

UBER SUPPLY-DEMAND GAP ANALYSIS

0000

0000

0000

By Anish Chakravorty

INTRODUCTION

0000

0000

In this data-driven case study, we perform an in-depth analysis of Uber's ride request data to uncover the root causes behind service inefficiencies, particularly focusing on the gap between customer demand and available supply. With ride-hailing being a fast-paced, real-time logistics challenge, understanding patterns in trip cancellations and unfulfilled requests is critical for optimizing fleet utilization and enhancing customer experience. The dataset, consisting of over 6,700 records, includes detailed ride-level data such as timestamps, driver IDs, trip statuses, pickup locations, and derived time features.

The project combines analysis through Python, SQL, and Excel Pivot Tables to generate actionable insights. Using exploratory data analysis (EDA), we uncover temporal patterns of ride failures, identify peak demand windows, and assess how effectively Uber's driver supply matches user expectations. This blended technical approach enables a comprehensive investigation into Uber's operational dynamics, ultimately supporting strategic recommendations to close the supply-demand gap.

COMPANY OVERVIEW

Uber Technologies Inc. is a global ride-hailing platform that connects passengers with nearby drivers through its mobile app. Since its founding in 2009, Uber has revolutionized urban transportation by offering on-demand mobility solutions. Operating in over 10,000 cities worldwide, the company's success is heavily reliant on its ability to fulfill user requests efficiently, especially during high-demand periods like rush hours or airport transfers.

0000

0000

As a platform business, Uber faces the continual challenge of balancing supply (drivers) and demand (riders) in real-time. Fluctuations in demand, driver availability, and traffic conditions can result in unmet ride requests, either due to cancellations or "No Cars Available" scenarios. This analysis seeks to support Uber's operations and strategy teams by providing data-backed insights that can improve rider satisfaction, reduce trip failures, and increase driver utilization.

BUSINESS TASK

I, Understand the root causes of ride failures — specifically cancellations and lack of available cars.

0000

0000

0000

- 2. Identify when and where demand exceeds supply, using time-based and location-based segmentation.
- 3. Quantify the supply-demand gap, and visualize patterns across various request time slots.
- 4. Assess driver activity and utilization, especially during peak demand periods.

0000

0000

0000

5. Provide business recommendations to reduce trip failures, improve driver allocation, and enhance the rider experience.

The outcome of this project is intended to support Uber's data operations and driver management strategies by highlighting critical problem areas and offering practical solutions based on real-world ride behavior.

0000

DATA OVERVIEW

0000

0000

- Original Dataset
 - Source: CSV file (uber_cleaned_data.csv)
 - Total Rows: 6,745
 - Original Columns:
 - Request id, Pickup point, Driver id, Status, Request timestamp, Drop timestamp

These 6 columns formed the raw dataset collected from Uber's ride request logs.

Initial Data Issues Addressed:

- Inconsistent timestamp formats
- Mixed data types (floats for IDs, etc.)
- Blank/"null" string entries instead of true SQL/Excel NULLs

Final Dataset Result:

• Rows: 6,745

- Columns Increased To: 15
- Transformation Layers: Time-based features, binning, and cleaning for Pivot and SQL analysis

KEY TRANSFORMATIONS PERFORMED

AD-HOC-ANALYSIS QUESTIONS

- I. What is the total number of ride requests made during the observed period?
- 2. How are the ride requests distributed across different trip statuses (Completed, Cancelled, No Cars Available)?
- 3. Which pickup point (City or Airport) receives the highest number of ride requests?
- 4. How are the different trip statuses distributed across each pickup point?
- 5. What is the distribution of ride requests by each hour of the day?
- 6. Which hours of the day show the highest number of cancellations or 'No Cars Available' incidents?
- 7. How do ride requests vary across different days of the week?
- 8. How many trips were successfully completed compared to those that were unfulfilled (i.e., cancelled or no cars available)?
- 9. What is the average trip duration for trips that were completed?
- 10. Which 5 hours of the day have the highest number of completed trips?
- II. What is the overall supply-demand gap, and how significant is the portion of demand that went unfulfilled?
- 12. Which drivers had the highest utilization rates based on the number of completed trips?
- 13. How does ride request performance vary across different time-of-day segments (request hour timeslots)?
- 14. Which pickup point has the highest cancellation rate, and how does it compare to the other?

1. WHAT IS THE TOTAL NUMBER OF RIDE REQUESTS MADE DURING THE OBSERVED PERIOD?

0000

```
SELECT COUNT(*) AS total_requests
FROM uber_cleaned_data_clean;
```

```
total_requests

6745
```


2. HOW ARE THE RIDE REQUESTS DISTRIBUTED ACROSS DIFFERENT TRIP STATUSES (COMPLETED, CANCELLED, NO CARS AVAILABLE)?

0000

0000

```
SELECT status, COUNT(*) AS count FROM uber_cleaned_data_clean GROUP BY status

ORDER BY count DESC;
```

status	count
Trip Completed	2831
No Cars Available	2650
Cancelled	1264

3. WHICH PICKUP POINT (CITY OR AIRPORT) RECEIVES THE HIGHEST NUMBER OF RIDE REQUESTS?

```
SELECT `pickup point`, COUNT(*) AS count
FROM uber_cleaned_data_clean
GROUP BY `pickup point`
ORDER BY count DESC;
```

pickup point	count
City	3507
Airport	3238

0000


```
SELECT `pickup point`, status, COUNT(*) AS count
FROM uber_cleaned_data_clean
GROUP BY `pickup point`, status
ORDER BY `pickup point`, count DESC;
```

pickup point	status	count
Airport	No Cars Available	1713
Airport	Trip Completed	1327
Airport	Cancelled	198
City	Trip Completed	1504
City	Cancelled	1066
City	No Cars Available	937

0000

5.WHAT IS THE DISTRIBUTION OF RIDE REQUESTS BY EACH HOUR OF THE DAY?

```
SELECT `request hour`, COUNT(*) AS total_requests
FROM uber_cleaned_data_clean
GROUP BY `request hour`
ORDER BY `request hour`;
```

request hour	total_requests
0	99
1	85
2	99
3	92
4	203
5	445
6	398
7	406
8	423
9	431
10	243
11	171
12	184
13	160
14	136
15	171
16	159
17	418
18	510
19	473
20	492
21	449
22	304
23	194

0000

6. WHICH HOURS OF THE DAY SHOW THE HIGHEST NUMBER OF CANCELLATIONS OR 'NO CARS AVAILABLE' INCIDENTS?

```
SELECT `request hour`, status, COUNT(*) AS count
FROM uber_cleaned_data_clean
WHERE status != 'Trip Completed'
GROUP BY `request hour`, status
```

ORDER BY `request hour`;

0 Cancelled 0 No Cars Available 1 Cancelled 1 No Cars Available 2 Cancelled 2 No Cars Available 3 Cancelled 3 No Cars Available 4 Cancelled	
1 Cancelled 1 No Cars Available 2 Cancelled 2 No Cars Available 3 Cancelled 3 No Cars Available 3 No Cars Available	3
1 No Cars Available 2 Cancelled 2 No Cars Available 3 Cancelled 3 No Cars Available	56
2 Cancelled 2 No Cars Available 3 Cancelled 3 No Cars Available	4
 No Cars Available Cancelled No Cars Available 	56
 Cancelled No Cars Available 	5
3 No Cars Available	57
	2
4 Cancelled	56
T Caricelled	51
4 No Cars Available	74
5 Cancelled	176
5 No Cars Available	84
6 Cancelled	145
6 No Cars Available	86
7 Cancelled	169
7 No Cars Available	63
8 Cancelled	178
8 No Cars Available	90
9 Cancelled	175
9 No Cars Available	83
10 Cancelled	62
10 No Cars Available	65
11 Cancelled	15
11 No Cars Available	
12 Cancelled	41

13	Cancelled	18
13	No Cars Available	53
14	Cancelled	11
14	No Cars Available	37
15	Cancelled	21
15	No Cars Available	48
16	Cancelled	22
16	No Cars Available	46
17	Cancelled	35
17	No Cars Available	232
18	Cancelled	24
18	No Cars Available	322
19	Cancelled	24
19	No Cars Available	283
20	Cancelled	41
20	No Cars Available	290
21	Cancelled	42
21	No Cars Available	265
22	Cancelled	12
22	No Cars Available	138
23	Cancelled	10
23	No Cars Available	81

7. HOW DO RIDE REQUESTS VARY ACROSS DIFFERENT DAYS OF THE WEEK?

```
SELECT `request day`, status, COUNT(*) AS count
FROM uber_cleaned_data_clean
GROUP BY `request day`, status
ORDER BY FIELD(`request day`, 'Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday');
```

request day	status	count
Monday	Trip Completed	601
Monday	Cancelled	262
Monday	No Cars Available	504
Tuesday	Trip Completed	562
Tuesday	Cancelled	240
Tuesday	No Cars Available	505
Wednesday	Trip Completed	577
Wednesday	Cancelled	270
Wednesday	No Cars Available	490
Thursday	Trip Completed	530
Thursday	Cancelled	252
Thursday	No Cars Available	571
Friday	Trip Completed	561
Friday	Cancelled	240
Friday	No Cars Available	580

0000

8. HOW MANY TRIPS WERE SUCCESSFULLY COMPLETED COMPARED TO THOSE THAT WERE UNFULFILLED (I.E., CANCELLED OR NO CARS AVAILABLE)?

```
CASE WHEN 'Drop date' IS NOT NULL THEN 'Completed' ELSE 'Not Completed' END AS trip_status,

COUNT(*) AS total

FROM uber_cleaned_data_clean

GROUP BY trip_status;
```

0000

0000

trip_status	total
Completed	2831
Not Completed	3914

9. WHAT IS THE AVERAGE TRIP DURATION FOR TRIPS THAT WERE COMPLETED?

```
SELECT
ROUND(AVG(`Trip duration_min`), 2) AS avg_duration_min,
ROUND(AVG(`Trip duration_hr`), 2) AS avg_duration_hr
FROM uber_cleaned_data_clean
WHERE status = 'Trip Completed';
```

```
avg_duration_min avg_duration_hr
52.41 0.87
```


10. WHICH 5 HOURS OF THE DAY HAVE THE HIGHEST NUMBER OF COMPLETED TRIPS?

```
SELECT `request hour`, COUNT(*) AS no_car_requests
FROM uber_cleaned_data_clean
WHERE status = 'Trip Completed'
GROUP BY `request hour`
ORDER BY no_car_requests DESC
LIMIT 5;
```

0000

request hour	no_car_requests
5	185
7	174
9	173
6	167
19	166

11.WHAT IS THE OVERALL SUPPLY-DEMAND GAP, AND HOW SIGNIFICANT IS THE PORTION OF DEMAND THAT WENT UNFULFILLED?

0000

0000

```
SELECT

COUNT(*) AS total_requests,

SUM(CASE WHEN status = 'Trip Completed' THEN 1 ELSE 0 END) AS trips_completed,

SUM(CASE WHEN status != 'Trip Completed' THEN 1 ELSE 0 END) AS supply_gap,

ROUND(SUM(CASE WHEN status != 'Trip Completed' THEN 1 ELSE 0 END) / COUNT(*) * 100, 2) AS gap_percentage

FROM uber_cleaned_data_clean;
```

total_requests	trips_completed	supply_gap	gap_percentage
6745	2831	3914	58.03

12.WHICH DRIVERS HAD THE HIGHEST UTILIZATION RATES BASED ON THE NUMBER OF COMPLETED TRIPS?

LIMIT 20;

Driver id	total_assigned	completed_trips	utilization_rate
75	11	11	100.00
42	7	7	100.00
55	10	10	100.00
11	8	8	100.00
12	12	12	100.00
23	15	14	93.33
188	14	13	92.86
273	13	12	92.31
46	12	11	91.67
18	12	11	91.67
162	11	10	90.91
26	10	9	90.00
156	10	9	90.00
252	9	8	88.89
91	9	8	88.89
184	17	15	88.24
41	8	7	87.50
118	16	14	87.50
208	8	7	87.50
48	15	13	86.67

13. HOW DOES RIDE REQUEST PERFORMANCE VARY ACROSS DIFFERENT TIME-OF-DAY SEGMENTS (REQUEST HOUR TIMESLOTS)?

Request hour timeslot	total_requests	completed_trips	cancelled	no_cars	failure_rate
Evening	1893	642	124	1127	66.09
Early morning	1672	681	668	323	59.27
Late morning	1029	525	271	233	48.98
Night	947	399	64	484	57.87
Afternoon	626	370	72	184	40.89
Late night	394	149	58	187	62.18

14. WHICH PICKUP POINT HAS THE HIGHEST CANCELLATION RATE, AND HOW DOES IT COMPARE TO THE OTHER?

Pickup point	total_requests	cancellations	cancellation_rate
City	3507	1066	30.40
Airport	3238	198	6.11

COUNTPLOT FOR STATUS Summary of trips, Count of Status 2831.0 2650.0 2500 2000 Number of trips 1500 1264.0 1000 500 0 Trip Completed Cancelled No Cars Available Status of trip 0000 0000

COUNTPLOT FOR PICKUP POINT Summary of trips, Count of Pickup point 3507.0 3238.0 Number of trips Airport City Pickup point of trip

COUNTPLOT FOR REQUEST DAY 0000 0000 Summary of trips, Count of Request day 1381.0 1367.0 1353.0 1400 1337.0 1307.0 1200 1000 Number of trips 800 600 400 200 0 Monday Tuesday Wednesday Thursday Friday 0000 Request day of trip 0000 0000 0000

COUNTPLOT FOR DROP DAY

COUNTPLOT FOR REQUEST HOUR TIMESLOT

COUNTPLOT FOR DROP HOUR TIMESLOT

COUNTPLOT FOR TRIP DURATION SLOT Summary of trips, Count of trip duration slot 944.0 844.0 812.0 800 Number of trips 600 400 200 126.0 105.0 0 1 to 15 16 to 30 31 to 45 61 to 75 75-90 46 to 60 0000 Trip duration slot of trip 0000

COUNTPLOT FOR PICKUP POINT BASED ON STATUS

REQUEST HOUR BASED ON PICKUP POINT

REQUEST HOUR TIMESLOT BASED ON STATUS

TRIP DURATION SLOT BASED ON PICKUP POINT

STATUS BASED ON PICKUP POINT IN PIE CHART

Status pie chart for City

Status pie chart for Airport

DASHBOARD ON EXCEL

DASHBOARD ON EXCEL

Uber Supply Demand Gap Analysis Dashboard

Count of Request id Column Labels									
Row Labels	▼ Afternoon	Ea	rly mor E	vening	Late morning	Late night Night			
Monday		127	339	385	227	70	185		
Tuesday		128	312	376	217	73	175		
Wednesday		112	343	349	192	88	213		
Thursday		116	338	412	193	86	164		
Friday		143	340	371	200	77	210		

Count of Request id Row Labels	Monday	- Tuesday	Wednesday	Thursday	Friday
0	16			23 23	
1	18			23 25 17 21	
2	14			24 24	
3	17			24 22	
4	39		_	40 44	
5	95			87 91	
	87			86 75	
6					
7	76			88 75	
8	81			82 97	
9	98			77 88	
10	43			56 37	
11	39			25 36	
12	47			34 32	
13	32			26 41	
14	26			26 16	
15	29			33 32	
16	40			27 27	7 3
17	83	8	5	87 90	7
18	106	9	9	86 112	2 10
19	96	9	7	91 104	4 8
20	100	9	5	85 106	3 10
21	85	10	1 8	87 91	1 8
22	60) 4	7	78 44	1 7
23	4() 2	7	48 29	5

INSIGHTS

I. High Volume of Unfulfilled Requests

• A significant number of ride requests were either cancelled by users or marked as 'No Cars Available', particularly during peak demand hours.

- 2. Demand Exceeds Supply During Rush Hours
 - Most cancellations and unfulfilled trips occurred during Morning Rush (5 AM-9 AM) and Evening Rush (5 PM-9 PM).
 - Driver availability during these time slots is not sufficient to meet demand.
- 3. City Has Higher Request Volume
 - The City pickup point recorded more requests than the Airport.
 - However, the Airport showed a higher rate of cancellations and no car availability highlighting
 a key supply issue in that location.
- 4. Time Slot Impact
 - The Request Hour Timeslot analysis revealed that Morning Rush has the most service failures, making it the most problematic period operationally.
 - Midday and Late Night have the highest trip success rates but relatively low volume.

INSIGHTS

- Requests were evenly distributed throughout the week with minor peaks on weekdays.
- Weekend demand didn't spike significantly, suggesting business-driven commuter patterns.

0000

6. Average Trip Duration

• Completed trips had a reasonable duration distribution, with most trips falling into the 15–30 minute slot, helping gauge fleet rotation needs.

7. Driver Utilization & Distribution Gaps

- Drivers were not uniformly available throughout time slots and locations.
- Some drivers had low utilization, indicating a potential mismatch in driver scheduling.

RECOMMENDATIONS

I. Dynamic Driver Scheduling

- Increase driver incentives and availability during rush hours, especially 5 AM-9 AM and 5 PM-9
 PM.
- Deploy more drivers to Airport during peak periods, as this area shows high rejection/failure rates.

2. Predictive Allocation System

- Use historical request patterns to implement predictive driver dispatching pre-positioning drivers at known hotspots before demand peaks.
- 3. Optimize Driver-Partner Incentives
 - Launch time-slot-based bonus schemes to encourage driver logins during high-demand periods like early morning and late evening.

RECOMMENDATIONS

4. Improve Rider Communication

 Notify riders during high failure times and suggest alternative time slots or nearby pickup points with higher fulfillment likelihood.

5. Monitor & Balance Demand Across Locations

• Real-time dashboards can help track location-based gaps and reassign drivers dynamically.

6. Feedback & Engagement Loop

 $\mathbf{O} \mathbf{O} \mathbf{O}$

 Collect cancellation feedback to refine driver-rider matching algorithms and flag any qualityof-service issues.

0000

The Uber Supply-Demand Gap Analysis reveals a clear misalignment between ride request patterns and driver availability, particularly during high-demand hours and at the Airport pickup point. Through a combination of Python-based EDA, SQL ad-hoc queries, and Excel dashboards, we identified the specific time slots and locations that suffer the most from unmet demand.

Implementing targeted operational changes — such as predictive driver allocation, location-specific incentives, and enhanced real-time monitoring — can significantly reduce trip cancellations and improve customer satisfaction. By bridging the supply-demand gap using data, Uber can ensure better fleet efficiency and strengthen its market position in high-volume urban corridors.

THANK YOU

By Anish Chakravorty

