La(s) hoja(s) de Chema

1. Espacios métricos

Definición 1.1 δ : $M \times M \rightarrow \mathbb{R}$ es una métrica o **distancia** si cumple que

- $\delta(x, y) > 0$ si $x \neq y$, o $\delta(x, x) = 0$
- $\delta(x, y) = \delta(y, x)$
- $\delta(x, z) \le \delta(x, y) + \delta(y, z)$

Ejercicio 1.1 Por inducción, la desigualdad triangular se puede generalizar a: $\delta(p^1, p^n) \leq \delta(p^1, p^2) + \cdots + \delta(p^{n-1}, p^n)$

Teorema 1.4 Si $M' \subset M$ y existe el espacio métrico (M, δ) , entonces también existe (M', δ) , y se llama **métrica inducida** por (M, δ) .

Definición 1.5 Sean $(M, \delta), (M', \delta')$ y $g: M \rightarrow M'$. Se dice que g conserva las distancias si $\delta'(g(x), g(y)) = \delta(x, y) \ \forall \ x, y \in M$. Si además g es biyectiva, entonces es una **isometría**.

Teorema 1.7 Si existen (M, δ) , (M', δ') , (M'', δ'') y $g: M \to M'$ y $h: M \to M'$ son isometrías, entonces $h \circ g$ y g^{-1} también son isometrías.

Definición 1.8 La composición de isometrías forma un **grupo** pues

- $(g \circ h) \circ i = g \circ (h \circ i)$
- Si $g \in \text{Isom}(M)$ entonces $g^{-1} \in \text{Isom}(M)$
- La isometría identidad, $id_M \in Isom(M)$

Definición 1.12 Si (M, δ) , para $a, b \in M$ se llama **segmento** de extremos a y b y se representa por [a, b] al conjunto $[a, b] = \{x \in M \mid \delta(a, x) + \delta(x, b) = \delta(a, b)\}$. Asimismo, $x, y, z \in M$ están alineados si (x < y < z) $y \in [x, z]$.

Ejercicio 1.5 Para $\sigma \in \{1, -1\}$ y $\tau \in \mathbb{R}$, la aplicación $f(x) = \sigma x + \tau$ es una isometría para $(\mathbb{R}, d_{\mathbb{R}})$

Page intentionally left in blank

Axiomas para la geometría euclidiana plana 2.

Axioma P1 Si tenemos el conjunto P, denominado **plano**, y la aplicación $d: \mathbb{P} \times \mathbb{P} \to \mathbb{R}$ llamada **distancia**, entonces(\mathbb{P} , d) es un espacio métrico.

Definición 2.2 Una **recta** $r \subset \mathbb{P}$ satisface

- r contiene al menos dos puntos.
- Para toda terna de puntos *A*, *B*, *C*, están alineados si están en r.

Axioma P2 P contiene al menos tres puntos no alineados; y por dos puntos distintos, A y B de \mathbb{P} pasa una recta, r_{AB} .

Definición 2.6 / Teorema 2.7 Dos rectas se cortan si sólo tienen un punto en común, y si no tienen ningún punto en común, entonces se denominan **paralelas**, y se denota por $a \parallel b$. Dos rectas, o se cortan o son paralelas.

 \land **Axioma P3** Para toda recta $r \subset \mathbb{P}$ existe una biyección $\gamma: r \to \mathbb{R}$ tal que $|\gamma(X) - \gamma(Y)| = |x - y| =$ $d(X,Y) \ \forall \ X,Y \in r$

Observación 2.8 Si $A, B \in r$ son distintos, entonces existe un punto $M \in r : d(A, M) = d(M, B)$ que denotamos por medio[A, B] y se llama **punto medio**. Asimismo sólo existe un punto $B \in r$ tal que B = medio[A, M].

Observación 2.9 Si r es una recta y $P \in r$, entonces r se puede dividir en dos **semirrectas**, que son los conjuntos $\{X \in r \mid \gamma(X) > \gamma(P)\}\ y \{X \in P\}$ $r \mid \gamma(X) < \gamma(P)$.

Axioma P4 Para toda recta $r \subset \mathbb{P}$ hay dos subconjuntos H^1 y H^2 , denominados **semiplanos** de r, que verifican:

- $\blacksquare H^1 \cup H^2 = \mathbb{P} r$
- Si $X, Y \in H^i$ entonces $[X, Y] \subset H^i$
- Si $X \in H^1$ y $Y \in H^2$ entonces $[X, Y] \cap r \neq \emptyset$.

Definición 2.15 Sean *P, Q, R* no alineados, entonces el triángulo $\triangle \{P, Q, R\}$, o $\triangle PQR$ está formado por los segmentos [P,Q], [Q,R], [P,R], llamados lados, y los vértices P, Q, R.

Teorema 2.16 [Axioma de Pasch]a Dado un triángulo $\triangle PQR$ y una recta r; si r corta a [P,Q], entonces o corta a [P, R] o a [Q, R].

una biyección $g: \mathbb{P} \to \mathbb{P}$ que cumple que $d(g(X), g(Y)) = d(X, Y) \ \forall \ X, Y \in \mathbb{P}.$

Teorema 2.18 Si $A, B \in \mathbb{P}$ y $g \in \text{Isom}(\mathbb{P})$ entonces $g([A, B]) = [g(A), g(B)] y g(r_{AB}) = r_{g(A)g(B)}$

Axioma P5 Si $A_1, A_2 \in \mathbb{P}$ y $B_1, B_2 \in \mathbb{P}$ son dos pares de puntos que cumplen $d(A_1, A_2) = d(B_1, B_2)$ entonces existe $g \in \text{Isom}(\mathbb{P})$ tal que $g(A_i) = B_i$. Se dice que esos pares de puntos son **congruentes**.

Axioma P6 Para toda recta *r* existe una isometría σ llamada **reflexión** tal que

- $\sigma(X) = X \iff X \in r$
- $\sigma \circ \sigma = Id$

Definición 2.23 / Teorema 2.25 / Corolario 2.30

Una recta l es **ortogonal** a r si para todo $S \in l$ y para todo par de puntos A, B que cumple que M =medio[A, B], de modo que $l \cap r = M$, entonces se da que d(A, S) = d(S, B). Se denota $l \perp_M r$. En estas condiciones, $l = \{X \in \mathbb{P} \mid d(S, A) = d(S, B)\}$, se denomina **mediatriz** de [A, B].

Lema 2.21 Si σ_r entonces, para todo X, $medio[X, \sigma_r(X)] \in r$.

Observación 2.24 Si $l \perp r$ y $g \in \text{Isom}(\mathbb{P})$ entonces $g(l) \perp g(r)$.

son dos reflexiones de l y r, entonces se cumple que $l \perp_M r \iff r \perp_M l \iff \sigma_r(l) = l \iff$ $\sigma_1(r) = r$.

 \wedge **Teorema 2.27 / 2.29** Para toda recta r y todo punto $S \in \mathbb{P} - r$, existe una recta l ortogonal a r, que pasa por S. Si r es una recta, y $M \in r$, entonces existe *l* tal que $l \perp_M r$.

Axioma P7 Para toda recta *r* y todo punto *P* existe **Definición 2.17 = 1.5** Una **isometría** en \mathbb{P} es sólo una recta **paralela** a r que pase por P.

Teorema 2.31/2.33 Si $a \perp l$ y $b \perp l$ entonces $a \parallel b$. Sean $a \parallel b$. Entonces, para todo $A \in a$, la única recta $l \perp_A a$ también es ortogonal a b.

Teorema 2.32 Las rectas parallelas forman una relación de equivalencia.

- Reflexividad: $a \parallel a$
- Simetría: $a \parallel b \rightarrow b \parallel a$
- Transitividad $a \parallel b$ y $b \parallel c \rightarrow a \parallel c$

Ejercicio 2.6 Sean $A, B \in r$, $A \neq B$. Para todo t, existe un único $P_t \in r$ que cumple $d(P_t, A) = |t|$ y $d(P_t, B) = |t - d(A, B)|$. En definitiva, la posición de P_t está sólamente determinada por las distancias $d(A, P_t)$ y $d(P_t, B)$.

3. Isometrías del plano

Definición 3.1 Para una aplicación $\phi : \mathcal{M} \to \mathcal{M}$, $P \in \mathcal{M}$ es un **punto fijo** de ϕ si $\phi(P) = P$; y $\mathcal{D} \subset \mathcal{M}$ es un **subconjunto invariante** de ϕ si $\phi(\mathcal{D}) = \mathcal{M}$.

Lema 3.2 Si $g \in \text{Isom}(\mathbb{P})$ y $A \neq B$ son dos puntos fijos de g, entonces todo $X \in r_{AB}$ es punto fijo de g.

Definición 3.3 Si $g, g' \in \text{Isom}(\mathbb{P})$, g y g' son **conjugadas** si existe una isometría h tal que $gh = hg' \iff g = hg'h^{-1}$.

Teorema 3.4 Un punto P es fijo de g sii $h^{-1}(P)$ es un punto fijo de g'. Es decir

Demostración. Si $h^{-1}(P)$ es punto fijo de g', entonces $g'(h^{-1}(P)) = h^{-1}(P)$. Por tanto, $g(P) = hg'h^{-1}(P) = hh^{-1}(P) = P$, luego g(P) = P.

Ejemplo 3.5 Una reflexión sobre *r* cumple que

- $\sigma_r \circ \sigma_r = \mathrm{id}_{\mathbb{P}} \ \mathrm{y} \ \sigma_r(X) = X \iff X \in r \ (Axioma \ P6)$
- $\sigma_r(H^1) = H^2$ y viceversa.
- X y $\sigma_r(X)$ se encuentran en una recta ortogonal a r.

Teorema 3.6 Sea $g \in \text{Isom}(\mathbb{P})$ y sea r_{AB} . Si A, B son puntos fijos en g, entonces o bien $g = \sigma_r$ o bien $g = \text{id}_{\mathbb{P}}$.

Teorema 3.9 Llamamos ρ una **rotación** a una isometría que tiene un punto fijo C. Para toda recta a pasando por C existen dos rectas b, b' únicas tales que $\rho = \sigma_b \sigma_a = \sigma_a \sigma_{b'}$.

Ejercicio 3.1 Llamamos τ una **traslación** a una de un número par o impar de reflexiones σ :

isometría que no tiene puntos fijos y deja una recta c invariante, es decir, $\tau(c)=c$. entonces para toda recta $a\perp c$ existen dos rectas $b,b'\perp c$ que cumplen $\tau=\sigma_b\sigma_a=\sigma_a\sigma_{b'}$. Además, si $\tau(l)=l$, entonces $l\parallel c$.

