Repaso Cálculo

Contents

1	1.1 Teorema del Sándwich (o del Encajonamiento)
2	Derivadas2.1 Definición de Derivada2.2 Teorema de Rolle2.3 Teorema del Valor Medio (Lagrange)
3	Integrales 3.1 Teorema Fundamental del Cálculo (Parte I) 3.2 Teorema Fundamental del Cálculo (Parte II) 3.3 Cambio de Variable 3.4 Integración por Partes
4	Sucesiones y Series (si aplica en tu Olimpiada) 4.1 Límites de Sucesiones
5	Límite y Continuidad105.1Teorema del Sándwich105.2Teorema de Bolzano105.3Teorema de Weierstrass105.4Teorema de Darboux (Propiedad del valor intermedio para derivadas)10
6	Derivadas y Aplicaciones106.1 Teorema de Fermat16.2 Criterio de la Primera Derivada16.3 Criterio de la Segunda Derivada16.4 Convexidad y Concavidad1
7	Integración y Teoremas Avanzados17.1 Integral Impropia17.2 Criterio de Convergencia de Cauchy para Integrales17.3 Integrales de Riemann con Funciones Acotadas1
8	Sucesiones y Series8.1 Criterio de Cauchy para Sucesiones18.2 Serie de Taylor18.3 Serie de Maclaurin1

9	Teoremas de Análisis Real útiles en competencia19.1 Desigualdad de Cauchy-Schwarz19.2 Desigualdad de Jensen (versión continua)19.3 Teorema del Valor Medio para Integrales1
10	Teoremas sobre Continuidad Uniforme110.1 Teorema de Heine-Cantor110.2 Teorema de la Sucesión de Cauchy Uniforme1
11	Teoremas sobre Derivadas y Monotonicidad111.1 Teorema de la Monotonía111.2 Regla de l'Hôpital1
12	Convexidad y Funciones Monótonas112.1 Caracterización de Funciones Convexas112.2 Jensen Discreta (caso finito)1
13	Teoremas de Punto Fijo113.1 Teorema de Brouwer (1D)113.2 Teorema del Valor Intermedio Generalizado1
14	Lemas útiles y límites notables114.1 Lema de Stolz-Cesàro (sucesiones)114.2 Límites Notables1
15	11. Cálculo Multivariable (opcional, para olimpiadas tipo Putnam)115.1 Teorema de la Derivada Parcial115.2 Criterio de Hessiano (máximos/mínimos locales)1
16	12. Teoremas de Análisis Real y Funcional 1 16.1 Teorema de Baire (Categoría de Baire) 1 16.2 Teorema de Bolzano-Weierstrass 1 16.3 Teorema de Arzelà-Ascoli 1 16.4 Teorema de Ascoli (versión débil) 1 16.5 Teorema de Dini 1 16.6 Teorema de Riesz (completo) 1
17	Criterios de Convergencia de Series117.1 Criterio de la Serie Alternante (Leibniz)117.2 Criterio de la Serie de Dirichlet117.3 Criterio de Abel1
18	Teoremas en Cálculo Multivariable118.1 Teorema de Fubini118.2 Teorema de cambio de variables118.3 Teorema de Green1

		Teorema de Stokes	16 16
19	19.1 19.2	igualdades Fundamentales Desigualdad de Taylor (forma de Lagrange)	16 16 16 17
20	20.1 20.2 20.3 20.4	Teorema de Egorov	18 18 18 18 18
21	$21.1 \\ 21.2$	Topología y Análisis en \mathbb{R}^n Teorema de Borel–Lebesgue (compactación)	18 18 18 18
22	$22.1 \\ 22.2$	Análisis Funcional Básico Teorema de Hahn-Banach (versión real)	19 19 19 19
23	23.1	Aplicaciones Clásicas en EDOs y Cálculo Variacional Teorema de existencia y unicidad de Picard-Lindelöf	19 19 19
24	$24.1 \\ 24.2$	Teoremas de Continuidad y Derivabilidad en \mathbb{R}^n Teorema de la función inversa	19 19 19 20
25	$25.1 \\ 25.2 \\ 25.3$	Desigualdades Clásicas y Utilitarias Desigualdad de Bernoulli	21 21 21 21 21
26	$26.1 \\ 26.2 \\ 26.3$	Teoremas Clásicos de Estimación y Aproximación Fórmula de Stirling	21 21 21 21 21

27	23. Teoremas sobre Series Clásicas	22
	27.1 Serie de Gregory–Leibniz	22
	27.2 Serie de Basel (Euler)	
	27.3 Transformada de Abel (suma por partes discreta)	22
28	24. Resultados Técnicos para Cálculo de Límites	22
	28.1 Lema de Cesàro	22
	28.2 Teorema del Sandwich (Teorema del Encajonamiento)	22
	28.3 L'Hôpital (forma avanzada)	22
29	25. Funciones Especiales	22
	29.1 Identidad de Euler para senos	22
	29.2 Serie de Fourier de una función impar en $[-L, L]$	23
	29.3 Teorema de Parseval	23
30	Desigualdades Notables	24
00	30.1 Designaldad AM-GM	24
	30.2 Designaldad de Cauchy–Schwarz	24
	30.3 Designaldad de Hölder	24
	30.4 Desigualdad de Jensen (función convexa)	24
	30.5 Bernoulli	24
	30.6 Desigualdad logarítmica	24
	30.7 Inequidad de Titu (Engel)	24
	30.8 Chebyshev	24
31	Trucos Asintóticos Clásicos	25
-	31.1 Expansiones de Taylor útiles	25
	31.2 Equivalencias notables para límites	25
	31.3 Stirling	25
	31.4 Dominancia asintótica	$\frac{-5}{25}$
	31.5 Aproximaciones asintóticas útiles	25
32	Técnicas de Estimación	25
_	32.1 Encajonamiento (Sandwich)	25
	32.2 Comparación directa en sumas y series	26
	32.3 Integral de Riemann como suma	26
	32.4 Transformación de Abel	26
	32.5 Cambio inteligente de variable	26
	32.6 Estimación tipo trapezoidal	26
	32.7 Desigualdad de Nesbitt (3 variables positivas)	$\frac{-3}{27}$
	32.8 Desigualdad de Karamata (convexidad y orden mayor)	27
	32.9 Desigualdad de Minkowski (versión para normas)	27
	32.10Desigualdad de Hadamard	27
	32.11Desigualdad de Wilker	27

33	Trucos Asintóticos Potentes	27
	33.1 Expansión de binomio para exponentes arbitrarios	27
	33.2 Expansión de Gamma cerca de enteros	27
	33.3 Logaritmo armónico parcial	27
	33.4 Equivalencias funcionales útiles	28
	33.5 Lemas de Tauber y Abel (resumen)	28
34	Técnicas de Estimación Más Finas	28
	34.1 Sumas por integrales (Estimación de Euler–Maclaurin)	28
	34.2 Series alternadas acotadas	28
	34.3 Uso de simetría para acotación	28
	34.4 Acotación tipo telescópica	28
	34.5 Técnica de escalamiento	28
	34.6 Cambio a logaritmo para productos	28

1 Límite y Continuidad

1.1 Teorema del Sándwich (o del Encajonamiento)

Sea $a \in \mathbb{R}$ y supongamos que existen funciones f, g, h definidas en un entorno de a, salvo quizás en a mismo, tales que:

$$\forall x \neq a, \quad f(x) \leq g(x) \leq h(x)$$

y además:

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

Entonces:

$$\lim_{x \to a} g(x) = L$$

1.2 Teorema de Continuidad de Composición

Si $\lim_{x\to a} f(x) = L$ y $\lim_{x\to L} g(x) = g(L)$ (i.e. g es continua en L), entonces:

$$\lim_{x \to a} g(f(x)) = g\left(\lim_{x \to a} f(x)\right) = g(L)$$

2 Derivadas

2.1 Definición de Derivada

La derivada de f en a es:

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

2.2 Teorema de Rolle

Sea $f:[a,b]\to\mathbb{R}$ tal que:

- f es continua en [a, b],
- f es derivable en (a, b),
- f(a) = f(b).

Entonces existe $c \in (a, b)$ tal que:

$$f'(c) = 0$$

2.3 Teorema del Valor Medio (Lagrange)

Si f es continua en [a,b] y derivable en (a,b), entonces existe $c\in(a,b)$ tal que:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

3 Integrales

3.1 Teorema Fundamental del Cálculo (Parte I)

Si f es continua en [a, b] y definimos:

$$F(x) = \int_{a}^{x} f(t) dt$$

entonces F es derivable y:

$$F'(x) = f(x)$$

3.2 Teorema Fundamental del Cálculo (Parte II)

Si f es continua en [a,b] y F es una primitiva de f (i.e. F'=f), entonces:

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

3.3 Cambio de Variable

Si x = g(u) es una función continua con derivada continua, y f es continua, entonces:

$$\int f(g(u))g'(u) du = \int f(x) dx$$

3.4 Integración por Partes

Si u = u(x) y v = v(x) son funciones derivables, entonces:

$$\int u \, dv = uv - \int v \, du$$

4 Sucesiones y Series (si aplica en tu Olimpiada)

4.1 Límites de Sucesiones

Una sucesión (a_n) converge a L si:

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N} \text{ tal que } n > N \Rightarrow |a_n - L| < \varepsilon$$

4.2 Serie Geométrica

Para |r| < 1:

$$\sum_{n=0}^{\infty} ar^n = \frac{a}{1-r}$$

4.3 Criterio de la Razón

Sea $\sum a_n$, con $a_n \neq 0$ y definamos:

$$L = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

Entonces:

- Si L < 1 la serie converge.
- Si L > 1 o $L = \infty$, la serie diverge.
- Si L=1, el criterio no decide.

5 Límite y Continuidad

5.1 Teorema del Sándwich

(Squeeze Theorem): Si $f(x) \le g(x) \le h(x)$ cerca de a (excepto quizás en a), y $\lim_{x\to a} f(x) = \lim_{x\to a} h(x) = L$, entonces $\lim_{x\to a} g(x) = L$.

5.2 Teorema de Bolzano

Si f es continua en [a, b] y f(a)f(b) < 0, entonces existe $c \in (a, b)$ tal que f(c) = 0.

5.3 Teorema de Weierstrass

Si f es continua en [a, b], entonces f alcanza su máximo y mínimo absolutos en [a, b].

5.4 Teorema de Darboux (Propiedad del valor intermedio para derivadas)

Si f es derivable en [a, b], entonces f' tiene la propiedad del valor intermedio: si f'(a) < k < f'(b), entonces existe $c \in (a, b)$ tal que f'(c) = k.

6 Derivadas y Aplicaciones

6.1 Teorema de Fermat

Si f tiene un extremo local en c y es derivable en c, entonces f'(c) = 0.

6.2 Criterio de la Primera Derivada

Si f' cambia de signo en c, entonces f tiene un extremo local en c:

- f' cambia de + a -: máximo local.
- f' cambia de -a +: mínimo local.

6.3 Criterio de la Segunda Derivada

Si f''(c) > 0, entonces f tiene mínimo local en c; si f''(c) < 0, entonces tiene máximo local.

6.4 Convexidad y Concavidad

- f''(x) > 0: f es convexa (curva hacia arriba).
- f''(x) < 0: f es cóncava (curva hacia abajo).
- $f''(x_0) = 0$ y cambia de signo: punto de inflexión.

7 Integración y Teoremas Avanzados

7.1 Integral Impropia

Si f es continua en $[a, \infty)$, entonces:

$$\int_{a}^{\infty} f(x) \, dx = \lim_{b \to \infty} \int_{a}^{b} f(x) \, dx$$

7.2 Criterio de Convergencia de Cauchy para Integrales

 $\int_a^\infty f(x) dx$ converge \Leftrightarrow para todo $\varepsilon > 0$ existe M > a tal que:

$$\left| \int_{u}^{v} f(x) \, dx \right| < \varepsilon, \quad \forall u, v > M$$

7.3 Integrales de Riemann con Funciones Acotadas

Si f es acotada en [a, b] y el conjunto de discontinuidades tiene medida cero, entonces f es integrable en el sentido de Riemann.

8 Sucesiones y Series

8.1 Criterio de Cauchy para Sucesiones

Una sucesión (a_n) converge \Leftrightarrow es de Cauchy, i.e.:

$$\forall \varepsilon > 0, \exists N : m, n > N \Rightarrow |a_n - a_m| < \varepsilon$$

8.2 Serie de Taylor

Si f tiene derivadas de todos los órdenes en un entorno de a, entonces:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n$$

El error del truncamiento a orden n está dado por el término de Lagrange:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}, \quad \xi \in (a,x)$$

8.3 Serie de Maclaurin

Caso particular de la serie de Taylor con a=0:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$

9 Teoremas de Análisis Real útiles en competencia

9.1 Desigualdad de Cauchy-Schwarz

Para $a_i, b_i \in \mathbb{R}$:

$$\left(\sum_{i=1}^n a_i b_i\right)^2 \le \left(\sum_{i=1}^n a_i^2\right) \left(\sum_{i=1}^n b_i^2\right)$$

9.2 Desigualdad de Jensen (versión continua)

Si f es convexa y μ es una medida de probabilidad, entonces:

$$f\left(\int x \, d\mu\right) \le \int f(x) \, d\mu$$

9.3 Teorema del Valor Medio para Integrales

Si f es continua en [a, b], entonces existe $c \in [a, b]$ tal que:

$$\int_{a}^{b} f(x) dx = f(c)(b - a)$$

10 Teoremas sobre Continuidad Uniforme

10.1 Teorema de Heine-Cantor

Toda función continua $f:[a,b]\to\mathbb{R}$ en un intervalo cerrado y acotado es uniformemente continua.

10.2 Teorema de la Sucesión de Cauchy Uniforme

Sea $f: A \to \mathbb{R}$. Si para toda $\varepsilon > 0$ existe $\delta > 0$ tal que $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$ para todos $x, y \in A$, entonces f es uniformemente continua.

11 Teoremas sobre Derivadas y Monotonicidad

11.1 Teorema de la Monotonía

Si f' existe y:

- f'(x) > 0 en (a, b), entonces f es estrictamente creciente en (a, b).
- f'(x) < 0 en (a, b), entonces f es estrictamente decreciente.

11.2 Regla de l'Hôpital

Si $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ o ∞ y $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, entonces:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$

siempre que $g'(x) \neq 0$ cerca de a.

12 Convexidad y Funciones Monótonas

12.1 Caracterización de Funciones Convexas

f es convexa en $(a,b) \Leftrightarrow$ su derivada f' es creciente (si f es diferenciable).

12.2 Jensen Discreta (caso finito)

Si f es convexa y $x_1, \ldots, x_n \in \text{Dom}(f)$:

$$f\left(\frac{x_1+\cdots+x_n}{n}\right) \le \frac{f(x_1)+\cdots+f(x_n)}{n}$$

13 Teoremas de Punto Fijo

13.1 Teorema de Brouwer (1D)

Si $f:[a,b] \to [a,b]$ es continua, entonces existe $c \in [a,b]$ tal que f(c) = c.

13.2 Teorema del Valor Intermedio Generalizado

Si f es continua en [a, b], toma todos los valores entre f(a) y f(b): $\forall y \in [f(a), f(b)], \exists c \in [a, b] : f(c) = y$.

14 Lemas útiles y límites notables

14.1 Lema de Stolz-Cesàro (sucesiones)

Sean (a_n) , (b_n) successiones reales con b_n estrictamente creciente y $\lim b_n = \infty$. Si $\lim \frac{a_{n+1}-a_n}{b_{n+1}-b_n} = L$, entonces:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = L$$

14.2 Límites Notables

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$$

15 11. Cálculo Multivariable (opcional, para olimpiadas tipo Putnam)

15.1 Teorema de la Derivada Parcial

Si f(x,y) es diferenciable en (a,b), entonces existen derivadas parciales y el plano tangente está dado por:

$$z = f(a,b) + f_x(a,b)(x-a) + f_y(a,b)(y-b)$$

15.2 Criterio de Hessiano (máximos/mínimos locales)

Para una función f(x, y) diferenciable dos veces:

$$H = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix}, \quad D = \det(H)$$

Entonces:

- D > 0, $f_{xx} > 0$: mínimo local.
- D > 0, $f_{xx} < 0$: máximo local.
- D < 0: punto silla.
- D = 0: prueba inconclusa.

16 12. Teoremas de Análisis Real y Funcional

16.1 Teorema de Baire (Categoría de Baire)

En un espacio métrico completo, la intersección numerable de abiertos densos es densa.

16.2 Teorema de Bolzano-Weierstrass

Toda sucesión acotada en \mathbb{R}^n tiene una subsucesión convergente.

16.3 Teorema de Arzelà-Ascoli

Una familia \mathcal{F} de funciones continuas en [a, b] es relativamente compacta (toda sucesión tiene una subsucesión convergente uniformemente) si es:

- Uniformemente acotada.
- Equicontinua.

