МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ИДЗ № 3 по дисциплине «Математическая статистика»

Студентка гр. 5381	 Кочнева О.Р		
Преподаватель	Чирина А.В		

Санкт-Петербург 2017

Постановка задачи:

Bap. 8 (538117)

Результаты статистического эксперимента приведенны в таблице 1. Требуется оценить характер (случайной) зависимости переменной Y от переменной X.

- 1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β_0 и масштаба β_1 . Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.
- 2. Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ^2 . Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.
- 3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси).
- 4. Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.
- Сформулировать модель, включающую дополнительный член с X². Построить МНК оценки параметров β₁, β₂, β₃ в данной модели. Изобразить графически полученную регрессионную зависимость.
- 6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок как в п.3.
- 7. В предположении нормальности ошибок построить доверительные интервалы для параметров $\beta_1, \beta_2, \beta_3$ уровня 1α . Написать уравнение доверительного эллипсоида уровня доверия 1α .
- 8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X и проверить ее значимость на уровне α .
- 9. Интерпретировать полученные результаты. Написать отчет.

	Ta	блица	1 6	$\alpha_1 = 0.0$	01; h =	1.00.												
	No	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
ĺ	Y	7.97	5.76	11.51	6.81	7.14	7.31	7.59	8.29	6.91	7.02	7.41	7.24	7.44	6.20	8.61	8.93	8.00
	X	3	4	0	4	0	4	4	0	0	0	0	0	4	4	0	1	1
	No	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34
	Y	5.86	7.48	7.56	6.64	7.78	8.18	7.91	7.68	7.41	7.57	7.15	9.61	10.73	8.12	8.97	6.83	7.04
	X	4	2	1	2	2	3	1	0	4	2	4	1	1	2	0	0	4
	No	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50	
ĺ	Y	7.57	7.79	6.66	8.76	9.83	6.96	8.16	8.36	6.70	6.47	8.07	7.84	10.04	7.69	9.78	9.29	
- [X	1	3	0	0	2	2	1	3	4	2	0	3	0	1	2	3	

Ход работы.

1. Построить графически результаты эксперимента. Сформулировать линейную регрессионную модель переменной Y по переменной X. Построить МНК оценки параметров сдвига β₀ и масштаба β₁. Построить полученную линию регрессии. Оценить визуально соответствие полученных данных и построенной оценки.

Графический результат эксперимента:

Результат эксперимента

МНК

 β_0 =8.3425871 β_1 =-0.2752736

Функция линейной регрессии имеет вид: y=8.3425871-0.2752736 *x+E

Линия регрессии.

2. Построить и интерпретировать несмещенную оценку дисперсии. На базе ошибок построить гистограмму с шагом h. Проверить гипотезу нормальности ошибок на уровне α по χ2. Оценить расстояние полученной оценки до класса нормальных распределений по Колмогорову. Визуально оценить данный факт.

Ошибки $Y - X^T \beta$:

Несмещенная оценка дисперсии:

$$\hat{\sigma}^2 = \frac{\|Y - X^T \hat{\beta}\|^2}{n - 2} = \frac{\sum (Y_i - \widehat{\beta_0} - \widehat{\beta_1} X_i)^2}{n - 2} = 1.252863$$

Гистограмма с шагом h на базе ошибок:

Histogram of res

Проверка гипотезы нормальности ошибок на уровне α_1 =0.10 по X^2 Основная гипотеза: $H_0: Y - X^T \tilde{\beta} \sim N(0, \sigma^2)$;

$$H_0: Y - X^T \tilde{\beta} \sim N(0, \sigma^2)$$

Статистика критерия:
$$X^2 = \sum_{i=1}^r \frac{(v_i - np_i)^2}{np_i} \Rightarrow \chi_{r-2}^2$$

$$P_{\theta_0}(X^2 < x_\alpha) = 1 - \alpha_1$$

	n_k	p_k	np_k	$n_k - np_k$	$(n_k - np_k)^2$		
					np_k		
[-1.68; -1,03]	10	8.936620	446.8310	-436.8310	0.12653300		
[-1,03; -0.31]	10	10.608739	530.4370	-520.4370	0.03493001		
[-0,31; 0,09]	10	7.056790	352.8395	-342.8395	1.22753885		
[0,09; 0,63]	10	9.059337	452.9669	-442.9669	0.09767236		
[0,63; 3.17]	10	14.338514	716.9257	-706.9257	1.31273731		
$x_{\alpha} = 13.276$	1	$\sum p_k = 50$		$X^2 = \sum \frac{(n_k - np_k)^2}{np_k} =$	2.799412		

$$\boxed{\text{при } r = 5}$$
 $X^2 = 2.799412$

$$P_{\theta_0}(X^2 < x_\alpha) = 1 - \alpha_1$$

$$x_{\alpha} = K_{r-2}^{-1}(1 - \alpha_1) = 13.2761$$

Критерий:

$$\Phi(\vec{x}) = \begin{cases} 0, X^2 < x_{\alpha} \\ 1, X^2 > x_{\alpha} \end{cases}$$

