CO2 Exposure

High CO₂ concentrations can lead to a deadly condition called <u>hypercapnia</u>. Even at moderate concentrations, reasoning and mental abilities may be impacted.

There is a growing body of sceintific evidence tying CO₂ to detrimental impacts on cognitive functioning in schools and offices and other enclosed spaces.

CO₂ exposure can lead to acidosis (more acidic blood). Symptoms include: restlessness, mild hypertension, sleepiness, and confusion.

Historical CO₂ Levels

CO₂ concentrations are even higher in enclosed spaces due to insufficient ventilation and exhaled gas from breathing.

Some urban areas have reported CO₂ concentrations as high as 500 ppm.

The burning of fossil fuels (coal, oil, and gas) is the primary contributor to increasing CO₂ concentrations. Changing land use and using limestone to make concrete also transfer significant quantities of carbon into the atmosphere.

CO₂ in the atmosphere is already considerably greater than at any time in the last 800,000 years.

Scientists warn that it will become increasingly difficult to manage the negative health and mental effects of elevated CO₂.

One study concludes that the best way to prevent this hidden consequence of increasing atmospheric CO₂ is to reduce fossil-fuel emissions.

