Lecture 19 — Expectation-Maximization.

Alex Schwing and Matus Telgarsky

April 3, 2018

Announcements.

- Midterms available in TA office hours.
- ▶ 10 more days for regrade requests.
- Ongoing questions:
 - ► Solutions available . . . ?
 - ▶ Delay last homework...?
 - ▶ Videos...?
- ► Any other course/midterm concerns?

Schedule for today.

- ▶ *k*-means and GMM E-M review.
- ► E-M in general.

- 1. Choose initial centers (μ_1, \ldots, μ_k) .
- 2. Alternate the following two steps until convergence:
 - 2.1 (Reassignment.) Hold centers fixed, optimally update hard assignments $A \in \{0,1\}^{n \times k}$, $A\mathbf{1}_k = \mathbf{1}_n$: for every $i \in \{1,\ldots,n\}$,

$$A_{ij}=\mathbb{1}\left[\mu(x_i)=\mu_j\right].$$

2.2 (Recentering.) Hold assignments fixed, optimally update centers: for every $j \in \{1, ..., k\}$,

$$\mu_j := \frac{\sum_{i=1}^n A_{ij} x_i}{\sum_i A_{ij}}.$$

- 1. Choose initial parameters $\theta = ((\pi_1, \mu_1, \Sigma_1), \dots, (\pi_k, \mu_k, \Sigma_k)).$
- 2. Alternate the following two steps until convergence:
 - 2.1 **(E step)** (Reassignment). Hold parameters fixed, optimally update soft assignments $A \in [0,1]^{n \times k}$, $A\mathbf{1}_k = \mathbf{1}_n$: for every $i \in \{1,\ldots,n\}$,

$$A_{ij} \propto \pi_j p_{\theta_j}(x_i),$$
on density with $\theta_i = (\mu_i, \Sigma_i)$

where p_{θ_j} is the gaussian density with $\theta_j = (\mu_j, \Sigma_j)$,

$$((2\pi)^d \det(\Sigma_j))^{-1/2} \exp(-\frac{1}{2}(x-\mu_j)^\top \Sigma_j^{-1}(x-\mu_j)).$$

2.2 (M step). Hold assignments fixed, optimally update parameters: for every $j \in \{1, ..., k\}$,

$$\pi_j := \frac{\sum_i A_{ij}}{n},$$

$$\mu_j := \frac{\sum_i A_{ij} x_i}{n \pi_j},$$

$$\Sigma_j := \frac{\sum_i A_{ij} (x_i - \mu_j) (x_i - \mu_j)^\top}{n \pi_i}.$$

Fine with spherical data...

Fine with spherical data...

Fine with spherical data...

Gaussian Mixture Model with diagonal covariances.

Note: GMMs often simplified via diagonal covariance matrices. (Why?)

Interpolating between k-means and GMMS.

Start with GMM but unweighted and with identity covariance.

- 1. Choose initial parameters $\theta = ((1/k, \mu_1, cl), \dots, (1/k, \mu_k, cl))$.
- 2. Alternate the following two steps until convergence:
 - 2.1 **(E step)** (Reassignment). Hold parameters fixed, optimally update soft assignments $A \in [0,1]^{n \times k}$, $A\mathbf{1}_k = \mathbf{1}_n$: for every $i \in \{1,\ldots,n\}$,

$$A_{ij} \propto \pi_j p_{\theta_j}(x_i),$$
 where p_{θ_i} is the gaussian density with $\theta_j = (\mu_j, \Sigma_j),$

where p_{θ_j} is the gaussian density with $\theta_j = (\mu_j, \Sigma_j)$

$$\left((2\pi)^d \det(\Sigma_j)\right)^{-1/2} \exp(-\frac{1}{2}(x-\mu_j)^\top \Sigma_j^{-1}(x-\mu_j)).$$

2.2 **(M step).** Hold assignments fixed, optimally update parameters: for every $j \in \{1, ..., k\}$,

$$\pi_{j} := \frac{1}{k}$$

$$\mu_{j} := \frac{\sum_{i} A_{ij} x_{i}}{\sum_{i} A_{ij}}$$

$$\Sigma_{j} := cI.$$

Interpolating between k-means and GMMS.

Consider the E-step, fix $i \in \{1, ..., n\}$, define $r_{ij} := \frac{1}{2} ||x_i - \mu_j||^2$. Then

$$A_{ij} = \frac{\pi_j p_{\theta_j}(x_i)}{\sum_{l} \pi_l p_{\theta_l}(x_i)} = \frac{e^{-r_{ij}/c}}{\sum_{l} e^{-r_{il}/c}} = \frac{1}{1 + \sum_{l \neq j} e^{(r_{ij} - r_{il})/c}}$$

Suppose $m_i := \arg \min_i r_{ij}$ unique. Then

$$\lim_{c\downarrow 0}\sum_{l\neq i}e^{\frac{i_j-i_l}{c}}=\infty\cdot \mathbb{1}[j\neq m_i].$$

That is, A_{ij} becomes **hard assignment** as $c \downarrow 0$...

Interpolating between *k*-means and GMMS.

Consider the E-step, fix $i \in \{1, ..., n\}$, define $r_{ij} := \frac{1}{2} ||x_i - \mu_j||^2$. Then

$$A_{ij} = \frac{\pi_j p_{\theta_j}(x_i)}{\sum_{l} \pi_l p_{\theta_l}(x_i)} = \frac{e^{-r_{ij}/c}}{\sum_{l} e^{-r_{il}/c}} = \frac{1}{1 + \sum_{l \neq j} e^{(r_{ij} - r_{il})/c}}$$

Suppose $m_i := \arg \min_i r_{ij}$ unique. Then

$$\lim_{c\downarrow 0}\sum_{l\neq j}e^{\frac{r_{ij}-r_{il}}{c}}=\infty\cdot \mathbb{1}[j\neq m_i].$$

That is, A_{ij} becomes **hard assignment** as $c \downarrow 0$...

In summary, k-means is obtained from E-M on GMMs via: uniform mixture weights, diagonal covariances cl with $c \downarrow 0$.

k-means with elliptical clusters.

Can use the same updates to derive elliptical k-means.

k-means with elliptical clusters.

Can use the same updates to derive elliptical k-means.

Expectation-Maximization (E-M) in general.

The goal in E-M for GMMs was to find parameters $\theta = (\theta_1, \dots, \theta_k)$ to maximize the log-likelihood of the data:

$$\ell(\theta) := \sum_{i=1}^n \ln p_{\theta}(x_i) = \sum_{i=1}^n \ln \left(\sum_{j=1}^k \pi_j p_{\theta_j}(x_i) \right).$$

Question: why didn't we just solve this directly?

Expectation-Maximization (E-M) in general.

The goal in E-M for GMMs was to find parameters $\theta = (\theta_1, \dots, \theta_k)$ to maximize the log-likelihood of the data:

$$\ell(\theta) := \sum_{i=1}^n \ln p_{\theta}(x_i) = \sum_{i=1}^n \ln \left(\sum_{j=1}^k \pi_j p_{\theta_j}(x_i) \right).$$

Question: why didn't we just solve this directly?

Answer: the summation inside the In is annoying (unless k=1...). We can run gradient ascent, but we'll see E-M also increases ℓ .

What did E-M do?

Define **latent** or **hidden** variables $(y_1, ..., y_n)$ identifying which Gaussian generated x_i . If we knew them, estimating parameters θ would be easy.

E-M approach:

maintain $A \in \mathbb{R}^{n \times k}$;

with A given, estimating parameters was easy, and then $A_{ii} \propto p_{\theta}(x_i, y_i)$...

What did E-M do?

Define **latent** or **hidden** variables $(y_1, ..., y_n)$ identifying which Gaussian generated x_i . If we knew them, estimating parameters θ would be easy.

E-M approach:

maintain $A \in \mathbb{R}^{n \times k}$; with A given, estimating parameters was easy, and then $A_{ii} \propto p_{\theta}(x_i, y_i)$... **Why?**

What did E-M do?

Define **latent** or **hidden** variables $(y_1, ..., y_n)$ identifying which Gaussian generated x_i . If we knew them, estimating parameters θ would be easy.

