Social Networks & Recommendation Systems

V. Static random graphs.

Grzegorz Siudem

Warsaw University of Technology

Warsaw University of Technology

MSc program in Data Science has been developed as a part of task 10 of the project "NERW PW. Science - Education - Development - Cooperation" co-funded by European Union from European Social Fund.

Project

Networks with given hamiltonian

Let us considet the space of every possible graph with N vertices i.e. set $M_N = \mathbb{M}^{N \times N}(\{0,1\})$. We want to define a probability distribution on it.

We maximize entropy:

$$-\sum_{G\in M_N}\mathcal{P}(G)\ln\mathcal{P}(G),$$

Under certain condition $f(\mathcal{P}(G)) = 0$,

Which leads us to Lagrange multipliers

$$\mathcal{L}[\mathcal{P}(G)] = -\sum_{G \in M_N} \mathcal{P}(G) \ln \mathcal{P}(G) + \lambda f(\mathcal{P}(G))$$

It only remains to solve this equation

$$\frac{\partial \mathcal{L}}{\partial \mathcal{P}(G)} = 0.$$

Example - Excercise 1.

Ecercise 2.

Implement a function that returns the adjacency matrix of one realization of the ER graph with given values of N and p. Watch out for the trap!

Ecercise 2.

Implement a function that returns the adjacency matrix of one realization of the ER graph with given values of N and p. Watch out for the trap!

Excercise 3.

Draw resulting graph

Ecercise 2.

Implement a function that returns the adjacency matrix of one realization of the ER graph with given values of N and p. Watch out for the trap!

Excercise 3.

Draw resulting graph

Excercise 4.

Draw histogram of degree distribution.

Ecercise 2.

Implement a function that returns the adjacency matrix of one realization of the ER graph with given values of N and p. Watch out for the trap!

Excercise 3.

Draw resulting graph

Excercise 4.

Draw histogram of degree distribution.

Excercise 5.

What degree of vertex distribution do we expect?

Excercise 6.

Give the *mathematical* justification for the Poisson approximation used.

Excercise 6.

Give the *mathematical* justification for the Poisson approximation used.

Excercise 7.

Plot both the simulation results and analytically obtained distributions on one graph. Test appropriate hypotheses.

Excercise 6.

Give the *mathematical* justification for the Poisson approximation used.

Excercise 7.

Plot both the simulation results and analytically obtained distributions on one graph. Test appropriate hypotheses.

Excercises 8.

Check dependence of the results of the previous excercise for various values of *p* and *N*.

Excercise 6.

Give the *mathematical* justification for the Poisson approximation used.

Excercise 7.

Plot both the simulation results and analytically obtained distributions on one graph. Test appropriate hypotheses.

Excercises 8.

Check dependence of the results of the previous excercise for various values of p and N.

Attention!

Excercises 1-8 in total are worth 1P for the project.

Non-physicality of ER graphs

Assuming the Poisson approximation, we calculate the variance

$$\mathbb{E}(K) = \sum_{k=0}^{\infty} \frac{k e^{-\langle k \rangle} \langle k \rangle^k}{k!} = \dots = \langle k \rangle,$$

$$\mathbb{E}(K^2) = \sum_{k=0}^{\infty} \frac{k^2 e^{-\langle k \rangle} \langle k \rangle^k}{k!} = \dots = \langle k \rangle + \langle k \rangle^2.$$

$$\operatorname{Var}(K) = \mathbb{E}(K^2) - [\mathbb{E}(K)]^2 = \langle k \rangle$$

P5.1 Complete the missing calculations.[0.5P]

Non-physicality of ER graphs

Clustering coefficient

$$\langle C \rangle = p$$
.

P5.2 Check the above analytical result by simulation. [1P]

Stochastic block model

ER model generalization

$$\begin{bmatrix}
[p_{11}] & [p_{12}] & \dots & [p_{1N}] \\
[p_{21}] & [p_{22}] & \dots & [p_{2N}] \\
\dots & \dots & \ddots & \dots \\
[p_{N1}] & [p_{N2}] & \dots & [p_{NN}]
\end{bmatrix}$$

P5.3 Generate and draw a graph consisting of 4 community each with N=20 nodes and the probability of connection within the community higher than between them. Draw the result. How it depends on the parameter values? [2P]

Watts-Strogatz model

P5.4 Draw a graph of the averaged coefficient of clustering of the WS network against its parameter *p*. [1.5P]

Other projects

- P5.5 With (or without) Mathematica solve ER model in the case of $G_{N.E}$. [2P]
- P5.6 Implement configuration model and test when the procedure converge. [2.5P]
- P5.7 Compute partition function and distribution of the network with given hamiltonian for the case with fixed number of edges. [2.5P]

Warsaw University of Technology

MSc program in Data Science has been developed as a part of task 10 of the project "NERW PW. Science - Education - Development - Cooperation" co-funded by European Union from European Social Fund.