Assignment 1

August 25, 2020

- 1. Let x and $y \ge 0$ be two real numbers. Prove that $|x| \le y$ iff $-y \le x \le y$.
- 2. If r is rational $(r \neq 0)$ and x is irrational. Prove that r + x and rx are irrational.
- 3. Let E be a non empty set of real numbers. Suppose α is a lower bound of E and β is an upper bound of E. Prove that $\alpha \leq \beta$.
- 4. Let S and T be nonempty bounded subsets of $\mathbb R.$ Prove if $S\subseteq T$, then $infT\leq infS\leq supS\leq supT$.
- 5. Prove $sup(S \cup T) = max\{supS, supT\}$.
- 6. Let E be a non empty set of real numbers which is bounded below. Let -E be the set of all numbers -x, where $x \in E$. Prove that

$$infE = -sup(-E)$$
.

- 7. $x \in \mathbb{R}$. Then $|x| < \varepsilon$ for every $\varepsilon > 0$ iff x = 0.
- 8. The set of integers \mathbb{Z} is a countable set.
- 9. The set of rational numbers \mathbb{Q} is countable.
- 10. The set of irrationals is uncountable.