CAFÉ SANS-FIL SYSTÈME DE RECOMMENDATION

IFT3150: PROJET D'INFORMATIQUE

BIO SAMIR GBIAN

SUPERVISEUR: LOUIS-EDOUARD LAFONTANT

PLAN DE LA PRÉSENTATION

- Introduction
- Système de recommandation
- Conception
- Intégration dans l'application
- Démonstration
- Évaluation
- Conclusion

INTRODUCTION LE PROJET CAFÉ SANS-FIL

Café sans-fil est une application web facilitant la recherche de cafés et produits, la prise de commandes et la gestion du menu et de l'inventaire

Problématique

- Absence de fonctionnalités permettant aux utilisateurs de spécifier leur préférences (ou allergies)
- Absence d'outils facilitant la recherche de nouveaux items potentiellement aimés par l'utilisateur
- Difficulté pour les gérants d'optimiser le menu ou les services pour éviter des pertes et mieux répondre aux clients du café

sans-fil preview Connexion (Fi) 0

Cafés étudiants de l'UdeM

Q Rechercher un café

Pill Pub

SYSTÈME DE RECOMMANDATIONS

Les systèmes de recommandation sont des outils et des techniques logiciels fournissant des suggestions d'éléments pouvant être utiles à un utilisateur.

Shani, G., & Gunawardana, A. (2011). **Evaluating recommendation systems**. *Recommender systems handbook*, 257-297.

Objectif principal

- Augmenter ou diversifier le nombre d'items vendus
- Augmenter la satisfaction et fidéliser les utilisateurs
- Mieux comprendre les besoins des utilisateurs

Application dans Café sans-fil

- Faciliter la recherche d'items pour un utilisateur
- O Aider les utilisateurs à suivre leur régime alimentaire
- Améliorer le processus décisionnel du gérant

ALGORITHMES

Filtrage collaboratif

- Similarité entre les utilisateurs (Jaccard, cosinus, correlation de Pearson)
- Recommender en fonction des utilisateurs les plus similaires

Filtrage basé sur le contenu

Recommander à l'utilisateur des éléments similaires à ceux qu'il a déjà appréciés en se basant sur les attributs des éléments

COLLABORATIVE FILTERING

Read by both users

CONTENT-BASED FILTERING

Recommended to user

ALGORITHMES

Recommendation basé sur les connaissances

- Utilise des règles ou des contraintes spécifiques pour effectuer des recommandations
- N'a pas besoin d'informations antérieur sur l'utilisateur

Système hybride

- Système incluant plusieurs algorithmes différents
- Permet de combler les lacunes entre les algorithmes
- Plus complexe à implémenter et nécessite plus de ressources

ARCHITECTURE GÉNÉRALE

CONCEPTION - RECOMMENDATION

1. Recommendation personnalisées d'items et de cafés

- Filtrage collaborative
- Filtrage basé sur le contenu
- Recommendation basé sur les connaissances

2. Recommendation publique

Repas les plus aimés et les plus acheté

3. Robot santé

Trier les items en ordre croissant par rapport au score santé

NUTRI-SCORE A B C D E

CONCEPTION - SCORE SANTÉ (NUTRI-SCORE)

- Système d'étiquetage nutritionnel visant à fournir une évaluation globale de la qualité nutritionnelle des aliments et boissons.
- Éléments favorables (fibres, protéines, fruits et légumes) = E_1
- Éléments défavorables (acides gras saturés, sucres ajoutés et sel) = E_2
- Score final = $E_2 E_1$

INTÉGRATION DANS L'APPLICATION FARM STACK

- + Ajout de endpoint pour les recommandations
- Initialisation de la BD

- + Ajout du profil nutrionnel
- + Ajout des recommandations publiques
- + Ajout des recommandations par café

Base de données NoSQL (orientée document)

+ Ajout des collections propres au système de recommandations

INTÉGRATION DANS L'APPLICATION

Collections

- + User recommendation: Contient les recommendations personnalisées de chaque utilisateur
- + Café for recommendation: Contient la liste des recommandations publiques, le slug et le score santé de chaque café
- + Items: Contient l'identifiant, le slug, le score santé et le cluster de chaque item

Endpoints

- + Récupérer et modifier les informations (score santé, recommendations publiques) des cafés et des items
- Récupérer un utilisateur, ses recommandations (recommandation de cafés et d'items) et modifier les recommandations
- + Récupérer et modifier les recommendaitons publiques
- + Récupérer les recommendation du robot santé
- + Récupérer les items désirés par les utilisateurs, mais absents des cafés

Tests

- + Tests unitaires des algorithmes et des méthodes utilitaires
- + Tests d'utilisabilité par rapport au profil nutritionnel

DÉMONSTRATION

- Recommendation de café
- Recommendations personnalisées
- Recommendations publiques
- Profil nutritionnel

ROADMAP

Optimisation des algorithmes

- ☐ Usage d'algorithme de réduction de dimensionnalité (PCA, MDS)
 - → Améliore la performance (temps du calcul de la similarité)
- Usage d'indexation inverse
 - → Réduire le cout de la recherche

Maintenabilité

- Fournir de meilleures abstractions pour manipuler les algos
 - → Favorise la réutilisabilité
- Réduire le couplage entre les algorithmes et l'application
 - → Favorise réutilisabilité et modularité

CONCLUSION

Bilan de projet

- ✓ Tous les algorithmes ont été implémentés et sont fonctionnels
- ✓ Les nouvelles collections sont bien intégrées à la base de données
- ✓ Les nouveaux endpoints sont bien intégrés à l'API
- ✓ Profil nutritionnel implémenté et fonctionnel (Ul à valider)

Apprentissage

- Fonctionnement des systèmes de recommendation
- Intégration d'un nouveau système dans un système existent
- Développement web et usage du framework React

MERCI D'AVOIR SUIVI!

DES QUESTIONS?