Package 'FlowSOM'

December 8, 2019

Determoer 6, 2019
Version 1.18.0
Date 2019-01-18
Title Using self-organizing maps for visualization and interpretation of cytometry data
Depends R ($>= 3.6$), igraph
Imports stats, utils, flowCore, ConsensusClusterPlus, BiocGenerics, tsne, flowWorkspace, CytoML, XML, RColorBrewer
Suggests BiocStyle
Description FlowSOM offers visualization options for cytometry data, by using Self-Organizing Map clustering and Minimal Spanning Trees.
License GPL (>= 2)
LazyData true
<pre>URL http://www.r-project.org, http://dambi.ugent.be</pre>
biocViews CellBiology, FlowCytometry, Clustering, Visualization, Software, CellBasedAssays
RoxygenNote 6.1.1
git_url https://git.bioconductor.org/packages/FlowSOM
git_branch RELEASE_3_10
git_last_commit 850e5b7
git_last_commit_date 2019-10-29
Date/Publication 2019-12-07
Author Sofie Van Gassen [aut, cre], Britt Callebaut [aut], Yvan Saeys [aut]
Maintainer Sofie Van Gassen <sofie.vangassen@ugent.be></sofie.vangassen@ugent.be>
R topics documented:
AddFlowFrame AggregateFlowFrames BuildMST BuildSOM computeBackgroundColor

2 AddFlowFrame

	owFrame Add a flowFrame to the data variable of the FlowSOM object	
lex		43
	UpdateNodeSize	42
	TestOutliers	41
	SOM	40
	SaveClustersToFCS	39
	1	38
		37
	Purity	36
	PlotVariable	35
	PlotStars	33
	plotStarLegend	33
	PlotSD	31
	PlotPies	30
	PlotOverview2D	29
	PlotNumbers	28
		27
		25
		24
	1	23
		22
		21
	NewData	20
	MetaclusterMFIs	19
	metaClustering_consensus	19
	MetaClustering	18
	MetaclusterCVs	17
	MapDataToCodes	17
	Initialize_PCA	16
	Initialize_KWSP	16
	get_markers	15
	get_channels	14
	GetMFIs	14
	GetMetaclusters	13
	GetFlowJoLabels	12
	GetCVs	11
	GetClusters	11
	FMeasure	10
	FlowSOMSubset	9
	FlowSOM	8
	Dist.MST	7

Description

Add a flowFrame to the data variable of the FlowSOM object

AggregateFlowFrames 3

Usage

```
AddFlowFrame(fsom, flowFrame)
```

Arguments

fsom FlowSOM object, as constructed by the ReadInput function

flowFrame to add to the FlowSOM object

Value

FlowSOM object with data added

See Also

ReadInput

AggregateFlowFrames

Aggregate multiple fcs files together

Description

Aggregate multiple fcs files to analyze them simultaneously. A new fcs file is written, which contains about cTotal cells, with ceiling(cTotal/nFiles) cells from each file. Two new columns are added: a column indicating the original file by index, and a noisy version of this for better plotting opportunities (index plus or minus a value between 0 and 0.1).

Usage

```
AggregateFlowFrames(fileNames, cTotal, writeOutput = FALSE,
  outputFile = "aggregate.fcs", writeMeta = FALSE, keepOrder = FALSE,
  verbose = FALSE)
```

Arguments

fileNames	Character vector	containing full	paths to the fcs	files to aggregate

cTotal Total number of cells to write to the output file writeOutput Whether to write the resulting flowframe to a file

outputFile Full path to output file

writeMeta If TRUE, files with the indices of the selected cells are generated

keepOrder If TRUE, the random subsample will be ordered in the same way as they were

originally ordered in the file. Default = FALSE.

verbose If TRUE, prints an update every time it starts processing a new file. Default =

FALSE.

Value

This function does not return anything, but will write a file with about cTotal cells to outputFile

4 BuildMST

See Also

```
ceiling
```

Examples

```
# Define filename
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
# This example will sample 2 times 500 cells.
ff_new <- AggregateFlowFrames(c(fileName,fileName),1000)</pre>
```

BuildMST

Build Minimal Spanning Tree

Description

Add minimal spanning tree description to the FlowSOM object

Usage

```
BuildMST(fsom, silent = FALSE, tSNE = FALSE)
```

Arguments

fsom FlowSOM object, as generated by BuildSOM silent If TRUE, no progress updates will be printed

tSNE If TRUE, an alternative tSNE layout is computed as well

Value

FlowSOM object containing MST description

See Also

```
BuildSOM, PlotStars
```

BuildSOM 5

BuildSOM	Build a self-organizing map	

Description

Build a SOM based on the data contained in the FlowSOM object

Usage

```
BuildSOM(fsom, colsToUse = NULL, silent = FALSE, ...)
```

Arguments

fsom	FlowSOM object containing the data, as constructed by the ReadInput function
colsToUse	column names or indices to use for building the SOM
silent	if TRUE, no progress updates will be printed
• • •	options to pass on to the SOM function (xdim, ydim, rlen, mst, alpha, radius, init, distf, importance)

Value

FlowSOM object containing the SOM result, which can be used as input for the BuildMST function

References

This code is strongly based on the kohonen package. R. Wehrens and L.M.C. Buydens, Self- and Super-organising Maps in R: the kohonen package J. Stat. Softw., 21(5), 2007

See Also

ReadInput,BuildMST

6 CountGroups

computeBackgroundColor

Internal function for computing background nodes

Description

Internal function for computing background nodes

Usage

```
computeBackgroundColor(backgroundValues, backgroundColor,
backgroundLim = NULL, backgroundBreaks = NULL)
```

Arguments

backgroundValues

Values to be used for background coloring, either numerical values or something that can be made into a factor (e.g. a clustering)

backgroundColor

Colorpalette to be used for the background coloring . Can be either a function or an array specifying colors

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of the backgroundValues.

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the length of backgroundColor will be used (default 100).

CountGroups

Calculate differences in cell counts between groups

Description

Calculate differences in cell counts between groups

Usage

```
CountGroups(fsom, groups, plot = TRUE, silent = FALSE)
```

Arguments

fsom	FlowSOM object as generated by BuildSOM
groups	List containing an array with file names for each group

plot Logical. If TRUE, make a starplot of each individual file

silent Logical. If TRUE, print progress messages

Value

Distance matrix

Dist.MST 7

Examples

```
set.seed(1)
# Build the FlowSOM tree on the example file
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")</pre>
flowSOM.res <- FlowSOM(fileName, compensate=TRUE, transform=TRUE,</pre>
                 scale=TRUE,colsToUse=c(9,12,14:18),nClus = 10)
# Have a look at the resulting tree
PlotStars(flowSOM.res[[1]],backgroundValues = as.factor(flowSOM.res[[2]]))
# Select all cells except the branch that corresponds with automated
# cluster 7 (CD3+ TCRyd +) and write te another file for the example
# In practice you would not generate any new file but use your different
# files from your different groups
ff <- flowCore::read.FCS(fileName)</pre>
ff_tmp <- ff[flowSOM.res[[1]]$map$mapping[,1] %in%</pre>
                  which(flowSOM.res[[2]] != 7),]
flowCore::write.FCS(ff_tmp,file="ff_tmp.fcs")
# Make an extra file without cluster 7 and double amount of cluster 10
ff_tmp <- ff[c(which(flowSOM.res[[1]]$map$mapping[,1] %in%</pre>
                               which(flowSOM.res[[2]] != 7)),
               which(flowSOM.res[[1]]$map$mapping[,1] %in%
                               which(flowSOM.res[[2]] == 5))),]
flowCore::write.FCS(ff_tmp,file="ff_tmp2.fcs")
# Compare the original file with the two new files we made
groupRes <- CountGroups(flowSOM.res[[1]],</pre>
              groups=list("AllCells"=c(fileName),
                         "Without_ydTcells"=c("ff_tmp.fcs","ff_tmp2.fcs")))
PlotGroups(flowSOM.res[[1]], groupRes)
# Compare only the file with the double amount of cluster 10
groupRes <- CountGroups(flowSOM.res[[1]],</pre>
              groups=list("AllCells"=c(fileName),
              "Without_ydTcells"=c("ff_tmp2.fcs")))
PlotGroups(flowSOM.res[[1]], groupRes)
```

Dist.MST

Calculate distance matrix using a minimal spanning tree neighbourhood

Description

Calculate distance matrix using a minimal spanning tree neighbourhood

Usage

```
Dist.MST(X)
```

Arguments

Χ

matrix in which each row represents a point

8 FlowSOM

Value

Distance matrix

FlowSOM Run the FlowSOM algorithm

Description

Method to run general FlowSOM workflow. Will scale the data and uses consensus meta-clustering by default.

Usage

```
FlowSOM(input, pattern = ".fcs", compensate = FALSE,
   spillover = NULL, transform = FALSE, toTransform = NULL,
   transformFunction = flowCore::logicleTransform(), scale = TRUE,
   scaled.center = TRUE, scaled.scale = TRUE, silent = TRUE,
   colsToUse, nClus = NULL, maxMeta, importance = NULL, seed = NULL,
   ...)
```

Arguments

input a flowFrame, a flowSet or an array of paths to files or directories

pattern if input is an array of file- or directorynames, select only files containing pattern

compensate logical, does the data need to be compensated

spillover spillover matrix to compensate with If NULL and compensate=TRUE, we will

look for \$SPILL description in fcs file.

transform logical, does the data need to be transformed with a logicle transform

toTransform column names or indices that need to be transformed. If NULL and transform =

TRUE, column names of \$SPILL description in fcs file will be used.

transformFunction

Defaults to logicleTransform()

scale logical, does the data needs to be rescaled

scaled.center see scale scaled.scale see scale

silent if TRUE, no progress updates will be printed

colsToUse column names or indices to use for building the SOM

nClus Exact number of clusters for meta-clustering. If NULL, several options will be

tried (1:maxMeta)

maxMeta Maximum number of clusters to try out for meta-clustering. Ignored if nClus is

specified

importance array with numeric values. Parameters will be scaled according to importance

seed Set a seed for reproducible results

... options to pass on to the SOM function (xdim, ydim, rlen, mst, alpha, radius,

init, distf)

FlowSOMSubset 9

Value

A list with two items: the first is the flowSOM object containing all information (see the vignette for more detailed information about this object), the second is the metaclustering of the nodes of the grid. This is a wrapper function for ReadInput, BuildSOM, BuildMST and MetaClustering. Executing them separately may provide more options.

See Also

scale,ReadInput,BuildSOM, BuildMST,MetaClustering

Examples

 ${\tt FlowSOMSubset}$

FlowSOM subset

Description

Take a subset from a FlowSOM object

Usage

```
FlowSOMSubset(fsom, ids)
```

Arguments

fsom FlowSOM object, as generated by BuildMST ids Array containing the ids to keep

Value

FlowSOM object containg updated data and medianvalues, but with the same grid

10 FMeasure

See Also

BuildMST

Examples

 ${\it FMeasure}$

F measure

Description

Compute the F measure between two clustering results

Usage

```
FMeasure(realClusters, predictedClusters, silent = FALSE)
```

Arguments

```
realClusters Array containing real cluster labels for each sample predictedClusters
```

Array containing predicted cluster labels for each sample

silent Logical, if FALSE (default), print some information about precision and recall

Value

F measure score

GetClusters 11

Examples

```
# Generate some random data as an example
realClusters <- sample(1:5,100,replace = TRUE)
predictedClusters <- sample(1:6, 100, replace = TRUE)
# Calculate the FMeasure
FMeasure(realClusters,predictedClusters)</pre>
```

