

$$n=3\left\{\begin{array}{c} -1 \\ -1 \\ \end{array}\right\}$$

When
$$n=1$$

i j K

Find output sequence for Tower of Hanoi algorithm When n=3. output sequence ► Tower of Hanoi algorithm void Hanoi (int n, int i, int j, int k) (4) 1→3 if(n==1)printf("%d>%d", i, K); 3 2 Hanoi (n-1, i, k,j); else { printf("/d>/d", i, k), ≥Hanoi(n-1, j, i, K); Recursion Tree for n=3 Hanoi $\left(\frac{n}{3}, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}\right)$ Hanoi (2, 2, 1, 3) $\text{Hanoi}\left(\frac{n}{2},\frac{1}{1},\frac{1}{3},\frac{1}{2}\right) \xrightarrow{\text{A}} 1 \rightarrow 3$ Hanoi (1,3,1,2) Hanoi (1,2,3,1) Hanoi (1,1,2,3,1)Hanoi (1, 1, 2, 3) (2) $1 \rightarrow 2$

 \bigcirc 1 \rightarrow 3

① convert the following infix expression into postfix using stack a+b-(c*d/e-f)↑€

Ans:	4+004	Postfix expression
Infia expression	3tack	
a+b-(c*d/e-f)1c		α
+6-(c*d/e-f) 1 C		0
6-(c*d/e-f)1c	+	
- (c*d/e-f) ↑ C	+	a b
(c*d/e-f) 1 C	-	ab+ > top(stack) > insert => +> - (True)
$c*d/e-f) \uparrow c$	-(ab+ 3+1/- (1149)
	-(ab+c
d/e-f) 1c	- (ab+c
d/e-f) ↑c		ab+cd top(stau) > insert
1e-f) ↑ C	- (* <u></u>	$\frac{ab+cd}{ab+cd*} \Rightarrow \frac{top(steu)}{nsext}$
e-f) ↑ C	-(/	· · · · · · · · · · · · · · · · · · ·
-f)↑c	-(/	ab+cd*e top(stack) > insert
s)↑c	-(-	ab+cd*e/ => />/ - True
/		ab + cd * e/f
)↑⊂	-(-	ab+cd*e/f-
↑ C	-	
C	-1	ab+cd*e/f- + tor(stock) > insert
	- ↑	$ab+cd*e/f-c \Rightarrow ->1$ false
	•	[ab+cd*e/f-c1-
operator Priority		
+ 1		Postfix

Operator.	Priority
+	1
, -	1
*	2
	2
1	3

Evaluate the Postfix expression when a= 1, b= 2, c= 1 d=2, e=2, f=1, operation stack Postfix expression ab+cd*e/f-c1b+cd*e/f-c1dy +cd*e/f-c1a+ b= 1+2=3 cd*e/f-c1-3 C dxelf-c1-3 c d *elf-c1c*d=1*2=2 3 • 2 e/f-c1-3 × ¢ 15-c1-2/e = 2/2 = 13 1 f-c1-3 1 8 -c1-1-f=1-1=0c1-3 0 C $0 \uparrow c = 0^1 = 0$ 3 DE 3 - 0 = 3Risult = 3 a+b-(c*d/e-f)1c = 1+2-(1*2/2-1) 11 = 3-(1-1)11 = 3-011 $= 3 - 0^{1}$ = 3-0 =[3] > Risult