

조건문

변수값 확인 방법

조건문


```
if(조건) {
실행문1;
} else {
실행문2;
}
```

조건에 만족하면

실행문1을 실행하고,

그렇지 않으면

실행문2를 실행한다.

```
◎ if_ex | 아두이노 1.8.12
                                                          \times
                                                    파일 편집 스케치 둘 도움말
                                                         Ø
void setup() {
  Serial.begin(9600);
 void loop() {
  int score=90;
  String grade="F";
  if (score>89) {
    grade="A";
  else{
  Serial.println(grade);
  delay(1000);
업로드 완료.
스케치는 프로그램 저장 공간 2990 바이트(9%)를 사용. 최대 32256 바이트.
전역 변수는 동적 메모리 202바이트(9%)를 사용, 1846바이트의 지역변수가 남음
<
                                             Arduino Uno on COM3
```


버튼 사용하기 예제

버튼을 사용하여 LED의 불을 켰다 껐다 할 수 있습니다. 버튼을 사용하여 LED의 조명 순서와 지연시간을 조정할 수 있습니다.

버튼의 특징

평소에는 전류가 흐르지 않다가 눌리면 전류가 흐르도록 하는 전자부품입니다.

누르지 않았을 때는 4개의 다리가 서로 연결 이 안되어 있어요.

가운데 있는 부분을 누르면 4개의 다리가 모 두 연결 됩니다.

버튼을 이용해 디지털 신호 입력을 제어할 수 있습니다.

버튼의 원리

a

(b)

준비물 (버튼/ 버튼+LED)

NOTICE!: LED에는 극성이 있다는 점 다시 한번 주의해 주세요!

하드웨어를 만들어봅시다.

usb케이블을 빼고 시작하겠습니다.

버튼을 누르면 LED에 불이 들어오고, 버튼을 떼면 불이 꺼지도록 연결하세요. 코딩후 확인해보세요.

레시피) 버튼을 누르면 LED가 켜지는 미니 손전등을 만들어봅시다.

- 1. LED를 앞장과 같은 방법으로 13번 핀에 연결합니다. **저항을 이용하여 GND에 연결도 꼭 하셔야 합니다.**
- 2. 버튼을 브레드보드에 가로줄이 갈라진 가운데에 놓이도록 꽂아줍니다.
- 3. 10k 옴 저항을 디귿(c)자로 구부린 뒤 한 쪽을 버튼의 다리가 있는 줄에 연결되도록 꽃아 줍니다.
- 4. 8번 핀에 점퍼 와이어를 연결하고, 반대편을 10k 옴 저항과 버튼의 한쪽 다리가 함께 있는 가로 줄에 꽃아줍니다.
- 5. 10k 옴 저항만 꽂혀있는 줄에 새로운 점퍼 와이어를 꽂고, 반대쪽을 아두이노 보드의 그라운드 핀과 연결된 세 로줄에 꽂아 줍니다.
- 6. 5V 전원 핀에 점퍼 와이어를 연결하고, 반대편을 버튼 다리만 꽂혀있는 가로줄에 꽂아줍니다.
- 7. 보여드리는 대로 프로그램을 코딩 해주세요.
- 8. 아두이노와 PC를 연결해 주세요.
- 9. 스케치 상단의 "확인" 버튼과 "업로드" 버튼을 누릅니다.
- 10.LED가 1초 간격으로 반짝거립니다.

- ① 버튼을 눌러 값이 입력되기 때문에 입력(INPUT)으로 설정합니다.
- ② 버튼의 상태에 따라 LED가 켜지고 꺼지기 때문에 출력(OUTPUT)으로 설정합니다.
- ③ 버튼이 눌러졌으면 (HIGH) LED가 켜지도록 합니다.
- ④ 버튼이 눌러지지 않았으면 (LOW) LED의 변화가 없도록 합니다.
- ⑤ ③~ ④의 단계를 반복합니다.

7) 버튼을 눌러 LED를 켜기 코딩

정수형 변수 value를 만들어 8핀으로 입력받는 값을 저장한다.

8번핀이 눌리면 5V 전기가 들어온다. (5V=HIGH) →

```
    Blink | 아두이노 1.6.6

void setup() {
 pinMode(13, OUTPUT);
 pinMode(8, INPUT);
void loop() {
 int value = digitalRead(8);
 if(value == HIGH) {
   digitalWrite(13, HIGH);
 } else {
   digitalWrite(13, LOW);
```

 \rightarrow

8) 최종실행과정 -1

- ① 아두이노의 USB를 PC와 연결하세요
- ② 프로그램을 확인하여 컴파일 하세요
- ③ 프로그램을 업로드 하여 코드를 아두이노 보드로 업로드 하세요.

