Naval Propulsion Plants Maintenance Prediction

- 1. Introduction
- 2. Explaratory Data Analysis
- 3. Data Processing
- 4. Model Selection
- 5. Final Prediction
- 6. Conclusion

1. Introduction

This work is inspired by paper Condition-Based Maintenance of Naval Propulsion Systems with Supervised Data Analysis.

The main issue explored within the project work is Preventive Maintenance, a service concept, that implies the life cycle estimation of a certain component. In comparison with the Corrective Maintenance, the PM allows to ensure a component service, repair or substitution before its breakdown, that can raise the efficiency level and reduce costs.

In the current work, the Gas Turbine and Compressor decay state coefficients are estimated based on number of propulsion system parameters: shaft torque, rate of revolutions, compressor inlet air temperature and pressure, turbine injection control and fuel flow. To build an estimator, the ML and DL techniques are applied.

Reading the Data

Out[2]:

	Lever position	Ship speed (v)	Gas Turbine (GT) shaft torque (GTT) [kN m]	GT rate of revolutions (GTn) [rpm]	Gas Generator rate of revolutions (GGn) [rpm]	Starboard Propeller Torque (Ts) [kN]	Port Propeller Torque (Tp) [kN]	Hight Pressure (HP) Turbine exit temperature (T48) [C]	GT Compressor inlet air temperature (T1) [C]	GT Compressor outlet air temperature (T2) [C]	HP Turbine exit pressure (P48) [bar]	GT Compressor inlet air pressure (P1) [bar]	Com (
0	1.138	3	289.964	1349.489	6677.380	7.584	7.584	464.006	288	550.563	1.096	0.998	
1	2.088	6	6960.180	1376.166	6828.469	28.204	28.204	635.401	288	581.658	1.331	0.998	
2	3.144	9	8379.229	1386.757	7111.811	60.358	60.358	606.002	288	587.587	1.389	0.998	
3	4.161	12	14724.395	1547.465	7792.630	113.774	113.774	661.471	288	613.851	1.658	0.998	

```
In [3]:
          1 df.columns
Out[3]: Index(['Lever position ', 'Ship speed (v) ',
                'Gas Turbine (GT) shaft torque (GTT) [kN m] ',
                'GT rate of revolutions (GTn) [rpm] ',
                'Gas Generator rate of revolutions (GGn) [rpm] ',
                'Starboard Propeller Torque (Ts) [kN] ',
                'Port Propeller Torque (Tp) [kN] ',
                'Hight Pressure (HP) Turbine exit temperature (T48) [C] ',
                'GT Compressor inlet air temperature (T1) [C]
                'GT Compressor outlet air temperature (T2) [C]
                'HP Turbine exit pressure (P48) [bar]
                'GT Compressor inlet air pressure (P1) [bar] ',
                'GT Compressor outlet air pressure (P2) [bar]
                'GT exhaust gas pressure (Pexh) [bar] ',
                'Turbine Injecton Control (TIC) [%] ', 'Fuel flow (mf) [kg/s] ',
                'GT Compressor decay state coefficient ',
                'GT Turbine decay state coefficient '],
               dtype='object')
             df.columns = ['lp', 'v', 'gtt', 'gtn', 'ggn', 'ts', 'tp', 't48',
In [4]:
          2
                                                't1', 't2', 'p48', 'p1', 'p2', 'pexh', 'tic', 'mf', 'y_1', 'y_2']
          3 df.head(3)
Out[4]:
              lp v
                         gtt
                                 gtn
                                        ggn
                                                ts
                                                             t48
                                                                 t1
                                                                              p48
                                                                                           p2 pexh
                                                                                                            mf y_1 y_2
                                                    7.584 464.006 288 550.563 1.096 0.998 5.947 1.019
         0 1.138 3
                     289.964 1349.489 6677.380
                                              7.584
                                                                                                    7.137 0.082 0.95 0.975
         1 2.088 6 6960.180 1376.166 6828.469 28.204
                                                   28.204 635.401 288 581.658 1.331 0.998 7.282 1.019 10.655 0.287 0.95 0.975
         2 3.144 9 8379.229 1386.757 7111.811 60.358 60.358 606.002 288 587.587 1.389 0.998 7.574 1.020 13.086 0.259 0.95 0.975
```

2. Exploratory Data Analysis

```
In [5]: 1 df.shape
Out[5]: (11934, 18)
```

In [6]: 1 df.describe()

