

Mathématiques

Classe: BAC

Chapitre: Fonctions Réciproques

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

Exercice 1:

(5) 20 min

3 pts

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{x^2 + 2}{x^2 + 1}$.

- 1)
- a) Dresser le tableau de variation de f.
- b) Montrer que f(x) = x admet dans \mathbb{R} une solution unique $\alpha \in \left[1; \frac{3}{2}\right]$.
- 2) Soit g la restriction de f sur $[0; +\infty]$.
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur [1;2].
 - b) Ecrire l'expression de $g^{-1}(x)$ pour $x \in [1, 2]$.

Exercice 2

(S) 25 min

5 pts

A/ Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = x^2 - 1 + \sqrt{x^2 + x}$ et soit \mathbb{C}_f

- 1) Montrer que f est continue sur $[0; +\infty[$.
- 2)
- a) Etudier la dérivabilité de f à droite en 0 et interpréter géométriquement le résultat obtenu.
- b) Montrer que f est dérivable sur $]0,+\infty[$ et calculer f'(x).
- c) En déduire que f'(x) > 0 pour tout $x \in]0,+\infty[$.
- 3)
- a) Dresser le tableau de variation de f.
- b) Montrer que f est une bijection de $[0; +\infty[$ sur $[-1, +\infty[$.
- 4) Montrer que l'équation f(x) = 0 admet dans $[0; +\infty[$ une unique solution α et que $\alpha \in]0;1[$.
- B/ Soit f^{-1} la fonction réciproque de f.
 - 1) Donner le sens de variation de f^{-1} .
 - 2)
- a) Montrer que f^{-1} est continue et dérivable sur $[-1,+\infty[$.
- b) Calculer $f^{-1}(\sqrt{2})$ et $(f^{-1})(\sqrt{2})$.
- 3) Construire \mathbb{C}' la courbe représentative de f^{-1} .

Exercice 3:

(5) 25 min

5 pts

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \begin{cases} x + 2 + \sqrt{x^2 - x} & \text{si } x \le 0 \\ -2x^3 - 3x^2 + 2 & \text{si } x > 0 \end{cases}$

1)

- a) Montrer que f est continue en 0.
- b) Calculer $\lim_{x \to \infty} f(x)$.
- c) Etudier la dérivabilité de f à gauche en 0. Interpréter graphiquement lle résultat.
- 2) Soit g la restriction de f sur $]0;+\infty[$.
 - a) Montrer que g réalise une bijection de $]0;+\infty[$ sur $]-\infty;2[$.
 - b) Montrer que l'équation g(x) = 0 admet dans $[0, +\infty[$ une unique solution $\alpha \in \left[\frac{1}{2}; 1\right[$.

3)

- a) Montrer que g^{-1} est dérivable sur $]-\infty;2[$.
- b) Montrer que $(g^{-1})'(0) = \frac{1}{-6\alpha(\alpha+1)}$.
- c) Calculer g(1) et $(g^{-1})'(-3)$.
- d) Ecrire l'équation de la tangente à la courbe de g^{-1} au point d'abscisse (-3).

Exercice 4:

(5) 25 min

5 pts

Soit f la fonction définie sur]0; + ∞ [par $f(x) = 1 + \frac{2}{x}$ et soit C_f sa courbe représentative.

1)

- a) Etudier les variations de f.
- b) Montrer que f réalise une bijection de $]0;+\infty[$ sur un intervalle J que l'on déterminera.
- c) Soit g la fonction définie sur $]0;+\infty[$ par f(x)=f(x)-x. Montrer que l'équation g(x)=0 admet une unique solution α et que $\alpha=2$.
- 2) Soit f^{-1} la fonction réciproque de f et soit \mathbb{C}' sa courbe représentative.
 - a) Montrer que f^{-1} est continue et dérivable sur J .
 - b) Calculer $f^{-1}(3)$ et $(f^{-1})'(3)$.
 - c) Dresser le tableau de variation de f^{-1} .
 - d) Calculer $(f^{-1})'(x)$ pour tout $x \in J$.
 - e) Calculer $f^{-1}(x)$ pour tout $x \in J$.

Exercice 5:

(5) 30 min

5 pts

Soit f la fonction définie sur $[1;+\infty[$ par $f(x)=\sqrt{x^2-1}-x+1$ et soit C_f sa courbe représentative.

1)

- a) Montrer que
- b) Etudier la dérivabilité de f à droite en 1. Interpréter le résultat graphiquement.
- c) Vérifier que $\forall x \in [1; +\infty)$, on a :

2)

- a) Montrer que
- b) Dresser le tableau de variation de f.
- c) Montrer que f réalise une bijection de $[1;+\infty[$ sur un intervalle J que l'on déterminera.

3)

- a) Justifier graphiquement que f^{-1} est dérivable à droite en 0.
- b) Donner le tableau de variation de f^{-1} .

4)

- a) Calculer $f(\sqrt{5})$.
- b) Montrer que f^{-1} est dérivable en $3-\sqrt{5}$ et donner l'équation de la tangente à $\mathbf{C}_{f^{-1}}$ en son point d'abscisse $3-\sqrt{5}$.

5)

- a) Montrer que $\forall x \in J$ n, on a : $f^{-1}(x) = \frac{-x^2 + 2x 2}{2(x 1)}$.
- b) Résoudre alors l'équation : $f(x) = \frac{\sqrt{2}}{2}$.

Exercice 6:

(5) 20 min

4 pts

Le graphique ci-dessous est la courbe représentative d'une fonction f définie sur $[-3; +\infty[$ ainsi que sa tangente T au point d'abscisse 0. Sa demi tangente à droite au point (-3, -2) et ses demi tangentes au point (-1,0).

- ✓ La courbe \mathbf{C} admet au voisinage de +∞ une branche parabolique de direction (o, \vec{j}) .
- 1) Par lecture graphique déterminer :

$$\lim_{x \to +\infty} f(x); \lim_{x \to +\infty} \frac{f(x)}{x}; \lim_{x \to (-1)^{-}} \frac{f(x)}{x+1}; \lim_{x \to (-1)^{+}} \frac{f(x)}{x+1}$$

2) Ecrire l'équation de la tangente à $\, C \,$ au point d'abscisse 0.

3)

- a) Justifier que f réalise une bijection de sure un intervalle J que l'on précisera.
- b) Montrer que f^{-1} est dérivable en 2 et déterminer $(f^{-1})'(2)$.
- c) Tracer dans le même repère la courbe de f^{-1} . Ainsi que sa tangente à au point d'abscisse -2 et ses tangentes au point d'abscisse 0.

Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba

