Ceilul' se acetate

Synonym:

Acetate

Monomers:

Base monomer unit glucose

Related Polymers:

Cellulose II

Cellulose acetate propionate

Cellulose acetate butyrate

Cellulose triacetate

Material Class

Polysaccharides

Polymer Type:

cellulosics

CAS Reg. No.:

9004-35-7

Molecular Formula:

(C11-12H15-16O7.5-8)_n

General Info:

Thermoplastic polymer with excellent optical props.

Volumetric and Calorimetric Properties

Density:

No.	Value	Note
1	1.26 g/cm ³	varies with degree of acetylation [8]
2	1.28 g/cm ³	[1]
3	1.3 - 1.31 g/cm ³	[2]

Thermal Expansion Coefficient:

No.	Value	Note
1	0.00008 - 0.00018 K ⁻¹ [L]	mould [3]
2	0.0001 – 0.00015 K ⁻¹ [L]	sheet [3]
3	0.00012 K ⁻¹ [L]	ASTM D696 [8]
4	0.00014 K ⁻¹ [L]	[4]

Thermodynamic Props General:

Heat of combustion 17179 kJ kg⁻¹

Thermal Conductivity:

No.	Value	Note
1	0.17 – 0.34 W/m K	[3,8]

Specific Heat Capacity:

No.	Value	Note
1	1.26 – 1.76 kJ/(kg °C) [P]	moulding [1,9]
2	1.26 – 2.09 kJ/(kg °C) [P]	sheet [1,9]
3	1.26 - 1.67 kJ/(kg °C) [P]	23°, ASTM C177 [8]

Melting Temperature:

No.	Value	Note
ı	230°C	[3]
2	235 - 255°C	[2]

Deflecti n Temperatures:

No.	Value	Note
1	44 − 113°C	1.82 MPa, ASTM D648 [1]
2	44 – 91°C	1.82 MPa, moulding [3]
3	49 – 98°C	0.455 MPa
4	55 – 118°C	0.455 MPa, ASTM D648 [1]
5	57°C	1.82 MPa, ASTM D648 [8]
6	61°C	0.0383 Mpa
7	70°C	0.0455 MPa
8	72°C	0.0096 MPa, ASTM D648 [4]

Vicat Softening Point:

No.	Value	Note
1	70°C	[5]

Surface Properties and Solubility

Plasticisers:

Diglycerol ethers

Solvents/Nonsolvents:

Sol. ketones, esters and alcohols (ASTM D543) [5]. Liq. cryst. trifluoroacetic acid/CH₂Cl₂

Surface Tension:

	No.	Value	Note
***************************************	1	45.9 mN/m	20°, polarity 0.296 [13,14]

Transport Properties

Water Absorption:

1	No.	Value	Note
	1	3 – 8.5%	[2]

Gas Permeability:

No.	Value	Note
1	18.4 cm 3 /m 2 atm day [N $_2$]	0.28 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 30° [3]
2	51.2 cm³/m² atm day [O ₂]	$0.78 \bullet 10^{-10} \text{ cm}^2 \text{ (s cmHg)}^{-1}, 20^{\circ} [3]$
3	183.9 cm³/m² atm day [Hexane]	$2.8 \bullet 10^{-10} \text{ cm}^2 \text{ (s cmHg)}^{-1}, 35^{\circ} [3]$
4	229.8 cm³/m² atm day [H ₂]	$3.5 \bullet 10^{-10} \text{ cm}^2 \text{ (s cmHg)}^{-1}, 20^{\circ} [3]$
5	229.8 cm³/m² atm day [H ₂ S]	3.5 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 30° [3]
6	245.6 cm³/m² atm day [CCl ₄]	3.74 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 35° [3]
7	446.5 cm³/m² atm day [Bromomethane]	6.8 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 60° [3]
8	893 cm³/m² atm day [He]	13.6 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ [3]
9	1116.3 cm ³ /m ² atm day [Ethylene oxide]	17 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 0° [3]
10	33621 cm³/m² atm day [C ₆ H ₆]	512 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 35° [3]
11	195685 cm³/m² atm day [EtOH]	2980 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 35° [3]
12	236069 cm³/m² atm day [EtOAc]	3595 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 35° [3]
13	361163 cm³/m² atm day [H ₂ O]	5500 • 10 ⁻¹⁰ cm ² (s cmHg) ⁻¹ , 20° [3]

Mechanical Properties

Tensile M dulus:

Nó.	Value	Note
1	2174 MPa	ASTM D638 [4]
2	2800 – 3000 MPa	2.8-3.0 • 10 ¹⁰ dyne cm ⁻² , DS 1.87-2.99 [6]

Flexural Modulus:

No.	Value	Note
1	1449 MPa	ASTM D790 [4]
2	1749 MPa	ASTM D790 [4]

Tensile Strength at Break:

No.	Value	Note
1	5.5 – 41.4 MPa [50-56%]	70°, ASTM D638 [1,9]
2	13.5 – 58.6 MPa	23°, ASTM D638 [1,9]
3	75 MPa [15-55%]	film [2]

Elastic Moduli:

No.	Value	Note
1	620.7 – 1793 MPa [Flexural modulus]	ASTM D790 [1,9]
2	1310 MPa	ASTM D790 [8]

Tensile Strength at Yield:

No.	Value	Note
1	13.8 – 48.3 MPa	73°, ASTM D638 [1,9]
2	15.2 – 51 MPa	sheet [3]
3	22.8 MPa [30%]	ASTM D638 [8]
4	28.3 – 52.4 MPa	mould [3]

Flexural Strength at Yield:

No.	Value	Note
1	13.8 – 110.3 MPa	ASTM D790 [1,10]
2	13.8 – 110 MPa	mould [3]
3	33.1 MPa	ASTM D790 [8]
4	41 – 68.9 MPa	sheet [3]

Compressive Strength:

No.	Value	Note
1	13.1 – 64.1 MPa	ASTM D695 [1,10]

Hardness

Rockwell R39-R120 (ASTM D785) [1], R100-R123 (moulding) [3], R85-R120 (sheeting) [3], R82 (ASTM D785) [4]

Failure Properties General:

Deformation under load 40-1% (13.79 MPa), 15-1% (6.90 MPa, ASTM D621) [1]. Tear strength 1.6-3.9 N mm⁻¹ (film) [2]. Burs strength (M≅ullen) 30-60 [2]

Izod:

No.	Value	Note
1	1.9 – 14.3 J/m [No]	-40°, ASTM D758 [1,9]
2	53 – 214 J/m [No]	23°, mould [3]
3	59 J/m [Yes]	-40°, ASTM D256 [8]
4	107 – 454 J/m [No]	23°, sheet [3]
5	132.7 – 136.6 J/m [No]	23°, ASTM D256 [1,9]
6	235 J/m [Yes]	23°, ASTM D256 [8]

Optical Properties

Surface Resistivity:

Nó.	Value	Note
1	0.68 10 ¹⁵ ohm	ASTM D257 [8]

V lume Resistivity:

No.	Value	Note
1	0.0001 – 0.01 10 ¹⁵ ohm cm	ASTM D257 [1,9]
2	0.01 – 1 10 ¹⁵ ohm cm	ASTM D257 [8]
3	0.016 10 ¹⁵ ohm cm	ASTM D257 [8]

C mplex Permittivity and Electroactive Polymers:

Zeta potential 52 mV (cellulose acetate fibre, H₂O) [12]

Dielectric Strength:

No.	Value	Note
1	0.25 - 0.365 kV/mm	0.125 cm thick [1,9]
	9 – 24 kV/mm	mould [3]
3	11 – 24 kV/mm	sheet [3]
4	13.4 kV/mm	ASTM D149 [4]
5	14.5 kV/mm	ASTM D149 [8]
6	126 – 197 kV/mm	sheet [2]

Dielectric/Permittivity Constant:

