# Übungsblatt 7 zu Modellkategorien

## Aufgabe 1. Dichte Unterkategorien

Ein Funktor  $K: \mathcal{M} \to \mathcal{C}$  heißt genau dann dicht, wenn jedes Objekt  $c \in \mathcal{C}$  Kolimes von Objekten der Form K(m) ist – und zwar nicht irgendwie, sondern auf die kanonische Art und Weise  $c = \operatorname{colim}_{K(m) \to c} K(m)$ .

- a) Zeige: Die Inklusion  $\{\{\heartsuit\}\}\$   $\to$  Set der vollen Unterkategorie von Set, welche nur das Objekt  $\{\heartsuit\}$  enthält, ist dicht.
- b) Zeige: Die Inklusion  $\{\mathbb{R}\} \to \operatorname{Vect}(\mathbb{R})$  der vollen Unterkategorie von  $\operatorname{Vect}(\mathbb{R})$ , welche nur das Objekt  $\mathbb{R}$  enthält, ist nicht dicht.
- c) Zeige: Für jede Kategorie  $\mathcal{C}$  ist die Yoneda-Einbettung  $y:\mathcal{C}\to \mathrm{PSh}(\mathcal{C})$  dicht.
- d) Zeige, dass ein Funktor  $K: \mathcal{M} \to \mathcal{C}$  genau dann dicht ist, wenn  $(\mathrm{Id}_{\mathcal{C}}, \mathrm{id}_K)$  eine punktweise Links-Kan-Erweiterung von K längs K ist.

## Aufgabe 2. Dichtheit der kompakten Objekte

In etwa so, wird aber noch verfeinert. Sei S eine Menge  $\kappa$ -kompakter Objekten einer Kategorie C, sodass jedes Objekt aus C  $\kappa$ -filtrierter Kolimes von Objekten aus S ist.

- a) Zeige: Ein Objekt aus  $\mathcal C$  ist genau dann  $\kappa$ -kompakt, wenn es Retrakt von einem Objekt aus S ist.
- b) Sei  $\alpha$  eine reguläre Kardinalzahl mit  $|S| < \alpha$  und  $|\operatorname{Hom}_{\mathcal{C}}(X, X)| < \alpha$  für alle  $X \in S$ . Zeige, dass es  $< \alpha$  viele Isomorphieklassen von  $\kappa$ -kompakten Objekten in  $\mathcal{C}$  gibt.
- c) Zeige, dass die volle Unterkategorie der  $\kappa$ -kompakten Objekte in  $\mathcal{C}$  dicht in  $\mathcal{C}$  liegt.

#### Aufgabe 3. Beispiele für nicht (endlich-)präsentierbare Kategorien

- a) Zeige, dass die Kategorie der topologischen Räume nicht lokal präsentierbar ist.
- b) Zeige, dass in der Kategorie der Banachräume und linearen Kontraktionen das Objekt  $\mathbb{R}$  nicht  $\aleph_0$ -kompakt, aber  $\aleph_1$ -kompakt ist.

### Aufgabe 4. Quillen-Adjunktionen auf Niveau der Homotopiekategorien

Sei  $F \dashv U$  eine Quillen-Adjunktion. Zeige, dass die folgenden Aussagen äquivalent sind:

- 1.  $F \dashv U$  ist eine Quillen-Äquivalenz.
- 2.  $\mathbb{L}F \dashv \mathbb{R}U$  ist eine Äquivalenz der Homotopiekategorien.
- 3. F bewahrt schwache Äquivalenzen zwischen kofasernden Objekten und für alle fasernden Objekte Y ist  $FQUY \to FUY \xrightarrow{\varepsilon} Y$  eine schwache Äquivalenz.
- 4. U bewahrt schwache Äquivalenzen zwischen fasernden Objekten und für alle kofasernden Objekte X ist  $X \xrightarrow{\eta} UFX \to URFX$  eine schwache Äquivalenz.

