COMP3411: Artificial Intelligence Extension 10. Deep Learning

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning

Image Processing Tasks

- image classification
- object detection
- object segmentation
- style transfer
- generating images
- generating art

COMP3411/9414/9814 18s1 Deep Learning 1

Outline

- Image Processing
 - ► Convolutional Networks
- Language Processing
 - ► Recurrent Networks
 - ► Long Short Term Memory
 - Word Embeddings
- Deep Reinforcement Learning
 - ▶ Deep Q-Learning
 - ▶ Policy Gradients
 - ► Asynchronous Advantage Actor Critic

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1

2

Deep Learning

3

Learning Face Direction

UNSW © Alan Blair, 2017-8

UNSW

© Alan Blair, 2017-8

Limitations of Two-Layer Neural Networks

Some functions cannot be learned with a 2-layer sigmoidal network.

For example, this Twin Spirals problem cannot be learned with a 2-layer network, but it can be learned using a 3-layer network if we include shortcut connections between non-consecutive layers.

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning 6

CIFAR Image Dataset

- \blacksquare color, resolution 32×32
- 50,000 images
- 10 classes

MNIST Handwritten Digit Dataset

- \blacksquare black and white, resolution 28×28
- 60,000 images
- \blacksquare 10 classes (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)

© Alan Blair, 2017-8

COMP3411/9414/9814 18s1

UNSW

Deep Learning

ImageNet LSVRC Dataset

- \blacksquare color, resolution 227 × 227
- 1.2 million images
- 1000 classes

UNSW

Vanishing / Exploding Gradients

Training by backpropagation in networks with many layers is difficult.

When the weights are small, the differentials become smaller and smaller as we backpropagate through the layers, and end up having no effect.

When the weights are large, the activations in the higher layers will saturate to extreme values. As a result, the gradients at those layers will become very small, and will not be propagated to the earlier layers.

When the weights have intermediate values, the differentials will sometimes get multiplied many times is places where the transfer function is steep, causing them to blow up to large values.

UNSW © Alan Blair. 2017-8

COMP3411/9414/9814 18s1 Deep Learning

Hubel and Weisel – Visual Cortex

- cells in the visual cortex respond to lines at different angles
- cells in V2 respond to more sophisticated visual features
- Convolutional Neural Networks are inspired by this neuroanatomy
- CNN's can now be simulated with massive parallelism, using GPU's

Activation Functions (6.3)

Deep Learning

11

Convolutional Networks

COMP3411/9414/9814 18s1

UNSW

Suppose we want to classify an image as a bird, sunset, dog, cat, etc.

If we can identify features such as feather, eye, or beak which provide useful information in one part of the image, then those features are likely to also be relevant in another part of the image.

We can exploit this regularity by using a convolution layer which applies the same weights to different parts of the image.

Convolutional Neural Networks

$$Z_{j,k}^{i} = g(b^{i} + \sum_{l} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} K_{l,m,n}^{i} V_{j+m,k+n}^{l})$$

The same weights are applied to the next $M \times N$ block of inputs, to compute the next hidden unit in the convolution layer ("weight sharing").

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning 14

LeNet trained on MNIST

The 5×5 window of the first convolution layer extracts from the original 32×32 image a 28×28 array of features. Subsampling then halves this size to 14×14 . The second Convolution layer uses another 5×5 window to extract a 10×10 array of features, which the second subsampling layer reduces to 5×5 . These activations then pass through two fully connected layers into the 10 output units corresponding to the digits '0' to '9'.

Convolutional Filters

First Layer

Second Layer

Third Layer

UNSW

© Alan Blair, 2017-8

15

COMP3411/9414/9814 18s1

Deep Learning

ImageNet Architectures

- LeNet, 5 layers (1998)
- AlexNet, 8 layers (2012)
- VGG, 19 layers (2014)
- GoogleNet, 22 layers (2014)
- ResNets, 152 layers (2015)
- DenseNets, 160 layers (2017)

UNSW

AlexNet Details

- 650K neurons
- 630M connections
- 60M parameters
- \blacksquare more parameters that images \rightarrow danger of overfitting

UNSW

© Alan Blair, 2017-8

COMP3411/9414/9814 18s1

Deep Learning

18

Deep Learning

Dropout (7.12)

- (a) Standard Neural Net
- (b) After applying dropout.

Nodes are randomly chosen to not be used, with some fixed probability (usually, one half).

Enhancements

- Rectified Linear Units (ReLUs)
- \blacksquare overlapping pooling (width = 3, stride = 2)
- stochastic gradient descent with momentum and weight decay
- data augmentation to reduce overfitting
- 50% dropout in the fully connected layers

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1

Deep Learning

19

Residual Networks

Idea: Take any two consecutive stacked layers in a deep network and add a "skip" connection which bipasses these layers and is added to their output. COMP3411/9414/9814 18s1 Deep Learning 20 COMP3411/9414/9814 18s1 Deep Learning 21

Dense Networks

Recently, good results have been achieved using networks with densely connected blocks, within which each layer is connected by shortcut connections to all the preceding layers.

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning

Neural Style Transfer

Neural Style Transfer

COMP3411/9414/9814 18s1

UNSW

Deep Learning

Object Detection

UNSW

22

COMP3411/9414/9814 18s1 Deep Learning 24 COMP3411/9414/9814 18s1 Deep Learning 2

Processing Temporal Sequences

There are many tasks which require a sequence of inputs to be processed rather than a single input.

- speech recognition
- time series prediction
- machine translation
- handwriting recognition
- image captioning

COMP3411/9414/9814 18s1

How can neural network models be adapted for these tasks?

UNSW © Alan Blair, 2017-8

Deep Learning

Back Propagation Through Time

- we can "unroll" a recurrent architecture into an equivalent feedforward architecture, with shared weights
- applying backpropagation to the unrolled architecture is reffered to as "backpropagation through time"
- we can backpropagate just one timestep, or a fixed number of timesteps, or all the way back to beginning of the sequence

Simple Recurrent Network (Elman, 1990)

- at each time step, hidden layer activations are copied to "context" layer
- hidden layer receives connections from input and context layers
- the inputs are fed one at a time to the network, it uses the context layer to "remember" whatever information is required for it to produce the correct output

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning

27

Oscillating Solution for a^nb^n

UNSW © Alan Blair, 2017-8 UNSW © Alan Blair, 2017-8

Hidden Unit Dynamics for $a^nb^nc^n$

SRN with 3 hidden units can learn to predict $a^nb^nc^n$ by counting up and down simultaneously in different directions, thus producing a star shape.

UNSW (© Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning 30

Long Short Term Memory

LSTM – context layer is modulated by three gating mechanisms: forget gate, input gate and output gate.

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long Range Dependencies

- Simple Recurrent Networks (SRNs) can learn medium-range dependencies but have difficulty learning long range dependencies
- Long Short Term Memory (LSTM) and Gated Recurrent Units (GRU) can learn long range dependencies better than SRN

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1

Deep Learning

31

Statistical Language Processing

Synonyms for "elegant"

stylish, graceful, tasteful, discerning, refined, sophisticated, dignified, cultivated, distinguished, classic, smart, fashionable, modish, decorous, beautiful, artistic, aesthetic, lovely; charming, polished, suave, urbane, cultured, dashing, debonair; luxurious, sumptuous, opulent, grand, plush, high-class, exquisite

Synonyms, antonyms and taxonomy require human effort, may be incomplete and require discrete choices. Nuances are lost. Words like "king", "queen" can be similar in some attributes but opposite in others.

Could we instead extract some statistical properties automatically, without human involvement?

word2vec 1-Word Context Model

The k^{th} row \mathbf{v}_k of \mathbf{W} is a representation of word k. The j^{th} column \mathbf{v}'_i of \mathbf{W}' is an (alternative) representation of word j.

