

Optimizing the "Last Mile" with Network-Compute Co-Design

Alexandros (Alex) Daglis
Assistant Professor, School of Computer Science
cc.gatech.edu/~adaglis

CNRCH Summit, January 29th 2021

Large-Scale Online Services

Online services live in massive datacenters

■ 10,000s of servers

Tight quality guarantees (SLOs)

Care about "worst-case" (tail) latency

Data distributed across thousands of servers

Growing Pressure on the Network

Trend I: More data \rightarrow more scale-out

66% growth per year

Trend II: Software decomposition (microservices, serverless)

- Service times in μs domain
 - → network message every few k CPU cycles!

Credits: Gan, ASPLOS' 19

Datacenters Keeping up with Growing Demand

Growing bandwidth & high path diversity

Datacenter-wide roundtrips <20μs

Optimized protocols cut messaging costs

From I0+μs to sub-μs

Credits: Ethernet Alliance, 2015

...despite networking evolution, NIC-CPU interface still architected as IO

- Bandwidth-optimized, high latency
- Performance and semantic obstacles

What's Wrong in this "Last Mile"?

Need

- New interfaces
- Richer operations
- Advanced interactions with compute & memory

Making the NIC a First-Class Citizen

New Interfaces

Richer Operations

Advanced Interactions

Optimize Network-Compute interface via NIC integration

Scale-Out NUMA architecture [ASPLOS' [,

- NIC in coherence domain
- Rack-scale scale-out systems w/ NUMA period
 remote memory within ~3x of local

More than immediate latency gains

Paves way for higher-level operations with richer semantics

From Cache Blocks to Memory Objects

New Interfaces

Richer Operations

Advanced Interactions

RDMA enables direct remote memory access

Great for distributed object stores

No object-level atomicity guarantees with basic 'read' primitive!

Need out-of-band verification mechanism

Server 0

Server I

Ostatorister at Original Server

NIC in coherence domain \rightarrow snoop coherence traffic to target object [MICRO'16]

- On-the-fly atomicity check, no software involvement
- 35-50% faster atomic object reads from remote memory

Tight NIC-compute coupling enables Atomic Object Read hardware primitive

NIC-driven Load Balancing Opportunities

Packet distribution to cores critical for scalability

New Interfaces

Richer Operations

Advanced Interactions

NIC-driven Load Balancing Opportunities

New Interfaces

Richer Operations

Advanced Interactions

Packet distribution to cores critical for scalability

Software-based mechanisms expensive for μs-scale services

NIC-driven Load Balancing Opportunities

New Interfaces

Richer Operations

Advanced Interactions

Packet distribution to cores critical for scalability

Software-based mechanisms expensive for μs-scale services

NIC can spread incoming load to cores

• e.g., Receive-Side Scaling

— Perfect balance

- Random static distribution

But static decisions → load imbalance → hurts tail latency

Integration Facilitates Load Balancing

New Interfaces

Richer Operations

Advanced Interactions

Co-design NIC with compute

 Direct interaction and load monitoring – dispatch work when compute available [ASPLOS'19]

Simple greedy approach works even for µs-scale services due to integration

Nanosecond-scale on-chip latencies

NIC-driven Load Balancing Extensions

New Interfaces

Richer Operations

Advanced Interactions

- Is NIC-driven load balancing applicable to existing smartNICs?
 - PCle latency precludes greedy approach
 - But can learn and dynamically approximate per-core load

Decisions under workload diversity – can NIC predict service time?

Advanced Interactions via Co-Design

New Interfaces

Richer Operations

Advanced Interactions

Software hints enable data movement optimizations

Expose application service times and SLO to NIC

Enable SLO-aware packet management [ISCA'20]

- Minimize data movement under high contention
- Prevent spill of latency-sensitive traffic to DRAM

Judicious Data Movement

New Interfaces

Richer Operations

Advanced Interactions

Incoming data placement policies are static – and suboptimal

Mainstream approaches:

- 1 Data into DRAM
- 2 Data into subset of LLC (DDIO)

Data movement optimization opportunities

- Application-driven dynamic placement decision: DRAM, LLC, or private upper-level caches
 Type pages interacting in betampgapages assoluted to private upper level caches
- Even more interesting in heterogeneous, accelerator-rich architectures
- Header/payload splitting and separate manipulation

Conclusion

Evolution of online services puts network communication in spotlight

Advancements in networking technologies and protocols aligned with needs ... but also need architectural rethink for the "last mile"

Optimize network-compute-memory interactions via co-design

New Interfaces

Richer Operations

Advanced Interactions