STUDENCKIE KOŁO ASTRONAUTYCZNE

WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA POLITECHNIKA WARSZAWSKA

PW-SAT2

PRELIMINARY REQUIREMENTS REVIEW

Czujnik Słońca Sun Sensor

Faza A projektu PW-Sat2

1.0 PL

Kategoria: Tylko do użytku wewnętrznego

2014-04-07

Abstrakt

Niniejszy dokument jest częścią podsumowania fazy A projektu satelity studenckiego PW Sat2. Opisuje eksperyment Czujnika Słońca, podsumowuje dotychczasowe prace i określa zadania do wykonania przez zespół.

Dokument jest publikowany wraz z poniższym:

PW-Sat2 - Preliminary Requirements Review

HISTORIA ZMIAN

Wersja	Data	Zmiany	Odpowiedzialny
0.1		Powstanie niniejszego dokumentu w wersji polskiej.	Inna Uwarowa
1.0 PL	2014-04-07	Przepisanie dokumentu do spójnego szablonu	Dominik Roszkowski
1.0.1 PL	2014-07-02	Drobne zmiany redakcyjne	Dominik Roszkowski

This document is also available in English.

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

SPIS TREŚCI

1 0	pis czujnika słonecznego (Sun Sensor)	3
1.1	Cel	3
1.2	Właściwości mechaniczne	3
1.3	Cena	4
2 P	oziomy sukcesu SunS	5
3 Za	adania zespołu SunS	8
3.1	Symulator Słońca	8
3.2	Stanowisko testowe	9
3.3	Obudowa czujnika SunS	10
3.4	Analizy termiczne	11
4 P	rzyszłe prace	12
5 Za	ałączniki	13
Indek	S ILUSTRACJI	
Rysun	ek 1-1 Budowa czujnika słonecznego SunS	3
-	ek 2-1 Referencyjny czujnik słoneczny firmy ISIS	
Rysun	ek 3-1 Symulator Słońca Słonecznik	8
Rysun	ek 3-2 Rama podtrzymująca symulator Słońca	9
Rysun	ek 3-3 Stanowisko de testowania czujnika słonecznego SunS	10
-	ek 3-4 Obudowa czujnika słonecznego SunS	
Rysun	ek 3-5 Wyniki analiz termicznych dla SunS	11
Indek	S TABEL	
Tabela	a 2-1 Poziomy sukcesu podsystemu SunS	7
Tabela	a 4-1 Szacowany podział czasu pracy niezbędnego do wykonania zadań	12

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

1 Opis czujnika słonecznego (Sun Sensor)

1.1 CEL

Projekt czujnika słonecznego (zwanego dalej Sun Sensorem lub SunS) powstał w 2011 roku jako praca inżynierska jednego z członków obecnego zespołu.

Dokładny opis tego podsystemu można znaleźć w <u>załączniku 1</u>¹. W danym dokumencie zostanie przedstawiony opis ogólny.

Analogowy czujnik słoneczny jest drugim w kolejności priorytetów ładunkiem użytecznym satelity PW-Sat2.

1.2 WŁAŚCIWOŚCI MECHANICZNE

Główną zaletą czujnika jest bardzo prosta konstrukcja jego obudowy. Może ona być zamontowana na ściance satelity w rozmiarze 1U. Nie posiada żadnych ruchomych bądź skomplikowanych części [Rysunek 1-1]

Rysunek 1-1 Budowa czujnika słonecznego SunS.

-

¹ Uwarowa Inna, *Ocena dokładności wyznaczania pozycji satelity przy użyciu różnych czujników słonecznych*, praca dyplomowa inżynierska, Politechnika Warszawska, Warszawa 2011.

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

1.3 CENA

Czujnik słoneczny składa się z tanich i łatwo dostępnych materiałów. Materiałem światłoczułym jest powszechnie stosowane ogniwa fotowoltaiczne. Nie ma potrzeby używania drogich ogniw o wysokiej sprawności, gdyż nie mają one służyć jako źródła energii.

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

2 Poziomy sukcesu SunS

Głównym celem tego ładunku użytecznego jest sprawdzenie działania czujnika słonecznego nowego typu. Zakładana teoretyczna dokładność wynosi 0,1°, co jest bardzo trudne do uzyskania w rzeczywistości. Aby określić dokładność czujnika w warunkach przestrzeni kosmicznej należy porównać jego wskazania z czujnikami komercyjnymi. Jego maksymalna uzyskana dokładność będzie równa dokładności czujnika komercyjnego.

Jako czujnik referencyjny można użyć czujników dwóch typów:

- 1. Magnetometry ich dokładność jest określana na około 3°. Czujniki te charakteryzują się w porównaniu z innymi dość niską dokładnością. Czujnik słoneczny SunS z pewnością będzie miał co najmniej trzy razy większą dokładność. Ze względu na sytuację finansową jest to opcja podstawowa sprawdzenia tego systemu.
- 2. Czujnik słoneczny referencyjny czujnik słoneczny firmy ISIS [Rysunek 2-1], dokładność określana na 0,5°. Pozwoli na weryfikację i udowodnienie wyższej dokładności czujnika SunS.

Rysunek 2-1 Referencyjny czujnik słoneczny firmy ISIS.

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

Poniżej przedstawiono dane techniczne referencyjnego czujnika słonecznego.

Performance

- Field of view: 114°
- Update Rate: >10 Hz (limited by ADC)
- Accuracy: <0.5°
- Interfaces:
 - Power Supply: 5V
 - . I/F: 5 analogue channels, 9-way Nano-D connector

Product Properties

- Mass: < 5 g
- Power: < 10 mA
- Size: 33mm x 11mm x 6mm
- · Environmental Characteristics
 - · Operating temperature: -25°C to +50°C
 - · 250 rms random, 1000g shock (Qualification levels)
 - · 10krad total dose (component level)

Zdefiniowano cztery poziomy sukcesu tego podzespołu. W danym przypadku rozpatrujemy porównanie wskazań z magnetometrem.

Tabela 2-1 przedstawia cztery poziomy sukcesu czujnika słonecznego SunS oraz wymagania innych podsystemów podstawowych satelity, które muszą być spełnione, aby osiągnąć dany poziom sukcesu.

- Pierwszy i najwyższy poziom sukcesu oznacza, że wskazania czujnika słonecznego będą równe wskazaniom magnetometrów z odchyłką ±3°(σ). Ten poziom sukcesu zakłada również sprawdzenie działania czujnika w pełnym zakresie kątów. Oznacza to większe zaangażowanie systemu sterowania ADCS oraz systemu zasilania EPS.
- 2. Drugim poziomem sukcesu jest porównanie wskazań z magnetometrem z tą samą odchyłką, ale w innym, ograniczonym zakresie kątów. W tym przypadku nie możemy użyć systemu sterowania aby dokonać obrotu satelity w całym zakresie kątów czujnika SunS. Możemy natomiast porównać wskazania z magnetometrem i fotodiodami.
- 3. Trzeci przypadek odnosi się do sytuacji, kiedy nie można porównać wskazań czujnika ani z magnetometrem ani z fotodiodami. Znamy natomiast dokładność uzyskaną przy testach naziemny i możemy z nią porównać wskazania na orbicie.
- 4. Ostatnim i najniższym poziomem sukcesu jest przetestowanie czujnika na ziemi. Jeżeli uzyskana dokładność (0,5°) będzie stanowiła 20% dokładności teoretycznej(0,1°), będzie to uznane za sukces poziomu czwartego.

1			
PW-Sat2	Czujnik Słońca		
1.0 PL	PL Kategoria: Tylko do użytku		
	wewnętrznego		
Faza A projektu PW-Sat2			

Ładunek użyteczny	Poziom sukcesu	Opis	EPS	ОВС	ADCS	Comm UHV/VHF	Antenna UHF/VHF	TCS	Struktura	SADS	Sail
SunS	1	dokładność SunS = dokładność Mgtm	3,2Wh = com 2W/min + SunS 1W/20min +OBC 1,5W/0,5h+ ADCS 2W	10kB	on – pełna kontrola w każdym zakresie kątów	on 1min	on	-		-	-
	2	dokładność SunS = dokładność Mgtm	2,2Wh = com 2W/min + SunS 1W/20min +OBC 1,5W/0,5h+ADCS 1W	10kB	Tylko magnetometr i fotodiody	on 1min	on	-	-	-	-
	3	dokładność SunS = dokładność Mgtm	1,2Wh = com 2W/min + SunS 1W/20min + OBC 1,5W/0,5h	10kB		on 1min	on	-	-	-	-
	4	dokładność SunS = 80% dokładność teoretyczna	-	-	-	-	-	-	-	-	-

Tabela 2-1 Poziomy sukcesu podsystemu SunS

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

3 ZADANIA ZESPOŁU SUNS

Do realizacji projektu czujnika słonecznego potrzebne było zbudowanie stoiska testowego. Organizacja tego stoiska została podzielona na kolejne zadania:

3.1 SYMULATOR SŁOŃCA

Jednym z poprzednich, nie związanych z PW-Sat2, projektów koła SKA był projekt symulatora Słońca – Słonecznik ² [Zob. <u>Załącznik 2</u>]. Był to projekt dedykowany do misji satelity ESEO (*European Student Earth Orbiter*). Niestety Słonecznik był projektem nieukończonym. Sporo prac musieliśmy przeprowadzić dostosowując symulator do testów naszego czujnika.

Pierwsze uruchomienie i sprawdzenie Słonecznika [Rysunek 3-1] nastąpiło w czerwcu 2013 podczas praktyk trzech członków projektu w CBK. Zostały zrobione pomiary temperatury.

Rysunek 3-1 Symulator Słońca Słonecznik.

Słonecznik był projektowany do zamontowania na komorze próżniowej. Nie było możliwe postawienie go tak, aby świecił promieniami równolegle do podłoża, czyli tak jak wymagał nasz projekt. W związku z tym należało zaprojektować nową ramę do trzymania symulatora [Rysunek 3-2].

² Furła P., Kwas M., Toruniewska J., *SŁONECZNIK Symulator Słońca do Komory Próżniowej*, Studenckie Koło Astronautyczne, Politechnika Warszawska, Warszawa 2012.

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

Rysunek 3-2 Rama podtrzymująca symulator Słońca.

Konstrukcja ramy zakłada użycia uniwersalnych profile ITEM. Umożliwia to regulację wysokości ramy, jej wielokrotne składanie i rozkładanie oraz regulację poziomą.

Projekt został wykonany i czeka na zamówienie materiałów.

3.2 STANOWISKO TESTOWE

Projekt stanowiska testowego był pracą inżynierską jednego z członków zespołu. Prace nad stanowiskiem rozpoczęły się na praktykach w czerwcu 2013, a gotowe stanowisko było zmontowane w grudniu 2013. Praca inżynierska została obroniona w lutym 2014 r. Pełna wersja pracy znajduje się w załączniku³ [Zob. <u>Załącznik 3</u>].

STANOWISKO TESTOWE MUSIAŁO SPEŁNIAĆ NASTĘPUJĄCE WARUNKI:

1. Zapewnienie ruchu w zakresie ±90° w dwóch osiach.

Aby spełnić to wymaganie powstała konstrukcja przedstawiona poniżej [Rysunek 3-3]. Pierwszy kąt jest zapewniony w osi łączenia nóżek stanowiska. Drugi kąt, to obracająca się o 360° płytka widoczna na zdjęciu.

³ Łukasik Artur, *Konstrukcja stanowiska do testowania czujnika położenia satelity w przestrzeni kosmicznej*, praca dyplomowa inżynierska, Politechnika Warszawska, Warszawa 2014

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

Rysunek 3-3 Stanowisko de testowania czujnika słonecznego SunS.

