BİÇİMSEL DİLLER ve OTOMATLAR Ödev-3

Prof.Dr.A.Emre HARMANCI Yard.Doç.Dr.Osman Kaan EROL Araş.Gör.Berk CANBERK Araş.Gör.Yusuf YASLAN

1)

- a. (aVb)*abb(aVb)* ifadesini kabul eden NFA'yı oluşturunuz.
- b. Oluşturduğunuz NFA'yı DFA'ya dönüştürünüz.
- c. *b*'de elde ettiğiniz DFA'yı –gerekliyse- indirgeyerek; indirgenmiş DFA'nın tanımını ve durum/geçiş diyagramını çiziniz.

2)
$$K = \{q0,\,q1,\,q2,\,q3,\,q4,\,q5,q6,\,q7\,\},\,F = \{q0,\,q5,\,q6\}\,\sum_{} = \{a,\,b,\,c\},\,s = \{q0\},$$
 Aşağıda bir determinist sonlu durumlu otomatın durum/geçiş tablosu moore modelinde

Aşağıda bir determinist sonlu durumlu otomatın durum/geçiş tablosu moore modelinde verilmiştir.

	а	b	С	Çıkış
q0	q1	q7	q7	1
q1	q2	q3	q4	0
q2	q2	q5	q7	0
q3	q6	q3	q7	0
q4	q3	q2	q7	0
q5	q1	q7	q7	1
q6 q7	q1	q7	q7	1
q7	q7	q7	q7	0

- a. Tablo üzerinde –gerekli ise- durum indirgemesi yapınız.
- b. Yukarıdaki tanımlar ve durum/geçiş tablosu göz önünde bulundurularak, tanımlanan DFA'nın durum/geçiş diyagramını çiziniz.
- c. Bu DFA aşağıdaki ifadelerden hangisini (hangilerini) düzenli ifade olarak kabul edebilir? Tartışınız.
 - i. $L(M) = \{a[(b \ V \ ca)b* \ a \ V \ (a \ V \ cb)a*b]\}*$
 - ii. $L(M) = \{a[(b \ V \ ca)b* \ a \ V \ (a \ V \ cb)a*b]\}^{+}$
 - iii. $L(M) = \{a[(b \ V \ c)b \ a \ V \ (a \ V \ cb)ab]\}^*$

3)

Aşağıda verilen determinist otomata ilişkin düzenli ifadeyi sistematik yolla bulunuz. Ara adımlarda oluşan ifadeleri sadeleştiriniz.

Ödev son teslim tarihi: 15-12-2009 Salı 17:00

Ödev teslim şekli: Ödevlerinizi yazılı doküman olarak bölüm sekreterliğindeki "Biçimsel Diller ve Otomatlar" ödev kutusuna bırakınız.

BİÇİMSEL DİLLER ve OTOMATLAR ÖDEV3 ÇÖZÜMLER

Soru1:

b)
$$E(90) = 90$$

 $E(91) = 91$
 $E(93) = 93$

$$S = (q_0) = A$$

 $S'(A, \alpha) = (q_0, q_1) = B$
 $S'(A, b) = (q_0) = A$
 $S''(B, \alpha) = (q_0, q_1) = B$
 $S''(B, b) = (q_0, q_1) = B$
 $S''(C, \alpha) = (q_0, q_1) = B$
 $S''(C, \alpha) = (q_0, q_1) = B$

olugan OFA

D, Eile f Sonloron durimfor

Gordhime wordneni:

Geoldine got.

Indirgenmis OfAnn dum/geas dyogramis

$$X_0 = \{A\}$$

 $X_1 = \{B\}$
 $X_2 = \{C\}$
 $X_3 = \{C\} \in F\}$

bu Honorta illehih defauli Hode:
Los UM)= 6 a (aVba) 66 (aVb)

Soru 2

Durum indirgemesi yapılırsa, q0, q5, q6 durumları uyuşmakta olduğu görülür. Talobnun yeni hali:

	а	b	С	Çıkış
q0	q1	q7	q7	1
q1	q2	q3	q4	0
q2	q2	q0	q7	0
q3	q0	q3	q7	0
q4	q3	q2	q7	0
q7	q7	q7	q7	0

Kabul edilebilir durum olarak yalnızca q0 var.

DFA'yı çizersek:

Otomatın kabul ettiği düzenli ifade: $L(M) = \{a[(b \ V \ ca)b* \ a \ V \ (a \ V \ cb)a*b]\}*$ olacaktır. Bu ifadeden seçilen örnek katarlar ile q0 durumuna varıldığı gösterilir. Diğer durumlar için de, kabul edilmeyen bir duruma varılan en az bir örnek gösterilir.

Soru3

90=910 V -1 91=900 V 92 a V 92b 92= 90 b V 91b

92 = (grav L) b Vgrb 92 = qr (ab Vb) Vb

q1=q0aVq2(aVb)
=(q1aVL)aVq1(abVb)Vb)(aVb)
=q1aaVaVq1(abVb)aVq1(abVb)bVbaVbb
=q1(aaV (bVb)(aVb))V(aVbaVbb)
q1=(aVbaVbb) (aaV(abVb)(aVb))*

 $L(M) = 91 \vee 92$ $= 91 \vee 91 (66 \vee b) \vee b$ $= 91 (L \vee (66 \vee b)) \vee b$ $L(M) = (61 \vee b) (61 \vee b$