Lecture 8: Number Theory for Public Key Cryptography

TTM4135

Relates to Stallings Chapters 2 and 5

Spring Semester, 2025

Reminder – symmetric key encryption

Reminder – public key encryption

Reminder – signatures

Motivation

- Number theoretic problems are at the foundation of public key cryptography (e.g encryption, signatures) in use today.
- ► In order to use these problems we need efficient ways to generate large prime numbers.
- We also need to define hard computational problems which we can base our cryptosystems on.

Outline

Chinese remainder theorem

Euler function ϕ

Testing for primality
Fermat Test
Miller–Rabin Test

Some Basic Complexity Theory

Factorisation problem

Discrete logarithm problem

Chinese remainder theorem

Theorem

Let d_1, d_2, \ldots, d_r be pairwise relatively prime and $n = d_1 d_2 \ldots d_r$. Given any integers c_i there exists a unique integer x with $0 \le x < n$ such that

$$egin{array}{lcl} X & \equiv & c_1 \pmod{d_1} \ X & \equiv & c_2 \pmod{d_2} \ & dots \ X & \equiv & c_r \pmod{d_r} \end{array}$$

In fact $x \equiv \sum (\frac{n}{d_i}) y_i c_i \pmod{n}$ where $y_i \equiv (\frac{n}{d_i})^{-1} \pmod{d_i}$.

Example

Solve
$$x \equiv 5 \pmod{6}$$

 $x \equiv 33 \pmod{35}$

Since 6 and 35 are relatively prime we can use CRT. Set $n = 6 \times 35 = 210$.

Euler function ϕ

Definition

For a positive integer n, the Euler function $\phi(n)$ denotes the number of positive integers less than n and relatively prime to n.

- ► Recall that a and b relatively prime is the same as gcd(a, b) = 1.
- The set of positive integers less than n and relatively prime to n form the reduced residue class \mathbb{Z}_n^* .
 - ▶ So in particular, $\phi(n)$ gives us the *size* of \mathbb{Z}_n^* .

Example

 $\phi(10) = 4$ since 1,3,7,9 are each relatively prime to 10.

$$\mathbb{Z}_{10}^* = \{1, 3, 7, 9\}$$

Properties of $\phi(n)$

- 1. $\phi(p) = p 1$ for p prime
- 2. $\phi(pq) = (p-1)(q-1)$ for p and q distinct primes
- 3. Let $n = p_1^{e_1} \dots p_t^{e_t}$ where p_i are distinct primes. Then

$$\phi(n) = \prod_{i=1}^{t} p_i^{e_i-1} (p_i - 1)$$

where \prod represents the product

Example
$$\phi(15) = 2 \times 4 = 8$$

 $\phi(24) = 2^2(2-1)3^0(3-1) = 8$
(where $24 = 2^3 \times 3$)

Two important theorems

Theorem (Fermat)

Let p be a prime. Then

$$a^{p-1} \mod p = 1$$

for all integers a with 1 < a < p - 1

Theorem (Euler)

$$a^{\phi(n)} \mod n = 1$$

if
$$gcd(a, n) = 1$$
.

▶ When p is prime then $\phi(p) = p - 1$ so Fermat's theorem is a special case of Euler's theorem

Testing for primality

- Testing for primality by trial division is not practical except for very small numbers
- ► There are a number of fast methods which are probabilistic: they require random input and can fail in exceptional circumstances
- In 2002, three Indian mathematicians, Agrawal, Saxena and Kayal, found a polynomial time deterministic primality test. Although a huge theoretical breakthrough, the probabilistic methods are still used in practice.
- We examine one of the simplest tests: the Fermat primality test and then extend it to the Miller-Rabin test

Lecture 8: Number Theory for Public Key Cryptography

Lecture 8: Number Theory for Public Key Cryptography

Testing for primality

Outline

Fermat Test

Chinese remainder theorem

Euler function ϕ

Testing for primality
Fermat Test

Some Basic Complexity Theory

Factorisation problem

Discrete logarithm problem

Fermat primality test

Fermat Test

- ▶ Recall that Fermat's theorem says that if a number p is prime then $a^{p-1} \mod p = 1$ for all a with gcd(a, p) = 1
- ▶ If we examine a number n and find that $a^{n-1} \mod n \neq 1$ then we know that n is *not* prime
- This is essentially the Fermat primality test: if a number satisfies Fermat's equation then we assume that it is prime
- The Fermat primality test can fail with some probability
- We reduce the failure probability by repeating the test with different base values a

Fermat Test

Fermat primality test

- Inputs: ▶ *n*: a value to test for primality;
 - k: a parameter that determines the number of times to test for primality
- Output: composite if *n* is composite, otherwise

probable prime

Algorithm: repeat *k* times:

- 1. pick a randomly in the range 1 < a < n 1
- 2. if $a^{n-1} \mod n \neq 1$ then return composite

return probable prime

Fermat Test

Effectiveness of Fermat test

- ▶ If the test outputs composite then n is definitely composite
- ▶ The test can can output probable prime if *n* is composite. In this case *n* is called a *pseudoprime*.
- There are some composite numbers for which the test will always output probable prime for every a with gcd(a, n) = 1: these are called Carmichael numbers
- ► First few Carmichael numbers are: 561, 1105, 1729, 2465, ...

