

具有热插拔、±16kV ESD 保护的 5V RS485 收发器

概述

MAX485E 是+5.0V 供电、具有± 16kV ESD 保护的 RS-485/RS-422 收发器。具有热插拔功能,在上电或热插入时可以消除总线上的故障瞬变信号。MAX485E 驱动器的摆率不受限制,可实现高达 2.5Mbps 的传输速率。MAX485E 用于半双工通信;所有器件的接收器具有 1/8 单位负载输入阻抗,总线上可以挂接多达 256 个收发器。

MAX485E 采用 8 脚 DIP、8 脚 SOP 和 8 脚 MSOP 封装,这些器件可以提供商用级或工业级温度范围。

特性

- 低功耗关断模式
- DE 与RE采用热插拔输入结构
- +5.0V 工作电压 总线上允许挂接多达 256 个收发器
- I/O 口采用增强型 ESD 保护
- (± 16kV IEC 61000-4-2 模型)

应用

- RS-422/RS-485 通讯
- 数字电表水表 工业控制,工业
- 嵌入电脑和外设 安防监控系统
- 路由器和交换机 仪器仪表 电平转换
- 对 EMI 敏感收发器应用

产品订购信息

产品名称	封装	打印名称	包装	包装数量
MAX485ECN	DIP8L	X485EC	管装	2000 只/盒
MAX485EIN	DIP8L	X485EI	管装	2000 只/盒
MAX485ECM/TR	SOP8L	X485EC	编带	2500 只/盘
MAX485EIM/TR	SOP8L	X485EI	编带	2500 只/盘
MAX485ECMM/TR	MSOP8L	X485EC	编带	3000 只/盘
MAX485EIMM/TR	MSOP8L	X485EI	编带	3000 只/盘

引脚配置

引脚说明

引脚	名称	功能
1	RO	接收器输出: 当 RE为低电平时,如 (A - B)不小于 200mV,则 RO 输出高电平;如(A - B) 不大于 -200mV,则 RO 输出低电平。
2	RE	接收器输出使能:当 RE为低电平时 RO 有效; RE为高电平时 RO 为高阻态。RE为高电平同时 DE 为低电平,器件进入低功耗关断模式。RE采用热插拔输入结构(请参考热插拔功能部分)
3	DE	驱动器输出使能:DE为高电平时驱动器输出有效。DE为低电平时输出高阻态。RE为高电平同时 DE为低电平,器件进入低功耗关断模式。DE采用热插拔输入结构(请参考热插拔功能部分)。
4	DI	驱动器输入:DE 为高电平时,DI 上的低电平使输出 A 为低电平,输出 B 为高电平。类似的,DI 上的高电平使输出 A 为高电平,输出 B 为低电平。
5	GND	地
6	Α	接收器同相輸入端和驱动器同相輸出端
7	В	接收器反相输入端和驱动器反相输出端
8	VCC	正电源:4.5V≦VCC≦5.5V。连 0.1μF 电容接地。

绝对最大额定值

参数	符号	大小范围	单位
供应电压	Vcc	6	V
控制输入电压	RE, DE	-0.3 到6	V
驱动器输入电压	DI	-0.3 到6	V
驱动器输出电压	A,B	-7V 到 +12	V
接收器输入电压	A,B	-7V 到 +12	V
接收器输出电压	RO	-0.3 到 (VCC+0.3)	V
た结功却 (TA- 1 70 °C)	DIP	725	mW
连续功耗(TA= +70℃)	SOP	500	mW
工作温度范围	MAX485C	0 到 +70	${\mathbb C}$
上11-1.血反26世	MAX485I	-40 到 +85	${\mathbb C}$
储存温度		-65 到 +150	${\mathbb C}$

注:任何高于绝对最大额定值的应用尝试都有可能对产品造成永久的损害,绝对最大额定值并不意味着产品会在标定的电气特性以外条件下正常工作。

直流电气特性

(如无另外说明, VCC=+5V±10%, TA=TMIN~TMAX, 典型值在 VCC=+5V, TA=25℃) (注释 1)

