CAN207 Continuous and Discrete Time Signals and Systems

Lecture-9

CTFT properties and Frequency responses

Zhao Wang

Zhao.wang@xjtlu.edu.cn

Room EE322

Content

- 3. Properties of CTFT
 - Linearity, time and frequency scaling, time and frequency shifting, conjugation and symmetry, duality, Parseval's relation, convolution and multiplication properties
- 4. System characterization
 - Frequency response of a system
 - Impulse response VS frequency response
 - Systems in series connection
 - LCCDE VS frequency response

3.1 Linearity

- Fourier transform is a linear operator.
 - For any two signals $x_1(t)$ and $x_2(t)$ with

$$x_1(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(\omega)$$

$$x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_2(\omega)$$

– with any two constants α_1 and α_2 , it can be shown that

$$\alpha_1 x_1(t) + \alpha_2 x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} \alpha_1 X_1(\omega) + \alpha_2 X_2(\omega)$$

• Proof: $\mathcal{F}\{\alpha_1 x_1(t) + \alpha_2 x_2(t)\} = \int_{-\infty}^{\infty} [\alpha_1 x_1(t) + \alpha_2 x_2(t)] e^{-j\omega t} dt$ $= \int_{-\infty}^{\infty} \alpha_1 x_1(t) e^{-j\omega t} dt + \int_{-\infty}^{\infty} \alpha_2 x_2(t) e^{-j\omega t} dt$

 $= \alpha_1 \int_{-\infty}^{\infty} x_1(t) e^{-j\omega t} dt + \alpha_2 \int_{-\infty}^{\infty} x_2(t) e^{-j\omega t} dt$

3.2 Time Shifting

• For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

– it can be shown that

$$x(t-\tau) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega) e^{-j\omega\tau}$$

- Proof: $\mathcal{F}\left\{x\left(t-\tau\right)\right\} = \int_{-\infty}^{\infty} x\left(t-\tau\right) e^{-j\omega t} dt$
 - let $\lambda = t \tau$, get

$$\mathcal{F}\left\{x(t-\tau)\right\} = \int_{-\infty}^{\infty} x(\lambda) e^{-j\omega\lambda} e^{-j\omega\tau} d\lambda$$
$$= e^{-j\omega\tau} \int_{-\infty}^{\infty} x(\lambda) e^{-j\omega\lambda} d\lambda$$
$$= e^{-j\omega\tau} X(\omega)$$

Example: Time shifting a two-sided exponential signal

$$x(t) = e^{-a|t-\tau|}, \quad a > 0$$

$$e^{a(t-\tau)}$$

$$e^{-a(t-\tau)}$$

3.2 Time Shifting

$$x(t-\tau) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega) e^{-j\omega\tau}$$

• A time-shifting in time domain is equivalent to a linear phase shift in frequency domain (i.e., multiplying with a complex exponential).

magnitude
$$|G(\omega)| = |e^{-j\omega t_0}X(\omega)| = |e^{-j\omega t_0}||X(\omega)| = |X(\omega)|;$$

phase $\langle G(\omega) = \langle \{e^{-j\omega t_0}X(\omega)\} = \langle e^{-j\omega t_0} + \langle X(\omega) = -\omega t_0 + \langle X(\omega) \rangle$.

- The magnitude spectrum depends only on the shape of a signal, in time domain, which is unchanged in a time shift.
- In a time shift only the phase spectrum will be changed.

Quiz 1

• To illustrate the usefulness of the linearity and time-shifting properties, let us consider the evaluation of the Fourier transform of the signal x(t) shown below:

• With the knowledge that FT of $x_1(t)$ is $X_1(\omega) = \frac{2\sin(\omega/2)}{\omega}$, find the expression of the FT of x(t).

