Seminar 6

In this seminar you will study:

- Solving quadratic equations with negative discriminant ($\Delta < 0$)
- Simplification of expression involving *i*
- Algebra of complex numbers and their cartesian form: z = x + iy
- Properties of modulus
- Polar form of a complex number: $z = r(\cos \theta + i \sin \theta)$
- Algebraic operations with polar form of complex numbers

Complex numbers

Complex number: Cartesian Form

$$z = x + iy$$

where $x, y \in \mathbb{R}$, and the imaginary number $i = \sqrt{-1} \implies i^2 = -1$.

Real part of z: Re(z) = x

Imaginary part of z: Im(z) = y

Conjugate of a Complex number: Cartesian Form

If $z=x+i\,y$ is a complex number then its conjugate is defined and denoted by: $\overline{z}=x-i\,y$

Real part of \overline{z} : $Re(\overline{z}) = x$

Imaginary part of \overline{z} : $\operatorname{Im}(\overline{z}) = -y$

Complex numbers

Example: Solve the quadratic equation $2x^2 - 10x + 17 = 0$.

Solution: On comparing $2x^2 - 10x + 17 = 0$ with $ax^2 + bx + c = 0$

$$a = 2$$
, $b = -10$, $c = 17$

$$\Delta = b^2 - 4ac = (-10)^2 - 4(2)(17) = -36 < 0 \implies \Delta = 36i^2$$

$$x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-(-10) \pm \sqrt{36i^2}}{2(2)} = \frac{10 \pm 6i}{4} = \frac{5 \pm 3i}{2}$$

$$x = \left(\frac{5}{2}\right) + i\left(\frac{3}{2}\right) \quad \text{or} \quad x = \left(\frac{5}{2}\right) - i\left(\frac{3}{2}\right)$$

Simplification of expressions involving i

$$i = \sqrt{-1}$$
 $i^2 = -1$ $i^3 = -i$ $i^4 = -i^2 = 1$ $i^5 = i$

Example: Simplify: $(i^2 + i + 2)^{10} + (i^2 - i + 2)^{10}$.

Solution:
$$(i^2 + i + 2)^{10} + (i^2 - i + 2)^{10}$$
 $\therefore (1 + i)^{10} = [2i]^{\frac{1}{2}}$
 $= (-1 + i + 2)^{10} + (-1 - i + 2)^{10}$ Similarly,
 $= (1 + i)^{10} + (1 - i)^{10}$ $(1 - i)^{10} = [-2i]$
 $(1 + i)^{10} = [(1 + i)^2]^5$ $\therefore (i^2 + i + 2)^{10} = [1 + 2i + i^2]^5 = [1 + 2i - 1]^5$ $= 32i - 32i = 0$

Property of Modulus

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
 $\left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|}$ $|\overline{z}| = |z|$

Example: Given $z_1 = 3 + 4i$ and $z_2 = 12 + 5i$, find $|\overline{z_1} \cdot z_2|$ and $\left|\frac{z_1}{z_2}\right|$.

Solution:

$$|z_1| = \sqrt{3^2 + 4^2} = 5$$

 $|z_2| = \sqrt{12^2 + 5^2} = 13$

$$|z_1 \cdot z_2| = |z_1| \cdot |z_2| = |z_1| \cdot |z_2| = 5 \cdot 13 = 65$$

$$\therefore \left| \frac{z_1}{z_2} \right| = \frac{|z_1|}{|z_2|} = \frac{5}{13}$$

Polar form of Complex numbers

Cartesian form

$$z = x + i y$$

where $x, y \in \mathbb{R}$ and $i = \sqrt{-1}$.

Polar form

$$z = r(\cos\theta + i\sin\theta)$$

where r > 0 and $-\pi < \theta \le \pi$.

$$x < 0$$
 and $y > 0$

$$\theta = \pi - \tan^{-1} \left| \frac{y}{x} \right|$$

$$x > 0$$
 and $y > 0$

$$\theta = \tan^{-1} \left| \frac{y}{x} \right|$$

$$x < 0$$
 and $y < 0$

$$\theta = -\pi + \tan^{-1} \left| \frac{y}{x} \right|$$

$$x > 0$$
 and $y < 0$

$$\theta = -\tan^{-1}\left|\frac{y}{x}\right|$$

(Not given in the formula sheet)

and $\theta = \arg(z)$ is

obtained from

Polar form of Complex numbers

Example: Express the complex number $z = 1 + \sqrt{3} i$ in the polar form $r(\cos \theta + i \sin \theta)$, where r > 0 and $\theta \in (-\pi, \pi]$.

$$\therefore x = 1 \quad \text{and} \quad y = \sqrt{3}$$

$$\Rightarrow r = \sqrt{x^2 + y^2} = 2$$

and
$$\theta = \tan^{-1} \left| \frac{\sqrt{3}}{1} \right|$$

$$= \tan^{-1} \sqrt{3} = \frac{\pi}{3}$$

$$\therefore z = 2\left[\cos\left(\frac{\pi}{3}\right) + i\sin\left(\frac{\pi}{3}\right)\right]$$

Algebraic operations with Polar form of Complex numbers

Given
$$z_1 = r_1(\cos \theta_1 + i \sin \theta_1)$$
 and $z_2 = r_2(\cos \theta_2 + i \sin \theta_2)$, $z_1 \cdot z_2 = r_1 \cdot r_2 \left[\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) \right]$.
$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right]$$

Note: In the above results, $(\theta_1 \pm \theta_2)$ only represent the

arguments of $z_1 \cdot z_2$ and $\frac{z_1}{z_2}$ respectively.

The principal argument can be obtained by using $(\theta_1 \pm \theta_2) \pm 2\pi$

Algebraic operations with Polar form of Complex numbers

Example: Given $z_1 = 1 + \sqrt{3} i$ and $z_2 = \sqrt{3} + i$. Find the polar form of

$$z_1 \cdot z_2$$
 and $\frac{z_1}{z_2}$.

Solution:
$$z_1 = 1 + \sqrt{3} i = 2 \left[\left(\frac{1}{2} \right) + i \left(\frac{\sqrt{3}}{2} \right) \right] = 2 \left[\cos \left(\frac{\pi}{3} \right) + i \sin \left(\frac{\pi}{3} \right) \right]$$

$$z_2 = \sqrt{3} + i = 2\left[\left(\frac{\sqrt{3}}{2}\right) + i\left(\frac{1}{2}\right)\right] = 2\left[\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right]$$

$$z_1 \cdot z_2 = 2 \times 2 \left[\cos \left(\frac{\pi}{3} + \frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{3} + \frac{\pi}{6} \right) \right] = 4 \left[\cos \left(\frac{\pi}{2} \right) + i \sin \left(\frac{\pi}{2} \right) \right]$$

$$\frac{z_1}{z_2} = \frac{2}{2} \left[\cos \left(\frac{\pi}{3} - \frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{3} - \frac{\pi}{6} \right) \right] = \cos \left(\frac{\pi}{6} \right) + i \sin \left(\frac{\pi}{6} \right)$$

THANKS FOR YOUR ATTENTION

Monday	1 pm to 2 pm	YFB 412
Tuesday	9 am to 10 am	YFB 412
Tuesday	11 am to 12 noon	Trent 437
Tuesday	1 pm to 2 pm	YFB 412
Tuesday	3 pm to 4 pm	PB 205
Wednesday	10 am to 11 am	PMB 449
Wednesday	11 am to 12 noon	YFB 412
Wednesday	12 noon to 1 pm	YFB 412
Wednesday	1 pm to 2 pm	YFB 104
Friday	4 pm to 5 pm	YFB 219
Friday	1 pm to 2 pm	PB 102