Matteo Zandi

On quantum field theory I:

second quantisation and all that

November 5, 2023

Contents

		Page
C	ontents	ii
Ι	Classical field theory	1
1	Action 1.1 The principle of stationary action	3 3
2	Noether's theorem	6
3	Energy-momentum tensor	9
4	An example: electrodynamics	11
Li	ist of Theorems	12

Part I

Classical field theory

2 CONTENTS

In this part, we will study classical field theory.

Action

A field is a physical quantity $\phi(t, \mathbf{x})$ which is defined ad every point in spacetime. The dynamics of a field is governed by an action, which is a functional that associates a real number to each field configuration for a fixed time interval $[t_1, t_2]$

$$S[\phi_i(x), \partial_{\mu}\phi_i(x)] = \int_{t_1}^{t_2} dt \ L = \int_{t_1}^{t_2} dt \ \int d^3x \ \mathcal{L} = \int d^4x \mathcal{L}(\phi_i, \partial_{\mu}\phi_i) \ , \tag{1.1}$$

where \mathcal{L} is the lagrangian density, defined by

$$L = \int d^3x \, \mathcal{L} \ .$$

In natural units, the dimensional analysis is

$$[S] = 0 [d^4x] = -4 [\mathcal{L}] = 4$$
.

1.1 The principle of stationary action

The dynamics of the system can be determined by the principle of stationary action.

Principle 1.1

The system evolve from an initial configuration at time t_1 to a final configuration at time t_2 along a path in configuration space which extremises the action (1.1), i.e.

$$\delta S = 0 . (1.2)$$

with the additional conditions

1. fields vanish at spatial infinity

$$\phi_i(t, \mathbf{x}) \to 0 \quad |\mathbf{x}| \to \infty ,$$

hence

$$\delta\phi_i(t,\infty) = 0 , \qquad (1.3)$$

2. fields vanish at time extremes

$$\delta\phi_i(t_1, \mathbf{x}) = \delta\phi_i(t_2, \mathbf{x}) = 0. \tag{1.4}$$

The equation of motion of the system are the Euler-Lagrange equations

$$\frac{\partial \mathcal{L}}{\partial \phi_i} - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} = 0 \ . \tag{1.5}$$

Proof. The variation of the action is

$$\delta S = \int d^4x \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i + \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \partial_\mu \phi_i \right) = \int d^4x \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i + \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \partial_\mu \delta \phi_i \right) ,$$

where

$$\delta \phi_i = {\phi'}_i(x) - \phi_i(x) ,$$

and

$$\delta \partial_{\mu} \phi_i(x) = \partial_{\mu} \phi'_i - \partial_{\mu} \phi(x) = \partial_{\mu} (\phi'_i(x) - \phi_i(x)) = \partial_{\mu} \delta \phi(x) .$$

By integration by parts, we obtain

$$\delta S = \int d^4x \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i + \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \partial_\mu \delta \phi_i \right) = \int d^4x \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \phi_i \right) + \int d^4x \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \phi_i \right).$$

Notice that the last term is a total derivative and it vanishes at the boundary by the condition (1.4) and (1.3)

$$\int d^4x \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \phi_i \right) = 0 \ .$$

Hence, we find

$$\delta S = \int d^4x \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \phi_i \right) ,$$

and, by the principle of stationary action (1.2)

$$\int d^4x \, \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \phi_i \right) = 0 \ .$$

Finally, since $\delta_i \phi$ is arbitrary, we obtain (1.5)

$$\frac{\partial \mathcal{L}}{\partial \phi_i} - \partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_i} = 0 .$$

q.e.d.

In order to quantise the theory, we need the hamiltonian formalism.

Definition 1.1

The conjugate field $\phi^i(x)$ associated to the field ϕ_i is

$$\phi^i(x) = \frac{\partial \mathcal{L}}{\partial \dot{\phi}_i(x)}$$

The hamiltonian density is given by the Legendre transformation

$$\mathcal{H} = \Phi^i \dot{\phi}_i - \mathcal{L}$$

where the hamiltonian is

$$H = \int d^3x \ \mathcal{H}$$

Noether's theorem

Symmetries are fundamental in quantum field theory and they can be classified into

- 1. spacetime
 - a) global
 - i. continuous (Poincarè)
 - ii. discrete (Parity, time reversal)
 - b) local
 - i. continuous (General relativity)
 - ii. discrete (Parity coordinate dependent)
- 2. internal
 - a) global
 - i. continuous (Flavour)
 - ii. discrete (\mathbb{Z}_2)
 - b) local
 - i. continuous $(SU(3) \times SU(2) \times U(1))$
 - ii. discrete $(\mathbb{Z}_2(x))$

Through the Noether's theorem, we can associate conserved quantities to continuous symmetries.

