

Esp. Prof. Liliana Noemí Caputo

Año Lectivo 2017

CONJUNTOS DE POLINOMIOS

Definición axiomática

Sean $(\mathbb{K}, +, .)$ un cuerpo (es decir, $\mathbb{K} = \mathbb{Q}$, $\mathbb{K} = \mathbb{R}$ ó $\mathbb{K} = \mathbb{C}$) V un conjunto tal que $V \cap \mathbb{K} = \emptyset$. El conjunto $\mathbb{K}[V]$ en el cual se han definido dos operaciones $(\oplus, \text{ suma})$ y $(\otimes, \text{ producto})$ es el conjunto de polinomios con coeficientes en \mathbb{K} , si, y sólo si, se cumplen los siguientes axiomas:

Axiomas de construcción

- C1) $\mathbb{K} \subset \mathbb{K}[V]$
- C2) $V \subset \mathbb{K}[V]$
- C3) Si p, $q \in \mathbb{K}[V]$, entonces: $p \oplus q \in \mathbb{K}[V] \land p \otimes q \in \mathbb{K}[V]$
- C4) Si p, $q \in \mathbb{K}$, entonces: $p \oplus q = p + q \land p \otimes q = p.q$
- C5) Los únicos elementos de $\mathbb{K}[V]$ son los construibles por C1, C2, C3 y C4. En virtud del axioma C4, no hay ambigüedad si en vez de escribir $p \oplus q$ y $p \otimes q$, escribimos p + q y p.q, respectivamente.

Axiomas de operatividad: Si p, q, s $\in \mathbb{K}[V]$, entonces:

- O1) p + (q + s) = (p + q) + s
- O2) p + q = q + p
- O3) p + 0 = p, siendo 0 el neutro de la suma en \mathbb{K}
- O4) p.(q.s) = (p.q).s
- O5) p.(q + s) = p.q + p.s
- O6) p.q = q.p
- O7) 1.p = p, siendo 1 el neutro del producto en \mathbb{K} .
- 0 = q.0 (80)

Primeras Observaciones:

- 1) Al polinomio 0 se lo denomina "polinomio nulo".
- 2) El opuesto de 1 es decir, -1, es un polinomio por C1.
- 3) Dado un polinomio $p \in \mathbb{K}[V]$, (-1). $p \in \mathbb{K}[V]$ (por observación 2 y C3) lo denotamos con -p y lo llamaremos el polinomio opuesto de p o, simplemente, el opuesto de p, pues $p + (-1).p = {}^{1} 1.p + (-1).p = {}^{2} (1 1).p = {}^{3} 0.p = {}^{4} 0$
 - 4) Si p, $-q \in \mathbb{K}[V]$, entonces a la suma de p y de -q, la denotamos con p -q.

Potencias de un polinomio: Sean $p \in \mathbb{K}[V] - \{0\}$ y $n \in \mathbb{N}$. Entonces:

1.
$$p^0 = 1$$

2.
$$p^n = p.p^{n-1}$$

Vemos que cualquier potencia entera y no negativa de un polinomio no nulo p es un polinomio: Si p $\in \mathbb{K}[V] - \{0\}$ y n $\in \mathbb{N}$, se tiene que:

$$p^{0} = 1 \in \mathbb{K} \subset \mathbb{K}[V]$$
, por axioma C1.
 $p^{1} = {}^{5} p.p^{1-1} = p.p^{0} = {}^{6} p.1 = {}^{7} p \in \mathbb{K}[V] - \{0\} \subset \mathbb{K}[V]$

² Por O5.

¹ Por O7.

³ Por ser 1 y -1 opuestos en K.

Por O8.

⁵ Por 2. de la definición de potenciación.

⁶ Por 1. de la definición de potenciación.

⁷ Por axiomas O6 y O7.

Algebra y Geometría Analítica - Polinomios con coeficientes en un cuerpo 2017 Prof. Liliana N. Caputo

Supongamos que $p^n \in \mathbb{K}[V]$ (HI) y veamos que p^{n+1} también es un polinomio con coeficientes en \mathbb{K} . En efecto, por definición de potenciación tenemos que:

 $p^{n+1} = p.p^n \in \mathbb{K}[V]$ por HI y axioma C3. Luego, hemos probado que si $p \neq 0$, $\forall n \in \mathbb{N}_0$: $p^n \in \mathbb{K}[V]$. Además, en \mathbb{K} - por ser un cuerpo - se cumple que

 $\forall m \in \mathbb{N}: 0^m = 0 \in \mathbb{K} \subset \mathbb{K}[V]$ (por axioma C1)

Polinomios en una indeterminada x

Sea ahora $V = \{x\}$. En ese caso, se acostumbra denotar al conjunto de polinomios $\mathbb{K}[V]$ mediante $\mathbb{K}[x]$ y se dice que es el conjunto de polinomios con coeficientes en \mathbb{K} , en una indeterminada.

Entonces, por el axioma C2, x es un polinomio con coeficientes en \mathbb{K} y también lo será x^n , cualquiera sea $n \in \mathbb{N}$. Ahora bien, como $V \cap \mathbb{K} = \emptyset$, $x \notin \mathbb{K}$, de donde, $x \neq 0$ y, en consecuencia, $x^0 = 1$.

Luego, $\forall a \in \mathbb{K}, \ \forall \ n \in \mathbb{N}_0$: $a.x^n \in \mathbb{K}[x]$, por axioma C3. Por lo general, cualesquiera sean $a \in \mathbb{K}$ y $n \in \mathbb{N}_0$, al polinomio $a.x^n$ se lo llama **monomio**.

Luego, por los axiomas C3 y O1, la suma de monomios es un polinomio. En particular, a la suma de dos monomios se la llama **binomio**. En consecuencia, es usual representar a un polinomio $p \in \mathbb{K}[x]$ como sigue:

$$p(x) = \sum_{i=0}^{n} a_i x^i = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n$$

con $n \in \mathbb{N}_0$, a_0 , a_1 , ..., $a_n \in \mathbb{K}$. Nótese que el polinomio nulo es tal que $a_i = 0$, $\forall i \in \mathbb{N}_0$. (*)

En ese caso, los a_i se llaman **coeficientes** de p. Al coeficiente a_0 es común llamarlo **término independiente**. Vemos, además, que si n = 0, $p(x) = a_0 \in \mathbb{K}$.

Se llama **grado de p** – y se denota con gr(p) -al máximo i, tal que $a_i \neq 0$. Es decir, si $a_n \neq 0$, gr(p) = n. En ese caso, diremos que a_n es el **coeficiente principal** de p. Un polinomio cuyo coeficiente principal es 1, se dice que es **mónico.**

De (*), se deduce que <u>no existe</u> el grado del polinomio nulo. En consecuencia, todo polinomio de grado cero, es un elemento no nulo de \mathbb{K} .

Veamos algunos ejemplos de polinomios con coeficientes complejos, en una indeterminada x:

 $p(x) = 2x^5 - 4x^3 - 2x + 10$. Si bien, los coeficientes son todos enteros, como sabemos que $\mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, $p \in \mathbb{C}[x]$, gr(p) = 5, su coeficiente principal es 2 y su término independiente es 10.

 $q(x) = \frac{2}{5}x^4 + 0x^8 - x$. Se puede observar que todos los coeficientes de q son racionales, pero como $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$, $q \in \mathbb{C}[x]$, gr(q) = 4, su coeficiente principal es $\frac{2}{5}$ y su término independiente es 0.

 $s(x) = -\sqrt{3} + 2x$. Vemos que 2, $-\sqrt{3} \in \mathbb{R} \subset \mathbb{C}$, de donde $s \in \mathbb{C}[x]$, gr(r) = 1, su coeficiente principal es 2 y su término independiente es $-\sqrt{3}$.

Algebra y Geometría Analítica - Polinomios con coeficientes en un cuerpo 2017 Prof. Liliana N. Caputo

 $t(x) = x^7 - 5 + i$. Como 1, -5 + i $\in \mathbb{C}$, resulta que $t \in \mathbb{C}[x]$, gr(t) = 7, t es mónico y su término independiente es -5 + i.

Relación de igualdad en K[x]

Dados, p, q $\in \mathbb{K}[x]$, tales que sus coeficientes son $a_1, ..., a_n$ y $b_{1, ..., b_m}$, respectivamente, m, $n \in \mathbb{N}_0$ tales que $n \le m$. Entonces:

$$p = q \Leftrightarrow gr(p) = gr(q) \land a_i = b_i, \forall i = 0, ..., n.$$

Operaciones en $\mathbb{K}[x]$

Suma y multiplicación

Dados, p, $q \in \mathbb{K}[x]$, tales que gr(p) = n y gr(q) = m y, además:

$$p(x) = \sum_{i=0}^{n} a_i x^i \ y \ q(x) = \sum_{k=0}^{m} b_k x^k$$

Acordaremos que (p + q)(x) = p(x) + q(x) y que (p.q)(x) = p(x).q(x).

Usando los axiomas de operatividad, puede concluirse que:

$$(p+q)(x) = \sum_{j=0}^{h} (a_j + b_j)x^j$$

donde $gr(p + q) = h = máx \{gr(p), gr(q)\}.$

Análogamente, usando los axiomas antes mencionados, se verifica que:

$$(p.q)(x) = \sum_{j=0}^{n+m} c_j x^j$$

donde, para cualquier $0 \le j \le n + m$, c_j está dado por la suma siguiente:

$$c_j = \sum_{t=0}^{J} a_{j-t} b_t$$

siendo, además, gr(p.q) = gr(p) + gr(q).

Por otra parte, si gr(q) = 0 (es decir, $q \in \mathbb{K} - \{0\}$), el producto p.q es:

$$(pq)(x) = \sum_{i=0}^{n} qa_i x^i$$

con gr(pq) = gr(p), obviamente.

<u>Teorema 1</u>: Los únicos polinomios invertibles en $\mathbb{K}[x]$, son los de grado cero.

<u>Demostración</u>: Sea $p \in \mathbb{K}[x] - \{0\}$. Supongamos que existe $q \in \mathbb{K}[x] - \{0\}$, tal que p,q = 1.

Entonces, gr(p,q) = gr(1) = 0 es decir, gr(p) + gr(q) = 0, de donde resulta que gr(p) = -gr(q).

Como gr(p), gr(q) $\in \mathbb{N}_0$, gr(p) ≥ 0 y -gr(q) ≤ 0 . Luego: $0 \leq$ gr(p) = -gr(q) ≤ 0 de donde debe ser gr(p) = 0, por propiedad antisimétrica del orden en \mathbb{R} .

