## **IBM Data Science Capstone**

#### Recommending Location for an Indian Restaurant in Chicago Using Data Science

#### Introduction:

Chicago is the third most populous city in the US. Located on the banks of Lake Michigan, Chicago is a major hub for various industries including finance, telecommunications, transportation, education etc. Chicago's major airport - O'Hare International airport is one of the busiest airports in the world. Chicago also has many national highways making traveling to this culture hub very easy for travelers. With Ivy league and reputed educational institutions set up in the Illinois and Chicago area, such as University of Illinois, University of Chicago etc., many international students, particularly from India are expected to be part of the student community. Being a major cultural hub, Chicago has a big restaurant industry with over 7,300 restaurants catering to a growing base of food lovers. Setting up a new restaurant in such a lucrative environment can be a very profitable venture. However, finding the best neighborhood based on cultural diversity, income level disparity and other demographics is a problem that needs a solution to set up a successful business. This project could find interest in individuals, small businesses and corporations who want to enter or expand in the restaurant/food services industry.

#### **Business Problem:**

The aim of this project is to find the best community area to open an Indian restaurant leveraging data analytics and machine learning techniques. Being a metropolitan city, Chicago is expected to have a diversified population with differences in income levels. In this project, we will try to gather data regarding income levels, crime data and existing restaurants in a neighborhood. With this data, we will use the Foursquare location data to find most common venues and identify the best neighborhood to set up a new Indian restaurant. The neighborhood needs to be safe and provide unique food choices to cater to the growing Indian community. This project could be helpful to clients who are looking to capitalize the ever-growing food & restaurant industry of the Chicago metro area by setting up an Indian restaurant.

#### Data:

- 1. Neighborhoods
- 2. Geocoding
- 3. Foursquare API getting venues information for each neighborhood.

To solve the problem of identifying the best neighborhood to open a new restaurant, we will need to gather relevant data and analyze it.

The data collected for this project includes:

#### 1. Community area and per capita income (including hardship index)

The first step is to understand the income level of each community along with the hardship index. This helps in assessing the scale of the restaurant.

## df.head()

|   | COMMUNITY AREA NAME | PER CAPITA INCOME | HARDSHIP INDEX |
|---|---------------------|-------------------|----------------|
| 0 | Rogers Park         | 23939             | 39             |
| 1 | West Ridge          | 23040             | 46             |
| 2 | Uptown              | 35787             | 20             |
| 3 | Lincoln Square      | 37524             | 17             |
| 4 | North Center        | 57123             | 6              |

#### 2. Census data by community area to understand the demographics.

Second step is to understand the population diversity of the communities. This helps in finding community with a higher Asian population to set up the Indian restaurant.

census.head() Total Percent Percent Non\_ Hispanic Percent Non\_ Hispanic Other or Multiple Percent Non Hispanic Percent Non\_ Hispanic Community Population Hispanic 0 Rogers Park 53.470 24% 45% West Ridge 75.185 20% 13% 41% 21% 4% Uptown 54.001 16% 19% 51% 11% 3% Lincoln 46.881 18% 6% 62% 10% 4% North 4% 35 406 11% 9% 73% 3%

# 3. <u>Most recent crime data (prior twelve-month period) along with description and coordinate information</u>

Third step is to understand the crime data of Chicago. Community level crime data was not readily available. Crime data with geographical coordinate information is used for the analysis. A geolocator program is used to find the address for the geo coordinates. From this address, the corresponding community name is captured.

```
geolocator = Nominatim(user_agent="locator")
count = 0

df_crime = pd.DataFrame(columns = ['Address', 'Latitude', 'Longitude'])

for i,j in zip(crime['LATITUDE'], crime['LONGITUDE']):
    x= str(i) + "," + str(j)
    count = count + 1
    location = geolocator.reverse(x)
    geo_string = location.address.replace(" ","").split(",")

    COMMUNITY = geo_string

    df_crime = df_crime.append({'Address': COMMUNITY, 'Latitude': i, 'Longitude':j}, ignore_index = True)

df_crime.head()
```

|   | Address                                        | Latitude  | Longitude  |
|---|------------------------------------------------|-----------|------------|
| 0 | [Wendy's, 2215, NorthWashtenawAvenue, LoganSqu | 41.922170 | -87.695539 |
| 1 | [Popeyes, 7430, SouthStonyIslandAvenue, SouthS | 41.759448 | -87.586156 |
| 2 | [TCFBank, 1400-1408, WestFullertonAvenue, Linc | 41.925213 | -87.663639 |
| 3 | [McDonald's, 23, NorthWesternAvenue, NearWestS | 41.881855 | -87.686448 |
| 4 | [828-832, NorthStateStreet, NearNorthSide, Lin | 41.897674 | -87.628228 |

crime.head()

|   | PRIMARY DESCRIPTION | SECONDARY DESCRIPTION | LOCATION DESCRIPTION | LATITUDE  | LONGITUDE  |
|---|---------------------|-----------------------|----------------------|-----------|------------|
| 0 | BATTERY             | SIMPLE                | RESTAURANT           | 41.922170 | -87.695539 |
| 1 | CRIMINAL DAMAGE     | TO PROPERTY           | RESTAURANT           | 41.759448 | -87.586156 |
| 2 | ASSAULT             | SIMPLE                | RESTAURANT           | 41.925213 | -87.663639 |
| 3 | THEFT               | \$500 AND UNDER       | RESTAURANT           | 41.881855 | -87.686448 |
| 4 | THEFT               | OVER \$500            | RESTAURANT           | 41.897674 | -87.628228 |

## 4. Active business licenses and location information

Final data point is finding active business licenses with location information. A geolocator program is used again to find the corresponding address for the geo coordinates and the community names are identified.

| li | icences.head()       |               |                   |                |                                   |                                                          |                             |         |       |             |                           |                            |                              |    |
|----|----------------------|---------------|-------------------|----------------|-----------------------------------|----------------------------------------------------------|-----------------------------|---------|-------|-------------|---------------------------|----------------------------|------------------------------|----|
|    | ID                   | LICENSE<br>ID | ACCOUNT<br>NUMBER | SITE<br>NUMBER | LEGAL<br>NAME                     | DOING BUSINESS<br>AS NAME                                | ADDRESS                     | CITY    | STATE | ZIP<br>CODE | LICENSE<br>DESCRIPTION    | BUSINESS<br>ACTIVITY<br>ID | BUSINESS<br>ACTIVITY         |    |
| 0  | 2483103-<br>20190701 | 2664226       | 85443             | 277            | ABM<br>INDUSTRY<br>GROUPS,<br>LLC | ABM ONSITE<br>SERVICES-<br>MIDWEST, INC /<br>PROFESSIONA | 1725 W<br>HARRISON<br>ST    | CHICAGO | IL    | 60612       | Valet Parking<br>Operator | 855                        | Valet<br>Parking<br>Operator | 24 |
| 1  | 2583905-<br>20190701 | 2664227       | 85443             | 284            | ABM<br>INDUSTRY<br>GROUPS,<br>LLC | ABM INDUSTRY<br>GROUPS                                   | 1620 W<br>HARRISON<br>ST    | CHICAGO | IL    | 60612       | Valet Parking<br>Operator | 855                        | Valet<br>Parking<br>Operator | 25 |
| 2  | 2583904-<br>20190701 | 2664225       | 85443             | 215            | ABM<br>INDUSTRY<br>GROUPS,<br>LLC | ABM Parking<br>Services                                  | 1611 W<br>HARRISON<br>ST    | CHICAGO | IL    | 60612       | Valet Parking<br>Operator | 855                        | Valet<br>Parking<br>Operator | 25 |
| 3  | 2601954-<br>20190716 | 2670145       | 428283            | 1              | SMART<br>VALET<br>PARKING<br>LLC  | SMART VALET<br>PARKING                                   | 940 W<br>WEED ST            | CHICAGO | IL    | 60642       | Valet Parking<br>Operator | 855                        | Valet<br>Parking<br>Operator | 26 |
| 4  | 2476627-<br>20190701 | 2664242       | 216013            | 1              | VERNON<br>PARK TAP<br>L.L.C.,     | TUFANO'S/VERNON<br>PARK TAP                              | 1073 W<br>VERNON<br>PARK PL | CHICAGO | IL    | 60607       | Valet Parking<br>Operator | 855                        | Valet<br>Parking<br>Operator | 24 |

The final dataframe holds all the data points as stated above.

|   | COMMUNITY<br>AREA NAME | PER<br>CAPITA<br>INCOME | HARDSHIP<br>INDEX | Latitude  | Longitude  | Total<br>Population | Percent<br>Hispanic | Percent<br>Non<br>Hispanic<br>Black | Percent<br>Non_<br>Hispanic<br>White | Percent<br>Non_<br>Hispanic<br>Asian | Percent<br>Non_<br>Hispanic<br>Other or<br>Multiple<br>Races | License_Count | Crime_count |
|---|------------------------|-------------------------|-------------------|-----------|------------|---------------------|---------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------------------------|---------------|-------------|
| Ī | Rogers Park            | 23939                   | 39                | 42.010531 | -87.670748 | 53.470              | 24%                 | 24%                                 | 45%                                  | 5%                                   | 3%                                                           | 187.0         | 57.0        |
|   | West Ridge             | 23040                   | 46                | 42.003548 | -87.696243 | 75.185              | 20%                 | 13%                                 | 41%                                  | 21%                                  | 4%                                                           | 253.0         | 58.0        |
|   | Uptown                 | 35787                   | 20                | 41.966630 | -87.655546 | 54.001              | 16%                 | 19%                                 | 51%                                  | 11%                                  | 3%                                                           | 212.0         | 59.0        |
|   | Lincoln<br>Square      | 37524                   | 17                | 41.975990 | -87.689616 | 46.881              | 18%                 | 6%                                  | 62%                                  | 10%                                  | 4%                                                           | 165.0         | 25.0        |
|   | North Center           | 57123                   | 6                 | 41.956107 | -87.679160 | 35.406              | 11%                 | 9%                                  | 73%                                  | 4%                                   | 3%                                                           | 223.0         | 41.0        |

## **Foursquare API calls and Venue Data:**

RogersPark

42.010531

Using the Foursquare API, corresponding venue names with category and location info is pulled and stored into a dataframe.

```
venues = getNearbyVenues(names = df['COMMUNITY NO SPACES'],
                                           latitudes= df['Latitude'],
                                          longitudes= df['Longitude']
len(venues['COMMUNITY NO SPACES'].unique())
77
venues.head()
    COMMUNITY NO SPACES Community Latitude Community Longitude
                                                                                        Venue Venue Latitude Venue Longitude
                                                                                                                                Venue Category
                RogersPark
                                    42.010531
                                                       -87.670748
                                                                               El Famous Burrito
                                                                                                   42.010421
                                                                                                                  -87.674204 Mexican Restaurant
                RogersPark
                                    42.010531
                                                       -87.670748
                                                                                                   42.008087
                                                                                                                  -87.667041
                                                                                                                                  Grocery Store
                                                                              Morse Fresh Market
2
                RogersPark
                                    42.010531
                                                       -87.670748 Taqueria & Restaurant Cd. Hidalgo
                                                                                                   42.011634
                                                                                                                  -87.674484 Mexican Restaurant
                RogersPark
                                    42.010531
                                                        -87.670748
                                                                                 Lifeline Theatre
                                                                                                   42.007372
                                                                                                                   -87.666284
```

Rogers Park Social

42.007360

-87.666265

-87.670748

## **Methodology:**

#### One-hot method:

Once the nearby venue information is gathered, we then analyze communities by creating a dataframe with "zero" or "one" value for each venue category for a corresponding community.

```
# one hot encoding
onehot = pd.get_dummies(venues[['Venue Category']], prefix="", prefix_sep="")

# add neighborhood column back to dataframe
onehot['COMMUNITY NO SPACES'] = venues['COMMUNITY NO SPACES']

# move neighborhood column to the first column
fixed_columns = [onehot.columns[-1]] + list(onehot.columns[:-1])
onehot = onehot[fixed_columns]
onehot.head()
```

|   | COMMUNITY<br>NO SPACES | ATM | Accessories<br>Store | Afghan<br>Restaurant | African<br>Restaurant | Airport | Airport<br>Lounge |   | American<br>Restaurant | Amphitheater | Animal<br>Shelter | Antique<br>Shop | Arcade | Arepa<br>Restaurant | Argent<br>Resta |
|---|------------------------|-----|----------------------|----------------------|-----------------------|---------|-------------------|---|------------------------|--------------|-------------------|-----------------|--------|---------------------|-----------------|
| 0 | RogersPark             | 0   | 0                    | 0                    | 0                     | 0       | 0                 | 0 | 0                      | 0            | 0                 | 0               | 0      | 0                   |                 |
| 1 | RogersPark             | 0   | 0                    | 0                    | 0                     | 0       | 0                 | 0 | 0                      | 0            | 0                 | 0               | 0      | 0                   |                 |
| 2 | RogersPark             | 0   | 0                    | 0                    | 0                     | 0       | 0                 | 0 | 0                      | 0            | 0                 | 0               | 0      | 0                   |                 |
| 3 | RogersPark             | 0   | 0                    | 0                    | 0                     | 0       | 0                 | 0 | 0                      | 0            | 0                 | 0               | 0      | 0                   |                 |
| 4 | RogersPark             | 0   | 0                    | 0                    | 0                     | 0       | 0                 | 0 | 0                      | 0            | 0                 | 0               | 0      | 0                   |                 |

We then group the communities and find the mean score for each venue category.

```
grouped = onehot.groupby('COMMUNITY NO SPACES').mean().reset_index()
grouped.head()
```

|     | COMMUNITY<br>NO SPACES | ATM | Accessories<br>Store | Afghan<br>Restaurant | African<br>Restaurant | Airport | Airport<br>Lounge | Airport<br>Service | American<br>Restaurant | Amphitheater | Animal<br>Shelter | Antique<br>Shop | Arcade | Arepa<br>Restaurant | • |
|-----|------------------------|-----|----------------------|----------------------|-----------------------|---------|-------------------|--------------------|------------------------|--------------|-------------------|-----------------|--------|---------------------|---|
| 0   | AlbanyPark             | 0.0 | 0.013514             | 0.0                  | 0.0                   | 0.0     | 0.0               | 0.0                | 0.000000               | 0.0          | 0.0               | 0.0             | 0.0    | 0.0                 |   |
| 1   | ArcherHeights          | 0.0 | 0.000000             | 0.0                  | 0.0                   | 0.0     | 0.0               | 0.0                | 0.000000               | 0.0          | 0.0               | 0.0             | 0.0    | 0.0                 |   |
| 2   | ArmourSquare           | 0.0 | 0.000000             | 0.0                  | 0.0                   | 0.0     | 0.0               | 0.0                | 0.035714               | 0.0          | 0.0               | 0.0             | 0.0    | 0.0                 |   |
| 3   | Ashburn                | 0.0 | 0.000000             | 0.0                  | 0.0                   | 0.0     | 0.0               | 0.0                | 0.090909               | 0.0          | 0.0               | 0.0             | 0.0    | 0.0                 |   |
| 4   | AuburnGresham          | 0.0 | 0.000000             | 0.0                  | 0.0                   | 0.0     | 0.0               | 0.0                | 0.032258               | 0.0          | 0.0               | 0.0             | 0.0    | 0.0                 |   |
|     |                        |     |                      |                      |                       |         |                   |                    |                        |              |                   |                 |        |                     |   |
| gro | uped.shape             |     |                      |                      |                       |         |                   |                    |                        |              |                   |                 |        |                     |   |

(77, 339)

## **K-means clustering (3 clusters)**

Now, we train the data with the K-means clustering algorithm and find clustered communities. Number of clusters chosen were 3 for this analysis which yielded better classification.

```
df['Cluster Labels'].value_counts()

2    49
0    27
1    1
Name: Cluster Labels, dtype: int64
```

#### Top 10 most common venues

Now, we try to identify the top 10 most common venue categories for each community.

| CI | nues_sorted.he         | sau()                       |                             |                               |                             |                             |                               |                             |                               |                             |                               |
|----|------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------------|-----------------------------|-------------------------------|
|    | COMMUNITY<br>NO SPACES | 1st Most<br>Common<br>Venue | 2nd Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue   | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue   | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue   | 9th Most<br>Common<br>Venue | 10th Most<br>Common<br>Venue  |
| 0  | AlbanyPark             | ATM                         | Newsstand                   | New<br>American<br>Restaurant | Neighborhood                | Nature<br>Preserve          | National Park                 | Nail Salon                  | Music Venue                   | Music Store                 | Museum                        |
| 1  | ArcherHeights          | ATM                         | Noodle<br>House             | Non-Profit                    | Nightlife Spot              | Newsstand                   | New<br>American<br>Restaurant | Neighborhood                | Nature<br>Preserve            | Office                      | National Park                 |
| 2  | ArmourSquare           | ATM                         | Organic<br>Grocery          | Optical Shop                  | Office                      | Noodle<br>House             | Non-Profit                    | Nightlife Spot              | Nightclub                     | Other Great<br>Outdoors     | Newsstand                     |
| 3  | Ashburn                | ATM                         | Optical Shop                | Office                        | Noodle House                | Non-Profit                  | Nightlife Spot                | Nightclub                   | Newsstand                     | Organic<br>Grocery          | New<br>American<br>Restaurant |
| 4  | AuburnGresham          | ATM                         | Optical Shop                | Office                        | Noodle House                | Non-Profit                  | Nightlife Spot                | Newsstand                   | New<br>American<br>Restaurant | Organic<br>Grocery          | Neighborhood                  |

## **Visualization:**

We try to visualize the community level information of business licenses, crimes, hardship index and non-Hispanic Asian population.

#### Community area vs license count









#### **Results:**

Now, we identify the best communities with

- high business licenses (high business activity attracts higher workforce and customers for food business)
- Low crime count (safer community with lower insurance costs)
- Low hardship index (people have higher spending power)
- High Asian population (better chances of attracting people with similar food tastes and preferences)

The resulting communities are:

#### COMMUNITY NO SPACES License\_Count Crime\_count HARDSHIP INDEX Percent Non\_Hispanic Asian

| 0 | MorganPark | 53.0 | 37.0 | 30 | 1 |
|---|------------|------|------|----|---|
| 1 | Woodlawn   | 53.0 | 38.0 | 58 | 4 |

```
# coordinates of chicago
latitude = 41.881832
longitude = -87.623177
kclusters=3
```

```
map_clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
# set color scheme for the clusters
x = np.arange(kclusters)
ys = [i + x + (i*x)**2 for i in range(kclusters)]
colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
rainbow = [colors.rgb2hex(i) for i in colors_array]
# add markers to the map
markers colors = []
for lat, lon, poi, cluster in zip(df['Latitude'], df['Longitude'], df['COMMUNITY NO SPACES'], df['Cluster Labels']):
    label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
    folium.CircleMarker(
         [lat, lon],
         radius=5,
         popup=label,
         color=rainbow[cluster],
         fill=True,
         fill_color=rainbow[cluster],
         fill_opacity=0.7).add_to(map_clusters)
map_clusters
```



#### **Recommendation:**

Based on the analysis, it is beneficial to open a new Indian restaurant in either Morgan Park or Woodland communities. If we analyze these two communities, we note that these two communities are similarly positioned in the number of active businesses and crime counts in the areas. However, the hardship index is better in Morgan Park compared to the Woodlawn community and non-Asian population is higher in Woodlawn community. We can offer the client/end customer with both options and decide a community based on the scale of the restaurant. If the client wants to set up a high scale restaurant, Morgan Park is the recommended community. If the plan is to set up a low/mid-scale restaurant, Woodlawn community is a better one.

Common communities are shown as pop-ups in the picture below.



#### **Conclusion:**

In this project, we have been able to understand the needs of the end customer and offer recommendations/ solutions using machine learning and proper data analysis techniques. This can be an iterative process with feedback and inputs for improvisation. There may arise a need to increase the cluster count or machine learning techniques depending on additional data.

## **References:**

https://data.cityofchicago.org/Health-Human-Services/Census-Data-Selected-socioeconomic-indicators-in-C/kn9c-c2s2

http://www.actforchildren.org/wp-content/uploads/2018/01/Census-Data-by-Chicago-Community-Area-2017.pdf

https://data.cityofchicago.org/Public-Safety/Crimes-One-year-prior-to-present/x2n5-8w5q

https://data.cityofchicago.org/Community-Economic-Development/Business-Licenses-Current-Active/uupf-x98q

https://www.chicago.gov/city/en/about/facts.html