

Tutorial IPv6

Gabriella Paolini gabriella.paolini@garr.it

III Inc<mark>ontr</mark>o di GARR-B 24 giugno 2002 - Bologna

Indice

- Perche' IPv6?
- Header Ipv6
- Indirizzi IPv6
- ICMPv6, Neighbor Discovery e autoconfigurazione
- DNS
- Routing
- Modelli di transizione IPv4 -> IPv6

- Uno spazio di indirizzamento piu' grande
 - −Da 32 bits a 128 bits:
 - · Una reale connettivita' globale
 - Non piu' reti o host nascosti
 - Tutti gli host possono essere raggiungibili e quindi essere "server"
 - E' possibile usare sistemi di sicurezza Punto-Punto

Autoconfigurazione

- La possibilita' di usare 64 bits per l'host con la garanzia di unicita'
- "plug and play"
- Possibilita' di gestire in modo piu' semplice il Multihoming
- Facilita' nel Renumbering

- Intestazione del pacchetto IP efficiente ed estensibile:
 - Un numero minore di campi nell'header principale
 - Efficienza di Routing
 - Prestazioni
 - Estendibilita' dell'header
 - Miglior gestione delle opzioni
 - Eliminata la possibilita' di frammentare un pacchetto in transito

- Caratteristiche intrinseche
 - Sicurezza
 - Mobilita'
 - Maggior utilizzo del Multicast
 - Sostituisce il broadcast
 - Uso piu' efficiente della rete

Riferimenti

RFC2460

Internet Protocol, Version 6 (IPv6)
Specification

- Allineato su 32 bits
- 20 bytes senza il campo options

4Bytes	Ver	I. H. L.	Type Of Ser.	total length		h	
4Bytes	Identification			Flag	Fragment offset		
4Bytes	Γ	TL	Protocol	Checksum			
4Bytes	32 bits Source Address						
4Bytes	32 bits Destination Address						
			The second second				
				Padding			

In giallo i campi che non sono più implementati in IPv6

- Version. 4 bits.
 - Specifica il formato dell'Header del pacchetto IP
 - 4 IP, Internet Protocol.
- · IHL, Internet Header Length. 4 bits.
 - Specifica la lunghezza dell'Header del pacchetto IP in gruppi di 32 bits. Il valore minimo e' 5.
- · TOS, Type of Service. 8 bits.
 - Specifica i paramentri del tipo di servizio richiesto.
 Questo parametro puo' essere utilizzato per definire la gestione del pacchetto durante il suo trasporto.
- Total length. 16 bits.
 - Contiene la lunghezza totale del pacchetto.

- Identification. 16 bits.
 - Usato per identificare il frammento di un pacchetto nel caso sia frammentato.
- Flags. 3 bits.
 - Controlla la frammentazione del pacchetto.
- Fragment Offset. 13 bits.
 - Usato per ordinare la ricostruzione di un pacchetto frammentato.

- TTL, Time to Live. 8 bits.
 - Un campo timer usato per tracciare il tempo di vita del pacchetto.
- Protocol. 8 bits.
 - Specifica il successivo protocollo incapsulato di livello piu' alto.
- Header checksum. 16 bits.
 - Checksum dell'header IP incluse le opzioni.

- Source IP address. 32 bits.
 - Indirizzo IP del mittente.
- Destination IP address. 32 bits.
 - Indirizzo IP del destinatario.
- Options. Lunghezza variabile.
- Padding. Lunghezza variabile.
 - Serve per garantire che l'header del pacchetto sia allineata su 32 bits.

- Allineato su 64 bits
- 40 bytes senza le altre header extentions

Ver	Traffic Class		Flow Label		
Payload Length			Next Header	Hop Limit	

128 bits Source Address

128 bits Destination Address

- Version. 4 bits.
 - 6 IPv6.
- Traffic Class. 8 bits.
 - Valore per identificare la priorita' del pacchetto nel traffico Internet. (simile al TOS ipv4)
- Flow Label. 20 bits.
 - Utilizzo ancora non chiaro. Usato per specificare uno speciale trattamento dei ruoter fra la sorgente e la destinazione per il pacchetto.
- Payload Length. 16 bits, unsigned.
 - Specifica la lunghezza dei dati nel pacchetto.

