The Recursion-tree Method

• Idea:

- Each node represents the cost of a single subproblem.
- Sum up the costs with each level to get level cost.
- Sum up all the level costs to get total cost.
- Particularly suitable for divide-and-conquer recurrence.
- Best used to generate a good guess, tolerating "sloppiness".
- If trying carefully to draw the recursion-tree and compute cost, then used as direct proof.

Recursion Tree for $T(n)=3T(\lfloor n/4 \rfloor)+\Theta(n^2)$

Solution to $T(n)=3T(\lfloor n/4 \rfloor)+\Theta(n^2)$

- The height is $\log 4^n$,
- #leaf nodes = $3^{\log 4^n} = n^{\log 4^3}$. Leaf node cost: T(1).
- Total cost $T(n)=cn^2+(3/16) cn^2+(3/16)^2 cn^2+\cdots+(3/16)^{\log}4^{n-1} cn^2+\Theta(n^{\log}4^3)$ $=(1+3/16+(3/16)^2+\cdots+(3/16)^{\log}4^{n-1}) cn^2+\Theta(n^{\log}4^3)$ $<(1+3/16+(3/16)^2+\cdots+(3/16)^m+\cdots) cn^2+\Theta(n^{\log}4^3)$ $=(1/(1-3/16)) cn^2+\Theta(n^{\log}4^3)$ $=16/13cn^2+\Theta(n^{\log}4^3)$ $=O(n^2).$

Prove the above Guess

- $T(n)=3T(\lfloor n/4\rfloor)+\Theta(n^2)=O(n^2)$.
- Show $T(n) \le dn^2$ for some d.
- $T(n) \le 3(d(\lfloor n/4 \rfloor)^2) + cn^2$ $\le 3(d(n/4)^2) + cn^2$ $= 3/16(dn^2) + cn^2$ $\le dn^2$, as long as $d \ge (16/13)c$.

One more example

- T(n)=T(n/3)+T(2n/3)+O(n).
- Construct its recursive tree.
- $T(n)=O(cn\lg_{3/2}^n)=O(n\lg n)$.
- Prove $T(n) \le dn \lg n$.

Recursion Tree of T(n)=T(n/3)+T(2n/3)+O(n)

Master Method/Theorem

- Theorem 4.1 (page 73)
 - for T(n) = aT(n/b) + f(n), n/b may be $\lceil n/b \rceil$ or $\lfloor n/b \rfloor$.
 - where $a \ge 1$, b > 1 are positive integers, f(n) be a nonnegative function.
 - 1. If $f(n) = O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
 - 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_a n)$.
 - 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Implications of Master Theorem

- Comparison between f(n) and $n^{\log_b a}$ (<,=,>)
- Must be asymptotically smaller (or larger) by a polynomial, i.e., n^{ε} for some $\varepsilon > 0$.
- In case 3, the "regularity" must be satisfied, i.e., $af(n/b) \le cf(n)$ for some c < 1.
- There are gaps
 - between 1 and 2: f(n) is smaller than $n^{\log_b a}$, but not polynomially smaller.
 - between 2 and 3: f(n) is larger than $n^{\log_b a}$, but not polynomially larger.
 - in case 3, if the "regularity" fails to hold.

Application of Master Theorem

• T(n) = 9T(n/3) + n; - a=9,b=3, f(n)=n $- n^{\log_b a} = n^{\log_3 9} = \Theta(n^2)$ $- f(n) = O(n^{\log_3 9 - \varepsilon})$ for $\varepsilon = 1$ - By case 1, $T(n) = \Theta(n^2)$. • T(n) = T(2n/3) + 1-a=1,b=3/2, f(n)=1 $-n^{\log_b a} = n^{\log_{3/2} 1} = \Theta(n^0) = \Theta(1)$ - By case 2, $T(n) = \Theta(\lg n)$.

