# 《基础物理实验》实验报告

# 1 实验目的及要求

- 1. 观察简谐振动现象,测定简谐振动的周期。
- 2. 求弹簧的倔强系数 k 和有效质量  $m_0$ 。
- 3. 观察简谐振动的运动学特征。
- 4. 验证机械能守恒定律。
- 5. 用极限法测定瞬时速度。
- 6. 深入了解平均速度和瞬时速度的关系。

# 2 实验仪器

气垫导轨、滑块、附加砝码、弹簧、U 型挡光片、平板挡光片、数字毫秒计、天平等。

## 3 实验原理

#### 3.1. 弹簧振子的间谐运动

在水平的气垫导轨上,两个相同的弹簧中间系一个滑块,滑块做往返振动,若不考虑滑块运动的阻力,可以认为滑块的振动是理想的简谐振动。

设质量为  $m_1$  的滑块初始时处于平衡位置,此时每个弹簧的初始伸长量为  $x_0$ ,当滑块偏离平衡点 x 时,受弹性力  $-k_1(x+x_0)$  与  $-k_1(x-x_0)$  的作用,其中  $k_1$  是弹簧的倔强系数。根据牛顿第二定律,列出其运动方程:  $-kx = m\ddot{x}$ (式中  $k=2k_1$ )

式中的 与弹簧质量  $m_1$  并不相同。因为事实上弹簧也是有一定质量的,这导致了实际的运动并非严格的简谐振动,而是需要考虑弹簧内部形成的驻波,详细推导需要采用分离变量法解微分方程,这里直接给出结果:若在近似的仍欲采用简谐振动的结论,则可考虑只取一级近似,引入"弹簧有效质量"  $m_0$ 

由一级近似可计算得  $m=m_1+m_0$ , $m_0$  为弹簧质量的  $\frac{1}{3}$ ,这样对应该方程的解为:

$$x = A\sin(\omega_0 t + \varphi_0) \quad \omega_0 = \sqrt{\frac{k}{m}} \tag{1}$$

其中周期与固有频率的关系为

$$T = \frac{2\pi}{\omega_0} = 2\pi \sqrt{\frac{m}{k}} = 2\pi \sqrt{\frac{m_1 + m_0}{k}} \tag{2}$$

将上式两边平方可以得到

$$T^2 = \frac{4\pi^2 \left(m_1 + m_0\right)}{k} \tag{3}$$

在实验中,我们改变  $m_1$ ,测出相应的 ,采用作图法获得  $T-m_1$  的曲线,理论上该曲线应为一条直线,直线的斜率为  $\frac{4\pi^2}{k}$ ,采用最小二乘法可以计算出该直线的斜率,进而算出劲度系数到 k 的值。同时,可以从该条直线的截距获取  $m_0$  的值。也可采用逐差法求解 k 和  $m_0$  的值。

#### 3.2. 简谐运动的运动学特征

运动方程两边同时对时间求导,即可得到

$$v = \frac{dx}{dt} = A\omega_0 \cos(\omega_0 t + \varphi_0) \tag{4}$$

由此可见,速度 v 与时间有关,且随时间的变化关系也为简谐振动,角频率为  $\omega_0$ ,振幅为  $A\omega_0$ ,而且度 v 的相位比位移 x 超前  $\frac{\pi}{6}$ 

联立 x-t 方程与 v-t 方程, 消去时间 t, 即可得到

$$v^2 = \omega_0^2 \left( A^2 - x^2 \right) \tag{5}$$

当 x=A 时, v=0; 当 x=0 时,  $v=\pm A\omega_0$ , 此时 v 取最大值

本实验可以通过观察 x 和 v 随时间的变化规律,以及 x 和 v 之间的相位关系。利用线性拟合的方法算出角频率

#### 3.3. 简谐振动的机械能

在实验中,任何时刻系统的振动动能为

$$E_k = \frac{1}{2}mv^2 = \frac{1}{2}(m_1 + m_2)v^2$$
(6)

由于此前在第一个实验项目中,已经测得弹簧的劲度系数为 k,因此可以直接算得系统的弹性势能为(以  $m_1$  位于平衡位置时系统的势能为零)

$$E_p = \frac{1}{2}kx^2\tag{7}$$

所以系统的机械能为

$$E = E_k + E_p = \frac{1}{2}m\omega^2 A^2 = \frac{1}{2}kA^2 \tag{8}$$

上式中的 k 和 A 均不随时间变化

通过测量滑块  $m_1$  在不同位置 x 的速度 v,从而计算弹性势能和振动势能,并验证他们之间的相互转换关系和机械能守恒定律是否吻合。

#### 3.4. 瞬时速度的测量

设变速运动的物体在 时间中经过的路程为  $\Delta s$ ,则其平均速度为  $\overline{v} = \frac{\Delta s}{\Delta t}$ 

当  $\Delta t$  与  $\Delta s$  均趋于 0 时, 平均速度的极限就为物体的瞬时速度。

在实验中,在倾斜的气轨上,于 A 点处放置一光电门,在滑块上先后安装上挡光距离不同的 U 形挡光片,使各挡光片的第一挡光边距 A 点为 l。滑块每次自 P 点由静止开始下滑,分别测出相应的挡光时间  $\Delta t$  及挡光距离  $\Delta s$ 。(设滑块由静止下滑距离 l 后的瞬时速度为  $v_0$  即第一挡光时滑块的瞬时速度),则有:

$$\overline{v} = \frac{\Delta s}{\Delta t} = v_0 + \frac{1}{2}a \cdot \Delta t \tag{9}$$

其中 a 为物体在 A 附近的加速度本实验可以通过改变挡光距离  $\Delta s$  观察平均速度和瞬时速度的 关系,分别画出 v-t 图和 v-x 图,利用外推法求出瞬时速度。

## 4 实验内容

- 1. 学会光电门测速和测周期的使用方法。
- 2. 调节气垫导轨至水平状态,通过测量任意两点的速度变化,验证气垫导轨是否处于水平状态。
- 3. 测量弹簧振子的振动周期并考察振动周期和振幅的关系。滑块的振幅 A 分别取 10.0、20.0、30.0、40.0 cm 时,测量其相应振动周期。分析和讨论实验结果可得出什么结论?
- 4. 研究振动周期和振子质量之间的关系。在滑块上加骑码(铁片)。对一个确定的振幅(如取  $A=40.0~{\rm cm}$ )每增加一个骑码测量一组。(骑码不能加太多,以阻尼不明显为限。)作  $T^2-m$  的图,如果 T 与 m 的关系式如公式(6)所示,则  $T^2-m$  的图应为一条直线,其斜率为  $4\pi^2/k$ ,截距为  $4\pi^2m_0/k$ 。用最小二乘法做直线拟合,求出 k 和  $m_0$ 。
- 5. 研究速度和位移的关系。在滑块上装上 U 型挡光片,可测量速度。作  $v^2-x^2$  的图,看该图是否为一条直线,并进行直线拟合,看斜率是否为 $-\omega_0^2$ ,截距是否为 $A^2\omega_0^2$ ,其中 $\omega_0=2\pi/T$ ,可测出。
- 6. 研究振动系统的机械能是否守恒。固定振幅(如取 A=40.0cm),测出不同 x 处的滑块速度,由此算出振动过程中经过每一个 x 处的动能和势能,并对各 x 处的机械能进行比较,得出结论。
- 7. 研究平均速度与瞬时速度的关系,利用外推法求出瞬时速度。在气轨下面只有一个螺丝的一端,小心将气轨抬起来,把垫块放到这个螺丝的下面。测量具有不同  $\Delta s$  的挡光片在距离 A 点为 50cm 处从静止开始自由下滑,从 A 点开始在  $\Delta s$  所用的时间  $\Delta t$ ,求出平均速度  $\overline{v}$  ,作  $\overline{v} \Delta t$  图和  $\overline{v} \Delta s$  图,将图线性外推求出瞬时速度  $v_0$ 。
  - 8. 通过改变气轨的倾斜角度  $\theta$  (增加垫块数量), 重复上述实验。
  - 9. 通过改变 A 点到 P 点的距离 (设置 60cm 处), 重复上述实验。

## 5 实验数据及数据处理

#### 5.1. 实验仪器调试

| $v_1(\mathrm{cm/s})$ | $v_2(\mathrm{cm/s})$ | 误差 (%) |
|----------------------|----------------------|--------|
| 5.71                 | 5.69                 | 0.35   |
| 6.05                 | 6.03                 | 0.33   |
| 4.78                 | 4.76                 | 0.47   |

通过调试使三次误差均低于 0.5%, 说明导轨已经十分接近水平状态。

#### 5.2. 测量弹簧振子的振动周期并考察振动周期和振幅的关系

滑块的振幅 A 分别取 10.0, 20.0, 30.0, 40.0cm 时, 测量其振动周期

|                    | 10cm    | 20cm    | 30cm    | 40cm    |
|--------------------|---------|---------|---------|---------|
| $T_1(\mathrm{ms})$ | 1621.10 | 1620.15 | 1620.01 | 1618.95 |
| $T_2(\mathrm{ms})$ | 1621.42 | 1620.44 | 1619.69 | 1618.99 |
| $T_3(\mathrm{ms})$ | 1621.19 | 1620.10 | 1619.63 | 1619.29 |
| $T_4(\mathrm{ms})$ | 1621.37 | 1619.96 | 1619.63 | 1619.47 |
| $T_5(\mathrm{ms})$ | 1621.34 | 1619.97 | 1619.87 | 1619.11 |
| T(ms)              | 1621.28 | 1620.12 | 1619.77 | 1619.16 |

已知理论上,周期与振幅无关。观察可以发现,当振幅不同时,测得的四个周期值均较为接近,根据实验结果来看可以认为,在误差的允许范围内,周期的大小与振幅无关。将4个周期做平均,可以得到带有条形挡光片的滑块做简谐运动的周期大约为1620ms。

# 5.3. 研究弹簧振子振动周期与振子质量之间的关系

振子的振幅 A 取 40.0cm

| m(g)     | 219.99  | 242.20  | 232.40  | 240.98  | 257.39  |
|----------|---------|---------|---------|---------|---------|
| $T_1$    | 1620.68 | 1710.95 | 1666.91 | 1708.49 | 1750.68 |
| $T_2$    | 1620.58 | 1711.18 | 1666.99 | 1708.62 | 1750.89 |
| $T_3$    | 1620.65 | 1710.95 | 1667.05 | 1708.68 | 1750.65 |
| $T_4$    | 1620.52 | 1711.16 | 1667.09 | 1708.53 | 1750.73 |
| $T_5$    | 1620.53 | 1711.12 | 1667.09 | 1708.50 | 1750.72 |
| $T_6$    | 1620.45 | 1711.09 | 1667.16 | 1708.18 | 1750.69 |
| $T_7$    | 1620.49 | 1711.06 | 1667.10 | 1708.35 | 1750.59 |
| $T_8$    | 1620.49 | 1711.13 | 1666.69 | 1708.54 | 1750.36 |
| $T_9$    | 1620.53 | 1711.15 | 1666.88 | 1708.38 | 1750.72 |
| $T_{10}$ | 1620.56 | 1711.18 | 1666.86 | 1708.41 | 1750.77 |
| T        | 1620.55 | 1711    | 1666.99 | 1708.47 | 1750.68 |

#### 绘制图像



图 1: 振子周期与质量的关系

根据图像拟合,可知直线斜率为 12.01, $R^2=0.9822$  ,十分接近 1,说明拟合程度较好。由实验原理部分,可知斜率为  $\frac{4\pi^2}{k}$  ,截距为  $\frac{4\pi^2m_0}{k}$  ,计算可知,该弹簧的弹性系数为 3.29N/m ,弹簧的有效质量为 0.22g。

#### 5.4. 研究速度与位移的关系

振子的振幅 A 取 40.0cm

|                      | $10 \mathrm{cm}$ | $15 \mathrm{cm}$ | 20cm   | $25 \mathrm{cm}$ | 30cm  |
|----------------------|------------------|------------------|--------|------------------|-------|
| $v_1(\mathrm{cm/s})$ | 129.70           | 119.62           | 118.20 | 110.99           | 90.99 |
| $v_2({ m cm/s})$     | 128.53           | 118.34           | 116.69 | 110.01           | 88.73 |
| $v_3(\mathrm{cm/s})$ | 126.42           | 121.95           | 114.68 | 107.18           | 85.62 |
| v(cm/s)              | 128.22           | 119.97           | 116.52 | 109.39           | 88.45 |

#### 绘制图像



图 2: 速度与位移的关系

由图像可知,拟合直线斜率为-0.0969,截距为 0.1695, $R^2$ =0.9621, 可见拟合程度较高,由原理部分公式可知, $\omega_0$ =0.311 $s^{-1}$ 

# 5.5. 研究机械能是否守恒

振子的振幅 A 取 40.0cm

|          | 10cm   | $15 \mathrm{cm}$ | 20cm   | $25 \mathrm{cm}$ | 30cm  |
|----------|--------|------------------|--------|------------------|-------|
| v(cm/s)  | 128.22 | 119.97           | 116.52 | 109.39           | 88.45 |
| $E_k(J)$ | 0.18   | 0.16             | 0.15   | 0.13             | 0.09  |
| $E_p(J)$ | 0.017  | 0.037            | 0.066  | 0.104            | 0.149 |
| E(J)     | 0.20   | 0.20             | 0.21   | 0.21             | 0.23  |

由机械能数据可知,振动系统的机械能在振动过程中大致不变,与理论结果相符

# 5.6. 改变振幅 A, 测出相应的 $v_{max}$ , 由 $v_{max}^2$ - $A^2$ 图像求 k

|                            | 10cm  | 15cm  | 20cm  | 25cm   | 30cm   |
|----------------------------|-------|-------|-------|--------|--------|
| $v_{max_1}(\mathrm{cm/s})$ | 47.82 | 67.61 | 86.36 | 107.64 | 124.07 |
| $v_{max_2}({\rm cm/s})$    | 47.73 | 67.43 | 85.91 | 107.18 | 123.46 |
| $v_{max_3}({\rm cm/s})$    | 46.51 | 66.14 | 84.53 | 105.60 | 121.65 |
| $v_{max}({ m cm/s})$       | 47.35 | 67.06 | 85.60 | 106.81 | 123.06 |

绘制图像



图 3: 振子最大速度与振幅的关系

由图像可知, 拟合直线斜率为 16.264, 截距为 0.0805, 由公式计算可知, k=3.54N/m

# 5.7. 其他相关参数

滑块的质量: 217.34g 条形挡光片质量: 2.63g U 型挡光片质量: 11.76g

# 5.8. 测定瞬时速度与不同 U 型挡光片通过光电门所用的时间(AP=50cm),计算平均速度

|      | $\Delta t_1(\mathrm{ms})$ | $\Delta t_2(\mathrm{ms})$ | $\Delta t_3 (\mathrm{ms})$ | $\Delta t_4 (\mathrm{ms})$ | $\Delta t_5 \; (\mathrm{ms})$ | $\Delta t (\mathrm{ms})$ | $\overline{v}(\mathrm{m/s})$ |
|------|---------------------------|---------------------------|----------------------------|----------------------------|-------------------------------|--------------------------|------------------------------|
| 1cm  | 60.02                     | 61.82                     | 61.87                      | 61.76                      | 60.70                         | 61.23                    | 0.16                         |
| 3cm  | 196.20                    | 188.02                    | 192.77                     | 188.74                     | 198.06                        | 192.76                   | 0.16                         |
| 5cm  | 305.27                    | 313.04                    | 305.77                     | 305.80                     | 300.66                        | 306.11                   | 0.16                         |
| 10cm | 570.02                    | 580.59                    | 578.75                     | 583.19                     | 589.73                        | 580.46                   | 0.17                         |

由数据可知,随着挡光片的宽度变化,平均速度近似不变,与理论结果相同

# 5.9. 改变导轨倾角,测定瞬时速度与不同 U 型挡光片通过光电门所用的时间(AP=50cm), 计算平均速度

|      | $\Delta t_1(\mathrm{ms})$ | $\Delta t_2(\mathrm{ms})$ | $\Delta t_3 (\mathrm{ms})$ | $\Delta t_4 (\mathrm{ms})$ | $\Delta t_5 \; (\mathrm{ms})$ | $\Delta t (\mathrm{ms})$ | $\overline{v}(\mathrm{m/s})$ |
|------|---------------------------|---------------------------|----------------------------|----------------------------|-------------------------------|--------------------------|------------------------------|
| 1cm  | 36.86                     | 36.80                     | 36.97                      | 37.19                      | 37.28                         | 37.02                    | 0.27                         |
| 3cm  | 104.36                    | 104.80                    | 103.14                     | 104.03                     | 101.85                        | 103.63                   | 0.29                         |
| 5cm  | 184.61                    | 187.02                    | 187.00                     | 182.11                     | 185.55                        | 185.24                   | 0.27                         |
| 10cm | 344.91                    | 344.43                    | 343.21                     | 342.30                     | 340.52                        | 343.07                   | 0.29                         |

由数据可知,随着导轨倾角变化,平均速度近似不变,与理论结果相同

# 5.10. 测定瞬时速度与不同 U 型挡光片通过光电门所用的时间(AP=60cm),计算平均速度

|      | $\Delta t_1(\mathrm{ms})$ | $\Delta t_2(\mathrm{ms})$ | $\Delta t_3 (\mathrm{ms})$ | $\Delta t_4 (\mathrm{ms})$ | $\Delta t_5 \; (\mathrm{ms})$ | $\Delta t (\mathrm{ms})$ | $\overline{v}(\mathrm{m/s})$ |
|------|---------------------------|---------------------------|----------------------------|----------------------------|-------------------------------|--------------------------|------------------------------|
| 1cm  | 33.62                     | 33.95                     | 34.11                      | 34.02                      | 34.11                         | 33.96                    | 0.29                         |
| 3cm  | 97.77                     | 96.96                     | 97.84                      | 96.98                      | 96.95                         | 97.30                    | 0.31                         |
| 5cm  | 168.81                    | 169.08                    | 170.89                     | 169.02                     | 170.64                        | 169.69                   | 0.29                         |
| 10cm | 321.67                    | 326.44                    | 319.86                     | 320.28                     | 321.96                        | 322.04                   | 0.31                         |

由数据可知,随着挡光片的宽度变化,平均速度近似不变,与理论结果相同

#### 5.11. 总结

可以从数据中得知本实验中存在一些误差,比如第三部分和第六部分所算出的 k 值差别较大,我认为误差可能来自于以下原因:

- 1. 注意到本次实验中不同挡光片对应的平均速度相差很小,数量级在  $10^{-3}$ ,但是仪器测量精度只能达到  $10^{-2}$ ,因此读数的误差对拟合结果的影响较大
  - 2. 在实际实验中很难保证滑块释放时没有初速度,而误差对数据的波动比较敏感
  - 3. 除此之外,实验中存在气垫导轨的摩擦和空气阻力,而在处理中均忽略了这两个因素的影响

# 6 反思

(1) 实验前务必要预习,尤其是透彻理解实验理论与原理:

如果只是照着书本上的操作步骤,那么实验本身就会变成很枯燥的体验,少了实验过程中探索未知,检验理论的体验感,同时也少了很多乐趣。

实际做实验时几乎可以说必然会遇到各种棘手问题,若不理解理论则很难做到灵活应对这些问题。

(2) 灵活使用计算机软件是处理实验数据必不可少的技能:

这次实验的绘图我是用 Excel 完成的,其优势是生成曲线迅速,不用代码就能对数据进行各种操作,但其精度远远比不上专业的数据处理软件,我还需要进一步的学习。

(3) 认真对待误差分析:

做实验时,要格外留意会存在哪些带来误差的地方,并且反思这样的误差是否是可以采用别的方法,从而尽可能的减少影响。尤其是本次实验测定瞬时速度的部分,误差分析让我受益匪浅。

## 附:原始实验数据

