

C 2.1 Dubins car model

Gauthier ROUSSEAU

gauthier.rousseau.cs@gmail.com

Dubins car

Dubins car system

A simple system

- 2 independently actuated wheels
- 3 degrees of freedom: 2D translation + 1D rotation

underactuated

Dubins car

Dubins car system

State

Position $p = \overrightarrow{OG} = \begin{pmatrix} x \\ y \end{pmatrix}$

Orientation

θ

Inputs

Forward velocity

v

Angular velocity

ω

Kinematic model

$$\begin{cases} \dot{x} = vc_{\theta} \\ \dot{y} = vs_{\theta} \\ \dot{\theta} = \omega \end{cases}$$

Dubins car

Integrator model

State

Position
$$p = \overrightarrow{OG} = \begin{pmatrix} x \\ y \end{pmatrix}$$

Inputs

$$\dot{p} = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix}$$

Example

$$\theta_{\text{ref}} = \arctan_2(\dot{y}_{\text{ref}}, \dot{x}_{\text{ref}})$$

$$\omega = k(\theta_{\rm ref} - \theta)$$