

Privacy Preserving AI — I Federated Learning

Amogh Tarcar

May 03, 2021

Responsible Artificial Intelligence

Bhushan Garware

Amogh Tarcar

Our Presenters

Mukta Paliwal

Snehkumar Shahani

Dattaraj Rao

Anibha Athalye

RESPONSIBLE ARTIFICIAL INTELLIGENCE

OUR PRESENTERS

Bhushan Garware

Mukta Paliwal

Dattaraj Rao

Amogh

Snehkumar Shahani

Anibha Athalye

Course Contents:

- 1. Introduction to Key Pillars of Responsible Al
- 2. Interpretable and Explainable AI –I
- 3. Interpretable and Explainable AI –II
- 4. Fairness Al
- 5. Privacy Preserving Al -l
- 6. Privacy Preserving AI -II
- 7. Privacy Preserving AI –III
- 8. Secure Al
- 9. Reproducible Al
- 10. Accessible Al

Disclaimer!

Views, thoughts, and opinions expressed in this presentation belong solely to the presenter and not necessarily to the presenter's employer, organization, committee or other group or individual.

Agenda

- 1. Introduction to Federated Learning
- 2. Applications of FL
- 3. Demo Exercise

Introduction to Federated Learning

Responsible Al

Accountable

- Policy-driven
- Numan-in-the-loop

Reproducible

- Standardized pipelines

Transparent

- \ Interpretable models
- \ Explainable Al

Secure

- Encrypted computation
- Confidential computing

Private

- Federated learning
- Note: The image of the image

Build the Best Credit Card Fraud Prevention Consulting Firm in the World

Traditional ML Model Technique

Step 1

Step 2

Step 3

Curate labeled dataset from observed scenarios

Best representative data of the expected production scenario

Centralize data from multiple sources at a single data center

Machine Learning requires sizable dataset to build performant models

Centrally train a single ML model using the best ML techniques

Will the Banks Share their Data?

Hurdle 1: Banks aren't Willing to Share their Transactions Data

Start Building the Best ML Model

Startup: Smart Solution

In Case Data cannot be Aggregated?

Challenges

- Data from a single source was inadequate for representing the real-world demographic diverse scenario
- Aggregating diverse data from multiple sources was not feasible due to legal concerns, privacy concerns or competitive market dynamics
- Centralizing data presented a potential risk of data misuse and threats concerning data security

Solution

Federated Learning

A decentralized Machine Learning technique which allows multiple parties to participate in building a common global Machine Learning model, without directly sharing data.

Federated Learning

- Coordinator node orchestrates FL by starting an Active Synchronous Training Session with all the client nodes and sharing a global model
- This training session is organized in iterative steps called Training Rounds. In each training round:
 - The coordinator shares the latest version of base ML model with all the client nodes
 - Each client node runs local training on this ML model by utilizing the data present on the node and trained model updates are then shared back to the coordinator
 - Coordinator processes updates from all the nodes and fuses them together to obtain new global model
- Training rounds continue until we have a performant Global ML model with the coordinator, which is the Federated Model

Data Never Leaves its Source Location

Federated Learning is an active area of research in Decentralized Machine Learning

Model Architectures + Fusion Algorithms

Neural Networks built using Keras, PyTorch, TensorFlow

\ FedAvg, Iterative Average, Gradient Average, Fed+

Linear classifiers built using Scikit-Learn

Iterative Average

Decision Trees

ID3 fusion, Federated-XGBoost

CLARA

Federated Learning

Federated Learning Applications

Keyboard Predictions

Personalized Medicine

Image source: Google Federated Learning, doc.ai, nvidia_clara, cloudera

Healthcare Collaboration

Preventive Maintenance

Data is the New Oil

More Data Enables Better ML Models

Smartphone Models

- Smarter typing predictions
- Pinpointed recommendations

Healthcare Models

- Diagnostic models
- Personalized medicine

Banking and Finance Models

- Fraud prevention
- Insurance/loan eligibility

Data is Siloed

- Organizational data is siloed in various business units/geographies
- Big data from IoT edge devices is expensive to aggregate

Security Concerns

- Mitigate risks of data leaks
- Nobust security infrastructure in transit
- Mitigate adversarial use
- Regulatory challenges

Business Value of Data

- Diverse data is competitive advantage
- Once sold you are essentially doubling the supply

Demo

Demo of IBM FL

Federated Learning

Federated Learning in Banking

Source: A Federated Learning Method Used to Detect Credit Card Fraud

Towards Federated Graph Learning for Collaborative Financial Crimes Detection

Toyotaro Suzumura¹, Yi Zhou², Nathalie Baracaldo², Guangann Ye¹, Keith Houck¹, Ryo Kawahara³, Ali Anwar², Lucia Larise Stavarache⁴, Yuji Watanabe³, Pablo Loyola³, Daniel Klyashtorny¹, Heiko Ludwig², and Kumar Bhaskaran¹

> ¹IBM T.J. Watson Research Center ²IBM Research Almaden ³IBM Research Tokyo ⁴IBM Global Business Services

Abstract

Financial crime (eg., fraud, theft, money laundering) is a large and growing problem, in some way touching almost every financial institution, as well as many individuals, and in some cases, entire societies. Financial institutions are the front line in the war against financial crime and accordingly, must devote substantial human and technology resources to this effort. Current processes to detect financial misconduct (including the technologies used) have limitations in their ability to effectively differentiate between malicious behavior and ordinary financial activity. These limitations tend to result in gross over-reporting of suspicious activity (typically manifested as "alerts") that necessitate time-intensive and costly manual review. Advances in technology used in this domain, including machine learning based approaches, can improve upon the effectiveness of financial institutions' existing processes, however, a key challenge that most financial institutions continue to face is that they address financial crimes in isolation without any insight from other firms. Where financial institutions address financial crimes through the lens of their own firm, perpetrators may devise sophisticated strategies that may span across institutions and geographies. Financial institutions continue to work relentlessly to advance their capabilities, forming partnerships across institutions (including governmental bodies) to share insights, patterns and capabilities. These public-private partnerships are subject to stringent regulatory and data privacy requirements, thereby making it difficult to rely on traditional technology solutions. In this paper, we propose a methodology to share key information across institutions by using a federated graph learning platform that enables us to build more accurate machine learning models by leveraging federated learning and also graph learning approaches. We demonstrated that our federated model outperforms local model by 20% with the UK FCA TechSprint data set. This new platform opens up a door to efficiently detecting global money laundering activity.

Paper: https://arxiv.org/pdf/1909.12946.pdf

Persistent Healthcare Experiments

Federated Learning in Healthcare

Endoscopy Image Classification with Class Imbalance

Endoscopy Images from gastrointestinal (GI) tract. Images from 8 classes labeled as anatomical and clinical findings

Split data to represent parties based on observed image resolutions

Leveraged FL frameworks for building models in a multi-party Federated Learning setting with FedAvg, Fed+ Fusion Algorithms IDM

Federated Learning

Flower

Source: Kvasir Paper

Endoscopy Image Classification with Class Imbalance

Imbalanced Class Distributions across Parties

Party_576		Party_1024		Party_1072		
Class 0	822	Class 2	5	Class 1	2	
Class 1	784	Class 3	567	Class 2	14	
Class 2	762	Class 4	583	Class 3	164	
Class 3	57	Class 5	7	Class 4	188	
Class 4	27	Class 7	535	Class 5	15	
Class 5	772	Total Samples	1697	Class 6	1	
Class 6	808			Class 7	203	
Class 7	78			Total Samples	587	
Total Samples	4110					

Class 0	'normal-cecum'
Class 1	'dyed-resection-margins'
Class 2	'ulcerative-colitis
Class 3	'esophagitis'
Class 4	'normal-pylorus'
Class 5	'polyps'
Class 6	'dyed-lifted-polyps'
Class 7	'normal-z-line'

	Dominant Resolution Was	Total Training Samples
Party 1	576p	4110
Party 2	1024p	1697
Party 3	1072p	587

Total Training Samples: ~6400

Testing Samples: 1600

Dominant Resolutions across Classes Example

Polyps	576	969	Ulcerative-colitis	576	974	Normal-z-line	1024	649
Polyps	1072	20	Ulcerative-colitis	1072	19	Normal-z-line	576	102
Polyps	1024	10	Ulcerative-colitis	1024	5	Normal-z-line	1072	249
Polyps	1064	1	Ulcerative-colitis	1080	2	Esophagitis	1072	206
Dyed-lifted-polyps	576	996	Normal-pylorus	1024	730	Esophagitis	1024	728
Dyed-lifted-polyps	1080	1	Normal-pylorus	1072	237	Esophagitis	576	66
Dyed-lifted-polyps	1064	2	Normal-pylorus	576	33	Dyed-resection-margins	576	998
Dyed-lifted-polyps	1072	1	Normal-cecum	576	1000	Dyed-resection-margins	1072	2

Class	Resolution	No. of Images
Polyps	576*720	969 <- Dominant
	1072*1920	20
	1024*1280	10
Esophagitis	576*720	66
	1072*1920	206
	1024*1280	728 <- Dominant

lution	No. of Images	Class	Resolution	No. of Images
*720	969 <- Dominant	Normal-z-line	576*720	102
*1920	20		1072*1920	249
*1280	10		1024*1280	649 <- Dominant
*720	66			
*1920	206			
*1280	728 <- Dominant			

Endoscopy Image Classification with Class Imbalance Results

	Classification Report								
	Precision	Recall	F1-score	Support					
0	0.82	0.98	0.89	178					
1	0.86	0.91	0.88	214					
2	0.95	0.84	0.89	217					
3	0.77	0.82	0.79	212					
4	0.93	0.94	0.93	202					
5	0.89	0.84	0.87	205					
6	0.88	0.78	0.83	188					
7	0.75	0.71	0.73	184					
Accuracy			0.85	1600					
Macro Avg	0.86	0.85	0.85	1600					
Weighted Avg	0.86	0.85	0.85	1600					

0	175	0	0	0	1	2	0	0
1	0	194	0	0	1	0	19	0
2	16	1	183	2	6	8	0	1
3	0	0	0	174	0	0	0	38
4	0	0	2	2	190	4	0	4
5	19	0	4	1	7	173	1	0
6	4	31	1	0	0	5	147	0
7	0	0	2	48	0	3	0	131
	0	1	2	3	4	5	6	7

– 175 – 150 - 125 - 100 - 75 - 50 – 25 -0

FL Model Performance on 1600 Images

Accuracy of Federated Model: 0.85 Despite Class Imbalance

Endoscopy Image Classification with Class Imbalance Results

Federated Learning Model

Accuracy and Loss vs Number of FL Rounds

FL Model built with collaboration achieves Higher Accuracy

Test Data across all parties and Aggregator was kept same

Endoscopy Image Classification with Class Imbalance Results (Contd.)

Non-FL Models

Endoscopy Image Classification with Class Imbalance Results

Federated Learning Model Confusion Matrix

0	175	0	0	0	1	2	0	0
1	0	194	0	0	1	0	19	0
2	16	1	183	2	6	8	0	1
3	0	0	0	174	0	0	0	38
4	0	0	2	2	190	4	0	4
5	19	0	4	1	7	173	1	0
6	4	31	1	0	0	5	147	0
7	0	0	2	48	0	3	0	131
	0	1	2	3	4	5	6	7

- FL Model built with collaboration is least confused
- Test Data across all parties and Aggregator was kept same

Endoscopy Image Classification with Class Imbalance Results (Contd.)

Non-FL Models Confusion Matrix

P1024 Model

Endoscopy Image Classification with Class Imbalance Results

Federated Learning Model Classification Report

	Cla	assification Rep	ort	
	Precision	Recall	F1-score	Support
0	0.82	0.98	0.89	178
1	0.86	0.91	0.88	214
2	0.95	0.84	0.89	217
3	0.77	0.82	0.79	212
4	0.93	0.94	0.93	202
5	0.89	0.84	0.87	205
6	0.88	0.78	0.83	188
7	0.75	0.71	0.73	184
Accuracy			0.85	1600
Macro Avg.	0.86	0.85	0.85	1600
Weighted Avg.	0.86	0.85	0.85	1600

- \ FL Model built with collaboration gives best accuracy of 85%. F1 scores have increased across the board as well.
- Individually non federated party specific models had following accuracy numbers: P576 was at 72%, P1024 at 31% and P1072 at 38%.

Endoscopy Image Classification with Class Imbalance Results (Contd.)

Non-FL Models Classification Report

	P576 Model				P102	24 Mod	Model P1072 Model							
	Pa	rty 576				Party 1024				Party 1072				
	Precision	Recall	F1-score	Support		Precision	Recall	F1-score	Support		Precision	Recall	F1-score	Support
0	0.93	0.94	0.94	178	0	0.00	0.00	0.00	178	0	0.00	0.00	0.00	178
1	0.79	0.86	0.83	214	1	0.00	0.00	0.00	214	1	0.00	0.00	0.00	214
2	0.56	0.98	0.71	217	2	0.00	0.00	0.00	217	2	0.26	0.72	0.38	217
3	0.62	0.60	0.61	212	3	0.61	0.71	0.66	212	3	0.71	0.57	0.63	212
4	1.00	0.42	0.59	202	4	0.24	0.99	0.38	202	4	0.40	0.97	0.57	202
5	0.64	0.85	0.73	205	5	0.10	0.04	0.06	205	5	0.20	0.20	0.20	205
6	0.82	0.75	0.79	188	6	0.00	0.00	0.00	188	6	0.00	0.00	0.00	188
7	0.78	0.31	0.44	184	7	0.33	0.75	0.45	184	7	0.73	0.52	0.61	184
Accuracy			0.72	1600	Accuracy			0.31	1600	Accuracy			0.38	1600
Macro Avg.	0.77	0.71	0.70	1600	Macro Avg.	0.16	0.31	0.19	1600	Macro Avg.	0.29	0.37	0.30	1600
Weighted Avg.	0.76	0.72	0.70	1600	Weighted Avg.	0.16	0.31	0.19	1600	Weighted Avg.	0.29	0.38	0.30	1600

Endoscopy Polyps Segmentation by Federating over Two Separate Datasets

_

Kvasir Polyps Images: ~1000, Norway Hospitals

CVC Polyps Images: ~600, Spain Hospitals

Improved segmentation model initially trained only with Spain Hospital Data by doing FL with Norway Hospital Data

Leveraged IBM FL for building models in a multi-party Federated Learning setting with FedAvg, Fed+ Fusion Algorithms

Federated Learning

Source: CVC Clinic-DB

Endoscopy Image Classification with Class Imbalance

Pre-Federated Learning Model trained only on CVC Data

Post-Federated Learning Model trained with insights from Kvasir Data

- Pre-Federated Learning, PSNR = 16.5
- \ Custom Loss Functions: PSNR

- FL Model Performance on 112 images from CVC Data
- Note: PSNR increase from 16.5 to 18.4, thanks to insights from Kvasir Data

Thumb Rules of Federated Learning Applications

Data is siloed and cannot be aggregated

Its too expensive to aggregate data (IoT Bandwidth)

One should be convinced that model will be improved by access to more diverse training data

References

Federated Learning

<u>OpenMined</u>

Flower Federated Framework

NVIDIA CLARA

Google Comic Explanation

Predictive Maintenance

Credit Scoring

References

Cloudera Fast Forward Labs Federated Learning Report	The Future of Digital Health with Federated Learning	IBM Federated Learning
https://federated.fastforwardlabs.com	https://www.nature.com/articles/s41746-020- 00323-1	https://ibmfl.mybluemix.net

Thank you!

