Voltage source converters (VSCs)

Switch used:

Switches S1 and S2 are complementary to each other

$$v_{an} = V_{dc}$$
 ... if S1 is ON
$$= 0$$
 ... if S2 is ON

Switches S1 and S2 are complementary to each other

$$v_{an} = V_{dc}$$
 ... if S1 is ON
$$= 0$$
 ... if S2 is ON

Consider:

Consider:

Fundamental + harmonic components

Consider:

Fundamental + harmonic components

DC + Fundamental + harmonic components

$$v_{ab} = v_{an} - v_{bn}$$

Note: two level full bridge VSC is realized as:

Full bridge VSC (harmonic elimination)

Full bridge VSC (harmonic elimination)

4 voltage reversals in a half cycle

Source: K. R. Padiyar, FACTS controllers in power transmission and distribution, New Age publication, 2007.

Full bridge VSC (harmonic elimination)

4 voltage reversals in a half cycle

6 voltage reversals in a half cycle

Consider

Consider

The switching angles are estimated using numerical methods:

$$\bar{m} = 2[\cos \alpha_1 - \cos \alpha_2 + \cos \alpha_3] - 1$$
 $0 = 2[\cos 5\alpha_1 - \cos 5\alpha_2 + \cos 5\alpha_3] - 1$
 $0 = 2[\cos 7\alpha_1 - \cos 7\alpha_2 + \cos 7\alpha_3] - 1$

Example:

If there are two voltage reversals in a quarter cycle, the values of α_1 and α_2 for eliminating 5th and 7th voltage harmonic are

$$\alpha_1 = 16.2^{\circ}$$
 $\alpha_2 = 22^{\circ}$

$$\alpha_2 = 22^{\circ}$$

The modulation index is:

$$\bar{m} = 1 - 2(\cos \alpha_1 - \cos \alpha_2) = 0.934$$

Sine triangle PWM

VSC block equivalent

VSC block equivalent

Possible output levels: +V_{dc}, 0, -V_{dc}

Possible output levels:

$$+3V_{dc}$$
, $+2V_{dc}$, $+V_{dc}$, 0, $-V_{dc}$, $-2V_{dc}$, $-3V_{dc}$

Three-phase two level bridge circuit

Three-phase two level bridge circuit

VSC Connected to Grid

VSC Connected to Grid

Example: Monopolar HVDC link

- (1) $P_{ac1}=P_{dc1}$, $P_{ac2}=P_{dc2}$ (loss-less converter)
- (2) $P_{dc1}=P_{dc2}$ in steady state
- (3) Q_{ac1} , Q_{ac2} are independently controllable

HVDC Configurations

HVDC Configurations

