Units & Dimensions

Principle of Homogeneity

- ⇒ Two or more quantities in addition or subtraction should have same dimension.
- ⇒ Quantities on either side of an expression (equation) should have the same dimension
- ⇒ Using this principle we can check the correctness of the physical equation

Question

Let us perform dimensional analysis on equation to check it's correctness

∴ The given physical equation is dimensionally correct

Question

Let us perform <u>dimensional analysis</u> on equation to check it's <u>correctness</u>

Equation : $v^2 = u^2 + 2as$

L.H.S.

Dimensions of Velocity (v) = $[M^{\circ} L^{1} T^{-1}]$

.. Dimensions of $v^2 = [M^0 L^1 T^{-1}] [M^0 L^1 T^{-1}]$ = $[M^0 L^2 T^{-2}]$

R.H.S.

Dimensions of $u^2 = [M^0 L^2 T^{-2}]$ Dimensions of $a \times s = [M^0 L^1 T^-]$ $= [M^0 L^2 T^{-2}]$

.. The given physical equation is dimensionally correct

Question

The relation between velocity and time of a particle is given

$$V = A + \frac{B}{t} + Ct$$

The units of A, B and C will be

Solution:

b) By the principle of homogeneity unit of A, $\frac{B}{t}$ and ct² must be of v.

$$v = A$$
 i.e $A = m/s$

$$v = \frac{B}{t}$$
 \Rightarrow $B = m$
 $v = Ct^2$ \Rightarrow $C = m/s^3$

$$B = m$$

$$\prime$$
 = Ct^2

$$C = m/s^3$$