Discrete Structures and Theory of Logic Lecture-19

Dr. Dharmendra Kumar (Associate Professor) United College of Engineering and Research, Prayagraj September 18, 2023

Inverse function

Inverse function

Let $f: X \to Y$ is a function. If f is a bijective function then we can define the inverse function of f. It is denoted by f^{-1} . It is defined as $f^{-1}: Y \to X$. If f(a) = b then $f^{-1}(b) = a$.

Example: Let $X = \{1,2,3\}$ and $Y = \{p,q,r\}$. f: $X \rightarrow Y$ be given by

$$f = \{(1,p), (2,q), (3,q)\}$$

Is inverse of this function possible?

Solution: Inverse of this function is not possible because this function is not bijective. This function is not bijective because f is not onto function.

1

Inverse function

Example: Let R be the set of real numbers and let $f: R \rightarrow R$ be given by

$$f = \{(x, x^2) | x \in R\}$$

Is inverse of this function possible?

Solution: Inverse of this function is not possible because this function is not bijective. This function is not bijective because f is not onto function.

Example: Let R be the set of real numbers and let f: $R \rightarrow R$ be given by

$$f = \{(x, x+2) \mid x \in R\}$$

Is inverse of this function possible?

Solution: Inverse of this function is possible because this function is bijective.

Identity function and Invertible function

Identity function

A function I_X : $X \to X$ is called an identity function if $I_X(x) = x$, $\forall x \in X$.

Invertible function

A function f is said to be invertible function if there exists an inverse function of this function.

Note:

- (1) If f: $X \rightarrow Y$ is invertible then f^{-1} of $= I_X$ and fo $f^{-1} = I_Y$
- (2) Let f: $X \to Y$ and g: $Y \to X$ are two functions. The function g is equal to f^{-1} only if $gof = I_X$ and $fog = I_Y$.

3

Some examples

Example: Show that the functions $f(x) = x^3$ and $g(x) = x^{1/3}$, for $x \in R$ are inverses of one another.

Solution: These functions will be inverse of each other if gof = I = fog.

$$gof(x) = g(f(x)) = g(x^3) = (x^3)^{1/3} = x^{3/3} = x = I(x).$$

$$fog(x) = f(g(x)) = f(x^{1/3}) = (x^{1/3})^3 = x^{3/3} = x = I(x).$$

Therefore these functions are inverses of each others.

Some examples

Example: Let F_X be the set of all bijective functions from X to X, where $X = \{1,2,3\}$. Find all the elements of F_X and also find the inverse of each element.

Solution: Since the number of elements in set X is 3, therefore the number of bijective functions will be 3! = 6. These functions are:-

$$f_1 = \{(1,1),(2,2),(3,3)\}$$

$$f_2 = \{(1,1),(2,3),(3,2)\}$$

$$f_3 = \{(1,2),(2,1),(3,3)\}$$

$$f_4 = \{(1,2),(2,3),(3,1)\}$$

$$f_5 = \{(1,3),(2,2),(3,1)\}$$

$$f_6 = \{(1,3),(2,1),(3,2)\}$$

Inverse of these functions is determined by interchanging values in each ordered pairs of corresponding functions.

Note: If a set X has n elements, then the number of bijective functions from X to X is n!.

Exercise

Exercise

- Let f: R →R and g: R →R are two functions such that f(x) = x² 2 and g(x) = x+4, where R is the set real numbers. Find fog and gof. State whether these functions are injective, surjective and bijective.
- 2. If f: $X \rightarrow Y$ and g: $Y \rightarrow Z$ and both f and g are onto, show that gof is also onto. Is gof one-one if both g and f are one-one?
- 3. Let f: R \rightarrow R be given by $f(x) = x^2-2$. Find f^{-1} .

Exercise(cont.)

How many functions are there from X to Y for the sets given below? Find also the number of functions which are one-one, onto and bijective.

- 1. $X = \{1,2,3\}, Y = \{1,2,3\}$
- 2. $X = \{1,2,3,4\}, Y = \{1,2,3\}$
- 3. $X = \{1,2,3\}, Y = \{1,2,3,4\}$
- 4. $X = \{1,2,3,4,5\}, Y = \{1,2,3\}$
- 5. $X = \{1,2,3\}, Y = \{1,2,3,4,5\}$

Onto function

Number of Onto Functions

If a set A has m elements and set B has n elements, $m \geq n$ then the number of onto functions from A to B

$$= n^m - {}^nC_1(n-1)^m + {}^nC_2(n-2)^m - {}^nC_3(n-3)^m + \dots - {}^nC_{n-1}(1)^m$$

One-one function

Number of One-One Functions

If set A has m elements and set B has n elements, $n \geq m$, then the number of one-one functions from A to B

$$= {}^{n}P_{m}$$

Exercise(cont.)

- 1. Let $X = \{1,2,3,4\}$. Define a function $f: X \to X$ such that $f \neq I_X$ an is one-one. Find f^2 , f^3 , f^{-1} and fof^{-1} . Can you find another one-one function $g: X \to X$ such that $g \neq I_X$ but $gog = I_X$?
- 2. Let f: $X \rightarrow Y$ and X=Y=R, the set of real numbers. Find f^{-1} if
 - 2.1 $f(x) = x^2$ 2.2 $f(x) = \frac{(2x-1)}{5}$
- 3. Let f and g be the functions from the set of integers to the set of integers defined by f(x) = 2x + 3 and g(x) = 3x + 2. What is the composition of f and g? What is the composition of g and f?