Final Assessment Test - November 2016

 Engineering Physics Course: PHY1001

Class NBR(s): 7341 / 7349 / 7357 / 8719

Time: Three Hours

Slot: C2+TC2

Max. Marks: 100

Mass of the electron, m_e =9.109×10⁻³¹kg; Planck's constant, h=6.626×10⁻³⁴J s; Velocity of light, c=3×10⁸ m/s; Boltzmann's constant, k_B =1.38×10⁻²³ J K⁻¹; Permittivity of free space, ϵ_0 =8.85×10⁻¹²farad/m and Permeability of free space, $\mu_0=4\pi\times10^{-7}$ N A⁻²

Answer any TEN Questions (10 X 10 = 100 Marks)

1	_) Derive the expression for the change in the wavelength of radiation, when it is scattered by matte	r. [7]
ال) Determine the wavelength associated with an electron having energy 100 eV.	[3]
تر		Describe in detail the Davisson and Germer experiment for the confirmation of the de-Broglie hypothesis.	[10]
į	3	pply the schrodinger wave equation for one dimensional potential well problem.	[10]
/		biscuss the classification and applications of carbon nanotube.	[10]
•	8.	a) Derive Einstein's relation for stimulated emission and hence, explain the stimulated emission.	[7]
		b) Describe how transitions occur in Nd:YAG laser.	[3]
	6.	a) Calculate the efficiency of a He-Ne laser, if it produces an output of 5 mW and it is operated with a current of 10 mA at 3 kV.	[5]
		b) A laser beam emits an output power of 1.0 mW. If it is focused as a spot having a diameter of 1 micrometer, calculate the intensity of the laser beam.	[5]
	7.	a) Using Gauss divergence theorem and Stokes theorem derive the integral form of Gauss law of	[5]
		electricity and Faraday's law of induction from differential form.	
		b) Calculate the velocity of an electromagnetic wave which is travelling through water having permeability of 1.256×10 ⁻⁶ H/m and permittivity 710 ×10 ⁻¹² C ² N ⁻¹ m ⁻² .	[5]
	<u>8</u> .	Define group velocity and group index. Derive the expression to determine group velocity and group index.	[10]
	بور	 a) Describe the basic principle of optical fibers. Derive the expression for acceptance angle and numerical aperture. 	[7]
		b) A silica optical fiber with a core considered by ray theory analysis has a core refractive index of 1.50 and a cladding refractive index of 1.47. Determine the critical angle at the core-cladding interface and the numerical aperture (NA) for the fiber.	[3]
	10.	Discuss the working of fiber optical communication system with a block diagram.	[10]
	ب11ر	What is the length contraction in special theory of relativity?. Deduce an expression for length contraction, in regard to the interval between two lengths measured from two different inertial frames.	[6]
		b) A certain particle called micro mesons has a life time 2 x 10 ⁻⁶ s and velocity 2.994 x 10 ¹⁰ cm/s. We distance would be travelled without relativistic effects?	nat [4]
	12.	 A particle with a mean proper life time of 2 micro sec moves through the laboratory with a spee 0.9 c. Calculate its life time as measured by an observer in the laboratory. 	d of [5]
		b) Write a note on simultaneity.	[5]
		· Bartina Bart	