

# Chapter 12: Dynamic Programming Part 2

Dr. Sirasit Lochanachit



#### **Dynamic Programming**

- Dynamic Programming solves a given complex problem by breaking it into subproblems and stores the results of subproblems so that we do not have to re-compute the same results again.
- 2 Main properties of a problem that can be solved using DP:
  - a. Overlapping Subproblems
  - b. Optimal Substructure



#### **Overlapping Subproblems**

- Similar to divide and conquer, DP combines solutions to sub-problems.
- DP is mainly used when solutions of same subproblems are needed.
  - Computed solutions to subproblems are stored in a table.
  - DP is not useful when there are no common subproblems (overlapping).
    - For example, binary search.



#### Fibonacci Number

```
def fibonacci(n):
    if n <= 1:
        return n
    else:
        return fibonacci(n-1) + fibonacci(n-2) # Recursion = 2<sup>n</sup> (Exponential)
```



#### **Overlapping Subproblems**

- There are 2 ways to store the values for reuse:
  - a. Memoization (Top Down)
    - A small modification on recursive solution by adding a lookup table.
    - The algorithm looks into the lookup table before computing solutions.
  - b. Tabulation (Bottom Up)
    - Builds a table starting from the first entry, then adding entries one by one as it solves more subproblems.



#### **Memoization**

```
def fib(n, lookup):
```

```
if n == 0 or n == 1:  # Base case
    lookup[n] = n
if lookup[n] is None:
    lookup[n] = fib(n-1 , lookup) + fib(n-2 , lookup)
return lookup[n]
```

```
lookup = [None]*(6)
fib(5, lookup)
```



#### **Tabulation**

def fibonacci\_DP(n):

$$f[0] = 0$$
  
 $f[1] = 1$   
for i in range(2, n+1)  
 $f[i] = f[i-1] + f[i-2]$   
return f[i]

# n (Linear)



## **Optimal Substructure**

- A given problem has optimal substructure if an optimal solution can be obtained by using optimal solutions of its subproblems.
  - For example, the shortest path has an optimal substructure property.





#### **Optimal Substructure**

- On the other hand, the Longest Path problem doesn't have the optimal substructure property.
  - Longest Path means the longest simple path (without cycle) between two nodes.

There are 2 longest paths from q to t:  $q \rightarrow r \rightarrow t$  and  $q \rightarrow s \rightarrow t$ .

For example, the longest path  $q \rightarrow r \rightarrow t$  is not a combination of longest path from q to r and longest path from r to t, because the longest path from q to r is  $q \rightarrow s \rightarrow t \rightarrow r$  and the longest path from r to t is  $r \rightarrow q \rightarrow s \rightarrow t$ .

# Longest Common Subsequence (LCS)

- A common text-processing problem is to test the similarity between 2 text strings.
  - 2 strings could correspond to 2 strands of DNA, for which we want to compute similarities.
  - They could also come from 2 versions of source code for the same program, for which we want to determine changes made from one version to the next.

#### Faculty of Information Technology King Monglut's Institute of Technologial Ladizabang

## Longest Common Subsequence (LCS)

- Given a string  $X = x_0 x_1 x_2 \dots x_{n-1}$ , a **subsequence** of X is any string that is of the form  $x_{i1} x_{i2} \dots x_{ik}$ , where  $i_i < i_{i+1}$ 
  - it is a sequence of characters that are not necessarily contiguous but are nevertheless taken in order from *X*.

For example, the string AAAG is a subsequence of the string CGATAATTGAGA.

Another example is 'abc', 'abg', 'bdf' are subsequences of 'abcdefg'.

# Longest Common Subsequence (LCS)

- 12
- In the **Longest Common Subsequence (LCS)** problem, given 2 character strings  $X = x_0 x_1 x_2 \dots x_{n-1}$  and  $Y = y_0 y_1 y_2 \dots y_{m-1}$  over some alphabet, determine the longest string S that is a subsequence of both X and Y.
  - One way to solve this is to enumerate all subsequences of *X* and take the largest one that is also a subsequence of *Y*.
  - $\circ$  First, find the number of subsequences with lengths ranging from 1 to n-1.
    - Based on combination theory, a string of length n has 2<sup>n</sup> -1 different possible subsequences.
      - Excluding the subsequence with length 0.

