

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

34902-H003-R0-00

NASA CR-

160770

ADVANCED FLIGHT DESIGN SYSTEMS

SUBSYSTEM PERFORMANCE MODELS

JUNE 1980

CONTRACT NO. NAS9-15793

SAMPLE MODEL

ENVIRONMENTAL ANALYSIS ROUTINE LIBRARY

(NASA-CR-160770) ADVANCED FLIGHT DESIGN
SYSTEMS SUBSYSTEM PERFORMANCE MODELS.

N80-31046

SAMPLE MODEL: ENVIRONMENTAL ANALYSIS
ROUTINE LIBRARY (TRW Defense and Space
Systems Group) 40 p HC A03/MF A01 CSCL 06K G3/54

Unclassified
28523

Prepared By

K. C. Parker

J. G. Torian

Systems Engineering and Analysis

Department

TRW
DEFENSE AND SPACE SYSTEMS GROUP

34902-H003-RO-00

ADVANCED FLIGHT DESIGN SYSTEMS

SUBSYSTEM PERFORMANCE MODELS

JUNE 1980

CONTRACT NO. NAS9-15793

SAMPLE MODEL

ENVIRONMENTAL ANALYSIS ROUTINE LIBRARY

Prepared By

K. C. Parker

J. G. Torian

Systems Engineering and Analysis

Department

TRW
DEFENSE AND SPACE SYSTEMS GROUP

PREFACE

Subsystem performance analysis is required in Flight Design to assess the capability of the Environmental Control and Life Support System (ECLSS) to support the flight requirements and define operational procedures under contingency flight conditions. Current ECLSS modeling techniques are limited in the variety of configurations and they employ batch mode computer program execution methods. Future spacecraft will require analysis of both a greater variety and a greater number of ECLSS than for previous spacecraft programs. Improvements in the variety of configurations that can be modeled and a reduction in effort required for modeling and analysis can be accomplished by developing a modular computer library program which operates interactively.

An effort has been conducted to develop a modular interactive ECLSS performance analysis tool. The final reports on the effort are included in an Executive Summary and two Technical Reports. The Technical Reports include a User Guide and a sample model.

The Executive Summary presents an overview of the effort.

The Technical Reports include a User Guide which, due to the modular nature of the Program Library, includes a greater degree of technical detail than one for a conventional program. This Sample Model report supplements the User Guide and illustrates a complete ECLSS model set up and execution.

CONTENTS

	Page
1. Introduction	1.1
2. Sample ECLSS Model Description	2.1
3. Sample ECLSS Model Execution and Output	3.1
Appendix A Computer Control Information	3.26

LIST OF FIGURES

	Page
2.1 Sample Model Schematic	2.2
3.1 Program Initialization and Control	3.4
3.2 Utility Input and Component Data	3.5
3.3 Boundary Condition and Print Control	3.15
3.4 Performance Data Output	3.17
3.5 Plot Data Output	3.23
A-1 Map	3.27
A-2 Computer Control	3.28

LIST OF TABLES

	Page
3.1 Sample Model Driver (MAIN)	3.2

1. INTRODUCTION

This report presents a sample Environmental Control and Life Support (ECLSS) model performance analysis using the Environmental Analysis Routines Library (EARL). This volume supplements the user's Guide to provide an example of a complete model set up and execution. The particular model was synthesized to utilize all of the component performance routines and most of the program options. The subsequent text presents a description of the synthesized ECLSS, the driver Routine (MAIN), and the various displays ,in the order they appear in execution. The MAP and Computer Control Statements are given in Appendix A.

2. SAMPLE ECLSS MODEL DESCRIPTION

A schematic of the ECLSS to be analyzed is given on Figure 2.1*. The system consists of an atmospheric loop and a payload loop interfaced to a liquid heat rejection loop.

The atmospheric coolant enters the cabin at Node 1 and exits into a CO_2 removal system at Node 2. Cabin make-up Nitrogen and Oxygen are extracted from Source 1 and 2. CO_2 removal canisters are provided from Source 3. Moisture removal is accomplished between Nodes 3 and 4. The moisture removal system rejects heat to the liquid loop at Nodes 7 and 8 and stores the condensate in Source 4. Cabin temperature is modulated by a heater at Node 4 which controls to a prescribed temperature at the cabin outlet (Node 2). Heater power is extracted from Source 5.

The liquid heat rejection loop mixes the radiator panel outlet and radiator by-pass flow (Nodes 16, 20, and 11) into Node 5 which is a final cooling stage evaporator. The evaporator extracts its expendable media from Source 6. The liquid cools cold plated equipment between Node 6 and 7 prior to interfacing with Nodes 3 and 4 of the atmospheric coolant loop condenser. The liquid then cools a second cold plate prior to interfacing with Nodes 21 and 22 of a payload coolant loop. Radiator panel and by-pass flow are then modulated at Node 10 to control the temperature at Node 5. Node 11 is the by-pass leg. The radiator consists of two parallel sets of three panels each.

The payload loop rejects heat at Node 21 to the liquid loop (Nodes 9 and 10) for cooling of payload equipment at Node 22.

* Figure 2.1 is a program produced schematic prepared from a previous run of the sample model given in this text. It does not appear in the order with respect to other displays had it been part of the sample execution.

Figure 2.1. Sample Model Schematic

Figure 2.1. Sample Model Schematic (Cont.)

Figure 2.1. Sample Model Schematic (Cont.)

Figure 2.1. Sample Model Schematic (Concl.)

3. SAMPLE ECLSS MODEL EXECUTION

The driver routine (MAIN 20)* for the ECLSS described in the previous section is shown on Table 3.1.

Program Control displays are shown on Figure 3.1 In these, and subsequent displays, only the completed display is illustrated. Utility input and component data displays are shown on Figure 3.2. The Boundary Condition and Print Control information shown on Figure 3.3. These three Figures are part of the active execution. Printed performance and Plot data as output are shown on Figures 3.4 and 3.5 respectively. These latter two Figures are generated as part of the passive execution.

