Mathematical Basics

Yu Yao

Computational Psychiatry Course 2020 Zurich | 8th September 2020

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Introduction

Interactive example: 3 cards

- 1. black
- 2. mixed
- 3. white

Introduction

Interactive example: 3 cards

- 1. black
- 2. mixed
- 3. white

Question:

probability that other side is **white**, if visible side is **black**

- A. 1/3
- B. 1/2
- C. 2/3
- D. something else

Introduction

- Random variables
- Probability distributions
- Expectation

References:

- C. Bishop "Pattern Recognition and Machine Learning"
- D. MacKay "Information Theory, Inference, and Learning Algorithms"

 Random variable: a variable whose possible values are outcomes (events) of a random experiment, e.g.:

• rolling a dice 1, 2, 3, 4, 5, 6

tossing a coin head, tail

• measuring height $[0, \infty)$

• measuring voltage $(-\infty, \infty)$

- Random variable: a variable whose possible values are outcomes (events) of a random experiment, e.g.:
 - rolling a dice
 - tossing a coin
 - measuring height
 - measuring voltage

discrete

continuous

Example: 1. tossing coin

Possible outcomes/events: head x = 1, or tail x = 0

Probabilities: $0 \le q \le 1$ for head, 1 - q for tail

Example: 1. tossing coin

Possible outcomes/events: head x = 1, or tail x = 0

Probabilities: $0 \le q \le 1$ for head, 1 - q for tail

Probability distribution:

function: outcome \rightarrow probability prob = p(x)

Example: 1. tossing coin (discrete binary random variable)

Possible outcomes/events: head x = 1, or tail x = 0

Probabilities: $0 \le q \le 1$ for head, 1 - q for tail

Probability distribution: Bernoulli distribution

$$p(x) = q^x \cdot (1 - q)^{1 - x}$$

Example: 1. tossing coin (discrete binary random variable)

Possible outcomes/events: head x = 1, or tail x = 0

Probabilities: $0 \le q \le 1$ for head, 1 - q for tail

Probability distribution: Bernoulli distribution

$$p(x) = q^x \cdot (1 - q)^{1 - x}$$

Note:

$$p(1) = q^{1} \cdot (1 - q)^{1-1} = q$$
 while $p(0) = q^{0} \cdot (1 - q)^{1-0} = 1 - q$

Example: 2. voltage (continuous random variable)

Possible outcomes/events: $x \in (-\infty, \infty)$

Example: 2. voltage (continuous random variable)

Possible outcomes/events: $x \in (-\infty, \infty)$

Probability distribution density function

function: $X \to \text{probability } X \le x < X + \delta$

Example: 2. voltage (continuous random variable)

Possible outcomes/events: $x \in (-\infty, \infty)$

Probability density: Gaussian/normal density

$$p(x) = N(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Note: μ is called mean and σ^2 variance

Example: 2. continuous random variable

Possible outcomes/events:
$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_N \end{pmatrix}$$

Probability density: Gaussian/normal density

$$p(x) = N(x) = \frac{1}{\sqrt{2\pi|\Sigma|}} \exp\left(-\frac{(x-\mu)^T \Sigma^{-1} (x-\mu)}{2}\right)$$

Note: μ is a mean vector and Σ the covariance matrix

Example: 3. height (continuous positive random variable)

Possible outcomes/events: $x \in [0, \infty)$

Example: 3. height (continuous positive random variable)

Possible outcomes/events: $x \in [0, \infty)$

Transformation: $x \in [0, \infty) \rightarrow y = \log(x) \in (-\infty, \infty)$

Example: 3. height (continuous positive random variable)

Possible outcomes/events: $x \in [0, \infty)$

Transformation: $x \in [0, \infty) \rightarrow y = \log(x) \in (-\infty, \infty)$

Probability density: log-normal density

$$p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$
$$p(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\log(x) - \mu)^2}{2\sigma^2}\right)$$

Note: when transforming continuous random variables, the gradient has to be taken into account

log-normal density

$$p(y) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(y-\mu)^2}{2\sigma^2}\right)$$

$$p(x) = \frac{1}{x\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(\log(x) - \mu)^2}{2\sigma^2}\right)$$

Distributions and Densities

Positivity and normalization:

$$p(x) \ge 0 \ \forall x$$
$$\sum_{x} p(x) = 1 \text{ or } \int p(x) dx = 1$$

expectation:

$$E[g(x)] = \sum_{x} g(x)p(x)$$

$$E[g(x)] = \int g(x)p(x)dx$$

mean: $\bar{x} = E[x]$

variance: $var[x] = E[(x - E[x])^2]$

Advanced Concepts

- Joint and conditional probability
- Sum and product rule

References:

- C. Bishop "Pattern Recognition and Machine Learning"
- D. MacKay "Information Theory, Inference, and Learning Algorithms"

In situations involving multiple random variables, it is useful to define:

Joint probability:
$$p(x = 1, y = 0)$$

probability that random variables take a certain joint configuration

$$x = \text{head and } y = \text{tail}$$

Conditional probability: p(x = 1|y = 0)

probability of one random variable taking a certain value, when the value of the other variables are already known

$$x = \text{head given } y = \text{tail}$$

==	<u>V</u> on ▼	yaoy@ethz.ch
<u>S</u> enden	A <u>n</u>	
	<u>C</u> c	
	В <u>с</u> с	
	B <u>e</u> treff	

=	<u>V</u> on ▼	yaoy@ethz.ch
<u>S</u> enden	A <u>n</u>	
	<u>C</u> c	
	В <u>с</u> с	
	B <u>e</u> treff	
D		

<u>S</u> enden	Von ▼ An Cc Bcc Betreff	yaoy@ethz.ch	Conditional probability $p(x_2 x_1 = D)$
D_			

<u>S</u> enden	Von ▼ An Cc Bcc Betreff	yaoy@ethz.ch	Conditional probability $p(x_2 x_1 = D)$	
De	ar			

<u>S</u> enden	Von ▼ An Cc Bcc Betreff	yaoy@ethz.ch	Conditional probability $p(x_2 = e x_1 = D) = 0.9$ $p(x_2 = i x_1 = D) = 0$	
De	ar			

Senden	Von ▼ An Cc Bcc Betreff	yaoy@ethz.ch	Conditional probability $p(x_2 x_1 = H)$	
H				

<u>S</u> enden	Von ▼ An Cc Bcc Betreff	yaoy@ethz.ch	Conditional probability $p(x_2 x_1 = H)$	
He	llo			

<u>S</u> enden	Von ▼ An Cc Bcc Betreff	yaoy@ethz.ch	Conditional probability $p(x_2 x_1 = H)$	
Hi				

===	<u>V</u> on ▼	yaoy@ethz.ch	Joint probability	
<u>S</u> enden	A <u>n</u>		$p(x_1, x_2)$	
	<u>C</u> c			
	B <u>c</u> c			
	B <u>e</u> treff			
	-			

example: sensitivity and specificity

		True condition	
		positive	negative
Test	positive	True positive	False positive
Te	negative	False negative	True negative

sensitivity =
$$\frac{TP}{TP + FN}$$

"proportion of positives that are correctly identified"

example: sensitivity and specificity

_		True co	ndition
		positive	negative
Test	positive	True positive	False positive
Te	negative	False negative	True negative

sensitivity =
$$\frac{TP}{TP + FN}$$

 $\approx p(test = pos|cond = pos)$

example: sensitivity and specificity

		True condition	
		positive	negative
Test	positive	True positive	False positive
Те	negative	False negative	True negative

sensitivity =
$$\frac{TP}{TP + FN}$$

$$\approx p(test = pos|cond = pos)$$

$$precision = \frac{TP}{TP + FP}$$

$$\approx p(cond = pos|test = pos)$$

Sum and Product Rule

Product Rule

$$p(x,y) = p(y|x)p(x)$$
$$p(x,y) = p(x|y)p(y)$$
$$joint = conditional \times marginal$$

Product Rule

$$p(x,y) = p(y|x)p(x)$$
$$p(x,y) = p(x|y)p(y)$$
$$joint = conditional \times marginal$$

Note: p(x, y, z) = p(x|y, z)p(y|z)p(z)

Product Rule

$$p(x,y) = p(y|x)p(x)$$
$$p(x,y) = p(x|y)p(y)$$
$$joint = conditional \times marginal$$

Sum Rule

$$p(x) = \sum_{y} p(x, y)$$

marginal =
$$\sum_{y}$$
 joint

Note: the summation is over all possible outcomes of y (can be very large)

Product Rule

$$p(x,y) = p(y|x)p(x)$$
$$p(x,y) = p(x|y)p(y)$$
$$joint = conditional \times marginal$$

Sum Rule

$$p(x) = \sum_{y} p(x, y)$$

Also note: for continuous variables

$$p(x) = \int p(x, y) dy$$

Example: Bayes' rule

Product rule

$$p(x,y) = p(y|x)p(x)$$

Sum Rule

$$p(x) = \sum_{y} p(x, y)$$

Example: Bayes' rule

Product rule

$$p(x,y) = p(y|x)p(x)$$

Sum Rule

$$p(x) = \sum_{y} p(x, y)$$

$$p(x,y) = p(y|x) \sum_{y} p(x,y)$$

Example: Bayes' rule

Product rule

$$p(x,y) = p(y|x)p(x)$$

Sum Rule

$$p(x) = \sum_{y} p(x, y)$$

$$p(x,y) = p(y|x) \sum_{y} p(x,y)$$
$$p(y|x) = \frac{p(x,y)}{\sum_{y} p(x,y)}$$

Example: Bayes' rule

Product rule

$$p(x,y) = p(y|x)p(x)$$

Sum Rule

$$p(x) = \sum_{v} p(x, y)$$

$$p(x,y) = p(y|x) \sum_{y} p(x,y)$$

$$p(y|x) = \frac{p(x,y)}{\sum_{y} p(x,y)}$$

$$p(y|x) = \frac{p(x|y)p(y)}{\sum_{y} p(x,y)}$$

Bayes' rule

Model identification and fitting

- 3 cards example revisited
- Likelihood vs probability
- Overfitting

References:

- C. Bishop "Pattern Recognition and Machine Learning"
- D. MacKay "Information Theory, Inference, and Learning Algorithms"

see: D. MacKay Information Theory, Inference, and Learning Algorithms

Rules:

- 1. shuffle cards
- 2. draw 1 card at random
- 3. choose random side

... side is black

Question:

probability that other side is **white**

- 1. relevant variables and sample space
 - a) card (c): #1, #2, #3
 - b) visible side (v): white, black
 - c) hidden side (h): white, black

- 1. relevant variables: card, visible, hidden
- 2. dependency structure and probabilities
 - a) card:

- 1. relevant variables: card, visible, hidden
- 2. dependency structure and probabilities

a) card:
$$p(c) = \frac{1}{3}, c \in \{1,2,3\}$$

- 1. relevant variables: card, visible, hidden
- 2. dependency structure and probabilities
 - a) card: $p(c) = \frac{1}{3}$, $c \in \{1,2,3\}$
 - b) visible:

Model identification:

- 1. relevant variables: card, visible, hidden
- 2. dependency structure and probabilities

a) card:
$$p(c) = \frac{1}{3}$$
, $c \in \{1,2,3\}$

b) visible: e.g: p(v = b | c = 1) = 1

Model identification:

1. relevant variables: card, visible, hidden

2. dependency structure and probabilities

a) card:
$$p(c) = \frac{1}{3}, c \in \{1,2,3\}$$

b) visible: e.g: p(v = b | c = 1) = 1

v	С	p(v c)
b	1	1
b	2	0.5
b	3	0

- 1. relevant variables: card, visible, hidden
- 2. dependency structure and probabilities
 - a) card: $p(c) = \frac{1}{3}, c \in \{1,2,3\}$
 - b) visible: e.g: p(v = b | c = 1) = 1
 - c) hidden:

Model identification:

1. relevant variables: card, visible, hidden

2. dependency structure and probabilities

a) card: $p(c) = \frac{1}{3}, c \in \{1,2,3\}$

b) visible: e.g: p(v = b | c = 1) = 1

c) hidden:

h	v	С	p(h v,c)
W	b	1	0
W	b	2	1

Model identification:

1. relevant variables: card, visible, hidden

2. dependency structure and probabilities

a) card: $p(c) = \frac{1}{3}, c \in \{1,2,3\}$

b) visible: e.g: p(v = b | c = 1) = 1

c) hidden: p(h|v,c)

d) joint: p(h, v, c) = p(h|v, c)p(v|c)p(c)

Model identification:

- 1. relevant variables: card, visible, hidden
- 2. dependency structure and probabilities p(h, v, c) = p(h|v, c)p(v|c)p(c)
- 3. question:

probability that other side is **white**, if visible side is **black**

Model identification:

- 1. relevant variables: card, visible, hidden
- 2. dependency structure and probabilities p(h, v, c) = p(h|v, c)p(v|c)p(c)
- 3. question:

probability that other side is **white**, if visible side is **black**

$$p(h = white | v = black)$$

probability that other side is **white**, if visible side is **black**

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$

probability that other side is **white**, if visible side is **black**

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$

sum rule:

$$p(h,v) = \sum_{c} p(h,v,c)$$

probability that other side is **white**, if visible side is **black**

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$

h	v	С	p(c)	p	(v c)	p(h v,c)	p(h, v, c)
W	b	1	1/3	1		0	0
W	b	2	1/3	1/2		1	1/6
W	b	3	1/3	0		0	0
	Sum rule			p(h =	w, v = b)	1/6	

probability that other side is **white**, if visible side is **black**

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$

$$p(h = w, v = b) = 1/6$$

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$

$$p(h = w, v = b) = 1/6$$

Bayes' rule:

$$p(h|v) = \frac{p(h,v)}{p(v)}$$

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$

sum rule:
$$p(v) = \sum_{c} p(v,c) = \sum_{c} p(v|c)p(c)$$

probability that other side is **white**, if visible side is **black**

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$

v	С	p(c)	p(v c)	p(v,c)
b	1	1/3	1	1/3
b	2	1/3	1/2	1/6
b	3	1/3	0	0
,	Sum rule		p(v=b)	1/2

$$p(h = white | v = black)$$

joint:

$$p(h, v, c) = p(h|v, c)p(v|c)p(c)$$
$$p(h = w, v = b) = 1/6$$
$$p(v = b) = 1/2$$

Bayes'
rule: $p(h = w|v = b) = \frac{p(h = w, v = b)}{p(v = b)} = \frac{1/6}{1/2}$

$$=\frac{1}{3}$$

Likelihood vs probability

In statistics, one distinguishes between probability and likelihood

Example: 3 cards

(conditional) probability

$$X \in \{black, white\}$$

$$f(X) = p(v = X | card = 2)$$

likelihood function:

$$L(X) = p(v = black|card = X)$$

$$X \in \{1,2,3\}$$

Likelihood vs probability

In statistics, one distinguishes between probability and likelihood

Example: 3 cards

Note: unlike probabilities, the likelihood is not normalized

$$f(black) + f(white) = 1/2 + 1/2 = 1$$

$$L(1) + L(2) + L(3) = 1 + \frac{1}{2} + 0 \neq 1$$

Data: Atmospheric CO₂ concentration

Data: Atmospheric CO₂ concentration

Model: 1st order polynomial

$$y = \theta_1 t + \theta_0 + e$$
$$p(e) = N(e \mid 0, 1)$$

Likelihood:

$$L(\theta) = p(y \mid \theta)$$
$$= N(y \mid \theta_1 t + \theta_0, 1)$$

Data: Atmospheric CO₂ concentration

Model: 1st order polynomial

$$y = \theta_1 t + \theta_0 + e$$
$$p(e) = N(e \mid 0, 1)$$

Likelihood:

$$L(\theta) = p(y \mid \theta)$$
$$= N(y \mid \theta_1 t + \theta_0, 1)$$

Data: Atmospheric CO₂ concentration

Model: 1st order polynomial

$$y = \theta_1 t + \theta_0 + e$$
$$p(e) = N(e \mid 0, 1)$$

Likelihood:

Data: Atmospheric CO₂ concentration

Model: 1st order polynomial

$$y = \theta_1 t + \theta_0 + e$$
$$p(e) = N(e \mid 0, 1)$$

Likelihood:

Data: Atmospheric CO₂ concentration

Model: 1st order polynomial

$$y = \theta_1 t + \theta_0 + e$$
$$p(e) = N(e \mid 0, 1)$$

Likelihood:

Data: Atmospheric CO₂ concentration

Model: 1st order polynomial

$$y = \theta_1 t + \theta_0 + e$$
$$p(e) = N(e \mid 0, 1)$$

Likelihood:

Data: Atmospheric CO₂ concentration

Model: 5th order polynomial

$y = \theta_5 t^5 + \theta_4 t^4 + \theta_3 t^3 + \theta_2 t^2 + \theta_1 t + \theta_0 + e$ $p(e) = N(e \mid 0, 1)$

Likelihood:

Data: Atmospheric CO₂ concentration

Log-likelihood on held-out data:

1st order: -18.7

5th order: -4.3x10⁵

Likelihood:

Further Reading

- Bishop: Pattern Recognition and Machine Learning
 - chapters 1 and 2, appendix B
- MacKay: Information Theory, Inference, and Learning Algorithms
 - pages: 3 64, chapter 23
 - http://www.inference.org.uk/itprnn/book.pdf
- Gelman: Bayesian Data Analysis
 - appendix A

Thank you