

Calhoun: The NPS Institutional Archive

DSpace Repository

Theses and Dissertations

1. Thesis and Dissertation Collection, all items

1978

The development and implementation of algorithms for an A-7E performance calculator.

Koger, Gary Lang

Monterey, California. Naval Postgraduate School

<http://hdl.handle.net/10945/18401>

This publication is a work of the U.S. Government as defined in Title 17, United States Code, Section 101. Copyright protection is not available for this work in the United States.

Downloaded from NPS Archive: Calhoun

<http://www.nps.edu/library>

Calhoun is the Naval Postgraduate School's public access digital repository for research materials and institutional publications created by the NPS community.

Calhoun is named for Professor of Mathematics Guy K. Calhoun, NPS's first appointed -- and published -- scholarly author.

Dudley Knox Library / Naval Postgraduate School
411 Dyer Road / 1 University Circle
Monterey, California USA 93943

THE DEVELOPMENT AND IMPLEMENTATION OF
ALGORITHMS FOR AN A-7E PERFORMANCE
CALCULATOR

Gary Lang Koger

NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

The Development and Implementation
of Algorithms for an A-7E
Performance Calculator

by

Gary Lang Koger

September 1978

Thesis Advisor:

R. Panholzer

Approved for public release; distribution unlimited

T185328

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) The Development and Implementation of Algorithms for an A-7E Performance Calculator		5. TYPE OF REPORT & PERIOD COVERED Master's Thesis: Sept 1978
7. AUTHOR(s) Gary Lang Koger		6. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Postgraduate School Monterey CA 93940		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey CA 93940		12. REPORT DATE Sept 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) Naval Postgraduate School Monterey CA 93940		13. NUMBER OF PAGES 157
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited		15. SECURITY CLASS. (of this report) Unclassified
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) In this thesis, the algorithms for an A-7E performance calculator were developed and then implemented on three small data processors of different programming levels and storage capabilities. The utility of data is a function of several variables including accuracy and availability. The problem of retrieving performance data from the <u>Naval Air Training and Operating Procedures Standardization (NATOPS) Manuals</u> is significantly		

lessered by the devices demonstrated in this investigation. Nine performance chart groups, yielding the data usually considered necessary for flight, were reduced to a series of analytical expressions. These analytical expressions were demonstrated to reproduce NATOPS Manual data to a high degree of accuracy.

Implementation was demonstrated on a desk computer, a hand held calculator and a microprocessor.

The Development and Implementation of Algorithms
for an A-7E Performance Calculator

by

Gary Lang Koger
Lieutenant, United States Navy
B.S. United States Naval Academy, 1971

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN AERONAUTICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1978

Thesis
K735
c.

ABSTRACT

In this thesis, the algorithms for an A-7E aircraft performance calculator were developed and then implemented on three small data processors of different programming levels and storage capabilities.

The utility of data is a function of several variables including accuracy and availability. The problem of retrieving performance data from the Naval Air Training and Operating Procedures Standardization (NATOPS) Manuals is significantly lessened by the devices demonstrated in this investigation. Nine performance chart groups, yielding data usually considered necessary for flight, were reduced to a series of analytical expressions. These analytical expressions were demonstrated to reproduce NATOPS Manual data to a high degree of accuracy.

Implementation was demonstrated on a desk computer, a hand held calculator and a microprocessor.

TABLE OF CONTENTS

I.	INTRODUCTION	9
II.	DEVELOPMENT	11
	A. GUIDELINES	11
	B. PERFORMANCE CHART REDUCTION	14
	C. EXAMPLE OF CHART REDUCTION	16
	D. DEVELOPMENT DIFFICULTIES	18
	E. ACCURACY	22
III.	IMPLEMENTATION	26
	A. DESK COMPUTER	26
	B. HAND HELD CALCULATOR	27
	C. MICROPROCESSOR	30
	1. Single Board Computer Using Software for Mathematical Operations	30
	2. Single Board Computer Using Number Oriented Microprocessor	40
	D. A-7E TACTICAL COMPUTER	41
IV.	CONCLUSIONS.....	43
APPENDIX A:	Least Squares Fit Approximation	45
APPENDIX B:	NATOPS Manual Performance Charts	50
APPENDIX C:	Generated Algorithms	64
APPENDIX D:	HP-9830 Programs and Lists of Variables	71
APPENDIX E:	TI-59 Programs and User Information	90
APPENDIX F:	Microprocessor Program	139

LIST OF REFERENCES.....	156
INITIAL DISTRIBUTION LIST.....	157

LIST OF FIGURES

1.	Takeoff Speed NATOPS Chart	12
2.	Cruise Performance, Phase II NATOPS Chart	17
3.	Cruise Performance, Phase III NATOPS Chart	19
4.	Cruise Performance, Phase I NATOPS Chart	21
5.	Guideline Chart Solution	23
6.	SBC Solution Method	33
7.	SBC Program Execution Sequence	34
8.	Random Access Memory Map	35
9.	Resident Register Map	36
10.	Binary Conventions	39

ACKNOWLEDGEMENT

The author would like to thank Professor R. Panholzer for his advice and guidance throughout this investigation. The author is also indebted to LCDR C.D. Englehardt for suggestions and aid in the development of the microprocessor software.

For the original development concepts and enthusiasm for this investigation completion, LCDR W.M. Siegel is hereby acknowledged.

I. INTRODUCTION

The Naval Air Training and Operating Standardization (NATOPS) Manual is the official standard of the United States Navy for "...information on all aircraft systems, performance data, and operating procedures required for safe and effective operations." [1]

The purpose of this thesis was to develop algorithms of the more often used NATOPS performance charts for the A-7E aircraft, examine their accuracy and implement them on small data processors that might be adaptable to shipboard or aircraft onboard use. The interpretation of NATOPS performance charts is an error prone and time consuming procedure even for experienced users. The need for a system to eliminate this laborious process has been fully documented in a thesis completed in June 1978 by LCDR W.M. Siegel [2]. In his investigation, LCDR Siegel devised an efficient procedure to develop algorithms from the NATOPS performance charts and exercised this procedure on the problems of "Takeoff Ground Roll Distance" and "Takeoff Airspeed".

This investigation is an extension of the aforementioned work. The original scope of this investigation was to develop algorithms for eleven of the most often used performance problem chart groups and implement them on the Texas Instruments-59 (TI-59) hand held calculator (HHC). All of the NATOPS performance charts were not reduced because of research time limitations. Of the eleven performance chart groups studied,

two performance problems, "Time to Climb" and "Fuel Required to Climb" were rejected because of implementation difficulties on the TI-59 HHC (discussed fully in "Development Difficulties"). Therefore, nine performance chart groups were reduced to analytical expressions and implemented on the TI-59 HHC. To show further possibilities and feasibility of implementation of the algorithms, they were 1) fully implemented on the Hewlett Packard-9830 (HP-9830) desk computer, 2) demonstrated on a microprocessor (INTEL Corporation Microcomputer System-48), and 3) considered for implementation on the A-7E onboard digital computer and a microprocessor utilizing a recently developed number processing chip by the National Semiconductor Corporation (MM57109).

II. DEVELOPMENT

A. GUIDELINES

The scope of this investigation was established after a firm set of guidelines was defined.

Being the official United States Navy standard for the A-7E aircraft, the A-7E NATOPS Manual was the sole source of performance data used to develop the algorithms. As such, and being subject to changes during the aircraft's life cycle, the need for possible future updates to the algorithms was acknowledged. The effective date of the NATOPS Manual from which these algorithms were developed is March 1975. Since the performance data yielded by the algorithms was identical to NATOPS Manual performance curves, the same restrictions and limitations apply. For example, takeoff airspeed calculation restricts the NATOPS Manual user to trailing edge flap positions between 20 and 40 degrees down (Figure 1). For that reason, one could not expect to calculate the flaps up takeoff airspeed using the developed algorithms. An additional feature provided by the algorithms was higher order interpolation. While the inexperienced NATOPS user might attempt to interpolate linearly between non-linearly spaced curves, the algorithms do not.

An important guideline for the user's benefit was to ensure the execution of these algorithms after implementation was simple enough so very little training was required for the users. Intended users were Naval Flight Officers and Aviators.

TAKEOFF SPEED (A-7E)

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

CONDITIONS:
MILITARY RATED THRUST
LANDING CONFIGURATION
LEADING EDGE FLAPS DOWN

Date basis is 26% MAC. Increase speed 1/2 knot per 1% forward CG shift. Decrease speed 1/2 knot per 1% aft CG shift.

NAVAIR 01-45AAE-1

11-21

Figure 1

Takeoff Speed NATOPS Chart

76E254-02-72

Not included in the scope of this thesis is an introduction to the TI-59 HHC, HP-9830 desk computer and the INTEL Microcomputer System-48; however, to follow the computer programs written for these devices would required their basic understanding.

Another guideline established was that the performance calculators be light and small enough to be physically suited for its environment. For example, the TI-59 calculator and microprocessor could be used in a cockpit, briefing room or Air Operations Center. The HP-9830 desk computer would be restricted from cockpit use.

Reliability was a necessary guideline.

To make algorithm implementation on the TI-59 HHC feasible and since the program storing chip, the Continuous Read Only Memory (CROM), was limited to 5000 calculator program steps, the library of nine programs was required to fit into that space [3].

Finally, accuracy was a necessary consideration. The results obtained from the algorithms were required to be at least as accurate as following the performance charts manually. These accuracy requirements established were: One knot of air-speed, 100 feet of altitude or ground roll distance, 100 pounds of weight, ten seconds of time and one nautical mile of distance.

B. PERFORMANCE CHART REDUCTION

The reduction of the NATOPS Manual performance curves into analytical expressions was accomplished by a historically proven mathematical procedure, "least squares curve fitting". This method was applied to certain A-7E performance data by LCDR W.M. Siegel (see Introduction, Section I). His brief explanation of the "Least Squares Fit Approximation (LSFA)" is included in Appendix A.

Many performance charts from the NATOPS Manual contain three variables (two independent, one dependent) and are depicted as a two-dimensional space with the third dimension illustrated by a family of curves. The reduction of such a chart can be accomplished as follows:

1. Determine order of curves in family (i.e., second order, $y = A_1 + A_2x + A_3x^2$).

2. Apply LSFA to every member of the family of curves.

3. Since the order of the curve families may vary, a general curve family could be depicted as follows:

$$y = A_{11} + A_{12}x + A_{13}x^2 + \dots + A_{1m}x^{n-1} \quad (\text{for curve } z_1)$$

$$\dot{y} = A_{21} + A_{22}x + A_{23}x^2 + \dots + A_{2n}x^{n-1} \quad (\text{for curve } z_2)$$

$$\ddot{y} = A_{m1} + A_{m2}x + A_{m3}x^2 + \dots + A_{mn}x^{n-1} \quad (\text{for curve } z_m)$$

4. Apply LSFA to the coefficients. For example, plot A_{11} , A_{21}, \dots, A_{m1} versus z_1, z_2, \dots, z_m , respectively, yielding

$$A_1 = B_{11} + B_{12}z + B_{13}z^2 + \dots + B_{1r}z^{r-1}.$$

Doing the same with all coefficients,

$$\begin{aligned} A_2 &= \dot{B}_{21} + \dot{B}_{22}z + \dot{B}_{23}z^2 + \dots \dot{B}_{2r}z^{r-1} \\ A_n &= \dot{B}_{m1} + \dot{B}_{m2}z + \dot{B}_{m3}z^2 + \dots \dot{B}_{mr}z^{r-1} \end{aligned}$$

5. Given z and x, y can now be calculated by:

- a. Computing coefficients from equations generated in Step 4.

b. Applying coefficients to $y = A_1 + A_2x + \dots A_nx^{n-1}$.

6. It is important to note that although all curve family members must be of identical order, the equations representing the coefficients as a function of "z" need not be of similar order.

Although applying LSFA to the family of curves and then to their coefficients was the normal method of chart reduction, it was not always used for the following reasons:

- a. Some charts were two-dimensional (LSFA still used).
- b. Some charts were reduced by inspection.
 - (1) Linear curve families with linear spacing.
 - (2) Time, distance, speed charts ($d = v/t$).
- c. Algorithm anomalies (see "Development Difficulties").

When used, the LSFA was accomplished by a program pre-written by the Hewlett Packard Corporation for use with the HP-9830. This program, although greatly facilitating the development portion of this investigation, was written for a two-dimensional problem and had to be executed at least once for each curve and once for each set of coefficients.

A listing of all of the equations making up the performance algorithms are contained in Appendix C. The A-7E

performance chart groups from which they were developed are contained in Appendix B. They are in order:

1. Low Level Cruise Performance.
2. Takeoff Ground Roll Distance.
3. Maximum Range Cruise Time and Speed at Constant Altitude.

4. Maximum Range Cruise Fuel Required at Constant Altitude.

5. Maximum Range Climb Airspeed Schedule.
6. Takeoff Airspeed.
7. Maximum Refusal Airspeed.
8. Optimum Endurance Altitude.
9. Cruise Ceiling.

Future reference in this thesis is made to algorithms and programs by the numbers above.

C. EXAMPLE OF CHART REDUCTION

An example of the procedure discussed in the previous section is presented below. The chart chosen for reduction is the lower graph of Figure 2, from Phase II of the A-7E Cruise Performance chart group.

By inspection, all A_1 and A_2 coefficients are equal to zero. The curves appear parabolic and therefore second order, yielding $N = A_3 M^2$. The example follows:

N = intermediate result

M = mach number

D = drag count

CRUISE PERFORMANCE (A-7E)

11-117

PHASE II – AIRCRAFT REFERENCE NUMBER

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

11-58

Figure 2

Cruise Performance
 Phase II NATOPS Chart

<u>DRAG COUNT LINE</u>	<u>CURVE EQUATION</u>
50	$N = 1.3915M^2$
100	$N = 2.7787M^2$
150	$N = 4.1658M^2$
200	$N = 5.5530M^2$
300	$N = 8.3273M^2$
400	$N = 11.102M^2$

By plotting the A_3 coefficients versus D (drag count), the LSFA yields:

$$A_3 = (4.3732E-3) + .027743D \text{ and therefore,}$$

$$N = ((4.3732E-3) + (.027743D))M^2.$$

This was a particularly simple chart to reduce but illustrates the procedure.

D. DEVELOPMENT DIFFICULTIES

The normal method of reducing performance curves did not always yield useful information. One reason was although the NATOPS Manual Performance curves were constructed from experimental data, families of curves occasionally had very unusual spacing. They also were not always a true curve family; that is, they were of varying order. This can be visually detected in the lower graph of Phase III of the A-7E Cruise Performance chart group (Figure 3). The unequal and varying spacing between curves with different "reference numbers" is obvious. Although the coefficients for each curve can be calculated, the coefficients determined for a LSFA equation for an intermediate curve would be incorrect. To be usable for the normal

CRUISE PERFORMANCE (A-7E)

PHASE III – POUNDS OF FUEL PER NAUTICAL MILE

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL

76 E 769 (3) - 03 - 72

Figure 3
Cruise Performance
Phase III NATOPS Chart

11-59

method of chart reduction, a chart must have equal, constantly increasing, or constantly decreasing spacing between curves. When such an incompatible chart was encountered, it was necessary to interpolate between them. Two chart groups eliminated from consideration, "Fuel Required" and "Time to Climb from Sea Level to Selected Altitude", contained so many such curves (11), that very high order expressions would have been required to compute the coefficients, making implementation on the TI-59 HHC impractical. The A-7E Cruise Performance lower chart of Phase I had the same anomaly (Figure 4). Because of the importance of the low level mission, however, the algorithm for this chart was developed, for sea level only though. The multiple algorithm was not developed but could have been for implementation on a desk computer.

Another reason a straight application of LSFA was not always appropriate was the uniqueness of the upper graph of Phase I of the A-7E Cruise Performance chart group (Figure 4). This chart requires entry from the lower chart. A line is traced upward until the user contacts the appropriate Drag Count Line (dotted lines). The first pass through the Mach Number axis, a result of the lower chart, was defined M^* . Instead of now tracing horizontally to the Transfer Scale axis (this value defined TS^*), one must trace "between the solid guidelines" to the interception with a line traced vertically upward from the desired Mach number, M . The Transfer Scale would now be manually obtained by tracing horizontally to the

CRUISE PERFORMANCE (A-7E)

PHASE I – CLEAN AIRPLANE TRANSFER SCALE

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

76E269(1)-03-72

Figure 4

11-57

Cruise Performance
 Phase I NATOPS Chart

vertical axis. To develop the algorithm for this problem, the equations of the guidelines were also calculated as a function of Mach number. The values of the Transfer Scale resulting from M^* intercepting the guidelines and tracing horizontally to the vertical axis were called TS_1^* , TS_2^* , ... TS_m^* , from top to bottom. The original position, (M^* , TS^*), could now be determined in relation to (M^* , TS_n^*) and (M^* , TS_{n+1}^*). "n" and "n+1" indicate the upper and lower guidelines, respectively, which bracket (M^* , TS^*). This ratio provided the initial position relative to the guidelines:

$$R = (TS^* - TS_{n+1}^*) / (TS_n^* - TS_{n+1}^*)$$

Using the desired Mach number, M , the Transfer Scales for the same two enclosing guidelines were calculated (TS_n and TS_{n+1}). The final position relative to the guidelines was maintained using the original ratio by solving:

$$R = (x - TS_{n+1}) / (TS_n - TS_{n+1}) \text{ for } x.$$

"x" is the Transfer Scale with which the user now proceeds to Phase III of this performance chart group. Figure 5 depicts this problem graphically.

E. ACCURACY

A large number of results comparisons between the generated algorithms and manually traced performance problems were made. An infinite number of comparisons would be required to check all possibilities, but since the mathematical theory was so basic, the number of checks accomplished were considered sufficient.

Figure 5

Guideline Chart Solution

All nine algorithms were checked for accuracy on the HP-9830 desk computer. The number of checks for each algorithm was proportional to the ease of manually tracing through the performance charts. The author spent considerable time obtaining performance results from the NATOPS Manual charts and a relatively small amount of time computing the problems on the desk computer once the algorithms had been implemented. In a significant number of instances, the results disagreed, but after rechecking, the solution obtained manually was in error. This supported the contention that manual manipulation of the performance charts is an error prone procedure, even with an experienced user.

In a few rare instances, the author entered the required given data incorrectly into the desk computer. These miskeying errors, not procedural, were noticed as soon as the answer was produced. A user familiar with the A-7E performance characteristics would normally notice an answer resulting from grossly incorrect data input. It is acknowledged, however, that there is no failsafe check on the programs. When using a desk computer, the required input data can be printed along with the answer to ensure the user of the correctness of the input data. For a hand held calculator, however, computing a performance problem twice would provide a check, which is what many NATOPS Manual users often do. As with all computer programs, a desired result requires accurate input data.

Except for those noted below, the results of programs checked (using five significant figures) were indistinguishable from the answers obtained by manually manipulating the performance charts. Answers produced from the algorithms were rounded off to the nearest digit.

<u>PROGRAM</u>	<u>MAXIMUM DEVIATION</u>
Maximum Refusal Speed	2 knots
Takeoff Airspeed	1 knot

III. IMPLEMENTATION

A. DESK COMPUTER

The use of a desk computer capable of producing A-7E performance information within seconds (less than three seconds computation time for the longest algorithm) would be ideal for a squadron briefing room or Air Operations Center use. The HP-9830 desk computer was used for this implementation stage. Very little training would be required for personnel to load the programs stored on a cassette tape cartridge and execute them.

A knowledge of "basic" computer language is required to fully understand the nine HP-9830 programs in Appendix D [4]. The nine programs are in the same order as the algorithms of Appendix C.

Only in the Low Level Cruise Performance program are subroutines required for linear interpolation or for the iterative method to find the Transfer Scale (see "Development Difficulties"). All other programs are straight forward, sequential computations. In these programs, the coefficients defining a curve ($y = f(x)$) for a given set of conditions are calculated. That chart result, "y", is then calculated for the given independent variable "x". The next chart of that group is similarly treated and so on until the "final result" is achieved.

The HP-9830 programs are very useful since they prompt the user to supply the correct information. Most of the programs

"request, then accept" those inputs required for the applicable NATOPS Manual performance chart. The HP-9830 then prints the data just entered (ensuring the user that data input was as desired) followed quickly by the solution. The computer is instantly ready to receive new data for another calculation.

Programs 1, 2, 3, 4 and 7 (as identified in "Performance Chart Reduction, section II-B), are written in this "request, then accept" format. The shorter programs, 5, 6, 8 and 9, were written with an initial set of input data already in the program. This format allowed the computer to step incrementally through the allowable range of values for the input data, thus calculating a "table of performance data" for the applicable performance chart group. These programs are easily altered to the "request, then accept" format by some simple edit commands [4].

The variables used in the programs are defined following each program in Appendix D.

B. HAND HELD CALCULATOR

The many favorable features of the hand held calculator encouraged its implementation of the performance algorithms. Its small size allowed consideration for use in the cockpit. Its simplicity and reliability was an advantage making it especially suited for users of varying experience (including no experience). Although its execution speed was the slowest of all devices used, the computation time was still much faster than using the NATOPS Manual.

The Texas Instruments-59 (TI-59) programmable hand held calculator (HHC) was selected for implementation. This selection was made for several reasons. At the time, it was the only calculator available to the author which allowed permanent program storage (on magnetic cards). Additionally, the Texas Instruments Corporation had the capability to combine all pre-written performance programs, up to a 5000 program step limit, onto a Continuous Read Only Memory (CROM) chip, making the A-7E performance programs a permanent part of the calculator. This CROM chip can also be used on the less expensive TI-58 HHC. These features made the TI-58/59 (with CROM) a practical system for the A-7E Naval Aviation community.

One might consider the calculator's inability to prompt the user for inputs a shortcoming of this implementation candidate, but a company spokesman, Mr. Richard Cuthbert, stated a new face could be fitted onto the calculator, identifying different buttons with the input data categories such as GW for gross weight, FLPS for flap position, T($^{\circ}$ C) for temperature, and so on [3].

Some time was required for the author familiarization with the TI-59 HHC and its capabilities. For a detailed explanation of comments in this section involving TI-59 programming and Appendix E, consult the user's manual [5].

All programs were entered with the calculator memory partitioned to allow 879 program steps and ten memory storage locations. The loss of program steps in order to provide coefficient storage locations (ten to one) was the reason for

partitioning in this manner. Only five significant figures were considered necessary for computational accuracy. Considering the number possibilities (1.2345 to 1.2345E-12) might take from six to ten program steps, this was less than the absolute ten program steps sacrificed for a storage location. The ten memory storage locations were used to store the input data at program execution start but were often reused after the input data storage was no longer required.

The programming language level of the TI-59 HHC is below the HP-9830's and above a microprocessor's (discussed later) in sophistication. The algorithms were computed in a more space-saving manner than on the HP-9830. For example, in computing a first order polynomial, the HP-9830 program functioned as follows:

$$\begin{aligned}B(0) &= A_{11} + A_{12}z \\B(1) &= A_{21} + A_{22}z \\y &= B(0) + B(1)x.\end{aligned}$$

The TI-59 HHC was programmed to compute as follows:

$$(A_{11} + A_{12}z) + (A_{21} + A_{22}z)x = y.$$

In the Low Level Cruise Performance program, the linear interpolation and iterative methods to follow guidelines (discussed in previous section) was still accomplished using the more tedious TI-59 HHC language.

Using the partitioning already described, a program limit of 879 program steps was imposed (filling two magnetic cards). Two programs, "Takeoff Ground Roll Distance" and "Low Level

Cruise Performance", exceeded this limit and had to be continued on extra cards. These programs were written to allow storage of an intermediate result into the T-register. The rest of the cards could then be read in, any lost or newly acquired input data entered, and program execution would continue, automatically retrieving the stored intermediate result from the T-register. These artificial necessities for program completion using the magnetic cards would not be necessary if the programs were stored permanently in the CROM.

