HOMEWORK 3, DUE MARCH 12, 2019

ANALYSIS II

- (1) Suppose ϕ is a 3-cells in \mathbf{R}^4 defined by $\phi(u_1, u_2, u_3) = (u_1 + u_2, u_1 + u_3, u_2 u_3, u_1^2)$, Suppose $\omega = dy_2 \wedge dy_3 \wedge dy_4 dy_1 \wedge dy_3 \wedge dy_4 2y_2 dy_1 \wedge dy_2 \wedge dy_3$. Evaluate $\int_{\phi} \omega$.
- (2) A k-cells in \mathbf{R}^n ϕ is degenerate if $\phi(u_1, \dots, u_k)$ is independent of u_i for some i. Prove that if ω a basic k-form, i.e $\omega = dy_I$ where $I = (i_1, \dots, i_k)$ with $1 \le i_1 \ne i_2 \ne \dots \ne i_k \le n$ and ϕ a degenerate k-cells then $\int_{\phi} \omega = 0$.