Batch Normalization

Author: nemo 2020-07-21

Contents

이 글은 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift와 삽화의 원작자가 답변한 Quora의 게시글과 How Does Batch Normalization Help Optimization?을 읽고, Multi Layer Neural Network의 각 레이어의 입력을 정규화하는 기법인 Batch Normalization에 관한 내용을 정리하는 글이다. 입력을 정규화하면 각 층의 출력이 안정적이므로 Initialization에 덜 민감해지며, Gradient가 0이되거나 발산하는 문제를 해결하여 학습 속도와 정확성이 향상된다. 끝으로 cs231n 강의의 과제를 진행하며 작성한 코드를 통해 동작을 이해하는 문단을 포함하고 있다.

1. Batch Normalization 배경

선형 함수만을 이용해 Neural Net을 작성하면 정규화는 필요하지 않다. W와 b를 수정하면 같은 결과를 얻을 수 있다. 반면, 비선형 함수의 경우 다수의 중간층을 지나며 입력의 분포를 유지하지 못하게 되며 이러한 현상을 Internal Covariate Shift라고 한다. [1] 중간층을 지날수록 입력분포가 변화해 Gradient 가 0과 같은 값으로 치우칠 확률이 높아지며, 학습능력과 정확도를 잃게 되는데, Normalization은 이러한 문제를 막기 위해 입력의 분포를 정규화하는 것이다.

Internal Covriate Shift에 관한 사진 [3]

한편, 단순히 Normalization하면 일부 정보를 잃어버릴 수도 있다. 예를 들어 Bias에 대한 정보가 사라지거나, Sigmoid 활성함수의 입력을 정규화하면 함수의 선형적인 부분으로 범위가 제한되는 등의 문제가 있다. 따라서 Scale과 Shift를 학습할 수 있는 Parameter (γ,β) 를 학습해야 한다. 나아가 Forward 과정에 관여하는 변수가 Back Propagation에 끼치는 영향을 증가시키기 위해 mini-batch를 구성하여 각배치에 대한 이동평균 및 분산을 이용하는데, 이러한 방식을 Batch Normalization이라 한다.

2. Batch Normalization

2.1. Batch Normalization

train 과정 중간중간(보통 비선형 함수의 입력)에 Normalization을 적용해 평균과 분산을 Normalization한다. 각 mini-batch 별로 아래와 같은 계산을 진행한다.

$$\mu = rac{1}{N} \sum_{k=1}^{N} x_k \ v = rac{1}{N} \sum_{k=1}^{N} (x_k - \mu)^2 \ \sigma = \sqrt{v + \epsilon} \ y_i = rac{x_i - \mu}{\sigma}$$

주로 비선형적인 활성함수의 앞쪽에 배치되어 활성함수에 들어오는 입력의 분포를 안정화시킨다.

아래의 그림에서 확인할 수 있듯이, 각 데이터를 Feature-wise로 Nomalization하는 것도 특징이다. 이는 CNN 등에서 Spartial Information을 그대로 전달할 수 있게끔 한다.

전체 데이터가 아닌 mini-batch에 대해서만 Normalization을 진행하면, 한 Iteration에서 사용된 Mini-Batch에 관한 데이터만 Back Propagation에 작용하게 되며, 평균과 분산을 계산하는 과정이 신경망 안에 포함되기 때문에, Batch Normalization과 관련된 Parameter의 학습이 가능해져서 유리하다.

Batch Normalization는 아래와 같은 특징을 지닌다고 알려져있다. [1] [3]

- 1. Parameter의 Scale에 영향받지 않는다. Weight에 스칼라로 된 가중치가 곱해져 있어도, 표준편차로 나누는 과정에서 상쇄되며, 오히 려 Gradient는 - 해로 작아지므로 Parameter의 수정이 보다 안정적이다.
- 2. 큰 Learning Rate 사용 가능 일반적으로 학습 속도가 크면, Parameter의 Scale이 증가하여 모델이 발산할 수 있으나, Parameter의 Scale에 영향을 받지 않으므로, 큰 Learning Rate 사용이 가능하다.
- 3. 포화 상태(Saturation Mode) 에 잘 안 빠짐 입출력 분포를 고정시키므로, 활성함수로 Saturating한 함수를 사용해도 포화상태가 아닌 범 위에서 동작한다.
- 4. 유연성 향상 더 많은 Parameter가 포화 상태에 빠지지 않고 살아있으므로, 유연성이 향상되며, 이는 학습 속도 및 정확성 향상으로 귀결된다.
- 5. Regularization 효과 mini-batch만을 이용해 Parameter를 갱신한다. 각 샘플이 무작위로 선택된 다른 샘플의 다른 배치 내에서 등장하므로 분포에 관한 통계의 무작위성이 강해지며, 이는 일반성을 강화시킨다.

자세한 동작은 아래 문단에서 코드를 보면서 이해하자.

2.2. Forward

정규화에 사용되는 Parameter인 평균과 분산도 Gradient를 계산할 때 고려해주어야 한다. 학습 과정에서는 이동 평균/분산을 계산하며, 추론 단계에서는 학습단계에서 계산한 값들을 이용한다. Gamma와 Beta도 학습시키면 Activation에 적절한 분포를 학습시킬 수 있다.

자세한 동작은 코드를 보자.

```
1 N, D = x.shape
   if mode == "train":
 2
3
       mean = np.mean(x, axis=0)
4
      var = np.var(x, axis=0)
 5
      std = np.sqrt(var + eps)
      z = (x - mean) / std
6
 7
       out = gamma * z + beta
8
      running_mean = momentum * running_mean + (1 - momentum) * mean
9
        running_var = momentum * running_var + (1 - momentum) * var
10
        cache = \{'x': x, "gamma": gamma, "mean": mean, "std": std, 'z': z,
    "out": out}
11 elif mode == "test":
        out = gamma * (x - running_mean) / np.sqrt(running_var + eps) + beta
12
```

2.3. Back Propagation

노가다의 연속이다.

```
1 \mid N = cache["x"].shape[0]
 2 | dz = dout * cache["gamma"] # (N, D)
   dgamma = (dout * cache['z']).sum(axis = 0) # (D, )
 4 | dbeta = dout.sum(axis = 0) # (D, )
   dx += dz / cache["std"] # (N, D)
 6
   dstd = (dz * (- cache["x"] + cache["mean"]) / (cache["std"]**2)).sum(axis =
    0) # (D, )
   dvar = dstd / (2 * np.sqrt(cache["std"]**2)) #(D, )
   # <=> dvar = dstd / (2 * cache["std"]) #(D, )
   dx += dvar * (1 / N) * (2 * cache["x"] - 2 * cache["mean"])
10
11
12
   dmean = np.zeros_like(cache["mean"])
13 | dmean += - (dz / cache["std"]).sum(axis = 0)
14 | dmean += (dvar * (2 * cache["mean"] - 2 * cache["x"].sum(axis = 0) / N))
15
16 dx += dmean * (1 / N)
```

한편 계산과정에서 cache의 mean과 x와 std가 만나 z가 되는데, 적당한 계산 노가다를 통해 $\frac{\partial L}{\partial std}$, $\frac{\partial mean}{\partial std}$ 을 계산하는 과정을 없애줄 수 있다. cs231n의 CIFAR-10을 이용한 Multi-Layer Neural Net 과제 실습에서 1.3배 정도의 속도 차이를 보였다.

```
1  N = cache["x"].shape[0]
2  dz = dout * cache["gamma"] # (N, D)
3  dgamma = (dout * cache['z']).sum(axis = 0) # (D, )
4  dbeta = dout.sum(axis = 0) # (D, )
5  dx = dz / cache["std"] - cache["z"] * (1 / N) * (dz * cache["z"] / cache["std"]).sum(axis = 0) - dz.sum(axis = 0) * (1 / N) / cache["std"]
```

2.1.절의 7번과 같은 이유로, Mini-Batch는 랜덤으로 구성한다. 아래는 cs231n강의의 스켈레톤 코드이다.

```
num_train = self.X_train.shape[0]
batch_mask = np.random.choice(num_train, self.batch_size)
X_batch = self.X_train[batch_mask]
y_batch = self.y_train[batch_mask]
```

3. Batch Normalization 좀 더 잘하기

Batch Normalization을 제안한 논문[1]에서는 다음과 같은 방법들을 제시하고 있다.

용하지 않는다면, 과적합을 방지하고 교육 속도를 높일 수 있다.

- 1. Learning Rate 증가시키기
- 2. Dropout 제거하기 어차피 둘은 동일한 목표를 공유한다. Batch Normalization을 사용하는 경우 Dropout을 사
- 3. L2 Regularization 줄이기 Batch Normalization에도 Regularization과 같은 효과가 포함되므로, L2 Regularization의 강도를 낮출 필요가 있다. 실험적으로도 L2 Regularization을 1/5로 줄였을 때 효과적이었다 고 한다.
- 4. Learning Rate 감소폭 크게 하기 Batch Normalization은 원래 학습 속도가 빠르다. 이에 맞춰 Learning Rate 감소폭도 크게 하자.
- 5. Remove Local Response Normalization
 LRN은 이전 세대에서 사용하던 기법으로 인접한 커널 간 측면억제 연산을 수행하는 것을 의미한다. 대충 ReLU 같은 함수 쓰지 말라는 뜻이다. ReLU는 Gradient Vanishing을 막기 위해사용하는데, 그런건 Batch Normalization이 처리했으니 안심하라구 ~!
- 6. Mini-Batch 랜덤하게 구성하기 실험적으로 1% 정도 정확성이 높아진다고 한다.
- 7. Data Augmentation 강도 낮추기 학습 시간이 짧기 때문에 지나치게 인위적인 변경으로 학습 데이터를 늘리기보다, 실제 데이터에 집중하는 것이 유리하다.

4. 기타

4.1. 유사품

15년도에 제안된 Batch Normalization가 좋아보이니, Batch가 아닌 다른 부분에도 정규화를 진행하자는 개념들이 제안되었다.

각자 나름의 특징과 장단점을 가지고 있으며, 구현은 거의 비슷하다. Layer Normalization의 구현만 살펴보자.

4.1.1. Layer Normalization

Batch가 아닌 Feature에 대고 Normalization을 한 것이며, batch-size에 영향 덜 받는다는 장점이 있다. 다음 문단에서 코드를 보자.

4.1.2. Layer Normalization Forward Code

Batch Normalization과 비교해서 달라진 점은, 평균과 분산을 axis = 1을 기준으로 계산하는 부분이다.

```
1  mean = np.array([x.mean(axis=1)]).T # (N, )
2  var = np.array([x.var(axis=1)]).T # (N, )
3  std = np.sqrt(var + eps) # (N, )
4  z = (x - mean) / std # (N, )
5  out = gamma * z + beta
6  cache = {'x': x, "gamma": gamma, "mean": mean, "std": std, "z": z, "out": out}
```

4.1.3. Layer Normalization Backward Code

```
1  D = cache["x"].shape[1]
2  dz = dout * cache["gamma"] # (N, D)
3  dgamma = (dout * cache['z']).sum(axis=0) # (D, )
4  dbeta = dout.sum(axis=0) # (D, )
5  dx = dz / cache["std"] - cache["z"] * (1 / D) * np.array([(dz * cache["z"] / cache["std"]).sum(axis=1)]).T - np.array([dz.sum(axis=1)]).T * (1 / D) / cache["std"]
```

4.2. Batch Normalization에 대한 다른 설명

Batch Normalization는 Internal Covariance Shift을 줄이는데 영향을 끼치지도 않으며, 그럼에도 불구하고 Batch Normalization이 효율적인 이유는 Loss의 Landscape가 부드러워지는 것이 근본적인 이유라는 연구[4]가 있다. Batch Normalization으로 인해 변한 Landscape는 Gradient가 보다 예측가능한 방향으로 움직여서, 발산하거나 포화상태가 되는 경우가 줄어들고, 큰 Learning Rate를 사용해도 안정적이게 된다고 한다.

(b) gradient predictiveness

(c) "effective" β -smoothness

Reference

- [1] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
- [2] Normalization 설명
- [3] <u>Batch Normalization 사진 및 설명</u>
- [4] <u>How Does Batch Normalization Help Optimization?</u>
- [5] <u>cs231n</u>