44 - P- \$ 1.25

R 301

Technical Report

HARBOR SCREENING TESTS OF

MARINE BORER INHIBITORS - VI

13 May 1964

U. S. NAVAL CIVIL ENGINEERING LABORATORY

Port Hueneme, California

2004/230008

Best Available Copy

HARBOR SCREENING TESTS OF MARINE BORER INHIBITORS - VI

Y-R005-07-01-007

Type C

by

T. Roe, Jr., H. Hochman, Ph D

ABSTRACT

The Laboratory is exposing wood panels impregnated with various materials to determine their resistance to attack by marine borers. This report lists the results of harbor tests of treated panels removed from exposure between 15 August 1962 and 15 August 1963. It also lists all treated panels which have been exposed for 1 year or more and which have shown no attack or insufficient attack to warrant removal.

When impregnated into wood test panels, creosote and 70-30 creosote - coal tar solution are quite effective against Martesia and teredine attack but not Limnoria attack. Copper salts, chelates, some copper complexes, and mercury salts are effective against Limnoria attack at Port Hueneme and to a lesser extent at Pearl Harbor but are ineffective against teredine and Martesia attack. Organomercury compounds are effective against Limnoria but not against Martesia or teredine borers. Tributyltin compounds are effective against Limnoria and teredine borers at Port Hueneme but have shown attack by Limnoria at Pearl Harbor. However, at Pearl Harbor they are effective against Martesia and teredine borers. Copper naphthenate (6%) and solubilized copper oxinate (containing 4% copper) are superior to creosote or creosote coal tar in tests to date at both test sites. Phenanthrene, chloro-o-phenylphenol, and ether-soluble alkaloids of greenheart failed in a short time because of heavy Limnoria attack.

Certain organic, metal-organic, and organic compounds, when combined with creosote or creosote-coal tar solutions, show promise in improving the preservative ability of these materials. Aluminum oxinate and malachite green oxalate are not effective additives. Certain treatments containing a combination of one material specifically toxic to Limnoria and another material specifically toxic to teredine borers are also showing promise as preservative systems. Other systems of this type have experienced Limnoria and Martesia attack.

The tropical woods antidesma pulvinatum, greenheart, and lignum vitae are performing well at Port Hueneme. Afambeau, greenheart, and lignum vitae failed, at Pearl Harbor chiefly because of Martesia attack.

Those treatments or woods which have not been attacked by one or more species during their entire period of exposure or as of 15 August 1963 are summarized.

Copies available at OTS \$1.25
The Laboratory invites comment on this report, particularly on the results obtained by those who have applied the information.

FOREWORD

This is the fifteenth in a series of reports¹⁻¹⁴ on studies conducted by the Laboratory to develop more effective methods and materials for preservation of wooden structures exposed to the attack of marine boring organisms.

It is the sixth of a series of reports on the results of harbor expc sure of treated and untreated test panels which are exposed until there is heavy <u>Limnoria</u> attack or until the panel is weakened by <u>Martesia</u> or teredine attack. Some results which have been reported previously 6, 7, 9, 10, 12 are included in this report for the purpose of comparison.

INTRODUCTION

The destructive action of marine boring organisms on structures submerged in sea water presents a major maintenance problem to Navy shore installations. The replacement of wood piling destroyed by these organisms is a costly operation, and, in addition, may remove the pier from operation during the construction period.

Under Project Y-R005-07-01-007, the Chief, Bureau of Yards and Docks, requested the Laboratory to investigate methods and materials for reducing or preventing borer attack on wooden marine structures of the Naval Shore Establishment.

One phase of this study is the impregnation of wood panels with toxic materials and the exposure of these treated panels to marine borers in harbors. The treating materials are chosen on the basis of their toxicity to marine borers as determined by the Toxicity Testing Procedure developed at this Laboratory. 8, 11 The exposure of small treated panels provides a system for rapidly screening large numbers of potentially useful treatments. The pane's can be treated by ordinary laboratory equipment, require relatively small quantities of treating materials, and a large number of treatments can be exposed in a relatively small dock area. Also, the surface-to-volume ratio of these panels is so high that the rate of leaching of the preservative by the sea water is much higher than it would be for round piling sections. This small-panel screening procedure is further accelerated by exposing the more promising treatments in Pearl Harbor where, because of high water temperature and greater numbers and kinds of borers, attack begins after exposure in a half to a fourth the time required for initial attack at Port Hueneme. The exposure of full-sized piles would provide a more accurate evaluation of a preservative treatment, but the use of this method in a preliminary screening would be uneconomical.

PROCEDURE

Treatment

Treating solutions are made up on a volume percent basis for liquids and a weight percent basis for solids. With the exception of coal tar, creosote, creosote - coal tar solutions, and copper naphthenate solution, only inert solvents are used to make up solutions to 100 percent. In general, these inert solvents are xylene for nonpolar compounds, water for polar compounds, and cellosolve for combinations of polar and nonpolar compounds.

Unless otherwise noted, southern yellow pine panels are used in this study.

Sets of ten panels are tagged, weighed, impregnated by the vacuum method, weighed again to determine the amount of preservative retention, and then air-dried to remove any inert solvent present. Details of the procedure are described in Reference 6.

Several sets of pressure-treated ponderosa pine samples submitted by the U. S. Forest Products Laboratory, Madison, Wisconsin, and panels submitted by the Bureau of Yards and Docks are also evaluated.

Exposure and Evaluation

The panels are mounted on single or double monel or glass-reinforced epoxy racks which are suspended horizontally in the harbor about 3 feet above the mud line by nylon parachute cords. At Port Hueneme, the racks are removed twice monthly for cleaning the panels. Panels are inspected and rated twice monthly during their first year of exposure, and monthly thereafter. They are removed whenever structural failure due to borer damage is imminent. At Pearl Harbor, the panels are cleaned and inspected monthly, removed whenever extensive damage is noted, and returned to the Laboratory for evaluation.

The extent of <u>Limnoria</u> and <u>Martesia</u> attack can be readily determined by inspection of the surface of the panel. In its early stages, teredine attack is very difficult to detect by surface inspection. Consequently, in October 1963, X-ray photographs were made of all panels under test at Port Hueneme. Information on those panels attacked by teredine borers as determined by X-ray techniques is included in the appropriate tables in this report. When teredine attack reaches an advanced stage, the panel loses much of its structural strength and can easily be bent or snapped in two. All panels which are removed from exposure test are sawed in two to show the amount of teredine damage. Damage is assessed as follows:

0 = none

T = trace

VL = very light

L = light

M = moderate

H = heavy

VH = very heavy

Limnoria, Martesia, and teredine damage are always rated separately. Although individual records are kept for each panel which has been treated and exposed, the tabular data presented in this report represent average data for all panels of a given treatment exposed at the location specified.

EVALUATION OF TREATMENTS

This report deals with all treated and untreated panels which have been removed from exposure between 15 August 1962 and 15 August 1963 and with all panels still under test on 15 August 1963. The tables of data follow the main text. Panels which have not been attacked during their entire period of exposure or as of 15 August 1963 are summarized in the Appendix.

- 1. <u>Creosote and Creosote Coal Tar Solutions</u> (Table I): Panels treated with large quantities of creosote or creosote coal tar solutions resist <u>Martesia</u> and teredine attack but not <u>Limnoria</u> attack. The data continue to show that creosote and 70-30 creosote coal tar solution are approximately equal in preservative ability. X-ray photographs of panels under test revealed trace to very light teredine attack on those exposed more than 4 years.
- 2. Inorganic Compounds (Table II): In general, copper salts, chelates, and complexes prevent Limnoria attack for considerable periods of time at Port Hueneme. Those failures which have occurred are the result of teredine attack. Teredine attack on some panels still under test was revealed by X-ray photographs. At Pearl Harbor these compounds are ineffective against both Martesia and teredine attack. At Port Hueneme and Pearl Harbor, copper naphthenate (6%) and solubilized copper oxinate (containing 4% copper) are continuing to provide better protection against all types of borers than either creosote or 70-30 creosote coal tar solution.

Mercury salts also are effective against <u>Limnoria</u>, but failed in a shorter time than copper salts because of <u>Martesia</u> and teredine attack.

- 3. Metal-organic Compounds (Table III): The incomplete design indicate that organic mercury compounds are effective against <u>Limnoria</u> but rather ineffective against <u>Martesia</u> and teredine borers. Tributyltin compounds show early initial <u>Limnoria</u> attack, but are resistant for long periods of time against <u>Martesia</u> and teredine borers.
- 4. Organic Compounds (Table IV): Chloro-o-phenylphenol and phenanthrene are essentially ineffective preservatives. The ether-soluble alkaloids of greenheart sawdust resisted <u>Martesia</u> and teredine attack during their short exposure period, but were heavily attacked by Limnoria.

5. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar Solutions (Table V): Combination treatments containing creosote, coal tar, or creosote - coal tar solutions plus an additive toxic to <u>Limnoria</u> are being studied. Although data are incomplete, the results to date show the following trends:

At Port Hueneme and Pearl Harbor, nearly all of the chemicals which are toxic to Limnoria and were added to coal tar, creosote, or creosote - coal tar solutions are performing well in decreasing Limnoria attack. In several instances, Limnoria attack has occurred at an early date, but the rate of progress of the attack was slower than in those panels which did not contain the additive. The rate and degree of Martesia attack is essentially unaffected by these additives. X-ray photographs show some teredine attack on these panels, expecially those containing diluted creosote or creosote - coal tar.

