

chain conditions in vector spaces

 ${\bf Canonical\ name} \quad {\bf Chain Conditions In Vector Spaces}$

Date of creation 2013-03-22 19:11:55 Last modified on 2013-03-22 19:11:55

Owner rm50 (10146)Last modified by rm50 (10146)

Numerical id 4

Author rm50 (10146) Entry type Theorem Classification msc 16D10 From the theorem in the parent article - that an A-module M has a composition series if and only if it satisfies both chain conditions - it is easy to see that

Theorem 1. Let k be a field, V a k-vector space. Then the following are equivalent:

- 1. V is finite-dimensional;
- 2. V has a composition series;
- 3. V satisfies the ascending chain condition (acc);
- 4. V satisfies the descending chain condition (dcc).

Proof. Clearly $(1) \Rightarrow (2)$, since submodules are just subspaces. $(2) \Rightarrow (3)$ and $(2) \Rightarrow (4)$ from the parent article. So it remains to see that $(3) \Rightarrow (1)$ and $(4) \Rightarrow (1)$. But if V is infinite-dimensional, we can choose a sequence $\{x_i\}_{i\geq 1}$ of linearly independent elements. Let U_n be the subspace spanned by x_1, \ldots, x_n and V_n the subspace spanned by x_{n+1}, x_{n+2}, \ldots . Then the U_i form a strictly ascending infinite family of subspaces, so V does not satisfy the ascending chain condition; the V_i form a strictly descending infinite family of subspaces, so V does not satisfy the descending chain condition. \square

This easily implies the following:

Corollary 1. Let A be a ring in which $(0) = \mathfrak{m}_1 \dots \mathfrak{m}_n$ where the \mathfrak{m}_i are (not necessarily distinct) maximal ideals. Then A is Noetherian if and only if A is Artinian.

Proof. We have the sequence of ideals

$$A \supset \mathfrak{m}_1 \supset \mathfrak{m}_1 \mathfrak{m}_2 \supset \cdots \supset \mathfrak{m}_1 \ldots \mathfrak{m}_n = 0$$

Each factor $\mathfrak{m}_1 \dots \mathfrak{m}_{i-1}/\mathfrak{m}_1 \dots \mathfrak{m}_i$ is a vector space over the field A/\mathfrak{m}_i . By the above theorem, each quotient satisfies the acc if and only if it satisfies the dcc. But by repeatedly applying the fact that in a short exact sequence, the middle term satisfies the acc (dcc) if and only if both ends do, we see that A satisfies the acc if and only if it satisfies the dcc.

References

[1] M.F. Atiyah, I.G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley 1969.