Math 312 Final Study Guide

Alisa Liu

April 2018

1. The Integers

• The Well-Ordering Principle: Every non-empty subset $S \in \mathbb{Z}$ of the positive integers contains a least element.

2. Mathematical Induction

- Weak induction
 - Base case: Let n = m. Show that the theorem is true in this case.
 - Inductive hypothesis: Suppose the theorem is true for some $n \geq m$.
 - Inductive step: Show that the theorem is true for n+1.
 - Therefore by mathematical induction, the theorem is true for all $\mathbb{Z}_{\geq m}$.
- Strong induction
 - Base case: Let $n = m_1, ..., m_k$. Show that the theorem is true in this case.
 - Inductive hypothesis: Let $n \geq m_k$ and suppose that the theorem is true for all integers $m_1, ..., n$.
 - Inductive step: Show that the theorem is true for n+1.
 - Therefore by mathematical induction, the theorem is true for all $\mathbb{Z}_{\geq m}$.

3. Divisibility

- Let $a, b \in \mathbb{Z}$. Then a divides b, denoted $a \mid b$, if there exists $c \in \mathbb{Z}$ such that $b = a \cdot c$.
- Division Algorithm: Let $n, a \in \mathbb{Z}$ with a > 0. Then there exists unique $q, r \in \mathbb{Z}$ such that

$$n = q \cdot a + r \quad 0 \le r \le a$$

- Theorems
 - Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.
 - Let $a, b, c, m, n \in \mathbb{Z}$. If $c \mid a$ and $c \mid b$ then $c \mid ma + nb$.

4. Representation of Integers

- Theorems
 - Let $b \ge 2$ be an integer. Then every positive integer n can be uniquely written in base b. More precisely,

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 + a_0$$
 with $a_k \neq 0$, $0 \le a_i < b$ for $i = 0, \dots k$

We denote n in base b by $a_k a_{k-1} ... a_1 a_0$.

5. The Greatest Common Divisor

- Let $a, b \in \mathbb{Z}$ not both 0. The **greatest common divisor** of a and b is the largest positive integer d such that $d \mid a$ and $d \mid b$. When gcd(a, b) = 1, a and b are coprime.
- Theorems
 - Let $a, b \in \mathbb{Z}$ not both zero. Then gcd(a, b) is the smallest positive integral linear combination of a and b. That is, the smallest positive integer of the form

$$ma + nb$$
 where $m, n \in \mathbb{Z}$

- If gcd(a, b) = 1, then ma + nb = 1 for some $m, n \in \mathbb{Z}$.
- Every common divisor of a and b divides gcd(a, b).
- Let $d = \gcd(a, b)$. Then $\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1$.
- Let $a_1, ... a_n \in \mathbb{Z}$ not all 0. The greatest common divisor is the largest positive integer dividing all the a_i . When $\gcd(a_1, ..., a_n) = 1$, the a_i are coprime, and if $\gcd(a_i, a_j) = 1$ for all $i \neq j$, then they are pairwise coprime.
 - Generalization from theorem above: Every common divisor of all the a_i divides $gcd(a_1,...,a_k)$.

6. The Euclidean Algorithm

• The Euclidean Algorithm: Let $a, b \in \mathbb{Z}$ with $a \geq b > 0$. By the Division Algorithm, there exist $q_1, r_1 \in \mathbb{Z}$ such that

$$a = bq_1 + r_1 \quad 0 \le r_1 < b$$

While $r_i > 0$, continue

$$b = r_1 q_2 + r_2 \quad 0 \le r_2 < r_1$$

$$r_1 = r_2 q_3 + r_3 \quad 0 \le r_3 < r_2$$

:

Continue until $r_n = 0$ for some n. If n = 1, then gcd(a, b) = b. If n > 1, then $gcd(a, b) = r_{n-1}$. This follows from

$$gcd(a,b) = gcd(b,r_1) = gcd(r_1,r_2) = \dots = gcd(r_{n-2},r_{n-1}) = gcd(r_{n-1},0) = r_{n-1}$$

• Back substitution allows us to find $m, n \in \mathbb{Z}$ such that gcd(a, b) = ma + nb.

7. Prime Numbers

• Euclid's Theorem: There are infinitely many prime numbers.

Proof. Let $p_1, ..., p_k$ be any finite list of primes. Then consider

$$Q = p_1 \cdots p_k + 1$$

Since Q > 1, it has a prime divisor. However, Q is not divisible by any of the p_i , since $Q \equiv 1 \pmod{p_i}$ for any i. Thus our list of primes is incomplete.

- Theorems
 - Every integer n > 1 has a prime divisor.
 - **Dirichlet Density Theorem**: Let $a, b \in \mathbb{Z}$ satisfy gcd(a, b) = 1. Then there are infinitely many primes of the form a + bk with $k \in \mathbb{Z}$.
 - Let n be composite. Then n has a prime divisor $p \leq \sqrt{n}$. In particular, we only need to test the divisibility of n by all primes up to \sqrt{n} to tell whether n is prime.

8. The Fundamental Theorem of Arithmetic

• The Fundamental Theorem of Arithmetic: Let $n \in \mathbb{Z}_{>2}$. Then n has a prime factorization of the form

$$n = \pm p_1^{a_1} \cdots p_r^{a_r} \quad a_i \ge 1$$

where p_i are distinct primes. Up to the order of the p_i , this factorization is unique.

- Theorems
 - Let $a, b \in \mathbb{Z}_{>0}$ satisfy gcd(a, b) = 1. If $a \mid bc$, then $a \mid c$.
 - Let $a_1, ..., a_n, p$ be integers with p prime. If $p \mid a_1 \cdots a_n$, then $p \mid a_i$ for some i.
 - Let $n \in \mathbb{Z}_{\geq 2}$ have a prime factorization $n = p_1^{a_1} \cdots p_n^{a_n}$. Suppose that $d \mid n$. Then the prime factorization of d is of the form

$$d = p_1^{b_1} \cdots p_n^{b_n}$$
 with $0 \le b_i \le a_i$

9. The Least Common Multiple

- Let $a_1, ... a_n \in \mathbb{Z}_{>0}$. The **least common multiple** of $a_1, ..., a_n$ is the smallest positive integer that is divisible by all of the a_i .
- Theorems
 - Let $a, ..., a_n \in \mathbb{Z}_{>0}$ have prime decompositions

$$a_1 = p_1^{s_{1,1}} \cdots p_k^{s_{1,k}} \quad \text{with} \quad s_{1,1}, \dots, s_{1,n} \ge 0$$

$$\vdots$$

$$a_n = p_1^{s_{n,1}} \cdots p_k^{s_{n,k}} \quad \text{with} \quad s_{n,1}, \dots s_{n,k} \ge 0$$

$$\gcd(a_1, \dots, a_n) = p_1^{\min\{s_{1,1}, \dots, s_{n,1}\}} \cdots p_n^{\min\{s_{1,k}, \dots, s_{n,k}\}}$$

$$\gcd(a_1, \dots, a_n) = p_1^{\max\{s_{1,1}, \dots, s_{n,1}\}} \cdots p_n^{\max\{s_{1,k}, \dots, s_{n,k}\}}$$

Then

For n=2,

$$a_1 \cdot a_2 = \gcd(a_1, a_2) \cdot \operatorname{lcm}(a_1, a_2)$$

- Let $a_1, ..., a_n \in \mathbb{Z}$. Then $lcm(a_1, ..., a_n) = lcm(a_1, lcm(a_2, ..., a_n))$.
- Every common multiple of $a_1, ..., a_n$ is a multiple of $lcm(a_1, ..., a_n)$. That is, if $k \in \mathbb{Z}$ such that $a_i \mid k$ for all i, then $lcm(a_1, ..., a_n) \mid k$.
- Let $a_1, ..., a_n \in \mathbb{Z}$ be pairwise coprime. Then $lcm(a_1, ..., a_n) = a_1 \cdots a_n$.
- Let a, b be pairwise coprime integers. If $d \mid ab$, then there are unique integers $d_1 \mid a$ and $d_2 \mid b$ such that $d = d_1 d_2$. Conversely, any such product is a divisor of ab.

10. Primes of the Form 4k + 3

• **Proposition**: There are infinitely many primes of the form 4k + 3.

Proof. Suppose any finite list of primes of the form 4k + 3, and denote them $p_0 = 3, p_1, p_2, ..., p_n$ and consider the number

$$Q = 4p_1 \cdots p_n + 3$$

Since Q is odd, the prime factorization of Q contains only odd primes. Further, it must be of the form 4k + 1 or 4k + 3. However, if all the primes in its factorization is of the form 4k + 1, then Q is also of the form 4k + 1. Here, Q is of the form 4k + 3, so there is at least one prime factor of Q which is of the form 4k + 3.

Let $p \mid Q$ be of the form 4k + 3. Notice that $p \neq p_0 = 3$, since $3 \nmid Q - 3 = 4p_1 \cdots p_n$. Also, $p \neq p_i$ for any $1 \leq i \leq n$, since $p_i \nmid Q - 4p_1 \cdots p_n = 3$. Thus p is not one of $p_0, p_1, \dots p_n$, and our list of primes of the form 4k + 3 is incomplete.

- Lemmas
 - Let n be an integer. Then n is of the form 4k, 4k+1, 4k+2 or 4k+3 for $k \in \mathbb{Z}$.
 - Let $a, b \in \mathbb{Z}$ of the form 4k + 1. Then ab is also of the form 4k + 1.

11. Linear Diophantine Equations

• Any equation with one or more variable to be solved in the integers is called a **Diophantine equation**. Let $a_1, ..., a_n \in \mathbb{Z}$. A linear Diophantine equation in n variables has the form

$$a_1x_1 + \dots + a_nx_n = b$$
 with $b \in \mathbb{Z}$

• **Theorem**: Let $a, b, c \in \mathbb{Z}$ with $a, b \neq 0$. Write $d = \gcd(a, b)$. Consider the equation

$$ax + by = c$$

- (i) If $d \nmid c$ then there are no solutions.
- (ii) Suppose $d \mid c$. Then all solutions are given by the formulas

$$x = x_0 + \frac{b}{d}t$$
, $y = y_0 - \frac{a}{d}t$ with $t \in \mathbb{Z}$

where (x_0, y_0) is a particular solution.

Note. We can find the particular solution in part (ii) by applying the Euclidean Algorithm and back substitution.

12. Irrational Numbers

- A real number $x \in \mathbb{R}$ is **irrational** if $x \notin \mathbb{Q}$.
- Theorems
 - The number $\sqrt{2}$ is irrational.

Proof. Suppose for contradiction that $\sqrt{2}$ is rational. Then $\sqrt{2} = \frac{a}{b}$ with a, b coprime positive integers.

$$\sqrt{2} = \frac{a}{b} \quad \Rightarrow \quad 2b^2 = a^2 \quad \Rightarrow \quad 2 \mid a$$

because 2 is a prime dividing $a^2 = a \cdot a$, it divides one of the factors. Therefore, a = 2k for some $k \in \mathbb{Z}$. Then

$$2b^2 = a^2 = (2k)^2 \quad \Rightarrow \quad b^2 = 2k^2 \quad \Rightarrow \quad 2 \mid b$$

So both a, b are divisible by 2, contradicting the fact that gcd(a, b) = 1.

