

ARMY RESEARCH LABORATORY

Viewgraph Supplement to the Proceedings of the First Army Research Laboratory Acousto- Optic Tunable Filter Workshop

by Neelam Gupta

ARL-SR-54-S

March 1997

19970327 059

Approved for public release; distribution unlimited.

DTIC QUANTITY IMPACTED 1

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory

Adelphi, MD 20783-1197

ARL-SR-54-S

March 1997

Viewgraph Supplement to the Proceedings of the First Army Research Laboratory Acousto- Optic Tunable Filter Workshop

Neelam Gupta, Editor

Sensors and Electron Devices Directorate, ARL

Abstract

Acoustic-optic tunable-filter (AOTF) technology is a recent development that offers potential for rapid, frequency-agile tuning over a large optical wavelength range. An AOTF is an electronically tunable phase grating set up in an anisotropic crystal by the propagation of an ultrasonic wave in the crystal. Such filters have many attractive features, such as small size, lightweight, computer controlled operation, large optical wavelength range of operation, and no moving parts; and their operation can be made ultrasensitive by the use of advanced signal processing algorithms. These filters are being used in many applications such as the design of new spectroscopic instruments, remote detection and monitoring of chemicals, optical communication networks, tuning of laser cavities, etc.

Foreword

This volume, *Supplement to the Proceedings of the First Army Research Laboratory AOTF Workshop*, contains the viewgraphs that were presented at the conference.

Acousto-optic tunable filter technology (AOTF) has made significant progress in the last 30 years. These electronically tunable filters are finding many applications in various fields, such as chemical and environmental sensing, communications, hyperspectral imaging, pharmaceuticals, medicine, semiconductor processing, space exploration, etc. Due to their compact size and no moving parts, AOTF's offer numerous advantages over traditional grating-based technology. There is a tremendous potential offered by this technology, which remains to be fully utilized. One of the main motivations in organizing this workshop, the first of its kind, was to create a forum of experts and users that would provide the synergy to give a much needed impetus for the rapid development and exploitation of this promising technology.

In the Fall of 1995, I had the great privilege of visiting many Russian institutions involved in the research and development of this technology, and meeting with Russian scientists working in this field. This experience gave me the idea to bring U.S. and Russian scientists together for an intimate exchange of information and ideas for the advancement of AOTF technology. This workshop provided an avenue to implement this idea.

It has been a great deal of work to pull this workshop together, but the outcome has been worth many times the effort. It was a great experience to listen to the experts as well as the newcomers talk about AOTF basic research and applications for two full days.

I would like to thank my sponsors at the Army Materiel Command (AMC) and Army Research Laboratory (ARL) for providing the necessary funds to make this workshop possible. I would also like to thank every attendee for participating in this workshop, especially the Russian scientists for taking this long trip.

Neelam Gupta
Army Research Laboratory
Adelphi, MD, USA

Contents

Foreword	i
Agenda	1
1. AOTF Technology: A Brief Overview	5
N. Gupta, Army Research Laboratory, USA	
2. Collinear AOTF Spectrometers: Problems, Results, and Methods of Measurements	17
V. I. Pustovoit, Central Bureau of Unique Instrumentation of Russian Academy of Sciences, Russia: N. Gupta, Army Research Laboratory, USA	
3. Recent Advances in AOTF Design and Fabrication at St. Petersburg State Academy of Aerospace Instrumentation	37
V. V. Kludzin, S. V. Kulakov, and V. V. Molotok, St. Petersburg State Academy of Aerospace Instrumentation, Russia	
4. Integrated Acousto-Optic Tunable Filters for Blue-Green Spectral Region	47
C. S. Tsai and A. M. Matteo, University of California, Irvine, USA	
5. Application of AOTF Technology for Chem/Bio Detection	59
N. Gupta and N. F. Fell, Jr., Army Research Laboratory, USA	
6. Factors Affecting AOTF Image Quality	79
L. J. Denes, B. Kaminsky, M. Gottlieb, and P. Metes, Carnegie Mellon Research Institute, USA	
7. An AOTF Camera for Multispectral Imaging	103
S. Aimizu, R. T. Obermyer, C. J. Thong, M. J. Uschak, and S. G. Sankar, Advanced Materials Corporation, USA; L. J. Denes, D. A. Purta, and M. Gottlieb, Carnegie Mellon Research Institute, USA	
8. Simultaneous Multispectral Imaging	123
J. A. Carter III and D. R. Pape, Photonics Systems Inc., USA: M. L. Shah, MVM Electronics Inc., USA	
9. Polarimetric Hyperspectral Imaging Systems and Applications	141
L.-J. Cheng, C. Mahoney, G. Reyes, and C. LaBaw, Jet Propulsion Laboratory, USA; G. P. Li, University of California, Irvine, USA	
Distribution	177
Report Documentation Page	179

First ARL Workshop on Acousto-Optic Tunable Filter Technology

Center for Adult Education, University of Maryland, College Park, MD

**Tuesday, September 24, 1996
AOTF Technology**

Morning Session, Chair Andree Filipov, USARL-SEDD

- 8:30 - 8:55 Check-in/Registration/Continental Breakfast**
- 8:55 - 9:00 Administrative Announcements**
- 9:00 - 9:20 Welcome & ARL Overview, John Pellegrino, Director, Sensors and Electron Devices Directorate, US Army Research Laboratory**
- 9:20 - 9:40 AOTF Overview, Neelam Gupta, USARL**
- 9:40 - 10:10 Progress in AOTF Technology, I. C. Chang, Aurora Associates, Santa Clara, CA**
- 10:10 - 10:40 Break**
- 10:40 - 11:10 Collinear AOTF Spectrometers: Problems, Results, Methods of Spectral Measurements, V. I. Pustovoit, Central Bureau of Unique Instrumentation, Moscow, Russia, and N. Gupta, USARL**
- 11:10 - 11:40 Recent Advances in AOTF Design and Fabrication at SPSAAI, V. V. Kludzin, S. V. Kulakov, and V. V. Molotok, St. Petersburg State Academy of Aerospace Instrumentation, St. Petersburg, Russia**
- 11:40 - 1:00 Lunch**

Afternoon Session, Chair Neelam Gupta, USARL-SEDD

- 1:00 - 1:30 Application of AO Interaction for Filtration of Arbitrary Polarized Radiation, V. Voloshinov, Physics Department, Moscow State University, Moscow, Russia**
- 1:30 - 2:00 Improvement of Resolution of Visible AOTF in TeO₂, V. Pelekhaty, Brimrose Corp. Of America, Baltimore, MD**
- 2:00 - 2:30 Growth of Acousto-optic Crystals with High Anisotropy and Development of Multichannel Acousto-optical Processors, Y. B. Pisarevsky**

2:30 - 3:00 Break

3:00 - 3:30 Progress in AOTF Technology for WDM Systems, D. Smith, Case Western Reserve University, Cleveland, OH

3:30 - 4:00 Integrated AOTF for Blue-Green Spectral Region, C. S. Tsai and A. M. Matteo, University of California, Irvine, CA