E-M approach:

maintain $A \in \mathbb{R}^{n \times k}$; with A given, estimating parameters was easy, and then $A_{ij} \propto p_{\theta}(x_i, y_j)$... **Why?**

Some adjusted notation:

 $p_{\theta}(y_j) = \pi_j$, whereas $p_{\theta}(x_i|y_j)$ replaces old $p_{\theta_j}(x_i)$. (I'll unify this tonight.)

Some notation.

Define likelihood $\ell(\theta)$ and a helper $\underline{\ell}(A, \theta)$:

$$\ell(\theta) := \sum_{i=1}^{n} \ln p_{\theta}(x_i),$$

$$\underline{\ell}(A,\theta) := \sum_{i=1}^{n} \sum_{i=1}^{k} A_{ij} \ln \frac{p_{\theta}(x_{i},y_{j})}{A_{ij}} = \sum_{i=1}^{n} \sum_{i=1}^{k} A_{ij} \left(\ln p_{\theta}(x_{i},y_{j}) - \ln A_{ij} \right).$$

▶ The term
$$\sum_{i,j} A_{ij} \ln A_{ij}$$
 does not affect arg max $\underline{\ell}(A, \theta)$.

Some notation.

Define likelihood $\ell(\theta)$ and a helper $\underline{\ell}(A, \theta)$:

$$\ell(\theta) := \sum_{i=1}^n \ln p_{\theta}(x_i),$$

$$\underline{\ell}(A,\theta) := \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \ln \frac{p_{\theta}(x_{i}, y_{j})}{A_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \left(\ln p_{\theta}(x_{i}, y_{j}) - \ln A_{ij} \right).$$

- ▶ The term $\sum_{i,j} A_{ij} \ln A_{ij}$ does not affect arg max $\underline{\ell}(A, \theta)$.
- ▶ Moreover, given Lagrangian (with Lagrange multipliers $\alpha \in \mathbb{R}^n$)

$$\sum_{i=1}^n \alpha_i (\sum_j A_{ij} - 1) + \underline{\ell}(A, \theta),$$

applying $\frac{d}{dA_{ii}}$ and setting to 0 gives

$$\alpha_i + \ln p_{\theta}(x_i, y_j) - \ln A_{ij} - 1 = 0$$
 \Longrightarrow $A_{ij} = p_{\theta}(x_i, y_j) e^{\alpha_i - 1},$

Some notation.

Define likelihood $\ell(\theta)$ and a helper $\underline{\ell}(A, \theta)$:

$$\ell(\theta) := \sum_{i=1}^n \ln p_{\theta}(x_i),$$

$$\underline{\ell}(A,\theta) := \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \ln \frac{p_{\theta}(x_{i},y_{j})}{A_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \left(\ln p_{\theta}(x_{i},y_{j}) - \ln A_{ij} \right).$$

- ▶ The term $\sum_{i,j} A_{ij} \ln A_{ij}$ does not affect arg max $\underline{\ell}(A, \theta)$.
- ▶ Moreover, given Lagrangian (with Lagrange multipliers $\alpha \in \mathbb{R}^n$)

$$\sum_{i=1}^n \alpha_i (\sum_i A_{ij} - 1) + \underline{\ell}(A, \theta),$$

applying $\frac{d}{dA_{ii}}$ and setting to 0 gives

$$\alpha_i + \ln p_{\theta}(x_i, y_j) - \ln A_{ij} - 1 = 0$$
 \Longrightarrow $A_{ij} = p_{\theta}(x_i, y_j) e^{\alpha_i - 1},$

▶ Thus M and E steps maximize ℓ ! Is this useful?

E-M theorem.

Theorem. Define

$$\ell(\theta) := \sum_{i=1}^n \ln p_{\theta}(x_i),$$
 $(A, \theta) := \sum_{i=1}^n \sum_{j=1}^k A_{ij} \ln \frac{p_{\theta}(x_i, y_j)}{A_j} = 0$

$$\underline{\ell}(A,\theta) := \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \ln \frac{p_{\theta}(x_{i}, y_{j})}{A_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \left(\ln p_{\theta}(x_{i}, y_{j}) - \ln A_{ij} \right),$$

$$(A_{\theta})_{ij} \propto p_{\theta}(x_i, y_j),$$

$$\theta' := \arg\max\underline{\ell}(A, \theta).$$

E-M theorem.

