United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/617,363	07/11/2003	Zhangyi Wu	45047	1506
7590 01/08/2008 Christian C. Michel			EXAMINER	
Roylance, Abrams, Berdo & Goodman, L.L.P. Suite 600 1300 19th Street, N.W. Washington, DC 20036			VIANA DI PRISCO, GERMAN	
			ART UNIT	PAPER NUMBER
			2617	
			MAIL DATE	DELIVERY MODE
			01/08/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)			
	10/617,363	WU ET AL.			
Office Action Summary	Examiner	Art Unit			
	German Viana Di Prisco	2617			
The MAILING DATE of this communication appears on the cover sheet with the correspondence address Period for Reply					
A SHORTENED STATUTORY PERIOD FOR REPLY WHICHEVER IS LONGER, FROM THE MAILING DA - Extensions of time may be available under the provisions of 37 CFR 1.13 after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory period w. - Failure to reply within the set or extended period for reply will, by statute, Any reply received by the Office later than three months after the mailing earned patent term adjustment. See 37 CFR 1.704(b).	ATE OF THIS COMMUNICATION 36(a). In no event, however, may a reply be tim vill apply and will expire SIX (6) MONTHS from cause the application to become AB ANDONEI				
Status					
 Responsive to communication(s) filed on <u>23 October 2007</u>. This action is FINAL. 2b) ☐ This action is non-final. Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under <i>Ex parte Quayle</i>, 1935 C.D. 11, 453 O.G. 213. 					
Disposition of Claims					
4) ☐ Claim(s) 1-42 is/are pending in the application. 4a) Of the above claim(s) 7,14,15,29 and 38-41 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) is/are rejected. 7) ☐ Claim(s) 2 is/are objected to. 8) ☐ Claim(s) are subject to restriction and/or	is/are withdrawn from considera	tion.			
Application Papers					
9) The specification is objected to by the Examine 10) The drawing(s) filed on 10/23/2007 is/are: a) Applicant may not request that any objection to the Replacement drawing sheet(s) including the correction 11) The oath or declaration is objected to by the Examine 10.	accepted or b) objected to by drawing(s) be held in abeyance. See ion is required if the drawing(s) is obj	e 37 CFR 1.85(a). lected to. See 37 CFR 1.121(d).			
Priority under 35 U.S.C. § 119					
 12) Acknowledgment is made of a claim for foreign priority under 35 U.S.C. § 119(a)-(d) or (f). a) All b) Some * c) None of: 1. Certified copies of the priority documents have been received. 2. Certified copies of the priority documents have been received in Application No 3. Copies of the certified copies of the priority documents have been received in this National Stage application from the International Bureau (PCT Rule 17.2(a)). * See the attached detailed Office action for a list of the certified copies not received. 					
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail Da 5) Notice of Informal P 6) Other:	nte			

Application/Control Number: 10/617,363 Page 2

Art Unit: 2617

DETAILED ACTION

1. This action is in response to applicant's amendment filed on 23 October 2007.

Claims 1-18 are now pending in the present application. This office action is made final.

Drawings

2. The drawings were received on 23 October 2007. These drawings are accepted.

Claim Objections

- 3. Claims 9 and 10 are objected to because they depend on a cancelled claim (claim 7). For purpose of the examination the examiner has considered claim 9 to depend on claim 8 and claim 10 to depend on claim 9.
- 4. Claims 31 and 33 are objected to because they depend on a cancelled claim (claim 29). For purpose of the examination the examiner has considered claims 31 and 33 to depend on claim 8.

Claim Rejections - 35 USC § 103

- 5. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- The factual inquiries set forth in *Graham* v. *John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:
 - 1. Determining the scope and contents of the prior art.
 - 2. Ascertaining the differences between the prior art and the claims at issue.
 - 3. Resolving the level of ordinary skill in the pertinent art.

Art Unit: 2617

- 4. Considering objective evidence present in the application indicating obviousness or nonobviousness.
- 7. This application currently names joint inventors. In considering patentability of the claims under 35 U.S.C. 103(a), the examiner presumes that the subject matter of the various claims was commonly owned at the time any inventions covered therein were made absent any evidence to the contrary. Applicant is advised of the obligation under 37 CFR 1.56 to point out the inventor and invention dates of each claim that was not commonly owned at the time a later invention was made in order for the examiner to consider the applicability of 35 U.S.C. 103(c) and potential 35 U.S.C. 102(e), (f) or (g) prior art under 35 U.S.C. 103(a).
- 8. Claims 1, 3-5, 11, 34, 35 and 42 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1) and further in view of Kukic (United Sates Patent Application Publication No.: US 2003/0169780 A1).

Consider claim 1, Barlev et al discloses a system for transmitting a DS3 (T3, paragraph[0111]) data stream over a few twisted pair conductors(paragraph [0031]) comprising:

a high speed data interface(SCM 274 in figure 7 and paragraphs [0111] and [0143]) adapted to receive said DS3 data stream

and to inversely multiplex said high speed data stream into parallel data streams (paragraph [0031]), and a plurality of modems adapted to modulate each corresponding stream of packets onto a twisted pair conductor (paragraph [0143].

Art Unit: 2617

However Barlev et al does not explicitly disclose that the DS3 data stream is inversely multiplexed into four streams that each comprise an approximately 11 megabits per second stream (Mbps) or that the data streams modulated by the modems corresponds to 13 Mbps or a framer adapted to receive each of said parallel data streams, and to

generate a stream of packets, each packet having a packet index number and a packet stream number corresponding to its respective data stream.

In the same field of endeavor Pedersen et al discloses a framer (Bonded Link
Interface 26 in figure 1B) adapted to receive each of said parallel data streams (column
6, lines 63-67), and to
generate a stream of packets, each packet having a packet index number (Sequence
Number) and a packet stream number (User Flow Identification) corresponding to its

respective said parallel data stream(figure 5 and column 7 line 30- column 8 line 24)

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made for a framer to include a packet index number and a packet stream number corresponding to its respective data stream as disclosed by Pedersen et al in the system of Barlev et al in order to efficiently utilize the available link capacity and more fluidly handle differences in link speed.

Regarding the data rate modulated by the modems corresponding to 13 Mbps, it is obvious that if overhead is added to each packet (e.g. in the form of a sequence number and a stream number) then the data rate is bound to increase. However the Applicants have not disclosed that having an overhead of approximately 2 Mbps

Art Unit: 2617

provides an advantage. One of ordinary skill in the art, furthermore would have expected Applicants' invention to perform equally well with the overhead as taught by Pedersen et al because both overheads perform the same function of re-sequencing the data flows transmitted across twisted pairs.

Therefore, it would have been obvious to one of ordinary skill in the art to modify Pedersen et al to obtain the invention as specified in claim 1.

Nonetheless Barlev et al as modified by Pedersen et al does not expressly disclose that the DS3 data stream is inversely multiplexed into four streams that each comprise an approximately 11 megabits per second stream (Mbps).

In the same field of endeavor Kukic discloses that DS3 data stream (ATM data stream) is divided over several lower capacity lines whose number depends on the data rate of these lower capacity lines and that if the received data rate is four times the optimal rate of the lower capacity lines, the incoming DS3 stream will have to be inverse multiplexed onto by four lines (11 Mbps is approximately 1/4th of a DS3).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to divide a DS3 over four lines as disclosed by Kukic et al in the system of Barlev et al a modified by Pedersen et al in order to optimally calculate a data rate.

Consider claim 3 and as applied to claim 1 above, Barlev et al further discloses the number of parallel data streams being fewer than twenty two (in Table 1 in page 18 the number parallel data streams required for 45 Mbps and a distance of 6000 ft is 14).

Art Unit: 2617

"Oondon Hamber. 10/01/1,0

Consider claim 4 and as applied to claim 1 above, Barlev et al as further discloses directing the bits if the DS3 data stream to the parallel data streams in accordance with a round robin pattern (paragraph [0113]).

Consider claim 5 and as applied to claim 2 above Barlev et al as modified by Pedersen et al and further modified by Kukic does not disclose the second byte comprising stuffing bits to allow the inverse multiplex operation of said high speed data interface to vary the number of bytes in a packet.

However Pedersen et al discloses using stuffing bits to allow the inverse multiplex operation of said high speed data interface to vary the number of bytes in a packet (column 2, lines 22-29).

Consider claim 11, and as applied to claim1 above Barlev et al further discloses a system for transmitting high speed data over a plurality of relatively low bandwidth unshielded twisted copper pairs comprising a plurality of DSL modems that conform to the T1E1.4 HDSL2 standard which implies the use of a low frequency band in the upstream direction and a high frequency band for the downstream direction (paragraph [0116]).

Consider claim 34, Barlev et al discloses a method for transmitting a DS3 (T3, paragraph [0111]) data stream over a few twisted pair conductors (paragraph [0031]) comprising receiving said DS3 data stream (paragraph [0111]); inversely multiplex said DS3 data stream into parallel data streams (paragraph [0031]); generating a stream of

Art Unit: 2617

packets (paragraph [0148]), and modulating each corresponding stream of packets onto a twisted pair conductor (paragraph [0143]).

However Barlev et al does not explicitly disclose that the DS3 data stream is inversely multiplexed into four streams that each comprise an approximately 11 megabits per second stream (Mbps) or that the data streams modulated by the modems corresponds to 13 Mbps or that each packet has a packet index number and a packet stream number corresponding to its respective data stream.

In the same field of endeavor Pedersen et al discloses a frame header that includes a packet index number (Sequence Number) and a packet stream number (User Flow Identification)corresponding to its respective data stream (figure 5 and column 7 line 30- column 8 line 24).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to include a packet index number and a packet stream number corresponding to its respective data stream as disclosed by Pedersen et al in the system of Barlev et al in order to efficiently utilize the available link capacity and more fluidly handle differences in link speed.

Regarding the data rate modulated by the modems corresponding to 13 Mbps, it is obvious that if overhead is added to each packet (e.g. in the form of a sequence number and a stream number) then the data rate is bound to increase. However the Applicants have not disclosed that having an overhead of approximately 2 Mbps provides an advantage. One of ordinary skill in the art, furthermore would have expected Applicants' invention to perform equally well with the overhead as taught by

Art Unit: 2617

Control Number: 10/017,30

Pedersen et al because both overheads perform the same function of re-sequencing the data flows transmitted across twisted pairs.

Therefore, it would have been obvious to one of ordinary skill in the art to modify Pedersen et al to obtain the invention as specified in claim 34.

Nonetheless Barlev et al as modified by Pedersen et al does not expressly disclose that the DS3 data stream is inversely multiplexed into four streams that each comprise an approximately 11 megabits per second stream (Mbps).

In the same field of endeavor Kukic discloses that DS3 data stream (ATM data stream) is divided over several lower capacity lines whose number depends on the data rate of these lower capacity lines and that if the received data rate is four times the optimal rate of the lower capacity lines, the incoming DS3 stream will have to be inverse multiplexed onto by four lines (11 Mbps is approximately 1/4th of a DS3).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to divide a DS3 over four lines as disclosed by Kukic et al in the system of Barlev et al a modified by Pedersen et al in order to optimally calculate a data rate.

Consider claim 35 and as applied to claim 34 above, Barlev et al as modified by Pedersen et al and further modified by Kukic discloses directing the bits if the DS3 data stream to the parallel data streams in accordance with a round robin pattern (paragraph [0113]).

Art Unit: 2617

Consider claim 42, and as applied to claim 34 above Barlev et al further discloses a system for receiving a high speed data over a plurality of relatively low bandwidth unshielded twisted copper pairs comprising a plurality of DSL modems that conform to the T1E1.4 HDSL2 standard which implies the use of a low frequency band in the upstream direction and a high frequency band for the downstream direction (paragraph [0116]).

9. Claims 6, 28 and 37 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1) and further in view of Sheets et al (United Sates Patent No.: 5,437,023).

Consider claim 6, Barlev et al discloses a system for transmitting a high speed (T3, paragraph[0111]) data stream over plurality of twisted pair conductors(paragraph [0031]) comprising a high speed data interface(SCM 274 in figure 7 and paragraphs [0111] and [0143]) adapted to receive said high speed data stream and to inversely multiplex said high speed data stream into a plurality of parallel data streams (paragraph [0031]); a framer adapted to receive each of said parallel data streams, and to generate a stream of packets(inherently taught in paragraph [0148]), and a plurality of modems adapted to modulate each corresponding stream of packets onto a twisted pair conductor (paragraph [0143]; and a processor (276 in figure 7).

However Barlev et al does not explicitly disclose a framer adapted to receive one of said parallel data streams, and to generate a stream of packets, each packet having a packet index number.

Art Unit: 2617

In the same field of endeavor Pedersen et al discloses a framer (Bonded Link Interface 26 in figure 1B) adapted to receive each of said parallel data streams (column 6, lines 63-67), and to

generate a stream of packets, each packet having a packet index number(Sequence Number) (figure 5 and column 7 line 30- column 8 line 24)

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made for a framer to include a packet index number as disclosed by Pedersen et al in the system of Barlev et al in order to efficiently utilize the available link capacity and more fluidly handle differences in link speed.

Nonetheless Barlev et al as modified by Pedersen et al does not specifically disclose that the processor is adapted to identify a loopback code in said high speed data stream, wherein said processor is further adapted to pass through a first received loopback code to another device, and to enter a loopback mode if an nth subsequent loopback code is received without an intervening loop down code.

In the same field of endeavor Sheets et al discloses passing through a first received loopback code to another device (the loopback code is transmitted along the transmit line 36 to all repeaters), and to enter a loopback mode if an nth subsequent loopback code (loopback code is repeated for three seconds) is received without an intervening loop down code (figure 1 and column 10 lines 53-61).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to pass through a loopback code and to enter a loopback mode if an nth subsequent loopback code is received as disclosed by Sheets et al in the

Art Unit: 2617

system of Barlev et al as modified by Pedersen et al in order to execute a loopback command without causing other line elements to enter loopback as well.

Consider claims 28, Barlev et al discloses a system for receiving a high speed (T3, paragraph[0111]) data stream over a few twisted pair conductors(paragraph [0031]) comprising: a plurality of modems (290 in figure 8)adapted to demodulate a plurality of parallel signals received over said plurality of twisted pair conductors into a plurality of data streams (301 in figure 8) each comprising a stream of packets (figure 8 and paragraphs [0154]-[0155]) and a high speed data interface adapted to receive said plurality of synchronized parallel data streams and to multiplex said plurality of parallel data streams into said high speed data stream (paragraph [0111]).

However Barlev et al does not explicitly disclose each packet having a stream identifier and a packet number a deframer adapted to receive said parallel streams of packets, and to synchronize packets from said parallel streams based on said stream identifiers and packet numbers;

In the same field of endeavor Pedersen et al discloses a frame header that includes a packet index number (Sequence Number) and a packet stream number (User Flow Identification) corresponding to its respective data stream (figure 5 and column 7 line 30- column 8 line 24) and a deframer (Bonded Link Interface 26 in figure 1B)adapted to receive said parallel streams of packets, and to synchronize packets from said parallel streams based on said stream identifiers and packet numbers; a high speed data interface adapted to receive said plurality of synchronized parallel data

Art Unit: 2617

streams and to multiplex said plurality of parallel data streams into said high speed data stream (column 6, line 67- column 7, line 67).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to include a packet index number and a packet stream number corresponding to its respective data stream and a deframer as disclosed by Pedersen et al in the system of Barlev et al in order to efficiently utilize the available link capacity and more fluidly handle differences in link speed.

Nonetheless Barlev et al as modified by Pedersen et al does not specifically disclose a processor adapted to identify a loopback code in said high speed data stream

wherein said processor is further adapted to pass through a first received loopback code

to another device, and to enter a loopback mode if an nth consecutive loopback code is received without an intervening loop down code.

In the same field of endeavor Sheets et al discloses passing through a first received loopback code to another device (the loopback code is transmitted along the transmit line 36 to all repeaters), and to enter a loopback mode if an nth subsequent loopback code (loopback code is repeated for three seconds) is received without an intervening loop down code (figure 1 and column 10 lines 53-61).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to pass through a loopback code and to enter a loopback mode if an nth subsequent loopback code is received as disclosed by Sheets et al in the

Art Unit: 2617

system of Barlev et al as modified by Pedersen et al in order to execute a loopback .

command without causing other line elements to enter loopback as well.

Consider claim 37, Barlev et al discloses a system for transmitting a high speed (T3, paragraph [0111]) data stream over plurality of twisted pair conductors (paragraph [0031]) comprising receiving said high speed data stream (paragraph [0031]); inversely multiplexing said high speed data stream into a plurality of parallel data streams (paragraph [0031]) and modulating each corresponding stream of packets onto a twisted pair conductor (paragraph [0143].

However Barlev et al does not explicitly disclose generating a stream of packets, each packet having a packet index number.

In the same field of endeavor Pedersen et al discloses generating a stream of packets, each packet having a packet index number(Sequence Number) and a packet stream number(User Flow Identification) corresponding to its respective said parallel data stream(figure 5 and column 7 line 30- column 8 line 24)

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made for a framer to include a packet index number and a packet stream number corresponding to its respective data stream as disclosed by Pedersen et al in the system of Barlev et al in order to efficiently utilize the available link capacity and more fluidly handle differences in link speed.

Nonetheless Barlev et al as modified by Pedersen et al does not specifically disclose identifying a loopback code in said high speed data stream, wherein said processor is further adapted to pass through a first received loopback code to another

Art Unit: 2617

device, and to enter a loopback mode if an nth subsequent loopback code is received without an intervening loop down code.

In the same field of endeavor Sheets et al discloses passing through a first received loopback code to another device (the loopback code is transmitted along the transmit line 36 to all repeaters), and to enter a loopback mode if an nth subsequent loopback code (loopback code is repeated for three seconds) is received without an intervening loop down code (figure 1 and column 10 lines 53-61).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to pass through a loopback code and to enter a loopback mode if an nth subsequent loopback code is received as disclosed by Sheets et al in the system of Barlev et al as modified by Pedersen et al in order to execute a loopback command without causing other line elements to enter loopback as well.

10. Claims 25-27 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1).

Consider claims 25, Barlev et al discloses a system for receiving a DS3 (T3, paragraph[0111]) data stream over a few twisted pair conductors(paragraph [0031]) comprising: a plurality of modems (290 in figure 8)adapted to demodulate a plurality of parallel signals received over said plurality of twisted pair conductors into a plurality of data streams (301 in figure 8) each comprising a stream of packets (figure 8 and paragraphs [0154]-[0155]) and a high speed data interface adapted to receive said

Art Unit: 2617

plurality of synchronized

parallel data streams and to multiplex said plurality of parallel data streams into said high

speed data stream (paragraph [0111]).

However Barlev et al does not explicitly disclose each packet having a stream identifier and a packet number a deframer adapted to receive said parallel streams of packets, and to synchronize packets from said parallel streams based on said stream identifiers and packet numbers; or that the data streams demodulated by the modems corresponds to approximately 13 Mbps.

In the same field of endeavor Pedersen et al discloses a frame header that includes a packet index number (Sequence Number) and a packet stream number (User Flow Identification)corresponding to its respective data stream (figure 5 and column 7 line 30- column 8 line 24) and a deframer (Bonded Link Interface 26 in figure 1B)adapted to receive said parallel streams of packets, and to synchronize packets from said parallel streams based on said stream identifiers and packet numbers:

(column 6, line 67- column 7, line 67).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to include a packet index number and a packet stream number corresponding to its respective data stream and a deframer as disclosed by Pedersen et al in the system of Barlev et al in order to efficiently utilize the available link capacity and more fluidly handle differences in link speed.

Art Unit: 2617

Regarding the data rate demodulated by the modems corresponding to 13 Mbps. it is obvious that if overhead is added to each packet (e.g. in the form of a sequence number and a stream number) then the data rate is bound to increase. However the Applicants have not disclosed that having an overhead of approximately 2 Mbps provides an advantage. One of ordinary skill in the art, furthermore would have expected Applicants' invention to perform equally well with the overhead as taught by Pedersen et al because both overheads perform the same function of re-sequencing the data flows transmitted across twisted pairs.

Therefore, it would have been obvious to one of ordinary skill in the art to modify Pedersen et al to obtain the invention as specified in claim 1.

Consider claim 26, and as applied to claim 25 above, Barlev et al discloses reassembling the DS3 (high rate stream) from the parallel data streams in accordance with a round robin pattern (paragraph [0156]).

Consider claim 27 and as applied to claim 25 above, Barlev et al as modified by Pedersen et al does not specifically disclose that the plurality of synchronized parallel data steams has a data rate of approximately 11 Mbps.

In the same field of endeavor Kukic discloses that DS3 data stream (ATM data stream) is divided over several lower capacity lines whose number depends on the data rate of these lower capacity lines and that if the received data rate is four times the

Art Unit: 2617

optimal rate of the lower capacity lines, the incoming DS3 stream will have to be inverse multiplexed onto by four lines (11 Mbps is approximately 1/4th of a DS3).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to divide a DS3 over four lines as disclosed by Kukic et al in the system of Barlev et al a modified by Pedersen et al in order to optimally calculate a data rate.

11. Claim 36 is rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1) and Kukic (United Sates Patent Application Publication No.: US 2003/0169780 A1) and further in view of Wolf et al (United Sates Patent Application Publication No.: US 2002/0080825 A1).

Consider claim 36 and as applied to claim 34 above, Barlev et al as modified by Pedersen et al and further modified by Kukic does not specifically disclose that the stream identifier received from each of a plurality of the four streams transmitted on respective twisted pair conductors can be used to determine that a miswire condition exists between at least two of the twisted pair conductors.

In the same field of endeavor Wolf et al discloses using individual bits or bit sequences or identifications codes which can be used to determine wiring errors (paragraph [0043]).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to use identification codes as disclose by Wolf et al in the

Art Unit: 2617

system of Barlev et al as modified by Pedersen et al and further modified by Kukic in order to detect wiring errors.

12. Claim 8 is rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1) and Somekh et al (United Sates Patent No.: US 7,230,977 B1) and further in view of Peters (United Sates Patent No.: US 6,967,589 B1).

Consider claim 8, Barlev et al discloses an apparatus for transmitting a high speed data stream over a plurality of twisted pair conductors comprising a high speed data interface adapted to receive said high speed data stream and to inversely multiplex said high speed data stream into a plurality of parallel data streams(SCM 274 in figure 7 and paragraphs(paragraph [0031]), [0111] and [0143]), and a plurality of modems adapted to modulate each corresponding stream of packets onto a twisted pair conductor (paragraph [0143].

However Barlev et al does not explicitly disclose a framer adapted to receive each of said parallel data streams, and to generate a stream of packets, each packet having a packet index number and a packet stream identifier or having at least one switch adapted to configure said apparatus as a repeater unit or a non-repeater unit, said apparatus being operable as a repeater when said high speed data interface thereof is connected to a second said high speed data interface of a second said apparatus to allow a high speed data stream to pass between the two said high speed

data interfaces and data streams to be transmitted to and received from said plurality of modems of each of said apparatus and said second apparatus via twisted pair conductors, wherein, in each of said apparatus and said second apparatus, said plurality of modems demodulates a plurality of parallel signals received over said twisted pair conductors into a plurality of data streams each comprising a stream of packets, each said packet having a corresponding said stream identifier and said packet number, a deframer receives said parallel streams of packets and synchronizes said packets from said parallel streams based on said stream identifiers and said packet numbers, and said high speed data interface receives said plurality of synchronized parallel data streams and multiplexes said plurality of parallel data streams into a high speed data stream.

In the same field of endeavor Pedersen et al discloses a framer (Bonded Link Interface 26 in figure 1B) adapted to receive each of said parallel data streams (column 6, lines 63-67), and to generate a stream of packets, each packet having a packet index number (Sequence Number) and a packet stream number (User Flow Identification) corresponding to its respective said parallel data stream (figure 5 and column 7 line 30- column 8 line 24)

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made for a framer to include a packet index number and a packet stream number corresponding to its respective data stream as disclosed by Pedersen et al in the system of Barlev et al in order to efficiently utilize the available link capacity and more fluidly handle differences in link speed.

Art Unit: 2617

Nonetheless Barlev et al as modified by Pedersen et al does not specifically disclose having at least one switch adapted to configure said apparatus as a repeater unit or a non-repeater unit, said apparatus being operable as a repeater when said high speed data interface thereof is connected to a second said high speed data interface of a second said apparatus to allow a high speed data stream to pass between the two said high speed data interfaces and data streams to be transmitted to and received from said plurality of modems of each of said apparatus and said second apparatus via twisted pair conductors

In the same field of endeavor Somekh et al. discloses a back-to-back modem repeater operable as a repeater when said high speed data interface 60 thereof is connected to a second said high speed data interface 68 of a second said apparatus to allow a high speed data stream to pass between the two said high speed data interfaces and data streams to be transmitted to and received from said plurality of modems of each of said apparatus and said second apparatus via twisted pair conductors (figure 4 and column 11 lines 22-57).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to connect two terminals back-to-back as disclosed by Somekh et al in the apparatus of Barlev et al as modified by Pedersen et al in order to maximize the data rate.

However, the combination of Barlev et al, Pedersen et al and Somekh et al does not explicitly teach at least one switch adapted to configure the unit as a repeater unit or a non-repeater.

Art Unit: 2617

In the same field of endeavor Peters teaches a dip switch (445 in figure 4) used to identify if a unit is acting as a repeater (column 11, lines 48-50).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to use a dip switch as disclosed by Peters in the apparatus of Barlev et al as modified by Pedersen et al and further modified by Somekh et al in order to inexpensively provide an accurate monitoring system.

13. Claims 9, 10, 31 and 32 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1) and Somekh et al (United Sates Patent No.: US 7,230,977 B1) and Peters (United Sates Patent No.: US 6,967,589 B1) and further in view of Gewin et al (United Sates Patent No.: 5,060,226).

Consider claims 9 and 10, and as applied to claims 8 and 9 respectively above, the combination of Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters does not explicitly disclose least one switch being further adapted to configure said apparatus as a west (LU) or east (RU) repeater unit, said west (LU) repeater unit being closest to a central office and said each (RU) repeater unit being closest to customer premises equipment or to configure said system as a first repeater or a second repeater unit.

In the same field of endeavor Gewin et al disclose a dip switch (52 in figure 1B) in a loopback unit of a repeater adapted to configure said apparatus as a west (LU) or

Art Unit: 2617

east (RU) repeater unit, said west (LU) repeater unit being closest to a central office and said each (RU)

repeater unit being closest to customer premises equipment or to configure said system as a first repeater or a second repeater unit (the setting of different addresses for the different repeater units accomplishes the same purpose) (column 3 lines 1-5 and column 9 lines 53-58).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to use a dip switch as disclosed by Gewin et al. in the system of Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters in order to simultaneously perform a loopback from both the near and far sides of the line with respect to a given loopback unit.

Consider claims 31 and 32, and as applied to claims 8 and 31 respectively above, the combination of Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters does not explicitly disclose least one switch being further adapted to configure said apparatus as a west (LU) or east (RU) repeater unit, said west (LU) repeater unit being closest to a central office and said each (RU) repeater unit being closest to customer premises equipment or to configure said system as a first repeater or a second repeater unit.

In the same field of endeavor Gewin et al disclose a dip switch (52 in figure 1B) in a loopback unit of a repeater adapted to configure said apparatus as a west (LU) or east (RU) repeater unit, said west (LU) repeater unit being closest to a central office and said each (RU)

Art Unit: 2617

repeater unit being closest to customer premises equipment or to configure said system as a first repeater or a second repeater unit (the setting of different addresses for the different repeater units accomplishes the same purpose) (column 3 lines 1-5 and column 9 lines 53-58).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to use a dip switch as disclosed by Gewin et al. in the system of Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters in order to simultaneously perform a loopback from both the near and far sides of the line with respect to a given loopback unit.

- 14. Claims 30 and 33 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1) and Somekh et al (United Sates Patent No.: US 7,230,977 B1) and Peters (United Sates Patent No.: US 6,967,589 B1) and further in view of Sheets et al (United Sates Patent No.: 5,437,023).
- 15. Claims 12 and 13 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1), Somekh et al (United Sates Patent No.: US 7,230,977 B1) and Peters (United Sates Patent No.: US 6,967,589 B1) and further in view of ADC Telecommunications "A" and "C".

Art Unit: 2617

Application/Control Namber: 10/01/,000

Consider claim 12, and as applied to claim 8 above, the combination of Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters does not explicitly disclose a front panel having a high speed data stream interface, and a rear interface, said system being adapted to switch between said front panel interface and said rear interface based on a user input.

In the same field of endeavor ADC Telecommunications "A" clearly shows a front panel having a high speed data stream interface, and a rear interface, said system being adapted to switch between said front panel interface and said rear interface when inserted in the chassis shown in ADC Telecommunications "C".

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to provision both front and real high speed interfaces that could be selected by the user as disclosed by ADC Telecommunications "A" and "C" in the system Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters in order to accommodate for different installations.

Consider claim 13, and as applied to claim 12 above, the combination of Barlev et al as modified by Pedersen et al, Somekh et al and Peters and further modified by ADC Telecommunications "A" and "C" further disclose wherein the user input is an information bit in a back plane (ADC Telecommunications "A" clearly show a repeater module comprising a front panel having a high speed data stream interface, and a rear interface. Said rear interface is designed to fit into a connector in the back plane of a

Art Unit: 2617

chassis thereby selecting said rear interface as shown in ADC Telecommunications "C").

