air quality index predication

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
from sklearn.metrics import classification_report
from sklearn import metrics
from sklearn import tree

// [105] df=pd.read_csv('city_day.csv',na_values='=')

// [106] df

// [106] df
```

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	S02	03	Benzene	Toluene	Xylene	AQI	AQI_Bucket
0	Ahmedabad	2015-01-01	NaN	NaN	0.92	18.22	17.15	NaN	0.92	27.64	133.36	0.00	0.02	0.00	NaN	NaN
1	Ahmedabad	2015-01-02	NaN	NaN	0.97	15.69	16.46	NaN	0.97	24.55	34.06	3.68	5.50	3.77	NaN	NaN
2	Ahmedabad	2015-01-03	NaN	NaN	17.40	19.30	29.70	NaN	17.40	29.07	30.70	6.80	16.40	2.25	NaN	NaN
3	Ahmedabad	2015-01-04	NaN	NaN	1.70	18.48	17.97	NaN	1.70	18.59	36.08	4.43	10.14	1.00	NaN	NaN
4	Ahmedabad	2015-01-05	NaN	NaN	22.10	21.42	37.76	NaN	22.10	39.33	39.31	7.01	18.89	2.78	NaN	NaN
29526	Visakhapatnam	2020-06-27	15.02	50.94	7.68	25.06	19.54	12.47	0.47	8.55	23.30	2.24	12.07	0.73	41.0	Good
29527	Visakhapatnam	2020-06-28	24.38	74.09	3.42	26.06	16.53	11.99	0.52	12.72	30.14	0.74	2.21	0.38	70.0	Satisfactory
29528	Visakhapatnam	2020-06-29	22.91	65.73	3.45	29.53	18.33	10.71	0.48	8.42	30.96	0.01	0.01	0.00	68.0	Satisfactory
29529	Visakhapatnam	2020-06-30	16.64	49.97	4.05	29.26	18.80	10.03	0.52	9.84	28.30	0.00	0.00	0.00	54.0	Satisfactory
29530	Visakhapatnam	2020-07-01	15.00	66.00	0.40	26.85	14.05	5.20	0.59	2.10	17.05	NaN	NaN	NaN	50.0	Good

29531 rows × 16 columns

/ ls [107] df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 29531 entries, 0 to 29530 Data columns (total 16 columns):

рата	columns (to	tai ib	columns):	
#	Column	Non-Nu	ull Count	Dtype
0	City	29531	non-null	object
1	Date	29531	non-null	object
2	PM2.5	24933	non-null	float64
3	PM10	18391	non-null	float64
4	NO	25949	non-null	float64
5	NO2	25946	non-null	float64
6	NOx	25346	non-null	float64
7	NH3	19203	non-null	float64
8	CO	27472	non-null	float64
9	502	25677	non-null	float64
10	03	25509	non-null	float64
11	Benzene	23908	non-null	float64
12	Toluene	21490	non-null	float64
13	Xylene	11422	non-null	float64
14	AQI	24850	non-null	float64
15	AQI_Bucket	24850	non-null	object
dtype	es: float64(13), ol	oject(3)	
	_	C. MD		

memory usage: 3.6+ MB

'_s [108] df.isnull().sum()

City 0 Date 0 PM2.5 4598 PM10 11140 NO 3582 NO2 3585 NOx 4185 NH3 10328 CO 2059 S02 3854 03 4022 Benzene 5623 Toluene 8041 Xylene 18109 AQI 4681 AQI_Bucket 4681

dtype: int64

df.head(6)

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	S02	03	Benzene	Toluene	Xylene	AQI	AQI_Bucket	
0	Ahmedabad	2015-01-01	NaN	NaN	0.92	18.22	17.15	NaN	0.92	27.64	133.36	0.00	0.02	0.00	NaN	NaN	
1	Ahmedabad	2015-01-02	NaN	NaN	0.97	15.69	16.46	NaN	0.97	24.55	34.06	3.68	5.50	3.77	NaN	NaN	
2	Ahmedabad	2015-01-03	NaN	NaN	17.40	19.30	29.70	NaN	17.40	29.07	30.70	6.80	16.40	2.25	NaN	NaN	
3	Ahmedabad	2015-01-04	NaN	NaN	1.70	18.48	17.97	NaN	1.70	18.59	36.08	4.43	10.14	1.00	NaN	NaN	
4	Ahmedabad	2015-01-05	NaN	NaN	22.10	21.42	37.76	NaN	22.10	39.33	39.31	7.01	18.89	2.78	NaN	NaN	
5	Ahmedabad	2015-01-06	NaN	NaN	45.41	38.48	81.50	NaN	45.41	45.76	46.51	5.42	10.83	1.93	NaN	NaN	

