- 1. Напоминание / Contents of the previous lecture
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Напоминание / Contents of the previous lecture

Машинное обучение / Machine Learning (ML): задача «З», в ходе решения которой программа обучается из опыта «О» и повышает меру качества «К»

The main idea is to modeling the relationship between two sets: a scalar response (y) and independent variable (x) by minimizing the cost function:

$$X = \begin{pmatrix} X^{(1)} \\ \vdots \\ X^{(n)} \end{pmatrix} : Y = \begin{pmatrix} Y^{(1)} \\ \vdots \\ Y^{(n)} \end{pmatrix} : \frac{1}{2} = \begin{pmatrix} A \\ A \\ \vdots \\ A \end{pmatrix}$$

$$H = \underbrace{X} \quad \mathbf{W}$$
using gradient descent method, for instance.

 $h(\theta_0,\theta_1)=\underline{\theta_0}+\underline{\theta_1}x$

Hапоминание / Contents of the previous lecture

Логистическая р. / Logistic r.

1 перем. x / 1 variable x

Мн.перем.
$$x_k$$
 / Multiple var. x_k ($k = 1 ... n$)

Полином. / Polynomial

$$X = \left(\begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{pmatrix} \right); Y = \left(\begin{pmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{pmatrix} \right); \longrightarrow$$

$$X = \left(\begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{pmatrix} \right); Y = \left(\begin{pmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{pmatrix} \right); \quad \rightarrow \qquad \qquad X = \left(\begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ \dots & \dots & \dots \\ 1 & x_1^{(m)} & x_2^{(m)} \end{pmatrix} \right); \quad \Theta = \left(\begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \right); \underline{Z = X\Theta}; \qquad \rightarrow \qquad \qquad h(z) = \frac{1}{1 + e^{-z}}.$$

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) \Rightarrow \min.$$

$$\frac{\partial}{\partial x_1} = \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} = \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1} + \frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_2} +$$

Алгоритм поиска минимума функции качества.

- 1. Задать начальные значения компонент матрицы Θ случайным образом
- 2. Рассчитать $H = X\Theta$ и $\nabla J = \frac{1}{m}X^T(H Y)$.
- 3. Найти новые значения компонент матриц $\Theta^H : \underline{\Theta}^H = \Theta^C \alpha \nabla J$.
- 4. Повторять пункты 2-3 до выполнения одного из условий: $J^{\mathrm{H}} J^{\mathrm{C}} < \delta$, #итер. $> N_{max}$.
- 5. Вывод результатов: Θ.

Hапоминание / Contents of the previous lecture

Hапоминание / Contents of the previous lecture

$$\nabla \mathcal{J} = \frac{1}{m} \chi^{T} (H - Y) ; \qquad \nabla \mathcal{J} = 0$$

$$X^{T}H - X^{T}Y = 0 ; H = XD;$$

$$X^{T}X \oplus = -X^{T}Y.$$

$$(\chi^{\mathsf{T}}\chi)^{\mathsf{T}}\chi^{\mathsf{T}}\chi \Theta = -(\chi^{\mathsf{T}}\chi)^{\mathsf{T}}\chi^{\mathsf{T}}\gamma$$
$$\Theta = -(\chi^{\mathsf{T}}\chi)^{\mathsf{T}}\chi^{\mathsf{T}}\gamma$$

Вопросы:

- 1. Почему не рекомендуется дифференцировать функции, полученные в результате

 - В каких случаях математическое ожидание не совпадает со средним арифметическим значением?
 - Каким образом можно улучшить метод градиентного спуска, чтобы находить с его помощью глобальные минимумы, вместо локальных?
 - Можно ли рассмотренные задачи линейной регрессии решить аналитически, без применения метода градиентного спуска?
 - Почему при построении регрессионных моделей обычно не рекомендуется применение полиномов высоких степеней?

