Auctions

Alexey Makarin

April 30 & May 3, 2021

Introduction

• Fact #1: "Auction" comes from Latin (auctum, "I increase")

- Fact #1: "Auction" comes from Latin (auctum, "I increase")
- Fact #2: Single most important auction ever took place in Italy!

- Fact #1: "Auction" comes from Latin (auctum, "I increase")
- Fact #2: Single most important auction ever took place in Italy!
 - A.D. 193: Having killed the Emperor Pertinax, Praetorian Guard sold the entire (!) Roman Empire by means of an auction.

- Fact #1: "Auction" comes from Latin (auctum, "I increase")
- Fact #2: Single most important auction ever took place in Italy!
 - A.D. 193: Having killed the Emperor Pertinax, Praetorian Guard sold the entire (!) Roman Empire by means of an auction.
 - The winner, Didius Julianus, was declared emperor and reigned for two months.

- Fact #1: "Auction" comes from Latin (auctum, "I increase")
- Fact #2: Single most important auction ever took place in Italy!
 - A.D. 193: Having killed the Emperor Pertinax, Praetorian Guard sold the entire (!) Roman Empire by means of an auction.
 - The winner, Didius Julianus, was declared emperor and reigned for two months.
- That said, first ever recorded auctions took place in Babylon around 500 B.C.

Revival of Auctions

• England in 18th century: auctions revived for selling artwork and other rare items.

Revival of Auctions

- England in 18th century: auctions revived for selling artwork and other rare items.
- Largest auction houses were founded:
 - Sotheby's (2nd largest auction house now): founded in 1744 to sell off a library of scarce books;
 - Christie's (largest auction house now): founded in 1766 to sell paintings and other artwork.

Revival of Auctions

- England in 18th century: auctions revived for selling artwork and other rare items.
- Largest auction houses were founded:
 - Sotheby's (2nd largest auction house now): founded in 1744 to sell off a library of scarce books;
 - Christie's (largest auction house now): founded in 1766 to sell paintings and other artwork.
- A variety of auction mechanisms were developed, including English auction, Dutch auction, and so-called auction by the candle.

Modern Auction Extravaganza

• Auctions became extremely popular in the 21st century.

Modern Auction Extravaganza

- Auctions became extremely popular in the 21st century.
- Private sector:
 - eBay online auction platform with 182 mln users worldwide;
 - Google selling ad space through an auction system; etc.

Modern Auction Extravaganza

- Auctions became extremely popular in the 21st century.
- Private sector:
 - eBay online auction platform with 182 mln users worldwide;
 - Google selling ad space through an auction system; etc.
- Public sector:
 - Privatization and public resource allocation (ex: famous FCC Spectrum Auction in 1993 designed by Paul Milgrom and others);
 - Reverse auctions: Trillions of dollars of goods bought by governments on e-procurement auctions around the globe.

Questions in Auction Theory

- Why are auctions so prevalent, historically and today?
- In which situations auctions are preferred to other selling mechanisms, e.g., to a fixed posted price?
- Bidders: for a given auction, what are good bidding strategies?
- Sellers: are there particular types of auctions that would bring greater revenues than others?

• Auctions help to organize markets with information asymmetries.

- Auctions help to organize markets with information asymmetries.
- Buyers possess private info—their valuations of the good.

- Auctions help to organize markets with information asymmetries.
- Buyers possess private info—their valuations of the good.
- Sellers want to maximize revenues and organize sales in such a
 way that would elicit this private information (e.g., such that
 bidders with the highest valuations offer the highest price).

- Auctions help to organize markets with information asymmetries.
- Buyers possess private info—their valuations of the good.
- Sellers want to maximize revenues and organize sales in such a
 way that would elicit this private information (e.g., such that
 bidders with the highest valuations offer the highest price).
- Auctions are one set of mechanisms in a general mechanism design problem: how to organize a game such that a certain objective is achieved?
 - Typically two competing objectives: revenue vs. efficiency.

Bidders' Valuations

Bidders' valuations can be:

- Private (independent) values
 - Ex: value is derived from consumption alone

Bidders' Valuations

Bidders' valuations can be:

- Private (independent) values
 - Ex: value is derived from consumption alone
- Interdependent values
 - Ex: auctioned object is an asset that can be resold later

Bidders' Valuations

Bidders' valuations can be:

- Private (independent) values
 - Ex: value is derived from consumption alone
- Interdependent values
 - Ex: auctioned object is an asset that can be resold later
- Pure common value
 - Ex: value of the auctioned object is derived from a market price that is unknown at the time of the auction

- Open ascending auction (English auction);
 - Bids are public; price is ascending until no one bids more.
 - Example: Standard auctions for rare items you see on TV.

- Open ascending auction (English auction);
 - Bids are public; price is ascending until no one bids more.
 - Example: Standard auctions for rare items you see on TV.
- Open descending auction (Dutch auction);
 - Bids are public; price is descending until someone buys the object.
 - Example: Tulip auctions in the Netherlands.

- Open ascending auction (English auction);
 - Bids are public; price is ascending until no one bids more.
 - Example: Standard auctions for rare items you see on TV.
- Open descending auction (Dutch auction);
 - Bids are public; price is descending until someone buys the object.
 - Example: Tulip auctions in the Netherlands.
- Sealed-bid first-price auction (FPSB);
 - Bids are private; highest bidder gets object at highest price.
 - Example: E-procurement auctions, eBay auctions.

- Open ascending auction (English auction);
 - Bids are public; price is ascending until no one bids more.
 - Example: Standard auctions for rare items you see on TV.
- Open descending auction (Dutch auction);
 - Bids are public; price is descending until someone buys the object.
 - Example: Tulip auctions in the Netherlands.
- Sealed-bid first-price auction (FPSB);
 - Bids are private; highest bidder gets object at highest price.
 - Example: E-procurement auctions, eBay auctions.
- Sealed-bid second-price auction (SPSB, Vickrey auction).
 - Bids are private; highest bidder gets object at 2nd-highest price.
 - Example: Google ad auctions (before 2019).

In game-theoretic terms, some auctions are similar to each other:

ullet Dutch auction \equiv Sealed-bid first-price auction,

- Dutch auction ≡ Sealed-bid first-price auction,
 - In FPSB, buyers choose a price at which they want to buy the object conditional on it still being available.

- Dutch auction ≡ Sealed-bid first-price auction,
 - In FPSB, buyers choose a price at which they want to buy the object conditional on it still being available.
 - Dutch auction is open, but the only information it reveals to buyers is that the object is still available at a given price.

- Dutch auction ≡ Sealed-bid first-price auction,
 - In FPSB, buyers choose a price at which they want to buy the object conditional on it still being available.
 - Dutch auction is open, but the only information it reveals to buyers is that the object is still available at a given price.
 - Thus, two formats are strategically equivalent.

- Dutch auction
 ≡ Sealed-bid first-price auction,
 - In FPSB, buyers choose a price at which they want to buy the object conditional on it still being available.
 - Dutch auction is open, but the only information it reveals to buyers is that the object is still available at a given price.
 - Thus, two formats are strategically equivalent.
- English auction \approx Sealed-bid second-price (under *private values*).

- Dutch auction
 ≡ Sealed-bid first-price auction,
 - In FPSB, buyers choose a price at which they want to buy the object conditional on it still being available.
 - Dutch auction is open, but the only information it reveals to buyers is that the object is still available at a given price.
 - Thus, two formats are strategically equivalent.
- English auction \approx Sealed-bid second-price (under *private values*).
 - In both formats, best to bid your valuation.

Private Value Auctions

• A single object is for sale

- A single object is for sale
- N potential risk-neutral buyers
 - v_i valuation of buyer $i \in N$
 - $v_i \sim \text{i.i.d.} \ F[0,\omega]$ independent symmetric values
 - b_i bid of buyer $i \in N$
 - Bidders don't face any budget constraints (have 'deep pockets')

- A single object is for sale
- N potential risk-neutral buyers
 - v_i valuation of buyer $i \in N$
 - $v_i \sim \text{i.i.d.} \ F[0,\omega]$ independent *symmetric* values
 - b_i bid of buyer $i \in N$
 - Bidders don't face any budget constraints (have 'deep pockets')
- Bidder i knows v_i , $F[0,\omega]$, and N, but not v_j where $j \neq i$

- A single object is for sale
- N potential risk-neutral buyers
 - v_i valuation of buyer $i \in N$
 - $v_i \sim \text{i.i.d.} \ F[0,\omega]$ independent symmetric values
 - b_i bid of buyer $i \in N$
 - Bidders don't face any budget constraints (have 'deep pockets')
- Bidder i knows v_i , $F[0,\omega]$, and N, but not v_j where $j \neq i$
- Since bidders are symmetric, focus on symmetric equilibria equilibria in which all bidders follow the same strategy

FPSB vs. SPSB

In this setup, we will consider two auction formats:

- First-price sealed bid auction (1): highest bidder gets the object and pays the amount he bids
- Second-price sealed bid auction (II): highest bidder gets the object and pays the second highest bid

FPSB vs. SPSB

In this setup, we will consider two auction formats:

- First-price sealed bid auction (1): highest bidder gets the object and pays the amount he bids
- Second-price sealed bid auction (II): highest bidder gets the object and pays the second highest bid

Questions:

- What are equilibrium bidding strategies $\beta_i : [0, \omega] \to \mathbb{R}_+$ in these auction formats?
- Which of the two formats is better for the seller?

Second-Price Sealed-Bid Auction

Payoffs in SPSB

Bidders' payoffs are:

$$\mathbb{E}U_i = \begin{cases} v_i - \max_{j \neq i} b_j & \text{if } b_i > \max_{j \neq i} b_j \\ \frac{1}{K} [v_i - \max_{j \neq i} b_j] & \text{if } b_i = \max_{j \neq i} b_j \\ 0 & \text{if } b_i < \max_{j \neq i} b_j \end{cases}$$

, where K is the number of winning bidders in case of a tie.

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

<u>Proof:</u> Consider bidder i and suppose that $p_i = \max_{j \neq i} b_j$ is the highest competing bid.

• If *i* bids v_i , he wins if $v_i > p_i$ and not if $v_i < p_i$ (if $v_i = p_i$, indifferent between winning and losing).

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

- If *i* bids v_i , he wins if $v_i > p_i$ and not if $v_i < p_i$ (if $v_i = p_i$, indifferent between winning and losing).
- Suppose *i* bids z_i where $z_i < v_i$.

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

- If *i* bids v_i , he wins if $v_i > p_i$ and not if $v_i < p_i$ (if $v_i = p_i$, indifferent between winning and losing).
- Suppose *i* bids z_i where $z_i < v_i$.
 - If $v_i > z_i > p_i$, i still wins, and his profit is still $v_i p_i$.

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

- If *i* bids v_i , he wins if $v_i > p_i$ and not if $v_i < p_i$ (if $v_i = p_i$, indifferent between winning and losing).
- Suppose *i* bids z_i where $z_i < v_i$.
 - If $v_i > z_i > p_i$, i still wins, and his profit is still $v_i p_i$.
 - If $p_i > v_i > z_i$, i still loses and gets zero.

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

- If *i* bids v_i , he wins if $v_i > p_i$ and not if $v_i < p_i$ (if $v_i = p_i$, indifferent between winning and losing).
- Suppose *i* bids z_i where $z_i < v_i$.
 - If $v_i > z_i > p_i$, i still wins, and his profit is still $v_i p_i$.
 - If $p_i > v_i > z_i$, i still loses and gets zero.
 - But if $v_i > p_i > z_i$, then i loses where he could have made a positive profit if he bid v_i .

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

- If *i* bids v_i , he wins if $v_i > p_i$ and not if $v_i < p_i$ (if $v_i = p_i$, indifferent between winning and losing).
- Suppose *i* bids z_i where $z_i < v_i$.
 - If $v_i > z_i > p_i$, i still wins, and his profit is still $v_i p_i$.
 - If $p_i > v_i > z_i$, i still loses and gets zero.
 - But if $v_i > p_i > z_i$, then i loses where he could have made a positive profit if he bid v_i .
- Thus, bidding less than v_i is weakly dominated.

Proposition

In a second-price sealed-bid auction, it is a weakly dominant strategy to bid according to $\beta^{II}(v) = v$.

- If *i* bids v_i , he wins if $v_i > p_i$ and not if $v_i < p_i$ (if $v_i = p_i$, indifferent between winning and losing).
- Suppose *i* bids z_i where $z_i < v_i$.
 - If $v_i > z_i > p_i$, i still wins, and his profit is still $v_i p_i$.
 - If $p_i > v_i > z_i$, i still loses and gets zero.
 - But if $v_i > p_i > z_i$, then i loses where he could have made a positive profit if he bid v_i .
- Thus, bidding less than v_i is weakly dominated.
- Applying same logic, bidding $z_i > v_i$ is also weakly dominated.

