Honours Analysis Exam Notes

Made by Leon:) Note: Any reference numbers are to the lecture notes

1 Revisiting FPM

Definition 1.1: Nested Sequences and covers

A sequence $(I_n)_{n\in\mathbb{N}}$ of sets is said to be **nested** if

$$I_1 \subset I_2 \subset I_3 \subset \cdots$$

Thm 1.1: If (I_n) is a nested sequence of nonempty closed bounded intervals then

$$E = \bigcap_{n \in \mathbb{N}} I_n = \{ x \in \mathbb{R} : x \in I_n, \, \forall n \in \mathbb{N} \}$$

is nonempty (i.e. it contains at least one number). Moreover if $\lambda(I_n) \to 0$, where $\lambda(I_n)$ denotes the length of interval I_n , then E contains exactly one number

Thm 1.2: Let E be a subset of \mathbb{R}^n

• A cover of E is a collection of sets $\{I_{\alpha}\}_{{\alpha}\in A}$ such that

$$E \subseteq \bigcup_{\alpha \in A} I_{\alpha}$$

- An open covering of E is a cover such that each I_{α} is open, i.e.(a, b) compared to [a, b]
- . A finite subcover of E is a collection of sets $(I_{\alpha})_{\alpha \in A_0}$ where there exists a subset $A_0 = \{\alpha_1, \alpha_2, \dots, \alpha_N\}$ of A such that $(I_{\alpha})_{\alpha \in A_0}$ is a finite subset of $(I_{\alpha})_{\alpha \in A}$ that is also a cover
- The set E is said to be **compact** iff every open covering of Ehas a **finite subcovering**: that is

$$E \subseteq \bigcup_{j=1}^{N} I_{aj}$$
 or $E \subseteq I_{\alpha_1} \cup I_{a_2} \cup \cdots \cup I_{a_N}$

Definition 1.2: Convergence of Sequences and Cauchy

A sequence of real numbers (x_n) is said to **converge** to a real number $a \in \mathbb{R}$ iff for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ such that

$$n > N$$
 implies $|x_n - a| < \epsilon$

If (x_n) converges to a, we will write $\lim_{n\to\infty} x_n = a$, or $x_n \to a$. The number a is called the limit of the sequence (x_n) . A sequence that does not converge to some real number is said to *diverge

Def 1.3: A sequence (x_n) of numbers $x_n \in \mathbb{R}$ is said to be **Cauchy** if for every $\epsilon > 0$ there is $N \in \mathbb{N}$ such that

$$|x_n - x_m| < \epsilon \quad \forall n, m > N$$

Definition 1.4: Subsequences

Suppose $(x_n)_{n\in\mathbb{N}}$ is a sequence. A subsequence of this sequence is a sequence of the form $(x_{n,k})_{k\in\mathbb{N}}$ where for each k there is a positive integer n_k such that

$$n_1 < n_2 < \dots < n_k < n_{k+1} < \dots$$

Thus, $(x_n)_{n\in\mathbb{N}}$ is just a selection of some (possibly all) of the x_n 's taken in order

Definition 1.5: Limit Superior and Inferior

If (x_n) is a bounded sequence of real numbers we denote by

$$\limsup_{n \to \infty} x_n = \lim_{n \to \infty} \left(\sup_{k \ge n} x_k \right), \qquad \liminf_{n \to \infty} x_n = \lim_{n \to \infty} \left(\inf_{k \ge n} x_k \right)$$

Note: These are only defined for bounded sequences

- If (x_n) is not bounded above then we write $\limsup_{n\to\infty} x_n = +\infty$
- If (x_n) is not bounded below then we write $\liminf_{n\to\infty} x_n = +\infty$

Definition 1.7: Continuity

Define $f: \text{dom}(f) \to \mathbb{R}$ where $\text{dom}(f) \subset \mathbb{R}$. f is **continuous** at some $a \in \text{dom}(f)$, if for any sequence (x_n) whose terms lie in dom(f) and converges to a, we have $\lim_{n\to\infty} f(x_n) = f(a)$.

Thm 1.10: Let $f, g: D \to \mathbb{R}$ be continuous on D, and let $\alpha \in \mathbb{R}$. Then the following functions are continuous on D:

2.
$$f + g$$

Thm 1.12 ($\epsilon - \delta$ Definition of Continuity): A function $f: A \to \mathbb{R}$ is **continuous** at x iff for any $\epsilon > 0$ there exists $\delta > 0$ s.t.

$$|x-a| < \delta$$
 implies $|f(x)-f(a)| < \epsilon$

Thm (Uniform Continuity): A function $f: A \to \mathbb{R}$ is uniformly **continuous** at x iff for any $\epsilon > 0$ there exists $\delta > 0$ s.t. $\forall x, y \in A$,

$$|x - y| < \delta$$
 implies $|f(x) - f(y)| < \epsilon$

Thm (Inverse): A function $f: A \to \mathbb{R}$ is **not** continuous if for all $\delta > 0$ there exists $\epsilon > 0$ s.t. there exists some $x, a \in A$ where

$$|x-a| < \delta$$
 but $|f(x) - f(a)| \ge \epsilon$

Thm 1.13 (Intermediate Value Theorem): Let a < b real numbers and $f:[a,b]\to\mathbb{R}$ be continuous on [a,b]. If f(a)f(b)<0 then there exists at least one $c \in (a, b)$ s.t. f(c) = 0

Thm 1.14 (Extreme Value Theorem): Let a < b real numbers and $f:[a,b]\to\mathbb{R}$ be continuous on [a,b]. Then there exists points $c, d \in [a, b]$ s.t.

$$f(c) = \inf\{f(x) : x \in [a, b]\}, \quad f(d) = \sup\{f(x) : x \in [a, b]\}$$

That is, the function f on the interval [a, b] is bounded and attains its minimal value at some point $c \in [a, b]$. Similarly, the maximal value of f is also attained at some point $d \in [a, b]$

Definition 1.6: Convergent Infinite Series

Let $S=\sum_{k=1}^\infty a_k$ be an infinite series a_k . For each $n\in\mathbb{N},$ the partial sum of S of order n is defined by

$$s_n = \sum_{k=1}^n a_k$$

 $s_n = \sum_{k=1} a_k$ S is said to ${\bf converge}$ iff its sequence of partial sums (s_n) converges to some $s \in \mathbb{R}$ as $n \to \infty$; that is, iff for every $\epsilon > 0$ there is an $N \in \mathbb{N}$ s.t. for all n > N we have $|s_n - s| < \epsilon$. In this case we shall write

$$\sum_{k=1}^{\infty} a_k = s$$

and call s the sum or value of the series $\sum_{k=1}^{\infty} a_k$

- Absolutely convergent: the series $\sum_{k=1}^{\infty} |a_k|$ is convergent
- . Conditionally convergent: Convergent but not absolutely

Definition 1.8: Composition

Let $A, B \subseteq \mathbb{R}$ be nonempty, let $f: A \to \mathbb{R}$, $g: B \to \mathbb{R}$ and $f(A) \subseteq B$. The composition of g with f is the function $g \circ f : A \to \mathbb{R}$ defined by

$$(g \circ f)(x) = g(f(x)), \text{ for all } x \in A$$

Thm 1.11: If f is continuous at $a \in \mathbb{R}$ and g is continuous at f(a)then the composition $g \circ f$ is continuous at a

Uniform convergence

Definition 2.1: Pointwise Convergence

Let $E \subset \mathbb{R}$, E nonempty. A sequence of functions $f_n : E \to \mathbb{R}$ is said to converge pointwise on E, written $f_n \to f$ pointwise on E as $n \to \infty$, iff $f(x) = \lim_{n \to \infty} f_n(x)$ exists for each $x \in E$

 f_n converges pointwise on E, as $n \to \infty$, iff for every $\epsilon > 0$ and $x \in E$ there is an $N \in \mathbb{N}$ (which may depend on x as well we ϵ) such that

$$n \ge N$$
 implies $|f_n(x) - f(x)| < \epsilon$

Remarks:

- The pointwise limit of continuous (or differentiable) functions is not necessarily continuous (or differentiable).
- The pointwise limit of integrable functions is not always integrable.
- There exist continuous functions f_n and f such that $f_n \to f$ pointwise on [0,1] but

$$\lim_{n \to \infty} \int_0^1 f_n(x) \, dx \neq \int_0^1 \left(\lim_{n \to \infty} f_n(x) \right) \, dx$$

Def 2.2: Let E be a nonempty subset of \mathbb{R} . A sequence of functions $f_n: E \to \mathbb{R}$ is said to **converge uniformly** on E to a function f (notation: $f_n \to f$ uniformly on E as $n \to \infty$) if and only if for every $\epsilon>0$ there is an $N\in\mathbb{N}$ such that for all $x\in E$

$$n \ge N$$
 implies $|f_n(x) - f(x)| < \epsilon$

Remark (The difference between Pointwise and Uniform): For a sequence of functions to be pointwise convergent, it is enough to have an N_n for every x_n , but for it to be uniformly convergent, it has to have **the same** N for every x in the sequence

Def 2.2: A sequence of functions f_n is said to be **uniformly bounded** on a set E if there is a M > 0 such that $|f_n(x)| \leq M$ for all $x \in E$ and all $n \in N$

Definition 2.3: Convergence of series

Let f_k be a sequence of real functions defined on some set E and set

$$s_n(x) = \sum_{k=1}^n f_k(x), \quad x \in E, \ n \in \mathbb{N}$$

- The series $\sum_{k=1}^\infty f_k$ converges pointwise on E iff the sequence $s_n(x)$ converges pointwise on E as $n\to\infty$
- The series $\sum_{k=1}^{\infty} f_k$ converges uniformly on E iff the sequence $s_n(x)$ converges uniformly on E as $n \to \infty$
- The series $\sum_{k=1}^{\infty} f_k$ converges absolutely (pointwise) on E iff $\sum_{k=1}^{\infty} |f_k(x)|$ converges for each $x \in E$

Definition 3.1: All about Power Series

The radius of convergence R of the power series

$$\sum_{n=0}^{\infty} a_n (x-c)^n \tag{*}$$

is defined by $R=\sup\{r\geq 0:(a_nr^n)\text{ is bounded}\}$, unless (a_nr^n) is bounded for all $r\geq 0$, where we say that $R=\infty$

Thm 3.1: Suppose the radius of convergence R of * satisfies $0 < R < \infty$. If |x - c| < R, the power series * converges absolutely. If |x - c| > R, the power series * diverges

Thm 3.2 (Continuity of Power Series): Assume that R > 0. Suppose that 0 < r < R. Then a power series converges uniformly and absolutely on $|x - c| \le r$ to a continuous function f. Hence

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

defines a continuous function $f:(c-R,c+R)\to\mathbb{R}$

Lemma 3.1: The two power series

$$\sum_{n=1}^{\infty} a_n (x-c)^n \text{ and } \sum_{n=1}^{\infty} n a_n (x-c)^{n-1}$$

have the same radius of convergence

Thm 3.3 (Differentiation of Power Series): Suppose the radius of convergence of a power series is R. Then the function

$$f(x) = \sum_{n=0}^{\infty} a_n (x - c)^n$$

is infinitely differentiable on |x-c| < R, and for such x,

$$f'(x) = \sum_{n=0}^{\infty} n a_n (x - c)^{n-1}$$

and the series converges absolutely, and also uniformly on [c-r,c+r] for any r < R. Moreover,

$$a_n = \frac{f^{(n)}(c)}{n!}$$

3 Lebesgue Integration

Definition 4.0: Characteristic Function

Let E be a subset of \mathbb{R} . We define its **characteristic function** $\chi_E : \mathbb{R} \to \mathbb{R}$ by $\chi_E(x) = 1$ if $x \in E$ and $\chi_E(x) = 0$ if $x \notin E$. i.e.,

$$\chi_E = \begin{cases} 1 & x \in E \\ 0 & x \notin E \end{cases}$$

i.e. it's 1 at all points of a bounded interval, and 0 elsewhere

Let I be a bounded interval with endpoints a, b and $a \le b$. We call the number b-a the **length of the interval** I and we denote it by $\lambda(I)$. This might also be referred to as |I|. That is,

$$\lambda((a,b)) = \lambda([a,b]) = \lambda((a,b]) = \lambda([a,b)) = b - a$$

From our definition of a characteristic function and the length of an interval, we have that the area of the characteristic function is a rectangle with width $\lambda(I)$ and height 1, therefore

$$\int \chi_I = 1 \cdot \lambda(I) = \lambda(I)$$

Definition 4.1: Step function

We say that $\phi : \mathbb{R} \to \mathbb{R}$ is a **step function** if there exist real numbers $x_0 < x_1 < x_2 < \cdots < x_n$ (for some $n \in \mathbb{N}$) such that

- 1. $\phi(x) = 0$ for $x < x_0$ and $x > x_n$
- 2. ϕ is constant on (x_{j-1}, x_j) for $1 \leq j \leq n$

We shall use the phrase " ϕ is a step function with respect to $\{x_0, x_1, \dots, x_n\}$ " to describe this situation

Properties of Step Functions

- 1. The class of step functions is a vector space i.e. if ϕ and ψ are step functions and α and β are real numbers, then $\alpha\phi + \beta\psi$ is a step function, and that if ϕ and ψ are step functions, then $\max\{\phi,\psi\}$, $\min\{\phi\psi\}$, $|\phi|$ and $\phi\psi$ are also step functions
- 2. If ϕ and ψ are step functions, then $\phi + \psi$ is a step function
- 3. ϕ is a step function if and only if it is of the form

$$\phi = \sum_{j=1}^{n} c_j \chi_{J_j}$$

for some n, c_i , and bounded intervals J_i

Def 4.2: Integral of a Step Function

If ϕ is a step function with respect to $\{x_0, x_1, \dots, x_n\}$ which takes the value c_i on (x_{i-1}, x_i) , then

$$\int \phi := \sum_{j=1}^n c_j (x_j - x_{j-1})$$

Therefore, using the $\chi(x)$ definition of a step function, the integral is

$$\int \phi = \int \sum_{j=1}^n c_j \chi_{J_j} = \sum_{j=1}^n c_j \int \chi_{IJ_j} = \sum_{j=1}^n c_j \lambda(J_j)$$

Definition 4.3: Lebesgue Integrals

A function $f:I\to\mathbb{R}$ is said to be **integrable** or more precisely **Lebesgue integrable** on an interval I if there exist numbers c_j and bounded intervals $J_j\subset I,\ j=1,2,3,\ldots$ such that

$$\sum_{j=1}^{\infty} |c_j| \lambda(J_j) < \infty$$

and the equality

$$f(x) = \sum_{j=1}^{\infty} c_j \chi_{J_j}(x)$$

holds for all $x \in I$ at which

$$\sum_{j=1}^{\infty} |c_j| \chi_{J_j}(x) < \infty$$

We denote by $\int_I f$ the number

$$\int_{I} f = \sum_{j=1}^{\infty} c_{j} \lambda(J_{j})$$

and call it the **integral of** f **over the interval** I. If the function f is not integrable on the interval I then we say that the integral of f on I does not exist. Hence if we say that the integral of f on I exists it just means that f is (Lebesgue) integrable on I.

Theorem 4.1: Lebesgue Equality

Suppose that c_j , d_j are real numbers and J_j , K_j are bounded intervals for all $j = 1, 2, 3, \ldots$, and

$$\sum_{j=1}^{\infty} |c_j| \lambda(J_j) < \infty, \quad \sum_{j=1}^{\infty} |d_j| \lambda(K_j) < \infty$$

If

$$\sum_{j=1}^{\infty} c_j \chi_{J_j}(x) = \sum_{j=1}^{\infty} d_j \chi_{K_j}(x)$$

holds for all x such that

$$\sum_{i=1}^{\infty} |c_j| \chi_{J_j}(x) < \infty, \quad \sum_{i=1}^{\infty} |d_j| \chi_{K_j}(x) < \infty$$

