Advances in Electronic Phenotyping: From Rule-Based Definitions to Machine Learning Models

Juan M. Banda, Martin Seneviratne, Tina Hernandez-Boussard, and Nigam H. Shah

Electronic Phenotyping

Process of identifying patients with certain characteristics of interest

Table 1 Applications of electronic phenotyping across study types

Study type	Use cases		
Cross-sectional	Epidemiological research		
	Hospital administration/resource allocation		
	Adherence to diagnostic/treatment guidelines		
	Quality measurement		
Association (case-control/cohort)	Genome-wide association studies		
	Pharmacovigilance		
	Identifying clinical risk factors and protective factors		
	Clinical decision support		
	Clinical effectiveness research		
	Predictive modeling		
Experimental	Clinical trial recruitment		
	Pragmatic trials		
	Adaptive/randomized, embedded, multifactorial, adaptive platform		
	trials		

Challenges

- Structured data and unstructured data in EHR
- Practices of EHR input differ by site
- Accuracy of content entered by clinicians

Phenotyping is far more challenging than a simple code search and requires sophisticated methods that can account for heterogeneity

Paper Selection

Figure 1

Paper selection process outline. Combining a PubMed query from major journals with Google Scholar alerts and other recommendations, we narrowed down the papers we reviewed in a two-step process. First, we reduced the initial number of papers (numbers inside each box in row 1) via a quick paper review. We then conducted a more thorough paper review before settling on 89 papers to discuss in this review.

Rule-based methods

- Inclusion and exclusion criteria based on structured data
- Example: type 2 diabetes
 - Mention of the diagnosis code
 - At least one hypoglycemic medication
 - HbA1c above certain threshold
- work well for phenotypes that have clear diagnosis and procedure codes.

Phenotype Knowledgebase (PheKB)

Title	Institution	Phenotype Attributes	Owner Phenotyping Groups	View Groups	Has new content	Status	Туре
Abdominal Aortic Aneurysm (AAA)	Geisinger	CPT Codes, ICD 9 Codes, Vital Signs	eMERGE Geisinger Group	eMERGE Geisinger Group, eMERGE Phenotype WG		Final	Disease or Syndrome
ACE Inhibitor (ACE-I) induced cough	Vanderbilt University	CPT Codes, ICD 9 Codes, Medications, Natural Language Processing	eMERGE Vanderbilt Group	eMERGE Phenotype WG		Final	Drug Response - adverse effect or efficacy
ADHD phenotype algorithm	СНОР	ICD 9 Codes, Medications, Natural Language Processing	eMERGE CHOP Group	eMERGE Phenotype WG		Final	Disease or Syndrome
Anxiety algorithm	СНОР	CPT Codes, ICD 10 Codes, ICD 9 Codes, Medications	eMERGE CHOP Group	eMERGE CHOP Group, eMERGE Phenotype WG		Final	Disease or Syndrom
Appendicitis	Cincinnati Children's Hospital Medical Center	CPT Codes, ICD 9 Codes, Medications, Natural Language Processing	eMERGE CCHMC/BCH Group	eMERGE Phenotype WG		Final	Disease or Syndrom

The majority of which are rule-based and use structured data

Short Discussion

Why rule-based method is likely to be sub-optimal?

- lack of portability between phenotypes and health systems
- Complex diseases
- The quality of structured data
- What else?

Unstructured Data

- clinical notes
- discharge summaries
- radiology
- pathology reports
- contain a wealth of phenotypic information
- represent approximately 80% of data captured in EHRs

Nature Language Processing (NLP)

- Predominantly statistical: can extract contextual cues such as causality and temporality
- Example use of NLP in clinical data
 - extract coded concepts from radiology reports
 - extract respiratory diagnoses and smoking statuses from discharge summaries
 - extract adverse outcomes following drug exposures

FSSMC (feature selection via supervised model construction)

Huang et al., 2007

a cohort of diabetic patients and controls

Manually selected 47 features from 410 structured variables

FSSMC was used to rank the top 15 features

3 classifiers: naive Bayes, C4.5, IB1

A best predictive accuracy of 95% and sensitivity of 98% was achieved

Build SVM (support vector machine) for rheumatoid arthritis (RA)

prescription data, ICD-9 codes, and UMLS clinical concepts extracted from clinical narratives

Similar performance for naïve (i.e., non-curated) and expert-defined collections of EHR features

phenotype labels derived from the eMERGE type 2 diabetes definition

demographics, coded billing data, and lab measurements

Discover the combinations of diagnosis code and/or abnormal lab results through exhaustive

enumeration

Superior performance compared to traditional machine learning techniques

All require manually labeled gold standard training and test data sets for model building and validation

Machine Learning(ML) Methods Learning with Noisy Data

- Assumption: A large volume of training data should compensate for inaccuracies in the labels
- Anchor variables: highly informative, clinically relevant features for a specific phenotype.
- Examples:
 - Anchor-based learning (Halpern et al., 2014; Halpern et al., 2016)
 - XPRESS (extraction of phenotypes from records using silver standards) (Agarwal et al., 2016)

Machine Learning(ML) Methods

Supervised Learning

Semi-Automatic

Initial set of anchors or noisy labels is identified by an expert in order for the phenotype model to be relevant.

Machine Learning(ML) Methods Unsupervised Phenotype Discovery

- Generate phenotypes with minimal human supervision
- Ho et al. defined "ideal" phenotype:
 - (a) A phenotype represents complex interactions between several features (e.g. diagnosis and medication)
 - (b) the definition should be **concise and understandable** by a medical professional
 - (c) the definition can be translated into new domain knowledge.

Machine Learning(ML) Methods

Supervised Learning

Semi-Automatic

Machine Learning(ML) Methods

Supervised Learning

Semi-Automatic

Unsupervised learning

Machine Learning(ML) Methods Hybrid

- AFEP (automated feature extraction for phenotyping)
 - leveraging publicly available data sources of medical knowledge like Medscape and Wikipedia
 - produces a list of UMLS concepts that are proposed as features to use
 - further refined by only keeping the concepts found in clinical notes of EHRs
- SAFE (surrogate-assisted feature extraction)
 - Five data source
 - incorporating the idea of imperfect labeling

Future Directions

- Accurate phenotyping using EHRs is necessary
- Complementing EHRs with other types of data, including registries, wearable feeds, multiomic data, imaging, and patient-reported outcomes
- Validating unsupervised phenotype definitions
- explore representation learning to reduce the burden of feature engineering, as well as to investigate portable methods for feature engineering across phenotypes
- expansion of these collaborative networks, as phenotyping tools stand to benefit from shared data and diverse test sites.