Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 03-03-2003 View Graphs 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER **5b. GRANT NUMBER** Review of POSS Effects on Polymers 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) **5d. PROJECT NUMBER** 2303 Rene Gonzalez **5e. TASK NUMBER** M1A3 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Research Laboratory (AFMC) AFRL/PRSM AFRL-PR-ED-VG-2003-063 10 E. Saturn Blvd. Edwards AFB, CA 93524-7680 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/PRS 11. SPONSOR/MONITOR'S 5 Pollux Drive NUMBER(S) Edwards AFB CA 93524-7048 AFRL-PR-ED-VG-2003-063 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT 20030617 170 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE

OF ABSTRACT

Α

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

OF PAGES

19b. TELEPHONE NUMBER

PERSON Sheila Benner

(include area code)

(661) 275-5963

FILE

MEMORANDUM FOR PRS (In-House Publication)

FROM: PROI (STINFO)

10 Mar 2003

SUBJECT: Authorization for Release of Technical Information, Control Number: AFRL-PR-ED-VG-2003-063

Capt. Rene I. Gonzalez, PhD, "Review of POSS Effects on Polymers"

Lab Visitors and Scientists Briefing (<u>Deadline: 14 Apr 2003)</u>

(Statement A)

REVIEW OF POSS EFFECTS ON POLYMERS AND THE FUTURE 6.1 RESEARCH DIRECTION OF THE POSS PWG

DISTRIBUTION STATEMENT AApproved for Public Release
Distribution Unlimited

AFOSR Review for Dr. Charles Y-C Lee

Capt. Rene I. Gonzalez, Ph.D.
Project Leader
POSS-Polymer Working Group
Air Force Research Laboratory
(661)275-5252
rene.gonzalez@edwards.af.mil

POSS Programs/ People

. What is POSS and why use it?

- a) POSS polymer incorporation
 -) Theorizing a POSS Model
- Why POSS in not just a sphere & the importance of R $\hat{\mathbf{o}}$
-) POSS synthesis / Cage variation

Quantitatively, What does POSS do in different polymer systems? (Our and Collaborators work / Including Highlights from the POSS Conference)

- Semicrystaline Polymers (Polyethylenes, PEO, PET)
-) Blends
- c) Rubbers and TPE's (PN, Kraton)
- d) Glassy Polymers (Polystyrene, PMIMA)
- Thermosets
- f) Polyimides Space-Survivability AO Results

/. POSS Lubricants

Plan for refocusing our AFOSR sponsored 6.1 effort

Polymer Working Group - Research

Basic R&D (6.1) PROGRAMS AFOSR

POSS Synthesis and Characterization POSS Polymer Processing POSS for Space-Survivable Materials

Applied R&D (6.2) PROGRAMS AFRL

Solid Rocket Motor Insulation/Casing Liquid Rocket Engine Ducting High Temp Lubes/Jet Canopies/Radomes **Technology Transfer**

AFRL/PRSM People and Projects

Dr. Tim Haddad:

Mr. Brian Moore

Basic R&D - POSS size and R group effects, reactivity ratios Appl. - Thermosets, POSS-polymers

> Dr. Rusty Blanski: Mr. Delbert Jung

Basic R&D - POSS blends and additives Appl. – Lubricants, Rocket Motor Insulation

Dr. Brent Viers:

Basic R&D - Surface Science/Mechanical Properties, Li Batteries Nanotechnology POC for Propulsion Directorate Appl. - Coatings/Surface Properties, Mech. Tests

Mr. Patrick Ruth:

Appl. - All Processing, Insulation, Electronic Encapsulants Basic R&D - Polymer processing, Blending

Capt. Rene Gonzalez: Dr. Sandra Tomczak:

surface degradation, reactivity studies, POSS-Polyimides Basic R&D - Polymer Synthesis/Characterization, AO resistance,

Appl. - Space Survivable Materials

Dr. Joe Mabry Mrs. Becky Morello

Basic R&D - High performance polymers, POSS Lubricants Appl. - LRE ducting tubing/Insulation

Dr. Shawn Phillips

Branch Chief

Develop High Performance Polymers that REDEFINE material properties Goal:

Ceramics HYBRID PROPERTIES

Oxidation Resistance

Use Temperature

Toughness, Lightweight & Ease of Processing . Hybrid plastics bridge the differences between ceramics and polymers 5

(organic-inorganic) framework. functional groups suitable for Thermally and chemically polymerization or grafting. . May posess one or more robust hybrid and a R-R distance of 1.5 nm. Nanoscopic in size with an Si-Si distance of 0.5 nm Nonreactive organic compatibilization. solubilization and (R) groups for

Precise three-dimensional structure for molecular level reinforcement of polymer segments and coils.

Why POSS and Why Nano?

	Field	Property	Critical Length
	Electronics	Tunneling	1-100 nm
1 mm	Optical	Quantum Well	1-100 nm
Sewing Needle Dazar Blade Thickness		Wave Decay	10-1000 nm
Pazoi Diade Hiloricas	Polymers	Primary Structure	0.1-10 nm
		Secondary Structure	10-1000 nm
100 μ m - Human Hair	Mechanics	Dislocation Interaction	1-1000 nm
• Most Cells & Fibers		Crack Tip Radius	1-100 nm
		Entanglement Rad.	10-50 nm
1 μm— - Bacteria, Fillers &	Therm-Mech.	Chain Motion	0.5-50 nm
Polymer Morphology	Nucleation	Defect	0.1-10 nm
100 nm		Critical Nucleus Size	1-10 nm
10 nm —		Surface Corrugation	1-10 nm
	Catalysis	Surface Topology	1-10 nm
1.0 nm — } • Macromolecules	Biology	Cell Walls	1-100 nm
0.1 nm \rightarrow\rightarrow\ Atoms / Small Molecules	Membranes	Porosity Control	0.1-5 nm

POSS Polymer Incorporation

POSS Blending

Structure/Property Relationships

Conceptual Model for POSS Polymers

POSS-POSS interactions? Maximizing property enhancements through changes at the nano level **Entanglement?**

Aggregation?

POSS/POSS interactions Polymer compatibility vs.

Coughlin Model for POSS Polymers

7.96 A

10.5 Å

Intensity (a.u.)

As a solid by itself, POSS crystallizes As a tethered solid POSS can form 2-dimensional rafts

Top-down Approach

Bryan Coughlin-UMass

Bryan Coughlin-UMass

Bryan Coughlin-UMass

PBD-POSS4 (43wt%POSS)

POSS Synthesis

RSiX₃ acid or base hydrolysis

Blendables

Incompletely condensed cages

Brown, Feher, AFRL, Hybrid Plastics 15

POSS Macromers For Nanocomposites

Completely New Polymer Feedstock Technology

Silylchlorides Silanols Silanes Isocyanates Epoxides Nitriles Amines **Bisphenols Alcohols** Halides Esters

Styryls α-olefins Acrylics Norbornenyls

POSS technology is commercialized by Hybrid Plastics in Fountain Valley CA POSS-based macromers are available through either Gelest or Aldrich

compatibility with polymer matrix Affect Importance of R groups:

OSS Blends in 2 Million MW

R = cyclopentyl

Domain Formation

Partial Compatibility

Cp₇T₈Styryl

R = cyclopentyl

Phenethyl₈T₈

POSS Nanodispersion/Transparent Complete Compatibility-

Immiscible POSS Crystallites

17

Blanski, et al., Polymer Preprints, 2000. 41(1): p. 585.

DMA of 10 Wt% POSS in isotactic Polypropylene

Polypropylene and MethylgTg

POSS Drop Test Dr. R. Blanski Me8T8/i-PP

AFRL

Test Duration: 15:01 Fime Lapse 20X 8 Feb 2001

- Test run at 190 °C
- 1 Kg weight
- 10% POSS gave a 28 % improvement

POSS Polypropylene Blends

	Dow data	Neat i-PP (processed)	<i>i</i> -PP blended 2 wt% Methyl ₈ T ₈	<i>i</i> -PP blended 5 wt% Methyl ₈ T ₈	i-PP blended 10 wt% Methyl ₈ T ₈
Tensile Strength @ Yield; ASTM D638	5000 psi (34.5 MPa)	4800 psi (33.0 MPa)	5000 psi (34.5 MPa)	5100 psi (35.1 MPa)	5200 psi (35.8 MPa)
Flexural Modulus (0.05 in/min, 1% secant); ASTM D790A	240,000 psi (1.655 GPa)	235,000 psi (1.620 GPa)	251,000 psi (1.730 GPa)	255,000 psi (1.757 GPa)	262,000 psi (1.80 GPa)
HDT @ 66 psi, as injected; ASTM D648	210 °F (99 °C)	210 °F (99 °C)	221 °F (105 °C)	239 °F (115 °C)	255 °F (124 °C)
Impact Izod @25C ASTM D256A	0.5 ft-lb/in	0.55 ft-lb/in	0.55 ft-lb/in	0.62 ft-lb/in	0.75 ft-lb/in

• The above data (other than Dow's data) is an average of at least 10 samples for each test with acceptable S.D. of 5% or better.

20 Andre Lee

POSS Kraton Blends

Kraton-iButyl₇T₈StyrylPOSS

iButyl₇T₈Styryl

Stress [Pa]

Andre Lee, AFRL

Kraton-5%wt POSS

 $3x10^5$

 3.5×10^5

 $2.5x10^{5}$

0.

0.8

9.0

0.4

0.2

0.0 0.0

Strain

No POSS

iButyl₇T₈Styryl

5x104

[pq] ssent2 1.5x 10⁵

 $2x10^{5}$

1x10⁵

Andre Lee, AFRL²²

POSS Blends with Semi-Crystalline **Thermoplastics**

- POSS R-group determines compatibility
- POSS copolymers can also blend
- POSS improves thermomechanical properties
- 25 °C improvements in HDT with just 10 wt % **POSS**
- A doubling or better of toughness using 2.5 wt % POSS
- Processing / mixing methods are critical

POSS Bead & Pendent Siloxanes

POSS PDMS TMA Characterization

the siloxane segment have softening temperatures well below the The POSS/Siloxane copolymers with four or more Si-O repeat units in decomposition temperatures.

DMA Characterization

for mechanical testing. Dynamic mechanical analysis reveals a T_g (64°C) and the tail end of a sub T_g relaxation The copolymers with low softening temperatures can also be molded into bars (-20°C).

TMA of Pendent POSS Siloxanes

Hydrosilation to High MW PDMS

Jsed 5 weight % POSS

There are about 7 POSSmacromers per PDMS chain

Experimental Setup for Rheology

- $\gamma(\omega) = \gamma_0 \sin(\omega t)$
- $\omega=2\pi (\sec^{-1})$

- 25 mm diameter cone-and plate with cone angle of 2° was used.
- The strain amplitude γ_o is 1% and angular frequency ω is 2π per second.
- The temperature is ramped from -60°C to 70°C with a rate of 2°C/min.

The loss modulus G" and tan \(\begin{align*} \text{ and } \\ \text{ a function of temperature.} \end{align*}

Red = PDMS + 5 wt%cyclopentylPOSS SiMe₂ $tan(\delta)$

2.7.104

2.6·10

2.5-10

2.4.10

2.8.10

Pa-

3.10

Temperature °C

40

200

1.9·10⁴

2.10

2.1.10

2.2·10

2.3.10

Loss Modulus G., (Pa)

Andre Lee, AFRL

Blue = PDMS + Pt

Comparison of Three T8-POSS Macromers

Comparison of Two POSS Polyhedra

POSS Siloxane Copolymers

- A pendent POSS is more effective than a bead POSS
- For bead siloxanes, POSS acts as a hard segment; 75 wt % POSS raises the T_g almost 200 $^{\circ}$ C.
 - For pendent siloxanes, 30 wt% POSS raises the T_g over 200°C.
- demonstrates the effect of R-group solubility and Rheology of 5 wt% POSS High Mw PDMS POSS cage shape on POSS-polymer interaction.

POSS Pendent Rubbery Polymers

Polymerization of POSS Norbornenes

Both block and random copolymers were synthesized. The wt. % POSS was varied from 0 to 50 wt. % POSS.

