Math 535 - General Topology Fall 2012 Homework 14 Solutions

Problem 1. Let X be a topological space and (Y, d) a metric space. For each compact subset $K \subseteq X$, consider the pseudometric on C(X, Y) defined by

$$d_K(f,g) = \sup_{x \in K} d(f(x), g(x))$$

and its associated open balls $B_K(f,\epsilon) = \{g \in C(X,Y) \mid d_K(f,g) < \epsilon\}.$

Show that the collection of all open balls

$$\mathcal{B} = \{B_K(f, \epsilon) \mid K \subseteq X \text{ compact}, f \in C(X, Y), \epsilon > 0\}$$

forms a basis for a topology on C(X,Y). More explicitly:

- 1. \mathcal{B} covers C(X,Y);
- 2. Finite intersections of members of \mathcal{B} are unions of members of \mathcal{B} .

Solution. 1. For any $f \in C(X,Y)$, pick any compact $K \subseteq X$ (e.g. a singleton $\{x\}$) and any radius $\epsilon > 0$. Then f satisfies $d_K(f,f) = 0$ and therefore $f \in B_K(f,\epsilon)$.

2. It suffices to check the claim for an intersection of two members $B_1 = B_{K_1}(f_1, \epsilon_1)$ and $B_2 = B_{K_2}(f_2, \epsilon_2)$ of \mathcal{B} .

Let $g \in B_1 \cap B_2$. Consider the compact subset $K := K_1 \cup K_2 \subseteq X$ and the radius

$$\epsilon := \min\{\epsilon_1 - d_{K_1}(f_1, g), \epsilon_2 - d_{K_2}(f_2, g)\}.$$

By definition we have $g \in B_K(g, \epsilon)$, and moreover we claim:

$$g \in B_K(g,\epsilon) \subseteq B_1 \cap B_2$$

which proves the statement.

Proof of claim. Let $h \in B_K(g, \epsilon)$. Then we have:

$$d_{K_1}(f_1, h) \le d_{K_1}(f_1, g) + d_{K_1}(g, h)$$

$$\le d_{K_1}(f_1, g) + d_K(g, h) \text{ since } K_1 \subseteq K$$

$$< d_{K_1}(f_1, g) + \epsilon \text{ since } h \in B_K(g, \epsilon)$$

$$\le d_{K_1}(f_1, g) + \epsilon_1 - d_{K_1}(f_1, g)$$

$$= \epsilon_1$$

and likewise $d_{K_2}(f_2, h) < \epsilon_2$. This proves $h \in B_1 \cap B_2$.

The following proposition will be relevant to Problem 2. **Do not** prove the proposition in your write-up.

Proposition. 1. Given a pseudometric d on a set X, there is a topologically equivalent pseudometric ρ on X which is bounded above by 1.

For example, the formulas $\rho(x,y) = \frac{d(x,y)}{1+d(x,y)}$ or $\rho(x,y) = \min\{d(x,y),1\}$ work.

2. Given a countable family of pseudometrics $\{d_n\}_{n\in\mathbb{N}}$ on X which are bounded above by 1, the formula

$$d(x,y) := \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x,y)$$
 (1)

defines a pseudometric d on X.

3. The topology \mathcal{T}_d on X induced by d is the topology generated by $\bigcup_{n\in\mathbb{N}} \mathcal{T}_{d_n}$. More explicitly, this is the topology generated by the collection of all open balls

$$\{B_n(x,\epsilon) \mid n \in \mathbb{N}, x \in X, \epsilon > 0\}$$

where we used the notation $B_n(x,\epsilon) := \{ y \in X \mid d_n(x,y) < \epsilon \}.$

Proof. Essentially Homework 6 Problem 4, more precisely:

- 1. Parts (a) and (b);
- 2. Part (c);
- 3. Slight generalization of part (d).

Problem 2. A family of pseudometrics $\{d_{\alpha}\}_{{\alpha}\in A}$ on a set X is **separating** if the following implication holds:

$$d_{\alpha}(x,y) = 0$$
 for all $\alpha \in A \Rightarrow x = y$.

In other words, for any distinct points $x \neq y$, there is an index $\alpha \in A$ satisfying $d_{\alpha}(x,y) > 0$.

a. Let X be a set and $\{d_n\}_{n\in\mathbb{N}}$ a countable family of pseudometrics on X which are bounded above by 1. Let d be the pseudometric on X defined by the formula (1) as in the proposition above.

Show that d is a metric if and only if the family of pseudometrics $\{d_n\}_{n\in\mathbb{N}}$ is separating.

Solution. For any $x, y \in X$, consider the equivalent conditions:

$$d(x,y) = 0 \Leftrightarrow \sum_{n=1}^{\infty} \frac{1}{2^n} d_n(x,y) = 0$$

$$\Leftrightarrow \frac{1}{2^n} d_n(x,y) = 0 \text{ for all } n \in \mathbb{N} \text{ since all terms are non-negative}$$

$$\Leftrightarrow d_n(x,y) = 0 \text{ for all } n \in \mathbb{N}.$$

Therefore the implication $d(x,y) = 0 \Rightarrow x = y$, which says that d is a metric, is equivalent to the implication

$$d_n(x,y) = 0$$
 for all $n \in \mathbb{N} \Rightarrow x = y$

which says that the family $\{d_n\}_{n\in\mathbb{N}}$ is separating.

b. Let (Y, d) be a metric space and consider the mapping space $C(\mathbb{R}, Y)$. For all $n \in \mathbb{N}$, consider the compact interval $[-n, n] \subset \mathbb{R}$ and the associated pseudometric

$$d_n(f,g) = \sup_{x \in [-n,n]} d(f(x), g(x)).$$

Show that the family of pseudometrics $\{d_n\}_{n\in\mathbb{N}}$ on $C(\mathbb{R},Y)$ is separating.

Solution. Note that the equality $d_n(f,g) = 0$ holds if and only if f and g agree on [-n,n]:

$$f|_{[-n,n]} = g|_{[-n,n]}.$$

Therefore the following conditions are equivalent:

$$d_n(f,g) = 0 \text{ for all } n \in \mathbb{N}$$

$$\Leftrightarrow f|_{[-n,n]} = g|_{[-n,n]} \text{ for all } n \in \mathbb{N}$$

$$\Leftrightarrow f|_{\bigcup_{n \in \mathbb{N}} [-n,n]} = g|_{\bigcup_{n \in \mathbb{N}} [-n,n]}$$

$$\Leftrightarrow f|_{\mathbb{R}} = g|_{\mathbb{R}}$$

$$\Leftrightarrow f = g. \quad \square$$

c. Show that the topology \mathcal{T} on $C(\mathbb{R},Y)$ generated by $\bigcup_{n\in\mathbb{N}}\mathcal{T}_{d_n}$ is the topology of compact convergence.

Solution. Denote by \mathcal{T}_{comp} the topology of compact convergence on $C(\mathbb{R}, Y)$.

 $(\mathcal{T} \subseteq \mathcal{T}_{comp})$ Recall that \mathcal{T}_{comp} is generated by

$$\bigcup_{\substack{K\subset\mathbb{R}\\K\text{ compact}}}\mathcal{T}_{d_K}.$$

Since each closed interval $[-n, n] \subset \mathbb{R}$ is compact, we have the inclusion

$$\bigcup_{n\in\mathbb{N}} \mathcal{T}_{d_n} \subseteq \bigcup_{\substack{K\subset\mathbb{R}\\K \text{ compact}}} \mathcal{T}_{d_K}$$

and therefore the inclusion $\mathcal{T} \subseteq \mathcal{T}_{comp}$ of topologies generated by these collections.

 $(\mathcal{T}_{comp} \subseteq \mathcal{T})$ Let $K \subset \mathbb{R}$ be compact and consider the open ball $B_K(f, \epsilon) \subseteq C(X, Y)$. By Problem 1, it suffices to find a \mathcal{T} -open U satisfying $f \in U \subseteq B_K(f, \epsilon)$.

Since K is bounded, pick $n \in \mathbb{N}$ large enough to satisfy $K \subseteq [-n, n]$. This inclusion implies the inequality

$$d_K(f,g) \le d_n(f,g)$$

for all $f, g \in C(X, Y)$, and therefore the inclusion of open balls

$$B_n(f,\epsilon) \subseteq B_K(f,\epsilon).$$

Indeed, any element $g \in B_n(f, \epsilon)$ satisfies

$$d_K(f,g) \le d_n(f,g) < \epsilon.$$

Therefore we have $f \in B_n(f, \epsilon) \subseteq B_K(f, \epsilon)$ where $B_n(f, \epsilon)$ is \mathcal{T} -open, as desired.

Problem 3. Let X be a topological space and kX its k-ification.

a. Show that the identity function id: $kX \to X$ is a homeomorphism if and only if X is compactly generated.

Solution. We know that the identity function id: $kX \to X$ is continuous, and it is a bijection. Therefore the following conditions are equivalent:

id: $kX \to X$ is a homeomorphism.

- $\Leftrightarrow id: kX \to X$ is an open map.
- \Leftrightarrow Every open subset $A \subseteq kX$ is also open in X.
- \Leftrightarrow Every k-open subset $A \subseteq X$ is also open in X.
- $\Leftrightarrow X$ is compactly generated. \square
- **b.** Show that kX is always compactly generated.

Solution.

Lemma. Let $K \subseteq X$ be a compact subspace, and denote by $\widetilde{K} := id^{-1}(K) \subseteq kX$ the same set viewed as a subspace of kX instead. Then the restriction

$$\mathrm{id}|_{\widetilde{K}} \colon \widetilde{K} \to K$$

is a homeomorphism. In particular, \widetilde{K} is compact, so that the map $id: kX \to X$ is proper.

Proof. The restriction $\mathrm{id}|_{\widetilde{K}}$ is continuous (since id is), injective (since id is), and surjective (since $\mathrm{id}(\widetilde{K}) = K$). It remains to show that it is an open map.

Let $U \subseteq \widetilde{K}$ be an open subset. Since \widetilde{K} is a subspace of kX, we have $U = O \cap \widetilde{K}$ for some open subset $O \subseteq kX$. Applying the identity function yields

$$\begin{split} \operatorname{id}|_{\widetilde{K}}(U) &= \operatorname{id}|_{\widetilde{K}}(O \cap \widetilde{K}) \\ &= \operatorname{id}(O) \cap \operatorname{id}(\widetilde{K}) \\ &= \operatorname{id}(O) \cap K \end{split}$$

which is open in K since id(O) is k-open in X (by definition of the topology on kX).

Let $A \subseteq kX$ be a k-open subset of kX. We want to show that A is open in kX, i.e. $\mathrm{id}(A) \subseteq X$ is k-open in X. Let $K \subseteq X$ be a compact subspace. Then $\widetilde{K} := \mathrm{id}^{-1}(K) \subseteq kX$ is compact, by the lemma. Since A is k-open in kX, $A \cap \widetilde{K}$ is open in \widetilde{K} . By the lemma, $\mathrm{id}(A) \cap K$ is open in K. Therefore $\mathrm{id}(A)$ is k-open in K.

c. Let W be a compactly generated space and $f: W \to X$ a continuous map. Show that there exists a unique continuous map $\widetilde{f}: W \to kX$ satisfying $f = \operatorname{id} \circ \widetilde{f}$, i.e. making the diagram

commute.

Solution. Since the map id: $kX \to X$ is bijective, there exists a unique function $\widetilde{f}: W \to kX$ satisfying $f = \operatorname{id} \circ \widetilde{f}$, namely the same function $\widetilde{f}(w) = f(w)$ for all $w \in W$. It remains to show that $\widetilde{f}: W \to kX$ is continuous. Since W is compactly generated, it suffices to show that the restriction $\widetilde{f}|_K: K \to kX$ to any compact subspace $K \subseteq W$ is continuous. Consider the commutative diagram:

Let $O \subseteq kX$ be an open subset, i.e. id(O) is k-open in X. Then we have

$$\widetilde{f}|_{K}^{-1}(O) = (\mathrm{id}^{-1} \circ f|_{K})^{-1}(O)$$

= $f|_{K}^{-1}(\mathrm{id}(O))$

which is open in K since id(O) is k-open in X and $f|_K: K \to X$ is a continuous map from a compact space. Therefore $\widetilde{f}|_K$ is continuous.

Problem 4. Show that any compactly generated space X is a quotient of a coproduct of compact spaces. In other words, there exists a collection $\{K_i\}_{i\in I}$ of compact spaces, indexed by some $set\ I$, and a quotient map $q:\coprod_{i\in I}K_i\twoheadrightarrow X$.

Solution. Consider the collection of all compact subspaces of X:

$$I := \{ K \subseteq X \mid K \text{ is compact} \}.$$

Then I is a set, since it is a subcollection of the power set $\mathcal{P}(X)$ of X.

For each $K_i \in I$ (indexed tautologically), consider the inclusion map $\iota_i \colon K_i \hookrightarrow X$. Since each ι_i is continuous, they define together a continuous map

$$q \colon \coprod_{i \in I} K_i \to X$$

whose restriction to the summand K_i is ι_i .

q is surjective. Let $x \in X$. Then the singleton $\{x\} \subseteq X$ is a compact subspace, hence a summand of $\coprod_{i \in I} K_i$. Then the point

$$x \in \{x\} \subseteq \coprod_{i \in I} K_i$$

is mapped to $q(x) = \iota_{\{x\}}(x) = x \in X$.

q is a quotient map. It remains to show that any subset $U \subseteq X$ such that $q^{-1}(U)$ is open in $\coprod_{i \in I} K_i$ must be open in X. Consider the equivalent conditions:

$$q^{-1}(U)$$
 is open in $\prod_{i\in I} K_i$

- $\Leftrightarrow q^{-1}(U) \cap K_i$ is open in K_i for all $i \in I$
- $\Leftrightarrow \iota_i^{-1}(U)$ is open in K_i for all $i \in I$
- $\Leftrightarrow U\cap K$ is open in K for all compact subspace $K\subseteq X$
- $\Leftrightarrow U$ is k-open in X.

Since X is compactly generated, being k-open in X is equivalent to being open in X. \Box

Problem 5. Let X and Y be topological spaces, where Y is Hausdorff.

a. Consider the set Y^X of all functions from X to Y, endowed with the topology of pointwise convergence. Recall that via the correspondence $Y^X \cong \prod_{x \in X} Y$, this corresponds to the product topology.

Show that a collection of functions $\mathcal{F} \subseteq Y^X$ is compact if and only if the following two conditions hold:

- 1. \mathcal{F} is closed in Y^X ;
- 2. For all $x \in X$, the projection $p_x(\mathcal{F}) = \{f(x) \mid f \in \mathcal{F}\} \subseteq Y$ has compact closure in Y.

Solution. (\Rightarrow) The product topology on Y^X is Hausdorff since Y is Hausdorff. There any compact subset $\mathcal{F} \subseteq Y^X$ is closed in Y^X .

Since each projection $p_x \colon Y^X \to Y$ is continuous, the image $p_x(\mathcal{F}) \subseteq Y$ of the compact space \mathcal{F} is compact, hence has compact closure in Y (since Y is Hausdorff).

 (\Leftarrow) Note the inclusion

$$\mathcal{F} \subseteq \bigcap_{x \in X} p_x^{-1} (p_x(\mathcal{F}))$$
$$= \prod_{x \in X} p_x(\mathcal{F})$$
$$\subseteq \prod_{x \in Y} \overline{p_x(\mathcal{F})}.$$

By assumption, each space $\overline{p_x(\mathcal{F})} \subseteq Y$ is compact, so that their product $\prod_{x \in X} \overline{p_x(\mathcal{F})}$ is compact, by Tychonoff's theorem. Since \mathcal{F} is closed in Y^X and therefore in $\prod_{x \in X} \overline{p_x(\mathcal{F})}$, it follows that \mathcal{F} is compact.

- **b.** Let C(X,Y) be endowed with the compact-open topology, and let $\mathcal{F} \subseteq C(X,Y)$ be a compact subspace. Show that \mathcal{F} satisfies the conditions 1. and 2. listed in part (a), i.e.
 - 1. \mathcal{F} viewed as a subset of Y^X is closed with respect to the topology of pointwise convergence;
 - 2. For all $x \in X$, the projection $p_x(\mathcal{F}) = \{f(x) \mid f \in \mathcal{F}\} \subseteq Y$ has compact closure in Y.

Solution. Denote by \mathcal{T}_{co} the compact-open topology on Y^X or subspaces thereof (by abuse of notation). Denote by \mathcal{T}_{prod} the topology of pointwise convergence on Y^X or subspaces thereof. The inclusion $\mathcal{T}_{prod} \subseteq \mathcal{T}_{co}$ of topologies implies that the composite

$$(C(X,Y),\mathcal{T}_{co}) \xrightarrow{\mathrm{id}} (C(X,Y),\mathcal{T}_{prod}) \xrightarrow{\mathrm{incl}} (Y^X,\mathcal{T}_{prod})$$

is continuous. If $\mathcal{F} \subseteq (C(X,Y),\mathcal{T}_{co})$ is compact, then $(\operatorname{incl} \circ \operatorname{id})(\mathcal{F}) \subseteq (Y^X,\mathcal{T}_{prod})$ is compact. By part (a), $(\operatorname{incl} \circ \operatorname{id})(\mathcal{F})$ satisfies conditions 1. and 2. But $(\operatorname{incl} \circ \operatorname{id})(\mathcal{F})$ is just \mathcal{F} viewed as a subspace of Y^X .

Problem 6. (Munkres Exercise 47.1) For each of the following subsets $\mathcal{F} \subset C(\mathbb{R}, \mathbb{R})$, say if \mathcal{F} is equicontinuous of not, and prove your answer.

a. $\mathcal{F} = \{f_n \mid n \in \mathbb{N}\}\ \text{where } f_n(x) = x + \sin nx.$

Solution. \mathcal{F} is not equicontinuous, since it is not equicontinuous at 0. Indeed, all functions f_n are differentiable, and their derivatives are

$$f_n'(x) = 1 + n\cos nx.$$

The derivatives $f'_n(0) = 1 + n$ are unbounded as n varies.

Alternate solution. Take $\epsilon = 1$. Let $U \subseteq \mathbb{R}$ be any neighborhood of 0. Pick m large enough to satisfy $y := \frac{\pi}{2m} \in U$. Then we have

$$f_m(y) = y + \sin\frac{\pi}{2} = y + 1$$

while $f_m(0) = 0$, and in particular $|f_m(y) - f_m(0)| = y + 1 > 1$. This proves the non-inclusion

$$f_m(U) \nsubseteq B_1(f_m(0)).$$

b. $\mathcal{F} = \{g_n \mid n \in \mathbb{N}\}\ \text{where } g_n(x) = n + \sin x.$

Solution. \mathcal{F} is equicontinuous, since the sine function is continuous, and translation $x \mapsto x+n$ is an isometry of \mathbb{R} . In other words, a neighborhood U of x which satisfies $\sin(U) \subseteq B_{\epsilon}(\sin x)$ will also satisfy $g_n(U) \subseteq B_{\epsilon}(g_n(x))$ for all $n \in \mathbb{N}$.

c. $\mathcal{F} = \{h_n \mid n \in \mathbb{N}\}$ where $h_n(x) = |x|^{\frac{1}{n}}$.

Solution. \mathcal{F} is not equicontinuous, since it is not equicontinuous at 0.

Take $\epsilon = \frac{1}{2}$. Let $U \subseteq \mathbb{R}$ be any neighborhood of 0, and let x > 0 be a point in U. The sequence of real numbers $h_n(x) = x^{\frac{1}{n}}$ converges to 1 as $n \to \infty$. Pick m large enough to satisfy $h_m(x) > \frac{1}{2}$. Noting $h_m(0) = 0$, we have

$$|h_m(x) - h_m(0)| = h_m(x) > \frac{1}{2}$$

which proves the non-inclusion

$$h_m(U) \nsubseteq B_{\frac{1}{2}}(h_m(0)). \quad \Box$$

d. $\mathcal{F} = \{k_n \mid n \in \mathbb{N}\} \text{ where } k_n(x) = n \sin\left(\frac{x}{n}\right).$

Solution. \mathcal{F} is equicontinuous, in fact uniformly equicontinuous. All functions k_n are differentiable, and their derivatives are

$$k'_n(x) = n \frac{1}{n} \cos\left(\frac{x}{n}\right) = \cos\left(\frac{x}{n}\right)$$

whose magnitude is (uniformly) bounded by

$$|k'_n(x)| = |\cos\left(\frac{x}{n}\right)| \le 1$$

for all $x \in \mathbb{R}$.