行列計算による機械学習: 入門と応用

今倉 暁 筑波大学システム情報系

imakura@cs.tsukubai.ac.jp

● データ解析

- データ解析のフロー(教師あり学習)
 - ▶ 入力(教師データセット)
 - ✓教師データ: x_i ,対応する正解値: y_i ,データ数:n

$$\{\boldsymbol{x}_i, y_i\}_{i=1,2,\ldots,n}$$

> 目的

✓教師データセットを再現するモデルを構築

$$y_i \approx f(\boldsymbol{x}_i, \boldsymbol{w}), \quad i = 1, 2, \dots, n$$

 \checkmark テストデータ x_{test} に対する正解値を予測する

データ解析

- データ解析のフロー(教師あり学習)
 - ➤ Step I:モデルの選択

$$f(\boldsymbol{x}_i, \boldsymbol{w})$$

➤ Step 2:誤差の定義

$$D(\{f(x_i, w), y_i\}_{i=1,2,...,n})$$

Step 3:モデルの最適化

$$\mathbf{w}_{\text{opt}} = \arg\min_{\mathbf{w}} D(\{f(\mathbf{x}_i, \mathbf{w}), y_i\}_{i=1,2,...,n})$$

➤ Step 4:未知のデータの解析

$$y_{\text{test}} = f(\boldsymbol{x}_{\text{test}}, \boldsymbol{w}_{\text{opt}})$$

● データ解析

- データ解析のフロー(教師あり学習)
 - ➤ Step I:モデルの選択
 - ✔線形/非線形回帰モデル
 - ✓ (ディープ) ニューラルネットワーク
 - ✓木構造
 - **√...**
 - ➤ Step 2:誤差の定義
 - ✓二乗誤差
 - √Kullback-Leibler divergence
 - ✓正則化
 - **√...**

● データ解析

- データ解析のフロー(教師あり学習)
 - ➤ Step 3:モデル最適化
 - ✓行列分解
 - ✓固有值計算
 - √(確率的)勾配降下法

√...

特にこの部分は 「行列計算」 がいっぱい

➤ Step 4:未知のデータの解析
✓モデルの適用

- はじめに
- 行列計算による機械学習:入門
 - ▶最小二乗法とその発展
 - > 次元削減法
 - ▶ 行列計算の観点での計算の工夫
- 行列計算による機械学習:発展
 - プライバシー保護機械学習
 - > データコラボレーション解析

行列計算による機械学習:入門最小二乗法とその発展

● 最小二乗法

● 問題設定

- ▶ 学習データ
 - ✓データ(m:特徴量数、n:サンプル数)

$$X = [\boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_n]^{\mathrm{T}} \in \mathbb{R}^{n \times m}$$

✓正解ラベル(もしくは正解データ)

$$\mathbf{y} = [y_1, y_2, \dots, y_n]^{\mathrm{T}} \in \mathbb{R}^n$$

● 最小二乗法

●概要

- ▶最も単純な機械学習法
 - ✓モデル:線形回帰

$$\mathbf{y} \approx f(X, \mathbf{w}) = X\mathbf{w}, \quad \mathbf{w} \in \mathbb{R}^m$$

√誤差:二乗誤差

$$D(f(X, \mathbf{w}), \mathbf{y}) = \|\mathbf{y} - X\mathbf{w}\|_{2}^{2} = \sum_{i=1}^{\infty} (y_{i} - \mathbf{x}_{i}^{\mathrm{T}}\mathbf{w})^{2}$$

n

> 定式化

$$\min_{\boldsymbol{w} \in \mathbb{R}^m} \|\boldsymbol{y} - X\boldsymbol{w}\|_2^2$$

● 最小二乗法

• 計算法

$$\min_{\boldsymbol{w} \in \mathbb{R}^m} \|\boldsymbol{y} - X\boldsymbol{w}\|_2^2$$

- ▶厳密な解法
 - ✓QR分解
 - ✓特異值分解
 - ✓正規方程式
- ▶近似解法(機械学習では近似解で十分な場合が多い)
 - ✓ 反復法(例:Krylov部分空間法)
 - ✓近似QR分解(例:不完全QR分解)
 - ✓近似特異値分解(例:ランダマイズドSVD)
 - **√···**

● 正則化とは

- ▶過学習(学習データへの過適合)を防ぐために、誤差項に加えてモデルの複雑さに対するペナルティを課す
- ▶ オッカムの剃刀
 - ✓ある事柄を説明するためには、必要以上に多くを仮定するべきでない [Occam, I4世紀]

● 代表的な正則化項

- ightharpoonupL2正則化:滑らかさ $\|oldsymbol{w}\|_2^2 = \sum w_i^2$
- ightharpoonupLI正則化:スパース性 $\|oldsymbol{w}\|_1 = \sum_i |w_i|$

計算コストが大きく あまり使われない

- ightharpoonup LO正則化:スパース性 $||w||_0 = w$ の非零要素数
- ▶組み合わせ(例:LI正則化とL2正則化)

● LI正則化とL2正則化のイメージ^{8/67}

● L2正則化

▶ ◎:誤差項の等高線

➤ ◎:L2正則化項の等高線

→ ☆:最適解

重みが過剰に大きな値を持ちにくくなる

● LI正則化とL2正則化のイメージ^{8/67}

● LI 正則化

▶◎:誤差項の等高線

➤ ◎:LI正則化項の等高線

→ ☆:最適解

重みがスパースになる

- Ridge回帰
 - ▶線形回帰 + L2正則化

$$\min_{\mathbf{w}} \|\mathbf{y} - X\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}, \quad \|\mathbf{w}\|_{2}^{2} = \sum_{i} w_{i}^{2}$$

- Lasso
 - ▶線形回帰 + LI正則化

$$\min_{\mathbf{w}} \|\mathbf{y} - X\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{1}, \quad \|\mathbf{w}\|_{1} = \sum_{i} |w_{i}|$$

- Elastic Net
 - ▶線形回帰 + LI正則化 + L2正則化

$$\min_{\mathbf{a}} \|\mathbf{y} - X\mathbf{w}\|_{2}^{2} + \lambda \|W\|_{1} + (1 - \lambda) \|W\|_{2}^{2}$$

● 概要

▶線形回帰 + L2正則化

$$\min_{\mathbf{w}} \|\mathbf{y} - X\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}, \quad \|\mathbf{w}\|_{2}^{2} = \sum_{i} w_{i}^{2}$$

● 計算法

▶線形最小二乗問題に帰着

$$\|\boldsymbol{y} - X\boldsymbol{w}\|_{2}^{2} + \lambda \|\boldsymbol{w}\|_{2}^{2} = \left\| \begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{0} \end{bmatrix} - \begin{bmatrix} X \\ \sqrt{\lambda}I_{m} \end{bmatrix} \boldsymbol{w} \right\|_{2}^{2}$$

$$\left(:: \|\boldsymbol{a}\|_{2}^{2} + \|\boldsymbol{b}\|_{2}^{2} = \left\| \begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{b} \end{bmatrix} \right\|_{2}^{2} \right)$$

線形最小二乗問題 → QR分解、特異值分解、反復法、、、

●概要

➤線形回帰 + LI正則化

$$\min_{\mathbf{w}} \|\mathbf{y} - X\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{1}, \quad \|\mathbf{w}\|_{1} = \sum_{i} |w_{i}|$$

• 計算法

- ▶ 直接厳密解を求めることができないため、反復法で近似解を 計算
 - ✓座標降下法(Coordinate Descent:CD法)
 - ✓交互方向乗数法(Alternating Direction Method of Multipliers: ADMM法)
 - MATLABで使用されている

●概要

▶線形回帰 + LI正則化 + L2正則化

$$\min_{\mathbf{w}} \|\mathbf{y} - X\mathbf{w}\|_{2}^{2} + \lambda \|W\|_{1} + (1 - \lambda) \|W\|_{2}^{2}$$

● 計算法

- ➤ L2正則化項を誤差項と結合する(Ridge回帰と同様)
- ➤ 得られた最小二乗問題 + LI正則化に対してLassoと同様 に反復法で近似解を計算
 - ✓座標降下法(Coordinate Descent:CD法)
 - ✓交互方向乗数法(Alternating Direction Method of Multipliers: ADMM法)
 - MATLABで使用されている

● カーネル法

● 基本的アイディア

▶解析性能の改善のため、入力データを非線形変換することで 特徴量を増やす

$$\boldsymbol{x} \in \mathbb{R}^m \to \widehat{\boldsymbol{x}} = \phi(\boldsymbol{x}) \in \mathbb{R}^{\widehat{m}}, \quad m < \widehat{m}$$

>線形変換のみでは判別・分類できない問題に特に有効

● 例:2次多項式カーネル

- $\mathbf{x} = [x_1, x_2]^{\mathrm{T}}$
- ▶ 変換後のデータ

$$\hat{\boldsymbol{x}} = [1, x_1, x_2, x_1 x_2, x_1^2, x_2^2]^{\mathrm{T}}$$

カーネル法 + 線形回帰

• 定式化

$$\min_{\widehat{oldsymbol{w}} \in \mathbb{R}^{\widehat{m}}} \|oldsymbol{y} - \widehat{X}\widehat{oldsymbol{w}}\|_2^2$$

- 効率的な計算法:カーネルトリック
 - ▶ 重み行列に対する制約

$$\widehat{\boldsymbol{w}} = \widehat{X}^{\mathrm{T}} \widetilde{\boldsymbol{w}}$$

$$\min_{\widetilde{\boldsymbol{w}} \in \mathbb{R}^n} \|\boldsymbol{y} - K\widetilde{\boldsymbol{w}}\|_2^2, \quad K = \widehat{X}\widehat{X}^{\mathrm{T}}$$

