5CCS2FC2: Foundations of Computing II

Tutorial Sheet 3

Solutions

- 2.5 (i) Show that the language A_{TM} is recursively enumerable by constructing a sound and complete algorithm that recognises all words $\langle M, w \rangle$, where M encodes a TM that accepts w.
 - (ii) Hence, or otherwise, show that its complement $\overline{\mathsf{A}_{TM}}$ is *not* recursively enumerable.

SOLUTION:

(i) It is enough to simulate the machine encoded by M on the input word w, and return true if M accepts w.

```
public static boolean ATM(String M, String w) {
      // Simulate M on input w with a
      // Universal TM
      boolean ans = UTM(M,w);

    if (ans == true) {
         return true;
    } else {
         return false;
    }
}
```

The algorithm may not terminate if M does not terminate on input w, but will always give the correct answer whenever $\langle M, w \rangle \in \mathsf{A}_{TM}$.

- (ii) By saw in lectures that a language and its complement cannot both be undecidable *and* recursively enumerable.
 - If A_{TM} were also recursively enumerable, there would be an algorithm that would always tell us whether $w \in \overline{A_{TM}}$, *i.e.*, if $w \notin A_{TM}$.

We could run this algorithm in parallel with the algorithm ATM to always decide whether w belonged to A_{TM} or $\overline{A_{TM}}$, thereby deciding the Accepting Problem.

2.6 (Tricky!)

- (i) Show that the language $\overline{\mathsf{EQ}_{TM}}$ is not recursively enumerable by reducing A_{TM} to its complement EQ_{TM} . (In other words, that EQ_{TM} is not co-recursively enumerable.)
- (ii) Show that the language $\overline{\mathsf{EQ}_{TM}}$ is also not co-recursively enumerable by reducing A_{TM} to $\overline{\mathsf{EQ}_{TM}}$. (In other words, that EQ_{TM} is not recursively enumerable.)

(It follows that $\overline{\mathsf{EQ}_{TM}}$ and EQ_{TM} are 'harder' than any recursively enumerable or co-recursively enumerable problem. There are not even any sound-and-complete algorithms for either problem)

SOLUTION:

- (i) First let us understand why a reduction from A_{TM} to EQ_{TM} would show that EQ_{TM} is not co-recursively enumerable.
 - We know that A_{TM} is undecidable but recursively enumerable, and so its complement $\overline{A_{TM}}$ must not be recursively enumerable.
 - A reduction from A_{TM} to EQ_{TM} would also establish that \overline{ATM} is reducible to \overline{EQTM} , which is to say that \overline{EQ}_{TM} is at least as hard as \overline{A}_{TM} . Therefore \overline{EQTM} cannot be recursively enumerable.
 - By definition, if EQ_{TM} were co-recursively enumerable, then its complement $\overline{\mathsf{EQ}}_{TM}$ would have to be recursively enumerable. Hence, we would have shown that EQ_{TM} is not co-recursively enumerable.

Returning to the question, we want to show that EQ_{TM} is at least as hard as A_{TM} so that any (hypothetical) algorithm for EQ_{TM} could be used as a subroutine to solve A_{TM} .

So, again, suppose that there is some algorithm EQTM that takes as an input a pair of encodings $\langle M_1, M_2 \rangle$ and returns true if and only if $L(M_1) = L(M_2)$.

Given an input pair $\langle M, w \rangle$ we want to construct a pair of Turing Machines $\langle M_1, M_2 \rangle$ such that

```
\langle M, w \rangle \in \mathsf{A}_{TM} \qquad \Longleftrightarrow \qquad \langle M_1, M_2 \rangle \in \mathsf{EQ}_{TM}
```

which is to say that M accepts w if and only if $L(M_1) = L(M_2)$. One approach would be to choose M_1 to be any machine that accepts all words, so that $L(M_1) = \Sigma^*$ (set of all strings). And then design M_2 so that its language will accept everything if and only if M accepts w.

```
public static boolean ATMc(String M, String w) {
    String M1 = "[code for M_all]";
    String M2 = "[code for M_w]";
    return EQTM(M1,M2);
}
```

```
public static boolean M_all(String s) {
          // Always accept the input s
          return true;
}
```

```
public static boolean M_w(String s) {
    // Simulate M on hard-coded
    // input w (ignore input s)
    boolean ans = UTM(M,w);

    // Accept s if and only if
    // M accepts w
    if (ans == true) {
        return true;
    } else {
        return false;
    }
}
```