GetClusters

Get cluster label for all individual cells

Description

Get cluster label for all individual cells

Usage

```
GetClusters(fsom)
```

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

Value

vector label for every cell

Examples

GetCVs

Get CV values for all clusters

Description

Get CV values for all clusters

Usage

GetCVs(fsom)

Arguments

fsom

FlowSOM object as generated by the FlowSOM function or the BuildSOM function

12 GetFlowJoLabels

Value

Matrix with coefficient of variation values for each marker

fileName <- system.file("extdata", "68983.fcs", package="FlowSOM") flowSOM.res <- FlowSOM(fileName, compensate=TRUE, transform=TRUE, scale=TRUE, colsToUse=c(9,12,14:18), nClus=10) cvs <- GetCVs(flowSOM.res) cvs <- GetCVs(flowSOM.res\$FlowSOM)

GetFlowJoLabels Process a flowjo workspace file

Description

Reads a flowjo workspace file using the flowWorkspace library and returns a list with a matrix containing gating results and a vector with a label for each cell from a set of specified gates

Usage

```
GetFlowJoLabels(files, wsp_file, group = "All Samples",
  cell_types = NULL)
```

Arguments

files The fcs files of interest wsp_file The FlowJo wsp file to read

group The FlowJo group to parse. Default "All Samples".

cell_types Cell types to use for final labeling the cells. Should correspond with a subset of

the gate names in FlowJo.

Value

This function returns a list, which for every file contains a list in which the first element ("matrix") is a matrix containing filtering results for each specified gate and the second element ("manual") is a vector which assigns one label to each cell. If only one file is given, only one list is returned instead of a list of lists.

See Also

PlotPies

GetMetaclusters 13

```
gatingResult <- GetFlowJoLabels(fcs_file, wsp_file,</pre>
                                 cell_types = cell_types)
# Check the number of cells assigned to each gate
colSums(gatingResult$matrix)
# Build a FlowSOM tree
flowSOM.res <- FlowSOM(fcs_file,</pre>
                        compensate = TRUE.
                        transform = TRUE,
                        toTransform = 8:18,
                        colsToUse = c(9,12,14:18),
                        nClus = 10,
                        seed = 1)
 # Plot pies indicating the percentage of cell types present in the nodes
 PlotPies(flowSOM.res$FlowSOM,
          gatingResult$manual,
          backgroundValues = flowSOM.res$metaclustering)
```

GetMetaclusters

Get metacluster label for all individual cells

Description

Get metacluster label for all individual cells

Usage

```
GetMetaclusters(fsom, meta = NULL)
```

Arguments

fsom FlowSOM object as generated by the FlowSOM function or the BuildSOM func-

tion

meta Metacluster label for each FlowSOM cluster. If this is NULL, the fsom argument

should be as generated by the FlowSOM function, and fsom\$metaclustering will

be used.

Value

vector label for every cell

14 get_channels

\sim	+ h	1F	T
(10	Τľ	'16	

Get MFI values for all clusters

Description

Get MFI values for all clusters

Usage

```
GetMFIs(fsom, colsUsed = FALSE, prettyColnames = FALSE)
```

Arguments

fsom FlowSOM object as generated by the FlowSOM function or the BuildSOM func-

tion

colsUsed logical. Should report only the columns used to build the SOM. Default =

FALSE.

prettyColnames logical. Should report pretty column names instead of standard column names.

Default = FALSE.

Value

Matrix with median values for each marker

Examples

get_channels

get_channels

Description

Get channel names for an array of markers, given a flowframe

Usage

```
get_channels(ff, markers)
```

Arguments

ff The flowFrame of interest

markers Vector with markers or channels of interest

get_markers 15

Value

Corresponding channel names

See Also

```
get_markers
```

Examples

```
# Read the flowFrame
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
ff <- flowCore::read.FCS(fileName)
get_channels(ff, c("FSC-A", "CD3", "FITC-A"))
get_markers(ff, c("FSC-A", "CD3", "FITC-A"))</pre>
```

 ${\tt get_markers}$

get_markers

Description

Get marker names, given a flowframe. As available in "desc". If this is NA, defaults to channel name.

Usage

```
get_markers(ff, markers)
```

Arguments

ff The flowFrame of interest

markers Vector with markers or channels of interest

Value

Corresponding marker names

See Also

```
get_channels
```

```
# Read the flowFrame
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
ff <- flowCore::read.FCS(fileName)
get_channels(ff, c("FSC-A", "CD3", "FITC-A"))
get_markers(ff, c("FSC-A", "CD3", "FITC-A"))</pre>
```

16 Initialize_PCA

Initialize_KWSP

Select k well spread points from X

Description

Select k well spread points from X

Usage

```
Initialize_KWSP(X, xdim, ydim)
```

Arguments

X matrix in which each row represents a point

xdim x dimension of the grid ydim y dimension of the grid

Value

array containing the selected selected rows

Examples

```
points <- matrix(1:1000, ncol = 10)
selection <- Initialize_KWSP(points, 3, 3)</pre>
```

Initialize_PCA

Create a grid from first 2 PCA components

Description

Create a grid from first 2 PCA components

Usage

```
Initialize_PCA(data, xdim, ydim)
```

Arguments

data matrix in which each row represents a point

xdim x dimension of the grid ydim y dimension of the grid

Value

array containing the selected selected rows

MapDataToCodes 17

Examples

```
points <- matrix(1:1000, ncol = 10)
selection <- Initialize_PCA(points, 3, 3)</pre>
```

MapDataToCodes

Assign nearest node to each datapoint

Description

Assign nearest node to each datapoint

Usage

```
MapDataToCodes(codes, newdata, distf = 2)
```

Arguments

codes matrix with nodes of the SOM

newdata datapoints to assign

distf Distance function (1=manhattan, 2=euclidean, 3=chebyshev, 4=cosine)