- $ightharpoonup \widehat{X} = \phi(X)$ を計算することなく直接グラム行列 K を計算
 - ✓計算の効率化
 - ✓無限次元の非線形変換も考慮可能

🦱 カーネル法

● カーネルトリック

▶「非線形関数の設定→グラム行列の計算」ではなく、「グラム行列を直接計算」(グラム行列は対称半正定値)

$$K = \widehat{X}\widehat{X}^{\mathrm{T}}, \quad k_{ij} = \phi(\boldsymbol{x}_i)^{\mathrm{T}}\phi(\boldsymbol{x}_j) = k(\boldsymbol{x}_i, \boldsymbol{x}_j)$$

● 代表的なカーネル

> 多項式カーネル(c≥0、d:自然数)

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = (\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j + c)^d$$

➤ ガウスカーネル (RBFカーネル)

$$k(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2}{\sigma^2}\right)$$

行列計算による機械学習:入門次元削減法

次元削減法

▶ データの次元

- ▶特徴量が多いほど最適化問題 の最小値は小さくなる
- >実用上は特徴量が大きすぎる と性能が低下する

● 次元削減

- > 高次元データの特徴量を削減する方法
 - ✓解析手法の計算時間の削減、解析性能の改善
- ▶手法の分類
 - ✓特徴量選択:特徴量の一部をそのまま用いる
 - ✓写像による次元削減:高次元特徴量を持つデータを低次 元空間へ射影する

次元削減法

- 行列トレースの最小化/最大化に基づく次元削減法
 - > 高次元特徴量を持つデータ点の低次元空間への写像
 - ✓教師なし:主成分分析(PCA)、LPP、など
 - ✓教師あり:線形判別分析(LDA)、LFDA、LADA、など

局所性保存射影(LPP)

- 概要
 - ▶ 教師なし次元削減法
 - ▶局所構造を保存する低次元空間を構築 √元データで近いものは低次元空間でも近くに
- 定式化

$$\min_{B} \sum_{ij} w_{ij} \| \underline{B^{\mathrm{T}}(\boldsymbol{x}_i - \boldsymbol{x}_j)} \|_2^2 + \mathrm{B}$$
に対する直交条件(詳細は後述)

類似度(元データで近いものは大きな値を持つ)

$$w_{ij} = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2}{\sigma^2}\right)$$

*実用上はk近傍法によりスパース化する(元データで十分遠いものはw=Oとする)

局所性保存射影(LPP)

● 最小化問題の変形

$$\sum_{ij} w_{ij} \|B^{\mathrm{T}}(\boldsymbol{x}_i - \boldsymbol{x}_j)\|_2^2$$

$$= \sum_{ij} w_{ij} (B^{\mathrm{T}}\boldsymbol{x}_i - B^{\mathrm{T}}\boldsymbol{x}_j)^{\mathrm{T}} (B^{\mathrm{T}}\boldsymbol{x}_i - B^{\mathrm{T}}\boldsymbol{x}_j)$$

$$= 2 \sum_{i} \left(\sum_{j} w_{ij} \right) (B^{\mathrm{T}}\boldsymbol{x}_i)^{\mathrm{T}} (B^{\mathrm{T}}\boldsymbol{x}_i) - 2 \sum_{i} (B^{\mathrm{T}}\boldsymbol{x}_i)^{\mathrm{T}} \left(\sum_{j} w_{ij} (B^{\mathrm{T}}\boldsymbol{x}_i) \right)$$

$$= 2 \sum_{i} \underline{d_i} (B^{\mathrm{T}}\boldsymbol{x}_i)^{\mathrm{T}} (B^{\mathrm{T}}\boldsymbol{x}_i) - 2 \sum_{i} (B^{\mathrm{T}}\boldsymbol{x}_i)^{\mathrm{T}} (B^{\mathrm{T}}\boldsymbol{x}_w)$$

$$= 2\operatorname{Tr}(B^{\mathrm{T}}X^{\mathrm{T}}DXB) - 2\operatorname{Tr}(B^{\mathrm{T}}X^{\mathrm{T}}WXB)$$
$$= 2\operatorname{Tr}(B^{\mathrm{T}}X^{\mathrm{T}}LXB)$$

$$\sum_i oldsymbol{x}_i^{\mathrm{T}} oldsymbol{y}_i = \mathrm{Tr}(XY^{\mathrm{T}})$$

$$L = D - W$$

●局所性保存射影(LPP)

