

Project Project

- Topic deadline: 24/1 (it must be validated)
- Document deadline: 28/1 (max: 5 pages)
 - introduction, with an indication of sources
 - description of attacks, with examples
 - description of defenses, with examples
 - conclusion
- Presentation: 30/1 9-13h (compulsory presence)
 - Location: Inria, Salle Euler Violet
 - 30 minutes presentation + questions
 - possibility of obtaining 1..3 points if exceptional project
 + answer to questions (individual)

OWASP top-10

OWASP A1 (2021)

https://owasp.org/Top10/A01_2021-Broken_Access_Control/

CSRF: bypassing access control

Transmits unauthorized commands from a user who has rightfully logged in to a website

CSRF example: Attack to GMail : January 2007

Google didn't check what page requested your contact list.

Hypothesis: you are logged in Gmail and have opened attacker.com site.

Attack: The page from attacker.com requests you contact list from google server. Since you are logged in google, your cookie is sent along the request and the request goes through.

Consequence: Attacker gets your contact list.

Prevention

Server side:

- add a secret (token) that the attacker cannot guess
- re-authenticate for critical operations
- set cookies to SameSite=Lax recommended reading: https://simonwillison.net/2021/Aug/3/samesite/

User side:

- logging off one site before using others
- set your browser default

Question: could it have worked setting a cookie with the random number?

- Write JavaScript code to perform a CSRF attack
- First, use a token to defend
- Second, use SameSite cookies to defend