DSC Data for POSS Norbornenes

TEM of Diblock POSS Norbornenes

30wt % of CyPOSS

60wt% of CyPOSS

Pat Mather, AFRL

TEM of Random POSS Norbornenes

50CyPOSS/PN

'Coarse" Cylinder Nanostructure (Diameter ~ 12nm)

"Fine" Cylinder Nanodstructure (Diameter ~ 6nm)

Cyclohexyl POSS-rich domains may entrain more unoriented polynorbornene chains than Cyclopentyl POSS-rich domains.

Mather/Haddad Model for POSS Polymers

Importance of R!

POSS-norbornyl and POSS-PS random copolymers

Ethyl ???

Phenyl ???

රි

Cp,

Increment

-significant sensitivity of thermomechanical properties to R = Cy and Cp morphological analyses reveals strong correlation to the nature of aggregation

Compatibility

nature for property improvements related to the level of compatibility between the POSS This suggests an optimized (yet unknown) length-scale of aggregation and aggregation group and the host matrix.

Glass Transition Temperature Variation

The random copolymers with CyPOSS show a larger increase in the glass transition than do their CpPOSS analogs. This subtle difference demonstrates that a small change to the nanoscale POSS filler can have a profound effect on polymer chain dynamics.

Storage Modulus and Loss Tangental

Tensile Storage Modulus Variation with POSS Content at Three Temperatures

Fracture Surface After Uniaxial Tensile Testing

The failure mechanism appears to be different. Continue this collaboration with Pat Mather

. Comparison of Grafted POSS to PB vs blends of POSS to PS or PB $_{\rm 45}$ · A new more reactive POSS-hydride developed for hydrosilation

Ben Hsaio: POSS EP Elastomers

Increase in Modulus and Tg Observed EP 10% Me₈T₈ Blend

POSS Rubbery Copolymers

- POSS significantly enhances thermal mechanical properties of
- $50~\mathrm{wt}\%$ POSS leads to a 25°C increase in T $_\mathrm{g}$ and retains structural integrity at elevated temperatures.
- 30 wt % cyclohexyl POSS doubles the modulus at low temperature.
- 20 wt % cyclohexyl POSS needed to enhance the modulus of the PN relative to the POSS-free rubber.
 - TEM images highlight the structure property relationship that is a function of POSS R group.
- FY03 Collaborations
- FY03 collaboration with Pat Mather will elucidate the structure-property relationship for the full suite of POSS R groups.
 - FY03 collaboration with Andre Lee to compare blending Vs. grafting in POSS-Kraton TPE's.
 - FY03 collaboration with Brian Coughlin to begin investigating POSS EPDM copolymers as compatibilizers between POSS blendables and EPDM

POSS Pendent Glassy Polymers

POSS Styrene Monomer Synthesis

High-yield syntheses

R-Groups

cyclohexy]

- Phenyl derivative requires inverse addition
- J. Inorg. Organomet. Polym., Vol 11, 2002, p. 155

cyclopentyl

'POSS Styrene Copolymer Synthesis

- Solution polymerization in toluene or bulk polymerization possible
- Polymerization is limited by solubility of the POSS-macromer
- Isobutyl-POSS is the most soluble, Phenyl-POSS the least soluble
- Macromolecules Vol. 29, 1996 p. 7302

TGA Data for POSS Styryl Polymers

POSS Group Effect TMA Comparison:

mm 3 - agnarion Change - 5 mm

DSC Data for POSS Styryl Polymers

mm ट - əgnsdO noisnəmiQ AMT IstoT

TMA Plot For POSS Styrenes (R = Cyclopentyl)

TMA Evidence for a Blocky Copolymer

Only this particular cyclopentylPOSS copolymer shows two transitions.

mm 2.5 agnsdO noisnamiQ AMT lstoT

Rheology of Unentangled PolyStyrene

Low DP Solution Polymerized Materials

Pat Mather, AFRL⁵⁷

Rheology of a 8 Mole % POSS Polymer

Pat Mather, AFRL 58 Low DP Solution Polymerized Materials

Rheology of a 16 Mole % POSS Polymer

Reactivity Ratio For POSS Styrene

$$M_1^* + M_1$$
 K_{11} M_1^*
 $M_1^* + M_2$ K_{12} M_2^*
 $M_2^* + M_1$ K_{21} M_1^*
 $M_2^* + M_2$ K_{22} M_2^*

$$\Gamma_1 = \frac{k_{1,1}}{k_{1,2}}$$

$$\Gamma_2 = \frac{k_{2,2}}{k_{2,1}}$$

These reactivity ratios were determined by analysis of seven polymerizations, which yielded 21 pairs of equations and the two variables $(r_1$ and $r_2)$

Data by ¹H NMR r_1 Styrene = 1.09 r_2 POSS-Styrene = 0.34

Data by FTIR r_1 Styrene = 1.19 r_2 POSS-Styrene = 0.17

Reactivity ratios show that random copolymers are to be expected $_{60}$

Solubility of High Molecular Weight Copolymers

Both bulk and solution polymerization methods were used to find that highly entangled POSS-polystyrene can form an insoluble gel. If the R-group is cyclohexyl, then this gel effect occurs at very low POSS content. Much higher loadings of isoButylPOSS are required to obtain similar insoluble materials.

POSS-POSS Interactions can Dominate to form insoluble "Gels"

~150:1	5-10	1	Cyclobexy
Styrene/PUSS	W+% POSS	Degree of polymerization	POSS type

Cyclohexyl isoButyl

> 3000

~4000

35-40

.17

61

DMA of 30 Wt. % POSS Polystyrenes

Comparison of isobutyl, cyclopentyl & cyclohexyl
 High Molecular Weight Bulk polymerized samples

Continue this collaboration with Pat Mather

- Thermal properties of PS are greatly enhanced by POSS incorporation
- Softening temperature can be raised to 325 °C!
- POSS enhancements are R-group dependant
- Below 50 wt % cyclohexyl has a stronger effect than cyclopentyl
- Rheology revealed a rubbery plateau modulus caused by POSS-POSS physical crosslinks
- Future Work: FY03 Mechanical Properties of High MW polymers will be obtained

POSS Thermosets

13

Synthesis of Polyfunctional POSS Epoxys

Completely compatible POSS-Epoxy network

Several formulations and complete thermomechanical testing is underway

Charles Pittman POSS Phenolics

POSS-phenolic thermosets- with and w/o VGCF

5 wt% POSS raises T_g 10°C 30% VGCF raises T_g 55°C 30% VGCF and 3.5% POSS raises T_g 80°C !!!

Andre Lee DER 332 Aircraft structure Epoxy

Just 1 wt% POSS causes a 5°C increase in T_g!!

POSS Semi-Crystalline Polyethylene Oxides

Pat Mather: Semi-Crystalline POSS PEG

Physical junction:

POSS PEOs are Amphiphilic

Single POSS Cage acts as a block

Mather Model agrees with Coughlin Model

Poss crystals

T > T_{m1}

Oss crystals

Two crystalline domains: Rubber-like behaviors 1) PEG10K crystals (T_{m_2}) (A physical network 2) POSS crystals (T_{m_2}) in higher temperature)

Viscous liquid-like behaviors

Mather Macromolecules 2002, 8378.

POSS Conference 2002

Stephanie Wunder: POSS Based PE **Electrolytes**

Conductivity of Q₈M₈^{PEO(n)} and LiClO₂

suppressed on attachment of PEO(n=4) DSC Data: Crystallinity completely

POSS PEO n=4

H- $(OCH_2-CH_2)_4$ -OH No observable Tg

 50 Tm= -27 $^{\circ}$ C

σ goal for PEO-based solid polymer electrolytes is 10-3 POSS Conference 2002

Dave Scheraldi: POSS PET

TrisilanolisooctyIPOSS PET Blend

Reinforced with PET Tires are typically **Fabrics**

HMLS yam ~ 110° C polymer 78° C PET Tg

Internal Tire Temperature ~ 120° C

f on the personal and a seconal and a secona

5% 2nd trial

20%: 2nd trial

20%:,1st trial

5% :1st trial

1011

Scheraldi (Case Western) and KOSA investigating processing parameters for POSS blended with PET tire cord

200.0

165.0

Temp [°C]

95.0

0.09

25.0

Masanori Ikeda: Flame resistant POSS PPE

Asahi-KASEI Corporation: Hybrid Plastics Asian Distributor

Figure 8 Effects of Additives on MFR and Anti-Flammability

Isobutyl POSS cage in PPE gives: imparts superb processability excellent HDT is maintained superior flame retardance

POSS Modeling and Simulation

Ravindra Pandey: Ab Initio POSS Calculations

(kcal/mol) for the Methyl, T, series Relative energy per silicon atom

Increasing Stability

Pandey J. Phys. Chem., 2002, 1709.

