Model Question Paper- I with effect from 2022

CBCS SCHEME

First Semester B.E Degree Examination_____

Mathematics-I for Electrical Engineering Stream (BMATE101)

TIME: 03Hours Max.Marks:100

- 1. Note: Answer any FIVE full questions, choosing at least ONE question from each MODULE
- 2. VTU Formula Hand Book is Permitted
- 3. M: Marks, L: Bloom's level, C: Course outcomes.

-, -,-	arks, L: Bloom's level, C: Course outcomes.			1			
	Module - 1	M	L	C			
a	Withusualnotationsprovethat $\tan \phi = r \frac{d\theta}{dr}$.	6	L2	CO1			
b	Find the anglebetweenthe curves $r = a (1 + \cos\theta) n dr = b (1 - \cos\theta)$.	7	L2	CO1			
С	Show that the radius of curvature at any point of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$ is $4a \cos \left(\frac{\theta}{2}\right)$.	7	L3	CO1			
	OR	I	I	I			
a	With usual notations prove that for the curve $r = f(\theta), \frac{1}{p^2} = \frac{1}{r^2} + \frac{1}{r^4} \left(\frac{dr}{d\theta}\right)^2.$	7	L2	CO1			
b	Find the pedal equation of the curve $r^m = a^m (\cos m\theta + \sin m\theta)$.	8	L2	CO1			
c	Using modern mathematical tool write a program/code to plot the sine and cosine curve.	5	L3	CO5			
	Module 2						
a	Expand $e^{\sin x}$ by Maclaurin's serie suptotheterm containing x^6 .	6	L2	CO1			
b	If $u = f(2x - 3y, 3y - 4z, 4z - 2x)$, show that $6\frac{\partial u}{\partial x} + 4\frac{\partial u}{\partial y} + 3\frac{\partial u}{\partial z} = 0$.	7	L2	CO1			
c	Show that the function $f(x, y) = x^3 + y^3 - 3xy + 1$ is minimum at point(1, 1).	7	L3	CO1			
	OR						
a	If $u = \tan^{-1} \left(\frac{y}{x} \right)$ then find the value of $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$.	7	L2	CO1			
b	If $x + y + z = u$, $y + z = uv$, $z = uvw$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.	8	L3	CO1			
С	Using modern mathematical tool write a program/code to evaluate $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^x$.	5	L3	CO5			
Module – 3							
	a b c a b c a b c		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				

Model Question Paper- I with effect from 2022

Q.5	a	Solve $x \frac{dy}{dx} + y = x^3 y^6$.	6	L2	CO2			
	b	Find the orthogonal trajectories of the family of curves	7	L3	CO2			
		$\frac{x^2}{a^2} + \frac{y^2}{b^2 + \alpha} = 1$ where α is a parameter.						
	c	Solve $xyp^2 - (x^2 + y^2)p + xy = 0$	7	L2	CO2			
OR								
Q.6	a	Solve $\left(x^2 + y^2 + x\right)dx + xydy = 0$	6	L2	CO2			
	b	Show that a differential equation for the current i in an electrical circuit containing an inductance L and resistance R in series and acted on by an	7	L3	CO2			
		electromotive force $E \sin \omega t$, satisfies the equation $\frac{di}{dt} + Ri = E \sin \omega t$.						
		Find the value of the current at any time t, if initially there is no current in the circuit.						
	С	Findthegeneralandsingular solution of the equation	7	L2	CO2			
		$(px-y)(py+x) = a^2p$ reducing into Clairaut's form, using the						
		substitution $X = x^2$, $Y = y^2$						
	Γ	Module – 4	ı	1				
Q.7	a	Evaluate $\int_{-c}^{c} \int_{-a}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dx dy dz.$	6	L2	CO3			
	b	Change the order of integration and evaluate $\int_{0}^{1} \int_{\sqrt{y}}^{y} dxdy$.	7	L2	CO3			
	c	Prove that $\int_{0}^{\frac{\pi}{2}} \sqrt{\sin \theta} d\theta \times \int_{0}^{\frac{\pi}{2}} \frac{1}{\sqrt{\sin \theta}} d\theta = \pi.$	7	L2	CO3			
		OR						
Q.8	a	Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} (x^2 + y^2) dxdy$ by changing to polar coordinates.	6	L2	CO3			
	b	Derive the relation between beta and gamma function.	7	L2	CO3			
	c	Using double integration find the area between the parabolas $y^2 = 4ax$, $x^2 = 4ay$.	7	L3	CO3			
	Module – 5							

Model Question Paper- I with effect from 2022

Q.9	a	Find the rank of the matrix $\begin{bmatrix} 2 & 1 & -1 & 3 \\ 1 & 2 & 4 & 3 \\ 3 & 6 & 12 & 9 \\ 3 & 3 & 3 & 6 \end{bmatrix}$.	6	L2	CO4			
	b	Solve the system of equations by Jordan method. $x + y + z = 10$, $2x - y + 3z = 19$, $x + 2y + 3z = 22$.	7	L3	CO4			
	c	Using Rayleigh's power method find the dominant eigenvalue and the corresponding eigenvector of $\begin{bmatrix} 4 & 1 & -1 \end{bmatrix}$	7	L3	CO4			
		$\begin{bmatrix} 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$ bytaking $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ bytaking $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$ bytaking $\begin{bmatrix} 1 & 0 \\ 0 \end{bmatrix}$						
		initialeigenvector[carryout6iterations].						
OR								
Q.10	a	Find the rank of the matrix $\begin{bmatrix} 11 & 12 & 13 & 14 \\ 12 & 13 & 14 & 15 \\ 13 & 14 & 15 & 16 \end{bmatrix}$.	7	L2	CO4			
		[14 15 16 17]						
	b	Solve the system of equations using Gauss-Seidel method by taking $(0, 0, 0)$ as an initial approximate root $2x-3y+20z=25, 20x+y-2z=17, 3x+20y-z=-18$	8	L3	CO4			
	c	Using modern mathematical tool write a program/code to test the consistency of the equations, $x+2y-z=1$, $2x+y+4z=2$, $3x+3y+4z=1$.	5	L3	CO5			