Superposition with Datatypes and Codatatypes

Jasmin Blanchette

Vrije Universiteit Amsterdam

MPI-INF Saarbrücken

Nicolas Peltier

Université Grenoble Alpes

Simon Robillard

Chalmers University of Technology

(co)datatypes everywhere!

- program verification
- metatheory of programming languages
- formalization of mathematics
- . . .

Typical application of ATPs

X Inconvenient

X Inefficient

- X Inconvenient
- X Inefficient
- Incomplete

Example

(co)datatype
$$\tau = \mathbf{E} : \tau$$

$$\mid \mathbf{F} : \tau \to \tau$$

$$\mid \mathbf{G} : \alpha \times \tau \to \tau$$

Axioms for freely generated (co)datatypes

Distinctness

$$\forall x, E \not\approx F(x)$$

$$\forall x, \mathbf{E} \not\approx F(x) \qquad \forall \bar{x}, F(x_1) \not\approx \mathbf{G}(x_2, x_3)$$

$$\forall \bar{x}, G(x_1, x_2) \not\approx E$$

Axioms for freely generated (co)datatypes

Distinctness

$$\forall x, E \not\approx F(x)$$
 $\forall \bar{x}, F(x_1) \not\approx G(x_2, x_3)$ $\forall \bar{x}, G(x_1, x_2) \not\approx E$

Injectivity

$$\forall \bar{x}, \ F(x_1) \approx F(x_2) \to x_1 \approx x_2$$
$$\forall \bar{x}, \ G(x_1, x_1') \approx G(x_2, x_2') \to x_1 \approx x_2 \land x_1' \approx x_2'$$

Axioms for freely generated (co)datatypes

Distinctness

$$\forall x, E \not\approx F(x)$$
 $\forall \bar{x}, F(x_1) \not\approx G(x_2, x_3)$ $\forall \bar{x}, G(x_1, x_2) \not\approx E$

Injectivity

$$\forall \bar{x}, \ F(x_1) \approx F(x_2) \to x_1 \approx x_2$$
$$\forall \bar{x}, \ G(x_1, x_1') \approx G(x_2, x_2') \to x_1 \approx x_2 \land x_1' \approx x_2'$$

Exhaustivity

$$\forall x \; \exists \bar{y}, \; x \approx E \lor x \approx F(y_1) \lor x \approx G(y_2, y_3)$$

$$\forall x, \ x \not\approx F(x)$$

 $\forall x \ y, \ x \not\approx G(y, x)$

$$\forall x, x \not\approx F(x)$$

$$\forall x y, x \not\approx G(y, x)$$

$$\forall x, x \not\approx F(F(x))$$

$$\forall x y, x \not\approx F(G(y, x))$$

$$\forall x y, x \not\approx G(y, F(x))$$

$$\forall x \bar{y}, x \not\approx G(y_1, G(y_2, x))$$

$$\forall x, x \not\approx F(x)$$

$$\forall x y, x \not\approx G(y, x)$$

$$\forall x, x \not\approx F(F(x))$$

$$\forall x y, x \not\approx F(G(y, x))$$

$$\forall x y, x \not\approx G(y, F(x))$$

$$\forall x \bar{y}, x \not\approx G(y, F(x))$$

$$\forall x, x \not\approx F(F(F(x)))$$

$$\forall x y, x \not\approx F(F(G(y, x)))$$

$$\forall x y, x \not\approx F(G(y, F(x)))$$

$$\forall x \bar{y}, x \not\approx F(G(y, F(x)))$$

$$\forall x \bar{y}, x \not\approx F(G(y, F(F(x))))$$

$$\forall x \bar{y}, x \not\approx G(y, F(F(G(y_2, x))))$$

$$\forall x \bar{y}, x \not\approx G(y_1, F(G(y_2, F(x))))$$

$$\forall x \bar{y}, x \not\approx G(y_1, F(G(y_2, F(x))))$$

$$\forall x \bar{y}, x \not\approx F(F(F(F(x))))$$

$$\forall x \bar{y}, x \not\approx F(F(F(F(x))))$$

$$\forall x \bar{y}, x \not\approx F(F(F(X)))$$

$$\forall x, x \not\approx F(x)$$

$$\forall x y, x \not\approx G(y, x)$$

$$\forall x, x \not\approx F(F(x))$$

$$\forall x y, x \not\approx F(G(y, x))$$

$$\forall x y, x \not\approx G(y, F(x))$$

$$\forall x, x \not\approx \Gamma[x]$$

$$\forall x \ \bar{y}, x \not\approx G(y_1, F(F(G(y_2, x))))$$

$$\forall x \ \bar{y}, x \not\approx G(y_1, F(G(y_2, F(x))))$$

$$\forall x \ \bar{y}, x \not\approx G(y_1, F(G(y_2, G(y_3, x))))$$

$$\forall x, x \not\approx F(F(F(F(x))))$$

$$\forall x, x \not\approx F(F(F(G(y_1, x))))$$

Codatatype fixpoints

$$\exists ! x, \ x \approx \Gamma[x]$$

Codatatype fixpoints

$$\exists ! x, \ x \approx \Gamma[x]$$

Example

$$s \approx F(G(a, F(s))) \land t \approx F(G(a, F(t)))$$
 implies

 $s \approx t$

Solution 1

Conservative extension of the theory

Extra predicate

$$sub(s, t)$$
"s is a subterm of t"

