Name:
Klasse/Jahrgang:

Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung

BHS

3. Mai 2022

Angewandte Mathematik

HTL 1

■ Bundesministerium
Bildung, Wissenschaft
und Forschung

Hinweise zur Aufgabenbearbeitung

Sehr geehrte Kandidatin! Sehr geehrter Kandidat! Das vorliegende Aufgabenheft enthält Teil-A-Aufgaben und Teil-B-Aufgaben mit jeweils unterschiedlich vielen Teilaufgaben. Die Teilaufgaben sind unabhängig voneinander bearbeitbar.

Verwenden Sie für die Bearbeitung ausschließlich dieses Aufgabenheft und das Ihnen zur Verfügung gestellte Arbeitspapier. Schreiben Sie Ihren Namen und Ihren Jahrgang bzw. Ihre Klasse in die dafür vorgesehenen Felder auf dem Deckblatt des Aufgabenhefts sowie Ihren Namen und die fortlaufende Seitenzahl auf jedes verwendete Blatt Arbeitspapier. Geben Sie bei der Beantwortung jeder Handlungsanweisung deren Bezeichnung (z. B.: 3d1) auf dem Arbeitspapier an.

In die Beurteilung wird alles einbezogen, was nicht durchgestrichen ist.

Die Verwendung der vom zuständigen Regierungsmitglied für die Klausurarbeit freigegebenen Formelsammlung für die SRDP in Angewandter Mathematik ist erlaubt. Weiters ist die Verwendung von elektronischen Hilfsmitteln (z. B. grafikfähiger Taschenrechner oder andere entsprechende Technologie) erlaubt, sofern keine Kommunikationsmöglichkeit (z. B. via Internet, Intranet, Bluetooth, Mobilfunknetzwerke etc.) gegeben ist und der Zugriff auf Eigendateien im elektronischen Hilfsmittel nicht möglich ist.

Eine Erläuterung der Antwortformate liegt im Prüfungsraum zur Durchsicht auf.

Handreichung für die Bearbeitung

- Bei Aufgaben mit offenem Antwortformat ist jede Berechnung mit einem nachvollziehbaren Rechenansatz bzw. mit einer nachvollziehbaren Dokumentation des Technologieeinsatzes (die verwendeten Ausgangsparameter und die verwendete Technologiefunktion müssen angegeben werden) durchzuführen.
- Lösungen müssen jedenfalls eindeutig als solche erkennbar sein.

 Lösungen müssen jedenfalls mit zugehörigen Einheiten angegeben werden, wenn dazu in der Handlungsanweisung explizit aufgefordert wird.

Für die Bearbeitung wird empfohlen:

- selbst gewählte Variablen zu erklären und gegebenenfalls mit den zugehörigen Einheiten anzugeben,
- frühzeitiges Runden zu vermeiden,
- Diagramme oder Skizzen zu beschriften.

So ändern Sie Ihre Antwort bei Aufgaben zum Ankreuzen:

- 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen Antwort.
- 2. Kreuzen Sie dann das gewünschte Kästchen an.

Hier wurde zuerst die Antwort "5 + 5 = 9" gewählt und dann auf "2 + 2 = 4" geändert.

1 + 1 = 3	
2 + 2 = 4	X
3 + 3 = 5	
4 + 4 = 4	
5 + 5 = 9	

So wählen Sie eine bereits übermalte Antwort:

- 1. Übermalen Sie das Kästchen mit der nicht mehr gültigen Antwort.
- 2. Kreisen Sie das gewünschte übermalte Kästchen ein.

Hier wurde zuerst die Antwort "2 + 2 = 4" übermalt und dann wieder gewählt.

1 + 1 = 3	
2 + 2 = 4	
3 + 3 = 5	
4 + 4 = 4	
5 + 5 = 9	

Beurteilungsschlüssel

erreichte Punkte	Note
44-48 Punkte	Sehr gut
38-43 Punkte	Gut
31-37 Punkte	Befriedigend
23-30 Punkte	Genügend
0-22 Punkte	Nicht genügend

Winterdienst

a) In der nachstehenden Abbildung ist ein Schneepflug mit einem Räumschild mit der Breite *b* auf einer 3,25 m breiten Straße in der Ansicht von oben modellhaft dargestellt.

