Color

Thomas Torsney-Weir

Importance of color

Rogowitz, B.E., and L.A. Treinish. "Data Visualization: The End of the Rainbow." IEEE Spectrum 35, no. 12 (December 1998): 52–59. https://doi.org/10.1109/6.736450.

Importance of color

Importance of color

Color needs careful consideration

- Additional visual channels
- Draw attention
- Aesthetic appeal

How color works

The eye

Retina detectors

Rods: monochrome sensor

- Important at low light

Cones: color sensors

- Lots of specialized cells
 --- edge detection,
 corners, etc
- Sensitive to contrast

Cones

- 3 types of color sensors (S,M,L)
- Works in bright light
- Peak sensitivities located at approx. 430nm, 560nm, and 610nm for "average" observer.
- Roughly equivalent to
- blue, green, and red sensors

Cone response

Color opponency

10

Color opponent cells

Color models

"Space" is amount of each element

- RGB: red, green, blue
- **HSL**: hue, saturation, lightness
- LAB: lightness, chroma

Saturation: "pureness" of color/distance from grey **Lightness**: "brightness" of color/distance from black

RGB color space

- Additive system
- Colors that can be represented by computer monitors
- Not perceptually uniform

HSL color space

Hue: what people think of color

Saturation: purity, distance from grey

Lightness: from dark to light

Not perceptually uniform

LAB color space

L: approximates human perception of lightness

a, **b** : approximate R/G and Y/B channels

- a, b called chroma
- Perceptually uniform

Applying color

Hue, luminance, saturation

Luminance

- How-much channel
- discriminability: ~2-4 bins
- contrast important

Saturation

- How-much channel
- discriminability: ~3 bins

Hue

- What channel
- discriminability: ~6-12

Categorical data

- Limited distinguishability (8–14)
- Best with hue
- From Ware:

Ordinal/quantitative

Order these colors

Ordinal/quantitative

Order these colors

Brewer scales

Drawing attention

Highlight small items

Highlight small items

25

Need care with large areas

Need care with large areas

Aesthetics

Aesthetics

- Don Norman: "Attractive things work better" (Norman, Don. *The design of everyday things* 1988.)
- Color influences aesthetics (Ball, Victoria K. "The Aesthetics of Color: A Review of Fifty Years of Experimentation." Journal of Aesthetics & Art Criticism 23, no. 4 (1965): 441–52. https://doi.org/10.2307/427666.)
- Poorly designed color is confusing
 - Creates visual clutter
 - Misdirects attention

Finding good colors

- Colorbrewer
- Paletton

Considerations

Color blindness

- Flaw in opponent processing
 - Red-green common (deuteranope, protanope)
 - Blue-yellow possible (tritanope -- most common)
 - Luminance channel almost "normal"
- 8% of all men, 0.5% of all women
- Effect is 2D color vision model
 - Flatten color space
 - Can be simulated (Brettel et. al.)
 - http://colorfilter.wickline.org
 - http://www.colblindor.com/coblis-color-blindness-simulator/

Color blindness

No L cones

Deuteranope

No M cones

Red / green deficiencies

Tritanope

No S cones

Blue / Yellow deficiency₃₃

Rainbow color map

- Hue is used to show ordinal data
- Not perceptually linear: Equal steps in the continuous range are not perceived as equal steps
- Colors are a learned order
- Not good for colorblind people

Rainbow color map

Visually segmented

35

Rainbow color map

- Solution isoluminant rainbow
- Solution discretize colormap

Conclusion

Key points

- Balance aesthetics with perceptual issues
- Hue for categories (<8!)
- Saturation for numbers
- Use colorbrewer!

Futher reading

- Harrower, Mark A., and Cynthia A. Brewer. "ColorBrewer.Org: An Online Tool for Selecting Color Schemes for Maps," The Cartographic Journal. 2003.
- Ware, Colin. Information visualization: Perception for design 2004.
- Borland, David, and Russell M. Taylor Ii. "Rainbow Color Map (Still) Considered Harmful," IEEE Computer Graphics and Applications. 2007.
- Ware, Colin, Terece L. Turton, Roxana Bujack, Francesca Samsel, Piyush Shrivastava, and David H. Rogers. "Measuring and Modeling the Feature Detection Threshold Functions of Colormaps," IEEE Transactions on Visualization and Computer Graphics. 2019.
- Smart, Stephen, Keke Wu, and Danielle Albers Szafir. "Color Crafting: Automating the Construction of Designer Quality Color Ramps," IEEE Transactions on Visualization and Computer Graphics. 2020.