Computabilità e Algoritmi (Computabilità) 22 Marzo 2012

Esercizio 1

Dare la definizione dell'insieme \mathcal{PR} delle funzioni primitive ricorsive e, utilizzando esclusivamente la definizione, dimostrare che è primitiva ricorsiva la funzione caratteristica χ_A dell'insieme $A = \{2^n - 1 : n \in \mathbb{N}\}$. Si può assumere, senza dimostrarlo, che somma, prodotto, sg e \overline{sg} siano in \mathcal{PR} .

Esercizio 2

Si consideri la funzione $f: \mathbb{N} \to \mathbb{N}$ definita da

$$f(x) = \begin{cases} x^2 & \text{se } \varphi_x(x) \downarrow \\ x+1 & \text{altrimenti} \end{cases}$$

Dire se la funzione è o meno calcolabile, motivando adeguatamente la risposta.

Esercizio 3

Studiare la ricorsività dell'insieme $A=\{x\in\mathbb{N}:W_x=\overline{E_x}\}$, ovvero dire se A e \bar{A} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 4

Studiare la ricorsività dell'insieme

$$B = \{\pi(x, y) : P_x \text{ termina sull'input } x \text{ in più di } y \text{ passi}\},$$

dove $\pi:\mathbb{N}^2\to\mathbb{N}$ è la funzione di codifica delle coppie, ovvero dire se B e \bar{B} sono ricorsivi/ricorsivamente enumerabili.

Esercizio 5

Enunciare il secondo teorema di ricorsione ed utilizzarlo per dimostrare che l'insieme $C = \{x : 2x \in W_x \cap E_x\}$ non è saturato.