

## IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

**ART UNIT:** 

**EXAMINER:** 

1654

Lukton, David

Applicant:

Dong, Zheng Xin

Serial No.:

10/629,261

Filed:

July 28, 2003

Entitled:

Analogues of GLP-1

Attorney Docket No.: 089/US/PCT2/US-A; 00537/186003

Mail Stop Amendment Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

## **DECLARATION OF DR. JOHN E. TAYLOR** UNDER 37 C.F.R. §1.132

I, Dr. John E. Taylor, hereby declare and state that:

- 1. I am familiar with the subject matter claimed in the above-identified patent application, U.S. Serial No. 10/629,261.
- 2. I am the Associate Director of Receptor & Cell Biology at Biomeasure, Incorporated, of Milford, Massachusetts. I was awarded a Bachelor of Science degree in Zoology from Brigham Young University of Provo, Utah, in 1971, a Master of Science degree in Pharmacology in 1974 and a Doctorate of Philosophy degree in 1977 from the University of the Pacific of Stockton, California. I have been employed by Biomeasure, Incorporated, from 1983 to the present. Part of my responsibilities as Associate Director of Receptor & Cell Biology is to supervise the performance of receptor binding assays of compounds at Biomeasure, Incorporated.
- I understand that the Examiner of this application is of the view, as stated in the last 3. office action issued in this application dated August 8, 2006, that in the absence of experimental data supporting the asserted activity of the claimed compounds, claims 1, 3, 4, 9-11, 15, 16, and 19 contain subject matter which is not described in the

- specification in such a way as to enable one skilled in the art to which it pertains or with which it is most nearly connected, to make and/or use the invention.
- 4. I make this declaration to show that data generated by following the procedures disclosed in this application (at pages 14-15), which is also described in paragraphs 5 and 6 below, provide sufficient and convincing evidence that the claimed compounds of this application are specific for the GLP-1 receptors and possess the ability to evoke a GLP-1-like response from cells expressing a GLP-1 receptor. One of skill in the art would readily appreciate that the efficacy of any of the compounds of the invention can be determined by using such standard assays. Thus, a person of skill in the art would have been able to determine the suitability of the compounds of claims 1, 3, 4, 9-11, 15, 16, and 19.
- 5. Cell Culture: cDNA clones of the rat and human glucagon-like peptide-1 receptors (2, 3) were obtained from Dr. Andreas Wilmen, University of Marburg, Germany. The coding regions were cloned into the EcoRI site of the mammalian expression plasmid, pTEJ8 (5). DNA transfection of a Chinese hamster ovary cell line, CHO-K1 (American Type Culture Collection, Rockville, MD), was carried out by the calcium phosphate precipitation method as previously described (6). Clonal cell lines stably expressing the rat and the human GLP-1 receptors were obtained by selection of the DNA-transfected cells in RPMI 1640 medium supplemented with 10% fetal bovine serum, 1 mM sodium pyruvate, 1% non-essential amino acids, containing 0.8 mg/ml G418 (Gibco BRL, Grand island, NY), ring cloned, and expanded in culture.
- 6. Radioligand Binding: Cell membranes were prepared for radioligand binding studies by homogenization of the cells in 20 ml of ice-cold 50 mM Tris-HCl with a Brinkman Polytron (Westbury, NY) (setting 6, 15 sec). The homogenates were washed twice by centrifugation (39,000 g / 10 min), and the final pellets were resuspended in 50 mM Tris-HCl, containing 2.5 mM MgCl<sub>2</sub>, 0.1 mg/ml bacitracin (Sigma Chemical, St. Louis, MO), and 0.1% bovine serum albumin ("BSA"). For assay, aliquots (0.4 ml) were incubated with 0.05 nM (1251)hGLP-1(7-36)NH<sub>2</sub> (~2200 Ci/mmol, New England Nuclear, Boston, MA), with and without 0.05 ml of unlabeled competing Test Peptide

or Reference Peptide. After a 100 min incubation (25 C), the bound (125 I)hGLP-1(7-36)NH<sub>2</sub> was separated from the free by rapid filtration through GF/C filters (Brandel, Gaithersburg, MD), which had been previously soaked in 0.5% polyethyleneimine. The filters were then washed three times with 5 ml aliquots of ice-cold 50 mM Tris-HCl, and the bound radioactivity trapped on the filters was counted by gamma spectrometry (Wallac LKB, Gaithersburg, MD). Specific binding was defined as the total (125 I)hGLP-1(7-36)NH<sub>2</sub> bound minus that bound in the presence of 1000 nM hGLP-1(7-36)NH<sub>2</sub> (Bachem, Torrance, CA). Binding data were analyzed by computer-assisted nonlinear regression analysis (Data Analysis Toolbox, v.1.0, Molecular Design Limited, San Leandro, CA) and Inhibition Constant (Ki) values were calculated using the equation of Cheng and Prusoff (Cheng Y., Prusoff W. H., Biochem. Pharmacol. 22: 3099-3108, 1973).

7. **Results:** The Binding Constants for native hGLP-1(7-36)NH<sub>2</sub> and representative compounds of the present application, as determined by the foregoing assay, are as follows:

| GLP-1 Analogue                                                                                                                                                  | Ki (nM) |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| hGLP-1(7-36)NH <sub>2</sub>                                                                                                                                     | 1.093   |
| (Aib <sup>8,35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                                               | 0.947   |
| (Aib <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                            | 1.257   |
| $(Aib^{8,35}, Arg^{26,34}, Lys^{36}(N^{\epsilon}-tetradecanoyl))hGLP-1(7-36)NH_2$                                                                               | 43.539  |
| (Aib <sup>8,35</sup> , Arg <sup>26</sup> , Lys <sup>34</sup> (N <sup>ε</sup> -tetradecanoyl))hGLP-1(7-36)NH <sub>2</sub>                                        | 34.973  |
| $(Aib^{8,35,37}, Arg^{26,34}, Lys^{38}(N^{\epsilon}-tetradecanoyl))hGLP-1(7-38)NH_2$                                                                            | 12.113  |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)NH <sub>2</sub>                                          | 25.847  |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup><math>\epsilon</math></sup> -tetradecanoyl), $\beta$ -Ala <sup>37</sup> )hGLP-1(7-37)OH | 18.850  |
| (Aib <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                                                 | 0.831   |
| (Aib <sup>8,35</sup> , A6c <sup>32</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                           | 2.261   |
| (Aib <sup>8,35</sup> , Glu <sup>23</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                           | 1.983   |
| (Aib <sup>8,24,35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                                            | 2.971   |
| (Aib <sup>8,25,35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                                            | 5.060   |
| (Aib <sup>8,35</sup> , Glu <sup>23</sup> , A6c <sup>32</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                       | 2.555   |
| (Aib <sup>8</sup> , Glu <sup>23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                        | 2.657   |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                        | 4.967   |

