V. Orthogonalité en dimension finie

Dans cette section, (F, +, .) est un \mathbb{R} -espace vectoriel **de dimension finie** $n \in \mathbb{N}^*$ muni d'un produit scalaire noté $(\cdot|\cdot)$.

Il s'agit donc d'un espace euclidien.

V.1. Bases orthonormées

🔁 Définition 22.20 (Base orthonormée)

On appelle ${\it base \ orthonorm\'ee}$ ou ${\it base \ orthonormale}$ d'un espace euclidien F toute famille libre, génératrice et orthonormale de F.

Théorème 22.21 (Existence de bases orthonormées)

Tout espace euclidien F possède au moins une base orthonormée.

Démonstration

F étant de dimension finie, il possède une base \mathcal{B} . Par le procédé d'orthonormalisation de Gram-Schmidt, on construit une famille \mathcal{B}' orthonormale de même cardinal. Or d'après la propriété 22.16, cette famille est libre, de cardinal égal à la dimension de E, donc c'est une base.

V.2.Coordonnées en base orthonormée

Propriété 22.22 (Propriété fondamentale des espaces euclidiens)

Soit $\mathcal{B} = (u_i)_{i \in [1:n]}$ une base orthonormée de F (euclidien).

Alors, pour tout $i \in [1; n]$ la coordonnée suivant u_i de tout vecteur v de F est

$$x_i = (u_i|v)$$

Démonstration

 \mathcal{B} étant une base de F, tout vecteur v se décompose de manière unique sous la forme

$$v = \sum_{i=1}^{n} x_i u_i$$

où $(x_i)_{i\in \llbracket 1;n\rrbracket}\in \mathbb{R}^n.$ On a alors pour tout $k\in \llbracket 1;n\rrbracket$

$$(v|u_k) = \left(\sum_{i=1}^n x_i u_i \middle| u_k\right) = \sum_{i=1}^n x_i (u_i|u_k) = x_k \text{ car la base est orthonormée.}$$

V.3. Expressions du produit scalaire et de la norme

Propriété 22.23

Soit $\mathcal{B} = (u_i)_{i \in \llbracket 1;n \rrbracket}$ une base orthonormée de F (euclidien).

Alors quels que soient les vecteurs $v = \sum_{i=1}^{n} x_i u_i$ et $w = \sum_{i=1}^{n} y_i u_i$ on a

$$\bullet (v|w) = \sum_{i=1}^{n} x_i y_i;$$

•
$$||v|| = \sqrt{\sum_{i=1}^{n} x_i^2}$$
.

Démonstration

$$(v|w) = \left(\sum_{i=1}^{n} x_i u_i \middle| \sum_{i=1}^{n} y_i u_i \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j (u_i|u_j).$$

La base étant orthonormée, $(u_i|u_j) = 0$ si $i \neq j$ et $(u_i|u_j) = 1$ si i = j.

Donc
$$(v|w) = \sum_{i=1}^{n} x_i y_i$$
.

En utilisant ce résultat pour w = v, on obtient immédiatement que

$$||v||^2 = (v|v) = \sum_{i=1}^n x_i^2.$$

V.4. Projection orthogonale sur un sous-espace vectoriel de dimension finie

Théorème 22.24

Soit E un espace préhilbertien réel (donc de dimension quelconque) et <math>F un sous-espace vectoriel de dimension finie de <math>E (donc un espace euclidien).

Quel que soit le vecteur $u \in E$, il existe un unique vecteur $v = p_F(u) \in F$ tel que $u - v \in F^{\perp}$.

Démonstration

Soit $\mathcal{B} = (v_i)_{i \in \llbracket 1;n \rrbracket}$ une base orthonormée de F.

Analyse: supposons qu'il existe un vecteur v satisfaisant aux hypothèses du théorème et décomposons v dans $\mathcal{B}: v = \sum_{i=1}^{n} x_i v_i$.

Pour tout $i \in [1; n]$, $(u|v_i) = (u - v + v|v_i) = (v|v_i) = x_i$.

Si v existe, il est donc unique et $v = \sum_{i=1}^{n} (u|v_i) v_i$.

