МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Построение и анализ алгоритмов»

Тема: Потоки в сети

Студент гр. 7383	 Васильев А.И.
Преподаватель	Жангиров Т.Р

Санкт-Петербург 2019

Цель работы.

Исследовать и реализовывать задачу нахождения максимального потока в сети, применяя алгоритм Форда — Фалкерсона.

Формулировка задачи: найти максимальный поток в сети, а также фактическую величину потока, протекающего через каждое ребро, используя алгоритм Форда — Фалкерсона. Сеть (ориентированный взвешенный граф) представляется в виде триплета из имён вершин и целого неотрицательного числа — пропускная способность (веса).

Уточнение задачи: граф представлен в виде списка смежности, поиск пути задаётся через поиск в ширину.

Входные данные: в первой строке указывается количество ориентированных рёбер графа, затем идут значения начальной и конечной вершин. Далее вводят данные о рёбрах графа и их весе, пропускной способности.

Выходные данные: максимальный поток в сети, а также фактическая величина потока, протекающего через каждую дугу, все рёбра отсортированы в лексикографическом порядке.

Реализация задачи.

В работе был использован класс Graph.

Параметры, хранящиеся в классе:

way — одномерный массив, в котором хранятся значения родителей вершин;

Given_graph — упорядоченный ассоциативный массив типа мар, благодаря которому заданный граф представлен как список смежности;

RealFlow — упорядоченный ассоциативный массив типа map, в котором хранятся значения фактического потока, проходящего через все рёбра графа;

check — массив типа bool, в котором хранятся метки, показывающие пройдена данная вершина или нет.

Методы класса:

ResidualCapacity — функция нахождения разницы между величинами потока в заданном и фактическом графах, остаточная пропускная способность;

Bfs — функция, реализующая поиск в ширину, возвращает true, если путь до стока существует, в противном случае — false;

AddEdge — функция заполнения списка смежности, заданными значениями;

Ford_Fulkerson — алгоритм Форда — Фалкерсона, возвращает максимальное значение потока, а также по ходу работы данной функции заполняются фактические значения потока;

Print — функция вывода результата работы программы на экран.

Так же в классе определены деструктор и конструктор по умолчанию.

В функции main() считывается количество дуг графа, затем задаются исток и сток, между которыми проходит поток. Далее в цикле начинается считывание рёбер графа и их пропускная способность. Запускается алгоритм Форда — Фалкерсона, который работает до тех пор, пока можно найти путь из истока в сток, используя функцию поиска в ширину Bfs. На каждом шаге итерации увеличиваются потоки в рёбрах данного маршрута на минимальную остаточную пропускную способность.

Тестирование.

Тестовые случаи не выявили не правильного поведения программы, следовательно можно судить о том, что поставленная задача была выполнена. Тестовые случаи приведены в табл. 1.

Таблица 1 – Тестовые случаи

Входные данные	Вывод	Верно?
7 a f	12	
a b 7	a b 6	Да
a c 6	a c 6	

b d 6	b d 6	
c f 9	c f 8	
d e 3	d e 2	
d f 4	d f 4	
e c 2	e c 2	
13 a h	11	
a b 6	a b 6	
a c 6	a c 5	
b d 4	b d 4	
b e 2	b e 2	
c b 2	c b 0	
c e 9	c e 5	По
d f 4	d f 4	Да
d g 2	d g 0	
e d 8	e d 0	
e g 7	e g 7	
f h 7	f h 7	
g f 11	g f 3	
g h 4	g h 4	

Исследование.

Поскольку на каждой итерации поток как минимум увеличивается на один, а поиск пути в графе происходит за O(|E|) операций, то сложность алгоритма составляет O(|F|E|), где F — максимальный поток в сети. Данная оценка требует знать величину максимального потока, но так как он не может превышать сумму пропускных способностей истока и сумму пропускных способностей стока, то можно заменить F на максимальную из этих двух сумм. Тогда O(|M|E|).

Выводы.

В ходе лабораторной работы был изучен алгоритм поиска максимального потока в сети, используя алгоритм Форда — Фалкерсона. Был написан код на языке программирования C++, который применял этот метод для поставленной задачи. Сложность реализованного алгоритма составляет O(|M|E|).