Corso di Analisi Matematica I prof.ssa Maria Manfredini

SUCCESSIONI DI NUMERI REALI: prima parte

Stabilire se le seguenti affermazioni sono vere o false. Motivare la risposta nel caso sia vera altrimenti fornire un controesempio. Siano $(a_n)_n$ e $(b_n)_n$ successioni di numeri reali.

- a) Se $(a_n)_n$ ha limite $l \in \mathbb{R}$ allora è limitata.
- b) Se $(a_n)_n$ è limitata allora è convergente.
- c) Se $(a_n)_n$ è convergente allora è limitata.
- d) Se $(a_n)_n$ è monotona crescente allora ha limite reale.
- e) Se $(a_n)_n$ è monotona crescente allora $\exists \lim_{n\to+\infty} a_n = +\infty$
- f) Se $a_n \ge 0$ per ogni n allora $\lim_{n \to +\infty} a_n \ge 0$.
- g) Se $a_n \to 0$ e $b_n \ge 0$ per ogni n allora $\lim_{n \to +\infty} a_n b_n = 0$.
- h) Se $\lim_{n\to+\infty} a_n = 0$ e $(b_n)_n$ è limitata allora $\lim_{n\to+\infty} a_n b_n = 0$.
- i) Se $a_n \sim b_n$ per $n \to +\infty$ allora $\lim_{n \to +\infty} (a_n b_n) = 0$.
- m) Se $c_n, d_n \neq 0$ e $a_n \sim b_n$, $c_n \sim d_n$ per $n \to +\infty$. Se $\exists \lim_{n \to +\infty} \frac{a_n}{c_n}$ allora $\exists \lim_{n \to +\infty} \frac{b_n}{d_n} = \lim_{n \to +\infty} \frac{a_n}{c_n}$.
- n) Se $a_n = o(\frac{1}{n})$ per $n \to +\infty$ allora $a_n^2 = o(\frac{1}{n^2})$ per $n \to +\infty$.
- o) Se $a_n < \frac{1}{n+1}$ per ogni n allora $a_n \to 0$ se $n \to +\infty$.
- p) Se $a_n < \frac{1}{n+1}$ per ogni n allora $(a_n)_n$ è limitata.
- q) Se $0 \le a_n < \frac{1}{n+1}$ allora $a_n \to 0$ per $n \to +\infty$.
- r) Se $a_n \to 0$ per $n \to +\infty$ allora $\frac{1}{a_n}$ ha limite.
- s) Se $a_n \to 0$ per $n \to +\infty$ allora $\frac{1}{a_n}$ non ha limite.
- t) Se $a_n \to 0$ per $n \to +\infty$ e $a_n \neq 0$ allora $\frac{1}{a_n}$ non è limitata.

 $Soluzioni: \ a) \ f \ ; \ b) \ f, \ c) \ v; \ d) \ f; \ e) \ f; \ f) \ f; \ g) \ f; \ h) \ v; \ i) \ f; \ m) \ v; \ n) \ v; \ o) \ f; \ q) \ v; \ r) \ f; \ s) \ f;$

t) Vera. Infatti, per ip $\forall \epsilon > 0$ esiste $\bar{n} : |a_n| \leq \epsilon$ per ogni $n \geq \bar{n}$. La tesi é $\forall M > 0$ esiste $\bar{n} |1/a_{\bar{n}}| \geq M$ (cioé $|a_{\bar{n}}| \leq \frac{1}{M}$). Allora scegliendo $\epsilon = \frac{1}{M}$ segue la tesi.

Altro modo: poiché $|1/a_n| = 1/|a_n|$ e $|a_n| > 0$, allora esiste il limite di $|1/a_n|$ ed é $+\infty$ quindi la successione $\frac{1}{a_n}$ non é limitata.

Sulla definizione di limite.

o Scrivere la definizione dei seguenti limiti

$$\lim_{n \to +\infty} a_n = 4, \quad \lim_{n \to +\infty} a_n = -\infty, \quad \lim_{n \to +\infty} a_n = +\infty.$$

Quale definizione corrisponde a $\lim_{n\to+\infty} a_n = -2$?

- 1) $\forall \epsilon > 0 \ \exists \bar{n} \in N \ \text{tale che} \ \forall n \geq \bar{n} \ \text{si ha} \ |a_n 2| \leq \epsilon$;
- 2) $\exists \epsilon > 0 \ \forall \bar{n} \in N \text{ tale che } \forall n \geq \bar{n} \text{ si ha } |a_n 2| \leq \epsilon$;
- 3) $\forall \epsilon > 0 \ \exists \bar{n} \in N \text{ tale che } \forall n \geq \bar{n} \text{ si ha } |a_n + 2| \leq \epsilon$;
- 4) $\exists \epsilon > 0 \ \exists \bar{n} \in N \text{ tale che } \forall n \geq \bar{n} \text{ si ha } |a_n + 2| \leq \epsilon;$

 $\lim_{n\to+\infty} a_n = -\infty$ equivale a:

- 1) $\forall M \in \mathbb{R} \ \forall \bar{n} \in N \text{ tale che } \forall n \geq \bar{n} \text{ si ha } a_n \leq M;$
- 2) $\exists M \in \mathbb{R} \ \exists \bar{n} \in N \text{ tali che } \forall n \geq \bar{n} \text{ si ha } a_n \leq M;$
- 3) $\forall M \in \mathbb{R} \ \exists \bar{n} \in N \text{ tale che } \forall n \geq \bar{n} \text{ si ha } a_n \leq M;$
- 4) $\exists M \in \mathbb{R} \ \exists \bar{n} \in N \text{ tali che } \forall n \geq \bar{n} \text{ si ha } a_n \leq M;$

Dimostrare, verificando la definizione di limite, che:

$$\lim_{n \to +\infty} \sqrt{n^2 + 1} = +\infty; \quad \lim_{n \to +\infty} \frac{n^2 + 1}{n^2 - 1} = 1;$$

$$\lim_{n \to +\infty} \sqrt{\frac{4n}{n+1}} = 2; \quad \lim_{n \to +\infty} (\sqrt{n^2 - 1} - 2n) = -\infty.$$