Synthèse: soit $w = \sum_{i=1}^{n} y_i v_i$ un vecteur quelconque de F.

$$(u - v|w) = \left(u - \sum_{i=1}^{n} (u|v_i) v_i \middle| \sum_{i=1}^{n} y_i v_i \right) = \sum_{i=1}^{n} (u|v_i) y_i - \sum_{i=1}^{n} (u|v_i) y_i = 0.$$

Conclusion: le vecteur $v = \sum_{i=1}^{n} (u|v_i) v_i$ est l'unique vecteur de F tel que $u - v \in F^{\perp}$.

Définition 22.25 (Projection orthogonale sur un espace euclidien)

Soit E un espace **préhilbertien réel** (donc de dimension quelconque) et F un **sous-espace** vectoriel de dimension finie de E (donc un espace euclidien).

On appelle **projection orthogonale** sur F la projection sur F parallèlement à F^{\perp} .

Autrement dit, la projection orthogonale sur F est l'application p_F qui à tout vecteur u de Eassocie l'unique vecteur v de F tel que $u - v \in F^{\perp}$.

Corollaire 22.26

Soit E un espace **préhilbertien réel** (donc de dimension quelconque) et F un **sous-espace** vectoriel de dimension finie de E (donc un espace euclidien).

Tout vecteur de E s'écrit de façon unique comme somme d'un vecteur de F et d'un vecteur de F^{\perp} .

V.5.Remarque importante

Les théorèmes de la sous-section précédente ne sont valables que pour un sous-espace vectoriel F de dimension finie. L'exercice suivant donne un contre-exemple dans le cas où F est de dimension infinie.

Ex. 22.11

- 1) Montrer qu'une application continue de [0;1] dans \mathbb{R} , qui s'annule sur tout intervalle ouvert non vide $I \subset [0;1]$, est l'application nulle.
 - **Indication**: pour une application $f \in \mathcal{F}(E, F)$, s'annuler et être nulle ont des significations (très) différentes...
- 2) Soit $E = \mathcal{C}^0([0;1],\mathbb{R})$ muni de son produit scalaire canonique et $F = \mathcal{C}^1([0;1],\mathbb{R})$.
 - a) Montrer que $F^{\perp} = \{x \in [0; 1] \mapsto 0\}.$
 - b) En déduire que si $f \in E \setminus F$, il n'existe pas de fonction $g \in F$ telle que $f g \in F^{\perp}$.
 - c) Que vaut $(F^{\perp})^{\perp}$?

V.6. Propriétés

Propriété 22.27

Soit E un espace **préhilbertien réel** (donc de dimension quelconque) et F un **sous-espace** vectoriel de dimension finie de E (donc un espace euclidien).

La projection orthogonale p_F sur F est un projecteur, autrement dit $p_F \circ p_F = p_F$.

Démonstration

La démonstration du théorème 22.24 montre que $\forall u \in E, p_F(u) = v = \sum_{i=1}^{n} (u|v_i) v_i$ où (v_i) est

une base orthonormée quelconque de F.

Il suffit de montrer que $p_F(v) = v$.

Or $p_F(v) = \sum_{i=1}^n (v|v_i) v_i = v$ puisque la base est orthonormée (on retrouve les coordonnées de v en base orthonormée).

Propriété 22.28 (Inégalité de Bessel)

Avec les mêmes hypothèses que précédemment, quel que soit le vecteur $u \in E$,

$$||p_F(u)|| \leq ||u||$$

Démonstration

Par définition du projeté orthogonal, $p_F(u)$ est l'unique vecteur de F tel que $u - p_F(u) \in F^{\perp}$. Donc $||u||^2 = ||u - v + v||^2 = ||u - v||^2 + ||v||^2$ car les vecteurs u - v et v sont orthogonaux. Donc $||v||^2 \le ||u||^2$ ce qu'il fallait démontrer.

Propriété 22.29

Avec les mêmes hypothèses que précédemment, quel que soit le vecteur $u \in E$, $v = p_F(u)$ est l'unique vecteur de F vérifiant

$$||u-v|| = \min_{w \in F} ||u-w||$$

Démonstration

Il suffit de montrer que pour tout vecteur $w \in F$ distinct de v, ||u-v|| < ||u-w||. Soit w un tel vecteur.

$$\begin{split} \|u-w\|^2 &= \|u-v+v-w\|^2 = \|u-v\|^2 + \|v-w\|^2 + 2\left(u-v|v-w\right) = \|u-v\|^2 + \|v-w\|^2 > \\ \|u-v\|^2 \text{ car d'une part } u-v \in F^\perp \text{ et } v-w \in F \text{ et d'autre part } \|v-w\| > 0 \text{ } (v \neq w). \end{split}$$

V.7. Supplémentaire orthogonal d'un sous-espace euclidien

Théorème 22.30

Soient E un espace préhilbertien réel (donc de dimension quelconque) et <math>F un sous-espace vectoriel de dimension finie de <math>E (donc un espace euclidien).

