The Hilbert ε -operator and existence property in categorical logic

Davide Trotta joint work with M.E. Maietti and M. Zorzi

University of Verona

9-7-2020

Let **Sg** be a first order many-sorted signature and let Th be a theory. We define a functor

$$\operatorname{LT} \colon \mathcal{C}^{op}_{\mathsf{Th}} \longrightarrow \mathsf{InfSL}$$

where $\mathcal{C}_{\mathsf{Th}}$ is the category of lists of variables and term substitutions:

Let **Sg** be a first order many-sorted signature and let Th be a theory. We define a functor

$$\operatorname{LT} \colon \mathcal{C}^{\textit{op}}_{\mathsf{Th}} {\:\longrightarrow\:} \mathsf{InfSL}$$

where C_{Th} is the category of lists of variables and term substitutions:

• **objects** are α -equivalence of contexts $\Gamma := [x_1 : \sigma_1, \dots, x_n : \sigma_n]$ over the signature **Sg**, and we include the empty list [];

Let **Sg** be a first order many-sorted signature and let Th be a theory. We define a functor

$$\operatorname{LT} \colon \mathcal{C}^{\textit{op}}_{\mathsf{Th}} {\:\longrightarrow\:} \mathsf{InfSL}$$

where $\mathcal{C}_{\mathsf{Th}}$ is the category of lists of variables and term substitutions:

- **objects** are α -equivalence of contexts $\Gamma := [x_1 : \sigma_1, \dots, x_n : \sigma_n]$ over the signature **Sg**, and we include the empty list [];
- a morphisms from $[x_1 : \sigma_1, \dots, x_n : \sigma_n]$ to $[y_1 : \tau_1, \dots, y_m : \tau_m]$ is an equivalence class $\gamma := [t_1 : \tau_1, \dots, t_m : \tau_m]$ where

$$t_i: \tau_i [x_1: \sigma_1, \ldots, x_n: \sigma_n]$$

are well-formed terms-in-context;

Let **Sg** be a first order many-sorted signature and let Th be a theory. We define a functor

$$LT: \mathcal{C}^{op}_{\mathsf{Th}} \longrightarrow \mathsf{InfSL}$$

where $\mathcal{C}_{\mathsf{Th}}$ is the category of lists of variables and term substitutions:

- **objects** are α -equivalence of contexts $\Gamma := [x_1 : \sigma_1, \dots, x_n : \sigma_n]$ over the signature **Sg**, and we include the empty list [];
- a morphisms from $[x_1 : \sigma_1, \dots, x_n : \sigma_n]$ to $[y_1 : \tau_1, \dots, y_m : \tau_m]$ is an equivalence class $\gamma := [t_1 : \tau_1, \dots, t_m : \tau_m]$ where

$$t_i: \tau_i [x_1: \sigma_1, \ldots, x_n: \sigma_n]$$

are well-formed terms-in-context;

• the **composition** of two morphisms $\gamma \colon \Gamma \longrightarrow \Gamma'$ and

$$\gamma' \colon \Gamma' \longrightarrow \Gamma''$$
 is given by the substitution

$$[s_1[\vec{t}/\vec{y}],\ldots,s_k[\vec{t}/\vec{y}]]:\Gamma\longrightarrow\Gamma''$$
.

The functor $\operatorname{LT} \colon \mathcal{C}^{op}_{\operatorname{Th}} \longrightarrow \operatorname{InfSL}$ sends an object of $\mathcal{C}_{\operatorname{Th}}$ $\Gamma = [x_1 : \sigma_1, \dots, x_n : \sigma_n]$ in the set $\operatorname{LT}(\Gamma)$ of all well formed formulas in the context Γ .

The functor $LT: \mathcal{C}^{op}_{\mathsf{Th}} \longrightarrow \mathsf{InfSL}$ sends an object of $\mathcal{C}_{\mathsf{Th}}$

 $\Gamma = [x_1 : \sigma_1, \dots, x_n : \sigma_n]$ in the set $\mathrm{LT}(\Gamma)$ of all well formed formulas in the context Γ .

We say that $\psi \leq \phi$ where $\phi, \psi \in \mathrm{LT}(\Gamma)$ if $\psi \vdash_{\mathsf{Th}} \phi$, and then we quotient in the usual way to obtain a partial order on $\mathrm{LT}(\Gamma)$. Given a morphism of $\mathcal{C}_{\mathsf{Th}}$

$$\gamma = [t_1 : \tau_1, \ldots, t_m : \tau_m] : \Gamma \longrightarrow \Gamma'$$

the functor LT_γ acts as the substitution $\mathrm{LT}_\gamma(\psi(y_1,\ldots,y_m))=\psi[\vec{t}/\vec{y}].$

Doctrines

Definition

Let \mathcal{C} be a category with finite products. A primary doctrine is a functor $P \colon \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ from the opposite of the category \mathcal{C} to the category of inf-semilattices;

Doctrines

Definition

Let C be a category with finite products. A primary doctrine is a functor $P: C^{op} \longrightarrow \mathbf{InfSL}$ from the opposite of the category C to the category of inf-semilattices;

Definition

A primary doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ is existential if, for every A_1 , A_2 in \mathcal{C} , for any projection $pr_i: A_1 \times A_2 \longrightarrow A_i$, i = 1, 2, the functor

$$P_{pr_i}: P(A_i) \longrightarrow P(A_1 \times A_2)$$

has a left adjoint \exists_{pr_i} , and these satisfy BC and FR.

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ©

Example

Set-theoretic doctrine. Let **Set** be the category of sets and functions.

S:
$$Set^{op} \longrightarrow InfSL$$
.

For every set A, S(A) is the poset category of subsets of the set A whose morphisms are inclusions, and for every function $f: A \longrightarrow B$ the functor $S_f: S(B) \longrightarrow S(A)$ acts as the inverse image $f^{-1}(U)$ for every subset U of B.

For an existential doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$, we say that

For an existential doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$, we say that

• P satisfies the Rule of Choice (RC) if for every $\phi \in P(A \times B)$ such that

$$a:A\mid \top\vdash \exists b:B\;\phi(a,b)$$

there exists an arrow $f: A \longrightarrow B$ in C such that

$$a: A \mid \top \vdash \phi(a, f(a)).$$

For an existential doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$, we say that

• P satisfies the Rule of Choice (RC) if for every $\phi \in P(A \times B)$ such that

$$a:A\mid \top\vdash \exists b:B\;\phi(a,b)$$

there exists an arrow $f: A \longrightarrow B$ in \mathcal{C} such that

$$a: A \mid \top \vdash \phi(a, f(a)).$$

• P is equipped with ϵ -operators if for every object B and A in C and any α in $P(A \times B)$ there exists an arrow $\epsilon_{\alpha} : A \longrightarrow B$ such that

$$a: A \mid \exists b: B \ \alpha(a,b) \ \dashv\vdash \alpha(a,\epsilon_{\alpha}(a))$$

holds in P(A).

- an elementary existential doctrine P satisfies the Rule of Unique Choice (RUC) if for every entire functional $\phi \in P(A \times B)$, i.e
 - \bullet $a: A \mid \top \vdash \exists b: B \phi(a, b)$
 - **2** $a: A, b: B, b': B \mid \phi(a, b) \land \phi(a, b') \vdash b =_B b'$

there exists an arrow $f: A \longrightarrow B$ in C such that

$$a: A \mid \top \vdash \phi(a, f(a)).$$

- an elementary existential doctrine P satisfies the Rule of Unique **Choice** (RUC) if for every entire functional $\phi \in P(A \times B)$, i.e
 - \bullet a: $A \mid \top \vdash \exists b : B \phi(a, b)$
 - **2** $a: A, b: B, b': B \mid \phi(a, b) \land \phi(a, b') \vdash b =_B b'$

there exists an arrow $f: A \longrightarrow B$ in C such that

$$a: A \mid \top \vdash \phi(a, f(a)).$$

We define Ef_P the category of entire functional relations of P: objects are those of \mathcal{C} and an arrow $\phi: A \longrightarrow B$ is an entire functional relation from A to B.

The Existential Completion

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ be a primary doctrine and let $\mathcal{A} \subset \mathcal{C}_1$ be the class of projections. For every object A of \mathcal{C} consider we define $P^e(A)$ the following poset:

The Existential Completion

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ be a primary doctrine and let $\mathcal{A} \subset \mathcal{C}_1$ be the class of projections. For every object A of \mathcal{C} consider we define $P^e(A)$ the following poset:

• the objects are pairs ($B \xrightarrow{g \in A} A$, $\alpha \in PB$);

The Existential Completion

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ be a primary doctrine and let $\mathcal{A} \subset \mathcal{C}_1$ be the class of projections. For every object A of C consider we define $P^e(A)$ the following poset:

- the objects are pairs ($B \xrightarrow{g \in A} A$, $\alpha \in PB$);
- $(B \xrightarrow{h \in A} A, \alpha \in PB) \leq (D \xrightarrow{f \in A} A, \gamma \in PD)$ if there exists $w: B \longrightarrow D$ such that

commutes and $\alpha \leq P_w(\gamma)$.

Theorem (RC)

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ be a primary doctrine. Then the doctrine $P^e: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ satisfies the Rule of Choice.

Theorem (GEP)

Let $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ be a primary doctrine, and consider the doctrine $P^e: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$. If

$$a: A \mid \alpha(a) \vdash \exists b: B \beta(a,b)$$

then there exists an arrow $t: A \longrightarrow B$ such that

$$a: A \mid \alpha(a) \vdash \beta(a, t(a)).$$

The syntactic doctrine

$$LT_{\mathcal{L}_{=,\exists}} : \mathcal{C}_{\mathcal{L}_{=,\exists}}^{op} \longrightarrow \mathsf{InfSL}$$

is the existential completion of the syntactic doctrine

$$LT_{\mathcal{L}_{=}}:\mathcal{C}_{\mathcal{L}_{=}}^{op}\longrightarrow \mathsf{InfSL}$$

where $\mathcal{L}_{=,\exists}$ is the Regular fragment of first order intuitionistic logic, and $\mathcal{L}_{=}$ is the Horn fragment.

Therefore the Regular fragment of first order intuitionistic logic satisfies RC and GEP.

For every existential doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ there is a canonical arrow $\varepsilon_P: P^e \longrightarrow P$ of existential doctrine which acts on $P^e(A)$ as

$$(A \times B \xrightarrow{pr_A} A, \alpha \in P(A \times B)) \mapsto \exists_{pr_A}(\alpha).$$

If the doctrine is elementary and existential ε_P induces a functor

$$\overline{\varepsilon_P} \colon \mathsf{Ef}_{P^e} \longrightarrow \mathsf{Ef}_P$$

on the categories of entire functional relations.

Davide Trotta joint work with M.E. Maietti a The Hilbert ε -operator and existence property

Theorem

An existential doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ is equipped with ϵ -operators if and only if $\varepsilon_P: P^e \longrightarrow P$ is an isomorphism.

Theorem

An existential elementary doctrine $P: \mathcal{C}^{op} \longrightarrow \mathbf{InfSL}$ satisfies RUC if and only if the functor $\overline{\varepsilon_P}: \mathsf{Ef}_{P^e} \longrightarrow \mathsf{Ef}_P$ is full.