If the (1-hot) input is k, the linear sum at each output will be $u_j = \mathbf{v}_j^{\mathsf{T}} \mathbf{v}_k$

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning 34

Capital Cities

Linguistic Regularities

King + Woman - Man \simeq Queen

More generally,

A is to B as C is to ??

$$d = \operatorname{argmax}_{x} \frac{(v_c + v_b - v_a)^{\mathrm{T}} v_x}{||v_c + v_b - v_a||}$$

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1 Deep Learning

Word Relationships

Relationship	Example 1	Example 2	Example 3
France - Paris	Italy: Rome	Japan: Tokyo	Florida: Tallahassee
big - bigger	small: larger	cold: colder	quick: quicker
Miami - Florida	Baltimore: Maryland	Dallas: Texas	Kona: Hawaii
Einstein - scientist	Messi: midfielder	Mozart: violinist	Picasso: painter
Sarkozy - France	Berlusconi: Italy	Merkel: Germany	Koizumi: Japan
copper - Cu	zinc: Zn	gold: Au	uranium: plutonium
Berlusconi - Silvio	Sarkozy: Nicolas	Putin: Medvedev	Obama: Barack
Microsoft - Windows	Google: Android	IBM: Linux	Apple: iPhone
Microsoft - Ballmer	Google: Yahoo	IBM: McNealy	Apple: Jobs
Japan - sushi	Germany: bratwurst	France: tapas	USA: pizza

COMP3411/9414/9814 18s1

37

39

UNSW © Alan Blair, 2017-8

UNSW © Alan Blair, 2017-8

COMP3411/9414/9814 18s1

Deep Learning

38

COMP3411/9414/9814 18s1 Deep Learning

Reinforcement Learning Framework

- An agent interacts with its environment.
- There is a set S of *states* and a set A of *actions*.
- At each time step t, the agent is in some state s_t . It must choose an action a_t , whereupon it goes into state $s_{t+1} = \delta(s_t, a_t)$ and receives reward $r_t = \mathcal{R}(s_t, a_t)$
- Agent has a *policy* $\pi: \mathcal{S} \to \mathcal{A}$. We aim to find an optimal policy π^* which maximizes the cumulative reward.
- In general, δ , \mathcal{R} and π can be multi-valued, with a random element, in which case we write them as probability distributions

$$\delta(s_{t+1} = s \mid s_t, a_t)$$
 $\mathcal{R}(r_t = r \mid s_t, a_t)$ $\pi(a_t = a \mid s_t)$

Q-Learning

For a deterministic environment, π^* , Q^* and V^* are related by

$$\pi^*(s) = \mathrm{argmax}_a\,Q^*(s,a)$$

$$Q^*(s,a) = \mathcal{R}(s,a) + \gamma V^*(\delta(s,a))$$

$$V^*(s) = \max_b\,Q^*(s,b)$$
 So

 $Q^*(s,a) = \mathcal{R}(s,a) + \gamma \max_b Q^*(\delta(s,a),b)$

This allows us to iteratively approximate Q by

$$Q(s_t, a_t) \leftarrow r_t + \gamma \max_b Q(s_{t+1}, b)$$

If the environment is stochastic, we instead write

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \eta \left[r_t + \gamma \max_b Q(s_{t+1}, b) - Q(s_t, a_t) \right]$$

Deep Q-Learning for Atari Games

- \blacksquare end-to-end learning of values Q(s,a) from pixels s
- input state s is stack of raw pixels from last 4 frames
 - \triangleright 8-bit RGB images, 210 × 160 pixels
- output is Q(s,a) for 18 joystick/button positions
- reward is change in score for that timestep

UNSW

© Alan Blair, 2017-8

COMP3411/9414/9814 18s1

Deep Learning

42

Asynchronous Advantage Actor Critic

- use policy network to choose actions
- \blacksquare learn a parameterized Value function $V_u(s)$ by TD-Learning
- estimate Q-value by n-step sample

$$Q(s_t, a_t) = r_{t+1} + \gamma r_{t+2} + \dots + \gamma^{n-1} r_{t+n} + \gamma^n V_u(s_{t+n})$$

update policy by

$$\theta \leftarrow \theta + \eta_{\theta} [Q(s_t, a_t) - V_u(s_t)] \nabla_{\theta} \log \pi_{\theta}(a_t | s_t)$$

update Value function my minimizing

$$[Q(s_t, a_t) - V_u(s_t)]^2$$

Deep Q-Network

COMP3411/9414/9814 18s1

Deep Learning

43

Other Deep Learning Topics

- Hopfield Networks
- Restricted Boltzmann Machines
- Autoencoders
- Generative Adversarial Networks