

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Tel. +972-4-6288001 Fax. +972-4-6288277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC CFR 47 Part 15 subpart F, section 15.519; RSS-220 issue 1

FOR:

Pixie Technology Ltd. Thin Point

Model:P1100

FCC ID:2ADBO-P1100

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: PIXRAD_FCC.28663_UWB_rev2.docx

Date of Issue: 8-Jun-17

Table of contents

1	Applicant information	3
2	Applicant information Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	
5	Tests summary	
6	EUT description	
6.1	General information	
6.2	Test configuration	5
6.3	Changes made in EUT	5
6.4	Transmitter characteristics	
7	Transmitter tests according to 47CFR part 15 and RSS-220 requirements	7
7.1	Occupied bandwidth test	
7.2	Radiated power density and Peak power within 50 MHz bandwidth	11
7.3	Radiated spurious emission measurements	16
7.4	Transmission duration requirements	
8	APPENDIX A Test equipment and ancillaries used for tests	43
9	APPENDIX B Measurement uncertainties	44
10	APPENDIX C Test laboratory description	45
11	APPENDIX D Specification references	45
12	APPENDIX E Test equipment correction factors	
13	APPENDIX F Abbreviations and acronyms	54

Report ID: PIXRAD_FCC.28663_UWB_rev2.docx Date of Issue: 8-Jun-17

1 Applicant information

Client name: Pixie Technology Ltd.

Address: 8 Hamada street, Bld. B, 3rd floor, Herzliya 46733, Israel

 Telephone:
 +972 77 921 5815

 Fax:
 +972 77 921 5833

 E-mail:
 tsachs@getpixie.com

 Contact name:
 Mr. Tsach Shwartz

2 Equipment under test attributes

Product name: Thin Point
Product type: Transceiver
Model(s): P1100
Serial number: Prototype
Hardware version: Rev1
Software release: 001
Receipt date 31-Jul-16

3 Manufacturer information

Manufacturer name: Pixie Technology Ltd.

Address: 8 Hamada street, Bld. B, 3rd floor, Herzliya 46733, Israel

 Telephone:
 +972 77 921 5815

 Fax:
 +972 77 921 5833

 E-Mail:
 tsachs@getpixie.com

 Contact name:
 Mr. Tsach Shwartz

4 Test details

Project ID: 28663

Location: Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Test started:31-Jul-16Test completed:28-Aug-16Re-test performed:8-Jun-17

Test specification(s): FCC CFR 47 Part 15 subpart F, section 15.519; RSS-220 Issue 1

5 Tests summary

Test	
Transmitter characteristics	
FCC section 15.519(b), Occupied bandwidth	Pass
FCC section 15.519(c), RSS-220 section 5.3.1(d), Radiated power density	Pass
FCC section 15.519(c)/15.209, RSS-220 sections 5.3.1(c), 3.4, Radiated spurious emissions below 960 MHz	Pass
FCC section 15.519(c), (d), RSS-220 section 5.3.1(d), Radiated spurious emissions above 960 MHz	Pass
FCC section 15.519(e), RSS-220 section 5.3.1(g), Peak power within 50 MHz bandwidth	Pass
FCC section 15.519(a)(1), RSS-220 section 5.3.1(b), Transmission duration requirements	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

This test report supersedes the previously issued test report identified by Doc ID:PIXRAD_FCC.28663_UWB_rev1.

	Name and Title	Date	Signature
Tested by:	Mrs. E. Pitt, test engineer	August 28, 2016; June 8, 2017	BH
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	June 8, 2017	Chu
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	June 8, 2017	ff t

Report ID: PIXRAD_FCC.28663_UWB_rev2.docx Date of Issue: 8-Jun-17

6 EUT description

6.1 General information

The EUT, PixiePoint tag, is a very low power wireless device utilizing 2 wireless technologies:

BLE (Bluetooth) to communicate with smartphones and UWB to measure distance between the tags.

The tag is working in very low duty cycle. Most of the time the tag is advertising (sends BLE standard "existing" message). Advertise is done every 2 sec for 3 msec. The UWB radio is set to deep sleep.

Once the smartphone responses the tag can communicate with the smartphone and via smartphone can communicate with other similar tags and measure Tag to Tag range using the UWB radio.

The UWB radio is active for minimal time that is needed for range measurement – about 2 -3 msec.

After the measurement sequence, the UWB is set to deep sleep again.

The BLE (Bluetooth) and UWB radio do not work at the same time.

There is one built-in antenna for UWB and BLE.

6.2 Test configuration

6.3 Changes made in EUT

No changes were performed in the EUT during testing.

Report ID: PIXRAD_FCC.28663_UWB_rev2.docx Date of Issue: 8-Jun-17

6.4 Transmitter characteristics

The standard							
Type of equipment							
	V Stand-alone (Equipment with or without its own control provisions) Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)						
Plug-in card (Equipme					egrated within and	ther type or equipment)	
	nt interiaca ioi				4740 4 MILE CO46	0.0720 0 MH-	
Assigned frequency range					-4742.4 MHz, 6240		
Operating frequencies for FC	:C	3993.6 MHz	z (ch2),	4492.8	MHz (ch3), 6489.6	6 MHz (ch5)	
Operating frequencies for IC		6489.6 MHz	z (ch5)				
		V No					
					continuous variat	ole	
Is transmitter output power v	ariable?	Vac			stepped variable	with stepsize	dB
		Yes	m	ninimum	RF power		dBm
			n	naximur	n RF power		dBm
Antenna connection							
uninus sauntina	-4	ndard connector		or V Integral		with temporary RF connector	
unique coupling	Star					V without temporary RF connector	
Antenna/s technical characte	ristics						
Type	Manufac	turer		Model	number	Gain	
Internal Printed Omni	Pixie			P1100		0 dBi	
Transmitter aggregate data ra	ate/s		No pa	vload		<u> </u>	
Type of modulation					modulation (RPM)	according to IEEE802	15 4-2011 LIWB
Modulating test signal (basek	oand)		Burst	DOSITION	modulation (BPIVI)	according to IEEE802.	15.4-2011 UVVB
Transmitter power source					Τ_		
	inal rated vol	_	3.0 V		Battery type	Lithium Manganese	Dioxide
	inal rated vol					11-	
AC mains Nom	inal rated vol	tage	1		Frequency	Hz	

Test specification:	Section 15.519(b), 15.503(d), Occupied bandwidth				
Test procedure:	ANSI C63.10-2013, section 10.1				
Test mode:	Compliance	Verdict: PASS			
Date(s):	14-Aug-16 - 15-Aug-16	verdict.	FASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery		
Remarks:					

7 Transmitter tests according to 47CFR part 15 and RSS-220 requirements

7.1 Occupied bandwidth test

7.1.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Occupied bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc	Minimum allowed bandwidth, MHz
3100 - 10600	10	500

^{* -} Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- **7.1.2.2** The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- **7.1.2.3** The EUT was set to transmit the normally modulated carrier.
- **7.1.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.1.2 and the associated plots.

Figure 7.1.1 Occupied bandwidth test setup

Test specification: Section 15.519(b), 15.503(d), Occupied bandwidth					
Test procedure:	ANSI C63.10-2013, section 10.1				
Test mode:	Compliance	Verdict: PASS			
Date(s):	14-Aug-16 - 15-Aug-16	verdict:	PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery		
Remarks:					

Table 7.1.2 Occupied bandwidth test results

DETECTOR USED:
RESOLUTION BANDWIDTH:
VIDEO BANDWIDTH:
MODULATION:
MODULATION ENVELOPE REFERENCE POINTS:
Peak hold
100 kHz
300 kHz
GFSK
10 dBc

Carrier frequency, MHz	Occupied bandwidth, MHz	Limit, MHz	Margin, MHz	Verdict
3993.6	581.458	500	81.458	
4492.8	574.638	500	74.638	Pass
6489.6	508.240	500	8.240	

Reference numbers of test equipment used

HL 3818				

Full description is given in Appendix A.

Test specification:	Section 15.519(b), 15.503(d), Occupied bandwidth					
Test procedure:	ANSI C63.10-2013, section 10.1					
Test mode:	Compliance	Verdict: PASS				
Date(s):	14-Aug-16 - 15-Aug-16	verdict.	PASS			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery			
Remarks:						

Plot 7.1.1 Occupied bandwidth test result at low frequency

Plot 7.1.2 Occupied bandwidth test result at mid frequency

Test specification: Section 15.519(b), 15.503(d), Occupied bandwidth					
Test procedure:	ANSI C63.10-2013, section 10.1				
Test mode:	Compliance	- Verdict: PASS			
Date(s):	14-Aug-16 - 15-Aug-16	verdict.	PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery		
Remarks:					

Plot 7.1.3 Occupied bandwidth test result at high frequency

Transmit Freq Error 1.853 MHz x dB Bandwidth 508.240 MHz

Test specification:	Sections 15.519(c),15.519(e), RSS-220 sections 5.3.1(d), 5.3.1(g), Peak power within 50 MHz bandwidth and Radiated power density				
Test procedure:	47 CFR, Section 15.521, ANSI C63.10-2013, section 10.3				
Test mode:	Compliance	Verdict: PASS			
Date(s):	15-Aug-16 - 23-Aug-16				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery		
Remarks:					

7.2 Radiated power density and Peak power within 50 MHz bandwidth

7.2.1 General

This test was performed to measure effective radiated power emanated by transmitter at carrier frequency. Specification test limits are given in Table 7.2.1, Table 7.2.2.

Table 7.2.1 Power spectral density limit (EIRP)

Assigned frequency band, MHz	EIRP dBm/1MHz	Equivalent field strength limit @ 3m dB(μV/m)/1MHz*			
FCC section 15.519(c)					
3100 - 10600	-41.3	53.9			
RSS-220 section 5.3.1(d)					
4750-10600	-41.3	53.9			

^{* -} Equivalent field strength, dB(µV/m) = EIRP, dBm + 95.2 dB

Table 7.2.2 Peak level of emissions contained within 50 MHz (EIRP)

Assigned frequency band,	EIRP	Equivalent field strength limit @ 3m,
MHz	dBm	dB(μV/m) in 50 MHz*
3100 - 10600	0	95.2

^{* -} Equivalent field strength, dB(µV/m) = EIRP, dBm + 95.2 dB

7.2.2 Test procedure for field strength measurements

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and the performance check was conducted.
- **7.2.2.2** The field strength of the EUT carrier frequency was measured with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was swept throughout the range, specified in Table 7.2.3, in both vertical and horizontal polarizations.
- **7.2.2.3** The worst test results (the lowest margins) were recorded in Table 7.2.3, Table 7.2.4 and shown in the associated plots.

Test specification:	Sections 15.519(c),15.519(e), RSS-220 sections 5.3.1(d), 5.3.1(g), Peak power within 50 MHz bandwidth and Radiated power density			
Test procedure:	47 CFR, Section 15.521, ANSI C63.10-2013, section 10.3			
Test mode:	Compliance	Verdict: PASS		
Date(s):	15-Aug-16 - 23-Aug-16	Verdict: PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery	
Remarks:				

Figure 7.2.1 Setup for carrier field strength measurements

Test specification:	Sections 15.519(c),15.519(e), RSS-220 sections 5.3.1(d), 5.3.1(g), Peak power within 50 MHz bandwidth and Radiated power density		
Test procedure:	47 CFR, Section 15.521, ANSI C63.10-2013, section 10.3		
Test mode:	Compliance	Verdict:	PASS
Date(s):	15-Aug-16 - 23-Aug-16	verdict.	FASS
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery
Remarks:			

Table 7.2.3 Power spectral density test results

ASSIGNED FREQUENCY RANGE: 3100 – 10600 MHz

TEST SITE:

TEST DISTANCE:

EUT HEIGHT:

TEST ANTENNA HEIGHTS RANGE:

DETECTOR USED:

OATS

3 m

1.5 m

1.5 m

AVR

VIDEO BANDWIDTH: > Resolution bandwidth

TEST ANTENNA TYPE: Horn MODULATION: GFSK

Frequency, MHz	Equivalent field strength, dB(µV/m)/1MHz	EIRP, dBm*	Limit, dBm	Margin, dB**	Verdict	
FCC section 15.51	FCC section 15.519(c)					
3993.6	52.57	-42.63	-41.3	-1.33	Pass	
4639.1	53.52	-41.68	-41.3	-0.38	Pass	
6489.6	52.19	-43.01	-41.3	-1.71	Pass	
RSS-220 section 5.3.1(d)						
6489.6	52.19	-43.01	-41.3	-1.71	Pass	

^{*-} EIRP, dBm= Equivalent field strength, dB(µV/m)/1 MHz - 95.2 dB

Table 7.2.4 Peak power level contained within 50 MHz test results

ASSIGNED FREQUENCY RANGE: 3100 – 10600 MHz

TEST SITE:

TEST DISTANCE:

SUT HEIGHT:

TEST ANTENNA HEIGHTS RANGE:

DETECTOR USED:

OATS

3 m

1.5 m

1.0 – 4.0 m

Peak

VIDEO BANDWIDTH: > Resolution bandwidth

TEST ANTENNA TYPE: Horn MODULATION: GFSK

Frequency, MHz	RBW, MHz	Equivalent field strength, dB(μV/m) in 50 MHz	EIRP, dBm*	Limit, dBm	Margin, dB*	Verdict
3993.6	1	92.89	-2.31	0	-2.31	Pass
4492.8	1	94.30	-0.90	0	-0.90	Pass
6489.6	1	94.26	-0.94	0	-0.94	Pass

^{*-} EIRP, dBm= Equivalent field strength, dB(µV/m) -95.2 dB

Reference numbers of test equipment used

	_		_	_	_	_	_
HL 3818	HL 3901	HL 4917	HL 4933				

Full description is given in Appendix A.

^{**-} Margin, dB = EIRP, dBm -limit, dBm.

^{**-} Margin, dB = EIRP, dBm -limit, dBm.

^{***-} The power reading on the spectrum analyser can be directly related to the peak power limit when a spectrum analyser resolution bandwidth of 50 MHz is used for the measurements. A spectrum analyser resolution bandwidth of 1 MHz was used instead, the maximum peak power was increased by a factor of 20 log (50/1) = 34 dB, where 1 represents the measurement bandwidth used (refer to OFF SET=20 log 50/1=34 dB on plots 7.2.1 to 7.2.3).

Test specification:	Sections 15.519(c),15.519(e), RSS-220 sections 5.3.1(d), 5.3.1(g), Peak power within 50 MHz bandwidth and Radiated power density		
Test procedure:	47 CFR, Section 15.521, ANSI C63.10-2013, section 10.3		
Test mode:	Compliance	Verdict:	PASS
Date(s):	15-Aug-16 - 23-Aug-16	verdict: PASS	
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery
Remarks:			

Plot 7.2.1 Mean power spectral density and Peak level at low frequency

Plot 7.2.2 Mean power spectral density and Peak level at mid frequency

Test specification:	Sections 15.519(c),15.519(e), RSS-220 sections 5.3.1(d), 5.3.1(g), Peak power within 50 MHz bandwidth and Radiated power density		
Test procedure:	47 CFR, Section 15.521, ANSI C63.10-2013, section 10.3		
Test mode:	Compliance	Verdict:	PASS
Date(s):	15-Aug-16 - 23-Aug-16	verdict: PASS	
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1008 hPa	Power: Battery
Remarks:			

Plot 7.2.3 Mean power spectral density and Peak level at high frequency

Report ID: PIXRAD_FCC.28663_UWB_rev2.docx Date of Issue: 8-Jun-17

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions			
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Aug-16; 8-Jun-17			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery	
Remarks:				

7.3 Radiated spurious emission measurements

7.3.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.3.1, Table 7.3.2, Table 7.3.3.

Table 7.3.1 Radiated spurious emission test limits according to section 15.209

		Field strength at 3 m, dB(μV	//m)
Frequency, MHz		Within restricted bands	
	Peak	Quasi Peak	Average
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**
0.090 - 0.110	NA	108.5 – 106.8**	NA
0.110 - 0.490	126.8 - 113.8	NA	106.8 – 93.8**
0.490 - 1.705		73.8 – 63.0**	
1.705 – 30.0*		69.5	1
30 – 88	NA	40.0	NA
88 – 216		43.5	1
216 – 960		46.0	

^{*-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $Lim_{S2} = Lim_{S1} + 40 log (S_1/S_2),$

where S_1 and S_2 – standard defined and test distance respectively in meters.

