

ABM Mahfuz ul Alam, Ph.D. Dhaka, Bangladesh

© ACSCIP, Rev 01, September 2024

This book	is printed on online.
Copyright	t 2024 ACSCIP
All rights	reserved.
electronic	of this publication may be reproduced or transmitted in any formor by any means cormechanical, including photocopy, recording, or any information storage and retrieval vithout permission in writing from the Publisher.
•	
A CC CID D	Introduce and the second secon
Dhaka, Ba	ublications
www.acso	
<u></u>	

Contents

1. Introduction	4
1.1 Acids	4
1.2 Bases	4
1.3 Salts	4
1.4 Importance of Studying Acids, Bases, and Salts	5
2. Introduction to Acids	6
2.1 Properties of Acids.	6
2.2 Types of Acids	6
2.1 Strong and Weak Acids	7
2.2 Organic and Inorganic Acids	8
2.3 Monoprotic, Diprotic, and Triprotic Acids	10
3. Introduction to Reactivity Series	11
3.1 The Reactivity Series of Metals	11
3.2 Reactions of Metals with Acids	12
3.3 Reactions of Metals with Dilute and Concentrated Acids	13
3.4 Reactions of Metals with Nitric Acid (HNO ₃)	13
3.5 Displacement Reactions of Metals with Acids	14
4. Introduction to Bases	15
4.1 Properties of Bases	15
4.2 Classification of Bases	15
4.2.1 Alkalis	16
4.2.2 Metal Oxides	16
4.2.3 Metal Hydroxides	17
4.2.4 Metal Carbonates	17
4.2.5 Ammonia and Related Compounds	18
4. 3. Differences Between Types of Bases	18
5. Introduction to pH	20
5.1 Understanding the pH Scale	20
5.1.1 The pH Scale and Its Interpretation	20
5.1.2 Key Points About the pH Scale	20
5.2 Measurement of pH	20

CHEMISTRY: Acids, Bases and Salts

ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

5.2.1 Using pH Indicators	21
5.2.2 Using pH Meters	21
5.2.3 Using pH Strips	21
5.3. Importance of pH in Everyday Life	21
6. Introduction to Indicators	23
6.1 Types of Indicators	23
6.1.1 Natural Indicators	23
6.1.2 Synthetic Indicators	23
6.1.3 Universal Indicators	24
6.2 Use of Indicators in Titration	25
6.3 Choosing the Right Indicator	25
6.4 Importance of Indicators	25
6.5. Limitations of Indicators	25
6. Introduction to Acid-Base Titrations	26
6.1 Basic Concepts of Titration	26
6.1.1 Titrant	26
6.1.2 Analyte	26
6.1.3 Equivalence Point	26
6.1.4 Endpoint	27
6.2. Types of Acid-Base Titrations	27
6.2.1 Strong Acid vs. Strong Base Titration	27
6.2.2 Weak Acid vs. Strong Base Titration	27
6.2.3 Strong Acid vs. Weak Base Titration	27
6.2.4 Weak Acid vs. Weak Base Titration	28
6.3. Performing an Acid-Base Titration	28
6.3.1 Apparatus Required	28
6.3.2 Procedure	28
6.3.3 Calculations in Titration	29
6.4 Applications of Acid-Base Titration	29
7. Introduction to Amphoteric Oxides	30
7.1 Examples of Amphoteric Oxides	
7.2. Reactions of Amphoteric Oxides	30
7.2.1. Reaction with Acids	30

CHEMISTRY: Acids, Bases and Salts

ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

7.2.2 Reaction with Bases (Alkalis)	31
7.3 Importance of Amphoteric Oxides	31
8. Introduction to Salts	32
8.1. Types of Salts	32
8.1.1 Normal Salts	33
8.1.2 Acid Salts	33
8.1.3 Basic Salts	33
8.1.4 Double Salts	34
8.1.5 Complex Salts	34
8.1.6. Soluble Salts	34
6.1.7. Insoluble Salts	36
8.2 Differences Between Types of Salts	37
8.3 Reactions of Salts	38
8.4. Importance of Salts	39
8.5 Hydrolysis of Salts	39
9. Comparisons of Acids, Bases and Salts	40
9.1 Differences Between Acids, Bases, and Salts	40
9.2 Similarities Between Acids, Bases, and Salts	40
10. References of Authors Other Articles:	42
11. About Author	

1. Introduction

Acids, bases, and salts are fundamental concepts in chemistry that play a crucial role in both everyday life and scientific processes. Understanding these substances, their properties, and their interactions is essential for exploring a wide range of chemical reactions and their practical applications.

Revision: 01

1.1 Acids

- **Definition:** Acids are substances that release hydrogen ions (H⁺) when dissolved in water. They are characterized by their sour taste, ability to turn blue litmus paper red, and their tendency to react with metals, bases, and carbonates.
- Common Examples: Hydrochloric acid (HCl), sulfuric acid (H₂SO₄), acetic acid (CH₃COOH).
- **Importance:** Acids are found in a variety of everyday products, from food and beverages to cleaning agents. They are also vital in industrial processes, such as the manufacture of fertilizers, plastics, and pharmaceuticals.

1.2 Bases

- **Definition:** Bases are substances that can accept hydrogen ions (H⁺) or release hydroxide ions (OH⁻) in aqueous solutions. They are known for their bitter taste, slippery feel, and ability to turn red litmus paper blue.
- **Common Examples:** Sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonia (NH₃).
- **Importance:** Bases are used in a wide range of applications, including soap and detergent manufacturing, water treatment, and the production of biodiesel. They are also essential in various chemical reactions, such as neutralization processes.

1.3 Salts

- **Definition:** Salts are ionic compounds formed when an acid reacts with a base, resulting in the neutralization of the acid and base properties. A salt consists of a cation (positive ion) from the base and an anion (negative ion) from the acid.
- Common Examples: Sodium chloride (NaCl), calcium carbonate (CaCO₃), potassium nitrate (KNO₃).
- **Importance:** Salts are ubiquitous in nature and are essential for life. They are used in food preservation, as dietary supplements, in agriculture, and in numerous industrial processes.

1.4 Importance of Studying Acids, Bases, and Salts

- Chemical Reactions: Acids, bases, and salts are involved in a vast array of chemical reactions, including neutralization, precipitation, and redox reactions. Understanding these substances is crucial for predicting the outcomes of such reactions.
- Everyday Applications: The principles of acids, bases, and salts are applied in everyday life, from cooking and cleaning to gardening and medicine. Knowledge of these substances helps in making informed decisions in daily activities.
- Industrial Applications: The study of acids, bases, and salts is fundamental to many industries, including pharmaceuticals, agriculture, food processing, and chemical manufacturing. Mastery of these concepts enables innovation and efficiency in these fields.
- Environmental Impact: Understanding the role of acids, bases, and salts in environmental processes, such as acid rain, soil pH, and water quality, is critical for environmental protection and sustainable development.

2. Introduction to Acids

Acids are substances that release hydrogen ions (H⁺) when dissolved in water. They play a significant role in chemical reactions, especially in forming salts and determining pH levels. Acids are categorized based on their strength, origin, and chemical composition. Understanding these types is essential for recognizing their properties, uses, and behavior in reactions.

Revision: 01

2.1 Properties of Acids

• General Characteristics:

Taste: SourpH: Less than 7

o Conductivity: Conduct electricity in solution (electrolytes)

o Indicators: Turn blue litmus paper red

• Common Reactions Involving Acids:

Reaction Type	General Equation	Example
Acid + Metal	Acid + Metal → Salt + Hydrogen	$2HCl + Zn \rightarrow ZnCl_2 + H_2$
Acid + Base (Neutralization)	Acid + Base → Salt + Water	$HCl + NaOH \rightarrow NaCl + H_2O$
Acid + Carbonate	Acid + Carbonate → Salt + Water + CO ₂	$\begin{split} & 2HCl + CaCO_3 \rightarrow CaCl_2 + \\ & H_2O + CO_2 \end{split}$
Acid + Metal Oxide	Acid + Metal Oxide → Salt + Water	$\begin{aligned} & 2HCl + CuO \rightarrow CuCl_2 + \\ & H_2O \end{aligned}$

2.2 Types of Acids

Acids can be classified into several types based on their characteristics. The key categories are:

- 1. Strong and Weak Acids
- 2. Organic and Inorganic Acids
- 3. Monoprotic, Diprotic, and Triprotic Acids

2.1 Strong and Weak Acids

• Strong Acids:

 Definition: Strong acids completely dissociate in water, releasing a large number of hydrogen ions.

• Examples:

• Hydrochloric Acid (HCl): Found in stomach acid, used in industry and lab settings.

Revision: 01

- Sulfuric Acid (H₂SO₄): Used in batteries, manufacturing fertilizers, and chemicals.
- Nitric Acid (HNO₃): Used in fertilizers, explosives, and as a laboratory reagent.

• Reactions:

Reaction Type	General Equation	Example
Strong Acid + Base	Strong Acid + Base → Salt + Water	$\begin{aligned} \mathbf{HCl} + \mathbf{NaOH} \rightarrow \\ \mathbf{NaCl} + \mathbf{H_2O} \end{aligned}$
Strong Acid + Metal	Strong Acid + Metal → Salt + Hydrogen	${\rm 2HCl} + Zn \rightarrow ZnCl_2 + \\ H_2$
Strong Acid + Carbonate	Strong Acid + Carbonate → Salt + Water + CO ₂	$\begin{aligned} & 2HCl + CaCO_3 \rightarrow \\ & CaCl_2 + H_2O + CO_2 \end{aligned}$

• Weak Acids:

o **Definition:** Weak acids partially dissociate in water, releasing fewer hydrogen ions.

Examples:

- Ethanoic Acid (CH₃COOH): Found in vinegar, used in food preservation.
- Citric Acid (C₆H₈O₇): Found in citrus fruits, used in food and cleaning products.
- Carbonic Acid (H₂CO₃): Found in carbonated drinks, used in soft drinks.

o Reactions:

Reaction Type	General Equation	Example
Weak Acid + Base	Weak Acid + Base → Salt + Water	$\begin{array}{l} \mathrm{CH_{3}COOH} + \mathrm{NaOH} \rightarrow \\ \mathrm{CH_{3}COONa} + \mathrm{H_{2}O} \end{array}$
Weak Acid + Metal	Weak Acid + Metal → Salt + Hydrogen	$2\mathrm{CH_3COOH} + \mathrm{Mg} ightarrow \ (\mathrm{CH_3COO})_2\mathrm{Mg} + \mathrm{H_2}$
Weak Acid + Carbonate	Weak Acid + Carbonate → Salt + Water + CO ₂	$\begin{aligned} & 2\mathrm{CH_3COOH} + \mathrm{CaCO_3} \rightarrow \\ & (\mathrm{CH_3COO})_2\mathrm{Ca} + \mathrm{H_2O} + \mathrm{CO_2} \end{aligned}$

Revision: 01

• Key Differences Between Strong and Weak Acids:

Property	Strong Acids	Weak Acids
Dissociation	Complete	Partial
in Water		
pH Level	Very low (1-3)	Moderately low (3-6)
Conductivity	High (more ions in solution)	Lower (fewer ions in solution)
Reaction Rate	Faster	Slower
Examples	HCl, H ₂ SO ₄ , HNO ₃	CH ₃ COOH, H ₂ CO ₃ , C ₆ H ₈ O ₇

2.2 Organic and Inorganic Acids

• Organic Acids:

o **Definition:** Acids that contain carbon atoms in their molecular structure.

o Examples:

- Ethanoic Acid (CH₃COOH): Used in vinegar.
- Citric Acid (C₆H₈O₇): Found in citrus fruits.
- Lactic Acid (C₃H₆O₃): Found in sour milk products, muscles.

• Reactions:

Reaction Type	General Equation	Example
Organic Acid + Base	Organic Acid + Base → Salt + Water	$\begin{array}{l} CH_{3}COOH + NaOH \rightarrow \\ CH_{3}COONa + H_{2}O \end{array}$
Organic Acid + Metal	Organic Acid + Metal → Salt + Hydrogen	$2\mathrm{CH_3COOH} + \mathrm{Mg} ightarrow \ (\mathrm{CH_3COO})_2\mathrm{Mg} + \mathrm{H_2}$
Organic Acid + Carbonate	Organic Acid + Carbonate → Salt + Water + CO₂	$\begin{aligned} &2\mathrm{CH_3COOH} + \mathrm{CaCO_3} \rightarrow \\ &(\mathrm{CH_3COO})_2\mathrm{Ca} + \mathrm{H_2O} + \mathrm{CO_2} \end{aligned}$

Revision: 01

• Inorganic Acids:

o *Definition:* Acids that do not contain carbon atoms in their molecular structure.

• Examples:

- Hydrochloric Acid (HCl): Used in cleaning, industry.
- Sulfuric Acid (H₂SO₄): Used in batteries, fertilizers.
- Nitric Acid (HNO₃): Used in fertilizers, explosives.

• Reactions:

Reaction Type	General Equation	Example
Inorganic Acid + Base	Inorganic Acid + Base → Salt + Water	$\begin{aligned} & HCl + NaOH \rightarrow \\ & NaCl + H_2O \end{aligned}$
Inorganic Acid + Metal	Inorganic Acid + Metal → Salt + Hydrogen	$2HCl + Zn \rightarrow ZnCl_2 + \\ H_2$
Inorganic Acid + Carbonate	Inorganic Acid + Carbonate → Salt + Water + CO ₂	$\begin{aligned} & 2HCl + CaCO_3 \rightarrow \\ & CaCl_2 + H_2O + CO_2 \end{aligned}$

• Key Differences Between Organic and Inorganic Acids:

Property	Organic Acids	Inorganic Acids
Presence of Carbon	Yes	No
Source	Typically biological (plants, animals)	Typically mineral (earth, rocks)
Strength	Usually weak	Can be strong or weak
Examples	CH ₃ COOH, C ₆ H ₈ O ₇ , C ₃ H ₆ O ₃	HCl, H ₂ SO ₄ , HNO ₃

2.3 Monoprotic, Diprotic, and Triprotic Acids

• Monoprotic Acids:

o **Definition:** Acids that can donate one hydrogen ion (H⁺) per molecule.

Revision: 01

- Examples:
 - Hydrochloric Acid (HCl)
 - Nitric Acid (HNO₃)
 - Ethanoic Acid (CH₃COOH)

• Reactions:

Reaction Type	General Equation	Example
Monoprotic Acid + Base	Monoprotic Acid + Base → Salt + Water	$\begin{aligned} &HCl + NaOH \rightarrow \\ &NaCl + H_2O \end{aligned}$

• Diprotic Acids:

- o **Definition:** Acids that can donate two hydrogen ions (H⁺) per molecule.
- o Examples:
 - Sulfuric Acid (H₂SO₄)
 - Carbonic Acid (H₂CO₃)

• Reactions:

Reaction Type	General Equation	Example
Diprotic Acid + Base	Diprotic Acid + 2 Base → 2 Salt + Water	$\begin{aligned} &H_2SO_4 + 2NaOH \rightarrow \\ &Na_2SO_4 + 2H_2O \end{aligned}$

• Triprotic Acids:

o **Definition:** Acids that can donate three hydrogen ions (H⁺) per molecule.

• Examples:

- Phosphoric Acid (H₃PO₄)
- Citric Acid (C₆H₈O₇)

• Reactions:

Reaction Type	General Equation	Example
Triprotic Acid + Base	Triprotic Acid + 3 Base → 3 Salt + Water	$\begin{array}{l} H_3PO_4 + 3NaOH \rightarrow \\ Na_3PO_4 + 3H_2O \end{array}$

Revision: 01

• Key Differences Between Monoprotic, Diprotic, and Triprotic Acids:

Property	Monoprotic Acids	Diprotic Acids	Triprotic Acids
Number of H ⁺ Ions	One	Two	Three
Examples	HCl, HNO3, CH3COOH	H ₂ SO ₄ , H ₂ CO ₃	H ₃ PO ₄ , C ₆ H ₈ O ₇

3. Introduction to Reactivity Series

The reactivity series is a list of metals arranged in order of their reactivity, from the most reactive to the least reactive. This series helps predict how different metals will react with acids, water, and other substances. Understanding the reactivity series is crucial for predicting and explaining the outcomes of various chemical reactions, especially those involving acids.

3.1 The Reactivity Series of Metals

The reactivity series places metals in the following order (from most reactive to least reactive):

• Key Points:

- o Metals at the top of the series, like potassium and sodium, are highly reactive.
- o Metals at the bottom, such as gold and platinum, are very unreactive.

3.2 Reactions of Metals with Acids

Metals react with acids to form salts and release hydrogen gas. The reactivity of the metal with acid depends on its position in the reactivity series.

• General Reaction Formula:

Metal + Acid → Salt + Hydrogen Gas

• Example Reactions:

Metal	Reaction with Hydrochloric Acid (HCI)	Equation	Observation
Potassium (K)	Potassium + HCl → Potassium Chloride + Hydrogen	$\begin{array}{c} 2K + 2HCl \rightarrow \\ 2KCl + H_2 \end{array}$	Very vigorous, explosive reaction
Sodium (Na)	Sodium + HCl → Sodium Chloride + Hydrogen	$\begin{array}{l} 2Na + 2HCl \rightarrow \\ 2NaCl + H_2 \end{array}$	Very vigorous reaction, fizzing
Calcium (Ca)	Calcium + HCl → Calcium Chloride + Hydrogen	$\begin{array}{c} {\rm Ca+2HCl} \rightarrow \\ {\rm CaCl_2+H_2} \end{array}$	Vigorous reaction, fizzing
Magnesium (Mg)	Magnesium + HCl → Magnesium Chloride + Hydrogen	$\begin{array}{l} {\rm Mg} + 2 {\rm HCl} \rightarrow \\ {\rm MgCl_2} + {\rm H_2} \end{array}$	Fizzing, heat produced
Aluminum (Al)	Aluminum + HCl → Aluminum Chloride + Hydrogen	$\begin{aligned} 2Al + 6HCl \rightarrow \\ 2AlCl_3 + 3H_2 \end{aligned}$	Slow to start (oxide layer), then rapid
Zinc (Zn)	Zinc + HCl → Zinc Chloride + Hydrogen	$\begin{array}{l} Zn + 2HCl \rightarrow \\ ZnCl_2 + H_2 \end{array}$	Moderate reaction, steady fizzing
Iron (Fe)	lron + HCl → Iron(II) Chloride + Hydrogen	$\begin{array}{l} {\rm Fe} + 2 {\rm HCl} \rightarrow \\ {\rm FeCl}_2 + {\rm H}_2 \end{array}$	Slow reaction, bubbles form
Copper (Cu)	Copper + HCl → No Reaction	$\mathrm{Cu} + \mathrm{HCl} \rightarrow$ No Reaction	No visible reaction
Silver (Ag)	Silver + HCl → No Reaction	$\mathrm{Ag} + \mathrm{HCl} \rightarrow$ No Reaction	No visible reaction
Gold (Au)	Gold + HCl → No Reaction	$\begin{array}{c} {\rm Au+HCl} \rightarrow \\ {\rm No~Reaction} \end{array}$	No visible reaction

3.3 Reactions of Metals with Dilute and Concentrated Acids

The reactivity of a metal with an acid also depends on whether the acid is dilute or concentrated.

• Dilute Acids:

- o Typically produce salts and hydrogen gas.
- o Examples include reactions with hydrochloric acid (HCl) and sulfuric acid (H₂SO₄).

Revision: 01

• Concentrated Acids:

- o Often produce different products due to oxidation reactions.
- o For example, concentrated sulfuric acid (H₂SO₄) can oxidize metals, leading to the formation of sulfur dioxide (SO₂) instead of hydrogen gas.

• Reactions of Metals with Sulfuric Acid (H₂SO₄):

Metal	Reaction with Dilute Sulfuric Acid	Equation	Observation
Zinc (Zn)	Zinc + H₂SO₄ → Zinc Sulfate + Hydrogen	$\begin{array}{l} Zn + H_2SO_4 \rightarrow \\ ZnSO_4 + H_2 \end{array}$	Moderate reaction, steady fizzing
Copper (Cu)	Copper + H₂SO₄ → No Reaction	$\mathrm{Cu} + \mathrm{H_2SO_4} ightarrow \mathrm{No\ Reaction}$	No visible reaction
Zinc (Zn)	Zinc + Concentrated H₂SO₄ → Zinc Sulfate + Sulfur Dioxide + Water	$\begin{split} Zn + 2H_2SO_4 \rightarrow \\ ZnSO_4 + SO_2 + 2H_2O \end{split}$	Violent reaction, gas evolved
Copper (Cu)	Copper + Concentrated H₂SO₄ → Copper(II) Sulfate + Sulfur Dioxide + Water	$\begin{aligned} Cu + 2H_2SO_4 \rightarrow \\ CuSO_4 + SO_2 + 2H_2O \end{aligned}$	Slow reaction, color change to blue

3.4 Reactions of Metals with Nitric Acid (HNO₃)

• Nitric acid behaves differently from other acids. Instead of releasing hydrogen gas, it typically produces nitrogen oxides (NO or NO₂) and water when reacting with metals.

• Example Reactions:

Metal	Reaction with Nitric Acid	Equation	Observation
Magnesium (Mg)	Magnesium + Dilute HNO₃ → Magnesium Nitrate + Nitrogen Dioxide + Water	$\begin{aligned} &3\mathrm{Mg} + 8\mathrm{HNO_3} \rightarrow \\ &3\mathrm{Mg}(\mathrm{NO_3})_2 + 2\mathrm{NO} + \\ &4\mathrm{H_2O} \end{aligned}$	Vigorous reaction, brown gas evolved
Copper (Cu)	Copper + Concentrated HNO₃ → Copper(II) Nitrate + Nitrogen Dioxide + Water	$\begin{aligned} \mathrm{Cu} + 4\mathrm{HNO_3} \rightarrow \\ \mathrm{Cu(NO_3)_2} + 2\mathrm{NO_2} + \\ 2\mathrm{H_2O} \end{aligned}$	Slow reaction, brown gas, color change

3.5 Displacement Reactions of Metals with Acids

• **Displacement Reactions:** A more reactive metal can displace a less reactive metal from its compound in solution.

• General Equation:

More Reactive Metal + Metal Salt Solution → Less Reactive Metal + New Salt

• Example:

- o Zinc + Copper Sulfate → Zinc Sulfate + Copper
- o Equation: Zn+CuSO4→ZnSO4+Cu
- o Observation: Copper is deposited, and the blue color of the copper sulfate solution fades.

4. Introduction to Bases

Bases are substances that can neutralize acids to form salts and water. They can be classified into several categories based on their chemical properties and solubility. Understanding these classifications is crucial for predicting their behavior in chemical reactions.

Revision: 01

4.1 Properties of Bases

• General Characteristics:

Taste: BitterFeel: SlipperypH: Greater than 7

Conductivity: Conduct electricity in solution (electrolytes)

o Indicators: Turn red litmus paper blue

• Common Reactions Involving Bases:

Reaction Type	General Equation	Example
Base + Acid (Neutralization)	Base + Acid → Salt + Water	$\begin{array}{l} NaOH + HCl \rightarrow NaCl + \\ H_2O \end{array}$
Base + Ammonium Salt	Base + Ammonium Salt → Salt + Water + Ammonia	$\begin{aligned} \text{NaOH} + \text{NH}_4\text{Cl} \rightarrow \\ \text{NaCl} + \text{H}_2\text{O} + \text{NH}_3 \end{aligned}$
Base + Non-Metal Oxide	Base + Non-Metal Oxide → Salt + Water	$\begin{aligned} &2\mathrm{NaOH} + \mathrm{CO_2} \rightarrow \\ &\mathrm{Na_2CO_3} + \mathrm{H_2O} \end{aligned}$

4.2 Classification of Bases

Bases can be categorized into the following types:

- 1. Alkalis
- 2. Metal Oxides
- 3. Metal Hydroxides
- 4. Metal Carbonates
- 5. Ammonia and Related Compounds

4.2.1 Alkalis

• **Definition:** Alkalis are bases that are soluble in water. They release hydroxide ions (OH⁻) when dissolved. Alkalis are a subset of bases and include the hydroxides of alkali metals and some alkaline earth metals.

• Types of Alkalis:

 Strong Alkalis: Fully dissociate in water, resulting in a high concentration of OHions.

Revision: 01

 Weak Alkalis: Partially dissociate in water, resulting in a lower concentration of OH- ions.

• Examples:

Type	Example	Chemical Formula
Strong Alkali	Sodium Hydroxide	NaOH
Strong Alkali	Potassium Hydroxide	KOH
Weak Alkali	Ammonium Hydroxide	NH4OH

• Reactions:

Reaction Type	General Equation	Example	Observation
Strong Alkali + Acid	Alkali + Acid → Salt + Water	$\begin{array}{l} NaOH + HCl \rightarrow \\ NaCl + H_2O \end{array}$	Neutralization, color change if indicator used
Weak Alkali + Acid	Alkali + Acid → Salt + Water	$\begin{array}{l} NH_4OH + HCl \rightarrow \\ NH_4Cl + H_2O \end{array}$	Less vigorous reaction, weaker neutralization

4.2.2 Metal Oxides

• **Definition:** Metal oxides are compounds consisting of metals combined with oxygen. They can exhibit basic, amphoteric, or neutral properties depending on the metal involved.

• Examples:

Type	Example	Chemical Formula
Basic Oxide	Sodium Oxide	Na ₂ O
Basic Oxide	Magnesium Oxide	MgO
Amphoteric Oxide	Aluminum Oxide	Al ₂ O ₃

• Reactions:

Reaction Type	General Equation	Example	Observation
Metal Oxide + Acid	Metal Oxide + Acid → Salt + Water	$\begin{array}{l} {\rm MgO} + 2{\rm HCl} \rightarrow \\ {\rm MgCl_2} + {\rm H_2O} \end{array}$	Neutralization reaction
Metal Oxide + Water	Metal Oxide + Water → Metal Hydroxide	$\begin{array}{l} Na_{2}O+H_{2}O\rightarrow \\ 2NaOH \end{array}$	Formation of a base

Revision: 01

4.2.3 Metal Hydroxides

- **Definition:** Metal hydroxides are compounds consisting of metal cations and hydroxide ions (OH⁻). They can be categorized based on their solubility in water.
- Examples:

Type	Example	Chemical Formula
Strong Base	Sodium Hydroxide	NaOH
Strong Base	Potassium Hydroxide	KOH
Weak Base	Aluminum Hydroxide	Al(OH) ₃

• Reactions:

Reaction Type	General Equation	Example	Observation
Metal Hydroxide + Acid	Metal Hydroxide + Acid → Salt + Water	$\begin{array}{l} KOH + HNO_3 \rightarrow \\ KNO_3 + H_2O \end{array}$	Neutralization, heat release
Metal Hydroxide + Water	Metal Hydroxide + Water → Metal Hydroxide Solution	$\begin{array}{l} {\rm Ca(OH)_2 + H_2O} \rightarrow \\ {\rm Ca(OH)_2(aq)} \end{array}$	Dissolution in water

4.2.4 Metal Carbonates

- **Definition:** Metal carbonates are compounds containing a metal cation and the carbonate anion (CO₃²⁻). They typically react with acids to produce salts, water, and carbon dioxide gas.
- Examples:

Type	Example	Chemical Formula
Common Carbonate	Sodium Carbonate	Na ₂ CO ₃
Common Carbonate	Calcium Carbonate	CaCO ₃
Common Carbonate	Zinc Carbonate	ZnCO ₃

• Reactions:

Reaction Type	General Equation	Example	Observation
Metal Carbonate + Acid	Metal Carbonate + Acid → Salt + Water + CO ₂	$\begin{aligned} &\operatorname{CaCO_3} + 2\operatorname{HCl} \to \\ &\operatorname{CaCl_2} + \operatorname{H_2O} + \operatorname{CO_2} \end{aligned}$	Effervescence, formation of gas
Metal Carbonate + Base	Metal Carbonate + Base → Metal Salt + Water + CO ₂	$\begin{array}{c} \mathrm{Na_{2}CO_{3} + 2NaOH} \rightarrow \\ \mathrm{2Na_{2}CO_{3} + H_{2}O} \end{array}$	No visible reaction (generally stable)

Revision: 01

4.2.5 Ammonia and Related Compounds

• **Definition:** Ammonia is a weak base that reacts with acids to form ammonium salts. It can also react with water to form ammonium hydroxide (NH₄OH).

• Examples:

Type	Example	Chemical Formula
Weak Base	Ammonia	NH ₃
Weak Base	Ammonium Hydroxide	NH4OH

• Reactions:

Reaction Type	General Equation	Example	Observation
Ammonia + Acid	Ammonia + Acid → Ammonium Salt	$\begin{array}{l} NH_3 + HCl \rightarrow \\ NH_4Cl \end{array}$	Formation of a salt
Ammonia + Water	Ammonia + Water → Ammonium Hydroxide	$\begin{array}{l} NH_3 + H_2O \rightarrow \\ NH_4OH \end{array}$	Slightly basic solution

4. 3. Differences Between Types of Bases

• Solubility:

- o **Alkalis:** Soluble in water, releasing OH⁻ ions.
- o Metal Oxides: Typically insoluble, except for alkali metal oxides.
- o Metal Hydroxides: Varies; alkali metal hydroxides are highly soluble.
- o **Metal Carbonates:** Most are insoluble in water; soluble carbonates like sodium carbonate dissolve.
- o **Ammonia:** Highly soluble in water, forming ammonium hydroxide.

• Strength:

 Strong Alkalis: Fully dissociate in water, resulting in a high concentration of OHions.

- Weak Alkalis: Partially dissociate, resulting in a lower concentration of OH⁻ ions.
- o Metal Oxides: Basic oxides react with acids but may not dissolve in water.
- o **Metal Hydroxides:** Strong bases dissolve in water to form strong basic solutions; weak bases like aluminum hydroxide are less soluble.
- o **Metal Carbonates:** Generally do not affect the pH of a solution significantly unless they react with acids.
- o **Ammonia:** A weak base that reacts with acids and water to form a less strong basic solution.

5. Introduction to pH

pH is a measure of the acidity or alkalinity of a solution. The term "pH" stands for "potential of hydrogen" or "power of hydrogen," reflecting the concentration of hydrogen ions (H⁺) in a solution. The pH scale quantifies this concentration, allowing us to categorize solutions as acidic, neutral, or basic.

Revision: 01

5.1 Understanding the pH Scale

The pH scale is a logarithmic scale that ranges from 0 to 14, with 7 being neutral. The scale is based on the concentration of hydrogen ions in a solution:

- Acidic Solutions: pH less than 7
- **Neutral Solutions:** pH equal to 7
- Basic (Alkaline) Solutions: pH greater than 7

Because the pH scale is logarithmic, each whole number change on the pH scale represents a tenfold change in hydrogen ion concentration. For example, a solution with a pH of 4 is ten times more acidic than a solution with a pH of 5.

5.1.1 The pH Scale and Its Interpretation

pH Value	Description	Examples
0-2	Strongly Acidic	Battery acid (H ₂ SO ₄), Stomach acid (HCl)
3-5	Moderately Acidic	Vinegar (CH ₃ COOH), Lemon juice (Citric acid)
6-7	Slightly Acidic to Neutral	Milk (lactic acid), Pure water (pH 7)
8-10	Moderately Basic	Baking soda solution (NaHCO ₃), Seawater
11-14	Strongly Basic	Ammonia solution (NH ₃), Bleach (NaClO)

5.1.2 Key Points About the pH Scale

- Acidic Solutions (pH < 7): These solutions have a higher concentration of hydrogen ions (H^+) . The lower the pH, the more acidic the solution.
- Neutral Solutions (pH = 7): A neutral solution has equal concentrations of hydrogen ions (H⁺) and hydroxide ions (OH⁻), such as pure water.
- **Basic Solutions (pH > 7):** These solutions have a higher concentration of hydroxide ions (OH⁻). The higher the pH, the more basic the solution.

5.2 Measurement of pH

There are several methods to measure the pH of a solution, ranging from simple indicators to precise electronic instruments.

5.2.1 Using pH Indicators

pH indicators are substances that change color depending on the pH of the solution they are in. These include:

Revision: 01

- Litmus Paper:
 - o Blue Litmus Paper: Turns red in acidic solutions.
 - o Red Litmus Paper: Turns blue in basic solutions.
- **pH Paper:** Treated with a universal indicator, pH paper can change color across the full pH scale, providing a rough estimate of the pH.
- **Liquid Indicators:** Substances like phenolphthalein, bromothymol blue, and methyl orange change color at specific pH ranges, allowing for more targeted pH measurements.

5.2.2 Using pH Meters

- **Definition:** A pH meter is an electronic device that measures the pH of a solution by detecting the voltage difference between two electrodes placed in the solution.
- Components:
 - o **Electrode:** Usually a glass probe that is sensitive to hydrogen ion concentration.
 - o **Meter:** The device that displays the pH value based on the electrode's readings.
- Advantages of pH Meters:
 - o **Precision:** pH meters provide accurate pH readings, often to two decimal places.
 - Versatility: They can measure the pH of solutions that might not be suitable for indicator use, such as colored or opaque liquids.
- Using a pH Meter:
 - o Calibration: The meter is calibrated using standard buffer solutions of known pH (e.g., pH 4.00, 7.00, 10.00).
 - Measurement: The electrode is rinsed, placed in the solution to be measured, and the pH value is read from the display.

5.2.3 Using pH Strips

- **Definition:** pH strips are narrow pieces of paper impregnated with a combination of pH indicators. When dipped in a solution, they change color according to the pH level.
- Advantages:
 - Convenience: pH strips are easy to use and portable, making them ideal for fieldwork.
 - Range: They provide a broad estimate of pH, often in increments of 1 or 0.5 pH units.
- **Application:** pH strips are commonly used in laboratories, education, and by hobbyists (e.g., for testing aquarium water or soil pH).

5.3. Importance of pH in Everyday Life

• **Biological Systems:** The pH of blood, stomach acid, and cellular fluids is tightly regulated in living organisms. For example, human blood typically has a pH of around 7.4, and even small deviations can be harmful.

CHEMISTRY: Acids, Bases and Salts ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

• **Agriculture:** Soil pH affects the availability of nutrients to plants. Farmers often adjust soil pH using lime (to increase pH) or sulfur (to decrease pH) to optimize crop growth.

- Water Quality: pH is a critical parameter in water treatment and aquatic environments. Fish and other aquatic life require specific pH ranges to survive.
- **Food and Beverage Industry:** pH control is crucial in food processing, preservation, and fermentation. For instance, the pH of yogurt is typically kept low to prevent spoilage.

6. Introduction to Indicators

Indicators are substances used in chemistry to determine whether a solution is acidic, basic, or neutral. They are essential tools for identifying the pH of a solution and are commonly used in titrations, laboratory experiments, and even in everyday applications like testing soil pH or pool water.

Revision: 01

Indicators change color depending on the pH of the solution they are in. The color change occurs because the indicator itself undergoes a chemical change in response to the concentration of hydrogen ions (H^+) in the solution.

6.1 Types of Indicators

Indicators can be broadly classified into three main types:

- 1. Natural Indicators
- 2. Synthetic Indicators
- 3. Universal Indicators

6.1.1 Natural Indicators

- **Definition:** Natural indicators are substances derived from natural sources, such as plants, that change color in response to the pH of a solution.
- Common Examples:
 - o **Litmus:** Extracted from lichens, litmus is one of the most common natural indicators. It turns red in acidic solutions and blue in basic solutions.
 - Red Cabbage: The pigment in red cabbage, anthocyanin, changes color across a
 range of pH values, displaying red in acidic conditions, purple in neutral conditions,
 and greenish-yellow in basic conditions.
 - o **Turmeric:** Turmeric contains curcumin, which remains yellow in acidic and neutral solutions but turns reddish-brown in basic solutions.
- **Applications:** Natural indicators are often used in simple, educational experiments to visually demonstrate the concept of pH.

6.1.2 Synthetic Indicators

• **Definition:** Synthetic indicators are man-made chemicals specifically designed to change color at particular pH levels. They are more precise and reliable than natural indicators.

• Common Examples:

Indicator	Color in Acidic Solution	Color in Basic Solution	pH Range
Phenolphthalein	Colorless	Pink	8.2 - 10.0
Methyl Orange	Red	Yellow	3.1 - 4.4
Bromothymol Blue	Yellow	Blue	6.0 - 7.6
Methyl Red	Red	Yellow	4.4 - 6.2

Revision: 01

• **Applications:** Synthetic indicators are widely used in laboratory titrations to determine the endpoint of a reaction, as they provide a clear and sharp color change.

6.1.3 Universal Indicators

- **Definition:** A universal indicator is a mixture of several indicators that provides a gradual color change over a wide range of pH values, from strongly acidic to strongly basic.
- pH Scale and Color Change:

pH Range	Color
< 3	Red
3 - 6	Orange to Yellow
7	Green
8 - 11	Blue
> 11	Purple

• **Applications:** Universal indicators are used for a broad estimation of pH, such as in classroom demonstrations and in field testing kits for soil or water.

Pic. Ref: https://www.labkafe.com/

6.2 Use of Indicators in Titration

- **Titration:** Titration is a laboratory method used to determine the concentration of an unknown acid or base solution by reacting it with a standard solution of known concentration. Indicators are crucial in titrations because they signal the end point of the reaction through a color change.
 - o **Phenolphthalein:** Commonly used in titrations involving strong bases and weak acids, it changes from colorless in acidic solution to pink in basic solution, with the color change occurring at a pH of about 8.2 to 10.

Revision: 01

 Methyl Orange: Often used in titrations involving strong acids and weak bases, it changes from red in acidic solutions to yellow in basic solutions, with a transition range of pH 3.1 to 4.4.

6.3 Choosing the Right Indicator

Choosing the appropriate indicator depends on the specific pH range of the reaction and the type of titration:

- Strong Acid vs. Strong Base: Use phenolphthalein or bromothymol blue.
- Strong Acid vs. Weak Base: Use methyl orange or methyl red.
- Weak Acid vs. Strong Base: Use phenolphthalein.
- Weak Acid vs. Weak Base: Indicators are less effective; a pH meter may be preferred.

6.4 Importance of Indicators

Indicators are vital for:

- Laboratory Work: Indicators allow chemists to visually determine the completion of reactions and measure the pH of solutions with accuracy.
- **Educational Demonstrations:** They help students understand the concept of pH and the properties of acids and bases.
- Everyday Applications: Indicators are used in gardening to test soil pH, in pools to monitor water quality, and in various industries to ensure the correct pH conditions for manufacturing processes.

6.5. Limitations of Indicators

• **Subjectivity:** The interpretation of color changes can be subjective and vary from person to person, potentially leading to inaccuracies.

• Narrow Range: Many indicators only operate effectively within a narrow pH range, making them unsuitable for reactions outside this range.

Revision: 01

• Environmental Conditions: Factors such as temperature and the presence of colored substances in the solution can affect the accuracy of indicators.

6. Introduction to Acid-Base Titrations

Acid-base titration is a quantitative analytical method used to determine the concentration of an acid or a base in a solution by neutralizing it with a standard solution of known concentration. This method is widely used in laboratories for various purposes, including quality control, research, and educational experiments.

The process of titration involves the gradual addition of one solution (the titrant) to another solution (the analyte) until the reaction reaches its endpoint, which is often indicated by a color change of an indicator or a sudden change in pH.

6.1 Basic Concepts of Titration

6.1.1 Titrant

- **Definition:** The titrant is the solution of known concentration that is added to the analyte during titration. It is typically added from a burette.
- **Examples:** Sodium hydroxide (NaOH) is commonly used as a titrant in titrations involving acids.

6.1.2 Analyte

- **Definition:** The analyte is the solution of unknown concentration being analyzed. The titrant reacts with the analyte to determine its concentration.
- Examples: Hydrochloric acid (HCl) is often the analyte in titrations where the concentration of an acid is being determined.

6.1.3 Equivalence Point

- **Definition:** The equivalence point is the point during titration where the amount of titrant added is stoichiometrically equivalent to the amount of substance in the analyte. At this point, the acid and base have completely neutralized each other.
- **Significance:** The equivalence point is crucial because it represents the exact moment when the number of moles of titrant equals the number of moles of analyte, allowing for accurate calculation of the analyte's concentration.

6.1.4 Endpoint

• **Definition:** The endpoint is the point in a titration at which a visible change occurs, usually indicated by a color change due to the addition of an indicator. The endpoint should ideally coincide with the equivalence point, although they are not always exactly the same.

Revision: 01

• **Indicators:** Indicators like phenolphthalein or methyl orange are used to visually detect the endpoint by changing color when the solution reaches a certain pH.

6.2. Types of Acid-Base Titrations

6.2.1 Strong Acid vs. Strong Base Titration

• Example Reaction: Hydrochloric acid (HCl) titrated with sodium hydroxide (NaOH).

- **pH at Equivalence Point:** The pH at the equivalence point is neutral (pH 7) because the reaction produces a neutral salt (NaCl) and water.
- **Indicator Used:** Phenolphthalein, which changes from colorless to pink around pH 8.2 to 10.0, or bromothymol blue, which changes from yellow to blue around pH 6.0 to 7.6.

6.2.2 Weak Acid vs. Strong Base Titration

• Example Reaction: Acetic acid (CH₃COOH) titrated with sodium hydroxide (NaOH).

$$CH_3COOH$$
 (aq)+NaOH (aq) $\rightarrow CH_3COONa$ (aq)+ H_2O (1)

- pH at Equivalence Point: The pH at the equivalence point is greater than 7 because the reaction produces a basic salt (sodium acetate, CH₃COONa).
- **Indicator Used:** Phenolphthalein is typically used because it changes color in the basic pH range, making it suitable for detecting the endpoint of this titration.

6.2.3 Strong Acid vs. Weak Base Titration

• Example Reaction: Hydrochloric acid (HCl) titrated with ammonia (NH₃).

$$HCl(aq)+NH_3(aq)\rightarrow NH_4Cl(aq)$$

- **pH at Equivalence Point:** The pH at the equivalence point is less than 7 because the reaction produces an acidic salt (ammonium chloride, NH₄Cl).
- **Indicator Used:** Methyl orange, which changes from red to yellow over the pH range of 3.1 to 4.4, is suitable for this titration.

6.2.4 Weak Acid vs. Weak Base Titration

• Example Reaction: Acetic acid (CH₃COOH) titrated with ammonia (NH₃).

• pH at Equivalence Point: The pH at the equivalence point depends on the relative strengths of the weak acid and weak base, but it is usually around neutral or slightly acidic/basic.

Revision: 01

• **Indicator Used:** Indicators are less effective for this titration; a pH meter or a universal indicator is often used to track the pH throughout the titration.

6.3. Performing an Acid-Base Titration

6.3.1 Apparatus Required

- **Burette:** Used to accurately measure and dispense the titrant.
- **Pipette:** Used to measure a precise volume of the analyte.
- Conical Flask: Where the analyte and titrant mix during the titration.
- Indicator: Chosen based on the type of titration to visually indicate the endpoint.
- White Tile: Placed under the flask to easily observe the color change of the indicator.
- pH Meter (optional): Used for more precise determination of the equivalence point.

6.3.2 Procedure

- 1. **Prepare the Analyte:** Use a pipette to transfer a measured volume of the analyte into the conical flask.
- 2. Add Indicator: Add a few drops of the appropriate indicator to the analyte solution.
- 3. **Fill the Burette:** Fill the burette with the titrant solution, ensuring no air bubbles remain.
- 4. **Start the Titration:** Slowly add the titrant to the analyte while continuously swirling the conical flask to ensure thorough mixing.
- 5. **Observe the Endpoint:** Watch for a color change in the solution, indicating that the endpoint is near. Slow the addition of titrant as the color change begins.
- 6. **Record the Volume:** Note the volume of titrant used at the endpoint, where the indicator shows a permanent color change.
- 7. Calculate the Concentration: Use the titration formula to calculate the concentration of the analyte:

$M1\times V1=M2\times V2$

Where:

- M1 = Molarity of the acid
- V1 = Volume of the acid

- M2 = Molarity of the base
- V2 = Volume of the base

6.3.3 Calculations in Titration

To calculate the unknown concentration of the analyte, use the formula derived from the neutralization reaction:

 $M1 \times V1 = M2 \times V2$

Where:

- M1 is the molarity of the titrant (known)
- V1 is the volume of the titrant used
- M2 is the molarity of the analyte (unknown)
- V2 is the volume of the analyte used

For example, if you titrate 25.0 cm³ of a hydrochloric acid solution with 0.100 M sodium hydroxide and it takes 30.0 cm³ of the sodium hydroxide to reach the endpoint, the calculation would be:

 $M1\times V1=M2\times V2$

 $0.100\times30.0=M2\times25.00$

M2=0.100×30.0/25.0=0.120 M

Thus, the concentration of the hydrochloric acid is 0.120 M.

6.4 Applications of Acid-Base Titration

- **Quality Control:** In industries like pharmaceuticals, food, and beverages, titration is used to ensure product quality by measuring the concentration of acids and bases.
- Environmental Testing: Titration is used to analyze the acidity or alkalinity of water bodies, which is crucial for environmental monitoring and pollution control.
- Educational Laboratories: Titration is a fundamental experiment in chemistry education, helping students understand stoichiometry, molarity, and reaction rates.
- **Medical Applications:** Titration is used in laboratories to measure the concentration of substances like blood serum or gastric acid, aiding in diagnostics.

7. Introduction to Amphoteric Oxides

Amphoteric oxides are a unique class of oxides that can react with both acids and bases to form salts and water. This dual reactive nature distinguishes them from basic oxides, which only react with acids, and acidic oxides, which only react with bases.

Revision: 01

- **Definition:** An amphoteric oxide is an oxide that can behave as either an acid or a base depending on the nature of the other reactant.
- General Behavior:
 - When reacting with acids, amphoteric oxides behave as bases.
 - When reacting with bases, they behave as acids.

7.1 Examples of Amphoteric Oxides

Common examples of amphoteric oxides include:

- Aluminum Oxide (Al₂O₃)
- Zinc Oxide (ZnO)
- Lead(II) Oxide (PbO)
- Tin(IV) Oxide (SnO₂)

These oxides can react with both acids and alkalis to form salts and water.

7.2. Reactions of Amphoteric Oxides

Amphoteric oxides exhibit different behaviors when reacting with acids and bases.

7.2.1. Reaction with Acids

When an amphoteric oxide reacts with an acid, it forms a salt and water, behaving as a basic oxide.

Example: Reaction of Aluminum Oxide with Hydrochloric Acid

 $Al_2O_3(s)+6HCl(aq)\rightarrow2AlCl_3(aq)+3H_2O(l)$

• **Explanation:** Aluminum oxide reacts with hydrochloric acid to produce aluminum chloride (a soluble salt) and water.

Example: Reaction of Zinc Oxide with Sulfuric Acid

 $ZnO(s)+H_2SO_4(aq)\rightarrow ZnSO_4(aq)+H_2O(l)$

• Explanation: Zinc oxide reacts with sulfuric acid to produce zinc sulfate and water.

7.2.2 Reaction with Bases (Alkalis)

When an amphoteric oxide reacts with a base, it forms a salt and water, behaving as an acidic oxide.

Example: Reaction of Aluminum Oxide with Sodium Hydroxide

 Al_2O_3 (s)+2NaOH (aq)+3H₂O (l)+2Na[Al(OH)₄] (aq)

• **Explanation:** Aluminum oxide reacts with sodium hydroxide to form sodium aluminate, a soluble complex salt.

Example: Reaction of Zinc Oxide with Sodium Hydroxide

ZnO (s)+2NaOH (aq)+ $H_2O(l)\rightarrow Na_2[Zn(OH)_4]$ (aq)

• **Explanation:** Zinc oxide reacts with sodium hydroxide to form sodium zincate, a soluble complex salt.

7.3 Importance of Amphoteric Oxides

Amphoteric oxides are important in various industrial and environmental processes due to their versatile chemical behavior.

- In Metallurgy: Amphoteric oxides like Al₂O₃ and ZnO are important in the extraction and refining of metals.
- In Catalysis: Amphoteric oxides can act as catalysts or catalyst supports in chemical reactions.
- **Environmental Applications:** Zinc oxide is used in products that prevent corrosion and in environmental cleanup processes due to its amphoteric nature.

8. Introduction to Salts

Salts are ionic compounds composed of positively charged cations and negatively charged anions. They are formed as the product of a reaction between an acid and a base, typically through a neutralization reaction. Salts play crucial roles in chemistry and various industrial, biological, and environmental processes.

Revision: 01

8.1. Types of Salts

Salts can be classified into several types based on their composition, acidity or basicity, and methods of formation. The main types of salts include:

- 1. Normal Salts
- 2. Acid Salts
- 3. Basic Salts
- 4. Double Salts
- 5. Complex Salts

Salts can be classified based on their solubility in water as either soluble or insoluble. Solubility is a key factor that influences how salts behave in aqueous solutions, particularly in reactions such as precipitation, neutralization, and ion exchange.

- 6. Soluble Salts
- 7. Insoluble Salts

General Preparation of Sales

Method	Procedure	Example
Neutralization (Acid + Base)	React acid with base, evaporate water to obtain salt crystals	$\begin{array}{l} HCl + NaOH \rightarrow NaCl + \\ H_2O \end{array}$
Metal + Acid Reaction	React metal with acid, collect salt after evaporation	$\begin{array}{l} Zn + 2HCl \rightarrow ZnCl_2 + \\ H_2 \end{array}$
Carbonate + Acid Reaction	React carbonate with acid, collect salt after evaporation	$\begin{aligned} &\operatorname{CaCO_3} + 2\operatorname{HCl} \to \\ &\operatorname{CaCl_2} + \operatorname{H_2O} + \operatorname{CO_2} \end{aligned}$
Precipitation Reaction	Mix two soluble salts to form an insoluble salt (precipitate)	$\begin{array}{l} {\rm AgNO_3 + NaCl} \rightarrow \\ {\rm AgCl}(s) + {\rm NaNO_3} \end{array}$

8.1.1 Normal Salts

• **Definition:** Normal salts are formed when all the hydrogen ions (H⁺) from the acid are replaced by metal ions or ammonium ions (NH₄⁺). These salts are neutral and do not contain any replaceable hydrogen ions.

Revision: 01

• Examples: Sodium chloride (NaCl), Potassium sulfate (K₂SO₄), Calcium carbonate (CaCO₃).

Preparation Method	Reaction Example	Reaction
Neutralization of a Strong Acid	Hydrochloric acid + Sodium	HCl + NaOH → NaCl +
and Strong Base	hydroxide	H_2O
Direct Combination of Elements	Sodium + Chlorine	$2Na + Cl_2 \rightarrow 2NaCl$
Reaction of an Acid with a Metal	Zinc + Sulfuric acid	$Zn + H_2SO_4 \rightarrow ZnSO_4 +$
		H_2
Reaction of an Acid with a Metal	Calcium carbonate +	$CaCO_3 + 2HCl \rightarrow CaCl_2 +$
Carbonate	Hydrochloric acid	$CO_2 + H_2O$

8.1.2 Acid Salts

- **Definition:** Acid salts are formed when only a part of the replaceable hydrogen ions in a polybasic acid (an acid with more than one replaceable H⁺ ion) is replaced by a metal ion or ammonium ion. These salts still contain replaceable hydrogen ions.
- Examples: Sodium hydrogen sulfate (NaHSO₄), Sodium dihydrogen phosphate (NaH₂PO₄).

Preparation Method	Reaction Example	Reaction	
Partial Neutralization of a	Sulfuric acid + Sodium	H ₂ SO ₄ + NaOH →	
Polybasic Acid	hydroxide (in 1:1 ratio)	NaHSO ₄ + H ₂ O	
Reaction of a Normal Salt with	Sodium sulfate + Sulfuric acid	Na ₂ SO ₄ + H ₂ SO ₄ →	
an Acid		2NaHSO ₄	

8.1.3 Basic Salts

- **Definition:** Basic salts are formed when a base is only partially neutralized by an acid, leaving some hydroxide (OH⁻) ions in the salt.
- **Examples:** Bismuth oxychloride (BiOCl), Magnesium hydroxide chloride (Mg(OH)Cl).

Preparation Method	Reaction Example	Reaction
Partial Neutralization of a	Magnesium hydroxide +	$Mg(OH)_2 + HC1 \rightarrow$
Base	Hydrochloric acid (in 1:1 ratio)	$Mg(OH)C1 + H_2O$
Reaction of a Metal	Bismuth hydroxide + Hydrochloric	Bi(OH)₃ + HCl →
Hydroxide with an Acid	acid	BiOC1 + 2H ₂ O

8.1.4 Double Salts

- **Definition:** Double salts are compounds formed from two different salts that crystallize together in a fixed ratio. These salts exist as a single crystalline entity but dissociate into their respective ions when dissolved in water.
- **Examples:** Potash alum $(K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O)$, Mohr's salt $(FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O)$.

Preparation Method	Reaction Example		Reaction
Crystallization from a Mixture of Two Salts			$K_2SO_4 + Al_2(SO_4)_3 + 24H_2O \rightarrow K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$

8.1.5 Complex Salts

- **Definition:** Complex salts contain a central metal ion surrounded by ligands (molecules or ions that donate pairs of electrons to the metal). These salts do not dissociate completely in water but form complex ions.
- **Examples:** Potassium ferrocyanide (K₄[Fe(CN)₆]), Tetraamminecopper(II) sulfate ([Cu(NH₃)₄]SO₄).

Preparation Method	Reaction Example	Reaction
Formation of Complex	Copper sulfate + Ammonia	$CuSO_4 + 4NH_3 \rightarrow$
Ions	solution	[Cu(NH ₃) ₄]SO ₄

8.1.6. Soluble Salts

- **Definition:** Soluble salts are those that readily dissolve in water to produce a clear solution. When soluble salts dissolve, they dissociate completely into their respective ions.
- Examples: Sodium chloride (NaCl), Potassium nitrate (KNO₃), Ammonium sulfate ((NH₄)₂SO₄).

Preparation of Soluble Salts

Soluble salts are those that readily dissolve in water. They can be prepared by the following methods:

8.1.6.1 Neutralization of an Acid with a Soluble Base (Alkali)

Method:

• In this method, an acid reacts with a soluble base (alkali) to form a soluble salt and water. This is a type of neutralization reaction.

Example: Preparation of Sodium Chloride (NaCl)

 $HCl(aq)+NaOH(aq)\rightarrow NaCl(aq)+H₂O(l)$

• Procedure:

o Add hydrochloric acid (HCl) to a solution of sodium hydroxide (NaOH) until the solution is neutral (pH 7).

Revision: 01

- o The resulting solution contains sodium chloride (NaCl).
- o The water is evaporated to crystallize the sodium chloride.

8.1.6.2. Reaction of an Acid with a Metal or a Metal Oxide

Method:

• A metal or metal oxide reacts with an acid to form a soluble salt and water (if metal oxide) or hydrogen gas (if metal).

Example 1: Preparation of Copper(II) Sulfate (CuSO₄) from Copper(II) Oxide

 $CuO(s)+H_2SO_4(aq)\rightarrow CuSO_4(aq)+H_2O(l)$

• Procedure:

- o Add copper(II) oxide (CuO) to dilute sulfuric acid (H₂SO₄).
- o Heat the mixture gently until the CuO dissolves.
- o Filter the solution to remove excess CuO.
- o Evaporate the water to obtain CuSO₄ crystals.

Example 2: Preparation of Zinc Sulfate (ZnSO₄) from Zinc Metal

$$Zn(s)+H_2SO_4(aq)\rightarrow ZnSO_4(aq)+H_2(g)$$

• Procedure:

- o Add zinc metal to dilute sulfuric acid.
- o Allow the reaction to proceed until no more hydrogen gas is produced.
- o Filter the solution to remove any unreacted zinc.
- o Evaporate the water to obtain ZnSO₄ crystals.

8.1.6.3 Reaction of an Acid with a Metal Carbonate or Metal Hydrogen Carbonate

Method:

• An acid reacts with a metal carbonate or metal hydrogen carbonate to form a soluble salt, water, and carbon dioxide gas.

Example: Preparation of Calcium Chloride (CaCl₂)

 $CaCO_3(s)+2HCl(aq)\rightarrow CaCl_2(aq)+CO_2(g)+H_2O(l)$

• Procedure:

- o Add calcium carbonate (CaCO₃) to dilute hydrochloric acid (HCl).
- o Wait for the effervescence (release of CO₂ gas) to stop.
- o Filter the solution to remove any unreacted CaCO₃.
- Evaporate the water to obtain CaCl₂ crystals.

8.1.6.4 Direct Combination of Elements

Method:

• Some soluble salts can be formed by directly combining a metal with a non-metal.

Example: Preparation of Sodium Chloride (NaCl)

 $2Na(s)+Cl_2(g)\rightarrow 2NaCl(s)$

• Procedure:

- o Sodium metal is reacted with chlorine gas to form sodium chloride.
- o The NaCl produced is usually purified and dissolved in water, then recrystallized.

6.1.7. Insoluble Salts

- **Definition:** Insoluble salts are those that do not dissolve significantly in water. They typically form precipitates when two solutions containing their ions are mixed.
- Examples: Barium sulfate (BaSO₄), Silver chloride (AgCl), Calcium carbonate (CaCO₃).

Preparation of Insoluble Salts

Insoluble salts do not dissolve in water and typically precipitate out of solution. They are often prepared by precipitation reactions.

6.1.7.1 Precipitation Reaction

Method:

• Insoluble salts are formed when two soluble salts are mixed in solution, resulting in the formation of a solid precipitate.

Example: Preparation of Barium Sulfate (BaSO₄)

$$BaCl_2(aq)+H_2SO_4(aq)\rightarrow BaSO_4(s)+2HCl(aq)$$

• Procedure:

o Mix a solution of barium chloride (BaCl₂) with sulfuric acid (H₂SO₄).

Revision: 01

- o A white precipitate of barium sulfate (BaSO₄) forms.
- o Filter the mixture to collect the precipitate.
- o Wash the precipitate with distilled water and allow it to dry.

6.1.7.2 Reaction of a Soluble Salt with an Acid

Method:

• Certain insoluble salts can be formed by reacting a soluble salt with an acid.

Example: Preparation of Lead(II) Chloride (PbCl₂)

 $Pb(NO_3)_2 (aq) + 2HCl (aq) \rightarrow PbCl_2 (s) + 2HNO_3 (aq)$

• Procedure:

- o Mix lead(II) nitrate (Pb(NO₃)₂) with hydrochloric acid (HCl).
- o A white precipitate of lead(II) chloride (PbCl₂) forms.
- o Filter the mixture to collect the precipitate.
- o Wash and dry the PbCl₂ precipitate.

6.1.7.3 Thermal Decomposition of Metal Carbonates

Method:

• Certain insoluble salts can be prepared by heating metal carbonates to decompose them into metal oxides and carbon dioxide.

Example: Preparation of Calcium Oxide (CaO) from Calcium Carbonate

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

• Procedure:

- o Heat calcium carbonate (CaCO₃) in a crucible until it decomposes.
- o The residue left is calcium oxide (CaO), an insoluble salt.

8.2 Differences Between Types of Salts

Type of Salt	Formation	Contains Replaceable H ⁺ /OH ⁻ ?	Example
Normal Salt	Complete neutralization of acid	No	NaCl, K ₂ SO ₄
Acid Salt	Partial neutralization of polybasic acid	Yes (replaceable H ⁺)	NaHSO ₄ , NaH ₂ PO ₄
Basic Salt	Partial neutralization of base	Yes (replaceable OH ⁻)	BiOCl, Mg(OH)Cl

Double Salt	Crystallization of two salts	No	Potash alum, Mohr's salt
Complex Salt	Formation of complex ions	No	K ₄ [Fe(CN) ₆], [Cu(NH ₃) ₄]SO ₄

Revision: 01

8.3 Reactions of Salts

Each type of salt reacts differently depending on its composition. Here are some general reactions:

- Normal Salts:
 - o Reaction with Water (Hydrolysis): NaCl (s) \rightarrow Na⁺ (aq)+Cl⁻ (aq)
 - Reaction with Acids/Bases:
 Na₂CO₃ (aq)+2HCl (aq)→2NaCl (aq)+H₂O (l)+CO₂ (g)
 - o **Reaction with Bases:** NaHSO₄ (aq)+NaOH (aq)→Na₂SO₄ (aq)+H₂O (l)
- Basic Salts:
 - o **Reaction with Acids:** BiOCl (s)+HCl (aq)→BiCl₃ (aq)+H₂O (l)
- Double Salts:
 - o Dissociation in Water: $K_2SO_4\cdotpAl_2(SO_4)_3\cdotp24H_2O(s)\rightarrow 2K^+(aq)+2Al^{3+}(aq)+4SO_4^{2-}(aq)+24H_2O(l)$
- Complex Salts:
 - o Complex Formation: $CuSO_4$ (aq)+ $4NH_3$ (aq) \rightarrow [$Cu(NH_3)_4$] SO_4 (aq)

• Reactions Involving Soluble Salts

Reaction Type	Reaction Example	Equation
Neutralization	Sodium hydroxide + Hydrochloric acid →	NaOH (aq) + HCl (aq) \rightarrow
	Sodium chloride + Water	$NaCl(aq) + H_2O(l)$
Precipitation	Mixing of Silver nitrate and Sodium chloride	C L
	→ Silver chloride precipitate + Sodium nitrate	\rightarrow AgCl (s) + NaNO ₃ (aq)
Double	Potassium iodide + Lead(II) nitrate →	2KI (aq) + Pb(NO3)2 (aq)
Displacement	Lead(II) iodide precipitate + Potassium	\rightarrow PbI ₂ (s) + 2KNO ₃ (aq)
	nitrate	

• Reactions Involving Insoluble Salts

Reaction Type	Reaction Example	Equation
Precipitation	Mixing of Barium chloride and Sulfuric acid	$BaCl_2(aq) + H_2SO_4(aq) \rightarrow$
	→ Barium sulfate precipitate + Hydrochloric	$BaSO_4(s) + 2HCl(aq)$
	acid	

CHEMISTRY: Acids, Bases and Salts ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

Decomposition	Thermal decomposition of Calcium carbonate → Calcium oxide + Carbon dioxide	
Reaction with Acids	Calcium carbonate + Hydrochloric acid → Calcium chloride + Carbon dioxide + Water	

Revision: 01

8.4. Importance of Salts

Salts have significant roles in various fields, including:

- **Biological Systems:** Salts like sodium chloride (NaCl) are crucial for maintaining electrolyte balance in the body, nerve function, and muscle contraction.
- **Industrial Applications:** Salts are used in the production of chemicals, fertilizers (e.g., potassium nitrate), and in the textile and food industries (e.g., preservation with salt).
- Environmental Significance: Salts play a role in water hardness and are used in water treatment processes.
- **Agriculture:** Fertilizer salts (e.g., ammonium sulfate, K₂SO₄) provide essential nutrients for plant growth.
- **Medicine:** Salts like Epsom salt (MgSO₄) and Glauber's salt (Na₂SO₄) are used in medical treatments and therapies.

8.5 Hydrolysis of Salts

- **Definition:** The reaction of a salt with water, leading to acidic, basic, or neutral solutions.
- Types of Hydrolysis:

Type of Salt	Reaction with Water	Example
Acidic Salt	$\mathrm{NH_4Cl} + \mathrm{H_2O} ightarrow \mathrm{NH_4OH} + \mathrm{HCl}$	Forms acidic solution
Basic Salt	$\rm Na_2CO_3 + H_2O \rightarrow NaOH + H_2CO_3$	Forms basic solution
Neutral Salt	$NaCl + H_2O ightarrow NaOH + HCl$ (no hydrolysis)	Remains neutral

9. Comparisons of Acids, Bases and Salts

These tables summarize the key differences and similarities among acids, bases, and salts, providing a clear comparison of their properties, reactions, and common examples.

Revision: 01

9.1 Differences Between Acids, Bases, and Salts

Property	Acids	Bases	Salts
Definition	Substances that release hydrogen ions (H ⁺) in aqueous solutions.	Substances that accept hydrogen ions (H ⁺) or release hydroxide ions (OH ⁻) in aqueous solutions.	Ionic compounds formed from the neutralization of an acid by a base.
рН	Less than 7	Greater than 7	Typically neutral (around pH 7), but can be slightly acidic or basic depending on the ions.
Litmus Test	Turns blue litmus paper red	Turns red litmus paper blue	No effect on litmus paper (if neutral); may turn litmus slightly red or blue if acidic or basic.
Taste	Sour	Bitter	Salty (though not all salts are safe to taste)
Reaction with Metals	Reacts with metals to produce hydrogen gas (H ₂)	Generally does not react with metals	Typically does not react with metals (unless the metal is more reactive than the metal in the salt)
Reaction with Carbonates	Reacts with carbonates to produce carbon dioxide (CO ₂)	Does not react with carbonates	Does not react with carbonates
Conductivity	Conducts electricity in solution (electrolyte)	Conducts electricity in solution (electrolyte)	Conducts electricity when dissolved in water (electrolyte)
Corrosiveness	Corrosive, especially strong acids	Corrosive, especially strong bases	Generally non-corrosive, but can be corrosive if derived from strong acids or bases.
Examples	Hydrochloric acid (HCl), Sulfuric acid (H ₂ SO ₄), Acetic acid (CH ₃ COOH)	Sodium hydroxide (NaOH), Potassium hydroxide (KOH), Ammonia (NH ₃)	Sodium chloride (NaCl), Potassium nitrate (KNO ₃), Calcium carbonate (CaCO ₃)

9.2 Similarities Between Acids, Bases, and Salts

Property	Acids	Bases	Salts
Electrolytes		All can conduct electricity in solution (electrolytes).	All can conduct electricity when dissolved in water (electrolytes).

CHEMISTRY: Acids, Bases and Salts ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

Formation of Salts	Reacts with bases to form salts and water.	Reacts with acids to form salts and water.	Formed from the neutralization of an acid by a base.
Presence in Daily Life		Found in everyday items like soap (sodium hydroxide) and cleaning agents (ammonia).	like table salt (sodium chloride) and baking soda
Industrial Use	Used in various industrial processes such as manufacturing, cleaning, and chemical production.	processes such as manufacturing, cleaning,	Used in various industrial processes such as food preservation, agriculture, and chemical production.

10. References of Authors Other Articles:

 A Quality by Design (QBD) approach for the development and validation of RP-HPLC method for the quantification of linagliptin tablets, International Journal of Pharmaceutical Chemistry and Analysis, 2023, Volume 10, Issue 4, Page 281-289, https://doi.org/10.18231/j.ijpca.2023.047

- 2. A QBD based RP-HPLC Method Development and Validation for Quantification of Pregabalin Capsules, International Journal of Science and Research (IJSR) 12.11 (2023): 948-955, https://dx.doi.org/10.21275/SR231112082256
- Method Development and Validation for Elemental Impurities Analysis of Magnesium Stearate USP By ICP-OES, European Journal of Pharmaceutical and Medical Research, 2020, Volume 7, Issue 11, Pages 153-160, https://storage.googleapis.com/journal-uploads/ejpmr/article-issue/1604060916.pdf
- 4. Constituents of the Essential Oil from *Aquilaria Agallocha Roxb* by GC-MS and Its Cytotoxic Activities, European Journal of Pharmaceutical and Medical Research, 2020, Volume 7, Issue 12, Pages 105-109, https://www.ejpmr.com/home/abstract_id/7610
- 5. ABM Mahfuz ul Alam, K. Mowla Mou, "In-vitro and In-vivo Bioequivalence Assessment of Azithromycin Tablet Formulations at Fasting and Fed Conditions", International Journal of Science and Research (IJSR), Volume 13 Issue 7, July 2024, pp. 1150-1157, https://www.ijsr.net/getabstract.php?paperid=SR24713144612
- 6. Method Development and Quantification for Some Non Pharmacopeial drugs, 2019, University of Dhaka, Bangladesh, https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=3283789623053627301
- 7. Phenylethanoid Glycoside and Other Three Compounds from *Leucas Indica*, Asian Symposium on Medicinal Plants Species and Other Natural Products (ASOMPS X), 2000

11. About Author

A.B.M. Mahfuz Ul Alam is a Bangladeshi pharmaceutical scientist and academician. He is currently the Director of Quality Operations at ACI Healthcare Limited, a multinational pharmaceutical headquartered company in Dhaka. Bangladesh. He is also an Adjunct Faculty Member at the Independent University, Bangladesh. Dr. Alam received his PhD in Method Development Analytical Pharmaceutical Products Using Quality By Design (QbD) Concept from the University of Dhaka in 2019. He has over 24 years of experience in the pharmaceutical industry, working in various capacities in quality management, project management, validation, research and development, regulatory affairs, and audits. He has extensive experience in designing and implementing QA and QC processes and Quality Management Systems, and in developing and submitting new products in the EU, US, and other markets. He has also led teams for successful inspections of the US FDA, EU GMP, ANVISA, and MCC. He is a valuable asset to ACI Healthcare Limited and University, the Independent Bangladesh.

