문제해결과 기업성과 달성을 위한 정보시스템 활용

데이터 마이닝 프레임워크

SNU Business School

데이터 마이닝(Data Mining)

데이터 마이닝이란?

- · 데이터 마이닝(Data Mining)[source: https://en.wikipedia.org/wiki/Data_mining]
 - 기계학습(machine learning), 통계학, 데이터베이스 시스템 등의 방법론을 활용하여, 대규모의 데이터로부터 패턴을 찾아내는 종합적인 과정
 - 데이터 마이닝의 궁극적인 목적인 데이터로부터 현실에서 활용 가능한 "정보(information)"을 찾아내는 것
 - 목적을 이루기 위한 데이터 전처리, 모델 수립과 통계적 추론, 평가(evaluation), 시각화 등 전반적인 과정을 포괄하는 개념

데이터 마이닝의 적용 분야

- ·데이터 마이닝은 아래와 같은 분야에 적용하여 현실에 유용한 결과를 도출할 수 있음
 - 회귀(regression): 데이터 혹은 데이터 셋 간의 관계를 설명하는 함수를 찾는다(예: 성적과 공부량 간의 관계 규명)
 - 분류(classification): 집단을 정의해 각 관측치를 추론을 통해 구분한다(예: 우수 고객과 이탈 고객)
 - 군집화(clustering): 구체적인 특성을 공유하는 군집을 찾는다. 군집화는 각 군집의 특성을 미리 정의하지 않는다는 점에서 분류와 구분된다(예: 비슷한 구매 패턴을 보이는 고객들의 군집)
 - 연관성(association): 동시에 발생한 사건 간의 관계를 정의한다(예: 고객들이 함께 구매하는 상품들 간의 관계 규명)
 - 이상치 탐색(anomaly detection): 정상적이지 않은 데이터 레코드나 데이터 에러를 찾는다(예: 아웃라이어 탐색)
 - **요약(summarization):** 시각화(visualization)과 리포트(report) 등을 통해 데이터를 보다 간단하게 표현한다(예: 그래프 작성)

- ·데이터 마이닝 프로세스는 크게 아래 여섯 단계로 나누어질 수 있음 [source: https://en.wikipedia.org/wiki/Cross Industry Standard Process for Data Mining]
 - 비즈니스 이해(Business understanding)
 - 데이터 이해(Data understanding)
 - 데이터 준비(Data preparation)
 - 모델링(Modeling)
 - 평가(Evaluation)
 - 적용(Deployment)

·데이터 마이닝의 9가지 법칙("Nine laws of Data Mining")

[source: http://khabaza.codimension.net/index_files/9laws.htm, https://www.forbes.com/sites/metabrown/2016/01/27/9-laws-for-data-analytics-profits/#7d1c8b9f16e0_]

- 1. 비즈니스 목표의 법칙("Business Goals Law")
- 2. 비즈니스 지식의 법칙("Business Knowledge Law")
- 3. 데이터 준비의 법칙("Data Preparation Law")
- 4. 공짜 점심의 법칙("NFL-DM")
- 5. 왓킨스의 법칙("Watkin's Law")
- 6. 인사이트의 법칙("Insight Law")
- 7. 예측의 법칙("Prediction Law")
- 8. 가치의 법칙("Value Law")
- 9. 변화의 법칙("Law of Change")

- · 비즈니스 이해(Business Understanding): 현실 세계의 문제를 데이터 마이닝 문제로 환원
 - 프로젝트의 목적과 요구사항을 비즈니스적인 관점에서 이해
 - 이러한 지식을 데이터 마이닝 컨텍스트에서 문제 정의(problem definition)
 - 데이터 분석을 위한 전반적인 계획을 수립

- ㆍ데이터 마이닝의 제1법칙: 비즈니스 목표의 법칙
 - 비즈니스 목표(Business Objectives)는 모든 데이터 마이닝 솔루션의 시작이다("Business objectives are the origin of every data mining solution")
 - 문제를 이해하지 못하면, 문제를 풀 수 없다
 - 데이터 마이닝은 기술(technology)보다는 비즈니스 목표를 그 핵심에 두고 있는 프로세스이다
 - "Without a business objective (whether or not this is articulated), there is no data mining"

- ·데이터 마이닝의 제2법칙: 비즈니스 지식의 법칙
 - 데이터 마이닝 프로세스의 모든 단계에서 비즈니스 지식(business knowledge)은 핵심적이다
 - 달리 말해, 비즈니스 지식이 없다면 데이터 마이닝의 모든 단계는 효과가 있을 수 없다
 - 비즈니스 지식은 전체적인 프로세스를 이끌어 나가고, 데이터 마이닝의 결과 중에 유의미한 것을 알아볼 수 있는 혜안을 제공한다
 - "If you don't have someone who knows the business on the team, you won't get good results"

