Chapter 8: Affine maps and homogeneous coordinates

K. Jünemann
Department Informations- und Elektrotechnik
HAW Hamburg

Content

Chapter 8: Affine maps and homogeneous coordinates
Affine maps
Homogeneous coordinates
Relation of coordinate systems
Matrix transforms in three.js
Application: a rolling ball

Affine maps

Some important operations are non-linear!

- Translations
- Rotations around a point P which is not the origin O
- Reflections
- Projection operations

In \mathbb{R}^N these operations are not representable by $N \times N$ - matrix multiplication.

- Bad because graphics engines are highly optimized for matrix multiplication
- ▶ Solution: Homogeneous coordinates, i.e. switch to \mathbb{R}^{N+1} .

Affine maps: translations

A *translation* of a point P by a vector \vec{u} is the point Q with position vector

$$\vec{q} = \vec{p} + \vec{u}$$
.

Notation: $Q = T_{\vec{u}}(P)$

- ► Translations are non-linear because they move the origin O: $T_{\vec{u}}(O) = \vec{u} \neq O$
- Translations move points, not vectors!

Affine maps

Compositions of linear maps and translations are called affine maps. The general form of an affine map $f: \mathbb{R}^N \to \mathbb{R}^N$ is

$$f(\vec{x}) = \mathbf{A} \cdot \vec{x} + \vec{u}$$

with some $N \times N$ matrix **A** and some vector $\vec{u} \in \mathbb{R}^N$.

- A is called the linear part of f
- \vec{u} is called the translation part of f

Affine maps: generalized rotations

So far: rotations have been around origin O. How to describe rotations around pivot $P \neq 0$? $(\vec{p}: position vector to pivot <math>P)$

- translate pivot to origin by $T_{-\vec{p}}$
- ightharpoonup (linearly) rotate with matrix ${f R}_{arphi}$
- ightharpoonup undo translation by $T_{\vec{p}}$

Affine maps: generalized rotations

Rotation around P is given by $T_{\vec{p}} \circ \mathbf{R}_{\varphi} \circ T_{-\vec{p}}$. Apply to vector \vec{x} :

$$\vec{X}' = T_{\vec{p}} \circ \mathbf{R}_{\varphi} \circ T_{-\vec{p}}(\vec{x})$$

$$= T_{\vec{p}} \circ \mathbf{R}_{\varphi} \cdot (\vec{x} - \vec{p})$$

$$= T_{\vec{p}}(\mathbf{R}_{\varphi} \cdot \vec{x} - \mathbf{R}_{\varphi} \cdot \vec{p})$$

$$= \mathbf{R}_{\varphi} \cdot \vec{x} + \mathbf{\vec{p}} - \mathbf{R}_{\varphi} \cdot \vec{p}$$

$$\lim_{\text{linear}} \text{translation}$$

A rotation by an angle φ around a pivot P is given by the map

$$ec{x}
ightarrow \mathbf{R}_{arphi} \cdot ec{x} + ec{p} - \mathbf{R}_{arphi} \cdot ec{p}$$

where \mathbf{R}_{φ} is the rotation matrix by φ and \vec{p} is the position vector of the pivot P.

Exercise 1

Where does a rotation by 45° around the pivot (3,1) map the point (4,1)?

- Goal: Implement affine transforms as matrix multiplication!
- ▶ Here: all formulas for \mathbb{R}^2 , extension to \mathbb{R}^3 obvious.

Pragmatic definition:

- ► The *point* $(x_1, x_2) \in \mathbb{R}^2$ has homogeneous coordinates $(x_1, x_2, 1) \in \mathbb{R}^3$.
- ► The *vector* $(x_1, x_2) \in \mathbb{R}^2$ has homogeneous coordinates $(x_1, x_2, 0) \in \mathbb{R}^3$.

There's a lot of advanced mathematics behind this!

Rules for calculation:

- Point Point = Vector: $(x_1, x_2, 1) - (x'_1, x'_2, 1) = (x_1 - x'_1, x_2 - x'_2, 0)$
- Point + Vector = Point: $(x_1, x_2, 1) + (x'_1, x'_2, 0) = (x_1 + x'_1, x_2 + x'_2, 1)$
- ► Vector + Vector = Vector: $(x_1, x_2, 0) + (x'_1, x'_2, 0) = (x_1 + x'_1, x_2 + x'_2, 0)$
- Point + Point: doesn't fit into scheme

A general affine map in \mathbb{R}^2 :

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to \mathbf{A} \cdot \begin{pmatrix} x_2 \\ x_2 \end{pmatrix} + \vec{u} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + u_1 \\ a_{21}x_1 + a_{22}x_2 + u_2 \end{pmatrix}$$

