Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР

ОБЩЕЙ ФИЗИКИ ФТФ

Группа _	M32061	К работе допущены
Студенты [Величко М.И., Шароватов В.Д.	Работа выполнена
Преподава	тель Хуснутдинова Н.Р.	Отчет принят

Рабочий протокол и отчет по лабораторной работе №5.07

ОПРЕДЕЛЕНИЕ ПОСТОЯННОЙ ПЛАНКА МЕТОДОМ ЗАДЕРЖИВАЮЩЕГО ПОТЕНЦИАЛА

1. Цель работы

Экспериментально проверить законы фотоэффекта. Определение постоянной Планка и работы выхода электрона из металла.

2. Задачи, решаемые при выполнении работы

Экспериментально посчитать постоянную Планка и работу выхода электрона с цезия. Высчитать погрешность измерения.

3. Объект Исследования

Фотоэффект

4. Рабочие формулы и исходные данные

$$T = eU_0$$

$$v = \frac{c}{\lambda}$$

$$hv_0 = A$$

5. Оборудование

Модульный учебный комплекс для определения постоянной Планка (230 В, 50/60 Гц)

6. Схема Установки

Установка (см. рис.5) состоит из вакуумного фотоэлемента на основе цезиевого 10 Учебный Центр Общей Физики ФТФ ИТМО Рис. 5 катода и измерительных приборов: вольтметра 3 и нано амперметра 2. В качестве источников излучения используются пять светодиодов с различными длинами волн: 472 нм, 505 нм, 525 нм, 588 нм, 611 нм. Светодиоды подключаются к приемной камере 4, с помощью разъема 5. Блок подключается к сети через адаптер и разъем 6. Светодиод запитывается через разъем 7. Регулировка интенсивности регулируется ручкой регулятора 10.

7. Результаты прямых измерений и их обработки (*таблицы, примеры расчетов*).

λ, нм		<i>U</i> 0, B	ν = c/ λ , ТГц	T = eU0, Эв
	472	0,64	635,154	0,640
	505	0,488	593,648	0,488
	525	0,44	571,033	0,440
	588	0,128	509,851	0,128
	611	0,082	490,659	0,082

8. Расчет результатов косвенных измерений (*таблицы, примеры расчетов*) Метод наименьших квадратов:

t	у	t^2	y^2	ty	
635,154	0,640	403419,985	0,409599589	406,4980443	
593,648	0,488	352418,460	0,238143761	289,7002894	
571,033	0,440	326078,976	0,193599806	251,2545055	
509,851	0,128	259948,164	0,016383984	65,26091052	
490,659	0,082	240745,948	0,006723993	40,2339922	
2800,345	1,77799911	1582611,533	0,864451133	1052,947742	Сумма
560,069	0,35559982	316522,307	0,172890227	210,5895484	ср.знач

b = 0,00401723

a = -1,8943278

$$h = b * 10 ^ (-12) = 4,017 * 10^(-15) 9B*c$$

 $A = |a| = 1,894 9B$

9. Расчет погрешностей измерений (для прямых и косвенных измерений).

h: $(b - tha6\pi Sb;b + tha6\pi Sb)$ (0.00402 - 4.177*0.000248; 0.00402 + 4.177*0.000248) $(0.00298;0.00505) - дов. интервал А: (a - tha6\pi Sa;a + tha6\pi Sa) <math>(-1.894 - 4.177*0.14; -1.894 + 4.177*0.14)$ $(-2.48;-1.31) - дов. интервал <math>\Delta h/h = 0,01107981 = 1,1\%$ $\Delta A/A = 0,01608327 = 1,6\%$

10.Графики:

11. Окончательные результаты.

h эксп =
$$4,017 * 10^{(-15)} Эв*с$$

A эксп =
$$1,894$$
 Эв

12. Выводы и анализ результатов работы.

При анализе графиков зависимости запирающего напряжения от интенсивности излучения в относительных единицах мы выяснили, что при достижении запирающим напряжением большого значения – фототок прекращается и интенсивность излучения перестает изменяться. Также мы нашли постоянную Планка: 4,017 * 10^(-15) Эв*с и сравнили с теоретическим значением, выяснили, что погрешность составляет 2%.