

proof of Polish spaces up to Borel isomorphism

 ${\bf Canonical\ name} \quad {\bf ProofOfPolishSpacesUpToBorelIsomorphism}$

Date of creation 2013-03-22 18:47:18 Last modified on 2013-03-22 18:47:18

Owner gel (22282) Last modified by gel (22282)

Numerical id 6

Author gel (22282) Entry type Proof Classification msc 54E50 We show that every uncountable Polish space X is Borel isomorphic to the real numbers. First, there exists a continuous one-to-one and injective function f from Baire space $\mathcal N$ to X such that $X\setminus f(\mathcal N)$ is countable, and such that the inverse from $f(\mathcal N)$ to $\mathcal N$ is Borel measurable (see http://planetmath.org/InjectiveImagesOfBaireSpacehere). Letting S be any countably infinite subset of X, the same result can be applied to $X\setminus S$, which is also a Polish space. So, there is a continuous and one-to-one function $f\colon \mathcal N\to X\setminus S$ such that $S'\equiv X\setminus f(\mathcal N)$ is countable and such that the inverse defined on $X\setminus S'$ is Borel. Then, S' contains S and is countably infinite. Hence, there is a invertible function g from $\mathbb N=\{1,2,\ldots\}$ to S'. Under the discrete topology on $\mathbb N$ this is necessarily a continuous function with Borel measurable inverse. By combining the functions f and g, this gives a continuous, one-to-one and onto function from the http://planetmath.org/TopologicalSumdisjoint union

$$u \colon \mathcal{N} \coprod \mathbb{N} \to X$$

with Borel measurable inverse. Similarly, the set of real numbers \mathbb{R} with the standard topology is an uncountable Polish space and, therefore, there is a continuous function v from $\mathcal{N} \coprod \mathbb{N}$ to \mathbb{R} with Borel inverse. So, $v \circ u^{-1}$ gives the desired Borel isomorphism from X to \mathbb{R} .