Ejercicio 3.2 Si $\mathcal{R}_P(\mathbb{P}) = \{g \in \text{Isom}(\mathbb{P}) \mid g \text{ es rotación de centro } P\} \cup \{id_{\mathbb{P}}\} \text{ entonces}$

- Si a es una recta que pasa por P, entonces $g^{-1} = \sigma_a g \sigma_a$.
- gh = hg para todo $g, h \in \mathcal{R}_P(\mathbb{P})$.
- Para $X \in \mathbb{P} \{P\}$ y g(X) = h(X) entonces g = h.

Ejercicio 3.3 Si *h* es una isometría

- Si $g \in \mathcal{R}_P(\mathbb{P})$ entonces $hgh^{-1} \in \mathcal{R}_{h(P)}(\mathbb{P})$
- Si r es una recta entonces $h\sigma_r h^{-1} = \sigma_{h(r)}$

Ejercicio 3.3 Si a, b son rectas en \mathbb{P}

- \bullet $\sigma_a \sigma_b \sigma_a = \sigma_{a(b)}$
- $\bullet \sigma_a \sigma_b = \sigma_b \sigma_a \iff a \perp b$

Ejemplo 3.12 Sean a, b tales que $a \perp_P b$. Entonces la rotación es de 180° y se llama **reflexión central** si se denota como σ_P . Cumple las siguientes propiedades.

- $\bullet \ \sigma_P \sigma_P = \mathrm{id}_{\mathbb{P}}$
- Para todo X, $\sigma_P(X)$ es el único punto que cumple $P = \text{medio}[X, \sigma_P(X)]$.
- σ_P es independiente de la elección de rectas $a \perp b$.

Teorema 3.13 Las rectas r y $\sigma_P(r)$ son paralelas.

Ejemplo 3.14 Una **reflexión con deslizamiento** ϕ es una composición de una reflexión σ_c y una traslación τ : $\phi = \tau \sigma_c$. ϕ deja invariante sólo la recta c, y no tiene ningún punto invariante.

Teorema 3.15 Una isometría solo puede pertenecer a una de las de la tabla, y es una combinación de un número par o impar de reflexiones σ :

Con puntos fijos Sin puntos fijos par ho au impar σ ϕ

Teorema 3.16 Si g, g' son isometrías conjugadas, tienen la misma paridad.

4. Ángulos

Definición 4.1 Sean r, l dos rectas con un punto V en común. Sean \overline{r} y \overline{l} dos semirrectas determinadas por V en r y l. El par $\{\overline{l}, \overline{r}\}$ es un **ángulo**. V es el vértice del ángulo y \overline{l} y \overline{r} son los lados del ángulo. El ángulo se designa por $\angle\{\overline{l}, \overline{r}\}$ o, si no hay lugar a confusión, $\angle V$. Así, por ejemplo, dado un triángulo $\triangle PQR$, $\angle P$ es el ángulo formado por P con [P,Q] y [P,R].

Observación 4.4 Si r = l, y \overline{r}_1 y \overline{r}_2 son las semirrectas determinadas por V, entonces, en estas circunstancias, el ángulo $\angle \{\overline{r}_1, \overline{r}_2\}$ se denomina **ángulo llano** y $\angle \{\overline{r}_1, \overline{r}_1\}$ se denomina **ángulo nu-lo**.

Definición 4.5 Un ángulo $\angle\{\bar{l}, \bar{r}\}\$ y un ángulo $\angle\{\bar{l}', \bar{r}'\}\$ son **congruentes** si existe una isometría g tal que $g(\{\bar{l}, \bar{r}\}) = \{\bar{l}', \bar{r}'\}\$. Todos los ángulos que son congruentes forman una **clase de congruencia** de ángulos. Empleando la notación de vértices, la congruencia se denota como $\angle A = \angle B$.

Observación 4.6/4.8 Si $\angle\{\bar{l}, \bar{r}\}$ tiene vértice V y $\angle\{\bar{l}', \bar{r}'\}$ tiene vértice V', y g es una isometría tal que $g(\{\bar{l}, \bar{r}\}) = \{\bar{l}', \bar{r}'\}$, entonces g(V) = V'. Asimismo, si existe una isometría h que hace h(V) = V', entonces $h(\{\bar{l}, \bar{r}\}) = \{\bar{l}', \bar{r}'\}$.

Ejemplo 4.9 Consideramos las rectas $a \neq b$ que cortan en V, con sus respectivas semirrectas $\overline{a}_1, \overline{a}_2, \overline{b}_1, \overline{b}_2$. Consideramos $\angle \{\overline{a}_1, \overline{b}_1\}$ y elegimos los puntos $A \in \overline{a}_1, B \in \overline{b}_1$ a igual distancia, d(V, A) = d(V, B). Existe una recta $l \perp r_{AB}$ que pasa por V (**Teorema 2.25/2.29**, que denominamos **bisectriz**. La bisectriz l cumple que $\sigma_l(A) = B, \sigma_l(\overline{a}_1) = \overline{b}_1$ y viceversa. Además, si \overline{l} es la semirrecta que corta a [A, B], entonces $\angle \{\overline{a}_1, \overline{l}\} = \angle \{\overline{b}_1, \overline{l}\}$.

Teorema 4.11 Sean a, b que cortan en V. El ángulo $\angle \{\overline{a}_1, \overline{b}_1\}$ es congruente con $\angle \{\overline{a}_2, \overline{b}_2\}$ y se denominan **ángulos opuestos por el vértice**.

Teorema 4.13/Definición 4.23 Sean $l \perp_V r y l' \perp_{V'} r'$. Entonces $\angle \{\overline{l}, \overline{r}\} y \angle \{\overline{l}', \overline{r}'\}$ son congruentes. En este caso, los ángulos $\angle \{\overline{l}, \overline{r}\} y \angle \{\overline{l}', \overline{r}'\}$ son **ángulos rectos**. Un ángulo es **agudo** si es menor que un recto, y **obtuso** si es mayor.

Definición 4.15 Si $\angle\{\bar{l}, \bar{r}\}$ no es ni nulo ni llano, y H_l^1 es el semiplano que contiene a \bar{r} , y H_r^1 es el semiplano que contiene a \bar{l} , entonces el ángulo $\angle\{\bar{l}, \bar{r}\}$ y $\angle\{\bar{l}, \bar{r}\}$ viene determinado como el conjunto $H_l^1 \cap H_r^1$.

Teorema 4.18 [De la barra transversal] Sea $\angle \{\overline{l}, \overline{r}\}$ con vértice V y sean $L \in \overline{l}, R \in \overline{r}$. Una semirrecta $\overline{s}, V \in \overline{s}$ está dentro de $\angle \{\overline{l}, \overline{r}\}$ sii corta a $[L, R] - \{L, R\}$.

Definición 4.19 (Comparación de ángulos) Dados $\angle \{\overline{a}, \overline{b}\}$ y $\angle \{\overline{c}, \overline{d}\}$, se dice que $\angle \{\overline{a}, \overline{b}\}$ es menor que $\angle \{\overline{c}, \overline{d}\}$, $\angle \{\overline{a}, \overline{b}\} \prec \angle \{\overline{c}, \overline{d}\}$, si existe una isometría g tal que $g(\overline{a}) = \overline{c}$ y que $g(\overline{b})$ está en el interior de $\angle \{\overline{c}, \overline{d}\}$

Teorema 4.21 Si existen 4 ángulos tales que $\angle \{\overline{a}, \overline{b}\} = \angle \{\overline{a}', \overline{b}'\}$ y $\angle \{\overline{c}, \overline{d}\} = \angle \{\overline{c}', \overline{d}'\}$, y $\angle \{\overline{a}, \overline{b}\} < \angle \{\overline{c}, \overline{d}\}$, entonces $\angle \{\overline{a}', \overline{b}'\} < \angle \{\overline{c}', \overline{d}'\}$.

Teorema 4.22 Dados $\angle \{\overline{a}, \overline{b}\}$ y $\angle \{\overline{c}, \overline{d}\}$, entonces $\angle \{\overline{a}, \overline{b}\} \prec \angle \{\overline{c}, \overline{d}\}$, $\angle \{\overline{a}, \overline{b}\} = \angle \{\overline{c}, \overline{d}\}$, o $\angle \{\overline{a}, \overline{b}\} > \angle \{\overline{c}, \overline{d}\}$.

Definición 4.25 Sea $\angle \{\overline{a}, \overline{c}\}$ con vértice V y \overline{b} una semirrecta en el interior de $\angle \{\overline{a}, \overline{c}\}$. Entonces $\angle \{\overline{a}, \overline{c}\}$ es la **suma** de $\angle \{\overline{a}, \overline{c}\}$ y $\angle \{\overline{a}, \overline{b}\}$, o $\angle \{\overline{b}, \overline{c}\}$ = $\angle \{\overline{a}, \overline{b}\} + \angle \{\overline{b}, \overline{c}\}$

Definición 4.26 Para tres ángulos $\angle U$, $\angle V$, $\angle W$, decimos que $\angle V = \angle U + \angle W$ si existe una descomposición $\angle V = \angle \{\overline{a}, \overline{c}\}$, $\angle U = \angle \{\overline{a}, \overline{b}\}$, $\angle W = \angle \{\overline{b}, \overline{c}\}$.

Definición 4.28 Dado $\triangle PQR$, el lado [R,Q] y el

ángulo $\angle P$ son **opuestos**.

gruentes.

Definición 4.29 / Teorema 4.30 Un triángulo **isósceles** tiene dos lados congruentes. Si $\triangle PQR$ es isósceles y [P,Q] es congruente con [P,R], existe una reflexión σ tal que $\sigma(P) = P, \sigma(Q) = R, \sigma(R) = Q$, la bisectriz de $\angle P$. Esa isometría que deja invariante el triángulo se denomina **simetría**.

Definición 4.34 / **Teorema 4.35** Un triángulo es **equilátero** si todos sus lados son congruentes. En este caso hay una rotación ρ tal que $\rho(P) = Q$, $\rho(Q) = R$, $\rho(R) = P$.

Definición 4.39 / **Teorema 4.40** Sean $a \parallel b$ y c una recta que corta a a en A y a b en B. El par de ángulos $\angle A$, $\angle B$ de la figura son ángulos **alternosinternos**. Los dos ángulos son congruentes.

Teorema 4.41 La suma de los ángulos de un triángulo es un ángulo llano.

Demostración. Si hacemos una recta p paralela a [Q,R] tenemos que (Q,Q') y (R,R') son pares de ángulos internos y la suma $\angle Q' + \angle P' + \angle R' = \angle Q + \angle P + \angle R$ es un ángulo llano.

Ejercicio 4.9 Sea ρ una rotación de centro C y sea $t = \Delta \{C, P, \rho(P)\}$. Entonces la clase de congruencia del ángulo $\angle_t C$ se denomina ángulo de rotación $\angle \rho$.

Ejercicio 4.11 Un ángulo orientado es un ángulo donde se fija un orden en sus lados. Dos ángulos orientados $\overrightarrow{Z}(\overline{r},\overline{l})$ y $\overrightarrow{Z}(\overline{r}',\overline{l}')$ son congruentes si existe una isometría donde $g(\overline{r}) = \overline{r}'$ y $g(\overline{l}) = \overline{l}'$ y se conserva la orientación del plano. Así $\overrightarrow{Z}(\overline{r},\overline{l})$ la clase de congruencia con todos los ángulos con-

5. Teorema de Tales

Definición 5.0 Un **cuadrilátero** es una cuaterna ordenada de puntos [vértices] de \mathbb{P} , (P,Q,R,S) formada por los segmentos [P,Q],[Q,R],[R,S],[S,P] [lados] si dos cualesquiera segmentos son disjuntos o tienen un extremo en común. Dos vértices extremos del mismo lado son adyacentes y, si no, son opuestos.

Definición 5.1 Un cuadrilátero $\Box PABC$ es un **paralelogramo** si medio[P, B] = medio[A, C] = M, donde los segmentos [P, B] y [A, C] son las diagonales, y M es el centro.

Observación 5.2 Sea $\Box PABC$ con centro M. Por las propiedades de las reflexiones centrales, se tiene que $\sigma_M(P) = B$ y $\sigma_M(A) = C$ [y viceversa]. Además, por tales propiedades, se tiene que $r_{PA} \parallel r_{BC}$ y $r_{PC} \parallel r_{AB}$; y d(P,A) = d(B,C) y d(P,C) = d(A,B).

Observación 5.3 Si existen tres puntos P, P, P, P no alineados, se puede construir un paralelogramo de varias maneras. Una forma es aplicar el axioma de las paralelas y proyectar P en P0, y P1 en P2. Otra forma es obtener P3 medio P4, crear la recta P5 proyectar el punto P6 como el que P7 medio P8 medio P9 proyectar el punto P9 como el que P9 medio P9 medio P9 medio P9 medio P9 medio P9 proyectar el punto P9 como el que P9 medio P9 medio

Teorema 5.5 [Tales] Sea $\triangle PAB$ y sean $A' \in [P, A]$, $B' \in [P, B]$ dos puntos tales que $r_{AB} \parallel r_{A'B'}$. En estas condiciones se tiene que $\frac{PA'}{PA} = \frac{PB'}{PB}$.

Demostración. Vamos a basar la demostración en la figura de arriba. Diseñamos el paralelogramo $\Box PABC$ y dividimos el lado [P,A] en n segmentos con puntos de división A_1,A_2,\cdots,A_n , de modo que $d(A_i,A_{i+1})=\frac{d(P,A)}{n}$. El mismo proceso se realiza con el lado [P,C]. Además, introducimos las rectas $a_k \parallel r_{PC}$ y $c_k \parallel r_{PA}$, de modo que el punto P_{PL} es la intersección de a_k con c_k . Vemos

que $B_i=P_{ii}$. También observamos que existen los paralelogramos $\Box A_k A_{k+1} P_{k+1,l} P_{k,l}$ y $\Box C_l C_{l+1} P_{k,l+1} P_{k,l}$, de modo que $P_{kl} P_{k+1,l} = \frac{PA}{n}$ y $P_{kl} P_{k,l+1} = \frac{PC}{n}$. Ahora consideramos B_k . Sabemos que $\sigma_{B_k}(r) \parallel r$, $\sigma_{B_k}(c_k) = c_k$ y $\sigma_{B_k}(P_{k-1,k}) = P_{k+1,k}$. También, como $a_{k-1} \parallel a_{k+1}$, $\sigma_{B_k}(a_{k-1}) = a_{k+1}$, y por el mismo criterio, $\sigma_{B_k}(c_{k-1}) = c_{k+1}$. Con esto demostramos que

$$\sigma_{B_k}(B_{k-1}) = \sigma_{B_k}(P_{k-1,k-1}) = P_{k+1,k+1} = B_{k+1}$$

Por tanto, los puntos B_{k-1}, B_k, B_{k+1} están alineados y $B_{k-1}B_k = B_kB_{k+1}$. Por tanto, $B_kB_{k+1} = \frac{PB}{n}$. Es decir, hemos demostrado que

$$P_{kl}P_{k+1,l} = \frac{PA}{n}$$
 $P_{kl}P_{k,l+1} = \frac{PC}{n}$ $P_{kl}P_{k+1,l+1} = \frac{PB}{n}$

Si reordenamos, tenemos que

$$\frac{PA_k}{PA} = \frac{P_{0,0}P_{k,0}}{PA} = \frac{k}{n} = \frac{P_{0,0}P_{k,k}}{PB} = \frac{PB_k}{PB}$$

Y con esto demostramos el teorema para los puntos k. Si tenemos A' y B' en la figura tales que $A' \in [A_k, A_{k+1}]$, de modo que $a' = r_{A'B'}$ está entre a_k y a_{k+1} , y es paralelo a estas, haciendo que $B' \in [B_k, B_{k+1}]$. Por ser $A' \in [A_k, A_{k+1}]$ entonces $\frac{PA_k}{PA} \leq \frac{PA'}{PA} \leq \frac{PA_k}{PA} + \frac{1}{n}$ y, como $\frac{PA_k}{PA} = \frac{PB_k}{PB}$, entonces $\frac{PB_k}{PB} \leq \frac{PA'}{PA} \leq \frac{PB_k}{PB} + \frac{1}{n}$. Dado que $B' \in [B_k, B_{k+1}]$ entonces

$$\frac{PB'}{PB} - \frac{1}{n} \le \frac{PB_k}{PB} \le \frac{PA'}{PA} \le \frac{PB_k}{PB} + \frac{1}{n} \le \frac{PB'}{PB} + \frac{1}{n}$$

Si nos fijamos en los elementos de azul, vemos que n puede hacerse tan pequeño como queramos, de modo que, en el límite

$$\frac{PB'}{PB} \le \frac{PA'}{PA} \le \frac{PB'}{PB} \iff \frac{PB'}{PB} = \frac{PA'}{PA}$$

Corolario 5.6 En base al teorema de Tales, se tiene que

$$\frac{PA'}{PA} = \frac{PB'}{PB} = \frac{A'B'}{AB}$$

Definición 5.7 Dado un triángulo rectángulo $\triangle PAB$ con $\angle A$ recto, entonces la **hipotenusa** es el lado opuesto a $\angle A$, [P,B]. Los lados adyacentes, [P,A], [B,A], son los **catetos**.

introducimos las rectas $a_k \parallel r_{PC}$ y $c_k \parallel r_{PA}$, de modo que el punto P_{kl} es la intersección de a_k con c_l . Vemos con $\angle A$ recto, entonces se definen las relaciones

- seno: sen $\angle P = \frac{BA}{PB}$
- coseno: $\cos \angle P = \frac{PA}{PB}$
- tangente: $tan \angle P = \frac{BA}{PA}$
- cotangente: $\cot \angle P = \frac{PA}{BA}$

Teorema 5.10 Las razones trigonométricas para $\angle P$ no dependen del triángulo $\triangle PAB$, sólo de la clase de congruencia de $\angle P$.

Teorema 5.12 Dado un triángulo rectángulo $\triangle ABC$ con $\angle A$ recto, la medida de los catetos, AB, AC, es menor que la de la hipotenusa BC.

Demostración. Con la construcción anterior, vemos que los puntos B,C,C' no están alineados, pues $C \in r_{AC}$ y $r_{AB} \perp r_{AC}$. Por la desigualdad triangular tenemos que 2AC = CC' < BC + BC' = 2BC.

Definición 5.13 La **medida de un ángulo** agudo $\angle P$ es el número real:

$$\angle P = \arccos(\cos \angle P)$$

Teorema 5.14 / 5.19 Si $\angle P = \angle Q$ entonces $\angle P = \angle Q$, sean $\angle P$ y $\angle Q$ agudos y obtusos.

Definición 5.15 Dado un ángulo $\angle \overline{a}, \overline{b}_1 = \angle V$, un ángulo suplementario $\overline{\angle V} = \angle \overline{a}, \overline{b}_2$ es aquel donde \overline{b}_1 y \overline{b}_2 son las dos semirrectas de b en V, y $\angle V$ y $\overline{\angle V}$ comparten \overline{a} . La suma de $\angle V$ y $\overline{\angle V}$ es un ángulo llano.

Teorema 5.17 Si dos ángulos son congruentes, sus suplementarios lo son.

Definición 5.18 Para un ángulo obtuso $\angle P$ se tiene sen $\angle P$ = sen $\overline{\angle P}$ y cos $\angle P$ = $-\cos \overline{\angle P}$

6. Teorema de Pitágoras

Teorema 6.1 [Pitágoras] Para todo triángulo rectángulo $\angle ABC$ con $\angle A$ recto, se tiene que

$$BC^2 = AC^2 + AC^2$$

② Demostración. Consideramos el punto $S \in r_{BC}$ tal que $r_{SA} \perp r_{CB}$. Pese a que es evidente, hay que demostrar que $S \in [B,C]$. Observamos que SC < CA < BC, la primera igualdad por $\cos \angle C = \frac{SC}{CA} < 1 \iff SC < CA$. Del mismo modo, BS < BC. Entonces, $S \in [B,C]$. Ahora observamos que

$$\cos \angle C = \frac{CA}{CB} = \frac{CS}{CA}$$

Por otra parte, también vemos que

$$\cos \angle B = \frac{BS}{AB} = \frac{AB}{BC}$$

De ambas expresiones tenemos que (1) $CA^2 = CB \cdot CS$ y (2) $AB^2 = BS \cdot BC$. Así, $CB \cdot CS + CB \cdot BS = CB(CS + BS) = CB^2 = CA^2 + BA^2$.

Corolario 6.3 Sea $\angle C$, entonces

$$sen^2 \angle C + cos^2 \angle C = 1$$

Demostración. Si tenemos que BC = 1, entonces $\cos \angle C = \frac{CA}{CB} = CA$ y sen $\angle C = \frac{BA}{BC} = BC$. Aplicando el teorema de Pitágoras, entonces sen $^2 \angle C + \cos^2 \angle C = BA^2 + CA^2 = BC^2 = 1$

Teorema 6.4 Dado $x \in [0, \pi] \subset \mathbb{R}$, existe un ángulo $\angle V$ tal que $\angle V = x$.

Teorema 6.5
$$\angle P = \angle Q \sin \angle P = \angle Q$$

Definición 6.6 Sea $\triangle ABC$ y $h_B \perp r_{CA}$ y que pasa por B, y sea el punto $P_{h,b}$ el punto de corte de h_B y r_{CA} . Entonces, $P_{h,b}$ es el **pie de la altura de** B, y $[P_{h,b}, B]$ es la **altura** de $\triangle ABC$ desde B.

Teorema 6.7 En el triángulo de la **Definición 6.6**, si $\angle A$ y $\angle C$ son agudos, entonces $P_{h,b} \in [C,A]$. Si $\angle A$ o $\angle C$ es obtuso, entonces $P_{h,b} \not\in [C,A]$.

Teorema 6.8 [Fórmula del coseno] Sea $\triangle ABC$ un triángulo, entonces se cumple que

$$BC^2 = AB^2 + AC^2 - 2 \cdot AB \cdot AC \cdot \cos A$$

Demostración. Basándonos en la figura de la **Definición 6.6**, y por el **Teorema 6.7** [en el caso de \triangle acutángulo], entonces se forman dos triángulos rectángulos $\triangle P_{hB}BC$ y $\triangle P_{hB}BA$ donde se verifica que $CA = CP_{hB} + P_{hB}A$ Por el **Teorema de Pitágoras** tenemos que

$$AB^2 = P_{hB}A^2 + P_{hB}B^2$$
 $BC^2 = BP_{hB}^2 + P_{hB}C^2$

Si sustituimos una igualdad en otra tenemos que

$$BC^2 = CP_{hB}^2 + AB^2 - P_{hB}A^2$$

Como $CA = CP_{hB} + P_{hB}A$ entonces

$$BC^2 = (CA - P_{hB}A)^2 + AB^2 - P_{hB}A^2 =$$

$$CA^{2} + P_{hB}A^{2} - 2 \cdot CA \cdot P_{hB}A + AB^{2} - P_{hB}A^{2}$$

Si quitamos las partes en azul, y consideramos que $P_{hB}A = AB\cos \angle A$, entonces queda el teorema demostrado.

Corolario 6.9 Dado un triángulo donde $BC^2 = AB^2 + AC^2$ entonces es un triángulo rectángulo, con $\angle A$ recto. Demostración. Si aplicamos el **Teorema del coseno**, entonces, el término $2 \cdot AB \cdot AC \cdot \cos \angle A = 0$, y como $AB \neq 0$, $AC \neq 0$, entonces $\cos \angle A = 0 \iff \angle A$ es recto (**Teorema 6.5**).

Teorema 6.10 [Fórmula de los senos] Sea $\triangle ABC$, entones se verifica

$$\frac{AB}{\sec \angle C} = \frac{AC}{\sec \angle B} = \frac{BC}{\sec \angle A}$$

Demostración. Seguimos con la figura de la **Definición 6.6**. Vemos que $BP_{hB} = BC \operatorname{sen} \angle C = BA \operatorname{sen} \angle A$. Si el triángulo es obtusángulo también se cumple porque los senos se mantienen. Simplemente, igualando BP_{hB} tenemos que $\frac{BC}{\operatorname{sen} \angle A} = \frac{BA}{\operatorname{sen} \angle C}$. El resto de igualdades se consiguen con las demás alturas.

Teorema 6.11 Para $\triangle ABC...$

■ Si se conoce $\angle A$ y AB, AC (advacentes), entonces se pueden hallar $\angle B$, $\angle C$, BC.

- Si se conocen AB, AC, BC entonces se pueden hallar $\angle A$, $\angle B$, $\angle C$.
- Si se conocen AB, $\angle A$, $\angle B$ entonces se pueden hallar BC, AC, $\angle C$.

Corolario 6.12 [Criterios de congruencia de \triangle] Dados $\triangle ABC$ y $\triangle A'B'C'$ entonces

- $\angle A = \angle A'$, AB = A'B', AC = A'C' [LAL]
- AB = A'B', AC = A'C', BC = B'C' [LLL]
- $\angle A = \angle A', \angle B = \angle B', AB = A'B'$ [ALA]

Entonces existe una isometría η tal que $\eta(A) = A'$, etc. y $\triangle ABC = \triangle A'B'C'$. Hay que considerar que para emplear isometrías pares hay que definir la orientación de los triángulos.

Corolario 6.14 Sean $\angle P$ y $\angle Q$ no nulos, y sumables. Entonces

$$\operatorname{sen}(\angle P + \angle Q) = \operatorname{sen}(\angle P) \cos(\angle Q) + \operatorname{sen}(\angle Q) \cos(\angle P)$$

$$\cos(\angle P + \angle Q) = \cos(\angle P)\cos(\angle Q) - \sin(\angle P)\sin(\angle Q)$$

Corolario 6.15 Sean $\angle P$ y $\angle Q$ no nulos, y sumables. Entonces

$$\angle(\angle P + \angle Q) = \angle P + \angle Q$$

Demostración. Nota: en el punto final se demuestra que

$$\cos(\angle P + \angle Q) = \cos(\angle P + \angle Q)$$

Sabiendo que $\angle P = \arccos(\cos \angle P)$ entonces $\arccos(\cos(\angle P + \angle Q)) = \angle(\angle P + \angle Q)$ y, por tanto,

$$\angle(\angle P + \angle Q) = \arccos(\cos(\angle P + \angle Q)) = \angle P + \angle Q$$

Corolario 6.16 Si $\angle V$ es un ángulo y n es entero, entonces existe $n\angle V$ y $\angle (n\angle V) = n\angle V$.

Ejercicio 6.10 El centro de Fermat, F es aquel que minimiza la distancia a los vértices del triángulo. Este sucede cuando el ángulo entre dos vértices cualesquiera del triángulo y F es $2\pi/3$.

7. Semejanzas

Definición 7.1 Sea C un punto de \mathbb{P} y k > 0. Una **homotecia** $\eta_{C,k} : \mathbb{P} \to \mathbb{P}$ es una aplicación tal que a cada punto $P \in r_{CP}$ le hace corresponder un punto $\eta_{C,k}(P) \in r_{CP}$ tal que $C\eta_{C,k}(P) = kCP$. k es la **razón de homotecia**.

Observación 7.2 Sea $X \in \mathbb{P}$, $\eta_{C,k}$ y γ una aplicación del **Axioma P3**. Entonces se cumple que $\gamma(\eta_{C,k}(X)) = \gamma(C) + k(\gamma(X) - \gamma(C))$

Observación 7.3 Toda homotecia es una biyección que tiene

Identidad: η_{C,1}
Inversa: η_{C,1/k}

Teorema 7.4/Corolario 7.5 Sean A, B y $\eta_{C,k}$, entonces $\eta_{C,k}(A)\eta_{C,k}(B) = kAB$. Además, $\eta_{C,k}[A,B] = [\eta_{C,k}(A),\eta_{C,k}(B)]$.

Teorema 7.7 Toda homotecia envía un ángulo a un ángulo congruente, y toda recta a una paralela.

Definición 7.8 Una **semejanza** es una combinación de homotecias e isometrías.

Corolario 7.10/7.11 / Teorema 7.19 Toda semejanza envía rectas a rectas, segmentos a segmentos, y conserva los ángulos. Toda biyección ψ que cumpla estas condiciones es una semejanza.

Teorema 7.12 / **Corolario 7.13** Toda semejanza δ cumple que $\delta(A)\delta(B)=kAB$, donde k es la razón de semejanza. Dados A,B,C,D, entonces se cumple que

$$\frac{AB}{CD} = \frac{\delta(A)\delta(B)}{\delta(C)\delta(D)}$$

Teorema 7.15 Si $\angle A = \angle B$, entonces existe δ tal que $\delta(\angle A) = \angle B$.

Teorema 7.18 Sean $\triangle ABC$ y $\triangle AB'C'$ que comparten $\angle A$ y A, B, B' están alineados, así como A, C, C'. Entonces si existe k tal que AB' = kAB y AC' = kAC entonces $\triangle ABC$ y $\triangle AB'C'$ son semejantes, $r_{BC} \parallel r_{B'C'}$ y B'C' = kBC.

Definición 7.20 Se llama **mediana** al segmento que une cada vértice con el punto medio del lado opuesto de un triángulo. Es decir, da-

do $\triangle ABC$, las medianas son [A, medio[B, C]], [B, medio[A, C]] y [C, medio[A, B]].

Teorema 7.21 Las tres medianas de un triángulo cortan en un punto *G*, llamado **baricentro**.

Demostración. Definimos X = medio[B,C], Y = medio[A,C], Z = medio[A,B] y sea $G[B,Y] \cap [C,Z]$. El punto existe porque, si definimos la recta r_{BY} , entonces C está en uno de los semiplanos de la recta (pongamos, H^2) y, si $A \in H^1$, entonces $Z \in H^1$, C y Z están en distintos semiplanos de r_BC . Si tomamos $\triangle ABC$ y $\triangle AZY$ entonces, por ser Y,Z puntos medios, entonces, por el **Teorema 7.18**, $r_{YZ} \parallel r_{BC}$ y BC = 2YZ. Además, por ser los ángulos entre [C,Z] y [B,Y] alternos internos, los triángulos $\triangle GYZ$ y $\triangle GBC$ son semejantes de razón 2. Por tanto, GB = 2GY y GC = 2GZ. Si repetimos esto con [A,X] y [B,Y], entonces existe un punto G' tal que G'A = 2G'X y G'B = 2G'Y. Como G'B = GG, entonces G = G' y las tres medianas cortan en G.

Teorema 7.23 Las tres mediatrices de un tríangulo cortan en un punto, el **circuncentro**.

② Demostración. Si $\triangle ABC$ es un triángulo, las mediatrices m_{AB} y m_{BC} cortan en un punto O. Si no cortaran, entonces $m_{AB} \parallel m_{BC}$, y como $r_{AB} \perp m_{AB}$ y $m_{BC} \perp r_{BC}$ entonces $r_{AB} \parallel r_{BC}$, lo cual es absurdo. Por ser m_{BC} mediatriz, entonces OB = OC, y OA = OB para m_{AB} . Entonces OA = OC y por tanto $O \in m_{AC}$, luego O corta las tres mediatrices.

Teorema 7.24 Las tres alturas de un triángulo se *X*, *Y*, *Z* están alineados se cumple que cortan en el **ortocentro**

 $AZBXCY_{-1}$

 $oldsymbol{\Theta}$ Demostración. Sea $\triangle ABC$ el triángulo con baricentro G y sean h_A,h_B,h_C sus alturas. Consideramos la semejanza $au=\sigma_G\eta_{G,2}$, de modo que $\triangle ABC$ se transforma en $\triangle XYZ$, con au(A)=X, au(B)=Y, au(C)=Z. Por las propiedades de las semejanzas, $r_{BC}\parallel r_{YZ},r_{AC}=r_{XZ},r_{AB}\parallel r_{XY}$, y se cumple que $A=\mathrm{medio}[Y,Z],B=\mathrm{medio}[X,Z],C=\mathrm{medio}[X,Y]$. Por tanto, ahora $h_A=m_{YZ},h_B=m_{XZ},h_C=m_{XY}$ y, por tanto, el ortocentro de $\triangle ABC$ es el circuncentro de $\triangle XYZ$.

Teorema 7.25 [Recta de Euler] Dado un triángulo, su baricentro G, ortocentro O y circuncentro H pertenecen a una misma recta (si el triángulo no es equilátero). Además, OH = 2OG.

② Demostración. Si partimos del triánguo con baricentro G y aplicamos la semejanza $\tau = \sigma_G \eta_{G,2}$, como en el **Teorema 7.24**, entonces se cumple que $\tau(O) = H$. Por ser σ_G , entonces $H \in r_{OG}$ y por ser $\eta_{G,2}$, entonces OH = 2OG.

Corolario 7.26 El incentro del triángulo es el punto donde se cortan las tres bisectrices del triángulo.

Ejercicio 7.7 [Teorema de Ceva] En $\triangle ABC$ sean $X \in [B,C], Y \in [C,A], Z \in [A,B]$. Si X,Y,Z no coinciden con ninguno de los vértices del triángulo, entonces los segmentos [A,X],[B,Y],[C,Z] se cortan en un punto sii

$$\frac{AZ}{ZB}\frac{BX}{XC}\frac{CY}{YA} = 1$$

Ejercicio 7.8 [Teorema de Menelao] Sea $\triangle ABC$ y sean $X \in r_{BC}, Y \in r_{CA}, Z \in r_{AB}$. Entonces, sii

8. Circunferencias

Definición 8.1 Sea $O \in \mathbb{P}$ y $\rho > 0$. Entonces una **circunferencia** \mathcal{C} es el conjunto de puntos a una distancia ρ de O. O es el **centro** y ρ el **radio**.

Teorema 8.3 Una circunferencia corta a una recta en a lo sumo dos puntos.

Definición 8.4 Dada C una recta que corta en dos puntos se llama **secante**, que corta en un punto se llama **tangente** y que no corta se llama **exterior**. Si para un punto $X \in \mathbb{P}$, $d(O, X) > d(O, \rho)$ el punto es exterior, y si $d(O, X) < d(O, \rho)$ entonces es interior.

Teorema 8.5 Sea C con centro O. Si t es tangente a C en P_t , entonces $t \perp r_{O,P_t}$.

Definición 8.6 Sean P, P' dos puntos tales que O = medio[P, P']. Entonces, si los puntos están en C, se denominan **diametralmente opuestos en** C, y [P, P'] es un diámetro de C.

Teorema 8.7/Definición 8.9 Dados tres puntos no alineados, entonces existe una única circunferencia que pase por estos puntos, la **circunferencia circunscrita**.

Corolario 8.8 Dos circunferencias tienen a lo sumo dos puntos en común. Si sólo tienen un punto en común se llaman tangentes.

Teorema 8.10 Sean C, C' con centros O, O' y radios ρ , ρ' respectivamente. Si las dos circunferencias cortan en dos puntos, entonces se cumplen las siguientes desigualdades:

$$OO' < \rho + \rho' \quad \rho < OO' + \rho' \quad \rho' < OO' + \rho$$

Y si las circunferencias son tangentes, entonces se verifica una de estas igualdades:

$$OO' = \rho + \rho'$$
 $\rho = OO' + \rho'$ $\rho' = OO' + \rho$

Teorema 8.11 [Arco capaz] Sea \mathcal{C} con centro O y sean $\triangle PXY$ y $\triangle P'XY$ dos triángulos con vértices en \mathcal{C} y P,P', O están en el mismo semiplano determinado por r_{XY} . Si X e Y no son diametralmente opuestos, entonces $\angle P = \angle P' = \frac{1}{2} \angle O$. Todo este arco, así como el arco surgido de la reflexión $\sigma_{r_{XY}}$ cumplen $\angle P = \angle P'$, y se denomina **arco capaz**.

② Demostración. Sea $\mathcal{T} = \triangle PXY$ y $\mathcal{T}_O = \triangle OXY$. Construimos también $\mathcal{T}_1 = \triangle POX$ y $\mathcal{T}_2 = \triangle POY$, isósceles, de modo que $\mathcal{L}_{\mathcal{T}_1}X = \mathcal{L}_{\mathcal{T}_1}P$ y $\mathcal{L}_{\mathcal{T}_2}Y = \mathcal{L}_{\mathcal{T}_2}P$. Como la suma de los ángulos de \mathcal{T}_1 y \mathcal{T}_2 es llano, entonces

$$2 \angle_{\mathcal{T}_1} P = \pi - \angle_{\mathcal{T}_1} O$$
 $2 \angle_{\mathcal{T}_2} P = \pi - \angle_{\mathcal{T}_2} O$

Vamos a suponer ahora que $\angle_T P = \angle_{T_1} P - \angle_{T_2} P$. Para $2 \angle_T P$ entonces se cumple que

$$2 \angle_{\mathcal{T}} P = 2 \angle_{\mathcal{T}_1} P - 2 \angle_{\mathcal{T}_2} P = \angle_{\mathcal{T}_2} O - \angle_{\mathcal{T}_1} O = \angle_{\mathcal{T}_0} O = \angle O$$

La misma demostración sucede para $\angle_T P = \angle_{T_1} P + \angle_{T_2} P$ y $\angle_T P = \angle_{T_2} P - \angle_{T_1} P$

Ejercicio 8.2 Sea \mathcal{C} con centro O y sean $\triangle PXY$ y $\triangle P'XY$ dos triángulos con vértices en \mathcal{C} y P,P',O están en distinto semiplano determinado por r_{XY} . Entonces $\angle P = \pi - \angle P'$

Definición 8.13 Sea \mathcal{C} con centro O y radio ρ . Se denomina **inversión** del plano con respecto a \mathcal{C} a una aplicación $\iota_{\mathcal{C}}: \mathbb{P} - \{O\} \to \mathbb{P} - \{O\}$ que a cada punto P le hace corresponder otro punto $\iota_{\mathcal{C}}(P)$ tal que $O, P, \iota_{\mathcal{C}}(P)$ están alineados, $O \not\in [P, \iota_{\mathcal{C}}(P)]$ y se verifica que

$$OP \cdot O_{\iota_{\mathcal{C}}}(P) = \rho^2$$

Esta aplicación verifica que

- $\iota_{\mathcal{C}} \circ \iota_{\mathcal{C}}(P) = P$ para todo $P \in \mathbb{P} O$.
- Para todo $P \in \mathcal{C}$ se cumple $\iota_{\mathcal{C}}(P) = P$. A todo punto fuera del circulo, $\iota_{\mathcal{C}}$ lo manda dentro, y viceversa.
- Si *r* pasa por O, $\iota_{\mathcal{C}}(r \{O\}) = r \{O\}$.

Teorema 8.16/8.17 Sea C y $P \in \mathbb{P}$. Sean a, b rectas que cortan a P y secantes a C. Sean A_1 y A_2 los

Entonces se verifica que

$$PA_1 \cdot PA_2 = PB_1 \cdot PB_2$$

Si *a* es tangente, entonces

$$PA^2 = PB_1 \cdot PB_2$$

Ese producto, por tanto, es invariante de la recta, y se denomina **potencia de** P **con respecto a** C.

Teorema 8.18 Sea $\mathcal C$ de radio ρ y centro O.

• Sea C' una circunferencia de centro O' que pasa por O, entonces $\iota_{\mathcal{C}}(\mathcal{C}' - \{O\})$ es una recta ortogonal a $r_{O,O'}$. Sea r que no pasa por O, entonces $\iota_{\mathcal{C}}(r) = \mathcal{C}' - \{O\}$, donde \mathcal{C}' es una circunferencia que pasa por O.

■ Si C' no pasa por O entonces $\iota_C(C')$ es otra circunferencia que no pasa por O. Si O es exterior a C' entonces $\iota_C(C')$ es la imagen de C'por la homotecia de centro O y razón ρ^2/t , donde t es la potencia de O con respecto a C'. Si O es interior a C' entonces $\iota_{C}(C') =$ $\sigma_O \circ \eta_{O,\rho^2/t}(\mathcal{C})$.

Definición 8.19 Sea A, B, C, D una cuaterna ordenada de puntos distintos del plano. Se define razón doble como

$$(A, B : C, D) = \frac{CA}{CB} : \frac{DA}{DB}$$

puntos de corte de a con C y B_1 , B_2 los de b con C. Si A, B, C, D están alineados, entonces la razón doble es una razón de las dos razones simples:

Por convenio se tiene que

$$(A, B: C, \infty) = \frac{CA}{CB}$$

Teorema 8.20 Sea \mathcal{C} con centro O y sean $A, B \neq$ O y que no estén alineados a O. Si $\iota_{\mathcal{C}}(A) = A'$ y $\iota_{\mathcal{C}}(B) = B'$, los triángulos $(T)_1 = \triangle OAB$ y $(T)_2 =$ $\triangle OA'B'$ son semejantes, y $\angle A = \angle B'$ y $\angle B =$ $\angle A'$.

Teorema 8.21 Sea C con centro O y sean $A, B, C, D \neq O$. Entonces

$$(A, B : C, D) = (\iota_{\mathcal{C}}(A), \iota_{\mathcal{C}}(B) : \iota_{\mathcal{C}}(C), \iota_{\mathcal{C}}(D))$$

9. Geometría hiperbólica

Definición 9.0 Para describir la geometría hiperbólica se fija una recta l_{∞} y uno de los semiplanos de la recta l_{∞} como \mathbb{H} . La distancia hiperbólica sigue la lógica de para que dos pares de puntos A, A' y B, B' sobre $r \perp l_{\infty}$ y d(A, A') = d(B, B'), pero A, A' están más cerca de l_{∞} que B, B', entonces $d_{\mathbb{H}}(A, A') > d_{\mathbb{H}}(B, B')$.

Si $R=r\cap l_{\infty}$, definimos la **distancia hiperbólica** como

$$d_{\mathbb{H}}(P,Q) = \left| \log \frac{RP}{RQ} \right| = \left| \log(P,Q:R,\infty) \right|$$

Teorema 9.1 Sean P, Q, S en \mathbb{H} sobre $r \perp l_{\infty}$ tal que $Q \in [P, S]$. Entonces:

- $d_H(P,Q) + d_H(Q,S) = d_H(P,S)$.
- Sea C con centro $R = r \perp l_{\infty}$, entonces

$$d_H(\iota_{\mathcal{C}}(P),\iota_{\mathcal{C}}(Q)) = d_H(P,Q)$$

Teorema 9.2 Sean $P,Q \in \mathbb{H}$ de modo que $r_{PQ} \not\perp l_{\infty}$. Existe una única circunferencia C_{PQ} con centro l_{∞} y que pasa por P y Q.

Definición 9.0-cont Queremos que la distancia anterior sea invariante a inversiones respecto a circunferencias. Si tenemos $P,Q \in \mathbb{H}$ de modo que $r_{PQ} \not\perp l_{\infty}$ y $X,Y = \mathcal{C}_{PQ} \cap l_{\infty}$, podemos crear \mathcal{C}_X . Entonces, se tiene que la recta $r_{\iota_{\mathcal{C}_X}(P)\iota_{\mathcal{C}_X}(Q)} \perp l_{\infty}$, y definimos

$$d_H(P,Q) = d_H(\iota_{\mathcal{C}}(P),\iota_{\mathcal{C}}(Q)) = |\log(\iota_{\mathcal{C}}(P),\iota_{\mathcal{C}}(Q):R,\infty)|$$

Sin embargo, por el **Teorema 8.21** la razón doble conserva las inversiones, luego

$$|\log(\iota_{\mathcal{C}}(P), \iota_{\mathcal{C}}(Q) : R, \infty)| =$$

$$|\log(\iota_{\mathcal{C}}\iota_{\mathcal{C}}(P), \iota_{\mathcal{C}}\iota_{\mathcal{C}}(Q) : \iota_{\mathcal{C}}(R), \infty)| =$$

$$|\log(P, Q : \iota_{\mathcal{C}}(R), \iota_{\mathcal{C}}(\infty))|$$

Si tomamos como convención $\iota_{\mathcal{C}}(\infty) = X$, y por el **Teorema 8.18**, $\iota_{\mathcal{C}}(R) = Y$ entonces

$$d_H(P,Q) = |\log(P,Q:Y,X)|$$

Teorema 9.3 Sea C con centro l_{∞} , entonces ι_{C} preserva las distancias hiperbólicas para todo P,Q:

$$d_H(P,Q) = d_H(\iota_C(P),\iota_C(Q))$$

Teorema 9.4 Si C tiene centro en l_{∞} , entonces $C \cap \mathbb{H}$ es una recta hiperbólica.

Definición 9.5 Dos rectas hiperbólicas son paralelas si son disjuntas o coinciden.

Teorema 9.6 Sea r_H hiperbólica y P un punto de \mathbb{H} que no está en r_H . Existen infinitas rectas hiperbólicas paralelas a r_H que pasan por P.

10. Polígonos

Definición 10.1 Un polígono \mathcal{P} es un conjunto finito $\{\cdots, [V, W], \cdots\}$ de r segmentos llamados lados del polígono. Los extremos de los lados, vértices, forman el conjunto $\{V_1, \cdots, V_r\}$. \mathcal{P} cumple

- Dos lados de \mathcal{P} o bien no se cortan o tienen únicamente un extremo común (son lados adyacentes).
- Los lados de \mathcal{P} pueden escribirse como una sucesión finita de vértices $[V_1, V_2], [V_2, V_3], \dots, [V_r, V_1]$.

Definición 10.4 Une **diagonal** es un segmento cuyos extremos son dos vértices que no pertenecen al mismo lado.

Definición 10.6 Sea V un vértice de \mathcal{P} y sean $[V, W_1]$ y $[V, W_2]$ dos lados. El ángulo con vértice V y semirrectas que contienen a ambos lados forman el ángulo $\angle V$ de \mathcal{P} .

Definición 10.8 Un polígono es **convexo** si toda recta que no contiene a ninguno de los lados del polígono corta a lo sumo en dos lados de éste.

Teorema 10.10 Un polígono \mathcal{P} es convexo sii para todo lado [V, W] de \mathcal{P} los vértices de \mathcal{P} distintos de V y W están todos en el mismo de los dos semiplanos determinados por r_{VW} .

Definición 10.11 Un punto P está en el **interior** de un polígono convexo \mathcal{P} si cualquier recta que pase por P corta a los lados del polígono en dos puntos. Si P no está ni en el interior ni en los lados del polígono, entonces está en el exterior.

Observación 10.12 Un punto P está en el interior de un polígono P si existe una recta r que pasa por P de modo que si \overline{s} es una de las semirrectas, \overline{s} corta a P en un número n impar de puntos que no son vértices.

Definición 10.13 Un polígono convexo es **regular** si todos sus lados y ángulos son congruentes.

Lema 10.14 Sean r y s rectas que al cortarse forman un ángulo π/n . Sean σ_r y σ_s . Si V es un punto en r, definimos los puntos $V_{i+1} = (\sigma_s \circ \sigma_r)^i(V)$, $i = 1, \dots, n-1$, es decir, las imágenes de V por rotaciones. Entonces, si $V_1 = V$, el polí-

gono

$$\mathcal{P} = \{[V_1, V_2], \cdots, [V_{n-1}, V_n], [V_n, V_1]\}$$

es regular.

Teorema 10.15 Sea n entero mayor que 2. Sea [V, W] un segmento del plano, y H uno de los semiplanos determinados por r_{VW} . Existe un polígono regular de n lados contenido en $H \cup r_{VW}$ y uno de los lados es [V, W]. Corolario 10.17 En estas condiciones \mathcal{P} es único.

Teorema 10.16/10.19 Sea \mathcal{P} regular con n vértices. \mathcal{P} admite n reflexiones distintas, que son simetrías de \mathcal{P} . También existe una rotación con ángulo $2\pi/n$ que es simetría de \mathcal{P} . Análogamente, si \mathcal{P} es convexo con n vértices y tiene como simetría una rotación $2\pi/n$, entonces es regular.

Corolario 10.18 Todo \mathcal{P} regular permite una circunferencia \mathcal{C} que pase por todos sus vértices. Entonces \mathcal{P} está **inscrito** en \mathcal{C} .

Construcciones con regla y compás

Teorema 10.24/Definición 10.26 Dados dos puntos A y B se puede construir un punto $C \in [A, B]$ con regla y compás de modo que $AB \cdot BC = AC^2$. C divide en razón áurea, $\frac{AB}{AC} = \frac{1+\sqrt{5}}{2}$.

Teorema 10.27, 10.28 Sea $\triangle ABC$ un triángulo isósceles tal que AB = AC y $\angle B = \angle C = 2\angle A$. Entonces $\frac{AB}{BC}$ es la razón áurea. Además, este triángulo puede construirse con regla y compás.

Observación 10.29/Corolario 10.30 El ángulo $\angle A$ del triángulo áureo es $\pi/5$. Por tanto, se puede construir un pentágono regular con lados congruentes a [A, B].

Teorema 10.31 Un polígono regular de n lados se puede construir con regla y compás sii la factorización de n en números primos tiene la forma $n = 2^k p_1 p_2 \cdots p_m$, con p_i de la forma $2^{2^s} + 1$, y son primos distintos. Así, los lados polígonos construibles son 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, \cdots .

11. Geometría euclidiana espacial

Definición 11.0 \mathbb{E} es el conjunto de puntos en un espacio tridimensional. La distancia d es la aplicación $\mathbb{E} \times \mathbb{E} \to \mathbb{R}_+$.

Axioma E1 (\mathbb{E} , d) es un espacio métrico.

Definición 11.1 Una recta r y su segmento $[A, B] = \{X \in \mathbb{E} \mid d(A, X) + d(X, B) = d(A, B)\}$ son similares que en \mathbb{P} . Una recta cumple:

- contiene al menos dos puntos distintos.
- Para toda terna *A*, *B*, *C* en *r*, *A*, *B*, *C* están alineados.
- Si $A, B \in r$ distintos, y $X \in \mathbb{E}$, si $X \in r$, A, B, X están alineados.

Definición 11.2 Un **plano** $\pi \in \mathbb{E}$ es un subconjunto que, con la distancia d restringida a π , cumple los axiomas de la geometría euclidiana plana.

Axioma E2 [de los planos]

- Al menos existe un plano en E.
- Para todo plano α existe un punto $P \in \mathbb{E} \alpha$.
- Para $X, Y, Z \in \mathbb{E}$ distintos existe un plano $\alpha \in \mathbb{E}$ que los contiene. Si no están alineados, α es único, y se denota por α_{XYZ} .
- Si $\alpha, \beta \in \mathbb{E}$ son planos distintos, cortan en una recta.

Teorema 11.4 Si α es un plano y $A, B \in \alpha$, entonces $r_{AB} \in \alpha$.

Observación 11.5 Por dos rectas que cortan, o por una recta y un punto que no pasa por ella, pasa exactamente un plano.

Definición 11.6/Observación 11.7 Dos rectas *r, s* son **paralelas** si coinciden o están contenidas en un plano y son paralelas en él. Dos rectas disjuntas pueden no ser paralelas, si no están en el mismo plano.

Definición 11.8 Una recta l es **ortogonal** a un plano α en un punto $P(l \perp_P \alpha)$ si l es ortogonal a toda recta de α que pase por P.

Teorema 11.10 Sea r y $P \in r$, entonces existe un plano único π que pasa por P y es perpendicular a r.

Teorema 11.12 Sea α un plano y $P \in \alpha$. Existe una única recta ortogonal a α que pase por P.

Teorema 11.13 Sean r, s, y r es ortogonal a α . Si s es paralela a r, entonces es ortogonal a α .

