Graphs

Graph in daily life

• A graph consists of some *vertices* (a.k.a. *nodes*) and some *edges* (a.k.a. *arcs*).

A graph with 5 *vertices* and 5 *edges*.

• A graph consists of some *vertices* and some *edges*.

A graph with 5 *vertices* and 2 *edges*.

• A graph consists of some *vertices* and some *edges*.

A graph with 5 *vertices* and 0 *edges*.

• A graph consists of some *vertices* and some *edges*.

Vertices:

 V_1, V_2, V_3, V_4

Edges:

$$e_1 = (v_1, v_2)$$

$$e_2 = (v_1, v_3)$$

$$e_3 = (v_3, v_4)$$

$$e_4 = (v_2, v_4)$$

$$e_5 = (v_1, v_4)$$

$$e_6 = (v_2, v_3)$$

A graph with 4 *vertices* and 6 *edges*.

Graph and Tree

• A tree is also a graph (but not vice versa).

A graph with 11 *vertices* and 10 *edges*.

Directed Graph

Edges in a graph can be directed. A graph with directed edges is a directed graph (digraph).

Directed and Undirected Graphs

These two graphs are different.

Weighted Graph

Edges in a graph can have weights. A graph with weighted edges is a weighted graph.

Vertices:

 V_1 , V_2 , V_3 , V_4 , V_5

Edges:

 (v_1, v_2) , weight = 3 (v_2, v_3) , weight = 9 (v_2, v_4) , weight = 12 (v_3, v_5) , weight = 5 (v_4, v_5) , weight = 8

(Un)directed (Un)weighted Graph

Directed unweighted graph

Directed weighted graph

Undirected unweighted graph

All four

graphs are different.

Undirected weighted graph

Graph Terminologies

A **path**: V_1 , V_2 , V_3 , V_5 (**Length** of path = 3)

Another **path**: v_5 , v_4 , v_5 , v_4 , v_2 (**Length** of path = 4)

A **simple** path is a path with no duplicating vertices.

E.g., the path v_1 , v_2 , v_3 , v_5 is simple, while v_5 , v_4 , v_5 , v_4 , v_2 is not simple.

Graph Terminologies

A **simple** cycle is a cycle with no duplicating vertices except the first and last vertex.

An *acyclic* graph is a graph with *no* cycles.

A directed acyclic graph is sometimes called a DAG.

- In an undirected graph, two vertices u and v are connected if there is a path from u to v.
- An undirected graph is connected if all pairs of vertices are connected.

This graph has 2 connected components.

This graph has 1 *connected component*.

A **connected** graph is a graph that has only **one connected component**.

This graph has 5 *connected components*.

Graph and Tree

• A tree is a connected acyclic undirected graph.

A graph with 11 *vertices* and 10 *edges*.

 A directed graph is strongly connected if for every pair of vertices, u and v, it contains a directed path from u to v.

• A *directed* graph is *weakly connected* if replacing all directed edges with undirected edges produces a connected (undirected) graph.

Note that a **strongly connected** graph is also a **weakly connected** graph, but **not** vice versa.

Degree of Graph

• In an *undirected* graph, the *degree* of a vertex *v* is the number of adjacent vertices to *v*.

Vertex	Degree
v ₁	1
V ₂	3
<i>V</i> ₃	2
<i>V</i> ₄	2
V ₅	2

Degree of Graph

- In a directed graph,
 - the *out-degree* of a vertex *v* is the number of edges whose *head* is *v*.
 - the *in-degree* of a vertex *v* is the number of edges whose *tail* is *v*.

Vertex	Out-degree	In-degree
v ₁	1	0
V ₂	1	2
<i>V</i> ₃	1	1
<i>V</i> ₄	2	1
V ₅	1	2

Graph Representations

- Two most common and popular representations for graphs as a data structure
 - Adjacency matrix
 - Adjacency list

Adjacency Matrix: Unweighted Graph

- Suppose a graph has n vertices $v_0, ..., v_{n-1}$.
- The *adjacency matrix* of an *unweighted* graph is a two-dimensional $n \times n$ array M such that
 - M[i][j] = 1 if the graph contains the edge (v_i, v_i) ;
 - M[i][j] = 0 otherwise.

