B2 COMPILATION & ASSEMBLEUR

PLAN

- Introduction à la compilation et à la théorie des langages
- Analyse lexicale et syntaxique
- Grammaire attribuée et arbre syntaxique
- Table de symboles, typage et analyse sémantique
- Représentation Intermédiaire et génération de code
- Allocation de registres

- Compilation :
 - Entrée : un algorithme implémenté sous forme d' un programme dans un langage de programmation « évolué » (de haut niveau)

COMPILATEUR

- Sortie : un programme équivalent exécutable par un processeur
 - Exemple : C avec gcc

- Interprétation
 - Entrée : un algorithme implémenté sous forme d' un programme dans un langage de programmation « évolué » (de haut niveau)

INTERPRETEUR

- Sortie : exécution directe
 - Exemple : Bash, Python

- Mélange
 - Entrée : un algorithme implémenté sous forme d' un programme dans un langage de programmation « évolué » (de haut niveau)

COMPILATEUR

Forme intermédiaire : un programme équivalent dans un autre langage «moins évolué »

INTERPRETEUR

- Sortie : exécution de la forme intermédiaire par un programme interpréteur ou machine virtuelle
 - Exemple : JAVA

- De manière générale
 - Entrée : un fichier définissant des objets informatiques (exécution, données, ...) en utilisant un format ou syntaxe ou langage

TRADUCTEUR

Sortie : un fichier équivalent (ou pas) utilisant un autre langage

- Un compilateur est un programme
 - qui lit un autre programme rédigé dans un langage de programmation, appelé langage source
 - et qui le traduit dans un autre langage, le langage cible.
- De plus, le compilateur signale toute erreur contenue dans le programme source

DONNÉES

PROGRAMME SOURCE

INTERPRÉTEUR

DONNÉES

PROGRAMME CIBLE

RÉSULTATS

Exemple :

Programme source

Programme cible

```
entier d;
                              push ebp
                              mov ebp, esp
f(entier a, entier b)
                                   esp, 8
entier c, entier k;
                                   ebx, [ebp + 12]
                              push ebx
k = a + b;
                                   ebx, [ebp + 8]
retour k;
                              push ebx
                             main:
main()
                              push ebp
                                    ebp, esp
d = 7;
                                    esp, 8
ecrire(f(d, 2) + 1);
                              push
                                    ebx
                              pop
                                    [d], ebx
                               mov
```


- La traduction ne peut malheureusement pas se faire « mot à mot »
- Le programme source doit être décomposé en composants pertinents ou constructions du langage source.
- La traduction d'une construction dépend de la position qu'elle occupe au sein du programme.

- L'analyse, réalisée par la partie frontale du compilateur, qui :
 - découpe le programme source en ses constituants ;
 - détecte des erreurs de syntaxe ou de sémantique ;
 - produit une représentation intermédiaire du programme source ;
 - conserve dans une table des symboles diverses informations sur les procédures et variables du programme source.
- La génération, réalisée par la partie finale du compilateur, qui :
 - construit le programme cible à partir de la représentation intermédiaire et de la table des symboles

PROGRAMME SOURCE analyse REPRÉSENTATION INTERMÉDIAIRE génération PROGRAMME CIBLE

ANALYSE LEXICALE

Séquence de lexèmes (tokens)

ANALYSE SYNTAXIQUE

Structure en arbre (AST)

ANALYSE SÉMANTIQUE

Structure en arbre avec attributs (Arbre abstrait) et table de symboles

Code intermédiaire

PRODUCTION DE CODE

De nombreuses phases

ANALYSE LEXICALE

ANALYSE SYNTAXIQUE

ANALYSE SÉMANTIQUE

Code intermédiaire

PRODUCTION DE CODE

- Nature de la représentation intermédiaire
 - La conception d'une bonne RI est un compromis :
 - Elle doit être raisonnablement facile à produire à partir du programme source.
 - Elle doit être raisonnablement facile à traduire vers le langage cible. Elle doit donc être raisonnablement éloignée (ou raisonnablement proche) du langage source et du langage cible.

Economie

- Une RI judicieusement définie permet de construire un compilateur pour le langage L et la machine M en combinant :
 - un analyseur pour le langage L
 - un générateur pour la machine M
- Economie : on obtient m×n compilateurs en écrivant seulement m analyseurs et n générateurs

Portabilité

- Syntaxe du langage source
 - Le programme source vérifie un certain nombre de contraintes syntaxiques.
 - L'ensemble de ces contraintes est appelé grammaire du langage source.
 - Si le programme ne respecte pas la grammaire du langage, il est considéré incorrect et le processus de compilation échoue.

- Description de la grammaire du langage source
 - Littéraire
 - Un programme est une suite de définitions de fonction
 - Une définition de fonction est composée
 - du nom de la fonction suivie de ses arguments
 - suivie de la declaration de ses variables internes
 - suivie d'un bloc d'instructions
 - Une instruction est . . .
 - Formelle
 - Programme → listeDecFonc '.'
 - listeDecFonc → decFonc listeDecFonc
 - listeDecFonc →
 - decFonc → IDENTIF listeParam listeDecVar ';' instrBloc . . .

- Grammaires formelles
 - Les contraintes syntaxiques sont représentées sous la forme de règles de réécriture.
 - La règle A → BC nous dit que le symbole A peut se réécrire comme la suite des deux symboles B et C.
 - L'ensemble des règles de réécriture constitue la grammaire du langage.
 - La grammaire d'un langage L permet de générer tous les programmes corrects écrits en L et seulement ceux-ci

- Notations et Terminologie
 - Dans la règle A → α
 - A est appelé partie gauche de la règle.
 - αest appelé partie droite de la règle.
 - Lorsque plusieurs règles partagent la même partie gauche :
 - $A \rightarrow \alpha_1, A \rightarrow \alpha_2, \ldots, A \rightarrow \alpha_n$
 - On les note :
 - $A \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n$

- Grammaire partielle des expressions arithmétiques
 - EXPRESSION → EXPRESSION OP2 EXPRESSION
 - OP2 → + | | * | /
 - EXPRESSION → NOMBRE
 - EXPRESSION → (EXPRESSION)
 - NOMBRE → CHIFFRE | CHIFFRE NOMBRE
 - CHIFFRE \rightarrow 0|1|2|3|4|5|6|7|8|9
- Les symboles EXPRESSION, OP2, NOMBRE, CHIFFRE sont appelés symboles non terminaux de la grammaire
- Les symboles +, -, *, /, (,), 0, 1, ..., 9 sont appelés symboles terminaux de la grammaire

- Avantages des grammaires formelles
 - Une grammaire formelle :
 - Pousse le concepteur d'un langage à en décrire la syntaxe de manière exhaustive.
 - Permet de répondre automatiquement à la question mon programme est-il correct ? à l'aide d'un analyseur syntaxique.
 - Fournit, à l'issue de l'analyse, une représentation explicite de l'organisation du programme en constructions (structure syntaxique du programme).
 - Cette représentation est utile pour la suite du processus de compilation

- Dérivation d'une expression arithmétique
- L'expression arithmétique 2*(3+1) est-elle correcte?
 - NOMBRE OP2 EXPRESSION
 ⇒ CHIFFRE OP2 EXPRESSION
 ⇒ 2 OP2 EXPRESSION
 ⇒ 2 * EXPRESSION
 ⇒ 2 * (EXPRESSION)
 - ⇒ 2 * (EXPRESSION OP2 EXPRESSION)

EXPRESSION OP2 EXPRESSION

- ⇒ 2 * (NOMBRE OP2 EXPRESSION)
- ⇒ 2 * (CHIFFRE OP2 EXPRESSION)
- ⇒ 2 * (3 OP2 EXPRESSION)
- $\Rightarrow 2*(3 + EXPRESSION)$ $\Rightarrow 2*(3 + NOMBRE)$
- ⇒ 2 * (3 + CHIFFRE)
- ⇒ 2 * (3 + 1)

- Analyse lexicale
 - Afin de simplifier la grammaire décrivant un langage, on omet de cette dernière la génération de certaines parties simples du langage.
 - Ces dernières sont prises en charge par un analyseur lexical
 - L'analyseur lexical traite le programme source et fournit le résultat de son traitement à l'analyseur syntaxique.

Nouvelle grammaire des expressions arithmétiques

Syntaxe

EXPRESSION→EXPRESSION OP2 EXPRESSION EXPRESSION→NOMBRE EXPRESSION→(EXPRESSION)

Lexique

 $OP2 \rightarrow + |-|*|/$ $NOMBRE \rightarrow CHIFFRE | CHIFFRE NOMBRE$ $CHIFFRE \rightarrow 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$

- Analyseur lexical
 - Lit le programme source
 - Reconnaît des séquences de caractères significatives appelées lexèmes
 - Pour chaque lexème, l'analyseur lexical émet un couple (type du lexème, valeur du lexème)
 - Exemple: (NOMBRE,123)
 - Les types de lexèmes sont des symboles, ils constituent les symboles terminaux de la grammaire du langage.
 - Les symboles terminaux de la grammaire (ou types de lexèmes) constituent l'interface entre l'analyseur lexical et l'analyseur syntaxique. Ils doivent être connus des deux

LANGAGES

Le paysage syntaxique

- Les symboles sont des éléments indivisibles qui vont servir de briques de base pour construire des mots.
- Un alphabet est un ensemble fini de symboles.
- On désigne conventionnellement un alphabet par la lettre grecque Σ.
- Une suite de symboles, appartenant à un alphabet Σ , mis bout à bout est appelé un mot (ou une chaîne) sur Σ .
- Le mot de longueur zéro est noté ε.
- On note |m| la longueur du mot m (le nombre de symboles qui le composent) et |m|_s le nombre de symboles s que possède le mot m.
- L'ensemble de tous les mots que l'on peut construire sur un alphabet Σ est noté Σ^* .
- Un langage sur un alphabet Σ est un ensemble de mots construits sur Σ. Tout langage défini sur Σ est donc une partie de Σ^* .

LANGAGES

- Exemples de langages
 - $\Sigma = \{a\}$ L1 = { ε, a, aa, aaa, ... }
 - $\Sigma = \{a,b\}$ L2 = { ϵ , ab, aabb, aaabbb, aaaabbbb, ...}
 - $\Sigma = \{a,b\}$ L3 = $\{\epsilon, aa, bb, aaaa, abba, baab, bbbb, ...\}$
 - $\Sigma = \{a,b,c\}$ L4 = $\{\epsilon, abc, aabbcc, aaabbbccc, ...\}$

LANGAGES

- Opérations sur les langages
 - Union L1 \cup L2 { x | x \in L1 ou x \in L2}
 - Intersection L1 \cap L2 { x | x \in L1 et x \in L2}
 - Différence L1–L2 $\{x \mid x \in L1 \text{ et } x \notin L2\}$
 - Complément \overline{L} { $x \in \Sigma^* | x \notin L$ }
 - Concaténation L1L2 $\{xy \mid x \in L1 \text{ et } y \in L2\}$
 - Auto concaténation L ... L Lⁿ
 - Fermeture de Kleene L* $\bigcup_{k\geq 0} L^k$

LANGAGES

- Comment décrire un langage ?
 - Énumération
 - L2 = $\{\varepsilon, ab, aabb, aaabbb, aaaabbbb, ...\}$
 - Description littéraire
 - Ensemble des mots construits sur l'alphabet {a,b}, commençant par des a et se terminant par des b et tel que le nombre de a et le nombre deb soit égal
 - Grammaire de réécriture
 - G = $\langle \{S\}, \{a, b\}, \{S \rightarrow aSb \mid \epsilon\}, S \rangle$

- Une grammaire de réécriture est un 4-uplet 〈 N, Σ, P, S 〉 où :
 - N est un ensemble de symboles non terminaux, appelé l'alphabet non-terminal.
 - lacksquare Σ est un ensemble de symboles terminaux, appelé l'alphabet terminal, tel que N et Σ soient disjoints.
 - P est un sous ensemble fini de règles de production ou règles de réécriture :
 - $\alpha \rightarrow \beta_1 \mid \beta_2 \mid \dots \mid \beta$
 - S est un élément de N appelé l'axiome de la grammaire. C'est la désignation d'un des non-terminaux en tant que symbole de départ S

- Les proto-mots d'une grammaire $G = \langle N, \Sigma, P, S \rangle$ sont des mots construits sur l'alphabet $\Sigma \cup N$, on les définit récursivement de la façon suivante :
 - S est un proto-mot de G
 - si αβγ est un proto-mot de G et $\beta \to \delta \in P$ alors αδγ est un proto-mot de G.
- Un proto-mot de G ne contenant aucun symbole non-terminal est appelé un mot engendré par G.
- Le langage engendré par G, noté L(G) est l'ensemble des mots engendrés par G.

Conventions

- Les symboles non terminaux appartenant à N sont représentés par des lettres latines majuscules : A,B,C,S,E,T...
- Les symboles terminaux appartenant à Σ sont représentés par des lettres latines minuscules : a,b,c,d ...
- L'axiome est représenté par le non-terminal S et constitue la partie gauche de la première règle de production
- Les proto-mots appartenant à $(N \cup \Sigma)^*$ sont représentés par des lettres grecques minuscules : α , β , γ , ϵ ...


```
• L1 = \{ \epsilon, a, aa, aaa, ... \}
```

```
G = \langle \{S\}, \{a\}, \{S \rightarrow Sa \mid \epsilon\}, S \rangle
```

sous-ensemble des proto-mots de G


```
    L2 = { ε, ab, aabb, aaabbb, aaaabbbb ...}
    G = ⟨ { S }, { a, b }, { S → aSb | ε }, S ⟩
    sous-ensemble des proto-mots de G
```

```
S

E asb

ab aasbb

aabb aaasbbb
```


L3 = { aa, bb, aaaa, abba, baab, bbbb, ...}

```
G = \langle \{S\}, \{a, b\}, \{S \rightarrow aSa \mid bSb \mid aa \mid bb\}, S \rangle
```

sous-ensemble des proto-mots de G

L4 = $\{ \epsilon, abc, aabbcc, aaabbbccc, aaaabbbbcccc ... \}$

```
G = \langle \{S, S_1, S_2\}, \{a, b, c\}, \{S \rightarrow aS_1c, S_1 \rightarrow b \mid SS_2, cS_2 \rightarrow S_2c, bS_2 \rightarrow bb\}, S \rangle
```

sous-ensemble des proto-mots de G

Comme vu dans le premier cours, Les proto-mots engendrés lors d'une dérivation peuvent comporter plus d'un symbole non-terminal :

```
G = \left\langle \left\{ E, T, F \right\}, \left\{ +, *, a \right\}, \left\{ E \to T + E \mid T, T \to F * T \mid F, F \to a \right\}, E \right\rangle
E \Rightarrow T + E
\Rightarrow T + T
\Rightarrow F + T
\Rightarrow F + F * T
\Rightarrow F + a * T
\Rightarrow F + a * F
\Rightarrow a + a * B
```


Il existe deux sens de dérivation :

Dérivation gauche : on réécrit le non-terminal le plus à gauche :

$$E \Rightarrow T + E$$

$$\Rightarrow F + E$$

$$\Rightarrow a + E$$

$$\Rightarrow a + T$$

$$\Rightarrow a + F * T$$

$$\Rightarrow a + a * T$$

$$\Rightarrow a + a * F$$

$$\Rightarrow a + a * a$$

Dérivation droite : on réécrit le non-terminal le plus à droite :

$$E \Rightarrow T + E$$

$$\Rightarrow T + T$$

$$\Rightarrow F + T$$

$$\Rightarrow F + G * T$$

$$\Rightarrow F + G * F$$

$$\Rightarrow G + G * G$$

$$\Rightarrow G + G * G$$

- Arbre de dérivation
 - Un arbre de dérivation indique les règles qui ont été utilisées dans une dérivation, mais pas l'ordre dans lequel elles ont été utilisées.
 - À un arbre de dérivation correspondent une seule dérivation droite et une seule dérivation gauche.

- Une grammaire G est dite ambiguë s'il existe au moins un mot m dans L(G) auquel correspond plus d'un arbre de dérivation.
 - Exemple : $E \rightarrow E + E \mid E * E \mid a$

- Symboles et règles de production utiles
 - Pour manipuler une grammaire, il est souhaitable que tous les symboles et règles de production soient utiles :
 - Un symbole terminal ou non-terminal est utile s'il apparaît dans une règle de production utile
 - Une règle de production est utile si :
 - elle peut générer des mots
 - le symbole non-terminal de la partie gauche peut être généré (sauf l'axiome, qui peut par définition ne pas être généré)
 - elle n'est pas de la forme $\alpha \rightarrow \alpha$

- Types de règles
 - Les grammaires peuvent être classées en fonction de la forme de leurs règles de production.
 - On définit cinq types de règles de production :
 - Une règle est régulière à gauche si et seulement si elle est de la forme $A \rightarrow xB$ ou $A \rightarrow x$ avec $A, B \in N$ et $x \in \Sigma^*$.
 - Une règle est régulière à droite si et seulement si elle est de la forme $A \rightarrow Bx$ ou $A \rightarrow x$ avec $A, B \in N$ et $x \in \Sigma^*$.
 - Une règle A $\rightarrow \alpha$ est un règle hors-contexte si et seulement si : A \in N et $\alpha \in (N \cup \Sigma)^*$
 - Une règle $\alpha \rightarrow \beta$ est une règle contextuelle si et seulement si : α = gAd et β = gBd avec g, d, B ∈ (NUΣ)* et A ∈ N. Le nom "contextuelle" provient du fait que A se réecrit B uniquement dans le contexte g_d.
 - Une règle $\alpha \rightarrow \beta$ est une règle sans restriction si elle n'est pas contextuelle.

