Problemas de Selectividad de Matemáticas II Aplicadas a las Ciencias Sociales

Comunidad de Madrid

Enunciados (2000-2021)

Prof: Isaac Musat Hervás última actualización:

30 de octubre de 2022

Índice general

1.	Año	2000	9
	1.1.	Modelo 2000 - Opción A	 9
	1.2.	Modelo 2000 - Opción B	 10
	1.3.	Junio 2000 - Opción A	 11
	1.4.	Junio 2000 - Opción B	 11
	1.5.	Septiembre 2000 - Opción A	 12
	1.6.	Septiembre 2000 - Opción B	 13
2.	Año	2001	15
	2.1.	Modelo 2001 - Opción A	 15
	2.2.	Modelo 2001 - Opción B	 16
	2.3.	Junio 2001 - Opción A	 16
	2.4.	Junio 2001 - Opción B	 17
	2.5.	Septiembre 2001 - Opción A	 18
	2.6.	Septiembre 2001 - Opción B $\ \ldots \ \ldots \ \ldots$	 19
3.	Año	2002	21
	3.1.	Modelo 2002 - Opción A	 21
		-	 22
		-	 22
			 23
	3.5.		 24
	3.6.	-	 24
4	Αñc	2003	27
		Junio 2003 - Opción A	27
		-	 28
		Septiembre 2003 - Opción A	28
		1	 29
	. ~		
5.		0 2004	31
			 31
		1	 32
	5.3.	•	 32
	5.4.	•	 33
	5.5.	1	 34
	5.6.	Septiembre 2004 - Opción B	 34

6.	Año 2005	
	6.1. Modelo 2005 - Opción A	
	6.2. Modelo 2005 - Opción B	
	6.3. Junio 2005 - Opción A	
	6.4. Junio 2005 - Opción B	
	6.5. Septiembre 2005 - Opción A	
	6.6. Septiembre 2005 - Opción B	
7.	Año 2006	
	7.1. Modelo 2006 - Opción A	
	7.2. Modelo 2006 - Opción B	
	7.3. Junio 2006 - Opción A	
	7.4. Junio 2006 - Opción B	
	7.5. Septiembre 2006 - Opción A	
	7.6. Septiembre 2006 - Opción B	
8.	Año 2007	
	8.1. Modelo 2007 - Opción A	
	8.2. Modelo 2007 - Opción B	
	8.3. Junio 2007 - Opción A	
	8.4. Junio 2007 - Opción B	
	8.5. Septiembre 2007 - Opción A	
	8.6. Septiembre 2007 - Opción B	
9.	Año 2008	
•	9.1. Modelo 2008 - Opción A	
	9.2. Modelo 2008 - Opción B	
	9.3. Junio 2008 - Opción A	
	9.4. Junio 2008 - Opción B	
	9.5. Septiembre 2008 - Opción A	
	9.6. Septiembre 2008 - Opción B	
10	0.Año 2009	
	10.1. Modelo 2009 - Opción A	
	10.2. Modelo 2009 - Opción B	
	10.3. Junio 2009 - Opción A	
	10.4. Junio 2009 - Opción B	
	10.5. Septiembre 2009 - Opción A	
	10.6. Septiembre 2009 - Opción B	
11	.Año 2010	
_	11.1. Modelo 2010 - Opción A	
	11.2. Modelo 2010 - Opción B	
	11.3. Junio 2010 - Opción A	
	11.4. Junio 2010 - Opción B	
	11.5. Septiembre 2010 - Opción A	
	11.6. Septiembre 2010 - Opción B	

12.2. Modelo 2011 - Opción B		71 71 72 73 73 74 75 76 77
_		79 80 81 81 82 83 84 85
14. Año 2013 14.1. Modelo 2013 - Opción A	A	87 88 89 90 91 91 92 93 94
15.2. Modelo 2014 - Opción B	A	97 98 99 100 101 102 103 104 105 106
16.2. Modelo 2015 - Opción B	5	 109 109 110 111 112 113

16.6. Junio 2015 (coincidente)- Opción B 114 16.7. Septiembre 2015 - Opción A 115 16.8. Septiembre 2015 - Opción B 116 16.9. Septiembre 2015 (coincidente)- Opción A 117
16.10Septiembre 2015 (coincidente)- Opción B
17.Año 2016
17.1. Modelo 2016 - Opción A
17.2. Modelo 2016 - Opción B
17.3. Junio 2016 - Opción A
17.4. Junio 2016 - Opción B
17.5. Junio 2016 - Opción A (Coincidentes)
17.6. Junio 2016 - Opción B (Coincidentes)
17.7. Septiembre 2016 - Opción A
17.8. Septiembre 2016 - Opción B
18.Año 2017 127
18.1. Junio 2017 - Opción A
18.2. Junio 2017 - Opción B
18.3. Junio 2017 (coincidente) - Opción A
18.4. Junio 2017 (coincidente) - Opción B
18.5. Septiembre 2017 - Opción A
18.6. Septiembre 2017 - Opción B
18.7. Septiembre 2017 (coincidente) - Opción A
18.8. Septiembre 2017 (coincidente) - Opción B
19.Año 2018
19.1. Modelo 2018 - Opción A
19.1. Modelo 2018 - Opción A
19.1. Modelo 2018 - Opción A
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20. Año 2019 143
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20. Año 2019 143 20.1. Modelo 2019 - Opción A 143
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20. Año 2019 143 20.1. Modelo 2019 - Opción A 143 20.2. Modelo 2019 - Opción B 144
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20.Año 2019 143 20.1. Modelo 2019 - Opción A 143 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción A 145
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20.Año 2019 20.1. Modelo 2019 - Opción A 143 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción A 145 20.4. Junio 2019 - Opción B 146
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20.Año 2019 20.1. Modelo 2019 - Opción A 143 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción A 145 20.4. Junio 2019 - Opción B 146 20.5. Junio 2019 (coincidente)- Opción A 147
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20.Año 2019 143 20.1. Modelo 2019 - Opción A 145 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción B 145 20.4. Junio 2019 - Opción B 146 20.5. Junio 2019 (coincidente)- Opción A 147 20.6. Junio 2019 (coincidente)- Opción B 148
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente) - Opción A 139 19.6. Junio 2018 (coincidente) - Opción B 140 19.7. Julio 2018 (extraordinaria) - Opción A 141 19.8. Julio 2018 (extraordinaria) - Opción B 142 20.Año 2019 143 20.1. Modelo 2019 - Opción A 144 20.3. Junio 2019 - Opción B 144 20.4. Junio 2019 - Opción B 146 20.5. Junio 2019 (coincidente) - Opción A 147 20.6. Junio 2019 (coincidente) - Opción B 148 20.7. Julio 2019 (extraordinaria) - Opción A 148 20.7. Julio 2019 (extraordinaria) - Opción A 148
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20. Año 2019 143 20.1. Modelo 2019 - Opción A 145 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción B 146 20.4. Junio 2019 - Opción B 146 20.5. Junio 2019 (coincidente)- Opción A 147 20.6. Junio 2019 (coincidente)- Opción B 148 20.7. Julio 2019 (extraordinaria)- Opción A 148 20.7. Julio 2019 (extraordinaria)- Opción B 148 20.8. Julio 2019 (extraordinaria)- Opción B 150
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20.Año 2019 143 20.1. Modelo 2019 - Opción A 144 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción B 146 20.4. Junio 2019 - Opción B 146 20.5. Junio 2019 (coincidente)- Opción A 147 20.6. Junio 2019 (coincidente)- Opción B 148 20.7. Julio 2019 (extraordinaria)- Opción A 148 20.7. Julio 2019 (extraordinaria)- Opción B 150 20.8. Julio 2019 (extraordinaria)- Opción B 150 20.9. Julio 2019 (extra-coincidente)- Opción A 151
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20. Año 2019 143 20.1. Modelo 2019 - Opción A 145 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción B 146 20.4. Junio 2019 - Opción B 146 20.5. Junio 2019 (coincidente)- Opción A 147 20.6. Junio 2019 (coincidente)- Opción B 148 20.7. Julio 2019 (extraordinaria)- Opción A 148 20.7. Julio 2019 (extraordinaria)- Opción B 148 20.8. Julio 2019 (extraordinaria)- Opción B 150
19.1. Modelo 2018 - Opción A 19.2. Modelo 2018 - Opción B 19.3. Junio 2018 - Opción A 19.4. Junio 2018 - Opción B 19.5. Junio 2018 (coincidente) - Opción A 19.6. Junio 2018 (coincidente) - Opción B 19.7. Julio 2018 (extraordinaria) - Opción A 19.8. Julio 2018 (extraordinaria) - Opción B 20.1. Modelo 2019 - Opción A 20.2. Modelo 2019 - Opción B 20.3. Junio 2019 - Opción B 20.4. Junio 2019 - Opción B 20.4. Junio 2019 - Opción B 20.5. Junio 2019 (coincidente) - Opción A 20.6. Junio 2019 (extraordinaria) - Opción B 20.7. Julio 2019 (extraordinaria) - Opción B 20.8. Julio 2019 (extraordinaria) - Opción B 20.9. Julio 2019 (extraordinaria) - Opción B 20.9. Julio 2019 (extraordinaria) - Opción B 20.9. Julio 2019 (extra-coincidente) - Opción B 20.9. Julio 2019 (extra-coincidente) - Opción B
19.1. Modelo 2018 - Opción A 135 19.2. Modelo 2018 - Opción B 136 19.3. Junio 2018 - Opción A 137 19.4. Junio 2018 - Opción B 138 19.5. Junio 2018 (coincidente)- Opción A 139 19.6. Junio 2018 (coincidente)- Opción B 140 19.7. Julio 2018 (extraordinaria)- Opción A 141 19.8. Julio 2018 (extraordinaria)- Opción B 142 20.Año 2019 143 20.1. Modelo 2019 - Opción A 144 20.2. Modelo 2019 - Opción B 144 20.3. Junio 2019 - Opción B 146 20.4. Junio 2019 - Opción B 146 20.5. Junio 2019 (coincidente)- Opción A 147 20.6. Junio 2019 (coincidente)- Opción B 148 20.7. Julio 2019 (extraordinaria)- Opción A 148 20.7. Julio 2019 (extraordinaria)- Opción B 150 20.8. Julio 2019 (extraordinaria)- Opción B 150 20.9. Julio 2019 (extra-coincidente)- Opción A 151

21.Año 2020	1	155
21.1. Modelo 2020 - Opción A		155
21.2. Modelo 2020 - Opción B		156
21.3. Julio 2020 - Opción A		157
21.4. Julio 2020 - Opción B		158
21.5. Julio 2020 (coincidente)- Opción A		159
21.6. Julio 2020 (coincidente)- Opción B		160
21.7. Septiembre 2020 - Opción A		161
21.8. Septiembre 2020 - Opción B		162
22. Año 2021	1	165
22.1. Modelo 2021 - Opción A		165
22.2. Modelo 2021 - Opción B		166
22.3. Junio 2021 - Opción A		167
22.4. Junio 2021 - Opción B		168
22.5. Junio 2021 (coincidente) - Opción A		169
22.6. Junio 2021 (coincidente) - Opción B		170
22.7. Julio 2021 - Opción A		171
22.8. Julio 2021 - Opción B		172
23.Año 2022	_	173
23.1. Modelo 2022 - Opción A		173
23.2. Modelo 2022 - Opción B		174
23.3. Ordinaria 2022 - Opción A		175
23.4. Ordinaria 2022 - Opción B		176
23.5. Ordinaria 2022 (coincidente)- Opción A		177
23.6. Ordinaria 2022 (coincidente)- Opción B		178
23.7. Extraordinaria 2022 - Opción A		179
23.8. Extraordinaria 2022 - Opción B		180
23.9. Extraordinaria 2022 (coincidente)- Opción A		181
23.10Extraordinaria 2022 (coincidente)- Opción B		182
24. Año 2023	_	185
24.1. Modelo 2023 - Opción A		185
24.2. Modelo 2023 - Opción B		186

Capítulo 1

Año 2000

1.1. Modelo 2000 - Opción A

Problema 1.1.1 (3 puntos) Se considera el siguiente sistema lineal

$$\begin{cases} x - y & = a \\ x + & a^2 z = 2a + 1 \\ x - y + a(a-1)z = 2a \end{cases}$$

- a) Discútase el sistema según los distintos valores del parámetro real a.
- b) Resuélvase dicho sistema para a=3.

Problema 1.1.2 (3 puntos)

- a) Calcúlense p y q de modo que la curva $y = x^2 + px + q$ contenga al punto (-2,1) y presente un mínimo en x = -3.
- b) Hállese el área del recinto acotado delimitado por la curva $y = x^2 + 4x + 5$ y la recta y = 5.

Problema 1.1.3 (2 puntos) Se sabe que el peso en kilogramos de los alumnos de bachillerato de Madrid, es una variable aleatoria X que sigue una distribución normal de desviación típica igual a 5 kg.

- a) En caso de considerar muestras de 25 alumnos, ¿qué distribución tiene la variable aleatoria media muestral \overline{X} ?
- b) Si se desea que la media de la muestra no difiera en más de 1 kg de la media de la población, con probabilidad 0,95; ¿cuántos alumnos se deberían tomar en la muestra?

Problema 1.1.4 (2 puntos) Si se escoge un número al azar en la guía telefónica de cierta ciudad española, la probabilidad de que sea nombre de un hombre es 0,7 y de que figure una mujer es 0,3. En dicha ciudad, la probabilidad de que un hombre trabaje es 0,8 y de que lo haga una mujer es 0,7. Se elige un número de teléfono al azar.

- a) ¿Cuál es la probabilidad de que corresponda a una persona que trabaja?
- b) ¿Cuál es la probabilidad de que corresponda a un hombre, sabiendo que pertenece a una persona que trabaja?

1.2. Modelo 2000 - Opción B

Problema 1.2.1 (3 puntos) Un artesano fabrica collares y pulseras. Hacer un collar le lleva dos horas y hacer una pulsera una hora. El material de que dispone no le permite hacer más de 50 piezas. Como mucho, el artesano puede dedicar al trabajo 80 horas. Por cada collar gana 5 euros y por cada pulsera 4 euros. El artesano desea determinar el número de collares y pulseras que debe fabricar para optimizar sus beneficios.

- a) Exprésese la función objetivo y las restricciones del problema.
- b) Represéntese gráficamente el recinto definido.
- c) Obténgase el número de collares y pulseras correspondientes al máximo beneficio.

Problema 1.2.2 (3 puntos) El número de individuos, en millones, de una población, viene dado por la función:

$$P(t) = \frac{15 + t^2}{(t+1)^2}$$

donde t se mide en años transcurridos desde t=0. Calcúlese:

- a) La población inicial.
- b) El año en que se alcanzará la mínima población. ¿Cuál será el tamaño de ésta?
- c) ¿Cuál será el tamaño de la población a largo plazo?

Problema 1.2.3 (2 puntos) Un examen consiste en elegir al azar dos temas de entre los diez del programa y desarrollar uno.

- a) ¿Qué probabilidad tiene un alumno, que sabe seis temas, de aprobar el examen?
- b) ¿Qué probabilidad tiene el mismo alumno de saberse uno de los dos temas elegidos y el otro no?

Problema 1.2.4 (2 puntos) Se sabe por experiencia que el tiempo obtenido por los participantes olímpicos de la prueba de 100 metros, en la modalidad de Decathlón, es una variable aleatoria que sigue una distribución normal con media 12 segundos y desviación típica 1,5 segundos. Para contrastar, con un nivel de significación de 5 %, si no ha variado el tiempo medio en la última Olimpiada, se extrajo una muestra aleatoria de 10 participantes y se anotó el tiempo obtenido por cada uno, con los resultados siguientes, en segundos:

- a) ¿Cuáles son la hipótesis nula y la alternativa del contraste?
- b) Determínese la región crítica.
- c) Realícese el contraste.

1.3. Junio 2000 - Opción A

Problema 1.3.1 (3 puntos) Siendo a un número real cualquiera, se define el sistema

$$\begin{cases} x + 2y - az = 1 \\ - y + z = 0 \\ ax + z = a \end{cases}$$

- a) Discútase dicho sistema en función del valor de a
- b) Encuéntrese todas las soluciones para a=1

Problema 1.3.2 (3 puntos) Se considera la función

$$f(x) = \begin{cases} \frac{x+2}{x-1} & \text{si } x \le 2\\ \frac{3x^2 - 2x}{x+2} & \text{si } x > 2 \end{cases}$$

- a) Estúdiese si f(x) es continua en x = 2.
- b) Calcúlese la ecuación de la recta tangente a f(x) en el punto x=3.
- c) Calcúlense sus asíntotas oblicuas.

Problema 1.3.3 (2 puntos) De una urna con 4 bolas blancas y 2 negras se extraen al azar, sucesivamente y sin reemplazamiento, dos bolas.

- a) ¿Cuál es la probabilidad de que las bolas extraídas sean blancas?
- b) Si la segunda bola ha sido negra, ¿cuál es la probabilidad de que la primera también lo haya sido?

Problema 1.3.4 (2 puntos) En una comunidad autónoma se estudia el número medio de hijos a partir de los datos disponibles en cada municipio. Se supone que este número sigue una distribución normal con desviación típica igual a 0,08. El valor medio de estos datos para 36 municipios resulta ser igual a 1,17 hijos por mujer. Se desea contratar, con un nivel de significación de 0,01, si el número medio de hijos por mujer en la comunidad es de 1,25.

1.4. Junio 2000 - Opción B

Problema 1.4.1 (3 puntos) Una empresa especializada en la fabricación de mobiliario para casa de muñecas, produce cierto tipo de mesas y sillas que vende a 20 euros y 30 euros, respectivamente. Desea saber cuántas unidades de cada artículo debe de fabricar diariamente un operario para maximizar los ingresos, teniéndose las siguientes restricciones:

El número total de unidades de los dos tipos no podrá exceder de 4 por día y operario.

Cada mesa requiere dos horas para su fabricación; cada silla, 3 horas. La jornada laboral máxima es de 10 horas.

El material utilizado en cada mesa cuesta 4 euros. El utilizado en cada silla cuesta 2 euros. Cada operario dispone de 12 euros diarios de material.

- a) Expresa la función objetivo y las restricciones del problema.
- b) Representa gráficamente la región factible y calcula los vértices de la misma.
- c) Razona si con estas restricciones un operario puede fabricar diariamente una mesa y una silla, y si esto le conviene a la empresa.
- d) Resuelve el problema

Problema 1.4.2 (3 puntos) Sea la función dependiente de los parámetros a y b.

$$f(x) = \begin{cases} -2x - a & \text{si} & x \le 0\\ x - 1 & \text{si} & 0 < x \le 2\\ bx - 5 & \text{si} & x > 2 \end{cases}$$

- a) Halla los valores de a y b para que la función sea continua en el conjunto R de los números reales.
- b) Representa gráficamente para los valores a=0 y b=3.
- c) Para los valores a = 0 y b = 3, halla el área de la región plana acotada limitada por la gráfica de la función, el eje de abscisas y las rectas x = 1 y x = 3.

Problema 1.4.3 (2 puntos) Sean A y B dos sucesos aleatorios tal que: P(A) = 0, 6; P(B) = 0, 2 y $P(\overline{A} \cup \overline{B}) = 0, 7$.

- a) Calcula $P(A \cap B)$ y razona si los sucesos A y B son independientes.
- b) Calcula $P(A \cup B)$.

Problema 1.4.4 (2 puntos) Una variable aleatoria X tiene distribución normal, siendo su desviación típica igual a 3.

- a) Si se consideran muestras de tamaño 16, ¿qué distribución sigue la variable aleatoria media muestral?
- b) Si se desea que la media de la muestra no difiera en más de 1 unidad de la media de la población, con probabilidad de 0,99, ¿cuántos elementos, como mínimo, se deberían tomar en la muestra?

1.5. Septiembre 2000 - Opción A

Problema 1.5.1 (3 puntos) Una empresa desea disponer de dinero en efectivo en euros, dólares y libras esterlinas. El valor total entre las tres monedas ha de ser igual a 264000 euros. Se quiere que el valor del dinero disponible en euros sea el doble del valor del dinero en dólares, y que el valor del dinero en libras esterlinas sea la décima parte del dinero en euros.

Si se supone que una libra esterlina es igual a 1,5 euros y un dólar es igual a 1,1 euros, se pide determinar la cantidad de euros, dólares y libras esterlinas que la empresa ha de tener disponible.

Problema 1.5.2 (3 puntos) Dada la función definida en los números reales salvo en x=0

$$f(x) = 3 - x - \frac{2}{x}$$

Calcular

- a) Las coordenadas de sus máximos y mínimos relativos.
- b) El área de la región plana acotada limitada por la gráfica de f(x) y el semieje OX.

Problema 1.5.3 (2 puntos) La probabilidad de que un mes dado un cliente de una gran superficie compre un producto A es 0,6; la probabilidad de que compre un producto B es 0,5. Se sabe también que la probabilidad de que un cliente compre un producto B no habiendo comprado el producto A es 0,4.

- a) ¿Cuál es la probabilidad de que un cliente haya comprado sólo el producto B?
- b) ¿Cuál es la probabilidad de que un cliente no haya comprado ninguno de los dos productos?

Problema 1.5.4 (2 puntos) El número de reclamaciones presentadas durante la campaña de Navidad en 9 tiendas de una empresa ha sido:

$$25 \ \ 31 \ \ 28 \ \ 30 \ \ 32 \ \ 20 \ \ 22 \ \ 34 \ \ 30$$

Se acepta que estos números de reclamaciones sigue una distribución normal con desviación típica igual a 5. Se desea contrastar si el número de reclamaciones es 26, con un nivel de significación de 0.05.

- a) Plantéese cuáles son la hipótesis nula y la alternativa de contraste.
- b) Determínese la región crítica de contraste.
- c) ¿Es posible aceptar la hipótesis con el nivel de significación indicado?

1.6. Septiembre 2000 - Opción B

Problema 1.6.1 (3 puntos). Una empresa que sirve comidas preparadas tiene que diseñar un menú utilizando dos ingredientes. El ingrediente A contiene 35 g de grasas y 150 Kilocalorías por cada 100 g de ingrediente, mientras que el B contiene 15 g de grasas y 100 Kilocalorías por cada 100 g. El coste es de 1,5 euros por cada 100 g. del ingrediente A y de 1 euros por cada 100 g del ingrediente B.

El menú a diseñar debería contener no más de 30 g de grasas y al menos 110 Kilocalorías por cada 100 g de alimento. Se pide determinar las proporciones de cada ingrediente a emplear en el menú de manera que su coste sea lo más reducido posible.

- a) Indíquese la expresión de las restricciones y la función objetivo.
- b) Represéntese gráficamente la región delimitada por las restricciones.
- c) Calcúlese el porcentaje óptimo de cada ingrediente a incluir en el menú.

Problema 1.6.2 (3 puntos) Dada la función

$$s(t) = \frac{340 + 330t - 10t^2}{t + 2}$$

definida en los reales, salvo en t=-2

a) El valor positivo de t en el que se hace cero la función

- b) El valor positivo de t en el que s(t) se hace máximo.
- c) Las asíntotas de s(t).

Problema 1.6.3 (2 puntos) Una empresa emplea tres bufetes de abogados para tratar sus casos legales. La probabilidad de que un caso se deba remitir al bufete A es 0,3; de que se remita al bufete B es 0,5 y de que se remita al bufete C es 0,2. La probabilidad de que un caso remitido al bufete A sea ganado en los tribunales es 0,6; para el bufete B esta probabilidad es 0,8 y para el bufete C es 0,7.

- a) Calcúlese la probabilidad de que la empresa gane un caso.
- b) Sabiendo que un caso se ha ganado, determínese la probabilidad de que lo haya llevado el bufete A.

Problema 1.6.4 (2 puntos) Se supone que los gastos corrientes de los empleados de los distintos departamentos de una empresa siguen una distribución normal con desviación típica de 300 euros.

De los datos disponibles para 16 departamentos se ha obtenido un gasto medio por empleado de 2750 euros. Determínese un intervalo de confianza al $99\,\%$ para el gasto corriente medio por empleado en la empresa.

Capítulo 2

Año 2001

2.1. Modelo 2001 - Opción A

Problema 2.1.1 (3 puntos) Sean las matrices $A = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}$

- a) Compruébese que B es la inversa de A.
- b) Calcúlese la matriz $(A 2I)^2$.
- c) Calcúlese la matriz X tal que AX = B.

Problema 2.1.2 (3 puntos) El número total de bacterias (en miles) presentes en un cultivo después de t horas viene dado por $N(t) = 2t(t-10)^2 + 50$.

- a) Calcúlense la función derivada N'(t).
- b) Durante las 10 primeras horas, ¿en qué instantes se alcanzan la población máxima y mínima?
- c) Esbócese la gráfica de N(t) en el intervalo [0, 10].

Problema 2.1.3 (2 puntos) En una ciudad, la probabilidad de que uno de sus habitantes censados vote al partido A es 0,4; la probabilidad de vote al partido B es 0,35 y la probabilidad de que vote al partido C es 0,25. Por otro lado, las probabilidades de que un votante de cada partido lea diariamente algún periódico son, respectivamente, 0,4; 0,4 y 0,6. Se elige una persona de la ciudad al azar:

- a) Calcúlese la probabilidad de que lea algún periódico.
- b) La persona elegida lee algún periódico, ¿cuál es la probabilidad de que sea votante del partido B?

Problema 2.1.4 (2 puntos) Un investigador afirma que las horas de vuelo de cierto tipo de aviones comerciales se distribuye normalmente, con una media de 200000 horas y una desviación típica de 20000 horas. Para comprobar la veracidad de sus hipótesis, obtuvo una muestra aleatoria de 4 aviones de distintas compañías aéreas, fuera ya de servicio, y anotó el número de horas de vuelo de cada uno, resultando los siguientes datos (en miles de horas):

- a) Plantéese cuáles son la hipótesis nula y la alternativa de contraste.
- b) Realícese el contraste con un nivel de significación del 5%.

2.2. Modelo 2001 - Opción B

Problema 2.2.1 (3 puntos) Se considera el siguiente sistema lineal:

$$mx + my = 6$$
$$x + (m-1)y = 3$$

- a) Discútase el sistema según los distintos valores del parámetro real m.
- b) Resuélvase dicho sistema para m=2:

Problema 2.2.2 (3 puntos) La gráfica de la función $f(x) = ax^3 + bx + c$ satisface las siguientes propiedades:

- **☞** Pasa por (0,0)
- lacktriangle Tiene mínimo local en (1,-1)
- a) Obténgase el valor de los coeficientes $a,\,b$ y c.
- b) Hállese el área de la región plana acotada limitada por la gráfica de $g(x) = x^3 4x$, el eje de abscisas y las rectas x = 3 y x = 4.

Problema 2.2.3 (2 puntos) Una urna contiene 7 bolas blancas, 3 bolas rojas y 2 bolas negras. Se considera el experimento aleatorio consistente en extraer tres bolas de la urna, de forma sucesiva y sin reemplazamiento. Sean los sucesos $B_1 = \{$ La primera bola es blanca $\}$, $B_2 = \{$ La segunda bola es blanca $\}$ y $B_3 = \{$ La tercera bola es blanca $\}$.

- a) Exprésese con ellos el suceso { Las bolas extraídas en primer y tercer lugar son blancas, y la extraída en segundo lugar no }.
- b) Calcúlese la probabilidad del suceso { Las tres bolas son del mismo color }.

Problema 2.2.4 (2 puntos) El tiempo de vida de una clase de depuradoras de agua utilizadas en una planta industrial se distribuye normalmente, con una desviación típica de 2000 horas. En un ensayo realizado con una muestra aleatoria de 9 depuradoras, se obtuvieron los siguientes tiempos de vida en miles de horas

- a) Hállese un intervalo de confianza al 99 % para la vida media de las depuradoras.
- b) Calcúlese el tamaño mínimo que debería tener la muestra, en el caso de admitir un error máximo de 500 horas, con un grado de confianza del $95\,\%$:

2.3. Junio 2001 - Opción A

Problema 2.3.1 (3 puntos) Considérese el sistema de ecuaciones dependientes del parámetro real

$$\left\{ \begin{array}{lll} ax+&y+&z=&1\\ x+&ay+&z=&a\\ x+&y+&az=&a^2 \end{array} \right.$$

a) Discútase el sistema según los valores de a

b) Resuélvase el sistema para a = -1

Problema 2.3.2 (3 puntos) Una empresa fabrica cajas de latón sin tapa de volumen 500 cm³, para almacenar un líquido colorante. Las cajas tienen base cuadrada. Hállense la altura y el lado de la base de cada caja para que la cantidad de latón empleada en fabricarlas sea la mínima posible.

Problema 2.3.3 (2 puntos) Una fábrica produce tres modelos de coche: A, B y C. Cada uno de los modelos puede tener motor de gasolina o diésel. Sabemos que el $60\,\%$ de los modelos son del tipo A y el $30\,\%$ del tipo B. El $30\,\%$ de los coches fabricados tienen motor diésel, el $30\,\%$ de los coches de modelo A son de tipo diésel y el $20\,\%$ de los coches del modelo B tienen motor diésel. Se elige un coche al azar. Se piden las probabilidades de los siguientes sucesos:

- a) El coche es del modelo C.
- b) El coche es del modelo A, sabiendo que tiene motor diésel.
- c) El coche tiene motor diésel, sabiendo que es del modelo C.

Problema 2.3.4 (2 puntos) Un establecimiento vende paquetes de carbón para barbacoa de peso teórico 10 kg. Se supone que el peso de los paquetes sigue una distribución normal con desviación típica 1 kg. Para contrastar la citada hipótesis, frente a que el peso teórico sea distinto de 10 kg, se escogen al azar 4 paquetes que pesan en kilogramos, respectivamente:

Se desea que la probabilidad de aceptar la hipótesis nula, cuando esta es cierta, sea 0,95. Se pide:

- a) La región crítica de contraste.
- b) ¿Se debe rechazar la hipótesis nula?

2.4. Junio 2001 - Opción B

Problema 2.4.1 (3 puntos) En un depósito se almacenan bidones de petróleo y de gasolina. Para poder atender la demanda se han de tener almacenados un mínimo de 10 bidones de petróleo y 20 de gasolina. Siempre debe haber más bidones de gasolina que de petróleo, siendo la capacidad del depósito de 200 bidones. Por razones comerciales, deben mantenerse en inventario al menos 50 bidones. El gasto de almacenaje de un bidón de petróleo es de 20 céntimos y el de uno de gasolina es de 30 céntimos. Se desea saber cuántos bidones de cada clase han de almacenarse para que el gasto de almacenaje sea mínimo.

- a) Exprésense la función objetivo y las restricciones del problema.
- b) Represéntese gráficamente la región factible y calcúlense los vértices de la misma.
- c) Resuélvase el problema

Problema 2.4.2 (3 puntos) Dada la función

$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 - 2x + 1$$

a) Determínense sus máximos y mínimos relativos.

- b) Calcúlense sus puntos de inflexión.
- c) Esbócese su gráfica.

Problema 2.4.3 (2 puntos) Tres máquinas A, B y C fabrican tornillos. En una hora, la máquina A fabrica 600 tornillos, la B 300 y la C 100. Las probabilidades de que las máquinas produzcan tornillos defectuosos son, respectivamente, de 0,01 para A, de 0,02 para B y de 0,03 para C. Al finalizar una hora se juntan todos los tornillos producidos y se elige uno al azar.

- a) ¿Cuál es la probabilidad de que no sea defectuoso?
- b) ¿Cuál es la probabilidad de que lo haya fabricado la máquina A, sabiendo que no es defectuoso?

Problema 2.4.4 (2 puntos) Se supone que el peso de las sandías de cierta variedad sigue una distribución normal con desviación típica de 1 kg. Se toma una muestra aleatoria de 100 sandías y se observa que el peso medio es de 6 kg.

- a) Calcúlese un intervalo de confianza al $95\,\%$ para el peso medio de esa variedad de sandía.
- b) ¿Puede aceptarse la hipótesis de que el verdadero peso medio de las sandías es de 5 kg, frente a que sea diferente, con un nivel de significación de 0,05?

2.5. Septiembre 2001 - Opción A

Problema 2.5.1 (3 puntos) Sean las matrices

$$A = \begin{pmatrix} 4 & -3 & -3 \\ 5 & -4 & -4 \\ -1 & 1 & 0 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & 0 & -3 \end{pmatrix}$$

- a) Determínese si A y B son invertibles y, en su caso, cacúlese la matriz inversa.
- b) Resuélvase la ecuación matricial XA B = 2I, siendo I la matriz identidad de orden tres.
- c) Calcúlese A^{86}

Problema 2.5.2 (3 puntos) Sean las funciones $f(x) = x^2 + ax + b$, $g(x) = -x^2 + c$.

- a) Determínese a, b y c, sabiendo que las gráficas de ambas funciones se cortan en los puntos (-2, -3) y (1, 0).
- b) Hállese la ecuación de la recta tangente a la gráfica de g(x) en el punto (-2, -3).
- c) Calcúlese el área de la región limitada por las gráficas de f(x) y g(x).

Problema 2.5.3 (2 puntos) El peso de los perros adultos de cierta raza es una variable aleatoria que se distribuye normalmente con desviación típica 0,6 kg. Una muestra aleatoria de 30 animales ha dado un peso medio de 7,4 kg.

a) Calcúlese un intervalo de confianza al 99 % para el peso medio de los perros adultos de esta raza.

b) ¿Qué tamaño mínimo debe tener la muestra para tener una confianza del 95% de que la media muestral no se diferencie en más de 0.3 kg de la media de la población?

Problema 2.5.4 (2 puntos) En un videoclub quedan 8 copias de la película A, 9 de la B y 5 de la C. Entran tres clientes consecutivos. Calcúlese la probabilidad de que:

- a) Los tres escojan la misma película.
- b) Dos escojan la película A y el otro la C.

2.6. Septiembre 2001 - Opción B

Problema 2.6.1 (3 puntos). Un hipermercado inicia una campaña de ofertas. En la primera de ellas descuenta un 4% en un cierto producto A, un 6% en el producto B y un 5% en el producto C. A las dos semanas pone en marcha la segunda oferta descontando un 8% sobre el precio inicial de A, un 10% sobre el precio inicial de B y un 6% sobre el precio inicial de C.

Se sabe que si un cliente compra durante la primera oferta un producto A, dos B y tres C, se ahorra 16 euros respecto del precio inicial. Si compra tres productos A, uno B y cinco C en la segunda oferta, el ahorro es de 29 euros. Si compra un producto A, uno B y uno C, sin ningún tipo de descuento, debe abonar 135 euros.

Calcúlese el precio de cada producto antes de las ofertas.

Problema 2.6.2 (3 puntos) Sea la función

$$f(x) = 2x^2 - \frac{1}{3}x^3$$

Calcúlese

- a) Los intervalos donde es creciente y decreciente.
- b) Las coordenadas de sus máximos y mínimos relativos.
- c) El valor de x para el que es máxima la pendiente de la recta tangente a la gráfica de f(x).

Problema 2.6.3 (2 puntos) En un laboratorio se obtuvieron seis determinaciones del PH de una solución, con los resultados siguientes:

Se supone que la población de todas las determinaciones de PH de la solución tiene una distribución normal de media desconocida con una desviación típica igual a 0,02.

- a) Determínese un intervalo de confianza al $98\,\%$ para la media de todas las determinaciones del PH de la misma solución obtenidas con el mismo método.
- b) Con el mismo nivel de confianza anterior, ¿cuál debe ser el tamaño mínimo de la muestra para que la amplitud del intervalo de confianza sea a lo sumo 0,02?

Problema 2.6.4 (2 puntos) Con el objetivo de recaudar fondos para un viaje, los alumnos de un instituto realizan una rifa con 500 números. Un alumno compra dos números.

- a) Si sólo hay un premio, ¿qué probabilidad tiene el alumno de que le toque a él?
- b) Si hay dos premios, ¿qué probabilidad tiene el alumno de que le toque al menos uno de ellos?

Capítulo 3

Año 2002

3.1. Modelo 2002 - Opción A

Problema 3.1.1 (3 puntos) Dado el siguiente sistema de ecuaciones lineales:

$$\begin{cases} 2x - 4y - az = -2\\ y - z = 0\\ ax + 2z = 2 \end{cases}$$

- a) Discutir el sistema en función de los valores de a.
- b) Resolver el sistema para el valor a = 2.

Problema 3.1.2 (3 puntos) Un fabricante de productos químicos vende fertilizantes, A y B, a razón de 40 y 20 euros el kilogramo, respectivamente. Su producción máxima es de una tonelada de cada fertilizante y su mínimo operativo es de 100 kilogramos de cada fertilizante. Si su producción total es de 1700 kilogramos, ¿cuál es la producción que maximiza sus ingresos? Calcular dichos ingresos máximos.

Problema 3.1.3 (2 puntos) Un proveedor suministra lotes de materia prima y el 5% de ellos resulta defectuoso. Seleccionando al azar 3 lotes

- a) ¿Cuál es la probabilidad de que al menos 2 sean defectuosos?
- b) ¿Cuál es la probabilidad de que el máximo de lotes defectuosos sea 2?

Problema 3.1.4 (2 puntos) El peso de individuos de cierta especie se distribuye como una variable aleatoria normal con media 50 euros y desviación típica 4.

- a) Calcular la probabilidad de que la media muestral obtenida con los valores de 16 individuos seleccionados aleatoriamente, esté entre 48 y 50.
- b) Se seleccionan aleatoriamente 4 individuos, ¿cuál es la probabilidad de que la media de la muestra supere el valor 54?

3.2. Modelo 2002 - Opción B

Problema 3.2.1 (3 puntos)

a) Dibujar el recinto limitado por las gráficas de las siguientes curvas:

$$f(x) = x^2 + 2$$

$$g(x) = x + 2$$

siendo $0 \le x \le 2$

b) Calcular el área de dicho reciento anterior.

Problema 3.2.2 (3 puntos) Considerar el siguiente problema de programación lineal: Minimizar z=-3x-2y Sujeto a

$$-2x + y \le 2$$
$$x - 2y \le 2$$
$$x \ge 0 \ y \ge 0$$

- a) Mediante la resolución gráfica del problema, discutir si existen soluciones factibles y si existe solución óptima.
- b) Si se añade la restricción:

$$x + y > 10$$

discutir si existe solución óptima y en caso afirmativo calcularla.

Problema 3.2.3 (2 puntos) Una investigación sobre el servicio post-venta para clientes que adquirieron cierta marca de automóviles, presenta los siguientes datos sobre una muestra de 608 clientes: 371 están muy satisfechos frente a los 45 que se declaran muy insatisfechos.

- a) A nivel de significación del $5\,\%$, ¿se puede concluir que la proporción de clientes muy satisfechos es superior al $60\,\%$?
- b) Explicar el error de Tipo I de este contraste. ¿Con qué probabilidad se comete el error?

Problema 3.2.4 (2 puntos) Una prueba para determinar cierta contaminación del agua presenta los siguientes resultados en probabilidad: 0,05 de falsos positivos, esto es, casos en los que el agua libre de contaminación, el test dice que el agua se encuentra contaminada. Si el agua está contaminada, el test lo detecta con probabilidad 0,99. El agua está libre de contaminación con probabilidad 0,99. Si se realizara una nueva prueba y el test indica que hay contaminación, calcular la probabilidad de que el agua esté libre de contaminación.

3.3. Junio 2002 - Opción A

Problema 3.3.1 (3 puntos) Dadas las matrices

$$A = (2, 1, -1), \quad B = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad C = \begin{pmatrix} 4 \\ -2 \\ 0 \end{pmatrix}$$

a) Calcular las matrices M = AB y N = BA.

- b) Calcular P^{-1} , siendo P = (N I), donde I representa la matriz identidad.
- c) Resolver el sistema PX = C.

Problema 3.3.2 (3 puntos)

- a) Hallar las coordenadas del mínimo de la curva $y = x^2 4x 5$.
- b) Calcular el área del triángulo limitado por el eje OX y las tangentes a la curva dada en los puntos de intersección de dicha curva con el eje OX.

Problema 3.3.3 (2 puntos) Se tienen tres cajas iguales. La primera contiene 3 bolas blancas y 4 negras; la segunda contiene 5 bolas negras y, la tercera, 4 blancas y 3 negras.

- a) Se elige una caja al azar, y luego se extrae una bola, ¿cuál es la probabilidad de que la bola extraída sea negra?
- b) Si se extrae una bola negra de una de las cajas, ¿cuál es la probabilidad de que proceda de la segunda caja?

Problema 3.3.4 (2 puntos) Se quiere comprobar si una máquina destinada al llenado de envases de agua mineral ha sufrido desajuste. Una muestra aleatoria de diez envases de esta máquina ha proporcionado los siguientes resultados:

$$0,49, 0,52, 0,51, 0,48, 0,53, 0,55, 0,49, 0,50, 0,52, 0,49$$

Suponiendo que la cantidad de agua mineral que este tipo de máquinas deposita en cada envase sigue una distribución normal de media 0.5 litros y una desviación típica de 0.02 litros, se desea contrastar si el contenido medio de los envases de esta máquina es de 0.5 litros, con un nivel de significación del $5\,\%$.

- a) Plantear la hipótesis nula y la alternativa de contraste.
- b) Determinar la región crítica del contraste.
- c) Realizar el contraste.

3.4. Junio 2002 - Opción B

Problema 3.4.1 (3 puntos) Un proyecto de asfaltado puede llevarse a cabo por dos grupos diferentes de una misma empresa: G1 y G2. Se trata de asfaltar tres zonas: A, B y C. En una semana, el grupo G1 es capaz de asfaltar 3 unidades en la zona A, A en la zona A y A en la zona A

Problema 3.4.2 (3 puntos) Se considera la curva de ecuación

$$y = x^3 - 4x$$

a) Hallar las coordenadas de sus puntos de intersección con los ejes coordenados y de sus máximos y mínimos relativos, si existen.

- b) Representar gráficamente la curva.
- c) Calcular el área del recinto plano acotado limitado por la curva y el eje OX.

Problema 3.4.3 (2 puntos) Se lanzan dos dados equilibrados de seis caras tres veces consecutivas.

- a) Calcular la probabilidad de que en los tres lanzamientos salga el seis doble.
- b) Calcular la probabilidad de que en los tres lanzamientos salga un doble distinto del seis doble.

Problema 3.4.4 (2 puntos) La duración de las llamadas de teléfono, en una oficina comercial, sigue una distribución normal con desviación típica 10 segundos. Se hace una encuesta entre 50 llamadas y la media de duración obtenida en esa muestra es de 35 segundos. Calcular un intervalo de confianza al 95 % para la duración media de las llamadas.

3.5. Septiembre 2002 - Opción A

Problema 3.5.1 (3 puntos) Encontrar todas las matrices X tal que AX = XA, siendo

$$A = \left(\begin{array}{cc} 1 & 0 \\ 4 & 2 \end{array}\right)$$

Problema 3.5.2 (3 puntos) Para cada valor de a se considera la función

$$f(x) = \frac{3x^2 - ax}{x + 2}$$

- a) Calcular el valor de a para que f(x) tenga un mínimo relativo en x=2.
- b) Hallar las asíntotas de la curva y = f(x) para a = 3

Problema 3.5.3 (2 puntos) Una persona desea jugar en una atracción de feria, donde regalan un peluche, si al tirar un dardo se acierta en el blanco. Si sólo se permite tirar tres dardos y la probabilidad de acertar en cada tirada es 0,3.

- a) ¿Cuál es la probabilidad de llevarse el peluche?
- b) ¿Cuál es la probabilidad de llevarse el peluche exactamente en el tercer intento?, ¿y de llevárselo exactamente en el segundo?

Problema 3.5.4 (2 puntos) Los depósitos mensuales, en euros, de una entidad bancaria, siguen una distribución normal de media μ y desviación típica $\sigma=5,1$. Con el fin de contrastar si la media de los depósitos mensuales es 20 euros, se toma una muestra de tamaño 16, resultando ser la media muestral de 22,4 euros. ¿Se puede aceptar la hipótesis de que la media es 20 a un nivel de significación del 5 %?.

3.6. Septiembre 2002 - Opción B

Problema 3.6.1 (3 puntos) Determinar los valores máximo y mínimo de la función z = 3x + 4y sujeta a las restricciones:

$$\begin{cases} 3x + y \ge 3 \\ x + y \le 5 \\ x \ge -2 \\ y \le 10 \\ y \ge 0 \end{cases}$$

Problema 3.6.2 (3 puntos) Calcular el valor de a > 0 en los siguientes casos:

a)
$$\int_0^3 \frac{1}{x+1} dx = a$$

b)
$$\int_0^a \frac{1}{x+1} dx = 3$$

c)
$$\int_0^3 \frac{1}{x+a} \, dx = 5$$

Problema 3.6.3 (2 puntos) Un día determinado, en una tienda de ropa joven, se han realizado 400 ventas pagadas con la tarjeta de crédito V y 350 ventas pagadas con la tarjeta MC. Las ventas restantes del día han sido abonadas en metálico. Se comprueba que 150 de las ventas pagadas con la tarjeta de crédito V superan los 150 euros, mientras que 300 de las ventas pagadas con MC superan esa cantidad. Se extrae al azar un comprobante de las ventas del día pagadas con tarjeta de crédito.

- a) ¿Cuál es la probabilidad de que corresponda a una compra superior a 150 euros?
- b) Si la compra es inferior a 150 euros, ¿cuál es la probabilidad de que haya sido pagada con la tarjeta MC?

Problema 3.6.4 (2 puntos) De una población con distribución normal de media 50 y desviación típica 6, se extrae una muestra aleatoria de tamaño n y se calcula su media muestral.

- a) ¿Qué valor debe de tener n para que se cumpla la desigualdad $|\overline{X}-\mu|<2$, con un probabilidad de 0,95?
- b) Resolver el apartado anterior con un probabilidad de 0,90. Comparar ambos resultados.

Capítulo 4

Año 2003

4.1. Junio 2003 - Opción A

Problema 4.1.1 (3 puntos) Estudiar y resolver el siguiente sistema lineal de ecuaciones:

$$\left\{ \begin{array}{cccc} x + & 2y & +z = & 0 \\ -x - & y & = & 1 \\ & -y & -z = & -1 \end{array} \right.$$

Problema 4.1.2 (3 puntos) Sean las funciones $f(x) = x^2 - 9$ y $g(x) = x^2 - x - 6$. Calcular:

- a) $\lim_{x \longrightarrow 3} \frac{f(x)}{g(x)}$
- b) Los extremos relativos de g(x), si existen.
- c) El área del recinto limitado por la gráfica de la función f(x), el eje OX y las rectas x=3, x=6.

Problema 4.1.3 (2 puntos) El 45 % del censo de cierta ciudad vota al candidato A, el 35 % al candidato B y el resto se abstiene. Se elige al azar tres personas del censo. Calcular la probabilidad de los siguientes sucesos:

- a) Las tres personas votan al candidato A.
- b) Dos personas votan al candidato A y la otra al candidato B.
- c) Al menos una de las tres personas se abstiene.

Problema 4.1.4 (2 puntos) Se estima que el tiempo de reacción de un conductor ante un obstáculo imprevisto tiene una distribución normal con desviación típica 0.05 segundos. Si se quiere conseguir que el error de estimación de la media no supere 0.01 segundos con un nivel de confianza del $99\,\%$, ¿qué tamaño mínimo ha de tener la muestra de tiempos de reacción?

4.2. Junio 2003 - Opción B

Problema 4.2.1 (3 puntos) Un vendedor quiere dar salida a 400 kg de garbanzos, 300 kg de lentejas y 250 kg de judías. Para ello hace dos tipos de paquetes. Los de tipo A contienen 2 kg de garbanzos, 2 kg de lentejas y 1 kg de judías y los de tipo B contienen 3 kg de garbanzos, 1 kg de lentejas y 2 kg de judías. El precio de venta de cada paquete es de 25 euros para los del tipo A y de 35 euros para los del tipo B. ¿Cuántos paquetes de cada tipo debe vender para obtener el máximo beneficio y a cuánto asciende éste?

Problema 4.2.2 (3 puntos) Dada la función $f(x) = \frac{x}{1 - x^2}$

- a) Determinar los intervalos de crecimiento y decrecimiento.
- b) Calcular sus asíntotas.
- c) Hallar la ecuación de la recta tangente a la gráfica de f(x) en x = 0.

Problema 4.2.3 (2 puntos) De una baraja española de cuarenta cartas se extraen sucesivamente tres cartas al azar. Determinar la probabilidad de obtener:

- a) Tres reyes.
- b) Una figura con la primera carta, un cinco con la segunda y un seis con la tercera.
- c) Un as, un tres y un seis, en cualquier orden.

Problema 4.2.4 (2 puntos) Se probaron 10 automóviles, escogidos aleatoriamente de una misma marca y modelo, por conductores con la misma forma de conducir y en carreteras similares. Se obtuvo que el consumo medio de gasolina, en litros, por cada 100 kilómetros fue de 6,5. Estudios previos indican que el consumo de gasolina tiene una distribución normal de desviación típica 2 litros. Determinar un intervalo de confianza al 95 % para la media del consumo de gasolina de estos automóviles.

4.3. Septiembre 2003 - Opción A

Problema 4.3.1 (3 puntos) Calcular los valores de a para los cuales la inversa de la matriz

$$A = \frac{1}{5} \left(\begin{array}{cc} a & 4 \\ -4 & a \end{array} \right)$$

coincide con su transpuesta.

Problema 4.3.2 (3 puntos) Se considera la función $f(x) = xe^{x^2}$.

- a) Hallar la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 1.
- b) Calcular el área del recinto plano acotado limitado por la gráfica de f(x) para $x \ge 0$, el eje OX y la recta x = 2.

Problema 4.3.3 (2 puntos) El test para detectar una sustancia contaminante en agua, presenta los siguientes resultados: si el agua no está contaminada, suceso que ocurre con una probabilidad igual a 0,99, el resultado del test es que el agua está contaminada con una probabilidad igual a 0,05. Cuando el agua está contaminada, el test lo detecta con una probabilidad igual a 0,99. Se ha realizado una prueba y el test indica que hay contaminación. Calcular la probabilidad de que el agua no esté realmente contaminada. Interpretar el valor numérico obtenido.

Problema 4.3.4 (2 puntos) El tiempo de conexión a Internet de los alumnos de cierta universidad, sigue una distribución normal con desviación típica 15 minutos. Para estimar la media del tiempo de conexión, se quiere calcular un intervalo de confianza que tenga una amplitud menor o igual que 6 minutos, con un nivel de confianza del 95 %. Determinar cuál es el tamaño mínimo de la muestra que es necesario observar.

4.4. Septiembre 2003 - Opción B

Problema 4.4.1 (3 puntos) Determinar los valores máximos y mínimos de la función z = 5x + 3y sujeta a las restricciones

$$\begin{cases} 3x + y \ge 4 \\ x + y \le 6 \\ 0 \le x \le 5 \\ 0 \le y \le 5 \end{cases}$$

Problema 4.4.2 (3 puntos) Sea la función $f(x) = \frac{-x^2 + 1}{2x^2 + 2x - 12}$ Se pide:

- a) Especificar su dominio de definición.
- b) Estudiar su continuidad.
- c) Calcular sus asíntotas si las hubiera.

Problema 4.4.3 (2 puntos) Se elige un número natural entre el 1 y el 20 de manera que todos tengan la misma probabilidad de ser escogidos. ¿Cuál es la probabilidad de que el número escogido sea divisible por 2 o por 3? ¿Cuál es la probabilidad de que sea divisible por 3 y no por 6?

Problema 4.4.4 (2 puntos) Se ha extraído una muestra de 150 familias de residentes en un barrio obteniéndose que la renta familiar media de la misma asciende a 20000 euros. Se supone que la renta familiar de los residentes en el barrio sigue una distribución normal de desviación típica 150 euros.

- a) A partir de estos datos, calcular un intervalo de confianza para la renta familiar media con un nivel de confianza del 95%.
- b) ¿Qué tamaño muestral mínimo es necesario para conseguir, con un nivel de confianza del 90 %, un error en la estimación de la renta familiar media no superior a ± 142 euros?

Capítulo 5

Año 2004

5.1. Modelo 2004 - Opción A

Problema 5.1.1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro m:

$$\begin{cases} 2x + & y - & z = & 2\\ x + & y + & 2z = & 5\\ -x + & (m+2)z = & 3 \end{cases}$$

- a) Discutir el sistema para los distintos valores de m.
- b) Resolver el sistema para m=3.

Problema 5.1.2 (3 puntos) Se considera la función real de variable real definida por

$$f(x) = x + \frac{1}{x} \ x \neq 0$$

- a) Hallar las coordenadas de sus máximos y mínimos relativos.
- b) Determinar los intervalos de concavidad y convexidad.
- c) Esbozar la gráfica de f(x).

Problema 5.1.3 (2 puntos) Un rosal no está en buen estado y, por tanto, si se riega tiene la misma probabilidad de mantenerse que de secarse. La probabilidad de que se mantenga si no se riega es de 0,25. La probabilidad de no regar el rosal es de 2/3. Si el rosal se ha secado, ¿Cuál es la probabilidad de no haberlo regado?.

Problema 5.1.4 (2 puntos) Se supone que los ingresos diarios en una empresa siguen una distribución normal con media 400 euros y desviación típica 250 euros.

- a) ¿Cómo se distribuye la media muestral, para muestras de tamaño n?.
- b) Se dispone de una muestra aleatoria de 25 observaciones. Calcular la probabilidad de que el promedio de ingresos esté entre 350 y 450 euros.

5.2. Modelo 2004 - Opción B

Problema 5.2.1 (3 puntos) Un centro dedicado a la enseñanza personalizada de idiomas tiene dos cursos, uno básico y otro avanzado, para los que dedica distintos recursos. Esta planificación hace que pueda atender entre 20 y 65 estudiantes del curso básico y entre 20 y 40 estudiantes del curso avanzado. El número máximo de estudiantes que en total puede atender es 100. Los beneficios que obtiene por cada estudiante en el curso básico se estiman en 145 euros y en 150 euros por cada estudiante del curso avanzado. Hallar qué número de estudiantes de cada curso proporciona el máximo beneficio.

Problema 5.2.2 (3 puntos) Para cada valor de a se considera la función

$$f(x) = 2x + ax^2 - 4\ln x$$

- a) Calcular el valor del parámetro real a sabiendo que la función tiene un extremo relativo en el punto de abscisa x=1. Clasificar el extremo.
- b) Estudiar los intervalos de crecimiento y decrecimiento para a=3.
- c) Hallar las asíntotas.

Observación: La notación la representa logaritmo neperiano.

Problema 5.2.3 (2 puntos) Sobre los sucesos A y B se conocen las siguientes probabilidades:

$$P(A) = 0, 7, \quad P(B) = 0, 5 \quad P(A \cap B) = 0, 45$$

Calcular:

- a) P(B|A)
- b) $P(A^c \cap B^c)$

Nota: A^c representa el suceso complementario de A.

Problema 5.2.4 (2 puntos) El salario de los trabajadores de una ciudad sigue una distribución normal con desviación típica 15 euros. Se quiere calcular un intervalo de confianza para el salario medio, con un nivel de confianza del 95 %. Determinar cuál es el tamaño mínimo de la muestra que se necesitaría recoger para que el intervalo de confianza tenga una amplitud de 6 euros.

5.3. Junio 2004 - Opción A

Problema 5.3.1 (3 puntos) Un producto se compone de la mezcla de otros dos A y B. Se tienen 500kg de A y 500kg de B. En la mezcla, el peso de B debe ser menor o igual que 1, 5 veces el de A. Para satisfacer la demanda, la producción debe ser mayor o igual a 600kg. Sabiendo que cada kg de A cuesta 5 euros y cada kg de B cuesta 4 euros, calcular los kg de A y B que deben emplearse para hacer una mezcla de coste mínimo, que cumpla los requisitos anteriores. Obtener dicho coste mínimo.

Problema 5.3.2 (3 puntos) Calcular la integral definida

$$\int_{-1}^{1} (|x| + x + 1) \, dx$$

Nota.- La notación |x| representa el valor absoluto de x.

Problema 5.3.3 (2 puntos) Dos expertos, E_1 y E_2 , realizan peritaciones para una cierta compañía de seguros. La probabilidad de que una peritación haya sido realizada por E_1 es 0,55 y por E_2 es 0,45. Si una peritación ha sido realizada por E_1 , la probabilidad de que dé lugar a indemnización es 0,98 y si ha sido realizada por E_2 , la probabilidad de que dé lugar al pago de una indemnización es 0,90. Un siniestro ha supuesto a la compañía el pago de una indemnización. Hallar la probabilidad de que la peritación haya sido realizada por E_2 .

Problema 5.3.4 (2 puntos) En un servicio de atención al cliente, el tiempo de espera hasta recibir atención es una variable normal de media 10 minutos y desviación típica 2 minutos. Se toman muestras aleatorias del tiempo de espera de los clientes que llegan en un día concreto. Se pide:

- a) ¿Cuál es la probabilidad de que el tiempo medio de espera de una muestra de 25 clientes no supere los 9 minutos.
- b) ¿Cuál es la distribución de la media muestral, si se toman muestras aleatorias de 64 clientes?. Especificar sus parámetros.

5.4. Junio 2004 - Opción B

Problema 5.4.1 (3 puntos) Hallar todas las matrices

$$X = \left(\begin{array}{cc} a & 0 \\ b & c \end{array}\right); \quad a,b,c \in R$$

que satisfacen la ecuación matricial

$$X^2 = 2X$$

Problema 5.4.2 (3 puntos) Se considera la función real de variable real definida por

$$f(x) = \sqrt{\frac{x^2 - 4}{x^2 - 1}}$$

- a) Determinar su dominio de definición.
- b) Obtener sus asíntotas.

Problema 5.4.3 (2 puntos) En una empresa se producen dos tipos de bombillas: halógenas y de bajo consumo, en una proporción de 3 a 4, respectivamente. La probabilidad de que una bombilla halógena sea defectuosa es 0,02 y de que una de bajo consumo sea defectuosa es 0,09. Se escoge al azar una bombilla y resulta no defectuosa, ¿cuál es la probabilidad de que sea halógena?.

Problema 5.4.4 (2 puntos) El precio de ciertos electrodomésticos puede considerarse como una variable aleatoria con distribución normal de desviación típica 100 euros. Los precios en euros correspondientes a una muestra de 9 de estos electrodomésticos son

- a) Construir un intervalo de confianza al 98 % para la media poblacional.
- b) Hallar el tamaño mínimo que debe tener la muestra, para que con un nivel de confianza del 99 %, el error de estimación del precio no supere los 50 euros

5.5. Septiembre 2004 - Opción A

Problema 5.5.1 (3 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real m:

$$\begin{cases} mx + & y - & 3z = & 5 \\ -x + & y + & z = & -4 \\ x + & my - & mz = & 1 \end{cases}$$

- a) Discútase el sistema según los diferentes valores del parámetro m.
- b) Resuélvase el sistema para m=2.

Problema 5.5.2 (3 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{x^3}{a} - ax^2 + 5x + 10, \quad a \neq 0$$

- a) Obtener los valores de a para los cuales la función f(x) tiene un máximo en x = 1.
- b) Calcular los extremos relativos de f(x) para a=3 y representar la función.

Problema 5.5.3 (2 puntos) Una cierta instalación de seguridad tiene instalados dos indicadores. Ante una emergencia los indicadores se activan de forma independiente. La probabilidad de que se active el primer indicador es 0,95 y de que se active el segundo es 0,90.

- a) Hallar la probabilidad de que ante una emergencia se active sólo uno de los indicadores.
- b) Hallar la probabilidad de que ante una emergencia se active al menos uno de los indicadores.

Problema 5.5.4 (2 puntos) Una muestra aleatoria de 9 tarrinas de helado proporciona los siguientes pesos en gramos 88, 90, 90, 86, 87, 88, 91, 92, 89.

Hallar un intervalo de confianza al 95 % para la media de la población, sabiendo que el peso de las tarrinas tiene una distribución normal con una desviación típica de 1,8 gramos.

5.6. Septiembre 2004 - Opción B

Problema 5.6.1 (3 puntos) Un establecimiento de prendas deportivas tiene almacenados 1600 bañadores, 1000 gafas de baño y 800 gorros de baño. Se quiere incentivar la compra de estos productos mediante la oferta de dos tipos de lotes: el lote A, que produce un beneficio de 8 euros, formado por un bañador, un gorro y unas gafas, y el lote B que produce un beneficio de 10 euros y está formado por dos bañadores y unas gafas. Sabiendo que la publicidad de esta oferta tendrá un coste de 1500 euros a deducir de los beneficios, se pide calcular el número de lotes A y B que harán máximo el beneficio y a cuánto asciende éste.

Problema 5.6.2 (3 puntos) Sean las funciones

$$f(x) = x^2 - 2x - 8; \quad g(x) = -\frac{x^2}{2} + x + 4$$

a) Calcular

$$\lim_{x \longrightarrow 4} \frac{f(x)}{g(x)}$$

b) Calcular el recinto acotado limitado por las curvas f(x) y g(x).

Problema 5.6.3 (2 puntos) En una población, el 40% son hombres y el 60% mujeres. En esa población el 80% de los hombres y el 20% de las mujeres son aficionados al futbol.

- a) Calcular la probabilidad de que una persona elegida al azar sea aficionada al futbol.
- b) Elegida al azar una persona resulta ser aficionada al futbol, ¿cuál es la probabilidad de que sea mujer?.

Problema 5.6.4 (2 puntos) Calcular el tamaño mínimo que debe de tener una muestra aleatoria para garantizar que, en la estimación de la media de una población normal con varianza igual a 60, al 90% de confianza, el error de estimación cometido no sea superior a 3 unidades.

Año 2005

6.1. Modelo 2005 - Opción A

Problema 6.1.1 (3 puntos) Se dice que una matriz cuadrada es ortogonal si $AA^T = I$

a) Estudiar si la matriz A es ortogonal

$$A = \left(\begin{array}{ccc} 4/5 & 0 & -3/5 \\ 3/5 & 0 & 4/5 \\ 0 & 1 & 0 \end{array}\right)$$

b) Siendo A la matriz del apartado anterior, resolver el sistema

$$A \left(\begin{array}{c} x \\ y \\ z \end{array} \right) = \left(\begin{array}{c} 1 \\ 1 \\ -1 \end{array} \right)$$

Nota: La notación A^T significa matriz traspuesta de A.

Problema 6.1.2 (3 puntos) Sea la función: $f(x) = x^3 - 3x$

- a) Calcular sus extremos y sus puntos de inflexión.
- b) Calcular el área del recinto plano acotado limitado por la gráfica de f(x), el eje OX y las rectas verticales $x=-1, x=\frac{1}{2}$.

Problema 6.1.3 (2 puntos) Un ajedrecista gana una partida con probabilidad 0,6, la empata con probabilidad 0,3 y la pierde con probabilidad 0,1. El jugador juega dos partidas.

- a) Describir el espacio muestral y la probabilidad de cada uno de los resultados de este experimento aleatorio.
- b) Calcular la probabilidad de que gane al menos una partida.

Problema 6.1.4 (2 puntos) El número de días de ausencia en el trabajo de los empleados de cierta empresa para un período de seis meses, se puede aproximar mediante una distribución normal de desviación típica 1,5 días. Una muestra aleatoria de diez empleados ha proporcionado los siguientes datos

5 4 6 8 7 4 2 7 6 1

- a) Determinar un intervalo de confianza al $90\,\%$ para el número medio de días que los empleados de esa empresa han faltado durante los seis últimos meses.
- b) ¿Qué tamaño debe tener la muestra para que el error máximo de la estimación sea de 0,5 días, con el mismo nivel de confianza?

6.2. Modelo 2005 - Opción B

Problema 6.2.1 (3 puntos) Una compañía naviera dispone de dos barcos A y B para realizar un determinado crucero. El barco A debe hacer tantos viajes o más que el barco B, pero no puede sobrepasar 12 viajes. Entre los dos barcos deben hacer no menos de 6 viajes y no más de 20. La naviera obtiene un beneficio de 18000 euros por cada viaje del barco A y 12000 euros por cada viaje del B. Se desea que las ganancias sean máximas.

- a) Expresar la función objetivo.
- b) Describir mediante inecuaciones las restricciones del problema y representar gráficamente el recinto definido.
- c) Hallar el número de viajes que debe efectuar cada barco para obtener el máximo beneficio. Calcular dicho beneficio máximo.

Problema 6.2.2 (3 puntos) Se considera la función real de variable real definida por

$$f(x) = \begin{cases} 2x^2 - 3x + 1 & \text{si} \quad x \le 1\\ \ln x & \text{si} \quad x > 1 \end{cases}$$

- a) Estudiar la continuidad de f(x) en x = 1.
- b) Esbozar su gráfica.
- c) Hallar la ecuación de la recta tangente a dicha gráfica en x = 1.

Problema 6.2.3 (2 puntos) En un centro de enseñanza hay 240 estudiantes matriculados en 2º curso de Bachillerato. La siguiente tabla recoge su distribución por sexo y por opción que se cursa

	Chicas	Chicos
Científico — Tecnológica	64	52
Humanidades y C. Sociales	74	50

Si se elige un estudiante al azar de entre los que cursan 2^0 de Bachillerato en ese centro, calcular la probabilidad de que:

- a) No curse la opción Científico-Tecnológica.
- b) Si es chico, curse la opción de Humanidades y Ciencias Sociales.

Problema 6.2.4 (2 puntos) La temperatura corporal en una cierta especie animal es una variable aleatoria que tiene una distribución normal de media 36,7°C y desviación típica 3,8°C. Se elige aleatoriamente una muestra de 100 ejemplares de esa especie. Hallar la probabilidad de que la temperatura corporal media de la muestra:

- a) Sea menor o igual a 36,9°C.
- b) Esté comprendida entre 36,5°C y 37,3°C.

6.3. Junio 2005 - Opción A

Problema 6.3.1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k

$$\begin{cases} 2x - & 3y + & z = 0 \\ x - & ky - & 3z = 0 \\ 5x + & 2y - & z = 0 \end{cases}$$

Se pide:

- a) Discutir el sistema para los distintos valores de k.
- b) Resolver el sistema en los casos en los que sea posible.

Problema 6.3.2 (3 puntos) La función:

$$B(x) = \frac{-x^2 + 9x - 16}{x}$$

representa, en miles de euros, el beneficio neto de un proceso de venta, siendo x el número de artículos vendidos. Calcular el número de artículos que deben venderse para obtener el beneficio máximo y determinar dicho beneficio máximo.

Problema 6.3.3 (2 puntos) Una caja con una docena de huevos contiene dos rotos. Se extraen al azar sin reemplazamiento (sin devolverlos después y de manera consecutiva) cuatro huevos.

- a) Calcular la probabilidad de extraer los cuatro huevos en buen estado.
- b) Calcular la probabilidad de extraer de entre los cuatro huevos, exactamente uno roto.

Problema 6.3.4 (2 puntos) En una encuesta se pregunta a 10.000 personas cuántos libros lee al año, obteniéndose una media de 5 libros. Se sabe que la población tiene una distribución normal con desviación típica 2.

- a) Hallar un intervalo de confianza al 80 % para la media poblacional.
- b) Para garantizar un error de estimación de la media poblacional no superior a 0,25 con un nivel de confianza del 95%, ¿a cuántas personas como mínimo sería necesario entrevistar?.

6.4. Junio 2005 - Opción B

Problema 6.4.1 (3 puntos) Un mayorista vende productos congelados que presenta en dos envases de dos tamaños: pequeño y grande. La capacidad de sus congeladores no le permite almacenar más de 1000 envases en total. En función de la demanda sabe que debe mantener un stock mínimo de 100 envases pequeños y 200 envases grandes. La demanda de envases grandes es igual o superior a la de envases pequeños. El coste por almacenaje es de 10 céntimos de euro para cada envase pequeño y de 20 céntimos de euro para cada envase grande. ¿Qué cantidad de cada tipo de envases proporciona el gasto mínimo de almacenaje?. Obtener dicho mínimo.

Problema 6.4.2 (3 puntos)

a) Hallar la ecuación de una recta tangente a la gráfica de $f(x) = e^{2-x}$ en el punto donde ésta corta al eje de ordenadas.

b) Calcular el área del recinto limitado por la gráfica de la función $f(x) = x^2 - 4x$, el eje OX y las rectas x = -1, x = 4.

Problema 6.4.3 (2 puntos) En un experimento aleatorio consistente en lanzar simultáneamente tres dados equilibrados de seis caras, se pide calcular la probabilidad de cada uno de los siguientes sucesos: "Obtener tres unos", "Obtener al menos un dos", "Obtener tres números distintos" y "Obtener una suma de cuatro".

Problema 6.4.4 (2 puntos) Para una población $N(\mu, \sigma = 25)$, ¿qué tamaño muestral mínimo es necesario para estimar μ mediante un intervalo de confianza, con un error menor o igual que 5 unidades, y con una probabilidad mayor o igual que 0,95?.

6.5. Septiembre 2005 - Opción A

Problema 6.5.1 (3 puntos) En una empresa de alimentación se dispone de 24 kg de harina de trigo y 15 kg de harina de maíz, que se utilizan para obtener dos tipos de preparados: A y B. La ración del preparado A contiene 200 gr de harina de trigo y 300 gr de harina de maíz, con 600 cal de valor energético. La ración del preparado B contiene 200 gr de harina de trigo y 100 gr de harina de maíz, con 400 cal de valor energético. ¿Cuántas raciones de cada tipo hay que preparar para obtener el máximo rendimiento energético total? Obtener el rendimiento máximo.

Problema 6.5.2 (3 puntos) Se considera la curva de ecuación $y = \frac{x^3}{x^2 + 1}$. Se pide:

- a) Hallar la ecuación de la recta tangente a dicha curva en el punto de abscisa x = 1.
- b) Hallar las asíntotas de la curva.

Problema 6.5.3 (2 puntos) En un colectivo de inversores bursátiles, el 20% realiza operaciones vía internet. De los inversores que realizan operaciones vía internet, un 80% consulta InfoBolsa-Web. De los inversores bursátiles que no realizan inversiones vía internet sólo un 20% consulta InfoBolsa-Web. Se pide:

- a) Obtener la probabilidad de que un inversor elegido al azar en este colectivo consulte InfoBolsaWeb.
- b) Si se elige al azar un inversor bursátil de este colectivo y resulta que consulta InfoBolsaWeb, ¿cuál es la probabilidad de que realice operaciones por internet?.

Problema 6.5.4 (2 puntos) La duración de las baterías de un determinado modelo de teléfono móvil tiene una distribución normal de media 34.5 horas y una desviación típica de 6.9 horas. Se toma una muestra aleatoria simple de 36 teléfonos móviles.

- a) ¿Cuál es la probabilidad de que la duración media de las baterías de la muestra este comprendida entre 32 y 33.5 horas?.
- b) ¿Y de que sea mayor de 38 horas?.

6.6. Septiembre 2005 - Opción B

Problema 6.6.1 (3 puntos) Se considera el siguiente sistema de ecuaciones que depende del parámetro real p

$$\begin{cases} x + & y + & z = & 0 \\ -x + & 2y + & pz = & -3 \\ x - & 2y - & z = & p \end{cases}$$

- a) Discutir el sistema según los distintos valores de p.
- b) Resolver el sistema para p=2.

Problema 6.6.2 (3 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{x^2}{x^2 - 9}$$

- a) Hallar sus asíntotas.
- b) Calcular sus máximos y sus mínimos relativos, si existen.

Problema 6.6.3 (2 puntos) Sean A y B dos sucesos, tal que $P(A) = \frac{1}{2}$, $P(\overline{B}) = \frac{2}{5}$ y $P(\overline{A} \cup \overline{B}) = \frac{3}{4}$. Calcular

- a) P(B|A).
- b) $P(\overline{A}|B)$.

Nota: \overline{A} representa el suceso contrario del suceso A.

Problema 6.6.4 (2 puntos) El tiempo de reacción de una alarma electrónica ante un fallo del sistema es una variable aleatoria normal con desviación típica 1 segundo. A partir de una muestra de 100 alarmas se ha estimado la media poblacional del tiempo de reacción, mediante un intervalo de confianza, con un error máximo de estimación igual a 0.2 segundos. ¿Con qué nivel de confianza se ha realizado la estimación?

Año 2006

7.1. Modelo 2006 - Opción A

Problema 7.1.1 (3 puntos) Sea el sistema de ecuaciones lineales dependientes del parámetro a

$$\begin{cases} x+ & y+ & (a+1)z = & 9\\ 3x- & 2y+ & z = & 20a\\ x+ & y+ & 2az = & 9 \end{cases}$$

- a) Discutir el sistema para los diferentes valores del parámetro a.
- b) Resolver el sistema en el caso de que tenga infinitas soluciones.
- c) Resolver el sistema para a=2.

Problema 7.1.2 (3 puntos) Calcular el área del recinto acotado limitado por la gráfica de la función

$$f(x) = x^3 + 5x^2 + 2x - 8$$

y el eje OX.

Problema 7.1.3 (2 puntos) Se dispone de la siguiente información relativa a los sucesos A y B:

$$P(A) = 0.6$$
 $P(B) = 0.2$ $P(A \cap B) = 0.12$

a) calcular las probabilidades de los sucesos

$$(A \cup B)$$
 y $(A|(A \cup B))$

b) ¿Son incompatibles? ¿Son independientes?

Problema 7.1.4 (2 puntos) El tiempo de conexión a Internet de los clientes de un cibercafé tiene una distribución normal de media μ y desviación típica 1,2 horas. Una muestra de 40 clientes ha dado como resultado una media de tiempo de conexión de 2,85 horas. Se pide:

- a) Determinar un intervalo de confianza al 95 % para μ .
- b) Calcular el tamaño mínimo que debería tener la muestra para estimar la media de tiempo diario de conexión a Internet de los clientes de ese cibercafé, con un error menor o igual que 0,25 horas y una probabilidad de 0,95.

7.2. Modelo 2006 - Opción B

Problema 7.2.1 (3 puntos) Un taller dedicado a la confección de prendas de punto fabrica dos tipos de prendas: A y B. Para la confección de la prenda de tipo A se necesitan 30 minutos de trabajo manual y 45 minutos de máquina. Para la de tipo B, 60 minutos de trabajo manual y 20 minutos de máquina. El taller dispone al mes como máximo de 85 horas para el trabajo manual y de 75 horas para el trabajo de máquina y debe de confeccionar al menos 100 prendas. Si los beneficios son de 20 euros por cada prenda de tipo A y de 17 euros por cada prenda de tipo B, ¿cuántas prendas de cada tipo debe de fabricar al mes, para obtener el máximo beneficio y a cuánto asciende éste?

Problema 7.2.2 (3 puntos) Calcular el valor de a > 0 para que el área de la región plana acotada limitada por las gráficas de las curvas $y = x^3$, y = ax, sea igual a 4.

Problema 7.2.3 (2 puntos) Una urna contiene dos bolas. La urna se llenó tirando una moneda equilibrada al aire dos veces y poniendo una bola blanca por cada cara y una negra por cada cruz. Se extrae una bola de la urna y resulta ser blanca. Hallar la probabilidad de que la otra bola de la urna sea también blanca.

Problema 7.2.4 (2 puntos) Un fabricante de automóviles afirma que los coches de un cierto modelo tienen un consumo por cada 100 kilómetros que se puede aproximar por una distribución normal con desviación típica 0,68 litros. Se observa una muestra aleatoria simple de 20 coches del citado modelo y se obtiene una media de consumo de 6,8 litros. Determinar un intervalo de confianza al 95 % para la media de consumo de ese modelo de vehículos.

7.3. Junio 2006 - Opción A

Problema 7.3.1 (3 puntos) Una papelería quiere liquidar hasta 78 kg de papel reciclado y hasta 138 kg de papel normal. Para ello hace dos tipos de lotes, A y B. Los lotes A están formados por 1 kg de papel reciclado y 3 kg de papel normal, y los lotes B por 2 kg de papel de cada clase. El precio de venta de cada lote A es de 0,9 euros y el de cada lote B es de 1 euro. ¿Cuántos lotes A y B debe vender para maximizar sus ingresos? ¿A cuánto ascienden estos ingresos máximos?

Problema 7.3.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = x^3 - 9x$$

Se pide:

- a) Calcular sus máximos y mínimos relativos, si existen.
- b) Calcular el área del recinto plano acotado limitado por la gráfica de f y el eje OX.

Problema 7.3.3 (2 puntos) Una persona cuida de su jardín pero es bastante distraída y se olvida de regarlo a veces. La probabilidad de que se olvide de regar el jardín es 2/3. El jardín no está en muy buenas condiciones, así que si se le riega tiene la misma probabilidad de progresar que de estropearse, pero la probabilidad de que progrese si no se le riega es de 0,25.

Si el jardín se ha estropeado, ¿cuál es la probabilidad de que la persona olvidara regarlo?

Problema 7.3.4 (2 puntos) En cierta población humana, la media muestral \overline{X} de una característica se distribuye mediante una distribución normal. La probabilidad de que \overline{X} sea menor o igual a 75 es 0,58 y la de que \overline{X} sea mayor que 80 es 0,04. Hallar la media y la desviación típica de \overline{X} . (Tamaño muestral n=100).

7.4. Junio 2006 - Opción B

Problema 7.4.1 (3 puntos) Encontrar todas las matrices X cuadradas 2×2 que satisfacen la igualdad

$$XA = AX$$

en cada uno de los casos siguientes:

a)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$$

b)
$$A = \begin{pmatrix} 0 & 1 \\ 3 & 0 \end{pmatrix}$$

Problema 7.4.2 (3 puntos) Se considera la curva de ecuación cartesiana:

$$y = x^2 + 8x$$

Se pide:

a) Calcular las coordenadas del punto en el que la recta tangente a la curva es paralela a la recta

$$y = 2x$$

b) Calcular el área del recinto plano acotado limitado por las gráficas de la curva dada y de la recta de ecuación cartesiana

$$y = x + 8$$

Problema 7.4.3 (2 puntos) Se considera el experimento consistente en lanzar una moneda equilibrada y un dado. Se pide:

- a) Describir el espacio muestral de este experimento.
- b) Determinar la probabilidad del suceso: "obtener una cara en la moneda y un número par en el dado".

Problema 7.4.4 (2 puntos) El tiempo de espera en minutos en una ventanilla se supone aproximado mediante una distribución $N(\mu, \sigma)$ con $\sigma = 3$ minutos. Se lleva a cabo un muestreo aleatorio simple de 10 individuos y se obtiene que la media muestral del tiempo de espera es de 5 minutos. Determinar un intervalo de confianza al 95 % para μ .

7.5. Septiembre 2006 - Opción A

Problema 7.5.1 (Puntuación máxima: 3 puntos)

Una empresa fabrica láminas de aluminio de dos grosores, finas y gruesas, y dispone cada mes de 400 kg de aluminio y 450 horas de trabajo para fabricarlas. Cada m^2 de lámina fina necesita 5 kg de aluminio y 10 horas de trabajo, y deja una ganancia de 45 euros. Cada m^2 de lámina gruesa necesita 20 kg y 15 horas de trabajo, y deja una ganancia de 80 euros. ¿Cuántos m^2 de cada lámina debe fabricar la empresa al mes para que la ganancia sea máxima, y a cuánto asciende ésta?

Problema 7.5.2 (Puntuación máxima: 3 puntos)

Dada la función real de variable real definida por:

$$f(x) = \frac{x^2 - 16}{x^2 - 4}$$

Se pide:

- a) Encontrar las asíntotas de la función.
- b) Especificar el signo de la función en las distintas regiones en las que está definida.

Problema 7.5.3 (Puntuación máxima: 2 puntos)

Los tigres de cierto país proceden de tres reservas: el $30\,\%$ de la primera, el $25\,\%$ de la segunda y el $45\,\%$ de la tercera. La proporción de tigres albinos de la primera reserva es $0.2\,\%$, mientras que dicha proporción es $0.5\,\%$ en la segunda, y $0.1\,\%$ en la tercera. ¿Cuál es la probabilidad de que un tigre de ese país sea albino?

Problema 7.5.4 (Puntuación máxima: 2 puntos)

La duración de la batería de cierto teléfono móvil se puede aproximar por una distribución normal con una desviación típica de 5 meses. Se toma una muestra aleatoria simple de 10 baterías y se obtienen las siguientes duraciones (en meses):

Hallar un intervalo de confianza al 95 % para la duración media de este modelo de baterías.

7.6. Septiembre 2006 - Opción B

Problema 7.6.1 (Puntuación máxima: 3 puntos)

Se considera el sistema de ecuaciones lineales, dependiente del parámetro real a:

$$\begin{cases} x + & y + & 2z = 2 \\ -2x + & 3y + & z = 1 \\ -x + & ay + & 3z = 3 \end{cases}$$

- a) Discutir el sistema para los distintos valores de a.
- b) Resolver el sistema para a = 2.

Problema 7.6.2 (Puntuación máxima: 3 puntos)

Representar gráficamente la región acotada limitada por las gráficas de las funciones

$$f(x) = 9 - x^2$$
, $q(x) = 3 + x$

y obtener su área.

Problema 7.6.3 (Puntuación máxima: 2 puntos)

Una urna contiene 10 bolas blancas y 5 negras. Se extraen dos bolas al azar sin reemplazamiento. ¿Cuál es la probabilidad de que sean del mismo color?

Problema 7.6.4 (Puntuación máxima: 2 puntos)

El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60 kg y desviación típica 8 kg. Se toman 100 muestras aleatorias simples de 64 estudiantes cada una. Se pide:

- a) La media y la desviación típica de la distribución de la media muestral
- b) ¿En cuántas de las 100 muestras cabe esperar una media entre 59 y 61 kg?

Año 2007

8.1. Modelo 2007 - Opción A

El examen modelo coincide con el de Septiembre del 2006

8.2. Modelo 2007 - Opción B

El examen modelo coincide con el de Septiembre del 2006

8.3. Junio 2007 - Opción A

Problema 8.3.1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases} x - 2y + z = 0 \\ 3x + 2y - 2z = 3 \\ 2x + 2y + az = 8 \end{cases}$$

- a) Discutir el sistema para los distintos valores de a.
- b) Resolver el sistema para a = 4.

Problema 8.3.2 (3 puntos) Dada la función real de variable real definida por

$$f(x) = \frac{(x-3)^2}{x+3}$$

- a) Determinar las asíntotas de la función.
- b) Calcular sus máximos y sus mínimos y determinar sus intervalos de crecimiento.

Problema 8.3.3 (2 puntos) Según un cierto estudio, el $40\,\%$ de los hogares europeos tienen contratado acceso a internet, el $33\,\%$ tiene contratada televisión por cable, y el $20\,\%$ disponen de ambos servicios. Se selecciona un hogar europeo al azar.

- a) ¿Cuál es la probabilidad de que sólo tenga contratada la televisión por cable?
- b) ¿Cuál es la probabilidad de que no tenga contratado ninguno de los dos servicios?

Problema 8.3.4 (2 puntos) La edad a la que contraen matrimonio los hombres de la Isla de Barataria es una variable aleatoria que se puede aproximar por una distribución normal de media 35 años y desviación típica de 5 años. Se elige aleatoriamente una muestra de 100 hombres de dicha isla. Sea \overline{X} la media muestral de la edad de casamiento.

- a) ¿Cuáles son la media y la varianza de \overline{X} ?
- b) ¿Cuál es la probabilidad de que la edad media de casamiento de la muestra esté comprendida entre 36 y 37 años?

8.4. Junio 2007 - Opción B

Problema 8.4.1 (3 puntos) Una empresa de instalaciones dispone de 195 kg de cobre, 20 kg de titanio y 14 kg de aluminio. Para fabricar 100 metros de cable de tipo A se necesitan 10 kg de cobre, 2 de titanio y 1 de aluminio, mientras que para fabricar 100 metros de cable de tipo B se necesitan 15 kg de cobre, 1 de titanio y 1 de aluminio. El beneficio que se obtiene por 100 metros de tipo A es de 1500 euros, y por 100 metros de tipo B, 1000 euros.

Calcular los metros de cable de cada tipo que hay que fabricar para maximizar el beneficio de la empresa. Obtener dicho beneficio.

Problema 8.4.2 (3 puntos) Representar gráficamente la región acotada limitada por las gráficas de las funciones

$$f(x) = \frac{5}{4}x^2$$
, $g(x) = \frac{1}{2}(5x + 20)$, $h(x) = \frac{1}{2}(-5x + 20)$

y obtener su área.

Problema 8.4.3 (2 puntos) Los pianistas de la isla sordina se forman en tres conservatorios, C1, C2 y C3, que forman al 40 %, 35 % y 25 % de los pianistas, respectivamente. Los porcentajes de pianistas virtuosos que producen estos conservatorios son del 5 %, 3 % y 4 %, respectivamente. Se selecciona un pianista al azar.

- a) Calcular la probabilidad de que sea virtuoso.
- b) El pianista resulta ser virtuoso. Calcular la probabilidad de que se haya formado en el primer conservatorio C1.

Problema 8.4.4 (2 puntos) La duración de las rosas conservadas en agua en un jarrón es una variable aleatoria que se puede aproximar por una distribución normal con una desviación típica de 10 horas. Se toma una muestra aleatoria simple de 10 rosas y se obtienen las siguientes duraciones (en horas):

Hallar un intervalo de confianza al 95 % para la duración media de las rosas.

8.5. Septiembre 2007 - Opción A

Problema 8.5.1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases} x + ay + z = 1 \\ 2y + az = 2 \\ x + y + z = 1 \end{cases}$$

- a) Discutir el sistema para los distintos valores de a.
- b) Resolver el sistema para a = 3 y a = 1.

Problema 8.5.2 (3 puntos) Dada la función real de variable real definida por

$$f(x) = \frac{x^2 - x}{x^2 - 3x + 2}$$

- a) Especificar el dominio de definición.
- b) Estudiar su continuidad.
- c) Calcular sus asíntotas si las hubiera.

Problema 8.5.3 (2 puntos) En el departamento de lácteos de un supermercado se encuentran mezclados y a la venta 100 yogures de la marca A, 60 de la marca B y 40 de la marca C. La probabilidad de que un yogur esté caducado es 0,01 para la marca A; 0,02 para la marca B y 0,03 para la marca C. Un comprador elige un yogur al azar.

- a) Calcular la probabilidad de que el yogur esté caducado.
- b) Sabiendo que el yogur elegido está caducado, ¿Cuál es la probabilidad de que sea de la marca B?

Problema 8.5.4 (2 puntos) Se supone que la recaudación diaria de los comercios de un barrio determinado es una variable aleatoria que se puede aproximar por una distribución normal de desviación típica 328 euros. Se ha extraído una muestra de 100 comercios de dicho barrio, obteniéndose que la recaudación diaria media asciende a 1248 euros. Calcular:

- a) El intervalo de confianza para la recaudación diaria media con un nivel de confianza del 99 %.
- b) El tamaño muestral mínimo necesario para conseguir, con un nivel de confianza del 95 %, un error en la estimación de la recaudación diaria menor de 127 euros.

8.6. Septiembre 2007 - Opción B

Problema 8.6.1 (3 puntos) Una aerolínea quiere optimizar el número de filas de clase preferente y de clase turista en un avión. La longitud útil del avión para instalar las filas de asientos es de 104 m, necesitándose 2 m para instalar una fila de clase preferente y 1,5 m para las de clase turista. La aerolínea precisa instalar al menos 3 filas de clase preferente y que las filas de clase turista sean como mínimo el triple que las de preferente. Los beneficios por fila de clase turista son de 152 euros y de 206 euros para la clase preferente.

¿Cuántas filas de clase preferente y cuántas de clase turista se deben instalar para obtener el beneficio máximo?

Problema 8.6.2 (3 puntos) La gráfica de la función $f(x) = ax^3 + bx^2 + c$ satisface las siguientes propiedades:

- \blacksquare Pasa por el punto (0,0).
- ightharpoonup Tiene un máximo local en el punto (1,2).

Se pide:

- a) Obtener el valor de los coeficientes a, b y c.
- b) Hallar el área de la región acotada del plano limitada por la gráfica de la función $g(x) = -x^3 + 3x$, el eje OX y la recta x = 1.

Problema 8.6.3 (2 puntos) Sean A y B dos sucesos aleatorios tal que:

$$P(A) = \frac{3}{4}, \quad P(B) = \frac{1}{2}, \quad P(\overline{A} \cap \overline{B}) = \frac{1}{20}$$

Calcular:

$$P(A \cup B), P(A \cap B), P(\overline{A}|B), P(\overline{B}|A)$$

Problema 8.6.4 (2 puntos) El tiempo invertido en cenar por cada cliente de una cadena de restaurantes es una variable aleatoria que se puede aproximar por una distribución normal con desviación típica de 32 minutos. Se quiere estimar la media de dicho tiempo con un error no superior a 10 minutos, y con un nivel de confianza del 95 %.

Determinar el tamaño mínimo muestral necesario para poder llevar a cabo dicha estimación.

Año 2008

9.1. Modelo 2008 - Opción A

Problema 9.1.1 (3 puntos) Dadas las matrices $A = \begin{pmatrix} 1 & 2 & 1 \\ 1 & n & 1 \\ 0 & 1 & 1 \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ y $B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

- $\left(\begin{array}{c}1\\0\\0\end{array}\right)$
 - a) Hallar los valores de n para los que la matriz A tiene inversa.
 - b) Resolver la ecuación matricial $A \cdot X = B$ para n = 3

Problema 9.1.2 (3 puntos) Dada la función real de variable real definida por

$$f(x) = \frac{3x^2}{x^2 - 4}$$

- a) Calcular sus asíntotas y esbozar su gráfica.
- b) Hallar la ecuación de la recta tangente a la gráfica de f en x = 0.

Problema 9.1.3 (2 puntos) Un instituto tiene dos grupos de 2^{0} de Bachillerato. El grupo A está formado por 18 alumnas, de las cuales 5 juegan al baloncesto, y 12 alumnos, 7 de los cuales juegan al mismo deporte. El grupo B está formado por 12 alumnas, 4 de ellas jugadoras de baloncesto, y 13 alumnos, 7 de los cuales practican baloncesto.

- a) Si se elige un alumno de 2º de bachillerato al azar, calcular la probabilidad de que sea mujer.
- b) ¿En qué grupo es más probable elegir al azar un estudiante que juegue al baloncesto?

Problema 9.1.4 (2 puntos) La edad de la población que vive en residencias de mayores en Madrid sigue una distribución normal de desviación típica 7,3 años. Se toma una muestra aleatoria simple de tamaño 50. ¿Se puede asegurar que la edad media de la población difiere en menos de 2 años de la media de la media de la muestra con un nivel de confianza del 95 %?

9.2. Modelo 2008 - Opción B

Problema 9.2.1 (3 puntos)

a) Representar la región del plano definida por el siguiente sistema de inecuaciones:

$$\begin{cases}
-x+ & y \le 60 \\
x+ & y \ge -40 \\
11x+ & 3y \le 40
\end{cases}$$

- b) Maximizar la función f(x,y) = 10x y en la región obtenida.
- c) Minimizar la función g(x, y) = x 10y.

Problema 9.2.2 (3 puntos) Dada la función real de variable real definida por $f(x) = x^3 - 6x^2 + 9x$, se pide determinar:

- a) Los puntos en los que la gráfica de f corta a los ejes de coordenadas.
- b) Los intervalos de crecimiento y decrecimiento de f.
- c) El área del recinto plano acotado limitado por la gráfica de la función y el eje OX.