- Let $f(x) = x^n + c_{n-1}x^{n-1} + ... + c_1x + c_0$ be a polynomial with coefficients $c_i \in \mathbb{Z}$. Suppose that the real number α satisfies $f(\alpha) = 0$. Then α is either an integer or irrational.
- Let $a, m \in \mathbb{Z}_{>0}$ satisfy $a \neq k^m$ for $k \in \mathbb{Z}$ so that the real number $\sqrt[m]{a}$ is not an integer. Then $\sqrt[m]{a}$ is irrational.

13. Congruences

- Let $a, b, m \in \mathbb{Z}$ with m > 0. Then a is **congruent** to b modulo m iff $m \mid a b$. We write $a \equiv b \pmod{m}$.
- The congruence class of $a \mod m$ is

$$[a] = \{ x \in \mathbb{Z} : x \equiv a \pmod{m} \}$$

• A set $S \subset \mathbb{Z}$ such that every integer is congruent mod m to exactly one integer in S is a **complete residue** system mod m.

4

• We define $\mathbb{Z}/m\mathbb{Z}$, the integers mod m, to be the set of congruence classes mod m

$$\frac{\mathbb{Z}}{m\mathbb{Z}} = \{[0], [1], ..., [m-1]\}$$

- We define the arithmetic operations in $\mathbb{Z}/m\mathbb{Z}$ as follows. Let $[r], [s] \in \mathbb{Z}$ and $\lambda \in \mathbb{Z}$.
 - Addition: [r] + [s] = [r + s]
 - Multiplication: $[r] \cdot [s] = [r \cdot s]$
 - Multiplication by scalar: $\lambda \cdot [r] = [\lambda \cdot r]$
- Theorems
 - Let $m \in \mathbb{Z}_{>0}$. Then the relation of congruence modulo m is an equivalence relation in \mathbb{Z} . More precisely, for all $a, b, c, c \in \mathbb{Z}$, we have
 - (i) $a \equiv a \pmod{m}$ (reflexivity)
 - (ii) $a \equiv b \pmod{m} \Rightarrow b \equiv a \pmod{m}$ (symmetry)
 - (iii) $a \equiv b, b \equiv c \pmod{m} \implies a \equiv c \pmod{m}$ (transitivity)
 - Let $a, m \in \mathbb{Z}$ with m > 0. Then $a \equiv r \pmod{m}$, where r is the remainder of the division of a by m. In particular, a is congruent to exactly one integer in $\{0, 1, 2, ..., m 1\}$.
 - Let $a, b, m \in \mathbb{Z}$ with m > 0. If $a \equiv b \pmod{m}$ and $0 \le a, b \le m 1$, then a = b.
 - Let $m \in \mathbb{Z}_{>0}$. Suppose $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Then
 - (i) $a + c \equiv b + d \pmod{m}$
 - (ii) $a c \equiv b d \pmod{m}$
 - (iii) $ac \equiv bd \pmod{m}$
 - Let $a, b, c, m \in \mathbb{Z}$ with m > 0 and $c \neq 0$. Write $d = \gcd(c, m)$. Then

$$c \cdot a \equiv c \cdot b \pmod{m} \Leftrightarrow a \equiv b \pmod{\frac{m}{d}}$$

In particular, only if $d = \gcd(c, m) = 1$, then

$$c \cdot a \equiv c \cdot b \pmod{m} \Leftrightarrow a \equiv b \pmod{m}$$

14. Fast Modular Exponentiation

- Steps to compute $a^k \pmod{m}$
 - Step 1: Write the exponent in base 2.

$$k = 2^{s_1} + \dots + 2^{s_n}$$
 $r_1 > \dots > r_n$

- Step 2: Compute

$$a \pmod{m}$$
, $a^2 \pmod{m}$, ..., $a^{2^{s_1}} \pmod{m}$

by successfully squaring and reducing the result modulo m.

- Step 3: Compute

$$a^k = a^{2^{s_1} + \dots + 2^{s_n}} \equiv a^{2^{s_1}} \dots a^{2^{a_n}} \pmod{m}$$

using the values in step 2 for the right hand side.

15. The Congruence Method

- The congruence method is used to conclude that certain Diophantine equations have no solutions in \mathbb{Z} . If an equation is satisfied in \mathbb{Z} , then it must be satisfied mod m for all m > 0. If we can find a value of m for which it is not satisfied, then we can conclude that there are no slutions in \mathbb{Z} .
- Outline
 - Suppose for contradiction that there are x, y satisfying the Diophantine equation

$$ax^k + by^r = c$$

- Since every integer is congruent to itself, for all integers m > 0, we have

$$ax^k + by^r \equiv c \pmod{m}$$

- In particular, taking m = a, we have

$$by^r \equiv c \pmod{a}$$

- Now, $y \equiv 0, ...,$ or $a - 1 \pmod{a}$. Then we obtain

$$b[0]^r \equiv c_0 \pmod{a}$$

:

$$b[a-1]^r \equiv c_{a-1} \pmod{a}$$

where none of $c_0, ..., c_{a-1}$ are congruent to $c \mod a$. Thus

$$by^r \not\equiv c \pmod{a}$$

and the integer solution x, y cannot exist, otherwise y satisfies an impossible congruence.

16. Linear Congruences in One Variable

• Theorem: Let $a, b, m \in \mathbb{Z}$ with m > 0. Write $d = \gcd(a, m)$. Consider the equation

$$ax \equiv b \pmod{m}$$

- (i) If $d \nmid b$ then there are no solutions.
- (ii) Suppose $d \mid b$. Then there are exactly d non-congruent solutions mod m, which are given by

$$x \equiv x_0 - \frac{m}{d}t$$
 where $0 \le t \le d - 1$

and x_0 is a particular solution.

Proof. This comes fairly directly from reading $ax \equiv b \pmod{m}$ as ax - my = b, which was treated in chapter 11.

- Let $a, m \in \mathbb{Z}$ with m > 0 and gcd(a, m) = 1. Any integer solution of the congruence $ax \equiv 1 \pmod{m}$ is an **inverse** of a modulo m. The congruence class $[x_0]$ in $\mathbb{Z}/m\mathbb{Z}$ which satisfies $[a] \cdot [x_0] = [1]$ is called the inverse of [a] in $\mathbb{Z}/m\mathbb{Z}$. We write $a^{-1} \pmod{m}$ to denote the smallest positive representative of the congruence class $[a]^{-1}$.
- To compute $a^{-1} \pmod{m}$, we can try the numbers 1, ..., m-1 or solve the linear Diophantine equation ax + my = 1 using the Euclidean Algorithm and back substitution.
- Propositions
 - The congruence equation $ax \equiv 1 \pmod{m}$ has exactly one solution mod m iff gcd(a, m) = 1.
 - Let $k \in \mathbb{Z}_{>0}$. Then $(a^k)^{-1} \equiv (a^{-1})^k \pmod{m}$.

17. The Chinese Remainder Theorem

• Chinese Remainder Theorem: Let $n_1,...,n_k \in \mathbb{Z}_{>0}$ be pairwise coprime and $b_1,...,b_k \in \mathbb{Z}$. Consider the system of congruences

$$\begin{cases} x \equiv b_1 \pmod{n_1} \\ \vdots \\ x \equiv b_k \pmod{n_k} \end{cases}$$

Write $m = n_1 \cdots n_k$. Then there is a unique solution mod m. Define $m_i = \frac{m}{n_i}$. Then the solution is given by

$$x = b_1 m_1 y_1 + \dots + b_k m_k y_k \pmod{m}$$

where y_i is chosen so that $m_i y_1 \equiv 1 \pmod{n_i}$. This y_i exists because $\gcd(m_i, n_i) = 1$.

- Propositions
 - Let $a, b, m, n \in \mathbb{Z}$ with m, n > 0 and $n \mid m$. If $a \equiv b \pmod{m}$, then $a \equiv b \pmod{n}$.
 - If $b_1 = ... = b_k = 1$, then $x \equiv 1 \pmod{m}$. If $b_1 = ... = b_k = -1$, then $x \equiv -1 \pmod{m}$.
- <u>Problem</u> (computing inverses): Say we want to find $a^{-1} \pmod{m}$, which means solving $ax \equiv 1 \pmod{m}$. If m is composite such that $m = n_1 \cdots n_k$ with $\gcd(n_1, ..., n_k) = 1$, then any solution to this congruence will also

$$\begin{cases} ax \equiv 1 \pmod{n_1} \\ \vdots \\ ax \equiv 1 \pmod{n_k} \end{cases}$$

We compute $a^{-1} \pmod{n_i}$ more easily by reducing each equation mod n_i .

$$\begin{cases} x \equiv a^{-1} \pmod{n_1} \\ \vdots \\ x \equiv a^{-1} \pmod{n_k} \end{cases}$$

Now solve using CRT.

• Problem (fast modular exponentiation): Apply the same method to find $a^k \pmod{m}$, with $m = n_1 \cdots n_k$ and $\gcd(n_1, ..., n_k) = 1.$

18. Applications of Congruences

- Divisibility test theorems
 - Let $n \in \mathbb{Z}_{>0}$. Then n is divisible by 3 or 9 iff the sum of its digits is divisible by 3 or 9, respectively.

Proof. Let q = 3 or q = 9. We have

$$10 \equiv 1 \pmod{q} \quad \Rightarrow \quad 10^k \equiv 1 \pmod{q} \quad \text{for all } k > 0$$

$$n = a_k 10^k + \dots + a_1 10 + a_0 \quad a_k \neq 0$$

$$\equiv a_k + \dots + a_1 + a_0 \pmod{q}$$

$$q \mid n \quad \Leftrightarrow \quad n \equiv 0 \pmod{q} \quad \Leftrightarrow \quad a_k + \dots + a_1 + a_0 \equiv 0 \pmod{q} \quad \Leftrightarrow \quad q \mid a_k + \dots + a_1 + a_0$$

-n is divisible by 11 iff the alternating sum of its digits is divisible by 11.

Proof.

$$10 \equiv -1 \pmod{11} \implies 10^k \equiv (-1)^k \pmod{11} \quad \text{for all } k > 0$$

$$n = a_k 10^k + a_{k-1} 10^{k-1} + \dots + a_2 10^2 + a_1 10 + a_0 \quad a_k \neq 0$$

$$\equiv a_k (-1)^k + a_{k-1} (-1)^{k-1} + \dots + a_2 - a_1 + a_0 \pmod{11}$$

$$11 \mid n \iff n \equiv 0 \pmod{11} \iff a_k (-1)^k + a_{k-1} (-1)^{k-1} + \dots + a_2 - a_1 + a_0 \equiv 0 \pmod{11}$$

$$\Leftrightarrow 11 \mid a_k (-1)^k + a_{k-1} (-1)^{k-1} + \dots + a_2 - a_1 + a_0$$

-n is divisible by 2^m iff the integer obtained from the last m digits of n is divisible by 2^m .

Proof.

$$10 \equiv 0 \pmod{2} \quad \Rightarrow \quad 10^m \equiv 0 \pmod{2^m}$$
$$n = a_k 10^k + \dots + a_1 10 + a_0 \equiv a_{m-1} 10^{m-1} + \dots + a_1 10 + a_0 \pmod{2^m}$$

The number on the right hand side is just the integer obtained from the last m digits of n.

- The ISBN10 Code
 - An ISBN10 code has 10 digits $a_1, ..., a_{10}$ such that $0 \le a_i \le 9$ for i = 1, ..., 9, and a_{10} is an integer mod 11, where X denotes 10
 - An ISBN10 code is valid if

$$S = \sum_{i=1}^{10} i \cdot a_i \equiv 0 \pmod{11}$$

- Let $a_1, ..., a_9$ be integers such that $0 \le a_i \le 9$ for i = 1, ..., 9. Take

$$a_{10} = \sum_{i=1}^{9} i \cdot a_i \equiv 0 \pmod{11}$$

Then $a_1 \cdots a_{10}$ is a valid ISBN10 code. That is, we can form an ISBN10 code by choosing 9 digits arbitrarily and calculating the last digit.

- The ISBN10 code detects both single errors and transposition errors.

19. Wilson's Theorem

- Wilson's Theorem: Let p be a prime. Then $(p-1)! \equiv -1 \pmod{p}$.
- Propositions
 - Let $a, p \in \mathbb{Z}$ with p a prime and a invertable mod p. That is, $p \nmid a$. Then $a^2 \equiv 1 \pmod{p}$ iff $a \equiv \pm 1 \pmod{p}$.

20. Fermat's Little Theorem

• Fermat's Little Theorem: Let p be a prime. If $a \in \mathbb{Z}$ satisfies gcd(a,p) = 1, then

$$a^{p-1} \equiv 1 \pmod{p}$$

Proof. Let $a \in \mathbb{Z}$ be coprime to p and consider the sequence of integers

$$a, 2a, 3a, ..., (p-1)a$$

These are all distinct mod p and not congruent to zero mod p (proof omitted), so they form p-1 distinct integers in the interval [1, p-1]. On one hand,

$$a \cdot (2a) \cdot (3a) \cdot \cdots (p-1)a \equiv 1 \cdot 2 \cdot 3 \cdots (p-1) \equiv (p-1)! \pmod{p}$$

On the other hand,

$$a \cdot (2a) \cdot (3a) \cdots (p-1)a \equiv a^{p-1} (1 \cdot 2 \cdot 3 \cdots (p-1)) \equiv a^{p-1} (p-1)! \pmod{p}$$

Together,

$$a^{p-1}(p-1)! \equiv (p-1)! \pmod{p}$$

By Wilson's theorem, we conclude that

$$a^{p-1}(-1) \equiv (-1) \pmod{p} \quad \Leftrightarrow \quad a^{p-1} \equiv 1 \pmod{p}$$

- Propositions
 - Let p be prime, $a \in \mathbb{Z}$. Then $a^p \equiv a \pmod{p}$.
 - Let p be prime and $a \in \mathbb{Z}$ coprime to p. Suppose $d \equiv e \pmod{p-1}$ Then $a^d \equiv a^e \pmod{p}$.
- Problem (fast modular exponentiation): Solve $a^k \pmod{p}$.

Method 1:
$$k \equiv k_0 \pmod{p-1} \implies a^k \equiv a^{k_0} \pmod{p}$$

Method 2:
$$k = (p-1)q + r \implies a^k \equiv (a^{p-1})^q \cdot a^r \equiv 1^q \cdot a^r \equiv a^r \pmod{p}$$

21. Primality Testing, Pseudoprimes, and Charmichael Numbers

- Primality testing
 - Converse of Wilson's Theorem: n is prime iff $(n-1)! \equiv -1 \pmod{n}$.
 - Fermat's Test (contrapositive of FLT): Let $n, b \in \mathbb{Z}_{>1}$ with 1 < b < n. If $b^{n-1} \not\equiv 1 \pmod{n}$, then n is composite. (If $b^{n-1} \equiv 1 \pmod{n}$, then n is prime OR n is a pseudoprime to the base b.)
- If $n \in \mathbb{Z}_{>1}$ is composite and satisfies $b^{n-1} \equiv 1 \pmod{n}$ for some 1 < b < n, then n is a **pseudoprime** to the base b. If this is true for every $b \geq 2$ where $\gcd(n, b) = 1$, then n is a Charmichael number.
- Korset's Theorem: A composite positive integer n is a Charmichael number iff
 - (i) n is square free
 - (ii) If p | n, then p 1 | n 1

22. Euler's φ -function and Euler's Theorem

• The Euler φ -function is the function $\varphi: \mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ defined by

$$\varphi(n) = \#\{x \in \mathbb{Z} : 1 \le x \le n \text{ and } \gcd(x, n) = 1\}$$

It counts the number of positive integers up to n that are coprime to n.

• Euler's Theorem: Let $a, m \in \mathbb{Z}$ with m > 0 and gcd(a, m) = 1. Then

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$

Since $\varphi(p) = p - 1$ for any prime p, we can recover FLT directly.

- A set of integers with $\varphi(m)$ elements, no two of which are congruent mod m, and all of which are coprime to m, is a **reduced residue system** mod m.
- Problem (fast modular exponentiation): Solve $a^k \pmod{m}$

$$k = \varphi(m) \cdot q + r$$

$$a^k \equiv a^{\varphi(m)\cdot q+r} \equiv \left(a^{\varphi(m)}\right)^q \cdot a^r \equiv 1 \cdot a^r \equiv a^r \pmod{m}$$

23. Arithmetic Functions

- A function whose domain is $\mathbb{Z}_{>0}$ is an arithmetic function.
- Let f be an arithmetic function. Then f is **multiplicative** if, for all $n_1, n_2 \in \mathbb{Z}_{>0}$ satisfying $gcd(n_1, n_2) = 1$, we have

$$f(n_1 \cdot n_2) = f(n_1) \cdot f(n_2)$$

And f is **completely multiplicative** if this is true for all n_1, n_2 .

• Define

$$\varphi(n) = \# \text{ of coprime numbers } \leq n$$

$$\tau(n) = \sum_{\substack{d \mid n \\ d > 0}} 1 = \# \text{ positive divisors of } n$$

$$\sigma(n) = \sum_{\substack{d \mid n \\ d > 0}} d = \text{sum of positive divisors of } n$$

• Theorem: Let f be an arithmetic function and define the arithmetic function F by

$$F(n) = \sum_{\substack{d \mid n \\ d > 0}} f(d) \quad \forall n \in \mathbb{Z}_{>0}$$

If f is multiplicative, then F is multiplicative.

- Theorems
 - The function $\varphi(n)$ is multiplicative.
 - The functions $\tau(n)$ and $\sigma(n)$ are multiplicative.

Proof. $\tau(n)$ and $\sigma(n)$ are in the form of F where we choose f(n) = 1 and f(n) = n, respectively. These two functions f are multiplicative.

24. Formulas for the Functions φ , τ , σ

• For a multiplicative function f and $n = p_1^{a_1} \cdots p_k^{a_k}$

$$f(n) = f(p_1^{a_1}) \cdots f(p_k^{a_k})$$

So f is completely determined by its values at prime powers. Similarly, a completely multiplicative function f is completely determined by its values at primes.

• Theorems

-n prime

- Let $n \in \mathbb{Z}_{>0}$. Then

- Let $n \in \mathbb{Z}_{>1}$ have factorization $n = p_1^{a_1} \cdots p_k^{a_k}$. Then

of have factorization
$$n=p_1$$
 p_k . Then
$$\varphi(p^a)=p^a-p^{a-1}=p^{a-1}(p-1)$$

$$\varphi(n)=\prod_{i=1}^k p_i^{a_i-1}(p_i-1)$$

$$\tau(p^a)=a+1$$

$$\tau(n)=\prod_{i=1}^k (a_i+1)$$

$$\sigma(p^a)=1+p+\cdots+p^a=\frac{1-p^{a+1}}{1-p}$$

$$\sigma(n)=\prod_{i=1}^k \frac{1-p_i^{a_i+1}}{1-p_i}$$

$$\Leftrightarrow \varphi(n)=p-1 \quad \Leftrightarrow \quad \tau(n)=2 \quad \Leftrightarrow \quad \sigma(n)=n+1$$
 so. Then
$$\sum_{d|n} \varphi(d)=n$$

That is, the sum of the number of divisors of each divisor of n is n.

• Problem: Find all integers n > 0 satisfying $\varphi(n) = m$.

Write

$$n = p_1^{a_1} \cdots p_k^{a_k}$$

$$\varphi(n) = \prod_{i=1}^k p_i^{a_i - 1} (p_i - 1) = m$$

From the formula, we get $p_i - 1 \mid m$ for all i. Thus $p_i - 1 \in \{d : d \mid m\}$, and $p_i \in \{d + 1 : d \mid m, d + 1 \text{ prime}\}$. Now, for each p_i , we devise an upper bound on a_i satisfying $p_i^{a_i - 1} \mid m$. Finally, we try all combinations of the valid a_i to see which give $\varphi(n) = m$.

25. Perfect Numbers and Mersenne Primes

- An integer n > 0 is perfect if $\sigma(n) = 2n$.
- Let n > 1 be an integer. Then $M_n = 2^n 1$ is the n-th **Mersenne number**. If M_n is prime, we call it a **Mersenne prime**.
- Theorems
 - Let $n \in \mathbb{Z}_{>0}$. Then n is an even perfect number iff

$$n = 2^{m-1}(2^m - 1)$$
 with $2^m - 1$ a Mersenne prime

- If M_n is prime, then n is prime.

26. Primitive Roots

- From Euler's theorem, $a^{\varphi(m)} \equiv 1 \pmod{m}$ for any a such that $\gcd(a, m) = 1$. Given m, we are interested in whether there exists an $x < \varphi(m)$ that satisfies $a^x \equiv 1 \pmod{m}$.
- Let $a, m \in \mathbb{Z}$ with m > 0 and $\gcd(a, m) = 1$. The **order** of $a \mod m$, denoted $\operatorname{ord}_m(a)$, is the least positive integer x such that $a^x \equiv 1 \pmod{m}$. That is, $a^{\operatorname{ord}_m(a)} \equiv 1 \pmod{m}$ and $\operatorname{ord}_m(a) \leq \varphi(m)$.
- We say a is a **primitive root** mod m if $\operatorname{ord}_m(a)$ is maximal. That is, $\operatorname{ord}_m(a) = \varphi(m)$.
- Theorems
 - Let $a, m \in \mathbb{Z}$ with m > 0 and gcd(a, m) = 1. An integer $x \in \mathbb{Z}_{>0}$ satisfies $a^x \equiv 1 \pmod{m}$ iff $ord_m(a) \mid x$. In particular, $ord_m(a) \mid \varphi(m)$.
 - For $i, j \in \mathbb{Z}$, we have

$$a^i \equiv a^j \pmod{m} \quad \Leftrightarrow \quad i \equiv j \pmod{\operatorname{ord}_m(a)}$$

For i > 0, we have

$$\operatorname{ord}_m(a^i) = \frac{\operatorname{ord}_m(a)}{\gcd(\operatorname{ord}_m(a), i)}$$

- Let r be a primitive root mod m and $S = \{r, r^2, ..., r^{\varphi(m)}\}$. Then S is a reduced residue system mod m.
- Let m be an integer admitting a primitive root. Then there are $\varphi(\varphi(m))$ non-congruent primitive roots mod m.
- Let $m \in \mathbb{Z}_{>0}$. Suppose m = kn where gcd(k, n) = 1 and $\varphi(k), \varphi(n)$ are even. Then for all $a \in \mathbb{Z}$ coprime to m, we have

$$a^{\frac{\phi(m)}{2}} \equiv 1 \pmod{m}$$

In particular, m admits no primitive roots.

- * If m > 0 is divisible by two different odd primes, then m admits no primitive roots.
- * If $m = 2^a p^b$ with p and odd prime, $a \ge 2, b \ge 1$, then m admits no primitive roots.

- Suppose $m=2^d, d\geq 3$. Then for all $a\in\mathbb{Z}$ coprime to m, we have

$$a^{2^{d-2}} \equiv 1 \pmod{m}$$

In particular, m admits no primitive roots.

- **Primitive Root Theorem**: Let $m \in \mathbb{Z}_{>0}$. Then a primitive root mod m exists iff $m = 1, 2, 4, p^a, 2p^a$, where $a \ge 1$ and p is an odd prime.
- <u>Problem</u>: Determine $\operatorname{ord}_m(a)$. That is, find the smallest x such that $a^x \equiv 1 \pmod{m}$.
 - Find $\varphi(m)$. We know $\operatorname{ord}_m(a) \mid \varphi(m)$ for any a. That is, $\operatorname{ord}_m(a) \in \{\text{factors of } \varphi(m)\}$.
 - For every element $x \in \{\text{factors of } \varphi(m)\}$, compute $a^x \pmod{m}$. If $a^x \equiv 1 \pmod{m}$, then $x = \text{ord}_m(a)$.
- Problem: Find a primitive root mod m. That is, find a number r such that $\operatorname{ord}_m(r) = \varphi(m)$.
 - For every a coprime to m (excluding 1), find $\operatorname{ord}_m a$ using the method above. If $\operatorname{ord}_m a = \phi(a)$, then a is a primitive root.
- Problem: Find all primitive roots mod m.
 - Check if m admits any primitive roots using the primitive root theorem.
 - Use the method above to find one primitive root mod m. Call it r.
 - We know $\{r, r^2, ..., r^{\varphi(m)}\}$ is a reduced residue system mod m, so all primitive roots mod m are congruent to r^i for some $1 \le i \le \varphi(m)$. Any such i must fulfill $\gcd(\varphi(m), i) = 1$. Calculate such i. The primitive roots are all the r^i .

27. Primitive Roots for Primes

- Let p be a prime. Then there exists a primitive root mod p.
- Consider a polynomial $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ with integer coefficients. We call n the **degree** of f and we say that f is **monic** if $a_n 1$. An integer c satisfying $f(c) \equiv 0 \pmod{m}$ is a root of f mod m.
- Theorems
 - Lagrange's Theorem: Let f be a monic polynomial of degree n with integer coefficients. Then f has at most n roots mod p.
 - Let p be a prime. From before, $\operatorname{ord}_p(a) \in \{\text{factors of } p-1\}$ for any integer $a, 1 \leq a \leq p-1$. For each element d in the set, there are $\varphi(d)$ integers a such that $\operatorname{ord}_p(a) = d$. (Every element d is chosen $\varphi(d)$ times.) In particular, there are $\varphi(p-1)$ primitive roots mod p.

28. Index Arithmetic and Discrete Logarithms

- Let r be a primitive root mod m. Recall that the set $\{r, r^2, ..., r^{\varphi(m)}\}$ is a reduced residue system mod m. In particular, for all $a \in \mathbb{Z}$ such that $\gcd(a, m) = 1$, we have $r^i \equiv a \pmod{m}$ for some i in the range $1 \le i \le \varphi(m)$. The smallest such i is the **index** of a relative to r and is denoted $\operatorname{ind}_r(a)$.
- We know that r = 3 is a primitive root mod n = 7. Computing the first two rows of the table allow us to determine all indices relative to $3 \mod 7$.

h	1	2	3	4	5	6
$3^i \pmod{7}$	3	2	6	4	5	1
a	1	2	3	4	5	6

- Theorems
 - Let r be a primitive root mod m. Let $a, b \in \mathbb{Z}$ be coprime to m and $d \ge 1$.

- (i) $\operatorname{ind}_r(1) \equiv 0 \pmod{\varphi(m)}$
- (ii) $\operatorname{ind}_r(r) \equiv 1 \pmod{\varphi(m)}$
- (iii) $\operatorname{ind}_r(ab) \equiv \operatorname{ind}_r(a) + \operatorname{ind}_r(b) \pmod{\varphi(m)}$
- (iv) $\operatorname{ind}_r(a^d) \equiv d \cdot \operatorname{ind}_r(a) \pmod{\varphi(m)}$

It is common to refer to indices as discrete logs since they share similar properties.

– Let m be an integer admitting a primitive root. Let $a, k \in \mathbb{Z}$ with gcd(a, m) = 1 and $k \ge 1$. Consider the congruence equation

$$x^k \equiv a \pmod{m}$$

Write $d = \gcd(k, \varphi(m))$. Then

- (i) If $a^{\frac{\varphi(m)}{d}} \not\equiv 1 \pmod{m}$, then the equation has no solutions.
- (ii) If $a^{\frac{\varphi(m)}{d}} \equiv 1 \pmod{m}$, then the equation has exactly d non-congruent solutions mod m.
- <u>Problem</u>: Let $a, b, d \in \mathbb{Z}$ with $d \geq 1$, and let r be a primitive root mod m. Then consider the congruence equation

$$ax^d \equiv b \pmod{m}$$

It follows

$$r^{\operatorname{ind}_r(ax^d)} \equiv r^{\operatorname{ind}_r(b)} \pmod{m}$$
$$\operatorname{ind}_r(a) + d \cdot \operatorname{ind}_r(x) \equiv \operatorname{ind}_r(b) \pmod{\varphi(m)}$$
$$d \cdot \operatorname{ind}_r(x) \equiv \operatorname{ind}_r(b) - \operatorname{ind}_r(a) \pmod{\varphi(m)}$$

This is a linear congruence in one variable which we know how to solve from Chapter 16. After finding $\operatorname{ind}_r(x) \pmod{\varphi(m)}$, we can easily determine $x \pmod{m}$.

• Problem: Consider the congruence equation

$$a^x \equiv b \pmod{m}$$

It follows that

$$x \cdot \operatorname{ind}_r(a) \equiv \operatorname{ind}_r(b) \pmod{\varphi(m)}$$

In this case, the original congruence is mod m but the final description of integer solutions is mod $\varphi(m)$.

34. Cryprography

- Cryptography is the design and implementation of secure systems. Symmetric cryptosystems have a key that must be kept secret for decryption. Asymmetric cryptosystems have one key that is publicly available and used for encryption, and another that is private and used for decryption.
- A cryptosystem is made up of

 \mathcal{P} : the set of all plaintext messages

 \mathscr{C} : the set of all ciphertext messages

K: the set of all keys

The correspondence $k \mapsto (E_k, D_k)$ for some $k \in K$ where

 $E_k: \mathscr{P} \mapsto \mathscr{C}$ the encryption function

 $D_k: \mathscr{C} \mapsto \mathscr{P}$ the decryption function

These functions satisfy $D_k(E_k(x)) = x$ for all $x \in \mathscr{P}$.

• The Shift Cipher.

– Here, $\mathscr{P}=\mathscr{C}=K=\mathbb{Z}/26\mathbb{Z}$. Let $b\in K$ so that $b\in\{0,1,...,25\}$. The shift cipher is described via the correspondence

$$b \mapsto E_b(x) = x + b \pmod{26}, \quad D_b(x) = x - b \pmod{26}$$

where the key b is fixed and secret.

— To break the cipher, we compute the frequencies of the letters in the ciphertext and compare them with the frequencies obtained from English. We would choose b such that E is mapped to the most common letter in the message.

• The Affine Cipher.

- Let a and m be coprime. The encryption key is (a, b).

$$E_{a,b}(x) = ax + b \pmod{m}$$

$$D_{a,b}(x) = cy + d$$

where $c \equiv a^{-1} \pmod{m}$ and $d \equiv -a^{-1}b \pmod{m}$. Note a^{-1} exists because $\gcd(a, m) = 1$. When a = 1, we recover the shift cipher.

- These ciphers can also be broken by frequency analysis, but we now need 2 bits of information. Let k_1 and k_2 be the most common letters in the ciphertext. Then $D_{a,b} = cx + b$ should satisfy

$$\begin{cases} D_{a,b}(k_1) \equiv 4 \\ D_{a,b}(k_2) \equiv 19 \end{cases} \Leftrightarrow \begin{cases} k_1c + d \equiv 4 \pmod{26} \\ k_2c + d \equiv 19 \pmod{26} \end{cases}$$

And we can solve for c and d.

• The Exponential Cipher.

- Let p be a prime. The encryption key is (p,e) with $e \in \mathbb{Z}$ such that $\gcd(e,p-1)=1$.

$$E_{n,e}(x) = x^e \pmod{p}$$

$$D_{n,e}(x) = x^d \pmod{p}$$

where $d \equiv e^{-1} \pmod{p-1}$.

- We group the resulting numbers into blocks of 2m digits, where 2m is the largest positive integer such that all blocks < p. This way, the numerical value of each block does not get reduced mod p. So if 25 , choose blocks of <math>2m = 2 digits. If 2525 , choose blocks of <math>2m = 4 digits. Use 25 to fill the last block so that every block has 2m digits.
- Even if we know p and that the plaintext x corresponds to ciphertext y, we must solve for d in the equation

$$y^d \equiv x \pmod{p}$$

to obtain the decryption key d. There is no efficient algorithm to do this. The simplest approach is to raise y to larger and larger powers k until $y^k \equiv x \pmod{p}$.

• The RSA Cryptosystem.

- Let p and q be two large primes, and let m = pq so that $\varphi(m) = (p-1)(q-1)$. Choose an exponent e such that

$$1 < e < \varphi(m)$$
 and $\gcd(e, \varphi(m)) = 1$

The public encryption key is (m, e) and the private decryption key is (m, d)

$$E_{m,e}(x) = x^e \pmod{m}$$

$$D_{m,e}(x) = x^d \pmod{m}$$

where $d \equiv e^{-1} \pmod{\varphi(m)}$.

- Theorem: $D_{m,e}(E_{m,e}(x)) \equiv x \pmod{m}$

Proof. We need to show that $D_{m,e}(E_{m,e}(x)) = x^{ed} \equiv x \pmod{m}$. By the CRT, it is enough to show that

$$x^{ed} \equiv x \pmod{p}$$
, and $x^{ed} \equiv x \pmod{q}$

If $x \equiv 0 \pmod{p}$, then $x^{ed} \equiv 0 \equiv x \pmod{p}$. Suppose $x \not\equiv 0 \pmod{p}$. By construction $d \equiv e^{-1} \pmod{\varphi(n)}$ so

$$ed \equiv 1 \pmod{\varphi(n)} \Leftrightarrow ed = 1 + \varphi(n)k = 1 + (p-1)(q-1)k$$

Hence

$$x^{ed} \equiv x^{1+(p-1)(q-1)k} \equiv x(x^{p-1})^{(q-1)k} \equiv x \pmod{p}$$

where the last equivalence follows by FLT since gcd(x, p) = 1. The same argument holds for modulus q, completing the proof.

- To break the RSA we only need to value of d, which can be computed from $d \equiv e^{-1} \pmod{\varphi(m)}$. However, even though (m, e) is public, it is very hard to factor m so that we can find $\varphi(m) = (p-1)(q-1)$.