谓词逻辑

综合推理方法

Lijie Wang

基本方法

演绎平例

推理雅占

特殊演绎

惟理应月

综合推理方法

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

综合推理方法

Lijie Wang

其木方法

富经举场

维那辨

特殊演约

推理应用

- ☞ 综合推理方法
 - 推导过程中可以引用命题演算中的规则 P 和规则 T;

综合推理方法

Lijie Wang

基本方法

演绎举例

推理雑点

特殊演织

推理应用

- ☞ 综合推理方法
 - 推导过程中可以引用命题演算中的规则 P 和规则 T;
 - 如果结论是以条件形式或析取形式给出,则可使用规则 CP;

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演绎

性埋心,

- ☞ 综合推理方法
 - 推导过程中可以引用命题演算中的规则 P 和规则 T;
 - 如果结论是以条件形式或析取形式给出,则可使用规则 CP;
 - 若需消去量词,可以引用规则 US 和规则 ES;

综合推理方法

Lijie Wang

基本方法

演绎举例

推埋难点

特殊演绎

惟埋应)

- ☞ 综合推理方法
 - 推导过程中可以引用命题演算中的规则 P 和规则 T;
 - 如果结论是以条件形式或析取形式给出,则可使用规则 CP;
 - 若需消去量词,可以引用规则 US 和规则 ES;
 - 当所求结论需定量时,可引用规则 UG 和规则 EG 引入量词;

综合推理方法

Lijie Wang

基本方法

演绎举的

推理难点

特殊演绎

推理应用

假定推导过程都是在相同的个体域内进行的(通常是全总个体域)。

☞ 综合推理方法

- 推导过程中可以引用命题演算中的规则 P 和规则 T;
- 如果结论是以条件形式或析取形式给出,则可使用规则 CP;
- 若需消去量词,可以引用规则 US 和规则 ES;
- 当所求结论需定量时,可引用规则 UG 和规则 EG引入量词;
- 证明时可采用如命题演算中的直接证明方法和间接证明方法;

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演

推理应用

假定推导过程都是在相同的个体域内进行的(通常是全总个体域)。

☞ 综合推理方法

- 推导过程中可以引用命题演算中的规则 P 和规则 T;
- 如果结论是以条件形式或析取形式给出,则可使用规则 CP;
- 若需消去量词,可以引用规则 US 和规则 ES;
- 当所求结论需定量时,可引用规则 UG 和规则 EG引入量词;
- 证明时可采用如命题演算中的直接证明方法和间接证明方法;
- 在推导过程中,对消去量词的公式或公式中不含量词的子公式,可以引用命题演算中的基本等价公式和基本蕴涵公式;

综合推理方法

Lijie Wang

基本方法

演绎举例

惟埋难点

特殊演!

推理应用

假定推导过程都是在相同的个体域内进行的(通常是全总个体域)。

☞ 综合推理方法

- 推导过程中可以引用命题演算中的规则 P 和规则 T;
- 如果结论是以条件形式或析取形式给出,则可使用规则 CP;
- 若需消去量词,可以引用规则 US 和规则 ES;
- 当所求结论需定量时,可引用规则 UG 和规则 EG引入量词;
- 证明时可采用如命题演算中的直接证明方法和间接证明方法;
- 在推导过程中,对消去量词的公式或公式中不含量词的子公式,可以引用命题演算中的基本等价公式和基本蕴涵公式;
- 在推导过程中,对含有量词的公式可以引用谓词中的基本等价公式和基本蕴涵公式。

综合推理方法

Lijie Wang

基本方法

演绎举例

₩1用3# ±

特殊演约

推理应用

Example

"所有的人都是要死的;苏格拉底是人。所以苏格拉底是要死的。"

综合推理方法

Lijie Wang

基本方法

64举例

行分本/舆:

推理应用

Example

"所有的人都是要死的;苏格拉底是人。所以苏格拉底是要死的。"

解:

设H(x):x 是人; M(x):x 是要死的; s: 苏格拉底.

综合推理方法

Lijie Wang

基本方法

資绎举例

J participants

特殊演

Example

"所有的人都是要死的; 苏格拉底是人。所以苏格拉底是要死的。"

解:

设H(x):x 是人; M(x):x 是要死的; s: 苏格拉底.

则推理符号化成:

$$(\forall x)(H(x) \to M(x)), H(s) \Rightarrow M(s)$$

综合推理方法

Lijie Wang

基本方法

寅绎举例

特殊演绎

推理应用

Example

"所有的人都是要死的; 苏格拉底是人。所以苏格拉底是要死的。"

解:

设H(x):x 是人; M(x):x 是要死的; s: 苏格拉底.

则推理符号化成:

$$(\forall x)(H(x) \to M(x)), H(s) \Rightarrow M(s)$$

Proof.

$$(1) \quad (\forall x)(H(x) \to M(x)) \qquad \qquad P$$

(2)
$$H(y) \rightarrow M(y)$$
 US, (1), I

$$(3)$$
 $H(s)$

(4)
$$M(s)$$
 $T, (2), (3), I$

综合推理方法

Lijie Wang

基本方法

演绎举例

理 # 占

特殊常经

Example

"所有的人都是要死的;苏格拉底是人。所以苏格拉底是要死的。"

解:

设H(x):x 是人; M(x):x 是要死的; s: 苏格拉底.

则推理符号化成:

$$(\forall x)(H(x) \to M(x)), H(s) \Rightarrow M(s)$$

Ρ

Proof.

- $(1) \quad (\forall x)(H(x) \to M(x))$
- (2) $H(s) \rightarrow M(s)$ US, (1), I
- (3) H(s)
- (4) M(s) T, (2), (3), I

综合推理方法

Lijie Wang

基本方法

演绎举例

付分本/贝丝

推理应用

演绎法证明: $(\forall x)(P(x) \to Q(x)), (\exists x)P(x) \Rightarrow (\exists x)Q(x)$

综合推理方法

Lijie Wang

基本方法

演绎举例

松田吐土

.

持殊演约

推理应用

Example 演绎法证明: $(\forall x)(P(x) \rightarrow Q(x))$		
Proof.		
$(1) (\forall x)(P(x) \to Q(x))$	P	
$(2) P(y) \to Q(y)$	$\mathit{US},(1),\mathit{I}$	
$(3) (\exists x) P(x)$	P	
(4) P(a)	<i>ES</i> , (3)	
(5) $Q(a)$	T, (2), (4), I	
(6) $(\exists x) Q(x)$	EG, (5)	

综合推理方法

Liiie Wang

基本方法

演绎举的

推理难点

特殊演织

推理应用

```
Example
  演绎法证明: (\forall x)(P(x) \to Q(x)), (\exists x)P(x) \Rightarrow (\exists x)Q(x)
Proof.
                                                           P
         (\forall x)(P(x) \rightarrow Q(x))
                                     P(a) \rightarrow Q(a)
                                                          US, (1), I
        P((y))/+///Q((y))
                                                           P
  (3)
         (\exists x)P(x)
  (4)
         P(a)
                                                          ES, (3)
  (5)
         Q(a)
                                                           T, (2), (4), I
  (6)
         (\exists x) Q(x)
                                                           EG, (5)
```

综合推理方法

Lijie Wang

基本方法

演绎举的

KETHINE A

Actomic States

推理应用

$$\left\{ (\forall x)(P(x) \to Q(x)), (\exists x)P(x) \Rightarrow (\exists x)Q(x) \right\}$$

以上推理的正确推导应为:

Proof		
(1)	$(\exists x)P(x)$	Р
(2)	P(a)	ES, (1), I
(3)	$(\forall x)(P(x) \to Q(x))$	P
(4)	P(a) o Q(a)	<i>US</i> , (3)
(5)	Q(a)	T, (2), (4), I
(6)	$(\exists x) Q(x)$	EG, (5)

综合推理方法

Lijie Wang

基本方法

推理难点

特殊溜丝

推理应用

☞ 难点总结

在推导过程中,如既要使用规则 US 又要使用规则 ES 消去量词,而且选用的个体是同一个符号,则必须先使用规则 ES,再使用规则 US。然后再使用命题演算中的推理规则,最后使用规则 UG 或规则 EG 引入量词,得到所求结论。

综合推理方法

Lijie Wang

基本方法

推理难点

特殊演

☞ 难点总结

- 在推导过程中,如既要使用规则 US 又要使用规则 ES 消去量词,而且选用的个体是同一个符号,则必须先使用规则 ES,再使用规则 US。然后再使用命题演算中的推理规则,最后使用规则 UG 或规则 EG 引入量词,得到所求结论。
- 如一个变量是用规则 ES 消去量词,对该变量在添加量词时,则只能使用规则 EG;
 如使用规则 US 消去量词,对该变量在添加量词时,则可使用规则 EG 和规则 UG。

Lijie Wang

基本方法

推理难点

特殊演

推理応

☞ 难点总结

- 在推导过程中,如既要使用规则 US 又要使用规则 ES 消去量词,而且选用的个体是同一个符号,则必须先使用规则 ES,再使用规则 US。然后再使用命题演算中的推理规则,最后使用规则 UG 或规则 EG 引入量词,得到所求结论。
- 如一个变量是用规则 ES 消去量词,对该变量在添加量词时,则只能使用规则 EG;
 如使用规则 US 消去量词,对该变量在添加量词时,则可使用规则 EG 和规则 UG。
- 在用规则 US 和规则 ES 消去量词时,此量词必须位于整个公式的最前端,且辖域为其后的整个公式。

Lijie Wang

基本万法

推理难点

特殊演

₩IR ctr

☞ 难点总结

- 在推导过程中,如既要使用规则 US 又要使用规则 ES 消去量词,而且选用的个体是同一个符号,则必须先使用规则 ES,再使用规则 US。然后再使用命题演算中的推理规则,最后使用规则 UG 或规则 EG 引入量词,得到所求结论。
- 如一个变量是用规则 ES 消去量词,对该变量在添加量词时,则只能使用规则 EG;
 如使用规则 US 消去量词,对该变量在添加量词时,则可使用规则 EG 和规则 UG。
- 在用规则 US 和规则 ES 消去量词时,此量词必须位于整个公式的最前端,且辖域为其后的整个公式。
- 在添加量词 $(\forall x)$ 和 $(\exists x)$ 时,所选用的 x 不能在公式 G(y) 或 G(c) 中出现。

综合推理方法

Lijie Wang

基本方法

演绎举

推理雑点

特殊演绎

 $\{$ 演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)\}$

Proof.

综合推理方法

Lijie Wang

基本方法

演绎举

推理难点

特殊演绎

推理应用

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

Proof.

(8)
$$\neg(\forall x)P(x) \rightarrow (\exists x)Q(x)$$
 $CP, (1), (7)$

(9) $(\forall x)P(x) \lor (\exists x)Q(x)$ T, (8), E

综合推理方法

Lijie Wang

基本方法

演绎举任

推理难点

特殊演绎

性理应 月

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

Proof.

 $(1) \quad \neg(\forall x) P(x)$

P(附加前提)

(7) $(\exists x) Q(x)$ EG, (6)

(8) $\neg(\forall x)P(x) \rightarrow (\exists x)Q(x)$ CP, (1), (7)

(9) $(\forall x)P(x) \lor (\exists x)Q(x)$ T, (8), E

综合推理方法

Lijie Wang

基本方法

演经举例

推理雅占

特殊演绎

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

Proof.

(1) $\neg(\forall x)P(x)$

P(附加前提)

(6)	Q(c)	T, (3), (5), I
(7)	$(\exists x) Q(x)$	EG, (6)
(8)	$\neg(\forall x)P(x)\to(\exists x)Q(x)$	CP, (1), (7)
(9)	$(\forall x)P(x)\vee(\exists x)Q(x)$	T, (8), E

综合推理方法

Lijie Wang

基本方法

演经举(

L-Hemoth J

特殊演绎

KEIR etce

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

Proof.

- (1) $\neg(\forall x)P(x)$ P(附加前提)
- (2) $(\exists x) \neg P(x)$ T, (1), E

- (6) Q(c) T, (3), (5), I
- $(7) \quad (\exists x) Q(x) \qquad \qquad EG, (6)$
- (8) $\neg(\forall x)P(x) \rightarrow (\exists x)Q(x)$ CP, (1), (7)
- (9) $(\forall x)P(x) \lor (\exists x)Q(x)$ T, (8), E

综合推理方法

Lijie Wang

基本方法

:雷经举5

......