Value

Array with nearest node id for each datapoint

MetaclusterCVs

MetaclusterCVs

Description

Compute the coefficient of variation for the metaclusters

Usage

MetaclusterCVs(fsom)

Arguments

fsom

Result of calling the FlowSOM function

Value

Metacluster CVs

18 MetaClustering

Examples

MetaClustering

MetaClustering

Description

Cluster data with automatic number of cluster determination for several algorithms

Usage

```
MetaClustering(data, method, max = 20, ...)
```

Arguments

data Matrix containing the data to cluster
method Clustering method to use
max Maximum number of clusters to try out
... Extra parameters to pass along

Value

Numeric array indicating cluster for each datapoint

See Also

```
metaClustering_consensus
```

```
metaClustering_consensus
```

MetaClustering

Description

Cluster data using hierarchical consensus clustering with k clusters

Usage

```
metaClustering\_consensus(data, k = 7, seed = NULL)
```

Arguments

data Matrix containing the data to cluster

k Number of clusters

seed Seed to pass to consensusClusterPlus

Value

Numeric array indicating cluster for each datapoint

See Also

MetaClustering

Examples

 ${\tt MetaclusterMFIs}$

MetaclusterMFIs

Description

Compute the median fluorescence intensities for the metaclusters

Usage

```
MetaclusterMFIs(fsom)
```

20 NewData

Arguments

fsom Result of calling the FlowSOM function

Value

Metacluster MFIs

Examples

NewData

Map new data to a FlowSOM grid

Description

New data is mapped to an existing FlowSOM object. The input is similar to the readInput function. A new FlowSOM object is created, with the same grid, but a new mapping, node sizes and mean values. The same preprocessing steps (compensation, tranformation and scaling) will happen to this file as was specified in the original FlowSOM call. The scaling parameters from the original grid will be used.

Usage

```
NewData(fsom, input, mad_allowed = 4, compensate = NULL,
   spillover = NULL, transform = NULL, toTransform = NULL,
   transformFunction = NULL, scale = NULL, scaled.center = NULL,
   scaled.scale = NULL)
```

fsom	FlowSOM object
input	A flowFrame, a flowSet or an array of paths to files or directories
mad_allowed	A warning is generated if the distance of the new data points to their closest cluster center is too big. This is computed based on the typical distance of the points from the original dataset assigned to that cluster, the threshold being set to median + mad_allowed * MAD. Default is 4.
compensate	logical, does the data need to be compensated. If NULL, the same value as in the original FlowSOM call will be used.
spillover	spillover matrix to compensate with. If NULL, the same value as in the original FlowSOM call will be used.
transform	logical, does the data need to be transformed. If NULL, the same value as in the original FlowSOM call will be used.

PlotCenters 21

toTransform column names or indices that need to be transformed. If NULL, the same value

as in the original FlowSOM call will be used.

transformFunction

If NULL, the same value as in the original FlowSOM call will be used.

scale Logical, does the data needs to be rescaled. If NULL, the same value as in the

original FlowSOM call will be used.

scaled.center See scale. If NULL, the same value as in the original FlowSOM call will be

used.

scaled.scale See scale. If NULL, the same value as in the original FlowSOM call will be

used.

Value

A new FlowSOM object

See Also

FlowSOMSubset if you want to get a subset of the current data instead of a new dataset

Examples

PlotCenters

Plot cluster centers on a 2D plot

Description

Plot FlowSOM nodes on a 2D scatter plot of the data

Usage

```
PlotCenters(fsom, marker1, marker2, MST = TRUE)
```

Arguments

fsom FlowSOM object, as generated by BuildMST

marker1 Marker to show on the x-axis marker2 Marker to show on the y-axis

MST Type of visualization, if 1 plot tree, else plot grid

22 PlotClusters2D

Value

Nothing is returned. A 2D scatter plot is drawn on which the nodes of the grid are indicated

See Also

```
PlotStars, PlotPies, PlotMarker, BuildMST
```

Examples

PlotClusters2D

Plot nodes on scatter plot

Description

Plot a 2D scatter plot. All cells of fsom\$data are plotted in black, and those of the selected nodes are plotted in red. The nodes in the grid are indexed starting from the left bottom, first going right, then up. E.g. In a 10x10 grid, the node at top left will have index 91.

Usage

```
PlotClusters2D(fsom, marker1, marker2, nodes, col = "#FF0000",
   maxBgPoints = 10000, pchBackground = ".", pchCluster = ".",
   main = "", xlab = fsom$prettyColnames[marker1],
   ylab = fsom$prettyColnames[marker2], xlim = c(min(fsom$data[,
   marker1]), max(fsom$data[, marker1])), ylim = c(min(fsom$data[,
   marker2]), max(fsom$data[, marker2])), ...)
```

fsom	FlowSOM object, as generated by BuildMST
marker1	Marker to plot on the x-axis
marker2	Marker to plot on the y-axis
nodes	Nodes of which the cells should be plotted in red
col	Colors for all the cells in the selected nodes (ordered array)
maxBgPoints	Maximum number of background points to plot
pchBackground	Character to use for background cells
pchCluster	Character to use for cells in cluster

PlotGroups 23

main	Title of the plot
xlab	Label for the x axis
ylab	Label for the y axis
xlim	Limits for the x axis
ylim	Limits for the y axis
	Other parameters to pass on to plot

Value

Nothing is returned. A plot is drawn in which all cells are plotted in black and the cells of the selected nodes in red.