Panels treated with coal tar containing copper naphthenate (1 and 2%) or tributyltin oxide (1%) are much more resistant to <u>Limnoria</u> than those treated with coal tar only. They are not, however, as resistant to <u>Limnoria</u> as those treated with creosote, creosote solutions, or creosote - coal tar solutions containing one of the above additives.

Aluminum oxinate (1%) does not increase <u>Limnoria</u> resistance when used as an additive to creosote.

- 6. Other Combination Treatments (Table VI): From the data obtained to date, nearly all treatments consisting of a material specifically toxic to Limnoria and a material specifically toxic to teredine borers are performing well at Port Hueneme. At Pearl Harkor, however, some of these treatments have failed because of Limnoria or Martesia attack or both. Combinations of toxic chemicals which show promise at both test sites are:
 - (a) p-aminophenylmercuric acetate (1%) and malachite green oxalate (2%)
 - (b) chlordan (5%) and malachite green oxalate (2%)
 - (c) copper naphthenate (3%) and tributyltin coconut fatty acid salt (1 or 5%)
 - (d) solubilized copper oxinate (50%) and tributyltin coconut fatty acidisalt (1 or 5%)
 - (e) copper sulfate (14.73%) and sodium monohydrogen arsenate (20.06%)
 - (f) dieldrin (1 or 5%) and tributyltin coconut fatty acid salt (1 or 5%)

- (g) p-dimethylaminophenylmercuric acetate (1%) and tributyltin coconut fatty acid salt (1%)
- (h) toxaphene (1 or 5%) and tributyltin coconut fatty acid salt (1 or 5%)
- (i) toxaphene (1 or 5%) and tributyltin oxide (1 or 5%)
- (j) tributyltin coconut fatty acid salt (1, 5, or 10%) and phenylmercuric oleate (1 or 5%)
- (k) tributyltin oxide (1%) and ammonium sulfide (20-24%)
- (1) tributyltin oxide (10%) and copper naphthenate (3%)

Other treatments in this series have sustained teredine attack at Port Hueneme.

7. Untreated Panels and Solvent-Extracted Untreated Panels (Table VII): The tropical woods antidesma pulvinatum, greenheart, and lignum vitae are performing well after extended periods at Port Hueneme. Greenheart panels which have been extracted with acetic acid, chloroform, or methanol are about equal to greenheart according to data obtained to date. All greenheart and extracted greenheart panels have been attacked by teredine borers, and the ether-extracted panels have failed. Sea-water-extracted greenheart panels failed earlier because of Limnoria and teredine borers at Port Hueneme. Afambeau, greenheart, and lignum vitae failed at Pearl Harbor chiefly because of Martesia attack. Antidesma pulvinatum has not been exposed at Pearl Harbor because of previous exposure tests of this wood in Hawaiian waters by Edmondson. 15

DISCUSSION

According to data obtained so far, the most promising treatments for the preservation of wood in a marine environment are those which contain a combination of materials, each of which is toxic to one or more species of borer. The addition of certain organic or metal-organic compounds to creosote or creosote - coal tar solution produces a preservative which is superior to creosote or creosote - coal tar solution alone.

In the evaluation of the experimental treatment systems, the time to initial Limnoria attack has been used as one index for determining the efficacy of any given system. There are two reasons for this: (1) Limnoria attack the surface of the wood

and are thus readily detectable; (2) <u>Limnoria</u>, unlike teredine borers, can attack wood treated with creosote or 70-30 creosote - coal tar solution, the present standard preservatives for marine piling.

In reporting <u>Limnoria</u> attack, two ratings are emphasized: time to initial attack and the attack rating at the end of the total exposure period. The time to initial attack should presumably be the time required by the harbor environment to sufficiently alter the surface of the treated panel to render it susceptible to <u>Limnoria</u> attack. As a general rule, those treatments that delay initial attack are better than those that show initial attack after short periods of exposure.

This generalization does not hold for treatments consisting of creosote or creosote - coal tar solution containing additives that are specifically toxic to Limnoria. Frequently the presence of the additive may not alter the time to initial attack but will significantly alter the rate of progress of the attack. For example, at Pearl Harbor, panels treated with 50 percent creosote showed initial Limnoria attack in an average of 5 months, ¹⁰ and panels treated with 50 percent creosote containing 10 percent biphenyl were attacked in 5.5 months. The creosoted panels, however, were so heavily attacked by Limnoria in 18 months that they were removed from test, but the panels containing the biphenyl additive were only moderately attacked after 54 months and are still under test.

In some instances the addition to creosote or creosote - coal tar solution of a chemical specifically toxic to <u>Limnoria</u> does not result in an improved preservative. One or more of a number of factors that would be difficult to anticipate may operate. Among these are: (1) the quantity of additive may be too small to exert a toxic effect; (2) the additive may in some manner form a complex with some of the creosote constituents and become less toxic, more soluble, or more peptizable by sea water; and (3) the additive in the presence of creosote may be more readily detoxified by the harbor flora and fauna.

Many preservative systems listed in this report contain no creosote or creosote – coal tar solution but are composed of a combination of materials, each of which is toxic to one or more species of borer. A number of these show promise as useful preservatives. Here, too, the combination may be less effective than one might have reason to expect from the results of the exposure of the individual toxic agents. Again, interactions similar to those creosote and a chemical additive may be in the definite predictions can be made about the effectiveness of a multicomponent system containing compounds each of which is known to be effective against one or more species of borers. Each system must be evaluated. Compounds which have proved effective individually and which are potentially valuable in multicomponent systems should be evaluated in such systems.

CONCLUSIONS

- 1. High retentions of creosote and creosote coal tar solutions are effective against <u>Martesia</u> and teredine borers but not against <u>Limnoria</u>. Creosote and 70-30 creosote coal tar solution have about the same preservative ability.
- 2. Inorganic copper and mercury compounds and copper chelates are generally effective against <u>Limnoria</u> only, but higher concentrations of copper naphthenate and solubilized copper oxinate have exhibited a degree of effectiveness toward all types of borers.
- 3. Phenylmercury compounds are effective against <u>Limnoria</u>; tributyltin compounds, against Martesia and teredine borers.
- 4. The addition of certain inorganic, organic, and metal-organic compounds and insecticides to creosote or creosote coal tar solutions improves their resistance to Limnoria.
- 5. Creosote-free combination treatments containing constituents specifically toxic to each borer species show promise of being effective in marine environments.
- 6. Afambeau, greenheart, and lignum vitae resist <u>Limnoria</u> attack, but are subject to <u>Martesia</u> and teredine attack at Pearl Harbor and teredine attack at Port Hueneme. Antidesma pulvinatum has not been attacked by teredine borers and only slightly by <u>Limnoria</u> at Port Hueneme.

FUTURE PLANS

- 1. Exposure tests of treated wood panels now under test will be continued.
- 2. Treatments which show promise in panel tests will be used to impregnate full-sized piling in the NCEL treatment plant.

ACKNOWLEDGMENT

The authors wish to express their appreciation to Messrs. Francis A. Dunwell and Joseph R. Moses of the District Public Works Office, Fourteenth Naval District, Pearl Harbor, for their assistance and cooperation in making possible the exposure of test panels at Pearl Harbor.

REFERENCES

- 1. U. S. Naval Civil Engineering Laboratory (NCEL). Technical Note N-182, Performance and Biological Tests of Heavy Metal Compounds as Marine Borer Inhibitors, by E. R. Holden, H. Hochman, and T. Roe, Jr. Port Hueneme, California, 16 August 1954.
- 2. NCEL Technical Note N-270, An Electrical Protection System for Wooden Piling, by H. Hochman and T. Roe, Jr. 7 June 1956.
- 3. NCEL Technical Note N-271, Harbor Tests of Marine Borer Inhibitors, by H. Hochman and T. Roe, Jr. 24 July 1956.
- 4. NCEL Letter Report R-012, Harbor Tests of Marine Borer Inhibitors, by H. Hochman and T. Roe, Jr. 15 October 1956.
- 5. NCEL Technical Note N-283, Harbor Tests of Marine Borer Inhibitors II, by H. Hachman and T. Roe, Jr. 23 November 1956.
- 6. NCEL Technical Report R-027, Harbor Screening Tests of Marine Borer Inhibitors I, by H. Hochman and T. Roe, Jr. 9 July 1959.
- 7. NCEL Technical Report R-077, Harbor Screening Tests of Marine Borer Inhibitors II, by H. Hochman and T. Roe, Jr. 16 March 1960
- 8. NCEL Technical Report R-048, The Toxicity of Chemical Agents to Marine Borers I, by H. Vind and H. Hochman. 29 June 1960.
- 9. NCEL Technical Report R-147, Harbor Screening Tests of Marine Borer Inhibitors III, by H. Hochman and T. Roe, Jr. 16 May 1961.
- 10. NCEL Technical Report R-184, Harbor Screening Tests of Marine Borer Inhibitors IV, by H. Hochman and T. Roe, Jr. 13 February 1962.
- 11. NCEL Technical Report R-188, An Evaluation of Organistin Compounds as Preservatives for Marine Timbers, by H. P. Vind and H. Hochman. 19 March 1962.
- 12. NCEL Technical Report R-236, Harbor Screening Tests of Marine Borer Inhibitors V, by H. Hochman and T. Roe, Jr. 22 February 1963.
- 13. NCEL Technical Note N-473, Cooperative Marine Piling Investigation: Phase 1 Pile Driving at Coco Solo, Canal Zone, by H. Hochman. 29 April 1963.

- 14. NCEL Technical Note N-503, Cooperative Marine Piling Investigation: Phase 2 Pile Driving at Pearl Harbor, Hawaii, by H. Hochman. 29 July 1963.
- 15. Bemice P. Bishop Museum. Bulletin 217, Resistance of Woods to Marine Borers in Hawaiian Waters, by C. H. Edmondson. Honolulu, Hawaii, 1955, pp. 23-4.

SYMBOLS USED IN TABLES

- * This panel series, or part thereof, was still under test as of 15 August 1963.
- ** One or more panels in this series had been attacked by this species as of 15 August 1963.
- *** One or more panels in this series were not attacked by this species during the entire peiod of harbor exposure.
 - N No panels in this series had been attacked by this species as of 15 August 1963.
- NC Not Checked
 - S Panel split during cleaning operations.
- BYD Panels furnished by the Bureau of Yards and Docks.
- FPL Panels furnished by the Forest Products Laboratory, Madison, Wisconsin.
 - 0 No attack.
 - T Trace attack.
- VL Very light attack.
 - L Light attack.
- M Moderate attack.
- H Heavy attack.
- VH Very heavy attack.
 - † Does not include the weight of ammonium sulfide solution absorbed.

NOTE: In some cases there are discrepancies between the time to initial attack and the total exposure time of the panel. This generally occurs when one or more panels in a series are not attacked by a given species. The data presented in the tables are the average of time to initial attack of those panels which were attacked by a given species, and the average of the total exposure time of all panels in the series.

X-RAY DATA: The fractions of panels attacked by teredine (No. attacked/No. exposed) and the assessments of damage, listed in Columns 7 and 8 of the tables, were determined by X-ray photographs taken in October 1963 of panels being exposed at Port Hueneme.

The contract of the contract				Port Hueneme	neme						Pear	Pearl Harbor			
No. of the control						۵	amage								
31.0 32.5 44 M 0 1/5 T 40.8 9 17.5 15 H 0 17.5 17.5 18	Jeatment	Weight Solute Absorbed (Ib cu ft)	Months to Initial Limoria Attack	Total Exposure Time (mo)	When Remov From I	3 4 5	X-rc Oct 1	97 963 ine	Weight Solute Absorbed (1b/cu ft)	≥ ہ ک	onths Initial tack	Total Exposure Time (mo)	× × ×	Jomage En Remo Fom Test	φ • •
31.0 32.5 44 M 0 1/5 T 40.8 9 15.5 H 0 0 1/2 VL 42.4 5 10 18 22.5							Fraction	Rating		. <u>Ę</u>	Mart.		Ę.	Mart.	Ĩer.
33.7 22 85 77 74 0 1/5 7 40.8 9 17 M 0 40.2 25 7 74.5 1/2 7 42.4 5 7 M 0 33.3 19.5 56.5 H 0 1/2 T 35.7 5 H 0 33.3 11.5 58 H 0 2/2 T 35.9 H 0 33.5 11 88 H 1 2 1 0 2 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0	100% Cremme (1, 8" panel)	31.0	32.5	4	₹	0			34.3	7.5		15	I	0	0
33.7 2% 76.5 VII 0 1/2 VII 42.4 5 5 82.5 H 0 1/2 VII 42.4 5 5 82.5 H 0 1/2 VII 42.4 5 5 82.5 H 0 1/2 VII 42.4 5 8 85.5 H 0 1/2 VII 44.4 4 8 85.5 H 0 1/2 VII 42.4 5 8 85.5 H 0 1/2 VII 42.4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	130°s Creoxote	35.7	22	3.	3		1/5		40.8	0		17	2	0	0
33.3 19.5 56 H 0 2/2 T 35.8 4 35 37. 28.9 16 68.9 WH T 2/2 T 35.8 4 35 37. 33.5 11 28 WH T 2 48. WH T 25.7 8 46.5 24.5 24.5 24.5 45.8 25.5 WH T 40.4 28 85. 1/3 T 24.3 7 N 27.5 WH T 27.1 14 66. 1/3 T 24.3 7 N 27. WH T 19.7 12 40.5 10.5 22.4 T 30.9 4 17. 34.4 15 24.5 16 22.4 T 30.9 4 17. 34.8 16 22.4 1 30.9 4 1 17. 34.8 16 22.4 1 30.9 4 1 1 34.8 16 30.9 4 1 1 1 34.8 16 30.9 4 1 1 1 34.8 <td< td=""><td></td><td>32.7</td><td>2 &</td><td>76.5</td><td></td><td></td><td>1/2</td><td>7</td><td>35.7</td><td>5 2</td><td></td><td>52.5</td><td>3</td><td></td><td>(</td></td<>		32.7	2 &	76.5			1/2	7	35.7	5 2		52.5	3		(
2.5. 1/.5 5/.2 1 2.8. 11 38 11 1 2.5. 8 40.5 1 1 2.5. 8 40.5 1 1 2.5. 8 40.5 1 1 3.3.3 14 27.5 1 45.8 1 3.3.3 14 27.5 1 44.5 1 3.3.1 1. 24.5 1 41.5 7.5 16 45.8 1. 24.5 1 24.3 7 N 1 40.4 28 85 1 1 24.3 7 N 1 27.1 14 66 5 1 N 1 1 23.1 7 10 2 1 N 1 23.1 7 10 1 1 1 23.1 1 2 1 1 1 24.5 1 33.2 6.5 10.5 1 34.4 4 4 4 1 1 34.4 4 4 4 1 1 34.4 4 4 4 4 1		33.3	19.5	8	I	0			35.8	· •	35	37.	ς	>	٠
33.5 11 58 WH T T 25.7 8 40.5 25.7 8 40.5 34.3 14 27.5 35.8		3/.7 28.9		88.	;		2/2	-							
25.7 8 405. 23.3 10 38. 34.3 14 27.5 8 35.8 48. 45.8 48. 45.8 45.8 44 VH T 24.5 7.5 16 52.5 VH VL 24.5 66. 25. 48. 26.5 10 2.4 10 2.5 NH 0 27.1 14 66. 35.7 3.2 6.5 10.5 2.2 VH 0 37.3 5 8. 97. 37.4 VH T 37.5 12 66. 37.6 5 10.5 12.5 VH T 37.7 12 66. 37.8 3.4 37. 37.9 0 10.5 56.		33.5	= ^	88.		<u> </u>									
23.3 10 38 34.3 14 27.5 31.1 24.5 45.8 45.8 44 VH T 45.8 46.5 44 VH T 41.0 2.5 48 47.5 7.5 16 52.5 VH VL 25.1 40.4 28 85 1/.3 T 22.3 VH VL 27.1 14 66 32.6 5 WH 0 23.1 7 40 37.3 6.5 10.55 WH T 23.1 7 40 37.3 6.5 10.55 WH T 34.4 22.5 WH 0 24.5 WH 17.5 34.4 22.5 WH 0 22.4 1 30.9 WH 17.5 34.4 24.5 24.5 10.5 56. WH		25.7	٧ 00	\$ Q7											
34.3 14 Z/5 31.1 24.5 45.8 24.5 45.8 24.5 41.0 2.5 48 41.0 2.5 48 41.0 2.5 48 41.0 2.5 16 25.1 48 26.1 2.4 10 27.1 14 66 19.7 12 60 19.7 12 60 19.7 12 7 33.2 6.5 10.5 34.4 22.4 14.5 37.3 34.8 37.3 34.8 37.3 34.8 22.5 34.8 37.3 34.8 37.3 34.8 24.5 38.5 37.3 34.8 24.5 41.4 4 48 41.4 4		23.3	ő) **		<u></u>									
45.8 48. 44. 47. 45.8 22. 44. 44. 47. 45.8 23. 44. 44. 47. 45. 45. 45. 48. 48. 48. 49. 48. 49. 48. 49. 49. 49. 49. 49. 49. 49. 49. 49. 49		ж. г	4:	77.5					-						
45.8 48 48 45.8 7.5 29 44 VH T T 23.8 25 25 VH VL 24.0 25 48 24.5 7 N 21 22.5 VH VL 25.1 14 & 66 22 & 10 22.5 M 0 22.1 14 & 66 24 T 30.9 4 37		•		3							7.7				
199.8 1.5 61.5* 1/3 1 41.5 7.5 16 52.5 VH VL 26.1 24.5* 1/3 1 24.3 7 N 21. YL 21. 26.1 24.5* 1 24.5* 1 22.5 M 0 40.4 28 85* 33.4 10 22.5 M 0 27.1 12 66* 33.2 5 1 37* VH 0 23.1 7 43 VH 0 22.4 1 30.9 4 37* 34.4 27.5* XH 0 22.4 1 30.5 YH 1 34.4 27.5* XH 0 37.3 5 8**** 12.5 VH 1 34.4 22.5* XH 0 37.3 5 WH 1 34.5 24.5* XH 0 33.9 0 10.5 56* 14.7 15 24.5* XH 0 10.5 56* XH 1	100° Creosote (FPL)	45.8	•	48					45.8	WY	33	3	₹		0
28.1 24.5. M 0 2.4 T 32.6 5 37. WH 0 2.3.1	100°. Creosote in Douglas Fir	39.8	2.5	61.5*			1/3	 	41.5	7.5	, z	52.5	₹	7	0
40.4 28 85* 27.1 14 66* 19.7 12 66* 19.7 12 66* 19.7 12 66* 19.7 12 66* 23.1 7 43 34.4 12.5 74 34.8 12.5 74 34.8 61.5* 41.4 4 48* 14.7 15 24.5*		7.8.		24.5	•				2			•			
19.7 12 60° 19.7 12 60° 23.1 7 43 33.7 40.5° 34.4 33.2 6.5 34.4 12.5 34.8 12.5 34.4 33.9 34.4 4 41.4 4 48. 14.7 15 24.5°	70-30 Creosote - Coal Tar	40.4	82	85*			-		38.4	01		22.5	\$	0	0
23.1 7 43 VH 0 33.2 6.5 10.5 ·· 24 VH 1 33.7 3 5 8 ·· 12.5 VH 1 34.4 ·· 22.5 VH 1 34.4 ·· 22.5 VH 1 4 48. 14.7 15 24.5		19.7	4 2	\$ \$			2/4		32.6	ω 4	:	22 - 77.	₹	0	0
34.4 27.5 VH T 27.5 34.8 24.5 VH T 38.5 18 61.5 56 56 56 56 56 56 56 56 56 56 56 56 56		23.1	۲:			0			33.2	6.5	10.5***	77	₹	-	0
34.8 ··· 24.5 · 33.9 · 10.5 56 · 14.7 · 15 · 24.5 · 14.7		*** ***	•:						5/.3	n	x	12.5	₹	 	0
38.5 18 61.5° 0 10.5 41.4 4 48° 15.7 24.5°		34.8		24.5		<u></u>		,			i.			•	
41.4 4 48· 14.7 15· 24.5·	70-30 Creosote - Coal Tar in	38.5		61.5					33.9	0	10.5	• 6.5			
	Douglas Fir	4.14	4	1 8•	``.						}	3		. 4	
		14.7	15	24.5											

