CS343 - Operating Systems

Module-1B Types of Operating Systems

Dr. John Jose

Assistant Professor

Department of Computer Science & Engineering

Indian Institute of Technology Guwahati, Assam.

http://www.iitg.ac.in/johnjose/

Session Outline

- Review of basic operating system concepts
- Desktop PCs
- **❖ Parallel Systems**
- ❖ Multiprogramming Systems
- Clustered Systems
- **❖** Real-time Systems
- Embedded Systems

What is an Operating System?

- A program that acts as an intermediary between a user of a computer and the computer hardware
- Operating system goals:
 - Execute user programs on hardware
 - ❖ Make the computer system convenient to use
 - Use the computer hardware in an efficient manner

Computer System Structure

- Computer system can be divided into four components:
 - ❖ Hardware -- CPU, memory, I/O devices
 - Operating system -- Controls and coordinates hardware/software
 - Application programs -- Word processors, compilers, web browsers, database systems, video games, apps
 - ❖ Users People or devices

Operating System Definition

- OS is a resource allocator
 - Manages all resources
 - Decides between conflicting requests for efficient and fair resource use
- OS is a control program
 - Controls execution of programs to prevent errors and improper use of the computer
 - The one program running at all times on the computer RAM is the kernel of the OS.

Types of Operating Systems

- Most systems use a single general-purpose/special purpose processor
- There are several architectures which all require a different OS:
 - Desktop PCs
 - Parallel Systems
 - Distributed Systems
 - Clustered Systems
 - Real-time Systems
 - Embedded Systems

Desktop PCs

- Personal Computers computer system dedicated to a single user.
- I/O devices keyboards, mice, display screens, small printers.
- User convenience and responsiveness.
- Mostly single user do not need advanced CPU utilization or protection features.
- May run several different types of operating systems (Windows, MacOS, UNIX, Linux)

Parallel Systems

- Multiprocessor systems with more than one CPU in close communication.
- Tightly coupled system processors share memory and the internal clock; communication usually takes place through the shared memory.
- Loosely coupled system multiple processors/computers with its own memory connected together for efficiency and throughput.

Multiprocessor Systems

- Most systems use a single general-purpose/special purpose processor
- Multiprocessors systems growing in use and importance
 - Increased throughput
 - Economy of scale
 - Increased reliability graceful degradation or fault tolerance
 - Asymmetric Multiprocessing
 - Symmetric Multiprocessing

Multiprocessor Systems

- Asymmetric Multiprocessing
- Each processor is assigned a specific task; master processor schedules and farms work to slave processors.
- More common in extremely large systems like mainframes with hundreds of processors.

Multiprocessor Systems

- Symmetric Multiprocessing
- ❖ Each processor runs an identical copy of the operating system.
- The OS code is usually shared.
- Many processes can run at once without performance deterioration.
- Most modern operating systems have SMP support.
- OS has to cater for protection of data.

Multicore Design

- Multi-chip and multicore is a special case of tightly coupled parallel system.
- A single chip containing multiple separate systems

Clustered Systems

- Like multiprocessor systems working together
 - Usually sharing storage via a storage-area network (SAN)
 - Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mode
 - Symmetric clustering has multiple nodes running applications, monitoring each other

Clustered Systems

- Some clusters are for high-performance computing (HPC)
 - Applications must be written to use parallelization
- Some have distributed lock manager (DLM) to avoid conflicting operations

Multiprogramming Systems

- ❖ Multiprogramming (Batch system) needed for efficiency
 - ❖ Single user cannot keep CPU and I/O devices busy at all times
 - Multiprogramming organizes jobs (code and data) so CPU always has one to execute
 - ❖ A subset of total jobs in system is kept in memory
 - One job selected and run via job scheduling
 - ❖ When it has to wait (for I/O), OS switches to another job

Timesharing Systems

- Timesharing (multitasking) is logical extension in which CPU switches jobs so frequently that users can interact with each job while it is running, creating interactive computing
 - Response time should be < 1 second</p>
 - Each user has at least one program executing in memory
 - ❖ If several jobs ready to run at the same time ⇒ CPU scheduling
 - If processes don't fit in memory, swapping moves them in and out to run
 - Virtual memory allows execution of processes not completely in memory

Memory Layout for Multiprogrammed System

Real-Time Systems

- Often used as a control device in a dedicated application such as controlling scientific experiments, medical imaging systems, industrial control systems, and some display systems.
- Well-defined fixed-time constraints.
- Real-Time systems may have either hard or soft real-time.

Embedded Systems

- Personal Digital Assistants (PDAs)
- Smart telephones
- Issues:
 - Limited memory, Slow processors, Small display screens.
 - Emphasis is on I/O operations.
 - Limited memory management and protection

Operating System in Dual Mode

- Dual-mode operation allows OS to protect itself and other system components
 - ❖ User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user

Operating System in Dual Mode

johnjose@iitg.ac.in http://www.iitg.ac.in/johnjose/

