```
In [44]: !pip install scipy
        Requirement already satisfied: scipy in c:\users\dell\appdata\local\programs\python\python313\lib\site-packages (1.15.3)
        Requirement already satisfied: numpy<2.5,>=1.23.5 in c:\users\dell\appdata\local\programs\python\python313\lib\site-packages (from scipy) (2.2.5)
In [45]: import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         from scipy.stats import pearsonr
In [22]: df = pd.read_csv("apple_products.csv")
         print(df.head())
                                     Product Name \
                 APPLE iPhone 8 Plus (Gold, 64 GB)
       1 APPLE iPhone 8 Plus (Space Grey, 256 GB)
              APPLE iPhone 8 Plus (Silver, 256 GB)
       3
                   APPLE iPhone 8 (Silver, 256 GB)
        4
                     APPLE iPhone 8 (Gold, 256 GB)
                                               Product URL Brand Sale Price \
       0 https://www.flipkart.com/apple-iphone-8-plus-g... Apple
                                                                       49900
       1 https://www.flipkart.com/apple-iphone-8-plus-s... Apple
                                                                        84900
       2 https://www.flipkart.com/apple-iphone-8-plus-s... Apple
                                                                       84900
       3 https://www.flipkart.com/apple-iphone-8-silver... Apple
                                                                       77000
       4 https://www.flipkart.com/apple-iphone-8-gold-2... Apple
                                                                       77000
            Mrp Discount Percentage Number Of Ratings Number Of Reviews \
        0 49900
                                  0
                                                  3431
                                                                      356
                                   0
                                                  3431
       1 84900
                                                                      356
                                  0
                                                  3431
                                                                      356
       2 84900
       3 77000
                                  0
                                                 11202
                                                                      794
        4 77000
                                                 11202
                                                                      794
                       Upc Star Rating Ram
       0 MOBEXRGV7EHHTGUH
                                    4.6 2 GB
       1 MOBEXRGVAC6TJT4F
                                    4.6 2 GB
                                   4.6 2 GB
       2 MOBEXRGVGETABXWZ
       3 MOBEXRGVMZWUHCBA
                                   4.5 2 GB
        4 MOBEXRGVPK7PFEJZ
                                   4.5 2 GB
In [23]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 62 entries, 0 to 61
Data columns (total 11 columns):
Column Non-Null Columns

#	Column	Non-Null Count	Dtype		
0	Product Name	62 non-null	object		
1	Product URL	62 non-null	object		
2	Brand	62 non-null	object		
3	Sale Price	62 non-null	int64		
4	Mrp	62 non-null	int64		
5	Discount Percentage	62 non-null	int64		
6	Number Of Ratings	62 non-null	int64		
7	Number Of Reviews	62 non-null	int64		
8	Upc	62 non-null	object		
9	Star Rating	62 non-null	float64		
10	Ram	62 non-null	object		
dtypose float(4/1) int(4/5) object(5)					

dtypes: float64(1), int64(5), object(5)

memory usage: 5.5+ KB

In [24]: df.describe()

Out[24]:

	Sale Price	Mrp	Discount Percentage	Number Of Ratings	Number Of Reviews	Star Rating
count	62.000000	62.000000	62.000000	62.000000	62.000000	62.000000
mean	80073.887097	88058.064516	9.951613	22420.403226	1861.677419	4.575806
std	34310.446132	34728.825597	7.608079	33768.589550	2855.883830	0.059190
min	29999.000000	39900.000000	0.000000	542.000000	42.000000	4.500000
25%	49900.000000	54900.000000	6.000000	740.000000	64.000000	4.500000
50%	75900.000000	79900.000000	10.000000	2101.000000	180.000000	4.600000
75%	117100.000000	120950.000000	14.000000	43470.000000	3331.000000	4.600000
max	140900.000000	149900.000000	29.000000	95909.000000	8161.000000	4.700000

In [25]: df.head()

Out[25]:

]:	Product Name	Product URL	Brand	Sale Price	Mrp	Discount Percentage	Number Of Ratings	Number Of Reviews	Upc	Star Rating	Ram
C	APPLE iPhone 8 Plus (Gold, 64 GB)	https://www.flipkart.com/apple-iphone-8-plus- g	Apple	49900	49900	0	3431	356	MOBEXRGV7EHHTGUH	4.6	2 GB
1	APPLE iPhone 8 Plus (Space Grey, 256 GB)	https://www.flipkart.com/apple-iphone-8-plus-s	Apple	84900	84900	0	3431	356	MOBEXRGVAC6TJT4F	4.6	2 GB
2	APPLE iPhone 8 Plus (Silver, 256 GB)	https://www.flipkart.com/apple-iphone-8-plus-s	Apple	84900	84900	0	3431	356	MOBEXRGVGETABXWZ	4.6	2 GB
3	APPLE iPhone 8 (Silver, 256 GB)	https://www.flipkart.com/apple-iphone-8-silver	Apple	77000	77000	0	11202	794	MOBEXRGVMZWUHCBA	4.5	2 GB
4	APPLE iPhone 8 (Gold, 256 GB)	https://www.flipkart.com/apple-iphone-8-gold-2	Apple	77000	77000	0	11202	794	MOBEXRGVPK7PFEJZ	4.5	2 GB

