A Collection of Benchmark Datasets for Systematic Evaluations of Machine Learning on the Semantic Web

Petar Ristoski^{1(⊠)}, Gerben Klaas Dirk de Vries², and Heiko Paulheim¹

¹ Research Group Data and Web Science, University of Mannheim, Mannheim, Germany {petar.ristoski,heiko}@informatik.uni-mannheim.de ² WizeNoze, Amsterdam, The Netherlands g.k.d.devries@outlook.com

Abstract. In the recent years, several approaches for machine learning on the Semantic Web have been proposed. However, no extensive comparisons between those approaches have been undertaken, in particular due to a lack of publicly available, acknowledged benchmark datasets. In this paper, we present a collection of 22 benchmark datasets of different sizes. Such a collection of datasets can be used to conduct quantitative performance testing and systematic comparisons of approaches.

Keywords: Linked Open Data \cdot Machine learning \cdot Datasets \cdot Benchmarking

Resource type: Datasets

Permanent URL: http://w3id.org/sw4ml-datasets

1 Introduction

In the recent years, applying machine learning to Semantic Web data has drawn a lot of attention. Many approaches have been proposed for different tasks at hand, ranging from reformulating machine learning problems on the Semantic Web as traditional, propositional machine learning tasks to developing entirely novel algorithms. However, systematic comparative evaluations of different approaches are scarce; approaches are rather evaluated on a handful of often project-specific datasets, and compared to a baseline and/or one or two other systems.

In contrast, evaluations in the machine learning area are often more rigorous. Approaches are usually compared using a larger number of standard datasets, most often from the UCI repository¹. With a larger set of datasets used in the evaluation, statements about statistical significance are possible as well [3].

At the same time, collections of benchmark datasets have become quite well accepted in other areas of Semantic Web research. Notable examples include the

DOI: 10.1007/978-3-319-46547-0_20

¹ http://archive.ics.uci.edu/ml/.

[©] Springer International Publishing AG 2016

P. Groth et al. (Eds.): ISWC 2016, Part II, LNCS 9982, pp. 186-194, 2016.

Ontology Alignment Evaluation Initiative (OAEI) for ontology matching², the Berlin SPARQL Benchmark³ for triple store performance, the Lehigh University Benchmark (LUBM)⁴ for reasoning, or the Question Answering over Linked Data (QALD) dataset⁵ for natural language query systems.

In this paper, we introduce a collection of datasets for benchmarking machine learning approaches for the Semantic Web. Those datasets are either existing RDF datasets, or external classification or regression problems, for which the instances have been enriched with links to the Linked Open Data cloud [14]. Furthermore, by varying the number of instances for a dataset, scalability evaluations are also made possible.

2 Related Work

Recent surveys on the use of Semantic Web for machine learning organize the proposed approaches in several categories, i.e., approaches that use Semantic Web data for machine learning [16], approaches that perform machine learning on the Semantic Web [11], and approaches that use machine learning techniques to create and improve Semantic Web data [8,16]. Furthermore, there are some challenges, like the Linked Data Mining Challenge⁶ or the Semantic-Web enabled Recommender Systems Challenge⁷, which usually focus on only a few datasets and a very specific problem setting.

3 Datasets

Our dataset collection has three categories: (i) existing datasets that are commonly used in machine learning experiments, (ii) datasets that were generated from official observations, and (iii) datasets generated from existing RDF datasets. Each of the datasets in the first two categories are initially linked to DBpedia⁸. This has two main reasons, (1) DBpedia being a cross-domain knowledge base usable in datasets from very different topical domains, and (2) tools like DBpedia Lookup and DBpedia Spotlight making it easy to link external datasets to DBpedia. However, DBpedia can be seen as an entry point to the Web of Linked Data, with many datasets linking to and from DBpedia. In fact, we use the RapidMiner Linked Open Data extension [9], to retrieve external links for each entity to YAGO⁹ and Wikidata¹⁰. Such links could be exploited

```
<sup>2</sup> http://oaei.ontologymatching.org/.
<sup>3</sup> http://wifo5-03.informatik.uni-mannheim.de/bizer/berlinsparqlbenchmark/.
<sup>4</sup> http://swat.cse.lehigh.edu/projects/lubm/.
<sup>5</sup> http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/.
<sup>6</sup> http://knowalod2016.informatik.uni-mannheim.de/en/
  linked-data-mining-challenge/.
^7 http://challenges.2014.eswc-conferences.org/index.php/RecSys.
<sup>8</sup> http://dbpedia.org.
```

⁹ http://yago-knowledge.org/.

¹⁰ http://www.wikidata.org.

for systematic evaluation of the relevance of the data of different LOD dataset in different learning tasks.

In the dataset collection, there are four datasets that are commonly used for machine learning. For these datasets, we first enrich the instances with links to LOD datasets, and reuse the already defined target variable to perform machine learning experiments:

- The $Auto\ MPG\ dataset^{11}\ captures\ different\ characteristics\ of\ cars,\ and\ the\ target\ is\ to\ predict\ the\ fuel\ consumption\ (MPG)\ as\ a\ regression\ task.$
- The AAUP (American Association of University Professors) dataset contains a list of universities, including eight target variables describing the salary of different staff at the universities¹². We use the average salary as a target variable both for regression and classification, discretizing the target variable into "high", "medium" and "low", using equal frequency binning.
- The Auto 93 dataset¹³ captures different characteristics of cars, and the target is to predict the price of the vehicles as a regression task.
- The Zoo dataset captures different characteristics of animals, and the target is to predict the type of the animals as a classification task.

For those datasets, cars, universities, and animals are linked to DBpedia based on their name.

The second category of datasets contains a list of datasets where the target variable is an observation from different real-world domains, as captured by official sources. Again, the instances were enriched with links to LOD datasets. There are thirteen datasets in this category:

- The Forbes dataset contains a list of companies including several features of the companies, which was generated from the Forbes list of leading companies 2015¹⁴. The target is to predict the company's market value as a classification and regression task. To use it for the task of classification we discretize the target variable into "high", "medium", and "low", using equal frequency binning.
- The *Cities* dataset contains a list of cities and their quality of living, as captured by Mercer [7]. We use the dataset both for regression and classification.
- The *Endangered Species* dataset classifies animals into endangered species 15.
- The Facebook Movies dataset contains a list of movies and the number of Facebook likes for each movie¹⁶. We first selected 10,000 movies from DBpedia, which were then linked to the corresponding Facebook page, based on the movie's name and the director. The final dataset contains 1,600 movies, which was created by first ordering the list of movies based on the number of Facebook likes, and then selecting the top 800 movies and the bottom 800 movies. We use the dataset for regression and classification.

¹¹ http://archive.ics.uci.edu/ml/datasets/Auto+MPG.

¹² http://www.amstat.org/publications/jse/jse_data_archive.htm.

¹³ http://www.amstat.org/publications/jse/v1n1/datasets.lock.html.

¹⁴ http://www.forbes.com/global2000/list/.

¹⁵ http://a-z-animals.com/.

¹⁶ We use the Facebook Graph API: https://developers.facebook.com/docs/graph-api.

- Similarly, the Facebook Books dataset contains a list of books and the number of Facebook likes. Each book was linked to the corresponding Facebook page using the book's title and the book's author. Again, we selected the top 800 books and the bottom 800 books, based on the number of Facebook likes.
- The *Metacritic Movies* dataset is retrieved from Metacritic.com¹⁷, which contains an average rating of all time reviews for a list of movies [12]. The initial dataset contained around 10,000 movies, from which we selected 1,000 movies from the top of the list, and 1,000 movies from the bottom of the list. We use the dataset both for regression and classification.
- Similarly, the *Metacritic Albums* dataset is retrieved from Metacritic.com¹⁸, which contains an average rating of all time reviews for a list of albums [13].
- The HIV Deaths Country dataset contains a list of countries with the number of deaths caused by HIV, as captured by the World Health Organization¹⁹.
 We use the dataset both for regression and classification.
- Similarly, the *Traffic Accidents Deaths Country* dataset contains a list of countries with the number of deaths caused by traffic accidents²⁰.
- The Energy Savings Country dataset contains a list of countries with the total amount of energy savings of primary energy in 2010²¹, which was downloaded from WorldBank²². We use the dataset both for regression and classification.
- Similarly, the Inflation Country dataset contains a list of countries with the inflation rate for 2011²³.
- The Scientific Journals Country dataset contains a list of countries with a number of scientific and technical journal articles published in 2011²⁴.
- The *Unemployment French Region* dataset contains a list of regions in France with the unemployment rate, used in the SemStats 2013 challenge [10].

Again, for those datasets, the instances (cities, countries, etc.) are linked to DBpedia. For datasets which are used for classification and regression, the regression target was discretized using equal frequency binning, usually into a high and a low class.

The third, and final, category contains datasets that were generated from existing RDF datasets, where the value of a certain property is used as a classification target. There are five datasets in this category:

 The Drug-Food Interaction dataset contains a list of drug-recipe pairs and their interaction, i.e., "negative" and "neutral" [6]. The dataset was retrieved from FinkiLOD²⁵. Furthermore, each drug is linked to DrugBank²⁶. We drew

http://www.metacritic.com/browse/movies/score/metascore/all.
http://www.metacritic.com/browse/albums/score/metascore/all.
http://apps.who.int/gho/data/view.main.HIV1510.
http://apps.who.int/gho/data/view.main.51310.
http://data.worldbank.org/indicator/10.1_ENERGY.SAVINGS.
http://www.worldbank.org/.
http://data.worldbank.org/indicator/NY.GDP.DEFL.KD.ZG.
http://data.worldbank.org/indicator/IP.JRN.ARTC.SC.
http://data.worldbank.org/indicator/IP.JRN.ARTC.SC.
http://linkeddata.finki.ukim.mk/.
http://wifo5-03.informatik.uni-mannheim.de/drugbank/.

a stratified random sample of 2,000 instances from the complete dataset. When generating the features, we ignore the foodInteraction property in DrugBank, since it highly correlates with the target variable.

- The AIFB dataset describes the AIFB research institute in terms of its staff, research group, and publications. In [1] the dataset was first used to predict the affiliation (i.e., research group) for people in the dataset. The dataset contains 178 members of a research group, however the smallest group contains only 4 people, which is removed from the dataset, leaving 4 classes. Also, we remove the employs relation, which is the inverse of the affiliation relation.
- The AM dataset contains information about artifacts in the Amsterdam Museum [2]. Each artifact in the dataset is linked to other artifacts and details about its production, material, and content. It also has an artifact category, which serves as a prediction target. We have drawn a stratified random sample of 1,000 instances from the complete dataset. We also removed the material relation, since it highly correlates with the artifact category.
- The MUTAG dataset is distributed as an example dataset for the DL-Learner toolkit²⁷. It contains information about complex molecules that are potentially carcinogenic, which is given by the isMutagenic property.
- The BGS dataset was created by the British Geological Survey and describes geological measurements in Great Britain²⁸. It was used in [17] to predict the lithogenesis property of named rock units. The dataset contains 146 named rock units with a lithogenesis, from which we use the two largest classes.

An overview of the datasets is given in Tables 1, 2, and 3. For each dataset, we depict the number of instances, the machine learning tasks in which the dataset is used (C stands for classification and R stands for regression), the source of the dataset, and the LOD datasets to which the dataset is linked. For each dataset, we depict basic statistics of the properties of the LOD datasets, i.e., average, median, maximum and minimum number of types, categories, outgoing relations (rel out), incoming relations (rel in), outgoing relations including values (rel-vals out) and incoming relations including values (rel-vals in). The datasets, as well as a detailed description, a link quality evaluation, and licensing information, can be found online²⁹.

From the given statistics, we can infer the following observations: (i) DBpedia contains significantly less *owl:sameAs* links to YAGO, compared to Wikidata; (ii) DBpedia provides the highest number of types and categories on average per entity; (iii) Wikidata contains the highest number of outgoing and incoming relations for most of the datasets; (iv) YAGO contains the highest number of outgoing and incoming relations values for most of the datasets.

²⁷ http://dl-learner.org.

²⁸ http://data.bgs.ac.uk/.

²⁹ http://w3id.org/sw4ml-datasets.

 Table 1. Datasets statistics

	Щ.	0	0	က	0	_	0	2	4	က	2	3	0	0	_	0	0	5	П	0	_	0	0	П	0	0	_	П
	x min	6(00	10	000	00	7	64	00	22	99	<u>∞</u>	20	22	00	12	0.	0	22	42	00	165	110	00	0	20	00	54
in	max	509	28,418	755	2,488	10 28,418	31,777	9	28,418	E)	3,686	418 28,418	785	1,925	07 28,418	2,881	678 19,810	72,32	99,865	7	28,418	16	1	28,418	230		28,418	шJ
rel-vals in	med	23	09	21	23	110	20	18	46	19	24	28,418	92	4	107	œ	829	3,555 72,320	1,599	2	œ	4	2	43	12	3	10	_
re	avg	36.65	.24	59.33	62.18	.27	.92	22.60	-06:	19.91	.58		125.82	14.30	.37	30.14	22.	.34	.23	2.80	.50	7.47	4.96	.42	20.75	5.28	-06:	77.
		36	3,236.24	59	62	2,455.27	296.95	22	4,025.90	19	146.28	26,173.23	125	14	10,531.37	30	1,474.57	8,087.34	5,298.23	2	4,735.50	7	4	4,682.42	20	20	2,749.90	∞i
	mim	0	0	4	0	0	0	4	0	4	-	0	П	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0
ont	max	20	278	54	99	446	97	64	129	25	87	156	45	136	510	207	131	681	390	09	149	69	51	280	372	63	361	49
rel-vals out	avg med max	15	70	12	Π	89	21	11	59	11	Π	Η	21	10	27	10	13	214	88	_	22	16	12	47	53	6	32	12
rel	avg	16.50	77.08	13.92	11.74	85.83	22.38	14.35	59.33	11.23	13.26	5.39	18.20	10.44	34.42	12.69	16.26	222.54	105.29	7.04	24.37	16.41	11.65	55.01	56.37	8.92	40.27	11.73
_	mim	1	П	П	0		0	2	2	П	П	23	0	0	П	0	0	2	1 1	0	П	0	0	П	0	0	_	
		25	38	31	36	38	44		38	œ	×	38	27	27	38	52	89	138	108	~	38	17	12	38	22	-	38	6
rel in	med max	5	2	20	-1	3	-1	20	2	က	က	138	~	2	2	20	25	6	37	2	2	က		9	П	က	<u></u>	20
_	avg n	5.62	96.91	5.32	8.20	13.61	8.51	4.92	21.09	3.56	3.54	27.23	8.28	2.76	52.07	5.00	25.66	23.56	39.99	1.64	25.32	3.15	1.46	68.92	2.22	2.63	6.02	4.00
		3	0 16	6	0	0 13	0	8	0	6	8	0 127	8	7 0	0	0	0 2	0 23	936	0	0 28	0	0	0 26	0	2	0 16	0
	x min	7.	<u>∞</u>	01	28	12	83	22	-	56	15	00	22	27	21	37	38	32	53	20	13	22	21	17	20.	17	01	45
rel out	med max	13 2	6	18	70	- 2	8 62	12	0	17	6		35	1 2		16 13	3 61	15	67 15	1.	10	22	13	0.	48 10	12	6	8
re	avg me		92		28				37		52	33		15	22									39		_)2	34
		13.48	8.76	0 20.50	12.68	11.37	30.71	3 12.69	8.37	17.31	8.22	0.63	0 29.69	10.15	7.57	16.59	18.08	13.75	80.69	11.15	8.41	21.19	12.43	8.39	48.75	10.85	8.05	17.64
	x min	2	23	3	0		2	20) 81		4		2	2 (42	3) 9	15 (9	23 (2		0	27 () 92	_	
categories	d max	0 25	9	0	9 20	3 1		0 25	0	0	3 34	0	_	4 52	2	0	7 26	4	4	5	2	0	1 60	6	0	4	3 20	0
cate	avg med	1 0	56	50	000	=	00	3 1	1	2	1-	20	<u>-</u>	2:	25	27	∞	9	0:	25	3	_	0 1	.51	4	2	27	0
		11.20	9.5	0.2	9:38	3.31	0.88	11.13	9.09	0.12	4.67	0.15	0.67	4.87	2.35	0.22	86.9	4.46	3.40	5.15	2.03	0.01	12.50	6.5	0.04	4.27	3.22	0.00
	c min	5	0	3 0	0	0	0	5	<u> </u>	0	0	<u>~</u>	0	0	<u>~</u>	0	0	0		0	0	0	0	0	0	0	0 —	0
types	med max	1 46	2	_	8		2	1 43	3 19	2	1 26	13	2	9 62	33	7	5 53	30	2	(42	24	3	25	1 32	· -	36	25	
ty		0 3	9 16	20	0 28	0		6 31	0 16	0	-		0	2 19	20	2	8 35	9 19		8 20	7 10	0	0 27	8 14	_	2 19	_	6
	avg	29.70	13.99	1.05	24.40	10.49	2.13	28.76	13.80	1.00	8.61	0.74	1.00	14.77	7.28	0.82	31.28	16.66	2.11	19.08	8.37	1.00	24.90	12.08	1.01	17.92	7.22	0.99
	#links	371	331	371	096	888	959	93	80	93	101	œ		1,585	1,003	1,189	212	187	212	1,600	1,334	1,578	1,600	1,339	1,585	1,600	1,444	1,576
		DBpedia	09	idata	edia	YAGO	idata	DBpedia	05	Wikidata	edia	99	/ Wikidata	edia	YAGO	idata	edia	YAGO	idata	DBpedia	99	idata	edia	99	idata	edia	 05	Wikidata
	TOD	DBI	YAGO	Wiki	DBI	XA	Wik	DB_{I}	Ϋ́	Wik	DBI	YA	Wik	$\overline{\mathrm{DB}_{\mathrm{I}}}$	XA	Wik	DBI	ΧA	Wik	DBI	Ϋ́	Wik	DBI	ΧA	Wik	DBI	Ϋ́	Wik
Dataset	Task		ద		5	7/7 7/9	(c=3)		Ж		۲	َ د	(c=3)	D/ Q) (c	(C=2)	D/ G) (S	(c=3)	Facebook (c=2)		(C=2)	ر <u>م</u>	7 (1 ((5-2)	J/ a	2/2	(5=5)
Da	Source		UCI ML			JSE			闰			UCI ML			Forbes						book			book			critic	
	Sou		UCI			JS			JSE			UCI			For			Mercer			Face	(c=2) Wikidata 1,		Face			Metacritic Metacritic	
	Name		MDC	5		AAUP			Auto 93			Zoo			Forbes			Cities		25		ONS	D.D.	9	S I CS	, critic	action	SIIIIIS
	ž	~	< ≥	Ξ.		Ψ			Aut	-		Z	-		Fo			Ü	-	Ĺ	_ d	ă		7	M	V _c t.	ATLA	Ĭ

 Table 2. Datasets statistics

types	types	types	types	types			Ö	categories	ries.	L	re	rel out			rel in	in		re	rel-vals out	out		1	rel-vals	in	
اشتر ا	Task L	FOD #	#links	avg n	med max	ax min	avg	med n	med max min		avg me	med max	x min	avg		med max	mim	avg med		max	mim	avg	med	max	max min
,	_)Bpedia ;	2,000	24.38	27	45 0	11.87	Ξ	42	0 12	12.54	14 1	19 3	1.35	-	7	0	11.42	12	30	0	3.56	2	31	0
Metacritic 70	,	YAGO	1,588	11.79	14	19 0	6.43	9	28	8	8.34	10 1	1 0	28.22	2	138	-	48.84	43	216	0 4,	,960.84	37	28,418	_
7		Wikidata	1,981	86.0	-	1 0	0.03	0		0 47	47.86	49 9	0 66	1.98	20	13	0	52.70	53	237	0	15.77	11	117	0
J/ Q	DB)Bpedia	114	35.69	37	52 0	12.61	13	23	0 23	23.59 2	24 2	28 3	34.26	5 31	68	9	27.75	25	162	10 4,	4,828.36	1,065	70,426	24
) (c	_	YAGO	108	13.90	15	24 0	9.58	6	18	0 28	28.41	31 3	35 0	15.18	6	138	70	302.34	244	,267	0 12,	12,464.42	4,879	112,032	550
1	_	Wikidata	114	4.12	4	8	4.83	50	9	0 120	87	119 17	73 7	55.68	8 51	148	2	229.46	210	595	2 45,	45,671.15	4,971	669,273	
Ι.		OBpedia	146	36.40	388	53 0	13.12	13	23	0 23	23.40	24 2	28 1	37.87	98 2	94	×	27.44	24	162	0 7,	7,528.18	1,587	218,957	77
2 / 5		YAGO	139	14.29	15	27 0	9.65	10	16	0 28	28.44	31 3	35 0	14.61	1 9	138	20	345.03	290 2,	,104	0 17,	7,882.47	6,126	423,559	693
4	-	Wikidata	146	4.45	4	10 1	4.94	20	9	0 124	24.31 15	.21 191	-7	61.68	8 55	148	2	242.38	213	713	2 85,	85,575.10	7,369	1,557,157	99
		DBpedia	162	36.07	38	53 0	13.12	13	23	0 23	23.46	24 2	28 1	36.64	4 33	94	œ	26.72	23	162	0 6,	08.928,9	1,440	218,957	77
WorldBank	_	YAGO	152	14.09	12	27 0	9.52	10	16	0 27	27.82	31 3	35 0	16.40	6 0	138	70	329.28	279 2,	,104	0 16,	96.696,91	5,821	423,559	757
ų`		Wikidata	162	4.41	4	10 1	4.92	50	9	0 123	23.36 11	119 191	1 7	60.02	2 55	148	2	238.69	210	713	2 77,	77,485.01	5,810	1,557,157	99
١.		DBpedia	160	36.00	38	53 0	13.11	13	23	0 23	23.46	24 2	28 1	36.74	4 33	94	×	26.85	24	162	0 6,	6,947.59	1,440	218,957	77
WorldBank 20		YAGO	150	14.09	15	27 0	9.44	10	16	0 27	27.80	31 3	35 0	16.48	8	138	ro	331.16	279 2,	,104	0 17,	17,114.88	5,821	423,559	693
1	-	Wikidata	160	4.39	4	10 1	4.88	20	9	0 123.	53	119 191	1 7	60.12	2 55	148	2	237.94	210	713	2 78,	78,453.16	5,810	1,557,157	99
		DBpedia	160	36.00	38	53 0	13.11	13	23	0 23	23.46 2	24 2	28 1	36.74	4 33	94	œ	26.85	24	162	0 6,	6,947.59	1,440	218,957	77
ب ر	WorldBank $\binom{n/C}{2-2}$ Y	YAGO	150	14.09	15	27 0	9.44	10	16	0 27	27.80	31 3	35 0	16.48	6	138	70	331.16	279 2	,104	0 17,	17,114.88	5,821	423,559	693
Ŋ	-	Wikidata	160	4.39	4	10 1	4.88	20	9	0 123	23.23 11	119 191	1 7	60.12	2 55	148	2	237.94	210	713	2 78,	78,453.16	5,810	1,557,157	99
	B/C DB	OBpedia	56	16.38	21	32 0	3.73	3	15	0 2	7.81	9	10 3	_	9 13	24	-1	7.19	-1	19	1	975.88	696	2,292	
	_	YAGO	56	8.92	∞	14 8	2.77	2	×	1 12	12.42	12 1	4 12	3.73	3	9	က	81.12	09	299	28 1,	,793.19	1,424	4,527	
	-	Wikidata	56	1.35	-	3	2.58	က	4	1 86	86.23 8	84 11	119 74	34.00	33	51	21	83.12	42	157	28	332.69	193	1,464	137
_ \		DBpedia	301	11.84	12	33 0	6.32	5	34	0 10	10.77	11 2	25 0	2.96	9	22	1	12.65	11	87	0	566.25	15	114,742	I
	$ a-z-animals _{(s=-9)}^{L_{i}} $ Y	YAGO	65	2.48	0	16 0	0.76	0	12	0 1	1.78		0 6	108.62	2 138	138	_	9.53	0	136	0 22,	$286.36 _{2}$	28,418	28,418	Π
	_	Wikidata	301	1.05		4	0.44	0	9	0 34	34.32	37 13	137 3	6.94	4	28	0	22.04	22	400	1 21,	,909.94	70 6,	3,460,930	0
	DB	OBpedia	1,989	8.83	4	38 0	5.46	2	18	0 12	12.65	14 1	15 0	1.40	0	50	0	3.63	8	12	0	34.71	24	158	0
		YAGO	588	4.46	0	31 0	0.68	0	9	0 2	2.15	0	0	69.66	9 138	138	П	7.28	0	61	0 20,	427.08 2	28,418	28,418	П
	-	Wikidata	1,908	1.96	2	3	0.01	0	П	0 45	15.92	47 7	0 62	2.78	2	17	П	34.99	27	159	0	32.25	26	487	4
		DrugBank ;	2,000	2.00	2	2		_	_	19	91.68	54 7	1 41	1.7	0	2	0	41.96	41	132	14	65.49	20	211	0
	Fin	FinkiLOD :	2,000	1.00		1		_	_	3	3.00	ಣ	3	0.00	0	0	0	1.00	П	1		0.00	0	0	0

	Dataset			ty	pes			rel	out			re	lin		1	el-va	ls ou	t		rel-va	als in	
Name	Task	#links	avg	med	max	min	avg	med	max	min	avg	med	max	min	avg	med	max	min	avg	med	max	min
AIFB	C (c=4)	176	1.4	1	2	1	7.1	7	9	5	2.0	2	5	0	18.2	7	219	2	19.8	9	246	0
AM	C (c=11)	1,000	1.0	1	1	1	19.8	20	29	9	0.6	1	3	0	21.9	20	283	7	3.2	1	273	0
MUTAG	C (c=2)	340	1.0	1	1	1	9.8	10	14	5	\	\	\	\	65.8	56	465	4	\	\	\	\
BGS	C (c=2)	146	1.0	1	1	1	29.7	31	36	21	1.4	2	4	0	25.2	24	54	15	2.7	2	12	0

Table 3. Datasets statistics

4 Conclusion and Outlook

In this paper, we have introduced a collection of 22 benchmark datasets for machine learning on the Semantic Web. So far, we have concentrated on classification and regression tasks. There are methods to derive clustering and outlier detection benchmarks from classification and regression datasets [4,5], so that extending the dataset collection for such unsupervised tasks is possible as well. Furthermore, as many datasets on the Semantic Web use extensive hierarchies in the form of ontologies, building benchmark datasets for tasks like hierarchical multi-label classification [15] would also be an interesting extension.

Acknowledgments. The work presented in this paper has been partly funded by the German Research Foundation (DFG) under grant number PA 2373/1-1 (Mine@LOD), and the Dutch national program COMMIT.

References

- Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007). doi:10.1007/978-3-540-76298-0_5
- Boer, V., Wielemaker, J., Gent, J., Hildebrand, M., Isaac, A., Ossenbruggen, J., Schreiber, G.: Supporting linked data production for cultural heritage institutes: the Amsterdam museum case study. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 733-747. Springer, Heidelberg (2012). doi:10.1007/978-3-642-30284-8_56
- Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
- Emmott, A.F., Das, S., Dietterich, T., Fern, A., Wong, W.K.: Systematic construction of anomaly detection benchmarks from real data. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 16–21. ACM (2013)
- Färber, I., Günnemann, S., Kriegel, H.P., Kröger, P., Müller, E., Schubert, E., Seidl, T., Zimek, A.: On using class-labels in evaluation of clusterings. In: MultiClust: Workshop on Discovering, Summarizing and Using Multiple Clusterings (2010)
- Jovanovik, M., Bogojeska, A., Trajanov, D., Kocarev, L.: Inferring cuisine-drug interactions using the linked data approach. Scientific reports 5 (2015)
- Paulheim, H.: Generating possible interpretations for statistics from linked open data. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 560–574. Springer, Heidelberg (2012). doi:10. 1007/978-3-642-30284-8-44

- 8. Rettinger, A., Lösch, U., Tresp, V., d'Amato, C., Fanizzi, N.: Mining the semantic web. Data Min. Knowl. Disc. **24**(3), 613–662 (2012)
- Ristoski, P., Bizer, C., Paulheim, H.: Mining the web of linked data with rapidminer. Web Semant. Sci. Serv. Agents WWW 35, 142–151 (2015)
- Ristoski, P., Paulheim, H.: Analyzing statistics with background knowledge from linked open data. In: Workshop on Semantic Statistics (2013)
- 11. Ristoski, P., Paulheim, H.: Semantic web in data mining and knowledge discovery: a comprehensive survey. Web Semant. **36**, 1–22 (2016)
- 12. Ristoski, P., Paulheim, H., Svátek, V., Zeman, V.: The linked data mining challenge 2015. In: KNOW@ LOD (2015)
- Ristoski, P., Paulheim, H., Svátek, V., Zeman, V.: The linked data mining challenge 2016. In: KNOW@LOD (2016)
- Schmachtenberg, M., Bizer, C., Paulheim, H.: Adoption of the linked data best practices in different topical domains. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 245–260. Springer, Heidelberg (2014). doi:10.1007/ 978-3-319-11964-9-16
- Silla Jr., C.N., Freitas, A.A.: A survey of hierarchical classification across different application domains. Data Min. Knowl. Disc. 22(1), 31–72 (2011)
- Tresp, V., Bundschus, M., Rettinger, A., Huang, Y.: Towards machine learning on the semantic web. In: da Costa, P.C.G., et al. (eds.) URSW 2005-2007. LNCS, vol. 5327, pp. 282-314. Springer, Heidelberg (2008)
- Vries, G.K.D.: A fast approximation of the Weisfeiler-Lehman graph kernel for RDF data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS, vol. 8188, pp. 606–621. Springer, Heidelberg (2013)