Reachability Analysis and Revision of Dynamics of Biological Regulatory Networks

Xinwei Chai

École Centrale de Nantes Le Laboratoire des Sciences du Numérique de Nantes xinwei.chai@ls2n.fr

Rapporteurs : Gilles BERNOT, Professeur des universités, Université Côte d'Azur Pascale LE GALL, Professeur des universités, Centrale Supélec

DOLLAR DIDATE DE CONTRACTOR DE

Examinateurs : Béatrice DUVAL, Professeur des universités, Université d'Angers Loïc PAULEVÉ. Chargé de recherche. LaBRI, UMR CNRS

Directeur de thèse : Olivier ROUX, Professeur des universités, École Centrale de Nantes Co-encadrant de thèse : Morgan MAGNIN, Professeur des universités, École Centrale de Nantes

May 24, 2019

Partial observation

Overview

Time series data

Biological network

Biological a priori knowledge

Reachability Analysis and Revision of Dynamics

Model checkers

- Model checkers
 - Verify if the model meets a given specification

- Model checkers
 - Verify if the model meets a given specification
 - \bullet OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV $^+$ 96, CCGR00] are able to check over 10^{120} states but still not enough

Model checkers

- Verify if the model meets a given specification
- OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV⁺96, CCGR00] are able to check over 10¹²⁰ states but still not enough
- Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness

- Model checkers
 - Verify if the model meets a given specification
 - OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV⁺96, CCGR00] are able to check over 10¹²⁰ states but still not enough
 - Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
 - ullet o High-performance reachability analyzers with both advantages

- Model checkers
 - Verify if the model meets a given specification
 - OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV⁺96, CCGR00] are able to check over 10¹²⁰ states but still not enough
 - Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
 - ullet o High-performance reachability analyzers with both advantages
- Model learning tools

- Model checkers
 - Verify if the model meets a given specification
 - OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV⁺96, CCGR00] are able to check over 10¹²⁰ states but still not enough
 - Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
 - ullet o High-performance reachability analyzers with both advantages
- Model learning tools
 - Construct models from data

- Model checkers
 - Verify if the model meets a given specification
 - OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV⁺96, CCGR00] are able to check over 10¹²⁰ states but still not enough
 - Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
 - ullet o High-performance reachability analyzers with both advantages
- Model learning tools
 - Construct models from data
 - Tools for learning static systems [MKIN18]

- Model checkers
 - Verify if the model meets a given specification
 - \bullet OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV $^+$ 96, CCGR00] are able to check over 10^{120} states but still not enough
 - Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
 - ightarrow High-performance reachability analyzers with both advantages
- Model learning tools
 - Construct models from data
 - Tools for learning static systems [MKIN18]
 - LFIT (Learning From Interpretation Transition) [RFM+18], not tolerant to noise

Model checkers

- Verify if the model meets a given specification
- \bullet OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV $^+$ 96, CCGR00] are able to check over 10^{120} states but still not enough
- Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
- ightarrow High-performance reachability analyzers with both advantages
- Model learning tools
 - Construct models from data
 - Tools for learning static systems [MKIN18]
 - LFIT (Learning From Interpretation Transition) [RFM+18], not tolerant to noise
 - \rightarrow A fuzzy tool learning system dynamics, tolerant to noise

- Model checkers
 - Verify if the model meets a given specification
 - OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV⁺96, CCGR00] are able to check over 10¹²⁰ states but still not enough
 - Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
 - ullet o High-performance reachability analyzers with both advantages
- Model learning tools
 - Construct models from data
 - Tools for learning static systems [MKIN18]
 - LFIT (Learning From Interpretation Transition) [RFM+18], not tolerant to noise
 - ullet ightarrow A fuzzy tool learning system dynamics, tolerant to noise
- → Model inference

Model checkers

- Verify if the model meets a given specification
- \bullet OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV $^+$ 96, CCGR00] are able to check over 10^{120} states but still not enough
- Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
- ightarrow High-performance reachability analyzers with both advantages

Model learning tools

- · Construct models from data
- Tools for learning static systems [MKIN18]
- LFIT (Learning From Interpretation Transition) [RFM+18], not tolerant to noise
- ullet ightarrow A fuzzy tool learning system dynamics, tolerant to noise

→ Model inference

 Model learning + model revising, aiming at learning a model consistent with a priori knowledge, so that the model behaves closer to real system dynamics

Model checkers

- Verify if the model meets a given specification
- OBDD-based (Ordered Binary Decision Diagram) model checkers [BHSV⁺96, CCGR00] are able to check over 10¹²⁰ states but still not enough
- Static analyzers [PMR12] and bounded model checkers [CBRZ01] are computationally acceptable but have limits on completeness
- ightarrow High-performance reachability analyzers with both advantages
- Model learning tools
 - Construct models from data
 - Tools for learning static systems [MKIN18]
 - LFIT (Learning From Interpretation Transition) [RFM+18], not tolerant to noise
 - ullet ightarrow A fuzzy tool learning system dynamics, tolerant to noise
- → Model inference
 - Model learning + model revising, aiming at learning a model consistent with a priori
 knowledge, so that the model behaves closer to real system dynamics

Outline: Reachability problem (model checking) \rightarrow model learning \rightarrow model revising based on reachability properties

Problematic of Reachability Problem

Biological system ————— System dynamics

Problematic of Reachability Problem

Problematic of Reachability Problem

- A digraph representing state space
 - Nodes = system states
 - Edges = state transitions
 - $\bullet \ \alpha = {\sf initial \ state}$
 - ω = desired final state

- A digraph representing state space
 - $\bullet \ \mathsf{Nodes} = \mathsf{system} \ \mathsf{states}$
 - Edges = state transitions
 - $\bullet \ \alpha = {\sf initial \ state}$
 - ω = desired final state