```
In [28]: # Filtering rows where 'Product Name' contains 'iPhone'
df_iphones = df[df['Product Name'].str.contains('iPhone', case=False, na=False)]

# Converting 'Star Rating' to numeric, coercing errors
df_iphones['Star Rating'] = pd.to_numeric(df_iphones['Star Rating'], errors='coerce')

# Droping rows with missing 'Star Rating'
df_iphones = df_iphones.dropna(subset=['Star Rating'])

In [29]: # Sorting by 'Star Rating' descending and select top 10
top_10_iphones = df_iphones.sort_values(by='Star Rating', ascending=False).head(10)

# Displaying relevant columns
top_10_iphones[['Product Name', 'Star Rating', 'Number Of Ratings', 'Sale Price']]

Out[29]: Product Name 'Star Rating', Number Of Ratings Sale Price

15 APPLE iPhone 11 Pro Max (Gold, 64 GB) 4.7 1078 117100

20 APPLE iPhone 11 Pro Max (Midnight Green, 64 GB) 4.7 1078 117100
```

	Product Name	Star Rating	Number Of Ratings	Sale Price
15	APPLE iPhone 11 Pro Max (Gold, 64 GB)	4.7	1078	117100
20	APPLE iPhone 11 Pro Max (Midnight Green, 64 GB)	4.7	1078	117100
17	APPLE iPhone 11 Pro Max (Space Grey, 64 GB)	4.7	1078	117100
16	APPLE iPhone 11 Pro Max (Midnight Green, 256 GB)	4.7	1078	131900
14	APPLE iPhone 11 Pro Max (Gold, 256 GB)	4.7	1078	131900
0	APPLE iPhone 8 Plus (Gold, 64 GB)	4.6	3431	49900
12	Apple iPhone XR (Black, 128 GB) (Includes EarP	4.6	79512	41999
11	Apple iPhone XR (Coral, 128 GB) (Includes EarP	4.6	79582	41999
9	Apple iPhone XR ((PRODUCT)RED, 128 GB) (Includ	4.6	79512	41999
1	APPLE iPhone 8 Plus (Space Grey, 256 GB)	4.6	3431	84900

```
In [49]: # Setting style
         sns.set(style="whitegrid")
         # Sorting the data for a clean plot
         top_10_iphones = top_10_iphones.sort_values(by='Star Rating', ascending=True)
         # Setting figure size
         plt.figure(figsize=(12, 8))
         # Creating barplot with Product Name as hue to apply palette correctly
         sns.barplot(
             x='Star Rating',
             y='Product Name',
             data=top_10_iphones,
             hue='Product Name',
                                    # assign hue to remove FutureWarning
             dodge=False,
             palette='viridis',
             legend=False
                                     # disable legend since y-axis already shows names
         # Titles and labels
         plt.title('Top 10 Highest-Rated iPhones on Flipkart', fontsize=16)
         plt.xlabel('Star Rating')
```

```
plt.ylabel('iPhone Model')
plt.xlim(4., 4.8) # Limit the x-axis range

#Saving plot:
plt.tight_layout()
plt.savefig('top_rated_iphones.png', dpi=300, bbox_inches='tight') # Save the plot
plt.show()
```



```
In [37]: #Question2. How many ratings do the highest-rated iphones on Flipkart have?
In [38]: # Filtering iPhones only
df_iphones = df[df['Product Name'].str.contains('iPhone', case=False, na=False)]
```