• Fix a bidder i.

- Fix a bidder i.
- Let random variable $Y_1 \equiv Y_1^{N-1}$ denote the highest value among other N-1 bidders. (Y_1 is the highest-order statistic of $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_N$.)

- Fix a bidder i.
- Let random variable $Y_1 \equiv Y_1^{N-1}$ denote the highest value among other N-1 bidders. (Y_1 is the highest-order statistic of $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_N$.)
- Let G be the c.d.f. of Y_1 .

- Fix a bidder i.
- Let random variable $Y_1 \equiv Y_1^{N-1}$ denote the highest value among other N-1 bidders. (Y_1 is the highest-order statistic of $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_N$.)
- Let G be the c.d.f. of Y_1 .
- $G(v) = F(v)^{N-1}$ since v's are independently drawn. (Why?)

- Fix a bidder i.
- Let random variable $Y_1 \equiv Y_1^{N-1}$ denote the highest value among other N-1 bidders. (Y_1 is the highest-order statistic of $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_N$.)
- Let G be the c.d.f. of Y_1 .
- $G(v) = F(v)^{N-1}$ since v's are independently drawn. (Why?)
- Then the expected payment by a bidder with value v is:

$$m''(v) = \text{Prob}[\text{Win}] \times \mathbb{E}[\text{2nd highest bid}|v \text{ is the highest bid}]$$

- Fix a bidder i.
- Let random variable $Y_1 \equiv Y_1^{N-1}$ denote the highest value among other N-1 bidders. (Y_1 is the highest-order statistic of $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_N$.)
- Let G be the c.d.f. of Y_1 .
- $G(v) = F(v)^{N-1}$ since v's are independently drawn. (Why?)
- Then the expected payment by a bidder with value v is:

$$m^{II}(v) = \operatorname{Prob}[\operatorname{Win}] \times \mathbb{E}[\operatorname{2nd highest bid}|v \text{ is the highest bid}]$$

= $\operatorname{Prob}[\operatorname{Win}] \times \mathbb{E}[\operatorname{2nd highest value}|v \text{ is the highest value}]$

- Fix a bidder i.
- Let random variable $Y_1 \equiv Y_1^{N-1}$ denote the highest value among other N-1 bidders. (Y_1 is the highest-order statistic of $V_1, \ldots, V_{i-1}, V_{i+1}, \ldots, V_N$.)
- Let G be the c.d.f. of Y_1 .
- $G(v) = F(v)^{N-1}$ since v's are independently drawn. (Why?)
- Then the expected payment by a bidder with value v is:

$$m''(v) = \operatorname{Prob}[\operatorname{Win}] \times \mathbb{E}[\operatorname{2nd highest bid}|v \text{ is the highest bid}]$$

$$= \operatorname{Prob}[\operatorname{Win}] \times \mathbb{E}[\operatorname{2nd highest value}|v \text{ is the highest value}]$$

$$= G(v) \times \mathbb{E}[Y_1|Y_1 < v] = F(v)^{N-1} \times \mathbb{E}[Y_1|Y_1 < v]$$

First-Price Sealed-Bid Auction

Payoffs in FPSB

Bidders' payoffs are:

$$\mathbb{E}U_i = \begin{cases} v_i - b_i & \text{if } b_i > \max_{j \neq i} b_j \\ \frac{1}{K} [v_i - b_i] & \text{if } b_i = \max_{j \neq i} b_j \\ 0 & \text{if } b_i < \max_{j \neq i} b_j \end{cases}$$

, where K is the number of winning bidders in case of a tie.

- Not as trivial as in SPSB auction.
- Strategy $\beta(v_i) = v_i$ is definitely sub-optimal. (Why?)

- Not as trivial as in SPSB auction.
- Strategy $\beta(v_i) = v_i$ is definitely sub-optimal. (Why?)
- Basic trade-off: increasing one's bid increases the probability of winning but reduces the gains from winning

- Not as trivial as in SPSB auction.
- Strategy $\beta(v_i) = v_i$ is definitely sub-optimal. (Why?)
- Basic trade-off: increasing one's bid increases the probability of winning but reduces the gains from winning
- Suppose that bidders $j \neq i$ follow a symmetric, increasing, and differentiable equilibrium strategy β .
- Bidder i has valuation v and bids b. What is the optimal b?