2. Krok obrotu w każdej z osi musi być mniejszy niż 0,1°

Zakładana teoretyczna dokładność czujnika wynosi 0,1°. W celu spełnienia tego warunku zastosowano dwa silniki krokowe z przekładniami i sterownikami.

3. Zakres kątów w obydwu osiach musi wynosić od -90° do +90°.

Całą strukturę można łatwo rozmontować i zmontować, co ułatwia jej transport.

3.3 OBUDOWA CZUJNIKA SUNS

Obudowa jest potrzebna aby zamontować czujnik na stanowisku testowym. Wersja testowa może być większa niż wersja docelowa, montowana na satelicie, oraz może być wykonana z tańszych materiałów.

Głównym pytaniem było, czy obudowa w trakcie testów, pod wpływem dużych temperatur z symulatora Słońca, nie będzie się nierówno odkształcać powodując zmianę kąta położenie ogniw.

Analizy termiczne, które zostały wykonane przez zespół TCS, nie wykazały znaczących zmian w strukturze płytki [Rysunek 3-5].

Obudowa została wyprodukowana w styczniu 2013 r. – projekt i zdjęcie poniżej [Rysunek 3-4].

PW-Sat2	Czujnik Słońca	
1.0 PL	Kategoria: Tylko do użytku	
	wewnętrznego	
Faza A projektu PW-Sat2		

Rysunek 3-4 Obudowa czujnika słonecznego SunS

3.4 ANALIZY TERMICZNE

Rysunek 3-5 Wyniki analiz termicznych dla SunS.

PW-Sat2	Czujnik Słońca
1 50.0=	924)1111 9191194
1.0 PL	Kategoria: Tylko do użytku
	wewnętrznego
Faza A projektu PW-Sat2	

4 Przyszłe prace

W fazie B zakładano przeprowadzenie kompletnych testów czujnika słonecznego SunS. Pierwsza wersja ogniw słonecznych będzie wykorzystana do testów. Docelowo zostanę zamówione ogniwa wyższej jakości, posiadające pełną dokumentację.

Kolejna wersja ogniw została wybrana i wyceniona. Czeka na zamówienie.

Część	Zadanie	Godziny pracy
Symulator Słońca	Rozwiązanie problem stabilności źródła światła	12h
Mechanizm stanowiska	Założenie sprężyn	1h
testowego	Testy	4h
Elektronika stanowiska testowego	Dopracowanie	2h
Obudowa czujnika – wersja lotna	Projekt	10h
	Dobór materiałów	5h
	Produkcja	2 tygodnie
Elektronika i oprogramowanie czujnika	Dopracowanie	20h
	Prototyp	5h
	Wytwarzanie	2 tygodnie
Tooty	Wstępne	40h
Testy	Finalne	40h
Razem		140h + 4 tygodni

Tabela 4-1 Szacowany podział czasu pracy niezbędnego do wykonania zadań

PW-Sat2	Czujnik Słońca
1.0 PL	Kategoria: Tylko do użytku
	wewnętrznego
Faza A projektu PW-Sat2	

5 Załączniki

[1] Uwarowa Inna, Ocena dokładności wyznaczania pozycji satelity przy użyciu różnych czujników słonecznych, praca dyplomowa inżynierska, Politechnika Warszawska, Warszawa 2011.

[PW-Sat2_09_PRR_SunS_IUwarowa_Praca_inz_SunS.pdf]

- [2] Furła P., Kwas M., Toruniewska J., SŁONECZNIK Symulator Słońca do Komory Próżniowej, Studenckie Koło Astronautyczne, Politechnika Warszawska, Warszawa 2012.
 [PW-Sat2 09 PRR SunS Symulator Slonca Sprawozdanie SKA.pdf]
- [3] Łukasik Artur, *Konstrukcja stanowiska do testowania czujnika położenia satelity w przestrzeni kosmicznej*, praca dyplomowa inżynierska, Politechnika Warszawska, Warszawa 2014.

[PW-Sat2 09 PRR Suns ALukasik Praca Inz Slonecznik.pdf]