See Also

```
PlotNumbers, PlotCenters, BuildMST
```

Examples

PlotGroups

Plot differences between groups

Description

Plot FlowSOM trees, where each node is represented by a star chart indicating mean marker values, the size of the node is relative to the mean percentage of cells present in each

Usage

```
PlotGroups(fsom, groups, tresh = NULL, p_tresh = 0.05,
heatmap = FALSE, ...)
```

fsom	FlowSOM object, as generated by BuildMST or the first list item of FlowSOM
groups	groups result as generated by CountGroups
tresh	Relative difference in groups before the node is coloured
p_tresh	Threshold on p-value from wilcox-test before the node is coloured. If this is not NULL, tresh will be ignored.
heatmap	If TRUE, the scores are plotted in a gradient instead of only the selection that passes the threshold
	Other parameters to pass to PlotStars

24 PlotLabels

Value

A vector containing the labels assigned to the nodes for all groups except the first

See Also

PlotStars,CountGroups

Examples

PlotLabels

Plot a label in each node

Description

Plot FlowSOM grid or tree, with in each node a label. Especially useful to show metacluster numbers

Usage

```
PlotLabels(fsom, labels, view = "MST", main = NULL,
  nodeSize = fsom$MST$size, fontSize = 1, backgroundValues = NULL,
  backgroundColor = function(n) {      grDevices::rainbow(n, alpha = 0.3)
  }, backgroundLim = NULL, backgroundBreaks = NULL)
```

fsom	FlowSOM object, as generated by BuildMST
labels	A label for every node
view	Preferred view, options: "MST", "grid" or "tSNE" (if this option was selected while building the MST)
main	Title of the plot
nodeSize	Nodesize. The plot might be easier to read if this is a constant number, e.g. 10 or 15

PlotMarker 25

fontSize Fontsize, passed to label.cex backgroundValues

Values to be used for background coloring, either numerical values or something that can be made into a factor (e.g. a clustering)

backgroundColor

Colorpalette to be used for the background coloring . Can be either a function or an array specifying colors

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of the backgroundValues.

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the length of backgroundColor will be used (default 100).

Value

Nothing is returned. A plot is drawn in which each node is assigned a label

See Also

PlotNumbers

Examples

PlotMarker

Plot marker values

Description

Plot FlowSOM grid or tree, coloured by node values for a specific marker

Usage

```
PlotMarker(fsom, marker = NULL, view = "MST", main = NULL,
  colorPalette = grDevices::colorRampPalette(c("#00007F", "blue",
  "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")),
  backgroundValues = NULL, backgroundColor = function(n) {
    grDevices::rainbow(n, alpha = 0.3) }, backgroundBreaks = NULL,
    backgroundLim = NULL)
```

26 PlotMarker

Arguments

fsom FlowSOM object, as generated by BuildMST

marker Name or index of marker to plot

view Preferred view, options: "MST" (default), "grid" or "tSNE" (if this option was

selected while building the MST)

main Title of the plot

colorPalette Color palette to use

backgroundValues

Values to be used for background coloring, either numerical values or something

that can be made into a factor (e.g. a clustering)

backgroundColor

Colorpalette to be used for the background coloring . Can be either a function

or an array specifying colors

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the

length of backgroundColor will be used (default 100).

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of

the backgroundValues.

Value

Nothing is returned. A plot is drawn in which each node is coloured depending on its median value for the given marker

References

This visualization technique resembles SPADE results. M. Linderman, P. Qiu, E. Simonds and Z. Bjornson (). spade: SPADE – An analysis and visualization tool for Flow Cytometry. R package version 1.12.2. http://cytospade.org

See Also

```
PlotStars,PlotPies, PlotCenters,BuildMST
```

PlotNode 27

PlotNode	Plot star chart

Description

Plot a star chart indicating median marker values of a single node

Usage

```
PlotNode(fsom, id, markers = fsom$map$colsUsed,
  colorPalette = grDevices::colorRampPalette(c("#00007F", "blue",
  "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")),
  main = paste0("Cluster ", id))
```

Arguments

fsom	FlowSOM object, as generated by ${\tt BuildMST}$ or the first element of the list returned by ${\tt FlowSOM}$
id	Id of the node to plot (check PlotNumbers to get the ids)
markers	Array of markers to use. Default: the markers used to build the tree
colorPalette	Colorpalette to be used for the markers
main	Title of the plot

Value

Nothing is returned. A plot is drawn in which the node is represented by a star chart indicating the median fluorescence intensities.

See Also

```
PlotStars, PlotNumbers, FlowSOM
```

28 PlotNumbers

Description

Plot FlowSOM grid or tree, with in each node a number indicating its index

Usage

```
PlotNumbers(fsom, view = "MST", main = NULL,
  nodeSize = fsom$MST$size, fontSize = 1, backgroundValues = NULL,
  backgroundColor = function(n) {         grDevices::rainbow(n, alpha = 0.3)
  }, backgroundLim = NULL, backgroundBreaks = NULL)
```

Arguments

fsom FlowSOM object, as generated by BuildMST

view Preferred view, options: "MST", "grid" or "tSNE" (if this option was selected

while building the MST)

main Title of the plot

nodeSize Nodesize. The plot might be easier to read if this is a constant number, e.g. 10

or 15

fontSize Fontsize, passed to label.cex

backgroundValues

Values to be used for background coloring, either numerical values or something

that can be made into a factor (e.g. a clustering)

backgroundColor

Colorpalette to be used for the background coloring . Can be either a function

or an array specifying colors

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of

the backgroundValues.

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the length of backgroundColor will be used (default 100).

Value

Nothing is returned. A plot is drawn in which each node is assigned a number

See Also

```
PlotMarker, PlotStars, PlotPies, PlotCenters, BuildMST
```

PlotOverview2D 29

```
flowSOM.res <- BuildMST(flowSOM.res)

# Plot the node IDs
PlotNumbers(flowSOM.res)

# Adapt node size for easier readability
PlotNumbers(flowSOM.res, nodeSize=14)</pre>
```

PlotOverview2D

Plot metaclusters on scatter plots

Description

Write multiple 2D scatter plots to a png file. All cells of fsom\$data are plotted in black, and those of the selected metaclusters are plotted in color.