- A digraph representing state space
 - Nodes = system states
 - Edges = state transitions
 - $\bullet \ \alpha = {\sf initial \ state}$
 - ω = desired final state

- A digraph representing state space
 - Nodes = system states
 - Edges = state transitions
 - $\bullet \ \alpha = {\sf initial \ state}$
 - \bullet $\omega =$ desired final state

- A digraph representing state space
 - Nodes = system states
 - Edges = state transitions
 - $\alpha = \text{initial state}$
 - \bullet $\omega =$ desired final state
- Solving reachability of digraphs needs at least polynomial time and space w.r.t #nodes [HKV02], but #nodes is exponential to #variables in the system => exhaustive search is not acceptable when dealing with a large model

- A digraph representing state space
 - Nodes = system states
 - Edges = state transitions
 - $\alpha = \text{initial state}$
 - \bullet $\omega =$ desired final state
- A pertinent modeling framework is necessary to describe system dynamics

6 / 25

What are the possible values for a and b?

What are the possible values for a and b?

 Behaviors of elements in BRN can be approximated to sigmoid functions [BT09]

What are the possible values for a and b?

- Behaviors of elements in BRN can be approximated to sigmoid functions [BT09]
- Approximated to piecewise functions. When the concentration of an entity is below the regulation threshold, the regulation is activated, otherwise inactivated.
 The value of a and b is in {0, 1, 2, ...}

What are the possible values for a and b?

- Behaviors of elements in BRN can be approximated to sigmoid functions [BT09
- Approximated to piecewise functions. When the concentration of an entity is below the regulation threshold, the regulation is activated, otherwise inactivated.
 The value of a and b is in {0,1,2,...}
- A model containing dynamic information

Automata Network (AN) A modeling framework representing state transitions and using O(#nodes) memory

What are the possible values for a and b?

- Behaviors of elements in BRN can be approximated to sigmoid functions [BT09]
- Approximated to piecewise functions. When the concentration of an entity is below the regulation threshold, the regulation is activated, otherwise inactivated.
 The value of a and b is in {0,1,2,...}
- A model containing dynamic information

Automata Network (AN) A modeling framework representing state transitions and using O(#nodes) memory

The global reachability of a system state (a, b) = (1, 1) is hard to compute

What are the possible values for a and b

- Behaviors of elements in BRN can be approximated to sigmoid functions [BT09
- Approximated to piecewise functions. When the concentration of an entity is below the regulation threshold, the regulation is activated, otherwise inactivated.
 The value of a and b is in {0, 1, 2, ...}
- A model containing dynamic information

Automata Network (AN)

A modeling framework representing state transitions and using O(#nodes) memory

The global reachability of a system state (a,b) = (1,1) is hard to compute \Longrightarrow The complexity of the reachability of the value of one variable a=1 can be smaller?

ullet $\Sigma = \{a, b, c, d, e\}$ set of automata

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:
 - Local state: a₀: automaton a is at state 0

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:
 - Local state: a0: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:
 - Local state: a0: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system
 - Joint state: $\{a_0, b_0\}$ a part of the system state

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:
 - Local state: a₀: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system
 - Joint state: $\{a_0, b_0\}$ a part of the system state
- Transition:

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:
 - Local state: a₀: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system
 - Joint state: $\{a_0, b_0\}$ a part of the system state
- Transition:
 - $\{b_1,c_1\} \to a_0 \ \stackrel{
 ho}{} a_1$: a can transit from state 0 to state 1 when joint state $\{b_1,c_1\}$ is present

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:
 - Local state: a₀: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system
 - Joint state: $\{a_0, b_0\}$ a part of the system state
- Transition:
 - $\{b_1,c_1\} \to a_0 \ \stackrel{
 ho}{} a_1$: a can transit from state 0 to state 1 when joint state $\{b_1,c_1\}$ is present
- Update scheme

- $\Sigma = \{a, b, c, d, e\}$ set of automata
- States of automata:
 - Local state: a₀: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system
 - Joint state: {a₀, b₀} a part of the system state
- Transition:
 - $\{b_1,c_1\} \to a_0 \ \stackrel{
 ho}{} a_1$: a can transit from state 0 to state 1 when joint state $\{b_1,c_1\}$ is present
- Update scheme
 - Asynchronous Automata Network (AAN) [FPMR15]: at most one transition can be fired at each time point which conform to biological non-deterministic dynamics

- $\Sigma = \{a, b, c, d, e\}$ set of automata with every automaton having a Boolean state
- States of automata:
 - Local state: a₀: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system
 - Joint state: {a₀, b₀} a part of the system state
- Transition:
 - $\{b_1,c_1\} \to a_0 \ \stackrel{
 ho}{} a_1$: a can transit from state 0 to state 1 when joint state $\{b_1,c_1\}$ is present
- Update scheme
 - Asynchronous Automata Network (AAN) [FPMR15]: at most one transition can be fired at each time point which conform to biological non-deterministic dynamics
- To simplify further reachability analysis, we limit the AAN to Boolean values
 - → Asynchronous Binary Automata Network (ABAN)

The notation of transitions is simplified to $\{b_1, c_1\} \rightarrow a_1$

- $\Sigma = \{a, b, c, d, e\}$ set of automata with every automaton having a Boolean state
- States of automata:
 - Local state: a₀: automaton a is at state 0
 - Global state: $\langle a_0, b_0, c_0, d_0, e_0 \rangle$, the state of the whole system
 - Joint state: {a₀, b₀} a part of the system state
- Transition:
 - $\{b_1,c_1\} \to a_0 \ \stackrel{
 ho}{} a_1$: a can transit from state 0 to state 1 when joint state $\{b_1,c_1\}$ is present
- Update scheme
 - Asynchronous Automata Network (AAN) [FPMR15]: at most one transition can be fired at each time point which conform to biological non-deterministic dynamics
- To simplify further reachability analysis, we limit the AAN to Boolean values → Asynchronous Binary Automata Network (ABAN)
 - The notation of transitions is simplified to $\{b_1, c_1\} \rightarrow a_1$
- To study reachability problem → Simplified Local Causality Graph (SLCG) based on Local Causality Graph (LCG) [PMR12]

Problematics

 a_1

 $r'(a_1) = r'(e_1) \vee (r'(b_1) \wedge r'(c_1))$

Pseudo-reachability
$$r^\prime$$
 is obtained via pure recursive causality reasoning

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

= $r'(d_0) \land r'(c_1)$

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

= $r'(d_0) \land r'(c_1)$
= $r'(d_0) \land r'(d_1)$

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

$$= r'(d_0) \land r'(c_1)$$

$$= r'(d_0) \land r'(d_1)$$

$$= r'(d_1)$$

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

$$= r'(d_0) \land r'(c_1)$$

$$= r'(d_0) \land r'(d_1)$$

$$= r'(d_1)$$

$$= r'(b_1) = r'(d_0) =$$
True

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

$$= r'(d_0) \land r'(c_1)$$

$$= r'(d_0) \land r'(d_1)$$

$$= r'(d_1)$$

$$= r'(b_1) = r'(d_0) =$$
True

Pseudo-reachability r' is obtained via pure recursive causality reasoning

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

$$= r'(d_0) \land r'(c_1)$$

$$= r'(d_0) \land r'(d_1)$$

$$= r'(d_1)$$

$$= r'(b_1) = r'(d_0) = True$$

 $r'(d_0) =$ **True** because d_0 is at initial state

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

$$= r'(d_0) \land r'(c_1)$$

$$= r'(d_0) \land r'(d_1)$$

$$= r'(d_1)$$

$$= r'(b_1) = r'(d_0) =$$
True

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

$$= r'(d_0) \land r'(c_1)$$

$$= r'(d_0) \land r'(d_1)$$

$$= r'(d_1)$$

$$= r'(b_1) = r'(d_0) =$$
True

Pseudo-reachability r' is obtained via pure recursive causality reasoning

$$r'(a_1) = r'(e_1) \lor (r'(b_1) \land r'(c_1))$$

= $r'(d_0) \land r'(c_1)$
= $r'(d_0) \land r'(d_1)$
= $r'(d_1)$
= $r'(b_1) = r'(d_0) =$ True

 $r'(d_0) =$ **True** because d_0 is at initial state $r'(a_i)$ is not equivalent to the reachability of a_1 because the state space is not fully explored

• SLCG is exact for unreachability

- SLCG is exact for unreachability
- SLCG is exact for reachability when it does not contain self-dependent structure:
 - different state nodes of the same automaton in different branches

- SLCG is exact for unreachability
- SLCG is exact for reachability when it does not contain self-dependent structure:
 - · different state nodes of the same automaton in different branches

Given initial state: $\langle a_0, b_0, c_0 \rangle$, consider the reachability of c_1 :

When a reaches level 1, b_1 is no longer reachable as the condition of $\{a_0\} \to b_1$ is not satisfied. \to Reaching a_1 disables the reachability of b_1 , vice versa, $\{a_1,b_1\}$ is not reachable, i.e. c_1 is unreachable

- SLCG is exact for unreachability
- SLCG is exact for reachability when it does not contain self-dependent structure:
 - different state nodes of the same automaton in different branches

Given initial state: $\langle a_0, b_0, c_0 \rangle$, consider the reachability of c_1 :

 b_1 is not blocked by a, c_1 is reachable $via\ a_1::b_1::c_1$

- SLCG is exact for unreachability
- SLCG is exact for reachability when it does not contain self-dependent structure:
 - different state nodes of the same automaton in different branches

Given initial state: $\langle a_0, b_0, c_0 \rangle$, consider the reachability of c_1 :

 b_1 is not blocked by a, c_1 is reachable $via\ a_1::b_1::c_1$

SLCG does not show orders of local states ⇒ How to deal with this structure?

Complete search on global states

Complete search on global states \rightarrow State space explosion problem $\ensuremath{\mathfrak{G}}$

Complete search on global states \rightarrow State space explosion problem $\ensuremath{\boxdot}$

 \Longrightarrow Partial search

Complete search on global states \rightarrow State space explosion problem $\ensuremath{\textcircled{2}}$

⇒ Partial search

 \implies Apply heuristic search on branches to find a sequence of local states in the form Z::Y::X in order to avoid the inconclusiveness of the reachability of X

Complete search on global states \rightarrow State space explosion problem $\ensuremath{\textcircled{2}}$

⇒ Partial search

 \implies Apply heuristic search on branches to find a sequence of local states in the form Z::Y::X in order to avoid the inconclusiveness of the reachability of X

• PermReach: searching all permutations in branches

Complete search on global states \rightarrow State space explosion problem $\ensuremath{\textcircled{2}}$

⇒ Partial search

 \implies Apply heuristic search on branches to find a sequence of local states in the form Z::Y::X in order to avoid the inconclusiveness of the reachability of X

- PermReach: searching all permutations in branches
- ASPReach: searching all possible sequences using Answer Set Programming [Bar03]

Complete search on global states \rightarrow State space explosion problem $\ensuremath{\textcircled{2}}$

⇒ Partial search

 \implies Apply heuristic search on branches to find a sequence of local states in the form Z::Y::X in order to avoid the inconclusiveness of the reachability of X

- PermReach: searching all permutations in branches
- ASPReach: searching all possible sequences using Answer Set Programming [Bar03]

	PermReach	ASPReach [CRM+18]
Method	Search all the	Search all the possible
	permutations of branches	order of branches
Runtime	+	_
Conclusiveness	_	+

Solve the Counterexample Using ASPReach

Notation: $a \triangleright b$ means a appears in the sequence before b

Order constraints in SLCG \Rightarrow $b_0 \triangleright a_1 \triangleright c_1$ and $a_0 \triangleright b_1 \triangleright c_1$

