Homework 1

Jon Allen

September 12, 2014

- 2.6 F. Let a, b be positive real numbers. Set $x_0 = a$ and $x_{n+1} = (x_n^{-1} + b)^{-1}$ for $n \ge 0$.
 - (a) Prove that x_n is monotone decreasing.
 - (b) Prove that the limit exists and find it.
 - G. Let $a_n = (\sum_{k=1}^n 1/k) \log n$ for $n \ge 1$. **Euler's constant** is defined as $\gamma = \lim_{n \to \infty} a_n$. Show that $(a_n)_{n=1}^{\infty}$ is decreasing and bounded below by zero, and so this limit exists. HINT: Prove that $1/(n+1) \le \log(n+1) \log n \le 1/n$
 - M. Suppose that $(a_n)_{n=1}^{\infty}$ has $a_n > 0$ for all n. Show that $\limsup a_n^{-1} = (\liminf a_n)^{-1}$.