

PRG0012 – Segurança em laboratórios de ensino e pesquisa

Profa. Dra. Nadja Cristhina de Souza Pinto Prof. Dr. Reinaldo Camino Bazito

Aula 7

2) <u>M</u>inimização de riscos – Parte 2

Temas da Aula 7

- 2) Minimização de riscos Parte 2:
- Agentes Biológicos.

Os agentes que geram "risco ambiental"

Agentes Biológicos

Os microrganismos, geneticamente modificados ou não; as culturas de células; os parasitas; as toxinas produzidas por esses agentes e os vírus e príons.

Como minimizar o risco biológico

- Conhecer os riscos associados com o/os organismo/sistemas biológicos com os quais você está trabalhando;
- 2. Conhecer as possíveis vias de contaminação;
- Conhecer as condições do ambiente de trabalho que podem aumentar ou diminuir o risco de um sistema biológico;
- 4. Estabelecer procedimentos operacionais padrão ocorrências de acidentes/exposição;
- 5. Aderir ao Manual de Biossegurança da Instituição.

Normas regulatórias para Biossegurança

NR 32 - SEGURANÇA E SAÚDE NO TRABALHO EM SERVIÇOS DE SAÚDE

Publicação	D.O.U.	
Portaria MTb n.º 485, de 11 de novembro de 2005	16/11/05	

Alterações

Portaria MTE n.º 939, de 18 de novembro de 2008	19/11/08
Portaria MTE n.º 1.748, de 30 de agosto de 2011	31/08/11
Portaria SEPRT n.º 915, de 30 de julho de 2019	31/07/19

32.1 Do objetivo e campo de aplicação

- **32.1.1** Esta Norma Regulamentadora NR tem por finalidade estabelecer as diretrizes básicas para a implementação de medidas de proteção à segurança e à saúde dos trabalhadores dos serviços de saúde, bem como daqueles que exercem atividades de promoção e assistência à saúde em geral.
- **32.1.2** Para fins de aplicação desta NR entende-se por serviços de saúde qualquer edificação destinada à prestação de assistência à saúde da população, e todas as ações de promoção, recuperação, assistência, pesquisa e ensino em saúde em qualquer nível de complexidade.

32.2 Dos Riscos Biológicos

- **32.2.1** Para fins de aplicação desta NR, considera-se Risco Biológico a probabilidade da exposição ocupacional a agentes biológicos.
- **32.2.1.1** Consideram-se Agentes Biológicos os microrganismos, geneticamente modificados ou não; as culturas de células; os parasitas; as toxinas e os príons.
- 32.2.1.2 A classificação dos agentes biológicos encontra-se no anexo I desta NR.
- **32.2.2** Do Programa de Prevenção de Riscos Ambientais PPRA:

PRG PROFETORIA DE GRADUAÇÃO

Manual de Biossegurança

- Toda instituição pública, privada ou de natureza mista, manipulando sistemas biológicos de potencial risco deve ter uma Manual de Biossegurança, aprovado pela Comissão Interna de Biossegurança, e sob responsabilidade do Responsável Legal pela Instituição.
- O Manual de Biossegurança deve conter todos os procedimentos a serem seguidos pelo indivíduos que estejam potencialmente expostos a risco biológico, e deve estar amplamente disponível para todos.

Manual de Biossegurança

Universidade de São Paulo - Instituto de Química

MANUAL DE BIOSSEGURANÇA

2020

<u>CIBio</u> – Comissão Interna de Biossegurança – IQ-USP CQB-0029/97

Comissão Interna de Biossegurança (CIBio) do Instituto de Química da USP

Prof. Dr. Ricardo Giordano (Presidente)

Telefone: (011) 3091-1767

Prof. Dr. Carlos Hotta (Vice Presidente)

