Лабораторная работа №5

Вероятностные алгоритмы проверки чисел на простоту

Баулин Егор Александрович, НФИмд-02-22 12 ноября 2022

Российский университет дружбы народов, Москва, Россия

Цели и задачи

Цель лабораторной работы

Изучение алгоритмов Ферма, Соловэя-Штрассена, Миллера-Рабина.

Выполнение лабораторной работы

Критерии простоты

Для построения многих систем защиты информации требуются простые числа большой разрядности. В связи с этим актуальной является задача тестирования на простоту натуральных чисел.

Тест Ферма

- Вход. Нечетное целое число $n \ge 5$.
- Выход. «Число n, вероятно, простое» или «Число n составное».
- 1. Выбрать случайное целое число $a, 2 \le a \le n-2$.
- 2. Вычислить $r = a^{n-1} (mod n)$
- 3. При r=1 результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное»..

Тест Соловэя-Штрассена

- Вход. Нечетное целое число $n \ge 5$.
- Выход. «Число n, вероятно, простое» или «Число n составное».
- 1. Выбрать случайное целое число $a, 2 \le a \le n-2$.
- 2. Вычислить $r = a^{(\frac{n-1}{2})}(modn)$
- 3. При $r \neq 1$ и $r \neq n-1$ результат: «Число n составное».
- 4. Вычислить символ Якоби $s=\left(\frac{a}{n}\right)$
- 5. При r = s(modn) результат: «Число n, вероятно, простое». В противном случае результат: «Число n составное».

Тест Миллера-Рабина

- 1. Представить n-1 в виде $n-1=2^{s}r$, где ${\bf r}$ нечетное число
- 2. Выбрать случайное целое число $a, 2 \le a \le n-2$.
- 3. Вычислить $y = a^r (mod n)$
- 4. При $y \neq 1$ и $y \neq n-1$ выполнить действия
 - Положить j = 1
 - Если $j \leq s-1$ и $y \neq n-1$ то
 - Положить $y = y^2 (mod n)$
 - При y=1 результат: «Число n составное».
 - Положить j = j + 1
 - При $y \neq n-1$ результат: «Число n составное».
- 5. Результат: «Число n, вероятно, простое».

Пример работы алгоритма

```
Тест Ферма
Введите число для теста Ферма: 5
Число п, вероятно, простое

Тест Миллера-Рабина
Введите число для теста Миллера-Рабина: 5
Число п, вероятно, простое

Тест Соловэя-Штрассена
Введите число для теста Соловэя-Штрассена: 5
Число п, вероятно, простое
```

Figure 1: Пример работы алгоритмов для n - простого

Пример работы алгоритма

```
Тест Ферма
Введите число для теста Ферма: 8
Число п составное

Тест Миллера-Рабина
Введите число для теста Миллера-Рабина: 8
Число п составное

Тест Соловэя-Штрассена
Введите число для теста Соловэя-Штрассена: 8
Число п составное
```

Figure 2: Пример работы алгоритмов для n - составного

Выводы

Результаты выполнения лабораторной работы

В ходе выполнения работы мне удалось изучить алгоритмы Ферма, Соловэя-Штрассена, Миллера-Рабина, а также реализовать данные алгоритмы программно на языке Python.