MATEMÁTICA FINANCEIRA

CONCEITOS GERAIS

O CONCEITO DO VALOR DO DINHEIRO NO TEMPO

O conceito de valor do dinheiro no tempo é muito importante quando estamos estudando Matemática Financeira, pois não podemos de maneira alguma comparar o dinheiro trabalhado na Matemática Básica com o dinheiro trabalhado na Matemática Financeira, uma vez que nesse último, o fator **tempo** será primordial.

Imagine a seguinte situação:

Seu primo pede para que você faça um empréstimo para ele de R\$100,00 com a promessa de que após 1 ano ele irá devolver os mesmos R\$100,00 para você. Será que vale a pena essa operação financeira?

Você precisa analisar alguns pontos antes de tomar a decisão: o **risco**, o **valor do dinheiro** daqui a um ano e **retorno** do capital.

Aqui precisamos salientar que o dinheiro tem diferentes valores conforme o tempo vai passando, pois os R\$ 100,00 de hoje não são os mesmos R\$ 100,00 de daqui a 5 anos. Veja:

Há fatores que modificam o valor do dinheiro no tempo, como, por exemplo, a Inflação, que desvaloriza o dinheiro conforme o tempo vai passando; o Risco de um futuro incerto; e as Operações Financeiras, que fazem o valor do dinheiro também ser modificado.

Resumindo: O que você consegue comprar hoje com R\$ 100,00 não vai conseguir comprar de novo daqui a 5 anos com os mesmo R\$ 100,00.

Em matemática financeira, sempre que quisermos comparar dois capitais, devemos transportá-los para uma mesma data (a uma mesma taxa de juros). E assim, podemos constatar se são iguais (equivalentes) ou não. Portanto, jamais faça soma, subtração, multiplicação ou qualquer outra operação matemática com o valor do dinheiro em datas diferentes.

FLUXOS DE CAIXA E DIAGRAMAS DE FLUXO DE CAIXA

Fluxo de Caixa

A representação da entrada e saída de capital é feita pelo Diagrama do Fluxo de Caixa, que é o gráfico das operações de Capital em uma reta horizontal crescente estabelecida como o tempo.

- Entrada de Capital: representada por uma seta para cima;
- Saída de Capital: representada por uma seta para baixo.

Exemplo:

Investimento de R\$ 50.000,00 no dia de hoje para recebimento de R\$ 120.000,00 daqui a 10 anos.

Operações Financeiras

Vamos aprender como "transportar" uma parcela no tempo, ou seja, como levar uma parcela presente para o futuro (capitalização) e como trazer uma parcela do futuro para o presente (desconto ou descapitalização). Aqui vale lembrar que vamos depender do regime de capitalização, simples ou composto, e para cada um deles teremos uma maneira de calcular. Veja:

Na Capitalização Simples usaremos as seguintes fórmulas:

$$V_F = V_P \times (1 + i \times t)$$
 ou $V_P = V_F / (1 + i \times t)$

Já na Capitalização Composta, as equações serão:

$$V_{r} = V_{p} \times (1 + i)^{t}$$
 ou $V_{p} = V_{r} / (1 + i)^{t}$

Em que,

V_F = Valor Futuro

V_p = Valor Presente ou Valor Atual

i = taxa de juros

t = período

Note que podemos fazer uma analogia com as equações do Montante de regime de juros:

Regime Simples \rightarrow M = C \times (1 + i \times t)

Regime Composto \rightarrow M = C \times (1 + i)^t

O Montante será sempre entendido como o Valor Futuro e o Capital, como Valor Presente.

Montante → Valor Futuro

Capital → Valor Presente ou Valor Atual

Exemplo:

Determine o Valor Presente do Fluxo de caixa para uma taxa de juros simples de 10% ao mês.

Note que para calcular o V_P teremos que transportar essa parcela (Valor Futuro) 4 períodos para trás, isto é, "descapitalizá-la". Vamos aplicar a fórmula do Valor Presente em regime de juros simples e calcular seu valor.

$$\begin{array}{l} V_{_{P}} = V_{_{F}} \, / \, (1 + i \times t) \\ V_{_{P}} = 2800 \, / \, (1 + 0.1 \times 4) \\ V_{_{P}} = 2800 \, / \, 1.4 \\ V_{_{P}} = 2000 \end{array}$$

EQUIVALÊNCIA FINANCEIRA

Dois ou mais capitais, resgatáveis em datas distintas, são equivalentes quando são transportados para uma mesma data e com a mesma taxa de juros, resultarem valores iguais.

Dica

Para saber se dois capitais são equivalentes:

- Coloque na mesma data;
- Veja se têm a mesma taxa de juros;
- Veja se resultam no mesmo valor.

Propriedade Fundamental da Equivalência de Capitais

A equivalência permanecerá válida para qualquer data a partir de uma determinada data focal quando dois capitais são equivalentes.

Em matemática financeira, sempre que quisermos comparar dois capitais, devemos transportá-los para uma mesma data (a uma mesma taxa de juros), pois assim podemos constatar se são iguais (equivalentes) ou não.

SEQUÊNCIAS — LEI DE FORMAÇÃO DE SEQUÊNCIAS E DETERMINAÇÃO DE SEUS ELEMENTOS

Esse tema é cobrado de uma maneira que pode parecer fácil como também pode ser complicado. Descobrir a lei de formação ou padrão da sequência é o seu principal objetivo, pois nas questões sobre sequências/raciocínio sequencial, você será apresentado a um conjunto de dados dispostos de acordo com alguma "regra" implícita, alguma lógica de formação. O desafio é exatamente descobrir essa "regra" para, com isso, encontrar outros termos daquela mesma sequência.

Veja o exemplo:

2, 4, 6, 8,...

A primeira pergunta que podemos fazer para achar a lei de formação é: os números estão aumentando ou diminuindo?

