1	We claim:
1	1. A method to form a polymeric material, comprising the steps of:
2	providing a water immiscible solvent;
3	providing a condensation monomer, wherein said condensation monomer is
4	essentially insoluble in said water immiscible solvent, and wherein said condensation
5	monomer is a solid at room temperature;
6	forming a reaction mixture comprising a suspension of said condensation
7	monomer in said water immiscible solvent;
8	heating said reaction mixture;
9	collecting said polymeric material from said reaction mixture.
1	2. The method of claim 1, further comprising the step of adding one or more
2	emulsifiers to said reaction mixture prior to heating said reaction mixture.
1	3. The method of claim 2, further comprising the step of adding one or more
2	antioxidants to said reaction mixture prior to heating said suspension.
1	4. The method of claim 1, further comprising the steps of:
2	reacting a first molecule of said condensation monomer with a second molecule of
3	said condensation monomer to form a plurality of dimer molecules and a plurality of
4	water molecules;
5	removing said plurality of water molecules from said reaction mixture.
1	5. The method of claim 1, wherein:

said providing a water immiscible solvent further comprises providing naphtha

having a boiling point between about 190 °C and about 201 °C at ambient pressure;

PCI 03.01 20

2

3

4	said providing a condensation monomer step further comprises providing an
5	equimolar mixture of adipic acid and m-xylene diamine;
6	said heating step further comprises heating said reaction mixture to an internal
7	temperature of about 174 oC;
8	said method further comprising the steps of:
9	removing water from said reaction mixture;
10	increasing said internal temperature to about 200 oC; and
11	cooling said reaction mixture to room temperature.
1	6. The method of claim 1, wherein:
2	said providing a water immiscible solvent step further comprises providing
3	naphtha having a boiling point between about 190 °C and about 201 °C at ambient
4	pressure;
5	said providing a condensation monomer step further comprises providing a
6	mixture of diammonium aspartate and monosodium/ammonium aspartate;
7	dispersing said monomer mixture in said naphtha to form a reaction mixture
8	comprising a suspension;
9	heating said reaction mixture to about 174 °C;
10	removing water from said reaction mixture; and
11	cooling said reaction mixture to room said polymeric material.
1	7. The method of claim 6, wherein said providing step further comprises
2	providing a monomer mixture comprising about equimolar amounts of diammonium

PCI 03.01 21

aspartate and monosodium/ammonium aspartate.

3

1	8. The method of claim 7, further comprising the step of adding sorbitan
2	monostearate to said reaction mixture prior to heating said reaction mixture.
1	9. A method to form a polymeric material, comprising the steps of:
2	providing a water immiscible solvent;
3	providing a condensation monomer, wherein said condensation monomer is
4	essentially insoluble in said water immiscible solvent, and wherein said condensation
5	· monomer;
6	forming a reaction mixture comprising an emulsion comprising said condensation
7	monomer and said water immiscible solvent;
8	heating said reaction mixture;
9	precipitating said polymeric material from said reaction mixture.
1	10. The method of claim 9, wherein:
2	said providing a condensation monomer step further comprises providing a
3	solution comprising about (M) moles of diammonium aspartate and about (M) moles of
4	sodium/ammonium asparate in about (N) mL of water;
5	said heating step further comprises heating said reaction mixture to an internal
6	temperature of about 100 °C;
7	said method further comprising the steps of:
8	removing said (N) mL of water from said reaction mixture;
9	increasing said internal temperature to about 130 °C;
10	removing about (M) moles of water from said reaction mixture;
11	forming a white colored precipitate;
12	increasing said internal temperature to about 171 °C;

3 4 3 4 1

13	forming a yellow-colored precipitate; and
14	cooling said reaction mixture to room temperature under a nitrogen atmosphere to
15	form an orange-colored polymeric material.
1	11. The method of claim 9, wherein:
2	said providing a condensation monomer step further comprises providing a
3	solution comprising about (M) moles of adipic acid and about (M) moles of m-xylene
4	diamine in about (N) mL of water;
5	said heating step further comprises heating said reaction mixture to an internal
6	temperature of about 100 °C;
7	said method further comprising the steps of:
8	removing said (N) mL of water from said reaction mixture;
9	increasing said internal temperature to about 130 °C;
10	removing about (M) moles of water from said reaction mixture;
11	forming a white colored precipitate;
12	increasing said internal temperature to about 201 °C;
13	cooling said reaction mixture to room temperature under a nitrogen atmosphere;
14	and .
15	collecting said polymeric material.
1	12. A polymeric material, formed by:
2	providing a water immiscible solvent;
3	providing a condensation monomer, wherein said condensation monomer is
4	essentially insoluble in said water immiscible solvent, and wherein said condensation
5	monomer is a solid at room temperature;

