 $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = r \begin{pmatrix} u \\ v \\ w \end{pmatrix}$,再注意利用已证明的 (1),

原式 =
$$\int_0^1 dr \iint_{x^2+y^2+z^2=r^2} f\left(\frac{ax+by+cz}{r}\right) dS = \int_0^1 dr \iint_S f(au+bv+cw) \cdot r^2 dS$$

= $\int_0^1 r^2 dr \int_S f(au+bv+cw) dS = \frac{2}{3}\pi \int_{-1}^1 f(\rho u) du$

习题 103. 设平面曲线 $L = \{(x,y) \in \mathbb{R}^2 | x^2 + y^2 = a^2 \}$, 其中 a > 0 为常数,曲线 L 取顺时针定 向。计算积分:

$$\oint_L \sqrt{x^2 + y^2} dx + y(xy + \ln(x + \sqrt{x^2 + y^2})) dy$$

解. 注意到在曲线 L 上,有 $\sqrt{x^2+y^2}=a$,从而

原式 =
$$\oint_L a dx + y(xy + \ln(x+a)) dy = \oint_L (xy^2 + y \ln(x+a)) dy$$

注意积分区域的对称性, $\oint_L y \ln(x+a) \mathrm{d}y = 0$, 从而原式 $= \oint_L xy^2 \mathrm{d}x$. 注意曲线 L 的定向,取 L 的定向相容的参数表示 $\left\{ egin{array}{l} x = a \sin \theta \\ y = a \cos \theta \end{array} \right.$ 从而

原式 =
$$\int_0^{2\pi} a^3 \sin\theta \cos^2\theta (-a\sin\theta) d\theta = -4a^4 \int_0^{\frac{\pi}{2}} \sin^2\theta \cos^2\theta d\theta = -\frac{a^4\pi}{4}$$

习题 104. 考虑 \mathbb{R}^3 中的定向曲面 Σ 为区域

$$\Omega := \left\{ (x, y, z) \in \mathbb{R}^3 \middle| x > \sqrt{y^2 + z^2}, 1 < x^2 + y^2 + z^2 < 2 \right\}$$

的外表面, f(x) 为 \mathbb{R} 上的可微函数, 计算曲面积分

$$\iint_{\Sigma} x^3 dy dz + [y^3 + f(yz)] dz dx + [z^3 + f(yz)] dx dy$$

解. 使用 Gauss 公式,有

原式 =
$$\iint_{\Omega} \left(\frac{\partial}{\partial x} (x^3) + \frac{\partial}{\partial y} [y^3 + f(yz)] + \frac{\partial}{\partial z} [z^3 + f(yz)] \right) dxdydz$$
=
$$3 \iiint_{\Omega} (x^2 + y^2 + z^2) dxdydz + \iiint_{\Omega} (y+z)f'(yz)dxdydz$$

考虑变换 $\begin{cases} x' = x \\ y' = -y \end{cases}$,注意积分区域 Ω 关于此变换对称,利用如此对称性易知 z' = -z

$$\iiint_{\Omega} (y+z)f'(yz)\mathrm{d}x\mathrm{d}y\mathrm{d}z = 0$$

 $(0,\frac{\pi}{4}), \varphi \in (0,2\pi)$, 从而有

原式 =
$$3\iiint_{\Omega} (x^2 + y^2 + z^2) dx dy dz = 3\iiint_{\Omega'} r^2 \cdot r^2 \sin\theta dr d\theta d\varphi$$

= $3\int_{1}^{\sqrt{2}} r^4 dr \int_{0}^{\frac{\pi}{4}} \sin\theta d\theta \int_{0}^{2\pi} d\varphi = \frac{3}{5} (4\sqrt{2} - 1)(1 - \frac{\sqrt{2}}{2}) \cdot 2\pi = \frac{3\pi}{5} (9\sqrt{2} - 10)$

习题 105. 设 S 为圆柱面 $x^2+y^2=4$ 介于平面 x+z=2 和 z=0 之间部分的外侧,试计算曲面 积分

$$\iint_{S} -y dz dx + (z+1) dx dy$$

解. 注意到曲面 S 的法向量始终与 xOy 平面平行,从而由第二型曲面积分的几何意义容易知道

$$\iint_{S} (z+1) \mathrm{d}x \mathrm{d}y = 0$$

再注意曲面 S 关于 xOz 平面的对称性,容易知道

$$\iint_{S} -y dz dx = 2 \iint_{S'} -y dz dx$$

其中 S' 是曲面 S 位于 $\left\{(x,y,z)\middle|y\geq 0\right\}$ 的部分。考虑 S' 的与其定向相容的参数表示 (θ,z) : $\begin{cases} x = 2\cos\theta \\ y = 2\sin\theta \text{ , 其中 } \theta \in [0,\pi], 0 \le z \le 2 - 2\cos\theta. \text{ 因此有} \end{cases}$

$$z=z$$

$$\iint_{S} -y dz dx + (z+1) dx dy = 2 \iint_{S'} -y dz dx = -2 \iint_{S'} 2 \sin \theta dz \wedge (-2 \sin \theta d\theta)$$
$$= -8 \int_{0}^{\pi} \sin^{2} \theta d\theta \int_{0}^{2-2 \cos \theta} dz$$
$$= -16 \int_{0}^{\pi} \sin^{2} \theta (1 - \cos \theta) d\theta = -8\pi$$