

INSTITUTE OF TECHNOLOGY

DHULE (M.S.)

DEPARMENT OF COMPUTER ENGINEERING

Subject: Competitive Program	nmimg Lab		Remark
Name : Jaykishan Natwar Va	arma	Roll No. : 68	
Class: TY. Comp. Engg.	Batch: T4	Division:	
Expt. No.:	Date:		Signature
Title: How Many Fibs?			

Date of Performance:	Date of Submission:			
Marks Split Up	Maximum Marks	Marks Obtained		
Performance/Conduction	3			
Report Writing	3			
Attendance	2			
Viva/Oral	2			
Total Marks	10			

Title: How Many Fibs?

Aim: Recall the definition of the Fibonacci numbers: f1 := 1 f2 := 2 fn := fn-1 + fn-2 $(n \ge 3)$ Given two numbers a and b, calculate how many Fibonacci numbers are in the range [a, b].

Language used: Python

Platform Used: Pycharm, VS code etc.

Sample Input: The input contains several test cases. Each test case consists of two non-negative integer numbers a and b. Input is terminated by a = b = 0. Otherwise, $a \le b \le 10100$. The numbers a and b are given with no superfluous leading zeros.

Sample Output: For each test case output on a single line the number of Fibonacci numbers fi with $a \le fi \le b$.

Example:

Sample Input:

10 100

1234567890 9876543210

0.0

Sample Output:

5

1

Algorithm/Flowchart:

- 1. **Generate Fibonacci Numbers**: Start by generating Fibonacci numbers up to the maximum possible value of b (since we don't know how large b can be). Use an iterative approach to generate Fibonacci numbers until you exceed b.
- 2. **Identify Fibonacci Numbers in Range**: Once you have a list of Fibonacci numbers, iterate through this list to count how many Fibonacci numbers fall within the range [a, b].
- Efficient Generation using Iteration: Use an iterative approach to generate Fibonacci numbers until you reach or exceed b. Store these Fibonacci numbers in a list.
- 4. **Count Fibonacci Numbers in Range**: Traverse through the list of generated Fibonacci numbers and count how many of them are within the range [a, b].

Code:

```
def count_fibonacci_in_range(a, b):
  if a > b:
    return 0
  fibonacci\_numbers = [0, 1]
  next_fib = 1
  # Generate Fibonacci numbers until we exceed b
  while next_fib <= b:
    next_fib = fibonacci_numbers[-1] + fibonacci_numbers[-2]
    fibonacci_numbers.append(next_fib)
  # Count Fibonacci numbers in the range [a, b]
  count = 0
  for fib in fibonacci_numbers:
    if a <= fib <= b:
       count += 1
    elif fib > b:
       break
  return count
# Example usage:
if __name__ == "__main__":
  a = int(input("Enter the start of the range (a): "))
  b = int(input("Enter the end of the range (b): "))
  result = count_fibonacci_in_range(a, b)
  print(f"Number of Fibonacci numbers in range [{a}, {b}]: {result}")
Input:-
10 100
1234567890 9876543210
00
```

Output	-					
5						
4						
Conclus conditio	ion: In this way wall statements.	e implement The	e How Many Fil	os? Problem usi	ng loops and	