Literatur zusammenfassung

Philipp Franke

2023-01-28

Literatur

1.

südliche populationsgrenzen von zwei molcharten. wassertemperatur inziziiert fortpflanzung. * (i) how do the population dynamics of these two populations vary over their breeding period? * (ii) How do environmental covariates (i.e., ground and water temperature, precipitation and photoperiod) affect the breeding-migration patterns in each species? And * (iii) do individual traits, such as sex, body condition and body size (which can be considered a proxy for fecundity) influence these breeding-migration patterns? (Mettouris, Pitta, and Giokas 2018)

2.

nördliche KM kommen jedes Jahr ins Fortpflanzungsgewässer. Erwachsen mit >2 Jahren (nur wenn schnell gewachsen) sind eher mit 3 oder 4. Überleben zwischen den Jahren zwischen 33-57 Prozent (Arntzen and Teunis 1993)

3.

Untersuchungen in Bonn, 3 natürliche Weiher, 3 neu geschaffene, Weiher eingezäunt mit "drift fences" adulte sind sehr weiher-treu (von 132 gefangenen adulten werden 83=63% wieder gefangen, 1 davon NICHT im gleichen Gewässer), juvenile wandern <860m. 176 junge markiert -> 35 wiedergefangen in 10-860m Distanz, 17 in terrestrischen Fallen in der Umgebung zw 10 und 60m Distanz nach 4 Tagen (mittelwert), 7 junge im Waldrand gefangen 120 - 240 m nach 11 Tagen (mittelwert), 13 in zäune rund um andere Gewässer in 300 - 860m nach 23 Tagen (Mittelwert) (A. Kupfer and Kneitz 2000)

4.

Table 1: Relative Wanderleistung adulter (subadulter) Triturus cristatus

$tier_Nr$	fangort	${\it wieder fangort}$	$\operatorname{distanz}$	tage
1	Gew1	Waldrand	950	30
1	Waldrand	Gew1	950	24
2	Gew3	GewC	1140	257
3	Gew1	Gew2	860	388
4	Gew2	GewD	430	333

tier_Nr	fangort	wiederfangort	distanz	tage
1	Gew2	Waldrand	240	35
2	Gew3	GewD	530	65
3	GewD	Gew2	430	29
4	Gew1	GewB	1290	413
5	Gew2	GewD	430	333

Mittlere Wanderdistanz gemäss @ref(tab:tab:wanderdistanzen), beschrieben in @ref{lit4}:

[1] 725

(ALEXANDER Kupfer 1998)

Figure 1: The cars data.

See Figure @ref(fig:a).

Literaturverzeichnis

Arntzen, JW, and SFM Teunis. 1993. "A Six Year Study on the Population Dynamics of the Crested Newt (Triturus Cristatus) Following the Colonization of a Newly Created Pond." *Herpetological Journal* 3 (3): 99–110.

- Kupfer, A, and S Kneitz. 2000. "Population Ecology of the Great Crested Newt (Triturus Cristatus) in an Agricultural Landscape Dynamics, Pond Fidelity and Dispersal." *Herpetological Journal* 10 (4): 165–71.
- Kupfer, ALEXANDER. 1998. "Wanderstrecken Einzelner Kammolche (Triturus Cristatus) in Einem Agrarlebensraum." Zeitschrift Für Feldherpetologie 5 (1/2): 238–41.
- Mettouris, Onoufrios, Eva Pitta, and Sinos Giokas. 2018. "Breeding-Migration Patterns and Reproductive Dynamics of Two Syntopic Newt Species (Amphibia, Salamandridae) at a Temporary Pond in Southern Greece." *Hydrobiologia* 819 (1): 1–15.