Application of Master Theorem

- $T(n) = 3T(n/4) + n \lg n$;
 - $-a=3,b=4, f(n)=n \lg n$
 - $-n^{\log_b a} = n^{\log_4 3} = \Theta(n^{0.793})$
 - $-f(n) = \Omega(n^{\log_4 3 + \varepsilon})$ for $\varepsilon \approx 0.2$
 - Moreover, for large n, the "regularity" holds for c=3/4.
 - $af(n/b) = 3(n/4)\lg(n/4) \le (3/4)n\lg n = cf(n)$
 - By case 3, $T(n) = \Theta(f(n)) = \Theta(n \lg n)$.

Exception to Master Theorem

- $T(n) = 2T(n/2) + n \lg n$;
 - $-a=2,b=2, f(n) = n \lg n$
 - $-n^{\log}b^a = n^{\log}2^2 = \Theta(n)$
 - -f(n) is asymptotically larger than $n^{\log_b a}$, but not polynomially larger because
 - $-f(n)/n^{\log_b a} = \lg n$, which is asymptotically less than n^{ϵ} for any $\epsilon > 0$.
 - Therefore, this is a gap between 2 and 3.

Where Are the Gaps

- Note: 1. for case 3, the regularity also must hold.
 - 2. if f(n) is $\lg n$ smaller, then fall in gap in 1 and 2
 - 3. if f(n) is $\lg n$ larger, then fall in gap in 3 and 2
 - 4. if $f(n) = \Theta(n^{\log b^a} \lg^k n)$, then $T(n) = \Theta(n^{\log b^a} \lg^{k+1} n)$. (as exercise)

Proof of Master Theorem

- The proof for the exact powers, $n=b^k$ for $k \ge 1$.
- Lemma 4.2

```
- for T(n) = \Theta(1) if n=1

- aT(n/b)+f(n) if n=b^k for k \ge 1

- where a \ge 1, b > 1, f(n) be a nonnegative function,

- Then \log_b^{n-1}

- T(n) = \Theta(n^{\log_b a}) + \sum_{i=0}^{n-1} a^i f(n/b^i)
```

• Proof:

- By iterating the recurrence
- By recursion tree (See figure 4.3)

Recursion tree for T(n)=aT(n/b)+f(n)

Proof of Master Theorem (cont.)

• Lemma 4.3:

- Let $a \ge 1$, b > 1, f(n) be a nonnegative function defined on exact power of b, then
- $-g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) \text{ can be bounded for exact power of } b \text{ as:}$
- 1. If $f(n) = O(n^{\log_b a_{-\varepsilon}})$ for some $\varepsilon > 0$, then $g(n) = O(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $g(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If $f(n) = \Omega(n^{\log_b a_{+\varepsilon}})$ for some $\varepsilon > 0$ and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large $n \ge b$, then $g(n) = \Theta(f(n))$.

Proof of Lemma 4.3

• For case 1: $f(n) = O(n^{\log_b a_{-\varepsilon}})$ implies $f(n/b^j) = O((n/b^j)^{\log_b a_{-\varepsilon}})$, so

•
$$g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) = O(\sum_{j=0}^{\log_b n-1} a^j (n/b^j)^{\log_b a_{-\varepsilon}})$$

• $= O(n^{\log_b a_{-\varepsilon}} \sum_{j=0}^{\log_b n-1} a^j / (b^{\log_b a_{-\varepsilon}})^j) = O(n^{\log_b a} \sum_{j=0}^{a^j / (a^j (b^{-\varepsilon})^j)})$
• $= O(n^{\log_b a_{-\varepsilon}} \sum_{j=0}^{\log_b n-1} (b^{\varepsilon})^j) = O(n^{\log_b a_{-\varepsilon}} (((b^{\varepsilon})^{\log_b n} - 1) / (b^{\varepsilon} - 1))$
• $= O(n^{\log_b a_{-\varepsilon}} (((b^{\log_b n})^{\varepsilon} - 1) / (b^{\varepsilon} - 1))) = O(n^{\log_b a} n^{-\varepsilon} (n^{\varepsilon} - 1) / (b^{\varepsilon} - 1))$
• $= O(n^{\log_b a})$

Proof of Lemma 4.3(cont.)

