chapter 6

Simple plots using R

Instructor: Li, Han

Contents

- box plot
- histogram
- density plot
- bar plot
- □ pie plot
- dot char

data example

	mpg	cyl	am
Mazda RX4	21.0	6	1
Mazda RX4 Wag	21.0	6	1
Toyota Corolla	33.9	4	1
Merc 280C	17.8	6	0
Ford Pantera L	15.8	8	1
Ferrari Dino	19.7	6	1
	•••	•••	•••

Box plot

A "box-and-whiskers" plot describes the distribution of a continuous variable by plotting its five-number summary:

- maximum
- upper quartile (75th percentile)
- Median (50th percentile)
- lower quartile (25th percentile)
- minimum

Box plot

Example 1 (box plot)

attach(mtcars)
boxplot(mpg, main="Box plot", xlab="Cars", ylab="Miles per Gallon")

Box plot

If the data have outliers

We change the data to have outliers by setting

```
mpg <- mtcars$mpg
mpg[1,1]=50
mpg[2,1]=45
mpg[32,1]=0
```

Then the box plot has some changes.

Box plot

Box plots by group

Box plots can be created for multiple variables by group. The format is

boxplot(formula, data=dataframe, main=...)

formula: y ~ A, y is the whole data, A is a categorical variable, the elements of y and A are one-to-one match. Then we have box plots for each category of A.

Example 2(box plot by group)

mpg <- mtcars\$mpg cyl <- mtcars\$cyl boxplot(mpg ~ cyl, data=mtcars, main="Car Mileage Data", xlab="Number of Cylinders", ylab="Miles Per Gallon")

Car Mileage Data

Change the color of the plot

Example 3

```
boxplot(mpg ~ cyl, data=mtcars,
main="Car Mileage Data",
xlab="Number of Cylinders",
ylab="Miles Per Gallon",
col=c("white","red","yellow"))
```

Car Mileage Data

Histogram

Histogram displays the distribution of a continuous variable by dividing it into several bins.

hist(x, breaks=number of bins, main=...)

Example 4 (histogram)

hist(mtcars\$mpg)

Histogram of mtcars\$mpg

Specify the number of bins

Example 5

```
hist(mtcars$mpg, breaks=12, col="red", xlab="Miles Per Gallon", main="Colored histogram with 12 bins")
```

Colored histogram with 12 bins

Density plot

Density plot is a nonparametric method for estimating the probability density function of a random variable.

Compare with histogram, which is discrete, density plot is a continous approximation of the distribution of the data.

Example 6

plot(density(mtcars\$mpg))

If the plot already exists, we use lines(density(x)) to impose a density line in the original plot.

density.default(x = mtcars\$mpg)

Example 7

```
d <- density(mtcars$mpg)
plot(d, main="Kernel Density of Miles Per Gallon")
polygon(d, col="red", border="blue")
rug(mtcars$mpg, col="brown")</pre>
```

Kernel Density of Miles Per Gallon

Add density plot to histogram

Example 8

```
hist(mtcars$mpg,
freq=FALSE, breaks=12, col="red",
xlab="Miles Per Gallon",
main="Histogram, rug plot, density curve")
rug(jitter(mtcars$mpg))
lines(density(mtcars$mpg), col="blue", lwd=2)
```

Histogram, rug plot, density curve

Bar plot

Bar plot displays the distribution (frequencies) of a categorical variable through vertical or horizontal bars.

barplot(x)

Example 8 (bar plot)

```
cyl <- mtcars$cyl
cyl
table(cyl)
barplot(table(cyl), main="Simple par plot", xlab="number of cylinders", ylab="Frequence")
```

table(x): summarize the counts in each category

Simple par plot

Example 9

barplot(table(cyl), horiz=TRUE, main="Simple par plot", xlab="number of cylinders", ylab="Frequence")

Simple par plot

Multiple bar plots

```
am= 0, automatic,
am=1, manual.

counts <- table(mtcars$cyl, mtcars$am)
rownames(counts)=c("cyl4","cyl6","cyl8")
colnames (counts)=c("automatic","manual")</pre>
```

Example 10

```
barplot(counts,
main="Grouped Bar Plot",
xlab="Car type", ylab="Frequency",
col=c("red", "yellow", "green"),
legend=rownames(counts), beside=TRUE)
```


Pie chart

```
pie(x, labels=?,...)
```

Example 11 (pie plot)

```
users <- c(3000, 3200, 2000, 2500, 2800)
country <- c("US", "UK", "Austrilia", "Germany", "France")
pie(users, labels=country, col=2:6, main="Simple Pie
Chart")
```

Simple Pie Chart

Example 12

```
#caculate the percentage
pct <- round(users/sum(users)*100)</pre>
#use paste to combine the characters
country2=paste(country, " ", pct, "%", sep="")
#pie plot
pie(users, labels=country2, col=2:6, main="Pie Chart with
Percentages")
```

Pie Chart with Percentages

Example 13 (3D pie plot)

library(plotrix)
country3=paste(country, "\n", pct, "%", sep="")
pie3D(users, labels=country3, explode=0.1, col=2:6, labelcex=0.7, main="3D Pie Chart")

3D Pie Chart

Dot plot

Dot plots provide a method of plotting a large number of labeled values on a simple horizontal scale.

dotchart(x, labels=?,...)

Example 14 (dot plot)

```
attach(mtcars)
dotchart(mpg, labels=row.names(mtcars), cex=.7,
main="Gas Mileage for Car Models",
xlab="Miles Per Gallon")
```

Gas Mileage for Car Models

Dot plot by group

Suppose we would like to sort the mpg values in an increasing order, and then plot them in different colors based on the number of their cyl values.

Example 15

```
x <- mtcars[order(mtcars$mpg),]
x$cyl <- factor(x$cyl)
x$color[x$cyl==4] <- "red"
x$color[x$cyl==6] <- "blue"
x$color[x$cyl==8] <- "darkgreen"</pre>
```

```
dotchart(x$mpg,
labels = row.names(x),
cex=.7,
groups = x$cyl,
gcolor = "black",
color = x$color,
pch=19,
main = "Gas Mileage for Car Models\ngrouped by
cylinder",
xlab = "Miles Per Gallon")
```

Gas Mileage for Car Models grouped by cylinder

Try the examples and enjoy plotting!