Phys 2020 (NSCC), Spring 2008 Problem Set #7

1. The brightest star in the night sky is Sirius, which is at a distance of 8.3×10^{16} m from the earth. How long does it take the light from Sirius to reach the earth? Express the answer in years.

2. A space probe will be visiting Pluto in a few years; when it gets there, its distance from the earth will be roughly 6.0×10^{12} m. At that distance how long will it take an electromagnetic signal to travel from the earth to the space probe? (Express the answer in hours.)

3. A laser beam emits a narrow beam of light. The radius of the beam is 1.0×10^{-3} m and the power is 1.2×10^{-3} W. What is the intensity of the laser beam?

4. The Sun delivers EM waves with an average power of $1340 \frac{\text{W}}{\text{m}^2}$ at the top of the Earth's atmosphere. Find the (peak) magnitudes E_0 and B_0 for the electromagnetic waves at the top of the atmosphere.

	 _			is vertical, an is transmitted	
	ensity of a en the elec			olarizing filter	r.

7. Three polarizing plates whose planes are parallel are centered on a common axis. The direction of the transmission axes relative to the common vertical direction are shown at the right. An *unpolarized* beam of light is incident on the first disk. Find the fraction of the intensity which is transmitted when $\theta_1 = 20.0^{\circ}$, $\theta_2 = 40.0^{\circ}$ and $\theta_3 = 60.0^{\circ}$.

8. Unpolarized light passes through two polaroid sheets. The axis of the first is vertical, and that of the second is at some angle θ to the vertical. It is found that a fraction 0.20 of the incident light is transmitted through both. What is the angle θ ?