- 概要(再掲)
 - > 教師なし次元削減法
 - ▶局所構造を保存する低次元空間を構築 √元データで近いものは低次元空間でも近くに
- 定式化
 - ▶ 行列トレースの最小化問題

$$\min_{B} \text{Tr}(B^{T}X^{T}LXB) \quad \text{s.t.} \quad B^{T}X^{T}DXB = I$$

$$L = D - W$$
, $D = \operatorname{diag}(d_i)$, $d_i = \sum_i w_{ij}$

局所性保存射影(LPP)

- パラメータ設定
 - ▶ 類似度行列の σのヒューリスティックな設定法
 - ✓類似度行列の定義

$$w_{ij} = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2}{\sigma^2}\right) \to w_{ij} = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2}{\sigma_i \sigma_j}\right)$$

 \checkmark 各サンプル周りのスケーリング $(oldsymbol{x}_i^{(k)}:$ サンプル $oldsymbol{x}_i$ 周りのk近傍)

$$\sigma_i = \| oldsymbol{x}_i - oldsymbol{x}_i^{(k)} \|_2$$

- ✓kの設定
 - 経験的に k=7 がよいとされる

●概要

- ▶ 教師あり次元削減法(分類問題のクラスラベルを利用)
- ▶ クラス内分散の最小化&クラス間分散の最大化 ✓ 同じラベルのデータは近く、違うラベルは遠く

- 定式化
 - > クラス内分散の最小化

 $\min_{B} \sum_{y=1}^{S} \sum_{i,y_i=y} \|B^{T}(\boldsymbol{x}_i - \boldsymbol{\mu}_y)\|_{2}^{2}$

> クラス間分散の最大化

$$\max_{B} \sum_{y=1}^{c} n_{y} \|B^{T}(\boldsymbol{\mu}_{y} - \boldsymbol{\mu})\|_{2}^{2}$$

> 統合

✓クラス内分散をIに正規化し、クラス間分散を最大化

クラス内平均値

$$\boldsymbol{\mu}_y = \frac{1}{n_y} \sum_{i, y_i = y} \boldsymbol{x}_i$$

全データの平均値

$$\boldsymbol{\mu} = \frac{1}{n} \sum_{i} \boldsymbol{x}_{i}$$

汪惠 $B^{\mathrm{T}}\boldsymbol{\mu} = \frac{1}{n} \sum B^{\mathrm{T}} \boldsymbol{x}_i$

● 最適化問題の変形

> クラス内分散

$$\sum_{y=1}^{c} \sum_{i,y_i=y} \|B^{\mathrm{T}}(\boldsymbol{x}_i - \boldsymbol{\mu}_y)\|_2^2$$

$$= \sum_{i} (B^{\mathrm{T}}(\boldsymbol{x}_i - \boldsymbol{\mu}_{y_i}))^{\mathrm{T}} (B^{\mathrm{T}}(\boldsymbol{x}_i - \boldsymbol{\mu}_{y_i}))$$

$$\sum_{i} \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{y}_i = \mathrm{Tr}\left(\sum_{i} \boldsymbol{x}_i \boldsymbol{y}_i^{\mathrm{T}}\right) = \mathrm{Tr}(XY^{\mathrm{T}})$$

$$= \mathrm{Tr}\left(B^{\mathrm{T}}\left(\sum_{i} (\boldsymbol{x}_i - \boldsymbol{\mu}_{y_i})(\boldsymbol{x}_i - \boldsymbol{\mu}_{y_i})^{\mathrm{T}}\right) B\right)$$

$$S_{i} = \widetilde{Y}^{\mathrm{T}} \widetilde{Y}$$

$$= \operatorname{Tr}(B^{\mathrm{T}} S_{\mathrm{in}} B)$$

$$S_{\text{in}} = \widetilde{X}^{T} \widetilde{X}$$
$$\widetilde{X} = X - [\boldsymbol{\mu}_{y_1}, \boldsymbol{\mu}_{y_2}, \dots, \boldsymbol{\mu}_{y_n}]^{T}$$

● 最適化問題の変形

> クラス間分散

$$\sum_{y=1}^{c} n_y \|B^{\mathrm{T}}(\boldsymbol{\mu}_y - \boldsymbol{\mu})\|_2^2$$

$$= \sum_{y=1}^{c} n_y (B^{\mathrm{T}}(\boldsymbol{\mu}_y - \boldsymbol{\mu}))^{\mathrm{T}} (B^{\mathrm{T}}(\boldsymbol{\mu}_y - \boldsymbol{\mu}))$$

$$\sum_{i} \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{y}_i = \mathrm{Tr}\left(\sum_{i} \boldsymbol{x}_i \boldsymbol{y}_i^{\mathrm{T}}\right) = \mathrm{Tr}(XY^{\mathrm{T}})$$

$$= \mathrm{Tr}\left(B^{\mathrm{T}}\left(\sum_{y=1}^{c} n_y (\boldsymbol{\mu}_y - \boldsymbol{\mu}))^{\mathrm{T}} (\boldsymbol{\mu}_y - \boldsymbol{\mu})\right) B\right)$$

$$= \operatorname{Tr}(B^{\mathrm{T}} S_{\mathrm{all}} B)$$

- 概要(再掲)
 - ▶ 教師あり次元削減法(分類問題のクラスラベルを利用)
 - ▶ クラス内分散の最小化&クラス間分散の最大化 ✓同じラベルのデータは近く、違うラベルは遠く
- 定式化
 - ▶ 行列トレースの最大化問題

$$\max_{B} \operatorname{Tr}(B^{\mathrm{T}} S_{\mathrm{all}} B)$$
 s.t. $B^{\mathrm{T}} S_{\mathrm{in}} B = I$

