Degree Sets: Realizability and Extension Problems

Prasun Kumar CS11S005

Advisor: Jayalal Sarma M.N.

Department of Computer Science and Engineering Indian Institute of Technology, Madras

April 29, 2013

Talk Plan

- Degree Set Basics
- Extension Problem for Trees
- Extension Problems for Undirected Graphs
- Tree Realizability under Multiplicity Constraints
- Degree Set Variants for Directed Graphs
- Asymmetric Directed Graph Realization of Degree Set
- Directed Tree Realization of Degree Set
- Conclusion and Future Work

For this graph
$$S = \{2, 3\}$$

For this graph
$$S = \{2,3\}$$

$$D = (3,3,2,2)$$

Let G(V, E) be a graph then degree set of G is $S = \{deg(v): v \in V\}$

For this graph
$$S = \{2,3\}$$

$$D = (3,3,2,2)$$

• $\underline{Convention}$: elements in S are written in increasing order.

For this graph
$$S = \{2,3\}$$

$$D = (3,3,2,2)$$

- *Convention* : elements in *S* are written in increasing order.
- *S* is *realizable* if there is a graph respecting *S*.

For this graph
$$S = \{2,3\}$$

$$D = (3,3,2,2)$$

- <u>Convention</u>: elements in S are written in increasing order.
- S is *realizable* if there is a graph respecting S.
- Interested in Simple graph realizations only.

For a given set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$, there arise two questions of interest -

For a given set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$, there arise two questions of interest -

• Is S realizable?

For a given set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$, there arise two questions of interest -

- Is S realizable?
- What is the minimum order possible if S is realizable?

For a given set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$, there arise two questions of interest -

- Is S realizable?
- What is the minimum order possible if *S* is realizable?

If S is realizable then

• $\Gamma(S)$: family of simple graphs realizing S

For a given set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$, there arise two questions of interest -

- Is S realizable?
- What is the minimum order possible if *S* is realizable?

If S is realizable then

- $\Gamma(S)$: family of simple graphs realizing S
- $\mu(S)$: minimum order of a graph $\in \Gamma(S)$

For a given set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$, there arise two questions of interest -

- Is S realizable?
- What is the minimum order possible if *S* is realizable?

If S is realizable then

- $\Gamma(S)$: family of simple graphs realizing S
- ullet $\mu(S)$: minimum order of a graph $\in \Gamma(S)$

$$\mu(S) \geq a_n + 1$$

For a given set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$, there arise two questions of interest -

- Is S realizable?
- What is the minimum order possible if S is realizable?

If S is realizable then

- $\Gamma(S)$: family of simple graphs realizing S
- ullet $\mu(S)$: minimum order of a graph $\in \Gamma(S)$

$$\mu(S) \geq a_n + 1$$

When S - realized by a tree then we use $\mu_T(S)$ instead of $\mu(S)$.

eg.
$$S = \{1, 2, 3\}$$

eg.
$$S = \{1, 2, 3\}$$

eg.
$$S = \{1, 2, 3\}$$

$$G: \mathbb{K}_4 \cup \mathbb{K}_3 \cup \mathbb{K}_2$$

$$|V| = 9$$

eg.
$$S = \{1, 2, 3\}$$

$$G: \mathbb{K}_4 \cup \mathbb{K}_3 \cup \mathbb{K}_2$$

$$|V| = 9$$

$$\mu(S) = 4$$

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is always realizable and $\mu(S) = a_n + 1$.

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is always realizable and $\mu(S) = a_n + 1$.

Proof: by induction on |S|(=n)

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is always realizable and $\mu(S) = a_n + 1$.

Proof: by induction on |S|(=n)

Another Computational Question that we are asking

Extension Problem

Is there a graph $G'(V', E') \in \Gamma(S)$ such that |V'| = t??

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is always realizable and $\mu(S) = a_n + 1$.

 \underline{Proof} : by induction on |S|(=n)

Another Computational Question that we are asking

Extension Problem

Is there a graph $G'(V', E') \in \Gamma(S)$ such that |V'| = t??

• $t < \mu(S)$ - no realization exists

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is always realizable and $\mu(S) = a_n + 1$.

Proof: by induction on |S|(=n)

Another Computational Question that we are asking

Extension Problem

Is there a graph $G'(V', E') \in \Gamma(S)$ such that |V'| = t??

- ullet $t<\mu(S)$ no realization exists
- $t \ge \mu(S)$ then $t = \mu(S) + r$ where $r \in \mathbb{Z} \bigcup \{0\}$

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is realized by a tree if and only if $a_1 = 1$ and $\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is realized by a tree if and only if $a_1 = 1$ and $\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$

Minimum order tree construction

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is realized by a tree if and only if $a_1 = 1$ and $\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$

Minimum order tree construction

Let m_i be the multiplicity of $a_i \in S$ then in this tree

• $m_1 >> 1$ and $m_i = 1, \forall 2 \leq i \leq n$.

Theorem - Kapoor, Polimeni, Wall(1977)

Any finite set $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+$ is realized by a tree if and only if $a_1 = 1$ and $\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$

Minimum order tree construction

Let m_i be the *multiplicity* of $a_i \in S$ then in this tree

• $m_1 >> 1$ and $m_i = 1, \forall 2 \le i \le n$.

Tree Extension Problem(TEP)

Given a degree set S with $a_1 = 1$, and an integer r, check if there is a tree $T'(V', E') \in \Gamma(S)$ such that $|V'| = \mu_T(S) + r$.

Characterization

If the degree set $S = \{1 = a_1 < a_2 < \cdots < a_n\}$ is realized by a tree T(V, E) then there is another tree realization T' = (V', E') where $|V'| = |V| + r, r \in \mathbb{Z}^+$, if and only if

$$r = k_2(a_2 - 1) + k_3(a_3 - 1) + \dots + k_n(a_n - 1)$$
 $\forall i, k_i \in \mathbb{Z}^+ \cup \{0\}$

Characterization

If the degree set $S = \{1 = a_1 < a_2 < \dots < a_n\}$ is realized by a tree T(V, E) then there is another tree realization T' = (V', E') where $|V'| = |V| + r, r \in \mathbb{Z}^+$, if and only if $r = k_2(a_2 - 1) + k_3(a_3 - 1) + \dots + k_n(a_n - 1)$ $\forall i, k_i \in \mathbb{Z}^+ \cup \{0\}$

Result due to Gupta, Joshi, Tripathi (2004).

Characterization

If the degree set $S = \{1 = a_1 < a_2 < \dots < a_n\}$ is realized by a tree T(V, E) then there is another tree realization T' = (V', E') where $|V'| = |V| + r, r \in \mathbb{Z}^+$, if and only if $r = k_2(a_2 - 1) + k_3(a_3 - 1) + \dots + k_n(a_n - 1)$ $\forall i, k_i \in \mathbb{Z}^+ \cup \{0\}$

Result due to Gupta, Joshi, Tripathi (2004).

<u>Proof</u> (Aliter): (\Rightarrow) W.l.o.g. assume T(V, E) is a minimum order tree realizing S and let out of r vertices, k_i vertices are there with degree $a_i \in S$.

Hence

$$(1^{\sum_{i=1}^{n} a_i - 2n + 3 + k_1}, a_2^{1+k_2}, \dots, a_i^{1+k_i}, \dots, a_n^{1+k_n})$$

is the degree sequence of T' and $r = \sum_{i=1}^{n} k_i$.

Hence

$$(1^{\sum_{i=1}^{n} a_i - 2n + 3 + k_1}, a_2^{1+k_2}, \dots, a_i^{1+k_i}, \dots, a_n^{1+k_n})$$

is the degree sequence of T' and $r = \sum_{i=1}^{n} k_i$.

<u>lemma</u>(AM96): For the sequence $d = (d_1 \ge d_2 \ge \cdots \ge d_n)$, if $\sum_{i=1}^n d_i = 2(n-1)$ then the number of pendant vertices in any tree realization of d is $\sum_{i=1}^k (d_i - 2) + 2$ where $k = \max\{i | d_i \ge 3\}$

Hence

$$(1^{\sum_{i=1}^{n} a_i - 2n + 3 + k_1}, a_2^{1+k_2}, \dots, a_i^{1+k_i}, \dots, a_n^{1+k_n})$$

is the degree sequence of T' and $r = \sum_{i=1}^{n} k_i$.

<u>lemma</u>(AM96): For the sequence $d=(d_1 \geq d_2 \geq \cdots \geq d_n)$, if $\sum_{i=1}^n d_i = 2(n-1)$ then the number of pendant vertices in any tree realization of d is $\sum_{i=1}^k (d_i-2)+2$ where $k=\max\{i|d_i\geq 3\}$

Since $a_2 \ge 2$

•
$$\sum_{i=1}^{n} a_i - 2n + 3 + k_1 = \sum_{i=2}^{n} (k_i + 1)(a_i - 2)$$

Hence

$$(1^{\sum_{i=1}^{n} a_i - 2n + 3 + k_1}, a_2^{1+k_2}, \dots, a_i^{1+k_i}, \dots, a_n^{1+k_n})$$

is the degree sequence of T' and $r = \sum_{i=1}^{n} k_i$.

<u>lemma</u>(AM96): For the sequence $d = (d_1 \ge d_2 \ge \cdots \ge d_n)$, if $\sum_{i=1}^n d_i = 2(n-1)$ then the number of pendant vertices in any tree realization of d is $\sum_{i=1}^k (d_i - 2) + 2$ where $k = \max\{i | d_i \ge 3\}$

Since $a_2 \ge 2$

•
$$\sum_{i=1}^{n} a_i - 2n + 3 + k_1 = \sum_{i=2}^{n} (k_i + 1)(a_i - 2)$$

•
$$r = \sum_{i=1}^{n} k_i$$

Solving these we get $r = \sum_{i=2}^{n} k_i(a_i - 1)$.

TREE EXTENSION PROBLEM(TEP) is equivalent to INTEGER KNAPSACK PROBLEM(IKP).

TREE EXTENSION PROBLEM(TEP) is equivalent to INTEGER KNAPSACK PROBLEM(IKP).

<u>IKP</u>: Given non-negative integers c_1, \ldots, c_k , and a value d. Does there exist non-negative integers d_1, d_2, \ldots, d_k such that $\sum_i c_i d_i = d$.

TREE EXTENSION PROBLEM(TEP) is equivalent to INTEGER KNAPSACK PROBLEM(IKP).

<u>IKP</u>: Given non-negative integers c_1, \ldots, c_k , and a value d. Does there exist non-negative integers d_1, d_2, \ldots, d_k such that $\sum_i c_i d_i = d$.

Given a degree set S, corresponding IKP instance

•
$$k = |S| - 1$$
, $c_i = a_{i+1} - 1$ for all $1 \le i \le k$, and $d = r$.

TREE EXTENSION PROBLEM(TEP) is equivalent to INTEGER KNAPSACK PROBLEM(IKP).

 $\underline{\mathsf{IKP}}$: Given non-negative integers c_1,\ldots,c_k , and a value d. Does there exist non-negative integers d_1,d_2,\ldots,d_k such that $\sum_i c_i d_i = d$.

Given a degree set S, corresponding IKP instance

•
$$k = |S| - 1$$
, $c_i = a_{i+1} - 1$ for all $1 \le i \le k$, and $d = r$.

Given non-negative integers c_1, \ldots, c_k , and a value d (an IKP instance), consider the degree set

•
$$S = \{1, c_1 + 1, \dots, c_k + 1\}$$
 and $r = d$.

TREE EXTENSION PROBLEM(TEP) is equivalent to INTEGER KNAPSACK PROBLEM(IKP).

 $\underline{\mathsf{IKP}}$: Given non-negative integers c_1,\ldots,c_k , and a value d. Does there exist non-negative integers d_1,d_2,\ldots,d_k such that $\sum_i c_i d_i = d$.

Given a degree set S, corresponding IKP instance

•
$$k = |S| - 1$$
, $c_i = a_{i+1} - 1$ for all $1 \le i \le k$, and $d = r$.

Given non-negative integers c_1, \ldots, c_k , and a value d (an IKP instance), consider the degree set

•
$$S = \{1, c_1 + 1, \dots, c_k + 1\}$$
 and $r = d$.

(TEP is NP-Complete.)

Unary Tree Extension Problem(UTEP)

Given a tree T on ℓ vertices and a string 1^r , test if there is another tree T' having exactly $\ell + r$ vertices and the degree set same as that of T.

Unary Tree Extension Problem(UTEP)

Given a tree T on ℓ vertices and a string 1^r , test if there is another tree T' having exactly $\ell + r$ vertices and the degree set same as that of T.

UTEP can be solved in log-space.

Unary Tree Extension Problem(UTEP)

Given a tree T on ℓ vertices and a string 1^r , test if there is another tree T' having exactly $\ell + r$ vertices and the degree set same as that of T.

UTEP can be solved in log-space.

<u>Proof:</u> By reducing the problem to Unary Subset Sum Problem which can be solved in log-space (Ref- Kane2010).

Unary Tree Extension Problem(UTEP)

Given a tree T on ℓ vertices and a string 1^r , test if there is another tree T' having exactly $\ell + r$ vertices and the degree set same as that of T.

UTEP can be solved in log-space.

<u>Proof:</u> By reducing the problem to Unary Subset Sum Problem which can be solved in log-space (Ref- Kane2010).

UNARY SUBSET SUM PROBLEM

Given a multiset A of m integers b_1, b_2, \ldots, b_m and a value c (all inputs in unary), test if there is a subset A' of these integers such that $\sum_{i \in A'} b_i = c$

<u>Reduction</u>: Given a tree T and r in unary

• write down the set $A = \bigcup_{i=2,j=1}^{i=n,j=t_i} \{(a_i-1)j\}$ where $t_i = \lceil \frac{r}{a_i-1} \rceil$ and r in unary, choose c=r.

<u>Reduction</u>: Given a tree T and r in unary

• write down the set $A = \bigcup_{i=2,j=1}^{i=n,j=t_i} \{(a_i-1)j\}$ where $t_i = \lceil \frac{r}{a_i-1} \rceil$ and r in unary, choose c=r.

$$r = k_2(a_2 - 1) + \cdots + k_i(a_i - 1) + \cdots + k_n(a_n - 1), \ k_i \le \lceil \frac{r}{a_i - 1} \rceil$$

<u>Reduction</u>: Given a tree T and r in unary

• write down the set $A = \bigcup_{i=2,j=1}^{i=n,j=t_i} \{(a_i-1)j\}$ where $t_i = \lceil \frac{r}{a_i-1} \rceil$ and r in unary, choose c=r.

$$r = k_2(a_2 - 1) + \dots + k_i(a_i - 1) + \dots + k_n(a_n - 1), \ k_i \le \lceil \frac{r}{a_i - 1} \rceil$$

If \exists $A' \subseteq A$ that sums up to r, then corresponding choice of the j's satisfies equation $r = \sum_{i=2}^{n} k_i(a_i - 1)$ and for any solution $k_i \le t_i$ for all i.

<u>Reduction</u>: Given a tree T and r in unary

• write down the set $A = \bigcup_{i=2,j=1}^{i=n,j=t_i} \{(a_i-1)j\}$ where $t_i = \lceil \frac{r}{a_i-1} \rceil$ and r in unary, choose c=r.

$$r = k_2(a_2 - 1) + \cdots + k_i(a_i - 1) + \cdots + k_n(a_n - 1), \ k_i \le \lceil \frac{r}{a_i - 1} \rceil$$

If $\exists A' \subseteq A$ that sums up to r, then corresponding choice of the j's satisfies equation $r = \sum_{i=2}^{n} k_i(a_i - 1)$ and for any solution $k_i \le t_i$ for all i.

Hence the corresponding terms $k_i(a_i-1)$ will appear in the set A as well. Choosing these terms in A' ensures $\sum_{i\in A'}b_i=r=c$.

Parametrizations of TEP (r given in unary)

Two natural parametrizations of TEP (when r is given in unary)-

Parametrizations of $\overline{\text{TEP}}$ (r given in unary)

Two natural parametrizations of TEP (when r is given in unary)-

- with |S| as the parameter
 - TEP \leq_P Variety Subset Sum Problem
 - Ref- Fellows, Gaspers, Rosamond(2010)

Parametrizations of TEP (r given in unary)

Two natural parametrizations of TEP (when r is given in unary)-

- with |S| as the parameter
 - TEP ≤_P Variety Subset Sum Problem
 - Ref- Fellows, Gaspers, Rosamond(2010)
- with r as parameter
 - TEP \leq_P Maximum Knapsack Problem
 - Ref- Fernau(2005)

Is there a graph $G'(V', E') \in \Gamma(S)$ such that $|V'| = \mu(S) + r$?

Is there a graph $G'(V', E') \in \Gamma(S)$ such that $|V'| = \mu(S) + r$?

Since |V'| is given \Rightarrow Degree sequence approach might be useful

Is there a graph $G'(V', E') \in \Gamma(S)$ such that $|V'| = \mu(S) + r$?

Since |V'| is given \Rightarrow Degree sequence approach might be useful

Let D be the degree sequence of a graph G(V, E) realizing S, $|V| = \mu(S)$.

Is there a graph $G'(V',E')\in \Gamma(S)$ such that $|V'|=\mu(S)+r$?

Since |V'| is given \Rightarrow Degree sequence approach might be useful Let D be the degree sequence of a graph G(V, E) realizing S, $|V| = \mu(S)$.

 $\mathbf{D'} \longleftarrow (D, a_{i_1}, a_{i_1}, a_{i_2}, \cdots, a_{i_r})$ such that $\forall q \in [r], a_{i_q} \in S$

Is there a graph $G'(V',E')\in \Gamma(S)$ such that $|V'|=\mu(S)+r$?

Since |V'| is given \Rightarrow Degree sequence approach might be useful

Let D be the degree sequence of a graph G(V, E) realizing S, $|V| = \mu(S)$.

$$(D') \leftarrow ((D), a_{i_1}, a_{i_1}, a_{i_2}, \cdots, a_{i_r})$$
 such that $\forall q \in [r], a_{i_q} \in S$

Erdös - Gallai Theorem (1960)

The positive integer sequence $d=(d_1\geq d_2\geq \cdots \geq d_i\geq \cdots \geq d_n)$, where $d_1\leq n-1$, is realized by a simple graph if

- $\sum_{i=1}^{n} d_i$ is even, and
- $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} \min\{d_i, k\}$ for $1 \le k \le n$

Erdös - Gallai Theorem (1960)

The positive integer sequence $d=(d_1\geq d_2\geq \cdots \geq d_i\geq \cdots \geq d_n)$, where $d_1\leq n-1$, is realized by a simple graph if

- $\sum_{i=1}^{n} d_i$ is even, and
- $\sum_{i=1}^{k} d_{i} \leq k(k-1) + \sum_{i=k+1}^{n} min\{d_{i}, k\}$ for $1 \leq k \leq n$

ZZ92 : suffices to check the inequalities for $1 \le k \le m$ where $m = \max\{i | d_i \ge i, d_i \in d\}$.

Erdös - Gallai Theorem (1960)

The positive integer sequence $d=(d_1\geq d_2\geq \cdots \geq d_i\geq \cdots \geq d_n)$, where $d_1\leq n-1$, is realized by a simple graph if

- $\sum_{i=1}^{n} d_i$ is even, and
- $\sum_{i=1}^{k} d_{i} \leq k(k-1) + \sum_{i=k+1}^{n} min\{d_{i}, k\}$ for $1 \leq k \leq n$

ZZ92 : suffices to check the inequalities for $1 \le k \le m$ where $m = \max\{i | d_i > i, d_i \in d\}$.

indices:
$$\underline{1}$$
 $\underline{2}$ \cdots \underline{m} $\underline{m+1}$ \cdots \underline{n} $d_{j} \geq j$ $d_{j} < j$

Erdös - Gallai Theorem (1960)

The positive integer sequence $d=(d_1\geq d_2\geq \cdots \geq d_i\geq \cdots \geq d_n)$, where $d_1\leq n-1$, is realized by a simple graph if

- $\sum_{i=1}^{n} d_i$ is even, and
- $\sum_{i=1}^{k} d_i \le k(k-1) + \sum_{i=k+1}^{n} min\{d_i, k\}$ for $1 \le k \le n$

ZZ92 : suffices to check the inequalities for $1 \le k \le m$ where $m = \max\{i | d_i > i, d_i \in d\}$.

indices:
$$\underline{1}$$
 $\underline{2}$ \cdots \underline{m} $\underline{m+1}$ \cdots \underline{n} $d_{j} \geq j$ $d_{j} < j$

 $\underline{\mathsf{ldea}}$: (can add $\underline{\mathsf{d}_{\mathsf{j'}}} < \underline{\mathsf{j'}}$ to get another graphic sequence $\underline{\mathsf{d'}}$)

- G(V, E) realizes $S = \{a_1 < a_2 < \cdots < a_n\}$, where $|V| = a_n + 1$.
- Multiplicity (m_i) of different $a_i (\in S)$ s in G are as follows

- G(V, E) realizes $S = \{a_1 < a_2 < \cdots < a_n\}$, where $|V| = a_n + 1$.
- Multiplicity (m_i) of different $a_i (\in S)$ s in G are as follows
 - for $i \neq n$, $\lceil \frac{n}{2} \rceil$: $m_i = a_{n-i+1} a_{n-i}$
 - for $i = n : m_n = a_1$
 - for $i = \lceil \frac{n}{2} \rceil$: $m_{\lceil \frac{n}{2} \rceil} = a_{n-\lceil \frac{n}{2} \rceil+1} a_{n-\lceil \frac{n}{2} \rceil} + 1$

- G(V, E) realizes $S = \{a_1 < a_2 < \cdots < a_n\}$, where $|V| = a_n + 1$.
- Multiplicity (m_i) of different $a_i (\in S)$ s in G are as follows
 - for $i \neq n$, $\lceil \frac{n}{2} \rceil$: $m_i = a_{n-i+1} a_{n-i}$
 - for $i = n : m_n = a_1$
 - for $i = \lceil \frac{n}{2} \rceil$: $m_{\lceil \frac{n}{2} \rceil} = a_{n-\lceil \frac{n}{2} \rceil+1} a_{n-\lceil \frac{n}{2} \rceil} + 1$

The corresponding degree sequence of G will be

$$\mathbf{D} = (d_1 \geq d_2 \geq \cdots \geq d_j \geq \cdots \geq d_{a_n+1})$$
 where

$$\mathbf{d_j} = \left\{ \begin{array}{ll} a_n & \text{if } 1 \leq j \leq a_1 \\ a_{n-i} & \text{if } 1+a_i \leq j \leq a_{i+1}, \text{ for } 1 \leq i \leq \lfloor \frac{n}{2} \rfloor - 1 \\ a_{\lceil \frac{n}{2} \rceil} & \text{if } 1+a_{\lfloor \frac{n}{2} \rfloor} \leq j \leq 1+a_{\lfloor \frac{n}{2} \rfloor + 1} \\ a_{n-i} & \text{if } 2+a_i \leq j \leq 1+a_{i+1}, \text{ for } \lfloor \frac{n}{2} \rfloor + 1 \leq i \leq n-1 \end{array} \right.$$

Theorem

For every $r \in \mathbb{Z}^+$, there exists an undirected simple graph with $\mu(S) + r$ vertices having degree set $S = \{a_1 < a_2 < \cdots < a_n\}$ except the case when $a_1 = 1$, r is odd and only a_n is even.

Theorem

For every $r \in \mathbb{Z}^+$, there exists an undirected simple graph with $\mu(S) + r$ vertices having degree set $S = \{a_1 < a_2 < \dots < a_n\}$ except the case when $a_1 = 1$, r is odd and only a_n is even.

<u>Proof</u> (informal): Sequence D for G(V, E) realizing S is

$$D = (a_n^{a_1} > a_{n-1}^{a_2-a_1} > \dots > a_i^{a_{n-i+1}-a_{n-i}} > \dots > a_{\lceil \frac{n}{2} \rceil}^{a_{1+\lfloor \frac{n}{2} \rfloor}-a_{\lfloor \frac{n}{2} \rfloor}+1} > \dots > a_j^{a_{n-j+1}-a_{n-j}} > \dots > a_1^{a_n-a_{n-1}})$$

Theorem

For every $r \in \mathbb{Z}^+$, there exists an undirected simple graph with $\mu(S) + r$ vertices having degree set $S = \{a_1 < a_2 < \cdots < a_n\}$ except the case when $a_1 = 1$, r is odd and only a_n is even.

 \underline{Proof} (informal): Sequence D for G(V, E) realizing S is

$$D = (a_n^{a_1} > a_{n-1}^{a_2-a_1} > \dots > a_i^{a_{n-i+1}-a_{n-i}} > \dots > a_{\lceil \frac{n}{2} \rceil}^{a_{1+\lfloor \frac{n}{2} \rfloor}-a_{\lfloor \frac{n}{2} \rfloor}+1} > \dots > a_j^{a_{n-j+1}-a_{n-j}} > \dots > a_1^{a_n-a_{n-1}})$$

$$\frac{n \text{ is even}}{n}: D = (a_n \ge \cdots \ge a_{\lceil \frac{n}{2} \rceil + 1} \ge \cdots \ge a_{\lceil \frac{n}{2} \rceil + 1} \ge a_{\lceil \frac{n}{2} \rceil} \ge \cdots \ge a_1)$$

$$\uparrow \qquad \uparrow$$

$$d_{a_{\lfloor \frac{n}{2} \rfloor}} \qquad d_{a_{\lfloor \frac{n}{2} \rfloor + 1}}$$
Here $m = a_{\lceil \frac{n}{2} \rceil} = a_{\lfloor \frac{n}{2} \rfloor}$

Theorem

For every $r \in \mathbb{Z}^+$, there exists an undirected simple graph with $\mu(S) + r$ vertices having degree set $S = \{a_1 < a_2 < \cdots < a_n\}$ except the case when $a_1 = 1$, r is odd and only a_n is even.