* This model was executed using the MAP given in Appendix A. Several problems related to loss of Common Data have occurred executing with this particular MAP structure. These problems can be avoided by including those common blocks shown for MAIN 20 in all model driver routines.

```

1: COMMON/MERAT/ K,L,TEMP,PC(100,2),FC(100,2),CC(100,20),TC(100,1
2: COMMON/TIMES/DELT,DELTO2,TIME,TSTOP,PNT
3: COMMON/WRITE/ IWRITE,IPRNT,ICNT,IRUN,IFRST
4: COMMON/PSS/ NPLTS,IPLT(25),JPLT(25),NETPO(25)
5: COMMON/TABS/ X(500),Y(500),INTAB(20),INO
6: COMMON/LUMP2/ ATITLEC(12),BIGC(25),MEEC(25)
7: COMMON/MEM/ NFLPTS,NERG,NOMCRE
8: COMMON/EPS/ MEPS(100),DEPS(100)
9: COMMON/FLAGS/ ISDUM,ISEL,ISCHEM,ITRAJ,IEPS,ISP,IGEN
10: COMMON/ITABLE/ IASST(100,2)
11: COMMON/SEG/ NSEG(100),NNODES,MSEG(100),MNODES
12: DATA IFRST/1/
13: C                                     INITIALIZATION
14: C                                     CALL START          UPDATE HEAT LOADS
15: C
16: C
17: 1 CONTINUE
18:   DC(1,4)=2001.
19:   CALL TABLE(1,TIME,DC(8,4))
20:   CALL STEP(2,TIME,DC(22,4))
21: C                                     START TIMING LOOP
22: C                                     ATMOSPHERIC SYSTEM
23: 100 CONTINUE
24:   CALL LOOP(1)
25:   CALL ATNO(1,2)
26:   CALL LION(2,3)
27:   CALL CONMG(3,4,7,8)
28:   CALL HEATER(4,1)
29:   CALL CONVRG(1,5.,20,101,100)
30: C                                     101 CONTINUE
31: C                                     LIQUID COOLANT SYSTEM
32: >

```

ORIGINAL PAGE IS
OF POOR QUALITY

Table 3.1. Sample Model Driver (Main)

```
*****  
FORTRAN ENVIRONMENTAL  
ANALYSIS ROUTINES  
CONTROL DISPLAY  
ENTER RUN MODE (INTEGER)  
NEW START = 0  
RESTART = 1  
ENTER OUTPUT OPTION  
NO RESTART TIME = 0  
WRITE BEGINNING RESTART TAPE = 1  
WRITE ENDING RESTART TAPE = 2  
*****
```

```
*****  
INITIALIZATION CONTROL  
TFAIR  
TEST PLOT OPTION  
ITEM:  
1 COMP. TIME INCREMENT .610 HR  
2 START TIME .000 HR  
3 STOP TIME 5.000 HR  
4 PRINT INCREMENT 1.000 HR  
5 INITIAL SYSTEM TEMP 521.000 DEG  
*****
```

Figure 3.1. Program Initialization and Control

TABLE I

T11BL-E 2		T11BL-E 3	
卷数	页数	卷数	页数
1	1-100	2	1-100
2	1-100	3	1-100

NODE 1 ATMOSPHERIC COMPARTMENT

ITEM	VALUE	UNIT
1 COMPARTMENT VOLUME	1000.000	CUBIC FT
2 LEAKAGE RATE	2.000	LB/HR
3 COOLANT FLOW RATE	501.000	BTU/HR DEG
4 HEAT LOAD	2001.000	BTU/HR
5 SPECIFIC HEAT OF GAS	.210	BTU/LB DEG
6 PARTIAL PRESSURE OF WATER	.130	PSI
7 PARTIAL PRESSURE OF NITROGEN	11.600	PSI
8 PARTIAL PRESSURE OF OXYGEN	3.100	PSI
9 PARTIAL PRESSURE OF CARBON DIOXIDE	.093	PSI
10 TOTAL PRESSURE	14.700	PSI
11 NITROGEN TANK	1	INTEGER
12 OXYGEN TANK	2	INTEGER
13 INLET GAS TEMPERATURE	505.100	DEG

MORSE 100

ITEM	METABOLIC RATE	UNIT
1	.000	BTU/HR
2	.000	BTU/HR
3	.000	BTU/HR
4	6000	BTU/HR
5	.000	BTU/HR
6	.000	BTU/HR

Figure 3.2. Utility Input and Component Data

***** MODE NO. 2 *****

LITHIUM HYDROXIDE

CANISTER

ITEM	VALUE	UNITS
1 CANISTER MASS	1.000	LBS
2 GAS FLOW RATE	501.000	BTU/HR DEG
3 CANISTER PRESSURE CHANGE	.150	PSI
4 SPECIFIC HEAT OF GAS	.210	BTU/LB DEG
5 PARTIAL PRESSURE OF WATER	.130	PSI
6 PARTIAL PRESSURE OF NITROGEN	11.600	PSI
7 OXYGEN	3.100	PSI
8 CARBON	.093	PSI
DIOXIDE		
9 TOTAL PRESSURE	14.700	PSI
10 INITIAL ABSORBED QUANTITY	.000	FRACTION
11 CANISTER SOURCE	3	INTEGER
12 INLET GAS TEMPERATURE	510.165	DEG

***** MODE NO. 3 *****

CONDENSING HEAT EXCHANGER
ATMOSPHERIC SIDE

ITEM	VALUE	UNIT
*** CALLING SIDE ***		
1 CONDENSING HEAT TRANSFER COEF.	2000.000	BTU/HR DEG
2 DRY HEAT TRANSFER COEF.	1000.000	BTU/HR DEG
3 COOLANT FLOW RATE	501.000	BTU/HR DEG
4 FLUID INLET TEMP	512.278	DEG
5 CONDENSATE TANK NO.	4	INTEGER
*** INTERFACE SIDE ***		
6 COOLANT FLOW RATE	1490.484	BTU/HR DEG
7 FLUID INLET TEMP	499.000	DEG
CALLING SIDE NODES	IN 3	OUT 4
INTERFACE SIDE NODES	IN 7	OUT 8

Figure 3.2. Utility Input and Component Data (Cont.)