Recursive definition

$$\forall x, sub(x, x)$$
 $\forall xy, sub(x, y) \rightarrow sub(x, F(y))$

$$\forall x, \neg sub(F(x), x)$$

Fixpoints

```
Extra sort
               G(\bullet, E)
       context = term with hole(s)
Application function
      app : context \times term \rightarrow term
Example
  app(G(\bullet, E), F(E)) \approx G(F(E), E)
```

Existence of fixpoints

Extra function cyc: $context \rightarrow term$ $\forall x, cyc(x) \approx app(x, cyc(x))$

Existence of fixpoints

Extra function
$$cyc$$
: $context \rightarrow term$
 $\forall x, cyc(x) \approx app(x, cyc(x))$

Example with
$$x := G(\bullet, E)$$

$$cyc(G(\bullet, E)) \approx app(G(\bullet, E), cyc(G(\bullet, E)))$$

$$\approx G(cyc(G(\bullet, E)), E)$$

 $cyc(\Gamma)$ is the solution of $y \approx \Gamma[y]$

Existence of fixpoints

Extra function
$$cyc : context \rightarrow term$$

 $\forall x, cyc(x) \approx app(x, cyc(x))$

Example with
$$x := G(\bullet, E)$$

$$cyc(G(\bullet, E)) \approx app(G(\bullet, E), cyc(G(\bullet, E)))$$

$$\approx G(cyc(G(\bullet, E)), E)$$

$$cyc(\Gamma)$$
 is the solution of $y \approx \Gamma[y]$

Uniqueness

$$\forall xy, y \not\approx \bullet \land x \approx app(y, x) \rightarrow x \approx cyc(y)$$

Mutually recursive types

(co)datatype
$$\alpha = E : \alpha$$

 $\mid F : \beta \to \alpha$
and $\beta = G : \alpha \to \beta$

Solution

Datatypes

 $sub_{\alpha\alpha}$ $sub_{\alpha\beta}$ $sub_{\beta\alpha}$ $sub_{\beta\beta}$

• Codatatypes $\frac{\alpha}{\beta}$ -contexts with holes for $\frac{\alpha}{\beta}$ -terms

Completeness

First-order theory

- ≈
- No uninterpreted functions

Complete, but not finitely axiomatizable

Conservative extension

Extra symbols

- ✓ Encode cyclicity properties
- X Shouldn't be used in conjecture

Conservative extension of the theory

- ✓ Complete
- ✓ Easy to implement

But can we improve proof search?

Solution 2

Dedicated inference rules

$$a \approx F(b)$$

$$a \approx F(b)$$

$$\downarrow$$

$$b \approx G(F(c), d)$$

$$a \approx F(b)$$

$$b \approx G(F(c), d)$$

$$c \approx F(h(e))$$

$$a \approx F(b)$$

$$b \approx G(F(c), d)$$

$$c \approx F(h(e))$$

$$h(x) \approx G(a, e)$$

$$s_1 \approx \Gamma_1[s_2'] \vee C_1$$
 $s_2 \approx \Gamma_2[s_3'] \vee C_2$... $s_n \approx \Gamma_n[s_1'] \vee C_n$ $(C_1 \vee C_2 \vee \cdots \vee C_n)\theta$

Trouble with the variables

$$\frac{t \approx F(x) \lor p(x)}{???}$$

Trouble with the variables

unifier =
$$\{x \leftarrow t\}$$

$$\frac{t \approx F(x) \lor p(x)}{p(t)}$$

Trouble with the variables

unifier =
$$\{x \leftarrow \Gamma[t]\}$$

$$\frac{t \approx F(x) \lor p(x)}{p(\Gamma[t])}$$

More trouble with the variables

$$a \approx F(b(0))$$
 $b(x) \approx F(b(x+1))$ $b(2) \approx F(a)$

More trouble with the variables

$$a \approx F(b(0))$$
 $b(x) \approx F(b(x+1))$ $b(2) \approx F(a)$

$$b(0) \approx F(b(1))$$
 $b(1) \approx F(b(2))$

The acyclicity rule (special case)

Axioms for sub are included in the clauses to saturate

$$\frac{t \approx F(x) \vee p(x)}{\neg sub(t, x) \vee p(x)} \frac{sub(y, F(z)) \vee \neg sub(y, z)}{\neg sub(t, z) \vee p(F(z))} \frac{\neg sub(x, x)}{\neg sub(x, x)}$$

hypothesis
$$t \approx F(x) \lor p(x)$$

$$\neg sub(t,x) \lor p(x) \qquad sub(y,F(z)) \lor \neg sub(y,z)$$

$$\neg sub(t,z) \lor p(F(z)) \qquad sub(x,x)$$

$$p(F(z))$$

hypothesis acyclicity
$$t \approx F(x) \lor p(x)$$

$$\neg sub(t,x) \lor p(x) \qquad sub(y,F(z)) \lor \neg sub(y,z)$$

$$\neg sub(t,z) \lor p(F(z)) \qquad sub(x,x)$$

$$p(F(z))$$

Codatatype fixpoints

Existence

• Function cyc and its axiom

Uniqueness

• Rule based on chains (shown here simplified)

Not shown: extra conditions about occurences of s_1 in Γ

Relaxing the superposition rule

$$F(t) \approx s$$

Superposition can rewrite s even if F(t) > s

Effect on rewrite system

$$F(t')
ightarrow s'$$
 irreducible

Effect on proof search

- More applications of superposition
- ✓ Can be mitigated with good term ordering.

Replacing the remaining axioms

Distinctness rules

$$\frac{F(\bar{s}) \approx G(\bar{t}) \vee C}{C} \qquad \frac{F(\bar{s}) \approx x \vee C}{C[x \leftarrow G(\bar{y})]}$$

$$\frac{F(\bar{s}) \approx u \vee C_1 \qquad G(\bar{t}) \approx u' \vee C_2}{(C_1 \vee C_2)\sigma}$$

- $\sigma = mgu(u, u')$
- Similar rules for injectivity
- Exhaustivity still requires axiom

Implementation

Both approaches implemented in Vampire

Challenges

- *n*-ary rules
- mgu over set of equations

Indexing technique

- Re-use existing indexes for retrieval of unifiable terms
- Build chains and mgu incrementally

Benchmarks

Isabelle problems

- 4130 problems translated by Sledgehammer
- Almost no difference between configurations
- Nothing lost vs partial axiomatization
- Acyclicity & fixpoints rarely used here

- 500 problems
- Focus on acyclicity & fixpoints

	AC ground	\mathop{AC}_{\forall}	U ground	Ų V	EX
Axioms	100%	65%	10%	14%	40%
Rules	100%	82%	13%	14%	35%

$$\exists x, x \approx \Gamma[x]$$

	AC ground	\mathop{AC}_{\forall}	U ground	Ą	EX
Axioms	100%	65%	10%	14%	40%
Rules	100%	82%	13%	14%	35%

$$\exists xy, x \approx \Gamma[x] \land y \approx \Gamma[y] \land x \not\approx y$$

	AC ground	\mathop{AC}_{\forall}	U ground	A	EX
Axioms	100%	65%	10%	14%	40%
Rules	100%	82%	13%	14%	35%

$$\forall x, x \not\approx \Gamma[x]$$

	AC ground	\mathop{AC}_{\forall}	U ground	Ų ∀	EX
Axioms	100%	65%	10%	14%	40%
Rules	100%	82%	13%	14%	35%

	AC ground	\mathop{AC}_{\forall}	U ground	$\overset{\forall}{U}$	EX
Axioms	100%	65%	10%	14%	40%
Rules	100%	82%	13%	14%	35%
Z 3	100%	59%			
CVC4	100%	100%	100%	12%	0%

Induction and co-induction

First-order theory

Complete without (co)induction

```
 \begin{array}{c} {\sf Acyclicity} \\ {\sf Fp \ uniqueness} \end{array} \right\} \ {\sf is \ a \ special \ case \ of} \ \left\{ \begin{array}{c} {\sf induction} \\ {\sf co{\text -}induction} \end{array} \right.
```

Summary

Two solutions

- Conservative extension of the theory
- Inference rules + axioms
- ✓ Complete (with restriction for unicity rule)
- ✓ Efficient acyclicity rule
- ✓ Implementation in Vampire

http://github.com/vprover

Conservative extension: acyclicity

Sub
$$sub(x,x)$$
 $sub(x,y) o sub(x,F(ar{z},y,ar{z}'))$ Acyclicity $\neg sub(F(ar{y},x,ar{y}'),x)$

Conservative extension: fixpoints

App
$$app(cst(x), y) \approx x \qquad app(\bullet, x) \approx x$$

$$app(\overline{F}(\bar{x}), y) \approx F(\overline{app(x_i, y)})$$
Hole
$$\bullet \not\approx cst(x) \qquad \bullet \not\approx \overline{F}(\bar{x})$$
Existence & uniqueness
$$cyc(x) \approx app(x, cyc(x))$$

$$x \not\approx \bullet \land y \approx app(x, y) \rightarrow y \approx cyc(x)$$