

MONASH INFORMATION TECHNOLOGY

Week 1 - Introduction FIT9132 Introduction to Databases

Your FIT9132 Teaching Team - Caulfield Campus

Chief Examiner & Lecturer

Lindsay Smith

Lecturer & Head Tutor

Manoj Kathpalia

To contact the lecturing team for FIT9132 Administration matters - assignment extensions, absences, class issue etc please email: **fit9132.allcampuses-x@monash.edu**

Overview

Unit Guide

- -During the semester your first contact should be your tutor, be sure to obtain their email address from Moodle so you can email them if necessary
- **–Note** the FIT9132 Email requirements:

"When you contact your tutor (or lecturer) via email, please ensure you clearly include your full name, unit code and lab number as part of every email you send. This will ensure we can respond as quickly and accurately as possible."

email which does not comply will not be responded to

- Moodle
- Teaching Method (Peer Instruction in Lecture)
- A summary of topics to be studied

Teaching Method

- Your peers help you to understand the concepts through discussion.
- Lecture includes a series of discussions on concepts.
- The lecturer guides the discussion.

Peer Instruction

Prof Eric Mazur, Harvard University

Traditional Teaching Method

Peer Instruction – Full Picture

Discussion Questions – Scenario

- Lecturer shows a question.
- Student answers using the response system. (no discussion – individual vote).
- If uncertainty
 - -Group discussion (2-3 students) need to get a consensus.
 - -Student answers using the response system (group vote everyone in the group still needs to vote).
 - -Class wide discussion.

Why The Scenario?

- Pose carefully designed question
 - –Solo vote: Think for yourself and select answer
 - •Checks your understanding and create an opinion to base your discussion during the group discussion, if needed.
 - -If needed
 - Discuss: Analyze problem in teams of 2-3
 - Practice analyzing, talking about challenging concepts
 - -Reach consensus
 - Group vote: Everyone in group votes
 - -You must all vote the same
 - -Convince your group or get convinced by your group.
 - Class wide discussion.

Let's Practice

Using FLUX

- Visit https://flux.qa presenter/dashboard on your internet enabled device
- Log in using your Authcate details
- Touch the + symbol
- Enter the code for your lecture
- Answer questions when they pop up.

Multiple choice questions

Hint: There are 10 types of people in this world. Those who understand binary and those who don't.

- a. 2
- b. 10
- c. 11
- d. Not sure

Multiple choice questions

Q2: If the following equations are true,

$$5 + 3 = 28$$

$$9 + 1 = 810$$

$$8 + 6 = 214$$

$$5 + 4 = 19$$

what is 3 + 2?

- a. 5
- b. 15
- c. 11
- d. 55

Text-based poll

Q3: Write the name of your favourite fruit.

Q4. What database management systems are you most familiar with?

- a. Oracle
- b. MySQL
- c. MS Access
- d. SQL Server
- e. others
- f. I am not familiar with any database management systems.

Is it bad to get it WRONG?

NO

It is better to be WRONG and understand why you are WRONG, rather than, getting the RIGHT answer but NOT knowing WHY it is the RIGHT answer!

Why Peer Instruction?

- Learn/practice hard concepts in class
- Build and test one's understanding in a supportive environment.
- Develop critical thinking, communication and reflection skills.
- Engage students to take ownership of their learning.

Things are different...

- Pre-lecture activities are crucial.
 - -Your lecture experience will depend on your preparation.
- Attending lectures is very important
- My lecture slides are NOT your notes!
 - -Create your own notes during pre-lecture reading.
 - –Annotate difficult concepts, revisit the annotation after lecture/tutorials.
 - –It is better not to take notes during lecture. You should be prepared before the lecture, then think, discuss and ask questions during lectures.

Study Program

Week	Activities	Assessment	
0		No formal assessment or activities are undertaken in week 0	
1	Introduction to database		
2	PART I: Database Design Database Design I - Conceptual Model	Pre-lecture Quiz Questions due weekly prior to the lecture (Weeks 2 to 11),	5%
3	Relational Model		
4	Database Design II - Logical Design		
5	Database Design III - Normalisation	Assignment 1 - Conceptual Model due	10%
6	Database Implementation - DDL		
7	PART II: The SQL Database Language SQL I - Basic		
8	Update, Delete and Transaction Management	Assignment 2 - Database Design due	15%
9	SQL II - Intermediate		
10	Triggers and Oracle PL/SQL		
11	SQL III - Advanced		
12	Topics on Big Data	Assignment 3 - SQL due	20%

FIT9132 2019 Semester 1 Breakdown

Enrolment: 844 students Average Grade: 63% C

Overview

 An overview of relational database management systems (RDBMS)

Let's travel back to 1960s

- Relational databases do not exist yet
- Let's create a database to record the information on Monash students
 - What kind of approaches do we have?
 - What kinds of problems are involved?

What is a database?

a structured set of data held in a computer, especially one that is accessible in various ways.

"a database covering nine million workers"

How do we structure our data?

- How easy is it to answer a number of queries?
- What kind of guarantee do we have from the systems on data integrity after a modification
 - (eg deletion, update or insertion of one or more records to the system?

Data Redundancy – a student data spreadsheet

		DIO_IIIVANIE	STU_DOB	UNIT_CODE	UNIT_NAME	ENROL_YEAR	ENROL_SEM	MARK	GRADE
11111111	Bloggs	Fred	1-Jan-90	FIT1002	Computer Pr	2013	1	66	C
11111111	Bloggs	Fred	1-Jan-90	FIT1004	Database	2013	1	80	HD
11111112	Nice	Nick	10-Oct-94	FIT1001	Computer Sy	2013	1	80	HD
11111112	Nice	Nick	10-Oct-94	FIT1001	Computer Sy	2012	1	35	N
11111114	Sheen	Cindy	25-Dec-96	FIT1001	Computer Sy	2012	1	78	D
11111114	Sheen	Cindy	25-Dec-96	FIT1004	Database	2013	1	60	C
11111113	Wheat	Wendy	5-May-90	FIT1001	Computer Sy	2012	2	65	С
11111113	Wheat	Wendy	5-May-90	FIT1004	Database	2013	1	78	D

What would happen if we delete Fred's enrolment in FIT1002? What happen to the details of FIT1002 information such as its name?

How would you update the mark for Cindy's enrolment in FIT1001? (Imagine the spreadsheet contains thousands of students and each student has 12 enrolment entries).

How would you introduce a new unit, eg FIT9133 Programming in Python into the spreadsheet when no student is enrolled to the unit yet?

Why do we have so many problems in the previous example?

- The structure of the data causes some data management problems or data anomalies.
- The software was not designed to deal with the type of reporting required.

How do we solve it?

⊕ STU_NBR	♦ STU_LNAME	\$ STU_FNAME	⊕ STU_DOB
1111111	1Bloggs	Fred	01/JAN/90
11111111	2Nice	Nick	10/0CT/94
1111111		Wendy	05/MAY/90
11111111	4 Sheen	Cindy	25/DEC/96

UNIT_CODE UNIT_NAME

FIT1002 Computer Programming
FIT1001 Computer Systems
FIT1004 Database

 Keep details of student, unit and enrolment separately, BUT keep the relationships among them in the system.

Relational Model Relational Database Relational Database Management systems

	⊕ ENROL_YEAR ⊕ ENROL_SEMES	TER & MARK & GRADE
11111114 FIT1001	2012 1	78 D
11111111 FIT1002	20131	60 C
11111111 FIT1004	20131	80 HD
111111112 FIT1001	20121	35 N
11111112 FIT1001	20131	80 HD
11111113 FIT1001	20122	65 C
11111113 FIT1004	20131	78 D
11111114 FIT1004	20131	60 C

DATABASE

⊕ STU_NBR	⊕ STU_LNAME	♦ STU_FNAME	⊕ STU_DOB
11111111	Bloggs	Fred	01/JAN/90
11111112		Nick	10/0CT/94
11111113	Wheat	Wendy	05/MAY/90
11111114	Sheen	Cindy	25/DEC/96

UNIT_CODE	⊕ UNIT_NAME	Y
FIT1002	Computer	Programming
FIT1001	Computer	Systems
FTT1004	Database	070

⊕ STU_NBR	UNIT_CODE	⊕ ENROL_YEAR	♦ ENROL_SEMESTER	⊕ MARK	⊕ GRADE
11111114	FIT1001	2012	1	78	D
11111111	FIT1002	2013	1	60	C
11111111	FIT1004	2013	1	80	HD
11111112	FIT1001	2012	1	35	N
11111112	FIT1001	2013	1	80	HD
11111113	FIT1001	2012	2	65	C
, 11111113	FIT1004	2013	1	78	D
11111114	FIT1004	2013	1	60	C

Entities/Tables

1970: Relational model

- An IBM scientist
- Proposed and developed the relational model
- Also proposed normalisation forms
- Resistance from IBM to implement his model
- Turing award (1981)

- Normalisation in week 5
- E. F. Codd, "A Relational Model of Data for Large Shared Data Banks", Comm. Of ACM, 1970

E.F Codd (1923-2003)

1974: SQL

- Developed at IBM
- Initially called SEQUEL (Structured English QUEry Language)
- Doesn't strictly follow Codd's theory
- Oracle: the first commercially available implementation of SQL in 1979
- SQL in weeks 7, 8, 9 & 10
- D Chamberlin, R Boyce, "SEQUEL: A structured English query language", ACM SIGFIDET, 1974

Donald Chamberlin (1944-)

Raymond Boyce (unknown - 1974)

1976: Conceptual model

- Proposed Entity-Relationship Model (ER diagram)
- A systematic process to design a relational database
- Database design process in week 2 & 4
- Peter Chen, "The entity-relationship model—toward a unified view of data", ACM TODS, 1976

Peter Chen (1947 -)

1979: Oracle

- Inspired by Codd's ideas
- First commercial release in 1979
- Most popular RDBMS
- Introduced PL/SQL in 1988 (Procedural Language/SQL)

Oracle SQL in week 7, 8, 9 & 10

Larry Ellison (1944 -)

1981: Transactions management

- Introduced transaction management
- Turing award (1998)
- Presumed lost at sea in 2007

Transaction management in week 8

Jim Gray (1944 -)

Data Management Today

- Relational databases are still very popular. But ...
 - -Social Networks (Facebook, Twitter, Foursquare etc.)
 - -Multimedia data (YouTube, Pinterest, Facebook etc.)
 - –Data streams (Twitter, computer networks)
 - -Spatial data (Road networks, Google Earth, Space etc.)
 - -Textual data
 - -Web data
 - -Big Data

—...

https://goo.gl/zMxG3b

In Perspective ...

RANK	DBMS	TYPE	INTRODUCED
1	ORACLE°	Commercial, Relational DBMS	1979
2	MySQL.	Open source, Relational DBMS	1995
3	SQL Server	Commercial, Relational DBMS	1989
4	PostgreSQL	Open source, Relational DBMS	1996
5	mongoDB	Open Source, Nosql - Document Store	2009
6	DB2	Commercial, Relational DBMS	1983

DB-ENGINES

July 2018

Relational database systems in action: End-users' view

(server)

Database Systems in Action Developers' View

Development environment (client, eg SQL Developer, Integrated Development Environment for web scripting)

Student Database (server)

Developing Application with Database

Web applications

Mobile Applications

Applications

BACK END

Database structure

SQL queries

Database integrity

In this unit, we will concentrate on building the back end. Database Designer.

Our Database Systems Environment

fit9132.corp-prd.aws.monash.edu

