IW4069UB

HEX INVERTER

High-Voltage Silicon-Gate CMOS

The IW4069UB types consist of six inverter circuits. These devices are intended for all general-purpose inverter applications where the medium-power TTL-drive and logic-level-conversion capabilities of circuits such as the IW4049UB Hex Inverter/Buffers are not required. Each of the six inverters is a single stage

- Operating Voltage Range: 3.0 to 18 V
- Maximum input current of 1 μA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Noise margin (over full package temperature range):

0.5 V min @ 5.0 V supply

1.0 V min @ 10.0 V supply

1.0 V min @ 15.0 V supply

ORDERING INFORMATION

IW4069UBN Plastic IW4069UBD SOIC T_A = -55° to 125° C for all packages

LOGIC DIAGRAM

PIN ASSIGNMENT

FUNCTION TABLE

. 0.10	<u> </u>
Inputs	Output
Α	Υ
L	Н
Н	L

IW4069UB

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +20	V
V_{IN}	DC Input Voltage (Referenced to GND)	-0.5 to V_{CC} +0.5	V
V_{OUT}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} +0.5	V
I _{IN}	DC Input Current, per Pin	±10	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+	750	mW
	SOIC Package+	500	
P_{D}	Dissipation per Output Transistor	100	mW
Tstg	Storage Temperature	-65 to +150	°C
TL	Lead Temperature, 1 mm from Case for 10	260	°C
	Seconds		
	(Plastic DIP or SOIC Package)		

*Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

SOIC Package: : - 7 mW/°C from 65° to 125°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	3.0	18	V
V_{IN}, V_{OUT}	DC Input Voltage, Output Voltage (Referenced to GND)	0	V _{CC}	V
T _A	Operating Temperature, All Package Types	-55	+125	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{IN} and V_{OUT} should be constrained to the range $GND \le (V_{IN} \text{ or } V_{OUT}) \le V_{CC}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

⁺Derating - Plastic DIP: - 10 mW/°C from 65° to 125°C

IW4069UB

DC ELECTRICAL CHARACTERISTICS(Voltages Referenced to GND)

DC ELEC	I RICAL CHARACTE	ERISTICS (Voltages Refere	HICEU	(URID U			
			V_{CC}	Guara	anteed L		
Symbol	Parameter	Test Conditions	V	≥-55°C	25°C	≤125	Unit
1						°C	
V _{IH}	Minimum High-	V _{OUT} =0.5V	5.0	4	4	4	V
	Level Input		10	8	8	8	
	Voltage	V _{OUT} =1.5V	15	12.5	12.5	12.5	
V _{IL}	Maximum Low -	V _{OUT} = V _{CC} - 0.5 V	5.0	1	1	1	V
	Level Input	V _{OUT} = V _{CC} - 1 V	10	2	2	2	
	Voltage	$V_{OUT} = V_{CC} - 1.5 V$	15	2.5	2.5	2.5	
V _{OH}	Minimum High-		5.0	4.95	4.95	4.95	V
	Level Output		10	9.95	9.95	9.95	
	Voltage		15	14.95	14.95	14.9	
						5	
V_{OL}	Maximum Low-	V _{IN} = V _{CC}	5.0	0.05	0.05	0.05	V
	Level Output		10	0.05	0.05	0.05	
	Voltage		15	0.05	0.05	0.05	
I _{IN}	Maximum Input	V_{IN} = GND or V_{CC}	18	±0.1	±0.1	±1.0	μΑ
	Leakage Current						
I _{CC}	Maximum	V_{IN} = GND or V_{CC}	5.0	0.25	0.25	7.5	μΑ
	Quiescent Supply		10	0.5	0.5	15	
	Current		15	1.0	1.0	30	
	(per Package)		20	5.0	5.0	150	
I _{OL}	Minimum Output	""					mA
	Low (Sink)	_ =	5.0	0.64	0.51	0.36	
	Current	U _{OL} =0.5 V	10	1.6	1.3	0.9	
		U _{OL} =1.5 V	15	4.2	3.4	2.4	
I _{OH}	Minimum Output						mΑ
	High (Source)		5.0	-2.0	-1.6	-1.15	
	Current	U _{OH} =4.6 V	5.0	-0.64	-0.51	-0.36	
		U _{OH} =9.5 V	10	-1.6	-1.3	-0.9	
		U _{OH} =13.5 V	15	-4.2	-3.4	-2.4	

AC ELECTRICAL CHARACTERISTICS(C_L =50pF, R_L =200k Ω , Input t_r = t_f =20 ns)

		V_{CC}	Guaranteed Limit			
Symbol	Parameter	V	≥-55	25°C	≤125	Unit
			°C		°C	
t _{PLH} ,	Maximum Propagation Delay, Input A to	5.0	110	110	220	ns
t_PHL	Output Y (Figure 1)	10	60	60	120	
		15	50	50	100	
t_{TLH}, t_{THL}	Maximum Output Transition Time, Any	5.0	200	200	400	ns
	Output (Figure 1)	10	100	100	200	
		15	80	80	160	
C_{IN}	Maximum Input Capacitance	-		15		pF

Figure 1. Switching Waveforms

EXPANDED LOGIC DIAGRAM (1/6 of the Device)

