A Analysis of W in MoSLoRA

A.1 Vanilla MoSLoRA

177

178

181

182

183

184

185

186

189

190

192

193

194

195

196

197

198

199

200

201

For an arbitrary input x, we have:

$$y = x\mathbf{W}_{merge}; \mathbf{W}_{merge} = \mathbf{W}_0 + \mathbf{AWB}, \tag{2}$$

where the W_0 is frozen during training. Then we have:

$$\frac{\partial y}{\partial \mathbf{A}} = \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T \mathbf{W}^T; \frac{\partial y}{\partial \mathbf{W}} = \mathbf{A}^T \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T; \frac{\partial y}{\partial \mathbf{B}} = \mathbf{W}^T \mathbf{A}^T \frac{\partial y}{\partial \mathbf{W}_{merge}}$$
(3)

Denote the learning rate as η , the updating process is:

$$\mathbf{A} \leftarrow \mathbf{A} - \eta \frac{\partial y}{\partial \mathbf{A}} = \mathbf{A} - \eta \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T \mathbf{W}^T$$
 (4)

The process is similar for **W** and **B**. Let $\Delta = \frac{\partial y}{\partial \mathbf{W}_{merge}}$. Thus, the weight of the updated LoRA branch would be:

$$\mathbf{W}_{LoRA} = (\mathbf{A} - \eta \Delta \mathbf{B}^T \mathbf{W}^T)(\mathbf{W} - \eta \mathbf{A}^T \Delta \mathbf{B}^T)(\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta)$$

$$= (\mathbf{A} \mathbf{W} - \eta \mathbf{A} \mathbf{A}^T \Delta \mathbf{B}^T - \eta \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{W} + \eta^2 \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{A}^T \Delta \mathbf{B}^T)(\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta)$$
(5)

A.2 Merge A and W

Denote $\hat{A} = AW$. It means that we initialize \hat{A} as the same as AW. The output is the same:

$$y = x\mathbf{W}_{merge}; \mathbf{W}_{merge} = \mathbf{W}_0 + \hat{\mathbf{A}}\mathbf{B} = \mathbf{W}_0 + \mathbf{A}\mathbf{W}\mathbf{B}.$$
 (6)

However, the corresponding gradients would be:

$$\frac{\partial y}{\partial \hat{\mathbf{A}}} = \frac{\partial y}{\partial \mathbf{W}_{merge}} \mathbf{B}^T = \Delta \mathbf{B}^T; \frac{\partial y}{\partial \mathbf{B}} = \hat{\mathbf{A}}^T \frac{\partial y}{\partial \mathbf{W}_{merge}} = \hat{\mathbf{A}}^T \Delta$$
 (7)

Based on that, we can get the updated LoRA after updating the parameters:

$$\hat{\mathbf{W}}_{LoRA} = (\hat{\mathbf{A}} - \eta \Delta \mathbf{B}^{T})(\mathbf{B} - \eta \hat{\mathbf{A}}^{T} \Delta)$$

$$= (\mathbf{A}\mathbf{W} - \eta \Delta \mathbf{B}^{T})(\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta)$$
(8)

A.3 Comparison

Comparing Equation 5 and 8, we can conclude that the updated weights are not the same, since

$$\hat{\mathbf{W}}_{LoRA} - \mathbf{W}_{LoRA} = (-\eta \Delta \mathbf{B}^T + \eta \mathbf{A} \mathbf{A}^T \Delta \mathbf{B}^T + \eta \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{W} - \eta^2 \Delta \mathbf{B}^T \mathbf{W}^T \mathbf{A}^T \Delta \mathbf{B}^T) (\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta)$$

$$= (\eta (\mathbf{A} - \eta \Delta \mathbf{B}^T \mathbf{W}^T) \mathbf{A}^T \Delta \mathbf{B}^T + \eta \Delta \mathbf{B}^T (\mathbf{W}^T \mathbf{W} - \mathbf{I})) (\mathbf{B} - \eta \mathbf{W}^T \mathbf{A}^T \Delta) \neq \mathbf{0}.$$
(9)

A.4 Fix W as Orthogonal Matrix

If we fix W as **orthogonal matrix and do not update** (i.e., $WW^{T} = I$), the updated LoRA would be:

$$\mathbf{W}_{LoRA}^{\mathbf{I}} = (\mathbf{A} - \eta \Delta \mathbf{B}^{T} \mathbf{W}^{T}) \mathbf{W} (\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta)$$

$$= (\mathbf{A} \mathbf{W} - \eta \Delta \mathbf{B}^{T} \mathbf{W}^{T} \mathbf{W}) (\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta)$$

$$= (\mathbf{A} \mathbf{W} - \eta \Delta \mathbf{B}^{T}) (\mathbf{B} - \eta \mathbf{W}^{T} \mathbf{A}^{T} \Delta) = \hat{\mathbf{W}}_{LoRA}$$
(10)

A.5 Conclusion

Though mathematically equivalent initialized, the optimization process would be different if \mathbf{W} is learnable. Specifically, the optimization process would be the same i.i.f \mathbf{W} is a fixed orthogonal matrix.