Aprendizagem 2023 Homework I – Group 60 Maria João Rosa, Mariana Miranda ist1102506, ist1102904

Part I: Pen and paper

1. Complete the given decision tree using Information gain with Shannon entropy (log_2). Consider that: i) a minimum of 4 observations is required to split an internal node, and ii) decisions by ascending alphabetic order should be placed in case of ties.

$$\frac{1}{2} \frac{1}{2} \frac{1$$

A variavel 43 é a que apresenta um maior ganho de informação

- >0.4 Por obsevação da tabela, existe uma obsevação 43=0
- concle Yout = B

 C A B B A

 Existen z obseucções com 45 = 1, que levom a 400+=Ae

 Yout = B, escelhendo por ordem algobética a golha fica con A
 - Existem 4 observações com Y3 = 2, sendo este ramo o proximo a expandir

Yz tem o maior ganho de informação

2. Draw the training confusion matrix for the learnt decision tree.

Matriz de Confusão

3. Identify which class has the lowest training F1 score.

Precision
$$A = \frac{TPA}{TP_A + TF_A} = \frac{4}{4 + 1} = \frac{4}{5}$$

Recall $A \cdot \frac{TPA}{TP_A + FPA} = \frac{4}{4} = 1$

F1-score $A = \frac{2 \times \frac{4}{5} \times 1}{4\frac{1}{5} + 1} = \frac{8}{9}$

Precision $A = \frac{2}{4} = \frac{4}{4} = 1$

Recall $A = \frac{2}{4} = \frac{4}{4} = 1$

Precision $A = \frac{2}{4} = \frac{4}{4} = 1$

Precision $A = \frac{2}{4} = \frac{4}{4} = \frac{4}{4} = \frac{4}{4}$

Precision $A = \frac{2}{4} = \frac{4}{4} = \frac{4}{4} = \frac{4}{4}$

Precision $A = \frac{4}{4} =$

A classe B é a que apresenta menor F1 score

4. Considering y_2 to be ordinal, assess if y_1 and y_2 are correlated using the Spearman coefficient.

					(1)	(2)	
_	4,	42	R(Y1)	R(Yz)	R(4)-R(VA)	R(40) - R(40)	(1) x (2)
×	0.24	1	3	8	-3,5	1,5	6-5.25
×	0.06	2	2	U	- 4,5	4,5	-20,25
¥3	0.04	0 .	١	3,5	-5,5	-3	16,50
×4	0.36	G	5	3,5	-1,5	6 (1+3) =	4,50
X5	6.32	0	4	3,5	-2,5	-3	7,50
X6	0.68	2	10	11	3,5	4,5	15,75
1	0.9	0	12	3,5	5,5	-3	-16,50
Xe	0.76	2	11	11	4,5	4,5	20,25
Xq	0.46		7	8	0,5	1,5	0,75
	0.62	C	9	3,5 .	2,5	-3	-1,50
1	0.44	1	6	8	-0,5	1,5	-0,75
1		0	8	3,5	1,5	-3	- 4,50
$R(Y_1) = 6.5$ $R(Y_2) = 6.5$							10,5

$$r_{S}(Y_{1}, Y_{2}) = cov(R(Y_{1}), R(Y_{2}))$$

$$Var(R(Y_{1})) Var(R(Y_{2}))$$

$$Var(R(Y_{1})) = \sum_{i=1}^{n} (R(Y_{1}) - R(Y_{2}))^{2} = \frac{143}{11}$$

$$Var(R(Y_{2})) = \sum_{i=1}^{n} (R(Y_{2}) - R(Y_{2}))^{2} = \frac{121}{11}$$

$$cov(R(Y_{1}), R(Y_{2})) = \sum_{i=1}^{n} (R(Y_{1}) - R(Y_{1}))(R(Y_{2}) - R(Y_{2}))$$

$$= \frac{10.5}{11} = 0.95$$

$$r_{S}(Y_{1}, Y_{2}) = \frac{0.95}{\sqrt{\frac{143}{11}}} = 0.0997$$

Como o valor de correlação entre as duas variáveis está muito próximo de 0, é possível concluir que as variáveis y_1 e y_2 estão pouco relacionadas.

5. Draw the class-conditional relative histograms of y_1 using 5 equally spaced bins in [0, 1].

Challenge: find the root split using the discriminant rules from these empirical distributions.

Pela observação dos histogramas concucionadas à classo é possível crior uma árvore ou decisão do mu sé nível anovo codo romo

corresponde ao interalo de um bin (0,2) e a folha, à classe com maior proporção don 3 histogramas.