Problema 9.2.3 (2 puntos) La orquesta musiquera está formada por tres tipos de instrumentos, 30 de madera, 15 de viento y 5 de percusión. La víspera de un concierto se ponen enfermos dos músicos. Calcular la probabilidad de que:

- a) Ambos toquen instrumentos de viento.
- b) Ambos toquen el mismo tipo de instrumento.

Problema 9.2.4 (2 puntos) Para conocer la producción media de sus olivos, un olivarero escoge al azar 10 de ellos, pesa su producción de aceitunas, y obtiene los siguientes valores, expresados en kg:

Sabemos que la producción sigue una distribución normal con desviación típica igual a 15,3.

Se pide estimar la producción media del olivar con un nivel de confianza del 95 %.

9.3. Junio 2008 - Opción A

Problema 9.3.1 (3 puntos) Un agricultor tiene repartidas sus 10 hectáreas de terreno de barbecho, cultivo de trigo y cultivo de cebada. La superficie dedicada al trigo ocupa 2 hectáreas más que la dedicada a la cebada, mientras que en barbecho tiene 6 hectáreas menos que la superficie total dedicada al cultivo de trigo y cebada. ¿Cuántas hectáreas tiene dedicadas a cada uno de los cultivos y cuántas están en barbecho?

Problema 9.3.2 (3 puntos) Calcúlese el área de la región plana acotada limitada por las gráficas de las funciones reales de variable real

$$f(x) = x^2 - x$$
, $g(x) = 1 - x^2$

Problema 9.3.3 (2 puntos) En un juego consistente en lanzar dos monedas indistinguibles y equilibradas y un dado de seis caras equilibrado, un jugador gana si obtiene dos caras y un número par en el dado, o bien exactamente una cara y un número mayor o igual a cinco en el dado.

- a) Calcúlese la probabilidad de que un jugador gane.
- b) Se sabe que una persona ha ganado. ¿Cuál es la probabilidad de que obtuviera dos caras al lanzar las monedas?

Problema 9.3.4 (2 puntos) El tiempo en minutos dedicado cada día a escuchar música por los estudiantes de secundaria de una cierta ciudad se supone que es una variable aleatoria con distribución normal de desviación típica igual a 15 minutos. Se toma una muestra aleatoria simple de 10 estudiantes y se obtienen los siguientes tiempos (en minutos):

- a) Determínese un intervalo de confianza al 90 % para el tiempo medio dedicado a escuchar música por un estudiante.
- b) Calcúlese el tamaño muestral mínimo necesario para conseguir una estimación de la media del tiempo diario dedicado a escuchar música con un error menor que 5 minutos, con un nivel de confianza del $95\,\%$.

9.4. Junio 2008 - Opción B

Problema 9.4.1 (3 puntos) Un distribuidor de aceite de oliva compra la materia prima a dos almazaras, A y B. Las almazaras A y B venden el aceite a 2000 y 3000 euros por tonelada, respectivamente. Cada almazara le vende un mínimo de 2 toneladas y un máximo de 7 y para atender a su demanda, el distribuidor debe comprar en total un mínimo de 6 toneladas. El distribuidor debe comprar como máximo a la almazara A el doble de aceite que a la almazara B. ¿Qué cantidad de aceite debe comprar el distribuidor a cada almazara para obtener el mínimo coste? Determínese dicho coste mínimo.

Problema 9.4.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \frac{x^2 + x + 2}{x}, \quad x \neq 0$$

- a) Determínense las asíntotas de f.
- b) Calcúlense sus máximos y mínimos relativos y determínense sus intervalos de crecimiento.
- c) Calcúlese la integral definida $\int_{1}^{2} f(x) dx$.

Problema 9.4.3 (2 puntos) Se consideran dos sucesos A y B de un experimento aleatorio, tal que:

$$P(A) = \frac{1}{4}, \ P(B) = \frac{1}{3}, \ P(A \cup B) = \frac{1}{2}$$

- a) ¿Son A y B sucesos independientes? Razónese.
- b) Calcúlese $P(\overline{A}|\overline{B})$.

Nota: La notación \overline{A} representa al suceso complementario de A.

Problema 9.4.4 (2 puntos) El rendimiento por hectárea de las plantaciones de trigo en cierta región, se supone que es una variable aleatoria con una distribución normal con una desviación típica de 1 tonelada por hectárea. Se ha tomado una muestra aleatoria simple de 64 parcelas con una superficie igual a una hectárea cada una, obteniéndose un rendimiento medio de 6 toneladas.

- a) ¿Puede asegurarse que el error de estimación del rendimiento medio por hectárea es menor de 0,5 toneladas, con un nivel de confianza del 98 %? Razónese.
- b) ¿Qué tamaño mínimo muestral debe tomarse para que el error de estimación sea menor que 0.5 toneladas con un nivel de confianza del $95\,\%$

9.5. Septiembre 2008 - Opción A

Problema 9.5.1 (3 puntos) Una empresa instala casas prefabricadas de tres tipos A, B y C. Cada casa de tipo A necesita 10 horas de albañilería, 2 de fontanería y 2 de electricista. Cada casa de tipo B necesita 15 horas de albañilería, 4 de fontanería y 3 de electricista. Cada casa de tipo C necesita 20 horas de albañilería, 6 de fontanería y 5 de electricista. La empresa emplea exactamente 270 horas de trabajo al mes de albañilería, 68 de fontanería y 58 de electricista. ¿Cuántas casas de cada tipo instala la empresa en un mes?

Problema 9.5.2 (3 puntos) Se desea fabricar un acuario con base cuadrada y sin tapa, de capacidad 500 dm³. La base y las paredes del acuario han de estar realizadas en cristal. ¿Cuáles deben ser sus medidas para minimizar la superficie total del cristal empleado?

Problema 9.5.3 (2 puntos) Se consideran dos actividades de ocio: A = ver televisión y B = visitar centros comerciales. En una ciudad, la probabilidad de que un adulto practique A es igual a 0,46; la probabilidad de que practique B es igual a 0,33 y la probabilidad de que practique A y B es igual a 0,15.

- a) Se selecciona al azar un adulto de dicha ciudad. ¿Cuál es la probabilidad de que no practique ninguna de las dos actividades anteriores?
- b) Se elige al azar un individuo de entre los que practican alguna de las dos actividades. ¿Cuál es la probabilidad de que practique las dos actividades?

Problema 9.5.4 (2 puntos) Se supone que la calificación en Matemáticas obtenida por los alumnos de una cierta clase es una variable aleatoria con distribución normal de desviación típica 1,5 puntos. Se elige una muestra aleatoria simple de tamaño 10 y se obtiene una suma de sus calificaciones igual a 59,5 puntos.

- a) Determínese un intervalo de confianza al 95 % para la calificación media de la clase.
- b) ¿Qué tamaño ha de tener la muestra para que el error máximo de la estimación sea de 0,5 puntos, con el nivel de confianza del 95 %.

9.6. Septiembre 2008 - Opción B

Problema 9.6.1 (3 puntos) Se desea invertir una cantidad de dinero menor o igual que 125000 euros, distribuidos entre acciones del tipo A y del tipo B. Las acciones del tipo A garantizan una ganancia del 10 % anual, siendo obligatorio invertir en ellas un mínimo de 30000 euros y un máximo de 81000 euros. Las del tipo B garantizan una ganancia del 5 % anual, siendo obligatorio invertir en ellas un mínimo de 25000 euros. La cantidad invertida en acciones del tipo B no puede superar el triple de la cantidad invertida en acciones del tipo A. ¿Cuál debe ser la distribución de la inversión para maximizar la ganancia anual? Determínese dicha ganancia máxima.

Problema 9.6.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \frac{x^2 + 2}{x^2 - 4}, \quad x \neq 2$$

- a) Determínense las asíntotas de f.
- b) Calcúlense sus máximos y mínimos relativos y determínense sus intervalos de crecimiento.
- c) Calcúlese la integral definida $\int_3^5 (x^2 4) f(x) dx$.

Problema 9.6.3 (2 puntos) Se supone que las señales que emite un determinado telégrafo son punto y raya y que el telégrafo envía un punto con probabilidad $\frac{3}{7}$ y una raya con probabilidad $\frac{4}{7}$. Los errores en la transmisión pueden hacer que cuando se envíe un punto se reciba una raya con probabilidad $\frac{1}{4}$ y que cuando se envíe una raya se reciba un punto con probabilidad $\frac{1}{3}$.

$$P(raya|punto) = \frac{1}{4}, \ P(punto|raya) = \frac{1}{3}$$

- a) Si se recibe una raya, ¿cuál es la probabilidad de que se hubiera enviado realmente una raya?
- b) Suponiendo que las señales se envían con independencia, ¿cuál es la probabilidad de que si se recibe punto-punto se hubiera enviado raya-raya

Problema 9.6.4 (2 puntos) La duración de la vida de una determinada especie de tortuga se supone que es una variable aleatoria, con distribución normal de desviación típica igual a 10 años. Se toma una muestra aleatoria simple de 10 tortugas y se obtienen las siguientes duraciones, en años:

- a) Determínese un intervalo de confianza al 95 % para la vida media de dicha especie de tortugas.
- b) ¿Cuál debe ser el tamaño de la muestra observada para que el error de la estimación de la vida media no sea superior a 5 años, con un nivel de confianza del $90\,\%$

Año 2009

10.1. Modelo 2009 - Opción A

Problema 10.1.1 (3 puntos) Se considera la matriz dependiente del parámetro real k:

$$A = \left(\begin{array}{rrr} -1 & 1 & 0 \\ 1 & 1 & k \\ k & 1 & k \end{array}\right)$$

- a) Determínese los valores de k para los cuales A tiene inversa.
- b) Para k = 2, calcúlese (si existe) A^{-1} .
- c) Para k = 1, calcúlese $(A 2A^T)^2$.

Nota: La notificación A^T representa a la matriz transpuesta de A.

Problema 10.1.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = x^3 + ax^2 + bx; \quad a, b \in R$$

- a) ¿Qué valores deben tomar a y b para que f tenga un máximo relativo en el punto P(1,4)?
- b) Para a = -2, b = -8, determínense los puntos de corte de la gráfica de f con los ejes de coordenadas y determínense los puntos de inflexión de dicha gráfica.
- c) Para $a=-2,\ b=-8,$ calcúlese el área del recinto plano acotado limitado por la gráfica de f y el eje OX.

Problema 10.1.3 (2 puntos) Calcúlese la probabilidad de cada uno de los sucesos siguientes:

- a) Obtener dos caras y una cruz en el lanzamiento de tres monedas equilibradas e indistinguibles.
- b) Obtener una suma de puntos igual a seis o siete en el lanzamiento de dos dados de seis caras equilibrados e indistinguibles.

Problema 10.1.4 (2 puntos) Se supone que el peso de los niños recién nacidos en una cierta región es una variable aleatoria con distribución normal de media 3,25 kg y desviación típica 0,8 kg. Se elige aleatoriamente una muestra de 64 niños recién nacidos en esa región. Sea \overline{X} la media muestral de los pesos observados.

- a) ¿Cuáles son la media y la desviación típica de \overline{X} ?
- b) ¿Cuál es la probabilidad de que el peso medio de la muestra esté comprendido entre 3,3 kg y 3,5 kg?

10.2. Modelo 2009 - Opción B

Problema 10.2.1 (3 puntos) Un hotel adquirió un total de 200 unidades entre almohadas, mantas y edredones, gastando para ello un total de 7500 euros. El precio de una almohada es de 16 euros, el de una manta 50 euros y el de un edredón 80 euros. Además, el número de almohadas compradas es igual al número de mantas más el número de edredones. ¿Cuántas almohadas, mantas y edredones ha comprado el hotel?

Problema 10.2.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} x^2 & \text{si} & x < 2\\ x + a & \text{si} & 2 \le x \le 5\\ -x^2 + 5x + b & \text{si} & x > 5 \end{cases}$$
 $(a, b \in R)$

- a) Calcúlense los valores de a y b para que la f se continua en x = 2 y en x = 5.
- b) Para a = 1 y b = 6, calcúlense las derivadas f'(1) y f'(7).
- c) Para a=1 y b=6, calcúlese la integral definida $\int_3^6\,f(x)dx$

Problema 10.2.3 (2 puntos) La probabilidad de que un vehículo de una cierta compañía de coches tenga un accidente es igual a 0,2. Si uno de los vehículos sufre un accidente, la probabilidad de que necesite la asistencia de una grúa es igual a 0,85. Por otra parte, la probabilidad de que uno de los vehículos necesite la asistencia de una grúa sin haber tenido un accidente es igual a 0,1.

- a) Se elige al azar un vehículo de dicha compañía, ¿cuál es la probabilidad de que necesite la asistencia de una grúa?
- b) Si el vehículo elegido ha necesitado la asistencia de una grúa, ¿cuál es la probabilidad de que no haya sido por causa de un accidente?

Problema 10.2.4 (2 puntos) Se han elegido al azar 10 televisores de un taller de electrónica y se ha anotado el número de horas que se han necesitado para su reparación. Los resultados han sido:

Se supone que el número de horas de reparación de este tipo de televisores es una variable aleatoria con distribución normal de desviación típica 1,5 horas.

- a) Determínese un intervalo de confianza del 90 % para el tiempo medio de reparación.
- b) ¿Que tamaño debe tener la muestra para que el error máximo de la estimación sea 0,5 horas con el mismo nivel de confianza?

10.3. Junio 2009 - Opción A

Problema 10.3.1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

$$\begin{cases} x + & y + & kz = 4 \\ 2x - & y + & 2z = 5 \\ -x + & 3y - & z = 0 \end{cases}$$

- a) Discútase el sistema para los distintos valores del parámetro k.
- b) Resuélvase el sistema para el caso en que tenga infinitas soluciones.
- c) Resuélvase el sistema para k=0.

Problema 10.3.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = (x^2 - 1)^2$$

- a) Determínense los extremos relativos de f.
- b) Hállese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x=3.
- c) Calcúlese el área del recinto plano acotado limitado por las gráficas de f y el eje OX.

Problema 10.3.3 (2 puntos) Se consideran tres sucesos A, B y C de un experimento aleatorio tal que:

$$P(A) = \frac{1}{2}; \ P(B) = \frac{1}{3}; \ P(C) = \frac{1}{4};$$

$$P(A \cup B \cup C) = \frac{2}{3}; \ P(A \cap B \cap C) = 0; \ P(A|B) = P(C|A) = \frac{1}{2}$$

- a) Calcúlese $P(C \cap B)$.
- b) Calcúlese $P(\overline{A} \cup \overline{B} \cup \overline{C})$. La notación \overline{A} representa al suceso complementario de A.

Problema 10.3.4 (2 puntos) Se supone que el gasto mensual dedicado al ocio por una determinada familia de un determinado país se puede aproximar por una variable aleatoria con distribución normal de desviación típica igual a 55 euros. Se ha elegido una muestra aleatoria de 81 familias, obteniéndose un gasto medio de 320 euros.

- a) ¿Se puede asegurar que el valor absoluto del error de la estimación del gasto medio por familia mediante la media de la muestra es menor que 10 euros con un grado de confianza del 95 %?
- b) ¿Cuál es el tamaño muestral mínimo que debe tomarse para poder asegurarlo?

10.4. Junio 2009 - Opción B

Problema 10.4.1 (3 puntos) Una refinería utiliza dos tipos de petróleo, A y B, que compra a un precio de 350 euros y 400 euros por tonelada, respectivamente. Por cada tonelada de tipo A que refina, obtiene 0,10 toneladas de gasolina y 0,35 toneladas de fuel-oíl. Por cada tonelada de tipo B que refina, obtiene 0,05 toneladas de gasolina y 0,55 toneladas de fuel-oíl. Para cubrir sus necesidades necesita obtener al menos 10 toneladas de gasolina y al menos 50 toneladas de fuel-oíl. Por cuestiones de capacidad, no puede comprar más de 100 toneladas de cada tipo de petróleo. ¿Cuántas toneladas de petróleo de cada tipo debe comprar la refinería para cubrir sus necesidades a mínimo coste? Determinar dicho coste mínimo.

Problema 10.4.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \frac{2x - 1}{x^2 - x - a}$$

- a) Determínense las asíntotas de f, especificando los valores del parámetro real a para los cuales f tiene una asíntota vertical, dos asíntotas verticales, o bien no tiene asíntotas verticales.
- b) Para a = -1, calcúlense los valores reales de b para los cuales se verifica que $\int_0^b f(x) dx = 0$

Problema 10.4.3 (2 puntos) Para la construcción de un luminoso de feria se dispone de un contenedor con 200 bombillas blancas, 120 bombillas azules y 80 bombillas rojas. La probabilidad de que una bombilla del contenedor no funcione es igual a 0,01 si la bombilla es es blanca, es igual a 0,02 si la bombilla es azul y 0,03 si la bombilla es roja. Se elige al azar una bombilla del contenedor.

- a) Calcúlese la probabilidad de que la bombilla elegida no funcione.
- b) Sabiendo que la bombilla elegida no funciona, calcúlese la probabilidad de que dicha bombilla sea de color azul

Problema 10.4.4 (2 puntos) Se supone que la cantidad de agua (en litros) recogida cada día en una estación meteorológica se puede aproximar por una variable aleatoria con distribución normal de desviación típica 2 litros. Se elige una muestra aleatoria simple y se obtiene las siguientes cantidades de agua recogidas cada día (en litros):

- a) Determínese un intervalo de confianza para la cantidad media de agua recogida cada día en dicha estación, con un grado de confianza del $95\,\%$.
- b) Calcúlese el tamaño muestral mínimo necesario para que al estimar la media del agua recogida cada día en la estación meteorológica mediante dicha muestra, la diferencia en valor absoluto entre ambos valores sea inferior a 1 litro, con un grado de confianza del 98 %.

10.5. Septiembre 2009 - Opción A

Problema 10.5.1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B. Cada m^2 de panel del tipo A requiere 0,3 horas de trabajo para su fabricación y 0,2 horas para su barnizado, proporcionando un beneficio de 4 euros. Cada m^2 de panel del tipo B requiere 0,2 horas de trabajo para su fabricación y 0,2 horas para su barnizado, proporcionando su venta un beneficio de 3 euros. Sabiendo que en una semana se trabaja un máximo de 240 horas de taller de fabricación y 200 horas en el taller de barnizado, calcular los m^2 de cada tipo de panel que debe vender semanalmente la carpintería para obtener el máximo beneficio. Calcular dicho beneficio máximo.

Problema 10.5.2 (3 puntos) Se considera la función real de variable real definida por:

$$\begin{cases} 2x + 24 & \text{si} & x \le -3 \\ x^2 + 9 & \text{si} & -3 < x \le 2 \\ -x + 15 & \text{si} & x > 2 \end{cases}$$

- a) Represéntese gráficamente la función f.
- b) Hállese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x = 1.
- c) Calcúlese el área del recinto plano acotado limitado por la gráfica de f y el eje OX.

Problema 10.5.3 (2 puntos) En un cierto banco el 30 % de los créditos concedidos son para vivienda, el 50 % se destinan a las empresas y el 20 % son para consumo. Se sabe además que de los créditos concedidos a vivienda, el 10 % resultan impagados, de los créditos concedidos a empresas son impagados el 20 % y de los créditos concedidos para consumo resultan impagados el 10 %.

- a) Calcúlese la probabilidad de que un crédito elegido al azar sea pagado.
- b) ¿Cuál es la probabilidad de que un crédito elegido al azar se haya destinado a consumo, sabiendo que se ha pagado?

Problema 10.5.4 (2 puntos) Se supone que el tiempo de una conversación en un teléfono móvil se puede aproximar por una variable aleatoria con distribución normal de desviación típica igual a 1,32 minutos. Se desea estimar la media del tiempo de las conversaciones mantenidas con un error inferior o igual en valor absoluto a 0,5 minutos y con un grado de confianza del 95 %.

- a) Calcúlese el tamaño mínimo de la muestra que es necesario observar para llevar a cabo dicha estimación mediante la media muestral.
- b) Si se supone que la media del tiempo de las conversaciones es de 4,36 minutos y se elige una muestra aleatoria simple de 16 usuarios, ¿cuál es la probabilidad de que el tiempo medio de las conversaciones de la muestra esté comprendido entre 4 y 5 minutos?

10.6. Septiembre 2009 - Opción B

Problema 10.6.1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependientes del parámetro real k:

$$\begin{cases} x+ & y+ & z=3\\ x+ & ky+ & z=3\\ kx- & 3z=6 \end{cases}$$

- a) Discútase el sistema según los diferentes valores de k.
- b) Resuélvase el sistema en el caso en que tenga infinitas soluciones.
- c) Resuélvase el sistema para k=3.

Problema 10.6.2 (3 puntos) El beneficio semanal (en miles de euros) que obtiene una central lechera por la producción de leche desnatada está determinado por la función:

$$B(x) = -x^2 + 7x - 10$$

en la que x representa los hectolitros de leche desnatada producidos en una semana.

- a) Represéntese gráficamente la función B(x) con $x \ge 0$.
- b) Calcúlense los hectolitros de leche desnatada que debe producir cada semana la central lechera para maximizar su beneficio. Calcúlese dicho beneficio máximo.

c) Calcúlense las cantidades mínima y máxima de hectolitros de leche desnatada que debe producir la central lechera cada semana para no incurrir en pérdidas (es decir, beneficio negativo).

Problema 10.6.3 (2 puntos) La probabilidad de que un habitante de cierto pueblo de la Comunidad de Madrid le guste la música moderna es igual a 0,55; la probabilidad de que le guste la música clásica es igual a 0,40 y la probabilidad de que no le guste ninguna de las dos es igual a 0,25. Se elige al azar un habitante de dicho pueblo. Calcúlese la probabilidad de que le guste:

- a) al menos uno de los dos tipos de música.
- b) la música clásica y también la moderna.
- c) sólo la música clásica.
- d) sólo la música moderna.

Problema 10.6.4 (2 puntos) Se supone que la estancia (en días) de un cierto hospital se puede aproximar por una variable aleatoria con distribución normal de desviación típica igual a 9 días. De una muestra aleatoria simple formada por 20 pacientes, se ha obtenido una media muestral igual a 8 días.

- a) Determínese un intervalo de confianza del $95\,\%$ para la estancia media de un paciente en dicho hospital.
- b) ¿Cuál debe ser el tamaño muestral mínimo que ha de observarse para que dicho intervalo de confianza tenga una longitud total inferior o igual a 4 días?

Año 2010

11.1. Modelo 2010 - Opción A

Problema 11.1.1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro real k:

$$\begin{cases} x + ky + z = 1 \\ 2y + kz = 2 \\ x + y + z = 1 \end{cases}$$

- a) Discútase el sistema para los distintos valores de k.
- b) Resuélvase el sistema para el caso en que tenga infinitas soluciones.
- c) Resuélvase el sistema para k=3.

Problema 11.1.2 (3 puntos) Se considera la curva de ecuación cartesiana:

$$y = x^2$$

- a) Calcúlense las coordenadas del punto en el que la recta tangente a la curva propuesta es paralela a la bisectriz del primer cuadrante.
- b) Calcúlese el área del recinto plano acotado limitado por las gráficas de la curva propuesta, la recta tangente a dicha curva en el punto P(1,1) y el eje OX.

Problema 11.1.3 (2 puntos) Según un cierto estudio, el 40% de los hogares europeos tienen contratado acceso a internet, el 33% tiene contratada televisión por cable, y el 20% disponen de ambos servicios. Se selecciona un hogar europeo al azar.

- a) ¿Cuál es la probabilidad de que sólo tenga contratada la televisión por cable?
- b) ¿Cuál es la probabilidad de que no tenga contratado ninguno de los dos servicios?

Problema 11.1.4 (2 puntos) Se supone que la duración de una bombilla fabricada por una cierta empresa se puede aproximar por una variable aleatoria con distribución normal de media 900 horas y desviación típica 80 horas. La empresa vende 1000 lotes de 100 bombillas cada uno. ¿En cuántos lotes puede esperarse que la duración media de las bombillas que componen el lote sobrepase 910 horas?

11.2. Modelo 2010 - Opción B

Problema 11.2.1 (3 puntos) Una empresa de instalaciones dispone de 195 kg de cobre, 20 kg de titanio y 14 de aluminio. Para fabricar 100 metros de cable de tipo A se necesitan 10 kg de cobre, 2 kg de titanio y 1 kg de aluminio. Para fabricar 100 metros de cable de tipo B se necesitan 15 kg de cobre, 1 kg de titanio y 1 kg de aluminio. El beneficio que obtiene la empresa por cada 100 metros de cable de tipo A fabricados es igual a 1500 euros, y por cada 100 metros de cable de tipo B es igual a 1000 euros. Calcúlese los metros de cable de cada tipo que han de fabricarse para maximizar el beneficio y determínese dicho beneficio máximo.

Problema 11.2.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = ax^3 + bx^2 + c, \quad a, b, c \in R$$

- a) ¿Qué valores deben tomar a, b y c para que la gráfica de f pase por el punto (0,0) y además tenga un máximo relativo en el punto (1,2)?
- b) Para a = 1, b = -2 y c = 0, determínense los puntos de corte de f con los ejes de coordenadas.
- c) Para $a=1,\,b=-2$ y c=0, calcúlese el área del recinto plano acotado limitado por la gráfica de la función f y el eje OX.

Problema 11.2.3 (2 puntos) Sean A y B dos sucesos aleatorios tal que:

$$P(A) = \frac{3}{4}, \quad P(B) = \frac{1}{2}, \quad P(\overline{A} \cap \overline{B}) = \frac{1}{20}$$

Calcular:

$$P(A \cup B), P(A \cap B), P(\overline{A}|B), P(\overline{B}|A)$$

Problema 11.2.4 (2 puntos) La temperatura corporal de cierta especie de aves se puede aproximar mediante una variable aleatoria con distribución normal de media 40.5° C y desviación típica 4.9° C. Se elige una muestra aleatoria simple de 100 aves de esa especie. Sea \overline{X} la media muestral de las temperaturas observadas.

- a) ¿Cuáles son la media y la varianza de \overline{X}
- b) ¿Cuál es la probabilidad de que la temperatura media de dicha muestra esté comprendida entre 39,9°C y 41,1°C?

11.3. Junio 2010 - Opción A

Problema 11.3.1 (3 puntos) Un club de fútbol dispone de un máximo de 2 millones de euros para fichajes de futbolistas españoles y extranjeros. Se estima que el importe total de las camisetas vendidas por el club con el nombre de futbolistas españoles es igual al 10 % de la cantidad total invertida por el club en fichajes españoles, mientras que el importe total de las camisetas vendidas con el nombre de futbolistas extranjeros es igual al 15 % de la cantidad total invertida por el club en fichajes extranjeros. Los estatutos del club limitan a un máximo de 800000 euros la inversión total en jugadores extranjeros y exigen que la cantidad total invertida en fichajes de españoles ha de ser como mínimo de 500000 euros. Además, la cantidad total invertida en fichajes de españoles ha de ser mayor o igual que la invertida en fichajes extranjeros. ¿Qué cantidad debe invertir el club en cada tipo de fichajes para que el importe de las camisetas vendidas sea máximo? Calcúlese dicho importe máximo. Justifíquese.

Problema 11.3.2 (3 puntos) Se considera la función real de variable real definida por: $f(x) = \frac{x^2}{x-1}$

- a) Determínense su asíntotas.
- b) Calcúlense sus máximos y mínimos locales. Esbócese la gráfica de f.
- c) Calcúlese el área del recinto plano acotado limitado por las rectas verticales x = 2, x = 3, la gráfica de f y la recta de ecuación y = x + 1.

Problema 11.3.3 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio tal que $P(A) = 0, 5; P(B) = 0, 4; P(A \cap B) = 0, 1.$ Calcúlense las siguientes probabilidades:

$$a)P(A \cup B); \quad b)P(\overline{A} \cup \overline{B}); \quad c)P(A|B); \quad d)P(\overline{A} \cap B)$$

Problema 11.3.4 (2 puntos) Se supone que el tiempo de vida útil en miles de horas (Mh) de un cierto modelo de televisor, se puede aproximar por una variable aleatoria con distribución normal de desviación típica 0,5 Mh. Para una muestra aleatoria simple de 4 televisores de dicho modelo, se obtiene una media muestral de 19,84 Mh de vida útil.

- a) Hállese un intervalo de confianza al $95\,\%$ para el tiempo de vida útil medio de los televisores de dicho modelo.
- b) Calcúlese el tamaño muestral mínimo necesario para que el valor absoluto del error de la estimación de la media poblacional mediante la media muestral sea inferior a 0,2 Mh con probabilidad mayor o igual que 0,95.

11.4. Junio 2010 - Opción B

Problema 11.4.1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real k:

$$\begin{cases} kx - 2y + 7z = 8 \\ x - y + kz = 2 \\ -x + y + z = 2 \end{cases}$$

- a) Discútase el sistema para los distintos valores de k.
- b) Resuélvase el sistema para el caso en que tenga infinitas soluciones.
- c) Resuélvase el sistema para k=0.

Problema 11.4.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} -x^2 - x + a & \text{si } x \le 1\\ \frac{3}{bx} & \text{si } x > 1 \end{cases}$$

- a) Calcúlense los valores de a, b, para que f sea continua y derivable en todos los puntos.
- b) Para $a=6,\ b=3/4,$ determínense los puntos de corte de la gráfica f con los ejes de coordenadas.
- c) Para a=6, b=3/4, calcúlese el área del recinto plano acotado limitado por la gráfica de la función f, el eje OX y la recta vertical x=2.

Problema 11.4.3 (2 puntos) Se dispone de un dado equilibrado de seis caras, que se lanza seis veces con independencia. Calcúlese la probabilidad de cada uno de los sucesos siguientes:

- a) Obtener al menos un seis en el total de los lanzamientos.
- b) Obtener un seis en el primer y último lanzamientos y en los restantes lanzamientos un número distinto de seis.

Problema 11.4.4 (2 puntos) Se supone que el tiempo de espera de una llamada a una línea de atención al cliente de una cierta empresa se puede aproximar mediante una variable aleatoria con distribución normal de desviación típica 0,5 minutos. Se toma una muestra aleatoria simple de 100 llamadas y se obtiene un tiempo medio de espera igual a 6 minutos.

- a) Determínese un intervalo de confianza al $95\,\%$ para el tiempo medio de espera de una llamada a dicha línea de atención al cliente.
- b) ¿Cuál debe ser el tamaño muestral mínimo que debe observarse para que dicho intervalo de confianza tenga una longitud total igual o inferior a 1 minuto?

11.5. Septiembre 2010 - Opción A

Problema 11.5.1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones dependiente de un parámetro real a:

$$\left(\begin{array}{c}1\\2\\1\end{array}\right)x+\left(\begin{array}{cc}1&-1\\-3&2\\-4&a\end{array}\right)\left(\begin{array}{c}y\\z\end{array}\right)=\left(\begin{array}{c}1\\22\\7a\end{array}\right)$$

- a) Discútase el sistema para los diferentes valores del parámetro a.
- b) Resuélvase el sistema para el valor de a para el cual el sistema tiene infinitas soluciones.
- c) Resuélvase el sistema para a=0.

Problema 11.5.2 (3 puntos) El coste de un marco para una ventana rectangular es de 50 euros por cada metro de lado vertical y de 25 euros por cada metro de lado horizontal. Se desea construir una ventana de superficie igual a 2 m². Calcúlense las dimensiones (largo y alto) para que el marco sea lo más barato posible. Calcúlese el precio mínimo del marco de dicha ventana.

Problema 11.5.3 (2 puntos) Sean tres sucesos A, B y C de un experimento aleatorio tal que:

$$P(A|C) \ge P(B|C), \quad P(A|\overline{C}) \ge P(B|\overline{C})$$

Razónese cuál de las siguientes desigualdades es cierta:

a)
$$P(A) < P(B)$$
; b) $P(A) \ge P(B)$

Nota.- \overline{C} representa el suceso complementario de C.

Problema 11.5.4 (2 puntos) Se considera una variable aleatoria con distribución normal de desviación típica igual a 320. Se toma una muestra aleatoria simple de 36 elementos.

- a) Calcúlese la probabilidad de que el valor absoluto de la diferencia entre la media muestral y la media de la distribución normal sea mayor o igual que 50.
- b) Determínese el intervalo de confianza del 95 % para la media de la distribución normal, si la media muestral es igual a 4820.

11.6. Septiembre 2010 - Opción B

Problema 11.6.1 (3 puntos) Un pintor necesita pintura para pintar como mínimo una superficie de 480 m². Puede comprar la pintura a dos proveedores, A y B. El proveedor A le ofrece una pintura con un rendimiento de 6m^2 por kg y un precio de 1 euro por kg. La pintura del proveedor B tiene un precio de 1,2 euros por kg y un rendimiento de 8 m² por kg. Ningún proveedor le puede proporcionar más de 75 kg y el presupuesto máximo del pintor es de 120 euros. Calcúlese la cantidad de pintura que el pintor tiene que comprar a cada proveedor para obtener el mínimo coste. Calcúlese dicho coste mínimo.

Problema 11.6.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} 2x^2 - a & \text{si} & x \le -1 \\ -3x^2 + b & \text{si} & -1 < x < 1 \\ \log x + a & \text{si} & x \ge 1 \end{cases}$$

- a) Calcúlese a, b, para que f sea continua en todos los puntos.
- b) Para $a=0,\,b=3,$ represéntese gráficamente la función f.
- c) Para $a=0,\,b=3,$ calcúlese la integral definida $\int_{-1}^1\,f(x)\,dx.$

Nota.- La notación log representa logaritmo neperiano.

Problema 11.6.3 (2 puntos) Se consideran los siguientes sucesos:

- Suceso A=La economía de un cierto país está en recesión.

Se sabe que:

$$P(A) = 0.005, P(B|A) = 0.95, P(\overline{B}|\overline{A}) = 0.96$$

- a) Calcúlese la probabilidad de que el indicador económico muestre que la economía del país no está en recesión y además la economía del país esté en recesión.
- b) Calcúlese la probabilidad de que el indicador económico muestre que la economía del país está en recesión.

Nota.- La notación \overline{A} representa el suceso complementario de A.

Problema 11.6.4 (2 puntos) Para estimar la media de una población con distribución normal de desviación típica igual a 5, se ha extraído una muestra aleatoria simple de tamaño 100, con la que se ha obtenido el intervalo de confianza (173,42;175,56) para dicha media poblacional.

- a) Calcúlese la media de la muestra seleccionada.
- b) Calcúlese el nivel de confianza del intervalo obtenido.

Año 2011

12.1. Modelo 2011 - Opción A

Problema 12.1.1 (3 puntos) Un estudiante ha gastado un total de 48 euros en la compra de una mochila, un bolígrafo y un libro. Si el precio de la mochila se redujera a la sexta parte, el del bolígrafo a la tercera parte y el del libro a la séptima parte de sus respectivos precios iniciales, el estudiante pagaría un total de 8 euros por ellos. Calcular el precio de la mochila, del bolígrafo y del libro, sabiendo que la mochila cuesta lo mismo que el total del bolígrafo y el libro.

Problema 12.1.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = 2x^3 + ax^2 + bx - 6$$

- a) Calcúlense a y b para que la función f tenga un máximo relativo en x=1 y un mínimo relativo en x=2
- b) Para a=b=0, calcúlese el área del recinto plano acotado limitado por la gráfica de f y la recta de ecuación y=8x-6.

Problema 12.1.3 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio tal que la probabilidad de que ambos ocurran simultáneamente es igual a $\frac{1}{6}$ y la probabilidad de que no ocurra ninguno de los dos es igual a $\frac{7}{12}$. Se sabe además que $P(A|B) = \frac{1}{2}$.

- a) Calcúlese la probabilidad de que ocurra A ó B.
- b) Calcúlese la probabilidad de que ocurra A.

Problema 12.1.4 (2 puntos) Se supone que el nivel de glucosa en sangre de los individuos de la población (medido en miligramos por decílitro) se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica 35 mg/dl. ¿Cuál es el tamaño muestral mínimo que permite garantizar que el valor absoluto de la diferencia entre la media muestral y μ es menor que 20 mg/dl con una probabilidad mayor o igual a 0,98?

12.2. Modelo 2011 - Opción B

Problema 12.2.1 (3 puntos) Se consideran las matrices

$$A = \begin{pmatrix} a & 1 & 1 \\ -1 & a & 0 \\ 0 & -6 & -1 \end{pmatrix}; \quad B = \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}$$

- a) Calcúlense los valores de a para los cuales la matriz A no tiene inversa.
- b) Para a=2, calcúlese la matriz inversa A^{-1} .
- c) Para a=2, calcúlese, si existe, la matriz X que satisface AX=B.

Problema 12.2.2 (3 puntos) Una empresa produce cable de fibra óptica, que vende a un precio de x euros por metro. Se estima que la venta diaria de cable (en miles de metros) se expresa en términos del precio mediante la función:

$$D(x) = \frac{6}{x^2 + 1}$$

- a) Obténgase la función I(x) que determina los ingresos diarios de la empresa en función del precio x.
- b) Calcúlese el precio x que ha de fijarse para que el ingreso diario sea máximo y calcúlese dicho ingreso máximo.
- c) Determínense las asíntotas de I(x) y esbócese la gráfica de la función I(x).

Problema 12.2.3 (2 puntos) En una cierta población, la probabilidad de que un habitante elegido al azar siga una dieta de adelgazamiento es igual a 0,2. Entre los habitantes que siguen una dieta de adelgazamiento, la probabilidad de que uno de ellos elegido al azar practique deporte regularmente es igual a 0,6. Entre los habitantes que no siguen dieta de adelgazamiento, la probabilidad de que uno de ellos elegido al azar practique deporte regularmente es igual a 0,3. Se elige al azar un habitante de la población.

- a) Calcúlese la probabilidad de que practique deporte regularmente.
- b) Si se sabe que dicho habitante practica deporte regularmente, ¿cuál es la probabilidad de que esté siguiendo una dieta de adelgazamiento?

Problema 12.2.4 (2 puntos) Se considera una variable aleatoria con distribución normal de desviación típica $\sigma = 2$. Se toma una muestra aleatoria simple de tamaño 25 y se obtiene una media muestral igual a 12.

- a) Determínese un intervalo de confianza al 90 % para estimar la media de la variable aleatoria.
- b) Determínese el tamaño mínimo que ha de tener la muestra para que el valor absoluto de la diferencia entre la media de la población y la media muestral sea menor o igual que 0,1 con un nivel de confianza de al menos el 95 %.

12.3. Junio 2011 - Opción A

Problema 12.3.1 (3 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

$$\begin{cases} ax + & y + & z = a \\ & ay + & z = 1 \\ ax + & y + & az = a \end{cases}$$

- a) Discútase el sistema según los diferentes valores de a.
- b) Resuélvase el sistema en el caso de que tenga infinitas soluciones.
- c) Resuélvase el sistema para a=3

Problema 12.3.2 (3 puntos) Se considera la función real de variable real definida por: $f(x) = \frac{3x}{x^2 - 2}$

- a) Especifíquese su dominio de definición y los puntos de corte de la gráfica con los ejes coordenados. Determínense las asíntotas de f.
- b) Determínese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x = 1.
- c) Calcúlese la integral definida $\int_{2}^{3} f(x) dx$

Problema 12.3.3 (2 puntos) En un edificio inteligente dotado de sistemas de energía solar y eólica, se sabe que la energía suministrada cada día proviene de placas solares con probabilidad 0,4, de molinos eólicos con probabilidad 0,26 y de ambos tipos de instalaciones con probabilidad 0,12. Elegido un día al azar, calcúlese la probabilidad de que la energía sea suministrada al edificio:

- a) por alguna de las dos instalaciones,
- b) solamente por una de las dos.

Problema 12.3.4 (2 puntos) Se supone que el tiempo medio diario dedicado a ver TV en una cierta zona se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica 5 minutos. Se ha tomado una muestra aleatoria simple de 400 espectadores de TV en dicha zona, obteniéndose que el tiempo medio diario dedicado a ver TV es de 3 horas.

- a) Determínese un intervalo de confianza para μ con un nivel de confianza del 95%.
- b) ¿Cuál ha de ser el tamaño mínimo de la muestra para que el error en la estimación de μ sea menor o igual que 3 minutos, con un nivel de confianza del 90 %?

12.4. Junio 2011 - Opción B

Problema 12.4.1 (3 puntos) Se consideran las matrices

$$A = \begin{pmatrix} -1 & 0 & 1 \\ 3 & k & 0 \\ -k & 1 & 4 \end{pmatrix}; \quad B = \begin{pmatrix} 3 & 1 \\ 0 & 3 \\ 2 & 0 \end{pmatrix}$$

a) Calcúlense los valores de k para los cuales la matriz A no es invertible.

- b) Para k = 0, calcúlese la matriz inversa A^{-1} .
- c) Para k = 0, resuélvase la ecuación matricial AX = B.

Problema 12.4.2 (3 puntos) Se considera la función real de variable real definida por:

$$\begin{cases} \frac{a}{x} & \text{si } x \le -1\\ \frac{x^2 - b}{4} & \text{si } x > -1 \end{cases}$$

- a) Calcúlese a, b para que f sea continua y derivable en x = -1
- b) Para a = 1, b = 3, represéntese gráficamente la función f.
- c) Calcúlese el valor b para que $\int_0^3 f(x) dx = 6$.

Problema 12.4.3 (2 puntos) En un cierto punto de una autopista está situado un radar que controla la velocidad de los vehículos que pasan por dicho punto. La probabilidad de que el vehículo que pase por el radar sea un coche es 0,5, de que sea un camión es 0,3 y de que sea una motocicleta es 0,2. La probabilidad de que cada uno de los tres tipos de vehículos supere al pasar por el radar la velocidad máxima permitida es 0,06 para un coche, 0,02 para un camión y 0,12 para una motocicleta. En un momento dado, un vehículo pasa por el radar.

- a) Calcúlese la probabilidad de que este vehículo supere la velocidad máxima permitida.
- b) Si el vehículo en cuestión ha superado la velocidad máxima permitida, ¿cuál es la probabilidad de que se trate de una motocicleta?

Problema 12.4.4 (2 puntos) Se supone que el precio (en euros) de un refresco se puede aproximar mediante una variable aleatoria con distribución normal de media μ y desviación típica igual a 0,09. Se toma una muestra aleatoria simple del precio del refresco en 10 establecimientos y resulta:

$$1,50; 1,60; 1,10; 0,90; 1,00; 1,60; 1,40; 0,90; 1,30; 1,20$$

- a) Determínese un intervalo de confianza al 95 % para μ .
- b) Calcúlese el tamaño mínimo que ha de tener la muestra elegida para que el valor absoluto de la diferencia entre la media de la muestral y la μ sea menor o igual que 0,10 euros con probabilidad mayor o igual que 0,99.

12.5. Septiembre 2011 - Opción A

Problema 12.5.1 (3 puntos). Se considera la región S acotada plana definida por las cinco condiciones siguientes:

$$x + 2y \le 4$$
; $x - 2y \le 4$; $2x - 3y \ge -6$; $2x + 3y \ge -6$; $x \le 2$

- a) Dibújese S y calcúlense las coordenadas de sus vértices.
- b) Calcúlense los valores máximo y mínimo de la función f(x,y) = 2x + y en la región S y especifíquense los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 12.5.2 (3 puntos). Se considera la función real de variable real definida por: $f(x) = \frac{(x+1)^2}{x^2+1}$

- a) Determínense las asíntotas de f. Calcúlense los extremos relativos de f.
- b) Represéntese gráficamente la función f.
- c) Calcúlese el área del recinto plano acotado limitado por la gráfica de f, la recta horizontal y = 1, la recta vertical x = 1.

Problema 12.5.3 (2 puntos). Se supone que la probabilidad de que nazca una niña es 0,49 y la probabilidad de que nazca un niño es 0,51. Una familia tiene dos hijos.

- a) ¿Cuál es la probabilidad de que ambos sean niños, condicionada porque el segundo sea niño?
- b) ¿Cuál es la probabilidad de que ambos sean niños, condicionada porque al menos uno sea niño?

Problema 12.5.4 (2 puntos). Se supone que la presión diastólica en una determinada población se puede aproximar por una variable aleatoria con distribución normal de media 98 mm y desviación típica 15 mm. Se toma una muestra aleatoria simple de tamaño 9.

- a) Calcúlese la probabilidad de que la media muestral sea mayor que 100 mm.
- b) Si se sabe que la media muestral es mayor que $100\ mm$, ¿cuál es la probabilidad de que sea también menor que $104\ mm$?

12.6. Septiembre 2011 - Opción B

Problema 12.6.1 (3 puntos). Se consideran las matrices:

$$A=\left(\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right); \ B=\left(\begin{array}{cc} 1 & a \\ 1 & b \end{array}\right); \ I=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right); \ O=\left(\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right)$$

- a) Calcúlense a, b para que se verifique la igualdad AB = BA.
- b) Calcúlense c, d para que se verifique la igualdad $A^2 + cA + dI = O$.
- c) Calcúlense todas las soluciones del sistema lineal:

$$(A-I)\left(\begin{array}{c} x\\y \end{array}\right) = \left(\begin{array}{c} 0\\0 \end{array}\right)$$

Problema 12.6.2 (3 puntos). Se considera un rectángulo R de lados x, y.

- a) Si el perímetro de R es igual a 12 m, calcúlense x, y para que el área de R sea máxima y calcúlese el valor de dicha área máxima.
- b) Si el área de R es igual a 36 m^2 , calcúlense x, y para que el perímetro de R sea mínimo y calcúlese el valor de dicho perímetro mínimo.

Problema 12.6.3 (2 puntos). Se dispone de tres urnas, A, B y C. La urna A contiene 1 bola blanca y 2 bolas negras, la urna B contiene 2 bolas blancas y 1 bola negra y la urna C contiene 3 bolas blancas y 3 bolas negras. Se lanza un dado equilibrado y si sale 1, 2 o 3 se escoge la urna A, si sale el 4 se escoge la urna B y si sale 5 o 6 se elige la urna C. A continuación, se extrae una bola de la urna elegida.

- a) ¿Cuál es la probabilidad de que la bola extraída sea blanca?
- b) Si se sabe que la bola extraída ha sido blanca, ¿cuál es la probabilidad de que la bola haya sido extraída de la urna C?

Problema 12.6.4 (2 puntos). Para determinar el coeficiente de inteligencia θ de una persona se le hace contestar un conjunto de test y se obtiene la media de sus puntuaciones. Se supone que la calificación de cada test se puede aproximar por una variable aleatoria con distribución normal de media θ y desviación típica 10.

- a) Para una muestra aleatoria simple de 9 test, se ha obtenido una media muestral igual a 110. Determínese un intervalo de confianza para θ al 95 %.
- b) ¿Cuál es el número mínimo de test que debería realizar la persona para que el valor absoluto del error en la estimación de su coeficiente de inteligencia sea menor o igual que 5, con el mismo nivel de confianza?

12.7. Septiembre 2011 (Reserva)- Opción A

Problema 12.7.1 (3 puntos). Se considera el siguiente sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases} 4x + 3y + 5z = 5\\ x + y + 3z = 1\\ 2x + ay + (a^2 - 2)z = 3 \end{cases}$$

- a) Escríbase el sistema en forma matricial.
- b) Discútase el sistema según los diferentes valores de a.
- c) Resuélvase el sistema en el caso en que tenga infinitas soluciones.

Problema 12.7.2 (3 puntos). Se considera la función real de variable real definida por: $f(x) = 2(x-1)^2(x+3)$

- a) Determínense sus intervalos de crecimiento y decrecimiento. Calcúlense sus extremos relativos
- b) Calcúlense los puntos de corte de la gráfica de f con el eje OX. Esbócese la gráfica de f.
- c) Calcúlese el valor del área del recinto plano acotado limitado por la gráfica de f y el eje OX.

Problema 12.7.3 (2 puntos). La probabilidad de que el jugador A de baloncesto consiga una canasta de tres puntos es igual a 7/9, y la probabilidad de que otro jugador B consiga una canasta de tres puntos es 5/7. Cada uno de estos jugadores realiza un lanzamiento de tres puntos.

a) Calcúlese la probabilidad de que solamente uno de los dos jugadores consiga un triple.

b) Calcúlese la probabilidad de que al menos uno de los dos jugadores consiga un triple.

Problema 12.7.4 (2 puntos). Se supone que la altura (en cm) que alcanza la espuma de un cierto detergente para lavadoras durante un lavado estándar se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica igual a 1,5 cm. Una muestra aleatoria simple de 10 lavados de ese tipo ha dado las siguientes alturas de espuma:

- a) Determínese un intervalo de confianza del 90 % para μ .
- b) ¿Qué tamaño mínimo debe tener la muestra para que el valor absoluto del error máximo en la estimación sea de 0,5 cm con el mismo nivel de confianza?

12.8. Septiembre 2011 (Reserva)- Opción B

Problema 12.8.1 (3 puntos). Se consideran las matrices:

$$A = \begin{pmatrix} 2 & 2 & 0 \\ 0 & 2 & 0 \\ 2 & 0 & 4 \end{pmatrix}; B = \begin{pmatrix} -3 & 4 & -6 \\ -2 & 1 & -2 \\ -11 & 3 & -8 \end{pmatrix}$$

- a) Calcúlese $A^{-1}A^T$.- Nota.- La notación A^T representa a la matriz transpuesta de A.
- b) Resuélvase la ecuación matricial: $\frac{1}{4}A^2 AX = B$.

Problema 12.8.2 (3 puntos). Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} ax^2 & \text{si} \quad x \le 1/2\\ bx + c & \text{si} \quad x > 1/2 \end{cases}$$

Calcúlense los valores de a, b, c para que f satisfaga todas las condiciones siguientes:

- a > 0
- La función f es continua y derivable en x = 1/2.
- El valor del área del recinto plano acotado limitado por la gráfica de f, el eje de abscisas y las rectas verticales x = -2, x = 0, es igual a 32/3.

Problema 12.8.3 (2 puntos). Los datos de la tabla siguiente se han extraído de las estadísticas oficiales de la prueba de acceso a estudios universitarios (fase general) de la convocatoria del curso 2009/2010, en el Distrito único de Madrid:

	Chico	Chica
Apto	12109	9863
NoApto	1717	1223

Se elige un alumno al azar de entre los que se presentaron a dicha prueba.

- a) ¿Cuál es la probabilidad de que el alumno elegido sea chica o haya resultado apto?
- b) Si el alumno elegido es chico, ¿Cuál es la probabilidad de que haya resultado no apto?

Problema 12.8.4 ($2 \ puntos$). Se supone que la estatura de los individuos de una cierta población se puede aproximar por una variable aleatoria X con distribución normal de media 170 cm y desviación típica $4 \ cm$.

- a) Se extrae de dicha población una muestra aleatoria simple de 16 individuos. Calcúlese P(X < 167).
- b) Se extrae de dicha población una muestra aleatoria simple y resulta que P(X>172)=0,0062. Determínese el tamaño de la muestra extraída.

Capítulo 13

Año 2012

13.1. Modelo 2012 - Opción A

Problema 13.1.1 (3 puntos) Se considera el siguiente sistema lineal de ecuaciones dependiente del parámetro real k

$$\begin{cases} x + ky + kz = k \\ x + y + z = k \\ ky + 2z = k \end{cases}$$

- a) Discútase el sistema según los diferentes valores de k.
- b) Resuélvase el sistema en el caso en que tenga infinitas soluciones.
- c) Resuélvase el sistema para k = 4.

Problema 13.1.2 (3 puntos) Una empresa de productos de limpieza fabrica cajas de cartón con tapa, para comercializar un determinado tipo de detergente. Las cajas son prismas rectos de 9000 cm^3 de volumen y base rectangular de largo igual al doble de su anchura. Calcúlense las dimensiones en centímetros (largo, anchura, altura) que ha de tener cada caja para que la superficie de cartón empleada en su fabricación sea mínima.

Problema 13.1.3 (2 puntos) Una bolsa contiene dos monedas equilibradas. Una de las monedas tiene cara y cruz y la otra tiene dos caras. Se elige al azar una moneda de la bolsa y se lanza dos veces consecutivas con independencia, observándose dos caras. ¿Cuál es la probabilidad de que la moneda elegida sea la moneda de dos caras?

Problema 13.1.4 (2 puntos) Se supone que la concentración de CO_2 en el aire de una determinada región, medida en partes por millón (ppm), se puede aproximar por una variable aleatoria con distribución normal de desviación típica igual a 20 ppm.

- a) Calcúlese el número mínimo de observaciones necesarias para que el valor absoluto de la diferencia entre la media de la población y la media muestral sea menor o igual que 2 ppm con un nivel de confianza mayor o igual que el 95 %.
- b) Determínese un intervalo de confianza del 95 % para la concentración media de CO_2 en el aire de la región si la muestra elegida contiene 121 observaciones y la concentración media muestral es igual a 350 ppm. CO_2

13.2. Modelo 2012 - Opción B

Problema 13.2.1 (3 puntos) Se considera la matriz $A = \begin{pmatrix} a & 1 \\ 3 & a \end{pmatrix}$

- a) Calcúlense los valores de a para los cuales no existe la matriz inversa A^{-1} .
- b) Para a=2, calcúlese la matriz $B=(A^{-1}A^T)^2$.
- c) Para a=2, calcúlese la matriz X que satisface la ecuación matricial:

$$AX - A^2 = A^T$$

Nota.- A^T representa a la matriz traspuesta de A.

Problema 13.2.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} 2x + 2 & \text{si} & x < 0\\ ax^2 + bx + c & \text{si} & 0 \le x \le 3\\ 3 - x & \text{si} & x > 3 \end{cases}$$

- a) Calcúlense a, b y c, para que la función f sea continua en todos los puntos y derivable en x=0.
- b) Para a=0, calcúlense b, c, para que la función f sea continua en todos los puntos y calcúlese el área del recinto plano acotado limitado por la gráfica de f y el eje OX.
- c) Para $a=b=1,\,c=2,$ calcúlese la integral definida $\int_{-1}^3\,f(x)\,dx.$

Problema 13.2.3 (2 puntos) Una escuela de natación ofrece cursos de iniciación y perfeccionamiento en las categorías pre-benjamín (7-8 años), benjamín (9-10 años) y alevín (11-12 años). La siguiente tabla contiene la información con el número de nadadores matriculados en cada curso:

	Pre – benjamin	Benjamin	Alevin	Total
Iniciación	120	70	10	200
Perfeccionamiento	40	90	150	280
Total	160	160	160	480

Se elige al azar un nadador de la escuela.

- a) ¿Cuál es la probabilidad de que esté en el curso de iniciación?
- b) ¿Cuál es la probabilidad de que esté en el curso de perfeccionamiento o bien sea alevín?
- c) Si el nadador elegido es un benjamín, ¿cuál es la probabilidad de que esté en el curso de perfeccionamiento?
- d) Si el nadador elegido está en el curso de iniciación, ¿cuál es la probabilidad de que sea benjamín?

Problema 13.2.4 (2 puntos) Se supone que la tensión de un tipo de línea eléctrica se puede aproximar por una variable aleatoria con distribución normal de media $\mu=100V$ y desviación típica $\sigma=10V$. ¿Cuál es la distribución de la tensión media de cuatro líneas eléctricas de ese tipo, tomadas al azar y con independencia?

13.3. Junio 2012 - Opción A

Problema 13.3.1 (3 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases} x + & ay - & 7z = 4a - 1 \\ x + & (1+a)y - & (a+6)z = 3a + 1 \\ & ay - & 6z = 3a - 2 \end{cases}$$

- a) Discútase el sistema según los diferentes valores de a
- b) Resuélvase el sistema en el caso en el que tiene infinitas soluciones.
- c) Resuélvase el sistema en el caso a = -3.

Problema 13.3.2 (3 puntos) Una empresa vinícola tiene plantadas 1200 cepas de vid en una finca, produciendo cada cepa una media de 16 kg de uva. Existe un estudio previo que garantiza que por cada cepa que se añade a la finca, las cepas producen de media 0,01 kg menos de uva cada una. Determínese el número de cepas que se deben añadir a las existentes para que la producción de uvas de la finca sea máxima.

Problema 13.3.3 (2 puntos) En un tribunal de la prueba de acceso a las enseñanzas universitarias oficiales de grado se han examinado 80 alumnos del colegio A, 70 alumnos del colegio B y 50 alumnos del colegio C. La prueba ha sido superada por el 80 % de los alumnos del colegio A, el 90 % de los del colegio B y por el 82 % de los del colegio C.

- a) ¿Cuál es la probabilidad de que un alumno elegido al azar haya superado la prueba?
- b) Un alumno elegido al azar no ha superado la prueba, ¿cuál es la probabilidad de que pertenezca al colegio B?

Problema 13.3.4 (2 puntos) Se supone que el peso en kilogramos de los alumnos de un colegio de Educación Primaria el primer día del curso se puede aproximar por una variable aleatoria con distribución normal de desviación típica igual a 2,8 kg. Una muestra aleatoria simple de 8 alumnos de ese colegio proporciona los siguientes resultados (en kg):

- a) Determínese un intervalo de confianza con un nivel del 90 % para el peso medio de los alumnos de ese colegio el primer día de curso.
- b) Determínese el tamaño muestral mínimo necesario para que el valor absoluto de la diferencia entre la media muestral y la media poblacional sea menor o igual que $0.9\ kg$ con un nivel de confianza del $97\ \%$.

13.4. Junio 2012 - Opción B

Problema 13.4.1 (3 puntos) Un estadio de fútbol con capacidad para 72000 espectadores está lleno durante la celebración de un partido entre los equipos A y B. Unos espectadores son socios del equipo A, otros lo son del equipo B, y el resto no son socios de ninguno de los equipos que están jugando. A través de la venta de localidades sabemos lo siguiente:

a) No hay espectadores que sean socios de ambos equipos simultáneamente.

- b) Por cada 13 socios de alguno de los dos equipos hay 3 espectadores que no son socios.
- c) Los socios del equipo B superan en 6500 a los socios del equipo A.

¿Cuántos socios de cada equipo hay en el estadio viendo el partido?

Problema 13.4.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} x^2 - 4x + 3 & \text{si } x \le 1\\ -x^2 + 4x - 3 & \text{si } x > 1 \end{cases}$$

- a) Estúdiese la continuidad y la derivabilidad de la función f.
- b) Represéntese gráficamente la función f.
- c) Calcúlese el área del recinto plano acotado limitado por la gráfica de f, el eje OX, el eje OY, y la recta x=2.

Problema 13.4.3 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio tal que:

$$P(A \cap B) = 0, 1$$
 $P(\overline{A} \cap \overline{B}) = 0, 6$ $P(A|B) = 0, 5$

Calcúlense:

- a) P(B).
- b) $P(A \cup B)$.
- c) P(A).
- d) $P(\overline{B}|\overline{A})$.

Nota: \overline{S} denota el suceso complementario del suceso S. P(S|T) denota la probabilidad del suceso S condicionada al suceso T.

Problema 13.4.4 (2 puntos) Se supone que el gasto que hacen los individuos de una determinada población en regalos de Navidad se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica igual a 45 euros.

- a) Se toma una muestra aleatoria simple y se obtiene el intervalo de confianza (251,6 ; 271,2) para μ , con un nivel de confianza del 95 %. Calcúlese la media muestral y el tamaño de la muestra elegida.
- b) Se toma una muestra aleatoria simple de tamaño 64 para estimar μ . Calcúlese el error máximo cometido por esa estimación con un nivel de confianza del 90 %.

13.5. Junio 2012(coincidente) - Opción A

Problema 13.5.1 (3 puntos) Dadas las matrices
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 2 & 2 \\ 3 & -1 & k \end{pmatrix}, X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
 y $B = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$\begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$
, se pide:

- a) Para k = 4, calcúlese el determinante de la matriz $3A^2$.
- b) Para k = 2, calcúlese (si existe) la matriz inversa A^{-1} .
- c) Discútase la existencia de solución del sistema lineal AX = B según los diferentes valores del parámetro k.

Problema 13.5.2 (3 puntos)) Se considera la función real de variable real $f(x) = \frac{4-2x}{r^2}$.

- a) Determínense los máximos y mínimos locales y los intervalos de crecimiento y decrecimiento de la función f.
- b) Hállense los puntos de inflexión y los intervalos de concavidad y convexidad de f.
- c) Determínense las asíntotas y los puntos de corte con los ejes. Esbócese la gráfica de f.

Problema 13.5.3 (2 puntos) Una ferretería tiene en su almacén bombillas de bajo consumo: 500 bombillas de 20~W, $300~{\rm de}~15~W$ y $200~{\rm de}~12~W$. Los controles de calidad realizados por la empresa que fabrica las bombillas han permitido determinar las probabilidades de fallo de cada tipo de producto durante la primera hora de encendido, siendo de 0,03 para las bombillas de 20~W, de 0,02 para las de 15~W y de 0,01 para las bombillas de 12~W.

- a) Se elige al azar una bombilla del almacén, ¿cuál es la probabilidad de que se produzca un fallo durante la primera hora de encendido?
- b) Se somete al control de calidad una bombilla del almacén elegida al azar y falla en su primera hora de encendido, ¿cuál es la probabilidad de que sea una bombilla de $20\ W$?

Problema 13.5.4 (2 puntos) El consumo anual de carne en un cierto país se puede aproximar por una variable aleatoria con distribución normal con desviación típica $16 \ kg$.

- a) Se toma una muestra aleatoria simple de 64 residentes y se obtiene un consumo medio de 42~kg de carne al año. Determínese un intervalo de confianza con un nivel del 90~% para el consumo anual medio de carne en dicho país.
- b) ¿Qué tamaño mínimo debería tener la muestra para garantizar, con el mismo nivel de confianza, que el error de la estimación del consumo anual medio sea menor que $1\ kg$?

13.6. Junio 2012(coincidente) - Opción B

Problema 13.6.1 (3 puntos) Una compañía aérea oferta hasta un máximo de 60 plazas en sus vuelos diarios entre Madrid y Lisboa. Las plazas de clase turista se ofrecen a 40 euros, mientras que las de primera clase tienen un precio de venta de 75 euros. Por normativa internacional, el número de plazas ofertadas de primera clase debe ser inferior o igual al doble de las plazas de clase turista y superior o igual a la mitad de las plazas de dicha clase turista. Además, por motivos de estrategia empresarial, la compañía tiene que ofrecer como mínimo 10 plazas de clase turista. ¿Qué número de plazas de cada clase se deben ofertar diariamente con el objetivo de maximizar los ingresos de la aerolínea? Determínese dicho ingreso máximo.

Problema 13.6.2 (3 puntos) Se considera la función real de variable real definida por

$$f(x) = ax^2 - \frac{b}{x}$$

- a) Hállense los valores de a y b para que la recta tangente a la gráfica de f en x=1 tenga como ecuación y=3x-2.
- b) Hállense los valores de a y b para que la función f tenga en (1,0) un punto de inflexión.
- c) Hállense los valores de a y b de manera que f no tenga asíntotas y $\int_0^1 f(x)dx = 1$.

Problema 13.6.3 (2 puntos) Los 30 alumnos de una Escuela de Idiomas estudian obligatoriamente Inglés y Francés. En las pruebas finales de estas materias se han obtenido los siguientes resultados: 18 han aprobado Inglés, 14 han aprobado Francés y 6 han aprobado los dos idiomas.

- a) Se elige un estudiante al azar, ¿cuál es la probabilidad de que no haya aprobado ni Inglés ni Francés?
- b) Se elige un estudiante al azar de entre los aprobados de Francés, ¿cuál es la probabilidad de que también haya aprobado Inglés?

Problema 13.6.4 (2 puntos) Se considera una variable aleatoria con distribución normal de media μ y desviación típica σ . Sea \overline{X} la media en una muestra aleatoria simple de tamaño 100 elementos.

- a) Determínese el valor de σ sabiendo que I=(125,2;144,8) es un intervalo de confianza con un nivel del 95 % para la media poblacional μ .
- b) Si $\sigma = 20$, calcúlese la probabilidad $P(1 < \mu \overline{X} < 4)$.

13.7. Septiembre 2012 - Opción A

Problema 13.7.1 (3 puntos) Un pintor dispone de dos tipos de pintura para realizar su trabajo. El primer tipo de pintura tiene un rendimiento de 3 m^2 por litro, con un coste de 1 euro por litro. El segundo tipo de pintura tiene un rendimiento de 4 m^2 por litro, con un coste de 1,2 euros por litro. Con ambos tipos de pintura se puede pintar a un ritmo de 1 litro cada 10 minutos. El pintor dispone de un presupuesto de 480 euros y no puede pintar durante más de 75 horas. Además, debe utilizar al menos 120 litros de cada tipo de pintura. Determínese la cantidad de pintura que debe utilizar de cada tipo si su objetivo es pintar la máxima superficie posible. Indíquese cuál es esa superficie máxima.

Problema 13.7.2 (3 puntos) Se considera la función real de variable real definida por: $f(x) = \frac{x(2x-1)}{x-1}$.

- a) Determínense las asíntotas de f . Calcúlense los extremos relativos de f .
- b) Represéntese gráficamente la función f.
- c) Calcúlese $\int_{2}^{5} \frac{f(x)}{x^{2}} dx$.

Problema 13.7.3 (2 puntos) Se dispone de cinco cajas opacas. Una contiene una bola blanca, dos contienen una bola negra y las otras dos están vacías. Un juego consiste en ir seleccionando al azar y secuencialmente una caja no seleccionada previamente hasta obtener una que contenga una bola. Si la bola de la caja seleccionada es blanca, el jugador gana; si es negra, el jugador pierde.

- a) Calcúlese la probabilidad de que el jugador gane.
- b) Si el jugador ha perdido, ¿cuál es la probabilidad de que haya seleccionado una sola caja?

Problema 13.7.4 (2 puntos) La duración en kilómetros de los neumáticos de una cierta marca se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica igual a 3000 kilómetros.

- a) Se toma una muestra aleatoria simple de 100 neumáticos y se obtiene una media muestral de 48000 kilómetros. Determínese un intervalo de confianza con un nivel del 90 % para μ .
- b) Calcúlese el tamaño mínimo que debe tener la muestra para que el valor absoluto de la diferencia entre la media de la muestra y μ sea menor o igual a 1000 kilómetros con probabilidad mayor o igual que 0,95.

13.8. Septiembre 2012 - Opción B

Problema 13.8.1 (3 puntos) Se considera el siguiente sistema de ecuaciones, dependiente del parámetro real k:

$$\begin{cases} x + & y + & z = 2 \\ x + & ky + & 2z = 5 \\ kx + & y + & z = 1 \end{cases}$$

- a) Discútase el sistema según los diferentes valores de k.
- b) Resuélvase el sistema para k=0.
- c) Resuélvase el sistema para k=2.

Problema 13.8.2 (3 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} ax + b & \text{si} \quad x \le 1\\ x^3 - x^2 + 1 & \text{si} \quad x > 1 \end{cases}$$

- a) Calcúlense los valores de a y b para los que la función f es continua y derivable.
- b) Para a=0 y b=1, hállese la ecuación de la recta tangente a la gráfica de f en los puntos en los que dicha tangente es paralela a la recta y-8x=1.
- c) Sea g la función real de variable real definida por $g(x) = 1 2x^2$. Para a = 1 y b = 0, calcúlese el área de la región plana acotada limitada por la gráfica de f y la gráfica de g.

Problema 13.8.3 (2 puntos) Se consideran dos sucesos A y B tal que:

$$P(A) = \frac{1}{3}$$
 $P(B|A) = \frac{1}{4}$ $P(A \cup B) = \frac{1}{2}$

Calcúlese razonadamente:

- a) $P(A \cap B)$.
- b) P(B).
- c) $P(\overline{B}|A)$.

d) $P(\overline{A}|\overline{B})$.

Nota: \overline{S} denota el suceso complementario del suceso S. P(S|T) denota la probabilidad del suceso S condicionada al suceso T.

Problema 13.8.4 (2 puntos) El tiempo de espera para ser atendido en un cierto establecimiento se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica igual a 3 minutos. Se toma una muestra aleatoria simple de tamaño 121.

- a) Calcúlese la probabilidad de que el valor absoluto de la diferencia entre la media de la muestra y μ sea mayor que 0,5 minutos.
- b) Determínese un intervalo de confianza con un nivel del 95 % para μ , si la media de la muestra es igual a 7 minutos.

Capítulo 14

Año 2013

14.1. Modelo 2013 - Opción A

Problema 14.1.1 (2 puntos) Discútase el sistema siguiente en función del parámetro $a \in R$:

$$\begin{cases} x - y &= a \\ x + & az = 0 \\ 2x - y + a^2z = 1 \end{cases}$$

Problema 14.1.2 (2 puntos) Dada la función real de variable real $f(x) = \frac{3x^2 - 5}{x + 1}$

- a) Hállense sus asíntotas horizontales, verticales y oblicuas.
- b) Hállense los puntos de corte de la gráfica de f con los ejes de coordenadas y sus intervalos de crecimiento y decrecimiento.

Problema 14.1.3 (2 puntos) Dada la función real de variable real

$$f(x) = \begin{cases} -x^2 - 3x + 5 & \text{si} \quad x \le 1\\ x^2 & \text{si} \quad x > 1 \end{cases}$$

- a) Estúdiese la continuidad de la función en R.
- b) Calcúlese $\int_0^2 f(x) dx$

Problema 14.1.4 (2 puntos) Tres máquinas A, B y C fabrican tornillos del mismo tipo. La probabilidad de que un tornillo fabricado en la máquina A sea defectuoso es 0,01, de que lo sea uno fabricado en B es 0,02 y de que lo sea si ha sido manufacturado en C es 0,03. En una caja se mezclan 120 tornillos: 15 de la máquina A, 30 de la B y 75 de la C.

- a) Calcúlese la probabilidad de que un tornillo elegido al azar no sea defectuoso.
- b) Elegido un tornillo al azar resulta defectuoso. ¿Cuál es la probabilidad de que haya sido fabricado por la máquina B?

Problema 14.1.5 (2 puntos) El peso en gramos del contenido de las cajas de cereales de una cierta marca se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica igual a 5 gramos. Se toma una muestra de tamaño 144.

- a) Calcúlese la probabilidad de que el valor absoluto de la diferencia entre la media de la muestra y μ sea menor de 1 gramo.
- b) Si la media muestral obtenida es igual a 499.5 gramos, determínese un intervalo de confianza con un nivel del 90% para el peso medio de ese tipo de cajas de cereales.

14.2. Modelo 2013 - Opción B

Problema 14.2.1 (2 puntos)

a) Determínense los valores de a y b para que la función objetivo F(x, y) = 3x + y alcance su valor máximo en el punto (6,3) de la región factible definida por

$$\begin{cases} x \ge 0 \\ y \ge 0 \\ x + ay \le 3 \\ 2x + y \le b \end{cases}$$

b) Represéntese la región factible para esos valores y calcúlense las coordenadas de todos sus vértices.

Problema 14.2.2 (2 puntos) Sea la matriz $A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$

- a) Obténgase A^{2007} .
- b) Hállese la matriz Btal que $A\cdot B=\left(\begin{array}{cc} 11 & 5 & 1 \\ -7 & -3 & 0 \end{array}\right)$

Problema 14.2.3 (2 puntos) El coste de fabricación de una serie de hornos microondas viene dado por la función $C(x) = x^2 + 40x + 30000$; donde x representa el número de hornos fabricados. Supongamos que cada horno se vende por 490 euros.

- a) Determínese la función de beneficios.
- b) ¿Cuántos microondas deben fabricarse y venderse para que los beneficios sean máximos? ¿Cuál es el importe de esos beneficios máximos?

Problema 14.2.4 (2 puntos) Sean A y B dos sucesos aleatorios tal que

$$P(A) = \frac{1}{2}, \ P(\overline{B}) = \frac{3}{4}, \ P(A \cup B) = \frac{2}{3}$$

- a) Determínese si son compatibles o incompatibles los sucesos A y B.
- b) Determínese si son dependientes o independientes los sucesos A y B.

Nota: \overline{S} denota al suceso complementario del suceso S.

Problema 14.2.5 (2 puntos) La altura de los árboles de una determinada comarca se puede aproximar por una variable aleatoria con distribución normal de media desconocida y varianza 25 cm. Se toma una muestra aleatoria simple y, para un nivel de confianza del 95 %, se construye un intervalo de confianza para la media poblacional cuya amplitud es de 2,45 cm.

- a) Determínese el tamaño de la muestra seleccionada.
- b) Determínese el límite superior y el inferior del intervalo de confianza si la altura media para la muestra seleccionada fue de 170 cm.

14.3. Junio 2013 - Opción A

Problema 14.3.1 (2 puntos) Dada la matriz $A = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 0 & -1 \\ 1 & 1 & 1 \end{pmatrix}$.

- a) Calcúlese A^{-1}
- b) Resuélvase el sistema de ecuaciones dado por $A \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

Problema 14.3.2 (2 puntos) Se desea maximizar la función f(x,y) = 64,8x + 76,5y sujeta a las siguientes restricciones:

$$6x + 5y \le 700$$
, $2x + 3y \le 300$, $x \ge 0$, $y \ge 0$

- a) Represéntese gráficamente la región de soluciones factibles y calcúlense las coordenadas de sus vértices.
- b) Determínese el valor máximo de f sobre la región, indicando el punto donde se alcanza dicho máximo.

Problema 14.3.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = 3e^{-2x}$

- a) Obténgase la ecuación de la recta tangente a la gráfica de f en el punto x=0
- b) Calcúlese el área de la región plana acotada limitada por la gráfica de f, las rectas x=0, x=0,5 y el eje de abscisas.

Problema 14.3.4 (2 puntos) Al analizar las actividades de ocio de un grupo de trabajadores fueron clasificados como deportistas o no deportistas y como lectores o no lectores. Se sabe que el $55\,\%$ de los trabajadores se clasificaron como deportistas o lectores, el $40\,\%$ como deportistas y el $30\,\%$ lectores. Se elige un trabajador al azar:

- a) Calcúlese la probabilidad de sea deportista y no lector.
- b) Sabiendo que el trabajador elegido es lector, calcúlese la probabilidad de que sea deportista.

Problema 14.3.5 (2 puntos) El número de megabytes (Mb) descargados mensualmente por el grupo de clientes de una compañía de telefonía móvil con la tarifa AA se puede aproximar por una distribución normal con media 3,5 Mb y una desviación típica igual a 1,4 Mb. Se toma una muestra aleatoria de tamaño 24.

- a) ¿Cuál es la probabilidad de que la media muestral sea inferior de 3,37 Mb?.
- b) Supóngase ahora que la media poblacional es desconocida y que la media muestral toma el valor de 3,42 Mb. Obténgase un intervalo de confianza al 95 % para la media de la población.

14.4. Junio 2013 - Opción B

Problema 14.4.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} ax - 2y & = 2 \\ 3x - y - z & = -1 \\ x + 3y + z & = 1 \end{cases}$$

- a) Discútase en función de los valores del parámetro $a \in R$.
- b) Resuélvase para a = 1.

Problema 14.4.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} e^x & \text{si } x < 0\\ \frac{a+3x}{x^2 - 4x + 3} & \text{si } x \ge 0 \end{cases}$$

- a) Estúdiese la continuidad de f en x=0 para los distintos valores del parámetro a.
- b) Determínense las asíntotas de la función.

Problema 14.4.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = x(5-x)^2$

- a) Determínense los intervalos de crecimiento y decrecimiento de f.
- b) Determínense los intervalos de concavidad y convexidad de f.

Problema 14.4.4 (2 puntos) Una tienda de trajes de caballero trabaja con tres sastres. Un 5% de los clientes atendidos por el sastre A no queda satisfecho, tampoco el 8% de los atendidos por el sastre B ni el 10% de los atendidos por el sastre C. El 55% de los arreglos se encargan al sastre A, el 30% al B y el 15% restante al C. Calcúlese la probabilidad de que:

- a) Un cliente no quede satisfecho con el arreglo.
- b) Si un cliente no ha quedado satisfecho, le haya hecho el arreglo el sastre A

Problema 14.4.5 (2 puntos) La duración en horas de un determinado tipo de bombillas se puede aproximar por una distribución normal de media μ y desviación típica igual a 1940 h. Se toma una muestra aleatoria simple.

- a) ¿Qué tamaño muestral se necesitaría como mínimo para que, con nivel de confianza del 95 %, el valor absoluto de la diferencia entre μ y la duración media observada \overline{X} de esas bombillas sea inferior a 100 h?
- b) Si el tamaño de la muestra es 225 y la duración media observada \overline{X} es de 12415 h, obténgase un intervalo de confianza al 90 % para μ .

14.5. Junio 2013 (coincidente)- Opción A

Problema 14.5.1 (2 puntos) Se considera el sistema de ecuaciones:

$$\begin{cases} x + 2y + 3z = -2 \\ x + ay = -2a - 1 \\ 4x + y + 5z = -1 \end{cases}$$

- a) Resuélvase en el caso a = 1.
- b) Discútase en función del parámetro $a \in R$.

Problema 14.5.2 (2 puntos) Calcúlese la derivada de cada una de las funciones siguientes ($\ln x$ denota al logaritmo neperiano de x):

a)
$$f(x) = (x^3 + 2x) \cdot \ln x$$

b)
$$g(x) = \frac{2x}{x-1} \cdot e^{x^2}$$

Problema 14.5.3 (2 puntos) Se considera la función real de variable real $f(x) = 2x^2 + 2x - 4$

- a) Represéntense gráficamente f.
- b) Calcúlese el área del recinto plano acotado limitado por la gráfica de f y el eje de abscisas.

Problema 14.5.4 (2 puntos) En un instituto se imparten únicamente dos lenguas extranjeras: inglés y francés. El 72 % de los alumnos de ese instituto estudia inglés y el 42 % estudia francés. Todos los alumnos estudian al menos una lengua extranjera. Si se elige un alumno al azar, calcúlese la probabilidad de que:

- a) Estudie inglés y francés.
- b) Estudie inglés, y no estudie francés.

Problema 14.5.5 (2 puntos) La altura en centímetros de los individuos de una población se puede aproximar por una distribución normal de media μ y desviación típica igual a 20 cm.

- a) En una muestra aleatoria simple de 500 individuos se ha obtenido una altura media de 174 cm. Obténgase un intervalo de confianza al 95 % para μ
- b) ¿Cuál debe ser el tamaño mínimo de la muestra para que el correspondiente intervalo de confianza para μ ; al 90 %, tenga de amplitud a lo sumo 5 cm?

14.6. Junio 2013 (coincidente)- Opción B

Problema 14.6.1 (2 puntos) Encuéntrese la matriz X que verifica

$$\left(\begin{array}{cc} 2 & 0 \\ 4 & 1 \end{array}\right) \cdot X = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right) \cdot X + \left(\begin{array}{cc} 11 & 3 \\ -7 & -2 \end{array}\right)$$

Problema 14.6.2 (2 puntos) Sea C la región del plano delimitada por el sistema de inecuaciones

$$S: \begin{cases} 2x - y \ge 1\\ x + y \ge 5\\ 7x + y \le 35 \end{cases}$$

- a) Represéntese la región C y calcúlense las coordenadas de sus vértices.
- b) Calcúlense los valores máximo y mínimo absolutos de la función f(x,y) = 3x 2y sobre la región C, determinando los puntos donde se alcanzan dichos valores máximo y mínimo.

Problema 14.6.3 (2 puntos) Supongamos que el consumo eléctrico de un país (expresado en gigavatios) entre las 0 y las 8 horas viene dado por la función $c(x) = 10x - x^2 + 16$, con $0 \le x \le 8$.

- a) Determínese cuáles son el consumo máximo y el mínimo en ese intervalo de tiempo, y los instantes en los que se alcanzan.
- b) Calcúlese $\frac{\int_0^8 c(x) dx}{8}$ (que representa el consumo medio a lo largo de esas 8 horas).

Problema 14.6.4 (2 puntos)

- a) Sean A y B dos sucesos de un mismo espacio muestral. Sabiendo que P(A) = 0, 6, P(B) = 0, 4 y $P(A \cup B) = 0, 8$, determínese la probabilidad de A condicionado a que B haya ocurrido.
- b) Sean C y D dos sucesos de un mismo espacio muestral. Sabiendo que P(C) = 0, 4, P(D) = 0, 5 y que C y D son incompatibles, determínese $P(C \cup D)$.

Problema 14.6.5 (2 puntos) Una envasadora empaqueta naranjas en bolsas. Para realizar un control de calidad, se tomó una muestra del peso real de 8 bolsas y se obtuvieron los siguientes resultados:

El peso de las bolsas que salen de esa planta de envasado se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica 0,5 kg.

- a) Obténgase un intervalo de confianza, al 95 %, para la media poblacional μ
- b) Hállese el error máximo que se cometería en la estimación de μ usando el intervalo de confianza anterior.

14.7. Septiembre 2013 - Opción A

Problema 14.7.1 (2 puntos) Se consideran las matrices $A = \begin{pmatrix} 0 & 2 \\ 3 & 0 \end{pmatrix}$ y $B = \begin{pmatrix} -3 & 8 \\ 3 & -5 \end{pmatrix}$.

- a) Calcúlese la matriz inversa de A
- b) Resuélvase la ecuación matricial $A \cdot X = B I$; donde I es la matriz identidad.

Problema 14.7.2 (2 puntos) Sea C la región del plano delimitada por el sistema de inecuaciones

$$\begin{cases} x + 3y \ge 3 \\ 2x - y \le 4 \\ 2x + y \le 24 \\ x \ge 0, \ y \ge 0 \end{cases}$$

- a) Represéntese la región C y calcúlense las coordenadas de sus vértices.
- b) Determínese el punto de C donde la función f(x,y)=3x+y alcanza su valor máximo. Calcúlese dicho valor.

Problema 14.7.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = \frac{x^3}{x^2 - 9}$

- a) Hállense las asíntotas de f.
- b) Determínese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x=1

Problema 14.7.4 (2 puntos) En un avión de línea regular existe clase turista y clase preferente. La clase turista ocupa las dos terceras partes del pasaje y la clase preferente el resto. Se sabe que todos los pasajeros que viajan en la clase preferente saben hablar inglés y que el 40 % de los pasajeros que viajan en clase turista no saben hablar inglés. Se elige un pasajero del avión al azar.

- a) Calcúlese la probabilidad de que el pasajero elegido sepa hablar inglés.
- b) Si se observa que el pasajero elegido sabe hablar inglés, ¿cuál es la probabilidad de que viaje en la clase turista?

Problema 14.7.5 (2 puntos) El tiempo de renovación de un teléfono móvil, expresado en años, se puede aproximar mediante una distribución normal con desviación típica 0,4 años.

- a) Se toma una muestra aleatoria simple de 400 usuarios y se obtiene una media muestral igual a 1,75 años. Determínese un intervalo de confianza al $95\,\%$ para el tiempo medio de renovación de un teléfono móvil.
- b) Determínese el tamaño muestral mínimo necesario para que el valor absoluto de la diferencia entre la media muestral y la media poblacional sea menor o igual a 0,02 años con un nivel de confianza del $90\,\%$.

14.8. Septiembre 2013 - Opción B

Problema 14.8.1 (2 puntos) Se considera el siguiente sistema de ecuaciones lineales, dependiente del parámetro k:

$$\begin{cases} kx+ & y = 0\\ x+ & ky- & 2z = 1\\ kx- & 3y+ & kz = 0 \end{cases}$$

- a) Discútase el sistema según los diferentes valores de k.
- b) Resuélvase el sistema para k = 1.

Problema 14.8.2 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} ax^2 - 3 & \text{si } x \le 1\\ \ln(2x - 1) & \text{si } x > 1 \end{cases}$$

- a) Calcúlese a para que la función f sea continua en todo R:
- b) Represéntese gráficamente la función para el caso a=3.

Nota: lnx denota al logaritmo neperiano del número x.

Problema 14.8.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = \frac{x}{x^2 + 4}$

- a) Determínense los extremos relativos de f.
- b) Calcúlese la integral definida $\int_0^1 f(x) dx$.

Problema 14.8.4 (2 puntos) Una caja de caramelos contiene 7 caramelos de menta y 10 de fresa. Se extrae al azar un caramelo y se sustituye por dos del otro sabor. A continuación se extrae un segundo caramelo. Hállese la probabilidad de que:

- a) El segundo caramelo sea de fresa.
- b) El segundo caramelo sea del mismo sabor que el primero.

Problema 14.8.5 (2 puntos) Se considera una variable aleatoria con distribución normal de media μ y desviación típica igual a 210. Se toma una muestra aleatoria simple de 64 elementos.

- a) Calcúlese la probabilidad de que el valor absoluto de la diferencia entre la media muestral y μ sea mayor o igual que 22.
- b) Determínese un intervalo de confianza del 99 % para μ , si la media muestral es igual a 1532.

14.9. Septiembre 2013 (coincidente)- Opción A

Problema 14.9.1 (2 puntos) Hemos ido tres días seguidos al bar de la Universidad. El primer día tomamos 3 cafés, 2 refrescos de cola y 3 batidos de cacao, el precio fue de 7 euros. El segundo día tomamos 1 café, 2 refrescos de cola y 2 batidos de cacao, el precio total fue de 5 euros. Por último, el tercer día tomamos 2 cafés y un batido de cacao, el precio fue de 2 euros. Justifíquese razonadamente si con estos datos podemos determinar o no el precio de un café, de un refresco de cola y de un batido de cacao, suponiendo que estos precios no han variado en los tres días.

Problema 14.9.2 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{x^2 + 3}{x + 1}$$

- a) Hállense sus asíntotas horizontales, verticales y oblicuas si es que existen.
- b) Determínense los puntos de corte con los ejes de coordenadas y sus intervalos de crecimiento y decrecimiento.

Problema 14.9.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = \begin{cases} 4x^3 - 30 & \text{si } x < 2\\ 3x^2 + 2x + b & \text{si } x \geq 2 \end{cases}$

- a) Determínese el valor de b para que la función sea continua en R.
- b) Para b = 0, calcúlese $\int_0^3 f(x) dx$.

Problema 14.9.4 (2 puntos) Se consideran los sucesos A y B de un experimento aleatorio tal que

$$P(A) = \frac{1}{3}, \quad P(B) = \frac{2}{3}, \quad P(A \cap B) = \frac{1}{6}$$

- a) Determínese la probabilidad de que suceda A si sabemos que ha sucedido B.
- b) Determínese la probabilidad de que no suceda ni A ni B.

Problema 14.9.5 (2 puntos) La longitud alcanzada por un lanzador de disco se puede aproximar por una variable aleatoria normal con media μ desconocida y desviación típica igual a 2 metros. El lanzador hace 10 lanzamientos en una prueba atlética. Considérense esos 10 lanzamientos como una muestra aleatoria simple.

- a) Calcúlese la probabilidad de que el valor absoluto de la diferencia entre la distancia media obtenida por el lanzador en los 10 intentos y μ sea menor que 0, 75 metros.
- b) Si la media de las distancias alcanzadas en los lanzamientos durante la prueba ha sido de 65 metros, determínese un intervalo de confianza con un nivel del 95 % para la distancia media μ de los lanzamientos de este atleta.

14.10. Septiembre 2013 (coincidente)- Opción B

Problema 14.10.1 (2 puntos) Se considera el sistema de ecuaciones lineales

$$\begin{cases}
2x - 2ay + z = 1 \\
x + (2+a)y + z = 0 \\
3x + a^2y + 2z = a
\end{cases}$$

- a) Discútase, en función del parámetro real a.
- b) Resuélvase el sistema para a = 0.

Problema 14.10.2 (2 puntos) Se considera la matriz $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

- a) Calcúlese A^2 , A^3 , A^{20} .
- b) Hállese la matriz B tal que $A \cdot B = \begin{pmatrix} 3 & 2 \\ 4 & 2 \end{pmatrix}$

Problema 14.10.3 (2 puntos) Se considera la función real de variable real $f(x) = 2x^3 - 9x^2 + 12x$

- a) Determínense los puntos de corte con los ejes de coordenadas así como sus límites cuando x tiende a infinito y a menos infinito.
- b) Determínense sus intervalos de crecimiento y decrecimiento, así como sus máximos y sus mínimos locales.

Problema 14.10.4 (2 puntos) En un avión viajan un 10 % de los pasajeros en primera clase. Del total de pasajeros del avión un 20 % son mujeres. Se sabe que los pasajeros que viajan en primera clase y además son mujeres, son el 2 % del total. Determínese la probabilidad de que:

a) al escoger un pasajero de primera clase al azar sea mujer.

b) al escoger un varón del avión al azar, no viaje en primera clase.

Problema 14.10.5 (2 puntos) El peso de las lubinas de un año producidas en una piscifactoría se puede aproximar por una distribución normal con media 600 gramos y desviación típica 100 gramos. Las lubinas de un año están en un recinto aislado.

- a) Considérese una muestra aleatoria simple de 20 lubinas de un año en la piscifactoría, calcúlese la probabilidad de que su peso medio sea superior a 650 gramos.
- b) Se toma una muestra aleatoria simple de 100 lubinas de un año. Hállese el nivel de confianza con el que se ha calculado el siguiente intervalo de confianza para la media: (580,4; 619,6).

Capítulo 15

Año 2014

15.1. Modelo 2014 - Opción A

Problema 15.1.1 (2 puntos) Dadas las matrices $A = \begin{pmatrix} 3 & 0 \\ a & -1 \end{pmatrix}$, $B = \begin{pmatrix} -2 & b \\ 0 & 1 \end{pmatrix}$ y $C = \begin{pmatrix} -5 & 4 \\ 1 & -2 \end{pmatrix}$

- a) Hállense los valores de a y b para los que se cumple A + B + AB = C.
- b) Para el caso en el que a=1 y b=2, determínese la matriz X que verifica BX-A=I; donde I es la matriz identidad.

Problema 15.1.2 (2 puntos) Un astillero recibe un encargo para reparar barcos de la flota de un armador, compuesta por pesqueros de 500 toneladas y yates de 100 toneladas. Cada pesquero se tarda en reparar 100 horas y cada yate 50 horas. El astillero dispone de 1600 horas para hacer las reparaciones. Por política de empresa, el astillero no acepta encargos de más de 12 pesqueros ni más de 16 yates. Las reparaciones se pagan a 100 euros la tonelada, independientemente del tipo de barco. ¿Cuántos barcos de cada clase debe reparar el astillero para maximizar el ingreso con este encargo? ¿Cuál es dicho ingreso máximo?

Problema 15.1.3 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} \frac{-4}{x+2} - 1 & \text{si } x \le 0 \\ \frac{1}{x+1} & \text{si } x > 0 \end{cases}$$

- a) Determínense las asíntotas de la función y los puntos de corte con los ejes.
- b) Calcúlese $\int_{-1}^{1} f(x) dx$

Problema 15.1.4 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio, tal que la probabilidad de que no ocurra B es 0,6. Si el suceso B ocurre, entonces la probabilidad de que el suceso A ocurra es de 0,4 y si el suceso A ocurre, la probabilidad de que el suceso B ocurra es 0,25. Calcúlense:

$$a)P(B)$$
, $b)P(A \cap B)$, $c)P(A)$, $d)P(A \cup B)$

Problema 15.1.5 (2 puntos) El contenido en alquitrán de una determinada marca de cigarrillos se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica 4 mg.

- a) Se toma una muestra aleatoria de tamaño $20~\rm y$ se obtiene que su media muestral es de $22~\rm mg$. Determínese un intervalo de confianza al 90~% para el contenido medio de alquitrán en un cigarrillo de la citada marca.
- b) Determínese el tamaño mínimo de la muestra para que el error máximo cometido en la estimación de la media sea menor que 0.5 mg, con un nivel de confianza del 90%.

