上机 9

张配天-2018202180

2020年11月11日

目录

1	问题描述	2
	1.1 输入	2
2	算法思路 2.1 最优子结构	2
3	复杂度分析	2
4	源代码	3
5	运行截图	3

1 问题描述 2

1 问题描述

在滑完全程的前提下求最小的补水次数。

1.1 输入

补水点位置的数组 pos[n];

1.2 输出

最少的补水次数和补水位置;

2 算法思路

2.1 最优子结构

假设最终最少的补水位置的序列为 $\mathcal{H}^k = \{h_1, ..., h_k\}$, h_* 为补水站位置,其中有 $h_i = pos[j]$,那么 \mathcal{H}^{i-1} , $\mathcal{H}^{i+1:k}$ 一定是最少补水位置序列,否则若存在更少的补水位置序列 $\mathcal{H}^{i-1'}$,则由剪贴复制法,得到 \mathcal{H}^k 不是最少补水序列。

2.2 设计递归算法

在不补水就无法前往下一个补水点的时候补水,即若 $(h_{i+1} - h_i) \cdot \frac{2}{m} > remain$,则在 h_i 补水。

2.3 证明贪心是安全的且最优解包含其中

Theory 2.1. 设 $\mathcal{H}_j \in \mathcal{H}^{j:k}$ 是第 j 次补水后的最少补水序列, h_m 是第 j 次补水后最远能滑行到的补水地点,则 h_m 包含在 $\mathcal{H}^{j:k}$ 中

证明:

- 1. 如果 $\mathcal{H}_j[0] == h_m$,那么已经得证
- 2. 否则,令 $\mathcal{H}'_{j} = \mathcal{H}_{j}[1:] \cup h_{m}$,由于 $h_{m} > \mathcal{H}_{j}[0]$,则替换 $\mathcal{H}_{j}[0]$ 不会影响之后的补水序列 \mathcal{H}_{j+1} ,且总补水次数不变,因此 \mathcal{H}'_{j} 也是最优补水序列,得证。

3 复杂度分析

记补水站序列长度为n

- 第 4-5 行初始化,消耗时间 *O*(*n*)
- 第 12-17 行便利补水站序列,按照上述规则挑选补水站进行补水,每次补水最多计算 O(1) 次,因此总时间复杂度 O(n)
- 无需回溯,直接打印,复杂度 O(n)

综上,整体算法时间复杂度 O(n),空间复杂度 O(n)

4 源代码 3

4 源代码

```
1 import numpy as np
2 total_length = 13
3 m = 2
4 pos = [0,1,2.6,4,4.2,4.4,5,6,7,8.1,9.2,9.5,10,11,12]
   pos.append(total_length)
   water_per_mile = 2/2
9 hydrate = []
10
  remain = 2
11
12 for i,position in enumerate(pos[0:-1]):
       if (pos[i+1]-pos[i])*water_per_mile > remain:
13
           hydrate.append(position)
14
           remain = 2-(pos[i+1]-pos[i])*water_per_mile
15
16
       else:
           remain -= (pos[i+1]-pos[i])*water_per_mile
17
18
19 hydrate.append(total_length)
20 print(hydrate)
```

5 运行截图

- 自定义补水站序列为 [(0), 1, 2.6, 4, 4.2, 4.4, 5, 6, 7, 8.1, 9.2, 9.5, 10, 11, 12, (13)]
- 自定义每公里耗水量为1公升
- 自定义线路总长度 13 公里

```
d:\repositories\Algorithm\Instances>python -u "d:\repositories\Alg
orithm\Instances\16.2-4.py"

fewest hydration time is 9, hydrating position sequence is :[1, 2.
6, 4.4, 6, 7, 8.1, 10, 12, 13]
```

经过验算,结果正确。