 $X^2\!< x_\alpha\;$ ---2.799412 < 13.2761 - принимаем гипотезу $H_{0.}$

Оценка расстояния полученной оценки до класса нормальных распределений по Колмогорову.

Статистика критерия:

$$\overline{D_n}=\sqrt{n}\max_x |F_n(x)-F_0(x)| \to K(x),$$
 где $F_n(x)=\frac{1}{n}\sum_{i=1}^n \mathrm{II}(x_i)$ - выборочная функция распределения

$$P_{\theta_0} \left(\overline{D_n} < x_{\alpha} \right) = 1 - \alpha_1$$
$$x_{\alpha} = K^{-1} (1 - \alpha_1)$$

Критерий:
$$\Phi(\vec{x}) = \begin{cases} 0, \overline{D_n} < x_{\alpha} \\ 1, \overline{D_n} > x_{\alpha} \end{cases}$$

$$\overline{D_n} < x_{\alpha}$$

0.868099<13.2761

=>гипотезу принимаем

Статистика Колмогорова D_n имеет одно и тоже расстояние (зависящее только от n)

$$F_n \equiv F_0$$

3. В предположении нормальности ошибок построить доверительные интервалы для параметров β_0 и β_1 уровня доверия $1-\alpha$. Построить доверительный эллипс: уровня доверия $1-\alpha$ для (β_0,β_1) (вычислить его полуоси)

 β_{0} - β_{0} и $\beta_{1}\beta_{1}$ уровня доверия 1 - α_{1} .

$$\widehat{\beta_0} \sim N(\beta_0, var(\widehat{\beta_0}))$$

$$\begin{split} b_0 &= var\big(\overline{\beta_0}\big) = (XX^T)_{11}^{-1} \\ P\bigg(-x_\alpha \leq \frac{\overline{\beta_0} - \beta_0}{\widehat{\sigma}\sqrt{b_0}} \leq x_\alpha\bigg) = S_{n-2}(x_\alpha) - S_{n-2}(-x_\alpha) = 1 - \alpha_1 \end{split}$$

$$x_{\alpha} = S_{n-2}^{-1} \left(1 - \pm 1.677224\right)$$

$$-x_{\alpha} \leq \frac{\overline{\beta_0} - \beta_0}{\widehat{\sigma} \sqrt{b_0}} \leq x_{\alpha} \iff -x_{\alpha} \widehat{\sigma} \sqrt{b_0} \leq \widehat{\beta_0} - \beta_0 \leq x_{\alpha} \widehat{\sigma} \sqrt{b_0} \iff \widehat{\beta_0} - x_{\alpha} \widehat{\sigma} \sqrt{b_0} \leq \beta_0 \leq \widehat{\beta_0} + x_{\alpha} \widehat{\sigma} \sqrt{b_0}$$

ДИ [7.690489 : 8.994685]

$$\widehat{\beta_1} \sim N(\beta_1, var(\widehat{\beta_1}))$$

$$b_1 = var(\widehat{\beta_1}) = (XX^T)_{22}^{-1} \qquad \qquad \widehat{\beta_1}, \widehat{\sigma}^2 - \text{ независимы } \rightarrow \frac{\widehat{\beta_1} - \beta_1}{\widehat{\sigma}\sqrt{b_1}} = S_{n-2}$$

$$\widehat{\beta_1} - x_\alpha \widehat{\sigma} \sqrt{b_1} \leq \beta_1 \leq \widehat{\beta_1} + x_\alpha \ \widehat{\sigma} \sqrt{b_1}$$

ДИ: [-0.5533292 : 0.002781974]

4. Сформулировать гипотезу независимости переменной Y от переменной X. Провести проверку значимости.

$$H_0: \beta_1 = 0$$

Статистика критерия:

$$\mathcal{F} = \frac{\widehat{\beta_1}^2}{2b_1\widehat{\sigma}^2} = F_{2,n-2}$$

$$x_{\alpha} = F_{2,n-2}^{-1}(1-\alpha_1) = 5.076664$$

Критерий:

$$\Phi(\vec{x}) = \begin{cases} 0, \mathcal{F} < x_{\alpha} \\ 1, \mathcal{F} > x_{\alpha} \end{cases}$$

$$\mathcal{F} = 3.52549 < x_{\alpha} = 5.076664$$

Следовательно, гипотезу принимаем.

5. Сформулировать модель, включающую дополнительный член с X^2 . Построить МНК оценки параметров β_1 β_2 β_3 в данной модели. Изобразить графически полученную регрессионную зависимость. График модели:

$$E(Y|X) = \beta_1 + \beta_2 X + \beta_3 X^2$$

$$\beta=(\beta_1,\beta_2,\beta_3)$$

Оценка по МНК параметров β :

$$\hat{\beta} = (XX^T)^{-1}XY$$

$$\widehat{\beta_1} = 8.0835365$$

$$\widehat{\beta_2} = 0.4091548$$

$$\widehat{\beta_3} = -0.1744058$$

6. Построить несмещенную оценку дисперсии. Провести исследование нормальности ошибок, как в п.3.

Несмещенная оценка дисперсии:

$$\hat{\sigma}^2 = \frac{\|Y - X^T \hat{\beta}\|^2}{n - 3} = \frac{\sum (Y_i - \widehat{\beta}_1 - \widehat{\beta}_2 X_i - \widehat{\beta}_3 X_i^2)^2}{n - 3} = 1.184312$$

Ошибки $Y - X^T \hat{\beta}$:

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,1] -1.734223 -1.564223 -1.423537 -1.253537 -1.244223 -1.173537 -1.169662 -1.069662 -1.063537 [,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,18] [,26] [,27] [,28] [,29] [,30] [,31] [,32] [,33] [,31] [,32] [,33] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39] [,40] [,41] [,42] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50] [,41] [,50] [,1] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50] [,50] [,1] [,50] [,1] [,50] [,1] [,50] [,1] [,50]

Гистограмма с шагом h на базе ошибок:

Histogram of res

Основная гипотеза:

$$H_0: Y - X^T \tilde{\beta} {\sim} N(0,\sigma^2) \; ;$$

Статистика критерия: $X^2 = \sum_{i=1}^r \frac{(v_i - np_i)^2}{np_i} \Rightarrow \chi^2_{r-2}$

$$P_{\theta_0}(X^2 < x_\alpha) = 1 - \alpha_1$$

	n_k	p_k	np_k	$n_k - np_k$	$(n_k - np_k)^2$	
					np_k	
[-1.68; -1,03]	10	8.597797	429.8899	-419.8899	0.22868324	
[-1,03; -0.31]	10	10.796023	539.8012	-529.8012	0.05369318	
[-0,31; 0,09]	10	7.253942	362.6971	-352.6971	1.03954968	
[0,09; 0,63]	10	9.285910	464.2955	-454.2955	0.05491384	
[0,63; 3.17]	10	14.066328	703.3164	-693.3164	1.17550365	
$x_{\alpha}=13.276$	7	$\sum p_k = 50$		$X^2 = \sum \frac{(n_k - np_k)^2}{np_k} =$	2.557344	

$$при r = 5$$
 $X^2 = 2.557344$

$$P_{\theta_0}(X^2 < x_\alpha) = 1 - \alpha_1$$

$$x_{\alpha} = K_{r-2}^{-1}(1 - \alpha_1) = \underline{13.2767}$$

Критерий:

$$\Phi(\vec{x}) = \begin{cases} 0, X^2 < x_{\alpha} \\ 1, X^2 > x_{\alpha} \end{cases}$$

 $X^2\!< x_\alpha\;$ ---2.557344 < 13.2767 - принимаем гипотезу $H_{0.}$

Оценка расстояния полученной оценки до класса нормальных распределений по Колмогорову.

$$H_0: Y - X^T \hat{\beta} \sim N(0, \hat{\sigma}^2)$$

Статистика критерия:

$$\overline{D_n} = \sqrt{n} \max_{x} |F_n(x) - F_0(x)| \to K(x)$$

$$P_{\theta_0}(\overline{D_n} < x_{\alpha}) = 1 - \alpha_1$$

$$x_{\alpha} = K^{-1}(1 - \alpha_1) = \underline{13.2767}$$

Критерий:

$$\Phi(\vec{x}) = \begin{cases} 0, \overline{D_n} < x_{\alpha} \\ 1, \overline{D_n} > x_{\alpha} \end{cases}$$

$$\overline{D_n} = 0.7573278 < x_\alpha = 13.2767$$

Следовательно, гипотезу принимаем.

ecdf(x)

7. В предположении нормальности ошибок построить доверительные интервалы для параметров β_1 β_2 β_3 уровня доверия $1-\alpha$. Написать уравнение доверительного эллипсоида уровня доверия $1-\alpha$.

$$\widehat{\beta}_{l} \sim N(\beta_{l}, var(\widehat{\beta}_{l}))$$

$$b_i = var(\widehat{\beta}_i) = (XX^T)_{iii}^{-1}$$

$$\widehat{eta}_{\iota}$$
 , $\widehat{\sigma}^2$ — независимы $ightarrow rac{\widehat{eta}_{\iota} - eta_{i}}{\widehat{\sigma}\sqrt{b_{i}}} = S_{n-3}$

$$P\left(-x_{\alpha} \le \frac{\widehat{\beta}_{l} - \beta_{l}}{\widehat{\sigma}\sqrt{b_{l}}} \le x_{\alpha}\right) = S_{n-3}(x_{\alpha}) - S_{n-3}(-x_{\alpha}) = 1 - \alpha_{1}$$

$$x_{\alpha} = S_{n-3}^{-1} \left(1 - \frac{\alpha_1}{2} \right) = 1.677927$$

$$-x_{\alpha} \leq \frac{\widehat{\beta}_{i} - \beta_{i}}{\widehat{\sigma}\sqrt{b_{i}}} \leq x_{\alpha} \iff -x_{\alpha}\widehat{\sigma}\sqrt{b_{i}} \leq \widehat{\beta}_{i} - \beta_{i} \leq x_{\alpha}\widehat{\sigma}\sqrt{b_{i}} \iff \widehat{\beta}_{i} - x_{\alpha}\widehat{\sigma}\sqrt{b_{i}} \leq \beta_{i}$$

$$\leq \widehat{\beta}_i + x_\alpha \, \widehat{\sigma} \sqrt{b_i}$$

ДИ для β_1 :[7.355066; 8.812007]

ДИ для β_2 : [-0.574061; 1.392371]

ДИ для β_3 : [-0.4152745; 0.06646287]

Уравнение доверительного эллипсоида:

$$C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$B = C^{T}(XX^{T})^{-1}C$$

$$\frac{(\hat{\beta} - \beta)^{T}B^{-1}(\hat{\beta} - \beta)}{3s^{2}} \stackrel{\text{def}}{=} F_{3,n-3} \begin{cases} \frac{(\hat{\beta} - \beta)^{T}B^{-1}(\hat{\beta} - \beta)}{\sigma^{2}} \stackrel{\text{def}}{=} \chi_{3}^{2} \\ \frac{(n-2)s^{2}}{\sigma^{2}} \stackrel{\text{def}}{=} \chi_{n-3}^{2} \end{cases}$$

$$x_{\alpha} = F_{3,n-3}^{-1}(1 - \alpha)$$

$$P\left(\frac{(\hat{\beta} - \beta)^{T}B^{-1}(\hat{\beta} - \beta)}{3s^{2}} < x_{\alpha}\right) = 1 - \alpha$$

$$= > P\left((\hat{\beta} - \beta)^{T}B^{-1}(\hat{\beta} - \beta) < 3s^{2}x_{\alpha}\right)$$

 $(\hat{\beta} - \beta)^T B^{-1} (\hat{\beta} - \beta) < 3s^2 x_{\alpha}$ -уравнение доверительного эллипсоида

8. Сформулировать гипотезу линейной регрессионной зависимости переменной Y от переменной X. Провести проверку значимости на уровне α.

$$H_0: \beta_3 = 0$$

Статистика критерия:

$$\mathcal{F} = \frac{\widehat{\beta_3}^2}{3b_3\widehat{\sigma}^2} = F_{3,n-3}$$

$$x_{\alpha} = 3(1 - \alpha_1) = 1.259461$$

Критерий:

$$\Phi(\vec{x}) = \begin{cases} 0, \mathcal{F} < x_{\alpha} \\ 1, \mathcal{F} > x_{\alpha} \end{cases}$$

$$\mathcal{F} = 1.259461 < x_{\alpha} = 4.227901$$

Следовательно, гипотезу принимаем.