英维克 **内部公开**▲

	文档编号	密级			
Envicool	05130010	A/1			
项目名称	U3-EC 空调 MODBUS 协议				

U3-EC空调MODBUS协议

拟	制:	<u>钟徳靖</u>	. 目	期:	2015-7-1
审	核:		. 目	期:	
规范化证	审查:	_	日	期:	
批	准:		Ħ.	期:	

深圳市英维克科技股份有限公司

版本更改信息:

版本号	更改时间	更改内容	更改人
A/0	2015.7.1	新归档;	钟徳靖
		对应软件编码 05120207、05120246、05120213	
A/1	2017.9.14	CRC 校验函数错误	卢隆森
		<u> </u>	

目 录

1	说明		3 -
2	专用术	语	3 -
3	物理接	П	3 -
	3. 1	串行通信口电气标准	3 -
	3. 2	信息传输方式	3 -
	3.3	数据传输速率	4 -
4	物理层流	通信方式	4 -
	4. 1	基本过程	4 -
5	应用层1	命令类型及格式	4 -
	5. 1	信息帧格式	5 -
	5. 2	功能码	- 5 -
	5. 3	读命令格式	
	5. 4	写单个寄存器命令格式	
	5. 5	写多个寄存器命令格式	
	5.6	错误码定义	
6	CRC 校验	俭算法	8 -
	6. 1	CRC 算法	8 -
7	寄存器	列表	9 -

空调与上位机 Modbus 通信协议

1 说明

本协议描述了空调与其专用上位机监控模块进行命令控制和数据交换的协议。 《协议》中规定的功能主要有:

- 1) 上位机通过发读取命令获取空调的相关信息;
- 2) 上位机通过发写命令设置相关参数和动作控制;

通讯过程以上位机为主节点,通过一问一答的方式进行信息交互;从节点中的各种信息和参数均以目标寄存器作为存储地址,主节点通过访问寄存器的方式完成读写命令。本协议支持一个主节点、多个从节点组网,从节点以地址来区分,地址设置范围为1-128,不同的从节点对应不同的地址,不能有相同地址的从节点挂在同一条通讯总线上。

2 专用术语

主节点:后台监控系统。

从节点:空调设备控制器。

RS485: 一种串行通讯标准,可支持半双工串行近程通讯;

读命令:由主节点发向从节点,使从节点返回对应的寄存器的内容:

写命令:由主节点打包相关参数,发向从节点,完成对应参数的设置;

寄存器地址: 从节点的每个信号和参数均对应一个 2 字节的地址, 主节点获取相关信息 或设置相关参数均是以访问这些寄存器的方式来完成的, 这个地址就称为寄存器。

3 物理接口

3.1 串行通信口电气标准

从节点以 RS485 方式通过串口与主节点通讯。

3.2 信息传输方式

通讯传输采用异步方式,并以字节帧(数据帧)为单位。在主节点和从节点之间传递的每

一个数据帧都是11位的串行数据流。

数据帧格式:

起始位	1位
数据位	8位(低位在前、高位在后)
奇偶校验位	无:本协议不采用奇偶校验位;
停止位	1位 (即实际的奇偶校验位强制为高电平)

参考:

有校验位的时序图:

无校验位的时序图:

3.3 数

据传输速率

缺省波特率使用9600bps

4 物理层通信方式

4.1 基本过程

从节点上电或复位,稳定运行后,即可响应主节点的读写命令;当从接点接收到相关命令后,正常情况下返回主节点所需的信息,异常情况返回具体错误类型对应的错误码。

5 应用层命令类型及格式

当通讯命令发送至仪器时,符合相应的地址码的设备接收通讯命令,读取信息,如果没

有出错,则执行相应的任务;然后把执行结果返送给发送者。返送的信息中包括地址码、执行动作的功能码、执行动作后的数据以及错误校验码(CRC)。如果出错就不发送任何信息。

5.1 信息帧格式

START	ADDR	CMD	DATA	CRC	END
起始	地址码 功能码 数据 错误校验		结束		
延 时 (>=3.5	1 字带	 1 字节	N 字节	2 字节	延时(>=3.5 个
个字符的时	8位	8位	N×8位	16位	字符的时间)
间)		0 127	11710 [2.	10 [2.	1 13 H2 11 (3)

注1: 最大帧长不大于255个字节;

注2: CRC校验码低字节在前, 高字节在后;

5.2 功能码

功能码 (CMD) 是每次通讯传送的信息帧中的第二个数据帧。ModBus通讯规约定义功能码为1~127 (01H~7FH)。本协议利用其中的一部分功能码。作为主节点请求发送,通过功能码告诉从节点执行什么动作。作为从节点响应,从节点发送的功能码与主节点发送来的功能码一样,并表明从节点已响应主节点进行操作。如果从节点发送的功能码的最高位是1(功能码>127),则表明从节点没有响应或出错。

	命令编码	含义	备注
	0x03	读命令	支持单个和多个寄存器连续读取
	0x10	写多个寄存器命令	支持多个寄存器连续写动作
0x06		写单个寄存器命令	支持单个寄存器连续写动作

5.3 读命令格式

注3: MSB表示高字节; LSB表示低字节。

注4:每个寄存器存放两个字节;对寄存器数据类型为一个字节的数据,要求存放在低字节(LSB)。

主节点发送帧格式:

序号	0	1	2	3	4	5	6	7	
----	---	---	---	---	---	---	---	---	--

电池恒温箱通信协议

内部公开▲

字段定义	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
解释	控制器地址	命令类型	寄存器起始地址		寄存器	个数 n	CRC ₹	交验

从节点正常应答帧格式:

戶亏
字段定义

解释

0	1	2	3	4	5	6	•••	L+1	L+2	L+3	L+4
ADDR	CMD	Length	MSB	LSB	MSB	LSB	•••	MSB	LSB	LSB	MSB
控制器地址	命 令 类型	发送字 节数 L=n*2	第一个器的值		第二个器的值	~ 寄存	•••	最后一器的值	个寄存	CRC 校	验

从节点异常应答格式:

序号	0	1	2	3	4
字段定义	ADDR	CMD + 128	ErrCode	LSB	MSB
解释	控制器地址	命令类型 +128	Error Code	CRC わ	 交验

5.4 写单个寄存器命令格式

主节点发送帧格式:

序号	0	1	2	3	4	5	6	7
字段定义	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
解释	控制器地址	命令类型	寄存器地址			数据	CRC を	交验

从节点正常应答帧格式:

序号	0	1	2	3	4	5	6	7
字段定义	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
解释	控制器地址	命令类型	寄存器地址		ž	数据	CRC ₺	交验

从节点异常应答格式:

序号	0	1	2	3	4
字段定义	ADDR	CMD +128	ErrCode	LSB	MSB
解释	控制器地址	命令类型 +128	Error Code	CRC 7	交验

5.5 写多个寄存器命令格式

主节点发送帧格式:

序号	0	1	2	3	4	5	6	7	8	9	10	•••	L+5	L+6	L+7	L+8
字段定义	ADD R	CMD	MSB	LSB	MSB	LSB	Length	MSB	LSB	MSB	LSB	•••	MSB	LSB	LSB	MSE
解释	控制器地址	命令类型	起始器均			器数	发 送 字 节数 L = n*2	第一		第二存器		•••	寄存	一个 器的 直	CRO	校验

从节点正常应答帧格式:

序号	0	1	2	3	4	5	6	7
字段定义	ADDR	CMD	MSB	LSB	MSB	LSB	LSB	MSB
解释	控制器地址	命令类型	起始寄存	字器地址	寄存器	子分数	CRC	校验

从节点异常应答格式:

序号	0	1	2	3	4
字段定义	ADDR	CMD +128	ErrCode	LSB	MSB
解释	控制器地址	命令类型 +128	Error Code	CRC :	校验

说明: CRC 校验范围为 CRC 字段前所有字节的校验。

5.6 错误码定义

当从节点设备向主节点设备发送请求时,从节点希望一个正常响应。从主节点询问中出现下列四种可能事件之一:

- 1)如果从节点设备接收到无通信错误的请求,并且可以正常地处理询问,那么从节点设备将返回一个正常响应;
- 2) 如果由于通信错误,从节点没有接收到请求,那么不能返回响应。主节点程序将最终处理请求的超时状态:
- 3) 如果从节点接收到请求,但是检测到一个通信错误(奇偶校验、LRC、CRC、...),那么不能返回响应。主节点程序将最终处理请求的超时状态;
- 4) 如果从节点接收到无通信错误的请求,但不能处理这个请求(例如,如果请求读一个不存在的输出或寄存器),从节点将返回一个异常响应,通知用户错误的本质特性; 异常响应报文有两个与正常响应不同的域:

功能码域:在正常响应中,从节点利用响应功能码域来应答最初请求的功能码。所有功能码的最高有效位(MSB)都为0(它们的值都低于128)。在异常响应中,从节点设置功能码的MSB为1。这使得异常响应中的功能码值比正常响应中的功能码值高128。

通过设置功能码的MSB, 主节点的应用程序能够识别异常响应,并且能够检测异常码的数据域。

数据域:在正常响应中,从节点可以返回数据域中数据或统计表(请求中要求的任何报文)。在异常响应中,从节点返回数据域中的异常码。这就定义了产生异常的从节点状态。

MODBUS 异常码:

异常码名称	
01 非法功能码	对于从节点来说,询问中接收到的功能码是不可允许的操作。这也许是
	因为功能码仅仅适用于新设备而在被选单元中是不可实现的。同时,还
	指出从节点在错误状态中处理这种请求,例如:因为它是未配置的,并
	且要求返回寄存器值。
02 非法数据地址	对于从节点来说,询问中接收到的数据地址是不可允许的地址。特别是,
	参考号和传输长度的组合是无效的。对于带有100个寄存器的控制器来
	说,带有偏移量96和长度4的请求会成功,带有偏移量96和长度5的请求
	将产生异常码02。
03 非法数据值	对于从节点来说,询问中包括的值是不可允许的值。这个值指示了组合
	请求剩余结构中的故障,例如: 隐含长度是不正确的。并不意味着,因
	为MODBUS协议不知道任何特殊寄存器的任何特殊值的重要意义,寄存器
	中被提交存储的数据项有一个应用程序期望之外的值。

6 CRC 校验算法

6.1 CRC 算法

```
unsigned short count_CRC(unsigned char *addr, int num)
{
    unsigned short CRC = 0xFFFF;
    int i;
    while (num--)
    {
        CRC ^= *addr++;
        for (i = 0; i < 8; i++)
        {
            CRC = (CRC & 0x0001) ? ((CRC >> 1)^0xa001) : (CRC >> 1);
        }
}
```

内部公开▲

```
}
return CRC;
```

7 寄存器列表

约定:

- 1、每个寄存器存放两个字节。
- 2、数据传输方式: 高字节在前, 低字节在后

序号	数据	単位	寄存器地址	属 性 (读/写)	变比	备注				
版本信	版本信息									
1	软件版本		0x0000	只读	x1					
2	保留		0x0001~0x00FF		x1					
运行状	大 态(0:停止,1:运行,2	2: 未选配)							
1	整机状态		0x0100	只读	x1					
2	内风机		0x0101	只读	x1					
3	外风机		0x0102	只读	x1					
4	压缩机		0x0103	只读	x1					
5	电加热		0x0104	只读	x1					
6	应急风机		0x0105	只读	x1					
7	保留		0x0106~0x01FF							
传感器	B状态(温度传感器失效上i	送值为 200	00,湿度传感器失效值	直为 120)						
1	盘管温度	$^{\circ}$	0x0500	只读	x 10					
2	室外温度	$^{\circ}$	0x0501	只读	x 10					
3	冷凝温度	$^{\circ}$ C	0x0502	只读	x 10					
4	室内温度	$^{\circ}$	0x0503	只读	x 10					
5	湿度	%	0x0504	只读	x 1					
6	排气温度	$^{\circ}$	0x0505	只读	x 10					
7	电流	A	0x0506	只读	x 1000					

内部公开▲

8	交流电压	V	0x0507	只读	: 1					
9	直流电压	V	0x0508	只读 x	: 10					
10	保留		0x0509~0x05FF							
告警步	告警状态 (0X00 正常 0X01 告警)									
1	高温告警		0x0600	只读	x1					
2	低温告警		0x0601	只读	x1					
3	高湿告警		0x0602	只读	x1					
4	低湿告警		0x0603	只读	x1					
5	盘管防冻		0x0604	只读	x1					
6	排气高温		0x0605	只读	x1					
7	盘管温感失效		0x0606	只读	x1					
8	室外温感失效		0x0607	只读	x1					
9	冷凝温感失效		0x0608	只读	x1					
10	内温感失效		0x0609	只读	x1					
11	排气温感失效		0x060A	只读	x1					
12	湿感失效		0x060B	只读	x1					
13	内风机故障		0x060C	只读	x1					
14	外风机故障		0x060D	只读	x1					
15	压缩机故障		0x060E	只读	x1					
16	电加热故障		0x060F	只读	x1					
17	应急风机故障		0x0610	只读	x1					
18	高压告警		0x0611	只读	x1					
19	低压告警		0x0612	只读	x1					
20	水浸告警		0x0613	只读	x1					
21	烟感告警		0x0614	只读	x1					
22	门禁告警		0x0615	只读	x1					
23	高压锁定		0x0616	只读	x1					
24	低压锁定		0x0617	只读	x1					
25	排气锁定		0x0618	只读	x1					

内部公开▲

26	交流过压		0x0619	只读	x1	
27	交流欠压		0x061A	只读	x1	
28	交流掉电		0x061B	只读	x1	
29	缺相		0x061C	只读	x1	
30	频率异常		0x061D	只读	x1	
31	逆相		0x061E	只读	x1	
32	直流过压		0x061F	只读	x1	
33	直流欠压		0x0620	只读	x1	
34	保留		0x0621~0x06FF			
系统参	参数					
1	制冷点	$^{\circ}$	0x0700	读/写	x1	15~50°C
2	制冷回差	$^{\circ}$ C	0x0701	读/写	x1	1~10℃
3	加热点	$^{\circ}$ C	0x0702	读/写	x1	-15 [~] 15℃
4	加热回差	$^{\circ}$ C	0x0703	读/写	x1	1~10℃
5	保留		0x0704	读/写	x1	
6	保留		0x0705	读/写	x1	
7	高温点	$^{\circ}$ C	0x0706	读/写	x1	25 [~] 80℃
8	低温点	$^{\circ}$	0x0707	读/写	x1	-20 [~] 15℃
9	高湿点	%	0x0708	读/写	x1	0~100%
10	内风机停止点	$^{\circ}$ C	0x070A	读/写	x1	-20 [~] 50℃
11	保留		0x070B~0x07FF			
遥控参	· 数					
1	保留		0x0800			
2	监控开关机		0x0801	读/写		0x01 开机
4	皿は八 大小し		070001			0x00 关机
3	保留		0x0802~0x08FF			