This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

In the Claims:

9492821002

Claim 1 (currently amended): A method in a processor comprising steps of:

identifying an instruction loop having a plurality of instructions:

fetching said plurality of instructions from a program memory;

storing said plurality of instructions in a register queue comprising a plurality of registers:

determining whether said processor requires execution of said instruction loop:

outputting said plurality of instructions from said register queue when said

processor requires execution of said instruction loop:

executing said plurality of instructions, wherein said executing step comprises:

executing at least one instruction stored in a first register of said

plurality of registers,

setting an increment access signal to execute at least one instruction stored in a second register of said plurality of registers, wherein said second register is immediately in sequence after said first register.

Claim 2 (original): The method of claim 1 wherein each of said plurality of instructions in said instruction loop is a VLIW packet.

Claim 3 (original): The method of claim 1 wherein storing one of said plurality of

instructions in said register queue comprises steps of:

adjusting a head pointer to point to a selected register in said register queue; writing said one of said plurality of instructions into said selected register.

Claim 4 (original): The method of claim 1 wherein said register queue contains a most recently executed plurality of instructions.

Claim 5 (original): The method of claim 1 wherein said step of determining whether said processor requires execution of said instruction loop comprises checking a PC value.

Claim 6 (original): The method of claim 1 wherein outputting one of said plurality of instructions from said register queue comprises steps of:

adjusting an access pointer to point to a selected register in said register queue; outputting said one of said plurality of instructions from said selected register.

Claim 7 (original): The method of claim 6 wherein said access pointer is held constant.

Claim 8 (original): The method of claim 6 wherein said access pointer is incremented by one.

9492821002

Attorney Docket No.: 00CON104P

Claim 9 (original): The method of claim 6 wherein said access pointer is decremented by a branch interval.

Claim 10 (original): The method of claim 1 wherein said program memory comprises a cache.

Claim 11 (original): The method of claim 1 wherein said program memory comprises an external memory.

Claim 12 (original): A circuit in a processor comprising:

an instruction fetch module configured to fetch a plurality of instructions, said plurality of instructions belonging to an instruction loop in a program memory;

a register queue configured to store said plurality of instructions, said register queue comprising a plurality of registers;

a tracking module configured to keep track of a desired instruction in said instruction loop;

circuitry for setting an increment access signal to execute at least one instruction stored in a second register of said plurality of registers, wherein said second register is immediately in sequence after a first register of said plurality of registers for which at least one instruction stored therein has just been executed;

an output module configured to output said desired instruction for decoding and execution by said processor.

Claim 13 (original): The circuit of claim 12 wherein each of said plurality of instructions belonging to said instruction loop is a VLIW packet.

Claim 14 (original): The circuit of claim 12 wherein said tracking module comprises a head pointer configured to point to a selected register in said register queue, wherein said selected register stores said desired instruction.

Claim 15 (original): The circuit of claim 12 wherein said register queue is configured to contain a most recently executed plurality of instructions.

Claim 16 (original): The circuit of claim 12 wherein said instruction fetch module checks a PC value to determine whether said processor requires fetching and execution of said instruction loop.

Claim 17 (original): The circuit of claim 12 wherein said output module comprises an access pointer, said access pointer being configured to point to a selected register in said register queue, wherein said selected register outputs said desired instruction.

Claim 18 (original): The circuit of claim 17 wherein said access pointer is held constant.

Claim 19 (original): The circuit of claim 17 wherein said access pointer is incremented by one.

Claim 20 (original): The circuit of claim 17 wherein said access pointer is decremented by a branch interval.

Claim 21 (original): The circuit of claim 12 wherein said program memory comprises a cache.

Claim 22 (original): The circuit of claim 12 wherein said program memory comprises an external memory.

Claim 23 (currently amended): A method in a processor comprising steps of: identifying a loop having a plurality of VLIW packets; fetching said plurality of VLIW packets from a program memory;

storing said plurality of VLIW packets in a register queue comprising a plurality of registers;

determining whether said processor requires execution of said loop;
outputting said plurality of VLIW packets from said register queue when said
processor requires execution of said loop;

executing said plurality of VLIW packets, wherein said executing step comprises:

executing at least one instruction stored in a first register of said

plurality of registers.

setting an increment access signal to execute at least one instruction
stored in a second register of said plurality of registers, wherein said second
register is immediately in sequence after said first register.

Claim 24 (original): The method of claim 23 wherein storing one of said plurality of VLIW packets in said register queue comprises steps of:

adjusting a head pointer to point to a selected register in said register queue; writing said one of said plurality of VLIW packets into said selected register.

Claim 25 (original): The method of claim 23 wherein said register queue contains a most recently executed plurality of VLIW packets.

Claim 26 (original): The method of claim 23 wherein said step of determining whether said processor requires execution of said loop comprises checking a PC value.

Claim 27 (original): The method of claim 23 wherein outputting one of said plurality of VLIW packets from said register queue comprises steps of:

adjusting an access pointer to point to a selected register in said register queue; outputting said one of said plurality of VLIW packets from said selected register.

Claim 28 (original): The method of claim 27 wherein said access pointer is held constant.

Claim 29 (original): The method of claim 27 wherein said access pointer is incremented by one.

Claim 30 (original): The method of claim 27 wherein said access pointer is decremented by a branch interval.

Claim 31 (original): The method of claim 23 wherein said program memory comprises a cache.

Claim 32 (original): The method of claim 23 wherein said program memory comprises an external memory.