

CLAIMS

1. A method for reconstructing complex wave attributes described by an object function O from limited view measurements u of a measurement surface r with associated wavevector \mathbf{K} , said method comprising the steps of:
 - 5 processing said limited view measurements u to obtain Fourier transformed measurements \tilde{u} ;
 - determining a Fourier transformed object function \tilde{O} of said object function O ;
 - determining an analytic relationship between said Fourier transformed object function \tilde{O} and said Fourier transformed measurements \tilde{u} ;
 - 10 analytically extending said Fourier transform \tilde{O} by specifying that $\tilde{O}(\mathbf{K}) = \tilde{O}(-\mathbf{K})$, thereby obtaining an analytically extended Fourier transform of \tilde{O} ; and,
 - reconstructing said complex wave attributes by inverting said analytically extended Fourier transform of \tilde{O} .
- 15 2. The method of Claim 1 wherein said complex wave attributes are wave speed and attenuation.
3. The method of Claim 1 wherein said complex wave attributes are dielectric and electrical conductivity.
4. The method of Claim 1 wherein said complex wave attributes are acoustic wave speed density and compressibility.

5. The method of Claim 1 wherein said object function is one-dimensional.
6. The method of Claim 1 wherein said object function is two-dimensional.
7. The method of Claim 1 wherein said object function is three-dimensional.
8. The method of Claim 1 wherein said measurement surface r comprises a ring.
- 5 9. The method of Claim 1 wherein said measurement surface r comprises a sphere.
10. The method of Claim 1 wherein said measurement surface r comprises a cylinder.
11. The method of Claim 1 wherein said measurement surface r comprises a plurality of parallel lines.
12. The method of Claim 1 wherein said measurement surface r comprises a plurality of perpendicular lines.
13. The method of Claim 1 wherein said measurement surface r comprises a line and a curved surface.
14. The method of Claim 1 wherein said limited view measurements are time domain measurements.
- 15 15. The method of Claim 1 wherein said limited view measurements are frequency domain measurements.

16. A method for reconstructing complex wave attributes described by an object function O from limited view measurements u of an object with associated wavevector \mathbf{K} , said method comprising the steps of:

5 processing said measurements u to obtain Fourier transformed measurements \tilde{u} ;

 determining a midpoint of said object;

 creating shifted Fourier transformed measurements \tilde{u}_R by shifting said Fourier transformed measurements \tilde{u} so that said midpoint is located at the origin;

 determining an analytic relationship between said object function O and said 10 shifted Fourier transformed measurements \tilde{u}_R ;

 determining the Fourier transform \tilde{O} of said object function O from said Fourier transformed measurements \tilde{u}_R using said analytic relationship;

 analytically extending said Fourier transform \tilde{O} by specifying that $\tilde{O}(\mathbf{K}) =$ 15 $\tilde{O}(-\mathbf{K})$, thereby obtaining an analytically extended Fourier transform of \tilde{O} ;

 determining shifted complex wave attributes by inverting said analytically extended Fourier transform of \tilde{O} ; and,

 reconstructing said complex wave attributes by shifting said shifted complex wave attributes back to said midpoint.

20 17. The method of Claim 16 wherein said step of determining a midpoint comprises the steps of:

 determining the complex contrast of said object;

 determining the magnitude of said complex contrast; and,

choosing said midpoint to be the center location of said complex contrast.

18. The method of Claim 16 wherein said step of determining a midpoint comprises the steps of:
 - determining the complex contrast of said object;
 - 5 determining the magnitude of said complex contrast; and,
 - choosing said midpoint to be the mid-depth of said complex contrast.
19. The method of Claim 16 wherein said midpoint is a spatial component and said step of determining a midpoint comprises choosing said midpoint to be the depth achieved at the maximum measured travel time.
- 10 20. The method of Claim 16 wherein said midpoint is a temporal component and said step of determining a midpoint comprises choosing said midpoint to be the maximum measured travel time.