Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

1 Input Parameters

Module	Tension Members Bolted Design	
Axial (kN) *	500.0	
Length (mm) *	5000.0	
Section Size*	Ref List of Input Section	
Bolt Details	1	
Director ()*	[12.0, 16.0, 20.0, 24.0, 30.0,	
Diameter (mm)*	36.0]	
Grade *	[3.6, 4.6, 4.8, 5.6, 5.8, 6.8,	
Grade ·	8.8, 9.8, 10.9, 12.9]	
Type *	Bearing Bolt	
Bolt hole type	Standard	
Type of edges	a - Sheared or hand flame cut	
Are the members exposed to corrosive influences	False	
Plate Details		
	[3.0, 4.0, 5.0, 6.0, 8.0, 10.0,	
	12.0, 14.0, 16.0, 18.0, 20.0,	
Plate Thickness (mm)*	22.0, 24.0, 25.0, 26.0, 28.0,	
	30.0, 32.0, 36.0, 40.0, 45.0,	
	50.0, 56.0, 63.0, 80.0]	
Material *	E 250 (Fe 410 W)A	
Ultimate strength, fu (MPa)	410	
Yield Strength , fy (MPa)	250	
Safety Factors - IS 800:2007 Table 5 (Clause 5.4.1)		
Governed by Yielding	$\gamma_{m0} = 1.1$	
Governed by Ultimate Stress	$\gamma_{m1} = 1.25$	
Connection Bolts - Bearing Type	$\gamma_{mb} = 1.25$	

1.1 List of Input Section

Section Size*	['20 x 20 x 3', '20 x 20 x 4', '25 x 25 x 3', '25 x 25 x 4', '25 x 25 x 5', '30 x 30
	x 3', '30 x 30 x 4', '30 x 30 x 5', '35 x 35 x 3', '35 x 35 x 4', '35 x 35 x 5', '
	35 x 35 x 6', '40 x 40 x 3', '40 x 40 x 4', '40 x 40 x 5', '40 x 40 x 6', '45 x 45
	x 3', '45 x 45 x 4', '45 x 45 x 5', '45 x 45 x 6', '50 x 50 x 3', '50 x 50 x 4', '5
	$0 \times 50 \times 5'$, '50 x 50 x 6', '55 x 55 x 4', '55 x 55 x 5', '55 x 55 x 6', '55 x 55 x
	8', '60 x 60 x 4', '60 x 60 x 5', '60 x 60 x 6', '60 x 60 x 8', '65 x 65 x 4', '65
	x 65 x 5', '65 x 65 x 6', '65 x 65 x 8', '70 x 70 x 5', '70 x 70 x 6', '70 x 70 x
	8', '70 x 70 x 10', '75 x 75 x 5', '75 x 75 x 6', '75 x 75 x 8', '75 x 75 x 70, '8

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

	0 x 80 x 6', '80 x 80 x 8', '80 x 80 x 10', '80 x 80 x 12', '90 x 90 x 6', '90 x 90
	x 8', '90 x 90 x 10', '90 x 90 x 12', '100 x 100 x 6', '100 x 100 x 8', '100 x 100
	x 10', '100 x 100 x 12', '110 x 110 x 8', '110 x 110 x 10', '110 x 110 x 12', '110
	x 110 x 16', '130 x 130 x 8', '130 x130 x 10', '130 x130 x 12', '130 x130 x 16', '
	150 x 150 x 10', '150 x 150 x 12', '150 x 150 x 16', '150 x 150 x 20', '200 x 200 x
	12', '200 x 200 x 16', '200 x 200 x 20', '200 x 200 x 25', '50 x 50 x 7', '50 x 50
	x 8', '55 x 55 x 10', '60 x 60 x 10', '65 x 65 x 10', '70 x 70 x 7', '100 x 100 x
	7', '100 x 100 x 15', '120 x 120 x 8', '120 x 120 x 10', '120 x 120 x 12', '120 x 1
	20 x 15', '130 x 130 x 9', '150 x 150 x 15', '150 x 150 x 18', '180 x 180 x 15', '1
	80 x 180 x 18', '180 x 180 x 20', '200 x 200 x 24', '30 x 20 x 3', '30 x 20 x 4', '
	30 x 20 x 5', '40 x 25 x 3', '40 x 25 x 4', '40 x 25 x 5', '40 x 25 x 6', '45 x 30
	x 3', '45 x 30 x 4', '45 x 30 x 5', '45 x 30 x 6', '50 x 30 x 3', '50 x 30 x 4', '5
	0 x 30 x 5', '50 x 30 x 6', '60 x 40 x 5', '60 x 40 x 6', '60 x 40 x 8', '65 x 45 x
	5', '65 x 45 x 6', '65 x 45 x 8', '70 x 45 x 5', '70 x 45 x 6', '70 x 45 x 8', '70
	x 45 x 10', '75 x 50 x 5', '75 x 50 x 6', '75 x 50 x 8', '75 x 50 x 10', '80 x 50
	x 5', '80 x 50 x 6', '80 x 50 x 8', '80 x 50 x 10', '90 x 60 x 6', '90 x 60 x 8', '
	90 x 60 x 10', '90 x 60 x 12', '100 x 65 x 6', '100 x 65 x 8', '100 x 65 x 10', '10
	0 x 75 x 6', '100 x 75 x 8', '100 x 75 x 10', '100 x 75 x 12', '125 x 75 x 6', '125
	x 75 x 8', '125 x 75 x 10', '125 x 95 x 6', '125 x 95 x 8', '125 x 95 x 10', '125
	x 95 x 12', '150 x 115 x 8', '150 x 115 x 10', '150 x 115 x 12', '150 x 115 x 16',
	'200 x 100 x 10', '200 x 100 x 12', '200 x 100 x 16', '200 x 150 x 10', '200 x 150
	x 12', '200 x 150 x 16', '200 x 150 x 20', '40 x 20 x 3', '40 x 20 x 4', '40 x 20 x
	5', '60 x 30 x 5', '60 x 30 x 6', '60 x 40 x 7', '65 x 50 x 5', '65 x 50 x 6', '65
	x 50 x 7', '65 x 50 x 8', '70 x 50 x 5', '70 x 50 x 6', '70 x 50 x 7', '70 x 50 x
	8', '75 x 50 x 7', '80 x 40 x 5', '80 x 40 x 6', '80 x 40 x 7', '80 x 40 x 8', '80
	x 60 x 6', '80 x 60 x 7', '80 x 60 x 8', '90 x 65 x 6', '90 x 65 x 7', '90 x 65 x 8
	', '90 x 65 x 10', '100 x 50 x 6', '100 x 50 x 7', '100 x 50 x 8', '100 x 50 x 10',
	'100 x 65 x 7', '120 x 80 x 8', '120 x 80 x 10', '120 x 80 x 12', '125 x 75 x 12',
	'135 x 65 x 8', '135 x 65 x 10', '135 x 65 x 12', '150 x 75 x 9', '150 x 75 x 15',
	'150 x 90 x 10', '150 x 90 x 12', '150 x 90 x 15', '200 x 100 x 15', '200 x 150 x
	15', '200 x 150 x 18']
L	ı

Company Name		Project Title
Group/Team Name		Subtitle
Designer		Job Number
Date	09 /06 /2020	Client

2 Design Checks

2.1 Selected Member Data

Section Size*		('100 x 100 x 12', 'Angles')			
Material *		E 250 (Fe 410 W)A			
Ultimate strength, fu (MPa)			410		
Yield Streng	th , fy (MPa)		250		
Mass	17.83	Iu(mm4)	3330000.0		
Area(mm2) - A	2270.0	Iv(mm4)	872000.0		
a(mm)	100.0	rz(mm)	30.4		
b(mm)	100.0	ry(mm)	30.4		
t(mm)	12.0	ru(mm) 38.3			
R1(mm)	8.5	rv(mm)	19.6		
R2(mm)	0.0	Zz(mm3)	29800.0		
Cy(mm)	29.3	Zy(mm3)	29800.0		
Cz(mm)	29.3	Zpz(mm3)	53600.0		
Iz(mm4)	2100000.0	Zpy(mm3)	29800.0		
Iv(mm4)	2100000.0	r(mm)	19.6		

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.2 Spacing Checks

Check	Required	Provided	Remarks
Min.Diameter (mm)		d = 16	
Hole Diameter (mm)		$d_0 = 18$	
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 16.0 = 40.0$	40	Row Limit (rl) = 1
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 18.0 = 30.6	35	
Spacing Check	$depth = 2 * e + (r_l - 1) * g$ $= 2 * 35 + (1 - 1) * 40$ $= 70$	79.5	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.3 Member Checks

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} \text{ or } A_c = \frac{1 * A_g f_y}{\gamma_{m0}}$ $= \frac{1 * 2270.0 * 250}{1.1}$ $= 515.91$	
Tension Rupture Capacity (kN)		$\beta = 1.4 - 0.076 * \frac{w}{t} * \frac{f_y}{0.9 * f_u} * \frac{b_s}{L_c}$ $\leq \frac{0.9 * f_u * \gamma_{m0}}{f_y * \gamma_{m1}} \geq 0.7$ $= 1.4 - 0.076 * \frac{100.0}{12.0} * \frac{250}{0.9 * 410} * \frac{148.25}{315}$ $\leq \frac{0.9 * 410 * 1.1}{250 * 1.25} \geq 0.7$ $= 1.2$ $T_{dn} = 1 * (\frac{0.9 * A_{nc} * f_u}{\gamma_{m1}} + \frac{\beta * A_{go} * f_y}{\gamma_{m0}})$ $= 1 * (\frac{0.9 * 840.0 * 410}{1.25} + \frac{1.2 * 1200.0 * 250}{1.1})$ $= 575.24$	
Block Shear Capacity (kN)		$= 575.24$ $T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$ $T_{db2} = \frac{0.9 * A_{vn}f_u}{\sqrt{3}\gamma_{m1}} + \frac{A_{tg}f_y}{\gamma_{m0}}$ $T_{db} = min(T_{db1}, T_{db2}) = 548.13$	
Tension Capacity (kN)	500.0	$T_d = min(T_{dg}, T_{dn}, T_{db})$ $= min(515.91, 575.24, 548.13)$ $= 515.91$	Pass
Slenderness	$\frac{K*L}{r} \le 400$	$\frac{K*L}{r} = \frac{1*5000.0}{19.6}$ $= 255.1$	Pass
Utilization Ratio	$Utilization\ Ratio \leq 1$	$Utilization Ratio = \frac{F}{Td} = \frac{500.0}{515.91}$ $= 0.97$	
Axial Load Considered (kN)	$Ac_{min} = 0.3 * A_c$ $= 0.3 * 515.91$ $= 154.77$ $Ac_{max} = 515.91$	A = 500.0	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.4 Bolt Checks

Check	Required	Provided	Remarks
Diameter (mm)	Bolt Quantity Optimisation	d = 16	
Hole Diameter		$d_0 = 18$	
(mm)			
Grade	Bolt Grade Optimisation	10.9	
Bolt Ultimate		$f_{ub} = 1040.0$	
Strength (N/mm2)		6 040 0	
Bolt Yield Strength (N/mm2)		$f_{yb} = 940.0$	
Nominal Stress		$A_{nb} = 157 \; (Ref \; IS \; 1367 - 3 \; (2002))$	
Area (mm2)		11710 101 (1105) 10 1001 0 (2002))	
Min Ditale (man)	$p/g_{min} = 2.5 d$	AE.	Daga
Min. Pitch (mm)	=2.5*16.0 = 40.0	45	Pass
	$p/g_{max} = \min(32\ t,\ 300\ mm)$		
Max. Pitch (mm)	$= \min(32 * 12.0, 300 mm)$	45	Pass
	= 300		
	t = min(24.0, 24.0)		
Min. Gauge (mm)	$p/g_{min} = 2.5 d$	0	N/A
	=2.5*16.0 = 40.0		
	$p/g_{max} = \min(32\ t,\ 300\ mm)$		
Max. Gauge (mm)	$= \min(32 * 12.0, 300 mm)$	0	N/A
	= 300		
	$t = min(24.0, 24.0)$ $e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$		
Min. End Distance	= 1.7 * 18.0 = 30.6	35	Pass
(mm)			
	$e/e'_{max} = 12 \ t \ \varepsilon$		
	$\varepsilon = \sqrt{\frac{250}{f_y}}$		
Max. End Dis-	V Jy	35	Pass
tance (mm)	$e/e'_{max} = 12 * 12.0 * \sqrt{\frac{250}{250}}$		
	= 144.0		
	$e/e^{\circ}_{min} = [1.5 \text{ or } 1.7] * d_0$		
Min. Edge Distance (mm)	= 1.7 * 18.0 = 30.6	39.75	Pass
tance (mm)	$e/e^{\circ}_{max} = 12 \ t \ \varepsilon$		
	$\varepsilon = \sqrt{\frac{250}{f_y}}$		
Max. Edge Dis-		39.75	Pass
tance (mm)	$e/e^{\circ}_{max} = 12 * 12.0 * \sqrt{\frac{250}{250}}$		
	= 144.0		
	I .	1	1

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

Check	Required	Provided	
Kb		$k_b = min(\frac{e}{3*d_0}, \frac{p}{3*d_0} - 0.25, \frac{f_{ub}}{f_u}, 1.0)$ $= min(\frac{35}{3*18.0}, \frac{45}{3*18.0} - 0.25, \frac{1040.0}{410}, 1.0)$ $= min(0.65, 0.58, 2.54, 1.0)$ $= 0.58$	
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} \ n_n \ A_{nb}}{\sqrt{3} \ \gamma_{mb}}$ $= \frac{1040.0 * 1 * 157}{\sqrt{3} \ * 1.25}$ $= 75.42$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.58 * 16.0 * 12.0 * 410}{1.25}$ $= 91.32$	
Capacity (kN)		$V_{db} = min (V_{dsb}, V_{dpb})$ = $min (75.42, 91.32)$ = 75.42	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{0.0^{2} + 500.0^{2}}}{75.42}$ $= 7$	n = 8	
No of Columns		$n_c = 8$	
No of Rows		$n_r = 1$	
Bolt Capacity post Long Joint (kN)	$ \begin{split} & if \ l \geq 15*d \ then \ V_{rd} = \beta_{ij} * V_{db} \\ & if \ l < 15*d \ then \ V_{rd} = V_{db} \\ & where, \\ & l = ((nc \ or \ nr) - 1)*(p \ or \ g) \\ & \beta_{ij} = 1.075 - l/(200*d) \\ & but \ 0.75 \leq \beta_{ij} \leq 1.0 \end{split} $	$l = ((nc \ or \ nr) - 1) * (p \ or \ g)$ $= (8 - 1) * 45 = 315$ $= (1 - 1) * 0 = 0$ $l = 315$ $15 * d = 15 * 16.0 = 240.0$ $since, \ l \ge 15 * d \ then \ V_{rd} = \beta_{ij} * V_{db}$ $\beta_{ij} = 1.075 - 315/(200 * 16.0) = 0.98$ $V_{rd} = 0.98 * 75.42 = 73.91$	
Capacity (kN)	62.5	73.91	Pass

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

2.5 Gusset Plate Checks

Check	Required	Provided	
		H = 1 * Depth + clearance	
Min.Height (mm)		= (1*100.0) + 30.0	
		= 130	
		L = (nc - 1) * p + 2 * e	
Min.Length (mm)	5000.0	= (8-1)*45 + (2*35)	Pass
		= 385	
Thickness (mm)		$t_p = 24.0$	
		$T_{dg} = \frac{l * t * f_y}{c}$	
Tension Yielding		γ_{mo} $1*100.0*24.0*250$	
Capacity (kN)		$=\frac{1*100.0*24.0*250}{1.1}$	
. , ,		= 545.45	
		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$	
Tension Rupture		$= \frac{1*0.9*(100.0-1*18.0)*24.0*410}{}$	
Capacity (kN)		= 1.25	
		= 580.95	
		$T_{db1} = \frac{A_{vg}f_y}{\sqrt{3}\gamma_{m0}} + \frac{0.9A_{tn}f_u}{\gamma_{m1}}$	
Block Shear Ca-			
pacity (kN)		$T_{db2} = \frac{0.9 * A_{vn} f_u}{\sqrt{3} \gamma_{m1}} + \frac{A_{tg} f_y}{\gamma_{m0}}$	
		$T_{db} = min(T_{db1}, T_{db2}) = 1096.26$	
		$T_d = min(T_{dg}, T_{dn}, T_{db})$	
Tension Capacity	A = 500.0	= min(545.45, 580.95, 1096.26)	Pass
(kN)		= 545.45	

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

3 3D View

Company Name		Project Title	
Group/Team Name		Subtitle	
Designer		Job Number	
Date	09 /06 /2020	Client	

Page 1