05-X5-ROS2-aloha

前言:

方案1:四台机械臂,两两遥操。两台作为操作器(master,主臂),两台作为执行器(follow,从臂)

方案2:两台机械臂,配合VR。VR手柄作为操作器(master),两台机械臂作为执行器(follow)。

一、硬件配置

1、硬件清单

方案1:

类目	型묵	数量	备注
机械臂主臂	ARX X5	2	末端为示教器
机械臂从臂	ARX X5	2	末端为夹爪
夹爪	ARX-Play-G	2	
示教器	ARX-Play-E	2	

笔记本电脑	Lenovo Y7000P(RTX4070)	1	
摄像头	Intel D405 ARX定制版	3	

方案2:

类目	型묵	数量	备注
机械臂	ARX X5	2	末端为夹爪
夹爪	ARX-Play-G	2	
VR	Quest3	套装	
笔记本电脑	Lenovo Y7000P(RTX4070)	1	
摄像头	Intel D405 ARX定制版	3	

2、整体组装

方案1:

主臂和从臂都可以按照" ROS2-单臂X5-SDK "进行安装。(方案2,无需主臂)

其中主臂需要安装示教器。

这里四台臂的的usb口先不要连接电脑!

方案2:

在安装了两个从臂的基础上,增加连接VR的硬件,具体可参vr说明手册。

二、软件配置

1、环境配置

注意一定按照安装顺序

ROS2-humble安装: ubuntu系统22.04 推荐鱼香ROS安装

```
1 wget http://fishros.com/install -0 fishros && . fishros
```

配置can环境

```
1 配置can
2 sudo apt install can-utils
3 sudo apt install net-tools
```

2、SDK文件结构

编译:

```
1
    ── 00-sh #编译文件
2
3 ROS #ROS编译文件
    └── ROS2 #ROS2编译文件
4
   — ARX_CAN
5
6
7
   ARX_VR_SDK
8
9
     — ру
   │ └─ arx_x5_python
10
    --- readme
11
12
    ROS
13
  14
15
  └── ROS2
    └── X<mark>5_ws</mark>
16
```

00-sh/ROS2目录下

- 1 先执行
- 2 ./01make.sh
- 3 全部子窗口编译结束后
- 4 执行
- 5 ./02make.sh
- 6 等待编译结束,并无报错,关闭终端即可

此时一个完整的ros项目就搭建完成。

2、启动系统

第一步: 开启CAN

参考文档:配置CAN手册(方案2,只需要配置从臂)。

第二步、启动机械臂

A>四臂遥操作

运行

```
// 回到工作空间,即x5_ws文件夹中
1
2
   //每次开终端都要运行
3
   source install/setup.bash
4
5
6
   //启动机主臂
   ros2 launch arx_x5_controller open_remote_master.launch.py
7
   //启动机从臂
8
    ros2 launch arx_x5_controller open_remote_slave.launch.py
9
10
   //上述命令可以按下tab建自动补全,若无法补全,请检查是否执行source,以及终端所在路径是否
   正确
```

启动后所有机械臂的灯由红转为绿,主臂为重力补偿模式,可以随意拖动。

从臂会实时的跟踪主臂的运动。

关闭终端前务必先按下:

```
1 Ctrl + c
```

不可直接关闭终端,若不正常退出且出现异常,应该重启电脑,关闭后台的线程。

话题查看,在同一个目录下,新开终端运行:

```
1 #每次开终端都要运行
2 source install/setup.bash
3
4 ros2 topic list
```

```
arx@arx:~/Q_work/ts_R5_SDK$ ros2 topic list
/arm_master_l_status
/arm_master_r_status
/arm_slave_l_status
/arm_slave_r_status
/parameter_events
/rosout
```

其中

话题	作用
/arm_master_l_status	sdk 发布左主臂信息
/arm_master_r_status	sdk 发布右主臂信息
/arm_slave_l_status	sdk 发布左从臂信息
/arm_slave_r_status	sdk 发布右从臂控制

例如:

```
1 #每次开终端都要运行
2 source install/setup.bash
3 #查看左臂从臂信息
5 ros2 topic echo /arm_slave_l_status
```

关节限位:

关节	1	2	3	4	5	6
范围(弧度)	[-3.14, 2.6]	[-3.6, 0.1]	[-1.57, 1.57]	[-1.3, 1.3]	[-1.57, 1.57]	[-2.1, 2.1]

B>VR遥操作

进入00-sh文件夹

```
1 ./05double_vr.sh
```

此时就以VR控制模式启动从臂。

根据VR操作说明,即可控制机械臂。

注意如果想要结束程序,需按下"<mark>catrl+c</mark>"退出终端。

其中几个控制末端位姿的变量,说明如下

- 1 //单位:米、弧度
- 2 //[x y z]:末端位置
- 3 //[roll pitch yaw]:末端姿态
- 4 float64 x //末端位置 前后 范围:[0, 0.5]
- 5 float64 y //末端位置 左右 范围:[-0.5, 0.5]
- 6 float64 z //末端位置 上下 范围:[-0.5, 0.5]
- 7 float64 roll //末端roll 正负2.0弧度
- 8 float64 pitch //末端pitch 正负1.3弧度
- 9 float64 yaw //末端yaw 正负1.3弧度
- 10 float64 gripper //夹爪开合 0-5 对应 0-80mm

三、注意事项

关闭终端前务必先输入:

1 Ctrl + c

不可直接关闭终端

1、机械臂各个关节轴向

不同型号的机械臂,其关节的轴向都是相同的。关节转向符合右手定理,大拇指的指向关节轴向,四指方向就是电机转动的正方向。

末端坐标系

在初始位置,末端坐标系和参考坐标系重合,位置和姿态都是0,如上图所示。

2、异常处理

机械臂垂落,无法控制	终端是否提示safe mode(碰撞检测进入保护模式,断电复位,重启即可)
某个can口打不开	检查can连接,重新插拔对应的usb,重新开启can。
电机无法连接	重新插拔机械臂底座的插头
程序一直在初始化	保证usb接口带宽足够,不要和usb wifi等数据量较大设备公用一个usb