Cameras

Objective

This chapter describes the basics of the imaging process.

Cameras

Content:

- Perspective Projection
- Affine Projection
- Cameras with Lenses
- Aberrations
- Sensing

Pinhole imaging model

Distant objects appear smaller

Parallel lines meet

Vanishing points

Geometric Properties

- Points go to points
- Lines go to lines
- Planes go to whole image or half-plane
- Polygons go to polygons

- Degenerated cases:
 - line through focal point yields point
 - plane through focal point yields line

$$\begin{cases} x' = \lambda x \\ y' = \lambda y \implies \lambda = \frac{x'}{x} = \frac{y'}{y} = \frac{f'}{z} \end{cases}$$
 therefore

$$\begin{cases} x' = f' \frac{x}{z} \\ y' = f' \frac{y}{z} \end{cases}$$

Affine Projection

Weak-perspective: when the scene depth is small relative to the average distance to the camera

Affine Projection

Orthographic projection: camera at a roughly constant distance from the scene (m=-1)

Limits for pinhole cameras

- 1. The larger the hole the wider the light cone angle \rightarrow blurred image
- 2. The smaller the hole the darker the image (longer exposition time)
- 3. The smaller the hole the stronger the diffraction effect \rightarrow blurred image

2 mm

0,35 mm

1 mm

0,15 mm

0,6 mm

0,07 mm

$$n_1 \operatorname{sen} \alpha_1 = n_2 \operatorname{sen} \alpha_2$$

paraxial geometric optics

$$n_1 \alpha_1 \approx n_2 \alpha_2$$

Thin Lenses

- Lenses are assumed to be rotationally symmetric about a straight line called *optical axis*.
- The ray entering a *thin lens* and refracted at its right boundary is immediately refracted again at the left boundary.

Thin Lenses

- Incident light rays parallel to the optical axis emerge on the other side and cross the optical axis at a distance f (called *focal length*) from the lens center.
- Points F and F' located at distance f from lens center are called focal points of the lens.

Thin Lenses (properties):

- 1. Entering light rays parallel to the optical axis cross the optical axis on the other side at the focal point F'.
- 2. Entering light rays coming from the focal point *F* emerge parallel to the optical axis.
- 3. Entering light rays at the optical center O is not refracted
- 4. All rays emerging from *P* meet at *P* '

Thin Lenses (properties):

Note that the triangles A and B are similar. Thus

$$\frac{y'}{y} = \frac{z'}{z} \Longrightarrow y' = z' \frac{y}{z}$$

which is identical to the pinhole equation (if we replace z' by f')!!!!!!

Thin Lenses (properties):

From the previous slide
$$\frac{y'}{y} = \frac{z'}{z}$$

Considering the triangles **C** and **D** we get $\frac{-z}{f} = \frac{y - y}{-y'}$

Combining both equations yields

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$
thin lens equation

Thin Lenses (remarks)

- \Box image plane must be at a fixed distance z' to be in sharp focus.
- □ Points at different depths do not focus on the same plane.

Thin Lenses (remarks)

- \Box image plane must be at a fixed distance z' to be in sharp focus.
- □ Points at different depths do not focus on the same plane.

Thin Lenses (remarks)

- □ Point where emerging rays meet moves toward the focus as we go farther from the lens.
- the focal length f is the distance between the center of the lens and the plane where objects at $z \rightarrow \infty$ focus.

Thin Lenses (remarks)

 depth of field or depth of focus is the range of distances in which objects are in acceptable focus.

Thin Lenses (remarks)

 depth of field or depth of focus is the range of distances in which objects are in acceptable focus.

Thin Lenses (remarks)

 depth of field or depth of focus is the range of distances in which objects are in acceptable focus.

Thin Lenses (remarks)

 \Box field of view (2 \varnothing) of a camera is the portion of the scene space that actually projects onto the retina of the camera.

Relation between

focal length

magnification, and

□ field of view.

Large FOV
Short focal length
Camera close to car

Small FOV
Large focal length
Camera far from the car

From Zisserman & Hartley

Large Focal Length compresses depth

400 mm

200 mm

100 mm

50 mm

28 mm

17 mm

© 1995-2005 Michael Reichmann

25/04/2017 Cameras

Thin Lens Model

- bases on 3 assumptions
- all rays from a point are focused onto 1 image point
- all image points in a single plane
- magnification is constant

deviations from this ideal are aberrations

Real (thick) lenses suffer from spherical aberrations - a point in space does not project on a single point on the image plane.

Geometrical:

 □ Distortion: magnification/focal length different for different angles of inclination → straight lines curve around the image center

pin cushion

barrel

Chromatic: refractive index function of wavelength

The image is blurred and appears colored at the fringe.

Blue Red

Aberrations can be minimized by aligning several simple lenses with well-chosen shapes and refraction indexes, separated by appropriate stops.

(Vignetting) brightness drops in the image periphery

Photographic Film

The first photograph on record, *la table servie*, obtained by Nicéphore Niepce (1822)

CCD (Charged Coupled Devices)

CCD (Charged Coupled Devices)

CCD (Charged Coupled Devices)

imperfections in the sensor matrix

Next Topic

Geometric Camera Models