

Preliminary Technical Information

TrenchHV[™] Power MOSFET

IXTH96N25T IXTQ96N25T IXTV96N25T

N-Channel Enhancement Mode Avalanche Rated

Symbol	Test Conditions	Maximum Ratings			
V _{DSS}	T _J = 25°C to 150°C	250	V		
V _{DGR}	$T_{_{ m J}}$ = 25°C to 150°C, $R_{_{ m GS}}$ = 1M Ω	250	V		
V _{GSM}	Transient	± 30	V		
I _{D25} I _{LRMS}	$T_{\rm C} = 25^{\circ}{\rm C}$ Lead Current Limit, RMS $T_{\rm C} = 25^{\circ}{\rm C}$, pulse width limited by $T_{\rm JM}$	96 75 250	A A A		
I _{AS}	$T_{c} = 25^{\circ}C$ $T_{c} = 25^{\circ}C$	5 2	A J		
P _D	T _C = 25°C	625	W		
T _J T _{JM} T _{stg}		-55 +150 150 -55 +150	°C °C °C		
T _L T _{SOLD}	1.6mm (0.062 in.) from case for 10s Plastic body for 10 seconds	300 260	°C °C		
M _d	Mounting torque (TO-247 & TO-3P)	1.13 / 10	Nm/lb.in.		
F _c	Mounting force (PLUS220)	1165 / 2.514.6	N/lb.		
Weight	TO-247 TO-3P PLUS220	6.0 5.5 4.0	g g		

Symbol Test Conditions $(T_J = 25^{\circ}\text{C unless otherwise specified})$			Characte Min.	eristic \ Typ.		х.
BV _{DSS}	$V_{GS} = 0V, I_{D} = 250\mu A$		250			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 1mA$		3		5	V
I _{GSS}	$V_{GS} = \pm 20V, V_{DS} = 0V$				± 200	nA
I _{DSS}	$V_{DS} = V_{DSS}$ $V_{GS} = 0V$ T_{J}	= 125°C			5 250	μ Α μ Α
R _{DS(on)}	$V_{GS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Notes$	1, 2			29	mΩ

 V_{DSS} = 250V I_{D25} = 96A $R_{DS(on)} \le 29m\Omega$

TAB = Drain

Features

S = Source

- International standard packages
- Avalanche rated
- Low package inductance
 - easy to drive and to protect

Advantages

- Easy to mount
- Space savings
- High power density

Applications

- DC-DC converters
- Battery chargers
- Switched-mode and resonant-mode power supplies
- DC choppers
- AC motor control
- Uninterruptible power supplies

Symbol Test Conditions			Characteristic Values			
$T_{\rm J} = 25^{\circ}$	°C ur	nless otherwise specified)	Min.	Max.		
\mathbf{g}_{fs}		$V_{DS} = 10V, I_{D} = 0.5 \bullet I_{D25}, Note 1$	50	82	S	
C _{iss})			6100	pF	
Coss	}	$V_{GS} = 0V, V_{DS} = 25V, f = 1MHz$		625	pF	
C _{rss}	J			75	pF	
t _{d(on)}	1			20	ns	
t,		Resistive Switching Times		22	ns	
$\mathbf{t}_{d(off)}$		$V_{GS} = 10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$ $R_{G} = 2.5\Omega$ (External)		59	ns	
t _f	J	N _G = 2.011 (External)		28	ns	
Q _{g(on)})			114	nC	
\mathbf{Q}_{gs}	}	$V_{GS} = 10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 25A$		33	nC	
\mathbf{Q}_{gd}	J			34	nC	
R _{thJC}					0.20 °C/W	
R _{thCS}				0.25	°C/W	

Source-Drain Diode

			acteristic Values Typ.		
I _s	$V_{GS} = 0V$			96	Α
I _{sm}	Repetitive, pulse width limited by $\mathrm{T}_{_{\mathrm{JM}}}$			300	Α
V _{SD}	$I_F = I_S$, $V_{GS} = 0V$, Note 1			1.5	V
t _{rr}	$I_F = 48A$, -di/dt = 250 A/ μ s $V_R = 100 \text{ V}$, $V_{GS} = 0 \text{ V}$		158 23 1.8		ns Α μC

Notes: 1. Pulse test, $t \le 300$ ms; duty cycle, $d \le 2\%$.

2. On through-hole packages, $R_{\rm DS(on)}$ Kelvin test contact location must be 5 mm or less from the package body.

SYM	INCE	1F 2		MELER
2114	MIN	MAX	MIN	MAX
Α	.169	.185	4.30	4.70
A1	.028	.035	0.70	0.90
A2	.098	.118	2.50	3.00
σ	.035	.047	0.90	1.20
Ь	.080	.095	2.03	2.41
b2	.054	.064	1.37	1.63
U	.028	.035	0.70	0.90
Δ	.551	.591	14.00	15.00
D1	.512	.539	13.00	13.70
Ш	.394	.433	10.00	11.00
E1	.331	.346	8.40	8.80
e	.100	.100BSC		BSC
L	.512	.551	13.00	14.00
L1	.118	.138	3.00	3,50
L2	.035	.051	0.90	1.30
3	.047	.059	1.20	1.50

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS reserves the right to change limits, test conditions, and dimensions.

Terminals: 1 - Gate 2 - Drain 3 - Source Tab - Drain

Dim.	Millimeter		Inches		
	Min.	Max.	Min.	Max.	
Α	4.7	5.3	.185	.209	
A ₁	2.2	2.54	.087	.102	
A ₂	2.2	2.6	.059	.098	
b	1.0	1.4	.040	.055	
b₁	1.65	2.13	.065	.084	
b ₂	2.87	3.12	.113	.123	
С	.4	.8	.016	.031	
D	20.80	21.46	.819	.845	
E	15.75	16.26	.610	.640	
е	5.20	5.72	0.205	0.225	
L	19.81	20.32	.780	.800	
L1		4.50		.177	
ÆP	3.55	3.65	.140	.144	
Q	5.89	6.40	0.232	0.252	
R	4.32	5.49	.170	.216	
S	6.15	BSC	242	BSC	

Pins: 1 - Gate 2 - Drain 3 - Source 4, TAB - Drain

SYM	INCHES		MILLIMETERS	
STIM	MIN	MAX	MIN	MAX
Α	.185	.193	4.70	4.90
A1	.051	.059	1.30	1.50
A2	.057	.065	1.45	1.65
b	.035	.045	0.90	1.15
b2	.075	.087	1.90	2.20
b4	.114	.126	2.90	3.20
С	.022	.031	0.55	0.80
D	.780	.791	19.80	20.10
D1	.665	.677	16.90	17.20
E	.610	.622	15.50	15.80
E1	.531	.539	13.50	13.70
е	.215	BSC	5.45 BSC	
L	.779	.795	19.80	20.20
L1	.134	.142	3.40	3.60
ØΡ	.126	.134	3.20	3.40
øP1	.272	.280	6.90	7.10
S	.193	.201	4.90	5.10
All metal area are tin plated.				

Fig. 1. Output Characteristics @ 25°C

Fig. 3. Output Characteristics @ 125°C

Fig. 5. $R_{DS(on)}$ Normalized to $I_D = 48A$ Value vs. Drain Current

Fig. 2. Extended Output Characteristics
@ 25°C

Fig. 4. $R_{DS(on)}$ Normalized to I_D = 48A Value vs. Junction Temperature

Fig. 6. Maximum Drain Current vs.

Case Temperature

Fig. 7. Input Admittance

Fig. 8. Transconductance

Fig. 9. Forward Voltage Drop of Intrinsic Diode

Fig. 10. Gate Charge

Fig. 11. Capacitance

Fig. 12. Maximum Transient Thermal Impedance

IXYS reserves the right to change limits, test conditions, and dimensions.

Fig. 13. Resistive Turn-on Rise Time vs. Junction Temperature

Fig. 15. Resistive Turn-on Switching Times vs. Gate Resistance

Fig. 17. Resistive Turn-off Switching Times vs. Drain Current

Fig. 14. Resistive Turn-on Rise Time vs. Drain Current

Fig. 16. Resistive Turn-off Switching Times vs. Junction Temperature

Fig. 18. Resistive Turn-off Switching Times vs. Gate Resistance

