

数据通信与计算机网络

(第5版)

第5章 物理层

【8-1】、【8-2】要点

- 1. 物理层概述及常用标准
- 2. 双绞线的线序
- 3. 数字传输系统
- 4. 宽带接入技术

教学目的

- 掌握物理层的基本概念
- 掌握物理层的四个接口 特性
- 熟知物理层的常用标准 (RS-232, RS-449, RJ45)
- 了解PCM传输体制、同 纤网SONET和同步数字 系列SDH的基本知识
- 掌握常用的宽带接入技术

学习内容

- 物理层概述
- 物理层接口特性
- 物理层的常用标准
- 数字传输系统
- 宽带接入技术

第5章:内容提纲

- ☞ 5.1 物理层概述
 - 5.2 物理层接口特性
 - 5.3 物理层的常用标准
 - 5.4 数字传输系统
 - 5.5 宽带接入技术

- 物理层是网络体系结构中的最低层,它既不是指连接计算机的具体物理设备,也不是指负责信号传输的具体物理介质,而是指在连接开放系统的物理媒体上为上一层(指数据链路层)提供传送比特流的一个物理连接。
- 物理层的主要功能——为它的服务用户(即数据 链路层的实体)在具体的物理介质上提供"透明" 传输比特流的能力。
- 物理层的作用——尽可能屏蔽计算机网络使用的物理设备、传输介质和通信方式的差异,使得数据链路层不必去考虑物理设备和传输介质的具体特性,而只要考虑完成本层的协议和服务。

5.1 物理层概述(续1)

- 物理层的协议与具体的物理设备、传输介质及通信手段有关。用于物理层的协议也常称为规程。
- 物理层的许多协议是在OSI/RM公布以前制定的, 并没有用OSI术语进行描述,只能将物理层实现 的主要功能描述为与传输介质接口有关的四个重 要特性:
 - ■机械特性
 - 电气特性
 - ■功能特性
 - 规程特性

第5章: 内容提纲

- 5.1 物理层概述
- ☞ 5.2 物理层接口特性
 - 5.3 物理层的常用标准
 - 5.4 数字传输系统
 - 5.5 宽带接入技术

5.2 物理层接口特性

■ 物理层协议实际上是DTE与DCE之间的一组约定。 这组约定规定了DTE与DCE之间标准接口特性。

5.2 物理层接口特性(续1)

- DTE(Data Terminal Equipment) 数据终端设备的英文缩写,它是一种具有一定的数据处理和转发能力的设备。DTE可以是一台计算机、终端或各种I/O设备。
- DCE(Data Circuit-Terminating Equipment) 在 DTE和传输线路之间提供信号变换和编码的功能, 并且负责建立、保持和释放数据链路的设备。典型的DCE,如调制解调器。
- DTE/DCE接口是标准化的。它具有机械、电气、 功能和规程四个方面的特性。
- 由DCE决定波特率

机械特性

- 主要定义物理连接的边界点,即接线器物理结构。 规定所用接线器的形状和尺寸、插针或插孔的数目和排列次序、固定和锁定装置等。
- 常用的标准接口
- ISO 2110 25芯接线器, EIA RS-232-C, EIA RS-366-A
- ISO 2593 34芯接线器, V.35宽带MODEM
- ISO 4902 37芯和9芯接线器, EIA RS-449
- ISO 4903 15芯接线器, X.20、X.21、X.22

4

5.2.1 机械特性(续1)

ISO标准化的部分接线器

5.2.2 电气特性

电气特性

- 指明在接口电缆的各条线上电气连接及有关电路 特性,包括信号电平范围、阻抗、负载、速率和 距离限制等。
- 如表5-1是普通电话交换网接口电气特性的主要规定

发送电平	≤0 dBm
接收电平	-5~-35dBm,视各种modem而定
阻抗	600Ω
平衡特性	平衡输入输出

5.2.2 电气特性(续1)

- 早期的标准仅定义在边界点上的电气特性,例如EIA RS-232-C、V.28;最近的标准则说明了发送器和接收器的电气特性,而且给出了有关对连接电缆的控制。
- CCITT 标准化的电气特性标准,涉及 CCITT V.10/X.26、CCITT V.11/X.27、 CCITT V.28、CCITT X.21/EIA RS-449等 建议的电气特性。

5.2.2 电气特性(续2)

