

#### **Bangladesh University of Engineering and Technology Electrical & Electronic Engineering**

Course No : EEE 414

**Course Name**: Electrical Service Design

#### Report on

#### Electrical service design project

**Date of Submission** :19<sup>th</sup> February, 2021

### Submitted by

Group No - 6

Name & ID:

1606140 - Shakil Ahmed

1606143 - Md. Saklain Morshed

1606164 – Rubayet Binte Kabir

1606187 – Sandip Kollol Dhruba

1606189 – Md. Rohan Islam

1606191 – Asmiya Hasan

1606194 – Md. Sadik Yasir Tauki

1606195 – Prayas Chakma

## **Table of Contents**

| <u>CHA</u> | CHAPTER 1: DESIGN1                                                              |    |  |  |  |
|------------|---------------------------------------------------------------------------------|----|--|--|--|
| 1.1        | Floor Plan (Ground Floor)                                                       | 1  |  |  |  |
| 1.2        | Floor Plan (1 <sup>st</sup> and 2 <sup>nd</sup> Floor)                          |    |  |  |  |
| 1.3        | Fittings and Fixtures (Ground Floor)                                            |    |  |  |  |
| 1.4        | Fittings and Fixtures (1st and 2nd Floor)                                       |    |  |  |  |
| 1.5        | Conduit Layout (Ground Floor)                                                   |    |  |  |  |
| 1.6        | Conduit Layout (1 <sup>st</sup> and 2 <sup>nd</sup> Floor)                      |    |  |  |  |
| 1.7        | Legends and Conduit symbols                                                     | 7  |  |  |  |
| CHA        | APTER 2: ELECTRICAL CONNECTION DIAGRAM                                          | 8  |  |  |  |
| 2.1        | Switch Board Connection Diagram (Ground Floor)                                  | 8  |  |  |  |
| 2.2        | Switch Board Connection Diagram (Per Unit General Floor)                        |    |  |  |  |
| 2.3        | Sub-division Board Diagram (Ground Floor)                                       |    |  |  |  |
| 2.4        | Sub-division Board Diagram (Per Unit General Floor)                             |    |  |  |  |
| 2.5        | Main Distribution Board Diagram                                                 |    |  |  |  |
| 2.6        | Emergency Main Distribution Board Diagram                                       |    |  |  |  |
| 2.7        | Emergency Switch Board Diagram(Ground Floor)                                    |    |  |  |  |
| 2.8        | Emergency Switch Board Diagram(1 <sup>st</sup> and 2 <sup>nd</sup> Floor)       |    |  |  |  |
| CHA        | APTER 3: NUMERICAL CALCULATIONS                                                 | 16 |  |  |  |
| 3.1        | Light & fan calculation(Theory)                                                 | 16 |  |  |  |
| 3.2        | Light & fan calculation (Ground floor)                                          |    |  |  |  |
| 3.3        | Light & fan calculation (1st and 2nd floor)                                     | 18 |  |  |  |
| 3.4        | Calculations for Switchboard Diagram (Ground Floor)                             | 20 |  |  |  |
| 3.5        | Calculation for Switchboard Diagram (1 <sup>st</sup> and 2 <sup>nd</sup> floor) | 20 |  |  |  |
| 3.6        | Calculation for SDB (Ground Floor)                                              |    |  |  |  |
| 3.7        | Calculation for SDB Diagram (1st and 2nd floor)                                 |    |  |  |  |
| 3.8        | Calculation for Emergency Switchboard Diagram (Ground floor)                    |    |  |  |  |
| 3.9        | Calculation for Emergency Switchboard Diagram (1st and 2nd floor)               |    |  |  |  |
| 3.10       | Calculation for Conduits                                                        |    |  |  |  |
| 3.11       | Calculation for EMDB                                                            |    |  |  |  |
| 3.12       | Calculation for MDB                                                             |    |  |  |  |
| 3.13       | Calculations for Transformer                                                    |    |  |  |  |
| 3.14       | Calculation for minimum load density                                            | 24 |  |  |  |

