Log-Gaussian Cox Process for London crime data

Jan Povala

May 3, 2018

Outline

Motivation

Methodology

Results

Current work, Next steps

Aims and Objectives

- Modelling of crime and short-term forecasting.
- ► Two stages involved:
 - 1. inference what is the underlying process that generated the observations?
 - prediction use the inferred process's properties to forecast future values.

Burglary

Theft from the person

Outline

Motivation

Methodology

Results

Current work, Next steps

Methodology 6

Cox Process

Cox process is a natural choice for an environmentally driven point process (Diggle et al., 2013).

Definition

Cox process Y(x) is defined by two postulates:

- 1. $\Lambda(x)$ is a nonnegative-valued stochastic process;
- 2. conditional on the realisation $\lambda(x)$ of the process $\Lambda(x)$, the point process Y(x) is an inhomogeneous Poisson process with intensity $\lambda(x)$.

Methodology 7

Log-Gaussian Cox Process

ightharpoonup Cox process with intensity driven by a Gaussian Process f(x):

$$\Lambda(\boldsymbol{x}) = \exp\left(f(\boldsymbol{x})\right).$$

▶ The latent surface *f* is modelled by placing a GP prior:

$$f(\boldsymbol{x}) \sim \mathcal{GP}(0, k_{\theta}(\cdot, \cdot)).$$

Discretised version of the model over a regular grid on the observation window is:

$$y_i | f(\boldsymbol{x}_i) \sim \text{Poisson}(\exp[f(\boldsymbol{x}_i)]).$$

Field inference

Given the observations y on the grid X, our goal is to find the distribution of the latent field f:

$$p(\mathbf{f}|\mathbf{y}, X, \boldsymbol{\theta}) = \frac{p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta})p(\mathbf{f}|X, \boldsymbol{\theta})}{p(\mathbf{y}|X, \boldsymbol{\theta})},$$

where

$$p(\mathbf{y}|X, \boldsymbol{\theta}) = \int p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta}) p(\mathbf{f}|X, \boldsymbol{\theta}) d\mathbf{f}$$

which is intractable.

Laplace Approximation

Flaxman et al. (2015)

- ▶ One approach to overcome intractability is *Laplace approximation*.
- ▶ Approximate the posterior distribution of the Gaussian Process by:

$$p(\mathbf{f}|\mathbf{y}, X, \boldsymbol{\theta}) \approx \mathcal{N}\left(\hat{\mathbf{f}}, -\left(\nabla \nabla \Psi(\mathbf{f})|_{\hat{\mathbf{f}}}\right)^{-1}\right),$$

where $\Psi(\mathbf{f}) := \log p(\mathbf{f}|\mathbf{y}, X, \boldsymbol{\theta}) \stackrel{\text{const}}{=} \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta}) + \log p(\mathbf{f}|X, \boldsymbol{\theta})$ is unormalised log posterior, and $\hat{\mathbf{f}}$ is the mode of the distribution.

Newton's method to find $\hat{\mathbf{f}}$.

Methodology 10

Hyperparameters - Marginal Likelihood

Flaxman et al. (2015)

- \triangleright Accurate inferences/predictions require knowing θ .
- Marginal log-likelihood:

$$\log p(\mathbf{y}|X, \boldsymbol{\theta}) = \log \int \exp \left[\Psi(\mathbf{f})\right] d\mathbf{f}$$

$$\approx \log p(\mathbf{y}|\hat{\mathbf{f}}) - \frac{1}{2} \mathbf{f}^{\top} \boldsymbol{K}^{-1} \mathbf{f} - \frac{1}{2} \log |\boldsymbol{I} + \boldsymbol{K} \boldsymbol{W}|,$$

where $K_{ij} = k_{\theta}(\boldsymbol{x}_i, \boldsymbol{x}_j)$ describes covariance between pairwise locations, and $\boldsymbol{W} \coloneqq -\nabla\nabla \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta})$.

Methodology 11

Computation I

Flaxman et al. (2015)

- ▶ The calculations above require $\mathcal{O}(n^3)$ operations and $\mathcal{O}(n^2)$ space.
- ▶ Cheaper linear algebra available if separable kernel functions are assumed, e.g. in D=2 dimensions:

$$k((x_1, x_2), (x'_1, y'_2)) = k_1(x_1, x'_1)k_2(x_2, x'_2)$$

implies that $K = K_1 \otimes K_2$.

▶ Determinant approximation due to Fiedler (1971):

$$\log |\boldsymbol{I} + \boldsymbol{K} \boldsymbol{W}| = \log (|\boldsymbol{K} + \boldsymbol{W}^{-1}||\boldsymbol{W}|)$$

$$\leq \log \left\{ \prod_{i} (e_i + W_{ii}^{-1}) \prod_{i} W_{ii} \right\}$$

$$= \sum_{i} \log (1 + e_i W_{ii}),$$

where e_1, \ldots, e_n are sorted eigenvalues of K.

Computation II

Flaxman et al. (2015)

Applying the above properties, the inference and predictions can be computed using $\mathcal{O}\Big(Dn^{\frac{D+1}{D}}\Big)$ operations and $\mathcal{O}\Big(Dn^{\frac{2}{D}}\Big)$ space thanks to:

- ▶ Conjugate gradient for solving $K^{-1}b = x$, where matrix-vector multiplication is effificent due to Kronecker structure.
- ► Eigendecomposition utilising Kronecker structure.

Methodology 13

Outline

Motivation

Methodology

Results

Current work, Next steps

Experiment

Spatial model with isotropic Matérn covariance function:

- ▶ Dataset used: 2016 data
- ► Crime types: Burglary, Theft from the person
- ▶ Grid: 117x91, one cell is an area of 500m by 500m.
- Missing locations were treated as imaginary with a special noise model.
- ▶ Two hyperparameters inferred: lengthscale(ℓ), marginal variance (σ^2)

Burglary - inferred hyperparameters

Inferred parameters: $\ell = 1.41$, and $\sigma^2 = 4.16$

Burglary - counts

Burglary - latent field

Theft from the person - inferred hyperparameters

Inferred parameters: $\ell = 1.16$, and $\sigma^2 = 3.84$

Theft from the person - counts

Theft from the person - latent field

Comments

- ► The inference confirmed that number of occurences in a cell influences neighbouring locations.
- ► The process driving Burglary is 'smoother' than the process driving Theft from the person.

Outline

Motivation

Methodology

Results

Current work, Next steps

Forecasting

We are considering a few options for the temporal covariance function:

► A kernel with period of 12 months for seasonal variation (Flaxman, 2014):

$$k(\tau) = \exp\left(-\frac{2\sin^2\left(\frac{\tau\pi}{12}\right)}{\ell^2}\right)$$

Spectral mixture kernel with Q components (Flaxman et al., 2015):

$$k(\tau) = \sum_{q=1}^{Q} w_q \exp\left(-2\pi^2 \tau^2 v_q\right) \cos\left(2\pi\tau \mu_q\right)$$

Stochastic PDEs

Another computationally tractable, and more mechanistic, approach is describing the latent Gaussian field using stochastic PDEs:

- ► Finite Element Method to solve SPDEs as described in Lindgren, Rue, and Lindström (2011).
- Sigrist, Künsch, and Stahel (2015) solve transport-diffusion SPDE using spectral methods on a grid.

Bibliography I

Fiedler, Miroslav (1971). "Bounds for the Determinant of the Sum of Hermitian Matrices". In: *Proceedings of the American Mathematical Society* 30.1, p. 27. ISSN: 00029939. DOI: 10.2307/2038212. URL: http://www.jstor.org/stable/2038212?origin=crossref.

Flaxman, Seth et al. (2015). "Fast Kronecker Inference in Gaussian Processes with non-Gaussian Likelihoods". In: Proceedings of the 32nd International Conference on International Conference on Machine Learning. Vol. 37. ICML'15. Lille, France: JMLR.org, pp. 607–616.

Bibliography 26

Bibliography II

- Flaxman, Seth R. (2014). A General Approach to Prediction and Forecasting Crime Rates with Gaussian Processes. Tech. rep. Heinz College Technical Report, 2014. URL https://www.ml. cmu. edu/research/dap-papers/dap_flaxman.pdf.
- Lindgren, Finn, Håvard Rue, and Johan Lindström (2011). "An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach". en. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 73.4, pp. 423–498. ISSN: 1467-9868. DOI: 10.1111/j.1467-9868.2011.00777.x. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9868.2011.00777.x/abstract.
- Saatçi, Yunus (2012). "Scalable inference for structured Gaussian process models". PhD Thesis. Citeseer.

Bibliography 27

Bibliography III

Sigrist, Fabio, Hans R. Künsch, and Werner A. Stahel (2015). "Stochastic partial differential equation based modelling of large space-time data sets". en. In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 77.1, pp. 3–33. ISSN: 13697412. DOI: 10.1111/rssb.12061. URL: http://doi.wiley.com/10.1111/rssb.12061.

Wilson, Andrew Gordon et al. (2014). "Fast Kernel Learning for Multidimensional Pattern Extrapolation". In: Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. NIPS'14. Cambridge, MA, USA: MIT Press, pp. 3626–3634. URL: http://dl.acm.org/citation.cfm?id=2969033.2969231.

Bibliography 28

Matérn Covariance Function

$$k(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu}r}{\ell}\right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu}r}{\ell}\right)$$

We fix $\nu=2.5$ as it is difficult to jointly estimate ℓ and ν due to identifiability issues.

Extra slides 29

Kronecker Algebra

Saatçi (2012)

- ▶ Matrix-vector multiplication $(\otimes_d \mathbf{A}_d) \mathbf{b}$ in $\mathcal{O}(n)$ time and space.
- ▶ Matrix inverse: $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$
- Let $K_d = Q_d \Lambda_d Q_d^{\top}$ be the eigendecomposition of K_d . Then, the eigendecomposition of $K = \otimes_d K_d$ is given by $Q \Lambda Q^{\top}$, where $Q = \otimes_d Q_d$, and $\Lambda = \otimes_d \Lambda_d$. The number of steps required is $\mathcal{O}\left(Dn^{\frac{3}{D}}\right)$.

Extra slides 30

Field inference - Newton Optimisation

Flaxman et al. (2015)

► The Newton optimisation step:

$$\mathbf{f}^{\mathsf{new}} \leftarrow \mathbf{f}^{\mathsf{old}} - (\nabla \nabla \Psi)^{-1} \nabla \Psi.$$

 \blacktriangleright $\nabla\nabla\Psi$ and $\nabla\Psi$ require inverting the covariance matrix of the GP:

$$\nabla \Psi(\mathbf{f}) = \nabla \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta}) - K^{-1}\mathbf{f}$$
$$\nabla \nabla \Psi(\mathbf{f}) = -\mathbf{W} - \mathbf{K}^{-1},$$

where $W := -\nabla \nabla \log p(\mathbf{y}|\mathbf{f}, X, \boldsymbol{\theta})$.

Incomplete grids

Wilson et al. (2014)

We have that $y_i \sim \operatorname{Poisson}(\exp(f_i))$. For the points of the grid that are not in the domain, we let $y_i \sim \mathcal{N}(f_i, \epsilon^{-1})$ and $\epsilon \to 0$. Hence,

$$p(\mathbf{y}|\mathbf{f}) = \prod_{i \in \mathcal{D}} \frac{\left(e^{\mathbf{f}_i}\right)^{\mathbf{y}_i} e^{-e^{\mathbf{f}_i}}}{\mathbf{y}_i!} \prod_{i \notin \mathcal{D}} \frac{1}{\sqrt{2\pi\epsilon^{-1}}} e^{\frac{-\epsilon(\mathbf{y}_i - \mathbf{f}_i)^2}{2}}$$

The log-likelihood is thus:

$$\sum_{i \in \mathcal{D}} \left[\mathsf{y}_i \mathsf{f}_i - \exp(f_i) + \mathsf{const} \right] - \frac{1}{2} \sum_{i \notin \mathcal{D}} \epsilon(\mathsf{y}_i - \mathsf{f}_i)^2$$

We now take the gradient of the log-likelihood as

$$\nabla \log p(\mathbf{y}|\mathbf{f})_i = \begin{cases} \mathbf{y}_i - \exp(\mathbf{f}_i), & \text{if } i \in \mathcal{D} \\ \epsilon(\mathbf{y}_i - \mathbf{f}_i), & \text{if } i \notin \mathcal{D} \end{cases}$$

and the hessian of the log-likelihood as

$$\nabla\nabla \log p(\mathbf{y}|\mathbf{f})_{ii} = \begin{cases} -\exp(\mathsf{f}_i), & \text{if } i \in \mathcal{D} \\ -\epsilon & \text{if } i \notin \mathcal{D} \end{cases}.$$