Complexity Analysis of Algorithms

Jordi Cortadella

Department of Computer Science

Estimating runtime

What is the runtime of g(n)?

```
void g(int n) {
  for (int i = 0; i < n; ++i) f();
}</pre>
```

 $\operatorname{Runtime}(g(n)) \approx n \cdot \operatorname{Runtime}(f())$

```
void g(int n) {
  for (int i = 0; i < n; ++i)
    for (int j = 0; j < n; ++j) f();
}</pre>
```

 $\operatorname{Runtime}(g(n)) \approx n^2 \cdot \operatorname{Runtime}(f())$

Estimating runtime

What is the runtime of g(n)?

```
void g(int n) {
  for (int i = 0; i < n; ++i)
    for (int j = 0; j <= i; ++j) f();
}</pre>
```

Runtime
$$(g(n)) \approx (1+2+3+\cdots+n) \cdot \text{Runtime}(f())$$

 $\approx \frac{n^2+n}{2} \cdot \text{Runtime}(f())$

Complexity analysis

 A technique to characterize the execution time of an algorithm independently from the machine, the language and the compiler.

Useful for:

- evaluating the variations of execution time with regard to the input data
- comparing algorithms
- We are typically interested in the execution time of large instances of a problem, e.g., when $n \to \infty$, (asymptotic complexity).

Big O

- A method to characterize the execution time of an algorithm:
 - Adding two square matrices is $O(n^2)$
 - Searching in a dictionary is O(log n)
 - Sorting a vector is $O(n \log n)$
 - Solving Towers of Hanoi is $O(2^n)$
 - Multiplying two square matrices is $O(n^3)$
 - **—** ...

• The O notation only uses the dominating terms of the execution time. Constants are disregarded.

Big O: formal definition

• Let T(n) be the execution time of an algorithm when the size of input data is n.

• T(n) is O(f(n)) if there are positive constants c and n_0 such that $T(n) \le c \cdot f(n)$ when $n \ge n_0$.

Big O: example

- Let $T(n) = 3n^2 + 100n + 5$, then $T(n) = O(n^2)$
- Proof:
 - Let c = 4 and $n_0 = 100.05$
 - For n ≥ 100.05, we have that $4n^2 \ge 3n^2 + 100n + 5$

• T(n) is also $O(n^3)$, $O(n^4)$, etc. Typically, the smallest complexity is used.

Big O: examples

T(n)	Complexity
$5n^3 + 200n^2 + 15$	$O(n^3)$
$3n^2 + 2^{300}$	$O(n^2)$
$5\log_2 n + 15\ln n$	$O(\log n)$
$2\log n^3$	$O(\log n)$
$4n + \log n$	O(n)
2^{64}	O(1)
$\log n^{10} + 2\sqrt{n}$	$O(\sqrt{n})$
$2^n + n^{1000}$	$O(2^n)$

Complexity ranking

Function	Common name
n!	factorial
2^n	exponential
$n^d, d > 3$	polynomial
n^3	cubic
n^2	quadratic
$n\sqrt{n}$	
$n \log n$	quasi-linear
$\mid n \mid$	linear
\sqrt{n}	root - n
$\log n$	logarithmic
1	constant

Complexity analysis: examples

Let us assume that f() has complexity O(1)

```
for (int i = 0; i < n; ++i) f();</pre>
for (int i = 0; i < n; ++i)
                                               \rightarrow O(n^2)
  for (int j = 0; j < n; ++j) f();
for (int i = 0; i < n; ++i)
                                                \rightarrow O(n^2)
  for (int j = 0; j <= i; ++j) f();
for (int i = 0; i < n; ++i)
  for (int j = 0; j < n; ++j)
                                                \rightarrow O(n^3)
    for (int k = 0; k < n; ++k) f();
for (int i = 0; i < m; ++i)</pre>
                                                \rightarrow O(mnp)
  for (int j = 0; j < n; ++j)
    for (int k = 0; k < p; ++k) f();
```

```
void f(int n) {
  if (n > 0) {
    DoSomething(n); // O(n)
    f(n/2);
  }
}
```

$$T(n) = n + T(n/2)$$

$$T(n) = n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots + 2 + 1$$

$$2 \cdot T(n) = 2n + n + \frac{n}{2} + \frac{n}{4} + \frac{n}{8} + \dots + 4 + 2$$

$$2 \cdot T(n) - T(n) = T(n) = 2n - 1$$

$$T(n) \text{ is } O(n)$$

```
void f(int n) {
  if (n > 0) {
    DoSomething(n); // O(n)
    f(n/2); f(n/2);
  }
}
```


12

$$T(n) = n + 2 \cdot T(n/2)$$

$$= n + 2 \cdot \frac{n}{2} + 4 \cdot \frac{n}{4} + 8 \cdot \frac{n}{8} + \cdots$$

$$= \underbrace{n + n + n + \cdots + n}_{\log_2 n} = n \log_2 n$$

T(n) is $O(n \log n)$

```
void f(int n) {
  if (n > 0) {
    DoSomething(n); // O(n)
    f(n-1);
  }
}
```

$$T(n) = n + T(n-1)$$

 $T(n) = n + (n-1) + (n-2) + \dots + 2 + 1$
 $T(n) = \frac{n^2 + n}{2}$

$$T(n)$$
 is $O(n^2)$

```
void f(int n) {
  if (n > 0) {
    DoSomething(); // O(1)
    f(n-1); f(n-1);
  }
}
```

```
T(n) = 1 + 2 \cdot T(n-1)
= 1 + 2 + 4 \cdot T(n-2)
= 1 + 2 + 4 + 8 \cdot T(n-3)
\vdots
= 1 + 2 + 4 + 8 + \dots + 2^{n-1}
= \sum_{i=0}^{n-1} 2^{i} = 2^{n} - 1
```

Asymptotic complexity (small values)

Asymptotic complexity (larger values)

Execution time: example

Let us consider that every operation can be executed in 1 ns (10⁻⁹ s).

	Time					
Function	$(n=10^3)$	$(n=10^4)$	$(n=10^5)$			
$\log_2 n$	10 ns	13.3 ns	$16.6 \mathrm{\ ns}$			
\sqrt{n}	$31.6 \mathrm{ns}$	100 ns	316 ns			
$\mid n \mid$	$1~\mu\mathrm{s}$	$10~\mu\mathrm{s}$	$100~\mu\mathrm{s}$			
$n \log_2 n$	$10~\mu\mathrm{s}$	$133~\mu\mathrm{s}$	$1.7 \mathrm{\ ms}$			
n^2	$1 \mathrm{\ ms}$	$100 \mathrm{\ ms}$	10 s			
n^3	1 s	$16.7 \mathrm{min}$	$11.6 \mathrm{days}$			
n^4	$16.7 \mathrm{min}$	$116 \mathrm{days}$	$3171 \mathrm{\ yr}$			
2^n	$3.4 \cdot 10^{284} \text{ yr}$	$6.3 \cdot 10^{2993} \text{ yr}$	$3.2 \cdot 10^{30086} \text{ yr}$			

How about "big data"?

Source: Jon Kleinberg and Éva Tardos, Algorithm Design, Addison Wesley 2006.

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2^n	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

This is often the practical limit for big data

Summary

- Complexity analysis is a technique to analyze and compare algorithms (not programs).
- It helps to have preliminary back-of-the-envelope estimations of runtime (milliseconds, seconds, minutes, days, years?).
- Worst-case analysis is sometimes overly pessimistic.
 Average case is also interesting (not covered in this course).
- In many application domains (e.g., big data) quadratic complexity, $O(n^2)$, is not acceptable.
- Recommendation: avoid last-minute surprises by doing complexity analysis before writing code.