Számítógépes Grafika

Hajder L. és Valasek G.

hajder.levente@sztaki.mta.hu

Eötvös Loránd Tudományegyetem Informatikai Kar

2017/2018. I. félév

Tartalom

- Geometria modellezés
- Egyszerű görbék és felületek
 - Általános leírás
 - Görbék
 - Felületek

Geometria modellezés feladata

- Geometriai alakzatok egzakt leírása
 - Pontok
 - Görbék
 - Testek
 - Felületek
 - stb.
- Kérdések
 - Hogyan adjuk meg ezeket a halmazokat?
 - Hogyan lehet őket kirajzolni?

Esettanulmány

- Keressük egy $P_0 = [x_y, y_0]$ pont és egy egyenes metszéspontját.
- Egyenes megadható többféleképpen, például:

•
$$y = ax + b$$

• $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ b \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ a \end{bmatrix}$

- Tanulság:
 - Feladattól és
 - Dimenziótol is függhet a módszer kiválasztása

Tartalom

- Geometria modellezés
- Egyszerű görbék és felületek
 - Általános leírás
 - Görbék
 - Felületek

Görbék, felületek leírása

- A görbéket, felületeket (amik közé az egyenes és a sík is tartozik) egy-egy ponthalmaznak tekintjük.
- Hogyan adjuk meg ezeket a halmazokat?
 - explicit: $y = f(x) \rightarrow mi$ van ha vissza akarjuk "fordítani"?
 - implicit: f(x, y) = 0
 - parametrikus: $\mathbf{p}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}, t \in \mathbb{R}$

Példa # 1: függőleges tengelyű parabola 2D-ben

- A függőleges tengelyű (tehát nem általános) parabola leírása:
 - explicit: $y = ax^2 + bx + c$
 - implicit: $ax^2 y + bx + c = 0$
 - parametrikus: $\mathbf{p}(t) = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} t \\ at^2 + bt + c \end{bmatrix}, t \in \mathbb{R}$

Példa # 2: általános helyzetű (térbeli) gömb

- Gömb paraméterei: középpont ($\begin{bmatrix} x_0 & y_0 & z_0 \end{bmatrix}^T$) és sugár (r).
- Leírási módok:

• implicit:
$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 - r^2 = 0$$

• explicit:
$$z = \pm \sqrt{r^2 - (x - x_0)^2 - (y - y_0)^2} + z_0$$

Parametrikus:

$$\mathbf{p}(t) = \begin{bmatrix} x(t) \\ y(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} r \sin(u) \cos(v) \\ r \sin(u) \sin(v) \\ r \cos(u) \end{bmatrix}$$
$$v \in [-\pi, \pi), u \in [0, \pi]$$

Tartalom

- Geometria modellezés
- Egyszerű görbék és felületek
 - Általános leírás
 - Görbék
 - Felületek

Speciális parabola

- Az y tengelyű, (0, p) fókuszpontú parabola
 - Implicit egyenlete: $x^2 4py = 0$
 - Explicit egyenlete: $y = \frac{x^2}{4p}$
 - Parametrikus egyenlete: $\mathbf{p}(t) = [t, \frac{t^2}{4p}]^T, t \in \mathbb{R}$

Kevésbé speciális parabola

- Mi van, ha a $\mathbf{c} = \begin{bmatrix} c_x & c_y \end{bmatrix}$ ponttal akarjuk eltolni az origóból a parabolát?
- Az implicit és explicit alakban be kell vinni a (c_x, c_y) koordinátákat (pl. implicitből $(x c_x)^2 4p(y c_y) = 0$ lesz)
- ullet Parametrikus alakban egyszerűen ${f p}(t)+{f c}$ lesz az új alak.

Általános helyzetű parabola

- Implicit egyenlet: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, feltéve, hogy $B^2 = 4AC$.
 - Túl bonyolult, ritkán alkalmazzák
- Explicit: Még bonyolultabb, teljes négyzetté alakítással
- Parametrikus: függőleges tengelyű parabola elforgatással

$$\mathbf{p}(t) = \left[\cos(\phi)t + \sin(\phi)\frac{t^2}{4\rho} + c_x, \cos(\phi)\frac{t^2}{4\rho} - \sin(\phi)t + c_y\right]$$
$$c_x, c_y, t \in \mathbb{R}, \phi \in [-\pi, \pi)$$

Kör

- A $\mathbf{c} \in \mathbb{R}^2$ középpontú, r sugarú kör egy
 - Implicit egyenlete: $(x c_x)^2 + (y c_y)^2 r^2 = 0$
 - Explicit alakban nem tudjuk az egész kört leírni egy függvénnyel (DE két darabban menne, pl. $\mathbf{c} = \mathbf{0}, r = 1$ mellett $y = \pm \sqrt{1 x^2}$, ahol $x \in [-1, 1]$)
 - Parametrikus egyenlete: $\mathbf{p}(t) = r[\cos t, \sin t]^T + \mathbf{c}$, ahol $t \in [0, 2\pi)$

