MA4002 Midterm Exam Solutions 2002

- **1.(a)** Evaluate the indefinite integral $\int \frac{x^3 1}{x\sqrt{x}} dx$ Answer: $\frac{2}{5}x^{\frac{5}{2}} + 2x^{-\frac{1}{2}} + C$.
- (b) Calculate the area between $y = \cos 2x$ and the x-axis for $0 \le x \le \frac{\pi}{4}$.

Answer: $\int_0^{\frac{\pi}{4}} \cos 2x \, dx = \frac{1}{2}.$

(c) Express as a definite integral (but do not evaluate) the limit of the Riemann sum $\lim_{n\to\infty}\sum_{i=1}^{n}\ln(\tan(c_i))\Delta x_i$, where P is the partition with $x_i = \frac{2i}{n}$, for i = 0, 1, ..., n, $\Delta x_i \equiv x_i - x_{i-1}$ and $c_i \in [x_{i-1}, x_i]$.

Answer: When i = 0, $a = x_0 = 0$ and when i = n, $b = x_n = 2$. So using FTC2, we get $\int_0^2 \ln(\tan x) dx$.

- (d) Evaluate $\frac{d}{dx} \int_{-\infty}^{1} \tan(\cosh(\sin t)) dt$. Interchange limits. Answer: $-\tan(\cosh(\sin x))$, using FTC1.
- (e) Find an upper bound for the error E_T in the Trapezoidal Rule approximation of the definite integral $\int_0^3 f(x) dx$, using 150 subintervals, given that $M_2 \equiv \max_{x \in [0,3]} \left| \frac{d^2}{dx^2} f(x) \right| < 10$. Answer: h = 3/150 = 0.02, b a = 3, so $E_T < (0.02)^2(3)(10)/12 = 0.001$.
- **2.** Evaluate the indefinite integral $\int \frac{3t^2}{t^6+1} dt$. Answer: Substitute $u=t^3$ to get answer $\tan^{-1} t^3 + C$.

3. Find the average value of $x^2 \ln x$ on the interval [1, e].

Answer: $\bar{f} = \frac{1}{e-1} \int_1^e x^2 \ln x \, dx = \frac{2e^3+1}{9(e-1)}$, after using integration by parts with $u = \ln x$ and $dv = x^2 dx$.

4. Evaluate the definite integral $\int_0^2 \frac{x}{x^2 + 6x + 9} dx$.

Answer: Note $x^2 + 6x + 9 = (x+3)^2$, so we substitute u = x+3 to get $\int_0^1 \frac{u-3}{u^2} du = \ln 5 - \ln 3 - \frac{2}{5}$.

5. Perform a partial fraction expansion of $\frac{3x-5}{(x-1)(x^2-2x+2)}$. Answer: Put this equal to $\frac{A}{x-1} + \frac{Bx+C}{x^2-2x+2}$. Multiply through both sides by the denominator $(x-1)(x^2-2x+2)$ and compare to get answer $\frac{-2}{x-1} + \frac{2x+1}{x^2-2x+2}$.