Addressing model uncertainty in upper tropospheric NO_x

Robert Ryan, Eloise Marais, Nana Wei University College London

St Louis 2022

Controls on upper tropospheric NO_x

 $NO + O_3 \rightarrow NO_2 + O_2$ (Rate too slow: Silvern et al., 2018)

 $NO_2 + OH \rightarrow HNO_3$ (Rate too fast: Henderson et al., 2012, Nault et al., 2016)

 $NO_2 + HO_2 \rightarrow HNO_4$ (Rate too fast: Nault et al., 2016)

Aircraft campaigns

GEOS-Chem vs TROPOMI

TROPOMI Cloud-sliced 450-180 hPa ROCINN-CAL cloud product (clouds as layers) June-July-August 2019

GEOS-Chem v13.3.4, 2° x 2.5° June-July-August 2019

Improved kinetics for UT NO_x cycling

R. Ryan, E. Marais, N. Wei

IGC10 2022

Focusing on PPN

Recommendation: PPN+OH and PPN photolysis should be included in GEOS-Chem

GEOS-Chem vs TROPOMI

R. Ryan, E. Marais, N. Wei

IGC10 2022

Routes to improving lightning NO_x scheme

Current lightning NOx parameterisation (Price & Rind, 1992)

- Lightning located parameterised by cloud top heights
- Then constrained by LIS/OTD observations
- 500 mol LNOx/flash in NH extratropics
- 260 mol LNOx/flash elsewhere

Current July Lightning NO emissions (x10⁻¹¹ kg m⁻² s⁻¹) in GEOS-Chem

Summary

- We compare cloud-sliced TROPOMI UT NO₂ observations with GEOS-Chem
- GEOS-Chem ~ 60 % lower than TROPOMI
- Updates to kinetics increase GEOS-Chem UT NO₂ by ~ 20 %
- Key improvements: NO + O₃, NO₂ oxidation, PPN sinks
- PPN sinks added to GEOS-Chem (+OH, photolysis) outcompete thermal decomposition in the UT
- We are working on re-parameterising lightning NO, based on radiance any suggestions welcome!

IGC10 2022