Contrôle de cours 2 (1 heure)

Nom:	Prénom :	Classe:			
N.B.: le sujet contient 4 pages et 4 exercices.					
Exercice 1 : proba	bilités (4 points)				
Soient $p \in]0,1[$ et X une va	riable aléatoire qui suit une loi géométrique de p	paramètre $p: X \leadsto \text{G\'eom}(p)$.			
1. Donner la loi de X .					
1. Donnier la loi de Λ .					
2. Déterminer sa fonction fonctions usuelles. Jus	= * * *	ous la forme d'une série entière, puis à l'aide des			
Dans l'espace vectoriel $E=\mathcal{F}$	e de vecteurs (6 points) $\mathcal{M}_2(\mathbb{R})$, on considère la famille $\mathcal{F}=\left(A=egin{pmatrix}1&2\\-1&1\end{pmatrix}$ ans ce contexte et avec les quantificateurs, de «	$\begin{pmatrix} 2\\1 \end{pmatrix}, B = \begin{pmatrix} 1 & 2\\3 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 1\\1 & 0 \end{pmatrix}, D = \begin{pmatrix} 1 & -1\\0 & 0 \end{pmatrix} \end{pmatrix}$ \mathcal{F} est libre ».			

2.	Cette famille \mathcal{F} est-elle libre? Justifier.						
3.	Écrire la définition, dans ce contexte et avec les quantificateurs, de « \mathcal{F} est une famille génératrice de E ».						
4.	${\cal F}$ est-elle une famille génératrice de E ? Justifier.						
	- 0						
	(-1 1)						
5.	\mathcal{F} est-elle une base de E ? Si oui, donner les coordonnées de $U = \begin{pmatrix} -1 & 1 \\ -3 & 2 \end{pmatrix}$ dans cette base. Si non, donner dim(Vect \mathcal{F}).						
	Ne détaillez vos calculs, mais justifiez ce que vous affirmez.						

Exercice 3: applications linéaires (6 points)

Soient E et F deux \mathbb{R} -ev et $f \in \mathcal{L}(E, F)$ 1. Donner la définition mathématique (avec les quantificateurs) de Ker(f) et de Im(f). 2. Donner une condition nécessaire et suffisante sur Ker(f) et/ou Im(f) pour « f surjective ». 3. Donner et démontrer une condition nécessaire et suffisante sur Ker(f) et/ou Im(f) pour « f injective ». On prendra soin de **démontrer** que cette condition est bien nécessaire et suffisante. 4. Donner un exemple d'application linéaire $f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ qui soit injective et telle que $(1, -1, 1) \in \text{Im}(f)$. On ne vous demande pas de démontrer que ces propriétés sont vérifiées.

Exercice 4: déterminant (4 points)

Soit la matrice $A = \begin{pmatrix} 1 & 2 & -1 \\ -2 & 2 & 3 \\ 2 & 1 & -1 \end{pmatrix}$.

1.	Pour	les	propriétés	suivantes.	indiquez	si elles	sont	vraies ou	ı fausses.	Inutile de	iustifier.

(a) Pour tout $B \in \mathcal{M}_3(\mathbb{R})$, $\det(A+B) = \det(A) + \det(B)$

(b) Pour tout $B \in \mathcal{M}_3(\mathbb{R})$, $\det(AB) = \det(A)\det(B)$

(e) $\det(A) = \det\begin{pmatrix} 0 & 2 & -1 \\ 0 & 1 & 4 \\ 1 & 1 & -1 \end{pmatrix}$

2.	Calculer le déterminant de A .

.....

3. La matrice A est-elle inversible? Justifiez.