Telefone: (011) 3091-1224

Prof. Dr. Fábio Forti

Telefone: (011) 3091-9905

Prof. Dr. Fábio Rodrigues

Telefone (011) 2648-1305

Prof. Dr. Nicolas Carlos Hock

Telefone (011) 2648-1683

Profa. Dra. Regina Baldini

Telefone: (011) 3091-8992

Alexandre Sanchez

Técnico de Laboratório Telefone: (011) 3091-8997

Érica Michelle Rodrigues Bandeira

Técnica de Laboratório

Telefone: (011) 3091-8993 / 3091-1202

Simone Corrêa

Secretária

Telefone: (011) 3091-3811 / 3812

E-mail da CIBio do IQ-USP: cibio@iq.usp.br

Manual elaborado pela Comissão Interna de Biossegurança (CIBio) do Instituto de Química da USP

Manual de Biossegurança - atualização aprovada "ad referendum" em 03/03/2020, pelo presidente da CIBIO-IQ-USP

Manual de Biossegurança

<u>CIBio – Comissão Interna de Biossegurança – IQ-USP</u>

<u>CQB-0029/97</u>

SUMÁRIO

Comissão Interna de Biossegurança (CIBio) Membros	02
1. INFORMAÇÕES IMPORTANTES	05
2. TELEFONES ÚTEIS	05
3. GLOSSÁRIO	05
4. INTRODUÇÃO A SEGURANÇA BIOLÓGICA (BIOSSEGURANÇA)	06
4.1. Classificação dos Micro-Organismos Infectantes	07
5. NORMAS DE CONDUTA GERAIS	09
5.1. Normas de Segurança em laboratórios de Biossegurança do IQ-USP	09
5.1.1. Aspectos gerais	09
5.1.2. Treinamento em biossegurança	10
6. NORMAS DE CONDUTAS ESPECÍFICAS	10
6.1. Procedimentos de Higienização de Superfícies e Equipamentos	17
6.2. Procedimentos usuais de desinfecção	19
6.3. Condutas em caso de derramamentos e acidentes laboratoriais com organismos	
geneticamente modificados (OGMs) ou material potencialmente infectante	20
6.4. Acidentes com OGM	21
6.4.1. Vias de Infecções	21
6.5. Procedimento pós exposição a materiais biológicos	22
6.6. Laboratórios de biossegurança do IQ-USP	23
6.6.1. Laboratórios nível I (NB1)	23
6.6.2. Laboratórios nível II (NB2)	27

<u>CIBio – Comissão Interna de Biossegurança – IQ-USP</u> <u>CQB-0029/97</u>

7. PROCEDIMENTOS OPERACIONAIS DO INSTITUTO DE QUIMICA (POPS IQ USP)	30
7.1 Descarte de resíduos biológicos	.30
7.2. Procedimento para descontaminação de áreas com derrame de organismos	
geneticamente modificados (OGMs)	30
7.3. Autoclaves	31
7.3.1. Procedimento operacional para autoclaves verticais	32
7.4. Centrífugas	34
7.4.1. Procedimento operacional para microcentrífugas	35
7.4.2. Procedimento operacional para centrífugas de chão	36
7.5. Agitadores de chão (shakers)	37
7.6. Incubadoras de CO2	39
7.7. Cabines de biossegurança (Fluxos Laminares)	40
7.8. Demais Procedimentos Operacionais Padrão (POPs) do IQ-USP	42
7.8.1. Índice dos POPs	.42
7.8.1.1. Microrganismos e OGM congelados em nitrogênio líquido	43
7.8.1.2. Orientações gerais para derramamento em Centrifugas	44
7.8.1.3. Operação da Autoclave	44
7.8.1.4. Orientações gerais para derrames de OGM	45
7.8.1.5. Procedimento de uso de cabine de segurança biológica (Fuxo Laminar)	45
7.8.1.6. Procedimento de descarte de perfuro cortantes	46
7.8.1.7. Procedimento de descontaminação de superfície de trabalho	46
7.8.1.8. Procedimento de desinfecção de aventais em laboratórios NB-1 e NB-2	47
7.8.1.9 Procedimento em laboratórios NB-2 do IQ USP	47
7.8.1.10. Procedimentos de emergência e descarte de OGMs	48
7.8.1.11. Transporte de OGM NB-1 dentro do IQ-USP	49
7.8.1.12. Transporte de OGM NB-2 dentro do IQ-USP	50
7.8.1.13. Transporte de Lixo Biológico dentro do IQ-USP	.51
8. REFERÊNCIAS BIBLIOGRÁFICAS	52

