1. Calculate the laplacian of the following:

- (i) $F = x^2 + 2xy + 3z + 4$ (ii) $F = \sin(\hat{\mathbf{k}} \cdot \vec{\mathbf{r}})$
 - (ii) $F = \sin(\hat{\mathbf{k}} \cdot \vec{\mathbf{r}})$ (iii) $F = \frac{1}{r}$
- **2.** Evaluate $(\hat{r} \cdot \vec{\nabla})r$ and $(\hat{r} \cdot \vec{\nabla})\hat{r}$
- 3. Find the volume of an ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ using the tripple integral $\int \int \int dx dy dz$ with appropriate limits.
- 4. Consider $\vec{\mathbf{A}} = x^2 \hat{\mathbf{i}} + y^2 \hat{\mathbf{j}} + z^2 \hat{\mathbf{k}}$
 - (a) Evaluate $\oint_S \vec{\mathbf{A}} \cdot \vec{\mathbf{da}}$ where S is a cubical surface given by the planes $x = a \pm l; \quad y = b \pm l; \quad z = c \pm l.$
 - (b) Verify that at the point (a, b, c),

$$\vec{\nabla} \cdot \vec{A} = \lim_{l \to 0} \frac{1}{8l^3} \oint_S \vec{\mathbf{A}} \cdot \vec{\mathbf{da}}$$

5. Evaluate $\int_P^Q \vec{\mathbf{A}} \cdot d\hat{\mathbf{l}}$ for $\vec{\mathbf{A}} = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$ along the following paths : $P \equiv (-a,0); \quad Q \equiv (a,0).$

- (a) $(-a,0) \to (0,a) \to (a,0)$
- **(b)** $(-a,0) \to (0,-a) \to (a,0)$
- (c) a loop, forward along (a) and backward along (b)
- (d) Let *I* be the value of the loop integral evaluated in (c). Let *S* be the flat area enclosed by the loop. Verify that at the origin

$$(\vec{\nabla} \times \vec{A}) = \left[\lim_{a \to 0} \frac{I}{S}\right] (-\hat{k})$$

(e) Can we find a scalar function F such that $\vec{\nabla} F = y\hat{\mathbf{i}} - x\hat{\mathbf{j}}$?