

CKineticsDB - An Extensible and FAIR Datahub for Multiscale Modeling in Heterogeneous Catalysis

Siddhant Lambor, Sashank Kasiraju, Dionisios Vlachos University of Delaware

DOI: <u>10.1021/acs.jcim.3c00123</u>

VIRTUAL KINETICS LAB

ONLINE WORKSHOP 15th December 2023

CKineticsDB - An Extensible and FAIR Datahub for Multiscale Modeling in Heterogeneous Catalysis

Findable, Accessible, Interoperable, Reusable

- Easily share and integrate data
- Make data interpretable by humans and by machines

1. Wilkinson, M. D. et. al. Comment: The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018

Process Intensification and Material Discovery using Multiscale Modeling

Density Functional Theory (DFT) based Microkinetic Modeling (MKM)

Density Functional Theory

Simulate the behavior of materials at the atomic level, to obtain bond length, electronic energies, vibrational frequencies, etc.

Statistical mechanics to calculate equilibrium constants for elementary steps

Transition state theory to calculate rate of reaction

DFT is computationally expensive and has a trade-off between accuracy and time for computation

Microkinetic Modeling

Reaction Mechanism

$$N(T) + *(S) \longrightarrow N(S) + *(T)$$

$$N(T) + *(S_L) \rightleftharpoons N(S_L) + *(T)$$

$$NH(T) + *(S) \longrightarrow NH(S) + *(T)$$

$$NH_2(|T) + *(S) \rightleftharpoons NH_2(S) + *(T)$$

$$NH_3(T) + *(S) \rightleftharpoons NH_3(S) + *(T)$$

Solving equations
representing the reaction
mechanism to identify rate
limiting steps, catalytic
activity, predominant species,
selectivity, and more

No comprehensive databases for multiscale modeling in heterogeneous catalysis

Number of publications on microkinetic modeling

Motagamwala et. al. Chem. Rev. 2021, 121, 2, 1049–1076

Local Clusters

Cloud Repositories

- Logistical hindrances to access data leading to redundancy
- Excessive demand for computational resources
- Advent of machine learning has increased the value of data

Portable Storage Devices

Value in data management for multiscale modeling in catalysis

Organize Data

Extract Information

Accelerate applications

- Reaction mechanisms, microkinetic models
- Kinetic and thermochemical parameters
- Scripts to process DFT output; data from NIST
- DFT energies and frequencies

- Input settings
- Catalyst specifications

- Minimize DFT simulations
- Facilitate thermodynamic and kinetic studies
- Utilize chemically similar data for new mechanisms
- Develop multiscale software

Chemical Kinetics Database

CKineticsDB stores the simulation files involved in multiscale modeling

J. Chem. Inf. Model. 2023, 63, 14, 4342-4354

CKineticsDB Infrastructure Components

Database Management System

- Dynamic schema
- Expansion without downtime
- Online support
- Cloud-based solutions
- Vendor support

Frontend Python Software

Current Data Snapshot

14000+ DFT calculations

Gas Phase

Bulk structures

Adsorbates

Transition states

Catalysts

Pure Metals Ag, Au, Cu, Ir, Ni, Pd, Pt, Rh, Ru

Zeolites H-BEA Metal oxides Al₂O₃, ReO_x, TiO₂, SiO₂, ZrO₂

Reaction Chemistries

Hydrogenolysis, dehydrogenation, hydroformylation, hydrodeoxygenation, C-O bond activation, and acylation; several catalyst facets and active center structures

Ammonia Decomposition Mechanism Files

$$N(T) + *(S) \longrightarrow N(S) + *(T)$$

$$N(T) + *(S_L) \longrightarrow N(S_L) + *(T)$$

$$NH(T) + *(S) \longrightarrow NH(S) + *(T)$$

$$NH_2(T) + *(S) \longrightarrow NH_2(S) + *(T)$$

$$NH_3(T) + *(S) \longrightarrow NH_3(S) + *(T)$$

OpenMKM input files: reactor.yaml, thermo.yaml

Python Scripts, CONTCAR files, MS Excel file

Ammonia Decomposition Mechanism Files

$$N(T) + *(S) \longrightarrow N(S) + *(T)$$

$$N(T) + *(S_L) \longrightarrow N(S_L) + *(T)$$

$$NH(T) + *(S) \longrightarrow NH(S) + *(T)$$

$$NH_2(T) + *(S) \longrightarrow NH_2(S) + *(T)$$

$$NH_3(T) + *(S) \longrightarrow NH_3(S) + *(T)$$

OpenMKM input files: reactor.yaml, thermo.yaml

Python Scripts, CONTCAR files, MS Excel file

DFT simulation files

Complete Dataset for a Published Microkinetic Model

Data Organization Policy

- Complete recipe for reproducing results shown in papers
- User-fed metadata for providing species nomenclature, software metadata, and research provenance
- Uniformity across all datasets
- Facilitating downstream software integration

Uploading to CKineticsDB

Demo

- Data Upload, readMe
- Data Quality Assessment

Select the directory of calculations to be tested

DFT Data Quality Assessment Workflow

DFT Data Quality Tests and Output

Software	Calculation	Quality Test(s)
VASP	Ionic Relaxation	Convergence, Kpoints, Encut
VASP	Dimer	Convergence, Curvature, Kpoints, Encut
VASP	(Climbing - /) Nudged Elastic Band (inclusive of all images)	Convergence of the highest energy image, Kpoints, Encut
VASP	Individual NEB Image	Convergence
VASP	Frequency Analysis	Frequencies assessment, Kpoints, Encut
Gaussian	Optimization	Convergence
Gaussian	Frequency Analysis	Frequencies assessment

Summary of a complete dataset's assessment

Summary:

Total Number of Calculations: 239

Passed all tests: 168

Need to be reviewed: 71

Related Inconsistencies:

Ionic step information not available: 4

More than one imaginary frequencies: 10

No frequencies found in vibrational calculation: 56

No POSCAR file: 1

Example of DFT Quality Test – Convergence (VASP)

Demo

Downloading projects, reactions, molecules

Downloading Parameters

Download in JSON Format

Yes

- Download all data in JSON format
- Download data in original uploaded file format

 Either download the complete dataset or partially based on the 'scale' of interest Create New pMuTT Input

✓ Yes

 Download the pMuTT data of the complete dataset or only of the selected reactions

Reaction Mechanisms

Chemistry	System	Reactions (species)
Heterogeneous catalysis	Ammonia Decomposition	14 (26)
Heterogeneous catalysis	Propane aromatization	19907 (5909)
Gas phase combustion	Hexadecane combustion ¹	8130 (2116)
Metabolism	E.coli genome ²	2077 (1039)
Metal chemistry	Glycerol decomposition ³	3313 (537)

- Manual construction generally impractical
- Automated network generators
 - Generate all possible reactions and species of the network
 - Use reaction rules as basis "rule-based"

Uses of Reaction and Multiscale data

- Recreate results of publications
- Develop models and correlations between scales
- Kinetic studies based on existing mechanisms

Create new microkinetic models from existing data

Demo

Command line interface

CKineticsDB Distribution

Available at: https://files.ccei.udel.edu/p/CKineticsDB/data/

<u>Name</u>

Parent Directory

ckineticsdb-all.data.gz

ckineticsdb-demo.dat..>

metadata/

Data associated with several publications of Vlachos group pertaining to microkinetic modeling

Demo containing only one dataset to test software setup

MS Excel and JSON files containing metadata of the complete dataset available above

CKineticsDB Data Workflow

CKineticsDB Data Workflow

CKineticsDB Data Workflow

Download CKineticsDB as a desktop application separate from the data

University of Delaware HPC

https://files.ccei.udel.edu/p/CKineticsDB/

Users don't need to -

- Learn MongoDB
- Run a local database server
- Worry about data persistence

Users can -

- Connect CKineticsDB to any different database, local or remote
- Use CKineticsDB with their local data

Summary

Value from multiscale data management

- Access reaction data and simulation files selectively from multiple scales
- Access scripts used to generate quantities from thermochemistry, kinetics, and complete MKMs
- Develop multiscale software and models
- Curate DFT calculations for computational diligence

MKM / Reaction Data Thermochemistry **DFT** calculations of molecules

Software

- User friendly GUI and CLI
- Minimal learning curve
- Management of local data

Collaboration and Future Development

- Update CKineticsDB for common needs of groups
- Cover more simulation software
- Build new data-based features
- Guide Onboarding

Documentation: https://github.com/VlachosGroup/ckineticsdb-documentation

Acknowledgements

Dr. Jeffrey Frey, HPC Kelly Walker, Logo

Department of Energy

Thank you

