Réseaux, information et communications (INFO-F303) Partie Théorie de l'Information Rappels mathématiques

Christophe Petit Université libre de Bruxelles

Plan du cours

- 1. Notion de code
- 2. Source aléatoire et codes efficaces
- 3. Entropie et codage efficace
- 4. Compression sans perte
- 5. Canal bruité
- 6. Codes correcteurs d'erreurs
- 7. Codes linéaires
- 8. Quelques familles de codes linéaires
- A. Rappels mathématiques (chapitre 7.1 du syllabus)

Groupe

- ▶ Un groupe (G, \circ) est un ensemble G muni d'une opération $\circ : G \times G \rightarrow G$ telle que
 - ▶ **Elément neutre** : il existe $e \in G$ tel que pour tout $x \in G$, on a $x \circ e = x = e \circ x$
 - ▶ **Inverse** : pour tout $x \in G$, il existe y tel que $x \circ y = e = y \circ x$
 - ► **Associativité**: pour tous $x, y, z \in G$, on a $(x \circ y) \circ z = x \circ (y \circ z)$
- ▶ Quand est implicite, on dit que *G* est un groupe

Groupe (2)

- ► Groupe est *abélien* ou *commutatif* si pour tout x, y, on a $x \circ y = y \circ x$
- ▶ L'*ordre* de *G* est sa taille |*G*|
- ► *G* est *fini* si |*G*| est fini
- ▶ Pour tout $g \in G$ on écrit $g^i := g \circ g \circ g \dots \circ g$ (g composé i fois avec lui-même)
- ▶ Un groupe est *cyclique* si il existe $g \in G$ tel que $G = \{g, g^2, g^3, \dots, g^{|G|}\}$
- ▶ Un tel g est appelé un générateur de G

Rang d'un groupe

Le rang d'un groupe (G, +) est le nombre minimal d'éléments nécessaires pour générer le groupe

$$\min\{k: \exists S = \{g_1, \dots, g_k\} \subset G \text{ t.q. } \forall g \in G, g = \sum_i g_{e_i} \text{ avec } g_{e_i} \in S\}$$

- Exemples
 - $(\mathbb{Z} \times \mathbb{Z}, +)$ est un groupe de rang 2 avec comme générateurs $\{(1,0),(0,1)\}$
 - ▶ Un groupe cyclique est un groupe fini de rang 1

Exemples de groupes

- $(\mathbb{Z},+)$ est un groupe, élément neutre est 0
- $(\mathbb{Q}, +)$ est un groupe, élément neutre est 0
- $(\mathbb{Q},*)$ n'est pas un groupe : 0 n'est pas inversible
- $(\mathbb{Q}^*,*)$ est un groupe, élément neutre est 1 (ici $\mathbb{Q}^*=\mathbb{Q}\setminus\{0\}$)
- $(\mathbb{Z}_n, +)$ est un groupe pour tout entier positif n (ici $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ sont les entiers modulo n)
- $(\mathbb{Z}_p^*, *)$ est un groupe pour tout nombre premier p (ici $\mathbb{Z}_p^* = \mathbb{Z}_p \setminus \{0\}$)
- ▶ $(\mathbb{Z}_n \setminus \{0\}, *)$ n'est pas un groupe si *n* n'est pas premier
- **.** . . .

Théorème de Lagrange

- ► Soit (*G*, ∘) groupe fini
- ▶ Pour tout entier k et tout $g \in G$, on écrit g^k pour $g \circ g \circ ... \circ g$, k times
- ▶ Théorème de Lagrange : pour tout $g \in G$, on a $g^{|G|} = e$ où e est l'élément neutre du groupe
- ▶ Petit théorème de Fermat : pour tout premier p et tout $g \neq 0 \mod p$, on a $g^{p-1} = 1 \mod p$

Corps

- ▶ Un corps (K, +, *) est un ensemble K muni de deux opérations $+: K \times K \to K$ et $*: K \times K \to K$ telles que
 - \blacktriangleright (K, +) est un groupe abélien
 - $(K \setminus \{e\},*)$ est un groupe, où e est l'élément neutre pour +
- ▶ Un corps (K, +, *) est fini si |K| est fini

Exemples de corps

- $(\mathbb{C}, +, *)$ est un corps avec éléments neutres 0 and 1 pour + et *
- $(\mathbb{Q}, +, *)$ est un corps avec éléments neutres 0 and 1 pour + et *
- $(\mathbb{Z}_p, +, *)$ est un corps fini pour tout premier pCe corps est souvent dénoté \mathbb{F}_p
- ▶ Pour toute puissance de premier p^n , il existe un corps fini \mathbb{F}_{p^n} de taille p^n

Corps finis non premiers

- Soit f un polynôme de degré n avec coefficients dans \mathbb{F}_p , f irréductible (pas de facteur de degré différent de 0 ou n)
- ▶ Soit (K, +, *) où
 - $ightharpoonup K = \{\text{polynômes sur } \mathbb{F}_p \text{ de degrés inférieurs à } n\}$
 - \blacktriangleright + et * sont addition et multiplication modulo f
- ▶ Alors (K, +, *) est un corps fini avec p^n éléments
- ▶ Exemple : $f(x) = x^2 + x + 1 \in \mathbb{F}_2[x]$ irréductible et $\mathbb{F}_4 = \mathbb{F}_2[x]/(f(x)\mathbb{F}_2[x])$ est un corps fini avec quatre éléments $\{0, 1, x, x + 1\}$
- ▶ La caractéristique de \mathbb{F}_{p^n} est p

Espace vectoriel

- Un espace vectoriel (V,+,*) sur un corps K est un ensemble V ⊃ K muni de deux opérations +: V × V → V et *: K × V → V telles que
 - \blacktriangleright (V,+) est un groupe
 - Pour tout $a, b \in K$ et tout $v \in V$, on a (a+b)*v = a*v + b*v
 - Pour tout $a \in K$ et $v, w \in V$, on ae a * (v + w) = a * v + a * w
- La dimension de l'espace vectoriel est le rang de (V, +)
- ► Une base de V est un ensemble de dim V éléments qui génèrent V

Anneau

- ▶ Un anneau (R, +, *) est un ensemble R muni de deux opérations $+: R \times R \rightarrow R$ et $*: R \times R \rightarrow R$ telles que
 - ightharpoonup (R, +) est un groupe abélien
 - ► (R,*) est associative et a un élément neutre (mais les éléments ne sont pas forcément inversibles)
 - ▶ Distributivité : pour tout $a, b, c \in R$, on a (a + b) * c = a * c + b * c

Exemples d'anneaux

- ▶ Soit K un corps et soit K[X] l'ensemble des polynômes avec coefficients dans K. Alors (K[X], +, *) est un anneau
- ▶ $\mathbb{Z}_n := \mathbb{Z}/n\mathbb{Z}$ (entiers modulo n) est un anneau pour tout $n \in \mathbb{N}$. C'est un corps si et seulement si n est premier.
- Soir K un corps. Soit $f \in K[X]$ et soit $\tilde{K} = K[X]/(f(X))$ l'ensemble des polynômes sur K "modulo f(x)". Alors \tilde{K} est un anneau. C'est un corps si et seulement si f est irréductible.

Matrices et systèmes linéaires

▶ Soit un système de m équations linéaires à n inconnues sur un corps K

$$\sum_{i=1,\ldots,n} a_{ij} x_j = b_i, \qquad i = 1,\ldots,m$$

▶ On peut le représenter sous forme matricielle

$$Ax = b$$

avec
$$A \in K^{m \times n}$$
 et $b \in K^n$

Noyau et image

Soit le système

$$Ax = b$$

- ▶ Noyau de A est Ker $A = \{x \mid Ax = 0\}$
- ▶ Image de A est Im $A = \{Ax\}$
- ▶ Ker et Im sont des espaces vectoriels et

$$\dim \operatorname{Ker} A + \dim \operatorname{Im} A = n$$

► Si x_0 est une solution du système, alors l'ensemble des solutions est $x_0 + \text{Ker } A$

Elimination gaussienne

- ► Observation : si My = x alors pour toute matrice inversible N, on a NMy = Nx
- ▶ En particulier, c'est vrai si N est une matrice qui
 - ► Echange deux lignes de *M*
 - ► Multiplie une ligne par une constante inversible
 - ► Ajoute un multiple scalaire d'une ligne à une autre ligne
- ► L'élimination gaussienne répète ces opérations jusqu'à obtenir une matrice triangulaire supérieure

Questions?

?

Crédits et remerciements

- Mes transparents suivent fortement les notes de cours développées par le Professeur Yves Roggeman pour le cours INFO-F303 à l'Université libre de Bruxelles
- Une partie des transparents et des exercices ont été repris ou adaptés des transparents développés par le Professeur Jean Cardinal pour ce même cours
- Je remercie chaleureusement Yves et Jean pour la mise à disposition de ce matériel pédagogique, et de manière plus large pour toute l'aide apportée pour la reprise de ce cours
- Les typos et erreurs sont exclusivement miennes (merci de les signaler!)