浙江大学实验报告

专业: 电子信息工程

姓名: 邢毅诚

学号: <u>3190105197</u>

日期: <u>2021-3-8</u> 地点: 东三-206

课程名称: 电网络分析 指导老师: 姚缨英 成绩:

实验名称: <u>功率测量和功率因数的提高</u> 实验类型: <u>验证实验</u> 同组学生姓名: <u>无</u>

一、 实验目的

(1) 了解测量电容电导的方法

- (2) 掌握日光灯的功率和功率因数的测量方法
- (3) 掌握测量灯管、镇流器以及总负载的一系列参数的测量方法

二、实验内容

- (1) 保持日光灯两端电压不变, 测 I-C,P-C
- (2) 做出 I^2 , P, $cos\phi$ 和电容 C 的关系曲线
- (3) 求 $I^2 C$ 曲线的有理经验公式
- (4) 用 P-C 曲线求单位电容的等效电导 g
- (5) 测量灯管、镇流器以及总负载的等效

三、 注意事项

- (1) 电容 C 暂时不接入电路,连接电路,点亮日光灯:第一次通电前,要将调压器输出起始为 0,接通电源后,调节旋钮增大输出电压,要求用交流电压表检测电压(灯管 + 镇流器两端的电压),当电压达到 180V 左右,启辉器开始动作,日光灯有闪亮。日光灯点亮之后,调节输出电压到220V,保持不变。此后实验过程中,可以直接切断或接通电源,不需要在调节自耦变压器
- (2) 线路故障检查: 日光灯管和启辉器是否接触完好
- (3) 经常性地通断日光灯会影响其寿命
- (4) 功率表的连接及其误差分析
- (5) 接入电容会使电源电压升高
- (6) 电容有损耗

- (7) 在日光灯启动过程中,因为电流冲击,仪表两成要选择足够的余量,记录数据时,应改变合适的量程读取数据。日光灯管是非线性器件,需要点亮十分钟,在此期间可以观察电流、功率等数据是否有缓慢变化。待数据显示趋于稳定后,在读取记录实验数据
- (8) 电容器 C 并联接入电路,其数值从 0 开始逐步增加,知道最大值 $8\mu F$ 左右,增加的步长应该根据功率因数的变化进行调整,最大不应超过 $1\mu F$,实验过程中可以根据电流表的示数来判断。在功率因数提高的时候,需要多取测量数据点。
- (9) 不要单纯追求最佳补偿精度——电容使用不妥时会有危险

四、 实验原理

1. 电容电导

在非理想情况下,电容通常会带有一定的电阻,相当于电容与一个电导并联,且电导大小与电容大小成正比,即:

$$\sigma = g \cdot C \tag{1}$$

其中 gC 为电容器 C 的附加电导, g 为单位电容的电导。

2. 日光灯电路

日光灯的电路图如下图所示,其中日光灯电路由启辉器,整流器,日光灯三部分组成,在实验台上,日光灯与启辉器已经连接完成,因此在实验时,我们只需要将日光灯和启辉器与整流器相连,即可进行实验。

图 1: 日光灯电路图

另外,在进行日光灯电路的实验前,我们需要提前测试日光灯是否可以正常使用。需要先将三相交流电的输出电压调节至最小值并关闭电路,然后将日光灯电路与交流电直接相连并打开开关,逐渐增大电压至 190V 左右,如果日光灯发亮,则实验可以正常进行。

3. 实验接线图

本实验中的电路图如下图所示,由于实验中要求我们测量 I-C 以及 P-C 的曲线,并测量单位电导的大小,因此,我们可以通过不断改变 C 的大小,并测出对应电容的日光灯元件的电流,功率等参数。

图 2: 实验接线图

在获得参数之后,我们便可以绘制出 P-C 以及 I^2 -C 等曲线,将其拟合之后,便可得到其关系曲线。另外,根据公式进行推到,我们可以得知,电容与功率之间的公式满足

$$P = gCU^2 + GU^2 \tag{2}$$

将拟合公式与数据进行比较,我们便可以计算出g的相应数值。

五、 实验内容

1. 测试日光灯可用性

将日光灯,辉光管以及镇流器与电路简单连接后,接到三相交流电上。将三相交流电电压调节旋钮 旋至最小之后,打开电源,逐渐升高电压至 190V 左右,灯管被点亮,可以正常使用。

2. 测量电流, 功率, 功率因数

按照图 2 所示连接电路,打开电源,调节三相交流电输出旋钮使得电压表示数值变为 220V。逐步调节电压,测得电压,功率,功率因数与电容关系如下所示:

图 3: 日光灯电路图

电容/F	电压/V	电流/A	功率/W	功率因数
0	220.5	0.362	38.93	L0.47
0.47	220.8	0.338	39.11	L0.51
1	220.6	0.313	39.45	L0.55
1.47	220.8	0.297	39.61	L0.59
2	220.9	0.284	39.68	L0.62
2.2	220.6	0.276	40.04	L0.64
2.67	220.8	0.273	40.09	L0.65
3.2	220.9	0.271	40.13	L0.66
3.67	220.7	0.277	40.21	C0.64
4.2	220.9	0.285	40.5	C0.64
4.4	221.1	0.268	40.7	C0.67
4.67	219.9	0.267	40.38	C0.67
5.4	220.8	0.285	40.87	C0.64
6.4	221.1	0.323	41.18	C0.56
7.07	220.8	0.344	41.55	C0.53
7.6	220.8	0.362	41.7	C0.49
8.6	221	0.415	42.13	C0.43

表 1: 实验 1 数据

其中,功率因数中 L 代表着电路呈现感性,而 C 代表着电路呈现容县,对数据进行拟合,并绘制 图像,测得结果如下图所示:

图 4: 拟合图像

拟合得其公式如下所示:

$$COS\phi = -0.01172C^2 + 0.09241C + 0.4764$$
(3)

$$P = 0.3504C + 39.03 \tag{4}$$

$$I^2 = 0.00411C^2 - 0.03022C + 0.1268 (5)$$

由公式

$$P = gCU^2 + GU^2 \tag{6}$$

可以解得:

$$q = 7.24 \times 10^{-6} A^{-2} S^{-1}$$

3. 手工拟合 $I^2 - C$ 曲线

由拟合曲线,可以认定其曲线为近似为抛物线,选取误差较小的三点: $(0.47\mu F, 0.114I^2)$, $(3.2\mu F, 0.0734I^2)$ 与 $(7.07\mu F, 0.118I^2)$,将其代入到如下方程:

$$I^2 = aC^2 + bC + d$$

解得: $a=4.0\times 10^{-3}$, b=-0.0295, d=0.127, 将其与 matlab 拟合的数据进行比较,发现二者 大致相同,可以认为拟合较为准确。

4. 测量灯管与镇流器参数

将电容置 0, 测得相关参数如下图所示:

电容 / μF	电压 / V	电流 / A	日光灯功率 / W	总功率因数	总功率 / W	灯的功率因数
0	218.4	0.356	31.42	L0.47	38.18	C0.82

表 2: 灯管与镇流器相关参数

由于 C 为 0,此时电容端相当于断路。另外,由于日光灯的功率因数不为 0,因此我们不能认为其为纯阻性。根据功率因数,我们可以计算出各个元件上面通过的电压和电流。

计算得灯的电压为 $U_{light}=107.63V$,根据余弦定理,我们可以计算出镇流器的电压为: $U_z=254.75V$,其功率因数为: L0.075,因此计算得日光灯和传感器得参数如下所示:

$$Z_{light} = (247.96 - 172.98j)\Omega \tag{7}$$

$$Z_z = (336.39 + 725.59j)\Omega \tag{8}$$

六、 心得与体会

在本次实验中,我们进行了功率测量和功率因数的提高的相关实验的相关实验。不同于以往的实验,本实验所采用的电压都是 220V 的高压电,危险性较大,需要考虑灯管承受电压过高的风险以及人身安全问题,在实验过程中需要尤为注意。例如,在进行实验的过程中,我们需要先将三相交流电输出旋钮调节至最小值,再逐渐增大至灯管发亮;在连接电路的过程中,必须保证全程断电。

另外,在本次实验中灯光管是与启辉器直接相连的,在进行实验时,我们只需要将其直接与镇流器 相连并接到电路中即可。