DEFINICION DE LENGUAJE.

- L = cualquier teclado que entra
- N = números que entran
- p = punto (.)
- a = asterisco (*)
- d = diagonal /
- R = palabra reservada
- c = comillas ("")

EXPRESION REGULAR:

(c. L+. c | N+. (N+ | p. N+) | L | d. (d. L+ | a. L+. a. d) | L+. R)

RESOLUCION POR EL METODO DEL ARBOL:

AGREGAMOS FINALIZACION A LA EXPRESION REGULAR

(c. L+. c | N+. (N+ | p. N+) | L | d. (d. L+ | a. L+. a. d) | L+. R). \$

DIBLIAMOS FI ARROL ASOCIADO A LA EXPRESION

TABLA DE SIGUIENTES

numero	alfabeto	Siguiente(no.)
1	С	2
2	L	2,3
3	С	18
4	N	4,5,6
5	N	5,18
6	р	7
7	N	7,18
8	L	18
9	d	10,12
10	d	11
11	L	11,18
12	а	13
13	L	13,14
14	а	15
15	d	18
16	L	16,17
17	R	18
18	\$	

TABLA DE TRANSICION

TABLA DE TRANSICION		
Estados	siguientes	Transición
S0 = {1,4,8,9,16}	$Sig(1) = \{2\}> S1$	d(S0, c)= S1
	$Sig(4) = \{4,5,6\}> S2$	d(S0, N)= S2
	$Sig(8) = \{18\}> S3$	d(S0, L)= S3
	$Sig(9) = \{10, 12\}> S4$	d(S0, d)= S4
	Sig(16) = {16,17}> S5	d(SO, L)= S5
S1={2}	$Sig(2) = {3}> S6$	d(S1, L)= S6
S2={4,5,6}	$Sig(4) = \{4,5,6\}> S2$	d(S1, N)= S2
	Sig(5) = {5,18}> S7	d(S2, N)= S7
	Sig(6) ={7}>S8	d(S2, p)= S8
S4={10,12}	Sig(10) = {11}> S9	d(S4, d)= S9
	Sig(12) = {13}> S10	d(S4, a)= S10
S5={16,17}	Sig(16) = {16,17}> S5	d(S5, L)= S5
	Sig(17) = {18}> S3	d(S5, R)=S3
S6={3}	$Sig(3) = \{18\}> S3$	d(S6, c)= S3
S7={5,18}	Sig(5) = {5,18}> S7	d(S7, N)= S7
S8={7}	$Sig(7) = \{7,18\}> S11$	d(S8, N)= S11
S9={11}	Sig(11) = {11,18}> S12	d(S9, L)= S12
S10={13}	Sig(13) = {13,14}> S13	d(S10, L)= S13
S11={7,18}	Sig(7) = {7,18}> S11	d(S11, N)= S11
S12={11,18}	Sig(11) = {11,18}> S12	d(S12, L)= S12
S13={13,14}	Sig(13) = {13,14}> S13	d(S13, L)= S13
	$Sig(14) = \{15\}> S14$	d(S13, a)= S14
S14={15}	Sig(15) = {18}> S3	d(S14, d)= S3

DEFINICION FORMAL DE AFD >>> EN ESTE CASO OBTUVIMOS UN NO DETERMINISTA.

$A = (Q, \Sigma, \lambda, SD, F)$

- l. estados: Q = {S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13}
- 2. Estado inicial = S0
- 3. Alfabeto: $\Sigma = \{N, L, p, c, d, a, R\}$
- 4. Estado final: F = {S7, S11, S3, S12}
- 5. Función de transición:

Transición
d(S0, c)=S1
d(S0, N)=S2
d(S0, L)=S3
d(S0, d) = S4
d(S0, L)=S5
d(S1, L)=S6
d(S1, N)=S2
d(S2, N)=S7
d(S2, p)=S8
d(S4, d) = S9
d(S4, a)= S10
d(S5, L)=S5
d(S5, R)=S3
d(S6, c)=S3
d(S7, N)=S7
d(S8, N)=S11
d(S9, L)= S12
d(S10, L)= S13
d(S11, N)=S11
d(S12, L)= S12
d(S13, L)= S13
d(S13, a)= S14
d(S14, d)=S3

CONVERTIMOS NUESTRO AFND A UNO AFD Y LLEVARLO A SU FORMA MINIMA.

TABLA DE ESTADOS, AGRUPANDO ESTADO DE ACEPTACION Y NO ACEPTACION

Σ			Estados no aceptación								Estados aceptación				
	S0	S1	S2	S4	S5	S6	S8	S9	S10	S13	S14	S3	S7	S11	S12
N	S2		S2, S7				S11						S7	S11	
L	S3	S6			S5	S6		S12	S13	S13		S5			S12
С	S1					S3									
d	S4			S9							S3				
а				S10						S14					
R					S3										
р			S8												
\$															

NUEVA TABLA DE TRANSICION AGRUPANDO ESTADOS QUE COINCIDAN.

Σ			Estado aceptad							Estado aceptación		
	A = S0	C = S8	L = 14	E = S4	F = S5,	G = S6	H = S1	I = S9	J =	K =	B =S2, S7,	D =
					s13				S10	S12	S11	S3
N	S2	S11									S2	
L	S3				S5	S6	S6	S12	S13	S13		S5
С	S1					S3						
d	S4		S3	S9								
а				S10						S14		
R					S3							
р												S8
\$												

DEFINICION FORMAL DE AFD (simplificado)

$$A = (Q, \Sigma, \partial, SD, F)$$

- 1. estados: Q = {A, B, C, D, E, F, G, H, I, J, K, L}
- 2. Estado inicial = A
- 3. Alfabeto: $\Sigma = \{N, L, p, c, d, a, R\}$
- 4. Estado final: $F = \{B, D, K\}$
- 5. Función de transición:

Transición

- d(A, c) = H
- d(A, N) = B
- d(A, L) = D
- d(A, d) = E
- d(B, N) = B
- d(B, p) = C
- d(C, N) = B
- d(D, L) = F
- d(E, d) = I
- d(E, a) = J
- d(F, L) = F
- d(F, R) = D
- d(F, a) = M
- d(G, L) = G
- d(G, c) = D
- d(H, L) = G
- d(I, L) = K
- d(J, L) = F
- d(K, L) = K
- d(K, a) = L
- d(L, d) = D