16.4 Teorema de Ascoli (versión débil)

Si f_n son funciones acotadas y equicontinuas en [a, b], entonces existe una subsucesión que converge uniformemente a una función continua.

16.5 Teorema de Dini

Si $f_n \uparrow f$ puntualmente en un intervalo compacto y f_n , f son continuas, entonces la convergencia es uniforme.

16.6 Teorema de Riesz (completo)

Si f_n es una sucesión en $L^p([a,b])$ tal que $f_n \to f$ en norma, entonces existe una subsucesión que converge casi en todas partes.

17 Criterios de Convergencia de Series

17.1 Criterio de la Serie Alternante (Leibniz)

Si $a_n \ge 0$, $a_n \downarrow 0$, entonces la serie $\sum (-1)^n a_n$ converge.

17.2 Criterio de la Serie de Dirichlet

Si a_n es monótona y tiende a 0, y b_n es una sucesión acotada de suma parcial, entonces $\sum a_n b_n$ converge.

17.3 Criterio de Abel

Si $\sum a_n$ converge y b_n es monótona acotada, entonces $\sum a_n b_n$ converge.

18 Teoremas en Cálculo Multivariable

18.1 Teorema de Fubini

Sea $f:A\subset\mathbb{R}^2\to\mathbb{R}$ integrable. Si f(x,y) es medible y absolutamente integrable, entonces:

$$\int_{A} f(x,y) dA = \int \left(\int f(x,y) dy \right) dx = \int \left(\int f(x,y) dx \right) dy$$

18.2 Teorema de cambio de variables

Sea $T: U \to V$ un difeomorfismo y f integrable en V, entonces:

$$\int_{V} f(x) dx = \int_{U} f(T(u)) |\det DT(u)| du$$

18.3 Teorema de Green

$$\oint_{\partial D} (P \, dx + Q \, dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy$$

18.4 Teorema de Stokes

Para una superficie S orientada con frontera ∂S :

$$\int_{S} (\nabla \times \vec{F}) \cdot d\vec{S} = \oint_{\partial S} \vec{F} \cdot d\vec{r}$$

18.5 Teorema de la Divergencia (Gauss)

Sea V un volumen limitado con frontera suave ∂V :

$$\iiint_{V} \nabla \cdot \vec{F} \, dV = \iint_{\partial V} \vec{F} \cdot \vec{n} \, dS$$

19 Desigualdades Fundamentales

19.1 Desigualdad de Taylor (forma de Lagrange)

Si $f \in C^{n+1}([a,b])$, entonces:

$$f(x) = P_n(x) + R_n(x), \quad |R_n(x)| \le \frac{\max|f^{(n+1)}(t)|}{(n+1)!}|x - a|^{n+1}$$

19.2 Desigualdad de Hölder

Para $1 < p, q < \infty \text{ con } \frac{1}{p} + \frac{1}{q} = 1$:

$$\sum |a_i b_i| \le \left(\sum |a_i|^p\right)^{1/p} \left(\sum |b_i|^q\right)^{1/q}$$

19.3 Desigualdad de Minkowski

$$\left(\sum |a_i + b_i|^p\right)^{1/p} \le \left(\sum |a_i|^p\right)^{1/p} + \left(\sum |b_i|^p\right)^{1/p}$$

20 Análisis Real Profundo

20.1 Teorema de Egorov

Si $f_n \to f$ casi uniformemente en un conjunto de medida finita, entonces para todo $\varepsilon > 0$ existe un subconjunto A con medida $< \varepsilon$ tal que $f_n \to f$ uniformemente en el complemento de A.

20.2 Teorema de Lusin

Si $f:[a,b]\to\mathbb{R}$ es medible y finita, entonces para todo $\varepsilon>0$, existe un conjunto cerrado $K\subset [a,b]$ tal que $f|_K$ es continua y $\mu([a,b]\setminus K)<\varepsilon$.

20.3 Teorema de Vitali (Criterio de convergencia uniforme en medida)

Una sucesión de funciones medibles y acotadas f_n en [a,b] converge en medida a f si y solo si es uniformemente integrable y $f_n \to f$ en medida.

20.4 Teorema de la Convergencia Dominada (Lebesgue)

Si $f_n \to f$ puntualmente y existe $g \in L^1$ tal que $|f_n| \leq g$, entonces:

$$\int f_n \to \int f$$

20.5 Teorema de la Convergencia Monótona

Si $f_n \uparrow f$ con $f_n \geq 0$, entonces:

$$\int f_n \to \int f$$

21 17. Topología y Análisis en \mathbb{R}^n

21.1 Teorema de Borel-Lebesgue (compactación)

En \mathbb{R}^n , un subconjunto es compacto si y solo si es cerrado y acotado.

21.2 Teorema de Lindelöf (\mathbb{R}^n es separable)

Toda colección de abiertos tiene una subcolección numerable que cubre el mismo conjunto.

21.3 Teorema de Tietze

Si X es normal y $f:A\to\mathbb{R}$ continua en un cerrado $A\subset X$, entonces existe $F:X\to\mathbb{R}$ continua que extiende f.

18

22 18. Análisis Funcional Básico

22.1 Teorema de Hahn-Banach (versión real)

Sea $p:V\to\mathbb{R}$ una función sublineal y $f:U\to\mathbb{R}$ lineal tal que $f\leq p$ en $U\subset V$, entonces f se puede extender a todo V conservando la desigualdad.

22.2 Principio del Punto Fijo de Banach

Si $T: X \to X$ es una contracción en un espacio métrico completo (X, d), entonces T tiene un único punto fijo x^* tal que:

$$T(x^*) = x^*$$

22.3 Teorema de Riesz (dual de L^p)

El dual de $L^p([a,b])$ es $L^q([a,b])$ donde $\frac{1}{p} + \frac{1}{q} = 1$.

23 19. Aplicaciones Clásicas en EDOs y Cálculo Variacional

23.1 Teorema de existencia y unicidad de Picard-Lindelöf

Para la EDO y' = f(x, y), si f es continua y Lipschitz en y, existe solución única en un entorno del punto inicial.

23.2 Ecuaciones Euler–Lagrange (Cálculo Variacional)

Si $F[y] = \int_a^b L(x, y, y') dx$ alcanza un mínimo, entonces y satisface:

$$\frac{d}{dx}\left(\frac{\partial L}{\partial y'}\right) = \frac{\partial L}{\partial y}$$

24 20. Teoremas de Continuidad y Derivabilidad en \mathbb{R}^n

24.1 Teorema de la función inversa

Si $f: \mathbb{R}^n \to \mathbb{R}^n$ es diferenciable y Df(a) es invertible, entonces existe un vecindario de a donde f es biyectiva y f^{-1} es diferenciable.

24.2 Teorema de la función implícita

Si F(x,y) = 0 y F es diferenciable, con $\frac{\partial F}{\partial y} \neq 0$, entonces se puede resolver localmente como y = g(x) y g es diferenciable.

24.3 Regla de la cadena en múltiples variables

Si
$$z = f(x, y), x = x(t), y = y(t)$$
, entonces:

$$\frac{dz}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

25 21. Desigualdades Clásicas y Utilitarias

25.1 Desigualdad de Bernoulli

Para x > -1 y $r \in \mathbb{R}$, $r \ge 0$:

$$(1+x)^r \ge 1 + rx$$

25.2 Desigualdad de Cauchy–Schwarz (integral)

Para $f, g \in L^2([a, b])$:

$$\left(\int_a^b f(x)g(x)\,dx\right)^2 \le \int_a^b f(x)^2\,dx \cdot \int_a^b g(x)^2\,dx$$

25.3 Desigualdad Logarítmica

$$\frac{x-1}{x} \le \ln x \le x - 1, \quad x > 0$$

25.4 Desigualdad entre medias

Para $a_1, ..., a_n > 0$:

media armónica \leq media geométrica \leq media aritmética \leq media cuadrática

26 22. Teoremas Clásicos de Estimación y Aproximación

26.1 Fórmula de Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

26.2 Desigualdad de Taylor–Lagrange (forma integral)

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

26.3 Aproximación de Euler para logaritmos

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, \quad |x| < 1$$

26.4 Aproximación de arctangente

$$\arctan(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots, \quad |x| \le 1$$

27 23. Teoremas sobre Series Clásicas

27.1 Serie de Gregory-Leibniz

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

27.2 Serie de Basel (Euler)

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

27.3 Transformada de Abel (suma por partes discreta)

Si $A_n = \sum_{k=1}^n a_k$, entonces:

$$\sum_{k=1}^{n} a_k b_k = A_n b_n - \sum_{k=1}^{n-1} A_k (b_{k+1} - b_k)$$

28 24. Resultados Técnicos para Cálculo de Límites

28.1 Lema de Cesàro

Si $\lim a_n = L$, entonces:

$$\lim \left(\frac{1}{n}\sum_{k=1}^{n}a_{k}\right) = L$$

28.2 Teorema del Sandwich (Teorema del Encajonamiento)

Si $a_n \le b_n \le c_n$ y $\lim a_n = \lim c_n = L$, entonces $\lim b_n = L$.

28.3 L'Hôpital (forma avanzada)

Si $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{0}{0}$ o $\frac{\infty}{\infty}$, y existen derivadas en un entorno:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

29 25. Funciones Especiales

29.1 Identidad de Euler para senos

$$\sin x = x \prod_{n=1}^{\infty} \left(1 - \frac{x^2}{n^2 \pi^2} \right)$$

29.2 Serie de Fourier de una función impar en [-L, L]

$$f(x) = \sum_{n=1}^{\infty} b_n \sin\left(\frac{n\pi x}{L}\right), \quad b_n = \frac{2}{L} \int_0^L f(x) \sin\left(\frac{n\pi x}{L}\right) dx$$

29.3 Teorema de Parseval

Si f tiene desarrollo en serie de Fourier:

$$\sum_{n=-\infty}^{\infty} |c_n|^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^2 dx$$

30 Desigualdades Notables

30.1 Desigualdad AM-GM

$$\frac{a_1 + a_2 + \dots + a_n}{n} \ge \sqrt[n]{a_1 a_2 \cdots a_n}, \quad \text{con igualdad si y solo si } a_1 = \dots = a_n$$

30.2 Desigualdad de Cauchy-Schwarz

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \le \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

30.3 Desigualdad de Hölder

Para p, q > 1 con $\frac{1}{p} + \frac{1}{q} = 1$:

$$\sum_{i=1}^{n} |a_i b_i| \le \left(\sum |a_i|^p \right)^{1/p} \left(\sum |b_i|^q \right)^{1/q}$$

30.4 Desigualdad de Jensen (función convexa)

Si f es convexa y $\sum \lambda_i = 1, \ \lambda_i \geq 0$:

$$f\left(\sum \lambda_i x_i\right) \le \sum \lambda_i f(x_i)$$

30.5 Bernoulli

$$(1+x)^r \ge 1 + rx, \quad x > -1, r \in \mathbb{R}, r \ge 1$$

30.6 Desigualdad logarítmica

$$\frac{x-1}{x} \le \ln x \le x - 1, \quad x > 0$$

30.7 Inequidad de Titu (Engel)

$$\sum_{i=1}^{n} \frac{a_i^2}{b_i} \ge \frac{\left(\sum a_i\right)^2}{\sum b_i}$$

30.8 Chebyshev

Si $a_1 \leq \cdots \leq a_n, b_1 \leq \cdots \leq b_n$, entonces:

$$\frac{1}{n}\sum a_i b_i \ge \left(\frac{1}{n}\sum a_i\right)\left(\frac{1}{n}\sum b_i\right)$$

31 Trucos Asintóticos Clásicos

31.1 Expansiones de Taylor útiles

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots, \quad |x| < 1$$
$$(1+x)^r = 1 + rx + \frac{r(r-1)}{2}x^2 + \dots$$
$$\sin x \sim x - \frac{x^3}{6}, \quad \cos x \sim 1 - \frac{x^2}{2}$$

31.2 Equivalencias notables para límites

$$\lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{\tan x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x^2} = \frac{1}{2}$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$

31.3 Stirling

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

Útil para cotar factoriales en límites, sumas o series.

31.4 Dominancia asintótica

Si f(n) = O(g(n)), entonces:

$$\limsup_{n \to \infty} \left| \frac{f(n)}{g(n)} \right| < \infty$$

31.5 Aproximaciones asintóticas útiles

$$\sum_{k=1}^{n} \frac{1}{k} \sim \ln n + \gamma$$

$$\sum_{k=1}^{n} k^{p} \sim \frac{n^{p+1}}{p+1}, \quad p > -1$$

32 Técnicas de Estimación

32.1 Encajonamiento (Sandwich)

Si $f_n \le g_n \le h_n$, y $\lim f_n = \lim h_n = L$, entonces $\lim g_n = L$.

32.2 Comparación directa en sumas y series

Si
$$a_n \leq b_n$$
, $\sum b_n$ converge $\Rightarrow \sum a_n$ converge

32.3 Integral de Riemann como suma

$$\sum_{k=1}^{n} f\left(\frac{k}{n}\right) \cdot \frac{1}{n} \approx \int_{0}^{1} f(x) \, dx$$

32.4 Transformación de Abel

Si
$$A_n = \sum_{k=1}^n a_k$$
:

$$\sum a_k b_k = A_n b_n - \sum A_k (b_{k+1} - b_k)$$

32.5 Cambio inteligente de variable

Para simplificar raíces, logaritmos o integrales complicadas: Ejemplo: $x=\frac{1}{t},\ x=\tan\theta,$ $x=e^u$

32.6 Estimación tipo trapezoidal

$$\int_{a}^{b} f(x) dx \approx \frac{b-a}{2} [f(a) + f(b)]$$

32.7 Desigualdad de Nesbitt (3 variables positivas)

$$\frac{a}{b+c} + \frac{b}{a+c} + \frac{c}{a+b} \ge \frac{3}{2}$$

32.8 Desigualdad de Karamata (convexidad y orden mayor)

Si f es convexa y $x \prec y$ (mayor en orden), entonces:

$$\sum f(x_i) \le \sum f(y_i)$$

32.9 Desigualdad de Minkowski (versión para normas)

$$\left(\sum_{i=1}^{n} |a_i + b_i|^p\right)^{1/p} \le \left(\sum |a_i|^p\right)^{1/p} + \left(\sum |b_i|^p\right)^{1/p}$$

32.10 Desigualdad de Hadamard

Para vectores x, y en \mathbb{R}^n :

$$\det(A)^2 \le \prod_{i=1}^n \|\mathrm{fila}_i\|^2$$

32.11 Desigualdad de Wilker

Para $x \in (0, \frac{\pi}{2})$:

$$\frac{\sin x}{x} + \frac{\tan x}{x} > 2$$

33 Trucos Asintóticos Potentes

33.1 Expansión de binomio para exponentes arbitrarios

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \quad |x| < 1$$

33.2 Expansión de Gamma cerca de enteros

$$\Gamma(n+\varepsilon) \sim \Gamma(n) \cdot (1+\varepsilon\psi(n)), \quad \varepsilon \to 0$$

donde $\psi(n)$ es la función digamma.

33.3 Logaritmo armónico parcial

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + \cdots$$

33.4 Equivalencias funcionales útiles

$$\arcsin x \sim x, \quad \arctan x \sim x, \quad \sqrt{1+x} \sim 1 + \frac{x}{2}, \quad x \to 0$$

33.5 Lemas de Tauber y Abel (resumen)

- Si $\sum a_n$ converge, entonces su función generadora $f(x) = \sum a_n x^n$ tiende a S cuando $x \to 1^-$.
- Inverso es falso sin hipótesis extra.

34 Técnicas de Estimación Más Finas

34.1 Sumas por integrales (Estimación de Euler-Maclaurin)

$$\sum_{k=a}^{b} f(k) \approx \int_{a}^{b} f(x) dx + \frac{f(a) + f(b)}{2}$$

34.2 Series alternadas acotadas

Si a_n decrece y $a_n \to 0$, entonces:

$$\left| \sum_{k=n}^{\infty} (-1)^k a_k \right| \le a_n$$

34.3 Uso de simetría para acotación

Para funciones pares o impares:

$$\int_{-a}^{a} f(x) dx = 0 \quad \text{(si } f \text{ impar)}, \quad = 2 \int_{0}^{a} f(x) dx \quad \text{(si } f \text{ par)}$$

34.4 Acotación tipo telescópica

$$\sum_{k=1}^{n} \left(\frac{1}{k(k+1)} \right) = 1 - \frac{1}{n+1}$$

34.5 Técnica de escalamiento

Si f(x) cumple cierta propiedad en x, probarla en x = 1 y reescalar con x = ky, $x = y^2$, etc.

34.6 Cambio a logaritmo para productos

$$\prod_{k=1}^{n} (1 + a_k) = \exp\left(\sum \ln(1 + a_k)\right) \approx \exp\left(\sum a_k\right) \quad \text{si } |a_k| \ll 1$$