#### Faculty of Information Technology King Mongbut's Institute of Technology Laddrabang

## Longest Common Subsequence (LCS)

- In the **Longest Common Subsequence (LCS)** problem, given 2 character strings  $X = x_0 x_1 x_2 \dots x_{n-1}$  and  $Y = y_0 y_1 y_2 \dots y_{m-1}$  over some alphabet, determine the longest string S that is a subsequence of both X and Y.
  - One way to solve this is to enumerate all subsequences of X and take the largest one that is also a subsequence of Y.
    - Since each character of X is either in or not in a subsequence, there are potentially  $2^n$  different subsequences of X, each of which requires O(m) time to determine whether it is a subsequence of Y.
    - Thus, this brute-force approach yields an exponential-time algorithm that runs in  $O(2^n m)$  time.

# Longest Common Subsequence (LCS)

Examples:

LCS for 'ABCDGH' and 'AEDFHR' is?

LCS for 'AGGTAB' and 'GXTXAYB' is?



#### **Optimal Substructure for LCS**

Following is the recursive definition of L(X[0..n-1], Y[0..m-1]).

- If last characters of both sequences match (or X[n-1] == Y[m-1])
  - $\circ$  Then L(X[0..n-1], Y[0..m-1]) = 1 + L(X[0..n-2], Y[0..m-2])
- If last characters of both sequences do not match (or X[n-1] != Y[m-1])
  - $\qquad \qquad \text{Then L}(X[0..n-1], Y[0..m-1]) = \\ \\ \qquad \qquad \qquad MAX(L(X[0..n-2], Y[0..m-1]), L(X[0..n-1], Y[0..m-2]))$



# **Optimal Substructure for LCS**

Consider the input strings 'AGGTAB' and 'GXTXAYB'.

L('AGGTAB', 'GXTXAYB') = 1 + L('AGGTA', 'GXTXAY')

|   | Α | G            | G            | T          | A   | В  |
|---|---|--------------|--------------|------------|-----|----|
| G | _ | -            | 4            | -          | 2   | -  |
| X | - | ; <b>-</b> 0 | -1           | <b>%</b> - | -   | -  |
| Т | - | 2.50         | <b>:-</b> :: | 3          | -   | ,- |
| X | - | -            | ( <b>-</b>   | (6-        | -81 | 10 |
| A | - | 520          | -            | -          | 2   | -  |
| Υ | - | -            | -            | 0-         | -   | ·  |
| В | - | 2.500        | ·            |            | -   | 1  |



#### **Optimal Substructure for LCS**

Consider the input strings 'ABCDGH' and 'AEDFHR'.

MAX(L('ABCDG', 'AEDFHR'), L('ABCDGH', 'AEDFH'))



#### **LCS Implementation**

```
def lcs(X, Y, n, m):
    if n == 0 or m == 0:
        return 0;
    elif X[n-1] == Y[m-1]:
        return 1 + lcs(X, Y, n-1, m-1);
    else:
        return max(lcs(X, Y, n, m-1), lcs(X, Y, n-1, m));
```



#### **LCS DP Implementation**

```
 \begin{aligned} &\text{def lcs}(X\,,\,Y): \\ &n,\,m = \text{len}(X)\,,\,\text{len}(Y) \\ &L = [[0]^*\,(m+1)\,\,\text{for i in range}(n+1)] \qquad \#\,(n+1)\,\,x\,\,(m+1)\,\,\text{table} \\ &\text{"""Note:}\,\,L[i][j]\,\,\text{contains length of LCS of X}[0..i-1]\,\,\text{and Y}[0..j-1]""" \\ &\text{for i in range}(n): \\ &\text{for j in range}(m): \\ &\text{if X}[i] == Y[j]: \\ &L[i+1][j+1] = L[i][j]+1 \\ &\text{else:} \\ &L[i+1][j+1] = \max(L[i][j+1]\,,\,L[i+1][j]) \\ &\text{return L}[n][m] \qquad \#\text{length of a LCS of X and Y} \end{aligned}
```