The total number of steps required for the nine performance algorithms programmed on the TI-59 HHC was 5461 steps. By subroutining (340 steps of programming are common to two programs), the total number could be reduced to 5121 steps. The elimination of the artificial steps required for the oversized programs would reduce the overage more. The sole intent of this implementation phase was not to fit these nine programs into the 5000 step CROM. If the inclusion of all nine programs was desired, streamlining aid offered by engineers from the Texas Instruments Corporation plus the reduction of significant figures in a non-critical area would accomplish this.

The program listings, storage location usage, user instructions, and execution times are included in Appendix E.

C. MICROPROCESSOR

1. Single Board Computer using Software for Mathematical Operations

The single board computer (SBC) implementation was investigated both as an extension of thesis work and to meet

the course objectives of AE-4900, Air Data Systems. Work toward this effort was also done by LCDR W.M. Siegel. The performance algorithms were to be processed on a SBC using an INTEL Corporation 8048 Programmable Read Only Memory (PROM), external random access memory (RAM) and a program counter. Software development was completed on the INTEL Prompt-48 (Microcomputer System-48 language) using an INTEL 8035 arithmetic logic unit (ALU). Although a SBC using the 8048 PROM and requiring a digital keyboard and display was never actually constructed because of the time limitations, the software operation was successfully demonstrated on the Prompt-48.

To preserve the programs between operation periods, the Prompt 48 was hand wired as specified in the user's manual to an ASR-35 Teletype set which allowed paper tape storage [6]. The Prompt-48 provided 1024 by two bytes of RAM and 64 by two bytes of resident memory. Although the MCS-48 instruction set will not be discussed in this thesis, a basic understanding of assembly level language is necessary to understand the developed software presented in Appendix F [7]. This microprocessor program listing includes the MCS-48 instructions in hex code and literal mnemonics and includes full documentation to facilitate interpretation.

A full performance algorithm was not implemented on the Prompt-48 because of its memory storage limitations. The original intent was to exercise the software of the complete A-7E Takeoff Ground Roll Distance algorithm on the Prompt-48.

After the necessary routines were written and stored, only room for three coefficients remained (98 coefficients required for this algorithm). Since implementation capability was the desired result, the computation of a second order polynomial was considered sufficient. Although this effort was software oriented, the necessary RAM storage for the additional coefficients and executive routine could have been easily provided for a SBC.

The software development for algorithm implementation required routines for input/output (I/O), executive direction, binary to binary coded decimal (BCD) and BCD to binary conversions, and floating point binary addition and multiplication routines. The I/O and executive routines were written by LCDR Siegel. The nonavailability of a number oriented microprocessor at the time of this effort required the development of the mathematical package described above. The advantages for such a capability will be discussed in the following section.

In addition to the microprocessor software developed by the author and LCDR Siegel, the I/O and display routines would require alteration for SBC implementation since a digital display and keyboard would replace the Prompt-48.

Figure 6 illustrates the solution method. Figure 7 is a flow chart of the program execution sequence. Figures 8 and 9 show the Prompt-48 RAM and resident register memory, respectively.

SBC SOLUTION METHOD

Figure 6

SBC Solution Method

SBC PROGRAM EXECUTION SEQUENCE

Figure 7

SBC Program Execution Sequence

RANDOM ACCESS MEMORY MAP

<u>ADDRESS</u>	<u>USE</u>
000-069	INPUT AND DISPLAY
06A-06F	EXECUTIVE ROUTINE SEGMENT
070-079	COEFFICIENT STORAGE
07A-0C6	MAIN EXECUTIVE ROUTINE
0C8-0E2	BINARY TO BCD EXECUTIVE ROUTINE
0E5-0FF	MISCELLANEOUS SUBROUTINES
100-2EC	ADDITION AND MULTIPLICATION SUBROUTINES
300-3FF	BCD TO BINARY EXECUTIVE ROUTINE AND CONVERSION SUBROUTINES

Figure 8

Random Access Memory Map

RESIDENT REGISTER MAP

ADDRESS	USE	ADDRESS	USE
20	LSB	30	
21	X-LOCATION	31	
22	ARITHMETIC REGISTER	32	LSB
23	MSB	33	DISPLAY HEX
24	EXPONENT	34	BUFFER
25	LSB Y-LOCATION	35	MSB
26	MSB ARITHMETIC REGISTER	36	DECIMAL POINT MASK
27	EXPONENT	37	CHARACTER COUNTER
28	LSB BCD-BINARY	38	LSB
29	MSB CONVERSION	39	
2A	EXPONENT	3A	DISPLAY
2B		3B	
2C		3C	BIT
2D		3D	
2E		3E	PATTERNS
2F		3F	MSB

Figure 9

Resident Register Map

The second order polynomial, $y = B(0) + B(1)x + B(2)x^2$, was calculated using a mathematical executive routine (alterable for any size polynomial and any number of polynomials). The only mathematical operations required were multiplication and addition of positive or negative numbers. For speed, binary arithmetic was used. For increased storage capability and mathematical efficiency, a floating point capability was included.

The calculation routine proceeded as follows:

$$B_2 * x = (B_2 x)$$

$$(B_2 x) + (B_1) = (B_2 x + B_1)$$

$$(B_2 x + B_1) * x = (B_2 x^2 + B_1 x)$$

$$(B_2 x^2 + B_1 x) + B_0 = (B_2 x^2 + B_1 x + B_0)$$

Although all mathematical operations are performed in the 8-bit (2-byte) accumulator register of the 8035 ALU (for a SBC, the 8048 PROM), a working accumulator using five registers (resident memory registers two through six), was established. All numbers in the program (independent variable "x" after conversion to binary, coefficients stored in RAM 070-079 and the 'result') were in one of two binary conventions. While in storage, the numbers were in "storage" convention. The numbers were shifted from "storage" to "working" convention only when transferred from the X and Y locations (see resident register memory map, Figure 9) to the working accumulator (registers two through six). When the desired operation was completed, the result was returned to the "storage" convention.

and moved to the "X" location. Figure 10 displays the "storage and working" conventions.

This software was successfully demonstrated on the Prompt-48. The user instructions for the Prompt-48 to repeat the demonstration are listed below:

(1) Ensure the 8035 ALU or 8048 PROM is inserted in the "execution" socket of the Prompt-48.

(2) Enter the program in hex code in the proper storage locations as listed in Appendix F.

On the Prompt-48, press the following keys to clear the resident register memory:

"C"

"Registers"

"0"

", "

"4"

"8"

Do not press "Program Memory" instead of "registers" or the program just entered will be erased.

(3) To execute the program, press the following keys:

"A"

"2"

"Execute"

"Go"

"No Break"

"0"

"Execute"

BINARY CONVENTIONS

Each large block depicts 1 byte which includes 4 bits. The compartmented blocks represent 1 bit.

STORAGE CONVENTION

In storage convention, the mantissa is left justified to bit 5. A positive number is denoted by 0 in the first bit of the second byte(sign bit); a 1 indicates a negative number.

WORKING CONVENTION

In working convention, the mantissa is left justified to bit 4. The sign bit is stored in F0(X-location number) and F1(Y-location number) flags of the program status word.

Figure 10

Binary Conventions

The display will blank, awaiting the input of the independent variable "x". To enter "x", enter the digit keys for numbers (base 10) and "D" for decimal point. "x" will be displayed on the digital display as it is entered. To compute the algorithm (second order polynomial), press "E". The answer will rapidly appear. To calculate the polynomial with a new value for "x", start at Step 3.

(4) To prevent the time consuming reloading of the program, it is advisable to store the program on a peripheral device (paper tape, disc, etc.).

2. Single Board Computer using Number Oriented Microprocessor

Very recently, the National Semiconductor Corporation began production of a chip intended for use in number processing applications [8]. This chip, the MM57109 MOS/LSI, is capable of all scientific calculator functions, test and branch capabilities, internal number storage, and I/O instructions. Of the specific calculator functions, only addition, subtraction and multiplication would be used.

A SBC using this chip would need the 8048 PROM for coefficient and executive routine storage but would not need the space consuming mathematical package of the SBC in the last section. A program counter would still be required but external RAM would not. The computation time would be increased over the demonstrated SBC (approximate computation time of a HHC), but the simplicity of programming would make this proposed SBC very attractive.

D. A-7E TACTICAL COMPUTER

In February 1978 the author made a trip to the Naval Air Facility at China Lake, California. The purpose of this visit was to receive indoctrination on the TC-2/2A tactical computers and obtain a programming manual for these devices. The desired goal was implementation of selected performance algorithms on the laboratory bench computer run by the A-7 Program Office of the Naval Weapons Center (NWC). A thorough understanding of the computer's capabilities and limitations was provided by Mr. Robert Westbrook, a software technician.

The A-7E computer provides very accurate navigation and weapons guidance capability. The TC-2 and TC-2A computers are a generation apart, the TC-2A being over two times faster and having twice the storage capability of its earlier version. Both computers are operational at this time. Specific design and programming information is available from the programming manual [9].

The instruction set of the tactical computer provides fixed point arithmetic, logical transfer of control (branching), address modification and single word input/output instructions specifically intended for operations primarily involving arithmetic. These features made the implementation of algorithms a logical decision. Several factors made this implementation by the author impractical. The computer design was quite old, the instruction set being very tedious and difficult to interpret. The computer's inability to function using floating point

arithmetic would require a significant software effort in that area alone. The time required to become fully familiar with the instruction set, write the software, and load and test the programs at NWC would have been prohibitive for this investigation.

It is hoped that the programmers at NWC will be able to implement those algorithms deemed desireable to achieve an onboard capability. Takeoff Airspeed and Maximum Refusal Airspeed are considered ideal for implementation.

IV. CONCLUSIONS AND RECOMMENDATIONS

Nine of the A-7E NATOPS Manual performance chart groups were reduced to a series of analytical expressions or algorithms. These algorithms, accurate to five significant figures, are as accurate as results obtained by manual manipulation of the performance charts.

Implementation was made on three data processors of different programming levels and storage capabilities. These devices and degrees of implementation were:

(1) HP-9830 Desk Computer - complete implementation with successful demonstration.

(2) TI-59 Hand Held Calculator - complete implementation with successful demonstration.

(3) Microprocessor - partial implementation with successful demonstration.

In view of the success of this investigation, recommendations concerning implementation possibilities are listed below:

(1) Complete reduction of the NATOPS Manual performance charts could be accomplished and implemented onto a desk computer as one large program capable of performance data computation within seconds. The desk computer would be ideal for mission planning on a squadron or air wing level or for Air Operations Center use.

(2) The programs written for the TI-59 HHC could be consolidated onto a CROM and used with a TI-58 HHC for use on a

squadron level. As an alternative, the software could be rewritten for any HHC of comparable capability.

(3) Although implementation on a single board computer using a number oriented microprocessor is completely feasible, because of programming ease and cost consideration, the HHC is considered a superior implementation possibility at this time.

(4) The A-7E tactical computer could easily be programmed by software engineers at NWC, China Lake, California, to produce an onboard capability.

APPENDIX A

Least Squares Fit Approximation

References 10 and 11 describe the Least Squares Fit Approximation in detail. In general the problem is to represent a set of "n" data points in two-dimensional space

$$X_i, Y_i \quad i = 1 \text{ to } n$$

by a polynomial expression of a curve whose degree is less than "n". Two classes of problems exist:

- (1) Linearly independent - those in which the degree (d) of the polynomial is one less than the number of data points

$$d = n-1 \tag{1}$$

- (2) Linearly dependent - those in which the degree (d) is less than n-1

$$d < n-1 \tag{2}$$

As an example, a set of four (4) data points randomly spaced was chosen. If a third degree polynomial of the form

$$Y = A + BX + CX^2 + DX^3 \tag{3}$$

were desired, and the data points X_i and Y_i were inserted ($i = 1 \text{ to } 4$) into four such equations, an exact solution for the four unknown coefficients would exist. These four unknowns could be found from the four equations by numerous conventional techniques (Direct substitution, Cramer's rule, etc.). The polynomial expression generated would be termed a "col-location" polynomial because its plot would pass through all data points.

It is often advantageous to describe a set of data points by a curve that does not pass through each point. This type of polynomial would be termed a "regression" equation. For any set of data points an infinite number of regression expressions exist for any specified degree (except the linearly independent case) and the object of the Least Squares Method is to find the polynomial coefficients of the chosen degree that best describe the data points. In the previous example of four data points, assume that, instead of the third degree form chosen, a second degree equation were selected of the form

$$Y = A + BX + CX^2 \quad (4)$$

With four data points, the polynomial is overspecified and thus linearly dependent. For this case an infinite number of solutions exist for the coefficients a, b and c. If an error term (δ) were defined for any given X,Y pair as

$$\delta_1 = |Y_1 - A + BX_1 + CX_1^2| \quad (5)$$

a total squared error term (E) could then be defined by squaring and summing the terms attained:

$$E = \sum_{i=1}^N \delta_i^2 \quad (6)$$

If E were then minimized for any given degree chosen, the best Least Squares Fit would have been achieved.

If the values for δ from Equation 5 were inserted in Equation 6 and the partial derivative of E were taken with respect to the coefficient A, an equation would be generated that when set equal to zero (0) would define a minimum value of E for a given value of A. If the same operation were performed with respect to the

coefficients B and C then three equations would be generated with three unknowns (A, B and C). The solution of these simultaneous equations would produce the coefficients A, B and C, that would minimize the value of E and hence would produce a Least Squares Fit approximation to a set of linearly dependent equations.

A numerical procedure has been developed to accomplish this task. An example of this procedure has been included in the following paragraphs [10, 11].

Least Squares Fit Method Example

Given the following set of data:

X	0	1	2	4	7
f(X) = Y	0	1	3	12	20

fit a curve of the form

$$f(X) = Y = A + BX + CX^2$$

STEP 1: Substitute all pairs of data into the form equation yielding the fact that the coefficients (A, B and C) must satisfy all the following:

$$0 = A + B(0) + C(0)^2$$

$$1 = A + B(1) + C(1)^2$$

$$3 = A + B(2) + C(2)^2$$

$$12 = A + B(4) + C(4)^2$$

$$20 = A + B(7) + C(7)^2$$

Now multiply each expression by its coefficient of A in that expression and add all equation yielding

$$36 = 5A + 14B + 70C$$

Now multiply each expression by its coefficient of B in that expression and add all the equations yielding

$$0 = 0(A) + 0(B) + 0(C)$$

$$1 = A + 1B + 1C$$

$$6 = 2A + 4(B) + 8(C)$$

$$48 = 4A + 16(B) + 64(C)$$

$$\underline{140 = 7A + 44(B) + 343(C)}$$

$$195 = 14A + 70(B) + 416(C)$$

Now multiply each expression by its coefficient C in that expression and add all the expressions yielding

$$0 = 0(A) + 0(B) + 0(C)$$

$$1 = 1(A) + 1(B) + 1(C)$$

$$12 = 4(A) + 8(B) + 16(C)$$

$$192 = 16(A) + 64(B) + 256(C)$$

$$\underline{980 = 49(A) + 343(B) + 2401(C)}$$

$$1185 = 70A + 416B + 2674C$$

Now solve the following three previously generated equations for the coefficients A, B and C yielding

$$36 = 5A + 14B + 70C$$

$$195 = 14A + 70B + 416C$$

$$1185 = 70A + 416B + 2674C$$

$$A = -.99, B = 2.6, C = .065$$

and

$$Y = -.99 + 2.6X + .065X^2$$

The following plot and chart depict the original data and the data obtained from the equation for the fitted curve:

	<u>Original</u>	Fitted Curve <u>Polynomial</u>
X	Y	Y
0	0	- .98
1	1	1.67
2	3	4.48
4	12	10.46
7	20	20.41

Q.E.D.

APPENDIX B
NATOPS Manual Performance Charts

These charts from which the performance algorithms were developed are listed below in order:

<u>Figure</u>	<u>Title</u>
B1	Cruise Performance, Phase I
B2	Cruise Performance, Phase II
B3	Cruise Performance, Phase III
B4	Cruise Performance, Phase IV
B5	Takeoff Factor
B6	Takeoff Ground Roll Distance
B7	Adjusted Takeoff Ground Roll Distance
B8	Maximum Range Cruise at Constant Altitude (Time, Speed)
B9	Maximum Range Cruise at Constant Altitude (Fuel Required)
B10	Military Power Climb Schedule
B11	Takeoff Speed
B12	Maximum Refusal Speed
B13	Cruise Ceiling and Optimum Endurance Altitude

CRUISE PERFORMANCE (A-7E)

PHASE I - CLEAN AIRPLANE TRANSFER SCALE

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

Figure B1

11-57

Cruise Performance, Phase I

CRUISE PERFORMANCE (A-7E)

11-117

PHASE II - AIRCRAFT REFERENCE NUMBER

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

76 E 769 (2) - 03 - 72

Figure B2

Cruise Performance, Phase II

CRUISE PERFORMANCE (A-7E)

PHASE III – POUNDS OF FUEL PER NAUTICAL MILE

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

76-2269 (3) - 01-72

11-59

Figure B3
 Cruise Performance, Phase III

CRUISE PERFORMANCE (A-7E)

PHASE IV - FUEL FLOW

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

76F269(4)-03-72

Figure B4

Cruise Performance, Phase IV

TAKEOFF FACTOR (A-7E)

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL.

76E 286-04-74

TAKEOFF GROUND ROLL DISTANCE (A-7E)

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

CONDITIONS:
LEVEL HARD SURFACE RUNWAY
MILITARY RATED THRUST
LANDING CONFIGURATION
ZERO HEADWIND
CG: 26% MAC
FULL FLAPS

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL

NOTE:

For minimum ground roll corresponding to minimum lift-off speed, subtract 500 feet.

For humidity effects on takeoff distance, ground roll distances should be increased 1% for each 10% increase in the relative humidity above 40%.

76E287(1)-04-74

Change 6

11-19^t

Figure B6

Takeoff Ground Roll Distance

TAKEOFF GROUND ROLL DISTANCE (A-7E)

ADJUSTED GROUND ROLL DISTANCE

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

CONDITIONS:
HARD SURFACE RUNWAY
MILITARY RATED THRUST
LANDING CONFIGURATION
LEADING EDGE FLAPS DOWN

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL.

NOTE

For humidity affects on takeoff distance, ground roll distances should be increased 1% for each 10% increase in the relative humidity above 40%.

76 E 287 (2) - 02 - 72

Figure B7

Adjusted Takeoff Ground Roll Distance

MAXIMUM RANGE CRUISE AT CONSTANT ALTITUDE (A-7E)

TIME AND SPEED

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL

TRUE AIRSPEED - KNOTS
 $T_0 E = 76(1) - 03 \cdot 72$

Figure B8

Maximum Range Cruise at Constant Altitude (Time, Speed)

MAXIMUM RANGE CRUISE AT CONSTANT ALTITUDE (A-7E)

FUEL REQUIRED

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

76 E 270 (?) - 03 - 72

11-63

Figure B9

Maximum Range Cruise at Constant Altitude (Fuel Required)

MILITARY POWER CLIMB (A-7E)

CLIMB SPEED SCHEDULE

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL

76E226(1)-02-72

TAKEOFF SPEED (A-7E)

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

CONDITIONS:
MILITARY RATED THRUST
LANDING CONFIGURATION
HEADING EDGE FLAPS DOWN

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL

Date basis is 26% MAC. Increase speed 1/2 knot per 1% forward CG shift. Decrease speed 1/2 knot per 1% aft CG shift.

NAVAIR 01-45AAE-1

76E254-02-72

Figure B11

Takeoff Speed

MAXIMUM REFUSAL SPEED (A-7E)

WITH ANTI-SKID

MODEL: A-7E
DATA BASIS: FLIGHT TEST
DATE: NOVEMBER 1971

CONDITIONS:
MILITARY RATED THRUST
HARD SURFACE RUNWAY
LANDING CONFIGURATION

ENGINE: TF41-A-2
FUEL GRADE: JP-5
FUEL DENSITY: 6.8 LB/GAL

76E201-04-74

Figure B12

Maximum Refusal Speed

CRUISE CEILING AND OPTIMUM ENDURANCE ALTITUDE (A-7E)

MODEL: A-7E
 DATA BASIS: FLIGHT TEST
 DATE: NOVEMBER 1971

ENGINE: TF41-A-2
 FUEL GRADE: JP-5
 FUEL DENSITY: 6.8 LB/GAL

76E267-03-72

Figure B13

11-53

Cruise Ceiling and Optimum Endurance Altitude

APPENDIX C

Generated Algorithms

LOW LEVEL CRUISE PROGRAM

Phase I

$$M_1 = -92.512 + 236.896G$$

Transfer Scale Versus Drag Count

$$A_0 = -2.3287 - .26316D + .0073327D^2 - (7.513E-5)D^3 + (3.5396E-7)D^4 - (7.78E-10)D^5 + (6.462E-13)D^6$$

$$A_1 = 4.835 + 1.0956D - .030653D^2 + (3.1912E-4)D^3 - (1.5276E-6)D^4 + (3.408E-9)D^5 - (2.8692E-12)D^6$$

$$A_2 = 10.284 - 1.0719D + .031094D^2 - (3.2878E-4)D^3 + (1.595E-6)D^4 - (3.6009E-9)D^5 + (3.0634E-12)D^6$$

$$S_1 = A_0 + (A_1)(M_1) + (A_2)(M_1)^2$$

Transfer Scale Versus Guidelines

$$B_0 = 22.819 - 31.734I + 41.33I^2 - 5.0953I^3$$

$$B_1 = -154.98 + 217.51I - 261.73I^2 + 35.905I^3$$

$$B_2 = 405.08 - 525.56I + 607.49I^2 - 88.737I^3$$

$$B_3 = -445.62 + 542.98I - 611.55I^2 + 92.894I^3$$

$$B_4 = 184.78 - 204.42I + 225.89I^2 - 35.189I^3$$

$$S = B_0 + (B_1)(M_1) + (B_2)(M_1)^2 + (B_3)(M_1)^3 + (B_4)(M_1)^4$$

Phase II

$$R = S + 2[(4.3732E-3) + .027743D]M^2$$

Phase III

```
B0 = 5.6253 -1.989R + 3.0252R2 -1.0761R3 + .17675R4 -.013095R5
+ (3.526E-4)R6

B1 = 205.3012 -248.9317R + 91.66355R2 -15.55218R3 + 1.224432R4
-.0395333R5 + (2.896385E-4)R6

B2 = -1052.123 + 1231.24R -487.4233R2 + 91.6522R3 -8.662962R4
+ .3953974R5 -.006905535R6

B3 = 1680.142 -1950.139R + 788.8513R2 -152.5733R3 + 15.03819R4
-.7274139R5 + .013707R6

R3 = R

R1 = 2 (Integer (R/2))

R2 = R1 + 2

N1 = B0 + (B1)(R1) + (B2)(R1)2 + (B3)(R1)3

N2 = B0 + (B1)(R2) + (B2)(R2)2 + (B3)(R2)3
```

Using Linear Interpolation

```
N = N1 + [(N2-N1)(R3-R1)/2]

P = 4.9746N + (7.9043E-6)N2
```

Phase IV

```
N4 = [6.4375 + .010426T -(6.8925E-6)T2 + (4.9127E-7)T3]M

F = .1(N4)P
```

