CAGER R PACKAGE

Exploring all its (current) functions

30th August 2017 Leonie Roos <u>I.roos@lms.mrc.ac.uk</u>

OVERVIEW

the next ~30 minutes

CAGEr Analysis

- Import F6 style format and creating the CAGEr object
- Normalisation & QC
- Tag clusters & consensus clusters
- Promoter shifting
- Create tracks
- Create dinucleotide heatmaps

CAGER WORKFLOW

Haberle V, _et al_. CAGEr: precise TSS data retrieval and high-resolution promoterome mining for integrative analyses. Nucl Acids Res 2015;43(8):e51.

STARTING POINT

I prepared some code

this is found at: https://github.com/leonieroos/CAGEr-F6-workshop

Download the whole dir and save

open the directory and go to tutorial and open the .rmd file into R studio

DATA FORMATS

CAGEr accepts multiple formats

I CAGE tags mapped to genome

BAM & BED files

II CTSS files

Tab separated files with genomic coordinates and number of tags for each CTSS

III CAGE datasets from R packages

FANTOM5/4/3

From all these, we can create a CAGEset object

This is the basis from which the CAGEr functions all work

DATA FORMATS

CAGEr accepts multiple formats

I CAGE tags mapped to genome

BAM & BED files

II CTSS files

Tab separated files with genomic coordinates and number of tags for each CTSS

III CAGE datasets from R packages

• FANTOM5/4/3

From all these, we can create a CAGEset object

This is the basis from which the CAGEr functions all work

CREATING A CAGESET

Let's start!

Fantom6 Data is in BED Format.. but not one row per tag

Easily solved by selecting the columns of:

chromosome, end, strand, and column number 5 (amount of tags per position)

CTSS file

chrl	101	+	5
chrl	104	+	2

CREATING A CAGESET

Let's start!

```
### load the CAGEr package
library(CAGEr)
### BSgenome with the right version
library(BSgenome.Hsapiens.UCSC.hg38)

### define where the ctss.bed files provided are located for CAGEr
# where the files can be found
pathsToInputFiles <- list.files("../data/ctss_tables", full.names = TRUE)

### creating a CAGEset object
myCAGEset <- new("CAGEset", genomeName = "BSgenome.Hsapiens.UCSC.hg19", inputFiles = path
sToInputFiles, inputFilesType = "ctss", sampleLabels = paste("skin_",1:4, sep = ""))

# you can check the object:
myCAGEset</pre>
```

```
### reading in the data
getCTSS(myCAGEset)
# get a dataframe of ctss counts:
ctss <- CTSStagCount(myCAGEset)
head(ctss)</pre>
```

line 97

CORRELATION BETWEEN SAMPLES

```
### creating a correlation plot and table of the samples
corr.m <- plotCorrelation(myCAGEset, samples = "all", method = "pearson")</pre>
```


NORMALISATION

Library size differ between samples

To make samples comparable, we will need to normalise our data.

- Tags per million normalization
- power-law based normalization

Many CAGE-seq data follow a power-law distribution.

NORMALISATION

On a log-log scale this reverse cumulative distribution has a monotonically decreasing linear function

$$y = -1 * alpha * x + beta$$

what we need:

- the slope
- the number of tags

Balwierz PJ, Carninci P, Daub CO, et al. Methods for analyzing deep sequencing expression data: constructing the human and mouse promoterome with deepCAGE data. Genome Biology. 2009;10(7):R79.

UPTO NOW

- Imported F6 data into a CAGEset object
- Correlation of CTSS per samples
- Normalised data

TAG CLUSTERS

CAGE TSS (CTSS)

CAGE tags with an identical CAGE-tag starting site.

Tag cluster (TC)

CTSSs in close proximity (same strand)

line 126

Carninci P, _et al_. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 2006;38, 626-635.

TAG CLUSTERS

Tag clusters (TC)

- Max distance between CTSSs is 20 bp
- Single CTSS are allowed if > 5 normalised signal

TAG CLUSTER-WIDTH

The width of each tag cluster per sample.

To have a width more robust to low tag count outliers:

• Width based on a set of quantiles of the cumulative distribution of tag signal per TC.

Generally, the width of a TC is set between the quantiles 0.1 and 0.9 to capture 80% of CTSS within the TC.

These are the most time consuming steps!

CONSENSUS CLUSTERS

- In many cases TCs do not coincide perfectly
- Maybe two TCs in one sample and one large in other

what if you want to compare TC clusters across samples?

CONSENSUS CLUSTERS

PROMOTER SHIFTING

This method has also been implemented in CAGEr

Haberle V, _et al_.Two independent transcription initiation codes overlap on vertebrate core promoters. Nat 2014;507(7492):381-385.

DOMINANTTSS

cluster	chr	start	end	strand	nr_ctss	dominant_ct	tpm	tpm.domina nt_ctss	q_0.1	q_0.9	interquantile _width
1	chr3	3126907	3127018	+	46	3126949	233.2163609	63.32701553	3126937	3126963	27

PROMOTER SHIFTING

The method from haberle et al (2014) has also been implemented in CAGEr

- Shifting is detected using cumulative distribution per sample CAGE signal
- A shifting score is determined by the difference in cumulative distributions
- A Kolmogorov-Smirnov is performed to give a general assessment of differential TSS usage