Potencias n - ésimas de un binomio

Sean dos monomios $p(x) = ax^n$ y $q(x) = bx^m$, con a, $b \in \mathbb{K}$ y m,n $\in \mathbb{N}_0$, entonces, por el teorema del binomio de Newton, se tiene que \forall h $\in \mathbb{N}$:

$$(p+q)^{h} = \sum_{k=0}^{h} {h \choose k} p^{h-k} q^{k}$$

División de polinomios

Dados, p, $q \in \mathbb{K}[x]$, tales que $q \neq 0$, gr(p) = n y gr(q) = m y, además:

$$p(x) = \sum_{i=0}^{n} a_i x^i \ y \ q(x) = \sum_{k=0}^{m} b_k x^k$$

Entonces, existen y son únicos dos polinomios c, $r \in \mathbb{K}[x]$ tales que p = cq + r, con $r = 0 \lor gr(r) < gr(q)$. En general, a p se lo llama dividendo, a q divisor, a c cociente y a r resto, de la división de p por q (Nótese la similitud de esta proposición con el algoritmo de la división en \mathbb{Z} . Precisamente, esta proposición se conoce con el nombre de algoritmo de la división en $\mathbb{K}[x]$).

Si bien no haremos la demostración formal del algoritmo, veamos cómo utilizarlo para hallar el cociente y el resto de la división de p por q. Para ello, distingamos dos casos:

- 1) Si gr(p) < gr(q). En ese caso, p = 0 + p = 0.q + p. Como gr(p) < gr(q), haciendo c = 0 y r = p, hemos obtenido el cociente y el resto buscados.
- 2) Si $gr(p) = n \ge gr(q)$ y p y q son los polinomios dados al presentar los polinomios suma y producto, entonces, disponemos ambos polinomios, ordenando sus términos en orden decreciente de los subíndices de sus coeficientes, en una disposición similar a la de la división de números enteros:

$$a_n x^n + a_{n-1}$$
 $x^{n-1} + \dots + a_{n-m} x + a_0$ $b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$ $\frac{a_n}{b_m} x^{n-m}$

 $\begin{aligned} &\text{Como gr}(q) = m \leq n = \text{gr}(p), \, b_m \neq 0 \neq a_n, \, luego \, \frac{a_n}{b_m} \in \, \mathbb{K} \, \text{--} \, \{0\} \, y \, \frac{a_n}{b_m} \, x^{n-m} \in \, \mathbb{K}[x]. \\ &\text{Luego, si } c_1(x) = \frac{a_n}{b_m} \, x^{n-m}, \, \text{calculamos } c_1.q \, y \, r_1 = p \, - \, c_1.q = p \, + \, c(\text{--}q). \, \text{Si resulta que } \, r_1 = 0 \, \vee \, \text{gr}(r_1) < \text{gr}(q), \, c_1 \, y \, r_1 \, \text{son el cociente y el resto buscados.} \end{aligned}$

_

⁸ Por axioma O2

⁹ Poe axioma O8

En caso contrario $(r_1 \neq 0 \land gr(r_1) \geq gr(q))$, iteramos el procedimiento (usando como dividendo a r) k veces, hasta hallar c_k y r_k tales que $r_k = 0 \lor gr(r_k) < gr(q)$. En ese caso, c₁+.. +c_k y r_k son el cociente y el resto, respectivamente, buscados.

Vemos que, en este caso, el coeficiente principal de c es $\frac{a_n}{b_m} \neq 0$ y que gr(c) = = gr(p) - gr(q).

Veamos a continuación ejemplos: Sean $p(x) = 3x^4 - 2x + 1$, $q(x) = 2x^2 + 4x - 2$ y s(x) = x - 3.

Si queremos hallar el cociente y el resto de s dividido p, como gr(s) < gr(p), tenemos que c = 0 y r = s.

Busquemos ahora el cociente y resto de dividir p por q: por lo que dijimos antes, $c_1(x) = \frac{3}{2}x^2$, de donde, $c_1(x).q(x) = 3x^4 + 6x^3 - 3x^2$. Finalmente, obtenemos $r_1(x) = p(x) - c_1(x).q(x) = -6x^3 + 3x^2 - 2x + 1$.

Como gr(r_1) > gr(q), se halla $c_2(x) = -3x$. Luego, $c_2(x)$.q(x) = $-6x^3 - 12x^2 + 6x$.

Se tiene pues, que $r_2(x) = r_1(x) - c_2(x).q(x) = 15x^2 - 8x + 1$. Como $gr(r_2) = gr(q)$, hallamos $c_3(x) = \frac{15}{2}$ con lo cual $c_3(x).q(x) = 15x^2 + 30x - 15$ $y r_3(x) = r_2(x) - c_3(x).q(x) = -38x + 16.$

Como gr(r₃) < gr(q), podemos afirmar que $c(x) = c_1(x) + c_2(x) + c_3(x)$ es decir, que $c(x) = \frac{3}{2}x^2 - 3x + \frac{15}{2}y$ que $r(x) = r_3(x) = -38x + 16$. En cambio, si dividimos q por s, se obtiene que c(x) = 2x + 10 y r = 28.

Cuando como en el ejemplo anterior, el divisor es de grado 1, al hacer la división de p por q, se obtiene que gr(c) = gr(p) - 1. Además, como el algoritmo afirma que $r = 0 \lor gr(r) < gr(q) = 1$, en este caso resulta $r = 0 \lor gr(r) = 0$.

Si el divisor q, además es mónico, tal que $q(x) = x + b_0$, el coeficiente principal de c es a_n es decir, el coeficiente principal del dividendo (p). Luego: $p(x) = c(x).(x + b_0) + r$, con $r \in \mathbb{K}$.

Esto es lo que dio origen a una regla, llamada regla de Ruffini, que permite obtener el cociente y el resto de la división, en forma más sencilla, en el caso particular en que el divisor es mónico y de grado 1.

- Si los coeficientes del polinomio cociente, c, son c_{n-1} , c_{n-2} , ..., c_0 . Entonces:
- Se escriben en una misma fila todos los coeficientes del dividendo (aún los que sean 0), ordenándolos en forma decreciente como al hacer la división.
- 2) Se traza un ángulo recto y se escribe el opuesto del término independiente del divisor, tal como se indica a continuación:

3) En la primera columna, debajo de la recta horizontal, se coloca c_{n-1}, que ya dijimos que es $c_{n-1} = a_n$, como se indica a continuación:

4) Para $0 \le k < n - 1$, se calcula $c_k = a_{k+1} - b_0 \cdot c_{k+1}$. Es decir, se tiene que:

- 5) Finalmente, se halla $r = a_0 b_0.c_0$.
- 6) Luego, el cociente es $c(x) = a_n x^{n-1} + c_{n-2} x^{n-2} + ... + c_0$

Para ejemplificar el uso de la regla, usemos los polinomios q y s dados como ejemplos anteriormente: $q(x) = 2x^2 + 4x - 2$ y s(x) = x - 3.

Entonces:

Disponemos en una fila los coeficientes de q y en el ángulo el opuesto del término independiente de s.

Como el cociente es de grado gr(q) - 1, el coeficiente principal es $c_1 = 2$ y el término independiente $c_0 = 2.3 + 4 = 10$.

Finalmente, se calcula el resto de la división, haciendo r = 10.3 - 2 = 28. Es usual recuadrar el resto, al usar la regla, tal como se ve a continuación.

Entonces, se tiene que c(x) = 2x + 10 y el resto es r = 28.

Finalmente, decimos que si el resto de la división de p por $q \neq 0$ es el polinomio nulo, **q divide a p** o, lo que es lo mismo, **q es un divisor de p**. En este caso, utilizamos la misma notación que en el de los números enteros: q|p.

Funciones polinómicas

Sea $p \in \mathbb{K}[x]$ de grado $n \in \mathbb{N}_0$ y coeficientes $a_n,, a_0$. Definimos la **función** polinómica asociada a p, de grado n, como sigue:

$$f_p: \mathbb{K} \longrightarrow \mathbb{K}/f_p(k) = \sum_{i=0}^n a_i k^i$$

Por leyes de cierre de la suma y del producto en \mathbb{K} , cualquiera sea $p \in \mathbb{K}[x]$, f_{D} es función.

Observaciones:

- 1) La función lineal f: $\mathbb{R} \to \mathbb{R} / f(x) = ax + b$, donde a y b son números reales fijos es una función polinómica de grado 1, si a \neq 0 o de grado 0, si a = 0 (función constante).
- 2) La función cuadrática g: $\mathbb{R} \to \mathbb{R} / g(x) = ax^2 + bx + c$, donde a, b y c son números reales fijos y a $\neq 0$ es una función polinómica de grado 2.

Para cada $k \in \mathbb{K}$, a $f_p(k)$ lo llamamos valor numérico de p en k, o especialización de p en k. Al valor numérico de p en $k \in \mathbb{K}$ se lo denotará, simplemente, con p(k) en vez de con $f_p(k)$.

Es trivial que el valor numérico de un polinomio p de grado cero en cualquier $k \in \mathbb{K}$, es $p \in \mathbb{K}$ y que el valor numérico del polinomio nulo en todo $k \in \mathbb{K}$, es cero.

Dados los polinomios p, q, s, t, w, $v \in \mathbb{K}[x]$ tales que p = t, p = q+s y p = vw, las funciones polinómicas asociadas f_p , f_t , f_{q+s} y f_{vw} son iguales, de donde se tiene que p(k) = t(k), p(k) = q(k) + s(k) y p(k) = v(k).w(k), $\forall k \in \mathbb{K}$.

Teorema del Resto

Sean p, $q \in \mathbb{K}[x]$ tales que q(x) = x + a. Entonces, el resto de la división de p por q es r = p(-a).

<u>Demostración</u>: Sean p, $q \in \mathbb{K}[x]$ tales que q(x) = x + a. Luego, por algoritmo de división, p(x) = c(x).(x + a) + r, con gr(c) = gr(p) - 1 y gr(r) = 0. Entonces: p(-a) = c(-a).(-a + a) + r = c(-a).0 + r = 0 + r = r.

Observación MUY importante:

A partir de este momento, podemos trabajar con tres objetos matemáticos muy diferentes:

- 1) **Un polinomio** con coeficientes en un cuerpo \mathbb{K} , que es un elemento de $\mathbb{K}[x]$, que cumple los axiomas de construcción dados al principio de este capítulo. Por ejemplo, el polinomio $p \in \mathbb{C}[x]$ tal que $p(x) = x^3 2x + 5$.
- 2) Una función polinómica asociada a un polinomio p, a la que denotamos con f_p NO es un polinomio, sino una función. Por ejemplo, la función real de una variable real f_p : $\mathbb{R} \to \mathbb{R} \ / \ f_p(t) = t^3 8$ es la función polinómica de grado 3 asociada al polinomio $p(x) = x^3 8$.
- 3) **Una ecuación polinómica** $p(k) = f_p(k) = a \in \mathbb{K}$, que es una igualdad en la cual se desconoce el valor de la o las preimágenes de a por la función f_p . Para el ejemplo dado, es una ecuación polinómica de tercer grado la igualdad siguiente: $f_p(t) = t^3 8 = 0$. Dado que es una función real de variable real, existe una única preimagen de 0 que es 2 (puesto que $2^3 8 = 8 8 = 0$). Luego la

Algebra y Geometría Analítica - Polinomios con coeficientes en un cuerpo 2017 Prof. Liliana N. Caputo

ecuación tiene una única solución real, y su conjunto solución es $S = \{2\} \subset \mathbb{R}$. En cambio, si consideramos la función fo como una función compleja de una variable compleja, la misma admite tres soluciones complejas: las raíces cúbicas de 8 (las cuales pueden calcularse de la forma indicada al estudiar números complejos), de donde, el correspondiente conjunto solución está dado por S = $\{<2, 0>, <2, \frac{2}{3}\pi>, <2, \frac{4}{3}\pi>\}$

Raíces de un polinomio

Sean $p \in \mathbb{K}[x]$ y $\alpha \in \mathbb{K}$. Decimos que α es raíz de p si, y sólo si, $p(\alpha) = 0$.

Así pues, hallar las raíces de un polinomio p es equivalente a hallar los valores de $\alpha \in \mathbb{K}$ tales que $p(\alpha) = f_b(\alpha) = 0$, que es lo que se suele llamar "resolver la ecuación polinómica $p(\alpha) = 0$ ".

Eiemplos:

- 1) Dado $p(x) = x^4 1 \in \mathbb{C}[x]$, vemos que p(i) = p(-i) = p(1) = p(-1) = 0, con lo cual, -i, i, -1 y 1 son cuatro raíces de p. El conjunto solución de la ecuación polinómica $x^4 - 1 = 0$ es pues, $S = \{-i, i, -1, 1\}$.
- 2) Si $q(x) = x^2 5 \in \mathbb{C}[x]$, vemos que sus raíces son $+\sqrt{5}$ $y \sqrt{5}$, puesto que $q(+\sqrt{5}) = (+\sqrt{5})^2 - 5 = 5 - 5 = 0 = 5 - 5 = (-\sqrt{5})^2 - 5 = q(-\sqrt{5})$. 3) Sea $s(x) = x^3 + 3x^2 + 3x + 1 = {}^{10}(x + 1)^3 \in \mathbb{C}[x]$. Entonces, -1 es raíz de s
- puesto que s(-1) = 0.
 - 4) Si $t(x) = 2x^2 + 6x = 2x \cdot (x + 3) \in \mathbb{C}[x]$, es obvio que 0 y -3 son raíces de t.
 - 5) Las únicas raíces del polinomio $w(x) = x^2 + 1$, son i y i.

Teorema 2: Sean
$$p \in \mathbb{K}[x]$$
 y $\alpha \in \mathbb{K}$. Entonces: $p(\alpha) = 0 \Leftrightarrow (x - \alpha)|p(x)$

Demostración: Sean $p \in \mathbb{K}[x]$ y $\alpha \in \mathbb{K}$. Entonces:

Si $p(\alpha) = 0$, por el teorema del resto, el resto de dividir p por x - α es el polinomio nulo, de donde, por definición, x - α es un divisor de p.

Recíprocamente, si $(x - \alpha)|p(x)$, el resto de dividir p por $x - \alpha$ es el polinomio nulo, de donde, por el teorema del resto, $p(\alpha) = p(-(-\alpha)) = 0$.

Raíces múltiples de un polinomio

Sean $p \in \mathbb{K}[x]$, $k \in \mathbb{N}$ y $\alpha \in \mathbb{K}$. Decimos que α es raíz múltiple de orden de multiplicidad k de p si, y sólo si, $(x - \alpha)^k | p \wedge (x - \alpha)^{k+1} | p$.

En el ejemplo 3, -1 es raíz múltiple de orden 3 de p.

Cuando el orden de multiplicidad de una raíz α es 1, se dice que α es raíz simple, y si dicho orden es 2, que es una raíz doble.

¹⁰ Por el teorema del binomio de Newton

Algebra y Geometría Analítica - Polinomios con coeficientes en un cuerpo 2017 Prof. Liliana N. Caputo

Proposición: Todo polinomio $p \in \mathbb{K}[x]$ de grado n tiene, a lo sumo, n raíces distintas.

Aceptaremos esta proposición como verdadera, sin demostrarla.

Polinomios con coeficientes complejos

A partir de este momento, todos los polinomios con los que trabajaremos son polinomios con coeficientes complejos.

Enunciado del Teorema Fundamental del Algebra (TFA)

Todo polinomio con coeficientes complejos, admite en C al menos una raíz.

Este teorema, que admitimos sin demostración, nos permite afirmar que C es un cuerpo algebraicamente cerrado, característica que no tienen los cuerpos \mathbb{R} y \mathbb{Q} , lo cual se pone en evidencia al analizar los siguientes ejemplos:

Ya vimos que el polinomio del ejemplo 2 admite como raíces a las raíces cuadradas de 5, que son números irracionales, a pesar de que sus coeficientes son números racionales (1 y 5). Por ello,

no es algebraicamente cerrado.

De la misma manera, en el ejemplo 5 observamos que las únicas raíces de $w(x) = x^2 + 1$ son i y –i, con lo cual, a pesar de que sus coeficientes son reales, w no admite ninguna raíz real; por ello $\mathbb R$ tampoco es algebraicamente cerrado.

Teorema de Gauss

Sean s un polinomio con coeficientes enteros a_n , ..., a_0 , n > 0 y $a_n \ne 0 \ne a_0$. Si s admite como raíz a $\frac{p}{q} \in \mathbb{Q}$, con p y q coprimos, **entonces**, $p|a_0 \wedge q|a_n$.

Demostración: Sean $\frac{p}{q} \in \mathbb{Q}$ y s un polinomio de coeficientes enteros tal que

$$s(x) = \sum_{i=0}^{n} a_i x^i$$

con $a_n \neq 0 \neq a_0$ y $s(\frac{p}{q}) = 0$. Entonces, por propiedad distributiva de la potenciación con respecto al producto de números reales:

$$s\left(\frac{p}{q}\right) = \sum_{i=0}^{n} a_i \frac{p^i}{q^i} = 0$$

de donde, multiplicando ambos miembros por qⁿ resulta:

$$q^{n} \sum_{i=0}^{n} a_{i} \frac{p^{i}}{q^{i}} = \sum_{i=0}^{n} a_{i} p^{i} q^{n-i} = 0$$
 (*)

con lo cual se tiene, por un lado:

$$\sum_{i=1}^{n} a_i p^i q^{n-i} = -a_0 q^n$$

de donde, por propiedad distributiva del producto con respecto a la suma en Z:

$$p\sum_{i=1}^{n} a_{i}p^{i-1}q^{n-i} = -a_{0}q^{n}$$

Por cierre de la suma y el producto en Z, la suma que multiplica a p, en el primer miembro, es un cierto número entero h. Luego: p.h = -a₀.qⁿ. Ahora bien, tenemos pues que p $|-a_0,q^n$, pero como p y q son coprimos, p $+q^n$ de donde, debe ser p $|-a_0|$, en consecuencia, p divide a a_0 .

Por otra parte, de (*) se tiene que:

$$\sum_{i=0}^{n-1} a_i p^i q^{n-i} = -a_n p^n$$

Razonando en forma similar, resulta que existe $h' \in \mathbb{Z}$ tal que $q.h' = -a_n.p^n$. Es decir, que hemos probado que q|-a_n.pⁿ; nuevamente, como p y q son coprimos, q no puede ser un divisor de pⁿ, luego debe ser divisor de -a_n y de a_n.

Teorema 3: Todo polinomio con coeficientes reales, si admite como raíz a un número complejo, también admite como raíz a su conjugado.

<u>Demostración</u>: Sea p un polinomio de coeficientes reales y de grado n > 0, tal que admite como raíz a $z \in \mathbb{C}$. Entonces:

$$p(z) = \sum_{i=0}^{n} a_i z^i = 0 \ (**)$$

Luego, se tiene que:

$$p(\overline{z}) = \sum_{i=0}^{n} a_{i} \overline{z}^{i} = \sum_{i=0}^{n} a_{i} \overline{z}^{i} = \sum_{i=0}^{n} \overline{a_{i}} \overline{z$$

Factorización de polinomios con coeficientes complejos

Factorizar un polinomio es, sencillamente, expresarlo como el producto de dos o más factores.

Existen diversas técnicas para factorizar un polinomio, a las que tracionalmente se las llamó casos de factoreo. Veamos sucintamente, de que se tratan:

¹¹ El conjugado de la potencia n - ésima de un número complejo, es su conjugado a la n.

¹² Todo número real es igual a su conjugado.

¹³ El conjugado del producto de dos números complejos, es el producto de sus conjugados.

¹⁴ El conjugado de la suma de dos números complejos, es la suma de los conjugados.

¹⁵ Todo número real coincide con su conjugado.

Sean n, $m \in \mathbb{N}$, con m > 1, p, p₀, p₁, p₂,...p_m, q, r, s, t, k, $a^n \in \mathbb{C}[x]$, tales que p_i es un monomio, para todo i = 0, 1, ..., m, t = p₁ + p₂, s = p₁ - p₂ y, finalmente, r es:

$$r = \sum_{i=0}^{m} p_i$$

Se presentan distintos casos:

Caso 1 (Factor común): Si p es tal que:

$$p = \sum_{i=0}^{m} q p_i = {}^{16}q \sum_{i=0}^{m} p_i = qr$$

Ejemplo: $p(x) = 12x^5 - 4x^3 + 10x = 2x.(6x^4 - 2x^2 + 5)$

Caso 2 (Factor común por grupos): Si p es tal que:

$$p = \sum_{i=0}^{m} q p_i + \sum_{i=0}^{m} k p_i = {}^{11} q \sum_{i=0}^{m} p_i + k \sum_{i=0}^{m} p_i = {}^{11} (q + k) \sum_{i=0}^{m} p_i = (q + k). s$$

Ejemplo: $q(x) = x^5 + x^3 + 4x^2 + 4 = x^3 \cdot (x^2 + 1) + 4 \cdot (x^2 + 1) = (x^2 + 1)(x^3 + 4)$.

Caso 3 (Trinomio del cuadrado perfecto): Si p es tal que:

$$p = p_1^2 + 2p_1p_2 + p_2^2 = {}^{17}(p_1 + p_2)^2 = t^2 = t.t$$

Ejemplo: $s(x) = x^6 - 6x^3 + 9 = (x^3)^2 + 2 \cdot (-3)x^3 + (-3)^2 = (x^3 - 3)^2$.

Caso 4 (Cuatrinomio del cubo perfecto): Si p es tal que:

$$p = p_1^3 + 3p_1^2p_2 + 3p_1p_2^2 + p_2^3 = {}^{17}(p_1 + p_2)^3 = t^3 = t.t.t$$

Ejemplo:
$$t(x) = x^6 + 6x^5 + 12x^4 + 8x^3 = (x^2)^3 + 3.2.x^4.x + 3.4.x^2.x^2 + 2^3.x^3 = (x^2)^3 + 3(x^2)^2(2x) + 3.2^2.x^2.x^2 + 2^3.x^3 = (x^2)^3 + 3(x^2)^2(2x) + 3.(2.x)^2.x^2 + (2x)^3 = (x^2 + 2x)^3$$

<u>Caso 5</u> (Diferencia de cuadrados): Si p es tal que: $p = p_1^2 - p_2^2$, entonces, vemos que $p = p_1^2 - p_2^2 = p_1^2 + p_1.p_2 - p_1.p_2 - p_2^2 = p_1(p_1 + p_2) - p_2(p_1 + p_2) = (p_1 + p_2).$ ($p_1 - p_2$) = s.t.

Ejemplo:
$$v(x) = x^4 - 4 = (x^2)^2 - 2^2 = x^4 + 2x^2 - 2x^2 - 4 = x^2(x^2 + 2) - 2(x^2 + 2) = (x^2 + 2)(x^2 - 2) = (x^2 + 2).(x^2 - (\sqrt{2})^2) = (x^2 + 2)(x + \sqrt{2})(x - \sqrt{2})$$

<u>Caso 6</u> (Divisibilidad por la suma o diferencias de las bases):

Si p es tal que: $p = p_1^n$ - a^n , p es divisible por la diferencia de las bases es decir, por p_1 - a.

-

¹⁶ Axioma O5.

¹⁷ Teorema del binomio de Newton.

En cambio, si p es tal que: $p = p_1^n + a^n$, $p_1 + a|$ p, sólo si n es impar. En efecto, si $p(x) = x^2 + 16$, se tiene que el resto de dividir p por x + 2 es 20^{18} es decir, x + 2 + p.

Teorema de descomposición factorial

Hemos visto que existen polinomios (como x^2+16), que no pueden ser factorizados por ninguno de estos métodos. Así pues, como el TFA nos asegura que todo polinomio p de coeficientes complejos admite, al menos, una raíz en \mathbb{C} (α), por el Teorema 2, $(x-\alpha)|$ p. Si c_1 es tal que $p(x)=c_1(x).(x-\alpha)$, como a su vez, c_1 es un polinomio de coeficientes complejos, nuevamente por el TFA, existe $\beta \in \mathbb{C}$, raíz de c_1 , de donde $(x-\beta)|c_1$. Luego, si $c_2 \in \mathbb{C}[x]$ es tal que $c_1(x)=c_2(x).$ $(x-\beta)$, se tiene que $p(x)=c_1(x).(x-\alpha)=c_2(x).$ $(x-\beta).(x-\alpha).$ Si se sigue factorizando c_2 , se obtiene un cociente c_3 que, nuevamente, puede ser factorizado, y así sucesivamente.

Por ello, enunciamos el siguiente teorema: Sean p un polinomio de coeficientes complejos, de grado $n \in \mathbb{N}$ y de coeficiente principal a_n . Si los números complejos $\alpha_1, ..., \alpha_n$ son n raíces - no necesariamente distintas - de p, entonces, p se puede factorizar como sigue:

$$p(x) = a_n \prod_{i=1}^{n} (x - \alpha_i)$$

Veamos entonces, cómo factorizar el polinomio $p(x) = x^2 + 16$.

En principio, buscamos $z \in \mathbb{C}$ tal que $z^2 + 16 = 0$. Es decir, debemos hallar las raíces cuadradas de -16. Una de dichas raíces es 4i. Entonces, por el Teorema 3 - como s es un polinomio de coeficientes reales - también admite como raíz a -4i, de donde:

$$p(x) = (x - 4i).(x + 4i)$$

Podemos ver que este teorema es, prácticamente, una "fábrica" de polinomios, con sólo fijar de antemano su grado, su coeficiente principal y sus raíces, pueden hallarse los polinomios que se deseen. Veamos algunos ejemplos:

Proponer un polinomio p tal que:

1) Sea de coeficientes reales, mónico, de grado 5 y que admita una raíz doble y una compleja no real.

Entonces, $a_5 = 1$ y, como se pide que sea de coeficientes reales y admita una raíz compleja no real, por el Teorema 3, debe admitir también a su conjugada. Se fija una raíz compleja no real, por ejemplo, 1 + 2i, cuyo conjugado es 1 - 2i. Como se pide, además, una raíz doble, se fija un número cualquiera, por ejemplo, -3. Vemos que, hasta el momento, p tiene 4 raíces. Se elige otra raíz, por ejemplo, 8 y se escribe el polinomio factorizado como sigue:

$$p(x) = (x - 1 - 2i).(x - 1 + 2i).(x + 3)^{2}.(x - 8)$$

2) Su coeficiente principal sea 2i, admita dos raíces racionales y dos irracionales.

¹⁸ Por el teorema del resto y por ser p(-2) = 20.

En este caso, el grado de p debe ser, como mínimo, 4. Como 1 y 2 son números racionales, $+\sqrt{3}$ y $-\sqrt{5}$ son irracionales, podemos factorizar p como sigue: $p(x) = 2i.(x - 1).(x - 2).(x - \sqrt{3}).(x + \sqrt{5})$. Como no se fija el grado de p, podríamos también escribir: $p(x) = 2i.(x - 1)^2.(x - 2).(x - \sqrt{3}).(x + \sqrt{5})$ (x -2i), por ejemplo (al no ser p de coeficientes reales, no necesariamente p(-2i) = 0).

Consideraciones finales

Al definir el conjunto de polinomios con coeficientes en un cuerpo, establecimos que V debe ser un conjunto disjunto con \mathbb{K} .

Supongamos ahora que $V = \{x, y\}$; luego, como $V \subset \mathbb{K}[V]$, x e y son dos polinomios. De la misma manera, valen en $\mathbb{K}[V]$ todos los axiomas de construcción y de operatividad, así como también la definición de potenciación dados al inicio de este capítulo.

Además, $x, y \notin \mathbb{K}$, de donde, $x \neq 0 \neq y$; luego, por definición de potenciación, $x^0 = y^0 = 1$ y serán polinomios $x^n, y^m, a.x^n.y^m$ (por axiomas C1, C3 y definición de potenciación), cualesquiera sean n, $m \in \mathbb{N}_0$ y $a \in \mathbb{K}$. Dichos polinomios se llaman, como en el caso de una sola indeterminada, monomios.

Llamemos al último monomio $p(x, y) = a \cdot x^{n} \cdot y^{m}$.

Entonces, si a = 0, p es el polinomio nulo; en caso contrario, definimos el grado de p como gr(p) = n + m.

Sean $p_1,\,\ p_k\in \mathbb{K}[V]$ monomios no nulos $\ .$ Entonces, podemos expresar a $p\in \mathbb{K}[V],$ como sigue:

$$p(x,y) = \sum_{i=1}^{k} p_i(x,y)$$

donde $gr(p) = máx \{gr(p_i) / i = 1, ..., k\}.$

Ejemplos: Consideremos los siguientes polinomios en $\mathbb{C}[V]$ $p(x, y) = 2x^2 y^3 + ix^5 + 4 x^2 y^2 - 2 + 5i$. Entonces, gr(p) = 5. $q(x, y) = 4ix^2 + 2xy - y^2$. Luego, gr(q) = 2. $s(x, y) = 5xy + 3x^2 y^2 + 1 - i$; se tiene que gr(s) = 4. $(p + s)(x, y) = 2x^2 y^3 + ix^5 + 7x^2 y^2 + 5xy - 1 + 4i$.

Vemos que $gr(p + s) = máx \{0, 2, 4, 5\} = 5 = máx \{gr(p), gr(s)\}$

$$(p.q)(x,y) = -4x^7 + 2ix^6y - ix^5y^2 + 8ix^4y^3 + 4x^3y^4 - 2x^2y^5 + 16ix^4y^2 + 8x^3y^3 - 4x^2y^4 - (20 + 8i)x^2 - (4 - 10i)xy + (2 - 5i)y^2$$
.

Puede observarse que gr(p,q) = 7 = 5 + 2 = gr(p) + gr(q).

De la misma manera que lo hecho en $\mathbb{K}[x]$, a cada polinomio $p \in \mathbb{K}[V]$ se lo puede asociar con una función polinómica f_p de \mathbb{K}^2 en \mathbb{K} . Así pues, para cada elemento $k \in \mathbb{K}$, puede hallarse el valor numérico del polinomio en dicho par, calculando su imagen por la correspondiente función polinómica.

Algebra y Geometría Analítica - Polinomios con coeficientes en un cuerpo 2017 Prof. Liliana N. Caputo

Ejemplos: Sea $p \in \mathbb{C}[V] / p(x, y) = 2x^2 y^3 + ix^5 + 4x^2y^2 - 2 + 5i$. Busquemos su valor numérico en (1, 2):

p(1, 2) =
$$2.1^2.2^3 + i1^5 + 4.1^2.2^2 - 2 + 5i = 16 + i + 16 - 2 + 5i = 30 + 6i$$
.
De igual manera, hallemos el valor numérico de p en (2, i):
p(2, i) = $2.1^2i^3 + i.2^5 + 4.2^2.i^2 - 2 + 5i = -2i + 32i - 16 - 2 + 5i = -18 + 35i$

Entonces, una ecuación polinómica con dos incógnitas será una igualdad del tipo $f_p(k, h) = a \in \mathbb{K}$. Resolverla consiste, simplemente, en hallar todos los pares $(k, h) \in \mathbb{K}^2$ que hacen que se cumpla la igualdad.

Dada la ecuación: $x^2 - 4x + y^2 - 2y + 1 = 0$ (1) que proviene de la función polinómica $f_p: \mathbb{R}^2 \to \mathbb{R} / f_p(x, y) = x^2 - 4x + y^2 - 2y + 1$, vemos que, sumando y restando 4 en el primer miembro de (1), se obtiene:

$$x^2 - 4x + 4 + y^2 - 2y + 1 - 4 = 0$$

utilizando el teorema del binomio de Newton, resulta: $(x-2)^2 + (y-1)^2 - 4 = 0$. De donde, sumando 4 a ambos miembros, se tiene que: $(x-2)^2 + (y-1)^2 = 4$.

Así pues, si consideramos las coordenadas de todos los puntos de la circunferencia con centro en c=(2,1) y radio 2, todos ellos verifican la igualdad (1) es decir, todos ellos son soluciones de dicha ecuación. Diremos entonces, que la ecuación admite infinitas soluciones y que su conjunto solución es la circunferencia $C(c,2) \subset \mathbb{C}$, con c=2+i (que representamos con el punto de coordenadas (2,1)).

Bibliografía consultada

Figallo,A.V. (1993). Polinomios y funciones polinómicas. Memorias del 5º Seminario Nacional de Matemática. Nivel Medio. Facultad de Filosofía, Humanidades y Artes de la Universidad Nacional de San Juan. San Juan, Argentina. pp 39 – 48.

De Nápoli, P. (2007). Notas de Algebra I. Polinomios. Versión 0.8.5. Departamento de Matemática de la Facultad de Ciencias Exactas y Naturales – UBA. CABA. Argentina. Disponible en:

http://mate.dm.uba.ar/~pdenapo/apuntes-algebral/polinomios.pdf

Lezama, O. (2014). Cuadernos de Algebra Nº2. Anillos. Departamento de Matemática. Facultad de Ciencias de la Universidad Nacional de Colombia. Bogotá, Colombia. Disponible en:

http://ciencias.bogota.unal.edu.co/fileadmin/content/seminarios/sac2/cuadernos/anillos.pdf