Chapitre 3 – Application du Principe Fondamental de la Dynamique

l'Ingénieur

Sciences

Application 2 – Corrigé

Conducteur virtuel pour véhicule automobile

Centrale Supelec PSI 2014

Savoirs et compétences :

- *Mod2.C13 : centre d'inertie*
- ☐ Mod2.C14 : opérateur d'inertie
- Mod2.C15 : matrice d'inertie

Objectif L'objet de cette partie est de déterminer un modèle mécanique du véhicule en appliquant les théorèmes généraux de la dynamique au véhicule . L'idée est d'utiliser un modèle mécanique relativement simple, associé à une commande très robuste.

Modélisation du comportement dynamique du véhicule

Question 1 Déterminer les composantes dans le repère \mathcal{R}_L du moment cinétique $\overline{\sigma(O, VH/\mathcal{R}_g)}$ au point O, du véhicule (VH) dans son mouvement par rapport au repère \mathcal{R}_g , en fonction de $\dot{\psi}$, α , h, V et des caractéristiques inertielles.

Correction La matrice d'inertie étant donnée en G, commençons par calculer $\overrightarrow{\sigma(G, VH/\mathcal{R}_g)} = I_G(VH) \overrightarrow{\Omega(VH/\mathcal{R}_g)}$

$$=\begin{pmatrix}A&0&-E\\0&B&0\\-E&0&C\end{pmatrix}_{\mathcal{R}_L}\dot{\psi}\overrightarrow{Z_g}=\begin{pmatrix}A&0&-E\\0&B&0\\-E&0&C\end{pmatrix}_{\mathcal{R}_L}\begin{pmatrix}0\\0\\\dot{\psi}\end{pmatrix}_{\mathcal{R}_L}=\begin{pmatrix}-E\dot{\psi}\\0\\C\dot{\psi}\end{pmatrix}_{\mathcal{R}_L}.$$

Il faut alors déplacer le moment cinétique. On aura pour cela besoin de $\overrightarrow{V\left(G\in \mathrm{VH}/\mathscr{R}_g\right)}=\overrightarrow{V\left(O\in \mathrm{VH}/\mathscr{R}_g\right)}+\overrightarrow{GO}\wedge\overrightarrow{\Omega\left(\mathrm{VH}/\mathscr{R}_g\right)}=V\overrightarrow{U}-h\overrightarrow{Z_g}\wedge \psi\overrightarrow{Z_g}=V\overrightarrow{U}.$

Au final,
$$\overrightarrow{\sigma(O, VH/\mathscr{R}_g)} = \overrightarrow{\sigma(G, VH/\mathscr{R}_g)} + \overrightarrow{OG} \wedge MV\overrightarrow{U} = \begin{pmatrix} -E\dot{\psi} \\ 0 \\ C\dot{\psi} \end{pmatrix}_{\mathscr{R}} + h\overrightarrow{Z_g} \wedge MV\overrightarrow{U} = \begin{pmatrix} -E\dot{\psi} \\ 0 \\ C\dot{\psi} \end{pmatrix}_{\mathscr{R}} + hMV\overrightarrow{V}$$

$$= \begin{pmatrix} -E\dot{\psi} \\ 0 \\ C\dot{\psi} \end{pmatrix}_{\Re I} + hMV \left(\cos\alpha\overrightarrow{Y_L} - \sin\alpha\overrightarrow{X_L}\right) = \begin{pmatrix} -E\dot{\psi} - hMV\sin\alpha \\ hMV\cos\alpha \\ C\dot{\psi} \end{pmatrix}_{\Re I}.$$

– Je note \overrightarrow{V} le vecteur tel que $(\overrightarrow{U}, \overrightarrow{V}, \overrightarrow{Z_L})$ est une base. –

Question 2 Déterminer les composantes dans le repère \mathcal{R}_L du moment dynamique $\delta\left(O, VH/\mathcal{R}_g\right)$ au point O, du véhicule (VH) dans son mouvement par rapport au repère \mathcal{R}_g , en fonction de $\dot{\psi}$, $\ddot{\psi}$, $\dot{\alpha}$, α , h, V et des caractéristiques inertielles.

Correction

On a en un point quelconque
$$\overrightarrow{\delta(O, VH/\mathscr{R}_g)} = \left[\frac{d\overrightarrow{\sigma(O, VH/\mathscr{R}_g)}}{dt} \right]_{\mathscr{R}_g} + \overrightarrow{V(O \in VH/\mathscr{R}_g)} \wedge \overrightarrow{MV(G \in VH/\mathscr{R}_g)}.$$

1

D'une part,
$$\left[\frac{d\overrightarrow{X_L}}{dt}\right]_{\mathscr{R}_g} = \overrightarrow{\psi}\overrightarrow{Y_L}$$
 et $\left[\frac{d\overrightarrow{Y_L}}{dt}\right]_{\mathscr{R}_g} = -\overrightarrow{\psi}\overrightarrow{X_L}$. On a donc $\left[\frac{d\overrightarrow{\sigma(O, VH/\mathscr{R}_g)}}{dt}\right]$

$$= \begin{pmatrix} -E\ddot{\psi} - \dot{\alpha}hMV\cos\alpha - \dot{\psi}(hMV\cos\alpha) \\ -\dot{\alpha}hMV\sin\alpha + \dot{\psi}(-E\dot{\psi} - hMV\sin\alpha) \\ C\ddot{\psi} \end{pmatrix}_{\mathcal{R}_L}.$$

D'autre part,
$$\overrightarrow{V(O \in VH/\mathscr{R}_g)} \land \overrightarrow{MV(G \in VH/\mathscr{R}_g)} = \overrightarrow{U} \land \overrightarrow{MVU} = \overrightarrow{0}$$
.
Au final, $\overrightarrow{\delta(O,VH/\mathscr{R}_g)} = \begin{pmatrix} -E\ddot{\psi} - (\dot{\alpha} + \dot{\psi}(hMV\cos\alpha)) \\ -E\dot{\psi}^2 - (\dot{\alpha} + \dot{\psi})hMV\sin\alpha \\ C\ddot{\psi} \end{pmatrix}_{\mathscr{R}_L}$.

Question 3 On note $\overrightarrow{\Gamma(G/\mathscr{R}_g)}$ le vecteur accélération de appartenant à (VH) dans son mouvement par rapport au référentiel galiléen \mathscr{R}_G . Déterminer $\overrightarrow{\Gamma(G/\mathscr{R}_g)} \cdot \overrightarrow{Y_L}$ en fonction de $\dot{\psi}$, $\dot{\alpha}$, α , V. Linéariser la relation obtenue au voisinage de la position d'équilibre définie par $\alpha=0$, $\psi=0$ et $\beta=0$.

Correction On a vu que
$$\overrightarrow{V\left(G \in \text{VH}/\mathcal{R}_g\right)} = V \overrightarrow{U}$$
, donc $\overrightarrow{\Gamma\left(G \in \text{VH}/\mathcal{R}_g\right)} = V\left(\dot{\psi} + \dot{\alpha}\right) \overrightarrow{V} = V\left(\dot{\psi} + \dot{\alpha}\right) \left(\cos\alpha \overrightarrow{Y_L} - \sin\alpha \overrightarrow{X_L}\right)$. On a donc $\overrightarrow{\Gamma\left(G/\mathcal{R}_g\right)} \cdot \overrightarrow{Y_L} = V\left(\dot{\psi} + \dot{\alpha}\right)\cos\alpha$. En linéarisant cette relation, on a $\overrightarrow{\Gamma\left(G/\mathcal{R}_g\right)} \cdot \overrightarrow{Y_L} = V\left(\dot{\psi} + \dot{\alpha}\right)$.

Question 4 En admettant que l'angle de dérive de la roue avant s'écrit : $\delta_{12} \simeq \alpha - \beta + \frac{\ell_1}{V} \dot{\psi}$ et celui de la roue arrière $\delta_{34} \simeq \alpha - \frac{\ell_2}{V} \dot{\psi}$, en déduire l'expression de $\overline{R(\overline{VH} \to VH)} \cdot \overline{Y_L}$. Linéariser la relation obtenue au voisinage de la position d'équilibre définie par $\alpha = 0$, $\psi = 0$ et $\beta = 0$.

Question 5 Montrer que l'on obtient le système d'équations différentielles suivant en indiquant clairement (point, vecteur unitaire, résultante ou moment, ...) à quelle équation scalaire issue du PFD correspond chaque relation :

$$\left\{ \begin{array}{l} \left(M\,V + \frac{2D\left(\ell_1 - \ell_2\right)}{V}\right)\dot{\psi} + M\,V\,\dot{\alpha} + 4D\,\alpha = 2D\,\beta \\ C\,\ddot{\psi} + \frac{2D\left(\ell_1^2 + \ell_2^2\right)}{V}\dot{\psi} + 2D\left(\ell_1 - \ell_2\right)\alpha = 2D\,\ell_1\beta \end{array} \right.$$

Avec les valeurs numériques : $\ell_1 = 1 \,\text{m}$, $\ell_2 = 1.5 \,\text{m}$, $D = 21\,000 \,\text{N} \,\text{rad}^{-1}$, $C = 3100 \,\text{kg} \,\text{m}^2$, $M = 1500 \,\text{kg}$, $V = 15 \,\text{m} \,\text{s}^{-1}$, on obtient le système d'équations différentielles suivant, permettant de décrire l'évolution du véhicule (données en unités S.I.) :

$$\begin{cases} 211\dot{\psi}(t) + 225\dot{\alpha}(t) + 840\alpha(t) = 420\beta(t) \\ 31\ddot{\psi}(t) + 91\dot{\psi}(t) - 210\alpha(t) = 420\beta(t) \end{cases} .$$

Correction La première équation correspond au théorème de la résultante dynamique appliqué à VH en projection sur $\overrightarrow{Y_I}$.

La seconde équation correspond au théorème du moment dynamique appliqué à VH en O projection sur $\overrightarrow{Z_L}$.

Question 6 En supposant que les conditions initiales sont nulles, déterminer l'expression numérique de la fonction de transfert $H_2(p)$ entre l'angle de lacet $\psi(p)$ et l'angle de braquage $\beta(p)$ de la roue avant : $H_2(p) = \frac{\psi(p)}{\beta(p)}$. Discuter de la stabilité de ce modèle.

Correction Dans le domaine de Laplace, on a $\begin{cases} 211p\psi(p) + 225p\alpha(p) + 840\alpha(p) = 420\beta(p) \\ 31p^2\psi(p) + 91p\psi(p) - 210\alpha(p) = 420\beta(p) \end{cases}$ $\Rightarrow \begin{cases} (225p + 840)\alpha(p) = 420\beta(p) - 211p\psi(p) \\ (31p^2 + 91p)\psi(p) - 210\alpha(p) = 420\beta(p) \end{cases}$ $\Rightarrow \begin{cases} \alpha(p) = \frac{420\beta(p) - 211p\psi(p)}{225p + 840} \\ (31p^2 + 91p)\psi(p) - 210\frac{420\beta(p) - 211p\psi(p)}{225p + 840} = 420\beta(p) \end{cases}$

