## Characterization of Regular languages

Somitra Sanadhya

IIT-Ropar, Punjab
somitra@iitrpr.ac.in

Feb 2020

#### Recall

- Expressive power of the following automata/expressions are the same:
  - DFA, NFA, NFA with  $\varepsilon$  transitions, Regex.
- Use depends on convenience in the given situation. For example, thinking about some languages may be easy with  $\varepsilon$ -NFA but implementation requires a DFA.
- How do we know if a given language in Regular? Just because one can't construct a DFA does not mean that there does not exist a DFA.

#### Motivation

- Given an automata M, how can you know if M does not accept any string  $(L(M) = \phi)$ ?
- lacksquare Given an automata M, how can you know if M accepts infinite strings?

## ${\cal M}$ accepting infinite strings

- Let the DFA have n states.
- Consider a string w such that  $|w| \ge n$ . Then w = xyz such that:



(Note: Zigzag line to denote strings, rather than alphabets)

■ Why?

## Improving the test

- The previous condition is not an efficient test.
- The number of strings of length  $\geq n$  is infinite.
- Can we limit the string length?
- Prove that there exists a string  $w \in L(M)$  such that  $n \leq |w| \leq (2n-1)$ .
- Hint: Note that there can be more than 1 loops. Take y to be first loop on the path. Then  $|xy| \le n$ , and  $|y| \ge 1$ .

## ${\cal M}$ accepting infinite strings



- Let y denote the first loop on the path.
- Then  $|xy| \le n$ ,  $|y| \ge 1$ ,  $|xyz| \ge n$ .
- All strings of the form  $xy^iz$  will be in L(M) !

## Pumping Lemma for regular languages

#### Pumping lemma

For every regular language L,  $\exists n \in \mathbb{N}$  such that  $\forall w \in L$ , such that  $|w| \geq n$ , we can write w = xyz such that

- $|xy| \le n$
- $|y| \ge 1$

then  $xy^iz \in L$  for all  $i \geq 0$ .

#### Some comments

- Look at the alternating quantifiers:
- (1)  $\forall$  regular languages L
- (2)  $\exists$  a number  $n \ge 1$  such that
- (3)  $\forall$  strings w of length  $\geq n$
- (4)  $\exists$  strings x, y, z such that w = xyz and  $|y| \ge 1$ , such that
- (5)  $\forall i \geq 0, xy^i w \in L$ .

#### Some comments

- It helps to think in terms of a two party interactive protocol.
- Prover: L is regular, Verifier: Testing the claim with skepticism.
- Prover gives an n. The verifier supplies a string  $w \in L$  such that  $|w| \ge n$ . (Intuitively, the verifier tries to come up with the most challenging w for the prover.)
- lacktriangle Prover produces a decomposition of w into xyz and gives it to the verifier.
- Verifier attempts to find an i such that  $xy^iz \notin L$ . If she can't find such an i then the prover has won.

#### More comments

- We proved that all regular languages satisfy the Pumping lemma.
- But it does not imply the converse.
- That is, the pumping lemma is a necessary but not sufficient condition for regular languages.
- hw Find a language which satisfies the conditions of the pumping lemma but is not regular.

## Example

- $\blacksquare$  Prove that  $L=\{w|\ w$  has equal number of 0's and 1's} is not regular.
- Take *n* to be the "pumping length".
- Take  $w = 0^n 1^n$ . Clearly,  $w \in L$ .
- No matter how you divide w into xyz, both x and y consist of only 0's.
- But now  $xy^iz$  can't be in L (for say, i=5) because it has more 0's than 1's.
- Therefore *L* is not regular.
- (Note that the choice of w is crucial. Not every choice may work. Refer to the interactive protocol comment again.)

## **Implication**

- An html page has tags of the kind <a> .... </a>
- A C program has statements within { ... }
- And both of the above examples can be nested repeatedly.
- No regex can parse html tags or C programs !

# Finding a necessary and sufficient condition for regular languages

Trivia: We call such a property as a "characteristic" of the object under study.

- $lue{}$  Consider a language L which is not regular.
- What causes it to be non-regular?
- Que: Can a finite language be non-regular?

## Non-regular language

- Such a langauge is clearly infinite.
- But the number of states is only finite.
- A state in an automata can remember only "some details" about how it reached there. (Back-traversal is not possible).
- Thus, a finite automata represents machines which have a finite memory.
- A non-regular language must require infinite memory !

### Example

- Consider the language  $L = \{0^n 1^n \text{ where } n \in \mathbb{N}\}.$
- Intuitively, you need to memorize how many 0's have you seen so far, before 1's start coming in.
- Therefore, L should be non-regular.
- But how do we formally show that the language is not regular (without using the pumping lemma)?

## Example: continued

- Consider the language  $L = \{0^n 1^n \text{ where } n \in \mathbb{N}\}.$
- lacktriangle We will prove the non-regularity of L by contradiction.
- Let there be a DFA M with n states which accepts L.
- Consider  $S = \{0, 00, 000, \ldots\}.$
- While consuming different strings from S, the automata reaches some intermediate states.
- Pick (n+1) different strings from S.



## Myhill-Nerode theorem

Defn 1 Let L be a language, and x,y be two distinct strings. The strings are called "distinguishable with respect to L" if and only if  $\exists$  a string w (possibly empty) such that  $xw \in L$  but  $yw \notin L$ .

Theorem Let L be a language. If there exists an infinite set S such that any two distinct strings  $x,y\in S$  are distinguishable with respect to L, then L is non regular.

#### Proof ...

See the details in the additional notes on the course website.