Intégration - Résumé

October 25, 2023

THEVENET Louis

Table des matières

1.	Estimation	1
	1.1. Modèle statistique, estimateurs	1
	1.2. Inégalité de Cramér Rao	. 1
	1.3. Maximum de vraisemblance	2
	1.4. Méthode des moments	2
	1.5. Estimation de Bayésienne	2
	1.6. Intervalles de confiance	2
2.	Tests Statistiques	. 2

1. Estimation

1.1. Modèle statistique, estimateurs

Définition 1.1.1:

On note $\hat{\theta}(X_1,...,X_n)$, $\hat{\theta}_n$ ou $\hat{\theta}$ l'estimateur lié aux n VA iid $X_1,...,X_n$ elles-mêmes liées aux n observations $x_1, ..., x_n$

• Biais : $b_n(\theta) = E\left(\hat{\theta}_n\right) - \theta \in \mathbb{R}^p$ • Variance : $v_n(\theta) = E\left[\left(\hat{\theta}_n E\left(\hat{\theta}_n\right)\right)^2\right]$ • Matrice de covariance : $E\left[\left(\hat{\theta}_n - E\left(\hat{\theta}_n\right)\right)\left(\hat{\theta}_n - E\left(\hat{\theta}_n\right)\right)^T\right]$ • Erreur quadratique moyenne (MSE) : $e_n(\theta) = E\left[\left(\hat{\theta}_n - \theta\right)^2\right] = v_n(\theta) + b_n^2(\theta)$ • un estimateur $\hat{\theta}_n$ est convergent si $\lim_{n \to +\infty} b_n(\theta) = \lim_{n \to +\infty} v_n(\theta) = 0$

1.2. Inégalité de Cramér Rao

Théorème 1.2.1:

$$\mathrm{Var}\Big(\hat{\theta}_n\Big) \geq \frac{\big[1 + b_n'(\theta)\big]^2}{(-E\Big[\frac{\partial^2 \ln(L(X_1,\dots,X_n;\theta))}{\partial \theta^2}\Big)]}) = \mathrm{BCR}(\theta)$$

BCR: Borne de Cramér Rao de θ

Hypothèse : log-vraisemblance deux fois dérivable et support de la loi indépendant de θ .

Définition 1.2.1: Estimateur sans biais si

$$\mathrm{Var} \Big(\hat{\boldsymbol{\theta}}_n \Big) = \mathrm{BCR}(\boldsymbol{\theta})$$

1.3. Maximum de vraisemblance

Définition 1.3.1: Maximum de vraisemblance

$$\hat{\theta}_{\mathrm{MV}} = \arg\max_{\theta} L(X_1, ..., X_n; \theta)$$

Théorème 1.3.1: Recherche de $\hat{\theta}_{\mathrm{MV}}$

- Cherche les points fixes de la vraisemblances ou de la log-vraisemblances
- Tableau de variations pour vérifier ou alors étudier $\frac{\partial^2 \ln L(X_1,...,X_n;\hat{\theta}_{MV})}{\partial \theta^2} < 0$

Définition 1.3.2: Régularité

- 1.4. Méthode des moments
- 1.5. Estimation de Bayésienne
- 1.6. Intervalles de confiance
- 2. Tests Statistiques