4:00 - 5:00 AOTF Demonstrations

6:30 Banquet, University Of Maryland, College Park

Wednesday, September 25, 1996
AOTF Applications

Morning Session, Chair Andrzej Mizolek, USARL-WMRD

8:30 - 9:00 Registration/Continental Breakfast

9:00 - 9:30 Application of AOTF in Analytical Chemistry, C. D. Tran, Marquette University, Milwaukee, WI

9:30 - 10:00 Application of AOTF Technology for Chem/Bio Detection, N. Gupta and N. F. Fell Jr., US Army Research Laboratory, Adelphi, MD

10:00 - 10:30 Break

10:30 - 11:00 An AOTF-Based Near-Infrared Spectrometer for Process Control, S. Medlin, U. Eschenaur, and W. Danley, Brimrose Corp. Of America, Baltimore MD

11:00 - 11:30 Application of AOTF to Near IR Spectroscopy and High Fidelity Spectroscopic Imaging, E. N. Lewis, National Institutes of Health, Bethesda, MD

11:30 - 1:00 Lunch

Afternoon Session, Chair James Gillespie, USARL-ISTD

1:00 - 1:30 Factors Affecting AOTF Image Quality, L. J. Denes, B. Kaminsky, M. Gottlieb, and P. Metes, Carnegie Mellon Research Institute, Pittsburg, PA

1:30 - 2:00 **An AOTF Camera for Multispectral Imaging**, S. Simizu, R. T. Obermyer, C. J. Thong, M. Uschak, S. G. Sankar, Advanced Materials Corp., Pittsburgh, PA, D. J. Denes, D. A. Purta, and M. Gottlieb, Carnegie Mellon Research Institute, Pittsburgh, PA

2:00 - 2:30 **Simultaneous Multispectral Imaging with a 12 Parallel Channel Tunable Camera**, J. A. Carter III, D. R. Pepe, Photonics Systems, Inc., Melbourne, FL, and M. L. Shah, MVM Electronics, Inc., Melbourne, FL

2:30 - 3:00 **Break**

3:00 - 3:30 **Polarimetric Hyperspectral Imaging Systems**, L.-J. Cheng, G. Reyes, and C. La Baw, Jet Propulsion Laboratory, CA, and G. P. Li, University of California, Irvine, CA

3:30 - 4:00 **Multiplexing Methods in AOTF Multispectral Imaging**, P. Treado, and J. Turner, University of Pittsburgh, Pittsburgh, PA

4:00 - 4:30 **Remote Spectral Imaging System Based on an AOTF**, T. Vo-Dinh, Oak Ridge National Laboratory, Oak Ridge, TN

4:30 **Workshop Closing**

AOTF TECHNOLOGY: A BRIEF OVERVIEW

Dr. Neelam Gupta

Sensors & Electron Devices Directorate
Army Research Lab
Adelphi, MD 20783

FIRST ARL WORKSHOP ON
AOTF TECHNOLOGY
24-25 September 1996

Center for Adult Education, University of Maryland

ARMY RESEARCH LABORATORIES

INTRODUCTION

6

What is an AOTF:

A moving diffraction grating is set up in an anisotropic crystal, when an acoustic beam propagates through it as a result of an applied rf field. When light is incident on this grating, it is diffracted with polarization orthogonal to the incident beam for only a specific incident wavelength as a result of the acousto-optic interaction. The wavelength can be tuned by varying the rf frequency, forming an electrically tunable optical filter. Such an optical filter is called an Acousto-Optic Tunable Filter (AOTF).

Collinear AOTF: Incident light, sound and diffracted light beams all propagate in the same direction.

Noncollinear AOTF: Incident light, sound and diffracted light beams do not propagate in the same direction.

COLLINEAR AOTF

$$\mathbf{k}_{\text{diff}} = \mathbf{k}_{\text{in}} + \mathbf{q}$$

$$\lambda = (n_o - n_e)v_s/\Omega$$

$$\text{Spectral Resolution } \Delta\lambda/\lambda = M/L\Delta n$$

NONCOLLINEAR AOTF

AOTF MILESTONES

- 1922 Brillouin Theoretical Prediction of AO Interaction
- 1932 Debye, et al. Experimental Demonstration of AO Interaction
- 1955 Rosenthal Theoretical Discussion of Color Control by Ultrasound Grating
- 1967 Dixon Acoustic Diffraction of light in Anisotropic Media
- 1969 Harris, et al. Collinear AOTF
- 1968 Arlts, et al. Synthesis of TeO₂
- 1971 Nieh et al. Analysis of Collinear AOTF
- 1973 Kusters, et al. Optimization for AOTF
- 1974 Chang Noncollinear AOTF in TeO₂
- 1977 Ohmachi, et al. Integrated Optic AOTF
- 1987 Pustovoit, et al. Okean Satellite Trasser Apparatus

AOTF ADVANTAGES

- Lightweight, Compact, Portable
- No Moving Parts, Rugged
- Reliable
- Reproducible Operation
- Rapid Tuning and Scanning
- Low Drive Power
- All Solid State Operation
- High Spectral Resolution
- Polarization Separation
- Broad Tuning Range
- Wide FOV
- High Throughput
- Sequential or Random λ Access
- Capability for Multi λ Operation
- High Signal-to-Noise Ratio
- Uncooled Operation
- Programmable, Computer Control
- Arbitrary Spectral Signal Generation

AOTF APPLICATIONS

- Sensing of Chemical & Biological Agents: Fluorescence, Absorption, emission, Raman, LIBS, etc.
- Remote Sensing/ Environmental Monitoring
- Multispectral and Hyperspectral Imaging
- Medical Applications; i.e. Cancer Detection
- Tuning of Laser Wavelength
- Process and Quality Control
- Astronomical Observations
- Communication; i.e. WDM

AOTF APPLICATIONS (Continued)

- Polarization Spectroscopy
- Fire Sensing
- Water Quality Monitoring on Space Station
- Spectroscopy on Comet Lander
- Spectroscopy on Mars Lander
- Cassini Mission to Saturn
- Others ??????
- Under water Spectroscopy

KEY ELEMENTS IN AOTF SYSTEM DESIGN

- Material Selection
- Crystal Geometry
- Transducer Design
- AOTF Cell Architecture
- Electronics
- Computer Interface
- Processing Software

Spectral Coverage/Materials

Spectral Bands Covered (μm)	Material	Type
0.4 - 4.5	LiNbO_3	Collinear
0.25 - 0.8	Xtal Quartz	Collinear
0.2 -0.7	MgF_2	Collinear
0.4 - 4.5	CaMoO_4	Collinear
0.35- 4.5	TeO_2	Noncollinear
1.1 - 17	Tl_3AsSe_3	Collinear or Noncollinear
0.35 -20	Hg_2Cl_2	Noncollinear

KEY PLAYERS IN AOTF TECHNOLOGY

- **US Govt:** ARL, ERDEC, JPL, NASA, NIH, ORNL, etc.
- **US Univ:** Case Western Univ, Marquette Univ. WI, UC Irvine, Univ. of Pittsburg, etc.
- **US Companies:** ATT Labs, Aurora Assoc, Advanced Materials Corp., Brimrose Corp. of America, Carnegie Mellon Research Institute, Neos, Photonics Systems, etc.
- **Russia:** CBUI, Inst. of Xtallography, SPAI, MSU, etc.
- **Others:** Matsushita Electronics, Japan; France, U.K.