- ·데이터 이해(Data Understanding): 데이터에 대한 기초적인 이해 습득
 - 데이터 수집(data collection): 웹, 소셜 미디어, ...
 - 데이터 품질(data quality) 검증: 결측치(missing values), 이상치(anomalies) 등
 - 데이터 종류(data type): 정형 데이터(수치형), 비정형 데이터(텍스트, 음성, 이미지) 등
 - 데이터 탐색(data exploration): 데이터 시각화, 기초 통계량 계산 등

- ·데이터 준비(Data Preparation): 데이터 분석을 위한 기초 작업
 - 데이터를 불러오는 것부터 모델에 입력하기 직전까지의 모든 작업을 포함
 - 데이터 전처리(data preprocessing): 데이터를 모델에 맞는 형식으로 변환
 - 데이터 클리닝(data cleaning): 데이터의 품질을 높이기 위해 불량한 데이터를 삭제

- ·데이터 마이닝의 제3법칙: 데이터 준비의 법칙
 - 데이터 마이닝 프로세스에서 데이터 준비는 절반 이상의 비중을 차지한다
 - 비공식적으로, 데이터 수집 및 전처리 단계에 50~80%의 노력이 투자된다
 - 프로세스의 자동화가 시간을 단축시켜 주지만, 컴퓨터의 한계점으로 인한 오류 발생의 위험도 존재한다
 - "Most of the time and effort goes into the dirty work of cleaning data and getting it in shape for analysis."

- ·데이터 마이닝의 제4법칙: 공짜 점심의 법칙
 - 특정 응용 분야에 적합한 모델은 지속적인 실험을 통해서만 발굴될 수 있다
 - Wolpert의 "No Free Lunch" (NFL) 이론: 모든 데이터 마이닝 문제에 최적인 기계학습 알고리즘은 존재하지 않는다 => 각 문제에 맞는 최적화된 알고리즘이 존재한다는 것
 - 그러한 알고리즘을 찾기 위해 반복적인 시험(back-and-forth iterations)을 하고 이를 통해 현실의 문제에 최적화된 솔루션을 찾을 수 있다
 - "There is no free lunch for the data miner."

- ·모델링(Modeling): 데이터 마이닝 테크닉 적용
 - 데이터로부터 의미 있는 정보를 추출하기 위해 다양한 데이터 마이닝 테크닉을 적용
 - 다양한 테크닉이 적용되고 입력 파라미터가 최적화됨
 - 회귀/분류/군집화/연관성 탐색

- ·데이터 마이닝의 제5법칙: 왓킨스의 법칙
 - 모든 비즈니스 관련 데이터에는 의미 있는 정보(patterns)가 존재한다
 - 데이터의 생성은 비즈니스의 과정과 함께하므로, 이와 함께 의미 있는 정보가 축적될 수 밖에 없음
 - 정보를 찾기 위해서는 비즈니스 지식(business knowledge)로부터 시작해야 한다
 - "There will always be patterns for every data mining problem in every domain unless there is no relevant data."

- · 평가(Evaluation): 분석 결과를 평가
 - 결과 평가는 모델링 만큼이나 중요한 단계임
 - 일반적으로 정확도(accuracy)와 오차(error)를 바탕으로 평가되나, 그 외의 다양한 평가 방법이 활용될 수 있음
 - 평가 결과 데이터 마이닝 결과의 활용 여부가 결정됨

- · 적용(Deployment): 분석 결과를 적용함
 - 분석을 통해 얻은 정보와 지식을 현실 세계의 문제를 해결하기 위해 적용함
 - 정보와 지식은 최종 소비자가 쉽게 이해할 수 있는 형식으로 전달되어야 함(일반적으로 결과의 적용은 데이터 분석가 가 아닌 다른 사람이 하는 경우가 많음)
 - 지나치게 기술적인 부분보다는 결과와 인사이트 중심으로 전달하는 것이 중요하다!

- ·데이터 마이닝의 제6법칙: 인사이트의 법칙
 - 데이터 마이닝은 비즈니스의 인지 과정(perceptual process)의 일부이다
 - 즉, 데이터 마이닝은 인간이 쉽게 발견하지 못하는 정보(pattern)를 데이터로부터 찾아 줌으로써 비즈니스 인지 과정을 돕는다
 - 즉, 인공지능은 지능을 증폭시키는 역할("intelligence amplifier")을 한다고 할 수 있다
 - "Data mining amplifies perception in the business domain."

- ·데이터 마이닝의 제7법칙: 예측의 법칙
 - 데이터 마이닝의 핵심은 바로 그럴듯한 결과를 "예측(predict)"하는 데에 있다
 - 모델을 통해 제한적인 상황 속에서 "예측"을 하고 이를 보다 일반적인 경우로 확장(generalize)한다
 - 회귀, 분류, 군집, 연관 분석 등 대부분의 데이터 마이닝 모델은 "예측"과 결부되어 있다
 - "Prediction increases information locally by generalisation."

- ·데이터 마이닝의 제8법칙: 가치의 법칙
 - 데이터 마이닝의 결과는 정확도(accuracy)나 안정성(stability)에 의해서 결정되지 않는다
 - 예측 모델의 가치는 개선된 행동(action)을 촉발하고, 새로운 인사이트를 통해 개선된 전략을 발생하는 데에 있다
 - "The value of a predictive model is not determined by any technical measure."

- ·데이터 마이닝의 제9법칙: 변화의 법칙
 - 데이터 마이닝에 의해 발견된 정보는 영원히 지속되지 않는다
 - 데이터가 갖더라도 컨텍스트나 목적에 따라 데이터의 가치나 이를 통해 도출되는 인사이트 등이 얼마든지 달라질 수 있다
 - "All patterns are subject to change because they reflect not only a changing world but also our changing understanding."

데이터 레이크(Data Lake)

- ·데이터 웨어하우스(Data Warehouse)에서 데이터 레이크(Data Lake)로 [source: https://en.wikipedia.org/wiki/Data_lake]
 - 데이터가 조직과 사회에서 갖는 중요성이 증가하면서 데이터 마트(Data Mart), 데이터 사일로(Data Silo), 데이터 웨어하우스(Data Warehouse) 등 데이터를 저장하기 위한 다양한 개념들이 등장함
 - 앞서 살펴본 4V로 대표되는 "빅 데이터"의 시대가 도래하면서 '데이터 레이크'의 개념이 대두되고 있음

- ·데이터 웨어하우스(Data Warehouse)에서 데이터 레이크(Data Lake)로
 - 데이터 웨어하우스(Data Warehouse): 사용자의 의사 결정에 도움을 주기 위하여, 기간시스템의 데이터베이스에 축적된 데이터를 공통의 형식으로 변환해서 관리하는 데이터베이스 [source:https://ko.wikipedia.org/wiki/%EB%8D%B0%EC%9D%B4%ED%84%B0 %EC%9B%A8%EC%96%B4%ED%95%98%EC%9A%B0% EC%8A%A4]
 - 데이터 레이크: 데이터를 자연적인 형태(natural format)으로 시스템이나 저장소에 저장하는 방법으로, 다양한 데이터의 개요나 구조 간에 호환(collocation)을 가능케 함[source: https://en.wikipedia.org/wiki/Data_lake]
 - 조직과 관련된 로 데이터(raw data) 뿐만 아니라 리포팅, 시각화, 애널리틱스 등의 작업을 위해 활용되는 변형된 형태의 데이터(transformed data)도 함께 포함
 - 관계형 데이터베이스에 적합한 정형 데이터(structured data), CSV, 로그(logs), XML, JSON 등 반정형 데이터(semi-structured data) 및 전자메일, 각종 문서,이미지, 오디오 등 비정형 데이터(unstructured data)를 포함
 - 즉, 모든 형태의 데이터를 포함하는 중앙화된 데이터 저장소이다
 - 앞서 살펴본 아파치 하둡의 분산 파일 시스템(distributed file system)은 데이터 레이크의 대표적인 사례이다

- ·데이터 웨어하우스(Data Warehouse)에서 데이터 레이크(Data Lake)로
 - 구글, 마이크로소프트, 아마존 등 대부분의 선도 IT 기업들은 이미 클라우드(cloud) 서비스, 분산 처리 등 데이터 레이크와 관련된 산업에 뛰어들고 있는 추세임[source: https://blog.equinix.com/blog/2016/11/10/why-companies-are-jumping-into-data-lakes/]
 - 데이터 레이크가 각광을 받고 있는 이유는 바로 "빅 데이터" 시대를 맞아 데이터 애널리틱스(data analytics)에 대한 수요가 급격히 증가했기 때문임[source: https://infocus.emc.com/william_schmarzo/why-do-i-need-a-data-lake-for-big-data/]
 - 데이터를 분석하고 활용함에 있어 다양한 데이터 구조(data structures)가 지원되면 상당한 이점을 가짐

