STAT 587 (Engineering) - Iowa State University

February 18, 2019

Definition

A statistical model is a pair (S, P) where S is the set of possible observations, i.e. the sample space, and P is a set of probability distributions on S.

Definition

A statistical model is a pair (S, P) where S is the set of possible observations, i.e. the sample space, and P is a set of probability distributions on S.

Typically, we will assume the data have a specific form, say $p(y|\theta)$,

Definition

A statistical model is a pair (S, P) where S is the set of possible observations, i.e. the sample space, and P is a set of probability distributions on S.

Typically, we will assume the data have a specific form, say $p(y|\theta)$, but the parameter (vector) θ is unknown.

Definition

A statistical model is a pair (S, P) where S is the set of possible observations, i.e. the sample space, and P is a set of probability distributions on S.

Typically, we will assume the data have a specific form, say $p(y|\theta)$, but the parameter (vector) θ is unknown. Thus $p(y|\theta)$ for all allowable values for θ provide the set $\mathcal P$

Definition

A statistical model is a pair (S, P) where S is the set of possible observations, i.e. the sample space, and P is a set of probability distributions on S.

Typically, we will assume the data have a specific form, say $p(y|\theta)$, but the parameter (vector) θ is unknown. Thus $p(y|\theta)$ for all allowable values for θ provide the set $\mathcal P$ and the support of $p(y|\theta)$ is the set $\mathcal S$.

Suppose our data are

- the number of success y
- out of some number of attempts n
- where each attempt is independent
- given a common probability of success θ .

Suppose our data are

- the number of success y
- ullet out of some number of attempts n
- where each attempt is independent
- given a common probability of success θ .

Then a reasonable statistical model is

$$Y \sim Bin(n, \theta)$$

Suppose our data are

- the number of success y
- ullet out of some number of attempts n
- where each attempt is independent
- given a common probability of success θ .

Then a reasonable statistical model is

$$Y \sim Bin(n, \theta)$$

since for any $0<\theta<1$ this model provides positive probability over the entire sample space, i.e. all possible observations.

Suppose our data are

- the number of success y
- ullet out of some number of attempts n
- where each attempt is independent
- given a common probability of success θ .

Then a reasonable statistical model is

$$Y \sim Bin(n, \theta)$$

since for any $0<\theta<1$ this model provides positive probability over the entire sample space, i.e. all possible observations.

Formally,

- $S = \{0, 1, 2, \dots, n\}$
- $\mathcal{P} = \{Bin(n, \theta) : 0 < \theta < 1\}.$

Suppose our data are

- a set of real numbers, i.e. between $-\infty$ and ∞ ,
- ullet the population mean is μ and population variance is σ^2 ,
- a histogram is reasonably approximated by a bell-shaped curve,
- and each observation is independent of the others.

Suppose our data are

- a set of real numbers, i.e. between $-\infty$ and ∞ ,
- ullet the population mean is μ and population variance is σ^2 ,
- a histogram is reasonably approximated by a bell-shaped curve,
- and each observation is independent of the others.

Then a reasonable statistical model is

$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$$

Suppose our data are

- a set of real numbers, i.e. between $-\infty$ and ∞ ,
- ullet the population mean is μ and population variance is σ^2 ,
- a histogram is reasonably approximated by a bell-shaped curve,
- and each observation is independent of the others.

Then a reasonable statistical model is

$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$$

since for $-\infty < \mu < \infty, 0 < \sigma^2 < \infty$ this model provides positive density over the entire sample space, i.e. all possible obserations.

Suppose our data are

- ullet a set of real numbers, i.e. between $-\infty$ and ∞ ,
- ullet the population mean is μ and population variance is σ^2 ,
- a histogram is reasonably approximated by a bell-shaped curve,
- and each observation is independent of the others.

Then a reasonable statistical model is

$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$$

since for $-\infty < \mu < \infty, 0 < \sigma^2 < \infty$ this model provides positive density over the entire sample space, i.e. all possible obserations.

