Temat 02.4 Techniki skanowania hostów i portów

Wykonał(a): Bartosz Miazga

Stanowisko: 14

Zadanie 1 - Skanowanie metodą połączeniową (*TCP connect scan*)

1.1 (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu *nmap* ze skanowania metodą

```
połączeniową
```

```
1:\Users\Administrator>nmap -p 130-140 -PN -sT 192.168.79.55 -scan-delay 2s
Starting Nmap 7.70 (https://nmap.org ) at 2020-11-06 11:13 Central European Standard Time
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using --system-dns c
tify valid servers with --dns-servers
wap scan report for 192.168.79.55
lost is up (0.72s latency).

PORT STATE SERVICE
130/tcp closed cisco-fna
131/tcp closed cisco-tna
132/tcp closed cisco-sys
133/tcp closed statsrv
134/tcp closed ingres-net
135/tcp open msrpc
136/tcp closed profile
137/tcp closed netbios-ns
138/tcp closed netbios-ssn
140/tcp closed emfis-data

Wmap done: 1 IP address (1 host up) scanned in 23.34 seconds
```

1.2 (poniżej) Obraz okna sniffera uzyskany podczas skanowania metodą połączeniową. Kolorem zielonym zaznaczono <u>pojedynczą</u> sekwencję pakietów związaną z wykrywaniem <u>jednego</u> portu otwartego. Kolorem czerwonym zaznaczono pojedynczą sekwencje pakietów związaną z wykrywaniem jednego portu zamknietego.

CZ	erwonym zazna	aczono <u>pojedync</u>	<u>zą sekwencję pak</u>	ietow zv	viązaną z wykrywaniem <u>jednego p</u> ortu zamkniętego.
WI	deić obraz				
ok	<mark>na</mark>				
	15 224.652102	Vmware_86:45:9c	Vmware_8a:a7:3f	ARP	42 192.168.214.56 is at 00:0c:29:86:45:9c
	16 224.652599	192.168.79.55	192.168.214.56	TCP	66 135 → 49808 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460 WS=
	17 224.652640	192.168.214.56	192.168.79.55	TCP	54 49808 → 135 [ACK] Seq=1 Ack=1 Win=65536 Len=0
	18 224.666437	192.168.214.56	192.168.79.55	TCP	54 49808 → 135 [RST. ACK] Seg=1 Ack=1 Win=0 Len=0
	19 226.650914	192.168.214.56	192.168.79.55	TCP	66 49809 → 139 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PE
	20 226.651398	192.168.79.55	192.168.214.56	TCP	66 139 → 49809 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460 WS=
	21 226.651427	192.168.214.56	192.168.79.55	TCP	54 49809 → 139 [ACK] Seq=1 Ack=1 Win=525568 Len=0
	22 226.666423	192.168.214.56	192.168.79.55	TCP	54 49809 → 139 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	23 228.650968	192.168.214.56	192.168.79.55	TCP	66 49810 → 136 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PE.
	24 228.651481	192.168.79.55	192.168.214.56	TCP	60 136 → 49810 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	25 229.166553	192.168.214.56	192.168./9.55	TCP	66 [TCP Retransmission] 49810 → 136 [SYN] Seq=0 Win=8192 Len=0 MS
	26 229.167202	192.168.79.55	192.168.214.56	TCP	60 136 → 49810 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	27 229.682056	192.168.214.56	192.168.79.55	TCP	62 [TCP Retransmission] 49810 → 136 [SYN] Seq=0 Win=8192 Len=0 MS
	28 229.682516	192.168.79.55	192.168.214.56	TCP	60 136 → 49810 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	29 230.666662	192.168.214.56	192.168.79.55	TCP	66 49811 + 134 [SYN] Seq=0 Win=8192 Len=0 MSS=1460 WS=256 SACK_PE
	30 230.667164	192.168.79.55	192.168.214.56	TCP	60 134 → 49811 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	31 231.182073	192.168.214.56	192.168.79.55	TCP	66 [TCP Retransmission] 49811 - 134 [SYN] Seq=0 Win=8192 Len=0 MS
	32 231.182580	192.168.79.55	192.168.214.56	TCP	60 134 → 49811 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	33 231.697660	192.168.214.56	192.168.79.55	TCP	62 [TCP Retransmission] 49811 → 134 [SYN] Seq=0 Win=8192 Len=0 MS
	34 231.698149	192.168.79.55	192.168.214.56	TCP	60 134 → 49811 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0

Charakterystyka metody połączeniowej i ocena poprawności uzyskanych wyników

m.in. dokładny opis wszelkich możliwych wariantów sekwencji pakietów wymienianych pomiędzy komputerami, w przypadku skanowania portu otwartego i zamkniętego (nawet jeżeli nie zaobserwowano ich podczas realizacji ćwiczenia).

Jeżeli podczas nawiązywania połączenia serwer odpowie pakietem z flagami SYN/ACK to port jest otwarty w trybie nasłuchu. Pakiet z flagami RST/ACK może wskazywać na zamknięty port, ale na etapie skanowania nie jesteśmy w stanie tego jednoznacznie określić, ponieważ ruch na porcie może być filtrowany. Skanowanie kończy wysłanie pakietu z flagą RST.

Wady: Wady tej metody to łatwość wykrycia i zablokowania.

Zalety: Zaletą tej metody jest jej szybkość oraz fakt ,że może zostać wykonana przez każdego użytkownika **Sekwencja portu otwartego:**

[SYN] [SYN,ACK] [ACK] [RST,ACK] **Sekwencja portu zamkniętego(filtrowanego):** [SYN]

[RST,ACK]

Zadanie 2 - Skanowanie metodą półotwartą (TCP SYN scan)

2.1 (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu *nmap* ze skanowania metodą półotwartą.

```
C:\Users\Administrator>nmap -p 130-140 -PN -sS 192.168.79.55 -scan-delay 2s
Starting Nmap 7.70 (https://nmap.org ) at 2020-11-06 11:18 Central European Standard Time
mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using --system-c
cify valid servers with --dns-servers
Nmap scan report for 192.168.79.55
Host is up (0.00s latency).

PORT STATE SERVICE
130/tcp closed cisco-fna
131/tcp closed cisco-sys
132/tcp closed cisco-sys
133/tcp closed statsrv
134/tcp closed statsrv
134/tcp closed ingres-net
135/tcp open msrpc
136/tcp closed profile
137/tcp closed netbios-ns
138/tcp closed netbios-dgm
139/tcp open netbios-ssn
140/tcp closed emfis-data
MAC Address: 00:0C:29:8A:A7:3F (VMware)

Nmap done: 1 IP address (1 host up) scanned in 26.39 seconds

C:\Users\Administrator>
```

2.2 (poniżej) Obraz okna sniffera uzyskany podczas skanowania metodą półotwartą. Kolorem zielonym zaznaczono pojedynczą sekwencję pakietów związanych z wykrywaniem jednego portu otwartego. Kolorem czerwonym zaznaczono pojedynczą sekwencje pakietów związanych z wykrywaniem jednego portu zamknietego.

Zaznaczono	pojedyniczą sekv	vericję pakietow z	wiązarry	ch z wykrywaniem <u>jednego p</u> ortu zamkniętego.
7 42.491164	Vmware_86:45:9c	Broadcast	ARP	42 Who has 192.168.79.55? Tell 192.168.214.56
8 42.491713	Vmware_8a:a7:3f	Vmware_86:45:9c	ARP	60 192.168.79.55 is at 00:0c:29:8a:a7:3f
9 44.584620	192.168.214.56	192.168.79.55	TCP	58 48901 → 139 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
10 44.585136	192.168.79.55	192.168.214.56	TCP	60 139 → 48901 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460
11 44.585179	192.168.214.56	192.168.79.55	TCP	54 48901 → 139 [RST] Seq=1 Win=0 Len=0
12 46.600337	192.168.214.56	192.168.79.55	TCP	58 48901 → 135 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
13 46.600851	192.168.79.55	192.168.214.56	TCP	60 135 → 48901 [SYN, ACK] Seq=0 Ack=1 Win=8192 Len=0 MSS=1460
14 46.600902	192.168.214.56	192.168.79.55	TCP	54 48901 → 135 [RST] Seq=1 Win=0 Len=0
13 40.013507	192.100.214.30	192.100.79.33	TCF	20 40201 4 140 [314] 3cd-0 MIH-IOS4 FCH-0 1/23-1400
16 48.616371	192.168.79.55	192.168.214.56	TCP	60 140 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
17 49.265760	Vmware_8a:a7:3f	Vmware_86:45:9c	ARP	60 Who has 192.168.214.56? Tell 192.168.79.55
18 49.265771	Vmware 86:45:9c	Vmware 8a:a7:3f	ARP	42 192.168.214.56 is at 00:0c:29:86:45:9c
19 50.631634	192.168.214.56	192.168.79.55	TCP	58 48901 → 133 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
20 50.632186	192.168.79.55	192.168.214.56	TCP	60 133 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
££ J£.04/£J4	172.100.214.70	172.100.77.77		20 40201 - 124 [2111] 204-0 HIH-1024 ECH-0 HIJS-1400
22 52.647679	192.168.79.55	192.168.214.56	TCP	60 134 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
23 54.662788	192.168.214.56	192.168.79.55	TCP	58 48901 + 131 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
24 54.663267	192.168.79.55	192.168.214.56	TCP	60 131 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
25 56.678430	192.168.214.56	192.168.79.55	TCP	58 48901 → 132 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
26 56.678952	192.168.79.55	192.168.214.56	TCP	60 132 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
27 58.694114	192.168.214.56	192.168.79.55	TCP	58 48901 → 138 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
28 58.694642	192.168.79.55	192.168.214.56	TCP	60 138 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
29 60.709706	192.168.214.56	192.168.79.55	TCP	58 48901 + 137 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
30 60.710181	192.168.79.55	192.168.214.56	TCP	60 137 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
31 62.725423	192.168.214.56	192.168.79.55	TCP	58 48901 → 130 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
32 62.725961	192.168.79.55	192.168.214.56	TCP	60 130 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
33 64.740926	192.168.214.56	192.168.79.55	TCP	58 48912 → 140 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
34 64.741457	192.168.79.55	192.168.214.56	TCP	60 140 → 48912 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
35 66.756650	192.168.214.56	192.168.79.55	TCP	58 48901 → 136 [SYN] Seq=0 Win=1024 Len=0 MSS=1460
36 66.757086	192.168.79.55	192.168.214.56	TCP	60 136 → 48901 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
37 71.266062	Vmware_8a:a7:3f	Vmware_86:45:9c	ARP	60 Who has 192.168.214.56? Tell 192.168.79.55
38 71.266087	Vmware_86:45:9c	Vmware_8a:a7:3f	ARP	42 192.168.214.56 is at 00:0c:29:86:45:9c

Charakterystyka metody półotwartej i ocena poprawności uzyskanych wyników

m.in. dokładny opis wszelkich możliwych wariantów sekwencji pakietów wymienianych pomiędzy komputerami, w przypadku skanowania portu otwartego i zamkniętego (nawet jeżeli nie zaobserwowano ich podczas realizacji ćwiczenia).

System docelowy dostarcza informacji o statusie portu już podczas trwania procesu nawiązywania połączenia po nadesłaniu odpowiedzi na pakiet SYN. Technika półotwartego skanowania wykorzystuje właśnie ten fakt. Polega ona na wysłaniu pakietu z flagą RST po otrzymaniu w drugiej fazie połączenia pakietu z flagami SYN/ACK lub RST/ACK. Wykrywanie portów zamkniętych działa na tej samej zasadzie co w metodzie połączeniowej, czyli nie jesteśmy w stanie jednoznacznie ocenić czy port jest zamknięty czy filtrowany otrzymując pakiet RST/ACK.

Wykrywanie portów otwartych również działa w ten sam sposób co w metodzie połączeniowej- jeżeli w trakcie nawiązywania połączenia serwer odpowie pakietem z flagami SYN/ACK to port jest otwarty.

Wady: Konieczność posiadania uprawnień superużytkownika w syst. Linux

Zalety: Kiedyś utrudniona wykrywalność metody

Sekwencja portu otwartego:

[SYN] [SYN,ACK] [RST]

Sekwencja portu zamkniętego(filtrowanego):

[SYN] [RST,ACK]

Zadanie 3 - Skanowanie metoda UDP (UDP scan)

3.1 (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu *nmap* ze skanowania metodą UDP.

```
C:\Users\Administrator>nmap -p 130-140 -PN -sU 192.168.79.55 -scan-delay 2s

Starting Nmap 7.70 ( https://nmap.org ) at 2020-11-06 11:21 Central European Standard Time

mass_dns: warning: Unable to determine any DNS servers. Reverse DNS is disabled. Try using --system-dns of cify valid servers with --dns-servers

Mmap scan report for 192.168.79.55

Host is up (0.00s latency).

PORT STATE SERVICE

130/udp closed cisco-fna

131/udp closed cisco-fna

132/udp closed cisco-sys

133/udp closed cisco-sys

134/udp closed ingres-net

135/udp closed msrpc

136/udp closed profile

137/udp open netbios-ns

138/udp open|filtered netbios-dgm

139/udp closed metbios-ssn

140/udp closed meffis-data

WAC Address: 00:0C:29:8A:A7:3F (WMware)

Nmap done: 1 IP address (1 host up) scanned in 29.45 seconds

C:\Users\Administrator>
```

3.2 (poniżej) Obraz okna sniffera uzyskany podczas skanowania metodą UDP. Kolorem zielonym zaznaczono <u>pojedynczą</u> sekwencję pakietów związanych z wykrywaniem <u>jednego</u> portu otwartego. Kolorem czerwonym zaznaczono pojedynczą sekwencję pakietów związanych z wykrywaniem jednego portu zamkniętego.

	Time	Source	Destination	Protocol	Length Info
38	71.266087	Vmware_86:45:9c	Vmware_8a:a7:3f	ARP	42 192.168.214.56 is at 00:0c:29:86:45:9c
39	120.000665	192.168.79.55	192.168.214.56	TCP	60 [TCP Keep-Alive] 445 → 49739 [ACK] Seq=1 Ack=1 Win=251 Len=1
40	120.000693	192.168.214.56	192.168.79.55	TCP	66 [TCP Keep-Alive ACK] 49739 → 445 [ACK] Seq=1 Ack=2 Win=9196 Le
41	124.897025	Vmware_86:45:9c	Vmware_8a:a7:3f	ARP	42 Who has 192.168.79.55? Tell 192.168.214.56
42	124.897363	Vmware_8a:a7:3f	Vmware_86:45:9c	ARP	60 192.168.79.55 is at 00:0c:29:8a:a7:3f
43	220.116076	Vmware_86:45:9c	Broadcast	ARP	42 Who has 192.168.79.55? Tell 192.168.214.56
44	220.116435	Vmware_8a:a7:3f	Vmware_86:45:9c	ARP	60 192.168.79.55 is at 00:0c:29:8a:a7:3f
45	222.209660	192.168.214.56	192.168.79.55	UDP	42 45853 → 139 Len=0
46	222.210009	Vmware_8a:a7:3f	Broadcast	ARP	60 Who has 192.168.214.56? Tell 192.168.79.55
47	222.210023	Vmware_86:45:9c	Vmware_8a:a7:3f	ARP	42 192.168.214.56 is at 00:0c:29:86:45:9c
48	222.210369	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)
49	224.225259	192.168.214.56	192.168.79.55	NBNS	92 Name query NBSTAT *<00><00><00><00><00><00><00><00><00><00
50	224.225614	192.168.79.55	192.168.214.56	NBNS	199 Name query response NBSTAT
51	224.225646	192.168.214.56	192.168.79.55	ICMP	227 Destination unreachable (Port unreachable)
	220.240535	192.100.214.30	192.100.79.33	OUF	42 43033 7 140 CCII-0
	226.241313	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)
	228.256876	192.168.214.56	192.168.79.55	UDP	42 45853 → 131 Len=0
	228.257432	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)
	230.272138	192.168.214.56	192.168.79.55	UDP	42 45853 → 136 Len=0
	230.272471	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)
	232.287791	192.168.214.56	192.168.79.55	UDP	42 45853 → 138 Len=0
59	235.319465	192.168.214.56	192.168.79.55	UDP	42 45854 + 138 Len=0
60	237.335039	192.168.214.56	192.168.79.55	UDP	42 45853 → 130 Len=0'
61	237.335523	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)
62	239.350299	192.168.214.56	192.168.79.55	UDP	42 45853 → 133 Len=0
63	239.350655	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)
	240.017007	192.168.79.55	192.168.214.56	TCP	60 [TCP Keep-Alive] 445 → 49739 [ACK] Seq=1 Ack=1 Win=251 Len=1
65	249 917924	100 160 014 56	100 160 70 55	TCD	66 [TCD Koop-Aliva ACK] 40730 - 445 [ACK] Sog-1 Ack=2 Win=9196 Le
66	241.365911	192.168.214.56	192.168.79.55	UDP	42 45853 → 135 Len=0
67	241.366318	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)
	243.301000	192.100.214.30	192.100.79.99	OUP	42 43004 7 133 LCH-0
69	243.382474	192.168.79.55	192.168.214.56	ICMP	70 Destination unreachable (Port unreachable)