(ii) The reasoning for why reducing A_{TM} to $\overline{\mathsf{EQ}_{TM}}$ shows that EQ_{TM} cannot be recursively enumerable is the same as above.

To answer the question, we want to show that $\overline{\mathsf{EQ}_{TM}}$ is at least as hard as A_{TM} so that any (hypothetical) algorithm for $\overline{\mathsf{EQ}_{TM}}$ could

be used as a subroutine to solve A_{TM} .

So, suppose that there is some algorithm coEQTM that takes as an input a pair of encodings $\langle M_1, M_2 \rangle$ and returns true if and only if $L(M_1) \neq L(M_2)$.

Given an input pair $\langle M, w \rangle$ we want to construct a pair of Turing Machine encodings $\langle M_1, M_2 \rangle$ such that

$$\langle M, w \rangle \in \mathsf{A}_{TM} \qquad \Longleftrightarrow \qquad \langle M_1, M_2 \rangle \in \overline{\mathsf{EQ}_{TM}}$$

which is to say that M accepts w if and only if $L(M_1) \neq L(M_2)$. Following the same approach as above, we could choose M_1 to be any machine that accepts all words, so that $L(M_1) = \Sigma^*$. But we would then need to design M_2 so that its language will accept everything if and only if M does not accept w, which includes the case where M does not terminate on w. This would require us to also have a subroutine that answered the halting problem.

An alternative would be to choose M_1 to be any machine that rejects all words, so that $L(M_1) = \emptyset$. We can then choose M_2 as before, since this have a non-empty language if and only if M accepts w.

```
public static boolean ATM(String M, String w) {
    String M1 = "[code for M_empty]";
    String M2 = "[code for M_w]";
    return coEQTM(M1,M2);
}
```

```
public static boolean M_empty(String s) {
          // Always reject the input s
          return false;
}
```

3.1 Determine whether the following are true or false?

 $3.1 \ 10^{15} n \in O(n),$

 $3.5 \ n \log n \in O(n^2),$

 $3.2 \ n^2 \in O(n),$

 $3.6 \ 2^{(2n+1)} \in O(4^n),$

 $3.3 \ n^2 \in O(n \log n),$

 $3.7 \ n^{\log \log n} \in O(n^{10}).$

 $3.4 \ n^2 \in O(n \log^2 n),$

SOLUTION:

- 3.1 $10^{15}n \in O(n)$ True, since we can choose $k = 10^{15} + 1$, so that $10^{15}n < (10^{15} + 1)n$ for example.
- 3.2 $n^2 \in O(n)$ False, since for any fixed value of k, we have that $n^2 > k \cdot n$ for sufficiently large n.
- 3.3 $n^2 \in O(n \log n)$ False, since for any fixed value of k, we have that $n > k \cdot \log n$ for sufficiently large n.
- 3.4 $n^2 \in O(n \log^2 n)$ False, since for any fixed value of k, we have that $n > k \cdot \log^2 n$ for sufficiently large n.
- 3.5 $n \log n \in O(n^2)$, True, since we can choose k=1, so that $n \log n < k \cdot n^2$, for example.
- 3.6 $2^{(2n+1)} \in O(4^n)$ True, since we can rewrite $2^{(2n+1)} = 4^n \times 2^1$ and choose k = 3, for example.
- 3.7 $n^{\log \log n} \in O(n^{10})$ False, since for any fixed value of k, there is eventually some n such that $\log \log n > 10 + k$ (for $n > 2^{1024(2^k)}$), at which point we have that $n^{\log \log n} > n^{10+k} = n^{10} \times n^k > k \cdot n^{10}$ (since $n^k > k$).
- 3.2 For each of the following formulas F construct a graph G_F and choose an integer k such that

