24/08 - Aula 6 - Limites: Uma introdução intuitiva

Exemplo: Verifique primeiramente que o ponto P pertence à curva dada e ache a equação

da reta tangente à curva no ponto P.

$$2x^3 - x^2y + y^3 - 1 = 0$$
, $P = (2, -3)$

Sol Soja X=2 e y=-3 então,
$$2.3-2.(-3)+(-3)^3-1=$$

$$= 16+12-27-1=0 \Rightarrow P \in C \Rightarrow J(2)=-3$$

$$C = \{(x,y) \in \mathbb{R}^2 \mid 2x^3 - x^2y + y^3 - 1 = 0\}$$

$$\frac{d}{dx} \left[2x^3 - x^2y + y^3 - 1 \right] = \frac{d}{dx} = 0$$

$$6x^{2} - d[x^{2}y(x)] + d[y(x)^{3}] = 0 \implies$$

$$6x^{2} - [2xy(+x^{2}y(x)] + 3y(x).y(x) = 0 \implies$$

$$6x^{2} - [2xy(+x^{2}y(x)] + 3y(x).y(x) = 0 \implies$$

$$\xi x^{2} - 2x y(x) + 3y(x)^{2}y'(x) = 0$$

Temando x=2 ma eq acima obtemos

$$6.2^{2}-2.2.y(2)-2^{2}y'(2)+3y(2)^{2}y'(2)=0 \Leftrightarrow$$

$$\log_{2}$$
, $y + 3 = \frac{36}{23}(x - 2)$

$$y = -3 + 36 \times - \frac{42}{23}$$

$$\frac{\gamma = 36 \times -141}{23}$$

$$\frac{23}{23}$$

$$\frac{23}{23}$$

$$C = anctg(\frac{3/6}{23})$$

$$Q = anctg(\frac{3/6}{23})$$

Regra 3.3- Sendo p e q números inteiros, com q>0, então

$$(x^{\frac{p}{q}})' = \frac{p}{q} x^{\frac{p}{q} - 1}$$

Seja $y = x^{\frac{p}{4}} \Rightarrow y^{\frac{q}{4}} = (x^{\frac{p}{4}})^{\frac{q}{4}} = x^{\frac{p}{4}}$ Ourums obtin $y(x) = d(x^{\frac{p}{4}})$

Dorivando es membros da eq (1) estemo

Aplicando a Rigia da cadeia no 1º- membro obtemo

$$q.y(x)^{q-1}.y'(x) = px^{p-1}$$

Fato Importante: p, q e 74, 970

Come $q, y^{q-1}y = px^{p-1} \Rightarrow y' = px^{p-1} \Rightarrow$

 $\frac{1}{\sqrt{1-\frac{p}{q}}} = \frac{1}{\sqrt{1-\frac{p}{q}}} = \frac{1}{\sqrt{$

$$A' = \begin{pmatrix} P \\ 4 \end{pmatrix} \times \begin{pmatrix} P \\ 4 \end{pmatrix}$$

$$\begin{pmatrix} \frac{P}{4} \end{pmatrix} = \begin{pmatrix} \frac{P}{4} \end{pmatrix} \times \begin{pmatrix} \frac{Q}{4} \end{pmatrix}$$

Ex. Calcule a derivada da seguinte função:
$$F(v) = \frac{5}{\sqrt[5]{v^5 - 32}}$$

$$F(\omega) = 5 = 5. (\sigma^{5} - 32)^{-\frac{1}{5}}.$$

$$(\sigma^{5} - 32)^{\frac{6}{5}}$$

Note que
$$F(\sigma) = 5.2$$
 pendo $u = \sigma^5 - 32$

Regna da Cadeia
$$\Rightarrow$$
 $\overrightarrow{F}(\sigma) = dF = dF$. du

$$d\sigma \quad du \quad d\sigma$$

$$dF = d \cdot [5u^{\frac{1}{6}}] = 8 \cdot (-\frac{1}{8}) \cdot u^{-\frac{1}{6}-1} = -u^{-\frac{6}{5}}$$

$$du \quad du$$

$$\frac{dF}{du} = \frac{d}{du} \left[\frac{15u^{-\frac{1}{5}}}{3} \right] = 8 \cdot \left(-\frac{1}{3} \right) \cdot u^{-\frac{1}{5} - 1} = -u^{-\frac{6}{5}}$$

