

مبانی بینایی کامپیوتر

مدرس: محمدرضا محمدی بهار ۱۴۰۲

پردازشهای مورفولوژی

Morphological Image Processing

عملگر گسترش

• عملگر گسترش (dilate) برای گسترش مجموعه A توسط B به صورت زیر تعریف می شود:

$$A \oplus B = \left\{ z \left| \left(\widehat{B} \right)_z \cap A \neq \emptyset \right\} \right\}$$

• این رابطه به مفهوم بدست آوردن انعکاس B حول مرکز (لنگر) خودش و جابجایی آن به اندازه Z است که اگر این نسخه از B دارای اشتراک با A بود، Z جزء مجموعه جدید خواهد بود

مثال: گسترش 2D

مثال: گسترش 2D

مثال: گسترش 2D

عملگر سایش

• عملگر سایش (erode) برای فرسایش مجموعه A توسط B به صورت زیر تعریف می شود:

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

A بنابراین سایش مجموعه A توسط B شامل مجموعه نقاطی است که به ازای آنها B به طور کامل درون B قرار می گیرد

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image 0 1 0 0 1 1 0 1 1 1 0

Structuring Element 1 1 1

Output Image 0 0 0 0

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image 0 1 0 0 1 1 0 1

Structuring Element 1 1

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

1

Structuring Element

1 1 1

|--|

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

Structuring Element

1 1 1

0	\mathbf{O}			\mathbf{O}		\mathbf{O}	1	1	
U	U	U	U	U	U	U	1	1	

$$A \ominus B = \{z | (B)_z \subseteq A\}$$

Input image

Structuring Element

1 1 1

0	0	0	0	0	0	0	1	1	0

مثال: شمارش سكهها

- چگونه میشود تعداد سکههایی را شمرد که با یکدیگر در تماس هستند؟
 - مىتوان تصوير را دوسطحى كرد
 - سپس، توسط عملگر سایش آنها را جدا نمود

حذف جزئيات غيرضروري

• یکی از ساده ترین کاربردهای سایش حذف جزئیات غیرضروری است

• عملگر باز (opening) برای حذف جزئیات کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \circ B = (A \ominus B) \oplus B$$

• این عملگر ناحیههای سفید که در احاطه پیکسلهای سیاه هستند را حذف می کند

• عملگر باز (opening) برای حذف جزئیات کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \circ B = (A \ominus B) \oplus B$$

• این عملگر ناحیههای سفید که در احاطه پیکسلهای سیاه هستند را حذف می کند

عملگر بسته

• عملگر بسته (closing) برای حذف حفرههای کوچک و هموار کردن محیط نواحی تعریف شده است

$$A \cdot B = (A \oplus B) \ominus B$$

• این عملگر ناحیههای سیاه که در احاطه پیکسلهای سفید هستند را حذف می کند

عملگر بسته

1	1	1
1	1	1
1	1	1

عملگر بسته

عملگرهای باز و بسته

عملگرهای باز و بسته

$$((A \circ B) \oplus B) \ominus B = (A \circ B) \cdot B$$

$$(A \circ B) \oplus B$$

$$(A \ominus B) \oplus B = A \circ B$$

عملگر Hit-or-Miss

• عملگر Hit-or-Miss یک پردازش مورفولوژی برای تشخیص شکل یک ناحیه است و از آن برای استخراج الگویی در تصویر استفاده میشود

• تفاوت این عملگر با عملگر سایش آن است که پیکسلهای سیاه نیز اهمیت پیدا می کنند

• به طور مثال، Hit-or-Miss با پنجره زیر یعنی ۵ عدد ۱ و اطراف آنها ۴ عدد صفر باشد

0	1	0
1	1	1
0	1	0

عملگر Hit-or-Miss

• عملگر Hit-or-Miss یک پردازش مورفولوژی برای تشخیص شکل یک ناحیه است و از آن برای استخراج الگویی در تصویر استفاده می شود

$$(A \circledast B) = (A \ominus X) \cap (A^c \ominus (W - X))$$

$$(A \circledast B) = (A \ominus B_1) \cap (A^c \ominus B_2)$$

عنصر ساختاری Hit-or-Miss

0	1	0
1	0	1
0	1	0

0	0	0			
0	1	0			
0	0	0			
B_2					

0	1	0
1	-1	1
0	1	0
	\overline{B}	

0	0	0	0	0	0	0	0
0	255	255	255	0	0	0	255
0	255	255	255	0	0	0	0
0	255	255	255	0	255	0	0
0	0	255	0	0	0	0	0
0	0	255	0	0	255	255	0
0	255	0	255	0	0	255	0
0	255	255	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	255	0	0	0	0	0
0	0	0	0	0	0	0	0

تشخيص گوشهها

-1	-1	0
-1	1	1
0	1	0

0	1	0
-1	1	1
-1	-1	0

0	1	0
1	1	-1
0	-1	-1

0	-1	-1
1	1	-1
0	1	0

استخراج مرز

مرز مجموعه A را با $\beta(A)$ نمایش می دهیم که از طریق رابطه زیر قابل محاسبه است \bullet

$$\beta(A) = A \text{ and } (A \ominus B)^c$$

$$\beta(A) = A xor (A \ominus B)$$

$$\beta(A) = A xor (A \oplus B)$$

1	1	1	0	1	0
1	1	1	1	1	1
1	1	1	0	1	0

استخراج مرز

1	1	1
1	1	1
1	1	1
B_1		

0	1	0
1	1	1
0	1	0
D		

 B_2

 $A\ xor\ (A \bigoplus B_1)$ $A\ xor\ (A \bigoplus B_2)$ $A\ xor\ (A \bigoplus B_1)$ $A\ xor\ (A \bigoplus B_2)$

