

Agenda

- Introdução;
- Problema;
- Referencial Teórico
- Metodologia;
- Resultados;
- Conclusões.

Introdução

- A volatilidade é uma medida da velocidade do mercado;
- Ela mede a variação de preço referente a um desvio padrão;
- A correta análise da volatilidade é fundamental para a definição da administração de ativos e para a definição dos momentos de incerteza no mercado, implicando em grandes possibilidades de ganhos ou perdas.
- O gerenciamento de risco de uma carteira de investimentos passa necessariamente pela boa previsão das oscilações de preços dos ativos no mercado.

Problema

Objetivo

Conseguir determinar se o mercado está calmo ou nervoso, a partir do padrão previsto de volatilidade.

Referencial Teórico

Volatilidade de EWMA

$$\sigma_t^2 = \lambda \sigma_{t-1}^2 + (1 - \lambda)r_{t-1}^2,$$

- PCA para determinação dos componentes mais relevantes da ETTJ
 - Número de componentes que representaram 100% da variância

Dados

- Dados diários de 02/01/2002 até 31/05/2019 das seguintes séries:
 - Fechamento do Ibovespa;
 - ETTJ de 1M até 1Y (5 Vértices: 1,3,6,9 e 12M), a partir do DI Futuro;
 - Mediana esperada do mercado IPCA, considerado com 1 defasagem, pois não existe esta informação a priori.
 - Fechamento do Dólar Spot, considerado com 1 defasagem, pois não existe esta informação a priori.
- Tratamentos:
 - Eliminação de Nas;
 - Normalização por Z-Score das séries para uso na rede neural.
- Divisão:
 - 80% para Treino;
 - 20% para Teste.

Dados Normalizados por Z-Score:

Volatilidade Ibovespa, Cambio e IPCA

Modelagem

- Rede MLP
 - Input: 4 principais componentes, Dólar e IPCA.
 - Output: Volatilidade do IBOV
 - Hiperprâmetros
 - 1 camadas escondida
 - # Neurônios na camada escondida: 13 (2n+1)
 - Função de Ativação: Sigmoid
 - Otimizador: Adam
 - Treshold para definição do Estado de Mercado:
 - Nervoso(1) >= média +1.5 desvio padrão
 - Normal(0) < média +1.5 desvio padrão</p>

Avaliação

- Taxa de Erro%
- Precisão %
- Recall%
- F1_Score%

Backtest

- Sem janelamento, apenas considerando a grande divisão entre dados de treino e de teste
- Com janelamento, especificando vários períodos de treinamento e teste

Resultados

Avaliação período de teste e treino sem janelamento:

	Treino	Teste	
Erro%	14,33%	13,22%	
Precisão%	91%	88%	
Recall%	86%	87%	
F1_Score%	88%	88%	

Resultados

Avaliação período de teste e treino com janelamento:

Window: 1000	
Forecast:300	Forecast: 400

	Forecast:100	Forecast: 200	Forecast:300	Forecast: 400	Forecast:500
Erro%	6,81%	7,69%	9,64%	8,86%	9,94%
Precisão%	90,70%	89,74%	87,65%	90,18%	89,45%
Recall%	93,19%	92,31%	90,36%	91,14%	90,05%
F1_Score%	90,92%	90,65%	88,94%	90,54%	89,75%

Conclusões

- A definição do threshold é determinante para os resultados obtidos;
- O primeiro componente do PCA é mais relevante, sendo possível desconsiderar os demais;
- A representatividade do coeficiente do acoplamento é reduzida em momentos de crise;
- O uso somente do primeiro coeficiente de acoplamento como critério de classificação gerou resultados inferiores aos do modelo com a rede neural;
- A inclusão do IPCA e do Dólar não contribuíram significativamente para maior precisão do modelo;
- Não houve diferenças significativas de precisão entre dividir os dados entre um único período de treino e teste e aplicar a técnica de janelamento;
- A definição do tamanho da janela e do período de previsão impactam na acurácia obtida na classificação, tendo em vista que períodos pequenos não contemplarão observações com threshold estabelecido.