- Next Header. 8 bits.
 - Specifica l'header successiva. Se e' un protocollo di livello piu' alto, i valori sono compatibili con quelli specificati per l'IPv4.
- · Hop Limit. 8 bits, unsigned.
 - Per ogni router che il pacchetto attraversa questo campo e' decrementato di 1. Quando il vale 0 il pacchetto e' scartato. Sostituisce il TTL Ipv4.
- Source address. 16 bytes.
 - L'indirizzo IPv6 del mittente.
- Destination address. 16 bytes.
 - L'indirizzo IPv6 del destinatario.

Extension Headers

- · Un nuovo metodo per implementare le opzioni.
- · Aggiunto dopo l'header di base IPv6

IPv6 Header Next Header> TCP	Next Header TCP Header			
IPv6 Header Next Header> Routing	Routing Header Next Header> TCP	TCP Header	Dati	
IPv6 Header Next Header> Routing	Routing Header Next Header> ESP	ESP Header Next Header> TCP	TCP Header	Dati

 \bullet \bullet

Tipi di Headers

- 00 = Hop-by-Hop Options
- 43 = Routing
- 44 = Fragment
- 51 = Authentication
- 60 = Destination Options
- 50 = Encapsulating Security Payload
- xx = Protocolli di livello piu' alto come per IPv4
- 58 = Internet Control Message Protocol (ICMPv6)
- 59 = nessun next header

Tipi di Headers

- Hop-by-hop options (00)
 - Queste informazioni devono essere esaminate da ogni nodo lungo il percorso del pacchetto.
 - Usato per i Router Alert ed i Jumbogram
- Routing (43)
 - Simile all'opzione IPv4 Loose Source Route
 - Indica una lista di router da attraversare.
 - Usato per il mobileIPv6
- Fragment (44)
 - Usato soltanto dall'host mittente per l'host destinarario.
 (I router non frammentano piu'!)

Tipi di Headers

- Destination options (60)
 - Usato per trasportare informazioni opzionali che saranno valutate soltanto dall'host destinatario.
 - Usato per il MobileIPv6
- Authentication Header (51)
 - Fornisce l'autenticazione; un modo per vericare che l'indirizzo del mittente sia autentico e che il pacchetto non sia stato alterato durante il percorso.
- Encapsulating Security Payload (50)
 - Garantisce che solo il destinatario autorizzato sara' in grado di leggere il pacchetto.

Extension Headers

- L'ordine degli headers nel pacchetto dovrebbe essere il seguente:
 - IPv6 header
 - Hop-by-Hop Options header
 - Destination Options header (quando e' presente il routing header)
 - Routing header
 - Fragment header
 - Authentication header
 - Encapsulating Security Payload header
 - Destination Options header
 - Upper-layer header

Gli Indirizzi IPv6

Indirizzi

- IPv4 = 32 bits
- IPv6 = 128 bits
 - Non 4 volte il numero di indirizzi:
 - 4 volte il numero di bits!
 - − ~3,4 * 10³⁸ possibili nodi indirizzabili
 - 10³⁰ indirizzi per ogni persona del pianeta

Formato dell'Indirizzo

- X:X:X:X:X:X:X
 - Dove x e' un campo di 16 bits in notazione esadecimale
- 2001:0000:1234:0000:0000:00D0:ABCD:0532
- Il valore e' indipendente dalla notazione maiuscola o minuscola delle lettere
- 2001:0000:1234:0000:0000:00D0:abcd:0532
- · Gli zero a sinistra di ogni campo sono opzionali
- 2001:0:1234:0:0:D0:ABCD:532