参数	符号	条件	最小	典型	最大	单位	
驱动器							
电源电压	VCC		4.5		5.5	٧	
		无负载			VCC	٧	
差分驱动器输出	VOD	图 1, RL=100Ω (RS-422)	2.7		VCC	V	
		图1, RL=54Ω (RS-485)	2.1		VCC	V	
差分驱动器输出电压的幅度变化(注释 2)	ΔVOD	图1, RL=100Ω 或 RL=54Ω			0.2	V	
驱动器共模输出电压	Voc	图1, RL=100Ω或 RL=54Ω		VCC /2	3	V	
共模电压的幅度变化(注释 2)	ΔVOC	图1, RL=100Ω 或 RL=54Ω	(0.2	V	
输入高电压	VIH	DE, DI, RE	2			٧	
输入低电压	VIL	DE, DI,			0.8	٧	
输入迟滞	VHYS	DE, DI, RE		100		mV	
输入电流	lin	DE, DI, RE		01	±1	μΑ	
	IOSD	0≦VOUT ≦12V	411		250	A	
驱动器短路输出电流 (注释 3)	1030	-7≦VOUT ≦Vcc	-250			mA	
驱动器短路回馈限制输出电流	IOSDF	Vcc-1V ≦VOUT ≦Vcc+0.5V	20			mA	
(注释3)	IOSDF	-0.5V ≦VOUT ≦+1V			-20	mA	
热关断温度	TTS	CASI		165		$^{\circ}$	
热关断迟滞	TTSH	1118		15		$^{\circ}$	
接收器		, King	_				
接收器差分阈值电压	VTH	-7V≦VCM≦12V	-200		+200	mV	
接收器输入迟滞	ΔVΤΗ	VA+VB=0		15		mV	
接收器输出高压	VOH	IO= -4mA,VID=200mV	VCC - 0.6			V	
接收器输出低压	VOL	IO=4mA, VID=-200mV			0.4	V	
接收器端三态输出电流	IOZR	0≦VO≦VCC			±1	μΑ	
接收器输入阻抗	RIN	-7V≦VCM≦12V	96			kΩ	
接收器输出短路电流	IOSR	0V≦VRO≦VCC	±7		±95	mA	

(如无另外说明, VCC=+5V±10%, TA=TMIN~TMAX, 典型值在 VCC=+5V, TA=25℃) (注释 1)

参数	符号	条件		最小	典型	最大	单位
供应电流							
		 无负载, RE = VCC	DE= VCC		530	900	
供应电流		DI = GND 或 VCC	DE=GND		475	600	μΑ
	Icc		DE= VCC		530	1000	μΑ
		DI = GND 或 VCC	DE=GND		475	800	μΑ
待机模式中的供应电流	ISHDN	DE = GND, RE	= VCC		0.05	10	μΑ
静电保护				_			
		IEC61000-4-2 空隙			± 16		kV
A, B 的静电保护		IEC61000-4-2 接触		±8		kV	
		HBM 模型 (所有行	管脚)	3)	±4		kV

- 1. 进入器件的所有电流都是正的,从器件输出的所有电流都是负的;所有的电压,如果无例外说明都是对地的。
- 2. 当 DI 输入改变状态时, Δ VOD 和 Δ VOC 分别为 VOD 和 VOC 变化。
- 3. 最大电流是在回馈电流限制前的峰值电流,短路回馈限制电流是总线<mark>竞争恢复</mark>期间的限制电流。

驱动器开关特性 MAX485E (2.5Mbps)

(如无另外说明, VCC=+5V±10%, TA=TMIN~TMAX, 典型值在 VCC=+5V, TA=25℃)

参数	符号	条件	最小	典型	最大	单位
□反二九·및 /土北今/元〉口	t _{DPLH}	图2 和5,RL=54ΩCL=50pF			50	200
驱动器传输延迟	t _{DPHL}	S2 ↑H3, KL-34ΩCL-30PF			50	ns
驱动器输出的上升和下降时间不对称度 t _{DPLH} - t _{DPHL}	t _{DSKEW}	图2 和5, RL =54ΩCL=50pF			10	ns
驱动器上升或下降时间	t _{DR tDF}	图2 和5, RL =54ΩCL=50pF			20	ns
最大数据速率	f _{MAX}				2.5	Mbps
驱动器使能到输出高	t _{DZH}	图3 和6, CL =100pF,S3 闭合			150	ns
驱动器使能到输出低	t _{DZL}	图3 和6, CL =100pF, S2 闭合			150	ns
从低到驱动器无效时间	t _{DLZ}	图3 和6, CL =15pF S2 闭合			100	ns
从高到驱动器无效时间	t _{DHZ}	图3 和6, CL =15pF S3 闭合			100	ns
从待机到输出高的驱动器使能	t _{DZH}	图3 和6, CL =15pF S3 闭合			2200	ns
从待机到输出低的驱动器使能	t _{DZL}	图3 和6, CL =15pF S2 闭合			2200	ns
待机时间	t _{SHDN}		50	350	700	ns

接收器开关特性 MAX485E (2.5Mbps)

(如无另外说明, VCC=+5V±10%, TA=TMIN~TMAX, 典型值在 VCC=+5V, TA=25℃) (注释 1)

参数	符号	条件	最小	典型	最大	单位
接收器传输延迟	t _{RPLH} t _{RPHL}	图 7 和 8, CL=15pF VID ≥2.0V, VID≤15ns			50	ns
差分接收器输出的上升和下降时间不对称度 topla-tophe	t _{RSKEW}	图 7 和 8, CL=15pF VID ≥2.0V, VID≤15ns			20	ns
最大数据速率	f _{MAX}				2.5	Mbps
接收器使能到输出低	t _{RZL}	图4 和9, S1=-1.5V,S2 接 VCC			50	ns
接收器使能到输出高	t _{RZH}	图4 和9S1=+1.5V,S2 接 GND			50	ns
接收器从低到无效时间	t _{RLZ}	图4 和9, S1=-1.5V,S2 接 VCC			50	ns
接收器从高到无效时间	t _{RHZ}	图4 和9S1=+1.5V,S2 接 GND			50	ns
从待机到输出高的接收器使能	t _{RZH (SHDN)}	图4 和9, S1=-1.5V,S2 接 VCC			2200	ns
从待机到输出低的接收器使能	t _{rzl (SHDN)}	图4 和9S1=+1.5V,S2 接 GND			2200	ns
待机时间	t _{shdn}		50	350	700	ns
		Hua Guan Samicondu				

典型工作特性

(如无另外说明, VCC = +5.0V, TA = +25°C)

驱动器输出电流与输出低电压关系

Output Low Voltage(V)

接收器输出电流与输出低电压关系

接收器输出低电压与温度关系

驱动器输出电流与输出高电压关系

Output High Voltage (V)

接收器输出电流与输出高电压关系

接收器输出高电压与温度关系

驱动器差分输出电压(54Ω)与温度关系

接收器输出低短路电流与温度关系

接收器输入电阻与温度关系

驱动器差分输出电压(100Ω)与温度关系

接收器输出高短路电流与温度关系

无负载电源电流与温度关系

测试电路和时序图

(如无另外说明, VCC = +5.0V, TA = +25°C)

图 2.驱动器时序测试电路

图 3.驱动器使能和禁用测试电路

图 4.接收器使能和禁用测试电路

图 5.驱动器传输延时

图 6.驱动器使能和禁用时序(tohz、tozh、tozh(SHDN)、tozl、tolz(SHDN))

图 7.接收器传输延时测试电路

图 8.接收器传输延时

图 9.接收器使能和禁用时序

功能表

		传输			接收					
输入			输	田		输入	输出			
RE	DE	DI	В	А	RE	DE	A - B	RO		
V	4	4	0		0	,	≥+200mV	1		
X	1	1	0	1	0	Х	≤ -200mV	0		
Х	1	0	1	0	0	Х	Open/Shorted	Х		
0	0	Х	高阻抗	高阻抗	1 1		х	高阻抗		
1	0	Х	Shutdown		1	1 0		Shutdown		

详细说明

MAX485E 系列高速 RS-485/RS-422 收发器包括一路驱动器和一路接收器。MAX485E 具有热插拔功能, 支持热插入而不会产生数据传输错误 (参考热插拔功能部分)。

MA X485E 的驱动器摆率不受限制,能够实现最大 2.5Mbps 的传输速率;所有器件均采用 +5.0V 单电源供电。驱动器具有输出短路限流功能。热关断电路保护驱动器不会出现功耗过大。进入热关断保护后, 驱动器输出被置于高 阻态。

热插拔功能

把电路板插入带电或正在工作的背板时(热插拔输入),数据总线的差分干扰可能导致数据错误。电路板插入背板时,数据通信处理器启动一次上电过程。在此过程中,处理器的逻辑输出驱动器为高阻态,不能将这些器件的 DE 和RE输入 驱动至规定的逻辑电平。处理器的逻辑驱动器在高阻态时可能会有高达 ±10µA 的漏电流,这会引起收发器的标准 CMOS 使能输入漂移到不正确的逻辑电平。此外,电路板寄生电容 还会将 VCC 或者 GND 耦合至使能输入端。如果不具备热插拔能力,以上因素会错误地使能收发器的驱动器或接收器。MAX485E 的热插拔功能保证在 VCC 上升时,内部电路保持 DE为低电平,RE为高电平。在完成初始上电过程后,下拉电路将不再起作用,并复位热插拔输入端。

±15kV ESD 保护

类似于铭芯的其它相关器件,所有引脚都采用了 ESD 保护结构,在操作与装配过程中出现静电放电时可对器件提供保护。MAX485E 系列产品的驱动器输出与接 收器输入具有额外的静电保护能力。铭芯的工程师们已开 发出专用的电路结构,为这些引脚提供保护,使其能够承 受 IEC 61000-4-2 模型±15kV 的 ESD 冲击。ESD 保护结构 在各种状态下都可承受高 ESD 冲击,包括标准工作模式、 关断和断电模式。ESD 保护可以采用不同方法进行测试。 MAX485E 的发送器输出与接收器输入在以下条件下进行了保护测试:

- ▶ ±15kV, IEC 61000-4-2 规定的间隙放电方法。
- ▶ ±8kV, IEC 61000-4-2 规定的接触放电方法。

图 10a. 人体 ESD 测试模型

图 10b. IEC 61000-4-2 ESD 测试

应用信息

总线上挂接 256 个收发器,标准 RS-485 接收器的输入阻抗为 12kΩ(1 个单位负载),标准驱动器可最多驱动 32 个单位负载。MAX485E 系列收发器的接收器具有 1/8 单位负载输入阻抗(96kΩ),允许最多 256 个收发器并行挂接在同一通信总线上。这些器件可任意组合,或与其它 RS-485 收发器进行组合,只要总负载不超过 32 个单位负载,都可以挂接在同一总线上。

低功耗关断模式

RE接高电平且 DE 接低电平时,启动低功耗关断模式。关断模式下,器件仅吸收典型值为 0.05µA 的电源电流。如果RE为高电平且 DE 为低电平的持续时间小于 50ns,可以确保器件不会进入关断模式。如果输入端维持这种状态 700ns 以上,则可确保这些器件进入关断模式。使能时间 tzh 与 tzl (见开关部分)假定器件并未处于低功耗关断状态。使能时间 tzh(shdn)与 tzl(shdn)假定器件处于关断状态。从低功耗关断模式到驱动器和接收器转变为有效状态所需要的时间(tzh(shdn)、tzl(shdn)),要比从禁用模式下转 变为有效状态所需要的时间(tzh、tzl)长。驱动器输出保护通过两种机制避免故障或总线冲突引起输出电流过大和功耗过高。第一,输出级折返式限流,在整个共模电压范围(参考典型工作特性)内提供快速短路保护。第二,热关断电路, 当管芯温度超过 +165°C (典型值)时,强制驱动器输出进入高阻状态。

典型应用

MAX485E 收发器设计用于多点总线传输 线上的双向数据通信。图 11 给出了典型网络应用电路。 为减小反射,应当在传输线两端以其特性阻抗进行终端匹配,主干线以外的分支连线长度应尽可能短。

图 11. 典型半双工模式下 RS485 网络

封装外型尺寸

SOP-8L 150mil

Dimensions In Millimeters(SOP8L)										
Symbol:	А	A1	В	С	C1	D	Q	а	b	
Min:	1.35	0.05	4.90	5.80	3.80	0.40	0°	0.35	1.27 BSC	
Max:	1.55	0.20	5.10	6.20	4.00	0.80	8°	0.45	1.27 BSC	

DIP-8L

Dimensions In Millimeters(DIP8L)											
Symbol:	Α	В	D	D1	E	L	L1	а	b	С	d
Min:	6.10	9.00	8.40	7.42	3.10	0.50	3.00	1.50	0.85	0.40	0.54.000
Max:	6.68	9.50	9.00	7.82	3.55	0.70	3.60	1.55	0.90	0.50	2.54 BSC

封装外型尺寸

MSOP8

Dimensions In	Millimeters(I	MSOP8L)							
Symbol:	А	A1	В	С	C1	D	Q	а	b
Min:	0.80	0.05	2.90	4.75	2.90	0.35	0°	0.25	0.65 BSC
Max:	0.90	0.20	3.10	5.05	3.10	0.75	8°	0.35	0.05 BSC
				Hus	Guan Se	micondi			

重要说明:

华冠半导体保留未经通知更改所提供的产品和服务。客户在订货前应获取最新的相关信息,并核实这些信息是否最新且完整的。

客户在使用华冠半导体产品进行系统设计和整机制造时有责任遵守安全标准并采取安全措施,以避免潜在风险可能导致人身伤害或财产损失情况的发生。

华冠半导体产品未获得生命支持、军事、航空航天等领域应用之许可,华冠半导体将不承担产品在这些领域应用造成的后果。

华冠半导体保证公司所生产半导体产品的性能达到在销售时可应用的性能指标。测试和其他质量控制技术的使用只限于华冠半导体的质量保证范围内。每个器件并非所有参数均需要检测。以上文档资料仅供参考,一切以实物参数为准。

华冠半导体的文档资料,仅在没有对内容进行任何篡改且带有相关授权的情况下才允许进行复制。华冠半导体对篡改过的文件不承担任何责任或义务。

