А. Ю. Пирковский

Функциональный анализ

ЛЕКЦИЯ 18

18.1. Компактные метрические пространства (продолжение)

В качестве простого следствия доказанной на прошлой лекции теоремы 17.5 мы получаем известный вам из курса анализа критерий компактности подмножества в \mathbb{R}^n :

Следствие 18.1. Пусть X-nодмножество в \mathbb{R}^n (где \mathbb{R}^n снабжено евклидовой нормой).

- (i) X вполне ограничено тогда и только тогда, когда оно ограничено.
- (ii) X компактно тогда и только тогда, когда оно замкнуто и ограничено.

Доказательство. (i) Достаточно доказать, что куб I в \mathbb{R}^n вполне ограничен. Очевидно, для каждого $\varepsilon>0$ куб I можно представить в виде конечного объединения кубов с длиной ребра $<\varepsilon$. Но каждый из этих кубов в свою очередь покрывается шаром радиуса $<\varepsilon\sqrt{n}/2$. Следовательно, I покрывается конечным числом шаров сколь угодно малого радиуса, а это и означает, что он вполне ограничен.

(ii) Следует из (i) и следствия 17.14. □

Напомним, что с помощью п. (ii) следствия 18.1 мы в свое время доказали эквивалентность норм на конечномерном векторном пространстве (см. предложение 1.5). Используя это утверждение, мы можем уточнить следствие 18.1 следующим образом.

Следствие 18.2. Утверждения (i) u (ii) следствия 18.1 справедливы для подмножеств любого конечномерного нормированного пространства.

Следующий пример показывает, что в бесконечномерной ситуации все устроено подругому.

Пример 18.1. Пусть $E = \ell^p$ (где $1 \le p \le \infty$) или $E = c_0$, и пусть $S = \{x \in E : \|x\| = 1\}$ — сфера в E. Как обычно, для каждого $n \in \mathbb{N}$ обозначим через $e_n \in S$ последовательность с единицей на n-м месте и нулем на остальных. Легко видеть, что $\|e_i - e_j\| = 2^{1/p}$ для всех $i \ne j$. Но во вполне ограниченном метрическом пространстве не может существовать бесконечного набора точек (e_n) с таким свойством (см. п. (ііі) теоремы 17.6). Следовательно, сфера S не является вполне ограниченной и тем более не является компактной.

На самом деле ситуация, описанная в примере 18.1, является правилом, а не исключением. Скоро мы увидим, что ни в каком бесконечномерном нормированном пространстве сфера не является вполне ограниченной. Для этого нам понадобится следующее понятие, имеющее и самостоятельный интерес.

Лекция 18 117

Определение 18.1. Пусть X — нормированное пространство, $X_0 \subset X$ — векторное подпространство и $\varepsilon \geqslant 0$. Вектор $h \in X$ называется ε -перпендикуляром к X_0 , если ||h|| = 1 и $\rho(h, X_0) \geqslant 1 - \varepsilon$.

Замечание 18.1. Отметим, что условие ||h|| = 1 влечет неравенство $\rho(h, X_0) \leq 1$. Таким образом, ε -перпендикуляр — это такой единичный вектор, для которого 0 является «почти ближайшим» элементом подпространства X_0 .

Следующий пример объясняет происхождение термина « ε -перпендикуляр».

Пример 18.2. Пусть H — предгильбертово пространство и $H_0 \subset H$ — векторное подпространство. Вектор $h \in H$ является 0-перпендикуляром к H_0 тогда и только тогда, когда $||h|| = \rho(h, H_0) = 1$, т.е. когда ||h|| = 1 и ближайшим к h элементом подпространства H_0 является 0. Согласно предложению 5.5 это равносильно тому, что $h \perp H_0$, т.е. h — «настоящий» перпендикуляр к H_0 . Напомним (см. теорему 5.9), что такой h заведомо существует, если H — гильбертово пространство, а H_0 — его собственное замкнутое векторное подпространство.

В общем случае 0-перпендикуляра к подпространству $X_0 \subsetneq X$ может и не существовать, даже если X банахово и X_0 замкнуто в X (см. листок 15). Тем не менее, справедливо следующее утверждение.

Лемма 18.3 (Рисс). Пусть X_0 — векторное подпространство нормированного пространства X, не плотное в X. Тогда для любого $\varepsilon > 0$ в X существует ε -перпендикуляр к X_0 .

Доказательство. Возьмем $y \in X \setminus \overline{X_0}$ и положим $d = \rho(y, X_0)$. Очевидно, d > 0. Для каждого $\delta > 0$ подберем $x_\delta \in X_0$ так, чтобы $\|y - x_\delta\| \leqslant d + \delta$, и положим

$$h_{\delta} = \frac{y - x_{\delta}}{\|y - x_{\delta}\|}.$$

Тогда $||h_{\delta}|| = 1$, и для любого $x \in X_0$ имеем:

$$||h_{\delta} - x|| = \frac{1}{||y - x_{\delta}||} ||y - (x_{\delta} + ||y - x_{\delta}||x)|| \geqslant \frac{d}{d + \delta},$$

что больше $1-\varepsilon$ при достаточно малом δ . Значит, $h_{\delta}-\varepsilon$ -перпендикуляр к X_0 .

Следствие 18.4. Сфера в бесконечномерном нормированном пространстве не является вполне ограниченной и, следовательно, не является компактной.

Доказательство. Поскольку наше пространство X бесконечномерно, в нем существует возрастающая цепочка подпространств $X_1 \subset X_2 \subset X_3 \subset \ldots$, такая, что $\dim X_n = n$ для всех n. Для каждого $n \in \mathbb{N}$ найдем вектор $h_n \in X_{n+1}$, являющийся 1/2-перпендикуляром к X_n . Получим последовательность (h_n) точек сферы $S = \{x \in X : ||x|| = 1\}$, удовлетворяющую условию $||h_i - h_j|| \geqslant 1/2$ при $i \neq j$. Применяя теорему 17.6, видим, что сфера S не является вполне ограниченной.

Напомним, что топологическое пространство X называется локально компактным, если каждая его точка имеет окрестность, замыкание которой компактно. Таковы, например, все конечномерные нормированные пространства, все их открытые и замкнутые подмножества, все конечномерные многообразия. . . Простейший пример топологического пространства, не являющегося локально компактным, — множество $\mathbb Q$ рациональных чисел с унаследованной из $\mathbb R$ топологией.

Следствие 18.5. Бесконечномерное нормированное пространство не является ло-кально компактным.

Следует иметь в виду, что вполне ограниченность (в отличие от компактности) не является топологическим свойством: например, интервал вполне ограничен, а гомеоморфная ему прямая — нет. Тем не менее, есть важный класс отображений, сохраняющих вполне ограниченность. С этими отображениями вы уже встречались в курсе анализа.

Определение 18.2. Пусть X, Y — метрические пространства. Отображение $f: X \to Y$ называется равномерно непрерывным, если для каждого $\varepsilon > 0$ существует такое $\delta > 0$, что для любых точек $x, y \in X$, удовлетворяющих условию $\rho(x, y) < \delta$, выполнено неравенство $\rho(f(x), f(y)) < \varepsilon$.

Разумеется, всякое равномерно непрерывное отображение непрерывно, но не наоборот (см. курс анализа).

Пример 18.3. Если X и Y — нормированные пространства, то каждый непрерывный линейный оператор $T\colon X\to Y$ равномерно непрерывен. В самом деле, для любых $x,y\in X$ имеем $\|Tx-Ty\|\leqslant \|T\|\|x-y\|$, и в качестве нужного δ из определения 18.2 можно взять $\delta=\varepsilon/\|T\|$.

Теорема 18.6 (Кантор). Пусть X — компактное, а Y — произвольное метрические пространства. Тогда каждое непрерывное отображение из X в Y равномерно непрерывное.

Доказательство ничем не отличается от известного вам случая X=[a,b] и $Y=\mathbb{R},$ поэтому мы его опускаем.

Предложение 18.7. Пусть X и Y — метрические пространства, причем X вполне ограничено. Тогда для любого равномерно непрерывного отображения $f\colon X\to Y$ его образ f(X) вполне ограничен.

Доказательство. Упражнение.

Замечание 18.2. Предложение 18.7 полезно сравнить с близким по смыслу утверждением из топологии: непрерывный образ компакта — компакт.

Для проверки компактности подмножеств «классических» банаховых пространств существуют удобные критерии, опирающиеся на специфику этих пространств (см. листок 14). Один из таких критериев, известный как *теорема Арцела–Асколи*, мы сейчас докажем. Дадим сначала следующее определение.

Лекция 18 119

Определение 18.3. Пусть X, Y — метрические пространства. Семейство отображений S из X в Y называется равноственно непрерывным, если для каждого $\varepsilon > 0$ существует такое $\delta > 0$, что для любых точек $x, y \in X$, удовлетворяющих условию $\rho(x, y) < \delta$, и для любого $f \in S$ выполнено неравенство $\rho(f(x), f(y)) < \varepsilon$.

Наблюдение 18.8. Очевидно, если семейство S равностепенно непрерывно, то каждое отображение $f \in S$ равномерно непрерывно. Если же пространство X компактно, то из теоремы Кантора 18.6 следует, что всякое *конечное* семейство непрерывных отображений из X в Y равностепенно непрерывно.

Теорема 18.9 (Арцела, Асколи). Пусть X — компактное метрическое пространство. Подмножество $S \subset C(X)$ вполне ограничено (или, что эквивалентно, относительно компактно; см. следствие 17.14) тогда и только тогда, когда оно ограничено и равностепенно непрерывно.

Доказательство. Предположим, что S вполне ограничено, и для произвольного $\varepsilon > 0$ выберем конечную $\varepsilon/3$ -сеть F в S. Из конечности F и теоремы Кантора 18.6 следует, что F равностепенно непрерывно (см. наблюдение 18.8). Следовательно, существует такое $\delta > 0$, что для любых точек $x,y \in X$, удовлетворяющих условию $\rho(x,y) < \delta$, и для любого $f \in F$ выполнено неравенство $|f(x)-f(y)| < \varepsilon/3$. Возьмем теперь произвольную функцию $g \in S$ и подберем $f \in F$ так, чтобы $||g-f|| < \varepsilon/3$. Тогда для любых точек $x,y \in X$, удовлетворяющих условию $\rho(x,y) < \delta$, будем иметь

$$|g(x) - g(y)| \le |g(x) - f(x)| + |f(x) - f(y)| + |f(y) - g(y)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Следовательно, S равностепенно непрерывно.

Предположим теперь, что S ограничено и равностепенно непрерывно. Зафиксируем $\varepsilon > 0$ и подберем $\delta > 0$ так, чтобы для всех точек $x,y \in X$, удовлетворяющих условию $\rho(x,y) < \delta$, и для всех $f \in S$ выполнялось бы неравенство $|f(x) - f(y)| < \varepsilon/3$. Пользуясь компактностью пространства X, выберем в нем конечную δ -сеть $\{x_1, \ldots, x_n\}$, и рассмотрим отображение

$$\varphi \colon C(X) \to \mathbb{K}_{\infty}^n, \quad f \mapsto (f(x_1), \dots, f(x_n))$$

(здесь, как обычно, \mathbb{K} — это основное поле \mathbb{R} или \mathbb{C} , а \mathbb{K}^n_{∞} — пространство \mathbb{K}^n с нормой $\|\cdot\|_{\infty}$ из примера 1.3). Очевидно, φ — ограниченный линейный оператор, поэтому множество $\varphi(S) \subset \mathbb{K}^n_{\infty}$ ограничено, а значит, и вполне ограничено в силу следствия 18.2. Следовательно, существует такое конечное подмножество $F \subseteq S$, что $\varphi(F) - \varepsilon/3$ -сеть в $\varphi(S)$.

Покажем, что $F-\varepsilon$ -сеть в S. Для этого возьмем $g\in S$ и подберем $f\in F$ так, чтобы $\|\varphi(g)-\varphi(f)\|_{\infty}<\varepsilon/3$. Последнее неравенство означает в точности, что $|g(x_j)-f(x_j)|<\varepsilon/3$ для всех $j=1,\ldots,n$. Возьмем теперь $x\in X$ и найдем $j\in\{1,\ldots,n\}$ так, чтобы $\rho(x,x_j)<\delta$. Тогда

$$|g(x) - f(x)| \le |g(x) - g(x_j)| + |g(x_j) - f(x_j)| + |f(x_j) - f(x)| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Ввиду произвольности $x\in X$ это означает, что $\|g-f\|<\varepsilon$. Следовательно, $F-\varepsilon$ -сеть в S, как и утверждалось.

18.2. Компактные операторы

Закончив наш экскурс в теорию метрических пространств, вернемся к линейным операторам. Пусть X и Y — банаховы пространства (как обычно, над полем $\mathbb{K} = \mathbb{R}$ или $\mathbb{K} = \mathbb{C}$). Напомним, что через $\mathbb{B}_{1,X}$ мы обозначаем замкнутый единичный шар в пространстве X.

Определение 18.4. Линейный оператор $T: X \to Y$ называется *компактным*, если множество $T(\mathbb{B}_{1,X})$ относительно компактно (или, что эквивалентно, вполне ограничено; см. следствие 17.14) в Y.

Замечание 18.3. Если Y — неполное нормированное пространство, то возникает сразу два (неэквивалентных!) определения компактного оператора: можно требовать, чтобы множество $T(\mathbb{B}_{1,X})$ было относительно компактно, а можно требовать, чтобы оно было вполне ограничено. Оба эти определения встречаются в литературе, так что будьте бдительны! Мы не будем заниматься такими тонкостями, а будем с самого начала рассматривать компактные операторы только между банаховыми пространствами.

Вот несколько простых фактов о компактных операторах, следующих непосредственно из определения.

Предложение 18.10. Пусть X и Y — банаховы пространства, $T: X \to Y$ — линейный оператор.

- (i) T компактен тогда и только тогда, когда для любого ограниченного множества $B \subset X$ его образ T(B) относительно компактен в Y;
- (ii) если T компактен, то он ограничен;
- (iii) если Y конечномерно, то компактность T равносильна его ограниченности;
- (iv) тождественный оператор $\mathbf{1}_X$ компактен тогда и только тогда, когда X конечномерно;
- (v) если Y бесконечномерно и T сюръективен, то он не компактен.

Доказательство. (i) Ограниченное множество содержится в некотором шаре, а из линейности и компактности T следует, что он переводит любой шар в относительно компактное множество.

- (ii) Следует из предложения 1.1.
- (ііі) Следует из следствия 18.2.
- (iv) Следует из следствия 18.4.
- (v) Если T сюръективен и ограничен, то он открыт в силу теоремы Банаха 12.1. Следовательно, множество $T(\mathbb{B}_{1,X})$ содержит шар и не может быть относительно компактным в силу следствия 18.4.

Множество всех компактных линейных операторов из X в Y обозначается через $\mathcal{K}(X,Y)$. При Y=X вместо $\mathcal{K}(X,X)$ пишут $\mathcal{K}(X)$.

Теорема 18.11. Пусть X и Y — банаховы пространства. Справедливы следующие утверждения:

(i) $\mathscr{K}(X,Y)$ — замкнутое векторное подпространство в $\mathscr{B}(X,Y)$;

Лекция 18 121

- (ii) если Z банахово пространство, $T: X \to Y$ и $S: Y \to Z$ ограниченные линейные операторы, один из которых компактен, то и ST компактен;
- (iii) ограниченный линейный оператор $T\colon X\to Y$ компактен тогда и только тогда, когда компактен его сопряженный оператор $T^*\colon Y^*\to X^*.$

Доказательство. (i) Для любых $S, T \in \mathcal{K}(X,Y)$ имеет место включение

$$(S+T)(\mathbb{B}_{1,X}) \subseteq S(\mathbb{B}_{1,X}) + T(\mathbb{B}_{1,X}).$$

Но сумма двух вполне ограниченных множеств, как нетрудно проверить (проверьте!), является вполне ограниченным множеством. Следовательно, $S+T\in \mathcal{K}(X,Y)$. Аналогично проверяется, что $\lambda S\in \mathcal{K}(X,Y)$ для любого $\lambda\in \mathbb{K}$.

Пусть теперь оператор $T \in \mathcal{B}(X,Y)$ принадлежит замыканию подпространства $\mathcal{K}(X,Y)$. Для $\varepsilon > 0$ подберем оператор $S \in \mathcal{K}(X,Y)$ так, чтобы $\|S - T\| < \varepsilon/2$. Пусть $F \subset Y$ — конечная $\varepsilon/2$ -сеть для $S(\mathbb{B}_{1,X})$. Легко проверить, что F будет ε -сетью для $T(\mathbb{B}_{1,X})$. Ввиду произвольности $\varepsilon > 0$ это доказывает, что $T \in \mathcal{K}(X,Y)$.

