Contrôle de géométrie analytique N°3

Durée : 1 heure 45 minutes Barème sur 15 points

NOM:	_	
	Groupe	
PRENOM:		

1. Dans le plan muni d'un repère orthonormé d'origine O, on donne l'équation cartésienne d'une ellipse $\mathcal E$:

$$\mathcal{E}: \quad 2x^2 + y^2 - 2 = 0.$$

Soit F le foyer dont les coordonnées sont positives ou nulles.

Soient M un point courant de \mathcal{E} , t la tangente à \mathcal{E} en M, n la perpendiculaire à t passant par O, d la droite (FM) et P le point d'intersection des droites n et d.

Déterminer l'équation cartésienne du lieu de $\,P\,$ lorsque $\,M\,$ décrit l'ellipse $\,\mathcal{E}\,.$

Décrire avec précision la nature géométrique de ce lieu.

4 pts

2. Dans le plan muni d'un repère orthonormé, on donne l'équation cartésienne d'un cercle γ , les coordonnées d'un point $A \in \gamma$ et une droite d passant par P et dirigée par \vec{v} :

$$\gamma: x^2 + y^2 - 25 = 0, \quad A(3, -4), \quad d = d(P, \vec{v}) \text{ avec } P(0, 13) \text{ et } \vec{v} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

- a) Déterminer l'équation cartésienne du cercle γ_1 orthogonal au cercle γ en A et tel que son centre Ω_1 appartienne à la droite d.
- b) Déterminer l'équation cartésienne d'un cercle γ_2 de rayon $r_2=8$, tangent extérieurement au cercle γ et tel que les tangentes à γ et γ_2 issues de P soient isométriques.

5 pts

3. Le plan est muni d'un repère orthonormé.

On considère la famille \mathcal{F} des ellipses \mathcal{E} dont on connaît un foyer F(-3, -2) et la directrice d correspondante d'équation y = 2.

- a) Déterminer l'équation cartésienne de la famille \mathcal{F} dépendante du paramètre c uniquement (c: demi-distance focale).
- b) Déterminer l'équation cartésienne de l'ellipse $\mathcal E$ de la famille $\mathcal F$ qui est telle que la droite (de pente positive) passant par une extrémité du grand axe et une extrémité du petit axe soit de pente $m=\frac{3}{2}$.

3 pts

4. Dans le plan, on considère deux points A et Ω_2 , une droite a et un segment de longueur δ .

Soient $\gamma_{1}\left(\Omega_{1}, r_{1}\right)$ et $\gamma_{2}\left(\Omega_{2}, r_{2}\right)$ deux cercles dont l'axe radical est la droite a.

Le point A est le pôle de la droite a par rapport au cercle γ_2 , Ω_2 est le centre du cercle γ_2 , et le rayon r_1 du cercle γ_1 est de longueur δ .

Construire rigoureusement (règle, équerre, compas), sur la donnée graphique cidessous, les deux cercles γ_1 et γ_2 .

3 pts

 δ

A Ω