- 1. Напоминание / Contents of the previous lecture
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Естественные и искусственные нейронные сети /

Natural and artificial neural networks

Искусственный нейрон

- 1) Тело клетки обрабатывает информацию;
- 2) аксон передает обработанную информацию другим нейронам;
- 3) дендриты получают информацию от других нейронов;
- 4) синапсы соединяют аксон и дендриты других нейронов.

Естественные и искусственные нейронные сети / Natural and artificial neural networks

Функции активации / Activation functions

$$a = z$$

$$a = \frac{1}{1 + e^{-z}} \quad a = \frac{e}{e}$$

$$a = \frac{1}{1 + e^{-z}}$$
 $a = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}$ $a = ln(1 + e^{z})$ $a = max(0, z)$

$$a_j = \frac{e^{z_j}}{\sum_i e^{z_i}}$$

Identity

Logistic

Hyperbolic tangent

Softplus

Rectified linear Unit (ReLU)

Softmax

Eстественные и искусственные нейронные сети / Natural and artificial neural networks

Архитектура сетей прямого распространения / Feed forward neural network

Входной слой: каждый нейрон имеет ровно один вход от внешней среды.

Eстественные и искусственные нейронные сети / Natural and artificial neural networks

Архитектура сетей прямого распространения / Feed forward neural network

Нейроны слоя не связаны.

Нейроны передают информацию только нейронам следующего слоя.

Перепрыгивание через слои запрещено.

Настройка сети

Входы: x_i Выход: h

Задаваемые и не варьируемые параметры нейронной сети:

- кол-во входных нейронов;
- кол-во скрытых слоев;
- кол-во нейронов в скрытых слоях;
- количество выходных нейронов;
- активац. ф-я нейронов;

- ...

Варьируемые параметры нейронной сети:

- веса каждого соединения.

Направление потока информации

Естественные и искусственные нейронные сети /

Natural and artificial neural networks

- 1) Тело клетки обрабатывает информацию;
- 2) аксон передает обработанную информацию другим нейронам;
- 3) дендриты получают информацию от других нейронов;
- 4) синапсы соединяют аксон и дендриты других нейронов.

Длительность 1 операции (с):

10⁻³ 10⁻⁹

Архитектура нейронной сети:

В коре головного мозга порядка 10^9 нейронов и 10^{12} синаптических связей. Каждый нейрон связан с 10^4 соседних нейронов.

В ИНС порядка 10² нейронов и 10⁴ синаптических связей. Каждый нейрон связан с 10² соседних нейронов.

Энергозатраты на выполнение 1 операции в секунду:

(поз.2)

- 1. Напоминание / Contents of the previous lecture
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

9

Gray scale picture of "Nine"

Прямые вычисления в ИНС / Forward propagation

Обучение с учителем подразумевает наличие правильных ответов (labeled data), которые можно сравнить с результатами вычислений ИНС.

Задача распознавания (классификации) рукописных чисел

Архитектура ИНС: количество слоев - l; количество нейронов в k-ом слое - n_k (n_l - количество классов); логистическая функция активации в скрытых слоях и функция активации «софтмакс»

Вычисления в прямом направлении ИНС, расчет матриц $A^{(k)}$ результатов в каждом слое / Forward propagation Сл.1 (входной). На вход слоя подается дополненная единицей матрица X. На выходе то же: $A^{(1)} = \begin{pmatrix} 1 & X \end{pmatrix}$.

Сл.2 (скрытый). Данные с 1^{го} слоя умнож. на веса $\Theta^{(1)}$ и сумм.: $Z^{(2)} = A^{(1)}\Theta^{(1)}$. Затем прим. ф-я актив.: $A^{(2)} = \left(\left(1 \quad sigmoid(Z^{(2)})\right)\right)$.

