Apoorv Srivastava

Research Interests: Bayesian Estimation, Machine Learning, Uncertainty Quantification

EDUCATION

Stanford University
Ph.D. Candidate in Mechanical Engineering (pursuing a minor in CME)

Sep 2021 - Present
GPA 4.0/4.0

Developing Bayesian estimation algorithms for non-linear systems.

Stanford University

Masters in Mechanical Engineering

Sep 2021 - Jun 2023

GPA 4.0/4.0

Specialization in Automatic Controls and Optimization

Indian Institute of Technology Bombay (IIT Bombay)

Bachelor of Technology (with Honours) in Civil Engineering

GPA 9.51/10

First among 111 students in the Civil Engineering class

Publications

- 1. <u>A Srivastava</u>, W Kang, DM Tartakovskty, "Feature-Informed Data Assimilation", Journal of Computational Physics, 2023. (paper)
- 2. AP Reksowardojo, G Senatore, <u>A Srivastava</u>, C Carroll, IFC Smith, "Design and testing of a low-energy and -carbon prototype structure that adapts to loading through shape morphing", International Journal of Solids and Structures 2022. (paper)
- 3. AP Reksowardojo, G Senatore, <u>A Srivastava</u>, IFC Smith, H Unterreiner, C Carroll, "Design and control of a prototype structure that adapts to loading through large shape changes", IFAC-PapersOnLine, 2020. (paper)

WORK EXPERIENCE

Los Alamos National Lab - Graduate Student Researcher

Jul 2023 - Sep 2023

Email: apoorv1@stanford.edu

 Investigation of parameter estimation challenges in stiff systems where conventional Kalman filter-based methods fall short. The study focused on a stiff cyclic Lotka-Volterra system and addressed the issue through optimization-based approaches.

IMAC, EPFL - Undegraduate Student Researcher [2, 3]

May 2019 - Jul 2019

 Design of control problem for adaptive structures that undergo shape changes in response to loads. Developed an iterative scheme for computing control inputs in real time.

Selected Projects

Diffusion Model for Learned Optimizers

Oct 2023 - Dec 2023

Deep Generative Models | Prof. Stefano Ermon

– Using conditional Denoising Diffusion Probabilistic Models (DDPMs) to study ill-conditioned inverse problems with one-to-many mappings.

Optimal Control for Grid Balancing

Mar 2023 - Jun 2023

Optimal & Learning-based Control | Dr. Daniele Gammelli, Spencer M. Richards

– Model Predictive Control (MPC) for minimizing demand variability and energy cost in a microgrid augmented with energy storage and solar power capturing subsystems.

TECHNICAL SKILLS AND COURSEWORK

Courses

Deep Generative Models, Convex Optimization, Statistical Inference, Machine Learning, Linear Algebra, Optimal & learning-based Control, Robot Autonomy, Fourier Transform, Numerical Methods, Finite Element Method, Control Design Techniques, Statistical Mechanics, Continuum Mechanics, Structural Dynamics, Economics

Programming Python, MATLAB, C++, Julia, HTML, CSS

Git, ROS2, LATEX, PyTorch, Scikit-Learn, Scipy, Numpy, Matplotlib, Frameworks & Tools

FreeFEM++, SLURM

KEY RESEARCH PROJECTS

Feature-Informed Data Assimilation (FIDA)[1]

Apr 2022 - Present

Advisor(s): Prof. Wei Kang, Prof. Daniel M. Tartakovsky

- Investigation of state and parameter estimation problem under set-valued feature observations such as level curves, shock positions, and positions of local optima.

Inference of Neuroactivity using Nutrient Concentration

Jan 2023 - Present

Advisor(s): Dr. Franck Plouraboué, Prof. Daniel M. Tartakovsky

- Identification of parameterized neuroactivity with convection-diffusion-reaction based forward model and nutrient concentration as observations using Ensemble Kalman Filter (EnKF).

System Identification under Binary Observations

Oct 2023 - Present

Advisor(s): Prof. Wei Kang, Prof. Daniel M. Tartakovsky

- Study of system identifiability under binary observations using similarity between trajectories.

Kinetic Defect for Hyperbolic Conservation Laws

Jan 2023 - Present

Advisor(s): Prof. Daniel M. Tartakovsky

- Identification of the unknown Kinetic Entropy Defect measure present in the kinetic formulation of hyperbolic conservation laws using associated shock trajectories.

Additional Projects

– Mechanical Metamaterials and Deployable Structures	Aug 2018 - May 2020
- Structural Optimization using Genetic Algorithm	July 2017 - Aug 2018
– Stress Analysis using Finite Element Method	Jan 2019 - May 2019
- Shape of the Strongest Column	July 2018 - Nov 2018
- Gaussian Processes for data-driven material modeling	Sept 2021 - Dec 2021
– Molecular dynamics-based study of CNT properties	Jan 2021 - Mar 2021
– Jekyll and Liquid-based webpage (Github)	May 2021 - Jul 2021

SCHOLASTIC ACHIEVEMENTS

– Awarded with Institute Silver Medal for academic excellence.	IIT Bombay, 2020
– Received the Undergraduate Research Award.	IIT Bombay, 2020
– Recipient of Swiss National Science Foundation (SNSF) scholarship.	EPFL, 2019
– Awarded with SC Mehrotra prize for highest GPA in the class.	IIT Bombay, 2018
- Recipient of Foundation for Excellence (FFE) Scholarship.	IIT Bombay, 2018

E

Extracurricular Involvements	
– Served as a reviewer for Computational Geosciences journal.	2023
– Mentor for the ME PhD peer mentorship program at Stanford University.	2022-2023
– Mentor for department academic mentorship program at IIT Bombay.	2018-2020
– Served as subsystems head and design engineer for Team Shunya.	2017-2020
– Represented India in Solar Decathlon China 2018 as part of Team Shunya.	2018
- Volunteered for Diabetes awareness camp attended by 500+ people.	2017