What are the main computational and statistical bottlenecks in NMT

Daniil Anastasyev, Eugene Zakharov, Ivan Provilkov, Olga Kalinichenko, Ramil Yarullin

Generic Seq2seq

Issues:

- 1. Computational
 - Slow softmax computation
 - Large embeddings matriceshard to fit in cheap video
 - card:)
- 2. Statistical
 - Even very large embeddings cannot cover all words in a language

Approximating the Softmax

We perform Logistic Regression on |V| classes in the output layer: $P(w_k|c) = \frac{\exp(v_{w_k}^\top h)}{\sum_{w_j \in V} \exp(v_{w_j}^\top h)}$

Let's replace it with noise classifier: correct word vs random subset of the rest:

- E.g., Negative Sampling, Noise Contrastive Estimation or Importance Sampling
- Faster training but the same inference speed

Let's replace it with hierarchical prediction, e.g.: $P(w_k|c) = P(V_i|c) \cdot P(w_k|V_i)$

- E.g., Hierarchical Softmax, Adaptive Softmax
- Faster training but approximately same inference speed

Let's replace it with logistic regression on carefully constructed (in a hacky way) subset of V

- E.g. "Vocabulary Manipulation for Neural Machine Translation"
- Faster training and inference speed

$$P(w_k|c) = \frac{\exp(v_{w_k}^{\top} h)}{\sum_{w_j \in V'} \exp(v_{w_j}^{\top} h)}$$

Replacing words

We represented words as indices in dictionary space

Let's replace single index with a sequence of indices

- Each word can be mapped to a sequence of subwords (or even chars)
 - Out-of-vocabulary words have embeddings similar to embeddings of words with similar spelling
- Size of subwords dictionary can be controlled
 - More subwords shorter sequences but harder to compute softmax
 - Less subwords harder to compute attention on long sequences
 - Can be solved by applying convolutions and pooling before attention
- Shared dictionary for source and target subwords can be used
 - Shared embeddings for source and target subwords can be used!

Summary

- 1. Softmax approximation
 - + Faster training (and sometime inference) which allows large vocabulary and leads to + 1-2 BLEU
 - Doesn't solve Out-of-Vocabulary Words problem
 - Model size tends to be very large
- 2. Words representation with sequence of subwords
 - + Embedding of every word can be computed also + 1-2 BLEU
 - + Vocabulary size may be much smaller
 - + Segmentation is not required in fully character-level setup
 - + Subwords can have shared representations across different languages
 - The computation speed is worse
 - Model tends to be more complicated