- 1. Consider the function $h(x) = \frac{4x}{\sqrt{x^2 25}}$
 - (a) (4 points) Give the domain of this function in interval notation.
 - (b) (6 points) Use the appropriate limits to identify any vertical asymptotes. If none exist, write "None" and explain why.
 - (c) (6 points) Use the appropriate limits to identify any horizontal asymptotes. If none exist, write "None" and explain why.
 - (d) (4 points) Is the function's symmetry even, odd, or neither?

Solution:

- (a) The expression under the radical needs to be positive: $x^2-25>0 \implies x<-5 \text{ or } x>5$. The domain is $(-\infty,-5)\cup(5,\infty)$.
- (b) There are possible vertical asymptotes where the denominator equals 0 at x=-5,5.

 $\lim_{x\to 5^+}\frac{4x}{\sqrt{x^2-25}}=\infty \text{ since } 4x\to 20 \text{ and } \sqrt{x^2-25}\to 0 \text{ with positive values}.$

 $\lim_{x\to -5^-}\frac{4x}{\sqrt{x^2-25}}=-\infty \text{ since } 4x\to -20 \text{ and } \sqrt{x^2-25}\to 0 \text{ with positive values}.$

There are vertical asymptotes at x = 5 and x = -5

Grading Comments: Observe that the limit of h(x) is undefined as $x \to 5^-$ and $x \to -5^+$.)

(c) Note that $\sqrt{x^2} = x$ for $x \ge 0$ and $\sqrt{x^2} = -x$ for x < 0.

$$\lim_{x \to \infty} \frac{4x}{\sqrt{x^2 - 25}} = \lim_{x \to \infty} \frac{4x}{\sqrt{x^2}\sqrt{1 - 25/x^2}} = \lim_{x \to \infty} \frac{4x}{x\sqrt{1 - 25/x^2}} = \frac{4}{\sqrt{1 - 0}} = 4$$

$$\lim_{x \to -\infty} \frac{4x}{\sqrt{x^2 - 25}} = \lim_{x \to -\infty} \frac{4x}{\sqrt{x^2}\sqrt{1 - 25/x^2}} = \lim_{x \to -\infty} \frac{4x}{-x\sqrt{1 - 25/x^2}} = \frac{-4}{\sqrt{1 - 0}} = -4$$

There are horizontal asymptotes at $\boxed{y=4}$ and $\boxed{y=-4}$.

- (d) Since $h(-x) = \frac{-4x}{\sqrt{x^2 25}} = -h(x)$, then h is odd.
- 2. (21 points, 7 points each) Evaluate the following limits

(a)
$$\lim_{t \to 0} \left(\frac{3}{t} - \frac{3}{t^2 + t} \right)$$

(b)
$$\lim_{x \to 0} \frac{|\sin x|}{\sin x}$$

(c)
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta}$$

Solution:

(a) (HW 1.4.24)
$$\lim_{t\to 0} \left(\frac{3}{t} - \frac{3}{t^2 + t}\right) = \lim_{t\to 0} \frac{3(t+1) - 3}{t(t+1)} = \lim_{t\to 0} \frac{3^{\frac{1}{4}}}{\frac{1}{4}(t+1)} = \boxed{3}$$

(b) Note that
$$|\sin x| = \begin{cases} \sin x, & 0 \le x \le \pi \\ -\sin x, & -\pi \le x \le 0. \end{cases}$$

$$\lim_{x \to 0^+} \frac{|\sin x|}{\sin x} = \lim_{x \to 0^+} \frac{\sin x}{\sin x} = 1$$

$$\lim_{x \to 0^{-}} \frac{|\sin x|}{\sin x} = \lim_{x \to 0^{-}} \frac{-\sin x}{\sin x} = -1$$

 $\lim_{x\to 0} \frac{|\sin x|}{\sin x}$ is undefined since the left-hand limit and right-hand limit are not equal.

(c) (HW 1.4.55)
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta + \tan \theta} = \lim_{\theta \to 0} \frac{\sin \theta}{\theta + \frac{\sin \theta}{\cos \theta}} \cdot \frac{\frac{1}{\theta}}{\frac{1}{\theta}} = \lim_{\theta \to 0} \frac{\frac{\sin \theta}{\theta}}{1 + \frac{\sin \theta}{\theta} \cdot \frac{1}{\cos \theta}} = \frac{1}{1 + 1 \cdot 1} = \boxed{\frac{1}{2}}$$

Grading Comments: The fraction $\frac{\sin \theta}{\theta + \tan \theta}$ does not equal $\frac{\sin \theta}{\theta} + \frac{\sin \theta}{\tan \theta}$. It is true that

$$\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$$
. It is not true that $\frac{a}{b+c}$ equals $\frac{a}{b} + \frac{a}{c}$.

- 3. Consider the function $g(x) = \frac{\sqrt{x} \sqrt{5}}{x^2 6x + 5}$.
 - (a) (6 points) Give the domain of this function in interval notation.
 - (b) (6 points) Evaluate $\lim_{x\to 5} g(x)$.
 - (c) (8 points) The function g has a removable discontinuity at x = a. The discontinuity can be removed by creating a new function h(x).

$$h(x) = \begin{cases} g(x) & x \neq a \\ b & x = a \end{cases}$$

Use the definition of continuity of a function to find the values of the constants a and b.

Solution:

(a) The domain of \sqrt{x} is $[0,\infty)$. The function g is undefined when the denominator $x^2-6x+5=(x-1)(x-5)$ equals zero at x=1,5. The domain is therefore $[0,1)\cup(1,5)\cup(5,\infty)$.

Grading Comments: When finding the domain of the function, the square root expression must be considered. For this problem that means x cannot be negative.

(b)
$$\lim_{x \to 5} \frac{\sqrt{x} - \sqrt{5}}{x^2 - 6x + 5} \cdot \frac{\sqrt{x} + \sqrt{5}}{\sqrt{x} + \sqrt{5}} = \lim_{x \to 5} \frac{x - 5}{(x - 1)(x - 5)(\sqrt{x} + \sqrt{5})} = \frac{1}{4(2\sqrt{5})} = \boxed{\frac{1}{8\sqrt{5}}}$$

(c) Since g(5) is undefined and $\lim_{x\to 5} g(x)$ exists, the function g has a removable discontinuity at x=5.

The function h is continuous at a if $h(a) = \lim_{x \to a} h(x)$. Let $a = 5, b = \frac{1}{8\sqrt{5}}$. Then $h(5) = \lim_{x \to 5} h(x) = \lim_{x \to 5} g(x) = \frac{1}{8\sqrt{5}}$.

Grading Comments: Note that the problem asked for the definition of continuity. A solution that lacked the definition of continuity was considered incomplete.

- 4. (15 points) Let $g(x) = \frac{x-1}{x+1}$.
 - (a) Use the definition of derivative to find the slope of the tangent line to y = g(x) at x = 0.
 - (b) Find the equation of the tangent line to y = g(x) at x = 0.
 - (c) Find the equation of the normal line to y = g(x) at x = 0.

Solution:

(a)

$$g'(a) = \lim_{h \to 0} \frac{g(a+h) - g(a)}{h}$$

$$g'(0) = \lim_{h \to 0} \frac{g(h) - g(0)}{h} = \lim_{h \to 0} \frac{\frac{h-1}{h+1} - (-1)}{h} = \lim_{h \to 0} \frac{1}{h} \cdot \frac{h - 1 + h + 1}{h+1}$$

$$= \lim_{h \to 0} \frac{2h}{h(h+1)} = \boxed{2}$$

Alternate Solution.

(b) At x = 0, y(0) = -1 and y'(0) = 2. Using point-slope form, the tangent line is

$$y - y_1 = m(x - x_1) \implies y + 1 = 2x$$
 or $y = 2x - 1$.

(c) The normal line passes through the same point and has slope -1/2. The equation of the normal line is

$$y+1 = -\frac{1}{2}x$$
 or $y = -\frac{1}{2}x - 1$.

5. (24 points, 6 points each) Some unrelated, short answer questions.

- (a) (HW 2.1.31) The limit $\lim_{h\to 0} \frac{(1+h)^{10}-1}{h}$ represents the derivative of some function f at some number a.
 - (i) Find a function f and a value for a. (ii) What is the value of the limit?

- (b) Does $x + \tan x = 1$ have a solution? Justify your answer.
- (c) Sometimes a function f is not continuous on its domain but |f| is continuous, on the same domain. Find an example of such a function f (i.e. f is not continuous at a point in its domain but |f| is). Either sketch the graph of both |f| and f or find a formula that illustrates this.
- (d) A factory manufactures metal cubes of volume $V=8000~{\rm cm^3}$. An error tolerance of $\pm 5~{\rm cm^3}$ is allowed, which corresponds to a side length s between 19.996 and $20.004~{\rm cm}$. In terms of the formal definition of $\lim_{x\to a} f(x) = L$, identify $x, a, f(x), L, \delta$, and ϵ . No further explanation is necessary for this problem.

Solution:

- (a) (HW 2.1.31) (i) $f'(a) = \lim_{h \to 0} \frac{f(a+h) f(a)}{h} = \lim_{h \to 0} \frac{(1+h)^{10} 1}{h}$. One possible solution is $f(x) = x^{10}$ and a = 1. (ii) Since $f'(x) = 10x^9$, the limit value equals f'(1) = 10.
- (b) Let $f(x) = x + \tan x 1$. Then f(0) = 0 + 0 1 = -1 < 0 and $f(\frac{\pi}{4}) = \frac{\pi}{4} + 1 1 = \frac{\pi}{4} > 0$. By the Intermediate Value Theorem, since f is continuous in the interval $[0, \frac{\pi}{4}]$, there is a value of c in the interval $(0, \frac{\pi}{4})$ such that f(c) = 0.

Grading comments: The domain of $\tan(x)$ is not \mathbb{R} . Indeed, $\tan x$ is not defined for $\pi/2 + n\pi$, with n an integer. Note that the IVT can be applied only on a *closed* interval included in the domain of the function. The function must be continuous over the whole interval: hence it is not correct to use the IVT on $[0, \pi]$ as this interval contains $\frac{\pi}{2}$, where $\tan x$ is discontinuous.

(c) Below are two possible solutions.

Grading comments: Note that the graph of a piecewise function must clearly indicate what the value of the function is at any jump discontinuity by using clearly distinguishable *open* and *closed* circles. Two closed circles corresponding to one value of x does not result in a function.

(d) The formal definition of limit states that $\lim_{x\to a} f(x) = L$ if for every $\epsilon>0$ there is a $\delta>0$ such that if $0<|x-a|<\delta$ then $|f(x)-L|<\epsilon$. For this problem, the function is $V(s)=s^3$. Since V(20)=8000, the corresponding limit is $\lim_{s\to 20}V(s)=8000$ so $\boxed{x=s,a=20,f(x)=V(s)}$, and $\boxed{L=8000}$. For $\boxed{\epsilon=5}$, the value of δ is |20.004-20|=|20-19.996| or $\boxed{\delta=0.004}$.

Grading comments: The values for ε and δ are positive quantities, by definition. Do not include any \pm symbol.