- (1) Evaluate the line integral of the function f(x,y,z) = xy + y + z along the curve $\gamma(t) = \langle 2t, t, 2-2t \rangle, t \in [0,1].$
- (2) Evaluate the line integral of $f(x, y, z) = \sqrt{x^2 + z^2}$ along the curve $\gamma(t) = \langle 0, \cos t, \sin t \rangle$, $t \in [0, \frac{\pi}{2}]$.
- (3) Compute $\int_C (x + \sqrt{y} z^2) ds$, where $C = C_1 \cup C_2$, and parametrizations of C_1 and C_2 are given by $\gamma_1(t) = \langle t, t^2, 0 \rangle$ and $\gamma_1(t) = \langle 1, 1, t \rangle$, $t \in [0, 1]$, respectively.
- (4) Find the work done by the force field $F(x,y,z) = \langle -\frac{1}{2}x, -\frac{1}{2}y, -\frac{1}{4} \rangle$ on a particle as it moves along the helix $\gamma(t) = \langle \cos t, \sin t, t \rangle$ from (1,0,0) to $(-1,0,3\pi)$.
- (5) Evaluate the line integral $\int_C x^2 y \, dx + (x 2y) \, dy$, where C is the part of the parabola $y = x^2$ from (0,0) to (1,1).

[Remark: Let $F = \langle f, g, h \rangle$ be a vector field, and let $\gamma(t) = \langle x(t), y(t), z(t) \rangle = x(t)i + y(t)j + z(t)k$, $t \in [a, b]$, be a parametrization of C. We know that $\int_C F \cdot dr = \int_a^b F(\gamma(t)) \cdot \gamma'(t) dt$. However, note that

$$\int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt = \int_{a}^{b} \langle f(\gamma(t)), g(\gamma(t)), h(\gamma(t)) \rangle \cdot \langle dx/dt, dy/dt, dz/dt \rangle dt,$$

and so $\int_C F \cdot dr = \int_C f dx + g dy + h dz$.]

(6) Let C be the line segment joining the points (x_1, y_1) to (x_2, y_2) . Prove that

$$\int_C x \, dy - y \, dx = \det \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix}.$$

- (7) Find a parametric representation for the curve resulting by the intersection of the plane 3x + y + z = 1 and the cylinder $x^2 + 2y^2 = 1$ in \mathbb{R}^3 .
- (8) Find a parametrization for the solid triangle $\Delta := \Delta ABC$, where A = (1, 0, 0), B = (0, 1, 0), and C = (0, 0, 1). Also find a parametrization for the curve $\partial \Delta$.
- (9) Compute the equation of the surface of revolution generated by revolving the hyperbola $x^2 4z^2 = 1$ about the z-axis.
- (10) Compute the area of the piece of the paraboloid $z = x^2 + y^2$ which is cut out by the region between the cylinder $x^2 + y^2 = 2$ and the cylinder $x^2 + y^2 = 6$.
- (11) Find a unit vector normal to the surface $z = 4 x^3 y^3$ at the point (1, 1, 2). Also compute the tangent place to the surface at (1, 1, 2).
- (12) Find the equation of the tangent plane to the surface $z = x \exp(-2y)$ at the point (1,0,1).
- (13) Let a > 0. Find the equation of the tangent plane to the torus

$$r(u,v) = ((a+\sin v)\cos u, (a+\sin v)\sin u, \cos v),$$

at r(0,0).