| (Aib <sup>8,35</sup> , Lys <sup>26</sup> (N <sup>c</sup> -decanoyl), Arg <sup>34</sup> , hGLP-1(7-36)NH <sub>2</sub> 35.168 (Aib <sup>8,35</sup> , Lys <sup>26</sup> (N <sup>c</sup> -decanoyl), Arg <sup>34</sup> , hGLP-1(7-36)NH <sub>2</sub> 28.082 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>c</sup> -octanoyl))hGLP-1(7-36)NH <sub>2</sub> 28.082 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>c</sup> -decanoyl))hGLP-1(7-36)OH 24.526 (Aib <sup>8,35</sup> , Lys <sup>25</sup> , Arg <sup>36,34</sup> , Lys <sup>36</sup> (N <sup>c</sup> -decanoyl))hGLP-1(7-36)OH 79.775 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 9.573 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37</sup> )hGLP-1(7-38)NH <sub>2</sub> 1.693 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37,38</sup> )hGLP-1(7-38)NH <sub>2</sub> 2.340 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Ayc <sup>37,38</sup> )hGLP-1(7-38)NH <sub>2</sub> 15.890 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>26,34</sup> , Ava <sup>37</sup> , Ado <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 30.907 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> 14.513 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> 31.733 (Aib <sup>8,17,35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.940 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , D-Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> 31.733 (Aib <sup>8,17,35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.805 (Ser <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.620 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.620 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.620 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.620 (Aib <sup>8</sup> , Lys <sup>37</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.6223 (Aib <sup>8</sup> , P-Ala <sup>35</sup> , Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.6223 (Aib <sup>8</sup> , P-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.6223 (Aib <sup>8</sup> , P-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.6223 (Aib <sup>8</sup> , P-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.6223 (Aib <sup>8</sup> , P-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 3                                                                                                                                                                                                     |                                                                                                                                                           | <u></u> _ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -octanoyl))hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)OH (Aib <sup>8,35</sup> , Lys <sup>25</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)OH (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 9.573 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 1.693 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 2.340 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Acc <sup>37,38</sup> )hGLP-1(7-38)NH <sub>2</sub> 1.5890 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -Aec-decanoyl))hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Ava <sup>37</sup> , Ada <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 30.907 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ada <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> 14.513 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Aun <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 31.733 (Aib <sup>8,17,35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.940 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , D-Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Cha <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , D-Arg <sup>36</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , D-Arg <sup>36</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β                                                                                               | (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                               | 2.080     |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)OH (Aib <sup>8,35</sup> , Lys <sup>25</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)OH (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 9.573 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 1.693 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 2.340 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>3,38</sup> )hGLP-1(7-38)NH <sub>2</sub> 1.5890 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -Aec-decanoyl))hGLP-1(7-36)NH <sub>2</sub> 30.907 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , B-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , P-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Ai                           | (Aib <sup>8,35</sup> , Lys <sup>26</sup> (N <sup>ε</sup> -decanoyl), Arg <sup>34</sup> ,)hGLP-1(7-36)NH <sub>2</sub>                                      | 35.168    |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)OH (Aib <sup>8,35</sup> , Lys <sup>25</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)OH (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 9.573 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 1.693 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 2.340 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>3,38</sup> )hGLP-1(7-38)NH <sub>2</sub> 1.5890 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -Aec-decanoyl))hGLP-1(7-36)NH <sub>2</sub> 30.907 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , B-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , P-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Ai                           | (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -octanoyl))hGLP-1(7-36)NH <sub>2</sub>                                    | 28.082    |
| $\begin{array}{c} (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{Acc}^{37}) \text{hGLP-1}(7\text{-}37) \text{NH}_2 & 9.573 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{Acc}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 & 1.693 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{Acc}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 & 2.340 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}, \text{Lys}^{36} (\text{N}^6\text{-Aec-decanoyl}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 30.907 \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Ava}^{37}, \text{Ado}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 & 30.907 \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Asp}^{37}, \text{Ava}^{38}, \text{Ado}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 & 14.513 \\ (\text{Aib}^{8,15}, \text{Arg}^{26,34}, \text{Aun}^{37}) \text{hGLP-1}(7\text{-}37) \text{NH}_2 & 31.733 \\ (\text{Aib}^{8,17,35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.940 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 & 6.528 \\ (\text{Gly}^8, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.805 \\ (\text{Ser}^8, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.805 \\ (\text{Ser}^8, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 5.220 \\ (\text{Aib}^8, \text{Glu}^{22,23}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 3.610 \\ (\text{Gly}^8, \text{Aib}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 3.610 \\ (\text{Gly}^8, \text{Aib}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.553 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.553 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.553 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.553 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.553 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.563 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7\text{-}3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                           | 24.526    |
| (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 2.340 (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37,38</sup> )hGLP-1(7-38)NH <sub>2</sub> 2.340 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -Aec-decanoyl))hGLP-1(7-36)NH <sub>2</sub> 15.890 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>37</sup> , Ado <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 30.907 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> 14.513 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Aun <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 31.733 (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Aun <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 4.940 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , D-Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> 6.528 (Gly <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.805 (Ser <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 5.220 (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 1.190 (Gly <sup>8</sup> , Aib <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610 (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.553 (Aib <sup>8</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.553 (Aib <sup>8</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.840 (Aib <sup>8</sup> , Lys <sup>18</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.840 (Aib <sup>8</sup> , Lys <sup>18</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.840 (Aib <sup>8</sup> , Lys <sup>18</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546 (Aib <sup>8</sup> , P-Ala <sup>35</sup> ), D-Arg <sup>36</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546 (Aib <sup>8</sup> , P-Ala <sup>35</sup> ), D-Arg <sup>36</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546 (Aib <sup>8</sup> , P-Ala <sup>35</sup> ), Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546 (Aib <sup>8</sup> , P-Ala <sup>35</sup> ), Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546 (Aib <sup>8</sup> , P-Ala <sup>35</sup> ), Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546 (Aib <sup>8</sup> , P-Ala <sup>35</sup> ), Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546 (Aib <sup>8</sup> , P-Ala <sup>35</sup> ), Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.790 (Aib <sup>8</sup> , Lys <sup>18,27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.790 (Aib <sup>8</sup> , Lys <sup>18,27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.700 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.700 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.700 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.700 (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Aib <sup>8,35</sup> , Lys <sup>25</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)OH                             | 79.775    |
| $\begin{array}{c} (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{Acc}^{37,38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}, \text{Lys}^{36} (\text{N}^6\text{-}\text{Acc-decanoyl})) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \beta\text{-}\text{Ala}^{35}, \text{Lys}^{36} (\text{N}^6\text{-}\text{Acc-decanoyl})) \text{hGLP-1}(7\text{-}38) \text{NH}_2 \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Asp}^{37}, \text{Ava}^{38}, \text{Ado}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Asp}^{37}, \text{Ava}^{38}, \text{Ado}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \beta\text{-}\text{Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-}\text{Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 \\ (\text{Cly}^8, \beta\text{-}\text{Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 \\ (\text{Ser}^8, \beta\text{-}\text{Ala}^{35}, \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Ser}^8, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Cly}^8, \text{Aib}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Glu}^{22,23}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{13}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{13}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \text{D-Arg}^{36}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \beta\text{-}\text{Ala}^{35}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \beta\text{-}\text{Ala}^{35}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \beta\text{-}Ala$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub>                                                                  | 9.573     |
| $\begin{array}{c} (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}, \text{Lys}^{36}(\text{N}^\epsilon\text{-Aec-decanoyl})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Ava}^{37}, \text{Ado}^{38})\text{hGLP-1}(7\text{-}38)\text{NH}_2} \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Asp}^{37}, \text{Ava}^{38}, \text{Ado}^{39})\text{hGLP-1}(7\text{-}39)\text{NH}_2} \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Aun}^{37})\text{hGLP-1}(7\text{-}37)\text{NH}_2} \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Aun}^{37})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^{8}, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39})\text{hGLP-1}(7\text{-}39)\text{NH}_2} \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39})\text{hGLP-1}(7\text{-}39)\text{NH}_2} \\ (\text{Gly}^8, \beta\text{-Ala}^{35}, \text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Ser}^8, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Ser}^8, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Glu}^{22,23}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Glu}^{22,23}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{D-Arg}^{36})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{D-Arg}^{37})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35}, \text{D-Arg}^{37})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{12,7}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{12,7}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{12,7}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{27,7}, \beta\text{-Ala}^{35,3}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}36)\text{NH}_2} \\ (\text{Aib}^8, \text{Lys}^{27,4}, \beta\text{-Ala}^{35}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub>                                                                  | 1.693     |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Ava <sup>37</sup> , Ado <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Aun <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Aun <sup>37</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , D-Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> (Gly <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Gly <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>33</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>33</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>33</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>18</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , P-Ala <sup>35</sup> , D-Arg <sup>37</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , D-Arg <sup>37</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-37)NH <sub>2</sub> (Aib <sup>8,27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> (Aib <sup>8,27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8,27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8,27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> (Aib <sup></sup> | (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Aec <sup>37,38</sup> )hGLP-1(7-38)NH <sub>2</sub>                                                               | 2.340     |
| $\begin{array}{c} (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Asp}^{37}, \text{Ava}^{38}, \text{Ado}^{39}) \text{hGLP-1}(7-39) \text{NH}_2 \\ (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Aun}^{37}) \text{hGLP-1}(7-37) \text{NH}_2 \\ (\text{Aib}^{8,17,35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Arg}^{26,34}, \beta-\text{Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7-39) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Arg}^{26,34}, \beta-\text{Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7-39) \text{NH}_2 \\ (\text{Gly}^{8}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Ser}^{8}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Sib}^{8}, \text{Glu}^{22,23}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Glu}^{22,23}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{18}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{18}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{13}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{18}, \text{Leu}^{27}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{D-Arg}^{36}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \beta-\text{Ala}^{35}, \text{D-Arg}^{37}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \beta-\text{Ala}^{35}, \text{D-Arg}^{37}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \beta-\text{Ala}^{35}, \text{Arg}^{38}) \text{hGLP-1}(7-39) \text{NH}_2 \\ (\text{Aib}^{8}, 27, \beta-\text{Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7-39) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{18,27}, \beta-\text{Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{18,27}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{27}, \beta-\text{Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{27}, \beta-\text{Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{27}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{27}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (\text{Aib}^{8}, \text{Lys}^{27}, \beta-\text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 \\ (Aib$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -Aec-decanoyl))hGLP-1(7-36)NH <sub>2</sub>             | 15.890    |
| $\begin{array}{c} (\text{Aib}^{8,35}, \text{Arg}^{26,34}, \text{Aun}^{37}) \text{hGLP-1}(7-37) \text{NH}_2 & 31.733 \\ (\text{Aib}^{8,17,35}) \text{hGLP-1}(7-36) \text{NH}_2 & 4.940 \\ (\text{Aib}^{8}, \text{Arg}^{26,34}, \beta - \text{Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7-39) \text{NH}_2 & 6.528 \\ (\text{Gly}^{8}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 4.805 \\ (\text{Ser}^{8}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 5.220 \\ (\text{Aib}^{8}, \text{Glu}^{22,23}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 1.190 \\ (\text{Gly}^{8}, \text{Aib}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 3.610 \\ (\text{Aib}^{8}, \text{Lys}^{18}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 4.553 \\ (\text{Aib}^{8}, \text{Lys}^{18}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 6.755 \\ (\text{Aib}^{8}, \text{Lys}^{33}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 2.840 \\ (\text{Aib}^{8}, \text{Lys}^{18}, \text{Leu}^{27}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 10.490 \\ (\text{Aib}^{8}, \text{D-Arg}^{36}) \text{hGLP-1}(7-36) \text{NH}_2 & 2.546 \\ (\text{Aib}^{8}, \beta - \text{Ala}^{35}, \text{D-Arg}^{37}) \text{hGLP-1}(7-37) \text{NH}_2 & 8.390 \\ (\text{Aib}^{8}, \beta - \text{Ala}^{35}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 6.223 \\ (\text{Aib}^{8,27}, \beta - \text{Ala}^{35,37}, \text{Arg}^{38}) \text{hGLP-1}(7-38) \text{NH}_2 & 14.613 \\ (\text{Aib}^{8,27}, \beta - \text{Ala}^{35,37}, \text{Arg}^{38}) \text{hGLP-1}(7-39) \text{NH}_2 & 21.790 \\ (\text{Aib}^{8}, \text{Lys}^{18,27}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 9.203 \\ (\text{Aib}^{8}, \text{Lys}^{27}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 2.700 \\ (\text{Aib}^{8}, \text{Lys}^{27}, \beta - \text{Ala}^{35}, \text{Arg}^{38}) \text{hGLP-1}(7-36) \text{NH}_2 & 2.080 \\ (\text{Aib}^{8}, \text{Arg}^{26,34}, \beta - \text{Ala}^{35}) \text{hGLP-1}(7-36) \text{NH}_2 & 5.097 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Ava <sup>37</sup> , Ado <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub>                                          | 30.907    |
| (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , D-Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> 6.528<br>(Gly <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.805<br>(Ser <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 5.220<br>(Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 1.190<br>(Gly <sup>8</sup> , Aib <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 3.610<br>(Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 4.553<br>(Aib <sup>8</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 6.755<br>(Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.840<br>(Aib <sup>8</sup> , Lys <sup>18</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 10.490<br>(Aib <sup>8</sup> , D-Arg <sup>36</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.546<br>(Aib <sup>8</sup> , β-Ala <sup>35</sup> , D-Arg <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 8.390<br>(Aib <sup>8</sup> , β-Ala <sup>35</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 6.223<br>(Aib <sup>8,27</sup> , β-Ala <sup>35,37</sup> , Arg <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub> 14.613<br>(Aib <sup>8,27</sup> , β-Ala <sup>35,37</sup> , Arg <sup>38</sup> )hGLP-1(7-36)NH <sub>2</sub> 12.790<br>(Aib <sup>8,27</sup> , β-Ala <sup>35,37</sup> , Arg <sup>38,39</sup> )hGLP-1(7-36)NH <sub>2</sub> 12.198<br>(Aib <sup>8</sup> , Lys <sup>18,27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 12.198<br>(Aib <sup>8</sup> , Lys <sup>18,27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.700<br>(Aib <sup>8</sup> , Lys <sup>18,27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.700<br>(Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.080<br>(Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.080<br>(Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 2.080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Asp <sup>37</sup> , Ava <sup>38</sup> , Ado <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub>                      | 14.513    |
| $\begin{array}{c} (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}, \text{D-Asp}^{37}, \text{Ava}^{38}, \text{Aun}^{39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 \\ (\text{Gly}^8, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Ser}^8, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Glu}^{22,23}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Gly}^8, \text{Aib}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{33}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{D-Arg}^{36}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ (\text{Aib}^8, \text{Lys}^{18,27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 \\ ($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Aun <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub>                                                              | 31.733    |
| $(Gly^8, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 4.805$ $(Ser^8, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 5.220$ $(Aib^8, Glu^{22,23}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 1.190$ $(Gly^8, Aib^{35})hGLP-1(7-36)NH_2 \qquad 3.610$ $(Aib^8, Lys^{18}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 4.553$ $(Aib^8, Leu^{27}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 6.755$ $(Aib^8, Lys^{33}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 2.840$ $(Aib^8, Lys^{33}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 10.490$ $(Aib^8, D-Arg^{36})hGLP-1(7-36)NH_2 \qquad 2.546$ $(Aib^8, \beta-Ala^{35}, D-Arg^{37})hGLP-1(7-37)NH_2 \qquad 8.390$ $(Aib^{8,7}, \beta-Ala^{35}, D-Arg^{37})hGLP-1(7-37)NH_2 \qquad 6.223$ $(Aib^{8,27}, \beta-Ala^{35,37}, Arg^{38})hGLP-1(7-38)NH_2 \qquad 14.613$ $(Aib^{8,27}, \beta-Ala^{35,37}, Arg^{38,39})hGLP-1(7-39)NH_2 \qquad 21.790$ $(Aib^8, Lys^{18,27}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 12.198$ $(Aib^8, Lys^{18,27}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 9.203$ $(Aib^8, \beta-Ala^{35}, Arg^{38})hGLP-1(7-36)NH_2 \qquad 9.203$ $(Aib^8, Arg^{26,34}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 2.700$ $(Aib^8, Arg^{26,34}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 5.097$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Aib <sup>8,17,35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                                      | 4.940     |
| $(Gly^8, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 4.805$ $(Ser^8, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 5.220$ $(Aib^8, Glu^{22,23}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 1.190$ $(Gly^8, Aib^{35})hGLP-1(7-36)NH_2 \qquad 3.610$ $(Aib^8, Lys^{18}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 4.553$ $(Aib^8, Leu^{27}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 6.755$ $(Aib^8, Lys^{33}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 2.840$ $(Aib^8, Lys^{33}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 10.490$ $(Aib^8, D-Arg^{36})hGLP-1(7-36)NH_2 \qquad 2.546$ $(Aib^8, \beta-Ala^{35}, D-Arg^{37})hGLP-1(7-37)NH_2 \qquad 8.390$ $(Aib^{8,7}, \beta-Ala^{35}, D-Arg^{37})hGLP-1(7-37)NH_2 \qquad 6.223$ $(Aib^{8,27}, \beta-Ala^{35,37}, Arg^{38})hGLP-1(7-38)NH_2 \qquad 14.613$ $(Aib^{8,27}, \beta-Ala^{35,37}, Arg^{38,39})hGLP-1(7-39)NH_2 \qquad 21.790$ $(Aib^8, Lys^{18,27}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 12.198$ $(Aib^8, Lys^{18,27}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 9.203$ $(Aib^8, \beta-Ala^{35}, Arg^{38})hGLP-1(7-36)NH_2 \qquad 9.203$ $(Aib^8, Arg^{26,34}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 2.700$ $(Aib^8, Arg^{26,34}, \beta-Ala^{35})hGLP-1(7-36)NH_2 \qquad 5.097$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , D-Asp <sup>37</sup> , Ava <sup>38</sup> , Aun <sup>39</sup> )hGLP-1(7-39)NH <sub>2</sub> | 6.528     |
| $\begin{array}{c} (\text{Aib}^8, \text{Glu}^{22,23}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 1.190 \\ (\text{Gly}^8, \text{Aib}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 3.610 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.553 \\ (\text{Aib}^8, \text{Leu}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 6.755 \\ (\text{Aib}^8, \text{Lys}^{33}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.840 \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 10.490 \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.546 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{D-Arg}^{36}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 8.390 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35}, \text{D-Arg}^{37}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 6.223 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 & 14.613 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 & 21.790 \\ (\text{Aib}^8, \text{Lys}^{18,27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 9.203 \\ (\text{Aib}^8, \text{Lys}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 9.203 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 & 2.700 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.080 \\ (\text{Aib}^8, \text{D-Arg}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 5.097 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                           | 4.805     |
| $\begin{array}{c} (\text{Gly}^8, \text{Aib}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 3.610 \\ (\text{Aib}^8, \text{Lys}^{18}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 4.553 \\ (\text{Aib}^8, \text{Leu}^{27}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 6.755 \\ (\text{Aib}^8, \text{Lys}^{33}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.840 \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 10.490 \\ (\text{Aib}^8, \text{D-Arg}^{36}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.546 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \text{D-Arg}^{37}) \text{hGLP-1}(7\text{-}37) \text{NH}_2 & 8.390 \\ (\text{Aib}^{8,27}, \beta\text{-}\text{Ala}^{35}, \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 6.223 \\ (\text{Aib}^{8,27}, \beta\text{-}\text{Ala}^{35,37}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 & 14.613 \\ (\text{Aib}^{8,27}, \beta\text{-}\text{Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 & 21.790 \\ (\text{Aib}^8, \text{Lys}^{18,27}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 12.198 \\ (\text{Aib}^8, \text{Lys}^{17}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 9.203 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.700 \\ (\text{Aib}^8, \beta\text{-}\text{Ala}^{35}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.080 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-}\text{Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 5.097 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Ser <sup>8</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                      | 5.220     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Aib <sup>8</sup> , Glu <sup>22,23</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                               | 1.190     |
