Alphabets, Strings and Languages

- An alphabet Σ is a set of symbols (or letters)
- A string $w=a_1, a_2,...,a_k$ is a sequence of symbols from Σ
- The empty string is written ε
- A language L is a set of strings over Σ , that is, a subset of Σ^*
 - It includes the empty language: Ø
 - It includes the language of the empty string: {ε}


```
\Sigma = \{push\}
```

 w_1 = push,push; w_2 = push,push,push; $W_3 =$ push, push, push, push, push;

How does a DFA define a language?

- Consider a string w
- Start in the initial state Q₀
- Read the first symbol, say Pass Assignments, of w
- Determine the new state $Q_1 = \delta(Q_0, Pass Assignments)$
- Read the second symbol, say Pass Exam, of w
- Determine the new state $Q_2 = \delta(Q_1, Pass Exam)$
- •
- Let Q_k be the state obtained after having read the last symbol of W
- If Q_k is in F then accept w; otherwise reject w

Exercise 2:

How many words exist in the language above?

Exercise 3

• Describe in natural language the following automata

Exercise 4

• In the programming language of your choice, implement the following vending machine

Exercise 5

- Extend the vending machine:
 - To offer chocolate for 20kr.
 - To accept coins of 20kr.

Exercise 6 2x2 puzzle

• Model the 2×2 puzzle, the simplest form of the $N \times N$ puzzle (https://en.wikipedia.org/wiki/15 puzzle) with a DFA. Which sequences of transitions help you solve the puzzle?