Platform Technologies Introduction

Partially based on Based on Tanenbaum, Modern Operating Systems & Management Information Systems: Managing the Digital Firm

What is a Platform?

Hardware + Software + Networks = Platform

- In general, a computing platform is any pre-existing hardware environment, a piece of software that is designed to run within it, and any associated facilities used with it.
- A platform is any base of technologies on which other technologies or processes are built.
- Most services that the end users use will be build on top of platforms.

Generations of Computing

- 1. (1945–55) Vacuum Tubes
 - Punch cards and machine language programming
- 2. (1955–65) Transistors and Batch Systems
 - Mainframes (IBM 1401, IBM 7094), FORTRAN compiler
- 3. (1965–1980) ICs and Multiprogramming
 - IBM System/360, OS/360, multiprogramming, timesharing, MULTICS
- 4. (1980-Present) Personal Computers
 - IBM PC, DOS, Macintosh, Windows, Linux
- 5. (1990–Present) Mobile Computers
 - PDAs, Symbian OS, Blackberry OS, Smartphones, iOS, Android

Transistors and Batch Systems

1401 reads batch of jobs onto tape. c)

Operator carries input tape to 7094.

- d) 7094 does computing.
- e) Operator carries output tape to 1401.
- f) 1401 prints output.

a) Programmers bring cards to 1401. b)

ICs and Multiprogramming

4

A multiprogramming system with three jobs in memory. 5

Modern computers

- A modern computer consists of:
 - One or more processors
 - Main memory
 - Disks
 - Printers
 - Various input/output devices
- Managing all these components requires a layer of software
 - the operating system

• A set of disciplines that describes a computer system by specifying its parts and their relations provides physical environment.

Common Types:

- Commodity computing platforms
- Video game consoles
- RISC
- Midrange computers
- Mainframe computers
- Supercomputer

- A collection of software that manages computer hardware resources and provides common services for computer programs.
- The operating system is an essential component of the system software in a computer system.
- Application programs usually require an operating system to function.
- Examples?

- The most important program that runs on your computer.
- It manages all other programs on the machine.
 - Every PC has to have one to run other applications or programs.
 - It's the first thing "loaded".
- In simple terms, an operating system is a manager.
 - It manages all the available resources on a computer, from the CPU, to memory, to hard disk accesses.

What is an Operating System?

- Major cost of general purpose computing is software.
- An operating system is a program that acts an intermediary between the user of a computer and computer hardware.
- Operating systems simplify and manage the complexity of running application programs efficiently.

The Operating System as an Extended

Machine

Operating systems turn the ugly hardware details into beautiful abstractions for the use of other software.

The Operating System as a Resource Manager

- Allow multiple programs to run at the same time
- Manage and protect memory, I/O devices, and other resources
- Includes multiplexing (sharing) resources in two different

ways: • In time

• In space

Operating System Concepts

- Processes
- Address spaces (Memory)
 Files
- Input/Output
- Protection
- The shell
- Development in computing over

time

Large memories

Multithreaded and Multicore Chips

- Protection hardware
- Disks
- Virtual memory

13

- (a) A quad-core chip with a shared L2 cache.
- (b) A quad-core chip with separate L2 caches.

Memory

Disks

Structure of a disk drive.

Types of Operating Systems

- Mainframe operating systems
- Server operating systems
- Multiprocessor operating systems
- Personal computer operating systems
- Handheld operating systems
- Embedded operating systems
- Sensor node operating systems
- Real-time operating systems
- Smart card operating systems

Evolution of IT infrastructure

- General-purpose mainframe and minicomputer era: 1959 to present • 1958: IBM first mainframes introduced
 - 1965: less expensive DEC minicomputers introduced
- Personal computer era: 1981 to present
 - 1981: Introduction of IBM PC
 - Proliferation in 80s, 90s resulted in growth of personal software
- Client/server era: 1983 to present
 - Desktop clients networked to servers, with processing work split between clients and servers
 - Network may be two-tiered or multitiered (N-tiered)
 - Various types of servers (network, application, Web)

20

- Enterprise computing era:
 1992 to present
 - Move toward integrating disparate networks, applications using Internet standards and enterprise applications
- Cloud and mobile computing:
 2000 to present
 - Cloud computing: computing power and software applications supplied over the Internet or other network

Server

Cloud and Mobile Computing (2000–present)

Enterprise Computing

1992-present)

- IT Infrastructure has seven main components:
 - 1. Computer hardware platforms
 - 2. Operating system platforms
 - 3. Enterprise software applications
 - 4. Data management and storage
 - 5. Networking platforms
 - 6. Internet platforms
 - 7. Consulting system integration services

- Computer hardware platforms
 - Client machines
 - Desktop PCs, mobile devices, laptops
 - Servers
 - Blade servers: ultrathin computers stored in racks
 - Mainframes:
 - IBM mainframe equivalent to thousands of blade servers
 - Top chip producers:
 - Intel, AMD, ARM, IBM
 - Top firms:
 - IBM, HP, Dell, Lenovo

- Operating system platforms
 - Operating systems
 - Server level: 65% run Unix or Linux; 35% run Windows
 - Client level:
 - 90% run Microsoft Windows (XP, 2000, CE, etc.)
 - Mobile/multitouch (Android, iOS)
 - Cloud computing (Google's Chrome OS)
- Enterprise software applications
 - Enterprise application providers: SAP and Oracle
 - Middleware providers: BEA

- Data management and storage
 - Database software:
 - IBM (DB2), Oracle, Microsoft (SQL Server), Sybase (Adaptive Server Enterprise), MySQL
 - Physical data storage:
 - EMC Corp (large-scale systems), Seagate, Maxtor, Western Digital
 - Storage area networks (SANs):
 - Connect multiple storage devices on dedicated network

- Networking/telecommunications platforms
 - Telecommunication services
 - Telecommunications/cable company charges for voice lines and Internet access
 - AT&T, Verizon
 - Network operating systems:
 - Windows Server, Linux, Unix
 - Network hardware providers:
 - Cisco, Alcatel-Lucent, Nortel, Juniper Networks

- Internet platforms
 - Hardware, software, management services to support company web sites, (including web-hosting services) intranets, extranets
 - Internet hardware server market:
 - IBM, Dell, Oracle, HP
 - Internet services:
 - Amazon, Google
 - Web development tools/suites:
 - Microsoft (.NET) Oracle (Java), Adobe

- Consulting and system integration services
 - Even large firms do not have resources for full range of support for new, complex infrastructure
 - Software integration:
 - ensuring new infrastructure works with legacy systems
 - Legacy systems:
 - older TPS created for mainframes that would be too costly to replace or redesign
 - Accenture, IBM Global Services, EDS, Infosys, Wipro

Module Outline

- 1. Introduction
- 2. Processes
- 3. Scheduling
- 4. Data Communication & Networking
- 5. File Systems
- 6. Distributed Systems
- 7. Virtualisation & Cloud Computing
- 8. Platform Security
- 9. Client Server Architectures
- 10. System Administration 29

Module Resources

- Lecturer:
 - Nimal Skandhakumar
 - nimal@sjp.ac.lk
 - 0769804524
- LMS Course:
 - https://lms.fhss.sjp.ac.lk/course/view.php?id=1406