

Semester S1 – Module 3

Module Fundamentals of coherent photonics

TUTORIAL LASERS_3

MODE LOCK LASER

Exercise 1

We consider a mode lock laser. It delivers pulses of duration Δt = 136 fs at a repetition rate of Δv = 470 MHz. The average wavelength is λ_0 = 859 nm. The average power measured is P_{out} = 25 mW.

- 1. Explain a way to obtain this operating mode.
- 2. Describe the frequency and time characteristics of the laser emission.
- 3. Determine:
 - the spectral bandwidth of this laser,
 - the optical length of the Fabry Perot cavity,
 - the number of longitudinal modes,
 - the peak power of each pulse.

Exercise 2

Let us consider a laser emitting a spectral line of $\Delta \nu$ (full width at half maximum). The length of the Fabry-Perot cavity is L. The refractive index of the amplifier medium will be neglected. We will consider the case where the loss coefficient is equal to 50% of the maximum of the small signal gain coefficient.

- 1-a) Calculate the number M of modes that oscillate as a function of Δv and L. It is assumed that mode m=0 coincides with the central frequency v_0 of the laser line profile. Give the resonance frequencies v_m (longitudinal modes of the cavity).
- 1-b) Assuming that each longitudinal mode is a monochromatic plane wave of frequency ν_m , and amplitude A_m , that propagates along the Oz axis, give the expression of the field (in complex notation) as a function of t and z when the modes are in phase.

Fundamentals of photonics A. Desfarges-Berthelemot -1-

E(rasmus) Mundus on Innovative Microwave Electronics and Optics Master

1-c) Show that it can be put in the form of
$$E(z,t)=A(t-\frac{z}{c})e^{j2\pi f_0\left(t-\frac{z}{c}\right)}$$

$$\text{with } A(t-\frac{z}{c}) = \sum_{m=-S}^S A_m e^{\frac{j2m\pi(t-z/c)}{T}} \text{ and } T = \frac{2L}{c} \text{ . } M = 2S+1 \text{ . } M = 2S+1 \text{ . } number \text{ of longitudinal modes.}$$

2-a) Considering that all modes have the same complex amplitude A_m=A, write A(t-z/c)

in the form of
$$A(t-\frac{z}{c}) = A \frac{sin\bigg(\frac{M\pi(t-z/c)}{T}\bigg)}{sin\bigg(\frac{\pi(t-z/c)}{T}\bigg)}\,.$$

- 2-b) Deduce the intensity as a function of z and t. Draw it as a function of t (z=0) and show that it corresponds to a train of pulses of duration $\tau=T/M\approx 1/\Delta \nu$, spaced 2L/c.
- 2-c) The amplifying medium is a crystal of Nd:YAG for which Δv =120GHz, calculate the pulse duration.

Fundamentals of photonics

A. Desfarges-Berthelemot