- Type d'une grammaire
 - Une grammaire est :
 - Régulière ou de type 3 si elle est régulière à droite ou régulière à gauche. Une grammaire est régulière à gauche si toutes ses règles sont régulières à gauche et une grammaire est régulière à droite si toutes ses règles sont régulières à droite.
 - Hors-contexte ou de type 2 si toutes ses règles de production sont hors-contexte.
 - Dépendante du contexte ou de type 1 si toutes ses règles de production sont dépendantes du contexte.
 - Sans restrictions ou de type 0 si toutes ses règles de production sont sans restrictions.

- Exemples de langages réguliers :
 - L1 = $\{ m \in \{a, b\}^* \}$
 - G1 = $\langle \{S\}, \{a, b\}, \{S \rightarrow aS \mid bS \mid \epsilon\}, S \rangle$
 - L2 = $\{ m \in \{a, b\}^* | |m|_a \mod 2 = 0 \}$
 - G2 = $\langle \{S,T\}, \{a,b\}, \{S \rightarrow aT \mid bS \mid \epsilon, T \rightarrow aS \mid bT\}, S \rangle$
 - L3 = $\{ m \in \{ a, b \}^* \mid m = xaaa avec x \in \{ a, b \}^* \}$
 - G3 = $\langle \{S, T, U\}, \{a, b\}, \{S \rightarrow aS \mid bS \mid aT, T \rightarrow aU, U \rightarrow a\}, S \rangle$

- Exemples de langages hors-contexte
 - L1 = { $a^nb^n | n \ge 0$ }
 - G1 = $\langle \{S\}, \{a, b\}, \{S \rightarrow aSb \mid \epsilon\}, S \rangle$
 - L2 = $\{ mm^{-1} | m \in \{ a, b \}^* \}$ (langage miroir palindromes paires)
 - G2 = $\langle \{S\}, \{a, b\}, \{S \rightarrow aSa \mid bSb \mid \epsilon\}, S \rangle$

- Exemples de langages contextuels
 - L1 = { $a^nb^nc^n | n \ge 0$ }
 - G1 = { S, \overline{B} ,B,C}, { a, b, c}, S \rightarrow aSBC | ϵ , CB \rightarrow \overline{B} B, \overline{B} B \rightarrow \overline{B} C, \overline{B} C \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb, bC \rightarrow bc, cC \rightarrow cc, S \rightarrow

- Une grammaire d'un langage L permet de générer tous les mots appartenant à L.
- Un reconnaisseur pour un langage L est un programme qui prend en entrée un mot m et répond oui si m appartient à L et non sinon.
- Pour chaque classe de grammaire, il existe une classe de reconnaisseurs qui définit la même classe de langages

Type de grammaire	Type de reconnaisseur
Régulière	Automate fini
Hors-contexte	Automate à pile
Contextuelle	Automate linéairement borné
Sans restriction	Machine de Turing

- Un reconnaisseur est composé de quatre parties :
 - une bande de lecture
 - Elle est composée d'une succession de cases.
 - Chaque case peut contenir un seul symbole d'un alphabet d'entrée.
 - C'est dans les cases de cette bande de lecture qu'est écrit le mot à reconnaître.
 - une tête de lecture
 - Elle peut lire une case à un instant donné.
 - La case sur laquelle se trouve la tête de lecture à un moment donné s'appelle la case courante.
 - La tête peut être déplacée par le reconnaisseur pour se positionner sur la case immédiatement à gauche ou à droite de la case courante.
 - une mémoire
 - Elle peut prendre des formes différentes.
 - La mémoire permet de stocker des éléments d'un alphabet de mémoire.

une unité de contrôle

- Elle constitue le cœur d'un reconnaisseur.
- Elle peut être vue comme un programme qui dicte au reconnaisseur son comportement.
- Elle est définie par un ensemble fini d'états ainsi que par une fonction de transition qui décrit le passage d'un état à un autre en fonction du contenu de la case courante de la bande de lecture et du contenu de la mémoire.
- L'unité de contrôle décide aussi de la direction dans laquelle déplacer la tête de lecture et choisit quels symboles stocker dans la mémoire.
- Parmi les états d'un reconnaisseur, on distingue
 - des états initiaux, qui sont les états dans lesquels doit se trouver le reconnaisseur avant de commencer à reconnaître un mot
 - des états d'acceptation qui sont les états dans lequel doit se trouver le reconnaisseur après avoir reconnu un mot.

- Configuration et mouvement
 - Configuration d'un reconnaisseur :
 - Etat de l'unité de contrôle
 - Contenu de la bande d'entrée et position de la tête
 - Contenu de la mémoire
 - Mouvement :
 - passage d'une configuration à une autre $(C_1 + C_2)$

- Configurations
 - configuration initiale
 - L'unité de contrôle est dans un état initial
 - La tête est au début de la bande
 - La mémoire contient un élément initial.
 - configuration d'acceptation
 - L'unité de contrôle est dans un état d'acceptation
 - La tête de lecture est à la fin de la bande
 - La mémoire se trouve dans un état d'acceptation

Déterminisme

- L'unité de contrôle est dite déterministe si à toute configuration correspond au plus un mouvement pour une transition donnée
- S'il peut exister plus d'un mouvement, elle est dite non déterministe.

