TD: Ondes et moment nuls

1. Montrer que $\int_{\mathbb{R}} \Psi(t) dt = 0 \Leftrightarrow \hat{\Psi}(0) = 0$. Puis que Ψ admet 2 moments nulls si et seulement si $\hat{\Psi}(0) = \hat{\Psi}(1) = 0$.

Par définition de la transformée de Fourier, on a : $\hat{\Psi}(w) = \int_{\mathbb{R}} \Psi(t)e^{-iwt} dt$. Donc $\hat{\Psi}(0) = \int_{\mathbb{R}} \Psi(t) dt$.

On a:
$$-it\Psi(t)e^{-iwt} \in L^1(\mathbb{R})$$
 donc $\hat{\Psi}'(w) = -i\int_{\mathbb{R}} t\Psi(t)e^{-iwt} dt$.
Donc $\hat{\Psi}'(0) = 0 \Leftrightarrow \int_{\mathbb{R}} t\Psi(t) dt = 0$.

2. Rappeler $\hat{h}(0)$ et $\hat{\varphi}(0)$. Déduire que toutes les ondelettes ont au moins un moment nul.

h vérifie Mallat-Meyer, donc

- $\hat{h}(0) = 0$
- $\hat{\phi}(w) = \prod_{k=1}^{+\infty} \frac{\hat{h}(2^{-k}w)}{\sqrt{2}} \Rightarrow \hat{\phi}(0) = 1$

On a également : $\hat{\Psi}(2w) = \frac{1}{\sqrt{2}}\hat{g}(w)\hat{\varphi}(w)$. avec $\hat{g}(w) = e^{-iw}\hat{h}(w+\pi)$.

Félix de Brandois