Fermat Test

Carmichael Numbers

A Carmichael number *n* is a *composite* number that satisfies

$$b^{n-1} \equiv 1 \pmod{n},$$

for all integers *b*. Carmichael numbers constitute the (rare) instances where the converse of Fermat's theorem does not hold. There are infinitely many such numbers.

Lecture 8: Number Theory for Public Key Cryptography

Lesting for primality

Outline

Miller-Rabin Test

Chinese remainder theorem

Euler function ϕ

Testing for primality

Fermat Test

Miller-Rabin Test

Some Basic Complexity Theory

Factorisation problem

Discrete logarithm problem

└ Miller-Rabin Test

Miller-Rabin test

- Same idea as Fermat test
- Can be guaranteed to detect composites if run sufficiently many times
- Most widely used test for generating large prime numbers

Square roots of 1

- A modular square root of 1 is a number x with x² mod n = 1
- ▶ When n = pq there are 4 square roots of 1
- ▶ Two of these are 1 and -1 modulo n
- The other two are called non-trivial square roots of 1
- If x is a non-trivial square root of 1 then gcd(x 1, n) is a non-trival factor of n
- ▶ In other words, the existence of a non-trivial square root implies that n is composite

Miller-Rabin algorithm

Miller-Rabin Test

Assume that n is odd and define u, v such that $n-1=2^v u$, where u is odd

- 1. Pick a randomly in the range 1 < a < n 1
- 2. Set $b = a^u \mod n$
- 3. If b == 1 then return probable prime
- 4. For j = 0 to v 1
 - 4.1 If b == -1 then return probable prime
 - 4.2 Else set $b = b^2 \mod n$
- Return composite

Note that when any output is returned the algorithm halts

Effectiveness of Miller-Rabin

- ▶ If the test returns composite then *n* is composite
- ▶ If the test returns probable prime then *n* may be composite
- ▶ If *n* is composite the test returns probable prime with probability at most 1/4
- ► Therefore we repeat the algorithm *k* times while the output is probable prime
- The k-times algorithm will output probable prime when n is composite with probability no more than $(1/4)^k$
- In practice error probability is far smaller
- There are no composites less than 341,550,071,728,321 which pass the test for the seven bases a = 2, 3, 5, 7, 11, 13, 17

Miller-Rabin Test

Why Miller-Rabin works

- Consider the sequence $a^u, a^{2u}, \dots, a^{2^{v-1}u}, a^{2^vu} \mod n$, where a is random with 0 < a < n-1
- Each number in this sequence, after the first, is the square of the previous number
- If *n* is prime then Fermat's theorem tells us that the final value, $a^{2^{\nu}u} \mod n = 1$
- ▶ Therefore if n is prime then either $a^u \mod n = 1$ or there is a square root of 1 somewhere in this sequence and this value must be -1
- If a non-trivial square root of 1 is found then n is composite.

Example

Miller-Rabin Test

Let n = 1729 which is a Carmichael number. Then $n - 1 = 1728 = 2 \times 864 = 4 \times 432 = 8 \times 216 = 16 \times 108 = 32 \times 54 = 64 \times 27$. So v = 6 and u = 27.

- 1. Choose a = 2.
- 2. $b = 2^{27} \mod 1729 = 645$.
- 3. Since $b \neq 1$ continue.
- 4. Next $b = 645^2 \mod n = 1065$
 - Next $b = 1065^2 \mod n = 1$
 - ▶ Thus b = -1 will never occur.
- 5. The algorithm returns composite.

Note that 1065 is a non-trivial square root of 1 modulo 1729. Indeed gcd(1729, 1064) = 133 is a factor of 1729 (see slide 20).

Generating large primes

The Miller–Rabin test can be used to generate large primes:

- 1. Choose a random odd integer *r* of the same number of bits as the required prime
- 2. Test if *r* is divisible by any of a list of small primes
- 3. Apply Miller–Rabin test with 5 random bases
- 4. If r fails any test then set r := r + 2 and return to step 2

Note

This *incremental* method does not produce completely random primes. To do so, start from step 1 if *r* fails in step 4. Both options are seen in practice.