Theorem. Define

$$\ell(\theta) := \sum_{i=1}^{n} \ln p_{\theta}(x_{i}),$$

$$\underline{\ell}(A, \theta) := \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \ln \frac{p_{\theta}(x_{i}, y_{j})}{A_{ij}} = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \left(\ln p_{\theta}(x_{i}, y_{j}) - \ln A_{ij} \right),$$

$$(A_{\theta})_{ij} \propto p_{\theta}(x_{i}, y_{j}),$$

$$\theta' := \arg \max_{\theta} \underline{\ell}(A, \theta).$$

Then $\underline{\ell}(A,\theta) \leq \ell(\theta)$, and

$$\ell(\theta) = \underline{\ell}(A_{\theta}, \theta) \leq \underline{\ell}(A_{\theta}, \theta') \leq \underline{\ell}(A_{\theta'}, \theta') = \underline{\ell}(\theta')$$

and in particular

$$\ell(\theta_1) \leq \ell(\theta_2) \leq \ell(\theta_3) \leq \cdots$$
.

Proof 1/2.

By Jensen,

$$\underline{\ell}(A,\theta) = \sum_{i=1}^{n} \sum_{j=1}^{k} A_{ij} \ln \left(\frac{p_{\theta}(x_i, y_j)}{A_{ij}} \right)$$

$$\leq \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} A_{ij} \frac{p_{\theta}(x_i, y_j)}{A_{ij}} \right)$$

$$= \sum_{i=1}^{n} \ln \left(\sum_{j=1}^{k} p_{\theta}(x_i, y_j) \right)$$

$$= \ell(\theta).$$

Proof 2/2.

On the other hand,

$$\underline{\ell}(A_{\theta}, \theta) = \sum_{i=1}^{n} \sum_{j=1}^{k} \frac{p_{\theta}(x_{i}, y_{j})}{p_{\theta}(x_{i})} \ln \left(p_{\theta}(x_{i}, y_{j}) \left(\frac{p_{\theta}(x_{i})}{p_{\theta}(x_{i}, y_{j})} \right) \right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{k} \frac{p_{\theta}(x_{i}, y_{j})}{p_{\theta}(x_{i})} \ln p_{\theta}(x_{i})$$

$$= \sum_{i=1}^{n} \left(\sum_{j=1}^{k} \frac{p_{\theta}(x_{i}, y_{j})}{p_{\theta}(x_{i})} \right) \ln p_{\theta}(x_{i})$$

$$= \ell(\theta).$$

Soft vs Hard assignment.

E-M increases $\underline{\ell}$ and ℓ . Hard assignment increases $\underline{\ell}$; not clear for ℓ . Key points.

- ▶ E-M can be derived as alternating maximization of $\underline{\ell}$.
- ▶ E-M can be shown to given non-decreasing likelihood ℓ .

▶ Easy to run E-M on more complicated latent variable models; write down $\underline{\ell}$ and do alternating maximization. Example: mixtures of other distributions.

- ▶ Easy to run E-M on more complicated latent variable models; write down $\underline{\ell}$ and do alternating maximization. Example: mixtures of other distributions.
- ▶ Latent variables are useful/magical; ℓ was not tractable, but $\underline{\ell}$ was tractable.

- ▶ Easy to run E-M on more complicated latent variable models; write down $\underline{\ell}$ and do alternating maximization. Example: mixtures of other distributions.
- ▶ Latent variables are useful/magical; \(\ell \) was not tractable, but \(\ell \) was tractable.
- ▶ Not perfect: "singularities", local optima and slow convergence, sensitivity to initialization, . . .

Summary.

Things to know.

- ▶ k-means objective, Lloyd's method, hard assignment.
- ▶ Log-likelihood of GMM, E-M for GMM, soft assignment.
- ▶ E-M is alternating maximization of $\underline{\ell}$, increases ℓ .