 \underline{Proof} (informal): Sequence D for G(V, E) realizing S is

$$D = (a_n^{a_1} > a_{n-1}^{a_2-a_1} > \dots > a_i^{a_{n-i+1}-a_{n-i}} > \dots > a_{\lceil \frac{n}{2} \rceil}^{a_{1+\lfloor \frac{n}{2} \rfloor}-a_{\lfloor \frac{n}{2} \rfloor}+1} > \dots > a_j^{a_{n-j+1}-a_{n-j}} > \dots > a_1^{a_n-a_{n-1}})$$

$$\frac{n \text{ is odd}}{n}: D = (a_n \ge \cdots \ge a_{\lceil \frac{n}{2} \rceil} \ge \cdots \ge a_{\lceil \frac{n}{2} \rceil} \ge a_{\lceil \frac{n}{2} \rceil} \ge \cdots \ge a_1)$$

$$\downarrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$
Here $m = a_{\lceil \frac{n}{2} \rceil} = a_{\lfloor \frac{n}{2} \rfloor + 1}$

$$d_{a_{\lfloor \frac{n}{2} \rfloor + 1}} d_{a_{\lfloor \frac{n}{2} \rfloor + 1} + 1}$$

Consider the following exhaustive cases(except one)

Consider the following exhaustive cases(except one)

• At least one of r OR a_1 is even : $D' = (D, a_1^r)$

Consider the following exhaustive cases(except one)

- At least one of r OR a_1 is even : $D' = (D, a_1^r)$
 - $d_j(\in D) = a_1 \Rightarrow j > m = a_{\lceil \frac{n}{2} \rceil}$. Hence D' is graphic.

Consider the following exhaustive cases(except one)

- At least one of r OR a_1 is even : $D' = (D, a_1^r)$
 - $d_j(\in D) = a_1 \Rightarrow j > m = a_{\lceil \frac{n}{2} \rceil}$. Hence D' is graphic.
- Both r AND a_1 is odd : Let $a_k = min\{a_i \in S | a_i = 2I\}$

- At least one of r OR a_1 is even : $D' = (D, a_1^r)$
 - $d_j(\in D) = a_1 \Rightarrow j > m = a_{\lceil \frac{n}{2} \rceil}$. Hence D' is graphic.
- Both r AND a_1 is odd : Let $a_k = min\{a_i \in S | a_i = 2I\}$
 - $1 \leq k \leq \lceil \frac{n}{2} \rceil$: $D' = (D, a_k, a_1^{r-1})$

- At least one of r OR a_1 is even : $D' = (D, a_1^r)$
 - $d_j(\in D) = a_1 \Rightarrow j > m = a_{\lceil \frac{n}{2} \rceil}$. Hence D' is graphic.
- Both r AND a_1 is odd : Let $a_k = min\{a_i \in S | a_i = 2I\}$
 - $1 \leq k \leq \lceil \frac{n}{2} \rceil$: $D' = (D, a_k, a_1^{r-1})$
 - $d_j(\in D) = a_k \Rightarrow j \ge 1 + a_{\lfloor \frac{n}{2} \rfloor + 1} \Rightarrow j > m$. Hence D' is graphic.

- At least one of r OR a_1 is even : $D' = (D, a_1^r)$
 - $d_j(\in D) = a_1 \Rightarrow j > m = a_{\lceil \frac{n}{2} \rceil}$. Hence D' is graphic.
- Both r AND a_1 is odd : Let $a_k = min\{a_i \in S | a_i = 2I\}$
 - $1 \leq k \leq \lceil \frac{n}{2} \rceil$: $D' = (D, a_k, a_1^{r-1})$
 - $d_j(\in D) = a_k \Rightarrow j \ge 1 + a_{\lfloor \frac{n}{2} \rfloor + 1} \Rightarrow j > m$. Hence D' is graphic.
 - $k > \lceil \frac{n}{2} \rceil$: do not add a_k , instead add two $a_{\lceil \frac{n}{2} \rceil}$ and then delete a_k (first occurrence) from D to get D'.

- At least one of r OR a_1 is even : $D' = (D, a_1^r)$
 - $d_j(\in D) = a_1 \Rightarrow j > m = a_{\lceil \frac{n}{2} \rceil}$. Hence D' is graphic.
- Both r AND a_1 is odd : Let $a_k = min\{a_i \in S | a_i = 2I\}$
 - $1 \le k \le \lceil \frac{n}{2} \rceil$: $D' = (D, a_k, a_1^{r-1})$
 - $d_j(\in D) = a_k \Rightarrow j \ge 1 + a_{\lfloor \frac{n}{2} \rfloor + 1} \Rightarrow j > m$. Hence D' is graphic.
 - $k > \lceil \frac{n}{2} \rceil$: do not add a_k , instead add two $a_{\lceil \frac{n}{2} \rceil}$ and then delete a_k (first occurrence) from D to get D'.
 - D' is graphic if: for $a_{n-k} + 1 \le t \le m (= a_{\lceil \frac{n}{2} \rceil})$,
 - $min\{d_{t+1},t\} \leq 2min\{a_{\lceil \frac{n}{2} \rceil},t\} + a_k d_{t+1}$

Consider the following exhaustive cases(except one)

- At least one of r OR a_1 is even : $D' = (D, a_1^r)$
 - $d_j(\in D) = a_1 \Rightarrow j > m = a_{\lceil \frac{n}{2} \rceil}$. Hence D' is graphic.
- Both r AND a_1 is odd : Let $a_k = min\{a_i \in S | a_i = 2I\}$
 - $1 \leq k \leq \lceil \frac{n}{2} \rceil$: $D' = (D, a_k, a_1^{r-1})$
 - $d_j(\in D) = a_k \Rightarrow j \ge 1 + a_{\lfloor \frac{n}{2} \rfloor + 1} \Rightarrow j > m$. Hence D' is graphic.
 - $k > \lceil \frac{n}{2} \rceil$: do not add a_k , instead add two $a_{\lceil \frac{n}{2} \rceil}$ and then delete a_k (first occurrence) from D to get D'.
 - D' is graphic if: for $a_{n-k} + 1 \le t \le m (= a_{\lceil \frac{n}{2} \rceil})$,

$$min\{d_{t+1},t\} \leq 2min\{a_{\lceil \frac{n}{2} \rceil},t\} + a_k - d_{t+1}$$

ullet condition always satisfied. Hence D' is graphic.

 $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+ \text{ is realized by a tree} \Leftrightarrow a_1 = 1.$

$$S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+ \text{ is realized by a tree} \Leftrightarrow a_1 = 1.$$

$$\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$$

 $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+ \text{ is realized by a tree} \Leftrightarrow a_1 = 1.$

$$\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$$

Minimum order tree construction

 $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+ \text{ is realized by a tree} \Leftrightarrow a_1 = 1.$

$$\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$$

Minimum order tree construction

Let m_i be the *multiplicity* of $a_i \in S$ then in this tree

• $m_1 >> 1$ and $m_i = 1, \forall 2 \leq i \leq n$.

 $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+ \text{ is realized by a tree} \Leftrightarrow a_1 = 1.$

$$\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$$

Minimum order tree construction

Let m_i be the *multiplicity* of $a_i \in S$ then in this tree

- $m_1 >> 1$ and $m_i = 1, \forall 2 \leq i \leq n$.
- degree distribution is highly skewed.

 $S = \{a_1 < a_2 < \ldots < a_n\}, a_i \in \mathbb{Z}^+ \text{ is realized by a tree } \Leftrightarrow a_1 = 1.$

$$\mu_T(S) = \sum_{i=1}^n (a_i - 1) + 2$$

Minimum order tree construction

Let m_i be the *multiplicity* of $a_i \in S$ then in this tree

- $m_1 >> 1$ and $m_i = 1, \forall 2 \le i \le n$.
- degree distribution is highly skewed.

Q. Can we have another tree realization with smaller no of pendant vertices?

Lemma

The minimum multiplicity of pendant vertices in any tree realization for the degree set $S = \{1 = a_1 < a_2 < \dots < a_n\}$ is $\sum_{i=1}^n a_i - 2n + 3$

Lemma

The minimum multiplicity of pendant vertices in any tree realization for the degree set $S = \{1 = a_1 < a_2 < \dots < a_n\}$ is $\sum_{i=1}^n a_i - 2n + 3$

<u>Proof</u>: Let m_i be the multiplicity of $a_i \in S$. Then, the corresponding degree sequence is $S = (1^{m_1}, a_2^{m_2}, \dots, a_n^{m_n})$.

Lemma

The minimum multiplicity of pendant vertices in any tree realization for the degree set $S = \{1 = a_1 < a_2 < \dots < a_n\}$ is $\sum_{i=1}^n a_i - 2n + 3$

<u>Proof</u>: Let m_i be the multiplicity of $a_i \in S$. Then, the corresponding degree sequence is $S = (1^{m_1}, a_2^{m_2}, \dots, a_n^{m_n})$.