Table 7.3.2 Radiated emission average limits according to sections 15.519(c), 15.519(d)

Frequency, MHz	RBW, kHz	EIRP of spurious, dBm	Equivalent field strength limit @ 3m, dB(μV/m)***
960-1610	1000	-75.3	19.9
1610-1990	1000	-63.3	31.9
1990-3100	1000	-61.3	33.9
3100-10600	1000	-41.3	53.9
Above 10600	1000	-61.3	33.9
1164-1240	≥1	-85.3	9.9
1559-1610	≥1	-85.3	9.9

^{***-} Equivalent field strength, dB(µV/m) = EIRP, dBm - 95.2 dB

Table 7.3.3 Radiated emission average limits according to RSS-220 section 5.3.1(d)

Frequency, MHz	RBW, kHz	EIRP of spurious, dBm	Equivalent field strength limit @ 3m, dB(μV/m)***
960-1610	1000	-75.3	19.9
1610-4750	1000	-70.0	25.2
4750-10600	1000	-41.3	53.9
Above 10600	1000	-61.3	33.9
1164-1240	≥1	-85.3	9.9
1559-1610	≥1	-85.3	9.9

^{***-} Equivalent field strength, dB(µV/m) = EIRP, dBm - 95.2 dB

^{**-} The limit decreases linearly with the logarithm of frequency.

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions				
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521				
Test mode:	Compliance	Verdict: PASS			
Date(s):	23-Aug-16; 8-Jun-17				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery		
Remarks:	-				

- 7.3.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band
- **7.3.2.1** The EUT was set up as shown in Figure 7.3.1, energized and the performance check was conducted.
- **7.3.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- **7.3.2.3** The worst test results (the lowest margins) were recorded in Table 7.3.4 and shown in the associated plots.
- 7.3.3 Test procedure for spurious emission field strength measurements above 30 MHz
- 7.3.3.1 The EUT was set up as shown in Figure 7.3.2, Figure 7.3.3, energized and the performance check was conducted.
- **7.3.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- **7.3.3.3** The worst test results (the lowest margins) were recorded in Table 7.3.4 and shown in the associated plots.
- 7.3.4 Test procedure for spurious emission field strength measurements in 1164-1240 MHz and 1559-1610 MHz
- **7.3.4.1** The EUT was set up as shown in Figure 7.3.3 and energized.
- **7.3.4.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- **7.3.4.3** The radiated emissions were measured with a Spectrum analyzer using an RMS detector. The RBW of 1 kHz and VBW of 3 kHz with a 1 msec averaging time were used. The SA settings are shown on the attached Plot 7.3.7 to Plot 7.3.21.
- **7.3.4.4** The worst test results (the lowest margins) were recorded in Table 7.3.4 and shown in the associated plots.

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions			
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Aug-16; 8-Jun-17	verdict:	PASS	
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery	
Remarks:				

Figure 7.3.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band

Figure 7.3.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions			
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Aug-16; 8-Jun-17	Verdict: PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery	
Remarks:				

Figure 7.3.3 Setup for spurious emission field strength measurements above1000 MHz

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions			
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Aug-16; 8-Jun-17	Verdict: PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery	
Remarks:				

Table 7.3.4 Spurious emission field strength test results

ASSIGNED FREQUENCY RANGE: 3100 - 10600 MHz

TEST DISTANCE: 3 m

TEST SITE: Semi anechoic chamber INVESTIGATED FREQUENCY RANGE: 0.009 – 40000 MHz DETECTOR USED: RMS

VIDEO BANDWIDTH: > Resolution bandwidth
TEST ANTENNA TYPE: Active loop (9 kHz – 30 MHz)

Biconilog (30 MHz – 1000 MHz) Double ridged guide (above 1000 MHz)

MODULATION: GFSK

FCC section 15.519(c)

FCC Section 1	0.019(0)						
Frequency, MHz	Field strength, dB(μV/m)	RBW, kHz	Antenna polarization	EIRP, dBm*	Limit, dBm	Margin, dB**	Verdict
Low carrier free	quency 3993.6 MHz						
1188.03	-0.65	10	Vertical	-95.85	-85.3	-10.55	Pass
1584.04	1.55	3	Vertical	-93.65	-85.3	-8.35	Pass
2688.10	24.56	1000	Vertical	-70.64	-61.3	-9.34	Pass
Mid carrier free	uency 4492.8 MHz						
1187.91	1.30	10	Vertical	-93.9	-85.3	-8.6	Pass
1584.04	0.10	3	Vertical	-95.1	-85.3	-9.8	Pass
3024.10	24.55	1000	Vertical	-70.65	-61.3	-9.35	Pass
High carrier frequency 6489.6 MHz							
1188.10	0.85	10	Vertical	-94.35	-85.3	-9.05	Pass
1584.04	0.21	3	Vertical	-94.99	-85.3	-9.69	Pass
3024.50	24.62	1000	Vertical	-70.58	-61.3	-9.28	Pass

RSS-220 section 5.3.1(d)

Frequency, MHz	Field strength, dB(μV/m)	RBW, kHz	Antenna polarization	EIRP, dBm*	Limit, dBm	Margin, dB**	Verdict
Low carrier free	quency 3993.6 MHz						
1188.03	-0.65	10	Vertical	-95.85	-85.3	-10.55	Pass
1584.04	1.55	3	Vertical	-93.65	-85.3	-8.35	Pass
2688.10	24.56	1000	Vertical	-70.64	-70.0	-0.64	Pass
Mid carrier freq	uency 4492.8 MHz						
1187.91	1.30	10	Vertical	-93.9	-85.3	-8.6	Pass
1584.04	0.10	3	Vertical	-95.1	-85.3	-9.8	Pass
3024.10	24.55	1000	Vertical	-70.65	-70.0	-0.65	Pass
High carrier fre	quency 6489.6 MHz						
1188.10	0.85	10	Vertical	-94.35	-85.3	-9.05	Pass
1584.04	0.21	3	Vertical	-94.99	-85.3	-9.69	Pass
3024.50	24.62	1000	Vertical	-70.58	-70.0	-0.58	Pass

^{*-}EIRP, dBm = Field strength, dB(μ V/m) - 95.2 dB

Reference numbers of test equipment used

HL 0446	HL 0604	HL 3818	HL 3901	HL 3903	HL 4353	HL 4722	HL 4933
HL 4956							

Full description is given in Appendix A.

