Review:

- 1) One of the applications of fully controlled bridge in HVDC
 - (preferred for bulk power transmission).
- 2) Main limitations of line commutated bridges are
 - a. Low power factor.
 - b. Harmonics.

3) P.F =
$$\frac{I_{s1}}{I_{rms}}$$
 x D.F

D.F = 1; for 1- Φ uncontrolled bridge.

How to improve the P.F?

P.C.C → Point of common coupling

Current drawn by the load fed from P.E. equipment flows through system impedance.

Voltage at P.C.C is non-sinusoidal

(We had assumed that 'V' is sinusoidal).

$$i_{\alpha} = \frac{2\sqrt{3}}{\pi} I_{0} \left[\sin \omega t - \frac{1}{5} \sin 5\omega t + \frac{1}{7} \sin 7\omega t - \dots \right]$$

- = $6N \pm 1$, Harmonics
- ⇒ Line Commutated converter → causes notches in the source voltage waveform.
- → Source current has harmonics.

Effect of harmonics:

A. In the Rotating machine

- → Increases heating.
- \rightarrow They produce noise.
- → Torque pulsations.

B. In Transformers

 \rightarrow Cu losses \uparrow .

→ Audible noise & heating.

C. In Cables

→ Additional heating.

D. P.F correction capacitors. \rightarrow Thermal voltage stress.

E. Electronic Equipments

→ Affects control system.

→ Maloperation of relays.

Various IEEE & IEC standards (International Electro Technical commission) impose specific limits on the level of current harmonics & voltage notches.

Philosophy - "Prevents harmonic currents travelling back to power system and affecting other customers".

Voltage distortion at P.C.C. is of concern.

- ⇒Depends on the short circuit current capacity at P.C.C.
- \Rightarrow Stricter limits for low value of S.C. current capacity.

IEEE 519

Bus voltage	Max. Individual	Max. $THD(\%)$
	harmonic component(%)	
69kV	3	5

How to filter the source current:

$$1-\Phi$$
 $3^{rd} - 150Hz$

$$5^{th} - 250Hz$$

3-
$$\Phi$$
 5th – 250Hz

$$7^{th} - 350Hz$$

Use of L-C filter (2nd order, -40 dB/decade),Fundamental should not get attenuated(1st order is not possible).

$$\Rightarrow \omega_{c} = \frac{1}{\sqrt{LC}}$$

As ω_c \uparrow , Size of L & C \downarrow .

- \Rightarrow There is only one pulse/ $\frac{1}{2}$ cycle in input source current.
- \Rightarrow If there are large number of pulses/ $\frac{1}{2}$ cycle, frequency of the predominant harmonic can be \uparrow .

 \Rightarrow To have large number of pulses / $\frac{1}{2}$ cycle

Devices should be turned ON/OFF

several times / $\frac{1}{2}$ cycle.

 \Rightarrow In the + ve half having triggered $T_1 \& T_2$. They cannot be turned off by triggering

$$T_3$$
 T_4 till $\omega t = \pi^+$

($T_3 \& T_4$ cannot be turned ON).

- ⇒Either apply ve voltage across the conducting thyristor using additional voltage source & other passive elements (L&C) or use devices having Gate Turn OFF capability. (They should be able to withstand ve voltage)
- ⇒ Self commutating devices
- ⇒ First option → Forced commutation
 - \Rightarrow Size, Noise \uparrow
- \Rightarrow Second option \Rightarrow Elegant, costly.

How many Pulses $/\frac{1}{2}$ cycle & what are the instants of turn ON/OFF.

 \Rightarrow Conduction should begin at $\omega t = 0^+$ So that $\phi_1 = 0$ or D.F. = 1

Use Sinusoidal Pulse Width Modulation Technique to generate large No. of pulses.

- *Magnitude of lower order harmonics \downarrow or $\rightarrow 0$
- *Magnitude of predominant harmonics 1
- :: Frequency of predominant harmonics is high.

Size of filter component ↓

$$\omega_c = \frac{1}{\sqrt{LC}}$$

Sinusoidal PWM Techniques:

- A. Full wave rectified sine wave of 2*supply frequency & variable magnitude (A_m) .
- → Known as modulating wave.
- B. High frequency triangular wave of fixed amplitude
- → Known as carrier wave.
- → Compared, intersection of sine wave with triangular wave determines the switching instants.

- \rightarrow o/p of the comparator has large number of pulses of varying width.
- \rightarrow How to distribute them $S_1 S_4$?
- → Modulating wave should be synchronized with the mains.

In the +ve half of input supply if $S_1 \& S_2$ are ON, source supplies power to the load.

- ⇒ Current is established in the load.
- \Rightarrow Assume load current is constant & ripple free Alternative path for the load current should be provided while opening S_1 & S_2 .
- ⇒ Either have a freewheeling diode across the load

OR

Open S₁ only & close S₃

 \Rightarrow Load 'I' freewheels through S_2 - S_3 .

- \Rightarrow In the + ve half keep S_2 permanently closed & swithching signals for $S_1 \& S_3$ are complimentry. When S₁ S₂ are ON $V_0 = V_i$, $i_s = i_l$ & S_2 S_3 are ON $V_0 = 0$ Similarly in the -ve half closing of S₃ & S₄ results in power transfer to the load.
- \Rightarrow While opening S_3 close S_1 .
- \Rightarrow S₄ closed for entire π radians.

How to choose the no. of pulses/ $\frac{1}{2}$ cycle

No. of pulses/ $\frac{1}{2}$ cycle depends on frequency of triangular wave (Carrier wave).

- \Rightarrow It can be proved that if there are 'N' pulses/ $\frac{1}{2}$ cycle,
 - Frequency of predominant harmonic=(N+1)F,
 - Where $F \rightarrow$ Frequency of the modulating wave or supply.
 - As N \uparrow , Frequency of predominant also \uparrow
- \Rightarrow Easier to Filter.
- \Rightarrow Switching loss \uparrow (& :: converter $\eta \downarrow$)
- \Rightarrow As N \uparrow fast switching devices are required.