Book draft

Mathematical Foundation of Reinforcement Learning

Shiyu Zhao

Contents

Pı	Preface					
1	Basic Concepts					
	1.1	A grid-world example	8			
	1.2	State and action	9			
	1.3	State transition	10			
	1.4	Policy	11			
	1.5	Reward	13			
	1.6	Trajectory, return, and episode	15			
	1.7	Markov decision process	17			
	1.8	Summary	19			
2	Stat	te Value and Bellman Equation	21			
	2.1	Motivating examples: Why return is important?	21			
	2.2	Motivating example: How to calculate return?	22			
	2.3	State value	24			
	2.4	Bellman equation	25			
		2.4.1 Illustrative examples	26			
		2.4.2 Alternative expressions of the Bellman equation	29			
	2.5	Solving state values from the Bellman equation	30			
		2.5.1 Matrix-vector form of the Bellman equation	30			
		2.5.2 Closed-form solution	31			
		2.5.3 Iterative solution	32			
		2.5.4 Illustrative examples	32			
	2.6	From state value to action value	34			
		2.6.1 Illustrative examples	35			
		2.6.2 Bellman equation in terms of action values	36			
	2.7	Summary	37			
	2.8	Q&A	37			
3	Opt	imal State Value and Bellman Optimality Equation	39			
	3.1	Motivating example: how to improve policies?	39			

	3.2	Optim	al state value and optimal policy
	3.3	Bellma	on optimality equation
		3.3.1	Maximization on the right-hand side of the BOE 42
		3.3.2	Matrix-vector form of the BOE
		3.3.3	Contraction mapping theorem
		3.3.4	Contraction property of the right-hand side of the BOE 47
	3.4	Solutio	ons of the BOE
	3.5	Factors	s that influence optimal policies
	3.6	Summa	ary
	3.7	Q&A	57
4	Valı	ue Itera	ation and Policy Iteration 59
	4.1	Value	iteration
		4.1.1	Elementwise form and implementation
		4.1.2	Illustrative examples
	4.2	Policy	iteration
		4.2.1	Algorithm analysis
		4.2.2	Elementwise form and implementation
		4.2.3	Illustrative examples
	4.3	Trunca	ated policy iteration
		4.3.1	Compare value iteration and policy iteration
		4.3.2	Truncated policy iteration algorithm
		4.3.3	Illustrative examples
	4.4	Summa	ary
	4.5	Q&A	
5	Mo	nte Ca	rlo Learning 79
	5.1	Motiva	ating example: Monte Carlo estimation
	5.2	The sin	mplest MC learning algorithm
		5.2.1	Converting policy iteration to be model-free
		5.2.2	MC Basic algorithm
		5.2.3	Illustrative examples
	5.3	MC Ex	xploring Starts
		5.3.1	Using samples more efficiently
		5.3.2	Updating estimate more efficiently
		5.3.3	Algorithm description
	5.4	MC lea	arning without exploring starts
		5.4.1	Soft policies
		5.4.2	Algorithm description
		5.4.3	Algorithm convergence
		5 4 4	Illustrative example 93

	5.5	Exploi	tation vs exploration	3					
	5.6	Summ	ary	8					
	5.7	Q&A		9					
6	Sto	chastic	Approximation 10	2					
	6.1	Motiva	ating example: mean estimation	2					
	6.2		ns-Monro Algorithm	4					
		6.2.1	Convergence properties	5					
		6.2.2	Application to mean estimation	8					
	6.3	Dvoret	tzky's convergence theorem	9					
		6.3.1	Proof of Dvoretzky's Theorem	0					
		6.3.2	Application to mean estimation	1					
		6.3.3	Application to the Robbins-Monro theorem	2					
		6.3.4	An extension of Dvoretzky's Theorem	3					
	6.4	Stocha	astic gradient descent	4					
		6.4.1	Application to mean estimation	6					
		6.4.2	Convergence pattern of SGD	6					
		6.4.3	A deterministic formulation of SGD	8					
		6.4.4	BGD, SGD, and Mini-batch GD	9					
		6.4.5	Convergence of SGD	1					
	6.5	Summ	ary	3					
	6.6	Q&A		3					
7	Ten	nporal-	Difference Learning 12	5					
	7.1	-	ating examples: stochastic algorithms						
	7.2								
			Algorithm	7					
		7.2.2	Properties	9					
		7.2.3	Convergence						
	7.3	TD lea	arning of action values: Sarsa	3					
		7.3.1	Algorithm	3					
		7.3.2	Implementation	4					
	7.4	TD lea	arning of action values: Expected Sarsa	6					
	7.5								
	7.6	•							
		7.6.1	Algorithm	0					
		7.6.2	Off-policy vs on-policy	1					
		7.6.3	Q-learning is off-policy	2					
		7.6.4	Implementation	3					
		7.6.5	Illustrative examples	4					
	7.7	A unif	ied viewpoint	7					

	7.8	Summary	147							
	7.9	Q&A	149							
8	Valu	Value Function Approximation 152								
	8.1	Motivating examples: curve fitting	152							
	8.2	Objective function	154							
	8.3	Optimization algorithms	161							
	8.4	Linear function approximation	162							
	8.5	Illustrative examples	163							
	8.6	Theoretical analysis of TD learning	167							
		8.6.1 Convergence analysis	168							
		8.6.2 TD learning minimizes the projected Bellman error	173							
		8.6.3 Least-squares TD	176							
	8.7	Sarsa with function approximation	178							
	8.8	Q-learning with function approximation	179							
	8.9	Deep Q-learning	181							
		8.9.1 Algorithm description	181							
		8.9.2 Illustrative examples	183							
	8.10	Summary	186							
	8.11	Q&A	186							
9	Policy Gradient Methods 18									
	9.1	Basic idea of policy gradient	188							
	9.2	Metrics to define optimal policies	189							
	9.3	Gradients of the metrics	193							
		9.3.1 Gradients in the discounted case	195							
		9.3.2 Gradients in the undiscounted case	200							
	9.4	Policy gradient by Monte Carlo estimation	205							
	9.5	Summary	207							
	9.6	Q&A	207							
\mathbf{A}	Pre	liminaries to Probability Theory	209							
В	Preliminaries to Gradient Descent									
	B.1	Basics	214							
	B.2	Gradient-Descent Algorithms	217							