Then

$$\sum_{j=1}^{\infty} c_j \lambda(J_j) = \sum_{j=1}^{\infty} d_j \lambda(K_j)$$

Definition 4.4: Riemann Integrable Functions

Let $f : \mathbb{R} \to \mathbb{R}$. We say that f is **Riemann-integrable** if for every $\epsilon > 0$ there exists step functions ϕ and ψ such that

$$\phi \leq f \leq \psi$$

and

$$\int \psi - \int \phi < \epsilon$$

Thm 4.5: A function $f: \mathbb{R} \to \mathbb{R}$ is Riemann-integrable iff

$$\sup\left\{\int\phi:\phi\text{ is a step function and }\phi\leq f\right\}$$

$$=\inf\left\{\int\psi:\psi\text{ is a step function and }\phi\geq f\right\}$$

Def 4.5: If f is Riemann-integrable we define its Riemann integral $(R) \int f$ as the common value

$$(R)\int f:=\sup\left\{\int \phi: \phi \text{ is a step function and } \phi\leq f\right\}$$

$$=\inf\left\{\int \psi: \psi \text{ is a step function and } \phi\geq f\right\}$$

Theorem 4.6: Connection between Riemann and Lebesgue

Suppose that $f:\mathbb{R}\to\mathbb{R}$ is Riemann-integrable. Then f is also Lebesgue integrable on \mathbb{R} and moreoever

$$(R) \int f = \int f$$

where the number on the lefthand side is the value of the Riemann integral of f, while the righthand side denotes the value of the Lebesgue integral of f on $\mathbb R$

Theorem 4.1: Riemann lemmas

Let $f: \mathbb{R} \to \mathbb{R}$ be a bounded function with bounded support [a,b]. The following are equivalent:

- 1. f is Riemann-integrable
- 2. for every $\epsilon > 0$ there exists $a = x_0 < \cdots < x_n = b$ s.t. if M_j and m_j denote the sup and inf of f on (x_{j-1}, x_j) respectively, then

$$\sum_{j=1}^{n} (M_j - m_j)(x_j - x_{j-1}) < \epsilon$$

3. for every $\epsilon > 0$ there exists $\alpha = x_0 < \cdots < x_n = b$ s.t. with $I_j = (x_{j-1}, x_j)$ for $j \ge 1$

$$\sum_{j=1}^{n} \sup_{x,y \in I_j} |f(x) - f(y)| \lambda(I_j) < \epsilon$$

Notation to aid these lemmas: For $f: \mathbb{R} \to \mathbb{R}$ a bounded function with bounded support [a,b] and for $a=x_0<\cdots< x_n=b$, we let $I_j=(x_{j-1},x_j),\ m_j:=\inf_{x\in I_j}f(x)$ and $M_j:=\sup_{x\in I_j}f(x)$. We define the **lower step function of** f **with respect to** $\{x_0,\ldots,x_n\}$ as

$$\phi_*(x) = \sum_{j=1}^n m_j \chi_{I_j}(x) + \sum_{j=0}^n f(x_j) \chi_{\{x_j\}}(x)$$

and the upper step function of f with respect to $\{x_0, \ldots, x_n\}$ as

$$\phi^*(x) = \sum_{j=1}^n M_j \chi_{I_j}(x) + \sum_{j=0}^n f(x_j) \chi_{\{x_j\}}(x)$$

 $\phi_*(x)$ and $\phi^*(x)$ are step functions, and $\phi_*(x) \leq f \leq \phi^*(x)$

Suppose that $g:[a,b]\to\mathbb{R}$ and let f be defined by f(x)=g(x) for $x\in[a,b]$ and f(x)=0 otherwise.

- 1. If g is continuous on [a, b], then f is Riemann-integrable
- 2. If g is a monotone function then f is Riemann-integrable

Theorem 4.8: Dependence on Intervals for Lebesgue

Let I and J be two intervals such that $J \subset I$.

- 1. If f is integrable on I then f is also integrable on the subinterval J
- 2. If f is integrable on I and f(x) = 0 for all $x \in I \setminus J$, then $f(x) \geq 0$ for all $x \in I$ then f is integrable on I and

$$\int_{J} f = \int_{I} f$$

$$\int_{J} f \le \int_{I} f$$

4. Suppose that I can be written as the union of disjoint intervals I_n , $n=1,2,3,\ldots$ and let f be integrable on each of the intervals I_n . Then f is integrable on I iff

$$\sum_{n=1}^{\infty} \int_{I_n} |f| < \infty$$

If this holds, then

$$\int_{I} f = \sum_{n=1}^{\infty} \int_{I_{n}} f$$

Theorem 4.9: Addition of Intervals

If any two of $\int_a^b f$, $\int_b^c f$, $\int_a^c f$ exist, then so does the third and $\int_a^b f$, $+ \int_b^c f = \int_a^c f$

Theorem 4.10: Fundamental Theorem of Calculus

Let I be an interval and let $g:I\to\mathbb{R}$ be integrable on I. For all $x\in I$ and some fixed $x_0\in I$ let $G(x)=\int_{x_0}^x g$. Suppose g is continuous at x for some $x\in I$ [if x is an endpoint we mean one-sided continuity.] Then G is differentiable at x and G'(x)=g(x). [if x if an endpoint we mean one-sided differentiable]

Suppose $f: I \to \mathbb{R}$ has continuous derivative f' on the interval I. Then for any $a, b \in I$:

$$\int_{a}^{b} f' = f(b) - f(a)$$

Lemma 4.2: Fatoux Lemma

Let (f_n) be a sequence of non-negative integrable functions on an interval I. Let

$$f(x) = \liminf_{n \to \infty} f_n(x)$$
, for all $x \in I$

If $\lim \inf_{n\to\infty} \int_I f_n < \infty$ then f is integrable on I and

$$\int_{I} f \le \liminf_{n \to \infty} \int_{i} f_{n}$$

Theorem 4.12: Dominated Convergence Theorem

Let (f_n) be a sequence of integrable functions on an interval I and assume that

$$f(x) = \lim_{n \to \infty} f_n(x)$$
, for all $x \in I$

. Assume also that the sequence (f_n) is **dominated** by some integrable function g, that is

$$|f_n(x)| \le g(x)$$
, for all $x \in I$ and $n = 1, 2, \dots$, $\int_{\mathbb{R}} g < \infty$

Then the function f is integrable on I and

$$\int_{I} f = \lim_{n \to \infty} \int_{I} f_n$$

Theorem 4.13

Let (a,b) be a bounded interval and suppose that $f_n:(a,b)\to\mathbb{R}$ are integrable functions which converges uniformly to a function f. Then f is integrable on (a,b) and

$$\int_{a}^{b} f = \lim_{n \to \infty} \int_{a}^{b} f_{n}$$

4 Fourier Series and Orthogonality

Definition 5.1: The Space L^2

Define the space $L^2 = L^2([a,b])$ as the set of measurable functions $f:[a,b] \to \mathbb{C}$ so that the function $x \mapsto |f(x)|^2$ is Lebesgue integrable, i.e.

$$||f||_2^2 := \int_a^b |f(x)|^2 dx < \infty$$

The quantity $||f||_2$ is called the L^2 -norm of f. If $||f||_2 = 1$, then we say that f is L^2 -normalised

Definition 5.2: Inner Product

For two functions $f, g \in L^2([a, b])$, we define their **inner product** by

$$\langle f, g \rangle = \int_{a}^{b} f(x) \overline{g(x)} dx$$

Theorem 5.1: Cauchy-Shwarz Inequality

Let $f,g\in L^2([a,b]).$ then the function $x\mapsto f(x)\overline{g(x)}$ is Lebesgue integrable and we have

$$|\langle f, g \rangle| \le ||f||_2 ||g||_2$$

Minkowski's Inequality: For two functions $f, g \in L^2([a, b])$,

$$||f + g||_2 \le ||f||_2 + ||g||_2$$

Definition 5.3: Convergent Sequences in L^2

Let f, f_1, f_2, \ldots be functions in $L^2([a, b])$. We say that the function $(f_n)_n$ converges to f in L^2 if the sequence

$$||f_n - f||_2 = \left(\int_a^b |f_n(x) - f(x)|^2 dx\right)^{1/2}$$

converges to zero as $n \to \infty$. We will also write $f_n \to f$ in L^2

Definition 5.4: Orthonormal Systems

A sequence $(\phi_n)_n$ of L^2 functions on [a,b] is called an **orthonormal** system on [a,b] if

$$\langle \phi_n, \phi_m \rangle = \int_0^b \phi_n(x) \overline{\phi_m(x)} dx = \begin{cases} 0, & \text{if } n \neq m \\ 1, & \text{if } n = m \end{cases}$$

(The index n may run over any countable set. We will write \sum_{n} to denote a sum over all the indices. In proofs we will always adopt the interpretation that n runs over $1, 2, 3, \ldots$ without loss of genererality)

Theorem 5.2

Let $(\phi_n)_n$ be an orthonormal system on [a,b] and $f \in L^2$. Consider

$$s_N(x) = \sum_{n=1}^N \langle f, \phi_n \rangle \phi_n(x)$$

Denote the linear span of the functions $(\phi_n)_{n=1,...,N}$ by X_N . Then

$$||f - s_N||_2 \le ||f - g||_2$$

holds for all $g \in X_N$ with equality iff $g = s_N$

Definition 5.3: Bessel's Inequality

If $(\phi_n)_n$ is an orthonormal system on [a,b] and $f \in L^2$, then

$$\sum_{n} \left| \langle f, \phi_n \rangle \right|^2 \le \|f\|_2^2$$

Corollary - Riemann-Lebesgue lemma in L^2 . Let $(\phi_n)_{n=1,2,...}$ be an orthonormal system and $f \in L^2$, then

$$\lim_{n \to \infty} \langle f, \phi_n \rangle = 0$$

Definition 5.5: Complete Orthonormal Systems

An orthonormal system $(\phi_n)_n$ is called **complete** if

$$\sum_{n} \left| \langle f, \phi_n \rangle \right|^2 = \left\| f \right\|_2^2$$

for all $f \in L^2$

Thm 5.4: Let $(\phi_n)_n$ be an orthonormal system on [a,b]. Let $(s_N)_N$ be as in Theorem 5.2. Then $(\phi_n)_n$ is complete iff $(s_N)_N$ converges to f in the L^2 -norm for every $f \in L^2$

Definition 5.6: Trigonometric Polynomials

A trigonometric polynomial is a function of the form

$$f(x) = \sum_{n=-N}^{N} c_n e^{2\pi i nx} \quad (x \in \mathbb{R})$$

where $N \in \mathbb{N}$ and $c_n \in \mathbb{C}$. If c_N or c_{-N} is non-zero, then N is called the **degree** of f

Observe that trigonometric polynomials are continuous functions. From Euler's identity $e^{ix}=\cos(x)+i\sin(x),\,(x\in\mathbb{R})$ we see that every trigonometric polynomial can also be written in the form

$$f(x) = a_0 + \sum_{n=0}^{N} (a_n \cos(2\pi nx) + b_n \sin(2\pi nx))$$

Lemma 5.1: $(e^{2\pi i nx})_{n\in\mathbb{Z}}$ forms an orthonormal system on [0, 1]. In particular,