TAKEOFF DISTANCE PROGRAM

```
B0 = 13.086 -.00017113A -(2.0655E-7)A2 + (3.6861E-11)A3
-(2.4156E-15)A4
```



```

B1 = -.045635 -(7.8931E-6)A + (3.7545E-9)A2 -(9.7088E-13)A3
    + (6.997E-17)A4

B2 = -.001317 -(8.2558E-7)A + (4.0739E-10)A2 -(8.548E-14)A3
    + (5.4964E-18)A4

B3 = -(1.9097E-5) + (1.3671E-8)A -(9.4694E-12)A2 + (2.0434E-15)A3
    -(1.4617E-19)A4

C = B0 + B1(B) + B2(B)2 + B3(B)3

If double datum on,
E = 1.9773 + .56598C

If double datum off,
E = .54178 + .65876C

G0 = -(4.8896E+5) + (8.4974E+1)G -(5.7856E-3)G2 + (1.9373E-7)G3
    -(3.1744E-12)G4 + (2.0446E-17)G5

G1 = (5.8621E+4) -(1.0146E+1)G + (6.8807E-4)G2 -(2.292E-8)G3
    + (3.7387E-13)G4 -(2.3964E-18)G5

H = G0 + G1(E)

If relative humidity < 40%, K = H
If not, K = 4{[(I-40)/1000]+1}

L0 = 67.124 + .89509K + (2.3306E-5)K2 -(1.6254E-9)K3
    + (3.3728E-14)K4

L1 = -9.0995 -(1.0856E-2)K + (2.1754E-7)K2 -(2.5327E-11)K3
    + (1.197E-15)K4

L2 = (1.4782E-1) -(2.1666E-6)K + (3.4274E-9)K2 -(2.7817E-13)K3
    + (9.3077E-18)K4

M = L0 + L1(L) + L2(L)2

If winds calm, M = K

```


$X_0 = (4.5704E+1) + .93429M + (2.2265E-5)M^2 - (2.338E-9)M^3$
 $+ (7.941E-14)M^4$
 $X_1 = 7.9472 + .014914M + (9.0708E-6)M^2 - (7.1235E-10)M^3$
 $+ (3.0684E-14)M^4$
 $X_2 = 5.3616 - .0085136M + (3.5914E-6)M^2 - (4.5932E-10)M^3$
 $+ (1.9889E-14)M^4$
 $X = X_0 + X_1(N) + X_2(N)^2$
 $Q_0 = 2604.2 - 2.1694X + .0010915X^2 - (1.1119E-7)X^3 + (3.662E-12)X^4$
 $Q_1 = -175.73 + .22601X - (7.5225E-5)X^2 + (7.7018E-9)X^3$
 $- (2.5437E-13)X^4$
 $Q_2 = 2.8549 - .0040102X + (1.2832E-6)X^2 - (1.3234E-10)X^3$
 $+ (4.3908E-15)X^4$
 $Q = Q_0 + Q_1(P) + Q_2(P)^2$
 $S_0 = -400.79 + 1.5801Q - (2.0254E-4)Q^2 + (2.4111E-8)Q^3$
 $- (8.6737E-13)Q^4$
 $S_1 = 16.196 - .024333Q + (9.3484E-6)Q^2 - (1.2594E-9)Q^3$
 $+ (4.7522E-14)Q^4$
 $S_2 = -.14758 + (2.359E-4)Q - (1.037E-7)Q^2 + (1.6016E-11)Q^3$
 $- (6.3195E-16)Q^4$
 $S = S_0 + S_1(R) + S_2(R)^2$

MAXIMUM RANGE CRUISE TIME AND SPEED
AT CONSTANT ALTITUDE PROGRAM

$B_0 = -1 + (5.0794E-3)H - (1.3968E-3)H^2 + (8.254E-5)H^3$
 $- (1.2698E-6)H^4$


```

B1 = .05 + .0015159H + (1.123E-4)H2 -(3.4921E-6)H3
+ (7.9365E-8)H4

N = B0 + B1(G)

B0 = .47803 + .0013417D + (6.2287E-6)D2 -(1.6261E-8)D3
+ (1.6438E-11)D4

B1 = .08217 + (4.1209E-4)D -(4.5577E-6)D2 +(1.6777E-8)D3
-(2.001E-11)D4

B2 = (4.2143E-4) -(9.4397E-5)D + (1.2646E-6)D2 -(4.8537E-9)D3
+ (5.7222E-12)D4

B3 = -(6.6767E-4) + (8.4671E-6)D -(1.0501E-7)D2 +(3.6382E-10)D3
-(3.7828E-13)D4

M = B0 + B1(N) + B2(N)2 + B3(N)3

M1 = M -[(60-T)(2)(M)/1200]

V = (710)(M1-.14) + 100 -E

T1 = D1/V

```

FUEL REQUIRED FOR MAXIMUM RANGE CRUISE
AT CONSTANT ALTITUDE PROGRAM

```

B0 = 4.54 -.16444A + .0033932A2 -(1.0283E-4)A3 +(1.926E-6)A4
-(1.3757E-8)A5

B1 = (3.22E-9) -(3.6664E-3)A + (8.9338E-4)A2 -(5.5939E-5)A3
+ (1.4593E-6)A4 -(1.3281E-8)A5

B2 = (6E-4) + (1.1203E-4)A -(2.3358E-5)A2 +(1.4536E-6)A3
-(3.7144E-8)A4 +(3.3334E-10)A5

N = B0 + B1(G) + B2(G)2

```


$$B_0 = -(2.5399E-3)D + (9.7299E-5)D^2 - (2.3516E-7)D^3 + (1.4251E-10)D^4$$

$$B_1 = 2 + (4.2388E-3)D + (1.2326E-5)D^2 - (1.0298E-7)D^3 + (1.7277E-10)D^4$$

$$L = B_0 + B_1(N)$$

$$F = L/V$$

$$R = (F)(T)/60$$

MAXIMUM RANGE CLIMB AIRSPEED SCHEDULE

$$S = 405.56 - .79075D + .0011382D^2 - (4.1018E-7)D^3$$

$$M = .86 - (2.1634E-3)D + (7.6582E-5)D^2 - (1.1344E-6)D^3 + (7.2125E-9)D^4 - (2.3035E-11)D^5 + (3.6588E-14)D^6 - (2.3062E-17)D^7$$

TAKEOFF AIRSPEED PROGRAM

$$U_1 = 54.023 + (3.4787E-3)G - (1.9475E-8)G^2$$

$$U = U_1 + [(26-P)/2]$$

$$V_0 = -1917.1 + 61.604U - .70348U^2 + .0035661U^3 - (6.6578E-6)U^4$$

$$V_1 = 76.824 - 2.4517U + .028779U^2 - (1.4753E-4)U^3 + (2.7872E-7)U^4$$

$$V_2 = -.72239 + .023415U - (2.798E-4)U^2 + (1.4596E-6)U^3 - (2.807E-9)U^4$$

$$V_3 = V_0 + V_1(R) + V_2(R)^2$$

MAXIMUM REFUSAL SPEED PROGRAM

$$B_0 = -43.01 + 6.761G - .35159G^2 + .0080545G^3 - (6.7769E-5)G^4$$

$$B_1 = 26.312 - 3.8382G + .20326G^2 - .047022G^3 + (3.994E-5)G^4$$

$B_2 = -4.9639 + .72723G - .038721G^2 + (8.985E-4)G^3 - (7.638E-6)G^4$
 $B_3 = .30288 - .044855G - .0023921G^2 - (5.5549E-5)G^3$
 $+ (4.7217E-7)G^4$
 $R = B_0 + B_1(E) + B_2(E)^2 + B_3(E)^3$
 $B_0 = -11.412 + 62.185L - 9.0037L^2 + .64921L^3 - .017455L^4$
 $B_1 = -.2811 - 4.2012L + .70377L^2 - .058693L^3 + .0017461L^4$
 $M = B_0 + B_1(R)$

OPTIMUM ENDURANCE ALTITUDE PROGRAM

$B_0 = 55.333 + .073076D - (9.7836E-4)D^2 + (3.5015E-6)D^3$
 $- (3.9782E-9)D^4$
 $B_1 = -1.1 - (8.0597E-3)D + (8.0097E-5)D^2 - (2.8836E-7)D^3$
 $+ (3.3032E-10)D^4$
 $B_2 = (6.6667E-3) + (1.2541E-4)D - (1.4039E-6)D^2$
 $H = B_0 + B_1(G) + B_2(G)^2$

CRUISE CEILING PROGRAM

$B_0 = 85.118 - .29117D + .0030434D^2 - (1.2851E-5)D^3 + (1.6621E-8)D^4$
 $B_1 = -2.7877 + .025635D - (3.3063E-4)D^2 + (1.4162E-6)D^3$
 $- (1.8343E-9)D^4$
 $B_2 = .063327 - (8.5289E-4)D + (1.0814E-5)D^2 - (4.6514E-8)D^3$
 $+ (6.0606E-11)D^4$
 $B_3 = -(6.0468E-4) + (9.0826E-6)D - (1.143E-7)D^2 + (4.9304E-10)D^3$
 $- (6.4567E-13)D^4$
 $H = B_0 + (B_1)G + (B_2)G^2 + (B_3)G^3$

APPENDIX D

HP-9830 Programs and Lists of Variables

```

1 REM THIS PROGRAM CALCULATES THE FUEL FLOW AND LBFUEL/NAUTICAL MILE FOR AN
2 REM A-7E FLYING A LOW LEVEL MISSION AND IS DEPENDENT ON 4 VARIABLES --
3 REM GROSS WEIGHT,DRAG COUNT,MACH NUMBER, AND TEMPERATURE(CENTIGRADE)
10 PRINT "ENTER GROSS WT,DRAG CT, MACH #, AND TEMP(CENT)"
11 PRINT
12 PRINT
20 INPUT G,D,M,T
49 G=G/1000
50 M1=0.38813+0.0042981*G
54 GOSUB 600
56 I=0
58 GOSUB 600
60 S2=S
70 IF S1>S2 THEN 100
90 S=S2
95 GOTO 300
100 I=1
110 GOSUB 600
120 S3=S
130 IF S1<S3 THEN 200
140 S2=S3
150 I=I+1
160 GOSUB 600
170 GOTO 130
200 I1=(S1-S2)/(S3-S2)
210 M1=M
220 I=I-1+I1
231 I=INT(I)
232 GOSUB 600
233 S2=S
224 I=I+1
235 GOSUB 600
236 S3=S
227 S=S2+(I1*(S3-S2))
240 GOTO 300
285 PRINT
286 PRINT
300 R=R+2+(4.3793E-03+0.037743*D)+M12
301 R3=R
302 R1=2*INT(R/2)
304 R2=R1+2
306 J=1
308 IF J=2 THEN 311
309 R=R1
310 GOTO 319
311 R=R2
319 B0=5.6253-1.989+R+3.0352+R12-1.0761+R13+0.17675*R14
320 B0=B0-0.013095+R15+3.526E-04+R16
330 B1=205.3012-248.9317+R+91.66355+R12-15.55218+R13+1.224+R3+R14
340 B1=B1-0.0695333+R15+3.896385E-04+R16
350 B2=-1052.123+1231.34+R-487.4333*R12+91.6522+R13-8.662962+R14+0.3953974*R15
360 B2=B2-0.006905835+R16
370 B3=1680.142-1950.139+R+788.8513+R12-152.5733+R13+15.03819+R14
380 B3=B3-0.7274139+R15+0.013707+R16
390 B4=-864.6875+1000.443+R-408.7451+R12+80.08314+R13-8.02958+R14
400 B4=B4+0.3982527+R15-7.720617E-03+R16
430 N=B0+B1+M+B2+M12+B3+M13+B4+M14
440 IF J=2 THEN 480
450 N1=N

```



```

455 J=2
460 GOTO 311
475 R=2
480 N2=N
490 N=N1+(N2-N1)*(R3-R1)/2
500 REM      COMPLETED CALCULATION OF INTERMEDIATE # BY LINEAR INTERPOLATION
510 P=4.9746*N+7.9043E-06*N^2
520 N4=(6.4375+0.010426*T-6.8925E-06*T^2+4.9127E-07*T^3)+N
530 F=(0.1+N4+P)*1000
539 F=INT(F)
540 PRINT "GROSS WT="G+1000
541 PRINT "TS=""DC=""D""M=""M
542 PRINT "TEMP=""T
543 PRINT "REF #"="R3
544 PRINT "N=""N
545 PRINT "LBFUEL NM=""P
550 PRINT "FUEL FLOW=   "F
551 PRINT
555 GOTO 10
560 B0=22.819-31.734*I+41.33*I^2-5.0953*I^3
570 B1=-154.98+217.51*I-361.73*I^2+35.905*I^3
580 B2=405.08-535.56*I+607.49*I^2-88.737*I^3
590 B3=-445.62+542.98*I-611.55*I^2+92.894*I^3
600 B4=184.78-304.42*I+335.89*I^2-35.189*I^3
650 S=B0+B1*M1+B2*M1^2+B3*M1^3+B4*M1^4
660 RETURN
660 A0=-2.3887-0.26316*D+0.0073337*D^2-7.513E-05*D^3+3.5395E-07*D^4
670 A0=A0-7.78E-10*D^5+6.4624E-13*D^6
680 A1=4.835+1.0956*D-0.030653*D^2+3.1913E-04*D^3-1.5276E-06*D^4
690 A1=A1+3.408E-09*D^5-2.8632E-12*D^6
640 A2=10.384-1.0719*D+0.031094*D^2-3.2878E-04*D^3+1.595E-06*D^4
650 A2=A2-3.6009E-09*D^5+3.0634E-12*D^6
660 S1=A0+A1*M1+A2*M1^2
670 RETURN
680 END

```


List of Variables for Program 1

<u>Variable</u>	<u>Definition</u>
G	Gross weight (lbs.)
D	Drag count
T	Temperature ($^{\circ}$ C)
M	Mach number
M1	Result of lower graph, Figure B1
I	Guidelines, numbered top to bottom consecutively
S	Transfer Scale calculated as function of I
S1	Transfer Scale calculated as function of D
S2	Transfer Scale calculated for upper guideline
S3	Transfer Scale calculated for lower guideline
I1	Relative Transfer Scale location between guidelines
R,R3	Reference number
R1	Even reference number below actual reference number
R2	Even reference number above actual reference number
J	Integer counter
N	Result of lower graph, Figure B3
N1	Result of lower graph, Figure B3 for R1
N2	Result of lower graph, Figure B3 for R2
N4	Result of lower graph, Figure B4
A0,B0, A1,B1	Coefficients
A2,B2, B3,B4	Coefficients
P	Pounds of fuel per nautical mile
F	Fuel flow

Program 2

```

1 REM THIS PROGRAM CALCULATES THE TAKEOFF DISTANCE REQUIRED FOR AN A-7E
2 REM IT IS DEPENDENT ON 9 VARIABLES --
3 REM GROSS WEIGHT, RHWY ALTITUDE, TEMP, DRAG COUNT, RELATIVE HUMIDITY, WINDS
4 REM RHWY SLOPE, CENTER OF GRAVITY LOCATION, FLAPS, AND DOUBLE DATUM STATUS
9 PRINT "INPUT ALT, TEMP, DC, GW"
10 INPUT A,B,D,G
11 I=50
12 L=10
13 N=1
14 P=27
20 R=25
100 B0=13.086-0.00017113+A-2.0655E-07+A12+3.6861E-11+A13
101 B0=B0-2.4156E-15+A14
110 B1=-0.045635-7.8931E-06+A+3.7545E-09+A12
111 B1=B1-9.7088E-13+A13+6.997E-17+A14
120 B2=-0.001317-8.2558E-07+A+4.0739E-10+A12
121 B2=B2-8.548E-14+A13+5.4964E-18+A14
130 B3=-1.9097E-05+A-1.3671E-08+A-9.4694E-12+A12+2.0434E-15+A13
140 B3=B3-1.4617E-19+A14
150 C=B0+B+B2+B12+B3+B13
160 IF D=1 THEN 190
170 E=0.54178+0.65876+C
180 GOTO 200
190 E=1.9773+0.56598+C
200 G0=-4.8896E+05+8.4974E+01*G-5.7856E-03+G12+1.9373E-07+G13-3.1744E-12*G14
210 G0=G0+2.0446E-17+G15
220 G1=5.8621E+04-1.0146E+01*G+6.8807E-04+G12-2.292E-08+G13+3.7387E-13*G14
230 G1=G1-2.3964E-18+G15
240 H=G0+G1+E
250 J=0
260 IF I<40 THEN 280
270 J=(I-40)/1000
280 K=H+J+H
295 IF L=0 THEN 340
290 L0=6.7124E+01+8.9509E-01+K+2.3306E-05+K12-1.6254E-09+K13+3.3729E-14*K14
300 L1=-9.0995-1.0856E-02+K+2.1754E-07+K12-2.5327E-11+K13+1.137E-15*K14
310 L2=1.4782E-01-2.1666E-06+K+3.4274E-09+K12-2.7817E-13+K13+9.3077E-18*K14
320 M=L0+L1+L2+L12
330 GOTO 350
340 M=K
350 X0=4.5704E+01+9.3429E-01+M+2.2265E-05+M12-2.338E-09+M13+7.941E-14*M14
360 X1=7.9473+1.4914E-02+M+9.0708E-06+M12-7.1235E-10+M13+3.0684E-14*M14
370 X2=5.3616-8.5136E-03+M+3.5914E-06+M12-4.5932E-10*M13+1.9889E-14*M14
380 X=X0+X1+N*X2+N12
390 Q0=2.6042E+03-2.1694+K+1.0915E-03+K12-1.1119E-07+K13+3.662E-12*K14
400 Q1=-1.7573E+02+2.2601E-01+K-7.5225E-05+K12+7.7018E-09+K13-2.5437E-13*K14
410 Q2=2.8549-4.0102E-03+K+1.2832E-06+K12-1.3234E-10+K13+4.3908E-15*K14
420 Q=Q0+Q1+P+Q2+P12
430 S0=-4.0079E+02+1.5601+0-2.0254E-04+012+2.4111E-08+013-8.6737E-13+014
440 S1=1.6196E+01-2.4333E-02+0+9.3484E-06+012-1.2594E-09+013+4.7522E-14+014
450 S2=-1.4758E-01+2.359E-04+0-1.037E-07+012+1.6016E-11+013-6.3195E-16+014
460 S=S0+S1+R+S2+R12
470 S=INT(S)
479 PRINT "FOR"
480 PRINT "GW=""G" ALT=""A" TEMP=""B" DC=""D" RH=""I" HDWD=""L"
482 PRINT "RHWY SLP=""N"" CEN GRAV=""P" FLAPS=""R"
483 PRINT
530 PRINT "TAKEOFF ROLL DIST=""S"
531 GOTO 9
532 END

```


List of Variables for Program 2

<u>Variable</u>	<u>Definition</u>
A	Runway Altitude (feet)
B	Temperature ($^{\circ}\text{C}$)
D	Double datum status (1 indicates "with")
G	Gross weight (lbs.)
I	Relative humidity (%)
L	Headwind (kts.)
N	Runway slope (%)
P	Center of gravity (%)
R	Flap position (degrees)
C	Result of upper graph, Figure B5
E	Takeoff factor
H	Unadjusted ground roll distance, Figure B6
J	Adjustment factor due to relative humidity
K	Ground roll distance (GRD) adjusted for relative humidity
M	GRD adjusted for wind
X	GRD adjusted for runway slope
Q	GRD adjusted for the center of gravity location
S	True GRD (also adjusted for flap position)
B0, G0, L0, X0, Q0	Coefficients
B1, G1, L1, X1, Q1	Coefficients
B2, G2, L2, X2, Q2	Coefficients
B3, S0, S1, S2	Coefficients

Program 3

```
1 REM THIS PROGRAM CALCULATES THE A-7E MAXIMUM RANGE' AIRSPEED AND
2 REM TIME OF FLIGHT AND IS DEPENDENT ON 6 VARIABLES --
3 REM GROSS WEIGHT, ALTITUDE, DRAG COUNT, TEMPERATURE, WINDS, AND DISTANCE
4 PRINT "INPUT GW,ALT,DC,TEMP(+C),HDWD,DISTANCE"
5 INPUT G,H,D,T,L,D1
6 G=G/1000
7 H=H/1000
8 A0=-1+5.0794E-03+H-1.3968E-03*H^2-3.4912E-06*H^3+7.9365E-08*H^4
9 A1=0.05+0.0015159*H+1.123E-04*H^2-3.4921E-06*H^3+7.9365E-08*H^4
10 M=A0+A1+G
11 B0=0.47803-0.0013417*D+6.2287E-06*D^2-1.6261E-09*D^3+1.6438E-11*D^4
12 B1=0.08217+4.1209E-04*D-4.5577E-06*D^2+1.6777E-08*D^3-3.001E-11*D^4
13 B2=4.3143E-04-9.4397E-05*D+1.2646E-06*D^2-4.0537E-09*D^3+5.7223E-12*D^4
14 B3=-6.6767E-04+3.4671E-06*D-1.0501E-07*D^2+3.6382E-10*D^3-3.7838E-13*D^4
15 M=B0+B1*N+B2*N^2+B3*N^3
16 M=M-((C60-T)+2*M)/(10+1200)
17 V=710*(M-0.14)+100-L
18 T1=D1/V
19 V=INT(V)
20 PRINT "FOR"
21 PRINT "GW=""G"" ALT=""H"" DC=""D"" TEMP=""T"" HDWD=""L"" DIST=""D1"
22 PRINT "GROUND SPEED=""V"" TIME OF FLIGHT=""T1"
23 END
```


List of Variables for Program 3

<u>Variable</u>	<u>Definition</u>
G	Gross weight (lbs.)
H	Altitude (ft.)
D	Drag count
T	Temperature ($^{\circ}\text{C}$)
L	Headwind (kts.)
D ₁	Distance to fly
N	Result of first chart, Figure B8
M	Cruise Mach number (adjusted and unadjusted for T)
V	Ground speed (kts.)
T ₁	Time of flight
A ₀ ,B ₀	Coefficients
A ₁ ,B ₁	Coefficients
B ₃	Coefficient

Program 4

```
10 REM      THIS PROGRAM CALCULATES FUEL REQUIRED FOR MAX RANGE AT CONSTANT
11 REM      ALTITUDE FOR AN A-7E AND IS DEPENDENT ON 5 VARIABLES --
12 REM      GROSS WEIGHT, ALTITUDE, DRAG COUNT, TRUE AIRSPEED, AND TIME(MINUTES)
20 PRINT "ENTER GROSS WT,ALT,DRAG CT,TAS,TIME(MINUTES)"
21 PRINT
22 PRINT
23 INPUT G,A,D,V,T
24 PRINT "GROSS WT="G
25 PRINT "ALTITUDE="A
26 PRINT "DRAG COUNT="D
27 PRINT "TRUE AIRSPEED="V
28 PRINT "TIME OF FLIGHT="T
29 G=G/1000
30 A=A/1000
31 B0=4.54-0.16444*A+0.0033932*A^2-1.0298E-04*A^3+1.926E-06*A^4-1.3757E-08*A^5
32 B1=-3.6664E-03+A+8.9338E-04*A^2-5.5939E-05*A^3+1.4593E-06*A^4-1.3331E-08*A^5
33 B2=6E-04+1.1303E-04*A-2.3358E-05*A^2+1.4536E-06*A^3-3.7144E-08*A^4
34 B3=B2+3.3334E-10*A^5
35 N=B0+B1+G+B2+G^2
36 B0=-2.5399E-03*D+9.7299E-05*D^2-2.3516E-07*D^3+1.4251E-10*D^4
37 B1=2+4.3388E-03+D+1.2326E-05*D^2-1.0298E-07*D^3+1.7277E-10*D^4
38 L=A0+A1*N
39 F=L*V
40 R=F*T/60
41 L=(INT(L+1000))/1000
42 F=INT(F)
43 R=INT(R)
44 PRINT
45 PRINT
46 PRINT "LBFUEL NM="L" FUEL FLOW="F
47 PRINT "FUEL REQUIRED="R
48 PRINT
49 PRINT
50 GOTO 20
51 END
```


List of Variables for Program 4

<u>Variable</u>	<u>Definition</u>
G	Gross weight (lbs.)
A	Altitude (ft.)
D	Drag count
V	True airspeed (kts.)
T	Time of flight (minutes)
N	Result of first chart, Figure B9
L	Pounds of fuel per nautical mile
F	Fuel flow
R	Fuel required
B0,A0	Coefficients
B1,A1	Coefficients
B2	Coefficient

Program 5

```
1 REM THIS PROGRAM CALCULATES THE CLIMB AIRSPEED OF AN A-7E
2 REM '(INDICATED AIRSPEED BELOW 20,000')
3 REM '(MACH NUMBER ABOVE 20,000')
40 D=0
12 PRINT "CLIMB AIRSPEED SCHEDULE"
15 PRINT "DRAG CT CLIMB AIRSPEED CLIMB MACH"
16 PRINT "(IAS TO 20000') (ABOVE 20000')"
20 S=403.56-0.79075*D+0.0011382*D^2-4.1018E-07*D^3
21 S=INT(S)
30 M=0.86-2.1834E-03*D+7.6588E-05*D^2-1.1344E-06*D^3+7.3125E-09*D^4-2.3035E-11*D^5
40 M=M+3.6588E-14*D^6-2.3062E-17*D^7
42 M=M*1000
44 M=INT(M)
46 M=M/1000
55 PRINT D,S,M
60 D=D+30
70 IF D<310 THEN 20
80 END
```


List of Variables for Program 5

<u>Variable</u>	<u>Definition</u>
D	Drag count
M	Mach number
S	Calibrated airspeed (kts.)

Program 6

```
400 REM THIS PROGRAM CALCULATES THE TAKEOFF AIRSPEED OF AN A-7E
401 REM UNDER VARYING GROSS WEIGHTS, FLAP POSITIONS,
402 REM AND CENTER OF GRAVITY LOCATIONS
403 R=20
404 P=20
405 G=20000
406 PRINT "FOR GROSS WEIGHT="G
407 PRINT
408 PRINT
409 PRINT "FLAPS          CG          TAKEOFF AIRSPEED"
410 U1=5.4023E+01+3.4787E-03*G-1.9475E-08*G*2
411 U=U1+(26-P)/2
412 V0=-1.9171E+03+6.1604E+01+U-7.0348E-01+U*2+3.5661E-03+U*3-6.6578E-06+U*4
413 V1=7.6824E+01-2.4517*U+2.8779E-02+U*2-1.4753E-04+U*3+2.7872E-07+U*4
414 V2=-7.2239E-01+2.3415E-02+U-2.798E-04+U*2+1.4596E-06+U*3-2.807E-09*U*4
415 V3=V0+V1+R+V2*R*2
416 V4=INT(V3)
417 PRINT R,P,V4
418 R=R+5
419 IF R>40 THEN 630
420 GOTO 530
421 P=P+3
422 R=20
423 IF P>35 THEN 650
424 GOTO 530
425 G=G+3000
426 R=20
427 P=20
428 PRINT
429 PRINT
430 PRINT "FOR GROSS WEIGHT="G
431 PRINT
432 PRINT
433 IF G>42000 THEN 710
434 GOTO 530
710 END
```


List of Variables for Program 6

<u>Variable</u>	<u>Definition</u>
R	Flap position (degrees)
P	Center of gravity (%)
G	Gross weight (lbs.)
U ₁	Unadjusted takeoff airspeed
U	Takeoff airspeed adjusted for center of gravity
V ₄	Actual takeoff airspeed (adjusted for flap position)
V ₀ , V ₁ , V ₂ , V ₃	Coefficients

Program 7

```
1 REM THIS PROGRAM CALCULATES THE MAXIMUM REFUSAL SPEED
2 REM FOR AN A-7E USING ANTI-SKID
3 REM IT IS DEPENDENT ON 5 VARIABLES --
4 REM GROSS WEIGHT, TEMP, RWY LENGTH, RWY ALTITUDE, AND DOUBLE DATUM STATUS
5 PRINT "INPUT ALT, TEMP, RWY LTH, GW, DOUBLE DATUM"
10 INPUT A,B,L,G,D
15 G=G/1000
20 L=L/1000
70 PRINT "ALTITUDE="A
71 PRINT "TEMP="B
72 PRINT "RWY LTH="L+1000
73 PRINT "GROSS WT="G+1000
75 PRINT "DD="D
100 B0=13.086-0.00017113*A-2.0655E-07*A12+3.6861E-11*A13
101 B0=B0-2.4156E-15*A14
110 B1=-0.045635-7.8931E-06+A+3.7545E-09*A12
111 B1=B1-9.7088E-13*A13+6.997E-17*A14
120 B2=-0.001317-8.2558E-07+A+4.0739E-10*A12
121 B2=B2-8.548E-14*A13+5.4964E-18*A14
130 B3=-1.9097E-05+1.3671E-08*A-9.4694E-12*A12+2.0434E-15*A13
140 B3=B3-1.4617E-19*A14
150 C=B0+B1+B2+B12+B3*B13
160 IF D=1 THEN 190
170 E=0.54178+0.65876*C
180 GOTO 200
190 E=1.9773+0.56598*C
200 B0=-43.01+6.761*G-0.35159*G12+0.0080545*G13-6.7769E-05*G14
210 B1=26.312-3.8383*G+0.30336*G12-0.0047022*G13+3.994E-05*G14
220 B2=-4.9639+0.72723*G-0.038721*G12+8.985E-04*G13-7.638E-06*G14
230 B3=0.30288-0.044855*G+0.0023921*G12-5.5549E-05*G13+4.7217E-07*G14
240 R=B0+B1+E+B2+E12+B3*E13
250 B0=-11.412+62.185*L-9.0037*L12+0.64921*L13-0.017455*L14
260 B1=-0.2811-4.3012*L+0.70377*L12-0.058693*L13+0.0017461*L14
270 M=B0+B1*R
271 M=INT(M)
272 PRINT
275 PRINT " TAKEOFF FACTOR = "E
276 PRINT
280 PRINT "MAX REFUSAL SPEED = ",M
281 PRINT
290 GOTO 9
300 END
```


List of Variables for Program 7

<u>Variable</u>	<u>Definition</u>
A	Runway Altitude (ft.)
B	Temperature ($^{\circ}\text{C}$)
L	Runway length (ft.)
G	Gross weight (lbs.)
D	Double datum status (1 indicates "with")
C	Result of upper chart, Figure B5
E	Takeoff factor
R	Result of first chart, Figure B12
M	Maximum refusal speed (kts.)
B ₀ ,B ₁ , B ₂ ,B ₃	Coefficients

Program 8

```
1 REM THIS PROGRAM CALCULATES THE OPTIMUM ENDURANCE ALTITUDE
2 REM OF AN A-7E AT VARYING GROSS WEIGHTS AND DRAG COUNTS
3 DIM B(3)
4 G=19
5 D=0
10 PRINT "OPTIMUM ENDURANCE ALT "
20 PRINT "GROSS WT      DRAG CT          OPT END ALT"
50 G=G+3
80 B(3)=55.333+0.073076*D-9.7836E-04*D^2+3.5015E-06*D^3-3.9782E-09*D^4
90 B(1)=-1.1-8.0597E-03*D+9.0097E-05*D^2-2.8836E-07*D^3+3.3032E-10*D^4
100 B(2)=6.6667E-03+1.2541E-04*D-1.4039E-06*D^2+5.2032E-09*D^3-6.0218E-12*D^4
110 H=B(3)+B(1)*G+B(2)*G^2
115 Z=INT(H*1000)
118 X=G*1000
119 PRINT X,D,Z
120 D=D+30
121 IF D<310 THEN 80
122 D=0
123 IF G<45 THEN 50
140 END
```


List of Variables for Program 8

Variable Definition

G	Gross weight (lbs. times 1000)
D	Drag count
H	Optimum endurance altitude (ft.)
Z	Optimum endurance altitude (integer format)
X	Gross weight (lbs.)
B1,B2,B3	Coefficients

Program 9

```
1 REM THIS PROGRAM CALCULATES THE CRUISE CEILING OF AN A-7E
2 REM UNDER VARYING GROSS WEIGHTS AND DRAG COUNTS
4 DIM BC[4]
5 G=19
6 D=0
10 PRINT "CRUISE CEILING"
20 PRINT "GROSS WT      DRAG CT          CRUISE CEILING"
50 G=G+3
80 BC[4]=85.118-0.29117*D+0.0030434*D^2-1.2851E-05*D^3+1.6621E-08*D^4
90 BC[1]=-2.7877+0.025635*D-3.3053E-04*D^2+1.4162E-06*D^3-1.8343E-09*D^4
100 BC[2]=0.063327-8.5289E-04*D+1.0814E-05*D^2-4.6514E-09*D^3+6.0606E-11*D^4
105 BC[3]=-8.0468E-04*D+9.0828E-06*D-1.143E-07*D^2+4.9304E-10*D^3-6.4567E-13*D^4
110 H=BC[4]+BC[1]*G+BC[2]*G^2+BC[3]*G^3
115 Z=INT(H+1000)
118 X=G*1000
119 PRINT X,D,Z
120 D=D+30
121 IF D<310 THEN 80
122 D=0
123 IF G<45 THEN 50
140 END
```


List of Variables for Program 9

Variable Definition

G Gross weight (lbs. times 1000)

D Drag count

H Cruise ceiling (ft.)

Z Cruise ceiling (integer format)

X Gross weight (lbs.)

B₁,B₂,
B₃,B₄ Coefficients

APPENDIX E

TI-59 Programs and User Information

USER INFORMATION FOR PROGRAM 1

Program: Low Level Cruise Performance

Number of Steps: 1386

Computation Time: 90-110 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight/1000
2	drag count	C	drag count
3	mach number	D	mach number
4	temperature ($^{\circ}$ C)	E	Transfer Scale
5	---	R/S	Unusable number
6	read in cards 3 & 4	-	---
7	drag count	C	Transfer Scale
8	mach number	D	mach number
9	temperature ($^{\circ}$ C)	E	lb.fuel/nautical mile
0	---	R/S	fuel flow

000	76	LBL		050	08	8		100	43	RCL
001	11	A		051	01	1		101	02	02
002	55	+		052	65	X		102	45	YX
003	01	1		053	43	RCL		103	03	3
004	00	0		054	00	00		104	75	-
005	00	0		055	95			105	03	3
006	00	0		056	42	STO		106	93	*
007	95	=		057	05	05		107	05	5
008	42	STO		058	35	CLR		108	03	3
009	00	00		059	75	-		109	09	9
010	91	R/S		060	53	C		110	06	6
011	76	LBL		061	02			111	52	EE
012	12	B		062	93			112	94	+/-
013	55	+		063	03			113	07	7
014	01	1		064	02			114	65	X
015	00	0		065	08			115	43	RCL
016	00	0		066	07			116	02	02
017	00	0		067	85	+		117	45	YX
018	95	=		068	93	-		118	04	4
019	42	STO		069	02			119	85	+
020	01	01		070	06			120	07	7
021	91	R/S		071	03			121	93	*
022	76	LBL		072	01			122	07	7
023	13	C		073	06			123	08	8
024	42	STO		074	65	X		124	52	EE
025	02	02		075	43	RCL		125	94	+/-
026	91	R/S		076	02	02		126	01	1
027	76	LBL		077	75	-		127	00	0
028	14	D		078	93	-		128	65	X
029	42	STO		079	00	0		129	43	RCL
030	03	03		080	00	0		130	02	02
031	91	R/S		081	07	7		131	45	YX
032	76	LBL		082	03	8		132	05	5
033	15	E		083	03	3		133	75	-
034	42	STO		084	02			134	06	6
035	04	04		085	07	7		135	93	*
036	53	C		086	65	X		136	04	4
037	93	*		087	43	RCL		137	06	6
038	03	3		088	02	02		138	02	4
039	08	8		089	93			139	04	4
040	08	8		090	85	+		140	52	EE
041	01	1		091	07	7		141	94	+/-
042	03	3		092	93	-		142	01	1
043	85	+		093	05			143	03	3
044	93	*		094	01	1		144	85	X
045	00	0		095	03			145	43	RCL
046	00	0		096	53			146	02	02
047	04	4		097	94	+		147	45	YX
048	02	2		098	05	5		148	06	6
049	09	9		099	65	X		149	54)

150	85	+	<		200	06	EE	6		250	04	4	-
151	53	-	<		201	52	+/-	-		251	75	1	1
152	04	-	4		202	94	+/-	-		252	01	.	.
153	93	-	.		203	06	6			253	93	0	0
154	08	-	.		204	65	X			254	00	7	7
155	03	-	.		205	43	RCL			255	07	1	1
156	05	-	.		206	03	03			256	01	9	X
157	85	-	.		207	45	YX			257	09	RCL	02
158	01	-	1		208	04	4			258	65	+	
159	93	-	.		209	85	+			259	43	02	
160	00	-	.		210	03	3			260	02	0	0
161	09	-	.		211	93	.			261	85	+	
162	05	-	.		212	04	4			262	93	0	0
163	06	-	.		213	00	0			263	00	3	3
164	65	-	.		214	06	9			264	03	3	3
165	43	RCL			215	52	EE	-		265	01	1	1
166	02		02		216	94	+/-	-		266	00	0	0
167	75	-	.		217	09	9			267	09	9	9
168	93	-	.		218	65	X			268	04	4	4
169	00	-	0		219	43	RCL			269	65	X	RCL
170	03	-	3		220	08	02			270	43	02	02
171	00	-	0		221	45	YX			271	02	X ²	
172	06	-	6		222	05	5			272	33	-	-
173	05	-	5		223	75	+	3		273	75	-	-
174	03	-	3		224	02	3			274	03	3	3
175	65	-	X		225	93	.			275	93	.	.
176	43	RCL			226	08	8			276	02	3	3
177	02	02			227	06	6			277	08	7	7
178	33	X ²			228	09	9			278	07	8	8
179	85	+	.		229	02	2			279	08	8	8
180	03	-	3		230	52	EE	-		280	62	+/-	
181	93	-	.		231	94	+/-	-		281	94	4	X
182	01	-	1		232	01	1			282	04	RCL	02
183	09	-	9		233	02	2			283	65	02	
184	01	-	1		234	65	X			284	43	02	
185	02	-	2		235	43	RCL			285	02	YX	
186	52	EE			236	02	02			286	45	3	3
187	94	+/-			237	45	YX			287	03	3	3
188	04	-	4		238	06	6			288	85	+	
189	65	-	X		239	54	2			289	01	1	1
190	43	RCL			240	65	X			290	93	.	.
191	02	02			241	43	RCL			291	05	5	5
192	45	YX			242	05	05			292	05	5	5
193	03	-	3		243	85	+			293	05	5	5
194	75	-	.		244	53	6			294	53	EE	+/-
195	01	-	1		245	01	1			295	94	6	X
196	93	-	.		246	00	0			296	06	RCL	02
197	05	-	.		247	93	•			297	65	02	
198	02	-	2		248	02	2			298	43		
199	07	-	?		249	08	8			299	02	02	

300	45	YX	350	43	RCL	400	00	0
301	04	4	351	06	06	401	53	(
302	75	-	352	22	INV	402	43	RCL
303	03	3	353	77	GE	403	06	06
304	93	-	354	03	03	404	75	-
305	06	6	355	88	88	405	43	RCL
306	00	0	356	01	1	406	03	03
307	00	0	357	42	STO	407	54)
308	09	9	358	07	07	408	55	=
309	52	EE	359	71	SBR	409	53	(
310	94	+/-	360	04	04	410	43	RCL
311	09	9	361	43	43	411	03	09
312	65	X	362	42	STO	412	75	-
313	43	RCL	363	09	09	413	43	RCL
314	02	02	364	32	XIT	414	08	08
315	45	YX	365	43	RCL	415	54)
316	05	5	366	06	06	416	95	=
317	85	+	367	22	INV	417	42	STO
318	03	3	368	77	GE	418	00	00
319	93	-	369	04	04	419	43	RCL
320	00	0	370	01	01	420	03	03
321	06	6	371	43	RCL	421	42	STO
322	03	3	372	09	09	422	05	05
323	04	4	373	42	STO	423	43	RCL
324	52	EE	374	08	08	424	07	07
325	94	+/-	375	43	RCL	425	75	-
326	01	1	376	07	07	426	01	1
327	02	2	377	85	+	427	85	=
328	65	X	378	01	1	428	43	RCL
329	43	RCL	379	95	=	429	00	00
330	02	02	380	42	STO	430	95	=
331	45	YX	381	07	07	431	42	STO
332	06	6	382	71	SBR	432	07	07
333	54)	383	04	04	433	71	SBR
334	65	X	384	43	43	434	04	04
335	43	RCL	385	61	GTO	435	43	43
336	05	05	386	03	03	436	42	STO
337	33	X ^a	387	62	62	437	05	05
338	95	=	388	43	RCL	438	61	GTO
339	42	STO	389	03	03	439	06	06
340	06	06	390	42	STO	440	68	68
341	25	CLR	391	05	05	441	00	0
342	42	STO	392	71	SBR	442	00	0
343	07	07	393	04	04	443	02	02
344	71	SBR	394	43	43	444	02	02
345	04	04	395	42	STO	445	98	=
346	43	43	396	05	05	446	08	8
347	42	STO	397	61	GTO	447	01	1
348	08	08	398	06	06	448	09	9
349	32	XIT	399	68	68	449	75	-

450	03	1	3	1	7	7	3	5	X		500	02	1	7	3	5	X		550	09	9	X	
451	01										501	06							551	65	-	RCL	
452	93										502	01							552	43	X ²	07	
453	07										503	93							553	07	-	-	
454	03										504	07							554	33	X ²	-	
455	05										505	03							555	75	-	-	
456	65										506	65							556	08	8	8	
457	43	RCL									507	43	RCL						557	08	8	8	
458	07	07									508	07	X ²	07					558	93	7	7	
459	85	+									509	33	-	-					559	07	3	7	
460	04	4									510	75							560	03	-	-	
461	01										511	03							561	07	65	65	
462	93	+									512	05							562	65	RCL		
463	03	3									513	93							563	43	07	07	
464	03	3									514	09							564	07	VX	07	
465	65										515	00							565	45	X	3	
466	43	RCL									516	05							566	03	3	X	
467	07	07									517	65							567	54	2	2	
468	33	X ²									518	43	RCL						568	65	X	RCL	
469	75	-									519	07	07						569	43	05	05	
470	05	5									520	45	VX						570	05	X ²	-	
471	93	+									521	03	3						571	33	-	-	
472	00										522	54	2						572	75	-	-	
473	09										523	65	X						573	53	-	-	
474	05										524	43	RCL						574	04	4	4	
475	03	3									525	05	05						575	04	4	4	
476	65										526	85	+						576	05	5	5	
477	43	RCL									527	53	C						577	93	6	6	
478	07	07									528	04							578	06	6	6	
479	45	VX									529	00							579	03	5	5	
480	03	3									530	05							580	75	5	5	
481	75	-									531	93							581	05	5	5	
482	53	5									532	00							582	04	4	4	
483	01	1									533	08							583	02	2	2	
484	05										534	75							584	93	+	+	
485	04	4									535	05							585	09	9	9	
486	93	+									536	02							586	08	8	8	
487	09										537	05							587	65	X	RCL	
488	08										538	93							588	43	07	07	
489	75	-									539	05							589	07	+	+	
490	02										540	06							590	85	1	1	
491	01										541	65	X						591	06	1	1	
492	07										542	43	RCL						592	01	1	1	
493	93	+									543	07	07						593	01	1	1	
494	05										544	85	+						594	93	5	5	
495	01	1									545	06							595	09	5	5	
496	65	X									546	00							596	05	5	5	
497	43	RCL									547	07	~	O	O				597	65	X		
498	07	07									548	93	~	4					598	43	RCL		
499	85	+									549	04							599	07	07	07	

600	33	X ²		650	05	5		027	00	0
601	75	-		651	93	.		028	00	0
602	09	9		652	01	1		029	00	0
603	02	2		653	08	8		030	00	0
604	93	.		654	09	9		031	00	0
605	08	8		655	65	X		032	00	0
606	09	9		656	43	RCL		033	00	0
607	04	4		657	07	07		034	00	0
608	65	X		658	45	VX		035	00	0
609	43	RCL		659	03	3		036	53	C
610	07	07		660	54)		037	04	4
611	45	VX		661	65	X		038	93	.
612	03	3		662	43	RCL		039	02	3
613	54)		663	05	05		040	07	2
614	65	X		664	45	VX		041	03	3
615	43	RCL		665	04	4		042	02	2
616	05	05		666	95	=		043	52	E
617	45	VX		667	92	RTN		044	94	+/-
618	03	3		668	91	R/S		045	03	3
619	85	+		669	32	X/T		046	85	+
620	53	(670	91	R/S		047	93	.
621	01	1		671	00	0		048	00	0
622	08	8		000	76	LBL		049	02	2
623	04	4		001	13	C		050	07	7
624	93	.		002	42	STO		051	07	7
625	07			003	02	02		052	04	4
626	08	8		004	32	X/T		053	03	3
627	75	-		005	42	STO		054	65	X
628	02	2		006	05	05		055	43	RCL
629	00	0		007	91	R/S		056	02	02
630	04	4		008	76	LBL		057	54)
631	93	.		009	14	D		058	65	X
632	04	4		010	42	STO		059	43	RCL
633	02	2		011	03	03		060	03	03
634	65	X		012	91	R/S		061	33	X ²
635	43	RCL		013	76	LBL		062	95	=
636	07	07		014	15	E		063	65	X
637	85	+		015	42	STO		064	02	2
638	02	2		016	04	04		065	85	+
639	02	2		017	25	CLR		066	43	RCL
640	05	5		018	00	0		067	05	05
641	93	.		019	00	0		068	95	=
642	08	8		020	00	0		069	42	STO
643	09	9		021	00	0		070	06	06
644	65	X		022	00	0		071	55	+
645	43	RCL		023	00	0		072	02	2
646	07	07		024	00	0		073	95	=
647	33	X ²		025	00	0		074	59	INT
648	75	-		026	00	0		075	75	-
649	03	3						076	43	RCL

077	06	06		127	95	=		177	06	6
078	55	+		128	43	STO		178	55	x
079	02	2		129	07	07		179	43	RCL
080	95	=		130	61	GTO		180	09	09
081	50	I _X I		131	06	06		181	45	YX
082	43	STO		132	02	02		182	04	4
083	07	07		133	05	5		183	75	-
084	43	RCL		134	93	.		184	93	.
085	06	06		135	06	6		185	00	0
086	55	+		136	02	02		186	01	1
087	02	2		137	05	5		187	03	3
088	95	=		138	03	3		188	00	0
089	59	INT		139	75	-		189	09	9
090	65	x		140	01	1		190	05	5
091	02	2		141	93	.		191	65	x
092	95	=		142	09	9		192	43	RCL
093	42	STO		143	08	8		193	09	09
094	09	09		144	09	9		194	45	YX
095	71	SBR		145	65	x		195	05	5
096	01	01		146	43	RCL		196	85	+
097	33	33		147	09	09		197	03	3
098	42	STO		148	85	+		198	93	.
099	08	08		149	03	3		199	05	5
100	43	RCL		150	93	.		200	08	8
101	06	06		151	00	0		201	06	6
102	55	+		152	02	2		202	52	E
103	02	2		153	05	5		203	94	+/-
104	95	=		154	02	2		204	04	4
105	59	INT		155	65	x		205	65	x
106	65	x		156	43	RCL		206	43	RCL
107	02	2		157	09	09		207	09	09
108	95	=		158	33	X ³		208	45	YX
109	85	+		159	75	-		209	06	6
110	02	2		160	01	1		210	95	+
111	95	=		161	93	.		211	53	<
112	42	STO		162	00	0		212	02	2
113	09	09		163	07	7		213	00	0
114	71	SBR		164	06	6		214	05	5
115	01	01		165	01	1		215	93	.
116	33	33		166	65	x		216	03	3
117	75	-		167	43	RCL		217	00	0
118	43	RCL		168	09	09		218	01	1
119	08	08		169	45	YX		219	02	2
120	95	=		170	03	3		220	75	-
121	65	x		171	85	+		221	02	2
122	43	RCL		172	93	.		222	04	4
123	07	07		173	01	1		223	08	8
124	85	+		174	07	7		224	93	.
125	43	RCL		175	06	6		225	09	9
126	08	08		176	07	7		226	08	8

227	01	1		277	09	9		327	43	RCL
228	07	7		278	05	5		328	09	09
229	65	X		279	03	3		329	85	+
230	43	RCL		280	03	3		330	04	4
231	09	09		281	03	3		331	08	8
232	85	+		282	65	X		332	07	7
233	09	9		283	43	RCL		333	93	•
234	01	1		284	09	09		334	04	4
235	93	•		285	45	YX		335	02	2
236	06	6		286	05	5		336	03	3
237	06	6		287	85	+		337	03	3
238	03	3		288	02	2		338	65	X
239	05	5		289	93	•		339	43	RCL
240	05	5		290	08	8		340	09	09
241	65	X		291	09	9		341	33	X ²
242	43	RCL		292	06	6		342	75	-
243	09	09		293	03	3		343	09	9
244	03	X ²		294	08	8		344	01	1
245	75	-		295	05	5		345	93	•
246	01	1		296	52	EE		346	06	6
247	05	5		297	94	+/-		347	05	5
248	93	•		298	04	4		348	02	2
249	05	5		299	65	X		349	02	2
250	05	5		300	43	RCL		350	65	X
251	02	2		301	09	09		351	43	RCL
252	01	1		302	45	YX		352	09	09
253	08	8		303	06	6		353	45	YX
254	65	X		304	54	>		354	03	3
255	43	RCL		305	65	X		355	85	+
256	09	09		306	43	RCL		356	08	8
257	45	YX		307	03	03		357	93	•
258	03	3		308	75	-		358	06	6
259	85	+		309	53	<		359	06	6
260	01	1		310	01	1		360	02	2
261	93	•		311	00	0		361	09	9
262	02	2		312	05	5		362	06	6
263	02	2		313	02	2		363	02	2
264	04	4		314	93	.		364	65	X
265	04	4		315	01	1		365	43	RCL
266	03	3		316	02	2		366	09	09
267	02	2		317	03	3		367	45	YX
268	65	X		318	75	-		368	04	4
269	43	RCL		319	01	1		369	75	-
270	09	09		320	02	2		370	93	•
271	45	YX		321	03	3		371	03	3
272	04	4		322	01	1		372	09	9
273	75	-		323	93	.		373	05	5
274	93	•		324	03	2		374	03	3
275	00	0		325	04	4		375	09	9
276	03	3		326	65	X		376	07	7

377	04	4		427	07	7		477	43	RCL
378	65	x		428	08	8		478	09	09
379	43	RCL		429	08	.		479	45	YX
380	09	09		430	93	.		480	05	5
381	45	YX		431	08	8		481	85	+
382	05	5		432	05	5		482	93	.
383	85	+		433	01	1		483	00	0
384	93	.		434	03			484	01	1
385	00	0		435	65			485	03	3
386	00	0		436	43	RCL		486	07	7
387	06	6		437	09	09		487	00	0
388	09	9		438	33	X ²		488	07	7
389	00	0		439	75	-		489	65	X
390	05	5		440	01	1		490	43	RCL
391	05	5		441	05	5		491	09	YX
392	03	3		442	02			492	45	YX
393	05	5		443	93	.		493	06	6
394	65	x		444	05			494	54	2
395	43	RCL		445	07			495	65	X
396	09	09		446	03	3		496	43	RCL
397	45	YX		447	03	3		497	03	03
398	06	6		448	65	X ²		498	45	YX
399	54	2		449	43	RCL		499	03	3
400	65	x		450	09	09		500	75	1
401	43	RCL		451	45	YX		501	53	<
402	03	03		452	03	3		502	08	8
403	33	X ²		453	85	+		503	06	6
404	85	+		454	01	1		504	04	4
405	53	c		455	05			505	93	•
406	01	1		456	93	.		506	06	6
407	06	6		457	00	0		507	08	8
408	08	8		458	03	3		508	07	7
409	00	0		459	08	8		509	05	5
410	93	.		460	01	1		510	75	1
411	01	1		461	09	9		511	01	1
412	04	4		462	65	X ²		512	00	0
413	02	2		463	43	RCL		513	00	0
414	75	1		464	09	09		514	00	0
415	01	1		465	45	YX		515	93	•
416	09	9		466	04	4		516	04	4
417	05	5		467	75	-		517	04	4
418	00	0		468	93	.		518	03	3
419	93	.		469	07	7		519	65	X
420	01	1		470	02	2		520	43	RCL
421	03	3		471	07	7		521	09	09
422	09	9		472	04	4		522	85	+
423	65	x		473	01	1		523	04	4
424	43	RCL		474	03	3		524	00	0
425	09	09		475	09	9		525	08	8
426	85	+		476	65	X ²		526	93	.

527	07	7		577	93	.		627	07	07
528	04	4		578	00	0		628	22	INV
529	05	5		579	00	0		629	52	EE
530	01	1		580	07	0		630	65	X
531	65	X		581	07	0		631	01	1
532	43	RCL		582	02	0		632	00	0
533	09	09		583	00	0		633	00	0
534	33	X ²		584	06	6		634	95	=
535	75	-		585	01	1		635	59	INT
536	08	8		586	07	7		636	55	÷
537	00	0		587	65	X		637	01	1
538	93	•		588	43	RCL		638	00	0
539	00	0		589	09	09		639	00	0
540	08	8		590	45	YX		640	95	=
541	03	3		591	06	6		641	91	R/S
542	01	1		592	54	2		642	53	(
543	04	4		593	65	X		643	06	•
544	65	X		594	43	RCL		644	93	4
545	43	RCL		595	03	03		645	04	1
546	09	09		596	45	YX		646	01	7
547	45	YX		597	04	4		647	07	5
548	03	3		598	95	=		648	05	+
549	85	+		599	42	STO		649	85	.
550	08	8		600	05	05		650	93	0
551	93	•		601	93	RTN		651	00	0
552	00	0		602	04	4		652	01	1
553	03	3		603	93	•		653	00	0
554	09	9		604	09	9		654	04	4
555	05	5		605	07	7		655	02	2
556	08	8		606	04	4		656	06	X
557	65	X		607	02	2		657	65	RCL
558	43	RCL		608	65	X		658	43	04
559	09	09		609	43	RCL		659	04	-
560	45	YX		610	07	07		660	75	6
561	04	4		611	85	+		661	06	•
562	75	-		612	07	7		662	93	0
563	93	•		613	93	•		663	08	0
564	03	3		614	09	9		664	09	9
565	09	9		615	00	0		665	03	0
566	08	8		616	04	4		666	05	5
567	02	2		617	03	3		667	52	RCL
568	05	5		618	52	EE		668	94	+/-
569	02	2		619	94	+/-		669	06	6
570	07	7		620	06	6		670	65	X
571	65	X		621	65	X		671	43	RCL
572	43	RCL		622	43	RCL		672	04	04
573	09	09		623	07	07		673	33	X ²
574	45	YX		624	33	X ²		674	85	+
575	05	5		625	95	=		675	04	4
576	85	+		626	42	STO		676	93	.

677 09 9
678 01 1
679 02 2
680 07 7
681 52 EE
682 94 +/-
683 07 7
684 65 X
685 43 RCL
686 04 04
687 33 X²
688 65 X
689 43 RCL
690 04 04
691 54)
692 65 X
693 43 RCL
694 03 03
695 95 =
696 42 STO
697 08 08
698 93 .
699 01 1
700 65 X
701 43 RCL
702 07 07
703 65 X
704 43 RCL
705 08 08
706 95 =
707 65 X
708 01 1
709 00 0
710 00 0
711 00 0
712 95 =
713 59 INT
714 22 INV
715 52 EE
716 91 R/S

USER INFORMATION FOR PROGRAM 2

Program: Takeoff Ground Roll Distance

Number of Steps: 1385

Computation Time: 48-50 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight
2	pressure altitude (ft.)	B	Pressure altitude
3	temperature ($^{\circ}$ C)	E	temperature
4	headwind (kts.)	2nd,D	headwind
5	relative humidity (%)	2nd,E	unusable number
6	---	R/S	unusable number
7	read in cards 3 & 4	R/S	---
8	---	2nd,A	unusable number
9	flap position (degrees)	2nd,B	flap position
0	center of gravity (%)	2nd,C	center of gravity
1	runway slope (%)	-	takeoff ground roll distance

000	76	LBL	050	05	5	100	07	7
001	12	B	051	52	EE	101	93	.
002	42	STO	052	94	+/-	102	08	8
003	00	00	053	07	7	103	09	9
004	91	R/S	054	65	X	104	03	3
005	76	LBL	055	43	RCL	105	01	1
006	15	E	056	00	00	106	52	EE
007	42	STO	057	33	X ²	107	94	+/-
008	01	01	058	85	+	108	06	6
009	91	R/S	059	03	3	109	65	X
010	76	LBL	060	93	.	110	43	RCL
011	11	A	061	06	6	111	00	00
012	42	STO	062	08	8	112	75	-
013	02	02	063	06	6	113	03	3
014	91	R/S	064	01	1	114	93	.
015	76	LBL	065	52	EE	115	07	7
016	19	D'	066	94	+/-	116	05	5
017	42	STO	067	01	1	117	04	4
018	04	04	068	01	1	118	05	5
019	91	R/S	069	65	X	119	52	EE
020	76	LBL	070	43	RCL	120	94	+/-
021	10	E'	071	00	00	121	09	9
022	42	STO	072	45	YX	122	65	X
023	03	03	073	03	3	123	43	RCL
024	53	C	074	75	-	124	00	00
025	01	1	075	02	2	125	33	X ²
026	03	3	076	93	.	126	85	+
027	93	.	077	04	4	127	09	9
028	00	0	078	01	1	128	93	.
029	08	8	079	05	5	129	07	7
030	06	6	080	06	6	130	00	0
031	75	-	081	52	EE	131	08	8
032	93	.	082	94	+/-	132	08	8
033	00	0	083	01	1	133	52	EE
034	00	0	084	05	5	134	94	+/-
035	00	0	085	65	X	135	01	1
036	01	1	086	43	RCL	136	03	3
037	07	7	087	00	00	137	65	X
038	01	1	088	45	YX	138	43	RCL
039	01	1	089	04	4	139	00	00
040	03	3	090	54	2	140	45	YX
041	65	X	091	75	-	141	03	3
042	43	RCL	092	53	C	142	75	-
043	00	00	093	93	.	143	06	6
044	75	-	094	00	0	144	93	.
045	02	2	095	04	4	145	09	9
046	93	.	096	05	5	146	09	9
047	00	0	097	06	6	147	07	7
048	06	6	098	03	3	148	52	EE
049	05	5	099	85	+	149	94	+/-

150	01	1		200	33	X2		250	05	5	
151	07	7		201	85	+		251	75	-	
152	65	x		202	08	8		252	01	1	
153	43	RCL		203	93	.		253	93	.	
154	00	00		204	05	5		254	03	3	
155	45	YX		205	04	4		255	06	6	
156	04	4		206	08	8		256	07	7	
157	54)		207	08	8		257	01	1	
158	65	x		208	52	EE		258	52	EE	
159	53	(209	94	+/-		259	94	+/-	
160	43	RCL		210	01	1		260	08	8	
161	01	01		211	04	4		261	65	x	
162	54)		212	65	x		262	43	RCL	
163	75	-		213	43	RCL		263	00	00	
164	53	(214	00	00		264	85	+	
165	93	.		215	45	YX		265	09	9	
166	00	0		216	03	3		266	93	.	
167	00	0		217	75	-		267	04	4	
168	01	1		218	05	5		268	06	6	
169	03	3		219	93	.		269	09	9	
170	01	1		220	04	4		270	04	4	
171	07	7		221	09	9		271	52	EE	
172	85	+		222	06	6		272	94	+/-	
173	08	8		223	04	4		273	01	1	
174	93	.		224	52	EE		274	02	2	
175	02	2		225	94	+/-		275	65	x	
176	05	5		226	01	1		276	43	RCL	
177	05	5		227	08	8		277	00	00	
178	08	8		228	65	x		278	33	X2	
179	52	EE		229	43	RCL		279	75	-	
180	94	+/-		230	00	00		280	02	2	
181	07	7		231	45	YX		281	93	.	
182	65	x		232	04	4		282	00	0	
183	43	RCL		233	54)		283	04	4	
184	00	00		234	65	x		284	03	3	
185	75	-		235	53	(285	04	4	
186	04	4		236	43	RCL		286	52	EE	
187	93	.		237	01	01		287	94	+/-	
188	00	0		238	33	X2		288	01	1	
189	07	7		239	54)		289	05	5	
190	03	3		240	75	-		290	65	x	
191	09	9		241	53	(291	43	RCL	
192	02	2		242	01	1		292	00	00	
193	52	EE		243	93	.		293	45	YX	
194	94	+/-		244	09	9		294	03	3	
195	01	1		245	00	0		295	85	+	
196	00	0		246	09	9		296	01	1	
197	65	x		247	07	7		297	93	.	
198	43	RCL		248	52	EE		298	04	4	
199	00	00		249	94	+/-		299	06	6	

300	01	1		350	65	x		400	03	3	
301	07	7		351	43	RCL		401	09	9	
302	52	EE	-	352	02	02		402	06	6	
303	94	+/-		353	85	+		403	04	4	
304	01	1		354	06	6		404	52	EE	-
305	09	9		355	93	.		405	94	+/-	
306	65	x		356	08	8		406	01	1	
307	43	RCL		357	08	8		407	08	x	
308	00	00		358	00	0		408	65		
309	45	YX		359	07	7		409	43	RCL	
310	04	4		360	52	EE		410	02	02	
311	54)		361	94	+/-		411	45	YX	
312	65	x		362	04	4		412	05	5	
313	53	<		363	65	x		413	54)	
314	43	RCL		364	43	RCL		414	75	-	
315	01	01		365	02	02		415	53	<	
316	45	YX		366	33	X ²		416	04	4	
317	03	3		367	75	-		417	93	.	
318	54)		368	02	2		418	08	8	
319	95	=		369	93	*		419	08	8	
320	65	x		370	02	2		420	09	9	
321	93	.		371	09	9		421	06	6	
322	05	.5		372	02	2		422	52	EE	-
323	06			373	52	EE		423	05	5	
324	06	6.6		374	94	+/-		424	75	-	
325	85			375	08	8		425	08	8	
326	01			376	65	x		426	04	4	
327	93	.		377	43	RCL		427	93	.	
328	09	9		378	02	02		428	09	9	
329	09	9		379	45	YX		429	07	7	
330	07	7		380	03	3		430	04	4	
331	08	3		381	85	+		431	65	x	
332	95	=		382	03	3		432	43	RCL	
333	65	x		383	93	*		433	02	02	
334	53	<		384	07	7		434	85	+	
335	05	5		385	03	3		435	05	5	
336	93	.		386	08	8		436	93	.	
337	08	8		387	07	7		437	07	7	
338	06	6.6		388	52	EE		438	08	8	
339	02	2		389	94	+/-		439	05	5	
340	01	1		390	01	1		440	06	6	
341	52	EE	-	391	03	3		441	52	EE	-
342	04	4	-	392	65	x		442	94	+/-	
343	75			393	43	RCL		443	03	3	
344	01	1		394	02	02		444	65	x	
345	00	0		395	45	YX		445	43	RCL	
346	93	.		396	04	4		446	02	02	
347	01	1		397	75	-		447	33	X ²	
348	04	4		398	02	2		448	75	-	
349	06	6		399	93	.		449	01	1	

450	93	.		500	03	03		550	09	09	
451	09	9		501	32	XIT		551	85	+	
452	03	3		502	04	4		552	02	2	
453	07	7		503	00	0		553	93	.	
454	03	3		504	22	IHV		554	03	3	
455	52	EE		505	77	GE		555	03	3	
456	94	+/-		506	05	05		556	00	0	
457	07	7		507	13	13		557	06	EE	
458	65	X		508	25	CLR		558	52	+/-	
459	43	RCL		509	04	4		559	94	EE	
460	02	02		510	00	0		560	06	5	
461	45	YX		511	42	STO		561	65	X	
462	03	3		512	03	03		562	43	RCL	
463	85	+		513	43	RCL		563	09	X ²	
464	03	3		514	09	09		564	33	-	
465	93	.		515	65	X		565	75	-	
466	01	1		516	53	C		566	01	1	
467	07	7		517	01	1		567	93	.	
468	04	4		518	85	+		568	06	6	
469	04	4		519	53	C		569	03	3	
470	52	EE		520	43	RCL		570	05	4	
471	94	+/-		521	03	03		571	04	EE	
472	01	1		522	75	-		572	52	+/-	
473	02	2		523	04	4		573	94	9	
474	65	X		524	00	0		574	09	X	
475	43	RCL		525	54	>		575	65	RCL	
476	02	02		526	55	+		576	43	09	
477	45	YX		527	01	1		577	09	YX	
478	04	4		528	00	0		578	45	3	
479	75	-		529	00	0		579	03	+	
480	02	2		530	00	0		580	85	3	
481	93	.		531	54)		581	03	3	
482	00	0		532	95	=		582	93	.	
483	04	4		533	42	STO		583	03	3	
484	04	4		534	09	09		584	07	2	
485	06	6		535	06	6		585	02	2	
486	52	EE		536	07	7		586	08	8	
487	94	+/-		537	93	-		587	52	EE	
488	01	1		538	01	1		588	94	+/-	
489	07	7		539	02	2		589	01	1	
490	65	X		540	04	4		590	04	4	
491	43	RCL		541	85	+		591	65	X	
492	02	02		542	93	.		592	43	RCL	
493	45	YX		543	08	8		593	09	09	
494	05	5		544	09	9		594	45	YX	
495	54	2		545	05	5		595	04	4	
496	95	=		546	00	0		596	75	-	
497	42	STO		547	09	9		597	53	C	
498	09	09		548	65	X		598	09	9	
499	43	RCL		549	43	RCL		599	93	.	

600	00	0	650	07	7	700	02	2
601	09	9	651	52	EE	701	93	.
602	09	9	652	94	+/-	702	07	7
603	05	5	653	01	1	703	08	8
604	85	+	654	05	5	704	01	1
605	93	.	655	65	X	705	07	7
606	00	0	656	43	RCL	706	52	EE
607	01	1	657	09	09	707	94	+/-
608	00	0	658	45	YX	708	01	1
609	08	8	659	04	4	709	03	3
610	05	5	660	54)	710	65	X
611	06	6	661	65	X	711	43	RCL
612	65	X	662	43	RCL	712	09	09
613	43	RCL	663	04	04	713	45	YX
614	09	09	664	85	+	714	03	3
615	75	-	665	53	(715	85	+
616	02	2	666	93	.	716	09	9
617	93	.	667	01	1	717	93	.
618	01	1	668	04	4	718	03	3
619	07	7	669	07	7	719	00	0
620	05	5	670	08	8	720	07	7
621	04	4	671	02	2	721	07	7
622	52	EE	672	75	-	722	52	EE
623	94	+/-	673	02	2	723	94	+/-
624	07	7	674	93	.	724	01	1
625	65	X	675	01	1	725	08	8
626	43	RCL	676	06	6	726	65	X
627	09	09	677	06	6	727	43	RCL
628	33	X ²	678	06	6	728	09	09
629	85	+	679	52	EE	729	45	YX
630	02	2	680	94	+/-	730	04	4
631	93	.	681	06	6	731	54)
632	05	5	682	65	X	732	65	X
633	03	3	683	43	RCL	733	43	RCL
634	02	2	684	09	09	734	04	04
635	07	7	685	85	+	735	33	X ²
636	52	EE	686	03	3	736	95	=
637	94	+/-	687	93	.	737	91	R/S
638	01	1	688	04	4	738	32	X ^{1/2}
639	01	1	689	02	2	739	91	R/S
640	65	X	690	07	7	740	00	0
641	43	RCL	691	04	4	741	00	0
642	09	09	692	52	EE	000	32	X ^{1/2}
643	45	YX	693	94	+/-	001	42	STO
644	03	3	694	09	9	002	09	09
645	75	-	695	65	X	003	91	R/S
646	01	1	696	43	RCL	004	76	LBL
647	93	.	697	09	09	005	16	R
648	01	1	698	33	X ²	006	42	STO
649	09	9	699	75	-	007	07	07

008	91	R/S	058	65	X	108	94	+/-
009	76	LBL	059	43	RCL	109	06	6
010	17	B'	060	09	09	110	65	X
011	42	STO	061	45	YX	111	43	RCL
012	06	06	062	03	3	112	09	09
013	91	R/S	063	85	+	113	33	X ²
014	76	LBL	064	07	7	114	75	-
015	18	C'	065	93	.	115	07	7
016	42	STO	066	09	9	116	93	.
017	05	05	067	04	4	117	01	1
018	53	<	068	01	1	118	02	2
019	04	4	069	52	EE	119	03	3
020	05	5	070	94	+/-	120	05	5
021	93	*	071	01	1	121	52	EE
022	07	7	072	04	4	122	94	+/-
023	00	0	073	65	X	123	01	1
024	04	4	074	43	RCL	124	00	0
025	85	+	075	09	09	125	65	X
026	93	*	076	45	YX	126	43	RCL
027	09	9	077	04	4	127	09	09
028	03	3	078	54)	128	45	YX
029	04	4	079	85	+	129	03	3
030	02	2	080	53	<	130	85	+
031	09	9	081	07	7	131	03	3
032	65	X	082	93	.	132	93	.
033	43	RCL	083	09	9	133	00	0
034	09	09	084	04	4	134	06	6
035	85	+	085	07	7	135	08	8
036	02	2	086	02	2	136	04	4
037	93	*	087	85	+	137	52	EE
038	02	2	088	01	1	138	94	+/-
039	02	2	089	93	.	139	01	1
040	06	6	090	04	4	140	04	4
041	05	5	091	09	9	141	65	X
042	52	EE	092	01	1	142	43	RCL
043	94	+/-	093	04	4	143	09	09
044	05	5	094	52	EE	144	45	YX
045	65	X	095	94	+/-	145	04	4
046	43	RCL	096	02	2	146	54)
047	09	09	097	65	X	147	65	X
048	33	X ²	098	43	RCL	148	43	RCL
049	75	-	099	09	09	149	05	05
050	02	2	100	85	+	150	85	+
051	93	*	101	09	9	151	53	(
052	03	3	102	93	.	152	05	5
053	03	3	103	00	0	153	93	.
054	08	8	104	07	7	154	03	3
055	52	EE	105	00	0	155	06	6
056	94	+/-	106	07	7	156	01	1
057	09	9	107	52	EE	157	06	6

158	75	-	208	52	EE	258	09	09
159	08	8	209	94	+/-	259	32	X ^a
160	93	.	210	01	1	260	75	-
161	05	5	211	04	4	261	01	1
162	01	1	212	65	X	262	93	.
163	03	3	213	43	RCL	263	01	1
164	06	6	214	09	09	264	01	1
165	52	EE	215	45	YX	265	01	1
166	94	+/-	216	04	4	266	09	9
167	03	3	217	54)	267	52	EE
168	65	X	218	65	X	268	94	+/-
169	43	RCL	219	53	(269	07	7
170	09	09	220	43	RCL	270	65	X
171	85	+	221	05	05	271	43	RCL
172	03	3	222	33	X ^a	272	09	09
173	93	.	223	54)	273	45	YX
174	05	5	224	95	=	274	03	3
175	09	9	225	42	STO	275	85	+
176	01	1	226	09	09	276	03	3
177	04	4	227	53	(277	93	.
178	52	EE	228	02	2	278	06	6
179	94	+/-	229	93	.	279	06	6
180	06	6	230	06	6	280	02	2
181	65	X	231	00	0	281	52	EE
182	43	RCL	232	04	4	282	94	+/-
183	09	09	233	02	2	283	01	1
184	33	X ^a	234	52	EE	284	02	2
185	75	-	235	03	3	285	65	X
186	04	4	236	75	-	286	43	RCL
187	93	.	237	02	2	287	09	09
188	05	5	238	93	.	288	45	YX
189	09	9	239	01	1	289	04	4
190	03	3	240	06	6	290	54)
191	02	2	241	09	9	291	75	-
192	52	EE	242	04	4	292	53	(
193	94	+/-	243	65	X	293	01	1
194	01	1	244	43	RCL	294	93	.
195	00	0	245	09	09	295	07	7
196	65	X	246	85	+	296	05	5
197	43	RCL	247	01	1	297	07	7
198	09	09	248	93	.	298	03	3
199	45	YX	249	00	0	299	52	EE
200	03	3	250	09	9	300	02	2
201	85	+	251	01	1	301	75	-
202	01	1	252	05	5	302	93	.
203	93	.	253	52	EE	303	02	2
204	09	9	254	94	+/-	304	02	2
205	08	8	255	03	3	305	06	6
206	08	8	256	65	X	306	00	0
207	09	9	257	43	RCL	307	01	1