No.	Value	Note
1	3.2 – 7 [1 MHz]	ASTM D150 [5]
2	3.2 – 7 [1 MHz]	sheet [3]
3	3.2 – 7 [1 MHz]	mould [3]
4	3.4 – 7.4 [60 Hz]	sheet [3]
5	3.5 – 7.5 [60 Hz]	mould [3]
6	3.5 [1 MHz]	ASTM D150 [8]

Optical Properties

Optical Properties General:

Uv light screening <99% absorbed (ASTM E308) [8]

Refractive Index:

No.	Value	Note
1	1.46 – 1.5	25°, ASTM D542 [1,9]
2	1.46 – 1.5	mould [3]
3	1.46 – 1.49	ASTM D542 [8]
4	1.49 – 1.5	sheet [3]

T tal Internal Reflect:

 $[\alpha]^{20}_{D}$ +12.6 (MeCN), +5.15 (Me₂CO), -10.0 (dioxan), -26.0 (pyridine) [7]

V lume Properties/Surface Properties:

Light transmittance 88% (sheet) [3], <90% (sheet, 1.52 mm thick, ASTM E308) [8]. Haze <1% (sheet) [3]. Haze <8.5% (sheet, 1.52 mm thick, ASTM D1003) [8]

Stability

P lymer Stability General:

Aq. potassium or calcium iodide stabilises the polymer against thermal degradation and discoloration during processing.

Upper Use Temperature (Long Term):

No.	Value	Note
1	-26°C	film [2]
2	79°C	film [2]

Decompositi n Details:

Weight loss in accelerated ageing of 0.4-12.0% (82°, 72h, ASTM D706) [1,2]

Flammability:

1.27-5.08 cm min⁻¹ (ASTM D635) [1]

Chemical Stability:

Stable to chlorine bleach and to dilute acids and alkalis. Decomposed by strong mineral acids and alkalis, particularly at highe temps. [1]

Applications/Commercial Products

Pr c/Manuf Routes:

Cellulose fibres (or cellulose dissolved in *N*,*N*-dimethylacetamide-LiCl) is treated with Ac₂O in AcOH, using sulfuric acid as catalyst. Water is added to terminate the reaction. Partial hydrol. of acetyl groups can also be achieved to give a range of products. The product is collected by precipitation into water or dil. AcOH

M Id Shrinkage:

No.	Value	Note
1	0.2 – 0.6%	ASTM D955

Applications:

Fibres, films, plastics, liquid crystals, cigarette filters, packaging

Tradenames:

Tradenames	Grade	Manufacturer/Supplier
		Hoechst Celanese
Acety		Diacel Chem. Ind.
CA700	various grades	Albis Corp.
Cellidor S		Bayer Inc.
Dexel		
H/H2/H3/H4		Rotuba
M/MH/MS		Rotuba
Tenite acetate		Eastman Chemical Company

References

- [1] Encycl. Polym. Sci. Eng., 2nd edn., (eds. H.F. Mark, N.M. Bikales, C.G. Overberger and G. Menges), John Wiley and Sons, 1985, 3
- [2] Kirk-Othmer Encycl. Chem. Technol., 4th edn., (ed. J.I. Kroschwitz), Wiley Interscience, 1993, 5,.
- [3] Dean, J.A., Lange's Handbook of Chemistry, 14th edn., McGraw-Hill, 1992,.
- [4] Handbook of Plastic Materials and Technology, (ed. I.I. Rubin), Wiley Interscience, 1990, 55,.
- [5] Crompton, T.R., Practical Polymer Analysis, Plenum Press, 1993, 716,.
- [6] Richards, G.N., J. Appl. Polym. Sci., 1961, 5, 545,.
- [7] Fort, R.J., Moore, W.R. and Tidswell, B.M., Chem. Ind. (London), 1964, 108,.
- [8] Tenite Cellulose Plastics, Pub. No. PPC-100B, Eastman Chemical Co., Kingsport, TN, USA, 1995, (technical datasheet).
- [9] Guide to Plastics, Property and Specification Charts, (ed. J. Agronoff), McGraw Hill Inc., 1982, 59, 470,.
- [10] Physical and Chemical Properties of Triacetate Filaments, Yarns and Staple Fibres, Tech. Bull. TBT 30, Celanese Fibres Mktg. Co., Charlotte, NC, USA, 1974, (technical datasheet).
- [11] Birky, M.M. and Yeh, K.N., J. Appl. Polym. Sci., 1973, 17, 239,.
- [12] Groda, A., Polym. Handb., 3rd edn., (eds. J. Brandrup and E.H. Immergut), Wiley Interscience, 1989, V137,.
- [13] Kaelble, D.H. and Moacanin, J., Polymer, 1977, 18, 475,.
- [14] Busscher, H.J. and Arends, J., J. Colloid Interface Sci., 1981, 81, 75,.

