Uniwersytet Warszawski

Wydział Matematyki, Informatyki i Mechaniki

Jakub Bujak

Nr albumu: 370737

Logika separacji dla języka programowania Jafun

Praca magisterska na kierunku INFORMATYKA

Praca wykonana pod kierunkiem dr hab. Aleksego Schuberta, prof. UW

Oświadczenie kierującego pracą

Potwierdzam, że niniejsza praca została przygotowana pod moim kierunkiem i kwalifikuje się do przedstawienia jej w postępowaniu o nadanie tytułu zawodowego.

Data

Podpis kierującego pracą

Oświadczenie autora (autorów) pracy

Świadom odpowiedzialności prawnej oświadczam, że niniejsza praca dyplomowa została napisana przeze mnie samodzielnie i nie zawiera treści uzyskanych w sposób niezgodny z obowiązującymi przepisami.

Oświadczam również, że przedstawiona praca nie była wcześniej przedmiotem procedur związanych z uzyskaniem tytułu zawodowego w wyższej uczelni.

Oświadczam ponadto, że niniejsza wersja pracy jest identyczna z załączoną wersją elektroniczną.

Data

Podpis autora pracy

Streszczenie

W pracy zdefiniowano logikę separacji dla języka Jafun, przedstawiono jej formalizację w systemie Coq i udowoniono jej poprawność względem semantyki języka. Logika separacji pozwala na podział sterty na rozłączne fragmenty. Upraszcza to wnioskowanie o programach, pozwalając na dowodzenie własności podwyrażeń na prostszych fragmentach sterty.

Słowa kluczowe

Logika separacji, Jafun, weryfikacja

Dziedzina pracy (kody wg programu Socrates-Erasmus)

11.3 Informatyka

Klasyfikacja tematyczna

Spis treści

W	prowadzenie	5
1.	Podstawowe pojęcia i definicje	7
2.	Jafun	9
	2.1. Składnia i semantyka	9
	2.2. Ewaluacja	11
3.	Składnia i semantyka	13
4.	Reguły wnioskowania	15
5.	Własności stert	19
	5.1. Definicje	19
6.	Własności ewaluacji	21
	6.1. Łączenie ewaluacji	21
	6.2. Ewaluacja przy rozszerzonym stosie i kontekście	21
	6.3. Ewaluacja zależy tylko od zmiennych wolnych	21
	6.3.1. Izomorfizmy	21
	6.3.2. Zależność ewaluacji od zmiennych wolnych	23
7.	Poprawność	27
8.	Formalizacja w systemie Coq	29
9.	Podsumowanie	31
Bi	bliografia	33

Wprowadzenie

Podstawowe pojęcia i definicje

Jafun

Jafun to zorientowany obiektowo język programowania podobny do Javy. Jego szczegółowy opis znajduje się w pracy [1]. Poniżej przytaczam te aspekty języka, które są istotne dla prezentowanej logiki.

2.1. Składnia i semantyka

Program w języku jafun jest listą definicji klas. Definicja klasy składa się z listy pól i listy metod. Metody mogą przyjmować dowolną liczbę argumentów i rzucać dowolną liczbę wyjątków, deklarowanych przez słowo kluczowe **throws**, podobnie jak w Javie.

Modyfikatory dostępu ϕ i μ nie mają znaczenia w prezentowanej logice, ale zostały uwzględnione w składni dla kompletności opisu.

```
\operatorname{\mathsf{Prog}} \ni \mathbf{C} \quad ::= \operatorname{\mathbf{class}} C_1 \operatorname{\mathbf{ext}} C_2 \{ \overline{\mathbf{F}} \ \overline{\mathbf{M}} \}
                          ::= \langle identifier \rangle \quad (class name)
     \mathsf{CId} \ni C
                 \mathbf{F}
                         := \phi C x
                 \phi
                       ::= rep | ∅
        \mathsf{Id}\ni x
                          ::= \langle identifier \rangle \quad (variable/field name)
                 arg ::= \mu C x
                                                        argn ::= \emptyset C x
                 \mathsf{Exc} ::= \mu \, C
                                                         Excn := \emptyset C
                 \mathbf{M} ::= \mu C \mu m(\overline{\mathsf{arg}}) \mathbf{throws} \overline{\mathsf{Exc}} \{E\} \mid
                                   \emptyset \ C \ \emptyset \ m(\overline{\operatorname{argn}}) \ \operatorname{\mathbf{throws}} \ \overline{\mathsf{Excn}} \ \{E\}
                          ::= rwr | rd | atm
AMod \ni \mu
    \mathsf{MId} \ni m ::= \langle identifier \rangle \pmod{name}
   \mathsf{Expr} \ni E
                          ::= \mathbf{new} \ \mu \ C(\overline{\mathsf{v}}) \ | \mathbf{let} \ C \ x = E_1 \mathbf{in} \ E_2 |
                                   if v_1 == v_2 then E_3 else E_4 \mid v.m(\overline{v}) \mid
                                   fieldref = v \mid v \mid fieldref \mid \mathbf{throw} \mid v \mid
                                   try \{E_1\} catch (\mu C x) \{E_2\}
                     \mathsf{v} \; ::= \; x \mid \mathbf{this} \mid \mathbf{null}
          fieldref ::= v.x
                 A
                          ::= C \mid \emptyset
\mathsf{BCtxt} \ni \mathcal{C}
                          ::= [ ]_A \mid \mathbf{let} \ C \ x = \mathcal{C} \ \mathbf{in} \ E \mid
                                   try \{C\} catch (\mu C x) \{E\}
```

Rysunek 2.1: Składnia języka Jafun

Notacje pomocnicze dla deklaracji w $\overline{\mathbf{C}}$

Niech **class** C_1 **ext** C_2 { $\overline{\mathbf{F}}$ $\overline{\mathbf{M}}$ } będzie deklaracją klasy w $\overline{\mathbf{C}}$. Niech ϕ C_3 x będzie deklaracją pola w $\overline{\mathbf{F}}$. Niech μ_r C_4 μ_o $m(\overline{\mathsf{arg}})$ **throws** $\overline{\mathsf{Exc}}$ { E_1 } będzie deklaracją metody w $\overline{\mathbf{M}}$, gdzie $\overline{\mathsf{arg}} = \mu_1'$ C_1' x_1, \ldots, μ_n' C_n' x_n , $\overline{\mathsf{Exc}} = \mu_1''$ C_1'' , \ldots, μ_k'' C_k'' , and $\mu_r, \mu_o, \mu_i', \mu_j'' \in \mathsf{AMod}$ for all possible i, j. Ustalając $\overline{\mathbf{M}}_1 \cup \overline{\mathbf{M}}_2 = \overline{\mathbf{M}}_1 \cup \{\mathbf{M} \in \overline{\mathbf{M}}_2 \mid \mathsf{name}(\mathbf{M}) \not\in \overline{\mathbf{M}}_1\}$, możemy zdefiniować następujące pomocnicze notacje:

$C_1 \in \overline{\mathbf{C}}$	kiedy w deklaracja C_1 istnieje w $\overline{\mathbf{C}}$,		
extstyle ext			
$\frac{flds(C_1) = \{x \in Id \mid \phi D_1 x \in \overline{\mathbf{F}}\} \cup flds(C_2)}{flds(C_1) = \overline{\mathbf{F}}, \overline{flds}(C_2)}$	$\frac{flds(Object) = \emptyset}{flds(Object) = \emptyset}$		
$mthds(C_1) = \overline{\mathbf{M}} \cup mthds(C_2)$	$mthds(Object) = \emptyset$		
$\operatorname{ext}(C_1) = C_2$	$ext(Object) = \emptyset$		
$x \in C_1$	kiedy deklaracja x istnieje w $\overline{\mathbf{F}}$,		
$typeof(C_1,x) = C_3$	dla $x \in C_1$		
$m \in C_1$	kiedy deklaracja m istnieje w $\overline{\mathbf{M}}$,		
	initially defined action in the second of th		
$body(C_1,m) = E_1,$	dla $m \in C_1$,		
$body(C_1,m) = E_1, \ pars(C_1,m) = \overline{arg}$			
	dla $m \in C_1$,		
$pars(C_1,m) = \overline{arg}$	dla $m \in C_1$, dla $m \in C_1$,		
$pars(C_1,m) = \overline{arg}$ $parNms(C_1,m) = x_1,\dots,x_n$	dla $m \in C_1$, dla $m \in C_1$, dla $m \in C_1$,		
$pars(C_1,m) = \overline{arg}$ $parNms(C_1,m) = x_1,\dots,x_n$	dla $m \in C_1$, dla $m \in C_1$, dla $m \in C_1$, klasa obiektu znajdującego się pod lokacją		
$pars(C_1,m) = \overline{arg}$ $parNms(C_1,m) = x_1,\dots,x_n$ $class(h,l)$	dla $m \in C_1$, dla $m \in C_1$, dla $m \in C_1$, klasa obiektu znajdującego się pod lokacją $l \in Loc$ na stercie $h \in Heap$		

Rysunek 2.2: Notacje pomocnicze

Semantyka małych kroków języka Jafun jest zdefiniowana przez relację \to na rysunku 2.3, dla ustalonego programu . Relacja \to jest relacją binarną na parach (sterta, stos wywołań). W ogólności ma ona postać

$$\overline{\mathbf{C}}$$
, $h, \mathcal{C}_1[\![E_1]\!]_{A_1} :: \cdots :: \mathcal{C}_n[\![E_n]\!]_{A_n} \to h', \mathcal{C}'_1[\![E_1]\!]_{A'_1} :: \cdots :: \mathcal{C}'_m[\![E_m]\!]_{A'_m}.$

Stos wywołań $C_1[\![E_1]\!]_{A_1} :: \cdots :: C_n[\![E_n]\!]_{A_n}$, albo w skrócie \overline{C} , to ciąg wyrażeń z rysunku 2.1, w którym aktualnie ewaluowane wyrażenie (redeks) jest oznaczone specjalnym symbolem $[\![]\!]_A$. Indeks A opisuje, czy program wykonuje się w sposób normalny $(A = \emptyset)$, czy był rzucony jakiś niezłapany jeszcze wyjątek $(A \in \overline{\mathbf{C}})$.

Dla wygody każda ramka stosu jest podzielona na kontekst $C_i \in \mathsf{BCtxt}$ i redeks E_i . Kontekst C_i opisuje wszystkie zagnieżdżone bloki **let** i **catch**, wewnątrz którch znajduje się E_i .

```
\overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket \mathbf{new} \ \mu \ C(l_1, \dots, l_k) \rrbracket_{\emptyset} \to h'', \overline{\mathcal{C}} :: \mathcal{C} \llbracket l_0 \rrbracket_{\emptyset}
(newk)
                  gdzie alloc(h, \overline{C}, C) = (l_0, h'), \text{ flds}(C) = x_1, \dots, x_k,
                                      o = \mathsf{empty}_C \{ x_1 \mapsto l_1, \dots, x_k \mapsto l_k \}, \ h'' = h' \{ l_0 \mapsto o \}
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{let}\ C\ x = E_1\ \mathbf{in}\ E_2]\!]_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{let}\ C\ x = [\![E_1]\!]_{\emptyset}\ \mathbf{in}\ E_2]\!]
(letin)
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\mathbf{let}\ C\ x = [\![l]\!]_{\emptyset}\ \mathbf{in}\ E] \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![E\{l/x\}]\!]_{\emptyset}
(letgo)
                                               \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{if}\ l_0 == l_1\ \mathbf{then}\ E_1\ \mathbf{else}\ E_2]\!]_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![E_1]\!]_{\emptyset} \quad \text{gdzie}\ l_0 = l_1
(ifeq)
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C} \mathbf{lif} \ l_0 == l_1 \ \mathbf{then} \ E_1 \ \mathbf{else} \ E_2 \mathbf{l}_\emptyset \to h, \overline{\mathcal{C}} :: \mathcal{C} \mathbf{l}_2 \mathbf{l}_\emptyset \quad \text{gdzie} \ l_0 \neq l_1
(ifneq)
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{null}.m(\overline{l})]\!]_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{npe}]\!]_{\mathrm{NPE}}
(mthdnpe)
                                               \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket l.m(\overline{l}) \rrbracket_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket l.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket E \rrbracket_{\emptyset}
(mthd)
                  gdzie \operatorname{class}(h, l) = D, \operatorname{body}(D, m) = E_0, E = E_0\{l/\operatorname{this}, \bar{l}/\operatorname{parNms}(D, m)\}
(mthdret)
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket l.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket l' \rrbracket_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket l' \rrbracket_{\emptyset}
                                            \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{null}.x = l]\!]_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{npe}]\!]_{\mathrm{NPE}}
(assignnpe)
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![l_1.x = l]\!]_{\emptyset} \to h', \overline{\mathcal{C}} :: \mathcal{C}[\![l]\!]_{\emptyset}
(assignev)
                  gdzie l_1 \neq \text{null}, o = h(l_1)\{x \mapsto l\}, h' = h\{l_1 \mapsto o\}
                                              \begin{array}{l} \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{null}.x]\!]_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{npe}]\!]_{\mathrm{NPE}} \\ \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![l.x]\!]_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![l']\!]_{\emptyset} \end{array} \quad \mathrm{gd} \end{array}
(varnpe)
                                                                                                                                                             gdzie l \neq \mathbf{null}, l' = h(l)(x)
(var)
                                             \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket \mathbf{throw} \ \mathbf{null} \rrbracket_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket \mathbf{npe} \rrbracket_{\mathtt{NPE}}
(thrownull)
                                             \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\![\mathbf{throw}\ l]\!]_{\emptyset} \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![l]\!]_{D}
                                                                                                                                                                                           gdzie l \neq \mathbf{null}, \mathsf{class}(h, l) = D
(throw)
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\mathbf{try} \{E_1\} \mathbf{catch} (\mu C x) \{E_2\}]_{\emptyset} \rightarrow
(ctchin)
                                                              h, \overline{\mathcal{C}} :: \mathcal{C}[\mathbf{try} \{ \llbracket E_1 \rrbracket_{\emptyset} \} \mathbf{catch} (\mu \ C \ x) \{ E_2 \}]
                                               \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\mathbf{try} \{ \llbracket l \rrbracket_{\emptyset} \} \mathbf{catch} (\mu \ C \ x) \ \{ E_2 \}] \to h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket l \rrbracket_{\emptyset}
(ctchnrml)
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\mathbf{try} \{ \llbracket l \rrbracket_{C'} \} \mathbf{catch} (\mu \ C \ x) \ \{ E_2 \}] \to h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket E_2' \rrbracket_{\emptyset}
(ctchexok)
                  gdzie E'_2 = E_2\{l/x\}, C' \le C'
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\mathbf{let}\ C\ x = [\![l]\!]_{C'}\ \mathbf{in}\ E] \to h, \overline{\mathcal{C}} :: \mathcal{C}[\![l]\!]_{C'}
(letex)
                                                                                                                                                                                                                                gdzie C' \neq \emptyset
                                              \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket l.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket l' \rrbracket_{C} \to h, \overline{\mathcal{C}} :: \mathcal{C} \llbracket l' \rrbracket_{C} \qquad \text{gdzie } C \neq \emptyset
(methodex)
(\text{ctchexnok}) \quad \overline{\mathbf{C}}, h, \overline{\mathcal{C}} :: \mathcal{C}[\mathbf{try} \{ \llbracket l \rrbracket_{C'} \} \mathbf{catch} (\mu \ C \ x) \ \{E_2\}] \to h, \overline{\mathcal{C}} :: \mathcal{C}[\llbracket l \rrbracket_{C'}]
                  gdzie C' \neq \emptyset, C' \not\leq : C
```