Adjacency Matrix: Example (Directed Graph)

Directed unweighted graph

Adjacency matrix M

Adjacency Matrix: Example (Undirected Graph)

Undirected unweighted graph

Adjacency matrix M

Adjacency Matrix: Weighted Graph

- In a weighted graph, we can store the weights in the adjacency matrix.
 - M[i][j] = $weight(v_i, v_i)$ if the graph contains the edge (v_i, v_i) ;
 - M[i][j] = ∞ otherwise.
 Other specific values may be used to denote non-existent edges, such as 0 or -∞.

Adjacency Matrix: Example (Directed Graph)

Directed weighted graph

j	0	1	2	3	4
0	8	3	8	8	8
1	8	8	9	8	8
2	8	8	∞	∞	5
3	8	12	8	8	10
4	8	8	8	8	8

Adjacency matrix M

Adjacency Matrix: Example (Undirected Graph)

Undirected weighted graph

j	0	1	2	3	4
0	8	က	8	8	8
1	3	00	9	12	8
2	8	9	8	8	5
3	8	12	8	8	8
4	8	∞	5	8	00

Adjacency matrix M

Adjacency List: Unweighted Graph

- Suppose a graph has n vertices $v_0, ..., v_{n-1}$.
- The adjacency list of an unweighted graph is an array L of n lists such that
 - the elements of list L[i] contain the vertices that are adjacent to v_i .

Adjacency List: Example (Directed Graph)

Directed unweighted graph

Adjacency list L

Adjacency List: Example (Undirected Graph)

Undirected unweighted graph

Adjacency list L

Adjacency List: Weighted Graph

• In a weighted graph, the elements of list L[i] contains the vertices v_j that are adjacent to v_i as well as the weights weight(v_i , v_i).

Adjacency list for directed unweights graph	
i	L[i]
0	[1]
1 [2]	
2 [4]	
3 [1, 4]	
4 [3]	

34

Adjacency List: Example (Undirected Graph)

Undirected weighted graph

i	L[i]
0	[(1, 3)]
1	$[\langle 0, 3 \rangle, \langle 2, 9 \rangle, \langle 3, 12 \rangle]$
2	$[\langle 1, 9 \rangle, \langle 4, 5 \rangle]$
3	$[\langle 1, 12 \rangle, \langle 4, 8 \rangle]$
4	$[\langle 2, 5 \rangle, \langle 3, 8 \rangle]$

Adjacency list L

Adjacency Matrix vs Adjacency List

• Space complexities of different operations

n: number of vertices

e: number of edges

d: degree/out-degree of vertex

Adjacency matrix	Adjacency list
M[i][j], i, j = 0,, n-1 $O(n^2)$	L[i], i = 0,n-1 O(n+e)

Number of lists and total number of nodes

Adjacency Matrix vs Adjacency List

• Time complexities of different operations

n: number of vertices

e: number of edges

d: degree/out-degree of vertex

	Adjacency matrix	Adjacency list
Is there an edge from	M[i][j] == 1?	Traverse L[i]
v_i to v_j ?	O(1)	O(<i>d</i>)
Find all vertices	Traverse row, M[i][?] == 1?	Traverse L[i]
adjacent to <i>v_i</i> .	O(<i>n</i>)	O(<i>d</i>)
How many edges are	Traverse M, M[?][?] == 1 ?	Traverse L
there in a graph?	$O(n^2)$	O(n + e)

Number of lists and total number of nodes

Directed unweighted graph

(0,	,1),
(1,	,2),
	,4),
	,1),
	,4),
	,3)

Edge list L

Adjacency list	
i	L[i]
0	[1]
1	[2]
2	[4]
3	[1, 4]
4	[3]

- Edge List
 - One list with elements denoting the edges

$$[(0,1), (1,2), (2,4), (3,1), (3,4), (4,3)]$$

- Adjacency List
 - n lists with elements denoting the adjacent nodes

L[0]	1
L[1]	2
L[2]	4
L[3]	1, 4
L[4]	3

Undirected unweighted graph

Edge list L

Directed weighted graph

Edge list L

Undirected weighted graph

Edge list L