中国科学技术大学数学科学学院

2019 ~ 2020学年 第 2 学期期末考试试卷

■A卷 □B卷

课程名称计算方法(B)			课程编号001511				
考试时间 _	6 试时间			考试形式	团卷		
姓 名	学号			学院			
题号			三	四	<i>Ŧ</i> i.	六	总计
得分							
评卷人							
1. 答卷前, 2. 本试卷共							
(30分)填雪	Ž	,					
(1) (8分)	设矩阵 A =	$= \begin{pmatrix} 5 & -1 \\ 2 & 3 \end{pmatrix}$	-),则[[2	$A\ _{\infty} = \underline{\hspace{1cm}}$,	$ A _1 = _{_}$, 半径(精确值
	₁ 范数下的。 		, 请确值) <i>c</i>	$ond_1(A) =$, 谐 -	半径(精确位
函数,		1	· 条件。若同	司时知道 f	(x) 是以 (,	的三次样条抗 周期函数, 贝
(3) (5分) 次数为	5分)给定数据 $f(a),f'(a),\ f(b),f'(b),\ f(c),\ 构造次数最低的插值多项式,其最大数为。此时的插值余项为。$						
(4) (7分)	假设对 n 🖟	介矩阵 A イ	使用规范幂	-° 法			
			$\begin{cases} Y^{(k)} = \\ X^{(k+1)} \end{cases}$	$X^{(k)}/\parallel X^{(k)}$ $= AY^{(k)}$	$(k)\parallel_{\infty}$		
				^(2k+1) } 分别			可量,则 <i>A</i> 打

…………。密…………封…………线………内………不……不……要………要………答………

(5) (6分) 考虑矩阵
$$A = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$
,对矩阵 A 进行 Doolittle分解 $A = LU$,则 其中 单位下三角阵 $L = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & -1 & 1 \end{pmatrix}$,上三角阵 $U = \begin{pmatrix} -1 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix}$ 。

二、(10分)给出下列数据:

x_i	0.6	0.7	0.8	0.9
y_i	1.0	0.2	1.5	2. 1

利用最小二乘法求形如 $y(x) = \frac{1}{a+bx^2}$ 的拟合函数。

三、(12分)考虑序列 $x_n=\frac{1}{2}x_{n-1}+\frac{1}{x_{n-1}},\ n\geq 1$. 利用不动点理论证明: 任取 $x_0>\sqrt{2}$,则序 列 x_n 总收敛至 $\sqrt{2}$.

…………。密…………封…………线………内………不……下不……要………答………您………

四、(15分)设有线性方程组 Ax = b, 其中,

$$A = \begin{pmatrix} 4 & c & -1 \\ c & 2 & c \\ -1 & c & 4 \end{pmatrix}, \quad b = \begin{pmatrix} 2 \\ 4 \\ 8 \end{pmatrix}.$$

- 1. 分别写出相应的 Jacobi 迭代,Gauss-Seidel 迭代,以及以 ω 为松弛因子的松弛 (SOR) 迭代 ($0<\omega<2$) 的分量形式;
- 2. 令 c=-1, 求此时 Jacobi 迭代的迭代矩阵; 分析并判断他的收敛性(需给出证明)。

$$y_{i+1} = y_i + ahf(t_{i+1}, y_{i+1}) + bhf(t_i, y_i) + chf(t_{i-2}, y_{i-2}),$$

其中 $h = t_{i+1} - t_i = t_i - t_{i-1} = t_{i-1} - t_{i-2}$ 。确定系数 a,b,c 使得上述格式达到最高阶精度并给出证明。

六、(18分)设有数值积分公式

$$\int_{-1}^{1} |x| f(x)dx \approx S(x) = Af(x_1) + Bf(x_2),$$

其中 | x | 为权函数。

- 1. 试确定实参数 A, B, x_1, x_2 使其达到最高阶的代数精度;并求此时的代数精度。
- 2. 假设 f(x) 充分可微, 试求此数值积分公式的误差。