Formato dell'Indirizzo

- Campi successivi di zero sono rappresentati da :: ma solo una volta in un indirizzo.
- · 2001:0:1234::D0:ABCD:532
- Non e' valida la notazione:

2001::1234::C1C0:ABCD:876

- · Altri esempi:
 - FF02:0:0:0:0:0:1 => FF02::1
 - 0:0:0:0:0:0:0:1 => ::**1**
 - -0:0:0:0:0:0:0:0:0:0:

Indirizzi in una URL

In una URL, devono essere scritti fra parentesi quadre.

http://[2001:1:4F3A::206:AE14]:8888/index.html

- I programmi che usano URL (browser, etc.) sono stati modificati.
 - Scomodo per gli utenti
 - Prevalentemente usato per scopi diagnostici
 - Piu' comodo usare una notazione per nome a dominio.

Tipi di Indirizzi

- Unicast
 - Unspecified
 - Loopback
 - Indirizzi Scoped:
 - · Link-local
 - Site-local
 - Aggregatable Global
- Multicast
 - Broadcast non esiste in IPv6
- Anycast

Unspecified

- Indica l'assenza di indirizzo
- Puo' essere usato nella richiesta iniziale
 DHCP per ottenere un indirizzo
- Duplicate Address Detection (DAD)
- 0:0:0:0:0:0:0:0 o ::
- Come 0.0.0.0 in Ipv4 (::/0 indica la rotta di default)

Loopback

- Identifica se stessi
- Il Localhost
- Come 127.0.0.1 in IPv4
- 0:0:0:0:0:0:0:1 o ::1
- Per controllare se lo stack IPv6 funziona:
 - Ping6 ::1

Subnet Prefix e Host Identifier

L'indirizzo Ipv6 unicast e' diviso in due parti:

- Primi 64 bit identificano il prefisso di rete
- Ultimi 64 bit identificano l'host
- 0:0:0:0 : 0:0:0:0
- L'host puo' essere identificato:
 - Manualmente 0, 1, 2, 3 etc.
 - Usando l'identificativo di interfaccia MAC o EUI
 48. Viene ricalcolato per essere usato come parte host dell'indirizzo Ipv6 - EUI 64.

Link-local

- E' uno Scoped address (novita' di IPv6)
- Scope(Ambito) = local link (i.e. LAN, VLAN)
 - Puo' essere usato solo fra nodi dello stesso link
 - Non puo' essere ruotato
- · Automaticamente configurato su ogni interfaccia
 - Usa l'interface identifier (basato sul MAC address)
- Formato:
 - FE80:0:0:0:<interface identifier>
- Fornisce ad ogni nodo un indirizzo IPv6 per iniziare le comunicazioni.

Site-Local

- E' uno Scoped address
- Scope = site (una rete di link)
 - Puo' essere usato soltanto fra nodi dello stesso site
 - Non puo' essere usato fuori dal site (es. Internet)
 - Molto simile agli indirizzi privati IPv4
- Non configurato di default

Site-Local

- Formato:
 - FEC0:0:0:<subnet id>:<interface id>
 - Subnet id = 16 bits = 64K subnets
- Permette un piano di indirizzamento per un intero sito
- Esempi d'uso:
 - Numerare un site prima di connetterlo ad Internet.
 - Indirizzamento privato (es. stampanti locali)

Aggregatable Global

- Uso generico. Raggiungibili a livello globale.
- Allocati da IANA
 - ai Regional Registries.
 - Dai RR ai Local Internet Registries
 - Chiamati Top-level Aggregator (TLA)
 - Dai LIR ai Provider o ai PoP
 - Chiamati Next-level Aggregator (NLA)
 - Poi ai Site
 - Alla fine alle LAN

Aggregatable Global

• Struttura:

- 128 bits totali
- 48 bits prefisso per il site
- 16 bits per le subnets nel site
- 64 bits per l'host

Aggregatable Global

In teoria divisa come segue (da sinistra a destra):

- 3 bits: 001 (10% dello spazio totale riservato)
- 13 bits per i TLA
- 8 bits reserved
- 24 bits per gli NLA
- · 16 bits per le sottoreti dei site
 - -216 subnets per site = 65536 subnets
- 64 bits per l'interface identifier, gli host.