Since $a_2 \ge 2$ hence using previous lemma(AM96)

Lemma

The minimum multiplicity of pendant vertices in any tree realization for the degree set $S = \{1 = a_1 < a_2 < \dots < a_n\}$ is $\sum_{i=1}^n a_i - 2n + 3$

<u>Proof</u>: Let m_i be the multiplicity of $a_i \in S$. Then, the corresponding degree sequence is $S = (1^{m_1}, a_2^{m_2}, \dots, a_n^{m_n})$.

Since $a_2 \ge 2$ hence using previous lemma(AM96)

$$m_1 = 2 + (a_2 - 2)m_2 + (a_3 - 2)m_3 + \cdots + (a_n - 2)m_n$$
 $\forall i, m_i \ge 1$

 m_1 will be minimum if $m_i = 1$ for each i = 2, 3, ..., n

Minimum order tree described earlier meets exactly this requirement.

So minimum value of

$$m_1 = 2 + (a_2 - 2) + (a_3 - 2) + \dots + (a_n - 2)$$

= $\sum_{i=1}^{n} a_i - 2n + 3$

Minimum order tree described earlier meets exactly this requirement.

So minimum value of

$$m_1 = 2 + (a_2 - 2) + (a_3 - 2) + \dots + (a_n - 2)$$

= $\sum_{i=1}^{n} a_i - 2n + 3$

This result can be generalized in case of *Degree Multiset*.

Degree Set Variants for Digraphs

In case of directed graphs, from degree set we mean

• indegree set or outdegree set or both

Degree Set Variants for Digraphs

In case of directed graphs, from degree set we mean

• indegree set or outdegree set or both

Depending on the variation we call the realization G(V, E) an

∨(OR) - Realization

if $\forall v \in V, d^+(v) \in S$ or $d^-(v) \in S$, and for each $a_i \in S$ there is a vertex $u \in V$ such that $d^+(u) = a_i$ or $d^-(u) = a_i$.

Degree Set Variants for Digraphs

In case of directed graphs, from degree set we mean

• indegree set or outdegree set or both

Depending on the variation we call the realization G(V, E) an

∨(OR) - Realization

if $\forall v \in V, d^+(v) \in S$ or $d^-(v) \in S$, and for each $a_i \in S$ there is a vertex $u \in V$ such that $d^+(u) = a_i$ or $d^-(u) = a_i$.

∧(AND) - Realization

if $\forall v \in V, d^+(v) \in S$ and $d^-(v) \in S$, and for each $a_i \in S$ there is a vertex v_p and $v_q \in V$ such that $d^+(v_p) = a_i$ and $d^-(v_q) = a_i$.

$$S = \{2, 3\} \checkmark$$

$$S = \{2, 3\} \checkmark$$

$$S = \{2, 3\} \times$$

$$S = \{2, 3\} \checkmark$$

$$S = \{2, 3\} \times$$

- V-realized
- not ∧-realized

$$S = \{2, 3\} \checkmark$$

$$S = \{2, 3\} \times$$

● not ∧-realized

- not ∨-realized
- not ∧-realized

$$S = \{2, 3\} \checkmark$$

$$S = \{1, 2\}$$

$$S = \{2, 3\} \times$$

- V-realized
 - V-realized
- not ∧-realized

- ∧-realized

- not ∨-realized
- not ∧-realized

A finite set $S = \{a_1 < a_2 < \dots < a_n\}$ of non-negative integers is always realizable by a directed graph with $a_n + 1$ vertices, under both, \land and \lor , notions of realizability.

A finite set $S = \{a_1 < a_2 < \dots < a_n\}$ of non-negative integers is always realizable by a directed graph with $a_n + 1$ vertices, under both, \land and \lor , notions of realizability.

<u>Proof</u>: Construct the undirected graph G(V, E) with $a_n + 1$ vertices for S, and then replace each undirected edge by two way symmetric edges.

A finite set $S = \{a_1 < a_2 < \dots < a_n\}$ of non-negative integers is always realizable by a directed graph with $a_n + 1$ vertices, under both, \land and \lor , notions of realizability.

<u>Proof</u>: Construct the undirected graph G(V, E) with $a_n + 1$ vertices for S, and then replace each undirected edge by two way symmetric edges.

ullet digraphs with a_n+1 vertices : symmetric, easy to construct

A finite set $S = \{a_1 < a_2 < \dots < a_n\}$ of non-negative integers is always realizable by a directed graph with $a_n + 1$ vertices, under both, \land and \lor , notions of realizability.

<u>Proof</u>: Construct the undirected graph G(V, E) with $a_n + 1$ vertices for S, and then replace each undirected edge by two way symmetric edges.

- ullet digraphs with $a_n + 1$ vertices : symmetric, easy to construct
- from realizibility point of view
 - V-realization : seems to be very relaxed

A finite set $S = \{a_1 < a_2 < \dots < a_n\}$ of non-negative integers is always realizable by a directed graph with $a_n + 1$ vertices, under both, \land and \lor , notions of realizability.

<u>Proof</u>: Construct the undirected graph G(V, E) with $a_n + 1$ vertices for S, and then replace each undirected edge by two way symmetric edges.

- ullet digraphs with $a_n + 1$ vertices : symmetric, easy to construct
- from realizibility point of view
 - ullet \lor -realization : seems to be very relaxed

More feasible to study an asymmetric realization under ∧-realizability constraints.

If $\mu_A(S)$ denotes the minimum order of any asymmetric directed graph \wedge -realizing $S = \{a_1 < a_2 < \ldots < a_n\}, n \geq 2, a_i \in \mathbb{Z}^+$ then

$$a_1 + a_n + 1 \le \mu_A(S) \le a_{n-1} + a_n + 1$$

There exists some sufficient conditions which achieves the minimum order, $(a_1 + a_n + 1)$ - vertices realization.

If $\mu_A(S)$ denotes the minimum order of any asymmetric directed graph \wedge -realizing $S = \{a_1 < a_2 < \ldots < a_n\}, n \geq 2, a_i \in \mathbb{Z}^+$ then

$$a_1 + a_n + 1 \le \mu_A(S) \le a_{n-1} + a_n + 1$$

There exists some sufficient conditions which achieves the minimum order, $(a_1 + a_n + 1)$ - vertices realization.

Proof: <u>lower bound</u>- there is least one vertex v of G such that $d^+(v) + d^-(v) \ge a_n + a_1$ and since G is asymmetric, hence $\mu_A(S) \ge a_1 + a_n + 1$.

If $\mu_A(S)$ denotes the minimum order of any asymmetric directed graph \wedge -realizing $S = \{a_1 < a_2 < \ldots < a_n\}, n \geq 2, a_i \in \mathbb{Z}^+$ then

$$a_1 + a_n + 1 \le \mu_A(S) \le a_{n-1} + a_n + 1$$

There exists some sufficient conditions which achieves the minimum order, $(a_1 + a_n + 1)$ - vertices realization.

Proof: <u>lower bound</u>- there is least one vertex v of G such that $d^+(v) + d^-(v) \ge a_n + a_1$ and since G is asymmetric, hence $\mu_A(S) \ge a_1 + a_n + 1$.

upper bound- By giving an inductive construction for G.

If $\mu_A(S)$ denotes the minimum order of any asymmetric directed graph \wedge -realizing $S = \{a_1 < a_2 < \ldots < a_n\}, n \geq 2, a_i \in \mathbb{Z}^+$ then

$$a_1 + a_n + 1 \le \mu_A(S) \le a_{n-1} + a_n + 1$$

There exists some sufficient conditions which achieves the minimum order, $(a_1 + a_n + 1)$ - vertices realization.

Proof: <u>lower bound</u>- there is least one vertex v of G such that $d^+(v) + d^-(v) \ge a_n + a_1$ and since G is asymmetric, hence $\mu_A(S) \ge a_1 + a_n + 1$.

upper bound- By giving an inductive construction for G.

<u>Extension</u>: Always possible if $r \ge a_n + a_{n-1} + 1$

Minimum Order ∨ - Realizability of Directed Trees

Theorem

For the degree set $S = \{1 = a_1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \vee -realizes the degree set S, is $\sum_{i=1}^{n} (a_i - 1) + 2$.

Minimum Order ∨ - Realizability of Directed Trees

Theorem

For the degree set $S = \{1 = a_1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \vee -realizes the degree set S, is $\sum_{i=1}^{n} (a_i - 1) + 2$.

Proof: upper bound-
$$\mu_{\vee}(S) \leq \mu(S) = \sum_{i=1}^{n} (a_i - 1) + 2$$

Theorem

For the degree set $S = \{1 = a_1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \vee -realizes the degree set S, is $\sum_{i=1}^{n} (a_i - 1) + 2$.

Proof: upper bound-
$$\mu_{\vee}(S) \leq \mu(S) = \sum_{i=1}^{n} (a_i - 1) + 2$$

Get the bipartite graph corresponding to minimum order undirected tree for S, assign same directions to all edges going across the partition.

