

# Transformation-based Learning for Semantic Parsing

F. Jurcicek, M. Gasic, S. Keizer, F. Mairesse, B. Thomson, K. Yu, S. Young

Cambridge University Engineering Department | {fj228, mg436, sk561, f.mairesse, brmt2, ky219, sjy}@eng.cam.ac.uk

#### **Goals & Motivation**

- Develop a fast semantic decoder for dialogue systems
- Capability to parse 10 100 ASR hypotheses in real time
- Robust to speech recognition noise
- Semantic parsing maps natural language to formal language
- In current dialogue systems, most of the mapping is fairly simple (cities, times, ...)

| what are the | lowes | t airfares from Washington to Boston |
|--------------|-------|--------------------------------------|
| GOAL         | =     | airfare                              |
| airfare.type | =     | lowest                               |
| from.city    | =     | Washington                           |
| to.city      | =     | Boston                               |

 Transformation based – error driven learning was shown to be efficient and fast on this type of task

#### **Transformations**

| Triggers           | Transformations                               |
|--------------------|-----------------------------------------------|
| "Seattle"          | add the slot "to.city=Seattle"                |
| "connecting"       | replace the slot "to.city=*" by "stop.city=*" |
| "from * Francisco" | delete the slot "toloc.city=San Francisco"    |

# Example of parsing

find all flights between Toronto and San Diego that arrive on Saturday

1. Parser assigns initial semantics to input sentence

2. Rules are sequentially applied, whenever a trigger matches the sentence and the hypothesised semantics

| <u>#</u> | Trigger           | Transformation                        |
|----------|-------------------|---------------------------------------|
| 1        | "between Toronto" | add the slot "from.city=Toronto"      |
| 2        | "and San Diego"   | add the slot "to.city=Sand Diego"     |
| 3        | "Saturday"        | add the slot "departure.day=Saturday" |
|          |                   |                                       |
|          | COAI              | fliabt                                |





#### 3. Rules can correct previous errors

arrive.day

| # Trigger<br>4 "arrive" |                        | Transformation |                                                          |  |  |
|-------------------------|------------------------|----------------|----------------------------------------------------------|--|--|
|                         |                        | •              | replace the slot "departure.day=*" by<br>"arrival.day=*" |  |  |
|                         | GOAL from.city to.city | =              | flight                                                   |  |  |
|                         | from.city              | =              | Toronto                                                  |  |  |
|                         | to.city                | =              | San Diego                                                |  |  |

Saturday

### Learning



- On average 1 million rules is tested in each iteration
- Training takes about 24 hours on an Intel Pentium 2.8 GHz

# Efficiency

 Inferred list of rules is very small for domains such as ATIS or TownInfo

| Dataset  | # of inferred rules | concepts | # of rules/concepts |
|----------|---------------------|----------|---------------------|
| ATIS     | 372                 | 83       | 4.5                 |
| TownInfo | 195                 | 28       | 6.9                 |

- Average number of semantic concepts in a sentence is 5
- Python implementation of the parser needs 6ms per sentence

#### Evaluation

**Compare TBL Semantic Parser with:** 

- A handcrafted Phoenix grammar
- The Hidden Vector State model (He & Young, 2006)
- Probabilistic Combinatory Categorial Grammar Induction (Zettlemoyer & Collins, 2007)
- Markov Logic networks (Meza-Ruiz et al., 2008)
- Semantic Tuple Classifiers (Mairesse et al., 2008)

Evaluation metrics used are precision, recall and F-measure of dialogue act items (e.g. food=Chinese, toloc.city=New York)

| Semantic decoder              | Item                   | Item   | Item |  |
|-------------------------------|------------------------|--------|------|--|
|                               | precision              | recall | F    |  |
| ATIS dataset with transcribed | utterances:            |        |      |  |
| Semantic Tuple Classifiers    | 96.7                   | 92.4   | 94.5 |  |
| Hidden Vector State           |                        |        | 90.3 |  |
| PCCG Induction                | 95.1                   | 96.7   | 95.9 |  |
| Markov Logic Networks         | 93.4                   | 89.8   | 91.6 |  |
| TBL Semantic Parser           | 96.4                   | 95.1   | 95.7 |  |
|                               |                        |        |      |  |
| TownInfo dataset with transci | ranscribed utterances: |        |      |  |
| Semantic Tuple Classifiers    | 97.4                   | 94.0   | 95.7 |  |
| Phoenix grammar               | 96.3                   | 94.2   | 95.3 |  |
| TBL Semantic Parser           | 92.7                   | 94.7   | 95.4 |  |
|                               |                        |        |      |  |
| TownInfo dataset with ASR or  | utput:                 |        |      |  |
| Semantic Tuple Classifiers    | 94.0                   | 83.7   | 88.6 |  |
| Phoenix grammar               | 90.3                   | 79.5   | 85.5 |  |
| TBL Semantic Parser           | 92.7                   | 83.4   | 87.8 |  |

Conclusion: TBL Semantic Parser is robust to noise and competitive with the state of the art.

## Open source

The code is available at <a href="http://code.google.com/p/tbed-parser">http://code.google.com/p/tbed-parser</a>

# Acknowledgements

This research was partly funded by the UK EPSRC under grant agreement EP/F013930/1 and by the EU FP7 Programme under grant agreement 216594 (CLASSiC project: www.classic-project.org).