Confinued

Table II. Inorganic Compounds (Cont'd)

		T	ס	Ĩ.				0	0						1,	la l	
			Damage When Removed From Test	Mart.				I	I	<u> </u>				.			
			Dar When I Fron	Lim. N				0	0	· · · · · · · · · · · · · · · · · · ·							
	Pearl Harbor		Total Exposure Fime (mo)	ا	\$6.	75*	56•	=	9.5							\$ \$	
	Pearl			Mart.	:	* *	8	٥	•								
			Months to Initia Attack	Lim.	:	zz											
			Weight Solute Absorbed (lb/cu ft)		0.45	1.22	0.32	0.38	0.45					7.40			
			% %3 ne	Rating	₹			-	-	₹					لي		
		Оэтаде	X-ray Oct 1963 Teredine	Fraction	1/4			2/2	5	2/3		-2/4			4/4		
	i	۵	en ved Test	Ter.	45.						æ			2			
-	eneme		When Removed From Test	Ę.							7)			
	Port Hueneme		Total Exposure Time (mo)		57.5	77.5*	57.5	76.5*	76.5	54*	7.5	59•	. 59•	31.5	59*	59*	
			Months to Initial Limnoria Attack		*	: z	* #	* *	&	*	%. 5		×	23	*		
			Weight Solute Absorbed (1b/cu ft)		0.31	1.18	0.46	0.35	0.34	0.55	0,71	1.54	1.75	3.95	3.19	3.51	1
			Treatment		3% Copper Nophthenate in Douglas Fir	6% Copper Naphthenate	6% Copper Naphthenate in Douglas Fir	1% Copper Sulfate in Redwood	1% Copper Sulfate in Western Red Cedar	2% Copper Sulfate in Douglas Fir	2% Copper Sulfate + ht. tr. in Douglas Fir	59. Copper Sulfate in Douglas Fir	5°c Copper Sulfate + ht. fr. in Douglas Fir	10°C Copper Sulfate + ht. tr.	10% Copper Sulfate in Douglas Fir	10% Copper Sulfate + ht. tr. in Doualas Fir	

Table II. Inorganic Compounds (Cont'd)

			Port Hueneme	neme						Pea	Pearl Harbor			
					۵	Оатаде								
Treatment	Weight Solute Absorbed (1b/cu ft)	Months to Initial Limnoria Attack	Total Exposure Time (mc)	When Removed From Test	r ced	X-ray Oct 1963 Teredine	3y 963 ine	Weight Solute Absorbed (1b/cu ft)	A to A	Months to Initial Attack	Total Exposure Time (mo)	*	Damage When Removed From Test	P
				Lim.	Ter.	Fraction	Rating		Lim.	Mart.	,	Li.	Mart.	قر
10% Copper Sulfate in Redwood	3.55	*	76.5*			1/2	1	3.32		17	17	0		0
13% Copper Sulfate in Western Red Cedar	2.52	z	76.5*	<u> </u>		2)-	3.88		6	11.5	0	\$	7
10% Solubilized Copper Oxinate	3.22	æ	76.5*		-	2/2	7	3.18		14.5	18	0	I	-
25% Solubilized Copper Oxinate	7.3	*	76.5*			1/2	·	8.1	22	21	30.5	7	\$	7
50% Solubilized Copper Oxinate	15.5	*	76.5*	. ,				14.9	:	37.5	75*			,
5% Cuprammine Sulfate	1.33	*	61.5+					1.38	8	21***	23	I	, ,	
5% Cuprammine Sulfate + ht. ir.	1.85	33	•09					1.89	15	21***	25.5	I	, ,	2
5% Cuprammine Sulfate in Douglas Fir	2.45	&	61.5*					2.33	Z	ົຣ	\$6•			
55° Cuprammine Sulfate + ht. tr. in Oovglas Fir	1.59	*	59•					1.47		22.5	&	0	\$	•
5% Cupric Ethylenediamine Sulfate th, tr.	2.01	30.	æ	-	₹			1.91	٥	=	12	×	₹.	Ξ
5% Cupric Ethylenediamine Sulfate in Douglas Fir	1.23	47***	59*			2,	٠	4 .	12	16	24	7		۷۱۰۰۰
5% Cupric Ethylenediamine Sulfate • ht, tt, in Dougles Fir	1.69	.	57.5*			3/3	٠	1.85	17	12	&	7	₩	:
500 Mercuric Acetate	2.03	8	**					2.06	98	6:	31	-	I	
5° Mercuric Acetate + ht. tr.	2.10	8	**					2.28		13.5	13,5	0	ب	I

Table !ii. Metal-organic Compounds ${\cal U}$

		Port Hu	Port Hueneme					Peg	Pearl Harbor			
Treatment	Weight Solute Absorbed (lb/cu ft)	Months to Initial Limnoria Attack	Total Exposure Time	Damage When Removed From Test	ye ved Test	Weight Solute Absorbed	Months to Initial Attack	iths itial ack	Total Exposure Time	**	Damoge When Removed From Test	oved st
			(2)	Lim.	Ter.		Lim.	Mart.	OE)	Lim.	Mart.	Ter.
1% p-Aminophenylmercuric Acetate	0.39	19***	30.5 38	⊢	II	0.37	11:::	8.5	13	-	ب	I
1% p-Dimethylamin.phenylmercuric Acetate in Douglas Fir	0.35	# #	53	0	I	0.35	30***	7	22	-	I	····/^
1% Tributyltin Coconut Fatty Acid Salt	0.27	z	*89			0.27	4	Z	45*			
10% Tributyltin Coconut Fatty Acid Salt	2.91	*	24.5*			2.93	٥	z	21•			
0.5% Tributyltin Oxide	0.13	*	61.5*			•			*			
1% Tributyltin Oxide	0.27	Z	61.5*	*		0.25	10 5	· Z	47.5*	₹	0	0.
10% Tributyltin Oxide	2.66	Z	24.5*			2.66	*	z	21+		R	
1% Triphenyltin Acetate	0.30	*	24.5*			0.31	5	Z	21*			

J X-ray photograp is taken at Port Hueneme in October 1963 showed no teredine attack on treatments under test.

