Exercícios - Relações Entre Pixels e Tarefas

Processamento e Análise de Imagens

Fevereiro 2025

1 Detecção de Bordas

Calcule a diferença de intensidade de cinza entre pixels adjacentes (horizontal e vertical) e identifique as bordas da imagem. Quando a diferença for maior que um valor δ (por exemplo, $\delta = 100$, marque como borda.

1. Matriz de Intensidade de Cinza (Imagem Original)

$$I = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} (0,0) & (0,1) & (0,2) & (0,3) & (0,4) \\ (1,0) & (1,1) & (1,2) & (1,3) & (1,4) \\ (2,0) & (2,1) & (2,2) & (2,3) & (2,4) \\ (3,0) & (3,1) & (3,2) & (3,3) & (3,4) \\ (4,0) & (4,1) & (4,2) & (4,3) & (4,4) \end{bmatrix}$$

- 2. Cálculo da Diferença de Intensidade de Cinza A diferença de intensidade de cinza entre pixels adjacentes pode ser calculada tanto na horizontal quanto na vertical.
 - 2.1 Diferença Horizontal D_H

2.2 Diferença Vertical D_V

$$D_H(i,j) = |I(i,j) - I(i,j+1)|$$

$$D_V(i,j) = |I(i,j) - I(i+1,j)|$$

$$D_H = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 255 & 0 & 0 & 255 & 0 \\ 255 & 0 & 0 & 255 & 0 \\ 255 & 0 & 0 & 255 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

3. Identificação das Bordas Agora, aplicamos o critério de detecção de bordas. Se a diferença entre pixels adjacentes for maior que um valor limite $\delta = 100$, consideramos como borda (1), caso contrário, marcamos como 0.

1

3.1 Bordas Horizontais

$$B_H = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

4. Matriz Final de Bordas Podemos combinar as bordas horizontais e verticais em uma única matriz de bordas B, considerando que uma borda está presente onde B_H ou B_V são 1:

$$B = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

5. Conclusão - As bordas detectadas cercam a região de pixels de intensidade 255, destacando os contornos do objeto branco no centro da imagem. Isso mostra que a técnica baseada na diferença de intensidade de cinza é eficaz para detectar bordas em imagens simples em tons de cinza.

2 Segmentação de Imagem

Segmente a imagem em duas regiões com base na diferença de intensidade entre pixels adjacentes. Considere que pixels cuja diferença de intensidade for menor que 20 estão no mesmo segmento.

$$A = \begin{bmatrix} 100 & 120 & 130 & 110 \\ 100 & 115 & 125 & 105 \\ 90 & 130 & 135 & 110 \\ 80 & 125 & 120 & 105 \end{bmatrix}$$

Resposta: Para segmentar a imagem com base na diferença de intensidade entre pixels adjacentes ($\delta = 20$), siga os seguintes passos:

2

Cálculo da Diferença Entre Pixels Adjacentes

Diferença Horizontal $(|A_{i,j} - A_{i,j+1}|)$

$$\begin{bmatrix} |100-120| & |120-130| & |130-110| \\ |100-115| & |115-125| & |125-105| \\ |90-130| & |130-135| & |135-110| \\ |80-125| & |125-120| & |120-105| \end{bmatrix} \begin{bmatrix} 20 & 10 & 20 \\ 15 & 10 & 20 \\ 40 & 5 & 25 \\ 45 & 5 & 15 \end{bmatrix}$$

Diferença Vertical $(|A_{i,j} - A_{i+1,j}|)$

$$\begin{bmatrix} |100-100| & |120-115| & |130-125| & |110-105| \\ |100-90| & |115-130| & |125-135| & |105-110| \\ |90-80| & |130-125| & |135-120| & |110-105| \end{bmatrix}$$

$$\begin{bmatrix} 0 & 5 & 5 & 5 \\ 10 & 15 & 10 & 5 \\ 10 & 5 & 15 & 5 \end{bmatrix}$$

Aqui está a matriz segmentada, onde os elementos pertencentes ao mesmo segmento são representados por cores diferentes:

$$\begin{bmatrix} 100 & 120 & 130 & 110 \\ 100 & 115 & 125 & 105 \\ 90 & 130 & 135 & 110 \\ 80 & 125 & 120 & 105 \end{bmatrix}$$

Interpretação das Cores:

- Azul: segmento (S_1) , pixels conectados por diferenças ≤ 20
- Verde: segmento (S_2) , pixels conectados por diferenças > 20

3 Preenchimento de Áreas

Imagine uma imagem 5x5 com uma área vazia no meio. Os valores dos pixels são os seguintes:

Onde "0" representa uma área vazia que precisa ser preenchida. A partir dos valores ao redor, preencha a área vazia com valores de cinza semelhantes aos pixels adjacentes. O valor dos pixels vazios deve ser preenchido de maneira gradual, com base na média dos pixels adjacentes.

Complete a matriz, preenchendo os valores dos pixels vazios de forma que a transição de intensidade entre os pixels seja suave.

Resposta: Os zeros representam os pixels vazios que precisam ser preenchidos com base na média dos pixels adjacentes.

Passo 1: Definição do Método Vamos substituir os "0" pela média aritmética dos seus pixels vizinhos diretos (cima, baixo, esquerda e direita). Seja I(i,j) a intensidade do pixel na linha i e coluna j, então:

$$I(i,j) = \frac{I(i-1,j) + I(i+1,j) + I(i,j-1) + I(i,j+1)}{4}$$

Passo 2: Cálculo dos Pixels Internos

(1) Cálculo de I(2,2)

$$I(2,2) = \frac{I(1,2) + I(3,2) + I(2,1) + I(2,3)}{4} = \frac{200 + 0 + 200 + 0}{4} = \frac{400}{4} = 100$$

(2) Cálculo de I(2,3)

$$I(2,3) = \frac{I(1,3) + I(3,3) + I(2,2) + I(2,4)}{4} = \frac{200 + 0 + 100 + 0}{4} = \frac{300}{4} = 75$$

(3) Cálculo de I(2,4)

$$I(2,4) = \frac{I(1,4) + I(3,4) + I(2,3) + I(2,5)}{4} = \frac{200 + 0 + 75 + 200}{4} = \frac{475}{4} = 118.75 \approx 119$$

(4) Cálculo de I(3,2)

$$I(3,2) = \frac{I(2,2) + I(4,2) + I(3,1) + I(3,3)}{4} = \frac{100 + 0 + 200 + 0}{4} = \frac{300}{4} = 75$$

(5) Cálculo de I(3,3)

$$I(3,3) = \frac{I(2,3) + I(4,3) + I(3,2) + I(3,4)}{4} = \frac{75 + 0 + 75 + 0}{4} = \frac{150}{4} = 37.5 \approx 38$$

(6) Cálculo de I(3,4)

$$I(3,4) = \frac{I(2,4) + I(4,4) + I(3,3) + I(3,5)}{4} = \frac{119 + 0 + 38 + 200}{4} = \frac{357}{4} = 89.25 \approx 89$$

(7) Cálculo de I(4,2)

$$I(4,2) = \frac{I(3,2) + I(5,2) + I(4,1) + I(4,3)}{4} = \frac{75 + 200 + 200 + 0}{4} = \frac{475}{4} = 118.75 \approx 119$$

(8) Cálculo de I(4,3)

$$I(4,3) = \frac{I(3,3) + I(5,3) + I(4,2) + I(4,4)}{4} = \frac{38 + 200 + 119 + 200}{4} = \frac{557}{4} = 139.25 \approx 139$$

(9) Cálculo de I(4,4)

$$I(4,4) = \frac{I(3,4) + I(5,4) + I(4,3) + I(4,5)}{4} = \frac{89 + 200 + 139 + 200}{4} = \frac{628}{4} = 157$$

Matriz Final com Valores Preenchidos a matriz resultante será:

200	200	200	200	200
200	100	75	119	200
200	75	38	89	200
200	119	139	157	200
200	200	200	200	200

Agora a matriz apresenta uma transição suave entre os valores, garantindo um preenchimento adequado para os pixels vazios.

Conclusão - O método utilizado permitiu preencher a região vazia com valores que suavizam a transição entre os pixels conhecidos. Esse processo é frequentemente utilizado em técnicas de interpolação de imagens e processamento de imagens digitais para restaurar informações perdidas ou melhorar a qualidade visual.

A seguir, apresentamos todos os cálculos necessários para preencher a matriz, garantindo uma transição suave entre os valores dos pixels adjacentes. O processo segue o mesmo princípio do exercício anterior, mas agora considerando a N8 adjacência para um resultado mais refinado.

Agora, utilizaremos a N8 adjacência para preencher os valores da matriz de maneira mais suave. Diferente da N4 adjacência, que considera apenas os vizinhos horizontais e verticais, a N8 adjacência leva em conta também os vizinhos diagonais, resultando em uma transição ainda mais gradual dos valores dos pixels. A N8 adjacência considera todos os 8 vizinhos de um pixel ao calcular a média. A matriz inicial é:

Agora, calculamos os valores dos pixels vazios considerando a média dos 8 vizinhos para uma transição mais suave:

$$I(x,y) = \frac{I(x-1,y-1) + I(x-1,y) + I(x-1,y+1) + I(x,y-1) + I(x,y+1) + I(x+1,y-1) + I(x+1,y+1)}{8}$$

Matriz Inicial

Agora, aplicamos a média dos 8 vizinhos para calcular os novos valores:

Passo 1: Cálculo de I(2,2)

Passo 2: Cálculo de I(2,3)

$$I(2,3) = \frac{I(1,2) + I(1,3) + I(1,4) + I(2,2) + I(2,4) + I(3,2) + I(3,3) + I(3,4)}{8} = \frac{200 + 200 + 200 + 200 + 100 + 0 + 0 + 0 + 0}{8} = \frac{700}{8} = 87 + 100$$

Passo 3: Cálculo de I(2,4)

$$I(2,4) = \tfrac{I(1,3) + I(1,4) + I(1,5) + I(2,3) + I(2,5) + I(3,3) + I(3,4) + I(3,5)}{8} = \tfrac{200 + 200 + 200 + 200 + 87 + 200 + 0 + 0 + 200}{8} = \tfrac{1087}{8} = 136 + 120 +$$

Passo 4: Cálculo de I(3,2)

$$I(3,2) = \frac{I(2,1) + I(2,2) + I(2,3) + I(3,1) + I(3,3) + I(4,1) + I(4,2) + I(4,3)}{8} = \frac{0 + 100 + 87 + 200 + 0 + 200 + 200 + 200 + 200}{8} = \frac{987}{8} = 123$$

Passo 5: Cálculo de I(3,3)

$$I(3,3) = \frac{I(2,2) + I(2,3) + I(2,4) + I(3,2) + I(3,4) + I(4,2) + I(4,3) + I(4,4)}{8} = \frac{100 + 87 + 136 + 123 + 110 + 200 + 200 + 200}{8} = \frac{1156}{8} = 144$$

Passo 6: Cálculo de I(3,4)

$$I(3,4) = \frac{I(2,3) + I(2,4) + I(2,5) + I(3,3) + I(3,5) + I(4,3) + I(4,4) + I(4,5)}{8} = \frac{87 + 136 + 200 + 144 + 200 + 200 + 200 + 200}{8} = \frac{1367}{8} = 171$$

Passo 7: Cálculo de I(4,2)

$$I(4,2) = \frac{I(3,1) + I(3,2) + I(3,3) + I(4,1) + I(4,3) + I(5,1) + I(5,2) + I(5,3)}{8} = \frac{200 + 123 + 144 + 200 + 200 + 200 + 200 + 200}{8} = \frac{1467}{8} = 183$$

Passo 8: Cálculo de I(4,3)

```
I(4,3) = \frac{I(3,2) + I(3,3) + I(3,4) + I(4,2) + I(4,4) + I(5,2) + I(5,3) + I(5,4)}{8} = \frac{123 + 144 + 171 + 183 + 200 + 200 + 200 + 200}{8} = \frac{1521}{8} = 190
```

Passo 9: Cálculo de I(4,4)

```
I(4,4) = \frac{I(3,3) + I(3,4) + I(3,5) + I(4,3) + I(4,5) + I(5,3) + I(5,4) + I(5,5)}{8} = \frac{144 + 171 + 200 + 190 + 200 + 200 + 200 + 200}{8} = \frac{1505}{8} = 188
```

Matriz Final Preenchida

Essa abordagem garante uma transição suave nos valores internos da matriz. Comparando as matrizes geradas com N4 e N8 temos:

		N4					N8			
200	200	200	200	200	200	200 100 123	200	200	200	
200	100	75	119	200	200	100	87	136	200	
200	75	38	89	200	200	123	144	171	200	
200	119	139	157	200	200	183	190	188	200	
200	200	200	200	200	200	200	200	200	200	

A matriz obtida utilizando N4 possui 4 valores abaixo de 100, enquanto que a matriz obtida utilizando N8 tem apenas 1 valor abaixo de 100. Portanto, a matriz N8 é a que possui uma maior suavidade (pois, mais valores estão mais próximos de 200 do que na primeira matriz).

4 Filtro de Suavização

Considere a seguinte matriz de 5x5 pixels com intensidades de cinza:

Aplique um filtro de suavização simples, onde o valor de cada pixel será a média dos pixels vizinhos (horizontal, vertical e diagonal) ao seu redor. Para o pixel no meio da imagem, calcule a média considerando seus 8 vizinhos.

Resposta: Vamos considerar N4 para os pixels da borda. Isso significa que, para os pixels das bordas, a média será calculada apenas com seus vizinhos horizontais e verticais, sem considerar os diagonais. A relação usada será:

• Para os pixels internos (não bordas):

$$I(x,y) = \frac{I(x-1,y-1) + I(x-1,y) + I(x-1,y+1) + I(x,y-1) + I(x,y+1) + I(x+1,y-1) + I(x+1,y+1)}{8}$$

• Para os pixels da borda (N4):

$$I(x,y) = \frac{I(x-1,y) + I(x+1,y) + I(x,y-1) + I(x,y+1)}{4}$$

• Para os cantos (N4 limitado):

$$I(x,y) = \frac{I(x,y+1) + I(x+1,y) \quad \text{(ou os vizinhos válidos)}}{2}$$

Matriz Original

$$\begin{bmatrix} 100 & 120 & 130 & 140 & 150 \\ 110 & 130 & 140 & 150 & 160 \\ 120 & 140 & 150 & 160 & 170 \\ 130 & 150 & 160 & 170 & 180 \\ 140 & 160 & 170 & 180 & 190 \\ \end{bmatrix}$$

Cantos (N4 limitado) - Média de 4 valores

$$I(0,0) = \frac{I(0,1) + I(1,0) + I(1,1) + I(0,0)}{4} = \frac{120 + 110 + 130 + 100}{4} = \frac{460}{4} = 115$$

$$I(0,4) = \frac{I(0,3) + I(1,3) + I(1,4) + I(0,4)}{4} = \frac{140 + 150 + 160 + 150}{4} = \frac{600}{4} = 150$$

$$I(4,0) = \frac{I(3,0) + I(3,1) + I(4,1) + I(4,0)}{4} = \frac{130 + 150 + 160 + 140}{4} = \frac{580}{4} = 145$$

$$I(4,4) = \frac{I(3,3) + I(3,4) + I(4,3) + I(4,4)}{4} = \frac{170 + 180 + 160 + 190}{4} = \frac{700}{4} = 175$$

Bordas (N4) - Média de 6 valores

$$I(0,1) = \frac{I(0,0) + I(0,2) + I(1,0) + I(1,1) + I(1,2) + I(0,1)}{6} = \frac{100 + 130 + 110 + 130 + 140 + 120}{6} = \frac{730}{6} = 122$$

$$I(0,2) = \frac{I(0,1) + I(0,3) + I(1,1) + I(1,2) + I(1,3) + I(0,2)}{6} = \frac{120 + 140 + 130 + 140 + 150 + 130}{6} = \frac{910}{6} = 151$$

$$I(0,3) = \frac{I(0,2) + I(0,4) + I(1,2) + I(1,3) + I(1,4) + I(0,3)}{6} = \frac{130 + 150 + 140 + 150 + 160 + 140}{6} = \frac{970}{6} = 161$$

$$I(4,1) = \frac{I(4,0) + I(4,2) + I(3,0) + I(3,1) + I(3,2) + I(4,1)}{6} = \frac{140 + 160 + 130 + 150 + 170 + 160}{6} = \frac{910}{6} = 151$$

$$I(4,2) = \frac{I(4,1) + I(4,3) + I(3,1) + I(3,2) + I(3,3) + I(4,2)}{6} = \frac{160 + 180 + 150 + 160 + 170 + 170}{6} = \frac{990}{6} = 165$$

$$I(4,3) = \frac{I(4,2) + I(4,4) + I(3,2) + I(3,3) + I(3,4) + I(4,3)}{6} = \frac{170 + 190 + 160 + 170 + 180 + 180}{6} = \frac{1050}{6} = 175$$

Pixeis Internos (N8) - Média apenas dos 8 vizinhos

$$I(1,1) = \frac{I(0,0) + I(0,1) + I(0,2) + I(1,0) + I(1,2) + I(2,0) + I(2,1) + I(2,2)}{8} = \frac{100 + 120 + 130 + 110 + 140 + 120 + 140 + 150}{8} = \frac{1010}{8} = 126$$

$$I(1,2) = \frac{I(0,1) + I(0,2) + I(0,3) + I(1,1) + I(1,3) + I(2,1) + I(2,2) + I(2,3)}{8} = \frac{120 + 130 + 140 + 130 + 150 + 140 + 150 + 160}{8} = \frac{1120}{8} = 140 + 120 +$$

$$I(1,3) = \frac{I(0,2) + I(0,3) + I(0,4) + I(1,2) + I(1,4) + I(2,2) + I(2,3) + I(2,4)}{8} = \frac{130 + 140 + 150 + 140 + 160 + 150 + 160 + 170}{8} = \frac{1200}{8} = 150 + 120 +$$

$$I(2,1) = \frac{I(1,0) + I(1,1) + I(1,2) + I(2,0) + I(2,2) + I(3,0) + I(3,1) + I(3,2)}{8} = \frac{110 + 130 + 140 + 120 + 150 + 130 + 150 + 160}{8} = \frac{1090}{8} = 136 + 120 +$$

$$I(2,2) = \frac{I(1,1) + I(1,2) + I(1,3) + I(2,1) + I(2,3) + I(3,1) + I(3,2) + I(3,3)}{8} = \frac{130 + 140 + 150 + 140 + 160 + 150 + 160 + 170}{8} = \frac{1200}{8} = 150 + 120 +$$

$$I(2,3) = \frac{I(1,2) + I(1,3) + I(1,4) + I(2,2) + I(2,4) + I(3,2) + I(3,3) + I(3,4)}{8} = \frac{140 + 150 + 160 + 150 + 160 + 170 + 180}{8} = \frac{1280}{8} = 160 +$$

```
I(3,3) = \frac{I(2,2) + I(2,3) + I(2,4) + I(3,2) + I(3,4) + I(4,2) + I(4,3) + I(4,4)}{8} = \frac{150 + 160 + 170 + 160 + 180 + 170 + 180 + 190}{8} = \frac{1360}{8} = 170 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 + 120 +
```

Matriz suavizada final

5 Alteração de Cor de Padrões

Considere uma imagem 5x5 com valores em tons de cinza, mas agora você deseja alterar os pixels com intensidade superior a 100 para um valor diferente. A imagem original é:

Substitua todos os pixels com intensidade maior que 100 por 255 (branco) e calcule como a imagem muda.

Resposta: Faça a identificação dos pixels a serem alterados todos os pixels com intensidade maior que 100 serão substituídos por 255

6 Detecção de Objetos

Considere a imagem 5x5 abaixo, onde os valores indicam intensidade de cinza (0 representa preto e 255 representa branco). O valor 255 representa um objeto:

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Implemente uma técnica para detectar o contorno do objeto representado pela intensidade 255 na imagem. Você pode usar a diferença entre os valores dos pixels adjacentes para detectar onde ocorre a transição de preto para branco.

Resposta: Um pixel de valor 255 faz parte do contorno se tiver pelo menos um vizinho com valor 0 (preto). Isso significa que ele está na fronteira entre o objeto e o fundo.

Cálculo para cada pixel (detecção de bordas)

Linha 1 (borda superior) - Todos os pixels são 0, então continuam 0

Linha 2

$$I(2,2) = 255$$

- Vizinhos: I(1,2) = 0, I(2,1) = 0, I(3,2) = 255, I(2,3) = 255
- Tem pelo menos um vizinho $0 \to \text{Contorno}$ (255)

$$I(2,3) = 255$$

- Vizinhos: I(1,3) = 0, I(2,2) = 255, I(2,4) = 255, I(3,3) = 255
- Tem pelo menos um vizinho $0 \to \text{Contorno}$ (255)

$$I(2,4) = 255$$

- Vizinhos: I(1,4) = 0, I(2,3) = 255, I(2,5) = 0, I(3,4) = 255
- Tem pelo menos um vizinho $0 \to \text{Contorno}$ (255)

Linha 3

$$I(3,2) = 255$$

- Vizinhos: I(2,2) = 255, I(3,1) = 0, I(4,2) = 255, I(3,3) = 255
- Tem pelo menos um vizinho $0 \to \text{Contorno}$ (255)

$$I(3,3) = 255$$

- Vizinhos: I(2,3) = 255, I(3,2) = 255, I(3,4) = 255, I(4,3) = 255
- Todos os vizinhos são $255 \rightarrow Não é contorno (0)$

$$I(3,4) = 255$$

- Vizinhos: I(2,4) = 255, I(3,3) = 255, I(3,5) = 0, I(4,4) = 255
- Tem pelo menos um vizinho $0 \to \text{Contorno}$ (255)

Linha 4 (igual à linha 2)

- $I(4,3) = 255 \rightarrow \text{Contorno} (255)$

Linha 5 (borda inferior) - Todos os pixels são 0, então continuam 0

 ${\it Matriz \ resultante \ com \ o \ contorno \ corretamente \ detectado:}$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 255 & 0 & 255 & 0 \\ 0 & 255 & 255 & 255 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$