```
In [1]: import pandas as pd
import numpy as np
df = pd.read_csv('http://bit.ly/w-data')
df
```

_			-	т.
/ N	117	- 1	11	- 1
١,	u	- 1	- 1	- 1

	Hours	Scores	
0	2.5	21	
1	5.1	47	
2	3.2	27	
3	8.5	75	
4	3.5	30	
5	1.5	20	
6	9.2	88	
7	5.5	60	
8	8.3	81	
9	2.7	25	
10	7.7	85	
11	5.9	62	
12	4.5	41	
13	3.3	42	
14	1.1	17	
15	8.9	95	
16	2.5	30	
17	1.9	24	
18	6.1	67	
19	7.4	69	
20	2.7	30	
21	4.8	54	
22	3.8	35	
23	6.9	76	
24	7.8	86	

In [2]: df.describe()

Out[2]:

	Hours	Scores
count	25.000000	25.000000
mean	5.012000	51.480000
std	2.525094	25.286887
min	1.100000	17.000000
25%	2.700000	30.000000
50%	4.800000	47.000000
75%	7.400000	75.000000
max	9.200000	95.000000

In [4]: #for checking null values df.info()

```
In [37]: import seaborn as sns
   import matplotlib.pyplot as plt
   sns.regplot(x='Hours',y='Scores',data=df)
   print('This is the regression line with 95% confidence interval for that regressi
   plt.xlabel('Hours studied')
   plt.ylabel('Percentage score')
   plt.show()
```

This is the regression line with 95% confidence interval for that regression:


```
In [9]: print('min score:', df['Hours'].min())
    print('max score:', df['Hours'].max())

    min score: 1.1
    max score: 9.2

In [11]: print('min score:-', df['Scores'].min())
    print('max score:-', df['Scores'].max())

    min score:- 17
    max score:- 95
```

```
In [14]: import seaborn as sns
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   df = pd.read_csv('http://bit.ly/w-data')
   sns.boxplot(df["Hours"])
   print('There is no outlier present')
```

There is no outlier present

C:\Users\Subhayan\anaconda3\lib\site-packages\seaborn_decorators.py:36: Future Warning: Pass the following variable as a keyword arg: x. From version 0.12, the only valid positional argument will be `data`, and passing other arguments without an explicit keyword will result in an error or misinterpretation.

warnings.warn(


```
In [16]: import seaborn as sns
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   df = pd.read_csv('http://bit.ly/w-data')
   sns.boxplot(df["Scores"])
   print('There is no outlier present')
```

There is no outlier present


```
In [18]: import seaborn as sns
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   df = pd.read_csv('http://bit.ly/w-data')
   sns.histplot(df["Hours"], bins=4)
   print('There is no outlier present')
```

There is no outlier present


```
In [19]: import seaborn as sns
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   df = pd.read_csv('http://bit.ly/w-data')
   sns.histplot(df["Scores"], bins=4)
   print('There is no outlier present')
```

There is no outlier present


```
In [20]: #The hours and Scores are distributed normally and we can perform linear regressi
```

Out[21]: 0.9761906560220887

In [34]: %matplotlib inline
 import seaborn as sns
 import matplotlib.pyplot as plt
 sns.heatmap(df.corr(),annot=True)
 plt.show()
 print('The correlation value is greater zero')

The correlation value is greater zero

```
In [38]: sns.pairplot(df)
```

Out[38]: <seaborn.axisgrid.PairGrid at 0x1f4be2d8520>

In [39]: from sklearn.model_selection import train_test_split

```
In [41]: x=df.iloc[:,:-1].values
         y=df.iloc[:,1].values
         x_train, x_test, y_train, y_test= train_test_split(x, y,train_size=0.60,test_size
In [42]: from sklearn.linear model import LinearRegression
         model= LinearRegression()
         model.fit(x_train, y_train)
Out[42]: LinearRegression()
In [43]: y_pred = model.predict(x_test)
         y_pred
Out[43]: array([15.9477618 , 32.77394723 , 74.344523 , 25.84551793 , 59.49788879 ,
                38.71260091, 19.90686425, 78.30362545, 69.39564493, 11.98865934])
         print('Test Score')
In [44]:
         print(model.score(x test, y test))
         print('Training Score')
         print(model.score(x_train, y_train))
         Test Score
         0.956640847232559
         Training Score
         0.9440108159733135
In [48]: print('Score of student who studied for 9.25 hours a day is:-', model.predict([[9
         Score of student who studied for 9.25 hours a day is: [92.65537185]
In [49]: print('The dataset with 2 attributes Hours and Scores contains no null values. Wi
         The dataset with 2 attributes Hours and Scores contains no null values. With th
         e help of numpy, pandas, matplotlib, seaborn we have done the data analysis and
         visualization. e performed Linear Regression operation on the given dataset and
         the model had an accuracy of 95%. Thus, the model could predict the score for a
         student who studies for 9.25hrs in a day which is 92.65%.
```

In []: