Interrupciones AVR®

Los dispositivos AVR® proporcionan varias fuentes de interrupción diferentes, incluidas interrupciones internas y externas (/8avr:extint) . Las interrupciones pueden detener la ejecución del programa principal para realizar una rutina de servicio de interrupción (ISR) separada. Cuando se completa la ISR, el control del programa vuelve al programa principal en la instrucción que se interrumpió.

Cada una de estas interrupciones tiene un vector de programa separado en el espacio de memoria del programa. A todas las interrupciones se les asignan bits de habilitación individuales que deben escribirse en una lógica junto con el bit de habilitación de interrupción global en el registro de estado para habilitar la interrupción. Las direcciones más bajas en el espacio de la memoria del programa se definen por defecto como vectores de reinicio e interrupción. Tienen determinados niveles de prioridad; cuanto menor sea la dirección, mayor será el nivel de prioridad. RESET tiene la prioridad más alta, y el siguiente es la Solicitud de interrupción externa 0 (INTO).

Tabla de vectores de interrupción para ATmega324PB:

Vector No	Program Address ⁽²⁾	Source	Interrupts definition
1	0x0000 ⁽¹⁾	RESET	External Pin, Power-on Reset, Brown-out Reset and Watchdog System Reset
2	0x0002	INT0	External Interrupt Request 0
3	0x0004	INT1	External Interrupt Request 1
4	0x0006	INT2	External Interrupt Request 2
5	0x0008	PCINT0	Pin Change Interrupt Request 0
6	0x000A	PCINT1	Pin Change Interrupt Request 1
7	0x000C	PCINT2	Pin Change Interrupt Request 2
8	0x000E	PCINT3	Pin Change Interrupt Request 3
9	0x0010	WDT	Watchdog Time-out Interrupt
10	0x0012	TIMER2_COMPA	Timer/Counter2 Compare Match A
11	0x0014	TIMER2_COMPB	Timer/Coutner2 Compare Match B
12	0x0016	TIMER2_OVF	Timer/Counter2 Overflow
13	0x0018	TIMER1_CAPT	Timer/Counter1 Capture Event
14	0x001A	TIMER1_COMPA	Timer/Counter1 Compare Match A
15	0x001C	TIMER1_COMPB	Timer/Coutner1 Compare Match B
16	0x001E	TIMER1_OVF	Timer/Counter1 Overflow
17	0x0020	TIMER0_COMPA	Timer/Counter0 Compare Match A
18	0x0022	TIMER0_COMPB	Timer/Coutner0 Compare Match B
19	0x0024	TIMER0_OVF	Timer/Counter0 Overflow
20	0x0026	SPI0_STC	SPI0 Serial Transfer Complete
21	0x0028	USARTO_RX	USART0 Rx Complete
22	0x002A	USARTO_UDRE	USART0, Data Register Empty

(/local--files/8avr:int/inttable.png)

Los vectores de interrupción se pueden mover al inicio de la sección Boot Flash configurando el bit IVSEL en el registro de control MCU MCUCR . El vector de reinicio también se puede mover al inicio de la sección Boot Flash programando el fusible BOOTRST.

Cómo funciona

Cuando ocurre una interrupción, el bit I de habilitación de interrupción global se borra y todas las interrupciones se desactivan. El vector de interrupción dirige el control del programa al ISR o ejecución adecuada. Ese ISR puede escribir uno lógico en el bit I para habilitar interrupciones anidadas. Todas las interrupciones habilitadas pueden interrumpir la rutina de interrupción actual. Cuando se completa el ISR y se ejecuta el comando de retorno (RETI) desde el ISR, el bit I global se establece automáticamente en 'ON' y la ejecución del programa vuelve al programa principal en la instrucción que se interrumpió.

Tiempo de respuesta a la interrupción

La respuesta de ejecución de interrupción para todas las interrupciones AVR habilitadas es de cuatro ciclos de reloj como mínimo. Después de cuatro ciclos de reloj, se ejecuta la dirección de vector de programa para la rutina de manejo de interrupción real. Durante este período de cuatro ciclos de reloj, el Contador de programa se coloca en la pila. El vector normalmente es un salto a la rutina de interrupción, y este salto toma tres ciclos de reloj. Si se produce una interrupción durante la ejecución de una instrucción de varios ciclos, esta instrucción se completa antes de que se cumpla la interrupción.

Si se produce una interrupción cuando la MCU está en modo de suspensión, el tiempo de respuesta de ejecución de la interrupción aumenta en cuatro ciclos de reloj. Este aumento se suma al tiempo de inicio del modo de suspensión seleccionado. Un retorno de una rutina de manejo de interrupciones toma cuatro ciclos de reloj. Durante estos cuatro ciclos de reloj, el contador de programa (dos bytes) se extrae de la pila, el puntero de la pila se incrementa en dos y se establece el bit I en SREG.

Información Adicional

- Proyecto de ejemplo que usa Watchdog Timer como interrupción en ATmega324PB (https://microchiptechnology.sharepoint.com/:u:/s/DeveloperHelp/EXb8iTpCqgxHrXsg1eoY1-8Bbwvi6e1ngmuSeX21Xngt7g?e=J7hrYP)
- Interrupciones externas (/8avr:extint)