We may refer to the triple (C, Δ, ε) just as C if the comultiplication and counit are understood. We shall occasionally use the Sweedler notation and write $\Delta(c) = \sum_i c_{(1)_i} \otimes c_{(2)_i}$ simply as:

$$\Delta(c) = \sum_{(c)} c_{(1)} \otimes c_{(2)} \in C \otimes C.$$

We say C is cocommutative if $\tau \circ \Delta = \Delta$, where $\tau \colon C \otimes C \to C \otimes C$ swap the terms, i.e., $\tau(c \otimes c') = c' \otimes c$. In other words, C is cocommutative if for all $c \in C$:

$$\sum_{(c)} c_{(1)} \otimes c_{(2)} = \sum_{(c)} c_{(2)} \otimes c_{(1)}.$$

A homomorphism of coalgebras $(C, \Delta_C, \varepsilon_C) \to (D, \Delta_D, \varepsilon_D)$ consists of a k-linear homomorphism $f: C \to D$ such that $\Delta_D \circ f = (f \otimes f) \circ \Delta_C$ and $\varepsilon_D \circ f = \varepsilon_C$. We denote by coAlg_k the induced category of k-coalgebras with coalgebra homomorphisms. Notice that coAlg_k is equivalent to $\operatorname{Alg}(\operatorname{Vect}_k^{\operatorname{op}})$, the category of algebra objects in $\operatorname{Vect}_k^{\operatorname{op}}$.

Definition 2.2. A k-bialgebra H is a k-vector space H together with a k-coalgebra structure (H, Δ, ε) and a k-algebra structure (H, μ, η) such that $\Delta \colon H \to H \otimes H$ and $\varepsilon \colon H \to k$ are algebra homomorphisms (or equivalently, $\mu \colon H \otimes H \to H$ and $\eta \colon k \to H$ are coalgebra homomorphisms). We say H is commutative if it is commutative as an algebra, and we say H is cocommutative if it is cocommutative as a coalgebra. We say H is a Hopf algebra if there exists a k-linear function $S \colon H \to H$ (necessarily unique) such that $\mu \circ (\mathrm{id} \otimes S) \circ \Delta = \eta \circ \varepsilon = \mu \circ (S \otimes \mathrm{id}) \circ \Delta$.

Definition 2.3. Given a k-coalgebra C, a right C-comodule (M, ρ) consists of a k-vector space M together with a k-linear homomorphism $\rho \colon M \to M \otimes C$ that is coassociative and counital: $(\mathrm{id}_M \otimes \Delta) \circ \rho = (\rho \otimes \mathrm{id}_C) \circ \rho$ and $(\mathrm{id}_M \otimes \varepsilon) \circ \rho = \mathrm{id}_M$. A (right) C-colinear homomorphism $f \colon (M, \rho) \to (M', \rho')$ is a k-linear homomorphism $f \colon M \to M'$ such that $\rho' \circ f = (f \otimes \mathrm{id}_C) \circ \rho$. Let coMod_C denote the category of right C-comodules with colinear homomorphisms. Left C-comodules are defined completely analogously. If C is cocommutative, then left and right C-comodules are equivalent and we will simply refer to them as C-comodules. We shall occasionally use the Sweedler notation for the coaction and write simply $\sum_{(m)} m_{(0)} \otimes m_{(1)}$ for $\rho(m) = \sum_i m_{(0)_i} \otimes m_{(1)_i} \in M \otimes C$ for any $m \in M$.

Definition 2.4. A right C-comodule M is finitely cogenerated if there exists a C-colinear monomorphism $M \hookrightarrow C^{\oplus n} := k^{\oplus n} \otimes C$.

Definition 2.5. A right C-comodule M is *injective* if for every C-colinear monomorphism $\iota \colon X \hookrightarrow Y$ and any C-colinear homomorphism $f \colon X \to M$, there exists a C-colinear homomorphism $g \colon Y \to M$ such that $g \circ \iota = f$.

In particular, if M is a finitely cogenerated and injective right C-comodule, there exists another finitely cogenerated and injective right C-comodule N such that $M \oplus N \cong C^{\oplus n}$ as comodules, for some $n \geq 0$. Let $\mathrm{Inj_{fc}}(C)$ denote the category of finitely cogenerated and injective right C-comodules. Then, we have the following result.

Proposition 2.6. The category $\operatorname{Inj_{fc}}(C)$ is an exact category.

Proof. The category coMod_C is an abelian category as finite limits and colimits in coMod_C are created under the forgetful functor $\operatorname{coMod}_C \to \operatorname{Vect}_k$. Consider a short exact sequence of right C-comodules:

$$0 \longrightarrow M \longrightarrow N \longrightarrow P \longrightarrow 0.$$

If M and P are finitely cogenerated and injective, then so is $M \oplus P$, thus as $N \cong M \oplus P$ we can conclude. \square

Definition 2.7 ([KP25]). Given a k-coalgebra C, define its coalgebraic K-theory $K^c(C)$ to be the algebraic K-theory spectrum $K(\operatorname{Inj_{fc}}(C))$ of the exact category $\operatorname{Inj_{fc}}(C)$ of finitely cogenerated and injective right C-comodules.

The class of finitely cogenerated and injective comodules forms the class of dualizable objects in comodules with respect to a monoidal structure we now make precise. Recall that given a right C-comodule (M, ρ) and a left C-comodule (N, λ) , the relative cotensor product $M \square_C N$ is defined as the equalizer in Vect_k :

$$M\square_C N \longrightarrow M \otimes N \xrightarrow[1 \otimes \lambda]{\rho \otimes 1} M \otimes C \otimes N.$$