15.2. Modelo 2014 - Opción B

Problema 15.2.1 (2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x + 3y + z = 1 \\ 2x + 6y + z = 0 \\ -x + ay + 4z = 1 \end{cases}$$

- a) Discútase en función de los valores del parámetro $a \in R$.
- b) Resuélvase para a = 0.

Problema 15.2.2 (2 puntos) La figura representa la gráfica de una función $f:[-6;5] \longrightarrow \mathbb{R}$. Contéstese razonadamente a las preguntas planteadas.

- a) ¿Para qué valores de x es f'(x) > 0?
- b) ¿En qué puntos del intervalo [-6,5] f alcanza sus extremos relativos?
- c) ¿Cuál es el signo de $\int_2^4 f(x) dx$?
- d) ¿En qué valores de (-6; 5) f no es derivable?

Problema 15.2.3 (2 puntos) Sea

$$f(x) = \begin{cases} 2x^2 - ax + 1 & \text{si} \quad x \le 1\\ -x^2 + 3x - b & \text{si} \quad x > 1 \end{cases}$$

- a) Determínense los valores de a y b que hacen que f sea continua en x=1 y que $f\left(\frac{3}{2}\right)=\frac{1}{4}$.
- b) Para el caso en el que a=1 y b=4, hállese la ecuación de la recta tangente a la gráfica de f en x=3.

Problema 15.2.4 (2 puntos) En una determinada población, el 30 % de las personas que deciden iniciar una dieta de adelgazamiento utilizan algún tipo de supervisión médica mientras que el $40\,\%$ de todas las personas que inician una dieta de adelgazamiento continúan con ella al menos un mes. En esa población, el $80\,\%$ de las personas que inician la dieta sin supervisión abandona antes del primer mes.

- a) Se escoge al azar a un individuo de esa población del que sabemos que ha iniciado una dieta. ¿Cuál es la probabilidad de que abandonara antes del primer mes y no hubiera tenido supervisión médica?
- b) ¿Qué porcentaje de las personas que inician una dieta con supervisión médica abandona antes del primer mes?

Problema 15.2.5 (2 puntos) El nº de kilómetros recorridos en un día determinado por un conductor de una empresa de transportes se puede aproximar por una variable aleatoria X con una distribución normal de media μ .

a) Se obtuvo una muestra aleatoria simple, con los siguientes resultados:

Determínese un intervalo de confianza al 95 % para μ si la variable aleatoria X tiene una desviación típica igual a 30 km.

b) ¿Cuál sería el error de estimación de μ usando un intervalo de confianza con un nivel del 90 %, construido a partir de una muestra de tamaño 4, si la desviación típica de la variable aleatoria X fuera de 50 km?

15.3. Junio 2014 - Opción A

Problema 15.3.1 (2 puntos) Sean las matrices $A = \begin{pmatrix} 2 & 1 \\ -1 & 0 \\ 1 & -2 \end{pmatrix}$ y $B = \begin{pmatrix} 3 & 1 \\ 0 & 2 \\ -1 & 0 \end{pmatrix}$.

- a) Calcúlese $(A^tB)^{-1}$, donde A^t denota a la traspuesta de la matriz A.
- b) Resuélvase la ecuación matricial $A \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \\ 5 \end{pmatrix}$.

Problema 15.3.2 (2 puntos) Se consideran la función f(x,y) = 5x - 2y y la región del plano S definida por el siguiente conjunto de restricciones:

$$x - 2y \le 0$$
, $x + y \le 6$, $x \ge 0$, $y \le 3$

a) Represéntese la región S.

b) Calcúlense las coordenadas de los vértices de la región S y obténganse los valores máximo y mínimo de la función f en S indicando los puntos donde se alcanzan.

Problema 15.3.3 (2 puntos) Se considera la función real de variable real definida por f(x) $x + a \quad \text{si} \quad x < 1$ $x^2 - 2 \quad \text{si} \quad 1 \le x \le 3$ $x + b \quad \text{si} \quad x > 3$

$$x^2 - 2$$
 si $1 \le x \le x + b$ si $x > 3$

- a) Determínense a y b para que f sea continua en todo R.
- b) Calcúlese $\int_{1}^{3} f(x) dx$.

Problema 15.3.4 (2 puntos) Sean A y B dos sucesos de un espacio muestral tal que: P(A) = 0, 4; $P(A \cup B) = 0, 5; P(B|A) = 0, 5.$ Calcúlense:

- a) P(B).
- b) $P(A|\overline{B})$.

Nota: \overline{S} denota al suceso complementario del suceso S.

Problema 15.3.5 (2 puntos) La longitud, en milímetros (mm), de los individuos de una determinada colonia de gusanos de seda se puede aproximar por una variable aleatoria con distribución normal de media desconocida μ y desviación típica igual a 3 mm.

- a) Se toma una muestra aleatoria simple de 48 gusanos de seda y se obtiene una media muestral igual a 36 mm. Determínese un intervalo de confianza para la media poblacional de la longitud de los gusanos de seda con un nivel de confianza del 95 %.
- b) Determínese el tamaño muestral mínimo necesario para que el error máximo cometido en la estimación de μ por la media muestral sea menor o igual que 1 mm con un nivel de confianza del 90%.

Junio 2014 - Opción B 15.4.

Problema 15.4.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x+y+az=2\\ 3x+4y+2z=a\\ 2x+3y-z=1 \end{cases}$$

- a) Discútase el sistema según los diferentes valores de a
- b) Resuélvase el sistema en el caso a = -1.

Problema 15.4.2 (2 puntos) Dada la función real de variable real $f(x) = 4x^3 - 3x^2 - 2x$.

- a) Determínese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x=1.
- b) Calcúlese $\int_{0}^{3} f(x)dx$.

Problema 15.4.3 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{x^2}{x - 2}$$

- a) Determínense sus asíntotas.
- b) Determínense el dominio y los intervalos de crecimiento y decrecimiento de f.

Problema 15.4.4 (2 puntos) Se dispone de un dado cúbico equilibrado y dos urnas A y B. La urna A contiene 3 bolas rojas y 2 negras; la urna B contiene 2 rojas y 3 negras. Lanzamos el dado: si el número obtenido es 1 ó 2 extraemos una bola de la urna A; en caso contrario extraemos una bola de la urna B.

- a) ¿Cuál es la probabilidad de extraer una bola roja?
- b) Si la bola extraída es roja, ¿cuál es la probabilidad de que sea de la urna A?

Problema 15.4.5 (2 puntos) El consumo mensual de leche (en litros) de los alumnos de un determinado colegio se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica $\sigma = 3$ litros.

- a) Se toma una muestra aleatoria simple y se obtiene el intervalo de confianza (16, 33; 19, 27) para estimar μ , con un nivel de confianza del 95 %. Calcúlese la media muestral y el tamaño de la muestra elegida.
- b) Se toma una muestra aleatoria simple de tamaño 64. Calcúlese el error máximo cometido en la estimación de μ mediante la media muestral con un nivel de confianza del 95 %.

15.5. Junio 2014 (coincidente)- Opción A

Problema 15.5.1 (2 puntos) Considérese la matriz $A=\left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{array}\right)$

- a) Calcúlese A^{-1} .
- b) Determínese la matriz X tal que $AX = A^{-1}$

Problema 15.5.2 (2 puntos) Sea S la región del plano definida por:

$$x-2y < 0$$
; $x-y < 1$; $x+y < 5$; $x > 0$; $y > 0$

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = x y en la región S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 15.5.3 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = \frac{x^3}{x^2 + 1}$$

b) Determínense sus intervalos de crecimiento y decrecimiento.

Problema 15.5.4 (2 puntos) Todos los trabajadores de una determinada empresa tienen como mínimo conocimientos de Inglés o de Alemán. El 75 % de los empleados tienen conocimientos de Inglés y el 46 % conocimientos de Alemán. Calcúlese la probabilidad de que un empleado elegido al azar:

- a) Tenga conocimientos de Inglés y de Alemán.
- b) Tenga conocimientos de Inglés si sabemos que tiene conocimientos de Alemán.

Problema 15.5.5 (2 puntos) La cantidad de azúcar, en gramos, del contenido de las botellas de un litro de una conocida bebida refrescante se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica igual a 2 gramos.

- a) Se ha realizado un análisis de control de los contenidos de una muestra aleatoria simple de 100 de esas botellas y se ha obtenido una cantidad media de azúcar igual a 70 gramos. Obténgase un intervalo de confianza al 95 % para μ .
- b) ¿Cuál debe ser el tamaño mínimo de la muestra para que el correspondiente intervalo de confianza para μ , al 90 %, tenga de amplitud a lo sumo 2 gramos?

15.6. Junio 2014 (coincidente)- Opción B

Problema 15.6.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} ax + 2y + z = 2 \\ 2x + 4y = 1 \\ x + 2y + 3z = 5 \end{cases}$$

- a) Discútase para los diferentes valores de $a \in R$.
- b) Resuélvase para a=2.

Problema 15.6.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} x^2 + 2 & \text{si} \quad x > 0\\ \frac{mx - 6}{x - 3} & \text{si} \quad x \le 0 \end{cases}$$

- a) Determínese para qué valores del parámetro m la función f es continua en x = 0.
- b) Calcúlese la recta tangente a la gráfica de f en x = 5.

Problema 15.6.3 (2 puntos) Para la función real de variable real $f(x) = \frac{(5x+7)^{10}}{2}$

- a) Calcúlese su función derivada.
- b) Calcúlese $\int f(x) dx$.

Problema 15.6.4 (2 puntos) En un estudio de arquitectura de Madrid trabajan personas de diferentes nacionalidades. El 80 % de las personas que trabajan en el estudio son españolas. El 40 % de los empleados del estudio son mujeres, de las cuales un 90 % son españolas. Calcúlese la probabilidad de que tomando a un empleado del estudio de arquitectura al azar:

- a) Sea mujer y extranjera.
- b) Sea español sabiendo que no es mujer.

Problema 15.6.5 (2 puntos) El peso, en gramos, del contenido de las cajas de una conocida marca de cereales se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica 10 gramos.

- a) Se ha tomado una muestra aleatoria simple de 20 de esas cajas de cereales para realizar un estudio y la media de los pesos de sus contenidos ha sido $\bar{x}=500$. Calcúlese un intervalo de confianza del 95 % para μ .
- b) Si sabemos que $\mu=500$, calcúlese la probabilidad de que la media muestral de los pesos de una muestra aleatoria simple de 20 cajas sea inferior a 495 gramos.

15.7. Septiembre 2014 - Opción A

Problema 15.7.1 (2 puntos) Considérese el siguiente sistema de ecuaciones dependiente del parámetro real λ :

$$\begin{cases} 2x - \lambda y + z = -\lambda \\ 4x - 2\lambda y + 2z = \lambda - 3 \end{cases}$$

- a) Determínense los valores del parámetro real λ que hacen que el sistema sea incompatible.
- b) Resuélvase el sistema para $\lambda = 1$.

Problema 15.7.2 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = \frac{(x-3)^2}{x(x-2)}$$

- a) Determínense las asíntotas de f.
- b) Estúdiese si la función f es creciente o decreciente en un entorno de x = 4.

Problema 15.7.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = 2e^{x+1}$.

- a) Esbócese la gráfica de la función f.
- b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función, el eje de abscisas y las rectas x=0 y x=1.

Problema 15.7.4 (2 puntos) En la representación de navidad de los alumnos de 3º de primaria de un colegio hay tres tipos de papeles: 7 son de animales, 3 de personas y 12 de árboles. Los papeles se asignan al azar, los alumnos escogen por orden alfabético sobres cerrados en los que está escrito el papel que les ha correspondido.

a) Calcúlese la probabilidad de que a los dos primeros alumnos les toque el mismo tipo de papel.

b) Calcúlese la probabilidad de que el primer papel de persona le toque al tercer alumno de la lista.

Problema 15.7.5 (2 puntos) La estatura en centímetros (cm) de los varones mayores de edad de una determinada población se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica $\sigma=16$ cm.

- a) Se tomó una muestra aleatoria simple de 625 individuos obteniéndose una media muestral $\overline{x} = 169$ cm. Hállese un intervalo de confianza al 98 % para μ .
- b) ¿Cuál es el mínimo tamaño muestral necesario para que el error máximo cometido en la estimación de μ por la media muestral sea menor que 4 cm, con un nivel de confianza del 90 %?

15.8. Septiembre 2014 - Opción B

Problema 15.8.1 (2 puntos) Considérese la matriz

$$A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right)$$

- a) Calcúlese $(A \cdot A^T)^{200}$.
- b) Calcúlese $(A \cdot A^T 3I)^{-1}$.

Nota: A^T denota a la traspuesta de la matriz A. I es la matriz identidad de orden 3.

Problema 15.8.2 (2 puntos) Sea S la región del plano definida por

$$y \ge 2x - 4$$
; $y \le x - 1$; $2y \ge x$; $x \ge 0$; $y \ge 0$

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = x 3y en S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 15.8.3 (2 puntos) función real de variable real definida por

$$f(x) = \frac{\lambda x}{4 + x^2}$$

- a) Calcúlese el valor del parámetro real λ para que la recta tangente a la gráfica de f en x=-1 sea paralela a la recta y=2x-3.
- b) Calcúlese $\int_0^2 f(x) dx$ para $\lambda = 1$.

Problema 15.8.4 (2 puntos) Al 80 % de los trabajadores en educación (E) que se jubilan sus compañeros les hacen una fiesta de despedida (FD), también al 60 % de los trabajadores de justicia (J) y al 30 % de los de sanidad (S). En el último año se jubilaron el mismo número de trabajadores en educación que en sanidad, y el doble en educación que en justicia.

- a) Calcúlese la probabilidad de que a un trabajador de estos sectores, que se jubiló, le hicieran una fiesta.
- b) Sabemos que a un trabajador jubilado elegido al azar de entre estos sectores, no le hicieron fiesta. Calcúlese la probabilidad de que fuera de sanidad.

Problema 15.8.5 (2 puntos) El mínimo tamaño muestral necesario para estimar la media de una determinada característica de una población que puede aproximarse por una variable aleatoria con distribución normal de desviación típica σ , con un error máximo de 3,290 y un nivel de confianza del 90 %, supera en 7500 unidades al que se necesitaría si el nivel de confianza fuera del 95 % y el error máximo fuera de 7,840.

Exprésense los tamaños muéstrales en función de la desviación típica σ y calcúlense la desviación típica de la población y los tamaños muéstrales respectivos.

Nota: Utilícese $z_{0.05} = 1,645$.

15.9. Septiembre 2014 (coincidente)- Opción A

Problema 15.9.1 (2 puntos) Dadas las matrices $A = \begin{pmatrix} \frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 2 \\ -1 & -1 \end{pmatrix}$

- a) Calcúlese B^{31} .
- b) Calcúlese el determinante de la matriz $A^{-1} \cdot B$.

Problema 15.9.2 (2 puntos) Una industria química elabora plásticos de dos calidades diferentes. Para ello tiene 2 máquinas, A y B. Es necesario que fabrique un mínimo de 20 toneladas de plástico superior y 13 de plástico medio. Cada hora que trabaja la máquina A, fabrica 7 toneladas de plástico superior y 2 de plástico medio, mientras que la máquina B produce 2 y 3 toneladas, respectivamente. Además, la máquina A no puede trabajar más de 9 horas, ni más de 10 horas la máquina B. El coste de funcionamiento de las máquinas es de 800 euros/hora para A y de 600 euros/hora para B. Calcúlese cuántas horas debe funcionar cada máquina para que el coste total de funcionamiento sea mínimo y cuál es ese coste mínimo.

Problema 15.9.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = \begin{cases} \frac{3x^2 - 2x - 1}{x - 1} & \text{si } x < 1\\ (x - 1)^3 + a & \text{si } x \ge 1 \end{cases}$$

- a) Determínese el valor de la constante a para que sea una función continua en todo su dominio.
- b) Para a=0, calcúlese el valor de la integral $\int_1^5 f(x) dx$.

Problema 15.9.4 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio, tal que P(A) = P(A|B) = 0,25 y P(B|A) = 0,5.

- a) Estúdiese si los sucesos son independientes.
- b) Calcúlese $P(A \cup B)$

Problema 15.9.5 (2 puntos) La capacidad vital forzada es una medida para calcular el volumen de los pulmones de las personas adultas que se puede aproximar por una variable aleatoria X con una distribución normal de media desconocida μ y desviación típica 1 litro.

- a) Se tomó una muestra aleatoria simple de 144 personas adultas que dieron una media de capacidad vital forzada de 4 litros. Determínese un intervalo de confianza al 95 % para μ .
- b) ¿Cuál es el error máximo cometido en la estimación de μ por la media muestral obtenido a partir de una muestra de tamaño 81, con un nivel de confianza del 99 %?

15.10. Septiembre 2014 (coincidente)- Opción B

Problema 15.10.1 (2 puntos) Considérese el siguiente sistema de ecuaciones dependiente del parámetro a:

$$\begin{cases} x+y=8\\ 2x-ay=4 \end{cases}$$

- a) Discútase en función de los valores del parámetro $a \in R$.
- b) Resuélvase para a = 1.

Problema 15.10.2 (2 puntos) Se considera la función real de variable real definida por $f(x) = \frac{x+1}{x-2}$, contéstese razonadamente a las preguntas:

- a) Calcúlense su dominio de definición, los puntos de corte con los ejes, y los intervalos de crecimiento y decrecimiento.
- b) Hállense las asíntotas, si las tuviere, y esbócese la gráfica de la función f.

Problema 15.10.3 (2 puntos) Se considera la función real de variable real $f(x) = x^3 - ax + 1$

- a) Determínese el valor de a para que la función tenga un máximo local en x=-2 y un mínimo local en x=2.
- b) Para el caso en el que a=48, hállese la ecuación de la recta tangente a la gráfica de f en x=5.

Problema 15.10.4 (2 puntos) Se ha cometido un delito. La probabilidad de que lo haya cometido un varón es el doble de que lo haya cometido una mujer. Por otra parte, la probabilidad de que al examinar un área determinada de la huella dactilar de un varón se encuentren 15 crestas es 0,26, mientras que en una mujer es 0,04.

- a) Calcúlese la probabilidad de que una huella encontrada en la escena del delito tenga 15 crestas en el recuento de dicha área.
- b) Se ha encontrado en la escena del delito una huella dactilar con 15 crestas en esa área determinada. ¿Cuál es la probabilidad de que dicha huella pertenezca a un varón?

Problema 15.10.5 (2 puntos) El peso en kilogramos de la cabeza humana en adultos se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica 0, 75 kilogramos.

- a) Una muestra aleatoria simple de 16 individuos a los que se les ha realizado una densitometría, prueba diagnóstica que permite medir el peso de la cabeza, proporcionó una media muestral de 5,137 kilogramos. Determínese un intervalo de confianza al 98 % para μ .
- b) ¿Cuántas densitometrías como mínimo deben realizarse para que el error máximo cometido en la estimación de μ por la media muestral sea menor que 100 gramos, con el mismo nivel de confianza del 98 %?

Capítulo 16

Año 2015

16.1. Modelo 2015 - Opción A

Problema 16.1.1 (2 puntos) Una empresa láctea se plantea la producción de dos nuevas bebidas A y B. Producir un litro de la bebida A cuesta 2 euros, mientras que producir un litro de bebida B cuesta 0,5 euros. Para realizar el lanzamiento comercial se necesitan al menos 6 millones de litros de bebida, aunque del tipo B no podrán producirse (por limitaciones técnicas) más de 5 millones y debido al coste de producción no es posible elaborar más de 8 millones de litros en total de ambas bebidas. Además, se desea producir una cantidad de bebida B mayor o igual que la de bebida A. ¿Cuántos litros habrá que producir de cada tipo de bebida para que el coste de producción sea mínimo? Calcúlese dicho coste. Justifíquense las respuestas.

 Problema 16.1.2 (2 puntos) Se considera $A=\left(\begin{array}{cc} 1 & 3 \\ 2 & 4 \end{array}\right)$

- a) Calcúlese A^{-1} .
- b) Calcúlese $A^T \cdot A$.

Nota: A^T denota la traspuesta de la matriz A.

Problema 16.1.3 (2 puntos)

a) Dibújese, de manera esquemática, la región acotada del plano limitada por las gráficas de las curvas

$$y = \sqrt{6x}; \quad y = \frac{x^2}{6}$$

b) Calcúlese el área de la región descrita en el apartado anterior.

Problema 16.1.4 (2 puntos) Se consideran los sucesos incompatibles A y B de un experimento aleatorio tal que P(A) = 0, 4, P(B) = 0, 3. Calcúlese:

- a) $P(\overline{A} \cap \overline{B})$
- b) $P(B \cap \overline{A})$

Nota: \overline{S} denota al suceso complementario del suceso S.

Problema 16.1.5 (2 puntos) El consumo familiar diario de electricidad (en kW) en cierta ciudad se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica 1,2 kW. Se toma una muestra aleatoria simple de tamaño 50. Calcúlese:

- a) La probabilidad de que la media muestral esté comprendida entre 6 kW y 6,6 kW, si $\mu=6,3kW$.
- b) El nivel de confianza con el que se ha calculado el intervalo de confianza (6, 1; 6, 9) para la media del consumo familiar diario.

16.2. Modelo 2015 - Opción B

Problema 16.2.1 (2 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases} x + 2y + z = 1\\ x + ay + az = 1\\ x + 4ay + z = 2a \end{cases}$$

- a) Discútase el sistema según los diferentes valores del a.
- b) Resuélvase el sistema en el caso a = -1.

Problema 16.2.2 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = 24x - 15x^2 + 2x^3 + 2$$

- a) Determínense sus intervalos de crecimiento y decrecimiento.
- b) Hállense sus extremos relativos y sus puntos de inflexión.

Problema 16.2.3 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{3x^2}{x^2 - 2x - 3}$$

- a) Determínense sus asíntotas.
- b) Determínese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x = -1, 5.

Problema 16.2.4 (2 puntos) Una urna contiene 5 bolas blancas y 4 negras, y otra urna contiene 3 bolas blancas y dos negras. Se toma al azar una bola de la primera urna y, sin mirarla, se introduce en la segunda urna. A continuación extraemos consecutivamente, con reemplazamiento, dos bolas de la segunda urna. Hállese la probabilidad de que las dos últimas bolas extraídas sean:

- a) Del mismo color.
- b) De distinto color.

Problema 16.2.5 (2 puntos) Se ha tomado una muestra aleatoria simple de diez pacientes y se ha anotado el número de días que han recibido tratamiento para los trastornos del sueño que sufren. Los resultados han sido:

$$290 \quad 275 \quad 290 \quad 325 \quad 285 \quad 365 \quad 375 \quad 310 \quad 290 \quad 300$$

Se sabe que la duración, en días, del tratamiento se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica 34,5 días.

- a) Determínese un intervalo de confianza con un nivel del 95 % para μ .
- b) ¿Qué tamaño mínimo debe tener la muestra para que el error máximo cometido en la estimación de la media sea menor de 10 días, con un nivel de confianza del 95 %?

16.3. Junio 2015 - Opción A

Problema 16.3.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} 3x + y - z = 8 \\ 2x + az = 3 \\ x + y + z = 2 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 1.

Problema 16.3.2 (2 puntos) Sabiendo que la derivada de una función real de variable real f es

$$f'(x) = 3x^2 + 2x$$

- a) Calcúlese la expresión de f(x) sabiendo que su gráfica pasa por el punto (1,4).
- b) Calcúlese la ecuación de la recta tangente a la gráfica de la función f en el punto (1,4).

Problema 16.3.3 (2 puntos) Sean las funciones reales de variable real

$$f(x) = x^2 - 6x$$
, $g(x) = x - 10$

- a) Represéntense gráficamente las funciones f y g.
- b) Calcúlese el área del recinto plano acotado por las gráficas de las funciones f y g.

Problema 16.3.4 (2 puntos) En una bolsa hay cuatro bolas rojas y una verde. Se extraen de forma consecutiva y sin reemplazamiento dos bolas. Calcúlese la probabilidad de que:

- a) Las dos bolas sean del mismo color.
- b) La primera bola haya sido verde si la segunda bola extraída es roja.

Problema 16.3.5 (2 puntos) El tiempo de reacción ante un obstáculo imprevisto de los conductores de automóviles de un país, en milisegundos (ms), se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma = 250 \ ms$.

- a) Se toma una muestra aleatoria simple y se obtiene un intervalo de confianza (701;799), expresado en ms, para μ con un nivel del 95%. Calcúlese la media muestral y el tamaño de la muestra elegida.
- b) Se toma una muestra aleatoria simple de tamaño 25. Calcúlese el error máximo cometido en la estimación de μ mediante la media muestral con un nivel de confianza del 80 %.

16.4. Junio 2015 - Opción B

Problema 16.4.1 (2 puntos) Una fábrica de piensos para animales produce diariamente como mucho seis toneladas de pienso del tipo A y como máximo cuatro toneladas de pienso del tipo B. Además, la producción diaria de pienso del tipo B no puede superar el doble de la del tipo A y, por último, el doble de la fabricación de pienso del tipo A sumada con la del tipo B debe ser como poco cuatro toneladas diarias. Teniendo en cuenta que el coste de fabricación de una tonelada de pienso del tipo A es de 1000 euros y el de una tonelada del tipo B de 2000 euros, ¿cuál es la producción diaria para que la fábrica cumpla con sus obligaciones con un coste mínimo? Calcúlese dicho coste diario mínimo.

Problema 16.4.2 (2 puntos) Sea la matriz

$$A = \left(\begin{array}{rrr} 2 & 2 & 0 \\ 0 & 3 & 2 \\ -1 & k & 2 \end{array}\right)$$

- a) Estúdiese el rango de A según los valores del parámetro real k.
- b) Calcúlese, si existe, la matriz inversa de A para k=3.

Problema 16.4.3 (2 puntos) Se considera la función real de variable real definida por $f(x)=\begin{cases} \frac{x^2-4}{x^2-5x+6} & \text{si} \quad x<2\\ 3x+m & \text{si} \quad x\geq 2 \end{cases}$

- a) Calcúlese el valor del parámetro real m para que la función f sea continua en x=2.
- b) Calcúlese $\lim_{x \to -\infty} f(x)$ y $\lim_{x \to +\infty} f(x)$.

Problema 16.4.4 (2 puntos) Sean A y B sucesos de un experimento aleatorio tal que $P(A \cap B) = 0, 3$; $P(A \cap \overline{B}) = 0, 2$; P(B) = 0, 7. Calcúlense:

- a) $P(A \cup B)$:
- b) $P(B|\overline{A})$.

Nota: \overline{S} denota al suceso complementario del suceso S.

Problema 16.4.5 (2 puntos) La duración de cierto componente electrónico, en horas (h), se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica igual a 1000 h.

- a) Se ha tomado una muestra aleatoria simple de esos componentes electrónicos de tamaño 81 y la media muestral de su duración ha sido $\overline{x} = 8000h$. Calcúlese un intervalo de confianza al 99 % para μ .
- b) ¿Cuál es la probabilidad de que la media muestral este comprendida entre 7904 y 8296 horas para una muestra aleatoria simple de tamaño 100 si sabemos que $\mu = 8100h$?

16.5. Junio 2015 (coincidente)- Opción A

Problema 16.5.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x+y+z=a\\ ax+y+z=1\\ x+ay+2z=1 \end{cases}$$

- a) Discútase para los diferentes valores de $a \in R$.
- b) Resuélvase para a = 1.

Problema 16.5.2 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = \frac{x^2 + a}{x - 1}$$

- a) Calcúlese el valor del parámetro real a, sabiendo que la función alcanza un extremo relativo en x=-1. Compruébese que se trata de un máximo.
- b) Para a = 1, calcúlese $\int_{-1}^{0} (x 1)f(x)dx$.

Problema 16.5.3 (2 puntos) Se sabe que la derivada de cierta función real de variable real f es $f'(x) = x^2(x^2 - 2x - 15)$

- a) Determínense los intervalos de crecimiento y de decrecimiento de f.
- b) Determínense los extremos relativos de f, indicando si se trata de máximos o mínimos relativos.

Problema 16.5.4 (2 puntos) En cierto ensayo clínico, se trata al 60 % de pacientes afectados de hepatitis C con interferón, y al 40 % restante con ribavirina más interferón. Al cabo de ocho semanas se observa una respuesta favorable al tratamiento en el 43 % de los pacientes tratados únicamente con interferón y en el 71 % de los pacientes tratados con ribavirina más interferón. Se toma al azar un paciente del ensayo. Determínese la probabilidad de que:

- a) Haya respondido favorablemente al tratamiento que está recibiendo.
- b) Si ha respondido favorablemente al tratamiento, haya sido tratado únicamente con interferón.

Problema 16.5.5 (2 puntos) El consumo de agua, medido en litros, en una ducha puede aproximarse por una variable aleatoria con distribución normal de media desconocida μ y desviación típica $\sigma=10$ litros.

- a) Se toma una muestra aleatoria simple de 25 duchas, obteniéndose una media muestral $\overline{x}=100$ litros. Determínese un intervalo de confianza al 95 % para μ .
- b) Determínese el tamaño muestral mínimo necesario para que al estimar μ mediante la media muestral, el error cometido sea menor que 2 litros, con un nivel de confianza del 99 %.

16.6. Junio 2015 (coincidente)- Opción B

Problema 16.6.1 (2 puntos) Se consideran las matrices dependientes del parámetro real a

$$A = \left(\begin{array}{cc} a & 0 & 1\\ 2 & 2 & 0 \end{array}\right) \quad \mathbf{y} \quad B = \left(\begin{array}{cc} a & 0\\ 2 & 1\\ 0 & 1 \end{array}\right)$$

- a) Determínense los valores de a para los que la matriz $A \cdot B$ admite inversa.
- b) Para a=0, resuélvase la ecuación matricial $(A\cdot B)\cdot X=\left(\begin{array}{cc} 1 & 1 \\ 2 & 2 \end{array}\right)$

Problema 16.6.2 (2 puntos) Un banco oferta dos productos financieros, A y B. El banco garantiza para el producto A un beneficio anual del 5 % de la cantidad invertida, y para el producto B un beneficio del 2 % anual de la cantidad invertida. Una persona desea invertir en ambos productos a lo sumo 10.000 euros, con la condición de que la cantidad invertida en el producto A no supere el triple de la cantidad invertida en el producto B y que la inversión en el producto B sea de 6.000 euros como máximo. Determínese qué cantidad debe invertir en cada producto para obtener, al cabo de un año, un beneficio máximo y obténgase este beneficio máximo.

Problema 16.6.3 (2 puntos) Se considera la función real de variable real definida como

$$f(x) = \begin{cases} \frac{x+1}{x-1} & \text{si} & x \le 0\\ x^2 + a & \text{si} & 0 < x < 2\\ bx + 1 & \text{si} & x \ge 2 \end{cases}$$

- a) Determínense los valores que deben tomar los parámetros reales a y b para que f sea continua en toda la recta real.
- b) Determínese la ecuación de la recta tangente a la gráfica de f en el punto de abscisa x=-1.

Problema 16.6.4 (2 puntos) Sean A y B dos sucesos de un espacio muestral tal que P(A) = 0, 8; $P(\overline{A} \cup \overline{B}) = 0, 8$ y $P(A \cup B) = 0, 9$.

- a) ¿Son independientes los sucesos A y B?
- b) Calcúlese $P(B|\overline{A})$. Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 16.6.5 (2 puntos) El nivel de colesterol total en sangre en adultos de 50 años, medido en miligramos por decilitro (mg/dl), se puede aproximar por una variable aleatoria con distribución normal de media desconocida μ y desviación típica $\sigma = 20mg/dl$.

- a) A partir de una muestra aleatoria simple se obtiene el intervalo de confianza (191, 2; 210, 8), expresado en mg/dl, para estimar μ con un nivel de confianza del 95 %. Calcúlese la media muestral y el tamaño de la muestra considerada.
- b) Se toma una muestra aleatoria simple de tamaño 100. Calcúlese la amplitud del intervalo de confianza al 98 % para μ .

16.7. Septiembre 2015 - Opción A

Problema 16.7.1 (2 puntos) Se consideran las matrices

$$A = \begin{pmatrix} 3 & 1 \\ -6 & -2 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 1 & -3 \\ -1 & 2 \end{pmatrix}$$

- a) Calcúlese A^{15} e indíquese si la matriz A tiene inversa.
- b) Calcúlese el determinante de la matriz $(B \cdot A^t \cdot B^{-1} 2 \cdot Id)^3$.

Nota: A^t denota la matriz traspuesta de A. Id es la matriz identidad de orden 2.

Problema 16.7.2 (2 puntos) Un distribuidor de aceite acude a una almazara para comprar dos tipos de aceite, A y B. La cantidad máxima que puede comprar es de 12.000 litros en total. El aceite de tipo A cuesta 3 euros/litro y el de tipo B cuesta 2 euros/litro. Necesita adquirir al menos 2.000 litros de cada tipo de aceite. Por otra parte, el coste total por compra de aceite no debe ser superior a 30.000 euros. El beneficio que se conseguirá con la venta del aceite será de un 25 % sobre el precio que ha pagado por el aceite de tipo A y de un 30 % sobre el precio que ha pagado por el aceite de tipo B. ¿Cuántos litros de cada tipo de aceite se deberían adquirir para maximizar el beneficio? Obténgase el valor del beneficio máximo.

Problema 16.7.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = 4x^3 - ax^2 - ax + 2$, $a \in R$.

- a) Determínese el valor del parámetro real a para que la función alcance un extremo relativo en x=1/2. Compruébese que se trata de un mínimo.
- b) Para a=2, calcúlese el valor de $\int_{-1}^{1} f(x) dx$.

Problema 16.7.4 (2 puntos) Se consideran los sucesos A, B y C de un experimento aleatorio tal que: P(A) = 0,09; P(B) = 0,07 y $P(\overline{A} \cup \overline{B}) = 0,97$. Además los sucesos A y C son incompatibles.

- a) Estúdiese si los sucesos A y B son independientes.
- b) Calcúlese $P(A \cap B|C)$.

Nota: \overline{S} denota al suceso complementario del suceso S.

Problema 16.7.5 (2 puntos) La cantidad de fruta, medida en gramos, que contienen los botes de mermelada de una cooperativa con producción artesanal se puede aproximar mediante una variable aleatoria con distribución normal de media μ y desviación típica de 10 gramos.

- a) Se seleccionó una muestra aleatoria simple de 100 botes de mermelada, y la cantidad total de fruta que contenían fue de 16.000 gramos. Determínese un intervalo de confianza al 95 % para la media μ .
- b) A partir de una muestra aleatoria simple de 64 botes de mermelada se ha obtenido un intervalo de confianza para la media μ con un error de estimación de 2, 35 gramos. Determínese el nivel de confianza utilizado para construir el intervalo.

16.8. Septiembre 2015 - Opción B

Problema 16.8.1 (2 puntos) Considérese el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x+y+az = a+1 \\ ax+y+z = 1 \\ x+ay+az = a \end{cases}$$

- a) Discútase el sistema en función de los valores de a.
- b) Resuélvase el sistema para a=2.

Problema 16.8.2 (2 puntos) Se considera la función real de variable real

$$f(x) = -8x^2 + 24x - 10$$

- a) Calcúlense los máximos y mínimos locales de f y representese gráficamente la función.
- b) Determínese el área del recinto cerrado comprendido entre la gráfica de la función f y las rectas x = 1, x = 2 e y = 4.

Problema 16.8.3 (2 puntos) Considérese la función real de variable real

$$f(x) = \begin{cases} e^x & \text{si } x < 0\\ \frac{x^3}{(x-2)^2} + 1 & \text{si } x \ge 0 \end{cases}$$

- a) Estúdiese la continuidad de esta función.
- b) Determínense las asíntotas de esta función.

Problema 16.8.4 (2 puntos) La probabilidad de que un trabajador llegue puntual a su puesto de trabajo es 3/4. Entre los trabajadores que llegan tarde, la mitad va en transporte público. Calcúlese la probabilidad de que:

- a) Un trabajador elegido al azar llegue tarde al trabajo y vaya en transporte público.
- b) Si se eligen tres trabajadores al azar, al menos uno de ellos llegue puntual. Supóngase que la puntualidad de cada uno de ellos es independiente de la del resto.

Problema 16.8.5 (2 puntos) En cierta región, el gasto familiar realizado en gas natural, medido en euros, durante un mes determinado se puede aproximar mediante una variable aleatoria con distribución normal de media μ y desviación típica 75 euros.

- a) Determínese el mínimo tamaño muestral necesario para que al estimar la media del gasto familiar en gas natural, μ , mediante un intervalo de confianza al 95 %, el error máximo cometido sea inferior a 15 euros.
- b) Si la media del gasto familiar en gas natural, μ , es de 250 euros y se toma una muestra aleatoria simple de 81 familias, ¿cuál es la probabilidad de que la media muestral, \overline{X} , sea superior a 230 euros?

16.9. Septiembre 2015 (coincidente)- Opción A

Problema 16.9.1 (2 puntos) Considérense las matrices

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 5 \end{pmatrix}, \quad B = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 5 & 7 \\ 5 & 4 \end{pmatrix}$$

- a) Calcúlese el determinante de la matriz $A^{-1} \cdot B \cdot C^{-1}$.
- b) Determínese la matriz X tal que $B \cdot A \cdot X = C$.

Problema 16.9.2 (2 puntos) Sea S la región del plano definida por:

$$y + 2x \ge 7; \quad y - 2x \ge -1; \quad y \le 5;$$

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = -5x 5y en la región S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 16.9.3 (2 puntos) Se considera la función real de variable real: $f(x) = e^{x^2}$

- a) Determínense sus intervalos de crecimiento y decrecimiento.
- b) Determínense sus intervalos de concavidad (\cup) y convexidad (\cap).

Problema 16.9.4 (2 puntos) Todos los estudiantes de una facultad de Madrid afirman haber comido en el último mes en alguna de las dos cafeterías de esa facultad, la grande y la pequeña. Un $60\,\%$ declara haber comido en la grande mientras que un $55\,\%$ declara haber comido en la pequeña. Calcúlese la probabilidad de que un estudiante de dicha facultad elegido al azar:

- a) Haya comido en el último mes en la cafetería grande y en la pequeña.
- b) Haya comido en el último mes en la cafetería pequeña si se sabe que nunca ha comido en la grande.

Problema 16.9.5 (2 puntos) La producción por hectárea, medida en kg/ha (kilogramos por hectárea) del olivar de alta densidad en cultivo intensivo de Córdoba se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica igual a 1000~kg/ha.

- a) A partir de una muestra aleatoria simple de 400 parcelas de una hectárea se ha obtenido (9917, 75; 10082, 25) como intervalo de confianza para la media μ , expresado en kg/ha. Determínese la media de la muestra y el nivel de confianza utilizado para construir el intervalo.
- b) Determínese el tamaño mínimo de una muestra aleatoria simple para que el correspondiente intervalo de confianza para μ al 98 % tenga de amplitud a lo sumo 50 kg/ha.

16.10. Septiembre 2015 (coincidente)- Opción B

Problema 16.10.1 (2 puntos) Se considera el sistema de ecuaciones lineales

$$\begin{cases} x + 2y + z = 2 \\ 2x + 5y - z = 3 \\ x + 3y - 2z = a \end{cases}$$

- a) Discútase para los diferentes valores del parámetro $a \in R$.
- b) Resuélvase para a = 1.

Problema 16.10.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} x^2 + 6 & \text{si} \quad x \le 0\\ \ln(x+1) + m & \text{si} \quad x > 0 \end{cases}$$

Nota: ln denota el logaritmo neperiano.

- a) Determínese para qué valores del parámetro m la función f es continua en x = 0.
- b) Determínese la ecuación de la recta tangente a la gráfica de f(x) en x=-2.

Problema 16.10.3 (2 puntos) Dada la función real de variable real $f(x) = (2x+3)^5 + e^{2x}$

- a) Calcúlese su función derivada.
- b) Calcúlese $\int f(x) dx$.

Problema 16.10.4 (2 puntos) En una universidad de Madrid el 65% del profesorado es funcionario. Por otro lado, el 60% del profesorado son mujeres de las cuales el 70% son funcionarias. Calcúlese la probabilidad de que un miembro del profesorado tomado al azar:

- a) Sea funcionario y hombre.
- b) Sea mujer sabiendo que no es funcionario.

Problema 16.10.5 (2 puntos) El peso, en gramos, del contenido de las bolsas de patatas fritas de una cierta marca se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica 10 gramos.

- a) Se ha tomado una muestra aleatoria simple de 50 de esas bolsas de patatas y la media de pesos de sus contenidos ha sido de $\overline{X}=100$ gramos. Calcúlese un intervalo de confianza al 90 % para μ .
- b) Si sabemos que $\mu=100$ gramos, calcúlese la probabilidad de que el total de los pesos de los contenidos de una muestra aleatoria simple de 25 bolsas sea menor o igual que 2625 gramos.

Capítulo 17

Año 2016

17.1. Modelo 2016 - Opción A

Problema 17.1.1 (2 puntos) Considérese la matriz $A = \begin{pmatrix} 1 & 3 & 1 \\ a & 0 & 8 \\ -1 & a & -6 \end{pmatrix}$

- a) Determínese para qué valores de $a \in R$ es invertible A.
- b) Resuélvase para a=0 el sistema

$$A \cdot \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

Problema 17.1.2 (2 puntos) Determínese la matriz X que verifica

$$\left(\begin{array}{cc} 3 & 1 \\ -1 & 2 \end{array}\right) \cdot X = \left(\begin{array}{cc} 2 & 0 \\ 1 & 4 \end{array}\right) - \left(\begin{array}{cc} 1 & 0 \\ 4 & -1 \end{array}\right) \cdot X$$

Problema 17.1.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = \frac{x^3}{1 - x^2}$$

- a) Estudíense y determínense sus asíntotas.
- b) Determínense sus intervalos de crecimiento y decrecimiento.

Problema 17.1.4 (2 puntos) En un polígono industrial se almacenan 30000 latas de refresco procedentes de las fábricas A, B y C a partes iguales. Se sabe que en 2016 caducan 1800 latas de la fábrica A, 2400 procedentes de la B y 3000 que proceden de la fábrica C.

- a) Calcúlese la probabilidad de que una lata elegida al azar caduque en 2016.
- b) Se ha elegido una lata de refresco aleatoriamente y caduca en 2016, ¿cuál es la probabilidad de que proceda de la fábrica A?

Problema 17.1.5 (2 puntos) El tiempo diario que los adultos de una determinada ciudad dedican a actividades deportivas, expresado en minutos, se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma = 20$ minutos.

- a) Para una muestra aleatoria simple de 250 habitantes de esa ciudad se ha obtenido un tiempo medio de dedicación a actividades deportivas de 90 minutos diarios. Calcúlese un intervalo de confianza al 90 % para μ .
- b) ¿Qué tamaño mínimo debe de tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ por la media muestral sea menor que 1 minuto con el mismo nivel de confianza del 90 %?

17.2. Modelo 2016 - Opción B

Problema 17.2.1 (2 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases} x + y - z = 1 \\ 2x + 2y - 3z = 3 \\ 3x + ay - 2z = 5 \end{cases}$$

- a) Discútase el sistema para los diferentes valores del a.
- b) Resuélvase el sistema en el caso a=2.

Problema 17.2.2 (2 puntos) Se considera la función real de variable real

$$f(x) = x^2 - 4x - 5$$

- a) Represéntese gráficamente la función f.
- b) Calcúlese el área de la región acotada del plano delimitada por la gráfica de f y el eje de abscisas.

Problema 17.2.3 (2 puntos) Dada la función real de variable real

$$f(x) = x^2 e^{x^2}$$

- a) Calcúlese su función derivada.
- b) Determínense sus intervalos de concavidad (\cap) y convexidad (\cup) .

Problema 17.2.4 (2 puntos) Las probabilidades de que cinco jugadores de baloncesto encesten un lanzamiento de tiro libre son, respectivamente, de 0,8; 0,9; 0,7; 0,9; 0,93. Si cada jugador lanza un tiro libre siguiendo el orden anterior y considerando los resultados de los lanzamientos como sucesos independientes, calcúlese la probabilidad de que:

- a) Todos los jugadores encesten su tiro libre.
- b) Al menos uno de los tres primeros jugadores enceste.

Problema 17.2.5 (2 puntos) El precio (en euros) del metro cuadrado de las viviendas de un determinado municipio se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma=650 {\rm euros}$.

- a) Se toma una muestra aleatoria simple y se obtiene un intervalo de confianza (2265,375; 2424,625) para μ , con un nivel de confianza del 95%. Calcúlese la media muestral y el tamaño de la muestra elegida.
- b) Tomamos una muestra aleatoria simple de tamaño 225. Calcúlese el error máximo cometido en la estimación de μ por la media muestral con un nivel de confianza del 99 %.

17.3. Junio 2016 - Opción A

Problema 17.3.1 (2 puntos) Considérense las matrices

$$A = \begin{pmatrix} 3 & 2 & 2 \\ 1 & 7 & 4 \\ 4 & 5 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \\ 0 & 1 \end{pmatrix}, \quad C = \begin{pmatrix} 2 & 4 & 8 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

- a) Calcúlese el determinante de la matriz $A \cdot C \cdot C^T \cdot A^{-1}$.
- b) Calcúlese la matriz $M=A\cdot B$. ¿Existe M^{-1} ? Nota: C^T denota la matriz traspuesta de la matriz C.

Problema 17.3.2 (2 puntos) Sea S la región del plano definida por:

$$y + x \le 5; \quad y - x \le 3; \quad \frac{1}{2}x - y \le -2$$

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = 2x + y en la región S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 17.3.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = x^3 + 8$$

- a) Determínese el área de la región acotada delimitada por la gráfica de f(x), el eje de abscisas y por las rectas x = -3 y x = -1.
- b) Calcúlese la ecuación de la recta tangente a la gráfica de la función f(x) en el punto de abscisa x=1.

Problema 17.3.4 (2 puntos) Una conocida orquesta sinfónica está compuesta por un 55% de varones y un 45% de mujeres. En la orquesta un 30% de los instrumentos son de cuerda. Un 25% de las mujeres de la orquesta interpreta un instrumento de cuerda. Calcúlese la probabilidad de que un intérprete de dicha orquesta elegido al azar:

- a) Sea una mujer si se sabe que es intérprete de un instrumento de cuerda.
- b) Sea intérprete de un instrumento de cuerda y sea varón.

Problema 17.3.5 (2 puntos) La producción diaria de leche, medida en litros, de una granja familiar de ganado vacuno se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma = 50$ litros.

- a) Determínese el tamaño mínimo de una muestra aleatoria simple para que el correspondiente intervalo de confianza para μ al 95 % tenga una amplitud a lo sumo de 10 litros.
- b) Se toman los datos de producción de 25 días escogidos al azar. Calcúlese la probabilidad de que la media de las producciones obtenidas, \overline{X} , sea menor o igual a 940 litros si sabemos que $\mu=950$ litros.

17.4. Junio 2016 - Opción B

Problema 17.4.1 (2 puntos) Se considera el sistema de ecuaciones lineales:

$$\begin{cases} x + 2y + z = 1 \\ x + 2y + 3z = 0 \\ x + ay + 2z = 0 \end{cases}$$

- a) Discútase el sistema para los diferentes valores del $a \in R$.
- b) Resuélvase para a = 0.

Problema 17.4.2 (2 puntos) Se considera la función real de variable real:

$$f(x) = \begin{cases} \frac{-x+b}{x-2} & \text{si } x \le -1\\ \frac{x^2+6x+5}{x^2+4x+3} & \text{si } x > -1 \end{cases}$$

- a) Determínese para qué valores del parámetro b la función f(x) es continua en x = -1.
- b) Calcúlense las asíntotas de f(x).

Problema 17.4.3 (2 puntos) Sabiendo que la derivada de una función real de variable real es:

$$f'(x) = 6x^2 + 4x - 2$$

- a) Determínese la expresión de f(x) sabiendo que f(0) = 5.
- b) Determínense los intervalos de crecimiento y decrecimiento de la función f así como sus máximos y mínimos locales, si los tuviese.

Problema 17.4.4 (2 puntos) Tenemos dos urnas A y B. La urna A contiene 5 bolas: 3 rojas y 2 blancas. La urna B contiene 6 bolas: 2 rojas y 4 blancas. Se extrae una bola al azar de la urna A y se deposita en la urna B. Seguidamente se extrae una bola al azar de la urna B. Calcúlese la probabilidad de que:

- a) La segunda bola extraída sea roja.
- b) Las dos bolas extraídas sean blancas.

Problema 17.4.5 (2 puntos) El peso por unidad, en gramos, de la gamba roja de Palamós, se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma = 5$ gramos.

- a) Se ha tomado una muestra aleatoria simple de 25 gambas y la media de sus pesos ha sido $\overline{X}=70$ gramos. Calcúlese un intervalo de confianza al 95 % para μ .
- b) Si sabemos que $\mu = 70$ gramos, y se consideran los pesos de las 12 gambas de una caja como una muestra aleatoria simple, calcúlese la probabilidad de que el peso total de esas 12 gambas sea mayor o igual que 855 gramos.

17.5. Junio 2016 - Opción A (Coincidentes)

Problema 17.5.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente de $a \in R$:

$$\begin{cases} 3x + y + az = a - 2 \\ ax - y + z = a - 2 \\ x + 2y + z = 0 \end{cases}$$

- a) Discútase el sistema para los diferentes valores del a.
- b) Resuélvase para a = 0.

Problema 17.5.2 (2 puntos) Se considera la función real de variable real:

$$f(x) = x^2 + 4$$

- a) Escríbase la ecuación de la recta tangente a la gráfica de f(x) en x=2.
- b) Determínese el área del recinto plano limitado por la gráfica de f(x), la recta y=4x y el eje de ordenadas.

Problema 17.5.3 (2 puntos) Dada la función real de variable real:

$$f(x) = \frac{(x-1)^2}{x+2}$$

- a) Determínense las asíntotas de f(x).
- b) Determínense los máximos y los mínimos relativos de f(x).

Problema 17.5.4 (2 puntos) Sean A y B dos sucesos independientes de un experimento aleatorio tal que P(A) = 0, 5 y $P(\overline{B}) = 0, 8$. Calcúlese:

- a) $P(A \cap B)$ y $P(A \cup B)$.
- b) $P(\overline{A}|\overline{B})$.

Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 17.5.5 (2 puntos) El peso en kilogramos (kg) de los recién nacidos en 2014 en cierta ciudad puede aproximarse por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma = 0,60$ kg.

- a) Se toma una muestra aleatoria simple de tamaño 100 y se obtiene un peso medio para los recién nacidos de esa ciudad de $\overline{X}=3,250$ kg. Determínese un intervalo de confianza al 98 % para μ .
- b) Determínese el tamaño mínimo de la muestra aleatoria simple para que el error cometido en la estimación de μ , con un nivel de confianza del 95 %, sea a lo sumo de 0,2 kg.

17.6. Junio 2016 - Opción B (Coincidentes)

Problema 17.6.1 (2 puntos) Se consideran las matrices

$$A = \left(\begin{array}{ccc} a & 2 & 2 \\ 1 & a & 2 \\ a & 1 & 1 \end{array}\right), \quad Id = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

siendo a un número real.

- a) Determínese a para que la matriz A admita inversa.
- b) Para a=1, determínese la matriz X que verifica $A \cdot X + A = Id$.

Problema 17.6.2 (2 puntos) Sea S la región del plano definida por:

$$y + x \le 5$$
; $2x - y \ge -2$; $x \ge 0$; $y \ge 1$

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = 2x 3y en la región S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 17.6.3 (2 puntos) Se considera la función real de variable real

$$f(x) = x^3 - 2x^2 + ax + b$$

- a) Determínense los valores de los parámetros reales a y b si se sabe que la recta y=x es tangente a la gráfica de f(x) en el punto de abscisa x=0.
- b) Para a = 1 y b = 0, calcúlese el área del recinto plano limitado por la gráfica de f(x) y el eje OX.

Problema 17.6.4 (2 puntos) En cierta población animal tratada genéticamente, el número de hembras es el doble que el número de machos. Se observa que el 6 % de los machos de esa población padece albinismo, mientras que entre las hembras únicamente el 3 % padece albinismo. Calcúlese la probabilidad de que un individuo de esa población elegido al azar:

- a) Padezca albinismo.
- b) Sea hembra, en el supuesto de que padezca albinismo.

Problema 17.6.5 (2 puntos) La distancia diaria recorrida, en kilómetros (km), por un taxi en una gran ciudad puede aproximarse por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma=16$ km.

- a) Se toma una muestra aleatoria simple de 81 taxis y se obtiene el intervalo de confianza (159; 165). Determínese el nivel de confianza con el que se obtuvo dicho intervalo.
- b) Si la media de la distancia recorrida fuera $\mu=160$ km, y se toma una muestra aleatoria simple de 64 taxis, calcúlese la probabilidad de que la media de la muestra, \overline{X} , sea mayor que 156 km.

Solución:

17.7. Septiembre 2016 - Opción A

Problema 17.7.1 (2 puntos) Se considera la matriz $A = \begin{pmatrix} k & -1 & 0 \\ -7 & k & k \\ -1 & -1 & k \end{pmatrix}$

- a) Estúdiese para qué valores del parámetro real k la matriz A tiene inversa.
- b) Determínese, para k=1, la matriz X tal que XA=Id. Nota: Id denota la matriz identidad de tamaño 3×3 .

Problema 17.7.2 (2 puntos) Sea S la región del plano definida por:

$$2x - y > 1$$
; $2x - 3y < 6$; $x + 2y > 3$; $x + y < 8$; $y < 3$

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = 2x + y en la región S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 17.7.3 (2 puntos) Dada la función real de variable real definida por

$$f(x) = \begin{cases} x^2 + 1 & \text{si} & x < 1\\ \frac{ax + b}{x} & \text{si} & 1 \le x \le 2\\ \sqrt{x^3 + 1} & \text{si} & x > 2 \end{cases}$$

- a) Determínense los valores que deben tomar los parámetros a y b para que f(x) sea continua en x=1 y x=2.
- b) Calcúlese, para a=4 y b=-2, el área del recinto acotado por la gráfica de f(x), el eje de abscisas y las rectas x=1 y x=2.

Problema 17.7.4 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio tal que P(A) = 3/4, P(A|B) = 3/4 y P(B|A) = 1/4.

- a) Demuéstrese que A y B son sucesos independientes pero no incompatibles.
- b) Calcúlese $P(\overline{A}|\overline{B})$. Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 17.7.5 (2 puntos) El tiempo, en minutos, que los empleados de unos grandes almacenes tardan en llegar a su casa se puede aproximar por una variable aleatoria con distribución normal de media desconocida μ y desviación típica $\sigma=5$.

- a) Se toma una muestra aleatoria simple de 64 empleados y su media muestral es $\overline{X} = 30$ minutos. Determínese un intervalo de confianza al 95% para μ .
- b) ¿Qué tamaño mínimo debe tener una muestra aleatoria simple para que el correspondiente intervalo de confianza para μ al 99 % tenga una amplitud a lo sumo de 10 minutos?

17.8. Septiembre 2016 - Opción B

Problema 17.8.1 (2 puntos) Se considera el sistema de ecuaciones dependientes del parámetro real a:

$$\begin{cases} (a-1)x + y + z = 1\\ x + (a-1)y + (a-1)z = 1\\ x + az = 1 \end{cases}$$

- a) Discútase el sistema según los valores del a
- b) Resuélvase el sistema para a=3.

Problema 17.8.2 (2 puntos) Se considera la función real de variable real:

$$f(x) = \begin{cases} x^2 + 2x & \text{si } x < 0 \\ -x^2 + 3x & \text{si } x \ge 0 \end{cases}$$

- a) Estúdiese la continuidad y derivabilidad de la función.
- b) Determínense los valores de $a \in R$ para los cuales la pendiente de la recta tangente a la gráfica de f(x) en el punto de abscisa x = a es m = -2. Calcúlese, para cada valor de a obtenido, la recta tangente a la gráfica de f(x) en el punto de abscisa x = a.

Problema 17.8.3 (2 puntos) Se considera la función real de variable real

$$f(x) = \frac{x^2 - 3}{x^2 - 9}$$

- a) Calcúlense sus asíntotas.
- b) Determínense los intervalos de crecimiento y decrecimiento de la función.

Problema 17.8.4 (2 puntos) Para efectuar cierto diagnóstico, un hospital dispone de dos escáneres, a los que denotamos como A y B. El 65% de las pruebas de diagnóstico que se llevan a cabo en ese hospital se realizan usando el escáner A, el resto con el B. Se sabe además que el diagnóstico efectuado usando el escáner A es erróneo en un 5% de los casos, mientras que el diagnóstico efectuado usando el escáner B es erróneo en un 8% de los casos. Calcúlese la probabilidad de que:

- a) El diagnóstico de esa prueba efectuado a un paciente en ese hospital sea erróneo.
- b) El diagnóstico se haya efectuado usando el escáner A, sabiendo que ha resultado erróneo.

Problema 17.8.5 (2 puntos) El tiempo, en meses, que una persona es socia de un club deportivo, se puede aproximar por una variable aleatoria con distribución normal de media desconocida μ y desviación típica $\sigma = 9$.

- a) Se toma una muestra aleatoria simple de 100 personas que han sido socias de ese club y se obtuvo una estancia media de $\overline{X}=8'1$ meses. Determínese un intervalo de confianza al 90 % para μ .
- b) Sabiendo que para una muestra aleatoria simple de 144 personas se ha obtenido un intervalo de confianza (7'766; 10'233) para μ , determínese el nivel de confianza con el que se obtuvo dicho intervalo.

Capítulo 18

Año 2017

18.1. Junio 2017 - Opción A

Problema 18.1.1 (2 puntos) Considérense las matrices

$$A = \begin{pmatrix} 1 & 2 & -k \\ 1 & -2 & 1 \\ k & 2 & -1 \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$

- a) Discútase para qué valores del parámetro real k la matriz A tiene matriz inversa.
- b) Determínese para k=0 la matriz X que verifica la ecuación $A \cdot X = B$.

Problema 18.1.2 (2 puntos) Considérese la región del plano S definida por:

$$S = \{(x,y) \in \mathbb{R}^2 : x + 6y \ge 6; \quad 5x - 2y \ge -2; \quad x + 3y \le 20; \quad 2x - y \le 12\}$$

- a) Representese gráficamente la región S y calcúlense las coordenadas de sus vértices.
- b) Determínense los puntos en los que la función f(x,y) = 4x 3y alcanza sus valores máximo y mínimo en S, indicando el valor de f(x,y) en dichos puntos.

Problema 18.1.3 (2 puntos)

- a) Determínese el valor de la derivada de la función $f(x) = \frac{e^x}{1+x}$ en el punto de abscisa x = 0.
- b) Estúdiense las asíntotas de la función $f(x) = \frac{x^3}{1-x^2}$.

Problema 18.1.4 (2 puntos) Una empresa de reparto de paquetería clasifica sus furgonetas en función de su antigüedad. El $25\,\%$ de sus furgonetas tiene menos de dos años de antigüedad, el $40\,\%$ tiene una antigüedad entre dos y cuatro años y el resto tiene una antigüedad superior a cuatro años. La probabilidad de que una furgoneta se estropee es 0,01 si tiene una antigüedad inferior a dos años; 0,05 si tiene una antigüedad entre dos y cuatro años y 0,12 si tiene una antigüedad superior a cuatro años. Se escoge una furgoneta al azar de esta empresa. Calcúlese la probabilidad de que la furgoneta escogida:

a) Se estropee.

b) Tenga una antigüedad superior a cuatro años sabiendo que no se ha estropeado.

Problema 18.1.5 (2 puntos) El peso en canal, en kilogramos (kg), de una raza de corderos a las seis semanas de su nacimiento se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica igual a 0,9 kg.

- a) Se tomó una muestra aleatoria simple de 324 corderos y el peso medio observado fue x = 7, 8 kg. Obténgase un intervalo de confianza con un nivel del 99,2 % para μ .
- b) Determínese el tamaño mínimo que debería tener una muestra aleatoria simple de la variable para que el correspondiente intervalo de confianza para μ al 95 % tenga una amplitud a lo sumo de 0,2 kg.

18.2. Junio 2017 - Opción B

Problema 18.2.1 (2 puntos) Considérese el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x - ay + 2z = 0\\ ax - 4y - 4z = 0\\ (2 - a)x + 3y - 2z = 0 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a=3.

Problema 18.2.2 (2 puntos) Considérese la función real de variable real:

$$f(x) = x^3 - 3x$$

- a) Calcúlense $\lim_{x \longrightarrow -\infty} \frac{f(x)}{1-x^3}$ y $\lim_{x \longrightarrow 0} \frac{f(x)}{x}$.
- b) Estúdiense los intervalos de crecimiento y decrecimiento de f(x).

Problema 18.2.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = \begin{cases} \frac{2}{x+2} & \text{si } x \le 0\\ x+2 & \text{si } x > 0 \end{cases}$$

- a) Estúdiese la continuidad de f(x) en R.
- b) Calcúlese $\int_{-1}^{0} f(x) dx$.

Problema 18.2.4 (2 puntos) El 30 % de los individuos de una determinada población son jóvenes. Si una persona es joven, la probabilidad de que lea prensa al menos una vez por semana es 0,20. Si una persona lee prensa al menos una vez por semana, la probabilidad de que no sea joven es 0,9. Se escoge una persona al azar. Calcúlese la probabilidad de que esa persona:

- a) No lea prensa al menos una vez por semana.
- b) No lea prensa al menos una vez por semana o no sea joven.

Problema 18.2.5 (2 puntos) El peso en toneladas (T) de los contenedores de un barco de carga se puede aproximar por una variable aleatoria normal de media μ y desviación típica $\sigma=3$ T. Se toma una muestra aleatoria simple de 484 contenedores.

- a) Si la media de la muestra es $\overline{x}=25,9$ T, obténgase un intervalo de confianza con un nivel del 90 % para μ .
- b) Supóngase ahora que $\mu=23$ T. Calcúlese la probabilidad de que puedan transportarse en un barco cuya capacidad máxima es de 11000 T.

18.3. Junio 2017 (coincidente) - Opción A

Problema 18.3.1 (2 puntos) Considérense las matrices

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 5 & 1 \end{pmatrix}, \quad y \quad B = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}$$

- a) Calcúlese la matriz $D = A^T \cdot B$. ¿Existe la matriz $F = A \cdot B$?
- b) Calcúlese la matriz $M = B^{-1}$.

Nota: A^T denota la matriz traspuesta de la matriz A.

Problema 18.3.2 (2 puntos) Sea S la región del plano definida por:

$$x+y > 2$$
; $2x-y < 4$; $2y-x < 4$; $x > 0$; $y > 0$

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = -5x + 3y en la región S indicando los puntos de S en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 18.3.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = x^3 - 4x^2 + 3x$$

- a) Calcúlese el área de la región acotada delimitada por la gráfica de f(x), el eje de abscisas y por las rectas x=0 y x=3.
- b) Determínense los intervalos de crecimiento y decrecimiento de f(x).

Problema 18.3.4 (2 puntos) El profesorado de cierta Facultad de Cc. Económicas y Empresariales está compuesto por profesores de Economía y de Empresa. El $60\,\%$ son de Economía y el $40\,\%$ de Empresa. Además el $55\,\%$ del profesorado de esa facultad son mujeres. De ellas, el $52\,\%$ son de Empresa. Calcúlese la probabilidad de que un miembro del profesorado de dicha Facultad de Cc. Económicas y Empresariales elegido al azar:

- a) Sea una mujer si se sabe que es de Empresa.
- b) Sea de Economía y sea mujer.

Problema 18.3.5 (2 puntos) La producción diaria de cemento, medida en toneladas, de una factoría cementera se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma=9$ toneladas.

- a) Determínese el tamaño mínimo de una muestra aleatoria simple para que el correspondiente intervalo de confianza para μ al 95 % tenga una amplitud a lo sumo de 2 toneladas.
- b) Se toman los datos de producción de 16 días escogidos al azar. Calcúlese la probabilidad de que la media de las producciones obtenidas, \overline{X} , sea menor o igual a 197,5 toneladas si sabemos que $\mu=202$ toneladas.

18.4. Junio 2017 (coincidente) - Opción B

Problema 18.4.1 (2 puntos) Se considera el sistema de ecuaciones lineales:

$$\begin{cases}
-x + 3y + 3z = 0 \\
-x + 3y + z = 1 \\
-x + ay + 2z = 0
\end{cases}$$

- a) Discútase el sistema para los diferentes valores del parámetro $a \in \mathbb{R}$.
- b) Resuélvase para a=1.

Problema 18.4.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} 5x+1 & \text{si } x \le 0\\ x^2 + 5x + 1 & \text{si } x > 0 \end{cases}$$

- a) Determínese si la función f(x) es derivable en x = 0.
- b) Calcúlese la ecuación de la recta tangente a la gráfica de la función f(x) en el punto de abscisa x=3.

Problema 18.4.3 (2 puntos) Sabiendo que la derivada de una función real de variable real es:

$$f'(x) = x^2 + 8x + 15$$

- a) Determínese la expresión de f(x) sabiendo que f(1) = 1/3.
- b) Determínense los máximos y los mínimos locales de f(x), si los tuviese.

Problema 18.4.4 (2 puntos) Una máquina tiene dos chips de control A y B. Se sabe que al encender la máquina la probabilidad de que falle el chip A es de 0,2, la probabilidad de que falle el B es de 0,3 y la probabilidad de que fallen los dos es de 0,015. Calcúlese la probabilidad de que al encender la máquina:

- a) Haya fallado el chip A si se sabe que ha fallado el B.
- b) No falle ninguno de los dos chips.

Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 18.4.5 (2 puntos) El peso, en gramos (gr), de la bandeja de salmón crudo que se vende en una gran superficie, se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma=25$ gr. Se ha tomado una muestra aleatoria simple de 10 bandejas.

- a) Si la media muestral de los pesos ha sido $\overline{X}=505$ gr, calcúlese un intervalo de confianza al 99 % para μ .
- b) Supóngase ahora que $\mu=500$ gr. Calcúlese la probabilidad de que el peso total de esas 10 bandejas sea mayor o igual a 5030 gr.

18.5. Septiembre 2017 - Opción A

Problema 18.5.1 (2 puntos) Se considera el sistema lineal de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x - 2y - z = -2 \\ -2x - az = 2 \\ y + az = -2 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 4.

Problema 18.5.2 (2 puntos) Se considera la región del plano S definida por:

$$1 \le x \le 5$$
; $2 \le y \le 6$; $x - y \ge -4$; $3x - y \le 10$.

- a) Representese gráficamente la región S y calcúlense las coordenadas de sus vértices.
- b) Calcúlese los valores máximo y mínimo de la función f(x,y) = -200x + 600y en la región S y obténgase los puntos de S donde se alcanzan dichos valores.

Problema 18.5.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = \begin{cases} ax+1 & \text{si} \quad x < -1\\ x^2 + x - 2 & \text{si} \quad x \ge -1 \end{cases}$$

- a) Calcúlese el valor del parámetro real a para que f(x) sea una función continua en todo su dominio.
- b) Para a=2, calcúlense los puntos de corte de la gráfica de la función con los ejes cartesianos. Determínense sus intervalos de crecimiento y decrecimiento.

Problema 18.5.4 (2 puntos) Una empresa fabrica dos modelos de ordenadores portátiles A y B, siendo la producción del modelo A el doble que la del modelo B. Se sabe que la probabilidad de que un ordenador portátil del modelo A salga defectuoso es de 0,02, mientras que esa probabilidad en el modelo B es de 0,06. Calcúlese la probabilidad de que un ordenador fabricado por dicha empresa elegido al azar:

- a) No salga defectuoso.
- b) Sea del modelo A, si se sabe que ha salido defectuoso.

Problema 18.5.5 (2 puntos) El tiempo, en horas, que tarda cierta compañía telefónica en hacer efectiva la portabilidad de un número de teléfono se puede aproximar por una variable aleatoria con distribución normal de media μ , y desviación típica $\sigma=24$ horas. Se toma una muestra aleatoria simple de tamaño 16. Calcúlese:

- a) La probabilidad de que la media muestral del tiempo, \overline{X} , supere las 48 horas, si $\mu = 36$ horas.
- b) El nivel de confianza con el que se ha calculado el intervalo (24, 24, 47, 76) para μ .

18.6. Septiembre 2017 - Opción B

Problema 18.6.1 (2 puntos) Considérense las matrices

$$A = \left(\begin{array}{cc} 1 & -2 \\ -1 & 1 \end{array}\right) \quad B = \left(\begin{array}{cc} 1 & 3 \\ 2 & -1 \end{array}\right) \quad \text{y} \quad C = \left(\begin{array}{cc} -1 & 0 \\ 3 & 1 \end{array}\right)$$

- a) Determínese la matriz C^{40} .
- b) Calcúlese la matriz X que verifica $X \cdot A + 3B = C$

Problema 18.6.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \frac{x^2 - 1}{3x - 2}$$

- a) Estúdiense sus asíntotas.
- b) Determínense los intervalos de crecimiento y decrecimiento de la función.

Problema 18.6.3 (2 puntos) Se considera la función real de variable real

$$f(x) = x^2 + ax$$

- a) Calcúlese el valor del parámetro real a para que la función f(x) tenga un extremo relativo en x=2. Determínese si se trata de un máximo o un mínimo local.
- b) Para a = -2, hállese el área del recinto acotado por la gráfica de f(x), el eje de abscisas y las rectas x = 0 y x = 2.

Problema 18.6.4 (2 puntos) La probabilidad de que cierto río esté contaminado por nitratos es 0'6, por sulfatos es 0,4, y por ambos es 0,2. Calcúlese la probabilidad de que dicho río:

- a) No esté contaminado por nitratos, si se sabe que está contaminado por sulfatos.
- b) No esté contaminado ni por nitratos ni por sulfatos.

Problema 18.6.5 (2 puntos) La longitud auricular de la oreja en varones jóvenes, medida en centímetros (cm), se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica $\sigma = 0,6$ cm.

- a) Una muestra aleatoria simple de 100 individuos proporcionó una media muestral $\overline{X} = 7$ cm. Calcúlese un intervalo de confianza al 98 % para μ .
- b) ¿Qué tamaño mínimo debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ por la media muestral sea a lo sumo de 0,1 cm, con un nivel de confianza del 98 %?

18.7. Septiembre 2017 (coincidente) - Opción A

Problema 18.7.1 (2 puntos) Se considera la matriz $A = \begin{pmatrix} a & 1 & 1+a \\ a & a & a \\ 1 & 0 & a \end{pmatrix}$

- a) Estúdiese para qué valores del parámetro real a la matriz A tiene inversa.
- b) Determínese, para a=1, la matriz X tal que $A\cdot X=Id$, siendo Id la matriz identidad de tamaño 3×3 .

Problema 18.7.2 (2 puntos) Sea S la región del plano definida por:

$$2x + y \le 16$$
; $x + y \le 11$; $x + 2y \ge 6$; $x \ge 0$; $y \ge 0$.

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices. ¿Pertenece el punto (4,4) a S?
- b) Obténganse los valores máximo y mínimo de la función f(x,y) = 3x + y en la región S, indicando los puntos en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 18.7.3 (2 puntos) Dada la función real de variable real definida por

$$f(x) = \begin{cases} x^2 - 2x & \text{si} & x < -1\\ x & \text{si} & -1 \le x < 1\\ -x^2 + 2x & \text{si} & x \ge 1 \end{cases}$$

- a) Estúdiese la continuidad de f(x) en \mathbb{R} .
- b) Determínese el área del recinto acotado por la gráfica de f(x), el eje de abscisas y las rectas x=0 y x=2.

Problema 18.7.4 (2 puntos) En un centro de danza el $60\,\%$ de los alumnos recibe clases de ballet. Por otro lado, entre quienes reciben clases de ballet, el $65\,\%$ también recibe clase de flamenco. Además sólo el $30\,\%$ de quienes no reciben clases de ballet recibe clases de flamenco. Calcúlese la probabilidad de que un alumno de dicho centro elegido al azar:

- a) Reciba clases de flamenco.
- b) Reciba clases de ballet si no recibe clases de flamenco.

Problema 18.7.5 (2 puntos) El precio, en euros, de un cierto producto en las diferentes tiendas de una determinada ciudad se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica $\sigma = 15$ euros.

a) Se ha tomado una muestra aleatoria simple de diez tiendas de esa ciudad y se ha anotado el precio del producto en cada una de ellas. Estos precios son los siguientes:

Determínese un intervalo de confianza con un nivel del 95 % para μ .

b) Calcúlese el mínimo tamaño muestral necesario para que el error máximo cometido al estimar μ por la media muestral sea a lo sumo de 8 euros, con un nivel de confianza del 95 %.

18.8. Septiembre 2017 (coincidente) - Opción B

Problema 18.8.1 (2 puntos) Se considera el sistema lineal de ecuaciones, dependiente del parámetro real a:

$$\begin{cases}
-x + ay + z = 3 \\
2y + 2z = 0 \\
x + 3y + 2z = -3
\end{cases}$$

- a) Discútase el sistema según los diferentes valores de a.
- b) Resuélvase el sistema en el caso a = 0.

Problema 18.8.2 (2 puntos) Se considera la función real de variable real

$$f(x) = (3x^2 - 2x)^2$$

- a) Calcúlese $\int_{-1}^{1} f(x) dx$
- b) Determínese la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x=2.

Problema 18.8.3 (2 puntos) La función de beneficio (en euros) de una empresa que fabrica cables de electricidad viene dada por la función

$$b(x) = -x^2 + 120x - 3200$$

donde x representa la cantidad de metros de cable elaborados diariamente.

- a) ¿Cuántos metros de cable deben fabricarse para que la empresa no tenga ganancias ni pérdidas?
- b) ¿Cuántos metros de cable deben fabricarse para que se obtenga el máximo beneficio?

(Observación: valores negativos de b(x) implican que la empresa tiene pérdidas, mientras que valores positivos implican ganancias)

Problema 18.8.4 (2 puntos) Sean A y B dos sucesos tal que P(A) = 0, 5, P(A|B) = 0,375 y $P(B \cap A) = 0, 3$. Calcúlese la probabilidad de que:

- a) Ocurra B.
- b) Ocurra B pero no A

Problema 18.8.5 (2 puntos) El consumo de combustible, en litros cada 100 kilómetros (l/100km), de los vehículos nuevos matriculados en España se puede aproximar por una variable aleatoria con distribución normal de media μ desconocida y desviación típica $\sigma=1,2$ l/100km. Se toma una muestra aleatoria simple de tamaño 49.

- a) Calcúlese el nivel de confianza con el que se ha obtenido el intervalo de confianza (4,528;5,2) para μ .
- b) Supóngase ahora que $\mu=4,8$ l/100km. Calcúlese la probabilidad de que la media de la muestra, \overline{X} , esté comprendida entre 4,5 y 5,1 l/100km.

Capítulo 19

Año 2018

19.1. Modelo 2018 - Opción A

Problema 19.1.1 (2 puntos) Se considera la matriz $A = \begin{pmatrix} 0 & a & a \\ a & 0 & a \\ a & a & 0 \end{pmatrix}$

- a) Determínese para qué valores de a para los que la matriz A es invertible.
- b) Para a=1, despéjese y determínese la matriz X de la ecuación matricial $A \cdot X = A + 2Id$, donde Id representa la matriz identidad de orden 3.

Problema 19.1.2 (2 puntos) Una bodega desea fijar el precio de venta al público de las 250 botellas de vino blanco y de las 500 de vino tinto que tiene en stock. Para no incurrir en pérdidas saben que el precio de venta al público de la botella de vino blanco debe ser como mínimo de 3 euros, de la misma manera el precio de venta al público de la botella de vino tinto debe ser de, como mínimo, 4 euros. Además saben que, para ser competitivos con esos precios de venta al público, el coste de 2 botellas de vino blanco y una de tinto debería ser a lo sumo 15 euros. Por el mismo motivo, el coste total de una botella de vino blanco y una de tinto no debe sobrepasar los 10 euros. Determínense los respectivos precios de venta al público por unidad de las botellas de vino blanco y de las de vino tinto, para que el ingreso total al vender el stock de 250 botellas de vino blanco y 500 de vino tinto sea máximo.

Problema 19.1.3 (2 puntos) Se considera la función real de variable real

$$f(x) = 4x^3 - 12x^2 + 16$$

- a) Calcúlese la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x=1.
- b) Calcúlese el área de la región limitada por la gráfica de f(x), el eje de abscisas y las rectas x=-2 y x=3.

Problema 19.1.4 (2 puntos) Se consideran los sucesos A y B de un experimento aleatorio tal que:

$$P(A) = 0.4$$
; $P(B) = 0.5$; $P(A|B) = 0.7$

Calcúlese:

b)
$$P(\overline{A}|B)$$

Nota: \overline{S} denota el suceso complementario de S.

Problema 19.1.5 (2 puntos) Un determinado partido político desea estimar la proporción de votantes, p, que actualmente se decantaría por él.

- a) Asumiendo que p=0,5, determínese el tamaño mínimo necesario de una muestra de votantes para garantizar que, con una confianza del 90 %, el margen de error en la estimación no supere el $2\%(\pm 2\%)$.
- b) Se tomó una muestra aleatoria simple de 1200 votantes de los cuales 240 afirmaron que votarían por el partido en cuestión. Obténgase un intervalo de confianza del $95\,\%$ para la proporción de votantes de ese partido en la población.

19.2. Modelo 2018 - Opción B

Problema 19.2.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x+y+z=3\\ 2x+y+z=2\\ 5x+3y+az=a+4 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 1.

Problema 19.2.2 (2 puntos) Se considera la función real de variable real: $f(x) = \frac{3x^2 + 3}{x}$

- a) Calcúlense el dominio y las asíntotas de f(x).
- b) Determínense sus intervalos de crecimiento y decrecimiento.

Problema 19.2.3 (2 puntos) El beneficio diario (en miles de euros) de una empresa productora de cemento viene dado por la función:

$$f(x) = -2x^2 + 14x - 12$$

donde x expresa las toneladas de cemento producidos al día. Se sabe que la producción diaria de cemento está entre 0 y 8 toneladas, es decir, $x \in [0, 8]$.

- a) Calcúlense f(0) y f(8) e interprétense los resultados en el contexto del problema. Hállense las toneladas de cemento que deben producirse diariamente para obtener el máximo beneficio posible.
- b) Determínese entre qué valores debe estar la producción diaria de cemento para que la empresa no tenga pérdidas.

Problema 19.2.4 (2 puntos) Se consideran los sucesos A y B de un experimento aleatorio tal que:

$$P(A) = 0,3; P(B) = 0,8; P(A \cup B) = 0,9$$

Calcúlese:

a)
$$P(\overline{A}|B)$$

b)
$$P(A|\overline{B})$$

Nota: \overline{S} denota el suceso complementario de S.

Problema 19.2.5 (2 puntos) El peso, en kilogramos, de los niños de diez años en la comunidad de Madrid se puede aproximar por una variable aleatoria con distribución normal de μ desconocida y desviación típica $\sigma=3$ kilogramos.

a) Calcúlese un intervalo de confianza al 95 % para μ si se ha tomado una muestra aleatoria simple de 9 niños de diez años y se han obtenido los siguientes pesos en kilogramos:

b) Determínese el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de la media muestral sea menor que 1 kilogramo con un nivel de confianza 98 %.

19.3. Junio 2018 - Opción A

Problema 19.3.1 (2 puntos) Se consideran las matrices $A = \begin{pmatrix} 3 & 1 \\ 8 & 3 \end{pmatrix}$ y $B = \begin{pmatrix} 3 & -1 \\ -8 & 3 \end{pmatrix}$

- a) Compruébese que B es la matriz inversa de A.
- b) Calculése la matriz X tal que $A \cdot X = B$.

Problema 19.3.2 (2 puntos) Sea S la región del plano definida por:

$$x + y < 50$$
, $2x + y < 80$, $x > 0$, $y > 0$.

- a) Representese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténgase el valor máximo de la función f(x,y) = 5x + 4y en la región S, indicando el punto en el cual se alcanza dicho valor máximo.

Problema 19.3.3 (2 puntos) Dada la función real de variable real definida por:

$$f(x) = \begin{cases} \frac{x+2}{x-1} & \text{si } x \le 2\\ \frac{3x^2 - 2x}{x+2} & \text{si } x > 2 \end{cases}$$

- a) Estúdiese si f(x) es continua en x = 2.
- b) Calcúlese la función derivada de f(x) para x < 2.

Problema 19.3.4 (2 puntos) En una agencia de viajes se ha observado que el $75\,\%$ de los clientes acude buscando un billete de transporte, el $80\,\%$ buscando una reserva de hotel. Se ha observado además que el $65\,\%$ busca las dos cosas. Elegido un cliente de dicha agencia al azar, calcúlese la probabilidad de que:

- a) Acuda buscando un billete de transporte o una reserva de hotel.
- b) Sabiendo que busca una reserva de hotel, también busque un billete de transporte.

Problema 19.3.5 (2 puntos) La empresa Dulce. SA produce sobres de azúcar cuyo peso en gramos se puede aproximar por una variable aleatoria X con distribución normal con media μ gramos y desviación típica $\sigma=0,5$ gramos.

- a) Determínese el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de la media sea como mucho de 0,25 gramos con un nivel de confianza del $95\,\%$.
- b) Calcúlese la probabilidad de que al tomar una muestra aleatoria simple de 25 sobres, la media muestral, \overline{X} , pese más de 12,25 gramos, sabiendo que $\mu=12$ gramos.

19.4. Junio 2018 - Opción B

Problema 19.4.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x + ay + z &= 1\\ ax + y + (a - 1)z &= a\\ x + y + z &= a + 1 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 3.

Problema 19.4.2 (2 puntos) Se considera la función real de variable real:

$$f(x) = \frac{x^3}{(x+1)^2}$$

- a) Calcúlense el dominio y las asíntotas de f(x).
- b) Determínense sus intervalos de crecimiento y decrecimiento.

Problema 19.4.3 (2 puntos) Se considera la función real de variable real

$$f(x) = 2x^3 - 5x^2 + 3x$$

- a) Calcúlese el área del recinto acotado limitado por la gráfica de la función f(x) y el eje OX.
- b) Hállese la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x=0.

Problema 19.4.4 (2 puntos) En una comunidad de vecinos en el 70% de los buzones aparece en primer lugar un nombre masculino y en el 30% restante un nombre femenino. En dicha comunidad, la probabilidad de que un hombre trabaje es de 0.8 y la probabilidad de que lo haga una mujer es 0.7. Se elige un buzón al azar, calcúlese la probabilidad de que el primer nombre en el buzón corresponda a:

- a) Una persona que trabaja.
- b) Un hombre, sabiendo que es de una persona que trabaja.

Problema 19.4.5 (2 puntos) El número de descargas por hora de cierta aplicación para móviles, se puede aproximar por una variable aleatoria de distribución normal de media μ descargas y desviación típica $\sigma=20$ descargas.

- a) Se toma una muestra aleatoria simple de 40 horas, obteniéndose una media muestral de 99,5 descargas. Determínese un intervalo de confianza al 95 % para μ .
- b) Supóngase que $\mu=100$ descargas. Calcúlese la probabilidad de que al tomar una muestra aleatoria simple de 10 horas, la media muestral, \overline{X} , esté entre 100 y 110 descargas.

19.5. Junio 2018 (coincidente)- Opción A

Problema 19.5.1 (2 puntos) Se consideran las matrices $A = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 0 & 1 \\ 3 & 1 & m \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 4 \\ 3 & 1 \\ 2 & 1 \end{pmatrix}$ donde m es un parámetro real.

- a) Determínense los valores de m para los que la matriz A es invertible.
- b) Para m=0 considérese la ecuación matricial $A\cdot X=B$. Exprésese X en función de A y B y calcúlese X.

Problema 19.5.2 (2 puntos) Sea S la región del plano definida por:

$$x + y \le 6$$
, $4x + y \le 12$, $x \ge 0$, $y \ge 0$.

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función $f(x,y) = \frac{8x + 3y}{5}$ en S, indicando los puntos de la región en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 19.5.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = \frac{1}{x+1}$$

- a) Calcúlese la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0.
- b) Hállese el área de la región limitada por el eje de abscisas, las rectas x = 0 y x = 1 y la gráfica de f'(x), siendo f' la función derivada de f.

Problema 19.5.4 (2 puntos) Se toma un coche al azar de la Comunidad de Madrid. Se sabe que la probabilidad de que tenga motor diésel es 0,4. La probabilidad de que tenga más de 8 años es 0,5. Finalmente, se sabe que la probabilidad de que tenga más de ocho años o motor diésel es 0,55. Calcúlese la probabilidad de que:

- a) Tenga motor diésel sabiendo que tiene más de ocho años.
- b) No tenga motor diésel ni tenga más de ocho años.

Problema 19.5.5 (2 puntos) El tiempo diario, medido en horas (h), que pasa una persona de 18 años viendo la televisión, se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica $\sigma = 0, 25$ h.

- a) Se toma una muestra aleatoria simple de 15 individuos y se obtiene una media muestral $\overline{X}=2$ h. Calcúlese un intervalo de confianza al 95 % para μ .
- b) Supóngase que $\mu=2$ h. Calcúlese la probabilidad de que al tomar una muestra aleatoria simple de 20 individuos, el tiempo medio de visionado diario de televisión, \overline{X} , esté entre 1,85 y 2,15 horas.

19.6. Junio 2018 (coincidente)- Opción B

Problema 19.6.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} 2x + y + z &= 1\\ x + 2y + z &= 2\\ x - y + az &= -1 \end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 0.

Problema 19.6.2 (2 puntos) Considérese la función real de variable real:

$$f(x) = \begin{cases} x+1 & \text{si } x < 0 \\ \frac{x^2 - 1}{x^2 + 1} & \text{si } x \ge 0 \end{cases}$$

- a) Determínese si f(x) es una función continua en todo su dominio.
- b) Calcúlense sus asíntotas horizontales y oblicuas, si las tuviese.

Problema 19.6.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = 2x^3 + 15x^2 + 36x$$

- a) Determínense sus intervalos de crecimiento y decrecimiento.
- b) Calcúlense sus máximos v mínimos locales, si los tuviese.

Problema 19.6.4 (2 puntos) Entre los músicos que ensayan en un determinado local de Madrid, un 30 % sabe tocar la batería, un 80 % sabe tocar la guitarra y un 20 % sabe tocar tanto la batería como la guitarra. Se elige uno de esos músicos al azar. Calcúlese la probabilidad de que:

- a) No sepa tocar la batería si se conoce que sabe tocar la guitarra.
- b) Conocido que no sabe tocar la guitarra, no sepa tocar la batería.

Problema 19.6.5 (2 puntos) El peso en kilogramos (kg) del ejemplar de lubina de estero tras un mes de crianza, se puede aproximar por una variable aleatoria con distribución normal de media μ kg y desviación típica $\sigma = 0, 2$ kg.

- a) Determínese el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ sea menor que 0,05 kg, con un nivel de confianza del 95 %.
- b) Calcúlese la probabilidad de que al tomar una muestra aleatoria simple de tamaño 20, la suma total de sus pesos sea mayor que 32 kg, sabiendo que $\mu=1,5$ kg.

19.7. Julio 2018 (extraordinaria)- Opción A

Problema 19.7.1 (2 puntos) Considérense las matrices $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$ y $B = \begin{pmatrix} 3 \\ 2 \\ 3 \end{pmatrix}$

- a) Calcúlese la matriz $[(A \cdot A^t)^2 2A \cdot A^t]^{11}$.
- b) Determínense el número de filas y columnas de la matriz X que verifica que $X \cdot A^t = B^t$. Justifíquese si A^t es una matriz invertible y calcúlese la matriz X.

Nota: M^t denota la matriz traspuesta de la matriz M.

Problema 19.7.2 (2 puntos) Considérese la región del plano S definida por:

$$S = \{(x,t) \in \mathbb{R}^2 : x + 2y \ge 4, \ x + 2y \le 12, \ x \le 4, \ -x + 2y \le 12 \}.$$

- a) Representese la región S y calcúlense las coordenadas de sus vértices.
- b) Determínense los puntos en los que la función f(x,y) = 3x y alcanza sus valores máximo y mínimo en S, indicando el valor de f en dichos puntos.

Problema 19.7.3 (2 puntos) Considérese la función real de variable real: $f(x) = \frac{x}{1-4x^2}$

- a) Determínense los intervalos de crecimiento y decrecimiento de f.
- b) Estúdiense las asíntotas de f.

Problema 19.7.4 (2 puntos) Se va a celebrar una carrera popular. Entre los participantes, dos de cada tres hombres y tres de cada cuatro mujeres han entrenado para la carrera.

- a) Se eligen al azar y de forma independiente un hombre y una mujer de entre los participantes. Calcúlese la probabilidad de que alguno de ellos haya entrenado para la carrera.
- b) Si el 65 % de los participantes son hombres y el 35 % mujeres y se elige un participante al azar, calcúlese la probabilidad de que sea hombre sabiendo que ha entrenado para la carrera.

Problema 19.7.5 (2 puntos) La distancia anual, en kilómetros (km), que recorren las furgonetas de una empresa de reparto, se puede aproximar por una variable aleatoria con distribución normal de media μ km y desviación típica $\sigma=24000$ km.

- a) Determínese el tamaño mínimo de una muestra aleatoria simple para que la amplitud del intervalo de confianza al 95 % para μ sea a lo sumo de 23 550 km.
- b) Se toma una muestra aleatoria simple de 25 furgonetas. Suponiendo que $\mu=150000$ km, calcúlese la probabilidad de que la distancia media anual observada, \overline{X} , esté entre 144240 km y 153840 km.

19.8. Julio 2018 (extraordinaria)- Opción B

Problema 19.8.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases} x + 3y + z = a \\ 2x + ay - 6z = 8 \\ x - 3y - 5z = 4 \end{cases}$$

- a) Discútase el sistema en función de los valores del parámetro real a.
- b) Resuélvase para a = 4.

Problema 19.8.2 (2 puntos) Los beneficios, en millones de euros, de una determinada inversión vienen dados por la función $f(x) = x^3 - 12x$, donde x representa cierto índice que puede tomar cualquier valor real.

- a) Determínese, en el caso de que exista, el valor del índice para el que el beneficio es mayor que el de todos los valores de un entorno suyo. ¿Cuál sería el beneficio para ese valor del índice?
- b) Supóngase que el valor actual del índice es x=4 y que está previsto que éste experimente un incremento positivo. Justifíquese si el beneficio aumentará o disminuirá.

Problema 19.8.3 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} x^3 + 2e^x & \text{si} \quad x < 0\\ \frac{2}{3+x} & \text{si} \quad x \ge 0 \end{cases}$$

- a) Determínense el dominio de f(x) y estúdiese su continuidad.
- b) Calcúlese $\int_{-1}^{0} f(x) dx$

Problema 19.8.4 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio tal que P(A) = 0, 4, P(B) = 0, 6 y $P(A \cup B) = 0, 8$. Calcúlese:

- a) $P(\overline{A} \cap B)$.
- b) $P(\overline{A \cup B}|A)$.

Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 19.8.5 (2 puntos) Una empresa quiere lanzar un producto al mercado. Por ello desea estimar la proporción de individuos, P, que estarían dispuestos a comprarlo.

