

Instructor	Mashood Nasir
Room No.	Power Lab
Office Hours	Tuesday Thursday 11:00am – 1:00pm
Email	mashood.nasir@lums.edu.pk
TA	Umer Irfan
TA Office Hours	Friday 10:00 -12:00
Course URL (if	https://goo.gl/TXmWNQ
any)	

Course Basics				
Credit Hours	3			
Lecture(s)	No. of Lectures Per Week	2	Duration	75 min each
Recitation/Lab (per week)	No. of Lectures Per Week	As needed	Duration	
Tutorial (per week)	No. of Lectures Per Week	As needed	Duration	

Course Distribution	
Core	N
Elective	Y
Open for Student Category	All
Close for Student Category	None

Course Description

This course is intended to provide the basic theory, principles and practices of power system protection and stability. Techniques to analyze a power system under various symmetrical and unsymmetrical fault conditions will be covered. Different relaying schemes will be discussed for overcurrent, differential and distance protections. The applications of these relays will be explored in the protection of transformers, busbars, rotating electrical machines and transmission lines. Abnormal conditions and disturbances that may cause steady state and transient stability issues in power systems will also be evaluated.

Course Prerequisite		
• EE 353	Electrical Power Systems	

Course Objectives

This course is aimed to provide the students a detailed understanding of the

- Techniques for symmetrical and unsymmetrical fault analysis.
- Protective relaying schemes, fuses, circuit breakers and their co-ordination.
- Techniques for steady state and transient stability analysis.

Course	Course Learning Outcomes		
CLO1:	•	Analysis of a power system under all possible fault scenarios and determine the appropriate ratings of circuit breakers to clear those faults.	
CLO2:	•	Determination of the role of current and voltage transformers in power system protection.	
CLO3:	•	Application of non-directional and directional overcurrent relays, definite time overcurrent and inverse time over current relays	
CLO4:	•	Application of differential and percentage differential protection for transformers and bus bars	
CLO5:	•	Implement Distance relays including Impedance, reactance and Mho relays for the protection of Transmission Lines	
CLO6:	•	Application and analysis of different protection schemes in industrial power plants	
CLO7:	•	Analysis of the major disturbances and stability issues related to the faulty and abnormal conditions in power systems	

Relation to EE Program Outcomes			
CLOs	Related PLOs	Teaching Method	CLO Attainment checked in
CLO1:	PLO1	Instruction, Assignments	Midterm, Final
CLO2:	PLO1	Instruction, Assignments	Midterm, Final
CLO3:	PLO2	Instruction, Assignments	Midterm, Final
CLO4:	PLO2	Instruction, Assignments	Midterm, Final
CLO5:	PLO2	Instruction, Assignments	Midterm, Final
CLO6:	PLO2	Instruction, Assignments	Midterm, Final
CLO7:	PLO2	Instruction, Assignments	Midterm, Final

Grading Breakup and Policy

• Assignments (Computing + Simulation): 10%

• Quiz(s): 15%

Midterm Examination: 30%Semester Project: 10%Final Examination: 35%

Examination Details	
 Mid Term 	Yes/No: Yes
	Combine/Separate: Combined
	Duration: 02 hours
	Exam Specifications: closed book, closed notes, calculators
 End Term 	Yes/No: Yes
	Combine/Separate: Combined
	Duration: 03 hours
	Exam Specifications: closed book, closed notes, calculators

Lecture Plan		
Lecture	Topics	Recommended Readings
	Overview	
1	Overview of electric power systems, One line diagrams, per	Glover: Chapter 3
	unit quantities and types of faults	Stevenson: Chapter 2
2-3	Symmetrical Fault Analysis	Glover: Chapter 7
	Balanced three phase faults, Short circuit capacity and selection	Stevenson: Chapter 10
	of circuit breakers.	Hadi-Saadat: Chapter 9
4-6	Unsymmetrical Fault Analysis	Glover: Chapter 8
	Symmetrical Components and sequence networks, Zero,	Stevenson: Chapter 11
	positive and negative impedance circuits of transmission lines,	
	generators and motors. Unbalanced Fault Analysis Using	Hadi-Saadat: Chapter 10
	Symmetrical Components	
7-8	Intro to Protective Relaying and Operating Principles of	
	Relays	Horowitz: Chapter 2
	Power system structural considerations and bus configurations,	
	nature of relaying and elements of power protection, Operating	
	principles and types of relays, Overview of electromechanical	
	relays, solid state relays and computer relays.	
	Operating Principles and Types of Circuit breakers and	
9	Fuses	V.K.Mehta: Chapter 19 and 20
	Principles and methods of Arc extinction, Classification of	
	circuit breakers, Types of Fuses, Current Capacity of Fuses,	
	Difference between a fuse and circuit breaker.	
	System Transducers and Instrument Transformers	
10-11	Working principles of Current Transformers (CT), Potential	Horowitz : Chapter 3
	transformers (PT) and Coupled Capacitor Voltage Transformers	
	(CCVT). Steady state and transient performance of Current	
	transformers and voltage transformers.	
	Over-Current Protection of Transmission Lines	Horowitz : Chapter 4
12-14	Instantaneous overcurrent relays, Definite time-delay	Paithankar : Chapter 2
	overcurrent relays, Inverse, time-delay overcurrent relays,	
	Directional overcurrent relays, Reverse power relay and	
	drawbacks of over current relays	
1.5	Simulink/MATLAB based Modeling	Handouts will be uploaded on LMS
15	Modeling of over current relays	
16	Mid Term	
17.10	Distance Protection of Transmission Lines	Harawitz : Chanton 5
17-19	Operational characteristics and R-X diagrams of Simple	Horowitz: Chapter 5
	impedance relay, reactance relay and MHO relay. Protection of	Paithankar : Chapter 6
	parallel lines	

20-22	Differential and Over Current protection of Transformers Types of faults on transformer, Over current protection, Percentage Differential of Transformer, Inter turn faults on Transformers, Incipient Faults on Transformers, Buchholz Relay, Volts per Hertz protection Simulink/MATLAB based Modeling Differential Protection for Power Transformer	Horowitz : Chapter 8 Paithankar : Chapter 4
23-24	Busbar Protection Differential protection of busbars, Stability Ratio of high impedance bus bar differential scheme, Protection of three phase bus bar	Horowitz : Chapter 8 Paithankar : Chapter 5
25-26	Rotating Machinery Protection Protection against Stator Faults, Rotor Faults, Unbalanced Currents, Over load, Over Speed, Abnormal Voltages and Frequency, Loss of Excitation, Loss of Synchronism	Horowitz : Chapter 7 Paithankar : Chapter 8 and 9
27-29	Steady State Stability and Transient Stability Introduction to steady state and transient stability problem, Rotor dynamics and swing equation, Power - angle equation, Transient stability analysis based on equal Area Criterion and its application	Hadi Saadat : Chapter 11 Stevenson: Chapter 16
Final Term		

Text Books/ Supplementary Readings/ Reference Books		
Text Books	 Power System Relaying by Stanley H. Horowitz and Arun G. Phadke, John Wiley & Sons, Third Edition, 2008. 	
	Power System Analysis second edition by Hadi. Saadat, McGraw-Hill 2009	
• Reference	Power System Analysis and Design by J. D. Glover, M. S. Sarma and T. J Overbye,	
Books	fourth edition, Thomson Learning, 2008.	
	Power System Analysis by J. J. Grainger and W. D. Stevenson, Second Edition,	
	McGraw Hill, 2003.	
	 Fundamentals of Power System Protection by Y.G. Paithankar and S.R. Bhide, 	
	Prentice Hall, 2010.	
	 Principles of power system by Mehta, V. K., and Rohit Mehta. S. Chand, 1982. 	