

TOPIC OUTLINE

RL Circuit

Energizing an Inductor

De-energizing an Inductor

Transient Response

ENERGIZING AN INDUCTOR

RL CIRCUIT

$\underline{\text{KVL} @ L_1}$:

$$-v_o + v_R + v_L = 0$$

$$v_R + v_L = v_o$$

$$i_L R + v_L = v_o$$
 ; $v_L = L \frac{d}{dt} i_L$

$$i_L R + L \frac{d}{dt} i_L = v_o$$

$$\frac{d}{dt}i_L + \frac{R}{L}i_L = \frac{v_o}{L}$$

... first-order ODE

$$i_L = \frac{v_o}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

INDUCTOR CURRENT

Energizing equation:

$$i_L(t) = \frac{v_o}{R} \left(1 - e^{-\frac{t}{\tau}} \right)$$

where: $\tau = \frac{L}{R}$

The <u>current</u> through the inductor <u>starts at zero</u> and exponentially increases to $\frac{v_o}{R}$ amperes (maximum current).

INDUCTOR VOLTAGE

Energizing equation:

$$v_L(t) = v_o e^{-\frac{t}{\tau}}$$

where:
$$\tau = \frac{L}{R}$$

The <u>voltage</u> across the inductor instantly jumps to its <u>maximum value</u> of v_o volts then decays exponentially to zero.

TIME CONSTANT

The <u>time constant</u> τ is a measure of how quickly an inductor energizes or de-energizes in an RL circuit.

Formula:

$$\tau = \frac{L}{R}$$

unit: second

EXERCISE

A **50** mH inductor is connected to a **12** V DC power supply through a resistor of **500** Ω . Determine the <u>time</u> it takes for the inductor to charge to **95**% of its maximum current.

Solution:

EXERCISE

A **50** mH inductor is connected to a **12** V DC power supply through a resistor of **500** Ω . Determine the **current** through the inductor after **300** μs of charging.

Solution:

DE-ENERGIZING AN INDUCTOR

RL CIRCUIT

$\underline{\text{KVL} @ L_1}$:

$$v_R - v_L = 0$$

$$i_L R - v_L = 0$$
 ; $v_L = L \frac{d}{dt} i_L$

$$i_L R - L \frac{d}{dt} i_L = 0$$

$$\frac{d}{dt}i_L - \frac{R}{L}i_L = 0$$

... first-order ODE

$$i_L = \frac{v_o}{R} e^{-\frac{R}{L}t}$$

INDUCTOR CURRENT

De-energizing equation:

$$i_L(t) = \frac{v_o}{R} e^{-\frac{t}{\tau}}$$

where: $\tau = \frac{L}{R}$

The <u>current</u> through the inductor starts at its maximum value $\frac{v_o}{R}$ amperes then decays exponentially to <u>zero</u>.

INDUCTOR VOLTAGE

De-energizing equation:

$$v_L(t) = -v_o e^{-\frac{t}{\tau}}$$

where: $\tau = \frac{L}{R}$

The <u>voltage</u> across the inductor instantly jumps to its maximum value, but in opposite direction of $-v_o$ volts then decays exponentially to <u>zero</u>.

EXERCISE

A **100** mH inductor is initially charged to **6** V. It is then disconnected from the power supply and discharged through a resistor of **500** Ω . Determine the <u>current</u> through the inductor after **0**. **02** s of discharging.

Solution:

TRANSIENT RESPONSE

The <u>transient response</u> of an inductor describes the time-dependent changes in current through the inductor and the voltage across it. The transient phase is typically considered to last for approximately <u>five time constants</u> 5τ after which the system is assumed to have reached steady-state conditions.

TRANSIENT RESPONSE

The <u>transient response</u> of an inductor describes the time-dependent changes in current through the inductor and the voltage across it. The transient phase is typically considered to last for approximately <u>five time constants</u> 5τ after which the system is assumed to have reached steady-state conditions.

LABORATORY