| $\begin{array}{c} (\text{Aib}^8, \text{Leu}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 6.755 \\ (\text{Aib}^8, \text{Lys}^{33}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.840 \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 10.490 \\ (\text{Aib}^8, \text{D-Arg}^{36}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.546 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{D-Arg}^{37}) \text{hGLP-1}(7\text{-}37) \text{NH}_2 & 8.390 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 6.223 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}38) \text{NH}_2 & 14.613 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38,39}) \text{hGLP-1}(7\text{-}39) \text{NH}_2 & 21.790 \\ (\text{Aib}^8, \text{Lys}^{18,27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 12.198 \\ (\text{Aib}^8, \text{Lys}^{27}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 9.203 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{Arg}^{38}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.700 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 2.080 \\ (\text{Aib}^8, \text{D-Arg}^{35}) \text{hGLP-1}(7\text{-}36) \text{NH}_2 & 5.097 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Gly <sup>8</sup> , Aib <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                        | 3.610     |
| $\begin{array}{c} (\text{Aib}^8, \text{Lys}^{33}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 2.840 \\ (\text{Aib}^8, \text{Lys}^{18}, \text{Leu}^{27}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 10.490 \\ (\text{Aib}^8, \text{D-Arg}^{36})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 2.546 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{D-Arg}^{37})\text{hGLP-1}(7\text{-}37)\text{NH}_2 & 8.390 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 6.223 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}38)\text{NH}_2 & 14.613 \\ (\text{Aib}^{8,27}, \beta\text{-Ala}^{35,37}, \text{Arg}^{38,39})\text{hGLP-1}(7\text{-}39)\text{NH}_2 & 21.790 \\ (\text{Aib}^8, \text{Lys}^{18,27}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 9.203 \\ (\text{Aib}^8, \text{Lys}^{27}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 2.700 \\ (\text{Aib}^8, \beta\text{-Ala}^{35}, \text{Arg}^{38})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 2.080 \\ (\text{Aib}^8, \text{Arg}^{26,34}, \beta\text{-Ala}^{35})\text{hGLP-1}(7\text{-}36)\text{NH}_2 & 5.097 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Aib <sup>8</sup> , Lys <sup>18</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                  | 4.553     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Aib <sup>8</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                  | 6.755     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Aib <sup>8</sup> , Lys <sup>33</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                  | 2.840     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Aib <sup>8</sup> , Lys <sup>18</sup> , Leu <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                              | 10.490    |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Aib <sup>8</sup> , D-Arg <sup>36</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                      | 2.546     |
| $(Aib^{8,27}, β-Ala^{35,37}, Arg^{38})hGLP-1(7-38)NH_2 \\ (Aib^{8,27}, β-Ala^{35,37}, Arg^{38,39})hGLP-1(7-39)NH_2 \\ (Aib^8, Lys^{18,27}, β-Ala^{35})hGLP-1(7-36)NH_2 \\ (Aib^8, Lys^{27}, β-Ala^{35})hGLP-1(7-36)NH_2 \\ (Aib^8, β-Ala^{35}, Arg^{38})hGLP-1(7-38)NH_2 \\ (Aib^8, β-Ala^{35}, Arg^{38})hGLP-1(7-38)NH_2 \\ (Aib^8, Arg^{26,34}, β-Ala^{35})hGLP-1(7-36)NH_2 \\ (Aib^8, D-Arg^{35})hGLP-1(7-36)NH_2 \\ (Aib^8, D-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Aib <sup>8</sup> , β-Ala <sup>35</sup> , D-Arg <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub>                                                                | 8.390     |
| (Aib8,27, β-Ala35,37, Arg38,39)hGLP-1(7-39)NH2 21.790  (Aib8, Lys18,27, β-Ala35)hGLP-1(7-36)NH2 12.198  (Aib8, Lys27, β-Ala35)hGLP-1(7-36)NH2 9.203  (Aib8, β-Ala35, Arg38)hGLP-1(7-38)NH2 2.700  (Aib8, Arg26,34, β-Ala35)hGLP-1(7-36)NH2 2.080  (Aib8, D-Arg35)hGLP-1(7-36)NH2 5.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Aib <sup>8,27</sup> , $\beta$ -Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                            | 6.223     |
| (Aib8, Lys18,27, β-Ala35)hGLP-1(7-36)NH2 12.198  (Aib8, Lys27, β-Ala35)hGLP-1(7-36)NH2 9.203  (Aib8, β-Ala35, Arg38)hGLP-1(7-38)NH2 2.700  (Aib8, Arg26,34, β-Ala35)hGLP-1(7-36)NH2 2.080  (Aib8, D-Arg35)hGLP-1(7-36)NH2 5.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Aib <sup>8,27</sup> , β-Ala <sup>35,37</sup> , Arg <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub>                                                            | 14.613    |
| (Aib $^8$ , Lys $^{27}$ , β-Ala $^{35}$ )hGLP-1(7-36)NH $_2$ 9.203(Aib $^8$ , β-Ala $^{35}$ , Arg $^{38}$ )hGLP-1(7-38)NH $_2$ 2.700(Aib $^8$ , Arg $^{26,34}$ , β-Ala $^{35}$ )hGLP-1(7-36)NH $_2$ 2.080(Aib $^8$ , D-Arg $^{35}$ )hGLP-1(7-36)NH $_2$ 5.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Aib <sup>8,27</sup> , β-Ala <sup>35,37</sup> , Arg <sup>38,39</sup> )hGLP-1(7-39)NH <sub>2</sub>                                                         | 21.790    |
| $(Aib^8, β-Ala^{35}, Arg^{38})hGLP-1(7-38)NH_2$ 2.700<br>$(Aib^8, Arg^{26,34}, β-Ala^{35})hGLP-1(7-36)NH_2$ 2.080<br>$(Aib^8, D-Arg^{35})hGLP-1(7-36)NH_2$ 5.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (Aib <sup>8</sup> , Lys <sup>18,27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                               | 12.198    |
| $(Aib^8, Arg^{26,34}, β-Ala^{35})hGLP-1(7-36)NH_2$ 2.080<br>$(Aib^8, D-Arg^{35})hGLP-1(7-36)NH_2$ 5.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Aib <sup>8</sup> , Lys <sup>27</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                  | 9.203     |
| (Aib <sup>8</sup> , D-Arg <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 5.097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>38</sup> )hGLP-1(7-38)NH <sub>2</sub>                                                                  | 2.700     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                               | 2.080     |
| (Aib <sup>8</sup> , $\beta$ -Ala <sup>35</sup> , Arg <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub> 3.953                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Aib <sup>8</sup> , D-Arg <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                      | 5.097     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Arg <sup>37</sup> )hGLP-1(7-37)NH <sub>2</sub>                                                                  | 3.953     |
| (Aib <sup>8</sup> , Phe <sup>31</sup> , $\beta$ -Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub> 1.767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (Aib <sup>8</sup> , Phe <sup>31</sup> , β-Ala <sup>35</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                  | 1.767     |
| $(Aib^{8,35}, Phe^{31})hGLP-1(7-36)NH_2$ 1.390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Aib <sup>8,35</sup> , Phe <sup>31</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                     | 1.390     |