Сл.3 (скрытый). $Z^{(3)} = A^{(2)}\Theta^{(2)}, A^{(3)} = (1 \ sigmoid(Z^{(3)})).$

Сл.4 (выходной). $Z^{(4)} = A^{(3)}\Theta^{(3)}, \quad A^{(4)} = softmax(Z^{(4)}) = H.$

Напоминание. Вычисления в задаче логистической регрессии и бинарной классификации:

$$X = \left(\begin{pmatrix} x_1^{(1)} & x_2^{(1)} \\ \dots & \dots \\ x_1^{(m)} & x_2^{(m)} \end{pmatrix} \right); Y = \left(\begin{pmatrix} y^{(1)} \\ \dots \\ y^{(m)} \end{pmatrix} \right) \rightarrow X = \left(\begin{pmatrix} 1 & x_1^{(1)} & x_2^{(1)} \\ \dots & \dots & \dots \\ 1 & x_1^{(m)} & x_2^{(m)} \end{pmatrix} \right); \Theta = \left(\begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix} \right); Z = X\Theta; \rightarrow h(z) = \frac{1}{1 + e^{-z}}.$$

Вычисления в ИНС. Количество слоев - l; количество нейронов в k-ом слое - n_k (n_l - количество классов); логистическая функция активации в скрытых слоях и функция активации «софтмакс» в выходном слое.

Сл.1 (входной). На вход слоя подается дополненная единицей матрица X. На выходе то же: $A^{(1)} = ((1 \quad X))$.

Сл.1 (входнои). На вход слоя подается дополненная единицеи матрица
$$X$$
. На выходе то же: $A^{(1)} = ((1 X))$.

Сл.2 (скрытый). Данные с $1^{\text{го}}$ слоя умнож. на веса $\Theta^{(1)}$ и сумм.: $Z^{(2)} = A^{(1)}\Theta^{(1)}$. Затем прим. ф-я актив.: $A^{(2)} = ((1 \text{ sigmoid}(Z^{(2)})))$.

Сл.3 (скрытый). $Z^{(3)} = A^{(2)}\Theta^{(2)}$, $A^{(3)} = ((1 \text{ sigmoid}(Z^{(3)})))$.

Сл.4 (выходной). $Z^{(4)} = A^{(3)}\Theta^{(3)}$, $A^{(4)} = \text{softmax}(Z^{(4)}) = H$.

Сл.3 (скрытый).
$$Z^{(3)} = A^{(2)}\Theta^{(2)}, A^{(3)} = (1 \ sigmoid(Z^{(3)}))$$

Сл.4 (выходной).
$$Z^{(4)} = A^{(3)}\Theta^{(3)}, \quad A^{(4)} = softmax(Z^{(4)}) = H$$

$$X,Y; \to A^{(1)} = \left(\left(1 \ x_1 \dots x_{n_1} \right) \right), \Theta^{(1)} = \begin{pmatrix} \left(\theta_{01}^{(1)} \theta_{02}^{(1)} & \theta_{0n_2}^{(1)} \\ \theta_{11}^{(1)} \theta_{12}^{(1)} \dots & \theta_{1n_2}^{(1)} \\ \dots & \dots & \dots \\ \theta_{n_11}^{(1)} \theta_{n_12}^{(1)} & \theta_{n_1n_2}^{(1)} \end{pmatrix} \right); \ Z^{(2)} = A^{(1)} \Theta^{(1)}$$
 или $Z_j^{(2)} = a_i^{(1)} \theta_{ij}^{(1)}; \to A^{(2)} = A^{(2)} - \left(\left(1 - \sin \theta_{ij} \right) \right)$

$$ightarrow A^{(2)} = \left(\left(1 \quad sigmoid(Z^{(2)})\right)\right)$$
 или $a_0^{(2)} = 1$, $a_j^{(2)} = \frac{1}{1+e^{-z_j^{(2)}}}$, $(j=1, \dots n_2)$.

 $\to A^{(4)} = softmax(Z^{(4)})$ или $a_j^{(4)} = \frac{e^{z_j^2}}{\sum_{i=1}^{(n_4+1)} e^{z_i^{(4)}}}.$

Напоминание. Функция качества в задаче логистической регрессии.

$$J(\Theta) = -\frac{1}{m} \sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)}) + (1 - y^{(i)}) (\ln(1 - h^{(i)})) + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2 \Rightarrow \min.$$

Функция качества в ИНС. Количество слоев - l; количество нейронов в k-ом слое - n_k (n_l - количество классов); логистическая функция активации в скрытых слоях и функция активации «софтмакс» в выходном слое.

Animations from "3Blue1Brown"

$$\left(\theta_{ij}^{(k)}\right)^2 \Rightarrow \min.$$

$$J(\Theta^{(k)}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n_l} \left(y_j^{(i)} \ln(h_j^{(i)}) + (1 - y_j^{(i)}) (\ln(1 - h_j^{(i)})) + \frac{\lambda}{2m} \sum_{k=1}^{l-1} \sum_{j=1}^{n_k} \sum_{i=1}^{n_{k+1}} \left(\theta_{ij}^{(k)} \right)^2 \Rightarrow \min.$$

3693141769

Пример. ИНС содержит 3 вх. нейр., 2 нейр. в скр. слое с лин. функ. активации и 1 вых. нейрон с логист. ф-ей активации. На вход подается м-ца $X = ((1\ 2\ 3))$, все веса сети равны единице.

Прямые вычисления в ИНС с количеством нейронов $N = [3\ 2\ 1]$, все синаптические веса равны единице $\theta_{ij}^{(k)} = 1$.

$$X = ((1\ 2\ 3)); \rightarrow A^{(1)} = ((1\ 1\ 2\ 3)), \Theta^{(1)} = \begin{pmatrix} \theta_{01}^{(1)}\theta_{02}^{(1)}\\ \theta_{11}^{(1)}\theta_{12}^{(1)}\\ \theta_{21}^{(1)}\theta_{22}^{(1)}\\ \theta_{31}^{(1)}\theta_{32}^{(1)} \end{pmatrix}; \quad Z^{(2)} = A^{(1)}\Theta^{(1)}$$
или $Z_j^{(2)} = a_i^{(1)}\theta_{ij}^{(1)}; \quad 2^{\frac{12}{4}} = C_{i0}^{(1)} O_{01}^{(1)} + O_{11}^{(1)} + O_{21}^{(1)}O_{22}^{(1)} + O_{31}^{(1)}O_{22}^{(1)} + O_{31}^{(1)}O_{32}^{(1)} + O_{31}^{(1)}O_{32}^{(1)} + O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)} + O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1)}O_{31}^{(1)}O_{31}^{(1)}O_{32}^{(1)}O_{31}^{(1$

Пример. ИНС содержит 3 вх. нейр., 2 нейр. в скр. слое с лин. функ. активации и 1 вых. нейрон с логист. ф-ей активации. На вход подается м-ца $X = ((1\ 2\ 3))$, все веса сети равны единице.

Прямые вычисления в ИНС с количеством нейронов $N = [3\ 2\ 1]$, все синаптические веса равны единице $\theta_{ij}^{(k)} = 1$.

- 1. Напоминание / Contents of the previous lecture
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Обратный расчет и обучение ИНС / Backpropagation

Обратный расчет выполняется с целью определения компонент градиента функции качества и является этапом процесса обучения:

$$L(\Theta^{(k)}), \rightarrow \left[\left[\partial L/\partial \theta_{ij}^{(k)}\right]\right], \rightarrow \theta_{ij}^{(k)} \rightarrow L(\Theta^{(k)}), \rightarrow \dots$$

Пример. ИНС с 2 входными нейронами и 1 выходным нейроном с логистической функцией активации для бинарной классификации. Функция качества для дата сета из m образцов имеет вид:

Обратный расчет и обучение ИНС / Backpropagation

Обратный расчет выполняется с целью определения компонент градиента функции качества и является этапом процесса обучения:

$$L(\Theta^{(k)}), \rightarrow \left[\left[\partial L/\partial \theta_{ij}^{(k)}\right]\right], \rightarrow \theta_{ij}^{(k)} \rightarrow L(\Theta^{(k)}), \rightarrow \dots$$

Пример. ИНС с 2 входными нейронами и 1 выходным нейроном с логистической функцией активации для бинарной классификации. Функция качества для дата сета из *m* образцов имеет вид:

$$L(\Theta^{(1)}) = -\sum_{i=1}^{m} (y^{(i)} \ln(h^{(i)})) = -\sum_{i=1}^{m} \ln(h^{(i)}) \Rightarrow \min.$$

$$X = ((x_1 x_2)) \xrightarrow{\text{ind}} (x_1 x_2) \xrightarrow{\text{ind}} (x_1 x_2) \xrightarrow{\text{ind}} (x_1 x_2)$$

Алгоритм обучения (обобщенный).

- 1. Задать начальные значения компонент матрицы $\Theta^{(k)}$ случайным образом.
- 2. Рассчитать вектор градиента $\nabla \mathbf{L} = \left[\left[\partial L / \partial \theta_{ij}^{(\mathbf{k})} \right] \right]$ методом обратного распр. ошибки.
- 3. Найти новые значения компонент Θ : $\theta_{ij}^{(k)}^{H} = \theta_{ij}^{(k)}^{C} \alpha \frac{\partial L}{\partial \theta_{ij}^{(k)}}$.
- 4. Повторять пп. 2-3 до достижения минимума L: $L^{\rm H}-L^{\rm C}<\delta$ или #итерации $>N_{max}$.
- Вывод результатов: Θ^(k)

- 1. Напоминание / Contents of the previous lecture
- 2. Естественные и искусственные нейронные сети (ИНС)/ Natural and artificial neural networks (ANNs)
- 3. Прямые вычисления в ИНС / Forward propagation
- 4. Обратные вычисления в ИНС/ Back propagation

Настройка моделей MO/ ML settings

Параметры модели определяются в ходе решения задачи МО.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

$$J(\Theta^{(k)}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n_l} \left(y_j^{(i)} \ln(h_j^{(i)}) + (1 - y_j^{(i)}) (\ln(1 - h_j^{(i)})) + \frac{\lambda}{2m} \sum_{k=1}^{l-1} \sum_{i=1}^{n_k} \sum_{j=1}^{n_{k+1}} \left(\theta_{ij}^{(k)} \right)^2 \Rightarrow \min.$$

- 1. Масштабирование признаков / Feature Scaling
- 2. Скорость обучения α / Learning rate
- 3. Погрешность δ и количество итераций $N_{\rm max}$ / Error and # of iterations
- 4. Количество данных для градиентного метода / Batch gradient descent (GD) Mini-Batch GD. Stochastic GD
- 5. Регуляризация / Regularization

https://dragonnotes.org/MachineLearning/Optimization

Hастройка моделей MO/ ML settings

Параметры модели определяются в ходе решения задачи МО.

Гиперпараметры задаются пользователем, как правило не единственным образом, и их значения влияют на значения искомых параметров.

. . .

5. Регуляризация / Regularization

$$J(\Theta^{(k)}) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{j=1}^{n_l} \left(y_j^{(i)} \ln(h_j^{(i)}) + (1 - y_j^{(i)}) (\ln(1 - h_j^{(i)}) \right) + \frac{\lambda}{2m} \sum_{k=1}^{l-1} \sum_{i=1}^{n_k} \sum_{j=1}^{n_{k+1}} \left(\theta_{ij}^{(k)} \right)^2 \Rightarrow \min.$$

Самостоятельная работа / Homework

Вопросы и задания.

- 1. Изобразите архитектуры простейших нейронных сетей, вычисления в которых идентичны вычислениям при линейной и логистической регрессии.
- 2. Каким образом в ИНС хранятся знания и как они из ИНС извлекаются?
- 3. Позволяет ли применение метода Mini-Batch GD решить проблему поиска глобального экстремума при наличии локальных?