Les méthodes numériques présentées en cours seront programmées à l'aide du logiciel **FreeFem++** (http://www.freefem.org/ff++/index.htm). Nous utiliserons en TP la version de FreeFem++ qui propose un environnement de développement intégré; ce logiciel est disponible en téléchargement (gratuit) à l'adresse

http://www.ann.jussieu.fr/~lehyaric/ffcs/index.htm.

À la fin de cette séance vous enverrez vos programmes à mon adresse Email, avec L3-CS-TP1 en sujet et votre nom et prénom dans le corps du message.

TP 1 : Introduction à l'utilisation du logiciel FreeFem++ Interpolation numérique 1D

Exercice 1 Utilisation du système d'exploitation Linux

- Sur un PC de la salle informatique, taper votre nom "login" et votre mot de passe dans les cases appropriées présentes sur l'écran.
- Parcourir le menu qui se trouve à gauche, en bas de l'écran. Naviguer de sous-menu en sous-menu. Relâcher le bouton de la souris sur l'option choisie qui correspond à l'exécution d'une commande, c'est à dire à l'exécution d'un logiciel.
- Explorer la barre de lancement rapide qui se trouve en bas de l'écran. Trouver comment lancer : une fenêtre de commandes terminal, l'éditeur gedit, le navigateur firefox, etc.
- Dans une fenêtre Terminal, essayer les commandes de base

Le chemin vers un dossier = PATH.	
On utilise / pour séparer les noms des dossiers.	
Raccourcis : Répertoire courant . Répertoire parent Répertoire maison \sim	
pwd	affiche le PATH vers le dossier courant
ls	liste le dossier courant
ls -la	liste complète de tous les fichiers, y compris les fichiers cachés
mkdir nomdir	crée le dossier nomdir
cd PATH	pour aller dans le dossier spécifié par le chemin PATH
cd	pour monter d'un niveau dans la hiérarchie de dossiers
cd ~	pour aller directement dans le dossier maison
cp fic1 fic2	copie le fic1 dans fic2, le dernier - s'il existe - étant écrasé
cp PATH1/fic1 PATH2/fic2	commande plus générale
mv fic1 fic2	le fichier fic1 change de nom, devenant fic2
mv PATH1/fic1 PATH2/fic2	le fichier fic1 change de nom, devenant fic2 qui est déplacé dans PATH2
rm -i fic1 fic2	efface les fichiers fic1 et fic2 tout en demandant la confirmation
rmdir nomdir	efface le dossier nomdir qui doit être vide
du -sk nomdir	espace disque occupé par le dossier nomdir
df	affiche l'espace disque occupé/restant
cat fic	affiche à l'écran le contenu du fichier fic
more fic	affiche à l'écran le contenu du fichier fic
diff PATH1/fic1 PATH2/fic2	affiche les différences entre les deux fichiers
grep -ni nomchaine nomfic	cherche une chaîne de caractères dans un fichier

À retenir : Utiliser dans le terminal :

- la touche <Tabulation> pour compléter les commandes et les noms de répertoires ou fichiers.
- les touches <Flèche vers le haut> et <Flèche vers le bas> pour naviguer et rappeler les anciennes commandes déjà utilisées.

Exercice 2 Première utilisation du logiciel FreeFem++

- Lancer dans un Terminal la commande FreeFem++-cs.
- Explorer les menus du logiciel. Charger des exemples de programmes (File/Open example) et exécuter ces programmes; regarder les options pour la représentation graphique.
- Q1 Ecrire dans la partie "éditeur" du logiciel le programme suivant

```
real L1=2, L2=4;
int nbseq= 20;
real aspratio = L2/L1;
   border Gammal(t=0,L1) {label=1; x=t; y=0; };
   border Gamma2(t=0,L2) {label=2;x=L1;y=t;};
   border Gamma3(t=L1,0) {label=3;x=t;y=L2;};
   border Gamma4(t=L2,0) {label=4; x=0; y=t; };
//=======
// Maillage
//========
   mesh Th=buildmesh(Gamma1(nbseg)+Gamma2(nbseg*aspratio)
                    +Gamma3(nbseg)+Gamma4(nbseg*aspratio));
   plot(Th, wait=1);
//========
// Une fonction elements finis
//========
   fespace Vh(Th,P1); // espace P1
   Vh f = x*x+y*y;
   plot(f, fill=1, wait=1, cmm="Graph de f");
//========
// Valeur au point P
//=======
   real xp=L1/2, yp=L2/2;
   cout << "valeur au point P(" << xp << "," << yp << ")=" << f(xp,yp) <<endl;
```

• Créer le dossier TP1 (commande mkdir dans un Terminal). Sauver le programme comme TP1_ex2_q1.edp, dans le dossier TP1.

- Q2 Rajouter un trou circulaire au domaine. Sauver le nouveau programme comme TP1_ex2_q2.edp.
- **Q3** En utilisant la représentation paramétrique des courbes frontières, construire le maillage d'un *smiley*. Sauver le nouveau programme comme TP1_ex2_q3.edp.

Exercice 3 Interpolation linéaire par morceaux (1D)

Considérons un échantillonnage de la fonction $f(x):[a,b] \to \mathbb{R}$, représenté par n valeurs connues $y_i, i=0,..n-1$, correspondant aux abscisses $a=x_0 < x_2 < ... < x_{n-1}=b$.

La fonction f(x) sera approchée par la fonction linéaire par morceaux définie sur l'intervalle [a,b] par

$$\tilde{f}(x) = y_i + \frac{x - x_i}{x_{i+1} - x_i} (y_{i+1} - y_i), \quad \forall x \in [x_i, x_{i+1}] \quad \forall i = 0, ...n - 2$$
 (1)

• Commençons par définir un tableau xx contenant les abscisses x_i équidistantes, suivant la syntaxe

```
// abscisses
real a=0, b=1, pas=0.2;
real [int] xx(a:pas:b);
cout <<"abscisses " << xx << endl;
cout <<"dimension vecteur n=" << xx.n << endl;</pre>
```

• Définissons maintenant le tableau yy contenant les valeurs de la fonction

```
// valeurs
int n=xx.n; // dimension du vecteur
real [int] yy(n);
for(int i=0; i < n; i++)
    yy(i) =sin(pi*xx(i))+cos(pi*xx(i));
cout <<"valeurs yy " << yy << endl;</pre>
```

• L'échantillonnage sera sauvé dans le fichier data_ex3.dat

```
// ecriture dans un fichier
{
  ofstream fout("data_ex3.dat");
  for(int i=0;i < n ; i++)
    fout << xx(i) <<" " << yy(i) << endl ;
}</pre>
```

• Pour la représentation graphique, nous allons utiliser un autre logiciel, Gnuplot, car FreeFem++ n'est pas adapté aux tracés 1D.

Dans un Terminal, commencez par vous placer dans le dossier contenant les programmes écrits (cd TP1).

Lancez la commande gnuplot ; vous êtes maintenant dans l'environnement Gnuplot, avec des commandes spécifiques. Pour visualiser la courbe, testez les commandes suivantes :

```
plot "data_ex3.dat"
plot "data_ex3.dat" w l
plot "data_ex3.dat" w lp
plot "data_ex3.dat" w lp pt 7
```

Commentez les commandes suivantes :

```
set xrange [0:1]
plot "data_ex3.dat" w lp pt 7, sin(pi*x)+cos(pi*x)
```

Changez le pas de discrétisation de 0.2 à 0.02 et refaire tous les calculs. Commenter.

Q1 Compléter le programme afin de pouvoir réaliser l'interpolation linéaire :

- définir une variable xP pour l'abscisse du point d'interpolation, a < xP < b;
- écrire un algorithme qui va trouver le sous-intervalle tel que $xP \in [xx_i, xx_{i+1}]$ (utiliser le Help pour trouver la syntaxe des instructions if et break);
- appliquer la formule (1) pour calculer la valeur interpolée fxP;
- comparer avec la valeur exacte;
- vérifier graphiquement que la valeur trouvée est bien l'interpolé linéaire.

Sauver le nouveau programme comme TP1_ex3_q1.edp.

```
Programmes à envoyer par Email:

TP1_ex2_q2.edp

TP1_ex2_q3.edp

TP1_ex3_q1.edp
```