```
# Finding the highest star rating
         max_rating = df_iphones['Star Rating'].max()
         # Filtering iPhones with the highest star rating
         highest_rated_iphones = df_iphones[df_iphones['Star Rating'] == max_rating]
         # Displaying number of ratings for those
         highest_rated_iphones[['Product Name', 'Star Rating', 'Number Of Ratings']]
Out[38]:
                                           Product Name Star Rating Number Of Ratings
          14
                      APPLE iPhone 11 Pro Max (Gold, 256 GB)
                                                                                  1078
                                                                 4.7
          15
                       APPLE iPhone 11 Pro Max (Gold, 64 GB)
                                                                                  1078
                                                                 4.7
          16 APPLE iPhone 11 Pro Max (Midnight Green, 256 GB)
                                                                                  1078
                                                                 4.7
         17
                  APPLE iPhone 11 Pro Max (Space Grey, 64 GB)
                                                                                  1078
                                                                 4.7
                                                                                  1078
          20 APPLE iPhone 11 Pro Max (Midnight Green, 64 GB)
                                                                 4.7
In [39]: #Question3: Which iphone has the highest number of reviews on Flipkart?
In [40]: # Filtering rows where product name contains 'iPhone'
         df_iphones = df[df['Product Name'].str.contains('iPhone', case=False, na=False)]
         # Finding the iPhone with the highest number of reviews
         most_reviewed_iphone = df_iphones.loc[df_iphones['Number Of Reviews'].idxmax()]
         # Displaying result
         most_reviewed_iphone[['Product Name', 'Number Of Reviews', 'Star Rating']]
                               Apple iPhone SE (White, 256 GB) (Includes EarP...
Out[40]: Product Name
          Number Of Reviews
                                                                            8161
          Star Rating
                                                                             4.5
          Name: 23, dtype: object
In [41]: #Question4: What is the relationship between the sale price of iphones and the number of ratings on Flipkart?
In [46]: # Filtering for iPhones
         df_iphones = df[df['Product Name'].str.contains('iPhone', case=False, na=False)]
         # Droping NaNs for clean correlation analysis
         iphone_data = df_iphones[['Sale Price', 'Number Of Ratings']].dropna()
         # Calculating Pearson correlation
         correlation, p_value = pearsonr(iphone_data['Sale Price'], iphone_data['Number Of Ratings'])
         print(f"Pearson Correlation: {correlation:.2f}")
         print(f"P-value: {p_value:.4f}")
        Pearson Correlation: -0.70
        P-value: 0.0000
In [48]: plt.figure(figsize=(10, 6))
         sns.regplot(
              data=iphone_data,
              x='Sale Price',
             y='Number Of Ratings',
              scatter_kws={'alpha': 0.6},
```

```
line_kws={'color': 'red'}
)

plt.title('Relationship Between iPhone Sale Price and Number of Ratings')
plt.xlabel('Sale Price (INR)')
plt.ylabel('Number of Ratings')
plt.tight_layout()
plt.savefig('saleprice_vs_ratings.png', dpi=300, bbox_inches='tight') # Save plot here
plt.show()
```



```
Pearson Correlation: 0.68 P-value: 0.0000
```

```
plt.figure(figsize=(10, 6))
sns.regplot(
    data=iphone_data,
    x * 'Discount Percentage',
    y = 'Number of Ratings',
    scatter_kws={'alpha':0.6},
    line_kws={'color': 'blue'}
)

plt.title('Relationship Between Discount Percentage and Number of Ratings (iPhones)')
plt.xlabel('Discount Percentage (%)')
plt.ylabel('Number of Ratings')

plt.tight_layout()
plt.savefig('discount_vs_ratings.png', dpi=300, bbox_inches='tight') # Save plot image
plt.show()
```


In [53]: #Question6: Can you figure out the least expensive and the most expensive iphones in the Indian market, along with all their specifications?

```
In [54]: # Filtering only iPhones
df_iphones = df[df['Product Name'].str.contains('iPhone', case=False, na=False)]
```

```
# Finding index of least expensive iPhone
 min_price_idx = df_iphones['Sale Price'].idxmin()
 # Finding index of most expensive iPhone
 max_price_idx = df_iphones['Sale Price'].idxmax()
 # Getting full specs of least expensive iPhone
 least_expensive_iphone = df_iphones.loc[min_price_idx]
 # Getting full specs of most expensive iPhone
 most_expensive_iphone = df_iphones.loc[max_price_idx]
 # Displaying results
 print("Least Expensive iPhone:\n", least_expensive_iphone.to_frame().T)
 print("\nMost Expensive iPhone:\n", most_expensive_iphone.to_frame().T)
Least Expensive iPhone:
                      Product Name \
52 APPLE iPhone SE (White, 64 GB)
                                        Product URL Brand Sale Price \
52 https://www.flipkart.com/apple-iphone-se-white... Apple
     Mrp Discount Percentage Number Of Ratings Number Of Reviews \
52 39900
                          24
                                        95807
                                                           8154
                Upc Star Rating Ram
52 MOBFWQ6BGWDVGF3E
                           4.5 2 GB
Most Expensive iPhone:
                            Product Name \
24 APPLE iPhone 12 Pro (Silver, 512 GB)
                                        Product URL Brand Sale Price \
24 https://www.flipkart.com/apple-iphone-12-pro-s... Apple 140900
      Mrp Discount Percentage Number Of Ratings Number Of Reviews \
                                           542
24 149900
                Upc Star Rating Ram
24 MOBFWBYZ5UY6ZBVA
                            4.5 4 GB
```

.n []: