Cox Proportional Hazard Model

Chao Cheng

December 23, 2022

Contents

1	Introduction	1
	Estimation 2.1 What is $L_1(\beta)$	2
3	Inference	3

1 Introduction

In this note we will talk about the Cox's proportional hazards (Cox's PH) model. Suppose we observe some non-informatively right-censored data (U, δ) with covariate vector Z. That is, for subject i, the covariate vector is Z_i , survival time T_i and censoring time C_i . The observed data is (U_i, δ_i) where $U_i = \min(T_i, C_i)$ and $\delta_i = 1$ ($T_i \leq C_i$). Also $T_i \perp C_i | Z_i$.

And now we want to model the relationship between Z and T. One way to do that is to incorporate Z into the hazard function $h(\cdot)$, e.g.,

$$T \sim Exp(\lambda_Z) \implies h(t) = \lambda_Z \stackrel{\Delta}{=} e^{\alpha + \beta Z} = \lambda_0 e^{\beta Z},$$

where $\lambda_0 = e^{\alpha}$ can be viewed as a baseline hazard. If $\beta = 0$ then Z is not associated with T.

We can generalize this idea as

$$h\left(t|Z\right) = h_0\left(t\right) \times g\left(Z\right).$$

So the hazard can be factorized and this model is sometimes called a "multiplicative intensive model" or "multiplicative hazard model" or "proportional hazard model" because this factorization implies that

$$\frac{h\left(t|Z=z_{1}\right)}{h\left(t|Z=z_{2}\right)}=\frac{g\left(z_{1}\right)}{g\left(z_{2}\right)}.$$

The hazard ratio is constant with respect to t, hence the (constant) proportional hazard. So in our previous model (the exponential survival time), the hazard ratio is

$$\frac{h(t|Z=z_1)}{h(t|Z=z_2)} = e^{\beta(z_1-z_2)}.$$

Also this exponential form of g(Z)

$$h(t|Z) = h_0(t) \cdot e^{\beta Z} \tag{1}$$

is the Cox's PH model.

2 Estimation

(1) implies that

$$S(t|Z) = \exp(-H(t|Z))$$

$$= \exp\left(-\int_0^t h(u|Z) du\right)$$

$$= \exp\left(-\int_0^t h_0(t) du \cdot g(Z)\right)$$

$$= (S_0(t))^{g(Z)} = (S_0(t))^{\exp(\beta Z)},$$

where $S_0(t) = \exp\left(-\int_0^t h_0(u) du\right)$, the survival function for Z = 0, hence S(t|Z = 0). Also remember that f(t|Z) = h(t|Z) S(t|Z). Thus, given n independent data (u_i, δ_i, z_i) , the likelihood (one can refer to our previous notes about survival analysis.) is

$$L(\beta, h_{0}(\cdot)) = \prod_{i=1}^{n} (f(u_{i}|z_{i}))^{\delta_{i}} (S(u_{i}|z_{i}))^{1-\delta_{i}} = \prod_{i=1}^{n} h(u_{i}|z_{i})^{\delta_{i}} S(u_{i}|z_{i})$$

$$= \prod_{i=1}^{n} (h_{0}(u_{i}) e^{\beta z_{i}})^{\delta_{i}} \left(\exp\left(-\int_{0}^{u_{i}} h_{0}(t) dt\right) \right)^{\exp(\beta z_{i})}$$

$$= \text{function } (data, h_{0}(\cdot), \beta).$$
(2)

If $h_{0}\left(\cdot\right)$ is allowed to be "arbitary", then the "parameter space " is

$$\mathcal{H} \times \mathcal{R}^{p} = \left\{ \left(h\left(\cdot \right), \beta \right) \middle| h_{0}\left(\cdot \right) \geq 0, \int_{0}^{\infty} h_{0}\left(t \right) \mathrm{d}t = \infty, \beta \in \mathcal{R}^{p} \right\},$$

where $\int_0^\infty h_0(t) dt = \infty$ ensures that $S_0(\infty) = 0$.

In general this likelihood is hard to maximize. And Cox proposed this idea: to factor $L(\beta, h_0(\cdot))$ as

$$L(\beta, h_0(\cdot)) = L_1(\beta) \times L_2(\beta, h_0(\cdot)),$$

where L_1 only depends on β and its maximization $(\hat{\beta})$ enjoys nice properties such as consistency and asymptotic normality while L_2 contains relatively little information about β . And this L_1 is called a **partial likelihood**.

2.1 What is $L_1(\beta)$

In this section we introduce the L_1 proposed by Cox. First let's assume there are **NO** tied nor censoring observations. And define the distinct times of failure $\tau_1 < \tau_2 < \cdots$. Denote

$$R_j = \{i | U_i \ge \tau_j\} = \text{risk set at } \tau_j,$$

and

$$Z_{(j)} = \text{value of Z for the subject who fails at } \tau_j.$$

Note that under this setting (no tie, no censor), the full likelihood (2) becomes

$$L\left(\beta, h_0\left(\cdot\right)\right) = \prod_{i=1}^{n} h_0\left(u_i\right) e^{\beta z_i} \left(\exp\left(-\int_0^{u_i} h_0\left(t\right) dt\right)\right)^{\exp(\beta z_i)}.$$

Furthermore, we can assume $u_i = \tau_i$, i.e. the data has been sorted based on survival time. And use the KM idea, i.e. assume the survival function is **discrete** with <u>baseline</u> hazard value h_j at u_j . Then this likelihood becomes

$$L(\beta, h_1, \dots, h_n) = \prod_{i=1}^n h_i e^{\beta z_i} \exp\left(-\sum_{j=1}^i h_j\right)^{\exp(\beta z_i)}.$$
 (3)

Note that, in previous notes we have deduct that in discrete case, for any $t \in [v_j, v_{j+1})$:

$$H(t) = \sum_{i=1}^{j} h_i$$
 $S(t) = \prod_{i=1}^{j} (1 - h_i).$

Here in (3) we use the approximation that $e^{h_j} \approx 1 - h_j$ when h_j is close to 0. Then we can use the method of profile likelihood:

we can reconstruct the data from $\{\tau_j\}$, $\{R_j\}$ and $\{Z_{(j)}\}$. And L_1 is defined as

$$L_{1}(\beta) \stackrel{\Delta}{=} \prod_{j} \left\{ \frac{e^{\beta Z_{(j)}}}{\sum\limits_{l \in R_{j}} e^{\beta Z_{l}}} \right\}$$

3 Inference

References