Additional constraint \Rightarrow $a_1 \triangleright b_1$ and $b_1 \triangleright a_1$

Contradiction in order, c₁ unreachable

Solve the Counterexample Using ASPReach

Notation: $a \triangleright b$ means a appears in the sequence before b

Order constraints in SLCG \Rightarrow $b_0 \triangleright a_1 \triangleright c_1$ and $c_0 \triangleright b_1 \triangleright c_1$ Additional constraint $a_1 \triangleright b_1$

The only admissible order is $a_1 :: b_1 :: c_1$

Solve the Counterexample Using ASPReach

Notation: $a \triangleright b$ means a appears in the sequence before b

Order constraints in SLCG \Rightarrow $b_0 \triangleright a_1 \triangleright c_1$ and $c_0 \triangleright b_1 \triangleright c_1$

Additional constraint $\Rightarrow a_1 \triangleright b_1$

The only admissible order is $a_1 :: b_1 :: c_1$

⇒ Problematic structure solved, reachable if sequences found, unreachable if not found

 Traditional model checkers: Mole, NuSMV → memory-out, not listed in the benchmarks

- Traditional model checkers: Mole, NuSMV → memory-out, not listed in the benchmarks
- Pure static analyzer: Pint [FPMR15]

	Inputs	4	Outputs	4
	Total tests		$2^4 \times 4 = 64$	
	Analyzer	Pint	PermReach	ASPReach
	Reachable	36(56%)	38(5	9%)
nal model checkers: Mole,	Unreachable		26(41%)	
→ memory-out, not	Inconclusive	2(3%)	0(0	%)
the benchmarks	Total time	< 1s		

Model

- Traditional NuSMV listed in t
- Pure static analyzer: Pint [FPMR15]
- Small example: λ -phage, 4 components

 λ -phage

- Traditional model checkers: Mole, NuSMV → memory-out, not listed in the benchmarks
- Pure static analyzer: Pint [FPMR15]
- Small example: λ -phage, 4 components
- Big examples: TCR (T-Cell Receptor, 95 components)

Model	λ -phage			
Inputs	4 Outputs 4			
Total tests		$2^4 \times 4 = 64$		
Analyzer	Pint	PermReach	ASPReach	
Reachable	36(56%)	38(5	9%)	
Unreachable		26(41%)		
Inconclusive	2(3%) 0(0%)		%)	
Total time	< 1s			
Model		TCR		
Inputs	3 Outputs 5		5	
Total tests		$2^3 \times 5 = 40$		
Analyzer	Pint	PermReach	ASPReach	
Reachable		16(40%)	•	
Unreachable		24(60%)		
Inconclusive		0(0%)		
Total time	7s	0.85s	40s	

- Traditional model checkers: Mole, NuSMV → memory-out, not listed in the benchmarks
- Pure static analyzer: Pint [FPMR15]
- Small example: λ -phage, 4 components
- Big examples: TCR (T-Cell Receptor, 95 components)
- EGFR (Epidermal Growth Factor Receptor, 104 components)

Model		λ -phage	
Inputs	4	Outputs	4
Total tests		$2^4 \times 4 = 64$	
Analyzer	Pint	PermReach	ASPReach
Reachable	36(56%)	38(5	9%)
Unreachable		26(41%)	
Inconclusive	2(3%)	0(0	%)
Total time		< 1s	
Model		TCR	
Inputs	3	Outputs	5
Total tests		$2^3 \times 5 = 40$	
Analyzer	Pint	PermReach	ASPReach
Reachable	16(40%)		
Unreachable	24(60%)		
Inconclusive		0(0%)	
Total time	7s	0.85s	40s
Model		EGFR	
Inputs	13	Outputs	12
Total tests	2 ¹³	\times 12 = 98, 304	
Analyzer	Pint	PermReach	ASPReach
Reachable	64,282(65.4%)	74,268(75.5%)
Unreachable	24,036(24.5%)		
Inconclusive	9,986(10.1%)	0(0	
Total time	9h50min	15min31s	3h46min

Benchmarks: on Random Examples

$$density = \frac{\#transitions}{\#automata}$$

Fixing density = 3

Benchmarks: on Random Examples

$$density = \frac{\#transitions}{\#automata}$$

Fixing density = 3

Problematics

Reachability Analysis and Revision of Dynamics

Time-series data

Time-series data

Learn

Model

→ Validation→ Reproduction

17 / 25

• CRAC: Completion via Reachability And Correlations

- CRAC: Completion via Reachability And Correlations
- M2RIT: Model Revision via Reachability and Interpretation Transitions

- CRAC: Completion via Reachability And Correlations
- M2RIT: Model Revision via Reachability and Interpretation Transitions

	CRAC	M2RIT
Learning phase	Correlation Coefficients	Learning from Interpretation Transitions (LFIT) [RFM ⁺ 18]
Revising phase	Reachability+ candidate transitions	Reachability+ time-series data

CRAC: using correlation coefficient $r_{x,y} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y}$

CRAC: using correlation coefficient
$$r_{x,y} = \frac{\cot(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

CRAC: using correlation coefficient
$$r_{x,y} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^N (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^N (y_i - \bar{y})^2}}$$

$$\text{CRAC: using correlation coefficient } r_{x,y} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\displaystyle\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\displaystyle\sum_{i=1}^N (x_i - \bar{x})^2} \sqrt{\displaystyle\sum_{i=1}^N (y_i - \bar{y})^2}}$$

CRAC: using correlation coefficient
$$r_{x,y} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^N (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^N (y_i - \bar{y})^2}}$$

3.
$$r' = {a \atop b} \left[\begin{array}{cc} N/A & 0.09 \\ 0.65 & N/A \end{array} \right]$$

CRAC: using correlation coefficient
$$r_{x,y} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^N (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^N (y_i - \bar{y})^2}}$$

3.
$$r' = {a \atop b} \left[\begin{array}{cc} N/A & 0.09 \\ 0.65 & N/A \end{array} \right]$$

CRAC: using correlation coefficient
$$r_{x,y} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^N (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^N (y_i - \bar{y})^2}}$$

3.
$$r' = {a \atop b} \begin{bmatrix} N/A & 0.09 \\ 0.65 & N/A \end{bmatrix}$$

M2RIT: using LFIT algorithm on discretized time-series data

Global transitions obtained from time-series data

$$\langle a_1, b_0, c_1 \rangle (t = T_1) \rightarrow \langle a_1, b_1, c_1 \rangle (t = T_1 + 1)$$

$$\langle a_1, b_0, c_1 \rangle (t = I_1) \rightarrow \langle a_1, b_1, c_1 \rangle (t = I_1 + 1)$$

 $\langle a_1, b_0, c_0 \rangle (t = T_2) \rightarrow \langle a_1, b_1, c_0 \rangle (t = T_2 + 1)$

$$\langle a_0, b_0, c_0 \rangle (t = T_3) \rightarrow \langle a_0, b_0, c_1 \rangle (t = T_3 + 1)$$

classified into partial transitions

$$\Longrightarrow$$

$$\{a_1\} o b_1$$

CRAC: using correlation coefficient
$$r_{x,y} = \frac{\text{cov}(x,y)}{\sigma_x \sigma_y} = \frac{\sum_{i=1}^N (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^N (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^N (y_i - \bar{y})^2}}$$

3.
$$r' = {a \atop b} \begin{bmatrix} N/A & 0.09 \\ 0.65 & N/A \end{bmatrix}$$

M2RIT: using LFIT algorithm on discretized time-series data

Global transitions obtained from time-series data classified into partial transitions

$$\langle \mathsf{a}_1, \mathsf{b}_0, \mathsf{c}_1 \rangle (t = \mathsf{T}_1) \to \langle \mathsf{a}_1, \mathsf{b}_1, \mathsf{c}_1 \rangle (t = \mathsf{T}_1 + 1)$$

$$\langle a_1, b_0, c_0 \rangle (t = T_2) \rightarrow \langle a_1, b_1, c_0 \rangle (t = T_2 + 1)$$

 $\langle a_0, b_0, c_0 \rangle (t = T_3) \rightarrow \langle a_0, b_0, c_1 \rangle (t = T_3 + 1)$

$$\Longrightarrow$$

$$\{a_1\} o b_1$$

The classification is sensitive to input \rightarrow revise the result

Methodology:

	Reachable	Unreachable
Knowledge	R_K	U_K

Methodology:

	Reachable	Unreachable
Knowledge	R_K	U_K
Inferred model	R_{l}	U_I

Methodology:

	Reachable	Unreachable
Knowledge	R_K	U_K
Inferred model	R_I	U _I
Inconsistency	$R_K'=R_K\cap U_I$	$U_K' = R_I \cap U_K$

19 / 25

Methodology:

	Reachable	Unreachable
Knowledge	R_K	U_K
Inferred model	R_I	U _I
Inconsistency	$R'_K = R_K \cap U_I$	$U_K' = R_I \cap U_K$
Keep consistent with	U_{K}	R_{K}

19 / 25

Methodology:

	Reachable	Unreachable
Knowledge	R_K	U_K
Inferred model	R_I	U_I
Inconsistency	$R'_K = R_K \cap U_I$	$U_K' = R_I \cap U_K$
Keep consistent with	U_K	R_{K}

- \bullet Generic solution: computes all the revisions \to complete but costly
 - Ensure unreachability by inhibiting elements in corresponding cut set
 - Ensure reachability by guaranteeing elements in corresponding completion set
- ullet Heuristics: explores the saturated SLCG, aiming at revising transitions one by one ullet memory-saving, fast but not complete

Cut Set

20 / 25

Node	Rank	\mathbb{V}
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} o b_0$	5	$\{\{b_1\},\{d_1\}\}$
b_0	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} o a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\varnothing (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a_1	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} o c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Node	Rank	V
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} \rightarrow b_0$	5	$\{\{b_1\},\{d_1\}\}$
b_0	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} o a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\emptyset (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a ₁	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} o c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Node	Rank	\mathbb{V}
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} o b_0$	5	$\{\{b_1\},\{d_1\}\}$
b_0	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} o a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\varnothing (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a_1	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} o c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Node	Rank	\mathbb{V}
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} o b_0$	5	$\{\{b_1\},\{d_1\}\}$
<i>b</i> ₀	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} o a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\emptyset (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a_1	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} ightarrow c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Node	Rank	V
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} o b_0$	5	$\{\{b_1\},\{d_1\}\}$
b_0	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} o a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\varnothing (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a ₁	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} o c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Node	Rank	V
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} o b_0$	5	$\{\{b_1\},\{d_1\}\}$
<i>b</i> ₀	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} \rightarrow a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\emptyset (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} o a_1$	9	$\{\{b_1\},\{c_1\}\}$
a_1	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} ightarrow c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Node	Rank	♥
\varnothing (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} o b_0$	5	$\{\{b_1\},\{d_1\}\}$
b_0	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} o a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\emptyset (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a ₁	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} \rightarrow c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Node	Rank	V
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} o b_0$	5	$\{\{b_1\},\{d_1\}\}$
b_0	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} o a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\emptyset (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a_1	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} o c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Rank: topological numbering of the nodes in SLCG, nodes with higher rank cannot be successor of nodes with lower rank

By inhibiting the reachability of one of the sets in cut set $\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}, a_1$ shall not be reachable Corresponding transition sets can be

deduced.

Node	Rank	V
\emptyset (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
$\{b_1\} o d_1$	3	$\{\{b_1\}\}$
d_1	4	$\{\{b_1\},\{d_1\}\}$
$\{d_1\} \rightarrow b_0$	5	$\{\{b_1\},\{d_1\}\}$
b_0	6	$\{\{b_0\},\{b_1\},\{d_1\}\}$
$\{b_0\} \rightarrow a_1$	7	$\{\{b_0\},\{b_1\},\{d_1\}\}$
\emptyset (of c_1)	8	Ø
<i>c</i> ₁	9	$\{\{c_1\}\}$
$\{b_1,c_1\} \rightarrow a_1$	9	$\{\{b_1\},\{c_1\}\}$
a ₁	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$
$\{a_1\} o c_1$	9	$\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}$

Rank: topological numbering of the nodes in SLCG, nodes with higher rank cannot be successor of nodes with lower rank.

By inhibiting the reachability of one of the sets in cut set $\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\},\ a_1$ shall not be reachable. Corresponding transition sets can be

Modification depends on the consistency with the result of learning phase.

deduced

21 / 25

Revising

Node	Rank	V
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
c_1	4	{Ø}
$\{b_1,c_0\} o a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} o c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1,d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} o a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a ₁	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Node	Rank	V
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
<i>c</i> ₁	4	{∅}
$\{b_1,c_0\} o a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} \rightarrow c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1,d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} \rightarrow a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a_1	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Node	Rank	V
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
<i>c</i> ₁	4	{Ø}
$\{b_1,c_0\} o a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} \rightarrow c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1,d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} \rightarrow a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a_1	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Node	Rank	\mathbb{V}
	INdiin	V
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
<i>c</i> ₁	4	{∅}
$\{b_1,c_0\} o a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} o c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1,d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} \rightarrow a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a ₁	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Node	Rank	V
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
c_1	4	{∅}
$\{b_1,c_0\} o a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} o c_1$	8	$\{\{d_1\}\}$
c_1	9	$\{\{c_1,d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} o a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a_1	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Revising

Node	Rank	V
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
<i>c</i> ₁	4	{∅}
$\{b_1,c_0\} \rightarrow a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} \rightarrow c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1, d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} \rightarrow a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a ₁	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Node	Rank	\mathbb{V}
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
c_1	4	{∅}
$\{b_1,c_0\} o a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} o c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1, d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} o a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a_1	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Node	Rank	\mathbb{V}
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
<i>c</i> ₁	4	{∅}
$\{b_1,c_0\} o a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} \rightarrow c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1, d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} \rightarrow a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a ₁	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Rank: topological numbering of the nodes in SLCG, nodes with higher rank cannot be successor of nodes with lower rank

By assuring the reachability of one of the sets in completion set $\{\{a_1\}, \{b_1\}, \{b_0, c_1\}, \{c_1, d_1\}\}, a_1$ shall be reachable. Corresponding transition sets can be deduced.

Node	Rank	\mathbb{V}
\perp (of b_1)	1	Ø
b_1	2	$\{\{b_1\}\}$
\emptyset (of c_0)	3	{∅}
<i>c</i> ₁	4	{Ø}
$\{b_1,c_0\} \rightarrow a_1$	5	$\{\{b_1\}\}$
\perp (of d_1)	6	Ø
d_1	7	$\{\{d_1\}\}$
$\{d_1\} \rightarrow c_1$	8	$\{\{d_1\}\}$
<i>c</i> ₁	9	$\{\{c_1, d_1\}\}$
\perp (of e_1)	10	Ø
e_1	11	$\{\{e_1\}\}$
$\{c_1,e_1\} \rightarrow a_1$	12	$\{\{c_1,e_1\},\{d_1,e_1\}\}$
a ₁	13	$\{\{a_1\},\{b_1\},\{c_1,e_1\},\{d_1,e_1\}\}$

Rank: topological numbering of the nodes in SLCG, nodes with higher rank cannot be successor of nodes with lower rank

By assuring the reachability of one of the sets in completion set $\{\{a_1\},\{b_1\},\{b_0,c_1\},\{c_1,d_1\}\}, a_1$ shall be reachable. Corresponding transition sets can be deduced.

Modification depends on the consistency with the result of learning phase.

• Cut/completion set compute all the possible modifications

- Cut/completion set compute all the possible modifications
- The complexity comes mainly from the cartesian product of sets

- Cut/completion set compute all the possible modifications
- The complexity comes mainly from the cartesian product of sets
- ullet Consider n sets containing k elements

$$E_{1} = \underbrace{(e_{1,1}, e_{1,2}, \dots, e_{1,k})}_{k \text{ elements}}, E_{2} = (e_{2,1}, e_{2,2}, \dots, e_{2,k}), \dots, E_{n} = (e_{n,1}, e_{n,2}, \dots, e_{n,k})$$

- Cut/completion set compute all the possible modifications
- The complexity comes mainly from the cartesian product of sets
- Consider n sets containing k elements

$$E_1 = \overbrace{(e_{1,1}, e_{1,2}, \dots, e_{1,k})}, E_2 = (e_{2,1}, e_{2,2}, \dots, e_{2,k}), \dots, E_n = (e_{n,1}, e_{n,2}, \dots, e_{n,k})$$
n sets

• The cardinality of the cartesian product $\prod_{i=1}^{n} E_i$ is k^n , exponential

- Cut/completion set compute all the possible modifications
- The complexity comes mainly from the cartesian product of sets
- Consider n sets containing k elements

$$E_1 = \overbrace{(e_{1,1}, e_{1,2}, \dots, e_{1,k})}^{k \text{ elements}}, E_2 = (e_{2,1}, e_{2,2}, \dots, e_{2,k}), \dots, E_n = (e_{n,1}, e_{n,2}, \dots, e_{n,k})$$

- n sets
- The cardinality of the cartesian product $\prod_{i=1}^{n} E_i$ is k^n , exponential
- => Heuristics aiming at finding one solution instead of all the solutions

22 / 25

- Cut/completion set compute all the possible modifications
- The complexity comes mainly from the cartesian product of sets
- Consider n sets containing k elements

$$E_1 = \overbrace{(e_{1,1}, e_{1,2}, \dots, e_{1,k})}^{k \text{ elements}}, E_2 = (e_{2,1}, e_{2,2}, \dots, e_{2,k}), \dots, E_n = (e_{n,1}, e_{n,2}, \dots, e_{n,k})$$

- The cardinality of the cartesian product $\prod_{i=1}^{n} E_i$ is k^n , exponential
- ullet Heuristics aiming at finding one solution instead of all the solutions
 - Compute with the SLCG involving all the wanted states in a priori knowledge

22 / 25

$$\begin{array}{l} \alpha = \langle a_0, b_0, c_0, d_0 \rangle, \; \omega = a_1 \\ U_K = \{(\alpha, b_1), (\alpha, d_1)\} \\ R_K = \{(\alpha, a_1)\} \end{array}$$

•
$$L = \{(\alpha, a_1) : \{(\alpha, b_1), (\alpha, d_1)\}, (\alpha, b_1) : \emptyset, (\alpha, d_1) : \emptyset\}$$

- $L = \{(\alpha, a_1) : \{(\alpha, b_1), (\alpha, d_1)\}, (\alpha, b_1) : \emptyset, (\alpha, d_1) : \emptyset\}$
- Start from (α, b_1) and (α, d_1) , choose (α, b_1) as (α, d_1) is already satisfied

- $L = \{(\alpha, a_1) : \{(\alpha, b_1), (\alpha, d_1)\}, (\alpha, b_1) : \emptyset, (\alpha, d_1) : \emptyset\}$
- Start from (α, b_1) and (α, d_1) , choose (α, b_1) as (α, d_1) is already satisfied
- ullet $\{c_0\}
 ightarrow b_1$ can be specialized to $\{c_0,d_1\}
 ightarrow b_1$ to make b_1 unreachable

- $L = \{(\alpha, a_1) : \{(\alpha, b_1), (\alpha, d_1)\}, (\alpha, b_1) : \emptyset, (\alpha, d_1) : \emptyset\}$
- ullet Start from (α,b_1) and (α,d_1) , choose (α,b_1) as (α,d_1) is already satisfied
- ullet $\{c_0\}
 ightarrow b_1$ can be specialized to $\{c_0,d_1\}
 ightarrow b_1$ to make b_1 unreachable
- $\{d_1,c_0\} \rightarrow a_1$ can only be generalized to $\{c_0\} \rightarrow a_1$ as $(\alpha,d_1) \in U_K$

- $L = \{(\alpha, a_1) : \{(\alpha, b_1), (\alpha, d_1)\}, (\alpha, b_1) : \emptyset, (\alpha, d_1) : \emptyset\}$
- ullet Start from (α,b_1) and (α,d_1) , choose (α,b_1) as (α,d_1) is already satisfied
- ullet $\{c_0\}
 ightarrow b_1$ can be specialized to $\{c_0,d_1\}
 ightarrow b_1$ to make b_1 unreachable
- $\{d_1,c_0\} \rightarrow a_1$ can only be generalized to $\{c_0\} \rightarrow a_1$ as $(\alpha,d_1) \in U_K$
- Check the reachability of (α, a_1) : reachable, finish

Summary of Model Inference

ullet Aim: use time-series data + reachability properties to infer the real system

Summary of Model Inference

- Aim: use time-series data + reachability properties to infer the real system
- \bullet Inference = Learning + Revising

- ullet Aim: use time-series data + reachability properties to infer the real system
- Inference = Learning + Revising

merence — Leann	CRAC	M2RIT
Learning phase	Correlation Coefficients	Learning from Interpretation Transitions (LFIT)

- Aim: use time-series data + reachability properties to infer the real system
- Inference = Learning + Revising

	CRAC	M2RIT
Learning phase	Correlation Coefficients	Learning from Interpretation Transitions (LFIT)
Input data	Continuous	Discrete

- ullet Aim: use time-series data + reachability properties to infer the real system
- \bullet Inference = Learning + Revising

	CRAC	M2RIT
	CIVAC	
Learning phase	Correlation Coefficients	Learning from Interpretation
		Transitions (LFIT)
Input data	Continuous	Discrete
Revising phase	Cut set +	Heuristic revision+
	completion set	time-series data

- ullet Aim: use time-series data + reachability properties to infer the real system
- Inference = Learning + Revising

	CRAC	M2RIT
Learning phase	Correlation Coefficients	Learning from Interpretation
		Transitions (LFIT)
Input data	Continuous	Discrete
Revising phase	Cut set +	Heuristic revision+
	completion set	time-series data
Tolerance to	Yes	No
noise	163	140

- Aim: use time-series data + reachability properties to infer the real system
- Inference = Learning + Revising

micrence — Learning Nevising			
	CRAC	M2RIT	
Learning phase	Correlation Coefficients	Learning from Interpretation	
		Transitions (LFIT)	
Input data	Continuous	Discrete	
Revising phase	Cut set +	Heuristic revision+	
	completion set	time-series data	
Tolerance to	Yes	No	
noise	res	INO	

• Test result: we obtain models reproducing original time-series data and satisfying given reachability properties, but not identical to real system

- Aim: use time-series data + reachability properties to infer the real system
- Inference = Learning + Revising

	CRAC	M2RIT
Learning phase	Correlation Coefficients	Learning from Interpretation
		Transitions (LFIT)
Input data	Continuous	Discrete
Revising phase	Cut set +	Heuristic revision+
	completion set	time-series data
Tolerance to	Yes	No
noise		INO

- Test result: we obtain models reproducing original time-series data and satisfying given reachability properties, but not identical to real system
 - By picking only reachability as revision criteria, inferred models are bisimilar to original systems in the sense of reachability