- a) Asumiendo que la proporción poblacional es P=0,5, determínese el tamaño mínimo necesario de una muestra de individuos para garantizar que, con una confianza del 95 %, el margen de error en la estimación no supere el 3 % (± 3 %).
- b) Se tomó una muestra aleatoria simple de 450 individuos de los cuales 90 afirmaron que comprarían el producto. Obténgase un intervalo de confianza del 90 % para la proporción de individuos que estarían dispuestos a comprar el producto.

Capítulo 20

Año 2019

20.1. Modelo 2019 - Opción A

Problema 20.1.1 (2 puntos) Se consideran las matrices

$$A = \begin{pmatrix} 2 & 3 & 5 \\ 1 & 3 & 6 \\ 3 & 3 & m \end{pmatrix} \quad \mathbf{y} \quad B = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

donde m es un parámetro real.

- a) Determínese para qué valores de m para los que la matriz A es invertible.
- b) Considérese la ecuación matricial $A\cdot X=A\cdot B+B.$ Para m=5 , exprésese X en función de A y B y calcúlese la matriz X.

Problema 20.1.2 (2 puntos) Sea S la región del plano definida por:

$$-2x + 3y \le 4$$
; $2x + y \ge 4$; $2x - y \le 4$.

- a) Represéntese la región S y calcúlense las coordenadas de sus vértices.
- b) Obténganse los valores máximo y mínimo de la función $f(x,y) = 0,5x + \frac{1}{3}y$ en S, indicando los puntos de la región en los cuales se alcanzan dichos valores máximo y mínimo.

Problema 20.1.3 (2 puntos) Se considera la función real de variable real

$$f(x) = \frac{x^2 - 1}{x^2 + x - 2}$$

- a) Calcúlese la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x=0.
- b) Calcúlense sus asíntotas verticales y horizontales, si las tuviese.

Problema 20.1.4 (2 puntos) En una determinada sede de la EVAU hay un 45 % de alumnos de la modalidad de ciencias y un 40 % de Ciencias Sociales. Todos los alumnos de Ciencias Sociales hacen el examen de Matemáticas Aplicadas a las Ciencias Sociales II (MACCSSII). De los alumnos de Ciencias de esa sede, un 5 % va a realizar el examen de MACCSSII. En esa sede ningún alumno del resto de modalidades se examina de MACCSSII. Se toma a un alumno al azar de esa sede. Calcúlese la probabilidad de que:

- a) Se examine de MACCSSII.
- b) Sabiendo que se examina de MACCSS sea un alumno de la modalidad de Ciencias.

Problema 20.1.5 (2 puntos) Una plataforma de televisión quiere lanzar un nuevo paquete de contenidos de pago. Por ello desea estimar la proporción de clientes, P, que estarían dispuestos a contratarlo.

- a) Asumiendo que la proporción poblacional es P=0,5, determínese el tamaño mínimo necesario de una muestra de individuos para garantizar que, con una confianza del 95 %, el margen de error en la estimación no supere el 2 % (± 2 %).
- b) Se tomó una muestra aleatoria simple de 500 clientes de los cuales 85 afirmaron que contratarían el paquete. Obténgase un intervalo de confianza del $90\,\%$ para la proporción de individuos que estarían dispuestos a contratar el paquete.

20.2. Modelo 2019 - Opción B

Problema 20.2.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases}
6x + 2y + z = 1 \\
x + 3y + z = 2 \\
5x - y + az = -1
\end{cases}$$

- a) Discútase en función de los valores del parámetro a.
- b) Resuélvase para a = 0.

Problema 20.2.2 (2 puntos) Considérese la función real de variable real:

$$f(x) = \begin{cases} 2x + a & \text{si} \quad x < -1\\ e^{2x+2} & \text{si} \quad x \ge -1 \end{cases}$$

- a) Determínese el valor del parámetro $a \in \mathbb{R}$ para el cual f(x) es una función continua en x = -1.
- b) Hállese el área de la región limitada por el eje de abscisas, las rectas x=0 y x=1 y la gráfica de f(x).

Problema 20.2.3 (2 puntos) Se considera la función real de variable real:

$$f(x) = \frac{x-1}{x^2+1}$$

- a) Determínense sus intervalos de crecimiento y decrecimiento.
- b) Calcúlense sus máximos y mínimos locales, si los tuviese.

Problema 20.2.4 (2 puntos) Se escoge al azar un cliente de un determinado hotel de la costa española. Se sabe que la probabilidad de que sea español es 0,2. La probabilidad de que siendo extranjero sea hombre es 0,45. Finalmente la probabilidad de que sea una mujer española es 0,1. Calcúlese la probabilidad de que:

- a) Conocido que es español, sea un hombre.
- b) Sea una mujer.

Problema 20.2.5 (2 puntos) El contenido en azúcares, medido en kilogramos (kg), de los botes de 1 kg de miel natural del Valle de Valdeón se puede aproximar por una variable aleatoria con distribución normal de media μ kg y desviación típica $\sigma = 0, 1$ kg.

- a) Determínese el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ sea menor que 0,025 kg, con un nivel de confianza del 95 %.
- b) Sabiendo que $\mu=0,7$ kg, calcúlese la probabilidad de que al tomar una muestra aleatoria simple de tamaño 20, la media del contenido en azúcares de esos botes sea menor que 0,65 kg.

20.3. Junio 2019 - Opción A

Problema 20.3.1 (2 puntos) Se consideran las matrices

$$A = \begin{pmatrix} k & 1 & 2 \\ 1 & 4 & 3 \\ 0 & 0 & 7 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 4 & 0 & 3 \end{pmatrix} \quad \mathbf{y} \quad C = \begin{pmatrix} 1 & 1 \\ 0 & -1 \\ 1 & 0 \end{pmatrix}$$

- a) Obténgase el valor de la constante k para que el determinante de la matriz A-2B sea nulo.
- b) Determínese si las matrices C y $(C^t \cdot C)$, donde C^t denota la matriz traspuesta de C, son invertibles. En caso afirmativo, calcúlense las inversas.

Problema 20.3.2 (2 puntos) Una voluntaria quiere preparar helado artesano y horchata de auténtica chufa para un rastrillo solidario. La elaboración de cada litro de helado lleva 1 hora de trabajo y la elaboración de un litro de horchata 2 horas. Como la horchata no necesita leche, sabe que puede preparar hasta 15 litros de helado con la leche que tiene. Para que haya suficiente para todos los asistentes, tiene que preparar al menos 10 litros entre helado y horchata, en un máximo de 20 horas.

- a) Representese la región del plano determinada por las restricciones anteriores.
- b) Si el beneficio por litro es de 25 euros para el helado y 12 euros para la horchata, obténgase la cantidad de cada producto que se deberá preparar para maximizar el beneficio y calcúlese el beneficio máximo que podría obtenerse.

Problema 20.3.3 (2 puntos) La derivada de una función real de variable real, f(x), viene dada por la expresión:

$$f'(x) = 2x^2 - 4x - 6$$

- a) Obténgase la expresión de la función f(x) sabiendo que pasa por el punto (0,3).
- b) Determínense los extremos relativos de la función f(x) indicando si corresponden a máximos o mínimos relativos y estúdiese la concavidad (\cup) y convexidad (\cap) de esta función.

Problema 20.3.4 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio tal que P(A) = 0, 6, P(B) = 0, 8 y $P(A \cap \overline{B}) = 0, 1$.

- a) Calcúlese la probabilidad de que ocurra el suceso A si no ha ocurrido el suceso B y determínese si los sucesos A y \overline{B} son independientes. \overline{B} denota el complementario del suceso B.
- b) Obténgase la probabilidad de que ocurra alguno de los dos sucesos, A o B.

Problema 20.3.5 (2 puntos) El precio mensual de las clases de Pilates en una región se puede aproximar mediante una variable aleatoria con distribución normal de media μ euros y varianza 49 euros².

- a) Seleccionada una muestra aleatoria simple de 64 centros en los que se imparte este tipo de clases, el precio medio mensual observado fue de 34 euros. Obténgase un intervalo de confianza al 99,2 % para estimar el precio medio mensual, μ , de las clases de Pilates.
- b) Determínese el tamaño muestral mínimo que debería tener una muestra aleatoria simple para que el error máximo cometido en la estimación de la media sea como mucho de 3 euros, con una confianza del $95\,\%$.

20.4. Junio 2019 - Opción B

Problema 20.4.1 (2 puntos) Se considera el sistema de ecuaciones dependiente de un parámetro real m:

$$\begin{cases}
-x + y + z = 0 \\
x + my - z = 0 \\
x - y - mz = 0
\end{cases}$$

- a) Determínense los valores del parámetro real m para que el sistema tenga soluciones diferentes a la solución trivial x = y = z = 0.
- b) Resuélvase para m=1.

Problema 20.4.2 (2 puntos) Se considera la función real de variable real:

$$f(x) = \frac{8}{x^2 + 4}$$

- a) Determínense los intervalos de crecimiento y decrecimiento de f(x) y obténganse sus asíntotas verticales y horizontales, si las tuviese.
- b) Obténgase la ecuación de la recta tangente a la gráfica en el punto de abscisa x=2.

Problema 20.4.3 (2 puntos) La función real de variable real, f(x), se define según la siguiente expresión:

$$f(x) = \begin{cases} e^x + k & \text{si} & x \le 0\\ 1 - x^2 & \text{si} & 0 < x \le 3\\ \frac{1}{x - 3} & \text{si} & x > 3 \end{cases}$$

- a) Analícese la continuidad de la función en todo su dominio según los valores de k.
- b) Considerando k = 0, obténgase el área del recinto acotado delimitado por la función f(x), el eje de abscisas y las rectas x = -1 y x = 1.

Problema 20.4.4 (2 puntos) De un estudio realizado en una región, se deduce que la probabilidad de que un niño de primaria juegue con consolas de videojuegos más tiempo del recomendado por los especialistas es 0,60. Entre estos niños, la probabilidad de fracaso escolar se eleva a 0,30 mientras que, si no juegan más tiempo del recomendado, la probabilidad de fracaso escolar es 0,15. Seleccionado un niño al azar de esta región.

- a) Obténgase la probabilidad de que tenga fracaso escolar.
- b) Si tiene fracaso escolar, determínese cuál es la probabilidad de que no juegue con estas consolas más tiempo del recomendado.

Problema 20.4.5 (2 puntos) El peso de las mochilas escolares de los niños de 5° y 6° de primaria, medido en kilogramos, puede aproximarse por una variable aleatoria con distribución normal de media μ kilogramos y desviación típica $\sigma = 1, 5$ kilogramos.

- a) En un estudio se tomó una muestra aleatoria simple de dichas mochilas escolares y se estimó el peso medio utilizando un intervalo de confianza del 95 %. La amplitud de este intervalo resultó ser 0,49 kilogramos. Obténgase el número de mochilas seleccionadas en la muestra.
- b) Supóngase que $\mu=6$ kilogramos. Seleccionada una muestra aleatoria simple de 225 mochilas escolares, calcúlese la probabilidad de que el peso medio muestral supere los 5,75 kilogramos, que es la cantidad máxima recomendada para los escolares de estos cursos.

20.5. Junio 2019 (coincidente)- Opción A

Problema 20.5.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases} x + 2y + (a+2)z = 1\\ x + y + az = 0\\ (a-1)x + 2z = a + 1 \end{cases}$$

- a) Discútase el sistema para los diferentes valores de a.
- b) Resuélvase para a=2.

Problema 20.5.2 (2 puntos) Se consideran las funciones reales de variable real

$$f(x) = \frac{x^4}{4} + 5x + 20;$$
 $g(x) = \frac{ax}{x^2 + 1} + \frac{1}{(1+x)^2}$

- a) Hállese el punto en el que la recta tangente a la gráfica de f(x) tiene pendiente -3 y determínese la ecuación de esta recta tangente.
- b) Calcúlese el valor de $a \in \mathbb{R}$, a > 0, para que el área de la región acotada del plano delimitada por la gráfica de g, las rectas x = 0 y x = 1 y el eje OX sea igual a 2 u^2 .

Problema 20.5.3 (2 puntos) Dada la función real de variable real:

$$f(x) = \frac{x^2}{x^2 - 4x + 3}$$

a) Determínense el dominio y las asíntotas de f(x).

b) Obténganse los intervalos de crecimiento y decrecimiento de la función.

Problema 20.5.4 (2 puntos) En una panadería se elabora pan de dos tipos: blanco y cereales. Uno de cada tres panes es de cereales. Un pan blanco tiene la misma probabilidad de estar elaborado con masa congelada que con masa fresca, mientras que la probabilidad de que un pan de cereales se elabore con masa fresca es de 0,6. Se elige un pan al azar. Determínese la probabilidad de que:

- a) Esté elaborado con masa fresca.
- b) Sea de cereales sabiendo que está elaborado con masa congelada.

Problema 20.5.5 (2 puntos) El tiempo que dura una sesión de rehabilitación de hombro, en minutos (min), se puede aproximar por una variable aleatoria X con distribución normal de media μ y desviación típica $\sigma = 10$ min.

- a) Determínese el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ sea menor que 5 min, con un nivel de confianza del 95 %.
- b) Supóngase que $\mu=40$ min. Calcúlese el tamaño que debe tener una muestra aleatoria simple para que $P(\overline{X} \leq 38) = 0,1587$.

20.6. Junio 2019 (coincidente)- Opción B

Problema 20.6.1 (2 puntos) Considérense las matrices A, B y C siguientes, donde $a, b, c \in \mathbb{R}$.

$$A = \begin{pmatrix} -3 & -3 \\ 2 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{y} \quad C = \begin{pmatrix} -2 & a \\ b & c \end{pmatrix}$$

a) Determínense los valores de a, b y c para que se verifique

$$C \cdot A = B \cdot C \quad \text{v} \quad |C| = 2$$

Nota: |C| es el determinante de la matriz C.

b) Calcúlese, para los valores a = b = c = 1, $C^{-1} \cdot B \cdot C$ y B^{100} .

Problema 20.6.2 (2 puntos) Para el mantenimiento de las piscinas de cierto hotel se quiere utilizar cloro de disolución lenta (CL) y cloro estabilizado (CE). El hotel quiere que la cantidad de cloro que se use en la temporada de verano, sea como mucho 500 kg y la cantidad de cloro de disolución lenta sea mayor que la cantidad de cloro estabilizado al menos en 100 kg. No podrán utilizarse más de 350 kg de cloro de disolución lenta ni menos de 100 kg de cloro estabilizado. Cada kg de cloro de disolución lenta cuesta 30 euros, mientras que cada kg de cloro estabilizado cuesta el doble.

- a) Represéntese la región del plano determinada por las restricciones anteriores.
- b) Se desea que el gasto, respetando las características anteriores, sea el mínimo posible. Determínense las cantidades de cloro de cada tipo que deben usarse para minimizar los costes. Obténgase el valor del coste mínimo.

Problema 20.6.3 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{x^3}{x^2 - a}$$

- a) Calcúlese el valor del parámetro $a \in \mathbb{R}$ para que f(x) tenga tangente horizontal en x = 3.
- b) Hállense las asíntotas de f(x) para a=4.

Problema 20.6.4 (2 puntos) Sean A y B sucesos de un experimento aleatorio tal que: $P(A|B)=\frac{1}{4},$ $P(B|A)=\frac{1}{6}$ y $P(A)=\frac{2}{3}$ Calcúlese:

- a) $P(\overline{B} \cup \overline{A})$
- b) $P(\overline{A} \cap B)$

Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 20.6.5 (2 puntos) En la zona centro de una ciudad, el alquiler mensual de los locales comerciales se puede aproximar por una variable aleatoria con distribución normal de media μ euros y desviación típica σ euros.

- a) Suponiendo $\mu=3000$ euros, determínese σ para que al elegir una muestra aleatoria simple de tamaño 49, la probabilidad de que el alquiler medio mensual de la muestra supere los 3125 euros sea 0, 20.
- b) Suponiendo una desviación típica poblacional igual a 1000 euros y el valor de μ desconocido, determínese un intervalo de confianza al 95 % para μ , basado en la información de una muestra aleatoria simple de 100 locales comerciales en la que se observó un alquiler mensual medio de 3300 euros.

20.7. Julio 2019 (extraordinaria)- Opción A

Problema 20.7.1 (2 puntos) Sean las matrices

$$A = \begin{pmatrix} a & 4 & 2 \\ 1 & a & 0 \\ 1 & 2 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 9 \\ 1 \\ 3 \end{pmatrix}$$

- a) Calcúlense los valores de a para los cuales la matriz A no tiene matriz inversa.
- b) Para a=3, calcúlese la matriz inversa de A y resuélvase la ecuación matricial AX=B.

Problema 20.7.2 (2 puntos) Se considera la función real de variable real $f(x) = 2x^3 - 8x$.

- a) Determínese en qué puntos la tangente a la curva y = f(x) es horizontal.
- b) Calcúlese el área de la región acotada del plano delimitada por la gráfica de f, el eje de abscisas y las rectas x = 0, x = 2.

Problema 20.7.3 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} \frac{x^3}{x^2 - 9} & \text{si } x < 3\\ x^2 - 4 & \text{si } x \ge 3 \end{cases}$$

a) Estúdiese la continuidad de f.

b) Determínese si f tiene asíntotas horizontales, verticales u oblicuas.

Problema 20.7.4 (2 puntos) Los escolares de un cierto colegio de Madrid fueron encuestados acerca de su alimentación y de su ejercicio físico. Una proporción de 2/5 hacían ejercicio regularmente y 2/3 siempre desayunaban. Además, entre los que siempre desayunan, una proporción de 9/25 hacían ejercicio regularmente. Se elige al azar un escolar de ese colegio

- a) ¿Es independiente que siempre desayune y que haga ejercicio regularmente?
- b) Calcúlese la probabilidad de que no siempre desayune y no haga ejercicio regularmente.

Problema 20.7.5 (2 puntos) Una máquina rellena paquetes de harina. El peso de la harina en cada paquete se puede aproximar por una distribución normal de media μ y desviación típica 25 gramos.

- a) Se analiza el peso del contenido de 15 paquetes. La media muestral de estos pesos resulta ser 560 gramos. Determínese un intervalo de confianza con un nivel del $95\,\%$ para la media poblacional.
- b) Se sabe que la media poblacional del peso de la harina de un paquete es 560 gramos. Calcúlese la probabilidad de que la media muestral no sea menor que 565 gramos para una muestra de 50 paquetes.

20.8. Julio 2019 (extraordinaria)- Opción B

Problema 20.8.1 (2 puntos) Un alcalde quiere instalar un estanque rectangular en un parque de la ciudad con las siguientes características. El estanque deberá tener al menos 2 metros de ancho y al menos 5 metros de largo. Además su largo debe ser al menos 2 veces su ancho pero no más de tres veces su ancho. Cada metro del ancho del estanque cuesta 1000 euros y cada metro de largo 500 euros. Y se cuenta con un presupuesto de 9000 euros.

- a) Determínese la región del plano delimitada por las restricciones anteriores sobre las dimensiones del estanque.
- b) Si se desea que el estanque respetando esas características tenga el mayor ancho posible, determínense el largo del estanque y su coste.

Problema 20.8.2 (2 puntos) Se considera la matriz

$$A = \left(\begin{array}{rrr} 3 & 8 & 10 \\ 2 & 1 & 2 \\ 4 & 3 & 6 \end{array}\right)$$

y la matriz B es tal que

$$(AB)^{-1} = \frac{1}{2} \left(\begin{array}{ccc} 0 & 3 & -1 \\ 0 & -1 & 1 \\ 2 & -3 & -3 \end{array} \right)$$

- a) Calcúlese A^{-1} .
- b) Calcúlese B^{-1} .

Problema 20.8.3 (2 puntos) Se considera la función real de variable real definida por $f(x) = x^3 + x^2 - 5x + 3$.

- a) Determínense los puntos de corte con los ejes de coordenadas así como los límites de la función cuando x tiende a infinito y a menos infinito.
- b) Determínense los valores de x en los que la pendiente de la recta tangente a la función es igual a 3.

Problema 20.8.4 (2 puntos) Sean A y B dos sucesos con P(A)=0,3, P(B|A)=0,4, $P(B|\overline{A})=0,6.$ Calcúlese:

- a) P(A|B).
- b) $P(\overline{A}|\overline{B})$.

Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 20.8.5 (2 puntos) Para estudiar el absentismo laboral injustificado, se desea estimar la proporción de trabajadores, P, que no acuden a su puesto de trabajo sin justificación al menos un día al año.

- a) Sabiendo que la proporción poblacional de absentismo laboral injustificado es P=0,22, determínese el tamaño mínimo necesario de una muestra de trabajadores para garantizar que, con una confianza del 99 %, el margen de error en la estimación no supera el 4 %.
- b) Tomada al azar una muestra de 1000 trabajadores, se encontró que 250 había faltado injustificadamente a su puesto de trabajo al menos una vez al año. Determínese un intervalo de confianza al 95 % para la proporción de individuos que se ausentan en el trabajo al menos una vez al año sin ninguna justificación.

20.9. Julio 2019 (extra-coincidente)- Opción A

Problema 20.9.1 (2 puntos) Se consideran las siguientes matrices

$$A = \begin{pmatrix} -1 & -1 & 1 \\ 2 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 3 & 1 \\ x & -2 & -2 \\ 2+x & 2 & -1 \end{pmatrix}$$

- a) Calcúlese $A \cdot B$ y determínense los valores de x para los cuales $A \cdot B$ es invertible.
- b) Calcúlese la inversa de $A \cdot B$ cuando x = 1.

Problema 20.9.2 (2 puntos) Sea S la región del plano definida por:

$$3x - y \ge 5$$
, $3y - x \ge 1$, $y + x \le 7$

- a) Represéntese S y calcúlense las coordenadas de sus vértices.
- b) Determínese el valor máximo de la función f(x,y) = x + 4y en S, indicando el punto en el cual se alcanza dicho valor.

Problema 20.9.3 (2 puntos) Se considera la función real de variable real

$$f(x) = \frac{x+1}{x^2 - 4}$$

- a) Determínense las asíntotas verticales y horizontales de f, si las hubiese.
- b) Calcúlese la derivada de f(x), para los valores de x en donde f es derivable y determínese la pendiente de la recta tangente a la gráfica en el punto x = 1.

Problema 20.9.4 (2 puntos) Una única carta, escogida al azar, es eliminada, sin ser vista, de una baraja española de 40 cartas, 10 cartas de cada palo (espadas, copas, oros y bastos). Una vez eliminada, se escoge al azar otra carta, entre las que quedan en el mazo, y se observa.

- a) Calcúlese la probabilidad de que la carta observada sea del palo de espadas.
- b) Si la carta observada no es del palo de espadas, calcúlese la probabilidad de que la carta eliminada tampoco lo haya sido.

Problema 20.9.5 (2 puntos) En las especificaciones de una máquina tragaperras se establece que la proporción P de veces que la máquina devuelve algo a quien la use es 1/4.

- a) Utilice la aproximación por la distribución normal para calcular la probabilidad de obtener al menos 20 devoluciones de 100 veces que se juega.
- b) Sin tomar en cuenta las especificaciones, si en 100 juegos la máquina devolvió algo al jugador sólo en 15 ocasiones, calcúlese un intervalo de confianza del 99 % para la proporción P.

20.10. Julio 2019 (extra-coincidente)- Opción B

Problema 20.10.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x+y=1\\ ax-z=3\\ 2y+z=2 \end{cases}$$

- a) Discútase la unicidad de la solución del sistema en función del valor de a.
- b) Resuélvase el sistema para a=1.

Problema 20.10.2 (2 puntos) Considérese la función de variable real

$$f(x) = \begin{cases} x^2 - x & \text{si } x < 0 \\ a + e^{-5x} & \text{si } x \ge 0 \end{cases}$$

- a) Determínese el valor de a para que la función sea continua en x = 0.
- b) Para a = 1/5, calcúlese el área de la región limitada por el eje de abscisas, las rectas x = 0 y x = 1/5, y la gráfica de f(x).

Problema 20.10.3 (2 puntos) considera la función de variable real

$$f(x) = \frac{x-3}{x^2 - 2x}$$

- a) Determínense las asíntotas verticales y horizontales, si las hubiese.
- b) Determínense sus intervalos de crecimiento y decrecimiento.

Problema 20.10.4 (2 puntos) Se lanza un dado para decidir si se va al cine o al teatro. Si sale 1 o 6 se va al teatro, en caso contrario se va al cine. Luego, se escoge una función al azar, de cine o teatro, según lo que haya indicado el dado. El $50\,\%$ de funciones de teatro son comedias mientras que sólo 112 de las 448 funciones de cine lo son.

- a) Calcúlese la probabilidad de ver una comedia.
- b) Si el resultado fue no ver comedia, calcúlese la probabilidad de que haya sido en el teatro.

Problema 20.10.5 (2 puntos) La factura, en euros, de una cena para una persona, reservando en pucherodelujo.com, se puede aproximar por una variable aleatoria normal de media $\mu=25$ y desviación típica $\sigma=5$.

- a) Calcúlese la probabilidad de que el coste medio por comensal, de 9 personas escogidas al azar que reserven en la página, no sea mayor que 30 euros.
- b) Determínese el número mínimo de comensales que debería tener una muestra aleatoria simple para que el coste medio por comensal no exceda los 30 euros con probabilidad no inferior a 0,95.

Capítulo 21

Año 2020

21.1. Modelo 2020 - Opción A

Problema 21.1.1 (2 puntos) Se consideran las matrices

$$A = \left(\begin{array}{cc} a & 1 \\ b & 2 \end{array} \right), \quad I = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right), \quad B = \left(\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right)$$

- a) Calcule los valores de a y de b para que se verifique $A^2 = 2I$.
- b) Para a = 0 y b = 2, determine la matriz X tal que XA = B X.

Problema 21.1.2 (2 puntos) Se considera la función real de variable real f(x) definida por

$$f(x) = \begin{cases} -x + a & \text{si} & x < -8\\ \sqrt[3]{x} & \text{si} & -8 \le x < 1\\ \ln x & \text{si} & x \ge 1 \end{cases}$$

donde la denota el logaritmo neperiano y $a \in \mathbb{R}$. Se pide:

- a) Proporcionar el valor del parámetro a para que la función anterior sea continua en el punto de abscisa x=-8 y analizar la continuidad de la función en el resto de los puntos de su dominio.
- b) Obtener la recta tangente a la función en el punto x=e y estudiar el crecimiento/decrecimiento de esta recta. Justifique su respuesta.

Problema 21.1.3 (2 puntos) Dada la curva

$$f(x) = x^2 + 4x - 5$$

- a) Halle el punto en el que la recta tangente a la curva es paralela a la recta y-6x+1=0, indicando su abscisa y ordenada.
- b) Calcule el área del recinto acotado del plano limitado por la gráficas de f(x) y $g(x) = -x^2 + 4x + 3$.

Problema 21.1.4 ($2\ puntos$) En una tienda en periodo de rebajas, el 80% de las ventas son de ropa y el 20% restante son complementos de moda. De las ventas que se realizan en la campaña, el 20% de las ventas de ropa son devueltas, mientras que sólo se devuelven el 10% de los complementos. Si una de las ventas es elegida al azar, calcule la probabilidad de que la venta:

- a) Sea una prenda de ropa y sea devuelta.
- b) Sea devuelta.

Problema 21.1.5 (2 puntos) La cantidad de principio activo en las pastillas de una determinada marca de detergente puede aproximarse por una variable aleatoria con distribución normal de media μ mg y varianza 0.09 mg².

- a) Si una muestra aleatoria simple de 400 pastillas proporcionó una cantidad media de principio activo de 13 mg, halle un intervalo de confianza al 99 % para la media poblacional.
- b) Determine el tamaño muestral mínimo para que el error máximo cometido en la estimación de μ por la media muestral sea menor de 0,05 mg con un nivel de confianza del 98 %.

21.2. Modelo 2020 - Opción B

Problema 21.2.1 (2 puntos) Dadas las matrices

$$A = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 2 & 1 \end{array} \right), \quad B = \left(\begin{array}{ccc} 1 & 0 & m \\ 0 & 1 & 1 \\ m - 1 & 0 & 1 \end{array} \right), \quad C = \left(\begin{array}{ccc} 3 & 1 \\ 0 & 2 \\ 4 & 3 \end{array} \right)$$

- a) Proporcione el valor de m para que $A \cdot B = C^t$
- b) Para m = 0 calcule B^{-1} .

Problema 21.2.2 (2 puntos) Dado el sistema de ecuaciones

$$\begin{cases} x + ay + z = 6 \\ 2x - y + z = a - 1 \\ -x + y + z = 2 \end{cases}$$

- a) Discuta el sistema para los distintos valores de $a \in \mathbb{R}$.
- b) Resuelva el sistema de ecuaciones para a = 2.

Problema 21.2.3 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = \sqrt{2x}e^{-x^2}$$

- a) Determine los intervalos de crecimiento y decrecimiento de la función y calcule $\lim_{x \to -\infty} f(x)$.
- b) Halle el área del recinto acotado del plano delimitado por la gráfica de la función, el eje de abscisas y las rectas x = -1 y x = 1.

Problema 21.2.4 (2 puntos) Se lanza un dado para decidir el número de veces que se lanza una moneda.

- a) Obtenga la probabilidad de no observar ninguna cruz.
- b) Dado que no se observó ninguna cruz, ¿cuál es la probabilidad de haber lanzado la moneda 2 veces?

Problema 21.2.5 (2 puntos) En verano, en Madrid, se instalan puestos callejeros de venta de melones y sandías. Se sabe que el peso de las sandías puede aproximarse por una variable con distribución normal de media μ y desviación típica $\sigma=450 \mathrm{g}$.

- a) Si se toma una muestra de 25 sandías y se obtiene una media muestal de $\overline{X}=2700 \mathrm{g}$, calcule un intervalo de confianza al 95 % para la media poblacional.
- b) Si el peso medio de las sandías es $\mu=3000 \, \mathrm{g}$, calcule la probabilidad de que el peso medio de una muestra de cuatro sandías escogidas al azar esté entre 3000 g y 3450 g.

21.3. Julio 2020 - Opción A

Problema 21.3.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro real a:

$$\begin{cases} x + ay = 0 \\ x + 2z = 0 \\ x + ay + (a+1)z = a \end{cases}$$

Se pide:

- a) Discuta el sistema en función de los valores del parámetro a.
- b) Resuelva el sistema para a = 0.

Problema 21.3.2 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{4x - x^3}{3x + x^2} + 4$$

- a) Calcule el dominio de la función y obtenga el valor que hay que asignar a f(x) en x = 0 para que la función anterior sea continua en este punto.
- b) Obtenga las asíntotas de esta función en caso de que existan.

Problema 21.3.3 (2 puntos) Se considera la función real de variable real

$$f(x) = -x^4 + x^3 + 2x^2$$

- a) Determine la ecuación de la recta tangente a f(x) en el punto de abscisa x = -1.
- b) Obtenga el área del recinto acotado delimitado por la función f(x) y el eje de abscisas para valores de x > 0.

Problema 21.3.4 (2 puntos) Una asociación de senderismo ha programado tres excursiones para el mismo fin de semana. El 40% de los socios irá al nacimiento del río Cuervo, el 35% a las Hoces del río Duratón y el resto al Cañón del río Lobos. La probabilidad de lluvia en cada una de estas zonas se estima en 0.5, 0.6 y 0.45, respectivamente. Elegido un socio al azar:

a) Calcule la probabilidad de que en su excursión no llueva.

b) Si en la excursión realizada por este socio ha llovido, ¿cuál es la probabilidad de que este socio haya ido al nacimiento del río Cuervo?

Problema 21.3.5 (2 puntos) La publicidad de una marca de bolígrafos afirma que escriben 2 km. Para realizar un control de calidad, se considera que la longitud de escritura de estos bolígrafos puede aproximarse por una variable aleatoria con distribución normal de media μ km y desviación típica 0,5 km.

- a) Obtenga el número mínimo de bolígrafos que deberían seleccionarse en una muestra aleatoria simple para que el error máximo cometido en la estimación de μ por la media muestral, sea como mucho 0,05 km con un nivel de confianza del 95,44 %.
- b) Si la longitud media de escritura, μ , es la anunciada en la publicidad, calcule la probabilidad de que, con una muestra de 16 bolígrafos elegidos al azar, se puedan escribir más de 30 km.

21.4. Julio 2020 - Opción B

Problema 21.4.1 (2 puntos) Se considera la matriz A dada por $A = \begin{pmatrix} 3 & 1 & 2 \\ 0 & m & 0 \\ 1 & -1 & 2 \end{pmatrix}$

- a) Calcule el valor del parámetro real m para que $A^2 5A = -4I$, siendo I la matriz identidad.
- b) Para m=1, indique si la matriz A es invertible y, en caso afirmativo, calcule su inversa.

Problema 21.4.2 (2 puntos) La región del plano S está definida por las siguientes expresiones:

$$x \ge 3$$
, $0 \le y \le 15$, $y - 5 + \frac{x}{2} \ge 0$, $y - x \le 10$, $y + 20 \ge 2x$

- a) Determine las coordenadas de sus vértices y represente en el plano la región S.
- b) Obtenga el valor máximo y el valor mínimo de la función f(x,y) = x + y en esta región, indicando los puntos en los cuales se alcanzan estos valores.

Problema 21.4.3 (2 puntos) Se considera la función real de variable real dada por la siguiente expresión:

$$f(x) = 3(x+k)e^{-\frac{x}{2}}$$

- a) Indique el dominio de la función y obtenga razonadamente el valor del parámetro real k para que la tangente a la función en el punto de abscisa x=1 sea horizontal. Determine también la ecuación de la recta tangente a la función en dicho punto.
- b) Para k = 1, señale los intervalos de crecimiento y decrecimiento de f(x).

Problema 21.4.4 (2 puntos) Un estudio sobre la obsolescencia programada en una marca de electrodomésticos reveló que la probabilidad de que un microondas se estropee durante el período de garantía es 0,02. Esta probabilidad se eleva a 0,05 para sus hornos eléctricos y se sabe que estos sucesos son independientes. Cuando el microondas se ha estropeado en el período de garantía, la marca amplía esta por dos años más. El 40 % de los clientes con garantía ampliada no conserva la factura de compra durante los dos años de ampliación.

- a) Un cliente compra un horno y un microondas de esta marca. Obtenga la probabilidad de que se estropee al menos uno de ellos durante el período de garantía.
- b) Un cliente ha comprado un microondas. Calcule la probabilidad de que se le estropee durante el período de garantía y conserve la factura durante los dos años de ampliación.

Problema 21.4.5 (2 puntos) Determinado modelo de lavadora tiene un programa de lavado con un consumo de agua que puede aproximarse por una variable aleatoria con distribución normal cuya desviación típica es de 7 litros.

a) En una muestra aleatoria simple de 10 lavadoras los consumos de agua en un lavado con este programa fueron los siguientes:

Construya el intervalo de confianza al $90\,\%$ para estimar el consumo medio de agua de este modelo de lavadoras con dicho programa de lavado.

b) A partir de una muestra de 64 lavadoras elegidas al azar, se obtuvo un intervalo de confianza para la media con una longitud de 5 litros. Obtenga el nivel de confianza utilizado para construir el intervalo.

21.5. Julio 2020 (coincidente)- Opción A

Problema 21.5.1 (2 puntos) Considere la matriz

$$A = \left(\begin{array}{ccc} 1 & 2 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

- a) Calcule A^2 y A^{10} .
- b) Calcule $(AA 3I)^{-1}$, donde I es la matriz identidad de orden 3.

Problema 21.5.2 (2 puntos) Considere la región del plano S definida por

$$x - y > 0$$
, $y + 2x < 8$, $0 < y < 2$

- a) Represente la región S y calcule las coordenadas de sus vértices.
- b) Obtenga el valor máximo y el valor mínimo de la función f(x,y) = 4x y en la región S, indicando los puntos en los cuales se alcanzan dichos valores.

Problema 21.5.3 (2 puntos) Considere la función real de variable real

$$f(x) = 2x^3 + ax^2 - 1$$

- a) Determine el valor de del parámetro real a para que el punto de abscisa x = -1 de la función f(x) sea un máximo relativo.
- b) Calcule los intervalos de crecimiento y decrecimiento de la función f(x) para a=1.

Problema 21.5.4 (2 puntos) En un festival de circo de verano el 70 % de los espectáculos son gratuitos y el resto de pago. El 60 % de los espectáculos gratuitos se realizan en las calles, mientras que de los de pago sólo se realizan en la calle el 20 %. Si un visitante del festival, elegido al azar, decide ir a un espectáculo, calcule la probabilidad de que:

- a) El espectáculo sea gratuito y no se realice en la calle.
- b) El espectáculo se realice en la calle.

Problema 21.5.5 (2 puntos) El salario medio bruto mensual en España en 2019 se puede aproximar por una distribución normal con $\sigma = 900$ euros.

- a) Determine el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ por la media muestral, \overline{X} , sea a lo sumo de 200 euros, con un nivel de confianza del 95 %.
- b) Suponga que $\mu = 1889$ euros. Calcule la probabilidad de que al tomar una muestra aleatoria simple de 64 individuos, la media muestral, \overline{X} , sea mayor que 1900 euros.

21.6. Julio 2020 (coincidente)- Opción B

Problema 21.6.1 (2 puntos) Considere el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases} 3x + 2y + z = 2a \\ 2x + ay + 2z = 3 \\ -x - y - z = 2 \end{cases}$$

- a) Discuta el sistema para los diferentes valores de a
- b) Resuelva el sistema para a = 0.

Problema 21.6.2 (2 puntos) Dada la función real de variable real:

$$f(x) = ax^3 - x^2 - x + a$$

- a) Determine el valor del parámetro real a para que haya un punto de inflexión en x = 1.
- b) Para a=2, calcule el área del recinto acotado por la gráfica de f(x), el eje de abscisas y las rectas x=0 y x=1.

Problema 21.6.3 (2 puntos) Considere la función real de variable real definida por:

$$f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1} & \text{si } x > 1 \\ -x^2 & \text{si } x \le 1 \end{cases}$$

- a) Calcule $\lim_{x \to 1} f(x)$. ¿Es la función f(x) continua en todo su dominio?.
- b) Calcule las asíntotas de f(x).

Problema 21.6.4 (2 puntos) En un kiosco de prensa del aeropuerto de Madrid el $40\,\%$ de las ventas son periódicos y el resto revistas. Un $90\,\%$ de las publicaciones están en castellano. Además se sabe que un $8\,\%$ del total de las publicaciones son revistas en otro idioma. Calcule la probabilidad de que una publicación elegida al azar:

b) Sea un periódico o esté publicado en otro idioma distinto del castellano.

Problema 21.6.5 (2 puntos) Se estima que el coste medio anual de la cesta de la compra de una familia tipo se puede aproximar por una distribución normal de media μ y desviación típica $\sigma = 500$.

- a) Se ha analizado el consumo de 100 familias tipo, obteniéndose un coste medio estimado de 5100 euros anuales. Calcule un intervalo de confianza al 90 % para la media μ .
- b) A partir de una muestra de 36 familias tipo, se ha obtenido un intervalo de confianza para μ con un error de estimación de 160 euros. Determine el nivel de confianza utilizado para construir el intervalo.

21.7. Septiembre 2020 - Opción A

Problema 21.7.1 (2 puntos) Dada la matriz $A = \begin{pmatrix} 2 & 5a \\ a & 3 \end{pmatrix}$ con $a \in \mathbb{R}$.

- a) Determine los valores del parámetro a para los que se verifica la igualdad $A^2 5A = -I$, donde I es la matriz identidad.
- b) Calcule A^{-1} para a = -1.

Problema 21.7.2 (2 puntos) Un vivero elabora dos tipos de sustratos. Para elaborar 1 m³ del tipo A necesita 60 kg de tierra vegetal y 30 horas de trabajo. Para elaborar 1 m³ del tipo B necesita 50 kg de tierra vegetal y 50 horas de trabajo. El vivero dispone como máximo de 21000 kg de tierra vegetal y 15000 horas de trabajo. Además, la cantidad de metros cúbicos que elabora de tipo A debe ser como mucho cinco veces la cantidad de tipo B. Por la venta de cada metro cúbico de tipo A obtiene un beneficio de $50 \in y$ 60 \in por cada metro cúbico de tipo B.

- a) Represente la región del plano determinada por las restricciones anteriores y determine las coordenadas de sus vértices.
- b) Determine cuántos metros cúbicos de cada tipo deben elaborarse para, respetando las restricciones anteriores, maximizar el beneficio. Obtenga el valor del beneficio máximo.

Problema 21.7.3 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} \frac{6x}{2x^2 + 1} & \text{si } x < 1\\ 2m + \ln x & \text{si } x \ge 1 \end{cases}$$

- a) Estudie los valores del parámetro $m \in \mathbb{R}$ para que f(x) sea continua en x=1 y calcule la derivada de la función para x<1.
- b) Halle el área de la región del plano limitada por la curva y = f(x), las rectas x = -1 y x = 0 y el eje OX:

Problema 21.7.4 (2 puntos) Sean A y B sucesos de un experimento aleatorio tal que: $P(A|B) = \frac{1}{4}$, $P(B) = \frac{1}{6}$ y $P(A) = \frac{2}{3}$. Calcule:

a)
$$P(A \cup \overline{B})$$
.

b)
$$P((\overline{A} \cap B) \cup (\overline{B} \cap A))$$
.

Nota: \overline{S} denota el suceso complementario del suceso S.

Problema 21.7.5 (2 puntos) El peso de una patata, en gramos (g), de una remesa que llega a un mercado se puede aproximar por una variable aleatoria X con distribución normal de media μ y desviación típica $\sigma=60$ g.

- a) Determine el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ sea menor que 20 g, con un nivel de confianza del 95 %.
- b) Suponiendo que se selecciona una muestra aleatoria simple de tamaño n=100, calcule el valor de la media μ para que $P(\overline{X} \le 220) = 0,9940$.

21.8. Septiembre 2020 - Opción B

Problema 21.8.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro $a \in \overline{R}$:

$$\begin{cases} x - ay = 1\\ ax - 4y - z = 2\\ 2x + ay - z = a - 4 \end{cases}$$

- a) Discuta el sistema para los diferentes valores de a
- b) Resuelva el sistema para a = 3.

Problema 21.8.2 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{ax^2 - 3}{x^2 - 5}$$

- a) Calcule el valor del parámetro $a \in \overline{R}$ para que f(x) tenga una asíntota horizontal en y = -1.
- b) Para a=1, halle los intervalos de crecimiento y decrecimiento de f(x) y los extremos relativos, si existen.

Problema 21.8.3 (2 puntos) Dada la función real de variable real

$$f(x) = e^{2x} + x$$

- a) Determine la ecuación de la recta tangente a f(x) en x = 0.
- b) Calcule

$$\int_0^1 f(x) \, dx$$

Problema 21.8.4 (2 puntos) En un instituto se decide que los alumnos y alumnas solo pueden utilizar un único color (azul o negro) al realizar los exámenes. Dos de cada tres exámenes están escritos en azul. La probabilidad de que un examen escrito en azul sea de una alumna es de 0,7. La probabilidad de que un examen esté escrito en negro y sea de un alumno es 0,2. Se elige un examen al azar. Determine la probabilidad de que

- a) Sea el examen de un alumno.
- b) Sabiendo que está escrito en negro, sea de un alumno.

Problema 21.8.5 (2 puntos) Una persona se ha propuesto salir a caminar todos los días realizando el mismo recorrido y cronometrando el tiempo que tarda en completarlo. El tiempo que está caminando por este recorrido puede aproximarse por una variable aleatoria con distribución normal cuya desviación típica es 10 minutos.

- a) Utilizando la información de una muestra aleatoria simple, se ha obtenido el intervalo de confianza (26,9;37,1), expresado en minutos, para estimar el tiempo medio que tarda en realizar el recorrido, μ , con un nivel de confianza del 98,92%. Obtenga el tamaño de la muestra elegida y el valor de la media muestral.
- b) Si el tiempo medio para completar el recorrido es $\mu=30$ minutos, calcule la probabilidad de que, en una muestra de 16 días elegidos al azar, esta persona tarde entre 25 y 35 minutos de media para completar el recorrido.

Capítulo 22

Año 2021

22.1. Modelo 2021 - Opción A

Problema 22.1.1 (2 puntos) Se consideran las matrices A y B dadas por

$$A = \left(\begin{array}{ccc} 1 & 0 & 0 \\ a & 1 & 0 \\ b & c & 1 \end{array}\right), \quad B = \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{array}\right)$$

- a) Determine los valores de los parámetros reales a, b y c para que se verifique $A^2 = A B$.
- b) Para a=b=c=2, estudie si la matriz A es invertible y, en caso afirmativo, calcule su inversa.

Problema 22.1.2 (2 puntos) Se considera la función real de variable real f(x) definida por

$$f(x) = ax^2 + bx + c$$

- a) Obtenga los coeficientes reales a, b y c, de f(x) sabiendo que la función tiene un extremo relativo en el punto de abscisa x = -3 y que la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x = 0 es y = 6x + 8.
- b) Para a = 2, b = 1 y c = 1, calcule la integral $\int_1^e \frac{f(x)}{x} dx$.

Problema 22.1.3 (2 puntos) Dada la función $f(x) = x + \frac{4}{x^2}$

- a) Halle el dominio de la función y sus asíntotas.
- b) Determine los intervalos de crecimiento y decrecimiento de la función y, si los hubiera, sus extremos relativos.

Problema 22.1.4 (2 puntos) En un mercado agropecuario el 70 % de las verduras que se comercializan son de proximidad y el resto no. El 30 % de las verduras de proximidad son ecológicas, mientras que de las que no son de proximidad, solo son ecológicas el 10 %. Si un cliente elegido al azar ha realizado una compra de una verdura, calcule las siguientes probabilidades:

a) Probabilidad de que la verdura comprada no sea ecológica.

b) Probabilidad de que la verdura sea de proximidad o ecológica.

Problema 22.1.5 (2 puntos) El número de kilómetros que un corredor entrena a la semana mientras prepara una carrera popular se puede aproximar por una variable aleatoria de distribución normal de media μ horas y desviación típica $\sigma=10$ horas

- a) Se toma una muestra aleatoria simple de 20 atletas, obteniéndose una media muestral de 30 kilómetros. Determine un intervalo de confianza al 95 % para μ .
- b) Suponga que $\mu = 28$ kilómetros. Calcule la probabilidad de que al tomar una muestra aleatoria simple de 10 atletas, la media muestral, \overline{X} , esté entre 28 y 30 kilómetros.

22.2. Modelo 2021 - Opción B

Problema 22.2.1 (2 puntos) Un agricultor dispone de 5 hectáreas, como máximo, de terreno para dedicar a la plantación de trigo y cebada. Cada hectárea dedicada al trigo le supone un beneficio de 200 euros, mientras que cada hectárea dedicada a la cebada le supone un beneficio de 60 euros. Entre ambos cultivos es obligatorio plantar como mínimo una hectárea, y la normativa autonómica le obliga a que el cultivo de trigo ocupe como mucho una hectárea más que el de cebada. Represente la región factible, determine las hectáreas que debería dedicar a cada cultivo para maximizar sus beneficios y obtenga el valor del beneficio máximo.

Problema 22.2.2 (2 puntos) Se considera el siguiente sistema de ecuaciones lineales dependiente del parámetro real a:

$$\begin{cases} x+y+z = 2a-1\\ 2x+y+az = 1\\ x+ay+z = 1 \end{cases}$$

- a) Discuta el sistema en función de los valores del parámetro a.
- b) Resuelva el sistema de ecuaciones para a = 0.

Problema 22.2.3 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \begin{cases} x^2 + ax - \frac{1}{9} & \text{si} \quad x \le 0 \\ \frac{x+1}{x^2 - 9} & \text{si} \quad x > 0 \end{cases}$$

- a) Determine el dominio de f(x) y calcule el valor del parámetro $a \in \mathbb{R}$ para que f(x) sea derivable en todo su dominio.
- b) Para a=0 determine, si existen, las asíntotas de f(x).

Problema 22.2.4 (2 puntos) Sean C y D dos sucesos de un experimento aleatorio tal que P(C) = 0, 4, P(D) = 0, 6 y $P(C \cup D) = 0, 8$. Calcule:

- a) P(C|D).
- b) $P(\overline{C \cap D}|C)$.

Problema 22.2.5 (2 puntos) Las calorías consumidas por un atleta durante una carrera popular se pueden aproximar por una variable aleatoria con distribución normal de media μ calorías y desviación típica $\sigma=300$ calorías.

- a) Determine el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ sea menor de 100 calorías con un nivel de confianza del 95 %.
- b) Suponga que $\mu=3000$ calorías. Calcule la probabilidad de que al tomar una muestra aleatoria simple de tamaño n=50 atletas, la media de las calorías consumidas durante la carrera por los 50 atletas sea mayor que 2700 calorías.

22.3. Junio 2021 - Opción A

Problema 22.3.1 (2 puntos) Se considera la matriz A

$$A = \left(\begin{array}{ccc} a & 0 & 1\\ 0 & b & 0\\ 1 & 0 & a \end{array}\right)$$

a) Determine los valores de los parámetros reales a y b para los que $A=A^{-1}$.

b) Para a = b = 2, calcule la matriz inversa de A.

Problema 22.3.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \frac{x^3 + 4}{x^2 - 1}$$

a) Determine el dominio de f(x) y calcule sus asíntotas.

b) Calcule la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x=0.

Problema 22.3.3 (2 puntos) Se considera la función real de variable real definida por:

$$f(x) = \begin{cases} x^2 - ax & \text{si } x \le 1 \\ \ln x & \text{si } x > 1 \end{cases}$$

denotando por la la función logaritmo neperiano.

a) Determine para qué valores de $a \in \mathbb{R}$ la función f(x) es continua en \mathbb{R} .

b) Para a=1, halle el área de la región acotada delimitada por la función f(x), el eje de abscisas y las rectas $x=-1,\,x=0$.

Problema 22.3.4 (2 puntos) El 60 % de los empleados de una multinacional teletrabaja desde que se declaró la situación de emergencia sanitaria por Covid-19. De estos, el 30 % padece trastornos del sueño, mientras que este porcentaje se eleva al 80 % para aquellos empleados que no teletrabajan. Seleccionado un empleado al azar, calcule la probabilidad de que:

a) No tenga trastornos del sueño y teletrabaje.

b) No teletrabaje, sabiendo que no tiene trastornos del sueño.

Problema 22.3.5 (2 puntos) Se quiere evaluar el uso de las redes sociales por parte de los menores de 14 años.

- a) Se toma una muestra de 500 menores de 14 años, de los cuales 320 tienen cuenta en alguna red social. Calcule el intervalo de confianza al 96 % para estimar la proporción de menores de 14 años que tienen cuenta en alguna red social.
- b) Suponiendo que la proporción poblacional es P=0,5, determine el tamaño mínimo necesario de una muestra de menores de 14 años para garantizar que, con una confianza del 95 %, el margen de error en la estimación no supere el 5 %.

22.4. Junio 2021 - Opción B

Problema 22.4.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro real a:

$$\begin{cases} x+y-z = -1\\ x-y+a^2z = 3\\ 2x-y+z = 4 \end{cases}$$

- a) Discuta el sistema en función de los valores del parámetro a.
- b) Resuelva el sistema para a = 1.

Problema 22.4.2 (2 puntos) Un almacén de frutos secos tiene un saco de 50 kg de almendras y otro de 25 kg de avellanas. Quiere mezclarlos para preparar bolsas mixtas para su venta. La cantidad de almendras de la mezcla ha de ser como mínimo 1,5 veces la cantidad de avellanas. Además, para que le sea rentable la preparación, deberá vender al menos 60 kg entre ambos tipos de frutos secos. Por otra parte, no puede vender más de 70 kg entre ambos. Represente la región factible. Calcule la cantidad de cada fruto seco que ha de contener la mezcla para obtener el máximo beneficio si un kg de almendras le deja un beneficio de $1 \in y$ un kg de avellanas de $2 \in y$, y obtenga el beneficio que se obtiene con la venta de esta mezcla.

Problema 22.4.3 (2 puntos) Se considera la función real de variable real, definida $f(x) = (x^2 - 3)e^x$

- a) Obtenga los intervalos de crecimiento y decrecimiento de f(x) y determine sus extremos relativos indicando si corresponden a máximos o mínimos.
- b) Calcule

$$\int_{1}^{2} e^{-x} f(x) dx$$

Problema 22.4.4 (2 puntos) Se consideran los sucesos A y B de un experimento aleatorio tales que:

$$P(A) = 0.5$$
 $P(\overline{B}|A) = 0.4$ $P(A \cup B) = 0.9$

- a) Calcule $P(B|\overline{A})$.
- b) Determine si son dependientes o independientes los sucesos A y B. Justifique la respuesta.

Problema 22.4.5 (2 puntos) El consumo diario de pan de un estudiante de secundaria sigue una distribución normal de media μ y desviación típica 20 gramos.

- a) Se toma una muestra aleatoria simple de tamaño 36. Calcule la probabilidad de que la media muestral \overline{X} no supere los 125 gramos si $\mu = 120$ gramos.
- b) Sabiendo que para una muestra aleatoria simple de 81 estudiantes de secundaria se ha obtenido el intervalo de confianza (117, 3444; 124, 6556) para μ , determine el nivel de confianza con el que se obtuvo dicho intervalo.

22.5. Junio 2021 (coincidente) - Opción A

Problema 22.5.1 (2 puntos) Se consideran las matrices:

$$A = \left(\begin{array}{ccc} a & 2 & 6 \\ 2 & a & 4 \\ 2 & a & 6 \end{array}\right); \quad B = \left(\begin{array}{c} 3 \\ 4 \\ 2 \end{array}\right)$$

- a) Determine los valores del parámetro real a para los que la matriz A no es invertible.
- b) Para a = 1, calcule la matriz inversa A^{-1} y obtenga la matriz X tal que AX = B.

Problema 22.5.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \frac{x^3}{(1-x)^2}$$

- a) Calcule las asíntotas de f(x).
- b) Determine los intervalos de crecimiento y de decrecimiento de f(x).

Problema 22.5.3 (2 puntos) Sea $f(x) = x^2 + ax$ donde a es un parámetro real.

- a) Determine el valor de a para que la función f(x) tenga una primitiva F(x) que verifique F(0) = 3 y F(2) = 9.
- b) Para a = -2, calcule el área de la región acotada del plano delimitada por la gráfica de f(x), el eje de abscisas y las rectas x = 0, x = 3.

Problema 22.5.4 (2 puntos) Una urna contiene 9 bolas blancas y 3 negras. Se seleccionan al azar consecutivamente y sin reemplazamiento dos bolas. Calcule la probabilidad de que

- a) La segunda bola seleccionada sea negra.
- b) Ambas bolas seleccionadas sean negras, dado que la segunda bola seleccionada es negra.

Problema 22.5.5 (2 puntos) Una máquina de empaquetar mantequilla la corta en barras. El peso de una barra de mantequilla se puede aproximar por una distribución normal de media μ y desviación típica 4 gramos.

- a) Se analiza el peso de 15 barras. La media muestral resulta ser 254 gramos. Determine un intervalo de confianza con un nivel del $95\,\%$ para la media poblacional.
- b) Para una muestra de 25 barras, se sabe que la media poblacional del peso de una barra de mantequilla es 250 gramos. Calcule la probabilidad de que la media muestral no sea menor que 248 gramos.

22.6. Junio 2021 (coincidente) - Opción B

Problema 22.6.1 (2 puntos) Se pide

a) Represente la región S del plano delimitada por las inecuaciones

$$-2x + y \le 1$$
, $0 \le y \le 2$, $x + y \le 3$ $x \ge 0$

y calcule las coordenadas de sus vértices.

b) Determine el máximo y el mínimo de la función f(x,y) = x + y sobre la región S.

Problema 22.6.2 (2 puntos) Se desea rellenar una piñata para un cumpleaños con juguetes de 1, 2 y 5 euros. Por cada cinco juguetes de 5 euros debe haber un juguete de 2 euros, por cada dos juguetes de 2 euros debe haber tres de 1 euro. Si para rellenar la piñata se compran juguetes por valor de 228 euros, ¿cuántos juguetes de 1, 2 y 5 euros habría que comprar para introducir en la piñata?

Problema 22.6.3 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = ax^2 + \frac{b}{x} + 2x$$

donde a y b son parámetros reales.

- a) Calcule a, b para que la recta tangente a la gráfica de f(x) en el punto (1,2) sea paralela a la recta y = -4x.
- b) Determine todos los valores de a y b para que f(x) tenga un punto de inflexión en el punto (1,2).

Problema 22.6.4 (2 puntos) Sean A y B dos sucesos con $P(A) = \frac{2}{5}$, $P(B) = \frac{1}{2}$, $P(A|\overline{B}) = \frac{4}{5}$.

- a) Calcule $P(A \cap \overline{B})$.
- b) ¿Son A y B incompatibles? Justifique la respuesta.

Nota: \overline{S} denota al suceso complementario del suceso S.

Problema 22.6.5 (2 puntos) Para que una determinada marca de chocolate estudie entre sus clientes la demanda de sus cajas de bombones, se desea estimar la proporción de cajas grandes en relación al número de cajas de bombones vendidas, P.

- a) Sabiendo que la proporción poblacional de la demanda es P=0,2, determine el tamaño mínimo necesario de una muestra de ventas de cajas de bombones para garantizar que, con una confianza del 99 %, el margen de error en la estimación no supera el 8 %.
- b) Tomada al azar una muestra de 200 cajas de bombones vendidas, se encontró que 25 habían sido cajas grandes. Determine un intervalo de confianza al $95\,\%$ para la proporción de cajas grandes en relación a la venta total de cajas de bombones.

22.7. Julio 2021 - Opción A

Problema 22.7.1 (2 puntos) Se consideran las matrices:

$$A = \begin{pmatrix} a & 1 & 1 \\ -1 & 2 & 0 \\ 0 & -a & -1 \end{pmatrix}; \quad B = \begin{pmatrix} -2 \\ 1 \\ -1 \end{pmatrix}$$

- a) Calcule los valores del parámetro real a para los cuales la matriz A tiene inversa.
- b) Para a = 2, calcule, si existe, la matriz X que satisface AX = B.

Problema 22.7.2 (2 puntos) Una empresa tecnológica se plantea la producción y lanzamiento de dos nuevos cables de fibra óptica, el modelo A2020 y el modelo B2020. El coste de producir un metro del modelo A2020 es igual a 2 euros, mientras que el coste de producir un metro del modelo B2020 es igual a 0,5 euros . Para realizar el lanzamiento comercial se necesitan al menos 6000 metros de cable, aunque del modelo B2020 no podrán fabricarse más de 5000 metros y debido al coste de producción no es posible fabricar más de 8000 metros entre los dos modelos. Además se desea fabricar una cantidad de metros del modelo B2020 mayor o igual a la de metros del modelo A2020.

- a) Represente la región factible y calcule las coordenadas de sus vértices.
- b) Determine el número de metros que deben producirse de cada uno de los modelos para minimizar el coste.

Problema 22.7.3 (2 puntos) Dada la función real de variable real definida por:

$$f(x) = \begin{cases} x^2 - x - 1 & \text{si } x \le 3\\ \frac{3a}{x} & \text{si } x > 3 \end{cases}$$

- a) Determine el valor del parámetro real a para que la función f(x) sea continua en todo su dominio. ¿Para ese valor de a es f(x) derivable?
- b) Para a=1, calcule la ecuación de la recta tangente a la gráfica de la función en el punto de abscisa x=1.

Problema 22.7.4 (2 puntos) Sean A y B dos sucesos de un experimento aleatorio, tales que P(A)=0,5, $P(\overline{B})=0,8$, $P(\overline{A}\cup\overline{B})=0,9$.

- a) Estudie si los sucesos A y B son independientes.
- b) Calcule $P(\overline{A}|\overline{B})$.

Problema 22.7.5 (2 puntos) El peso de los huevos producidos en una granja avícola se puede aproximar por una variable aleatoria de distribución normal de media μ y desviación típica $\sigma=8$ gramos.

- a) Se toma una muestra aleatoria simple de 20 huevos, obteniéndose una media muestral de 60 gramos. Determine un intervalo de confianza al 95 % para μ .
- b) Suponga que $\mu = 59$ gramos. Calcule la probabilidad de que al tomar una muestra aleatoria simple de 10 huevos, la media muestral, \overline{X} , esté comprendida entre 57 y 61 gramos.

22.8. Julio 2021 - Opción B

Problema 22.8.1 Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x + 2ay + z = 0 \\ -x - ay = 1 \\ -y - z = -a \end{cases}$$

- a) Discuta el sistema en función de los valores del parámetro real a.
- b) Resuelva el sistema para a = 3.

Problema 22.8.2 (2 puntos) Se considera la función real de variable real

$$f(x) = \frac{x^3 - 2x^2}{(x-1)^2}$$

- a) Calcule el dominio y las asíntotas de f(x).
- b) Determine sus intervalos de crecimiento y decrecimiento.

Problema 22.8.3 (2 puntos) Se sabe que la derivada de una función real f(x) es:

$$f'(x) = 3x^2 + 8x$$

donde a y b son parámetros reales.

- a) Determine la expresión de f(x) sabiendo que f(1) = 11.
- b) Determine los máximos y mínimos locales de f(x), si los hubiera.

Problema 22.8.4 (2 puntos) Un colegio tiene alumnos matriculados que residen en dos municipios distintos, A y B, siendo el número de alumnos matriculados residentes en el municipio A el doble de los del municipio B. Se sabe que la probabilidad de fracaso escolar si se habita en el municipio A es de 0,02, mientras que esa probabilidad si se habita en el municipio B es de 0,06. Calcule la probabilidad de que un alumno de dicho colegio elegido al azar:

- a) No sufra fracaso escolar.
- b) Sea del municipio A si se sabe que ha sufrido fracaso escolar.

Problema 22.8.5 (2 puntos) El tiempo necesario para cumplimentar un test psicotécnico se puede aproximar por una variable aleatoria con distribución normal de media μ minutos y desviación típica $\sigma = 3$ minutos.

- a) Determine el tamaño mínimo que debe tener una muestra aleatoria simple para que el error máximo cometido en la estimación de μ sea menor de 1 minuto con un nivel de confianza del 95 %.
- b) Suponga que $\mu=32$ minutos. Calcule la probabilidad de que al tomar una muestra aleatoria simple de tamaño n=16 pruebas, el tiempo medio empleado en su realización, \overline{X} , sea menor que 30,5 minutos.

Capítulo 23

Año 2022

23.1. Modelo 2022 - Opción A

Problema 23.1.1 (2 puntos) Se considera la matriz $A = \begin{pmatrix} 2 & 1 & 1 \\ 1 & a & 2 \\ 0 & 1 & 1 \end{pmatrix}$

- a) Determine los valores del parámetro real a para los cuales la matriz A es invertible.
- b) Calcule, para a=0, la matriz inversa A^{-1} .

Problema 23.1.2 (2 puntos) Sea S la región del plano definida por:

$$x + y \ge 3$$
, $2x + y \le 8$, $x + 2y \le 10$, $x \ge 0$, $y \ge 0$

- a) Represente gráficamente la región S y calcule las coordenadas de sus vértices.
- b) Obtenga el valor máximo de la función f(x,y) = 2x + 3y en S, indicando el punto de la región en el cual se alcanza el máximo y el valor máximo alcanzado.

Problema 23.1.3 (2 puntos) Se considera la función real de variable real $f(x) = \sqrt{1+x^2}$

- a) Calcule la ecuación de la recta tangente a la gráfica de f(x) en el punto de abscisa x=0.
- b) Calcule $\int_0^1 2x f(x) dx$

Problema 23.1.4 (2 puntos) Una empresa de reparto de comida a domicilio reparte platos de dos restaurantes. El $60\,\%$ de los platos que reparte proceden del primer restaurante y el $40\,\%$ restante del segundo. El $50\,\%$ de los platos que reparte del primer restaurante están cocinados con productos ecológicos, siendo este porcentaje de un $80\,\%$ para el segundo restaurante. Elegido un plato al azar:

- a) Calcule la probabilidad de que esté cocinado con productos ecológicos.
- b) Si el plato seleccionado no está cocinado con productos ecológicos, obtenga la probabilidad de que proceda del segundo restaurante.

Problema 23.1.5 (2 puntos) El tiempo diario de juego con videoconsolas de un estudiante de secundaria sigue una distribución normal de media μ y desviación típica 0,25 horas.

- a) Se toma una muestra aleatoria simple de tamaño 25. Calcule la probabilidad de que la media muestral \overline{X} no supere las 2,9 horas si $\mu = 2,75$ horas.
- b) Sabiendo que para una muestra aleatoria simple de 64 personas se ha obtenido un intervalo de confianza (2,9388;3,0613) para μ , determine el nivel de confianza con el que se obtuvo dicho intervalo.

23.2. Modelo 2022 - Opción B

Problema 23.2.1 (2 puntos) Se considera el sistema de ecuaciones dependiente del parámetro real a:

$$\begin{cases} x - y + z = 2 \\ x - y + az = -1 \\ 2x + y + z = 6 \end{cases}$$

- a) Discuta el sistema en función de los valores del parámetro real a.
- b) Resuelva el sistema para a = -2.

Problema 23.2.2 (2 puntos) Se considera la función real de variable real definida por

$$f(x) = \frac{10}{x^2 + 2x - 3}$$

- a) Determine el dominio de f(x) y calcule sus asíntotas.
- b) Obtenga los intervalos de crecimiento y decrecimiento de f(x) y determine los extremos relativos indicando si corresponden a máximos o mínimos.

Problema 23.2.3 (2 puntos) Considere la función real de variable real definida por:

$$f(x) = \begin{cases} ax^2 - 2x & \text{si } x \le 2\\ \ln(x - 1) & \text{si } x > 2 \end{cases}$$

- a) Determine para qué valores de $a \in \mathbb{R}$ la función f(x) es continua en su dominio.
- b) Para a=1, halle el área de la región acotada delimitada por la función f(x), el eje de abscisas y las rectas x=-1, x=0.

Problema 23.2.4 (2 puntos) Entre los deportistas profesionales, el 50% disfrutan de una beca de alto rendimiento y el 30% está cursando estudios superiores. Se sabe también que el 10% de los deportistas profesionales disfrutan de una beca de alto rendimiento y además están cursando estudios superiores. Seleccionado un deportista profesional al azar, calcule la probabilidad de que:

- a) Disfrute de una beca de alto rendimiento o esté cursando estudios superiores.
- b) No disfrute de una beca de alto rendimiento, sabiendo que no está cursando estudios superiores.

Problema 23.2.5 (2 puntos) Una empresa que gestiona una aplicación de movilidad sostenible sabe que el tiempo que tardan en llegar a la universidad en coche los estudiantes se puede aproximar por una variable aleatoria normal de media μ minutos y desviación típica $\sigma=6$ minutos.

- a) Una muestra aleatoria simple de 81 universitarios proporciona un tiempo medio de traslado hasta la universidad de 44 minutos. Calcule el intervalo de confianza al 90 % para estimar μ .
- b) Determine el tamaño mínimo de una muestra aleatoria simple para obtener un intervalo de confianza para μ de amplitud a lo sumo de 3 minutos, con un nivel de confianza del 95 %.

23.3. Ordinaria 2022 - Opción A

Problema 23.3.1 (2 puntos) Se considera la matriz $A = \begin{pmatrix} 2 & 0 & 1 \\ a & -1 & 1 \\ 0 & a & 1 \end{pmatrix}$.

- a) Determine los valores del parámetro real a para los cuales la matriz A es invertible.
- b) Calcule A^{-1} para a = 1.

Problema 23.3.2 (2 puntos) El dueño de una empresa que organiza fiestas infantiles quiere hacer chocolate con leche y dispone para la mezcla de 30 litros de leche y 20 litros de chocolate líquido. Por cada litro de chocolate debe echar como máximo 3 litros de leche, y por cada litro de leche debe echar como máximo 1,6 litros de chocolate. Además, solo dispone de botellas para envasar 45 litros de chocolate con leche. Por cada litro de leche de la mezcla puede obtener un beneficio de $1 \in$ y por cada litro de chocolate un beneficio de $2 \in$. Determine cuántos litros de leche y de chocolate líquido debe mezclar para obtener el máximo beneficio y calcule el beneficio que se obtiene.

Problema 23.3.3 (2 puntos) La figura dada representa la gráfica de cierta función f.

La gráfica representada tiene tangentes horizontales en x = -1, x = 1, x = 2 y x = 4.

- a) Determine razonadamente los intervalos en los que f'(x) > 0.
- b) Determine razonadamente cuál es el signo de

$$\int_{-2}^{5} f(x) \, dx$$

Problema 23.3.4 (2 puntos) Sean A y B sucesos de un experimento aleatorio tales que: P(A) = 0, 6, P(A|B) = 0, 4 y $P(A|B^c) = 0, 8$. Siendo B^c es el suceso complementario de B. Calcule:

- a) P(B).
- b) ¿Son A y B independientes? Justifique su respuesta.

Problema 23.3.5 (2 puntos) Una cementera rellena sacos de cemento cuyo peso en kilogramos se puede aproximar por una variable aleatoria con distribución normal de media desconocida y desviación típica igual a 2 kg.

- a) Se toma una muestra aleatoria de tamaño 20 y se obtiene que su media muestral es 50 kg. Determine un intervalo de confianza del 99 % para el peso medio de un saco de cemento.
- b) Determine el tamaño mínimo de la muestra para que el error máximo cometido en la estimación de la media sea menor que 1 kilogramo, con un nivel de confianza del 90 %.

23.4. Ordinaria 2022 - Opción B

Problema 23.4.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro $a \in \overline{R}$:

$$\begin{cases} x + ay + z = a \\ ax - y - az = 0 \\ x + y + z = 1 \end{cases}$$

- a) Discuta el sistema para los diferentes valores de a.
- b) Resuelva el sistema para a=2.

Problema 23.4.2 (2 puntos) Considere la función real de variable real

$$f(x) = \frac{x^2 - x + 1}{x - 1}$$

- a) Determine sus asíntotas (verticales, horizontales y oblicuas).
- b) Calcule f'(x) y halle el valor de f'(2).

Problema 23.4.3 (2 puntos) Un escultor quiere dividir un alambre muy fino en dos trozos que se utilizarán para delimitar, respectivamente, un cuadrado y un rectángulo cuya base debe medir el doble que su altura. Posteriormente, se fabricarán ambas figuras planas con un material que cuesta 16 céntimos de euro/cm² para el cuadrado y 10 céntimos de euro/² para el rectángulo. Si el alambre inicial mide 450 cm, determine la función de coste total de ambas figuras. Obtenga la longitud de cada trozo de alambre para que el coste total de estas piezas sea mínimo.

Sugerencia: Exprese el coste total en función de la altura del rectángulo y utilice 3 cifras decimales para realizar los cálculos.

Problema 23.4.4 (2 puntos) Una carta escogida al azar es eliminada (sin ser vista) de un mazo de 52 cartas de póker, en el que hay 13 cartas de cada palo (diamantes, corazones, picas y tréboles). Una vez eliminada, se escoge al azar una carta, entre las que quedan en el mazo, y esta segunda carta es observada.

- a) Calcule la probabilidad de que la carta observada sea de diamantes.
- b) Si la carta observada no es diamantes, calcule la probabilidad de que la carta eliminada tampoco lo hava sido.

Problema 23.4.5 (2 puntos) Considere una población donde observamos una variable aleatoria X con distribución normal de media μ y desviación típica σ . Sea \overline{X} la media muestral de una muestra aleatoria de tamaño 10.

- a) Determine el valor de σ sabiendo que I=(58,2;73,8) es un intervalo de confianza del 95 % para μ .
- b) Si $\sigma = 20$, calcule $P(-10 < \overline{X} \mu < 10)$.

23.5. Ordinaria 2022 (coincidente)- Opción A

Problema 23.5.1 (2 puntos) Se consideran las matrices:

$$A = \left(\begin{array}{ccc} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array}\right)$$

y B = A + aI, donde I es la matriz identidad de orden 3 y a es un número real.

- a) Calcule $A(A^2 A^4)$
- b) Calcule los valores de a para que las matrices B y AB sean invertibles.

Problema 23.5.2 (2 puntos) Un almacén de legumbres al por mayor tiene sacos de dos tipos, con capacidad para 5 kg de peso y con capacidad para 10 kg de peso. Sólo tiene 180 sacos de capacidad 10 kg. Debe poner a la venta como mucho 2000 kg de alubias en sacos de ambos tipos. Por cada 3 sacos de 10 kg puede vender como mucho 2 sacos de 5 kg, y como mínimo tiene que poner a la venta 20 sacos de 5 kg y 60 de 10 kg. Por cada saco de 10 kg obtiene un beneficio de $5 \le y$ por cada saco de 5 kg obtiene un beneficio de $2 \le 0$. Determine cuántos sacos de cada tipo debe vender para obtener el máximo beneficio y calcule el beneficio que se obtiene.

Problema 23.5.3 (2 puntos) Se considera la función real de variable real

$$f(x) = \begin{cases} 2x - a & \text{si} \quad x < -2\\ x^2 & \text{si} \quad -2 \le x \le 1\\ x + b & \text{si} \quad x > 1 \end{cases}$$

- a) Determine los valores de a y b que hacen que f sea continua en \mathbb{R} .
- b) Para a = b = -8, calcule

$$\int_{-3}^{0} f(x) \, dx$$

Problema 23.5.4 (2 puntos) Sean A y B sucesos independientes de un experimento aleatorio con P(B) = 1/2.

- a) Calcule P(A) para el caso en que $P(A \cup B) = 3/4$.
- b) Calcule P(A) para el caso en que $P(A \cap B^c) = 1/4$. Nota: B^c denota el suceso complementario de B.

Problema 23.5.5 (2 puntos) Para estimar la proporción poblacional de las familias que tienen internet en una determinada ciudad se ha tomado una muestra de familias al azar.

- a) Si la proporción poblacional fuese P=0,8, determine el tamaño mínimo necesario de la muestra de familias para garantizar que, con una confianza del 99%, el margen de error en la estimación no supera el 6%.
- b) Tomada al azar una muestra de 200 familias, se encontró que 170 tenían internet. Determine un intervalo de confianza al 95 % para la proporción de familias que tienen internet.

23.6. Ordinaria 2022 (coincidente)- Opción B

Problema 23.6.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\left\{ \begin{array}{l} 2ax+z=1\\ ax-y+z=0\\ ay+z=a+1 \end{array} \right.$$

- a) Discuta la compatibilidad del sistema para diferentes valores de a.
- b) Resuelva el sistema para a = 0.

Problema 23.6.2 (2 puntos) La siguiente figura representa la gráfica de una función lineal a trozos $f:[0,6]\longrightarrow \mathbb{R}$

- a) Determine razonadamente el valor de la integral definida $\int_0^3 f(x) \, dx$
- b) ¿Cuál número es mayor, $\int_0^3 f(x) dx$ o $\int_0^6 f(x) dx$? Razone tu respuesta.

Problema 23.6.3 (2 puntos) Considere la función real de variable real dada por la siguiente expresión:

$$f(x) = \frac{x^3}{(x - K)^2}$$

- a) Obtenga el valor de la constante K para que la recta tangente a la función en x=9 sea paralela al eje de las x. Indique la expresión de dicha recta.
- b) Para K=3, señale los intervalos de crecimiento y decrecimiento de la función f(x) y clasifique los extremos relativos de esta función.

Problema 23.6.4 (2 puntos) Ganar en el juego del gambón depende de la actitud de los participantes. El 50 % de ellos son pesimistas y se sienten perdedores antes de haber jugado. El 30 % no lo ve claro y el resto son optimistas y se sienten ganadores antes de jugar. La probabilidad de que ganen los primeros es 0,5, de que ganen los segundos es 0,7 y de que ganen los últimos es 0,9.

- a) ¿Cuál es la probabilidad de que un jugador escogido al azar gane el juego?.
- b) ¿Cuál es la probabilidad de que el ganador sea alguien que se haya sentido un perdedor antes de haber jugado el juego?

Problema 23.6.5 (2 puntos) Sea una población donde observamos la variable aleatoria X con distribución normal de media 20 y desviación típica 5. Sea \overline{X} la media muestral de una muestra aleatoria de tamaño 25.

- a) ¿Cuál es la distribución de \overline{X} ?
- b) Calcule $P(19 < \overline{X} < 22)$.

23.7. Extraordinaria 2022 - Opción A

Problema 23.7.1 (2 puntos) Sea $a \in \mathbb{R}$. Considere las matrices

$$A = \begin{pmatrix} -a & 1 & 1 \\ 0 & -1 & 1 \\ a & 1 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad Y = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

- a) Determine los valores del parámetro real a para que A tenga inversa.
- b) Calcule, para a = 1, la solución del sistema (A B)X = Y.

Problema 23.7.2 (2 puntos) Sea S la región del plano definida por

$$7y - 8x \le 3400, \ 3x - 8y \le 2000, \ 11x + 14y \ge 9500, \ x \le 1200, \ y \le 1000$$

- a) Represente gráficamente la región S y calcule las coordenadas de sus vértices.
- b) Obtenga el valor mínimo de la función f(x,y) = 2x + y en S, indicando el punto de la región en el cual se alcanza.

Problema 23.7.3 (2 puntos) Considere las funciones reales de variable real $f(x) = x^2 - 4x + 3$ y $g(x) = -x^2 + ax + 3$.

a) Se define h(x) de la siguiente manera:

$$h(x) = \begin{cases} f(x) & \text{si } x \le 1\\ g(x) & \text{si } x > 1 \end{cases}$$

¿Qué valor debe darle a la constante $a \in \mathbb{R}$ para que la función h sea continua en \mathbb{R} ?

b) Para a=2, halle el área de la región acotada del plano que está delimitada por las gráficas de f y de g.

Problema 23.7.4 (2 puntos) Supongamos que el espacio muestral de cierto experimento aleatorio es la unión de los sucesos A y B. Esto es, $E = A \cup B$. Además suponga que $P(A \cap B) = 0, 2$ y P(B) = 0, 7.

- a) Calcule $P(A^c)$.
- b) Calcule $P(A^c \cup B^c)$.

Nota: A^c y B^c son, respectivamente, los sucesos complementarios de A y B.

Problema 23.7.5 (2 puntos) Una muestra de tornillos, tomada de una compañía encargada de fabricarlos, ha permitido obtener un intervalo de confianza del 95 % para estimar la proporción de tornillos con defectos de fabricación, siendo 0,2 y 0,3 los extremos de dicho intervalo.

- a) Estime la proporción de tornillos con defectos de fabricación a partir de esa muestra y dé una cota del error de estimación al nivel de confianza considerado.
- b) Utilizando el mismo nivel de confianza, ¿cuál sería el error máximo de estimación si esa misma proporción se hubiera observado en una muestra de 700 tornillos?

23.8. Extraordinaria 2022 - Opción B

Problema 23.8.1 (2 puntos) Considere el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases} x + ay + z = 2 \\ x - az = 0 \\ x + y + z = 2 \end{cases}$$

- a) Discuta la compatibilidad del sistema para los diferentes valores de a.
- b) Resuelva el sistema para a = 0.

Problema 23.8.2 (2 puntos)

- a) Determine los valores de los parámetros $a, b \in \mathbb{R}$ para que la función $f(x) = ax + \frac{b}{x}$ verifique que f(2) = 4 y f'(2) = 0.
- b) Encuentre todas las asíntotas de la función $g(x) = x + \frac{1}{x}$.

Problema 23.8.3 (2 puntos) Un investigador ha desarrollado un fertilizante para un determinado cultivo. Los estudios de mercado indican que los ingresos, I(x), en miles de euros, vienen expresados por la función

$$I(x) = x\frac{170 - 0,85x}{5},$$

en la que x representa la demanda del producto, expresada en miles de litros. Por otra parte, los costes de producción que asume la empresa, en miles de euros, se expresan en función de la demanda mediante la función $C(x) = 10 + 2x + x^2$.

- a) Proporcione una expresión para la función beneficio en términos de la demanda x y encuentre la cantidad de producto que debería venderse para maximizarlo. Obtenga también el beneficio máximo.
- b) Determine entre qué valores debería encontrarse la cantidad demandada de fertilizante para que el coste medio, C(x)/x, no supere los diez mil euros.

Nota: Exprese los resultados con 2 cifras decimales.

Problema 23.8.4 (2 puntos) Tres amigas (Ana, Berta y Carla) elaboran una lista para hacer una fiesta sorpresa a una compañera de trabajo. Ana enviará el $30\,\%$ de las invitaciones, Berta el $40\,\%$ y Carla las restantes. El $2\,\%$ de los nombres de la lista de Ana son incorrectos y las invitaciones no llegarán a su destino. En las listas de Berta y Carla, los porcentajes de nombres incorrectos son $3\,\%$ y $1\,\%$, respectivamente.

a) Calcule la probabilidad de que una invitación no llegue a su destino.

b) Si una invitación no llegó a su destino, ¿cuál es la probabilidad de que la haya enviado Ana?

Problema 23.8.5 (2 puntos) Considere una población donde observamos una variable aleatoria X con distribución normal de media desconocida y desviación típica igual a 15. Se toma una muestra aleatoria simple para estimar la media muestral que arroja un intervalo de confianza cuyos extremos son 157,125 y 182,875.

- a) Calcule el valor de la media muestral.
- b) Si el tamaño de la muestra es 9, ¿cuál es el nivel de confianza para este intervalo?

23.9. Extraordinaria 2022 (coincidente)- Opción A

Problema 23.9.1 (2 puntos) Sea $a \in \mathbb{R}$. Considere las matrices

$$A = \begin{pmatrix} -a & 1 & -2 \\ 0 & -1 & 1 \\ a & a & -1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & 0 \\ 1 & 1 & 2 \end{pmatrix}, \quad Y = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

- a) Determine los valores de a para que A tenga inversa.
- b) Calcule los valores de a para que la solución del sistema (A B)X = Y sea

$$X = \left(\begin{array}{c} 0\\ -1\\ 0 \end{array}\right)$$

Problema 23.9.2 (2 puntos) La plataforma digital Plusfix va a lanzar un nuevo canal de cine y deporte y tiene que elaborar una propuesta piloto de contenidos, teniendo en cuenta que el tiempo dedicado al cine no puede ser mayor que el tiempo dedicado al deporte. La propuesta piloto debe tener una duración entre 600 y 900 minutos, debe tener al menos 200 minutos de cine y como mucho 500 minutos de deporte. Además, con la emisión de la propuesta la plataforma obtiene 15€ de beneficio por cada minuto de emisión de cine y 10€ de beneficio por cada minuto de emisión de deporte. Determine cuántos minutos de cine y cuántos de deporte debe tener la propuesta para obtener el máximo beneficio y obtenga el beneficio que obtiene la plataforma con dicha propuesta.

Problema 23.9.3 (2 puntos)

a) Halle
$$\int_0^1 \frac{x}{2x^2 + 5} \, dx$$

b) Considere $f(x) = \frac{x}{2x^2 + 5}$ y $g(x) = \ln x$ Halle la derivada de la función compuesta $f \circ g(x)$

Problema 23.9.4 (2 puntos) Sean A y B dos sucesos asociados a un mismo experimento aleatorio. Suponga que $P(A) = 0, 7, P(B^c) = 0, 7$ y $P(A \cap B) = 0, 2$.

- a) ¿Son A y B independientes? Justifique su respuesta.
- b) Calcule $P(A^c \cap B^c)$. Nota: $A^c \vee B^c$ son, respectivamente, los sucesos complementarios de $A \vee B$.

Problema 23.9.5 (2 puntos) El peso en gramos de ciertas bolsas de palomitas se puede aproximar por una variable aleatoria con distribución normal de media μ y desviación típica igual a 10.

- a) Se toma una muestra aleatoria de tamaño 20 y se obtiene que su media muestral es de 200. Determine un intervalo de confianza del $95\,\%$ para el peso medio de dichas bolsas de palomitas.
- b) Determine el tamaño mínimo de la muestra para que el error máximo cometido en la estimación de la media sea menor que 0.5 gramos, con un nivel de confianza del 90%.

23.10. Extraordinaria 2022 (coincidente)- Opción B

Problema 23.10.1 (2 puntos) Considere el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases} x + 2y + z = 2 \\ ax - z = 0 \\ ay + z = a \end{cases}$$

- a) Determine a para que el sistema NO sea compatible determinado.
- b) Resuelva el sistema para a=2.

Problema 23.10.2 (2 puntos) Se considera la función $f(x) = \begin{cases} ax^2 - 1 & \text{si } x \leq 1 \\ (x - a)^2 & \text{si } x > 1 \end{cases}$

- a) Determine los valores de $a \in \mathbb{R}$ que hacen que f sea una función continua en su dominio.
- b) Para a = 1/2, determine, si existen, los puntos de corte de la gráfica de f con el eje de las x.

Problema 23.10.3 (2 puntos) Un ensayo clínico indica que la cantidad de glucosa en sangre en ratones tras la ingesta de un determinado fármaco depende del tiempo transcurrido, t (en minutos), según la siguiente función expresada en mg/dl:

$$f(t) = 90 + Ct^2e^{-t/5}, \quad 0 < t < 60$$

- a) Obtenga razonadamente el valor de la constante C sabiendo que la tasa de variación instantánea de la cantidad de glucosa a los 5 minutos de la ingesta del producto es 15/e.
- b) Para C=3, indique a partir de qué momento disminuye la cantidad de glucosa en sangre. Señale también la cantidad máxima de glucosa en sangre alcanzada tras la ingesta del fármaco.

Nota: Exprese los resultados con 2 cifras decimales.

Problema 23.10.4 (2 puntos) Un virus muy peligroso está presente en el 5% de la población nacional. Se tiene un test para detectar la presencia del virus que es correcto en el 85% de los casos. Es decir, entre los portadores del virus, el test ha dado positivo el 85% de las veces y entre los no portadores ha dado negativo el 85% de las veces.

a) Si se practica el test a un individuo de la población escogido al azar, ¿cuál es la probabilidad de que dé positivo?

b) Si da positivo, ¿cuál es la probabilidad de que el individuo escogido realmente sea un portador del virus?

Problema 23.10.5 (2 puntos) El 64% de los individuos de una población tienen una misma característica. Se escoge una muestra al azar de 120 individuos.

- a) ¿Cuál es la distribución aproximada que sigue la proporción de individuos con esa característica de la muestra?
- b) Halle la probabilidad de que más del 70 % de los individuos de la muestra posean dicha característica.

Capítulo 24

Año 2023

24.1. Modelo 2023 - Opción A

Problema 24.1.1 (2 puntos) Considere la matriz $A = \begin{pmatrix} 1 & -1 & a \\ a & 1 & -a \\ 1 & 1 & 1 \end{pmatrix}$

- a) Determine los valores de a para los cuales la matriz A es invertible.
- b) Calcular A^{-1} para a = 1.

Problema 24.1.2 (2 puntos) Una empresa de transportes ha comprado dos furgonetas, una grande y otra mediana. La normativa vigente solo permite circular un máximo de 400000 km a la grande, 250000 km a la mediana y un total de 600000 km entre ambas. Por las rutas que establece la empresa, por cada kilómetro que recorre la furgoneta grande, la mediana circula como máximo 2 km; y por cada kilómetro que recorre la furgoneta mediana, la grande hace un máximo de 4 km. Por cada kilómetro de circulación de la furgoneta grande se obtiene un beneficio de 10 céntimos y por cada kilómetro de circulación de la mediana un beneficio de 5 céntimos.

Determine el máximo beneficio posible y el número de kilómetros que debe recorrer cada una de las furgonetas para obtenerlo.

Problema 24.1.3 (2 puntos) Se pide:

- a) Represente la gráfica de la función $f(x) = x^3 3x + 1$ prestando especial atención a la determinación de sus intervalos de crecimiento y decrecimiento. Determine los valores de x en los que f alcanza máximos o mínimos relativos.
- b) Represente la gráfica de g(x) = f(x-3) + 2, donde f es la función del apartado anterior.

Problema 24.1.4 (2 puntos) Considere el lanzamiento de un dado equilibrado. Sea A el suceso el resultado es 1 o 2, B el suceso el resultado es 2 o 3 y C el resultado es par.

- a) Verifique que $P(A|C) = P(B|C) = P(A \cap B|C)$.
- b) Calcule $P(A \cup B|C)$.

Problema 24.1.5 (2 puntos) Para una población en la que se observa una variable aleatoria X con distribución normal, de media desconocida y desviación típica igual a 1,5, se tomó una muestra aleatoria simple para estimar la media poblacional y se obtuvo un intervalo de confianza cuyos extremos son 11,0703 y 12,9297.

- a) Determine el valor de la media muestral.
- b) Si el tamaño de la muestra fue 10, ¿cuál es el nivel de confianza del intervalo obtenido?

24.2. Modelo 2023 - Opción B

Problema 24.2.1 (2 puntos) Se considera el sistema de ecuaciones lineales dependiente del parámetro $a \in \mathbb{R}$:

$$\begin{cases} x + ay = a \\ ax + y + az = 0 \\ z = 1 \end{cases}$$

- a) Discuta la compatibilidad del sistema para los diferentes valores de a.
- b) Resuelva el sistema para a=2.

Problema 24.2.2 (2 puntos) Se pide:

- a) Determine el área de la región acotada del plano limitada inferiormente por el eje de las x y superiormente por la parábola $y = 9x x^2$.
- b) Determine el área de la región acotada del plano limitada inferiormente por la parábola $y = 9x x^2$ y superiormente por las rectas tangentes a esa parábola en los puntos de corte con el eje de las x.

Problema 24.2.3 (2 puntos) Una pastelería hace diariamente una cantidad fija de dulces cuya masa requiere de un tiempo de reposo, el cual tiene que ser de una a dos horas. La pastelería usa un ingrediente secreto. La cantidad necesaria de ingrediente secreto, medida en gramos, varía en función del tiempo de reposo de la masa según la siguiente función:

$$Q(t) = \frac{1}{2}t^4 - 3t^2 + 5, \quad 1 \le t \le 2$$

siendo t el tiempo de reposo medido en horas.

- a) La producción diaria de dulces tiene un coste fijo de 150 euros más el coste por el uso del ingrediente secreto, el cual cuesta 100 euros/gramo. Obtenga la función que representa el coste de producción diaria de estos dulces y encuentre el tiempo de reposo de la masa que minimiza dicho coste. Indique el valor del coste mínimo.
- b) Obtenga el tiempo de reposo que maximiza el coste de producción e indique la cantidad de ingrediente secreto que se necesitaría en este caso.

Problema 24.2.4 (2 puntos) Se pide:

- a) Se tienen 7 sobres cerrados. Uno de ellos contiene un premio y el resto son sobres vacíos. Se lanza un dado y luego se descartan tantos sobres vacíos como el dado indique. Posteriormente, se escoge al azar uno de los sobres que restan.
- b) ¿Cuál es la probabilidad de escoger el sobre premiado?
- c) Si salió el premio, ¿cuál es la probabilidad de que el resultado del dado haya sido el 1?

Problema 24.2.5 (2 puntos) Para estimar la proporción de estudiantes de una determinada facultad que utilizan la cafetería se toma una muestra de estudiantes al azar.

- a) Sabiendo que la proporción poblacional es P=0,55, determine el tamaño mínimo necesario de la muestra de estudiantes para garantizar que, con una confianza del 98,02 %, el margen de error en la estimación no supera el $10\,\%$.
- b) Si la muestra aleatoria fue de 100 estudiantes, de los cuales 70 utilizaban la cafetería, determine un intervalo de confianza al 95 %. para la proporción de estudiantes que utilizan la cafetería.