

THEME

001 중앙처리장치(CPU)

1회 ▶ 산 02-1

전자계산기는 대별해서 중앙처리장치와 주변장치로 구분한다. 중앙처리장치의 구성 부 분은?

- ① Input-Output, Memory, Arithmetic
- 2 Input-Output, Control, Arithmetic
- 3 Control, Memory, Arithmetic
- 4 Control, Memory, Input-Output

핵 심 이 론

중앙처리장치의 개념

- 중앙처리장치(CPU; Central Processing Unit)는 컴퓨터 시스템 전체의 작동을 통제하고 프로그램의 모든 연산을 수행하는 가장 핵심적인 장치이다.
- 제어 기능, 연산 기능, 기억 기능, 전달 기능을 수행한다.
- 제어장치, 연산장치, 레지스터, 그리고 이들을 연결하여 데이터를 주고받는 버스(내부 버스)로 구성된다.

유사문제

2회 ▶ 산 00-3, 99-4

- 1. 중앙처리장치(CPU)의 기능이 아닌 것은?
- ① 기억 기능
- ② 연산 기능
- ③ 제어 기능
- ④ 입력 기능

2회 ▶ 00-1, 산 10-1

- 2. CPU의 Hardware 요소들을 기능별로 분류할 때 포함되지 않 는 것은?
- ① 연산 기능
- ② 제어 기능
- ③ 입/출력 기능
- ④ 전달 기능

THEME **002** 제어장치의 개념

6회 ▶ 07-2, 04-1, 02-4, 산 04-2, 02-3, 01-3

주기억장치에 기억된 명령을 꺼내서 해독하고, 시스템 전체에 지시 신호를 내는 것은?

- 1 Channel
- ② ALU
- 3 Control Unit
- 4 I/O Unit

핵 심 이 론

제어장치(Control Unit)

- 주기억장치에 기억된 명령을 꺼내서 해독하고, 시스템 전체에 제어 신호(Control Signal)를 보낸다.
- 명령 코드가 명령을 수행할 수 있도록 필요한 제어 기능을 제공해 준다.

유 사 문 제

2회 ▶ 산 02-2, 99-1

- 1. 명령 코드가 명령을 수행할 수 있게 필요한 제어 기능을 제공해 주는 것은?
- ① 레지스터
- ② 누산기
- ③ 스택
- ④ CPU에 있는 제어장치

2회 ▶ 산 14-2, 05-1

- 2. 명령 코드가 명령을 수행할 수 있도록 필요한 기능을 제공하여 주는 역할을 하는 것은?
- ① 누산기
- ② 제어장치
- ③ 레지스터
- ④ 번지 필드(field)

3회 ▶ 산 08-2, 03-4, 00-1

- 3. 기억된 프로그램의 명령어를 하나씩 읽어 와서 해독하는 장치는?
- ① 입력장치
- ② 제어장치
- ③ 연산장치
- ④ 기억장치

THEME **003** 제어장치의 구성

2회 ▶ 산 14-2, 11-1

CPU의 제어장치 구성으로 옳은 것은?

- ① 누산기, 명령 해독기, 신호 발생기
- ② 명령 레지스터, 플래그 레지스터, 신호 발생기
- ③ 명령 레지스터, 명령 해독기, 인터페이스기
- ④ 명령 레지스터, 명령 해독기, 신호 발생기

핵 심 이 론

제어장치(Control Unit)의 구성

- 명령 레지스터
- 명령어 해독기
- 주소 처리기(번지 해독기)
- 제어 신호 발생기(부호기)
- 프로그램 카운터

유사문제

2회 ▶ 11-2, 07-1

- 1. 컴퓨터의 제어장치에 일반적으로 포함되지 않는 것은?
- ① 해독기
- ② 순서기
- ③ 주기억장치
- ④ 주소 처리기

1회 ▶ 04-1

- 2. 다음 설명 중 옳지 않은 것은?
- ① PC는 다음에 실행할 번지를 갖고 있는 레지스터이다.
- ② 제어 신호는 마이크로 동작이 순서적으로 일어나게 한다.
- ③ fetch 사이클은 CPU가 메모리에서 명령을 가져오는 사이클이다.
- ④ CPU의 제어장치는 명령 레지스터와 신호 발생장치만으로 구성되어 있다.