トレース最適化問題の求解

● 定式化

▶ 行列トレースの最大/最小化(A₁:対称、A₂:SPD)

$$\max_{B \in \mathbb{R}^{m \times \ell}} \operatorname{Tr}(B^{\mathsf{T}} A_1 B) \quad \text{or} \quad \min_{B \in \mathbb{R}^{m \times \ell}} \operatorname{Tr}(B^{\mathsf{T}} A_1 B) \quad \text{s.t.} \quad B^{\mathsf{T}} A_2 B = I$$

計算法

>一般化固有値問題に帰着

$$A_1 \mathbf{u}_i = \lambda_i A_2 \mathbf{u}_i, \quad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$$

▶解は固有ベクトルを並べた行列となる

$$B = [u_1, u_2, \dots, u_{\ell}]$$
 or $B = [u_n, u_{n-1}, \dots, u_{n-\ell+1}]$

行列計算による機械学習:入門行列計算の観点での計算の工夫

● 計算時間、計算量、計算効率(実行性能)

計算時間 = 計算量 / 実行性能

- ▶計算時間は計算量だけでなく、実行性能にも強く依存
- > 実行性能は下記項目に依存する
 - ✓マシン性能

 - データ転送性能:CPU-メモリ間などの転送性能
 - ✓計算対象
 - 「データ量 vs 計算量」の比

○ 計算時間、計算量、計算効率(実行性能)

計算時間 = 計算量 / 実行性能

- > 計算時間は実行性能の下記項目に依存する
 - ✓計算対象:「データ量 vs 計算量」の比
 - -「データ量 = 計算量」
 - → 計算時間はデータ転送がボトルネック
 - → 遅い!
 - 「データ量 << 計算量」
 - → 計算時間は計算性能に依存
 - → 理論性能に近い計算速度を実現(速い!)

実行性能

行列行列積 >> 行列ベクトル積 > ベクトル計算

● 背景

● 行列行列積と行列ベクトル積の性能差

➤ BLAS (Basic Linear Algorithms、基本行列計算ライブラリ)の性能 [Dongara et al.,SC97]

●ガウスカーネルでの例

- 背景(再掲)
 - > 行列積は計算効率が高い
 - →可能な限り行列積ベースで実装すべき
- ガウスカーネル
 - > 定義

$$K = [k_{ij}], \quad k_{ij} = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2}{\sigma^2}\right)$$

▶ナイーブな実装 (MATLAB)

```
for j = l:n
for i = l:n
    K(i,j) = exp(-norm(X(:,i) - X(:,j))^2/sigma^2);
end
end
```

● ガウスカーネルでの例

- 背景(再掲)
 - > 行列積は計算効率が高い
 - →可能な限り行列積ベースで実装すべき
- がウスカーネル
 - > 定義

$$K = [k_{ij}], \quad k_{ij} = \exp\left(-\frac{\|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2}{\sigma^2}\right)$$

▶対称性を利用した実装(MATLAB)

```
for j = l:n
    K(j,j) = l;
    for i = l:j-l
        K(i,j) = exp(-norm(X(:,i) - X(:,j))^2/sigma^2);
        K(j,i) = K(i,j);
    end
end
```

ガウスカーネルでの例

● ガウスカーネル

> 式変形

$$K = [k_{ij}], \quad k_{ij} = \exp\left(-\frac{g_{ij}}{\sigma^2}\right), \quad g_{ij} = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|_2^2$$
 $G = [g_{ij}], \quad g_{ij} = \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_i + \boldsymbol{x}_j^{\mathrm{T}} \boldsymbol{x}_j - 2\boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j$

$$\qquad \qquad \boldsymbol{g} = [\|\boldsymbol{x}_1\|_2^2, \|\boldsymbol{x}_2\|_2^2, \dots, \|\boldsymbol{x}_n\|_2^2]^{\mathrm{T}}$$

$$= \boldsymbol{g} \boldsymbol{1}^{\mathrm{T}} + \boldsymbol{1} \boldsymbol{g}^{\mathrm{T}} - 2XX^{\mathrm{T}}$$

➤ 行列積ベースの実装 (MATLAB)

計算量の主要部: 行列積

ガウスカーネルでの例

● ガウスカーネル

➤ MATLABでの計算例

```
\sqrt{m} = 1000, n = 1000, 2000, 4000
```

- ✓sigma = I;
- \checkmark X = rand(n,m);
- ➤ 実行結果(ノートPCを利用)

	n = 1000	n = 2000	n = 4000
ナイーブな実装	7.78 [sec.]	40.04 [sec.]	202.41 [sec.]
対称性を利用	3.58 [sec.]	19.95 [sec.]	99.35 [sec.]
行列積を利用	0.03 [sec.]	0.11 [sec.]	0.43 [sec.]

→ 特にnが大きい場合に大幅な高速化を実現 (計算法の工夫が重要) 400x faster

- 背景(再掲)
 - > 行列積は計算効率が高い
 - →可能な限り行列積ベースで実装すべき
- 各種の分散行列の計算
 - > 定義(W:対称)

$$S = \sum_{ij} w_{ij} (\boldsymbol{x}_i - \boldsymbol{x}_j) (\boldsymbol{x}_i - \boldsymbol{x}_j)^{\mathrm{T}}$$

➤ ナイーブな実装 (MATLAB)

```
S = zeros(m);
for j = l:n
    for i = l:n
        xd = X(i,:) - X(j,:);
        S = S + W(i,j) * xd' * xd;
    end
end
```

計算の主要部:n^2回の行列和

- 背景(再掲)
 - > 行列積は計算効率が高い
 - →可能な限り行列積ベースで実装すべき
- 各種の分散行列の計算
 - > 定義(W:対称)

$$S = \sum_{ij} w_{ij} (oldsymbol{x}_i - oldsymbol{x}_j) (oldsymbol{x}_i - oldsymbol{x}_j)^{\mathrm{T}}$$

➤ 対称性を利用した実装 (MATLAB)

```
S = zeros(m);
for j = l:n
    for i = l:j-l
        xd = X(i,:) - X(j,:);
        S = S + W(i,j) * xd' * xd;
    end
end
S = 2 * S;
```

計算の主要部:n(n-I)/2回の行列和

- 各種の分散行列の計算
 - > 式変形

$$S = \sum_{ij} w_{ij} (\boldsymbol{x}_i - \boldsymbol{x}_j) (\boldsymbol{x}_i - \boldsymbol{x}_j)^{\mathrm{T}}$$

$$= 2\sum_{i} \left(\sum_{j} w_{ij}\right) \boldsymbol{x}_{i} \boldsymbol{x}_{i} - 2\sum_{ij} w_{ij} \boldsymbol{x}_{i} \boldsymbol{x}_{j}^{\mathrm{T}}$$

$$= 2X^{\mathrm{T}}(D - W)X, \quad D = \operatorname{diag}(d_{i}), \quad d_{i} = \sum_{j} w_{ij}$$

➤ 行列積ベースの実装 (MATLAB)

$$D = diag(sum(W));$$

 $S = 2 * X * (D - W) * X';$

計算の主要部: 行列行列積

✓(計算量が I/m程度に削減されている)

- 各種の分散行列の計算
 - ➤ MATLABでの計算例
 - \sqrt{m} = 100, n = 1000, 2000, 4000
 - \checkmark X = rand(n,m); W = rand(n); W = (W + W')/2;

> 実行結果

	n = 1000	n = 2000	n = 4000	
ナイーブな実装	15.29 [sec.]	72.88 [sec.]	300.67 [sec.]	3000x
対称性を利用	8.31 [sec.]	36.II [sec.]	150.72 [sec.]	faster
行列積を利用	0.01 [sec.]	0.03 [sec.]	0.10 [sec.]	

→ 特にnが大きい場合に計算量削減効果以上の大幅な高速化を実現(計算法の工夫が重要)

行列計算による機械学習:発展プライバシー保護機械学習

ニーズ

データ解析

- ▶様々な分野でデータが蓄積され、解析ニーズが高まっている
- 医療分野
 - ✓病気リスク予測
 - ✓リスク因子推定
- ▶ ■ものづくり分野
 - ✓製品開発の最適化
 - ✓故障検知·予測

金融分野	野
------	---

✓需要/リスク予測

ID	Risk	Age	Gender	high	weight	•••
1	1	45	Male	164.3	65.4	•••
2	0	25	Female	144.6	46.4	
3	1	36	Female	154.7	43.3	•••
4	0	62	Male	174.5	73.2	

解析モデル

- ·予測
- ·因子推定

ニーズ

▶ 多機関分散データ統合解析(理想)

▶単独機関のデータは必ずしも十分ではない

✓多機関のデータを統合し解析することで、よりよい解析結

果が期待される

機関2	機関		1	•
機関3		#-I	コロー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー・コー	<u> </u>

ID	Risk	Age	Gender	high	weight	•••
機関1-1	1	45	Male	164.3	65.4	•••
機関1-2	0	25	Female	144.6	46.4	
機関1-3	1	36	Female	154.7	43.3	
機関2-1	0	62	Male	174.5	73.2	
機関2-2	1	12	Male	153.1	76.2	
機関3-1	1	62	Female	174.1	42.5	
機関3-2	0	78	Female	156.8	63.2	

高性能 解析モデル

● 多機関分散データ統合解析(現実)

- ▶個人情報保護や企業秘密などの観点から、データを共有する ことは困難な場合がある
 - → 単独機関のデータのみを用いて解析が行われる

ID	Risk	Age	Gender	high	weight	•••
機関1-1	1	45	Male	164.3	65.4	
機関1-2	0	25	Female	144.6	46.4	
機関1-3	1	36	Female	154.7	43.3	•••

(低精度/偏った)解析モデル

プライバシー保護機械学習法

● 狙い

▶ 複数機関が分散保持するデータを安全に統合解析する技術

● 代表的な技術

- ➤ 秘密計算(例、2023年にNTTが国際標準規格化)
 - ✓生データを四則演算可能暗号化方式で暗号化し、暗号化したまま解析を実施する方法
 - → ◎安全性:大 △計算コスト:大
- ▶連合学習 [Google]
 - ✓AIモデルを各機関で共有し、各機関の個別データのみでのAIモデル学習を順次反復的に行う方法
 - → ◎計算コスト:小 △機関間通信コスト:大

行列計算による機械学習:発展データコラボレーション解析

プライバシー保護機械学習

- → データコラボレーション (DC)解析 [I+,2020] [I+,2021]
 - > 複数機関が分散保持するデータを安全に統合解析する技術
 - > 各機関が独自に抽象化した「中間表現」を共有し解析
 - ▶特徴
 - ✓暗号化を行わない

- → 計算コスト小
- ✓機関をまたいだ反復通信が不要 → 通信コスト小

DC解析(●)は、生データを共有することなく、 単独機関での解析(●)より高精度かつ、 生データ共有時(●)に近い解析性能を実現

●基本コンセプト

- Step I:中間表現の共有

▶基本コンセプト

- Step 2:DC表現への変換・解析

 - ▶抽象化データに対する高性能解析モデルを得る

● 基本コンセプト

- Step 3:解析モデルの送付
 - ▶抽象化データに対する高性能モデル(桑)およびDC変換(◆)を各機関に送付
 - ▶ 各機関は高性能解析モデルを得る

▶ テーブルデータの回帰・分類問題

▶ 学習データセットからモデルを学習する

n: サンプル数

m: 特徴量次元数

$$t(X) \approx Y$$

$$X = [x_1, x_2, ..., x_n]^T \in \mathbb{R}^{n \times m}, \quad Y = [y_1, y_2, ..., y_n]^T \in \mathbb{R}^{n \times \ell}$$

説明変数

目的変数

▶ データ分散:水平(サンプル)分散

$$X = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_c \end{bmatrix}, Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_c \end{bmatrix}$$

▶ 各機関はX_i, Y_iを保持し、X_iを秘匿としたい

統計量ではなくデータそのものを秘匿としたい

▶中間表現の構築

行列の行ごとに作用する関数

 $m > \widetilde{m}_i$

$$X_i \in R^{n_i \times m} \rightarrow \tilde{X}_i = f_i(X_i) \in R^{n_i \times \tilde{m}_i}$$
 生データ 次元削減された「中間表現」 \rightarrow これを共有する

- > 各機関は独立に関数 f を設定可能(f は i に依存)
 - ✓関数fの例
 - 教師なし線形/非線形次元削減法
 - » PCA, LPP, t-SNE, ... (+カーネル法)
 - 教師あり線形/非線形次元削減法
 - » FDA, LFDA, CMSE, ... (+カーネル法)
- → 関数 f を開示しないことでデータの安全性を担保

DC表現の構築

- ▶ 難しさ:中間表現は | つのデータセットとして解析できない (∵関数 f が i に依存するため)
- ▶対策:中間表現を統合可能な「DC表現」に変換する

$$\tilde{X}_i \to \hat{X}_i = g_i(\tilde{X}_i)$$

行列の行ごとに作用する関数

- ✓理想的には、任意のデータに対して一致 $g_i(f_i(X)) = g_j(f_j(X))$ for any X
- ✓現実的には、特定の(アンカー)データに対して近似 $g_i(f_i(X^{anc})) \approx g_j(f_j(X^{anc}))$ for X^{anc}

共有可能なデータ (例:乱数行列)

DC表現の構築

- ➤ 関数 g の具体的な設定法
 - ✓関数を線形とする: $\tilde{X}_i \to \hat{X}_i = g_i(\tilde{X}_i) = \tilde{X}_i G_i$
 - ✓摂動最小化問題として求解

$$\min_{E_i, G_i, ||Z||_F = 1} \sum_{i} ||E_i||_F^2 \quad s.t. \quad (\tilde{X}_i^{anc} + E_i)G_i = Z$$

→ 特異値分解に基づき計算

$$\tilde{X}_{1:c}^{anc} = \begin{bmatrix} \tilde{X}_1^{anc}, \tilde{X}_2^{anc}, \dots, \tilde{X}_c^{anc} \end{bmatrix} = \begin{bmatrix} \boldsymbol{U_1}, \boldsymbol{U_2} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma_1} & \\ & \boldsymbol{\Sigma_2} \end{bmatrix} \begin{bmatrix} \boldsymbol{V_1^T} \\ \boldsymbol{V_2^T} \end{bmatrix} \rightarrow \boldsymbol{G_i} = (\tilde{X}_i^{anc})^{\dagger} \boldsymbol{U_1}$$

アンカーデータの中間表現を並べた行列

- DC表現を統合して解析
 - ightharpoonup DC表現をI つのデータセットとして解析 $h(\hat{X}) pprox Y$

ここで、

$$\widehat{X} = \begin{bmatrix} \widehat{X}_1 \\ \widehat{X}_2 \\ \vdots \\ \widehat{X}_C \end{bmatrix} \left(= \begin{bmatrix} f_1(X_1)G_1 \\ f_2(X_2)G_2 \\ \vdots \\ f_c(X_c)G_c \end{bmatrix} \right), Y = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_C \end{bmatrix}$$

- ✓任意の教師あり学習が利用可
 - リッジ回帰、LASSO、ロジスティック回帰、DNNなど
- 関数 g,h をユーザーに送付・ユーザーサイドでテスト $Y^{pred} = h(g_i(f_i(X^{test})))$

- 全体像(2機関の場合)
 - ▶ 生データではなく、中間表現を共有
 - ▶機関をまたいだ通信は2回のみ

実施例

● データセット

- batterysmall.mat [MATLAB Statistic and Machine Learning]
 - ✓リチウムイオンバッテリーのセンサーデータからバッテリーの充電状態(SOC)を予測するタスク
 - 説明変数:リチウムイオンバッテリーのセンサーデータ
 - 》電圧、電流、温度、平均電圧、平均電流
 - 目的変数:バッテリーの充電状態(SOC)
 - 学習用サンプル数:6,773
 - » 各機関が20サンプル保持
 - »機関数:I-IO
 - テスト用サンプル数:1,319

● 実験方法

- ▶ 学習データをランダムに変更して50回施行
- ▶ テストデータのRMSEの平均・95%信頼区間を評価
- > 比較解法
 - ✓単独解析: I機関20サンプルのみで学習
 - ✓集中解析:生データを共有して学習
 - ✓DC解析:
 - 中間表現生成:PCA→ランダム射影
 - アンカーデータ:
 - »特徴量ごとの値域に合わせた一様乱数で生成
 - アンカーデータ数:1,000

実施例

● 結果:中間表現の比較

▶機関 |:

生データ

電圧	電流	温度	平均電圧	平均電流
0.978	0.754	0.921	0.978	0.755
0.978	0.756	0.918	0.978	0.759
0.386	0.751	0.492	0.385	0.751
0.978	0.759	0.921	0.978	0.765
0.762	0.684	0.284	0.893	0.713

中間表現は生データの特徴量 をそのまま保存しない

中間表現

f1	f2	f3	f4
1.808	-0.741	1.070	1.321
1.812	-0.739	1.073	1.324
1.376	0.013	1.024	0.948
1.819	-0.737	1.080	1.328
1.556	-0.547	0.845	1.228

▶機関2:

生データ

電圧	電流	温度	平均電圧	平均電流
0.970	0.751	0.053	0.971	0.751
0.633	0.687	0.037	0.685	0.691
0.659	0.747	0.552	0.603	0.670
0.606	0.876	0.940	0.527	0.862
0.629	0.876	0.933	0.533	0.798

中間表現

	F1	F2	F3	F4
	-3.456	-0.616	2.746	0.611
>	-2.575	-0.449	2.107	0.425
	-3.540	-1.522	2.216	0.776
	-4.343	-2.268	2.506	0.978
	-4.325	-2.292	2.438	1.005

機関ごとに値域も異なる

実施例

- 結果:解析精度の比較
 - ➤ RMSE(値が小さい方が精度がよい)

まとめ

- 行列計算による機械学習について紹介した
 - ▶ 入門:行列計算に基づく手法
 - ✓行列計算に基づく基礎的な機械学習法を紹介
 - -2乗誤差の最小化に基づく手法
 - 行列トレースの最適化に基づく次元削減法
 - √これらのアルゴリズムの実装の際に行列計算の観点から 「行列積ベースの実装の重要性」を紹介
 - ▶ 発展:プライバシー保護機械学習
 - ✓データコラボレーション解析の概要について紹介