Part II: Programming

1. Apply f_classif from sklearn to assess the discriminative power of the input variables. Identify the input variable with the highest and lowest discriminative power. Plot the class-conditional probability density functions of these two input variables.

```
from sklearn.feature_selection import f_classif
2 import pandas as pd
3 from scipy.io.arff import loadarff
4 import matplotlib.pyplot as plt
5 import seaborn as sns
7 data = loadarff('column_diagnosis.arff')
8 df = pd.DataFrame(data[0])
10 f_values = f_classif(df.iloc[:, :-1], df.iloc[:, -1])[0]
12 # Variable with lowest discriminative power
13 lowest = df.columns[f_values.argmin()]
14
plt.figure(figsize=(10, 5))
plt.hist(df[lowest][df['class'] == b'Hernia'], alpha=0.2, color='blue',

    density=True)

plt.hist(df[lowest][df['class'] == b'Spondylolisthesis'], alpha=0.2,

    color='orange', density=True)

plt.hist(df[lowest][df['class'] == b'Normal'], alpha=0.2, color='green',

    density=True)

19 df[lowest][df['class'] == b'Hernia'].plot(kind='kde', label='Hernia',

    color='blue')

20 df[lowest][df['class'] == b'Spondylolisthesis'].plot(kind='kde',
   → label='Spondylolisthesis', color='orange')
af[lowest][df['class'] == b'Normal'].plot(kind='kde', label='Normal',

    color='green')

22 plt.xlabel('Pelvic Radius')
23 plt.ylabel('Probability Density')
24 plt.xlim(50, 190)
25 plt.legend()
26 plt.show()
28 # Variable with highest discriminative power
29 highest = df.columns[f_values.argmax()]
31 plt.figure(figsize=(10, 5))
32 plt.hist(df[highest][df['class'] == b'Hernia'], alpha=0.2, color='blue',

    density=True)

plt.hist(df[highest][df['class'] == b'Spondylolisthesis'], alpha=0.2,

    color='orange', density=True)

34 plt.hist(df[highest][df['class'] == b'Normal'], alpha=0.2, color='green',

    density=True)
```


Figure 1: Variable with lowest discriminative power

Figure 2: Variable with highest discriminative power

2. Using a stratified 70-30 training-testing split with a fixed seed (random_state=0), assess in a single plot both the training and testing accuracies of a decision tree with depth limits in {1, 2, 3, 4, 5, 6, 8, 10} and the remaining parameters as default.

[optional] Note that split thresholding of numeric variables in decision trees is non-deterministic in sklearn, hence you may opt to average the results using 10 runs per parameterization.

```
import numpy as np
2 from sklearn import tree
3 from sklearn.model_selection import train_test_split
4 from sklearn.metrics import accuracy_score
x = df.iloc[:, :-1]
7 y = df.iloc[:, -1]
9 x_train, x_test, y_train, y_test = train_test_split(x, y, stratify=y, test_size =
   10 x_train = x_train.astype(np.float64)
y_train = y_train.astype(str)
12 x_test = x_test.astype(np.float64)
y_test = y_test.astype(str)
14
max_depth = (1, 2, 3, 4, 5, 6, 8, 10)
16 train_accuracy = []
17 test_accuracy = []
  for depth in max_depth:
      train = []
20
      test = []
21
      for i in range(10):
22
          predictor = tree.DecisionTreeClassifier(max_depth=depth)
23
          predictor.fit(x_train, y_train)
24
          train_predictions = predictor.predict(x_train)
25
          test_predictions = predictor.predict(x_test)
26
          train.append(accuracy_score(y_train, train_predictions, normalize=True))
27
          test.append(accuracy_score(y_test, test_predictions, normalize=True))
28
      train_accuracy.append(np.mean(train))
29
      test_accuracy.append(np.mean(test))
30
31
plt.figure(figsize=(10, 5))
33 plt.plot(max_depth, train_accuracy, label='Train Accuracy', marker='x')
plt.plot(max_depth, test_accuracy, label='Test Accuracy', marker='x')
35 plt.xlabel('Max Depth')
36 plt.ylabel('Accuracy')
37 plt.grid()
38 plt.legend()
39 plt.show()
```


Figure 3: Training and Testing Accuracy

3. Comment on the results, including the generalization capacity across settings.

Podemos observar que a exatidão aumenta com a profundidade máxima no grupo de treino, enquanto que no grupo de teste a exatidão é mais elevada com profundidade máxima 4 ou 5, diminuindo de seguida. Esta diminuição é um exemplo de *overfitting* do modelo, sendo que este modelo poderia beneficiar de uma profundidade máxima dentro das mencionadas acima, assim como de *pruning* (remoção dos ramos menos fiáveis da *decision tree*).

- 4. To deploy the predictor, a healthcare team opted to learn a single decision tree (random_state=0) using all available data as training data, and further ensuring that each leaf has a minimum of 20 individuals in order to avoid overfitting risks.
 - i) Plot the decision tree.

Figure 4: Decision Tree

ii) Characterize a hernia condition by identifying the hernia-conditional associations.

As condições que caraterizam uma hernia são:

degree_spondylolisthesis ≤ 16.079 \land (sacral_slope $\leq 28.136 \lor$ (pelvic_radius $\leq 117.36 \land$ sacral_slope ≤ 40.149))