Exercises Rosen p. 494 Bayes' Theorem

4)
$$\rho(F|E) = \frac{\rho(E|F) \cdot \rho(P)}{\rho(E)}$$

$$= \frac{(218) \cdot (112)}{13}$$

$$= \frac{3}{5}$$
3) $E : \text{`` pick a blue ball'}$

$$F : \text{`` pick he fich ban''}$$

$$\rho(F|E) = \frac{\rho(E|P) \cdot \rho(P)}{\rho(E|P) \cdot \rho(P) + \rho(E|\overline{F}) \cdot \rho(\overline{F})}$$

$$= \frac{(318) \cdot (112)}{(318) \cdot (112) + (118) \cdot (112)}$$

$$= \frac{3}{4}$$

2 0,324

$$\rho(F_1)E) = \frac{\rho(E/F_1) \cdot \rho(F_2)}{\rho(E)}$$

$$P(A) = \frac{1}{3}.$$

$$P(M = j | W = k) = \frac{1}{2} ig k \neq j \text{ and } j \neq i$$
 $P(M = j | W = k) = 0 ig j = i \text{ or } j = k$
 $P(M = j | W = k) = 1 ig k \neq j, k \neq i j \neq i$

$$P(M=j|M=k)$$

$$= P(M=k/w=j) \cdot P(w=j)$$

$$= P(M=k)$$

$$= 1 \cdot (1/3)$$

$$= 2$$

$$= 3$$

- (d) the probability that the prize is behind door j t i is $\frac{2}{3} > \frac{1}{2}$. initial chaice
 - 17) probably "hopefully useles for He exam

- ρ(E/S) · P(N/S) · ρ(S) - ρ(E/S) · P(N/S) · ρ(S) + ρ(E/S) · ρ(M/S) · ρ(S) - 99,347

in this exercise, we have to consider that $P(S) = \frac{2}{3}$ and $P(\overline{S}) = \frac{1}{3}$ even though this is not 'realistic' (it means that we are saying "ot, we trained the algorithm with unmodified samples from the real world).

Rafael

Simon a.k.a Androz2091

Salut Rafael Ne réponds pas si tu n'as pas le t...

hola.

Oui, tu peux utiliser les 2/3 pour P(S). Et t'as bien raison de se douter de ce chiffre car on sait pas si 2/3 représente la "vrai" proportion de spams sur toutes les messages...mais pour cette exo t'as pas de choix

14:53

Rafae

2 remarques:

- 1) ce que tu mentionne est un problème générale en machine learning: comment choisir les données pour l'entrainement pour ne pas créer des modèles biaisé
- 2) un détail presque plus important (que t'as mis en bleue) c'est: est-ce que E et H sont indépendents?

Et la réponse c'est probablement non mais il demande d'approximer un résultat du coup de nouveau on a aucun autre choix que de supposer qu'ils sont indépendents

14:58

Simon a.k.a Androz2091

ça marche merci beaucoup! donc on peut pas me...

on pourrait imaginer qu'ils ont regardé les derniers 15000 messages et qu'ils y ont trouvé 10000 spams

15:02