Some B2 Putnam Problems

- (1995) An ellipse, whose semi-axes have lengths a and b, rolls without slipping on the curve $y = c \sin(\frac{x}{a})$. How are a, b, c related, given that the ellipse completes one revolution when it traverses one period of the curve?
- (1996) Show that for every positive integer n,

$$\left(\frac{2n-1}{e}\right)^{\frac{2n-1}{2}} < 1 \cdot 3 \cdot 5 \cdots (2n-1) < \left(\frac{2n+1}{e}\right)^{\frac{2n+1}{2}}.$$

(1997) Let f be a twice-differentiable real-valued function satisfying

$$f(x) + f''(x) = -xg(x)f'(x),$$

where $g(x) \ge 0$ for all real x. Prove that |f(x)| is bounded.

- (1998) Given a point (a, b) with 0 < b < a, determine the minimum perimeter of a triangle with one vertex at (a, b), one on the x-axis, and one on the line y = x. You may assume that a triangle of minimum perimeter exists.
- (1999) Let P(x) be a polynomial of degree n such that P(x) = Q(x)P''(x), where Q(x) is a quadratic polynomial and P''(x) is the second derivative of P(x). Show that if P(x) has at least two distinct roots then it must have n distinct roots.
- (2000) Prove that the expression

$$\frac{\gcd(m,n)}{n}\binom{n}{m}$$

is an integer for all pairs of integers $n \geq m \geq 1$.

(2001) Find all pairs of real numbers (x, y) satisfying the system of equations

$$\frac{1}{x} + \frac{1}{2y} = (x^2 + 3y^2)(3x^2 + y^2)$$
$$\frac{1}{x} - \frac{1}{2y} = 2(y^4 - x^4).$$

(2002) Consider a polyhedron with at least five faces such that exactly three edges emerge from each of its vertices. Two players play the following game:

Each player, in turn, signs his or her name on a previously unsigned face. The winner is the player who first succeeds in signing three faces that share a common vertex.

Show that the player who signs first will always win by playing as well as possible.

1

- (2003) Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}$, form a new sequence of n-1 entries $\frac{3}{4}, \frac{5}{12}, \dots, \frac{2n-1}{2n(n-1)}$ by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of n-2 entries, and continue until the final sequence produced consists of a single number x_n . Show that $x_n < 2/n$.
- (2004) (56, 41, 39, 0, 0, 0, 0, 0, 22, 0, 28, 10) Let m and n be positive integers. Show that

$$\frac{(m+n)!}{(m+n)^{m+n}} < \frac{m!}{m^m} \frac{n!}{n^n}.$$

(2005) (148, 11, 4, 0, 0, 0, 0, 0, 9, 1, 13, 10) Find all positive integers n, k_1, \ldots, k_n such that $k_1 + \cdots + k_n = 5n - 4$ and

$$\frac{1}{k_1} + \dots + \frac{1}{k_n} = 1.$$

(2006) (123, 28, 16, 0, 0, 0, 0, 0, 3, 0, 13, 15) Prove that, for every set $X = \{x_1, x_2, \dots, x_n\}$ of n real numbers, there exists a non-empty subset S of X and an integer m such that

$$\left| m + \sum_{s \in S} s \right| \le \frac{1}{n+1}.$$

(2007) (80, 11, 9, 0, 0, 0, 0, 0, 27,21,34,24) Suppose that $f:[0,1]\to\mathbb{R}$ has a continuous derivative and that $\int_0^1 f(x) dx = 0$. Prove that for every $\alpha \in (0,1)$,

$$\left| \int_0^\alpha f(x) \, dx \right| \le \frac{1}{8} \max_{0 \le x \le 1} |f'(x)|.$$

(2008) (83, 17, 6, 0, 0, 0, 0, 0, 45, 4, 15, 19) Let $F_0(x) = \ln x$. For $n \ge 0$ and x > 0, let $F_{n+1}(x) = \int_0^x F_n(t) dt$. Evaluate

$$\lim_{n\to\infty}\frac{n!F_n(1)}{\ln n}.$$

- (2009) (62, 3, 0, 0, 0, 0, 0, 63, 13, 49, 10) A game involves jumping to the right on the real number line. If a and b are real numbers and b > a, the cost of jumping from a to b is $b^3 ab^2$. For what real numbers c can one travel from 0 to 1 in a finite number of jumps with total cost exactly c?
- (2010) (133, 5, 31, 0, 0, 0, 0, 0, 10, 2, 4, 3) Given that A, B, and C are noncollinear points in the plane with integer coordinates such that the distances AB, AC, and BC are integers, what is the smallest possible value of AB?
- (2011) (141, 7, 14, 0, 0, 0, 0, 0, 6, 15, 12, 2) Let S be the set of all ordered triples (p, q, r) of prime numbers for which at least one rational number x satisfies $px^2 + qx + r = 0$. Which primes appear in seven or more elements of S?