버튼을 누르면 LED에 불이 들어오고, 버튼을 떼면 불이 꺼지도록 연결하세요. 코딩후 확인해보세요.

버튼 사용하기 실습문제

하드웨어를 만들어봅시다.

LED 2개를 2번 3번에 각각 연결하고 8번 핀에 연결된 버튼을 누르면 2개가 동시에 켜질 수 있도록 아두이노를 연결하고, 코딩 하여 결과를 확인해 보세요.

LED 2개를 2번 3번에 각각 연결하고 8번 핀에 연결된 버튼을 누르면 2개가 동시에 켜질 수 있도록 아두이노를 연결하고, 코딩 하여 결과를 확인해 보세요.

소프트웨어를 만들어봅시다.

- 1. 셋업함수에서 핀모드 함수 호출
- 8번-INPUT
- 2,3번-OUTPUT
- 2. loop 함수에서 digitalRead 함수를 이용 8번핀의 상태값을 읽어 온다
- 8번핀의 값이 HIGH 이면- 2-3번 핀에 HIGH값 주기
- 8번핀의 값이 LOW 이면- 2-3번 핀에 LOW값 주기

8) 최종실행과정 -1

- ① 아두이노의 USB를 PC와 연결하세요
- ② 프로그램을 확인하여 컴파일 하세요
- ③ 프로그램을 업로드 하여 코드를 아두이노 보드로 업로드 하세요.

실습 스케치

버튼을 누르는 동안에만 2 개의 버튼이 동시에 켜진다.

```
  Blink | 아두이노 1.6.6

                                              ×
파일 편집 스케치 툴 도움말
void setup() {
 pinMode(8, INPUT);
 pinMode(2, OUTPUT);
 pinMode(3, OUTPUT);
void loop() {
 int value = digitalRead(8);
 if (value == HIGH) {
   digitalWrite(2, HIGH);
   digitalWrite(3, HIGH);
 } else {
   digitalWrite(2, LOW);
   digitalWrite(3, LOW);
```


LED 2개를 2번 3번에 각각 연결하고 8번 핀에 연결된 버튼을 누르면 2개가 동시에 켜질 수 있도록 아두이노를 연결하고, 코딩 하여 결과를 확인해 보세요.

사용한 코드를 정리해 봅시다.


```
void setup(){
void loop() {}
pinMode(핀번호, 입출력모드)
digitalWrite(핀번호, 상태)
digitalRead(핀번호)
analogWrite(핀번호, 상태)
delay(지연시간)
```


pinMode(13, INPUT);

pinMode

디지털 핀의 용도를 설정하는 명령어.

매개변수는 (핀 번호, INPUT(0) 또는 OUTPUT(1)). 13번 소켓을 통해서 입력된다는 설정

digitalWrite(13, LOW);

digitalWrite

디지털 신호를 출력할 때 사용하는 명령어.

매개변수는 (핀 번호, 출력할 전압 LOW(0V) 또는 HIGH(5V)). 13번 소켓을 통해서 입력된다는 설정 0V 전압이 출력된다는 뜻.

digitalRead(13);

digitalRead

디지털 신호 입력값을 읽어들일 때 사용하는 명령어. 매개변수는 (핀 번호). a = digitalRead(13); 13번 소켓을 통해서 깂을 읽어들이고 이것을 a 에 반환한다는 뜻 디지털 신호이기 때문에 0 또는 1, 즉 LOW 또는 HIGH 값이 들어올 수 있다.

3색 LED 예제

3색 LED를 사용해봅시다.

<u>삼색 LED</u>도 있어요

빛3가지 색: 빨강, 초록, 파랑

컴컴퓨터 모니터, TV도 바로 이 세가지 색을 조합해 다양한 색을 만듭니다.

RGB 색상표

Color	HTML / CSS Name	Hex Code #RRGGBB	Decimal Code (R,G,B)
	Black	#000000	(0,0,0)
	White	#FFFFFF	(255,255,255)
	Red	#FF0000	(255,0,0)
	Lime	#00FF00	(0,255,0)
	Blue	#0000FF	(0,0,255)
	Yellow	#FFFF00	(255,255,0)
	Cyan / Aqua	#00FFFF	(0,255,255)
	Magenta / Fuchsia	#FF00FF	(255,0,255)
	Silver	#C0C0C0	(192,192,192)
	Gray	#808080	(128,128,128)
	Maroon	#800000	(128,0,0)
	Olive	#808000	(128,128,0)
	Green	#008000	(0,128,0)
	Purple	#800080	(128,0,128)
	Teal	#008080	(0,128,128)
	Navy	#000080	(0,0,128)

단색 LED 말고 <u>삼색 LED</u>도 있어요.

빛의 3가지 색을 이용해 다양한 색으로 빛을 내는 LED

삼색 LED의 다리 3개는 각각 빨강, 초록, 파랑의 빛을 제어 하여 다리들의 전압을 조절해 색의 양을 바꿈

준비물

삼색 LED 1개 수수 점퍼 와이어 4개

브레드보드 1개

하드웨어를 만들어 봅시다

레시피)

- 1) 삼색 LED를 브레드 보드에 부착한다.
- 2) 삼색 LED의 첫 번째 다리와 그라운드를 연결한다.
- 3) 삼색 LED의 두 번째 다리와 11번 핀을 연결한다.
- 4) 삼색 LED의 세 번째 다리와 10번 핀을 연결한다.
- 5) 삼색 LED의 네 번째 다리와 9번 핀을 연결한다.
- 6) 보여드리는 대로 프로그램을 코딩 해주세요.
- 7) 아두이노와 PC를 연결해 주세요.
- 8) 스케치 상단의 "확인" 버튼과 "업로드" 버튼을 누릅니다.
- 9) LED가 1초 간격으로 반짝거립니다

소프트웨어를 만들어 봅시다

G

아두이노 USB연결 후 확인하세요


```
◎ _6-7 | 아두이노 1.6.6
void setup() {
void loop() {
analogWrite(11, 255);
   analogWrite(10, 0);
   analogWrite(9, 0);
   delay(1000);
   analogWrite(11, 0);
   analogWrite(10, 255);
   analogWrite(9, 0);
   delay(1000);
   analogWrite(11, 0);
   analogWrite(10, 0);
   analogWrite(9, 255);
   delay(1000);
```


3색 LED 실습문제 (신호등 만들기)

3개의 버튼을 이용하여 빨강, 초록, 파랑의 LED가 각각 켜집니다

버튼으로 제어하는 삼색 LED 신호등 준비물

하드웨어를 만들어 봅시다

레시피) 버튼으로 제어하는 삼색 LED 신호등 만들기

- 1) 아두이노의 그라운드 핀과 전원 핀을 각각 연결합니다.
- 2) 삼색 LED의 각 다리를 그라운드, 11번, 10번, 9번 핀에 연결한다.
- 3) 버튼 세 개를 2,3,4번 핀에 각각 연결한다. (버튼 연결할 때 저항 함께 연결하는 것 잊지 마세요!)
- 4) 보여드리는 대로 프로그램을 코딩 해주세요.
- 5) 아두이노와 PC를 연결해 주세요.
- 6) 스케치 상단의 "확인" 버튼과 "업로드" 버튼을 누릅니다.
- 7) 2번 버튼을 누르면 빨강 빛의, 3번 버튼을 누르면 초록 빛의, 4번 버튼을 누르면 파랑 빛의 LED가 빛납니다.

실행결과

- ① 빨강, 초록, 파랑의 LED를 제어하기 위한 버튼이 연결된 2,3,4번 핀을 입력으로 설정한다. (INPUT)
- ② 2번 핀에 연결된 버튼을 누르면 빨강색 LED가 켜지도록 설정한다. 1초간 불이 들어오고 꺼진다.
- ③ 3번 핀에 연결된 버튼을 누르면 초록색 LED가 켜지도록 설정한다. 1초간 불이 들어오고 꺼진다.
- ④ 4번 핀에 연결된 버튼을 누르면 파랑색 LED가 켜지도록 설정한다. 1초간 불이 들어오고 꺼진다.
- ⑤ ② ~ ⑦의 과정을 반복한다.

소프트웨어를 만들어봅시다


```
◎ _6-7 | 아두이노 1.6.6
                                                 ◎ _6-7 | 아두이노 1.6.6
파일 편집 스케치 툴 도움말
int r = 255, g = 255, b = 255;
void setup() {
 pinMode(2, INPUT);
 pinMode(3, INPUT);
 pinMode(4, INPUT);
void loop() {
 if (digitalRead(2) == HIGH) {
   digitalWrite(11, r);
   delay(1000);
   digitalWrite(11, 0);
```

```
파일 편집 스케치 둘 도움말
if (digitalRead(3) == HIGH) {
   digitalWrite(10, g);
   delay(1000);
   digitalWrite(10, 0);
  if (digitalRead(4) == HIGH) \{
   digitalWrite(9, b);
   delay(1000);
   digitalWrite(9, 0);
```


