Estatística básica usando o R: bem-vinde ao tidyverse

Parte 2
Exploração e visualização de dados
Gilberto e Carolina

Conceitos básicos

Começamos com alguns conceitos básicos, que usaremos durante todo esse curso.

- População: Todos os elementos ou indivíduos alvo do estudo;
- Amostra: Parte da população;
- Parâmetro: característica da população (grandeza);
- **Estimativa:** característica da amostra. Usamos a estimativa para aproximar o parâmetro;
- Variável: característica de um elemento da população (mensurando ou analito). Geralmente usamos uma letra maiúscula do alfabeto latino para representar uma variável (mensurando ou analito), e uma letra minúscula do alfabeto latino para representar o valor de uma variável para um elemento (indicação) da população.Por exemplo, podemos representar a variável "Teor de hidrocloro" por X e um indicação da amostra por x=25,1 mg/comprimido.

Classificação de variáveis

Classificação de variáveis.

Tabela de distribuição de frequência variável qualitativa

A primeira coisa que fazemos é contar!

X	frequência	frequência relativa	porcentagem
B_1	n_1	f_1	$100 \cdot f_1\%$
B_2	n_2	f_2	$100 \cdot f_2\%$
•	•	•	• •
$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	n_k	f_k	$100 \cdot f_k\%$
Total	n	1	100%

Em que n é o tamanho da amostra.

Geralmente não incluímos a coluna de frequência relativa.

Tabela de distribuição de frequência variável qualitativa

Pacotes: janitor

```
library(readxl)
library(janitor)
library(tidyverse)
df_oscars_pixar <- read_xlsx("data/raw/dados_pixar_oscars.xlsx")</pre>
df_oscars_pixar |>
    tabyl(tipo_premio_indicado) |>
    arrange(desc(n)) |>
    adorn_totals() |>
    adorn_pct_formatting(digits = 2) |>
    rename(
        "Indicação ao Oscar" = tipo_premio_indicado,
        "Frequência" = n,
        "Porcentagem" = percent
```


##	Indicação ao Oscar	Frequência	Porcentagem
##	Melhor Filme de Animação	18	22.50%
##	Melhor Roteiro Adaptado	16	20.00%
##	Melhor Roteiro Original	15	18.75%
##	Melhor Canção Original	8	10.00%
##	Melhor Edição de Som	8	10.00%
##	Melhor Trilha Sonora	8	10.00%
##	Melhor Mixagem de Som	4	5.00%
##	Melhor Filme	2	2.50%
##	Outro	1	1.25%
##	Total	80	100.00%

Tabela de distribuição de frequência variável quantitativa discreta

Pacotes: janitor

```
library(janitor)
df_mtcarros <- read_csv2("data/raw/mtcarros.csv")
df_mtcarros |>
    tabyl(marchas) |>
    arrange(desc(n)) |>
    adorn_totals() |>
    adorn_pct_formatting(digits = 2) |>
    rename(
        "Marchas" = marchas,
        "Frequência" = n,
        "Porcentagem" = percent
)
```


##	Marchas	Frequência	Porcentagem
##	3	15	46.88%
##	4	12	37.50%
##	5	5	15.62%
##	Total	32	100.00%

Tabela de distribuição de frequência variável quantitativa contínua

Primeiro agregamos os valores em intervalos.

- i. Usamos inter usadas na área de pesquisa
- ii. Regra de Sturge: $1 + \log_2(n)$ (n é o tamanho da amostra)

```
df_trabalhador <- read_xlsx("data/raw/companhia_MB.xlsx")
k <- round(1 + log2(nrow(df_trabalhador)))
faixas <- seq(
    from = min(df_trabalhador$salario),
    to = max(df_trabalhador$salario),
    length.out = k
)
df_trabalhador <- df_trabalhador |>
    mutate(faixa_salario = cut(
        salario,
        breaks = faixas,
        include.lowest = T,
        right = F
))
```

Tabela de distribuição de frequência variável quantitativa contínua

```
df_trabalhador |>
    tabyl(faixa_salario) |>
    adorn_totals() |>
    adorn_pct_formatting(digits = 2) |>
    rename(
        "Salário" = faixa_salario,
        "Frequência Absoluta" = n,
        "Porcentagem" = percent
    )

## Salário Frequência Absoluta Porcentagem
## [4,7.86) 10 27.78%
```

```
[7.86, 11.7)
                                     12
                                              33.33%
##
##
    [11.7, 15.6)
                                              19.44%
    [15.6, 19.4)
                                              16.67%
##
    [19.4, 23.3]
                                               2.78%
##
           Total
                                     36
                                             100.00%
##
```


Medidas de Resumo

Medidas de posição e dispersão

A ideia é encontrar um ou alguns valores que sintetizem todos os valores.

Medidas de posição (tendência central)

A ideia é encontrar um valor que representa bem todos os valores.

- Média: $\overline{x} = \frac{x_1 + \cdots + x_n}{n}$
- Mediana: valor que divide a sequência ordenada de valores em duas partes iguais.

Medidas de dispersão

A ideia é medir a homogeneidade dos valores.

- ullet Variância: $s^2=rac{(x_1-\overline{X})^2+\cdots+(x_n-\overline{X})^2}{n-1};$
- **Desvio padrão:** $s=\sqrt{s^2}$ (mesma unidade dos dados);
- ullet coeficiente de variação $cv=rac{s}{\overline{x}}\cdot 100\%$ (adimensional, ou seja, "sem unidade")

Medidas de resumo

Pacote: dplyr

```
df_trabalhador |>
    group_by(escolaridade) |>
    summarise(
        media = mean(salario),
        mediana = median(salario),
        variancia = var(salario),
        dp = sd(salario),
        cv = dp / media
    )
```

```
## # A tibble: 3 × 6
                      media mediana variancia
##
    escolaridade
                                              ab
                                                    CV
    <chr>
                      <dbl>
                             <dbl>
                                      <dbl> <dbl> <dbl>
##
## 1 ensino fundamental 7.84 7.12 8.74 2.96 0.377
## 2 ensino médio
                      11.5 10.9
                                      13.8 3.72 0.322
## 3 superior
                      16.5 16.7
                                      20.3 4.50 0.273
```


Quantis

Ideia

q(p) é um valor que satisfaz:

- $100 \cdot p\%$ das observações é no máximo q(p)
- $100 \cdot (1-p)\%$ das observações é no mínimo q(p)

Alguns quantis especiais

- Primeiro quartil: $q_1=q\left(rac{1}{4}
 ight)$
- Segundo quartil: $q_2 = q\left(rac{2}{4}
 ight)$
- Terceiro quartil: $q_3=q\left(rac{3}{4}
 ight)$

Quantis

```
df_trabalhador |>
    group_by(escolaridade) |>
    summarise(
        q1 = quantile(salario, 0.25),
        q2 = quantile(salario, 0.5),
        q3 = quantile(salario, 0.75)
## # A tibble: 3 × 4
    escolaridade
##
                         q1
                             q2
                                   q3
                     <dbl> <dbl> <dbl>
   <chr>
##
## 1 ensino fundamental 6.01 7.12 9.16
## 2 ensino médio 8.84 10.9 14.4
## 3 superior
                       13.6 16.7 18.4
```


Exportando tabelas

pacote gt

Pacote gt

Vamos usar o pacote gt para customizar a apresentação de uma tabela.

A ideia do pacote gt é melhorar apresentação por camadas.

TABLE TITLE HEADER SUBTITLE SPANNER COLUMN LABEL **STUB** COLUMN COLUMN STUBHEAD LABEL COLUMN **HEAD** COLUMN LABEL LABELS LABEL LABEL **ROW GROUP LABEL ROW LABEL** Cell Cell TABLE Cell **STUB** BODY **ROW LABEL** Cell Cell Cell Summary Cell Summary Cell SUMMARY LABEL Summary Cell **FOOTNOTES TABLE** FOOTER SOURCE NOTES

The Parts of a gt Table

Para mais detalhes, visite pacote gt.

Exemplo

Vamos customizar e salvar a tabela com as medidas de resumo para a variável salario do conjunto de dados companhia MB.xlsx.

```
df <- read_xlsx("data/raw/companhia_MB.xlsx")
tab <- df |>
    group_by(escolaridade) |>
    summarise(
        media = mean(salario),
        mediana = median(salario),
        dp = sd(salario),
        cv = dp / media,
        q1 = quantile(salario, 1 / 4),
        q3 = quantile(salario, 3 / 4)
)
```


Cabeçalho e subcabeçalho

- tab_header: permite incluir cabeçalho (title) e subcabeçalho (subtitle)
- gtsave: permite salvar tabela em formato html (página web), tex ($\angle T_F X$) e rtf (word)

```
library(gt)
gt_tab <- gt(tab) |>
  tab_header(
    title = md("**Escolaridade dos funcionário:** _Empresa tal_ "),
    subtitle = md("**Criado por:** _Gilberto Sassi_")
)
gtsave(gt_tab, filename = "output/gt_tab.html")
gtsave(gt_tab, filename = "output/gt_tab.tex")
gtsave(gt_tab, filename = "output/gt_tab.rtf")
```


Incluindo fonte dos dados

- tab_source_note: inclusão de fonte de dados
- md: formatação de texto usando a sintaxe markdown
- html: formatação de texto usando sintaxe html

```
gt_tab <- gt_tab |>
  tab_source_note(
    source_note = md("_Exemplo didático:_ Tabela 2.1.")
) |>
  tab_source_note(
    source_note = html("Livro: <strong>Estatística básica.</strong>")
)
gt_tab
```


Escolaridade dos funcionário: Empresa tal

Criado por: Gilberto Sassi

escolaridade	media	mediana	dp	CV	q1	q3
ensino fundamental	7.836667	7.125	2.956464	0.3772604	6.0075	9.1625
ensino médio	11.528333	10.910	3.715144	0.3222620	8.8375	14.4175
superior	16.475000	16.740	4.502438	0.2732891	13.6475	18.3775
Exemplo didático	: Tabela 2.1.					
Livro: Estatística hásica						

4

Rótulo para grupo de linhas

tab_row_group: permite colocar *rótulo* para um grupo de linhas

```
gt_tab <- gt_tab |>
  tab_row_group(
    label = md("**Nível**: ensino básico"),
    rows = 1:2
) |>
  tab_row_group(
    label = html("<strong>Nível</strong>: ensino universitário"),
    row = 3
)
gt_tab
```


Escolaridade dos funcionário: Empresa tal

Criado por: Gilberto Sassi						
escolaridade	media	mediana	dp	CV	q1	q3
Nível: ensino universitário						
superior	16.475000	16.740	4.502438	0.2732891	13.6475	18.3775
Nível: ensino básico						
ensino fundamental	7.836667	7.125	2.956464	0.3772604	6.0075	9.1625
ensino médio	11.528333	10.910	3.715144	0.3222620	8.8375	14.4175
Exemplo didático: Tabela 2.1.						
Livro: Estatística básica.						

Rótulo para grupo de colunas

tab_spanner: permite colocar rótulo para grupo de

colunas

```
gt_tab <- gt_tab |>
  tab_spanner(
    label = md("_Variável_"),
    columns = "escolaridade"
) |>
  tab_spanner(
    label = html("<strong>Quantis</strong>"),
    columns = c(q1, mediana, q3)
)
gt_tab
```


Escolaridade dos funcionário: Empresa tal

Criado por: Gilberto Sassi Variável Quantis media mediana escolaridade q3 dp **q1 CV** Nível: ensino universitário 16.475000 4.502438 0.2732891 13.6475 16.740 18.3775 superior Nível: ensino básico ensino 7.836667 2.956464 0.3772604 6.0075 7.125 9.1625 fundamental ensino 11.528333 3.715144 0.3222620 8.8375 10.910 14.4175 médio Exemplo didático: Tabela 2.1. Livro: Estatística básica.

Movendo colunas

- col_move_to_start: move uma ou mais colunas para o início da tabela
- col_move_to_end: move uma ou mais colunas para o fim da tabela
- col_move: move uma coluna ou mais colunas depois uma determinada coluna

```
gt_tab <- gt_tab |>
    cols_move_to_start(
        columns = escolaridade
) |>
    cols_move_to_end(
        columns = c(q1, mediana, q3)
) |>
    cols_move(
        columns = cv,
        after = media
)
gt_tab
```


Escolaridade dos funcionário: Empresa tal

Criado por: Gilberto Sassi Variável Quantis mediana escolaridade media q3 **q1** dp **CV** Nível: ensino universitário 16.475000 0.2732891 4.502438 13.6475 16.740 18.3775 superior Nível: ensino básico ensino 7.836667 0.3772604 2.956464 6.0075 7.125 9.1625 fundamental ensino 11.528333 0.3222620 3.715144 8.8375 10.910 14.4175 médio Exemplo didático: Tabela 2.1. Livro: Estatística básica.

Atualização dos rótulos das colunas

cols_label: permite atualizar os rótulos de colunas

```
gt_tab <- gt_tab |>
    cols_label(
        escolaridade = md("_Escolaridade_"),
        media = html("<em>Média</em>"),
        cv = md("_Coeficiente de variação_"),
        dp = html("<em>Desvio padrão</em>"),
        q1 = md("_Primeiro quartil_"),
        mediana = html("<em>Segundo quartil</em>"),
        q3 = md("_Terceiro quartil_")
)
gt_tab
```


Escolaridade dos funcionário: Empresa tal

Criado por: Gilberto Sassi **Quantis** Variável Coeficiente Segundo **Terceiro** Primeiro Desvio de variação quartil **Escolaridade** padrão quartil Média quartil **Nível**: ensino universitário superior 16.475000 0.2732891 4.502438 13.6475 16.740 18.3775 Nível: ensino básico ensino 7.836667 0.3772604 2.956464 7.125 9.1625 6.0075 fundamental ensino 0.3222620 10.910 11.528333 3.715144 8.8375 14.4175 médio Exemplo didático: Tabela 2.1. Livro: Estatística básica.

N.

Formatação de valores nas colunas

fmt_number : formatação de valores numéricos em uma tabela

```
gt_tab <- gt_tab |>
    fmt number(
        columns = c(media, mediana, dp, q1, q3),
        decimals = 2,
        dec_mark = ",",
        sep_mark = "."
    ) |>
    fmt number(
        columns = cv,
        decimals = 2,
        dec_mark = ",",
        sep_mark = ".",
        pattern = "{x}100%"
qt_tab
```


Escolaridade dos funcionário: Empresa tal

Criado por: Gilberto Sassi Quantis Variável Coeficiente de Segundo Primeiro **Terceiro** Desvio variação padrão quartil **Escolaridade** quartil quartil Média **Nível**: ensino universitário 18,38 0,27.100% 4,50 13,65 16,74 superior 16,48 Nível: ensino básico ensino 7,84 0,38.100% 2,96 6,01 7,12 9,16 fundamental ensino 11,53 0,32.100% 3,72 8,84 10,91 14,42 médio Exemplo didático: Tabela 2.1. Livro: Estatística básica.

Gráficos

ggplot2

Gráficos no R

- Pacote: ggplot2
- Permite gráficos personalizados com uma sintaxe simples e rápida, e iterativa por camadas
- Começamos com um camada com os dados ggplot (dados), e vamos adicionando as camadas de anotações, e sumários estatísticos
- Usa a gramática de gráficos proposta por Leland Wilkinson: Grammar of Graphics
- Ideia desta gramática: delinear os atributos estéticos das figuras geométricas (incluindo transformações nos dados e mudança no sistema de coordenadas)
- Para mais detalhes, você pode consultar ggplot2: elegant graphics for data analysis e documentação do ggplot2

Estrutura básica ggplot2

```
ggplot(data = <data possible tibble>) +
    <Geom functions>(mapping = aes(<MAPPINGS>)) +
    <outras camadas>
```

Você pode usar diversos temas e extensões que a comunidade cria e criou para melhorar a aparência e facilitar a construção de ggplot2.

Lista com extensões do ggplot: extensões do ggplots

Indicação de extensões:

- Temas adicionais para o pacote ggplot2: ggthemes
- Gráfico de matriz de correlação: ggcorrplot
- Gráfico quantil-quantil: qqplotr

Gráfico de barras

Gráfico de Barras no ggplot2

- função: geom_bar(). Para porcentagem: geom_bar(x = <variável no eixo x>, y = ..prop.. * 100).
- Argumentos adicionais:
 - fill: mudar a cor do preenchimento das figuras geométricas
 - color: mudar a cor da figura geométrica

Rótulos dos eixos

- Mudar os rótulos: labs(x = <rótulo do eixo x>, y = <rótulo do eixo y>, title = <legenda do gráfico>)
- Trocar o eixo-x pelo eixo-y: coord_flip()

Salvar gráficos

• ggsave (): salvar gráficos nos formatos pdf, png e jpeg Exploração e visualização de dados usando R

Gráfico de barras

```
library(ggplot2)
library(ggthemes)
df_iris <- read_xlsx("data/raw/dados_iris.xlsx")
ggplot(df_iris) +
    geom_bar(aes(x = especies), fill = "blue", color = "red") +
    labs(x = "Espécies", y = "Frequência absoluta") +
    theme_gdocs()
ggsave("figures/barras.jpeg")
ggsave("figures/barras.png")
ggsave("figures/barras.pdf")</pre>
```


Histograma

Para variávieis quantitativas contínuas usamos histograma.

- O histograma é um gráfico de barras contíguas em que a área de cada barra é igual à frequência relativa.
- Cada faixa de valor $[l_{i-1},l_i), i=1,\ldots,n,$ será representada por um barra com área $f_i, i=1,\ldots,n.$
- Como cada barra terá área igual a f_i e base $\Delta_i=l_i-l_{i-1}$, e a altura de cada barra será $\frac{f_i}{l_i-l_{i-1}}$.
- $\frac{f_i}{l_i-l_{i-1}}$ é denominada de densidade de frequência.
- Podemos fornecer:
 - bins: número de intervalos
 - binwidth: tamanho dos intervalos
 - breaks: limites dos intervalos

Histograma

Denside de frequência

Histograma

medida de dispersão: distância entre q_1 e q_3 pequena indica homogeneidade

Diferença de quartis: $dq=q_3-q_1$

Assimetria à direita ou positiva:

- frequências diminuem à direita no histograma
- ullet q_2 perto q_1 : $q_2-q_1 < q_3-q_2$

Assimetria à esquerda ou negativa: frequências diminuem à esquerda no histograma

- frequências diminuem à direita no histograma
- q_2 perto q_3 : $q_2-q_1>q_3-q_2$

Assimetria


```
df_enem <- read_csv2("data/raw/enem_salvador_2021.csv")
ggplot(df_enem) +
   geom_boxplot(aes(x = "", y = NU_NOTA_MT)) +
   labs(x = "", y = "Notas em matemática", title = "Boxplot") +
   theme_gdocs()</pre>
```


Gráficos lado a lado com patchwork

- patchwork permite colocar gráficos lado a lado com os operadores binários + (ao lado) e \ (embaixo)
- Mais detalhes em documentação patchwork

```
df_enem <- read_csv2("data/raw/enem_salvador_2021.csv")
g1 <- ggplot(df_enem) +
    geom_boxplot(aes(x = "", y = NU_NOTA_MT)) +
    labs(x = "", y = "Notas em matemática", title = "Boxplot") +
    theme_gdocs()
g2 <- ggplot(df_enem) +
    geom_boxplot(aes(x = "", y = NU_NOTA_LC)) +
    labs(x = "", y = "Notas em linguagens e códigos", title = "Boxplot") +
    theme_gdocs()
g1 + g2</pre>
```


Gráficos lado a lado com patchwork

Gráficos

Duas variáveis

Gráfico de dispersão

Ideia: estudar a associação entre duas variáveis quantitativas

Gráfico de dispersão

```
df_iris <- read_xlsx("data/raw/dados_iris.xlsx")
ggplot(df_iris) +
    geom_point(aes(comprimento_sepala, comprimento_petala)) +
    labs(
        x = "Comprimento de sépala",
        y = "Comprimento de pétala",
        title = "Gráfico de dispersão"
    ) +
    theme_gdocs()</pre>
```


Gráfico de dispersão

Ideia

Sejam X e Y duas variáveis qualitativas com seguintes valores possíveis

- $X: A_1, \ldots, A_r$
- $Y.B_1,\ldots,B_s$

Desejamos estudar a associação entre X e Y.

Associação entre X e Y

Suponha que A_i tenha porcentagem $f_i \cdot 100\%$. Então, X e Y são:

- não associados se ao conhecermos o valor de Y para um elemento da população, continuamos com a porcentagem $100\cdot f_i\%$ deste elemento ter valor de X igual a A_i
- associados se ao conhecermos o valor de Y para um elemento da população, alteramos a porcentagem $100 \cdot f_i\%$ deste elemento ter valor de X igual a A_i


```
df_enem <- read_csv2("data/raw/enem_salvador_2021.csv")
ggplot(df_enem) +
    geom_bar(aes(x=TP_COR_RACA, fill=TP_ESCOLA), position = "fill") +
    labs(x = "Raça", y = "Porcentagem") +
    scale_y_continuous(labels = scales::percent)+
    scale_fill_manual(name = "Tipo de escola", values = c("blue", "orange", "magenta")) +
    theme_gdocs()</pre>
```


Podemos agrupar as barras por grupos para analisar a associação entre duas variáveis qualitativas.

```
df_enem <- read_csv2("data/raw/enem_salvador_2021.csv")
ggplot(df_enem) +
    geom_bar(aes(x=TP_COR_RACA, fill=TP_ESCOLA), position = "dodge") +
    labs(x = "Raça", y = "Porcentagem") +
    scale_fill_manual(name = "Tipo de escola", values = c("blue", "orange", "magenta")) +
    theme_gdocs()</pre>
```


Podemos comparar medianas de diferentes grupos usando o diagrama de caixa.

```
df_enem <- read_csv2("data/raw/enem_salvador_2021.csv")
ggplot(df_enem) +
   geom_boxplot(aes(x = TP_COR_RACA, y = NU_NOTA_MT)) +
   labs(x = "Raça", y = "Nota em matemática") +
   theme_gdocs()</pre>
```


