Linear algebra review

Daniel Hsu (COMS 4771)

Euclidean spaces

For each natural number n, the n-dimensional Euclidean space is denoted by \mathbb{R}^n , and it is a vector space over the real field \mathbb{R} (i.e., \mathbb{R}^n is a real vector space). Vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly dependent if there exist $c_1, \ldots, c_k \in \mathbb{R}$, not all zero, such that $c_1v_1 + \cdots + c_kv_k = 0$. If $v_1, \ldots, v_k \in \mathbb{R}^n$ are not linearly dependent, then we say they are linearly independent. The span of v_1, \ldots, v_k , denoted by $\operatorname{span}\{v_1, \ldots, v_k\}$, is the space of all linear combinations of v_1, \ldots, v_k , i.e., $\operatorname{span}\{v_1, \ldots, v_k\} = \{c_1v_1 + \cdots + c_kv_k : c_1, \ldots, c_k \in \mathbb{R}\}$. The span of a collection of vectors from \mathbb{R}^n is a subspace of \mathbb{R}^n , which is itself a real vector space in its own right. If $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly independent, then they form an (ordered) basis for $\operatorname{span}\{v_1, \ldots, v_k\}$. In this case, for every vector $u \in \operatorname{span}\{v_1, \ldots, v_k\}$, there is a unique choice of $c_1, \ldots, c_k \in \mathbb{R}$ such that $u = c_1v_1 + \cdots + c_kv_k$.

We agree on a special ordered basis e_1, \ldots, e_n for \mathbb{R}^n , which we call the *standard poordinate basis* for \mathbb{R}^n . This ordered basis for \mathbb{R}^n in terms of the system, as $v = (v_1, \ldots, v_n) = \sum_{i=1}^n v_i e_i$. The (Euclidean) inner product (or dot product) on \mathbb{R}^n will be written either using the transpose notation, $u^{\top}v$, or the angle bracket notation, $\langle u, v \rangle$. In terms of their coordinates $u = (u_1, \ldots, u_n)$ and $v = (v_1, \ldots, v_n)$, we have

coordinates $u = (u_1, \dots, u_n)$ and $v = (v_1, \dots, v_n)$, we have $\frac{\text{https://powcoder.com}}{\langle u, v \rangle} = \sum_{i=1}^{n} u_i v_i.$

$$\langle u, v \rangle \le ||u||_2 ||v||_2, \quad u, v \in \mathbb{R}^n,$$

as well as the polarization identity

$$\langle u, v \rangle = \frac{\|u + v\|_2^2 - \|u - v\|_2^2}{4}, \quad u, v \in \mathbb{R}^n.$$

The vectors e_1, \ldots, e_n are orthogonal, i.e., $\langle e_i, e_j \rangle = 0$ for $i \neq j$. Each e_i is also a unit vector, i.e., $||e_i||_2 = 1$. A collection of orthogonal unit vectors is said to be orthonormal, so the basis e_1, \ldots, e_n is orthonormal.

Linear maps

Linear maps $A : \mathbb{R}^n \to \mathbb{R}^m$ between Euclidean spaces \mathbb{R}^n and \mathbb{R}^m are written as matrices in $\mathbb{R}^{m \times n}$, using the standard coordinate bases in the respective Euclidean spaces:

$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{bmatrix}.$$

The adjoint $A^{\top} : \mathbb{R}^m \to \mathbb{R}^n$ of a linear map $A : \mathbb{R}^n \to \mathbb{R}^m$ is written using the transpose notation:

$$\langle u, Av \rangle = \langle A^{\mathsf{T}}u, v \rangle, \quad u \in \mathbb{R}^m; v \in \mathbb{R}^n.$$

In matrix notation, we also have

$$A^{\scriptscriptstyle op} = egin{bmatrix} A_{1,1} & \cdots & A_{m,1} \\ \vdots & \ddots & \vdots \\ A_{1,n} & \cdots & A_{n,m} \end{bmatrix}.$$

Note that $(A^{\top})^{\top} = A$. Composition of linear maps $A \colon \mathbb{R}^n \to \mathbb{R}^m$ and $B \colon \mathbb{R}^p \to \mathbb{R}^n$ is obtained by matrix multiplication: C = AB, where

$$C_{i,j} = \sum_{k=1}^{n} A_{i,k} B_{k,j}, \quad i = 1, \dots, m; j = 1, \dots, p.$$

The adjoint of the composition AB is the composition of the adjoints in reverse order: $(AB)^{\top} = B^{\top}A^{\top}$. In the context of matrix multiplication, vectors $v \in \mathbb{R}^n$ shall be regarded as column vectors, so

$$Av = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{m,1} & \cdots & A_{m,n} \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n A_{1,j} v_j \\ \vdots \\ \sum_{j=1}^n A_{m,j} v_j \end{bmatrix}.$$

If the j-th column of A is $a_j \in \mathbb{R}^m$ (for each j = 1, ..., n), then $Av = \sum_{j=1}^n v_j a_j$. Note that this is consistent with the transpose notation for inner products $u^{\top}v$. If the i-th row of A is a_i^{\top} for some $a_i \in \mathbb{R}^n$ (for each

with the transpose hotation for inner products
$$u \cdot v$$
. If the v -th row of A is a_i for some $a_i \in \mathbb{R}^n$ (for each $i=1,\ldots,m$), then $Av=(a_1^\top v,\ldots,a_m^\top v)$. The outer product of vectors $u \in \mathbb{R}^m$ and $v \in \mathbb{R}^n$ refers to $uv^\top \in \mathbb{R}^{m \times n}$: Assignment Project Exam Help
$$uv^\top = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix} = \begin{bmatrix} v_1 & \cdots & v_n \end{bmatrix}$$
. https://powcoder.com

Fundamental subspace

With every linear map $A: \mathbb{R}^n \to \mathbb{R}^m$ we associate four fundamental subspaces: range(A), range (A^{\top}) , null(A), and null (A^{\top}) . And range (A^{\top}) we associate four fundamental subspaces: range(A), is the subspace $\{Av: v \in \mathbb{R}^n\} \subseteq \mathbb{R}^m$. Its dimension is the rank of A, denoted rank(A). When $A \in \mathbb{R}^{m \times n}$ is regarded as a matrix, the range of A is the same as the column space of A (so if the columns of A are the vectors $a_1,\ldots,a_n\in\mathbb{R}^n$, range $(A)=\mathrm{span}\{a_1,\ldots,a_n\}$). The row space of A is the column space of A^{\top} . The null space of A, denoted null(A), is the subspace $\{v \in \mathbb{R}^n : Av = 0\} \subseteq \mathbb{R}^n$. We always have

$$\operatorname{rank}(A) = \operatorname{rank}(A^{\top})$$

and

$$n = \dim(\text{null}(A)) + \text{rank}(A).$$

In particular, if rank(A) = n, which is equivalent to the columns of A being linearly independent, then $\operatorname{null}(A) = \{0\}$. The subspaces $\operatorname{range}(A)$ and $\operatorname{null}(A^{\top})$ are orthogonal, written $\operatorname{range}(A) \perp \operatorname{null}(A^{\top})$, meaning every $u \in \text{range}(A)$ and $v \in \text{null}(A^{\top})$ have $\langle u, v \rangle = 0$. Similarly, range (A^{\top}) and null(A) are orthogonal.

We can obtain an orthonormal basis v_1, v_2, \ldots for range (A) using the Gram-Schmidt orthogonalization process, which is given as follows. Let a_1, \ldots, a_n denote the columns of A. Then for $i = 1, 2, \ldots$ (1) if all a_i are zero, then stop; (2) pick a non-zero a_j ; (3) let $v_i := a_j/\|a_j\|_2$; (4) replace each a_j with $a_j - \langle v_i, a_j \rangle v_i$.

Linear operators

A linear operator $A: \mathbb{R}^n \to \mathbb{R}^n$ (where range(A) is a subspace of the domain) is represented by a square matrix $A \in \mathbb{R}^{n \times n}$. We say A is singular if dim(null(A)) > 0; if dim(null(A)) = 0, we say A is non-singular. The *identity* map is denoted by I (or sometimes I_n to emphasize that it is the identity operator $I: \mathbb{R}^n \to \mathbb{R}^n$ for \mathbb{R}^n), and I is clearly non-singular. Its matrix representation is

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix},$$

i.e., every diagonal entry is 1 and every off-diagonal entry is 0. (A matrix is diagonal if all of its off-diagonal entries are 0.) A linear operator is non-singular if and only if it has an inverse, denoted A^{-1} , that satisfies $AA^{-1} = A^{-1}A = I$. (So a synonym for non-singular is invertible.) A linear operator A is self-adjoint (or equivalently, its matrix representation is symmetric) if $A = A^{\top}$. If A and B are non-singular, then so is their composition AB; the inverse of AB is $(AB)^{-1} = B^{-1}A^{-1}$. Also, if A is non-singular, then so is A^{\top} , and its inverse is denoted by $A^{-\top}$.

A linear operator A is orthogonal if A^{\top} is its inverse, i.e., $A^{\top} = A^{-1}$. From the matrix equation $A^{\top}A = I$, we see that if $a_1, \ldots, a_n \in \mathbb{R}^n$ are the columns of A, then A is orthogonal if and only if the vectors a_1, \ldots, a_n are orthonormal. If A is orthogonal, then for any vector $v \in \mathbb{R}^n$, we have $||Av||_2 = ||v||_2$ (Parseval's identity).

A linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ is a projection operator (or projector) if AA = A (i.e., A is idempotent), Ax = x for all $x \in \text{range}(A)$, and every $x \in \mathbb{R}^n$ can be written uniquely as x = y + z for some $y \in \text{range}(A)$ and $z \in \text{null}(A)$ (i.e., \mathbb{R}^n is the direct sum of range(A) and null(A), written $\mathbb{R}^n = \text{range}(A) \oplus \text{null}(A)$). A projector A is an arthogonal projector operator for arthoprojector A generic way to estain the orthoprojector A generic way to estain the orthoprojector A subspace S is to start with an orthonormal basis u_1, u_2, \ldots for S, and then form the sum of outer products $\Pi := \sum_i u_i u_i^{\top}$. For any orthoprojector Π , we have the Pythagorean theorem

https://powcoder.com

In particular, for any $v \in \mathbb{R}^n$ and $u \in \text{range}(\Pi)$,

Add Wethat powcoder

Put another way, the orthogonal projection of $v \in \mathbb{R}^n$ is the closest point in range(Π) to v.

Determinants

The determinant of $A \in \mathbb{R}^{n \times n}$, written det(A), is defined by

$$\det(A) = \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{i=1}^{n} A_{i,\sigma(i)},$$

where the summation is over all permutations σ of $\{1, \ldots, n\}$, and $\operatorname{sgn}(\sigma)$ is the sign of the permutation σ (which takes value either 1 or -1). When the n^2 entries of the matrix A are viewed as formal variables, the determinant can be regarded as a degree-n multivariate polynomial in these variables.

A linear operator A is non-singular if and only if $det(A) \neq 0$.

Eigenvectors and eigenvalues

A scalar λ is an eigenvalue of a linear operator $A : \mathbb{R}^n \to \mathbb{R}^n$ if there is a non-zero vector $v \neq 0$ such that $Av = \lambda v$. This vector v is an eigenvector corresponding to the eigenvalue λ . Note that corresponding eigenvectors are not unique; if v is an eigenvector corresponding to λ , then so is cv for any $c \neq 0$. Every

linear operator has eigenvalues. To see this, observe the following equivalences:

 λ is an eigenvalue of A \Leftrightarrow there exists $v \neq 0$ such that $Av = \lambda v$ \Leftrightarrow there exists $v \neq 0$ such that $(A - \lambda I)v = 0$ $\Leftrightarrow A - \lambda I$ is singular $\Leftrightarrow \det(A - \lambda I) = 0$.

The function $\lambda \mapsto \det(A - \lambda I)$ is a degree-n polynomial in λ , and hence it has n roots (where some roots may be repeated, and some may be complex).¹ The determinant of $A \in \mathbb{R}^{n \times n}$ is the product of its n eigenvalues.

An important special case is when A is self-adjoint (i.e., A is symmetric). In this case, all n of its eigenvalues $\lambda_1, \ldots, \lambda_n$ are real, and all corresponding eigenvectors are vectors in \mathbb{R}^n . In particular, there is a collection of n corresponding eigenvectors v_1, \ldots, v_n , where v_i corresponds to λ_i , such that v_1, \ldots, v_n are orthonormal, and $A = \sum_{i=1}^n \lambda_i v_i v_i^{\mathsf{T}}$. When all of the eigenvalues are non-negative, we say A is positive semi-definite (psd); when all of the eigenvalues are positive, we say A is positive definite.

The trace of a matrix $A \in \mathbb{R}^{n \times n}$, denoted $\operatorname{tr}(A)$, is the sum of its diagonal entries. The sum of the n eigenvalues of A is equal to the trace of A. For symmetric matrices A, this fact can be easily deduced from the fact that $\operatorname{tr}: \mathbb{R}^{n \times n} \to \mathbb{R}$ is linear. Indeed, let v_1, \ldots, v_n be orthonormal eigenvectors corresponding to the eigenvalues $\lambda_1, \ldots, \lambda_n$ of A. Then

The last step uses the fact that $\operatorname{tr}(v_iv_i^{\scriptscriptstyle \top}) = \operatorname{tr}(v_i^{\scriptscriptstyle \top}v_i) = v_i^{\scriptscriptstyle \top}v_i = 1$. This is a special case of a more general identity: if A and B are national standard on the square square than $\operatorname{tr}(AB) = \operatorname{tr}(BA)$.

Add WeChat powcoder

¹If you are not a fan of determinants, you may prefer the approach from http://www.axler.net/DwD.pdf to deduce the existence of eigenvalues.