Theorem

For the degree set $S = \{1 = a_1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \vee -realizes the degree set S, is $\sum_{i=1}^{n} (a_i - 1) + 2$.

Proof: upper bound-
$$\mu_{\vee}(S) \leq \mu(S) = \sum_{i=1}^{n} (a_i - 1) + 2$$

Get the bipartite graph corresponding to minimum order undirected tree for S, assign same directions to all edges going across the partition.

lower bound-
$$\mu_{\vee}(S) \ge \sum_{i=1}^{n} (a_i - 1) + 2$$

Theorem

For the degree set $S = \{1 = a_1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \vee -realizes the degree set S, is $\sum_{i=1}^{n} (a_i - 1) + 2$.

Proof: upper bound-
$$\mu_{\vee}(S) \leq \mu(S) = \sum_{i=1}^{n} (a_i - 1) + 2$$

Get the bipartite graph corresponding to minimum order undirected tree for S, assign same directions to all edges going across the partition.

lower bound-
$$\mu_{\vee}(S) \ge \sum_{i=1}^{n} (a_i - 1) + 2$$

For each i, $a_i \in S$ will appear as (a_i, b_j) or (b_k, a_i) at least once, where $b_j, b_k \in \mathbb{Z}^+ \bigcup \{0\}$. Thus

$$\sum_{v \in V} (d^{-}(v) + d^{+}(v)) = 2|E| = 2(V - 1) \ge \sum_{i=1}^{n} a_i + (V - n)$$

This implies the lower bound $|V| \ge 2 + \sum_{i=1}^{n} (a_i - 1)$

Theorem

For the degree set $S = \{0 < 1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \land -realizes the degree set s, is $2(\sum_{i=1}^{n} (a_i - 1)) + 2$.

Theorem

For the degree set $S = \{0 < 1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \land -realizes the degree set s, is $2(\sum_{i=1}^{n} (a_i - 1)) + 2$.

<u>Proof:</u> Each $a_i \in S$ will appear at least twice so we get minimum order tree for multiset $\{1, a_2^2, a_3^2, \dots, a_n^2\}$ with all edges being assigned directions in alternate way.

Theorem

For the degree set $S = \{0 < 1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \land -realizes the degree set s, is $2(\sum_{i=1}^{n} (a_i - 1)) + 2$.

<u>Proof:</u> Each $a_i \in S$ will appear at least twice so we get minimum order tree for multiset $\{1, a_2^2, a_3^2, \dots, a_n^2\}$ with all edges being assigned directions in alternate way.

Theorem

For the degree set $S = \{0 < 1 < a_2 < ... < a_n\}$, the minimum order of a directed tree which \land -realizes the degree set s, is $2(\sum_{i=1}^{n} (a_i - 1)) + 2$.

<u>Proof:</u> Each $a_i \in S$ will appear at least twice so we get minimum order tree for multiset $\{1, a_2^2, a_3^2, \dots, a_n^2\}$ with all edges being assigned directions in alternate way.

Tree Extension Problem for Directed Trees

• for undirected trees, TEP is NP-Complete.

Tree Extension Problem for Directed Trees

- for undirected trees, TEP is NP-Complete.
- for directed trees, the task becomes easier, i.e.

For every non-negative integer r, there are directed trees with $\mu_T(S) + r$ vertices \wedge -realizing and \vee -realizing the given degree set S.

Tree Extension Problem for Directed Trees

- for undirected trees, TEP is NP-Complete.
- for directed trees, the task becomes easier, i.e.

For every non-negative integer r, there are directed trees with $\mu_T(S) + r$ vertices \land -realizing and \lor -realizing the given degree set S.

Minimum order Directed tree ∧-realizing(∨-realizing) the degree set

$$S = \{0 < 1 < a_2 < \dots < a_n\}$$

$$a_2 \leftarrow \dots \leftarrow a_i \rightarrow \dots \rightarrow a_j \leftarrow \dots \leftarrow a_n$$

Directed Tree Extension

Every vertex to be added is added to the pendant vertex by an incoming or outgoing edge depending on whether the pendant vertex is a sink or source vertex respectively.

Directed Tree Extension

Every vertex to be added is added to the pendant vertex by an incoming or outgoing edge depending on whether the pendant vertex is a sink or source vertex respectively.

Directed Tree Extension

Every vertex to be added is added to the pendant vertex by an incoming or outgoing edge depending on whether the pendant vertex is a sink or source vertex respectively.

Conclusion

- Conclusion
 - Extension problem for General Graphs (undirected) and Trees

- Conclusion
 - Extension problem for General Graphs (undirected) and Trees
 - Complexity aspects of Tree Extension Problem

- Conclusion
 - Extension problem for General Graphs (undirected) and Trees
 - Complexity aspects of Tree Extension Problem
 - Multiplicity lower bound for pendant vertices in Tree Realization

- Conclusion
 - Extension problem for General Graphs (undirected) and Trees
 - Complexity aspects of Tree Extension Problem
 - Multiplicity lower bound for pendant vertices in Tree Realization
 - Asymmetric Digraph ∧-Realization

Conclusion

- Extension problem for General Graphs (undirected) and Trees
- Complexity aspects of Tree Extension Problem
- Multiplicity lower bound for pendant vertices in Tree Realization
- Asymmetric Digraph ∧-Realization
- Lower bound on order for Directed Trees under ∧(∨)-Realizability

Conclusion

- Extension problem for General Graphs (undirected) and Trees
- Complexity aspects of Tree Extension Problem
- Multiplicity lower bound for pendant vertices in Tree Realization
- Asymmetric Digraph ∧-Realization
- Lower bound on order for Directed Trees under ∧(∨)-Realizability
- Extension problem for Asymmetric Graphs and Directed Trees

- Conclusion
 - Extension problem for General Graphs (undirected) and Trees
 - Complexity aspects of Tree Extension Problem
 - Multiplicity lower bound for pendant vertices in Tree Realization
 - Asymmetric Digraph ∧-Realization
 - Lower bound on order for Directed Trees under ∧(∨)-Realizability
 - Extension problem for Asymmetric Graphs and Directed Trees
- Future Work

Conclusion

- Extension problem for General Graphs (undirected) and Trees
- Complexity aspects of Tree Extension Problem
- Multiplicity lower bound for pendant vertices in Tree Realization
- Asymmetric Digraph ∧-Realization
- Lower bound on order for Directed Trees under ∧(∨)-Realizability
- Extension problem for Asymmetric Graphs and Directed Trees

Future Work

Bridging the gap between bounds for Asymmetric Graphs

Conclusion

- Extension problem for General Graphs (undirected) and Trees
- Complexity aspects of Tree Extension Problem
- Multiplicity lower bound for pendant vertices in Tree Realization
- Asymmetric Digraph ∧-Realization
- Lower bound on order for Directed Trees under ∧(∨)-Realizability
- Extension problem for Asymmetric Graphs and Directed Trees

Future Work

- Bridging the gap between bounds for Asymmetric Graphs
- Minimum order graph realization for degree multiset

Questions..??

Thank You.

Asymmetric Digraph \(-\text{realization} \)

For
$$D = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

• In every realization $G_1(V_1, E_1)$ of D, $\forall v \in V_1$ $d^-(v) + d^+(v) = 2a_1$ and since G is asymmetric, hence $\mu_A(S) \geq 2a_1 + 1$.

Asymmetric Digraph \(-\text{realization} \)

For
$$D = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

- In every realization $G_1(V_1, E_1)$ of D, $\forall v \in V_1$ $d^-(v) + d^+(v) = 2a_1$ and since G is asymmetric, hence $\mu_A(S) \geq 2a_1 + 1$.
- To prove the upper bound we construct an asymmetric graph G_1 with $2a_1 + 1$ vertices.

Asymmetric Digraph \(-\text{realization} \)

For
$$S = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

$$E_1=\{(v_i,v_j)|1\leq i\leq 2a+1 \text{ and } i+1\leq j\leq i+a\}$$
, where subscripts are modulo $2a_1+1$

For
$$S = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

 $E_1 = \{(v_i, v_j) | 1 \le i \le 2a+1 \text{ and } i+1 \le j \le i+a\}$, where subscripts are modulo $2a_1+1$

Asymmetric Digraph \(\rightarrow\)-realization

For
$$S = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

 $E_1 = \{(v_i, v_j) | 1 \le i \le 2a + 1 \text{ and } i + 1 \le j \le i + a\}, \text{ where subscripts are modulo } 2a_1 + 1$

Asymmetric Digraph \(\rightarrow\)-realization

For
$$S = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

$$E_1 = \{(v_i, v_j) | 1 \le i \le 2a + 1 \text{ and } i + 1 \le j \le i + a\}, \text{ where subscripts are modulo } 2a_1 + 1$$

For
$$S = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

$$E_1 = \{(v_i, v_j) | 1 \le i \le 2a + 1 \text{ and } i + 1 \le j \le i + a\}, \text{ where subscripts are modulo } 2a_1 + 1$$

For
$$S = \{a_1\}$$
, $\mu_A(S) = 2a_1 + 1$ (Chartrand *et al*, 1976)

$$E_1 = \{(v_i, v_j) | 1 \le i \le 2a + 1 \text{ and } i + 1 \le j \le i + a\}, \text{ where subscripts are modulo } 2a_1 + 1$$

For
$$S = \{a_1\}, \ \mu_A(S) = 2a_1 + 1 \ (Chartrand \ et \ al, \ 1976)$$

 $E_1 = \{(v_i, v_j) | 1 \le i \le 2a + 1 \text{ and } i + 1 \le j \le i + a\}, \text{ where subscripts are modulo } 2a_1 + 1$

Divide the vertices of G_1 in 3 components - C_x , C_y , C_z

Divide the vertices of G_1 in 3 components - C_x , C_y , C_z

$$C_x$$
 C_y C_z

$$1 \cdot 2 \cdot \cdots \cdot a_1$$
 $(a_1 + 1) \cdot (a_1 + 2) \cdot \cdots \cdot 2a_1$ $2a_1 + 1$

$$d^-(v) = d^+(v) = a_1$$
 $d^-(v) = d^+(v) = a_1$ $d^-(v) = d^+(v) = a_1$

Divide the vertices of G_1 in 3 components - C_x , C_y , C_z

$$C_x$$
 C_y C_z
$$(a_1 + 1) (a_1 + 2) \cdots 2a_1$$

$$(a_1 + 2) \cdots$$

Now add one component C_1 containing (a_2-a_1) isolated vertices and the edge set

$$E = \{(v_x, v_1) | v_x \in C_x \land v_1 \in C_1\} \cup \{(v_1, v_y) | v_1 \in C_1 \land v_y \in C_y\}$$

to G_1 to get G_2 .

Base Case(for
$$|S| = 2$$
): G_2 for $\{a_1 < a_2\}$ is constructed from G_1 as below C_x

$$1 2 \cdots a_1$$

$$(a_1+1)(a_1+2)\cdots 2a_1$$

$$(2a_1+1)$$

$$d^-(v)=d^+(v)=a_1$$

$$d^{-}(v) = d^{+}(v) = a_1$$
 $d^{-}(v) = d^{+}(v) = a_1$ $d^{-}(v) = d^{+}(v) = a_1$

$$d^-(v) = d^+(v) = a$$

<u>Base Case</u>(for |S| = 2): G_2 for $\{a_1 < a_2\}$ is constructed from G_1 as below

$$12\cdots a_1$$

$$(a_1+1)(a_1+2)\cdots 2a_1$$

$$2a_1+1$$

$$d^-(v)=d^+(v)=a_1$$

$$d^-(v) = d^+(v) = a_1$$
 $d^-(v) = d^+(v) = a_1$

$$d^{-}(v) = d^{+}(v) = d^{-}(v) = d^{-}(v)$$

$$(12\cdots(a_2-a_1))$$

$$d^-(v)=d^+(v)=0$$

<u>Base Case</u>(for |S| = 2): G_2 for $\{a_1 < a_2\}$ is constructed from G_1 as below $(a_1+1)(a_1+2)\cdots 2a_1$ $2a_1 + 1$ $d^{-}(v) = d^{+}(v) = a_1$ $d^{-}(v) = d^{+}(v) = a_1$ a_1 $d^{-}(v) = a_1, d^{+}(v) = 0$

<u>Base Case</u>(for |S|=2): G_2 for $\{a_1 < a_2\}$ is constructed from G_1 as below C_x

 $d^{-}(v) = d^{+}(v) = a_1$

Base Case (for |S| = 2): G_2 for $\{a_1 < a_2\}$ is constructed from G_1 as below C_2

$$d^{-}(v) = d^{+}(v) = a_1$$

 $|V| = a_2 + a_1 + 1$, no of components = 4

$$d^-(v) = d^+(v) = a_1$$

$$|V| = a_2 + a_1 + 1$$
, no of components = 4

<u>Hypothesis</u>: Consider there exists an asymmetric directed graph G_{n_0} with degree set $\{a_1 < a_2 < \ldots < a_{n_0}\}, n_o < n$ with $a_{n_0} + a_{n_0-1} + 1$ vertices and $2n_0$ components.

$$d^-(v) = d^+(v) = a_1$$

 $|V| = a_2 + a_1 + 1$, no of components = 4

<u>Hypothesis</u>: Consider there exists an asymmetric directed graph G_{n_0} with degree set $\{a_1 < a_2 < \ldots < a_{n_0}\}, n_o < n$ with $a_{n_0} + a_{n_0-1} + 1$ vertices and $2n_0$ components.

Need to construct G_{n_o+1} from G_{n_o} .

 G_{n_0} with degree set $\{a_1 < a_2 < \ldots < a_{n_0}\}, n_o < n$ and $a_{n_0} + a_{n_0-1} + 1$ vertices has the following $2n_0$ components :

- C_{n_0-1} : $|V| = a_{n_0} a_{n_0-1}$, $d^-(v) = d^+(v) = a_1$
- $C_i(\forall 1 \leq i \leq n_0 2)$: $|V_i| = a_{i+1} a_i$, $d^-(v) = a_{n_0 1 i}$, $d^+(v) = a_1$
- $C'_i(\forall 1 \leq i' \leq n_0 2)$: $|V_i| = a_{i+1} a_i$, $d^-(v) = a_1, d^+(v) = a_{n_0-1-i}$

Asymmetric Digraph \(\rightarrow\)-realization

 G_{n_0} with degree set $\{a_1 < a_2 < \ldots < a_{n_0}\}, n_o < n \text{ and } a_{n_0} + a_{n_0-1} + 1 \text{ vertices has the following } 2n_0 \text{ components}:$

- C_{n_0-1} : $|V| = a_{n_0} a_{n_0-1}$, $d^-(v) = d^+(v) = a_1$
- $C_i(\forall 1 \leq i \leq n_0 2)$: $|V_i| = a_{i+1} a_i$, $d^-(v) = a_{n_0 1 i}$, $d^+(v) = a_1$
- $C'_i(\forall 1 \leq i' \leq n_0 2)$: $|V_i| = a_{i+1} a_i$, $d^-(v) = a_1$, $d^+(v) = a_{n_0-1-i}$
- Components from base graph G_1
 - C_x : $|V| = a_1$, $d^-(v) = a_{n_0-1}$, $d^+(v) = a_{n_0}$
 - C_y : $|V| = a_1$, $d^-(v) = a_{n_0}$, $d^+(v) = a_{n_0-1}$
 - C_z : |V| = 1, $d^-(v) = d^+(v) = a_1$

$$C_{n_o-1}$$

$$|V| = a_{n_0} - a_{n_o-1}$$

$$d^-(v)=d^+(v)=a_1$$

$$C_1 \ldots C_i \ldots C_{n_o-2}$$

$$|V|=a_{i+1}-a_i, \forall 1\leq i\leq n_o-2$$

$$d^{-}(v) = a_{n_o-1-i}, d^{+}(v) = a_1$$

$$C'_1 \ldots C'_i \ldots C'_{n_o-2}$$

$$|V|=a_{i+1}-a_i, \forall 1\leq i'\leq n_o-2$$

$$d^-(v) = a_1, d^+(v) = a_{n_o-1-i}$$

$$C_{n_o-1}$$

$$|V|=a_{n_0}-a_{n_o-1}$$

$$d^-(v)=d^+(v)=a_1$$

$$C_1 \dots C_i \dots C_{n_o-2}$$

$$|V| = a_{i+1} - a_i, \forall 1 \le i \le n_o - 2$$

$$d^{-}(v) = a_{n_o-1-i}, d^{+}(v) = a_1$$

$$C_{i}$$

$$|V|=1$$

$$d^-(v) = d^+(v) = a_1$$

$$|V| = a_1$$

$$d^{-}(v) = a_{n_o-1}, d^{+}(v) = a_{n_o}$$

$$C'_1 \dots C'_i \dots C'_{n_o-2}$$

$$|V| = a_{i+1} - a_i, \forall 1 \le i' \le n_o - 2$$

$$d^{-}(v) = a_1, d^{+}(v) = a_{n_o-1-i}$$

$$|V| = a_1$$

$$d^{-}(v) = a_{n_o}, d^{+}(v) = a_{n_o-1}$$

To obtain G_{n_0+1} from G_{n_0} , we add two new components - $C_{n_0}(|V| = a_{n_0+1} - a_{n_0}), C'_{n_0-1}(|V| = a_{n_0} - a_{n_0-1})$

$$C_{n_o-1}$$

$$|V| = a_{n_0} - a_{n_o-1}$$

$$|V| = a_{i+1} - a_i, \forall 1 \le i \le n_0 - 2$$

$$d^-(v) = d^+(v) = a_1$$

$$d^{-}(v) = a_{n_0-1-i}, d^{+}(v) = a_1$$

 $C_1 \dots C_{i} \dots C_{n-2}$

$$d^{-}(v) = d^{+}(v) = a_{1}$$

$$C_{x}$$

$$|V| = a_{1}$$

$$d^{-}(v) = a_{n_{2}-1}, d^{+}(v) = a_{n_{2}}$$

$$C'_{1} \dots C'_{i} \dots C'_{n_{o}-2}$$

$$|V| = a_{i+1} - a_{i}, \forall 1 \le i' \le n_{o} - 2$$

$$d^{-}(v) = a_{1}, d^{+}(v) = a_{n_{o}-1-i}$$

$$C_{y}$$

$$|V| = a_{1}$$

$$d^{-}(v) = a_{n_{o}}, d^{+}(v) = a_{n_{o}-1}$$

$$|V| = a_{n_o+1} - a_{n_o}$$

 $d^-(v) = d^+(v) = 0$

 C_{n_o}

$$|v| = a_{n_0} - a_{n_0-1}$$

$$d^-(v) = d^+(v) = 0 \quad \text{for } 0 < 0$$

 C'_{n_0-1}

45 / 52

To obtain G_{n_0+1} from G_{n_0} , we add two new components - $C_{n_0}(|V|=a_{n_0+1}-a_{n_0}), C'_{n_0-1}(|V|=a_{n_0}-a_{n_0-1})$ and the edge set $E = E_1 \cup E_2 \cup E_3$, where

$$C_{n_o-1}$$
 C_i
 $|V| = a_{n_0} - a_{n_o-1}$ $|V| = a_{i+1} - a_i$
 $d^-(v) = d^+(v) = a_1$ $d^-(v) = a_{n_o-1-i}, d^+(v) = a_1$

$$C_{z}$$

$$C'_{n_{o}-1-i}$$

$$|V| = 1$$

$$|V| = a_{n_{o}-i} - a_{n_{o}-1-i}$$

$$d^{-}(v) = d^{+}(v) = a_{1}$$

$$C_{x}$$

$$|V| = a_{1}$$

$$d^{-}(v) = a_{n_{o}-1}$$

$$d^{+}(v) = a_{n_{o}+1}$$

$$d^{-}(v) = a_{n_{o}+1} - a_{n_{o}}$$

$$|V| = a_{n_{o}+1} - a_{n_{o}}$$

$$|V| = a_{n_{o}} - a_{n_{o}-1}$$

$$|V| = a_{n_{o}} - a_{n_{o}-1}$$

$$|V| = a_{n_{o}} - a_{n_{o}-1}$$

$$d^{-}(v) = d^{+}(v) = a_{1}$$

$$d^{-}(v) = d^{+}(v) = 0$$

Prasun (IIT-Madras)

47 / 52

To obtain G_{n_0+1} from G_{n_0} , we add two new components - $C_{n_0}(|V|=a_{n_0+1}-a_{n_0})$, $C'_{n_0-1}(|V|=a_{n_0}-a_{n_0-1})$ and the edge set $E=E_1\cup E_2\cup E_3$, where

$$\bullet \ E_1 = \{ (v_x, v_{n_0}) | v_x \in C_x \land v_{n_0} \in C_{n_0} \} \cup \{ (v_{n_0}, v_y) | v_{n_0} \in C_{n_0} \land v_y \in C_y \}$$

•
$$E_2 = \{(v_y, v_{n_0-1}) | v_y \in C_y \land v_{n_0-1} \in C'_{n_0-1}\} \cup \{(v_{n_0-1}, v_x) | v_{n_0-1} \in C'_{n_0-1} \land v_x \in C_x\}$$

$$C_{n_o-1}$$
 C_i
 $|V| = a_{n_0} - a_{n_o-1}$ $|V| = a_{i+1} - a_i$
 $d^-(v) = d^+(v) = a_1$ $d^-(v) = a_{n_o-1-i}, d^+(v) = a_1$

$$C_{z} \qquad C'_{n_{o}-1-i}$$

$$|V| = 1 \qquad |V| = a_{n_{o}-i} - a_{n_{o}-1-i}$$

$$d^{-}(v) = d^{+}(v) = a_{1} \qquad d^{-}(v) = a_{1}, d^{+}(v) = a_{i}$$

$$C_{x} \qquad C_{y}$$

$$|V| = a_{1} \qquad |V| = a_{1}$$

$$d^{-}(v) = a_{n_{o}}, d^{+}(v) = a_{n_{o}+1}, d^{+}(v) = a_{n_{o}}$$

$$|V| = a_{n_{o}+1} - a_{n_{o}} \qquad |V| = a_{n_{o}} - a_{n_{o}-1}$$

$$d^{-}(v) = d^{+}(v) = a_{1} \qquad d^{-}(v) = d^{+}(v) = a_{1}$$

To obtain G_{n_0+1} from G_{n_0} , we add two new components - $C_{n_0}(|V| = a_{n_0+1} - a_{n_0}), C'_{n_0-1}(|V| = a_{n_0} - a_{n_0-1})$ and the edge set

•
$$E_1 = \{(v_x, v_{n_0}) | v_x \in C_x \land v_{n_0} \in C_{n_0}\} \cup \{(v_{n_0}, v_v) | v_{n_0} \in C_{n_0} \land v_v \in C_v\}$$

- $E_2 = \{(v_y, v_{n_0-1}) | v_y \in C_y \land v_{n_0-1} \in C'_{n_0-1}\} \cup \{(v_{n_0-1}, v_x) | v_{n_0-1} \in C'_{n_0-1} \land v_x \in C_x\}$
- $E_3 = \{(v_i, v_i') | v_i \in C_i \land v_i' \in C_{n_0-1-i}'\}$, where $i \in \{1, 2, \dots, n_0 2\}$

 $E = E_1 \cup E_2 \cup E_3$, where

Prasun (IIT-Madras)

To obtain G_{n_0+1} from G_{n_0} , we add two new components - $C_{n_0}(|V|=a_{n_0+1}-a_{n_0})$, $C'_{n_0-1}(|V|=a_{n_0}-a_{n_0-1})$ and the edge set $E=E_1\cup E_2\cup E_3$, where

- $\bullet \ E_1 = \{(v_x, v_{n_0}) | v_x \in C_x \land v_{n_0} \in C_{n_0}\} \cup \{(v_{n_0}, v_y) | v_{n_0} \in C_{n_0} \land v_y \in C_y\}$
- $E_2 = \{(v_y, v_{n_0-1}) | v_y \in C_y \land v_{n_0-1} \in C'_{n_0-1}\} \cup \{(v_{n_0-1}, v_x) | v_{n_0-1} \in C'_{n_0-1} \land v_x \in C_x\}$
- $E_3 = \{(v_i, v_i') | v_i \in C_i \land v_i' \in C_{n_0-1-i}'\}$, where $i \in \{1, 2, \dots, n_0 2\}$

 G_{n_0+1} resembles G_{n_0} if n_0 is replaced with n_0+1 . Hence, $\mu_A(S) \le a_n + a_{n-1} + 1$

→ロト → □ ト → 重 ト → 重 ・ の Q (*)

To obtain G_{n_0+1} from G_{n_0} , we add two new components - $C_{n_0}(|V|=a_{n_0+1}-a_{n_0})$, $C'_{n_0-1}(|V|=a_{n_0}-a_{n_0-1})$ and the edge set $E=E_1\cup E_2\cup E_3$, where

$$\bullet \ E_1 = \{(v_x, v_{n_0}) | v_x \in C_x \land v_{n_0} \in C_{n_0}\} \cup \{(v_{n_0}, v_y) | v_{n_0} \in C_{n_0} \land v_y \in C_y\}$$

- $E_2 = \{(v_y, v_{n_0-1}) | v_y \in C_y \land v_{n_0-1} \in C'_{n_0-1}\} \cup \{(v_{n_0-1}, v_x) | v_{n_0-1} \in C'_{n_0-1} \land v_x \in C_x\}$
- $E_3 = \{(v_i, v_i') | v_i \in C_i \land v_i' \in C_{n_0-1-i}'\}$, where $i \in \{1, 2, \dots, n_0 2\}$

 G_{n_0+1} resembles G_{n_0} if n_0 is replaced with n_0+1 .

Hence,
$$\mu_A(S) \le a_n + a_{n-1} + 1$$

<u>Extension</u>: Always possible if $r \ge a_n + a_{n-1} + 1$, by costructing G_1 for $\{a_1\}$ with $(2a_1 + 1) + r - (a_n + a_{n-1} + 1)$ vertices and then construct the graph using same inductive approach.

