Pontificia Universidad Católica de Chile

Facultad de Matemáticas

@

00

 \odot

 \odot

Profesor: Ricardo Menares Curso: Teoría de Números

Fecha: 3 de octubre de 2025

Ayudante: José Cuevas Barrientos

Sigla: MAT2814

Funciones L y series de Dirichlet

EJERCICIOS

1. a) Muestre que $L(\mu^2, s) = \zeta(s)/\zeta(2s)$.

PISTA: Escriba $\zeta(2s)=L(f,s)$ para alguna función artimética f. b) Concluya que $\mu^2(n)=\sum_{d^2\mid n}\mu(d)$. c) Pruebe que

$$\sum_{n \le x} \mu^2(n) = \frac{6}{\pi^2} x + O(\sqrt{x}).$$

2. Sea $L(f,s):=\sum_{n=1}^{\infty}f(n)/n^s$ una serie de Dirichlet y suponga que $f(1)\neq 0$ y que $L(f,s)\neq 0$ para todo $s \in \mathbb{C}$ con Re $s > \sigma_0$. Entonces $L(f, s) = e^{G(s)}$, donde

$$G(s) = \log f(1) + \sum_{n=2}^{\infty} \frac{(f' * f^{-1})(n)/\log n}{n^s},$$

donde $f'(n) = f(n) \log(n)$ y donde f^{-1} denota la inversa respecto a convolución (i.e., $(f * f^{-1})(n) = \delta_{1,n}$.

3. Considere la función de Dirichlet

$$\zeta_{\mathbb{Q}(\mathrm{i})}(s) = \sum_{\mathfrak{a} \neq 0} \frac{1}{\mathbf{N}(\mathfrak{a})^s},$$

donde \mathfrak{a} recorre los ideales de los enteros gaussianos $\mathbb{Z}[i]$ y donde $\mathbf{N}(\mathfrak{a}) = |\mathbb{Z}[i]/\mathfrak{a}|$.

a) Pruebe que si $\mathfrak{a} = \beta \mathbb{Z}[i]$, entonces $\mathbf{N}(\mathfrak{a}) = \operatorname{Nm}_{\mathbb{Q}(i)/\mathbb{Q}}(\beta) = |\beta|^2$.

b) Pruebe que tenemos la siguiente expansión como producto infinito

$$\zeta_{\mathbb{Q}(\mathrm{i})}(s) = \frac{1}{1 - 2^{-s}} \cdot \prod_{p \equiv 1 \ (4)} \frac{1}{(1 - p^{-s})^2} \cdot \prod_{p \equiv 3 \ (4)} \frac{1}{1 - p^{-2s}}.$$

c) Pruebe que la serie que define a $\zeta_{\mathbb{Q}(i)}$ converge para Re s > 1 y tiene un polo simple en s = 1.

d) Pruebe que $\operatorname{Res}_{s=1} \zeta_{\mathbb{Q}(i)} := \lim_{s \to 1^+} (s-1)\zeta_{\mathbb{Q}(i)}(s) = \pi$.

PISTA: Para ello, necesitará recordar la siguiente asintótica que vimos en la ayudantía «Funciones multiplicativas» del 4 de septiembre:

$$\sum_{n < x} r(n) = \pi x + O(\sqrt{x}),$$

donde r(n) cuenta las formas de escribir a n como suma de cuadrados.

4. Contar puntos de altura acotada en $\mathbb{P}^1(\mathbb{Q})$: Recuerde que un punto racional en la recta proyectiva es un par [x:y], donde $x,y\in\mathbb{Q}$, no son ambos nulos y [x:y]=[z:w] syss $x=\lambda z$ e $y = \lambda w$ para algún $\lambda \in \mathbb{Q}^{\times}$. La altura se define como $H([x:y]) = \max\{|x|, |y|\}$, donde x, y son enteros coprimos.

Dado $B \geq 0$ real, demuestre que la cantidad de puntos $[x:y] \in \mathbb{P}^1(\mathbb{Q})$ de altura acotada $H([x:y]) \leq B \text{ es}$

$$\frac{12}{\pi^2}B^2 + O(B\log B).$$

PISTA: Considere los puntos en $\mathbb{Z}^2 \setminus \{(0,0)\}$ de «altura» $\leq B$ (i.e., $H(x,y) := \max\{|x|,|y|\} \leq B$) y ahora considere los puntos de coordenadas coprimas de altura $\leq B$. Mediante inversión de Möbius obtenga una fórmula para el segundo y relaciónelo con el problema del enunciado. \square

A. Comentarios adicionales

El ejercicio 3 es un caso particular de la función d
seta de Dirichlet que se define parecido, como suma formal con ideales en un anillo \mathcal{O} de enteros algebra
icos. En primer lugar, empleamos ideales para evitar repetición, similar a como en \mathbb{Z} sumamos a $|n|^s = n^s$ y no a $|-n|^s = n^s$. La segunda razón está en que si bien los elementos de \mathcal{O} no satisfacen factorización única (por lo que no habría análogo del producto de Euler), los ideales sí la satisfacen y, por tanto, la función d
seta de Dirichlet siempre tiene un producto de Euler que ahora recorre ideales primos.

El residuo en s=1 es de sumo interés para teoristas de números ya que involucra varios invariantes del anillo \mathcal{O} ; con ello también quiero decir que el « π » no es casualidad. Vid. LANG [3, pág. 259] para más detalles.

El ejercicio 4 fue inspirado en el **teorema de Schanuel** que da fórmulas explícitas para el conteo de puntos racionales de altura acotada en $\mathbb{P}^n(\mathbb{Q})$; el lector puede leer más al respecto en [2].

Referencias y lecturas adicionales

- 1. Apostol, T. M. Introduction to analytic number theory (Springer-Verlag, 1976).
- 2. Hindry, M. y Silverman, J. H. Diophantine Geometry. An Introduction Graduate Texts in Mathematics **201** (Springer-Verlag, 2000).
- LANG, S. Algebraic Number Theory (Addison-Wesley, 1970). Correo electrónico: josecuevasbtos@uc.cl

URL: https://josecuevas.xyz/teach/2025-2-num/