

Score Type Names for the Imprex Verification Scoreboard

Version: 09/06/2017

(*) this is what you have to enter as identification of the name of the score in the input files to the scoreboard

ScoreType (*)	Description	Formula (see for reference: cawr¹)
MAE	Mean Absolute Error	$MAE = \frac{1}{N} \sum_{i=1}^{N} \left F_i - O_i \right $
ME	Mean Error	$ME = \frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)$
RMSE	Root Mean Square Error	$RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (F_i - O_i)^2}$
СС	Pearson correlation coefficient	$r = \frac{\sum (F - \overline{F})(O - \overline{O})}{\sqrt{\sum (F - \overline{F})^2} \sqrt{\sum (O - \overline{O})^2}}$
R2	Coefficient of determination	$R2 = \frac{\text{Sum of squares due to regression (i.e., sum of squares of residuals)}}{\text{Sum of squares about the mean}}$
AC	Anomaly correlation	$AC = \frac{\sum (F - C)(O - C)}{\sqrt{\sum (F - C)^2} \sqrt{\sum (O - C)^2}}$
KGE	Kling Gupta Efficiency	Gupta et al., 2009. ^{2 3} $ \text{KGE} = 1 - \sqrt{(r-1)^2 + (\beta-1)^2 + (\alpha-1)^2} $
KGEM	Modified Kling Gupta Efficiency	Kling et al., 2012. ⁴ $ \text{KGEM} = 1 - \sqrt{(r-1)^2 + (\beta-1)^2 + (\gamma-1)^2} $
KGE_BR	Kling Gupta Efficiency Decomposition: bias ratio	Gupta et al., 2009. $\beta = \frac{\mu(Q_{sim})}{\mu(Q_{obs})}$
KGE_SDR	Kling Gupta Efficiency Decomposition: alpha standard deviation ratio	Gupta et al., 2009. $\alpha = \frac{\sigma(Q_{sim})}{\sigma(Q_{obs})}$
KGE_CVR	Kling Gupta Efficiency Decomposition: gamma coefficient of variation ratio	Kling et al., (2012). $ \gamma = \frac{CV(Q_{sim})}{CV(Q_{obs})} $

_

¹ http://www.cawcr.gov.au/projects/verification/

² Gupta et al., 2009. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377 (1-2): 80-91.

³ For Kling Gupta Efficiency Decomposition: correlation coefficient (*r*), see score CC in the table. Gupta et al., 2009.

⁴ Kling et al., 2012. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425: 264-277.

CRPS	Continuous Rank Probability	$CRPS = \int_{-\infty}^{\infty} (P_f(x) - P_o(x))^2 dx$
	Score	
CRPS_POT	Potential CRPS	CRPS (Resolution - Uncertainty)
CRPS_REL	Reliability term of the CRPS	
RPS	Ranked Probability Score	$RPS = \frac{1}{M-1} \sum_{m=1}^{M} \left[\left(\sum_{k=1}^{m} \rho_{k} \right) - \left(\sum_{k=1}^{m} \rho_{k} \right) \right]^{2}$
BS <xx></xx>	Brier Score for quantile X% (ex.: median: BS50; upper tercile: BS66; lower tercile: BS33; quantile 80%: BS80, etc.)	$BS = \frac{1}{N} \sum_{i=1}^{N} (p_i - o_i)^2$
BS <xx>_REL</xx>	Brier Score for quantile X% - Reliability term	$\frac{1}{N}\sum_{k=1}^{K}n_k(p_k-\overline{o}_k)^2$
BS <xx>_RES</xx>	Brier Score for quantile X% - Resolution term	$\frac{1}{N} \sum_{k=1}^{K} n_k (\overline{o}_k - \overline{o})^2$
BS <xx>_UNC</xx>	Brier Score for quantile X%- Uncertainty term	$\overline{o}(1-\overline{o})$
		$Score = 1 - \frac{score_{forecast}}{score_{reference}}$
Skill Scores:		$score_{\it reference}$
CRPSS_CLI	Continuous Rank Probability Skill Score	Reference = Climatology
CRPSS_ESP	Continuous Rank Probability Skill Score	Reference = ESP
BSS <xx>_CLI</xx>	Brier Skill Score for quantile X%	Reference = Climatology
BSS <xx>_ESP</xx>	Brier Skill Score for quantile X%	Reference = ESP

Scores derived from the contingence table:

		OH	OBSERVED	
		YES	NO	Total
FORECAST	YES	Hits	False alarms	Forecast yes
	NO	Misses	Correct negatives	Forecast no
Total		Observed yes	Observed no	

ScoreType	Description	Formula
,,	•	(see for reference: cawr⁵)

⁵ <u>http://www.cawcr.gov.au/projects/verification/</u>

2

BIAS	Bias score (frequency bias)	BIAS = hits + false alarms hits + misses
POD	Probability of detection (hit rate)	POD = hits hits + misses
FAR	False alarm ratio	FAR = false alarms hits + false alarms
POFD	Probability of false detection (or false alarm rate)	POFD= false alarms correct negatives + false alarms
SR	Success ratio	$SR = \frac{hits}{hits + false \ alarms}$
TS	Threat score (or Critical Success Index)	$TS = \frac{hits}{hits + misses + false \ alarms}$
AUC	Area under the ROC	The relative operating characteristic (ROC) curve plots the probability of detection (POD) versus the probability of false detection (POFD), as a decision threshold is varied across the full range of a continuous forecast quantity The AUC is the area under the curve. An AUC of 0.5 reflects random forecasts, while AUC = 1 implies perfect forecasts.
V <xx></xx>	Relative value for C/L = X.X	$V = \begin{cases} \frac{C}{L} (hits + false \ alarms - 1) + misses & \text{if } \frac{C}{L} < P_{c \ lim} \\ \frac{C}{L} (hits + false \ alarms) + misses - P_{c \ lim} & \text{if } \frac{C}{L} \ge P_{c \ lim} \end{cases}$ $P_{c \ lim} \left(\frac{C}{L} - 1\right)$