MATH 7211 Homework 5

Andrea Bourque

May 9, 2023

1 Problem 14.2.4

Let p be a prime. Determine the elements of the Galois group of $x^p - 2$.

Proof. The roots of x^p-2 are of the form $\zeta^j\theta$, where $\zeta=\exp(2\pi i/p), \theta=\sqrt[p]{2}\in\mathbb{R}$, and j=0,1,...,p-1. Therefore the splitting field of x^p-2 is $\mathbb{Q}(\theta,\zeta)$. The minimal polynomial of θ is x^p-2 , since it is monic and irreducible by Eisenstein for prime 2. The minimal polynomial of ζ is $\Phi_p(x)=1+...+x^{p-1}$. Thus the extensions $\mathbb{Q}(\theta)/\mathbb{Q}, \mathbb{Q}(\zeta)/\mathbb{Q}$ have degree p and p-1 respectively. Since these degrees are coprime, the degree of the extension $\mathbb{Q}(\theta,\zeta)/\mathbb{Q}$ is p(p-1). Since $\mathbb{Q}(\theta,\zeta)$ is a splitting field of an irreducible polynomial over \mathbb{Q} , it is Galois, so the Galois group of x^p-2 has order p(p-1). The elements of the Galois group are automorphisms of $\mathbb{Q}(\theta,\zeta)$, which are determined by where the generators θ and ζ are sent. θ must be sent to a root of x^p-2 , and ζ must be sent to a root of $\Phi_p(x)$, which are of the form ζ^k where k=1,...,p-1. Then there are p choices for the image of θ and p-1 choices for the image of ζ , giving p(p-1) choices. Since we already know the Galois group has p(p-1) elements, each choice of image for θ and ζ gives an automorphism. Explicitly, the automorphisms are

$$\sigma_{jk}: \begin{cases} \theta \mapsto \zeta^j \theta \\ \zeta \mapsto \zeta^k \end{cases}$$

for $j \in \{0, 1, ..., p - 1\}, k \in \{1, ..., p - 1\}.$

Let p be a prime. Prove that the Galois group of x^p-2 is isomorphic to the group of matrices $\begin{pmatrix} a & b \\ 0 & 1 \end{pmatrix}$ where $a,b \in \mathbb{F}_p, a \neq 0$.

Proof. In the previous exercise we saw that the elements of $Gal(x^p-2)$ are

$$\sigma_{jk}: \begin{cases} \theta \mapsto \zeta^j \theta \\ \zeta \mapsto \zeta^k \end{cases}$$

for $j \in \{0,1,...,p-1\}$, $k \in \{1,...,p-1\}$. Since $\zeta^p = 1$, the j,k can be taken in $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, with $k \neq 0$. Now, we demonstrate that the correspondence $f: \sigma_{jk} \mapsto \begin{pmatrix} k & j \\ 0 & 1 \end{pmatrix}$ is an isomorphism. First, we know $|\mathrm{Gal}(x^p-2)| = p(p-1)$. The matrix group also has order p(p-1), since there are p-1 choices for the topleft entry and p choices for the top-right entry, and no further relations. Thus it suffices to show that f is an injective homomorphism. That it is injective is clear, since $\begin{pmatrix} k & j \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ if and only if k=1, j=0, and σ_{01} is the identity automorphism. Now it remains to show f is a homomorphism. Matrix multiplication is the usual:

$$\begin{pmatrix} k & j \\ 0 & 1 \end{pmatrix} \begin{pmatrix} n & m \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} kn & km+j \\ 0 & 1 \end{pmatrix},$$

so it suffices to show $\sigma_{jk}\sigma_{mn} = \sigma_{km+j,kn}$. We have $\sigma_{jk}\sigma_{mn}(\theta) = \sigma_{jk}(\zeta^m\theta) = (\zeta^k)^m\zeta^j\theta = \zeta^{km+j}\theta = \sigma_{km+j,kn}(\theta)$, and $\sigma_{jk}\sigma_{mn}(\zeta) = \sigma_{jk}(\zeta^n) = (\zeta^k)^n = \zeta^{kn} = \sigma_{km+j,kn}(\zeta)$, so we are done.

