17.84. For aluminum, $\beta = 7.2 \times 10^{-5} \text{ K}^{-1}$. $1 \text{ L} = 10^{-3} \text{ m}^3$.

(a) The lost volume, 2.6 L, is the difference between the expanded volume of the fuel and the tanks, and the maximum temperature difference is

$$\Delta T = \frac{\Delta V}{(\beta_{\rm fuel} - \beta_{\rm Al})V_0} = \frac{(2.6 \times 10^{-3} \text{ m}^3)}{(9.5 \times 10^{-4} \text{ (C}^\circ)^{-1} - 7.2 \times 10^{-5} \text{ (C}^\circ)^{-1})(106.0 \times 10^{-3} \text{ m}^3)} = 28 \text{ C}^\circ.$$

The maximum temperature was 32° C.

- (b) No fuel can spill if the tanks are filled just before takeoff.
- **17.92.** For water, $c = 4190 \text{ J/kg} \cdot \text{K}$ and $L_v = 2256 \times 10^3 \text{ J/kg}$. For solid iron, $c = 470 \text{ J/kg} \cdot \text{K}$.

The heat released when the iron slug cools to $100\,^{\circ}$ C is

 $Q = mc\Delta T = (0.1000 \text{ kg})(470 \text{ J/kg} \cdot \text{K})(645 \text{ K}) = 3.03 \times 10^4 \text{ J}$. The heat absorbed when the temperature of the water is raised to 100° C is

 $Q = mc\Delta T = (0.0850 \text{ kg})(4190 \text{ J/kg} \cdot \text{K})(80.0 \text{ K}) = 2.85 \times 10^4 \text{ J}$. This is less than the heat released from the iron and $3.03 \times 10^4 \text{ J} - 2.85 \times 10^4 \text{ J} = 1.81 \times 10^3 \text{ J}$ of heat is available for converting some of the liquid water at 100° C to vapor. The mass m of water

that boils is
$$m = \frac{1.81 \times 10^3 \text{ J}}{2256 \times 10^3 \text{ J/kg}} = 8.01 \times 10^{-4} \text{ kg} = 0.801 \text{ g}.$$

- (a) The final temperature is 100° C.
- (b) There is $85.0 \, \mathrm{g} 0.801 \, \mathrm{g} = 84.2 \, \mathrm{g}$ of liquid water remaining, so the final mass of the iron and remaining water is $184.2 \, \mathrm{g}$.
- **17.98.** $\int dT = T$ and $\int T dT = \frac{1}{2}T^2$. Express T_1 and T_2 in kelvins: $T_1 = 300$ K, $T_2 = 500$ K.

Denoting C by C=a+bT, a and b independent of temperature, integration gives $Q=n(a(T_2-T_1)+\frac{b}{2}(T_2^2-T_1^2)).$

 $Q = (3.00 \text{ mol})[(29.5 \text{ J/mol} \cdot \text{K})(500 \text{ K} - 300 \text{ K}) + (4.10 \times 10^{-3} \text{ J/mol} \cdot \text{K}^2)((500 \text{ K})^2 - (300 \text{ K})^2)].$ $Q = 1.97 \times 10^4 \text{ J}.$

17.106. *H* equals the power input required to maintain a constant interior temperature.

$$k = H \frac{L}{A\Delta T} = (180 \text{ W}) \frac{(3.9 \times 10^{-2} \text{ m})}{(2.18 \text{ m}^2)(65.0 \text{ K})} = 5.0 \times 10^{-2} \text{ W/m} \cdot \text{K}.$$