1. for all $n \in \mathbb{Z}$,

$$\int_{0}^{1} e^{2\pi i n x} dx = \begin{cases} 0, & \text{if } n \neq 0 \\ 1, & \text{if } n = 0 \end{cases}$$

2. if $f(x) = \sum_{n=-N}^{N} c_n e^{2\pi i nx}$ is a trigonometric polynomial, then

$$c_n = \langle f, \phi_n \rangle = \int_0^1 f(t)e^{-2\pi i nt} dt$$

Definition 5.7: Fourier Coefficient

For a 1-periodic integrable function f and $n \in \mathbb{Z}$ we define the $n\mathbf{th}$ Fourier coefficient by

$$\widehat{f}(n) = \int_0^1 f(t)e^{-2\pi i nt} dt = \langle f, \phi_n \rangle$$

(the integral on the right exists since f is integrable and $|\phi_n| \le 1$.) The doubly infinite series

$$\sum_{n=-\infty}^{\infty} \widehat{f}(n) e^{2\pi i nx}$$

is called the **Fourier series** of f

Def 5.8 (Partial Sums): For a 1-periodic integrable function f, we define the **partial sums**

$$S_N f(x) = \sum_{n=-N}^{N} \widehat{f}(n) e^{2\pi i nx}$$

Note: for all $f \in L^2$ and trigonometric polynomials g of degree $\leq N$, we have

$$||f - S_N f||_2 \le ||f - g||_2$$

Definition 5.9: Convolution

For two 1-periodic functions $f,g\in L^2$ we define their **convolution** by

$$f * g(x) = \int_0^1 f(t)g(x-t)dt$$

(The integral on the right hand side exists by Cauchy-Shwarz)

Lemma bank

5.2 For 1-periodic functions $f, g \in L^2$,

$$f * q = q * f$$

5.3 Dirichlet Kernel: We have

$$D_N(x) = \sum_{n=-N}^{N} e^{2\pi i nx} = \frac{\sin(2\pi(N+\frac{1}{2})x)}{\sin(\pi x)}$$

5.4 Fejér Kernel: We have

$$K_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} D_n(x) = \frac{1}{2(N+1)} \frac{1 - \cos(2\pi(N+1)x)}{\sin(\pi x)^2}$$
$$= \frac{1}{N+1} \left(\frac{\sin(\pi(N+1)x)}{\sin(\pi x)} \right)^2$$

Thm 5.5 (Fejér): For every 1-periodic continuous function f,

$$K_N * f \rightarrow f$$

uniformly on \mathbb{R} as $N \to \infty$

Corollary: Every 1-periodic continuous function can be uniformly approximated by trigonometric polynomials. That is, for every 1-periodic continuous f there exists a sequence $(f_n)_n$ of trigonometric polynomials so that $f_n \to f$ uniformly

Definition 5.10: Cesaro and Abel Summations

Let $(a_k)_k$ be a sequence of complex numbers with limit L. Prove that

$$\lim_{n \to \infty} \frac{a_1 + \dots + a_n}{n} = L$$

Given the sequence a_k , form the partial sums $s_n = \sum_{k=1}^n a_k$ and let

$$\sigma_N = \frac{s_1 + \dots + s_N}{N}$$

 σ_N is called the N-th Cesàro mean of the sequence s_k or the N-th Cesàro sum of the series $\sum_{k=1}^\infty a_k$. If σ_N converges to a limit S we say that the series $\sum_{k=1}^\infty a_k$ is Cesàro summable to S If $\sum_{k=1}^\infty a_k$ is summable to S (i.e. converges with sum S), then $\sum_{k=1}^\infty a_k$ is Cesàro summable to S

Def (Abel summation): $\sum_{n=0}^{\infty} a_n$ with $a_n \in \mathbb{C}$ is Abel summable to S if the series $A(r) = \sum_{n=0}^{\infty} a_n r^n$ converges for every $r \in (0,1)$ and the limit $\lim_{r \to 1^-} A(r)$ exists and equals S

Definition 5.10: Approximation of Unity

A sequence of 1-periodic integrable functions $(k_n)_n$ is called **approximation of unity** if for all 1-periodic continuous functions f we have that $f * k_n$ converges uniformly to f on \mathbb{R} . That is,

$$\sup_{x \in \mathbb{R}} |f * k_n(x) - f(x)| \to 0 \quad \text{as } n \to \infty$$

Thm 5.6: Let $(k_n)_n$ be a sequence of 1-periodic integrable functions such that

- 1. $k_n(x) > 0$ for all $x \in \mathbb{R}$
- 2. $\int_{-1/2}^{1/2} k_n(t)dt = 1$
- 3. For all $1/2 \ge \delta > 0$ we have $\int_{-\delta}^{\delta} k_n(t)dt \to 1$ as $n \to \infty$

Then $(k_n)_n$ is an approximation of unity

Corollary: The Fejér kernel $(K_N)_N$ is an approximation of unity

Lemma 5.5

Let f be a 1-periodic and continuous function. Then

$$\lim_{N \to \infty} ||S_N f - f||_2 = 0$$

Theorem 5.7: Completeness of Trigonometric System

The trigonometric system is complete. In view of Theorem 5.4 this means that for every 1-periodic L^2 function f we have

$$\lim_{N \to \infty} ||S_N f - f||_2 = 0$$

In other words, the Fourier series of f converges to f in the L^2 sense

Corollary (Parseval's Theorem): If f, g are 1-periodic L^2 functions then

$$\langle f,g \rangle = \sum_{n=0}^{\infty} \widehat{f}(n) \overline{\widehat{g}(n)}$$

In particular,

$$||f||_2^2 = \sum_{n=-\infty}^{\infty} |\widehat{f}(n)|^2$$

5 Probably important Theorem Bank

All the metric space stuff isn't here coz i've got no idea what will actually show up lol

Theorem A: Sequences and Series

Thm 1.3 (Convergence and Cauchy Sequences): If (x_n) is a convergent sequence of real numbers, then (x_n) is a Cauchy sequence Thm 1.4 (Cauchy Sequences and Convergence): Let (x_n) be a sequence of real numbers. Then (x_n) is a Cauchy sequence iff (x_n) is a convergent sequence

Thm 1.5 (Bolzano-Weierstrass): Every bounded sequence of real numbers has a convergent subsequence

Thm 1.6 (Limsup theorem): A sequence (x_n) of real numbers is convergent if and only if $\limsup_{n\to\infty} x_n$ and $\liminf_{n\to\infty} x_n$ are real numbers and

$$\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n$$

Thm 1.7 (Cauchy Criteron): Let $S = \sum_{k=1}^{\infty} a_k$ be a series. Then S is convergent iff for any $\epsilon > 0$ there exists N such that for all m > n > N we have that

$$\left| \sum_{k=n+1}^{m} a_k \right| < \epsilon$$

Thm 1.8 (Rearranging Absolutely Convergent Series) Let $S = \sum_{k=1}^{\infty} a_k$ be an absolutely convergent series. Then

- The series S is convergent
- Let $z:\mathbb{N}\to\mathbb{N}$ be a bijection. Then the series $\sum_{k=1}^\infty a_{z(k)}$ is convergent and

$$\sum_{k=1}^{\infty} a_k = \sum_{k=1}^{\infty} a_{z(k)}$$

The series $\sum_{k=1}^{\infty} a_{z(k)}$ is called a **rearrangement** of the series $\sum_{k=1}^{\infty} a_k$. What we do here is add the terms of the sum in a different order to the original one, for example

$$a_3 + a_7 + a_1 + a_{100} + a_2 + \dots$$

Since $z: \mathbb{N} \to \mathbb{N}$ is a bijection, we will miss no terms.

Thm 1.9 (Rearranging Conditionally Convergent Series) Let $S = \sum_{k=1}^{\infty} a_k$ be any conditionally convergent series. Then there exists rearrangements $z : \mathbb{N} \to \mathbb{N}$ (where z is a bijection) such that

- For any $r \in \mathbb{R}$, $\sum_{k=1}^{\infty} a_{z(k)}$ is conditionally convergent with sum r
- The series $\sum_{k=1}^{\infty} a_{z(k)}$ diverges to $+\infty$
- The series $\sum_{k=1}^{\infty} a_{z(k)}$ diverges to $-\infty$
- . The partial sums of the series $\sum_{k=1}^{\infty} a_{z(k)}$ oscillate between any two real numbers

Theorem B: Uniform Continuity

Prop 2.1: The following are equivalent concerning a sequence of functions $f_n: E \to \mathbb{R}$ and $f: E \to \mathbb{R}$:

- $f_n \to f$ uniformly on E
- $\sup_{x \in E} |f_n(x) f(x)| \to 0 \text{ as } n \to \infty$
- there exists a seq $a_n \to 0$ s.t. $|f_n(x) f(x)| \le a_n, \forall x \in E$
- Thm 2.1: Let E be a nonempty subset of \mathbb{R} and suppose that $f_n \to f$ uniformly on E as $n \to \infty$. If each f_n is continuous at some $x_0 \in E$, then f is continuous at $x_0 \to E$
- Thm 2.2 (Integrability of sequences): Suppose that $f_n \to f$ uniformly on a closed interval [a,b]. If each f_n is integrable on [a,b], then so is f and

$$\lim_{n \to \infty} \int_{a}^{b} f_{n}(x) dx = \int_{a}^{b} \left(\lim_{n \to \infty} f_{n}(x) \right) dx$$

• Thm 2.3 (Differentiability of sequences): Let (a,b) be a bounded interval and suppose that f_n is a sequence of functions which converges at some $x_0 \in (a,b)$. If each f_n is differentiable on (a,b), and f'_n converges uniformly on (a,b) as $n \to \infty$, then f_n converges uniformly on (a,b) and

$$\lim_{n \to \infty} f'_n(x) = \left(\lim_{n \to \infty} f_n(x)\right)'$$

Theorem 2.4: Let E be a nonempty subset of \mathbb{R} and let (f_k) be a sequence of real functions defined on E.