Usage

```
PlotOverview2D(fsom, markerlist, metaclusters, colors = NULL, ff, ...)
```

Arguments

FlowSOM object, as generated by FlowSOM. If using a FlowSOM object as generated by BuildMST, it needs to be wrapped in a list, list(FlowSOM = fsom,

metaclustering = metaclustering).

markerlist List in which each element is a pair of marker names

metaclusters Metaclusters of interest

colors Named vector with color value for each metacluster. If NULL (default) color-

brewer "paired" is interpolated

ff flowFrame to use as reference for the marker names
... Other parameters to pass on to PlotClusters2D

Value

Nothing is returned, but a plot is drawn for every markerpair and every metacluster. The individual cells are colored, and the center of each FlowSOM cluster is indicated with a blue cross.

See Also

PlotClusters2D

30 PlotPies

```
# Plot cells
markers_of_interest = list(c("FSC-A", "SSC-A"),
                           c("CD3", "CD19"),
                           c("TCRb", "TCRyd"),
                           c("CD4", "CD8"))
metaclusters_of_interest = 1:10
# Recommended to write to png
png("Markeroverview.png",
   width = 500 * length(markers_of_interest),
   height = 500 * length(metaclusters_of_interest))
PlotOverview2D(flowSOM.res,
               markerlist = markers_of_interest,
               metaclusters = metaclusters_of_interest,
               pchCluster = 19,
               ff = flowCore::read.FCS(fileName))
dev.off()
```

PlotPies

Plot comparison with other clustering

Description

Plot FlowSOM grid or tree, with pies indicating another clustering or manual gating result

Usage

```
PlotPies(fsom, cellTypes, view = "MST",
  colorPalette = grDevices::colorRampPalette(c("white", "#00007F",
  "blue", "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red")),
  backgroundValues = NULL, backgroundColor = function(n) {
    grDevices::rainbow(n, alpha = 0.3) }, backgroundLim = NULL,
    backgroundBreaks = NULL, legend = TRUE, main = "")
```

Arguments

fsom FlowSOM object, as generated by BuildMST

cellTypes Array of factors indicating the celltypes

view Preferred view, options: "MST", "grid" or "tSNE" (if this option was selected

while building the MST)

colorPalette Colorpalette to be used for the markers

backgroundValues

Values to be used for background coloring, either numerical values or something

that can be made into a factor (e.g. a clustering)

 ${\it backgroundColor}$

Colorpalette to be used for the background coloring . Can be either a function

or an array specifying colors

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of

the backgroundValues.

PlotSD 31

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the

length of backgroundColor will be used (default 100).

legend Logicle, if T add a legend

main Title of the plot

Value

Nothing is returned. A plot is drawn in which each node is represented by a pie chart indicating the percentage of cells present of each cell type. At the end, the layout is set to 1 figure again.

See Also

```
PlotStars, PlotMarker, PlotCenters, BuildMST
```

```
#' # Identify the files
fcs_file <- system.file("extdata", "68983.fcs", package = "FlowSOM")</pre>
wsp_file <- system.file("extdata", "gating.wsp", package = "FlowSOM")</pre>
# Specify the cell types of interest for assigning one label per cell
cell_types <- c("B cells",</pre>
                 "gd T cells", "CD4 T cells", "CD8 T cells",
                 "NK cells","NK T cells")
# Parse the FlowJo workspace
library(flowWorkspace)
gatingResult <- GetFlowJoLabels(fcs_file, wsp_file,</pre>
                                 cell_types = cell_types)
# Check the number of cells assigned to each gate
colSums(gatingResult$matrix)
# Build a FlowSOM tree
flowSOM.res <- FlowSOM(fcs_file,</pre>
                        compensate = TRUE,
                        transform = TRUE,
                        toTransform = 8:18,
                        colsToUse = c(9,12,14:18),
                        nClus = 10,
                        seed = 1)
 # Plot pies indicating the percentage of cell types present in the nodes
 PlotPies(flowSOM.res$FlowSOM,
          gatingResult$manual,
          backgroundValues = flowSOM.res$metaclustering)
```

32 PlotSD

Description

— Function in development, use with caution — Plot FlowSOM grid or tree, coloured by standard deviaton

Usage

```
PlotSD(fsom, marker = NULL, view = "MST", main = NULL,
  colorPalette = grDevices::colorRampPalette(c("#00007F", "blue",
  "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")),
  symmetric = FALSE, lim = NULL, backgroundValues = NULL,
  backgroundColor = function(n) {      grDevices::rainbow(n, alpha = 0.3)
  }, backgroundLim = NULL, backgroundBreaks = NULL)
```

Arguments

fsom FlowSOM object, as generated by BuildMST

marker If a marker is given, the sd for this marker is shown. Otherwise, the maximum

ratio is used.

view Preferred view, options: "MST", "grid" or "tSNE" (if this option was selected

while building the MST)

main Title of the plot colorPalette Color palette to use

symmetric Plot colours symmetric around zero

lim Variable limits

backgroundValues

Values to be used for background coloring, either numerical values or something

that can be made into a factor (e.g. a clustering)

backgroundColor

Colorpalette to be used for the background coloring . Can be either a function

or an array specifying colors

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of

the backgroundValues.

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the

length of backgroundColor will be used (default 100).

Details

From suggestion in email: I am currently considering a way to summarize for each node all the SD as one value. After computing the SD matrix (nrow = # nodes, ncol = # markers), I compute the median value per column, then divide the SD matrix by it, and finally take the maximum ratio of each line (aka node). Doing so I got a unique dispersion score per node.