 ATMOSPHERIC COOLANT
 PROPERTIES FOR
 NODE NUMBER 3
 INFORMATION ONLY
 NOT EDITABLE
 PARTIAL PRESSURE OF WATER .133 PSIA
 PARTIAL PRESSURE OF NITROGEN 11.600 PSIA
 PARTIAL PRESSURE OF OXYGEN 3.100 PSIA
 PARTIAL PRESSURE OF CARBON .090 PSIA
 DIOXIDE
 ATMOSPHERIC PRESSURE 14.700 PSIA

 NODE NUMBER 4

HEATER

ITEM	VALUE	UNIT
1 THERMAL CAPACITY	200.000	BTU/DEG
2 OVERALL HEAT TRANSFER COEF.	1500.000	BTU/HR DEG
3 COOLANT FLOW RATE	501.000	BTU/HR DEG
4 INITIAL COMPONENT TEMPERATURE	521.000	DEG.
5 INITIAL INLET TEMPERATURE	500.830	DEG.
6 HEATER POWER	450.000	BTU/HR DEG.
7 CONTROL NODE NUMBER	2	INTEGER
8 CONTROL TEMPERATURE	532.000	DEG.
9 DEAD BAND	2.000	DEG.
10 INITIAL TEMP AT CONTROL NODE	510.165	DEG
11 ATMOSPHERIC COOLANT	1	INTEGER
	0 = NO	
	1 = YES	
12 THERMAL COUPLING	0	INTEGER
	0 = NO	
	1 = YES	
13 POWER SOURCE	5	INTEGER
INLET NODE NO.		OUTLET NODE NO.
4		1

 ATMOSPHERIC COOLANT
 PROPERTIES FOR
 NODE NUMBER 4
 INFORMATION ONLY
 NOT EDITABLE

PARTIAL PRESSURE OF WATER .126 PSIA
 PARTIAL PRESSURE OF NITROGEN 11.600 PSIA
 PARTIAL PRESSURE OF OXYGEN 3.100 PSIA
 PARTIAL PRESSURE OF CARBON .090 PSIA
 DIOXIDE
 ATMOSPHERIC PRESSURE 14.700 PSIA

Figure 3.2. Utility Input and Component Data (Cont.)

 NODE NUMBER 5
 -EVAPORATOR

ITEM			
1	HEAT OF VAPORIZATION	1060.000	BTU/LB
2	OVERALL HEAT TRANSFER COEF.	3000.000	BTU/HR DEG
3	COOLANT FLOW RATE	1490.484	BTU/HR DEG
4	SATURATION TEMP	495.000	DEG
5	INITIAL FLUID INLET TEMP	521.000	DEG
6	CONSUMABLE 1 = POTABLE WATER 2 = WATER 3 = AMMONIA 4 = OTHER	1	INTEGER .LE. 10
7	TANK ASSIGNMENT	6	INTEGER .LE. 20
	INLET NODE NUMBER	OUTLET NODE NUMBER	
	5	6	

 NODE NUMBER 6
 COLD PLATE

ITEM			
1	THERMAL CAPACITY	150.000	BTU/DEG
2	OVERALL HEAT TRANSFER COEF.	2500.000	BTU/HR DEG
3	COOLANT FLOW RATE	1490.484	BTU/HR DEG
4	INITIAL COMPONENT TEMP.	500.000	DEG
5	INITIAL COOLANT INLET TEMP.	498.474	DEG
6	ATMOSPHERIC COOLANT 0 = NO 1 = YES	0	INTEGER
7	EPS DATA ASSIGNMENT 0 = NO 1 = YES	0	INTEGER
8	THERMAL COUPLING 0 = NO 1 = YES	0	INTEGER
	INLET NODE NUMBER	OUTLET NODE NUMBER	
	6	7	

 NODE NO. 7
 CONDENSING HEAT EXCHANGER
 INTERFACE SIDE

ITEM		VALUE	UNIT
	*** CALLING SIDE ***		
1	COOLANT FLOW RATE	1490.404	BTU/HR DEG
2	FLUID INLET TEMP.	499.715	DEG
3	ATMOSPHERIC COOLANT NO = 0 YES = 1	0	INTEGER
	*** ATMOSPHERIC SIDE ***		
4	COOLANT FLOW RATE	501.000	BTU/HR DEG
5	FLUID INLET TEMP	512.278	DEG
	CALLING SIDE NODES IN 7 OUT 8		
	ATMOSPHERIC SIDE NODES IN 3 OUT 4		

Figure 3.2. Utility Input and Component Data (Cont.)

 NODE NUMBER 8
 COLD PLATE

ITEM	DESCRIPTION	VALUE	UNIT
1	THERMAL CAPACITY	200,000	BTU/DEG
2	OVERALL HEAT TRANSFER COEF.	3000,000	BTU/HR DEG
3	COOLANT FLOW RATE	1490,484	BTU/HR DEG
4	INITIAL COMPONENT TEMP.	521,000	DEG
5	INITIAL COOLANT INLET TEMP.	504,167	DEG
6	ATMOSPHERIC COOLANT	0	INTEGER
	0 = NO 1 = YES		
7	CPS DATA ASSIGNMENT	0	INTEGER
	0 = NO 1 = YES		
8	THERMAL COUPLING	1	INTEGER
	0 = NO 1 = YES		
	INLET NODE NUMBER	OUTLET NODE NUMBER	
	8	9	

 THERMAL COUPLING DATA
 FOR NODE NO. 8
 COUPLED TO 1 NODES
 TYPE OF HEAT TRANSFER AND
 ITEM COUPLING NODE NUMBER CODE VALUE
 1 122 .500
 VALUES ARE:
 BTU/HR FOR SERIES 100 COUPLING
 BTU/HR DEG*** FOR SERIES 200 COUPLING

 NODE NO. 9
 HEAT EXCHANGER

ITEM	DESCRIPTION	VALUE	UNIT
	*** CALLING SIDE ***		
1	HEAT TRANSFER COEF.	3000,000	BTU/HR DEG
2	COOLANT FLOW RATE	1490,484	BTU/HR DEG
3	FLUID INLET TEMPERATURE	519,751	DEG
4	TYPE	0	INTEGER
	COUNTERFLOW = 0 PARALLEL FLOW = 1		
5	ATMOSPHERIC COOLANT	0	INTEGER
	NO = 0 YES = 1		
	*** INTERFACE SIDE ***		
6	HEAT TRANSFER COEF.	300,000	BTU/HR DEG
7	COOLANT FLOW RATE	100,000	BTU/HR DEG
8	FLUID INLET TEMPERATURE	521,000	DEG

Figure 3.2. Utility Input and Component Data (Cont.)

ITEM DESCRIPTION
NODE NUMBER 10
MODULATION VALUE

ITEM	DESCRIPTION	MODIFICATION VALUE	VALUE	UNIT
1*	LEG 1 NODE NUMBER		12	INTEGER
2*	LEG 2 NODE NUMBER		11	INTEGER
3*	CONTROL NODE NUMBER		5	INTEGER
4	CONTROL TEMP		505.000	DEG
5	INITIAL TEMP AT CONTROL NODE		521.000	DEG
6	PROPORTIONAL GAIN		.001	FRACTION/DEG
7	MAX HARD OVER		1.000	FRACTION
8	MIN HARD OVER		.000	FRACTION
9	INITIAL TEMP AT MOD NODE		518.001	DEG
10	COOLANT FLOW AT MOD NODE		1490.494	BTU/HR. DEG.
11	ATMOSPHERIC COOLANT		0	INTEGER
	0 = NO			

© 2012 KUTV-TV. ALL RIGHTS RESERVED. THIS IS A LOCAL PRODUCTION OF KUTV-TV.

卷之三

NODE NO. 12
 BRANCH
 SPLIT INTO 2 LEGS
 ITEM NUMBER FLOW
 1 13
 2 17
 3 ATMOSPHERIC COOLANT IS INTEGER
 0 = NO
 1 = YES
 4 COOLANT FLOW RATE 769.890 BTU/HR DEG
 5 COOLANT INLET TEMP 518.891 DEG

NOTE NUMBER 13
POINT TO POINT

NO = 0
YES = 1
15 SHADOW NODE NUMBER 25 INTEGER
INLET NODE NUMBER OUTLET NODE NUMBER

Figure 3.2. Utility Input and Component Data (Cont.)

3.10

***** SHADOWING DATA *****

FOR NODE NO. 13
SHADOWED BY 25

ITEM	DESCRIPTION	VALUE	UNIT
1	SHADOW NODE DEG	1.000	SD FT
2	ANGLE OF INCIDENCE	.000	RAD
3	DIHEDRAL ANGLE	.000	RAD
4	STAND-OFF VECTOR DATA	.000	INTEGER
5	STAND-OFF DISTANCE	2.000	FT
6	EQUIV. STAND-OFF ANGLE OF INCIDENCE	.000	RAD
7	EQUIV. STAND-OFF DIHEDRAL ANGLE	.000	RAD

***** NODE NUMBER 14 *****

RADIATOR PANEL

ITEM VALUE UNIT

1	THERMAL CAPACITANCE	25.000	BTU/DEG
2	OVERALL HEAT TRANSFER COEF.	1500.000	BTU/HR DEG
3	COOLANT FLOW RATE	384.545	BTU/HR DEG
4	SOLAR ABSORBIVITY	.100	FRACTION
5	EMMISIVITY	.900	FRACTION
6	RIGHT FIN EFFECTIVENESS	.800	FRACTION
7	LEFT FIN EFFECTIVENESS	.800	FRACTION
8	RIGHT FIN AREA	10.000	SD FT
9	LEFT FIN AREA	10.000	SD FT
10	ANGLE OF INCIDENCE	.000	RAD
11	DIHEDRAL ANGLE	.000	RAD
12	INITIAL FIN TEMP	521.000	DEG
13	INITIAL COOLANT INLET TEMP.	520.957	DEG
14	NODE COUPLING	0	INTEGER

NO = 0

YES = 1

15 SHADOW NODE NUMBER OUTLET NODE NUMBER 0 INTEGER

INLET NODE NUMBER 14 OUTLET NODE NUMBER 15

***** NODE NUMBER 15 *****

RADIATOR PANEL

ITEM VALUE UNIT

1	THERMAL CAPACITANCE	25.000	BTU/DEG
2	OVERALL HEAT TRANSFER COEF.	1500.000	BTU/HR DEG
3	COOLANT FLOW RATE	384.545	BTU/HR DEG
4	SOLAR ABSORBIVITY	.100	FRACTION
5	EMMISIVITY	.900	FRACTION
6	RIGHT FIN EFFECTIVENESS	.800	FRACTION
7	LEFT FIN EFFECTIVENESS	.800	FRACTION
8	RIGHT FIN AREA	10.000	SD FT
9	LEFT FIN AREA	10.000	SD FT
10	ANGLE OF INCIDENCE	.000	RAD
11	DIHEDRAL ANGLE	.000	RAD
12	INITIAL FIN TEMP	521.000	DEG
13	INITIAL COOLANT INLET TEMP.	520.999	DEG
14	NODE COUPLING	0	INTEGER

NO = 0

YES = 1

15 SHADOW NODE NUMBER OUTLET NODE NUMBER 0 INTEGER

INLET NODE NUMBER 15 OUTLET NODE NUMBER 16

Figure 3.2. Utility Input and Component Data (Cont.)

**NODE NUMBER 17
RADIATOR PANEL**

ITEM		VALUE	UNIT
1	THERMAL CAPACITANCE	25.000	BTU/DEG
2	OVERALL HEAT TRANSFER COEF.	15.000	BTU/HR DEG
3	COOLANT FLOW RATE	380.000	BTU/HR DEG
4	SOLAR ABSORBIVITY	.100	FRACTION
5	EMMISIVITY	.900	FRACTION
6	RIGHT FIN EFFECTIVENESS	.900	FRACTION
7	LEFT FIN EFFECTIVENESS	.900	FRACTION
8	RIGHT FIN AREA	10.000	SQ FT
9	LEFT FIN AREA	10.000	SQ FT
10	ANGLE OF INCIDENCE	.000	RAD
11	DIHEDERAL ANGLE	.000	RAD
12	INITIAL FIN TEMP	521.000	DEG
13	INITIAL COOLANT INLET TEMP.	518.891	DEG
14	NODE COUPLING	0	INTERIOR

***** MODE NUMBER 19 *****
RADIATOR PANEL

ITEM	VALUE	UNIT
1 THERMAL CAPACITANCE	26.0000	BTU/DEG
2 OVERALL HEAT TRANSFER COEF.	1500.0000	BTU/HR DEG
3 COOLANT FLOW RATE	384.045	BTU/HR DEG
4 SOLAR ABSORBIVITY	.1000	FRACTION
5 EMMISIVITY	.9000	FRACTION
6 RIGHT FIN EFFECTIVENESS	.8000	FRACTION
7 LEFT FIN EFFECTIVENESS	.8000	FRACTION
8 RIGHT FIN AREA	10.0000	SQ FT
9 LEFT FIN AREA	10.0000	SQ FT
10 ANGLE OF INCIDENCE	.0000	RAD
11 DIHEDERAL ANGLE	.0000	RAD
12 INITIAL FIN TEMP	521.0000	DEG
13 INITIAL COOLANT INLET TEMP.	520.957	DEG
14 MODE COUPLING	0.0000	INTEGER

NO = 0
YES = 1
15 SHADOW NODE NUMBER 0 INTEGER
INLET NODE NUMBER 18 OUTLET NODE NUMBER 18

ORIGINAL PAGE IS
OF POOR QUALITY

Figure 3.2. Utility Input and Component Data (Cont.)

