XXI Летняя Физическая Школа. 11 класс.

Командная олимпиада.

1	На диск радиуса R намотаны две нерастяжимые нити, закрепленные в двух разных точках (см. рис.). При отпускании диск вращается. Когда угол между нитями диска равен α , угловая скорость вращения равна ω . С какой скоростью в этот момент движется центр диска?	a R
2	Идеальную пружину нулевой начальной длины, один конец которой закреплен, а к другому концу подвешен точечный груз массы M , растягивают до длины L и отводят так, что угол с горизонталью составляет 45° . Определить форму и длину траектории груза. Жесткость пружины равна k , ускорение свободного падения g .	$lpha=45^\circ$ L
3	Пластины плоского конденсатора площадью S и массой m соединены пружиной жесткостью k , изготовленной из изолятора. Длина недеформированной пружины L . Конденсатор зарядили до заряда q . Затем его разряжают через сопротивление R , замыкая ключ (см. рис). Какая теплота выделится на сопротивлении в случае, когда разряд происходит быстро? Какая теплота выделится в случае, когда разряд происходит медленно?	
4	На горизонтальном столе стоит прозрачный цилиндр с радиусом основания R и высотой H_1 , изготовленный из стекла с показателем преломления $n=1.5$. На высоте H_2 над верхним основанием цилиндра на его оси расположен точечный источник света. Найти площадь тени, отбрасываемой цилиндром на поверхность стола.	
5	В камеру сгорания реактивного двигателя поступает в секунду масса m водорода и необходимое для полного сгорания количество кислорода. Площадь сечения выходного отверстия сопла двигателя S , давление в этом сечении p , абсолютная температура T . Определить силу тяги двигателя.	
6	Горизонтально расположенный цилиндрический теплоизолированный сосуд объема $V_0=100$ л, заполненный гелием, разделен на две части теплонепроницаемым поршнем, который может перемещаться без трения. Газу, находящемуся в лесой части сосуда, сообщают количество тепла $\Delta Q=100$ Дж. Найти изменение давление в сосуде к тому моменту, когда поршень перестанет двигаться.	