• Bridge connecting biological regulatory networks and dynamical properties

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness
 - Deal with systems with up to 10^3 automata

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness
 - Deal with systems with up to 10^3 automata
 - $\stackrel{?}{\Rightarrow}$ Hybrid analyzer is more performing in reachability analysis

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness
 - \bullet Deal with systems with up to 10^3 automata
 - $\stackrel{?}{\Rightarrow}$ Hybrid analyzer is more performing in reachability analysis
- Model learning and revision

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness
 - Deal with systems with up to 10^3 automata
 - $\stackrel{?}{\Rightarrow}$ Hybrid analyzer is more performing in reachability analysis
- Model learning and revision
 - A comparatively new domain

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness
 - \bullet Deal with systems with up to 10^3 automata
 - $\stackrel{?}{\Rightarrow}$ Hybrid analyzer is more performing in reachability analysis
- Model learning and revision
 - A comparatively new domain
 - ullet Generic solution vs. heuristics o balance between complexity and completeness

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness
 - \bullet Deal with systems with up to 10^3 automata
 - $\stackrel{?}{\Rightarrow}$ Hybrid analyzer is more performing in reachability analysis
- Model learning and revision
 - A comparatively new domain
 - ullet Generic solution vs. heuristics o balance between complexity and completeness
 - · More metrics other than reachability are needed to obtain a more precise model

25 / 25

- Bridge connecting biological regulatory networks and dynamical properties
- Reachability analysis
 - PermReach and ASPReach: faster than traditional model checkers and more conclusive than pure static analysis → balance between complexity and completeness
 - Deal with systems with up to 10^3 automata
 - $\stackrel{?}{\Rightarrow}$ Hybrid analyzer is more performing in reachability analysis
- Model learning and revision
 - A comparatively new domain
 - ullet Generic solution vs. heuristics o balance between complexity and completeness
 - More metrics other than reachability are needed to obtain a more precise model
- More biological applications and discover more applicable domains

25/25

Reachability Analysis and Revision of Dynamics of Biological Regulatory Networks

Xinwei Chai

École Centrale de Nantes Le Laboratoire des Sciences du Numérique de Nantes xinwei.chai@ls2n.fr

Rapporteurs : Gilles BERNOT, Professeur des universités, Université Côte d'Azur Pascale LE GALL, Professeur des universités, Centrale Supélec

DOLLAR DIDATE DE CONTRACTOR DE

Examinateurs : Béatrice DUVAL, Professeur des universités, Université d'Angers Loïc PAULEVÉ. Chargé de recherche. LaBRI, UMR CNRS

Directeur de thèse : Olivier ROUX, Professeur des universités, École Centrale de Nantes Co-encadrant de thèse : Morgan MAGNIN, Professeur des universités, École Centrale de Nantes

May 24, 2019

Bibliography I

Chitta Baral.

Knowledge representation, reasoning and declarative problem solving.

Robert K Brayton, Gary D Hachtel, Alberto Sangiovanni-Vincentelli, Fabio Somenzi, Adnan Aziz, Szu-Tsung Cheng, Stephen Edwards, Sunil Khatri, Yuji Kukimoto, Abelardo Pardo, et al.

VIS: A system for verification and synthesis.

In International conference on computer aided verification, pages 428–432. Springer, 1996.

Gilles Bernot and Fariza Tahi.

Behaviour preservation of a biological regulatory network when embedded into a larger network.

Fundamenta Informaticae, 91(3-4):463-485, 2009.

Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu.

Bounded model checking using satisfiability solving.

Formal methods in system design, 19(1):7-34, 2001.

Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri.

NuSMV: a new symbolic model checker.

International Journal on Software Tools for Technology Transfer, 2(4):410-425, 2000.

Xinwei Chai, Tony Ribeiro, Morgan Magnin, Olivier Roux, and Katsumi Inoue.

Static analysis and stochastic search for reachability problem.

In 9th Static Analysis in Systems Biology, affiliated with Static Analysis Symposium, 2018.

Bibliography II

Maxime Folschette, Loïc Paulevé, Morgan Magnin, and Olivier Roux.

Sufficient conditions for reachability in automata networks with priorities.

Theoretical Computer Science, 608:66-83, 2015.

David Harel, Orna Kupferman, and Moshe Y Vardi.

On the complexity of verifying concurrent transition systems.

Information and Computation, 173(2):143-161, 2002.

Keiichi Mochida, Satoru Koda, Komaki Inoue, and Ryuei Nishii.

Statistical and machine learning approaches to predict gene regulatory networks from transcriptome datasets.

Frontiers in Plant Science, 9:1770, 2018.

Loïc Paulevé, Morgan Magnin, and Olivier Roux.

Static analysis of biological regulatory networks dynamics using abstract interpretation.

Mathematical Structures in Computer Science, 22(04):651-685, 2012.

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, and Katsumi Inoue.

Learning dynamics with synchronous, asynchronous and general semantics.

In the 28th International Conference on Inductive Logic Programming, 2018.

Self Regulation

- The self regulation of b can contain two elements: self activation/inhibition and intrinsic degradation.
- However they are not necessary in ABAN case. As the transitions are between Boolean states, the state changes necessarily from one to another → there is no need to add self regulation related conditions in the transitions.

- The last release of Pint is version 2018-11-30
- ullet It returns inconclusive instances in the counterexample given in the presentation and also in λ -phage model

- The last release of Pint is version 2018-11-30
- ullet It returns inconclusive instances in the counterexample given in the presentation and also in λ -phage model

- The last release of Pint is version 2018-11-30
- \bullet It returns inconclusive instances in the counterexample given in the presentation and also in $\lambda\text{-phage model}$

- The last release of Pint is version 2018-11-30
- \bullet It returns inconclusive instances in the counterexample given in the presentation and also in $\lambda\text{-phage model}$

