

Canada

RADC-TR-78-147. Vol II (of two) Final Technical Report September 1978

PARAMETRIC ANTENNA ANALYSIS SOFTWARE PACKAGE Computer Program Documentation and User Manuals

Robert J. Hancock John R. Fricke

Vanderbilt University

D D CILLER OF SO 1978

1 12 - Gm

Approved for public release; distribution unlimited.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

Best Available Copy

Jacob 2005 This report has been reviewed by the RADC Information Office (OI) and is releasable to the National Technical Information Service (NTIS). At NTIS it will be releasable to the general public, including foreign nations. RADC-TR-78-147, Vol II (of two) has been reviewed and is approved for publication. Donald a. Hildebrand APPROVED: DONALD A. HILDEBRAND Project Engineer gover 47 Ryenon APPROVED: JOSEPH L. RYERSON

Technical Director Surveillance Division

FOR THE COMMANDER:

JOHN P. HUSS Acting Chief, Plans Office

John S. Huss

If your address has changed or if you wish to be removed from the RADC mailing list, or if the addressee is no longer employed by your organization, please notify RADC (OCDR) Griffiss AFB NY 13441. This will assist us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

(19), TR-18-147-VOL-2/

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
(181	DADOL WD 70 1/7 V-1 TT /-5 /1	3. RECIPIENT'S CATALOG NUMBER $(\mathcal{L}\mathcal{L}_{m{s}})$	
(6)	PARAMETRIC ANTENNA ANALYSIS SOFTWARE PACKAGE, Computer Program Documentation and User Manuals.	S. TYPE OF REPORT & PERIOD COVERED Final Technical Report	
Щ	The state of the s	N/A	
(10)	7. AUTHOR(*) Robert J. /Hancock John R. / Fricke	8. CONTRACT OR GRANT NUMBER(*) F30602-75-C-0122	
,	P.O. Box 1655, Station B Nashville TN 37235	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORLDINIT NUMBERS 62702F (7)40 95670017	
	II. CONTROLLING OFFICE NAME AND ADDRESS Rome Air Development Center (OCDR)	September 1978	
	Griffiss AFB NY 13441	13. NUMBER OF PAGES. 188	
	14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Same	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE N/A	
	Approved for public release; distribution unlimited.		
	17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)		
	Same		
	18. SUPPLEMENTARY NOTES		
	RADC Project Engineer: Donald A. Hildebrand (OCDR		
	This effort was conducted under the RADC Post-Doctoral Program		
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Large Aperture Antennas Numerical Analysis Fast Fourier Transform Computer Programs Parametric Analysis		
	At the present time many programs exist that calculate radiation patterns of particular aperture-type antenna systems or configurations. However, a new set of software is often needed for each antenna that is analyzed. The program described in this report is an effort to overcome this problem, particularly for large aperture array antenna systems. The software package described herein is capable of modeling a wide variety of antenna configurations. The key		

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

goals were speed, accuracy, versatility, and ease of use.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

256 740

< B

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20 (Cont'd)

The software described provides a tool for accurate quantitative as well as qualitative aperture antenna analysis. Although intended primarily for far-field pattern analysis of large discrete planar arrays, the package can also be used to model reflector antenna systems and optical systems. Any aperture which can be adequately modeled by an array of up to 1000×1000 sample points can be treated via the software package.

The package has been designed to enable rapid parameter variations for various analytic purposes. Many commonly used factors, such as Taylor and Bayliss weighting functions; aperture shapes, such as rectangular, circular and elliptical, as well as randomizing and statistical weightings for either amplitude or phase characteristics are built into the program.

The report briefly reviews the theory involved, the parameters available, input and output requirements. Examples to illustrate usage are provided, as is a complete User Manual for the software package.

UNCLASSIFIED

n in the contraction of the cont

TABLE OF CONTENTS

PPENDIX	<u>TITLE</u> <u>PACE</u>	=
4	PAAS USER MANUALS	L
	FFT2DX	3
	FILMOD)
	PDFESTR	L
	PLARY	5
	PLTDVR37	7
	RNDERR4:	L
	RTI44	7
	TBLS59	5
5	COMPUTER PROGRAM DOCUMENTATION6	3
	BESS6	7
	CHOP	L
	CZFFT	5
	EXPND	1
	FFT2D8	5
	FFT2DX99	7
	FILMOD10	1
	GAM	9
	PDFESTR	3
	PLARY	9
	PLOTD	7
	PLTDVR14	3
	RNDERR	1
	RRAND	7
	RTI416	5
	TBLS	5
	WEIGHT18	5

LIST OF FIGURES

NUMBER	TITLE		PAGE
FFT2D-1	Organization of input data by linear FFT algorithm	required	88
FFT2D-2	Organization of input data by 2-D FFT algorithm	required	88
FFT2D-3	Organization of input data blocks required by 2-D FFT		90
FFT2D-4	Organization of input data block measurements for the algorithm	•	90
FFT2D-5	Far-field output data from	2-D FFT	91

LIST OF TABLES

NUMBER	TITLE		
1	Honeywell GCOS File Management Supervisor Status Codes	2	
2	Examples of Relative Value of Letters, Numbers, and Symbols	52	
RTI4-1	Examples of Relative Value of Letters, Numbers, and Symbols	167	

APPENDIX 4

PAAS USER MANUALS

In this appendix the user manuals for the PAAS software are presented. The user manuals are arranged in alphabetical order and each is self contained except for Table 1. Table 1 is a list of Honeyvell GCOS file management supervisor status codes which are used to indicate errors in file handling to the user. Since disc files (PRMFL's) are used by all PAAS software modules this table is printed one time here for reference by all the user manuals. All of the modules discussed herein except PLTDVR can be used via any remote terminal compatible with the RADC H6180 GCOS/TSS. The module PLTDVR is designed to transfer plots to the Dedicated User Interface Subsystem (DUIS).

All TSS file references made herein are to the user master catalog BECACD01 in the RADC H6180 GCOS system. In this documentation all RUN and OLD commands are shown assuming the user has previously accessed the named file or has a copy of the file under his user master catalog. The procedure for accessing files that are stored under BECACD01 is as follows:

From SYSTEM level enter YFORT and then enter the ACCESS subsystem by typing:

ACCE

1

The H5180 will reply:

Function?

Enter the following:

AF, BECACD01/PLARY, R

TABLE 1

HONEYWELL GCOS FILE MANAGEMENT SUPERVISOR STATUS CODES

Status codes:

4000	NO ERRORS		
4001	NAME NOT IN	MASTER CATALOG	
4002	I/O ERROR ON	DEVICE XXX SA = NNNNNN	
4003	PERMISSIONS	DENIED	
4004	FILE BUSY: T		
4005	INCORRECT CA	T/FILE DESCRIPTION AT AAAAAA	
4006	LLINK SPACE	EXHAUSTED, DEVICE XXX	
4007	UNDEFINED DE	VICE YYY 22222Z	
4010	LINK SPACE E	XHAUSTED, DEVICE XXX	
4011			
4012		ed is than allocated	
4013		T GR THAN ALLOWED	
4014	PASSWORD REQ	UIRED AT AAAAAA	
	PASSWORD AAA	AAA AT AAAAAN INCORRECT	
4015		N ABORT STATUS	
		BE ALLOCATED FOR TS USE	
4017	SEEK ERROR O	N DEVICE XXX SA = NNNNNN	
4020	FAILURE IN N	AME SCAN (IMP.)	
4021	UNDEFINED DE	VICE (IMP.) TABLE CHKSUM ERROR	
4022	DEVICE LINK		
4023	INCONSISTENT	FSW BLOCK COUNT	
4024	THURDHAL LINK WEDLE CUCH EDDOD		
4025	REQUESTED ENTRY NOT ON-LINE		
4026	NON-STRUCTUR	ED FILE ENTRY CTIVE STATUS	
4030	ILLEGAL PACK	TYPE	
4031	ACCESS GRANT	ED TO I-D-S FILE	
	CAT/FILE SEC		
4039	ILLEGAL CHAR	ACTER IN CAT/FILE NAME FILE LIST REQUEST	
		FILE LIST REQUEST	
4030	AFT IS FULL	711 1 mm	
4037	FILE ALREADY		
	MAXIMUM PAT SIZE EXCEEDED		
4042	INVALID FILE CODE OR PAT PTR INVALID CATALOG BLOCK ADDRESS		
4043	INVALID CATALOG BLOCK ADDRESS		
4045	PERMISSION DENIED - SHARED FILE		
4043	INVALID SPACE IDENTIFIER CHECKSUM ERROR - DEVICE XXX SA = NNNNNN		
	DEVICE XXX R		
4032	DEVICE AND R		
WHERE:	XXX	=DEVICE NAME (ST1.DS1)	
	NNNNNN	=DEVICE NAME (ST1,DS1,) =OCTAL REPRESENTATION OF THE SEEK ADDRESS	
	λλλλλλ	=12 BCD CHARACTERS OF THE CATALOG ELEMENT IN ERROR	
	YYYY	=TYPE /OR/ NAME	
	22222		

The H6180 will reply:

Successful Function?

Type a carriage return and control will return to YFORT. In the above example the file named PLARY (shown underlined) was accessed. For any other file just substitute the appropriate file name.

Seriorkius on one on the contraction of the contrac

modern and any other posterior of the posterior of the second of the sec

With the Countries of t

PROGRAM FFT2DX

I. PURPOSE

The program FFT2DX transforms an antenna aperture distribution into its equivalent far-field distribution. FFT2DX generates the far-field distribution via a two-dimensional Fast Fourier transform of the aperture illumination function. The far-field is stored on a PRMFL designated by the user.

II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	<u>use</u>
01	Input PRMFL	Aperture Input
02	Output PRMFL	Far-field Output
03	Temporary disk file	Intermediate FFT Storage
Ø 5	Batch data deck	Program Input Data
Ø 6	Batch system output	Computer Output

III. OPERATING PROCEDURE

- 1. Enter the TSS CARDIN system
- 2. The message

OLD OR NEW?

is printed on the operator's console:

3. Type:

OLD FFT2DX

TO DESCRIPTION OF THE SECOND S

The program FFT2DX will be loaded into the current file.

4. Co to line 1460 and change the PRMFL name that follows the characters

'S:PRMFL:01,R/W,R,

to the appropriate PRMFL name which contains the input aperture which was created using PLARY, RNDERR or FILMOD.

5. Co to line 1470 and change the PRMFL name that follows the characters

'S:PRMFL:02,R/W,R,

to the appropriate PRMFL name in which the far-field energy distribution is to be stored.

- 6. Go to line 1500 and change the value of the input parameters in the namelist FFT to correspond to the specific input aperture and desired far-field output.
 - N2 The power of 2 which determines the number of points on the side for the 2-d transform
 - LRJ The number of blocks in the x-direction of the input aperture
 - LRK The number of blocks in the y-direction of the input aperture.
- 7. Co to line 1510 and change the values of the parameter in the namelist FILOUT to correspond to the desired blocks of the far-field output to be stored in the output PRNFL.

LRJIN - The number of blocks to be skipped in the x-direction, starting on the left, before beginning to store the output.

LRJWID - The width in blocks of the desired far-field output.

LRKIN - The number of blocks to be skipped in the y-direction, starting at the top, before beginning to store the output.

LEKWID - The height in blocks of the desired far-field output.

- E. Ac this point the job definition file is complete and the user may SAVE, RESAVE and/or RUN the current file.
- 9. Type:

RUN

to run the prepared file.

10. The message

SNUMB XXXXT

is printed, where XXXXT is the job identification number and is used to learn the status of the job at later points in time.

IV. SUBPROGRAMS REQUIRED

FFT2D

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. This program must be executed under Honeyvell GCOS TSS CARDIN subsystems.

<u>Carried Comments of the Comme</u>

- 2. N2 must be in the range $4 \le N2 \le 10$.
- 3. LRJ, LRK must be exactly the same value as was specified in loading the aperture.
- 4. In picking values for LRJIN, LRJWID, LRKIN, LRKWID remember that the size of the output PRMFL must be large enough to hold all of the specified output.
- 5. The input PRMFL and the output PRMFL must be in different files.

PROGRAM FILMOD

I. PURPOSE

The program FILMOD allows the user to modify a previously generated aperture that has been stored in a permanent disk file (PRMFL). This program allows the user to: (1) list element values, (2) change element values (one by one), or (3) 'punch holes' with a radius and center both specified by the user. The modified aperture is then stored on a user designed PRMFL which may be the same as the input file.

II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	<u>use</u>
01	Input PRMFL (Optional output PRMFL)	Aperture Input (Optional output)
Ø2	Output PRMFL	Aperture Output
05	Time sharing terminal keyboard	User Input
Ø 6	Time sharing terminal printer	Computer Output

III. OPERATING PROCEDURE

- 1. Enter TSS YFORT
- 2. Type

RUN FILMOD

3. The message

INPUT FILE NAME

is printed.

The user responds with the name of an existing PRMFL which contains the aperture to be modified. The file name must be followed by a semicolon(;).

4. If the PRMFL name is not acceptable to the computer the message

UNSUCCESSFUL ATTACH ISTAT = X

is printed, where X is the first status word returned by the File Management Supervisor (see the <u>Time Sharing System Programmers Reference Manual</u>, BR39, p.(3-39) or Table 1 herein) or will contain:

- 1 = file is currently open
- 2 = teletypewriter requested in batch mode
 (illegal)
- 3 = additional memory needed, request denied
 (time sharing user will be terminated)
- 4 = CATFIL all blanks

NOTE: See Honeywell series 600/6000 Fortran manual, BJ67, p.(6-35) - (6-36) for more details on the subroutine ATTACH.

After the message is printed the program returns to step 3.

5. If the PRMFL name in step 3 is accepted the message

OUTPUT FILE NAME

is printed.

The user responds with the PRMFL name in which he wishes the output to be stored. The user may specify the input file and output file as the same file if he wishes. The file name must be followed by a semicolon(;). If the file name is not acceptable the program will go through step 4 and return to step 5 so that the user may try another file name. Otherwise the program will proceed to step 6.

6. The bissesse

IRO, LRK

is printed.

LRJ - The width of the input aperture measured in blocks.

LRK - The height of the input aperture measured
 in blocks.

NOTE: The numbers entered for LRJ, LRK must be exactly the same as the values specified in the program PLARY which originally loaded the aperture file.

7. The message

MODIFY OR HOLE? (0 or 1)

is printed.

The program begins the question and answer sequence for modifying individual elements (Proceed to step 8).

PARTY SERVICE STREET, SERVICE

The program begins the question and answer sequence for making holes in the aperture (Proceed to step 18).

8. The message

IBLK

is printed.

The user must respond with the lowest block number in which he wishes to make any modifications. Each subsequent request for IBLK must be answered with a larger number than the previous response.

9. The message

ANY ELEMENTS LISTED? (Y or N)

is printed.

- Y The user wishes to have the values of some of the elements in the specified block listed.
- N No elements are listed (Proceed to step 12).

10. The message

JSTRT, KSTRT, JSTP, KSTP

is printed.

JSTRT - The horizontal coordinate to begin the value listing.

KSTRT - The vertical coordinate to begin the value listing.

Example: (JSTRT, KSTRT) = (1, 1) if the user wishes to begin in the upper left hand corner.

JSTP - The horizontal coordinate to end the value listing.

KSTP - The vertical coordinate to end the value listing.

Example: (JSTP, KSTP) = (16, 16) if the user wishes to end in the lover right hand corner.

NOTE: The user must give all coordinates starting from the upper left hand corner with (1, 1) going to the lower right hand corner with (16, 16). As an example, if the user wished to list the values of the whole block (256 values) he would type

1, 1, 16, 16

in response to the message.

The value listing is printed in two columns with the real part of the element value in the left column and the imaginary part in the right column. The values are double spaced with one element per line starting with the element (JSTRT, KSTRT) and proceeding to (JSTP, KSTRT). The next value will be (JSTRT, KSTRT + 1) and so forth until (JSTP, KSTP) is reached.

11. The message

ANY ELEMENTS CHANCED? (Y or N)

is printed.

- Y The user 'wishes to change some element

HINK SENIOR SENI

values.

(Proceed to step 12)

N The user does not wish to change any element value.

(Proceed to step 14)

12. The message

HOW MANY ELEMENTS CHANGED?

is printed.

The user responds with the number (up to 100) that he wishes to change in the specified block. If he wishes to change more than 100 the answer to step 14 must be Y. If the user responds with 0 the program will jump to step 15.

13. The message

IELJ, IELK, VREAL, VIMG

is printed.

IELJ - The horizontal coordinate of the element
to be changed.

TELK - The vertical coordinate of the element to be changed.

NOTE: The coordinate locations are specified according to the explanation given in step 10.

VREAL - The real part of the new element value.

VING - The imaginary part of the new element value.

The above message is repeated the number of times specified in step 12 for the number of elements to be changed.

14. The message

ANY MORE MODS OR LIST? (Y or N)

is printed.

Y The user wishes to list or modify more elements.

Return to step 9.

= N The user is finished with this block.

The program proceeds to step 15.

15. The message

ANOTHER BLOCK? (Y or N)

is printed.

■ Y The user wishes to list or modify the values of some elements in another block.

Return to step 8.

The user is finished listing or modifying values of the elements in the aperture.

Proceed to step 16.

16. The message

ANY HOLES? (Y or N)

is printed.

- Y The user wishes to make holes in the aperture.

Proceed to step 17.

- N The user is finished with the aperture changes.

Proceed to step 21.

17. The message

ICNTJ, ICNTK

is printed.

ICNTJ - The coordinate for the center of the hole
 in the horizontal directions.

ICNTK - The coordinate for the center of the hole
in the vertical direction.

NOTE: Coordinates for the center of the holes are given with respect to the upper left corner element increasing to the right and down. The upper left corner element has the coordinates

(ICNTJ, ICNTK) = (1, 1)

Example: If the center of the hole were to be in the lower left corner of a 64 x 64 element aperture the coordinates would be

(ICNTJ, ICNTK) = (1, 64)

18. The message

XHOLE

is printed.

XHOLE - The radius of the hole to be 'punched' in the aperture.

19. The hole is punched in the aperture and the following message is printed

ANOTHER HOLE? (Y or N)

The user responds with either of the following:

- Y The user wishes to have another hole punched.

Return to step 17.

= N The user is finished punching holes in the specified aperture.

20. The message

ANY ELEMENTS CHANGED? (Y or N)

is printed.

Y The user vishes to list or modify some element values in the specified aperture.

Return to step 8.

- N The user is finished with the aperture changes.

21. The message

ANOTHER OUTPUT GENERATED? (Y or N)

is printed.

- Y The user vishes to generate another output

aperture from the original input aperture.

Proceed to step 22.

N The user is finished with the original input file.

Proceed to step 23.

22. The message

DETACH OUTPUT FILE ISTAT - X

is printed, where the detach is successful if X = 0; otherwise X = 1.

Return to step 5.

23. The message

ANOTHER FILE MODIFIED? (Y or N)

is printed.

Y The user wishes to begin the program again with a new input file.

Return to step 3.

= N The user is finished with the program.

In both cases the message

DETACH OUTPUT FILE ISTAT = X

DETACH INPUT FILE ISTAT = X

is printed, where if the detach is successful X = 0; otherwise X = 1.

IV. SUBPROGRAM REQUIRED

None

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. If the input file and the output file are the same, then an affirmative answer in step 21 to the question

ANOTHER OUTPUT CENERATED?

causes the second generated output to be a modification of the first output. This is a result of the fact that the first modification is written over the original aperture.

2. If the response to the question

HOW MANY ELEMENTS CHANGED?

in step 12 is less than zero the program jumps to step 15. If the response is greater than 100 the program will return to the beginning of step 12.

 This program can be executed only under Honeywell GCOS TSS YFORT subsystem.

Same some substitution of an absolution section of the section of the section of the section of the section of

PROGRAM PDFESTR

1. PURPOSE

The program PDFESTR generates a histogram of the radiating elements in a statistically loaded aperture. The width of each annulus may be varied and the center of the annuli may be specified.

II. PERIPHERAL DEVICES REQUIRED

<u>LUD</u>	NAME	USE
01	User PRMFL	Input Aperture
05	Time sharing keyboard	terminal User Input
Ø 6	Time sharing printer	terminal Computer Output

III. OPERATING PROCEDURES

- 1. Enter TSS YFORT
- 2. Type:

RUN PDFESTR

3. The message

LRJ, LRK

is printed.

LRJ - Number of blocks in the x-direction (horizontally)

LRK - Number of blocks in the y-direction
 (vertically)

4. The message

OFSTJ, OFSTK

is printed.

OFSTJ - Value added to the calculated center of the aperture to offset the origin horizontally.

OFSTK - Value added to the calculated center of the aperture to offset the origin vertically.

5. The message

INPUT FILE

is printed.

The user should respond with an existing PRMFL which contains a statistically loaded aperture. Follow the entry with a semicolon(;).

Example:

Broken to the state of the local section and an amount

=/SUBCATSPSWRD/FILENAMSPSWRD;

If the file name is improper them the message

ATTACH FAILED ISTAT - X

is printed. Where X is the first status word returned by the File Management Supervisor (see the Time Sharing System Programmers Reference

Manual, BR39, p.(3-39) or Table I, herein) or vill contain:

- 1 = file is currently open
- 2 = teletypewriter requested in batch mode (illegal)
- 3 = additional memory needed, request denied (time sharing user will be terminated)
- 4 CATFIL all blanks

NOTE: See Honeywell series 600/6000 Fortran manual, BJ67, p. (6-35) - p. (6-36) for more details on the subroutine ATTACH.

If the file name is unacceptable the program will return to the beginning of step 5. Otherwise, proceed to step 6.

6. The message

RINC, RLIM

is printed.

RINC - The incremental radius or annuli width used in generating the histogram values.

RLIM - The maximum radius of interest.

7. The message

ICON, NDPACK

is printed.

ICON - Mode flag

- = -1 The program halts
- Ø Histogram data is normalized to give a unity cummulative distribution
- Histogram data is converted to probability density estimate data. The new data is divided by the product of the cell width and the total number of elements.
- = 2 Raw histogram data.
- NDPACK The number of incremental radius histogram cells, RINC, combined to make each output histogram cell.
- 8. The program repeats to step 7.

IV. SUBPROGRAMS REQUIRED

None

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

- This estimator can only be used on apertures that have been statistically loaded.
- 2. The program TBLS can be used to compare the histogram values of an aperture with similar values calculated for the particular weighting function used to load the aperture. This comparison gives some degree of 'goodness' for the particular load.

PROGRAM PLARY

I PURPOSE

The program PLARY loads a PRMFL with a user specified antenna aperture illumination function.

II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
0 1	User PRMFL	Aperture Output
Ø 5	Time sharing terminal keyboard	User Input
0 6	Time sharing terminal printer	Computer Output

III. OPERATING PROCEDURES

- 1. Enter TSS YFORT
- 2. Type:

RUN PLARY

3. The message

OUTPUT FILE NAME

is printed.

The user should respond with an existing PRMFL name which is large enough to store the aperture. Follow the entry with a semicolon(;).

Example:

-/SUBCATSPSWRD/FILENAMSPSWRD;

If the file name is improper then the message

ATTACH FAILED ISTAT - X

is printed, where X is the first status word returned by the File Management Supervisor (see the Time Sharing System Programmers Reference Manual, BR39, p.(3-39) or Table 1 herein) or will contain:

- 1 file is currently open
- 2 = teletypewriter requested in batch mode
 (illegal)
- 3 = additional memory needed, request denied
 (time sharing user will be terminated)
- 4 CATFIL all blanks

NOTE: See Honeywell series 600/6000 Fortran manual, BJ67, p.(6-35) - p.(6-36) for more details on the subroutine ATTACH.

If the file name is unacceptable the program will return to the beginning of step 3. Otherwise proceed to step 4.

4. The message

STATISTICAL TAPER?

is printed. The user responds either Y (yes) or N (no).

YES The user wishes to load the array using a space tapered or 'thinned' loading technique. Proceed to step 5.

NO The user wishes to load the array using element to element amplitude tapering. Proceed to step 6.

5. The message

KKK, MAD1, JRND

is printed.

- KKK This value is the probability that an element will occur at the normalized peak of the design weighting function. (Usually KKK = 1.0).
- MAD1 The starting address for selecting random numbers from the random number array (1≤MAD1≤120).
- JRND Random number generator initialization constant ($0 \le JRND \le 2^{36} 1$).

6. The message

IAPTFL

is printed.

The user responds with a number which determines the shape of the aperture.

- = 1 circular
- = 2 elliptical
- = 3 rectangular

7. If IAPTFL = 1, the message

XEDGE, XHOLE

is printed.

XEDGE = Outside radius of the aperture.

Proceed to step 10.

8. If IAPTFL = 2, the message

NMAJOR, NMINOR, XHOLE

is printed.

NMAJOR - Length of the semi-major elliptical axis.

NMINOR = Length of the semi-minor elliptical axis.

XHOLE = Radius of a hole centered at the
 intersection of the major and minor axes
 (For no hole, XHOLE = 0.0).

Proceed to step 10.

9. If IAPTFL = 3, the message

NWIDTH, NHIGH

is printed.

NWIDTH - Width of the rectangular aperture.

NHICH - Height of the rectangular aperture.

10. The message

IVTFLG

is printed.

The user responds with a number which represents the desired weighting function.

- 0 no weighting function
- = 1 cosine to a power on a pedestal
- 2 Blackman weighting function
- 3 Kaiser weighting function
- = 4 triangular weighting function
- = 5 Taylor weighting function
- = 6 Bessel weighting function
- = 7 cubic weighting function
- = 8 Bayliss weighting function
- 11. If IWTFLC = 0, proceed to step 21.
- 12. If IAPTFL = 1, the message

WTRAD

is printed.

The user responds with the desired radius of the veighting function.

Proceed to step 14.

13. If IAPTFL = 2, or IAPTFL = 3, the message

ZJRAD, ZKRAD

is printed.

ZJRAD - Half the span of the weighting function in the x-direction.

ZKRAD - Half the span of the weighting function in the y-direction.

NOTE: These refer to the elliptical and rectangular weighting functions which are products of the orthogonal weighting functions.

14. If INTFLC = 1, the message

WTPED, NWTPOW

is printed.

WTPED - The height of the pedestal.

NWTPOW - The power of the cosine.

Proceed to step 21.

- 15. If IWTFLG = 2, proceed to step 19.
- 16. If IWTFLC = 3, the message

VKASIR

is printed.

WKASIR The Kaiser variable for the trade-off between mainlobe width and sidelobe amplitude.

Proceed to step 21.

17. If IWTFLG = 4, proceed to step 21.

18. If IVTFLG = 5, the message

DB, NBAR

is printed.

DB - Sidelobe in dB with reference to the main lobe.

NBAR - Number of zeros used in approximating the Dolph-Chebyschev weighting distribution.

Proceed to step 21.

19. If IVTFLC = 6, the message

BESCAL, BESEDG

is printed.

BESCAL - The maximum amplitude at the center of the aperture.

BESEDG - The scale factor used in calculating the argument for evaluating the Bessel function for the actual radial location on the aperture.

Proceed to step 21.

20. If IWTFLC = 7, the message

CUBK, WTRAD

is printed.

CUBK - The amplitude scaling constant.

WTRAD - The half span of the weighting function.

21. The message

NBITS

is printed.

NBITS - The number of bits used to control the digital phase shifters.

22. The message

ANY BEAM STEERING?

is printed.

The user responds with a Y(yes) or an N(no).

23. If the response in step 22 is Y the message

DELPHJ, DELPHK

is printed.

DELPHJ - The beam steering in degrees in the x-direction.

DELPHK - The beam steering in degrees in the y-direction.

If the response to step 22 is N proceed to step 24.

24. The message

QUADRATIC ERROR?

is printed.

The user responds Y(yes) or N(no).

25. If the response to step 24 is Y, the message

PHERK, PHERY

is printed.

PHERX - The maximum phase error in degrees at the edge in the x-direction.

PHERY - The maximum phase error in degrees at the edge in the y-direction.

If the response to step 24 is N then proceed to step 26.

26. The message

BESSELL ERROR?

is printed.

The user responds Y(yes) or N(no).

27. If the response to 26 is Y, the message

BESERR, BSCAL

is printed.

BESERR - The maximum phase error in degrees at the center of the aperture.

BSCAL - The scaling factor used in calculating the argument for evaluating the Bessell function from the actual radial location on the aperture.

The solution is a second of the second of th

28. The message

LRJ, LRK

is printed.

LRJ - The number of blocks in the x-Jirection.

LRK - The number of blocks in the y-direction.

- 29. A message is now printed which shows the user what values he assigned to the program parameters and will be used in calculating the aperture illumination pattern.
- 30. The message

DETACH ISTAT - K

is printed after the aperture is loaded. X = 0 if the detach was successful; otherwise it is 1.

31. Program aperture terminate, and the user is returned to build mode under TSS YFORT. This is indicated by an asterisk (*).

IV. SUBPROCRAMS REQUIRED

EXPND

BESS

CAM

WEIGHT

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. If the weighting function span is less than the aperture span then those elements outside the weighting function span are set to zero.

2. The Kaiser variable, WKASIR, should be within the range

2 \leq WKASIR \leq 10

3. The number of zeros, NBAR, in the Taylor approximation must be in the range

3 ≤ NBAR ≤ 20

- 4. LRJ and LRK must be even or the message LRJ, LRK will be retyped and the user must respond with two even numbers.
- 5. It should be noted that if the user has specified a rather complex aperture illumination pattern (Example: a large circular aperture (HEDGE = 40.0) with a Taylor distribution (NBAR = 20)) the time required to load may be quite long (perhaps 5 minutes).
- 6. This program can be executed only under Honeywell GCOS TSS YFORT subsystem.

PROCRAM PLTDVR

I. PURPOSE

The program PLTDVR formats either an aperture illumination or a far-f.eld energy distribution that is stored in a permanent dick file (PRMFL) for making pseudo-3d plots using the DUIS. The data is formatted and transmitted to the DUIS for recording and subsequent production of 3d plots.

II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
01	Input PRMFL	Aperture or far-field input
Ø 5	Time sharing keyboard	terminal User Input
Ø 6	Time sharing printer	terminal Computer Output

III. OPERATING PROCEDURE

Load RJE program into BUIS and start program execution. See User's Manual on RJE-300 or RJE-1200.

- 1. Enter TSS YFORT
- 2. Type

RUN PLTDVR

3. The message

INPUT FILE NAME?

is printed. The user should respond with the

name of an existing file which contains the data to be formatted and recorded. The file name must be followed with a semicolon(;). If the user types STOP the program will terminate execution and the user is returned to build mode under TSS YFORT. This is indicated by an asterisk(*).

4. If the file name is not acceptable the message

UNSUCCESSFUL ATTACH ISTAT - X

is printed, where X is the first status word returned by the File Management Supervisor (see the <u>Time Sharing System Programmers Reference Manual</u>, BR39, p.(3-39), or Table 1 herein) or will contain:

- 1 = file is currently open
- 2 = teletypewriter requested in batch mode (illegal)
- 3 = additional memory needed, request denied
 (time sharing user will be terminated)
- 4 = CATFIL all blanks
- If the file name in step 3 is accepted the message

JVID, JVIDSP, NBMAX

is printed.

- JWID The width in blocks of the part of the array to be formatted and transferred
- JWIDSP The width in blocks of the total input array

NBMAX - The logical record number of the last block to be transferred.

If JWIDSP is greater than 10 the value of JWIDSP is set to 10 and the following warning message is printed:

JWIDSP > 10...SET TO 10

If JWIDSP is greater than JWID, the value of JWIDSP is set to JWID and the following warning message is printed:

JWIDSP > JWID...SET JWIDSP=JWID

6. The message

Enter FIRST LREC, ISCN

is printed.

- FIRST LREC The logical record of the block in the upper left corner of the part of the array to be formatted and transferred. If the response is -1 the program transfers to step 8.
- ISGN = 0 data is processed for magnitude
 plotting
 - = 1 real component is processed for bipolar plotting.
- 7. The data transmission to the DUIS now begins.
 When all of the requested data has been transmitted the Tektronix display will beep once and erase. The user should then press carriage return and the following message is printed:

TH - H

where X is the maximum value of all the transmitted data. This value is used in scaling the plots produced using the DUIS subprogram H3DPL. The program now returns to step 6.

8. The message

DETACH ISTAT - X

is printed, where X = 0 if the detach is successful and X = 1 otherwise. The program returns to step 3.

IV. SUBPROGRAMS REQUIRED

PLOTD CHOP

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

- 1. This program can be executed only under Honeywell GCOS TSS YFORT subsystem.
- The transmission time for a 64 x 64 point plot is about 10-15 minutes at 300 baud. This should be kept in mind if larger plo+s are to be attempted.
- 3. If the response to FIPST LREC is greater than the response to NBMAX the program will repeat step 6.
- 4. The magnitude of the main lobe determines the value of the least significant bit (LSB). If the ratio of mainlobe to sidelobe level exceeds the accuracy of the 12 bit word length, errors in magnitude representation result. The dynamic range of the 12 bit word is 72 dB (6 dB/bit). Magnitude errors begin to appear if the sidelobes are more than 60 dB down.

PROGRAM RNDERR

I. PURPOSE

The RNDERR program modifies an antenna aperture distribution (resident in PRMFL) by adding a phase error distribution specified by the user. The resulting aperture is stored in another PRMFL where it can be accessed for further processing.

II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
01	User PRMFL	Input Aperture
02	User PRMFL	Output Aperture
05	TSS terminal keyboard	User Input
0 6	TSS terminal printer	Computer Output

III. OPERATING PROCEDURE

- 1. Enter TSS YFORT
- 2. Type

RUN RNDERR

3. The message

NTYPE, MAD1, JRND, LRJ, LRK

is printed.

NTYPE - Determines the type of error distribution to be added to the aperture.

- = 1 uniform distribution
- = 3 Gaussian distribution
- MAD1 The starting address for selecting random
 numbers from the random number array.
 (1<iMAD1≤128)</pre>
- JRND Random number generator initialization constant. $(0 < JRND \le 2^{36} 1)$
- LRJ The number of blocks in the x-direction of the input aperture.
- LRK The number of blocks in the y-direction of the input aperture.
- 4. If NTYPE = 1, the message

UMEAN, UUEXT

is printed.

UUEXT - Width of the uniform distribution in degrees.

Proceed to step 6.

5. If NTYPE = 3, the message

XMEAN, SICMA

is printed.

HMEAN - Mean value of the Gaussian distribution
in degrees.

SIGMA - Standard deviation of the Gaussian

distribution in degrees.

6. The message

INPUT FILE NAME

is printed. The user should respond with an existing PRMFL name which has the input aperture stored in it followed by a semicolon(;). If the file name is not acceptable the following message will be printed:

UNSUCCESSFUL ATTACH ISTAT - X

where X is the first status word returned by the File Management Supervisor (see the <u>Time Sharing System Programmers Reference Manual</u>, BR39, p.(3-39) or Table 1 herein) or will contain:

- 1 = file is currently open
- 2 = teletypewriter requested in batch mode
 (illegal)
- 3 = additional memory needed, request denied
 (time sharing user will be terminated)
- 4 = CATFIL all blanks

NOTE: See Honeywell Series 600/6000 Fortran manual, BJ67, p.(6-35) - (6-36), for more details on the subroutine ATTACH.

If the input file name is unacceptable the program returns to the beginning of step 6. Otherwise, proceed to step 7.

7. If the PRMFL name input in step 6 is acceptable the message

OUTPUT FILE NAME

is printed. The user should respond with an existing PRMFL name in which the output aperture is to be stored, followed by a semicolon(;). If the PRMFL name is not acceptable the same procedure as described in step 6 applies here and the program will return to the beginning of step 7. Otherwise, proceed to step 8.

- 8. The antenna aperture distribution is modified and stored in the specified output PRMFL.
- 9. When the processing is finished the message

DETACH ISTAT - X

is printed twice. The first time is for the input PRMFL and the second is for the output PRMFL. If X = 0 then the detach is successful, otherwise X = 1.

10. Program execution terminates and the user is returned to build mode under TSS YFORT. This is indicated by an asterisk(*).

IV. SUBPROGRAMS REQUIRED

RRAND

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

- 1. If MAD1 is outside of the range 1 < MAD1 \leq 128 the computer will print the message of step 3 again and the user must respond correctly.
- 2. This program can be executed only under Honeywell GCOS TSS YFORT subsystems.
- 3. The input PRMFL and the output PRMFL can be the same file.

PROGRAM RTI4

I. PURPOSE

The program RTI4 is a subroutine which converts data amplitude to letters of the alphabet. The resulting characters are organized into a matrix which is printed on a remote terminal. Range is usually shown vertically and cross range is displayed horizontally with intensity displayed by the character placed in the cell, e.g. 0 represents 0 dB with respect to the reference, A represents -10 dB with respect to the reference, Z represents -36 dB with respect to the reference. This subroutine processes the same type of data as PLTDVR but does so in a much more compact form.

II. PERIPHERAL DEVICES REQUIRED

LUD	NAME	USE
01	Input PRMFL (permanent disk file)	Aperture far-field input
05	Time sharing terminal keyboard	User Input
0 6	Time sharing terminal printer	Computer Output

III. OPERATING PROCEDURE

- 1. Enter TSS YFORT
- 2. Type

RUN RTI4

THE PARTY OF THE P

3. The message

INPUT DESIRED FILE NAME

is printed.

The user should respond with the name of an existing PRMFL which contains the data to be displayed. The file name must be followed by a semicolon(;). If the user types STOP the program jumps to step 9.

4. If the PRMFL name is not acceptable the following message is printed:

UNSUCCESSFUL ATTACH ISTAT - X

where X is the first status word returned by the File Management Supervisor (see the <u>Time Sharing System Programmers Reference Manual</u>, BR39, p.(3-39) or Table 1, herein) or will contain:

- 1 = file is currently open
- 2 = teletypewriter requested in batch mode
 (illegal)
- 3 = additional memory needed, request denied
 (time sharing user will be terminated)
- 4 = CATFIL all blanks

NOTE: See Honeyvell Series 600/6000 Fortran manual, BJ67, p.(6-35) - (6-36) for more details on the subroutine ATTACH. After the message s printed the program returns to step 3 and begins again.

INDER IN THE TAXABLE OF STREET OF STREET

5. If the PRMFL name in step 3 is accepted the message

FLOOR, YINC, JWID, NBHAK

is printed.

- FLOOR The reference in dB below which everything is represented in dashes (-) on the RTI plot. All the data with a greater value is represented by a letter, number, or punctuation symbol and the value relative to the FLOOR is calculated using YINC.
- YINC The increment in dB between each successive letter, number, or symbol is determined by the value assigned to YINC.

 See Table 2.
- JWID The width in blocks across the whole side of the data array as determined by the parameter LRJWID in the program FFT2DM or LRJ in PLARY, RNDERR, or FILMOD.
- NBMAX The number of the last block to be displayed. The final display will be 4 blocks wide and as long as the user chooses depending on the value of NBMAX.
- NOTE: Two examples of the relative dB values for a specified FLOOR and YINC are shown in Table 2.
- 6. The message

Enter FIRST LREC, DISPLAY WIDTH

The services of the services o

is printed. The user should respond with the number of the block that he wishes to be placed in the upper left hand corner of the RTI and the width of the RTI in samples. The maximum number of samples is 128. If the user types -1 then the program goes to step 8.

- 7. The computer now begins to transmit the RTI display to the DUIS or a time-sharing terminal printer and will continue until it reaches the specified stopping block number, NBMAX.
- 8. The message

DETACH ISTAT - X

is printed where X = 0 if the detach is successful and X = 1 otherwise. Go to step 3.

 An asterisk (*) is printed and the program is finished.

IV. SUBPROGRAMS REQUIRED

None

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

- 1. This program can be executed only under Honeyvell CCOS TSS YFORT subsystems.
- 2. If the response to

INPUT LREC DESIRED

is greater than NBMAX then the program will repeat step 6.

3. Any dB level below the value of FLOOR will be represented by a dash (-). Any dB level above the value calculated for 'S' will be represented by a 'S'.

TABLE 2

EXAMPLES OF RELATIVE VALUE OF LETTERS, NUMBERS, AND SYMBOLS

FLOOR = -20.0	20.0	8	30.0	FLOOR = 10.0
YINC - 1.0	19.0	•	29.5	YINC = 0,5
	18.0	*	29.0	
	17.0	+	28.5	
	16.0	0	28.0	
	15.0	1	27.5	
	14.0	2	27.0	
	13.0	3	26.5	
	12.0	4	26.0	
	11.0	5	25.5	
	10.0	6	25.0	
	9.0	7	24.9	
	8.0	8	24.0	
	7.0	9	23.5	
	6.0	A	23.0	
	5.0	В	22.5	
	4.0	C	22.0	
	3.0	D	21.5	
	2.0	E	21.0	
	1.0	F	20.5	
	0.0	C	20.0	
	~1.0	H	19.5	
	-2.0	I	19.0	
	۰۰۵.۵	J	18.5	
dB level	4.0	K	18.0	dB level
	~5.0	L	17.5	
	-6.0	M	17.0	
	-7.0	N	16.5	
	-8.0	O	16.0	
	-9.⊘	P	15.5	
	-10.0	Q	15.0	
	-11.0	R	14.5	
	-12.0	S	14.0	
	-13.0	T	13.5	
	-14.0	U	13.0	
	-15.0	V	12.5	
		52		

PAAS-UM-RTI4 1 MAY 78

-16.0	V	12.0
-17.0	X	11.5
-18.0	Y	11.0
-19.0	Z	10.5
-20.0	-	10.0

PROGRAM TBLS

I. PURPOSE

The program TBLS computes and tabulates sample values of selected weighting functions. The program also generates data which is used in checking the probability density function of space tapered arrays.

The program may be used in one of the following three modes:

- 1. TBLS generates the value of the weights for specific distribution width and weighting function type.
- 2. For the Taylor and Bayliss functions, the following three modes are available (3):
 - (a) For a specific distribution width TBLS generates all the sample weights for sidelobe levels from 20 to 90 dB in steps of 5 dB with n ranging from 3 to 20.
 - (t) For a specific distribution width and dB level, TBLS generates the sample weights with \overline{n} ranging from 3 to 20.
 - (c) For a specific distribution width, dB level, and \overline{n} , TBLS generates the sample weighting function.

This program produces tables similar to Hansen's (1) but with more flexibility, greater accuracy, and greater range in dB and \bar{n} . Tables may be generated for the Bayliss as well as the Taylor distribution.

3. For all of the above modes TBLS generates data which is either in the form of standard weights or in a form which may be used to compare with

the data generated by PDFESTR to check the density function of space tapered arrays.

II. PERIPHERAL DEVICES REQUIRED

NAME
USE

O5 TSS terminal keyboard User Input

O6 TSS terminal printer Computer Output

III. OPERATING PROCEDURE

- 1. Enter TSS YFORT
- 2. Type

RUN TBLS

3. The message

PDFESTR DATA OR TABLES? (0 or 1)

is printed.

- The user vishes to generate data that will be compatible with the data from PDFESTR.
- = 1 The user wishes to generate tables of weighting function values.
- 4. The message

NTYPE

is printed.

The user should respond with a number which determines the weighting function type.

- 1 cosine on a pedestal to a power(Proceed to 5)
- = 2 Blackman
 (Proceed to 6)
- 3 Kaiser
 (Proceed to 7)
- 4 Bartlett or triangular(Proceed to 6)
- 5 Taylor
 (Proceed to 10)
- 6 Bessel
 (Proceed to 8)
- 7 Cubic
 (Proceed to 9)
- 8 Bayliss
 (Proceed to 10)
- 5. The message

WTPED, NWTPOW, IRAD, WTRAD

is printed.

WTPED - The height of the pedestal

NWTPOW - The power of the cosine function

IRAD - The radius (or half span of a linear array), in units of elements, of the array.

WTRAD - The radius (or half span of a linear array) of the weighting function.

NOTE: For all subsequent entries, IRAD and WTRAD have the same meaning as above.

Proceed to 15.

6. The message

IRAD, WTRAD

is printed.

Proceed to 15.

7. The message

WKASIR, IRAD, WTRAD

is printed.

WKASIR - The Kaiser variable for the trade-off between main lobe width and sidelobe amplitude.

Proceed to 15.

8. The message

BESEDG, BESCAL, IRAD, WTRAD

is printed.

BESEDG - The scale factor used in calculating the argument used in evaluating the Bessel function from the actual radial location on the aperture.

BESCAL - The maximum amplitude at the center of the aperture.

Proceed to 15.

9. The message

CUBK, IRAD, WTRAD

is printed.

CUBK - The amplitude scaling constant

Proceed to 15.

10. The message

IRAD, WTRAD

is printed.

The user wishes to generate the complete set of tables for IRAD with NBAR and DB varied.

 $3 \le NBAR \le 20$ (19 for the Bayliss)

and $20 \le DB \le 80$

in steps of 5 dB.

Proceed to 15.

■ 1 The user wishes to choose one dB level of interest. Proceed to 12.

12. The message

IDB

is printed. The user should respond with an integer value for the specified dB level.

13. The message

ALL OR SINGLE NBAR? (0 or 1)

is printed.

The user wishes to generate for the specified IRAD and dB level all possible NBAR distributions in the range

 $3 \le NBAR \le 20$ (19 for the Bayliss)

Proceed to 15.

The user vishes to choose one NBAR of interest.

Proceed to 14.

14. The message

NBAR

is printed. The user should respond with an integer number for the specific value of NBAR desired. If NBAR is too small, as explained by Taylor (2) and Hansen (1), the message

INVALID VALUE FOR NBAR

is printed and the program repeats step 14.

15. The program now generates the appropriate distribution and prints the tables on the TSS terminal printing device. The program returns to step 4 when the requested distribution has been printed.

IV. SUBPROCRAMS REQUIRED

EXPND BESS CAM VEIGHT

V. RESTRICTIONS, REQUIREMENTS, AND MISC. DATA

1. The range of NBAR must be

 $3 \le NBAR \le 20$

for the Taylor and

 $3 \le NBAR \le 19$

for the Bayliss.

Reference.

- Hansen, R.C., 'Tables of Taylor Distributions for Circular Aperture Antennas,' <u>IEEE Trans</u>. <u>Anten. Prop.</u>, AP-8, #1, (1/60), pp. 23-26.
- Taylor, T. T., 'Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes,' <u>The</u> Bell System Technical Journal, Vol. 47, No. 5, (May-June 1968), pp. 623~651.

APPENDIX 5

COMPUTER PROGRAM DOCUMENTATION

In this appendix the computer program documentation (CPD) for the PAAS modules is presented. The CPD's are arranged in alphabetical order and each is self-contained. The subprograms BESS and CAM were obtained from RADSIM for use in PAAS. For the reader's convenience and completeness of this document these have been incorporated into this appendix.

Unless otherwise stated, all software documented herein is stored under user master catalog 'BECACD01' in the RADC H6180 GCOS system. The source code for all programs herein are stored in PRMFL's having the same name as the program, e.g. the source code of the program PLARY and all required subroutines is stored in a PRMFL having the name PLARY under user master catalog BECACD01.

The documentation for each PAAS program presented in this appendix is divided into six sections. The order and title of each section is as follows:

1. Purpose

- 2. Input Parameters
- 3. Restrictions, Requirements, Miscellaneous data
- 4. Subprograms Required
- 5. Theory of Operation
- FORTRAN Listing

The content of each section is explained in the following paragraphs.

1. Purpose

以外,这种是一种的一种,这种是一种,是一种的一种,是一种的一种,是一种的一种,是一种的一种,是一种的一种,是一种的一种,是一种的一种,是一种的一种,是一种的一种

This section contains a brief description of the purpose of the software module.

2. Input Parameters

This section lists all of the input parameters for the particular software module. Both required and optional input parameters are listed. Each parameter entry is broken into four groups of information and placed into columns for easy reference. The first column contains the parameter name as it appears in the software. second column tells whether the parameter is required or optional. An R in the second column denotes a required parameter while an O denotes an optional parameter. The variable type, either integer or floating point, is noted in the third column. An I denotes and integer type while an F denotes a floating point variable. The fourth column contains a brief description of the parameter and how it is used in the program.

3. Restrictions, Requirements, Miscellaneous Data

In this section special notes concerning the input parameters, use of the program, potential usage problems, etc. are discussed.

4. Subprograms Required

In this section the subprograms required for the PAAS program are listed. Both subroutine and function subprograms are included.

5. Theory of Operation

In this section the theory behind the programming is discussed using the variable names and notation as they appear in the program. This helps the user in understanding the operation of the program.

6. FORTRAN Source Code Listing

This section contains a listing of the FORTRAN source code.

The documentation for each PAAS subprogram presented in this appendix is divided into seven sections. The order and title of each section is as follows:

1. Purpose

- 2. Input Parameters
- 3. Calling Sequence
- 4. Restrictions, Requirements, Miscellaneous Data

- 5. Subprograms Required
- 6. Theory of Operation
- 7. FORTRAN Source Code Listing

These are the same as those that were previously described for the PAAS program CPD's except that the section entitled 'Calling Sequence' has been added. A description of that section follows:

3. Calling Sequence

This section presents an example of a typical FORTRAN call for the module. For function subprograms the example calling sequence is shown as an assign statement but of course the function reference can be embedded in a FORTRAN arithmetic statement.

THE PARTY OF THE PROPERTY OF T

RADSIM-CPD-BESS 1 MAY 78

FUNCTION BESS

1. MODULE IDENTIFICATION

Name	Classification Code	Reference Number
BESS	Subordinate	Not User Referenced

2. PURPOSE

This function is used to compute the value of a Bessel function.

3. INPUT PARAMETERS

Name	O/R	I	Description
0	R	F	The order of the Bessel function
Z	R	F	The argument of the Bessel

4. CALLING SEQUENCE

BS = BESS(0,Z)

Where: O,Z are the Input arguments

BS contains the computed value of the

Besse' function

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. This subprogram was obtained from the Computer Program Documentation for AF Contract F30602-67-C-0074.

b. External References:

GAM DABS

c. Referenced labeled common areas:

None

```
FORTRAN LISTING
C
       FUNCTION BESS(0,Z)
      DOUBLE PRECISION A1, A2, BS, ADD, GAM, G
      IF(Z.NE.0.0) GO TO 40
      IF(0.EQ.0.0) BS=1.0
      IF(0.NE.0.0) BS=0.0
      CO TO 100
   40 SMALL=1.0E-8
      IF(0)100,31,32
   31 BS-1.0
      AKV-0.0
      A1-1.0
   52 AKV-AKV+1.0
      A1=A1*(-1.0)*(2/2.0)**2/(AKV*AKV)
      BS-BS+A1
      IF(DABS(A1/BS)-SMALL)51,52,52
   51 GO TO 100
   32 A-0
      N-0
   13 IF(A-1.0)10,12,12
   12 A-A-1.0
      N=N+1
      CO TO 13
   10 ARC-A
       G-CAM(ARG)
      A2=1.0
      IF(N)100,76,75
   75 DO 26 NV=1.N
      AJ=NV-1
      IF(A2.GT.1.0E-38) GO TO 26
      BS=0.0
      CO TO 100
   26 A2=A2*(Z/2.0)/(D-AJ)
   76 A2=A2*(Z/2.0)**ARG/C
      BS-A2
      AKV-0.0
                              69
      A1-1.0
```

21 AKV=AKV+1.0 A1=A1*(-1.0)*(Z/2.0)**2/(AKV*(AKV+0)) ADD=A1*A2 BS=BS+ADD IF(BS.EQ.0.0) GO TO 21 TEST=DABS(ADD/BS) IF(TEST=SMALL)100,21,21 100 BESS=BS RETURN END

SUBROUTINE CHOP

1. PURPOSE

The purpose of this subroutine is to convert an integer number into two ASCII characters. The ASCII characters are packed, right-adjusted, into an output word.

2. INPUT PARAMETERS

Name	O/R	I	Description
IDAT	R	Ī	The integer word to be processed
IOUT	R	I	The output word containing two ASCII characters.

3. CALLING SEQUENCE

CALL CHOP(IDAT, IOUT)

4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The input word, IDAT, must be in the following range:

$$-2^{11} < IDAT < 2^{11}-1$$

5. SUBPROCRAMS REQUIRED

None

6. THEORY OF OPERATION

The input word, IDAT, contains at most 12 significant bits. The rightmost 12 bits are extracted from IDAT and separated into two 6 bit characters, I1 and I2. The characters I1 and I2 have values which range from 0 to 63 and include the ASCII control

character region from 0 to 31. In order to ensure that these characters cannot have values in the control character region, the number 32 is added to each. If this is not done, problems arise with the H6180 TSS processing. These characters are packed, right-adjusted, into the output word, IOUT, and control returns to the calling (sub)program.

and the stress of the second o

7. FORTRAN LISTING

SUBROUTINE CHOP(IDAT, IOUT)

I1=FLD(24,6,IDAT)

I2=FLD(30,6,IDAT)

IOUT=0

FLD(18,9,IOUT)=I1+32

FLD(27,9,IOUT)=I2+32

RETURN

END

SUBROUTINE CZFFT

1. PURPOSE

This subroutine performs the inverse discrete Fourier transform of a sequence of input data samples. The mechanization is based on the Fast Fourier Transform (FFT) algorithm developed by Langdon and Sande from the approach of J. W. Tukey and J. Cooley. The subroutine described herein has been structured to facilitate the efficient computation of 2-dimensional discrete inverse Fourier transforms.

2. INPUT PARAMETERS

Name	<u>O∕R</u>	T	Description
N2	R	I	Power of 2 which determines the total number of points (NTHPOW) transformed by the FFT
IOFST	R	I	Offset of the first sample to be transformed from the front of the array S
IHOP	R ·	I	Power of 2 which determines the spacing between the samples (NHOP) to be transformed.

3. CALLING SEQUENCES

CALL CZFFT(S, N2, IOFST, IHOP)

Where: S is a complex array containing the data to be processed. The output samples are placed into the array S also.

4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The maximum value of N2 is 11, which gives 2048 samples.
- b. In order to minimize the CPU time requirements of this subroutine, a complex exponential look up table is used.
- c. Source PRMFL:

BECAVU01/SUPORTSJR/SCZFFT

d. Object PRMFL:

BECAVU01/SUPORTSJR/OCZFFT

5. SUBPROGRAMS REQUIRED

COS

6. THEORY OF OPERATION

Refer to RADSIM-CPD-ZFFT.

7. FORTRAN LISTING

```
SUBROUTINE CZFFT(S, N2, IOFST, IHOP)
C
       S >> /SUPORT/SCZFFT
C
       O >> /SUPORT/OCZFFT
      DATA PI2/6.28318531/
      DATA IFLAG/0/, NHOPO/-1/
      COMPLEX S(1), C, C1, C2, C3, C4, XEXP(1536)
      REAL I, I1, I2, I3, I4, RX(2)
      INTEGER PASS, SEQLOC, L(15)
      EQUIVALENCE (J,JI), (PASS, J6), (NXTLTH, J7),
                   (LENGTH, J8). (SEQLOC, J9). (ISCALE, J10).
                   (IARG, J11), (A1, J12), (RX(1), I4, C),
                   (RX(2),R4)
      EQUIVALENCE (L15,L(1)),(L14,L(2)),(L13,L(3)),
                   (L12,L(4)),(L11,L(5)),(L10,L(6)),
                   (L9,L(7)),(L8,L(8)),(L7,L(9)),
                   (L6,L(10)),(L5,L(11)),(L4,L(12)),
                   (L3,L(13)),(L2,L(14)),(L1,L(15))
      NHOP=2 **IHOP
      IOFST1-IOFST+1
      IF IFLAG-0 THEN LOAD THE COMPLEX
      EXPONENTIAL TABLE, XEXP
      IF(IFLAG.EQ.1) CO TO 502
      DARG=PI2/2048.0
      ARC-0.0
      DO 500 J=1,1536
      ARC=ARC+DARC
      XEXP(J)=CMPLX(COS(ARG),SIN(ARG))
 500 CONTINUE
      IFLAC=1
 502
     IF(NHOP.EQ.NHOPO) GO TO 503
      DO 6 J=1,15
      L(J)-NHOP
      IF(J.LE.N2) L(J)=(2**(N2+1-J))*NHOP
 6
      NTHPOV - 2** N2; NHOPO-NHOP
```

```
N4POW = N2 /2
 503
      NTTL=NTHPOW*NHOP
      IF(N4POW.EQ.0) CO TO 3
C
C
      PERFORM RADIX 4 TRANSFORM
C
      DO 2 PASS=1.N4POW
      NXTLTH=2**( N2 -2*PASS)
      LENGTH=4*NXTLTH
      IDEL=2048/LENGTH
      IADDH=NXTLTH*NHOP
      LENGTH-LENGTH*NHOP
      DO 2 J=1.NXTLTH
      IARG1=(J-1)*IDEL
      IARG2=IARG1+IARG1
      IARC3=IARC2+IARC1
      MLOC=IOFST1-LENGTH+(J-1)*NHOP
      DO 2 SEQLOC-LENGTH, NTTL, LENGTH
      J1 = SEQLOC+MLOC
      J2 = J1 + IADDH
      J3 = J2 + IADDH
      J4 = J3 + IADDH
      C1=S(J1)+S(J3)
      C2=S(J1)-S(J3)
      C3=S(J2)+S(J4)
      C=S(J2)-S(J4)
      C4=CMPLX(-R4,I4)
      S(J1) = C1 + C3
      IF(J.EQ.1) GO TO 1
      S(J3)=XEXP(IARG1)*(C2+C4)
      S(J2)=XEXP(IARG2)*(C1-C3)
      S(J4)=XEXP(IARG3)*(C2-C4)
      GO TO 2
      S(J3) = C2 + C4
 1
      S(J2) = C1 - C3
      S(J4) = C2 - C4
    2 CONTINUE
C
C
      PERFORM RADIX 2 TRANSFORM IF REQUIRED
    3 IF( N2
               .EQ.2*N4POW) GO TO 5
```

```
NHOP2=NHOP*2
      NSTOP=NTTL+IOFST
      DO 4 J=IOFST1, NSTOP, NHOP2
      C=S(J)+S(J+NHOP)
      S(J+NHOP)=S(J)-S(J+NHOP)
      S(J)=C
      CONTINUE
C
      OUTPUT CURRENTLY IS ORGANIZED WITH
C
      BIT REVERSED ADDRESSING
C
      THIS SECTION PLACES OUTPUT IN THE
C
      CORRECT ORDER
      IJ-1
      J1-1
      DO 7 J2-J1,L2,L1
      DO 7 J3-J2.L3.L2
      DO 7 J4-J3,L4,L3
      DO 7 J5-J4,L5,L4
     DO 7 J6=J5,L6,L5
     DO 7 J7-J6,L7,L6
     DO 7 J8=J7,L8,L7
     DO 7 J9=J8.L9.L8
     DO 7 J10-J9,L10,L9
     DO 7 J11=J10,L11,L10
     DO 7 J12=J11,L12,L11
     DO 7 J13-J12,L13,L12
     DO 7 J14 -J13,L14,L13
     DO 7 JI=J14,L15,L14
      IF(IJ.GE.JI) GO TO 7
     KJ=IJ+IOFST
      JK=JI+IOFST
      C=S(KJ)
     S(KJ)=S(JK)
      S(JK)=C
   7 IJ=IJ+NHOP
      J1=NTTL/2+IOFST
      J2=J1+1
     DO 14 J3-IOFST1, J1, NHOP
      C=S(J3)
```

S(J3)=S(J2)

S(J2)=C J2=J2+NHOP 14 CONTINUE RETURN END

The representative south and the representative and the representative and the properties of the second of the

FUNCTION EXPND

1. PURPOSE

The function EXPND is used to compute the value of a Bessel function of the first kind and the zeroth order.

2. INPUT PARAMETERS

Name O/R T Description

K2 R F Independent variable.

J. CALLING SEQUENCE

VAR-EXPND(X2)

Where: K2 is the Input argument

VAR contains the computed value of the Bessel

function

4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

 The Bessel function expansion used herein was obtained from:

Rabiner, L. R., Gold, B., Theory and Application of Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, Inc., 1975, pp. 88-105.

5. SUBPROGRAMS REQUIRED

None

6. THEORY OF OPERATION

EXPND evaluates the series expansion of the Bessei

PAAS-CPD-EXPND 1 MAY 78

function of the first kind and order zero with an imaginary argument. The series is shown below (4.1).

EXPND(X2) =
$$1+(\underline{X2})^2+(\underline{X2/2})^4+(\underline{X2/2})^6+(\underline{X2/2})^8+\dots$$
 (4.1)

7. FORTRAN LISTING

FUNCTION EXPND(X2)

XB2SQ=X2*X2*0.25

SUM=1.0+XB2SQ

ADDON=XB2SQ

DO 110 J=2,20

AJ=FLOAT(J)

IF(ABS(ADDON).LT.ABS(SUH*1.0E-06)) GO TO 200

ADDON=ADDON*XB2SQ/(AJ*AJ)

110 SUM=SUM+ADDON

200 EXPND=SUM

RETURN
END

SUBROUTINE FFT2D

1. PURPOSE

This subroutine computes the two-dimensional discrete Fourier transform of a planar array of samples.

2. INPUT PARAMETERS

Name	O/R	I	Description
N2	R	I	The power of 2 which defines the length of each side of the 2-D transform.
LRJ	R	I	The number of logical record blocks in the x-direction of the input file (horizontally).
LRK	R	I	The number of logical record blocks in the y-direction of the input file (vertically).
LRJIN	R	I	The number of blocks to be skipped in the x-direction, starting on the left, before storing the output.
LRJVID	R	I	The width in blocks of the desired far-field output.
LRKIN	R	I	The number of blocks to be skipped in the y-direction, starting at the top, before storing the output.
LRKWID	R	I	The height in blocks of the desired far-field output.

3. CALLING SEQUENCE

CALL FFT2D (N2, LRJ, LRK, S, LRSDJ, LRSDK, SL)

- Where: N2 = Power of 2 that determines the length of each side of the 2-D transform.
 - LRJ = The number of logical record blocks in the x-direction of the input file.
 - LRK = The number of logical record blocks in the y-direction of the input file.
 - S = A two-dimensional array used to store the blocks of the input file for processing.
 - LRSDJ = Object-time dimension constant for the x dimension of the array S.
 - LRSDK = Object-time dimension constant for the y dimension of the array S.
 - SL = A one-dimensional array equivalenced to S, used for intermediate 2-D processing.

4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Reference:

Hansen, R. C., Microvave Scanning Antennas, Vol. 2, New York: Academic Press, Inc., 1964.

5. SUBPROGRAMS REQUIRED

CZFFT

6. THEORY OF OPERATION

The relationship between a finite linear array of radiators and its corresponding far-field is given by the following equation

$$E(\theta) = \sum_{n=1}^{N} G(n) e^{\ln k d} \times \sin \theta$$
 (A3.1)

where $k=2\pi/\lambda$ and d_x is the interelement spacing. G(n) is the current gain of the n^{th} radiator. This equation assumes isotrophic radiators. Now by letting a new variable p be equal to the following:

p = NkdxSin0

我们是是一个人,我们也是一个人,我们是是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也是一个人,我们也会是一个人,我们也会会会会会会会会会会会, 第125章 第

the expression in Equation A3.1 becomes the following equation

$$\widehat{E}(p) = \sum_{n=1}^{N} G(n) e^{J(Pn/N)}$$

which is in the form of the IDFT. This expression can be calculated using standard FFT techniques. The structure of the one dimensional FFT algorithm requires the input data to be in the order that is shown in Figure FFT2D-1. If this reorganization is not implemented the output data will have a 180° phase shift from one point to the next. This problem also arises when the 2D-FFT is performed. A shuffle of blocks of data rather than line segments must be done to prevent the problem from occurring. Figure FFT2D-2 illustrates the organization of the aperture shuffle.

Figure FFT2D-1: Organization of input data required by linear FFT algorithm.

Figure FFT2D-2: Organization of input data required by 2-D FFT algorithm.

CANADA SANDA SANDA

In the case in which the antenna aperture has a smaller number of points than the desired far-field, there must be some "zero" blocks or blocks loaded with zeros to pad the input aperture into the far-field point configuration. Figure FFT2D-3 illustrates the padding with the zero blocks and the shuffle.

The input aperture field with dimensions LRJ \times LRK blocks is split into the four corners of the transform field. The transform field has 2^{N2} points on a side. This is illustrated in Figure FFT2D-4.

这种是什么,我们是是是是一个人,我们是是是一个人,我们是一个人,我们是是一个人,我们也是一个人,我们是一个人,我们们是这一个人,我们们们也是一个人,我们们们们的

Each row of this matrix is now transformed, one at a time, starting at the top. Since the middle $(2^{N^2}/16)$ -LRK rows are zero, the transform is equal to zero. Therefore, the program skips these rows and begins at the top of section B. This avoids a waste of computer time. Now that the first transform has been executed, if the whole far-field is required, the second transform, which is the columns of the intermediate result, must execute a complete $2^{N2} \times 2^{N2}$ point transform. In most cases, however, the whole far-field is not required and only a small vertical section needs to be transformed. Figure FFT2D-5 is provided to illustrate this situation. The transform field is $2^{N_2}/16$ blocks on a side. If the user only wishes to look at a section of blocks that have dimensions LRJWID x LRKWID, only a vertical stripe LRJWID wide needs to be transformed. Since the transform of the other columns of the matrix have no effect on the transform of the columns in the stripe, it would again be a vaste of computer time. Only the double crosshatched area of Figure FFT2D-5 is stored in the output PRMFL. If two complete $2^{N2} \times 2^{N2}$ transforms were executed the total number of complex points processed would be 2^{N2*4} . Using this scheme only (LRK*16)*(LRJWID*16)*2N2*2 complex points are processed. For the case of N2 = 8, and LRK = LRJWID = 4, only 6.25% of the total number of complex points are processed. 3

b) Shuffled Antenna Aperture

Figure FFT2D-3: Organization of input data with zero blocks required by 2-D FFT algorithm.

Figure FFT2D-4: Organization of input data showing block measurements for the 2D-FFT algorithm.

Figure FFT2D-5: Far-field output data from 2-D FFT

7. FORTRAN LISTING

```
C
C
    ************************
      SUBROUTINE FFT2D(N2, LRJ, LRK, S, LRSDJ, LRSDK, S1)
      COMPLEX ALRZ(256), S(LRSDJ, 'ASDK), S1(1)
      CALL PTIME(OTIME)
      NAMELIST/FILOUT/LRJIN, LRJVID, LRKIN, LRKVID
      READ(05, FILOUT)
      WRITE(06.FILOUT)
      LRSIDJ=LRSDJ/16
      ICRNR=LRSIDJ*(LRKIN+LRKVID)
      LRSTP-0
      DO 100 I-1,256
 100
     ALRZ(I) = (0.0, 0.0)
      LRNMR-0
      LR1IN=(1+LRK)*LRJ/2
 220
     LRMKR-0
     .LR2=LRSTP+1
      LRNMR1-0
      JST=1
      JSTP=16
      CO TO 300
 230
     LRST=LRSTP+1
      LRSTP-LRST+(LRSIDJ-LRJ)-1
      DO 240 LR1=LRST, LRSTP
      DO 235 K-1,16
      DO 235 J=JST, JSTP
 235
     S(J,K)=(0.0,0.0)
      LRMKR-LRMKR+1
      JST=JSTP+1
 240
     JSTP=JST+15
250 LR1IN-LRR-LRJ/2
300 LRST-LRSTP+1
      LRSTP=LRST+LRJ/2-1
      LRR-LR1IN
      DO 310 LR1=LRST, LRSTP
      LR1IN-LR1IN+1
```

```
READ(01'LR1IN)((S(J,K),J=JST,JSTP),K=1,16)
    LRMKR=LRMKR+1
    LRNMR1-LRNMR1+1
    LRNMR-LRNMR+1
    JST=JSTP+1
310
    JSTP=JST+15
    IF(LRNKR.EQ.LRSIDJ) GO TO 400
    IF((LRSIDJ-LRJ).NE.0) CO TO 230
    GO TO 250
400
    IOFST-0
    IHOP=0
    DO 500 K-1.16
    CALL CZFFT(S,N2,IOFST,IHOP)
500
    IOFST-IOFST+LRSDJ
    DO 510 JST=1.LRSDJ.16
    JSTP=JST+15
    WRITE(03'LR2)((S(J,K),J=JST,JSTP).K=1.16)
    LR2=LR2+1
510 CONTINUE
    LRMKR-Ø
    LR1IN-LR1IN+LRJ
    LRHALF=(LRJ*LRK)/2
     IF(LRNMR1.EQ.LRHALF) GO TO 520
    JST=1
    JSTP=16
    CO TO 300
    IF(LRNMR.EQ.(LRJ*LRK)) GO TO 800
520
     IF((LRSIDJ-LRK).EQ.0) GO TO 720
    LRST=LRSTP+1
700 LRSTP=LRST+LRSIDJ-1
    DO 710 LR1=LRST.LRSTP
710 WRITE(03'LR1) ALRZ
    LRZSTP=LRSIDJ*(LRSIDJ-LRK/2)
     IF(LRSTP.GE.LRZSTP) GO TO 720
    LRST=LRSTP+1
    GO TO 700
720 LR1IN-LRJ/2
    GO TO 220
800 LRTTL=0
    LR2RL-0
    LR2-LRJIN
                            93
```

```
810 KST-1
     KSTP=256
    LRMKR-0
    LRHOP-0
    LR22=LR2
    LR2=LR2+1
830 READ(03'LR2+LRHOP)(S1(KLOC), KLOC=KST, KSTP)
     LRMKR=LRMKR+1
    LRHOP=LRHOP+LRSIDJ
     KST=KSTP+1
     KSTP=KST+255
     IF(LRMKR.NE.LRSIDJ) CO TO 830
     IOFST-0
     IHOP-4
     DO 840 K=1.16
     CALL CZFFT(S, N2, IOFST, IHOP)
840 IOFST=IOFST+1
     LR2=LR22
     KST=1
     KSTP=256
     LRMKR-0
     LRHOP-0
     LR2=LR2+1
     LRBUMP-0
     LR2RL=LR2RL+1
860 IF(LR2+LRHOP.LT.(LRKIN*LRSIDJ).OR.
    * (LR2+LRHOP).3T.ICRNR) CO TO 865
     WRITE(02'(LR2RL+LRBUMP))(S1(KLOC),
    * KLOC=KST, KSTP)
     LRBUMP=LRBUMP+LRJVID
865 LRTTL-LRTTL+1
     LRMKR=LRMKR+1
     LRHOP=LRHOP+LRSIDJ
     KST=KSTP+1
     KSTP=KST+255
     IF(LRMKR.NE.LRSIDJ) CO TO 860
     IF(LRTTL.NE.(LRSIDJ*LRJVID)) CO TO 810
     CALL PTIME(TIME)
     TIME=(TIME-OTIME) *3600.0
```

WRITE(06,870) TIME 870 FORMAT(' EXECUTION TIME = ',F10.4) RETURN END

PROGRAM FFT2DX

1. PURPOSE

The program FFT2DX generates a far-field complex voltage pattern from an existing antenna aperture distribution which is stored in a PRMFL. FFT2DX maps the illumination to the far-field using a two-dimensional Fourier transform. The far-field is stored on a PRMFL designated by the user.

2. INPUT PARAMETERS

Name	<u>0/R</u>	Ţ	Description
N2	R	I	The power of 2 which defines the length of each side of the 2-D transform.
LRJ	R	I	The number of logical record blocks in the x-direction of the input file (horizontally).
LRK	R	I	The number of logical record blocks in the y-direction of the input file (vertically).
LRJIN	R	I	The number of blocks to be skipped in the x-direction, starting on the left, before storing the output.
LRJWID	R	I	The width in blocks of the desired far-field output.
LRKIN	R	I	The number of blocks to be skipped in the y-direction, starting at the top, before storing the output.

Terretarion from a single for the contraction of th

LRKWID R I The height in blocks of the desired far-field output.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. N2 must be in the range $4 \le N2 \le 10$
- b. LRJ,LRK must be even and exactly the same values as were specified in loading the aperture distribution PRMFL.

4. SUBPROGRAMS REQUIRED

FFT2D

5. THEORY OF OPERATION

FFT2DX initializes the array dimensions required for the subroutine FFT2D.

6. FORTRAN LISTING

PARAMETER LENG-8192 COMMON S(LENG) COMPLEX S,S1(1) EQUIVALENCE (S1(1),S(1)) CALL RANSIZ(01,512) CALL RANSIZ(02,512) CALL RANSIZ(03,512) NAMELIST/FFT/N2, LRJ, LRK READ(05,FFT) WRITE(06,FFT) LRSDJ=2**N2 LRSDK-LENG/LRSDJ IF(LRSDK.GT.LRSDJ) LRSDK=LRSDJ CALL FFT2D(N2, LRJ, LRK, S, LRSDJ, LRSDK, S1) CALL EXIT STOP END

PROGRAM FILMOD

1. PURPOSE

This program modifies existing aperture current distributions that are stored in a PRMFL. The program allows the user to list and/or change individual element values. The program also allows the user to punch holes in the current distribution with specified radius and center. The modified file may be either written over the input PRMFL or may be stored on another user specified PRMFL.

2. INPUT PARAMETERS

Name	O/R	T	Description
LRJ	R	I	Number of logical record blocks in the x-direction (horizontally).
LRK	R	I	Number of logical record blocks in the y-direction (vertically).
IBLK	0	I	A pointer to indicate the logical record block to be modified.
JSTRT	0 .	I	The horizontal coordinate to begin the element value listing.
KSTRT	D	I	The vertical coordinate to begin the element value listing.
JSTP	0	I	The horizontal coordinate to stop the element value listing.

KSTP	0	I	The vertical coordinate to stop the element value listing.
IELJ	0	I	The horizontal coordinate of the element to be changed.
IELK	0	I	The vertical coordinate of the element to be changed.
VREAL	0	F	The real part of the new element value.
VIMC	0	F	The imaginary part of the new element value.
ICNTJ	0	I	The horizontal coordinate for the center of the hole.
ICNTK	0	I	The vertical coordinate for the center of the hole.
XHOLE	0	F	The radius of the hole to be punched in the aperture illumination.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The values of JSTRT, KSTRT, JSTP, KSTP, IELJ, IELK are all assigned with respect to the upper left corner of each block which has the coordinates (1,1).
- b. The values of ICNTJ, ICNTK are assigned with respect to the upper left corner of the aperture field having the coordinates (1,1).

4. SUBPROGRAMS REQUIRED

None

5. THEORY OF OPERATION

In the section of the program that lists or changes individual element values, the program reads the specified block into an array A(J,K) that is complex and has dimensions (16,16). The index J increments the fastest. When a list is requested, the values of the elements start with the location (JSTRT,KSTRT), (JSTRT+1,KSTRT),...,(JSTP,KSTRT), (JSTRT,KSTRT+1),...,(JSTP,KSTRT), i.e., from the upper left hand element down to the lower right hand element. This process is repeated for each block requested.

The element values of each block are changed according to the location and value given by the equation:

A(IELJ, IELK) = CMPLX(VREAL, VIMG)

This is repeated for the total number of element changes requested and for each block requested.

Holes in the aperture illumination are punched with a radius determined by XHOLE. The center of the hole is located at the aperture coordinate (ICNTJ, ICNTK). The values of ICNTJ and ICNTK are assigned with respect to the (1,1) element of logical record block number one having the aperture coordinates (1,1). The upper left element in the aperture field has the coordinates (1,1). The program sequentially steps through the aperture blocks starting with block one and proceeding to block LRTTL (=LRJ*LRK). The distances from the elements in each block to the element located at (ICNTJ.ICNTK) are calculated. A comparison of each distance to the length XHOLE is made. If the distance is less than or equal to XHOLE, the element value is changed to CMPLX(0.0,0.0). Otherwise, the element value is unchanged. In this way holes with radius KHOLE are made in the aperture current distribution.

8. FORTRAN LISTING

COMPLEX A(16,16) CHARACTER FILIN*20, FILOUT*20, Y*1, X*1 DATA IOK/0400000000000/,Y/'Y'/ 100 FORMAT(V) 200 WRITE(06.100) 'INPUT FILE NAME' READ 100.FILIN LUDIN-01 CALL ATTACH(01,FILIN,3,1,ISTAT,) IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) CO TO 400 WRITE(06.300)ISTAT FORMAT('UNSUCCESSFUL ATTACH ISTAT-',020) 300 CO TO 200 400 CALL RANSIZ(01.512) WRITE(06,100) 'OUTPUT FILE NAME' READ 100, FILOUT LUDOUT-02 IF(FILIN.NE.FILOUT) CO TO 450 LUDOUT-01 CC TO 500 CALL ATTACH(02,FILOUT,3,1,ISTAT,) 450 IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) GO TO 499 WRITE(06,300) ISTAT CO TO 400 499 CALL RANSIZ(02,512) 500 WRITE(06,100) 'LRJ,LRK' READ 100.LRJ.LRK LRTTL=LRJ*LRK LRTTL1=LRTTL+1 WRITE(06,100) 'MODIFY OR HOLE? (0 OR 1)' READ 100, MODFLC ITMP-1 IF(MODFLG.EQ.1) GO TO 1000 600 WRITE(06.100) 'IBLK' READ 100. IBLK IF(IBLK.EQ.ITMP) GO TO 650 IF (LUDIN .EQ .LUDOUT) GO TO 650 DO 620 IBK=ITMP, IBLK-1 READ(LUDIN'IBK)A

· CONTRACTOR CONTRACTO

WRITE(LUDOUT'IBK)A 620 CONTINUE 650 ITMP=IBLK+1 READ(LUDIN'IBLK)A 700 WRITE(06,100) 'ANY ELEMENTS LISTED? (Y OR N)' READ 100.X IF(X.NE.Y) GO TO 750 WRITE(06,100) 'JSTRT, KSTRT, JSTP, KSTP' READ 100, JSTRT, KSTRT, JSTP, KSTP WRITE(06,730)((A(J,K),J=JSTRT,JSTP),K=KSTRT,KSTP) 730 FORMAT((2E12.5)/) WRITE(06,100) 'ANY ELEMENTS CHANGED? (Y OR N)' READ 100.X IF(X.NE.Y) GO TO 720 750 WRITE(06,100) 'HOW MANY ELEMENTS CHANGED?' READ 100 NELE IF(NELE.LE.0) GO TO 770 IF(NELE.GT.100) GO TO 750 DO 760 I=1.NELE WRITE(06,100) 'IELJ, IELK, VREAL, VIMG' READ 100, IJ, IK, VREAL, VIMG A(IJ, IK)=CMPLX(VREAL, VIMG) 760 CONTINUE 720 WRITE(06,100) 'ANY MORE MODS OR LIST? (Y OR N)' READ 100.X IF(X.EQ.Y) GO TO 700 770 WRITE(LUDOUT'IBLK)A WRITE(06,100) 'ANOTHER BLOCK? (Y OR N)' READ 100.X IF(X.EQ.Y) GO TO 600 IF(ITMP.EQ.LRTTL1) CO TO 900 IF(LUDIN.EQ.LUDOUT) GO TO 900 DO 800 IBK-ITMP, LRTTL READ(LUDIN'IBK)A WRITE(LUDOUT'IBK)A 800 CONTINUE WRITE(06,100) 'ANY HOLES? (Y OR N)' 900 READ 100.X IF(X.NE.Y) GO TO 1700 LUDIN-02 IF(FILIN.EQ.FILOUT) LUDIN=01

```
1000 VRITE(06,100) 'ICNTJ, ICNTK'
     READ 100, ICNTJ, ICNTK
     WRITE(06,100) 'XHOLE'
     READ 100. XHOLE
     K1-0
     J1=0
     DO 1500 IBLK-1, LRTTL
     READ(LUDIN'IBLK)A
     DO 1400 KK-1.16
     DO 1300 JJ-1.16
     K=K1+KK
     J-J1+JJ
     XJD=ABS(ICNTJ-J) *ABS(ICNTJ-J)
     XKD=ABS(ICNTK-K) *ABS(ICNTK-K)
     DST=SQRT(XJD+XKD)
     IF(DST.LE.XHOLE) A(JJ.KK)=(0.0.0.0)
1300 CONTINUE
1400 CONTINUE
     WRITE(LUDOUT'IBLK)A
     IF(MOD(IBLK, LRJ) . EQ.0) GO TO 1450
     J1=J1+16
     CO TO 1500
1450 K1=(IBLK/LRJ) *16
     J1-0
1500 CONTINUE
     WRITE(06,100) 'ANOTHER HOLE? (Y OR N)'
     READ 100.X
     IF(X.NE.Y) GO TO 1600
     LUDIN-02
     IF(FILIN.EQ.FILOUT) LUDIN-01
     GO TO 1000
1600 WRITE(06,100) 'ANY ELEMENT CHANCES? (Y OR N)'
     READ 100.X
     IF(X.NE.Y) GO TO 1700
     LUDIN-02
     IF(FILIN.EQ.FILOUT) LUDIN-01
     CO TO 600
1700 WRITE(06,100) 'ANOTHER OUTPUT CENERATED? (Y OR N)'
     READ 100.X
     IF(X.NE.Y) CO TO 1800
     WRITE(06,1750) ISTAT
```

PAAS-CPD-FILHOD 16 JUN 77

1750 FORMAT('DETACH OUTPUT FILE ISTAT=',020)
LUDIN=01
CO TO 400

1800 WRITE(06,100) 'ANOTHER FILE MODIFIED? (Y OR N)'
READ 100,X
READ(LUDIN'LRTTL)A
READ(LUDOUT'LRTTL)A
WRITE(06,1850) ISTAT
IF(LUDOUT.EQ.1) CO TO 1899
WRITE(06,1750) ISTAT

1850 FORMAT('DETACH INPUT FILE ISTAT=',020)
1899 IF(X.EQ.Y) CO TO 200
1900 CONTINUE
STOP
END

DOUBLE PRECISION FUNCTION CAM

1. MODULE IDENTIFICATION

Name Classification Code Reference Number

CAM Subordinate Not User Referenced

2. PURPOSE

This function is used to compute the value of the Gamma function.

3. INPUT PARAMETERS

Name O/R T Description

X R F Argument of the Camma function.

4. <u>CALLING SEQUENCE</u>

G - GAM(X)

Where: X is the Input argument
G contains the computed value of the Gamma
function.

5. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The argument, X, must be within the following range: $0 \le X \le 1.0$
- b. The maximum error in computing the Gamma function is $\pm 3.0 \times 10^{-7}$.
- c. Reference: <u>Handbook of Mathematical Functions</u> by M. Abramovitz and I. A. Slegun, Dover, Inc., p. 257.

d. External References:

None

e. Referenced labeled common areas:

None

6. THEORY OF OPERATION

The polynomial expansion for the Gamma function of x+1 is given by the following expression:

$$(x+1) = \sum_{m=0}^{8} b_m x^m + \varepsilon(x)$$

Where: b = 1.0

 $b_1 = 0.577191652$

 $b_2 = 0.988205891$

 $b_3 = -0.897056937$

b₄ - 0.918206857

 $b_5 = -0.756704078$

b₆ = 0.4^2199394

RADSIM-CPD-CAM 13 APR 78

 $b_7 = -0.193527818$

 $b_8 = 0.035868343$

 $|\varepsilon(x)| \leq 3.0 \text{M10}^{-7}$

7. FORTRAN LISTING

END

C

DOUBLE PRECISION FUNCTION CAM(X)
DOUBLE PRECISION S, CAM
S=+0.35868343E-1
S=S*X-0.193527818
S=S*X+0.482199394
S=S*X+0.756704078
S=S*X+0.918206857
S=S*X+0.897056937
S=S*X+0.988205891
S=S*X+0.577191652
CAM=S*X+1.0
RETURN

PROGRAM PDFESTR

1. PURPOSE

This program generates a histogram of the radiating elements in a statistically loaded aperture. The width of each radius cell may be varied and the origin of the radius is user specified.

2. INPUT PARAMETERS

Name	O/P	T	Description
IRd	*	I	Number of logical record blocks in the x-direction (horizontally).
IME	75	7 Ma 2.	Number of logical record blocks in the y-direction (vertically)
ofs%j	R	F	Value added to the calculated middle of the horizontal aperture field length to give the offset origin.
OFSTK	Ħ	F	Value added to the calculated middle of the vertical aperture field length to give the offset origin.
RINC	R	F	Incremental radius or radius cell width used to accumulate the histogram values.
RLIM	R	F	The maximum radius value of interest.

YCON R I Mode flag

- = 1 Program halts
- Wistogram is normalized to a unit cumulative distribution.
- = 1 Histogram data is converted to probability density estimate data. The raw data is divided by the product of the cell width and the total number of elements.
- = 2 Raw histogram data

NDPACK R I The number of incremental radius histogram cells, RINC, combined to make each output histogram cell.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

None

4. SUBPROGRAMS REQUIRED

None

William with Thomas Their .

5. THEORY OF OPERATION

The program sequentially reads the logical record blocks into the array A(J,K), which has dimensions (16,16) and is complex. The program starts with block number one and continues through block number LRTTL (=LRJ*LRK). The elements of each block are then processed. If the element value is CMPLX(0.0,0.0) then the program proceeds to the next element. For non-zero element values the radius from the element to the crigin is calculated. A counter in the appropriate radius cell of the array XF(IADD) is incremented and the program proceeds to process the next element. After all of the elements in the aperture field have

been processed, the raw histogram is contained in the array XF(1) with each cell corresponding to an annulus with radius R = I*RINC and width RINC. The program then combines the radius cells in groups and stores them in the array DATOT(J). NDPACK consecutive radius cells are put in each group, thus reducing the number of histogram cells by a factor of 1/NDPACK. The histogram data is then modified and dumped according to the value of ICON.

For ICON-0

DATOT(J) - DATOT(J)/CUM

where CUM is the total number of elements. This data is normalized to a unit cumulative distribution.

For ICON=1

DATOT(J)=DATOT(J)/(CUM*RINC*NDPACK)

This data is converted to probability density estimate data.

For ICON=2

DATOT(J)=DATOT(J)

The raw histogram data is outputted.

6. FORTRAN LISTING

COMPLEX A(16.16) CHARACTER FILIN*20 DIMENSION XF(1000), DATOT(300) DATA IOK/040000000000/ WRITE(06,50) 'LRJ,LRK' 50 FORMAT(V) READ 50, LRJ, LRK WRITE(06,50) 'OFSTJ,OFSTK' READ 50, OFSTJ, OFSTK 400 WRITE(06,50) 'INPUT FILE' READ 50.FILIN CALL ATTACH(01, FILIN, 1, 1, 1, ISTAT,) CALL RANSIZ(01,512) IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) GO TO 300 WRITE(06,350) ISTAT 350 FORMAT(UNSUCCESSFUL ATTACH ISTAT= ',020) CO TO 400 300 XMIDJ=LRJ*16/2.0+0.5+OFSTJ XMIDK=LRK *16/2.0+0.5+OFSTK WRITE(06,50) 'RINC, RLIM' READ 50, RINC, RLIM NIXF=RLIM/RINC DO 100 I=1.NIXF XF(I)=0.0100 CONTINUE LRTTL=LRJ*LRK J1-0 K1-0 DO 200 IBLK=1, LRTTL READ(01'IBLK)A DO 500 KK=1,16 K=KK+K1 DO 600 JJ=1.16 J=J1+JJ IF(A(JJ.KK).EQ.(0.0.0.0)) GO TO 600 XJD=(XMIDJ-J)*(XMIDJ-J) XKD = (XMIDK - K) * (XMIDK - K)DV=SQRT(XJD+XKD)

```
IADD=IFIX(DV/RINC)+1
     IF(IADD.GT.NIXF) IADD=NIXF
     XF(IADD)=XF(IADD)+1.0
600
    CONTINUE
500
    CONTINUE
     IF(MOD(IBLK, LRJ), EQ.0) CO TO 550
     J1=J1+16
     CO TO 200
550 K1=(IBLK/LRJ)*16
     J1=0
200 CONTINUE
700 WRITE(06,50) 'ICON, NDPACK'
     READ 38 TIUM, NOPACK
     IF(ICON, EQ.-1) 30 TO 1300
     KEND KF/NDPACK
     JJ=-NDPACK
     CUM-0.0
     DO 1000 J-1, KEND
     DEN=0.0
     JJ=JJ+NDPACK
     DO 900 K=1,NDPACK
     DEN=DEN+XF(K+JJ)
900 CONTINUE
     CUM-CUM+DEN
     DATOT(J)=DEN
1000 CONTINUE
     IF(ICON.EQ.2) GO TO 1200
     CUM-1.0/CUM
     IF(ICON.EQ.1) CUM=CUM/(RINC*NDPACK)
     DO 1100 K=1,KEND
     DATOT(K)=DATOT(K)*CUM
1100 CONTINUE
1200 WRITE(06.1210)(DATOT(J), J=1, KEND)
1210 FORMAT(F12.5)
     GO TO 700
1300 CALL DETACH(01, ISTAT, )
     CALL EXIT
     STOP
     END
```

PROGRAM PLARY

1. PURPOSE

This program loads a PRMFL with a user specified antenna aperture current distribution. The aperture parameters include size, shape, weighting, and several deterministic phase options, including beam steering. Thinned or statistically loaded apertures may also be generated.

2. <u>INPUT PARAMETERS</u>

Name	<u>0/R</u>	<u>r</u>	Description
IAPTFL	R	I	Determine the shape of the aperture to be loaded.
			1 Circular2 Elliptical3 Rectangular
XEDGE	0	F	Radius of the circular aperture.
XHOLE	0	F	Radius of the hole in a circular or elliptical aperture.
NMAJOR	0	I	Length of semi-major elliptical axis.
NMINOR	0	I	Length of semi-minor elliptical axis.
NVIDTH	0	I	Width of rectangular aperture.
NHICH	٥	I	Height of rectangular aperture.

IWTFLG	R	I	Determine the weighting function used in loading the aperture. - 0 Rectangular weighting - 1 Cosine on a pedestal to a pover - 2 Blackman - 3 Kaiser - 4 Bartlett or triangular - 5 Taylor - 6 Bessel - 7 Cubic - 8 Bayliss
WTRAD	0	F	Radius of the specified weighting function for circular apertures.
ZJRAD	0	F	Half the span of the weighting function in the x-direction for elliptical and rectangular apertures.
ZKRAD	0	F	Half the span of the weighting function in the y-direction for elliptical and rectangular apertures.
WTPED	0	F	The height of the pedestal for cosine on a pedestal to a power weighting.
NWTPOW	0	I	The power of the cosine function for a cosine on a pedestal to a power weighting.
WKASIR	0	F	The Kaiser variable for the trade-off between main lobe width and side lobe amplitude.

The second of th

BESCAL	0	F	The maximum weighting amplitude at the center of the aperture for the Bessel weighting.
CUBK	0	F	The weighting amplitude scaling constant for the cubic weight.
BESEDG	0	F	The radius scaling constant for the Bessel weighting.
DB	0	F	The design side lobe amplitude in dB for the Taylor or Bayliss weighting.
NBAR	0	I	The number of zeros used to approximate the Dolph-Chebyschev weighting distribution in the Taylor or Bayliss weighting.
DELPHJ	0	F	Beam steering in degrees in the x-direction.
DELPHK	0	F	Beam steering in degrees in the y-direction.
PHERK	0	F	Maximum quadratic phase error in degrees at the edge of the aperture in the x-direction.
PHERY	0	F	Maximum quadratic phase error in degrees at the edge of the aperture in the y-direction.
NBITS	R	I	Number of bits used to control the digital phase shifters.
BESERR	0	F	The maximum Bessel phase error in degrees at the center of the aperture.

BSCAL	0	F	The radius scaling constant for the Bessel phase error.
LRJ	R	I	The number of logical record blocks in the x-direction.
LRK	R	I	The number of logical record blocks in the y-direction.
XKK	0	F	The probability that an element is located at the peak.
MAD1	0	I	The starting address for selecting random numbers from the random number array. (1 ≤ HAD1 ≤ 128)
JRND	0	I	The random number generator initialization constant. $(0 < JRND < 2^{36} - 1)$

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The values for LRJ, LRK must be even.
- b. Only circular arrays can be statistically loaded.

4. SUBPROGRAMS REQUIRED

EXPND BESS CAM RRAND WEIGHT FXOPT

5. THEORY OF OPERATION

The program PLARY loads the generated antenna aperture into a PRMFL. The aperture is divided into 'blocks' which are 16 elements on a side or a total of 256 elements per block. These blocks define the size and dimension of the logical records used to write the aperture into the PRMFL. Thus, the number of blocks needed to load the aperture also corresponds to the total number of logical records required. The aperture field or the total number of elements available is defined by an even number of blocks arranged in columns (LRJ columns) and an even number of blocks in each column (LRK rows). Thus the total number of logical record blocks is LRJ*LRK.

The weights at the edge of a circular aperture are assigned values in a special vay to help smooth out the granularity caused by approximating a circular aperture with a grid of rectangularly spaced elements. A square with sides d/2, where d is the interelement spacing, is constructed centered at each element of the array. The distances from the corners of the square to the center of the aperture are calculated for each element. The number of corners contained by the specified aperture determines the weight of the element. Each corner counts a weight of 0.25. Therefore, if all four corners are located within the aperture distribution, then a value of 1.0 is assigned. Similarly, if only three of the corners are within the aperture distribution the value is 0.75, etc. This also holds for the element values around the hole of the aperture distribution. If all four corners are contained by the aperture hole, then the element value is 0.0. The number of corners contained by a radiating part of the aperture determines the value of each element. This technique produces a smoother circular image

The method used to load the elliptical or the rectangular aperture is not quite so sophisticated. The rectangular aperture, since it is being loaded in a rectangular grid, is simply loaded based on whether the element is contained or is outside of the radiating portion of the aperture distribution. Those elements contained inside the specified limits are assigned a value of 1.0. All others are given a value of 0.0. The elliptical aperture is loaded with the same technique as the rectangular aperture. The value of each element is determined by the location of the element with respect to the elliptical edge. If the element is inside the ellipse, the value is 1.0, otherwise it is 0.0. This technique produces a fairly granular edge. However, if the ellipse is large this effect is minimized.

The degree of phase accuracy in beam steering is determined by the number of controlling bits, NBITS. The value of the least significant bit of the beam steering phase shifter, KLSB, can be calculated as follows:

KLSB = 360.0/2NBITS degrees

The beam steering phase shift, PH, for element K,J is computed from the orthogonal steering angles, DELPHJ, DELPHK, as follows

PH1 = DELPHK*(K-XMIDK) + DELPHJ*(J-XMIDJ)

PH = FLOAT(IFIX(AMOD(PH1.360.0)/XLSB))*XLSB*DTR

Where: K,J = The element location in the y and x coordinates respectively

XMIDK = The middle of the aperture in the y-span

XMIDJ = The middle of the aperture in the
 x-span

DTR - Degrees to radius conversion constant.

Given the maximum quadratic phase error at the x and y edge of the aperture, PHERX, PHERY, the element to element quadratic phase error is calculated using

PHERR = (YMUK*(K-XMIDK)**2+XMUJ*(J-XMIDJ)**2)*DTR

Where, for a circle

YMUK = PHERY/(XEDGE) **2

XMUJ = PHERX/(XEDGE) **2

and the other parameters have the same meaning as above. For the ellipse, the values for XMUJ and YMUK are

YMUK - PHERY/(NMINOR) **2

XMUJ = PHERX/(NMAJOR) **2

For the rectangular aperture the values are

YMUK - PHERY/(NHIGH/2)**2

XMUJ = PHERX/(NVIDTH/2)**2

The Bessel phase error is determined by first calculating the radius to each element, then scaling the radius by the constant BSCAL. The scaled radius. HRAD, is then used as the argument for evaluation of the Bessel function.

PHBSER - BESERR*BESS(0.0, XRAD)*DTR

Where: BESS(0.0, KRAD) = The Bessel function of the first kind and order zero, evaluated at KRAD

BESERR = A magnitude scaling factor,
determines the value of
maximum error at the center of
the aperture

DTR - Degrees to radians conversion constant.

The total deterministic phase error at each element is the sum of the three independent phase contributions.

PHTTL - PH + PHERR + PHBSER

Where: PHTTL = The total phase error

PH = Beam steering and quantization phase error

PHERR - Quadratic phase error

PHBSER = Bessel phase error.

The value assigned to the element in the array A(J,K) is

A(J,K) = A(J,K) * CMPLX(COS(PHTTL), SIN(PHTTL))

The Horizon of the State of Stat

7. FORTHAN LISTING

上的。如果是一个人,我们就是一个人,我们就是一个人,我们们的人,我们们的人,我们们们的人,我们们们的人,我们们们们的人,我们们们们们们们的人,我们们们们们们们们

```
C
C
      28 APR 78
C
      1030
C
      COMPLEX A(16.16)
      COMMON IVIFLE, WTPED, NWTPOW, WKASIR, F(20), B(20), ANG.
&
             NBAR, BESCAL, CUBK1, PII2, BESS1, IAZ, XKK, WMAX.
&
      COMMON/BLKRND/MAD1, JRND, XMEAN, SIG2SQ, UL, UEXT
      DIMENSION U(20), Z(20), BZER01(20)
      DATA U/1.2196699.2.2331306.3.2383154.4.2410628.
å
      5.2427643,6.2439216,7.2447598,8.2453948,
8
      9.2458927.10.2462933.11.246624.12.246900.
      13.247131,14.247334,15.247508.1..247663.
&
8
      17.247796.18.247920.19.248027.20.248125/
      DATA BZER01/0.586067,1.6970509,2.7171939,3.726137.
å
      4.7312271,5.7345205,6.7368281,7.7385356,
      8.7398505,9.7408945,10.7417435,11.7424475,
      12.7430408,13.7435477,14.7439856,15.7443679,
å
      16.7447044,17.745003,18.7452697,19.7455093/
      DATA IOK/04000000000000/
      CHARACTER OUTFIL *20, X *1, Y *1, N *1
      DATA Y, N/'Y', 'N'/
      CALL FXOPT(68,1,1,0)
      PI-3.1415926
      PII2-2.0/(PI*PI)
      BESS1-1.0/BESS(0.0,0.0)
     WRITE(06,140) 'OUTPUT FILE NAME'
 590
      READ 140, OUTFIL
      CALL ATTACH(01, OUTFIL, 3, 1, ISTAT, )
      IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) CO TO 141
      WRITE(06.145) ISTAT
     FORMAT( ATTACH FAILED
                                 ISTAT - (.020)
      CO TO 590
 141
      CALL RANSIZ(01,512)
      NAMELIST/APETUR/IAPTFL, XEDGE, XHOLE, NMAJOR,
      NMINOR, NVIDTH, NHIGH
      WRITE(06,140) 'STATISTICAL TAPER?'
```

READ 140,X IAZ-1 IF(X.EQ.N) GO TO 600 IAZ=0 WRITE(06,140) 'XKK, KAD1, JRND' READ 140, XKK, MAD1, JRND 600 WRITE(06.140) 'IAPTFL' READ 140. IAPTFL GO TO(610,620,630), IAPTFL 610 WRITE(06,140) 'XEDGE, XHOLE' READ 140, XEDGE, XHOLE CO TO 640 620 WRITE(06,140) 'NMAJOR, NMINOR, XHOLE' READ 140, NMAJOR, NMINOR, XHOLE CO TO 640 630 WRITE(06.140) 'NWIDTH.NHICH' READ 140, NVIDTH, NHICH 640 CONTINUE GO TO 670 WRITE(06,140) 'INVALID INTFLC' 660 NAMELIST/WAIT/IWTFLC, WTRAD, ZJRAD, ZKRAD, WTPED. NVTPOW, WKASIR, BESCAL, CUBK, BESEDG 670 WRITE(06.140) 'IVTFLG' READ 140. IVTFLC IF(IWTFLG.EQ.8.AND.IAPTFL.NE.1) GO TO 660 IF(IWTFLG.EQ.7.AND.IAPTFL.EQ.1) GO TO 660 IF(IWTFLC.EQ.0) CO TO 700 GO TO (810,830,830), IAPTFL 810 WRITE(06,140) "WTRAD" READ 140, WTRAD CO TO 800 WRITE(06,140) 'ZJRAD,ZKRAD' READ 140, ZJRAD, ZKRAD WTRAD=AMAX1(ZJRAD, ZKRAD) 800 GO TO (710,700,730,700,720,740,750,720), INTFLC 710 WRITE(06,140) 'WTPED, NWTFOW'

MEAD 140, WTPED, NWTPOW

WRITE(06,140) 'DB, NBAR'

NAMELIST/TAYL/DB, NBAR, SIG

GO TO 700

READ 140, DB, NBAR

```
RAT=10.0**(DB/20.0)
     AA=ALOG(RAT+SQRT(RAT*RAT-1))/PI
     AASQ-AA*AA
     IF(INTFLC.EQ.8) CO TO 760
     SIG=U(NBAR)/SQRT(AASQ+(NBAR-0.5)**2)
     SICSQ-SIC*SIC
     DO 252 I=1.NBAR-1
     FNUM-1.0
     FDNM-1.0
      T=U(I)*U(I)
     XII--0.5
     DO 254 II=1.NBAR-1
     XII-XII+1.0
      FNUM=FNUM*(1.0-T/(SIGSQ*(AASQ+(XII*XII))))
      IF(II.EQ.I) GO TO 254
      FDNM=FDNM*(1.0-T/(U(II)*U(II)))
254 CONTINUE
      ARC-PI*U(I)
      F(I)=-BESS(0.0.ARC)*FNUM/FDNM
      F(I)=F(I)/(BESS(0.0,ARG)**2)
 252 CONTINUE
      GO TO 700
  730 WRITE(06.140) 'WKASIR'
       READ 140. WKASIR
      GO TO 700
 740 WRITE(06,140) 'BESCAL, BESEDG'
      READ 140, BESCAL, BESEDC
      GO TO 700
 750 WRITE(06.140) 'CUBK'
      READ 140, CUBK
      XX=SQRT(WTRAD*WTRAD/3.0)
      CUBK1-CUBK/ABS(XX*(XX-VTRAD)*(XX+VTRAD))
      CO TO 700
      Z(1)=0.9858302+0.0333885*DB+0.00014064*DB*DB
 760
           -0.0000019*DB*DB*DB+0.00000001*DB*DB*DB*DB
å
      Z(1)=Z(1)*Z(1)
      2(2)=2.00337487+0.01141548*DB+0.0004159*DB*DB
å
           -0.00000373*DB*DB*DB+0.00000001*DB*DB*DB*DB
      Z(2)=Z(2)*Z(2)
      Z(3)=3.00636321+0.00683394*DB+0.00029281*DB*DB
           -0.00000161*DB*DB*DB
```

```
Z(3)=Z(3)*Z(3)
    Z(4)=4.00518423+0.00501795*DB+0.00021735*DB*DB
          -0.00000088*DB*DB*DB
     2(4)-2(4)*2(4)
     IF(NBAR.LE.4) CO TO 762
     DO 761 I=5,NBAR
     Z(I)=AASQ+I*I
761 CONTINUE
762 SIG-BZERO1(NBAR+1)/SQRT(Z(NBAR))
     SICSQ=SIC*SIC
     DO 765 I=1.NBAR
     FNUM-1.0
     T=BZERO1(I)*BZERO1(I)
     FDNM=1.0-T/(BZERO1(1)*BZERO1(1))
     IF(I.EQ.1) FDNH-1.0
     DO 770 II-1.NBAR-1
     FNUM=FNUM*(1.0-T/(SICSQ*Z(II)))
     IF(I-1.EQ.II) GO TO 770
     FDNM=FDNM*(1.0-T/(BZERO1(II+1)*BZERO1(II+1)))
770 CONTINUE
     B(I)=(2.0*T/BESS(1.0.BZERO1(I)*PI))*FNUM/FDNM
765 CONTINUE
     P0=0.4797212+0.01453692*(DB)-0.00018739*(DB*DB)
        +0.00000218*(DB*DB*DB)-0.00000001*(DB*DB*DB*DB)
     PO-PO*SIC
     POSQ=PO*PO
     PIPOSQ-POSQ*PI*PI
     FNUM-1.0
     FDNM=1.0-P0SQ/(BZER01(1)*BZER01(1))
     DO 772 I=1, NBAR-1
     FNUH=FNUM*(1.0-P0SQ/(SICSQ*Z(I)))
     FDNM=FDNM*(1.0-P0SQ/(BZERO1(I+1)*BZERO1(I+1)))
772 CONTINUE
     C=PIP0SQ-1.0
     C=C =BESS(1.0,P0*PI)*FNUM/FDNM
     C=1.0/C
     DO 773 I=1,NBAR
     B(I)=-B(I)*C
773 CONTINUE
700 WRITE(06,140) 'NBITS'
     NAMELIST PHASE DELPHJ. DELPHK. PHERY, PHERY,
```

```
&
                       NBITS, BESERR, BSCAL
      READ 140, NBITS
      WRITE(06,140) 'ANY BEAM STEERING?'
      READ 140.X
      IF(X.EQ.N) GO TO 900
      WRITE(06,140) DELPHJ, DELPHK
      READ 140, DELPHJ, DELPHK
      WRITE(06,140) 'QUADRATIC ERROR?'
 900
      READ 140,X
      IF(X.EQ.N) GO TO 910
      WRITE(06,140) 'PHERX, PHERY'
      READ 140, PHERX, PHERY
 910
     WRITE(06,140) 'BESSEL ERROR?'
      READ 140.X
      IF(X.EQ.N) GO TO 134
      WRITE(06.140) 'BESERR.BSCAL'
      READ 140, BESERR, BSCAL
 134 WRITE(06,135)
 135 FORMAT('LRJ,LRK')
      NAMELIST/BLOCK/LRJ, LRK
      READ 140, LRJ, LRK
 140
     FORMAT(V)
      IF(MOD(LRJ, 2).NE.0.OR.MOD(LRK, 2).NE.0) GO TO 134
      WRITE(6.APETUR)
      WRITE(6, WAIT)
      WRITE(6, TAYL)
      WRITE(6, PHASE)
      WRITE(6, BLOCK)
      XEDGE2=XEDGE*XEDGE
      XHOLE2=XHOLE*XHOLE
      NSIDEJ-LRJ*16
      NSIDEK-LRK*16
       NCENTJ=NSIDEJ/2+1
       NCENTK=NSIDEK/2+1
       NCNT1J=NSIDEJ/2
       NCNT1K=NSIDEK/2
      XMIDK=NSIDEK/2+0.5
      XMIDJ=NSIDEJ/2+0.5
      LRTOTL=LRJ*LRK
      DTR=0.017453
      XLSB=360.0/2.0**NBITS
```

DXLSB=1.0/XLSB XLSB=XLSB*DTR CO TO (10,20,30), IAPTFL YMUK=PHERY/XEDGE2 10 XMUJ=PHERX/XEDGE2 CO TO 40 YMUK=PHERY/(FLOAT(NMINOR)) **2 20 XMUJ=PHERX/(FLOAT(NMAJOR)) **2 CO TO 40 YMUK=PHERY/(FLOAT(NHIGH)/2.0) **2 30 XMUJ=PHERX/(FLOAT(NVIDTH)/2.0)**2 CONTINUE 40 K1-0 J1-0 IF(IAZ.EQ.1) CO TO 680 O. O-KAKV IAZ-1 DO 650 IRAD=1, IFIX(VTRAD+1) RAD-FLOAT(IRAD-1) CALL WEIGHT (RAD, WTRAD, WFUNC) WMAX=AMAX1 (WMAX, WFUNC) 650 CONTINUE TAZ-0 680 CONTINUE NAMELIST/STAT/XKK, VMAX WRITE(06,STAT) DO 510 LR1-1, LRTOTL DO 50 KK-1,16 K=K1+KK DO 50 JJ-1,16 J=J1+JJ PH=DELPHK*(K-XMIDK)+DELPHJ*(J-XMIDJ) PH=FLOAT(IFIX(AMOD(PH, 360.0) *DXLSB)) *XLSB PHERR=(YMUK*(K-XMIDK)**2+XMUJ*(J-XMIDJ)**2)*DTR XJ=J-XMIDJ XK=K-XMIDK XRAD=SQRT(XJ*XJ+XK*XK) *BSCAL PHBSER=BESERR *BESS(0.0, KRAD) *DTR PH=PH+PHERR+PHBSER A(JJ, KK)=CMPLX(COS(PH), SIN(PH)) CONTINUE 50

CO TO (100,300,400), IAPTFL 100 DO 210 KK-1.16 K=K1+KK KSQ=(K-XMIDK)**2DO 200 JJ-1.16 J=J1+JJ ANG-ATAN2((K-XMIDK),(J-XMIDJ)) XLSQ=XKSQ+(J-XMIDJ) **2 DIST=SQRT(XLSQ) IF(IAZ.EQ.0) GO TO 205 CNR1=(J-NCENTJ)**2+(K-NCENTK)**2 CNR2=(J-NCNT1J)**2+(K-NCENTK)**2CNR3=(J-NCENTJ)**2+(K-NCNT1K)**2CNR4=(J-NCNT1J)**2+(K-NCNT1K)**2ICNFL-0 IF(CNR1.GT.XEDGE2.OR.CNR1.LT.XHOLE2) ICNFL=1 IF(CNR2.GT.XEDGE2.OR.CNR2.LT.XHOLE2) ICNFL=ICNFL+1 IF(CNR3.GT.XEDGE2.OR.CNR3.LT.XHOLE2) ICNFL=ICNFL+1 IF(CNR4.GT.XEDGE2.OR.CNR4.LT.XHOLE2) ICNFL=ICNFL+1 IF(ICNFL.EQ.0) CO TO 205 GO TO(201,202,203,204), ICNFL 201 A(JJ,KK)=A(JJ,KK)*0.75GO TO 205 202 A(JJ,KK)=A(JJ,KK)*0.5GO TO 205 203 A(JJ,KK)=A(JJ,KK)*0.25CO TO 205 204 A(JJ.KK) = (0.0,0.0)205 IF(IWTFLG.EQ.0) GO TO 200 CALL WEIGHT (DIST, WTRAD, WFUNC) IF(IVTFLG.NE.8) GO TO 211 A(JJ,KK)=A(JJ,KK)*CMPLX(0.0,VFUNC)GO TO 200 211 A(JJ,KK)=A(JJ,KK)*VFUNC200 CONTINUE 210 CONTINUE CO TO 500 XMAJOR=NMAJOR*NMAJOR 300 XMINOR=NMINOR *NMINOR DO 310 KK=1,16 K-K1+KK

```
YKSQ=(K-XMIDK)**2
    DO 310 JJ=1,16
     J=J1+JJ
    XKSQ=(J-XMIDJ)**2
    XLSQ-XKSQ+YKSQ
    ELPSQ=YKSQ/XMINOR+XKSQ/XMAJOR
     IF(ELPSQ.CT.1.0.OR.XLSQ.LT.XHOLE2)
        A(JJ,KK)=(0.0,0.0)
310 CONTINUE
     IF(IWTFLG.EQ.0) GO TO 500
     SGN-1.0
     DO 320 KK-1.16
     K=K1+KK
    XKPT=ABS(K-XMIDK)
     IF(INTFLG.NE.7) GO TO 315
     VFNK-1.0
    GO TO 317
315 CALL WEIGHT (XKPT, ZKRAD, WFNK)
317 CONTINUE
    DO 330 JJ-1,16
     J=J1+JJ
     XJPT-ABS(J-XMIDJ)
     CALL WEIGHT(XJPT, ZJRAD, WFNJ)
     IF(IWTFLG.EQ.7.AND.J.LT.XMIDJ) SCN=-1.0
     A(JJ,KK)=A(JJ,KK)*VFNK*VFNJ*SGN
330 CONTINUE
320 CONTINUE
     CO TO 500
400 XVIDTH-NVIDTH/2
     XHIGH-NHIGH/2
     DO 410 KK-1,16
     K=K1+KK
     YK=ABS(K-HMIDK)
     DO 410 JJ=1,16
     J=J1+JJ
     XK=ABS(J-XMIDJ)
     IF(YK.GT.XHIGH.OR.XK.GT.XVIDTH) A(JJ,KK)=(0.0,0.0)
410 CONTINUE
     IF(IVTFLG.EQ.0) GO TO 500
     SGN-1.0
     DO 420 KK=1.16
```

```
K=K1+KK
     XKPT=ABS(K-XMIDK)
     IF(INTFLG.NE.7) GO TO 415
     VFNK-1.0
     GO TO 417
415 CALL WEIGHT (XKPT, ZKRAD, WFNK)
417 CONTINUE
     DO 430 JJ=1,16
     J=J1+JJ
     XJPT-ABS(J-XMIDJ)
     CALL WEIGHT (XJPT, ZJRAD, WFNJ)
     IF(IVTFLG.EQ.7.AND.J.LT.XMIDJ) SGN=-1.0
     A(JJ,KK)=A(JJ,KK)*VFNK*VFNJ*SCN
430 CONTINUE
420 CONTINUE
500 WRJTE(01'LR1) A
     IF(MOD(LR1,LRJ).EQ.0) GO TO 505
     J1-J1+16
     GO TO 510
505 K1=(LR1/LRJ)*16
     J1-0
510 CONTINUE
     CALL DETACH(01, ISTAT, )
     WRITE(06,146) ISTAT
146 FORMAT('DETACH ISTAT-'.020)
    CALL EXIT
     STOP
    END
```

SUBROUTINE PLOTD

1. PURPOSE

The purpose of this subroutine is to transmit a data array to the DUIS for subsequent plotting. The data samples to be plotted must be equally spaced.

i.e., the independent variable increment between samples must be a constant.

2. INPUT PARAMETERS

Name	<u>O∕R</u>	T	Description
Va	R	F	The array containing the dependent variable values to be plotted
NOUT	R	I	The number of samples to be processed in the array, DV
OR	R	F	The origin of the independent variable, i.e. the value of the independent variable that corresponds to the sample, DV(1)
DEL	R	F	The independent variable increment between samples
TH	0	F	Variable used to accumulate the maximum dependent variable modulus.

3. CALLING SEQUENCE

CALL PLOTD(DV, NOUT, OR, DEL, TH)

4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. This subroutine is structured to process only data which has a fixed independent variable increment between samples.
- b. The output data from this subroutine has the standard DUIS plot data format.
- c. The output data from this subroutine has an accuracy of 12 bits.
- d. The variable TH can be used to accumulate the maximum modulus value over a number of plots. This is mainly used in processing three-dimensional plots.

5. SUBPROGRAMS REQUIRED

ALOG10 CHOP

6. THEORY OF OPERATION

The first operation performed by this subroutine is to scan the input array, DV, to determine the largest, XMAX, and smallest, XMIN, dependent variable values. The parameter TH is then updated.

The dependent variable range XMAX=XMAX-XMIN is computed from the scanner output parameters. The mean of the dependent variable array, BIAS, is then computed. Next, two integers, J and K, are found such that the following condition is satisfied:

$$(J-1)*10^{K} < XMAK < J*10^{K}$$

The LSB to be used in digitizing the data is then computed as follows:

KLSB=FLOAT(J=10K)/4000.0

PAAS-CPD-PLOTD 17 APR 78

OBSTEAL MEATERS .

...

ŭ

D C

Now all of the parameters necessary to characterize the plot data have been determined. Therefore, they are transmitted to the DUIS in the plot headergreeond. This record contains the following parameters: \$35.54

NOUT, OR, DEL, BIAS, XLSB / MG / TUCH, VOJETO/ HE SHI / TOGRHUR CONTRACTOR COCK IN TRACES

Each plot point is converted to an integer number in the following manner: $n_{x,y} \in A_{x,y} \cap A_{x,y}$

PTL - (DV(J) BIAS XXLSB OWLT OF THERE WITH BEALT OWN THE TABLE OWN THE PTL+SIGN(0.5, PTL) CALLS OWN THE TABLE OWN

This integer number is converted to tyonASCII was to characters and packed into a plotydataAsecondabyethe subroutine CHOP. Each time a record ksessibled (33)plot points) it is transmitted to the DUIS.

When all of the plot points have been transmitted to the DUIS a plot terminator record is transmitted to signify that the plot record is transmitted to the calling (sub) program.

SHOTTON TO DETERMINE BISS AND ALLS

WARE-MARK-SAMA

SO BU CHARTS (C. 40 : P.1. VANNOUZ

BIRTHARM W-3618

VENDS SCHOOLANTER

TEST OF THE CHARTES

IFLETE, "Ja. 180.190

146 RAMIANANANANAN BAI

W3_ 05 00

TOO MARKARARA OF PARTIES CONTRACTOR

166 dalfigur 5 38.

PUT TOP YOU CAT THE

THE CONTRACTOR OF THE CONTRACTOR OF THE PROPERTY OF THE

35.2 W. Oak

A S I NOW SETT OFF

```
7.
    FORTRAN LISTING
C
      17 APR 78
C
      1420
      SUBROUTINE PLOTD(DV.NOUT.OR.DEL.TH)
      DIMENSION DV(1), ILINE(35)
      XMAX-DV(1)
      XMIN-DV(1)
C
      SCAN DATA ARRAY TO FIND LARGEST (XHAX)
      AND SMALLEST (XMIN) VALUES
      DO 100 J-1, NOUT
      XMAX=AMAX1(XMAX,DV(J))
      XMIN-AMIN1(XMIN, DV(J))
 100
      CONTINUE
C
      UPDATE TH
C
      TH-AMAX1 (ABS(XMAX), ABS(XMIN), TH)
C
      SECTION TO DETERMINE BIAS AND XLSB
      MIKK-KAMK-KMIN
      JF(XMAX.LT.1.0E-10) XMAX=1.0E-10
      BIAS-0.5*XMAX+XMIN
      PTL=ALOG10(XMAX)
      ITEST-IFIX(PTL)
      IF(PTL) 150,140,140
 140 X=XMAX/(10.0**ITEST)
      GO TO 160
 150 X-XMAX*(10.0**(IABS(ITEST)+1))
 160 N=IFIX(X+0.98)
      IF(PTL) 123,124,124
 123 XMAX=FLOAT(N)/(10.0**(IABS(ITEST)+1))
      GO TO 125
 124 XMAX=FLOAT(N) *(10.0**ITEST)
 125 XLSB-XMAX/4000.0
```

```
C
C
      TRANSMIT THE PLOT HEADER RECORD TO DUIS
      WRITE(06,1000) NOUT, OR, DEL, BIAS, XLSB
1000 FORMAT(4HzzH , I6,4(',',1PE12.5))
C
      SECTION TO CONVERT DATA TO 12 BIT FORM
C
      AND TRANSMIT TO DUIS
      IFLC-0
      J=1
      K-1
 181 IF(J-NOUT) 200,200,201
 200 PTL=(DV(J)-BIAS)/XLSB
      IDAT=PTL+SIGN(0.5,PTL)
      CALL CHOP(IDAT, ILINE(K))
      IF(K-33) 220,222,222
 201 IFLC-1
 222 WRITE(06 1002)(ILINE(L),L=1,33)
1002 FORMAT('>z',33R2,'>z')
      K=1
      IF(IFLG) 180,180,500
 220 K=K+1
 180 J=J+1
      GO TO 181
      PLOT TRANSMISSION IS COMPLETE.
C
C
      TRANSMIT THE TERMINATOR RECORD
 500
     WRITE(06,1003)
 1003 FORMAT( zzZ')
      RETURN
```

END

THE WINDS CHARLES OF THE CONTROL OF

PROGRAM PLTDVR

1. PURPOSE

The purpose of this subroutine is to process data for transmission to the DUIS for subsequent use in preparing 3-dimensional plots. The types of data normally processed by this subroutine are antenna far field patterns and antenna aperture illumination distributions.

2. INPUT PARAMETERS

Name	O∕R	<u>T</u>	Description
AFILE	R	С	The name of the TSS PRMFL which the user wishes to process
JAID	R	I	The data array width in blocks. This parameter corresponds to LRJWID in the program FFT2DX or LRJ in the programs PLARY, RNDERR, or FILMOD.
JVIDSP	R	I	The width in blocks of the vertical strip to be processed
NBMAK	R	I	The number of the last block to be processed
LREC	R	I	The number of the first record to be processed,
ISCN	R	I	Data processing mode flag. - 0 modulus data is processed - 1 real component only is processed.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The maximum value of the parameter JSID is 10.
 This corresponds to a row length of 160 samples.
 This limitation is arbitr my and was chosen to minimize the memory required by this program.
- b. It should be recognized that the run time of this program is directly proportioned to the number of plot points transmitted to the DUIS. The number of plot points is given by the following expression:

NPTS=JSID *16 *NROVS

The time required to transmit each plot point is 16.67 ms at 1200 Baud and 66.67 ms at 300 Baud. For example, a 3-D display 4 blocks wide and 64 rows tall would require 68.27 seconds at 1200 Baud.

4*16*64*16.67ms = 68.27 seconds

At 300 Baud the time required is 4.55 minutes.

c. This program is designed to work only with the DUIS.

4. SUBPROGRAMS REQUIRED

ATTACH RANSIZ PLOTD DETACH EXIT

等是是 2000年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1900年代,1

5. THEORY OF OPERATION

After startup a message is printed to the user requesting the name of the TSS PRMFL that is to be processed. The user reply is tested to see if it is the word 'STOP'. If so, program execution is terminated. Otherwise, an attempt is made to access

AND THE PROPERTY OF THE PARTY OF THE PARTY

the file via the system subroutine, ATTACH. If the file cannot be accessed the system error code is printed and the user is requested to try again.

Providing an input file has been successfully attached, the following parameters are requested from the user:

JVID.JVIDSP.NBMAX

The parameter JWIDSP is tested to ensure that it does not exceed the smaller of JWID or 10. The following parameters are then requested from the user:

LRECF, ISCN

The parameter LRECF is tested to see if it is zero or negative. If so, control is transferred to Statement # 400 and the file is deaccessed via a call to the system subroutine DETACH. The program then returns to the procedure for accessing another file (Statement #110).

The JVIDSP blocks, starting with record number LREC, are loaded into the array A(J,K). Next, the 16 rows of data are processed one row at a time for output to the DUIS via the subroutine PLOTD. If ISGN=1 then the real components of the data samples are placed in the array DV. If ISCN=0 then a bipolar modulus function is computed from the output data. The reason for computing a bipolar modulus is that in the DUIS the data to be plotted is normally interpolated to provide smoother curves. The interpolation functions cannot accurately process data that possesses discontinuities which is the case for a true modulus function. procedure used to convert the modulus is as follows. It has been noted that the modulus can become zero only if the real(x) and imaginary(y) components are both zero simultaneously. Also, it is known that both x and y are continuous functions. Therefore, if both x and y reverse signs between two sample points then the modulus must have gone through zero. Therefore, the

scheme used was to reverse the sign of the modulus function (IP) each time x and y reversed signs at the same time. After each bipolar modulus value has been computed it is placed in the array DV. When the array DV is full (JSTOP values) then the array is rpocessed and transmitted to the DUIS via the subroutine PLOTD.

After each sweep is transmitted the program vaits for the DUIS to return a status number, ISTAT. If the DUIS replies with ISTAT=1 then the sweep must be retransmitted since a transmission error was detected. If the DUIS replies with ISTAT=0 then the sweep was received with no errors detected and the processing of the next sweep is begun.

When all 16 rows of data have been transmitted to the DUIS then another 16 rows are read in and processed in the same manner as described above. If the end block NBMAX is reached then the program waits for the user to transmit a carriage return and then the program prints the maximum value of the data transmitted.

Next, the TSS PRMFL is detached, control is transferred to Statement # 110, and the user is asked for another file name.

6. FORTRAN LISTING

```
C
C
      17 APR 78
                      1345
      DIMENSION DV(256)
      COMPLEX A(160,16)
      CHARACTER AFILE *20, STOP *4, DONE *4
      DATA IOK/0400000000000/,STOP/'STOP'/
      DATA DONE/0007040033014/
 100
      FORMAT(V)
C
C
      REQUEST TSS FILE NAME FROM USER
 110 WRITE(06,100) 'INPUT FILE NAME ?'
      READ 100.AFILE
      IF(AFILE.EQ.STOP) GO TO 600
      CALL ATTACH(01, AFILE, 1, 1, ISTAT, )
      IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) GO TO 70
      WRITE(06,510) ISTAT
      GO TO 110
 70
      CALL RANSIZ(01.512)
      REQUEST PARAMETERS FROM USER
      WRITE(06,100) 'Enter JVID, JWLDSP, NBMAX'
      READ 100, JVID, JVIDSP, NBMAX
      IF(JVIDSP.LE.10.AND.JVIDSP.LE.JVID) GOTO 75
      JVIDSP=10
      WRITE(06,100) 'JWIDSP > 10... SET TO 10'
      IF(JWIDSP.LE.JWID) GOTO 75
      JWIDSP=JWID
      WRITE(06,100) 'JWIDSP > JWID... SET JWIDSP=JWID'
      WRITE(06,100) 'Enter FIRST LREC, ISGN'
      READ 100, LRECF, ISCN
      TH-0.0
C
      IF LRECF < 1 THEN TERMINATE PROCESSING THIS FILE
      IF(LRECF.LE.0) GO TO 400
```

THE STATE OF THE PROPERTY OF T

```
JSTOP-JWIDSP*16
      NST=1
      NSTP-16
      CO TO 200
C
C
      SECTION TO READ IN A STRIP OF DATA
      LRECF-LRECF+JVID
 210
      IF(LRECF.CT.NBMAX) GO TO 85
 200
     LR1IN-LRECF
 190
      READ(01'LR1IN)((A(J,K), J=NST, NSTP), K=1,16)
      NST-NSTP+1
      NSTP-NSTP+16
      LR1IN=LR1IN+1
      IF(NSTP.LE.JSTOP) GO TO 190
C
C
      SECTION TO PROCESS A STRIP FOR OUTPUT
      NST=1
      NSTP-16
      DO 310 K-1,16
      IP=1
      DO 300 LL-1.JSTOP
      IF(ISGN.EQ.1) GO TO 770
      E=CABS(A(LL,K))
      X=REAL(A(LL,K))
      Y-AIMAG(A(LL,K))
      IF(LL.NE.1) GO TO 112
      XO-X
      YO-Y
 112
     P1=X0*X
      P2=Y0*Y
      IF(E.LT.1.0E-30) GO TO 111
      IF(P1.LT.0.0.AND.P2.LT.0.0) IP=-IP
      XO=X
      YO-Y
 111
      DV(LL)=SIGN(E, IP)
      GO TO 300
 770
      DV(LL)=REAL(A(LL,K))
 300
      CONTINUE
      CALL PLOTD(DV.JSTOP, 0.0, 1.0, TH)
 700
```

PAAS-CPD-PLTDVR 1 MAY 78

```
C
C
      WAIT FOR DUIS TO REPLY WITH STATUS CODE
      READ 100, ISTAT
      IF(ISTAT.EQ.1) GO TO 700
310
     CONTINUE
      GO TO 210
C
      ALL PLOT RECORDS IN THE FILE HAVE BEEN
C
      SUCCESSFULLY TRANSMITTED TO DUIS
 85
      WRITE(06,100) DONE
      READ 100, AFILE
      WRITE(06,100) 'TH-',TH
      CO TO 75
     CALL DETACH(01, ISTAT, )
 400
      WRITE(06,410) ISTAT
 410
     FORMAT( DETACH
                        ISTAT-',020)
      CO TO 110
     FORMAT('UNSUCCESSFUL ATTACH ISTAT=',020)
 510
 600
     CALL EXIT
      STOP
      END
```

Annex according to the second of the second

PROGRAM RNDERR

1. PURPOSE

This program adds random phase errors to the elements of an existing aperture distribution stored in a PRMFL. The resulting aperture may be stored on the input PRMFL or may be stored on another user specified PRMFL.

2. INPUT PARAMETERS

Name	<u>0/R</u>	Ţ	Description
NTYPE	R	I	Determines the type of distribution.
			- 1 Uniform - 3 Caussian
MAD1	R	I	The starting address for selecting random numbers from the random number array. (1 ≤ MAD1 ≤ 128)
JRND	R	I	Random number generator initialization constant. $(0 \le JRND \le 2^{36} - 1)$
LRJ	R	I	Number of logical record blocks in the x-direction (horizontally).
LRK	R	I	Number of logical record blocks in the y-direction (vertically).
UMEAN	0	F	Mean value of the uniform distribution in degrees.

UUEXT	0	F	Width of the uniform distribution in degrees.
KMEAN	0	F	Mean value of the Gaussian distribution in degrees.
SIGHA	0	F	Standard deviation of the Gaussian distribution in degrees.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The value of MAD1 must be in the range

 $1 \le MAD1 \le 128$

b. The value of JRND must be in the range

 $0 < JRND < 2^{36} - 1$

4. SUBPROGRAMS REQUIRED

RRAND FXOPT

5. THEORY OF OPERATION

The program steps sequentially through the LREND (=LRJ*LRK) input logical record blocks starting with block number 1. For each element in a block, a random phase component is generated according to the equation

PHERR = RRAND(NTYPE) *0.017453.

RRAND is the random number generator function and the constant 0.017453 is a degree-to-radian conversion factor. With the phase error expressed in radians a complex representation C is calculated as

C = CMPLX(COS(PHERR), SIN(PHERR)).

This number is then multiplied by the value of the antenna aperture element to be modified. The multiplication is defined by the equation

A(I) = A(I) *C.

Note that this is a complex multiplication by a unit vector and that no change in energy is introduced as a result of the phase errors. This process is repeated for all of the elements in each block. As the elements are processed each block is written off to the appropriate PRMFL, either the input PRMFL or another that is chosen by the user.

PAAS-CPD-RNDERR 1 MAY 78

Shire of an order of the contract of the contr

IF(ISTAT.EQ.IOK.OR.ISTAT.EQ.0) GO TO 600 WRITE(06,550) ISTAT GO TO 580 600 LREND-LRJ*LRK DO 700 LRIN-1, LREND READ(01'LRIN) A DO 650 I=1,256 PHERR=RRAND(NTYPE) *0.017453 C=CMPLX(COS(PHERR),SIN(PHERR)) 650 A(I)=A(I)*CWRITE(LROUT'LRIN) A CONTINUE 700 CALL DETACH(01, ISTAT,) 800 WRITE(06,750) ISTAT CALL DETACH(02, ISTAT,) WRITE(06,750) ISTAT FORMAT('DETACH ISTAT-',020) CALL EXIT STOP END

FUNCTION RRAND

1. PURPOSE

This function generates random numbers for use in various subprograms of PAAS. Samples from the uniform, Gaussian, and Rayleigh distributions can be generated. This function is based on the function RRAND used in RADSIM.

2. INPUT PARAMETERS (Common Area BLKRND)

Name	<u>0/R</u>	I	<u>Description</u>
MAD1	R	I	Random Number Table pointer
JRND	R	I	Random integer from previous execution of RRAND
HMEAN	R	F	Mean value of the Gaussian distribution
SIC2SQ	R	F	An intermediate parameter used in computing Gaussian and Rayleigh distributions
UL	R	F	An intermediate parameter used in determining the uniform distribution mean value
UEXT	R	F	An intermediate parameter used in determining the uniform distribution width

3. CALLING SEQUENCE:

VAR - RRAND (NTYPE)

NTYPE R I Control integer which specifies the type of distribution to be generated.

NTYPE = 1 Uniform distribution
(floating point output)
= 2 Rayleigh

Springly Sandon.

- 3 Gaussian

VAR contains the random sample generated by the function from the NTYPE probability distribution.

4. RESTRICTIONS, REQUIREMENTS, KISCELLANEOUS DATA

a. Before any call can be made to the function RRAND the labeled common area must be loaded as follows:

MAD1 Any integer on the interval: 0 ≤ MAD1 ≤ 127

JRND Any integer on the interval: $0 \le JRND \le 2^{35}$

KMEAN Mean value of Gaussian distribution

SIC2SQ = -2.0*SIGMA*SIGMA

Where: SIGMA is the standard deviation of

the Gaussian or Rayleigh

distribution

UL - UMEAN - 0.5 * UEXT

Where: UMEAN is the mean value of the

uniform distribution

UEXT is the width of the uniform

distribution

nervictering schools of the second second

UEXT - UEXT/ 2^{35}

- b. For convenience and to minimize program steps, the array IRAND was equivalenced to the arrays NRND1 and NRND2, but displaced by one location. This structure allows an address of zero to be used, i.e., an address of zero will access IRAND (0), which overlays NRND(1). If this were not done, a test would have to be performed on MAD1 to ensure that an address of zero did not occur.
- c. The distribution transformations used herein are documented in the following reference:

Robert E. Machol (ed.), System Engineering Handbook, McGraw-Hill, N.Y., 1965, pp. 40-28, 40-29.

d. Referenced labeled common areas:

BLKRND

e. Source PRMFL:

/PLARY

5. SUBPROGRAMS REQUIRED

FLD FLOAT SQRT

6. THEORY OF OPERATION

For each call to the function RRAND a number KRND is selected from the random number table, IRAND. The address of the number selected from the table is MAD1, a random number. The number KRND is added to the product of JRND and IMULT and stored in IRND. The variable JRND is the random number which was generated by the previous execution of the function and IMULT is

a multiplier chosen because it results in good bit scrambling. The multiplication of JRND by IMULT causes the bits of JRND to be scrambled. This scrambled word is then added to KRND, just retrieved from the table to form the new random number. IRND. The sign bit of IRND is set to zero to ensure a positive number. The random number IRND just generated is an integer having a uniform distribution from 0 to 235-1. IRND is placed in the random number table location previously occupied by the KRND. In this manner the random number table is updated by generating new random numbers and inserting them into the table. From the random number IRND, 7 bits are selected to determine the new address MAD1 to be used in the next call to the function. The 7-bit address field allows the addresses to range from 0 to 127. Once the random number is generated JRND is set equal to IRND for use in the subsequent executions of the function. In order to convert this number to a floating point number, r, having a uniform distribution from 0 to 1.0, the following conversion is used:

$r = FLOAT(IRND)/2^{35}$

From this uniform distribution other probability distributions can be generated by using transformations which map a uniform distribution into the desired distribution. The following is a list of the transformations used in this function:

a. Uniform distribution

$$p(x) = 1/(b-a) , (a \le x \le b)$$

$$x_n = (b - a)r_n + a$$

b. Rayleigh distribution

$$p(x) = (x/\sigma^2) \exp(-x^2/2\sigma^2)$$
 , $(x \ge 0)$
 $x_n = -2\sigma^2 \ln r_n$

c. Gaussian distribution

$$p(x) = (1/2\pi\sigma) \exp[(x-\mu)^2/2\sigma^2]$$
 , $(-\infty < x < \infty)$
 $x_n = 2\sigma^2 \ln r_n * \cos 2\pi r_{n+1}$
 $y_n = 2\sigma^2 \ln r_n * \sin 2\pi r_{n+1}$

7. FORTRAN LISTING:

```
C
C
      FUNCTION RRAND(NTYPE)
      COMMON/BLKRND/MAD1, JRND, XMEAN, SIG2SQ, UL, UEXT
      DIMENSION IRAND(128), NRND1(65), NRND2(64)
      DATA NRND1/15134181997,27509664464,30323512272,
å
       14051007893,16402190290,26306990212,11260717646.
å
       16801629773,11849273156,19404991345,06977712830,
å
       02883434137,33025570091,11012391622,13411365861,
å
       31267410086,13462139250,26463885902,24219774296,
å
       11557820695,30512809719,12630506319,17722780814,
8
       04722597022,16900280091,16243824041,16388044606.
å
       26212698408,13570004754,11188309528,29134237821.
å
       13164942096,29908968258,03564986686,24513426529.
8
       25262307992,16416251777,32749370939,21116178576.
å
       19395173043,20743061171,21319359579,19074491967.
       19244390324,08846123356,27142309994,15825176938,
8
       16410917813,23416520791,28825638452,10800745449.
       01702686304.17006458873.16841482774.26473264721.
å
       17160292937,29260744156,8883554486,3669953728,
å
å
       16068801392,5883873859,14824731880,18081451748,
å
       8160418880.30068227383/
      DATA NRND2/12068158044.06847664659.15416782660.
å
       25052201840.13988647055.01734737408.07289355507.
æ
       28120785669.32320902560.19471392797.07683759917.
       24386072834,29317493972,07114843643,16232718423,
å
       29170604246.26866574818.20335880812.14861357546.
å
       25072568248,31374670078,13676667951,30463132192.
å
å
       20172084006,16184261842,14974210467,10283018420,
&
       18310257399.18938188207.01286074697.19662214195.
å
       01577045480,16742867695,11686848767,18174114680,
&
       30892487160,30892487160,28360949700,33368415709,
&
       17235921632,25322444850,30007056175,13488881553,
å
       30224148581,07655423387,32626402591,13101024674,
&
       30533512969,07218771539,00229536870,29198604401,
&
       33122308420,29107616508,16534467415,3669736170,
       3491463822,5804776974,30256545186,10832795361,
å
```

```
&
       18174114680,10556707007,10140208896,9779017119,
&
       19382343178/
      DATA IMULT/1220703125/, IMAX/4294967296/
      DATA N2P16/65536/, CI/2.9103830E-11/
      EQUIVALENCE (IRAND(1), NRND1(2)), (IRAND(65), NRND2(1))
 10
      KRND=IRAND(MAD1)
      IRND=KRND+JRND*IMULT
      IRND=FLD(1,35,IRND)
      IRAND(MAD1)-IRND
      MAD1=FLD(15,7,IRND)
      GO TO (200,300,400),NTYPE
 200 RRAND-FLOAT(IRND) *UEXT+UL
      JRND-IRND
      RETURN
 300 RRAND=SQRT(SIG2SQ*ALOG(FLOAT(IRND)*CI))
      JRND=IRND
      RETURN
 400 I1=FLD(1,17,KRND)-N2P16
      I2=FLD(18,17,KRND)-N2P16
      IS=I1*I1+I2*I2
      IF(IS.LT.IMAX) GO TO 20
      JRND-IRND
      CO TO 10
 20
      S=1.0/FLOAT(IS)
      VCOS=S*FLOAT(I1*I1-I2*I2)
      VSINE=S*2.0*FLOAT(I1*I2)
      DUM=SQRT(SIG2SQ*ALOG(FLOAT(JRND)*CI))
      RRAND=DUM *VCOS+XMEAN
      DUM=DUM *VSINE+XMEAN
      JRND=IRND
      RETURN
      END
```

PROGRAM RTI4

1. PURPOSE

The purpose of this subroutine is to produce a compact representation of three-dimensional data, e.g. antenna far field pattern, antenna aperture illumination distributions, and radar ambiguity diagrams. The procedure used herein is to represent the modulus of each sample with an alphanumeric character.

2. INPUT PARAMETERS

Name	O/R	I	Description
AFILE	R	C	The name of the TSS PRMFL which the user wishes to process
FLOOR	R	F	The reference in dB below which everything is represented by dashes(-) on the RTI plot
YINC	R	F	The increment in dB between each successive alphanumeric symbol. See Table RTI4-1.
JWID	R	I	The data array width in blocks. This parameter corresponds to LRJWID in the program FFT2DX or LRJ in the programs PLARY, RNDERR, or FILMOD.
NBMAX	R	I	The number of the last block to be displayed
LREC	R	I	The number of the first record to be processed

IWD R I The width of the output character matrix.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

- a. The maximum value of the parameter IWD is 128. In addition, the value of IWD should be less than or equal to JWID*16.
- b. Two examples of the relative dB values for specified values of FLOOR and YINC are shown in Table RTI4-1.

4. SUBPROGRAMS REQUIRED

FPARAM ATTACH RANSIZ DETACH

TABLE RTI4-1

EXAMPLES OF RELATIVE VALUE OF LETTERS, NUMBERS, AND SYMBOLS

FLOOR = -20.0	20.0	8	30.0	FLOOR = 10.0
YINC - 1.0	19.0		29.5	YINC - 0.5
	18.0	*	29.0	
	17.0	+	28.5	
	16.0	0	28.0	
	15.0	1	27.5	
	14.0	2	27.0	
	13.0	3	26.5	
	12.0	4	26.0	
	11.0	5	25.5	
	10.0	6	25.0	
	9.0	7	24.5	
	8.0	8	24.0	
	7.0	9	23.5	
	6.0	A	23.0	
	5.0	В	22.5	
	4.0	C	22.0	
	3.0	D	21.5	
	2.0	E	21.0	
	1.0	F	20.5	
	0.0	C	20.0	
	-1.0	H	19.5	
	-2.0	I	19.0	
	-3.0	J	18.5	
dB level	-4.0	K	18.0	dB level
	-5.0	L	17.5	
	-6.0	M	17.0	
	-7.0	N	16.5	
	-8.0	0	16.0	
	-9.0	P	15.5	
	-10.0	Q	15.0	
	-11.0	R	14.5	
	-12.0	S	14.0	
	-13.0	T	13.5	
	-14.0	U	13.0	
	-15.0	V	12.5	

PAAS-CPD-RTI4 1 MAY 78

-15.0	W	12.0
-17.0	X	11.5
-18.0	Y	11.0
-19.0	Z	10.5
-20.0	-	10.0

5. THEORY OF OPERATION

After startup a message is printed to the user requesting the name of the TSS PRMFL that is to be processed. The user reply is tested to see if it is the word 'STOP'. If so, program execution is terminated. Otherwise, an attempt is made to access the file via the system subroutine, ATTACH. If the file cannot be accessed the system error code is printed and the user is requested to try again.

Assuming the user has successfully accessed a file, the program then requests the following parameters:

FLOOR, YINC, JVID, NBMAX

Then the following parameters are requested:

LREC, IWD

The parameter LREC is tested to see if it is zero or negative. If so, the file is deaccessed via a call to the system subroutine DETACH. The program then returns to the procedure for accessing another file (Statement # 99). The parameter IWD is tested to ensure that its value is in the range from 1 to 128. The number of blocks (NREC) required for the specified display vidth (IWD) is computed and compared to JWID. If NREC > JWID then NREC is set equal to JWID and IWD is set equal to NREC*16. In other words, IWD is made as large as possible for the set of data to be processed.

The NREC blocks starting with LREC are read in and processed in the following manner. The modulus of each complex valued sample is computed and converted to dB. Then the dB value (XM) is mapped to an integer number (IADD) on the interval from 1 to 41 by the following procedure:

IADD-IFIX((XM-FLOOR)/YINC+0.5)+1
IF(IADD.GT.40) IADD-41
IF(IADD.LT.1) IADD-1

The integer numbers 41 and 1 correspond to \$\mathbb{S}\$ and -, respectively, and represent values either too large or too small to be displayed for the set of parameters, FLOOR and YINC, specified by the user. The integer numbers are used to 'pull' the corresponding character ASCII code from the character table, CTABL. These characters are then stored in the output character matrix, KRTI.

Once the NREC blocks have been processed, the character matrix is transmitted to the user. This character matrix contains 16 rows of data. The above procedure is repeated until the record number NBMAX is encountered. Control then returns to the statement (#75) requesting the first logical record to be processed.

C C 26 APR 78 0845 COMPLEX TEMP(16,16) DIMENSION XRTI(32,16), CTABL(41) DATA CTABL 0137.0132.0131.0130.0127.0126.0125. & 0124,0123,0122,0121,0120,0117,0116,0115,0114,0113, & 0112,0111,0110,0107,0106,0105,0104,0103,0102,0101, & 071,070,067,066,065,064,063,062,061,060,053, & Q52,Q56,Q44/ CHARACTER AFILE *20, STOP *4 DATA IOK/0400000000000/.STOP/'STOP'/ C C REQUEST TSS FILE NAME FROM USER CALL FPARAM(1,130) 99 WRITE(06,105) FORMAT('INPUT DESIRED FILE NAME') READ(05.50) AFILE 50 FORMAT(A20) IF(AFILE.EQ.STOP) GOTO 310 CALL ATTACH(01, AFILE, 1, 1, ISTAT,) IF(ISTAT.EQ.IOK.OR.ISTAT.TQ.0) GO TO 101 WRITE(06,410) ISTAT CO TO 99 C C REQUEST PARAMETERS FROM USER 101 WRITE(06,100) FORMAT('FLOOR, YINC, JWID, NBMAX') 100 READ 115, FLOOR, YINC, JWID, NBMAX CALL RANSIZ(01.512) 75 WRITE(06,110) 110 FORMAT('Enter FIRST LREC, DISPLAY WIDTH') READ 115, LREC, IVD FORMAT(V) 115

FORTRAN LISTING

```
C
      IF LREC < 1 THEN TERMINATE PROCESSING THIS FILE
      IF(LREC.LE.0) GO TO 700
      IF(IVD.LE.128.AND.IVD.GT.0) GOTO 150
      IWD=128
      WRITE(06,115) 'DISPLAY WIDTH TOO BIG. SET TO 128'
 150 NREC=(IVD+15)/16
      IF(NREC.LE.JVID) GOTO 160
      NREC-JVID
      IVD=NREC *16
      WRITE(06.115) 'DISPLAY WIDTH > AVAIL DATA...'
        " CHANGED TO: IVD-JVID*16"
C
C
      BEGIN PROCESSING FOR A STRIP
 160
      IVD4-IVD/4
      LREND=LREC+NREC-1
      IF(LREND.GT.NBMAX) COTO 75
      NST--1
      DO 800 IREAD-LREC, LREND
      READ(01'IREAD) TEMP
C
      PROCEDURE TO PROCESS ONE BLOCK OF DATA
      DO 200 J-1.16
      IBIT=MOD(J-1,4)*9
      IVORD=1+(NST+J)/4
      DO 300 IR-1,16
      XM=CABS(TEMP(J.IR))
      IF(XM.LT.1.0E-10) GO TO 120
      XM-20.0*ALOG10(XM)
      GO TO 121
 120 XM=-100.0
      IADD=IFIX((XM-FLOOR)/YINC+0.5)+1
121
      IF(IADD.GT.40) IADD=41
      IF(IADD.LT.1) IADD-1
      FLD(IBIT, 9, XRTI(IWORD, IR)) = CTABL(IADD)
 300
      CONTINUE
 200
      CONTINUE
      NST=NST+16
 800
      CONTINUE
                            172
```

LINE SERVICE S

```
C
      SECTION TO TRANSMIT OUTPUT TO USER
     DO 450 IR=1,16
     WRITE(6,1000)(XRTI(J,IR),J=1,IWD4)
 1000 FORMAT(1H ,32A4)
 450 CONTINUE
     LREC-LREC+JVID
     COTO 160

→ DISCONNECT FROM USER TSS FILE

 700 CALL DETACH(01.ISTAT.)
 500
     WRITE(06,510) ISTAT
     GO TO 99
 410
     FORMAT('UNSUCCESSFUL ATTACH','
                                       ISTAT - ',020)
 510
     FORMAT( DETACH ISTAT = ',020)
 310 CALL EXIT
      STOP
      END
```

PROGRAM TBLS

1. PURPOSE

The program TBLS computes and tabulates the sampled values of selected weighting functions. The program also generates data which are used in checking probability density functions of space tapered arrays estimated by program PDFESTR.

2. <u>INPUT PARAMETERS</u>

Name	D/R	I	Description
NTYPE	R	I	Determines the weighting function tabulated.
			 Cosine on a pedestal to a power Blackman Kaiser Bartlett or triangular Taylor Bessel Cubic Bayliss
WTPED	O	F	The height of the pedestal for cosine on a pedestal to a power weighting.
NWTPOW	0	I	The power of the cosine function for cosine on a pedestal to a power weighting.
IRAD	R	I	The radius (or half span of a linear array), in units of elements of the array.

Residence in the construction of the contraction of

VTRAD	R	F	The radius (or half span of a linear array) of the weighting function.
WKASIR	0	F	The Kaiser variable for the trade-off between main lobe width and side lobe amplitude.
BESEDG	0	F	The radius scaling constant for the Bessel weighting.
BESCAL	0	F	The maximum weight amplitude for the Bessel weight. This corresponds to a radius of zero
CUBK	0	F	The weighting amplitude scaling constant for the cubic weight.
IDB	0	I	The design side lobe amplitude in dB for the Taylor or Bayliss weighting.
NBAR	0	I	The number of zeros used to approximate the Dolph-Chebyschev weighting distribution in the Taylor or Bayliss weighting.

3. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. The range of NBAR must be

 $3 \le NBAR \le 20$

for the Taylor weighting.

b. The range of NBAR must be

 $3 \le NBAR \le 19$

for the Bayliss weighting.

4. SUBPROGRAMS REQUIRED

EXPND BESS CAM VEICHT

5. THEORY OF OPERATION

This program is a driver for the subroutine WEIGHT. A loop is set up that starts at zero and goes to IRAD in steps of one. In each pass of the loop a call to WEIGHT is made and a value of the selected weighting function is returned for the particular radius cell. The values are stored and printed on the time-sharing terminal in a tabular foshion.

6. FORTRAN LISTING

COMMON NTYPE, VTPED. NVTPOV, VKASIR, F(20), B(20), ANG, NBAR.BESCAL.CUBK1.PII2.BESS1.IAZ.XKK.WMAX. BESEDG INTEGER DB DIMENSION U(20), OUT(205), SIGG(5), IX(20), BZERO1(20) DIMENSION Z(20) DATA U/1.2196699,2.2331306,3.2383154,4.2410628, 5.2427643,6.2439216,7.2447598,8.2453948, 9.2458927,10.2462933,11.246624,12.246900, å 13.247131,14.247334,15.247508,16.247663, æ 17.247796,18.247920,19.248027,20.248125/ DATA BZERO1/0.586067.1.6970509.2.7171939.3.726137. & 4.7312271,5.7345205,6.7368281,7.7385356, 8.7398505,9.7408945,10.7417435,11.7424475, 12.7430408,13.7435477,14.7439856,15.7443679. 16.7447044,17.745003,18.7452697,19.7455093/ WRITE(06.50) 'PDFESTR DATA OR TABLES? (0 OR 1)' READ 50. IAZ1 IAZ=1 ANC-0.0 PI-3.1415926 PII2=2.0/(PI*PI) BESS1=1.0/BESS(0.0.0.0) 1850 WRITE(06.50) "NTYPE" READ 50, NTYPE IF(NTYPE.EQ.-1) GO TO 1830 GO TO (1100,1200,1300,1200,1500,1360,1370,1500), NTYPE 1100 WRITE(06.50) "WTPED.NWTPOW.IRAD.WTRAD" READ 50, WTPED, NWTPOW, IRAD, WTRAD GO TO 1600 1200 WRITE(06,50) 'IRAD, WTRAD' READ 50, IRAD, WTRAD GO TO 1600 1300 WRITE(06.50) 'WKASIR, IRAD, WTRAD' READ 50, WKASIR, IRAD, WTRAD CO TO 1600 1360 WRITE(06,50) 'BESEDG, BESCAL, IRAD, WTRAD'

```
READ 50, BESEDG, BESCAL, IRAD, WTRAD
     GO TO 1600
1370 WRITE(06,50) CUBK, IRAD, WTRAD
     READ 50, CUBK, IRAD, VTRAD
     XX=SQRT(WTRAD*WTRAD/3.0)
     CUBK1=CUBK/ABS(XX*(XX-WTRAD)*(XX+WTRAD))
     GO TO 1600
1500 WRITE(06.50) "IRAD, WTRAD"
     READ 50, IRAD, VTRAD
     WRITE(06,50) 'ALL OR SINGLE DB LEVEL? (0 OR 1)'
     READ 50, IA
     IF(IA.EQ.0) GO TO 60
     WRITE(06.50) 'IDB'
     READ 50.IDB
     IDB1-IDB
     IDB2=IDB1-1
     IDB3=1
     WRITE(06,50) 'ALL OR SINGLE NBAR? (0 OR 1)'
     READ 50, IAX
     IF(IAX.EQ.0) GO TO 70
410 WRITE(06,50) 'NBAR'
     READ 50, INBAR
     IBAR1-INBAR
     IBAR2=IBAR1-1
     GO TO 80
60
     IDB1-20
     IDB2=80
     IDB3-5
70
     IBAR1=3
     IBAR2=20
     CONTINUE
80
50
     FORMAT(V)
     DO 20 I=1,20
     IX(I)=I
     CONTINUE
20
     I1=IRAD+1
     DO 300 III-IDB1, IDB2, IDB3
     DB=FLOAT(III)
     IOUT-1
     SIG1=1
     XA=10.0×*(III/20.0)
```

```
A=ALOG(XA+SQRT(XA*XA-1))/PI
    AASQ=A*A
    IT-Ø
    IT1=0
    NSGFL-0
    DO 200 NBAR=IBAR1, IBAR2
    IF(NBAR.EQ.20.AND.NTYPE.EQ.8) GO TO 200
    IF(NTYPE.EQ.8) GO TO 1900
    IF(NSGFL.NE.0) GO TO 30
    SICP1=U(NBAR+1)/SQRT(AASQ+(NBAR+0.5)**2)
30
    SIGG(SIG1)=U(NBAR)/SQRT(AASQ+(NBAR-0.5)**2)
    SG=SIGG(SIG1)
    SGSQ=SG*SG
    IF(SG.LE.SIGP1.AND.IAX.EQ.1) GO TO 400
    IF(SG.LE.SIGP1) GO TO 200
    NSCFL=1
    SICP1-0.0
    DO 252 I=1, NBAR-1
    FNUM-1.0
    FDNM-1.0
    T=U(I)*U(I)
    XII=-0.5
    DO 254 II=1, NBAR-1
    XII=XII+1.0
    FNUM=FNUM*(1.0-T/(SGSQ*(AASQ+(XII*XII))))
    IF(II.EQ.I) GO TO 254
    FDNM=FDNM*(1.0-T/(U(II)*U(II)))
254 CONTINUE
    ARC=PI*U(I)
    F(I)=-BESS(0.0, ARG) *FNUM/FDNM
    F(I)=F(I)/(BESS(0.0,ARG)**2)
252 CONTINUE
    GO TO 1910
1900 Z(1)=0.9858302+0.0333885*DB+0.00014064*DB*DB
          -0.0000019*DB*DB*DB+0.00000001*DB*DB*DB*DB
    Z(1)=Z(1)*Z(1)
     2(2)=2.00337487+0.01141548*DB+0.0004159*DB*DB
          -0.00000373*DB*DB*DB+0.00000001*DB*DB*DB*DB
     Z(2)=Z(2)*Z(2)
     Z(3)=3.00636321+0.00683394*DB+0.00029281*DB*DB
          -0.00000161*DB*DB*DB
```

```
Z(3)=Z(3)*Z(3)
      Z(4)=4.00518423+0.00501795*DB+0.00021735*DB*DB
&
           -0.00000088*DB*DB*DB
      Z(4)=Z(4)*Z(4)
      DO 761 I=5.NBAR+1
      Z(I)=AASQ+I*I
 761 CONTINUE
       IF(NSGFL.NE.0) CO TO 1930
      SIGP1=BZERO1(NBAR+2)/SQRT(Z(NBAR+1))
 1930 SIGG(SIG1)=BZERO1(NBAR+1)/SQRT(Z(NBAR))
      SG=SIGG(SIG1)
      SGSQ=SC*SC
      IF(SG.LE.SIGP1.AND.IAX.EQ.1) GO TO 400
      IF(SC.LE.SICP1) CO TO 200
     NSGFL-1
      SICP1-0.0
      DO 1940 I-1, NBAR
      FNUM-1.0
      T=BZERO1(I)*BZERO1(I)
      FDNM=1.0-T/(BZERO1(1)*BZERO1(1))
      IF(I.EQ.1) FDNM-1.0
      DO 1950 II=1, NBAR-1
      FNUM=FNUM*(1.0-T/(SGSQ*Z(II)))
      IF(I-1.EQ.II) GO TO 1930
      FDNM=FDNM*(1.0-T/(BZERO1(II+1)*BZERO1(II+1)))
 1950 CONTINUE
      B(I)=(2.0*T/BESS(1.0,BZERO1(I)*PI))*FNUM/FDNM
 1940 CONTINUE
      P0=0.4797212+0.01456692*(DB)-0.00018739*(DB*DB)
         +0.00000218*(DB*DB*DB)-0.00000001*(DB*DB*DB*DB)
     PO-PO*SC
      POSQ=PO*PO
     PIPOSQ=POSQ*PI*PI
     FNUM=1.0
     FDNM=1.0-P0SQ/(BZERO1(1)*BZERO1(1))
     DO 772 I=1.NBAR-1
     FNUM=FNUM*(1.0-P0SQ/(SGSQ*Z(I)))
     FDNM=FDNM*(1.0-POSQ/(BZERO1(I+1)*BZERO1(I+1)))
772
     CONTINUE
      C=PIP0SQ-1.0
      C=C*BESS(1.0,PO*PI)*FNUM/FDNM
```

```
C-1.0/C
     DO 773 I-1, NBAR
     B(I)=-B(I)*C
773 CONTINUE
1910 SIG1=SIG1+1
     IF(IAZ1.EQ.1) GO TO 55
     O. O-KAMV
     DO 51 I=1, IRAD+1
     RAD-FLOAT(I-1)
     CALL WEIGHT (RAD, WTRAD, WFUNC)
     WMAX-AMAX1 (WMAX, WFUNC)
51
     CONTINUE
55
     IT=IT+1
     DO 100 K=1, IRAD+1
     RAD=FLOAT(K-1)-0.5*(IAZ1-1)
     CALL WEIGHT (RAD. WTRAD. WFUNC)
     IF(IAZ1.EQ.0) WFUNC=WFUNC*2.0*PI*RAD/WHAX
     OUT(IOUT) - WFUNC
     IOUT=IOUT+1
     IF(IAX.EQ.1.AND.K.EQ.IRAD+1) GO TO 500
     IF(NTYPE.NE.8) GO TO 56
     IF((MOD(IT,5).EQ.0.OR.NBAR.EQ.19).AND.K.EQ.IRAD+1)
       GO TO 120
     GO TO 100
56
     IF((MOD(IT, 5).EQ.0.OR.NBAR.EQ.20).AND.K.EQ.IRAD+1)
           GO TO 120
     CO TO 100
500 WRITE(06,995) III.A
     WRITE(06,997) NBAR
997 FORMAT( NBAR= ',4x,12,//)
     WRITE(06.996) SIGG(1)
996 FORMAT( SIGMA=',/,3X,F12.10,//)
    DO 975 LL=1.IRAD+1
975 WRITE(06,994) LL-1,OUT(LL)
994 FORMAT(I3.F12.10)
    CO TO 100
120 IT1=IT1+1
    IF(IT1.GT.1) GO TO 130
    WRITE(06.995) III.A
995 FORMAT(//, 'DB=',I2,//'A=',F12.10.//)
130 WRITE(06,998)(IX(I),I=NBAR-IT+1.NBAR)
```

TO SERVICE AND ACCOUNTS AND ACC

```
998 FORMAT('NBAR=',4X,I2,4(10X,I2))
     WRITE(06.1998)
     WRITE(06,993)(SIGG(JJ),JJ-1,IT)
993 FORMAT('SIGMA='./,3X.5(F12.10))
     WRITE(06.1998)
1998 FORMAT(/)
     ITT=5
     IF(NTYPE.NE.8) GO TO 57
     IF(NBAR.EQ.19.AND.IT.NE.5) ITT~MOD(IT.5)
     GO TO 58
     IF(NBAR.EQ.20.AND.IT.NE.5) ITT=MOD(IT.5)
57
58
   DO 75 LL=1.IRAD+1
     WRITE(06,999) LL-1,(OUT(LL+I-I1), I=I1, I1*ITT, I1)
75
999 FORMAT(I3,5(F12.10))
     WRITE(06,1999)
1999 FORMAT(//)
     IOUT-1
     IT-0
     SIC1=1
100 CONTINUE
200 CONTINUE
300 CONTINUE
     GO TO 420
400 WRITE(06,50) 'INVALID VALUE FOR NBAR'
     CO TO 410
1600 WMAX-1.0
     IF(NTYPE.EQ.6) WMAX=BESCAL
     IF(NTYPE.EQ.7) WMAX=CUBK
     DO 1700 K=1. IRAD+1
     RAD = FLOAT(K-1) - 0.5 * (IAZ1-1)
     CALL WEIGHT (RAD, WTRAD, WFUNC)
     IF(IAZ1.EQ.0) WFUNC=WFUNC*2.0*PI*RAD/WMAX
     OUT(K)=WFUNC
1700 CONTINUE
     WRITE(06,1705) NTYPE
1705 FORMAT(//, 'NTYPE=', I3,//)
     GO TO (1710,1800,1730,1800,1830,1740,1750),NTYPE
1710 WRITE(06,1715) WTPED, NWTPOW
                                   NWTPOW-', I3,//)
1715 FORMAT( WTPED= ,F12.5,
     CO TO 1800
1730 WRITE(06,1735) WKASIR
```

1735 FORMAT(WKASIR= ',F12.5,//) GO TO 1800 1740 WRITE(06,1745) BESCAL, BESEDG 1745 FORMAT('BESCAL=',F12.5, 'BESEDG=',F12.5,//) CO TO 1800 1750 WRITE(06,1755) CUBK 1755 FORMAT(CUBK= ',F12.5,//) 1800 DO 1820 LL=1, IRAD+1 WRITE(06,1810) LL-1,OUT(LL) 1810 FORMAT(I3.F12.5) 1820 CONTINUE 420 CONTINUE GO TO 1850 1830 CALL EXIT STOP END

The contract of the contract of

SUBROUTINE WEIGHT

1. PURPOSE

This program is used to compute the values of various weighting functions. The weighting functions include the cosine on a pedestal to a power, Blackman, Kaiser, Bartlett or triangular, Taylor, cubic, and Bayliss.

2. INPUT PARAMETERS

Name	<u>0/R</u>	T	Description
RAD	R	F	Independent variable for the weighting function evaluation.
WTRAD	R	F	Radius of the specified weighting function. (For a linear array, WTRAD is the half span of the weighting function).
SAI	R	I	Flag that determines whether the subroutine generates amplitude or statistical weighting data.

- Statistical veighting specified by the probability density function defined by the chosen veighting function.
- = 1 Normal amplitude weighting.

IWTFLC.	R	Í	Determines the weighting function evaluated.
			 1 Cosine on a pedestal to a power 2 Blackman 3 Kaiser 4 Bartlett or triangular 5 Taylor 6 Bessel 7 Cubic 8 Bayliss
For IVTFLC	- 1		
WTPED	0	F	Height of the pedestal for cosine on a pedestal to a power weighting.
NVTPOV	0	I	Power of the cosine for cosine on a pedestal to a power weighting.
For IVTFLC	- 3		
WKASIR			Kaiser variable for the trade-off between main lobe width and side lobe amplitude.
For INTFLG	- 5		
F(20)	0	F	A set of constants used in evaluating the Taylor weighting (See Section 4).
DB	0	F	The design side lobe amplitude in dB for the Taylor weighting.
NBAR	0	I	Number of zeros used to approach the ideal pattern function for the Taylor weighting. 186

PII2	0	F	A constant, PII2 = $2.0/\pi^2$.
BESS1	0	F	A constant, BESS1 = $1.0/J_0(0.0)$.
For IWTFLG	- 6		
BESCAL	0	F	Maximum weighting amplitude for the Bessel weighting (at RAD = 0.0).
BESEDC	0	F	Radius scaling constant for the Bessel weighting.
For IWTFLC	- 7		
CUBK	0	F	Amplitude scaling constant for the cubic weight.
For INTFLG	- 8		
B(20)	0	F	A set of constants used in evaluating the Bayliss weighting (See Section 4).
ANC	0	F	Azimuth angle independent variable for evaluation of the Bayliss weighting.
DB	0	F	The design side lobe design amplitude in dB for the Bayliss weighting.
NBAR	0	I	Number of zeros used to approximate the ideal pattern friction for the Bayliss weighting.

IAZ = 0			
XKK	0	F	A thinning factor used in the statistical loading. Equals the probability of an element occurring at the normalized peak of the chosen weighting function.
XAMW	0	F	Peak of the chosen weighting function used for weight normalization in statistical loading.
HAD1	0	I	Starting address for selecting random numbers from the random number array in the call to Function RRAND (5) $(1 \le \text{HAD1} \le 128)$.
JRND	0	I	Random number generator initialization constant used in the call to Function RRAND $(0 < JRND \le 2^{36} - 1)$.
UL	0	F	Constant used in Function RRAND to set up uniform random number distribution (UL = 0.0).
UEXT	0	F	Constant used ir Function RRAND to set up uniform random number distribution (UEXT = 2.910383046E-11).

3. CALLING SEQUENCE

CALL WEIGHT (RAD, WTRAD, WFUNC)

Where: RAD - Independent variable for the weighting function evaluation.

WTRAD = Radius (half span) of the weighting function.

WFUNC - Returns the value of the weighting function evaluated at RAD.

4. RESTRICTIONS, REQUIREMENTS, MISCELLANEOUS DATA

a. Two common statements are required for the subroutine WEIGHT. These contain the input variables to the subroutine. The statements must be in the form shown

COHMON IVTFLC, VTPED, NVTPOV, VKASIR, F(20), B(20), ANG, NBAR, BESCAL, CUBK, PII2, BESS1, IAZ, XKK, VMAX, BESEDC

The labeled common block, BLKRND, is used in the call to the Function RRAND.

All the variable names are the same as those described above in Section 2.

b. The constants, F(20), are used in evaluating the Taylor weighting function. To decrease execution time the constants should be calculated once in the calling program for each weighting design and the values stored in the array F(20). The equations for these constants are the following:

$$F(m) = \begin{cases} 1 & \frac{NBAR-1}{n=1} \left\{ 1 - \frac{\mu_{m}}{\sigma^{2} (A^{2} + (n+\frac{1}{2})^{2})} \right\} \\ \frac{1}{J_{0}(m\mu_{m})} & \frac{NBAR-1}{n=1} \left\{ 1 - (\frac{\mu_{m}}{\mu_{n}})^{2} \right\} , m=1,...NBAR \\ 0 & ,m=NBAR+1 \end{cases}$$

Where:
$$A = \frac{\cosh^{-1} \eta}{\pi}$$

 $\eta = 10.0^{\text{DB}/20}$
 $\sigma = \mu_{\text{NBAR}}/(A^2 + (\text{NBAR} - 1/2)^2)^{1/2}$
 μ_n The zeros of the Bessel function
 $J_1(\pi \mu_n) = 0$, $n = 1, 2, ...$

The constants, B(20), are used in evaluating the Bayliss weighting function. To decrease execution time the constants should be calculated once in the calling program for each weighting design and the values stored in the array B(20). The equations for the constants are given below.

$$B(m) = \frac{-j^{C2\mu_{m}^{2}}}{J_{1}(\mu_{m}^{\pi})} = \frac{\frac{NBAR-1}{m=1}}{\prod_{n=1}^{NBAR-1}} \left\{ 1 - (\frac{\mu_{m}}{\sigma z_{n}})^{2} \right\}, m=0,1,...NBAR-1$$

$$\frac{\frac{NBAR-1}{k\neq 0}}{k\neq n} \left\{ 1 - (\frac{\mu_{m}}{\mu_{k}})^{2} \right\}$$

$$= 0$$

$$m=NBAR, NBAR+1...$$

The zeros of the Bessel function Where: $J_1'(\mu_m \pi) = 0, m = 0, 1, ...$

to the contract of the contrac

$$z_{n} = \begin{cases} 0 & , n = 0 \\ \frac{+}{5} \xi_{n} & , n = 1, 2, 3, 4 \\ \frac{+}{5} (A^{2} + n^{2})^{\frac{1}{2}} , n = 5, 6, \dots \end{cases}$$

-0.0000019·DB³ + 0.00000001·DB⁴

2.00337487 + 0.1141548 DB + 0.0004159 DB2

0.00000373.DB3 + 0.00000001.DB4

3.00636321 + 0.00683394·DB + 0.00029281·DB²

0.00000161 · DB3

00518423 + 0.00501795 DB + 0.0021735 DB2

0.00000088 · DB3

$$A = \frac{\cosh^{-1}\eta}{\pi}$$

η = 10.0^{DB/20}

$$\sigma = \frac{\mu_{\text{nBAR}}}{z_{\text{nBAR}}}$$

$$\frac{\frac{NBAR-1}{\prod_{n=1}^{NBAR-1}} \left\{ 1 - (\frac{p_0}{z_n})^2 \right\}}{\frac{NBAR-1}{\prod_{n=0}^{NBAR-1}} \left\{ 1 - (\frac{p_0\sigma}{z_n})^2 \right\}}$$

Establish Influencial Bancola Scott Promi

 $p_0 = 0.4797212 + 0.1456692 \cdot DB - 0.0018739 \cdot DB^2$

 $+ 0.00000218 \cdot DB^3 - 0.00000001 \cdot DB^4$

The normalization constant, C, is selected such that the weighting function will produce a peak of unit height in the far-field.

The value of CUBK must be normalized to the peak of the cubic weighting. The equation for this is shown below.

CUBK=CUBK/ABS(XX*(XX.VTRAD)*(XX+VTRAD))

Where: $XX = (VTRAD)^2/(3.0)$

e. References:

- Taylor, T. T., 'Design of Circular Apertures for Narrow Beamwidth and Low Sidelobes,' IRE

 Trans. on Antennas and Propagation, Vol. AP-8, pp. 17-22, (1/60).
- Hansen, R. C., 'Tables of Taylor Distributions for Circular Aperture Antennas,' IRE Trans. on Antennas and Propagation, Vol. AP-8, pp. 23-26, (1/60).
- Bayliss, E. T., 'Design of Monopulse Antenna Difference Patterns with Low Sidelobes,' <u>Bell</u> <u>Sys. Tech. Journal</u>, Vol. 47, pp. 623-650, (5/68).
- Oppenheim, A.V., Schafer, R.W., <u>Digital Signal</u>
 <u>Processing</u>, Englewood Cliffs, NJ,
 Prentice-Hall, Inc., 1975, pp. 243-244.

5. SUBPROGRAMS REQUIRED

RRAND

EXPND

BESS

GAM

6. THEORY OF OPERATION

The cosine on a pedestal to a pover, Blackman, Kaiser, and Bartlett weighting are described in Oppenheim and Schafer (4.e). Details of the Taylor weighting function may be seen in the articles by Taylor and Hansen (4.e). Details of the Bayliss weighting function may be seen in the article by Bayliss (4.e). The value of the weighting function, WFUNC, for a cosine on a pedestal to a power is described in the equation below.

WFUNC=WTPED+(1-WTPED)*(COS(RAD*PI/WTRAD*2)))**NWTPOW

For the Blackman vindov the equation is given below.

WFUNC=0.42 - 0.5*COS(ARG)+0.08*COS(ARG+ARG)

Where: ARG=((RAD/WTRAD)+1)*PI

The equation for the Kaiser window is given below.

WFUNC=EXPND(CONK*SQRT(SQN-RAD*RAD))*DENOM

Where: DENOM = 1.0/EXPND(WKASIR)

CONK = WKASIR/WTRAD
SQN = WTRAD*WTRAD

The equation for the triangular weighting is given below.

WFUNC=1 - RAD/WTRAD

The equation for the cubic veighting is given below.

WFUNC=CUBK*RAD*(RAD - WTRAD)*(RAD+WTRAD)

7. FORTRAN LISTING

C C C SUBROUTINE WEIGHT (RAD. WTRAD. WFUNC) COHNON IVTFLG, WTPED, NWTPOW, WKASIR, F(20), B(20), ANG, å NBAR, BESCAL, CUBK, PII2, BESS1, IAZ, XKK, WMAX, BESEDG COMMON/BLKRND/MAD1, JRND, XMEAN, SIG2SQ, UL, UEXT DIMENSION U(20), BZERO1(20) DATA U/1.2196699,2.2331306,3.2383154,4.2410628, 5.2427643,6.2439216,7.2447598.8.2453948. & å 9.2458927.10.2462933.11.246624.12.246900. 13.247131,14.247334,15.247508,16.247663, 17.247796.18.247920.19.248027.20.248125/ DATA BZERO1/0.586067,1.6970509,2.7171939,3.726137, 4.7312271,5.7345205,6.7368281,7.7385356, å 8.7398505,9.7408945,10.7417435,11.7424475, å 12.7430408,13.7435477,14.7439856,15.7443679, & 16.7447044.17.745003.18.7452697.19.7455093/ UL-0.0 UEXT-2.910383046E-11 IF(RAD.LE. WTRAD) GO TO 280 WFUNC-0.0 CO TO 200 280 PI-3.1415926 CON-PI/(WTRAD *2) GO TO(210,220,230,240,250,260,270,281), IWTFLG TEMP=1.0-VTPED 210 WFUNC=WTPED+TEMP*COS(RAD*CON)**NWTPOW CO TO 200 ARG=(RAD+VTRAD) *2 *CON 220 WFUNC=0.42-0.5*COS(ARG)+0.08*COS(ARG+ARG) GO TO 200 DENOM-1.0/EXPND(WKASIR) 230 CONK-WKASIR/WTRAD SQN=VTRAD*VTRAD WFUNC=EXPND(CONK*SQRT(SQN-RAD*RAD))*DENOM GO TO 200

```
240 VFUNC=1.0-RAD/VTRAD
     CO TO 200
250 P-PI*RAD/WTRAD
     CSTRT-0.0
     DO 256 I=1, NBAR-1
     GSTRT=GSTRT+(BESS(0.0,U(I)*P)*F(I))
256 CONTINUE
     VFUNC=PII2*(BESS1+GSTRT)
     CO TO 200
260
    RAD=RAD*BESEDG
     WFUNC=BESS(0.0, RAD) *BESCAL
     GO TO 200
270 X=CUBK*RAD
     WFUNC=X*(RAD+WTRAD)*(RAD-WTRAD)
     CO TO 200
     P-PI *RAD/VTRAD
281
     CSTRT-0.0
     DO 285 I-1, NBAR
     GSTRT=GSTRT+(-B(I-1)*BESS(1.0,BZERO1(I-1)*P))
285
     CONTINUE
     VFUNC=COS(ANG) *GSTRT
200
     IF(IAZ.EQ.1) CO TO 300
     VFUNC-XKK*VFUNC/VMAX
     WTMP=SIGN(1.0, WFUNC)
     RRND=RRAND(1)
     IF(RRND.GT.ABS(WFUNC)) WTMP=0.0
     WFUNC-WTMP
300
     RETURN
```

END

MISSION of Rome Air Development Center

RADC plans and conducts refearch, exploratory and advanced development programs in command, control, and communications (C³) activities, and in the C³ areas of information sciences and intelligence. The principal technical mission areas are communications, electromagnetic guidance and control, surveillance of ground and aerospace objects, intelligence data collection and handling, information system technology, ionospheric propagation, solid state sciences, microwave physics and electronic reliability, maintainability and compatibility.

