NC for new members Existing network codes and protocols

Marie-José Montpetit, Vincent Roca

NWCRG, IETF100, Singapore

middleware coding network

Source, network and channel/PHY coding

Source, network and PHY coding (2)

2

Basic assumptions

NWCRG does not consider:

- PHY layer transmission issues
- PHY layer codes
- bit error detection/correction

• NWCRG deals with:

- all forms of packets
 - IP datagrams, UDP datagrams, UDP payloads, TCP segments, application data units, etc.
 - depends on the way it's applied
- packet losses (only)
 - means that a packet, when received, is assumed not to contain any bit error (thanks to various CRC/checksum verifications)
- NB: NWCRG vocabulary introduces "symbols", but that's a detail

Coding basics

- it's just a matter of computing a linear combination of packets
 - Example 1: combining source packets

• Example 2: combining repair packets is feasible too

Coding basics (2)

- two basic operations
 - XOR of two data chunks
 - multiplication of a data chunk by a coefficient over a certain finite field
 - e.g. over GF(28)
- that's (almost) all one needs to know at first....

NB: certain codes can be more complex (e.g., Raptor(Q) involve intermediate symbols) but that's a detail...

Block versus Window based codes

- Block codes
 - segment the packet flow into blocks of a certain size, perform encoding over each block independently
 - e.g., Raptor(Q), Reed-Solomon, LDPC-*, etc.
 - cf. RMT and FECFRAME (concluded) IETF WGs

Block versus Window based codes (2)

- Window based codes
 - an encoding window slides over the packet flow
 - to build a repair packet, consider packets in the current window
 - e.g. RLNC, RLC (e2e only), Fulcrum, BATS, etc.

Block versus Window based codes (3)

- Window based codes are also called...
 - Sliding Window codes
 - since the window slides...
 - Elastic window codes
 - when the window is of variable size...
 - On-the-fly codes
 - another name...
- compared to block codes:
 - offer a lot more flexibility
 - major benefits with strictly delay-constrained flows

More information...

- have a look at our taxonomy I-D
 - https://datatracker.ietf.org/doc/draft-irtf-nwcrg-network-coding-taxonomy/
 - a good place to look for further details

A small panorama for NWCRG: codes

RLNC

- a fundamental component of "Network Coding"
- capable of doing in-network re-coding
- no IETF/IRTF specification

Fulcrum network codes

- capable of doing in-network re-coding
- IETF 91 presentation
- https://www.ietf.org/proceedings/91/slides/slides-91-nwcrg-1.pdf

BATS

- capable of doing in-network re-coding
- IETF 89 presentation
- https://www.ietf.org/proceedings/89/slides/slides-89-nwcrg-5.pdf

RLC

- limited to end-to-end (same as block codes)
- TSVWG (work in progress), to be used with FECFRAME
- https://datatracker.ietf.org/doc/draft-ietf-tsvwg-rlc-fec-scheme/

A small panorama for NWCRG: protocols

Tetrys

- mostly end-to-end
- expired ID exists (needs an update)
- https://datatracker.ietf.org/doc/draft-detchart-nwcrg-tetrys/

Dragoncast

- in-network re-coding capable
- expired ID exists (needs an update)
- https://datatracker.ietf.org/doc/draft-adjih-dragoncast/

FECFRAME extended

- limited to end-to-end (initially limited to block codes, extended to sliding window codes)
- TSVWG (work in progress)
- https://datatracker.ietf.org/doc/draft-ietf-tsvwg-fecframe-ext/

Conclusion

- many research outcomes
- time to transition to application and protocol research
 - one of the goals of NWCRG
 - links with other RG and WG to foster outcomes