Transmission Effects On MPG In Cars

1. Executive Summary

This paper is based at 1974 Motor Trend Data that contains fuel consumption related with 10 aspects of automobile design and performance for 32 cars models 1973-74. The purpose is to estimate the effect of the type of transmission (automatic vs manual) on the miles per gallon (MPG). The results suggest that manual transmission have a higher MPG. However the weight and acceleration are attibutes that have a significant influence in the results.

2. Exploratory Data Analysis

Based on common sense we can assume that the mpg of a car depends on its weight and its power, also the cars with more cylinders have a great acceleration and more horse power. The following plot shows these theories.

The left plot offer following insights:

- The cars with automatic transmission are heavy.
- The cars with manual transmission are lightweight.
- · A positive relationship between number of cylinders and weight.
- · A negative relationship between MPG and weight.

The right plot offer following insights:

- A strong relationship between acceleration and horse power.
- · Cars with more cylinders has great acceleration in lest time.
- · Cars with more cylinders provides major horsepower.
- Cars with more horsepower have automatic transmission.

- 5. 041

Also see the correlation matrix in the Appendix.

3. Models

##

amManual: cyl 6

The exploratory analysis suggested to use the wt variable with some power variables (cyl, hp) is a good start. An interesting insight is the acceleration that is strongly influenced by 8 cylinders cars therefore we will evaluate it. The models to analyze are:

```
## mpg \sim am: wt + am: cyl
##
                      Estimate Std. Error t value
                                                       Pr(>|t|)
##
   (Intercept)
                        33.820
                                     2.7313
                                              12. 382
                                                      3.656e-12
##
   amAutomatic: wt
                         - 3. 409
                                     0.8671
                                              -3.931 5.912e-04
   amManual: wt
                        - 2. 981
                                     1.3630
                                              - 2. 187
                                                      3.831e-02
##
   amAutomatic: cyl 6
                         - 3. 143
                                     2.0524
                                              -1.531 1.382e-01
```

- 2. 380 2. 524e- 02

2.1177

```
## mpg ~ am: wt + am: hp
```

```
##
                    Estimate Std. Error t value
                                                    Pr(>|t|)
##
   (Intercept)
                    36. 21665
                                  2.40962
                                            15. 030 1. 226e- 14
   amAutomatic: wt - 3.36820
##
                                  0.95787
                                            - 3. 516 1. 566e- 03
   amManual: wt
                    - 3. 29638
                                  1.48606
                                            - 2. 218 3. 514e- 02
   amAutomatic: hp - 0.03846
                                  0.01584
                                            - 2. 428 2. 214e- 02
                    - 0. 03300
                                  0.01406
                                           - 2. 347 2. 650e- 02
## amManual:hp
```

```
## mpg ~ am: wt + am: qsec
```

```
summary(model3)
```

```
##
##
##
   lm(formula = mpg ~ am: wt + am: qsec, data = mtcarst)
##
   Resi dual s:
               10 Median
                              3Q
##
                                     Max
##
   - 3. 936 - 1. 402 - 0. 155
                           1. 269
                                   3.886
##
##
   Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                       13. 969
                                     5.776
                                              2.42
                                                      0.0226 *
                                                     3. 1e- 05 ***
##
   amAutomatic: wt
                        - 3. 176
                                     0.636
                                              - 4.99
                                                     9. 7e- 07 ***
                                     0.969
##
   amManual: wt
                       - 6. 099
                                              - 6. 30
                                     0.260
                                                      0.0035 **
##
   amAutomatic: qsec
                         0.834
                                               3. 20
                                              5. 37 1. 1e- 05 ***
##
   amManual:qsec
                         1.446
                                     0.269
##
                     0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 2.1 on 27 degrees of freedom
   Multiple R-squared: 0.895, Adjusted R-squared:
## F-statistic: 57.3 on 4 and 27 DF,
                                          p- val ue: 8. 42e- 13
```

The stimation results reveal that model 3 is the best fit.

3.1 Model Validation

The model has a 88% Adjusted R-Squared, and contains three variables (transmission type, weight, and acceleration) along with the transmission interaction. The residuals are normal with 0 mean and constant variance. The "Residual vs Fitted" and "Scale Location" charts show that there is no trend to the residuals. The Q-Q plot shows that the errors are aproximately distributed. The p-values for am are considered statistically significant.

3.2 Model Interpretation

For constant quarter-mile-time: For each unit of increase in quarter-mile-time (1 unit = 1 sec), there is a 0.834 mpg increase for automatic cars while there is a 1.446 mpg increase for manual cars. This means manual cars have more efficient acceleration than automatic but in both cases require more fuel.

For constant weight (lb/1000): For each unit of increase in weight (1 unit = 1000 lb) there is 3.176 decrease for automatic cars while there is a 6.099 mpg decrease for manual cars. This means heavier cars in general require more fuel altought automatic cars consumes less fuel than manual.

Appendix

MPG against all variables

```
require(graphics)
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) {
    usr <- par("usr")
    on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r <- cor(x, y)
    txt <- format(c(r, 0.123456789), digits = digits)[1]
    txt <- paste(prefix, txt, sep = "")
    if (missing(cex.cor))
        cex.cor <- 0.8/strwidth(txt)
    text(0.5, 0.5, txt, cex = cex.cor * abs(r))
}
pairs(mpg ~ am:., data = mtcarst, lower.panel = panel.smooth, upper.panel = panel.cor,
    pch = 20, main = "Scatterplot - Correlation Matrix")</pre>
```

Scatterplot - Correlation Matrix

Selected Model Plot

