Document Number: AN5161 Rev. 1.0, 7/2016

Powering an i.MX 6SX-based system using the PF3000 PMIC

1 Introduction

The PF3000 is a highly integrated Power Management IC ideally suited to power NXP's i.MX 6SX, i.MX 6SL, i.MX 6S, i.MX 6DL, i.MX 6UL and the i.MX 7 series of applications processors. This Application Note discusses the power tree configuration for powering an i.MX 6SX based system using the PF3000.

NXP analog ICs are manufactured using the SMARTMOS process, a combinational BiCMOS manufacturing flow that integrates precision analog, power functions and dense CMOS logic together on a single cost-effective die.

Contents

1	Introduction	1
2	PF3000 voltage regulators	2
3	i.MX 6SX power management using the PF3000	3
4	PF3000 power input	4
5	PF3000 layout guidelines	5
6	PF3000 software support	5
7	Schematics	6
8	References	27
9	Revision history	28

2 PF3000 voltage regulators

Table 1 shows a summary of the voltage regulators in the PF3000. Output voltage and startup sequence of the regulators is programmed into the PMIC through One Time Programmable (OTP) memory. For more details, refer to the product datasheet.

Table 1. PF3000 voltage regulators

Regulator	Output voltage range	Load current rating
SW1A	0.7 V to 1.425 V 1.8 V 3.3 V	1000 mA
SW1B	0.7 V to 1.475 V	1750 mA
SW2	1.5 V to 1.85 V 2.5 V to 3.3 V	1250 mA
SW3	0.9 V to 1.65 V	1500 mA
SWBST	5.0 V to 5.15 V	600 mA
VSNVS	3.0 V	1.0 mA
VLDO1	1.8 V to 3.3 V	100 mA
VLDO2	0.8 V to 1.55 V	250 mA
VLDO3	1.8 V to 3.3 V	100 mA
VLDO4	1.8 V to 3.3 V	350 mA
VCC_SD	1.8 V to 1.85 V 2.85 V to 3.3 V	100 mA
V33	2.85 V to 3.3 V	350 mA
VREFDDR	VINREFDDR/2	10 mA

3 i.MX 6SX power management using the PF3000

The i.MX 6SX processor features NXP's advanced implementation of the a single ARM® Cortex®-A9 MPCore™ multicore processor, which operates at speeds up to 1 GHz. Table 2 shows how PF3000 can be used to power an i.MX 6SX based system. This include the voltage rails required by the processor as well as memory and common peripherals. As a programming PMIC, the PF3000 can be used in a number of ways to power the i.MX 6SX. Table 2 lists one of the many possibilities. The power tree can be optimized based on specific application requirements.

Table 2. PF3000 + i.MX 6SX power tree

Regulator	Voltage	Sequence	Load domain
SW1A	1.375 V	2	VDDCORE
SW1B	1.375 V	2	VDDSOC
SW2	3.3 V	4	NVCC_SD4, NVCC_NAND, NVCC_GPIO, NVCC_KEY, NVCC_QSPI, NVCC_LCD1, NVCC_HIGH (SD3), LCD Connector, CAN, Sensors, SD3 (SD3.0 Card), SD4 (SD Card-boot), QSPI Flash
SW3	1.35 V	3	DDR3L
SWBST	5.0 V	Off	N/A
VSNVS	3.0 V	0	VDD_SNVS_IN
VLDO1	3.3 V	Off	N/A
VLDO2	1.5 V	Off	Camera Connector, MPCIE
VLDO3	2.5 V	Off	Camera Connector, Audio Codec
VLDO4	1.8 V	4	NVCC_LOW(SD3), NVCC_CSI
VCC_SD	3.3 V	5	VDD_AFE_3P3, VDDA_ADC_3P3 (12-bit ADC), ADC_VREFH (12-bit ADC)
V33	3.0 V	1	VDD_HIGH_IN,VDD_HIGH_CAP
VREFDDR	0.625 V	3	DRAM_VREF

4 PF3000 power input

PF3000 input voltage range is 2.8 V to 4.5 V or 3.7 V to 5.5 V. 2.8 V to 4.5 V when VIN is used at input. 3.7 V to 5.5 V when VPWR is used as input.

For non-battery operated applications, when the input supply voltage exceeds 4.5 V, the front-end LDO can be activated by populating the external PMOS pass FET Q16 in Figure 1 and connecting the VPWR pin to the main supply. In this case, the LDO control block self-starts with a local bandgap reference.

Figure 1. PF3000 5.0 V input circuit

In a battery operated application, BC3770 input is connected directly to the adapter. BC3770 is a fully programmable switching charger with dual-path output. One output path connect to PF3000 VIN as the system power supply. The other output path is for single-cell Li-Ion and Li-Polymer battery. (See Figure 2.) In this case, the PMOS pass FET Q16 should not be populated and VPWR pin should be grounded externally.

Figure 2. BC3770 lithium charger

5 PF3000 layout guidelines

The Application Note AN5094 provides best practices for the layout of the PF3000 device on printed circuit boards. To download AN5094, click on the following link: http://www.nxp.com/files/analog/doc/app_note/AN5094.pdf

6 PF3000 software support

NXP offers PF3000 code support for a custom i.MX 6 board at the NXP Community site https://community.nxp.com/docs/DOC-105064).

7 Schematics

Figure 3. Schematic part 1

Figure 4. Schematic part 2

Figure 5. Schematic part 3

Figure 6. Schematic part 4

Figure 7. Schematic part 5

Figure 8. Schematic part 6

Figure 10. Schematic part 8

Figure 11. Schematic part 9

Figure 12. Schematic part 10

Figure 13. Schematic part 11

Figure 14. Schematic part 12

Figure 15. Schematic part 13

Figure 16. Schematic part 14

Figure 17. Schematic part 15

Powering an i.MX 6SX-based system using the PF3000 PMIC, Rev. 1.0

Figure 18. Schematic part 16

Figure 19. Schematic part 17

Pin 1 of the cable connector on the Smart Device board is opposite Pin 20 of the WIFI/BT module. For the FFC to lie flat, the pin order number needs to be

NOTE:

reversed on the schematics.

Cable Pin 20 Cable Pin 1 CON FPC/FFC 20 C284 25V 0402_cc li-8 PERI 3V3 SILEX BT DISABLE BT WAKEUP is not used in current SW driver. TP61 TP60 DNP DNP R331 R332 330 R329 UART5_CTS_B UARTS_RTS_B UARTS_RXD UARTS_TXD BT_PWD_B 9

Figure 20. Schematic part 18

Powering an i.MX 6SX-based system using the PF3000 PMIC, Rev. 1.0

CABLE CONNECTOR

BLUETOOTH

Figure 21. Schematic part 19

Figure 22. Schematic part 20

Figure 23. Schematic part 21

8 References

Following are URLs where you can obtain information on related NXP products and application solutions:

Support pages	Description	URL
i.MX 6SX	Product Summary Page	http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=i.MX6SX
PF3000	Product Summary Page	http://www.nxp.com/webapp/sps/site/prod_summary.jsp?code=PF3000
PF3000 Layout Guidelines	Application Note	http://www.nxp.com/files/analog/doc/app_note/AN5094.pdf
NXP Community	Support Site	https://community.nxp.com/docs/DOC-105064

9 Revision history

Revision	Date	Description
1.0	7/2015	Initial release
1.0	7/2016	Updated to NXP document form and style

How to Reach Us:

Home Page: NXP.com

Web Support:

http://www.nxp.com/support

Information in this document is provided solely to enable system and software implementers to use NXP products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address:

http://www.nxp.com/terms-of-use.html.

NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS are trademarks of NXP B.V. All other product or service names are the property of their respective owners. All rights reserved.

© 2016 NXP B.V.

Document Number: AN5161

Rev. 1.0 7/2016