```
| Tindex(['City', 'Date', 'PM2.5', 'PM10', 'NO', 'NO2', 'NH3', 'CO', 'S02', '03', 'Benzene', 'Toluene', 'AQI', 'AQI_Bucket'], dtype='object') | dtype='object') | dtype='object') | dtype='object' | dtype='object
```

replace null values with mean

```
/ [145] data2=data2.fillna(data2.mean())

<ipython-input-145-d18b7429a1bb>:1: FutureWarning:

The default value of numeric_only in DataFrame.mean is deprecated. In a future version, it will default to False. In addition, specifying 'numeric_only=None' is dep
```

/ [146] data2.head()

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	S02	03	Benzene	Toluene	Xylene	IQA	AQI_Bucket	H
0	Ahmedabad	2015-01-01	67.450578	118.127103	0.92	18.22	17.15	23.483476	0.92	27.64	133.36	0.00	0.02	0.00	166.463581	NaN	11
1	Ahmedabad	2015-01-02	67.450578	118.127103	0.97	15.69	16.46	23.483476	0.97	24.55	34.06	3.68	5.50	3.77	166.463581	NaN	
2	Ahmedabad	2015-01-03	67.450578	118.127103	17.40	19.30	29.70	23.483476	17.40	29.07	30.70	6.80	16.40	2.25	166.463581	NaN	
3	Ahmedabad	2015-01-04	67.450578	118.127103	1.70	18.48	17.97	23.483476	1.70	18.59	36.08	4.43	10.14	1.00	166.463581	NaN	
4	Ahmedabad	2015-01-05	67.450578	118.127103	22.10	21.42	37.76	23.483476	22.10	39.33	39.31	7.01	18.89	2.78	166.463581	NaN	

mapping

```
[148] dist=(data2['City'])
    distset=set(dist)
    dd=list(distset)
    dictofWords={ dd[i] : i for i in range (0, len(dd))}
    data2['City']=data2['City'].map(dictofWords)

dist=(data2['AQI_Bucket'])
    distset=set(dist)
    dd=list(distset)
    dist(distset)
    dd=list(distset)
    dictofWords={ dd[i] : i for i in range (0, len(dd))}
    data2['AQI_Bucket']=data2['AQI_Bucket'].map(dictofWords)

[150] data2["AQI_Bucket"]=data2["AQI_Bucket"].fillna(data2["AQI_Bucket"].mean())