- If $x_0 \in E$ and each f_k is cont. at $x_0 \in E$, then if $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on E, f is continuous at $x_0 \in E$.
- Term-by-term integration: Suppose E = [a, b] and each f_k is integrable on [a, b]. If $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on [a, b], then f is integrable on [a, b] and

$$\int_{a}^{b} \sum_{k=1}^{\infty} f_{k}(x) \, dx = \sum_{k=1}^{\infty} \int_{a}^{b} f_{k}(x) \, dx$$

• Term-by-term differentiation: Suppose that E is a bounded, open interval and that each f_k is differentiable on E. If $\sum_{k=1}^{\infty} f_k(x_0)$ converges at some $x_0 \in E$, and $g = \sum_{k=1}^{\infty} f'(k)$ converges uniformly on E, then $f = \sum_{k=1}^{\infty} f_k$ converges uniformly on E, is differentiable on E, and

$$f'(x) = \left(\sum_{k=1}^{\infty} f_k(x)\right)' = \sum_{k=1}^{\infty} f'_k(x) = g(x)$$

for $x \in E$

Thm 2.5 (Weierstrass M-test)Let E be a nonempty subset of \mathbb{R} , let $f_k: E \to \mathbb{R}$, $k \in \mathbb{N}$, and suppose that $M_k > 0$ satisfies $\sum_{k=1}^{\infty} M_k < \infty.$ If $|f_k(x)| \le M_k$ for $k \in \mathbb{N}$ and $x \in E$, then $f = \sum_{k=1}^{\infty} f_k$ converges absolutely and uniformly on E.

Random theorem (Workshop 6): Suppose $f:[a,b]\to\mathbb{R}$ is continuous. Then it is uniformly continuous

Theorem C: Is something Lebesgue Integrable?

Theorem 4.2 (Basic Properties of Lebesgue Integral): Suppose f and g are integrable on I, and $\alpha, \beta \in \mathbb{R}$. Then,

1. $\alpha f + \beta g$ is integrable on I and

$$\int_{I} (\alpha f + \beta g) = \alpha \int_{I} f + \beta \int_{I} g$$

- 2. If $f \geq 0$ on I then $\int_I f \geq 0$; if $f \geq g$ on I then $\int_I f \geq \int_I g$
- 3. |f| is integrable on I and $\left|\int_f f\right| \leq \int_I |f|$
- 4. $\max\{f,g\}$ and $\min\{f,g\}$ are integrable on I
- 5. If one of the functions is bounded then the product fg is integrable on I
- 6. If $f \geq 0$ with $\int_I f = 0$ then any function h such that $0 \leq h \leq f$ on I is integrable on I

Theorem 4.3 (Integrability of Sequences and Series)

Suppose that $(f_n)_{n\in\mathbb{N}}$ is a sequence of functions each of which is integrable on I

1. Assume that

$$\sum_{n=1}^{\infty} \int_{I} |f_n| < \infty$$

Let f be a function on the interval I such that

$$f(x) = \sum_{n=1}^{\infty} f_n(x)$$
 for all $x \in I$ such that $\sum_{n=1}^{\infty} |f_n(x)| < \infty$

Then f is integrable on I and its integral on I is equal to

$$\int_{I} f = \sum_{n=1}^{\infty} \int_{I} f_{n}$$

2. Assume that each $f_n \geq 0$ on I and let $f(x) = \sum_{n=1}^{\infty} f_n(x)$ for all $x \in I$ (we allow for the possibility that at some points this sum is infinite). Then f is integrable on I if and only if

$$\sum_{n=1}^{\infty} \int_{I} f_n < \infty$$

Theorem 4.4 (Monotone Convergence): Suppose that (f_n) is a monotone increasing sequence of integrable functions on an interval I. i.e. $f_1(x) \leq f_2(x) \leq f_3(x) \leq \ldots$ for all $x \in I$. For all $x \in I$, let

$$f(x) = \lim_{n \to \infty} f_n(x)$$

where we allow for the possibility that at some points this limit is infinite. Then f is integrable on I iff

$$sup_{n\in\mathbb{N}}\int_I f_n = \lim_{n\to\infty}\int_I f_n < \infty. \quad \text{Also,} \int_I f = \lim_{n\to\infty}\int_I f_n$$

Let I be an interval and $E\subset I$ a countable set. χ_E is integrable on I and $\int_I \chi_E = 0$

Random remark: Step functions are Riemann-integrable Random theorem in workshop 9 2023 lol: g is integrable on $[0, \infty)$ iff g is integrable on [0, v) for all $v < \infty$ and

$$\sup_{v>0} \int_0^v |g(x)| dx < \infty$$

6 Recalls, Examples, etc

Recall E: Random identities and other shit

- Triangle Inequality: $|a+b| \le |a| + |b|$, and $|a-b| \ge ||a| |b||$
- Geometric Series Test: Assume $a, r \in \mathbb{R}, r \neq 0$. Then

$$\sum_{n=1}^{\infty} a \cdot r^n = \begin{cases} \frac{a}{1-r}, & |r| < 1\\ \text{diverges}, & |r| \ge 1 \end{cases}$$

. Ratio test:
$$L=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$$
 - $L<1$: converge, $L>1$: diverge

Example of rigour: $\epsilon - \delta$ and $\epsilon - N$ Template

Note: this is just copied from my FPM one, modify appropriately for Cauchy/etc

Proof: Let $\epsilon > 0$ be given. Set $\delta =$ ___ (If there is a constant, then set as "<" e.g. $\delta < \min\{1,\epsilon\}$). Then for all $x \in \mathbb{R}$ such that $|x-_| < \delta$ we have *Optional: preliminary step to determine an upper bound* Therefore, / Therefore since "<u>x term</u>" < "constant", "Same steps as rough working"

 $\cdots = \underline{\quad} \cdot |x - \underline{\quad}| < \underline{\quad} \delta = \epsilon \quad \text{(same rule applies about constants)}$

Proof: Let $\epsilon>0$ be given. Choose $N\in\mathbb{N}$ such that $N>_$, (optional(?) for example $N=_$). Then we have $_<\epsilon$. Then for all n>N we have

"Same steps as rough working"

 \cdots = "equation in terms of n" \leq "same thing in terms of N" $<\epsilon$