• For case 2: $f(n) = \Theta(n^{\log_b a})$ implies $f(n/b^j) = \Theta((n/b^j)^{\log_b a})$, so

•
$$g(n) = \sum_{j=0}^{\log_b^{n-1}} a^j f(n/b^j) = \Theta(\sum_{j=0}^{\log_b^{n-1}} a^j (n/b^j)^{\log_b^a})$$

•
$$= \Theta(n^{\log_b a} \sum_{j=0}^{\log_b n-1} a^{j/(b^{\log_b a})^j}) = \Theta(n^{\log_b n-1} \sum_{j=0}^{\log_b n-1} 1)$$

•
$$= \mathbf{\Theta}(n^{\log_b a} \log_b^n) = \mathbf{\Theta}(n^{\log_b a} \lg n)$$

Proof of Lemma 4.3(cont.)

• For case 3:

- Since g(n) contains f(n), $g(n) = \Omega(f(n))$
- Since $af(n/b) \le cf(n)$, $a^{j}f(n/b^{j}) \le c^{j}f(n)$, why???

$$-g(n) = \sum_{j=0}^{\log_b n-1} a^j f(n/b^j) \le \sum_{j=0}^{\log_b n-1} c^j f(n) \le f(n) \sum_{j=0}^{\infty} c^j$$

- = f(n)(1/(1-c)) = O(f(n))
- Thus, $g(n)=\Theta(f(n))$

Proof of Master Theorem (cont.)

• Lemma 4.4:

```
- for T(n) = \Theta(1) if n=1
- aT(n/b)+f(n) if n=b^k for k \ge 1
```

- where $a \ge 1$, b > 1, f(n) be a nonnegative function,
- 1. If $f(n) = O(n^{\log_b a \varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log_a n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some $\varepsilon > 0$, and if $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

Proof of Lemma 4.4 (cont.)

- Combine Lemma 4.2 and 4.3,
 - For case 1:
 - $T(n) = \Theta(n^{\log_b a}) + O(n^{\log_b a}) = \Theta(n^{\log_b a}).$
 - For case 2:
 - $T(n) = \Theta(n^{\log_b a}) + \Theta(n^{\log_b a} \lg n) = \Theta(n^{\log_b a} \lg n)$.
 - For case 3:
 - $T(n) = \Theta(n^{\log_b a}) + \Theta(f(n)) = \Theta(f(n))$ because $f(n) = \Omega(n^{\log_b a + \varepsilon})$.

Floors and Ceilings

- $T(n)=aT(\lfloor n/b \rfloor)+f(n)$ and $T(n)=aT(\lceil n/b \rceil)+f(n)$
- Want to prove both equal to T(n)=aT(n/b)+f(n)
- Two results:
 - Master theorem applied to all integers n.
 - Floors and ceilings do not change the result.
 - (Note: we proved this by domain transformation too).
- Since $\lfloor n/b \rfloor \leq n/b$, and $\lceil n/b \rceil \geq n/b$, upper bound for floors and lower bound for ceiling is held.
- So prove upper bound for ceilings (similar for lower bound for floors).

Upper bound of proof for $T(n)=aT(\lceil n/b \rceil)+f(n)$

- consider sequence n, $\lceil n/b \rceil$, $\lceil \lceil n/b \rceil/b \rceil$, $\lceil \lceil n/b \rceil/b \rceil/b \rceil$, ...
- Let us define n_j as follows:
- $n_j = n$ if j=0
- = $\lceil n_{j-1}/b \rceil$ if j > 0
- The sequence will be $n_0, n_1, ..., n_{\lfloor \log_b n \rfloor}$
- Draw recursion tree:

Recursion tree of $T(n)=aT(\lceil n/b \rceil)+f(n)$

The proof of upper bound for ceiling

$$-T(n) = \Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor - 1} a^j f(n_j)$$

 Thus similar to Lemma 4.3 and 4.4, the upper bound is proven.

The simple format of master theorem

• $T(n)=aT(n/b)+cn^k$, with a, b, c, k are positive constants, and $a \ge 1$ and $b \ge 2$,

$$O(n^{\log ba}), \text{ if } a>b^k.$$

$$O(n^k \log n), \text{ if } a=b^k.$$

$$O(n^k), \text{ if } a< b^k.$$