Σχεδίαση Σχεσιακών ΒΔ

- Εννοιολογικός σχεδιασμός
 - το Μοντέλο Οντοτήτων-Συσχετίσεων (ER)
 - Από τα διαγράμματα ER στο Σχεσιακό Μοντέλο
- Θεωρία Κανονικοποίησης (Κανονικές Μορφές ΚΜ)
 - 1ⁿ KM(1NF)
 - Αποσύνθεση Συναρτησιακές Εξαρτήσεις
 - 2^η (2NF), 3^η (3NF), Boyce-Codd KM (BCNF)
 - Καθολική Διαδικασία Σχεδίασης ΒΔ

InfoLab | Τμήμα Πληροφορικής | Πανεπιστήμιο Πειραιώς (http://infolab.cs.unipi.gr/) έκδοση: Ιαν. 2012

Βασική πηγή διαφανειών: Silberschatz et al., "Database System Concepts", 4/e

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

- Εννοιολογικός σχεδιασμός
 - το Μοντέλο Οντοτήτων-Συσχετίσεων (ER)
 - Από τα διαγράμματα ER στο Σχεσιακό Μοντέλο
- Θεωρία Κανονικοποίησης (Κανονικές Μορφές ΚΜ)
 - 1ⁿ KM(1NF)
 - Αποσύνθεση Συναρτησιακές Εξαρτήσεις
 - 2^η (2NF), 3^η (3NF), Boyce-Codd KM (BCNF)
 - Καθολική Διαδικασία Σχεδίασης ΒΔ

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Διαδικασία σχεδίασης ΒΔ

- Σχεδιασμός ΒΔ είναι η διαδικασία δημιουργίας του σχεσιακού σχήματος (relational schema) της ΒΔ
- Υπάρχουν 2 «σχολές» σχεδίασης σχεσιακών ΒΔ
 - Μέσω του Εννοιολογικού Σχεδιασμού. Βήματα:
 - Διατύπωση ενός εννοιολογικού μοντέλου δεδομένων (Conceptual Data Model) σε μορφή Διαγράμματος Οντοτήτων – Συσχετίσεων (Entity-Relationship diagram)
 - Μετατροπή του διαγράμματος ER σε Σχεσιακό Σχήμα
 - Με χρήση Κανονικών Μορφών (Normal Forms) και εφαρμογή της Θεωρίας Κανονικοποίησης (Normalization theory)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδ

Εννοιολογικός Σχεδιασμός

(conceptual design)

- Προσπάθεια για ξεκαθάρισμα των εννοιών
- Εύρεση και καταγραφή των Οντοτήτων της ΒΔ, των μεταξύ τους
 Συσχετίσεων καθώς και της σημασιολογίας που τα συνοδεύει
- ΣΤΟΧΟΣ:
 - Μια αφαιρετική, αλλά πλήρης περιγραφή του τμήματος του μικρόκοσμού που θα αναπαρασταθεί στην βάση δεδομένων.
 - Αυτή η περιγραφή γίνεται με τη χρήση μιας ημι-τυπικής σημειογραφίας / συμβολισμού.

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Παράδειγμα εννοιολογικού σχεδιασμού

- Μοντέλο οντοτήτων-συσχετίσεων (Entity-Relationship model ER)
 - Τα υποκαταστήματα (branches) ανοίγουν λογαριασμούς καταθέσεων (accounts)
 - για τους καταθετικούς λογαριασμούς, καταγράφουμε κωδικό, υπόλοιπο
 - για τα υποκαταστήματα, καταγράφουμε όνομα, έδρα, αποθεματικό

ΒΔ: [4] Σχεδίαση Σχεσιακων ΒΔ

ΠΑ.ΠΕΙ. – Γιαννης Θεοδωρίδη

Μοντέλο Οντοτήτων-Συσχετίσεων

E-R (Entity-Relationship) model

- Ένα απλό και σαφές μοντέλο εννοιολογικού σχεδιασμού που στηρίζεται στο γραφικό συμβολισμό
- διαισθητικό μοντέλο που προσδιορίζει αφαιρετικά τις πληροφορίες που μια ΒΔ αποθηκεύει και οργανώνει

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Συστατικά του Ε-R Μοντέλου (1)

- Υπάρχουν δυο βασικές εννοιολογικές έννοιες:
- Οντότητες (entities)
 - Συγκεκριμένα αντικείμενα που υπάρχουν (ή πιστεύεται ότι υπάρχουν) και μπορούν να αναπαρασταθούν στην ΒΔ
 - π.χ., ο ΠΕΛΑΤΗΣ "Νίκος Νικολάου", το ΥΠΟΚΑΤΑΣΤΗΜΑ "Ομόνοιας", το ΔΑΝΕΙΟ "L-123", ...
 - Για κάθε οντότητα καταγράφουμε ορισμένα χαρακτηριστικά (attributes)
- Συσχετίσεις (relationships)
 - Είναι επίσης (ειδικά) αντικείμενα που αντιστοιχούν δύο ή περισσότερες ξεχωριστές οντότητες με ένα συγκεκριμένο νόημα (τυπικά, μια Συσχέτιση είναι ένα διατεταγμένο σύνολο οντοτήτων)
 - π.χ.,. το δάνειο "L-123" ΔΟΘΗΚΕ από το υποκατάστημα "Ομόνοιας" κλπ.