DTE / DCE标准接口的 电气连接的三种方

- 非平衡方式
- 差动接收的非平衡方式
- 平衡方式

5.2.3 功能特性

功能特性

- 主要对各接口信号线作出确切的功能定义以及相互间的操作关系。
- 对接口线按具有的功能多少,通常采有一线一义 法和一线多义法。
- 信号线按其功能一般可分为四大类:数据线、控制线、定时线和接地线
- 常用的接口功能特性的标准有: EIA RS-232-C, EIA RS-449, ITU-T V.24等(见表5-3)。

5.2.4 规程特性

规程特性

- 主要规定接口各信号线之间的相互关系、动作顺序以及维护测试操作等内容。反映了在数据通信过程中,通信双方可能发生的各种可能事件。
- 描述规程特性最好采用状态变迁图。
- 目前,用于物理层规程特性的标准有: ITU-T V.24、V.25、V.54、X.20、X.20bis、X.21、X.21bis、X.22、X.150等。
- 表5-4给出了EIA、ITU-T和ISO有关DTE/DCE主要接口标准及其兼容关系。

第5章: 内容提纲

- 5.1 物理层概述
- 5.2 物理层接口特性
- ☞ 5.3 物理层的常用标准
 - 5.4 数字传输系统
 - 5.5 宽带接入技术

5.3 物理层的常用标准

5.3.1 EIA RS-232

EIA RS-232是美国电子工业协会EIA于1962 年制订的著名物理层异步通信接口标准。

RS-232-C接口的机械特性

- 使用25芯接线器(与ISO 2110兼容)。
- 在DTE侧采用针式(凸插头)结构, DCE侧采用孔 式(凹插座)结构。
- 实际使用可采用芯针较少的9芯接线器。

5.3.1 EIA RS-232(续1)

RS-232-C接口的电气特性

- 采用单端发送单端接收、双极性电源供电,其逻辑1电平为-5V~-15V,逻辑0电平为+5V~+15V,过渡区为-3V~+3V。噪声容限为2V。
- RS-232-C的接口电平不能和TTL、DTL输出、输入的电平(1为2.4V,0为0.4V)相兼容,而必须外加传输线驱动/接收器实现电平的转换。由于目前使用的多芯电缆线间电容为150pF/m,而信号线上最大负载电容应低于2500pF,所以,RS-232-C的最大传输距离为15m。实际的数据传输速率应根据传输距离和信道质量加以选择。

5.3.1 EIA RS-232(续2)

RS-232-C接口的功能特性

- 信号线的功能定义见表5-6。信号线共20条,可分为四类:数据线(4条)、控制线(11条)、定时线(3条)和地线(2条)。其余5条是未定义或专用的。
- RS-232-C接口有主、辅两种信道。辅信道用于 在互连设备之间传送一些辅助的控制信息,通常 很少使用,其速率低于主信道。

5.3.1 EIA RS-232(续3)

RS-232-C接口的规程特性

- 规程特性描述了在不同的条件下,各条信号线呈现 "接通"(正电平,逻辑0)或"断开"(负电平,逻辑1)状态的顺序和关系。例如,DTE若想将数据发 往传输线路,必须做到CC、CD、CA、CB这4条控 制线全部呈"接通"状态,也就是既做到设备就绪, 又做到线路就绪。
- 由于RS-232-C对许多用户环境有所限制,而用户 又迫切要求改善原有特性,如提高速率、增大距离、 追加某些必要的功能(如环回测试)等。于是,EIA 于1987年将C版本修订为D版本,1991年又修订为 E版本,1997年再修订为F版本。因各版本修订内 容不多,许多厂商仍用为原来的旧名称RS-232-C。

5.3.1 EIA RS-232(续4)

利用零调制解调器的两台计算机远程连接

5.3.1 EIA RS-232(续5)

两台计算机近程连接

5.3.2 EIA RS-449

- EIA RS-449 是为替代EIA RS-232-C而提出的物理层标准接口。由 3 个标准组成。
 - RS-449 规定了接口的机械特性、功能特性 的过程特性(相当于V.35)。
 - RS-423-A 规定采用非平衡传输时(即所有的 电路共用一个公共地)的电气特性。
 - RS-422-A 规定采用平衡传输时(即所有的电路没有公共地)的电气特性。