- (ii) Если S компактен, а T ограничен, то множество $S(T(\mathbb{B}_{1,X}))$ является образом ограниченного множества $T(\mathbb{B}_{1,X})$ под действием компактного оператора S и поэтому относительно компактно. Если же S ограничен, а T компактен, то множество $S(T(\mathbb{B}_{1,X}))$ является образом относительно компактного множества $T(\mathbb{B}_{1,X})$ под действием непрерывного оператора S и поэтому относительно компактно.
- (ііі) Предположим, что оператор T компактен, и положим $K=\overline{T(\mathbb{B}_{1,X})}$. Для любых $f,g\in\mathbb{B}_{1,Y^*}$ имеем

$$||T^*(f) - T^*(g)|| = ||f \circ T - g \circ T|| = \sup_{x \in \mathbb{B}_{1,X}} |f(Tx) - g(Tx)|$$

$$= \sup_{y \in T(\mathbb{B}_{1,X})} |f(y) - g(y)| = \sup_{y \in K} |f(y) - g(y)| = ||f|_K - g|_K||_{C(K)}.$$
(18.1)

Рассмотрим множество

$$M = \{f|_K : f \in \mathbb{B}_{1,Y^*}\} \subset C(K).$$

Из (18.1) следует, что отображение

$$\varphi \colon M \to T^*(\mathbb{B}_{1,Y^*}), \quad \varphi(f|_K) = T^*(f) \qquad (f \in \mathbb{B}_{1,Y^*}),$$

корректно определено и изометрично. Очевидно, оно также сюръективно и является поэтому изометрическим изоморфизмом метрических пространств M и $T^*(\mathbb{B}_{1,Y})$. Поэтому, чтобы доказать компактность оператора T^* , нам достаточно проверить, что множество $M \subset C(K)$ вполне ограничено, т.е. ограничено и равностепенно непрерывно (см. теорему Арцела—Асколи 18.9) . Полагая $C = \sup\{\|x\| : x \in K\}$, для любого $f \in \mathbb{B}_{1,Y^*}$ и любого $x \in K$ получаем $|f(x)| \leq \|f\| \|x\| \leq C$. Следовательно, M ограничено. Далее, для любых $x,y \in K$ и любого $f \in \mathbb{B}_{1,Y^*}$ справедливо неравенство $|f(x)-f(y)| \leq \|x-y\|$, из которого легко следует равностепенная непрерывность множества M. С учетом сказанного выше это доказывает компактность оператора T^* .

Предположим теперь, что оператор T^* компактен. Из только что доказанного утверждения следует, что оператор T^{**} также компактен. Отсюда с учетом предложения 11.2 получаем, что и T компактен.

Замечание 18.4. Утверждение (ii) теоремы 18.11 означает, что совокупность компактных операторов между всевозможными банаховыми пространствами образует *операторный идеал*. О том, что это такое, можно прочитать в книге А. Пича «Операторные идеалы» (М.: Мир, 1982).

Следствие 18.12. Для любого банахова пространства X множество компактных операторов $\mathcal{K}(X)$ является замкнутым двусторонним идеалом в алгебре $\mathcal{B}(X)$.

Замечание 18.5. На самом деле для многих классических банаховых пространств $\mathcal{K}(X)$ — это единственный замкнутый двусторонний идеал в $\mathcal{B}(X)$, отличный от 0 и $\mathcal{B}(X)$. В свое время мы сможем доказать это утверждение для случая, когда X — гильбертово пространство.

Для банаховых пространств X и Y будем обозначать через $\mathscr{F}(X,Y)$ подмножество в $\mathscr{B}(X,Y)$, состоящее из операторов конечного ранга, т.е. из операторов с конечномерным образом. Положим также $\mathscr{F}(X) = \mathscr{F}(X,X)$. Легко видеть, что $\mathscr{F}(X,Y)$ — векторное подпространство в $\mathscr{B}(X,Y)$ (не обязательно замкнутое), и что для операторов конечного ранга справедливо утверждение, аналогичное п. (ii) теоремы 18.11. В частности, $\mathscr{F}(X)$ — двусторонний идеал в $\mathscr{B}(X)$.

Следствие 18.13. Для любых банаховых пространств X и Y справедливо включение $\overline{\mathscr{F}(X,Y)} \subseteq \mathscr{K}(X,Y)$. Иначе говоря, если ограниченный оператор аппроксимируется (по операторной норме) ограниченными операторами конечного ранга, то он компактен.