P lymers - A Pr perty Database © C pyright CRC Press, LLC, 2000

Cellulose triacetate

Monomers:

Base monomer unit glucose

Material Class

Polysaccharides

P lymer Type:

cellulosics

CAS Reg. No.:

9012-09-3

Molecular Formula:

(C12H16O8)_n

Fragment:

C12H16O8

Mol. Weight:

DP 300 (fibres). Degree of substitution greater than or equal to 2.8

Volumetric and Calorimetric Properties

Density:

	No.	Value	Note	
	1	1.27 - 1.29 g/cm ³	[1]	
İ	2	1.3 g/cm ³	fibres [1]	

Therm dynamic Props General:

Heat of combustion 17598 kJ kg⁻¹ [7]

Melting Temperature:

No.	Value	Note
1	265 – 295°C	[3]

Glass Transition Temperature:

No.	Value	Note
1	49 – 478°C	[9]

Transition Temperatures:

No.	Value	Note
1	130°C [Crystalline rearrangement]	in steam [4]
2	195°C [Crystalline rearrangement]	[4]
3	310 - 315°C [Decomposition temp.]	[1]

Surface Properties and Solubility

Solvents/Nonsolvents:

Sol. CH_2CI_2 , formic acid, glacial AcOH. Slightly sol. dioxan, Me_2CO . Insol. hydrocarbons, C_6H_6 , toluene, CCI_4 , tetrachloroethene [4]. Liq. crystal sol. trifluoroacetic acid/water [8]. Swollen by H_2O [1], dichloroethene, trichloroethene [4]

Transport Properties

Water Content:

Water retention capacity 16-17% [1], 10% (after heat setting) [4]

Water Absorption:

No.	Value	Note
1	2.5%	after heat setting [4]
2	4 – 4.5%	20°, 65% relative humidity [1]

Mechanical Properties

Tensile Strength at Break:

No.	Value	Note
1	86 MPa [10-50% [10]]	
2	98.1 – 117.7 MPa	10-12 kg mm ⁻² , foil, transverse [1]
3	117.78 – 235.3 MPa	12-24 kg mm ⁻² , foil, longitudinal [1]
4	137.39 – 245.2 MPa	14-25 kg mm ⁻² , fibres [1]

Viscoelastic Behavior:

Viscoelastic behaviour has been reported [3]

Failure Properties General:

Tear strength 1.6-11.8 N mm⁻¹ [10]. Burst strength (Mullen) 50-70 [10]

Electrical Properties

Electrical Properties General:

Specific resistance 10^{13} - $10^{15} \Omega$ cm [1]

Volume Resistivity:

-	No.	Value	Note
	1	0.01 10 ¹⁵ ohm cm	[10]

Complex Permittivity and Electroactive Polymers:

Zeta potential 37 mV (H₂O) [9]

Dielectric Strength:

No.	Value	Note
1	1.46 kV/mm	[10]

Dielectric/Permittivity Constant:

N .	Value	Note
1	3 – 4.5 [50-60 Hz]	[1]
2	4	[10]

Dissipation Factor:

No.	No. Value	
1	0.01 – 0.02 [50-60 Hz]	[1]
2	0.016	[10]

