```
y(+) + 6 y(4) + 25 y(4) = M(1)
         y (4) 00 Y(5) u(+) 00 U(5) = 1
    s 2 Y(s) -sy(0) - y(0) + 6 (s Y(w) - y(0)) + 25 Y(s) = U(s) = 1
    (s^2 + 6s + 25) Y(s) - 5s + 5 - 30 = 1
                  (s^2 + 6s + 25) Y(5) = 5s + 26
          \gamma(s) = 5 \frac{s}{s^2 + 6s + 25} + 26 \frac{1}{s^2 + 6s + 25}
             (9) \vee (10) a = 3, b = 5 = 0 D = \frac{3}{5} < 1
                    => w = V25-97 = V167=4
          y(+) = 5 e-3+ [ cos (4+) - 3 sin (4+)] (-1+)
                +26.4 c-3+ sin(4+) 6(4)
                = e-3+ [5(0)(4+) + 11 sin (4+)] o (+)
                                                              I 10 P
6)
    F(S) = \frac{1/2}{S^2(S+\frac{1}{2})} = \frac{A}{S} + \frac{B}{S^2} + \frac{C}{S+\frac{1}{2}}
= > 1 = As(s+1) + B(s+1) + (s^2)
 s~o: 1 = B 1 = 1
 5~>-1: 1= (1/4 => (=2
 S = \frac{1}{2}: \frac{1}{2} = A = \frac{1}{2} \cdot 1 + 1 \cdot 1 + 2 \cdot \frac{1}{4} = 0 = \frac{1}{2} \cdot A + 1 = 0 = \frac{1}{15} \cdot A = -2
    F(s) = -2 \frac{1}{s} + \frac{1}{s^2} + 2 \frac{1}{s+n/2}
      (2), (3), (5)
                                                                    1,58
      f(+) = (-2++ 2e-2) 0 (+)
                                                  Z5P
```

a) Mac Laurinsche Reihe >> xo = 0 Entwicklungs punkt $f'(0) = \frac{1}{4}$ $f''(0) = \frac{1}{4} = \frac{1}{16}$ $f'''(0) = \frac{2!}{4!} = \frac{2}{64} = \frac{1}{32}$ $f^{(3)}(0) = \frac{3!}{4!} = \frac{6}{12} = \frac{3}{128}$ $f^{(4)}(0) = \frac{4!}{4!} = \frac{24}{102} = \frac{3}{128}$ $f(x) = (4+x)^{-1}$ $f'(x) = (-1) (4+x)^{-2}$ $f''(x) = (-1)(-2)(4+x)^{-3}$ $f^{(63)}(x) = (-1)(-1)(-3)(4+x)^{-4}$ F(4)(x)=(-1)(-2)(-3)(4+x)-5 $f^{(i)}(0) = (-1)^i \frac{i!}{4i+1}$ $f(x) = \sum_{i=0}^{\infty} \frac{f(i)(0)}{i!} (x-0)^i = \sum_{i=0}^{\infty} (-1)^i \frac{1}{y_{i+1}} x^i$ 8 P

b)
$$x_0 = 0$$
 $a_{K} = \frac{(-1)^{K}}{2^{K+1}}$

$$Ra = \lim_{K \to \infty} \frac{1}{|a_{K+1}|} = \lim_{K \to \infty} \frac{1}{2^{K+1}} = \frac{1}{1}$$

$$= \lim_{K \to \infty} \frac{1}{2^{K+1}} = \lim_{K \to \infty} \frac{1}{2^{K+1}} = \frac{1}{1}$$

$$= \lim_{K \to \infty} \frac{1}{2^{K+1}} = \lim_{K \to \infty} \frac{1}{2^{$$

B.3. Fourier-Reihe (10 P)

Seien a_0, a_1, a_2, \dots und b_1, b_2, \dots die Fourier-Koeffizienten zur Funktion

$$f: [-\pi, \pi] \to \mathbb{R}$$

und f werde durch ihre Fourier-Reihe

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} [a_n \cos(nt) + b_n \sin(nt)]$$

dargestellt.

Welcher Zusammenhang besteht zu den Fourier-Koeffizienten $a_{0,g}$, $a_{1,g}$, $a_{2,g}$, $b_{1,g}$ und $b_{2,g}$? **Füllen Sie die Tabelle entsprechend aus**. Die erste Zeile ist schon exemplarisch ausgefüllt.

Falsche oder fehlende Einträge führen zu Punktabzügen innerhalb einer Zeile. (Sie brauchen Ihre Angaben nicht zu begründen.

_	$a_{0,g}$	$a_{1,g}$	$a_{2,g}$	$b_{1,g}$	$b_{2,g}$	
g(t) = -f(t)	$-a_0$	$-a_1$	$-a_2$	$-b_1$	$-b_2$	-
g(t) = f(t) + 2	ao +4	an	az	61	62	2,5
$g(t) = f(t) - \sin(t)$	90	an	az	61-1	62	2,51
g(t) = f(-t)	ao	an	az	- b1	- 62	2,51
$g(t) = 4 \cdot f(t)$	4ao	401	4 az	4 61	4 62	2,5

7 10 P