PBG 200A Notes

Sam Fleischer

December 5, 2016

• SNP array genotyping

- based on DNA-DNA hybridization
- need to know where the variable sites are in an organism
 - * multiple prob pairs for each variable nucleotide
- the individual who carries a C(A) will hybridize better to probes with G(T). Measuring differences in signal intensities.
- very precise, very cost-effective, on a per-individual, per-SNP basis
- only is useful in model organisms
- For \$600, get 1 million alleles in 1 individual.

• Bead array genotyping

- most common for nonmodel organisms,
- but have to have a reference genome and know the variable sites and alternative alleles at a site
- need the same info for nonmodel and model organisms, but for nonmodel organisms you need to make your own reagents.
- primers attach to reverse-primers which have their own barcode. Reverse primers attach to beads, so each type of bead corresponds to a single allele. Plate-reader fishes out the beads and immobilizes them in different locations on a plate. Image the plate for the different tags.
- advantage: flexibility.
 - * \$.2 \$.5 per SNP per genotype (48-384 SNPs)
 - * minimum experiment: approx 500 individuals, \$10,000-\$15,000.
 - * high requirements for DNA quantity and quality

• Sequenom MassArray genotyping

- have to know a reference sequence (something)
- need to know 100-200 variable sites
- do PCR for every locus
- no tags, no beads, directly reading the sequence with a mass spectrometer (must be able to determine each allele from each allele in all sites)
- main limitation is SNP compatibility
- -30-36 SNPs per plex.
- flexible: suitable for gradual experiments (feeds information a little bit at a time, can improve experimental design on the fly)
- main limitation is SNP compatibility
- \$.15-\$.25 per SNP per genotype
- requires less DNA and less quality

• Genotyping by Sequence

- Do reads for k individuals in a single pool
- separate bioinformatically later on

- assign ancestry to each individual at each location
- Multiplexed shotgun genotyping
 - essentially getting unlimited info
 - assuming the individuals have high LD
 - if the density of variate sites is much less than the density of recombination break points.
 - this means we don't need high coverage we don't have complete genome
 - can be very cheap on the per individual basis can multiplex multiple individuals on a single Illumina lane.
 - very cheap \$20-\$40 per individual fo thousands of markers
 - disadvantages:
 - * need to have fairly well-assembled reference genomes, and info on each parent,
 - * high upfront costs (barcode adaotors need a single barcide for each individual). The same 100 or so barcodes can be reused. Scalaing up is easy.
 - Key point: not using genetic information to infer a genetic map. Using physical genome as reference.
- Bulked segregant analysis
 - Basic principle: identify differences in the frequencies of marker alleles between pools of individuals with different phenotypes
 - In the absence of population structure, this is useful (do we want most or least diverse group?)
 - can be done in lab or in natural populations
 - limit by scale of LD
 - Genetic designs for BSA
 - * controlled lab cross
 - * hitchhiking mapping (select for phenotypes, see which genotypes come with it)
 - * introgression mapping
 - * Natual poulaition
- Genotyping by sequencing (Gar paper): technology
 - a lot easier and simpler can't use it for genome mapping without a reference equilibrium
 - this was an excellent example of how to exploit the available technological resources
 - pseudogenomes (updated genome) mapping to a semi-related genome assume the genomes are close enough, and that they are more or less colinear. Map the reads to the semi-related genome - very high error rates, but fine for their purpose
 - masking polymorphisms throwing out over 90% of data, still end up with hundreds of variable site per Mb.
- Measuring gene expression: microarrays vs. RNA-seq
 - what genes are expressed where, when, and in what amount
 - determines the function of the genome
 - look at gene expression to determine the link between genotype and phenotype
 - Microarrays
 - * immobilize probes on solid support
 - * "analog" technology
 - * cost-effective when good arrays already available,
 - * but custom arrays can be made for any organism
 - * has almost completely been displaced by...
 - RNA-seq
 - * "digital" technology
 - * can be done for any organism, but requires a reference for mapping reads
 - * assuming the number of reads you observe in an RNA sample is proportional to expression

- * don't need an organism-specifi reagent, but do need a reference genome,
- * but can make a custom reference (which is a helluva lot easier than making a custom array)
- * got cheaper fast, now even cheaper and easier
- Design and analysis of expression experiments
 - interested in differences between treatments/categories
 - * brain/liver, grain/rice, male/female, etc.
 - * must account for variation within treatment first!
 - biological variation within treatment
 - * genetic differences, environmental conditions, etc.
 - technical variance
 - * effect of experimental procedures, dissection, batch of arrays/dyes, reagents, ozone levels that day, etc.
 - * Artyom knows a statistician who swears she can look at two data sets and determine which Illumina machine it came from..... wtf.
 - biological replicates necessary to detect differences
 - * avoid confounding biological and technical variation
 - * know the technical properties of your method
 - * anticipate sources of biological and technical variance
- design of RNA-seq experiments
 - unlike microarrays, RNA-seq provides categorical (counts) data
 - in principle, can detect "differential expression" from a single replicate per treatment (conditioned on depth)
 - does not tell you whether you are looking at true biological variation
 - for quantitative experiments, need multiple biological replicates per treatment, just a with arrays
 - minimize environmental and technical variation
 - avoid confounding biological and technical variation
 - example of a bad design:
 - * using different reagents, different Illumina machines completely confounding biological and technical variation
 - example of a good design:
 - * use barcodes!
 - * isolate RNA use the same batch of reagents for each library
 - * can mix all six biological replicates because of barcodes
 - * put the mix on six different lanes, minimizing technical variation
 - the importance of this depends on the level of variation you are measuring
 - may be looking at subtle quantitative difference
- problems with RNA-seq quantification
 - standard Illumina procedure includes many enzymatic steps with purification in between
 - losses and biases at every step
 - OK if looking for big differences; may be a problem if looking for subtle quantative variation
- Allele-specific expression analysis
 - Differences in gene expression between genotpes can be due either to mutation in that gene (cis-regulatory) or any changes in its upstream regulators (trans-regulatory)
 - For some applications, we don't care (health)
 - In evolutionary terms, however, it makes a big difference. How do we figure out where the divergence is based on cis- or transregulatory variation
 - F1 hybrids can be used to infer cisregulatory variation
 - By comparing two parents and their F1, can decompose gene expression divergence into cis- and trans0regulatory components