Charakterystyka metody UDP i ocena poprawności uzyskanych wyników

m.in. dokładny opis wszelkich możliwych wariantów sekwencji pakietów wymienianych pomiędzy komputerami, w przypadku skanowania portu otwartego i zamkniętego (nawet jeżeli nie zaobserwowano ich podczas realizacji ćwiczenia).

UDP to protokół bezpołączeniowy, jeżeli aktywny system otrzyma datagram UDP na zamknięty port , powinien odpowiedzieć komunikatem ICMP Destination Unreachable (typ 3), a dokładniej ICMP Port Unreachable (typ 3 , kod 3). Jeżeli port jest otwarty , nie należy się spodziewać odpowiedzi , gdyż w przypadku UDP nie występuje potwierdzenie odebrania pakietu. Jednakze należy pamiętać ,że brak odpowiedzi nie identyfikuje jednoznacznie portu otwartego gdyż datagram UDP może zostać odfiltrowany. Czasami odbierane są odpowiedzi z portu otwartego, jeżeli serwer próbuje odpowiedzieć na domniemane żądanie. Zależy to jednak od konstrukcji serwera i budowy pakietów skanujących.

Wady:Technika nie należy do najskuteczniejszych, wiele bramek w tym np. ściany ogniowe odfiltrowuje datagramy UDP skierowane na inne porty niż 53

Sekwencja portu zamkniętego:

[komunikat UDP]

[komunikat ICMP Port Unreachable]

Sekwencja portu otwartego:

[komunikat UDP]

[komunikat od portu otwartego]

[komunikat ICMP Port Unreachable]

Sekwencja portu otwartego(filtrowanego):

[komunikat UDP]

Zadanie 4 - Skanowanie metodą FIN (TCP FIN)

4.1 (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu *nmap* ze skanowania metodą FIN.

4.2 (poniżej) Obraz okna sniffera uzyskany podczas skanowania metodą FIN. Kolorem zielonym zaznaczono pojedynczą sekwencję pakietów związanych z wykrywaniem jednego portu otwartego. Kolorem czerwonym zaznaczono pojedynczą sekwencje pakietów związanych z wykrywaniem jednego portu zamknietego.

not	tcp.analysis.retransmis	sion			X → ▼ Expression
101	Time	Source	Destination	Protocol	Length Info
	82 480.019160	192.168.79.55	192.168.214.56	TCP	60 [TCP Keep-Alive] 445 → 49739 [ACK] Seq=1 Ack=1 Win=25
	83 480.019186	192.168.214.56	192.168.79.55	TCP	66 [TCP Keep-Alive ACK] 49739 → 445 [ACK] Seq=1 ACK=1 WIN=25
	84 484.891315	Vmware 86:45:9c	Vmware 8a:a7:3f	ARP	42 Who has 192.168.79.55? Tell 192.168.214.56
	85 484.891702	Vmware_8a:a7:3f	Vmware_86:45:9c	ARP	60 192.168.79.55 is at 00:0c:29:8a:a7:3f
	86 579.782176	Vmware 86:45:9c	Broadcast	ARP	42 Who has 192.168.79.55? Tell 192.168.214.56
	87 579.782682	Vmware 8a:a7:3f	Vmware 86:45:9c	ARP	60 192.168.79.55 is at 00:0c:29:8a:a7:3f
	88 581.875712	192.168.214.56	192.168.79.55	TCP	54 50987 → 135 [FIN] Seq=1 Win=1024 Len=0
è	89 581.876218	Vmware 8a:a7:3f	Broadcast	ARP	60 Who has 192.168.214.56? Tell 192.168.79.55
	90 581.876233	Vmware 86:45:9c	Vmware 8a:a7:3f	ARP	42 192.168.214.56 is at 00:0c:29:86:45:9c
	91 581.876703	192.168.79.55	192.168.214.56	TCP	60 135 → 50987 [RST, ACK] Seg=1 Ack=2 Win=0 Len=0
	92 583.891407	192.168.214.56	192.168.79.55	TCP	54 50987 → 139 [FIN] Seq=1 Win=1024 Len=0
	93 583.891767	192.168.79.55	192.168.214.56	TCP	60 139 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	94 585.907086	192.168.214.56	192.168.79.55	TCP	54 50987 → 138 [FIN] Seq=1 Win=1024 Len=0
	95 585,907604	192.168.79.55	192.168.214.56	TCP	60 138 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	96 587.922657	192.168.214.56	192.168.79.55	TCP	54 50987 → 140 [FIN] Seq=1 Win=1024 Len=0
	97 587.923150	192.168.79.55	192.168.214.56	TCP	60 140 → 50987 [RST, ACK] Seg=1 Ack=2 Win=0 Len=0
	98 589.938373	192.168.214.56	192.168.79.55	TCP	54 50987 → 130 [FIN] Seq=1 Win=1024 Len=0
	99 589.938899	192.168.79.55	192.168.214.56	TCP	60 130 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	100 591.954122	192.168.214.56	192.168.79.55	TCP	54 50987 → 137 [FIN] Seq=1 Win=1024 Len=0
	101 591 954720	192 168 79 55	192 168 214 56	TCP	60 137 → 50987 [RST_ACK] Sen=1 Ack=2 Win=0 Len=0
Г	102 593.969497	192.168.214.56	192.168.79.55	TCP	54 50987 → 136 [FIN] Seq=1 Win=1024 Len=0
ı	103 593.969964	192.168.79.55	192.168.214.56	TCP	60 136 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	104 595.985480	192.168.214.56	192.168.79.55	TCP	54 5098/ → 131 [FIN] Seq=1 W1n=1024 Len=0
	105 595.986200	192.168.79.55	192.168.214.56	TCP	60 131 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	106 598.000856	192.168.214.56	192.168.79.55	TCP	54 50987 + 133 [FIN] Seq=1 Win=1024 Len=0
	107 598.001400	192.168.79.55	192.168.214.56	TCP	60 133 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	108 600.016391	192.168.214.56	192.168.79.55	TCP	54 50987 → 132 [FIN] Seq=1 Win=1024 Len=0
	109 600.016891	192.168.79.55	192.168.214.56	TCP	60 132 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	110 600.019721	192.168.79.55	192.168.214.56	TCP	60 [TCP Keep-Alive] 445 → 49739 [ACK] Seq=1 Ack=1 Win=25
	111 600.019738	192.168.214.56	192.168.79.55	TCP	66 [TCP Keep-Alive ACK] 49739 → 445 [ACK] Seq=1 Ack=2 Wi
	112 602.032084	192.168.214.56	192.168.79.55	TCP	54 50998 → 135 [FIN] Seq=1 Win=1024 Len=0
	113 602.032588	192.168.79.55	192.168.214.56	TCP	60 135 → 50998 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0
	114 004.04/000	192.100.214.50	192.166.79.55	TCP	54 50907 → 154 [FIN] Seq=1 W1N=1024 Len=0
	115 604.048182	192.168.79.55	192.168.214.56	TCP	60 134 → 50987 [RST, ACK] Seq=1 Ack=2 Win=0 Len=0

Charakterystyka metody FIN i ocena poprawności uzyskanych wyników

m.in. dokładny opis wszelkich możliwych wariantów sekwencji pakietów wymienianych pomiędzy komputerami, w przypadku skanowania portu otwartego i zamkniętego (nawet jeżeli nie zaobserwowano ich podczas realizacji ćwiczenia).

Skanowanie miało pierwotnie na celu utrudnienie wykrycia faktu skanowania. Metody specjalne wykorzystują zasadę zapisaną w RFC 793 mówiącą o tym ,że system powinien odpowiedzieć pakietem RST na każdy pakiet niezgodny z kolejnością nawiązywania połączenia TCP, jeżeli jest on kierowany do portu zamkniętego. Otwarty port nie wysyła żadnego pakietu zwrotnego.

Niektóre systemy, w tym system Windows są odporne na te techniki, zwracają one pakiet RST również w przypadku skanowania portu otwartego. Doprowadza to do błędu detekcji przez program nmap.

Ja taki błąd detekcji podczas ćwiczenia otrzymałem, zaobserwowałem ,że nmap wskazuje wszystkie porty jako zamknięte . Natomiast wiem z poprzednich skanowań innymi metodami ,że port 135 jest otwarty (dlatego zaznaczyłem go na zielono mimo, że sekwencja flag była taka sama jak dla portu zamkniętego.

Sekwencja portu otwartego: [FIN]
Sekwencja portu zamkniętego(filtrowanego): [FIN] [RST,ACK]
Zadanie 5 - Detekcja metod skanowania
5.1a (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu nsc1.exe Wkleić obraz okna
5.1b (poniżej) Obraz okna sniffera uzyskany podczas skanowania programem <i>nsc1</i> . Zaznaczono pojedynczą sekwencję pakietów charakterystyczną dla stosowanej metody skanowania. Wkleić obraz okna
Charakterystyka metody wykorzystanej przez program nsc1.exe (nazwa metody i uzasadnienie decyzji)
5.2a (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu <i>nsc2.exe</i> Wkleić obraz okna
5.2b (poniżej) Obraz okna sniffera uzyskany podczas skanowania programem <i>nsc2.exe</i> . Zaznaczono pojedynczą sekwencję pakietów charakterystyczną dla stosowanej metody skanowania. Wkleić obraz okna
Charakterystyka metody wykorzystanej przez program nsc2.exe (nazwa metody i uzasadnienie decyzji)
5.3a (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu n <i>sc3.exe</i> Wkleić obraz okna
5.3b (poniżej) Obraz okna sniffera uzyskany podczas skanowania programem <i>nsc3.exe</i> . Zaznaczono pojedynczą sekwencję pakietów charakterystyczną dla stosowanej metody skanowania. Wkleić obraz okna
Charakterystyka metody wykorzystanej przez program nsc3.exe (nazwa metody i uzasadnienie decyzji)
5.4 – wycofane
5.5a (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu <i>nsc5.exe</i> Wkleić obraz okna
5.5b (poniżej) Obraz okna sniffera uzyskany podczas skanowania programem <i>nsc5.exe</i> . Zaznaczono pojedynczą sekwencję pakietów charakterystyczną dla stosowanej metody skanowania. Wkleić obraz okna
Charakterystyka metody wykorzystanej przez program nsc5.exe (nazwa metody i uzasadnienie decyzji)

.....

5.6a (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu <i>nsc6.exe</i> Wkleić obraz okna
5.6b (poniżej) Obraz okna sniffera uzyskany podczas skanowania programem <i>nsc6.exe</i> . Zaznaczono pojedynczą sekwencję pakietów charakterystyczną dla stosowanej metody skanowania. Wkleić obraz okna
Charakterystyka metody wykorzystanej przez program nsc6.exe (nazwa metody i uzasadnienie decyzji)
5.7a (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu <i>nsc7.exe</i> Wkleić obraz okna
5.7b (poniżej) Obraz okna sniffera uzyskany podczas skanowania programem <i>nsc7.exe</i> . Zaznaczono pojedyncza sekwencję pakietów charakterystyczną dla stosowanej metody skanowania.
Charakterystyka metody wykorzystanej przez program nsc7.exe (nazwa metody i uzasadnienie decyzji) 5.8a (poniżej) Obraz okna wiersza poleceń z linią polecenia i raportem programu nsc8.exe
Wkleić obraz okna
5.8b (poniżej) Obraz okna sniffera uzyskany podczas skanowania programem <i>nsc8.exe</i> . Zaznaczono pojedynczą sekwencję pakietów charakterystyczną dla stosowanej metody skanowania.
Wkleić obraz okna
Charakterystyka metody wykorzystanej przez program nsc8.exe
(nazwa metody i uzasadnienie decyzji)
(nazwa metody i uzasadnienie decyzji) Własne uwagi, wnioski i propozycje dotyczące przebiegu ćwiczenia, mające na celu polepszenie procesu kształcenia:
Własne uwagi, wnioski i propozycje dotyczące przebiegu ćwiczenia, mające na celu
Własne uwagi, wnioski i propozycje dotyczące przebiegu ćwiczenia, mające na celu
Własne uwagi, wnioski i propozycje dotyczące przebiegu ćwiczenia, mające na celu
Własne uwagi, wnioski i propozycje dotyczące przebiegu ćwiczenia, mające na celu
Własne uwagi, wnioski i propozycje dotyczące przebiegu ćwiczenia, mające na celu