Formally,

- $S = \{y_i : y_i \in \mathbb{R}, i \in \{1, 2, \dots, n\}\}$
- $\mathcal{P} = \{N(\mu, \sigma^2) : -\infty < \mu < \infty, 0 < \sigma^2 < \infty\}$ where $\theta = (\mu, \sigma^2)$.

Definition

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data when viewed as a function of the parameter vector θ .

Definition

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data when viewed as a function of the parameter vector θ . Generally, we will write the joint probability mass or density function of the data as $p(y|\theta)$ and thus the likelihood is

$$L(\theta) = p(y|\theta)$$

Definition

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data when viewed as a function of the parameter vector θ . Generally, we will write the joint probability mass or density function of the data as $p(y|\theta)$ and thus the likelihood is

$$L(\theta) = p(y|\theta)$$

but where y is fixed and known, i.e. it is your data.

Definition

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data when viewed as a function of the parameter vector θ . Generally, we will write the joint probability mass or density function of the data as $p(y|\theta)$ and thus the likelihood is

$$L(\theta) = p(y|\theta)$$

but where y is fixed and known, i.e. it is your data.

The log-likelihood is the (natural) logarithm of the likelihood, i.e.

$$\ell(\theta) = \log L(\theta).$$

Definition

The likelihood function, or simply likelihood, is the joint probability mass/density function for fixed data when viewed as a function of the parameter vector θ . Generally, we will write the joint probability mass or density function of the data as $p(y|\theta)$ and thus the likelihood is

$$L(\theta) = p(y|\theta)$$

but where y is fixed and known, i.e. it is your data.

The log-likelihood is the (natural) logarithm of the likelihood, i.e.

$$\ell(\theta) = \log L(\theta).$$

The likelihood describes the relative support in the data for different values for your parameter, i.e. the larger the likelihood is the more consistent that parameter value is with the data.

Suppose $Y \sim Bin(n, \theta)$, then

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}.$$

Suppose $Y \sim Bin(n, \theta)$, then

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}.$$

where θ is considered fixed (but often unknown) and the argument to this function is y.

Suppose $Y \sim Bin(n, \theta)$, then

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}.$$

where θ is considered fixed (but often unknown) and the argument to this function is y.

Thus the likelihood is

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n - y}$$

Suppose $Y \sim Bin(n, \theta)$, then

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}.$$

where θ is considered fixed (but often unknown) and the argument to this function is y.

Thus the likelihood is

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}$$

where y is considered fixed and known and the argument to this function is θ .

Suppose $Y \sim Bin(n, \theta)$, then

$$p(y|\theta) = \binom{n}{y} \theta^y (1-\theta)^{n-y}.$$

where θ is considered fixed (but often unknown) and the argument to this function is y.

Thus the likelihood is

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}$$

where y is considered fixed and known and the argument to this function is θ .

Note: I write $L(\theta)$ without any conditioning, e.g. on y, so that you don't confuse this with a probability mass (or density) function.

6/18

(STAT587@ISU) 102 - Likelihood

Likelihood for independent observations

Suppose Y_i are independent with marginal probability mass/density function $p(y_i|\theta)$.

Likelihood for independent observations

Suppose Y_i are independent with marginal probability mass/density function $p(y_i|\theta)$.

The joint distribution for $y = (y_1, \dots, y_n)$ is

$$p(y|\theta) = \prod_{i=1}^{n} p(y_i|\theta).$$

Likelihood for independent observations

Suppose Y_i are independent with marginal probability mass/density function $p(y_i|\theta)$.

The joint distribution for $y = (y_1, \dots, y_n)$ is

$$p(y|\theta) = \prod_{i=1}^{n} p(y_i|\theta).$$

The likelihood for θ is

$$L(\theta) = p(y|\theta) = \prod_{i=1}^{n} p(y_i|\theta)$$

where we are thinking about this as a function of θ for fixed y.

Suppose $Y_i \overset{ind}{\sim} N(\mu, \sigma^2)$,

Suppose $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then

$$p(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i-\mu)^2}$$

and

$$p(y|\mu, \sigma^2) = \prod_{i=1}^n p(y_i|\mu, \sigma^2)$$

= $\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$
= $\frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2}$

where μ and σ^2 are fixed (but often unknown) and the argument to this function is $y=(y_1,\ldots,y_n)$.

Suppose $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then

$$p(y_i|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i-\mu)^2}$$

and

$$p(y|\mu, \sigma^2) = \prod_{i=1}^n p(y_i|\mu, \sigma^2)$$

= $\prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2}$
= $\frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2}$

where μ and σ^2 are fixed (but often unknown) and the argument to this function is $y = (y_1, \dots, y_n)$.

The likelihood is

$$L(\mu, \sigma) = p(y|\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2}$$

where y is fixed and known and μ and σ^2 are the arguments to this function.

(STAT587@ISU) 102 - Likelihood February 18, 2019 9 / 18

Normal likelihood

(STAT587@ISU) I02 - Likelihood

10 / 18

Maximum likelihood estimator

Definition

The maximum likelihood estimator (MLE), $\hat{\theta}_{MLE}$ is the parameter value θ that maximizes the likelihood function

Maximum likelihood estimator

Definition

The maximum likelihood estimator (MLE), $\hat{\theta}_{MLE}$ is the parameter value θ that maximizes the likelihood function, i.e.

$$\hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} L(\theta).$$

Maximum likelihood estimator

Definition

The maximum likelihood estimator (MLE), $\hat{\theta}_{MLE}$ is the parameter value θ that maximizes the likelihood function, i.e.

$$\hat{\theta}_{MLE} = \mathrm{argmax}_{\theta} L(\theta).$$

When the data are discrete, the MLE the is parameter value that maximizes the probability of the observed data.

Binomial MLE via derivatives

If $Y \sim Bin(n, \theta)$, then

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

If $Y \sim Bin(n, \theta)$, then

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

To find the MLE,

- 1. Take the derivative of $\ell(\theta)$ with respect to θ .
- 2. Set it equal to zero and solve for θ .

If $Y \sim Bin(n, \theta)$, then

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

- 1. Take the derivative of $\ell(\theta)$ with respect to θ .
- 2. Set it equal to zero and solve for θ .

$$\ell(\theta) = \log \binom{n}{y} + y \log(\theta) + (n - y) \log(1 - \theta)$$

If $Y \sim Bin(n, \theta)$, then

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

- 1. Take the derivative of $\ell(\theta)$ with respect to θ .
- 2. Set it equal to zero and solve for θ .

$$\begin{array}{ll} \ell(\theta) &= \log \binom{n}{y} + y \log(\theta) + (n-y) \log(1-\theta) \\ \frac{d}{d\theta} \ell(\theta) &= \frac{y}{\theta} - \frac{n-y}{1-\theta} \end{array}$$

If $Y \sim Bin(n, \theta)$, then

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

- 1. Take the derivative of $\ell(\theta)$ with respect to θ .
- 2. Set it equal to zero and solve for θ .

$$\begin{array}{ll} \ell(\theta) &= \log \binom{n}{y} + y \log(\theta) + (n-y) \log(1-\theta) \\ \frac{d}{d\theta} \ell(\theta) &= \frac{y}{\theta} - \frac{n-y}{1-\theta} \stackrel{set}{=} 0 \end{array}$$

If $Y \sim Bin(n, \theta)$, then

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n - y}.$$

- 1. Take the derivative of $\ell(\theta)$ with respect to θ .
- 2. Set it equal to zero and solve for θ .

$$\begin{array}{ll} \ell(\theta) &= \log \binom{n}{y} + y \log(\theta) + (n-y) \log(1-\theta) \\ \frac{d}{d\theta} \ell(\theta) &= \frac{y}{\theta} - \frac{n-y}{1-\theta} \stackrel{set}{=} 0 \implies \\ \hat{\theta}_{MLE} &= y/n \end{array}$$

If $Y \sim Bin(n, \theta)$, then

$$L(\theta) = \binom{n}{y} \theta^y (1 - \theta)^{n-y}.$$

To find the MLE,

- 1. Take the derivative of $\ell(\theta)$ with respect to θ .
- 2. Set it equal to zero and solve for θ .

$$\begin{array}{ll} \ell(\theta) &= \log \binom{n}{y} + y \log(\theta) + (n-y) \log(1-\theta) \\ \frac{d}{d\theta} \ell(\theta) &= \frac{y}{\theta} - \frac{n-y}{1-\theta} \stackrel{set}{=} 0 \implies \\ \hat{\theta}_{MLE} &= y/n \end{array}$$

Take the second derivative of $\ell(\theta)$ with respect to θ and check to make sure it is negative.

12 / 18

Binomial MLE graphically

(STAT587@ISU)

102 - Likelihood

Numerical maximization

```
log_likelihood <- function(theta) {</pre>
  dbinom(3, size = 10, prob = theta, log = TRUE)
optim(0.5, log_likelihood,
     method='L-BFGS-B'.
                            # this method to use bounds
     lower = 0.001, upper = .999, # cannot use 0 and 1 exactly
      control = list(fnscale = -1)) # maximize
$par
[1] 0.3000006
$value
[1] -1.321151
$counts
function gradient
$convergence
[1] 0
$message
[1] "CONVERGENCE: REL REDUCTION OF F <= FACTR*EPSMCH"
```

If
$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$$
, then

$$L(\mu, \sigma^2) = \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2}$$

If
$$Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$$
, then

$$\begin{split} L(\mu,\sigma^2) &&= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &&= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \end{split}$$

If $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \end{split}$$

If $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right] \right) \quad \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \end{split}$$

If $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right) & \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \\ \ell(\mu,\sigma^2) &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 - \frac{1}{2\sigma^2} n(\overline{y} - \mu)^2 \end{split}$$

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right) \quad \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \\ \ell(\mu,\sigma^2) &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 - \frac{1}{2\sigma^2} n(\overline{y} - \mu)^2 \\ \frac{\partial}{\partial \mu} \ell(\mu,\sigma^2) &= \frac{n}{\sigma^2} (\overline{y} - \mu) \end{split}$$

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right) \quad \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \\ \ell(\mu,\sigma^2) &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 - \frac{1}{2\sigma^2} n(\overline{y} - \mu)^2 \\ \frac{\partial}{\partial \mu} \ell(\mu,\sigma^2) &= \frac{n}{\sigma^2} (\overline{y} - \mu) \stackrel{\text{set}}{=} 0 \implies \hat{\mu}_{MLE} = \overline{y} \end{split}$$

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right) & \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \\ \ell(\mu, \sigma^2) &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 - \frac{1}{2\sigma^2} n(\overline{y} - \mu)^2 \\ \frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) &= \frac{n}{\sigma^2} (\overline{y} - \mu) \stackrel{\text{set}}{=} 0 \implies \hat{\mu}_{MLE} = \overline{y} \\ \frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2) &= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - \overline{y})^2 \end{split}$$

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^n/2} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right) & \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \\ \ell(\mu, \sigma^2) &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 - \frac{1}{2\sigma^2} n(\overline{y} - \mu)^2 \\ \frac{\partial}{\partial \mu} \ell(\mu, \sigma^2) &= \frac{n}{\sigma^2} (\overline{y} - \mu) \stackrel{\text{set}}{=} 0 \implies \hat{\mu}_{MLE} = \overline{y} \\ \frac{\partial}{\partial \sigma^2} \ell(\mu, \sigma^2) &= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - \overline{y})^2 \stackrel{\text{set}}{=} 0 \end{split}$$

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right) \quad \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \\ \ell(\mu,\sigma^2) &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 - \frac{1}{2\sigma^2} n(\overline{y} - \mu)^2 \\ \frac{\partial}{\partial \mu} \ell(\mu,\sigma^2) &= \frac{n}{\sigma^2} (\overline{y} - \mu) \stackrel{\text{set}}{=} 0 \implies \hat{\mu}_{MLE} = \overline{y} \\ \frac{\partial}{\partial \sigma^2} \ell(\mu,\sigma^2) &= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - \overline{y})^2 \stackrel{\text{set}}{=} 0 \\ &\implies \hat{\sigma}_{MLE}^2 &= \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 \end{split}$$

If $Y_i \stackrel{ind}{\sim} N(\mu, \sigma^2)$, then

$$\begin{split} L(\mu,\sigma^2) &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \mu)^2} \\ &= \frac{1}{(2\pi\sigma^2)^{n/2}} e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y} + \overline{y} - \mu)^2} \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left[(y_i - \overline{y})^2 + 2(y_i - \overline{y})(\overline{y} - \mu) + (\overline{y} - \mu)^2 \right] \right) \\ &= (2\pi\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 + -\frac{n}{2\sigma^2} (\overline{y} - \mu)^2 \right) \quad \text{since } \sum_{i=1}^n (y_i - \overline{y}) = 0 \\ \ell(\mu,\sigma^2) &= -\frac{n}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \overline{y})^2 - \frac{1}{2\sigma^2} n(\overline{y} - \mu)^2 \\ \frac{\partial}{\partial \mu} \ell(\mu,\sigma^2) &= \frac{n}{\sigma^2} (\overline{y} - \mu) \stackrel{\text{set}}{=} 0 \implies \hat{\mu}_{MLE} = \overline{y} \\ \frac{\partial}{\partial \sigma^2} \ell(\mu,\sigma^2) &= -\frac{n}{2\sigma^2} + \frac{1}{2(\sigma^2)^2} \sum_{i=1}^n (y_i - \overline{y})^2 \stackrel{\text{set}}{=} 0 \\ &\implies \hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2 = \frac{n-1}{n} S^2 \end{split}$$

Thus, the MLE for a normal model is

$$\hat{\mu}_{MLE} = \overline{y}, \quad \hat{\sigma}_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \overline{y})^2$$

(STAT587@ISU) 102

Numerical maximization

```
X
[1] -0.8969145 0.1848492 1.5878453
log_likelihood <- function(theta) {</pre>
  sum(dnorm(x, mean = theta[1], sd = exp(theta[2]), log = TRUE))
o <- optim(c(0,0), log_likelihood,
            control = list(fnscale = -1))
o$convergence # make sure this is 0 indicating convergence
Γ17 0
o$par[1]; exp(o$par[2])^2 # mean and variance
[1] 0.2918674
Γ17 1.03446
n <- length(x)
mean(x); (n-1)/n*var(x) # var uses n-1 in the denominator
[1] 0.2919267
```

[1] 1.034738

Normal likelihood

(STAT587@ISU)

Summary

 For independent observations, the joint probability mass (density) function is the product of the marginal probability mass (density) functions.

Summary

- For independent observations, the joint probability mass (density) function is the product of the marginal probability mass (density) functions.
- The likelihood is the joint probability mass (density) function when the argument of the function is the parameter (vector).

(STAT587@ISU) 102 - Likelihood February 18, 2019 18 / 18

Summary

- For independent observations, the joint probability mass (density) function is the product of the marginal probability mass (density) functions.
- The likelihood is the joint probability mass (density) function when the argument of the function is the parameter (vector).
- The maximum likelihood estimator (MLE) is the value of the parameter (vector) that maximizes the likelihood.