ITEM		VALUE	UNIT
1	THERMAL CAPACITANCE	.250	BTU/DEG
2	OVERALL HEAT TRANSFER COEF.	1500.000	BTU/HR DEG
3	COOLANT FLOW RATE	384.545	BTU/HR DEG
4	SOLAR ABSORBIVITY	.100	FRACTION
5	EMMISIVITY	.000	FRACTION
6	RIGHT FIN EFFECTIVENESS	.000	FRACTION
7	LEFT FIN EFFECTIVENESS	.000	FRACTION
8	RIGHT FIN AREA	10.000	SQ FT
9	LEFT FIN AREA	10.000	SQ FT
10	ANGLE OF INCIDENCE	.000	RAD
11	DIHEDRAL ANGLE	.000	RAD
12	INITIAL FIN TEMP	521.000	DEG
13	INITIAL COOLANT INLET TEMP.	520.000	DEG
14	NODE COUPLING	0	INTEGER

```

***** NODE NO. 5 *****
      JUNCTION
      MIXING 3 NODES
      MIXED NODE
ITEM      NUMBER      UNIT
1          11      INTEGER
2          16      INTEGER
3          20      INTEGER
4      ATMOSPHERIC COOLANT      0      INTEGER
      0 = NO
      1 = YES

```

***** MODE NO. 21 *****

HEAT EXCHANGER

ITEM	VALUE	UNIT
*** CALLING SIDE ***		
1 HEAT TRANSFER COEF.	300.000	BTU/HR DEG
2 COOLANT FLOW RATE	100.000	BTU/HR DEG
3 FLUID INLET TEMPERATURE	521.000	DEG
4 TYPE	0	INTEGER
COUNTERFLOW = 0 PARALLEL FLOW = 1		
5 ATMOSPHERIC COOLANT	0	INTEGER
NO = 0 YES = 1		
*** INTERFACE SIDE ***		
6 HEAT TRANSFER COEF.	3000.000	BTU/HR DEG
7 COOLANT FLOW RATE	1490.484	BTU/HR DEG
8 FLUID INLET TEMPERATURE	518.751	DEG

Figure 3.2. Utility Input and Component Data (Cont.)

NAME: PHENIX P-24
 COOLD PLATE

ITEM	DESCRIPTION	VALUE	TYPE
1	THERMAL CAPACITY COUPLED	150,000	BTU/DEG
2	OVERALL HEAT TRANSFER	300,000	BTU/HR PER
3	COOLANT FLOW RATE	100,000	BTU/HR PER
4	INITIAL COUPLED TEMP.	521.098	DEG
5	INITIAL COUPLING INLET TEMP.	518.916	DEG
6	ATMOSPHERIC COUPLING 0 = NO 1 = YES	0	INTEGER
7	EPS DATA ASSOCIATION 0 = NO 1 = YES	0	INTEGER
8	THERMAL COUPLING 0 = NO 1 = YES	1	INTEGER
	INLET NODE NUMBER	22	OUTLET NODE NUMBER
		24	

THERMAL COUPLING DATA
 FOR MODE NO. 22
 COUPLED TO 1 NODES
 TYPE OF HEAT TRANSFER AND
 ITEM COUPLING MODE NUMBER CODE VALUE
 1 100 .500
 VALUES ARE:
 BTU/HR FOR SERIES 100 COUPLING
 BTU/HR DEG**4 FOR SERIES 200 COUPLING

Figure 3.2. Utility Input and Component Data (Concl.).

BOUNDARY CONDITIONS

ITEM	SCALAR NO.	TYPE OF CONSTRAINT	UNIT	LIMIT
1	1	POSITION	LBS	1000, 100
2	2	VELOCITY	LBS	1000
3	3	LIMITATION OF POSITION	LBS	1000
4	4	ROTATION	LBS	1000
5	5	EULER ANGLE POSITION	DEGREES	1000
6	6	ROTATION RATE	LBS	1000

ORBITAL HEATING
CONTROL PARAMETERS

ITEM	VALUE	UNIT
1	CONTROL INDICATOR	2
1	= READ TYPE	INTEGER
2	= CALCULATE TRAJECTORY	
2	UNIT CONVERSION FOR TYPE	1
1	= EARTH RADII (KM.)	KILOMETERS
2	= KILOMETERS (KM.)	

ORBITAL PARAMETERS

ITEM	VALUE	UNIT
1	COMP FREQUENCY	1
2	ATTITUDE HOLD KEY	1
1	= INERTIAL	DEGREES
2	= LOCAL VERTICAL	DEGREES
3	SUN COORDINATE X	DEGREES
4	Y	DEGREES
5	Z	DEGREES
6	EULER ANGLE ABOUT Z	DEGREES
7	Y	DEGREES
8	X	DEGREES
9	ORBIT SEMIMAJOR AXIS	1.029
10	ORBIT ECCENTRICITY	.000
11	ORBIT INCLINATION	.000
12	RIGHT ASCENSION	.000
13	ARGUMENT OF PERIGEE	.000
14	TIME OF PERIGEE PASSAGE	.000

Figure 3.3. Boundary Condition and Print Control

ORIGINAL PAGE
ONE PAGE

 PRINT OPTION
 DISPLAY

ITEM	OPTION	FLAG	STATUS
1	SELECT NODES	0	
2	PLOTS	1	
3	SCHEMATIC	0	

 FUNCTION MENU

TYPE	DESCRIPTION
1	FLUID TEMP (DEG/R)
2	COMP TEMP (DEG/R)
3	FLOW RATE (LPS/HR)
4	HEAT (BTU/HR)
5	ACC CONSUM (LBS)
6	HEATER PWR (BTU/HR)
7	PRT PRES H2O (PSI)
8	PRT PRES N2 (PSI)
9	PRT PRES O2 (PSI)
10	PRT PRES CO2 (MMHG)
11	HTR ENERGY (BTU)

 PLOT CONTROL

ITEM	NODE NO	TYPE	MAX	MIN
1	2	FLUID TEMP	.000	.000
2	12	FLOW RATE	.000	.000
3	22	HEAT	.000	.000

Figure 3.3. Boundary Condition and Print Control (Concl.)

TFEAR
TEST PLOT OPTION

FLUID PROPERTIES

TIME = .000

NODE NO			COMP TEMP DEG	FLUID TEMP DEG	WCP BTU/HR DEG	HEAT LOAD BTU/HR
1	CABIN IN	/HEATER OUT		519.990	501.000	2001.000
2	CABIN OUT	/LIQH IN		510.165	501.000	
3	LIQH OUT	/COND. IN		512.278	501.000	
4	COND. OUT	/HEATER IN	521.000	500.830	501.000	450.000
5	EVAP IN	/JUNCTION	495.000	519.979	1490.484	
6	EVAP OUT	/PLATE IN	500.000	498.474	1490.484	
7	PLATE OUT	/INTF IN		499.715	1490.484	6636.095
8	INTF OUT	/PLATE IN	521.000	504.167	1490.484	
9	PLATE OUT	/EXCH IN		518.751	1490.484	
10	EXCH OUT	/DIVERT		518.891	1490.484	
12	LEG	/BRANCH		518.891	769.090	
11	LEG	/MIXER		518.891	721.394	
13	LEG	/RADIN	521.000	518.891	384.545	
17	LEG	/RADIN	521.000	518.891	384.545	
14	RADOUT	/RADIN	521.000	520.957	384.545	
15	RADOUT	/RADIN	521.000	520.999	384.545	
16	RADOUT	/MIXER		521.000	384.545	
18	RADOUT	/RADIN	521.000	520.957	384.545	
19	RADOUT	/RADIN	521.000	520.999	384.545	
20	RADOUT	/MIXER		521.000	384.545	
21	EXCH IN	/PLATE OUT		520.895	100.000	
22	EXCH OUT	/PLATE IN	521.000	518.916	100.000	200.000

GAS PROPERTIES

TIME = .000

NODE NO	SPECIFIC HEAT	WATER PSI	NITROGEN PSI	OXYGEN PSI	CO2 PSI	TOTAL PSI
1	.210	.126	11.600	3.100	.090	14.700
2	.210	.130	11.600	3.100	.093	14.700
3	.210	.133	11.600	3.100	.090	14.700
4	.210	.126	11.600	3.100	.090	14.700

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

**CONSUMABLES
USAGE**

TIME = .000

SOURCE	INITIAL AVAILABLE	QUANTITY USED	QUANTITY REMAINING
1	.000	.000	.000
2	.000	.000	.000
3	.000	.000	.000
4	.000	.000	.000
5	.000	.000	.000
6	.000	.000	.000

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

Figure 3.4. Performance Data Output

TFEAR
TEST PLOT OPTION

FLUID PROPERTIES

TIME = 1.000

NODE NO		COMP TEMP DEG	FLUID TEMP DEG	WCP BTU/HR DEG	HEAT LOAD BTU/HR
1	CABIN IN	/HEATER OUT	500.405	501.000	2001.000
2	CABIN OUT	/LIQH IN	505.543	501.000	
3	LIQH OUT	/COND. IN	506.041	501.000	
4	COND. OUT	/HEATER IN	500.574	496.495	501.000 450.000
5	EVAP IN	/JUNCTION	495.000	496.417	1490.484
6	EVAP OUT	/PLATE IN	495.220	495.187	1490.484
7	PLATE OUT	/INTF IN		495.215	1490.484 4981.428
8	INTF OUT	/PLATE IN	499.234	499.557	1490.484 100.000
9	PLATE OUT	/EXCH IN		499.161	1490.484
10	EXCH OUT	/DIVERT		500.071	1490.484
11	LEG	/BRANCH		500.071	318.282
12	LEG	/MIXER		500.071	1172.202
13	LEG	/RADIN	493.701	500.071	159.141
17	LEG	/RADIN	493.701	500.071	159.141
14	RADOUT	/RADIN	488.900	493.798	159.141
15	RADOUT	/RADIN	485.021	489.034	159.141
16	RADOUT	/MIXER		485.175	159.141
18	RADOUT	/RADIN	488.900	493.798	159.141
19	RADOUT	/RADIN	480.461	489.034	159.141
20	RADOUT	/MIXER		480.741	159.141
21	EXCH IN	/PLATE OUT		513.737	100.000
22	EXCH OUT	/PLATE IN	514.404	500.275	100.000 200.000

GAS PROPERTIES

TIME = 1.000

NODE NO	SPECIFIC HEAT	WATER PSI	NITROGEN PSI	OXYGEN PSI	CO2 PSI	TOTAL PSI
1	.210	.106	11.600	3.100	.077	14.700
2	.210	.107	11.600	3.100	.077	14.700
3	.210	.108	11.600	3.100	.077	14.700
4	.210	.106	11.600	3.100	.077	14.700

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

CONSUMABLES
USAGE

TIME =

1.000

SOURCE	INITIAL AVAILABLE	QUANTITY USED	QUANTITY REMAINING
1	.000	1.543	-1.532
2	.000	.565	-1.565
3	.000	.000	0.000
4	.000	.163	-1.163
5	.000	131.965	-131.965
6	.000	8.428	-8.428

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

Figure 3.4. Performance Data Output (Cont.)

TPIER
TEST PLOT OPTION

FLUID PROPERTIES

TIME = 2.000

NODE NO		COMP TEMP DEG	FLUID TEMP DEG	WCP BTU/HR DEG	HEAT LOAD BTU/HR
1	CABIN IN	/HEATER OUT	497.571	501.000	2000.000
2	CABIN OUT	/LIQ IN	502.644	501.000	
3	LIQ OUT	/COND. IN	503.005	501.000	
4	COND. OUT	/HEATER IN	497.632	496.320	450.000
5	EVAP IN	/JUNCTION	495.000	495.059	1490.402
6	EVAP OUT	/PLATE IN	495.424	495.416	1490.402
7	PLATE OUT	/INTF IN	495.424	495.424	3497.986
8	INTF OUT	/PLATE IN	497.990	497.768	1490.402
9	PLATE OUT	/EXCH IN	497.990	497.962	200.000
10	EXCH OUT	/DIVERT	498.574	498.574	400.000
11	LEG	/BRANCH	498.574	498.574	1403.030
12	LEG	/MIXER	498.574	498.574	3.726
13	LEG	/RADIN	453.141	453.141	3.726
14	LEG	/RADIN	453.141	453.141	3.726
15	RADOUT	/RADIN	446.923	446.923	3.726
16	RADOUT	/RADIN	442.470	446.216	3.726
17	RADOUT	/MIXER	442.470	442.659	3.726
18	RADOUT	/RADIN	446.923	453.318	3.726
19	RADOUT	/RADIN	348.510	446.216	3.726
20	RADOUT	/MIXER	348.510	348.601	3.726
21	EXCH IN	/PLATE OUT	508.209	498.691	100.000
22	EXCH OUT	/PLATE IN	508.209	498.691	100.000

GAS PROPERTIES

TIME = 2.000

NODE NO	SPECIFIC HEAT	WATER PSI	NITROGEN PSI	OXYGEN PSI	CO2 PSI	TOTAL PSI
1	.210	.105	11.600	3.100	.070	14.700
2	.210	.106	11.600	3.100	.071	14.700
3	.210	.106	11.600	3.100	.070	14.700
4	.210	.105	11.600	3.100	.070	14.700

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

CONSUMABLES

USABLE

TIME =

2.000

SOURCE	INITIAL AVAILABLE	QUANTITY USED	QUANTITY REMAINING
1	.000	3.065	-3.065
2	.000	1.131	-1.131
3	.000	.000	.000
4	.000	-.383	.383
5	.000	263.929	-263.929
6	.000	12.292	-12.292

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

Figure 3.4. Performance Data Output (Cont.)