308	65	X	358	43	RCL	408	09	09
309	43	RCL	359	06	06	409	45	YX
310	09	09	360	85	+	410	03	3
311	85	+	361	53	(411	85	+
312	07	7	362	02	2	412	04	4
313	93	.	363	93	*	413	93	*
314	05	5	364	08	8	414	03	3
315	02	2	365	05	5	415	09	9
316	02	2	366	04	4	416	00	0
317	05	5	367	09	9	417	08	8
318	52	EE	368	75	-	418	52	EE
319	94	+/-	369	04	4	419	94	+/-
320	05	5	370	93	:	420	01	1
321	65	X	371	00	0	421	05	5
322	43	RCL	372	01	1	422	65	X
323	09	09	373	00	0	423	43	RCL
324	33	X ²	374	02	2	424	09	09
325	75	-	375	52	EE	425	45	YX
326	07	7	376	94	+/-	426	04	4
327	93	.	377	03	3	427	54)
328	07	7	378	65	X	428	65	X
329	00	0	379	43	RCL	429	53	(
330	01	1	380	09	09	430	43	RCL
331	08	8	381	85	+	431	06	06
332	52	EE	382	01	1	432	33	X ²
333	94	+/-	383	93	:	433	54)
334	09	9	384	02	2	434	95	=
335	65	X	385	08	8	435	42	STO
336	43	RCL	386	03	3	436	09	09
337	09	09	387	02	2	437	25	CLR
338	45	YX	388	52	EE	438	75	-
339	03	3	389	94	+/-	439	53	(
340	85	+	390	06	6	440	04	4
341	02	2	391	65	X	441	00	0
342	93	.	392	43	RCL	442	00	0
343	05	5	393	09	09	443	93	,
344	04	4	394	33	X ²	444	07	7
345	03	3	395	75	-	445	09	9
346	07	7	396	01	1	446	75	-
347	52	EE	397	93	:	447	01	1
348	94	+/-	398	03	3	448	93	,
349	01	1	399	02	2	449	05	5
350	03	3	400	03	3	450	08	8
351	65	X	401	04	4	451	00	0
352	43	RCL	402	52	EE	452	01	1
353	09	09	403	94	+/-	453	65	X
354	45	YX	404	01	1	454	43	RCL
355	04	4	405	00	0	455	09	09
356	54)	406	65	X	456	85	+
357	65	X	407	43	RCL	457	02	2

458	93	.		508	09	9		558	94	+/-
459	00	0		509	06	6	-	559	01	1
460	02	3		510	75			560	04	4
461	05	5		511	93			561	65	X
462	04	4		512	00	0		562	43	RCL
463	52	EE		513	02	2	4	563	09	09
464	94	+/-		514	04	3	3	564	45	YX
465	04	4		515	03	3	3	565	04	4
466	65	X		516	03			566	54	>
467	43	RCL		517	03	3	3	567	65	X
468	09	09		518	65	X		568	43	RCL
469	33	X ²		519	43	RCL		569	07	07
470	75	-		520	09	09		570	75	-
471	02	2		521	85	+		571	53	<
472	93	.		522	09	9		572	93	.
473	04	4		523	93	.		573	01	1
474	01	1		524	03	3		574	04	4
475	01	1		525	04	3		575	07	7
476	01	1		526	08	6	4	576	05	5
477	52	EE		527	04	4	4	577	08	8
478	94	+/-		528	52	EE	-	578	75	-
479	08	8		529	94	+/-		579	02	2
480	65	X		530	06	6	6	580	93	.
481	43	RCL		531	65	X		581	03	3
482	09	09		532	43	RCL		582	05	5
483	45	YX		533	09	X ²		583	09	9
484	03	3		534	33			584	52	EE
485	85	+		535	75	-		585	94	+/-
486	08	8		536	01	1		586	04	4
487	93	.		537	93	.		587	65	X
488	06	6		538	02	2	5	588	43	RCL
489	07	7		539	05	5	5	589	09	09
490	02	3		540	09	9		590	85	+
491	07	7		541	04	4	4	591	01	1
492	52	EE		542	52	EE	-	592	93	.
493	94	+/-		543	94	+/-		593	00	0
494	01	1		544	09	9		594	03	3
495	03	3		545	65	X		595	07	7
496	65	X		546	43	RCL		596	52	EE
497	43	RCL		547	09	09		597	94	+/-
498	09	09		548	45	YX		598	07	7
499	45	YX		549	03	3		599	65	X
500	04	4		550	85	+		600	43	RCL
501	54)		551	04	4		601	09	09
502	85	+		552	93	.		602	33	X ²
503	53	<		553	07	7		603	75	-
504	01	1		554	05	5		604	01	1
505	06	6		555	02	2		605	93	.
506	93	.		556	02	2		606	06	6
507	01	1		557	52	EE		607	00	0

608 01 1
609 06 6
610 52 EE
611 94 +/-
612 01 1
613 01 1
614 65 X
615 43 RCL
616 09 09
617 45 YX
618 03 3
619 85 +
620 06 6
621 93 .
622 03 3
623 01 1
624 09 9
625 05 5
626 52 EE
627 94 +/-
628 01 1
629 06 6
630 65 X
631 43 RCL
632 09 09
633 45 YX
634 04 4
635 54)
636 65 X
637 53 (.
638 43 RCL
639 07 07
640 33 X²
641 54)
642 95 =
643 59 INT
644 22 INV
645 52 EE
646 91 R/S
647 00 0
648 00 0
649 00 0

USER INFORMATION FOR PROGRAM 3

Program: Maximum Range Time and Speed at Constant Altitude

Number of Steps: 547

Computation Time: 20 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight/1000
2	altitude (ft.)	B	altitude/1000
3	drag count	C	drag count
4	temperature ($^{\circ}$ C)	E	temperature
5	distance (nautical miles)	2nd,B	distance
6	headwind (kts.)	2nd,C	mach number
7	---	R/S	ground speed (kts.)
8	---	R/S	time required (minutes)

000	76	LBL	050	04	4	100	85	+
001	11	R	051	52	EE	101	53	<
002	55	÷	052	94	+/-	102	93	.
003	01	1	053	03	3	103	00	0
004	00	0	054	65	X	104	05	5
005	00	0	055	43	RCL	105	85	+
006	00	0	056	01	01	106	93	.
007	95	=	057	75	-	107	00	0
008	42	STO	058	01	1	108	00	0
009	00	00	059	93	.	109	01	1
010	91	R/S	060	03	3	110	05	5
011	76	LBL	061	09	9	111	01	1
012	12	B	062	06	6	112	05	5
013	55	÷	063	08	8	113	09	9
014	01	1	064	52	EE	114	65	X
015	00	0	065	94	+/-	115	43	RCL
016	00	0	066	03	3	116	01	01
017	00	0	067	65	X	117	85	+
018	95	=	068	43	RCL	118	01	1
019	42	STO	069	01	01	119	93	.
020	01	01	070	33	X ²	120	01	1
021	91	R/S	071	85	+	121	02	2
022	76	LBL	072	08	8	122	03	3
023	13	C	073	93	.	123	52	EE
024	42	STO	074	02	2	124	94	+/-
025	02	02	075	05	5	125	04	4
026	91	R/S	076	04	4	126	65	X
027	76	LBL	077	52	EE	127	43	RCL
028	15	E	078	94	+/-	128	01	01
029	42	STO	079	05	5	129	33	X ²
030	03	03	080	65	X	130	75	-
031	91	R/S	081	43	RCL	131	03	3
032	76	LBL	082	01	01	132	93	.
033	17	B'	083	45	YX	133	04	4
034	42	STO	084	03	3	134	09	9
035	05	05	085	75	-	135	02	2
036	91	R/S	086	01	1	136	01	1
037	76	LBL	087	93	.	137	52	EE
038	19	D'	088	02	2	138	94	+/-
039	42	STO	089	06	6	139	06	6
040	04	04	090	09	9	140	65	X
041	25	CLR	091	08	8	141	43	RCL
042	75	-	092	52	EE	142	01	01
043	01	1	093	94	+/-	143	45	YX
044	85	+	094	06	6	144	03	3
045	05	5	095	65	X	145	85	+
046	93	*	096	43	RCL	146	07	7
047	00	0	097	01	01	147	93	.
048	07	?	098	45	YX	148	09	9
049	09	9	099	04	4	149	03	3

150	06	6	200	75	-	250	43	RCL
151	05	5	201	01	1	251	02	02
152	52	EE	202	93	.	252	75	-
153	94	+/-	203	06	6	253	04	4
154	08	8	204	02	2	254	93	.
155	65	X	205	06	6	255	05	5
156	43	RCL	206	01	1	256	05	5
157	01	01	207	52	EE	257	07	7
158	45	YX	208	94	+/-	258	07	7
159	04	4	209	08	8	259	52	EE
160	54)	210	65	X	260	94	+/-
161	65	X	211	43	RCL	261	06	6
162	43	RCL	212	02	02	262	65	X
163	00	00	213	45	YX	263	43	RCL
164	95	=	214	03	3	264	02	02
165	42	STO	215	85	+	265	33	X ²
166	06	06	216	01	1	266	85	+
167	25	CLR	217	93	.	267	01	1
168	93	.	218	06	6	268	93	.
169	04	4	219	04	4	269	06	6
170	07	7	220	03	3	270	07	7
171	08	8	221	08	8	271	07	7
172	00	0	222	52	EE	272	07	7
173	03	3	223	94	+/-	273	52	EE
174	75	-	224	01	1	274	94	+/-
175	93	.	225	01	1	275	08	8
176	00	0	226	65	X	276	65	X
177	00	0	227	43	RCL	277	43	RCL
178	01	1	228	02	02	278	02	02
179	03	3	229	45	YX	279	45	YX
180	04	4	230	04	4	280	03	3
181	01	1	231	85	+	281	75	-
182	07	7	232	53	C	282	02	2
183	65	X	233	93	.	283	93	.
184	43	RCL	234	00	0	284	00	0
185	02	02	235	08	8	285	00	0
186	85	+	236	02	2	286	01	1
187	06	6	237	01	1	287	52	EE
188	93	.	238	07	7	288	94	+/-
189	02	2	239	85	+	289	01	1
190	02	2	240	04	4	290	01	1
191	08	8	241	93	.	291	65	X
192	07	7	242	01	1	292	43	RCL
193	52	EE	243	02	2	293	02	02
194	94	+/-	244	00	0	294	45	YX
195	06	6	245	09	9	295	04	4
196	65	X	246	52	EE	296	54)
197	43	RCL	247	94	+/-	297	65	X
198	02	02	248	04	4	298	43	RCL
199	33	X ²	249	65	X	299	06	06

300	85	+		350	02	02		400	85	+	
301	53	<		351	45	YX		401	01	1	
302	93	*		352	03	3		402	93	.	
303	00	0		353	85	+		403	00	0	
304	00	0		354	05	5		404	05	5	
305	00	0		355	93	*		405	00	0	
306	04	4		356	07	7		406	01	1	
307	02	2		357	02	2		407	52	EE	
308	01	1		358	02	2		408	94	+/-	
309	04	4		359	02	2		409	07	7	
310	03	3		360	52	EE	-	410	65	X	
311	75	-		361	94	+/-	-	411	43	RCL	
312	09	3		362	01	1		412	02	02	
313	93	*		363	02	2		413	33	X ²	
314	04	4		364	65	X		414	75	-	
315	03	3		365	43	RCL		415	03	3	
316	09	9		366	02	02		416	93	.	
317	07	7		367	45	YX		417	06	6	
318	52	EE		368	04	4		418	03	3	
319	94	+/-		369	54)		419	08	8	
320	05	5		370	65	X		420	02	2	
321	65	X		371	53	<		421	52	EE	
322	43	RCL		372	43	RCL		422	94	+/-	
323	02	02		373	06	06		423	01	1	
324	85	+		374	33	X ²		424	00	0	
325	01	1		375	54)		425	65	X	
326	93	*		376	75	-		426	43	RCL	
327	02	2		377	53	<		427	02	02	
328	06	6		378	06	6		428	45	YX	
329	04	4		379	93	*		429	03	3	
330	06	6		380	06	6		430	85	+	
331	52	EE		381	07	7		431	03	3	
332	94	+/-		382	06	6		432	93	*	
333	06	6		383	07	7		433	07	7	
334	65	X		384	52	EE		434	08	8	
335	43	RCL		385	94	+/-		435	02	2	
336	02	02		386	04	4		436	08	8	
337	33	X ²		387	75	-		437	52	EE	
338	75	-		388	08	8		438	94	+/-	
339	04	4		389	93	*		439	01	1	
340	93	*		390	04	4		440	03	3	
341	08	8		391	06	6		441	65	X	
342	05	5		392	07	7		442	43	RCL	
343	03	3		393	01	1		443	02	02	
344	07	7		394	52	EE		444	45	YX	
345	52	EE		395	94	+/-		445	04	4	
346	94	+/-		396	06	6		446	54)	
347	09	9		397	65	X		447	65	X	
348	65	X		398	43	RCL		448	93	(
349	43	RCL		399	02	02		449	43	RCL	

450	06	06		500	53	<
451	45	YX		501	53	<
452	03	3		502	07	7
453	54	>		503	01	1
454	95	=		504	00	0
455	42	STO		505	54	>
456	07	07		506	65	X
457	65	X		507	53	<
458	01	1		508	43	RCL
459	00	0		509	08	08
460	00	0		510	75	-
461	00	0		511	93	.
462	95	=		512	01	1
463	22	INV		513	04	4
464	52	EE		514	54	>
465	59	INT		515	85	+
466	55	÷		516	01	1
467	01	1		517	00	0
468	00	0		518	00	0
469	00	0		519	75	-
470	00	0		520	43	RCL
471	95	=		521	04	04
472	91	R/S		522	54	>
473	43	RCL		523	95	=
474	07	07		524	42	STO
475	75	-		525	09	09
476	53	<		526	59	INT
477	53	<		527	91	R/S
478	06	6		528	43	RCL
479	00	0		529	09	09
480	75	-		530	35	1/X
481	43	RCL		531	65	X
482	03	03		532	43	RCL
483	54	>		533	05	05
484	65	X		534	65	X
485	53	<		535	06	6
486	02	2		536	00	0
487	65	X		537	95	=
488	43	RCL		538	65	X
489	07	07		539	01	1
490	54	>		540	00	0
491	55	÷		541	95	=
492	01	1		542	59	INT
493	02	2		543	55	÷
494	00	0		544	01	1
495	00	0		545	00	0
496	54	>		546	95	=
497	95	=		547	91	R/S
498	42	STO				
499	08	08				

USER INFORMATION FOR PROGRAM 4

Program: Maximum Range Fuel Required at Constant Altitude

Number of Steps: 439

Computation Time: 16 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight/1000
2	altitude (ft.)	B	altitude/1000
3	drag count	C	drag count
4	true air speed (kts.)	2nd,D	true airspeed
5	time (minutes)	2nd,E	(lb.fuel required/ nautical miles)
6	---	R/S	fuel flow required
7	---	R/S	fuel required

000	76	LBL	050	01	01	100	52	EE
001	11	A	051	85	+	101	94	+/-
002	55	÷	052	93	.	102	08	8
003	01	1	053	00	0	103	65	×
004	00	0	054	00	0	104	43	RCL
005	00	0	055	03	3	105	01	01
006	00	0	056	03	3	106	45	YX
007	95	=	057	09	9	107	05	5
008	42	STO	058	03	3	108	54)
009	00	00	059	02	2	109	85	+
010	91	R/S	060	65	×	110	53	<
011	76	LBL	061	43	RCL	111	03	3
012	12	B	062	01	01	112	93	*
013	55	÷	063	33	X²	113	02	2
014	01	1	064	75	-	114	03	3
015	00	0	065	01	1	115	52	EE
016	00	0	066	93	.	116	94	+/-
017	00	0	067	00	0	117	09	9
018	95	=	068	02	2	118	75	-
019	42	STO	069	08	8	119	03	3
020	01	01	070	03	3	120	93	*
021	91	R/S	071	52	EE	121	06	6
022	76	LBL	072	94	+/-	122	06	6
023	13	C	073	04	4	123	06	6
024	42	STO	074	65	×	124	04	4
025	02	02	075	43	RCL	125	52	EE
026	91	R/S	076	01	01	126	94	+/-
027	76	LBL	077	45	YX	127	03	3
028	19	D'	078	03	3	128	65	×
029	42	STO	079	85	+	129	43	RCL
030	03	03	080	01	1	130	01	01
031	91	R/S	081	93	.	131	85	+
032	76	LBL	082	09	9	132	08	8
033	10	E'	083	02	2	133	93	*
034	42	STO	084	06	6	134	09	9
035	04	04	085	52	EE	135	03	3
036	53	<	086	94	+/-	136	03	3
037	04	4	087	06	6	137	08	8
038	93	.	088	65	×	138	52	EE
039	05	5	089	43	RCL	139	94	+/-
040	04	4	090	01	01	140	04	4
041	75	-	091	45	YX	141	65	×
042	93	.	092	04	4	142	43	RCL
043	01	1	093	75	-	143	01	01
044	06	6	094	01	1	144	33	X²
045	04	4	095	93	.	145	75	-
046	04	4	096	03	3	146	05	5
047	04	4	097	07	7	147	93	*
048	65	×	098	05	5	148	05	5
049	43	RCL	099	07	7	149	09	9

150	03	3	200	85	+	250	94	+/-
151	09	9	201	01	1	251	08	8
152	52	EE	202	93	.	252	65	X
153	94	+/-	203	01	1	253	43	RCL
154	05	5	204	02	2	254	01	01
155	65	X	205	00	0	255	45	YX
156	43	RCL	206	03	3	256	04	4
157	01	01	207	52	EE	257	85	+
158	45	YX	208	94	+/-	258	03	3
159	03	3	209	04	4	259	93	.
160	85	+	210	65	X	260	03	3
161	01	1	211	43	RCL	261	03	3
162	93	.	212	01	01	262	03	3
163	04	4	213	75	-	263	04	4
164	05	5	214	02	2	264	52	EE
165	09	9	215	93	.	265	94	+/-
166	03	3	216	03	3	266	01	1
167	52	EE	217	03	3	267	00	0
168	94	+/-	218	05	5	268	65	X
169	06	6	219	08	8	269	43	RCL
170	65	X	220	52	EE	270	01	01
171	43	RCL	221	94	+/-	271	45	YX
172	01	01	222	05	5	272	05	5
173	45	YX	223	65	X	273	54	8
174	04	4	224	43	RCL	274	65	X
175	75	-	225	01	01	275	43	RCL
176	01	1	226	33	X ²	276	00	00
177	93	.	227	85	+	277	33	X ²
178	03	3	228	01	1	278	95	=
179	02	2	229	93	.	279	42	STO
180	08	8	230	04	4	280	05	05
181	01	1	231	05	5	281	01	1
182	52	EE	232	03	3	282	93	.
183	94	+/-	233	06	6	283	04	4
184	08	8	234	52	EE	284	02	2
185	65	X	235	94	+/-	285	05	5
186	43	RCL	236	06	6	286	01	1
187	01	01	237	65	X	287	52	EE
188	45	YX	238	43	RCL	288	94	+/-
189	05	5	239	01	01	289	01	1
190	54	8	240	45	YX	290	00	0
191	65	X	241	03	3	291	65	X
192	43	RCL	242	75	-	292	43	RCL
193	00	00	243	03	3	293	02	02
194	85	+	244	93	.	294	45	YX
195	53	<	245	07	7	295	04	4
196	06	6	246	01	1	296	75	-
197	52	EE	247	04	4	297	02	2
198	94	+/-	248	04	4	298	93	.
199	04	4	249	52	EE	299	03	3

300	05	5		350	65	X		400	43	RCL
301	01	1		351	43	RCL		401	05	05
302	06	6		352	02	02		402	95	=
303	52	EE		353	85	+		403	42	STO
304	94	+/-		354	01	1		404	09	09
305	07	7		355	93	.		405	65	X
306	65	X		356	02	2		406	01	1
307	43	RCL		357	03	3		407	52	EE
308	02	02		358	02	2		408	03	3
309	45	YX		359	06	6		409	95	=
310	03	3		360	52	EE		410	59	INT
311	85	+		361	94	+/-		411	55	÷
312	09	9		362	05	5		412	01	1
313	93			363	65	X		413	52	EE
314	07	.		364	43	RCL		414	03	3
315	02	2		365	02	02		415	95	=
316	09	9		366	33	X ²		416	22	INV
317	09	.		367	75	-		417	52	EE
318	52	EE		368	01	1		418	91	R/S
319	94	+/-		369	93	.		419	43	RCL
320	05	5		370	00	0		420	09	09
321	65	X		371	02	2		421	65	X
322	43	RCL		372	09	9		422	43	RCL
323	02	02		373	08	8		423	03	03
324	83	X ²		374	52	EE		424	95	=
325	75	-		375	94	+/-		425	42	STO
326	02	2		376	07	7		426	09	09
327	93	.		377	65	X		427	59	INT
328	05	5		378	43	RCL		428	91	R/S
329	03	3		379	02	02		429	43	RCL
330	09	9		380	45	YX		430	09	09
331	09	9		381	03	3		431	65	X
332	52	EE		382	85	+		432	43	RCL
333	94	+/-		383	01	1		433	04	04
334	03	3		384	93	.		434	55	÷
335	65	X		385	07	7		435	06	6
336	43	RCL		386	02	02		436	00	0
337	02	02		387	07	7		437	95	=
338	85	+		388	07	7		438	59	INT
339	53	<		389	52	EE		439	91	R/S
340	02	2		390	94	+/-				
341	85	+		391	01	1				
342	93	.		392	00	0				
343	00	0		393	65	X				
344	00	0		394	43	RCL				
345	04	4		395	02	02				
346	02	2		396	45	YX				
347	03	3		397	04	4				
348	08	8		398	54	2				
349	08	8		399	65	X				

USER INFORMATION FOR PROGRAM 5

Program: Military Climb Schedule

Number of Steps: 195

Computation Time: 3 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight/1000
2	altitude (ft.)	B	altitude
3	drag count	C	drag count
4	temperature ($^{\circ}$ C)	E	indicated airspeed (kts. below 20000 ft.)
5	---	R/S	mach number (above 20000 ft.)

000	76	LBL	050	04	4	100	75	-
001	11	H	051	93	.	101	01	1
002	42	STO	052	01	1	102	93	.
003	01	01	053	00	0	103	01	1
004	91	R/S	054	01	1	104	03	3
005	76	LBL	055	08	8	105	04	4
006	12	B	056	52	EE	106	04	4
007	42	STO	057	94	+/-	107	52	EE
008	02	02	058	07	7	108	94	+/-
009	91	R/S	059	65	X	109	06	6
010	76	LBL	060	43	RCL	110	65	X
011	13	C	061	00	00	111	43	RCL
012	42	STO	062	45	YX	112	00	00
013	00	00	063	03	3	113	45	YX
014	91	R/S	064	95	=	114	03	3
015	76	LBL	065	32	INV	115	85	+
016	15	E	066	52	EE	116	07	7
017	42	STO	067	59	INT	117	93	.
018	03	03	068	91	R/S	118	02	2
019	25	CLR	069	25	CLR	119	01	1
020	04	4	070	93	.	120	02	2
021	00	0	071	08	8	121	05	5
022	05	5	072	06	6	122	52	EE
023	93	.	073	75	-	123	94	+/-
024	05	5	074	02	2	124	09	9
025	08	8	075	93	.	125	65	X
026	75	-	076	01	1	126	43	RCL
027	93	.	077	06	6	127	00	00
028	07	7	078	03	3	128	45	YX
029	09	9	079	04	4	129	04	4
030	00	0	080	52	EE	130	75	.
031	07	7	081	94	+/-	131	02	2
032	05	5	082	03	3	132	93	.
033	65	X	083	65	X	133	03	3
034	43	RCL	084	43	RCL	134	00	0
035	00	00	085	00	00	135	03	3
036	85	+	086	85	+	136	05	5
037	93	.	087	07	7	137	52	EE
038	00	0	088	93	.	138	94	+/-
039	00	0	089	06	6	139	01	1
040	01	1	090	05	5	140	01	1
041	01	1	091	08	8	141	65	X
042	03	3	092	02	2	142	43	RCL
043	08	8	093	52	EE	143	00	00
044	02	2	094	94	+/-	144	45	YX
045	65	X	095	05	5	145	05	5
046	43	RCL	096	85	X	146	85	+
047	00	00	097	43	RCL	147	03	3
048	33	X ²	098	00	00	148	93	.
049	75	-	099	33	X ²	149	06	6

150 05 5
151 08 8
152 08 8
153 52 EE
154 94 +/-
155 01 1
156 04 4
157 65 x
158 43 RCL
159 00 00
160 45 YX
161 06 6
162 75 -
163 02 2
164 93 .
165 03 3
166 00 0
167 06 6
168 02 2
169 52 EE
170 94 +/-
171 01 1
172 07 7
173 65 x
174 43 RCL
175 00 00
176 45 YX
177 07 7
178 95 =
179 65 x
180 01 1
181 00 0
182 00 0
183 00 0
184 95 =
185 32 INV
186 52 EE
187 59 INT
188 95 =
189 55 ÷
190 01 1
191 00 0
192 00 0
193 00 0
194 95 =
195 91 R/S

USER INFORMATION FOR PROGRAM 6

Program: Takeoff Airspeed

Number of Steps: 265

Computation Time: 9 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight
2	flap position (degrees)	2nd,A	flap position
3	center of gravity (%)	2nd,B	takeoff airspeed (kts)

000	76	LBL	050	53	*	100	06	6
001	11	R	051	53	-	101	06	1
002	42	STO	052	03	-	102	01	-
003	00	00	053	06	-	103	52	EE
004	91	R/S	054	75	-	104	94	+/-
005	76	LBL	055	43	RCL	105	03	3
006	16	R'	056	01	-	106	65	X
007	42	STO	057	54	-	107	43	RCL
008	02	02	058	55	-	108	03	03
009	91	R/S	059	02	-	109	45	VX
010	76	LBL	060	54	-	110	03	3
011	17	S'	061	95	=	111	85	+
012	42	STO	062	42	STO	112	06	6
013	01	01	063	03	03	113	93	-
014	53	<	064	35	CLR	114	06	-
015	05	5	065	75	-	115	05	-
016	04	4	066	53	<	116	07	-
017	93	*	067	01	1	117	08	B/E
018	00	0	068	93	-	118	52	+/-
019	02	-	069	09	-	119	94	-
020	03	-	070	01	1	120	06	6
021	65	-	071	07	-	121	65	X
022	03	-	072	01	1	122	43	RCL
023	93	*	073	52	B/E	123	03	03
024	04	-	074	03	-	124	45	VX
025	07	-	075	75	-	125	04	4
026	08	-	076	06	-	126	54	2
027	07	-	077	01	1	127	85	+/-
028	52	-	078	93	-	128	63	-
029	34	+/-	079	06	-	129	07	-
030	03	3	080	00	0	130	06	6
031	65	X	081	04	4	131	53	-
032	43	RCL	082	65	X	132	08	-
033	00	00	083	43	RCL	133	02	-
034	75	-	084	03	03	134	04	4
035	01	1	085	85	+	135	75	1
036	93	*	086	93	-	136	02	2
037	09	9	087	07	-	137	93	-
038	04	4	088	00	0	138	04	4
039	07	7	089	03	3	139	05	5
040	05	5	090	04	4	140	01	1
041	53	EE	091	08	8	141	07	7
042	34	+/-	092	65	X	142	65	X
043	08	8	093	43	RCL	143	43	03
044	65	X	094	03	03	144	03	+/-
045	43	RCL	095	33	X	145	85	2
046	00	00	096	75	-	146	02	3
047	93	X	097	03	3	147	93	-
048	54	>	098	93	-	148	08	8
049	85	+	099	05	5	149	07	7

150	07	7		200	09	9		250	43	PCL
151	09	9		201	75	-		251	03	03
152	52	EE	-	202	93	-		252	45	7%
153	94	+/-		203	00	0		253	04	4
154	03	2		204	02	2		254	54	2
155	65	X		205	03	3		255	65	X
156	43	RCL		206	04	4		256	53	C
157	03	03		207	01	1		257	43	RCL
158	33	X ²		208	05	5		258	02	02
159	75	-		209	65	X		259	33	X ²
160	01	1		210	43	RCL		260	54)
161	93	-		211	03	03		261	95	=
162	04	4		212	85	+		262	32	INV
163	07	7		213	02	2		263	52	EE
164	05	5		214	93	-		264	59	INT
165	03	3		215	07	7		265	91	R/S
166	52	EE	-	216	09	9				
167	94	+/-		217	08	8				
168	04	4		218	52	EE				
169	65	X		219	94	+/-				
170	43	RCL		220	04	4				
171	03	03		221	65	X				
172	45	YX		222	43	RCL				
173	03	3		223	03	03				
174	65	+		224	83	X ²				
175	02	2		225	75	-				
176	93	-		226	01	1				
177	07	7		227	93	-				
178	02	8		228	04	4				
179	07	7		229	05	5				
180	02	2		230	09	9				
181	52	EE	-	231	06	6				
182	94	+/-		232	52	EE				
183	07	7		233	94	+/-				
184	65	X		234	06	6				
185	43	RCL		235	65	X				
186	03	03		236	43	RCL				
187	45	YX		237	03	03				
188	04	4		238	45	YX				
189	54)		239	03	3				
190	65	X		240	85	+				
191	43	RCL		241	02	2				
192	02	02		242	93	-				
193	75	-		243	08	8				
194	93	(244	00	0				
195	93	-		245	02	7				
196	07	7		246	92	EE				
197	02	2		247	94	+/-				
198	02	2		248	09	9				
199	03	3		249	65	X				

USER INFORMATION FOR PROGRAM 7

Program: Maximum Refusal Speed

Number of Steps: 716

Computation Time: 26 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight/1000
2	runway altitude (ft.)	B	runway altitude
3	temperature ($^{\circ}$ C)	E	temperature
4	runway length (ft.)	2nd,C	maximum refusal speed

000	76	LBL	050	00	00	100	93	.
001	12	B	051	75	-	101	00	0
002	42	STO	052	02	2	102	04	4
003	00	00	053	93	.	103	05	5
004	91	R/S	054	00	0	104	06	6
005	76	LBL	055	06	6	105	03	3
006	15	E	056	05	5	106	85	+
007	42	STO	057	05	5	107	02	2
008	01	01	058	52	EE	108	93	.
009	91	R/S	059	94	+/-	109	08	8
010	76	LBL	060	07	7	110	09	9
011	11	A	061	65	X	111	03	3
012	55	÷	062	43	RCL	112	01	1
013	01	1	063	00	00	113	52	EE
014	00	0	064	33	X ²	114	94	+/-
015	00	0	065	85	+	115	06	6
016	00	0	066	03	3	116	65	X
017	95	=	067	93	.	117	43	RCL
018	42	STO	068	06	6	118	00	00
019	02	02	069	08	8	119	75	-
020	91	R/S	070	06	6	120	03	3
021	76	LBL	071	01	1	121	93	.
022	18	C	072	52	EE	122	02	2
023	55	÷	073	94	+/-	123	05	5
024	01	1	074	01	1	124	04	4
025	00	0	075	01	1	125	05	5
026	00	0	076	65	X	126	52	EE
027	00	0	077	43	RCL	127	94	+/-
028	95	=	078	00	00	128	09	9
029	42	STO	079	45	YX	129	65	X
030	03	03	080	03	3	130	43	RCL
031	53	(081	75	-	131	00	00
032	01	1	082	02	2	132	33	X ²
033	03	3	083	93	.	133	65	+
034	93	:	084	04	4	134	09	9
035	00	0	085	01	1	135	93	.
036	08	8	086	05	5	136	07	2
037	06	6	087	06	6	137	00	0
038	75	-	088	52	EE	138	08	8
039	93	•	089	94	+/-	139	08	8
040	00	0	090	01	1	140	52	EE
041	00	0	091	05	5	141	94	+/-
042	00	0	092	65	X	142	01	1
043	01	1	093	43	RCL	143	03	3
044	07	?	094	00	00	144	55	X
045	01	1	095	45	YX	145	43	RCL
046	01	1	096	04	4	146	00	00
047	03	3	097	54	2	147	45	YX
048	65	X	098	75	-	148	03	3
049	43	RCL	099	53	(149	75	-

150	06	6	•	9	9	7	EE	EE	•	9	0	9	7	-
151	93	•	9	9	7	-	+/-	+/-	-	9	0	9	7	-
152	09						201	94	+/-	251	09	00	00	
153	09						202	01	1	252	09	00	00	
154	07						203	00	0	253	09	00	00	
155	52	EE	+/-				204	65	X	254	07	52	94	-
156	94	+/-					205	43	RCL	255	52	94	00	
157	01	1	7	7			206	00	00	256	94	00	00	
158	07						207	33	X ^a	257	00	75	01	
159	65	X					208	85	+	258	93	00	00	
160	43	RCL					209	08	0	259	93	00	00	
161	00	00					210	93	•	260	00	00	00	
162	45	YX					211	05	5	261	00	00	00	
163	04	4					212	04	4	262	00	00	00	
164	54)					213	06	0	263	01	52	94	-
165	65	X					214	06	EE	264	00	00	00	
166	53	(215	53	+/-	265	00	00	00	
167	43	RCL					216	94	+/-	266	65	65	43	
168	01	01					217	01	1	267	00	00	00	
169	54)					218	04	4	268	00	00	00	
170	75	-					219	65	X ^a	269	00	00	00	
171	63	-					220	43	RCL	270	00	00	00	
172	93	-					221	00	YX	271	85	09	•	
173	00	.					222	45	3	272	09	93	04	
174	00	0					223	03	-	273	93	04	06	
175	01	1	3	1	7	+	224	75	0	274	04	06	06	
176	03	1	7	4	9	-	225	05	5	275	03	09	4	
177	01						226	93	•	276	04	04	04	
178	07						227	04	4	277	04	04	04	
179	85						228	09	9	278	04	04	04	
180	08						229	06	6	279	04	04	04	
181	93						230	04	4	280	01	02	02	
182	03						231	53	EE	281	00	46	RCL	
183	05						232	94	+/-	282	00	00	00	
184	05						233	01	1	283	00	00	00	
185	08						234	08	0	284	00	00	00	
186	52	EE	+/-				235	65	X ^a	285	75	02	02	
187	94	+/-					236	43	RCL	286	03	03	03	
188	07						237	00	YX	287	00	00	00	
189	65						238	45	4	288	00	00	00	
190	43	RCL					239	04	2	289	00	00	00	
191	00	00					240	54	X	290	03	04	04	
192	75	-					241	65	-	291	03	04	04	
193	04	4					242	53	(292	03	04	04	
194	93	•					243	43	RCL	293	03	04	04	
195	00	0					244	01	01	294	01	01	01	
196	07						245	33	X ^a	295	05	05	05	
197	03	3					246	54)	296	43	43	RCL	
198	09	9					247	75	-	297	00	00	00	
199	02	12					248	53	(298	00	00	00	
							249	01	1	299	00	00	00	

300	45	YX			350	06				400	53				
301	03	3			351	93				401	02				
302	85	+			352	07				402	06				
303	01	1			353	06				403	93				
304	93	.			354	01				404	03				
305	04	4			355	65				405	01				
306	06	6			356	43				406	02				
307	01	1			357	08				407	75				
308	07	7			358	75				408	03				
309	52	EE	-		359	93				409	93				
310	94	+/-	-		360	03				410	03				
311	01	1			361	01				411	03				
312	09	9			362	01				412	03				
313	65	X			363	00				413	02				
314	43	RCL			364	00				414	02				
315	00	00			365	65				415	43				
316	45	YX			366	43				416	03				
317	04	4			367	00				417	93				
318	54	3			368	33				418	93				
319	65	X			369	85				419	93				
320	53	C			370	93				420	03				
321	43	RCL			371	00				421	03				
322	01	01			372	00				422	03				
323	45	YX			373	00				423	06				
324	03	3			374	00				424	65				
325	54	3			375	05				425	43				
326	95	+			376	04				426	03				
327	65	X			377	05				427	33				
328	93	0			378	65				428	33				
329	05	0			379	43				429	93				
330	06	0			380	03				430	00				
331	06	0			381	45				431	00				
332	85	0			382	03				432	00				
333	01	1			383	75				433	04				
334	93	1			384	06				434	01				
335	09	1			385	93				435	00				
336	09	1			386	07				436	02				
337	07	1			387	07				437	65				
338	06	3			388	06				438	43				
339	95	3			389	09				439	02				
340	42	STO			390	52				440	45				
341	04	04			391	94				441	03				
342	52	C			392	05				442	85				
343	04	4			393	65				443	03				
344	03	3			394	43				444	93				
345	93	0			395	03				445	09				
346	00	0			396	45				446	04				
347	01	1			397	04				447	52				
348	94	+/-	-		398	54				448	04				
349	85	+			399	85				449	52				

450	94	+/-		500	65	x		550	09	3
451	05	5		501	43	RCL		551	09	9
452	65	x		502	02	02		552	02	2
453	43	RCL		503	45	YX		553	01	1
454	02	02		504	03	3		554	65	x
455	45	YX		505	85	+		555	43	RCL
456	04	4		506	07	7		556	02	02
457	54)		507	93	.		557	33	X ²
458	65	x		508	06	6		558	75	-
459	43	RCL		509	03	3		559	05	5
460	04	04		510	08	8		560	93	+
461	75	-		511	52	EE		561	05	5
462	53	(512	94	+/-		562	05	5
463	04	4		513	06	6		563	04	4
464	93	-		514	65	x		564	09	9
465	09	-		515	43	RCL		565	52	EE
466	06	6		516	02	02		566	94	+/-
467	03	03		517	45	YX		567	05	5
468	09	-		518	04	4		568	65	x
469	75	-		519	54)		569	53	(
470	93	-		520	65	x		570	43	RCL
471	07	-		521	53	(571	02	02
472	02	-		522	43	RCL		572	45	YX
473	07	-		523	04	04		573	03	3
474	02	-		524	33	X ²		574	54)
475	03	-		525	54)		575	65	+
476	65	-		526	85	+		576	04	4
477	43	RCL		527	53	(577	93	+
478	02	02		528	93	.		578	07	7
479	85	+		529	03	3		579	02	2
480	93	-		530	00	0		580	01	1
481	00	0		531	02	2		581	07	7
482	03	3		532	08	8		582	52	EE
483	08	8		533	08	8		583	94	+/-
484	07	7		534	75	-		584	07	7
485	02	2		535	93	+		585	65	x
486	01	1		536	00	0		586	53	(
487	65	x		537	04	4		587	43	RCL
488	43	RCL		538	04	4		588	02	02
489	02	02		539	08	8		589	45	YX
490	33	X ²		540	05	5		590	04	4
491	75	-		541	05	5		591	54)
492	08	8		542	65	x		592	54)
493	93	-		543	43	RCL		593	65	x
494	09	9		544	02	02		594	53	(
495	08	8		545	85	+		595	43	RCL
496	05	5		546	93	.		596	04	04
497	52	EE		547	00	0		597	45	YX
498	94	+/-		548	00	0		598	03	3
499	04	4		549	02	2		599	54)

600	95	=			650	06	6			700	00	0
601	65	X	C		651	01	1			701	01	1
602	53	*	2	8	652	65	X			702	07	7
603	93	*	2	8	653	43	RCL			703	04	4
604	02				654	03	03			704	05	5
605	08				655	45	YX			705	05	5
606	01	1			656	04	4			706	65	X
607	01	1			657	54	2			707	43	RCL
608	94	+	/	-	658	75	-			708	03	03
609	75	-			659	01	1			709	45	YX
610	04	4			660	01	1			710	04	4
611	93	*	2	0	661	93	*			711	95	=
612	02				662	04	4			712	22	IHW
613	00				663	01	1			713	52	EE
614	01	1			664	02	2	+		714	59	INT
615	02	2			665	85				715	95	=
616	65	X			666	06	6	3		716	91	R/S
617	43	RCL			667	02	2	3				
618	03	03			668	93						
619	65	+			669	01						
620	93	*	2	0	670	08						
621	07				671	05						
622	00				672	65	X					
623	03	2	2		673	43	RCL					
624	07	2			674	03	03					
625	07	2			675	75	-					
626	65	X			676	09	9					
627	43	RCL			677	93	*	0				
628	03	03			678	00						
629	63	X ^a			679	00						
630	75	-			680	03	3					
631	93	*	2		681	07	7					
632	00	0			682	65	X					
633	05				683	43	RCL					
634	08				684	03	03					
635	06	6	6		685	33	X ^a					
636	09	9	9		686	85	+					
637	03	3			687	93	*					
638	95	X			688	06	6	4				
639	43	RCL			689	04	4	9				
640	03	03			690	09	9	3				
641	45	YX			691	02						
642	03	3			692	01	1	X				
643	65	+			693	65						
644	93	*			694	43	RCL					
645	00	0			695	03	03					
646	00	0			696	45	YX					
647	01	1			697	03	3					
648	07	7			698	75	-					
649	04	4			699	93	*					

USER INFORMATION FOR PROGRAM 8

Program: Optimum Endurance Altitude

Number of Steps: 229

Computation Time: 8 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight/1000
2	drag count	C	optimum endurance altitude (ft.)

000	76	LBL	050	93	.	100	00	0
001	11	A	051	05	5	101	09	9
002	55	+	052	00	0	102	07	7
003	01	1	053	01	1	103	52	EE
004	00	0	054	05	5	104	94	+/-
005	00	0	055	52	EE	105	05	5
006	00	0	056	94	+/-	106	65	X
007	95	=	057	06	6	107	43	RCL
008	42	STO	058	65	X	108	01	01
009	00	00	059	43	RCL	109	33	X ²
010	91	R/S	060	01	01	110	85	+
011	76	LBL	061	45	YX	111	02	2
012	13	C	062	03	3	112	93	.
013	42	STO	063	75	-	113	08	8
014	01	01	064	03	3	114	08	8
015	25	CLR	065	93	.	115	03	3
016	05	5	066	09	9	116	06	6
017	05	5	067	07	7	117	52	EE
018	93	.	068	08	8	118	94	+/-
019	03	3	069	02	2	119	07	7
020	03	3	070	52	EE	120	65	X
021	03	3	071	94	+/-	121	43	RCL
022	03	3	072	09	9	122	01	01
023	85	+	073	65	X	123	45	YX
024	93	.	074	43	RCL	124	03	3
025	00	0	075	01	01	125	75	-
026	07	7	076	45	YX	126	03	3
027	03	3	077	04	4	127	93	.
028	00	0	078	75	-	128	03	3
029	07	7	079	53	<	129	00	0
030	06	6	080	01	1	130	03	3
031	65	X	081	93	.	131	02	2
032	43	RCL	082	01	1	132	52	EE
033	01	01	083	85	+	133	94	+/-
034	75	-	084	08	8	134	01	1
035	09	9	085	93	.	135	00	0
036	93	.	086	00	0	136	65	X
037	07	7	087	05	5	137	43	RCL
038	08	8	088	09	9	138	01	01
039	03	3	089	07	7	139	45	YX
040	06	6	090	52	EE	140	04	4
041	52	EE	091	94	+/-	141	54)
042	94	+/-	092	03	3	142	65	X
043	04	4	093	65	X	143	43	RCL
044	65	X	094	43	RCL	144	00	00
045	43	RCL	095	01	01	145	85	+
046	01	01	096	75	-	146	53	<
047	33	X ²	097	08	8	147	06	6
048	85	+	098	93	.	148	93	.
049	03	3	099	00	0	149	06	6

150	06	6	200	93	.
151	06	6	201	00	0
152	07	7	202	02	2
153	52	EE	203	01	1
154	94	+/-	204	08	8
155	03	3	205	52	EE
156	85	+	206	94	+/-
157	01	1	207	01	1
158	93	.	208	02	2
159	02	2	209	65	x
160	05	5	210	43	RCL
161	04	4	211	01	01
162	01	1	212	45	YX
163	52	EE	213	04	4
164	94	+/-	214	54)
165	04	4	215	65	x
166	65	x	216	43	RCL
167	43	RCL	217	00	00
168	01	01	218	33	X ²
169	75	-	219	95	=
170	01	1	220	65	x
171	93	.	221	01	1
172	04	4	222	00	0
173	00	0	223	00	0
174	03	3	224	00	0
175	09	9	225	95	=
176	52	EE	226	59	INT
177	94	+/-	227	22	INV
178	06	6	228	57	ENG
179	65	x	229	91	R/S
180	43	RCL			
181	01	01			
182	33	X ²			
183	85	+			
184	05	5			
185	93	.			
186	02	2			
187	00	0			
188	03	3			
189	02	2			
190	52	EE			
191	94	+/-			
192	09	9			
193	65	x			
194	43	RCL			
195	01	01			
196	45	YX			
197	03	3			
198	75	-			
199	06	6			

USER INFORMATION FOR PROGRAM 9

Program: Cruise Ceiling

Number of Steps: 299

Computation Time: 11 seconds

<u>STEP</u>	<u>ENTER</u>	<u>PRESS KEY</u>	<u>DISPLAY</u>
1	gross weight (lbs.)	A	gross weight/1000
2	drag count	C	cruise ceiling

000	76	LBL		050	05	5		100	03	3
001	11	A		051	01	1		101	52	EE
002	55	+		053	52	EE		102	94	+/-
003	01	1		053	94	+/-		103	04	4
004	00	0		054	05	5		104	65	X
005	00	0		055	65	X		105	43	RCL
006	00	0		056	43	RCL		106	01	01
007	95	=		057	01	01		107	23	X ²
008	42	STO		058	45	YX		108	75	-
009	00	00		059	03	3		109	01	1
010	91	R/S		060	85	+		110	93	.
011	76	LBL		061	01	1		111	04	4
012	13	C		063	93	.		112	01	1
013	42	STO		063	06	6		113	06	6
014	01	01		064	06	6		114	03	2
015	25	CLR		065	02			115	52	EE
016	08	8		066	01			116	94	+/-
017	05	5		067	52	EE		117	06	6
018	83	.		068	94	+/-		118	65	X
019	01	1		069	08	8		119	43	RCL
020	01	1		070	65	X		120	01	01
021	08	8		071	43	RCL		121	45	YX
022	75	.		072	01	01		122	03	3
023	93	.		073	45	YX		123	85	+
024	02			074	04	4		124	01	1
025	09			075	75	-		125	93	.
026	01			076	50	<		126	08	8
027	01			077	02	>		127	03	3
028	07			078	93	+		128	04	3
029	66			079	07	-		129	03	3
030	43	RCL		080	08	8		130	52	EE
031	01	01		081	07	7		131	34	+/-
032	85	+		082	07	7		132	09	9
033	93	.		083	75	-		133	65	X
034	00			084	93	.		134	43	RCL
035	00			085	00	0		135	01	01
036	03			086	02	0		136	45	YX
037	00			087	05	0		137	04	4
038	04			088	06	6		138	54	X
039	03			089	03	3		139	65	X
040	04			090	05	5		140	43	RCL
041	65	X		091	65	X		141	00	00
042	43	RCL		092	43	RCL		142	85	+
043	01	01		093	01	01		143	53	<
044	23	X ²		094	85	+		144	93	.
045	75	-		095	03	3		145	00	00
046	01	1		096	93	.		146	06	6
047	93	.		097	03	3		147	03	3
048	02			098	00	0		148	02	2
049	06			099	06	6		149	02	2

150	07	7	-		200	52	EE			250	33	X ²	
151	75	-	8		201	94	+/-			251	75	-	
152	08	.	5		202	01	1			252	04	4	
153	93	.	2		203	01	1			253	93	.	
154	05				204	65	X			254	09	9	
155	03				205	43	RCL			255	03	8	
156	08				206	01	01			256	00	0	
157	09				207	45	YX			257	04	4	
158	52	EE			208	04	4			258	52	EE	
159	94	+/-			209	54	2			259	94	+/-	
160	04	4			210	65	X			260	01	1	
161	65	X			211	43	RCL			261	00	0	
162	43	RCL			212	00	00			262	65	X	
163	01	01			213	33	X ²			263	43	RCL	
164	85	+			214	75	-			264	01	01	
165	01	1			215	53	C			265	45	YX	
166	93	.			216	06	8			266	03	3	
167	00	0			217	93	.			267	85	+	
168	08	8			218	00	0			268	06	6	
169	01	1			219	04	4			269	93	.	
170	04	4			220	06	6			270	04	4	
171	52	EE			221	08	8			271	05	5	
172	94	+/-			222	52	EE			272	06	6	
173	05	5	X		223	94	+/-			273	07	7	
174	65	X			224	04	4			274	52	EE	
175	43	RCL			225	75	-			275	94	+/-	
176	01	01			226	09	9			276	01	1	
177	33	X ²			227	93	.			277	03	3	
178	75	-			228	00	0			278	65	X	
179	04	4			229	08	8			279	43	RCL	
180	93	.	6		230	02				280	01	01	
181	06	6	9		231	06				281	45	YX	
182	05	5	9		232	53	EE			282	04	4	
183	01	1	1		233	94	+/-			283	54	2	
184	04	4	4		234	06	6			284	65	X	
185	52	EE	4		235	65	X			285	43	RCL	
186	94	+/-	5		236	43	RCL			286	00	00	
187	08	8	8		237	01	01			287	45	YX	
188	65	X	8		238	85	+			288	03	3	
189	43	RCL	0		239	01	1			289	95	=	
190	01	01	01		240	93	.			290	65	X	
191	45	YX	01		241	01	1			291	01	1	
192	03	3	3		242	04	4			292	00	0	
193	85	+	6		243	00	8			293	00	0	
194	06	6	6		244	53	EE			294	00	0	
195	93	.	0		245	94	+/-			295	95	=	
196	00	0	0		246	07	7			296	59	INT	
197	06	6	6		247	65	X			297	22	INT	
198	00	0	0		248	43	RCL			298	57	ENG	
199	06	6	6		249	01	01			299	91	R/S	

APPENDIX F

Microprocessor Program

This computer printout was reproduced on an IBM-360/67 Computer. This listing was entered by hand on an INTEL Corporation MDS-800 System, stored on a diskette, and sent to the IBM-360/67 via a high speed line.


```

; STATE FERFCRMANCE 9100H CALCULATOR USING THE 8048 SYSTEM
; MAIN:      ; CLR HEX BUFFER
    SEL MBO    ; DECIMAL FCINT MASK LOCATION IN RESIDENT MEM
    CALL CLRHX ; CLEAR DECIMAL FCINT MASK
    MBO R0, #3E
    MOV A, #00
    RCV A, RC,A
    INC R0
    MOV A, #08
    MOV A, R0,A
    SEL MEO
    MOV R0, #36
    RCV A, RO
    RLC A
    SEL MEO    ; ENABLE EXTERNAL INTERRUPT
    MOV R0, #36
    RCV A, RO
    RLC A
    SEL MEO    ; GET CHARACTER
    CPL FCXDG ; CLEAR HEX BUFFER
    CALL CLRHX
    SEL MBO
    JMP MAIN1
    CALL HEXFL
    MOV R7, #0E
    MOV R1, #35
    MOV R0, #3F
    SEL MBO
    JMP MAIN1

    HEXEG:    ; SHIFT TO HEX BUFFER
    HEXEG1:   ; SET COUNTER TO LOCATION OF HEX BUFFER
    RCV R0,A
    INC R0
    DJNZ R2, CLRHX1
    RET       ; IF F GO TO BCDEIN

    HEXFL:    ; IF D, GO TO FL1
    RCV R0,A
    XRL A, #0E
    JZ ECLBIN
    MOV A, RC
    XRL A, #0D
    JZ FL1
    RCV A, RO
    CPL A
    ADD A, #0A
    CPL A
    JNC MAIN

```



```

NCV A R0,A
NCV A #74
MOV P A ,A
DEC R0
NCV A R0,A
MOV P A ,A
DEC R0
NCV A R0,A
CALL ADD
CALL CTCY
CALL BI MULT
MOV A #70
MOV P A ,A
MOV R0,#27
MOV A ,A
MOV P A ,A
DEC R0
NCV A R0,A
MOV A #72
MOV P A ,A
DEC R0
NCV A R0,A
CALL ADD
JMP BINBCC
MOV R0,#2A
MOV R1,#27
NCV A ,A
NCV A ,A
DEC R0
DEC R1
MOV A ,A
MOV R0
DEC R1
NCV A ,A
RET

```

CTOY:

```

;ADD B2*X TO E1 BY CALLING BINARY FLOATING
;PCINT ADDITION ROUTINE--NOTE THAT
;MOVE ENTERED VARIABLE INT Y-LLOCATION (AGAIN)
;MULTIPLY (B2*X+B1)*X TO GET (B2*X*X)+(B1*X)
;MCV B0 INTO Y-LLOCATION

;ACC ((B2*X*X)+(E1*X)) TO BC FOR FINAL RESULT
;OF THIS POLYNOMIAL CALCULATION--NOTE THAT
;WITH AN EXTENDED EXECUTIVE ROUTINE AND EXTRA
;COEFFICIENT STORAGE SPACE, ANY NUMBER OF
;INTELLIGENT CONVERSIONS ARE POSSIBLE
;USE BINARY TO ECD CONVERSION ROUTINE
;MCVES DESIGNATE COEFFICIENT TO Y-LOCATION

CTOY: CALL CLR
      ;THIS ROUTINE CONVERTS A BINARY NUMBER
      ;TO BINARY DECIMAL (IN PREP FOR DISPLAY)
      ;CLEAR REGISTERS R0-R7

```



```

MOV R1,#24
MCV A,@R1
ADD A,#69
CPL A
MOV R0,A
DEC R1
MOV A,@R1
CRL A,#80
MOV R5,A
CEC R1
MOV A,@R1
NCV R6,A
CALL RSHTFT
CALL ROFFFB1
JMP MCV ;CLEARS REGISTERS R0-R7
NCV R0,#07 ;CLEARS REGISTERS R0-R7
CLR: CLR: CLR: CLR: CLR: CLR: CLR: CLR:
RET R0,#07 ;MCV REGISTERS R4-R7 TO R32-R35
FDPMASK: MOV R1,#35
          MOV @R0,A
          FEC R0
          MOV A,RO
          XRL A,#02
          JZ GC
          FEC R1
          CALL FDPMASK
          JMP SPACE
GO:   END PAGE 0
       *****
;THIS ROUTINE ADDS TWO BINARY LOCATING
;PCINT NUMBERS. TO CALL AND USE THIS ROUTINE,
;THE NUMBERS MUST BE IN THE X-LOCATION AND
;Y-LOCATION IN THE BINARY STORAGE CONVENTION
;CHANGES NUMBERS FROM STCAGE CONVENTION TO
;STCAGING CONVENTION SO NUMBERS MAY EEE SUMMED
;EQUATES EXPONENTS. THIS ROUTINE SUMS THE BINARY NUMBERS TOGETHER
;AND ENSURES ANSWER IS IN WORKING CONVENTION AND
;CHANGES NUMBER BACK TO STCAGE CONVENTION AND
;ENSURES NUMBER MOVED TO STCAGE LOCATION
ADD:  CALL FIXEXP
      CALL SUM
      CALL RESTORE

```


RET

;THIS ROUTINE MULTIPLIES 2 BINARY FLOATING POINT
;NUMBERS TO BE USED THIS ROUTINE
;X-LOCATION AND Y-LOCATION IN EINARY STORAGE
;CONVENTION
;CHANGES CONVENTION FROM STORAGE CONVENTION TC
;IN WORKING CONVENTION
;MULTIPLIES BINARY NUMBERS TOGETHER AND
;ADDS EXPONENTS AND ENSURES NUMBER IS RETURNED
;TC WORKING CONVENTION
;STORES ANSWER BACK TC STORAGE CONVENTION
;AND ENSURES IT IS MOVED TO THE FASTER STORAGE
;LOCATION

RET

NCV: MOV R0, #2²³

XSIGN: MOV A, @R0

RLC A

JNC XPOS

CLR FC

CJP XVAL

CLR FO

CLR C

XPCSS: CPL C

XVAL: RRC A

MOV A, @R1

YSIGN: MOV A, @R1

CLR YPOS

JNC F1

CLR F1

JMP YVAL

YNEG: CLR C

CPL C

RRCA A

RET

SHIFTX: RET

MOV A, @R0

RRCA

MOV A, @R1

CECNZ R0, SHIFTX

RET

FIXEXP: CLR C

MOV R0, #24

;MCVF MSB INTO ACCUMULATOR
;RECTATE MSEIT INTO CARRY

;IF CARRY SET, X IS -: THEREFORE SET FO FLAG

;X IS POSITIVE: THEREFORE CLEAR FC FLAG,
;SET CARRY, ROTATE 1 INTC. INVERSE MSB IT OF X

;RESTORE INTO X, NOW IN WORKING CONVENTION

;DC THE SAME FOR Y, EXCEPT USE THE F1 FLAG

;THIS SUBROUTINE SHIFTS RIGHT WITH CARRY THE
;NUMBER SPECIFIED BY R1
;SPECIFIED BY R1

;THIS SUBROUTINE ADJUSTS THE EXPONENT OF THE
;SMALLER OF 2 NUMBERS SO THAT EXPONENTS


```

MOV R1,#27
MOV A,@R0
CPL A
ADD A,@R1
MOV RI,A
MOV R1,#26
JZ XEQY

XGTY:
MOV R7,A
ADD A,@R1
MOV RI,A
MOV R1,#26
JZ YAGIN

SHIFTY:
MOV R7,A
MOV RI,A
DEC R1
MOV A,@R1
RRC A
MOV C
CLR C
DJNZ R7,YAGIN
JMP XEQY

XLTY:
MCV A,@R1
CLR A
CPL A,@R0
ADD A,@R0
MOV RI,#104
MOV RO,#23
CALL SHIFTX
CLR C
DJNZ R7,XAGIN
MOV RC,#24
MOV A,@R0
MOV RE,A
RET

```

THIS ROUTINE ACCESSES TWO BINARY NUMBERS THAT ARE
 IN WORKING CONVENTION
 CHECK SIGNS OF ADDENDS
 IF BOTH ARE +, ADD THE NUMBERS TOGETHER AND
 CLEAR FOR (+ANSWER). IF ANY CARRY, SHIFT
 RAISE EXP AS NECESSARY TO REMAIN IN WORKING
 CONVENTION
 CALL FINISH

```

SUM:
JFO CHECKY
JF1 X+Y-
CALL BINADD
ALLPC$:
CLR FO
JNC REG1
CALL SHIFTX
CALL EXPASS
JMP FINISH

```



```

REG1: MOV R5,A
      JMP FINISH
CHECKY: CALL CPLY
        CALL SUB
        JNP FINISH
X+Y+: CALL CPLX
        CALL SUB
        JNP FINISH
      CLR FO
      CALL FO
      ;AND ADD NUMBERS
      CALL BINACC
      JNC REG1
      CALL SHIFT
      CALL EXPACC
      RET
FINISH: JF1 REGSUB
        CALL FIXY
        CALL BINACD
        JNC REG2
        CLR FO
        CPL FO
        MOV R5,A
        CALL NEGACC
        JNP FINI
        CLR FO
        CALL CPLR
        RET
REG2: FINISH: CALL BINACD
        CLR RC,#2C
        MCY RI,#25
        MCY A,@R0
        MCY R2,A
        INC RC
        MOV A,@R0
        MCY R3,A
        INC RC
        MCY A,@R0
        ADD A,@R1
        MOV R4,A
        INC R0
        INC RI
        MOV A,@R0
        ACCC A,@R0
        RET
EXPACC: INCREASE EXPONENT(REGISTER 6) BY 1

```



```

MOV R6,A
RET

;*****END OF PAGE 1*****
;*****INITIALIZE X-LOCATION FOR CLEAR ROUTINE

CLRX:
    MOV R1,#2C
    MCV R2,#0F
    CALL CLEAR
    CLR F0
    RET

CLRY:
    MOV R1,#25
    MCV R2,#02
    CALL CLEAR
    CLR F1
    RET

FIXY:
    CLR C
    MCV RO,@R0
    MOV A,@R0
    ADD A,#FF
    MCV @R0,A
    INC RO
    MOV A,@R0
    ADCC A,#FF
    MOV @R0,A
    INC RO
    MOV A,@R0
    ADCD A,#0C
    MOV @R0,A
    INC RO
    MOV A,@R0
    ADCC A,#00
    MCV @R0,A
    RET

CALL ROUNDX
    MOV R7,#1C
    MOV R0,#24
    MOV R1,#27
    ADD A,@R0
    ADD A,#80
    JNC NEG0R
    ADDC A,#00
    ADD A,@R1
    MOV R6,A
    EXP:
    SETREG: CALL EXPACD
    DEC RC
    LEC R1
    MCV A,@R1

;ROUND NUMBER IN X-LOCATION TO 2-BYTE NUMBER
;ADD EXPONENTS OF MULTIPLICATION FACTORS
;IEIAS OF EXPONENT IS 7F

MULT:
    CALL ROUNDX
    MOV R7,#1C
    MOV R0,#24
    MOV R1,#27
    ADD A,@R0
    ADD A,#80
    JNC NEG0R
    ADDC A,#00
    ADD A,@R1
    MOV R6,A
    EXP:
    SETREG: CALL EXPACD
    DEC RC
    LEC R1

;BEGIN MULTIPLICATION

```



```

MOV R2,A
DEC R1,AR1
MOV R2,A
MOV A,AR0
JNC R1,A
DEC RQ,AR0
MOV RQ,A
CLR A
CCV A,R5,A
CCV A,R4,A
CALL SHIFTR
CLR C
CCV A,R5
CALL BMP2
CLR C
CCV A,R4
ACC A,RO
CCV A,R5
MOV A,AR5
ACC C,A,AR1
MOV R5,A
MOVZ R7,BMP1
DJNZ R5,BMP1
CCV A,R5
CALL SHIFTR
JF1 NCWY PCSNEG
JF1 OUT FCT
SAMSIN:
JMP OUT
JF1 SAMSIN:
CLR FO
CPL FO
RET
MOV RO,#21
MOV A,AR0
CLR C
RLC A
CLR A,END
INC RC
ACC A,AR0,A
CCV AR0,A
INC RC
CLR A
ACC A,AR0,C
CCV AR0,A
JNC END

```

;MULTIPLIER IS IN R3 MSB LSE
;MULTIPLICAND IS IN R1 RC
;ANSWER IS IN R6 R5 MSB LS_B
;EXP R4 MSB LS_B
;R2 LS_B

;CHECK FOR SIGNS
;PUT ROUND OFF BYTE INTO ACCUMULATOR AND CHECK
;IF X AND Y HAVE SAME SIGN, PRODUCT SIGN IS +
;IF NOT, PRODUCT IS -
;PUT ROUND OFF BYTE INTO ACCUMULATOR AND CHECK
;FOR MSEIT BY ROTATING LEFT
;IF CARRY SET, MUST ADD 1 TO NEXT SIGNIF BYTE
;ALLOW FOR CARRYOVER INTO MSE AND INTO CARRY


```

MOV R1,#01          ; SHIFT AND INCREASE EXPONENT IF NECESSARY
CALL SFIFTX
MOV R0,#24
MOV A,R0
ACC A,#01
CLR A,R0,#21
END:

CLRA
MOV A,R0,A
DEC RC
MOV A,R0,A

SHIFTL: RET A,R2      ; THIS ROUTINE SHIFTS REGS R2-R5 LEFT WITH CARRY
        RLC NOV A,R2,A
        RLC NOV A,R3
        RLC NOV A,R3,A
        RLC NOV A,R4
        RLC NOV A,R4,A
        RLC NOV A,R5
        RLC NOV A,R5,A
        RET

RESTORE: CLR C       ; DECREMENT EXP, SHIFT LEFT UNTIL CARRY FILED
        CALL EXPNEC
        CALL SHIFTL
        JAC LOOP
JFRC ZERO
CLR C
CALL SHIFTR
CALL EXPACD
JMP STORE
CALL SHIFTR
CALL EXPACD
CALL RC#24
MOV A,R6
MOV A,R0,A
DEC R0
MOV A,R5
MOV A,R0,A
DEC R0
MOV A,R4
MOV A,R0,A
DEC R0
MOV A,R3
MOV A,R0,A

LCCF: STORE:         ; FCR - NUMBER, SHIFT 1 RIGHT INTO MSB1 CF NSB
        ; FCR + NUMBER; CLR CARRY AND SHIFT ZEFC RIGHT INTO
        ; MSB AND ACC EXPONENT
        ; UNDERSTOOD: MSB OF ANSWER IN ORIGINAL POSITION X
        ; NEW IN STORAGE CONVENTION
        ; STORE:           ; STORE ANSWER IN ORIGINAL POSITION X
        ; SHIFT 1 RIGHT INTO MSB1 CF NSB
        ; STORE ANSWER IN ORIGINAL POSITION X
        ; NEW IN STORAGE CONVENTION

```


XCH $\partial R0, A$
DCH $R0, A$ LSHF1

RET

RSHF1:
CLR C #01
 $\partial O V R0, A$

XCH $\partial R0, A$
RRC $\partial R0, A$
XCH $\partial R0, A$

XINC $R0, A$ RSF1
XJMP RSF2

XINC $R0, A$ R0, A

CPL A

RSHF2:
FTCH1:

FTCH2:
FTCH3:

LPGT4:
UGT41:

LGGT4:
LGT41:

LGT42:
LGT41:

XCH $\partial R0, A$ ADD A #33

JBB7 A


```

ADD A,#3C
CPL A
CPL GT42
ADD A,#03
CPL A
XCH RO,A
RET
MOV A,#05
CALL GT77
INC A
JMP LCT72
NCV A:#04
CALL GT77
DEC A
JNZ LCT71
RET
XCH RC,A
CPL A
J87 G171
ACD A:#30
J83 G172
ADD A,#03
CPL A
XCH RO,A
XCH RO,A
RET
MOV RO,#18
CALL RSHFT
DJNZ RO,IEIN2
RET
CALL LGT7
JMP IBIN1
NCV RO,#19
CALL UPGT4
DJNZ RO,FEIN2
RET
CALL LSHFT
JMP FBIN1
MOV RO,#18
CALL LSHF1
DJNZ RO,IECO2
RET
CALL LOGT4

```

THIS ROUTINE CONVERTS INTEGER BCD TO FRACTIONAL BINARY
;INTEGER BINARY

THIS ROUTINE CONVERTS FRACTIONAL BCD TO FRACTIONAL BINARY
;FRACTIONAL BCD


```

FBCE:    JMP 1BCD1 ;FRACTIONAL BINARY TO FRACTIONAL BCD
        CALL RUPGT1
        DJNZ RO,FBCE02
        RET

FBCE2:   CALL RSHTFT
        JMP FBCE01
        NCV RO,#4C
        CALL LSHIFT
        JC BFP2
        CJNZ RO,BFP1
        JNP ZERCF
        CALL A,#2A
        NCV A,RO
        XCH A,#5E
        ADD A,RO,A
        MOV RO,A
        DEC R0
        MOV A,R1
        NCV A,RO,A
        DEC R0
        MOV A,R2
        NCV A,RO,A
        RET RC,#2C

ZERC:    CLR A
        NCV A,RO,A
        JMF BFP3
        MOV RO,#32
        NCV A,#04
        NCV R1,A
        CALL FTCF2
        MOV A,@RC
        MOV RO,A
        RET RE1

LDHXF:  LDH X
        CALL RSHTFT
        CALL RSHTFT
        CALL RSHTFT
        CALL RSHTFT
        MOV A,RO
        RR A

LDHX1:  JBO RE1
        CALL RSHTFT
        CALL RSHTFT
        CALL RSHTFT
        CALL RSHTFT
        MOV A,RO

CONVER: CALL LDHXL
        CALL LCFX
        CALL IBIN
        MOV RO,#27
        NCV R1,#23
        CALL FTCI1
        CALL LCFX
        JMP LDHXL
        CALL LCFX
        CALL IBIN
        MOV RO,#27
        NCV R1,#23
        CALL FTCI1
        CALL LCFX
        EXP MSB LSB
        ;THIS ROUTINE TAKES BCD NUMBER IN FLEX BUFFER,
        ;CONVERTS IT TO BINARY PLACES IT IN STORAGE,
        ;;2A29 ;EXP LSB

```



```
MOV RO, #04  
CLR A  
CALL FBIN  
JMP CCNT  
ENC
```

ENC OF PROGRAM

LIST OF REFERENCES

- . A-7E Naval Air Training Operational Procedures and Standardization Manual, NAVAIR 01-45AEE-1, 15 March 1975.
- . Siegel, W.M., "Computerization of Tactical Aircraft Performance Data for Fleet Application", M.S. Thesis, Naval Postgraduate School, Monterey CA, June 1978.
- . Cuthbert, R.D., Dallas TX and Koger, G.L., Monterey CA, telephone conversation of 5 February 1978.
- . Hewlett Packard 9830A Calculator Instruction Manual, Hewlett Packard, 1972.
- . Personal Programming, Texas Instruments Incorporated, 1977.
- . Prompt-48 Microcomputer User's Manual, INTEL Corporation, 1976.
- . MCS-48 Microcomputer User's Manual, INTEL Corporation, 1976.
- . "MM57109 MOS/LSI Number Oriented Microprocessor", National Semiconductor Corporation, March 1977.
- . Tactical Control Computer TC-2A/76 Description and Programming Manual for Computer 6870500, Computer Product Engineering, August 1976.
- . Gerald, C.F., Applied Numerical Analysis, p. 284-290, Addison-Wesley, 1973.
- . Wylie, C.R., Advanced Engineering Mathematics, 4th Edition, p. 153-170, McGraw Hill, 1975.

INITIAL DISTRIBUTION LIST

No. Copies

1.	Defense Documentation Center Cameron Station Alexandria VA 22314	2
2.	Library, Code 0142 Naval Postgraduate School Monterey CA 93940	2
3.	Department Chairman, Code 67 Department of Aeronautics Naval Postgraduate School Monterey CA 93940	1
4.	Professor R. Panholzer, Code 62Pz Department of Electrical Engineering Naval Postgraduate School Monterey CA 93940	1
5.	Professor D.M. Layton, Code 67Ln Department of Aeronautics Naval Postgraduate School Monterey CA 93940	1
6.	Director of Aviation Safety Programs, Code 034 Naval Postgraduate School Monterey CA 93940	1
7.	LCDR W.M. Siegel, Code 35 COMLATWINGPAC NAS Lemoore CA 93245	1
8.	LT G.L. Koger 435 Burlwood Drive Lemoore CA 93245	1
9.	CDR L. Chrans, Code 3105A A-7 Program Office Naval Weapons Center NAF China Lake CA 93555	1

Thesis
K735
c.1

Koger

278038

The development and
implementation of al-
gorithms for an A-7E
performance calculator.

9 MAY 80
SEARCHED
22 JAN 88

27023
27661
30220

Thesis
K735
c.1

Koger

278038

The development and
implementation of al-
gorithms for an A-7E
performance calculator.

thesK735

The development and implementation of al

3 2768 002 11697 2

DUDLEY KNOX LIBRARY