Package 'metaVAR'

May 1, 2025

Title Multivariate Meta-Analysis of Vector Autoregressive Model Estimates
Version 0.0.0.9000
Description Fits fixed-, random-, or mixed-effects multivariate meta-analysis models using vector autoregressive model estimates from each individual.
<pre>URL https://github.com/jeksterslab/metaVAR, https://jeksterslab.github.io/metaVAR/</pre>
BugReports https://github.com/jeksterslab/metaVAR/issues License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
Depends R ($>= 3.5.0$), OpenMx
Imports Matrix, fitDTVARMx
Remotes jeksterslab/fitDTVARMx
Suggests knitr, rmarkdown, testthat, simStateSpace
RoxygenNote 7.3.2
NeedsCompilation no
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (ORCID: https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
Contents
coef.metavarmeta
Meta
MetaVARMx
print.metavarmeta
vcov.metavarmeta
Index

2 Meta

coef.metavarmeta

Estimated Parameter Method for an Object of Class metavarmeta

Description

Estimated Parameter Method for an Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
coef(object, ...)
```

Arguments

```
object an object of class metavarmeta.
... further arguments.
```

Value

Returns a vector of estimated parameters.

Author(s)

Ivan Jacob Agaloos Pesigan

Meta

Fit Multivariate Meta-Analysis

Description

This function estimates fixed-, random-, or mixed-effects meta-analysis parameters using the estimated coefficients and sampling variance-covariance matrix from each individual.

Usage

```
Meta(
   y,
   v,
   x = NULL,
   alpha_values = NULL,
   alpha_free = NULL,
   alpha_lbound = NULL,
   alpha_ubound = NULL,
   beta_values = NULL,
   beta_free = NULL,
```

Meta 3

```
beta_lbound = NULL,
beta_ubound = NULL,
tau_values = NULL,
tau_free = NULL,
tau_lbound = NULL,
tau_ubound = NULL,
random = TRUE,
diag = FALSE,
try = 1000,
ncores = NULL,
...
)
```

Arguments

У	A list. Each element of the list is a numeric vector of estimated coefficients.
v	A list. Each element of the list is a sampling variance-covariance matrix of y.
Х	An optional list. Each element of the list is a numeric vector of covariates for the mixed-effects model.
alpha_values	Numeric vector. Optional vector of starting values for alpha.
alpha_free	Logical vector. Optional vector of free (TRUE) parameters for alpha.
alpha_lbound	Numeric vector. Optional vector of lower bound values for alpha.
alpha_ubound	Numeric vector. Optional vector of upper bound values for alpha.
beta_values	Numeric matrix. Optional matrix of starting values for beta.
beta_free	Logical matrix. Optional matrix of free (TRUE) parameters for beta.
beta_lbound	Numeric matrix. Optional matrix of lower bound values for beta.
beta_ubound	Numeric matrix. Optional matrix of upper bound values for beta.
tau_values	Numeric matrix. Optional matrix of starting values for t(chol(tau_sqr)).
tau_free	$Numeric\ matrix.\ Optional\ matrix\ of\ free\ (TRUE)\ parameters\ for\ t(chol(tau_sqr)).$
tau_lbound	Numeric matrix. Optional matrix of lower bound values for t(chol(tau_sqr)).
tau_ubound	Numeric matrix. Optional matrix of upper bound values for t(chol(tau_sqr)).
random	$Logical. \ If \ random = \ TRUE, \ estimates \ random \ effects. \ If \ random = \ FALSE, \ tau_sqr$ is a null matrix.
diag	Logical. If diag = TRUE, tau_sqr is a diagonal matrix. If diag = FALSE, tau_sqr is a symmetric matrix.
try	Positive integer. Number of extra optimization tries.
ncores	Positive integer. Number of cores to use.
	Additional optional arguments to pass to mxTryHardctsem.

Author(s)

Ivan Jacob Agaloos Pesigan

4 MetaVARMx

References

Cheung, M. W.-L. (2015). *Meta-analysis: A structural equation modeling approach*. Wiley. doi:10.1002/9781118957813

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, *81*(2), 535–549. doi:10.1007/s1133601494358

See Also

Other Meta-Analysis of VAR Functions: MetaVARMx()

MetaVARMx

Fit Multivariate Meta-Analysis

Description

This function estimates fixed-, random-, or mixed-effects meta-analysis parameters using the estimated coefficients and sampling variance-covariance matrix from each individual fitted using the fitDTVARMx::FitDTVARIDMx() function.

Usage

```
MetaVARMx(
  object,
  x = NULL
  alpha_values = NULL,
  alpha_free = NULL,
  alpha_lbound = NULL,
  alpha_ubound = NULL,
  beta_values = NULL,
  beta_free = NULL,
  beta_lbound = NULL,
  beta_ubound = NULL,
  tau_values = NULL,
  tau_free = NULL,
  tau_lbound = NULL,
  tau_ubound = NULL,
  random = TRUE,
  diag = FALSE,
  intercept = FALSE,
  noise = FALSE,
  error = FALSE,
  try = 1000,
  ncores = NULL,
)
```

MetaVARMx 5

Arguments

object	Output of the fitDTVARMx::FitDTVARIDMx() function.
Х	An optional list. Each element of the list is a numeric vector of covariates for the mixed-effects model.
alpha_values	Numeric vector. Optional vector of starting values for alpha.
alpha_free	Logical vector. Optional vector of free (TRUE) parameters for alpha.
alpha_lbound	Numeric vector. Optional vector of lower bound values for alpha.
alpha_ubound	Numeric vector. Optional vector of upper bound values for alpha.
beta_values	Numeric matrix. Optional matrix of starting values for beta.
beta_free	Logical matrix. Optional matrix of free (TRUE) parameters for beta.
beta_lbound	Numeric matrix. Optional matrix of lower bound values for beta.
beta_ubound	Numeric matrix. Optional matrix of upper bound values for beta.
tau_values	Numeric matrix. Optional matrix of starting values for t(chol(tau_sqr)).
tau_free	Numeric matrix. Optional matrix of free (TRUE) parameters for t(chol(tau_sqr)).
tau_lbound	Numeric matrix. Optional matrix of lower bound values for t(chol(tau_sqr)).
tau_ubound	Numeric matrix. Optional matrix of upper bound values for t(chol(tau_sqr)).
random	Logical. If random = TRUE, estimates random effects. If random = FALSE, tau_sqr is a null matrix.
diag	Logical. If diag = TRUE, tau_sqr is a diagonal matrix. If diag = FALSE, tau_sqr is a symmetric matrix.
intercept	Logical. If intercept = TRUE, include estimates of the process intercept vector, if available. If intercept = FALSE, exclude estimates of the process intercept vector.
noise	Logical. If noise = TRUE, include estimates of the process noise matrix, if available. If noise = FALSE, exclude estimates of the process noise matrix.
error	Logical. If error = TRUE, include estimates of the measurement error matrix, if available. If error = FALSE, exclude estimates of the measurement error matrix.
try	Positive integer. Number of extra optimization tries.
ncores	Positive integer. Number of cores to use.
	Additional optional arguments to pass to mxTryHardctsem.

Author(s)

Ivan Jacob Agaloos Pesigan

References

Cheung, M. W.-L. (2015). *Meta-analysis: A structural equation modeling approach*. Wiley. doi:10.1002/9781118957813

Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kirkpatrick, R. M., Estabrook, R., Bates, T. C., Maes, H. H., & Boker, S. M. (2015). OpenMx 2.0: Extended structural equation and statistical modeling. *Psychometrika*, *81*(2), 535–549. doi:10.1007/s1133601494358

6 MetaVARMx

See Also

Other Meta-Analysis of VAR Functions: Meta()

Examples

```
## Not run:
# Generate data using the simStateSpace package------
beta_mu <- matrix(</pre>
 data = c(
   0.7, 0.5, -0.1,
   0.0, 0.6, 0.4,
   0, 0, 0.5
 ),
 nrow = 3
)
beta_sigma <- diag(3 * 3)</pre>
beta <- simStateSpace::SimBetaN(</pre>
 n = 5,
 beta = beta_mu,
 vcov_beta_vec_l = t(chol(beta_sigma))
sim <- simStateSpace::SimSSMVARIVary(</pre>
 n = 5,
 time = 100,
 mu0 = list(rep(x = 0, times = 3)),
 sigma0_l = list(t(chol(diag(3)))),
 alpha = list(rep(x = 0, times = 3)),
 beta = beta,
 psi_l = list(t(chol(diag(3))))
data <- as.data.frame(sim)</pre>
# Fit the model-----
library(fitDTVARMx)
fit <- FitDTVARIDMx(</pre>
 data = data,
 observed = c("y1", "y2", "y3"),
 id = "id"
)
# Multivariate meta-analysis------
library(metaVAR)
meta <- MetaVARMx(fit)</pre>
print(meta)
summary(meta)
coef(meta)
vcov(meta)
## End(Not run)
```

print.metavarmeta 7

print.metavarmeta

Print Method for Object of Class metavarmeta

Description

Print Method for Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
print(x, alpha = 0.05, digits = 4, ...)
```

Arguments

x an object of class metavarmeta. alpha Numeric vector. Significance level α .

digits Integer indicating the number of decimal places to display.

... further arguments.

Value

Returns a matrix of estimates, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

summary.metavarmeta

Summary Method for Object of Class metavarmeta

Description

Summary Method for Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
summary(object, alpha = 0.05, digits = 4, ...)
```

Arguments

object an object of class metavarmeta. alpha Numeric vector. Significance level α .

digits Integer indicating the number of decimal places to display.

... further arguments.

8 vcov.metavarmeta

Value

Returns a matrix of estimates, standard errors, test statistics, degrees of freedom, p-values, and confidence intervals.

Author(s)

Ivan Jacob Agaloos Pesigan

Description

Variance-Covariance Matrix Method for an Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
vcov(object, ...)
```

Arguments

object an object of class metavarmeta.
... further arguments.

Value

Returns the sampling variance-covariance matrix of the estimated parameters.

Author(s)

Ivan Jacob Agaloos Pesigan

Index

```
* Meta-Analysis of VAR Functions
    Meta, 2
    MetaVARMx, 4
* metaVAR
    Meta, 2
    MetaVARMx, 4
* meta
    Meta, 2
    MetaVARMx, 4
* methods
    coef.metavarmeta, 2
    print.metavarmeta, 7
    summary.metavarmeta, 7
    \verb|vcov.metavarmeta|, 8
coef.metavarmeta, 2
fitDTVARMx::FitDTVARIDMx(), 4, 5
Meta, 2, 6
MetaVARMx, 4, 4
print.metavarmeta, 7
summary.metavarmeta, 7
vcov.metavarmeta, 8
```