Homogeneous coordinates $(x_1, x_2) = (x_1, x_2, 1)$:

$$\begin{pmatrix} a_{11}x_1 + a_{12}x_2 + u_1 \\ a_{21}x_1 + a_{22}x_2 + u_2 \\ 1 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & u_1 \\ a_{21} & a_{22} & u_2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Note: z-component stays at 1: points are mapped to points

The affine transform

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow \mathbf{A} \cdot \vec{x} + \vec{u} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$$

in $\ensuremath{\mathbb{R}}^2$ can be represented with homogeneous coordinates as

$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \to \mathbf{M} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

by the 3×3 matrix

$$\mathbf{M} = \begin{pmatrix} \mathbf{A} & \vec{u} \\ \hline \vec{0}^T & 1 \end{pmatrix} \equiv \begin{pmatrix} a_{11} & a_{12} & u_1 \\ a_{21} & a_{22} & u_2 \\ 0 & 0 & 1 \end{pmatrix}$$

The product of two affine transforms:

$$\left(\begin{array}{c|c} \mathbf{A}_1 & \vec{u}_1 \\ \hline \vec{0}^T & 1 \end{array}\right) \cdot \left(\begin{array}{c|c} \mathbf{A}_2 & \vec{u}_2 \\ \hline \vec{0}^T & 1 \end{array}\right) = \left(\begin{array}{c|c} \mathbf{A}_1 \cdot \mathbf{A}_2 & \vec{u}_1 + \mathbf{A}_1 \cdot \vec{u}_2 \\ \hline \vec{0}^T & 1 \end{array}\right)$$

- ► The linear part is just the matrix product A₁ · A₂.
- ▶ The translation part is $\vec{u}_1 + \mathbf{A}_1 \cdot \vec{u}_2$!
 - $ightharpoonup \vec{u}_2$ gets transformed by \mathbf{A}_1
- Example: Inverse affine map

$$\left(\begin{array}{c|c} \mathbf{A} & \vec{u} \\ \hline \vec{0}^T & 1 \end{array}\right)^{-1} = \left(\begin{array}{c|c} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \cdot \vec{u} \\ \hline \vec{0}^T & 1 \end{array}\right)$$

Check:

$$\left(\begin{array}{c|c} \mathbf{A} & \vec{u} \\ \hline \vec{0}^T & 1 \end{array}\right) \cdot \left(\begin{array}{c|c} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \cdot \vec{u} \\ \hline \vec{0}^T & 1 \end{array}\right) = \left(\begin{array}{c|c} \mathbf{E} & \vec{u} - \mathbf{A} \cdot \mathbf{A}^{-1} \cdot \vec{u} \\ \hline \vec{0}^T & 1 \end{array}\right) = \mathbf{E}$$

Pure translation:
$$\mathbf{A} = \mathbf{E} \implies \mathbf{M} = \begin{pmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{pmatrix}$$

▶ Apply to a point $(x_1, x_2, 1)$:

$$\begin{pmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} = \begin{pmatrix} x_1 + u_1 \\ x_2 + u_2 \\ 1 \end{pmatrix}$$

Apply to a vector $(x_1, x_2, 0)$:

$$\begin{pmatrix} 1 & 0 & u_1 \\ 0 & 1 & u_2 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ 0 \end{pmatrix}$$

Translations leave vectors unchanged!

Generalized rotation by an angle φ around pivot P with position vector \vec{p} :

$$ec{x}
ightarrow \mathbf{R}_{arphi} \cdot ec{x} + ec{p} - \mathbf{R}_{arphi} \cdot ec{p}$$

In terms of homogeneous coordinates

$$\begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix} \rightarrow \begin{pmatrix} \mathbf{R}_{\varphi} & \vec{p} - \mathbf{R}_{\varphi} \cdot \vec{p} \\ \hline \vec{0}^T & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ 1 \end{pmatrix}$$

Exercise 2

- Find the 3 x 3 matrix representing a rotation by 45° around the pivot (3, 1).
- ▶ Where gets the point (4, 1) mapped to?
- Write Javascript code to check this.

Example: reflection at line y = -1

- ► Step 1: translate by (0,1)
- Step 2: reflection (lin.) at y = 0
- ► Step 3: translate by (0,-1)

$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \rightarrow \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{\text{Step 2}} \cdot \underbrace{\begin{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}}_{\text{Step 1}} + \underbrace{\begin{pmatrix} 0 \\ -1 \end{pmatrix}}_{\text{Step 3}}$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} 0 \\ -2 \end{pmatrix}$$

Matrix representation of reflection at line y = -1:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & 1 \end{pmatrix}$$

Check:

Recall parent child coordinate systems:

Location and orientation of child frame in parent frame specified by

- rotation of child within parent
- translation of child origin

That's an affine transform \implies fits into homogeneous matrix.

Example in \mathbb{R}^2 :

- ► Rotation of child in parent: $\mathbf{R} = \frac{1}{\sqrt{2}} = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$
- ► Translation of child in parent: $\vec{u} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$

Can be assembled in parent child transformation matrix:

$$\mathbf{M} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 2\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1\\ 0 & 0 & 1 \end{pmatrix}$$

What is this matrix M good for? Consider a point Q with coordinates $Q_C = (1,0)$ in the child frame:

What are coordinates Q_P of this *same* point Q in the parent frame?

$$\begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 2\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 1\\ 0 & 0 & 1 \end{pmatrix} \cdot \underbrace{\begin{pmatrix} 1\\0\\1 \end{pmatrix}}_{Q_G} = \underbrace{\begin{pmatrix} 2 + \frac{1}{\sqrt{2}}\\1 + \frac{1}{\sqrt{2}}\\1 \end{pmatrix}}_{Q_D}$$

Let a child frame be rotated by the matrix **R** and translated by the vector \vec{u} w.r.t. its parent frame. Then the coordinates Q_P in the parent frame of a point Q with coordinates Q_C are given by

$$Q_P = \left(\begin{array}{c|c} \mathbf{R} & \vec{u} \\ \hline \vec{0}^T & 1 \end{array}\right) \cdot Q_C$$

- ▶ Both Q_P and Q_C are column objects in homogeneous coordinates, i.e. have a 1 in the last component.
- Important application: to render a 3D graphics scene all vertex coordinates have to be transformed from object to world space.

Active and passive transforms:

- Active transforms: a point is moved to a new location. Its coordinates change within the same coordinate system! Example:
 - All of chapter 6: moving objects
- Passive transforms: Expressing the coordinates of a point w.r.t different coordinate systems. The point does not move.

Example:

Transforming vertex coordinates of a geometry from object space to world space.

The mathematical description of both transforms is the same: a matrix!

Exercise 3

Consider the following parent child coordinate systems:

- 1. Write down the transformation matrix.
- 2. A point *P* has coordinates (1,1,0) in the child frame. What are its coordinates in the parent frame?
- 3. Another point Q has coordinates (2, -1, 1) in the parent frame. What are its coordinates in the child frame?

Any object of type Object3D contains two 4×4 matrices:

- matrix: transforms coordinates from object frame to parent frame.
- matrixWorld: transform coordinates from object frame to world space.
 - redundant information, stored for efficiency.
 - Rendering process uses this matrix heavily!

For the house example:

roof.matrixWorld = house.matrix · roof.matrix

Two options to define matrix transforms in three.js

- see section Matrix transformations in documentation
- here obj is anything of type Object3D

Option 1 (default):

- ▶ obj.scale defines scale matrix **S**.
- ▶ obj.position defines translation matrix **T**.
- ▶ obj.rotation defines rotation matrix **R**.

The resulting obj.matrix **M** is then calculated as

$$\mathbf{M} = \mathbf{T} \cdot \mathbf{R} \cdot \mathbf{S}$$

- ► This order is independent of transformation order in code!
- By default, M is recomputated every frame
 - controlled by flag obj.matrixAutoUpdate (true by default)

Why is $\mathbf{T} \cdot \mathbf{R}$ the default order?

$$\mathbf{T} \cdot \mathbf{R} = \left(\begin{array}{c|c} \mathbf{E} & \vec{u} \\ \hline \vec{0}^T & 1 \end{array} \right) \cdot \left(\begin{array}{c|c} \mathbf{R}_3 & \vec{0} \\ \hline \vec{0}^T & 1 \end{array} \right) = \left(\begin{array}{c|c} \mathbf{R}_3 & \vec{u} \\ \hline \vec{0}^T & 1 \end{array} \right)$$

This rotates by \mathbf{R}_3 and tranlates by \vec{u} , as expected!

$$\mathbf{R} \cdot \mathbf{T} = \left(\begin{array}{c|c} \mathbf{R}_3 & \vec{0} \\ \hline \vec{0}^T & 1 \end{array} \right) \cdot \left(\begin{array}{c|c} \mathbf{E} & \vec{u} \\ \hline \vec{0}^T & 1 \end{array} \right) = \left(\begin{array}{c|c} \mathbf{R}_3 & \mathbf{R}_3 \cdot \vec{u} \\ \hline \vec{0}^T & 1 \end{array} \right)$$

This rotates by \mathbf{R}_3 and translates by $\mathbf{R}_3 \cdot \vec{u}$!!

Option 2: Explicity set obj.matrix.

- Set obj.matrixAutoUpdate = false to avoid overwriting the matrix.
 - the fields position, rotation and scale are ignored in this case.
- If necessary, call obj.updateMatrixWorld()
 - recomputes obj.matrixWorld
 - see also the flag matrixWorldNeedsUpdate

Useful Matrix4 methods to manipulate obj.matrix:

- setPosition(pos): set the translation part.
- ▶ makeRotationAxis (axis, theta): obvious what this does, overwrites translation part with 0.

Example:

Verify the results of exercise 3

- $P_C = (1,1,0)$
- $ightharpoonup Q_P = (2, -1, 1)$


```
const child = new THREE.Object3D();
child.position.z = 1;
child.rotation.y = -Math.PI/2;
child.updateMatrix();
const Pc = new THREE.Vector3(1,1,0);
const Pp = Pc.clone().applyMatrix4(child.matrix);
const invMat = new THREE.Matrix4();
invMat.copy(child.matrix).invert();
const Qp = new THREE.Vector3(2,-1,1);
const Qc = Qp.clone().applyMatrix4(invMat);
```

Example: A sphere moving on a circle in the x-z-plane and rotating around its own x-axis.


```
// before render loop
sphere.matrixAutoUpdate = false;

// in render loop
sphere.matrix.makeRotationAxis(...);
sphere.matrix.setPosition(...);
```

call setPosition after makeRotationAxis to avoid overwriting the translation part of matrix.

Exercise 4: Earth and moon again

Recall exercise 1 from chapter 6.

Reimplement the motion of the moon around the sun by

- adding the moon to the scene (not the earth),
- calculating the moons position by a generalized rotation around the center of the earth.

- Assume ball moves in x-z-plane
- Speed of ball: $\vec{v} = (v_x, 0, v_z)$ arbitrary
- Radius of ball: R
- Axis of rotation: $\vec{a} = \frac{\vec{n} \times \vec{v}}{|\vec{n} \times \vec{v}|}$ \vec{n} : normal to rolling plane (\vec{e}_V in this case)
- ▶ Angular velocity: $\omega = \frac{|\vec{v}|}{R}$

First attempt: use rotation matrix with axis \vec{a} and angle $\theta = \omega \cdot t$:

```
// axis
const axis = planeNormal.clone().cross(ballSpeed);
axis.normalize();
// omega
const omega = ballSpeed.length() / ballRadius;
// do the rotation
ball.matrix.makeRotationAxis(axis, omega*t);
ball.matrix.setPosition(ballPos);
```

Problem: cannot deal with non-constant rotational motion!

- time changing angular velocity $\omega(t)$
- \blacktriangleright time changing axis of rotation $\vec{a}(t)$ (e.g. ball reflections)

How to deal with non-constant motion?

- Do not work with overall elapsed time t.
- Compute incremental motion of ball in one frame.
- ► See chapter 6 for translational motion:

$$\vec{x}(t) = \vec{x}(t-h) + \vec{v}(t) \cdot h$$

Do the same for the rotation matrix:

$$\mathbf{R}(t) = \mathbf{dR} \cdot \mathbf{R}(t - h)$$

- ▶ $\mathbf{R}(t-h)$: rotation matrix computed up to previous frame. ⇒ applied first!
- ▶ **dR**: incremental rotation done in this frame. ⇒ applied *after* $\mathbf{R}(t-h)$

Incremental rotation:

Axis angle representation of dR

- $\Rightarrow \text{ axis } \vec{a} = \frac{\vec{n}(t) \times \vec{v}(t)}{|\vec{n}(t) \times \vec{v}(t)|}$
 - $\vec{n}(t)$: current surface normal
 - $\vec{v}(t)$: current ball speed
- ▶ angle $d\theta = \omega(t) \cdot h$

Second attempt:

- ▶ R(t h): already stored in ball.matrix at beginning of render loop.
- compute dR in render loop and update ball.matrix.

```
// axis
const axis = planeNormal.clone().cross(ballSpeed);
axis.normalize();
// omega
const omega = ballSpeed.length() / ballRadius;
// do the rotation
const dR = new THREE.Matrix4();
dR.makeRotationAxis(axis, omega*h);
ball.matrix.premultiply(dR); // note the 'pre'!!
ball.matrix.setPosition(ballPos);
```