

计算机组成原理

第 20讲

左德承

哈尔滨工业大学计算学部 容错与移动计算研究中心

接口的功能和组成

5.3

1. 总线连接方式的 I/O 接口电路

(1)设备选择线

- (2) 数据线
- (3) 命令线
- (4) 状态线

2. 接口的功能和组成

5.3

功能

组成

选址功能

设备选择电路

传送命令的功能

命令寄存器、命令译码器

传送数据的功能

数据缓冲寄存器

反映设备状态的功能

设备状态标记

完成触发器 D

工作触发器 B

中断请求触发器 INTR

屏蔽触发器 MASK

3. I/O 接口的基本组成

5.3


```
三、接口类型
```

5.3

1. 按数据 传送方式 分类

并行接口 Intel 8255

串行接口 Intel 8251

2. 按功能 选择的灵活性 分类

可编程接口 Intel 8255、Intel 8251

不可编程接口 Intel 8212

3. 按 通用性 分类

通用接口 Intel 8255、Intel 8251

专用接口 Intel 8279、Intel 8275

4. 按数据传送的 控制方式 分类

中断接口 Intel 8259

DMA接口 Intel 8257

5.4 程序查询方式

一、程序查询流程

1. 查询流程

单个设备

2. 程序流程

保存 寄存器内容

5.4

功能:打印AL寄存器中的字符。 访问I/O的指令、检查状态位的指令各是什么? PRINT

IN / OUT指令! TEST指令! PROC NEAR

; 保留用到的寄存器 **PUSH** $\mathbf{A}\mathbf{X}$

;保留用到的寄存器 PUSH DX

;输入数据锁存器口地址 MOV DX, 378H

;输出要打印的字符到数据锁存器 OUT DX, AL

MOV DX, 379H ;输入状态寄存器口地址

; 读打印机状态位 AL, DX WAIT: IN

> ; 检查忙碌位 **AL, 80H** TEST

; 等待直到打印机不忙 JE WAIT

POP DX

; 恢复寄存器 **POP** $\mathbf{A}\mathbf{X}$

RET

PRINT **ENDP**

> 过程/函数/子程序中的开始总是先要保护现 场,最后总是要恢复现场!

二、程序查询方式的接口电路

5.4

以输入为例

5.5 程序中断方式

二、I/O 中断的产生

5.5

以打印机为例 CPU 与打印机并行工作

程序中断方式的接口电路

5.5

1. 配置中断请求触发器和中断屏蔽触发器

中断请求

INTR

中断请求触发器

INTR = 1 有请求

MASK 中断屏蔽触发器

MASK=1 被屏蔽

D 完成触发器

2. 排队器

5.5

排队{硬件 在 CPU 内或在接口电路中(链式排队器) 软件 详见第八章

设备 1#、2#、3#、4# 优先级按 降序排列

 $INTR_i = 1$ 有请求 即 $\overline{INTR}_i = 0$

2. 排队器

5.5

排队{硬件 在 CPU 内或在接口电路中 (链式排队器) 软件 详见第八章

中断判优逻辑

8.4

- (1) 硬件实现(排队器)
 - ① 分散 在各个中断源的 接口电路中 链式排队器 参见第五章
 - ② 集中 在 CPU 内

INTR₁、INTR₂、INTR₃、INTR₄ 优先级 按 降序 排列

3. 中断向量地址形成部件

5.5

详见第八章

由硬件产生向量地址

再由 向量地址 找到 入口地址

8086/8088的中断向量表

中断向量表,也称中断入口地址表(或异常表),位于0000H~03FFH。 共256组,每组占四个字节 CS:IP。向量地址=中断类型号x4

中断向量表(异常表)中每一项是对应异常处理程序的入口地址,被称为中断向量(Interrupt Vector)

四、I/O 中断处理过程

5.5

- 1. CPU 响应中断的条件和时间
 - (1)条件

允许中断触发器 EINT=1

用 开中断 指令将 EINT 置 "1"

用 关中断 指令将 EINT 置" 0" 或硬件 自动 复位

(2) 时间

当 D = 1 (随机) 且 MASK = 0 时

在每条指令执行阶段的结束前

CPU 发中断查询信号(将 INTR 置"1")