Revision: 01

Director, Quality Operations ACI HealthCare Limited Bangladesh

Adjunct Faculty, Independent University of Bangladesh

E-mail: mahfuz301175@gmail.co

Phone: +8801730021082

This book	is printed on online.
Copyright	t 2024 ACSCIP
All rights	reserved.
electronic	of this publication may be reproduced or transmitted in any formor by any means cormechanical, including photocopy, recording, or any information storage and retrieval vithout permission in writing from the Publisher.
•	
A CC CID D	Introduce and the second secon
Dhaka, Ba	ublications
www.acso	
<u></u>	

Contents

1. Introduction	4
1.1 Acids	4
1.2 Bases	4
1.3 Salts	4
1.4 Importance of Studying Acids, Bases, and Salts	5
2. Introduction to Acids	6
2.1 Properties of Acids.	6
2.2 Types of Acids	6
2.1 Strong and Weak Acids	7
2.2 Organic and Inorganic Acids	8
2.3 Monoprotic, Diprotic, and Triprotic Acids	10
3. Introduction to Reactivity Series	11
3.1 The Reactivity Series of Metals	11
3.2 Reactions of Metals with Acids	12
3.3 Reactions of Metals with Dilute and Concentrated Acids	13
3.4 Reactions of Metals with Nitric Acid (HNO ₃)	13
3.5 Displacement Reactions of Metals with Acids	14
4. Introduction to Bases	15
4.1 Properties of Bases	15
4.2 Classification of Bases	15
4.2.1 Alkalis	16
4.2.2 Metal Oxides	16
4.2.3 Metal Hydroxides	17
4.2.4 Metal Carbonates	17
4.2.5 Ammonia and Related Compounds	18
4. 3. Differences Between Types of Bases	18
5. Introduction to pH	20
5.1 Understanding the pH Scale	20
5.1.1 The pH Scale and Its Interpretation	20
5.1.2 Key Points About the pH Scale	20
5.2 Measurement of pH	20

CHEMISTRY: Acids, Bases and Salts

ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

5.2.1 Using pH Indicators	21
5.2.2 Using pH Meters	21
5.2.3 Using pH Strips	21
5.3. Importance of pH in Everyday Life	21
6. Introduction to Indicators	23
6.1 Types of Indicators	23
6.1.1 Natural Indicators	23
6.1.2 Synthetic Indicators	23
6.1.3 Universal Indicators	24
6.2 Use of Indicators in Titration	25
6.3 Choosing the Right Indicator	25
6.4 Importance of Indicators	25
6.5. Limitations of Indicators	25
6. Introduction to Acid-Base Titrations	26
6.1 Basic Concepts of Titration	26
6.1.1 Titrant	26
6.1.2 Analyte	26
6.1.3 Equivalence Point	26
6.1.4 Endpoint	27
6.2. Types of Acid-Base Titrations	27
6.2.1 Strong Acid vs. Strong Base Titration	27
6.2.2 Weak Acid vs. Strong Base Titration	27
6.2.3 Strong Acid vs. Weak Base Titration	27
6.2.4 Weak Acid vs. Weak Base Titration	28
6.3. Performing an Acid-Base Titration	28
6.3.1 Apparatus Required	28
6.3.2 Procedure	28
6.3.3 Calculations in Titration	29
6.4 Applications of Acid-Base Titration	29
7. Introduction to Amphoteric Oxides	30
7.1 Examples of Amphoteric Oxides	
7.2. Reactions of Amphoteric Oxides	30
7.2.1. Reaction with Acids	30

CHEMISTRY: Acids, Bases and Salts

ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

7.2.2 Reaction with Bases (Alkalis)	31
7.3 Importance of Amphoteric Oxides	31
8. Introduction to Salts	32
8.1. Types of Salts	32
8.1.1 Normal Salts	33
8.1.2 Acid Salts	33
8.1.3 Basic Salts	33
8.1.4 Double Salts	34
8.1.5 Complex Salts	34
8.1.6. Soluble Salts	34
6.1.7. Insoluble Salts	36
8.2 Differences Between Types of Salts	37
8.3 Reactions of Salts	38
8.4. Importance of Salts	39
8.5 Hydrolysis of Salts	39
9. Comparisons of Acids, Bases and Salts	40
9.1 Differences Between Acids, Bases, and Salts	40
9.2 Similarities Between Acids, Bases, and Salts	40
10. References of Authors Other Articles:	42
11. About Author	43

1. Introduction

Acids, bases, and salts are fundamental concepts in chemistry that play a crucial role in both everyday life and scientific processes. Understanding these substances, their properties, and their interactions is essential for exploring a wide range of chemical reactions and their practical applications.

Revision: 01

1.1 Acids

- **Definition:** Acids are substances that release hydrogen ions (H⁺) when dissolved in water. They are characterized by their sour taste, ability to turn blue litmus paper red, and their tendency to react with metals, bases, and carbonates.
- Common Examples: Hydrochloric acid (HCl), sulfuric acid (H₂SO₄), acetic acid (CH₃COOH).
- **Importance:** Acids are found in a variety of everyday products, from food and beverages to cleaning agents. They are also vital in industrial processes, such as the manufacture of fertilizers, plastics, and pharmaceuticals.

1.2 Bases

- **Definition:** Bases are substances that can accept hydrogen ions (H⁺) or release hydroxide ions (OH⁻) in aqueous solutions. They are known for their bitter taste, slippery feel, and ability to turn red litmus paper blue.
- **Common Examples:** Sodium hydroxide (NaOH), potassium hydroxide (KOH), ammonia (NH₃).
- **Importance:** Bases are used in a wide range of applications, including soap and detergent manufacturing, water treatment, and the production of biodiesel. They are also essential in various chemical reactions, such as neutralization processes.

1.3 Salts

- **Definition:** Salts are ionic compounds formed when an acid reacts with a base, resulting in the neutralization of the acid and base properties. A salt consists of a cation (positive ion) from the base and an anion (negative ion) from the acid.
- Common Examples: Sodium chloride (NaCl), calcium carbonate (CaCO₃), potassium nitrate (KNO₃).
- **Importance:** Salts are ubiquitous in nature and are essential for life. They are used in food preservation, as dietary supplements, in agriculture, and in numerous industrial processes.

1.4 Importance of Studying Acids, Bases, and Salts

- Chemical Reactions: Acids, bases, and salts are involved in a vast array of chemical reactions, including neutralization, precipitation, and redox reactions. Understanding these substances is crucial for predicting the outcomes of such reactions.
- Everyday Applications: The principles of acids, bases, and salts are applied in everyday life, from cooking and cleaning to gardening and medicine. Knowledge of these substances helps in making informed decisions in daily activities.
- Industrial Applications: The study of acids, bases, and salts is fundamental to many industries, including pharmaceuticals, agriculture, food processing, and chemical manufacturing. Mastery of these concepts enables innovation and efficiency in these fields.
- Environmental Impact: Understanding the role of acids, bases, and salts in environmental processes, such as acid rain, soil pH, and water quality, is critical for environmental protection and sustainable development.

2. Introduction to Acids

Acids are substances that release hydrogen ions (H⁺) when dissolved in water. They play a significant role in chemical reactions, especially in forming salts and determining pH levels. Acids are categorized based on their strength, origin, and chemical composition. Understanding these types is essential for recognizing their properties, uses, and behavior in reactions.

Revision: 01

2.1 Properties of Acids

• General Characteristics:

Taste: SourpH: Less than 7

o Conductivity: Conduct electricity in solution (electrolytes)

o Indicators: Turn blue litmus paper red

• Common Reactions Involving Acids:

Reaction Type	General Equation	Example
Acid + Metal	Acid + Metal → Salt + Hydrogen	$2HCl + Zn \rightarrow ZnCl_2 + H_2$
Acid + Base (Neutralization)	Acid + Base → Salt + Water	$HCl + NaOH \rightarrow NaCl + H_2O$
Acid + Carbonate	Acid + Carbonate → Salt + Water + CO ₂	$\begin{split} & 2HCl + CaCO_3 \rightarrow CaCl_2 + \\ & H_2O + CO_2 \end{split}$
Acid + Metal Oxide	Acid + Metal Oxide → Salt + Water	$2 HCl + CuO \rightarrow CuCl_2 + \\ H_2O$

2.2 Types of Acids

Acids can be classified into several types based on their characteristics. The key categories are:

- 1. Strong and Weak Acids
- 2. Organic and Inorganic Acids
- 3. Monoprotic, Diprotic, and Triprotic Acids

2.1 Strong and Weak Acids

• Strong Acids:

 Definition: Strong acids completely dissociate in water, releasing a large number of hydrogen ions.

• Examples:

• Hydrochloric Acid (HCl): Found in stomach acid, used in industry and lab settings.

Revision: 01

- Sulfuric Acid (H₂SO₄): Used in batteries, manufacturing fertilizers, and chemicals.
- Nitric Acid (HNO₃): Used in fertilizers, explosives, and as a laboratory reagent.

• Reactions:

Reaction Type	General Equation	Example
Strong Acid + Base	Strong Acid + Base → Salt + Water	$\begin{aligned} & HCl + NaOH \rightarrow \\ & NaCl + H_2O \end{aligned}$
Strong Acid + Metal	Strong Acid + Metal → Salt + Hydrogen	${\rm 2HCl} + Zn \rightarrow ZnCl_2 + \\ H_2$
Strong Acid + Carbonate	Strong Acid + Carbonate → Salt + Water + CO ₂	$\begin{aligned} & 2HCl + CaCO_3 \rightarrow \\ & CaCl_2 + H_2O + CO_2 \end{aligned}$

• Weak Acids:

o **Definition:** Weak acids partially dissociate in water, releasing fewer hydrogen ions.

Examples:

- Ethanoic Acid (CH₃COOH): Found in vinegar, used in food preservation.
- Citric Acid (C₆H₈O₇): Found in citrus fruits, used in food and cleaning products.
- Carbonic Acid (H₂CO₃): Found in carbonated drinks, used in soft drinks.

o Reactions:

Reaction Type	General Equation	Example
Weak Acid + Base	Weak Acid + Base → Salt + Water	$\begin{array}{l} {\rm CH_3COOH + NaOH} \rightarrow \\ {\rm CH_3COONa + H_2O} \end{array}$
Weak Acid + Metal	Weak Acid + Metal → Salt + Hydrogen	$2\mathrm{CH_3COOH} + \mathrm{Mg} ightarrow \ (\mathrm{CH_3COO})_2\mathrm{Mg} + \mathrm{H_2}$
Weak Acid + Carbonate	Weak Acid + Carbonate → Salt + Water + CO ₂	$\begin{aligned} & 2\mathrm{CH_3COOH} + \mathrm{CaCO_3} \rightarrow \\ & (\mathrm{CH_3COO})_2\mathrm{Ca} + \mathrm{H_2O} + \mathrm{CO_2} \end{aligned}$

Revision: 01

• Key Differences Between Strong and Weak Acids:

Property	Strong Acids	Weak Acids	
Dissociation	Complete	Partial	
in Water			
pH Level	Very low (1-3)	Moderately low (3-6)	
Conductivity	High (more ions in solution)	Lower (fewer ions in solution)	
Reaction Rate	Faster	Slower	
Examples	HCl, H ₂ SO ₄ , HNO ₃	CH ₃ COOH, H ₂ CO ₃ , C ₆ H ₈ O ₇	

2.2 Organic and Inorganic Acids

• Organic Acids:

o **Definition:** Acids that contain carbon atoms in their molecular structure.

o Examples:

- Ethanoic Acid (CH₃COOH): Used in vinegar.
- Citric Acid (C₆H₈O₇): Found in citrus fruits.
- Lactic Acid (C₃H₆O₃): Found in sour milk products, muscles.

o Reactions:

Reaction Type	General Equation	Example
Organic Acid + Base	Organic Acid + Base → Salt + Water	$\begin{array}{l} CH_{3}COOH + NaOH \rightarrow \\ CH_{3}COONa + H_{2}O \end{array}$
Organic Acid + Metal	Organic Acid + Metal → Salt + Hydrogen	$2\mathrm{CH_3COOH} + \mathrm{Mg} ightarrow \ (\mathrm{CH_3COO})_2\mathrm{Mg} + \mathrm{H_2}$
Organic Acid + Carbonate	Organic Acid + Carbonate → Salt + Water + CO ₂	$\begin{aligned} &2\mathrm{CH_3COOH} + \mathrm{CaCO_3} \rightarrow \\ &(\mathrm{CH_3COO})_2\mathrm{Ca} + \mathrm{H_2O} + \mathrm{CO_2} \end{aligned}$

Revision: 01

• Inorganic Acids:

o *Definition:* Acids that do not contain carbon atoms in their molecular structure.

• Examples:

- Hydrochloric Acid (HCl): Used in cleaning, industry.
- Sulfuric Acid (H₂SO₄): Used in batteries, fertilizers.
- Nitric Acid (HNO₃): Used in fertilizers, explosives.

• Reactions:

Reaction Type	General Equation	Example
Inorganic Acid + Base	Inorganic Acid + Base → Salt + Water	$\begin{aligned} & HCl + NaOH \rightarrow \\ & NaCl + H_2O \end{aligned}$
Inorganic Acid + Metal	Inorganic Acid + Metal → Salt + Hydrogen	$2HCl + Zn \rightarrow ZnCl_2 + \\ H_2$
Inorganic Acid + Carbonate	Inorganic Acid + Carbonate → Salt + Water + CO ₂	$\begin{aligned} & 2HCl + CaCO_3 \rightarrow \\ & CaCl_2 + H_2O + CO_2 \end{aligned}$

• Key Differences Between Organic and Inorganic Acids:

Property	Organic Acids	Inorganic Acids
Presence of Carbon	Yes	No
Source	Typically biological (plants, animals)	Typically mineral (earth, rocks)
Strength	Usually weak	Can be strong or weak
Examples	CH ₃ COOH, C ₆ H ₈ O ₇ , C ₃ H ₆ O ₃	HCl, H ₂ SO ₄ , HNO ₃

2.3 Monoprotic, Diprotic, and Triprotic Acids

• Monoprotic Acids:

o **Definition:** Acids that can donate one hydrogen ion (H⁺) per molecule.

Revision: 01

- Examples:
 - Hydrochloric Acid (HCl)
 - Nitric Acid (HNO₃)
 - Ethanoic Acid (CH₃COOH)

• Reactions:

Reaction Type	General Equation	Example
Monoprotic Acid +	Monoprotic Acid + Base →	$\mathrm{HCl} + \mathrm{NaOH} \rightarrow$
Base	Salt + Water	$NaCl + H_2O$

• Diprotic Acids:

- o **Definition:** Acids that can donate two hydrogen ions (H⁺) per molecule.
- Examples:
 - Sulfuric Acid (H₂SO₄)
 - Carbonic Acid (H₂CO₃)

• Reactions:

Reaction Type	General Equation	Example
Diprotic Acid + Base	Diprotic Acid + 2 Base → 2 Salt + Water	$egin{aligned} \mathrm{H_2SO_4} + \mathrm{2NaOH} & ightarrow \\ \mathrm{Na_2SO_4} + \mathrm{2H_2O} \end{aligned}$

• Triprotic Acids:

o **Definition:** Acids that can donate three hydrogen ions (H⁺) per molecule.

• Examples:

- Phosphoric Acid (H₃PO₄)
- Citric Acid (C₆H₈O₇)

• Reactions:

Reaction Type	General Equation	Example
Triprotic Acid + Base	Triprotic Acid + 3 Base → 3 Salt + Water	$\begin{array}{l} H_3PO_4 + 3NaOH \rightarrow \\ Na_3PO_4 + 3H_2O \end{array}$

Revision: 01

• Key Differences Between Monoprotic, Diprotic, and Triprotic Acids:

Property	Monoprotic Acids	Diprotic Acids	Triprotic Acids
Number of H ⁺ Ions	One	Two	Three
Examples	HCl, HNO3, CH3COOH	H ₂ SO ₄ , H ₂ CO ₃	H ₃ PO ₄ , C ₆ H ₈ O ₇

3. Introduction to Reactivity Series

The reactivity series is a list of metals arranged in order of their reactivity, from the most reactive to the least reactive. This series helps predict how different metals will react with acids, water, and other substances. Understanding the reactivity series is crucial for predicting and explaining the outcomes of various chemical reactions, especially those involving acids.

3.1 The Reactivity Series of Metals

The reactivity series places metals in the following order (from most reactive to least reactive):

• Key Points:

- o Metals at the top of the series, like potassium and sodium, are highly reactive.
- o Metals at the bottom, such as gold and platinum, are very unreactive.

3.2 Reactions of Metals with Acids

Metals react with acids to form salts and release hydrogen gas. The reactivity of the metal with acid depends on its position in the reactivity series.

• General Reaction Formula:

Metal + Acid → Salt + Hydrogen Gas

• Example Reactions:

Metal	Reaction with Hydrochloric Acid (HCI)	Equation	Observation
Potassium (K)	Potassium + HCl → Potassium Chloride + Hydrogen	$\begin{array}{c} 2K + 2HCl \rightarrow \\ 2KCl + H_2 \end{array}$	Very vigorous, explosive reaction
Sodium (Na)	Sodium + HCl → Sodium Chloride + Hydrogen	$\begin{array}{l} 2Na + 2HCl \rightarrow \\ 2NaCl + H_2 \end{array}$	Very vigorous reaction, fizzing
Calcium (Ca)	Calcium + HCl → Calcium Chloride + Hydrogen	$\begin{array}{c} {\rm Ca+2HCl} \rightarrow \\ {\rm CaCl_2+H_2} \end{array}$	Vigorous reaction, fizzing
Magnesium (Mg)	Magnesium + HCl → Magnesium Chloride + Hydrogen	$\begin{array}{l} {\rm Mg} + 2 {\rm HCl} \rightarrow \\ {\rm MgCl_2} + {\rm H_2} \end{array}$	Fizzing, heat produced
Aluminum (Al)	Aluminum + HCl → Aluminum Chloride + Hydrogen	$\begin{aligned} 2Al + 6HCl \rightarrow \\ 2AlCl_3 + 3H_2 \end{aligned}$	Slow to start (oxide layer), then rapid
Zinc (Zn)	Zinc + HCl → Zinc Chloride + Hydrogen	$\begin{array}{l} Zn + 2HCl \rightarrow \\ ZnCl_2 + H_2 \end{array}$	Moderate reaction, steady fizzing
Iron (Fe)	lron + HCl → Iron(II) Chloride + Hydrogen	$\begin{array}{l} {\rm Fe} + 2 {\rm HCl} \rightarrow \\ {\rm FeCl}_2 + {\rm H}_2 \end{array}$	Slow reaction, bubbles form
Copper (Cu)	Copper + HCl → No Reaction	$\mathrm{Cu} + \mathrm{HCl} \rightarrow$ No Reaction	No visible reaction
Silver (Ag)	Silver + HCl → No Reaction	$\mathrm{Ag} + \mathrm{HCl} \rightarrow$ No Reaction	No visible reaction
Gold (Au)	Gold + HCl → No Reaction	$\begin{array}{c} {\rm Au + HCl \rightarrow} \\ {\rm No \; Reaction} \end{array}$	No visible reaction

3.3 Reactions of Metals with Dilute and Concentrated Acids

The reactivity of a metal with an acid also depends on whether the acid is dilute or concentrated.

• Dilute Acids:

- o Typically produce salts and hydrogen gas.
- o Examples include reactions with hydrochloric acid (HCl) and sulfuric acid (H₂SO₄).

Revision: 01

• Concentrated Acids:

- o Often produce different products due to oxidation reactions.
- o For example, concentrated sulfuric acid (H₂SO₄) can oxidize metals, leading to the formation of sulfur dioxide (SO₂) instead of hydrogen gas.

• Reactions of Metals with Sulfuric Acid (H₂SO₄):

Metal	Reaction with Dilute Sulfuric Acid	Equation	Observation
Zinc (Zn)	Zinc + H₂SO₄ → Zinc Sulfate + Hydrogen	$\begin{array}{l} Zn + H_2SO_4 \rightarrow \\ ZnSO_4 + H_2 \end{array}$	Moderate reaction, steady fizzing
Copper (Cu)	Copper + H₂SO₄ → No Reaction	$\mathrm{Cu} + \mathrm{H_2SO_4} ightarrow$ No Reaction	No visible reaction
Zinc (Zn)	Zinc + Concentrated H₂SO₄ → Zinc Sulfate + Sulfur Dioxide + Water	$\begin{split} Zn + 2H_2SO_4 \rightarrow \\ ZnSO_4 + SO_2 + 2H_2O \end{split}$	Violent reaction, gas evolved
Copper (Cu)	Copper + Concentrated H₂SO₄ → Copper(II) Sulfate + Sulfur Dioxide + Water	$\begin{aligned} \mathrm{Cu} + 2\mathrm{H}_2\mathrm{SO}_4 \rightarrow \\ \mathrm{CuSO}_4 + \mathrm{SO}_2 + 2\mathrm{H}_2\mathrm{O} \end{aligned}$	Slow reaction, color change to blue

3.4 Reactions of Metals with Nitric Acid (HNO₃)

• Nitric acid behaves differently from other acids. Instead of releasing hydrogen gas, it typically produces nitrogen oxides (NO or NO₂) and water when reacting with metals.

• Example Reactions:

Metal	Reaction with Nitric Acid	Equation	Observation
Magnesium (Mg)	Magnesium + Dilute HNO₃ → Magnesium Nitrate + Nitrogen Dioxide + Water	$\begin{aligned} &3\mathrm{Mg} + 8\mathrm{HNO_3} \rightarrow \\ &3\mathrm{Mg}(\mathrm{NO_3})_2 + 2\mathrm{NO} + \\ &4\mathrm{H_2O} \end{aligned}$	Vigorous reaction, brown gas evolved
Copper (Cu)	Copper + Concentrated HNO₃ → Copper(II) Nitrate + Nitrogen Dioxide + Water	$\begin{aligned} \mathrm{Cu} + 4\mathrm{HNO_3} \rightarrow \\ \mathrm{Cu(NO_3)_2} + 2\mathrm{NO_2} + \\ 2\mathrm{H_2O} \end{aligned}$	Slow reaction, brown gas, color change

3.5 Displacement Reactions of Metals with Acids

• **Displacement Reactions:** A more reactive metal can displace a less reactive metal from its compound in solution.

• General Equation:

More Reactive Metal + Metal Salt Solution → Less Reactive Metal + New Salt

• Example:

- o Zinc + Copper Sulfate → Zinc Sulfate + Copper
- o Equation: Zn+CuSO4→ZnSO4+Cu
- o Observation: Copper is deposited, and the blue color of the copper sulfate solution fades.

4. Introduction to Bases

Bases are substances that can neutralize acids to form salts and water. They can be classified into several categories based on their chemical properties and solubility. Understanding these classifications is crucial for predicting their behavior in chemical reactions.

Revision: 01

4.1 Properties of Bases

• General Characteristics:

Taste: BitterFeel: SlipperypH: Greater than 7

o Conductivity: Conduct electricity in solution (electrolytes)

o Indicators: Turn red litmus paper blue

• Common Reactions Involving Bases:

Reaction Type	General Equation	Example
Base + Acid (Neutralization)	Base + Acid → Salt + Water	$\begin{array}{l} NaOH + HCl \rightarrow NaCl + \\ H_2O \end{array}$
Base + Ammonium Salt	Base + Ammonium Salt → Salt + Water + Ammonia	$\begin{aligned} \text{NaOH} + \text{NH}_4\text{Cl} \rightarrow \\ \text{NaCl} + \text{H}_2\text{O} + \text{NH}_3 \end{aligned}$
Base + Non-Metal Oxide	Base + Non-Metal Oxide → Salt + Water	$\begin{aligned} &2\mathrm{NaOH} + \mathrm{CO_2} \rightarrow \\ &\mathrm{Na_2CO_3} + \mathrm{H_2O} \end{aligned}$

4.2 Classification of Bases

Bases can be categorized into the following types:

- 1. Alkalis
- 2. Metal Oxides
- 3. Metal Hydroxides
- 4. Metal Carbonates
- 5. Ammonia and Related Compounds

4.2.1 Alkalis

• **Definition:** Alkalis are bases that are soluble in water. They release hydroxide ions (OH⁻) when dissolved. Alkalis are a subset of bases and include the hydroxides of alkali metals and some alkaline earth metals.

• Types of Alkalis:

 Strong Alkalis: Fully dissociate in water, resulting in a high concentration of OHions.

Revision: 01

 Weak Alkalis: Partially dissociate in water, resulting in a lower concentration of OH⁻ ions.

• Examples:

Type	Example	Chemical Formula
Strong Alkali	Sodium Hydroxide	NaOH
Strong Alkali	Potassium Hydroxide	KOH
Weak Alkali	Ammonium Hydroxide	NH4OH

• Reactions:

Reaction Type	General Equation	Example	Observation
Strong Alkali + Acid	Alkali + Acid → Salt + Water	$\begin{array}{l} NaOH + HCl \rightarrow \\ NaCl + H_2O \end{array}$	Neutralization, color change if indicator used
Weak Alkali + Acid	Alkali + Acid → Salt + Water	$\begin{array}{l} NH_4OH + HCl \rightarrow \\ NH_4Cl + H_2O \end{array}$	Less vigorous reaction, weaker neutralization

4.2.2 Metal Oxides

• **Definition:** Metal oxides are compounds consisting of metals combined with oxygen. They can exhibit basic, amphoteric, or neutral properties depending on the metal involved.

• Examples:

Type	Example	Chemical Formula
Basic Oxide	Sodium Oxide	Na ₂ O
Basic Oxide	Magnesium Oxide	MgO
Amphoteric Oxide	Aluminum Oxide	Al ₂ O ₃

• Reactions:

Reaction Type	General Equation	Example	Observation
Metal Oxide + Acid	Metal Oxide + Acid → Salt + Water	$\begin{array}{l} {\rm MgO} + 2{\rm HCl} \rightarrow \\ {\rm MgCl_2} + {\rm H_2O} \end{array}$	Neutralization reaction
Metal Oxide + Water	Metal Oxide + Water → Metal Hydroxide	$\begin{array}{l} Na_{2}O+H_{2}O\rightarrow \\ 2NaOH \end{array}$	Formation of a base

Revision: 01

4.2.3 Metal Hydroxides

• **Definition:** Metal hydroxides are compounds consisting of metal cations and hydroxide ions (OH⁻). They can be categorized based on their solubility in water.

• Examples:

Type	Example	Chemical Formula
Strong Base	Sodium Hydroxide	NaOH
Strong Base	Potassium Hydroxide	KOH
Weak Base	Aluminum Hydroxide	Al(OH) ₃

• Reactions:

Reaction Type	General Equation	Example	Observation
Metal Hydroxide + Acid	Metal Hydroxide + Acid → Salt + Water	$\begin{array}{l} KOH + HNO_3 \rightarrow \\ KNO_3 + H_2O \end{array}$	Neutralization, heat release
Metal Hydroxide + Water	Metal Hydroxide + Water → Metal Hydroxide Solution	$\begin{array}{l} {\rm Ca(OH)_2 + H_2O} \rightarrow \\ {\rm Ca(OH)_2(aq)} \end{array}$	Dissolution in water

4.2.4 Metal Carbonates

• **Definition:** Metal carbonates are compounds containing a metal cation and the carbonate anion (CO₃²⁻). They typically react with acids to produce salts, water, and carbon dioxide gas.

• Examples:

Type	Example	Chemical Formula
Common Carbonate	Sodium Carbonate	Na ₂ CO ₃
Common Carbonate	Calcium Carbonate	CaCO ₃
Common Carbonate	Zinc Carbonate	ZnCO ₃

• Reactions:

Reaction Type	General Equation	Example	Observation
Metal Carbonate + Acid	Metal Carbonate + Acid → Salt + Water + CO ₂	$\begin{aligned} &\operatorname{CaCO_3} + 2\operatorname{HCl} \to \\ &\operatorname{CaCl_2} + \operatorname{H_2O} + \operatorname{CO_2} \end{aligned}$	Effervescence, formation of gas
Metal Carbonate + Base	Metal Carbonate + Base → Metal Salt + Water + CO ₂	$\begin{aligned} Na_2CO_3 + 2NaOH \rightarrow \\ 2Na_2CO_3 + H_2O \end{aligned}$	No visible reaction (generally stable)

4.2.5 Ammonia and Related Compounds

• **Definition:** Ammonia is a weak base that reacts with acids to form ammonium salts. It can also react with water to form ammonium hydroxide (NH₄OH).

• Examples:

Type	Example	Chemical Formula
Weak Base	Ammonia	NH ₃
Weak Base	Ammonium Hydroxide	NH4OH

• Reactions:

Reaction Type	General Equation	Example	Observation
Ammonia + Acid	Ammonia + Acid → Ammonium Salt	$\begin{array}{l} NH_3 + HCl \rightarrow \\ NH_4Cl \end{array}$	Formation of a salt
Ammonia + Water	Ammonia + Water → Ammonium Hydroxide	$\begin{array}{l} NH_3 + H_2O \rightarrow \\ NH_4OH \end{array}$	Slightly basic solution

4. 3. Differences Between Types of Bases

• Solubility:

- o **Alkalis:** Soluble in water, releasing OH⁻ ions.
- o **Metal Oxides:** Typically insoluble, except for alkali metal oxides.
- o Metal Hydroxides: Varies; alkali metal hydroxides are highly soluble.
- o **Metal Carbonates:** Most are insoluble in water; soluble carbonates like sodium carbonate dissolve.
- o **Ammonia:** Highly soluble in water, forming ammonium hydroxide.

• Strength:

 Strong Alkalis: Fully dissociate in water, resulting in a high concentration of OHions.

- Weak Alkalis: Partially dissociate, resulting in a lower concentration of OH⁻ ions.
- o Metal Oxides: Basic oxides react with acids but may not dissolve in water.
- o **Metal Hydroxides:** Strong bases dissolve in water to form strong basic solutions; weak bases like aluminum hydroxide are less soluble.
- o **Metal Carbonates:** Generally do not affect the pH of a solution significantly unless they react with acids.
- o **Ammonia:** A weak base that reacts with acids and water to form a less strong basic solution.

5. Introduction to pH

pH is a measure of the acidity or alkalinity of a solution. The term "pH" stands for "potential of hydrogen" or "power of hydrogen," reflecting the concentration of hydrogen ions (H⁺) in a solution. The pH scale quantifies this concentration, allowing us to categorize solutions as acidic, neutral, or basic.

Revision: 01

5.1 Understanding the pH Scale

The pH scale is a logarithmic scale that ranges from 0 to 14, with 7 being neutral. The scale is based on the concentration of hydrogen ions in a solution:

- Acidic Solutions: pH less than 7
- **Neutral Solutions:** pH equal to 7
- Basic (Alkaline) Solutions: pH greater than 7

Because the pH scale is logarithmic, each whole number change on the pH scale represents a tenfold change in hydrogen ion concentration. For example, a solution with a pH of 4 is ten times more acidic than a solution with a pH of 5.

5.1.1 The pH Scale and Its Interpretation

pH Value Description		Examples
0-2	Strongly Acidic	Battery acid (H ₂ SO ₄), Stomach acid (HCl)
3-5	Moderately Acidic	Vinegar (CH ₃ COOH), Lemon juice (Citric acid)
6-7	Slightly Acidic to Neutral	Milk (lactic acid), Pure water (pH 7)
8-10	Moderately Basic	Baking soda solution (NaHCO ₃), Seawater
11-14	Strongly Basic	Ammonia solution (NH ₃), Bleach (NaClO)

5.1.2 Key Points About the pH Scale

- Acidic Solutions (pH < 7): These solutions have a higher concentration of hydrogen ions (H^+) . The lower the pH, the more acidic the solution.
- Neutral Solutions (pH = 7): A neutral solution has equal concentrations of hydrogen ions (H⁺) and hydroxide ions (OH⁻), such as pure water.
- **Basic Solutions (pH > 7):** These solutions have a higher concentration of hydroxide ions (OH⁻). The higher the pH, the more basic the solution.

5.2 Measurement of pH

There are several methods to measure the pH of a solution, ranging from simple indicators to precise electronic instruments.

5.2.1 Using pH Indicators

pH indicators are substances that change color depending on the pH of the solution they are in. These include:

Revision: 01

- Litmus Paper:
 - o Blue Litmus Paper: Turns red in acidic solutions.
 - o Red Litmus Paper: Turns blue in basic solutions.
- **pH Paper:** Treated with a universal indicator, pH paper can change color across the full pH scale, providing a rough estimate of the pH.
- **Liquid Indicators:** Substances like phenolphthalein, bromothymol blue, and methyl orange change color at specific pH ranges, allowing for more targeted pH measurements.

5.2.2 Using pH Meters

- **Definition:** A pH meter is an electronic device that measures the pH of a solution by detecting the voltage difference between two electrodes placed in the solution.
- Components:
 - o **Electrode:** Usually a glass probe that is sensitive to hydrogen ion concentration.
 - o **Meter:** The device that displays the pH value based on the electrode's readings.
- Advantages of pH Meters:
 - o **Precision:** pH meters provide accurate pH readings, often to two decimal places.
 - Versatility: They can measure the pH of solutions that might not be suitable for indicator use, such as colored or opaque liquids.
- Using a pH Meter:
 - o Calibration: The meter is calibrated using standard buffer solutions of known pH (e.g., pH 4.00, 7.00, 10.00).
 - Measurement: The electrode is rinsed, placed in the solution to be measured, and the pH value is read from the display.

5.2.3 Using pH Strips

- **Definition:** pH strips are narrow pieces of paper impregnated with a combination of pH indicators. When dipped in a solution, they change color according to the pH level.
- Advantages:
 - Convenience: pH strips are easy to use and portable, making them ideal for fieldwork.
 - Range: They provide a broad estimate of pH, often in increments of 1 or 0.5 pH units.
- **Application:** pH strips are commonly used in laboratories, education, and by hobbyists (e.g., for testing aquarium water or soil pH).

5.3. Importance of pH in Everyday Life

• **Biological Systems:** The pH of blood, stomach acid, and cellular fluids is tightly regulated in living organisms. For example, human blood typically has a pH of around 7.4, and even small deviations can be harmful.

CHEMISTRY: Acids, Bases and Salts ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

• **Agriculture:** Soil pH affects the availability of nutrients to plants. Farmers often adjust soil pH using lime (to increase pH) or sulfur (to decrease pH) to optimize crop growth.

- Water Quality: pH is a critical parameter in water treatment and aquatic environments. Fish and other aquatic life require specific pH ranges to survive.
- **Food and Beverage Industry:** pH control is crucial in food processing, preservation, and fermentation. For instance, the pH of yogurt is typically kept low to prevent spoilage.

6. Introduction to Indicators

Indicators are substances used in chemistry to determine whether a solution is acidic, basic, or neutral. They are essential tools for identifying the pH of a solution and are commonly used in titrations, laboratory experiments, and even in everyday applications like testing soil pH or pool water.

Revision: 01

Indicators change color depending on the pH of the solution they are in. The color change occurs because the indicator itself undergoes a chemical change in response to the concentration of hydrogen ions (H^+) in the solution.

6.1 Types of Indicators

Indicators can be broadly classified into three main types:

- 1. Natural Indicators
- 2. Synthetic Indicators
- 3. Universal Indicators

6.1.1 Natural Indicators

- **Definition:** Natural indicators are substances derived from natural sources, such as plants, that change color in response to the pH of a solution.
- Common Examples:
 - o **Litmus:** Extracted from lichens, litmus is one of the most common natural indicators. It turns red in acidic solutions and blue in basic solutions.
 - Red Cabbage: The pigment in red cabbage, anthocyanin, changes color across a
 range of pH values, displaying red in acidic conditions, purple in neutral conditions,
 and greenish-yellow in basic conditions.
 - o **Turmeric:** Turmeric contains curcumin, which remains yellow in acidic and neutral solutions but turns reddish-brown in basic solutions.
- **Applications:** Natural indicators are often used in simple, educational experiments to visually demonstrate the concept of pH.

6.1.2 Synthetic Indicators

• **Definition:** Synthetic indicators are man-made chemicals specifically designed to change color at particular pH levels. They are more precise and reliable than natural indicators.

• Common Examples:

Indicator	Color in Acidic Solution	Color in Basic Solution	pH Range
Phenolphthalein	Colorless	Pink	8.2 - 10.0
Methyl Orange	Red	Yellow	3.1 - 4.4
Bromothymol Blue	Yellow	Blue	6.0 - 7.6
Methyl Red	Red	Yellow	4.4 - 6.2

Revision: 01

• **Applications:** Synthetic indicators are widely used in laboratory titrations to determine the endpoint of a reaction, as they provide a clear and sharp color change.

6.1.3 Universal Indicators

- **Definition:** A universal indicator is a mixture of several indicators that provides a gradual color change over a wide range of pH values, from strongly acidic to strongly basic.
- pH Scale and Color Change:

pH Range	Color
< 3	Red
3 - 6	Orange to Yellow
7	Green
8 - 11	Blue
> 11	Purple

• **Applications:** Universal indicators are used for a broad estimation of pH, such as in classroom demonstrations and in field testing kits for soil or water.

Pic. Ref: https://www.labkafe.com/

6.2 Use of Indicators in Titration

- **Titration:** Titration is a laboratory method used to determine the concentration of an unknown acid or base solution by reacting it with a standard solution of known concentration. Indicators are crucial in titrations because they signal the end point of the reaction through a color change.
 - o **Phenolphthalein:** Commonly used in titrations involving strong bases and weak acids, it changes from colorless in acidic solution to pink in basic solution, with the color change occurring at a pH of about 8.2 to 10.

Revision: 01

 Methyl Orange: Often used in titrations involving strong acids and weak bases, it changes from red in acidic solutions to yellow in basic solutions, with a transition range of pH 3.1 to 4.4.

6.3 Choosing the Right Indicator

Choosing the appropriate indicator depends on the specific pH range of the reaction and the type of titration:

- Strong Acid vs. Strong Base: Use phenolphthalein or bromothymol blue.
- Strong Acid vs. Weak Base: Use methyl orange or methyl red.
- Weak Acid vs. Strong Base: Use phenolphthalein.
- Weak Acid vs. Weak Base: Indicators are less effective; a pH meter may be preferred.

6.4 Importance of Indicators

Indicators are vital for:

- Laboratory Work: Indicators allow chemists to visually determine the completion of reactions and measure the pH of solutions with accuracy.
- **Educational Demonstrations:** They help students understand the concept of pH and the properties of acids and bases.
- Everyday Applications: Indicators are used in gardening to test soil pH, in pools to monitor water quality, and in various industries to ensure the correct pH conditions for manufacturing processes.

6.5. Limitations of Indicators

• **Subjectivity:** The interpretation of color changes can be subjective and vary from person to person, potentially leading to inaccuracies.

• Narrow Range: Many indicators only operate effectively within a narrow pH range, making them unsuitable for reactions outside this range.

Revision: 01

• Environmental Conditions: Factors such as temperature and the presence of colored substances in the solution can affect the accuracy of indicators.

6. Introduction to Acid-Base Titrations

Acid-base titration is a quantitative analytical method used to determine the concentration of an acid or a base in a solution by neutralizing it with a standard solution of known concentration. This method is widely used in laboratories for various purposes, including quality control, research, and educational experiments.

The process of titration involves the gradual addition of one solution (the titrant) to another solution (the analyte) until the reaction reaches its endpoint, which is often indicated by a color change of an indicator or a sudden change in pH.

6.1 Basic Concepts of Titration

6.1.1 Titrant

- **Definition:** The titrant is the solution of known concentration that is added to the analyte during titration. It is typically added from a burette.
- **Examples:** Sodium hydroxide (NaOH) is commonly used as a titrant in titrations involving acids.

6.1.2 Analyte

- **Definition:** The analyte is the solution of unknown concentration being analyzed. The titrant reacts with the analyte to determine its concentration.
- Examples: Hydrochloric acid (HCl) is often the analyte in titrations where the concentration of an acid is being determined.

6.1.3 Equivalence Point

- **Definition:** The equivalence point is the point during titration where the amount of titrant added is stoichiometrically equivalent to the amount of substance in the analyte. At this point, the acid and base have completely neutralized each other.
- **Significance:** The equivalence point is crucial because it represents the exact moment when the number of moles of titrant equals the number of moles of analyte, allowing for accurate calculation of the analyte's concentration.

6.1.4 Endpoint

• **Definition:** The endpoint is the point in a titration at which a visible change occurs, usually indicated by a color change due to the addition of an indicator. The endpoint should ideally coincide with the equivalence point, although they are not always exactly the same.

Revision: 01

• **Indicators:** Indicators like phenolphthalein or methyl orange are used to visually detect the endpoint by changing color when the solution reaches a certain pH.

6.2. Types of Acid-Base Titrations

6.2.1 Strong Acid vs. Strong Base Titration

• Example Reaction: Hydrochloric acid (HCl) titrated with sodium hydroxide (NaOH).

- **pH at Equivalence Point:** The pH at the equivalence point is neutral (pH 7) because the reaction produces a neutral salt (NaCl) and water.
- **Indicator Used:** Phenolphthalein, which changes from colorless to pink around pH 8.2 to 10.0, or bromothymol blue, which changes from yellow to blue around pH 6.0 to 7.6.

6.2.2 Weak Acid vs. Strong Base Titration

• Example Reaction: Acetic acid (CH₃COOH) titrated with sodium hydroxide (NaOH).

$$CH_3COOH$$
 (aq)+NaOH (aq) $\rightarrow CH_3COONa$ (aq)+ H_2O (1)

- pH at Equivalence Point: The pH at the equivalence point is greater than 7 because the reaction produces a basic salt (sodium acetate, CH₃COONa).
- **Indicator Used:** Phenolphthalein is typically used because it changes color in the basic pH range, making it suitable for detecting the endpoint of this titration.

6.2.3 Strong Acid vs. Weak Base Titration

• Example Reaction: Hydrochloric acid (HCl) titrated with ammonia (NH₃).

$$HCl(aq)+NH_3(aq)\rightarrow NH_4Cl(aq)$$

- **pH at Equivalence Point:** The pH at the equivalence point is less than 7 because the reaction produces an acidic salt (ammonium chloride, NH₄Cl).
- **Indicator Used:** Methyl orange, which changes from red to yellow over the pH range of 3.1 to 4.4, is suitable for this titration.

Revision: 01 ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

6.2.4 Weak Acid vs. Weak Base Titration

• Example Reaction: Acetic acid (CH₃COOH) titrated with ammonia (NH₃).

- pH at Equivalence Point: The pH at the equivalence point depends on the relative strengths of the weak acid and weak base, but it is usually around neutral or slightly acidic/basic.
- **Indicator Used:** Indicators are less effective for this titration; a pH meter or a universal indicator is often used to track the pH throughout the titration.

6.3. Performing an Acid-Base Titration

6.3.1 Apparatus Required

- **Burette:** Used to accurately measure and dispense the titrant.
- **Pipette:** Used to measure a precise volume of the analyte.
- Conical Flask: Where the analyte and titrant mix during the titration.
- **Indicator:** Chosen based on the type of titration to visually indicate the endpoint.
- White Tile: Placed under the flask to easily observe the color change of the indicator.
- pH Meter (optional): Used for more precise determination of the equivalence point.

6.3.2 Procedure

- 1. **Prepare the Analyte:** Use a pipette to transfer a measured volume of the analyte into the conical flask.
- 2. Add Indicator: Add a few drops of the appropriate indicator to the analyte solution.
- 3. **Fill the Burette:** Fill the burette with the titrant solution, ensuring no air bubbles remain.
- 4. Start the Titration: Slowly add the titrant to the analyte while continuously swirling the conical flask to ensure thorough mixing.
- 5. Observe the Endpoint: Watch for a color change in the solution, indicating that the endpoint is near. Slow the addition of titrant as the color change begins.
- 6. **Record the Volume:** Note the volume of titrant used at the endpoint, where the indicator shows a permanent color change.
- 7. Calculate the Concentration: Use the titration formula to calculate the concentration of the analyte:

$M1\times V1=M2\times V2$

Where:

- M1 = Molarity of the acid
- V1 = Volume of the acid

- M2 = Molarity of the base
- V2 = Volume of the base

6.3.3 Calculations in Titration

To calculate the unknown concentration of the analyte, use the formula derived from the neutralization reaction:

 $M1 \times V1 = M2 \times V2$

Where:

- M1 is the molarity of the titrant (known)
- V1 is the volume of the titrant used
- M2 is the molarity of the analyte (unknown)
- V2 is the volume of the analyte used

For example, if you titrate 25.0 cm³ of a hydrochloric acid solution with 0.100 M sodium hydroxide and it takes 30.0 cm³ of the sodium hydroxide to reach the endpoint, the calculation would be:

 $M1\times V1=M2\times V2$

 $0.100\times30.0=M2\times25.00$

M2=0.100×30.0/25.0=0.120 M

Thus, the concentration of the hydrochloric acid is 0.120 M.

6.4 Applications of Acid-Base Titration

- Quality Control: In industries like pharmaceuticals, food, and beverages, titration is used to ensure product quality by measuring the concentration of acids and bases.
- Environmental Testing: Titration is used to analyze the acidity or alkalinity of water bodies, which is crucial for environmental monitoring and pollution control.
- Educational Laboratories: Titration is a fundamental experiment in chemistry education, helping students understand stoichiometry, molarity, and reaction rates.
- **Medical Applications:** Titration is used in laboratories to measure the concentration of substances like blood serum or gastric acid, aiding in diagnostics.

7. Introduction to Amphoteric Oxides

Amphoteric oxides are a unique class of oxides that can react with both acids and bases to form salts and water. This dual reactive nature distinguishes them from basic oxides, which only react with acids, and acidic oxides, which only react with bases.

Revision: 01

- **Definition:** An amphoteric oxide is an oxide that can behave as either an acid or a base depending on the nature of the other reactant.
- General Behavior:
 - o When reacting with acids, amphoteric oxides behave as bases.
 - When reacting with bases, they behave as acids.

7.1 Examples of Amphoteric Oxides

Common examples of amphoteric oxides include:

- Aluminum Oxide (Al₂O₃)
- Zinc Oxide (ZnO)
- Lead(II) Oxide (PbO)
- Tin(IV) Oxide (SnO₂)

These oxides can react with both acids and alkalis to form salts and water.

7.2. Reactions of Amphoteric Oxides

Amphoteric oxides exhibit different behaviors when reacting with acids and bases.

7.2.1. Reaction with Acids

When an amphoteric oxide reacts with an acid, it forms a salt and water, behaving as a basic oxide.

Example: Reaction of Aluminum Oxide with Hydrochloric Acid

 $Al_2O_3(s)+6HCl(aq)\rightarrow2AlCl_3(aq)+3H_2O(l)$

• **Explanation:** Aluminum oxide reacts with hydrochloric acid to produce aluminum chloride (a soluble salt) and water.

Example: Reaction of Zinc Oxide with Sulfuric Acid

 $ZnO(s)+H_2SO_4(aq)\rightarrow ZnSO_4(aq)+H_2O(l)$

• Explanation: Zinc oxide reacts with sulfuric acid to produce zinc sulfate and water.

7.2.2 Reaction with Bases (Alkalis)

When an amphoteric oxide reacts with a base, it forms a salt and water, behaving as an acidic oxide.

Revision: 01

Example: Reaction of Aluminum Oxide with Sodium Hydroxide

 Al_2O_3 (s)+2NaOH (aq)+3H₂O (l)+2Na[Al(OH)₄] (aq)

• **Explanation:** Aluminum oxide reacts with sodium hydroxide to form sodium aluminate, a soluble complex salt.

Example: Reaction of Zinc Oxide with Sodium Hydroxide

ZnO (s)+2NaOH (aq)+ $H_2O(l)\rightarrow Na_2[Zn(OH)_4]$ (aq)

• **Explanation:** Zinc oxide reacts with sodium hydroxide to form sodium zincate, a soluble complex salt.

7.3 Importance of Amphoteric Oxides

Amphoteric oxides are important in various industrial and environmental processes due to their versatile chemical behavior.

- In Metallurgy: Amphoteric oxides like Al₂O₃ and ZnO are important in the extraction and refining of metals.
- In Catalysis: Amphoteric oxides can act as catalysts or catalyst supports in chemical reactions.
- **Environmental Applications:** Zinc oxide is used in products that prevent corrosion and in environmental cleanup processes due to its amphoteric nature.

8. Introduction to Salts

Salts are ionic compounds composed of positively charged cations and negatively charged anions. They are formed as the product of a reaction between an acid and a base, typically through a neutralization reaction. Salts play crucial roles in chemistry and various industrial, biological, and environmental processes.

Revision: 01

8.1. Types of Salts

Salts can be classified into several types based on their composition, acidity or basicity, and methods of formation. The main types of salts include:

- 1. Normal Salts
- 2. Acid Salts
- 3. Basic Salts
- 4. Double Salts
- 5. Complex Salts

Salts can be classified based on their solubility in water as either soluble or insoluble. Solubility is a key factor that influences how salts behave in aqueous solutions, particularly in reactions such as precipitation, neutralization, and ion exchange.

- 6. Soluble Salts
- 7. Insoluble Salts

General Preparation of Sales

Method	Procedure	Example
Neutralization (Acid + Base)	React acid with base, evaporate water to obtain salt crystals	$\begin{array}{l} HCl + NaOH \rightarrow NaCl + \\ H_2O \end{array}$
Metal + Acid Reaction	React metal with acid, collect salt after evaporation	$\begin{array}{l} Zn + 2HCl \rightarrow ZnCl_2 + \\ H_2 \end{array}$
Carbonate + Acid Reaction	React carbonate with acid, collect salt after evaporation	$\begin{aligned} &\operatorname{CaCO_3} + 2\operatorname{HCl} \to \\ &\operatorname{CaCl_2} + \operatorname{H_2O} + \operatorname{CO_2} \end{aligned}$
Precipitation Reaction	Mix two soluble salts to form an insoluble salt (precipitate)	$\begin{array}{l} {\rm AgNO_3 + NaCl} \rightarrow \\ {\rm AgCl}(s) + {\rm NaNO_3} \end{array}$

8.1.1 Normal Salts

• **Definition:** Normal salts are formed when all the hydrogen ions (H⁺) from the acid are replaced by metal ions or ammonium ions (NH₄⁺). These salts are neutral and do not contain any replaceable hydrogen ions.

Revision: 01

• Examples: Sodium chloride (NaCl), Potassium sulfate (K₂SO₄), Calcium carbonate (CaCO₃).

Preparation Method	Reaction Example	Reaction
Neutralization of a Strong Acid	Hydrochloric acid + Sodium	HCl + NaOH → NaCl +
and Strong Base	hydroxide	H_2O
Direct Combination of Elements Sodium + Chlorine		$2Na + Cl_2 \rightarrow 2NaCl$
Reaction of an Acid with a Metal	Zinc + Sulfuric acid	$Zn + H_2SO_4 \rightarrow ZnSO_4 +$
		H_2
Reaction of an Acid with a Metal	Calcium carbonate +	$CaCO_3 + 2HCl \rightarrow CaCl_2 +$
Carbonate	Hydrochloric acid	$CO_2 + H_2O$

8.1.2 Acid Salts

- **Definition:** Acid salts are formed when only a part of the replaceable hydrogen ions in a polybasic acid (an acid with more than one replaceable H⁺ ion) is replaced by a metal ion or ammonium ion. These salts still contain replaceable hydrogen ions.
- Examples: Sodium hydrogen sulfate (NaHSO₄), Sodium dihydrogen phosphate (NaH₂PO₄).

Preparation Method	Reaction Example	Reaction	
Partial Neutralization of a	Sulfuric acid + Sodium	H ₂ SO ₄ + NaOH →	
Polybasic Acid	hydroxide (in 1:1 ratio)	$NaHSO_4 + H_2O$	
Reaction of a Normal Salt with	Sodium sulfate + Sulfuric acid	$Na_2SO_4 + H_2SO_4 \rightarrow$	
an Acid		2NaHSO ₄	

8.1.3 Basic Salts

- **Definition:** Basic salts are formed when a base is only partially neutralized by an acid, leaving some hydroxide (OH⁻) ions in the salt.
- Examples: Bismuth oxychloride (BiOCl), Magnesium hydroxide chloride (Mg(OH)Cl).

Preparation Method	Reaction Example	Reaction
Partial Neutralization of a	Magnesium hydroxide +	$Mg(OH)_2 + HC1 \rightarrow$
Base	Hydrochloric acid (in 1:1 ratio)	$Mg(OH)Cl + H_2O$
Reaction of a Metal	Bismuth hydroxide + Hydrochloric	$Bi(OH)_3 + HC1 \rightarrow$
Hydroxide with an Acid	acid	BiOC1 + 2H2O

8.1.4 Double Salts

- **Definition:** Double salts are compounds formed from two different salts that crystallize together in a fixed ratio. These salts exist as a single crystalline entity but dissociate into their respective ions when dissolved in water.
- **Examples:** Potash alum $(K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O)$, Mohr's salt $(FeSO_4 \cdot (NH_4)_2SO_4 \cdot 6H_2O)$.

Preparation Method	Reaction Example		Reaction	
Crystallization from a Mixture of Two Salts			$K_2SO_4 + Al_2(SO_4)_3 + 24H_2O \rightarrow K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O$	

8.1.5 Complex Salts

- **Definition:** Complex salts contain a central metal ion surrounded by ligands (molecules or ions that donate pairs of electrons to the metal). These salts do not dissociate completely in water but form complex ions.
- **Examples:** Potassium ferrocyanide (K₄[Fe(CN)₆]), Tetraamminecopper(II) sulfate ([Cu(NH₃)₄]SO₄).

Preparation Method	Reaction Example	Reaction
Formation of Complex	Copper sulfate + Ammonia	$CuSO_4 + 4NH_3 \rightarrow$
Ions	solution	[Cu(NH ₃) ₄]SO ₄

8.1.6. Soluble Salts

- **Definition:** Soluble salts are those that readily dissolve in water to produce a clear solution. When soluble salts dissolve, they dissociate completely into their respective ions.
- Examples: Sodium chloride (NaCl), Potassium nitrate (KNO₃), Ammonium sulfate ((NH₄)₂SO₄).

Preparation of Soluble Salts

Soluble salts are those that readily dissolve in water. They can be prepared by the following methods:

8.1.6.1 Neutralization of an Acid with a Soluble Base (Alkali)

Method:

• In this method, an acid reacts with a soluble base (alkali) to form a soluble salt and water. This is a type of neutralization reaction.

Example: Preparation of Sodium Chloride (NaCl)

 $HCl(aq)+NaOH(aq)\rightarrow NaCl(aq)+H₂O(l)$

• Procedure:

o Add hydrochloric acid (HCl) to a solution of sodium hydroxide (NaOH) until the solution is neutral (pH 7).

Revision: 01

- o The resulting solution contains sodium chloride (NaCl).
- o The water is evaporated to crystallize the sodium chloride.

8.1.6.2. Reaction of an Acid with a Metal or a Metal Oxide

Method:

• A metal or metal oxide reacts with an acid to form a soluble salt and water (if metal oxide) or hydrogen gas (if metal).

Example 1: Preparation of Copper(II) Sulfate (CuSO₄) from Copper(II) Oxide

 $CuO(s)+H_2SO_4(aq)\rightarrow CuSO_4(aq)+H_2O(1)$

• Procedure:

- o Add copper(II) oxide (CuO) to dilute sulfuric acid (H₂SO₄).
- o Heat the mixture gently until the CuO dissolves.
- o Filter the solution to remove excess CuO.
- o Evaporate the water to obtain CuSO₄ crystals.

Example 2: Preparation of Zinc Sulfate (ZnSO₄) from Zinc Metal

 $Zn(s)+H_2SO_4(aq)\rightarrow ZnSO_4(aq)+H_2(g)$

• Procedure:

- o Add zinc metal to dilute sulfuric acid.
- o Allow the reaction to proceed until no more hydrogen gas is produced.
- o Filter the solution to remove any unreacted zinc.
- o Evaporate the water to obtain ZnSO₄ crystals.

8.1.6.3 Reaction of an Acid with a Metal Carbonate or Metal Hydrogen Carbonate

Method:

• An acid reacts with a metal carbonate or metal hydrogen carbonate to form a soluble salt, water, and carbon dioxide gas.

Example: Preparation of Calcium Chloride (CaCl₂)

 $CaCO_3(s)+2HCl(aq)\rightarrow CaCl_2(aq)+CO_2(g)+H_2O(l)$

• Procedure:

- o Add calcium carbonate (CaCO₃) to dilute hydrochloric acid (HCl).
- o Wait for the effervescence (release of CO₂ gas) to stop.
- o Filter the solution to remove any unreacted CaCO₃.
- Evaporate the water to obtain CaCl₂ crystals.

8.1.6.4 Direct Combination of Elements

Method:

• Some soluble salts can be formed by directly combining a metal with a non-metal.

Example: Preparation of Sodium Chloride (NaCl)

 $2Na(s)+Cl_2(g)\rightarrow 2NaCl(s)$

• Procedure:

- Sodium metal is reacted with chlorine gas to form sodium chloride.
- o The NaCl produced is usually purified and dissolved in water, then recrystallized.

6.1.7. Insoluble Salts

- **Definition:** Insoluble salts are those that do not dissolve significantly in water. They typically form precipitates when two solutions containing their ions are mixed.
- Examples: Barium sulfate (BaSO₄), Silver chloride (AgCl), Calcium carbonate (CaCO₃).

Preparation of Insoluble Salts

Insoluble salts do not dissolve in water and typically precipitate out of solution. They are often prepared by precipitation reactions.

6.1.7.1 Precipitation Reaction

Method:

• Insoluble salts are formed when two soluble salts are mixed in solution, resulting in the formation of a solid precipitate.

Example: Preparation of Barium Sulfate (BaSO₄)

$$BaCl_2(aq)+H_2SO_4(aq)\rightarrow BaSO_4(s)+2HCl(aq)$$

Revision: 01

• Procedure:

o Mix a solution of barium chloride (BaCl₂) with sulfuric acid (H₂SO₄).

Revision: 01

- o A white precipitate of barium sulfate (BaSO₄) forms.
- o Filter the mixture to collect the precipitate.
- o Wash the precipitate with distilled water and allow it to dry.

6.1.7.2 Reaction of a Soluble Salt with an Acid

Method:

• Certain insoluble salts can be formed by reacting a soluble salt with an acid.

Example: Preparation of Lead(II) Chloride (PbCl₂)

 $Pb(NO_3)_2(aq)+2HCl(aq)\rightarrow PbCl_2(s)+2HNO_3(aq)$

• Procedure:

- o Mix lead(II) nitrate (Pb(NO₃)₂) with hydrochloric acid (HCl).
- o A white precipitate of lead(II) chloride (PbCl₂) forms.
- o Filter the mixture to collect the precipitate.
- o Wash and dry the PbCl₂ precipitate.

6.1.7.3 Thermal Decomposition of Metal Carbonates

Method:

• Certain insoluble salts can be prepared by heating metal carbonates to decompose them into metal oxides and carbon dioxide.

Example: Preparation of Calcium Oxide (CaO) from Calcium Carbonate

 $CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$

• Procedure:

- o Heat calcium carbonate (CaCO₃) in a crucible until it decomposes.
- o The residue left is calcium oxide (CaO), an insoluble salt.

8.2 Differences Between Types of Salts

Type of Salt	Formation	Contains Replaceable H ⁺ /OH ⁻ ?	Example
Normal Salt	Complete neutralization of acid	No	NaCl, K ₂ SO ₄
Acid Salt	Partial neutralization of polybasic acid	Yes (replaceable H ⁺)	NaHSO ₄ , NaH ₂ PO ₄
Basic Salt	Partial neutralization of base	Yes (replaceable OH ⁻)	BiOCl, Mg(OH)Cl

Double Salt	Crystallization of two salts	No	Potash alum, Mohr's salt
Complex	Formation of complex ions	No	$K_4[Fe(CN)_6],$
Salt			[Cu(NH ₃) ₄]SO ₄

Revision: 01

8.3 Reactions of Salts

Each type of salt reacts differently depending on its composition. Here are some general reactions:

- Normal Salts:
 - o **Reaction with Water (Hydrolysis):** NaCl (s) \rightarrow Na⁺ (aq)+Cl⁻ (aq)
 - $\begin{array}{lll} \circ & \textbf{Reaction} & \textbf{with} & \textbf{Acids/Bases:} \\ & \text{Na}_2\text{CO}_3 \ (aq) + 2\text{HCl} \ (aq) \rightarrow 2\text{NaCl} \ (aq) + \text{H}_2\text{O} \ (l) + \text{CO}_2 \ (g) \end{array}$
 - o **Reaction with Bases:** NaHSO₄ (aq)+NaOH (aq)→Na₂SO₄ (aq)+H₂O (l)
- Basic Salts:
 - o **Reaction with Acids:** BiOCl (s)+HCl (aq)→BiCl₃ (aq)+H₂O (l)
- Double Salts:
 - o Dissociation in Water: $K_2SO_4\cdotpAl_2(SO_4)_3\cdotp24H_2O(s)\rightarrow 2K^+(aq)+2Al^{3+}(aq)+4SO_4^{2-}(aq)+24H_2O(l)$
- Complex Salts:
 - o Complex Formation: $CuSO_4$ (aq)+ $4NH_3$ (aq) \rightarrow [$Cu(NH_3)_4$] SO_4 (aq)
- Reactions Involving Soluble Salts

Reaction Type	Reaction Example	Equation
Neutralization	Sodium hydroxide + Hydrochloric acid →	NaOH (aq) + HCl (aq) \rightarrow
	Sodium chloride + Water	$NaCl(aq) + H_2O(l)$
Precipitation	Mixing of Silver nitrate and Sodium chloride	C L
	→ Silver chloride precipitate + Sodium nitrate	\rightarrow AgCl (s) + NaNO ₃ (aq)
Double	Potassium iodide + Lead(II) nitrate →	2KI (aq) + Pb(NO3)2 (aq)
Displacement	Lead(II) iodide precipitate + Potassium	\rightarrow PbI ₂ (s) + 2KNO ₃ (aq)
	nitrate	

• Reactions Involving Insoluble Salts

Reaction Type	Reaction Example	Equation
Precipitation	Mixing of Barium chloride and Sulfuric acid	$BaCl_2(aq) + H_2SO_4(aq) \rightarrow$
	→ Barium sulfate precipitate + Hydrochloric	$BaSO_4(s) + 2HCl(aq)$
	acid	

CHEMISTRY: Acids, Bases and Salts ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

Decomposition	Thermal decomposition of Calcium carbonate → Calcium oxide + Carbon dioxide	
Reaction with Acids	Calcium carbonate + Hydrochloric acid → Calcium chloride + Carbon dioxide + Water	

Revision: 01

8.4. Importance of Salts

Salts have significant roles in various fields, including:

- **Biological Systems:** Salts like sodium chloride (NaCl) are crucial for maintaining electrolyte balance in the body, nerve function, and muscle contraction.
- **Industrial Applications:** Salts are used in the production of chemicals, fertilizers (e.g., potassium nitrate), and in the textile and food industries (e.g., preservation with salt).
- Environmental Significance: Salts play a role in water hardness and are used in water treatment processes.
- **Agriculture:** Fertilizer salts (e.g., ammonium sulfate, K₂SO₄) provide essential nutrients for plant growth.
- **Medicine:** Salts like Epsom salt (MgSO₄) and Glauber's salt (Na₂SO₄) are used in medical treatments and therapies.

8.5 Hydrolysis of Salts

- **Definition:** The reaction of a salt with water, leading to acidic, basic, or neutral solutions.
- Types of Hydrolysis:

Type of Salt	Reaction with Water	Example
Acidic Salt	$NH_4Cl + H_2O \rightarrow NH_4OH + HCl$	Forms acidic solution
Basic Salt	$\mathrm{Na_{2}CO_{3}} + \mathrm{H_{2}O} \rightarrow \mathrm{NaOH} + \mathrm{H_{2}CO_{3}}$	Forms basic solution
Neutral Salt	$NaCl + H_2O \rightarrow NaOH + HCl$ (no hydrolysis)	Remains neutral

9. Comparisons of Acids, Bases and Salts

These tables summarize the key differences and similarities among acids, bases, and salts, providing a clear comparison of their properties, reactions, and common examples.

Revision: 01

9.1 Differences Between Acids, Bases, and Salts

Property	Acids	Bases	Salts
Definition	Substances that release hydrogen ions (H ⁺) in aqueous solutions.	Substances that accept hydrogen ions (H ⁺) or release hydroxide ions (OH ⁻) in aqueous solutions.	Ionic compounds formed from the neutralization of an acid by a base.
рН	Less than 7	Greater than 7	Typically neutral (around pH 7), but can be slightly acidic or basic depending on the ions.
Litmus Test	Turns blue litmus paper red	Turns red litmus paper blue	No effect on litmus paper (if neutral); may turn litmus slightly red or blue if acidic or basic.
Taste	Sour	Bitter	Salty (though not all salts are safe to taste)
Reaction with Metals	Reacts with metals to produce hydrogen gas (H ₂)	Generally does not react with metals	Typically does not react with metals (unless the metal is more reactive than the metal in the salt)
Reaction with Carbonates	Reacts with carbonates to produce carbon dioxide (CO ₂)	Does not react with carbonates	Does not react with carbonates
Conductivity	Conducts electricity in solution (electrolyte)	Conducts electricity in solution (electrolyte)	Conducts electricity when dissolved in water (electrolyte)
Corrosiveness	Corrosive, especially strong acids	Corrosive, especially strong bases	Generally non-corrosive, but can be corrosive if derived from strong acids or bases.
Examples	Hydrochloric acid (HCl), Sulfuric acid (H ₂ SO ₄), Acetic acid (CH ₃ COOH)	Sodium hydroxide (NaOH), Potassium hydroxide (KOH), Ammonia (NH ₃)	Sodium chloride (NaCl), Potassium nitrate (KNO ₃), Calcium carbonate (CaCO ₃)

9.2 Similarities Between Acids, Bases, and Salts

Property	Acids	Bases	Salts
Electrolytes		All can conduct electricity in solution (electrolytes).	All can conduct electricity when dissolved in water (electrolytes).

CHEMISTRY: Acids, Bases and Salts ABM Mahfuz ul Alam, Ph.D., Email: mahfuz301175@gmail.com

Formation of Salts	Reacts with bases to form salts and water.	Reacts with acids to form salts and water.	Formed from the neutralization of an acid by a base.
Presence in Daily Life		Found in everyday items like soap (sodium hydroxide) and cleaning agents (ammonia).	like table salt (sodium chloride) and baking soda
Industrial Use	Used in various industrial processes such as manufacturing, cleaning, and chemical production.	processes such as manufacturing, cleaning,	Used in various industrial processes such as food preservation, agriculture, and chemical production.

Revision: 01

10. References of Authors Other Articles:

 A Quality by Design (QBD) approach for the development and validation of RP-HPLC method for the quantification of linagliptin tablets, International Journal of Pharmaceutical Chemistry and Analysis, 2023, Volume 10, Issue 4, Page 281-289, https://doi.org/10.18231/j.iipca.2023.047

Revision: 01

- 2. A QBD based RP-HPLC Method Development and Validation for Quantification of Pregabalin Capsules, International Journal of Science and Research (IJSR) 12.11 (2023): 948-955, https://dx.doi.org/10.21275/SR231112082256
- Method Development and Validation for Elemental Impurities Analysis of Magnesium Stearate USP By ICP-OES, European Journal of Pharmaceutical and Medical Research, 2020, Volume 7, Issue 11, Pages 153-160, https://storage.googleapis.com/journal-uploads/ejpmr/article-issue/1604060916.pdf
- 4. Constituents of the Essential Oil from *Aquilaria Agallocha Roxb* by GC-MS and Its Cytotoxic Activities, European Journal of Pharmaceutical and Medical Research, 2020, Volume 7, Issue 12, Pages 105-109, https://www.ejpmr.com/home/abstract_id/7610
- 5. ABM Mahfuz ul Alam, K. Mowla Mou, "In-vitro and In-vivo Bioequivalence Assessment of Azithromycin Tablet Formulations at Fasting and Fed Conditions", International Journal of Science and Research (IJSR), Volume 13 Issue 7, July 2024, pp. 1150-1157, https://www.ijsr.net/getabstract.php?paperid=SR24713144612
- 6. Method Development and Quantification for Some Non Pharmacopeial drugs, 2019, University of Dhaka, Bangladesh, https://scholar.google.com/scholar?hl=en&as_sdt=0,5&cluster=3283789623053627301
- 7. Phenylethanoid Glycoside and Other Three Compounds from *Leucas Indica*, Asian Symposium on Medicinal Plants Species and Other Natural Products (ASOMPS X), 2000

11. About Author

A.B.M. Mahfuz Ul Alam is a Bangladeshi pharmaceutical scientist and academician. He is currently the Director of Quality Operations at ACI Healthcare Limited, a multinational pharmaceutical headquartered company in Dhaka. Bangladesh. He is also an Adjunct Faculty Member at the Independent University, Bangladesh. Dr. Alam received his PhD in Method Development Analytical Pharmaceutical Products Using Quality By Design (QbD) Concept from the University of Dhaka in 2019. He has over 24 years of experience in the pharmaceutical industry, working in various capacities in quality management, project management, validation, research and development, regulatory affairs, and audits. He has extensive experience in designing and implementing QA and QC processes and Quality Management Systems, and in developing and submitting new products in the EU, US, and other markets. He has also led teams for successful inspections of the US FDA, EU GMP, ANVISA, and MCC. He is a valuable asset to ACI Healthcare Limited and the Independent University, Bangladesh.

Revision: 01

Director, Quality Operations ACI HealthCare Limited Bangladesh

Adjunct Faculty, Independent University of Bangladesh

E-mail: mahfuz301175@gmail.co

Phone: +8801730021082