^{**-} Margin = EIRP, dBm - specification limit.

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions			
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Aug-16; 8-Jun-17	Verdict: PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery	
Remarks:				

Plot 7.3.1 Radiated emission measurements in 9 - 150 kHz range

TEST SITE:

CARRIER FREQUENCY:

ANTENNA POLARIZATION:

TEST DISTANCE:

Semi anechoic chamber
Low, Mid, High
Vertical and Horizontal
3 m

(B)

Plot 7.3.2 Radiated emission measurements in 0.15 - 30 MHz range

TEST SITE:

CARRIER FREQUENCY:

ANTENNA POLARIZATION:

TEST DISTANCE:

Semi anechoic chamber
Low, Mid, High
Vertical and Horizontal
3 m

(B)

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions			
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Aug-16; 8-Jun-17	Verdict: PASS		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery	
Remarks:				

Plot 7.3.3 Radiated emission measurements in 30 - 960 MHz range

TEST SITE:

CARRIER FREQUENCY:

ANTENNA POLARIZATION:

Semi anechoic chamber
Low, Mid, High
Vertical and Horizontal

TEST DISTANCE: 3 i

(B)

ACTV DET: PEAK MEAS DET: PEAK OP AVG MKR 923.7 MHz 32.80 d8µV/m

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions				
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521				
Test mode:	Compliance	Verdict: PASS			
Date(s):	23-Aug-16; 8-Jun-17	- Verdict: PASS			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery		
Remarks:					

Plot 7.3.4 Radiated emission measurements in 960 - 1610 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal TEST DISTANCE: 3 m

CARRIER FREQUENCY: 3 m

Plot 7.3.5 Radiated emission measurements in 960 – 1610 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal

TEST DISTANCE: 3 m CARRIER FREQUENCY: Mid

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions			
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521			
Test mode:	Compliance	Verdict: PASS		
Date(s):	23-Aug-16; 8-Jun-17			
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery	
Remarks:				

Plot 7.3.6 Radiated emission measurements in 960 – 1610 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

High

Test specification:

Test procedure:

ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521

Test mode:

Compliance

Date(s):

23-Aug-16; 8-Jun-17

Temperature: 23 °C

Relative Humidity: 56 %

Remarks:

Section 5.3.1(c), (d), Radiated spurious emissions

ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521

Verdict:

PASS

Passure: 1007 hPa

Power: Battery

Plot 7.3.7 Radiated emission measurements in 1164 - 1190 MHz range

Example: Sweep points 26001, span 26 MHz, sweep time 26 s or 1 ms/point.

Plot 7.3.8 Radiated emission measurements in 1904 – 1216 MHz range

Date: 8.JUN.2017 03:47:16

Date: 8.JUN.2017 03:42:52

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.9 Radiated emission measurements in 1216 - 1240 MHz range

Date: 8.JUN.2017 03:49:24

Plot 7.3.10 Radiated emission measurements in 1164 – 1190 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

Mid

Date: 8.JUN.2017 04:18:07

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.11 Radiated emission measurements in 1190 - 1216 MHz range

Date: 8.JUN.2017 05:14:07

Plot 7.3.12 Radiated emission measurements in 1216 – 1240 MHz range

Date: 8.JUN.2017 05:17:11

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.13 Radiated emission measurements in 1164 - 1190 MHz range

Plot 7.3.14 Radiated emission measurements in 1190 – 1216 MHz range

Date: 8.JUN.2017 04:42:54

Date: 8.JUN.2017 04:38:53

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.15 Radiated emission measurements in 1216 - 1240 MHz range

Date: 8.JUN.2017 05:18:46

Plot 7.3.16 Radiated emission measurements in 1559 – 1585 MHz range

Date: 8.JUN.2017 03:56:27

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.17 Radiated emission measurements in 1585 - 1610 MHz range

Date: 8.JUN.2017 05:06:11

Plot 7.3.18 Radiated emission measurements in 1559 – 1585 MHz range

Date: 8.JUN.2017 04:09:46

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.19 Radiated emission measurements in 1585 - 1610 MHz range

Plot 7.3.20 Radiated emission measurements in 1559 – 1585 MHz range

Date: 8.JUN.2017 04:51:43

Date: 8.JUN.2017 04:13:05

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			-

Plot 7.3.21 Radiated emission measurements in 1585 – 1610 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

High

Date: 8.JUN.2017 04:55:49

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.22 Radiated emission measurements in 1610 - 1990 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal TEST DISTANCE: 3 m

TEST DISTANCE: 3 m CARRIER FREQUENCY: Low

Plot 7.3.23 Radiated emission measurements in 1610 - 1990 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

Mid

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.24 Radiated emission measurements in 1610 - 1990 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

High

Plot 7.3.25 Radiated emission measurements in 1990 - 3100 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

Low

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.26 Radiated emission measurements in 1990 - 3100 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal TEST DISTANCE: 3 m

TEST DISTANCE: 3 m CARRIER FREQUENCY: Mid

Plot 7.3.27 Radiated emission measurements in 1990 - 3100 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

High

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions		
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521		
Test mode:	Compliance	- Verdict: PASS	
Date(s):	23-Aug-16; 8-Jun-17		
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa	Power: Battery
Remarks:			

Plot 7.3.28 Radiated emission measurements in 3100 - 6000 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

Low

Agilent R T Mkr1 3.922 8 GHz Ref 60 dBµV/m Atten 10 dB 52.19 dB_μV/m #Avg Log 10 dB/ DI $dB\mu V/$ FAvg V1 S2 S3 FC A AA ¤(1): FTun Swp Start 3.100 0 GHz Stop 6.000 0 GHz #Res BW 1 MHz #VBW 3 MHz #Sweep 6 s (6000 pts)

Plot 7.3.29 Radiated emission measurements in 3100 - 6000 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

Mid

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions					
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521					
Test mode:	Compliance	Verdict: PASS				
Date(s):	23-Aug-16; 8-Jun-17	Verdict: PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa Power: Battery				
Remarks:						

Plot 7.3.30 Radiated emission measurements in 3100 - 6000 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal **TEST DISTANCE:** 3 m

CARRIER FREQUENCY: High

Plot 7.3.31 Radiated emission measurements in 6000 - 10600 MHz range

TEST SITE: Semi anechoic chamber ANTENNA POLARIZATION: Vertical and Horizontal **TEST DISTANCE:** 3 m

CARRIER FREQUENCY: Low

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions					
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521					
Test mode:	Compliance	- Verdict: PASS				
Date(s):	23-Aug-16; 8-Jun-17	Verdict: PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa Power: Battery				
Remarks:						

Plot 7.3.32 Radiated emission measurements in 6000 - 10600 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

Mid

Plot 7.3.33 Radiated emission measurements in 6000 - 10600 MHz range

TEST SITE:

ANTENNA POLARIZATION:

TEST DISTANCE:

CARRIER FREQUENCY:

Semi anechoic chamber

Vertical and Horizontal

3 m

High

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions					
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521					
Test mode:	Compliance	Verdict: PASS				
Date(s):	23-Aug-16; 8-Jun-17	- Verdict: PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa Power: Battery				
Remarks:						

Plot 7.3.34 Radiated emission measurements in 10000 - 18000 MHz range

Limit@ 1m = Limit @ 3m + 20*log(3m/1m) = 33.9dBuV/m + 9.54 = 43.44 dBuV/m

Plot 7.3.35 Radiated emission measurements in 18000 -26500 MHz range

Limit@ 1m = Limit @ 3m + 20*log(3m/1m) = 33.9dBuV/m + 9.54 = 43.44 dBuV/m

Test specification:	Section 15.519(c),(d), RSS-220 section 5.3.1(c), (d), Radiated spurious emissions					
Test procedure:	ANSI C63.10-2013, sections 10.2, 10.3, Section 15.521					
Test mode:	Compliance	Verdict: PASS				
Date(s):	23-Aug-16; 8-Jun-17	Verdict: PASS				
Temperature: 23 °C	Relative Humidity: 56 %	Air Pressure: 1007 hPa Power: Battery				
Remarks:						

Plot 7.3.36 Radiated emission measurements in 26500 - 40000 MHz range

Limit@ 1m = Limit @ 3m + 20*log(3m/1m) = 33.9dBuV/m + 9.54 = 43.44dBuV/m

Test specification:	Section 15.519(a)(1), RSS-220 section 5.3.1(b), Transmission duration requirements					
Test procedure:	47 CFR, Section 15.521					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	23-Aug-16	verdict: PASS				
Temperature: 23 °C	Relative Humidity: 56 % Air Pressure: 1007 hPa Power Supply: Battery					
Remarks:						

7.4 Transmission duration requirements

7.4.1 General

The EUT was verified for compliance with transmission duration requirements listed below:

 A transmitter shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission was received.

7.4.2 Test procedure for transmitter shut down test

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1.
- **7.4.2.2** The spectrum analyzer center frequency was adjusted to the EUT carrier, span set to zero and video triggered for transmission.
- 7.4.2.3 The transmitter was activated.
- **7.4.2.4** The transmission time was captured and shown in the associated plots. The test results for cease of transmitter operating is shown in Plot 7.4.1.

Figure 7.4.1 Setup for transmitter shut down test

Reference numbers of test equipment used

ixcici ciloc ilali	ibers or test et	quipinicini uscu	<u>.</u>	<u>.</u>	<u>.</u>	_	
HL 0337	HL 3001						

Full description is given in Appendix A.

Test specification:	Section 15.519(a)(1), RSS-220 section 5.3.1(b), Transmission duration requirements					
Test procedure:	47 CFR, Section 15.521					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	23-Aug-16	verdict: PASS				
Temperature: 23 °C	Relative Humidity: 56 % Air Pressure: 1007 hPa Power Supply: Battery					
Remarks:						

Plot 7.4.1 RF transmission duration in 15 sec period

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check*	Due Cal./ Check*
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	18-Jan-16	18-Jan-17
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	10-May-16	10-May-17
3818	PSA Series Spectrum Analyzer, 3 Hz- 44 GHz	Agilent Technologies	E4446A	MY482502 88	03-May-16	03-May-17
3901	Microwave Cable Assembly, 40.0 GHz, 3.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1225/2A	15-Feb-16	15-Feb-17
3903	Microwave Cable Assembly, 40.0 GHz, 1.5 m, SMA/SMA	Huber-Suhner	SUCOFLE X 102A	1226/2A	15-Feb-16	15-Feb-17
4353	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 003	15-Mar-16	15-Mar-17
4722	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	51228701 001	01-Jan-16	01-Jan-17
4917	High Pass Filter, 50 Ohm, 3150 to 6500 MHz, SMA-FM / SMA-M	Mini-Circuits	VHF- 2700+	NA	01-Oct-15	01-Oct-17
4933	Active Horn Antenna, 1 GHz to 18 GHz	Com-Power Corporation	AHA-118	701046	14-Oct-16	14-Oct-17
4956	Active horn antenna, 18 to 40 GHz	Com-Power Corporation	AHA-840	105004	09-Nov-15	09-Nov-16

^{*} the calibration was valid at the testing time.

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Conducted carrier power at RF antenna connector	Below 12.4 GHz: ± 1.7 dB
	12.4 GHz to 40 GHz: ± 2.3 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Occupied bandwidth	± 8.0 %
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB
	150 kHz to 30 MHz: ± 3.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is recognized and accredited by the Federal Communications Commission (USA) for 1, 2, 15, 18 parts of Code of Federal Regulations 47 (CFR 47), Test Firm Registration Number is 927748, Designation Number is IL1001; registered by Industry Canada for electromagnetic emissions, file number IC 2186A-1 for OATS, certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-869 for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports). The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01).

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

FCC 47CFR part 15: 2015 Radio Frequency Devices

ANSI C63.10: 2013 American National Standard of Procedures for Compliance Testing of Unlicensed

Wireless Devices

ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field

Strength, 10 kHz to 40 GHz-Specifications

RSS-220 Issue 1:2009 Devices Using Ultra-Wideband (UWB) Technology

12 APPENDIX E Test equipment correction factors

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna factor Standard gain horn antenna Quinstar Technology Model QWH Ser.No.112, HL 0768, 0769, 0770, 0771, 0772

Frequency min, GHz	Frequency max, GHz	Antenna factor, dB(1/m)
18.000	26.500	32.01
26.500	40.000	35.48
40.000	60.000	39.03
60.000	90.000	42.55
90.000	140.000	46.23
140.000	220.000	50.11

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	580	20.6	1320	27.8
28	7.8	600	21.3	1340	28.3
30	7.8	620	21.5	1360	28.2
40	7.2	640	21.2	1380	27.9
60	7.1	660	21.4	1400	27.9
70	8.5	680	21.9	1420	27.9
80	9.4	700	22.2	1440	27.8
90	9.8	720	22.2	1460	27.8
100	9.7	740	22.1	1480	28.0
110	9.3	760	22.3	1500	28.5
120	8.8	780	22.6	1520	28.9
130	8.7	800	22.7	1540	29.6
140	9.2	820	22.9	1560	29.8
150	9.8	840	23.1	1580	29.6
160	10.2	860	23.4	1600	29.5
170	10.4	880	23.8	1620	29.3
180	10.4	900	24.1	1640	29.2
190	10.3	920	24.1	1660	29.4
200	10.6	940	24.0	1680	29.6
220	11.6	960	24.1	1700	29.8
240	12.4	980	24.5	1720	30.3
260	12.8	1000	24.9	1740	30.8
280	13.7	1020	25.0	1760	31.1
300	14.7	1040	25.2	1780	31.0
320	15.2	1060	25.4	1800	30.9
340	15.4	1080	25.6	1820	30.7
360	16.1	1100	25.7	1840	30.6
380	16.4	1120	26.0	1860	30.6
400	16.6	1140	26.4	1880	30.6
420	16.7	1160	27.0	1900	30.6
440	17.0	1180	27.0	1920	30.7
460	17.7	1200	26.7	1940	30.9
480	18.1	1220	26.5	1960	31.2
500	18.5	1240	26.5	1980	31.6
520	19.1	1260	26.5	2000	32.0
540	19.5	1280	26.6		
560	19.8	1300	27.0		

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna factor, HL 4933

Active Horn Antenna Factor Calibration

1 GHz to 18 GHz

Equipment:

Model:
Serial Number:
Calibration Distance:
Polarization:
Calibration Date:

ACTIVE HORN ANTENNA
AHA-118
701046
3 Meter
Horizontal

Frequency	Preamplifier Gain	Antenna Factor with pre-amp	Frequency	Preamplifier Gain	Antenna Factor with pre-amp
(GHz)	(dB)	(dB/m)	(GHz)	(dB)	(dB/m)
1	40.96	-16.47	10	40.94	-1.97
1.5	41.21	-14.53	10.5	40.63	-1.06
2	41.44	-13.30	11	40.74	-1.50
2.5	41.71	-12.87	11.5	40.65	-0.52
3	41.96	-12.26	12	40.76	-0.15
3.5	42.14	-11.77	12.5	41.03	-0.85
4	42.13	-10.91	13	41.37	-0.81
4.5	41.79	-9.41	13.5	41.18	0.05
5	41.44	-7-54	14	40.98	0.36
5.5	40.91	-6.47	14.5	40.81	1.26
6	40.69	-5.48	15	40.65	0.25
6.5	40.64	-5.53	15.5	40.93	-1.05
7	40.76	-4.12	16	41.31	-1.44
7.5	40.94	-3.12	16.5	40.96	-0.80
8	40.68	-1.69	17	40.64	-0.02
8.5	40.08	-1.71	17.5	40.57	1.81
9	40.41	-1.86	18	40.08	3.63
9.5	41.21	-2.73			

Calibration according to ARP 958

Antenna Factor to be added to receiver reading:

Meter Reading (dBuV) + Antenna Factor (dB/m) = Corrected Reading (dBuV/m)

Antenna factor, HL 4956

Active Horn Antenna Factor Calibration

18 GHz to 40 GHz

Equipment:

Model:

Serial Number:

Calibration Distance:

Polarization:

Calibration Date:

ACTIVE HORN ANTENNA
AHA-840
AHA-840
AGIVE HORN ANTENNA
AHA-840
AHA-840
AGIVE HORN ANTENNA
AHA-840

Frequency	Preamplifier Gain	Antenna Factor with pre-amp	Frequency	Preamplifier Gain	Antenna Factor with pre-amp
(GHz)	(dB)	(dB/m)	(GHz)	(dB)	(dB/m)
18	38.83	-1.06	29.5	42.47	-5-33
18.5	39-34	-2.65	30	41.91	-4.86
19	39.71	-3.88	30.5	41.60	-4.64
19.5	39.87	-4-35	31	41.52	-4.60
20	39.98	-3-97	31.5	41.56	-4-79
20.5	40.42	-3.68	32	41.80	-5.21
21	41.12	-4.06	32.5	42.29	-5.54
21.5	41.74	-5.46	33	42.79	-5.63
22	42.14	-6.22	33-5	42.88	-5.38
22.5	42.35	-6.42	34	42.62	-4.76
23	42.50	-6.59	34-5	42.63	-4.84
23.5	42.65	-6.82	35	43.15	-5.13
24	42.81	-7.01	35.5	43.91	-5.83
24.5	42.86	-7-37	36	44.59	-6.39
25	42.73	-7-53	36.5	45.04	-6.64
25.5	42.77	-7.45	37	45.08	-6.40
26	42.85	-7.21	37-5	44.82	-5.75
26.5	42.98	-7.17	38	44.16	-4.58
27	43.14	-7.22	38.5	42.90	-2.66
27.5	43.18	-7.32	39	42.39	-1.71
28	43.04	-7.10	39-5	43.76	-2.49
28.5	43.01	-6.73	40	45.98	-5.21

Calibration per ANSI C63.5: 2006

Standard Site Method, Equations 1-6 (3-antenna)

Corrected Reading (dBµV/m) = Meter Reading (dBµV) + AFE(dB/m)

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 3.5 m, SMA-SMA, S/N 1225/2A HL 3901

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.09	9500	4.29	21000	6.67
100	0.41	10000	4.40	22000	6.92
500	0.93	10500	4.52	23000	7.00
1000	1.33	11000	4.64	24000	7.18
1500	1.63	11500	4.76	25000	7.29
2000	1.90	12000	4.87	26000	7.55
2500	2.12	12500	4.99	27000	7.70
3000	2.33	13000	5.11	28000	7.88
3500	2.50	13500	5.20	29000	8.02
4000	2.67	14000	5.31	30000	8.15
4500	2.82	14500	5.42	31000	8.35
5000	2.99	15000	5.51	32000	8.40
5500	3.16	15500	5.58	33000	8.62
6000	3.32	16000	5.68	34000	8.73
6500	3.51	16500	5.78	35000	8.78
7000	3.65	17000	5.91	36000	8.94
7500	3.79	17500	5.99	37000	9.21
8000	3.92	18000	6.07	38000	9.37
8500	4.04	19000	6.36	39000	9.45
9000	4.18	20000	6.49	40000	9.52

Cable loss Microwave Cable Assembly, Huber-Suhner, 40 GHz, 1.5 m, SMA-SMA, S/N 1226/2A HL 3903

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	-0.02	9500	1.84	21000	2.98
100	0.15	10000	1.86	22000	3.07
500	0.38	10500	1.93	23000	3.13
1000	0.56	11000	1.99	24000	3.21
1500	0.69	11500	2.04	25000	3.26
2000	0.82	12000	2.10	26000	3.48
2500	0.90	12500	2.15	27000	3.44
3000	0.98	13000	2.21	28000	3.53
3500	1.06	13500	2.25	29000	3.59
4000	1.11	14000	2.29	30000	3.66
4500	1.17	14500	2.34	31000	3.70
5000	1.24	15000	2.36	32000	3.79
5500	1.32	15500	2.40	33000	3.88
6000	1.40	16000	2.45	34000	3.94
6500	1.50	16500	2.48	35000	3.91
7000	1.56	17000	2.56	36000	4.05
7500	1.62	17500	2.58	37000	4.22
8000	1.68	18000	2.60	38000	4.25
8500	1.74	19000	2.84	39000	4.27
9000	1.78	20000	2.88	40000	4.33

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 003, HL 4353

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.71
100	0.27	9500	2.81
300	0.47	10000	2.90
500	0.61	10500	2.97
1000	0.87	11000	3.06
1500	1.07	11500	3.13
2000	1.24	12000	3.20
2500	1.39	12500	3.26
3000	1.53	13000	3.34
3500	1.65	13500	3.39
4000	1.77	14000	3.47
4500	1.89	14500	3.54
5000	1.99	15000	3.62
5500	2.07	15500	3.69
6000	2.20	16000	3.76
6500	2.30	16500	3.83
7000	2.39	17000	3.86
7500	2.51	17500	3.94
8000	2.58	18000	4.02
8500	2.65		

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244, S/N 51228701001 HL 4722

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.22	9000	2.93
100	0.30	9500	3.06
300	0.52	10000	3.16
500	0.66	10500	3.20
1000	0.93	11000	3.34
1500	1.15	11500	3.39
2000	1.33	12000	3.48
2500	1.49	12500	3.55
3000	1.64	13000	3.66
3500	1.77	13500	3.75
4000	1.90	14000	3.76
4500	2.03	14500	3.87
5000	2.17	15000	3.98
5500	2.30	15500	4.01
6000	2.39	16000	4.14
6500	2.51	16500	4.15
7000	2.59	17000	4.32
7500	2.67	17500	4.36
8000	2.76	18000	4.38
8500	2.84		

13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
AM amplitude modulation
AVRG average (detector)
cm centimeter

cm centimeter dB decibel

 $\begin{array}{ll} \text{dBm} & \text{decibel referred to one milliwatt} \\ \text{dB}(\mu V) & \text{decibel referred to one microvolt} \end{array}$

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

 $dB(\mu A)$ decibel referred to one microampere

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories
Hz hertz

Hz k kilo kHz kilohertz LO local oscillator meter m MHz megahertz min minute millimeter mm ms millisecond μS microsecond not applicable NA narrow band NB **OATS** open area test site

 $\Omega \qquad \qquad \mathsf{Ohm}$

PM pulse modulation PS power supply

ppm part per million (10⁻⁶)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt WB wideband

END OF DOCUMENT