特殊演绎

惟理应用

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

roor	
(1)	-(\d

(1) ¬(∀x)P(x) P(附加前提)

 $(2) \quad (\exists x) \neg P(x) \qquad \qquad T, (1), E$

 $(3) \neg P(c) ES, (2)$

(6) Q(c) T, (3), (5), I

 $(7) \quad (\exists x) \, Q(x) \qquad \qquad EG, (6)$

(8) $\neg(\forall x)P(x) \rightarrow (\exists x)Q(x)$ CP, (1), (7)

(9) $(\forall x)P(x) \lor (\exists x)Q(x)$ T, (8), E

综合推理方法

Lijie Wang

基本方法

>=423H/II

W-mak-k

特殊演绎

KEIR etce

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$	ſ	* * * * * * * * * *		* * *	v v v	* * * .	* * * * * *	* * * * * * *	* * * * * *	* * * * * *
	>	演绎法证明	:	$(\forall x)$	(P($(x) \vee$	Q(x)	$\Rightarrow (\forall x)P$	$(x) \lor (\exists$	(x) Q(x)

$\neg(\forall x)P(x)$	P(附加前提)
$(\exists x)\neg P(x)$	T, (1) , E
$\neg P(c)$	ES, (2)
$(\forall x)(P(x) \vee Q(x))$	T, (2) , I
Q(c)	T, (3), (5), I
$(\exists x) Q(x)$	EG, (6)
$\neg(\forall x)P(x)\to(\exists x)Q(x)$	CP, (1), (7)
$(\forall x) P(x) \vee (\exists x) Q(x)$	T, (8), E
	$\neg(\forall x)P(x)$ $(\exists x)\neg P(x)$ $\neg P(c)$ $(\forall x)(P(x) \lor Q(x))$ $Q(c)$ $(\exists x)Q(x)$ $\neg(\forall x)P(x) \to (\exists x)Q(x)$

综合推理方法

Lijie Wang

基本方法

瀋经举级

特殊演绎

107/1/92=

住理应用

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

Proo	f.	
(1)	$\neg(\forall x)P(x)$	P(附加前提)
(2)	$(\exists x) \neg P(x)$	$\mathcal{T},(1),\mathcal{E}$
(3)	$\neg P(c)$	ES, (2)
(4)	$(\forall x)(P(x) \vee Q(x))$	T, (2) , I
(5)	$P(c) \vee Q(c)$	$\mathit{US}, (4)$
(6)	Q(c)	T, (3), (5), I
(7)	$(\exists x) Q(x)$	EG, (6)
(8)	$\neg(\forall x)P(x)\to(\exists x)Q(x)$	CP, (1), (7)
(9)	$(\forall x)P(x)\vee(\exists x)Q(x)$	T, (8), E

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演绎

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$

综合推理方法

Lijie Wang

基本方法

演绎举例

鮮理雑さ

特殊演绎

住理应用

演绎法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x) \lor (\exists x)Q(x)$ (1) $\neg((\forall x)P(x) \lor (\exists x)Q(x))$ P(附加前提)

 $\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$

Lijie Wang

(2)

特殊演绎

	······································	
演绎	法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow$	$(\forall x)P(x) \vee (\exists x)Q(x)$
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)

T, (1), E

综合推理方法

Lijie Wang

基本方法

演绎举份

住1180年占

特殊演绎

37/1/20-

to etc ex

演绎	法证明: $(\forall x)(P(x) \lor Q(x))$	$\Rightarrow (\forall x) P(x) \lor (\exists x) Q(x)$
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1) , E
(3)	$\neg(\forall x)P(x)$	T,(2),I

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演绎

~演绎	法证明: $(\forall x)(P(x) \lor Q(x)$	$) \Rightarrow (\forall x) P(x) \lor (\exists x) Q(x) $
uu		
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	$\mathcal{T},(1),\mathcal{E}$
(3)	$\neg(\forall x)P(x)$	T,(2),I
(4)	$\neg(\exists x) Q(x)$	$\mathcal{T},(2),\mathcal{I}$

综合推理方法

Lijie Wang

基本方法

演绎举例

准理难点

特殊演绎

to REC

\sim	······································	\sim
演绎	去证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	$\vee (\exists x) Q(x) $
ww		
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1) , E
(3)	$\neg(\forall x)P(x)$	T, (2), I
(4)	$\neg(\exists x)Q(x)$	T, (2), I
(5)	$(\exists x)\neg P(x)$	T, (3), E