Out[6]:

	lp	v	gtt	gtn	ggn	ts	tp	t48	t1	t2	
count	11934.000000	11934.000000	11934.000000	11934.000000	11934.000000	11934.000000	11934.000000	11934.000000	11934.0	11934.000000	1
mean	5.166667	15.000000	27247.498685	2136.289256	8200.947312	227.335768	227.335768	735.495446	288.0	646.215331	
std	2.626388	7.746291	22148.613155	774.083881	1091.315507	200.495889	200.495889	173.680552	0.0	72.675882	
min	1.138000	3.000000	253.547000	1307.675000	6589.002000	5.304000	5.304000	442.364000	288.0	540.442000	
25%	3.144000	9.000000	8375.883750	1386.758000	7058.324000	60.317000	60.317000	589.872750	288.0	578.092250	
50%	5.140000	15.000000	21630.659000	1924.326000	8482.081500	175.268000	175.268000	706.038000	288.0	637.141500	
75%	7.148000	21.000000	39001.426750	2678.079000	9132.606000	332.364750	332.364750	834.066250	288.0	693.924500	
max	9.300000	27.000000	72784.872000	3560.741000	9797.103000	645.249000	645.249000	1115.797000	288.0	789.094000	
4										•	

Judging by the data main statistics, the t1 and p1 features (the GT compressor inlet air temperature and pressure) are constant at the levels of 288 degrees Celcium and 9.980 bars respectively, so these features can be omitted during the analysis.

```
In [7]: 1 df.drop(['t1','p1'], axis=1, inplace=True)
2 df.head(3)
```

Out[7]:

	lp	V	gtt	gtn	ggn	ts	tp	t48	t2	p48	p2	pexh	tic	mf	y_1	y_2
0	1.138	3	289.964	1349.489	6677.380	7.584	7.584	464.006	550.563	1.096	5.947	1.019	7.137	0.082	0.95	0.975
1	2.088	6	6960.180	1376.166	6828.469	28.204	28.204	635.401	581.658	1.331	7.282	1.019	10.655	0.287	0.95	0.975
2	3.144	9	8379.229	1386.757	7111.811	60.358	60.358	606.002	587.587	1.389	7.574	1.020	13.086	0.259	0.95	0.975

Out[8]:

	lp	٧	gtt	gtn	ggn	ts	tp	t48	t2	p48	p2	pexh	tic	mf	y_1	y_2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

<u>d</u> -	1	1	0.99	0.97	0.99	0.99	0.99	0.97	0.99	0.99	0.99	0.99	0.93	0.97	0	0
> -	1	1	0.99	0.97	0.99	0.99	0.99	0.97	0.99	0.99	0.99	0.99	0.93	0.97	0	0
att -	0.99	0.99	1	0.97	0.99	0.99	0.99	0.98	0.99	0.98	0.99	0.98	0.93	0.98	-0.041	0.026
gtn -	0.97	0.97	0.97	1	0.98	0.98	0.98	0.96	0.97	0.96	0.96	0.97	0.89	0.96	-0.05	0.041
dão	0.99	0.99	0.99	0.98	1	0.99	0.99	0.97	0.99	0.97	0.98	0.98	0.93	0.97	-0.098	0.047
ъ-	0.99	0.99	0.99	0.98	0.99	1	1	0.96	0.99	0.98	0.98	0.99	0.91	0.97	-0.03	0.017
ф-	0.99	0.99	0.99	0.98	0.99	1	1	0.96	0.99	0.98	0.98	0.99	0.91	0.97	-0.03	0.017
148	0.97	0.97	0.98	0.96	0.97	0.96	0.96	1	0.99	0.98	0.98	0.96	0.95	1	-0.072	-0.063
4	0.99	0.99	0.99	0.97	0.99	0.99	0.99	0.99	1	0.98	0.99	0.97	0.94	0.99	-0.093	-0.031
P48	0.99	0.99	0.98	0.96	0.97	0.98	0.98	0.98	0.98	1	1	0.99	0.92	0.98	0.087	-0.035
p2	0.99	0.99	0.99	0.96	0.98	0.98	0.98	0.98	0.99	1	1	0.98	0.93	0.99	0.032	-0.088
hexh	0.99	0.99	0.98	0.97	0.98	0.99	0.99	0.96	0.97	0.99	0.98	1	0.91	0.96	0.078	0.03
ąc	0.93	0.93	0.93	0.89	0.93	0.91	0.91	0.95	0.94	0.92	0.93	0.91	1	0.95	-0.086	-0.068
m-	0.97	0.97	0.98	0.96	0.97	0.97	0.97	1	0.99	0.98	0.99	0.96	0.95	1	-0.056	-0.068
y_1	0	0	-0.041	-0.05	-0.098	-0.03	-0.03	-0.072	-0.093	0.087	0.032	0.078	-0.086	-0.056	1	0
y_2	0	0	0.026	0.041	0.047	0.017	0.017	-0.063	-0.031	-0.035	-0.088	0.03	-0.068	-0.068	0	1
	ĺρ	v	gtt	gtn	ggn	ts	ф	t48	t2	p48	p2	pexh	tic	mf	y_'1	y_'2

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

As it can be seen from the correlation matrix, the following features have strong linear correlation between each other:

lever position and ship speed, gas turbine torque and starboard and portside torques. ...

All the features are slightly correlated with the target functions.

In total, the data is highly correlated, that might cause the problem while fitting the linear model. To avoid the issue, feature selection should be conducted.

During the model selection, I tried to fit the models with only 5 selected features (see below), but the accuracy was lower in comparison with the models fitted with all the data presented in the set.

For the future analysis, only several features are kept:

- 1. gas turbine shaft torque (as a torque feature)
- 2. turbine exit temperature (as a temperature feature)
- 3. turbine exit pressure (as a pressure feature)
- 4. turbine injecton control (TIC)
- 5. fuel flow

Let's take a look at some features distributions.

3. Data Preprocessing

4. Model Selection

The following models are built and evaluated in order to choose different approaches to regression problem:

1. Predict compressor & turbine decay coefficient using Linear regression (1st model).

2. Predict compressor & turbine decay coefficient using any of supervised learning algorithm of your choice. (2nd model), i.e. Random Forest Regressor

```
In [15]: 1    from sklearn.linear_model import LinearRegression, Ridge
2    from sklearn.ensemble import RandomForestRegressor
3    from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split
4    from sklearn.metrics import mean_squared_error, mean_absolute_error
```

Linear Regression Model

Random Forest Regressor Model

Fitting 5 folds for each of 4 candidates, totalling 20 fits

```
Out[17]: RandomForestRegressor
RandomForestRegressor(n_estimators=250)
```

5. Final Prediction

```
In [19]:
           1 # ML algorithms prediction function
           2 def predict(algo, X, y, test size=0.2):
                 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
                  algo.fit(X train, y train)
                 y pred = algo.predict(X test)
           5
                 print('MSE:', mean_squared_error(y_test, y_pred))
                 print('MAE:', mean_absolute_error(y_test, y_pred))
           7
                  df = pd.DataFrame([y_test, y_pred]).T
                 df.rename(columns={0:'true', 1:'pred'}, inplace=True)
                  df['error'] = abs(df.pred - df.true).round(4)
          10
                  df.sort values('error', ascending = False, inplace=True)
          11
                  return df
          12
```

Compressor decay state coefficient prediction

Linear Regression

```
In [20]:
```

algo = LinearRegression(n_jobs=-1)
predict(algo, X, y_1).head(10)

MSE: 3.441359132505435e-05 MAE: 0.004652031370967987

Out[20]:

	true	pred	error
43	0.950	0.968786	0.0188
1342	0.998	0.979303	0.0187
1761	0.999	0.980444	0.0186
1870	0.951	0.969488	0.0185
1410	0.999	0.980499	0.0185
2114	0.954	0.972424	0.0184
195	0.950	0.968051	0.0181
1332	0.997	0.979051	0.0179
888	0.998	0.980230	0.0178
52	0.953	0.970794	0.0178

Random Forest Regressor

MSE: 1.1976629334822397e-06 MAE: 0.00046328725038401143

Out[21]:

	true	pred	error
1248	1.000	0.977307	0.0227
566	1.000	0.977513	0.0225
750	0.998	0.986520	0.0115
1040	0.999	0.989753	0.0092
895	0.995	0.985967	0.0090
1082	0.966	0.973780	0.0078
488	0.996	0.988527	0.0075
2087	0.992	0.984993	0.0070
2188	0.969	0.975933	0.0069
14	0.998	0.991387	0.0066

Turbine decay state coefficient prediction

Linear Regression

In [22]:

algo = LinearRegression(n_jobs=-1)
predict(algo, X, y_2).head(10)

MSE: 4.680821745012341e-06 MAE: 0.0016461997975821012

Out[22]:

	true	pred	error
1901	0.999	0.989812	0.0092
819	0.994	0.985035	0.0090
937	0.975	0.983874	0.0089
415	0.993	0.984072	0.0089
1751	0.996	0.987465	0.0085
1124	0.999	0.990676	0.0083
2096	0.992	0.983793	0.0082
1188	0.994	0.985834	0.0082
1947	0.976	0.983972	0.0080
760	0.980	0.987717	0.0077

Random Forest Regressor

MSE: 5.529951124144603e-07 MAE: 0.0003369389750034732

Out[23]:

	true	pred	error
647	0.976	0.987160	0.0112
200	0.975	0.984127	0.0091
2203	0.980	0.987320	0.0073
1278	0.978	0.985167	0.0072
2054	0.975	0.981160	0.0062
1283	0.977	0.982473	0.0055
490	0.990	0.984547	0.0055
1710	0.975	0.980167	0.0052
401	1.000	0.995187	0.0048
366	1.000	0.995260	0.0047

6. Conclusion

During the project work, the propulsion plants preventive maintenance possibility was examined. The gas compressor and turbine decay state coefficients were predicted based on the Data Driven Model GT parameters.

The model showed the best results is Random Forest algorithm with the performance: MSE = 9.5e-07, and MAE = 0.0005 for Compressor Decay State Coefficient; MSE = 4.2e-07, and MAE = 0.0003 for Turbine Decay State Coefficient.

The performance of each model is accurate enough to be used in the industrial applications. The final model can be chosen between the explored based on the time and power efficiency.

It turned out, that the models fitted with the 14 features (all except constant compressor inlet air temperature and pressure features) show more accurate results than the ones fitted with the chosen set of 5 parameters (in accordance with the correlation matrix).