• Bidder i wins whenever $\max_{j \neq i} \beta(V_j) < b$

- Bidder i wins whenever $\max_{j \neq i} \beta(V_j) < b$
- Since β is increasing, $\max_{j\neq i} \beta(V_j) = \beta(\max_{j\neq i} V_j) = \beta(Y_1)$

- Bidder i wins whenever $\max_{j \neq i} \beta(V_j) < b$
- Since β is increasing, $\max_{j\neq i} \beta(V_j) = \beta(\max_{j\neq i} V_j) = \beta(Y_1)$
- Probability of $Y_1 < \beta^{-1}(b)$ is $G[\beta^{-1}(b)]$. Hence:

$$\mathbb{E}U(b,v)=(v-b)G[\beta^{-1}(b)]\to\max_b$$

- Bidder i wins whenever $\max_{j \neq i} \beta(V_j) < b$
- Since β is increasing, $\max_{j\neq i} \beta(V_j) = \beta(\max_{j\neq i} V_j) = \beta(Y_1)$
- Probability of $Y_1 < \beta^{-1}(b)$ is $G[\beta^{-1}(b)]$. Hence:

$$\mathbb{E}U(b,v)=(v-b)G[\beta^{-1}(b)]\to\max_b$$

Taking FOC:

$$\frac{g(\beta^{-1}(b))}{\beta'(\beta^{-1}(b))}(v-b) - G[\beta^{-1}(b)] = 0$$

(where g = G' is the density of Y_1).

• In symmetric equilibrium $b = \beta(v)$, so:

$$G(v)\beta'(v) + g(v)\beta(v) = vg(v) \implies \frac{d}{dv}[G(v)\beta(v)] = vg(v)$$

• In symmetric equilibrium $b = \beta(v)$, so:

$$G(v)\beta'(v) + g(v)\beta(v) = vg(v) \implies \frac{d}{dv}[G(v)\beta(v)] = vg(v)$$

• Integrating both sides, get:

$$\beta(v) = \frac{1}{G(v)} \int_0^v yg(y) dy = \mathbb{E}[Y_1 | Y_1 < v]$$

• In symmetric equilibrium $b = \beta(v)$, so:

$$G(v)\beta'(v) + g(v)\beta(v) = vg(v) \implies \frac{d}{dv}[G(v)\beta(v)] = vg(v)$$

• Integrating both sides, get:

$$\beta(v) = \frac{1}{G(v)} \int_0^v yg(y) dy = \mathbb{E}[Y_1 | Y_1 < v]$$

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta'(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta'(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta^{I}(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

<u>Proof:</u> We already proved <u>necessity</u>, i.e., that all symmetric equilibrium strategies have to be of this form. Now let's prove <u>sufficiency</u>.

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta'(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

<u>Proof:</u> We already proved <u>necessity</u>, i.e., that all symmetric equilibrium strategies have to be of this form. Now let's prove <u>sufficiency</u>.

• Need to show that $\beta \equiv \beta^I(v)$ produce a symmetric equilibrium.

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta'(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

<u>Proof:</u> We already proved <u>necessity</u>, i.e., that all symmetric equilibrium strategies have to be of this form. Now let's prove <u>sufficiency</u>.

- Need to show that $\beta \equiv \beta^I(v)$ produce a symmetric equilibrium.
- Suppose that player's opponents chose this strategy.

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta'(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

<u>Proof:</u> We already proved <u>necessity</u>, i.e., that all symmetric equilibrium strategies have to be of this form. Now let's prove <u>sufficiency</u>.

- Need to show that $\beta \equiv \beta^I(v)$ produce a symmetric equilibrium.
- Suppose that player's opponents chose this strategy.
- Clearly, the player should never choose $b > \beta(\omega)$ since bidding $b = \beta(\omega)$ already ensures the victory.

Finding Bidding Strategies in FPSB

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta'(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

<u>Proof:</u> We already proved <u>necessity</u>, i.e., that all symmetric equilibrium strategies have to be of this form. Now let's prove <u>sufficiency</u>.

- Need to show that $\beta \equiv \beta^I(v)$ produce a symmetric equilibrium.
- Suppose that player's opponents chose this strategy.
- Clearly, the player should never choose $b > \beta(\omega)$ since bidding $b = \beta(\omega)$ already ensures the victory.
- Thus, need to show that a player of type v is at least as well off choosing $\beta(v)$ as $\beta(\hat{v})$ for any $\hat{v} \in [0, \omega]$.

Finding Bidding Strategies in FPSB

Proposition

Symmetric equilibrium strategies in a first-price auction are given by:

$$\beta'(v) = \mathbb{E}[Y_1|Y_1 < v]$$

where Y_1 is the highest of N-1 independently drawn valuations.

Proof (cont'd): Substituting $b = \beta(\hat{v})$ into buyer's utility function:

$$G(\beta^{-1}(b)) \times (v - b) = G(\hat{v})[v - \beta(\hat{v})]$$

= $G(\hat{v})v - \int_0^{\hat{v}} x dG(x) = \int_0^{\hat{v}} (v - x) dG(x)$

This is clearly maximized at $\hat{v} = v$.

• Integrating by parts, the equilibrium bid can be rewritten as:

$$\beta'(v) = v - \int_0^v \frac{G(x)}{G(v)} dx$$

Integrating by parts, the equilibrium bid can be rewritten as:

$$\beta^{I}(v) = v - \int_{0}^{v} \frac{G(x)}{G(v)} dx$$

• So, optimal bid in FPSB auction is lower than one's valuation!

Integrating by parts, the equilibrium bid can be rewritten as:

$$\beta^{I}(v) = v - \int_{0}^{v} \frac{G(x)}{G(v)} dx$$

- So, optimal bid in FPSB auction is lower than one's valuation!
- Also recall that, in independent private values (IPV) setting:

$$\frac{G(x)}{G(v)} = \left[\frac{F(x)}{F(v)}\right]^{N-1}$$

Integrating by parts, the equilibrium bid can be rewritten as:

$$\beta^{I}(v) = v - \int_{0}^{v} \frac{G(x)}{G(v)} dx$$

- So, optimal bid in FPSB auction is lower than one's valuation!
- Also recall that, in independent private values (IPV) setting:

$$\frac{G(x)}{G(v)} = \left[\frac{F(x)}{F(v)}\right]^{N-1}$$

• So, the degree of "shading" goes down as N increases!

Example 1

Valuations are uniformly distributed on [0,1].

In this case,
$$F(v) = v$$
, $G(v) = v^{N-1}$, and $\beta'(v) =$

Example 1

Valuations are uniformly distributed on [0,1].

In this case,
$$F(v) = v$$
, $G(v) = v^{N-1}$, and $\beta'(v) = \frac{N-1}{N}v$.

Example 1

Valuations are uniformly distributed on [0,1].

In this case, F(v) = v, $G(v) = v^{N-1}$, and $\beta'(v) = \frac{N-1}{N}v$.

Example 2

Valuations are exponentially distributed on $[0,\infty)$, and there are only two bidders.

If $F(x) = 1 - \exp(-\lambda x)$, for some $\lambda > 0$, and N = 2, then:

$$\beta'(v) = v - \int_0^v \frac{F(x)}{F(v)} dx =$$

Example 1

Valuations are uniformly distributed on [0,1].

In this case, F(v) = v, $G(v) = v^{N-1}$, and $\beta'(v) = \frac{N-1}{N}v$.

Example 2

Valuations are exponentially distributed on $[0,\infty)$, and there are only two bidders.

If $F(x) = 1 - \exp(-\lambda x)$, for some $\lambda > 0$, and N = 2, then:

$$\beta'(v) = v - \int_0^v \frac{F(x)}{F(v)} dx = \frac{1}{\lambda} - \frac{v \exp(-\lambda v)}{1 - \exp(-\lambda v)}$$

Proposition

With i.i.d. private values, the expected payments of a type-v bidder and the seller's expected revenue are the same in a first-price sealed-bid auction as in a second-price sealed-bid auction.

Proposition

With i.i.d. private values, the expected payments of a type-v bidder and the seller's expected revenue are the same in a first-price sealed-bid auction as in a second-price sealed-bid auction.