4

Contenção de risco

 O risco potencial à saúde depende do risco inerente do sistema biológico, em proporção à capacidade de contenção dos riscos

Potencial de contenção	Potencial de riscos à saúde			
dos riscos	Alto	Elevado	Moderado	Baixo
Baixo	4	4	3	2
Moderado	4	3	3	2
Elevado	3	3	2	2
Alto	3	2	2	1

Fonte: (BINSFELD, et al., 2010).

Equipamentos de proteção individual e coletiva

EPIs e EPCs para risco biológico

 EPIs: máscara, luva, óculos de segurança, avental, própé, touca

EPIs e EPCs para risco biológico

• EPCs: cabine de segurança biológica, autoclave, pipetadores automáticos, caixas de perfurocortantes

Tipos de Cabines de segurança biológica

Tipo	Velocidade Frontal	Padrões de Fluxo do Ar	Radionucleídeos Subs. Químicas	Níveis de Biossegurança	Proteção do Produto
Classe I* com a frente aberta	75	Frontal; atrás e acima através do filtro HEPA.	Não	2,3	Não
Classe II Tipo A	75	70% de ar recirculado através do HEPA; exaustão através do HEPA.	Não	2,3	Sim
Tipo B1	100	30% de ar recirculado através do HEPA; exaustão de ar via HEPA e dutos.	Sim (níveis baixo/ volatividade)	2,3	Sim
Tipo B2	100	Nenhum ar recirculado; Total exaustão de ar via HEPA e dutos.	Sim	2,3	Sim
Tipo B3	100	Idêntica às cabines II A, mas o sistema de ventilação plena sob pressão negativa para sala e exaustão através de dutos.	Sim	2,3	Sim
Classe III	Não Aplicável	Entradas e saída do ar através do filtro HEPA 2.	Sim	3,4	Sim

^{*} Os compartimentos para as luvas poderão ser acrescentados e aumentarão a velocidade frontal para 150 ifpm; as luvas podem ser adicionadas com a liberação da pressão da entrada de ar, que permitirá o trabalho com radionuclideos/ químicos.

Fonte: CDC - CENTRO DE PREVENÇÃO E CONTROLE DE DOENÇAS. Departamento de Saúde e Serviços Humanos dos EUA. Biossegurança em Laboratórios Biomédicos e de Microbiologia. 4ª edição. Washington. EUA. 1999. Tradução: Ministério da Saúde.Fundação Nacional de Saúde. Brasília, DF. 2000.

https://www.biovera.com.br/noticias/cabine-de-seguranca-biologica-x-capela-de-fluxo-laminar/

PRG PROPRIEDRIA DE GRADIAÇÃO

Procedimentos em caso de acidente

- O que fazer em caso de exposição:
- 1. Contenção e cuidados locais
- 2. Identificação da fonte
- 3. Isolamento da área e contato com sistema de atenção específico (hospital, sistema de saúde, CIBio)
- 4. Registro e comunicação às instâncias competentes
- Avaliação da fonte e manejo específico (equipe especializada)
- 6. Acompanhamento específico (soroconversão, desenvolvimento de condições específicas)
- 7. Notificação do desenvolvimento e modificação de procedimentos, quando necessário

PRG PRÓRETORIA DE GRADUAÇÃO

Procedimentos em caso de acidente

 Antes de atender possíveis vítimas, assegure-se da sua própria segurança

ф

PRG PRÓ-RETORIA DE GRADUAÇÃO

Minimização de risco biológico

 O conhecimento adequado do sistema/riscos associados/métodos de contenção é o único caminho para o manuseio seguro de agentes biológicos

Muito obrigado pela atenção!