Dado que la resolución de este examen NO requiere ejecutar código Python, se autoriza el uso de la computadora únicamente para:

- Consultar el material del curso disponible en Moodle.
- Utilizar la calculadora o Google Colab como herramienta para realizar los cálculos solicitados.
- 1) **(1.5 ptos)** En el archivo **autos.csv**, el atributo **engine-size** contiene valores numéricos correspondientes al tamaño del motor de cada vehículo con las siguientes métricas:

	mean	std	min	Q1	Q2	Q3	max
engine-size	126,907	41,643	61	97	120	141	326

a) Dados cuatro valores nuevos del atributo **engine-size** complete la siguiente tabla con la información solicitada. Incluya todos los cálculos realizados

engine-size	Es atípico? (SI/NO)	TIPO (Leve/extremo)	Valor normalizado linealmente entre 0 y 1	Valor normalizado usando media y desvío
300				
250				
30				
200				

- b) ¿Qué representan los valores normalizados linealmente?
- c) ¿Qué representan los valores normalizados con media y desvío?
- d) ¿Cuál de las dos normalizaciones se relaciona más con la detección de valores atípicos y por qué?
- (1 pto) Se dispone de información de deportistas seleccionados para cierta actividad.

Luego de numerizar el atributo HABILIDAD de la siguiente forma: BAJA→1, MEDIA→2 y ALTA→3 y sin normalizar los atributos, se entrenó un perceptrón para predecir el valor del atributo SELECCIONADO.

EDAD	ALTURA	HABILIDAD	SELECCIONADO
16	202	Alta	Si
17	157	Ваја	No
18	159	Media	No
16	148	Ваја	No
11	187	Media	No
19	123	Ваја	No
17	204	Alta	Si
19	154	Ваја	No

El modelo obtenido fue el siguiente:

W(EDAD)	W(ALTURA)	W(HABILIDAD)	Sesgo o bias
0.392	0.001	-2.441	0.4022

¿Cómo clasifica el perceptrón a un ejemplo donde **EDAD=10**, **Altura=150** y **Habilidad=Media**? Incluya todos los cálculos realizados.

- 3) **(1.5 pto)** ¿Qué similitudes y diferencias tienen un perceptrón, un combinador lineal y una neurona no lineal?
- 4) **(1.5 ptos)** El archivo **vinos.csv** contiene 178 muestras de vinos de 3 clases distribuidos de la siguiente forma: 59 de Tipo1, 68 de Tipo 2 y 51 de Tipo 3. Se construyó un clasificador capaz de predecir con una precisión del 100% las muestras de Tipo 1 y con un valor de recall del 50% para las muestras de Tipo 2.
 - a) Indique cuál es la matriz de confusión correspondiente a este clasificador.
 - b) Indique los valores de precisión y recall faltantes junto con la precisión (accuracy) del clasificador.
- 5) **(1 pto)** Se entrenó una red capaz de identificar correctamente a cuál de los 3 tipos de vino pertenece una muestra del archivo vinos.csv formada sólo por dos capas: la capa de entrada y la capa de salida. Dicha capa de salida está formada por 3 neuronas.
 - Se ingresa una muestra a la red y se calcula la entrada neta de cada neurona de la capa de salida. Los valores obtenidos para la 1ra., 2da y 3ra. neurona fueron: -1.5, 4 y 6 respectivamente.
 - a) Indique cuál sería la respuesta de la red si la función de activación de la capa de salida es la función sigmoide entre 0 y 1.
 - b) Indique cuál sería la respuesta de la red si la función de activación de la capa de salida fuera la función softmax.
- 6) (1 pto) Función de costo de una neurona. Entropía cruzada binaria:
 - a) ¿Qué características debe tener una función para considerarse una función de costo?
 - b) ¿Qué ventaja tiene utilizar la función Entropía Cruzada Binaria en lugar del Error Cuadrático Medio para entrenar una neurona no lineal con función sigmoide entre 0 y 1? Explique.
 - c) ¿Podría utilizarse la función Entropía Cruzada Binaria como función de costo para un perceptrón? Explique
- 7) **(1 pto)** Se dispone de 3000 ejemplos para entrenar un multiperceptrón y se debe decidir entre utilizar o no utilizar lotes de tamaño 150.
 - a) Explique qué diferencia hay entre estas dos opciones.
 - b) Si se utilizan lotes de tamaño 150 y se sabe que el conjunto completo de ejemplos fue ingresado al multiperceptrón 200 veces hasta alcanzar la cota de error esperada,
 - i. ¿cuántas iteraciones y cuántas épocas se realizaron?
 - ii. ¿cuántas veces se actualizaron los pesos de la red?
 - iii. ¿cuántas veces se habrían actualizado los pesos de la red si no se hubieran utilizado lotes?
- 8) **(1.5 pto)** Si ingresa una imagen representada en RGB (3 canales) de 32x32 pixels a una capa Conv2D formada por 8 filtros de 4x4 con bias, sin padding y con un stride de 2
 - a) ¿Qué tamaño tendrá la salida de esta capa Conv2d? Detalle los cálculos realizados
 - b) ¿Cuántos parámetros tiene la capa Conv2D? Incluya los cálculos realizados.