

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2° ANO EIC0013 | ALGORITMOS E ESTRUTURAS DE DADOS | 2016-2017 - 1° SEMESTRE

CI1 Parte teórica. Duração: 30m

No	me:	Código:
- R	itas: Responda às questões seguintes, indicando a opção con Rada resposta errada vale -15% da cotação da pergunta Esta prova é composta por 4 páginas	
1.	A classe Estudante é classe derivada (derivação Estudante pode redefinir:	pública) da classe Pessoa. É verdade que a classe
	 A. Qualquer membro-função da classe Pessoa B. Apenas membros-função da classe Pessoa nesta C. Apenas membros-função da classe Pessoa nesta D. Apenas membros-função da classe Pessoa nesta E. Nenhuma das possibilidades anteriores 	declarados como não estáticos
	Resposta:A	
2.	Identifique qual dos seguintes fragmentos de código classe ABC. (assuma que umaFuncao possui o argumen	• •
	 A. ABC x1; ABC x2; x1=x2; B. ABC x; umaFuncao(x); C. ABC *apt; umaFuncao(apt); D. ABC x; umaFuncao(&x); E. Nenhuma das possibilidades anteriores 	
	Resposta: B	
3.	Considere o código seguinte (as classes Function e D	ouble estão parcialmente definidas):
	<pre>class Function { public: virtual float evaluate(float x)=0; string info(); }; Function *f = new Double(); float value = f->evaluate(4.0); string info = f->info();</pre>	<pre>class Double: public Function { public: float evaluate(float x); string info(); };</pre>
	 A. O código está incorreto, devido à atribuição inváte B. value = 0 e info é o resultado da invocação de se value é o resultado de Double::evaluate() e D. value é o resultado de Double::evaluate() e E. Nenhuma das possibilidades anteriores 	Function::info() e info é o resultado de Double::info()
	Resposta:D	

CI1

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2016-2017 - 1º SEMESTRE

Parte teórica. Duração: 30m

4. Considerando a classe OneClass, é correto afirmar que:

cla	SS	One	Clas	s {
	sta	tic	int	value;
	//			
} ;				

- A. OneClass está errada, pois um membro estático não pode ser um membro privado
- B. O membro estático value, por ser privado, torna a classe OneClass abstrata
- C. Para manipular value, é necessário implementar um membro-função estático
- D. O membro-dado value nunca será herdado por classes derivadas de OneClass, por ser estático
- E. Nenhuma das possibilidades anteriores

Resposta:	Ε
. vespesca.	—

5. Considere o seguinte fragmento de código:

class	Clas	sX	{
//			
fri	end	Cla	ssY;
1 •			

- A. O qualificador friend produz o mesmo efeito que tornar ClassY uma classe derivada de ClassX
- B. ClassY tem acesso a todos os membros de ClassX
- C. ClassY tem acesso apenas aos membros-função de ClassX
- D. O qualificador friend não produz qualquer efeito se ClassY já for uma classe derivada de ClassX
- E. Nenhuma das possibilidades anteriores

Resposta:	В	
-----------	---	--

6. Considere a classe Person definida a seguir. Assinale a afirmação verdadeira.

```
1. class Person {
2.    string name;
4. public:
5.    Person(string nm) {
6.        name=nm;
7.        if ( nm.length() < 3 ) throw InvalidName(nm);
8.    }
9. };</pre>
```

- A. Só podem ser construídos objetos da classe Person com name >=3 carateres
- B. Podem ser construídos objetos da classe Person com qualquer name, mas é lançada uma exceção quando o número de carateres é inferior a 3
- C. As linhas 6 e 7 estão trocadas. A atribuição ao membro-dado name tem de estar após verificação da exceção.
- D. No construtor da classe não é permitido lançar exceções
- E. Nenhuma das possibilidades anteriores

Resposta: A

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2016-2017 - 1º SEMESTRE

CI1 Parte teórica. Duração: 30m

No	ne:Código:	
7.	Shape é uma classe abstrata. É correto afirmar que:	
	 A. Todos os membros-função da classe Shape devem ser abstratos B. Só é possivel criar objetos da classe Shape se estes forem constantes C. Shape pode ser uma classse base, mas não uma classe derivada D. Não é possível criar objetos da classe Shape E. Nenhuma das possibilidades anteriores 	
	Resposta:D	
8.	Considere a classe Two:	
	<pre>template <class class="" f,="" s=""> class Two { F v1; S v2; public: // Two<s,f> reverse() { return Two<s,f>(v2,v1); } }; A. O código está incorreto, porque o template só admite um tipo genérico de dados</s,f></s,f></class></pre>	
	 B. O membro-função reverse está incorreto, pois a classe Two apenas está definida para Two<f, f="" não="" si="" two<s,=""></f,> C. O código está correto 	> e
	 D. A classe Two é abstrata, pois está definida para tipos genéricos de dados E. Nenhuma das possibilidades anteriores 	
	Resposta:C	
9.	Indique a complexidade temporal da seguinte função:	
	<pre>void function1(vector<int> &v1) { for(int i=0; i<v1.size(); "="" -="" <<="" cout="" endl;="" for(int="" i="" i++)="" j="" j*="2)" j<v1.size();="" pre="" }<=""></v1.size();></int></pre>	
	A. O (log n)	
	B. O (n) C. O (n log n)	
	D. O (n ²)	
	E. Nenhuma das possibilidades anteriores	
	Resposta: C	

MESTRADO INTEGRADO EM ENGENHARIA INFORMÁTICA E COMPUTAÇÃO | 2º ANO EICO013 | *ALGORITMOS E ESTRUTURAS DE DADOS* | 2016-2017 - 1º SEMESTRE

CI1 Parte teórica. Duração: 30m

10. A c	complexida	ide temp	oral de un	n algoritm	no é ($O(n^2)$.	Este	algoritmo	aprese	ntou um	tempo	de e	xecução	o de
10	segundos	para um	conjunto	de dados	de	entrada	de t	tamanho n	. Se o	tamanho	dos d	dados	de enti	rada
for	duplicado	quanto	tempo de	morará (a	prox	imadam	ente	e) a execuç	ão des	te algorit	tmo?			

- A. 10 segundos
- B. 20 segundos
- C. 40 segundos
- D. 100 segundos
- E. Nenhuma das possibilidades anteriores

Resposta:	C