## **List of Figure Captions**

| Fig 1.1 | Floor Plan (Ground Floor)                                | 1  |
|---------|----------------------------------------------------------|----|
| Fig 1.2 | Floor Plan (1st and 2nd Floor)                           | 2  |
| Fig 1.3 | Fittings and Fixtures (Ground Floor)                     | 3  |
| Fig 1.4 | Fittings and Fixtures (1st and 2nd Floor)                | 4  |
| Fig 1.5 | Conduit (Ground Floor)                                   | 5  |
| Fig 1.6 | Conduit (1st and 2nd Floor)                              | 6  |
| Fig 2.1 | Switch Board Connection Diagram (Ground Floor)           | 8  |
| Fig 2.2 | Switch Board Connection Diagram (Per Unit General Floor) | 9  |
| Fig 2.3 | Sub-division Board Diagram (Ground Floor)                | 10 |
| Fig 2.4 | Sub-division Board Diagram (Per Unit General Floor)      | 11 |
| Fig 2.5 | Main Distribution Board Diagram                          | 12 |
| Fig 2.6 | Emergency Main Distribution Board Diagram                | 13 |
| Fig 2.7 | Emergency Switch Board Diagram(Ground Floor)             | 14 |
| Fig 2.8 | Emergency Switch Board Diagram(1st and 2nd Floor)        | 15 |

#### **CHAPTER 1: DESIGN**

#### FLOOR PLAN (GROUND FLOOR)



Fig 1.1 Floor Plan (Ground Floor

#### FLOOR PLAN (1st and 2nd FLOOR)



Fig 1.2 Floor Plan (1st and 2nd Floor)

#### FITTINGS AND FIXTURES LAYOUT (GROUND FLOOR)



Fig 1.3 Fittings and Fixtures (Ground Floor)

(Ground Floor)

#### FITTINGS AND FIXTURES LAYOUT (1st and 2nd FLOOR)



## Fittings & Fixtures

(1st & 2nd Floor)

Fig 1.4 Fittings and Fixtures (1st and 2nd Floor)

#### **CONDUIT LAYOUT OF GROUND FLOOR**



(Ground Floor)

Fig 1.5 Conduit (Ground Floor)

#### **CONDUIT LAYOUT (1st and 2nd FLOOR)**



## Conduit

(1st & 2nd Floor)

Fig 1.6 Conduit (1st and 2nd Floor)

#### **LEGENDS and CONDUIT SYMBOLS**

## Legends

|                                              |             |         | Symbol                |                   |
|----------------------------------------------|-------------|---------|-----------------------|-------------------|
| Description                                  | Height      | Caption | Fitting &<br>Fixtures | Conduit<br>Layout |
| 4'-40W Wall Mounted<br>Fluroscent Tube Light | Lintel      | TA      | <u> </u>              | <u> </u>          |
| 2'-20W Wall Mounted<br>Fluroscent Tube Light | Lintel      | ТВ      | -                     | -                 |
| 60 W Incandescent<br>Light Bracket           | Lintel      | LB      | -0                    | -0                |
| 23W Energy Bulb                              | Ceiling     | LS      | 0                     | 0                 |
| 60W Staircase Light                          | Ceiling     | TS      | 0                     | 0                 |
| 36"-56" Sweep Fan                            | Ceiling     | FA      | $\bigcirc$            | $\bigcirc$        |
| 28"-36" Sweep Fan                            | Ceiling     | FB      | $\otimes$             | 0                 |
| Generator                                    | Floor       | GN      |                       |                   |
| Main Distribution Board                      | Switchboard | MDB     |                       |                   |
| 12" Exhaust Fan                              | Lintel      | EX      | 8                     | N N               |
| 5A-2 Pin Socket in<br>Switchboard            | Switchboard | SS      | $\Rightarrow$         | <b>*</b>          |
| 5A-2 Pin Socket                              | Skirting    | S       | #                     | Ж.                |
| 15A-3 Pin Socket                             | Skirting    | P       | ф                     | 掛                 |
| 20A-3 Pin Socket                             | Skirting    | Q       | Ф                     | ф                 |
| Doorbell                                     | Switchboard | D       | Ū                     | <u> </u>          |
| Switcboard                                   | Switchboard | SB      | V//////               | V//////           |
| Sub Distribution Board                       | Switchboard | SDB     |                       |                   |

## **Conduit Schedules**

| Name | Cable Size                  | Conduit Size |
|------|-----------------------------|--------------|
| C1   | 2 x 1.5 rm BYM + 1.5 rm BYA | 3/4"         |
| C2   | 4 x 1.5 rm BYM + 1.5 rm BYA | 3/4"         |
| C3   | 6 x 1.5 rm BYM + 1.5 rm BYA | 3/4"         |
| C4   | 8 x 1.5 rm BYM + 1.5 rm BYA | 1"           |
| C5   | 10 x 1.5 rm BYM+ 1.5 rm BYA | 1"           |
| C6   | 2 x 2.5 rm BYM+ 2.5 rm BYA  | 1"           |
| C7   | 4 x 2.5 rm BYM + 2.5 rm BYA | 1"           |
| C8   | 6 x 2.5 rm BYM + 2.5 rm BYA | 1"           |
| C9   | 2 x 4 rm BYM + 4 rm BYA     | 1"           |
| C10  | 4 x 4 rm BYM + 4 rm BYA     | 1"           |
| C11  | 2 x 6 rm BYM + 6 rm BYA     | 1"           |

## **Conduit Symbols**

| Conduit Type                                    | Symbol |
|-------------------------------------------------|--------|
| Normal Concealed Conduit                        |        |
| Normal Concealed Conduit<br>Going Up            |        |
| Normal Concealed Conduit<br>Going Down          | >      |
| Normal+Emergency Concealed<br>Conduit           |        |
| Normal+Emergency<br>Concealed Conduit Going Up  |        |
| Normal+Emergency Concealed<br>ConduitGoing Down |        |

#### **CHAPTER 2: ELECTRICAL CONNECTION DIAGRAM**

#### **SWITCH BOARD CONNECTION DIAGRAM (GROUND FLOOR)**

## SWITCHBOARD DIAGRAM (Ground Floor)



Fig 2.1 Switch Board Connection Diagram (Ground Floor)

#### SWITCH BOARD CONNECTION DIAGRAM (PER UNIT GENERAL FLOOR)

### **SWITCHBOARD DIAGRAM**

(1st and 2nd floor)



Fig 2.2 Switch Board Connection Diagram (Per Unit General Floor)

#### SUB DISTRIBUTION BOARD DIAGRAM (GROUND FLOOR)

## SUB-DISTRIBUTION BOARD DIAGRAM Ground Floor



Fig 2.3 Sub-division Board Diagram (Ground Floor)

#### **SUB DISTRIBUTION BOARD DIAGRAM (Per Unit General Floor)**

## SUB-DISTRIBUTION BOARD DIAGRAM 1st and 2nd floor



Fig 2.4 Sub-division Board Diagram (Per Unit General Floor)

#### MAIN DISTRIBUTION BOARD DIAGRAM

#### CONNECTION DIAGRAM FOR MDB



Fig 2.5 Main Distribution Board Diagram

#### **EMERGENCY MAIN DISTRIBUTION BOARD DIAGRAM**



Fig 2.6 Emergency Main Distribution Board Diagram

#### EMERGENCY SWITCH BOARD DIAGRAM (GROUND FLOOR)

# Emergency SUB-DISTRIBUTION BOARD DIAGRAM Ground Floor



Fig 2.7 Emergency Switch Board Diagram

#### EMERGENCY SWITCH BOARD DIAGRAM (1st and 2nd FLOOR)

#### **EMERGENCY SWITCBOARD DIAGRAM**

(1st and 2nd floor)



Fig 2.8 Emergency Switch Board Diagram(1st and 2nd Floor)

#### CHAPTER 3 NUMERICAL CALCULATIONS

#### **Light & fan calculation(Theory)**

Formula for Light Bulbs,

E=(n\*N\*F\*LLF\*UF)/A (Lumen in m2)

E = Illuminance

N = Number of lights

n = Number of lights per illuminate = 1 (by default)

F = lumen of the light bulb = 1250 lumen (20 watt)

LLF = Light loss factor UF = Utilization factor

 $LLF* UF = 0.72 (0.7 \sim 0.75)$ 

Formula for Fans,

One 56" diameter fan is needed every 100 sq ft

Number of Fans = A / 100 (A in sqft) (1 sqft = 0.09290304 m<sup>2</sup>)

#### **Light & fan calculation Ground floor**

#### **Kitchen/Store room:**

Area,  $A = 14 * 15 \text{ sq ft} = 210 \text{ sq ft} = 19.509638 \text{ m}^2 \text{ E} = 80 \text{ lumen}/\text{ m}^2$ 

LLF x UF = 0.72

n = 1

Flux = 1250 lumen

From calculation,

Number of lights, N = 1.73419

So, 2 Light Bulbs are needed.

But, to preserve power consumption, 1 LB is set in the store room and 1 TA is set in the kitchen.

Also 1 exhaust fan is set in the kitchen.