Ellipszis

- A $\mathbf{c} \in \mathbb{R}^2$ középpontú, nagytengelyével az x tengellyel párhuzamos, 2a nagytengelyű és 2b kistengelyű ellipszis egy
 - Implicit egyenlete: $\frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} 1 = 0$
 - Explicit alakban: lásd előbb
 - Parametrikus egyenlete: $\mathbf{p}(t) = [a\cos t, b\sin t]^T + \mathbf{c}$, ahol $t \in [0, 2\pi)$

Ellipszis

- De mi van, ha nem akarjuk, hogy x, y tengellyel párhuzamosak legyenek a tengelyeink?
 - Implicit egyenlet: $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, feltéve, hogy $B^2 < 4AC$.
 - Elég bonyolult...
 - Parametrikus egyenlete: speciális ellipszisből báziscsere segítségével kapjuk: ha az új tengelyek \mathbf{k} , \mathbf{l} , akkor $\mathbf{p}(t) = a\cos t\mathbf{k} + b\sin t\mathbf{l} + \mathbf{c}$, ahol $t \in [0, 2\pi)$
 - k és I tengelyek egy szög (elforgatás) segítségével kifejezhetőek.

Szakasz

• Legyen adott két pont, $\mathbf{a}, \mathbf{b} \in \mathbb{E}^3$. A két ponton átmenő egyenes parametrikus egyenlete:

$$\mathbf{p}(t) = (1-t)\mathbf{a} + t\mathbf{b},$$

ahol $t \in \mathbb{R}$.

 Ha t ∈ [0,1], akkor az a, b pontokat összekötő egyenes szakaszt kapjuk.

Egyenes

- Paraméteres egyenlet: $p_0 + \lambda d$
- Explicit egyenlete: y = a'x + b'
- Implicit egyenlete: ax + by + c = 0
 - Skálázásra érzéketlen: $\nu ax + \nu by + \nu c = 0$
- Implicit egyenlet vektoros alakban is írható: $A^TX = 0$ ahol

$$A = \begin{bmatrix} a & b & c \end{bmatrix}^T$$

 $X = \begin{bmatrix} x & y & 1 \end{bmatrix}^T$

- A és X skálázásra érzéketlen.
- X felfogható homogén koordinátaként. Valós koordinátára áttérés esetén a harmadik koordinátával osztani kell!

Két egyenes metszéspontja

- Implicit egyenletekkel:
 - Első egyenes: $A_1^T X = 0$
 - Második egyenes: $A_2^T X = 0$
 - Metszéspont: két egyenlet együttes megoldása BX = 0, ahol

$$B = \begin{bmatrix} A_1^T \\ A_2^T \end{bmatrix}$$

- B mérete: 2 x 3, B nulltere (pontosabban: nullvektora) adja a megoldást
- A nullvektor homogén koordinátákban adja az eredményt!

Két egyenes metszéspontja

- Paraméteres egyenletekkel:
 - Első egyenes: $p_0^{(1)} + \lambda^{(1)} d^{(1)}$
 - Második egyenes: $p_0^{(2)} + \lambda^{(2)} d^{(2)}$
- Metszéspont: a két egyenlet közös megoldása:

$$p_0^{(1)} + \lambda^{(1)} d^{(1)} = p_0^{(2)} + \lambda^{(2)} d^{(2)}$$

 Mivel 2D-ben vagyunk, ez valójában 2 egyenlet.
 Metszéspont a megfelelő lineáris egyenlet megoldásából jön:

$$\begin{bmatrix} \lambda^{(1)} \\ \lambda^{(2)} \end{bmatrix} = \begin{bmatrix} d^{(1)} & -d^{(2)} \end{bmatrix}^{-1} \left(p_0^{(2)} - p_0^{(1)} \right)$$

Spline-ok

Olyan fontos görbeleíró elem, hogy külön előadás lesz róla.

Görbék parametrikus alakja

- Deriváltak: $\mathbf{p}^{(i)}(t) = [x^{(i)}(t), y^{(i)}(t)]^T, t \in [...], i = 0, 1, 2, ...$
- Ha a görbét egy mozgó pont pályájának tekintjük, akkor az első derivált a sebességnek tekinthető, a második a gyorsulásnak stb.
 - Valódi sebesség, gyorsulás esetén $t \in \mathbb{R}$ az időt jelöli.

Tartalom

- Geometria modellezés
- Egyszerű görbék és felületek
 - Általános leírás
 - Görbék
 - Felületek

Megadás

- Explicit: z = f(x, y)
- Implicit: f(x, y, z) = 0
- Parametrikus: $\mathbf{p}(u, v) = [x(u, v), y(u, v), z(u, v)]^T$, $(u, v) \in [a, b] \times [c, d]$

Sík

- Paraméteres egyenlet: $p_0 + \lambda_1 d_1 + \lambda_2 d_2$
- Implicit egyenlete: ax + by + cz + d = 0
 - Skálázásra érzéketlen: $\nu ax + \nu by + \nu cz + \nu d = 0$
- Implicit egyenlet vektoros alakban is írható: $A^TX = 0$ ahol

$$A = \begin{bmatrix} a & b & c & d \end{bmatrix}^T$$
$$X = \begin{bmatrix} x & y & z & 1 \end{bmatrix}^T$$

- A és X skálázásra érzéketlen.
- X felfogható homogén koordinátaként. Valós koordinátára áttérés esetén a negyedik koordinátával osztani kell!

Két sík metszésvonala

- Implicit egyenletekkel:
 - Első sík: $A_1^T X = 0$
 - Második sík: $A_2^T X = 0$
 - Metszésvonal: két sík együttes megoldása BX = 0, ahol

$$B = \begin{bmatrix} A_1^T \\ A_2^T \end{bmatrix}$$

- B mérete: 2 × 4, B nulltere 2 vektor: v₁ és v₂
- Egyenes pontjai: $\alpha v_1 + \beta v_2$
- Pontok homogén koordinátában vannak, osztani kell az utolsó koordinátával

Két sík metszésvonala

- Paraméteres egyenletekkel:
 - Első sík: $p_0^{(1)} + \lambda_1^{(1)} d_1^{(1)} + \lambda_2^{(1)} d_2^{(1)}$
 - Második sík: $p_0^{(2)} + \lambda_1^{(2)} d_1^{(2)} + \lambda_2^{(2)} d_2^{(2)}$
- Metszésvonal: a két egyenlet közös megoldása:

$$p_0^{(1)} + \lambda_1^{(1)} d_1^{(1)} + \lambda_2^{(1)} d_2^{(1)} = p_0^{(2)} + \lambda_1^{(2)} d_1^{(2)} + \lambda_2^{(2)} d_2^{(2)}$$

- Mivel 3D-ben vagyunk, ez valójában 3 egyenlet, 4 ismeretlennel $(\lambda_1^{(1)}, \lambda_2^{(1)}, \lambda_1^{(2)}, \lambda_2^{(2)})$.
- Megoldás: egy paramétert szabadon megválaszthatunk, a másik három a lineáris egyenletrendszerből számítható.

Felületek felületi normálisa

- Definíció szerint a felület normálisa egy adott pontjában az érintősík normálisa.
- A parametrikus alakban adott a felület:

$$\mathbf{n}(u,v) = \partial_u \mathbf{p}(u,v) \times \partial_v \mathbf{p}(u,v)$$

- a ∂_u az u paraméter szerinti deriválást jelenti, ∂_v a v szerintit.
- Implicit alakban (f(x, y, z) = 0) adott felületnél

$$\mathbf{n}(x, y, z) = \nabla f$$
, ahol $\nabla f = [f_x, f_y, f_z]^T$

- ahol $f_x = \frac{\partial f}{\partial x}$, $f_y = \frac{\partial f}{\partial y}$ és $f_z = \frac{\partial f}{\partial z}$
- Megjegyzés: mindez igaz más dimenzióban. Pl. 2D-ben érintősík helyett érintőegyenes, 4D-ben érintő alsík...stb.

Gömb

- Implicit: $(x c_x)^2 + (y c_y)^2 + (z c_z)^2 = r^2$
- Parametrikus:

$$\mathbf{p}(u,v) = r[\cos u \sin v, \sin u \sin v, \cos v]^{T} + \mathbf{c}$$
$$(u,v) \in [0,2\pi) \times [0,\pi]$$

Speciális ellipszoid

Speciális (tengelyei párhuzamosak a koordinátatengellyel) ellipszoid egyenlete:

• Implicit:
$$\frac{(x-c_x)^2}{a^2} + \frac{(y-c_y)^2}{b^2} + \frac{(z-c_z)^2}{c^2} - 1 = 0$$

Parametrikus:

$$\mathbf{p}(u,v) = [a\cos u\sin v, b\sin u\sin v, c\cos v]^T + \mathbf{c}, (u,v) \in [0,2\pi) \times [0,\pi]$$

Egyszerű paraboloid

- Explicit: $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
- Parametrikus: $\mathbf{p}(u, v) = [u, v, c\frac{u^2}{a^2} + c\frac{v^2}{b^2}]^T$
- A paraboloid tengelye a z tengellyel párhuzamos

Amire figyelni érdemes

- Matematikában általában a felfelé mutató tengelynek a z tengelyt tekintik
- A fenti képletek is ennek megfelelően adják a "várt" képet
- Grafikában viszont sokszor az y mutat felfelé!