

Proposition Carbon Footprint Estimator – Documentation

Q Overview

This web-based MVP estimates the carbon footprint of various consumer products in specific localities across Bengaluru, India. The tool combines:

- Geographic context
- Product-based emissions
- Actionable sustainability tips
- An interactive map visualization

It demonstrates how everyday purchasing decisions could be made more environmentally aware using lightweight technology and public data proxies.

Problem Statement

Consumers lack visibility into the carbon impact of their daily purchases — especially when locality-specific factors like transportation, energy mix, adoption rates, and recycling infrastructure come into play.

Our solution bridges this gap by providing an instant estimate of carbon emissions per product-locality combination and offering tips to reduce environmental impact.

***** Architecture & Stack

Frontend

- HTML + CSS (Dark Theme): Clean two-panel layout for product interaction and map visualization.
- Vanilla JavaScript: DOM logic, event handling, autocomplete with arrow key support, and map integration.

Map Integration

- Leaflet.js: Renders a dark-themed interactive map with circular markers.
- CARTO Tiles: Dark basemap for sharp visual contrast.

Updated Calculation Logic

Formula:

Estimated CO_2 (kg) = Population × (Multiplier \div 10) × Product Footprint

- **Population**: Approximate headcount of people living in the selected locality.
- <u>Multiplier (Adoption Rate</u>): Simulates product popularity or tech penetration in the area (e.g., 8.2/10 = 82%).
- **Product Footprint**: Average per-unit carbon footprint, e.g., Laptop = 500 kg CO₂.

Example:

Laptop in Indiranagar =

150,000 (people) \times 0.78 \times 500 = 58,500,000 kg $\text{CO}_2 \rightarrow 58,500 \text{ metric tons CO}_2$

Note: This is a **dummy logic** for hackathon/MVP purposes. Values are **not from lifecycle analysis datasets** but demonstrate realistic regional variation patterns.

Product List

- 1. Laptop
- 2. T-shirt
- 3. Mobile Phone
- 4. Jeans
- 5. Television

Each product comes with **5 randomized eco-tips** that display upon result generation.

P Locality Coverage

10 granular Bengaluru localities are currently supported:

- Whitefield
- Kaggadasapura
- Nayandahalli
- HSR Layout
- Malleshwaram
- Electronic City
- Indiranagar

- Marathahalli
- Koramangala
- Jayanagar

Each area has a hardcoded **population** and **multiplier** (0–10 scale) representing product adoption rate or infrastructure differences.

General Section

Autocomplete with DSA-style Navigation

- As users type in either input box, matching options appear instantly.
- Arrow key navigation and Enter key selection are fully supported.
- Enhances accessibility and demonstrates scalability via predictive UX.

P Dynamic Map + Heat Circle

- The typed locality is **geocoded** using Nominatim (OpenStreetMap).
- A colored **circular marker** indicates emission intensity:
 - \circ **Red**: High (> 100 million kg CO₂)
 - o **Orange**: Moderate (50–100 million)
 - Green: Low (< 50 million)

Y Sustainability Tips

• Once product + locality is selected and result is calculated, a **random eco tip** (from a curated list) is shown for that product.

UI/UX Design

- **W** Dark theme for reduced screen fatigue and modern feel.
- Cco-visual palette with greens to support sustainability messaging.
- Two-Panel Layout:
 - Left Panel: Inputs + results + tips
 - o Right Panel: Real-time map
- No scrolling needed responsive, centered, and smooth.

MVP Strengths

- Lightweight: Entirely frontend-based, runs in browser no hosting/server required.
- Scalable: Architecture supports adding more data (localities, products, APIs).
- Extendable: Easily plug in real APIs or lifecycle carbon datasets in the future.
- **DSA Layer**: Smart suggestion + navigation logic shows readiness for large-scale usage.
- **V** Hackathon-Ready:
 - Innovation
 - Usability 🔽
 - o Technical implementation ✓
 - 🗸 Real-world applicability