Mike Bowers: POSS MALDI-TOF

EXPT: ATDs —— mobilities (K) —— collision collision cross-sections (\Omega)

$$v_d = \frac{l}{t_d} = K \cdot E = \frac{C}{\Omega}$$

collision cross-sections (Ω) structures THEORY: molecular mechanics -(AMBER)

Mark Gordon: Ab Initio POSS Calculations

Calculations on POSS synthesis

Calculations on POMS synthesis

Calculations on POSS cages and permeability to N₂ and O₂

John Kieffer: POSS Simulations

POSS tethered with decane chains agglomerate based on cage-cage and chain-chain attractions. There is an apparent repulsion between cages and chains, leading to nano-segregation and a low equilibrium

POSS Conference 2002

Alan Esker: POSS in thin films

Will answer fundamental question if POSS can diffuse through a matrix.

Alan Esker is in a position to finally Determine if the diffusion/surface Segregation of POSS is of significance.

Experiments already underway (2+ years in the making for payoff)

Functionalized but still a surfactant!

Can generate an "interfacial" region-compare to known self assembled surfactant structures

POSS Conference 2002

Space Survivable Materials

AO undercutting of LDEF Aluminized-Kapton Multilayer Insulation

DeGroh, K.K., Banks, B.A., J. Spacecraft and Rockets, Vol. 31, No. 4, 656-664 (1994)

POSS High Performance Polyimides

POSS-Kapton polyimide

POSS processable ether-imide

POSS-Fluorinated colorless polyimide

POSS Kapton Polyimides

N(E) (arbitrary units)

Hyperthermal AO Beam

Average etch depth: 0.41 µm

φ φ

Ņ 4

20% POSS Kapton

Sample Screen

Average etch depth: 7.85 µm Average etch depth: 1.17 µm Average etch depth: 9.14 µm 0% POSS Kapton Control 10% POSS Kapton Kapton HN 2000 0 င္ပ -20-- Etch Depth (µm)

> 20 wt% POSS in Kapton results in over 20 time improvement in erosion resistance.

Scanning Length (μm)

Significantly improved oxidation resistance due to a rapidly formed ceramiclike, passivating and self-healing silica layer preventing further degradation of underlying virgin polymer.

86

AFM Images of Unexposed POSS Polyimide Films

% POSS

rms roughness: 1.09 nm

10% POSS

rms roughness: 1.03 nm

20% POSS

rms roughness: 1.55 nm

AFM Images of Exposed POSS Polyimide Films 100,000 Pulses of Hyperthermal (5 eV) AO Beam

% POSS

rms roughness: 102 nm

10% POSS

rms roughness: 17.7 nm

20% POSS

rms roughness: 6.75 nm

Erosion of POSS Polyimides by a Beam of Hyperthermal (5eV) O Átoms

Tri-collaborative Effort for Proposed High-Risk, High-Payoff Program (Industry, Academia & Government)

POSS-Polymeric Materials Group Materials Application Branch AFRL, Edwards AFB

Program Goals

- development, characterization and testing of superior • The proposed program is based on the synthesis, POSS-polyimide composite materials.
- retaining their high temperature stability and imparting •Focus: Attainment of processable polyimides while enhanced space-survivability.
- Rapid Transition of POSS Polyimide Technology to Industry

Cost Effective Route for POSS-Aniline Synthesis

Cp₇T₈ aniline

POSS Lubricants

Present AF Lubricants Technology

- The above polyol ester compounds are the main components of some AF turbine lubricants
 - Operating range of -40 °C to 200 °C
- Aminic antioxidants used

POSS Diesters as Lubricants

Triethylopropane Ester

ubricants is the use of a heat sink: POSS may be usable in this One possible approach for capacity

3 grams made to prove concept

solubilities) were overcome: vacuum diester was not trivial due to similar unreacted TMP diester from POSS Research problems (separation of distillation!

Waxy Solid at room temperature

stock: High, can be used in additive Solubility in Grade 4 ester base testing Further Physical testing will be done shortly

Isooctyl, T, as a Lubricant

minor component R = |Sooctv|

- major component R = |soocty|
- minor component R = Isoocty|

- Advantages:
- Commercially available; relatively low cost.
- Proven stability under nitrogen to 275 °C without volatilization
- Accomplishments:
- Resin inherent in sample removed by distillation!
- AF Aminic AOs decompose POSS so compatible phenolic AO used

TGA of Isooctyl, T, W/AO

	7 0										
	Temp °C	20	30	40	95	09	08	06	100	110	120
	+	61.31min 556.89min 97.83% 97.83%	89.92%	91.26%		Residue: 32.70% Solid powder	(6.920mg)		i-octyl 8T8. All samples contain 5 wt% I-1076.	de la constitución de la constit	100 200 300 Time (min) 400 500 600
11											
*	92	06	8	8	09	20	94 (S (3 :	2 4	5
•				(%) 14t	yiəW					

100	200	one Tim	Time (min) 🗝	200	
Material	TGA	TGA	Time to	% lost after 9 hrs	residue
	temp	temp	10% mass loss		
POSS Diester	200 °C	392 °F	4.6 hr	Stopped @ 4.6hrs	Solid
POSS Diester w/ AO	200 °C	392°F	7.5 hr	11	Solid
sooctyl _n T _n with 5% I-1076	200 °C	392 °F	•	2.2	Oil
sooctyl _n T _n with 5% I-1076	225 °C	437 °F	-	9.0	Oil
Sooctyl _n T _n with 5% I-1076	250 °C	.482 °F	3.5 hrs	Stopped @ 3.5hrs	Oil
Sooctyl _n T _n with 5% I-1076	275 °C	527 °F	1hr	70	Grit

Vis cP	13100	7950	3100	1600	725	260	166	112.6	6L	LS	44	32	25	20.4	16.3	13.8
Temp °C	20	30	40	50	09	80	06	100	110	120	130	140	150	160	170	180

FY03 6.1 Future Direction

- Focus internal & collaborative work on specific polymer systems
- Complete story on POSS-PN
- Fully develop POSS-PS glassy polymer story
- Begin POSS-Kraton TPE
- Quantify blends vs. copolymer property enhancements (POSS-PS, POSS-Kraton)
- Develop definitive models for specific polymer systems
- TEM, AFM = pictures of structure
- Physical/mechanical data = structure/property relationship

Complete story on POSS PN

- containing Ethyl & Phenyl R groups Synthesis of POSS-PN polymers
- Obtain TEM images of polymers
- Obtain mechanical properties of polymer systems
- Compare data to refine Coughlin Model

Does new model apply to other polymer systems?

- With understanding obtained from POSS-PN, fully characterize high molecular weight PS
- cyclohexyl, isobutyl & ethyl co-polymers need to be synthesized
- rheology, DMTA data
- Obtain TEM, AFM images
- Develop structure/property relationship
- Apply Coughlin model to glassy polymers

Does new model apply to other polymer systems?

Develop POSS TPE Model

- Synthesize POSS-Kraton polymers
- Develop POSS-hydride monomers with variable R groups
- Graft onto Kraton
- Rheology/DMTA data
- Obtain TEM/AFM images
- Develop structure/property relationship
- Apply Coughlin model to TPE polymers

Does new model apply to other polymer systems?

Blends & Copolymers

POSS-PS (MIT Durint)

- MIT group with perform blends work
- Compare with our ongoing POSS-PS copolymers
- Quantify results and develop model

POSS-Kraton

- Andre Lee will perform rheological/DMTA data on blends and copolymers synthesized in-house
- Quantify results and develop model

Compare POSS-PS to POSS-Kraton?

3-Year Plan

- POSS for POSS-PN, POSS-PS, POSS-Quantified property enhancements of Kraton
- POSS-polymer interactions for all types of polymers systems (e.g., glassy, rubbery, Develop a working model or models that defines the role of POSS-POSS and semi-crystalline, thermoset)