2021 秋《计算机硬件基础》

03_1 组合逻辑 作业

-,	填空题		
1,	从结构看,组合逻辑电路由门电路构成,	,不含	不含
	存储电路 , 信号从输入开始单	单向传输到输出。对于组合逻辑电路,任	何时
	刻电路的输出仅由当时的输入信	<u> </u>	
2,	将加在电路若干输入端中的某一个输入	、端的信号变换成相应的一组二进制代码	输出
	的过程叫做编码。		
3,	将二进制代码所表示的信息翻译成对应		_
		<u>2ⁿ</u> 个输出,工作时译码器只允许有	一个
	输出有效。		
4、	输出低电平有效的二-十进制译码器的	输入 2421BCD 码 A3~A0 为 1101 时,其	输出
	$\overline{Y}_0 \sim \overline{Y}_9 = 1111111011$	°	
_,			
1,	组合逻辑电路的竞争-冒险是由于(C)引起的。	
	A、电路不是最简	B、电路有多个输出	
	C、构成电路的逻辑元件存在传输延迟	D、电路使用不同的门电路	
2,	能实现从多个输入端中选出一路作为输出	出的电路称为(C)。	
	A、触发器 B、计数器		
	C、数据选择器 D、译码器		
3,	只考虑本位数而不考虑低位来的进位的加	加法称为(B)。	
	A、全加 B、半加		
	C、全减 D、半减		
4、	如需要判断两个二进制数的大小或相等,	,可以使用(D)电路。	
	A、译码器 B、编码器		
_	C、数据选择器 D、数值比较器		
5,	在下列数中最小的数为 (C)。		
	A. $(101001)_2$ 41 B. $(52)_{842}$		
	C、(00101001) _{8421BCD} 29 D、(233) _{16 563}	3	
_	冶效 上		

三、 问答与计算题

说明:分析与计算题要求写出分析推导过程,给出必要的公式。

1、用 8 选 1 数据选择器 CT74151 实现下列函数: $F(A,B,C,D,E) = \sum m(1,2,3,4,7,8,10,13,14,17,19,20,21,23,24,26,28,30,31)$ **设计思路:**

- 1. 由于 32 位输出需要 5 位的输入,但只给了三路输入,故将函数分为 4 组,依据最高两位 00、01、10、11 进行分组,每组设计一个 CT74151 选择器
- 2. 对于第一组(00),选择器输出包括(001、010、011、100、111);对于第二组(01),选择器输出包括(000、010、101、110);对于第三组(10),选择器输出包括(001、011、100、101、111);对于第四组(11),选择器输出包括(000、010、100、110、111)
- 3. 最后使用一个 CT74151 配合 AB 的输入进行 4 组输出的再选择,选择为函数结果

电路连接:

搭建 74151:

搭建函数电路:

- 2、在三进制数系统中,存在三个数字: 0,1,2。表 1 定义了一个三进制数的半加器。
- (1)设计一个实现此半加器的电路。要求用二进制编码表示三进制数,例如每个三进制数用 2 位表示。令 A = a_1a_0 , B = b_1b_0 , Sum = s_1s_0 , 进位信号 Carry 是二进制信号。编码方案为: 00 = $(0)_3$, 01 = $(1)_3$, 10 = $(2)_3$. 要求电路的成本最低。
 - (2) 使用上述描述的方法,设计一个三进制全加器电路。

表 1 三进制半加器

Α	В	Carry	Sum		
0	0	0	0		
0	1	0	1		
0	2	0	2		
1	0	0	1		
1	1	0	2		
1	2	1	0		
2	0	0	2		
2	1	1	0		
2	2	1	1		

(1)

真值表:

a1	a0	b1	b0	Carry	s1	s0
0	0	0	0	0	0	0
0	0	0	1	0	0	1
0	0	1	0	0	1	0
0	1	0	0	0	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	0	0	1	1	0	0
1	0	1	0	1	0	1

真值表<mark>化简式</mark>:

$$Carry = a_0b_1 + a_1b_0 + a_1b_1$$

 $s_1 = a_0b_0 + a_1\overline{b_0b_1} + \overline{a_0}\overline{a_1}b_1$
 $s_0 = a_1b_1 + \overline{a_0}\overline{a_1}b_0 + a_0\overline{b_0}\overline{b_1}$

半加器电路连接:

设计思路:

使用两个半加器,将第一个半加器的 Sum 输出给第二个半加器,再与输入的 Carry 相加,其产生进位当且仅当 Carry = 1, Sum = 2, 故此时第一个半加器的余数为 0, 但整体会出现 Carry,当然,对于第一个半加器出现 Carry 我们也需要输出,故,我们将两个半加器的 Carry 进行或即可

全加器电路连接:

3、7段数码管是由7个独立的发光管构成的,每个发光管有一个驱动控制信号。当驱动控制信号为高电平(逻辑1)时,则信号对应的发光管发光。现需设计7段数码管的控制电路,使之能够根据4位输入x[3:0]显示0~9,A~F共16个图案。7段数码管控制电路输出信号为各数码管的驱动控制信号,即a,b,c,d,e,f,g。数码管各段的定义和16进制数"F"(对应abcdefg的二进制输出为1110001)的显示如下图所示。

- (1) 请给出7段数码管控制电路的输入输出信号真值表。
- (2) 根据真值表写出各输出信号的逻辑表达式,并化简。

(1) 真值表:

х3	x2	x1	x0	a	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	0	0	0	1	1	0
0	0	1	0	1	0	1	1	0	1	1
0	0	1	1	1	0	0	1	1	1	1
0	1	0	0	0	1	0	0	1	1	1
0	1	0	1	1	1	0	1	1	0	1
0	1	1	0	1	1	1	1	1	0	1
0	1	1	1	1	0	0	0	1	1	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	0	1	1	1	1
1	0	1	0	1	1	1	0	1	1	1
1	0	1	1	0	1	1	1	1	0	1
1	1	0	0	1	1	1	1	0	0	0
1	1	0	1	0	0	1	1	1	1	1
1	1	1	0	1	1	1	1	0	0	1
1	1	1	1	1	1	1	0	0	0	1

(2) 逻辑表达式:

化简为:

$$a = \overline{x_2 x_0} + x_1 \overline{x_3} = x_0 x_2 \overline{x_3} + x_1 x_2 + \overline{x_1} \overline{x_2} x_3 + \overline{x_0} x_3 \\ b = \overline{x_0} \overline{x_1} + \overline{x_1} x_2 \overline{x_3} + \overline{x_0} x_2 + \overline{x_2} x_3 + x_1 x_3 \\ c = \overline{x_0} \overline{x_2} + \overline{x_0} x_1 + x_1 x_3 + x_2 x_3 \\ d = \overline{x_0} \overline{x_2} \overline{x_3} + x_0 x_1 \overline{x_2} + x_0 \overline{x_1} x_2 + \overline{x_0} x_1 x_2 + \overline{x_1} x_3 \\ e = \overline{x_1} \overline{x_3} + x_0 \overline{x_3} + x_0 \overline{x_1} + x_2 \overline{x_3} + x_0 \overline{x_1} x_3 \\ f = \overline{x_2} \overline{x_3} + \overline{x_1} \overline{x_0} \overline{x_3} + \overline{x_0} \overline{x_2} + x_0 x_1 \overline{x_3} + x_0 \overline{x_1} x_3 \\ g = x_1 \overline{x_2} + \overline{x_0} x_1 + \overline{x_1} x_2 \overline{x_3} + \overline{x_2} x_3 + x_0 x_3$$