CDS Group SoC – Day 6 Notes

June 15, 2016

1 Discussion of JK build algorithms, black magic, and Psi4 hacks

- GEMM, GEMV routines are both written in Fortran
 - Arguments passed to GEMM & GEMV must be in written in Fortran order (opposite of C order)
 - When given a matrix in C order, numpy.dot forces a copy of the matrix into Fortran order, to be compatible with GEMM & GEMV routines
 - This process is **SLOW!!**
- When calling numpy.dot on arrays A and B:
 - Initialize output array C in memory before starting
 - call np.dot(A, B, out=C)
 - This prevents the need to allocate memory & populate the new array (C above) on $\it each$ iteration...much faster this way!
- Instead of doing direct BLAS operations on the entire intermediate tensors (in J and/or K builds in DF-RHF) on each SCF iteration:
 - Can loop over auxiliary basis set index explicitly, and call scipy.linalg.blas.dgemm directly
 - * Similar speed as single "all array" dgemm call with np.dot
 - * Greatly reduced memory requirement, since the *entire* 3-index intermediate tensor in K build doesn't need to be kept in memory
 - * Even with slight loss in speed by employing Python loop, will be exactly same speed when written in C/C++ but drastically reduced memory requirement
- $\bullet\,$ Can also use Psi4 to directly access JK object using numpy syntax
 - Create a numpy view of the Psi4 JK object pointing to the same location in memory

- Any modification to the numpy view of the JK object also modifies the Psi4 JK object itself!

2 SOSCF: Second-order Orbital Optimization

- Diagonal elements of the energy gradient are zero.
 - Elements of gradient tensor are the change in energy upon rotating one orbital for another rotating one orbital to itself (diagonal elemetrs) incurs no change in energy
- In constructing Hessian, need to transform inactive Fock matrix, ${}^IF_{\mu\nu}$ from AO basis to MO basis
 - To do this, use the C matrix:

$${}^IF_{pq} = C_{p\mu}^{\rm T} F_{\mu\nu} C_{\nu q}$$

- Once the whole Hessian is constructed, only actually want the OVOV blocks
 - OO & VV blocks contain orbital rotations that do not change orbital occupations, so they have the same energy!
 - OV blocks are identical apart from transpose