Tania Soutonglang

CS 583-01

Feb. 5, 2024

Assignment 1

Theoretical Assignments

- 1. We are given the random variables $X_2, X_3, ..., X_n$, and $Y_2, Y_3, ..., Y_m$. Answer the following questions.
 - a. Assuming every variable is binary, how many independent parameters are needed to represent $P(X_2, X_3, ..., X_n, Y_2, Y_3, ..., Y_m)$?

$$(2^{n-1} * 2^{m-1}) - 1$$

b. Assuming every variable has three possible values, how many independent parameters are needed to represent $P(X_2, X_3, ..., X_n, Y_2, Y_3, ..., Y_m)$?

$$(3^{n+1} * 3^{m-1}) - 1$$

c. Assuming each X_i has i possible values and similarly, every Y_i has i possible values, how many independent parameters are needed to represent $P(X_2, X_3, ..., X_n, Y_2, Y_3, ..., Y_m)$?

$$(n! \, m!) - 1$$

d. Assuming every variable is binary, how many independent parameters are needed to represent $P(Y_2, Y_3, ..., Y_m | X_2, X_3, ..., X_n)$?

$$(2^{m-1}-1)(2^{n-1})$$

e. Assuming every variable has three possible values, how many independent parameters are needed to represent $P(Y_2, Y_3, ..., Y_m | X_2, X_3, ..., X_n)$?

$$(3^{m-1}-1)(3^{n-1})$$

f. Assuming each X_i has i possible values and similarly every Y_i has i possible values, how many independent parameters are needed to represent $P(Y_2, Y_3, ..., Y_m | X_2, X_3, ..., X_n)$?

$$(m! - 1)(n!)$$

2. We are given the following Bayesian network. Please answer the following questions.

a. Write down the join distribution as a factorization over this Bayesian network.

$$P(A, B, C, D, E, G, H, J)$$

= $P(A) * P(B) * P(C|A, B) * P(D|C) * P(E) * P(G|D, E, J)$
* $P(H|G) * P(J|C)$

b. Assuming each variable is discrete and can take *n* possible values, how many independent parameters are needed for this Bayesian network?

$$n^4 + 2n^2 - 3$$

c. Are the following independence statements true or false?

$A \perp B$	TRUE
A L B C	FALSE
A L B J	FALSE
A L B G	FALSE
A L B E	TRUE
A L B H	FALSE
АІН	FALSE
A T H J	FALSE
A	TRUE
DTl	FALSE
В Д Е	TRUE
BIE J	TRUE
	A L B C A L B J A L B G A L B E A L B H A L H A L H J A L H D, J D L J B L E

3. We have a distribution P over the variables A, B, C, D, E, and G. We would like to build a Bayesian network that is a minimal I-Map for P. In reality, you have access to P, which you can query for independencies, but for the purposes of this problem, we will assume the following structure is a P-Map for P. Create minimal I-Maps for P, using the following variable orders.

a. C, A, B, E, D, G

b. D, B, A, E, C, G

c. G, E, D, C, B, A

d. G, A, C, E, D, B