AOTF TECHNOLOGY STATUS/CHALLENGES

- Very Promising Technology
- Much Progress in Visible/NIR
- Labor Intensive Fabrication
- Improvement of Existing Material, i.e. TeO_2
- Development of New Materials for UV/ Long IR
- Novel designs, i.e. Implement Backward Diffraction
- Reduce Cost
- Automate Fabrication
- Find New Applications

Collinear AOTF Spectrometers: Problems, Results, and Methods of Measurements

by

V. I. Pustovoit, Central Bureau of Unique
Instrumentation of Russian Academy of Sciences, Russia; &
N. Gupta, Army Research Laboratory, USA

OPTICAL SCHEME OF AO SPECTROMETERS

Fig.2. Collinear Acousto-Optic Filters:
a- with mirror inside of crystal,
b- with reflecting sound wave surface,
c-with reflecting diffracted light..

**AO Spectrometer
for airborne and surface-based
platforms**

POLAS-128

Acousto-optical Spectrometer of visible and UV bands

ACOUSTO-OPTIC SPECTROMETER QUARTZ-4

Specifications:

Spectral Range, nm	415 to 790
Resolution, nm	0.10 to 0.25
Wavelength measurement instrumental error, nm	± 0.15
Sensitivity, W	10-12
Dynamic range, dB	45
Minimum measurement time at one spectral point, ms	32
Max. number of spectral points	4096
Input angle	2 degrees
Input window	$\phi 6$ mm

M313_1

Black Sea and Land
H=1000m

—	14.09.90
+	14.09.90
—	14:30:15 1
—	15.09.90
—	11:36:11 1
—	15.09.90
—	11:57:01 1
—	15.29.90
—	18:45:13 1

M312_1

SEA OF AZOV DATA POINTS

Enhanced spectral resolution derived from
special analysis of spectrogram

Raman Spectrum of TCE

Human and Sea-gull Vision System

The curves of sensitivity of eyes (photodetectors) has three fixed maximums

The curves of sensitivity of eyes (photodetectors) of Sea-Gull vision system has three fixed maximums, which can move on spectral axis

Acousto-Optical System for the transmission, processing, and recognition of images

**(V.E.Pozhar and V.I.Pustovoit.
Радиотехника и электроника, 1996, v.41, №10)**

Pollution Detection Threshold

Measured pollutant	SAGA-K Detection Threshold, ppm, not greater, cell 75cm	Maximum measured concentration ppm, not greater, cell 20cm	SAGA-T Detection Threshold, ppm, not greater, path 200m	Maximum measured concentration ppm, not less, path 30m
Sulfur dioxide, SO ₂	2	4500	0,02	50
Nitrogen dioxide, NO ₂	5	3000	0,02	40
Carbon disulphide, CS ₂	14	4000	0,02	100
Ozone, O ₃	20	5000	0,02	100
Chlorine, Cl ₂	20	6000	0,1	100
Formaldehyde, H ₂ CO	20	6000	0,1	100
Benzene, C ₆ H ₆	2	1000	0,03	10
Toluene, C ₆ H ₅ -CH ₃	3	1500	0,04	15
Phenol, C ₆ H ₅ OH	0,6	100	0,003	1
Naphthalene, C ₁₀ H ₈	0,7	120	0,003	0,5
Pyrene, C ₁₆ H ₁₀	0,3	12	0,002	0,3
p-Xylene, C ₈ H ₁₀	100	2000	0,5	250
m-Xylene, C ₈ H ₁₀	2	1200	0,03	12
o-Xylene, C ₈ H ₁₀	4	3000	0,06	30
Acetone, (CH ₃) ₂ CO	10	5000	0,3	50

OPTICAL SCHEME OF ATMOSPHERIC POLLUTION MEASUREMENT

Recent Advances in AOTF Design and Fabrication at St.Petersburg State Academy of Aerospace Instrumentation

V.V.Kludzin, S.V.Kulakov, V.V.Molotok

St. Petersburg State Academy of Aerospace Instrumentation,

Laboratory of Acousto - Optic Systems,

67 B.Morskaia St., St.Petersburg, 190000, Russia,

Phone/FAX: +7 (812) 108-4204, E-mail: molotok@softjoys.ru

1. The main advantages of the acoustooptic tunable filters (AOTF)

- 1. Controllable tuning by an electronic signal**
- 2. Fast switching speed**
- 3. Extended angular aperture**
- 4. Compatibility with electronic analog and digital modules**
- 5. simple design and small sizes**

4. AOTF used for modulating spectrum width of a wideband optical signal.

$$T \leq D/v - \text{clock rate}$$

$$0 < \tau < T; \quad \delta\lambda = k\tau$$

a) ($\tau=T$)

b) ($\tau=0.5T$)

Fig.4. Spectral responses of CaWO_4 collinear AOTF

a) ($\tau=0.5T; T=0.5D/v$)

b) ($\tau=0.5T; T=0.25D/v$)

Fig.5

5. AOTF used in spectrometry

Table 4. Spectrometer parameters

AOTF materials	Analysis range, μm	Control frequency range, MHz	Resolution, nm ($\lambda=0.63 \mu\text{m}$)	Transmission coefficient	Analysis time, ms	Interaction regimes
Water	0.4-0.7	28-50	2.5	0.5 $P \approx 0.1 \text{ W}$	≥ 2	Isotropic
PbMoO_4	0.6-1.1	90-160	1.5	0.5 $P \approx 0.5 \text{ W}$	1	Isotropic
LiNbO_3	0.5-1.0	7-14	6	0.65 $P \approx 0.2 \text{ W}$	1	Sub-collinear
TeO_2	0.65-1.5	25-55	1.2	0.8 $P \approx 0.05 \text{ W}$	> 3.5	Quasi-collinear
CaWO_4	0.56-1.04	35-65	1.1	0.5 $P \approx 0.5 \text{ W}$	5	Collinear $\Delta\Psi \approx 4.5^\circ$

Fig. 6

Fig. 8

Fig.7

Conclusion

- 1. Acousto-optic tunable filter have several advantages resulting from their electronic control and a large variety of available materials regimes.**
- 2. The anisotropic regimes of acoustooptic interaction seems to be more perspective for the most applications.**
- 3. In some cases, the advantages of isotropic media are worth remembering.**

References

Design and Fabrication of Acoustooptic Devices. Ed. by A.Goutzoulis, D.Pape. Marcel Dekker Inc., New York, 1994

Dixon R.W. Acoustic diffraction of light in anisotropic media. IEEE Journ., QE-3, #2, 1967, p.85-93

Nien S.T.K., Harris S.E. Aperture-bandwidth characteristics of the filter. JOSA, 1972, v.62, #5, p.62-676

Yano T., Watanabe A. New noncollinear acoustooptic tunable filter using birefringence in TeO₂. Appl. Phys. Letters, 1978, v.24, #6, p.256-258

Chang I.C. Noncollinear acoustooptic filter with large angular aperture. Appl. Phys. Letters, 1974, v.25, p.370-373

Sivanaygam A., Findlay D. High resolution noncollinear acoustooptic filters with variable passband characteristics: design. Appl.Optics, 1984, v.23, #24, p.4601-4608.

Table 2. Physical parameters of acousto-optic materials

Material	Transparency range, μm	Refraction index ($\lambda=0.63 \mu\text{m}$)	Acoustic velocity, $v*10^5 \text{ cm/sec}$	Figure of merit, $M_2*10^{-18} \text{ c}^3/\text{g}$	Range of control frequencies, MH ($\lambda=0.63 \mu\text{m}$)	Possible interaction regimes
TeO_2	0.36 - 5	$n_0=2.26$ $n_e=2.41$	0.617	600 - 1000	50 - 100	w/o collinear
LiNbO_3	0.4 - 4.5	$n_0=2.28$ $n_e=2.2$	3.9 6.57	3 - 8	400 - 600	all regimes
CaWO_4 (CaMoO_4)	0.4 - 4.5	$\Delta n = n_0 - n_e = 0.016$	2.3	~ 10	60	collinear
SiO_2	0.15 - 4	$n_0=1.542$ $n_e=1.551$	5.75	~ 2	80	all regimes
Tl_3AsSe_3	1.25 - 17	$n_0=3.38$ $n_e=3.19$ ($\lambda=1.5 \mu\text{m}$)	1.0	~ 700	100 ($\lambda=1.5 \mu\text{m}$)	all regimes

3. Normalization of the spectral response

For "slow" scanning regime

$$\delta\lambda \sim \lambda^2; \quad N = \Delta f D / v - \text{number of resolvable points}$$

Result of normalization

$$\delta\lambda(\lambda) = \delta\lambda(\lambda_{\max}) = \text{Const}$$

$$\text{if } f(t) = f_0 + bt^2$$

$$T = (N)^{0.5} D / v$$

Fig.2. Collinear AOTF

2. The main parameters of AOTF

Fig.3. The spectral responses of AOTF ($\lambda_0=0.63 \mu\text{m}$)

Table 1. The geometry of different regimes of acousto-optic interaction

1		$\lambda f = nv \sin \Theta_0$ $k_a = \frac{2\pi f}{v}, \quad k_i = k_d = \frac{2\pi n}{\lambda}$ $\delta\lambda \approx \frac{\lambda^2}{D \sin \Theta_0}$ isotropic
2		$\lambda f = \Delta n_0 v \sin \Theta_i$ $k_i = \frac{2\pi n_i}{\lambda}, \quad k_d = \frac{2\pi n_d}{\lambda}$ $\delta\lambda \approx \frac{\lambda^2 \cos \Theta_i}{\Delta n_0(\lambda) L \sin^2 \Theta_i}$ quasicollinear
3		$\lambda f \cong v \frac{\Delta n(\lambda, \Theta_i)}{\cos \Psi}$ subcollinear
4		$\lambda f = \Delta n v \sqrt{(\sin^4 \Theta_i + \sin^2 2\Theta_i)}$ $\delta\lambda \approx \frac{\lambda^2 \cos(\Theta_a - \Theta_i)}{\Delta n_0(\lambda) L \sin^2 \Theta_i}$ $\operatorname{tg} \Theta_i \operatorname{tg} (\Theta_a - \Theta_i) = 2$ Tangential
5		$\lambda f = \Delta n(\lambda) v$ $\delta\lambda = \frac{\lambda^2}{\Delta n(\lambda) L}$ collinear

$$\Delta \Psi R = \text{const}$$

Fig.1. The isotropic acoustooptic tunable filter

$$d \leq \frac{k\lambda F}{D} \quad R_s = \frac{fD}{v} \quad R_o = \frac{fL}{v} \tan \Theta_o,$$

$$R_i = R_o \quad \rightarrow \quad \frac{\delta\lambda}{\lambda} = \frac{0.66}{R}, \quad g(\lambda) \sim \left\{ \text{sinc} \left[\pi R \left(\frac{\lambda}{\lambda_0} - 1 \right) \right] \right\}^4$$

The advantages of isotropic interaction

1. The independence to the polarization of the input optical signal
2. More materials can be used in manufacturing of devices under different technical requirements
3. Large angular aperture in the plane orthogonal to the acousto-optic interaction plane
4. The isotropic materials are comparatively less expensive and their workpieces can be larger

Integrated Acousto-Optic Tunable Filters for Blue-Green Spectral Region

by

C. S. Tsai and A. M. Matteo, University of California, Irvine,

Fig. 2

Fig. 3

Fig. -

APPLICATION OF AOTF TECHNOLOGY FOR CHEM/BIO DETECTION

Dr. Neelam Gupta & Dr. N. F. Fell, Jr.

Sensors & Electron Devices Directorate
Army Research Lab
Adelphi, MD 20783

**FIRST ARL WORKSHOP ON
AOTF TECHNOLOGY**
24-25 September 1996

Center for Adult Education, University of Maryland

COLLINEAR AOTF

polarizer 1 AO Cell polarizer 2

$$\begin{aligned} f_{\text{diff}} &= f_{\text{in}} + \Omega \\ K_{\text{in}} - K_{\text{diff}} - q &= 0 \end{aligned}$$

$$\lambda = (n_o - n_e)v_s/\Omega$$

$$\text{Spectral Resolution } \Delta\lambda/\lambda = M L \Delta n$$

EXAMPLE: CRYSTAL QUARTZ AOTF

$$n_o = 1.548, n_e = 1.539$$

$$v_s = 6.0 \times 10^5 \text{ cm/sec}$$

for visible band $400 \text{ nm} < \lambda < 800 \text{ nm}$

$$135 \text{ MHz} < \Omega_{\text{sound}} < 68 \text{ MHz}$$

COLLINEAR AOTF ADVANTAGES

- Lightweight, Compact, Portable
- No Moving Parts, Rugged
- Reliable
- Reproducible Operation
- Rapid Tuning and Scanning
- All Solid State Operation
- High Spectral Resolution
- Polarization Separation
- High Extinction Ratio
- Broad Tuning Range
- High Throughput
- Sequential or Random λ Access
- Capability for Multi λ Operation
- High Signal-to-Noise Ratio
- Uncooled Operation
- Programmable, Computer Control
- Arbitrary Spectral Signal Generation
- Flexible

AOTF Specifications

	Quartz 4	Visible	UV
Spectral Range (nm)	420-785	400-800	255-430
Resolution (nm)	0.12-0.5	0.1-0.54	0.05-0.2
Position error (nm)	± 0.5	± 0.2	± 0.2
Max Number of Points	4096	4790	7892
ADC Range	10 bits	12 bits	12 bits
Amplification	31	15	15
PMT Voltage Sensitivity	-	1:3:9:30	1:3:9:30
Effective Dynamic Range	31,744	1,843,200	1,843,200
Aperture	6 x 6 mm	6 x 6 mm	6 x 6 mm
Field of View	2°	2°	2°