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ПА.ПЕ

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Συστατικά του Ε-R Μοντέλου (2)

- Οι Οντότητες μπορούν να έχουν χαρακτηριστικά (attributes) που είναι ιδιότητες που τα χαρακτηρίζουν
 - π.χ. μια οντότητα ΠΕΛΑΤΗΣ έχει χαρακτηριστικά: όνομα, διεύθυνση, ...
- ... αλλά και οι Συσχετίσεις μπορούν να έχουν χαρακτηριστικά
 - π.χ. αν υπήρχε κύριος / δευτερεύων κάτοχος του λογαριασμού καταθέσεων, αυτή η πληροφορία θα αποτελούσε χαρακτηριστικό της συσχέτισης depositor

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Συστατικά του Ε-R Μοντέλου (3)

- Είδη χαρακτηριστικών
 - Απλά (simple): μια οντότητα έχει ατομική τιμή για αυτό
 - π.χ., υπόλοιπο λογαριασμού
 - Σύνθετα (composite): το χαρακτηριστικό αποτελείται από 2 ή περισσότερα τμήματα
 - π.χ., διεύθυνση = {Δρόμος, Αριθμός, ΤΚ, Πόλη, Χώρα}
 - Πλειότιμα (multi-valued): το χαρακτηριστικό έχει πολλαπλές τιμές
 - π.χ., τηλέφωνο(-α) ενός πελάτη

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδη

Οντότητες customer και loan

2 οντότητες με τα χαρακτηριστικά τους

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Ιδιότητες τύπων συσχετίσεων (1)

- Ένας τύπος συσχέτισης έχει βαθμό (degree)
 - Συσχέτιση μεταξύ 2 συνόλων οντοτήτων → διμερής (binary relationship)
 - Συσχέτιση μεταξύ 3 συνόλων οντοτήτων > τριμερής (ternary relationship)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ 15 ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Παράδειγμα τριμερούς συσχέτισης

- Ένας υπάλληλος (employee) έχει διαφορετική απασχόληση (job) σε διαφορετικά υποκαταστήματα (branch)
 - π.χ. ο υπάλληλος Γιάννης απασχολείται ως πωλητής στο υποκατάστημα Α και ως ταμίας στο υποκατάστημα Β

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Ιδιότητες τύπων συσχετίσεων (2)

- Ο περιορισμός ύπαρξης ορίζει αν η συμμετοχή μιας οντότητας στον τύπο συσχέτισης είναι ολική (total) ή μερική (partial)
 - Ολική συμμετοχή (συμβολισμός στο Ε-R: διπλή γραμμή): κάθε οντότητα συμμετέχει σε τουλάχιστον μια συσχέτιση
 - η συμμετοχή του loan στο borrower είναι ολική
 - Μερική συμμετοχή (συμβολισμός στο Ε-R: απλή γραμμή): μερικές οντότητες μπορεί να μη συμμετέχουν σε καμία συσχέτιση
 - η συμμετοχή του customer στο borrower είναι μερική

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

17

λ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Ιδιότητες τύπων συσχετίσεων (3)

- Η πληθικότητα (cardinality) ενός τύπου συσχέτισης ορίζει το πόσες οντότητες από το πρώτο σύνολο οντοτήτων στην συσχέτιση μπορούν να συνδεθούν με πόσες οντότητες από το δεύτερο σύνολο οντοτήτων
- π.χ. ο τύπος συσχέτισης account-branch είναι πολλά-προς-ένα
 - περισσότεροι του ενός λογαριασμοί (μπορούν να) αντιστοιχούν σε κάποιο υποκατάστημα
 - ένα μόνο υποκατάστημα αντιστοιχεί σε κάποιο λογαριασμό

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ΠΑ.ΠΕΙ. – Γιαννης Θεοδο

Πληθικότητα συσχέτισης (4 περιπτώσεις)

Σημείωση: είναι πιθανό κάποια στοιχεία του Α ή του Β να μην αντιστοιχούν σε κανένα στοιχείο του άλλου συνόλου

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

19

ΙΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Η έννοια του κλειδιού

- Ένα χαρακτηριστικό (ή σύνολο χαρακτηριστικών) ενός τύπου οντοτήτων / συσχετίσεων για τον οποίο κάθε οντότητα / συσχέτιση στο σύνολο πρέπει να έχει μοναδική τιμή ονομάζεται κλειδί (key).
 - π.χ. ΑΦΜ του ΥΠΑΛΛΗΛΟΥ, {ΑΦΜ, ONOMA} του ΥΠΑΛΛΗΛΟΥ, κλπ.
- υποψήφιο κλειδί (candidate key) ονομάζεται ένα ελάχιστο (minimal)
 κλειδί (δηλαδή, κανένα υποσύνολο των χαρακτηριστικών του δεν είναι κλειδί)
 - π.χ. ΑΦΜ είναι Υποψήφιο Κλειδί για τον ΥΠΑΛΛΗΛΟ, αλλά ο συνδυασμός {ΑΦΜ, ONOMA} δεν είναι.
- Το κύριο κλειδί (primary key) είναι ένα από τα υποψήφια κλειδιά που ορίζεται σαν αναγνωριστής (identifier) για τον τύπο οντοτήτων / συσχετίσεων
 - π.χ. ΑΦΜ είναι μια καλή επιλογή Κυρίου Κλειδιού στον τύπο οντοτήτων ΥΠΑΛΛΗΛΟΣ

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

20

Η έννοια του ρόλου

- Οι οντότητες που συσχετίζονται μέσω μιας συσχέτισης δε χρειάζεται να είναι διακριτές
- Οι ετικέτες "manager" and "worker" ονομάζονται ρόλοι (roles). Δείχνουν πώς οι υπάλληλοι αλληλεπιδρούν μέσω της συσχέτισης works-for
- Οι ρόλοι εμφανίζονται στα διαγράμματα Ε-R με ετικέτες πάνω στις γραμμές που συνδέουν ρόμβους με ορθογώνια.
- Οι ετικέτες ρόλων είναι προαιρετικές (ξεκαθαρίζουν τη σημασιολογία της συσχέτισης)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

21

λ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Αδύναμα σύνολα οντοτήτων

- Αδύναμο ονομάζεται ένα σύνολο οντοτήτων όταν η ύπαρξή του εξαρτάται από την ύπαρξη ενός άλλου (ισχυρού) συνόλου οντοτήτων
 - συμβολισμός στο E-R: διπλό ορθογώνιο για το σύνολο οντοτήτων, διακεκομμένη υπογράμμιση για το πρωτεύον κλειδί του
 - π.χ. payment: δεν υπάρχει αν δεν υπάρχει το αντίστοιχο loan

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

22

Μετατροπή σχήματος Ε-R σε σχεσιακό σχήμα

- Τα πρωτεύοντα κλειδιά επιτρέπουν να εκφραστούν τα σύνολα οντοτήτων και τα σύνολα συσχετίσεων ως πίνακες που αναπαριστούν τα περιεχόμενα μιας βάσης δεδομένων
- Μια βάση δεδομένων συμβατή με ένα διάγραμμα Ε-R μπορεί να αναπαρασταθεί με μια συλλογή πινάκων
- Η μετατροπή ενός διαγράμματος Ε-R σε συλλογή πινάκων αποτελεί την αφετηρία για να προκύψει μια σχεσιακή βάση δεδομένων από μια εννοιολογική σχεδίαση στο μοντέλο E-R
- Βασικοί κανόνες μετατροπής E-R σε σχεσιακό ...

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

28

Αναπαράσταση συνόλων οντοτήτων

 Ένα ισχυρό σύνολο οντοτήτων μετατρέπεται σε πίνακα (με τα ίδια χαρακτηριστικά)

customer-id	customer-name	customer-street	customer-city
019-28-3746	Smith	North	Rye
182-73-6091	Turner	Putnam	Stamford
192-83-7465	Johnson	Alma	Palo Alto
244-66-8800	Curry	North	Rye
321-12-3123	Jones	Main	Harrison
335-57-7991	Adams	Spring	Pittsfield
336-66-9999	Lindsay	Park	Pittsfield
677-89-9011	Hayes	Main	Harrison
963-96-3963	Williams	Nassau	Princeton

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

29

ΙΑ.ΠΕΙ. – Γιάννης Θεοδωρίδη

Αναπαράσταση αδύναμων συνόλων οντοτήτων

 Ένα αδύναμο σύνολο οντοτήτων γίνεται πίνακας που περιλαμβάνει μια στήλη για το πρωτεύον κλειδί του ισχυρού συνόλου οντοτήτων που το ταυτοποιεί

loan-number	payment-number	payment-date	payment-amount
L-11	53	7 June 2001	125
L-14	69	28 May 2001	500
L-15	22	23 May 2001	300
L-16	58	18 June 2001	135
L-17	5	10 May 2001	50
L-17	6	7 June 2001	50
L-17	7	17 June 2001	100
L-23	11	17 May 2001	75
L-93	103	3 June 2001	900
L-93	104	13 June 2001	200

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

30

Αναπαράσταση συνόλων συσχετίσεων

- Ένα σύνολο συσχετίσεων M:N αναπαρίσταται ως πίνακας με στήλες για τα πρωτεύοντα κλειδιά των οντοτήτων που συμμετέχουν, και επιπλέον όλα τα χαρακτηριστικά του συνόλου συσχετίσεων
- Π.χ.: πίνακας για το σύνολο συσχετίσεων borrower

customer-id	loan-number
019-28-3746	L-11
019-28-3746	L-23
244-66-8800	L-93
321-12-3123	L-17
335-57-7991	L-16
555-55-5555	L-14
677-89-9011	L-15
963-96-3963	L-17

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

31

ΙΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Αναπαράσταση συνόλων συσχετίσεων (συν.)

- Οι συσχετίσεις N:1 και 1:Ν μπορούν να αναπαρασταθούν απλά με προσθήκη ενός επιπλέον χαρακτηριστικού στην πλευρά 'N', με το πρωτεύον κλειδί της πλευράς '1'
 - Εάν η συμμετοχή στην πλευρά 'Ν' είναι μερική, μπορεί προκύψει η περίπτωση μια στήλη του πίνακα να έχει πολλές κενές τιμές. Οπότε ίσως θα συνέφερε η δημιουργία νέου πίνακα (όπως στην περίπτωση Μ:Ν)
- Ειδική περίπτωση: συσχέτιση αδύναμου με ισχυρό σύνολο οντοτήτων
 - Δεν απαιτείται σε καμία περίπτωση δημιουργία νέου πίνακα αφού ο πίνακας που προέρχεται από το αδύναμο σύνολο οντοτήτων έχει ήδη σαν στήλη το πρωτεύον κλειδί του ισχυρού συνόλου οντοτήτων.

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

32

Αναπαράσταση συνόλων συσχετίσεων (συν.)

 Παράδειγμα: αντί να δημιουργήσουμε έναν πίνακα για τη συσχέτιση account-branch, προσθέτουμε ένα χαρακτηριστικό branch στην οντότητα account

Αναπαράσταση συνόλων συσχετίσεων (συν.)

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

- Για τις συσχετίσεις 1:1 έχουμε 3 εναλλακτικές προσεγγίσεις:
 - είτε να προσθέσουμε το πρωτεύον κλειδί της μιας πλευράς ως επιπλέον χαρακτηριστικό στον πίνακα της άλλης πλευράς
 - και αυτό να γίνει για τον ένα ή και τους δύο πίνακες (στη δεύτερη περίπτωση, υπάρχει πλεονασμός πληροφορίας)
 - είτε να δημιουργηθεί νέος πίνακας (όπως στην περίπτωση M:N)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

34

Αναπαράσταση σύνθετων / πλειότιμων χαρακτηριστικών

- Τα σύνθετα χαρακτηριστικά μετατρέπονται σε ένα σύνολο απλών
 - Παράδειγμα: έστω το σύνθετο χαρακτηριστικό name με συστατικά first-name και last-name. Ο πίνακας που προκύπτει θα έχει, μεταξύ άλλων, δύο χαρακτηριστικά name.first-name και name.last-name
- Από ένα πλειότιμο χαρακτηριστικό ενός συνόλου οντοτήτων προκύπτει νέος πίνακας!
 - Ο πίνακας έχει ως στήλες το πρωτεύον κλειδί του συνόλου οντοτήτων και μια ακόμη που αντιστοιχεί στο πλειότιμο χαρακτηριστικό
 - Παράδειγμα: έστω το πλειότιμο χαρακτηριστικό phone του συνόλου οντοτήτων customer (με πρωτεύον κλειδί customer-name). Προκύπτει ένας νέος πίνακας customer-phones (customer-name, phone)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Αναπαράσταση εξειδίκευσης

1η μέθοδος: Προκύπτει ένας πίνακας για κάθε εμπλεκόμενο σύνολο οντοτήτων, όπου καθένας από τους πίνακες εξειδίκευσης συμπεριλαμβάνει ως στήλη το πρωτεύον κλειδί του πίνακα γενίκευσης

4.18

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Αναπαράσταση εξειδίκευσης (συν.) 2η μέθοδος: Προκύπτει ένας πίνακας για κάθε εμπλεκόμενο σύνολο οντοτήτων, όπου καθένας από τους πίνακες εξειδίκευσης συμπεριλαμβάνει ως στήλες <u>όλα</u> τα χαρακτηριστικά του συνόλου οντοτήτων ανώτερου επιπέδου (γενίκευσης) name street city Παράδειγμα: person (name, street, city), person customer (name, street, city, credit-rating) employee (name, street, city, salary) Εάν η εξειδίκευση είναι πλήρης, δεν απαιτείται ο πίνακας γενίκευσης **ISA** *credit-rating* salary employee customer

- Εννοιολογικός σχεδιασμός
 - το Μοντέλο Οντοτήτων-Συσχετίσεων (ER)
 - Από τα διαγράμματα ER στο Σχεσιακό Μοντέλο
- Θεωρία Κανονικοποίησης (Κανονικές Μορφές ΚΜ)
 - 1ⁿ KM(1NF)
 - Αποσύνθεση Συναρτησιακές Εξαρτήσεις
 - 2^η (2NF), 3^η (3NF), Boyce-Codd KM (BCNF)
 - Καθολική Διαδικασία Σχεδίασης ΒΔ

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

41

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Το πρόβλημα ...

Γιατί αυτοί οι πίνακες και όχι κάποιοι άλλοι (περισσότεροι ή λιγότεροι, με διαφορετικό μοίρασμα χαρακτηριστικών);

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Στόχοι στη σχεδίαση σχεσιακών ΒΔ

- Στόχος της σχεδίασης σχεσιακών BΔ είναι να βρούμε μια "καλή" συλλογή τύπων σχέσεων. Κακή σχεδίαση μπορεί να σημαίνει:
 - Επανάληψη / πλεονασμό πληροφορίας
 - Αδυναμία αναπαράστασης κάποιας πληροφορίας
- Σχεδιαστικοί στόχοι:
 - Αποφυγή πλεονασμού στα δεδομένα
 - Εξασφάλιση ότι αναπαριστώνται όλες οι συσχετίσεις μεταξύ των οντοτήτων
 - Διευκόλυνση των ελέγχων για τυχόν παραβίαση των περιορισμών ορθότητας
- Το «εργαλείο»: κανονικοποίηση ΒΔ
 - Υπακοή σε κάποια κανονική μορφή (1^η, 2^η, 3^η, ...)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

43

Α.ΠΕΙ. – Γιάννης Θεοδωρίδης

Κανονικές μορφές

- Έχουν οριστεί 5 κανονικές μορφές (normal forms NF) που η επόμενη είναι πιο αυστηρή από την προηγούμενη.
 - Μεταξύ 3^{ης} και 4^{ης} κανονικής μορφής, έχει οριστεί η κανονική μορφή Boyce-Codd (BCNF) που πρακτικά αποτελεί το 'στόχο' της διαδικασίας σχεδίασης BΔ

Πρώτη Κανονική Μορφή

- Οι τιμές του πεδίου ορισμού ενός χαρακτηριστικού είναι ατομικές εάν θεωρούνται ως αδιαίρετες μονάδες.
- Ένας τύπος σχέσης R βρίσκεται στην 1^η κανονική μορφή (first normal form 1NF) εάν τα πεδία τιμών όλων των χαρακτηριστικών του R είναι ατομικά
- Αντιπαραδείγματα:
 - Πλειότιμα χαρακτηριστικά (τηλέφωνα)
 - Σύνθετα χαρακτηριστικά (ονοματεπώνυμο)
 - Συμβολοσειρές (π.χ. κωδικοί) που σπάζουν σε τμήματα
 - Αν ο ΑΜ του φοιτητή είναι μια συμβολοσειρά της μορφής CS101 και οι δύο πρώτοι χαρακτήρες χρησιμοποιούνται για να βρούμε το Τμήμα του φοιτητή, τότε καταστρατηγούμε την ατομικότητα

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

45

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Παράδειγμα «προβληματικού» σχήματος

 Έστω το σχήμα:
 Lending-schema = (branch-name, branch-city, assets, customer-name, loan-number, amount)

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

- Πλεονασμός:
 - Επανάληψη των δεδομένων branch-name, branch-city, assets για κάθε δάνειο που δίνει το συγκεκριμένο υποκατάστημα → σπατάλη χώρου
 - Δυσκολία στην τροποποίηση δεδομένων, πιθανότητα ασυνεπών τιμών
- Truéc Nul
 - Δεν μπορούμε να αποθηκεύσουμε τα στοιχεία ενός υποκαταστήματος αν δεν έχει δοθεί κανένα δάνειο από αυτό
 - Μπορούμε να χρησιμοποιήσουμε τιμές null αλλά είναι δύσκολος ο χειρισμός τους.

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

46

Αποσύνθεση (decomposition)

Αποσύνθεση του σχήματος

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

σε

Branch-schema = (branch-name, branch-city, assets)
Loan-info-schema = (customer-name, loan-number, branch-name, amount)

- Όλα τα χαρακτηριστικά του αρχικού τύπου σχέσης (R) πρέπει να διατηρούνται στην αποσύνθεση (R_1 , R_2): $R=R_1\cup R_2$
- Στόχος της σχεδίασης σχεσιακών βάσεων δεδομένων: να αποφασίσουμε αν ένας τύπος σχέσης R είναι σε "καλή" μορφή.
- Το ζητούμενο είναι: αποσύνθεση χωρίς απώλεια πληροφορίας (lossless decomposition)
 - Φορμαλιστικά:

 \forall σχέση r τύπου R, $r = \prod_{R1} (r) \bowtie \prod_{R2} (r)$

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

47

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Συναρτησιακές Εξαρτήσεις

- Περιορισμοί πάνω στο σύνολο των έγκυρων σχέσεων
- Απαιτούν η τιμή ορισμένων χαρακτηριστικών να προσδιορίζει μοναδικά την τιμή άλλων χαρακτηριστικών
- Γενίκευση της έννοιας του κλειδιού
- Ορισμός: Έστω R ένας τύπος σχέσης, με $\alpha \subseteq R$ and $\beta \subseteq R$. Η συναρτησιακή εξάρτηση (functional dependence FD) $\alpha \to \beta$ ισχύει πάνω στον R εάν και μόνο εάν

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

Παραδείγματα:

branch-name \rightarrow assets, branch-city

loan-number \rightarrow amount, branch-name

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

48

Συναρτησιακές Εξαρτήσεις (συν.)

- Το σύνολο χαρακτηριστικών K αποτελεί **υπερκλειδί** (superkey) για τον τύπο σχέσης R εάν και μόνο εάν $K \to R$
- Το Κ αποτελεί υποψήφιο κλειδί (candidate key) για τον R εάν και μόνο εάν
 - $K \rightarrow R$, $\kappa \alpha \iota$
 - δεν υπάρχει $\alpha \subset K$, $\alpha \to R$
- Οι συναρτησιακές εξαρτήσεις επιτρέπουν να εκφράσουμε περιορισμούς που δεν μπορούν να εκφραστούν μέσω των υπερκλειδιών.
 - Για παράδειγμα, ας θεωρήσουμε τον τύπο σχέσης:
 loan-info-schema = (customer-name, loan-number, branch-name, amount)
 περιμένουμε να ισχύουν αυτές οι συναρτησιακές εξαρτήσεις:

loan-number ightarrow amount και loan-number ightarrow branch-name m αλλά όχι m αυτή: loan-number ightarrow customer-name

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

49

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Συναρτησιακές Εξαρτήσεις (συν.)

- Χρησιμοποιούμε συναρτησιακές εξαρτήσεις για να:
 - Ελέγξουμε την εγκυρότητα μιας σχέσης r σύμφωνα με ένα δοθέν σύνολο συναρτησιακών εξαρτήσεων F (οπότε λέμε ότι η r ικανοποιεί την F).
 - Προδιαγράψουμε περιορισμούς F πάνω σε έναν τύπο σχέσης R (οπότε λέμε ότι η F ισχύει για τον R)
- Μια συναρτησιακή εξάρτηση καλείται τετριμμένη εάν ικανοποιείται οπωσδήποτε σε κάθε στιγμιότυπο ενός τύπου σχέσης. π.χ.
 - ullet customer-name, loan-number ightarrow customer-name
 - Γενικά, $\alpha \to \beta$ είναι τετριμμένη εάν $\beta \subseteq \alpha$

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

50

Κανονικοποίηση με χρήση συναρτησιακών εξαρτήσεων

- Όταν αποσυνθέτουμε ένα τύπο σχέσης R με ένα σύνολο συναρτησιακών εξαρτήσεων F στους τύπους σχέσεων R₁, R₂,.., R_n έχουμε τριπλό στόχο:
 - Στόχος 1: όχι απώλεια πληροφορίας
 - Η Αποσύνθεση πρέπει να είναι χωρίς απώλεια πληροφορίας (lossless decomposition)
 - Στόχος 2: όχι πλεονασμός πληροφορίας
 - Οι τύποι σχέσεων R_i που προκύπτουν από την αποσύνθεση, κατά προτίμηση να είναι σε Boyce-Codd Κανονική Μορφή ή 3^η Κανονική Μορφή (θα τις ορίσουμε σε λίγο ...)
 - Στόχος 3: διατήρηση εξαρτήσεων
 - Έστω F_i το σύνολο των εξαρτήσεων που περιέχουν μόνο χαρακτηριστικά του R_i . Η αποσύνθεση επιθυμούμε να διατηρεί τις εξαρτήσεις.

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

51

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Δεύτερη Κανονική Μορφή

- Ένας τύπος σχέσης *R* είναι σε **2ⁿ Κανονική Μορφή (2nd Normal Form - 2NF)** εάν είναι σε **1**NF και επιπλέον:
 - Κανένα χαρακτηριστικό (από αυτά που δεν συμμετέχουν σε υποψήφιο κλειδί) δεν προσδιορίζεται από τμήμα ενός υποψήφιου κλειδιού Κ
- Φορμαλιστικά:

 $\not\equiv$ (a \rightarrow b) in FD: a \subset K \wedge b \notin K

- Παράδειγμα:
 - R = (<u>customer-name</u>, <u>loan-number</u>, amount)
 - Καταρχήν η R είναι σε 1NF
 - Όμως, ισχύει η εξάρτηση loan-number → amount και το χαρακτηριστικό loannumber είναι μέρος του υποψήφιου κλειδιού {customer-name, loan-number}.
 - Άρα η R δεν είναι σε 2NF

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

52

Δεύτερη Κανονική Μορφή (συν.)

- Πώς γίνεται αποσύνθεση σε 2NF:
 - Απαλλάσσουμε την R από την 'προβληματική' εξάρτηση, η οποία με τη σειρά της σχηματίζει ένα νέο τύπο σχέσης.
- Παράδειγμα:
 - R = (customer-name, loan-number, amount)
 - Η 'προβληματική' εξάρτηση είναι η loan-number → amount
 - 'Apa: $R_1 = (customer-name, loan-number)$, $R_2 = (loan-number, amount)$
 - Τόσο η R_1 όσο και η R_2 είναι σε 2NF

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

53

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Τρίτη Κανονική Μορφή

- Ένας τύπος σχέσης R είναι σε 3η Κανονική Μορφή (3rd Normal Form 3NF) εάν είναι σε 2NF και επιπλέον:
 - Κανένα χαρακτηριστικό (από αυτά που δεν συμμετέχουν σε υποψήφιο κλειδί) δεν προσδιορίζεται μεταβατικά (δηλ. μέσω άλλου χαρακτηριστικού) από ένα υποψήφιο κλειδί Κ
 - Η μεταβατική εξάρτηση ισχύει όταν το χαρακτηριστικό που παρεμβάλλεται δεν συμμετέχει σε υποψήφιο κλειδί
- Φορμαλιστικά:

 $\not\exists$ (a \rightarrow b), (b \rightarrow c) in FD: a = K \land b $\not\in$ K \land c $\not\in$ K

- Παράδειγμα:
 - R = (<u>loan-number</u>, amount, branch-name, branch-city)
 - Καταρχήν η R είναι σε 2NF. Όμως:
 - loan-number → branch-name και branch-name → branch-city, οπότε το branch-city προσδιορίζεται μεταβατικά από το loan-number μέσω του branch-name.
 - Άρα η R δεν είναι σε 3NF

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

54

Τρίτη Κανονική Μορφή (συν.)

- Πώς γίνεται αποσύνθεση σε 3NF:
 - Απαλλάσσουμε την R από την 'προβληματική' εξάρτηση, η οποία με τη σειρά της σχηματίζει ένα νέο τύπο σχέσης.
- Παράδειγμα:
 - R = (<u>loan-number</u>, amount, branch-name, branch-city)
 - Η 'προβληματική' εξάρτηση είναι η branch-name → branch-city
 - 'Apa: R_1 = (<u>loan-number</u>, amount, branch-name), R_2 = (<u>branch-name</u>, branch-city)
 - Τόσο η R₁ όσο και η R₂ είναι σε 3NF
- Αποδεικνύεται ότι πάντοτε μπορεί να βρεθεί μια αποσύνθεση σε 3NF που να είναι αποσύνθεση χωρίς απώλεια πληροφορίας και να διατηρεί τις εξαρτήσεις.

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

55

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Boyce-Codd Κανονική Μορφή

- Ένας τύπος σχέσης R είναι σε Boyce-Codd Κανονική Μορφή (Boyce-Codd Normal Form BCNF) εάν για όλες τις συναρτησιακές εξαρτήσεις $\alpha \to \beta$ που ισχύουν στην R, το α αποτελεί υποψήφιο κλειδί της R
 - Προσοχή: δεν ξεκινάμε τον έλεγχο με την παραδοχή ότι η R είναι σε 3NF
 - Απλά, μπορεί να αποδειχθεί ότι αν η R είναι σε BCNF τότε είναι και σε 3NF.
- Φορμαλιστικά:

 $\not\equiv$ (a \rightarrow b) in FD: a \neq K

- Παράδειγμα:
 - Έστω R = (A, B, C), ισχύουν οι συναρτησιακές εξαρτήσεις $F = \{A \rightarrow B, B \rightarrow C\}$ και $\{A\}$ είναι το κλειδί
 - \Rightarrow H R δεν είναι σε BCNF (μάλιστα, δεν είναι ούτε σε 3NF !!)
 - Έστω ότι γίνεται η αποσύνθεση της R σε R_1 = (A,B), R_2 = (B,C) \Rightarrow οι R_1 και R_2 είναι σε BCNF

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

5

Boyce-Codd Κανονική Μορφή (συν.)

- Πώς γίνεται αποσύνθεση σε 3NF:
 - Κάθε συναρτησιακή εξάρτηση σχηματίζει ένα νέο τύπο σχέσης.
- Παράδειγμα:
 - R = (branch-name, branch-city, assets, <u>customer-name</u>, <u>loan-number</u>, amount)

			customer-	loan-	
branch-name	branch-city	assets	name	number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

- συναρτησιακές εξαρτήσεις:
 - branch-name → assets, branch-city
 - loan-number \rightarrow amount, branch-name
- Άρα: R₁ = (<u>branch-name</u>, branch-city, assets), R₂ = (branch-name, <u>loan-number</u>, amount), R₃ = (<u>customer-name</u>, <u>loan-number</u>)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

57

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

ΒCNF και Διατήρηση Εξαρτήσεων

- Ιδιότητες της BCNF:
 - Αποσύνθεση χωρίς απώλεια πληροφορίας → NAI
 - Διατήρηση εξαρτήσεων → ΙΣΩΣ (!)
 - Με άλλα λόγια, δεν είναι πάντοτε δυνατό να πάρουμε μια αποσύνθεση BCNF που να διατηρεί τις εξαρτήσεις!!
- Παράδειγμα:
 - R = (J, K, L), F = {JK → L, L → K}, δύο υποψήφια κλειδιά JK και JL
 ⇒ R είναι σε 3NF <u>αλλά δεν είναι</u> σε BCNF
 - Οποιαδήποτε αποσύνθεση της R αδυνατεί να διατηρήσει την εξάρτηση $JK \rightarrow I$
- Τότε καταφεύγουμε στη λύση της 3NF (μπορεί να αποδειχθεί ότι αν ένας τύπος σχέσης R είναι σε BCNF τότε είναι και σε 3NF)
 - Αυτή η λύση επιτρέπει κάποιας μορφής πλεονασμό (με συνεπαγόμενα προβλήματα όμως)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

5

ΒCNF και Διατήρηση Εξαρτήσεων (συν.)

- Προβλήματα που μπορεί να προκύψουν λόγω πλεονασμού στην 3NF
 - R = (J, K, L) $F = \{JK \to L, L \to K\}$

J	L	Κ
<i>j</i> ₁	<i>I</i> ₁	<i>k</i> ₁
j_2	<i>I</i> ₁	k_1
<i>j</i> ₃	<i>I</i> ₁	<i>k</i> ₁
null	I_2	k_2

- Επανάληψη πληροφορίας (π.χ., η συσχέτιση I_1, k_1)
- Ανάγκη για χρήση τιμών null (π.χ., για να αναπαρασταθεί η συσχέτιση I_2 , k_2 όταν δεν υπάρχει αντίστοιχη τιμή για το J).

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

59

ΙΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Τέταρτη (4NF) και Πέμπτη (5NF) Κανονική Μορφή

- Με τη χρήση των συναρτησιακών εξαρτήσεων (functional dependencies -FD) μπορούμε να ορίσουμε 2NF, 3NF και BCNF
- Έχουν μελετηθεί και άλλες εξαρτήσεις:
 - πλειότιμες εξαρτήσεις (Multi-Valued Dependencies MVD),
 - εξαρτήσεις συνένωσης (Join Dependencies),
 - εξαρτήσεις εγκλεισμού (Inclusion Dependencies), ...
- Αυτές οι εξαρτήσεις μας πάνε σε περαιτέρω κανονικές μορφές, 4NF και
 5NF
 - Έχουν μελετηθεί θεωρητικά αλλά ...
 - ... δεν είναι στους σκοπούς του μαθήματος !!

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

60

Καθολική διαδικασία σχεδίασης ΒΔ

- Οι στόχοι στη σχεδίαση σχεσιακών ΒΔ είναι:
 - BCNF
 - Σύνδεση χωρίς απώλεια πληροφορίας
 - Διατήρηση εξαρτήσεων
- Αν δεν μπορούμε να τα πετύχουμε, κάνουμε υποχωρήσεις:
 - Μη διατήρηση κάποιων εξαρτήσεων
 - 3NF αντί BCNF (πλεονασμός ...)
- Ας σημειωθεί ότι η SQL δεν παρέχει κάποιον άμεσο τρόπο να προδιαγραφούν οι συναρτησιακές εξαρτήσεις, πέρα από τους περιορισμούς του κλειδιού.
 - Μπορούν να προδιαγραφούν με assertions, αλλά ο έλεγχός τους κοστίζει

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

61

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Καθολική διαδικασία σχεδίασης ΒΔ (συν.)