| (Aib <sup>8,35</sup> , Nal <sup>31</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                                  | 2.818   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| (Aib <sup>8,35</sup> , Nal <sup>28,31</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                               | 5.613   |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Nal <sup>31</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                           | 6.193   |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Phe <sup>31</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                           | 2.117   |
| (Aib <sup>8,35</sup> , Nal <sup>19,31</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                               | 7.623   |
| (Aib <sup>8,35</sup> , Nal <sup>12,31</sup> )hGLP-1(7-36)NH <sub>2</sub>                                                                                               | 4.693   |
| (Aib <sup>8,35</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -decanoyl))hGLP-1(7-36)NH <sub>2</sub>                                                                        | 32.787  |
| $(Aib^{8,35}, Arg^{34}, Lys^{26}(N^{\epsilon}-decanoyl))hGLP-1(7-36)NH_2$                                                                                              | 35.168  |
| (Aib <sup>8,35</sup> , Arg <sup>26,34</sup> , Lys <sup>36</sup> (N <sup>ε</sup> -dodecanoyl))hGLP-1(7-36)NH <sub>2</sub>                                               | 44.167  |
| (Aib <sup>8</sup> , β-Ala <sup>35</sup> , Ser <sup>37</sup> (O-decanoyl))hGLP-1(7-37)NH <sub>2</sub>                                                                   | 29.850  |
| (Aib <sup>8,27</sup> , β-Ala <sup>35,37</sup> , Arg <sup>38</sup> , Lys <sup>39</sup> (N <sup>ε</sup> -octanoyl))hGLP-1(7-39)NH <sub>2</sub>                           | 43.780  |
| (Aib <sup>8</sup> , Arg <sup>26,34</sup> , $\beta$ -Ala <sup>35</sup> , Lys <sup>37</sup> (N <sup><math>\epsilon</math></sup> -octanoyl))hGLP-1(7-37)NH <sub>2</sub>   | 19.170  |
| (Aib8, Arg26,34, β-Ala35, Lys37(Nε-decanoyl))hGLP-1(7-37)NH2                                                                                                           | 26.505  |
| (Aib <sup>8</sup> , Arg <sup>26,34</sup> , β-Ala <sup>35</sup> , Lys <sup>37</sup> (N <sup>ε</sup> -tetradecanoyl))hGLP-1(7-37)NH <sub>2</sub>                         | 37.190  |
| (Aib <sup>8</sup> , Arg <sup>26,34</sup> , $\beta$ -Ala <sup>35</sup> , Lys <sup>37</sup> (N <sup><math>\epsilon</math></sup> -dodecanoyl))hGLP-1(7-37)NH <sub>2</sub> | 17.255  |
| (Aib <sup>8</sup> , Arg <sup>26,34</sup> , $\beta$ -Ala <sup>35</sup> , Lys <sup>37</sup> (N <sup><math>\epsilon</math></sup> -dodecanoyl))hGLP-1(8-37)NH <sub>2</sub> | 502.500 |

- 8. Conclusion: The results of the Radioligand Binding assay described hereinabove demonstrate that the representative compounds of the present invention bind to the GLP-1 receptor with substantially the same affinity as hGLP-1(7-36)NH<sub>2</sub>. Thus, the application supplies sufficient data and information to practice the invention of the claims. In view of the data presented above and the Applicant's comments, it is believed that the Examiner's concern has been addressed.
- 9. I further declare that all statements made herein of my own knowledge are true and that statements made upon information and belief are believed to be true and further that false statements and the like so made are punishable by fine or imprisonment or both under Section 1001 of Title 18 of the United States Code, and that such willful false statements may jeopardize the validity of the above-identified application or any patent issuing thereon.

2/5/07 Date

John E. Taylor