## ISLR 10.7.2

| <b>A</b> ]: | Sketch the dendogram<br>Given dissimilarity matrix |     |     |      |      |     |  |
|-------------|----------------------------------------------------|-----|-----|------|------|-----|--|
|             |                                                    |     | 0.3 | 0.4  | 0.7  | ) . |  |
|             |                                                    | 0.3 | ž   | 05   | 0.8  |     |  |
|             |                                                    | 0.4 | 0.5 | _    | 0.45 |     |  |
|             |                                                    | 0.7 | 0.8 | 0.45 |      |     |  |

We will use Principle Component Analysis for this.

1st step:

for i=4, we understand than 0.3 is the least dissimilarity, thus observations 192 are fused to form cluster (1,2). We can see below dissimilarity motors after above step

2nd step:

For (=3, minimum dissimalinity is observed for 0.45. thus, we combine observations 3 \$4 to form a cluster (3,4). We can see new dissimilarity matrix as below

0.8

3rd step:

At 1=4, We combine both clusters (1,2) & (3,4) to form a new cluster ((1,2), (3,4)) at height of 0.8

New cluster dendogram would be like below:



Cluster Dendogram

B) We will use linkage clustering for this.

Given dissimilarity matrix is.

|     | 6.3  | 0.4  | 0.7   |
|-----|------|------|-------|
| 0.3 |      | 0.5  | 0.68  |
| 0.4 | 0.5  |      | ,0.45 |
| 0.7 | 0.85 | 0.45 |       |

1st step:-

0.3 is the minimum dissimilarity in the motifix thus, we combine observations 192 to form a new cluster (1,2) at height of 0.3. The new dissimilarity matrix after steps.

0.4 0.7

2nd Step:-

For above matrix 0.4 is the minimum dissimilarity. So, we decided to combine cluster (1,2) & observation 3 to form new cluster (1,2),3). New dissimilarity post step 2.

0.45

3rd step:-

Here we fuse cluster ((1,2),3) & observation 4, which combines new cluster ex((1,2),3),4) at level 0.45



- c] If we cut the dendogram created in @ into 2, then we will have two clusters like (1,2) & (3,4)
- D) If we cut the dendogram created in (b) into2, then we will have two clusters like.

  ((1,2),3) &(4)



Cluster Dendogram