综合推理方法

Lijie Wang

基本方法

演绎举例

 住理难点

特殊演绎

E理应用

演绎	法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	$\vee (\exists x) Q(x)$
uu		
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1) , E
(3)	$\neg(\forall x)P(x)$	T, (2), I
(4)	$\neg(\exists x) Q(x)$	T, (2) , I
(5)	$(\exists x)\neg P(x)$	T, (3), E
(6)	$\neg P(c)$	ES, (5)

综合推理方法

Lijie Wang

基本方法

演绎举例

住理难点

特殊演绎

隹理应月

\sim	······	
演绎	去证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	$\vee (\exists x) Q(x) $
uu		······································
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1) , E
(3)	$\neg(\forall x)P(x)$	T, (2), I
(4)	$\neg(\exists x)Q(x)$	T, (2), I
(5)	$(\exists x)\neg P(x)$	T, (3), E
(6)	$\neg P(c)$	ES, (5)
(7)	$(\forall x) \neg Q(x)$	T, (4) , E

综合推理方法

Lijie Wang

基本方法

演绎举例

惟理难点

特殊演绎

性埋炒片

· 演绎	法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	$\forall (\exists x) Q(x)$
m		Limin
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1), E
(3)	$\neg(\forall x)P(x)$	T, (2), I
(4)	$\neg(\exists x)Q(x)$	T, (2), I
(5)	$(\exists x)\neg P(x)$	T, (3), E
(6)	$\neg P(c)$	ES, (5)
(7)	$(\forall x) \neg Q(x)$	T, (4) , E
(8)	$\neg Q(c)$	T, (2), I

综合推理方法

Lijie Wang

基本方法

演绎举例

住理难点

特殊演绎

自动耶维

演绎	法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	$(x) \lor (\exists x) Q(x)$
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T,(1), E
(3)	$\neg(\forall x)P(x)$	T, (2), I
(4)	$\neg(\exists x) Q(x)$	T,(2),I
(5)	$(\exists x)\neg P(x)$	T, (3), E
(6)	$\neg P(c)$	ES, (5)
(7)	$(\forall x) \neg Q(x)$	T, (4), E
(8)	$\neg Q(c)$	T, (2) , I
(9)	$\neg P(c) \wedge \neg Q(c)$	T, (6), (8), I

综合推理方法

Lijie Wang

基本方法

演绎举例

住理难点

特殊演绎

主理应用

演绎	法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	$\vee (\exists x) Q(x)$
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1) , E
(3)	$\neg(\forall x)P(x)$	T, (2) , I
(4)	$\neg(\exists x)Q(x)$	T, (2) , I
(5)	$(\exists x)\neg P(x)$	T, (3), E
(6)	$\neg P(c)$	ES, (5)
(7)	$(\forall x) \neg Q(x)$	T, (4) , E
(8)	eg Q(c)	T, (2), I
(9)	$\neg P(c) \wedge \neg Q(c)$	T, (6), (8), I
(10)	$\neg (P(c) \lor Q(c))$	T, (9), E

综合推理方法

Lijie Wang

基本方法

演绎举份

惟理难点

特殊演绎

件1田 成 E

演绎	法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow ($	$\forall x) P(x) \lor (\exists x) Q(x)$
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	$\mathcal{T},(1),\mathcal{E}$
(3)	$\neg(\forall x)P(x)$	$\mathcal{T},(2),\mathcal{I}$
(4)	$\neg(\exists x) Q(x)$	$\mathcal{T},(2),\mathcal{I}$
(5)	$(\exists x) \neg P(x)$	T, (3) , E
(6)	$\neg P(c)$	ES, (5)
(7)	$(\forall x) \neg Q(x)$	$\mathcal{T},(4),\mathcal{E}$
(8)	$\neg Q(c)$	$\mathcal{T},(2),\mathcal{I}$
(9)	$\neg P(c) \wedge \neg Q(c)$	T, (6), (8), I
(10)	$\neg (P(c) \lor Q(c))$	T, (9) , E
(11)	$(\forall x)(P(x) \lor Q(x))$	Р

综合推理方法

Lijie Wang

基本方法

演经举

鮮理雑さ

特殊演绎

0-тш e+- с

演绎	法证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	$\forall (\exists x) Q(x)$
Lun		himmin
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1) , E
(3)	$\neg(\forall x)P(x)$	T, (2) , I
(4)	$\neg(\exists x)Q(x)$	T, (2) , I
(5)	$(\exists x)\neg P(x)$	T, (3), E
(6)	$\neg P(c)$	ES, (5)
(7)	$(\forall x) \neg Q(x)$	T, (4) , E
(8)	$\neg Q(c)$	T, (2), I
(9)	$\neg P(c) \wedge \neg Q(c)$	T, (6), (8), I
(10)	$\neg (P(c) \lor Q(c))$	T, (9), E
(11)	$(\forall x)(P(x) \vee Q(x))$	Р
(12)	$P(c) \vee Q(c)$	<i>US</i> , (7)

综合推理方法

Lijie Wang

基本方法

演绎举化

推理难点

特殊演绎

住理应り

00000	······	
, ; 演绎;	去证明: $(\forall x)(P(x) \lor Q(x)) \Rightarrow (\forall x)P(x)$	
uu		himmin
(1)	$\neg((\forall x)P(x)\vee(\exists x)Q(x))$	P(附加前提)
(2)	$\neg(\forall x)P(x) \land \neg(\exists x)Q(x)$	T, (1) , E
(3)	$\neg(\forall x)P(x)$	T, (2) , I
(4)	$\neg(\exists x)Q(x)$	T, (2), I
(5)	$(\exists x)\neg P(x)$	T, (3), E
(6)	$\neg P(c)$	ES, (5)
(7)	$(\forall x) \neg Q(x)$	T, (4) , E
(8)	eg Q(c)	T, (2), I
(9)	$\neg P(c) \wedge \neg Q(c)$	T, (6), (8), I
(10)	$\neg (P(c) \lor Q(c))$	T, (9), E
(11)	$(\forall x)(P(x) \vee Q(x))$	P
(12)	$P(c) \vee Q(c)$	<i>US</i> , (7)
(13)	$(P(c) \lor Q(c)) \land (\neg(P(c) \lor Q(c)))$	T, (10), (12), I

谓词逻辑推理的应用

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

持殊演约

推理应用

Example

证明下述论断的正确性:"所有的哺乳动物都是脊椎动物;并非所有的哺乳动物都是胎生动物;故有些脊椎动物不是胎生的。"

解

设 P(x): x是哺乳动物;

Q(x): x是脊椎动物;

R(x): x是胎生动物.

则推理符号化成:

$$(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$$

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演绎

推理应用

 $(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$

综合推理方法

Lijie Wang

基本方法

演绎举任

推理难点

特殊演绎

推理应用

$$\{(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$$

综合推理方法

Lijie Wang

基本方法

演绎举份

推理难点

特殊演绎

推理应用

$$(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$$

(10)
$$Q(c) \wedge \neg R(c)$$
 $T, (6), (9), I$
(11) $(\exists x)(Q(x) \wedge \neg R(x))$ $EG, (10)$

综合推理方法

Lijie Wang

基本方法

澳珲华物

推理难点

特殊演绎

推理应用

$$\{(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))\}$$

(6)
$$\neg R(c)$$
 $T, (4), I$

(9)
$$Q(c)$$
 $T, (5), (8), I$
(10) $Q(c) \land \neg R(c)$ $T, (6), (9), I$

$$(7) Q(c) \land \neg R(c) \qquad \qquad (7, (6), (9), 1)$$

(11)
$$(\exists x)(Q(x) \land \neg R(x))$$
 EG, (10)

综合推理方法

Lijie Wang

基本方法

演绎举例

惟理难点

特殊演绎

推理应用

$$\{(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))\}$$

 $(1) \qquad \neg(\forall x)(P(x) \to R(x))$

r

(6)
$$\neg R(c)$$
 $T, (4), I$

(9) Q(c)

T, (5), (8), I

(10) $Q(c) \wedge \neg R(c)$

T, (6), (9), I

 $(11) \quad (\exists x)(Q(x) \land \neg R(x))$

Lijie Wang

推理应用

$$\{(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))\}$$

- (1) $\neg(\forall x)(P(x) \rightarrow R(x))$ $(\exists x) \neg (\neg P(x) \lor R(x))$
- T, (1), E

(6) $\neg R(c)$ T, (4), I

(9)Q(c)

(2)

T, (5), (8), I

 $Q(c) \wedge \neg R(c)$ (10)