Total = 128 bits.

Aggregatable Global

In pratica la politica di assegnazione degli indirizzi IPv6 e' ancora in discussione. Al momento e' usata una policy provvisoria:

- /23 Regional Registries
- /35 Local Internet Registries
- /48 Site
 - -216 subnets per site = 65536 subnets
- /64 per le subnet dei Site.

Multicast

- Multicast = uno a tanti
- Non esiste il broadcast in IPv6. Multicast e' usato al suo posto, soprattutto nei link locali
- Scoped addresses:
 - Node, link, site, organisation, global
 - Sostituisce il TTL dell'IPv4
- Formato:
 - − FF<flags><scope>::<multicast group>
 - Flag = 0 permanente / 1 temporaneo

Indirizzi Multicast

• Alcuni indirizzi multicast riservati:

Address	Scope	Use All Nodes	
FF01::1	Interface-local		
FF02::1	Link-local	All Nodes	
FF01::2	Interface -local	All Routers	
FF02::2	Link-local	All Routers	
FF05::2	Site-local	All Routers	
FF02::1:FFXX:XXXX	Link-local	Solicited-Node	

Anycast

- Uno al piu' vicino: serve per le funzioni di discovery
- Gli indirizzi Anycast non sono distinguibili dagli indirizzi unicast
 - Allocati dallo stesso spazio di indirizzamento unicast
 - Ultimi 64 bit formati da serie di 1 e ultimi 7 bit dell'indirizzo (diversi se EUI64 o non EUI 64)
- Alcuni indirizzi anycast sono riservati per usi specifici :
 - Router-subnet
 - MobileIPv6 home-agent discovery

Indirizzi per ogni host

- Ogni host IPv6 dovrebbe riconoscere i seguenti indirizzi come identificanti se stesso:
 - Indirizzo Link-local per ogni interfaccia
 - Indirizzi unicast/anycast assegnati (manualmente o automaticamente)
 - Indirizzo di Loopback
 - Indirizzo del gruppo All-nodes multicast
 - Indirizzi Solicited-node multicast per ogni indirizzo unicast e anycast assegnato
 - Indirizzi Multicast di tutti gli altri gruppi di cui l'host faccia parte

Selezionare un Indirizzo

- Un nodo ha molti indirizzi IPv6
- Quale sara' usato come sorgente e destinazione per ogni flusso?
- La scelta viene fatta principalmente in base a queste regole:
 - Usare il giusto scope in base alla destinazione (global, site, local)
 - Usare l'indirizzo piu' simile alla destinazione (Ipv4, Ipv6)
- L'algoritmo di scelta puo' essere sovrascritto dallo stack oppure dall'applicazione

Architettura degli Indirizzi

Prefix	Hex	Size	Allocation
0000 0000	0000-00FF	1/256	Reserved
0000 0001	0100-01FF	1/256	Unassigned
0000 001	0200-03FF	1/128	NSAP
0000 010	0400-05FF	1/128	Unassigned
0000 011	0600-07FF	1/128	Unassigned
0000.1	0800-0FFF	1/32	Unassigned
0001	1000-1FFF	1/16	Unassigned
001	2000-3FFF	1/8	Aggregatable: IANA to registries

Da calcolare sui primi 16 bit

Architettura degli Indirizzi

Prefix	Hex	Size	Allocation	
010, 011, 100, 101, 110	4000-CFFF	5 * 1/8 = 5/8	Unassigned	
1110	D000-EFFF	1/16	Unassigned	
11110	F000-F7FF	1/32	Unassigned	
1111 10	F800-FBFF	1/64	Unassigned	
1111 110	FC00-FDFF	1/128	Unassigned	
1111 1110 0	FE00-FE7F	1/512	Unassigned	
1111 1110 10	FE80-FEBF	1/1024	Link-local	
1111 1110 11	FEC0-FEFF	1/1024	Site-local	
1111 1111	FF00-FFFF	1/256	Multicast	