- Κάνουμε την παραδοχή ότι ο τύπος σχέσης R:
 - θα μπορούσε να προκύψει όταν μετατρέπουμε ένα διάγραμμα E-R σε ένα σύνολο πινάκων.
 - θα μπορούσε να θεωρηθεί ως μία και μόνη σχέση που περιέχει όλα τα χαρακτηριστικά που μας ενδιαφέρουν στη BΔ (ονομάζεται καθολική σχέση universal relation).
 - θα μπορούσε να είναι το αποτέλεσμα κάποιων σχεδιαστικών αποφάσεων στην πορεία ελέγχου ή μετατροπής μιας σχέσης σε κάποια κανονική μορφή

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

62

Η προσέγγιση της καθολικής σχέσης

- Η σχέση $r_1\bowtie r_2\bowtie\ldots\bowtie r_n$ ονομάζεται καθολική σχέση (universal relation) καθώς εμπλέκει όλα τα χαρακτηριστικά της ΒΔ όπως ορίζονται από το $R_1 \cup R_2 \cup ... \cup R_n$
- «άκυρες» πλειάδες πλειάδες που "εξαφανίζονται" όταν υπολογίζουμε μια σύνδεση.
 - Έστω r₁ (R₁), r₂ (R₂),, r_n (R_n) ένα σύνολο από σχέσεις
 - Μια πλειάδα r της σχέσης r_i είναι «άκυρη» πλειάδα εάν η r δεν βρίσκεται μέσα στη σχέση:

$$\prod_{Ri} (r_1 \bowtie r_2 \bowtie ... \bowtie r_n)$$

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Παράδειγμα αποσύνθεσης καθολικής σχέσης

- Έστω σε εννοιολογικό επίπεδο έχουν καταγραφεί τα εξής:
 - Οντότητες: customer (<u>customer-name</u>), loan (<u>loan-number</u>, amount), branch (<u>branch-</u> name, branch-city, assets)
 - Συσχετίσεις: customer-loan (τύπου M:N), loan-branch (τύπου N:1)
- Το σχήμα καθολικής σχέσης που προκύπτει είναι:
 - U = (branch-name, branch-city, assets, <u>customer-name</u>, <u>loan-number</u>, amount)
- Ένα στιγμιότυπο της σχέσης:

branch-name	branch-city	assets	customer- name	loan- number	amount
Downtown	Brooklyn	9000000	Jones	L-17	1000
Redwood	Palo Alto	2100000	Smith	L-23	2000
Perryridge	Horseneck	1700000	Hayes	L-15	1500
Downtown	Brooklyn	9000000	Jackson	L-14	1500

Έλεγχος για 2NF -> ??

για 3NF **→** ??

για BCNF **→** ??

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

Μοντέλο Ε-R και Κανονικοποίηση

- Όταν το διάγραμμα Ε-R σχεδιάζεται προσεκτικά, με επιτυχή εντοπισμό των οντοτήτων, οι πίνακες που προκύπτουν δεν χρειάζονται περαιτέρω κανονικοποίηση
- Όμως, σε πραγματικές καταστάσεις, μπορούν να υπάρχουν συναρτησιακές εξαρτήσεις από χαρακτηριστικά που δεν είναι κλειδιά προς άλλα χαρακτηριστικά μιας οντότητας
 - π.χ. οντότητα employee με χαρακτηριστικά department-number και department-address και με τη συναρτησιακή εξάρτηση department-number → department-address
 - Ένας καλός σχεδιασμός θα είχε αναγνωρίσει το department ως οντότητα

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

65

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

Απο-κανονικοποίηση (denormalization) για λόγους απόδοσης

- Μερικές φορές για λόγους απόδοσης προτιμούμε μη κανονικοποιημένα σχήματα
 - π.χ. αν θέλουμε τα customer-name, account-number και balance να είναι μαζί στο αποτέλεσμα μιας ερώτησης απαιτείται account ⋈ depositor
- 1° εναλλακτικό: απο-κανονικοποίηση με τα χαρακτηριστικά των σχέσεων να είναι μαζί σε μία (μη κανονικοποιημένη) σχέση
 - + μεγαλύτερη ταχύτητα στις ερωτήσεις
 - μεγαλύτερες απαιτήσεις χώρου και χρόνου εκτέλεσης των αλλαγών στη ΒΔ, κίνδυνος σφαλμάτων
- 2° εναλλακτικό : ορισμός μιας υλοποιημένης θεώρησης (materialized view) account ⋈ depositor
 - τα ίδια υπέρ και κατά όπως πριν, εκτός του κινδύνου σφαλμάτων

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

60

Άλλα σχεδιαστικά ζητήματα

- Υπάρχουν προβλήματα που δεν οφείλονται στη (μη) κανονικοποίηση αλλά σε κακή σύλληψη. Παράδειγμα: αντί του πίνακα earnings(company-id, year, amount), να έχουμε
 - 1^η λύση: πολλούς πίνακες: earnings-2000, earnings-2001, earnings-2002, κλπ., που όλοι θα είναι του τύπου (company-id, earnings).
 - Είναι μεν σε BCNF, αλλά καθιστούν δύσκολη την εκτέλεση ερωτήσεων όταν εμπλέκονται πολλά έτη και επιπλέον απαιτείται ένας νέος πίνακας κάθε έτος!
 - 2ⁿ λύση: company-year(company-id, earnings-2000, earnings-2001, earnings-2002)
 - Επίσης σε BCNF, αλλά καθιστούν δύσκολη την εκτέλεση ερωτήσεων όταν εμπλέκονται πολλά έτη και επιπλέον απαιτείται ένα νέο χαρακτηριστικό κάθε έτος!
 - Αποτελεί κλασικό παράδειγμα λειτουργίας crosstab, όπου οι τιμές ενός χαρακτηριστικού γίνονται στήλες
 - Χρησιμοποιείται σε spreadsheets και σε εργαλεία ανάλυσης δεδομένων (βλ. μάθημα επόμενου εξαμήνου)

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

67

ΠΑ.ΠΕΙ. – Γιάννης Θεοδωρίδης

ΤΕΛΟΣ ΕΝΟΤΗΤΑΣ 4

ΒΔ: [4] Σχεδίαση Σχεσιακών ΒΔ

68