T, (6), (9), I

(11) $(\exists x)(Q(x) \land \neg R(x))$

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演绎

推理应用

$$(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$$

(1) $\neg(\forall x)(P(x) \rightarrow R(x))$

Ρ

(2) $(\exists x) \neg (\neg P(x) \lor R(x))$

T, (1), E

 $\neg(\neg P(c) \lor R(c))$

ES, (2)

(6) $\neg R(c)$

(3)

T, (4), I

(9) Q(c)

T, (5), (8), I

(10) $Q(c) \wedge \neg R(c)$

T, (6), (9), I

 $(11) \quad (\exists x)(Q(x) \land \neg R(x))$

综合推理方法

Lijie Wang

基本方法

演绎举例

住理难点

特殊演约

推理应用

$$(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$$

(1) $\neg(\forall x)(P(x) \rightarrow R(x))$

Ρ

 $(2) \qquad (\exists x) \neg (\neg P(x) \lor R(x))$

T, (1), E ES, (2)

T, (3), E

(6) $\neg R(c)$

T, (4), I

(9) Q(c)

T, (5), (8), I

(10) $Q(c) \wedge \neg R(c)$

T, (6), (9), I

 $(11) \quad (\exists x)(Q(x) \land \neg R(x))$

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演绎

推理应用

$$(\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$$

(1) $\neg(\forall x)(P(x) \rightarrow R(x))$

Ρ

 $(2) \qquad (\exists x) \neg (\neg P(x) \lor R(x))$

T, (1), E ES, (2)

 $(3) \qquad \neg(\neg P(c) \lor R(c))$ $(4) \qquad P(c) \land \neg R(c)$

T, (3), E

(5) P(c)

T, (4), I

(6) $\neg R(c)$

T, (4), I

(9) Q(c)

T, (5), (8), I

(10) $Q(c) \wedge \neg R(c)$

T, (6), (9), I

- $(11) \quad (\exists x)(Q(x) \land \neg R(x))$
- EG, (10)

综合推理方法

Lijie Wang

巨木方注

演绎举例

Wermale E

推理应用

$\langle (\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x))$

(1) $\neg(\forall x)(P(x) \rightarrow R(x))$

Ρ

 $(2) \qquad (\exists x) \neg (\neg P(x) \lor R(x))$

T, (1), E ES, (2)

 $(3) \qquad \neg(\neg P(c) \vee R(c))$

 $(\exists x)(Q(x) \land \neg R(x))$

T, (3), E

 $(4) P(c) \wedge \neg R(c)$

T, (4), I

(5) P(c)

T, (4), I

(6) $\neg R(c)$ (7) $(\forall x)(P(x) \rightarrow Q(x))$

Ρ

- (7)
- (9) Q(c)

T, (5), (8), I

(10) $Q(c) \wedge \neg R(c)$

T, (6), (9), I

(11)

综合推理方法

Lijie Wang

基本方法

演绎举例

生理 雅さ

特殊演绎

推理应用

,	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
>	$(\forall \lor)(P(\lor) \to Q(\lor)) = (\forall \lor)(P(\lor) \to P(\lor)) \to (\exists \lor)(Q(\lor) \land \neg P(\lor))$
7	$\langle (\forall x)(P(x) \to Q(x)), \neg(\forall x)(P(x) \to R(x)) \Rightarrow (\exists x)(Q(x) \land \neg R(x)) \rangle$

(1) $\neg(\forall x)(P(x) \to R(x))$

Ρ

(2) $(\exists x) \neg (\neg P(x) \lor R(x))$

T, (1), E ES, (2)

 $\begin{array}{c} (3) & \neg(\neg P(c) \lor R(c)) \\ (4) & P(c) \land \neg R(c) \end{array}$

T, (3), E

 $(4) P(c) \land \neg$ (5) P(c)

T, (4), I

(6) $\neg R(c)$

T, (4), I

 $(7) \qquad (\forall x)(P(x) \to Q(x))$

Ρ

(8) $P(c) \rightarrow Q(c)$

US, (7)

(9) Q(c)

T, (5), (8), I

(10) $Q(c) \wedge \neg R(c)$

T, (6), (9), I

 $(11) \quad (\exists x) (Q(x) \land \neg R(x))$

综合推理方法

Lijie Wang

基本方法

演绎举例

推理难点

特殊演绎

推理应用

THE END, THANKS!