Estimation of Distribution Algorithms for Permutation-based Problems

Josu Ceberio, Alexander Mendiburu, Jose A. Lozano

Intelligent Systems Group
Department of Computer Science and Artificial Intelligence
The University of the Basque Country

Outline

- 1 Permutation-based Optimization Problems
- Estimation of Distribution Algorithms
- K-Order Marginals EDA
- Mallows EDA
- 5 Future Work

Outline

- 1 Permutation-based Optimization Problems
- Estimation of Distribution Algorithms
- 3 K-Order Marginals EDA
- Mallows EDA
- 5 Future Work

Combinatorial Optimization Problems and Permutations

Definition

- A specific subset of NP-Hard optimization problems
- Problems whose solution can be represented as permutations

Combinatorial Optimization Problems and Permutations

Definition

- A specific subset of NP-Hard optimization problems
- Problems whose solution can be represented as permutations

Permutations

What are permutations?

• A permutation is understood as a vector $\sigma = (\sigma_1, \dots, \sigma_n)$ of the indexes $\{1, \dots, n\}$ such that $\sigma_i \neq \sigma_j$ for all $i \neq j$

Permutations

What are permutations?

- A permutation is understood as a vector $\sigma = (\sigma_1, \dots, \sigma_n)$ of the indexes $\{1, \dots, n\}$ such that $\sigma_i \neq \sigma_i$ for all $i \neq j$
- Example:

$$\sigma = (1 \ 4 \ 5 \ 8 \ 2 \ 6 \ 3 \ 7)$$

- 1 2
 - **3 6**
- 4 5

- Given a set of n cities and the distances between them $D = [d_{ij}]$ find the shortest path that passes for each city once and comes back to the first city
- The objective function can be written as:

$$f(\sigma_1 \sigma_2 \ldots \sigma_n) = \sum_{i=1}^{n-1} d_{\sigma_i,\sigma_{i+1}} + d_{\sigma_n,\sigma_1}$$

- (1) (2)
 - **3 6**
- 4 5

- Given a set of n cities and the distances between them $D = [d_{ij}]$ find the shortest path that passes for each city once and comes back to the first city
- The objective function can be written as:

$$f(\sigma_1 \sigma_2 \ldots \sigma_n) = \sum_{i=1}^{n-1} d_{\sigma_i,\sigma_{i+1}} + d_{\sigma_n,\sigma_1}$$

• A solution can be represented as a permutation:

$$\sigma = (1 \ 3 \ 4 \ 5 \ 6 \ 2)$$

Interpretation

The objective function is independent of the absolute position of a city. It only depends on the relative position of consecutive indexes

$$f(1 3 4 5 6 2) = f(2 1 3 4 5 6)$$

Definition

- It consists of scheduling *n* jobs on *m* machines.
- A job consists of m operations and the j^{th} operation of each job must be processed on machine j for a specific time.
- The goal of the optimization is to minimize the processing time of all the jobs.

Figure: Example of a solution for an instance of 5 jobs on 4 machines

Representation

A solution can be represented as a permutation: $\sigma = (1 \ 3 \ 2 \ 5 \ 4)$

Interpretation

In this case the objective function depends on the absolute position of each index

Figure: Example of a solution for an instance of 5 jobs on 4 machines

Representation

A solution can be represented as a permutation: σ =(1 3 2 5 4)

Interpretation

In this case the objective function depends on the absolute position of each index

Figure: Example of a solution for an instance of 5 jobs on 4 machines

Representation

A solution can be represented as a permutation: σ =(1 3 2 5 4)

Interpretation

In this case the objective function depends on the absolute position of each index

Outline

- 1 Permutation-based Optimization Problems
- Estimation of Distribution Algorithms
- 3 K-Order Marginals EDA
- Mallows EDA
- 5 Future Work

Evolutionary Computation

Estimation of Distribution Algorithms (EDAs)

- An Evolutionary Algorithm
- Similar to Genetic Algorithms
- Learn a probability distribution from the selected individuals
- Sample the probability distribution to obtain the new population

Evolutionary Computation

Estimation of Distribution Algorithms (EDAs)

- An Evolutionary Algorithm
- Similar to Genetic Algorithms
- Learn a probability distribution from the selected individuals
- Sample the probability distribution to obtain the new population

Evolutionary Computation

Estimation of Distribution Algorithms (EDAs)

- An Evolutionary Algorithm
- Similar to Genetic Algorithms
- Learn a probability distribution from the selected individuals
- Sample the probability distribution to obtain the new population

Pseudocode of EDAs

Obtain an initial population of individuals D_0

Repeat until a stopping criterion is met

Select from D_i a subset of individuals D_i^S Learn a probability distribution $p_i(\mathbf{x})$ from D_i^S

Sample $p_i(\mathbf{x})$ to obtain $D_{i+1/2}$

Create the new population D_{i+1} from D_i and $D_{i+1/2}$

Estimation of Distribution Algorithms for Permutation-based Problems
Estimation of Distribution Algorithms

EDAs for Permutation-based problems

Adapting classical approaches

- Adaptations of integer encoding EDA approaches
- Adaptations of real encoding EDA approaches

Estimation of Distribution Algorithms for Permutation-based Problems
Estimation of Distribution Algorithms

EDAs for Permutation-based problems

Adapting classical approaches

- Adaptations of integer encoding EDA approaches
- Adaptations of real encoding EDA approaches

EDAs designed for integer problems

Basics

• These algorithms learn, a probability distribution over a set (of variables) $\Omega = \Omega_1 \times \Omega_2 \times \ldots \times \Omega_n$ where

$$\Omega_i = \{1, 2, \dots, r_i\}, \quad r_i \in \mathbb{N} \quad i = 1, \dots, n$$

- Dependencies:
 - Univariate: UMDA
 - Bivariate: MIMIC
 - Multivariate: EBNA, Depedency-Trees

EDAs designed for integer problems

Drawbacks

- The sampling of these models may not provide permutations
- At the time of sampling the learnt relation between the variables is lost
- These methods do not learn a probability distribution in a permutation space

EDAs designed for continuous problems

Basics

- Optimization is carried out in the continuous space
- Given a real vector $(x_1, x_2, ..., x_n)$ of length n, a permutation can be obtained by ranking the positions using the values x_i , (i = 1, ..., n)
- Given

the permutation obtained is $\sigma = (2\ 3\ 7\ 1\ 9\ 8\ 5\ 4\ 6)$

• Examples: UMDAc, MIMICc, EGNA...

EDAs designed for continuous problems

Drawbacks

- There are a lot of redundancy in the codification: many real vectors correspond with the same permutation
- There is not explicit distribution over permutations: Which is the probability of a particular permutation?

Outline

- 1 Permutation-based Optimization Problems
- Estimation of Distribution Algorithms
- 3 K-Order Marginals EDA
- 4 Mallows EDA
- 5 Future Work

K-Order Marginals EDA

Learning

- At each step a matrix of K-order marginals is learnt
- Each entry of the matrix is given by the probability:

$$P(\sigma_{i_1}=j_1,\ldots,\sigma_{i_k}=j_k)$$

• It is calculated from the number of times that the configuration $(\sigma_{i_1} = j_1, \dots, \sigma_{i_k} = j_k)$ appears in the selected individuals.

K-Order Marginals EDA

Table: 2-order marginals matrix

		Index Combinations											
		(1,2)	(1,3)	(1,4)	(2,1)	(2,3)	(2,4)	(3,1)	(3,2)	(3,4)	(4,1)	(4,2)	(4,3)
	(1,2)	0.20	0.05	0.10	0.05	0.10	0.05	0.05	0.10	0.05	0.05	0.10	0.10
SL	(1,3)	0.05	0.20	0.10	0.10	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.05
.5.	(1,4)	0.10	0.10	0.15	0.05	0.05	0.10	0.10	0.05	0.05	0.10	0.05	0.10
osition	(2,3)	0.05	0.05	0.05	0.10	0.15	0.15	0.10	0.10	0.05	0.05	0.05	0.10
۵	(2,4)	0.05	0.05	0.05	0.10	0.15	0.15	0.10	0.05	0.10	0.05	0.10	0.05
	(3,4)	0.05	0.10	0.10	0.10	0.05	0.05	0.05	0.10	0.15	0.10	0.05	0.10

Sampling

- The individual is initialized as empty S = (-, -, -, -)
- The sampling process is done by sampling a position of the individual at each step in the M_i matrix i = 1, ..., k

Sampling

- The individual is initialized as empty S = (-, -, -, -)
- The sampling process is done by sampling a position of the individual at each step in the M_i matrix $i=1,\ldots,k$

Step 1

- The uniformly random selected position is 2.
- M_1 marginals matrix:

		Index Combinations								
		1	2	3	4					
ns	1	0.41	0.16	0.16	0.25					
Positio	2	0.09	0.50	0.25	0.16					
	3	0.25	0.16	0.33	0.25					
	4	0.25	0.16	0.25	0.33					

• Sampled index is 3.

Step 2

- Partially sampled individual is S = (-, 3, -, -)
- The uniformly random selected combination of positions is (2, 3).
- M₂ marginals matrix:

		Index Combinations											
		(1,2)	(1,3)	(1,4)	(2,1)	(2,3)	(2,4)	(3,1)	(3,2)	(3,4)	(4,1)	(4,2)	(4,3)
	(1,2)	0.20	0.05	0.10	0.05	0.10	0.05	0.05	0.10	0.05	0.05	0.10	0.10
SL	(1,3)	0.05	0.20	0.10	0.10	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.05
ositions	(1,4)	0.10	0.10	0.15	0.05	0.05	0.10	0.10	0.05	0.05	0.10	0.05	0.10
osi	(2,3)	0.05	0.05	0.05	0.10	0.15	0.15	0.40	0.40	0.20	0.05	0.05	0.10
۵	(2,4)	0.05	0.05	0.05	0.10	0.15	0.15	0.10	0.05	0.10	0.05	0.10	0.05
	(3,4)	0.05	0.10	0.10	0.10	0.05	0.05	0.05	0.10	0.15	0.10	0.05	0.10

• Sampled indexes combination is (3, 2).

Step 3

- Partially sampled individual is S = (-, 3, 2, -)
- The uniformly random selected combination of positions is (3, 4).
- M₂ marginals matrix:

		Index Combinations											
		(1,2)	(1,3)	(1,4)	(2,1)	(2,3)	(2,4)	(3,1)	(3,2)	(3,4)	(4,1)	(4,2)	(4,3)
	(1,2)	0.20	0.05	0.10	0.05	0.10	0.05	0.05	0.10	0.05	0.05	0.10	0.10
SL	(1,3)	0.05	0.20	0.10	0.10	0.05	0.05	0.05	0.05	0.10	0.10	0.10	0.05
. <u>ē</u>	(1,4)	0.10	0.10	0.15	0.05	0.05	0.10	0.10	0.05	0.05	0.10	0.05	0.10
osition	(2,3)	0.05	0.05	0.05	0.10	0.15	0.15	0.10	0.10	0.05	0.05	0.05	0.10
۵	(2,4)	0.05	0.05	0.05	0.10	0.15	0.15	0.10	0.05	0.10	0.05	0.10	0.05
	(3,4)	0.05	0.10	0.10	0.66	0.05	0.33	0.05	0.10	0.15	0.10	0.05	0.10

• Sampled indexes combination is (2, 1).

Step4

- Partially sampled individual is S = (-, 3, 2, 1)
- Remaining index is placed in position 1.
- The new individual is S = (4, 3, 2, 1).

Experiments

Execution Parameter Set

Parameter	Value					
K-order	{1,2,3}					
Population size range	$\{10n, 20n, 40n, 80n, 160n, 320n, 640n\}.$					
Selection size	Population size / 2.					
Offspring size	Population size - 1.					
Selection type	Ranking selection method.					
Elitism selection method	The best individual of the previous generation is guaranteed to survive.					
Stopping criteria	A maximum number of generations: 100n.					

Instances

- TSP (Grostel 17)
- FSSP (Taillard 20 jobs 10 machines)

Experiments

Figure: K-order marginals EDA solving Grostel 17 TSP instance.

Experiments

Table: Results of K-order marginals EDA for Grostel 17 TSP instance.

Pop. Size	k = 1			k = 2			k = 3		
	Best	Mean	Dev	Best	Mean	Dev	Best	Mean	Dev
170	2085	2112.5	23.6	2377	2526.8	107.0	2489	2642.7	67.5
340	2085	2132.1	26.4	2090	2210.9	153.4	2303	2553.5	92.1
680	2090	2129.0	23.2	2090	2138.9	26.5	2392	2477.0	56.0
1360	2090	2127.7	20.1	2085	2115.5	19.3	2269	2401.7	71.1
2720	2090	2128.6	31.2	2090	2103.8	25.7	2090	2118.9	37.9
5440	2090	2115.6	18.2	2090	2102.3	15.9	2090	2093.0	9.4
10880	2090	2102.3	21.7	2090	2090.0	0.0	2090	2090.0	0.0

Experiments

Figure: K-order marginals EDA solving Taillard 20-10 FSSP instance.

Experiments

Table: Results of K-order marginals EDA for Taillard 20-10 FSSP.

Pop. Size	k = 1			k = 2			k = 3		
	Best	Mean	Dev	Best	Mean	Dev	Best	Mean	Dev
200	1585	1598.0	12.5	1631	1653.8	12.9	1679	1707.4	14.6
400	1585	1595.5	11.4	1583	1607.6	14.7	1662	1690.6	16.5
800	1585	1587.4	1.9	1588	1605.3	12.0	1671	1683.2	7.5
1600	1586	1590.6	5.6	1586	1589.9	4.9	1633	1642.9	9.5
3200	1585	1587.5	1.7	1585	1588.6	4.1	1586	1601.4	12.5
6400	1585	1586.8	1.7	1586	1587.0	1.4	1586	1593.4	8.6
12800	1585	1586.7	1.1	1585	1586.2	1.0	-	-	-