Riferimenti

RFC2373

IP Version 6 Addressing Architecture

RFC2374

An IPv6 Aggregatable Global Unicast Address Format

IETF internet-draft

IP Version 6 Addressing Architecture

Default Address Selection for IPv6

ICMP v6 Neighbor Discovery Autoconfigurazione

ICMPv6

- Internet Control Message Protocol
- Stesso comportamento come in IPv4, ma con alcuni miglioramenti
- IPv6 Next Header = 58
- Nell'header
 - ICMPv6 Type (Tipo di messaggio)
 - ICMPv6 Code (Specifica del tipo di messaggio)
 - Checksum dell'header
 - ICMPv6 Data

Messaggi ICMPv6

Molti messaggi sono gli stessi dell'IPv4:

- Type 1: Destination Unreachable
- Type 2: Packet Too Big (MTU)
- Type 3: Time Exceeded
- Type 4: Parameter Problem
- Type 128/129: Echo request/Echo reply

Path MTU Discovery

- I router Ipv6 non frammentano
- La frammentazione, se necessaria, viene fatta alla sorgente
- La sorgente dove fare una Path MTU Discovery per trovare la giusta MTU
- La MTU minima per l'IPv6 e' 1280 bytes

Processo di PMTU Discovery

- L'host sorgente manda un messaggio alla destinazione con la MTU del proprio link
- Se riceve un messaggio ICMP error, allora manda un nuovo messaggio con una MTU minore.
- Ripete l'operazione fin quando non riceve una risposta dal destinaratio.
- L'ultima MTU e' la Path MTU

Neighbor Discovery

- Sostituisce l'ARP IPv4, aggiunge nuove caratteristiche
- Usa i messaggi ICMPv6
- Protocollo usato per l'autoconfigurazione degli host
- Tutti i messaggi ND devono essere originati e terminare all'interno dello stesso link

Neighbor Discovery

Neighbor Solicitation

- Inviato da un nodo a un determinato indirizzo multicast "solicited-node multicast"
- Simile all'ARP request
 - La Query e': Mandami il tuo indirizzo link-layer
 - ICMP type 135

Neighbor Advertisement

- Risponde a un Neighbor Solicitation
- Simile all'ARP response
 - ICMP type 136

Router Advertisement

- I Router mandano annunci periodicamente
 - Il tempo massimo fra un annuncio e un altro e' compreso fra 4 e 1800 secondi
 - L'annuncio ha un tempo di vita (= 0 se non e' il default router - gateway)
- · Gli annunci contengono uno o piu' prefissi
 - I prefissi hanno un tempo di vita
 - Preferred lifetime
 - Valid lifetime
- Specifica se deve essere usata l'autoconfiguration stateful o stateless
- · Gioca un ruolo importante nel renumbering

Router Solicitation

- Quando viene attivato, un host non vuole aspettare il successivo annuncio dal router per ottenere la configurazione
- Host richiede al router di mandare un Router Advertisement immediatamente
- Inviato a tutti i router sul link: gruppo multicast all-routers (FF02::2)
 - ICMP type 133

Redirect

- Simile all'ICMP redirect
- Cambiamento della rotta
- Il Router manda un next-hop migliore per una destinazione

Autoconfiguration

- Stateful configuration
 - Configurazione dell'indirizzo IP manuale
 - Configurazione DHCP
- Stateless Address Autoconfiguration
 - Si puo' utilizzare solo per gli host (non per i router)
 - Non richiede configurazione manuale
 - Specifica il prefisso, la default route e il tempo di vita
 - Ma non specifica un server DNS
 - Presuppone di utilizzare MAC address
 - Presuppone un collegamento che supporti multicast
 - Usa il processo Duplicate Address Detection