Caso eles estejam aumentando, devemos tentar as operações de soma ou multiplicação entre os termos. Veja no exemplo colocado acima: 2, 4, 6, 8,.. Do primeiro termo para o segundo, somamos o número dois e depois repetimos isso.

2 + 2 = 4

4 + 2 = 6

6 + 2 = 8

Logo, o nosso próximo termo será o número 10, pois 8+2 = 10.

Caso os números estejam diminuindo, você pode buscar uma lógica envolvendo subtrações ou divisões entre os termos.

Agora, observe essa outra sequência:

2, 3, 5, 7, 11, 13, ...

Qual é o seu próximo termo? Vários alunos tendem a dizer que o próximo termo é o 15, mesmo tendo percebido que o 9 não está na sequência. A nossa tendência é relevar esse "probleminha" e marcar logo o valor 15. Muito cuidado! Como já disse, o padrão encontrado deve ser capaz de explicar toda a sequência. Nesse caso, estamos diante dos números primos. Sim, aqueles números que só podem ser divididos por eles mesmos ou então pelo número 1. No caso, o próximo seria o 17, e não o 15. A propósito, os próximos números primos são: 17, 19, 23, 29, 31, 37...

SEQUÊNCIAS NUMÉRICAS ALTERNADAS

É bem comum aparecerem questões que envolvem uma sequência que tem mais de uma lei de formação. Podemos ter 2 sequências que se alternam, como neste exemplo:

2, **5**, 4, **10**, 6, **15**, 8, **20**, ...

Se analisarmos mais minuciosamente, podemos dizer que temos uma sequência que, de um número para outro, devemos somar 2 unidades e também podemos notar que temos a sequência que, de um número para o outro, basta somar 5 unidades, elas estão em sequências numéricas alternadas. Veja:

1° Sequência: 2, 4, 6, 8,...

2° Sequência: 5, 10, 15, 20, ...

PROGRESSÕES ARITMÉTICAS

Uma progressão aritmética é aquela em que os termos crescem, sendo adicionados a uma razão constante, normalmente representada pela letra r.

- Termo inicial: valor do primeiro número que compõe a sequência;
- Razão: regra que permite, a partir de um termo, obter o seguinte.

Observe o exemplo:

{1,3,5,7,9,11,13, ...}

Veja que 1+2=3, 3+2=5, 5+2=7, 7+2=9 e assim sucessivamente. Temos um exemplo nítido de uma Progressão Aritmética (PA) com uma razão 2, ou seja, r = 2 e termo inicial igual a 1. Em questões envolvendo progressões aritméticas, é importante você saber obter o termo geral e a soma dos termos, conforme veremos a seguir.

Termo Geral da PA

Trata-se de uma fórmula que, a partir do primeiro termo e da razão da PA, permite calcular qualquer outro termo. Temos a seguinte fórmula:

$$a_n = a_1 + (n-1)r$$

Nesta fórmula, a_n é o termo de posição \mathbf{n} na PA (o "n-ésimo" termo); a_1 é o termo inicial, \mathbf{r} é a razão e \mathbf{n} é a posição do termo na PA.

Usando o nosso exemplo vamos descobrir o termo de posição 10. Já temos as informações que precisamos: {1,3,5,7,9,11, 13, ...}

- o termo que buscamos é o da décima posição, isto é, a₁₀;
- a razão da PA é 2, portanto r = 2;
- o termo inicial é 1, logo $a_1 = 1$;
- n, ou seja, a posição que queremos, é a de número 10: n = 10

Logo,

$$a_{n} = a_{1} + (n-1)r$$

$$a_{10} = 1 + (10-1)2$$

$$a_{10} = 1 + 2x9$$

$$a_{10} = 1 + 18$$

$$a_{10} = 19$$

Isto é, o termo da posição 10 é o 19. Volte na sequência e confira. Perceba que, com essa fórmula, podemos calcular qualquer termo da PA. O termo da posição 200 é:

$$a_n = a_1 + (n-1)r$$

$$a_{200} = 1 + (200-1)2$$

$$a_{200} = 1 + 2x199$$

$$a_{200} = 1 + 198$$

$$a_{200} = 199$$

Soma do Primeiro ao N-ésimo Termo da PA

A fórmula a seguir nos permite calcular a soma dos "n" primeiros termos de uma progressão aritmética:

$$S_n = \frac{n \times (a1 + an)}{2}$$

Para entendermos um pouco melhor, vamos calcular a soma dos 7 primeiros termos do nosso exemplo que já foi apresentado: {1,3,5,7,9,11, 13, ...}.

Já sabemos que a_1 = 1, e n = 7. O termo a_n será, neste caso, o termo a_7 , que observando na sequência é o número 13, ou seja, a_7 = 13. Substituindo na fórmula, temos:

$$S_{n} = \frac{n \times (a1 + an)}{2}$$

$$S_{7} = \frac{7 \times (1 + 13)}{2}$$

$$S_{7} = \frac{7 \times 14}{2}$$

$$S_{7} = \frac{98}{2} = 49$$

Dependendo do sinal da razão r, a PA pode ser:

 PA crescente: se r > 0, a PA terá termos em ordem crescente.

Ex.:
$$\{1, 4, 7, 10, 13, 16...\} \rightarrow r = 3;$$

 PA decrescente: se r < 0, a PA terá termos em ordem decrescente.

Ex.:
$$\{20, 19, 18, 17 ...\} \rightarrow r = -1;$$

 PA constante: se r = 0, todos os termos da PA serão iguais.

Ex.:
$$\{7, 7, 7, 7, 7, 7, 7...\} \rightarrow r = 0$$
.

Dica

PA crescente: se r > 0; PA decrescente: se r < 0; PA constante: se r = 0.

Em uma progressão aritmética de 3 termos, o segundo termo ou o termo do meio é a média aritmética entre o primeiro e terceiro termo. Veja:

PA
$$(a_1, a_2, a_3) \rightarrow a_2 = (a_1 + a_3)/2$$

PA $(2, 4, 6) \rightarrow 4 = (2+6)/2 \rightarrow 4 = 4$.

Agora vamos treinar o que aprendemos na teoria com exercícios comentados de diversas bancas. Vamos lá!

- (IBFC 2015) O total de múltiplos de 4 existentes entre os números 23 e 125 é:
- a) 25.
- b) 26.
- c) 27.
- d) 28.
- e) 24.

O primeiro múltiplo de 4 neste intervalo é 24 e o último é 124. Veja que os múltiplos de 4 formam uma PA de razão igual a 4. Então, temos as seguintes informações:

$$a_n = 124$$

r=4 (podemos ir somando de 4 em 4 unidades para obter os múltiplos).

Substituindo na fórmula do termo geral, vamos encontrar a quantidade de elementos (múltiplos):

$$a_n = a_1 + (n-1)r$$

 $124 = 24 + (n-1)4$

$$124 = 24 + 4n - 4$$

$$124 - 24 + 4 = 4n$$

$$104 = 4n$$

n = 26. Resposta: Letra B.

- 2. (FCC 2018) Rodrigo planejou fazer uma viagem em 4 dias. A quantidade de quilômetros que ele percorrerá em cada dia será diferente e formará uma progressão aritmética de razão igual a 24. A média de quilômetros que Rodrigo percorrerá por dia é igual a 310 km. Desse modo, é correto concluir que o número de quilômetros que Rodrigo percorrerá em seu quarto e último dia de viagem será igual a
- a) 334.
- b) 280.
- c) 322.
- d) 274.
- e) 310.

Primeiro devemos achar o a_1 para depois acharmos o a_4 Devemos colocar tudo em função de a_1 para podermos substituir na média. Usando a fórmula do termo geral:

$$r = -24$$
 $a_n = a_1 + (n-1).r$
 $Achando a_1.$
 $a_1 = a_{1+}(1-1).r$
 $a_1 = a_1$
 $Colocando a_2 em função de $a_1.$
 $a_2 = a_1 + (2-1)r$
 $a_2 = a_1 + r$$

Colocando a_3 em função de a_1 : $a_3 = a_1 + (3-1)r$ $a_3 = a_1 + 2r$ Colocando a_4 em função de a_1 : $a_4 = a_1 + (4-1)r$ $a_4 = a_1 + 3r$ Substituindo na fórmula da média aritmética: $(a_1 + a_2 + a_3 + a_4)/4 = 310$ $(a_1 + a_1 + r + a_1 + 2r + a_1 + 3r)/4 = 310$ $4 a_1 + 6r = 310 . 4$ $4 a_1 + 6 . (-24) = 1240$ $4 a_1 - 144 = 1240$ $a_1 = 346$ Encontrando a_4 : $a_4 = 346 + (4-1).r$ $a_4 = 346 + 3r$ $a_4 = 346 + 3r$ $a_4 = 346 + 3$ $a_4 = 346 + 3$ $a_4 = 274$. Resposta: Letra D.

PROGRESSÕES GEOMÉTRICAS

Observe a sequência a seguir:

Cada termo é igual ao anterior multiplicado por 2. Esse é um exemplo típico de Progressão Geométrica, ou simplesmente, PG. Em uma PG, cada termo é obtido a partir da multiplicação do anterior por um mesmo número, o que chamamos de razão da progressão geométrica. A razão é simbolizada pela letra q.

No exemplo acima, temos q = 2 e o termo inicial é $a_1 = 1$. Da mesma maneira que vimos para o caso de PA, normalmente, precisamos calcular o termo geral e a soma dos termos.

Termo Geral da PG

A fórmula a seguir nos permite obter qualquer termo (a_n) da progressão geométrica, partindo-se do primeiro termo (a_n) e da razão (q):

$$\mathbf{a}_{\mathbf{n}} = \mathbf{a}_{\mathbf{1}} \times \mathbf{q}^{\mathbf{n}-\mathbf{1}}$$

No nosso exemplo, o quinto termo, $a_{\scriptscriptstyle 5}$ (n = 5), pode ser encontrado assim:

$$\{2, 4, 8, 16, 32...\}$$

$$a_5 = 2 \times 2^{5 \cdot 1}$$

$$a_5 = 2 \times 2^4$$

$$a_5 = 2 \times 16$$

$$a_5 = 32$$

Soma do Primeiro ao N-ésimo Termo da PG

A fórmula a seguir permite calcular a soma dos "n" primeiros termos da progressão geométrica:

$$S_n = \frac{a1 \times (q^n - 1)}{q - 1}$$

Usando novamente o nosso exemplo e fazendo a soma dos 4 primeiros termos (n = 4), temos: {2, 4, 8, 16, 32...}

$$S_4 = \frac{2 \times (2^4 - 1)}{2 - 1}$$

 $S_4 = \frac{2 \times (16 - 1)}{1}$

$$S_4 = \frac{2 \times 15}{1}$$
$$S_4 = 30$$

Soma dos Infinitos Termos de uma Progressão Geométrica

Suponha que você corra 1000 metros, depois, você corra 500 metros, depois, você corra 250 metros e, depois, 125 metros – sempre metade do que você correu anteriormente. Quanto você correrá no total? Observe que o que temos é exatamente uma progressão geométrica infinita, porém, essa PG é decrescente.

Quando temos uma PG infinita com razão 0 < q < 1, teremos que $q^n = 0$. Entendemos, então, que quanto maior for o expoente, mais próximo de zero será. Portanto, substituindo, teremos:

$$S_{\infty} = \frac{a1 \times (0-1)}{q-1}$$
$$S_{\infty} = \frac{a1}{1-a}$$

Dica

Em uma progressão geométrica, o quadrado do termo do meio é igual ao produto dos extremos. $\{a_1, a_2, a_3, a_4, a_5, a_6, a_8\} \rightarrow (a_8)^2 = a_8 \times a_8$

$$\{a_1, a_2, a_3\} \rightarrow (a_2)^2 = a_1 \times a_3$$

Veja: $\{2, 4, 8, 16, 32...\}$
 $8^2 = 4 \times 16$
 $64 = 64$.

A melhor forma de compreender o que vimos na teoria, veremos na prática alguns exercícios de bancas variadas.

- (FUMARC 2018) Se a sequência numérica representada por (6, a2, a3, a4, a5,192) é uma Progressão Geométrica crescente de razão igual a q, então, é COR-RETO afirmar que o valor de q é igual a:
- a) 2.
- b) 3.
- c) 4.
- d) 8.

Vamos substituir os valores que já temos na fórmula geral da PG para acharmos a razão:

$$a_n = a_1 \times q^{n-1}$$
 $a_6 = a_1 \times q^{6-1}$
 $192 = 6 \times q^5$
 $192/6 = q^5$
 $32 = q^5$
 $q = \sqrt[5]{32}$
 $q = 2$
Resposta: Letra A.

- (IBFC 2016) Se a soma dos elementos de uma P.G. (progressão geométrica) de razão 3 e segundo termo 12 é igual a 484, então o quarto termo da P.G. é igual a:
- a) 324.
- b) 36.
- c) 108.
- d) 216.

Temos que a_2 = 12 e q = 3. Para calcularmos o quarto termo, devemos usar a fórmula do termo geral da PG. Veja:

 $a_4 = a_2 \times q^{4-2}$ $a_4 = 12 \times 3^2$

 $a_{4}^{4} = 12 \times 9$

 $a_{A}^{T} = 108$

Resposta: Letra C.

JUROS SIMPLES — CÁLCULO DO MONTANTE, DOS JUROS, DA TAXA DE JUROS, DO PRINCIPAL E DO PRAZO DA **OPERAÇÃO FINANCEIRA**

A premissa que é a base da matemática financeira é a seguinte: as pessoas e as instituições do mercado preferem adiantar os seus recebimentos e retardar os seus pagamentos. Do ponto de vista estritamente racional, é melhor pagar o mais tarde possível caso não haja incidência de juros (ou caso esses juros sejam inferiores ao que você pode ganhar aplicando o dinheiro).

"Juros" é o termo utilizado para designar o "preço do dinheiro no tempo". Quando você pega certa quantia emprestada no banco, o banco te cobrará uma remuneração em cima do valor que ele te emprestou, pelo fato de deixar você ficar na posse desse dinheiro por um certo tempo. Esta remuneração é expressa pela taxa de juros.

Nos juros simples a incidência recorre sempre sobre o valor original. Veja um exemplo para melhor entender.

Exemplo 1:

Digamos que você emprestou 1000,00 reais, em um regime de juros simples de 5% ao mês, para um amigo e que o mesmo ficou de quitar o empréstimo após 5 meses. Então temos o seguinte:

CAPITAL EMPRESTADO (1000,00)	VALOR REAJUSTADO
1° mês = 1000,00	1000,00 + (5% de 1000,00) = 1050,00
2° mês = 1050,00	1050,00 + (5% de 1000,00) = 1100,00
3° mês = 1100,00	1100,00 + (5% de 1000,00) = 1150,00
4° mês = 1150,00	1150,00 + (5% de 1000,00) = 1200,00
5° mês = 1200,00	1200,00 + (5% de 1000,00) = 1250,00

Ao final do 5° mês você terá recebido 250,00 reais de juros.

Fórmulas utilizadas em juros simples

$$J = C \cdot i \cdot t$$

$$M = C + J$$

$$M = C \cdot (1 + i \cdot J)$$

Em que, J = juros

C = capital

i = taxa em percentual (%)

t = tempo M = montante

TAXAS PROPORCIONAIS E EQUIVALENTES

Para aplicar corretamente uma taxa de juros, é importante saber a unidade de tempo sobre a qual a taxa de juros é definida. Isto é, não adianta saber apenas que a taxa de juros é de "5%". É preciso saber se essa taxa é mensal, bimestral, anual etc. Dizemos que duas taxas de juros são proporcionais quando guardam a mesma proporção em relação ao prazo. Por exemplo, 12% ao ano é proporcional a 6% ao semestre, e também é proporcional a 1% ao mês.

Basta efetuar uma regra de três simples. Para obtermos a taxa de juros bimestral, por exemplo, que é proporcional à taxa de 12% ao ano:

> 12% ao ano ----- 1 ano Taxa bimestral ----- 2 meses

Podemos substituir 1 ano por 12 meses, para deixar os valores da coluna da direita na mesma unidade temporal, temos:

12% ao ano ------ 12 meses Taxa bimestral ----- 2 meses Efetuando a multiplicação cruzada, temos:

 $12\% \times 2 = Taxa bimestral \times 12$

Taxa bimestral = 2% ao bimestre

Duas taxas de juros são equivalentes quando são capazes de levar o mesmo capital inicial C ao montante final M, após o mesmo intervalo de tempo.

Uma outra informação muito importante e que você deve memorizar é que o cálculo de taxas equivalentes quando estamos no regime de juros simples pode ser entendido assim: 1% ao mês equivale a 6% ao semestre ou 12% ao ano, e levarão o mesmo capital inicial C ao mesmo montante M após o mesmo período de tempo.

Importante!

No regime de juros simples, taxas de juros proporcionais são também taxas de juros equivalentes.

