TD n°8

Lemme de l'Étoile & Propriétés de Clôture

Exercice 1 (Lemme de l'étoile) On rappelle le lemme de l'étoile :

Soit \mathcal{L} un langage reconnaissable. Il existe un entier N tel que tout mot $u \in \mathcal{L}$ de taille supérieure ou égale à N admet une factorisation u = xyz satisfaisant :

- $-y \neq \epsilon \ et \ |xy| \leq N$
- $-xy^kz \in \mathcal{L} \text{ pour tout entier } k \ge 0.$

Pour chacun des langages suivants, montrer s'il est reconnaissable ou non.

- 1. $\{a^mb^n: m, n \in \mathbb{N}\}$
- 2. $\{a^m b^n : m < n\}$
- 3. $\{a^m b^n : m \neq n\}$
- 4. $\{u^2 : u \in \{a, b\}^*\}$
- 5. $\{a^{2n} : n \in \mathbb{N}\}$
- 6. $\{a^{n^2} : n \in \mathbb{N}\}$
- 7. $\{a^p : p \ premier\}$

Exercice 2 (Propriétés de Clôture de Rec) Montrer que les langages reconnaissables sont clos sous les opérations suivantes :

- 1. Différence ensembliste : $X Y = \{x \mid x \in X \text{ et } x \notin Y\}$
- 2. Différence symétrique : $X \triangle Y = \{x \mid x \in X \text{ et } x \notin Y, \text{ ou } x \in Y \text{ et } x \notin X\}$

Exercice 3 (Clôture par préfixes, suffixes...) La clôture sous préfixe d'un langage L est définie comme

$$Pref(L) = \{u \mid il \ existe \ v \ tel \ que \ u \cdot v \in L\}$$

Il s'agit de l'ensemble des préfixes des mots de L.

- 1. Montrer que si L est reconnaissable, alors Pref(L) est également reconnaissable. On pourra par exemple donner un algorithme pour transformer un automate pour L en un automate pour Pref(L).
- 2. La réciproque est-elle est vraie?
- 3. Montrer que si L est reconnaissable, alors l'ensemble des suffixes de L, l'ensemble des facteurs de L et l'ensemble des sous-mots de L sont également reconnaissables. On pourra procéder de manière similaire à la question 1, ou également utiliser de manière astucieuse les propriétés de clôture de Rec.

Exercice 4 ((*) Langage miroir) Le langage miroir d'un langage \mathcal{L} est le langage $\widetilde{\mathcal{L}} = \{\widetilde{u} \mid u \in \mathcal{L}\}$, avec $\widetilde{u} = x_{n-1} \cdots x_0$ pour $u = x_0 \cdots x_{n-1}$. Par exemple pour le langage

$$\mathcal{L}_1 = \{ w \in \{a, b\}^* \mid la \text{ troisième lettre de } w \text{ est un } b \}.$$

on a

$$\widetilde{\mathcal{L}_1} = \{ w \in \{a,b\}^* \mid \text{la troisième lettre de } w \text{ à partir de la fin est un } b \}.$$

- 1. Donner une expression rationnelle pour \mathcal{L}_1 et une pour $\widetilde{\mathcal{L}_1}$.
- 2. Décrire un procédé permettant de construire en général une expression rationnelle pour $\widetilde{\mathcal{L}}$ à partir de l'expression rationnelle pour \mathcal{L} .
- 3. Décrire un procédé permettant de construire l'automate qui reconnaît le langage $\widetilde{\mathcal{L}}$ étant donné celui de \mathcal{L} . Est-ce qu'en commençant avec un automate déterministe pour \mathcal{L} on obtient toujours un automate déterministe pour $\widetilde{\mathcal{L}}$?

Pour aller plus loin dans la non-rationalité...

Démontrer la non-rationalité d'un langage en utilisant les propriétés de fermeture de Rat = Rec.

Le lemme d'itération n'est pas le seul outil pour montrer qu'un langage n'est pas rationnel. Pour cela on peut aussi utiliser les propriétés de fermeture de la famille Rat = Rec à condition de connaître déjà quelques langages non rationnels.

Vous connaissez déjà beaucoup de ces propriétés dont certaines dérivent de la définition même de Rat = Rec alors que d'autres ont été démontrées ou indiquées en cours ou en TD.

On sait notamment que Rat = Rec est fermée relativement à : \cup , ·,* , \cap , \mathcal{C} (complémentaire), \setminus (différence d'ensembles), Δ (différence symétrique), \sim (miroir), par préfixes, . . .

Vous connaissez déjà également certains langages non rationnels vus dans les TD précédents dont vous pourrez vous servir, par exemple le langage $L_0 = \{a^n b^n | n \in \mathbb{N}\}$. On a déjà montré que ce langage n'est pas rationnel (par exemple par le lemme de l'étoile).

Exemple d'application.

On veut montrer que $L_1 = \{w \in \{a,b\}^* | |w|_a = |w|_b\}$ n'est pas rationnel.

On a : $L_0 = L_1 \cap a^*b^*$. Si L_1 était rationnel alors son intersection avec un autre rationnel (dans ce cas a^*b^*) le serait aussi car Rat = Rec est fermée relativement à \cap . Mais on sait que cette intersection est L_0 , qui n'est pas rationnel, donc L_1 ne peut pas l'être.

Note. On remarque que pour appliquer cette technique il faut exprimer un langage dont on a déjà montré la non-rationnalité (dans l'exemple L_0) en fonction du langage dont on veut montrer la non-rationnalité (dans l'exemple L_1), de langages rationnels (dans l'exemple a^*b^*) et d'opérations relativement auxquelles Rat = Rec est fermée (dans l'exemple \cap , mais parfois on a besoin d'utiliser plusieurs opérations).

Exercice 5 Reprenez ces langages des exercices des TD précédents et essayez de trouver une preuve du fait qu'ils ne sont pas rationnels en utilisant les propriétés de fermeture.

1. $\{a^p : p \text{ non premier}\}$	7. $\{uav : u, v \in \{a, b\}^*, u = v \}$
2. $\{a^mb^n: m+n \text{ est un carr\'e}\}$	8. $\{u\tilde{u}: u \in \{a,b\}^*\}$
$3. \{a^m b^n : m \neq n\}$	9. $\{u^2 : u \in \{a,b\}^*\}$
4. $\{u \in \{a, b, c\}^* : u _a = u _b\}$	
$5. \{a^m b^n c^{m+n} : m, n \in \mathbb{N}\}$	$10. \ \{a^m b^n : m \ge n\}$
$6. \{a^{n+2}b^n : n \in \mathbb{N}\}$	11. $\{a^m b^n : m < n\}$