Processo di autoconfigurazione

- L'Host e' configurato per l'autoconfiguration
- L'Host viene avviato. Manda una Router Solicitation
- L'Host riceve il Router Advertisement, che gli fornisce il subnet prefix, il lifetimes, e il default router
- L'Host genera il proprio indirizzo IP unendo:
 - Il prefisso di rete ricevuto (64 bits)
 - L'indirizzo dell'interfaccia MAC modificato nel formato EUI-64 (64bits)
- L'Host verifica se puo' utilizzare quell'indirizzo attraverso il processo Duplicate Address Detection

Host Renumbering

- Sul router viene decrementato il lifetime del prefisso nel router advertisement
 - Preferred lifetime = 0. (Diventa un "vecchio" indirizzo e non puo' essere usato per una nuova connessione)
 - Il Valid lifetime decrementa
 - Il router Inizia l'annuncio di un nuovo prefisso
 - L'Host configura il nuovo indirizzo e inizia ad usarlo
- · Le connessioni continueranno senza interruzioni
- Gli Host devono sempre rimanere in ascolto degli annunci dei router, anche dopo l'autoconfiguration.

Duplicate Address Detection

- Simile all'ARP self IPv4
- Usa il gruppo multicast all-nodes (FF02::1)
- Usa il gruppo multicast solicited-node dell'indirizzo che si vuole verificare
 - FF02:0:0:0:0:1:FFxx: <ultimi 24 bits del nuovo indirizzo>
- Manda un Neighbor Solicitation al gruppo solicited-node multicast
- Se non e' ricevuto un Neighbor Advertisement ,
 l'indirizzo e' utilizzabile

Riferimenti

RFC1981

Path MTU Discovery for IP version 6

RFC2461

Neighbor Discovery for IP Version 6 (IPv6)

RFC2462

IPv6 Stateless Address Autoconfiguration

RFC2463

Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6 (IPv6) Specification

RFC2894

Router Renumbering for IPv6

Un nome a un indirizzo IPv6

- AAAA record
 - Definisce la mappatura fra il nome a dominio e l'indirizzo IPv6
 - Equivalente al record A in IPv4
 - Supportato in Bind dalla versione 4.9.5

Un indirzzo IPv6 a un nome

PTR record

- Definisce la mappatura fra un indirizzo Ipv6 e un nome a dominio
- Lo stesso record utilizzato per IPv4
- Un nuovo modello di top level usato per l'IPv6:
 - da ip6.int
 - a ip6.arpa
- Divisione fatta su 4 bits

Configurazione con BIND

AAAA record

- \$ORIGIN 6net.garr.it
- www in aaaa 3ffe:b00:c18:1:290:27ff:fe17:fc1d

PTR record (ip6.arpa)

- \$ORIGIN 1.0.0.0.8.1.c.0.0.0.b.0.e.f.f.3.ip6.arpa
- d.1.c.f.7.1.e.f.f.f.7.2.0.9.2.0 in ptr www.6net.garr.it

Trasporto

- Richieste di risoluzione indirizzi Ipv6 su pacchetti IPv4 e IPv6
 - Bind4-8 risponde a richieste IPv6 fatte soltanto su trasporto IPv4
 - Bind 9 puo' rispondere alle richieste Ipv6 direttamente su trasporto IPv6

Riferimenti

RFC1886

DNS Extensions to support IP version 6

RFC2874

DNS Extensions to Support IPv6 Address Aggregation and Renumbering

IETF internet-draft

NGtrans IPv6 DNS operational requirements and roadmap

Protocolli di Routing

RIPng

- RIP (Routing information protocol) in IPv6
 - Basato su RIP-2: stessa progettazione: distancevector, 15 hops massimi.
 - IPv6 prefix, next-hop IPv6 address
 - Usa multicast (FF02::9 = all-rip-routers come indirizzo di destinazine per gli update RIP)
 - Usa IPv6 per il transporto
 - Molti (se non tutti) i router che implementano IPv6 supportano RIPng.
 - Molti sistemi operativi Unix IPv6-enabled hanno disponibile un demone RIPng.

