Tutorial - Week 5

Please read the related material and attempt these questions before attending your allocated tutorial. Solutions are released on Friday 4pm.

Question 1

We continue the analysis started in last week's tutorial where we were looking at the properties of the Hotelling T^2 statistic and testing means. First we are interested to understand what happens as p becomes large and how it compares to some other alternative methods.

- (a) One of the problems when using the T^2 test statistic is that, as p becomes larger compared to the sample size n, the sample covariance matrix $\mathbb S$ becomes increasingly singular. A singular matrix is one that does not have an inverse and this causes problems as the T^2 test statistic contains the expression $\mathbb S^{-1}$. As a matrix is singular if and only if its determinant is zero, we can study $\det(\mathbb S)$ as $p\to n$ to understand how quickly $\mathbb S$ becomes singular as p increases.
 - Perform a simulation experiment to show the behaviour of $\det(\mathbb{S})$ as $p \to n = 100$. That is, write a function that, given values of p and n = 100, will sample n observations from a multivariate normal distribution $N_p(0, I_p)$, calculate the sample covariance \mathbb{S} of the data, then calculate the determinant of the sample covariance matrix $\det(\mathbb{S})$. The function should perform this simulation nsims number of times for a given p, calculate the mean and standard error of the simulation.
- (b) Illustrate the behaviour of $det(\mathbb{S})$ for 2 by using an error bar plot. You can use the function errbar in the package Hmisc to do this.
- (c) Now that we have identified there could be a problem with \mathbb{S}^{-1} as p becomes large, let's consider what happens to the Hotelling T^2 test. First, similar to last week's tutorial, write a function that calculates the power of a Hotelling T^2 test. Take the case $n_1 = n_2 = 50$ with $\mu_2 \mu_1 = (\delta, \ldots, \delta)'$ with varying $0 \le \delta \le 0.5$. However, this time assume that the (population) covariance has an "AR(1) structure" given by

$$\Sigma = \begin{pmatrix} 1 & \rho & \cdots & \rho^{\rho} \\ \rho & 1 & & \vdots \\ \vdots & & \ddots & \vdots \\ \rho^{\rho} & \rho^{\rho-1} & \cdots & 1 \end{pmatrix}, \tag{AR1}$$

for $\rho = 0.5$. This can be generated succintly in R using the code

rho = 0.5

Sigma = rho^abs(outer(1:p, 1:p, "-"))

Plot the power curve for $0 \le \delta \le 0.5$, for the cases $p \in \{5, 25, 50, 75, 95\}$. What do you observe?

(d) Consider the one-sample version of Hotelling's \mathcal{T}^2 test that uses the χ^2 distribution

for testing

$$H_0$$
: $\mu = \mu_0$ vs. $\mu \neq \mu_0$,

where the test statistic is given by $T^2 = n(\bar{x} - \mu_0)' \mathbb{S}^{-1}(\bar{x} - \mu_0)$ and the distribution of $T^2 \sim \chi_p^2$ where n is the number of p-dimensional observations x_1, \ldots, x_n with sample mean \bar{x} ; see **[A]**¹. Take the case $\mu_0 = (0, 0, \ldots, 0)'$. Write a function to perform this test for a given data matrix \mathbb{X} .

(e) Use you one-sample version of Hotelling's T^2 test and perform a simulation study to understand whether the *size* of the test achieves the advertised α . Consider this for p varying between 2 and 50 and $\alpha = 0.05$. What does this show?

Question 2

Sometimes we might want to test whether two samples have the same amount of variation in the data. When your data is univariate (i.e., p=1), this leads to a hypothesis testing problem concerning variances. That is, you have a random sample Y_1, Y_2, \ldots, Y_n from a (univariate) normal distribution with unknown mean μ and unknown variance σ^2 . Then, you are interesting in testing $H_0: \sigma^2 = \sigma_0^2$ for some fixed value σ_0^2 versus the alternative hypothesis. This was generalised to multivariate data and the two-sample case by Box **[B]**, where the hypotheses become

$$H_0: \Sigma_1 = \Sigma_2$$
 vs. $H_1: \Sigma_1 \neq \Sigma_2$,

for two p-dimensional samples of size n_1 and n_2 , respectively. To perform a test that seperates these two hypotheses, we calculate a statistic called Box's M-test which is given by

$$M := \frac{|\mathbb{S}_1|^{N_1/2}|\mathbb{S}_2|^{N_2/2}}{|\mathbb{S}_{nl}|^{N/2}},$$

where for $i \in \{1, 2\}$, $N_i = n_i - 1$, \mathbb{S}_i is the sample covariance matrix of the *i*th sample, and \mathbb{S}_{pl} is the pooled sample covariance matrix given by

$$\mathbb{S}_{\mathsf{pl}} = \frac{N_1 \mathbb{S}_1 + N_2 \mathbb{S}_2}{N},$$

where $N := N_1 + N_2 = (n_1 + n_2 - 2)$. Box gave a χ^2 -approximation for the distribution of M which first requires calculating

$$c_1 := \left[\frac{1}{N_1} + \frac{1}{N_2} - \frac{1}{N}\right] \left[\frac{2p^2 + 2p - 1}{6(p+1)}\right],$$

then $u=-2(1-c_1)\log(M)$ is approximately $\chi^2_{\frac{1}{2}p(p+1)}$ -distributed. The null hypothesis H_0 is then rejected if $u>\chi^2_{\alpha}$ for your desired size α (e.g., $\alpha=0.05$).

(a) Take $\Sigma_1 = \Sigma_2 = I_p$, $n_1 = 250$, $n_2 = 250$, p = 3, nsims=5000 and simulate the distribution of $-2(1-c_1)\log(M)$ under the assumption that sample 1 is generated from $N_p(0,\Sigma_1)$ and sample 2 from $N_p(0,\Sigma_2)$. As the logarithm of a determinant may be numerically unstable, you may use the following R function to compute $\log(\det(x))$:

¹See the "Motivation" section at [A].

- logdet = function(x) as.numeric(determinant(x, logarithm=TRUE)\$modulus) Compare the empirical distribution obtained from your simulation to the χ^2 distribution.
- (b) Now consider what happens to the distribution if you redo the simulation with Σ_2 having the form of (AR1) with $\rho = 0.1$. What does this mean in relation to the hypothesis testing problem?
- (c) Consider the tibetskull dataset from last week and perform a hypothesis testing problem to determine if the two samples have different (population) covariances.

References

- [A] https://en.wikipedia.org/wiki/Hotelling%27s T-squared distribution
- [B] Box (1949). A General Distribution Theory for a Class of Likelihood Criteria. Biometrica 36 (3-4), 317 346.