Matrix Algebra

Homework 1

1. For each pair of points \mathbf{x} and \mathbf{y} , draw \mathbf{x} , \mathbf{y} and the vector from \mathbf{x} to \mathbf{y} . Find the vector from \mathbf{x} to \mathbf{y} , and use it to find the distance from \mathbf{x} to \mathbf{y} .

(a)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

(b)
$$\mathbf{x} = \begin{pmatrix} -2\\1 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 3\\-1 \end{pmatrix}$$

(c)
$$\mathbf{x} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

(d)
$$\mathbf{x} = \begin{pmatrix} -2\\3 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 4\\-2 \end{pmatrix}$$

2. For each set of vectors $\mathbf{x_1}$, $\mathbf{y_1}$, $\mathbf{x_2}$ and $\mathbf{y_2}$, determine whether or not the vector from $\mathbf{x_1}$ to $\mathbf{y_1}$ is equal to the vector from $\mathbf{x_2}$ to $\mathbf{y_2}$.

(a)
$$\mathbf{x_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{y_1} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \mathbf{x_2} = \begin{pmatrix} -1 \\ 3 \end{pmatrix}, \mathbf{y_2} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}$$

(b)
$$\mathbf{x_1} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{y_1} = \begin{pmatrix} -1 \\ -2 \end{pmatrix}, \mathbf{x_2} = \begin{pmatrix} 3 \\ 4 \end{pmatrix}, \mathbf{y_2} = \begin{pmatrix} 5 \\ 0 \end{pmatrix}$$

(c)
$$\mathbf{x_1} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$
, $\mathbf{y_1} = \begin{pmatrix} -3 \\ 1 \\ 7 \end{pmatrix}$, $\mathbf{x_2} = \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix}$, $\mathbf{y_2} = \begin{pmatrix} -2 \\ 4 \\ 5 \end{pmatrix}$

(d)
$$\mathbf{x_1} = \begin{pmatrix} -1\\1\\-1 \end{pmatrix}, \mathbf{y_1} = \begin{pmatrix} 2\\3\\4 \end{pmatrix}, \mathbf{x_2} = \begin{pmatrix} 1\\5\\2 \end{pmatrix}, \mathbf{y_2} = \begin{pmatrix} -2\\3\\-3 \end{pmatrix}$$

3. For each pair of vectors \mathbf{x} and \mathbf{y} , find the dot product $\mathbf{x} \cdot \mathbf{y}$. Determine whether or not \mathbf{x} and \mathbf{y} are orthogonal.

(a)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

(b)
$$\mathbf{x} = \begin{pmatrix} -2\\3 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 2\\-3 \end{pmatrix}$$

(c)
$$\mathbf{x} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

(d)
$$\mathbf{x} = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$$

4. For each pair of vectors \mathbf{x} and \mathbf{y} , find a value of c which makes \mathbf{x} and \mathbf{y} orthogonal.

(a)
$$\mathbf{x} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 4 \\ c \end{pmatrix}$$

(b)
$$\mathbf{x} = \begin{pmatrix} -2\\2c \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 3\\4 \end{pmatrix}$$

(c)
$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 3c \\ 2 \\ 1 \end{pmatrix}$$

(d)
$$\mathbf{x} = \begin{pmatrix} 2\\1\\3c \end{pmatrix}, \mathbf{y} = \begin{pmatrix} 4c\\2\\-2 \end{pmatrix}$$