OSPF

- OSPF (Open Shortest Path First) per IPv6
 - Noto come OSPFv3
 - Necessita' di riscrivere il protocollo per elinimare le dipendenze formali all'IPv4.
 - Sono usati gli indirizzi Link-local
 - Usa il trasporto IPv6
 - La riscrittura del protocollo ha ritardato la sua implementazione, ritardando anche l'introduzione dell'IPv6 in reti di grandi dimensioni.
 - I maggiori produttori di router ancora non supportano OSPFv3.

IS-IS

- IS-IS e' il protocollo IGP OSI. E per sua natura e' un protocollo di routing indipendente dal protocollo di rete.
- Comparato all'OSPF, IS-IS per IPv6 e' piu' semplice da modificare e da implementare
 - 2 nuovi tipi di type-length-values (TLV) sono stati definiti:
 - IPv6 Reachability (128 bits prefix)
 - IPv6 Interface Address (128 bits)
 - Un nuovo protocol identifier per IPv6
- I costruttori di Router che supportavano IS-IS per IPv4 hanno implementato facilmente la versione IPv6

BGP

- BGP4+
 - Include le estensioni multiprotocollo per il BGP, con nuove "address families" (es: IPv6, VPN)
- IPv6 address family:
 - Usa un indirizzo scoped per il NEXT_HOP
 - NEXT_HOP e NLRI sono epressi come indirizzi e prefissi IPv6
- I maggiori costruttori di router supportano BGP4+.

Riferimenti

RIPng for IPv6

RFC2545

Use of BGP-4 Multiprotocol Extensions for IPv6 Inter-Domain Routing

RFC2740

OSPF for IPv6

RFC2858

Multiprotocol Extensions for BGP-4

IETF internet-draft

Routing IPv6 with IS-IS

La transizione IPv4 - IPv6

Ipv6. Quando? Come?

- Quando si passa ad una nuova tecnologia il periodio di transizione e' molto importante.
- Molte nuove tecnologie non vanno avanti perche' non hanno considerato un meccanismo di transizione con il passato.
- IPv6 e' stato disegnato, fin dall'inizio, pensando alla necessita' di avere un periodo di transizione.
- Non ci sara' un "D day"

Strategie

- Per gli host:
 - Dual stack
- Per le reti:
 - Tunnels
 - Da solo IPv4 a solo IPv6

Dual Stack

- · L'host ha sia stack che indirizzi IPv4 e IPv6
- Le applicazioni pronte per IPv6 possono chiedere sia per una destinazione IPv4 che IPv6
- Il DNS risolve indirizzi IPv6, IPv4 o entrambi alle applicazioni
- Le applicazioni IPv6/IPv4 scelgono l'indirizzo con cui comunicare
 - Con un nodo IPv4 usando IPv4
 - Con un nodo IPv6 usando IPv6

Dual Stack

Tunnel IPv6 in IPv4

- · IPv6 incapsulato in IPv4
 - IP protocollo 41
- · Molte topologie possibili:
 - Router verso router
 - Host verso router
 - Host verso host
- L'inizio e la fine del tunnel si occupano di incapsulare. Questo processo e' trasparente per tutti i nodi in mezzo.
- Questo sistema e' usato comunemente come meccanismo di transizione

Collegare isole Ipv6

- Tunnel configurati
- Tunnel automatici
- 6to4
- Tunnel broker

Tunnel configurati

- L'inizio e la fine del tunnel sono esplicitamente configurati e devono essere nodi dual stack
 - L'indirizzo IPv4 e' inizio e fine del tunnel
 - Richiede un indirizzo Ipv4 pubblico
- Il Tunnel prevede la configurazione manuale di:
 - Indirizzo IPv4 sorgente e destinazione
 - Indirizzo IPv6 sorgente e destinazione
- Puo' essere fatto:
 - Fra due host
 - Un host e un router
 - Due router (Unisced due reti IPv6)

