## PATENT ABSTRACTS OF JAPAN

(11)Publication number:

09-263493

(43)Date of publication of application: 07.10.1997

(51)Int.Cl.

C30B 29/06 C30B 15/00 C30B 15/20 H01L 21/208

(21)Application number: 08-097761

(71)Applicant: SHIN ETSU HANDOTAI CO LTD

(22)Date of filing:

27.03.1996

(72)Inventor: IINO EIICHI

KIMURA MASAKI **MURAOKA SHOZO** 

### (54) PRODUCTION OF SILICON SINGLE CRYSTAL

(57) Abstract:

PROBLEM TO BE SOLVED: To produce a silicon single crystal of a large diameter by the MCZ method without causing twisting. SOLUTION: When the objective silicon single crystal is produced by the MCZ method, a silicon single crystal is pulled up under rotation at ≥0.4mm/min velocity (v1) of crystal growth and 0.628 × 104-1.0 × 104mm/min velocity (v2) of the peripheral part of the crystal while satisfying the relation of V2≤-3.72 × 104v1+4.35 × 104.



#### **LEGAL STATUS**

[Date of request for examination]

27.06.2000

[Date of sending the examiner's decision of

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3443822

[Date of registration]

27.06.2003

[Number of appeal against examiner's decision of rejection

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

### (19)日本国特許庁(JP)

## (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平9-263493

(43)公開日 平成9年(1997)10月7日

| (51) Int.Cl. <sup>8</sup> | 識別記号        | 庁内整理番号          | FΙ      |         |               | 技術     | 支示箇所 |
|---------------------------|-------------|-----------------|---------|---------|---------------|--------|------|
| C30B 29/0                 | 06 502      |                 | C30B 2  | 9/06    | 502.          | Ī      |      |
| 15/0                      |             |                 | 1       | 5/00    | Z             |        |      |
| 15/2                      | 20          |                 | 1       | 5/20    |               |        |      |
| H01L 21/2                 | 208         |                 | H01L 2  | 21/208  | /208 P        |        |      |
|                           |             |                 | 審查請求    | 未請求     | 請求項の数 1       | FD (全  | 4 頁) |
| (21)出願番号                  | 特顧平8-97761  | 特顏平8-97761      |         | 0001901 | 49            |        |      |
|                           |             |                 |         | 信越半年    | <b>尊体株式会社</b> |        |      |
| (22)出顧日                   | 平成8年(1996)3 | 平成8年(1996)3月27日 |         | 東京都     | 千代田区丸の内 1     | 丁目4番2  | 2号   |
|                           |             |                 | (72)発明者 | 飯野 第    | <del>Ř</del>  |        |      |
|                           |             |                 |         | 群馬県多    | 女中市磯部2丁目      | 113番1号 | 信越半  |
|                           |             |                 |         | 導体株式    | 式会社磯部研究所      | 竹内     |      |
|                           |             |                 | (72)発明者 |         |               |        |      |
|                           |             |                 |         | 群馬県多    | 女中市磯部2丁目      | 113番1号 | 信越半  |
|                           |             |                 |         | 導体株式    | 式会社磯部研究所      | 竹内     |      |
|                           |             |                 | (72)発明者 |         |               |        |      |
|                           |             |                 |         | 群馬県3    | 安中市磯部2丁目      | 113番1号 | 信越半  |
|                           |             |                 |         | 導体株式    | 式会社礦部研究所      |        |      |
|                           |             |                 | (74)代理人 | 弁理士     | 志波 邦男         | (外1名)  |      |
|                           |             |                 |         |         |               |        |      |

### (54) 【発明の名称】 シリコン単結晶の製造方法

### (57)【要約】

【課題】 MC Z法で大直径のシリコン単結晶を捻れを生じずに製造する。

【解決手段】 MC Z 法によりシリコン単結晶を製造する方法において、シリコン単結晶を回転させながら引き上げる際の結晶成長速度 v, (mm/分)及び結晶外周部速度 v, (mm/分)が

 $0.4 \le v_1$ 

0.  $628 \times 10^{4} \le v_{2} \le 1$ .  $0 \times 10^{4}$ 

及び

 $v_1 \le -3$ .  $72 \times 10^4 v_1 + 4$ .  $35 \times 10^4$  を満たす条件で単結晶の引き上げを行う。



1

【特許請求の範囲】

【請求項1】 MCZ法によりシリコン単結晶を製造す る方法において、シリコン単結晶を回転させながら引き 上げる際の結晶成長速度v₁(mm/分)及び結晶外周 部速度v。(mm/分)が