6 forming a reaction mixture comprising a suspension of said condensation 7 monomer in said water immiscible solvent; 8 heating said reaction mixture; 9 collecting said polymeric material from said reaction mixture. The polymeric material of claim 12, wherein: 1 13. 2 said providing a water immiscible solvent further comprises providing naphtha having a boiling point between about 190 °C and about 201 °C at ambient pressure; 3 4 said providing a condensation monomer step further comprises providing an 5 equimolar mixture of adipic acid and m-xylene diamine; 6 said heating step further comprises heating said reaction mixture to an internal 7 temperature of about 174 oC; 8 said method further comprising the steps of: 9 removing water from said reaction mixture; 10 increasing said internal temperature to about 200 oC; and cooling said reaction mixture to room temperature. 11 1 14. The polymeric material of claim 12, wherein: 2 said providing a water immiscible solvent step further comprises providing 3 naphtha having a boiling point between about 190 °C and about 201 °C at ambient 4 pressure; 5 said providing a condensation monomer step further comprises providing a 6 mixture of diammonium aspartate and monosodium/ammonium aspartate; 7 dispersing said monomer mixture in said naphtha to form a reaction mixture

ه ^د چه ر

PCI 03.01 24

comprising a suspension;

8

ا وزوه ر

9	heating said reaction mixture to about 174 °C;
10	removing water from said reaction mixture; and
11	cooling said reaction mixture to room said polymeric material.
1	15. The polymeric material of claim 14, wherein said providing step further
2	comprises providing a monomer mixture comprising about equimolar amounts of
3	diammonium aspartate and monosodium/ammonium aspartate.
1	16. The polymeric material of claim 15, further comprising the step of adding
2	sorbitan monostearate to said reaction mixture prior to heating said reaction mixture.
1	17. A polymeric material, formed by:
2	providing a water immiscible solvent;
3	providing a condensation monomer, wherein said condensation monomer is
4	essentially insoluble in said water immiscible solvent, and wherein said condensation
5	monomer;
6	forming a reaction mixture comprising an emulsion comprising said condensation
7	monomer and said water immiscible solvent;
8	heating said reaction mixture;
9	precipitating said polymeric material from said reaction mixture.
1	18. The polymeric material of claim 17, wherein:
2	said providing a condensation monomer step further comprises providing a
3	solution comprising about (M) moles of diammonium aspartate and about (M) moles of
4	sodium/ammonium asparate in about (N) mL of water;
5	said heating step further comprises heating said reaction mixture to an internal
6	temperature of about 100 °C.

وأفعرته وا

7	said method further comprising the steps of:
8	removing said (N) mL of water from said reaction mixture;
9	increasing said internal temperature to about 130 °C;
10	removing about (M) moles of water from said reaction mixture;
11	forming a white colored precipitate;
12	increasing said internal temperature to about 171 °C;
13	forming a yellow-colored precipitate; and
14	cooling said reaction mixture to room temperature under a nitrogen atmosphere to
15	form an orange-colored polymeric material.
1	19. The polymeric material of claim 17, wherein:
2	said providing a condensation monomer step further comprises providing a
3	solution comprising about (M) moles of adipic acid and about (M) moles of m-xylene
4	diamine in about (N) mL of water;
5	said heating step further comprises heating said reaction mixture to an internal
6	temperature of about 100 °C;
7	said method further comprising the steps of:
8	removing said (N) mL of water from said reaction mixture;
9	increasing said internal temperature to about 130 °C;
10	removing about (M) moles of water from said reaction mixture;
11	forming a white colored precipitate;
12	increasing said internal temperature to about 201 °C;
13	cooling said reaction mixture to room temperature under a nitrogen atmosphere;
14	and

15 collecting said polymeric material.