Value

Nothing is returned. A plot is drawn in which each node is coloured depending on its standard deviation

See Also

PlotMarker, PlotStars, PlotPies, PlotCenters, BuildMST

plotStarLegend 33

Examples

plotStarLegend

Plot legend for star plot

Description

Plot a single star chart, annotated with labels

Usage

```
plotStarLegend(labels, colors = grDevices::rainbow(length(labels)),
    main = "")
```

Arguments

labels Names to show in the legend

colors Corresponding colors
main Title of the legend

Value

Nothing is returned. A plot is drawn with 1 star chart, which is filled completely and annotated with the given labels.

See Also

PlotStars

PlotStars

Plot star charts

Description

Plot FlowSOM grid or tree, where each node is represented by a star chart indicating median marker values

34 PlotStars

Usage

```
PlotStars(fsom, markers = fsom$map$colsUsed, view = "MST",
  colorPalette = grDevices::colorRampPalette(c("#00007F", "blue",
  "#007FFF", "cyan", "#7FFF7F", "yellow", "#FF7F00", "red", "#7F0000")),
  starBg = "white", backgroundValues = NULL,
  backgroundColor = function(n) {      grDevices::rainbow(n, alpha = 0.3)
  }, backgroundLim = NULL, backgroundBreaks = NULL,
  backgroundSize = NULL, thresholds = NULL, legend = TRUE,
  query = NULL, main = "")
```

Arguments

fsom FlowSOM object, as generated by BuildMST

markers Array of markers to use. Default: the markers used to build the tree

view Preferred view, options: "MST", "grid" or "tSNE" (if this option was selected

while building the MST)

colorPalette Colorpalette to be used for the markers

starBg Background color inside the star circle. Default is "white". Can also be put to

"transparent" (as was the case for older versions).

backgroundValues

Values to be used for background coloring, either numerical values or something

that can be made into a factor (e.g. a clustering)

backgroundColor

Colorpalette to be used for the background coloring. Can be either a function

or an array specifying colors

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of

the backgroundValues.

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the

length of backgroundColor will be used (default 100).

backgroundSize Size of the background circles. Default 15.

thresholds Optional. Array containing a number for each of the markers to be used as the

split between high/low. If provided, the percentage of positive cells is indicated

instead of the MFI

legend Logical, if TRUE add a legend

query Show a low/high profile for certain markers in the legend. See also QueryStarPlot

main Title of the plot

Value

Nothing is returned. A plot is drawn in which each node is represented by a star chart indicating the median fluorescence intensities. Resets the layout back to 1 plot at the end.

See Also

PlotPies, PlotMarker, PlotCenters, BuildMST

PlotVariable 35

Examples

PlotVariable

Plot a variable for all nodes

Description

Plot FlowSOM grid or tree, coloured by node values given in variable

Usage

Arguments

fsom FlowSOM object, as generated by BuildMST

variable Vector containing a value for each node

view Preferred view, options: "MST", "grid" or "tSNE" (if this option was selected

while building the MST)

main Title of the plot colorPalette Color palette to use

symmetric Plot colours symmetric around zero

lim Variable limits

backgroundValues

Values to be used for background coloring, either numerical values or something

that can be made into a factor (e.g. a clustering)

backgroundColor

Colorpalette to be used for the background coloring . Can be either a function

or an array specifying colors

backgroundLim Only used when backgroundValues are numerical. Defaults to min and max of

the backgroundValues.

backgroundBreaks

Breaks to pass on to cut, to split numerical background values. If NULL, the

length of backgroundColor will be used (default 100).

Purity Purity

Value

Nothing is returned. A plot is drawn in which each node is coloured depending on its value for the given variable

See Also

```
PlotMarker, PlotStars, PlotPies, PlotCenters, BuildMST
```

Examples

Purity

Calculate mean weighted cluster purity

Description

Calculate mean weighted cluster purity

Usage

```
Purity(realClusters, predictedClusters, weighted = TRUE)
```

Arguments

Value

Mean purity score, worst score, number of clusters with score < 0.75

```
# Generate some random data as an example
realClusters <- sample(1:5,100,replace = TRUE)
predictedClusters <- sample(1:6, 100, replace = TRUE)
# Calculate the FMeasure
Purity(realClusters,predictedClusters)</pre>
```

QueryStarPlot 37

|--|

Description

Identify nodes in the tree which resemble a certain profile of "high" or "low" marker expressions.

Usage

```
QueryStarPlot(fsom, query, plot = TRUE, color = "#ca0020",
  debug = FALSE, ...)
```

Arguments

fsom	FlowSOM object, as generated by BuildMST or the first list item of FlowSOM
query	Array containing "high" or "low" for the specified column names of the Flow-SOM data
plot	If true, a plot with a gradient of scores for the nodes is shown
color	Color to use for nodes with a high score in the plot
debug	If TRUE, some extra output will be printed
	Other parameters to pass to PlotStars

Value

A list, containing the ids of the selected nodes, the individual scores for all nodes and the scores for each marker for each node

38 ReadInput

Description

Take some input and return FlowSOM object containing a matrix with the preprocessed data (compensated, transformed, scaled)

Usage

```
ReadInput(input, pattern = ".fcs", compensate = FALSE,
   spillover = NULL, transform = FALSE, toTransform = NULL,
   transformFunction = flowCore::logicleTransform(), scale = FALSE,
   scaled.center = TRUE, scaled.scale = TRUE, silent = FALSE)
```

Arguments

input a flowFrame, a flowSet or an array of paths to files or directories

pattern if input is an array of file- or directorynames, select only files containing pattern

compensate logical, does the data need to be compensated

spillover spillover matrix to compensate with If NULL and compensate=TRUE, we will look

for \$SPILL description in fcs file.

transform logical, does the data need to be transformed

toTransform column names or indices that need to be transformed. If NULL and transform=TRUE,

column names of \$SPILL description in fcs file will be used.

transformFunction

Defaults to logicleTransform()

scale logical, does the data needs to be rescaled

scaled.center see scale
scaled.scale see scale

silent if TRUE, no progress updates will be printed

Value

FlowSOM object containing the data, which can be used as input for the BuildSOM function

See Also

```
scale,BuildSOM
```

SaveClustersToFCS 39

SaveClustersToFCS

Write FlowSOM clustering results to the original FCS files

Description

Write FlowSOM clustering results to the original FCS files

Usage

```
SaveClustersToFCS(fsom, original_files, pp_files = original_files,
  selection_files = NULL, silent = FALSE)
```

Arguments

fsom FlowSOM object as generated by BuildSOM

original_files FCS files that should be extended

pp_files FCS files that correspond to the input of FlowSOM

selection_files

Files indicating which cells of the original files correspond to the input files

silent If FALSE (default), print some extra output

Value

Saves the extended fcs file as [originalName]_FlowSOM.fcs

40 SOM

SOM Build a self-organizing map

Description

Build a self-organizing map

Usage

```
SOM(data, xdim = 10, ydim = 10, rlen = 10, mst = 1,
    alpha = c(0.05, 0.01), radius = stats::quantile(nhbrdist, 0.67) *
    c(1, 0), init = FALSE, initf = Initialize_KWSP, distf = 2,
    silent = FALSE, codes = NULL, importance = NULL)
```

Arguments

data	Matrix containing the training data
xdim	Width of the grid
ydim	Hight of the grid
rlen	Number of times to loop over the training data for each MST
mst	Number of times to build an MST
alpha	Start and end learning rate
radius	Start and end radius
init	Initialize cluster centers in a non-random way
initf	Use the given initialization function if init==T (default: Initialize_KWSP)
distf	Distance function (1=manhattan, 2=euclidean, 3=chebyshev, 4=cosine)
silent	If FALSE, print status updates
codes	Cluster centers to start with
importance	array with numeric values. Parameters will be scaled according to importance

Value

A list containing all parameter settings and results

References

This code is strongly based on the kohonen package. R. Wehrens and L.M.C. Buydens, Self- and Super-organising Maps in R: the kohonen package J. Stat. Softw., 21(5), 2007

See Also

BuildSOM

TestOutliers 41

TestOutliers	Test if any cells are too far from their cluster centers

Description

For every cluster, the distance from the cells to the cluster centers is used to label cells which deviate too far as outliers. The threshold is chosen as the median distance + mad_allowed times the median absolute deviation of the distances.

Usage

```
TestOutliers(fsom, mad_allowed = 4, fsom_reference = NULL,
    plot = FALSE, img_file = "testOutliers.pdf")
```

Arguments

fsom	FlowSOM object
mad_allowed	Number of median absolute deviations allowed. Default = 4.
fsom_reference	Flow SOM object to use as reference. If NULL (default), the original fsom object is used.
plot	Should a plot be generated showing the distribution of the distances. Default is FALSE.
img_file	If plot is TRUE, the output will be written to this file. Default is "testOutliers.pdf"

Value

A new FlowSOM object

See Also

FlowSOMSubset if you want to get a subset of the current data instead of a new dataset

42 UpdateNodeSize

UpdateNodeSize

Description

Add size property to the graph based on cellcount for each node

Usage

```
UpdateNodeSize(fsom, count = NULL, reset = FALSE, transform = sqrt,
  maxNodeSize = 15, shift = 0, scale = NULL)
```

Arguments

fsom FlowSOM object, as generated by BuildMST

count Absolute cell count of the sample

reset Logical. If TRUE, all nodes get the same size

transform Transformation function. Use e.g. square root to let counts correspond with area

of node instead of radius

maxNodeSize Maximum node size after rescaling. Default: 15

shift Shift of the counts, defaults to 0

scale Scaling of the counts, defaults to the maximum of the value minus the shift.

With shift and scale set as default, the largest node will be maxNodesize and an

empty node will have size 0

Value

Updated FlowSOM object

See Also

BuildMST

Index

```
AddFlowFrame, 2
                                                    PlotPies, 12, 22, 26, 28, 30, 32, 34, 36
AggregateFlowFrames, 3
                                                    PlotSD, 31
                                                    plotStarLegend, 33
BuildMST, 4, 5, 9, 10, 21-24, 26-32, 34-37, 42
                                                    PlotStars, 4, 22-24, 26-28, 31-33, 33, 36, 37
BuildSOM, 4, 5, 9, 38, 40
                                                    PlotVariable, 35
                                                    Purity, 36
ceiling, 4
computeBackgroundColor, 6
                                                    QueryStarPlot, 34, 37
CountGroups, 6, 23, 24
cut, 6, 25, 26, 28, 31, 32, 34, 35
                                                    ReadInput, 3, 5, 9, 38
                                                    SaveClustersToFCS, 39
Dist.MST, 7
                                                    scale, 8, 9, 21, 38
FlowSOM, 8, 23, 27, 29, 37
                                                    SOM, 40
FlowSOMSubset, 9, 21, 41
                                                    TestOutliers, 41
flowWorkspace, 12
FMeasure, 10
                                                    UpdateNodeSize, 42
get_channels, 14, 15
get_markers, 15, 15
GetClusters, 11
GetCVs, 11
GetFlowJoLabels, 12
GetMetaclusters, 13
GetMFIs, 14
{\tt Initialize\_KWSP}, \textcolor{red}{16}
Initialize_PCA, 16
MapDataToCodes, 17
MetaclusterCVs, 17
MetaClustering, 9, 18, 19
metaClustering_consensus, 18, 19
MetaclusterMFIs, 19
NewData, 20
PlotCenters, 21, 23, 26, 28, 31, 32, 34, 36
PlotClusters2D, 22, 29
PlotGroups, 23
PlotLabels, 24
PlotMarker, 22, 25, 28, 31, 32, 34, 36
PlotNode, 27
PlotNumbers, 23, 25, 27, 28
PlotOverview2D, 29
```