6to4

- Interconnette isolati domini IPv6 attraverso una rete IPv4 Creazione automatica del tunnel
 - Non un tunnel esplicito
 - L'indirizzo Ipv4 di destinazione e' incluso nell'indirizzo
 IPv6 di destinazione
 - Usato il prefisso riservato 2002::/16 . (2002::/16 = 6to4)
- Fornisce una /48 ad un site basato su un proprio indirizzoIPv4
 - L'indirizzo esterno IPv4 e' incluso nel prefix:
 2002:<ipv4 ext address>::/48
 - Formato: 2002:<ipv4add>:<subnet>::/64

6to4

Come implementare 6to4?

- · Il Router di bordo:
 - Deve avere implementato 6to4
 - Deve avere un indirizzo Ipv4 raggiungibile dall'esterno
 - Spesso viene usata l'indirizzo dell'interfaccia di loopback
 - Deve essere un nodo dual-stack

• Gli host:

- Non e' neccessario niente per implementare 6to4. 2002
 e' un normale prefisso che puo' essere autoconfigurato con un router advertisements
- Non necessitano essere dual-stack

I problemi di 6to4

- Legati all'indirizzo esterno IPv4:
 - Se il router di bordo cambia il proprio indirizzo IPv4, allora dovra' essere rinumerata l'intera rete interna IPv6
 - Solo un punto d'entrata (non di semplice implementazione avere multipli punti d'ingresso per una stessa rete per ridondanza)

Tunnel Broker

- · Confiurazione dei tunnel semi-automatica
- · Broker di prima generazione
 - Un server web riceve le richieste dal client
 - Genera il tunnel e invia indietro le informazioni al client
 - Configura il server o il router
 - In concreto, questo rende automatica la configurazione manuale di un tunnel (Con una esplicita sorgente e destinazione IPv4 e sorgente e destinazione IPv6)

Comunicare fra nodi IPv6 e IPv4

- Come possono comunicare host IPv6 con host soltanto IPv4?
 - Vecchie stampanti, vecchi apparati di rete...
- Molti modi per farlo ma il piu' semplice e' usare il dual stack

Comunicare fra nodi IPv6 e IPv4

- Host Dual stack
 - Quando un host inizia una comunicazione, il DNS fornisce l'inidizzo Ipv6, Ipv4 o entrambi.
 - L'host iniziera' la comunicazione usando l'appropriato stack IP.
 - Lo stesso scenario per un server: ascolta sia su un socket IPv4 che su un socket IPv6
- Ma ogni host deve avere anche un indirizzo IPv4!

Translation

- Il Dual stack connette nodi IPv4/IPv6 a nodi soltanto Ipv4 o a nodi soltanto IPv6
- Il tunnel connette isole IPv6 attraverso una rete IPv4
- La Translation e' usata per connette ambiti soltanto Ipv4 con ambiti soltanto IPv6
- · A che livello fare translation:
 - A livello IP
 - A livello di Trasporto
 - A livello di Applicazione

Riferimenti

RFC2529

Transmission of IPv6 over IPv4 Domains without Explicit Tunnels

RFC2766

Network Address Translation - Protocol Translation (NAT-PT)

RFC2767

Dual Stack Hosts using the "Bump-In-the-Stack" Technique (BIS)

RFC2893

Transition Mechanisms for IPv6 Hosts and Routers

Riferimenti

RFC3053

Ipv6 Tunnel Broker

RFC3056

Connection of IPv6 Domains via IPv4 Clouds

RFC3068

An Anycast Prefix for 6to4 Relay Routers

RFC3142

An IPv6-to-IPv4 Transport Relay Translator