EECS/BioE C106A/206A Introduction to Robotics

Lost Section 3

Sep 28 Mon 8 – 9 PM

Inverse Kinematics

Given g_d , find θ_1 , θ_2 , θ_3 , ..., θ_n such that

$$e^{\hat{\xi}_1\theta_1} \dots e^{\hat{\xi}_n\theta_n} g_{st}(0) = g_d.$$

Padan-Kahan (PK) subproblems for revolute joints

subproblem 1

subproblem 2

subproblem 3

Find θ such that

$$e^{\hat{\xi}\theta}p = q$$

Find $heta_1$, $heta_2$ such that $e^{\hat{\xi}_1 heta_1} e^{\hat{\xi}_2 heta_2} p = q$

Find θ such that

$$\parallel q - e^{\hat{\xi}\theta}p \parallel = \delta$$

The maximal number of solutions is 1.

The maximal number of solutions is 2.

The maximal number of solutions is 2.

subproblem 1: $e^{\hat{\xi}\theta}p = q$ subproblem 2: $e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p = q$ subproblem 3: $\|e^{\hat{\xi}\theta}p - q\| = \delta$

One approach: which angle we get first

- \checkmark Step 1. find θ s that decide the length between the end position and the origin
 - θ s of the prismatic joints (not subproblems)
 - θ s of the revolute joints (subproblem 3)
 - Step 2. find the other θ s (all revolute joints): subproblem 1 and 2
 - find the first part of θ s by freezing the effect of the transformation of the latter part of θ s (by choosing q on the rotation axis)

Step 2. find
$$\theta_1, \theta_2$$
Let $g' \coloneqq ge^{-\hat{\xi}_3\theta_3} = e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}$

$$g'\xi_1 = e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}$$
Known

subproblem 1: $e^{\hat{\xi}\theta}p=q$ subproblem 2: $e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p=q$ subproblem 3: $\parallel e^{\hat{\xi}\theta}p-q\parallel=\delta$

One approach: which angle we get first

- Step 1. find θ s that decide the length between the end position and the origin
 - θ s of the prismatic joints (not subproblems)
 - θ s of the revolute joints (subproblem 3)
- Step 2. find the other θ s (all revolute joints): subproblem 1 and 2
 - find the first part of θ s by freezing the effect of the transformation of the latter part of θ s (by choosing q on the rotation axis)

Step 1. find
$$\theta_3$$

$$\begin{cases}
\begin{vmatrix}
3 & 4 & -7 & -7 \\
4 & -7 & -7 & -7
\end{vmatrix} = func(\theta_3)
\end{cases}$$

$$\begin{cases}
\begin{vmatrix}
3 & 6 & 6 & 6 & 7 & -7 \\
6 & 6 & 7 & -7 & -7
\end{vmatrix}$$

$$\begin{vmatrix}
6 & 6 & 6 & 7 & -7 & -7
\end{vmatrix}$$

subproblem 1: $e^{\hat{\xi}\theta}p = q$ subproblem 2: $e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p = q$ subproblem 3: $\parallel e^{\hat{\xi}\theta}p - q \parallel = \delta$

One approach: which angle we get first

Step 1. find θ s that decide the length between the end position and the origin

- θ s of the prismatic joints (not subproblems)
- θ s of the revolute joints (subproblem 3)

Step 2. find the other θ s (all revolute joints): subproblem 1 and 2

- find the first part of θ s by freezing the effect of the transformation of the latter part of θ s (by choosing q on the rotation axis)

$$g=e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}e^{\hat{\xi}_3\theta_3}e^{\hat{\xi}_4\theta_4}$$
 is given.

Step 1. find θ_2 , θ_4

Step 2. find θ_1 and then θ_3

subproblem 1: $e^{\hat{\xi}\theta}p = q$ subproblem 2: $e^{\hat{\xi}_1\theta_1}e^{\hat{\xi}_2\theta_2}p = q$ subproblem 3: $\|e^{\hat{\xi}\theta}p - q\| = \delta$

One approach: which angle we get first

Step 1. find θ s that decide the length between the end position and the origin

- θ s of the prismatic joints (not subproblems)
- θ s of the revolute joints (subproblem 3)

Step 2. find the other θ s (all revolute joints): subproblem 1 and 2

- find the first part of θ s by freezing the effect of the transformation of the latter part of θ s (by choosing q on the rotation axis)

$$g = e^{\hat{\xi}_1 \theta_1} e^{\hat{\xi}_2 \theta_2} e^{\hat{\xi}_3 \theta_3} e^{\hat{\xi}_4 \theta_4} e^{\hat{\xi}_5 \theta_5} e^{\hat{\xi}_6 \theta_6}$$
 is given.

The solution can be found in Example 3.5, textbook pg 104-106.

Step 1. find
$$\theta_3$$

| θ_1 | θ_2 | θ_3 | θ_4 | θ_5 |

Step 2.2 find
$$\theta_4, \theta_5, \theta_6$$
 - find θ_4, θ_5 by choosing q_ω' - find θ_6