Finite groups with few subgroup normality degrees

M. Farrokhi D. G.

Ferdowsi University of Mashhad

Dogus University Istanbul, Turkey February 4-8, 2013

Definition

Let G be a finite group and H be a subgroup of G. The subgroup normality degree of H in G is

$$P_N(H,G) = \frac{|\{(h,g) \in H \times G : h^g \in H\}|}{|H||G|}.$$

Definition

Let G be a finite group and H be a subgroup of G. The subgroup normality degree of H in G is

$$P_N(H,G) = \frac{|\{(h,g) \in H \times G : h^g \in H\}|}{|H||G|}.$$

Remark

If G is a finite group and H is a subgroup of G, then

$$P_N(H,G) = \frac{1}{n} \left(1 + \sum_{i=1}^{n-1} \frac{1}{[H:H \cap H^{g_i^{-1}}]} \right),$$

where $n = [G : N_G(H)]$ and $\{1, g_1, \dots, g_{n-1}\}$ is a left transversal to $N_G(H)$ in G.

Notation

For every finite group *G* let

$$\mathcal{P}_N(G) = \{P_N(H,G) : H \leq G\}$$

and

$$\mathcal{P}_{N}^{*}(G) = \mathcal{P}_{N}(G) \setminus \{1\}.$$

Also, let

$$\mathcal{P}_N = \bigcup_{G \in \mathcal{F}} \mathcal{P}_N(G),$$

were \mathcal{F} is the set of all finite groups.

Notation

For every finite group *G* let

$$\mathcal{P}_N(G) = \{P_N(H,G) : H \le G\}$$

and

$$\mathcal{P}_{N}^{*}(G) = \mathcal{P}_{N}(G) \setminus \{1\}.$$

Also, let

$$\mathcal{P}_N = \bigcup_{G \in \mathcal{F}} \mathcal{P}_N(G),$$

were \mathcal{F} is the set of all finite groups.

Fact

Let G be a finite group. Then $|\mathcal{P}_N(G)| = 1$ if and only if G is a Dedekind group.

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a finite group and H be a subgroup of G. If p is the smallest prime dividing |H|, then

$$\frac{1}{[G:H]} + \frac{1}{|H|} - \frac{1}{|G|} \le P_N(H,G) \le \frac{1}{p} + \left(1 - \frac{1}{p}\right) \frac{1}{[G:N_G(H)]}.$$

¹Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a finite group and H be a subgroup of G. If p is the smallest prime dividing |H|, then

$$\frac{1}{[G:H]} + \frac{1}{|H|} - \frac{1}{|G|} \le P_N(H,G) \le \frac{1}{p} + \left(1 - \frac{1}{p}\right) \frac{1}{[G:N_G(H)]}.$$

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a finite group and H be a non-normal subgroup of G. If q is the smallest prime dividing |G|, then

¹Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a finite group and H be a subgroup of G. If p is the smallest prime dividing |H|, then

$$\frac{1}{[G:H]} + \frac{1}{|H|} - \frac{1}{|G|} \le P_N(H,G) \le \frac{1}{p} + \left(1 - \frac{1}{p}\right) \frac{1}{[G:N_G(H)]}.$$

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a finite group and H be a non-normal subgroup of G. If q is the smallest prime dividing |G|, then

(1) if
$$N_G(H) \leq G$$
, then $P_N(H,G) \leq \frac{2q-1}{q^2} \leq \frac{3}{4}$,

¹Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a finite group and H be a subgroup of G. If p is the smallest prime dividing |H|, then

$$\frac{1}{[G:H]} + \frac{1}{|H|} - \frac{1}{|G|} \le P_N(H,G) \le \frac{1}{p} + \left(1 - \frac{1}{p}\right) \frac{1}{[G:N_G(H)]}.$$

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a finite group and H be a non-normal subgroup of G. If q is the smallest prime dividing |G|, then

(1) if
$$N_G(H) \subseteq G$$
, then $P_N(H,G) \le \frac{2q-1}{q^2} \le \frac{3}{4}$,

(2) if
$$N_G(H) \nleq G$$
, then $P_N(H,G) \leq \frac{2}{q+1} \leq \frac{2}{3}$.

¹Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a non-Abelian finite simple group. Then $\max \mathcal{P}_N^*(G) \leq \frac{8}{15}$ and the equality holds if $G \cong A_5$.

¹Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

Theorem (Saeedi, Farrokhi and Jafari [1])

Let G be a non-Abelian finite simple group. Then $\max \mathcal{P}_N^*(G) \leq \frac{8}{15}$ and the equality holds if $G \cong A_5$.

Conjecture (Saeedi, Farrokhi and Jafari [1])

Let $G \not\cong A_5$ be a non-Abelian finite simple group. Then $\max \mathcal{P}_N^*(G) \leq \frac{11}{21}$ and the equality holds if and only if $G \cong PSL(2,7)$.

¹Subgroup normality degrees of finite groups I, *Arch. Math.* **96** (2011), 215–224.

Conjecture

Conjecture

Let H and K be non-Abelian finite simple groups. Then the following conditions are equivalent:

(1) H and K are isomorphic;

Conjecture

- (1) H and K are isomorphic;
- (2) $\mathcal{P}_N(H) = \mathcal{P}_N(K)$;

Conjecture

- (1) H and K are isomorphic;
- (2) $\mathcal{P}_N(H) = \mathcal{P}_N(K)$;
- (3) $\max \mathcal{P}_N^*(H) = \max \mathcal{P}_N^*(K);$

Conjecture

- (1) H and K are isomorphic;
- (2) $\mathcal{P}_N(H) = \mathcal{P}_N(K)$;
- (3) $\max \mathcal{P}_N^*(H) = \max \mathcal{P}_N^*(K);$
- (4) $\min \mathcal{P}_N(H) = \min \mathcal{P}_N(K)$.

Theorem (Farrokhi and Saeedi [1])

$$\mathcal{P}_{\textit{N}} \cap \left(\frac{1}{2},1\right] = \left\{\frac{1}{2} + \frac{1}{2\mathit{i}}\right\}_{\mathit{i}=1}^{\infty}.$$

¹Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pages.

Theorem (Farrokhi and Saeedi [1])

$$\mathcal{P}_{\textit{N}} \cap \left(\frac{1}{2},1\right] = \left\{\frac{1}{2} + \frac{1}{2\textit{i}}\right\}_{\textit{i}=1}^{\infty}.$$

Conjecture (Farrokhi and Saeedi [1])

The values of \mathcal{P}_N in the interval $(\frac{1}{3}, \frac{1}{2}]$ fall into the following seven sequences

$$\left\{\frac{2i+1}{5i+4}\right\}, \left\{\frac{2i+1}{5i+3}\right\}, \left\{\frac{2i+1}{5i+2}\right\}, \left\{\frac{2i+1}{5i+1}\right\}, \left\{\frac{2i+1}{4i+8}\right\}, \left\{\frac{2i+1}{4i+4}\right\}, \left\{\frac{i}{3i-6}\right\}.$$

¹Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pages.

Theorem (Farrokhi and Saeedi [1])

$$\mathcal{P}_{\textit{N}} \cap \left(\frac{1}{2},1\right] = \left\{\frac{1}{2} + \frac{1}{2\textit{i}}\right\}_{\textit{i}=1}^{\infty}.$$

Conjecture (Farrokhi and Saeedi [1])

The values of \mathcal{P}_N in the interval $(\frac{1}{3},\frac{1}{2}]$ fall into the following seven sequences

$$\left\{\frac{2i+1}{5i+4}\right\}, \left\{\frac{2i+1}{5i+3}\right\}, \left\{\frac{2i+1}{5i+2}\right\}, \left\{\frac{2i+1}{5i+1}\right\}, \left\{\frac{2i+1}{4i+8}\right\}, \left\{\frac{2i+1}{4i+4}\right\}, \left\{\frac{i}{3i-6}\right\}.$$

Conjecture (Farrokhi and Saeedi [1])

For each natural number n, the set $\mathcal{P}_N \cap \left(\frac{1}{n+1}, \frac{1}{n}\right]$ is a union of some finitely many sequences of the form $\{(ai+b)/(ci+d)\}_{i=1}^{\infty}$.

¹Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pages.

Theorem (Farrokhi and Saeedi [1])

If G is a finite group such that $\mathcal{P}_N^*(G) \subseteq (0, \frac{1}{2}]$ or $(\frac{3}{10}, 1)$, then G is a solvable group. Moreover both of the intervals are sharp.

¹Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pages.

Theorem (Farrokhi and Saeedi [1])

If G is a finite group such that $\mathcal{P}_N^*(G) \subseteq (0, \frac{1}{2}]$ or $(\frac{3}{10}, 1)$, then G is a solvable group. Moreover both of the intervals are sharp.

Corollary

If G is a finite non-solvable group, then

$$\mathcal{P}_{N}^{*}(G)\cap\left(0,rac{3}{10}
ight]
eq\emptyset$$
 and $\mathcal{P}_{N}^{*}(G)\cap\left(rac{1}{2},1
ight)
eq\emptyset.$

¹Subgroup normality degrees of finite groups II, *J. Algebra Appl.* 11(4) (2012), 8 pages.

Corollary

If G is a finite group with two subgroup normality degrees, then G is solvable.

Corollary

If G is a finite group with two subgroup normality degrees, then G is solvable.

Conjecture

If G is a finite group with at most four subgroup normality degrees, then G is solvable with fairly restricted structure.

Lemma

Let G_1 and G_2 be two finite groups. If $H_1 \leq G_1$ and $H_2 \leq G_2$, then

$$P_N(H_1 \times H_2, G_1 \times G_2) = P_N(H_1, G_1) \times P_N(H_2, G_2).$$

Lemma

Let G_1 and G_2 be two finite groups. If $H_1 \leq G_1$ and $H_2 \leq G_2$, then

$$P_N(H_1 \times H_2, G_1 \times G_2) = P_N(H_1, G_1) \times P_N(H_2, G_2).$$

Lemma

Let G be a group. If $N \leq H \leq G$ such that $N \leq G$, then

$$P_N(H,G) = P_N\left(\frac{H}{N},\frac{G}{N}\right).$$

Lemma

Let G be a finite group. If $|\mathcal{P}_N(G)| = 2$ and $x \in G$ is a p-element, then $\langle x^p \rangle \subseteq G$. In particular $P_N(\langle x \rangle, G) = \frac{1}{p} + \frac{1}{d} - \frac{1}{pd}$, where $d = [G : N_G(\langle x \rangle)]$.

Lemma

Let G be a finite group. If $|\mathcal{P}_N(G)| = 2$ and $x \in G$ is a p-element, then $\langle x^p \rangle \leq G$. In particular $P_N(\langle x \rangle, G) = \frac{1}{p} + \frac{1}{d} - \frac{1}{pd}$, where $d = [G : N_G(\langle x \rangle)]$.

Lemma

Let G be a finite group. If $|\mathcal{P}_N(G)| = 2$ and $x \in G$ is a p-element such that $\langle x \rangle \not \triangleq G$, then $N_G(\langle x \rangle)/C_G(x)$ is a p-group of order less than |x|.

■ A_{pq} is the non-Abelian group of order pq, in which p and q are distinct primes,

- A_{pq} is the non-Abelian group of order pq, in which p and q are distinct primes,
- lacksquare is a 2-group of order 16 with the following presentation

$$\mathcal{B} = \langle a, b, c, d : a^2 = b^2 = c^2 = 1, d^2 = a, (cd)^2 = b, [a, b] = [a, c] = [b, c] = 1 \rangle,$$

- A_{pq} is the non-Abelian group of order pq, in which p and q are distinct primes,
- $f \mathcal{B}$ is a 2-group of order 16 with the following presentation

$$\mathcal{B} = \langle a, b, c, d : a^2 = b^2 = c^2 = 1, d^2 = a, (cd)^2 = b, [a, b] = [a, c] = [b, c] = 1 \rangle,$$

 $\ \ \mathcal{C}$ is an extra special 2-group of order 32 with the following presentation

$$\mathcal{C} = \langle a, b, c, d : a^2 = b^2 = c^4 = d^4 = [\{a, b\}, \{c, d\}] = 1, [a, b] = [c, d] = c^2 = d^2 \rangle,$$

- A_{pq} is the non-Abelian group of order pq, in which p and q are distinct primes,
- $f \mathcal{B}$ is a 2-group of order 16 with the following presentation

$$\mathcal{B} = \langle a, b, c, d : a^2 = b^2 = c^2 = 1, d^2 = a, (cd)^2 = b, [a, b] = [a, c] = [b, c] = 1 \rangle,$$

 $\ \ \mathcal{C}$ is an extra special 2-group of order 32 with the following presentation

$$\mathcal{C} = \langle a, b, c, d : a^2 = b^2 = c^4 = d^4 = [\{a, b\}, \{c, d\}] = 1, [a, b] = [c, d] = c^2 = d^2 \rangle,$$

 ${f D}$ is a special 2-group of order 64 with the following presentation

$$\mathcal{D} = \langle a, b, c, d : a^4 = b^4 = [a, b] = 1, a^2 = c^2 = (bc)^2,$$
$$b^2 = d^2 = (ad)^2 = (cd)^2, [a, c] = [b, d] = a^2b^2 \rangle$$

- A_{pq} is the non-Abelian group of order pq, in which p and q are distinct primes,
- $f \mathcal{B}$ is a 2-group of order 16 with the following presentation

$$\mathcal{B} = \langle a, b, c, d : a^2 = b^2 = c^2 = 1, d^2 = a, (cd)^2 = b, [a, b] = [a, c] = [b, c] = 1 \rangle,$$

 $\ \ \mathcal{C}$ is an extra special 2-group of order 32 with the following presentation

$$\mathcal{C} = \langle a, b, c, d : a^2 = b^2 = c^4 = d^4 = [\{a, b\}, \{c, d\}] = 1, [a, b] = [c, d] = c^2 = d^2 \rangle,$$

 ${f D}$ is a special 2-group of order 64 with the following presentation

$$\mathcal{D} = \langle a, b, c, d : a^4 = b^4 = [a, b] = 1, a^2 = c^2 = (bc)^2,$$
$$b^2 = d^2 = (ad)^2 = (cd)^2, [a, c] = [b, d] = a^2b^2 \rangle$$

• \mathcal{E}_p is the non-abelian p-group of order p^3 and exponent p.

Main results

Theorem

Let G be a finite group. If $|\mathcal{P}_N(G)| = 2$, then either G is a nilpotent group or the hypercentral factor of G is isomorphic to \mathcal{A}_{pq} , for some distinct primes p and q.

Main results

Non-nilpotent case

Main Theorem

Let G be a finite non-nilpotent group. Then $|\mathcal{P}_N(G)|=2$ if and only if $G=PQ\times R_1\times\cdots\times R_n$, where P,Q,R_1,\ldots,R_n are Dedekind Sylow p,q,r_1,\ldots,r_n -subgroups of G (p>q), respectively, and either

where p, q, r_1, \ldots, r_n are distinct primes.

Main Theorem

Let G be a finite non-nilpotent group. Then $|\mathcal{P}_N(G)|=2$ if and only if $G=PQ\times R_1\times\cdots\times R_n$, where P,Q,R_1,\ldots,R_n are Dedekind Sylow p,q,r_1,\ldots,r_n -subgroups of G (p>q), respectively, and either

(1)
$$G/Z(G) \cong A_{pq}$$
 if Q, R_1, \ldots, R_n are Abelian;

where p, q, r_1, \ldots, r_n are distinct primes.

Main Theorem

Let G be a finite non-nilpotent group. Then $|\mathcal{P}_N(G)|=2$ if and only if $G=PQ\times R_1\times\cdots\times R_n$, where P,Q,R_1,\ldots,R_n are Dedekind Sylow p,q,r_1,\ldots,r_n -subgroups of G (p>q), respectively, and either

- (1) $G/Z(G) \cong A_{pq}$ if Q, R_1, \ldots, R_n are Abelian;
- (2) $G/Z(G) \cong \mathcal{A}_{pq} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ if Q is Abelian and R_i is a Hamiltonian 2-group for some i and R_j is Abelian if $j \neq i$;

where p, q, r_1, \ldots, r_n are distinct primes.

Main Theorem

Let G be a finite non-nilpotent group. Then $|\mathcal{P}_N(G)|=2$ if and only if $G=PQ\times R_1\times\cdots\times R_n$, where P,Q,R_1,\ldots,R_n are Dedekind Sylow p,q,r_1,\ldots,r_n -subgroups of G (p>q), respectively, and either

- (1) $G/Z(G) \cong A_{pq}$ if Q, R_1, \ldots, R_n are Abelian;
- (2) $G/Z(G) \cong \mathcal{A}_{pq} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ if Q is Abelian and R_i is a Hamiltonian 2-group for some i and R_j is Abelian if $j \neq i$;
- (3) $G/Z(G) \cong \mathcal{A}_{2p} \times \mathbb{Z}_2$ or $\mathcal{A}_{2p} \times \mathbb{Z}_2 \times \mathbb{Z}_2$ if Q is a Hamiltonian 2-group,

where p, q, r_1, \dots, r_n are distinct primes.

Nilpotent case

Notation

For every group G, the set of all non-normal subgroups of G is denoted by $\mathcal{N}(G)$ that is $\mathcal{N}(G) = \{H \leq G : H \not \trianglelefteq G\}$.

Nilpotent case

Notation

For every group G, the set of all non-normal subgroups of G is denoted by $\mathcal{N}(G)$ that is $\mathcal{N}(G) = \{H \leq G : H \not \trianglelefteq G\}$.

Lemma

Let G be a finite p-group. Then $|\mathcal{P}_N(G)|=2$ if and only if $[G:N_G(H)]=p$ and $[H:H\cap H^g]=p$ for each $H\in\mathcal{N}(G)$ and $g\in G\setminus N_G(H)$.

Nilpotent case

Notation

For every group G, the set of all non-normal subgroups of G is denoted by $\mathcal{N}(G)$ that is $\mathcal{N}(G) = \{H \leq G : H \not \trianglelefteq G\}$.

Lemma

Let G be a finite p-group. Then $|\mathcal{P}_N(G)| = 2$ if and only if $[G:N_G(H)] = p$ and $[H:H\cap H^g] = p$ for each $H \in \mathcal{N}(G)$ and $g \in G \setminus N_G(H)$.

Lemma

Let G be a finite p-group. If $|\mathcal{P}_N(G)| = 2$ and $H \leq Z_2(G)$ is an elementary Abelian subgroup of order p^2 , then $H \cap Z(G) \neq 1$.

Nilpotent case

Definition

A finite group G has cyclic (subgroup) breadth 1 if the normalizer of any cycle (subgroup) is a maximal subgroup of G.

Nilpotent case

Definition

A finite group G has cyclic (subgroup) breadth 1 if the normalizer of any cycle (subgroup) is a maximal subgroup of G.

Corollary

A finite p-group G with two subgroup normality degrees has subgroup breadth 1.

Nilpotent case

Theorem (Cutolo, Smith and Wiegold [1], Cooper [3])

If G is a finite group with cyclic-breadth 1, then $\Phi(G) \subseteq Z_2(G)$. In particular, G is of nilpotent class at most 3.

¹The nilpotency class of *p*-groups in which subgroups have few conjugates, *J. Algebra* **300**(1) (2006), 160–170.

²On finite *p*-groups with subgroups of breadth 1, *Bull. Aust. Math. Soc.* **80** (2010), 84–98.

³Power automorphisms of a group, *Math. Z.* **107** (1968), 335–356. ■ ▶

Theorem (Cutolo, Smith and Wiegold [1], Cooper [3])

If G is a finite group with cyclic-breadth 1, then $\Phi(G) \subseteq Z_2(G)$. In particular, G is of nilpotent class at most 3.

Lemma (Cutolo, Smith and Wiegold [2, Lemma 1])

Let G be a finite p-group of cyclic breadth 1. Then the exponent of G/Z(G) is p, if p is odd or p = cl(G) = 2 and is 4, if p = 2 and cl(G) = 3.

 $^{^{1}}$ The nilpotency class of p-groups in which subgroups have few conjugates, J. Algebra **300**(1) (2006), 160–170.

²On finite *p*-groups with subgroups of breadth 1, *Bull. Aust. Math. Soc.* **80** (2010), 84–98.

³Power automorphisms of a group, *Math. Z.* **107** (1968)₅335–356. ■ ▶ ■

Nilpotent case

Lemma (Cutolo, Smith and Wiegold [1, Theorem A])

Let G be a finite p-group of cyclic breadth 1. Then $|G'| \leq p^2$ and consequently $[G:C_G(g)] \leq p^2$ for each $g \in G$.

¹On finite *p*-groups with subgroups of breadth 1, *Bull. Aust. Math. Soc.* **80** (2010), 84–98.

Nilpotent case

Lemma (Cutolo, Smith and Wiegold [1, Theorem A])

Let G be a finite p-group of cyclic breadth 1. Then $|G'| \leq p^2$ and consequently $[G:C_G(g)] \leq p^2$ for each $g \in G$.

Lemma (Cutolo, Smith and Wiegold [1, Theorem B])

Let G be a finite p-group of subgroup breadth 1.

¹On finite *p*-groups with subgroups of breadth 1, *Bull. Aust. Math. Soc.* **80** (2010), 84–98.

Nilpotent case

Lemma (Cutolo, Smith and Wiegold [1, Theorem A])

Let G be a finite p-group of cyclic breadth 1. Then $|G'| \leq p^2$ and consequently $[G:C_G(g)] \leq p^2$ for each $g \in G$.

Lemma (Cutolo, Smith and Wiegold [1, Theorem B])

Let G be a finite p-group of subgroup breadth 1.

(1) If
$$p = 2$$
, then $|G/Z(G)| \le 16$.

¹On finite *p*-groups with subgroups of breadth 1, *Bull. Aust. Math. Soc.* **80** (2010), 84–98.

Lemma (Cutolo, Smith and Wiegold [1, Theorem A])

Let G be a finite p-group of cyclic breadth 1. Then $|G'| \leq p^2$ and consequently $[G:C_G(g)] \leq p^2$ for each $g \in G$.

Lemma (Cutolo, Smith and Wiegold [1, Theorem B])

Let G be a finite p-group of subgroup breadth 1.

- (1) If p = 2, then $|G/Z(G)| \le 16$.
- (2) If p > 2, then $|G/Z(G)| \le p^3$.

¹On finite *p*-groups with subgroups of breadth 1, *Bull. Aust. Math. Soc.* **80** (2010), 84–98.

Nilpotent case

Main Theorem (continued)

Nilpotent case

Main Theorem (continued)

(1)
$$G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$$
;

Nilpotent case

Main Theorem (continued)

- (1) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$;
- (2) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$, $G' \cong \mathbb{Z}_p \times \mathbb{Z}_p$, G has a unique Abelian maximal subgroup M and $HZ(G) \subset M$ for each subgroup H such that $H \cap G' = 1$; or

Nilpotent case

Main Theorem (continued)

- (1) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$;
- (2) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$, $G' \cong \mathbb{Z}_p \times \mathbb{Z}_p$, G has a unique Abelian maximal subgroup M and $HZ(G) \subset M$ for each subgroup H such that $H \cap G' = 1$; or
- (3) $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $G' \cong \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ and there exists a maximal central subgroup Z of Z(G) such that $G/Z \cong \mathcal{C}$. Moreover,

Nilpotent case

Main Theorem (continued)

- (1) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$;
- (2) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$, $G' \cong \mathbb{Z}_p \times \mathbb{Z}_p$, G has a unique Abelian maximal subgroup M and $HZ(G) \subset M$ for each subgroup H such that $H \cap G' = 1$; or
- (3) $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $G' \cong \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ and there exists a maximal central subgroup Z of Z(G) such that $G/Z \cong C$. Moreover,
 - (a) if |G'| = 2, then $[H : H \cap Z(G)] = 2$ for each $H \in \mathcal{N}(G)$,

Nilpotent case

Main Theorem (continued)

- (1) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$;
- (2) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$, $G' \cong \mathbb{Z}_p \times \mathbb{Z}_p$, G has a unique Abelian maximal subgroup M and $HZ(G) \subset M$ for each subgroup H such that $H \cap G' = 1$; or
- (3) $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $G' \cong \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ and there exists a maximal central subgroup Z of Z(G) such that $G/Z \cong C$. Moreover,
 - (a) if |G'| = 2, then $[H : H \cap Z(G)] = 2$ for each $H \in \mathcal{N}(G)$,
 - (b) if |G'| = 4 and $G/Z \cong \mathcal{D}$ for some $Z \leq Z(G)$, then $[H: H \cap Z(G)] = 2$ for every $H \in \mathcal{N}(G)$ such that $H \cap G' \neq 1$, and

Main Theorem (continued)

- (1) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p$;
- (2) $G/Z(G) \cong \mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$, $G' \cong \mathbb{Z}_p \times \mathbb{Z}_p$, G has a unique Abelian maximal subgroup M and $HZ(G) \subset M$ for each subgroup H such that $H \cap G' = 1$; or
- (3) $G/Z(G) \cong \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$, $G' \cong \mathbb{Z}_2$ or $\mathbb{Z}_2 \times \mathbb{Z}_2$ and there exists a maximal central subgroup Z of Z(G) such that $G/Z \cong C$. Moreover,
 - (a) if |G'| = 2, then $[H : H \cap Z(G)] = 2$ for each $H \in \mathcal{N}(G)$,
 - (b) if |G'| = 4 and $G/Z \cong \mathcal{D}$ for some $Z \leq Z(G)$, then $[H: H \cap Z(G)] = 2$ for every $H \in \mathcal{N}(G)$ such that $H \cap G' \neq 1$, and
 - (c) if |G'| = 4 and $G/Z \not\cong \mathcal{D}$ for all $Z \leq Z(G)$, then $[H: H \cap Z(G)] = 2$ and for each $H \in \mathcal{N}(G)$, either $H \cap G' \neq 1$ or $[H, G] \subseteq (G' \setminus Z) \cup \{1\}$.

Nilpotent case

Main Theorem (continued)

Let G be a finite p-group of nilpotent class 3 (p odd). Then $|\mathcal{P}_N(G)|=2$ if and only if $G/Z(G)\cong\mathcal{E}_p$, $C_G(Z_2(G))$ is an Abelian maximal subgroup of G and for each $H\in\mathcal{N}(G)$, either $H\leq C_G(Z_2(G))$ or $\gamma_3(G)\leq H$.

Nilpotent case

Main Theorem (continued)

Let G be a finite p-group of nilpotent class 3 (p odd). Then $|\mathcal{P}_N(G)|=2$ if and only if $G/Z(G)\cong\mathcal{E}_p$, $C_G(Z_2(G))$ is an Abelian maximal subgroup of G and for each $H\in\mathcal{N}(G)$, either $H\leq C_G(Z_2(G))$ or $\gamma_3(G)\leq H$.

Main Theorem (continued)

Nilpotent case

Main Theorem (continued)

Let G be a finite p-group of nilpotent class 3 (p odd). Then $|\mathcal{P}_N(G)|=2$ if and only if $G/Z(G)\cong\mathcal{E}_p$, $C_G(Z_2(G))$ is an Abelian maximal subgroup of G and for each $H\in\mathcal{N}(G)$, either $H\leq C_G(Z_2(G))$ or $\gamma_3(G)\leq H$.

Main Theorem (continued)

(1)
$$G/Z(G) \cong D_8$$
 and either $H \subseteq Z_2(G)$ or $\gamma_3(G) \leq H$; or

Main Theorem (continued)

Let G be a finite p-group of nilpotent class 3 (p odd). Then $|\mathcal{P}_N(G)|=2$ if and only if $G/Z(G)\cong\mathcal{E}_p$, $C_G(Z_2(G))$ is an Abelian maximal subgroup of G and for each $H\in\mathcal{N}(G)$, either $H\leq C_G(Z_2(G))$ or $\gamma_3(G)\leq H$.

Main Theorem (continued)

- (1) $G/Z(G) \cong D_8$ and either $H \subseteq Z_2(G)$ or $\gamma_3(G) \le H$; or
- (2) $G/Z(G)\cong \mathcal{B}$ and for each $H\in \mathcal{N}(G)$, either $\gamma_3(G)\leq H$ or

$$\frac{HZ(G)}{Z(G)} = \left\langle \frac{Z_2(G)}{Z(G)} \setminus \left(\frac{G}{Z(G)}\right)^{\{2\}} \right\rangle \text{ and } \frac{N_G(H)}{Z(G)} = \Omega_1\left(\frac{G}{Z(G)}\right).$$

Further results

Corollary 1

Let G be a finite group. If $|\mathcal{P}_N(G)| = 2$, then

$$\mathcal{P}_{N}(G) = \left\{ \frac{1}{p} + \frac{1}{q} - \frac{1}{pq}, 1 \right\}$$

for some primes p and q.

Corollary 1

Let G be a finite group. If $|\mathcal{P}_N(G)| = 2$, then

$$\mathcal{P}_{N}(G) = \left\{ \frac{1}{p} + \frac{1}{q} - \frac{1}{pq}, 1 \right\}$$

for some primes p and q.

Corollary 2

Let G be a finite group. Then $|\mathcal{P}_N(G)|=2$ if and only if there exist primes p and q such that $[G:N_G(H)]=p$ and $[H:H\cap H^g]=q$ for each $H\in\mathcal{N}(G)$ and $g\in G\setminus N_G(H)$. In particular G is solvable, and it is nilpotent if and only if p=q.

Further results

Corollary 3

If G is a finite group such that $|\mathcal{P}_N(G)| = 2$, then $\mathcal{P}_N(H) \subseteq \mathcal{P}_N(G)$ for each subgroup H of G.

Further results

Corollary 3

If G is a finite group such that $|\mathcal{P}_N(G)| = 2$, then $\mathcal{P}_N(H) \subseteq \mathcal{P}_N(G)$ for each subgroup H of G.

Conjecture

If G is a finite nilpotent group, then $\mathcal{P}_N(H) \subseteq \mathcal{P}_N(G)$ for each subgroup H of G.

Further results

Corollary 3

If G is a finite group such that $|\mathcal{P}_N(G)| = 2$, then $\mathcal{P}_N(H) \subseteq \mathcal{P}_N(G)$ for each subgroup H of G.

Conjecture

If G is a finite nilpotent group, then $\mathcal{P}_N(H) \subseteq \mathcal{P}_N(G)$ for each subgroup H of G.

Conjecture

If G is a finite group, which is neither a Dedekind group nor a minimal non-Dedekind group such that $\mathcal{P}_N^*(H) \cap \mathcal{P}_N^*(G) = \emptyset$ for each proper subgroup H of G, then $G \cong A_5$.

References I

- W. Burnside, *Theory of Groups of Finite Order*, Cambridge University Press, 1897.
- C. D. H. Cooper, Power automorphisms of a group, *Math. Z.* 107 (1968), 335–356.
- G. Cutolo, H. Smith and J. Wiegold, The nilpotency class of *p*-groups in which subgroups have few conjugates, *J. Algebra* **300**(1), (2006), 160–170.
- G. Cutolo, H. Smith and J. Wiegold, On finite *p*-groups with subgroups of breadth 1, *Bull. Aust. Math. Soc.* **80** (2010), 84–98.
- M. Farrokhi D. G. and F. Saeedi, Subgroup normality degrees of finite groups II, *J. Algebra Appl.* **11**(4) (2012), 8 pages.

References II

- The GAP Group, *GAP-Groups, Algorithms and Programming, Version 4.4.12, 2008* (http://www.gap-system.org/).
- K. Ishikawa, Finite *p*-groups up to isoclinism, which have only two conjugacy lengths, *J. Algebra* **220** (1999), 333–345.
- K. Ishikawa, On finite *p*-groups which have only two conjugacy length, *Israel J. Math.* **129** (2002), 119–123.
- N. Ito, On finite groups with given conjugate types I, *Nagoya Math. J.* **8** (1953), 17–28.
- D. J. S. Robinson, *A Course in the Thoery of Groups*, Springer-Verlag, Berlin, 1982.

References III

Thank You