5.3.2 EIA RS-449 (续1)

RS-449接口的机械特性

■ 使用37芯和9芯接线器,后者用于辅信道操作。

RS-449接口的电气特性

- RS-423-A规定了采用差动接收的非平衡电气连接特性。信号电平采用±6V的负逻辑,过渡区为-4~+4V。当传输距离为100m时,速率为10kb/s;距离为10m时,速率为300kb/s。
- RS-422-A规定了采用平衡电气连接特性,信号电平采用±6V的负逻辑,过渡区为-2~+2V。传输距离为1000m时,速率为100kb/s;距离为10m时,速率可达10Mb/s。

5.3.2 EIA RS-449 (续2)

RS-449接口的功能特性

 对30条信号线作了功能性定义。与RS-232-C相比, 新增的信号线主要是为了解决环回测试和其他功能的 问题。这些信号线包括:发送公共回线(SC)、接收公 共回线(RC)、本地环路返回(LL)、远程环路返回(RL) 和测试模式(TM)等。

RS-449接口的规程特性

■ 沿用了RS-232-C的规程特性。

- RJ-45连接器指的是由IEC(60)603-7标准化的接插件标准定义的8芯的模块化插孔或插座,又称RJ-45插头。IEC (60)603-7是ISO/IEC 11801国际通用综合布线标准的连接硬件的参考标准。
- RJ-45插头是一种只能沿固定方向插入并自动防止 脱落的塑料接头,俗称"水晶头"。

5.3.3 RJ-45 (续1)

- RJ-45插头上的网线排序的两种方式
- T568A线序,用于网络设备需要交叉连接的场合。 所谓"交叉"是指网线的一端按T568A线序连接, 另一端按T568B线序连接(见图5-6)。交叉连接适用 于连接两个网络设备,如两台计算机、集线器或 交换机之间。
- T568B线序,用于网络设备直通连接的场合。网线两端都使用T568B线序(见图5-7)。直通连接适用于布线系统用户工作区的墙壁插座到计算机,以及两台不同网络设备之间的连接。

5.3.3 RJ-45 (续2)

网线排序有两种方式

图5-6 交叉连接示意图

1橙白	 1橙白
2橙	 2橙
3绿白	 3绿白
4蓝	 4蓝
5蓝白	 5蓝白
6绿	 6绿
7棕白	 7棕白
8棕	 8棕

图5-7 直通连接示意图

5.3.3 RJ-45 (续3)

RJ-45插头上的网线排序

568A线序: 1—绿白, 2—绿, 3—橙白, 4—蓝, 5—蓝白, 6—橙, 7—棕 白, 8—棕。

568B线序: : 1—橙白, 2—橙, 3—绿白, 4—蓝, 5—蓝白, 6—绿, 7—棕 白, 8—棕

RJ-45上各条网线的用途

线序	功用	线序	功用
1	发送+	5	不用
2	发送一	6	接收一
3	接收+	7	不用
4	不用	8	不用

注意:

- 1、线序不能随意改动的。如果将线序随意搞乱,将 1和3作为发送,2和4作为接收,那么这些线的抗干 扰能力就会下降,从而不能保证网络的正常工作。
- 2、第4芯和5芯可用于话音服务。

第5章: 内容提纲

- 5.1 物理层概述
- 5.2 物理层接口特性
- 5.3 物理层的常用标准
- ☞ 5.4 数字传输系统
 - 5.5 宽带接入技术

5.4 数字传输系统

- 在早期电话网中,从市话局到用户电话机的用户线是采用最廉价的双绞线电缆的,而长途干线则采用频分复用FDM的模拟传输方式。
- 与模拟通信相比,数字通信无论在传输质量 上还是经济上都有明显的优势。
- ■目前,长途干线大都采用时分复用TDM的数字传输方式。
- PCM传输体制最初是为了在电话局之间的中继线上传送多路的电话。

33

5.4 数字传输系统(续1)

由于历史原因,旧的数字传输系统存在许多 缺点,最主要是两个方面:

■速率标准不统一

如果不对高次群的数字传输速率进行标准化, 国际范围的基于光纤高速数据传输就很难实现。

■ 通信不是同步传输

在过去相当长的时间,为了节省经费,各国的数字网主要是采用准同步方式。

当数据传输的速率很高时,收发双方的时钟同 步就成了很大的问题。

5.4 数字传输系统(续2)

PCM有两个互不兼容的国际标准

■ 北美使用的T1系统,共有24个话路。每个话路的采样脉冲用7bit编码,信令码元用1bit,因此一个话路占用8比特。帧同步是在24路编码之后再加上1比特,这样每帧共有193比特。因为采样频率为8kHz,所以T1一次群的数据率为1.544Mb/s。

5.4 数字传输系统(续3)

