10) Beta Hedging

Vitor Kamada

December 2018

Reference

Tables, Graphics, and Figures from

https://www.quantopian.com/lectures

Lecture 31 Beta Hedging

https://finance.yahoo.com/quote/TSLA/

$$Y_{TSLS} = \alpha + \beta X_{SPY} + \epsilon$$

Market Cap	58.231B
Beta	0.91
PE Ratio (TTM)	N/A
EPS (TTM)	-13.97
Earnings Date	Jul 31, 2018 - Aug 6, 2018
Forward Dividend & Yield	N/A (N/A)
Ex-Dividend Date	N/A
1v Target Est	306.24

https://finance.yahoo.com/quote/SPY

SPDR S&P 500 ETF (SPY)

Net Assets	262.44B
NAV	270.74
PE Ratio (TTM)	N/A
Yield	1.80%
YTD Return	1.94%
Beta (3y)	1.00
Expense Ratio (net)	0.09%

Get Data

```
start = '2014-01-01'
end = '2015-01-01'
asset = get pricing('TSLA', fields='price',
                    start date=start, end date=end)
benchmark = get pricing('SPY', fields='price',
                    start date=start, end date=end)
# We have to take the percent changes to get to returns
# Get rid of the first (0th) element because it is NAN
r a = asset.pct change()[1:]
r b = benchmark.pct change()[1:]
# Let's plot them just for fun
r a.plot()
r b.plot()
plt.ylabel("Daily Return")
plt.legend();
```

TSLA and S&P 500 Return

$Y_{TSIS} = \alpha + \beta X_{SPY} + \epsilon$

```
X = r b.values
Y = r a.values
def linreg(x,y):
    # This just adds a column of 1s to our data
    x = sm.add constant(x)
    model = regression.linear model.OLS(y,x).fit()
    # Remove the constant now that we're done
    x = x[:, 1]
    return model.params[0], model.params[1]
alpha, beta = linreg(X,Y)
print 'alpha: ' + str(alpha)
print 'beta: ' + str(beta)
```

alpha: 0.00108062811902 beta: 1.92705010047

$\hat{Y}_{TSLS} = \alpha + \hat{\beta}X_{SPY} + \epsilon$

```
X2 = np.linspace(X.min(), X.max(), 100)
Y hat = X2 * beta + alpha
# Plot the raw data
plt.scatter(X, Y, alpha=0.3)
plt.xlabel("SPY Daily Return")
plt.ylabel("TSLA Daily Return")
# Add the regression line, colored in red
plt.plot(X2, Y hat, 'r', alpha=0.9);
```

$\alpha = 0.001$ and $\beta = 1.927$

$$Y_{portfolio} = \alpha + \beta X_{SPY}$$

$$V = \text{Total Value of Portfolio}$$

Short SPY: $-\beta V$

New Return:

$$\alpha + \beta X_{SPY} - \beta X_{SPY} = \alpha$$

Implementing Hedging

```
portfolio = -1*beta*r b + r a
portfolio.name = "TSLA + Hedge"
# Plot the returns of the portfolio
# as well as the asset by itself
portfolio.plot(alpha=0.9)
r b.plot(alpha=0.5);
r a.plot(alpha=0.5);
plt.ylabel("Daily Return")
plt.legend();
```

Portfolio Return Follows the Asset Fairly Closely

Mean Returns and the Volatilities

```
print "means: ", portfolio.mean(), r_a.mean()
print "volatilities: ", portfolio.std(), r_a.std()
```

means: 0.00108062811902 0.00202262496904 volatilities: 0.0272298767724 0.0304875405804

```
P = portfolio.values
alpha, beta = linreg(X,P)
print 'alpha: ' + str(alpha)
print 'beta: ' + str(beta)
```

alpha: 0.00108062811902 beta: 5.6898930012e-16

	Portfolio (TSLA + Hedge)	TSLA
Mean Daily Return	0.001	0.002
Volatilities	0.027	0.030
Beta (β)	0	1.927

Different Time Frame

```
start = '2015-01-01'
end = '2015-06-01'
asset = get pricing('TSLA', fields='price',
                    start date=start, end date=end)
benchmark = get pricing('SPY', fields='price',
                    start date=start, end date=end)
r a = asset.pct change()[1:]
r b = benchmark.pct change()[1:]
X = r b.values
Y = r a.values
alpha, beta = linreg(X,Y)
print 'Asset Out of Sample Estimate:'
print 'alpha: ' + str(alpha)
print 'beta: ' + str(beta)
```

alpha: 0.00114816439781 beta: 1.04339843544

Out of Sample Estimate (historical_beta=1.927)

```
portfolio = -1*historical beta*r b + r a
P = portfolio.values
alpha, beta = linreg(X,P)
print 'Portfolio Out of Sample:'
print 'alpha: ' + str(alpha)
print 'beta: ' + str(beta)
alpha: 0.00114816439781
beta: -0.883651665033
portfolio.name = "TSLA + Hedge"
portfolio.plot(alpha=0.9)
r a.plot(alpha=0.5);
r b.plot(alpha=0.5)
plt.ylabel("Daily Return")
plt.legend();
```

Summary

$$Y_{TSLS} = \alpha + \beta X_{SPY} + \epsilon$$

	1/1/2014 - 1/1/2015	1/1/2015 - 6/1/2015
α	0.001	0.001
β	1.927	1.043

$$Portfolio = -\beta R_{SPY} + R_{TSLS}$$
$$= -\beta X_{SPY} + \alpha + \beta X_{SPY}$$

	Portfolio ($\beta = 1.927$)		
	1/1/2014 - 1/1/2015	1/1/2015 - 6/1/2015	
α	0.001	0.001	
β	0	-0.883	

Returns of the Portfolio

