#### Diffractive Jet Production in DIS

# Probing the Structure of Colour Singlet Exchange

## Frank-Peter Schilling / DESY

http://www.desy.de/~fpschill

#### H1 Collaboration





## Fermilab and Madison May 2001

- Introduction
- ullet Diffractive DIS and  $oldsymbol{F}_2^{D(3)}$
- Diffractive jet production
- Results
- Summary and conclusions

#### **HERA** and the H1 Detector



H1, ZEUS: ep collisions at

 $\sqrt{s}=320~{
m GeV}$ 

HERA-B: p-beam on fixed target:

CP violation in  $B^0ar{B^0}$ 

HERMES: **e**-beam on polarized target:

Spin structure



## Deep Inelastic Scattering (DIS) at HERA



$$Q^2 = -q^2 = (k - k')^2$$
  
Photon virtuality,  
"Resolution power"

$$x = \frac{-q^2}{2P \cdot q} \, (0 < x < 1)$$
 Parton momentum fraction in  $\boldsymbol{p}$ 

ullet Highly virtual point-like photon  $oldsymbol{\gamma}^*$  in DIS at HERA probes proton structure with unprecedented resolution





- Scattering off coloured object:
  - $\rightarrow p$  breaks up ("proton remnant")

## Large Rapidity Gap (LRG) Events

ullet 10% of DIS events for exhibit large gap without hadronic activity in outgoing  $oldsymbol{p}$  region



- $\gamma^*$  scatters off colorless state in p ("Pomeron")
- $oldsymbol{ ilde{p}}$  (or low-mass excitation) escapes through beampipe



 $t=(p-p')^2$ : (momentum transfer) $^2$  at  $m{p}$  vertex  $m{M}_{m{X}}$ ,  $m{M}_{m{Y}}$ : Masses of  $m{X}$  and  $m{Y}$ 

$$x_{I\!\!P} = rac{q \cdot (p-Y)}{q \cdot p} = rac{Q^2 + M_X^2 - t}{Q^2 + W^2 - M_p^2}$$

 $\rightarrow$  long. momentum fraction transferred from p to exchange  $\beta = \frac{-q^2}{q\cdot(p-Y)} = \frac{Q^2}{Q^2 + M_X^2 - t}$ 

ightarrow fraction of exchange momentum carried by q coupling to  $\gamma$ 

#### Reminder: The "Pomeron"

• Introduced as pseudo-particle to parameterize elastic high energy scattering at small momentum transfers:







- Pomeron trajectory:  $\alpha(t) = \alpha(0) + \alpha' t = 1.08 + 0.25 t$
- ullet Differential and total cross section:  $rac{d\sigma}{dt} \sim rac{1}{s^2} |T(s,t)|^2 = f(t) \left(rac{s}{s_0}
  ight)^{2lpha(t)-2} \ \sigma_{tot} \sim rac{1}{s} {
  m Im}(T(s,t))|_{(t=0)} = s^{lpha(0)-1}$

⇒ Today: Understand colour singlet exchange in terms of QCD (quark and gluon dynamics)!

#### **Selection of LRG Events**

1. Tagging of p with "Roman Pots" (measure t, small stat.):



2. Large Rapidity Gap Requirement (integr. over  $M_Y, t$ ):



3. Analysis of final state  $M_X$  system (integr. over  $M_Y, t$ ):



# Colour Singlet Exchange Processes in $\gamma^*p$ Interactions



- ightharpoonup Photon  $ho^*$  can either fluctuate into vector meson or dissociate into high-mass system  $m{X}$
- ightharpoonup Proton  $oldsymbol{p}$  either stays intact (elastic scattering) or dissociates into low-mass baryonic system  $oldsymbol{Y}$

## Diffractive DIS: Probing IP Structure

Inclusive DIS: Structure function  $F_2(x, Q^2)$ :

$$rac{\mathrm{d}^2 \sigma(incl.)}{\mathrm{d} oldsymbol{x} \, \mathrm{d} oldsymbol{Q}^2} = rac{4 \pi lpha^2}{oldsymbol{x} oldsymbol{Q}^4} \left(1 - y + rac{oldsymbol{y}^2}{2}
ight) oldsymbol{F}_2(oldsymbol{x}, oldsymbol{Q}^2)$$



Diffractive DIS: Diffractive structure function  $m{F}_2^D$ :

If Y is not measured, integrate over  $M_Y, t$ :

$$F_2^{D(3)}(eta,Q^2,x_{I\!\!P}) = \int_{m_P}^{M_{Y,max}} \mathrm{d}M_Y \int_{t_2}^{t_1} \mathrm{d}t \; F_2^{D(5)}$$

 $\Rightarrow$  Large gap between X and  $Y \Leftrightarrow M_X$  ,  $M_Y$  ,  $x_{I\!\!P}$  small

# The Diffractive Structure Function $F_2^{D(3)}$

H1 Measurement of  $F_2^{D(3)}(x_{I\!\!P},oldsymbol{eta},Q^2)$  :

$$x_{I\!\!P}F_2^D \qquad \qquad \beta 
ightarrow$$



#### **Diffractive Parton Distributions**

- Inclusive DIS factorization theorem:

$$F_2(x,Q^2) \sim C_i \otimes p_i \;\; ext{(+higher twist)}$$

- Diffractive DIS [proof by J. Collins in 1998]:

$$F_2(x,Q^2,x_{I\!\!P},t) \sim C_i \otimes p_i^D ~~ ext{(+higher twist)}$$

- ullet valid at fixed  $oldsymbol{x}_{I\!\!P},\,oldsymbol{t}$
- $oldsymbol{\phi} oldsymbol{p_i^D}$ : 'conditional probabilities', obey DGLAP evolution
- ullet determine  $oldsymbol{p_i^D}$  in inclusive diffr. scattering, then predict exclusive processes
- ullet same  $C_i$  as in inclusive DIS
- Additional assumption: factorizing  $\boldsymbol{x}_{I\!\!P}$  dependence ['Regge factorization']



$$F_2^{D(3)}(x_{I\!\!P},m{eta},m{Q}^2) = f_{I\!\!P/p}(x_{I\!\!P}) \quad imes \quad F_2^{I\!\!P}(m{eta},m{Q}^2)$$

# Diffractive PDF's from $F_2^{D(3)}$

• Observation of (positive!) scaling violations:



- Strongly suggestive of g dominated exchange!
- ullet DGLAP QCD analysis of  $oldsymbol{F_2^D}$  yields diffractive PDF's:



Gluons

$$\gg$$

Quarks

 $[g^D]$  indirectly determined from scal. viol.

→ large uncertainty]

## **Diffractive Dijet Production**

#### Motivation:

- Direct sensitivity to  $g^D$  through  $\mathcal{O}(\alpha_s)$  process (boson gluon fusion):
- ullet Jet  $P_T$  provides second hard scale

#### Kinematics:



#### $M_{12}$

- Invariant mass of two leading jets

$$z_{I\!\!P}^{(jets)}pprox rac{Q^2+M_{12}^2}{Q^2+M_X^2}$$

- Momentum fraction of exch. entering hard scattering

#### **Proton Rest Frame Picture**

ullet Photon fluctuates into  $qar{q}$  or  $qar{q}g$  state long before interaction, then scatters elastically off proton at rest

#### Proton rest frame

#### Proton infinite momentum frame



 $qar{q}$   $\Leftrightarrow$  diffr. q scattering (quark parton model)  $qar{q}g$   $\Leftrightarrow$  diffr. g scattering (boson gluon fusion)

ullet For large diffractive masses  $M_X$  or high  $p_T$  final states, qar q g configurations are expected to dominate

#### **Event Selection**



- ullet DIS Signature:  $4 < Q^2 < 80 \; {
  m GeV}; \; 0.1 < y < 0.7 \; {
  m Scattered \; electron} \; e'$
- ullet Diffractive Signature:  $x_{I\!\!P} < 0.05; \; M_Y, t \; {
  m small}$  Rapidity gap in outgoing p' direction  $(3.2 < \eta < 7.5)$
- ullet 2-Jet Signature:  $N_{
  m Jet} \geq 2; \; p_T > 4 \; {
  m GeV}$  CDF cone jet-algorithm in  $m{\gamma}m{p}$  CMS

$$\mathcal{L} = 18.0 \; \mathrm{pb}^{-1} \qquad N_{\mathrm{2-Jet}} = 2.500 \quad N_{\mathrm{3-Jet}} = 130$$