Teorema 11.15 Sea α y $P \in \mathbb{E}$. Existe una única recta r tal que $P \in r$ y $r \perp \alpha$.

Definición 11.16 Dos planos α , β son ortogonales, $\alpha \perp \beta$ si existe al menos una recta $a \in \alpha$ verificando $a \perp \beta$.

Teorema 11.17 Para los planos $\alpha, \beta \in \mathbb{E}$ se tiene

- $\bullet \ \alpha \perp \beta \iff \beta \perp \alpha$
- $\alpha \perp \beta$ sii para todo $P \in \alpha$ la única recta $a \perp \beta$ pasando por P esta en α .

Teorema 11.18 Sea λ un plano y c una recta en \mathbb{E} . Existe un plano $\gamma \perp \lambda$ pasando por c. Si c no es ortogonal a λ , γ es único.

Definición 11.19 Dados dos planos π_1 , π_2 en \mathbb{E} , π_1 y π_2 son **paralelos** si $\pi_1 = \pi_2$ o $\pi_1 \cap \pi_2 = \emptyset$.

Teorema 11.20 Si $\pi_1 \parallel \pi_2$ toda recta ortogonal a π_1 lo es a π_2 .'

Page intentionally left in blank

12. Isometrías en el espacio

Definición 12.0 La igual que en \mathbb{P} , una **isometría** es una aplicación $g : \mathbb{E} \to \mathbb{E}$ biyectiva que conserva las distancias.

Teorema 12.1 Sea g una isometría y $A, B \in \mathbb{E}$. Entonces g([A, B]) = [g(A), g(B)] y $g(r_{AB}) = r_{g(A)g(B)}$.

Teorema 12.2 Sea g y $\pi \in \mathbb{E}$, entonces $g(\pi) \in \mathbb{E}$.

Teorema 12.3 Si $A, B, C \in \mathbb{E}$ no son alineados, entonces $g(\pi_{ABC}) = \pi_{g(A)g(B)g(C)}$

Teorema 12.4 Sea l una recta y α , β planos en \mathbb{E} .

- $l \perp \alpha \iff g(l) \perp g(\alpha)$
- $\bullet \beta \perp \alpha \iff g(\beta) \perp g(\alpha)$

Definición 12.5 [Reflexión sobre plano] Sea $\alpha \in \mathbb{E}$. Dado $P \in \mathbb{E}$ sea t_P ortogonal a α que pasa por P, y $\pi_{\alpha}(P) = t_P \cap \alpha$. La **reflexión con base** α de P, o $\sigma_{\alpha}(P)$, es el punto tal que $\pi_{\alpha}(P) = \text{medio}[P, \sigma_{\alpha}(P)]$

Observación 12.6/Teorema 12.7 σ_{α} es una biyección, y $\sigma_{\alpha} \circ \sigma_{\alpha}(P) = P$. Además, $\sigma_{\alpha}(P) = P \iff P \in \alpha$. σ_{α} es una isometría.

Teorema 12.8 Sea π un plano y σ_r una reflexión en π respecto a r. Existe una reflexión $\sigma_\alpha \in \mathbb{E}$ de modo que σ_α restringida a π coincide con σ_r .

Corolario 12.9 Sea g una isometría de un plano π . Entonces existe una isometría $\tilde{g}(X) = g(X)$ para todo $X \in \pi$.

Corolario 12.10 Sean π_1 y π_2 dos planos del espacio. Existe una isometría g tal que $g(\pi_1) = \pi_2$, y se puede tomar g como reflexión.

Lema 12.11 Sea $g \in \text{Isom}(\mathbb{E})$. Si $A \neq B$ son fijos en g, entonces r_{AB} es fija en g.

Teorema 12.12 Sea g, y sea α el plano pasando por A, B, C. Si A, B, C son fijos en g, entonces $g = \sigma_{\alpha}$ o $g = \mathrm{id}_{\mathbb{E}}$.

Corolario 12.13 Sean A^1 , A^2 , A^3 , $A^4 \in \mathbb{E}$, no situados en el mismo plano; y sean g, $h \in \text{Isom}(\mathbb{E})$. Si $g(A^i) = h(A^i)$ para todo i, entonces g = h.

Teorema 12.15

■ Sea $\rho \in \text{Isom}(\mathbb{E})$ una rotación de eje r. Para $\sigma_{\alpha}\tau$.

- todo plano α conteniendo a r, existen planos β , β' conteniendo a r, únicos, tales que $\rho(\alpha) = \sigma_{\beta}\sigma_{\alpha} = \sigma_{\alpha}\sigma_{\beta'}$.
- Sea τ una traslación paralela a una recta c. Para todo plano $\alpha \perp c$ existen planos β, β' , únicos, tales que $\tau = \sigma_{\beta}\sigma_{\alpha} = \sigma_{\alpha}\sigma_{\beta'}$.

Ejercicio 12.1 Si $g, h \in \text{Isom}(\mathbb{E})$ son rotaciones con ejes ortogonales al mismo plano λ , entonces gh o bien es una rotación con eje ortogonal a λ , o una traslación paralela a rectas contenidas en λ o la identidad.

Ejercicio 12.2 Las rotaciones forman una clase de congruencia, con el **ángulo de rotación** ρ **.** Si $\angle V$ es el ángulo formado por la semirrectas de $\alpha \cup \lambda$ y $\beta \cup \lambda$ (siendo α , β los planos de reflexión, y λ ortogonal a α , β), entonces $2 \angle V$ es el ángulo de rotación. Si el ángulo de rotación es llano, entonces ρ es una **media vuelta**.

Ejemplo 12.18 Tomando un plano π y componiendo la reflexión σ_{π} con una rotación ρ de eje $a \perp \pi$, se obtiene la isometría $\phi = \sigma_{\pi} \rho = \rho \sigma_{\pi}$

Ejemplo 12.20 Una **reflexión central** es una isometría entre un plano α y una recta $r \perp \alpha$, en un punto $P = r \cap \alpha$: $\sigma_P = \sigma_\alpha \rho_r$. La reflexión central cumple

- Para todo $X \in \mathbb{E}$, medio $[X, \sigma_P(X)] = P$.
- $\bullet \ \sigma_P \circ \sigma_P = \mathrm{id}_{\mathbb{E}}.$
- Para cualquier β , s tal que $\beta \perp_P s$, $\sigma_\beta \rho_s = \rho_s \sigma_\beta$.

Ejercicio 12.4

- El producto de dos reflexiones centrales σ_P , σ_Q ($P \neq Q$) es una traslación paralela a la recta r_{PO} .
- Sea τ una traslación. Para todo $S \in \mathbb{E}$ existen puntos $B, B' \in \mathbb{E}$ únicamente determinados tales que $\tau = \sigma_A \sigma_{B'} = \sigma_B \sigma_A$.

Ejemplo 12.21 Un **movimiento helicoidal** es una composición de una rotación con eje r y una traslación paralela a dicho eje: $h = \tau \circ \rho = \rho \circ \tau$.

Ejemplo 12.22 Una **reflexión con deslizamiento** es una composición de una reflexión σ_{α} y una traslación τ paralela a la recta $r \subset \alpha$: $d = \tau \sigma_{\alpha} = \sigma_{\alpha} \tau$.

Teorema 12.19 Las únicas isometrías en Isom(\mathbb{E}) – $\mathrm{id}_{\mathbb{E}}$ con puntos fijos son las refleiones, rotaciones, o reflexiones-rotaciones.

Teorema 12.23 Las isometrías de \mathbb{E} sin puntos fijos son las traslaciones, movimientos helicoidales y reflexiones con deslizamiento.

Ejercicio 12.5 Resumen de isometrías:

Puntos fijos	Ø	\boldsymbol{A}	a	α
par	τ / h		ρ	
impar	d	φ		σ

13. Poliedros

Definición 13.1 Un **poliedro** \mathcal{P} es un conjunto finito de polígonos $\{C_k w\}$. Los polígonos de \mathcal{P} se llaman caras, los lados del polígono se llaman aristas o lados, y los vértices tienen el mismo nombre. Todo poliedro cumple:

- Dos caras de un poliedro o bien no se cortan, y tienen un único vértice en como, o un lado en común.
- Cada arista es un lado de dos polígonos de \mathcal{P} .
- Las caras que comparten un vértice en común V se pueden ordenar en una sucesión C_1, \dots, C_r de modo que C_i y C_{i+1} son adyacentes.
- Dadas dos caras C_i, C_j existe una sucesión finita de caras C_1, \dots, C_r tal que $C_i = C_1, C_r = C_j$.

Definición 13.2 Un poliedro es **convexo** si toda recta no contenida en ninguno de los planos que contienen a las caras corta a lo más en dos puntos a las caras.

Definición 13.3 Un **ciclo poligonal** C es un conjunto finito de segmentos (lados) con un conjunto finito de puntos (vértices) que verifican

- Dos segmentos o no se cortan o tienen un extremo en común.
- Los lados de C se pueden escribir como una sucesión finita de la forma $[V_1, V_2], [V_2, V_3], \dots, [V_{r-1}, V_r], [V_r, V_1].$

Definición 13.4 Sea \mathcal{L} un conjunto formado por algunos lados de \mathcal{P} . Dadas dos caras P y P' de \mathcal{P} decimos que están **conectadas** en $\mathcal{P} - \mathcal{L}$ si existe una sucesión de polígonos de \mathcal{P} , $P = P_1, \cdots, P_r = P'$ de modo que P_i y P_{i+1} tienen un lado en común que no está en \mathcal{L} . Si C es una cara de \mathcal{P} , la componente conexa de $\mathcal{P} - \mathcal{L}$ que contiene a C es el subconjunto de \mathcal{P} formado por los polígonos de \mathcal{P} que están conectados con C en $\mathcal{P} - \mathcal{L}$.

Teorema 13.5 Sea \mathcal{P} un poliedro convexo y \mathcal{C} un ciclo de \mathcal{P} , entones hay exactamente dos componentes convexas en $\mathcal{P} - \mathcal{C}$.

Teorema 13.9 [Descartes-Euler] Sea \mathbb{P} un poliedro convexo, con c caras, l lados y v vértices, entonces: c - l + v = 2

Definición 13.11 Un poliedro regular es un polie-

dro convexo contodas las caras congruentes a un mismo polígono regular y cada vértice está en un mismo número de caras. Decimos que un poliedro regular tiene tipo $\{n, m\}$ si sus caras son polígonos regulares con n lados y cada vértice es vértice exactamente de m caras.

Nombre	Tipo	c	l	υ
Tetraedro	{3,3}	4	6	4
Octaedro	${3,4}$	8	12	6
Cubo	$\{4, 3\}$	6	12	8
Dodecaedro	${3,5}$	20	30	12
Icosaedro	$\{5, 3\}$	12	30	20

Teorema 13.14 Dado un real l > 0 existe un poliedro regular de tipo $\{3,3\},\{3,4\},\{4,3\},\{3,5\},\{5,3\},$ cuya arista mide l. Además, si \mathcal{P}_1 y \mathcal{P}_2 son dos poliedros del mismo tipo y con la misma longitud de arista entonces existe una isometría η tal que $\eta(\mathcal{P}_1) = \mathcal{P}_2$.

Teorema 13.16 Sea V, W dos vértices de un poliedro regular \mathcal{P}, a, b dos aristas, de modo que a tiene por uno de sus extremos V y b tiene por extremo W, por último sea C_1 una cara que tiene a a como uno de sus lados y C_2 una cara que tiene a b como lado. Existe una simetría b de b tal que

$$\theta(V) = W \ \theta(a) = b \ \theta(C_1) = C_2$$

Definición Dado un polígono \mathcal{P} regular, el polígono **dual** de \mathcal{P} , o $\mathcal{P}*$, es aquel formado por la unión de los centros de las caras que forman los triedos (tres polígonos que comparten el mismo vértice V).

Definición Si consideramos el plano π ortogonal a r_{VW} , siendo V,W los dos vértices de un lado en común entre dos caras P_1,P_2 de $\mathcal{P}.$ π pasa, por ejemplo, por medio[V,W]. Llamamos **ángulo diédrico** al ángulo de π con vértice en medio[V,W] y cuyos lados contienen a los segmentos que son las intersecciones de P_1 y P_2 con π .

Rotaciones de un poliedro regular:

■ Rotaciones con eje ortogonal a una cara C de \mathcal{P} y pasa por el el centro de C; con ángulos de rotación $2\pi r/n$, $r=1,\cdots,n-1$.

■ Rotaciones cuyo eje pasa por un vértice V de \mathcal{P} y es ortogonal al polígono formado por los centros de las caras de \mathcal{P} que tienen a V como uno de sus vértices; con ángulos de rotación $2\pi r/m$, $r=1,\cdots,m-1$.

■ Medias vueltas con eje e que pasa por el punto medio M de una arista a de \mathcal{P} . Además e es ortogonal a a, así deja invariante la arista a aunque intercambia sus extremos. e es la bisectriz del ángulo formado por las dos caras C_1 , C_2 que comparten a y que pasa por M; permutando así C_1 y C_2 .

Geometría analítica 14.

Definición 14.1 Un paralelogramo $\Box PABC$ se llama **rectángulo** si $r_{PA} \perp r_{PC}$

Observación 14.3 Un sistema de coordenadas **cartesianas** es un par de rectas l^1 , $l^2 \subset \mathbb{P}$ cortándose ortogonalmente en un punto O, llamado **origen**, siendo así l^1 , l^2 los **ejes** [El sistema es construible porque el Teorema 2.29 garantiza la existencia de $l_2 \perp l_1$ único pasando por O]. Por el **Axioma P3** existen aplicaciones

$$\gamma_k: l^k \to \mathbb{R}, \ k = 1, 2$$

tales que

$$X, Y \in l^k \rightarrow d(X, Y) = |\gamma_k(X) - \gamma_k(Y)|$$

Además, podemos elegir puntos E^k tales que $\gamma_k(O) = 0$ y $\gamma_k(E^k) = 1$. Este sistema de coordenadas OE^1E^2 es orientado, y a todo punto $A \in \mathbb{P}$ se le pueden asociar dos reales a_1 , a_2 tales que cada a^k es ortogonal a l^k , de modo que $a_k = \gamma_k(A^k)$; y se puede determinar la aplicación de coordenadas $\Gamma(A) = (a_1, a_2)$.

Observación [Coordenadas en E] Un sistema de coordenadas en el espacio E es una terna de rectas l^1, l^2, l^3 ortogonales entre sí, los ejes, con un origen O; los puntos E^k tales que $d(O, E^k) = 1$ que generan el sistema de coordenadas $OE^1E^2E^3$, y las aplicaciones γ_k y Γ similares a las de la Observación 14.3 pero con una dimensión más.

Teorema 14.4/14.6/14.7 La aplicación $\Gamma: \mathbb{P} \to \mathbb{R}^2$ es biyectiva. Si A, B son dos puntos, y $\Gamma(A) =$ (a_1, a_2) ; $\Gamma(B) = (b_1, b_2)$, entonces

$$d(A, B)^{2} = (a_{1} - b_{1})^{2} + (a_{2} - b_{2})^{2}$$

Para \mathbb{E} , $\Gamma : \mathbb{E} \to \mathbb{R}^3$ también es biyectiva, y la distancia entre A, B viene dada por

$$d(A,B)^2 = (a_1 - b_1)^2 + (a_2 - b_2)^2 + (a_3 - b_3)^2$$

Corolario 14.5/Observación 14.8 El espacio métrico (\mathbb{P} , d) es isométrico a (\mathbb{R}^2 , d_E) y $\Gamma : \mathbb{P} \to \mathbb{R}^2$ es una isometría. El espacio métrico (\mathbb{E} , d) es isométrico a (\mathbb{R}^3 , d_E) y $\Gamma : \mathbb{E} \to \mathbb{R}^3$ es una isometría.

Definición [Espacio Euclidiano \mathbb{R}^n] El espacio \mathbb{R}^n es el conjunto $\mathbb{R}^n = \{X = (x_1, \dots, x_n) \mid x_i \in \mathbb{R}; i = n\}$

 $1, \dots, n$ }. El conjunto tiene una estructura de **es**pacio vectorial con las operaciones

$$X + Y \equiv (x_1 + y_1, \dots, x_n + y_n); X, Y \in \mathbb{R}^n$$
$$\lambda X = (\lambda x_1, \dots, \lambda x_n); \lambda \in \mathbb{R}$$

Definición 14.9 [Distancia euclidiana en \mathbb{R}^n] Para dos puntos $X, Y \in \mathbb{R}^n$ la métrica euclidiana es la aplicación $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$ tal que

$$d(X, Y) \equiv \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{1/2}$$

Definición 14.10 El **producto escalar** de X, Y es

$$\langle X, Y \rangle = X \cdot Y \equiv \sum_{i=1}^{n} x_i y_i$$

La **norma** es la operación

$$||X|| \equiv \langle X, X \rangle^{1/2} = \sum_{i=1}^{n} x_i^2$$

Teorema 14.11 Para $X, X', Y, Y' \in \mathbb{R}^n$ y $\lambda \in \mathbb{R}$:

- $\langle X, X \rangle \ge 0$; $\langle X, X \rangle = 0 \iff X = 0$

- $(X + X', Y) = \langle X, Y \rangle + \langle X', Y \rangle; \langle X, Y + Y' \rangle =$ $\langle X, Y \rangle + \langle X, Y' \rangle$

Observación 14.12 El producto escalar y la distancia están relacionados:

- $d(X,Y) = ||X Y|| = \sqrt{\langle X Y, X Y \rangle}$
- d(X, -Y) = ||X + Y||
- $\langle X, Y \rangle = \frac{1}{4}(||X + Y||^2 ||X Y||^2)$ $\langle X, Y \rangle = \frac{1}{2}(||X||^2 + ||Y||^2 ||X Y||^2)$

Teorema 14.13 Sea $V \in \mathbb{R}^n$, $V \neq 0$. Para todo $U \in$ \mathbb{R}^n existe un único $\lambda_U \in \mathbb{R}$ y un único V_U^{\perp} tales que

$$U = \lambda_{II}V + V_{II}^{\perp}; \langle V, V_{II}^{\perp} \rangle = 0$$

Además, λ_U y V_U^{\perp} se expresan como

$$\lambda_U = \frac{\langle U, V \rangle}{||V||^2} = \frac{\langle U, V \rangle}{\langle V, V \rangle} \; ; \; V_U^{\perp} = U - \lambda_U V$$

Demostración. Por la definición de U tenemos que $\langle U, V \rangle =$ $\langle \lambda_U V + V_U^{\perp}, V \rangle = \lambda_U \langle V, V \rangle + \langle V_U^{\perp}, V \rangle \iff \lambda_U = \frac{\langle U, V \rangle}{||V||^2}$ Por otra parte, $\langle V_U^{\perp}, V \rangle = \langle U - \lambda_U V, V \rangle = \langle U, V \rangle \lambda_U \langle V, V \rangle = \langle U, V \rangle - \langle U, V \rangle \frac{||V||^2}{||V||^2} = 0$

Teorema 14.14 (\mathbb{R}^n , d) es un espacio métrico: para cada terna $X, Y, Z \in \mathbb{R}^n$ se satisface

- $d(X, Y) \ge 0$; $d(X, Y) = 0 \iff X = Y$
- d(X,Y) = d(Y,X)
- $d(X,Z) + d(Z,Y) \ge d(X,Y)$

Demostración. Para la tercera afirmación: V=Y-X. Segun 14.13, existen λ , W tales que $Z-X=\lambda V+W$; $\langle V,W\rangle=0$. Si $Z-Y=Z-X-(Y-X)=(\lambda-1)V+W$ y manipulamos las distancias:

$$||Z - X||^2 = \langle \lambda V + W, \lambda V + W \rangle = \lambda^2 ||V||^2 + ||W||^2$$

$$||Z-Y||^2 = \langle (\lambda-1)V+W, (\lambda-1)V+W \rangle = (\lambda-1)^2||V||^2 + ||W||^2$$

Y, por tanto

$$||Z - X|| + ||Z - Y|| \ge |\lambda| \cdot ||V|| + |\lambda - 1| \cdot ||V|| \ge ||V|| = ||Y - X||$$

Observación 14.15 Para $A, B \in \mathbb{R}^n$ se llama **segmento de recta**, [A, B] al conjunto

$$[A, B] = \{X \in \mathbb{R}^n \mid d(A, X) + d(X, B) = d(A, B)\}$$

o, empleando el Teorema 14.14

$$[A, B] = \{ Z \in \mathbb{R}^n \mid Z = A + \lambda (B - A), \ \lambda \in [0, 1] \}$$

Esta obra está bajo una licencia Creative Commons "Reconocimiento-NoCommercial-NoDerivs 3.0 España".