Alors F^{\perp} et F sont supplémentaires.

Démonstration

- Soit $u \in F \cap F^{\perp}$. $u \in F$ et $u \in F^{\perp}$ donc $u \perp u : (u|u) = 0 \Rightarrow u = 0_E$. Donc $F \cap F^{\perp} = \{0_E\}$.
- Soit $u \in E$. Le projeté orthogonal $v = p_F(u)$ appartient à F et u v appartient à F^{\perp} . Donc u = v + (u - v) est somme d'un vecteur de F et d'un vecteur de F^{\perp} .

Donc
$$E = F + F^{\perp}$$
.

Finalement, $E = F \oplus F^{\perp} : F$ et F^{\perp} sont supplémentaires.

Théorème 22.31

Soient E un espace **euclidien** de dimension n et F un sous-espace vectoriel de dimension p de E. Alors dim $F^{\perp} = n - p$ et $(F^{\perp})^{\perp} = F$.

Démonstration

On suppose que E est un espace **euclidien** de dimension n. D'après le théorème précédent, F (de dimension p) et F^{\perp} sont supplémentaires : donc dim $F^{\perp} = n - p$.

De plus, $(F^{\perp})^{\perp}$ est un sous-espace vectoriel de dimension n - (n - p) = p et $F \subset (F^{\perp})^{\perp}$ (car par définition, tout vecteur de F est orthogonal à tout vecteur de F^{\perp}).

Donc F est un sous-espace vectoriel de $(F^{\perp})^{\perp}$, de même dimension que lui : $F = (F^{\perp})^{\perp}$.

VI. Correction des exercices

Cor. 22.1:

1) Symétrie: $(u|v) = x_1x_2 + y_1y_2 = x_2x_1 + y_2y_1 = (v|u)$.

Linéarité à gauche :

$$(\lambda u + \mu v | w) = (\lambda x_1 + \mu x_2) x_3 + (\lambda y_1 + \mu y_2) y_3 = \lambda (x_1 x_3 + y_1 y_3) + \mu (x_2 x_3 + y_2 y_3).$$

Donc
$$(\lambda u + \mu v | w) = \lambda (u | w) + \mu (v | w).$$

Par symétrie, l'application est aussi linéaire à droite donc bilinéaire.

Définition: soit u = xi + yj tel que (u|u) = 0. On a donc $x^2 + y^2 = 0 \Leftrightarrow (x = 0 \text{ et } y = 0) \Leftrightarrow u = 0$.

Positivité: soit u = xi + yj. $(u|u) = x^2 + y^2 \geqslant 0$.

L'application donnée est donc bien une forme bilinéaire symétrique définie positive, c'està-dire un produit scalaire.

- 2) La démonstration de la question précédente reste valable si l'on décompose les vecteurs dans la base \mathcal{B}' puisqu'aucune supposition n'a été faite sur la base \mathcal{B} .
- 3) $(i|j) = (i + 0j|0i + j) = 1 \times 0 + 0 \times 1 = 0$. De même, $\langle i', j' \rangle = 0$.

4)
$$(i'|i') = (2i + j|2i + j) = 4 + 1 = 5.$$

$$(i'|j') = (2i + j|i - 2j) = 2 - 2 = 0.$$

$$(j'|j') = (i-2j|i-2j) = 1+4=5.$$

Soient $u = x'_1 i' + y'_1 j'$ et $v = x'_2 i' + y'_2 j'$.

D'une part, $\langle u, v \rangle = x_1' x_2' + y_1' y_2'$.

D'autre part, $(u|v) = (x_1'i' + y_1'j'|x_2'i' + y_2'j') = x_1'x_2'(i'|i') + (x_1'y_2' + y_1'x_2')(i'|j') + y_1'y_2'(j'|j')$ par linéarité et symétrie.

Donc $(u|v) = 5(x'_1x'_2 + y'_1y'_2) = 5\langle u, v \rangle.$

On en déduit que quel que soit $u, v \in E, \langle u, v \rangle = \frac{(u|v)}{5}$.

Cor. 22.2: