

Lab - Practice

Advanced computer architectures

Bachelor ICT – USTH 2022-2023

<u>Daniel.Chillet@irisa.fr</u> Daniel.Chillet@univ-rennes1.fr

Lab Introduction

- Objectives
 - Use several cache simulators to understand how cache memories work
 - Low level simulator: 351 Cache simulator
 - Medium level simulator: Dinero IV cache simulator
 - High level simulation: C codes

- Connect on the following web page
 - https://courses.cs.washington.edu/courses/cse351/cachesim/

351 Cache Simulator

System Parameters:	Manual Memory Access:	History:
Address width: 8 \$ bits	Read Addr: 0x	>
Cache size: 32 \$ bytes	Explain Write Addr: 0x , Byte: 0x	
Block size: 2 4 • 8 bytes	Flush	
Associativity: 0 1 0 2 4 way(s) Write Hit: Write back \$	Tag Index Offset Cache Hits Cache Misses	
Write Miss: Write-allocate \$		
Replacement: Least Recently Used \$	Simulation Messages:	
Generate System Explain		Load II 1
		_

Welcome to the UW CSE 351 Cache Simulator!

Select system parameters above and press the button to get started.

Initial memory values are randomly generated (append "?seed=*****"
to the URL to specify a 6-character seed — uses default otherwise).

Only data requests of 1 byte can be made.

The cache starts 'cold' (i.e. all lines are invalid).

- Connect on the following web page
 - https://courses.cs.washington.edu/courses/cse351/cachesim/

-System Param	neters:	
Address width:	bits	
Cache size:	32 \$ bytes	
Block size:	$\bigcirc 2 \bigcirc 4 \bigcirc 8$ bytes	
Associativity:	\circ 1 \circ 2 \circ 4 way(s)	
Write Hit:	Write back 💠	
Write Miss:	Write-allocate \$	
Replacement:	Least Recently Used 💠	
Generate System Explain		

- Click on « Explain button »
- Then click on button « Generate System » / « Next » ——
- Observe what is happenning on the simulator (step by step)
 351 Cache Simulator

System Parameters:	Manual Memory Access:	History:
Address width: 8 \$ bits Cache size: 32 \$ bytes	Explain Write Addr: 0x , Byte: 0x	>
Block size: 2 4 8 bytes Associativity: 1 2 4 way(s) Write Hit: Write back \$ Write Miss: Write-allocate \$ Replacement: Least Recently Used \$	Tag Index Offset Come Hits Cache Misses	
Next ♥ Explain	Press Next (left) to advance explanation.	Load II 🛧 🔱

8-bit addresses:	-
Physical memory holds 256 bytes 0x00 20 f6 ef ea a2	e 9f 1a
(addresses 0x00 to 0xff) 0x08 a2 d0 4f c4 a0	c f7 27
0x10 b8 bd la ca 35	95 cb 80
Values randomly generated with seed "cse351". $0x18$ 84 3f 02 4f 8e	3 f6 e5
0x20 cd 4a f6 48 1a	6f 7e 63
0x28 e9 36 ae 32 0d	
الادارة والمالية المالية المال	1232

You are supposed to obtain this

System Parameters:	—————————Manual M	emory Acc	ess:			History:
Address width: 8 \$ b	oits	Read Ad	ldr: 0x			
Cache size: 32 \$	oytes Explain	Write Ad	ldr: 0x , I	Byte: 0x		
Block size:	bytes	Flush				
Associativity: 0 1 0 2 0 4	· way(s)	Index	Offset	Cache Hits	Cache Misses	
Write Hit: Write back	Tag					
Write Miss: Write-allocate	\$ 000	00	000	0	0	
Replacement: Least Recently U	Jsed \$ Simulation	Messages	:			1
Reset System Explain	System Gener	ated and Rese	rt			Load II 1
m = 8, C = 32	VDT Cache	Data			Phy	vsical Memory ≡
	Set 0 00	-		1	0x00 20 f6 e	ef ea a2 5e 9f 1a
	Set 1 00	-		1	0x08 a2 d0	4f c4 a0 0c f7 27
	Set 2 00	-		1	0x10 b8 bd	1a ca 35 95 cb 80
Eviction: LRU	Set 3 00	-		1	0x18 84 3f	02 4f 8e f3 f6 e5
					0x20 cd 4a :	f6 48 1a 6f 7e 63
					0x28 e9 36 a	ae 32 0d 37 bc c9

- Validate the button « Explain »
- In the « Addr 0x » field, insert value « 09 »
- Then click step by step on button Read/next

System Parameters:	Manual Memory Access:	History:
Address width: 8 \$ bits	Read Addr: 0x	>
Cache size: 32 \$ bytes	▼Explain Write Addr: 0x , Byte: 0x	
Block size: 2 4 • 8 bytes	Flush	
Associativity: • 1 0 2 0 4 way(s)	Too Indon Offset Cooks Hits Cooks Misses	
Write Hit: Write back \$	Tag Index Offset Cache Hits Cache Misses	
Write Miss: Write-allocate \$	000 00 000 0	
Replacement: Least Recently Used \$	Simulation Messages:	
Reset System	System Generated and Reset	Load II 1
✓Explain		
		<u> </u>

- After executing step by step the read to address 0x09, do the following simulations
 - Execute a Read memory request to address 0x13
 - Execute a Read memory request to address 0x21
 - Execute a Read memory request to address 0x2a
 - Execute a Read memory request to address 0x15
 - Execute a Write memory request to address 0x11
 - Execute a Read memory request to address 0x33
 - Execute a Read Memory request to address 0x11
 - For each request execution, analyse the execution (step by step)
 - How many cache hits, cache misses?
 - Analyse where the blocks are loaded in the cache
 - Analyse the write policy
 - Etc ...

- Modification of cache configuration
 - Change cache size: 32 bytesChange Associativity: 4 ways
 - Analyse the cache structure
 - Then, analyse what is happenning if you apply the same list of memory requests
 - Execute a Read memory request to address 0x13
 - Execute a Read memory request to address 0x21
 - Execute a Read memory request to address 0x2a
 - Execute a Read memory request to address 0x15
 - Execute a Write memory request to address 0x11
 - Execute a Read memory request to address 0x33
 - Execute a Read Memory request to address 0x11
 - What is the performance of this cache configuration compare to the first one?
 - How many cache hits, cache misses?
 - Analyse where the blocks are loaded in the cache
 - Analyse the write policy
 - Etc ...

-System Param	neters: ——————	
Address width:		
Cache size:	32 \$ bytes	
Block size:	2 4 • 8 bytes	
Associativity:	\bigcirc 1 \bigcirc 2 \bigcirc 4 way(s)	
Write Hit:	Write back \$	
Write Miss:	Write-allocate \$	
Replacement:	Least Recently Used 💠	
Reset System		
Explain		

- Modification of cache configuration
 - Change cache size: 32 bytesChange Associativity: 2 ways
 - Analyse the cache structure
 - Then, analyse what is happenning if you apply the same list of memory requests
 - Execute a Read memory request to address 0x13
 - Execute a Read memory request to address 0x21
 - Execute a Read memory request to address 0x2a
 - Execute a Read memory request to address 0x15
 - Execute a Write memory request to address 0x11
 - Execute a Read memory request to address 0x33
 - Execute a Read Memory request to address 0x11
 - What is the performance of this cache configuration compare to the first one ?
 - How many cache hits, cache misses?
 - Analyse where the blocks are loaded in the cache
 - Analyse the write policy
 - Etc ...

System Parameters:		
8 \$ bits		
32 \$ bytes		
$\bigcirc 2 \bigcirc 4 \bigcirc 8$ bytes		
\bigcirc 1 \bigcirc 2 \bigcirc 4 way(s)		
Write back 💠		
Write-allocate 💠		
Least Recently Used 💠		
Reset System Explain		

