Samlefil for alle data til prøveeksamen

Filen 1A.txt

Perioden P er 169.3 millioner år

Filen 1B/Oppgave1B_Figur_A.png

Figure 1: Figur fra filen 1B/Oppgave1B_Figur_A.png

$Filen~1B/Oppgave1B_Figur_B.png$

Figure 2: Figur fra filen 1B/Oppgave1B_Figur_B.png

$Filen~1B/Oppgave1B_Figur_C.png$

Figure 3: Figur fra filen 1B/Oppgave1B_Figur_C.png

$Filen~1B/Oppgave1B_Figur_D.png$

Figure 4: Figur fra filen 1B/Oppgave1B_Figur_D.png

Filen 1B/Oppgave1B_Figur_E.png

Figur E

658.44

658.40

658.36

658.34

0

10

20

Periode (år)

Figure 5: Figur fra filen 1B/Oppgave1B_Figur_E.png

Filen 1D.txt

Stjerna A: Tilsynelatende visuell størrelseklasse m
-V = 6.58, tilsynelatende blå størrelseklass $m_B = 7.84$

Stjerna B: Tilsynelatende visuell størrelseklasse m
_V = 6.58, tilsynelatende blå størrelseklass $m_B = 8.84$

Stjerna C: Tilsynelatende visuell størrelseklasse m₋V = 12.74, tilsynelatende

blå størrelseklass m_B = 15.00

Stjerna D: Tilsynelatende visuell størrelseklasse m_V = 12.74, tilsynelatende blå størrelseklass $m_B = 14.00$

Filen 1E.txt

For stjerne 1 sin bane om massesenteret er elliptisiteten e=0.24 og store halvakse a=29.07 AU.

For stjerne 2 sin bane om massesenteret er elliptisiteten e=0.24 og store halvakse a=55.09 AU.

Filen 1F.txt

Ved bølgelengden 541.08 nm finner du størst fluks

$Filen~1G/Oppgave1G_Figur_A.png$

Figure 6: Figur fra filen 1G/Oppgave1G_Figur_A.png

$Filen~1G/Oppgave1G_Figur_B.png$

Figure 7: Figur fra filen 1G/Oppgave1G_Figur_B.png

$Filen \ 1G/Oppgave1G_Figur_C.png$

Figure 8: Figur fra filen 1G/Oppgave1G_Figur_C.png

$Filen~1G/Oppgave1G_Figur_D.png$

Figure 9: Figur fra filen 1G/Oppgave1G_Figur_D.png

Filen 1G/Oppgave1G_Figur_E.png

Figure 10: Figur fra filen 1G/Oppgave1G_Figur_E.png

Filen 1I.txt

Gass-sky A har masse på 3.40 solmasser, temperatur på 83.70 Kelvin og tetthet 8.14e-21 kg per kubikkmeter

Gass-sky B har masse på 12.40 solmasser, temperatur på 19.00 Kelvin og tetthet 1.10e-20 kg per kubikkmeter

Gass-sky C har masse på 15.60 solmasser, temperatur på 80.90 Kelvin og

tetthet 3.12e-22 kg per kubikkmeter

Gass-sky D har masse på 6.60 solmasser, temperatur på 29.80 Kelvin og tetthet 3.74e-21 kg per kubikkmeter

Gass-sky E har masse på 14.40 solmasser, temperatur på 71.10 Kelvin og tetthet 6.47e-21 kg per kubikkmeter

Filen 1J.txt

STJERNE A) stjernas energi kommer hovedsaklig fra fusjon av magnesium i sentrum

STJERNE B) stjernas energi kommer hovedsaklig fra heliumfusjon i skall

STJERNE C) stjernas overflate består hovedsaklig av helium

STJERNE D) stjernas energi kommer hovedsaklig fra hydrogenfusjon i skall

STJERNE E) stjernas energi kommer fra vibrerende molekyler og ikke fra fusjon

Filen 1L.txt

Stjerne A har spektralklasse K7 og visuell tilsynelatende størrelseklasse m_V = 8.37

Stjerne B har spektralklasse M7 og visuell tilsynelatende størrelseklasse m_V = 2.37

Stjerne C har spektralklasse B9 og visuell tilsynelatende størrelseklasse m_V = 5.12

Stjerne D har spektralklasse F2 og visuell tilsynelatende størrelseklasse m_V

= 4.20

Stjerne E har spektralklasse A1 og visuell tilsynelatende størrelseklasse m_V = 3.64

Filen 1P.txt

Alle partiklene har hastighetskomponent kun langs synsretningen som er enten $100~\rm m/s$ mot deg eller fra deg (like mange i hver retning)

$Filen~2A/Oppgave 2A_Figur 1.png$

i

ź

3

5

x-posisjon (buesekunder)

9

10

Figure 11: Figur fra filen 2A/Oppgave2A_Figur1.png

$Filen~2A/Oppgave 2A_Figur 2.png$

Figure 12: Figur fra filen 2A/Oppgave2A_Figur2.png

$Filen\ 2B/Oppgave 2B_Figur\ 4.png$

Figure 13: Figur fra filen 2B/Oppgave2B_Figur 4.png

4.png

Filen 2B/Oppgave2B_Figur3.png

Figure 14: Figur fra filen 2B/Oppgave2B_Figur3.png

Filen 2C.txt

Avstand til solen er 0.5030000000000000266454 AU.

Tangensiell hastighet er 54439.134366403057356365 m/s.

Filen 2D.txt

Kometens avstand fra jorda i punkt 1 er r1=2.028 AU.

Kometens avstand fra jorda i punkt 2 er r2=9.030 AU.

Kometens tilsynelatende størrelseklasse i punkt 1 er m1=15.413.

Filen 3A.txt

Romskipets hastighet langs x-aksen er 0.9372 ganger lyshastigheten.

Tiden mellom utsendelse av strålene er 0.00067 sekunder målt i bakkesystemet.

Filen 3B.txt

Avstanden mellom de to romskipene ved første utsendelse er D=460.0 km.

Romskip2 sin hastighet langs x-aksen er 0.9948 ganger lyshastigheten.

Filen 3E.txt

Bølgelengden målt i romskipet som sender ut er 554.10 nm.

Filen 4A.txt

Stjernas masse er 6.25 solmasser.

Stjernas radius er 0.85 solradier.

Filen 4C.png

Figur 4C 2.6000 2.4000 2.2000 Sannsynlighetstetthet i 10⁻⁴ % 2.0000 1.8000 1.6000 1.4000 1.2000 1.0000 0.8000 0.6000 0.4000 0.2000 0.0000 -400 -200 200 -600 400 600 Hastighet i x-retning (km/s)

Figure 15: Figur fra filen 4C.png

Filen 4D.txt

Kun hvis du ikke fikk til forrige oppgave, skal du bruke denne temperaturen her: 27.89 millioner K

Filen 4G.txt

Massen til det sorte hullet er 2.04 solmasser.

r-koordinaten til det innerste romskipet er r $=6.33~\mathrm{km}.$

r-koordinaten til det innerste romskipet er
r $=11.50~\mathrm{km}.$