五、中断服务程序流程

5.5

- 1. 中断服务程序的流程
 - (1) 保护现场

【程序断点的保护 中断隐指令完成 各存器内容的保护 进栈指令

(2) 中断服务

对不同的 I/O 设备具有不同内容的设备服务

(3) 恢复现场

出栈指令

(4) 中断返回

中断返回指令

2. 单重中断和多重中断

单重中断 不允许中断 现行的 中断服务程序 多重 中断 允许级别更高 的中断源

中断 现行的 中断服务程序

3. 单重中断和多重中断的服务程序流程 单重 取指令 多重 取指令 数行指令 数行指令

执行指令 执行指令 否 中断否? 中断否? 是 是 中 中 中断响应 中断响应 断隐指令 断 中 中 程序断点进栈 程序断点进栈 断 断 隐 关中断 关中断 周 周 指 期 向量地址 \rightarrow PC 期 向量地址 \rightarrow PC 令 保护现场 保护现场 中 中断服务程序 开中断 断 设备服务 服务程序 设备服务 恢复现场 恢复现场 开中断 中断返回 中断返回

否

程序中断接口芯片 8259A 的内部结构

5.5

主程序和服务程序抢占 CPU 示意图 5.5

宏观 上 CPU 和 I/O 并行 工作 微观 上 CPU 中断现行程序 为 I/O 服务

5.6 DMA 方式

一、DMA方式的特点

1. DMA 和程序中断两种方式的数据通路

2. DMA与主存交换数据的三种方式 5.6

(1) 停止 CPU 访问主存

控制简单

CPU 处于不工作状态或保持状态

未充分发挥 CPU 对主存的利用率

(2) 周期挪用(或周期窃取)

5.6

DMA 访问主存有三种可能

- · CPU 此时不访存
- · CPU 正在访存
- · CPU 与 DMA 同时请求访存 此时 CPU 将总线控制权让给 DMA

(3) DMA与 CPU 交替访问

5.6

 CPU 工作周期
 C₁ 专供 DMA 访存

 C₂ 专供 CPU 访存

 所有指令执行过程中的一个基准时间

不需要 申请建立和归还 总线的使用权

二、DMA接口的功能和组成

5.6

- 1. DMA接口功能
 - (1) 向 CPU 申请 DMA 传送
 - (2) 处理总线 控制权的转交
 - (3) 管理系统总线、控制数据传送
 - (4) 确定 数据传送的 首地址和长度

修正 传送过程中的数据 地址 和 长度

(5) DMA 传送结束时,给出操作完成信号

三、DMA的工作过程

5.6

1. DMA 传送过程

预处理、数据传送、后处理

(1) 预处理

通过几条输入输出指令预置如下信息

- · 通知 DMA 控制逻辑传送方向(入/出)
- 设备地址 → DMA 的 DAR
- 主存地址 → DMA 的 AR
- · 传送字数 → DMA 的 WC

(2) DMA 传送过程示意

CPU

预处理:

主存起始地址 → DMA 设备地址 → DMA 传送数据个数 → DMA 启动设备

数据传送:

继续执行主程序 同时完成一批数据传送

后处理:

中断服务程序 做 DMA 结束处理

继续执行主程序

(3) 数据传送过程(输入)

5.6

(4) 数据传送过程(输出)

5.6

(5) 后处理

校验送入主存的数是否正确

是否继续用 DMA

测试传送过程是否正确,错则转诊断程序

由中断服务程序完成

2. DMA接口与系统的连接方式

(1) 具有公共请求线的 DMA 请求

(2) 独立的 DMA 请求

5.6

3. DMA 方式与程序中断方式的比较 5.6

中断方式 DMA 方式 (1) 数据传送 程序 硬件 (2) 响应时间 指令执行结束 存取周期结束 (3) 处理异常情况 能 不能 (4) 中断请求 传送数据 后处理 (5) 优先级 高 低

四、DMA接口的类型

5.6

在物理上连接多个设备 1. 选择型

2. 多路型 在物理上连接多个设备 5.6 在逻辑上允许连接多个设备同时工作

3. 多路型 DMA 接口的工作原理

5.6

