Microstructural effects and kinetics of high temperature oxidation in Nb-Si base alloys

E. Sarath K Menon,
Triplicane A. Parthasarathy
and Madan G. Mendiratta

UES Inc., 4404 Dayton-Xenia Road, Dayton, OH 45431 & WPAFB, Dayton, OH 45433

Support: Air Force Contract No. F33615-01-C-5214

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate rmation Operations and Reports	or any other aspect of the s, 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
. REPORT DATE 2. REPORT TYPE N/A			3. DATES COVERED				
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Microstructural ef	5b. GRANT NUMBER						
Nb-Si base alloys			5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)			5d. PROJECT NUMBER				
					5e. TASK NUMBER		
			5f. WORK UNIT NUMBER				
	ZATION NAME(S) AND AE yton-Xenia Road, D	8. PERFORMING ORGANIZATION REPORT NUMBER					
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM0016	otes 72., The original do	cument contains co	or images.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT NATO/unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 25	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

INTRODUCTION

- Understand the effect of alloying on microstructural modification in Nb-Ti-Si based alloys (phases formed, microstructural distribution)
 - Effect of Ti, Al, Cr, C on Nb-Si alloys
 (as-cast, heat-treated alloys)
 - Oxidation effects on microstructures
 - Future directions in the study

Phase diagrams calculated using PANDAT (Y.A. Chang et al.

Computherm, LLC)

Calculated Isothermal sections at 1200°C

X[TI]

$Nb_3Si \rightarrow \beta + Nb_5Si_3$ eutectoid reaction

Nb-15.8Ti-16.0Si

Nb-20.8Ti-15.8Si

Nb-16.5Si-20Ti-xAl

1500°C 100 hours

Nb-14Si-12.5Ti-2C

As cast

1500°C 100 hours

As cast microstructures

Nb-14Si-12.5Ti

Nb-14Si-12.5Ti-10Cr

Nb-14Si-12.5Ti-2C

Nb-14Si-12.5Ti-10Cr -10Al

Equilibrium Phases and their Compositions at 1200°C

Fig. 1 (a) Nb-19.86Ti-19.74Si-4.21Ge-3.26Al-4.21Hf-9.90Cr

Fig. 1(b) Nb-25.99Ti-12.61Si-4.94Ge-1.92Al-1.90Hf-6.73Cr-0.43Sn.

1: Nb₅Si₃; 2: β solid solution phase; 3: Cr₂Nb; Arrows: Ti₅Si₃

	β		Nb ₅ Si ₃ -type		Ti ₅ Si ₃ -type		Cr ₂ Nb -type
At. %	Fig 1(a)	Fig. 1(b)	Fig. 1(a)	Fig. 1(b)	Fig. 1(a)	Fig. 1(b)	Fig. 1(a)
Nb	53.07	57.99	38.04	38.59	28.28	26.80	21.78
Ti	30.23	26.58	18.04	22.23	26.22	29.18	12.65
Si	0.45	0.50	30.83	25.78	27.67	26.47	6.05
Ge	0.16	0.06	5.72	7.34	7.80	9.19	0.34
Hf	1.03	0.72	4.74	1.71	6.73	6.10	4.74
Al	3.35	2.60	1.19	1.54	2.13	1.22	0.98
Cr	11.72	10.06	1.43	2.41	1.17	0.90	54.81
Sn	-	1.51	-	0.41	-	0.14	-

Schematic Phase Diagram

Oxidation resistance of Nb allovs

Time, seconds

Effects of alloying on cyclic oxidation

Effect of processing history on cyclic oxidation

Oxidation Time, seconds

Initial stages of oxidation

$$\Delta w = Kt^{-n}$$

Oxidation of a Nb-26Ti-13Si-5Ge-7Cr-2Al -2Hf-0.5Sn alloy at 1200°C

Effect of complex alloying

Nb-14Si-12.5Ti-10Cr

Nb-12.5Ti-14Si-10Mo-10Al -5Cr-5Hf-5Zr

Nb-14Si-12.5Ti-10Cr-10Al

Nb₅Si₃ Nb-12.5Ti-14Si-20Mo-10Al -9Cr-5Hf-5Zr

Preferential oxidation of phases in Nb-20Ti-20Si-4Ge-10Cr-3Al-4Hf-3B Oxidized at 1200°C for 48 hrs

Oxidation of Nb-30Ti-7Si-10.5Cr-9.5Al -1.1Hf-1.5Zr-0.08C

1000 °C for 24 hours

900 °C for 16 hours

 $2\mu m$

Oxidation of Nb₃Si and lamellar β+Nb₅Si₃

20µm

50μm

Nb-20.8Ti-15.7Si-4.3Al 800 °C for 4hrs

Growth of surface oxide in Nb-26Ti-13Si-5Ge-7Cr-2Al-2Hf-0.5Sn alloy after oxidation at 800°C/5 hrs.

Mechanism of low temperature cracking

Experimental Measurements

10152025303540

b/h (h=5 μ m)

Decohesion

Conclusions

- ➤ It is possible to significantly modify the microstructural distribution of the phases in Nb alloys.
- ➤ Stability of Nb₃Si & Nb₅Si₃ is strongly influenced by alloying additions : Thermodynamic parameters associated with multicomponent systems must be modified.
- > Oxidation resistance of Nb alloys can be increased by alloying.
- > Oxidation behavior is affected by phase distribution in the material.
- ➤ It maybe possible to control the low temperature cracking by microstructural control.