[151] data2
```

	Ci	ty	Date	PM2.5	PM10	NO	NO2	NOx	NH3	СО	S02	03	Benzene	Toluene	Xylene	AQI	AQI_Bucket	田
0		21	2015-01-01	67.450578	118.127103	0.92	18.22	17.15	23.483476	0.92	27.64	133.36	0.00000	0.020000	0.000000	166.463581	5	ıl.
1		21	2015-01-02	67.450578	118.127103	0.97	15.69	16.46	23.483476	0.97	24.55	34.06	3.68000	5.500000	3.770000	166.463581	5	
2		21	2015-01-03	67.450578	118.127103	17.40	19.30	29.70	23.483476	17.40	29.07	30.70	6.80000	16.400000	2.250000	166.463581	5	
3		21	2015-01-04	67.450578	118.127103	1.70	18.48	17.97	23.483476	1.70	18.59	36.08	4.43000	10.140000	1.000000	166.463581	5	
4		21	2015-01-05	67.450578	118.127103	22.10	21.42	37.76	23.483476	22.10	39.33	39.31	7.01000	18.890000	2.780000	166.463581	5	
295	26	3	2020-06-27	15.020000	50.940000	7.68	25.06	19.54	12.470000	0.47	8.55	23.30	2.24000	12.070000	0.730000	41.000000	2	
295	27	3	2020-06-28	24.380000	74.090000	3.42	26.06	16.53	11.990000	0.52	12.72	30.14	0.74000	2.210000	0.380000	70.000000	1	
295	28	3	2020-06-29	22.910000	65.730000	3.45	29.53	18.33	10.710000	0.48	8.42	30.96	0.01000	0.010000	0.000000	68.000000	1	
295	29	3	2020-06-30	16.640000	49.970000	4.05	29.26	18.80	10.030000	0.52	9.84	28.30	0.00000	0.000000	0.000000	54.000000	1	

√ [153] data2

	City	Date	PM2.5	PM10	NO	NO2	NOx	NH3	со	S02	03	Benzene	Toluene	Xylene	AQI	AQI_Bucket
0	21	2015-01-01	67.450578	118.127103	0.92	18.22	17.15	23.483476	0.92	27.64	133.36	0.00000	0.020000	0.000000	166.463581	5
1	21	2015-01-02	67.450578	118.127103	0.97	15.69	16.46	23.483476	0.97	24.55	34.06	3.68000	5.500000	3.770000	166.463581	5
2	21	2015-01-03	67.450578	118.127103	17.40	19.30	29.70	23.483476	17.40	29.07	30.70	6.80000	16.400000	2.250000	166.463581	5
3	21	2015-01-04	67.450578	118.127103	1.70	18.48	17.97	23.483476	1.70	18.59	36.08	4.43000	10.140000	1.000000	166.463581	5
4	21	2015-01-05	67.450578	118.127103	22.10	21.42	37.76	23.483476	22.10	39.33	39.31	7.01000	18.890000	2.780000	166.463581	5

```
[ [154] data2=data2.drop('Date',1)
       <ipython-input-154-8ab6c7f675ab>:1: FutureWarning:
       In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only.
/ [155] data2.columns
       Index(['City', 'PM2.5', 'PM10', 'NO', 'NO2', 'NOx', 'NH3', 'CO', 'SO2', 'O3',
             'Benzene', 'Toluene', 'Xylene', 'AQI', 'AQI_Bucket'],
            dtype='object')
      data2=data2.drop('AQI_Bucket', 1)
      <ipython-input-156-72484e9c5a44>:1: FutureWarning:
       In a future version of pandas all arguments of DataFrame.drop except for the argument 'labels' will be keyword-only.
[157] data2.columns
       Index(['City', 'PM2.5', 'PM10', 'NO', 'NO2', 'NOx', 'NH3', 'CO', 'SO2', 'O3',
             'Benzene', 'Toluene', 'Xylene', 'AQI'],
            dtype='object')
           #EDA(analyse the data)
 [158] import plotly.express as px
 [159] #plotting the bubble chart
           fig = px.scatter(df, x="City",y="AQI")
  [160] #Showing the plot
           fig.show()
```


's [161] #plotting the bubble chart fig2=px.scatter(df, x="PM10" , y="AQI")

 $_{\text{Os}}^{\checkmark}$ [162] #showing the plot fig2.show()

2000 1500 500 0 200 400 600 800 1000

PM10

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Select only valid columns or specify the value of numeric_only to silence this warning.

fig5=px.scatter(df, x="NOx",y="AQI")

√ [166] plt.figure(figsize=(12,10))

<Axes: >

sns.heatmap(df.corr(),cmap='coolwarm',annot=True)

<ipython-input-166-080b192cd7cf>:2: FutureWarning:

TIPY CHOIL-THEACTION-MONDED TYZECU/CT/. Z. TUCCH EWALHING.

The default value of numeric_only in DataFrame.corr is deprecated. In a future version, it will default to False. Selec <Axes: >

															1.0
PM2.5	1	0.85	0.43	0.35	0.44	0.28	0.09	0.13	0.16	0.024	0.12	0.11	0.66		
PM10	0.85	1	0.5	0.46	0.53	0.38	0.11	0.26	0.24	0.022		0.082	0.8		
<u> </u>	0.43	0.5	1	0.48	0.79	0.19	0.21		0.015	0.036	0.15	0.094	0.45	-	8.0
NO2	0.35	0.46	0.48	1	0.63	0.23	0.36	0.39	0.29	0.025	0.27	0.17	0.54		
NOx -	0.44	0.53	0.79	0.63	1	0.17	0.23	0.24	0.093	0.039	0.19	0.087	0.49		0.6
NH3	0.28	0.38	0.19	0.23	0.17	1	0.1	-0.039	0.095	-0.016	0.013	-0.02	0.25		0.6
8 -	0.09	0.11	0.21	0.36	0.23	0.1	1	0.49	0.042	0.062	0.28	0.15	0.68		
205	0.13	0.26	0.17	0.39	0.24	-0.039	0.49	1	0.16	0.036	0.3	0.25	0.49	-	0.4
03	0.16	0.24	0.015	0.29	0.093	0.095	0.042	0.16	1	0.02	0.13	0.11			
Toluene Benzene	0.024	0.022	0.036	0.025	0.039	-0.016	0.062	0.036	0.02	1	0.74	0.42	0.044		0.2
Toluene	0.12		0.15	0.27	0.19	0.013	0.28	0.3	0.13	0.74	1	0.42	0.28		0.2
Xylene	0.11	0.082	0.094	0.17	0.087	-0.02	0.15	0.25	0.11	0.42	0.42	1	0.17		
Ā -	0.66	0.8	0.45	0.54	0.49	0.25	0.68	0.49		0.044	0.28		1	-	0.0
	PM2.5	PM10	NO	NO2	NÓx	NH3	co	so2	ОЗ	Benzene	Toluene	Xylene	AQI		

Lucknow

Gurugram

Patna Delhi

Ahmedabad

iruvananthapuram

Kochi

Hyderabad

Visakhapatnam Amritsar

Amaravati Chandigarh

```
[137] #preprocessing , feature selecation
_{0s}^{\prime} [138] # train and test split data

✓ [139] #training multiple models

// [167] data2.info()
   <<class 'pandas.core.frame.DataFrame'>
       RangeIndex: 29531 entries, 0 to 29530
       Data columns (total 14 columns):
            Column Non-Null Count Dtype
        --- ----- ------
            City
                    29531 non-null int64
            PM2.5
                   29531 non-null float64
            PM10
                   29531 non-null float64
        3
            NO
                     29531 non-null float64
            NO2
                    29531 non-null float64
                    29531 non-null float64
        5
            NOx
        6
            NH3
                   29531 non-null float64
            CO
                    29531 non-null float64
        8
            502
                  29531 non-null float64
        9 03
                    29531 non-null float64
        10 Benzene 29531 non-null float64
        11 Toluene 29531 non-null float64
        12 Xylene 29531 non-null float64
        13 AQI
                    29531 non-null float64
       dtypes: float64(13), int64(1)
       memory usage: 3.2 MB

√ [168] data2.columns

       Index(['City', 'PM2.5', 'PM10', 'NO', 'NO2', 'NOx', 'NH3', 'CO', 'SO2', 'O3',
              'Benzene', 'Toluene', 'Xylene', 'AQI'],
             dtype='object')

'[169] features = data2[['City', 'PM2.5', 'PM10', 'N0', 'N02', 'N0x', 'NH3', 'C0', 'S02', '03', 'Benzene', 'Toluene', 'Xylene']]

       labels = data2['AQI']
```

```
_{0s}^{\checkmark} [170] #splitting into train and test data
_{0s}^{\checkmark} [173] from sklearn.model_selection import train_test_split
         Xtrain, Xtest, Ytrain, Ytest = train_test_split(features, labels, test_size = 0.2, random_state=2)

// [177] from sklearn.ensemble import RandomForestRegressor
         from sklearn.datasets import make_regression
         regr = RandomForestRegressor(max_depth=2,random_state=0)
         regr.fit(Xtrain, Ytrain)
         print(regr.predict(Xtest))
         [120.44445696 120.44445696 120.44445696 ... 120.44445696 307.33721799
          307.33721799]

√
0s [178] y_pred=regr.predict(Xtest)

_{0s}^{\checkmark} [181] from sklearn.metrics import r2_score
V [182] r2_score(Ytest, y_pred)
```

0.6540144120689928