- Higher order models are slightly better, however higher populations are needed
- Low order marginals can be computed due to the computational costs
- Estimating probability distributions of higher populations makes the model less random.
- We do not have an explicit probability distribution

- Higher order models are slightly better, however higher populations are needed
- Low order marginals can be computed due to the computational costs
- Estimating probability distributions of higher populations makes the model less random.
- We do not have an explicit probability distribution

- Higher order models are slightly better, however higher populations are needed
- Low order marginals can be computed due to the computational costs
- Estimating probability distributions of higher populations makes the model less random.
- We do not have an explicit probability distribution

- Higher order models are slightly better, however higher populations are needed
- Low order marginals can be computed due to the computational costs
- Estimating probability distributions of higher populations makes the model less random.
- We do not have an explicit probability distribution

K-order Marginals EDA

- Higher order models are slightly better, however higher populations are needed
- Low order marginals can be computed due to the computational costs
- Estimating probability distributions of higher populations makes the model less random.
- We do not have an explicit probability distribution

Learn a probability distributions over the space of permutations

Outline

- 1 Permutation-based Optimization Problems
- 2 Estimation of Distribution Algorithms
- 3 K-Order Marginals EDA
- 4 Mallows EDA
- 5 Future Work

Definition

- The Mallows model estimates the distance of the selected individuals (permutations) to the central permutation
- Probability Distribution

$$p(\sigma) = \frac{1}{Z(\theta)} e^{-\theta d_{K}(\sigma, \sigma_{0})}$$

- Parameters:
 - Central permutation σ_0
 - ullet Spread parameter heta
 - $d_K(\sigma, \sigma_0)$ is Kendall's distance: minimum number of adjacent transpositions to go from σ_0 to σ
 - Normalization constant $Z(\theta)$

Definition

 The Mallows model estimates the distance of the selected individuals (permutations) to the central permutation Probability Distribution

$$p(\sigma) = \frac{1}{Z(\theta)} e^{-\theta d_K(\sigma, \sigma_0)}$$

- Parameters:
 - Central permutation σ_0
 - ullet Spread parameter heta
 - $d_K(\sigma, \sigma_0)$ is Kendall's distance: minimum number of adjacent transpositions to go from σ_0 to σ
 - Normalization constant $Z(\theta)$

Definition

 The Mallows model estimates the distance of the selected individuals (permutations) to the central permutation Probability Distribution

$$p(\sigma) = \frac{1}{Z(\theta)} e^{-\theta d_{K}(\sigma, \sigma_{0})}$$

- Parameters:
 - Central permutation σ_0
 - ullet Spread parameter heta
 - $d_K(\sigma, \sigma_0)$ is Kendall's distance: minimum number of adjacent transpositions to go from σ_0 to σ
 - Normalization constant $Z(\theta)$

Definition

 The Mallows model estimates the distance of the selected individuals (permutations) to the central permutation Probability Distribution

$$p(\sigma) = \frac{1}{Z(\theta)} e^{-\theta d_K(\sigma, \sigma_0)}$$

- Parameters:
 - Central permutation σ_0
 - ullet Spread parameter heta
 - $d_K(\sigma, \sigma_0)$ is Kendall's distance: minimum number of adjacent transpositions to go from σ_0 to σ
 - Normalization constant $Z(\theta)$

K-order Marginals vs. Mallows model

K-order Marginals vs. Mallows model

Estimation of Distribution Algorithms for Permutation-based Problems Future Work

Outline

- 1 Permutation-based Optimization Problems
- 2 Estimation of Distribution Algorithms
- 3 K-Order Marginals EDA
- 4 Mallows EDA
- 5 Future Work

Generalized Mallows model

Definition

Probability Distribution

$$p(\sigma) = \frac{1}{Z(\theta_j)} e^{-\theta_j d_K(\sigma, \sigma_0)}$$

• A different spread parameter θ_i to each position j

Cayley's Distance

Definition

- Kendall's distance, $d_K(\sigma, \sigma_0)$: minimum number of adjacent transpositions to go from σ to σ_0
- Cayley's distance, $d_C(\sigma, \sigma_0)$: minimum number transpositions, not necessarily adjacent, to go from σ to σ_0

Cayley's Distance

Definition

- Kendall's distance, $d_K(\sigma, \sigma_0)$: minimum number of adjacent transpositions to go from σ to σ_0
- Cayley's distance, $d_C(\sigma, \sigma_0)$: minimum number transpositions, not necessarily adjacent, to go from σ to σ_0

Estimation of Distribution Algorithms for Permutation-based Problems

Josu Ceberio, Alexander Mendiburu, Jose A. Lozano

Intelligent Systems Group
Department of Computer Science and Artificial Intelligence
The University of the Basque Country