- 欧洲使用的E1系统,每个时分复用帧(其长度T=125μs)被划分为32个相等的时隙,其编号为CH0~CH31。CH0作为帧同步,CH16用作传送信令。其余30个时隙作为用户使用的话路。每个时隙传送8比特,因此整个32个时隙共有256比特。同样取采样频率为8kHz,所以E1一次群的数据率为2.048Mb/s。
- 我国采用E1标准。日本的一次群采用T1,但另立 一套高次群的标准。
- 当需要有更高的数据率时,可采用复用的方法。

- 为了提高传输线路的效率,PCM传输体制采用时分复用的方法,将数据成帧后,再送往线路一帧帧地进行传输。
- PCM体制中高次群的话路数和数据率

系统类型		一次群	二次群	三次群		四次群		五次群	
欧洲	符号	E1	E2	E3		E4		E5	
体制	话路数	30	120	480		1920		7680	
	速率 (Mbit/s)	2. 048	8. 448	34. 368		139. 264		565. 148	
北美	符号	T1	Т2	T3 (北美)	【日本)	T4 (北美)	【4 (日本)	T4 (北美)	T4 (日本)
体制	话路数	24	96	672	480	4032	1440	8064	5760
	速率 (Mbit/s)	1. 544	6. 312	44. 736	32. 06 4	274. 176	97. 728	560. 16 0	397. 20 0

37

5.4 数字传输系统(续5)

- 为了达到数据通信系统的有效、可靠工作,系统必须有一个性能良好的同步系统。
- 在提出同步数字系列之前。在过去相当长的时间,为了节约经费,各国的数字网主要是采用准同步PDH方式。PDH采用脉冲填充法以补偿因频率不准确而造成的定时误差。当传输速率较低时,发收时钟的细微差异并不会造成严重的影响,但当数据传输速率不断提高,发收时钟的同步就显得十分重要,就成为一个亟待解决的问题。

5.4 数字传输系统(续6)

同步光纤网 SONET

- 1988年,美国首先提出采用光纤传输的物理层标准,取名为同步光纤网SONET (Synchronous Optical Network)。该标准规定:整个同步网络的各级时钟都来自一个非常精确的主时钟,如铯原子钟,精度优于±1×10⁻¹¹。并对速率、光纤接口、操作和维护作了规定。
- SONET为光纤传输系统定义了同步传输的线路等级结构,第1级同步传送信号STS-1 (Synchronous Transport Signal)的传输速率是51.84Mb/s。对光信号则称为第1级光载波OC-1(Optical Carrier)。见表5-9。

5.4 数字传输系统(续7)

SONET网络结构的示意图

5.4 数字传输系统(续8)

同步数字系列 SDH

- ITU-T于1988年以美国标准 SONET为基础,制订出国际标准同步数字系列 SDH。
- 一般可认为 SDH 与 SONET 是同义词。 其主要区别是: SDH 的基本速率为 155.52 Mb/s, 称为第 1 级同步传递模块 STM-1, 相当于 SONET 体系中的 OC-3 速率。

5.4 数字传输系统(续9)

SONET和SDH的线路速率等级

SO	NET	SDH	线路速率	线路速率	相当的话路数 (每话路64kb/s)	
电	光	光	(Mb/s)	近似值		
STS-1	OC-1	-	51.840	-	810	
STS-3	OC-3	STM-1	155.520	156Mb/s	2430	
STS-12	OC-12	STM-4	622.080	622Mb/s	9720	
STS-24	OC-24	STM-8	1244.160	-	19440	
STS-48	OC-48	STM-16	2488.320	2.5Mb/s	38880	
STS-96	OC-96	STM-32	4976.640	-	77760	
STS-192	OC-192	STM-64	9953.280	10Gb/s	155520	
STS-768	OC-768	STM-256	39813.120	40Gb/s	622080 42	

5.4 数字传输系统(续10)

SONET/SDH规定

- 标准光信号的波长为1310nm和1550nm。
- 在物理层为宽带接口使用帧结构的传输技 术。如SDH的帧结构为块状帧,其基本信 号为STM-1、并可用N个STM-1复用组成 STM-N。SDH简化了复用和分用技术,需 要时可直接接入到低速支路。SDH还采用 自愈混合环形网络结构、并与数字交接系 统DACS结合使用,提高了通信网的灵活 性和可靠性。

5.4 数字传输系统(续11)