#### **Guard/ Driver room:**

Area, A = 16 \* 20 sq ft = 320 sq ft = 29.7289728 m<sup>2</sup>

E = 80 lumen/ m2

LLF x UF = 0.72

n = 1

Flux = 1250 lumen

From calculation.

Number of lights, N = 2.64267

So, 2 Light Bulbs and 1 Tube Light are needed.

But, to preserve power consumption, 1 light bulb(LB) and 1 tube light(TA) are set.

Number of fans = 320/100 = 3.2

So, 3 fans are needed, but to preserve power consumption, 1 ceiling fan(FA) is set.

#### **Bathroom:**

Area, A = 14 \* 5 sq ft = 70 sq ft = 6.5032128 m^2 E = 80 lumen/ m2 LLF x UF = 0.72 n = 1Flux = 1250 lumen From calculation, Number of lights, N = 0.578So, 1 Light Bulb(LB) is needed.

#### **Parking:**

 $A = (14+16+14+14+16+14)*(20+6+20-20) = 88*26 \text{ sq ft} = 2288 \text{ sqft} = 212.562155 \text{ m}^2 2$  E = 80 lumen/m2 LLF x UF = 0.72 n = 1 Flux = 1250 lumen From calculation,  $Number of lights, \ N = 18.89$  So, 19 LS are needed.

#### **Satire case:**

1 TS and 1 LS are set in the satire case.

#### <u>Light & fan calculation (1st and 2nd floor)</u>

#### **Bedroom 1 and Drawing room:**

```
Area = 16 * 20 sq ft = 320 sq ft = 29.7289728 m2 \\ E = 100 lumen/ m2 \\ LLF x UF = .72 \\ n = 1 \\ Flux = 1250 lumen
```

From calculation, Number of lights, N = 3.3032192So, we used 2 TA and 1 LB Number of fans = 320/100 = 3.2To preserve power consumption we have used 2 fans(FA).

#### Bedroom 2 & Bedroom 3:

Area = 14 \*20 sq ft = 280 sq ft = 26.0128512 m2 E = 100 lumen/ m2 LLF x UF = .72n = 1 Flux = 1250 lumen From calculation, Number of lights, N = 2.89So, we used 2 TA and 1 LB Number of fans = 280/100 = 2.82 fans(FB) are set

#### **Dining room:**

Area = 14 \* 18 sq ft = 252 sq ft = 23.411566 m2 E = 100 lumen/ m2 LLF x UF = .72 n = 1 Flux = 1250 lumen From calculation, Number of lights, N = 2.60128 So, we used 2 TA and 1 LB Number of fans = 252/100 = 2.52 1fan(FA) is set to preserve power consumption.

#### **Corridor:**

Area = 6\* 21 sq ft = 126 sq ft = 11.705783 m2 E = 70 lumen/ m^2 LLF x UF = .72n = 1Flux = 1250 lumen From calculation, Number of lights, N = 0.9104497We used 1 LS.

#### **Kitchen:**

Area = 8\*14 sq ft = 112 sq ft = 10.40514 m2 E = 200 lumen/ m2

```
LLF x UF = .72

n = 1

Flux = 1250 lumen

From calculation,

Number of lights, N = 2.31225

We used 1 TA and 1 LB
```

Number of fans = 112/100 = 1.121 exhaust fan is needed.

#### **Toilet 1:**

```
Area = 6*9 sq ft = 54 sq ft = 5.016764 m2

E = 100 lumen/ m2

LLF x UF = .72

n = 1

Flux = 1250 lumen

From calculation,

Number of lights, N = 0.55741824

We used 1 TB and 1 LB, where the extra one is kept for alternative uses.
```

#### **Toilet 2:**

```
Area = 8*12 sq ft = 96 sq ft = 8.91869 m2

E = 100 lumen/ m2

LLF x UF = .72

n = 1

Flux = 1250 lumen

From calculation,

Number of lights, N = 0.990965

We used 1 TB and 1 LB, where the extra one is kept for alternative uses.
```

#### **Veranda:**

```
Area = 16*4 sqft = 64 sq ft = 5.94579 m<sup>2</sup>

E = 70 lumen/ m<sup>2</sup>

LLF x UF = .72

n = 1

Flux = 1250 lumen

From calculation,

Number of lights, N = 0.46245

Here, though only 1 light is needed, we used 1 LS and 2 LB for decoration purposes.
```

**Staircase:** 2 TS and 2 LS are set in the stairecase.

#### **Switchboard Diagram Ground Floor:**

#### **CKT 1:**

 $\begin{array}{l} P=LB1+SS1+EX1+SS2+FA1+LB3 \\ I=&(45+60+100+100+100+60) \ / \ (\ 220*\ 0.8)=&2.64\ A \\ (\ voltage=220V,\ PF=0.8)\ \ (\ I=PV*\ PF) \end{array}$ 

#### **CKT 2:**

P= LB2+LB4+FA2+SS3+SS4 I =(60+60+100+100+100) / (220\* 0.8)=2.38 A

#### **CKT 3:**

P= LS20 I =23 / (220\* 0.8)=0.13 A

#### **CKT 4:**

P= LS1+LS2+LS3+LS6+LS7+LS8+LS18 I =(7\*23) / (220\* 0.8)=0.91 A

#### **CKT 5:**

I = (7\*23) / (220\*0.8) = 0.91 A

**CKT 4:** SB 10 + SB 7 + SB 9

P = D1 + FA4 + TA7 + LB8 + SS5 + TA10 + TA11 + SS7

All of the circuits above have current less than 5 A. So, 2 x 1.5rm BYM + 1.5 BYA ECC are used in all of them.

#### **Switchboard Diagram 1st - 2nd floor**

```
CKT 1: SB_1 + SB_6

P = TA1 +FB1 +SS1+ LB1+ TA5+FA1+ LB6

I = (40+75+100+60+40+100+60) / (220*0.8)=2.6988 A

CKT 2: SB_4 + SB_5 + SB_8

P = LB4+ LB5+ LS1+ SS3+ LB7+ EX1+ S2+ LB9+ SS6

I = (60+60+23+100+60+45+100+60+100)/(220*0.8) = 3.4545 A

CKT 3: SB_2 + SB_3

P = TB1+ FB2+ LS2+ S1+ FB4+ TA4+ LB3

I = (20+75+23+100+75+40+60) / (220*0.8) = 2.23295 A
```

I = (50 + 100 + 40 + 60 + 100 + 40 + 40 + 100) / (220\*0.8) = 3.0113636 A

All of the circuits above have current less than 5 A. So,  $2 \times 1.5$ rm BYM + 1.5 BYA ECC are used in all of them.

#### **Calculation for SDB ground**

SDB load = total load  $\times 0.7$  + total P socket load  $\times 0.2$  + total Q socket load  $\times 0.2$ 

Total load = CKT1+ CKT2+ CKT3+ CKT4+ CKT5 = (465+ 420+ 23+ 161+ 161) W

= 1460 W

P load = 3000 W

Utility load =  $5 \times 46 = 230 \text{ W}$ 

SDB load =  $(1460 \times 0.7 + 3000 \times 0.2)$  W = 1622 W

SDB current =  $1622/(220 \times 0.8) = 9.216 \text{ A}$ 

So, 10 A SP MCCB is needed from SDB to MDB. 2X 2.5rm BYM + 2.5 BYAECC

#### **Calculation for SDB 1st - 2nd floor**

Total load = CKT1 + CKT2 + CKT3 + CKT 4 = 475 + 608 + 393 + 530

=2006

P Load = 3000 w

Q Load = 4000 w

5 P load and 3 Q load

Total load of SDB first floor

 $= 2006 \times 0.7 + 5 \times 3000 \times 0.2 + 3 \times 4000 \times 0.2 = 6804.2 \text{ w}$ 

SDB current = 6804.2 / (220\*0.8) = 38.66A

So, 40A SP MCCB is needed from SDB to MDB.

2 x 16 rm BYM + 16 rm BYA ECC cable are needed.

#### **Emergency Switchboard Diagram Ground Floor**

#### **CKT 1':**

I = (40+40) / (220\*0.8) = 0.45 A

**CKT 2':** 

I = (40+60) / (220\*0.8) = 0.57 A

**CKT 3':** 

P = TS1

I = 60 / (220\*0.8) = 0.341 A

**CKT 4':** 

P = LS5 + LS4 + LS9

I = (3 \* 23) / (220\* 0.8) = 0.392 A

**CKT 5':** 

P = LS13 + LS14

I = (23 + 23) / (220\*0.8) = 0.26 A

All of the circuits above have current less than 5 A. So, 2 x 1.5rm BYM + 1.5 BYA ECC are used in all of them.

#### **Calculation for ESDB ground:**

SDB load = total load  $\times 0.7$  + total P socket load  $\times 0.2$  + total Q socket load  $\times 0.2$ Total load = CKT1' + CKT2' + CKT3' + CKT4' + CKT5 ' = (80 + 100 + 60 + 69 + 46) W = 355 W

SDB load =  $(355 \times 0.7)$  W = 248.5 W

SDB current =  $248.5/(220 \times 0.8) = 1.412 \text{ A}$ 

So, 5 A SP MCCB is needed from ESDB ground to EMDB. 2X 1.5rm BYM + 1.5rm BYAECC

#### Emergency Switchboard Diagram 1st and 2nd Floor

CKT 1': SB\_1 + SB\_6 P = TA2+ FB2+ FA2+ TA6 + SS4 I = (40 + 75 + 100 + 40 + 100)/(220\* 0.8)=2.0170 A

CKT 2': SB\_5 + SB\_8 P = TB2+ TA9 I =(20 + 40)/(220\* 0.8) =0.3409 A

**CKT 3':** SB\_3 P = TA3+ SS2+ FB3 I =(40 + 100 + 75) / (220\* 0.8) = 1.22159 A

CKT 4': SB\_10 + SB\_7 + SB\_9 P = TS1+ FA3+ TA8+ LB10 + FA5 I =(60 + 100 + 40 + 60 + 100) / (220\* 0.8) = 2.04545 A

All of the circuits above have current less than 5 A. So, 2 x 1.5rm BYM + 1.5 BYA ECC are used in all of them.

#### Calculation for ESDB 1st and 2nd floor

Total load = CKT1 + CKT2 + CKT3 + CKT 4 = 355 + 60+ 215+ 360 = 990 w P Load = 3000 w Q Load = 4000 w One P load and no Q load.

Total load at ESDB for first floor =  $990 \times 0.7 + 3000 \times 0.2 = 1293 \text{ w}$ 

ESDB current =  $1293 / (220 \times 0.8) = 7.35 A$ 

10 A SP MCCB is needed from ESDB to EMDB.

2 x 2.5 rm BYM + 2.5 rm BYA ECC cable are needed.

#### **Calculation for Conduits**

Ampere rating,  $I = PV \times pf A$ 

Pf = 0.8 (avg)

Energy Saving bulb = 20 w

Tube Light = 60 w

Ceiling fan = 100 w

Switchboard Socket (max) = 1000 w

Ceiling light = 20 w

Exhaust fan = 45 w

All internal wires are below 5A rating. That's why, 2 x 1.5 rm BYM is used in all internal wiring.

#### **Calculation for EMDB**

EMDB load = Total ESDB load  $\times 0.7$ 

Total ESDB load =  $4 \times ESDB$  load + ESDB Ground =  $4 \times 1293 + 248.5 = 5420.5 \text{ w}$ 

Phase voltage = 220 v

Pf = 0.8

EMDB load =  $5420.5 \times 0.7 = 3794.35$ 

EMDB current =  $3794.5/(3 \times 220 \times 0.8) = 12.45 \text{ A}$ 

So, 15A TP MCCB is needed from EMDB to MDB.

A 5kw generator is used to supply the EMDB load.

4 x 4 rm NYY + 4rm BYA ECC is used.

#### **Calculation for MDB**

MDB load = (Total SDB + total EMDB + Pump Load)  $\times 0.7$ 

 $SDB load = 4 \times SDB + SDB ground = 4 \times 6804.2 + 1622 = 28838.8 w$ 

EMDB Load = 3794.35 Pump Load = 5000w So, MDB load = ( 28838.8 + 3794.35 + 5000) x 0.7 = 26343.205 w

MDB current =  $26343.205 / (3 \times 220 \times 0.8) = 86.41 \text{ A}$ 100A TP MCCB is required from MDB to the main line.  $4 \times 70 \text{ rm NYY} + 70 \text{ BYA ECC}$  is used.

#### **Calculations for Transformer**

S = 3VI = 3\*220\*86.41 = 57.0306 kVA

So, 11/0.415 KV, 50 HZ,60 KVA, DYN 11, Oil Immersed Transformer with 4-6% Impedance is needed.

#### **Calculation for minimum load density**

According to Rajuk, for Air Conditioned Dwelling abodes 100 W/m^2 should be unit load.

In our Apartment load density is = (Total load)/apartment size in sq m =  $(6804.2+1293)/(3808*0.0929) = 22.875 \text{ W/m}^2$