

JOMO KENYATTA UNIVERSITY OF AGRICULTURE AND TECHNOLOGY

COURSE OUTLINE

Unit Code & Name	BCT 2403: KNOWLEDGE BASED SYSTEMS
Prerequisite	None
Cohort	BCT Y4S1, May – August 2021
Lecturer	J. Wainaina
Contact	jwainaina@jkuat.ac.ke or wainainajk@gmail.com

Purpose

The unit seeks to impart an understanding of knowledge based concepts and techniques, translating requirements into knowledge models and then generating these using expert systems. Students will be provided with theoretical foundations and practical techniques to build knowledge based systems.

Learning Outcomes:

Upon successful completion of this course, the student should be able to:

The students should be able to;

- Have a general understanding of A. I. concepts
- Use the various search mechanisms to solve a problem.
- Understand knowledge acquisition techniques
- Use knowledge representation methods.
- Use inference techniques to improve prediction and decision support.
- Apply artificial intelligence methods such as fuzzy learning, Baye's method etc., to handle uncertainty
- Design and develop expert systems using PROLOG language.

Course Description

History, scope and limits of KBS. Social ethical and legal aspects. Expert systems and shells. Speech and vision systems. Robotics and planning. Architectures and techniques for artificial intelligence and their applications. Functional programming (LISP). Logic programming (PROLOG). Strategies for space search such as data and goal - driven, and heuristics. Inference strategies, knowledge representation, rule based systems, fuzzy logic, and evolutionary algorithms. Game theory. Experiential learning Systems. Intelligent knowledge based systems. Expert system shells

WEEK	DETAILS	HOURS
Week 1	Introduction to Intelligence and Artificial Intelligence	5
	Overview of Artificial Intelligence	
	History of Artificial Intelligence	
	Characteristics of AI Programs	
	Symbolic processing, Knowledge Representation	
	Search, Heuristics	
	Applications of Artificial Intelligence	
Week 2	Search	5
	Process of Searching	
	Representing search problems	
	Search strategies	
	Uninformed (blind) search	
	Informed (heuristic) search	

Week 3	Introduction to Knowledge Based System	5
WEEK 3	Data, Information and knowledge	3
	Types of knowledge	
	7 = 7	
Week 4	Types of knowledge based systems Knowledge Representation	5
Week 4	Definition	3
	Knowledge representations schemes: Logic Representation	
Week 5	Prepositional logic	5
week 3	Knowledge Representation (contd)	3
	Predicate logic	
	Logic Programming Introduction to PROLOG	
Wash 6		<i>E</i>
Week 6	Knowledge Representation (contd)	5
	Semantic networks	
	Frames	
Week 7	Productions and Rule based systems	5
	Architecture of a Production System	
	Execution in a Production System	
	Comparison of the Various Knowledge Schemes	
Week 8	Knowledge Acquisition	5
	Sources of Knowledge	
	Categories of Knowledge Acquisition Methods	
	Top-Down Methods and Bottom-Up Methods	
	Knowledge Acquisition Modes	
Week 9	Base techniques of knowledge-based systems	5
	rule-based techniques	
	inductive techniques	
	hybrid techniques	
	symbol-manipulation techniques	
	case-based techniques	
Week 10	Expert Systems	5
	Definition	
	Structure of An Expert System	
	A methodology for the development of expert system	
	Expert System Shells	
Week 11	Case-based reasoning (CBR)	5
	Case	
	Case – indexing	
	Main components of case-based systems	
Week 12	Inference	5
	Definition	
	Inference Strategies in Artificial Intelligence Applications	
	Rule-based inference controls:	
	Forward chaining, Backward chaining	
Week 13	Knowledge Based Systems Software Lifecycles	5
	Software Life Cycles	
	Characteristics of KBS Projects	
	Commonalities in KBS	
	The Waterfall Model	
	KADS Methodology	
Week 14	Uncertainty	5
	AI classification of uncertainty	
	Handling Uncertainty	

	Confidence/Certainty Factors Bayes' Theorem	
Week 15 & 16	Examinations week	

Teaching Methodology

Lectures, practical and tutorial sessions in Computer Laboratory, individual and group assignments, exercises and project work

Instructional Materials

Overhead projector and computer, handouts, white boards, textbooks, appropriate software.

Course Assessment

Written End of semester Exams 70%
Two Cats 15%
Project and assignments 15%

Course Text Books

- 1. Russell, S. and Norvig, P. Artificial Intelligence: A Modern Approach. Third edition. Prentice Hall. 2010. ISBN-10: 0136042597, ISBN-13: 978-0136042594.
- 2. Gonzalez, A. J. and Dankel, D. D. The Engineering of Knowledge-based Systems. Prentice Hall, 1993. ISBN-10: 0132769409, ISBN-13: 978-0132769402.
- 3. Artificial Intelligence Elaine Rich, Kevin Knight
- 4. Durkin, J., Expert Systems: Design and Development. Prentice Hall, New York, NY, 1994. ISBN-10: 0023309709, ISBN-13: 978-0023309700.

Reference Text Books

- 1. Puppe, F. Systematic Introduction to Expert Systems: Knowledge Representations and Problem-Solving Methods. Springer. 2011. ISBN-10: 3642779735, ISBN-13: 978-3642779732.
- 2. Mitchell, T. Machine Learning. McGraw-Hill. 1997. ISBN-10: 0070428077, ISBN-13: 978-0070428072.
- 3. Witten, I. H., Frank, E., and Hall, M. A. Data Mining: Practical Machine Learning Tools and Techniques. Third edition. 2011. ISBN-10: 0123748569 | ISBN-13: 978-0123748560.

Support Material and resources

• PROLOG programming language software, Internet.