<u>Proof:</u> (i) In FPSB, the winner pays his own bid, so the expected payment of a bidder with valuation v is:

$$\mathit{m}^{\mathit{I}}(\mathit{v}) = \mathsf{Prob}[\mathsf{Win}] \times \mathsf{Amount} \,\, \mathsf{bid} =$$

Proposition

With i.i.d. private values, the expected payments of a type-v bidder and the seller's expected revenue are the same in a first-price sealed-bid auction as in a second-price sealed-bid auction.

<u>Proof:</u> (i) In FPSB, the winner pays his own bid, so the expected payment of a bidder with valuation v is:

$$m'(v) = \mathsf{Prob}[\mathsf{Win}] \times \mathsf{Amount} \ \mathsf{bid} = \mathit{G}(v) \times \mathbb{E}\left[Y_1^{(N-1)}|Y_1^{(N-1)} < v\right]$$

Proposition

With i.i.d. private values, the expected payments of a type-v bidder and the seller's expected revenue are the same in a first-price sealed-bid auction as in a second-price sealed-bid auction.

<u>Proof:</u> (i) In FPSB, the winner pays his own bid, so the expected payment of a bidder with valuation v is:

$$m'(v) = \mathsf{Prob}[\mathsf{Win}] \times \mathsf{Amount} \ \mathsf{bid} = \mathit{G}(v) \times \mathbb{E}\left[Y_1^{(N-1)}|Y_1^{(N-1)} < v\right]$$

Note that this amount is exactly the same as in SPSB!

Proposition

With i.i.d. private values, the expected payments of a type-v bidder and the seller's expected revenue are the same in a first-price sealed-bid auction as in a second-price sealed-bid auction.

<u>Proof:</u> (i) In FPSB, the winner pays his own bid, so the expected payment of a bidder with valuation v is:

$$m'(v) = \mathsf{Prob}[\mathsf{Win}] \times \mathsf{Amount} \ \mathsf{bid} = \mathit{G}(v) \times \mathbb{E}\left[Y_1^{(N-1)}|Y_1^{(N-1)} < v\right]$$

Note that this amount is exactly the same as in SPSB!

(ii) Expected revenue is N times the ex ante payment of an individual bidder, so it too must be the same between FPSB and SPSB. From SPSB, it must be the expected second-highest of N valuations:

$$\mathbb{E}[R'] = \mathbb{E}[R''] = \mathbb{E}[Y_2^{(N)}]$$

 The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!

- The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!
- Especially striking because, in specific realizations, revenue can be either higher or lower in FPSB vs. SPSB

- The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!
- Especially striking because, in specific realizations, revenue can be either higher or lower in FPSB vs. SPSB
 - Example: $v \sim U[0,1]$, $N=2 \implies \beta'(v) = \frac{1}{2}v$, $\beta''(v) = v$

- The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!
- Especially striking because, in specific realizations, revenue can be either higher or lower in FPSB vs. SPSB
 - Example: $v \sim U[0,1]$, $N=2 \implies \beta^I(v) = \frac{1}{2}v$, $\beta^{II}(v) = v$
 - Case 1: $v_1 = 0.8$, $v_2 = 0.2$.

- The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!
- Especially striking because, in specific realizations, revenue can be either higher or lower in FPSB vs. SPSB
 - Example: $v \sim U[0,1]$, $N=2 \implies \beta^I(v) = \frac{1}{2}v$, $\beta^{II}(v) = v$
 - Case 1: $v_1 = 0.8$, $v_2 = 0.2$. Then FPSB brings more: 0.4 > 0.2.

- The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!
- Especially striking because, in specific realizations, revenue can be either higher or lower in FPSB vs. SPSB
 - Example: $v \sim U[0,1]$, $N=2 \implies \beta'(v) = \frac{1}{2}v$, $\beta''(v) = v$
 - Case 1: $v_1 = 0.8$, $v_2 = 0.2$. Then FPSB brings more: 0.4 > 0.2.
 - Case 2: $v_1 = 0.3$, $v_2 = 0.2$.

- The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!
- Especially striking because, in specific realizations, revenue can be either higher or lower in FPSB vs. SPSB
 - Example: $v \sim U[0,1]$, $N=2 \implies \beta'(v) = \frac{1}{2}v$, $\beta''(v) = v$
 - Case 1: $v_1 = 0.8$, $v_2 = 0.2$. Then FPSB brings more: 0.4 > 0.2.
 - Case 2: $v_1 = 0.3$, $v_2 = 0.2$. Then SPSB brings more: 0.2 > 0.15.

- The fact that expected revenues in FPSB and SPSB is the same is striking — these are quite different formats!
- Especially striking because, in specific realizations, revenue can be either higher or lower in FPSB vs. SPSB
 - Example: $v \sim U[0,1]$, $N=2 \implies \beta^I(v) = \frac{1}{2}v$, $\beta^{II}(v) = v$
 - Case 1: $v_1 = 0.8$, $v_2 = 0.2$. Then FPSB brings more: 0.4 > 0.2.
 - Case 2: $v_1 = 0.3$, $v_2 = 0.2$. Then SPSB brings more: 0.2 > 0.15.
- But, on average, the revenues are the same!

• We established *expected* revenue equivalence, but are FPSB and SPSB revenue distributions the same in terms of *risk*?

- We established expected revenue equivalence, but are FPSB and SPSB revenue distributions the same in terms of risk?
- Note that FPSB prices are less variable than those in SPSB:

- We established expected revenue equivalence, but are FPSB and SPSB revenue distributions the same in terms of risk?
- Note that FPSB prices are less variable than those in SPSB:
 - \bullet In SPSB, they can vary from 0 to ω

- We established expected revenue equivalence, but are FPSB and SPSB revenue distributions the same in terms of risk?
- Note that FPSB prices are less variable than those in SPSB:
 - \bullet In SPSB, they can vary from 0 to ω
 - In FPSB, they are capped lower than ω :

$$\beta'(v) = \mathbb{E}[Y_1^{(N-1)}|Y_1^{(N-1)} < v] \le \mathbb{E}[Y_1^{(N-1)}]$$

- We established expected revenue equivalence, but are FPSB and SPSB revenue distributions the same in terms of risk?
- Note that FPSB prices are less variable than those in SPSB:
 - \bullet In SPSB, they can vary from 0 to ω
 - In FPSB, they are capped lower than ω :

$$\beta'(v) = \mathbb{E}[Y_1^{(N-1)}|Y_1^{(N-1)} < v] \le \mathbb{E}[Y_1^{(N-1)}]$$

• Example: If N = 2, then $\mathbb{E}[Y_1^{(N-1)}] = \mathbb{E}[v]$.

- We established expected revenue equivalence, but are FPSB and SPSB revenue distributions the same in terms of risk?
- Note that FPSB prices are less variable than those in SPSB:
 - \bullet In SPSB, they can vary from 0 to ω
 - In FPSB, they are capped lower than ω :

$$\beta'(v) = \mathbb{E}[Y_1^{(N-1)}|Y_1^{(N-1)} < v] \le \mathbb{E}[Y_1^{(N-1)}]$$

- Example: If N = 2, then $\mathbb{E}[Y_1^{(N-1)}] = \mathbb{E}[v]$.
- In fact, one can prove a more general result:

Proposition

With i.i.d. private values, the distribution of equilibrium prices in a SPSB auction is a mean-preserving spread of the distribution of equilibrium prices in a FPSB auction.

The Revenue Equivalence Principle

- So far, we've shown that, regardless of F(v), expected selling prices in symmetric FPSB and SPSB auctions are the same.
- Thus, a risk-neutral seller is indifferent between the two formats.

- So far, we've shown that, regardless of F(v), expected selling prices in symmetric FPSB and SPSB auctions are the same.
- Thus, a risk-neutral seller is indifferent between the two formats.
- Again, this was not at all ex ante obvious e.g., FPSB and SPSB auctions are not strategically equivalent.

- So far, we've shown that, regardless of F(v), expected selling prices in symmetric FPSB and SPSB auctions are the same.
- Thus, a risk-neutral seller is indifferent between the two formats.
- Again, this was not at all ex ante obvious e.g., FPSB and SPSB auctions are not strategically equivalent.
- But we can prove a more general revenue-equivalence result.

General Revenue Equivalence with IPV

<u>Def-n</u>: Auction is 'standard' if highest bidder gets the object.

General Revenue Equivalence with IPV

<u>Def-n</u>: Auction is 'standard' if highest bidder gets the object.

Proposition

Suppose that values are i.i.d. and all bidders are risk neutral. Then any symmetric and increasing equilibrium of any standard auction, such that the expected payment of a bidder with value zero is zero, yields the same expected revenue to the seller.