Michael Wei Full-Stack Systems Researcher. Language 1 626-367-3677 michael@wei.systems A http://wei.systems

about

I'm a full—stack systems researcher. I dive deep into all aspects of complex systems to understand what makes them tick, and what makes them break. My research and open source contributions span multiple disciplines, including computer architecture, distributed systems, operating systems, and programming languages.

Through the course of my work, I have not only developed cost-effective hardware to simplify distributed systems, but also devised innovative approaches to streamline traditionally opaque operating system interfaces. My aim is always to leverage interdisciplinary insights for improved efficiency and resilience, while actively sharing knowledge through accessible, comprehensive documentation and meaningful open-source contributions.

experience

2023-Now	Senior Research Scientist, AI Labs As a researcher at the VMware Research Group, a part of VMware AI Labs, I lead efforts in sustainable AI systems infrastructure, leveraging low power and edge accelerators on platforms such as the AGX Orin.
2020–2023	Senior Research Scientist I lead the clocks project, which aims to democratize precision time and leverage it as a distributed primitive. I also serve as a technical advisor to the VMware blockchain product, especially in scaling the VMware Ethereum stack.
2017-2020	Research Scientist I published award-winning papers on a broad range of topics including bridging the semantic gaps between kernel and userspace, interfaces for programmable hardware, RDMA and security.
2015–2017	Postdoctoral Researcher I led the tech transfer of CorfuDB, a high throughput, strongly consistent research database as open-source software with over 50 contributors into NSX, VMware's market leading multi-billion dollar SDN product. CorfuDB now serves as the distributed control plane of NSX.
Winter 2015	Research Intern I led the rebuild of CORFU, a research project I worked on at Microsoft Research, from scratch in Java as CorfuDB, adding object support, in-memory time-travel and new transaction resolution mechanisms.
2011–2013	Consultant Researcher I implemented and evaluated ZooKeeper over CORFU, one of the first scale-out applications running on top of the CORFU distributed log.
Summer 2011	Research Intern I built a hardware prototype of a CORFU Flash Unit using the BEE3 FPGA Platform.
2010-2017	Graduate Researcher University of California, San Diego At the Non-Volatile Systems Laboratory (NVSL), I led work on reliably erasing flash memory and reported findings to the military and other government organizations.
2008–2009	Undergraduate Researcher At the Cognitive Anteater Robotics Laboratory (CARL), I worked on an optimized version of the Izhikevich spiking neuron model on the IBM CELL.

I build hardware and software for startups under tight deadlines. My code runs in consumer products all over the world.

education

2010-2017	Ph.D., Computer Science	University of California, San Diego
	Advisor Steven Swanson	
	Thesis CORFU: A Platform for Scalable Consistency	
2010-2015	C. Phil, Computer Science	University of California, San Diego
2010-2012	M.S., Computer Science	University of California, San Diego
2004-2009	B.S., Computer Science	University of California, Irvine
2004-2009	B.S., Biological Sciences	University of California, Irvine
2004-2009	B.A., Philosophy	University of California, Irvine

awards

2022	Best Paper Award Graham: Synchronizing Clocks by Leveraging Local Clock Prope	NSDI 2022 erties
2020	Best Paper Award Don't shoot down TLB shootdowns!	Eurosys 2020
2019	Best Paper Award Storm: A Fast Transactional Dataplane for Remote Data Structu	Systor 2019 res
2017	Best Paper Award The Design and Implementation of Hyperupcalls	USENIX ATC 2018
2016	Best Paper Award Replex: A Scalable, Highly Available Multi-Index Store	USENIX ATC 2016
2014	Best WACI Talk Dirty RAM and Rotten Caches: Saving the World From Useless U	ASPLOS 2014 pdates
2012	Google Security Hall of Fame Google Voice Authentication Flaw	Google
2012	Graduate Research Fellowship Program (GRFP) Fellow Award Receipient	NSF
2011	Graduate Research Fellowship Program (GRFP) Honorable Mention	NSF

publications

Refereed Papers

NSDI '22 Best Paper	Graham: Synchronizing Clocks by Leveraging Local Clock Properties Ali Najafi and Michael Wei 19th USENIX Symposium on Networked Systems Design and Implementation (NSDI 22), 2022, Renton, WA	
SYSTOR '21	Dealing with (Some of) the Fallout from Meltdown Nadav Amit, Michael Wei , and Dan Tsafrir Proceedings of the 14th ACM International Conference on Systems and Storage, 2021, Haifa, Israel. DOI: 10.1145, 3456727.3463776	

HotOS '21 Systems Research is Running out of Time

Ali Najafi, Amy Tai, and Michael Wei

 $\textit{Proceedings of the Workshop on Hot Topics in Operating Systems, 2021, Ann Arbor, Michigan. \ \texttt{DOI: 10.1145/michigan.} \ \texttt{DOI: 10.1145/mi$

3458336.3465293

USENIX ATC '21 RainBlock: Faster Transaction Processing in Public Blockchains

Soujanya Ponnapalli, Aashaka Shah, Souvik Banerjee, Dahlia Malkhi, Amy Tai, Vijay Chidambaram,

and Michael Wei

2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021

OSDI '21 Optimizing Storage Performance with Calibrated Interrupts

Amy Tai, Igor Smolyar, **Michael Wei**, and Dan Tsafrir

15th USENIX Symposium on Operating Systems Design and Implementation (OSDI 21), 2021

EuroSys '20 Don't Shoot down TLB Shootdowns! **Best Paper** Nadav Amit, Amy Tai, and **Michael Wei**

Proceedings of the Fifteenth European Conference on Computer Systems, 2020, Heraklion, Greece. DOI: 10.1145/

3342195.3387518

USENIX ATC '19 JumpSwitches: Restoring the Performance of Indirect Branches In the Era of Spectre

Nadav Amit, Fred Jacobs, and Michael Wei

2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019, Renton, WA

SYSTOR '19 Storm: A Fast Transactional Dataplane for Remote Data Structures

Best Paper Stanko Novakovic, Yizhou Shan, Aasheesh Kolli, Michael Cui, Yiying Zhang, Haggai Eran, Boris Pis-

menny, Liran Liss, Michael Wei, Dan Tsafrir, and Marcos Aguilera

Proceedings of the 12th ACM International Conference on Systems and Storage, 2019, Haifa, Israel. DOI: 10.1145/

3319647.3325827

ASPLOS '19 Just-In-Time Compilation for Verilog: A New Technique for Improving the FPGA Programming Expe-

rience

Eric Schkufza, Michael Wei, and Christopher J. Rossbach

Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS 19), 2019, Providence, RI, USA. DOI: 10.1145/3297858.3304010

USENIX ATC '18 Remote regions: a simple abstraction for remote memory

Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard, Jayneel Gandhi, Stanko Novaković,

Arun Ramanathan, Pratap Subrahmanyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian,

and Michael Wei

2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018, Boston, MA

USENIX ATC '18 The Design and Implementation of Hyperupcalls

Best Paper Nadav Amit and Michael Wei

2018 USENIX Annual Technical Conference (USENIX ATC 18), 2018, Boston, MA

OSDI '18 Sharing, Protection, and Compatibility for Reconfigurable Fabric with AmorphOS

Ahmed Khawaja, Joshua Landgraf, Rohith Prakash, Michael Wei, Eric Schkufza, and Christopher J.

Rossbach

13th USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), 2018, Carlsbad, CA

HotOS '17 Hypercallbacks: Decoupling Policy Decisions and Execution

Nadav Amit, Michael Wei, and Cheng-Chun Tu

Proceedings of the 16th Workshop on Hot Topics in Operating Systems, 2017, Whistler, BC, Canada. DOI: 10.1145/

3102980.3102987

SysTeX '17 Hypercallbacks: A New Mechanism for Trusted, Secure Introspection

Michael Wei and Nadav Amit

 $2nd\ Workshop\ on\ System\ Software\ for\ Trusted\ Execution\ (SysTEX\ 2017), 2017, Shanghai, CN$

NSDI '17 vCorfu: A Cloud-Scale Object Store on a Shared Log

Michael Wei, Amy Tai, Christopher J. Rossbach, Ittai Abraham, Maithem Munshed, Medhavi Dhawan, Jim Stabile, Udi Wieder, Scott Fritchie, Steven Swanson, Michael J. Freedman, and Dahlia Malkhi 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 17), 2017, Boston, MA

USENIX ATC '16 Replex: A Scalable, Highly Available Multi-Index Data Store

Best Paper Amy Tai, Michael Wei, Michael J. Freedman, Ittai Abraham, and Dahlia Malkhi

2016 USENIX Annual Technical Conference (USENIX ATC 16), 2016, Denver, CO

HotStorage '16 Silver: A Scalable, Distributed, Multi-versioning, Always Growing (Ag) File System

Michael Wei, Chris Rossbach, Ittai Abraham, Udi Wieder, Steven Swanson, Dahlia Malkhi, and Amy

Tai

8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 16), 2016, Denver, CO

NVMW '15 AppNVM: A software-defined, application-driven SSD

Matias Bjørling, Michael Wei, Jesper Madsen, Javier González, Steven Swanson, and Philippe Bon-

net

6th Annual Non-Volatile Memories Workshop 2015 (NVMW 2015), 2015, San Diego, CA

USENIX ATC '14 I/O Speculation for the Microsecond Era

Michael Wei, Matias Bjørling, Philippe Bonnet, and Steven Swanson 2014 USENIX Annual Technical Conference (USENIX ATC 14), 2014, Philadelphia, PA

SOSP '13 Tango: Distributed Data Structures over a Shared Log

Mahesh Balakrishnan, Dahlia Malkhi, Ted Wobber, Ming Wu, Vijayan Prabhakaran, **Michael Wei**, John

D. Davis, Sriram Rao, Tao Zou, and Aviad Zuck

Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, 2013, Farminton, Pennsylva-

nia. DOI: 10.1145/2517349.2522732

IEEE S&P '13 Welcome to the Entropics: Boot-Time Entropy in Embedded Devices

Keaton Mowery, **Michael Wei**, David Kohlbrenner, Hovav Shacham, and Steven Swanson 2013 IEEE Symposium on Security and Privacy, 2013, Oakland, CA. DOI: 10.1109/SP.2013.46

SYSTOR '13 Beyond Block I/O: Implementing a Distributed Shared Log in Hardware

Michael Wei, John D. Davis, Ted Wobber, Mahesh Balakrishnan, and Dahlia Malkhi

Proceedings of the 6th International Systems and Storage Conference, 2013, Haifa, Israel. DOI: 10.1145/2485732.

2485739

NSDI '12 CORFU: A Shared Log Design for Flash Clusters

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, Ted Wobbler, Michael Wei, and John D.

Davis

9th USENIX Symposium on Networked Systems Design and Implementation (NSDI 12), 2012, San Jose, CA

FAST'11 Reliably Erasing Data from Flash-Based Solid State Drives

Michael Wei, Laura M. Grupp, Frederick E. Spada, and Steven Swanson

Proceedings of the 9th USENIX Conference on File and Stroage Technologies, 2011, San Jose, California

BuildSys'10 Occupancy-Driven Energy Management for Smart Building Automation

Yuvraj Agarwal, Bharathan Balaji, Rajesh Gupta, Jacob Lyles, **Michael Wei**, and Thomas Weng Proceedings of the 2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Building, 2010,

Zurich, Switzerland. DOI: 10.1145/1878431.1878433

Journal Articles

Leveraging Hyperupcalls To Bridge The Semantic Gap: An Application Perspective

Michael Wei and Nadav Amit

IEEE Data Eng. Bull. 42.1 (2019) pp. 22-35. 2019

Consistent Clustered Applications with Corfu

Michael Wei, Medhavi Dhawan, Gurprit Johal, Jim Stabile, Vjekoslav Brajkovic, James Chang, Kapil Goyal, Kevin James, Zeeshan Lokhandwala, Anny Martinez Manzanilla, Roger Michoud, Maithem Munshed, Srinivas Neginhal, Konstantin Spirov, Scott Fritchie, Chris Rossbach, Ittai Abraham, and Dahlia Malkhi

SIGOPS Oper, Syst. Rev. 51.1 (Sept. 2017) pp. 78-82. Association for Computing Machinery, 2017, DOI: 10.1145/3139645.3139658

CORFU: A Distributed Shared Log

Mahesh Balakrishnan, Dahlia Malkhi, John D. Davis, Vijayan Prabhakaran, **Michael Wei**, and Ted Wobber ACM Trans. Comput. Syst. 31.4 (Dec. 2013). Association for Computing Machinery, 2013, DOI: 10.1145/2535930

Technical Reports

Dynamically scalable, fault-tolerant coordination on a shared logging service

Michael Wei, Mahesh Balakrishnan, John D Davis, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber *Technical Report MSR-TR-2013-40, 2013*

SAFE: Fast, Verifiable Sanitization for SSDs

Steven Swanson and Michael Wei

Technical Report UCSD TR-cs2011-0963, 2011

Patents

110000000000000000000000000000000000000		
US20230124036A1	In-Place Garbage Collection for State Machine Replication	
US20230089659A1	Clock Calibration in a Computing System Using Temperature Sensors	
US20220229590A1	Managing Data Lifecycles Through Decay	
US11341051B2	Consolidating Shared State for Translation Lookaside Buffer Shootdowns	
US20220083476A1	Early acknowledgement of translation lookaside buffer shootdowns	
US10545742B2	Annotation-driven framework for generating state machine updates	
US20210026785A1	Enforcing code integrity using a trusted computing base	
US11055184B2	In-place garbage collection of a sharded, replicated distributed state machine	
US11003471B2	Just-in-time hardware for field programmable gate arrays	
US11003472B2	Just-in-time hardware for field programmable gate arrays	
US10997338B2	Just-in-time hardware for field programmable gate arrays	
US10990730B2	Just-in-time hardware for field programmable gate arrays	
US10990730B2	Just-in-time hardware for field programmable gate arrays	
US11068422B1	Software-controlled interrupts for I/O devices	
US10908912B1	Target injection safe method for dynamically inlining branch predictions	
US10599835B2	32-bit address space containment to secure processes from speculative rogue cache loads	
US10878085B2	Compilation-time checks to secure processes from speculative rogue cache loads	
US20190243966A1	Dynamic binary translation to secure processes from speculative rogue cache loads	
US10824717B2	Dynamic binary translation to secure processes from speculative rogue cache loads	
US10649981B2	Direct access to object state in a shared log	
US10642792B2	Distributed transaction conflict resolution	
US10819611B2	Dynamic timeout-based fault detection	
US10706005B2	File system interface for remote direct memory access	
US10635541B2	Fine-grained conflict resolution in a shared log	
US10877881B2	In-place garbage collection of a sharded, replicated distributed state machine	
US10574571B2	Method for transparently logging and replicating distributed services	
US11016767B2	Target injection safe method for inlining instance-dependent calls	
US10834255B1	Target injection safe method for inlining large call tables	
US10871974B1	Target injection safe method for inlining registration calls	
US20190243990A1	Separate cores to secure processes from speculative rogue cache loads	
Page 5 of 7	Michael Wei - Cirriculum Vitae Built 2023-10-18 00:45:06Z, latest: http://wei.systems/cv	
	· · · · · · · · · · · · · · · · · · ·	

US20190065327A1	Efficient versioned object management
US20190129982A1	Just-in-time multi-indexed tables in a shared log
US20190243776A1	32-bit address space containment to secure processes from speculative rogue cache loads
US20190243965A1	Compilation-time checks to secure processes from speculative rogue cache loads
US20190236229A1	Just-in-time hardware for field programmable gate arrays
US20190235892A1	Just-in-time hardware for field programmable gate arrays
US20190236231A1	Just-in-time hardware for field programmable gate arrays
US20190235893A1	Just-in-time hardware for field programmable gate arrays
US20190236230A1	Just-in-time hardware for field programmable gate arrays
US20180276234A1	Distributed transaction conflict resolution
US20180321963A1	Safe execution of virtual machine callbacks in a hypervisor

service

2024	PC Member	ASPLOS
2023	PC Member	OSDI
2022-2023	PC Member	NSDI
2020	PC Member	HotCloud
2018-2019	PC Member	USENIX ATC
2018	PC Member	ACM SoCC
2017	PC Member	ACM Middleware
2017-2024	PC Member	HotStorage
2024	PC Member	SysStor
2011-2015	Web Chair	NVMW