

CSCI 4380/6380 DATA MINING

Fei Dou

Assistant Professor School of Computing University of Georgia

November 02, 07, 2023

Recap: Data Mining Process

• A pair of data object (O_i, O_j) falls into one of the following categories

```
- SS: C_{ij}=1 and P_{ij}=1; (agree)

- DD: C_{ij}=0 and P_{ij}=0; (agree)

- SD: C_{ij}=1 and P_{ij}=0; (disagree)

- DS: C_{ii}=0 and P_{ii}=1; (disagree)
```

• Rand index
$$Rand = \frac{|Agree|}{|Agree| + |Disagree|} = \frac{|SS| + |DD|}{|SS| + |SD| + |DS| + |DD|}$$

- may be dominated by DD
- Jaccard Coefficient $Jaccard\ coefficien\ t = \frac{|SS|}{|SS| + |SD| + |DS|}$

Clustering

	g 1	g 2	g 3	g 4	g 5
g 1	1	1	1	0	0
g 2	1	1	1	0	0
g 3	1	1	1	0	0
g 4	0	0	0	1	1
g 5	0	0	0	1	1

Clustering

Ground truth

	Same Cluster	Different Cluster
Same Cluster	9	4
Different Cluster	4	8

Groundtruth

	g 1	g 2	g 3	g 4	g 5
g 1	1	1	0	0	0
g 2	1	1	0	0	0
g 3	0	0	1	1	1
g 4	0	0	1	1	1
g 5	0	0	1	1	1

$$Rand = \frac{|SS| + |DD|}{|SS| + |SD| + |DS| + |DD|} = \frac{17}{25}$$

$$Jaccard = \frac{|SS|}{|SS| + |SD| + |DS|} = \frac{9}{17}$$

Classification Accuracy vs. Clustering Accuracy

$$accuracy(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n-1} 1(\hat{y}_i = y_i)$$

$$accuracy(y, \hat{y}) = \max_{perm \in P} \frac{1}{n} \sum_{i=0}^{n-1} 1(perm(\hat{y}_i) = y_i)$$

- Classification Accuracy vs. Clustering Accuracy
- Example:

Notation

- $|C_k \cap P_j|$ the number of objects in both the k-th cluster of the clustering solution and j-th cluster of the groundtruth
- $-\mid C_{k}\mid$ the number of objects in the k-th cluster of the clustering solution
- $-\mid P_{j}\mid$ the number of objects in the *j*-th cluster of the groundtruth
- Purity $Purity = \frac{1}{N} \sum_{k} \max_{j} |C_{k} \cap P_{j}|$

Normalized Mutual Information

$$NMI = \frac{I(C, P)}{\sqrt{H(C)H(P)}} \qquad I(C, P) = \sum_{k} \sum_{j} \frac{|C_{k} \cap P_{j}|}{N} \log \frac{N \cdot |C_{k} \cap P_{j}|}{|C_{k}||P_{j}|}$$

$$H(C) = \sum_{k} \frac{|C_{k}|}{N} \log \frac{|C_{k}|}{N} \qquad H(P) = \sum_{j} \frac{|P_{j}|}{N} \log \frac{|P_{j}|}{N}$$

Judging a Clustering Visually by its Similarity Matrix

- Visualization/Interpretation
 - t-Distributed Stochastic Neighbor Embedding (t-SNE)
 - Order the similarity matrix with respect to cluster labels and inspect visually.

Judging a Clustering Visually by its Similarity Matrix

- Visualization/Interpretation
 - t-Distributed Stochastic Neighbor Embedding (t-SNE)
 - Order the similarity matrix with respect to cluster labels and inspect visually.
 - Clusters in random data are not so crisp

- Using Probabilistic Models for Clustering
 - Hard vs. soft clustering:
 - Hard clustering: Every sample belongs to exactly one cluster
 - Soft clustering: Every sample belongs to several clusters with certain degrees
- Probabilistic clustering:
 - Each cluster is mathematically represented by a parametric distribution
 - The entire data set is modeled by a mixture of these distributions

Mixture based Clustering - Gaussian Distribution

Probability density function f(x) is a function of x given μ and σ 1 $x - \mu$

$$N(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right)$$

Mixture based Clustering - Likelihood

Define likelihood as a function of μ and σ given $x_1, x_2, ..., x_n$ $\prod^n N(x_i \mid \mu, \sigma^2)$

Gaussian Distribution

$$\mathcal{N}(\mathbf{x}|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}} \exp\{\frac{1}{2}(\mathbf{x} - \mu)^{\top}\Sigma^{-1}(\mathbf{x} - \mu)\}$$

- $\mu \in \mathbb{R}^d$ is the mean and $\Sigma \in \mathbb{R}^{d \times d}$ is the covariance matrix.

Likelihood

$$L(\mu, \Sigma) = \sum_{i=1}^{n} \log N(\mathbf{x}_i | \mu, \Sigma)$$

$$= \sum_{i=1}^{n} \left(\frac{1}{2} (\mathbf{x}_i - \mu)^{\top} \Sigma^{-1} (\mathbf{x}_i - \mu) - \ln((2\pi)^{d/2} |\Sigma|^{1/2})\right)$$

- Maximum Likelihood Estimate(MLE)
- Find model parameters that maximize log likelihood $L(\mu, \Sigma)$
- MLE for Gaussian

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$
 $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_i - \hat{\mu}) (\mathbf{x}_i - \hat{\mu})^{\top}$

Gaussian Mixture

- Linear combination of Gaussians

$$P(\mathbf{x}|\mu, \Sigma) = \sum_{k=1}^K \pi_k N(\mathbf{x}|\mu_k, \Sigma_k)$$

where
$$\sum_{k=1}^{K} \pi_k = 1$$
, $0 \le \pi_k \le 1$

Mixture based Clustering - GMM

- To generate a data point:
 - first pick one of the components with probability π_k
 - then draw a sample x_i from that component distribution
- Each data point is generated by one of K components, a latent variable $z_i = (z_{i1}, \ldots, z_{iK})$ is associated with each x_i

$$\sum_{k=1}^{K} z_{ik} = 1$$
 and $p(z_{ik} = 1) = \pi_k$

Mixture based Clustering - GMM

Maximize log likelihood

$$\ln p(x|\pi,\mu,\Sigma) = \sum_{i=1}^{n} \ln \{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i|\mu_k,\Sigma_k)\}$$

 Without knowing values of latent variables, we have to maximize the incomplete log likelihood

Mixture based Clustering - EM-Algorithm

 <u>E-step:</u> for given parameter values we can compute the expected values of the latent variables (responsibilities of data points)

$$r_{ik} \equiv E(z_{ik}) = p(z_{ik} = 1 | x_i, \pi, \mu, \Sigma)$$

$$= \frac{p(z_{ik} = 1)p(x_i | z_{ik} = 1, \pi, \mu, \Sigma)}{\sum_{k=1}^{K} p(z_{ik} = 1)p(x_i | z_{ik} = 1, \pi, \mu, \Sigma)}$$

$$= \frac{\pi_k \mathcal{N}(x_i | u_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i | u_k, \Sigma_k)}$$

– Note that $r_{ik} \in [0,1]$ instead of $\{0,1\}$ but we still have $\sum_{k=1}^K r_{ik} = 1$ for all i

Mixture based Clustering - EM-Algorithm

M-step: maximize the expected complete log likelihood

$$E[\ln p(x, z | \pi, \mu, \Sigma)] = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \{ \ln \pi_k + \ln \mathcal{N}(x_i | \mu_k, \Sigma_k) \}$$

Parameter update:

$$\pi_k = \frac{\sum_i r_{ik}}{n} \qquad \mu_k = \frac{\sum_i r_{ik} x_i}{\sum_i r_{ik}}$$

$$\Sigma_k = \frac{\sum_i r_{ik} (x_i - \mu_k) (x_i - \mu_k)^T}{\sum_i r_{ik}}$$

Mixture based Clustering - EM-Algorithm

EM-Algorithm

- Iterate E-step and M-step until the log likelihood of data does not increase any more
 - Converge to local optimal
 - Need to restart algorithm with different initial guess of parameters (as in K-means)
- Relation to K-means
 - Consider GMM with common covariance
 - $-\Sigma_k = \sigma^2 I$
 - As $\sigma^2 \to 0$, $r_{ik} \to 0$ or 1, two methods coinside.

K-means vs GMM

- Objective function
 - Minimize sum of squared Euclidean distance
- Can be optimized by an EM algorithm
 - E-step: assign points to clusters
 - M-step: optimize clusters
 - Performs hard assignment during E-step
- Assumes spherical clusters with equal probability of a cluster

- Objective function
 - Maximize log-likelihood
- EM algorithm
 - E-step: Compute posterior probability of membership
 - M-step: Optimize parameters
 - Perform soft assignment during E-step
- Can be used for non-spherical clusters
- Can generate clusters with different probabilities