PRÁCTICO 1: EJERCICIOS DE REPASO

1. Teorema de las dimensiones

EJERCICIO 1. 1.1 ¿Existe una transformación lineal sobreyectiva $T: \mathbb{R}^2 \to \mathbb{R}^3$? ¿Existe una transformación lineal inyectiva $T: \mathbb{R}^4 \to \mathbb{R}^2$?

- 1.2 Sea $X_1 = (1, 0, 1, 0), X_2 = (1, 1, 1, 0)$ y $X_3 = (1, 1, 1, 1)$. ¿Existe alguna transformación lineal $T : \mathbb{R}^2 \to \mathbb{R}^4$ tal que $\{X_1, X_2, X_3\} \subset Im(T)$?
- 1.3. Sean $S = \{(x, y, z, t) \in \mathbb{R}^4 : x + y + z + t = 0\}$ y $U = \{(x, y, z, t) \in \mathbb{R}^4 : x + y = 0, z + t = 0\}$ dos subespacios de \mathbb{R}^4 .
 - a) ¿Existe algún isomorfismo $T: \mathbb{R}^4 \to \mathbb{R}^4$ tal que T(S) = U?
 - b) ¿Es posible determinar una transformación lineal $T:\mathbb{R}^4\to\mathbb{R}^4$ tal que Ker(T)=S e Im(T)=U?

2. Matriz asociada

EJERCICIO 2. Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que T(x, y, z) = (3x + 2y - 4z, x - 5y + 3z). Hallar $A(T)_B$ en los siguientes casos:

- 1. \mathcal{B} y \mathcal{A} son las bases canónicas de \mathbb{R}^3 y \mathbb{R}^2 respectivamente.
- 2. $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,0)\}$ y \mathcal{A} la base canónica de \mathbb{R}^2 .
- 3. $\mathcal{B} = \{(1,1,1), (1,1,0), (1,0,0)\}\$ y $\mathcal{A} = \{(1,3), (2,5)\}.$

EJERCICIO 3. Sea $T: \mathcal{P}_2 \longrightarrow \mathbb{R}^4$ tal que T(p) = (2a+3b-8c, a+b+c, 4a-5c, 6b) con $p: p(t) = a+bt+ct^2, \quad \forall t \in \mathbb{R}.$

Hallar $_{\mathcal{A}}(T)_{\mathcal{B}}$ en los siguientes casos:

- 1. \mathcal{B} y \mathcal{A} son las bases canónicas de \mathcal{P}_2 y \mathbb{R}^4 respectivamente.
- 2. $\mathcal{B} = \{1, t-1, (t-1)^2\}$ y \mathcal{A} es la base canónica de \mathbb{R}^4 .

EJERCICIO 4. Dado $\vec{u}_0 \in \mathbb{R}^3$ fijo, con $||\vec{u}_0|| = 1$, se define $T : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $T(v) = \langle v, \vec{u}_0 \rangle \vec{u}_0$, donde \langle , \rangle representa el producto escalar.

- 1. Hallar la matriz asociada a $T(\beta(T))$ en una base ortonormal que incluya al vector \vec{u}_0 .
- 2. Hallar la matriz asociada a T en la base canónica de \mathbb{R}^3 .

EJERCICIO 5. Sean $\mathcal{A} = \{1, t+1, (t+1)^2\}$ y $\mathcal{B} = \{(1,1,0), (1,2,3), (3,2,1)\}$ bases de \mathcal{P}_2 y \mathbb{R}^3 respectivamente. Consideramos $T: \mathcal{P}_2 \longrightarrow \mathbb{R}^3$ lineal tal que

$$\mathcal{B}(T)_{\mathcal{A}} = \left(\begin{array}{ccc} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{array}\right).$$

Dado $q_0: q_0(t) = t^2 + t - 1$, $\forall t \in \mathbb{R}$, hallar $T(q_0)$.

EJERCICIO 6. Sea $T: \mathcal{M}_2(\mathbb{R}) \longrightarrow \mathcal{M}_2(\mathbb{R})$ definida por $T(A) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \cdot A$

- 1. ¿Existen bases en $\mathcal{M}_2(\mathbb{R})$ tal que la matriz asociada en dichas bases sea $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$?
- 2. Hallar la matriz asociada a T en la base canónica de $\mathcal{M}_2(\mathbb{R})$.

EJERCICIO 7. Sea
$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 tal que $_{\mathcal{A}}(T)_{\mathcal{B}} = \begin{pmatrix} 1 & 4 \\ 2 & 1 \end{pmatrix}$ donde $\mathcal{B} = \{(1,1),(1,0)\}$ y $\mathcal{A} = \{(1,2),(2,-1)\}$.

Probar que T es invertible y hallar una matriz asociada a T^{-1} indicando las bases correspondientes.

3. Cambio de base

EJERCICIO 8. Dadas las bases $\mathcal{A} = \{(1,1,0), (1,0,1), (0,1,1)\}$ y $\mathcal{B} = \{(1,0,1), (0,1,0), (-1,0,0)\}$ de \mathbb{R}^3 .

- 1. Hallar: $coord_{\mathcal{A}}(v)$ y $coord_{\mathcal{B}}(v)$ $\forall v \in \mathbb{R}^3$.
- 2. Dada $Id: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la transformación identidad, hallar $\mathcal{A}(Id)_{\mathcal{B}} \neq \mathcal{B}(Id)_{\mathcal{A}}$.
- 3. Verificar que:

$$coord_{\mathcal{A}}(v) =_{\mathcal{A}} (Id)_{\mathcal{B}}.coord_{\mathcal{B}}(v), \ \ \ \ \ coord_{\mathcal{B}}(v) =_{\mathcal{B}} (Id)_{\mathcal{A}}.coord_{\mathcal{A}}(v).$$

EJERCICIO 9. Dadas las bases de \mathcal{P}_2 : $\mathcal{A} = \{p_0, p_1, p_2\}$ donde $p_i(t) = t^i, \ \forall \ t \in \mathbb{R} \ (i = 0, 1, 2) \ y$ $\mathcal{B} = \{q_0, q_1, q_2\}$ donde $q_0(t) = t^2 - 1, \ q_1(t) = t - 1, \ q_2(t) = 1, \ \forall \ t \in \mathbb{R}.$

- 1. Hallar: $coord_{\mathcal{A}}(p)$ y $coord_{\mathcal{B}}(p)$ $\forall p \in \mathcal{P}_2$.
- 2. Sea $Id: \mathcal{P}_2 \longrightarrow \mathcal{P}_2$ la transformación identidad, hallar $_{\mathcal{A}}(Id)_{\mathcal{B}}$ y $_{\mathcal{B}}(Id)_{\mathcal{A}}$.
- 3. Verificar que:

$$coord_{\mathcal{A}}(p) =_{\mathcal{A}} (Id)_{\mathcal{B}}.coord_{\mathcal{B}}(p)$$
 y $coord_{\mathcal{B}}(p) =_{\mathcal{B}} (Id)_{\mathcal{A}}.coord_{\mathcal{A}}(p)$.

EJERCICIO 10. 1. Se consideran las bases $\mathcal{E} = \{(1,0),(0,1)\}$ y $\mathcal{B} = \{(1,1),(-1,1)\}$ de \mathbb{R}^2

- a) Sea $Id: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la transformación identidad, hallar $\varepsilon(Id)_{\mathcal{B}}$ y $\varepsilon(Id)_{\mathcal{E}}$.
- b) Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que

$$T(x,y) = \left(\begin{array}{cc} 0 & 2\\ 1 & 0 \end{array}\right) \left(\begin{array}{c} x\\ y \end{array}\right),$$

Hallar $\beta(T)\beta$.

2. Se consideran las bases $\mathcal{A} = \{(1,2),(0,1)\}$ y $\mathcal{B} = \{(1,0,1),(0,1,0),(-1,0,0)\}$ de \mathbb{R}^2 y \mathbb{R}^3 respectivamente.

- a) Sean $Id_2: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ e $Id_3: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ las transformaciones identidad y \mathcal{E}_2 y \mathcal{E}_3 las bases canónicas de \mathbb{R}^2 y \mathbb{R}^3 respectivamente, hallar $_{\mathcal{A}}(Id_2)_{\mathcal{E}_2}$ y $_{\mathcal{E}_3}(Id_3)_{\mathcal{B}}$.
- b) Sea $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ tal que

$$T(x,y,z) = \left(\begin{array}{ccc} 1 & 0 & -2 \\ 0 & 1 & 1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right).$$

Hallar $_{\mathcal{A}}(T)_{\mathcal{B}}.$

EJERCICIO 11. Sea $T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ la simetría axial con respecto de la recta representada por el subespacio $\{(x,y) \in \mathbb{R}^2: y=3x\}$. Hallar la matriz asociada a T en las bases canónicas de \mathbb{R}^2 .

EJERCICIO 12. Dadas $\mathcal{A} = \{v_1, v_2\}$ una base cualquiera de V y $\mathcal{B} = \{w_1, w_2\}$ la base de V formada por los vectores $w_1 = 2v_1 + 3v_2$ y $w_2 = -v_1 - 2v_2$. Sea $T: V \to V$ lineal. Hallar $\mathcal{B}(T)_{\mathcal{A}}$ sabiendo que

$$_{\mathcal{A}}(T)_{\mathcal{B}} = \left(\begin{array}{cc} 1 & -1 \\ 0 & 1 \end{array}\right).$$

EJERCICIO 13. Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$ definida por T(x,y,z) = (x+y-z,2x-3y+2z,3x-2y+z).

- 1. Determinar bases \mathcal{B} y \mathcal{B}' de \mathbb{R}^3 tales que $_{\mathcal{B}'}(T)_{\mathcal{B}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.
- 2. Si A es la matriz asociada de T en la base canónica de \mathbb{R}^3 hallar matrices E y F tales que

$$EAF = \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

EJERCICIO 14. Sean $\mathcal{B} = \{v_1, v_2, v_3\}$ una base de \mathbb{R}^3 y $\mathcal{B}' = \{w_1, w_2, w_3, w_4\}$ una base de \mathbb{R}^4 .

Sea
$$T: \mathbb{R}^3 \to \mathbb{R}^4$$
 lineal tal que $_{\mathcal{B}'}(T)_{\mathcal{B}} = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & -1 \\ 2 & 1 & 4 \\ 3 & -2 & 5 \end{pmatrix}$.

- 1. Hallar $T(3v_1 + 2v_2 v_3)$.
- 2. Hallar bases de Ker(T) y de Im(T).
- 3. Describir el conjunto $T^{-1}(w_1 3w_3 w_4)$.

4. Operaciones con transformaciones.

EJERCICIO 15. Se consideran las siguientes transformaciones lineales:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 tal que $T(3,5) = (8,1)$ $T(-2,1) = (-1,-5)$
 $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ tal que $S(1,0) = (1,1)$ $S(0,1) = (0,1)$

y las bases $\mathcal{A} = \{(1,2),(1,1)\}$ y $\mathcal{B} = \{(1,-1),(1,1)\}$ de \mathbb{R}^2 y \mathbb{R}^2 respectivamente.

- 1. Hallar $_{\mathcal{B}}(T+S)_{\mathcal{A}}$ y $_{\mathcal{B}}(3T)_{\mathcal{A}}$.
- 2. Hallar $_{\mathcal{B}}((S+T)^2)_{\mathcal{A}}$. Nota: $S^2=S\circ S$.

EJERCICIO 16. Se consideran las siguientes transformaciones lineales:

$$T: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$
 tal que $T(3,5) = (8,1)$ $T(-2,1) = (-1,-5)$
 $S: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$ tal que $S(1,0) = (1,-1,1)$ $S(0,1) = (0,0,1)$

y las bases $\mathcal{A} = \{(1, -1), (0, 1)\}$ y $\mathcal{B} = \{(1, 1, 0), (1, 0, 1), (0, 1, 1)\}$ de \mathbb{R}^2 y \mathbb{R}^3 respectivamente.

- 1. Hallar $_{\mathcal{A}}(T)_{\mathcal{A}}$.
- 2. Hallar $_{\mathcal{B}}(S)_{\mathcal{A}}$.
- 3. Hallar $_{\mathcal{B}}(S \circ T)_{\mathcal{A}}$.
- 4. Verificar la parte anterior hallando T(x,y), S(a,b), $S \circ T(x,y)$ y luego la matriz asociada de $S \circ T$ directamente.

EJERCICIO 17. Sea $T:\mathbb{R}^2\longrightarrow\mathbb{R}^2$ una rotación de centro $\vec{0}$ y ángulo α

- 1. Hallar la matriz asociada a T en la base canónica de \mathbb{R}^2 .
- 2. Hallar la matriz asociada a T^2 en la base canónica de \mathbb{R}^2 .
- 3. Deducir fórmulas para $cos(2\alpha)$ y $sen(2\alpha)$.

5. Matrices semejantes.

Ejercicio 18. Probar que la relación de matrices semejantes es una relación de equivalencia.

Recordar que una relación, es una relación de equivalencia si verifica las propiedades:

- <u>idéntica</u> (toda matriz es semejante a sí misma),
- reflexiva (si A es semejante a B, entonces B es semejante a A) y
- \blacksquare transitiva (si A es semejante a B y B es semejante a C, entonces A es semejante a C).

EJERCICIO 19. Dadas A y B matrices $n \times n$ semejantes, probar que:

- 1. $A^p \vee B^p$ son semejantes, $\forall p \in \mathbb{N}$.
- 2. $A^t y B^t$ son semejantes.
- 3. A es invertible \Leftrightarrow B es invertible. Además, A^{-1} y B^{-1} son semejantes.

EJERCICIO 20. Dadas $T: \mathbb{R}^3 \to \mathbb{R}^3$, lineal y \mathcal{B}_1 una base de \mathbb{R}^3 , donde

$$\mathcal{B}_1(T)\mathcal{B}_1 = \left(\begin{array}{rrr} 1 & 7 & 5 \\ -1 & 2 & 3 \\ 1 & 5 & 10 \end{array} \right).$$

¿Existe una base \mathcal{B}_2 de \mathbb{R}^3 tal que

$$\mathcal{B}_2(T)\mathcal{B}_2 = \begin{pmatrix} 1 & -2 & 2\\ 1 & 1 & 5\\ -1 & -10 & 11 \end{pmatrix}?$$

Justifique su respuesta.