THEME **004** 주기억장치

2호 > 03-4, 02-4

주기억장치에 사용되는 양극 소자나 MOS형 기억 소자는 보조기억장치와 비교하여 어떠한 특성을 가지는가?

- ① 동작 속도가 빠르고, 가격은 비슷하다.
- ② 동작 속도가 일정하나 가격이 저렴하다.
- ③ 동작 속도가 빠르고, 가격이 저렴하다.
- ④ 동작 속도가 빠르고, 가격이 비싸다.

핵 심 이 론

주기억장치(Main Memory)

- 현재 수행 중인 프로그램 및 데이터를 임시로 저장하는 기억장치이다.
- CPU가 직접 접근하여 처리할 수 있다.
- 보조기억장치에 비해 동작 속도가 빠르지만, 가격이 비싸다.
- 종류 : ROM, RAM, 자기 코어

유사문제

1회 ▶ 산 04-4

- 1. 컴퓨터의 주기억장치는?
- ① ROM과 RAM
- ② DISK
- (3) TTY
- 4 Magnetic tape

1회 ▶ 산 03-2

- 2. 다음 중에서 주기억장치는?
- ① 컴퓨터의 RAM
- ② 컴퓨터의 C 드라이브
- ③ 컴퓨터의 A 드라이브
- ④ 컴퓨터의 CD 드라이브

1회 ▶ 산 09-4

- 3. 주기억장치의 기능이 아닌 것은?
- ① 데이터의 연산
- ② 프로그램의 기억
- ③ 중간결과 기억
- ④ 최종결과 기억

1회 ▶ 산 99-2

- 4. 기억장치를 분류할 때 Computer 내부에 있는 주기억장치를 무엇이라고 부르는가?
- ① Main Storage
- ② Accumulator
- 3 Magnetic Memory
- 4 Register Memory

THEME **005** ROM의 개념

3회 ▶ 산 09-1, 07-1, 99-4

ROM에 대한 설명 중 옳지 않은 것은?

- ① 기억된 내용을 임의로 변경시킬 수 없다.
- ② 사용자가 작성한 program이나 data를 기억시켜 처리하기 위해 사용하는 memory이다.
- ③ Read만이 가능하다.
- ④ Micro instruction을 내장하고 있다.

핵 심 이 론

ROM(Read Only Memory)

- 기억된 내용을 읽을 수만 있는 읽기 전용 기억장치이다.
- 전원이 차단되더라도 저장된 내용이 지워지지 않는 비휘발성 기억장치이다.
- BIOS(기본 입·출력시스템), POST(자가 진단 프로그램) 등과 같이 변경이 거의 없는 시스템 소프트웨어를 기억하는 데 주로 이용된다.
- ROM 칩의 구성 : 칩 선택 신호, 읽기 신호, 주소선, 데이터 버스

유 사 문 제

1회 ▶ 산 14-2

- 1. 한 번 기억한 내용을 외부로부터 지워버릴 수 없는 기억방식은?
- ① dynamic memory
- 2 writable memory
- ③ RAM
- (4) ROM

1회 ▶ 10-4

- 2. 기억소자 중 사용자가 읽기/쓰기를 임의로 할 수 없는 것은?
- ① ROM
- ② DRAM
- ③ SRAM
- 4 Core Memory

1회 ▶ 06-1

- 3. ROM 칩에 필요하지 않은 신호는?
- ① 쓰기 신호
- ② 주소
- ③ 읽기 신호
- ④ 칩 선택 신호

2호 ▶ 05-4, 00-2

- 4. 마이크로컴퓨터 내에는 동작 제어에 항상 필요한 모니터 프로 그램이 있다. 이러한 모니터 프로그램이 기억되기에 적당한 장소는?
- ① RAM

② I/O port

③ ROM

④ CPU

유수의 조언

모니터 프로그램(Monitor Program)

컴퓨터시스템에 전원이 처음 인가될 때 주변장치를 적절한 상태로 만들어주는 프로 그램으로, 시스템과 관련된 중요한 프로그램이므로 삭제되면 안 되기 때문에 비휘발 성 메모리인 ROM에 기억되어야 합니다.

THEME **006** ROM의 종류별 특징

1회 ▶ 산 03-4

ROM IC의 특징을 설명한 것 중 옳지 않은 것은?

① Mask ROM : 반도체 공장에서 내용이 기입된다.

② PROM: PROM writer로 기입되고 내용을 지울 수 없다.

③ EPROM: 자외선을 조사하면 내용을 지울 수 있다.

④ EAROM: refresh 회로가 필요하다.

핵 심 이 론

ROM의 종류별 특징

Mask ROM	반도체 공장에서 프로그램 되어 생산되며, 한 번 입력된 데이터는 수정할 수 없는 ROM이다.
PROM (Programmable ROM)	사용자가 한 번만 내용을 입력할 수 있으나, 지울 수 없는 ROM이다.
EPROM (Erasable PROM)	자외선을 이용하여 메모리를 여러 번 지우고 다시 입력할 수 있는 ROM이다.
EEPROM (Electrically EPROM)	전기적인 방법을 이용하여 메모리를 여러 번 지우고 다시 입력할 수 있는 ROM이다.

유 사 문 제

3회 ▶ 산 02-3, 00-4, 99-3

- 1. 대용량 메모리를 내장한 제품 중 프로그램 되어 있는 ROM은?
- ① PROM
- ② Mask ROM
- ③ EPROM
- ④ EAROM

2회 ▶ 07-1, 05-4

- 2. 사용자가 한 번만 내용을 기입할 수 있으나, 지울 수 없는 것은?
- ① RAM
- ② PROM
- ③ EPROM
- ④ EEPROM

3회 ▶ 산 10-1, 06-4, 03-1

- 3. 반도체 기억소자로서 이미 기억된 내용을 자외선을 이용하여 지우고 다시 사용할 수 있는 메모리 소자는?
- ① SRAM
- ② DRAM
- ③ EPROM
- (4) PROM

3회 ▶ 산 14-3, 11-3, 06-2

- 4. 전원 공급이 중단되어도 내용이 지워지지 않으며, 전기적으로 삭제하고 다시 쓸 수도 있는 기억장치는?
- (1) SRAM
- ② PROM
- ③ EPROM
- ④ EEPROM

1회 ▶ 산 08-2

- 5. 전원을 차단해도 기억되어 있는 내용이 소멸하지 않는 것은?
- ① SDRAM
- 2 Rambus DRAM
- ③ EEPROM
- ④ 캐시 메모리

2회 ▶ 산 13-2, 08-1

- 6. 자외선을 사용하여 기억된 내용을 지우는 소자는?
- ① UVEPROM
- ② EPROM
- ③ Mask ROM
- 4 PROM

THEME 007 RAM의 개념

1회 ▶ 산 09-2

RAM(Random Access Memory)의 특징으로 가장 옳은 것은?

- ① 데이터 입ㆍ출력의 고속 처리
- ② 데이터 입, 출력의 순서적 처리
- ③ 데이터 입, 출력의 내용 기반 처리
- ④ 데이터 기억 공간의 확장 처리

핵 심 이 론

RAM(Random Access Memory)

- 읽고 쓰는 것이 자유로운 기억장치이다.
- 전원이 차단되면 저장된 내용이 지워지는 휘발성 기억장치이다.
- RAM 칩의 구성 : 칩 선택 신호, 읽기 신호, 쓰기 신호, 주소선, 데이터 버스

유사문제

1회 ▶ 02-4

- 1. 휘발성 기억소자의 특징인 것은?
- ① 정전이 되어도 상태를 유지한다.
- ② 정전이 되면 기억 내용을 상실한다.
- ③ 기억 내용을 읽을 때 그 내용이 파괴된다.
- ④ 기억 내용을 읽어도 내용이 파괴되지 않는다.

1회 ▶ 산 11-1

- 2. RAM에는 최소한 몇 개의 입력 단자가 사용되어야 하는가?
- 2
- ② 3
- 3 4
- **4** 5

008 DRAM

2회 ▶ 07-1, 04-2

미소의 콘덴서에 전하를 충전하는 형태의 원리를 이용하는 메모리로, 재충전(Refresh) 이 필요한 메모리는?

- (1) SRAM
- ② DRAM
- ③ PROM
- (4) EPROM

핵 심 이 론

DRAM(Dynamic RAM, 동적 램)

구분	DRAM	SRAM
특징	재충전(Refresh)이 필요함	재충전이 필요 없음
구성 소자	콘덴서	플립플롭
밀도	높음	낮음
접근 속도	느림	빠름
회로 설계	복잡함	단순함
소비 전력	낮음	높음
용 도	일반 주기억장치	캐시 기억장치

유 사 문 제

1회 ▶ 산 05-2

- 1. 각 비트(bit)를 전하(charge)의 형태로 저장하며, 주기적으로 재충전을 필요로 하는 기억장치는?
- ① Static RAM
- ② Dynamic RAM
- ③ CMOS RAM
- ④ TTL RAM

1회 ▶ 산 01-3

- 2. DRAM의 특징으로 옳은 것은?
- ① 전원이 끊어져도 기억장치의 상태는 지워지지 않는다.
- ② 주기적으로 메모리 재생(refresh)을 해야 한다.
- ③ 내용 주소화(content addressable) 기억장치이다.
- ④ 동적 재배치(dynamic relocation)를 용이하게 한다.

1회 ▶ 산 11-2

- 3. DRAM에 대한 설명으로 옳지 않은 것은?
- ① 대용량 임시기억장치로 사용된다.
- ② refresh 회로가 필요하다.
- ③ 플립플롭의 원리를 이용한다.
- ④ 전하의 충방전 원리를 이용한다.

1회 ▶ 13-2

- 4. 동적 램(DRAM)에 관한 설명 중 옳지 않은 것은?
- ① SRAM에 비해 기억 용량이 크다.
- ② 쌍안정 논리회로의 성질을 응용한다.
- ③ 주기억장치 구성에 사용된다.
- ④ SRAM에 비해 속도가 느리다.

1회 ▶ 산 07-2

- 5. dynamic RAM에 대한 설명 중 옳지 않은 것은?
- ① static RAM에 비해서 집적도가 높다.
- ② 기억된 정보를 보관하기 위해 주기적인 refresh가 필요하다.
- ③ 일반적으로 static RAM에 비하여 메모리 접근 속도가 느리다.
- ④ 캐시메모리에 주로 사용된다.

009 SRAM

1회 ▶ 산 14-3

기억 소자로서 표준 플립플롭을 사용하는 것은?

- ① dynamic RAM(DRAM)
- ② static RAM(SRAM)
- ③ PROM
- ④ EPROM

핵 심 이 론

SRAM(Static RAM, 정적 램)

구분	DRAM	SRAM
특징	재충전(Refresh)이 필요함	재충전이 필요 없음
구성 소자	콘덴서	플립플롭
밀도	높음	낮음
접근 속도	느림	빠름
회로 설계	복잡함	단순함
소비 전력	낮음	높음
용 도	일반 주기억장치	캐시 기억장치

유사문제

1회 ▶ 산 02-2

1. SRAM과 DRAM을 설명한 것으로 옳은 것은?

- ① SRAM은 재충전이 필요 없는 메모리이다.
- ② DRAM은 SRAM에 비해 속도가 빠르다.
- ③ SRAM의 소비전력이 DRAM 보다 낮다.
- ④ DRAM의 Memory Cell은 Flip Flop으로 구성되어 있다.

1회 ▶ 산 14-3

2. SRAM과 DRAM에 대한 설명으로 옳은 것은?

- ① SRAM의 소비전력이 DRAM 보다 낮다.
- ② DRAM은 SRAM에 비해 속도가 빠르다.
- ③ SRAM은 재충전이 필요 없는 메모리이다.
- ④ DRAM의 가격이 SRAM보다 고가이다.

1회 ▶ 산 11-3

3. RAM은 동적RAM과 정적RAM으로 나누는데 이들의 차이점은?

- ① 읽고 쓸 수 있다.
- ② 쓸 수는 없으나 읽을 수는 있다.
- ③ 동적 RAM은 refresh가 필요하다.
- ④ 정적 RAM은 refresh가 필요하다.

1회 ▶ 13-1

4. RAM에 관한 설명 중 틀린 것은?

- ① DRAM은 캐패시터에 전하를 저장하는 방식으로 데이터를 저장한다.
- ② SRAM은 플립플롭을 사용해 데이터를 저장하기 때문에 방전 현상 이 나타난다.
- ③ DRAM은 상대적으로 소비전력이 적으며 대용량 메모리 제조에 적합하다.
- ④ SRAM은 컴퓨터에서 캐시 메모리로 주로 사용된다.

010 자기 코어 메모리

1회 ▶ 00-1

자기 코어(magnetic core) 기억장치에 관한 설명 중 옳은 것은?

- ① 자기 코어는 중심을 통과하는 전선에 흐르는 전류의 방향에 따라 1혹은 0의 값을 갖는다.
- ② 자기 코어는 중심을 통과하는 전선에 전류가 흐를 때 1의 값을 갖고 전류가 흐르지 않을 때 0의 값을 갖는다.
- ③ 자기 코어 기억장치는 자기드럼이나 자기디스크 보다 값이 훨씬 저렴하므로 주기억장치로 많이 사용된다.
- ④ 기억용량 8K 바이트(byte)의 자기 코어 기억장치란 8비트짜리 바이트가 꼭 8000개 있는 기억장치를 말한다.

핵 심 이 론

자기 코어(Magnetic Core)

- 중심을 통과하는 전선에 흐르는 전류의 방향에 따라 1 또는 0의 값을 갖는 기억장치이다.
- 판독 후 저장된 내용이 파괴되는 DRO(Destructive Read Out)의 성질을 갖고 있는 기억장치이다.
- 전류 일치 기술(Coincident-Current Technique)에 의하여 기억장소를 선별한다.
- 자심(磁心)이라고도 한다.
- 현재는 거의 사용하지 않는다.

유사문제

3회 ▶ 09-1, 05-1추, 00-1

- 1. 기억장치에서 DRO(Destructive Read Out)의 성질을 갖고 있는 메모리는?
- ① 반도체 메모리
- ② 자기코어 메모리
- ③ 자기디스크 메모리
- ④ 자기 테이프 메모리

1회 ▶ 산 11-1

- 2. 자료를 읽은 후 기억된 자료가 지워지는 파괴 메모리(DRO Memory: Destructive Read Out Memory)는 자료를 읽은 후 어떤 작업을 필요로 하는가?
- ① 재충전(Refresh)
- ② 재저장(Restoration)
- ③ 클리어(Clear)
- ④ 수정(Modify)

2회 ▶ 산 01-3, 00-2

- 3. 전류 일치 기술(coincident-current technique)에 의하여 기 억장소를 선별하는 기억장치는?
- ① 자기 코어
- ② 자기 디스크
- ③ 자기 테이프
- ④ 자기 드럼