SONET/SDH标准的意义

- 使不同的数字传输体制在STM-1等级上获得了统一。
- 第一次真正实现了数字传输体制上的世界性标准。
- 已成为公认的新一代理想的传输网体制。
- SDH标准也适合微波和卫星传输体制。

5.4 数字传输系统(续12)

SDH具有如下特点

- ①具有统一的帧结构,形成了全球统一的数字传输体制标准;
- ②SDH接入系统的不同等级的码流在帧结构净负荷区内的排列 很有规律,改善了网络的业务传送透明性;
- ③采用了较先进的分插复用器、数字交叉连接、网络的自愈功 能和重组功能,具有较强的生存率。
- ④具有多种网络拓扑结构,增强了网监、运行管理和自动配置 功能,使网络的功能非常齐全和多样化;
- ⑤具有传输和交换的性能,功能模块的自由组合十分灵活;
- ⑥可采用双绞线、同轴电缆和光缆等多种传输媒体;
- ⑦SDH属于物理层,未对其高层有严格的限制,可采用各种网络技术,且支持ATM或IP传输;
- ⑧SDH的严格同步,保证了网络稳定,便于复用和调整;
- ⑨开放型的光接口可实现横向兼容,降低了联网成本。

第5章: 内容提纲

- 5.1 物理层概述
- 5.2 物理层接口特性
- 5.3 物理层的常用标准
- 5.4 数字传输系统

5.5 宽带接入技术

5.5 宽带接入技术(续1)

- 从宽带接入介质而言,宽带接入分为宽带有线接入和 宽带无线接入两大类别。
- 宽带: 标准在不断提高(>56kbps, 200kbps, 2Mbps)
- 美国联邦通信委员会 FCC 定义:

宽带下行速率达 25 Mbit/s, 宽带上行速率达 3 Mbit/s。

- 宽带有线接入技术包括
 - (1) 基于5/6类线的以太网接入技术
 - (2) 基于铜线的xDSL技术
 - (3) 基于混合光纤/同轴电缆的接入技术
 - (4) 光纤接入技术

- 以太网已成为普遍使用的网络技术。但是, 传统以太网技术不属于接入网的范畴,而是 属于用户驻地网领域。
- 基于以太网技术的宽带接入网由局侧设备和用户侧设备组成。局侧设备一般位于小区内,或者位于商业大楼内。用户侧设备一般位于居民楼层内。局侧设备提供与IP骨干网的接口,用户侧设备提供与用户计算机相接的10/100BASE-T接口。局侧设备具有汇聚用户侧设备网管信息和计费功能。

5.5.1 基于5/6类线的以太网接入技术(续1)

- 5类线(CAT5), 带宽100MHz, 速率100MB/s , 主要用于100BASE-T。超5类线(CAT5e), 带宽155M, 主要用于吉比特以太网。6类线 (CAT6), 带宽250M, 用于架设10吉比特以太 网,是未来发展的趋势。
- 基于5/6类线的高速以太网接入技术特别适合中国国情,适于发展FTTZ,再以快速以太网连接到用户的接入方式(用户端速率为10Mb/s或100Mb/s)。

5.5.2 宽带接入技术

- **宽带:标准在不断提高。(>56kbps, 200kbps, 2Mbps)**
- 美国联邦通信委员会 FCC 定义:

宽带下行速率达 25 Mbit/s, 宽带上行速率达 3 Mbit/s。

- 从宽带接入的媒体来看,划分为 2 大类:
 - ◆ 有线宽带接入。
 - ◆ 无线宽带接入。

5.5.2 ADSL 技术

- 非对称数字用户线 ADSL (Asymmetric Digital Subscriber Line)
 技术:用数字技术对现有的模拟电话用户线进行改造,使它能够承载宽带业务。
- ADSL 技术把 0~4 kHz 低端频谱留给传统电话使用,而把原来没有被利用的高端频谱留给用户上网使用。
- ADSL 的 ITU 的标准: G.992.1 (或称 G.dmt) 。
- 非对称:下行(从 ISP 到用户)带宽远大于上行(从用户到 ISP)带宽。

ADSL 调制解调器

- 采用离散多音调 DMT (Discrete Multi-Tone) 调制技术。
- DMT 调制技术采用频分复用 FDM 方法。
- **相当于在一对用户线上使用许多小的调制解调器并行地**传送数据。
- ADSL 不能保证固定的数据率。

ADSL 的组成

3 大组成部分:

