Objectif. Déterminer si des droites sont sécantes, si des points sont alignés

Exercice 1. Soit A = (1; 2), B = (3; 1), C = (-4; 4) et D = (6; -1).

- 1. Montrer que (AB) et (CD) sont parallèles
- 2. Les points A, B et C sont ils alignés ?

Exercice 2. Déterminer si les couples de droites suivantes sont sécantes, parallèles, ou confondues.

- a) 2x 3y + 1 = 0 et 3x + 5y 1 = 0
- b) -2y + 3 = 0 et 6x + 8 = 0
- c) -2x + y = 0 et 6x 3y + 4 = 0
- d) -x + 3y + 1 = 0 et 2x 6y 2 = 0

Exercice 3. Pour quelle valeur de m la droite (d) d'équation mx - 3y + 2 = 0 est-elle parallèle à la droite (Δ) d'équation 3x - 2y + 4 = 0?

Objectif. Déterminer une équation cartésienne d'une droite.

Exercice 4. Déterminer une équation cartésienne de la droite :

- a) Passant par C=(0;0), de vecteur directeur $\vec{u}=\begin{pmatrix}1\\-1\end{pmatrix}$
- b) Passant par D=(1;-2), de vecteur directeur $\vec{v}=\begin{pmatrix}3\\1\end{pmatrix}$
- c) Passant par A = (5, 1) et B = (10, 3)

Objectif. Déterminer l'intersection de deux droites.

Exercice 5. Résoudre les systèmes suivants.

(A):
$$\begin{cases} 2x - 3y + 1 = 0 \\ -3x + 4y - 2 = 0 \end{cases}$$
 (B):
$$\begin{cases} 3x - y = 1 \\ -2x + 3y = 2 \end{cases}$$
 (C):
$$\begin{cases} -2x + 5y = 0 \\ 3x - 4y = -1 \end{cases}$$
 (D):
$$\begin{cases} -4x = -3y + 2 \\ 2x - 3 = 5y \end{cases}$$

Exercice 6. Dans chaque cas, déterminer l'intersection des deux droites.

(A):
$$2x - 3y - 1 = 0$$
 et $-4x + 3y + 2 = 0$

(B):
$$2x - 2y + 2 = 0$$
 et $-3x + 3y - 2 = 0$

(C):
$$-6x + 4y + 2 = 0$$
 et $x + 3y - 3 = 0$

Exercice 7. Soit (d_1) , (d_2) et (d_3) trois droites d'équations cartésiennes :

$$(d_1): x + 4y + 1 = 0$$

$$(d_2)$$
: $-x + y - 1 = 0$

$$(d_3): mx + (-5m - 3)y + m = 0$$

1. Montrer que (d_1) et (d_2) sont sécantes

- 2. Calculer le point d'intersection de (d_1) et (d_2)
- 3. En déduire la valeur du paramètre m pour que les trois droites soient concourantes.

Objectif. Déterminer l'équation d'un cercle

Exercice 8. Dans chaque cas, indiquer le centre Ω et le rayon R du cercle défini par l'équation donnée

a)
$$(x-5)^2 + (y-2)^2 = 16$$

b)
$$(x-4)^2 + (y+3)^2 = 9$$

c)
$$x^2 + y^2 - 8 = 0$$

d)
$$4(x-2)^2 + 4(y-1)^2 = 9$$

Exercice 9.

- Donner une équation du cercle de centre
 (-1; -2) et de rayon 2
- 2. Donner une équation du cercle de centre (2;0) et de rayon $\sqrt{3}$
- 3. Donner une équation du cercle de centre $\left(-\frac{3}{2}; \frac{1}{4}\right)$ et de rayon $\frac{5}{2}$
- 4. Avec C = (-2; 3), déterminer l'ensemble des points M tels que CM = 2.

Exercice 10.

- 1. Soit A = (-3, 1) et B = (2, 5)
- a) Déterminer les coordonnées du milieu M de [AB].
- b) Calculer la longueur AM.
- c) Donner une équation du cercle de diamètre [AB].
- 2. Déterminer une équation du cercle de diamètre [CD] où C = (-2, -3) et D = (4, 5).

Objectif. Reconnaitre l'équation d'un cercle

Exercice 11. Soit l'ensemble des points vérifiant (E): $x^2 - 3x + y^2 + y - 2 = 0$

- 1. Justifier que cet ensemble est l'équation d'un cercle.
- 2. Préciser les coordonnées du centre et le rayon de ce cercle.
- 3. Déterminer si les points C = (1; -2) et D = (0; -1) appartiennent à ce cercle.

Exercice 12. Dans chacun des cas suivants, déterminer le centre et le rayon du cercle si l'équation donnée correspond bien à un cercle.

(A):
$$x^2 + 3x + y^2 - 4y = 0$$

(B):
$$x^2 - x + y^2 - 3y + 1 = 0$$

(C):
$$x^2 + 8x + y^2 + 3y + 16 = 0$$

(D):
$$x^2 + 6x + y^2 - 4y + 14 = 0$$

Exercices. Géométrie repérée - 1

Objectif. Calculer des intersections

Exercice 13. Dans chacun des cas suivants, on donne les équations d'un cercle et d'une droite. Déterminer les coordonnées de leurs points d'intersection quand ils existent.

- a) Le cercle d'équation $x^2 3x + y^2 + y 16 = 0$ et la droite d'équation y = -4
- b) Le cercle de centre (2; 3), de rayon $3\sqrt{2}$ et la droite d'équation x = -1
- c) Le cercle de centre (0; 0), de rayon 2 et la droite d'équation y = 3

Exercice 14. Soit \mathcal{C} le cercle de centre A = (6; -1) et de rayon 10. Soit \mathcal{C}' le cercle de centre B = (0; -4) et de rayon 5.

- 1. Déterminer les équations cartésiennes de ces deux cercles.
- 2. Donner le système vérifié par les points (x; y) qui appartiennent aux deux cercles.
- 3. Résoudre ce système.
- 4. En déduire les coordonnées des deux points d'intersection de ces cercles.

Objectif. Calculer des intersections

Exercice 13. Dans chacun des cas suivants, on donne les équations d'un cercle et d'une droite. Déterminer les coordonnées de leurs points d'intersection quand ils existent.

- a) Le cercle d'équation $x^2 3x + y^2 + y 16 = 0$ et la droite d'équation y = -4
- b) Le cercle de centre (2; 3), de rayon $3\sqrt{2}$ et la droite d'équation x = -1
- c) Le cercle de centre (0; 0), de rayon 2 et la droite d'équation y = 3

Exercice 14. Soit \mathcal{C} le cercle de centre A = (6; -1) et de rayon 10. Soit \mathcal{C}' le cercle de centre B = (0; -4) et de rayon 5.

- 1. Déterminer les équations cartésiennes de ces deux cercles.
- 2. Donner le système vérifié par les points (x; y) qui appartiennent aux deux cercles.
- 3. Résoudre ce système.
- 4. En déduire les coordonnées des deux points d'intersection de ces cercles.

Objectif. Calculer des intersections

Exercice 13. Dans chacun des cas suivants, on donne les équations d'un cercle et d'une droite. Déterminer les coordonnées de leurs points d'intersection quand ils existent.

- a) Le cercle d'équation $x^2 3x + y^2 + y 16 = 0$ et la droite d'équation y = -4
- b) Le cercle de centre (2; 3), de rayon $3\sqrt{2}$ et la droite d'équation x = -1
- c) Le cercle de centre (0; 0), de rayon 2 et la droite d'équation y = 3

Exercice 14. Soit \mathcal{C} le cercle de centre A = (6; -1) et de rayon 10. Soit \mathcal{C}' le cercle de centre B = (0; -4) et de rayon 5.

- 1. Déterminer les équations cartésiennes de ces deux cercles.
- 2. Donner le système vérifié par les points (x; y) qui appartiennent aux deux cercles.
- 3. Résoudre ce système.
- 4. En déduire les coordonnées des deux points d'intersection de ces cercles.

Objectif. Calculer des intersections

Exercice 13. Dans chacun des cas suivants, on donne les équations d'un cercle et d'une droite. Déterminer les coordonnées de leurs points d'intersection guand ils existent.

- a) Le cercle d'équation $x^2 3x + y^2 + y 16 = 0$ et la droite d'équation y = -4
- b) Le cercle de centre (2; 3), de rayon $3\sqrt{2}$ et la droite d'équation x = -1
- c) Le cercle de centre (0; 0), de rayon 2 et la droite d'équation y = 3

Exercice 14. Soit \mathcal{C} le cercle de centre A = (6; -1) et de rayon 10. Soit \mathcal{C}' le cercle de centre B = (0; -4) et de rayon 5.

- 1. Déterminer les équations cartésiennes de ces deux cercles.
- 2. Donner le système vérifié par les points (x; y) qui appartiennent aux deux cercles.
- 3. Résoudre ce système.
- 4. En déduire les coordonnées des deux points d'intersection de ces cercles.