Rysunek 2.3: Semantyka języka Jafun

Ewaluacja programu zaczyna się od stanu $\overline{\mathbf{C}}$, h, $\llbracket E' \rrbracket_{\emptyset}$ gdzie $h \in \mathsf{Heap}$, $E' = E\{l_o/\mathsf{this}\}$, class $(h, l_o) = C$, a C' m() throws NPE $\{E\}$ jest metodą nieprzyjmującą argumentów w klasie C. Metoda m odpowiada funkcji main w zwykłej Javie. Dodatkowo zakładamy, że na stercie h, pod pewną lokacją npe istnieje object klasy NPE ("null pointer exception").

2.2. Ewaluacja

Częściową ewaluacją konfiguracji (h, \overline{C}) będziemy nazywać dowolny ciąg par $confs = (h_1, \overline{C}_1), \dots, (h_n, \overline{C}_n)$, taki że $h_1 = h$, $\overline{C}_1 = \overline{C}$ oraz $(h_i, \overline{C}_i) \to (h_{i+1}, \overline{C}_{i+1})$ dla $1 \le i < n$. Częściowe ewaluacje będziemy oznaczać jako $(h_1, \overline{C}_1) \stackrel{confs}{\leadsto} (h_n, \overline{C}_n)$.

Ewaluacją wyrażenia e na stercie h będziemy nazywać taką ewaluację konfiguracji $(h, [e]_{\phi})$,

że $\overline{C}_n=[\![l]\!]_A$ dla pewnych l,A. Jeśli taka ewaluacja istnieje, będziemy to oznaczać jako $(h,e)\stackrel{confs}{\leadsto}(h_n,A,l)$ lub

Składnia i semantyka

Prezentowana logika separacji dla języka Jafun jest logiką z kwantyfikatorami egzystencjalnymi pierwszego rzędu, trójkami Hoare'a, operatorem \hookrightarrow , pozwalającym na opisywanie zawartości sterty i operatorami separacji * i \rightarrow *.

Iris, na którym wzorowana jest niniejsza logika, jest afiniczną logiką separacyjną, to znaczy własność spełniania termu przez stertę jest domknięta ze względu na rozszerzanie sterty. W celu zachowania zarówno afiniczności, jak i poprawności względem semantyki języka, prezentowana logika nie zawiera kwantyfikatora ogólnego, a kwantyfikator egzystencjalny jest ograniczony do termów najwyższego poziomu (Rysunek 3.1).

Używane będzie także oznaczenie $v_1 \neq v_2$ jako skrót dla $v_1 = v_2 \Rightarrow$ False.

```
\begin{split} \mathbf{P} &::= \exists x : C. \mathbf{P} \quad | \quad \mathbf{P} \wedge \mathbf{P} \quad | \quad P \vee \mathbf{P} \quad | \quad P \\ P &::= \mathsf{True} \quad | \quad \mathsf{False} \quad | \quad P \wedge P \quad | \quad P \vee P \quad | \quad P \Rightarrow P \quad | \quad v = v \quad | \\ v &\hookrightarrow x = v \quad | \quad \{P\}E\{x.P\}_A \quad | \quad P * P \quad | \quad P \twoheadrightarrow P \\ v &::= x \quad | \quad \mathsf{null} \quad | \quad \mathsf{this} \\ A &::= C \quad | \quad \phi \\ x &::= \langle identifier \rangle \quad (variable/field \ name) \\ C &::= \langle identifier \rangle \quad (class \ name) \\ e &::= \langle Jafun \ expression \rangle \end{split}
```

Rysunek 3.1: Składnia logiki

Środowisko to funkcja częściowa przypisująca identyfikatorom lokacje na stercie lub null. Semantyka logiki (Rysunek 3.2) jest standardowa dla kwantyfikatora i operatorów logicznych. Dla uproszczenia zapisu notacja $\llbracket \cdot \rrbracket$ została użyta do opisu semantyki obu poziomów termów (**P** i P). To, do którego poziomu się odnosi, wynika z kontekstu.

Sterta spełnia trójkę Hoare'a $\{P\}E\{x.Q\}_A$, jeśli dla każdej sterty spełniającej P, wyrażenie E zostanie obliczone bez błędu, zwróci wyjątek typu A (czyli być może żaden), a wynikowa sterta będzie spełniała Q, w którym za x podstawiony zostanie wynik obliczenia.

Sterta spełnia term P*Q, jeśli można ją podzielić na dwa rozłączne fragmenty, z których jeden spełnia P, a drugi Q. Operator \twoheadrightarrow to pewnego rodzaju odwrotność operatora * – sterta spełnia $P \twoheadrightarrow Q$, jeśli po połączeniu jej z dowolną rozłączną stertą spełniającą P, otrzymana sterta spełnia Q.

Uwaga: E[/env] oznacza wyrażenie powstałe przez podstawienie env(x) w miejsce x dla każdej zmiennej wolnej x w E.

Rysunek 3.2: Semantyka logiki

Reguły wnioskowania

Osądy w prezentowanej logice są postaci $\Gamma|P \vdash Q$, gdzie Γ to środowisko typów, przypisujące zmiennym odpowiadające im typy (czyli nazwy klas), a P i Q to termy logiki. Intuicyjnie, osąd $\Gamma|P \vdash Q$ oznacza że Q wynika z P, a więc że każda sterta spełniająca P spełnia też Q.

Dla poprawienia czytelności, jeśli Γ jest wspólne dla wszystkich osądów występujących w danej regule, to jest ono pomijane.

Rysunek 4.1: Reguły wnioskowania dla tradycyjnych operatorów logicznych

Weak
$$P * Q \vdash P$$
 Sep-assoc $P * (Q * R) \dashv \vdash (P * Q) * R$ Sep-sym $P * Q \vdash Q * P$

$$*I \frac{P_1 \vdash Q_1 \qquad P_2 \vdash Q_2}{P_1 * Q_1 \vdash P_2 * Q_2} \qquad *I \frac{R * P \vdash Q}{R \vdash P \twoheadrightarrow Q} \qquad *E \frac{R_1 \vdash P \twoheadrightarrow Q \qquad R_2 \vdash P}{R_1 * R_2 \vdash Q}$$

Rysunek 4.2: Reguły wnioskowania dla operatorów separacyjnych

Reguły strukturalne dla trójek Hoare'a

$$\frac{S \vdash \{P\}E\{v.Q\}_A \qquad S \text{ jest trwaly}}{S \vdash \{P*R\}E\{v.Q*R\}_A} \qquad \text{Ht-ret } \frac{}{S \vdash \{\text{True}\}w\{v.v=w\}_\phi}$$

$$\frac{\Gamma|S \vdash P \Rightarrow P' \qquad \Gamma|S \vdash \{P'\}E\{v.Q'\}_A \qquad \Gamma, v:C|S \vdash Q' \Rightarrow Q \qquad S \text{ jest trwały}}{S \vdash \{P\}E\{v.Q\}_A}$$

$$\frac{S \vdash \{P\}E\{v.Q\}_A \qquad S \vdash \{Q\}E\{v.Q\}_A}{S \vdash \{P \lor Q\}E\{v.Q\}_A}$$

$$\text{\tiny HT-PERS} \frac{S \wedge R \vdash \{Q\}E\{v.Q\}_A}{S \vdash \{Q \wedge R\}E\{v.Q\}_A} \text{ jeśli R trwały}$$

Reguły dla trójek Hoare'a opisujących konstrukcje języka

$$\frac{\text{Ht-new-null}}{S \vdash \{\text{True}\} \mathbf{new} \ C(\overline{v}) \{w.w \neq \mathbf{null}\}_{\phi}}$$

$$\frac{\mathrm{flds}(C) = f_1, \dots, f_n}{S \vdash \{\mathrm{True}\} \mathbf{new} \ C(v_1, \dots, v_n) \{w.w \hookrightarrow f_i = v_i\}_{\phi}}$$

$$\frac{\Gamma|S\vdash\{P\}E_1\{x.Q\}_{\phi}\qquad \Gamma,x:C|S\vdash\{Q\}E_2\{w.R\}_A}{\Gamma|S\vdash\{P\}\mathbf{let}\ C\ x=E_1\ \mathbf{in}\ E_2\{w.R\}_A}$$
jeśli S trwały

$$\frac{S \vdash \{P\}E_1\{w.Q\}_A \qquad A \neq \phi}{\Gamma|S \vdash \{P\} \mathbf{let} \ C \ x = E_1 \ \mathbf{in} \ E_2\{w.Q\}_A}$$

HT-FIELD-SET
$$S \vdash \{x \neq \text{null}\}x.f = v\{ .x \hookrightarrow f = v\}_{\phi}$$

$$\frac{\text{Ht-null-set}}{S \vdash \{x = \text{null}\} x. f = v\{w.w = \text{npe}\}_{\text{NPE}}}$$

$$\frac{\text{Ht-field-get}}{S \vdash \{x \hookrightarrow f = v\} x. f\{w. w = v\}_{\phi}}$$

$$\frac{\text{Ht-null-GeT}}{S \vdash \{x = \text{null}\}x.f\{w.w = \text{npe}\}_{\text{NPE}}}$$

Rysunek 4.3: Reguły wnioskowania dla trójek Hoare'a

$$\text{HT-IF} \frac{S \vdash \{P \land v_1 = v_2\}E_1\{w.Q\}_A \qquad S \vdash \{P \land v_1 \neq v_2\}E_2\{w.Q\}_A}{S \vdash \{P\} \text{if } v_1 = v_2 \text{ then } E_1 \text{ else } E_2\{w.Q\}_A}$$

$$\{P'\} \cdot \{w.Q'\}_A \in \text{invariants}(C, m)$$

$$\frac{\Gamma \vdash x : C \qquad S \land \{P'\}x.m(\overline{v})\{w.Q'\}_A \vdash \{P\}x.m(\overline{v})\{w.Q\}_A}{S \vdash \{P\}x.m(\overline{v})\{w.Q\}_A}$$

$$\frac{\text{Ht-null-invoke}}{S \vdash \{x = \text{null}\} x. m(\overline{v}) \{w.w = \text{npe}\}_{\text{NPE}}}$$

$$\frac{\Gamma \vdash x : C}{S \vdash \{x \neq \text{null}\} \mathbf{throw} \ x\{w.w = x\}_C}$$

$$\frac{S \vdash \{P\}E_1\{w.Q\}_{\phi}}{S \vdash \{P\}\mathbf{try} \ E_1 \ \mathbf{catch} \ (C \ x) \ E_2\{w.Q\}_{\phi}}$$

$$\frac{\Gamma|S \vdash \{P\}E_1\{x.Q\}_C' \qquad \Gamma, x: C'|S \vdash \{Q\}E_2\{w.R\}_A \qquad C' \leq C}{\Gamma|S \vdash \{P\}\text{try } E_1 \text{ catch } (C \ x) \ E_2\{w.R\}_A} \text{ jeśli S trwały}$$

$$\frac{S \vdash \{P\}E_1\{w.Q\}'_C \qquad C' \not\leq C}{S \vdash \{P\}\mathbf{try} \ E_1 \ \mathbf{catch} \ (C \ x) \ E_2\{w.Q\}'_C}$$

Rysunek 4.4: Reguły wnioskowania dla trójek Hoare'a - c.d.

Własności stert

5.1. Definicje

Definicja 5.1.1 (Spójność sterty).

Niech h będzie stertą. Powiemy, że h jest spójna, jeśli każda lokacja będąca wartością pola w pewnym obiekcie na h również jest na h. To znaczy, dla każdego x, l_1, l_2 , jeśli $h(l_1)(x) = l_2$, to $l_2 \in \mathsf{Dom}(h)$.

Definicja 5.1.2 (Suma rozłączna stert).

Niech h, h_1, h_2 będą stertami. Powiemy, że h jest sumą rozłączną stert h_1 i h_2 (zapisywane $h = h_1 \oplus h_2$), jeśli

- 1. Dla każdej lokacji $l,\,l\in h$ wtedy i tylko wtedy gdy $l\in h_1$ lub $l\in h_2$
- 2. Nie istnieje lokacja l,taka że $l \in h_1$ i $l \in h_2$

Własności ewaluacji

Pokażę teraz twierdzenia o własności ewaluacji, które będą później użyte do udowodnienia poprawności reguł dla trójek Hoare'a.

6.1. Łączenie ewaluacji

Podatwowym twierdzeniem, pozwalającym mówić o ewaluacji złożonych wyrażeń, jest twierdzenie o łączeniu ewaluacji.

Twierdzenie 1 (O łączeniu ewaluacji). Niech $(h, \overline{C}), (h', \overline{C}'), (h'', \overline{C}'')$ będą konfiguracjami, a confs i confs' – ciągami konfiguracji, takimi że $(h, \overline{C}) \stackrel{confs}{\leadsto} (h', \overline{C}')$ i $(h', \overline{C}') \stackrel{confs'}{\leadsto} (h'', \overline{C}'')$. Wtedy $(h, \overline{C}) \stackrel{confs++confs'}{\leadsto} (h'', \overline{C}'')$.

Dowód. TODO

6.2. Ewaluacja przy rozszerzonym stosie i kontekście

6.3. Ewaluacja zależy tylko od zmiennych wolnych

Twierdzenie o zależności ewaluacji od zmiennych wolnych jest kluczowe w dowodzie poprawności dla reguł WEAK i HT-FRAME. Mówi ono, że jeśli dwie sterty zgadzają się na lokacjach odpowiadających zmiennym wolnym w pewnym wyrażeniu E, to ewaluacje wyrażenia E na tych dwóch stertach będą w pewnym sensie równoważne.

Równoważnośc ta nie będzie niestety trywialna, bo nowo zaalokowane lokacje na obu sterach mogą się różnić. Zgodnie z semantyką języka, lokacja zwracana przez operator **new** to (maximum z lokacji na stercie) + 1. Stąd, ponieważ nie zakładamy niczego o lokacjach innych niż te odpowiadające zmiennym wolnym, wartość zwracana przez operator **new** może się różnić pomiędzy stertami. Nowo zaalokowane lokacje mogą następnie zostać zapisane w polach obiektów znajdujących się pod lokacjami odpowiadającymi zmiennym wolnym, co oznacza że nawet te obiekty, początkowo równe na obu stertach, mogą zacząć się różnić w czasie ewaluacji.

6.3.1. Izomorfizmy

Żeby obejść ten problem, zdefiniujemy *izomorfizm stert* jako bijekcję między lokacjami na tych stertach, zachowującą null, npe i kompozycję.

Definicja 6.3.1 (izomorfizm stert).

Niech h_1, h_2 : Heap. Funkcję $f: \text{Dom}(h_1) \cup \{\text{null}\} \to \text{Dom}(h_2) \cup \{\text{null}\}$ nazwiemy izomorfizmem między tymi stertami, jeśli:

- 1. f jest bijekcją
- 2. f(null) = null
- 3. f(npe) = npe
- 4. f zachowuje kompozycję, to znaczy dla dowolnych lokacji l_1, l_2 i pola x zachodzi

$$h_1(l_1) \hookrightarrow x = l_2 \iff h_2(f(l_2)) \hookrightarrow x = f(l_2)$$

Jeśli taka funkcja f istnieje, powiemy że sterty h_1 i h_2 są izomorficzne.

Ostatecznie będziemy chcieli pokazać, że jeśli wyrażenie E nie zawiera zmiennych wolnych, a sterty h_1, h_2 są równe na wszystkich lokacjach występujących w E, to ewaluacje E na stertach h_1 i h_2 są równoważne z dokładnością do izomorfizmu.

To oznacza, że potrzebujemy mówić o izomorfizmach ewaluacji (czyli ciągów par (sterta, stos wywołań)), a zatem należy zdefiniować także izomorfizmy między stosami wywołań. Służy temu kolejnych kilka definicji.

Definicja 6.3.2 (izomorfizm wyrażeń).

Intuicyjnie, dwa wyrażenia są izomorficzne, jeśli różnią się tylko lokacjami w nich występującymi i istnieje izomorfizm stert, mapujący lokacje z pierwszego z wyrażeń na odpowiadające im lokacje w drugim. Formalnie zdefiniujemy ten izomorfizm przez indukcję po budowie wyrażeń.

Niech f będzie izomorfizmem między dwiema stertami i niech E_1, E_2 będą wyrażeniami Jafun. Powiemy, że f jest izomorfizmem między tymi wyrażeniami, jeśli

- 1. E_1 i E_2 są wyrażeniami tego samego rodzaju (np. oba są wyrażeniami **new**)
- 2. f jest izomorfizmem między odpowiadającymi sobie podwyrażeniami E_1 i E_2
- 3. Dla każdego **this** występującego w E_1 , na odpowiadającej mu pozycji w E_2 też jest **this**
- 4. Dla każdego identyfikatora występującego w E_1 , na odpowiadającej mu pozycji w E_2 jest taki sam identyfikator
- 5. Dla każdej lokacji $l \le E_1$, na odpowiadającej mu pozycji w E_2 jest f(l)

Definicja 6.3.3 (izomorfizm kontekstów).

Podobnie jak wyżej, definiujemy izomorfizm kontekstów przez indukcję po budowie kontekstu. Niech f będzie izomorfizmem między dwiema stertami i niech C_1, C_2 będą kontekstami ewaluacji Jafun. Powiemy, że f jest izomorfizmem między tymi kontekstami, jeśli

• $C_1 = C_2 = [\![]\!]_A$

lub

- $C_1 = \text{let } C \ x = C'_1 \text{ in } E_1, \quad C_2 = \text{let } C \ x = C'_2 \text{ in } E_2,$ a f jest izomorfizmem między C'_1 i C'_2 oraz między E_1 i E_2 lub
- $C_1 = \operatorname{try} \{ C_1' \} \operatorname{catch} (\mu C x) \{ E_1 \}, \quad C_2 = \operatorname{try} \{ C_2' \} \operatorname{catch} (\mu C x) \{ E_2 \},$ a f jest izomorfizmem między C_1' i C_2' oraz między E_1 i E_2

Definicja 6.3.4 (izomorfizm stosów wywołań).

f jest izomorfizmem między dwoma stosami wywołań, jeśli są one równej długości i f jest izomorfizmem między każdą parą odpowiadających sobie kontekstów i redeksów z tych stosów.

6.3.2. Zależność ewaluacji od zmiennych wolnych

Sformułuję teraz twierdzenie o zależności ewaluacji od zmiennych wolnych, a następnie udowodnię kilka lematów pomocnych w jego dowodzie.

Twierdzenie 2 (O zależności ewaluacji od zmiennych wolnych).

Niech h będzie spójną stertą, env środowiskiem, a E wyrażeniem Jafun, w którym nie występują konkretne lokacje, a wszystkie zmienne wolne są przez env mapowane na lokacje w h. Niech $h_1, h_2, h_1^{rest}, h_2^{rest}$ będą stertami takimi, że $h_1 = h \oplus h_1^{rest}$ i $h_2 = h \oplus h_2^{rest}$. Wreszcie, niech $confs_1, h_{1,n}, A, l_1$ będą takie, że $(h_1, E[/env]) \stackrel{confs_1}{\leadsto} (h_{1,n}, A, l_1)$.

Wtedy istnieją $h_{1,n}^{base}$, $h_{2,n}^{base}$, $confs_2$, $h_{2,n}$, l_2 , f, takie że

- 1. $h_{1,n} = h_{1,n}^{base} \oplus h_1^{rest}$
- 2. $h_{2,n} = h_{2,n}^{base} \oplus h_2^{rest}$
- 3. f jest izomorfizmem między $h_{1,n}^{base}$ i $h_{2,n}^{base}$
- 4. f jest identycznością na lokacjach w env
- 5. $f(l_1) = l_2$
- 6. $(h_2, E[/env]) \stackrel{confs_2}{\leadsto} (h_{2,n}, A, l_2)$.

Dowód. Na końcu sekcji.

Sterty h_1 i h_2 w powyższym twierdzeniu to dwie sterty, o których wiemy, że zgadzają się na wszystkich lokacjach odpowiadających zmiennym wolnym w E (wszystkie one zawierają się w podstercie h). O ich pozostałych fragmentach (odpowiednio h_1^{rest} i h_2^{rest}) nie zakładamy nic. Twierdzenie mówi, że jeśli mamy ewaluację wyrażenia E w środowisku env na stercie h_1 , to istnieje też jego analogiczna ewaluacja na stercie h_2 , taka że sterty docelowe oraz wyniki ewaluacji są izomorficzne, a fragmenty stert nie mające związu ze zmiennymi wolnymi pozostają niezmienione (Rysunek 6.1).

W praktyce oznacza to, że jedynie fragmenty stert odpowiadające zmiennym wolnym w wyrażeniu mają znaczenie dla ewaluacji tego wyrażenia.

Dowód twierdzenia będzie przebiegał przez indukcję po długości ewaluacji $confs_1$. W tym celu jednak musimy sformułować następujący lemat, będący krokiem indukcyjnym w uogólnieniu powyższego twierdzenia na cześciowe ewaluacje.

Rysunek 6.1: Wizualizacja twierdzenia o zależności ewaluacji od zmiennych wolnych

Lemat 1 (O zależności redukcji od zmiennych wolnych).

Niech \overline{C}_1 będzie dowolnym stosem wywołań, a $h_1, h_1^{base}, h_1^{rest}$ będą stertami, takimi że h_1^{base} jest spójna, $h_1 = h_1^{base} \oplus h_1^{rest}$, a wszystkie lokacje występujące w wyrażeniach na stosie \overline{C}_1 znajdują się na stercie h_1^{base} . Niech teraz $h_{1,n}, \overline{C}_{1,n}$ będą takie, że $(h_1, \overline{C}_1) \to (h_{1,n}, \overline{C}_{1,n})$.

Weźmy teraz dowolną spójną stertę h_2^{base} , stos wywołań \overline{C}_2 oraz izomorfizm f, takie że f jest izomorfizmem między h_1^{base} i h_2^{base} oraz między \overline{C}_1 i \overline{C}_2 , zdefiniowanym tylko na lokacjach znajdujących się w h_1^{base} . Jeśli wszystkie lokacje występujące w wyrażeniach na stosie \overline{C}_2 znajdują się na stercie h_2^{base} , to dla dowolnych stert h_2, h_2^{rest} , takich że $h_2 = h_2^{base} \oplus h_2^{rest}$ istnieją sterty $h_{1,n}^{base}$, $h_{2,n}^{base}$, stos $\overline{C}_{2,n}$ oraz izomorfizm f', takie że

- 1. f' rozszerza f
- 2. f' jest zdefiniowane tylko na lokacjach znajdujących się w $h_{1,n}^{base}$
- 3. f' jest izomorfizmem między $h_{1,n}^{base}$ i $h_{2,n}^{base}$ oraz między $\overline{\mathcal{C}}_{1,n}$ i $\overline{\mathcal{C}}_{2,n}$
- 4. $h_{1,n} = h_{1,n}^{base} \oplus h_1^{rest}$
- 5. $h_{2,n} = h_{2,n}^{base} \oplus h_2^{rest}$
- 6. wszystkie lokacje występujące w wyrażeniach na stosie $\overline{\mathcal{C}}_{1,n}$ znajdują się na stercie $h_{1,n}^{base}$
- 7. wszystkie lokacje występujące w wyrażeniach na stosie $\overline{\mathcal{C}}_{2,n}$ znajdują się na stercie $h_{2,n}^{base}$
- 8. $(h_2, \overline{\mathcal{C}}_2) \to (h_{2,n}, \overline{\mathcal{C}}_{2,n}).$

Dowód. Rozpatrzmy wszystkie możliwe postaci izomorficznych stosów $\overline{C}_1, \overline{C}_2$, takich że istnieje redukcja $(h_1, \overline{C}_1) \to (h_{1,n}, \overline{C}_{1,n})$.

•
$$\overline{\mathcal{C}}_1 = \overline{\mathcal{C}}_1' :: \mathcal{C}_1 \llbracket \mathbf{new} \ \mu \ C(l_1, \dots, l_k) \rrbracket_{\emptyset}, \quad \overline{\mathcal{C}}_2 = \overline{\mathcal{C}}_2' :: \mathcal{C}_2 \llbracket \mathbf{new} \ \mu \ C(l_1', \dots, l_k') \rrbracket_{\emptyset}$$

 $h\{l_0 \mapsto o\}$. Nowa sterta $h_{1,n}$ jest zatem po prostu stertą h_1 z dodatkowym nowym obiektem o pod nową lokacją l_0 . Weźmy zatem $h_{1,n}^{base} = h_1^{base}\{l_0 \mapsto o\}$. Spełnia ona warunki 4 i 6, ponieważ jedyną nową lokacją na stosie jest l_0 , które trafiło właśnie do $h_{1,n}^{base}$.

Weźmy teraz $(l'_0, h') = \operatorname{alloc}(h_2, \overline{\mathcal{C}}'_2, C), \ o' = \operatorname{empty}_C\{x_1 \mapsto l'_1, \dots, x_k \mapsto l'_k\}, \ h_{2,n} = h'\{l'_0 \mapsto o'\}.$ Mamy wtedy $(h_2, \overline{\mathcal{C}}_2) \to (h_{2,n}, \overline{\mathcal{C}}'_2 :: \mathcal{C}_2[\![l'_0]\!]_{\emptyset}))$, a zatem biorąc takie $h_{2,n}$ i $\overline{\mathcal{C}}_{2,n} = \overline{\mathcal{C}}'_2 :: \mathcal{C}_2[\![l'_0]\!]_{\emptyset}$ mamy spełnione też warunki 7 i 8.

Jest to jedyny przypadek, w którym na stercie pojawia się nowa lokacja, a zatem należy zmodyfikować izomorfizm f. Niech więc $h_{2,n}^{base} = h_2^{base}\{l_0' \mapsto o'\}$ i $f' = f\{l_0 \mapsto l_0'\}$. Warunki 1 i 5 są w oczywisty sposób spełnione. Warunek 2 jest spełniony, ponieważ z założenia f było zdefiniowane tylko na lokacjach z h_1^{base} , a l_0 trafiło do $h_{1,n}^{base}$. Wreszcie, warunek 3 jest spełniony, ponieważ z założenia o izomorfizmie $\overline{\mathcal{C}}_1$ i $\overline{\mathcal{C}}_2$, dla $j=1,\ldots,k$ mamy $f'(l_j)=l_j'$, a z definicji f', $f'(l_0)=l_0'$.

• $\overline{C}_1 = \overline{C}'_1 :: C_1[\![\text{let } C \ x = e_1 \ \text{in } e_2]\!]_{\emptyset}, \quad \overline{C}_2 = \overline{C}'_2 :: C_2[\![\text{let } C \ x = e'_1 \ \text{in } e'_2]\!]_{\emptyset}$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}'_1 :: C_1[\![\text{let } C \ x = e_1 \ \text{in } e_2]\!]_{\emptyset}) \to (h_1, \overline{C}'_1 :: C_1[\![\text{let } C \ x = e'_1 \ \text{in } e_2]\!]_{\emptyset})$, a zatem jedyne co się w niej dzieje to dodanie e_2 do kontekstu i zmiana redeksu na e_1 .

Możemy więc wziąć $\overline{\mathcal{C}}_{2,n} = \overline{\mathcal{C}}_2' :: \mathcal{C}_2[\mathbf{let} \ C \ x = \llbracket e_1' \rrbracket_{\emptyset} \ \mathbf{in} \ e_2'])$, a sterty i izomorfizm f pozostawić bez zmian.

• $\overline{C}_1 = \overline{C}'_1 :: C_1[\mathbf{let} \ C \ x = \llbracket l \rrbracket_{\emptyset} \ \mathbf{in} \ e], \quad \overline{C}_2 = \overline{C}'_2 :: C_2[\mathbf{let} \ C \ x = \llbracket l' \rrbracket_{\emptyset} \ \mathbf{in} \ e']$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}'_1 :: C_1[\mathbf{let} \ C \ x = \llbracket l \rrbracket_{\emptyset} \ \mathbf{in} \ e]) \to (h_1, \overline{C}'_1 :: C_1\llbracket e\{l/x\} \rrbracket_{\emptyset}).$ Podobnie jak wyżej, możemy pozostawić sterty oraz izomorfizm bez zmian i przyjąć $\overline{C}_{2,n} = (h_2, \overline{C}'_2 :: C_2\llbracket e'\{l'/x\} \rrbracket_{\emptyset}).$

Wyrażenia $e\{l/x\}$ i $e'\{l'/x\}$ są izomorficzne, ponieważ z założenia f jest izomorfizmem między e i e' oraz f(l) = l'.

• $\overline{C}_1 = \overline{C}'_1 :: C_1 \llbracket \mathbf{if} \ l_0 == l_1 \mathbf{then} \ e_1 \mathbf{else} \ e_2 \rrbracket_{\emptyset}, \quad \overline{C}_2 = \overline{C}'_2 :: C_2 \llbracket \mathbf{if} \ l'_0 == l'_1 \mathbf{then} \ e'_1 \mathbf{else} \ e'_2 \rrbracket_{\emptyset}$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}'_1 :: C_1 \llbracket \mathbf{if} \ l_0 == l_1 \mathbf{then} \ e_1 \mathbf{else} \ e_2 \rrbracket_{\emptyset}) \to (h_1, \overline{C}'_1 :: C_1 \llbracket e_i \rrbracket_{\emptyset}),$ gdzie $i \in \{1, 2\}$ w zależności od tego czy $l_0 = l_1$.

Ponieważ $l'_0 = f(l_0)$ i $l'_1 = f(l_1)$, więc $l'_0 = l'_1$ wtedy i tylko wtedy gdy $l_0 = l_1$. Redukcja \overline{C}_2 zatem wybierze tę samą gałąź, co redukcja \overline{C}_1 . Możemy więc wziąć $\overline{C}_{2,n} = \overline{C}'_2$:: $C_2[\![e'_i]\!]_{\emptyset}$, a sterty i izomorfizm f pozostawić bez zmian.

• $\overline{C}_1 = \overline{C}'_1 :: C_1 \llbracket l.m(\overline{l}) \rrbracket_{\emptyset}, \quad \overline{C}_2 = \overline{C}'_2 :: C_2 \llbracket l'.m(\overline{l}') \rrbracket_{\emptyset}, \quad l \neq \textbf{null}$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}_1 :: C_1 \llbracket l.m(\overline{l}) \rrbracket_{\emptyset}) \to (h_1, \overline{C}_1 :: C_1 \llbracket l.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket e \rrbracket_{\emptyset}),$ gdzie e jest ciałem metody m z wartościami \overline{l} podstawionymi w miejsce argumentów.

Niech teraz e' będzie ciałem metody m z wartościami $\overline{l'}$ podstawionymi w miejsce argumentów. Ponieważ listy argumentów \overline{l} i $\overline{l'}$ są izomorficzne, więc wyrażenia e i e' są izomorficzne.

Możemy więc wziąć $\overline{\mathcal{C}}_{2,n} = \overline{\mathcal{C}}_2 :: \mathcal{C}_2[\![l'.m(\overline{l'})]\!]_{\emptyset} :: [\![e']\!]_{\emptyset}$, a sterty i izomorfizm pozostawić bez zmian.

• $\overline{C}_1 = \overline{C}_1' :: C_1 \llbracket l_1.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket l_2 \rrbracket_{\emptyset}, \quad \overline{C}_2 = \overline{C}_2' :: C_2 \llbracket l_1'.m(\overline{l}') \rrbracket_{\emptyset} :: \llbracket l_2' \rrbracket_{\emptyset}$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}_1' :: C_1 \llbracket l_1.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket l_2 \rrbracket_{\emptyset}) \to (h_1, \overline{C}_1' :: C_1 \llbracket l_2 \rrbracket_{\emptyset})$. Następuje więc jedynie zdjęcie wywołania metody ze stosu wywołań. Możemy zatem wziąć $\overline{C}_{2,n} = \overline{C}_2' :: C_2 \llbracket l_2' \rrbracket_{\emptyset}$, a sterty i izomorfizm pozostawić bez zmian.

- $\overline{C}_1 = \overline{C}'_1 :: C_1[\![l_1.x = l]\!]_{\emptyset}$, $\overline{C}_2 = \overline{C}'_2 :: C_2[\![l'_1.x = l']\!]_{\emptyset}$, $l_1 \neq \mathbf{null}$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}'_1 :: C_1[\![l_1.x = l]\!]_{\emptyset}) \to (h_{1,n}, \overline{C}'_1 :: C_1[\![l]\!]_{\emptyset})$, gdzie $o = h_1(l_1)\{x \mapsto l\}$, $h_{1,n} = h_1\{l_1 \mapsto o\}$
 - Ponieważ izomorfizm jest różnowartościowy i zachowuje **null**, więc również $l'_1 \neq$ **null**. Weźmy zatem $o' = h_2(l'_1)\{x \mapsto l'\}, h_{2,n} = h_2\{l'_1 \mapsto o'\}$ i $h^{base}_{2,n} = h^{base}_2\{l'_1 \mapsto o'\}$.

Możemy teraz wziąć $\overline{\mathcal{C}}_{2,n}=\overline{\mathcal{C}}_2'::\mathcal{C}_2[\![l']\!]_\emptyset$ i pozostawić izomorfizm f bez zmian.

- $\overline{C}_1 = \overline{C}'_1 :: C_1[\![l_1.x]\!]_{\emptyset}$, $\overline{C}_2 = \overline{C}'_2 :: C_2[\![l'_1.x]\!]_{\emptyset}$, $l \neq \mathbf{null}$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}'_1 :: C_1[\![l_1.x]\!]_{\emptyset}) \to (h_1, \overline{C}'_1 :: C[\![l_2]\!]_{\emptyset})$, gdzie $l_2 = h_1(l_1)(x)$. Ponieważ sterty h_1 i h_2 są izomorficzne, więc na stercie h_2 istnieje obiekt pod lokacją l'_1 zawierający pole x i, co więcej, jeśli $l'_2 = h_2(l'_1)(x)$, to $f(l_2) = l'_2$. Zatem możemy wziąć $\overline{C}_{2,n} = \overline{C}'_2 :: C[\![l'_2]\!]_{\emptyset}$, a sterty i izomorfizm pozostawić bez zmian.
- $\overline{\mathcal{C}}_1 = \overline{\mathcal{C}}_1' :: \mathcal{C}_1 \llbracket \mathbf{throw} \ l \rrbracket_{\emptyset}, \quad \overline{\mathcal{C}}_2 = \overline{\mathcal{C}}_2' :: \mathcal{C}_2 \llbracket \mathbf{throw} \ l' \rrbracket_{\emptyset}, \quad l \neq \mathbf{null}$ Redukcja $\overline{\mathcal{C}}_1$ jest postaci $(h_1, \overline{\mathcal{C}}_1' :: \mathcal{C}_1 \llbracket \mathbf{throw} \ l \rrbracket_{\emptyset}) \to (h_1, \overline{\mathcal{C}}_1' :: \mathcal{C}_1 \llbracket l \rrbracket_D)$, gdzie class $(h_1, l) = D$, zatem jedynym efektem jest zmiana trybu wykonania na wyjątkowy z wartością wyjątku l i typem D. Możemy więc po prostu wziąć $\overline{\mathcal{C}}_{2,n} = \overline{\mathcal{C}}_2' :: \mathcal{C}_2 \llbracket l' \rrbracket_D$, a sterty i izomorfizm pozostawić bez zmian.
- $\overline{C}_1 = \overline{C}'_1 :: C_1[[try \{e_1\} catch (\mu C x) \{e_2\}]]_{\emptyset}$, $\overline{C}_2 = \overline{C}'_2 :: C_2[[try \{e'_1\} catch (\mu C x) \{e'_2\}]]_{\emptyset}$ Redukcja \overline{C}_1 jest postaci $(h_1, \overline{C}'_1 :: C_1[[try \{e_1\} catch (\mu C x) \{e_2\}]]_{\emptyset}) \to (h_1, \overline{C}'_1 :: C_1[[try \{[e_1]]_{\emptyset}\} catch (\mu C x) \{e_2\}])$, a zatem przebiega podobnie, jak analogiczna redukcja dla [t] do kontekstu dodawane jest wyrażenie [t] a redeks zostaje zmieniony na [t] Podobnie jak dla [t] możemy wziąć [t] [t] [t] catch [t] [t]
- $\overline{C}_1 = \overline{C}'_1 :: C_1[\mathbf{try} \{ \llbracket l \rrbracket_{\emptyset} \} \mathbf{catch} (\mu \ C \ x) \{ e_2 \}], \quad \overline{C}_2 = \overline{C}'_2 :: C_2[\mathbf{try} \{ \llbracket l' \rrbracket_{\emptyset} \} \mathbf{catch} (\mu \ C \ x) \{ e'_2 \}]$ Przy normalnym wykonaniu wyrażenia wewnątrz blocku \mathbf{try} , jest on po prostu usuwany z kontekstu. Redukcja \overline{C}_1 jest wtedy postaci $(h_1, \overline{C}'_1 :: C_1[\mathbf{try} \{ \llbracket l \rrbracket_{\emptyset} \} \mathbf{catch} (\mu \ C \ x) \{ e_2 \}]) \rightarrow (h_1, \overline{C}'_1 :: C_1 \llbracket l \rrbracket_{\emptyset}).$

Wystarczy zatem wziąć $\overline{\mathcal{C}}_{2,n} = \overline{\mathcal{C}}_2' :: \mathcal{C}_2[\![l']\!]_{\emptyset}$, a sterty i izomorfizm pozostawić bez zmian.

• $\overline{\mathcal{C}}_1 = \overline{\mathcal{C}}_1' :: \mathcal{C}_1[\mathbf{try} \{ \llbracket l \rrbracket_{C'} \} \mathbf{catch} (\mu C x) \{ e_2 \}], \quad \overline{\mathcal{C}}_2 = \overline{\mathcal{C}}_2' :: \mathcal{C}_2[\mathbf{try} \{ \llbracket l' \rrbracket_{C'} \} \mathbf{catch} (\mu C x) \{ e_2' \}],$ gdzie $C' \leq : C$

Redukcja w tym przypadku oznacza złapanie rzuconego wcześniej wyjątku i obsłużenie go przez e_2 . Jest ona postaci $(h_1, \overline{C}'_1 :: C_1[\mathbf{try} \{ [\![l]\!]_{C'} \} \mathbf{catch} (\mu C x) \{ e_2 \}]) \to (h_1, \overline{C}'_1 :: C_1[\![e]\!]_{\emptyset})$, gdzie $e = e_2 \{ l/x \}$.

Niech $e' = e'_2\{l'/x\}$. Wtedy wystarczy wziąć $\overline{\mathcal{C}}_{2,n} = \overline{\mathcal{C}}'_2 :: \mathcal{C}_2[\![e']\!]_{\emptyset}$, a sterty i izomorfizm pozostawić bez zmian.

• $\overline{\mathcal{C}}_1 = \overline{\mathcal{C}}_1' :: \mathcal{C}_1[\mathbf{try} \{ \llbracket l \rrbracket_{C'} \} \mathbf{catch} (\mu C x) \{ e_2 \}], \quad \overline{\mathcal{C}}_2 = \overline{\mathcal{C}}_2' :: \mathcal{C}_2[\mathbf{try} \{ \llbracket l' \rrbracket_{C'} \} \mathbf{catch} (\mu C x) \{ e_2' \}],$ gdzie $C' \neq \emptyset, C' \not \leq: C$

W przypadku niezłapanie wyjątku, kontekst **try** jest usuwany, a wyjątek przekazywany dalej. Redukcja jest postaci $(h_1, \overline{C}'_1 :: C_1[\mathbf{try} { [\![l]\!]_{C'} } \mathbf{catch} (\mu C x) { e_2 } \!]) \to (h_1, \overline{C}'_1 :: C_1[\![l]\!]_{C'})$. Bierzemy zatem $\overline{C}_{2,n} = \overline{C}'_2 :: C_2[\![l']\!]_{C'}$, a sterty i izomorfizm pozostawiamy bez zmian.

- $\overline{C}_1 = \overline{C}'_1 :: C_1[$ let $C \ x = [\![l]\!]_{C'}$ in e], $\overline{C}_2 = \overline{C}'_2 :: C_2[$ let $C \ x = [\![l']\!]_{C'}$ in e'], $C' \neq \emptyset$ Przypadek wyjątku w czasie ewaluacji wyrażenia wewnętrzego let jest analogiczny jak poprzedni. Możemy wziąć $\overline{C}_{2,n} = \overline{C}'_2 :: C_2[\![l']\!]_{C'}$, a sterty i izomorfizm zostawić bez zmian.
- $\overline{C}_1 = \overline{C}_1' :: C_1 \llbracket l_1.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket l_2 \rrbracket_C$, $\overline{C}_2 = \overline{C}_2' :: C_2 \llbracket l_1'.m(\overline{l}') \rrbracket_{\emptyset} :: \llbracket l_2' \rrbracket_C$, $C \neq \emptyset$ Podobnie w przypadku wyjątku podczas wykonywania metody. Wywołanie jest zdejmowane ze stosu, a wyjątek przekazywany wyżej. Redukcja jest postaci $(h_1, \overline{C}_1' :: C_1 \llbracket l_1.m(\overline{l}) \rrbracket_{\emptyset} :: \llbracket l_2 \rrbracket_C) \to (h_1, \overline{C}_1' :: \llbracket l_2 \rrbracket_C)$.

 Bierzemy $\overline{C}_{2,n} = (h_1, \overline{C}_2' :: \llbracket l_2' \rrbracket_C)$, a sterty i izomorfizm pozostawiamy bez zmian.
- Redukcja $\overline{\mathcal{C}}_1$ powoduje odwołanie do lokacji **null**Jest tak, gdy $\overline{\mathcal{C}}_1 = \overline{\mathcal{C}}'_1 :: \mathcal{C}_1[\![e]\!]_\emptyset$, gdzie e jest postaci **null**.x, **null**.x = l, **null**. $m(\overline{l})$ lub

Redukcja $\overline{\mathcal{C}}_1$ jest wtedy postaci $(h_1, \overline{\mathcal{C}}_1' :: \mathcal{C}_1 \llbracket e \rrbracket_{\emptyset}) \to (h_1, \overline{\mathcal{C}}_1' :: \mathcal{C}_1 \llbracket \mathsf{npe} \rrbracket_{\mathsf{NPE}}).$

Wówczas $\overline{\mathcal{C}}_2 = \overline{\mathcal{C}}_2' :: \mathcal{C}_2[\![e']\!]_{\emptyset}$, gdzie e' jest izomorficzne z e, a ponieważ izomorfizm zachowuje **null** więc redukcja e' również powoduje odwołanie do **null**.

Ponieważ izomorfizm zachowuje także npe, możemy wziąć $\overline{\mathcal{C}}_{2,n} = \overline{\mathcal{C}}_2' :: \mathcal{C}_2[\![\mathsf{npe}]\!]_{\mathbb{NPE}}$, a sterty i izomorfizm pozostawić bez zmian.

Poprawność

Formalizacja w systemie Coq

Podsumowanie

Bibliografia

- [1] J. Chrząszcz and A. Schubert. Function definitions for compound values in object- oriented languages. In *Proc. of the 19th International Symposium on Principles and Practice of Declarative Programming*, PPDP '17, pp. 61–72. ACM, 2017.
- [2] J. Chrząszcz and A.Schubert. Formalisation of a frame stack semantics for a Java-like language. 2018