Table IV. Organic Compounds

		Port H	Port Hueneme					Pec	Pearl Harbor			
Treatment	Weig! Solute Absorbed (1b/cu ft)	Months to Initial Limnoria Attack	Total Exposure Time	Dani Wh Remc From	Damsge When Removed From Test	Weight Solute Absorbed	A th	Months to Initial Attack	Total Exposure Time	₩.	Camage When Removed From Test	P ++
			(201)	Lim.	Ter.	(11 83 /21)	Lim.	Mart.	(om)	ι;ω.	Mart.	ler.
5% Chlora-g-phenylphenol	1.61	က	14	ب.	I	1.53	က	4.5	5.5	x	ب	I
1% Ether Soluble Alkaloids of Greenheart Sawdust						0.3%	2		'n	₹	0	į
2% Ether Soluble Alkaloids of Greenheart Sawdust	0.71	2.5	12	₹	* * •	0.67	2		•	ᅔ	. 0	÷
10% Phenanthrene	3.2	4	7	Ι		2.9	က	4	\$	ب	\$,- -

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar

			.		· · · · · · · · · · · · · · · · · · ·	· · · · · ·								
			فر	0				0	0	11.	•	<u> </u>	<u>. h</u>	•
		Damage When Removed From Test	Mart.	-				Ξ.	Ξ	£,	x	₹	₹	
		⋚	Ę.	\$				-	J		0	\$	₹	₹
Pearl Harbor		Total Exposure Time		8	3.	*	49.5	æ	; ··· · · ·	•\$1	ਜ਼	8	8	71.
8		Months to initial Atteck	Mart.	٥	18	12.5	:	13	15	7	7	•	ž	5.5
		¥ g ₹	Ę	•	12	5.5	:	21	19.	:		٥	82	2
		Weight Solute Absorbed (1b/cu ft)		33.7	0.26	3.1	3.1 15.5	1.53	1.59	3.02	3.07	0.14	0.2%	0.59
		7, 963 ine	Rating											
	Ооторе.	X-ray Oct 1963 Teredine	Fraction						3					
	۵	Test Test	Ter.									=		0
hene		When Removed From Test	Ë.								•	<u> </u>		I
Port Nueneme		Total Exposure Time (mo)		94.5	*	*		. 84	.	•87	.	\$3	3 ,	æ
		Months to Initia! Limporia Attock		33	•	=		9	m	10.5	•	22.5	:	92
-		Weight Solute Absorbed (1b/cu ft)		34.5	0.28	3.0		1.51	1.52	2.45	3.49	0.15	0.28	0.60
		Treatment		1% A uninum Oxinate in Creosote (1/8" panel)	0.9% p-Aminopheny Imercuric Acetate 100% Creosote (double Preatment)	10% Biphenyl 50% Creosote		5% Chlordan 50% Creosote	5% Chisodan 59% 70-30 Creasore - Coal Tar	10% Chlordon 50% Creosote	10% Chiordon 50% 70-30 Creasote - Coal Tar	0.5% Copper Naphthenate 50% Coal Tar	1% Copper Naphthenate 50% Coal Tor	2% Capper Naphthenate 50% Coal Tar

Continued

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd)

≩
Total Exposure
(ow)
. Mart.
· E.
(lb/cu ft) ling 0.64 10.7
Rating
<u> </u>
l g
Lim. Ter.
(mo) L
. I .
Attack

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd)

Tree Free Free Free Free Free Free Free	manufacture of the second seco			Port Hueneme	900						8	1 1			
Weight Weight Weight Total When Total Weight Weight Total Exposure Removed Ct. 1956 Solute Time Total Total Terration Solute Time Total Terration Solute Time Total Terration Terratio												logipu i i			
Weight Worth Months Figure Note	:					۵	amoge	·		:		:			
Single S		Weight Solute Absorbed (1b/cu ft)	Months to Initial Limnoría Artack	Fotal Exposure Time (mo)	Whe Remo From	ved Test	X-ra Oct 19 Teredi	7 763 ne	Weight Solute Absorbed (1b/cu ft)	No P	itiol ack	Total Exposure Time		Damage en Remo rom Tes	, ed
5.2 N 27.5 Senote (pt.) 3.68 N 48° Senote (pt.) 3.01 N 48° Senote (pt.) 3.01 N 48° Senote (pt.) 1.64 N 7 45° Henic Acid (pt.) 1.64 N 1.53 9 10.5 26 H O.27 0.27 0.27 0.27 0.28 0 H VL 11-4 0.28 0.24 L 10.28 0 H VL 11-4 0.27 0.28 0.24 0.28 0 H VL 11-4 0.28 0.30 0.34 0 8 36° 0 H 11-4 0.30 19 57.5° 1/2 L 10.28 0 H 11-4 0.30 19 57.5° 3/4 VL 22.0 0 10 M 11-6 0.28 0.28 0.35 0.30 0.30 0 M 11-7 10.28 0.30 0.30 0.30 0.30 0 M 11-7 10.20 0.30 0.30 0.30 0.30 0 0 M					Ë	Ĭ.		Rating	ì	Ę.	Mart.		Li.	Mari.	<u>1</u>
1.64 3.23 N 48 3.21 N 48 3.21 N 45 45 45 45 45 45 45	reatment)	5.2 35.8	z	7.5•					5.1	28	22	37•			
Henic Acid 1.64 7 61.5* 15.1 15.3 9 10.5 26 H VL 0.29	Arsenate eatment) (FPL)	3.23 3.01 38.7	z	48•				ta t	3.23 3.01 38.7	Z	:	45*		· · · · · · · · · · · · · · · · · · ·	
ir. 0.27 57.5 2/4 L 0.27 8 32 0 H 14.8 57.5 57.5 1/2 L 0.24 9 56 10.33 57.5 1/2 L 11.8 9 56 13.2 57.5 33.4 v.l 0.23 10 56 1 tar in 12.8 57.5 1/4 T 0.20 18 34 0 M 1 tar in 12.8 57.5 57.5 1/4 T 0.20 18 34 0 M	phthenic Acid	1.64	7	61.5*					1.53	0	10.5	28	x	₹	0
1.c. 10.22 57.5* 1/2 L 10.24 9 56* 10.35		0.2%		57.5*			2/4	٠	0.29		∞	32	0	x	0
0.35 57.5* 3.4 VL 0.22 10 56* 21.6 57.5* 3/4 VL 0.22 10 56* 1 Tor in 0.30 19 57.5* 3/4 L 0.31 8 36 0 M 1 Tor in 12.8 57.5* 1/4 T 9.9 8 34 0 M 0.27 57.5* 1/4 T 9.9 8 34 0 M	S. Fir	0.22	*	57.5			1/2		0.24	:	۰	56•			
1 Tar in 12.8		0.35	*	57.5*					0.34	30.5	23	\$6•			
1 Tar 0.30 19 57.5* 3/4 L 0.31 8 36 M 1 Tar in 0.25 57.5* 1/4 T 9.9 8 34 0 M 0.27 57.5* 1/4 T 9.9 8 34 0 M 0.29 \$7.5* 31.5 20 56*		0.22	;	57.5			3/4	\$	0.22	:	9	\$95	:		
1 Tartin 0.25 ··· 57.5* 1/4 T 0.20 8 34 0 M 0.20 0.29 ··· 57.5* 0.22 ··· 9.9 34 0 M	`∞l Tor	0.30	۵	57.5*			3/4		0.31		ω	*	0	₹	1
0.29 ··· \$7.5* 13.5 ·· 20 56*	ool Tar in	0.25	•	57.5•			4/1	`` -	0.20		œ	**	•	\$	Ė
	وَ	0.29	•	77.5			·		0.32 31.5	•	8	\$95		•	

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd)

	T	<u> </u>	T :	T	·		·			· · · · · · · · · · · · · · · · · · ·		<u> </u>	· · · · · · · · · · · · · · · · · · ·
		oved sst	<u></u>							<u></u>	***		
		Damage When Removed From Test	Mart.		I	: \$,	I	, * · · · .	Ξ.				
		× ×	Ľ.		0	0	0		I				
Pearl Harbor		Fotal Exposure Time (ma)		56*	ਣ	82	32	37*	4	56•	\$6*	56*	56*
Peo		itial	Mart,	24	ω.	•	٥	82	11.5	=.	٥	=	11.5
		Months to Initial Attack	Ę.	:			···	13	•	z	*	Z	z
		Weight Solute Absorbed (1b/cu ft)		0.25	1.3i 13.1	0.84	1.48	0.39	3.07	0.27	0.26	6.25	0.23
		y 963	Rating				₹		3			x	
	Domage	X-ray Oct 1963 Teredine	Fraction				3/4		73	2/3		7	
	്ര്	sh ved Test	Ter.				· ·						
neme		When Removed From Test	Lim.		The street								
Port Hueneme		Faposure Time (mo)		57.5*	54*		54*	* 8	**	57.5*	57.5*	57.5*	57.5*
		Months to Initial Limnoria Attack		*	#		14	25	٥	*	.	*	*
		Weight Solute Absorbed (1b/cu ft)		0.23	1.53		1.50	0.38	2.81	0.24	0.24	0.25	0.21
		Treatment		1% Dieldrin in 70-30 Creosote – Coal Tar in Douglas Fir	5% Dieldrin 50% Creosote		5% Dieldrin 50% 70–30 Creosote – Coal Tar	1% p-Dimethy laminopheny Imercuric Acetate 100% Creosote (double treatment)	10% Diphenylmethane 50% Crecsote	1% Endrin 50% Creosote in Douglas Fir	1% Endrin in Creosote in Douglas Fir	1% Endrin 50% 70-30 Creosote - Coal Tar in Douglas Fir	1% Endrin in 70-30 Creosote - Coal Tar in Doubles Etc.

Continued

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd)

8		ol Damoge unre When Removed From Test	Lim. Mart. Ter.	0	0 I		0 1	o ≴	o x		185 VL VL 0	1.4	
Pearl Harbor		tial Exposure ck Time	Mart.	\$	6 - 45	7 54.	- - - 9	6 12	7 16	10 27•	11.5		
		Months to Initial Attack	Lim.			Z	5.5	5	5.5	<u> </u>	=	* .	
		Weight Solute Absorbed (1b/cu ft)	,	1.43	1,38	1.49	0.79	0.75	0.81	34.0	34.8		
		X-ray Oct 1963 Teredine	Rating	-		-		-	· · ·		•		
	Ватаде	X-ray Oct 196 Teredin	Fraction	2/2	-	2/4		1/4					
•	3	When Removed From Test	<u>۔</u>								0		
Port Hueneme			Ľ.								<u> </u>		
Port H		Total Exposure Time (mo)		54.		**	40.5*	40.5	40.5*	40.5*	62.5•	88.5*	
		Months to Initial Limnoria Attack		:		4.	7	•	v s	:	33	%	
		Weight Solute Absorbed (1b/cu ft)		1.41		1.67	0.79 2.87	0.77	0.78 15.5	0.76	30.3	1.86	
										2% Malachite Green Oxalate 100% Creosote (double treatment)			

Continued

Ter. 0 0 0 0 0 0 When Removed Damage Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd) From Test Mart 7 ≨ -Ę. ₹ ₹ ٤. ¥ ₹ . Z Total Exposure Pearl Harbor Tine To E 49.5 \$6 2 15 8 n ₽ 7 __ 4..6 Mart. Ž 15,5 Ž Months to Initial : ø 15 / Ë 12.5 7.5 • ø ٥ 0 \$ ^ 2 Solute Absorbed (lb/cu ft) Weight 0.42 0.37 0.37 11.1 0.37 0.23 0.19 0.32 3.2 9.5 0.77 26.8 80.9 1.4 Rating ₹ X-ray Oct 1963 Teredine Fraction 1/2 Domoge 7 5 5 Ter. When Removed From Test 0 Ęij. Port Hueneme ₹ Exposure 27.5 Total Time (ano) 57.5 82.5* 82.5 57.5 56.5 \$2 85 \$ to In tial Linnoria Attack 17.5* 28.5 29.5 28.5 : 2 ଛ Ħ 37 Weight Solute Absorbed (lb/cv ft) 0.37 36.8 0.23 0.17 0.26 0.27 13.7 2.7 0.37 15.1 1% Phenylmercuric C leate (solid) in 70-30 Cressote - Coal Tar Solution .⊆ 1% Phenylmercuric Chloride 50% 70-30 Creosote - Coal Tar in 1% Phenylmercuric Oleate (solid) 1% Phenylmercuric Chloride in 1% Phenylmercuric Chloride in 1% Phenylmercuric Oleate in 70-30 Creosote - Coal Tar in 1% Pheny Imercuric Oleate 1% Pheny Imercuric Oleate 50% Creosote 10% Coal Tar 1% Phenylmercuric Oleate 10% Creosote 30% Coal Tar Treatment 50% Creosote 30% Coal Tar Douglas Fir Douglas Fir Creosote Creosote Creosote

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd)

	1		<u> </u>	T		<u> </u>							
		s o ced	Ter.	0	. 0	<u> </u>		-					> **
		Damage When Removed From Test	Mart.	Ι	<u>.</u> .	I	Ξ	₹ .					\$
		When T	Lim.	₹	1	7	+	Ι				**	,
Pearl Harbor		Total Exposure Time (mo)		49	**	20.5	&	*	<i>a</i> .	21•	21•	7.	*
Peor		tio Grisol	Mart.	æ	82	19.5	16.5	15.5	:	:		:	22
		Months to Initial Attack	Ľim.	17	7.5	15	17	17.5	12	=	7	. ~	&
		Weight Solute Absorbed (Ib/cv ft)		0.33 21.5 9.8	0.2% 21.1 2.9	1.15	1.16	1.74	1.5%	1.49	0.70	0.79 14.9	1.2 2.52 2.52
		17 963 ine	Rating						:			-	1
	Damage	X-ray Oct 1963 Teredine	Fraction					ti ti	•			7	1/2
	۵	ved Test	<u>.</u>			\$	I						
neme		When Removed From Test	Ę.			-	7						
Port Hueneme		Total Exposure Time (mo)		82.5	82.5*	62	69	85*	77.5*	24.5*	24.5*	7.5	82.5*
		Months to Initial Comoria Attack		•	ಸ	30	æ	&	Z	Z	:	z	₽
		Weight Solute. Absorbed (1b/cu ft)		0.34 22.5 10.3	0.20	2.38	1.11	1.97	1.76	1.76	0.89	1,00°- 19.0	1.14 2.28 2.28
		Treo:men		1% Phenylmercuric Oleate 66% Creosote 30% Coal Tar	1% Phenylmercuric Oleate 74% Creosote 10% Coal Tar	5% Phenylmercuric Oleate 10% Coal Tar	5% Phenylmercuric Oleate 30% Coal Tar	5% Phenylmercuric Oleate 50% Creosote	5% Phenylmercuri. Oleate (solid) in Creosote		5% Phenylivercuric Oleans (solid) in Creosote in Douglas Fir	5% Phenylmercuric Oleate (solid) in 70–30 Cressote – Cool Tar Solution	5% Phenylmercuric Oleate 10% Creosote 10% Coal Tar

Continued

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd)

						·		<u> </u>				
		7	Ter.	0	0	0	0	0	0	0		
		Damage When Remaved From Test	Mart.	I	_	٤	7		ž	ٺ		
		W.he	Ľ.	0	\$	<u>इ</u>	Ŧ	₹	<u>۔۔۔۔</u>	₹		
Pearl Harbor		Total Exposure Time (mo)		8	39.5	51	46.5	85	53	23	37•	panels lost
Pea		Months to Initial Attack	Mart.	8	22.5	22.5	21.5	15.5	7	12	શ્	13
		¥ o ₹	Lim.		6_	2	61	25.5		6.5	2.5	2
		Weight Solute Absorbed (!b/cu ft)		1.84 3.67 10.55	1.65	1.69	1.60 16.4 9.58	2.03 28.8 4.05	2.48	0.31	0.30	0.26
		y 963 ine	Rating	-	* :						₹.	
	Оатоде	X-ray Oct 1963 Teredine	Fraction	5						•	1/4	
1	۵	ved est	Ter.						1	:		
eneme		When Removed From Test	Lia.							Ξ		
Port Hueneme		Total Exposure Time (ma)		82.5*	82.5*	82.5*	82.5*	82.5*	85*	43	* 88	38 •
		Month: to Initial Limoria Attack		34.5	4	38.5	*	8	౯	_	4	*
		Weight Solute Absorbed (15 cu ft)		3.13	19.3	1.53 15.3 9.23	1.79	1.75 24.8 3.50	39.6	0.33	0.29	0.25
		red ten		5% Phenylmercuric Oleate 10 a Creasore 30% Coal Tar	5°s Phenylmercuric Oleate 50°s Creosote 10°s Coal Tar	5°: Phenylmercuria Oleate 50°: Creosote 30°: Coal Tor	5°: Phenylmercuric Oleate 51.2°: Creosote 30°: Coal Tar	5°s Phen, Imercuric Oleate 71°s Creosote 10°s Coal Tar	5°s Phenylmercuric Olsate in Creosote	1°s Solubilized Tributyltin Oxide 50°s Coal Tar	1% Toxaphene 50% Creosote	1% Toxaphene 50% Creosote in Douglas Fir

Continued

Table V. Combination Treatments Containing Creosote, Coal Tar, or Creosote - Coal Tar (Cont'd)

										٠ ٢	Pearl Harbor		٠.	
	·					Damage								
Treatment	Weight Solute Absorbed (1b cu ft)	Months to Initial Limnoria Attack	Foral Exposure Time (mo)	When Removed From Test	en ved Test	X-ray Oct 1963 Teredine	963 line	Weight Solute Absorbed (Ib/cu ft)	¥ º 4	Months to Initial Attack	Total Exposure Time	≱	Domoge When Removed From Test	7 0
				Lim.	Ter.	Fraction	Rating		Ľi.	Mart.	2	Ę	X Agr	ق ا
1% Ioxophene in Creosote	28.3	9.5	• 8					0.34	7	:	37.			
1% Toxaphene in Creosote in Douglas Fir	0.24	۰	Ř			5	-	0.25	7	:	37•			
5% Toxaphene 50% Creosote	1.62		* %			2/4	\$	1.50		18.5	37.			
5% Toxaphene 50% Creosote in Douglas Fir	1.42	*	*					1.40		6	37•			
5% Toxaphene in Creosote	1.50	:	. 86					3.9	4	83	37•			
5% Toxaphene in Creasote in Douglas Fir	1.19	4	*8			7.	ب	1.07	4.5	15.5	37*			
0.5% TributyItin Oxide 50% Coal Tar	0.15	12	40	₹	0									
1% Tributy Itin Oxide 50% Coal Tar	0.27 13.5	12.5	61.5*					0.33 15.8	. •		æ	₹	0	0
1% Tributy Itin Oxide 50% Creosote	0.33	*	ż		4			0.30	11.5	42	*			
1% Tributyttin Oxide 2% Toxaphene in Creosote (BYD)		•						۱ ۲	•	z	15.			
2% Tributyftin Oxide in Creosote (BYD)				1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	•			٦	٥	Z	15*			

J Data not fumished

Table VI. Other Combination Treatments

			Fort Hueneme	eneme		Damage				1	Pearl Harbor			
Weight Months To Solute to Initial Expo Absorbed Limnoria Ti (1b cu ft) Attack (n		ž ģ: e	Total Exposure Time (mo)	When Removed From Test	en ved Test	X-ray Oct 1963 Teredine	17 963 ine	Weight Solute Absorbed (1b/cu ft)	Months 5 Initia Attack	Months 5 Initial Attack	Fotal Exposure Time	× ×	Domage When Removed From Test	,ed
				Lim.	Ter.	Fraction	Rating		Lim.	Mart.		Lim.	Mai t.	Ter.
1°s p-Aminophenylmercuric Acetate 0.39 2°s Malachite Green Oxalate (6cuble treatment) 0.78	:		38*					0.39	&	21	37.			
1% p-Aminophenylmercuric Acetate 0.39 N 1% Tributyltin Coconut Fatty O.27			38•	. 1		1/2	←	0.39	12.5	22	&	I	ب	÷
1.66	4	•	=	¥	. 0			1.75	т	7.5	13	¥		0
1.87 4	;	•	***					1.73	* .	91	45,			
0.75 41 6		•	.09	<u></u>				0.75	10.5	11.5	15	I		0
1.00	*	4)	57.5+					1.14	18	12	18		\$	· · · · · · · · · · · · · · · · · · ·
0.67 12		• • •	23	٤	I			0.66		\$	٥	0	٤	
Z Z		•	.09					0.66	34	8	49	٤	_	-
0.35 5.9 Z		•	.09	•	antinita e embretti e di gerri de la di			0.21 3.5	23	22	33	\$	¥.	0
0.69 0.23	<u> </u>	, m	38	•				0.75	z	z	.28			
				1			1	1						

Continued

Table VI. Other Combination Treatments (Cont'd)

				· .										
			P	Į.						0.		. 0	:	
			Damage When Removed From Test	Mart.						•		I	Ξ	
			. Whe	Lim.						o		6	0	
	Pearl Harbor		Total Exposure Time		37.			37*	37•	40		٥	12.5	37*
	Peo		right Ck di	Mart.	z			*	z	೫		4.5	4	z
			Months to Initial Attack	Ë	z			Z	z					6.5
			Weight Solute Absorbed (Ib/cu ft)		0.84			10.6	13.2	3.23		0.32	0.33	0.25
-			y 963 ine	Rating			þ				·			
		Damage	X-ray Oct 1963 Teredine	Fraction	,		1/2					2/3		
		۵	When Removed From Test	Ter.		·								
-	eneme		When Removed From Test	Lim.			:				· .			•.
	Port Hueneme		Total Exposure Time (mo)		• 88	54	61.5*	40.5*	40,5*	48	61,5*	54*		40.5*
			Months to Initial Limnoria Attack		*	41.5	42	z	:	z	* · ·	*		:
			Weight Solute Absorbed (lb/cu ft)		0.82	1.43	3.72	0.25	13.0	3.23	1,83	0.30		0.30
			Treatment		3% Copper Naphthenate 5% Tributyltin Coconut Fatty Acid Salt	5% Copper Sulfate 3.2% PVM/MA	10% Copper Sulfate 3.2% PVM/MA	50% Solubilized Copper Oxinate 1% Tributyltin Coconut Fatty Acid Salt	50% Solubilized Copper Oxinate 5% Tributyttin Coconut Fatty Acid Salt	14.73% Copper Sulfate 20.06% Sodium mono H Arsenate (double, treatment) (FPL)	5% Cuprommine Sulfate 3.2% PVM/MA	1% Dieldrin 1% Malachite Green Oxalate		1% Dieldrin 1% Tribuyltin Coconut Fatty Acid Salt

Continued

Table VI. Other Combination Treatments (Cont'd)

		ed.	řer.			0	0	0	0	0	0	
;		Damage When Removed From Test	Mart.			I		\$	I	Ι	Ŧ	•
		Whe	Lim.	: .		r	₹	. 0	0	0	•	
Pearl Harbor		Total Exposure Time (mo)		37*	37*	000	12	10.5	61	36	91	į
Pea		Months to Initial Attack	Mart.	z	*	15	7	4.5	7	၀	9	
		Mor to In Att	Lim.	‡	15	61	4					
		Weight Solute Absorbed (lb/cu ft)		1.32	0.40	0.40	1.66	0.32	0.78	0.75	0.86	0.57
		7 763 ne	Rating									
	Damage	X-ray Oct 1963 Teredine	Fraction									
	Q	When Removed From Test	Ter.	·			0					
		Wh Remo	Lim.				\$		٠.			
		Total Exposure Time (mo)		40.5*	*8	88	48.5	54*	54*	54*	27.5*	3
		Months to Initial Limnoria Attack		*	*	‡	က	*	Z	Z	*	•
		Weight Solute Absorbed (1b/cu ft)		4. 4.	0.39	0.38	1.60	0.36	0.74	0.73	0.34	0.79
		Treatment		5% Dieldrin 5% Tributyltin Coconut Fatty Acid Salt	1% p-Dimethy laminopheny Imercuric Acetate 1% Tributy Itin Coconut Fatty Acid Salt (double treatment)	1% p-Dimethylaminophenylmercuric Acetote 2% Malachite Green Oxalate (double treatment)	5% Dipheny Imethane 2% Malachite Green Oxalate	1% Endrin 1% Malachite Green Oxalate	2% Malachite Green Oxalate 5% Dieldrin (double treatment)	2% Malachite Green Oxalate 5% Endrin (double treatment)	2% Malachite Green Oxalate 1% Toxaphene (double treatment)	2% Malachite Green Oxalate

Continued

Table VI. Other Combination Treatments (Cont'd)

			A H											
			5				. ;			Pear	Pearl Harbor			
					υ	Вотоде								
Treatment	Weight Solute Absorbed (16 cu ft)	Months to Initial Limnoria Attack	Fotal Exposure Time (mo)	WI Rem From	When Removed From Test	X-ray Oct 1963 Teredine	27 96.3 line	Weight Solute Absorbed (1b/cu ft)	Months to Initial Attack	£ 5 7	Total Exposure Time	, Ay	Damage When Removed From Test	, ed
				Lia.	Ter.	Fraction	Rating		Lia.	Mart.	}	Li.	Mar?.	le.
14.36° Nickel Sulfate 20.06° Sodium mono H Arsenate Idouble Preatment) (FPL)	3.43	58	რ)	\$			3.71	11.5	=	15	-	I	3
14°s Phen, ^I mercuric Oleato 50°s Linseed Oil	3.99	:	•09					3.87	8	18	34.5	x	\$	0
14°. Pheny Imercuita Oleate 50°. Linseed Oil in Douglas Fir	1.80	:	* 09			1/2	⋠	2.38	- 21	12	&	ت		<u>ــــــــــــــــــــــــــــــــــــ</u>
1° - Toxophene 1° - Tributyttin Coconut Fatty Acid Salt	0.26	*	. 88					0.28	7	Z	37•			
12 Toxaphene 12 Tributytin Coconut Fatty Acid Salt in Douglas Fir	0.18	9	* 88	٠		.		0.26	'n	z	37+			
1° Toxophene	0.27	z	*8°					8.0 8.0	9.5	z	37•			
1°s Toxophene 1°s Tributy Itin Oxide in Douglas Fir	0.27	*	* 8					0.22	•	z	37*	*		
1° : Toxaphene 5° : Tributy I'm Oxide	0.31	z	24.5*			<u>.</u>		0.28	13.5	z	21.			
12. Toxaphene 10°. Tributyltin Oxide	0.2%	•	24.5*				``.	0.33	z	Z	21•		. • •	
5% Tabuty Itin Coconut Fatty Acid Salt	1.40	z	• 8 8					1.4.	‡	Z	37*			

Continued

Table VI. Other Combination Treatments (Cont'd)

F	2	- Table							aa varan sa		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			- ved	ا ا		· .					:			• 3
			Damage When Removed From Test	Mart.							•			
			. Å.	Lim.		· .					I			
	Pearl Harbor		Total Exposure Time		37*	21+	37*	21+	37•	21*	=	21•	21+	21*
	Pe		Months to Initial Attack	Mart.	z	z	Z	Z	Z	z		12	Z	2
			A to A	Lia.	7	7	*	:	<u>&</u>	:	8	æ	80	9.5
			Weight Solute Absorbed (Ib/cu ft)		1.28	1.39	1.39	1.47	1.3 8.1	1.57	0.31	0.28	1.34	1.52
			y 963 ine	Rating										
		Оатаде	X-ray Oct 1963 Teredine	Fraction										
		٥	ved Test	Ter.		5								
emena	2		When Removed From Test	Lim.	<u> </u>									
Port Hueneme			Total Exposure Time (mo)		38.	24.5*	*8	24.5*	* 8	24.5*	24.5*	24.5*	24.5*	24.5*
			Months to Initial Limnoria Attack		 	*	z	z	*	*	*	*	*	Z
			Weight Solute Absorbed (lb/cu ft)		1.3	1.51	<u> </u>	1.59	1.35	3.29	0.2%	0.26	1.43	1.52
			Treatment		5% Toxaphene 5% Tributyltin Cacanut Fatty Acid Salt in Douglas Fir	5% Toxaphene 1% Tributyllin Oxide	5% Ioxaphene 5% Iributyltin Oxide		5% Toxaphene 5% Tributy-Itin Oxide in Douglas Fir	5% Ioxaphere 10% Tributyltin Oxide	1% Tributyltin Coconut Fatty Acid Salt 1% Phenylmercuric Oleate	1% Tributyltin Coconut Fetty Acid Salt 5% Phenylmercuric Oleate	5% Tributyltin Coconut Fatty Acid Salt 1% Phenylmercuric Olegte	5% Tributyltin Coconut Fatty Acid Salt 5% Phenylmercuric Oleate

Table VI. Other Combination Treatments (Cont'd)

			Fort Hueneme	eneme						Pec	Pearl Harbor			
				. * -	נו	Оатаде		4.						
<u></u>	Weight Solute Absorbed (lb/cu ft)	Months to Initial Limnoria Attack	Total Exposure Time (mo)	When Removed From Test	en ved Test	X-ray Oct 1963 Teredine	ay 963 line	Weight Solute Absorbed (1b/cu ft)	A to A	Months to Initial Attack	Total Exposure Time (mo)	* _	Damoge When Removed From Test	eq.
				Lim.	Ter.	Fraction	Rating		Lim.	Mart.		Lim.	Mart.	Ter.
	3.20		24.5*					2.97	9	Z	21*			
10% Tributyltin Coconut Fatty Acid Salt 5% Phenvlmercuric Oleate	2.95	*	24.5*					3.03			panels lost			
	0.28+	*	48					0.27†	Ŋ	.	45*			
	0.27	Z	24.5*					0.27	Z	z	21*			
	1.59	z	24.5*					1.32	z	Z	21+			
	2.89	z	24.5*					3.11	\$	z	21.			
F Tributyltin Oxide 6 a, P-1, 2, 3, 4, 7, 7- Hexachloiobicyclo- [2.2.1]-2-heptene- 5, 6-bisoxmethylene Sulfite in \$5 Fuel Oil (BYD)								>						
								7	3.5		15*			•
ļ			1		1									

J Data not fumished

Table VII. Untreated Panels and Solvent-Extracted Untreated Panels

			Port Hueneme	eneme						Pegi	Pearl Harbor			
						Damage								
Treatment	Weight Solute Absorbed (1b/cu ft)	Months to Initial Limnoria Attack	Fxposure Time (mo)	When Removed From Test	en ved Test	X-ray Oct 1963 Teredine	37 963 ine	Months Solute Absorbed (1b/cu ft)	5 t A	Months to Initial Attack	Total Exposure Time (mo)	₹	Damage When Removed From Test	e d
				Lim.	Ter,	Fraction	Rating		Lim.	Mart.		Ľ.	Mart,	Te.
Afambeau		*	57.5*							80	22	0	I	0
Antidesma Pulvinatum		*	48*											
Greenheart		z	75*				-							
		z:	57.5*			3,2	ΣI			S	<u>E</u>	0	I	0
Greenheart, acetic acid extracted		Z.	75*			7								
Greenheart, chloroform extracted	``	*	75*			7	\$							5-4, -
Greenheart, ether extracted		14.	*8	0	I									
Greenheart, methanol extracted		z	75*			\$	₹							<i>.</i>
Lignum Vitoe		* *	75*			2/2				Ξ.	12	C	\$	₹
			,											

Appendix

SUMMARY OF PANELS NOT ATTACKED BY ONE OR MORE SPECIES OF MARINE BORERS

Treated panels and naturally resistant wood panels which have not been attacked by one or more species of marine borers either during their entire period of exposure or as of 15 August 1963 are plotted in Figures 1 through 5. The numbers plotted on the figures refer to the treatments listed in Table VIII.

For those panels which sustained no attack by one or two species of marine borers during their entire harbor exposure, reference to the proper table (I through VII) will show that removal was necessary because of attack by other species of borers.

Teredine attack can only be definitely determined by X-ray photography or by removing a panel from test and sawing it in two.

Table VIII. Panels and Treatments Plotted in Figures 1-5

100% Creasote (i/8" panel) 100% Creasote 100% Creasote 100% Creasote (FPL) 70-30 Creasote - Coal Tar	32		1	
		5% Manganous Oxinate in Creorate (1/8* panel)	22	5% Diphenylmethane 2% Malachite Green Oxalate
	33	10% Phenyl Ether 50% Creosote	88	2% Malachite Green Oxalate 5% Dieldrin (double treatment)
	<u>ਡ</u>	1% Phenylmercuric Chloride in Creaste	- 56	2% Molachite Green Oxalate 5% Exdrin (double treatment)
6 70-30 Creoxote - Coal lar	35	1% Phenylmercuric Oleate (solid) in 70-30 Creosote - Coal Tar	8	2% Malachite Green Oxalate 1% Toxophene (double treatment)
7 5% Copper Naphthenate		1% Phenylmercuric Oleate 66% Creosote	19	2% Malachite Green Oxalate 5% Toxaphene (double treatment)
7A 6% Copper Naphthenate		30% Coal Tar	62	1% Toxaphene
8 10% Copper Sulfate in Western Red Cedar	dar 37	1% Phenylmercuric Oleate 74% Creosote	· 	1% Tributy!fin Coconut Fatty Acid Salt
9 1% Tributyltin Coconut Fatty Acid Salt		10% Coal Tar	63	1% Toxophere 1% Tributyltin Coconut Fatty Acid Salt in
10 10% Tributyllin Coconut Fatty Acid Salt	8 ±	5% Phenylmercuric Oleate (solid) in		Douglas Fir
11 1% Tributyltin Oxide		5% Phenylmercuric Oleate (solid) in	2	1% Toxophene 1% Tributyltin Oxide
12 10% Tributyllin Oxide		Creosote		1% Toxaphene
13 1% Triphenyltin Acetate	07	5% Phenylmercuric Oleate (solid) in 70-30 Creosote - Coal Tar Solution		
14 5% Chlordon 50% Creosote	4	<u> </u>		1% Toxaphene .0% Tributyltin Oxide
15 5% Chlordan 50% 70-30 Creosote - Coal Tor	42		- 67	5% Toxaphene 5% Tributyltin Coconut Fatty Acid Salt
16. 10% Chlordan 50% 70-30 Cressote - Coal Tar	43		88	5% Toxa hene 5% Tributyltin Coconut Fatty Acid Salt in Douglas Fir
17 3% Capper Naphthenate 50% 70-30 Creasate - Coal Tar in Dauglas Fir	glos Fir	Creosote (BYD)	69	- 59

2		-			
		ġ Z	regiment	Š	Irealmen:
AN .	The Copper O, note in Crossite (1, 6) panel)	3	2% Iributylfin Oxide in	2	5% Toxophene
					5% Tributyltin Oxide
2	Se Coper Oxinate in Creaming (1.02) manely	45	1% p-Aminopheny Imercuric Acetate	7	5% Toxaphene
			Acid Salt (desible treatment)		5% Tributyllin Oxide
R	3% Solubilized Copper Oxinate	ا سوسیه		72	So. To contrara
	50% Creosote	4	5% Biphenyl	I	5% Tributylfin Oxige in Dougla, Fir
č			2% Malachite Green Oxalate	-	
,	State Copper Stearage in Creosore	Ç	22	2	5% Toxaphene
22	6% Copper Sulfate	i	50% Lineed Oil		10% Tributyltin Oxide
	100% Creosute (double treatment)			7.	2
,		₹	3% Copper Napirthenate		1% Phenylmercinic Office
S	12% Copper Sulfate		50% Linseed Oil in Dauglas Fir		
	100% Creosote (double treatment)			75	5% Tributylfin Commit Fatty Avid Cala
		49	3% Copper Nophthenate		1% Phenylmercurin Olente
74	14.73% Copper Sulfate	:	1% Tributyltín Coconut Fatty Acid Salt		
	20.05% Sodium mono H Arsenate			76	5% Tributaltin Cormut Eathy Acid Col
	100% Creosote (triple treatment) (FPL)	8	3% Copper Naphthenate		5% Phenylmercurin Olasta
3			5% Tribut/Itin Coconut Fatty Acid Salt		
Q	Operation of the state of the s			7	10% Tributy Itin Coconut Fatty Acid Cost
	59% 70-30 Creosofe - Coal Tar	5	50% Solubilized Copper Oxinate		1% Phenylmercuric Oleate
7		٠.	1% Tributyltin Coconut Fatty Acid Salt		
3	10% 70-30 Control of the control of			78	1% Tributyltin Oxide
	100 100 100 100 100 100 100 100 100 100	25	50% Solubilized Copper Oxinote		3% Copper Naphthenate
B	10% Dipheny Insthase	<u>:</u>	3% Irributylfin Coconul Fatty Acid Salt	Ŷ	
	50% Creosote	2	14 73% Conner Culture	*	2% Iributyltin Oxide
		<u> </u>	20.06% Sodium mone H Arsenate		o copper raphrhenain
8	1% Endrin		(double treatment) (FPL)	8	10% Tributyffin Oxide
	50% 70-30 Creosote - Coal Tar in Douglas Fir				3% Copper Naphthenate
ξ		Z,	1% Dieldrin		
	J's Endrin		1% Tributyltin Coconut Fatty Acid Salt	20	Greenheart
	00.5 (:e0001e				
8	5% Endrin	ç.	Se Tellerin	82	Greenheart
	50% 70-30 Creciote - Coal Tar		The part of the pa	83	Legisland Transfer and American
ç		3	1% p-Dimethy laminapheny liner curic. Acetate	}	
7	275 Malachite Green Oxalate 50% (recorte (do.hle transmant)		2% Malachite Green Oxalate	8	Greenheart, methanol extracted
	of the course mediment)		(double treatment)		

Figure 1. Port Hueneme panels not attacked by <u>Limnoria</u> during entire exposure or as of 15 August 1963.

Figure 2. Port Hueneme panels not attacked by teredine borers during entire expusure.

Figure 3. Pearl Harbor panels not attacked by Limnoria during entire exposure or as of 15 August 1963.

Figure 4. Pearl Harbor panels not attacked by Martesia Juring entire exposure or as of 15 ways 1963.

Figure 5. Pearl Harbor panels not attacked by teredine borers during entire exposure.