Let $K = \mathbb{Q}(\sqrt[8]{2}, i)$ and let $F_1 = \mathbb{Q}(i), F_2 = \mathbb{Q}(\sqrt{2}), F_3 = \mathbb{Q}(\sqrt{-2})$. Prove that $\operatorname{Gal}(K/F_1) \cong \mathbb{Z}/8\mathbb{Z}, \operatorname{Gal}(K/F_2) \cong D_8, \operatorname{Gal}(K/F_3) \cong Q_8$.

Proof. Dummit and Foote Section 14.2 lays out the correspondence between subextensions of K/\mathbb{Q} and subgroups of $Gal(K/\mathbb{Q})$. In particular, with $Gal(K/\mathbb{Q}) = \langle \sigma, \tau \mid \sigma^8 = \tau^2 = 1, \sigma\tau = \tau\sigma^3 \rangle$, the book (along with the fundamental theorem of Galois theory) says that $Gal(K/F_1) = \langle \sigma \rangle$, $Gal(K/F_2) = \langle \sigma^2, \tau \rangle$, $Gal(K/F_3) = \langle \sigma^2, \tau\sigma^3 \rangle$. We will show what these specific subgroups are isomorphic to.

Clearly $\langle \sigma \rangle$ is cyclic, and the order must divide 8, since $\sigma^8 = 1$. But $[K : \mathbb{Q}] = 16$ and $[F_1 : \mathbb{Q}] = 2$, so $[K : F_1] = 8$, so $\langle \sigma \rangle$ has order exactly 8. Hence it is isomorphic to the cyclic group of order 8.

We have $(\sigma^2)^4 = \tau^2 = 1$. We also have $(\sigma^2\tau)^2 = \sigma^2\tau\sigma^2\tau = \sigma\tau\sigma^3\sigma^2\tau = \tau\sigma^3\sigma^5\tau = \tau\sigma^8\tau = \tau^2 = 1$. In particular, $\sigma^2\tau = \tau^{-1}(\sigma^2)^{-1} = \tau(\sigma^2)^{-1}$. Thus $\langle \sigma^2, \tau \rangle$ contains the group $\langle a, b \mid a^4 = b^2 = 1, ab = ba^{-1} \rangle$, which is a presentation for D_8 (Dummit and Foote Section 1.2). But D_8 has order 8, and $\langle \sigma^2, \tau \rangle$ is the Galois group of K/F_2 which has degree $[K:\mathbb{Q}]/[F_2:\mathbb{Q}] = 16/2 = 8$, so $\langle \sigma^2, \tau \rangle$ must be (isomorphic to) D_8 .

We have $(\sigma^2)^4 = 1$, $(\tau\sigma^3)^2 = (\sigma\tau)^2 = \sigma\tau\sigma\tau = \sigma\tau^2\sigma^3 = \sigma^4 = (\sigma^2)^2$, and $(\tau\sigma^3)^{-1}\sigma^2\tau\sigma^3 = \sigma^5\tau^2\sigma^9 = \sigma^6 = (\sigma^2)^{-1}$. Then $\langle\sigma^2,\tau\sigma^3\rangle$ contains the group $\langle a,b \mid a^4 = 1,b^2 = a^2,b^{-1}ab = a^{-1}\rangle$, which is a presentation for Q_8 (I searched every textbook I know, but the best I have for a source is "Topics in the Theory of Group Presentations" by D. L. Johnson). Again, the size of $\langle\sigma^2,\tau\sigma^3\rangle$ is 8 by considering $[K:F_3]=[K:\mathbb{Q}]/[F_3:\mathbb{Q}]=16/2=8$, which is the same size as Q_8 , so we are done.

Determine all the subfields of the splitting field of x^8-2 which are Galois over \mathbb{O} .

Proof. Of course, we have the whole splitting field $\mathbb{Q}(\sqrt[8]{2}, i)$ and the base field \mathbb{Q} . By the fundamental theorem of Galois theory, it suffices to determine the normal subgroups of $\operatorname{Gal}(x^8-2)$. Dummit and Foote section 14.2 contains the lattice of subgroups of $\operatorname{Gal}(x^8-2)=\langle \sigma,\tau\mid\sigma^8=\tau^2=1,\sigma\tau=\tau\sigma^3\rangle$, so we just have to make the routine check of which ones are normal, and then use the book's subgroup-subfield correspondence to give the subfields. Finally, before we begin, recall that, given a finitely generated group and a finitely generated subgroup, it suffices to check normality by generators of the group on generators of the subgroup.

- 1. $\langle \sigma^2, \tau \rangle$. Clearly conjugation by σ and τ fixes σ^2 and τ respectively. Then we have $\tau \sigma^2 \tau = \tau^2 \sigma^6 = (\sigma^2)^{-1}$, which is in the subgroup. Finally we have $\sigma \tau \sigma^{-1} = \tau \sigma^3 \sigma^{-1} = \tau \sigma^2$, which is in the subgroup. So this one is normal.
- 2. $\langle \sigma \rangle$. Clearly invariant under σ conjugation, and $\tau \sigma \tau = \tau^2 \sigma^3 = \sigma^3 \in \langle \sigma \rangle$, so this is normal.
- 3. $\langle \sigma^2, \tau \sigma^3 \rangle$. The first generator is invariant under σ conjugation. We have $\tau \sigma^2 \tau = (\sigma^2)^{-1}$ which is in the group. For the second generator we have $\tau \tau \sigma^3 \tau = \sigma^3 \tau = \tau \sigma^9 = \tau \sigma = \tau \sigma^3 (\sigma^2)^{-1}$ is in the subgroup, and $\sigma \tau \sigma^3 \sigma^{-1} = \tau \sigma^3 \sigma^2$ is in the subgroup. Thus this one is normal.
- 4. $\langle \sigma^4, \tau \sigma^6 \rangle$. We have $\sigma \tau \sigma^6 \sigma^{-1} = \tau \sigma^8 = \tau$. If τ was in this subgroup, then we would have σ^2 and hence we would be in $\langle \sigma^2, \tau \rangle$. Since we know these are distinct (according to the diagram in Dummit and Foote), this shows that this subgroup is not normal.
- 5. $\langle \sigma^4, \tau \rangle$. We have $\sigma \tau \sigma^{-1} = \tau \sigma^2$. If this was in the subgroup, then we would have σ^2 , and then we would be in $\langle \sigma^2, \tau \rangle$ as in the previous case. Thus this subgroup is not normal.
- 6. $\langle \sigma^2 \rangle$. Clearly invariant under σ conjugation, and $\tau \sigma^2 \tau = \tau^2 \sigma^6 = (\sigma^2)^3$ is in the subgroup, so this is normal.
- 7. $\langle \tau \sigma^3 \rangle$. Note that $(\tau \sigma^3)^2 = \tau \sigma^3 \tau \sigma^3 = \tau^2 \sigma^{12} = \sigma^4$, $(\tau \sigma^3)^3 = \tau \sigma^7$, $(\tau \sigma^3)^4 = (\sigma^4)^2 = 1$, and these are all the elements in the group. Conjugation by τ gives $\tau \tau \sigma^3 \tau = \sigma^3 \tau = \tau \sigma^9 = \tau \sigma$ which is not an element, so the subgroup is not normal
- 8. $\langle \tau \sigma \rangle$. Note that $\tau \tau \sigma \tau = \sigma \tau = \tau \sigma^3$ cannot be in the group, as $\langle \tau \sigma^3 \rangle$ does not contain $\tau \sigma$ as we saw above. This subgroup is not normal.

- 9. $\langle \tau \sigma^2 \rangle$. Conjugation by τ gives $\sigma^2 \tau = \tau \sigma^6$. But $(\tau \sigma^2)^2 = \tau \sigma^2 \tau \sigma^2 = \tau^2 \sigma^8 = 1$, so the only elements of $\langle \tau \sigma^2 \rangle$ are 1 and $\tau \sigma^2$. This subgroup is not normal.
- 10. A similar line of reasoning shows that the order 2 subgroups $\langle \tau \sigma^6 \rangle$, $\langle \tau \sigma^4 \rangle$, $\langle \tau \rangle$ are not normal.
- 11. $\langle \sigma^4 \rangle$. This is normal because $\tau \sigma^4 \tau = \tau^2 \sigma^{12} = \sigma^4$.

To recap, we have the normal subgroups are $\langle \sigma^2, \tau \rangle, \langle \sigma \rangle, \langle \sigma^2, \tau \sigma^3 \rangle, \langle \sigma^2 \rangle, \langle \sigma^4 \rangle$. Comparing the subgroup lattice to the subfield lattice (again, pictured in Dummit and Foote), we see that the (proper and nontrivial) subfields of the splitting field of x^8-2 which are Galois over $\mathbb Q$ are (respectively): $\mathbb Q(\sqrt{2}), \mathbb Q(i), \mathbb Q(\sqrt{-2}), \mathbb Q(i,\sqrt{2}),$ and $\mathbb Q(i,\sqrt{2})$.

Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e. a Galois extension with Galois group $\mathbb{Z}/4\mathbb{Z}$.

Proof. Let $\alpha=\sqrt{2+\sqrt{2}}$. Then $\alpha^2-2=\sqrt{2}$, so $(\alpha^2-2)^2-2=0$. The polynomial $p(x)=(x^2-2)^2-2=x^4-4x^2+2$ is irreducible by Eisenstein for the prime 2, so it is the minimal polynomial for α over $\mathbb Q$. Thus $\mathbb Q(\alpha)$ is a degree 4 extension. Writing $p(x)=(x^2-2)^2-2$ allows one to find all the roots of p(x); namely, they are $\alpha, -\alpha, \beta:=\sqrt{2-\sqrt{2}}$, and $-\beta$. Clearly $\alpha, -\alpha \in \mathbb Q(\alpha)$. It suffices to show $\beta \in \mathbb Q(\alpha)$. But $\alpha^2-2=\sqrt{2}\in \mathbb Q(\alpha)$, and $\alpha\beta=\sqrt{2}$, so $\beta=\alpha-2\alpha^{-1}\in \mathbb Q(\alpha)$. Thus p(x) splits in $\mathbb Q(\alpha)$. Since $\mathbb Q(\alpha)$ is generated by the roots (even just one root) of p(x), it follows that $\mathbb Q(\alpha)$ is a splitting field for p(x). We have demonstrated that p(x) has distinct roots, so $\mathbb Q(\alpha)$ is a Galois extension.

We know that $|\operatorname{Gal}(\mathbb{Q}(\alpha))| = [\mathbb{Q}(\alpha):\mathbb{Q}] = 4$. The only groups of order 4 are the cyclic group of order 4 and the Klein-4 group $(\mathbb{Z}/2\mathbb{Z})^2$ (as a brief justification, there is a simple lemma that a group of order square of a prime is abelian, and then we apply the classification of finite abelian groups). The latter group lacks an element of order 4, so it suffices to give an automorphism of $\mathbb{Q}(\alpha)$ of order 4. As The automorphism must permute the roots $\alpha, -\alpha, \beta, -\beta$ in a way that preserves the algebraic relations $\alpha + (-\alpha) = 0, \beta + (-\beta) = 0, \beta = \alpha - 2\alpha^{-1}$. These three relations imply that an automorphism is completely determined by the image of α . We know a priori that there are four automorphisms, and since there are four roots as possible images of α , each image must give an automorphism. Take the automorphism σ for which $\sigma \alpha = \beta$. Then $\sigma \beta = \beta - 2\beta^{-1} = \frac{-\sqrt{2}}{\sqrt{2-\sqrt{2}}} = -\alpha$. In particular, $\sigma^2 \alpha = -\alpha, \sigma^3 \alpha = -\beta, \sigma^4 \alpha = \alpha$. Thus σ has order 4, proving that $\operatorname{Gal}(\mathbb{Q}(\alpha))$ is cyclic of order 4.