Logique Mathématique Contrôle Final

Durée 2heures

Tout document interdit

Exercice 1 (2)

Montrer à l'aide de la résolution (en indiquant le MGU à chaque étape) que l'ensemble

S:
$$\{\neg P(u,v) \lor \neg P(v,z) \lor R(w), P(f(u), y), \neg R(w)\}$$

est inconsistant.

Exercice 2 ((1,1,1) - 4)

Montrer que l'ensemble formé des énoncés E₁, E₂ et E₃ ci-dessous est inconsistant.

- 1. Il est faux que tous les problèmes ont des solutions.
- 2. Chaque problème a au moins deux solutions.
- 3. Certains problèmes ont la même solution.

Exercice 3 (2)

Le formule φ ci-dessous est-elle satisfiable, valide, non satisfiable ?

$$\varphi$$
: $\forall x (R(x) \land \neg R(g(x)) \land \neg R(h(x)))$

Exercice 4 (2,2)

Soient α et β deux formules telles que :

$$\alpha: \forall x \exists y (P(x) \to P(y))$$
 $\beta: \exists y \forall x (P(x) \to P(y))$

Questions:

Les propositions suivantes sont-elles valides ?

Q1. $\alpha \equiv \beta$

Q2. $\alpha_S \equiv \beta_S$

Exercice 5 (2,1)

Etant données α une formule du langage des prédicat et α_S l'une de ces formes de Skolem, la proposition suivante est-elle valide ?

P1. Si $(\neg \alpha)$ est satisfiable alors $\neg(\alpha_S)$ est satisfiable.

P2. Si $\neg(\alpha_s)$ est satisfiable *alors* $(\neg \alpha)$ est satisfiable.

Exercice 6 (2)

Montrer les étapes logiques qui justifient le passage de la clause $C : \forall x \forall y P(x,y)$ à la clause $C_{\theta} : \forall u \forall y P(f(u,v),y)$ avec $\theta = \{ f(u,v)/x \}.$

N.B. Il ne vous sera remis qu'un seul cahier d'examen (sans intercalaire). Prenez en soin.

Correction

Exercice 1 (2)

Montrer à l'aide de la résolution (en indiquant le MGU à chaque étape) que l'ensemble

S:
$$\{\neg P(u,v) \lor \neg P(v,z) \lor R(w), P(f(u), y), \neg R(w)\}$$

est inconsistant.

Solution

 C_0 : $\neg P(u,v) \lor \neg P(v,z) \lor R(w)$

 $C_1 : P(f(x), y)$

 $C_2: \neg R(w)$

 $C_3: \neg P(u,v) \lor \neg P(v,z)$ Res (C_0, C_2)

 $C_4: \neg P(f(x), y) \vee \neg P(y, z)$ $C_3[f(x)/u, y/v]$

 $C_5: \neg P(y,z)$ Res (C_1, C_4)

 C_6 : $\neg P(s,t)$ $C_5[s/y, t/z]$

 C_7 : $\neg P(f(x), y)$ $C_6[f(x)/s, y/t]$

 C_8 : \square Res (C_1, C_7)

Exercice 2. ((1,1,1)-4),

Montrer que l'ensemble formé des énoncés E₁, E₂ et E₃ ci-dessous est inconsistant.

- 4. Il est faux que tous les problèmes ont des solutions.
- 5. Chaque problème a au moins deux solutions.
- 6. Certains problèmes ont la même solution.

P(x) : x est un problème

S(x,y): x est une solution au problème y

E(x,y): x est 'egal 'a y

 $\beta_1 : \neg (\forall x (P(x) \rightarrow \exists y S(y,x)))$ 1 point

 $\beta_2: \forall x (P(x) \to \exists y \exists z (S(y,x) \land S(z,x) \land \neg E(y,z)))$ 1 point

 $\beta_3: \exists x (P(x) \land \exists y (P(y) \land \neg E(x,y) \land \exists z (S(z,x) \land S(z,y))))$ 1 point

Forme prenexe (0.5 ou 0)

 β_{1P} : $\exists x \forall y (P(x) \land \neg S(y,x))$

 $\beta_{2P}: \forall x \exists y \exists z (P(x) \rightarrow (S(y,x) \land S(z,x) \land \neg E(y,z)))$

 β_{3P} : $\exists x \exists y \exists z (P(x) \land P(y) \land \neg E(x,y) \land S(z,x) \land S(z,y))$

Forme de Skolem (0.5 ou 0)

 β_{1P} : $\forall y(P(d) \land \neg S(y,d))$

 $\beta_{2P}: \forall x (P(x) \rightarrow S(f(x), x) \land S(g(x), x) \land \neg E(f(x), g(x)))$

 β_{3P} : $P(a) \land P(b) \land \neg E(a,b) \land S(c,a) \land S(c,b)$

Forme Clausale 1 point

```
S: {P(d), ¬S(y,d), ¬P(x) ∨ S(f(x),x), ¬P(x) ∨ S(g(x),x), ¬P(x) ∨ ¬E(f(x), g(x)), P(a), ¬E(a,b), S(c,a), S(c,b) }
```

```
Résolution (après avoir renommé les variables) 2 points
```

```
C<sub>0</sub>: P(d)

C<sub>1</sub>: \neg S(y,d)

C<sub>3</sub>: \neg P(v) \lor S(f(v),v)

C<sub>4</sub>: \neg P(w) \lor S(g(w),w))

C<sub>5</sub>: \neg P(u) \lor \neg E(f(u), g(u))

C<sub>6</sub>: P(a)

C<sub>7</sub>: P(b)

C<sub>8</sub>: \neg E(a,b)

C<sub>9</sub>: S(c,a)

C<sub>10</sub>: S(c,b) }

C<sub>11</sub>: \neg P(d) \lor S(f(d),d)
```

 $C_{11} : \neg P(d) \lor S(f(d), d)$ C3[d/v] $C_{12} : S(f(d), d))$ Res(C0, C11] $C_{13} : \neg S(f(d), d))$ C1[f(d)/y] $C_{14} : \Box$ Res(C12, C13]

 $S \vdash \Box \Rightarrow S$ inconsistant $\Rightarrow \{\beta_1, \beta_2, \beta_3\}$ inconsistant $\Rightarrow \{E_1, E_2, E_3\}$ inconsistant.

Exercice 3 (2)

Le formule φ ci-dessous est-elle satisfiable, valide, non satisfiable ?

$$\varphi$$
: $\forall x (R(x) \land \neg R(g(x)) \land \neg R(h(x)))$

Réponse

 ϕ est non satisfiable.

Démonstration:

Supposons que φ est satisfiable. Il existe alors une interprétation I telle que I $\models \beta$

 $I \models \forall x (R(x) \land \neg R(g(x)) \land \neg R(h(x))) \text{ ssi } I \models (R(x) \land \neg R(g(x)) \land \neg R(h(x)))_{v(x=d)} \text{ pour tout } d \in D$

I(R)(d) et nonI(R)(I(g)(d))) pour tout $d \in D$

Pour $d = d_0$

 $I(R)(d_0)$ et non $I(P)(I(g)(d_0))$) et non $I(P)(I(h)(d_0))$

Pour $d = d_1$

 $I(R)(d_1)$ et non $I(R)(I(g)(d_1))$ et non $I(P)(I(h)(d_1))$

.....

 $I(R)(d_i)$ et non $I(R)(I(g)(d_i))$) et non $I(P)(I(h)(d_i))$

Je pose $I(g)(d_i) = d_i$ et $I(h)(d_i) = d_i$ '

 $I(R)(d_i)$ et **nonI(R)(d_i)** et **nonI(R)(d_i)**

. . .

 $\mathbf{I}(\mathbf{R})(d_i)$ et non $\mathbf{I}(\mathbf{R})(\mathbf{I}(f)(d_i))$ et non $\mathbf{I}(\mathbf{P})(\mathbf{I}(h)(d_i))$

Contradiction. On ne peut, à la fois, avoir non $I(R)(d_i)$ et $I(R)(d_i)$.

Solution de l'exercice 3 à l'aide d'un AS

L'ensemble des clauses que l'on peut avoir à partir de φ est le suivant :

$$\forall x (R(x) \land \neg R(g(x)) \land \neg R(h(x))) \equiv (\forall x R(x)) \land (\forall x \neg R(g(x))) \land (\forall x \neg R(h(x)))$$

Une fois renommés les variables nous obtenons :

S: {
$$R(u)$$
, $\neg R(g(v))$, $\neg R(h(w))$ }

Domaine de Herbrand de S:

$$H_S = \{a, g(a), h(a), ..., g^i(a), ..., h^i(a), ..., g(h(a)),\}$$

Arbre sémantique

Il existe un sous-ensemble non satisfiable d'instances de base S_B : { $R(g(a)), \neg R(g(a))$ }. S est par conséquent non satisfiable. Il va donc de même de l'ensemble { E_1, E_2, E_3 }.

Exercice 4 (2,2)

Soient α et β deux formules telles que :

$$\alpha: \forall x \exists y (P(x) \to P(y))$$
 $\beta: \exists y \forall x (P(x) \to P(y))$

Ouestions:

Les propositions suivantes sont-elles valides ?

Q3. $\alpha \equiv \beta$

Q4. $\alpha_S \equiv \beta_S$

Réponse à Q1.

 α et β sont les deux formes prénexe d'une même formule valide : $\exists x P(x) \rightarrow \exists y P(y)$. Elles sont donc logiquement équivalentes.

Réponse à Q2.

$$\alpha_{S}: \forall x (P(x) \rightarrow P(f(x)))$$
 $\beta_{S}: \forall x (P(x) \rightarrow P(a))$

 α_S et β_S ne sont pas logiquement équivalentes. L'interprétation I de domaine N telle que : { I(P) : pair, I(f) : identité, I(a) : 1 } satisfait α_S et falsifie β_S

Exercice 5 (2,1)

Etant données α une formule du langage des prédicat et α_S l'une de ces formes de Skolem, les propositions suivantes sont-elle valides ?

P1. Si $(\neg \alpha)$ est satisfiable alors $\neg(\alpha_S)$ est satisfiable.

P2. Si $\neg(\alpha_s)$ est satisfiable *alors* $(\neg \alpha)$ est satisfiable.

Réponse Q1.

La proposition 1 est valide.

Démonstration.

Supposons que $(\neg \alpha)$ soit satisfiable (1) que $\neg(\alpha_S)$ soit non satisfiable (2).

$$(2) \Rightarrow |= (\alpha_S)$$

De la proposition $|= \alpha_S \rightarrow \alpha$, nous déduisons que : $|= \alpha \mod \alpha$ non satisfiable (contradiction avec (1))

Réponse Q2.

La proposition n'est pas valide. Contre-exemple :

$$\alpha: \exists x \exists y (P(x) \vee \neg P(y)) \qquad \alpha_S: P(a) \vee \neg P(b) \qquad \neg(\alpha_S): \neg P(a) \wedge P(b) \text{ (satisfiable)}$$

$$\neg \alpha: \forall x \forall y (\neg P(x) \wedge P(y)) \qquad \text{(non satisfiable)}$$

Exercice 6 (2)

Montrer les étapes logiques qui justifient le passage de la clause $C : \forall x \forall y P(x,y)$ à la clause $C_{\theta} : \forall u \forall y P(f(u,v),y)$ avec $\theta = \{ f(u,v)/x \}.$

$$\mid = \forall x \forall y P(x,y) \rightarrow \forall y P(f(u,v),y)$$

$$\models \forall u(\forall x \forall y P(x,y) \rightarrow \forall y P(f(u,v),y))$$

$$= \forall u(\forall x \forall y P(x,y) \rightarrow \forall y P(f(u,v),y)) \rightarrow (\forall x \forall y P(x,y) \rightarrow \forall u \forall y P(f(u,v),y)))$$
 vue en cours

$$|= \forall x \forall y P(x,y) \rightarrow \forall u \forall y P(f(u,v),y))$$