Theorem 2.1 (Noether's)

Every continuous symmetry $\delta \phi_i$ of the action (1.1) give rise to a conserved current

$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_{i}} \delta \phi - K^{\mu} \tag{2.1}$$

such that it satisfies a continuity equation

$$\partial_{\mu}J^{\mu} = 0 \tag{2.2}$$

Proof. We consider an infinitesimal transformation for a continuous symmetry of the system

$$\phi'_{i} = \phi_{i} + \delta\phi_{i}$$

which induces a transformation of the lagrangian

$$\mathcal{L}' = \mathcal{L} + \delta \mathcal{L}$$

In order to be a symmetry of the system, we require that the action is not invariant, but we allow to be up to a boundary term $K^{\mu}(\phi_i)$, because the dynamics of the system, i.e. the equations of tmotion, do not change with a boundary term. Hence

 $S' = S + \int \partial_{\mu} K^{\mu}(\phi_i)$

but

$$\delta S = \int \partial_{\mu} K^{\mu}(\phi_i) \tag{2.3}$$

Explicitly, we obtain

$$\delta S = \delta \int d^4x \, \mathcal{L}$$

$$= \int d^4x \, \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i + \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \partial_\mu \phi_i \right)$$

$$= \int d^4x \, \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i + \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \partial_\mu \delta \phi_i \right)$$

$$= \int d^4x \, \left(\frac{\partial \mathcal{L}}{\partial \phi_i} \delta \phi_i - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i} \delta \phi_i \right) + \int d^4x \, \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi_i \right)$$

$$= \int d^4x \, \delta \phi_i \left(\underbrace{\frac{\partial \mathcal{L}}{\partial \phi_i} - \partial_\mu \frac{\partial \mathcal{L}}{\partial \partial_\mu \phi_i}}_{0} \right) + \int d^4x \, \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi_i \right)$$

$$= \int d^4x \, \partial_\mu \left(\underbrace{\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi_i}_{0} \right)$$

where we used the fact that partial derivatives and symmetries commute, the equation of motions (1.5) and we integrated by parts. Hence, by requiring that it is a symmetry

$$\delta S = \int d^4x \; \partial_\mu \left(\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi_i \right) = \int d^4x \partial_\mu K^\mu$$

or equivalently

$$\int d^4x \,\,\partial_\mu \left(\frac{\partial \mathcal{L}}{\partial \phi} \delta \phi_i - K^\mu \right) = 0$$

Since it is for arbitrary integration, the integrand vanishes and

$$\partial_{\mu}J^{\mu}=0$$

with

$$J^{\mu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_i} \delta \phi_i - K^{\mu}$$

q.e.d.

Notice that every conserved current can be related to a conserved quantity Q by

$$Q = \int_{\mathbb{R}^3} d^3x \ J^0$$

This means that Q is conserved locally, i.e. any charge carrier leaving a finite volume V is associated to a flow of current \mathbf{J} out of the volume.

Proof. Infact, by using (2.2)

$$\begin{aligned} \frac{dQ}{dt} &= \frac{d}{dt} \int_{\mathbb{R}^3} d^3x \ J^0 \\ &= \int_{\mathbb{R}^3} d^3x \ \frac{\partial J^0}{\partial t} \\ &= -\int_{\mathbb{R}^3} d^3x \ \nabla \cdot \mathbf{J} = 0 = -\int_{\partial \mathbb{R}^3} d\mathbf{S} \cdot \mathbf{J} = 0 \end{aligned}$$

where we used the Stoke's theorem and the fact that $\mathbf{J} \to 0$ for $|\mathbf{x}| \to 0$. q.e.d.

Energy-momentum tensor

Spacetime translations give rise to 4 conserved currents, which corresponds to the conservation of energy and momentum. Infact, we consider an infinitesimal spacetime translation

$$x'^{\mu} = x^{\mu} - \epsilon^{\mu}$$

such that fields change by

$$\phi'_{i} = \phi_{i}(x + \epsilon) = \phi(x) + \epsilon^{\mu}\partial_{\mu}\phi_{i}(x)$$

We considered an active transformation, where there is not a change of frame but fields themselves are indeed translated into new fields such that

$$\phi'_i(x') = \phi(x) = \phi(x' + \epsilon)$$

A passive transformation would have acted as

$$\phi'_{i} = \phi_{i}(x - \epsilon)$$

Since the lagrangian is a function of the coordinates via fields, we have the following transformation

$$\delta \mathcal{L} = \mathcal{L}' - \mathcal{L} = \epsilon^{\mu} \partial_{\mu} \mathcal{L} = \epsilon^{\mu} \partial_{\nu} (\delta^{\nu}_{\ \mu} \mathcal{L})$$

Hence, the boundary term is

$$K^{\mu} = \delta^{\mu}_{\ \nu} \mathcal{L}$$

We apply the Noether's theorem (2.1) and find 4 different conserved currents labelled by ν

$$(J^{\mu})_{\nu} = \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi_{i}} \partial_{\nu} \phi_{i} - \delta^{\mu}_{\ \nu} \mathcal{L}$$

and we define the energy-momentum tensor, or stress-energy tensor,

$$T^\mu_{\ \nu}=(J^\mu)_\nu$$

such that

$$\partial_{\mu}T^{\mu}_{\ \nu}=0$$

In natural units, the dimensional analysis is

$$T^{\mu}_{\ \nu} = [\mathcal{L}] = 4$$

The 4 conserved charges are

$$Q_{\nu} = \int_{\mathbb{R}^3} d^3x \ (J^0)_{\nu} = \int_{\mathbb{R}^3} d^3x \ T^0_{\ \nu}$$

which correspond to the 4-momentum

$$P^{\mu} = \int_{\mathbb{R}^3} d^3x \ T^{0\mu}$$

In particular, the 0-th component is the energy

$$P^{0} = \int d^{3}x \ T^{00}$$

$$= \int d^{3}x \left(\frac{\partial \mathcal{L}}{\partial \partial_{0}\phi_{i}} \partial^{0}\phi_{i} - \delta^{00}\mathcal{L} \right)$$

$$= \int d^{3}x \left(\underbrace{\frac{\partial \mathcal{L}}{\partial \dot{\phi}_{i}}}_{\pi^{i}} \dot{\phi}_{i} - \mathcal{L} \right) = \int d^{3}x \ (\underbrace{\pi^{i}\dot{\phi}_{i} - \mathcal{L}}_{\mathcal{L}}) = \int d^{3}x \ \mathcal{H} = H$$

such that

$$\frac{dH}{dt} = 0$$

and the j-th components are the momentum

$$P^{j} = \int d^{3}x \ T^{0j}$$

$$= \int d^{3}x \ \left(\frac{\partial \mathcal{L}}{\partial \partial_{0}\phi_{i}} \underbrace{\partial^{j}\phi_{i}}_{-\partial_{j}\phi_{i}} - \underbrace{\delta^{0j}}_{0} \mathcal{L}\right)$$

$$= \int d^{3}x \ \left(-\underbrace{\frac{\partial \mathcal{L}}{\partial \dot{\phi}_{i}}}_{\pi^{i}} \partial_{j}\phi_{i}\right)$$

$$= -\int d^{3}x \ \pi^{i}\partial_{j}\phi_{i}$$

such that

$$\frac{dP^i}{dt} = 0$$

An example: electrodynamics

Maxwell's equations

$$\nabla \cdot \mathbf{B} = 0 \quad \nabla \times \mathbf{E} + \frac{\partial \mathbf{B}}{\partial t} = 0 \quad \nabla \cdot E = \rho \quad \nabla \times \mathbf{B} - \frac{\partial \mathbf{E}}{\partial t} = \mathbf{J}$$
 (4.1)

can be written in covariant form

$$\partial_{\mu}F^{\mu\nu} = J^{\nu} \quad \partial_{\mu}F^{*\mu\nu} = 0$$

where $F^{\mu\nu}$ is the electromagnetic tensor and $F^{*\mu\nu} = \frac{1}{2} \epsilon^{\mu\nu\sigma\rho} F_{\sigma\rho}$ is its dual. Furthermore, they can be written in terms of the scalar ϕ and the vector potentials **A**, defined by

$$\mathbf{E} = -\nabla \phi - \frac{\partial \mathbf{A}}{\partial t} \quad \mathbf{B} = \nabla \times \mathbf{A}$$

Maxwell's equations do not change under this transformation.

Proof. Maybe in the future.

q.e.d.

In covariant form, we can write the electromagnetic tensor as

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

Maxwell's equations can be seen as the equations of motion of the electromagnetic lagrangian

$$\mathcal{L} =$$

List of Theorems

1.1	Principle	3
1.1	Definition	5
2.1	Theorem (Noether's)	6