Der Winkel α kann mit der nachstehenden Formel berechnet werden.

$$\alpha = \arcsin\left(\frac{3,25}{b}\right)$$

1) Kennzeichnen Sie in der obigen Abbildung den Winkel α .

b) Beim Winterdienst werden LKWs mit Auftausalz befüllt. Die Füllmenge pro LKW in m³ ist annähernd normalverteilt.

In den unten stehenden Abbildungen ist jeweils der Graph der zugehörigen Dichtefunktion dargestellt. Die in den Abbildungen grau markierten Flächen entsprechen jeweils der Wahrscheinlichkeit für ein bestimmtes Ereignis.

1) Ordnen Sie den beiden Ereignissen jeweils die passende Abbildung aus A bis D zu.

Ein zufällig ausge- wählter LKW wird mit mehr als 6,0 m ³ befüllt.	
Ein zufällig ausge- wählter LKW wird mit höchstens 5,7 m ³ befüllt.	

c) Auf einer Straße wird Auftausalz gestreut. Durch den nachfolgenden Verkehr nimmt die Salzmenge auf der Straße allerdings wieder ab.

Die Salzmenge auf der Straße in Prozent der gestreuten Salzmenge hängt von der Anzahl der Fahrzeuge, die die Straße befahren, ab. Sie kann näherungsweise durch die Exponentialfunktion *f* beschrieben werden (siehe nachstehende Abbildung).

x ... Anzahl der Fahrzeuge

f(x) ... Salzmenge auf der Straße nach x Fahrzeugen in %

- 1) Stellen Sie mithilfe der Punkte *P* und *Q* eine Gleichung der Exponentialfunktion *f* auf. [0/1 P.]
- 2) Berechnen Sie, nach wie vielen Fahrzeugen die Salzmenge auf der Straße auf 10 % der gestreuten Salzmenge gesunken ist. [0/1 P.]

Bei einem anderen Auftausalz sinkt die Salzmenge auf der Straße nach 600 Fahrzeugen auf die Hälfte der gestreuten Salzmenge. Dieser Zusammenhang kann durch die Exponentialfunktion g beschrieben werden.

3) Zeichnen Sie in der obigen Abbildung den Graphen der Funktion g im Intervall [0; 1 200] ein. [0/1 P.]

Papier

a) Normales Schreibpapier hat pro Quadratmeter eine Masse von 80 g.

Ein Blatt im Format A4 misst 210 mm × 297 mm.

Eva möchte einen Brief versenden, der aus 3 Blättern normalem Schreibpapier im Format A4 und einem Briefumschlag besteht. Der Briefumschlag wiegt 4 g.

Ein Standardbrief darf inklusive Briefumschlag höchstens 20 g wiegen.

1) Überprüfen Sie nachweislich, ob Eva diesen Brief als Standardbrief versenden kann.

[0/1 P.]

b) Im Jahr 2019 betrug die weltweite Gesamtproduktion von Papier 412 Millionen Tonnen. Im Folgenden sind die Produktionsmengen der vier Staaten mit der größten Papierproduktion im Jahr 2019 angegeben.

China: 109 Millionen Tonnen USA: 69 Millionen Tonnen Japan: 25 Millionen Tonnen

Deutschland: 22 Millionen Tonnen

Datenquelle: DIE PAPIERINDUSTRIE – Leistungsbericht PAPIER 2021

1) Berechnen Sie, wie viel Prozent der weltweiten Gesamtproduktion von Papier im Jahr 2019 von diesen vier Staaten insgesamt hergestellt wurden. [0/1 P.]

Der mittlere Energieverbrauch für die Herstellung von 1 kg Papier in Deutschland wird mit 2,5 Kilowattstunden (kWh) angegeben.

- 2) Berechnen Sie den Gesamtenergieverbrauch für die Papierherstellung in Deutschland im Jahr 2019 in Gigawattstunden (GWh). [0/1 P.]
- c) In der nachstehenden Tabelle ist die Gesamtproduktion von Papier in Österreich für die Jahre 1990, 2000 und 2012 angegeben.

Jahr	1990	2000	2012
Gesamtproduktion von Papier	2,93	4,39	5,00
in Millionen Tonnen	2,90	4,09	3,00

Datenquelle: Austropapier

 Zeigen Sie mithilfe des Differenzenquotienten, dass sich die Entwicklung der Gesamtproduktion von Papier in Österreich im Zeitraum von 1990 bis 2012 <u>nicht</u> durch ein lineares Modell beschreiben lässt. d) Zur Papierherstellung wird gebleichter Zellstoff benötigt. Dieser wurde lange Zeit hauptsächlich mit Chlor gebleicht.

Die weltweite Produktionsmenge von Zellstoff, der mit Chlor gebleicht wurde, kann in den Jahren ab 1990 durch die Funktion C modelliert werden.

t ... Zeit ab 1990 in Jahren

C(t) ... weltweite Produktionsmenge zur Zeit t in Millionen Tonnen pro Jahr

Der Graph der Funktion C ist in der nachstehenden Abbildung dargestellt.

1) Ermitteln Sie mithilfe der obigen Abbildung den Wert des nachstehenden Ausdrucks.

$$|C(10) - C(0)| \approx$$
 Millionen Tonnen pro Jahr

Die Funktion C ist eine quadratische Funktion. Eine der unten stehenden Abbildungen zeigt den Graphen der Ableitungsfunktion C'.

2) Kreuzen Sie die zutreffende Abbildung an. [1 aus 5]

Stand-up-Paddling

Stand-up-Paddling ist eine Wassersportart, bei der man aufrecht auf einem Board steht und paddelt.

a) In der nachstehenden Abbildung ist der Entwurf für ein zweifärbiges Board in der Ansicht von oben dargestellt.

1) Stellen Sie mithilfe der Funktionen f und g eine Formel zur Berechnung des Inhalts A der grau markierten Fläche auf.

$$A = [0/1 P.]$$

Der Entwurf ist symmetrisch bezüglich der *x*-Achse. Für die Funktion *f* gilt:

$$f(x) = -0.0125 \cdot x^3 + 0.02 \cdot x^2 + 0.07 \cdot x + 0.2$$
 mit $0 \le x \le 4$

2) Berechnen Sie die maximale Breite b des Boards. [0/1 P.]

b) Barbaras Stand-up-Paddling-Trainingsstrecke verläuft um 3 Bojen herum (siehe nachstehende Abbildung).

In einem Modell kann der Verlauf von Barbaras Trainingsstrecke durch die Graphen der Funktionen p_1 und p_2 beschrieben werden.

Es gilt:

$$p_1(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$$
 mit $0 \le x < 80$

Die Punkte H = (25|200) und T = (70|60) sind Extrempunkte des Graphen der Funktion p_1 .

1) Erstellen Sie mithilfe der Informationen zu H und T ein Gleichungssystem zur Berechnung der Koeffizienten a, b, c und d. [0/1/2 P.]

Der Graph der quadratischen Funktion p_2 beschreibt den Verlauf von Barbaras Trainingsstrecke für $80 \le x \le 160$ (siehe obige Abbildung).

2) Kreuzen Sie diejenige Ungleichung an, die auf die Funktion p_2 nicht zutrifft. [1 aus 5] [0/1 P.]

