BALKAN OLYMPIAD IN INFORMATICS

Udine, 29 September 2025

tiling • EL

Tiling Madness (tiling)

Θέλεις να καλύψεις ένα πλέγμα $N \times N$ με N όμοια 2N-minoes που δεν επικαλύπτονται.

Τα 2N-minoes δεν είναι απαραίτητο να βρίσκονται ολόκληρα μέσα στο πλέγμα $N \times N$.

Συγκεκριμένα, κάθε λύση σε αυτό το πρόβλημα πρέπει να καθορίσει ένα 2N-mino, και μετά να τοποθετήσει N αντίγραφα του σε ένα πλέγμα (χωρίς να το περιστρέψει ή να το αντικατοπτρίσει) έτσι ώστε:

- κάθε κελί του πλέγματος να είναι μέρος το πολύ ενός 2N-mino.
- να υπάρχει ένα υποπλέγμα (subgrid) $N \times N$ πλήρως καλυμμένο από τα 2N-minoes που τοποθετούνται.

Ενα 2N-mino είναι ένα συνδεδεμένο σύνολο από 2N τετράγωνα. Μπορείς να δεις ένα παράδειγμα έγκυρου και ένα παράδειγμα άκυρου 2N-mino στην Σ χήμα 1.

•	A	A	A	•
A	•	•	•	•
	A	A	A	A
·	A	A	A	A
	A			A

Σχήμα 1: Η εικόνα στα αριστερά είναι ένα έγκυρο 14-mino. Αυτή στα δεξιά δεν είναι, αφού δεν είναι συνδεδεμένο.

Θέλουμε να ξέρουμε πόσοι τρόποι υπάρχουν για να καλύψεις το πλέγμα, όπου ο καθένας χρησιμοποιεί ένα **μοναδικό** 2N-mino. Η βαθμολογία σου θα εξαρτηθεί από το πόσα έγκυρα 2N-minoes που καλύπτουν το τετράγωνο $N\times N$ θα δώσεις.

Σημείωσε ότι τα 2N-minoes που μπορούν να προκύψουν το ένα από το άλλο με περιστροφή ή αντικατοπτρισμό θεωρούνται διαφορετικά.

Υλοποίηση

Αυτό είναι ένα πρόβλημα μόνο-εξόδου (output-only). Πρέπει να υποβάλεις ακριβώς ένα αρχείο εξόδου.

Μορφή εισόδου

Το μοναδικό αρχείο εισόδου αποτελείται από μία μόνο γραμμή, που περιέχει τον ακέραιο N.

Μορφή εξόδου

Το μοναδικό αρχείο εξόδου πρέπει να έχει την ακόλουθη μορφή:

- Η πρώτη γραμμή πρέπει να περιέχει έναν μόνο ακέραιο C $(0 \le C \le 16000)$: το πλήθος των διαφορετικών λύσεων που περιέχονται στην έξοδό σου.
- Μετά, πρέπει να ακολουθούν C μπλοκ λύσεων. Κάθε μπλοκ πρέπει να έχει την ακόλουθη μορφή:
 - Η πρώτη γραμμή πρέπει να περιέχει δύο ακεραίους h και w $(0 \le h, w \le 5N)$: το ύψος και το πλάτος του πλέγματος όπου θα τοποθετήσεις τα 2N-minoes.

tiling Σελίδα 1 από 3

Οι επόμενες h γραμμές πρέπει να περιέχουν η καθεμιά ένα string μήκους w, που να αποτελείται από τα πρώτα N κεφαλαία γράμματα του λατινικού αλφαβήτου και τον χαρακτήρα τελεία (.). Το i-οστό γράμμα του αλφαβήτου υποδεικνύει ότι το κελί καταλαμβάνεται από το i-οστό αντίγραφο του 2N-mino, ενώ η τελεία υποδεικνύει ότι το κελί μένει κενό.

Για κάθε μπλοκ λύσης, το πλέγμα πρέπει να περιέχει ένα υποπλέγμα (sub-grid) $N \times N$ που δεν περιέχει κανένα χαρακτήρα . . Ολα τα N αντίγραφα του 2N-mino πρέπει να είναι ολόιδια.

Βαθμολογία

Αυτό το πρόβλημα έχει ακριβώς 1 περίπτωση ελέγχου (test case), όπου N=7. Η βαθμολογία S για τη λύση σου καθορίζεται σύμφωνα με τον παρακάτω πίνακα. Μεταξύ των τιμών που καθορίζονται στον πίνακα, η βαθμολογία θα αποδοθεί με **γραμμική παρεμβολή** (linear interpolation). Μια λανθασμένη μορφοποίηση εξόδου παίρνει πάντα μηδέν βαθμούς.

Λύσεις	Βαθμολογία	
0	0	
4	10	
30	30	
250	50	
2000	70	
16000	100	

Παραδείγματα εισόδου/εξόδου

input	output
3	2
	5 6
	. AAA
	.AAA
	BBBCCC
	BBBCCC
	5 7
	BB
	.BBB
	CCBAA
	CCCAAA
	CA.

Εξήγηση

Στο παράδειγμα μας ζητείται να χρησιμοποιήσουμε 6-minoes για να καλύψουμε ένα τετράγωνο 3×3 : σημείωσε ότι αυτή δεν είναι μια έγκυρη είσοδος, αφού στη μοναδική είσοδο το N=7.

Η έξοδος δείχνει δύο από τις πολλές πιθανές λύσεις, οι οποίες φαίνονται στην παρακάτω εικόνα.

tiling Σελίδα 2 από 3

·	A	A	A	•	٠
	A	A	A		
В	В	В	С	С	С
В	В	В	С	С	С

В	В					
	В	В	В		•	•
С	С	В	A	A		
	С	С	С	A	A	A
		С			A	

Και στις δύο περιπτώσεις, μπορούμε να δούμε ότι υπάρχουν 3 όμοια 6-minoes που δεν επικαλύπτονται και ότι καλύπτεται ένα τετράγωνο 3×3 .

tiling Σ ελίδα 3 από 3