Masters Project

Emily Palmer

Group Meeting, Oregon State University

May 12, 2021

Motivation

PLOS COMPUTATIONAL BIOLOGY

Generalized estimating equation modeling on correlated microbiome sequencing data with longitudinal measures

Bo Chen, Wei Xu

Version 2 Published: September 8, 2020 • https://doi.org/10.1371/journal.pcbi.1008108

Overview of Model

- Correlation structure from taxonomic information
- Correlation structure from longitudinal data or repeated measures
- Two part model, using generalized estimating equations for parameter estimation
 - Presence/Absence
 - Relative Abundance of positive counts
- Results from paper show this method to have accurate Type I error, unbiased estimation of model parameters, and more powerful than some existing methods.

Application in paper

- ► Twin obesity data Turnbaugh et. al. (2009)
- ▶ 54 families (clusters), 2 twins each, 2 time points
- Observations for 9 OTUs (only order Clostridiales)
- Obesity indication for each twin
- Some clusters are incomplete

Correlation matrix of taxonomic structure

Assume that OTUs that belong to the same taxa at a higher level have some correlation

Taxonomic structure

Gamma matrix

$$\mathbf{L} = \begin{pmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} \\ \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I} & \mathbf{I}$$

Combining with Longitudinal/Repeated Measure data

Correlation matrix for repeated measures - structure flexible

$$oldsymbol{\Omega} = \left(egin{array}{cccccc} \mathbb{D} & 8 & 88 & 88$$

- Integrative correlation matrix This will be a block matrix indicating the distinct correlations of all combinations of time points and OTUs
- ▶ If N is the number of OTUs, and M the number of repeated measures, this integrative correlation matrix will have dimension $(N \times M) \times (N \times M)$
- ► This grows very quickly

Working correlation matrix in R

- ► The package geepack estimates the regression and covariance parameters
- ▶ Requires a specified working correlation matrix that is $\binom{N \times M}{2}$ × number correlation parameters for one cluster
- For *n* clusters, this will have dimension $\left(n \times \binom{N \times M}{2}\right) \times$ number correlation parameters
- Correlations are linear combinations of the columns of the covariates based on the upper triangular part of the integrative correlation matrix.

Adjusting for Incomplete Clusters

- If we have the same number of observations per cluster, the working correlation matrix will be the same for each cluster
- Often, there will be some missing data for a cluster, missing time points, etc.
- ► The corresponding row and column of the integrative correlation matrix needs to be removed. This adjustment needs to be made for each cluster
- Corresponding rows of the working correlation matrix will need to be removed to run the code.

Scaling the model

Scaling the model

- ▶ Paper focused on data with only 9 OTUs
- How does this scale to a dataset with more common numbers of OTUs (> 1000?)
- ► Focus currently only on taxonomic correlation aspect

Scaling the model

As-is, this method does not scale well to larger datasets

American Gut data

- Focus at genus level at one body sample site
- 14300 taxa and
- ▶ 260 correlation parameters to estimate
- ► Integrative correlation matrix will have dimension 14300 × 14300
- Working correlation matrix will have dimension $\binom{14300}{2} \times 240$ for one cluster
- ► Matrix is too large for R

Filter more?

- Filter taxa based on threshold of genus sparsity
- ▶ Reduces to 1200 taxa and
- ▶ 72 correlation parameters to estimate.
- ▶ Integrative correlation matrix will have dimension 1200×1200
- ▶ Working correlation matrix will have dimension $\binom{1200}{2} \times 240$ for one cluster
- ▶ $\left(3000 \times \binom{1200}{2}\right) \times 240$ for all clusters
- ► Matrix is again too large for R

Discussion

- Better ways to scale this model?
- ► Another implementation of fitting GEEs in R?
- Focus on groups of OTUs individually?
- Would aggregating to a higher taxa level help?
- American Gut covariates to use?