F is satisfiable \iff G_F contains a clique of size k

(i) $F = (P \lor \neg Q \lor \neg S) \land (Q \lor \neg R \lor S) \land (\neg Q \lor R \lor S)$

(ii)
$$F = (P \lor \neg Q \lor \neg R) \land (P \lor Q \lor \neg R) \land (\neg P \lor \neg Q \lor R)$$

(iii)
$$F = (P \lor Q \lor \neg R) \land (P \lor Q \lor R) \land (\neg P \lor Q \lor \neg R) \land (P \lor \neg Q \lor R)$$

Use this property to identify which of the above formulas are satisfiable. $\underline{\text{SOLUTION:}}$

(i) Following the procedure described in class, we have that

There are many 3-cliques in the graph, the one identified in the above diagram corresponds to the following satisfing assignment:

$$P = 1,$$
 $Q = 1 \text{ or } 0,$ $R = 0,$ and $S = 1$

(ii) The graph G_F is illustrated below:

The 3-clique highlighted above corresponds to the following satisfying assignment:

$$P = 1,$$
 $Q = 0,$ and $R = 0$

(iii) The graph G_F is illustrated below:

There are several 3-cliques in this graph, but these do not correspond to satisfying assignments for the formula F, since they do not select a vertex from each clause.

Hence, we must choose k=4 to guarentee that any if the graph has a clique of size k then the formula is satisfying. One such 4-clique is shown above. This corresponds to the following satisfying assignment,

$$P = 0,$$
 $Q = 1,$ and $R = 1$

3.3 Construct a propositional formula that is satisfiable if and only if the following graph G=(V,E) can be coloured using only two colours, where

$$\begin{array}{rcl} V & = & \{1,2,3,4,5\} \\ \\ E & = & \{(1,2),(1,3),(2,3),(2,4),(3,5)\} \end{array}$$

<u>SOLUTION</u>: Suppose for instance that the two colours are $C = \{R, B\}$. We first need to specify that every vertex is coloured in one of two colours, which we can do with the following formula:

$$(P_{1,R} \vee P_{1,B}) \wedge (P_{2,R} \vee P_{2,B}) \wedge (P_{3,R} \vee P_{3,B}) \wedge (P_{4,R} \vee P_{4,B}) \wedge (P_{5,R} \vee P_{5,B})$$

Each clause says that "vertex i must either be coloured Red or Blue".

Furthermore, we need to also specify that no vertex is to be coloured in more than one colour:

$$\neg (P_{1,R} \land P_{1,B}) \land \neg (P_{2,R} \land P_{2,B}) \land \neg (P_{3,R} \land P_{3,B}) \land \neg (P_{4,R} \land P_{4,B}) \land \neg (P_{5,R} \land P_{5,B})$$

Each clause says that "it is not the case that vertex i is coloured both Red and Blue".

Finally, we also need to specify that each edge connects two vertices of different colour:

$$\neg (P_{1,R} \land P_{2,R}) \land \neg (P_{1,B} \land P_{2,B}) \land \neg (P_{1,R} \land P_{3,R}) \land \neg (P_{1,B} \land P_{3,B})$$
$$\land \neg (P_{2,R} \land P_{3,R}) \land \neg (P_{2,B} \land P_{3,B}) \land \neg (P_{2,R} \land P_{4,R}) \land \neg (P_{2,B} \land P_{4,B})$$
$$\land \neg (P_{3,R} \land P_{5,R}) \land \neg (P_{3,B} \land P_{5,B})$$

The first clause says that "it is not the case that vertex 1 and vertex 2 are both coloured Red", for example.

This set of formulas is satisfiable if and only if there is a 2-colouring of the graph G. However, since the graph contains a cycle of length

3 (1 \to 2 \to 3 \to 1), we must not be able to colour the graph with only 2 colours. Hence, the set of formulas we have derived must not be satisfiable.