Optical Properties

Refractive Index:

No.	Value	Note	
1	1.469	fibres, along axis [1]	
2	1.472	fibres, transverse to axis [1]	

Total Internal Reflect:

 $[\alpha]_D$ -22.5 (CHCl₃) [2]. Double refraction -0.003 [1]

V lume Pr perties/Surface Properties:

Appearance yellowish flakes [2]

Stability

P lymer Stability General:

Thermal Stability General:

Crystallinity increases after heating at 240° for 1 min. [6]

Upper Use Temperature (Long Term):

No.	Value	Note
1	175°C	[10]

Decomposition Details:

Thermal decomposition range 230-320°. Decomposes to give gaseous products together with acetylated derivatives of D-glucose [5]

Bi logical Stability:

Resistant to microorganisms (similar to polyesters and nylon) [6]

Chemical Stability:

Fibres are resistant to slightly acid/alkaline conditions at ambient temp. Resistant to chlorine bleaches. Decomposed by strong mineral acids [6]

References

- [1] Ullmanns Encykl. Ind. Chem., 5th edn., (ed. W. Gerhartz), VCH, 1985, A5, 444,.
- [2] Handbook of Chemistry and Physics, 63rd edn., (eds. R.C. Weast and M.J. Astle), CRC Press, 1983,.
- [3] Kirk-Othmer Encycl. Chem. Technol., 3rd edn., (ed. M. Grayson), Wiley Interscience, New York, 1979, 5, 89,.
- [4] Moncrieff, R.W., Man-Made Fibers, 6th edn., Newnes-Butterworth, 1975, 257,.
- [5] Brown, W.P. and Tipper, C.F.H., J. Appl. Polym. Sci., 1978, 22, 1459,.
- [6] Concise Encyclopedia of Polymer Science and Engineering, (eds. H.F. Mark, N.M. Bikales, C.G. Overberger and G. Menges), John Wiley and Sons, 1990,.
- [7] Birley, M.M. and Yeh, K.N., J. Appl. Polym. Sci., 1973, 17, 239,.
- [8] Meeten, G.H. and Navard, P., Polymer, 1983, 24, 815,.
- [9] Grobe, A., Polym. Handb., 3rd edn., (eds. J. Brandrup and E.H. Immergut), Wiley Interscience, 1989, V155, (zeta potential).
- [10] Kirk-Othmer Encycl. Chem. Technol., Vol. 10, 4th edn., (ed. J.I. Kroschwitz), Wiley Interscience, 1993,.

Polymers - A Property Database © Copyright CRC Press, LLC, 2000

Cellulose acetate butyrate

M nomers:

Base monomer unit glucose

Related P lymers:

Cellulose II

Cellulose acetate

Cellulose acetate propionate

Material Class

Polysaccharides

P lymer Type:

cellulosics

CAS Reg. No.:

9004-36-8

General Info:

Composition by weight: Ac 13-15%, Butyrate 36-38%, H 1-2%. Commercial grades: Ac 6-29.5%, Butyrate 17-48%, H 1-2.5%. Commercial grades (lacquers, plastics and coatings): Degree of substitution Ac: Bu: H = 0.5-2.1: 0.7-2.3: 0.2-0.5.

Volumetric and Calorimetric Properties

Density:

No.	Value	Note
1	1.15 - 1.22 g/cm ³	ASTM D792 [1]
2	1.19 g/cm ³	ASTM D792 [2,5]

Thermal Expansion Coefficient:

No.	Value	Note
1	$0.00011 - 0.00016 \mathrm{K^{-1}}$ [L]	ASTM D696 [1]
2	0.00012 K ⁻¹ [L]	ASTM D696 [5]

Equati n of State:

Equation of state information has been reported [9]

Thermal Conductivity:

No. Value		Note
1	0.16 – 0.33 W/m K	ASTM C177 [1,6]

Specific Heat Capacity:

No.	Value	Note	
1	1.2 – 1.6 kJ/(kg °C) [P]	ASTM C177 [1,6]	

Melting Temperature:

No.	Value	Note
1	140°C	[4]

Deflecti n Temperatures:

No.	Value	Note
1	50 − 99°C	1.82 MPa, ASTM D648 [1]
	59.5 – 112°C	0.455 MPa [1]
3	65°C	0.038 MPa [2]
4	72°C	0.0096 MPa, ASTM D648 [2]
5	74°C	1.82 MPa [5]
6	85°C	0.455 MPa, ASTM D648 [5]

Vicat S ftening Point:

Surface Properties and Solubility

S lubility Properties General:

Compatible with polyester, acrylic, vinyl and alkyd resins [1]

S Ivents/Nonsolvents:

Sol. ketones, esters and alcohols (ASTM D543) [6]

Surface Tension:

No.	Value	Note	
1	34 mN/m	20° [10,11]	

Transport Properties

Water Absorption:

No.	Value	Note
1	1 – 4%	24h, ASTM D570 [1]
2	1.5%	24h, ASTM D570 [2]

Gas Permeability:

No.	Value	Note
1	320.7 cm³/m² atm day [O ₂]	$4.61 \cdot 10^{-10} \text{ cm}^2 \text{ (s cmHg)}^{-1} [7]$

Mechanical Properties

Tensile Modulus:

-	No.	Value	Note
	1	1725 MPa	ASTM D638 [2]

Flexural Modulus:

Ν.	Value	Note
1	482.8 – 1379 MPa	ASTM D790 [1]
2	1449 MPa	ASTM D790 [2]

Tensile Strength at Break:

No.	Value	Note
	<u></u>	70°, ASTM D638 [1,3]
2	13.8 – 51.7 MPa	23°, ASTM D638 [1,3]
3	34.5 MPa [50%]	ASTM D638 [2]

Elastic Moduli:

No.	Value	Note
1	1379 MPa	ASTM D790 [5]

Tensile Strength at Yield:

No.	Value	Note
1	10.3 - 48.3 MPa	73°, ASTM D638 [1,3]

Flexural Strength at Yield:

No.	Value	Note
1	10.3 – 64.1 MPa	ASTM D790 [1,3]
2	12.4 – 64.1 MPa	moulding [4]
3	27.6 – 62 MPa	sheet [4]

C mpressive Strength:

No.	Value	Note
1	7.6 – 52.4 MPa	ASTM D695 [1,3]

Hardness:

Rockwell 29-117 (ASTM D785) [1]. Rockwell R75 (ASTM D785) [2]

Failure Properties General:

Deformation under load 40-1% (13.79 MPa), 15-1% (6.90 MPa, ASTM D621) [1]

lz d:

No.	Value	Note
1	53 – 582 J/m [Yes]	23°, moulding [4]
2	96 J/m [Yes]	-40°, ASTM D256 [5]
3	133 – 288 J/m [Yes]	23°, sheet [4]
4	187 J/m [Yes]	ASTM D256 [2]
5	240 J/m [Yes]	23°, ASTM D256 [5]

Optical Properties

Surface Resistivity:

No.	Value	Note
1	14 10 ¹⁵ ohm	ASTM D257 [5]

Volume Resistivity:

No.	Value	Note
1	0.00001 - 0.001 10 ¹⁵ ohm cm	[1,3]
2	1.6 10 ¹⁵ ohm cm	ASTM D257 [5]

Dielectric Strength:

No. Value		Note
1	0.25 – 0.4 kV/mm	0.125 cm thick, ASTM D149 [1,3]
2	16.6 kV/mm	ASTM D149 [5]

Optical Properties

R fractive Index:

	No.	Value	Note
-	1	1.46 – 1.49	25°, ASTM D542 [1,3]

V lume Properties/Surface Properties:

Light transmittance <90% (sheet, 1.52 mm thick, ASTM E308) [5]. Haze <8.5% (sheet, 1.52 mm thick, ASTM D1003) [5]

Stability

P lymer Stability General:

Dec mposition Details:

Weight loss in accelerated ageing of 0.1-4.0% at 82° over 72h (ASTM D706) [1]

Flammability:

1.27-3.81 cm mm⁻¹ (ASTM D635) [1,3]

Chemical Stability:

Decomposed by strong acids and alkalis; slightly decomposed by weak acids and alkalis (ASTM D543) [6]

Applications/Commercial Products

M Id Shrinkage:

No.	Value	Note
1	0.2 - 0.4%	ASTM D955

Applications:

Sheeting, moulding plastics, films, lacquers, dip coatings

Tradenames:

Tradenames Grade		Manufacturer/Supplier	
Cellidor B		Bayer Inc.	
Tenite butyrate		Eastman Chemical Company	

References

- [1] Encycl. Polym. Sci. Eng., 2nd edn., (ed. J.I. Kroschwitz), John Wiley and Sons, 1985, 3,.
- [2] Handbook of Plastic Materials and Technology, (ed. I.I. Rubin), Wiley Interscience, 1990,.
- [3] Physical and Chemical Properties of Triacetate Filaments, Yarns and Staple Fibres, Tech. Bull. TBT 30, Celanese Fibres Mktg. Co., Charlotte, NC, USA, 1974, (technical datasheet).
- [4] Dean, J.A., Lange's Handbook of Chemistry, 14th edn., McGraw-Hill, 1992,.
- [5] Tenite Cellulose Plastics, Pub. No. PPC-100B, Eastman Chemical Co., Kingsport, TN, USA, 1995, (technical datasheet).
- [6] Crompton, T.R., Practical Polymer Analysis, Plenum Press, 1993, 716,.
- [7] Yang, W.H., Smolen, V.F. and Peppas, N.A., J. Membr. Sci., 1981, 9, 53,.
- [8] Saunders, J.K., Org. Polym. Chem., Chapman and Hall, 1973, 265,.
- [9] Spenser, R.S. and Gilmore, G.D., J. Appl. Phys., 1950, 21, 523,.
- [10] Wu, S., Polymer Interface and Adhesion, Marcel Dekker, 1982, (surface tension).
- [11] Grode, A., Polym. Handb., 3rd edn., (eds. J. Brandrup and E.H. Immergut), Wiley Interscience, 1989, V 137, (surface tension, general data).

Polymers - A Property Database © Copyright CRC Press, LLC, 2000

Cellulose triacetate

M nomers:

Base monomer unit glucose

Material Class

Polysaccharides

Polymer Type:

cellulosics

CAS Reg. No.:

9012-09-3

Molecular Formula:

(C12H16O8)_n

Fragment:

C12H16O8

Mol. Weight:

DP 300 (fibres). Degree of substitution greater than or equal to 2.8

Volumetric and Calorimetric Properties

Density:

No. Value		Note
1	1.27 - 1.29 g/cm ³	[1]
2	1.3 g/cm ³	fibres [1]

Thermodynamic Props General:

Heat of combustion 17598 kJ kg⁻¹ [7]

Melting Temperature:

No.	Value	Note
1	265 – 295°C	[3]

Glass Transition Temperature:

No.	Value	Note
1	49 – 478°C	[9]

Transiti n Temperatures:

No.	Value	Note
Ī	130°C [Crystalline rearrangement]	in steam [4]
2	195°C [Crystalline rearrangement]	[4]
3	310 - 315°C [Decomposition temp.]	[1]

Surface Properties and Solubility

S Ivents/Nonsolvents:

Sol. CH_2CI_2 , formic acid, glacial AcOH. Slightly sol. dioxan, Me_2CO . Insol. hydrocarbons, C_6H_6 , toluene, CCI_4 , tetrachloroethene [4]. Liq. crystal sol. trifluoroacetic acid/water [8]. Swollen by H_2O [1], dichloroethene, trichloroethene [4]

Transport Properties

Water C ntent:

Water retention capacity 16-17% [1], 10% (after heat setting) [4]

Water Absorption:

No.	Value	Note
1	2.5%	after heat setting [4]
2	4 – 4.5%	20°, 65% relative humidity [1]

Mechanical Properties

Tensile Strength at Break:

No.	Value	Note
1	86 MPa [10-50% [10]]	
2	98.1 – 117.7 MPa	10-12 kg mm ⁻² , foil, transverse [1]
3	117.78 – 235.3 MPa	12-24 kg mm ⁻² , foil, longitudinal [1]
4	137.39 – 245.2 MPa	14-25 kg mm ⁻² , fibres [1]

Viscoelastic Behavior:

Viscoelastic behaviour has been reported [3]

Failure Properties General:

Tear strength 1.6-11.8 N mm⁻¹ [10]. Burst strength (Mullen) 50-70 [10]

Electrical Properties

Electrical Properties General:

Specific resistance 10^{13} - $10^{15} \Omega$ cm [1]

V lume Resistivity:

No.	Value	Note
1	0.01 10 ¹⁵ ohm cm	[10]

C mplex Permittivity and Electroactive Polymers:

Zeta potential 37 mV (H₂O) [9]

Dielectric Strength:

	N . Value		Note
ĺ	1	1.46 kV/mm	[10]

Dielectric/Permittivity Constant:

No.	Value	Note
1	3 – 4.5 [50-60 Hz]	[1]
2	4	[10]

Dissipation Factor:

No.	Value	Note
1	0.01 - 0.02 [50-60 Hz]	[1]
2	0.016	[10]

Optical Properties

Refractive Index:

No.	Value	Note
1	1.469	fibres, along axis [1]
2	1.472	fibres, transverse to axis [1]

T tal Internal Reflect:

 $[\alpha]_D$ -22.5 (CHCl₃) [2]. Double refraction -0.003 [1]

V lume Properties/Surface Properties:

Appearance yellowish flakes [2]

Stability

* P lymer Stability General:

Thermal Stability General:

Crystallinity increases after heating at 240° for 1 min. [6]

Upper Use Temperature (L ng Term):

No.	Value	Note
1	175°C	[10]

Decomposition Details:

Thermal decomposition range 230-320°. Decomposes to give gaseous products together with acetylated derivatives of D-glucose [5]

Biological Stability:

Resistant to microorganisms (similar to polyesters and nylon) [6]

Chemical Stability:

Fibres are resistant to slightly acid/alkaline conditions at ambient temp. Resistant to chlorine bleaches. Decomposed by strong mineral acids [6]

References

- [1] Ullmanns Encykl. Ind. Chem., 5th edn., (ed. W. Gerhartz), VCH, 1985, A5, 444,.
- [2] Handbook of Chemistry and Physics, 63rd edn., (eds. R.C. Weast and M.J. Astle), CRC Press, 1983,.
- [3] Kirk-Othmer Encycl. Chem. Technol., 3rd edn., (ed. M. Grayson), Wiley Interscience, New York, 1979, 5, 89,.
- [4] Moncrieff, R.W., Man-Made Fibers, 6th edn., Newnes-Butterworth, 1975, 257,
- [5] Brown, W.P. and Tipper, C.F.H., J. Appl. Polym. Sci., 1978, 22, 1459,.
- [6] Concise Encyclopedia of Polymer Science and Engineering, (eds. H.F. Mark, N.M. Bikales, C.G. Overberger and G. Menges), John Wiley and Sons, 1990,.
- [7] Birley, M.M. and Yeh, K.N., J. Appl. Polym. Sci., 1973, 17, 239,.
- [8] Meeten, G.H. and Navard, P., Polymer, 1983, 24, 815,.
- [9] Grobe, A., Polym. Handb., 3rd edn., (eds. J. Brandrup and E.H. Immergut), Wiley Interscience, 1989, V155, (zeta potential).
- [10] Kirk-Othmer Encycl. Chem. Technol., Vol. 10, 4th edn., (ed. J.I. Kroschwitz), Wiley Interscience, 1993,.

P lymers - A Property Database © Copyright CRC Press, LLC, 2000