Logo,
$$F(v) = -u$$
 $5v' = -(v^{5}-32)^{-\frac{1}{5}}5v'$

Noção Intuitiva de Limite

$$\lim_{X \to 0} f(x) = \lim_{X \to 0} (2x+3) = 3$$

x $f(x)=(x+1/x)^x$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 2,25 × ×
3 2,3703703704
4 2,44140625
E 2 40022
6 2.5216263717
7 2,546499697
8 2,565784514
9 2,5811747917
10 2,5937424601 Ans EXP V 0
100 2.7048138294
1000 2.7169239322
10000 27101450360
e = Eulen - Mascheroni
$+\infty$ e
e
$\lim_{x \to \infty} \left(\frac{1+x}{x} \right)^{x} = e^{-x} = 2.71828182846$
$\lim (1 + x) = e \approx 2.71828182846$
(×)
$\lambda \rightarrow +\infty$
1: $x \rightarrow x \rightarrow x$ $x \rightarrow x$
$\lim_{x \to +\infty} x^2 = +\infty$
$r \rightarrow +\infty$
1
$\lim_{x \to +\infty} \frac{1}{x^2} = 0$
$\lim_{m \to \infty} \frac{1}{m^2} = \infty$
$x \rightarrow +\infty \ x^2$
$\lim_{x \to 2} \frac{x^3 - 8}{x - 2} = 12$ $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$
$\lim \frac{\pi}{2} = 12$
$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$
$x \neq 2$ $x \rightarrow 2$
3
Se $F(x) = x^3 - 8 \Rightarrow F(2) = 2^3 - 8 = 0$ (Indeturmação)
2-2
\Rightarrow $F(a) = $
$5e x + 2 \Rightarrow x^{3} - 8 = x^{3} - 2^{3} = (x - 1)(x^{2} + 2x + 2^{3}) = x^{2} + 2x + 4$
x-2 $x-2$ $(x-3)$
$\lim_{x\to 8} x^3 - 8 = \lim_{x\to 2} (x^2 + 2x + 4) = 2^2 + 2 \cdot 2 + 4 = 12$
$\chi \rightarrow 2$ $\chi \rightarrow 2$
- 1

i

1.
$$\lim_{x\to a} x = a$$
 $(a \in \mathbb{R})$

2.
$$\lim_{x\to a} x^n = a^n$$
 $(n \in \mathbb{N}, a \in \mathbb{R})$

3. Sendo
$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, $(n \in \mathbb{N}, a_n, \dots, a_0 \text{ todos reais})$,

$$\lim_{x \to x_0} p(x) = a_n x_0^n + a_{n-1} x_0^{n-1} + \dots + a_1 x_0 + a_0 = p(x_0)$$

4.
$$\lim_{x \to 2} \frac{x^3 - 3}{x^2 + 1} = \frac{\lim_{x \to 2} (x^3 - 3)}{\lim_{x \to 2} (x^2 + 1)} = \frac{8 - 3}{4 + 1} = 1$$

5. Se p(x) e q(x) para palimômico então

$$\lim_{x \to x_0} \frac{f(x)}{f(x)} = \underbrace{f(x_0)}_{x \to x_0} \frac{f(x_0)}{f(x_0)}$$
6. Se $f(x)$ e $g(x)$ são duas funções quaisquer então

$$\lim_{x\to a} \frac{f(x)}{g(x)} = \frac{f(a)}{g(a)} \text{ desde que } g(a) \neq 0$$

Definição 4.1 (Continuidade de f(x) em x_0). Nos exemplos anteriores, de limites com x tendendo a x_0 , tivemos sempre x_0 no domínio de f e $\lim_{x \to \infty} f(x) = f(x_0)$. Quando isto ocorre, dizemos que f é contínua no ponto x_0 . x_0 .

 $F(x) = \frac{x^3 - 2^3}{x^3 - 2^3}$ Note que F(x) não é contínua em x=2, pois F(x) não está definida Obs. para x=2, Ou sija, 2€ D(F): dominio de F

$$\lim_{X \to 2} \overline{+\infty}$$

$$\chi \Rightarrow 2 \qquad +\infty$$

$$\chi \Rightarrow 2 \qquad \Rightarrow$$

$$y = x + 2x + 9 = 0$$

lum
$$f(x) = lum f(x)$$
, lum $f(x) = lum f(x)$
 $x \Rightarrow a$
 $x \Rightarrow a$

Limite à esqueda do ponto $x \Rightarrow a$
 x