Introductory Microeconomics

Tutorial 7 Nhan La

Production functions

• Definitions and expressions:

Total Product: TP(L) = Q(L)

Marginal Product: $MP(L) = \frac{\partial Q(L)}{\partial L}$

Short run total cost: SRTC(Q) = FC + VC(Q)

Short run marginal cost: $SRMC(Q) = \frac{\partial SRTC(Q)}{\partial Q} = \frac{\partial VC(Q)}{\partial Q}$

a/ Adrian's Pizzeria

Workers	TP	MP	FC	VC	TC	MC TC
		$(TP_{i+1} - TP_i)$			(FC + VC)	$\left(\frac{TC_{i+1} - TC_i}{MP}\right)$
0	0		\$100	\$0	\$100	
1	50	50	\$100	\$50	\$150	\$50/50=1
2	90	40	\$100	\$100	\$200	\$50/40=1.25
3	120	30	\$100	\$150	\$250	\$50/30=1.66
4	140	20	\$100	\$200	\$300	\$50/20=2.5
5	150	10	\$100	\$250	\$350	\$50/10=5

a/ Yvonne's Pizza Place

Workers	TP	MP	FC	VC	TC	MC
		$(TP_{i+1} - TP_i)$			(FC + VC)	$\left(\frac{TC_{i+1} - TC_i}{MP}\right)$
0	0		\$100	\$0	\$100	
1	50	50	\$100	\$50	\$150	\$50/50=1
2	100	50	\$100	\$100	\$200	\$50/50=1
3	150	50	\$100	\$150	\$250	\$50/50=1
4	200	50	\$100	\$200	\$300	\$50/50=1
5	250	50	\$100	\$250	\$350	\$50/50=1

b/

Adrian: Declining gradient of TP, negative gradient of MP

Yvonne: Constant gradient of TP, constant MP

d/ Adrian: Increasing gradient SRTC and SRMC

Yvonne: Constant gradient SRTC, constant SRMC

a/

	FC	VC	SRMC	SRTC	SRATC
2 trucks					
20 orders	6,000	2,000	100	8,000	400
40 orders	6,000	5,000	150	11,000	275
60 orders	6,000	12,000	350	18,000	300
3 trucks					
20 orders	7,000	1,800	90	8,800	440
40 orders	7,000	3,800	100	10,800	270
60 orders	7,000	10,800	350	17,800	297
4 trucks					
20 orders	8,000	1,200	60	9,200	460
40 orders	8,000	3,600	120	11,600	290
60 orders	8,000	8,400	240	16,400	273

b/ SRMC increases with number of outputs. Diminishing marginal product zone.

c/ For each number of orders, use the trucks that minimise ATC.

Orders	Trucks
20	2
40	3
60	4

d/ Diminishing LRATC at low orders:

- Economy of scale
- Specialisation
- Market wider and cost effective

Increasing LRATC at large orders

Management and coordination

$$TC = 10 + 5Q - Q^{2} + 0.2Q^{3}$$

$$a/TFC = 10$$

$$TVC = 5Q - Q^{2} + 0.2Q^{3}$$

$$b/AFC = \frac{TFC}{Q} = \frac{10}{Q};$$

$$AVC = \frac{TVC}{Q} = 5 - Q + 0.2Q^{2}$$

$$ATC = AFC + AVC = \frac{10}{Q} + 5 - Q + 0.2Q^{2}$$

$$MC = \frac{\partial TC}{\partial Q} = 5 - 2Q + 0.6Q^{2}$$

c/ When AVC is at minimum:

$$AVC = \frac{TVC}{Q} = 5 - Q + 0.2Q^{2}$$

$$\frac{\partial AVC}{\partial Q} = 0 \Leftrightarrow -1 + 0.4Q = 0 \Leftrightarrow Q = 2.5$$

$$\Rightarrow \min(AVC) = 5 - 2.5 + 0.2 \times 2.5^{2} = 3.75$$

It turns out the minimum point on AVC lies on MC:

$$MC = \frac{\partial TC}{\partial Q} = 5 - 2Q + 0.6Q^2$$

For Q = 2.5:

$$MC = 5 - 2 \times 2.5 + 0.6 \times 2.5^2 = 3.75 = \min(AVC)$$

d/ When MC < AC, extra products pull AC down When MC > AC, extra products pull AC up When MC = AC, extra products have no effect on AC

d/ Mathematical proof

$$MC = 5 - 2Q + 0.6Q^2$$

$$ATC = \frac{10}{Q} + 5 - Q + 0.2Q^2$$

At minimum
$$ATC$$
: $\frac{\partial ATC}{\partial Q} = \frac{10}{Q^2} - 1 + 0.4Q = 0$

With that condition, we can show the minimum point on ATC $(Q, \frac{10}{o} + 5 - Q + 0.2Q^2)$ satisfies (or lies on) MC.