

Program Studi D3 Teknologi Komputer Fakultas Ilmu Terapan 2019

MODUL 3 Sistem Kendali PID Kasus P

Nama Tim: Gemoy

Nama Anggota 1 : Nadia Novemi Wilza 6702190040 Nama Anggota 2 : Hudiya Sukma 6702194076

Kelas: D3TK-43-03

FAKULTAS ILMU TERAPAN D3 TEKNOLOGI KOMPUTER TELKOM UNIVERSITY 2021

1. JUDUL PRAKTIKUM

Sistem Kendali PID Kasus P

2. MAKSUD DAN TUJUAN

Maksud dan tujuan dari praktikum ini adalah:

- 1. Mahasiswa dapat memahami fungsi dan cara kerja PID pada motor DC
- 2. Mahasiswa dapat membuat program sistem kendali berbasis PID dengan error yang dihubungkan dengan konstanta proporsional

3. PARAMETER PENILAIAN

No.	Parameter	Persentase (%)		
1.	Lembar Penilaian Praktikum	40%		
2.	Jurnal/Laporan Praktikum	60%		

4. PERALATAN DAN BAHAN

Alat dan Bahan:

- 1. Robot Kit Line Follower
- 2. Baterai LiPo 2-Cell 1300 mAh
- 3. Kabel Mini-USB
- 4. Arduino Nano
- 5. Battery Checker
- 6. Battery Balancer

Perangkat Lunak:

- 1. Software IDE Arduino
- 2. Software Proteus (untuk simulasi)

5. TEORI DASAR

5.1. Sistem Kendali PID

Teknik kendali PID adalah pengendali yang merupakan gabungan antara aksi kendali proporsional ditambah aksi kendali integral ditambah aksi kendali derivatif/turunan (Ogata, 1996). PID merupakan kependekan dari *proportional integral derivative*. Kombinasi ketiga jenis aksi kendali ini bertujuan untuk saling melengkapi kekurangan-kekurangan dari masing- masing aksi kendali. Untuk memudahkan dalam memahami konsep teknik kendali PID silakan menyermati diagram blok pengendali PID pada gambar 1 di bawah ini.

Gambar 1. Diagram blok pengendali PID

Dalam aksi kendali PID, ada beberapa parameter variabel (dapat diubah/berubah) yang dapat dimanipulasi untuk tujuan menghasilkan aksi kendali terbaik dalam aplikasinya. Cara manipulasi parameter ini sering dinamakan dengan Manipulated Variable (MV). Dalam notasi matematikanya dapat ditulis dengan MV(t) atau u(t). Berikut persamaan matematik kendali PID.

$$u(t) = MV(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$
 (1)

$$K_i = \frac{K_p}{T_i} \tag{2}$$

$$K_d = K_p T_d \tag{3}$$

Persamaan (2) dan (3) disubtitusikan ke dalam persamaan (1) makan akan menjadi:

$$u(t) = MV(t) = K_p e(t) + \frac{K_p}{T_i} \int_0^t e(\tau) d\tau + K_p T_d \frac{d}{dt} e(t)$$
 (4)

$$u(t) = MV(t) = K_p \left(e(t) + \frac{1}{T_i} \int_0^t e(\tau) d\tau + T_d \frac{d}{dt} e(t) \right)$$
...... (5)

Apabila kita terapkan transformasi Laplace pada persamaan (4) di atas, maka penulisannya adalah sebagai berikut:

$$G(s) = K_p + \frac{K_i}{s} + K_d S \tag{6}$$

$$G(s) = \frac{K_d s^2 + K_p s + K_i}{s}$$
 (7)

Respon Sistem Kendali PID

Gambar 2 di bawah ini merupakan ilustrasi grafik respon sistem kendali PID.

Gambar 2. Sinyal respon sistem kendali PID MP = maksimum overshoot, ess = steady state error, tr = rise time

Aksi kendali PID memiliki karakter mampu mengurangi rise time (tr), mengurangi overshoot maksimum (MP), dan menghilangkan kesalahan keadaan tunak atau steady-state errors (ess).

5.2. Pengertian Sistem Kendali PID Kasus P (*Proportional*)

Aksi kendali proporsional (P) adalah aksi kendali yang memiliki karakter dapat mengurangi waktu naik (rise time), tetapi tidak menghilangkan kesalahan keadaan tunak (steady satate error).

Gambar 3. Diagram blok sistem kendali proporsional (P)

Persamaan hubungan antara keluaran sistem u(t) dengan sinyal *error* e(t) pada aksi kendali proporsional adalah sebagai berikut.

$$u(t) = K_p e(t) \tag{1}$$

Sedangkan persamaan sinyal error -nya adalah:

$$e(t) = SP - PV \tag{2}$$

Pada praktikum ini nilai PV (*process value*) adalah error dengan setpoint (SP) sensor dianggap 0.

Dimana,

u(t) = sinyal keluaran sistem kendali

 K_p = Konstanta penguatan proporsional

e(t) = sinyal errorSP = Set Point

PV = Process Value (nilai aktual)

t = waktu

5.3. Aplikasi PID pada Robot Line Follower

Sistem kendali PID ini bertujuan untuk menentukan paramater aksi kendali Proportional, Integratif, Derivatif pada robot line follower. Proses ini dapat dilakukan dengan cara trial and error . Keunggulan cara ini plant tidak perlu diidentifikasi dan membuat model matematis plant. Hanya dengan cara mencoba memberikan konstanta P-I-D pada formula PID ehingga di peroleh hasil yang optimal, dengan mengacu pada karakteristik masing-masing kontrol P-I-D.

Tujuan penggunaan sistem kendali PID adalah untuk mengolah suatu sinyal kesalahan atau error, nilai error tersebut diolah dengan formula PID untuk dijadikan suatu sinyal kendali atau sinyal kontrol yang akan diteruskan ke aktuator. Diagram blok sistem umpan balik loop tertutup pada perancangan sistem kendali PID pada robot line follower dapat dilihat pada gambar berikut ini:

Dari blok diagram di atas dapat dijelaskan sebagai berikut

- 1. SP = Set point, suatu parameter nilai acuan atau nilai yang diinginkan.
- 2. PV = *Present Value*, nilai bobot pembacaan sensor saat itu atau variabel terukur yang di umpan balik oleh sensor (sinyal *feedback* dari sensor).
- 3. Error = nilai kesalahan, deviasi atau simpangan antar variabel terukur atau bobot sensor (PV) dengan nilai acuan (SP)

$$error = SP - PV$$

Ilustrasi pemberian bobot sensor (nilai kesalahan pembacaan sensor) pada robot line follower dapat dilihat pada gambar berikut.

PROSEDUR PRAKTIKUM

- A. Percobaan dalam praktikum
 - 1. Kasus Percobaan

Gambar 1 Contoh susunan dan urutan sensor pada robot line follower.

- a. Modifikasi program sistem kendali pada praktikum sebelumnya dengan menambahkan sebuah kondisi string berikut dengan menambahkan sebuah variabel dengan tipe int Kp dengan nilai awal 5, int moveControl dengan nilai awal 0, int error dengan nilai awal 0, int kecepatanMotorKanan dengan nilai awal 0, int kecepatanMotorKiri dengan nilai awal 0, int kecepatanSetPoint dengan nilai awal 150.
- b. Program harus dapat mendeteksi perubahan nilai pada sensor dan mengirimkannya ke serial monitor dengan ketentuan sebagai berikut.
 - Jika kondisi sensor "10000000", error = -7, print di serial monitor error = -7,
 - Jika kondisi sensor "11000000", error = -6, print di serial monitor error = -6,
 - Jika kondisi sensor "01000000", error = -5, print di serial monitor error = -5,
 - Jika kondisi sensor "01100000", error = -4, print di serial monitor error = -4,
 - Jika kondisi sensor "00100000", error = -3, print di serial monitor

- error = -3,
- Jika kondisi sensor "00110000", error = -2, print di serial monitor error = -2,
- Jika kondisi sensor "00010000", error = -1, print di serial monitor error = -1,
- Jika kondisi sensor "00011000", error = 0, print di serial monitor error = 0,
- Jika kondisi sensor "00001000", error = 1, print di serial monitor error = 1,
- Jika kondisi sensor "00001100", error = 2, print di serial monitor error = 2,
- Jika kondisi sensor "00000100", error = 3, print di serial monitor error = 3,
- Jika kondisi sensor "00000110", error = 4, print di serial monitor error = 4,
- Jika kondisi sensor "00000010", error = 5, print di serial monitor error = 5.
- Jika kondisi sensor "00000011", error = 6, print di serial monitor error = 6,
- Jika kondisi sensor "00000001", error = 7, print di serial monitor error = 7,

Jelaskan fungsi dari variabel yang telah ditambahkan pada program di atas terhadap mekanisme sistem kendali pada robot *line follower*!

Sensor						Error	Nilai Setpoint	Analog Value	
1	2	3	4	5	6			Motor Kiri	Motor Kanan
1	0	0	0	0	0	5	150	125 (4688 Rpm)	175 (6843 Rpm)
1	1	0	0	0	0	4	150	130 (4786 Rpm)	170 (6775 Rpm)
0	1	0	0	0	0	3	150	135 (4876 Rpm)	165 (6624 Rpm)
0	1	1	0	0	0	2	150	140 (5130 Rpm)	160 (6578 Rpm)
0	0	1	0	0	0	1	150	145 (5677 Rpm)	155 (6245 Rpm)
0	0	1	1	0	0	0	150	150 (5876 Rpm)	150 (5876 Rpm)
0	0	0	1	0	0	-1	150	155 (6245 Rpm)	145 (5677 Rpm)
0	0	0	1	1	0	-2	150	160 (6578 Rpm)	140 (5130 Rpm)
0	0	0	0	1	0	-3	150	165 (6624 Rpm)	135 (4876 Rpm)
0	0	0	0	1	1	-4	150	170 (6775 Rpm)	130 (4786 Rpm)
0	0	0	0	0	1	-5	150	175 (6843 Rpm)	125 (4688 Rpm)

6. Jurnal Praktikum

- a. Jurnal pada Buku Praktikum harus memuat konten sebagai berikut :
 - Judul Praktikum: Sistem Kendali PID Kasus P
 - Maksud dan Tujuan Praktikum :
 - agar dapat memahami cara kerja PID
 - agar dapat membuat program system kendali PID dengan error yang di hubungkan dengan konstanta proporsional.
 - Peralatan dan Bahan Praktikum:
 - Arduino Nano
 - Robot Kit Line Follower
 - Kabel Mini
 - Battery Balancer
 - Battery checker
 - Battery LiPo 2-Cell 1300 mAH.
 - Dasar Teori

System kendali berbasis PID (Proporsional Integral Derivative) merupakan gabungan antara aksi kendali proporsional ditambah aksi kendali intergral, ditambah aksi kendali turunan. Kombinasi ketiga jenis aksi ini bertujuan untuk saling melengkapi kekurangan masing-masing aksi kendali, dan untuk memudahkan dalam memahami konsep Teknik kendali PID.

- Hasil Praktikum (Tulis tangan kode program yang telah diberi komentar/penjelasan beserta foto hasil percobaan yang telah diberi nama dan NIM anggota kelompok): **sudah ada di halaman atas.**
- Kesimpulan Praktikum

Berdasarkan dari hasil percobaan yang dilakukan, terdapat nilai parameter control PID Kp= 5, Kd= 0, Ki= 0. Parameter tersebut digunakan dalam melakukan perhitungan PID dan mengatur kecepatan Motor Kiri dan Motor Kanan.