Cinématique relativiste (L3) Composition des viverses.

Composition des vitesses pour MTRUR Enoncé inspiré de :

* (Lumbroso, 1993, PRR, Magraus Mill, exob) * (Renault, 1990, Exo de Méca, Dunod, exo 15 Pelati) p128 chpm)

Savairs et techniques * connaître la TLRS qui transforme (ct, ?) en (ct', ?"). * Savan exprimer Xi et X/1 par rapport à une direction Eu.

> Savoir et techniques en jeu : Transformation de Lorentz Restreinte Spéciale (TLRS) et loi relativiste de composition des vitesses.

Exo : Loi relativiste de composition des vitesses d'une particule entre deux référentiels en MTRUR.

Antonin Siciak

Résumé

L'exercice propose de dériver la loi de composition des vitesses d'une particule entre deux référentiels en mouvement de translation rectiligne uniforme relativiste (MTRUR). Le changement de direction de la particule par rapport à celle du mouvement, dans le référentiel en mouvement, est révélé comme une conséquence relativiste.

Savoir et techniques en jeu : Transformation de Lorentz Restreinte Spéciale (TLRS).

Table des matières

1	Loi de composition	2
2	Vérification de l'invariance de c	2
3	Aspect géométrique	2

1 Loi de composition

Soit 2 référentiels \mathcal{R} et \mathcal{R}' dans les conditions de la Transformée de Lorentz Restreinte Spéciale. Ils ont leurs systèmes d'axes parallèles, et sont en MTRUR de direction \vec{e}_u :

$$\vec{u}_{\mathcal{R}'/\mathcal{R}} = c\beta \vec{e}_u = \vec{u} = \vec{\text{cste}}$$

Les origines des dates coïncident à t=t'=0. On note \vec{v} la vitesse d'une particule dans \mathcal{R} et on note $\vec{v'}$ la vitesse d'une particule dans \mathcal{R}' . On utilise le sous-script \bot pour indiquer que le vecteur est projeté orthogonalement à \vec{e}_u , et on utilise le sous-script \parallel pour indiquer que le vecteur est projeté sur \vec{e}_u .

Q1. Exprimer $\vec{v'}_{\perp}$ et $\vec{v'}_{\parallel}$ en fonction de \vec{u} , et de \vec{v} ainsi que de ces composantes parallèles et perpendiculaires à \vec{u} .

Comment s'écarte-t-on de la loi de composition galiléenne? Sur quelle composante l'effet relativiste est-il le plus fort?

2 Vérification de l'invariance de c

Q2. Montrer que : si $v_{\perp}^2 + v_{\parallel}^2 = c^2$ alors $(v_{\perp}')^2 + (v_{\parallel}')^2 = c^2$. Quid de la réciproque ?

Q3. Établir la relation:

$$1 - \beta_{v'}^2 = \frac{(1 - \beta_v^2)(1 - \beta^2)}{\left(1 - \frac{\vec{v} \cdot \vec{\beta}}{c}\right)^2},$$

où : $\beta = u/c$ et $\beta_{\rm x} = {\rm x}/c.$ Retrouver ainsi directement l'invariance de c.

3 Aspect géométrique

Q4. On désigne par θ et θ' les angles que font respectivement \vec{v} et $\vec{v'}$ avec \vec{e}_u . Exprimer $\tan(\theta')$ en fonction de u, v, et θ . Application numérique avec $\theta = \pi/3$, $u = c\sqrt{3}/2$, et v = c. Conclusion?

1. Loi de composition

Soit (R) un référentiel galiléen

Soit (R') un second référentiel galiléen qui

se déplace par rapport à (R) avec une nitresse

constante (BR): $\vec{n}_{R/R} = \vec{n} = \vec{\beta} = c = cste$, de direction $\vec{\nu}_{ii} = \vec{n}$ Les origines 0 et 0' des deux réf. coincident

à t = t' = 0 et les systèmes d'axes sont l'.

Une particule matérielle l' est animée de la

uitesse \vec{v} dans (R) et \vec{v}' donn (R').

1. Exprimer \vec{V}_{ii}' et \vec{V}_{i}' en fanction de \vec{U}_{i} , \vec{v}_{i} et de \vec{V}_{ii} , et \vec{V}_{i} respectivement, ai "1" est une composante romale à \vec{U}_{ii} et "//" une composante parallèle à \vec{U}_{ii} . Comment retranne - t-on la Poi de composition galiléenne des vitesses? Sur quelle composante l'effet relativiste sot le plus Port?

La transformée de Lorentz restreinte spéciale $S'écnit: (\vec{r}_1' = \vec{r}_1 - \vec{r}_2' - \vec{p}_1 + \vec{r}_2' - \vec{r}_2') \vec{r}_1 = \vec{r}_1 - (\vec{r}_1 \cdot \vec{e}_1) \vec{r}_2'$ $Ct' = \Gamma(Ct - \vec{p}_1 \cdot \vec{r}_2) / \vec{p}_1 = \vec{p}_2 \vec{r}_2$ $Ct' = \Gamma(Ct - \vec{p}_2 \cdot \vec{r}_2) / \vec{p}_2 = \vec{p}_2 \vec{r}_2$ $= \vec{p}_1 \cdot \vec{r}_2 \cdot \vec{r}_2 \cdot \vec{r}_2 = 0 \text{ par def}_2$

On en déduit :

$$\vec{r}' = \vec{r_1}' + \vec{r_1}' = \vec{r} - (\vec{r} \cdot \vec{e_n}) \cdot \vec{e_n} + \Gamma(\vec{r} \cdot \vec{e_n}) \cdot \vec{e_n} - \Gamma u t \cdot \vec{e_n}$$

$$\vec{r}' = \vec{r} + (\vec{r} - 1) (\vec{r} \cdot \vec{e_n}) \cdot \vec{e_n} - \Gamma u t \cdot \vec{e_n}$$

$$\frac{d\vec{r}'}{dt} = \vec{V} + (\vec{r} \cdot \vec{1}) (\vec{v} \cdot \vec{e}\vec{u}) \cdot \vec{e}\vec{u} - \vec{r} \cdot \vec{u} \cdot \vec{e}\vec{u}$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot dt \left(1 - \vec{B} \cdot \vec{v}\right)$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} = \vec{r} \cdot (1 - \vec{B} \cdot \vec{v})$$

$$\frac{d\vec{r}}{dt} =$$

Posans
$$\vec{\beta_v} = \frac{\vec{v}}{c}$$
 j
$$\vec{V_L'} = \frac{\vec{V_L}}{r} \left(1 - \vec{\beta} \cdot \vec{\beta_v}\right)$$
et $\vec{V_{l'}} = \frac{\vec{V_{l'}} - \vec{v}}{r - \vec{\beta} \cdot \vec{\beta_v}}$

Si:
$$\beta, \beta_{v} \ll 2$$
, alons: $\Gamma^{7-1} = (1 - \beta^{2})^{1/2} = 1 - \frac{\beta^{2}}{2} + o(\beta^{2})$
 $(1 - \vec{\beta} \cdot \vec{\beta_{v}})^{-1} = 1 + \vec{\beta} \cdot \vec{\beta_{v}} + o(\vec{\beta} \cdot \vec{\beta_{v}})$

$$d'a\dot{u}: \int \vec{V_{1}'} = \vec{V_{1}} \left(1 + \vec{\beta} \cdot \vec{\beta_{V}} - \frac{\beta^{2}}{2} + o(\beta^{2}) + o(\vec{\beta} \cdot \vec{\beta_{V}}) \right)$$

$$\vec{V_{II}'} = (\vec{V_{II}'} - \vec{u}) \left(1 + \vec{\beta} \cdot \vec{\beta_{V}'} + o(\vec{\beta} \cdot \vec{\beta_{V}'}) \right)$$

ou s'aperçait que sur $\vec{v_1}'$ l'écart à la relation classique apparaît mia deux termes du même ordre qui peuvent être de signes opposés, si $\vec{u} \cdot \vec{v} > 0$, comme du même signe, si $\vec{u} \cdot \vec{v} < 0$. Au quel cas, l'écart à la loi classique est plus visible sur $\vec{v_1}'$ que sur $\vec{v_2}'$.

```
Q2 Monter que si V12+ V12 = c2 alos V12+ V12 = c2
                                                                                      quid de la réciprogne?
               V_{1}^{12} = \frac{V_{1}^{2}}{\left(\sqrt{1 - \left(\frac{3}{2} \cdot \vec{v}\right)^{2}}\right)^{2}} \qquad V_{1}^{12} \propto \left(\sqrt{1 - 1}\right)^{2} = V_{1}^{2} - 2\vec{v}_{1}^{2} \cdot \vec{u} + u^{2}
                     V_{1}^{2} + V_{1}^{2} = V_{1}^{2} (1 - \beta^{2}) + V_{11}^{2} - 2 V_{11} u + u^{2}
                                                                                                                                                                                 \left(1 - \frac{3 \cdot \vec{v}}{2}\right)^2
                                                                V_{\perp}^{'2} + V_{ll}^{'2} = \frac{\left(c^2 - V_{ll}^2\right)\left(1 - \frac{u^2}{c^2}\right) + V_{ll}^2 - 2V_{ll}u + u^2}{\left(c^2 - V_{ll}^2\right)}
                                                                                                                                                                                             \left(1 - \frac{\ln \sqrt{n}}{c^2}\right)^2
                                                                                                                                     =\frac{C^2+V_{11}^2u^2/c^2-y_{11}^2-y_{11}^2+y_{11}^2-2v_{11}u+y_{12}^2}{\left(u-\frac{uv_{11}}{c^2}\right)^2}
                                                                                                                                      = \frac{1}{\sqrt{1 - \frac{\mu V_{i}^{2} L^{2}}{c^{2}}}} - \frac{2 V_{ij} L_{i} L_{i}^{2}}{(1 - \frac{\mu V_{ij}}{c^{2}})^{2}}
                                          = \frac{1}{\sqrt{1^2 + \sqrt{1^2 + \sqrt{1^2
On montre la réciproque en utilisant \vec{V}_{1}' + \vec{N}_{2}' \vec{V}_{1}' = \vec{V}_{1}' + \vec{N}_{2}' \vec{V}_{2}' = \vec{V}_{1}' + \vec{N}_{2}'
```

1. Verification de l'invaviance de c

Q3. Etablir la relation:
$$1 - \left(\frac{V'}{c}\right)^2 = \frac{\left(1 - \left(\frac{V}{c}\right)^2\right)\left(1 - \beta^2\right)}{\left(1 - \frac{\vec{V} \cdot \vec{\beta}}{c^2}\right)^2}; \beta^2 = \frac{u^2}{c^2}$$

et retrouver l'invariance de la vitesse c dans le vide.

$$V^{2} = V_{1}^{2} + V_{1}^{2} + 2 V_{1}^{2} \cdot V_{1}^{2} = V_{1}^{2} + V_{1}^{2}$$

$$02 \quad (3) \Rightarrow V_{1}^{2} = V_{1}^{2} \quad \text{at } (2) \Rightarrow V_{1}^{2} = (V_{1} - U_{1})^{2}$$

$$(3) \Rightarrow V_{1}^{2} = (V_{1} - U_{1})^{2} \quad \text{at } (2) \Rightarrow V_{1}^{2} = (V_{1} - U_{1})^{2}$$

$$\vec{\nabla}_{ij} = (\vec{\nabla} \cdot \vec{\beta}) \vec{\beta} \frac{1}{\beta^{2}}$$

$$\Rightarrow \vec{\nabla}_{ij} \cdot \vec{u} = \vec{\nabla} \cdot \vec{\beta} \vec{\beta} \cdot \vec{u} = \vec{\nabla} \cdot \vec{u} \frac{u^{2}}{\beta^{2}} = \vec{\nabla} \cdot \vec{\beta}$$

$$(\vec{\nabla}_{ij} - \vec{u})^{2} = (\vec{\nabla} \cdot \vec{\beta})^{2} - 2\vec{c}^{2}\vec{\nabla} \cdot \vec{\beta} + u^{2}$$

$$V^{2} = \frac{V^{2} - \frac{1}{\beta^{2}} (\vec{v} \cdot \vec{\beta})^{2} + \frac{\Gamma^{2}}{\beta^{2}} (\vec{v} \cdot \vec{\beta})^{2} - 2c(\vec{v} \cdot \vec{\beta}) \Gamma^{2} + (\mu \Gamma)^{2}}{\Gamma^{2} (1 - \frac{\vec{v} \cdot \vec{\beta}}{2})^{2}}$$

$$\frac{V^{2}}{C^{2}} = \frac{(\vec{v} \cdot \vec{B})^{2}}{(\vec{v} \cdot \vec{B})^{2}} (P^{2} - 1) - 2(\vec{v} \cdot \vec{B}) \Gamma^{2} + (\beta \Gamma)^{2}$$

$$\frac{V^{2}}{C^{2}} = \frac{\vec{v} \cdot \vec{B}}{(\vec{v} \cdot \vec{B})^{2}} (1 - \frac{\vec{v} \cdot \vec{B}}{C})^{2}$$

$$\frac{V^{12}}{C^{2}} = \frac{V^{2}}{C^{2}} + \frac{(\vec{v} \cdot \vec{\beta})^{2}}{C^{2}} \Gamma^{2} - 2(\vec{v} \cdot \vec{\beta}) \Gamma^{2} + (\beta \Gamma^{2})^{2}}{\Gamma^{2}(1 - \vec{v} \cdot \vec{\beta})^{2}}$$

$$\Rightarrow \frac{\sqrt{2}}{C^2} - 1 = \frac{\sqrt{2}}{C^2} + \frac{(\vec{v} \cdot \vec{\beta})^2}{C^2} + \frac{2(\vec{v} \cdot \vec{\beta})^2}{C^2} + \frac{2\vec{v} \cdot \vec{\beta}}{C^2} - \frac{(\vec{v} \cdot \vec{\beta})^2}{C^2} + \frac{2\vec{v} \cdot \vec{\beta}}{C^2} - \frac{2\vec{v} \cdot \vec{\beta}}{C^2} + \frac{2\vec{v}$$

$$\frac{V^{2}}{C^{2}} - 1 = \frac{V^{2}}{C^{2}} + \Gamma^{2}(\beta^{2} - 1)$$

$$\Gamma^{2}(1 - \vec{V} \cdot \vec{\beta}^{2})^{2}$$

$$\sigma_{2}: \beta^{2}-1 = -\beta^{-2}$$

danc:
$$\left(\frac{v'}{c}\right)^2 - 1 = \left(\frac{v}{c}\right)^2 - 1$$

$$\left(\frac{z}{c}\right)^2 - 1$$

cad:
$$1 - \left(\frac{V'}{C}\right)^2 = \frac{1 - \left(\frac{V}{C}\right)^2}{V^2 \left(1 - \frac{\vec{V} \cdot \vec{B}^2}{C}\right)^2}$$
(8)

3i la particule est en fait un photon coid Si V=C

Si
$$V=C$$
alors $\forall u$, $1-\left(\frac{V'}{C}\right)^2=0 \iff V'=\pm C$

-> L'uivariance de c est vérifiée par la loi de composition des vitesses

	3. Aspen	I géométrique	
		O et 0' les angles et v'avec éu.	
Exp	uimer tano' e	u fonction de 41,	velo.
VI 1	θ	$\overrightarrow{V}' \cdot \overrightarrow{e_u} = \overrightarrow{V_i}' \cdot \overrightarrow{e_u} :$ $\overrightarrow{V}' \cdot \overrightarrow{e_{1u}} = \overrightarrow{V_1}' \cdot \overrightarrow{e_{1u}} :$	= V'cos D = V'cos (= -0) = sin O
1/- 1/1	$\vec{e}_{\vec{u}} = \frac{(\vec{v} \cdot \vec{e}_{\vec{u}})}{(\vec{v} \cdot \vec{e}_{\vec{u}})}$	u, d'après (2)	
		$\beta \cdot V = \beta \cdot Cos \theta$ $V = \beta \cdot Cos \theta$ $C = \beta \cdot $	= v'cos 0' (1
2)_ V <u>i</u> '. ā	$ \frac{1}{\sqrt{1 \cdot \ell_{1u}}} = \frac{1}{\sqrt{1 \cdot \ell_{1u}}} $ $ \frac{1}{\sqrt{1 - \frac{uv \cos \theta}{c^2}}} $ $ \frac{1}{\sqrt{1 \cdot \ell_{1u}}} = \sqrt{\sin \theta} $		
> \(\sigma \) \(\sigma \)	9'= Ven 0		
d'ai : (5)) => fan 0' =	V sni O	2 c2
	(6) tan 0'=	Vsmo (vcso-u)	

```
Si ULCC ie: 7 \approx 1

tan \theta' = \frac{V \sin \theta}{V \cos \theta - u} Cas non relativiste.
        So V=C

alors
tau\theta' = M - \beta^2 - \frac{\sin \theta}{\cos \theta - \beta} / \beta = \frac{u}{c} 

Cas d' un photon

(8)
                                                    O'= arctan [V1-β2 Vsmo [[π]
    Trace: 0'= 4(0)
                                                    0'= auchon [1-82 & snio] [T]
pas une bonne
      i dée.
                                                            D'= f(3, 2,0)
                                               regarder pour une valeur de 8 comment 0'
                                                 Evolue avec: i) B et ii) ~
Application numérique: 0= T/3, u= 13 c, v=c
   on diduit: \cos \theta = \frac{1}{2} \sin \theta = \frac{\sqrt{3}}{2} \mathcal{V} = 2 et \beta = \frac{\sqrt{3}}{2}
                         V'= c par inventance cf quest'animante
       (4) \Rightarrow \cos \phi' = \frac{1/2 - \frac{3}{2}}{1 - \frac{\sqrt{3}}{4}}
\sin \phi' = \frac{\sqrt{3}}{2(1 - \frac{\sqrt{3}}{4})} > 0
\sqrt{1 - \frac{\sqrt{3}}{4}}
\sqrt{1 - \frac{\sqrt{3}}{4}} > 0
       => 1 il fant ajanter Tr
                D' = \arctan\left(\frac{V \sin D}{\Gamma(V \cos D - u)}\right) \left[\pi\right]
ia D' = \arctan\left(\frac{V_3}{2\left(\frac{1}{2} - \frac{V_3}{2}\right)}\right) + \Pi = \Pi + \arctan\left(\frac{V_3}{2 - V_3}\right)
               Soit 0' = 130,21°
```