16. Claim 16 is rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1), Somekh et al (United Sates Patent No.: US 7,230,977 B1) and Peters (United Sates Patent No.: US 6,967,589 B1) and further in view Stearns (United Sates Patent No.: US 7,058,011B1).

Consider claim 16 and as applied to claim 8 above, Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters does not specifically disclose the apparatus being adapted to perform 1:1 protection switching and said apparatus being a redundant, non-repeater unit, or the processor being further adapted to switch between an active mode, and a standby mode for protection switching.

In the same field of endeavor Stearns et al discloses a line unit being adapted to perform 1:1 protection switching and said line unit being a redundant, non-repeater unit, and a processor being further adapted to switch between an active mode, and a standby mode for protection switching (column 1, lines 51-61 and column 2, lines 35-43).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to perform 1:1 protection switching in a line unit and said line unit being a redundant, non-repeater unit, and a processor being further adapted to switch between an active mode, and a standby mode for protection switching as

Art Unit: 2617

disclose by Steams et al in the apparatus of Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters in order to provide a protection mechanism for the traffic carried.

17. Claims 17-24 are rejected under 35 U.S.C. 103(a) as being unpatentable over Barlev et al (United Sates Patent Application Publication No.: US 2005/0220180 A1) in view of Pedersen et al (United States Patent No.: US 7,006,500 B1), Somekh et al (United Sates Patent No.: US 7,230,977 B1) and Peters (United Sates Patent No.: US 6,967,589 B1) and further in view Koenig et al (United Sates Patent No.: US 6,275,510 B1).

Consider claims 17-23, and as applied to claim 8 above, Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters clearly discloses a system for transmitting high speed data over a plurality of relatively low bandwidth unshielded twisted copper pairs.

However Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters does not disclose comprising LEDs adapted to display loss of signal status, or a loopback mode status, or a remote alarm status, or a normal operation status, or a standby mode status, or a system failure status, or a status of one of the plurality of parallel data streams.

In the same field of endeavor Koenig et al. clearly show a front panel of a DS3 multiplexer with LEDs adapted to display loss of signal status, or a loopback mode

Art Unit: 2617

status, or a remote alarm status, or a normal operation status, or a standby mode status, or a system failure status, or a status of one of the plurality of parallel data streams (figure 24).

Therefore it would have been obvious to a person of ordinary skill in the art at the time the invention was made to have LEDs adapted to display loss of signal status, or a loopback mode status, or a remote alarm status, or a normal operation status, or a standby mode status, or a system failure status, or a status of one of the plurality of parallel data streams as disclosed by Koenig et al. in the system of Barlev et al as modified by Pedersen et al, Somekh et al and further modified by Peters for the purpose of assisting in testing of a telecommunications equipment.

Consider claim 24, and as applied to claim 23 above, Koenig et al clearly shows a front panel of a DS3 multiplexer with LED's adapted to display a loss of signal status corresponding to each of the parallel data streams (figure 24).

Allowable Subject Matter

18. Claim 2 is objected to as being dependent upon a rejected base claim, but would be allowable if rewritten in independent form including all of the limitations of the base claim and any intervening claims.

Consider claim 2 and as applied to claim 1, even though a 64 byte packet is common in the prior art as well as mechanisms for detecting the beginning of a packet

Art Unit: 2617

and tracking a sequence of packets, the particular limitations in claim 2 were not found in the prior art.

Response to Arguments

19. Applicant's arguments with respect to claims 1-42 have been considered but are moot in view of the new ground(s) of rejection.

Conclusion

20. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action. Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE MONTHS from the mailing date of this action. In the event a first reply is filed within TWO MONTHS of the mailing date of this final action and the advisory action is not mailed until after the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

21. Any response to this Office Action should be **faxed to** (571) 273-8300 **or mailed to**:

Art Unit: 2617

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Hand-delivered responses should be brought to

Customer Service Window Randolph Building 401 Dulany Street Alexandria, VA 22314

Any inquiry concerning this communication or earlier communications from the examiner should be directed to German Viana Di Prisco whose telephone number is (571) 270-1781. The examiner can normally be reached on Monday through Friday 7:30-5:00 EST.

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Duc Nguyen can be reached on (571) 272-7503. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

Art Unit: 2617

German Viana Di Prisco December 27, 2007

DUC M. NGUYEN SUPERVISORY PATENT EXAMINER TECHNOLOGY CENTER 2600