ORIGINAL PAGE IS
OF POOR QUALITY

TFEAR

TEST PLOT OPTION

FLUID PROPERTIES

TIME = 3.000

NODE NO			COMP TEMP DEG	FLUID TEMP DEG	WCP BTU/HR DEG	HEAT LOAD BTU/HR
1	CABIN IN	/HEATER OUT		497.165	501.000	2001.000
2	CABIN OUT	/LIGH IN		502.231	501.000	
3	LIGH OUT	/COND. IN		502.510	501.000	
4	COND. OUT	/HEATFR IN	497.215	496.202	501.000	450.000
5	EVAP IN	/JUNCTION	495.000	497.580	1490.482	
6	EVAP OUT	/PLATE IN	495.350	495.345	1490.482	
7	PLATE OUT	/INTF IN		495.349	1490.482	3305.164
8	INTF OUT	/PLATE IN	497.807	497.566	1490.482	300.000
9	PLATE OUT	/EXCH IN		497.775	1490.482	
10	EXCH OUT	/DIVERT		498.214	1490.482	
12	LEG	/BRANCH		498.214		.452
11	LEG	/MIXER		498.214	1483.029	
13	LEG	/RADIN	425.292	498.214		.726
17	LEG	/RADIN	425.292	498.214		.726
14	RADOUT	/RADIN	413.539	425.401		.726
15	RADOUT	/RADIN	410.168	413.677		.726
16	RADOUT	/MIXER		410.307		.726
18	RADOUT	/RADIN	413.540	425.401		.726
19	RADOUT	/RADIN	332.595	413.677		.726
20	RADOUT	/MIXER		332.665		.726
21	EXCH IN	/PLATE OUT		504.822	100.000	
22	EXCH OUT	/PLATE IN	505.155	498.295	100.000	400.000

GAS PROPERTIES

TIME = 3.000

NODE NO	SPECIFIC HEAT	WATER PSI	NITROGEN PSI	OXYGEN PSI	CO2 PSI	TOTAL PSI
1	.210	.105	11.600	3.100	.068	14.700
2	.210	.105	11.600	3.100	.069	14.700
3	.210	.106	11.600	3.100	.068	14.700
4	.210	.105	11.600	3.100	.068	14.700

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

CONSUMABLES
USAGE

TIME = 3.000

SOURCE	INITIAL AVAILABLE	QUANTITY USED	QUANTITY REMAINING
1	.000	4.597	-4.597
2	.000	1.696	-1.696
3	.000	.000	.000
4	.000	.486	.486
5	.000	395.894	-395.894
6	.000	15.672	-15.672

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

Figure 3.4. Performance Data Output (Cont.)

THESE
TEST PLOT OPTION

FLUID PROPERTIES

TIME = 4.000

NODE

NO

	COMP	FLUID	WCF	HEAT
	TEMP	TEMP	BTU/LB	LOAD
	DEG	DEG	BTU	BTU/LB
1	COLD IN	WATER OUT	497.073	601.000
2	COLD OUT	PLATE IN	502.134	601.000
3	LIQUID OUT	COOLER IN	502.313	501.000
4	COOLER OUT	WATER IN	497.124	497.000
5	EVAP IN	EVAP OUT	495.000	495.000
6	EVAP OUT	PLATE IN	495.373	495.000
7	PLATE OUT	LIQUID IN	495.323	495.000
8	LIQUID OUT	PLATE IN	497.000	497.000
9	PLATE OUT	COOLER IN	497.706	497.000
10	COOLER OUT	PLATE IN	498.129	498.000
11	LIQ	PLATE IN	498.129	498.000
12	LIQ	PLATE IN	498.129	498.000
13	LIQ	PLATE IN	498.129	498.000
14	RHODUT	PLATE IN	389.067	389.000
15	RHODUT	PLATE IN	389.774	389.000
16	RHODUT	PLATE IN	389.881	389.000
17	RHODUT	PLATE IN	389.967	389.000
18	RHODUT	PLATE IN	389.967	389.000
19	RHODUT	PLATE IN	389.967	389.000
20	RHODUT	PLATE IN	389.967	389.000
21	EXCH IN	PLATE OUT	503.186	503.000
22	EXCH OUT	PLATE IN	503.186	503.000

GAS PROPERTIES

TIME = 4.000

NODE

NO

	SPECIFIC	METER	MITROGEN	OXYGEN	CO2	TOTAL
	HEAT	PSI	PSI	PSI	PSI	PSI
1	.210	.105	11.600	3.100	.000	11.700
2	.210	.105	11.600	3.100	.000	11.700
3	.210	.105	11.600	3.100	.000	11.700
4	.210	.105	11.600	3.100	.000	11.700

PULSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

CONSUMABLES
USAGE

TIME = 4.000

SOURCE

INITIAL

AVAILABLE

QUANTITY

USED

PHABILITY

REMAINING

1	.000	6.129	-6.129
2	.000	2.261	-2.261
3	.000	.000	.000
4	.000	-577	-577
5	.000	527.853	-527.853
6	.000	19.693	-19.693

PULSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

Figure 3.4. Performance Data Output (Cont.)

TFEAR
TEST PLOT OPTION

FLUID PROPERTIES

TIME = 5.000

NODE NO			COMP	FLUID	WCP	HEAT
			TEMP	TEMP	BTU/HR	LOAD
			DEG	DEG	DEG	BTU/HR
1	CABIN IN	/HEATER OUT		497.041	501.000	2001.000
2	CABIN OUT	/LIQH IN		502.106	501.000	
3	LIQH OUT	/COND. IN		502.291	501.000	
4	COND. OUT	/HEATER IN	497.089	496.131	501.000	450.000
5	EVAP IN	/JUNCTION	495.000	497.314	1490.482	
6	EVAP OUT	/PLATE IN	495.310	495.309	1490.482	
7	PLATE OUT	/INTF IN		495.310	1490.482	
8	INTF OUT	/PLATE IN	497.844	497.460	1490.482	3203.921
9	PLATE OUT	/EXCH IN		497.793	1490.482	500.000
10	EXCH OUT	/DIVERT		498.111	1490.482	
12	LEG	/BRANCH		498.111	7.452	
11	LEG	/MIXER		498.111	1483.029	
13	LEG	/RADIN	396.171	498.111	3.726	
17	LEG	/RADIN	396.172	498.111	3.726	
14	RADOUT	/RADIN	372.059	396.218	3.726	
15	RADOUT	/RADIN	366.563	372.136	3.726	
16	RADOUT	/MIXER		366.649	3.726	
18	RADOUT	/RADIN	372.059	396.219	3.726	
19	RADOUT	/RADIN	310.490	372.174	3.726	
20	RADOUT	/MIXER		310.51	3.726	
21	EXCH IN	/PLATE OUT		502.911	100.000	
22	EXCH OUT	/PLATE IN	503.156	498.170	100.000	400.000

GAS PROPERTIES

TIME = 5.000

NODE NO	SPECIFIC HEAT	WATER	NITROGEN	OXYGEN	CO2	TOTAL
		PSI	PSI	PSI	PSI	PSI
1	.210	.104	11.600	3.100	.071	14.700
2	.210	.105	11.600	3.100	.072	14.700
3	.210	.105	11.600	3.100	.071	14.700
4	.210	.104	11.600	3.100	.071	14.700

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

CONSUMABLES
USAGE

TIME = 5.000

SOURCE	INITIAL	QUANTITY	QUANTITY
	AVAILABLE	USED	REMAINING
1	.000	7.661	-7.661
2	.000	2.827	-2.827
3	.000	.000	.000
4	.000	-.661	.661
5	.000	659.823	-659.823
6	.000	21.559	-21.559

PAUSE FOR HARDCOPY. ENTER ANY CHARACTER TO CONTINUE

Figure 3.4. Performance Data Output (Concl.)

TEST PLOT OPTION

Figure 3.5. Plot Data Output

TEST PLOT OPTION

Figure 3.5. Plot Data Output (Cont.)

GENERATE PLOTS FOR CONSUMABLES ROUTINES

ORIGINAL PAGE IS
POOR QUALITY

Figure 3.5. Plot Data Output (Concl.)

APPENDIX A
COMPUTER CONTROL INFORMATION

MAP USED TO EXECUTE PRINTED PROGRAM

1:SEG NAME
2:IN FM2-T61867*FEAR,NAME20
3:SEG F1*,CMODE1
4:IN FM2-T61867*FEAR,START
5:SEG F2*,CMODE1
6:IN FM2-T61867*FEAR,LOOP
7:SEG C*,CMODE1
8:IN FM2-T61867*FEAR,SPLIT,FM2-T61867*FEAR,PL0T
9:SEG D*,CMODE1
10:IN FM2-T61867*FEAR,M1N,FM2-T61867*FEAR,MOD, FM2-T61867*FEAR,EVND
11:SEG E*,CMODE1
12:IN FM2-T61867*FEAR,CONVER
13:SEG F*,CMODE1
14:IN FM2-T61867*FEAR,PRINT
15:SEG G*,CMODE1
16:IN FM2-T61867*FEAR, TABLE/NEW, FM2-T61867*FEAR,STEP/NEW
17:SEG F1*,F
18:IN FM2-T61867*FEAR,BTRNK,FM2-T61867*FEAR,TBLJ,FM2-T61867*FEAR,PT
TAPE
19:SEG F2*,F3
20:IN BPL0UT
21:SEG F3*,F3
22:IN FA2-T61867*FEAR,SCHEM/PL0T
23:SEG F31*,F33
24:IN BLEFT,CHRT06
25:SEG F32*,F33
26:IN DATA,CH1B,CH1C
27:SEG F33*,F33
28:IN BARS
29:SEG F4*,F4
30:IN FM2-T61867*FEAR,BASPR,FM2-T61867*FEAR,COMP,FM2-T61867*FEAR,ST
EPS/NEW
31:SEG F5*,F5
32:IN FM2-T61867*FEAR,PL0T
33:END T054#0227
34:LIB FM2-T61867*FEAR,
35:LIB MODL0CH1B,
36:LIB DISPLAYLIB,
37:LIB FG64MPSPLT.
EOF:37 SCRM:36
0:>

Figure A-1. MAP

ENTER USERID/PASSWORD:
 >
 *DESTROY USERID/PASSWORD ENTRY
 *UNIVAC 1100 OPERATING SYSTEM VER. 2.01B1000-61C0100
 >WASH 660KPC, FM2>9212, TRN-T63091
 DPTL: 061700 TIME: 145306
 >WASH, B FM2-T61867>FEBR/2/0061.
 READY
 >WUSE BLT., FM2-T61867>FEBR/2/0061. PROGRAM FILE
 READY
 >WASH, B DATA.
 FACILITY REJECTED 40001000000
 >WASH, CP DATA.
 READY
 >W3SCCALLUP Tapes T63091660KPC., M11037 RESTART TAPE
 REQUEST HAS BEEN ACCEPTED
 >WFREE DATA.
 READY
 >WASH, B DATA.
 READY
 >WUSE 1., DATA. FORTRAN UNIT 1
 READY
 >WASH, CP PLOTS, F4000>1000 INTERMEDIATE PLOT FILE
 READY
 >WREC PLOTS.
 READY
 >WASH, R PLOTS.
 READY
 >WUSE 4., PLOTS. FORTRAN UNIT 4
 READY
 >WASH, LJ TAPE, 8C, M11037
 WAITING ON FACILITY
 READY
 >WREINTD TAPE.
 FLIPPER 27820 E32 SLV3R1 06217200 15:05:15
 >WCOPY TAPE., DATA.
 3 BLOCKS COPIED.
 EOF ENCOUNTERED ON INPUT TAPE
 >WREINTD TAPE.
 >WREC TAPE. DO NOT TIE UP TAPE DRIVES LONGER THAN NECESSARY
 READY
 >XZOT ALT.TP&F6
 GCS-SIEN-0M TO F6 CONFIRMED

ORIGINAL PAGE IS
OF POOR QUALITY

Figure A-2. Computer Control