単元別テスト (関数・場合の数・確率)

- 1. $f(x) = x^2 3x 1$ のとき次の値を求めよ。
 - (1) f(3)

- (2) f(a+1)
- 2. f(x) = (x-1)(3x+2) のとき次の値を求めよ。
 - (1) f(-2)

(2) $f\left(-\frac{2}{3}\right)$

- 3. 次の問に答えよ。
 - (1) 一次関数 y=ax+b において、 $-2 \le x \le 1$ のときの最大値が 3, 最小値が -1 であるとき、a,b の値を求めよ。
 - (2) 一次関数 y=ax+b~(a>0) において、 $-3 \le x \le 1$ における最大値が 4, 最小値が -8 であるとき、a,b の値を求めよ。
 - (3) 一次関数 y=-2x+1 の $0 \le x < 3$ における最大値・最小値を求めよ。最大値・最小値がない場合はなしと書くこと。
- 4. 次の問に答えよ。
 - (1) 二次関数 $y = 2(x-3)^2$, $y = -x^2 + 1$ の軸と頂点をそれぞれ求めよ。
 - (2) $y = x^2 6x + 1$ を平方完成せよ。
 - (3) $y = 2x^2 + 4x 1$ を平方完成せよ。

	(4) 二次関数 $y=x^2$ のグラフを x 軸の正の方向に $1,y$ 軸の正の方向に -2 平行移動させた二次関数を求めよ。
	(5) $y = 2x^2 - 2x - 1$ のグラフの軸と頂点を求めよ。
	(6) $f(x) = x^2 - 2ax + 1$ とする。 $y = f(x)$ のグラフの軸と頂点を求めよ。
5.	次の問に答えよ。
	(1) 5人を円卓に座らせる方法は何通りあるか求めよ。
	(2) 男子3人と女子4人を円卓に座らせるとき、男子が隣り合わない並び方は何通りあるか求めよ。
	(3) 7個の宝石を使ってネックレスを作る。このとき、何通りの作り方があるか求めよ。ただし、裏返して同じになるものは1通りと数える。
	(4) 6人から2人を選ぶときの選び方は何通りか求めよ。
	(5) A, B, C の 3 つの部活から代表者を 2 人ずつ選ぶときの選び方は何通りか求めよ。(A: 10 人, B: 8 人, C: 11 人)
	(6) A, B, C の 3 つのお菓子がある。ここから 7 個取るときの選び方は何通りあるか求めよ。ただし、選ばないお菓子があっても良いものとする。

	(7) 6人を3人,2人,1人の組に分ける方法は何通りあるか求めよ。
	(8) 6人を2人ずつの組に分ける方法は何通りあるか求めよ。
c	No Black S. L
6.	次の問に答えよ。 (1) サイコロを 2 回投げたとき、出た目の和が 5 の倍数である確率を求めよ。
	(2) コインを3枚同時に投げたとき、表が2枚、裏が1枚出る確率を求めよ。
	(3) $1\sim 4$ の数字が書かれているカードが 1 枚ずつある。ここから 2 枚同時に引くとき、引いた数字の和が奇数になる確率を求めよ。