AOTF APPLICATIONS AT ARL

- Sensing of Chemical & Biological Agents: Fluorescence, Absorption, Emission, Raman, LIBS, etc.
- Remote Sensing/ Environmental Monitoring
- Multispectral and Hyperspectral Imaging
- Medical Applications; i.e. Blood Analysis
- Fire Sensing
- Polarization Spectroscopy

**OPTICAL SCHEME OF ACOUSTIC SPECTROMETER
"QUARTZ - 4"**

AOTF Spectrometer System

Hg Lamp AOTF Spectra

Amp 1, PMT 1, Accum 1,
max. number of points

Hg Lamp UV Resolution

Hg Lamp Visible AOTF Resolution

Sunlight through Window with AOTF

Amp 3, PMT 2, Accum 50, 4790 points

Fluorescein in Methanol Fluorescence

Corrected for laser power and PMT setting

2

1e-7 M Fluorescein in MeOH

Quartz 4, 260 mW, Amp 31, 10 Accum

1e-7 M Fluorescein in MeOH

New AOTF, 260 mW, PMT 4, Amp 1, 10 Accum

12

25

BT-containing Insecticide in Quartz Cuvette

Ex. 260 nm, Amp 15, PMT 4, Accum 1.00

SUMMARY

- Characterized Performance for three UV/VIS spectrometers.
- Obtained Results for Fluorescence Measurements.
- Obtained Results for Raman Scattering
- Evaluating Instruments for Stand-off Chem/Bio Detection.
- Mid-IR AOTF being Developed.
- Imaging Experiments Planned.
- Polarization Experiments Planned.
- Fire Sensing Proposed.

FACTORS AFFECTING AOTF IMAGE QUALITY

L.J Denes, Boris Kaminsky, M. Gottlieb and P. Metes

**Carnegie-Mellon Research Institute
Pittsburgh, Pennsylvania**

**This work was supported under U.S. Army SBIR subcontract, No.
DAAB07-93-C-0005, and U.S. Navy contract N00014-95-1-0591**

Image Blur Relation to θ_i and L

For small values of $n_i - n_d$ and $\Theta_i - \Theta_d$, the non-critical phase matching (NPM) condition can be approximated as

$$\lambda_0/\Lambda = n_0(\Theta_i - \Theta_d)$$

The usual NPM approximation for tuning is

$$\lambda_0/\Lambda = \Delta n (\sin^4 \Theta_i + \sin^2 2\Theta_i)^{1/2}$$

so that an approximation to the beamspread is

$$\Delta \Theta_d / \Delta \lambda = (\Delta n / n_0 \lambda_0) (\sin^4 \Theta_i + \sin^2 2\Theta_i)^{1/2}$$

This approximation agrees well with the exact calculations.

It is straightforward to recast the dependence on the transducer length by substituting for $\Delta \lambda$

$$\Delta \lambda = 1.8\pi \lambda^2 / (\Delta n \cdot L \sin^2 \Theta_i)$$

to obtain

$$\Delta \Theta_d = ((\sin^4 \Theta_i + \sin^2 2\Theta_i)^{1/2} / \sin^2 \Theta_i) (1.8\pi \lambda) / n L$$

Calculated internal beam spread due to the filter bandpass
for various noncollinear TAS AOTF configurations.

ACOUSTIC BLUR IS MINIMIZED BY PROPER CHOICE
OF TRANSDUCER LENGTH

$$\theta_i = 12^\circ, \theta_a = 5.9^\circ, \theta_t = 16.35^\circ$$

Infrared resolution target for imaging system.

(a)

(b)

Figure 5. Infrared target image (a) without AOTF, and (b) with noncollinear AOTF.

AOTF-1 Parameters

$\Theta_I = 12$ degrees

$\Delta\theta_I = 6.5$ degrees (ext)

$\Theta_a = 5.9$ degrees

$L_1 = 0.33$ cm

$L_2 = 0.66$ cm

$L_3 = 1.32$ cm

$L_4 = 2.32$ cm

$\Delta\lambda/\lambda = .01$ (for $L = 2.32$ cm)

CARNEGIE
MELLON
RESEARCH
INSTITUTE

A division of Carnegie Mellon University

Advanced Devices and Material

A division of Carnegie Mellon University

Advanced Devices and Materials

2.5 lp/mm

IMAGE EVALUATION
TEST TARGET (MT-11)

STANFORD COMPUTER OPTICS, Inc.
the eyes of your computer

2000 Republic Way Tel & Fax (408) 756-7602
Sunnyvale, CA 94089 In Europe Tel & Fax 011-46 89 06 48 17

CONTRIBUTIONS TO AOTF BACKGROUND:
PRIMARY ACOUSTIC BEAM VS REFLECTED
ACOUSTIC BEAM

Scattering

The ratio of scattered light intensity to diffracted image signal is approximately

$$I_{\text{scat}} / I_{\text{image}} = S \cos^2 \phi (\Delta\lambda/\delta\lambda) + (p \eta)$$

where:

S = scattering coefficient

ϕ = scattering angle

$\delta\lambda$ = AOTF resolution

$\Delta\lambda$ = spectral range of light source and detector

p = polarization loss, at least 50%

η = AOTF efficiency

For a typical AOTF design, $S \sim 10^{-5}$, $(\Delta\lambda/\delta\lambda) = 100$, $p = 0.5$, and $\eta = 0.5$, and $\cos^2 \phi \sim 1$, so that the estimated scattered light intensity is about 24 dB below the image signal.

LASER LIGHT SCATTERING FROM TYPICAL AOTF

A division of Carnegie Mellon University

Multi-spectral Imaging

MURI DNR
Program

Where are we going?

Multi-spectral Imaging

Targets

- Wavelength tunability:

1 -> 2 Octaves

- Field of view

2-12°

- Spectral resolution:

10-20 nm, $\Delta\lambda/\lambda = (0.1 - 1)\%$

- Spatial resolution:

< 1 μradian

- Background:

Limited by camera noise

Multi-spectral Imaging

Critical Parameters

- Optical system configuration
 - AOTF (design & fabrication)
- Suppression of:
 - Blur
 - Ghost images
 - Broadband background
- Transducer design
- Transducer fabrication
- AR coatings

Imaging A-O Spectrometer

A-O Filter

SPECTRAL RESOLUTION OF NEOS 4-3-P-1 AOTF

SPECTRAL RESOLUTION OF NEOS 4-3-S-1 AOTF

Multi-Spectral Imaging

SPECTRAL RESOLUTION OF NEOS 4-3-S-1 AND 4-3-P-1 AOTF IN
SERIES

Second Generation Imaging A-O Spectrometer

Multi-spectral Imaging

Multi-spectral Imaging

Conclusions

- Image quality is limited by blur, side lobes and broadband scattering
- Our two AOTF configuration offers a solution to the above problems
- Present work was performed in the VIS & NIR,
Future work is planned to include the Mid & Far IR

An AOTF Camera for Multispectral Imaging

S. Simizu, R. T. Obermyer, C. J. Thong, M. J. Uschak, and S. G. Sankar
Advanced Materials Corporation
700 Technology Drive, Pittsburgh, PA 15230

and

L. J. Denes, D. A. Purta, and M. Gottlieb
Carnegie Mellon Research Institute
Pittsburgh, PA 15230

* Supported by the US Army under Contract No. DAAB07-95-C-M042

Overview

1. Camera System

Defining Optics
AOTF Design
Camera/Imaging Hardware
RF Drive

2. System Performance

Filter Characteristics
Blur/Background

3. Target Identification

Image Pre-processing by AOTF
Processing Speed

Advanced Material Corp.

A block diagram of the AOTF camera system

Advanced Material Corp.

Defining Optics

- 8 -- 80 mm motorized (focus, zoom, iris) zoom lens
- Rectangular stop to match 2.5° separation angle of the AOTF
- 50 mm collimation lens
- FOV 1.6° -- 15.6°

AOTF Crystal

- AMC/CMRI design
- Three parallel transducers
- Vertical diffraction (CCD less sensitive to vertical blur)

R.F. Source

- Tektronix AWG2040 arbitrary waveform generator
- 1.024 GS/s
- 1 Meg of waveform memory
- 8 bits output
- 2 V maximum amplitude

Camera Lens

- 60 -- 300 mm zoom lens
- 135 mm present position

Camera

- DVC Model DVC-10
- SNR of 62 db at 0.5 lux
- Spectral range of 0.45 -- 1.0 μ
- 755 x 484 pixels
- Simultaneous 10 bit parallel and analog video
- Real time capability of 30 frames per second
- On camera digitization

Nominal Specifications for
TeO₂ Acousto-optical tunable filter

Designed by:

Louis J. Denes and Milt Gottlieb
Carnegie Mellon Research Institute

(a)

(b)

(c)

Fig. 6. Different characteristics of AOTF for three RF driving waveforms:

- (a) Driven by a single sinusoidal wave at 63.57 MHz;
- (b) Driven by a combination of two sinusoidal waves at 60.85 MHz and 63.57 MHz;
- (c) Driven by a spread RF spectrum in the range of 59.03 MHz to 67.21 MHz.

Unfiltered Image

Advanced Material Corp.

0.19 Watts

0.65 Watts

Advanced Material Corp.

Unfiltered Image

Advanced Material Corp.

(a) Filtered at 643 nm

(b) Filtered at 603 nm

(c) Processed Image

Simultaneous Multispectral Imaging

**Simultaneous Multispectral Imaging
with 12 Parallel Channel Tunable Camera**

**J. A. Carter III, D. R. Pape,
Photonic Systems Inc., Melbourne, Florida**
URL <http://photon-sys.com/>

**M. L. Shah,
MVM Electronics, Inc., Melbourne Florida**

Simultaneous Multispectral Imaging

Introduction

- Background and Chronology
- Simultaneous Multispectral Imaging System (**SMIS**) Description
- SMIS Design Methodology
- Compensation Error Residuals for Increasing Design Freedom
- Acoustic Transducer Design
- Prototype Performance
- Conclusion
- Credits

PSI

Photonic Systems Incorporated

Simultaneous Multispectral Imaging

Background and Chronology

- July of 1992, PSI and MVM jointly proposed "A Simultaneous electronically variable Multi-spectral Imaging System" to NASA JPL as a Phase I SBIR effort that was funded as Contract NAS7-1222.
- August of 1993, the Phase II proposal describing the development of the Simultaneous Multispectral Imaging System (SMIS) was submitted
- April of 1994, NASA JPL funded the contract as NAS7-1311.
- April of 1996, Prototype AOTF and compensation optics set were presented at the SPIE AeroSense Technical Exhibit to provide a preliminary demonstration of these technologies.
- PSI and MVM are now completing that system.

Simultaneous Multispectral Imaging

Simultaneous Multispectral Imaging System

- Fully compensated AOTF based imager.
- Simultaneous imaging of multiple spectral bands on separate image sensors.
- Extensible design to allow additional band channels as well as broadband imaging.
- Image data for polarimetric scenes or non-polarimetric scenes with double the number of bands.
- Astronomical imaging for NASA prototype system.
 - 2 polarization channels
 - 6 image band channels
 - 2 AOTF nodes
 - 3 image channels separated by dichroic filters
 - 512 x 512 image pixels per channels
 - high precision, long integration, cooled CCD sensors

Simultaneous Multispectral Imaging

Simultaneous Multispectral Imaging System

Photonic Systems
Incorporated

Wavelength Range	420 nm to 700 nm	6 or 12 selections, continuous range
Spectral Resolution	3 nm, 9 nm, or 15 nm	Programmable, user defined *
Spatial Resolution	500 resolvable elements	Rayleigh criteria *
Throughput Efficiency	greater than 80%	peak at center wavelength for each of two polarized fields

* spectrally dependent

Simultaneous Multispectral Imaging

System Schematic

Simultaneous Multispectral Imaging

PSI
Photonic Systems
Incorporated

Spectral Passband Map

Simultaneous Multispectral Imaging

Design Methodology

- **FORTRAN software to model an arbitrary AOTF within CodeV from Optical Research Associates**
 - User Define Surface interface for CodeV
 - Pseudo-normal allows CodeV to "refract" ray into proper direction
 - Only runs on VAX (DEC) or Sparc (Sun) platforms
 - Too slow for system optimization
- **Stand-alone, custom software written in C to optimize an arbitrary AOTF using dispersive compensation optics**
 - Physical optics ray tracing in AOTF crystal
 - Traces rays through a variety of compensation optics types
 - Damped Least Squares optimization of compensation optics
- **Candidate compensation designs returned to CodeV for critical system performance assessment**

Simultaneous Multispectral Imaging

Residual errors for increasing degrees of design freedom

- Wedged AOTF to compensate dispersive aberrations
- Compensation residuals for 2 degrees of freedom
- Compensation residuals for 3 degrees of freedom

Simultaneous Multispectral Imaging

Wedged AOTF compensation residuals

± 3.0° FOV, 512 pixels
0.0117° per pixel

PSI
Photonic Systems
Incorporated

Simultaneous Multispectral Imaging

Compensation residuals for 2 degrees of freedom

$\pm 3.0^\circ$ FOV, 512 pixels
 0.0117° per pixel

PSI
Photonic Systems
Incorporated

Simultaneous Multispectral Imaging

Compensation residuals for 3 degrees of freedom

$\pm 3.0^\circ$ FOV, 512 pixels
0.0117° per pixel

Simultaneous Multispectral Imaging

SMIS optical design performance for AOTF, compensation and custom image objective

- Pixel subtends 19 by 19 microns for the SMIS system.
- The registration for the center of the image is well within 4 microns
- The edges of the image register within no more than 9 microns.

Simultaneous Multispectral Imaging

Acoustic Transducer Design

- Acoustic beam side-lobes give spatially shifted "ghost" images
- Transducer design issues:
 - Absolute minimum energy in acoustic beam sidelobes - transducer shape and apodization
 - Segmented transducer scheme to adjust raw transducer impedance for RF matching.
- Manhar Shar of MVM Electronics developed novel transducer scheme that addresses these issues and provides excellent performance for the SMIS and future image sensor developments.
(Patent forthcoming)

Simultaneous Multispectral Imaging

Acoustic Transducer Performance
Photonic Systems Incorporated

Early AOTF Prototype

Final AOTF Design

Simultaneous Multispectral Imaging

Prototype Performance

- SMIS is currently in the fabrication and integration process.
- Preliminary results are limited to the lab bench breadboard optical system.
- Video tape very quickly made;
please accept my apologies.

Simultaneous Multispectral Imaging

Conclusion

- **PSI and MVM Electronics have developed a completely compensated tunable camera system**
 - provides for simultaneous multispectral imaging
 - gives polarimetric data when appropriate
 - allow system to be extended with additional channels
 - provides a broad band image port
- **Compensation provides fraction of a pixel image registration for all points in the image over the entire spectral band.**
- **Compensation optics are designed externally to the AOTF**
 - represent a reduced cost compared to high precision wedges in the AOTF crystal fabrication.
 - provides adjustment for AOTF fabrication variance at the time of system integration and thus improves the yield of acceptable AOTF devices

Simultaneous Multispectral Imaging

Credits

PSI
Photonic Systems
Incorporated

**PSI and MVM would like to thank Dr. Robert Nelson,
of the NASA Jet Propulsion Laboratories, for his
encouragement, guidance, and support. Without the
funding from the NASA Small Business Innovative
Research grant sponsored by Dr. Nelson, this important
technology would not be available to the research and
commercial communities.**

Polarimetric Hyperspectral Imaging Systems and Applications

Li-Jen Cheng, Colin Mahoney, George Reyes, and Clayton La Baw
Center for Space Microelectronics Technology
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, CA 91109

and

G.P. Li
Department of Electrical and Computer Engineering
University of California
Irvine, CA 92717

* Sponsored by NASA, ASTRO, MCSC, and SSDC

JPL

AOTF IS:

A REAL-TIME PROGRAMMABLE,
HIGH-RESOLUTION SPECTRAL BANDPASS FILTER
WITH POLARIZATION BEAM SPLITTING CAPABILITY

*incorporated with focal plane detector array(s), optics,
& electronic subsystems*

Polarimetric Hyperspectral Imaging Instrument

Image Data Set
As Function Of Wavelength And Polarization
with spectral resolution adequate for material characterization

Advantages of AOTF-PHI System

Real-time collection of image data

Spectral
Polarization
Time variation.

Operational flexibility, fast programmable

Take only needed data at desired wavelengths.

Compact, light-weight, reliable, and low cost

**Use on space and airborne platforms, ground vehicles,
and hand-held.**

ACOUSTO-OPTIC TUNABLE FILTER (AOTF)

AOTF
Polarimetric
Hyperspectral Imaging (PHI)
System

JPL

AOTF PHI IMAGE CUBES

with polarization electric vectors orthogonal to each other

Signal at each pixel in the cube is light intensity
that can be converted into other physical parameters
such as:

spectral derivative images
polarization difference images

JPL

AOTF SPECTRA OF
SELECTED OBJECTS

FT. HUACHUCA, AZ
Vegetation Classification
Polarization Effect

LJC 1993

JPL

AOTF SPECTRAL IMAGES

**SPECTRAL DERIVATIVE IMAGES
AT CHLOROPHYLL RED EDGE**

A DETECTION CONCEPT ILLUSTRATION

Via Detecting Mask
Generated
with Expected Characteristics

JPL

POLARIZATION IMAGES

$$(I_V - I_H)/(I_V + I_H)$$

JPL

A Camouflaged Target

AEROSOL SCATTERING
IN ATMOSPHERE

Reflectance Spectra of Two Oaks at Different Distances

Wavelength Dependence of Scattered Light Due to Aerosol in the Atmosphere

JPL

**TARGET DETECTION
AND
CLUTTER REMOVAL**

**35 MM COLOR IMAGE
USING AN ORDINARY CAMERA**

**DIFFERENTIAL POLARIZATION IMAGE
AT 0.52 MICRONS**

MINES IN ICEPLANT FIELD

LJC/4/94

JPL MINES IN ICEPLANT FIELD
POLARIZATION SPECTRAL IMAGES

SPECTRAL MIXING

due to scattered light from neighboring objects

Ice: iceplant field (~400 m)
 Dirt: bare ground with a white trailer nearby (~400 m)
 Big: close distance (~40 m)
 dark green round metallic mine

VEGETATION
AND
POLARIZATION EFFECTS

Measured Polarization Spectra of Three Different Trees

GREEN LEAF SPECTRA

phase angle = 20

REFLECTIVE SPECTRA OF OLIVE LEAF AT SPECULAR ANGLE

With polarization parallel (||) and perpendicular (⊥)
to incident plane

REFLECTIVE AND DERIVATIVE SPECTRA
OF EUCALYPTUS LEAF
AT SPECULAR ANGLE

POLARIZATION SPECTRA OF GREEN LEAVES

differential polarization = $(I_{\perp} - I_{\parallel}) / (I_{\perp} + I_{\parallel})$

phase angle = 125 degrees

CHARACTERIZATION OF SILICON-ON-SILICON USING AOTF-PHI

Silicon-On-Silicon (SOS)
is

A most promising material
of silicon-on-insulators,
important for future advanced VLSI.

EXPERIMENTAL SETUP

Spatial Resolution per pixel:
about 100 microns

WHITE-LIGHT INTERFERENCE PATTERN
as a function of wavelength
at two orthogonal polarizations

WHITE-LIGHT INTERFERENCE IMAGE CUBE

- interference spectrum → layer thickness maps deviations from model
- interference amplitude reduction and DC component → surface/interface roughness
- polarization images → surface/interface topographies abnormal interface structures

JPL

Interference Images

Interference Amplitude Map

0.550 μ

0.574 μ

parallel
perpendicular
to incident plane

Defined as
 $(I_{\max} - I_{\min})$

SEH/AcuThin SOI Sample

LJC/9/94

MAPS OF SILICON AND OXIDE LAYER THICKNESS WITH CORRELATION FACTOR BETWEEN MODEL AND MEASURED SPECTRA

Chart 1

JPL

**MICROSCOPIC AOTF IMAGES OF
AN INDIVIDUAL FET TEST DEVICE
ON A VLSI WAFER**

vertical
polarization

horizontal
polarization

AT 0.685 MICRONS

IC

1.2-2.4 Micron Infrared Airborne Prototype System (Under Development)

- Compact folded optical configuration.
- Simultaneous two-polarization imaging side-by-side on one Rockwell cooled focal plane array of HgCdTe. (a low-cost approach).
- Through-the-system video tracking.
- Real-time instrument capable of collecting an image cube data in Seconds.
- TeO₂ AOTF designed and manufactured by Aurora.

Important Spectral Features in 1.2-2.4 micron.

- Two major absorption bands due to H₂O and CO₂ in the atmosphere.

No useful solar are available at the wavelength of these two band.

- Characteristic Spectral Signature of Man-Made Materials

Textures and paints are often made of synthetic materials, originally from petroleum products. These products often have characteristic absorption bands at 1.7 and 2.3 microns. This also applies to camouflaged cloths and painted surface. Consequently, the capability to detect these bands will provide an effective classification process for military applications

Comparison of Camouflaged Net and Natural Materials in Reflectance Spectrum

LJC/5/95

NEW AND WEATHERED WHITE PLASTIC GARDEN TUBES

solid line: new
dashed line: weathered

Distribution

Admnstr Defns Techl Info Ctr Attn DTIC-OCP 8725 John J Kingman Rd Ste 0944 FT Belvoir VA 22060-6218	Marquette Univ Dept of Chemistry Attn C Tran PO Box 1881 Milwaukee WI 53201
ERDEC Attn SCBRD-RTE-E3549 J O Jensen Attn CAPT A C Samuels APGEA Edgewood MD 21010-5423	Moscow State Univ Dept of Physics Attn V Voloshinov Moscow 119899 Russia
Hdqtrs Dept of the Army Attn DAMO-FDQ MAJ M McGonagle Attn DAMO-FDQ D Schmidt 400 Army Pentagon Washington DC 20310-0460	ST Petersburg State Academy of Aerospace Instrmntn Attn V V Kludzin Attn V V Molotok 67 B Morskaya Str ST Petersburg 100000
Night Vsn Dirctr Attn L J Mizerka 10221 Burbeck Rd Ste 430 FT Belvoir VA 22060-5806	Univ of California Dept of Elect & Computer Engrg Attn C S Tsai Engineering Gateway Bldg Irvine CA 92697
US Military Academy Dept of Mathematical Sci Attn MAJ D Engen West Point NY 10996	Univ of Pittsburgh Chevron Science Center Attn J Turner Room 314 Pittsburgh PA 15260
Nav Rsrch Lab Attn Code 5603 I Aggarwall Attn Code 5603 D Daganias Washington DC 20375	J Goodell 1201 Southview Rd Baltimore MD 21218
Oak Ridge Natl Lab Attn T Vo-Dinh PO Box 2008 MS 6101 Oak Ridge TN 37831-6101	Advncd Materials Corp Attn C J Thong Attn M Uschak Attn S G Sankar Attn S Simizu 700 Technology Dr Ste 3311 Pittsburgh PA 15230-2950
Case Western Reserve Univ Dept of Electrl Engrg Attn D A Smith Cleveland OH 44106	Aurora Assoc Attn I C Chang 3350 Scott Blvd B-20 Santa Clara CA 95054
Institute of Crystallography Attn Y Pisarevsky Moscow Russia	

Distribution

Brimrose Corp of America
Attn S Trivedi
Attn V Pelekhaty
Attn W J Danley
5020 Campbell Blvd
Baltimore MD 21236

Brookhaven Natl Lab
Attn C L Chen
Bldg 197C DAT/SSN
Upton NY 11973

Brookhaven Natl Lab
Attn D Heglund
Box 5000 Bldg 701
Upton NY 11973

Carnegie Mellon Rsrch Instit
Attn M Gottlieb
Attn B Kaminsky
Attn L J Denes
700 Technology Dr PO Box 2950
Pittsburgh PA 15230-2950

Central Design Bureau for Unique
Instrmnt
Attn V I Pustovoit
Moscow 117342
Russia

Jet Propulsion Lab
Attn M/S 300-329 L-J Cheng
4800 Oak Grove Dr
Pasaoena CA 91109

Massachusetts Instit of Techlgy
Attn Piotr Becla
Room 13-4111
Cambridge MA 02139

Natl Instit of Health
Attn E N Lewis
Bldg 5 Room B1-38
Bethesda MD 20892

Neos Technologies Inc
Attn E Young
4300C Fortune Pl
Melbourne FL 32904

Photonic Sys Inc
Attn J A Carter III
Attn D R Pape
1800 Penn Stret Ste 6
Melbourne FL 984-8181

Army Rsrch Lab
Attn AMSRL-PS-ED J S Himmel
FT Monmouth NJ 07703-5601

US Army Rsrch Lab
Attn AMSRL-WM-PC A W Mizolek
Attn AMSRL-WT-PC E D Lancaster
Attn AMSRL-WT-PC K L McNesby
Aberdeen Proving Ground MD 21005-
5066

US Army Rsrch Lab
Attn AMSRL-CI-LL Tech Lib (3 copies)
Attn AMSRL-CS-AL-TA Mail & Records
Mgmt
Attn AMSRL-CS-AL-TP Techl Pub
(3 copies)
Attn AMSRL-IS-EE J B Gillespie
Attn AMSRL-SE-SS C DeLuca
Attn AMSRL-SE-EO N Fell
Attn AMSRL-SE-E J Pellegrino
Attn AMSRL-SE-EO A Filipov
Attn AMSRL-SE-EO N Gupta (5 copies)
Attn AMSRL-SE-ES D McCarthy
Adelphi MD 20783-1197

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188
<p>Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.</p>			
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND DATES COVERED	
	February 1997	Final, from Jan 1996 to Jan 1997	
4. TITLE AND SUBTITLE		5. FUNDING NUMBERS	
Viewgraph Supplement to the Proceeding of 1st ARL AOTF Workshop		PE: 65709A	
6. AUTHOR(S)			
Neelam Gupta, Editor			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
U.S. Army Research Laboratory Attn: AMSRL-SE-EO 2800 Powder Mill Road Adelphi, MD 20783-1197		ARL-SR-54-S	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
U.S. Army Research Laboratory 2800 Powder Mill Road Adelphi, MD 20783-1197			
11. SUPPLEMENTARY NOTES			
AMS Code: P665709.650 ARL Proj: AN7NEGAA			
12a. DISTRIBUTION/AVAILABILITY STATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution unlimited.			
13. ABSTRACT (Maximum 200 words)			
<p>Acousto-optic tunable-filter (AOTF) technology is a recent development that offers potential for rapid, frequency-agile tuning over a large optical wavelength range. An AOTF is an electronically tunable phase grating set up in an anisotropic crystal by the propagation of an ultrasonic wave in the crystal. Such filters have many attractive features, such as small size, lightweight, computer controlled operation, large optical wavelength range of operation, and no moving parts; and their operation can be made ultrasensitive by the use of advanced signal processing algorithms. These filters are being used in many applications such as the design of new spectroscopic instruments, remote detection and monitoring of chemicals, optical communication networks, tuning of laser cavities, etc.</p>			
14. SUBJECT TERMS		15. NUMBER OF PAGES 181	
AOTF, spectrometer, chemical sensing, biological sensing, imaging		16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL