Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración	Participantes	justificaciones)	
Cancún, Q. Roo, 21/05/2016	Dr. Joel Antonio Trejo Sánchez	Nuevo programa educativo	

Relación con otras asignaturas

Anteriores	Posteriores
Algoritmos y Estructura de datos:	Programación Orientada a

- a) Estructuras de datos estáticas.
- b) Estructuras de control.
- c) Estructura de datos para grandes volúmenes de información.

Objetos

Técnicas Algorítmicas:

- a) Tipos de datos abstractos.
- b) Plantillas
- c) Patrones de diseño

Nombre de la asignatura

Departamento o Licenciatura

Diseño de patrones para datos estructurados Ingeniería en Datos e Inteligencia Organizacional

Ciclo	Clave	Créditos	Área de formación curricular
1 - 1	ID0101	6	Profesional Asociado y Licenciatura Básica

Tipo de asignatura	Horas de estudio			
	HT	HP	TH	н
Taller	16	32	48	48

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir las principales estrategias de diseño de patrones y datos estructurados para el análisis de grandes volúmenes de información.

Objetivo procedimental

Emplear técnicas de diseño de patrones y datos estructurados para el análisis de grandes volúmenes de información.

Objetivo actitudinal

Fomentar la disciplina para el análisis y diseño de soluciones a problemas de diseño de patrones y datos estructurados para grandes volúmenes de información.

Unidades y temas

Unidad I. ESTRUCTURAS DE DATOS DINÁMICAS

Describir las principales estructuras dinámicas de datos lineales para su uso en el diseño de programas.

- Apuntadores y manejo dinámico de memoria
 Listas enlazadas
- 3) Pilas
- 4) Colas
- 5) Montículos
- 6) Tablas Hash

Unidad II. ESTRUCTURAS DE DATOS AVANZADAS

Describir las estructuras de datos avanzadas para su uso en el diseño de programas.

- 1) Características y propiedades de los árboles
- 2) Árboles de búsqueda
- 3) Estructuras de datos para grafos planos
 - a) Aristas doblemente ligadas (DCEL)

b) Localización de puntos

Unidad III. CONTENEDORES

Aplicar el concepto de contenedores para la solución de problemas computacionales

- 1) Conjuntos y multi-conjuntos
- 2) Mapas y multi-mapas
- 3) Estructuras de datos para tratamiento de la información
 - a) Extracción de información de la WEB (Web Scrapping)
 - b) Formatos para almacenamiento de información de la WEB

Actividades que promueven el aprendizaje

Docente

Promover el trabajo colaborativo en la definición de propuestas de solución a problemas determinados.

Coordinar la discusión de casos prácticos. Realizar foros para la discusión de temas o problemas.

Estudiante

Realizar tareas asignadas
Participar en el trabajo individual y en equipo
Resolver casos prácticos
Discutir temas en el aula
Participar en actividades extraescolares

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal de biblioteca para la lectura de artículos.

Se promoverá el uso de mecanismos asíncronos (correo electrónico, grupo de noticias, WWW y tecnologías de información) como medio de comunicación.

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Examen	30
Tareas	30
Evidencias individuales	20
Evidencias grupales	20
Total	100

Fuentes de referencia básica

Bibliográficas

Brass, P. (2008). Advanced data structures (Vol. 1). Cambridge: Cambridge University Press.

Brassard, G., & Bratley, P. (1997). Fundamentos de algoritmia. Ohio: Prentice Hall.

Cormen, T. H. (2009). Introduction to algorithms. Massachusetts: MIT press.

Knuth, D. E. (1998). The art of computer programming: sorting and searching(Vol. 3). Nueva Jersey: Pearson Education.

Mehta, D. P., & Sahni, S. (Eds.). (2004). Handbook of data structures and applications. Philadelphia:CRC Press.

Web gráficas

J

Fuentes de referencia complementaria

Bibliográficas

Vazirani, V. V. (2013). Approximation algorithms. USA: Springer Science & Business Media.

Skiena, S. S., & Revilla, M. A. (2006). Programming challenges: The programming contest training manual. USA: Springer Science & Business Media.

Weiss, M. A., & Hartman, S. (1998). Data structures and problem solving using Java (Vol. 204). Reading. USA: Addison-Wesley.

Web gráficas

.

Perfil profesiográfico del docente

Académicos

Maestría en Ciencias de la computación, Maestría en Ingeniería en Sistemas.

Docentes

Tener experiencia docente a nivel superior mínima de 3 años en ingeniería.

Profesionales

Tener experiencia en desarrollo de sistemas, preferentemente en análisis de datos y grandes volúmenes de información.