Complexity theory in cryptology

Computational complexity provides a foundation for

- analysing the computational requirements of cryptographic algorithms
- studying the difficulty of breaking ciphers

We can consider two aspects of computational complexity:

- algorithm complexity how long it takes to run a particular algorithm
- problem complexity what is the best (known) algorithm to solve a particular problem

Algorithm complexity

- The computational complexity of an algorithm is measured by its time and space requirements as functions of the size of the input m
- ▶ A positive function f(m) is typically expressed as an "order of magnitude" of the form $\mathcal{O}(g(m))$ where g(m) is another positive function. This is called "big O" notation.
- We say

$$f(m) = \mathcal{O}\left(g(m)\right)$$

if there exist constants c > 0 and m_0 such that $f(m) \le c \cdot g(m)$ for $m \ge m_0$

- This means that g is, at least in the long run, an upper bound for f
- Speak of asymptotic behaviour

Some Basic Complexity Theory

Big O notation, illustrated

Polynomial and exponential functions

- ▶ A function f(m) for which $f(m) = \mathcal{O}(m^t)$ for some positive integer t is said to be a *polynomial time function*.
- In cryptography we normally think of a polynomial time function as efficient.
- A function f(m) for which $f(m) = \mathcal{O}(b^m)$ for some number b > 1 is said to be an *exponential time function*.
- ► In cryptography we normally think of a problem whose best solution is an exponential time function as *hard*
- ▶ Brute force key search is *exponential* as a function of the key length: an *m*-bit key length allows 2^m keys

Examples of algorithm complexity

1. If f(m) = 17m + 10 then

$$f(m)=\mathcal{O}\left(m\right)$$

since $17m + 10 \le 18m$ for $m \ge 10$

2. If f(m) is a polynomial:

$$f(m) = a_0 + a_1 \cdot m + \ldots + a_t m^t$$

then

$$f(m) = \mathcal{O}\left(m^t\right)$$

3. If $f(m) = \mathcal{O}(m^t)$ then it is also true that $f(m) = \mathcal{O}(m^{t+1})$

Problem complexity

A problem is classified according to the minimum time and space needed to solve the hardest instances of the problem on a deterministic computer

- 1. Multiplication of two $m \times m$ matrices, with fixed size entries, using the obvious algorithm is $\mathcal{O}(m^3)$
- 2. Sorting a set of integers into ascending order is $\mathcal{O}(m \cdot \log_2 m)$ with algorithms such as Quicksort

Two important problems

- Integer factorisation: given an integer, find its prime factors
- 2. **Discrete logarithm problem** (with base g): given a prime p and an integer y with 0 < y < p, find x such that

$$y = g^x \mod p$$

- Best known algorithms to solve these problems on conventional computers are sub-exponential: slower than polynomial but faster than any exponential
- Fast algorithms exist using quantum computers

Integer factorisation

- Factorisation by trial division is an exponential time algorithm and is hopeless for numbers of a few hundred bits
- A number of special purpose methods exist, which apply if the integer to be factorised has special properties
- The best current general method is known as the number field sieve
- The number field sieve is a sub-exponential time algorithm

Some factorisation records

Decimal digits	Bits	Date	CPU years
140	467	Feb 1999	?
155	512	Aug 1999	?
160	533	Mar 2003	2.7
174	576	Dec 2003	13.2
200	667	May 2005	121
232	768	Dec 2009	2000
240	795	Dec 2019	900
250	829	Feb 2020	2700

- All records used number field sieve
- ► The records are for numbers with only two large factors, so-called RSA numbers

Discrete logarithm problem (DLP)

Let $\mathbb G$ be a cyclic group with generator g. The discrete \log problem (DLP) in $\mathbb G$ is:

given
$$y$$
 in \mathbb{G} , find x with $y = g^x$

- ▶ The best known algorithm for solving DLP in \mathbb{Z}_p^* is a variant of the *number field sieve* (also used for factorisation) a *subexponential* algorithm in the length of p
- The DLP can also be defined on elliptic curve groups (see later lecture)
- Best known DLP algorithms on elliptic curves are exponential

Example in \mathbb{Z}_{19}^*

$g^x \mod p$	X	$g^{x} \mod p$	X
1	18	10	17
2	1	11	12
3	13 2	12	15
4	2	13	5
2 3 4 5 6	16	14	7
6	14	15	11
7	6	16	4
8 9	6 3 8	17	10
9	8	18	9

- ▶ Integers mod 19: \mathbb{Z}_{19}^*
- ▶ Generator g = 2
- $When y = g^x \bmod p$ then $\log_q y = x$
- For example, $\log_2 3 = 13$

Comparing brute-force key search, factorisation and discrete log in \mathbb{Z}_p^*

Symmetric	Length	Length of
key length	of $n = pq$	prime p in \mathbb{Z}_p^*
80	1024	1024
112	2048	2048
128	3072	3072
192	7680	7680
256	15360	15360

- For example, brute force search of 128-bit keys for AES takes roughly same computational effort as factorisation of 3072-bit number with two factors of roughly equal size, or finding discrete logs in \mathbb{Z}_p^* with a p of length 3072
- ► Source: NIST SP 800-57 Part 1 (2016)