CS 584 - MACHINE LEARNING

TOPIC: MAXIMUM LIKELIHOOD AND **BAYESIAN ESTIMATION**

₱ http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

PARAMETER ESTIMATION

- Imagine we have a thumbtack
- Flip it, and it comes as heads or tails

- $P(Heads) = \theta$, $P(Tails) = 1 \theta$
- Assume we flip it (a + b) times and it comes head a times. What is θ if
- What is θ if

 a = 4, b = 6• a = 42, b = 58• a = 407, b = 593• Can you prove your answers?
- Can you associate a confidence score with your estimates?

WE WILL SEE TWO APPROACHES

- 1. Maximum likelihood estimation
- 2. Bayesian estimation

MAXIMUM LIKELIHOOD ESTIMATION

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

- FOR THE THUMBTACK EXAMPLE

- Assume we have a set of thumbtack tosses
 - $\mathcal{D} = \{d_1, d_2, ..., d_m\}$ where a are Heads and b are Tails
- Hypothesis space: [0, 1]
- Find a "good" scoring $\theta \in [0, 1]$
- Let $f(\theta; \mathcal{D})$ be the score of θ given \mathcal{D} , where a high score is a "good" score
- Learning: $\underset{\theta \in [0,1]}{\operatorname{learning}} f(\theta : \mathcal{D})$
- What is $f(\theta:\mathcal{D})$?
- The space [0, 1] is infinite. How do we search this space efficiently?

LIKELIHOOD

• What is the probability, or *likelihood*, of seeing the sequence H, T, T, H, H?

• $\theta * (1 - \theta) * (1 - \theta) * \theta * \theta = \theta^3 (1 - \theta)^2$

Qa(1-8)6

6

LIKELIHOOD/LOG-LIKELIHOOD

- Number of heads = a, number of tails = b
- Likelihood: $L(\theta:\mathcal{D}) = \theta^a(1-\theta)^b$
- Log-likelihood: $l(\theta:\mathcal{D}) = a\log\theta + b\log(1-\theta)$
- Note that $L(\theta; \mathcal{D})$ achieves its maximum for θ that maximizes $l(\theta; \mathcal{D})$
- \circ Find θ that maximizes the log-likelihood
- Take derivate of $l(\theta;\mathcal{D})$ w.r.t. θ and set it to zero

BAYESIAN ESTIMATION

BAYESIAN ESTIMATION

- MLE gives the same estimate of $\theta = 0.4$, if we have 4 H and 6 T, as well as 4M H and 6M T
- In Bayesian estimation, rather than a single θ ,
 - We assume a prior belief about θ : $p(\theta)$, and we estimate
 - The posterior distribution over θ : $p(\theta \mid \mathcal{D})$
 - The probability distribution for the next toss: $P(d_{m+1} | \mathcal{D})$

Posterior: $p(\theta \mid \mathcal{D})$

$$p(\theta \mid \mathcal{D}) = \frac{p(\theta)P(\mathcal{D} \mid \theta)}{P(\mathcal{D})}$$

 $P(\mathcal{D})$ does not depend on θ . Hence, it can be treated as a constant from the perspective of θ .

$$p(\theta \mid \mathcal{D}) \propto p(\theta)P(\mathcal{D} \mid \theta)$$

Next, assume each data point is independent given θ : $d_i \perp d_i \mid \theta$

$$P(\mathcal{D}|\theta) = P(d_1|\theta)P(d_2|\theta)P(d_3|\theta)\cdots P(d_m|\theta) = \prod_{i=1}^{m} P(d_i|\theta)$$

Hence, the posterior becomes

$$p(\theta \mid \mathcal{D}) \propto p(\theta) \prod_{i=1}^{m} P(d_i \mid \theta)$$

10

PREDICTION: $P(d_{m+1} \mid \mathcal{D})$

$$P(d_{m+1}|D) = \int_{0}^{1} P(d_{m+1}|\theta, \mathcal{D})p(\theta|\mathcal{D})d\theta$$

Assuming $d_i \perp d_i \mid \theta$:

$$P(d_{m+1}|D) = \int_{0}^{1} P(d_{m+1}|\theta)p(\theta|\mathcal{D})d\theta$$

Using the posterior equation from the previous slide:

$$P(d_{m+1}|D) \propto \int_{0}^{1} P(d_{m+1}|\theta)p(\theta) \prod_{i=1}^{m} P(d_{i} \mid \theta) d\theta$$

UNIFORM PRIOR

- Assume a Heads and b Tails
- Assume a uniform prior over θ . That is, $p(\theta) = 1$
- What is $P(d_{m+1} = Heads \mid \mathcal{D})$?
 - (a+1)/(a+b+2)
- What is $p(\theta \mid \mathcal{D})$?
 - Beta(a+1, b+1)

BETA DISTRIBUTION

- θ ~ Beta(α,β) if $p(\theta) = \gamma \theta^{\alpha-1} (1-\theta)^{\beta-1}$ where γ is a normalizing constant
- Mean: $\alpha/(\alpha+\beta)$
- Mode: $(\alpha-1)/(\alpha+\beta-2)$
- Note that the mode is closer to the mean when α and β are large
- Read more at
 - https://en.wikipedia.org/wiki/Beta_distribution

BETA DISTRIBUTION

 ${
m CS}~584-{
m Machine~Learning-Illinois~Institute~of~Technology}$

BETA DISTRIBUTION

- What is $P(d_{M+1}=True \mid d_1,...,d_M)$ if the prior is Beta (α,β) ?
 - $P(X[M+1]=True \mid D) = (\alpha + \alpha) / (\alpha + b + \alpha + \beta)$
- What is the posterior, $P(\theta \mid D)$, if the prior is Beta (α, β) ?
 - $P(\theta \mid D) = Beta(\alpha + \alpha, b + \beta)$
- \circ α and β work like pseudo-counts for the positive and negative cases respectively
- What values to choose for α and β ?
 - It depends on our belief and the strength of our belief

DIRICHLET PRIORS

 Generalizes the Beta distribution for multinomials

$$\theta \sim Dirichlet(\alpha_1, ..., \alpha_K) \text{ if } P(\theta) \propto \prod_{k=1}^K \theta_k^{\alpha_k - 1}$$

- What is $P(d_{M+1}=v_i|D)$ if the prior is Dirichlet?
 - $P(d_{M+1}=v_i \mid D) = (n_i+\alpha_i) / (\mid D\mid +\alpha)$ where n_i is the number of times the i^{th} case appears in D and $\alpha=\alpha_1+\alpha_2+\ldots+\alpha_K$
- What is the posterior, $P(\theta \mid D)$, if the prior is Dirichlet?
 - $P(\theta \mid D) = Dirichlet(n_1 + \alpha_1, n_2 + \alpha_2, ..., n_K + \alpha_K)$