Two molecules of A form the dimer AA. Concentrations are at a steady state determined by the law of mass action according to this reaction network :

$$=>sA$$
 A $=>dA$
2A $r1<=>r2$ AA
AA $=>dAA$

where s_A is the synthesis rate of A (units of concentration*time^-1), r_1 is the dissociation rate of AA (units of concentration^-1*time^-1), r_2 is the association rate of A, and d_A , d_{AA} are degradation rates (units of time^-1).

Let cA, cAA denote the concentrations of the two molecular species :

Because at equilibrium the concentration of A is constant:

Equation 1:
$$s_A + 2r_1c_{AA} = d_Ac_A + 2r_2c_A^2$$

Because at equilibrium the concentration of AA is constant:

Equation 2:
$$r_2 c_A^2 = d_{AA} c_{AA} + r_1 c_{AA}$$

Starting from equation 2, we get an expression for c_{AA} :

$$r_{2}c_{A}^{2} = d_{AA}c_{AA} + r_{1}c_{AA}$$

$$0 = (d_{AA} + r_{1})c_{AA} - r_{2}c_{A}^{2}$$

$$c_{AA} = \frac{r_{2}c_{A}^{2}}{d_{AA} + r_{1}}$$

With k_{AA} defined as $\frac{r_2}{d_{AA} + r_1}$:

$$c_{AA} = k_{AA} c_A^2$$

Starting from equation 1:

$$s_A + 2r_1c_{AA} = d_Ac_A + 2r_2c_A^2$$

$$0=2r_2c_A^2+d_Ac_A-s_A-2r_1c_{AA}$$

By substituting c_{AA} :

$$0 = 2r_2c_A^2 + d_Ac_A - s_A - 2r_1k_{AA}c_A^2$$

From the definition $k_{AA} = \frac{r_2}{d_{AA} + r_1}$, we get $r_2 - r_1 k_{AA} = d_{AA} k_{AA}$ and therefore :

$$0 = 2r_{2}c_{A}^{2} + d_{A}c_{A} - s_{A} - 2r_{1}c_{A}^{2}k_{AA}$$

$$0 = 2r_{2}c_{A}^{2} + d_{A}c_{A} - s_{A} - 2r_{1}c_{A}^{2}k_{AA}$$

$$0 = 2c_{A}^{2}(d_{AA}k_{AA}) + d_{A}c_{A} - s_{A}$$

Applying the quadratic formula:

$$c_{A} = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{-d_{A} \pm \sqrt{d_{A}^{2} - 4(2d_{AA}k_{AA})(-s_{A})}}{2(2d_{AA})(k_{AA})}$$

$$c_{A} = \frac{-d_{A} \pm \sqrt{d_{A}^{2} + 8d_{AA}k_{AA}s_{A}}}{4d_{AA}k_{AA}}$$

In the formula above, the coefficients are such that a>0, $b\ge 0$, $c\le 0$ and thus $b\le \sqrt{b^2-4ac}$. It follows that $-b+\sqrt{b^2-4ac}$ is non-negative, while $-b-\sqrt{b^2-4ac}$ is non-positive. We therefore choose $-b+\sqrt{b^2-4ac}$ to obtain a non-negative value of c_B .

$$c_{A} = \frac{-d_{A} + \sqrt{d_{A}^{2} + 8 d_{AA} k_{AA} s_{A}}}{4 d_{AA} k_{AA}}$$