

SECOND SEMESTER 2022-2023

Course Handout (Part - II)

Date:09.01.2024

In addition to part I (General Handout for all courses appended to the time table) this portion gives further specific details regarding the course.

Course No. : CHEM F329
Course Title Analytical Chemistry
Instructor-in-charge : N. RAJESH

- 1. **Course Description:** Data handling, sample preparation, unit operations, volumetric analysis, potentiometry, chromatography, solvent extraction, trace metal separation and estimation in biological and environmental samples with emphasis on green chemistry.
- 2. **Scope & Objective of the Course:** The objective of this course is to provide a comprehensive survey of the basic concepts in analytical chemistry. The topics to be covered include a brief review of classical methods of analysis, data handling, instrumental methods of analysis and their applications. Separation methods in environmental analytical chemistry such as solvent extraction and chromatography will also be dealt with in detail. The course involves considerable classroom participation in the form of analyzing case studies, group discussions etc. Considerable emphasis would be given to **greener methodologies for the detoxification of toxic metal ions, dyes, PCB's etc from industrial effluents. Lab component involving the above methods would form a part of the evaluation scheme.**

Text Book: T1. Analytical Chemistry, GARY. D. CHRISTIAN, 6th ed. Wiley, 2003.

instrumental

Reference Book: R1. Fundamentals of analytical chemistry, Skoog, West Holler, 7th Ed, Harcourt Pub, 2001.

3. Course Plan:

Lec. No.	Topics to be Covered	Learning outcome	Learning Objectives	Chapter in the Text Book
3	Data handling, sampling in analysis	Relevance of statistics in handling data	Reliability of data, statistical test, sampling of solids, liquids and gases.	Chap. 1,2 (T1)
2	Complexometric titration's and redox titrations	Importance of classical methods in environmental appln	EDTA method to estimate total hardness in water , Redox titrations	Chap. 8 (T1)
3	Chromatography basic concepts	Separation principles	Principal of all types of chromatography and their utility in analysis	Chap. 17 (T1)
4	Ion exchange and adsorption	Relevance in separation science and technology	Cation exchange and anion exchange separations emphasizing green chemistry	Chap. 17 (T1)
3	GC and HPLC	Sophisticated	Principles and	Chap. 17 (T1)

application of GC and

			separation in industry	HPLC.	
	3	Solvent Extraction	Importance in hydrometallurgy and	Extraction of metal chelates, ion-	Chap. 16 (T1)
			nuclear industry	association complexes,	
			nuclear maastry	applications	
				emphasizing green	
				chemistry	
	3	UV-visible and IR	Understand	Beer's Law,	Chap. 14 (T1)
		spectroscopy	spectrophotometric	Photometric	
			principles in trace	estimation, selection	
			analysis	rules in IR,	
				interpretation of IR	
L				spectra	
	2	Atomic absorption	Importance in ppm	Flame AAS, graphite	Chap. 15 (T1)
		spectroscopy	and ppb analysis in	furnace AAS,	
L			diverse applications	applications	
	2	Automation in	Sophisticated	Process control	Chap. 19 (T1)
		analysis	automations in	automation on line	
			industry and its	analyzers, computers	
L			relevance today	in analytical chemistry	
	4	Potentiometry	Importance of	Redox titrations,	Chap.11,12 (T1)
			electroanalytical	pHmetry, ion-selective	
			techniques in trace	electrodes and	
L		7.1	analysis	applications	
	2	Polarography	Importance of	DC polarography and	Chap. 21
			electroanalytical	its utility in chemical	(T1)
			techniques in trace	analysis	(R1)
-		T	analysis		D 004 FE2 (F4)
	4	Trace metal	Utility of distinct	Selected methods for	P. 681-753 (T1)
		estimations	methods for trace	analysis of toxic metal	
F	4	Ei	metal analysis	ions	T
	4	Environmental	Speciation and sub	Analysis of air, water,	Lecture notes
		analysis	ppb level analysis of	pesticides and other	
			toxic contaminants	trace metals in	
-	1	Dadioanalytical	Dolovonco of	environment Dadiochomistry	I agture notes
	1	Radioanalytical methods	Relevance of	Radiochemistry,	Lecture notes
		meulous	analytical techniques	gamma spectrometry	
			in nuclear chemistry	beta counters isotope	
1				dilution analysis	

List of proposed Experiments (some of them may extend to two lab classes)

I cycle

- 1. Calibration of burette, pipette and volumetric flask (varying capacities) with statistical interpretation and calculating density of a unknown compound (liquid)
- 2. TDS, pH, conductivity hardness, COD and Hardness determination of varying water samples
- 3. Determination of calcium content in Egg shell (volumetric/gravimetric)
- 4. Analysis of copper in a wire or alloy sample
- 5. Separation of mixture of metal ions by column chromatography

II Cycle

- 1. Analysis of Iron in tap water / paracetamol in tablet
- 2. Potentiometric titration for phosphate in coke sample
- 3. Analysis of fluoride in tooth paste sample (Ion selective electrode)
- 4. Separation of anion/cations using ion chromatography (instrumentation)
- 5. Separation of benzene and toluene by GLC
- 6. Analysis of lead by solvent extraction

4. Evaluation scheme

S	Component	Duration	Weightage	Date and	Nature of
No.			(%)	Time	component
1	Mid semester test	90 min.	35		Closed book
				11/03 - 9.30 - 11.00AM	
2	Lab experiments		15	Continuous	Open
*3	Assignments/Quiz		10	Take home	Open
4.	Comprehensive. Exam.	3 hr	40	06/05 FN	Closed book

^{*}Home assignment topics would be given and each student is expected to submit a report on the assigned topic which will be evaluated.

- **5**. **Make-up Policy:** Make-up will be granted for only very genuine and deserving cases.
- **6 Chamber Consultation hours:** To be announced in the class.
- **7 Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.
- 8. **Notices:** Relevant notices regarding the course will be displayed on Chemistry Notice Board/CMS.

Instructor-In charge N. RAJESH