- ·데이터 웨어하우스(Data Warehouse)에서 데이터 레이크(Data Lake)로
 - 데이터 웨어하우스 vs. 데이터 레이크[source: http://www.kdnuggets.com/2015/09/data-lake-vs-data-warehouse-key-differences.html]

데이터 웨어하우스	VS.	데이터 레이크
정형 데이터 처리된(processed) 데이터	데이터 형태	정형/비정형/반정형 데이터 로 데이터/처리된 데이터
데이터를 읽어오기 전에 스키마를 미리 정의(schema-on-write)	데이터 프로세싱	데이터를 읽어오면서 스키마를 정의 (schema-on-read)
다량의 데이터를 저장하기엔 비효율적	데이터 저장	다량의 데이터를 저렴하게 저장하기에 최적화
기민성이 떨어짐 초기 설정을 바꾸기 힘듬	유연성	매우 기민함 초기 설정을 바꾸고 새로운 설정을 추가하기가 용이
안정	보안	불안정
비즈니스 전문가	주 사용자	데이터 사이언티스트

- ·데이터 레이크 시스템 예시 아마존 S3 (Amazon S3)[source: https://en.wikipedia.org/wiki/Amazon_S3]
 - 간단한 웹 인터페이스를 통해 웹 어디서나 데이터를 저장 및 검색할 수 있는 객체 스토리지(object storage)

- ·데이터 레이크 시스템 예시 아마존 S3 (Amazon S3)[source: https://en.wikipedia.org/wiki/Amazon_S3]
 - 아마존 S3에 저장된 객체의 숫자는 지난 2013년 2조를 넘어서며 기하급수적으로 증가하고 있다
 - 웹 호스팅, 이미지 호스팅, 백업 시스템 저장소 등 다양한 기능을 제공
 - 에어비엔비(AirBnb), 나스닥(Nasdaq), 넷플릭스(Netflix) 등 다량의 데이터를 활용하는 조직들은 이미 아마존 S3의 서비스를 활용하고 있음

- ·데이터 레이크 시스템 예시 아마존 S3 (Amazon S3)
 - 아마존 웹 서비스 부문은 최근 10년 간 조직과 사회에서 운용되는 데이터의 양이 증가하면서 급격히 성장해 2017년 1 분기 현재 영업이익률 24.3%를 기록하며 아마존이 지속적인 흑자를 기록하는 데 큰 기여를 하고 있음 [source: https://www.recode.net/2017/4/27/15451726/amazon-q1-2017-earnings-profits-net-income-cash-flow-chart]
 - 아마존의 부문별 영업이익률

데이터 마이닝 적용 예시 – 야구장 관객 수 예측하기

비즈니스 이해

- · 야구장 운영은 구단 유지비, 구장 사용료 등 고정 비용(fixed cost)가 큰 사업으로, 야구장에 관객이 많이 찾지 않는 날은 적자를 감수할 수 밖에 없는 구조이다
 - 야구 경기의 경우 악천후나 국가 비상 상태 등 특수한 상황이 아니면 반드시 스케줄에 맞추어 경기를 진행해야 한다
- · 관객이 적게 온다고 경기를 취소하거나 연기할 수 없으므로, 특정 조건을 갖춘 날 관객이 얼마나 찾는 지 예측할 수 있다는 유의미한 정보가 될 수 있다

- · 그러한 정보를 바탕으로 수익 극대화(Profit maximization)을 위한 경영 전략(Corporate strategy)를 마련할 수 있다
 - 관객이 적게 찾아올 것 같은 날 프로모션을 진행하거나 연예인 시구를 하는 등의 이벤트를 통해 수익을 늘리면서 동시에 관객이 많이 찾아올 것 같은 날은 별도의 비용을 들이지 않아도 된다

데이터 이해

- ·데이터 수집
 - 2010년부터 2014년까지 두산 베어스와 LG 트윈스의 잠실야구장 홈경기 데이터를 수집(총 616경기)
 - 한국 야구위원회(KB) 홈페이지에서 데이터 수집(Web Crawling)
 - 경기 별 관객, 당시 성적, 당시 선발투수 기록, 휴일 여부 관련 데이터 수집

데이터 이해

- ㆍ데이터 탐색
 - 데이터 시각화
 - 홈 팀 승률과 관객 수 간의 관계

상관계수 = 0.06923221

● 홈 선발투수 승률과 관객 수 간의 관계

상관계수 = -0.01201143

데이터 준비

- ㆍ원본 형식의 데이터를 엑셀 데이터프레임에 맞게 가공
 - 분석 툴에 넣어 바로 분석을 수행할 수 있도록 가공

	K	L	М	N	0	Р	Q	R
1	ome_p_ 🔻	away_w 🔻	away_dr 🔻	away_lo 🔻	away_p_v 🔻	ıway_p_l 🔻	holida 🕶	audienc 🔻
2	0	0	0	0	0	0	1	27,000
3	0	0	0	1	0	0	1	27,000
4	0	2	0	0	0	0	0	10,830
5	0	2	0	1	1	0	0	6,106
6	1	3	0	1	1	0	1	13,023
7	1	3	0	2	0	1	1	12,808
8	0	2	0	4	0	0	0	8,345
9	0	2	0	5	0	0	0	8,928
10	0	2	0	6	0	2	0	7,774
11	0	3	0	6	0	1	0	18,126
12	0	3	1	6	0	0	1	27,000
13	0	3	1	7	0	1	1	24,281
14	2	9	0	4	1	0	0	6,244
15	0	10	0	4	1	0	0	6,520
16	2	10	0	5	1	1	0	7,571
17	0	6	0	9	0	1	0	20,543
18	1	6	0	10	1	1	1	27,000
19	0	6	0	11	2	0	1	27,000
20	1	13	0	5	1	1	0	10,006
21	1	14	0	5	0	1	0	9,722
22	1	8	0	13	1	0	0	9,116
23	0	9	0	13	0	2	1	22,099
24	3	9	0	14	0	4	1	19,226
25	2	13	0	12	1	1	0	10,287
26	1	8	0	18	1	3	0	10,607
27	1	8	0	19	0	0	1	22,511
28	0	9	0	19	0	3	1	18,562
29	3	17	1	9	1	1	0	23,679

모델링

- ・변수
 - 출력변수
 - 경기별 관객수(*y*): min = 0; max = 27,000

- 입력변수
 - 홈 팀 승률(*x*1)
 - 어웨이 팀 승률(*x*2)
 - 홈 팀 선발투수 승률(*x*3)
 - 어웨이 팀 선발투수 승률(x4)
 - 휴일 여부(x5): 휴일이면 1, 휴일이 아니면 0

모델링

· 가설: 선형회귀모형

$$y = a_1 x_1 + a_2 x_2 + ... + a_5 x_5 + b$$

- 목적: 비용을 최소화하는 a와 b를 찾는다

• 결과

- 추정값: 데이터를 통해 회귀 모형을 돌린 결과 아래와 같은 값이 추정됨

$$\bullet$$
 b = 10615.2675

$$a_1 = 6042.6753$$

$$a_2 = 2349.4648$$

$$a_3 = 281.82658$$

$$a_4 = 570.8495$$

$$\bullet a_5 = 7090.2335$$

모델링

- 결과 해석
 - 모든 승률이 0이고 휴일이 아닌 날의 관객 추정치는 약 10615 명이다
 - 홈 팀의 승률이 1% 올라갈 때 마다 관객이 약 60명 증가한다
 - 홈 팀의 선발투수의 승률이 1% 올라갈 때 마다 관객이 약 23명 증가한다
 - 어웨이 팀의 승률이 1% 올라갈 때 마다 관객이 약 3명 증가한다
 - 어웨이 팀의 선발투수의 승률이 1% 올라갈 때 마다 관객이 약 6명 증가한다
 - 휴일이 아닐 때보다 휴일일 때 관객이 약 7000 명 정도 많이 온다

평가

- · 학습 데이터 셋(training dataset)과 시험 데이터 셋(test dataset)의 비율을 7:3으로 나누어 오차를 계산함
 - 평균 제곱근 오차(RMSE, Root mean squared error)로 계산

$$RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_{pred} - y)^2}$$

- RMSE = 5,164. 즉, 경기당 약 5,000명 정도의 오차가 발생

적용

- ·모델링 결과와 평가 결과를 바탕으로 데이터 마이닝 모델을 적용할 것인지를 결정
- •모델을 바로 적용할 수도 있고, 좀 더 보완하여 적용할 수도 있음
 - 데이터, 변수, 테크닉 등을 보강하여 새로운 결과 도출 가능

References

- · Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz, T., Shearer, C., & Wirth, R. (2000). CRISP-DM 1.0 Step-by-step data mining guide.
- · 9 laws of data mining. http://khabaza.codimension.net/index_files/9laws.htm