jméno a příjmení	login

IMA1, zadání L

1	9	3	1 1	5	6	Σ	
1	4	9	'	9	0		

Písemku vypracujte na vlastní papíry. U každého příkladu přehledně napište postup řešení a jasně označte výsledek. Každý příklad je za 15 bodů. V případě, že 3 nebo více příkladů bude hodnoceno 0 body, bude celá písemka hodnocena 0 body bez ohledu na ostatní příklady.

Povolená pomůcka je jeden list papíru formátu A4 popsaný jakkoli a čímkoli (tento list neodevzdávejte). Jiné pomůcky (např. kalkulačka) nejsou povoleny.

- 1. Určete definiční obor funkce $f(x) = \sqrt{x+2-\sqrt{x^2-1}}\,$ a najděte všechna $x \in \mathbb{R}$, pro která je f(x) > 0.
- **2.** Nakreslete grafy funkcí f a g, pro které platí:
 - a) $D(f) = \mathbb{R} \setminus \{0\}$, f je sudá, asymptota v ∞ má předpis x 3y = 0, $\lim_{x \to 0^+} f(x) = \infty$, f(1) = 1, f'(1) = 0, f(2) = -1, $f'_{-}(2) = -\infty$, $f'_{+}(2) = 2$.
 - **b)** $\forall K > 0 : \exists \delta > 0 : \forall x \in \mathbb{R} : 0 < |x 3| < \delta \implies g(x) > K.$
- 3. Najděte největší a nejmenší hodnotu funkce $f(x) = x\sqrt{14-x^2}$ na intervalu $\langle -3, 1 \rangle$.
- **4.** Zderivujte následující funkce: $f(x) = \frac{x}{2} (2x 3\cos 5x)^3$, $g(x) = \ln \frac{x}{\sqrt{1 x^2}}$.

Derivaci f'(x) nemusíte nijak upravovat, derivaci g'(x) upravte na podíl dvou polynomů.

- **5.** Určete obsah plochy $\left\{ [x,y] \in \mathbb{R}^2 \colon \frac{1}{x} 1 \le y \le 3 \land 0 < x \le 3 \right\}.$
- **6. a)** Načrtněte funkci, pro kterou neplatí následující tvrzení: Jestliže funkce f nabývá na intervalu $\langle a,b\rangle$ maximum v bodě c, potom f'(c)=0, nebo f'(c) neexistuje.
 - b) Napište, jakou vlastnost funkce g popisuje následující tvrzení, a tvrzení znegujte: $\forall x, y \in D(g) \colon g(x) = g(y) \Rightarrow x = y$.
 - c) Rozhodněte o pravdivosti následujícího tvrzení (v případě nepravdivého tvrzení udejte protipříklad, v případě pravdivého tvrzení uveďte stručné zdůvodnění):

Jestliže je funkce f spojitá na intervalu $\langle a,b\rangle$ a platí $f(a)\cdot f(b)>0$, potom na intervalu $\langle a,b\rangle$ neexistuje řešení rovnice f(x)=0.