$p_2'(150) < 0$	
$p_2'(90) > 0$	
$p_2''(90) > 0$	
$p_2(150) > 0$	
$p_2''(150) < 0$	

Kleingartensiedlung

a) In einem Plan ist ein Grundstück durch 3 gerade Seiten und durch den Graphen der Funktion *f* begrenzt (siehe unten stehende Abbildung).

$$f(x) = 0.01 \cdot x^2 + 0.01 \cdot x + 16$$
 mit $0 \le x \le 20$
 $x, f(x)$... Koordinaten in m

Das Grundstück soll so halbiert werden, dass 2 Kleingärten mit gleich großem Flächeninhalt entstehen.

Die Halbierung soll – wie in der nachstehenden Abbildung dargestellt – an der Stelle a erfolgen.

1) Berechnen Sie die Stelle a.

[0/1/2 P.]

b) Ein Gartenhaus mit einem Pultdach hat eine rechteckige Grundfläche mit den Seiten a und b (siehe nachstehende Abbildungen).

30 cm 30 cm

Abbildung 1

Abbildung 2

a, b, h, H ... Längen in cm

1) Stellen Sie eine Formel zur Berechnung der Höhe H auf. Verwenden Sie dabei a und h sowie den Winkel α .

$$H = [0/1 P.]$$

In der obigen Abbildung 2 ist das Pultdach als graues Rechteck dargestellt, das auf allen 4 Seiten jeweils gleich weit über den Rand reicht.

2) Kreuzen Sie den richtigen Ausdruck für den Inhalt der Fläche des grauen Rechtecks an. [1 aus 5] [0/1 P.]

$b \cdot \sqrt{(H-h)^2 - a^2} + 60 \cdot 60$	
$\sqrt{(H-h+a)^2}\cdot(b+60)$	
$(\sqrt{(H-h)^2+a^2}+60)\cdot(b+60)$	
$60 \cdot b + \sqrt{H^2 - h^2 + a^2} \cdot b$	
$(60 + (H^2 - h^2 + a^2)) \cdot b$	

Bluthochdruck bei Erwachsenen

a) Der Blutdruck wird in der Einheit *Millimeter Quecksilbersäule* (mmHg) angegeben. Ab einem (systolischen) Blutdruck von 140 mmHg spricht man von *Bluthochdruck*.

Der Blutdruck der Bevölkerung eines bestimmten Landes ist annähernd normalverteilt mit dem Erwartungswert μ = 130 mmHg und der Standardabweichung σ = 11,9 mmHg. In der nachstehenden Abbildung ist der Graph der zugehörigen Dichtefunktion dargestellt.

1) Berechnen Sie, wie viel Prozent der Bevölkerung dieses Landes Bluthochdruck haben. [0/1 P.]

Laut einer Studie der Weltgesundheitsorganisation ist der Blutdruck im Idealfall normalverteilt mit dem Erwartungswert 115 mmHg und einer kleineren Standardabweichung.

2) Ergänzen Sie die Textlücken im nachstehenden Satz durch Ankreuzen des jeweils zutreffenden Satzteils so, dass eine richtige Aussage entsteht. [0/1 P.]

Für den Graphen der Dichtefunktion im Idealfall gilt im Vergleich zum oben dargestellten Graphen: Der Hochpunkt liegt _____ und ____ 2___.

1)	
weiter links	
weiter rechts	
an der gleichen Stelle	

2	
höher	
niedriger	
auf der gleichen Höhe	

b) In einem bestimmten Land beträgt die Wahrscheinlichkeit, dass eine zufällig ausgewählte Person Bluthochdruck hat, p.

Es werden 20 Personen zufällig und unabhängig voneinander ausgewählt.

1) Kreuzen Sie das Ereignis E an, für dessen Wahrscheinlichkeit gilt:

$$P(E) = \binom{20}{2} \cdot p^2 \cdot (1-p)^{18} + \binom{20}{1} \cdot p^1 \cdot (1-p)^{19} + \binom{20}{0} \cdot p^0 \cdot (1-p)^{20}$$

[1 aus 5] [0/1 P.]

Mindestens 2 Personen haben Bluthochdruck.	
Höchstens 2 Personen haben Bluthochdruck.	
Genau 2 Personen haben Bluthochdruck.	
Mindestens 2 Personen haben keinen Bluthochdruck.	
Höchstens 2 Personen haben keinen Bluthochdruck.	

250 Personen werden zufällig und unabhängig voneinander ausgewählt. Jemand berechnet den Erwartungswert der Anzahl der Personen, die Bluthochdruck haben.

- 2) Berechnen Sie die Wahrscheinlichkeit p, bei der sich ein Erwartungswert von 55 ergibt. [0/1 P.]
- c) Im Jahr 1975 hatten in einer bestimmten Stadt 40,8 % aller Männer Bluthochdruck. Im Jahr 2015 hatten in dieser Stadt nur noch 25,2 % aller Männer Bluthochdruck.

Jemand argumentiert: "Im Jahr 1975 war die Anzahl der Männer mit Bluthochdruck in dieser Stadt daher sicher größer als jene im Jahr 2015."

1) Begründen Sie, warum diese Argumentation unzulässig ist.

Aufgabe 6 (Teil B)

Werkzeuge

a) Ein Werkzeugset besteht aus 6 verschieden langen Innensechskantschlüsseln (siehe nachstehendes Symbolfoto).

Bildquelle: Scott Ehardt - own work, public domain, https://commons.wikimedia.org/wiki/File:Allen_keys.jpg [01.07.2020] (adaptiert).

Das Verhältnis der Länge eines Innensechskantschlüssels zur Länge des nächstgrößeren beträgt jeweils 10 zu 11.

1) Vervollständigen Sie die nachstehende Formel zur Berechnung der Länge $\ell_{\scriptscriptstyle 3}$ aus der Länge $\ell_{\scriptscriptstyle 2}.$

$$\ell_3 = \boxed{ \cdot \ell_2}$$
 [0/1 P.]

2) Ermitteln Sie die Länge $\ell_{\rm 6}$ des längsten Innensechskantschlüssels, wenn der kürzeste die Länge $\ell_{\rm 1}$ = 9 cm hat. [0/1 P.]

b) In der nachstehenden Abbildung ist ein Teil eines Sägeblatts vereinfacht dargestellt.

1) Stellen Sie eine Formel zur Berechnung der Länge s auf. Verwenden Sie dabei die Winkel ε und φ sowie die Länge b.

S =	[0/1 P.]
•	[~, , , ,]

Für ein bestimmtes Sägeblatt gilt: a = 23.7 mm, b = 10.4 mm, s = 18.8 mm

2) Berechnen Sie den Winkel φ .

[0/1 P.]

3) Kreuzen Sie die auf das obige Dreieck <u>nicht</u> zutreffende Aussage an. [1 aus 5]

$\frac{a}{b} = \frac{\sin(\varphi)}{\sin(\varepsilon)}$	
$\cos(\varphi - 90^\circ) = \frac{h}{b}$	
$s^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos(180^\circ - \varepsilon - \varphi)$	
$\frac{h}{\sin(\varepsilon)} = \frac{a}{\sin(\varphi)}$	
$\frac{s \cdot b \cdot \sin(\varphi)}{2} = \frac{h \cdot s}{2}$	

c) Stahlnägel werden in Packungen abgefüllt.

Die Masse der Packungen ist annähernd normalverteilt mit dem Erwartungswert μ = 1 000 g und der Standardabweichung σ = 6 g.

Im Zuge einer Qualitätskontrolle werden Stichproben zu jeweils *n* Packungen entnommen. In der nachstehenden Abbildung ist der Graph der Dichtefunktion der Verteilung der Stichprobenmittelwerte dargestellt.

 W_1 , W_2 ... Wendepunkte der Dichtefunktion

1) Geben Sie die Anzahl n der Packungen an, aus denen diese Stichproben jeweils bestehen.

$$n =$$
 Packungen [0/1 P.]

Bei einer anderen Sorte von Stahlnägeln ist die Masse der Packungen ebenfalls annähernd normalverteilt. Bei einer Stichprobe von 8 zufällig ausgewählten Packungen wurden die nachstehenden Werte (in g) gemessen.

500,8 499,4 500,2 501,6 502,5 500,5 499,8 50
--

2) Ermitteln Sie den zweiseitigen 95-%-Vertrauensbereich für den Erwartungswert der Masse der Packungen dieser Sorte von Stahlnägeln. [0/1 P.]

d) In einem Labor werden Bohrmaschinen eines bestimmten Modells einem Langzeittest unterzogen. Die Lebensdauer dieser Bohrmaschinen ist annähernd normalverteilt.

In der nachstehenden Abbildung ist der Graph der zugehörigen Verteilungsfunktion F dargestellt.

Die zugehörige Dichtefunktion wird mit f bezeichnet.

- 1) Veranschaulichen Sie in der obigen Abbildung die Wahrscheinlichkeit $\int_{-\infty}^{n} f(x) dx$. [0/1 P.]
- 2) Beschreiben Sie ein Ereignis ${\it E}$ im gegebenen Sachzusammenhang, für dessen Wahrscheinlichkeit gilt:

$$P(E) = 1 - F(n)$$
 [0/1 P.]

Aufgabe 7 (Teil B)

Fässer

Fässer können modellhaft durch Rotation des Graphen einer quadratischen Funktion f im Intervall $\left[-\frac{h}{2};\frac{h}{2}\right]$ um die x-Achse beschrieben werden.

r, R, h ... Abmessungen in dm

a) Für das Fass A mit den Abmessungen r_A , R_A und h_A wird die obere Begrenzungslinie durch die Funktion f_A mit $f_A(x) = a \cdot x^2 + b \cdot x + c$ beschrieben.

1) Erklären Sie, warum b = 0 gilt.

[0/1 P.]

Es gilt: $r_A = 2.5$ dm, $R_A = 3.2$ dm, $h_A = 8$ dm.

2) Ermitteln Sie die Koeffizienten a und c.

[0/1 P.]

b) Für das Fass B mit den Abmessungen r_B , R_B und h_B wird die obere Begrenzungslinie durch die Funktion f_B beschrieben.

$$f_B(x) = -\frac{1}{16} \cdot x^2 + 3$$
 mit $-4 \le x \le 4$
 $x, f_B(x)$... Koordinaten in dm

Es gilt: $h_B = 8$ dm.

1) Berechnen Sie das Volumen des Fasses B.

[0/1 P.]

Jemand behauptet: "Das Volumen des Fasses B lässt sich auch als Volumen eines Zylinders mit der Höhe $h_{\!\scriptscriptstyle B}$, dessen Radius das arithmetische Mittel aus $r_{\!\scriptscriptstyle B}$ und $R_{\!\scriptscriptstyle B}$ ist, berechnen."

2) Überprüfen Sie nachweislich, ob diese Behauptung richtig ist.

c) Um die Länge L des Graphen der Funktion f im Intervall $\left[-\frac{h}{2}; \frac{h}{2}\right]$ abzuschätzen, berechnet man die Gesamtlänge L_1 der zwei strichlierten Strecken (siehe nachstehende Abbildung).

1) Stellen Sie eine Formel zur Berechnung der Gesamtlänge L_1 auf. Verwenden Sie dabei r, R und h.

$$L_1 = [0/1 P.]$$

Folgende Berechnung wird für das Fass C durchgeführt:

$$\frac{L_1}{L} - 1 = -0,015$$

2) Beschreiben Sie die Bedeutung des Wertes –0,015 im gegebenen Sachzusammenhang. Beachten Sie dabei insbesondere das Vorzeichen. [0/1 P.]

Aufgabe 8 (Teil B)

Rasenmähroboter

Immer öfter erledigen Rasenmähroboter die Mäharbeiten in Gärten.

a) In der unten stehenden Abbildung ist eine rechteckige Rasenfläche in einem Koordinatensystem dargestellt.

Ein Rasenmähroboter startet bei der Ladestation im Punkt A. Seine Fahrt kann durch die Vektoren \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} und \overrightarrow{d} beschrieben werden.

Es gilt:
$$\overrightarrow{a} = \begin{pmatrix} -8 \\ 10 \end{pmatrix}$$
, $\overrightarrow{b} = \begin{pmatrix} 3 \\ 12 \end{pmatrix}$, $\overrightarrow{c} = \begin{pmatrix} 12 \\ -9 \end{pmatrix}$.

1) Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.

$$E = \left(\boxed{} \right)$$

2) Tragen Sie die fehlenden Zahlen in die dafür vorgesehenen Kästchen ein.

$$\vec{d} = \begin{pmatrix} \boxed{} \\ \boxed{} \end{pmatrix}$$

Bei einer anderen Fahrt startet der Rasenmähroboter ebenfalls bei der Ladestation im Punkt *A* und fährt entlang des Vektors *a* zum Punkt *B*. Im Punkt *B* ändert er allerdings seine Richtung so, dass er dann geradlinig zum Punkt *E* fährt.

3) Zeigen Sie rechnerisch, dass der Rasenmähroboter seine Fahrtrichtung im Punkt B um 90° ändert. [0/1 P.]

b) Für die ersten zwei Phasen der Bewegung eines Rasenmähroboters gilt modellhaft:

	Zeit t in s	Beschleunigung in m/s ²
Phase 1	0 ≤ <i>t</i> < 2	0,2
Phase 2	2 ≤ <i>t</i> < 33	0

Zur Zeit t = 0 beträgt die Geschwindigkeit des Rasenmähroboters 0 m/s.

1) Ordnen Sie den beiden Satzanfängen jeweils die zutreffende Fortsetzung aus A bis D zu. [0/1 P.]

Die Geschwindigkeit in der Phase 1	
Die Geschwindigkeit in der Phase 2	

А	wird durch die konstante Funktion v mit $v(t) = 0$ beschrieben.
В	wird durch eine konstante Funktion v mit $v(t) = c$ beschrieben ($c \neq 0$).
С	wird durch eine lineare Funktion v mit $v(t) = k \cdot t$ beschrieben $(k \neq 0)$.
D	wird durch eine quadratische Funktion v mit $v(t) = a_1 \cdot t^2 + a_2 \cdot t + a_3$ beschrieben $(a_1 \neq 0)$.

2) Berechnen Sie die Länge des Weges, den der Rasenmähroboter in der Phase 2 zurücklegt. [0/1 P.]

c) Die Kosten für die Herstellung von Rasenmährobotern werden modellhaft durch die streng monoton steigende Kostenfunktion *K* beschrieben.

$$K(x) = a \cdot x^3 + b \cdot x^2 + c \cdot x + d$$
 mit $a > 0, d > 0$

x ... Produktionsmenge in ME

K(x) ... Kosten bei der Produktionsmenge x in GE

1) Ordnen Sie den beiden angegebenen Funktionen jeweils den passenden Funktionsgraphen aus A bis D zu. [0/1 P.]

Kostenfunktion K	
Grenzkostenfunktion K'	

d) Die nachstehende Tabelle zeigt die Preisentwicklung für ein bestimmtes Rasenmähroboter-Modell.

Zeit ab Beginn des Jahres 2015 in Monaten	3	6	12	18	24	36	48
Verkaufspreis in €	1 204	1199	1137	1 089	1032	985	889

Der Verkaufspreis soll in Abhängigkeit von der Zeit t durch die lineare Funktion p beschrieben werden.

- 1) Stellen Sie mithilfe der Regressionsrechnung eine Gleichung der linearen Funktion p auf. Wählen Sie t=0 für den Beginn des Jahres 2015. [0/1 P.]
- 2) Berechnen Sie, nach welcher Zeit der Rasenmähroboter gemäß der linearen Funktion *p* einen Verkaufspreis von € 700 hat. [0/1 P.]