CS 344: Floyd-Warshall ALGORITHM

Assume G = (V, E) is a directed graph with edge weights that are nonnegative. The Floyd-Warshall algorithm computes the shortest paths between all pairs.

For simplicity denote V by $\{1,\ldots,n\}$. Let $W=(w_{ij})$ be the matrix of the edge weights. $w_{ij}=\infty$ if the edge (i, j) does not exist.

Define $p_{ij}^{(k)}$ to be the shortest path from i to j using only vertices $1, \ldots, k$.

It is easy to see that if k does not appear on the shortest path from i to j using only $\{1, \ldots, k\}$, then

$$p_{ij}^{(k)} = p_{ij}^{(k-1)}$$
.

If k does appear on the shortest path from i to j using only $\{1, \ldots, k\}$, then

$$p_{ij}^{(k)} = p_{ik}^{(k-1)} + p_{kj}^{(k-1)}.$$

Using this, we define $p_{ij}^{(k)}$ recursively. For k=0,

$$p_{ij}^{(0)} = w_{ij}.$$

Next for k = 1, ..., n we set

$$p_{ij}^{(k)} = \min\{p_{ij}^{(k-1)}, p_{ik}^{(k-1)} + p_{kj}^{(k-1)}\}.$$

The algorithm uses the matrix $W = (w_{ij})$ and the matrix D which will give the length of shortest paths.

FLOYD-WARSHALL (W)

$$D \leftarrow W$$

For $k \leftarrow 1$ to n

For $i \leftarrow 1$ to n

$$\begin{aligned} \text{For } j \leftarrow 1 \text{ to } n \\ d_{ij}^{(k)} &= \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\}. \end{aligned}$$
 return $D = (d_{ij}^{(n)})$

return
$$D = (d_{ij}^{(n)})$$

Constructing Shortest Paths.

Define the predecessor array $\Pi = (\pi_{ij})$ as follows:

If i = j, or $w_{ij} = \infty$, then set $\pi_{ij}^{(0)} = Nil$. Otherwise, set $\pi_{ij}^{(0)} = i$.

For
$$k \ge 1$$
, define $\pi_{ij}^{(k)}$ as follows:
If $d_{ij}^{(k)} \le d_{ik}^{(k-1)} + d_{kj}^{(k-1)}$ then set $\pi_{ij}^{(k)} = \pi_{ij}^{(k-1)}$. Otherwise, set $\pi_{ij}^{(k)} = \pi_{kj}^{(k-1)}$.

The complexity of the algorithm is $O(n^3)$.