#### Generalisation

Tirtharaj Dash

Dept. of CS & IS and APPCAIR BITS Pilani, Goa Campus

September 9, 2021

#### Where we are:

Summary of the previous lecture:

• Backpropagation with tensor-level computation

I told you earlier that we build models for unseen data (generalisation). Today, we intend to know (albeit in brief):

- Model capacity and Model complexity
- Model selection
- Underfitting
- Overfitting

#### Generalisation

- The ability of a model to perform well on previously unobserved inputs is called *generalisation*.
- It is only possible if our model could discover general patterns that captures regularities in the underlying population from which our training set was drawn.
- Example: A model for predicting patients' dementia status from their genetic markers.
  - It is possible for a model to just memorise the entire genetic markers dataset.
  - But, this kind of model will not able to reliably predict the dementia status for an unseen patient.

#### Generalisation Error I

- We only have access to a training set to build a model from.
- We can compute some error measure on this training set.
- An optimisation procedure helps us in iteratively reducing the training error and obtain a (best) set of parameters:
  - **1** Given a training set,  $\mathcal{D}_{tr}$
  - 2 Randomly initialise model parameters,  $\mathbf{w}^{(0)}$
  - **3** While error is not *minimum*:
    - ① Update model parameters:  $\mathbf{w}^{(new)} \leftarrow \mathbf{w}^{(old)} \pm \Delta$
  - Return training error, model with w\*

These details are not relevant at this point:

- 1. We are assuming here a fixed structure  $\pi$  for our model.
- 2.  $\Delta$  is the amount of update to be done to  $\mathbf{w}^{(old)}$ .

#### Generalisation Error II

- The procedure in the previous slide is just 'optimisation'.
- Question: Is ML more than just optimisation?
  - Yes. In addition to the error on the training set, we also want to reduce the error on a (unseen) test set (also called, generalisation error).
- Generalisation error is defined as the expected value of the error on a new input.
  - The expectation is taken across different possible inputs, drawn from the distribution of inputs we expect the system to encounter in practice.

# Estimating Generalisation Error I

- We typically estimate it by measuring the model's performance on a test set of examples that were collected separately from the training set.
- Denoting the test set as  $\mathcal{D}_{te} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n^{(test)}}$ .
- Generalisation error is then:

$$\frac{1}{n^{(test)}} \sum_{i=1}^{n^{(test)}} L(y_i, \hat{y}_i)$$

where L denotes some loss measure.

# Estimating Generalisation Error II

#### Issue:

• If  $\mathcal{D}_{tr}$  and  $\mathcal{D}_{te}$  were collected arbitrarily; we cannot estimate the generalisation error.

#### Estimating Generalisation Error III

Solution: Assume that we are allowed to make some assumptions.

- $\mathcal{D}_{tr}$  and  $\mathcal{D}_{te}$  are generated by a probability distribution over datasets called the **data-generating process**.
- We make certain assumptions, known as **i.i.d.** assumptions:
  - The examples in each dataset are **independent** from each other.
  - $\mathcal{D}_{tr}$  and  $\mathcal{D}_{te}$  are **identically distributed**, drawn from same probability distribution as each other.

Note: I am not going to tell you how each  $y_i$  is obtained. It is actually sampled from a distribution. Please refer to the extra material that is available in the course page (in the context of linear regression; but, the principle is the same.)

## Estimating Generalisation Error IV

- These assumptions allow us to describe the data-generating process with a probability distribution over a single example.
- The same distribution is then used to generate every train example and every test example. We can call this shared distribution as  $p_{data}$ .
- This probabilistic framework and the i.i.d assumptions enable us to study the relationship betwee training error and generalisation error.

## Estimating Generalisation Error V

Connection between training error and generalisation error:

- Suppose we have a distribution  $p(\mathbf{x}, y)$ .
- $\mathcal{D}_{tr}$  and  $\mathcal{D}_{te}$  are obtained by repeated sampling from this  $p(\mathbf{x}, y)$ .
- For a randomly selected model with some fixed **w**, the expected training error and test error are exactly the same.
- The only difference is based on the name of the dataset: Train-set or Test-set.

There is no learning involved here. The model is fixed beforehand, unlike in machine learning, where a model is built from the train-set. See next:

## Estimating Generalisation Error VI

#### w is not known beforehand:

- We sample  $\mathcal{D}_{tr}$  and use it to choose **w** that reduces the error on this sample.
- Then, we sample  $\mathcal{D}_{te}$ .
- Under this process, the expected generalisation error is greater than or equal to the expected value of the training error.

## Estimating Generalisation Error VII

We determine how well our model will perform will be based on:

- How well it performs on the training set? (We want it to be small)
- We want this gap to be small)

The above two factors correspond to: underfitting and overfitting.

Note: The usage of the word 'small' is relative.

# Underfitting and Overfitting I

- Underfitting: the model is not able to obtain a sufficiently low error value on the training set.
- Overfitting: the gap between the training error and test error is too large.
- Underfitting and overfitting are related to model capacity.

## Underfitting and Overfitting II

- Capacity: Informally, a model's capacity is its ability to fit a wide variety of functions.
  - Low capacity models may not fit the training set.
  - High capacity models can overfit by memorizing some properties of the training set that do not serve them well on the test set.
- Model complexity: Model capacity is an informal term used for model complexity, albeit not synonymous.

## Underfitting and Overfitting III

- Model capacity is controlled by appropriately choosing a hypothesis space.
- *Hypothesis space*: Space of all functions (model structures) that the learning algorithm is allowed to select as being the solution.
- Examples:
  - A model with no hidden layer is limited to represent only simple function of the form:

$$f(\mathbf{x}; \mathbf{w}) = \sigma(\mathbf{x}\mathbf{w})$$

ullet A model with  $\ell$  layers can represent more complex functions:

$$f(\mathbf{x}; \mathbf{w}) = \sigma(\sigma(\dots \sigma(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}); \mathbf{w}^{(\ell)})$$

(This is serious abuse of notations!)

# Underfitting and Overfitting IV

- Occam's razor (c. 1287–1347): Among competing hypotheses that explain known observations equally well, we should choose the "simplest" one.
- VC dimension:
  - Vapnik-Chervonenkis dimension, named after Vladimir Vapnik and Alexey Chervonenkis.
  - It measures the capacity of a binary classifier.
  - Defined as the cardinality of the largest set of examples (denoted as n) that the binary classification algorithm can shatter, meaning, the algorithm can always learn a perfect classifier for any labelling of n data points.

## Underfitting and Overfitting V

• Example 1: For n=3, there are  $2^3=8$  possible labelling of these 3 points, such as  $\{0,0,0\}$  through to  $\{1,1,1\}$  (as shown below: circle: 1, circle: 0)



- If the hypothesis space is a set of linear classifier in two-dimension.
- The diagram above shows: There exist sets of 3 (non colinear) data points that can be shattered by the model, irrespective of the labelling used.

## Underfitting and Overfitting VI

• Example 2: For n = 4, there are  $2^4 = 16$  possible labellings.



- Notice that although you might get a linear classifier that can classify the points for some labelling of these 4 points.
- The linear classifier cannot shatter these 4 points, that is, not all possible labellings can be shattered by a linear model.

# Underfitting and Overfitting VII

#### • Ideal Model:

- It is an oracle that simply knows the true distribution  $p(\mathbf{x}, y)$ .
- Even this model will still incur some error on many problems, because of noise in the distribution.
- Also, the mapping from x to y maybe inherently stochastic, or maybe a
  deterministic function that involves other variables than those in x.
- The error incurred by an oracle making predictions from  $p(\mathbf{x}, y)$  is called the **Bayes error**.

Note: Computational Learning Theory (COLT) or Statistical Learning Theory presents significant theoretical aspect of these concepts. And, for this course, it is sufficient to know this much.

## Model Complexity I

- Determining what factors precisely consitute model complexity is a complex matter.
- But, at this point, we will adhere to the following:
  - A model with more parameters might be considered more complex.
  - A model whose parameters can take a wider range of values might be more complex.
  - A model that takes more training iterations is more complex, and one subject to early stopping (fewer training iterations) as less complex.
- Further, it is difficult to compare complexities across model classes (for example, decision trees vs. MLPs).

#### Model Complexity II

Influence of model complexity on overfitting and underfitting:



#### Model Complexity III

Factors affecting generalisability of a model class:

The number of tunable parameters When the number of tunable parameters, sometimes called the *degrees of freedom*, is large, models tend to be more susceptible to overfitting.

The values taken by the parameters When weights can take a wider range of values, models can be more susceptible to overfitting.

The number of training examples It is trivially easy to overfit a dataset containing only one or two examples even if your model is simple. But overfitting a dataset with millions of examples requires an extremely flexible model.

#### Model Selection

- Selecting a final model after evaluating several candidate models.
- Here we are concerned with selcting models from the same class such as MLPs.
- In MLPs, this means:
  - Comparing members that have been trained with different hyperparameter settings.
  - Example: compare models with across (a) numbers of hidden layers,
     (b) different number of hidden units, and (c) various choices of hte activation functions.
- Choice of a (best) final model is based on the model's performance on a *validation dataset*.