Solution 1: For this exercise we will derive the distribution function (CDF) for the Euclidean distance (denoted by u) from the origin to the closest of n points x; where each point x: is drawn uniformly from a p-dimensional unit ball centered at the origin. For any given vector x_i (uniform in the unit ball) the distribution function of $y = ||x_i||$ is

the ratio of the volume of a ball of radius y and the volume of a ball of radius one. This ratio is y^p and so $F(y) = y^p$. The distribution function for y is then $f(y) = py^{p-1}$. Given N such vectors $\{x_i\}_{i=1}^N$ the distribution function for the smallest radius Y_1 (from all of them) is given by

$$F_{Y_1}(y)=1-(1-F(y))^N=1-(1-y^p)^N,$$
ee [9] where the order statistics are discussed. The median distance for Y_1 is found by olving for y in

see [9] where the order statistics are discussed. The median distance for Y₁ is found by solving for y in $\frac{1}{2} = F_{Y_1}(y)$.

This gives

 $y = \left(1 - \left(\frac{1}{2}\right)^{1/N}\right)^{1/p} \equiv d_{\text{median}}(p, N),$

which is the desired expression.