Predicting NBA Players Salaries with Bayesian Linear Regression

Project Goals

- 1. Get hands on experience with Markov Chain Monte Carlo methods
- 2. Understand the difference between Bayesian Approach vs. Frequentist Approach
- 3. Test on No U-Turns Sampler (NUTS) method (Hamiltonian Monte Carlo method)

Data Preview & Preprocessing

- 485 NBA Players
- 28 Features in total
 - Independent Variable (Salary)
 - Personal Information (Name, Team, Age, Nationality, Draft Number)
 - Game Statistics (Games played, 3-point attempt rate, value over replaced player, etc.)
- Imputed missing values with median (3 Columns with 2 missing values each)
- Transformed the response to a normal distribution

Data Visualization

Feature Selection

Selected Features (VIF score < 10):

- Age
- VORP (Value over replaced player)
- BPM (Box Plus/Minus)
- Draft Number
- MP (Minutes played)

Problem Setup

$$y|\beta,\sigma^2 \sim N(\beta^T X,\sigma^2 I)$$

$$P(\beta|\sigma^2) \propto 1$$

$$P(\sigma^2) \propto \frac{1}{\sigma^2}$$

$$\epsilon \sim N(0, \sigma^2)$$

$$P(y|X,\beta,\sigma^2) = \prod_{\substack{1 \ \sqrt{2\pi}\sigma^2}} \exp_{\substack{(y-\beta^T X)^2 \ 2\sigma^2}}$$

Two Approaches

- Bayesian
- Frequentist

Two Sampling Methods

- Metropolis-Hastings
- No U-Turns (NUTS)

NUTS

Metropolis-Hastings

Qihang Zhang

Qihang Zhang

	Mean Abs. Error	Root Mean Square Error
Frequentist	0.611399	0.930005
NUTS_1000	1.134446	1.494323
NUTS_2000	1.134190	1,494059
Metro_2000	1.133371	1.493248

	NUTS_1000	NUTS_2000	Metropolis_2000	Frequentist
Salary	\$11984473	\$11984473	\$11939148	\$11964463

Bayesian Approach:

- More interpretable (Parameters are estimated as probability distributions)
- Can incorporate with prior information (more suitable for industrial applications)

Future Steps

Reduce the training size and set appropriate priors to see the result

Thanks!