Reconnaissance

- Un mot m est acceptée par un reconnaisseur si, partant de l'état initial, avec m sur la bande d'entrée, le reconnaisseur peut faire une série de mouvements pour se retrouver dans un état d'acceptation.
- Le langage accepté par un reconnaisseur est l'ensemble de tous les mots qu'il accepte.

- Rapports avec la compilation
 - Analyse lexicale → automates finis
 - Analyse syntaxique automates à pile
 - Production de code
 machines de Turing

- Définition
 - Un automate fini est un 5-uplet $\langle Q, \Sigma, \delta, q_0, F \rangle$
 - Q est l'ensemble des états,
 - Σ est l'alphabet de l'entrée
 - \bullet δ est la fonction de transition
 - $q_0 \in Q$ est l'état initial,
 - F ⊆ Q est l'ensemble des états d'acceptation

Exemple :

$$\langle Q, \Sigma, \delta, q_0, F \rangle$$

$$Q = \{0, 1, 2, 3\}$$

$$\Sigma = \{a, b, c\}$$

$$\delta(0,a) = \{1\}$$

$$\delta(0,b) = \{2\}$$

$$\delta(1,a) = \{3\}$$

$$\delta(1,b) = \{0\}$$

$$\delta(2,c) = \{3\}$$

$$\delta(3,a) = \{2\}$$

$$q_0 = 0$$

$$F = \{1,3\}$$

Reconnaissance :

(0, ababbc)

Reconnaissance :

(0, ababbc) + (1, babbc)

Reconnaissance :


```
(0, ababbc)
- (1, babbc)
- (0, abbc)
```


Reconnaissance :


```
(0, ababbc)
(1, babbc)
```

- (0, abbc)
- + (1, bbc)

Reconnaissance:


```
(0, ababbc)
+ (1, babbc)
+ (0, abbc)
```

(1, bbc)

+ (0, bc)

Reconnaissance :


```
(0, ababbc)
+ (1, babbc)
+ (0, abbc)
+ (1, bbc)
+ (0, bc)
+ (2, c)
```


Reconnaissance :


```
(0, ababbc)

+ (1, babbc)

+ (0, abbc)

+ (1, bbc)

+ (0, bc)

+ (2, c)

+ (3, ε)
```


■ L1 =
$$\{ m \in \{ a, b \}^* \}$$

L2 = $\{ m \in \{ a, b \}^* \mid |m|_a \mod 2 = 0 \}$

• G2= $\langle \{S,T\}, \{a,b\}, \{S \rightarrow aT \mid bS \mid \epsilon, T \rightarrow aS \mid bT\}, S \rangle$

■ L3 = { xaaa | $x \in \{a,b\}^*$ }

• G3 = $\langle \{S, T, U\}, \{a, b\}, \{S \rightarrow aS \mid bS \mid aT, T \rightarrow aU, U \rightarrow a\}, S \rangle$

■ L3 = { xaaa | $x \in \{a,b\}^*$ }

■ G3 = $\langle \{S, T, U\}, \{a, b\}, \{S \rightarrow aS \mid bS \mid aT, T \rightarrow aU, U \rightarrow a\}, S \rangle$

Non déterminisme !!!!!

■ L3 = $\{ xaaa \mid x \in \{ a,b \}^* \}$

a

■ L3 = $\{ xaaa \mid x \in \{ a,b \}^* \}$

déterministe

```
(0, abaabaaa)
(1, baabaaa)
(0, aabaaa)
(1, abaaa)
(2, baaa)
(0, aaa)
(1, aa)
(2, a)
```

 $(3, \varepsilon)$

a

Déterminisme

- Tout langage régulier peut être reconnu par un automate fini déterministe
- Pour tout automate fini non déterministe A, on peut construire un automate déterministe A' avec L(A) = L(A')
- Prix à payer : dans le pire des cas, $|Q(A')|=2^{|Q(A)|}$

• Déterminisation d'un AFN en AFD avec ε -transitions

AFN reconnaissant (a | b)*abb

Fermeture ($\{0\}$) = $\{0,1,7,2,4\} \rightarrow$ le nouvel état initial est A Fermeture ($\{8,3\}$) = $\{8,3,6,1,7,2,4\} \rightarrow$ le nouvel état est B Fermeture ($\{5\}$) = $\{5,6,7,1,2,4\} \rightarrow$ le nouvel état est C Fermeture ($\{5,9\}$) = $\{5,9,6,7,1,2,4\} \rightarrow$ le nouvel état est D Fermeture ($\{5,10\}$) = $\{5,10,6,7,1,2,4\} \rightarrow$ le nouvel état est E

États AFD	a	b
A	В	С
В	В	D
С	В	С
D	В	E
	В	С

		а	b
-	0	0,1	0
	-1	2	2
	2	3	3
	3		

	а	b	
0	0,1	0	

		а	b
-	0	0,1	0
	-1	2	2
	2	3	3
	3		

	a	b
0	0,1	0
0,1	0,1,2	0,2

а	b	
0,1	0	
2	2	
3	3	
	0,1	0,1 0 2

	a	b
0	0,1	0
0,1	0,1,2	0,2
0,1,2	0,1,2,3	0,2,3
0,2	0,1,3	0,3
The second secon	A STATE OF THE STA	THE RESERVE THE PARTY OF THE PA

	а	b
0	0,1	0
1	2	2
2	3	3
3		

		а	b
	0	0,1	0
	0,1	0,1,2	0,2
	0,1,2	0,1,2,3	0,2,3
	0,2	0,1,3	0,3
	0,1,2,3	0,1,2,3	0,2,3
	0,2,3	0,1,3	0,3
	0,1,3	0,1,2	0,2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,3	0,1	0
		5 S S S S S S S S S S S S S S S S S S S	A PROPERTY OF THE PROPERTY OF

	а	b
0	0,1	0
1	2	2
2	3	3
3		

		а	b
	0	0,1	0
	0,1	0,1,2	0,2
	0,1,2	0,1,2,3	0,2,3
	0,2	0,1,3	0,3
	0,1,2,3	0,1,2,3	0,2,3
	0,2,3	0,1,3	0,3
1	0,1,3	0,1,2	0,2
**************************************	0,3	0,1	0
			en de la companya de

		а	b
-	0	0,1	0
	-1	2	2
	2	3	3
	3		

		а	b
	0	1	0
	1	0,1,2	0,2
	0,1,2	0,1,2,3	0,2,3
	0,2	0,1,3	0,3
	0,1,2,3	0,1,2,3	0,2,3
	0,2,3	0,1,3	0,3
→ 12	0,1,3	0,1,2	0,2
	0,3	1 1	0
			MARKET THE TANK TO SEE THE PROPERTY OF THE PRO

	а	b
0	0,1	0
1	2	2
2	3	3
3		

		а	b
	0		0
	1	2	0,2
	2	0,1,2,3	0,2,3
	0,2	0,1,3	0,3
	0,1,2,3	0,1,2,3	0,2,3
	0,2,3	0,1,3	0,3
	0,1,3	2	0,2
1000 1000 1000 1000 1000 1000 1000 100	0,3	1 1 1	0
			Name of the Control o

		а	b
-	0	0,1	0
	-1	2	2
	2	3	3
	3		

		а	b
	0	1	0
	1	2	3
	2	0,1,2,3	0,2,3
	3	0,1,3	0,3
	0,1,2,3	0,1,2,3	0,2,3
	0,2,3	0,1,3	0,3
	0,1,3	2	3
100 mm 1	0,3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0

		а	b
-	0	0,1	0
	1	2	2
	2	3	3
	3		

		а	b	
-	0	1	0	
	1	2	3	
	2	4	0,2,3	
	3	0,1,3	0,3	
	4	4	0,2,3	
	0,2,3	0,1,3	0,3	
1	0,1,3	2	3	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0,3	1	0	
				MA T

	а	b	
0	0,1	0	
1	2	2	
2	3	3	
3			

		а	b
	0	1	0
	1	2	3
	2	4	5 1
	3	0,1,3	0,3
	4	4	5
	5	0,1,3	0,3
	0,1,3	2	3
→	0,3	1	0
			THE RESIDENCE OF THE PARTY OF T

	а	b
0	0,1	0
1	2	2
2	3	3
3		

		а	b
\rightarrow	0	1	0
	1	2	3
	2	4	5
	3	6	0,3
	4	4	5
	5	6	0,3
	6	2	3
The second secon	0,3		0
			VIII LA LA LA VIII V

		а	b
-	0	0,1	0
	-1	2	2
	2	3	3
	3		

		а	b
	0	1	0
	1	2	3
	2	4	5
	3	6	7
	4	4	5
	5	6	7
+ 1	6	2	3
	7		0

Minimalisation d'un AFD

4
CONTRACT TRACTOR CONTRACTOR STATE OF THE SECOND STATE OF THE SECON
6
3
2
6
4

On construit les classes d'équivalences de ≈0, ≈1, ..., ≈ pas à pas :

- 1. on commence par ≈0 = séparer les états d'acceptation des autres
- 2. les classes de ≈1 sont obtenues en séparant, dans chaque classe de ≈0, les états qui sont envoyés par un même symbole sur des classes de ≈0 différentes.
- 3. On calcule de même ≈2 en fonction de ≈1 et, de proche en proche, toutes les relations ≈n.

1,2,4,5

3,6

Minimalisation d'un AFD

	а	b
1	2	4
2	3	6
3	3	3
4	5	2
5	3	6
6	6	4

≈O	1,2,	1,2,4,5		3,6	
≈1	1,4	2,5	3	6	

On construit les classes d'équivalences de ≈0, ≈1, ..., ≈ pas à pas :

- 1. on commence par ≈0 = séparer les états d'acceptation des autres
- 2. les classes de ≈1sont obtenues en séparant, dans chaque classe de ≈0, les états qui sont envoyés par un même symbole sur des classes de ≈0 différentes.
- 3. On calcule de même ≈2 en fonction de ≈1 et, de proche en proche, toutes les relations ≈n.

Minimalisation d'un AFD

	а	b
1	2	4
2	3	6
3	3	3
4	5	2
5	3	6
6	6	4

≈ 0	1,2,4,5		3,6	
≈1	1,4	2,5	3	6
≈2	1 4	2,5	3	6

On construit les classes d'équivalences de ≈0, ≈1, ..., ≈ pas à pas :

- 1. on commence par ≈0 = séparer les états d'acceptation des autres
- 2. les classes de ≈1sont obtenues en séparant, dans chaque classe de ≈0, les états qui sont envoyés par un même symbole sur des classes de ≈0 différentes.
- 3. On calcule de même ≈2 en fonction de ≈1 et, de proche en proche, toutes les relations ≈n.

- Limite des automates finis
 - Certains langages ne peuvent pas être reconnus par les automates finis (ne peuvent être engendrés par une grammaire régulière)
 - Exemple : L = $\{a^nb^n \mid n \ge 0\}$
 - Il faut mémoriser le nombre de a que l'on a lu pour vérifier que le mot possède autant de b.
 - Pour mémoriser un nombre potentiellement infini de a, il faut un ensemble infini d'états!

- Un automate à pile :
 - Forme simple de mémoire : une pile.
 - Mode de stockage LIFO.
 - On ne peut accéder qu'à l'élément se trouvant au sommet de la pile.
 - Deux opérations possibles :
 - empiler : ajouter un élément au sommet.
 - dépiler : enlever l'élément se trouvant au sommet.
 - Elle commence avec un symbole de fond de pile ⊥, que l'on ne peut pas dépiler.
- La pile permet de stocker de l'information sans forcément multiplier le nombre d'états

Représentation graphique

- Si l'automate est en 1, et que la tête de lecture est sur a, l'automate :
 - Décale la tête de lecture d'une case vers la droite
 - Dépile B (B doit être présent au sommet de la pile)
 - Empile c
 - Va en 2

Représentation graphique

- cas particuliers
 - Si $a = \varepsilon$, l'automate peut franchir cet arc sans lire de symbole.
 - Si B = ε , l'automate peut franchir cet arc indépendamment du symbole se trouvant en sommet de pile (et ne le dépile pas).
 - Si $c = \varepsilon$, l'automate peut franchir cet arc sans rien empiler

- Définition formelle
 - Un automate à pile est un 6-uplet $\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$
 - Q est l'ensemble des états
 - Σ est l'alphabet d'entrée
 - Γ est l'alphabet de symboles de pile (en particulier, $\bot \in \Gamma$)
 - \bullet δ est la fonction de transition
 - $q_0 \in Q$ est l'état initial
 - F ⊆ Q est l'ensemble des états d'acceptation

- Configurations
 - A = $\langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle$
 - Configuration :
 - q représente l'état courant de l'unité de contrôle
 - m est la partie du mot à reconnaître non encore lue.
 - Le premier symbole de m (le plus à gauche) est celui qui se trouve sous la tête de lecture.
 - Si m = ε alors tout le mot a été lu.
 - α représente le contenu de la pile. Le symbole le plus à gauche est le sommet de la pile. Si α = ϵ alors la pile est vide.
 - **Configuration initiale**: (q_0, m, \bot) où m est le mot à reconnaître
 - **Configuration d'acceptation** : (q, ϵ, \bot) avec $q \in F$


```
 \langle Q, \Sigma, \Gamma, \delta, q_0, F \rangle 
 Q = \{1, 2, 3\} 
 \Sigma = \{a, b\} 
 \Gamma = \{A, \bot\} 
 \delta(1, a, \epsilon) = \{(1, A)\} 
 \delta(1, b, A) = \{(2, \epsilon)\} 
 \delta(2, b, A) = \{(2, \epsilon)\} 
 \delta(2, \epsilon, \bot) = \{(3, \bot)\} 
 q0 = 1 
 F = \{3\}
```


 $(1, aaabbb, \perp)$

(1, aaabbb,⊥) - (1, aabbb, A⊥)

(1, aaabbb, A1) (1, aabbb, A1) (1, abbb, AA1)

(1, aaabbb,1) (1, aabbb, A1) (1, abbb, AA1) (1, bbb, AAA1)

(1, aaabbb,1) (1, aabbb, A1) (1, abbb, AA1) (1, bbb, AAA1) (2, bb, AA1)

(1, aaabbb,1) (1, aabbb, A1) (1, abbb, AA1) (1, bbb, AAA1) (2, bb, AA1) (2, b, A1)


```
(1, aaabbb, 1)

(1, aabbb, AΔ1)

(1, abbb, AAΔ1)

(1, bbb, AAΔ1)

(2, bb, AΔ1)

(2, b, A1)

(2, ε, 1)
```



```
(1, aaabbb, 1)
(1, aabbb, A1)
(1, abbb, AA1)
(1, bbb, AAA1)
(2, bb, AA1)
(2, b, A1)
(2, e, 1)
(3, e, 1)
```

L = { $m \in \{a, b\}^*, |m|_a = |m|_b\}$

G = $\langle \{S\}, \{a, b\}, \{S \rightarrow aSb \mid bSa \mid SS \mid \epsilon\}, S \rangle$

L = { $a^ib^jc^k | i ≥ 0, i = j ou i = k }$

 $a, \epsilon \rightarrow A$

b, B \rightarrow BB b, $\bot \rightarrow$ B \bot b, A $\rightarrow \varepsilon$

b, $\varepsilon \rightarrow \varepsilon$

Non déterministe!!

- Limites des automates à pile
 - Certains langages ne peuvent être reconnus par les automates à pile (ne peuvent être engendrés par une grammaire hors-contexte).
 - Exemple : le langage m#m avec $m \in \{0, 1\}^*$:
 - Un automate lit le premier m et le stocke dans la pile.
 - Il lit le premier symbole du second m.
 - Comment vérifier qu'il est identique au symbole se trouvant au fond de la pile ?

- Proches des automates finis, mais avec une mémoire infinie et à accès direct.
- Modèle plus proche d'un ordinateur.
- Une machine de Turing (MT) peut faire tout ce qu'un ordinateur peut faire.
- Thèse de Church-Turing : tout traitement réalisable par un algorithme peut être accompli par une machine de Turing.

Caractéristiques

- Elle possède une tête de lecture/écriture pouvant se déplacer vers la gauche et vers la droite.
- Au départ, la bande contient le mot à reconnaître et possède des ☐ dans toutes les autres cases
- Une MT peut lire et écrire sur la bande de lecture/écriture.
- La tête de lecture/écriture peut se déplacer vers la droite et vers la gauche.
- La bande de lecture écriture est infinie.
- Lorsque la MT atteint l'état d'acceptation ou l'état de rejet, elle s'arrête et accepte ou rejette le mot.
- Si la MT n'atteint pas l'état d'acceptation ou de rejet, elle peut continuer indéfiniment.

- La machine est en 1, la tête de lecture est sur a, elle :
 - écrit un b sur la bande (à la place du a),
 - décale la tête de lecture d'une case vers la droite (D)
 - va en 2.
- Cas particuliers :
 - $a \rightarrow G$: la machine n'écrit rien.
 - a : la machine n'écrit rien et ne bouge plus (elle arrive généralement dans un état final).

- Définition
 - Une MT est un octuplet $\langle Q, \Sigma, \Gamma, \square, \delta, q_0, q_A, q_R \rangle$ où :
 - Q est l'ensemble des états,
 - Σ est l'alphabet de l'entrée (qui ne contient pas le symbole spécial □),
 - Γ est l'alphabet de la bande ($\square \in \Gamma$ et $\Sigma \subseteq \Gamma$),
 - δ est la fonction de transition :
 - $q_0 \in Q$ est l'état initial,
 - $q_A \in Q$ est l'état d'acceptation,
 - $q_R \in Q$ est l'état de rejet, avec $q_R \neq q_A$.

Exemple

- Principe d'une machine reconnaissant $L = \{ m \# m \mid m \in \{ 0, 1 \}^* \}$.
 - Fait des allers-retours entre les deux occurrences de m pour vérifier qu'elles contiennent bien le même symbole. Si ce n'est pas le cas, ou qu'un # supplémentaire est détecté, va dans l'état de rejet. Les symboles sont éliminés au fur et à mesure qu'ils sont vérifiés (par le symbole x à gauche, et z à droite).
 - Lorsque tous les symboles à gauche de # ont été éliminés, vérifie qu'il ne reste plus de symboles à droite de #. Si c'est le cas, va dans l'état d'acceptation, sinon va dans l'état de rejet.

$$\delta(1,a) = (x, 2_a, D)$$

enregistre a

$$\delta(1, \alpha) = (x, 2_{\alpha}, D)$$

 $\delta(2_{\alpha}, \alpha) = (\alpha, 2_{\alpha}, D) \text{ pour } \alpha \neq \#$

enregistre a cherche #

$$\delta(1, \alpha) = (x, 2_{\alpha}, D)$$

 $\delta(2_{\alpha}, \alpha) = (\alpha, 2_{\alpha}, D) \text{ pour } \alpha \neq \#$

enregistre a cherche #

$$\delta(1, \alpha) = (x, 2_{\alpha}, D)$$

 $\delta(2_{\alpha}, \alpha) = (\alpha, 2_{\alpha}, D) \text{ pour } \alpha \neq \#$
 $\delta(2\alpha, \#) = (\#, 3_{\alpha}, D)$

enregistre a cherche # 3_a cherche une lettre non-z

$$\delta(1, a) = (x, 2_a, D)$$

 $\delta(2_a, a) = (a, 2_a, D) \text{ pour } \alpha \neq \#$
 $\delta(2a, \#) = (\#, 3_a, D)$
 $\delta(3_a, a) = (z, 4, G)$

enregistre a cherche # 3_a cherche une lettre non-z vérifie la lettre

$$\delta(1, \alpha) = (x, 2_{\alpha}, D)$$

 $\delta(2_{\alpha}, \alpha) = (\alpha, 2_{\alpha}, D) \text{ pour } \alpha \neq \#$
 $\delta(2\alpha, \#) = (\#, 3_{\alpha}, D)$
 $\delta(3_{\alpha}, \alpha) = (z, 4, G)$
 $\delta(4, \alpha) = (\alpha, 4, G) \text{ pour pour } \alpha \neq x$

enregistre a cherche # 3_a cherche une lettre non-z vérifie la lettre revient vers x

$$\delta(1, a) = (x, 2_a, D)$$

 $\delta(2_a, a) = (a, 2_a, D) \text{ pour } \alpha \neq \#$
 $\delta(2a, \#) = (\#, 3_a, D)$
 $\delta(3_a, a) = (z, 4, G)$
 $\delta(4, a) = (a, 4, G) \text{ pour pour } \alpha \neq x$

enregistre a cherche # 3_a cherche une lettre non-z vérifie la lettre revient vers x

$$\delta(1, a) = (x, 2_a, D)$$

 $\delta(2_a, a) = (a, 2_a, D) \text{ pour } \alpha \neq \#$
 $\delta(2a, \#) = (\#, 3_a, D)$
 $\delta(3_a, a) = (z, 4, G)$
 $\delta(4, a) = (a, 4, G) \text{ pour pour } \alpha \neq x$

enregistre a cherche # 3_a cherche une lettre non-z vérifie la lettre revient vers x

$$\delta(1, \alpha) = (x, 2_{\alpha}, D)$$

 $\delta(2_{\alpha}, \alpha) = (\alpha, 2_{\alpha}, D) \text{ pour } \alpha \neq \#$
 $\delta(2\alpha, \#) = (\#, 3_{\alpha}, D)$
 $\delta(3_{\alpha}, \alpha) = (z, 4, G)$
 $\delta(4, \alpha) = (\alpha, 4, G) \text{ pour pour } \alpha \neq x$
 $\delta(4, x) = (x, 1, D)$

enregistre a cherche # 3_a cherche une lettre non-z vérifie la lettre revient vers x relance le processus

$$\delta(1, a) = (x, 2_a, D)$$

 $\delta(2_a, a) = (a, 2_a, D) \text{ pour } \alpha \neq \#$
 $\delta(2a, \#) = (\#, 3_a, D)$
 $\delta(3_a, a) = (z, 4, G)$
 $\delta(4, a) = (a, 4, G) \text{ pour pour } \alpha \neq x$
 $\delta(4, x) = (x, 1, D)$
 $\delta(1, b) = (x, 2_b, D) ...$

enregistre a cherche # 3_a cherche une lettre non-z vérifie la lettre revient vers x relance le processus

- Déterminisme
 - Pour toute MTA non déterministe, il existe une MTA' telle que L(A) = L(A').
 - Le non déterminisme n'augmente pas la puissance du modèle des MT.

- Langages récursivement énumérables
 - Un langage est récursivement énumérable si et seulement si il existe une MT qui le reconnaît.
 - Un langage est récursivement énumérable si et seulement si il existe une MT déterministe qui le reconnaît.

