WE CLAIM:

1	1.	A method for producing and identifying an active doublestranded
2	RNA (dsRNA) which	ch attenuates a desired gene expression in a cell, said method
3	comprising:	
4	(a)	producing a plurality of cDNA, wherein each cDNA comprises at
5	least a portion of a g	ene that is expressed in a cell;
6	(b)	producing a candidate dsRNA from at least one of the cDNA;
7	(c)	introducing the candidate dsRNA into a reference cell; and
8	(d)	identifying an active dsRNA by determining whether the candidate
9	dsRNA modulates a	desired candidate gene expression in the reference cell.
1	2.	The method of Claim 1 further comprising producing the identified
2	active dsRNA from	a corresponding cDNA of step (a).
1	3.	The method of Claim 1, wherein said step of identifying the active
2	dsRNA comprises:	
3	(A)	selecting a candidate gene, wherein the candidate gene is a gene
4	that is expressed in a	test cell and/or a control cell, and/or is expressed at a detectably
5	different level with r	espect to the test cell and the control cell, and the test cell and control
6	cell differ with respe	ct to a cellular characteristic; and
7	(B)	identifying whether the candidate dsRNA is an active dsRNA by
8	determining whether	down-regulation of expression of the candidate gene in a reference
9	cell has a functional	effect in the reference cell, wherein the determining step comprises:
10		(i) introducing the candidate dsRNA which is substantially
11		identical to at least a part of the candidate gene into the
12		reference cell; and
13		(ii) detecting an alteration in a cellular activity or a cellular
14		state in the reference cell, alteration indicating that the
15		candidate gene plays a functional role in the reference cell
16		and is an active dsRNA.
1	4.	The method of Claim 1, wherein said step of producing a plurality
2	of cDNA comprises:	
3	(i) **·	isolating at least one mRNA from the cell and

4	(ii)	producing a double-stranded cDNA from the isolated mRNA by	
5	reverse transcription		
1	5.	The method of Claim 4, wherein step of producing a plurality of	
2	cDNA further compr	ises producing cDNAs of a similar length by digesting cDNA of said	
3	step (ii) with a restric	ction enzyme.	
1	6.	The method of Claim 5, wherein said step (b) of producing the	
2	candidate dsRNA cor	mprises:	
3	(i)	producing a plasmid or PCR fragment from the cDNA, and	
4	(ii)	producing the candidate dsRNA from the plasmid or PCR	
5	fragment.		
1	7.	The method of Claim 6, wherein the plurality of cDNA comprises	
2	at least a portion of substantially all genes that are actively expressed in the cell.		
1	8.	The method of Claim 6, wherein the desired affect of the candidate	
2	dsRNA on the referen	ace cell is a result of the candidate dsRNA attenuating expression of	
3	a candidate gene in the reference cell.		
1	9.	The method of Claim 8, wherein the candidate dsRNA has	
2	complete sequence ide	entity with the candidate gene over at least 100 nucleotides.	
1	10.	The method of Claim 9, wherein the candidate dsRNA has	
2	complete sequence identity with the candidate gene over at least 500 nucleotides.		
1	11.	The method of Claim 1, wherein the candidate dsRNA is at least	
2	100 nucleotides in length.		
1	12.	The method of Claim 11, wherein the candidate dsRNA is at least	
2	500 nucleotides in len	gth.	
1	13.	The method of Claim 12, wherein the candidate dsRNA is between	
2	500 and 1100 nucleoti	des in length.	
1	14.	A method for identifying and validating the effect of an active	
2	double-stranded RNA	(dsRNA) which attenuates a desired gene expression in a cell, said	
3	method comprising:		

4	(a)	producing a candidate dsRNA which comprises at least a portion of	
5	a candidate gene tha	at is expressed in a control cell;	
6	(b)	introducing the candidate dsRNA into a reference cell; and	
7	(c)	identifying whether the candidate dsRNA is an active dsRNA by	
8	detecting an alteration	on in a cellular activity or a cellular state in the reference cell,	
9	alteration indicating	that the candidate gene plays a functional role in the reference cell	
10	and is an active dsR	NA.	
1	15.	The method of Claim 14, wherein said step of producing the	
2	candidate dsRNA co	omprises:	
3	(i)	producing a cDNA from a mRNA of the control cell such that the	
4	cDNA comprises at least a portion of the gene that is expressed in the control cell; and		
5	(ii)	producing the candidate dsRNA from at least one of the cDNA of	
6	said step (i).		
1	16.	The method of Claim 14, wherein the candidate gene is a gene that	
2	is expressed in a test	cell and/or the control cell, and/or is expressed at a detectably	
3	different level with r	respect to the test cell and the control cell, and the test cell and control	
4	cell differ with respe	ect to a cellular characteristic.	
1	17.	A method for correlating genes and gene function, said method	
2	comprising:		
3	(a)	producing a plurality of candidate dsRNAs from a plurality of	
4	cDNAs of a control	cell such that each candidate dsRNA comprises at least a portion of a	
5	gene that is expresse	d in the control cell;	
6	(b)	introducing each of the candidate dsRNA into a plurality of	
7	separate reference ce	ell each having a gene expression similar to the control cell in step	
8	(a); and		
9	(c)	identifying which candidate dsRNA is an active dsRNA by	
10	detecting an alteration	on in a cellular activity or a cellular state in the reference cell, desired	
11	alteration indicating that the gene corresponding to the candidate dsRNA plays a		
12	functional role in the	e reference cell.	
1	18.	The method of Claim 17, wherein the plurality of cDNAs is	
2	produced from a plus	rality of mRNAs which are produced by the control cell.	

1	19.	The method of Claim 18, wherein said step of producing a plurality	
2	of cDNA comprises:		
3	(i)	solating at least one mRNA from the cell;	
4	(ii) J	producing a double-stranded cDNA from the isolated mRNA by	
5	reverse transcription;		
6	(iii) _I	producing cDNAs of a similar length by digesting cDNA of said	
7	step (ii) with a restriction	on enzyme; and	
8	(iv) p	producing a plasmid or PCR fragment from the cDNA of said step	
9	(iii).		
1	20.	The method of Claim 19, wherein the candidate dsRNA is	
2	produced by transcribing	g the plasmid cDNA or PCR fragment of said step (iv).	
1	21. Т	The method of Claim 19, wherein the plurality of cDNA comprises	
2	at least a portion of sub-	stantially all genes that are actively expressed in the cell.	
1	22. T	the method of Claim 19, wherein the restriction enzyme is selected	
2	from the group consisting	ng of Dpn1 and Rsa1.	
1	23. T	he method of Claim 17, wherein said step of producing the	
2	plurality of candidate ds	RNAs comprises:	
3	(A) so	electing a candidate gene, wherein the candidate gene is a gene	
4	that is expressed in a tes	t cell and/or a control cell, and/or is expressed at a detectably	
5	different level with resp	ect to the test cell and the control cell, and the test cell and control	
6	cell differ with respect to	o a cellular characteristic; and	
7	(B) pi	oducing the plurality of candidate dsRNAs, wherein each	
8	candidate dsRNA is sub	stantially identical to at least a part of the candidate gene.	
1	24 T	he method of claim 23, wherein the candidate gene is selected	
2	from a normalized librar	y prepared from cells of the same type as the test cell or the	
3	control cell and is presen	nt in low abundance in the normalized library.	
l	25. T	he method of claim 23, wherein the candidate gene is a	
2	differentially expressed	gene selected from a subtracted library that is enriched for genes	
3	that are differentially ex-	pressed with respect to the test cell and the control cell.	

1		26.	The method of claim 25, wherein the subtracted library is also
2	normalized a	and the	candidate gene is one of the genes that is both present in low
3	abundance a	nd diffe	erentially expressed in the subtracted and normalized library.
1		27.	The method of claim 23, wherein said step of selecting the
2	candidate ge	ne com	prises:
3	(i)	prepa	aring
4		(A)	a tester-normalized cDNA library which is a normalized library
5			prepared from test cells;
6		(B)	a driver-normalized cDNA library which is a normalized library
7			prepared from control cells;
8		(C)	a tester-subtracted cDNA library which is enriched in one or more
9			genes that are up-regulated with respect to the test cell and the
10			control cell, and
11		(D)	a driver-subtracted cDNA library which is enriched in one or more
12			genes that are down-regulated with respect to the test cell and the
13			control cell; and
14	(ii)	identi	ifying one or more clones from the normalized libraries and/or the
15		subtra	acted libraries,
16	wherein the c	andidat	te gene is one of the clones identified.
1		28.	The method of Claim 27, wherein said step of identifying one or
2	more clones	from the	e normalized libraries comprises:
3		(A)	contacting clones from the tester-normalized cDNA library with
4	labeled probes derived from mRNA from test cells and contacting clones from the driver-		
5	normalized cDNA library with labeled probes derived from mRNA from control cells		
6	under conditi	ons wh	ereby probes specifically hybridize with complementary clones to
7	form a first set of hybridization complexes; and		
8		(B)	detecting at least one hybridization complex from the first set of
9	hybridization	comple	exes to identify a clone from one of the normalized libraries which is
10	present in lov	v abund	lance.
1		29.	The method of Claim 27, wherein said step of identifying one or
2	more clones	from the	e subtracted libraries comprises:

3	(A) contacting clones from the tester-subtracted cDNA library and		
4	contacting clones from the driver-subtracted cDNA library with a population of labeled		
5	probes under conditions whereby probes from the population of probes specifically		
6	hybridize with complementary clones to form a second set of hybridization complexes,		
7	and wherein the population of labeled probes is derived from mRNA from test cells and		
8	control cells; and		
9	(B) detecting at least one hybridization complex from the second set of		
10	hybridization complexes to identify a clone from one of the subtracted libraries which is		
11	differentially expressed above a threshold level with respect to the subtracted libraries.		
1	30. The method of claim 23, wherein the cellular characteristic is cell		
2	health, the test cell is a diseased cell and the control cell is a healthy cell, and the		
3	candidate gene is potentially correlated with a disease.		
1	31. The method of claim 30, wherein the test cell is obtained from a		
2	mammal that has had a stroke or is at risk for stroke.		
1	32. The method of claim 30, wherein the test cell is obtained from a		
2	mammal that has a neurological disease or develop phenotypes mimicing human		
3	neurological diseases.		
1	33. The method of claim 23, wherein the cellular characteristic is stage		
2	of development and the test cell and the control cell are at different stages of		
3	development, and the candidate gene is potentially correlated with mediating the change		
4	between the different stages of development.		
1	34. The method of claim 23, wherein the cellular characteristic is		
2	cellular differentiation and the candidate gene is potentially correlated with controlling		
3	cellular differentiation.		
1	35. The method of claim 23, wherein the candidate gene is an		
2	endogenous gene of the reference cell.		
1	36. The method of claim 23, wherein the candidate gene is present in		

the reference cell as an extrachromosomal gene.

1		37.	The method of claim 17, wherein the reference cell is part of a cell
2	culture.		
1		38.	The method of claim 17, wherein the reference cell is part of a
2	tissue.		·
1		39.	The method of claim 17, wherein the reference cell is part of an
1 2	organism.	39.	The method of claim 17, wherein the reference cen is part of an
_	organion.		
1		40.	The method of claim 17, wherein the reference cell is part of an
2	embryo.		
1		41.	The method of claim 17, wherein the reference cell is a mammalian
2	cell.		
1		42.	The method of claim 17, wherein the reference cell is a neural or
2	glial cell.	12.	The mount of claim 17, wherein the results of a second of
	6		
1		43.	The method of claim 42, wherein the reference cell is a
2	neuroblastom	a cell.	
1		44.	The method of claim 43, wherein the reference cell is useful as a
2	model system for investigating neurological disease in humans.		
1		45.	The method of claim 44, wherein the reference cell has increased
2	sensitivity to		yl-D-aspartate, β-amyloid, peroxide, oxygen-glucoe deprivation, or
3	combinations thereof.		
		16	The weather described as a series of supporting the detecting step comprises
1	detecting a de	46	The method of claim 45, wherein the detecting step comprises in cellular sensitivity to N-methyl-D-aspartate, β-amyloid, peroxide,
2	_		vation, or combinations thereof.
3	ony gon-grace	oc dopir	vacion, or combinations increas.
1		47.	The method of claim 17, wherein the detecting step comprises
2	detecting mo	dulation	of ligand binding to a protein.
1		48.	The method of claim 17, wherein the reference cell is a part of an
2	organism and	I the det	ecting step comprises detecting a change in phenotype.

3

- 1 49. The method of claim 17, wherein the determining step comprises
 2 determining whether interference with expression of the candidate gene in the reference
 3 cell is correlated with alteration of a cellular activity or cellular state.
 1 50. The method of claim 49, wherein interference is achieved by
 2 introducing a double-stranded RNA into the reference cell that can specifically hybridize
- The method of claim 17, wherein the determining step comprises
 determining whether the protein encoded by the candidate gene binds to another protein
 to form a complex that can be communoprecipitated.

RAD P3

to the candidate gene.