CSC 320 Spring 2024

Assignment 1

This assignment has 6 written questions and is out of a total of 30 marks. Submit one PDF file containing your solutions on Brightspace.

Questions

- 1. [5 marks] Let $\Sigma = \{a, b\}$. Consider the following languages L_A and L_B over Σ :
 - $L_A = \{ w \in \Sigma^* \mid w \text{ contains an even number of occurrences of symbol } a \}$

 $L_B = \{w \in \Sigma^* \mid \text{ each pair of consecutive } b$'s in w is separated by a substring of a's of length $2i, i \geq 0\}$

Clarification: L_B is saying that between b's there must be 2i a's for some $i \geq 0$ (e.g. $baab \in L_B$ and $baaab \notin L_B$). Also, i must be an integer value ≥ 0 .

For each of the following strings, decide whether it is a member of L_A or L_B :

- (a) b
- (b) aabbbbaa
- (c) abaaabaaa
- (d) bbaaaabbaab
- (e) a
- 2. [5 marks] Consider the following DFA M:

Describe M as a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$. In particular, give

- (a) Q
- (b) Σ
- (c) δ (in the form of a transition table)
- (d) q_0
- (e) F

3. [5 marks] Consider the following DFA state diagram:

For each of the following strings, give the exact sequence of states that the automaton undergoes when reading the string. Furthermore, indicate whether or not the string is accepted.

- (a) $w_1 = \varepsilon$
- (b) $w_2 = 0111$
- (c) $w_3 = 1000000100$
- (d) $w_4 = 1010110$
- (e) $w_5 = 111111111$

4. [5 marks] Consider the state diagram of the following DFA F. Describe the language L(F) that the automaton recognizes using set notation.

5. [5 marks] Let $\Sigma = \{a, b\}$. For the following language L_A over Σ , construct a deterministic finite automaton A with $L(A) = L_A$. For the automaton, give the state diagram and the formal 5-tuple definition of the DFA $A = (Q, \Sigma, \delta, q_0, F)$ with a transition table describing δ .

 $L_A = \{ w \in \Sigma^* \mid w \text{ starts with an } a \text{ and contains the substring } abb \}$

6. [5 marks] Consider the state diagrams of the following automata M_1 and M_2 :

Give a state diagram and transition table for a DFA M that recognizes the language $L(M) = L(M_1) \cap L(M_2)$. For this, you must use the construction from the proof that builds a DFA that recognizes the intersection of two regular languages.