Vamos agora treinar com alguns exercícios para conhecermos como as bancas costumam cobrar estes materiais.

- 1. (FEPESE 2018) Uma TV é anunciada pelo preco de R\$ 1.908,00 para pagamento em 12 parcelas de 159,00. A mesma TV custa R\$ 1.410,00 para pagamento à vista. Portanto o juro simples mensal incluído na opção parcelada é:
- a) Menor que 2%.
- b) Maior que 2% e menor que 2,5%.
- c) Maior que 2,5% e menor que 2,75%.
- d) Maior que 2,75% e menor que 3%.
- e) Maior que 3%.

1.908 - 1.410 = 498 (juros durante 12 meses) $J = C \cdot I \cdot t$ $498 = 1410 \cdot 12 \cdot i / 100$ 49800 = 16920i

i = 49800/16920

i = 2,94%.

Resposta: Letra D.

 (CESPE-CEBRASPE – 2018) Uma pessoa atrasou em 15 dias o pagamento de uma dívida de R\$ 20.000, cuja taxa de juros de mora é de 21% ao mês no regime de juros simples.

Acerca dessa situação hipotética, e considerando o mês comercial de 30 dias, julgue o item subsequente. No regime de juros simples, a taxa de 21% ao mês é equivalente à taxa de 252% ao ano.

() CERTO () ERRADO

No regime simples, sabemos que taxas proporcionais são também equivalentes. Como temos 12 meses no ano, a taxa anual proporcional a 21%am é, simplesmente:

21% x 12 = 252% ao ano

Esta taxa de 252% ao ano é proporcional e também é equivalente a 21% ao mês. Portanto, o item está certo.

Resposta: Certo.

JUROS COMPOSTOS — CÁLCULO DO MONTANTE, DOS JUROS, DA TAXA DE JUROS, DO PRINCIPAL E DO PRAZO DA OPERAÇÃO FINANCEIRA

Imagine que você pegou um empréstimo de R\$10.000,00 no banco, cujo pagamento deve ser realizado após 4 meses, à taxa de juros de 10% ao mês. Ficou combinado que o cálculo de juros de cada mês será feito sobre o total da dívida no mês anterior, e não somente sobre o valor inicialmente emprestado. Neste caso, estamos diante da cobrança de juros compostos. Podemos montar a seguinte tabela:

MÊS DO EMPRÉSTIMO	10.000,00
1º MÊS	11.000,00
2º MÊS	12.100,00
3° MÊS	13.310,00
4º MÊS	14.641,00

Logo, ao final de 4 meses você deverá devolver ao banco R\$14.641,00 que é a soma da dívida inicial (R\$10.000,00) e de juros de R\$4.641,00.

Fórmula utilizada em juros compostos

$$\mathbf{M} = \mathbf{C} \cdot (\mathbf{1} + \mathbf{i})^{\mathrm{t}}$$

Poderíamos ter utilizado a fórmula no nosso exemplo. Veja:

$$\begin{split} M &= 10000 \text{ x } (1+10\%)^4 \\ M &= 10000 \text{ x } (1+0,10)^4 \\ M &= 10000 \text{ x } (1,10)^4 \\ M &= 10000 \text{ x } 1,4641 \\ M &= 14.641,00 \text{ reais} \end{split}$$

Podemos fazer a comparação entre juros simples e compostos. Observe a tabela a seguir:

JUROS SIMPLES	JUROS COMPOSTOS
Mais onerosos se t < 1	Mais onerosos se t > 1
Mesmo valor se t = 1	Mesmo valor se t = 1
Juros capitalizados no final do prazo	Juros capitalizados perio- dicamente ("juros sobre juros")
Crescimento linear (reta)	Crescimento exponencial
Valores similares para prazos e taxas curtos	Valores similares para prazos e taxas curtos

• Juros compostos – cálculo do prazo:

Nas questões em que é preciso calcular o prazo você deverá utilizar logaritmos, visto que o tempo "t" está no expoente da fórmula de juros compostos. A propriedade mais importante a ser lembrada é que, sendo dois números A e B, então:

$$\log A^{B} = B \times \log A$$

Significa que o logaritmo de A elevado ao expoente B é igual a multiplicação de B pelo logaritmo de A.

Uma outra propriedade bastante útil dos logaritmos é a seguinte:

$$\log\left(\frac{A}{B}\right) = \log A - \log B$$

Isto é, o logaritmo de uma divisão entre A e B é igual à subtração dos logaritmos de cada número.

Também é importante ter em mente que "logA" significa "logaritmo do número A na base 10".

Observe um exemplo:

No regime de juros compostos com capitalização mensal à taxa de juros de 1% ao mês, a quantidade de meses que o capital de R\$100.000 deverá ficar investido para produzir o montante de R\$120.000 é expressa por:

$$\frac{\log 2, 1}{\log 1, 01}$$

Temos a taxa j = 1% am, capital C = 100.000 e montante M = 120.000. Na fórmula de juros compostos:

$$M = C \times (1+j)^{t}$$

$$120000 = 100000 \times (1+1\%)^{t}$$

$$12 = 10 \times (1,01)^{t}$$

$$1,2 = (1,01)^{t}$$

Podemos aplicar o logaritmo dos dois lados:

$$log1,2 = log (1,01)^t$$

 $log1,2 = t \cdot log 1,01$

$$t = \frac{\log 1, 1}{\log 1, 01}$$

Logo, questão errada.

Vejamos alguns exemplos de questões sobre esse tema:

- 1. (FCC 2017) A Cia. Escocesa, não tendo recursos para pagar um empréstimo de R\$ 150.000,00 na data do vencimento, fez um acordo com a instituição financeira credora para pagá-la 90 dias após a data do vencimento. Sabendo que a taxa de juros compostos cobrada pela instituição financeira foi 3% ao mês, o valor pago pela empresa, desprezando-se os centavos, foi, em reais,
- a) 163.909,00.
- b) 163.500,00.
- c) 154.500,00.
- d) 159.135,00.
- e) 159.000,00.

Temos uma dívida de C = 150.000 reais a ser paga após t = 3 meses no regime de juros compostos, com a taxa de j = 3% ao mês. O montante a ser pago é dado por:

 $M = C \times (1+j)^t$

 $M = 150.000 \times (1+0,03)^3$

 $M = 150.000 \times (1,03)^3$

 $M = 150.000 \times 1,092727$

 $M = 15 \times 10927,27$

 $M = 163.909,05 \ reais$

Resposta: Letra A.

- (FCC 2017) O montante de um empréstimo de 4 anos da quantia de R\$ 20.000,00, do qual se cobram juros compostos de 10% ao ano, será igual a
- a) R\$ 26.000,00.
- b) R\$ 28.645,00.
- c) R\$ 29.282,00.
- d) R\$30.168,00.
- e) R\$ 28.086,00.

Temos um prazo de t = 4 anos, capital inicial C = 20000 reais, juros compostos de j = 10% ao ano. O montante final \acute{e} :

 $M = C \times (1+j)^t$

 $M = 20000 \times (1+0,10)^4$

 $M = 20000 \times 1.14$

 $M = 20000 \times 1,4641$

 $M = 2 \times 14641$

M = 29282 reais

Resposta: Letra C.

DESCONTOS — CÁLCULO DO VALOR ATUAL, DO VALOR NOMINAL E DA TAXA DE DESCONTO

Na matemática financeira, descontar é: antecipar o valor de um recebível.

Imagine a situação a seguir:

Você tem um direito monetário de R\$ 50.000,00 para receber em 10 meses. Porém, com a necessidade de ter esse valor imediatamente, você recorre a um banco para poder antecipar o que irá receber. O banco, então, propõe o pagamento de um certo valor por esse direito e, assim, a instituição financeira ficará com esse título até o vencimento que, como vimos, ocorrerá em 10 meses. Note que ocorrerá uma mudança na titularidade do direito.

Sendo assim, o banco vai descontar um valor e ele não te pagará os R\$ 50.000,00, obviamente. Esse desconto vai depender da modalidade adotada, da taxa de juros e do prazo de antecipação. Ou seja, você, certamente, receberá menos que o Valor que consta no título. Vejamos melhor a seguir.

Valor Nominal (N)

É o Valor de Futuro (também chamado de Valor de Face, Montante e Valor Final) do título, isto é, o valor declarado com informações a respeito de quanto o portador do título terá para receber ao final do prazo de vencimento. No nosso exemplo hipotético, seriam os R\$ 50.000,00 (com prazo de vencimento em 10 meses). Para calcular o Valor Nominal do título, iremos utilizar a seguinte expressão:

$$N = A (1 + i \cdot n)$$

Valor Atual (A)

Também chamado de Valor Descontado ou Valor Presente, é o valor que o titular do direito receberá antecipadamente por ele depois de efetuar o desconto. Para calcular o Valor Atual do título, iremos utilizar a seguinte expressão:

$$A = N (1 - i \cdot n)$$

Podemos dizer então que o Desconto (D) é a diferença entre o valor Nominal e o valor Atual.

$$D = N - A$$

Taxa Efetiva (i_e)

Podemos determinar a Taxa Efetiva através da seguinte fórmula:

$$i_e = i_c / 1 - i_c \cdot n$$

Em que,

i = Taxa Efetiva

i = Taxa do Desconto Comercial Simples

n = Prazo do Desconto

SISTEMAS DE AMORTIZAÇÃO — SISTEMA PRICE (MÉTODO DAS PRESTAÇÕES CONSTANTES); SISTEMA SAC (MÉTODO DAS AMORTIZAÇÕES CONSTANTES)

TABELA PRICE E SAC

Ao financiar o sonho da casa própria, deve-se escolher um sistema de pagamento. Para isso, existem as seguintes opções: tabela Price ou SAC. Aqui, discutiremos um pouco a respeito de tais sistemas, para entendermos o que de fato eles são, se há alguma diferença, vantagem e/ou desvantagem entre eles e se um deles é mais barato/acessível que o outro.

Esses sistemas, basicamente, são formas de amortização e financiamento a longo prazo, acertadas ao banco ou à construtora durante o financiamento da compra de um imóvel: a Tabela Price (Sistema Francês de Amortização) e o SAC (Sistema de Amortização Constante). Ambos, segundo José Mansini, planejador financeiro pela Planejar, "São dois cálculos distintos que determinam de que forma o comprador do imóvel irá pagar [amortizar] o empréstimo que ele fez para este fim. Nestes dois sistemas, será definido o valor da parcela mensal a ser paga".

Diferenças entre Tabela Price e SAC

Há diferenças entre esses dois sistemas de amortização, mas a diferença que mais se destaca diz respeito à forma e rapidez de amortização (diminuição gradativa da dívida).

Tal distinção afeta desde o valor das parcelas até a quantidade total de juros. No Sistema SAC, tem-se, inicialmente, prestações com valores mais altos e que ficam menores no final, pois (como dito anteriormente) há amortização mensal do valor financiado. Ou seja, da primeira parcela até a última, o valor vai caindo, porque há uma diminuição progressiva dos juros.

Na tabela Price, no entanto, as parcelas começam mais baixas, mas são estáticas, o que significa que não sofrem alteração durante todo o período de financiamento.

Vantagens Oferecidas pela Tabela Price e pelo SAC

A escolha é sempre do comprador. Ou seja, cabe a ele optar pela forma de pagamento que mais se adequa à realidade financeira dele. A escolha, notadamente, deve levar em consideração o fator de correção (Taxa Referencial – TR ou Índice de Preços ao Consumidor Amplo – IPCA) que julgar mais econômico no momento da assinatura do contrato do financiamento.

Contudo, é válido ressaltar que, quando se necessita de financiamento, optar por um prazo mais curto, se possível, é sempre o melhor a se fazer. Isso porque, em financiamentos imobiliários, paga-se juros sobre o saldo devedor. Logo, quanto mais amortização houver, menos gastos com juros terá o comprador.

Pensando nisso, o Sistema de Amortização Constante (SAC) pode ser mais vantajoso que a tabela Price, porque representa uma economia de cerca de 10%, em média. A tabela Price possui como vantagem sua parcela inicial, que, normalmente, é bem menor. No entanto, pelo SAC, apesar de as parcelas serem maiores no começo, há uma amortização maior da dívida, o que leva a uma economia significativa no final.

Para melhor ilustrar esse comparativo entre as vantagens oferecidas por cada um dos Sistemas (SAC e Price), veja o quadro a seguir, representado um financiamento de R\$ 200 mil parcelado em 20 anos, com juros de 7% ao ano e correção pela TR. Perceba que a prestação do SAC começa a R\$ 439 mais cara, mas o valor total pago no final é quase R\$ 30 mil mais baixo.

	SAC	PRICE
Parcela inicial	R\$ 1.964,16	R\$ 1.524,89
Parcela final	R\$ 838,05	R\$ 1.524,89
Total pago	R\$ 336.264,90	R\$ 365.973,34

Outra Forma de Correção Possível das Prestações de um Financiamento

A Caixa Econômica Federal divulgou em agosto de 2019 uma nova linha de crédito para aquisição de casa própria, que possui juros entre 2,95% e 4,95% ao ano, mais a inflação do país, medida pelo IPCA. Disponível somente para contratos novos, esse novo modelo pode ser usado para financiar até 80% do valor de imóveis novos e usados, com prazo de até 360 meses.

Importante!

A prestação terá seu valor corrigido mensalmente, o que é, geralmente, feito pelo sistema SAC. O valor da parcela, por sua vez, pode ou não diminuir com o decorrer do tempo, pois depende da trajetória da inflação, ao passo que, na tabela Price, a correção feita por meio do IPCA descaracteriza totalmente o conceito de parcelas fixas.

A título de exemplo, leve em consideração o mesmo valor utilizado na situação que vimos anteriormente, de R\$ 200 mil, financiado em 20 anos, diferenciando apenas a taxa, que passa a ser de 4,95%, e uma estimativa de IPCA de 4%. Aqui, cabe salientar que se trata apenas de uma situação hipotética/simulada, já que não é certa a previsão da trajetória da inflação por um período tão longo.

	SAC	PRICE
Parcela inicial	R\$ 1.645,56	R\$ 1.306,69
Parcela final	R\$ 1.833,30	R\$ 2.853,77
Total pago	R\$ 433.014,03	R\$ 475.426,66

Simulação de Financiamento

Para fazer simulações de financiamentos com tabela Price e/ou com o SAC, basta acessar *sites* de bancos, como Banco do Brasil, Bradesco, Caixa, Itaú e Santander, e fazer as simulações.

HORA DE PRATICAR!

- 1. (CESGRANRIO 2012) Uma mercadoria é vendida por R\$ 95,00 à vista ou em duas parcelas de R\$ 50,00 cada uma: a primeira no ato da compra, e a segunda um mês após a compra. Qual é, aproximadamente, a taxa de juros mensal cobrada na venda em duas parcelas?
- a) 5%
- b) 5,26%
- c) 10%
- d) 11,11%
- e) 15%
- 2. (CESGRANRIO 2012) Um capital de R\$ 1.500,00 resultou em um montante de R\$ 1.530,00 após dois meses. Sendo a remuneração calculada com juros simples, qual é a taxa anual utilizada?
- a) 1%
- b) 1,96%
- c) 2%
- d) 11,76%
- e) 12%

- 3. (CESGRANRIO 2011) Um equipamento pode ser adquirido com o pagamento de uma entrada de 30% do valor à vista e mais uma prestação de R\$ 1.386,00 para 60 dias. Se a taxa de juros simples cobrada no financiamento é de 5% ao mês, o valor à vista, em reais, é
- a) 1.800
- b) 2.000
- c) 2.100
- d) 2.200
- e) 2.500
- 4. (CESGRANRIO 2013) Um título no valor de R\$ 2.000,00 foi pago com atraso de dez dias. Se são cobrados juros simples de 12% ao mês, o montante pago, em reais, é
- a) 2.080
- b) 2.120
- c) 2.240
- d) 2.400
- e) 2.510
- 5. (CESGRANRIO 2014) No controle e acompanhamento do orçamento de caixa, uma empresa comprovou a existência de uma sobra de dinheiro, elevada e consistente, para o próximo ano. Em decorrência, a empresa decidiu pagar, antecipadamente, a dívida bancária de R\$ 350.000,00, vencível dentro de 4 meses, contados do dia do pagamento antecipado, com uma taxa de desconto comercial, negociada com o banco, a juros simples, de 30% ao ano.

Nesse contexto, o valor pago na quitação dessa dívida, nos termos do desconto comercial simples (desconto por fora) negociado, em reais, foi de

- a) 245.000,00
- b) 315.000,00
- c) 318.182,00
- d) 323.750,00
- e) 341.250,00
- 6. (CESGRANRIO 2013) Um comerciante descontou um cheque pré-datado para 30 dias, no valor de R\$ 30.000,00, tendo o banco cobrado uma taxa de desconto simples de 5,00% ao mês. Qual é o valor, em reais, emprestado ao lojista, e qual é a taxa efetiva de juros simples ao mês cobrada do cliente, respectivamente?
- a) 28.500,00 e 5,00%
- b) 28.500,00 e 5,26%
- c) 30.000,00 e 5,00%
- d) 30.000,00 e 5,26%
- e) 30.000,00 e 5,52%
- 7. (CESGRANRIO 2010) Uma empresa oferece aos seus clientes desconto de 10% para pagamento no ato da compra ou desconto de 5% para pagamento um mês após a compra. Para que as opções sejam indiferentes, a taxa de juros mensal praticada deve ser, aproximadamente,
- a) 0,5%
- b) 3,8%
- c) 4,6%
- d) 5,0%
- e) 5,6%

8. (CESGRANRIO – 2013) Um cliente contraiu um empréstimo, junto a um banco, no valor de R\$ 20.000,00, a uma taxa de juros compostos de 4% ao mês, com prazo de 2 trimestres, contados apartir da liberação dos recursos. O cliente quitou a dívida exatamente no final do prazo determinado, não pagando nenhum valor antes disso.

Dados
$1,04^2 \cong 1,082$
$1,04^3 \cong 1,125$
$1,04^4 \cong 1,170$
$1,04^5 \cong 1,217$
$1,04^6 \cong 1,265$
$1,04^7 \cong 1,316$

Qual o valor dos juros pagos pelo cliente na data da quitação dessa dívida?

- a) R\$ 5.300,00
- b) R\$ 2.650,00
- c) R\$ 1.250,00
- d) R\$ 1.640,00
- e) R\$ 2.500,00
- 9. (CESGRANRIO 2011) Uma empresa obtém um empréstimo de R\$ 15.000,00 de uma instituição financeira que cobra juros antecipados de 3% ao mês. O prazo da operação é de 3 meses, e ovalor líquido liberado pela instituição financeira na conta corrente da empresa correspondeu a R\$ 13.650,00.

Com base nos dados acima, a taxa efetiva mensal composta da operação foi, aproximadamente,

- a) 4,4%
- b) 4,0%
- c) 3,6%
- d) 3,2% e) 2,8%
- 10. (CESGRANRIO 2011) Um cidadão assina um contrato para a aquisição de um terreno comprometendo-se a pagar, no prazo de 2 meses, a quantia de R\$ 100.000,00. Sabendo-se que, embutidos nesse valor, foram considerados juros compostos de 3% ao mês, o valor original do terreno, em reais, era
- a) 94.000,00
- b) 94.122,15
- c) 94.259,59
- d) 94.499,99
- e) 95.250,00
- 11.(CESGRANRIO 2010) Suponha que o Posto de Gasolina Ribeiro Ltda. tem uma dívida com um banco de R\$ 144.000,00 (cento e quarenta e quatro mil reais), que vence em dois meses. Ogerente da conta desse Posto fez uma proposta para quitar a dívida à vista. Se a taxa de juros desse financiamento é de 20,0% ao mês, quanto o Posto deve pagar àvista, em reais, ao banco, para a quitação dessa dívida?
- a) 140.000,00
- b) 120.000,00
- c) 115.200,00
- d) 100.000,00
- e) 86.000,00

12. (CESGRANRIO – 2018) Um equipamento, que poderia ser comprado por 100 milhões de reais à vista, foi financiado por meio de dois pagamentos semestrais sucessivos. O primeiro, no valor de55 milhões de reais, foi pago seis meses após a compra; o segundo, no valor de 60,5 milhões de reais, foi pago 12 meses após a compra.

O valor mais próximo da taxa anual equivalente cobrada nesse financiamento é igual a

- a) 15,5%
- b) 16,1%
- c) 20,0%
- d) 21,0%
- e) 22,5%
- 13. (CESGRANRIO 2012) Um produto é vendido à vista com 10% de desconto ou a prazo em dois pagamentos, sendo o primeiro no ato da compra e o segundo 2 meses após a compra. Qual é, aproximadamente, a taxa mensal de juros no pagamento a prazo?

Dado: $\sqrt{5} \approx 2.24$

- a) 10%
- b) 11%
- c) 12%
- d) 24%
- e) 25%
- 14. (CESGRANRIO 2015) Arthur contraiu um financiamento para a compra de um apartamento, cujo valor à vista é de 200 mil reais, no Sistema de Amortização Constante (SAC), a uma taxa dejuros de 1% ao mês, com um prazo de 20 anos. Para reduzir o valor a ser financiado, ele dará uma entrada no valor de 50 mil reais na data da assinatura do contrato. As prestações começam um mês após a assinatura do contrato e são compostas de amortização, juros sobre o saldo devedor do mês anterior, seguro especial no valor de 75 reais mensais fixos no primeiro ano e despesa administrativa mensal fixa no valor de 25 reais.

A partir dessas informações, o valor, em reais, da **segunda** prestação prevista na planilha de amortização desse financiamento, desconsiderando qualquer outro tipo de reajuste no saldo devedor que não seja a taxa de juros do financiamento, é igual a

- a) 2.087,25
- b) 2.218,75
- c) 2.175,25
- d) 2.125,00
- e) 2.225,00
- 15. (CESGRANRIO 2011) Consiste em um plano de amortização de uma dívida em prestações periódicas iguais e sucessivas, dentro do conceito de termos vencidos, em que o valor de cadaprestação, ou pagamento é composto por duas parcelas distintas: uma de juros e outra de capital (chamada amortização).

VIEIRA SOBRINHO J.P. **Matemática Financeira**. São Paulo: Atlas, 2007, p. 220.

Essa definição se refere ao sistema de amortização conhecido como

- b) constante
- c) radial
- d) alemão
- e) francês

✓ GABARITO

1	D
2	E
3	Α
4	Α
5	В
6	В
7	E
8	Α
9	D
10	С
11	D
12	D
13	С
14	В
15	E

ANOTAÇÕES	///////////////////////////////////////