数字用户线接入复用器 DSLAM(DSL Access Multiplexer),用户线和用户家中的一些设施。

ADSL 最大好处: 可以利用现有电话 网中的用户线(铜 线),而不需要重 新布线。

DSLAM (DSL Access Multiplexer):数字用户线接入复用器。

ATU (Access Termination Unit):接入端接单元 (ADSL 调制解调器)。

ATU-C (C 代表端局 Central Office), ATU-R (R 代表远端 Remote)

1.5-2.0M (0.5mm,5.5 km) 6.1M (0.5mm, 3.7km) 6.1M (0.4mm, 2,7km)

第二代 ADSL

- 包括 ADSL2(G.992.3 和 G.992.4)和 ADSL2+(G.992.5)。
- 主要改进:
 - ◆ (1) 通过提高调制效率得到了更高的数据率。
 - ➤ ADSL2: 下行8M, 上行0.8M
 - ➤ ADSL2+: 下行16M, 上行0.8M
 - ◆ (2) 采用了无缝速率自适应技术 SRA (Seamless Rate Adaptation)。
 - ◆ (3) 改善了线路质量评测和故障定位功能。

ADSL 并不适合于企业,因为企业往往需要使用上行信道发送大量数据给许多用户。

xDSL

- SDSL (Symmetric DSL):对称数字用户线
 - ◆ 适用于企业:上下行均为384k (5.5km) 或1.5M (3km)
- HDSL (High speed DSL): 高速数字用户线
 - ◆ 上下行均为768k或1.5M (2.7-3.6km)
- VDSL (Very high speed DSL): 甚高速数字用户线 (300-1800m)
 - ◆ VDSL1: 下行50-55M, 上行1.5-2.5M。
 - ◆ VDSL2: 上下行均100M。
- Giga DSL: 超高速数字用户线
 - ◆ 华为公司于 2012 年首先研制成功样机。
 - ◆ 使用时分双工 TDD (Time Division Duplex)和 OFDM 技术

5.5.3 光纤同轴混合网 (HFC 网)

- HFC (Hybrid Fiber Coax) 网基于有线电视网 CATV 网。
- 改造: 把原有线电视网中的同轴电缆主干部分改换为光纤

HFC 网的结构

HFC 网具有双向传输功能,扩展了传输频带

我国的 HFC 网的频带划分

机顶盒与电缆调制解调器 (set-top box)

- 机顶盒 (set-top box) :
 - ◆ 连接在同轴电缆和用户的电视机之间。
 - ◆ 使现有的模拟电视机能够接收数字电视信号。
- 电缆调制解调器 (cable modem) :
 - ◆ 将用户计算机接入互联网。
 - ◆ 在上行信道中传送交互数字电视所需的一些信息。
 - ◆ 不需要成对使用,而只需安装在用户端。
 - ◆ 复杂,必须解决共享信道中可能出现的冲突问题。

5.5.4 FTTx 技术

- 代表多种宽带光纤接入方式。
- FTTx 表示 Fiber To The...(光纤到...),例如:
 - ◆ 光纤到户 FTTH (Fiber To The Home): 在光纤进入用户的家门后, 才把光信号转换为电信号。
 - ◆ 光纤到大楼 FTTB (Fiber To The Building)
 - ◆ 光纤到路边 FTTC (Fiber To The Curb)
 - ◆ 光纤到小区 FTTZ (Fiber To The Zone)
 - ◆ 光纤到办公室 FTTO (Fiber To The Office)
 - ◆ 光纤到桌面 FTTD (Fiber To The Desk) 等。

光配线网 ODN (Optical Distribution Network)

光配线网 ODN (Optical Distribution Network): 位于光纤干线和广大用户之间。 无源的光配线网常称为无源光网络 PON (Passive Optical Network)。

光配线网 ODN (Optical Distribution Network)

- 采用波分复用 WDM,上行和下行分别使用不同的波长。
- 2 种最流行的无源光网络 PON (Passive Optical Network):
 - **◆ 以太网无源光网络 EPON (Ethernet PON)**
 - > 在链路层使用以太网协议,利用 PON 的拓扑结构实现以太网的接入。
 - > 与现有以太网的兼容性好,并且成本低,扩展性强,管理方便。
 - ◆ 吉比特无源光网络 GPON (Gigabit PON)
 - > 采用通用封装方法 GEM (Generic Encapsulation Method),可承载多业务,且对各种业务类型都能够提供服务质量保证,总体性能比EPON好。
 - ▶ 成本稍高。

谢协大家

Any Question?

