Exercise 1: Probabilities in DTMCs

Let the transition matrix P:

$$P = \begin{pmatrix} 0 & \frac{3}{4} & 0 & \frac{1}{4} \\ \frac{1}{3} & 0 & \frac{1}{6} & \frac{1}{2} \\ 0 & 0 & 1 & 0 \\ 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \end{pmatrix}$$

a. Compute $P^3(s_0, s_3)$

Using the Chapman-Kolmogorov equation:

b. Compute the probability of being in state s3 after exactly 3 steps assuming a uniform initial distribution (over all states).

$$\Theta_3^{\mathcal{D}}(s_3) = \sum_{s \in S} l_{\text{init}} P^3(s, s_3) = \sum_{s \in S} \frac{1}{|S|} P^3(s, s_3)$$

With x_{ij} the element of P^3 in the i-th row and j-th column and

$$P^{3} = \begin{pmatrix} 0.02083333 & 0.296875 & 0.47916667 & 0.203125 \\ 0.125 & 0.05208333 & 0.58333333 & 0.23958333 \\ 0 & 0 & 1 & 0 \\ 0.02083333 & 0.109375 & 0.77083333 & 0.09895833 \end{pmatrix}$$

$$\Leftrightarrow \frac{1}{4} \sum_{i} x_{i3} = \frac{0.203125 + 0.23958333 + 0 + 0.09895833}{4} = \frac{0.54166666}{4} = 0.13541\overline{6}$$

- c. Compute the limiting probability of being in state s_3
- d. Compute the probability of going from s_0 to s_3 in at most 3 steps.
- e. Compute the probability of reaching (without a bound on the number of steps) s_3 when starting in s_0 .

Exercise 2: Duelling Cowboys

a.,

b. Depict a DTMC for this process. Please indicate for each state (i) who is alive and (ii) whose turn it is.

state	turn	alive
s_0	Good	all
s_1	Bad	all
s_2	Ugly	all
s_3	Bad	Good, Bad
s_4	Ugly	Good, Ugly
s_5	Good	Good, Bad
s_6	Ugly	Bad, Ugly
s_7	Good	Good, Ugly
s_8	Bad	Bad, Ugly
s_9	Good	Good
s_{10}	Bad	Bad
s_{11}	Ugly	Ugly

Exercise 3: The Gruffalo Game

a.

b.