VECTORS

1 10^{th} Maths - EXERCISE-7.4

Let A(4, 2), B(6, 5) and C(1, 4) be the vertices of $\triangle ABC$

- 1. The median from A meets BC at D. Find the coordinates of the point D.
- 2. Find the coordinates of the point P on AD such that AP : PD = 2 : 1
- 3. Find the coordinates of points Q and R on medians BE and CF respectively such that BQ: QE=2:1 and CR: RF=2:1.
- 4. What do yo observe?
- 5. If $A(x_1, y_1)$, $B(x_2, y_2)$ and $C(x_3, y_3)$ are the vertices of $\triangle ABC$, find the coordinates of the centroid of the triangle.

Given points are

$$\mathbf{A} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 6 \\ 5 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 \\ 4 \end{pmatrix} \tag{1}$$

1. Solution for problem 1

$$\mathbf{D} = \frac{\mathbf{B} + \mathbf{C}}{2} \tag{2}$$

$$=\frac{1}{2} \begin{pmatrix} 6\\5 \end{pmatrix} + \begin{pmatrix} 1\\4 \end{pmatrix} \tag{3}$$

$$=\frac{1}{2} \begin{pmatrix} 7\\9 \end{pmatrix} \tag{4}$$

$$\mathbf{D} = \begin{pmatrix} \frac{7}{2} \\ \frac{9}{2} \end{pmatrix} \tag{5}$$

$$\mathbf{E} = \frac{\mathbf{A} + \mathbf{C}}{2} \tag{6}$$

$$=\frac{1}{2}\binom{4}{2}+\binom{1}{4}\tag{7}$$

$$=\frac{1}{2} \begin{pmatrix} 5\\6 \end{pmatrix} \tag{8}$$

$$\mathbf{E} = \begin{pmatrix} \frac{5}{2} \\ 3 \end{pmatrix} \tag{9}$$

$$\mathbf{F} = \frac{\mathbf{A} + \mathbf{B}}{2} \tag{10}$$

$$=\frac{1}{2}\begin{pmatrix} 4\\2 \end{pmatrix} + \begin{pmatrix} 6\\5 \end{pmatrix} \tag{11}$$

$$=\frac{1}{2} \begin{pmatrix} 10\\7 \end{pmatrix} \tag{12}$$

$$\mathbf{F} = \begin{pmatrix} 5\\ \frac{7}{2} \end{pmatrix} \tag{13}$$

2. Solution for problem 2

$$n = \frac{2}{1} \tag{14}$$

$$\mathbf{P} = \frac{1}{1+n} \left(\left(\mathbf{A} + n\mathbf{D} \right) \right) \tag{15}$$

$$= \frac{1}{1 + \frac{2}{1}} \left(\binom{4}{2} + \frac{2}{1} \binom{\frac{7}{2}}{\frac{9}{2}} \right) \tag{16}$$

$$= \frac{1}{3} \left(\binom{4}{2} + \binom{7}{9} \right)$$

$$= \frac{1}{3} \binom{11}{11}$$

$$(18)$$

$$=\frac{1}{3}\begin{pmatrix}11\\11\end{pmatrix}\tag{18}$$

$$\mathbf{P} = \begin{pmatrix} \frac{11}{3} \\ \frac{11}{3} \end{pmatrix} \tag{19}$$

3. solution for problem 3

$$n = \frac{2}{1} \tag{20}$$

$$\mathbf{Q} = \frac{1}{1+n} \left(\left(\mathbf{B} + n\mathbf{E} \right) \right) \tag{21}$$

$$= \frac{1}{1 + \frac{2}{1}} \left(\binom{6}{5} + \frac{2}{1} \binom{\frac{5}{2}}{3} \right) \tag{22}$$

$$=\frac{1}{3}\left(\binom{6}{5}+\binom{5}{6}\right)\tag{23}$$

$$=\frac{1}{3} \begin{pmatrix} 11\\11 \end{pmatrix} \tag{24}$$

$$\mathbf{Q} = \begin{pmatrix} \frac{11}{3} \\ \frac{11}{3} \end{pmatrix} \tag{25}$$

$$\mathbf{R} = \frac{1}{1+n} \left(\left(\mathbf{C} + n\mathbf{F} \right) \right) \tag{26}$$

$$=\frac{1}{1+\frac{2}{1}}\left(\begin{pmatrix}1\\4\end{pmatrix}+\frac{2}{1}\begin{pmatrix}5\\\frac{7}{2}\end{pmatrix}\right)\tag{27}$$

$$=\frac{1}{3}\left(\begin{pmatrix}1\\4\end{pmatrix}+\begin{pmatrix}10\\7\end{pmatrix}\right)\tag{28}$$

$$=\frac{1}{3}\begin{pmatrix}11\\11\end{pmatrix}\tag{29}$$

$$\mathbf{R} = \begin{pmatrix} \frac{11}{3} \\ \frac{11}{3} \end{pmatrix} \tag{30}$$

4. solution for problem 4

I have observed the P, Q, R are the same values and coincidence where median intersect is known as centrid of triangle.

5. solution for problem 5

$$G = \frac{D + E + F}{3} \tag{31}$$

$$= \begin{pmatrix} \frac{7}{2} \\ \frac{9}{2} \end{pmatrix} + \begin{pmatrix} \frac{5}{2} \\ 3 \end{pmatrix} + \begin{pmatrix} 5 \\ \frac{7}{2} \end{pmatrix} \tag{32}$$

$$\mathbf{G} = \begin{pmatrix} \frac{11}{3} \\ \frac{11}{3} \end{pmatrix} \tag{33}$$

2 FIGURE

Figure 1: median of triangle