## **Cross Section Measurement**

- Correction for detector effects to 'stable' particle level
- Correction for QED radiative effects at lepton vertex
- Bin-by-bin correction procedure

Kinematic Range of Hadron Level Cross Sections 
$$4 < Q^2 < 80 \; \mathrm{GeV}^2$$
  $0.1 < y < 0.7$   $x_{I\!\!P} < 0.05$   $M_Y < 1.6 \; \mathrm{GeV}$   $|t| < 1.0 \; \mathrm{GeV}^2$   $N_{\mathrm{jets}} \geq 2 \; \mathrm{or} \; N_{\mathrm{jets}} = 3$   $p_{T,jet}^* > 4 \; \mathrm{GeV}$   $-3 < \eta_{jet}^* < 0$ 

#### Main systematic uncertainties:

- Hadronic energy scales of calorimeters
- Trigger efficiency
- Model dependence of correcion
- Scattered electron measurement
- $\Rightarrow$  Systematic error dominates (15 30%)

## Results: General Properties of Dijet Events





- Significant energy not contained in dijets, some preference for **IP** hemisphere
- ullet  $M_{12} \ll M_X$  typically
- $\Rightarrow$  exclusive 2-jets  $(q\bar{q})$  just small part of cross section!

## **QCD** Factorization at Work

Predict diffr. dijet cross sections with PDF's obtained from inclusive  $m{F}_2^{D(3)}$  measurement:

[resolved  $\gamma^*$  component included]



⇒ Consistent with QCD factorization in diffractive DIS

## **Diffractive Gluon Distribution**

Dijets directly constrain shape  $\underline{\mathsf{and}}$  normalization of  $oldsymbol{g}^{oldsymbol{D}}$ :



[res.  $\gamma^*$ ,  $I\!\!R$  and quark contributions small]

- H1 fit 2: very good agreement with data
- H1 fit 3: overshoots at high z<sub>IP</sub>
- ACTW-D (Alvero, Collins, Terron, Whitmore fits): too high

 $\Rightarrow$  Strong support for fully factorizable diffr. PDF's in DIS which are gluon-dominated with momentum distr. flat in z

Proton rest frame picture:  $qar{q}g\gg qar{q}$  states

#### Features of Diffractive PDF's

#### **H1 Diffractive Dijets**



- ullet Data consistent with DGLAP evolution of PDF's with factorization scale  $oldsymbol{\mu}^2 = oldsymbol{Q}^2 + oldsymbol{p}_T^2$
- Also compatible with factorization of  $x_{I\!\!P}$  dependence  $[f_{I\!\!P/P}(x_{I\!\!P}) imes p_i^D(z,\mu^2)]$  No visible variation of  $\alpha_{I\!\!P}(0)$  with  $z_{I\!\!P}$

## Energy Dependence $\alpha_{I\!\!P}(0)$

• Shape of  $x_{I\!\!P}$  distribution sensitive to energy dependence of cross section:



Parameterization used (Regge motivated):

$$egin{align*} f_{I\!\!P/P}(x_{I\!\!P},t) &\sim \left(rac{1}{x_{I\!\!P}}
ight)^{2lpha_{I\!\!P}(t)-1} e^{Bt} \ lpha_{I\!\!P}(t) &= lpha_{I\!\!P}(0) + lpha_{I\!\!P}'t \ [B = 4.6 \ {
m GeV}^{-2}, lpha_{I\!\!P}' = 0.26 \ {
m GeV}^{-2}] \end{aligned}$$

#### Fit Result:

$$\alpha_{I\!\!P}(0) = 1.17^{\,+0.03}_{\,-0.03}\,({
m stat.})\,^{\,+0.06}_{\,-0.06}\,({
m syst.})\,^{\,+0.03}_{\,-0.07}\,({
m model})$$

- $\Rightarrow$  Consistent with H1- $F_2^{D(3)}$  [ $Q^2$  similar]
- ullet  $oldsymbol{eta}$  distribution: Jets are small  $oldsymbol{eta}$ , compared with  $oldsymbol{F}_2^D$

#### **Resolved Virtual Photon Contribution**

Since  $Q^2 > 4 \text{ GeV}^2$ ,  $p_T^2 > 16 \text{ GeV}^2$   $\Rightarrow$  Jets can "resolve" virtual photon [expected from inclusive dijet production]

#### **H1 Diffractive Dijets**



$$x_{\gamma}^{(jets)} = rac{(E-p_Z)_{jets}}{(E-p_Z)_X}$$

 $oldsymbol{E_{rem}}$  in  $oldsymbol{\gamma^*}$  hemisphere

Resolved  $\gamma^*$  contribution according to "SaS-2D" parameterization [Schuler, Sjöstrand]

- $m{x}_{\gamma}^{(jets)}$  cross section: Improvement at low  $m{x}_{\gamma}^{(jets)}$  if resolved contribution is added
- ullet Corresponding improvement at high  $oldsymbol{E_{rem}^{\gamma}}$

#### **Soft Colour Neutralization**

#### - Soft Colour Interactions (SCI)

[Edin, Ingelman, Rathsman]



- Standard DIS, add. soft colour rearrangemens of final state partons may result in rapidity gap
- Two versions:
  - Original version: One additional parameter (rearrangement prob), tuned to  $m{F_2^D}$
  - Improved version: "Generalized area law"; improved description of  $m{F}_2^{m{D}}$  at low  $m{Q}^2$

#### - Semi-classical model

[Buchmüller, Gehrmann, Hebecker]



ullet  $qar{q}$ ,  $qar{q}g$  states scatter elastically off large p, treated as superposition of uncorrelated colour fields

## **Results: Soft Colour Neutralization**





- SCI (orig.) and semi-classical model give reasonable shapes, but underestimate 2-jet cross section by factor 2
- SCI (area law) reproduces normalization, but fails in shapes

 $\Rightarrow$  Sensitivity to differences between models which all (have been tuned to) describe  $F_2^{D(3)}$ !

## Colour Dipole / 2-gluon Exchange Models

 Simplest parton level realization of colour singlet exchange: two gluons with cancelling colour charges



• 'Dipole picture':  $q\bar{q}, q\bar{q}g$  configurations form (effective) colour dipole scattering off proton

Diffractive cross section:

$$\left. \frac{\mathrm{d} \sigma_{T,L}^{\gamma^* p}}{\mathrm{d} t} \right|_{t=0} \sim \int \mathrm{d}^2 \mathbf{r} \int_0^1 \mathrm{d} \alpha |\Psi_{T,L}(\alpha,\mathbf{r})|^2 |\hat{\sigma}^2(r^2,x,...)|$$

Dipole cross section may be expressed as:

$$\hat{oldsymbol{\sigma}}(x,\mathrm{r}) \sim \int rac{\mathrm{d}^2 \mathrm{l}_t}{l_t^2} \left[ 1 - \mathrm{e}^{i\mathrm{r}\cdot\mathrm{l}} 
ight] lpha_s(l_t^2) \mathcal{F}(x,l_t^2)$$

Where  $oldsymbol{\mathcal{F}}(oldsymbol{x},oldsymbol{l}_t^2)$  is un-integrated gluon density in proton

## Colour Dipole / 2-gluon Exchange Models (II)

- Small  $P_T$ , large size dipoles: similar to soft hadron hadron scattering
- ullet High  $oldsymbol{P_T}$ , small size dipoles: perturbation theory may be applicable



#### Saturation Model:

[Golec-Biernat, Wüsthoff]

- ullet Ansatz for  $m{\sigma_{Dipole}}$  which interpolates between pert.  $(m{\sim}~1/Q^2)$  and non-pert.  $(m{\sim}~const.)$  parts of inclusive  $m{F_2(x,Q^2)}$
- ullet parameters fixed by fit to  $F_2(x,Q^2)$ ,  $oldsymbol{\sigma}^D$  then predicted
- ullet Strong  $p_T$  ordering assumed:  $p_{T,g} \ll p_{T,q}$

# 2-gluon exchange calculation by Bartels et al. (BJLW): [Bartels, Jung, Lotter, Kyrieleis, Wüsthoff]

- Perturbative calculation in low- $\beta$ , low- $x_{\mathbb{P}}$  limit
- For  $q\bar{q}g$  require high  $p_T$  of all 3 partons (only for jets!)
- ullet non- $oldsymbol{p_T}$  ordered configurations included, need cut-off for  $oldsymbol{p_{T,q}}$

## Results: 2-Gluon Exchange

 $x_{I\!\!P} < 0.01$ 

 $\Rightarrow$  avoid  $I\!\!R$  exch.; p PDF's g-dominated

#### H1 Diffractive Dijets - $x_{IP} < 0.01$ H1 Data $d\sigma / dQ^2 [pb/GeV^2]$ 10 <sup>2</sup> res. IP (dir.+res.γ\*) 10 10 1 10 10 10 20 60 80 40 5 [GeV] $Q^2 [GeV^2]$ dσ / dz <sup>(jets)</sup> [pb] $d\sigma / dp_{T,rem}^{(IP)}[pb/GeV]$ 10 <sup>2</sup> **BJLW** (qq only) 10 10 1 1 0.4 0.6 8.0 0 0.2 2 z <sup>(jets)</sup> IP $p_{T,rem}^{\,(IP)} [GeV]$ $\boldsymbol{p_T}$ of " $\boldsymbol{I\!\!P}$ remnant"

- tiny  $qar{q}$  contribution
- ullet BJLW  $\sim$  OK if  $p_{T,q} > 1.5~{
  m GeV}$
- Saturation Model too low
- $m{p}_{T,rem}^{(I\!\!P)}$  not able to discriminate ;-(

#### 3-Jet Production

#### Features:

- Limited statistics: 130 3-jets for  $\mathcal{L} = 18.0 \text{ pb}^{-1}$
- Kinematically forced to  $x_{I\!\!P}>0.01$



- Data above LO QCD prediction based on diffr. PDF's if MEPS is used for higher order approximation
- CDM does better job

[Difference MEPS/CDM much smaller for dijets]

• 2-gluon exchange (BJLW) low

## **Comparison with Tevatron Results**

CDF measurement of diffractive dijet production with leading anti-proton in  $p\bar{p}$  collisions:

Effective diffr. structure function  $ar{F}_{JJ}^D(eta)$ 



 Prediction based on diffractive PDF's extracted at HERA one order of magnitude above measured cross section!

## ⇒ Serious breaking of factorization!

Important to understand to get unified picture!

#### **Summary**

- ullet Diffr. dijets tightly constrain diffractive gluon distribution  $m{g^D}$  (shape and norm.), in contrast to  $m{F_2^{D(3)}}$  measurements
- Data favour diffr. PDF's, evolving with DGLAP, strongly dominated by gluons with momentum distribution rel. flat in z ("H1 fit 2")
- ullet Consistent picture from  $F_2^{D(3)}$  and jet measurements: Concept of factorizing diffr. PDF's in DIS [Collins] works.
- Consistent with factorizing  $x_{I\!\!P}$  dependence with  $\alpha_{I\!\!P}(0)=1.17$  ("Regge factorization")
- ullet In P rest frame:  $qar q g \gg qar q$  configurations
- SCI and Semiclassical models not yet able to simultaneously give correct shape and normalizations of jet cross sections
- Improved models calculations based on 2-gluon exchange can describe part of dijet cross section

#### **Conclusion**

Major step forward in understanding diffraction:

- Diffractive jet production is a powerful tool to illuminate QCD structure of colour singlet exchange, in particular the role of gluons!
- ullet Sensitivity to discriminate between models which all describe inclusive diffraction  $(F_2^D)$ !
- 2-gluon exchange calculations in agreement with diffractive
   DIS data for the first time!



Results presented here are published by the H1 collaboration:

H1 Collaboration, C. Adloff et~al., "Diffractive Jet Production in Deep-Inelastic  $e^+p$  Collisions at HERA", DESY 00-174, hep-ex/0012051, acc. by Eur. Phys. J. C