3.3 Scaling

• For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

- it can be shown that

$$x(at) \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{1}{|a|} X\left(\frac{\omega}{a}\right) \longleftarrow$$

- where a is any non-zero and real-valued constant.
- Proof:

$$\mathcal{F}\left\{x\left(at\right)\right\} = \int_{-\infty}^{\infty} x\left(at\right) e^{-j\omega t} dt$$

- let $\lambda = at$, then

$$t = \frac{\lambda}{a}$$
 and $dt = \frac{d\lambda}{a}$

- If a > 0, then the integral limits unchanged under the variable change, so

$$\mathcal{F}\left\{x\left(at\right)\right\} = \frac{1}{a} \int_{-\infty}^{\infty} x\left(\lambda\right) e^{-j\omega\lambda/a} d\lambda$$
$$= \frac{1}{a} X\left(\frac{\omega}{a}\right) , \quad a > 0$$

 If a < 0, swapping the lower and upper limits of the integral, so it changes to

$$\mathcal{F}\left\{x\left(\lambda\right)\right\} = -\frac{1}{a} \int_{-\infty}^{\infty} x\left(\lambda\right) e^{-j\omega\lambda/a} d\lambda$$
$$= -\frac{1}{a} X\left(\frac{\omega}{a}\right) , \quad a < 0$$

It's possible to combine them.

3.3 Scaling

• The property suggests that compressing (expanding) the signal in time would expand (compress) the spectrum in frequency.

3.4 Duality

For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

– implies that

$$X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\omega)$$

- Time domain and frequency domain are symmetric.
 - This property suggests if signal A's frequency spectrum is signal B, then signal B's frequency spectrum takes a form similar to signal A.
- Using linear frequency f instead of angular frequency ω , there is:

$$X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} x(-f)$$

Proof:

– replace variable ω by λ :

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\lambda) e^{j\lambda t} d\lambda$$

- change t to $-\omega$, get

$$x(-\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\lambda) e^{-j\lambda\omega} d\lambda$$

– then change λ to t, it becomes:

$$x\left(-\omega\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X\left(t\right) \, e^{-jt\omega} \, dt$$

– and multiply 2π , that is:

$$2\pi x (-\omega) = \int_{-\infty}^{\infty} X(t) e^{-jt\omega} dt$$

 which is the inverse FT equation, meaning:

$$X(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 2\pi x (-\omega)$$

3.4 Duality

$$x_1(t) = \begin{cases} 1, & |t| < T_1 \\ 0, & |t| > T_1 \end{cases} \stackrel{\mathfrak{F}}{\longleftrightarrow} X_1(j\omega) = \frac{2\sin\omega T_1}{\omega}$$

$$x_2(t) \doteq \frac{\sin Wt}{\pi t} \stackrel{\mathfrak{F}}{\longleftrightarrow} X_2(j\omega) = \begin{cases} 1, & |\omega| < W \\ 0, & |\omega| > W \end{cases}$$

Quiz 2

Consider using duality to find the FT of the signal:

$$g(t) = \frac{2}{1+t^2}$$

• Hint: recall the FT pair $x(t) = e^{-a|t|} \stackrel{\mathcal{F}}{\longleftrightarrow} \frac{2a}{a^2 + \omega^2}$.

3.5 Frequency Shifting

• For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

– it can be shown that

$$x(t) e^{j\omega_0 t} \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega - \omega_0)$$

- Proof
 - Method 1: directly apply the forward FT equation:

$$\mathcal{F}\left\{x\left(t\right) e^{j\omega_{0}t}\right\} = \int_{-\infty}^{\infty} x\left(t\right) e^{j\omega_{0}t} e^{-j\omega t} dt$$
$$= \int_{-\infty}^{\infty} x\left(t\right) e^{-j(\omega-\omega_{0})t} dt$$
$$= X\left(\omega - \omega_{0}\right)$$

- Method 2: using the duality principle in conjunction with the time shifting property

$$x(t) \overset{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

$$x(t-\tau) \overset{\mathcal{F}}{\longleftrightarrow} X(\omega) e^{-j\omega\tau}$$

$$\downarrow \text{Apply the duality}$$

$$X(t) \overset{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\omega)$$

$$X(t) e^{-jt\tau} \overset{\mathcal{F}}{\longleftrightarrow} 2\pi x(-\omega-\tau)$$

$$\downarrow \text{Let } \tilde{x}(t) = X(t) \text{ and }$$

$$\tilde{X}(\omega) = 2\pi x(-\omega)$$

$$\text{substitue } \omega_0 = -\tau$$

$$\tilde{x}(t) \overset{\mathcal{F}}{\longleftrightarrow} \tilde{X}(\omega)$$

$$\tilde{x}(t) e^{j\omega_0 t} \overset{\mathcal{F}}{\longleftrightarrow} \tilde{X}(\omega-\omega_0)$$

3.6 Conjugation and Conjugate symmetry

Conjugation Property

- if
$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$
, then $x^*(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X^*(-\omega)$

• Proof:

$$X^{*}(j\omega) = \left[\int_{-\infty}^{+\infty} x(t)e^{-j\omega t} dt \right]^{*}$$
$$= \int_{-\infty}^{+\infty} x^{*}(t)e^{j\omega t} dt.$$

– replacing ω by - ω , get

$$X^*(-j\omega) = \int_{-\infty}^{\infty} x^*(t)e^{-j(-\omega)t}dt$$

• Conjugate symmetry:

- if x(t) is real, then $X(\omega)$ has conjugate symmetry:

$$X(-\omega) = X^*(\omega)$$

– i.e. Hermitian symmetry

• Proof:

- take conjugate of $X(\omega)$

$$X^*(\omega) = \left[\int_{-\infty}^{\infty} x(t)e^{-j\omega t}dt \right]^*$$
$$= \int_{-\infty}^{\infty} x^*(t)e^{j\omega t}dt$$
$$= \int_{-\infty}^{\infty} x(t)e^{-j(-\omega)t}dt = X(-\omega)$$

3.6 Conjugation and Conjugate symmetry

- FT of even signals
 - If the real-valued signal x(t) is an even function of time, the resulting transform $X(\omega)$ is *real*-valued for all ω.

$$x(-t) = x(t)$$
, all t

$$\downarrow$$

$$\text{Im } \{X(\omega)\} = 0 \text{ , all } \omega$$

- $X(\omega)$ is also a *real and even* function of ω .

- FT of odd signals
 - If the real-valued signal x(t) is an odd function of time, the resulting transform $X(\omega)$ is *imaginary*-valued for all ω .

$$x(-t) = -x(t)$$
, all t

$$\downarrow$$

$$\operatorname{Re} \{X(\omega)\} = 0$$
, all ω

- $X(\omega)$ is an *imaginary and odd* function of ω .

3.7 Differentiation

For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

– it can be shown that

$$\frac{d^n}{dt^n} \left[x \left(t \right) \right] \stackrel{\mathcal{F}}{\longleftrightarrow} \left(j \omega \right)^n X \left(\omega \right)$$

This is a particularly important property, as it replaces the operation of differentiation in the time domain with that of multiplication by $j\omega$ in the frequency domain.

• Proof:

$$\begin{split} \frac{d}{dt} \left[x \left(t \right) \right] = & \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{d}{dt} \left[X \left(\omega \right) \, e^{j\omega t} \right] \, d\omega \\ = & \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[j\omega \, X \left(\omega \right) \right] \, e^{j\omega t} \, d\omega \\ = & \mathcal{F}^{-1} \left\{ j\omega \, X \left(\omega \right) \right\} \end{split}$$

$$\frac{d}{dt} \left[x \left(t \right) \right] \stackrel{\mathcal{F}}{\longleftrightarrow} j \omega X \left(\omega \right)$$

$$\frac{d}{dt} \left[\frac{d}{dt} \left[x \left(t \right) \right] \right] = \frac{d}{dt} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} j\omega X \left(\omega \right) e^{j\omega t} df \right]$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{d}{dt} \left[j\omega X \left(\omega \right) e^{j\omega t} \right] df$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\left(j\omega \right)^{2} X \left(\omega \right) \right] e^{j\omega t} df$$

$$= \mathcal{F}^{-1} \left\{ \left(j\omega \right)^{2} X \left(\omega \right) \right\}$$

$$\frac{d^{2}}{dt^{2}}\left[x\left(t\right)\right] \stackrel{\mathcal{F}}{\longleftrightarrow} \left(j\omega\right)^{2} X\left(\omega\right)$$

3.7 Differentiation

- Application: electrical circuits with steady sinusoidal source $A \cos(\omega t + \theta)$.
- V-I relationship of three elementary components: R, L and C.
 - Resistor: $v_R = Ri_R$
 - Inductor: $v_L = L \frac{di_L}{dt}$
 - Capacitor: $i_C = C \frac{dv_C}{dt}$
- The KVL or KCL of a circuit should be a differntial equation as shown in Lecture 6, such as:

$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} + \frac{1}{RC} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{LC} y(t) = \frac{1}{RC} \frac{\mathrm{d}v}{\mathrm{d}t}.$$

- In phasor form (express all the timedependent variables, i.e. voltages and currents as $\mathbf{A} = A \angle \theta$.
- V-I relationship:
 - Resistor: $V_R = RI_R$
 - Inductor: $V_L = j\omega I_L L$
 - Capacitor: $I_C = j\omega V_C C$
 - more importantly, the integral becomes easier:

$$V_C = \frac{I_C}{j\omega C}$$

• The differential equation changes to:

$$(j\omega)^2 \mathbf{Y} + \frac{j\omega}{RC} \mathbf{Y} + \frac{1}{LC} \mathbf{Y} = \frac{j\omega}{RC} \mathbf{V}$$

3.8 Integration

For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

– it can be shown that

$$\int_{-\infty}^{t} x(\lambda) d\lambda \iff \underbrace{\frac{X(\omega)}{j\omega}} + \underbrace{\pi X(0) \delta(\omega)}$$

Since differentiation in the time domain corresponds to multiplication by $j\omega$ in the frequency domain, one might conclude that integration should involve division by $j\omega$ in the frequency domain.

The impulse term on the right-hand side reflects the DC or average value that can result from integration.

3.8 Integration

- Example: find the FT of the unit step u(t).
- Solution:
 - Recall the FT of the unit impulse $\delta(t)$:

$$\delta(t) \stackrel{\mathcal{F}}{\longleftrightarrow} 1 = G(\omega)$$

– The unit step u(t) is the integral of $\delta(t)$, so:

$$X(\omega) = \frac{G(\omega)}{j\omega} + \pi G(0)\delta(\omega)$$

- since $G(\omega) \equiv 1$, so $X(\omega)$ is:

$$X(\omega) = \frac{1}{i\omega} + \pi\delta(\omega)$$

- Observe that we can apply the differentiation property:

$$\delta(t) = \frac{du(t)}{dt} \stackrel{\mathfrak{F}}{\longleftrightarrow} j\omega \left[\frac{1}{j\omega} + \pi \delta(\omega) \right] = 1$$

3.9 Parseval's relation

For a transform pair

$$x(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X(\omega)$$

– it can be shown that

$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

• Proof:

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} x(t) x^*(t) dt$$

$$= \int_{-\infty}^{+\infty} x(t) \left[\frac{1}{2\pi} \int_{-\infty}^{+\infty} X^*(j\omega) e^{-j\omega t} d\omega \right] dt.$$

$$\int_{-\infty}^{+\infty} |x(t)|^2 dt = \int_{-\infty}^{+\infty} x(t) x^*(t) dt$$

- The relation suggests that one may determine the energy of x(t) from its FT $X(\omega)$;
- As a result, $|X(\omega)|^2$ is referred to as the energy-density spectrum of the signal x(t).
- (extended) the energy-density spectrum $|X(\omega)|^2$ can also be calculated as the Fourier transform of the *autocorrelation* of the signal.

3.9 Parseval's relation

- Example: Calculate the energy of the CT signal $e^{-at}u(t)$ in the time and frequency domains.
- Verify that Parseval's relation is valid by comparing the two answers.
- Solution:

- Time domain:
$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{0}^{\infty} e^{-2at} dt = \left[\frac{e^{-2at}}{-2a}\right]_{0}^{\infty} = \frac{1}{2a}$$

- Its FT is:
$$e^{-at}u(t) \stackrel{\text{CTFT}}{\longleftrightarrow} \frac{1}{a+i\omega}$$

- Frequency domain:
$$E_x = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X(\omega)|^2 d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{1}{a^2 + \omega^2} d\omega$$

$$= \frac{1}{2\pi} \left[\frac{1}{a} \tan^{-1} \left(\frac{\omega}{a} \right) \right]^{\infty} = \frac{1}{2a}$$

3.10 Convolution Property

For two transform pairs

$$x_1(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(\omega)$$
 and $x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_2(\omega)$

- it can be shown that

$$x_1(t) * x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(\omega) X_2(\omega)$$

• Proof:

$$\mathcal{F}\left\{x_{1}\left(t\right) * x_{2}\left(t\right)\right\} = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x_{1}(\lambda) x_{2}(t-\lambda) d\lambda\right] e^{-j\omega t} dt$$

$$= \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x_{1}(\lambda) x_{2}(t-\lambda) e^{-j\omega t} dt\right] d\lambda$$

$$= \int_{-\infty}^{\infty} x_{1}(\lambda) \left[\int_{-\infty}^{\infty} x_{2}(t-\lambda) e^{-j\omega t} dt\right] d\lambda = \left[\int_{-\infty}^{\infty} x_{1}(\lambda) e^{-j\omega \lambda} d\lambda\right] X_{2}(\omega)$$

$$= X_{1}(\omega) X_{2}(\omega)$$

$$\mathcal{F}\left\{x_{2}(t-\lambda)\right\} = X_{2}(\omega) e^{-j\omega \lambda}$$

Convolution between two

signals in the time domain

multiplication of the CTFTs

of the two signals in the

is equivalent to the

frequency domain.

3.10 Convolution Property

• Recall the relationship among the input x(t), output y(t) and the impulse response of a system h(t) (lecture 6):

- In time domain: $y(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau = x(t)*h(t)$
- In Frequency domain, using the convolution property, there is: $Y(\omega) = X(\omega)H(\omega)$
- Example: in response to the input signal $x(t) = e^{-t}u(t)$, find the spectrum of the output from an LTIC system with the impulse response $h(t) = e^{-2t}u(t)$.

3.11 Multiplication Property

For two transform pairs

$$x_1(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_1(\omega)$$
 and $x_2(t) \stackrel{\mathcal{F}}{\longleftrightarrow} X_2(\omega)$

– it can be shown that

$$x_1(t) \ x_2(t) \ \stackrel{\mathcal{F}}{\longleftrightarrow} \ \frac{1}{2\pi} X_1(\omega) * X_2(\omega)$$

• Proof:

$$\frac{1}{2\pi} X_1(\omega) * X_2(\omega) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X_1(\lambda) X_2(\omega - \lambda) d\lambda$$

- Two most important applications of this property:
 - sampling
 - modulation will be addressed later.

$$\mathcal{F}^{-1}\left\{\frac{1}{2\pi}X_{1}(\omega)*X_{2}(\omega)\right\} = \frac{1}{2\pi}\int_{-\infty}^{\infty} \left[\frac{1}{2\pi}\int_{-\infty}^{\infty}X_{1}(\lambda)X_{2}(\omega-\lambda)d\lambda\right]e^{j\omega t}d\omega$$

$$= \frac{1}{2\pi}\int_{-\infty}^{\infty}X_{1}(\lambda)\left[\frac{1}{2\pi}\int_{-\infty}^{\infty}X_{2}(\omega-\lambda)e^{j\omega t}d\omega\right]d\lambda$$

$$x_{2}(t)e^{j\lambda t}$$

$$=x_2(t)\left[\frac{1}{2\pi}\int_{-\infty}^{\infty}X_1(\lambda)e^{j\lambda t}d\lambda\right]$$
$$=x_1(t)x_2(t)$$

4.1 Frequency Response $\frac{x(t)}{t}$

x(t) h(t) y(t)

• In time domain, the output signal y(t) can be obtained by taking the convolution of the input signal x(t) and the impulse response of the system h(t):

$$y(t) = x(t) * h(t)$$

• Using the convolution property, the relationship is:

$$Y(\omega) = X(\omega)H(\omega)$$

- $X(\omega)$ and $Y(\omega)$ are the spectrums (CTFTs) of the input and output signals.
- $H(\omega) = Y(\omega)/X(\omega)$ defines the operation of the system, called the *Frequency* response of the system.
- There exists such a relationship:

frequency response
$$H(\omega) = \int_{-\infty}^{\infty} \frac{\text{impulse response}}{h(t)} e^{-j\omega t} dt$$

- They form a FT pair as: $h(t) \stackrel{\mathcal{F}}{\longleftrightarrow} H(\omega)$

Example

• The impulse response of the RC circuit as shown is

$$h\left(t\right) = \frac{1}{RC} e^{-t/RC} u\left(t\right)$$

- 1. known impulse response \rightarrow frequency response;
- 2. input-output relationship

• Solution:
$$H(\omega) = \frac{1}{1+j\omega RC}$$

 $\Theta(\omega)$

4.2 Systems in Series

• The impulse response h(t) specifies an LTI system, then the frequency response $H(\omega)$ also specifies the system.

$$Y(\omega) = X(\omega)H_1(\omega)H_2(\omega)$$

One observation is that we can treat the cascaded system as one LTI system $H(\omega)$

$$Y(\omega) = X(\omega)(H_1(\omega)H_2(\omega))$$

$$H(\omega) = H_1(\omega)H_2(\omega)$$

Another observation is that the order of the two systems does not matter

$$Y(\omega) = X(\omega)H_2(\omega)H_1(\omega)$$

$$H(\omega) = H_2(\omega)H_1(\omega)$$

Quiz 3

- Consider the cascade combination of two systems shown in (a):
- Let the input-output relationships of the two subsystems be given as

$$Sys_1 \{x(t)\} = 3 x(t)$$

 $Sys_2 \{w(t)\} = w(t-2)$

- Write the relationship between $X(\omega)$ and $Y(\omega)$;
- Let the order of the two subsystems be changed as shown in (b). Write the relationship between $X(\omega)$ and $\widetilde{Y}(\omega)$.

4.3 LCCDE VS Frequency response

• Linear constant-coefficient differential equation:

$$\sum_{k=0}^{n} a_k \frac{\mathrm{d}^k x}{\mathrm{d}t^k} = \sum_{k=0}^{m} b_k \frac{\mathrm{d}^k x}{\mathrm{d}t^k}.$$

- Convert to frequency domain, using $\frac{d^n x}{dt^n} \stackrel{\text{CTFT}}{\longleftrightarrow} (j\omega)^n X(\omega)$
- So the LCCDE changes to:

$$\sum_{k=0}^{n} a_k (j\omega)^k Y(\omega) = \sum_{k=0}^{m} b_k (j\omega)^k X(\omega)$$

• The frequency response is obtained by:

$$H(\omega) = \underbrace{\frac{Y(\omega)}{X(\omega)}}_{x_{i}} = \underbrace{\frac{\sum_{k=0}^{n} b_{k}(j\omega)^{k}}_{x_{i}}}_{x_{i}} = \underbrace{\frac{\sum_{k=0}^{n} b_{k}(j\omega)^{k}}_{x_{i}}}_{x_{i}}$$

Quiz 4

• Consider an LTIC system whose input—output relationship is modeled by the following third-order differential equation:

$$\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 11\frac{dy}{dt} + 6y(t) = 2\frac{dx}{dt} + 3x(t).$$

• Calculate the frequency response $H(\omega)$ for the LTIC system.

Next ...

- Laplace transform
 - Derived (extended) from CTFT
 - Forward and inverse s-transform
 - Existence of Laplace transform and Region of convergence
 - Example s-trans pairs
 - Properties