 $0.4 \le v_1$ 

0.  $628 \times 10^{4} \le v_{1} \le 1.0 \times 10^{4}$ 

及び

 $v_1 \le -3$ .  $72 \times 10^4 v_1 + 4$ .  $35 \times 10^4$ 

を満たす条件で単結晶の引き上げを行うことを特徴とす 10 るシリコン単結晶の製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、MCZ法によるシリコ ン単結晶の製造方法に関する。

[0002]

【従来の技術】近年、チョクラルスキー法(CZ法)に より製造されるシリコン単結晶の大直径化が進んでい る。大直径結晶を成長するには、大口径石英ルツボを使 用して100kg以上の大量の原料を溶融する必要があ るが、結晶品質面での問題が生じ得る。すなわち、結晶 品質面からは、結晶に含まれる格子間酸素は低濃度であ る必要があるが、結晶中に含まれる酸素は石英ルツボの 溶解によって供給されるので、石英ルツボが大きくな り、シリコンの融液量が増えると、石英ルツボからの酸 素の供給量が増加して格子間酸素が増加してしまう。

【0003】また、大直径結晶を成長する場合は、融液 の量が増えることで自然対流による融液の不安定性が増 すので、結晶成長も容易ではなくなる。

【0004】上記のような問題を解決する方法として、 MC Z法が従来より用いられている。MC Z法により、 結晶引き上げ時に磁場を印加して融液対流を抑制し、融 液内に溶け込んでいる酸素が引き上げられる結晶内に取 り込まれるのを抑制することができる。

[0005]

【発明が解決しようとする課題】しかし、MCZ法で大 直径結晶を引き上げると、結晶が捻れるという新たな問 題が生じる。この結晶の捻れは、結晶回転速度を増加し ていくと生じ易く、一旦捻れが生じると結晶が変形し、 単結晶化しなくなりやすい。また、結晶に捻れが生じた 40 場合は結晶成長速度を低下させなくてはならないため、 製造効率が低下してコストアップにつながるという問題 を生じる。

【0006】したがって、捻れの問題に対応するには結 晶回転速度を遅くする必要があるが、結晶成長時の結晶 回転速度は、得られるウェーハの不純物の面内分布の均 一性を得るために重要な成長条件であり、ある程度以下 へ低下することは問題である。

【0007】そこで本発明は、MCZ法で大直径のシリ

特開平9-263493

る方法を提供することを目的とする。

([0008]

(2)

【課題を解決するための手段】本願の請求項1記載の発 明は、MCZ法によりシリコン単結晶を製造する方法に おいて、シリコン単結晶を回転させながら引き上げる際 の結晶成長速度 v1 (mm/分)及び結晶外周部速度 v1 (mm/分)が

 $0.4 \le v_1$ 

0.  $628 \times 10^{4} \le v_{1} \le 1.0 \times 10^{4}$ 

 $v_1 \le -3$ .  $72 \times 10^4 v_1 + 4$ .  $35 \times 10^4$ を満たす条件で単結晶の引き上げを行うことを特徴とす るシリコン単結晶の製造方法を提供する。

【0009】以下、本発明を詳細に説明する。

【0010】MCZ法で結晶が捻れ易い原因は、磁場を 印加することによりメルトの粘性が増大し、その結果、 結晶回転に対する負荷が大きくなるためと考えられる。 特に大直径結晶が捻れ易くなるのは、結晶が大直径化す ることで熱容量が増大し、結晶冷却速度が低下すること 20 と、結晶外周部の速度が実質的に大きくなることが大き な要因と考えられる。つまり、結晶が捻れるのには、結 晶直径、結晶成長速度及び結晶回転速度が関係する。

【0011】我々は、前述した結晶の捻れの問題を解決 するためには、結晶の冷却速度が大きくなるような炉内 構造を選択するか、または、結晶直径、結晶成長速度及 び結晶回転速度を適切な範囲に選択することが有効であ ることを見出した。

【0012】しかし、結晶の冷却速度を変化させると、 結晶欠陥に多大な影響が及ぶので、実質的には適用でき 30 ないのが実状である。従って、結晶直径、結晶成長速度 及び結晶回転速度を適切な範囲に選択することが有効と なる。

【0013】結晶に捻れが生じない結晶回転速度の上限 は、結晶直径によって異なり、結晶直径が大きくなるに つれて上限値が低くなる。詳細な検討の結果、結晶直径 に拘らず、結晶の外周部の速度(線速度)が一定値以下 である場合に捻れが生じないことが見出された。

【0014】すなわち、結晶成長速度をv、(mm/ 分)、結晶外周部速度をv<sub>2</sub>(mm/分)とすると、

 $0.4 \leq v_1$ 0.  $628 \times 10^{4} \le v_{z} \le 1$ .  $0 \times 10^{4}$ 及び

 $v_1 \le -3$ .  $72 \times 10^4 v_1 + 4$ .  $35 \times 10^4$ を満たす条件で単結晶の引き上げを行えば、捻れを生じ ることなく結晶成長を行うことができる。この条件は、 図1の線分で囲まれた領域内に相当する。

【0015】結晶回転速度の上限は、品質改善上それ以 上は意味のなくなる場合と、変形が起きる場合によって 区切られる。同じく下限は、結晶品質上問題の現れると コン単結晶を捻れが生じることなく製造することができ 50 ころであり、結晶外周部の速度でほぼ定まる。また、結

晶成長速度の上限は結晶品質上問題の現れるところであ り、結晶回転速度と相関している。結晶成長速度の下限 は、生産性の低下等の問題により規定される。

【0016】なお、上記条件を満たす限り結晶直径は制 限されないが、結晶直径が8" の以上の大直径の場合に 特に有効である。

[0017]

して結晶成長を行った場合の結晶の変形の有無及び品質 の良否を表1に示す。なお、結晶外周部速度 v,は、

vz=結晶回転速度(rpm)×結晶外周長さ(mm)

で求められる。また、結晶の変形及び品質については、 以下のような方法で評価した。

【0019】(結晶の変形)結晶成長時に捻れが生じた 場合は結晶が変形する。結晶の変形の有無は結晶表面に 現れる晶僻線を観察することにより評価できる。変形が 生じていない結晶の晶磨線は途中で途切れることなく続 いている。変形が生じている結晶の晶癖線は途中で途切 れ、一時的に2本に分れてしまっている。したがって、 晶僻線が途切れているか否かを観察し、晶僻線が途切れ ている場合を変形が「有」、途切れていない場合を変形 が「無」とした。

=結晶回転速度(rpm)×結晶直径(mm)×3.14 10※【0020】(結晶の品質)結晶の品質は、結晶断面に おける格子間酸素濃度の面内分布により評価した。すな わち、結晶断面の中心部における格子間酸素濃度Xc及 び周縁部から中心方向へ10mm離れた場所における格

【0018】600mmφの石英ルツボに150kgの シリコン原料を溶融し、結晶成長時には水平磁場0.4

Τを印加して、直径が8" Φ及び12" Φの結晶成長を 行った。結晶回転速度と結晶成長速度を種々の値に設定

\*【実施例】次に、本発明の実施例を説明する。

 $X = | (X_c - X_{10}) | / X_c \times 100$ 

子間酸素濃度X10を測定し、

の値(%)を求め、この値が8%以下の場合は結晶の品 質が「良」、8%を越えた場合は結晶の品質が「悪」と 評価した。

[0021]

※20 【表1】

| 直径  | 結晶回転<br>速度 | 結晶外周部<br>速度             | 結晶成長<br>速度 | 結晶の変形 | 結晶の品質 |    |
|-----|------------|-------------------------|------------|-------|-------|----|
|     | (rpm)      | (mm/分)                  | (mm/分)     | の有無   | X (%) | 評価 |
| 8"  | 18         | 1.13 × 10 <sup>4</sup>  | 0.9        | 有     | ≤±4   | 良  |
|     | 15         | $0.942 \times 10^4$     | 0.9        | 無     | ≤±4   | 良  |
|     | 11         | $0.691 \times 10^4$     | 0.6        | 無     | ≤±6   | 良  |
|     | 8          | $0.502 \times 10^{4}$   | 0.9        | 無     | ≤±10  | 垂  |
| 12" | 16         | 1.51 × 10 <sup>4</sup>  | 0.8        | 有     | ≤±4   | 良  |
|     | 10         | 0.942 × 10 <sup>4</sup> | 0.8        | 無     | ≤±4   | 良  |
|     | 8          | $0.754 \times 10^{4}$   | 0.6        | 無     | ≤±6   | 良  |
|     | 5          | 0.471 × 10 <sup>4</sup> | 0.8        | 無     | ≤±10  | 悪  |

【0022】また図2は、直径が8" φ、12" φ及び 16" φの結晶成長を行う場合の結晶成長速度と結晶回 転速度の適切な範囲を示す。

[0023]

【発明の効果】以上説明した通り本発明によれば、MC 2法で大直径のシリコン単結晶を捻れが生じることなく 効率良く製造することができる。

【図面の簡単な説明】

【図1】本発明において結晶外周部速度と結晶成長速度 の適切な範囲を示す図である。

【図2】種々の直径で結晶成長を行う場合の結晶回転速 度及び結晶成長速度の適切な範囲を示す図である。



