Kvadratické funkcie, nerovnice

(príklady na opakovanie)

- 1. Načrtnite grafy a popíšte vlastnosti kvadratických funkcií:
 - a. $f: y = 4x^2 4x + 7$
 - b. $f: y = -x^2 + 2x 2$ (D.ú.)
 - c. $f: y = x^2 6x + 9$ (D.ú.)
 - d. $f: y = 0.32x^2$
 - e. $f: y = x^2 4x$
 - f. $f: y = -3x^2 + x 21$
 - g. $f: y = 6x^2 + 3$
- 2. Načrtnite grafy a popíšte vlastnosti kvadratických funkcií:
 - a. $f1: y = -(x 6)^2$
 - b. $f2: y = -x^2 + 8$ (D.ú.)
 - c. f3: $y = (x 3)^2 + 4$ (D.ú.)

 - d. f4: $y = (x + 6)^2 4$ e. f5: $y = -(x+1)^2 + 8$
- 3. Je daná funkcia $f: y = x^2 + 3x 28$. Určte:
 - a. f(2), f(-1)
 - b. Určte hodnoty premennej x, pre ktorú platí: f(x) = 42,
 - c. Určte priesečníky grafu funkcie so súradnicovými osami (ak existujú).
 - d. Načrtnite graf funkcie.
- 4. Určte predpis pre kvadratickú funkciu, ak viete, že platí, že jej graf prechádza bodmi:
 - a. K[0,-3], L[1,0], M[-1,4]
 - b. A[1;-2], B[-2;7], C[0;-3].
- 5. Napíšte predpis kvadratickej funkcie, pre ktorú platí: f(2) = 0, f(0) = -16, f(4) = 8 a určte súradnice jej vrchola.
- 6. Načrtnite graf funkcie f a určte z neho všetky vlastnosti f: $y = |x^2 + 5x + 4|$
- 7. Načrtnite graf funkcie f a určte z neho všetky vlastnosti f: $y = |-2x^2 5x + 3|$
- 8. Graficky riešte nerovnicu v obore reálnych čísel: $3x^2 2x 1 \ge 0$
- 9. Numericky riešte nerovnicu v obore reálnych čísel: $3x^2 7x 6 < 0$
- 10. Riešte nerovnicu $x^2 \le 5x + 6$ v množine N
- 11. Riešte nerovnicu $2x^2 + x 6 \le x^2$ v množine Z
- 12. Určte definičný obor výrazu: $\sqrt{2x^2 x 28}$
- 13. Určte definičný obor výrazu: $\frac{1}{\sqrt{12x^2 17x 7}}$

b/
$$D > 0$$
, $a < 0$

c/
$$D < 0, a < 0$$

d/
$$D < 0, a > 0$$

e/
$$D = 0, a > 0$$

f/
$$D = 0$$
, $a < 0$

14. Načrtnite graf kvadratickej funkcie, pre ktorú platí:

a/
$$D = 0, a < 0$$

b/
$$D < 0, a < 0$$

15. Množina všetkých riešení nerovnice $x^2 \le 5x + 6$ v R je:

A/
$$\langle -6,1 \rangle$$

B/
$$\langle -3,2 \rangle$$

C/
$$\langle -2,3 \rangle$$

D/
$$\langle -1,6 \rangle$$

A/
$$\langle -6,1 \rangle$$
 B/ $\langle -3,2 \rangle$ C/ $\langle -2,3 \rangle$ D/ $\langle -1,6 \rangle$ E/ $(-\infty,-1) \cup (6,\infty)$