G. K. Dinesh, B. Priyanka, Archana Anokhe, P. T. Ramesh,

R. Venkitachalam, K. S. Keerthana Sri, S. Abinaya,

V. Anithaa, R. Soni

Chapter 18 Ecosystem services and ecological role of birds in insect and pest control

Abstract: Agricultural ornithology is an emerging science that renders great ecosystem services. Most of the bird species play a vital role in agriculture by managing pest and rodent populations. In agricultural countries like India, this field has a special importance in protecting agricultural crops from invading insect pests and, thereby, preventing economic losses to farmers in an ecofriendly manner. In addition, birds aid farmers by reducing invertebrate crop pests, yet they are seldom used in Integrated Pest Management (IPM) practices. Nonetheless, several bird species have a substantial influence on agricultural productivity. To develop practical IPM approaches, it is necessary to understand bird flocking and their behavior at different stages of crops, so that the agricultural yield will be enhanced. Developing strategies on overall aspects help complete essential knowledge gaps around the complex roles of birds in agricultural systems. Although many better works have been started, a lot is yet to be done in order to stabilize the ecological approaches. This book chapter describes the ecosystem services provided by birds and agricultural ornithology advancements, highlights difficulties and information shortages, and suggests future research possibilities.

18.1 Introduction

Agricultural ornithology deals with the role of birds in pollination, seed dispersal, crop pest control, crop grain management, and associated ecosystem services. Birds play a significant part in crop insect management in all agricultural ecosystems, whether dry or irrigated; it primarily focuses on bird ecology and management in agroecosystems. It also collects scientific data on birds and controls insects [1]. Agriculture crops offer birds a concentrated and reliable food supply such as insects, other arthropods, rodents, grains, etc. Birds are the most effective insect predators among vertebrates, because they can swiftly gather

Acknowledgment: The authors would like to acknowledge their affiliated institutes. They would like to acknowledge Dr. R. Venkitachalam, C. Vijaya Kumar, R. Suryaprahasan, V. Ilaiya Bharathi, and G. K. Dinesh for bird photo plates.

in great numbers upon a pest outbreak and protect various agriculture crops, and hence, they serve as excellent natural insect pest managers [2]. In agroecosystems, most bird species are insectivorous and play an important role in maintaining a population of insect pests, and thereby, they are beneficial to farmers [3]. Another study estimated that the prey biomass consumed by insectivorous birds ranges from 400-500 million metric tons per year [4] Birds are one of the key pollinator groups in the animal kingdom, rendering service to about 80% of plants that depend on other animals for pollination. Seed dispersal is another important ecosystem service carried out by birds that helps sustain green plants and trees. However, granivorous bird species cause severe damage to crops. leading to crop loss. Thus, crops, birds, and insects have mutualistic and antagonistic relationships and a significant ecological connection that supports biological cycles and food chains. Few studies have examined this complex and delicate relationship, and more thorough studies should be done. This book chapter deals with the role of birds in the biological control of insects and pests in various agroecosystems.

18.2 Ecosystem services of birds in the agroecosystem

Nature delivers both massive ecosystem services (ES) and ecosystem disservices (EDS). However, the affinity between the two is less well-recognized [5]. As in the case of birds, they are flying vertebrates and recognized as sources of various ES [6] and function as an effective alternative to chemical pesticides [7]. Based on the Millennium Ecosystem Assessment, ecosystem services have been categorized into four categories as provisioning services, regulating services, supporting services, and cultural services [8]. Birds provide multifaceted environmental services, including nutrition cycling through droppings (supportive services), pest and bug management (regulatory services), scavenging, and seed dispersion (cultural services), besides their behavior-driven services [9] (Figure 18.1). The potential ecosystem services and disservices by birds and their ecological relationship between various organisms are complex (Figure 18.2).

18.2.1 Regulating services of birds

Birds are important biocontrol agents in regulating pests and insects in agricultural landscapes. Insectivorous birds such as Black-backed Puffback (Dryoscopus cubla), the Cape White-eye (*Zosterops virens*), the Tawny-flanked Prinia (*Prinia subflava*), the Gorgeous Bush-shrike (Telophrous viridis), and the Brown-hooded Kingfisher (Halcyon

Figure 18.1: Ecosystem services and disservices provided by the bird.

albiventris), Cattle egret (Bubulcus Ibis), Common wood shrike (Tephrodornis pondicerianus), Hoopoe (Upupa epops), Black drongo (Dicrurus macrocercus), Indian roller (Coracias benghalensis), and Asian green bee-eater (Merops orientalis) are well-known insectivorous bird species across agroecosystems [10-12]. Some of the birds are shown in Figure 18.3. These well-identified insect predators have not been documented well on their economic benefits in different agroecosystems. Only a few scientific reports are available on the economic effects of birds on biological pest management. Both ES and EDS are subject to change in response as the landscape structure changes [5, 13], and farmers often see surviving natural areas as lost land and the locations where pests thrive [14]. Loss of natural habitat for birds affects these ecosystem service providers, resulting in the increase of the pest population. Thus, a trade-off between ES and EDS may exist, mediated by landscape composition. Other agricultural systems have benefited significantly from closeness to the forest areas in bird variety and predator hunting success [15]. Crop raiding by birds occurred exclusively in near-natural vegetation and caused a yield loss of around 26% [5]. However, bird biocontrol was more effective in the natural vegetation habitat. According to the research done in Macadamia farms of South Africa, biological management by birds and bats had an economic effect of about USD 5,000 ha/year. Another study points out that the revenue losses were reduced by bird pest management to the value of USD 1,595/ha as income gain. Bats and birds enhance the ecosystem services when released near artificial roosts and nest sites, but species-specific preference studies of birds are vet to take off well. It is critical to educate farmers since many are unaware of the advantages of birds [5]. To boost the bird populations as biological control, artificial nesting and roosting places may be built to attract birds to agricultural regions with little

Figure 18.2: The potential services and disservices by birds in an agroecosystem.

Notes: 1. Top predator predating herbivore birds that are harmful for crops; 2. Top predator predating insectivore birds that are beneficial for crops; 3. Top predators not having any guild on scavenging birds, hence they are neutral; 4. Insectivore bird eating caterpillar, by which it is reducing the population and they are classified as regulating services; 5. Top predators predating snakes, which it is indirectly leading to yield losses by rodents; 6. Guana or faecal

Figure 18.3: Various Ecosystem services and disservices provided by the common agricultural field birds.

Figure 18.2 (continued)

matter by birds are both harmful and beneficial, the faecal matter on economic parts may be considered as poor quality, and if the faecal matter added to the soil it is beneficial to soil for nutrient cycling and they are classified as supporting services; 8. some farm birds such as duck may eat the harmful soil worms and larvae, also it provides nutritious meat and egg, they are classified as provisioning services; 9. Birds are useful for research and education, it also have aesthetic value, hence it is classified as cultural services; 10. Some scavenging birds may clean up the ecosystem by eating dead matter, it is classified into cultural services.

natural habitat nearby [7]. This would be more cost-efficient than using chemical pesticides to control pest species below an economic threshold level [16]. Biodiversity research in specific agricultural regions is incumbent to developing suitable designs for birds as biological pest control.

18.3 Birds' niche in paddy ecosystem

Wetlands play a vital role in our natural environment. Wetlands are described as the "kidney of the landscape" because they function as the downstream receivers of water and waste from both natural and human resources [17]. Wetlands provide shelter for roosting, nesting, and foraging environments to waterfowl, fish, amphibians, reptiles, and many plant species at critical life phases and as protection from harsh weather [10]. They also serve as stepping stones or corridor habitats for migratory bird species such as waterfowl and waders. Wetlands offer habitat and shelter for many species and aid resilience of species as a means to overcome population decline [9]. Studies on birds in rice fields and the number of reported species are listed in Table 18.1.

Table 18.1: Studies on birds in rice fields and the number of reported bird species [9, 10, 21].

Location	Cultivation system	No. of species	Source
Indian subcontinent			
Ahmedabad, Gujarat, India	Seasonal	28	[21]
Bangalore district, Karnataka, India	All-year	131	[21]
Etawah and Manipuri districts, Uttar Pradesh, India	Seasonal	114	[21]
Kerala, India	All-year	133	[21]
Kheda district, Gujarat, India	Seasonal	65	[37]
Ludhiana, Punjab, India	All-year	68	[26]
Ludhiana, Punjab, India	All-year	23	[27]
Mysore and Coorg districts, Karnataka, India	All-year	68	[21]
Nellore district, Andhra Pradesh, India	All-year	62	[21]
Pondicherry, India	All-year	34	[31]
Ranga Reddy district, Andhra Pradesh, India	All-year	56	[35]
Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India (Conventional rice fields)	All-year	26	[9]

Table 18.1 (continued)

Location	Cultivation system	No. of species	Source
Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India (Organic rice fields)	All-year	25	[9]
The Indian subcontinent	All-year	89	[32]
The Indian subcontinent	All-year	59	[39]
Uttaranchal, India	Seasonal	58	[21]
West Bengal, India Other countries	Seasonal	67	[21]
Bangladesh	Flooded	88	[21]
Kurunegala district, Sri Lanka	All-year	61	[38]
Nepal	Seasonal	175	[21]
Pakistan	Seasonal	60	[33, 34]
Southwestern Louisiana, USA	All-year	37	[25]
Sri Lanka	All-year	73	[36]

The Indian subcontinent is home to approximately 1300 bird species. Rice fields serve as artificial wetlands and are home to various bird species. Rice is an important food crop in India, with 81 lakh hectares planted nationwide [18]. The Indian subcontinent has the highest farmland cover per unit area globally, with rice (Oryza sativa) as the second most significant crop; Irrigated paddy fields in tropical Asia are the source of one-third of the world's rice [19]. Paddy fields in south India may have three rice seasons (e.g., in Tamil Nadu, India); other locations may have one (e.g., Uttar Pradesh (India), Pakistan, and Bangladesh) or two harvests in a year (e.g., parts of Karnataka in India). At least close to 351 species utilize rice fields in the subcontinent, even though just 2.7% of the subcontinent's birds nest in these fields [21]. Diverse aquatic creatures inhabit the paddy field environment, and they are considered as ecosystem engineers, since they play an essential part in the food web's dynamics [20, 22]. Algae, macroinvertebrates, vertebrates, microorganisms, and mosquito vector species thrive in this environment [23].

Birds have an ecological and functional value in the rice wetlands that act as a habitat to live and survive. Paddy fields are occupied mainly by waterfowls and ducks throughout the season, with certain species from nearby habitats only visiting the fields on rare occasions. For example, Lapwings, Baya weaver, Munia, and Larks require nesting season in moist habitats of rice-growing areas. Farmers' intervention will be less in the fields during the initial rice-growing season after transplanting,

since it will be maintained in a submerged condition for two to three months. At this time, is the fields are best suited as bird nesting grounds. According to a study in Louisiana (USA), 37% of the birds recorded (37 species) inbreed in paddy fields. In contrast, just 2.7% of birds have been observed to breed in paddy fields [24, 25].

Paddy fields are being used by wintering birds in the northern subcontinent, although migratory birds use paddy fields throughout their stay. The rice is harvested after the fields have been drained. Many bird species exploit the dried fields, ripened grains, and grain leftovers left after harvesting. After the dry summer season, fields are flooded and plowed, attracting diverse bird species in large numbers. The observations made from the studies [9] show that the plowing followed by irrigation exposes many grubs, cocoons, and pests from the topsoil layer in rice fields; hence, the birds are attracted more during tillage practices when they effectively forage on the soil insects [21]. The utilization of fields by the birds appears to be less in machine-tilled fields, but this difference has not been documented scientifically.

18.3.1 Relationship between birds and insects in rice wetlands

A comparative study on the role of birds in organic and inorganic paddy ecosystems by Tamil Nadu Agricultural University, India, revealed that 26 species of birds were found in the inorganic rice ecosystem, compared to 25 species in the organic rice fields. However, the bird population in the organic environment was 29.69% greater than in the inorganic environment [9, 10]. Granivorous birds were seen during harvesting stages in both organic and inorganic rice. The common birds seen in the organic rice fields include Indian Pond Heron, Egret, Common Sandpiper, Red Wattled Lapwing, and White-browed Wagtail, whereas, in inorganic rice fields, the Indian Pond Heron, Red-wattled Lapwing, Egret, Common myna, and Black drongo were the most common birds [9, 10]. A similar study in 1990 studied the bird population of an intensively maintained area in Ludhiana and found 68 species [26]. Among them, 10 were grain eaters, 12 were omnivores, 38 were insectivores, and 8 had mixed foraging habits. The top four species (two omnivores and two grain eaters) accounted for 47% of the occurrence of 68 bird species. Also, 38 insectivorous species accounted for barely 30% of the birds. Another study was carried out to find agricultural bird diversity in the Ludhiana district's rice fields [27]. Nearly 23, with 12 non-passerine and 11 passerine species, belonging to 6 orders, 17 families, and 21 genera were found. Another study in the United States compared the count and diversity of bird species on organic and conventional farms in Florida [28]. They discovered that mixed field plantings, margins, adjacent matrix of woodland, and hedgerow had the highest bird abundances. This is because the insectivorous birds rely on the insect food available in fields [29, 30]. Major studies on birds in rice fields are enlisted in Table 18.1.

The feeding pattern of birds in the diversified agroecosystems varies according to the habitats [40]. Weaverbirds and Munia choose rice fields with more vegetation complexity than resource availability. The findings imply that predator avoidance rather than resources influence the reported foraging pattern by avians found in the agroecosystems. Some scientists reported that a few common species dominate disturbed habitats, and agricultural areas are considered highly disturbed habitats [41]. Hence, diversity is less in artificial wetlands than natural wetlands. The overall abundance of birds and richness in agroecosystems does not differ between open and partially wooded regions [42]. However, trees in the surrounding landscape altered the abundance of several common species. Studies by Indian scientists summarized the data of birds in paddy fields found in the Indian subcontinent [21]. The rice ecosystem birds and their target insect species are enlisted in Table 18.2.

Table 18.2: Rice ecosystem birds and their target insect species [9, 10].

Common name	Scientific name	Family	Order	Target insect species
Asian Open Bill Stork	Anastomus oscitans (Boddaert) 1783	Ciconiidae	Ciconiiformes	Wide range of insects
Black Drongo	Dicrurus macrocercus (Vieillot) 1817	Dicruridae	Passeriformes	Grasshopper <i>Atractomorphalata</i> (Mochulsky, 1866), Green leafhopper <i>Nephotetixvirescens</i> (Distant, 1908)
Black Kite	Milvus migrans (Boddaert) 1783	Accipitridae	Accipitriformes	Grasshopper Atracto morphalata (Mochulsky, 1866) Green leafhopper Nephotetix virescens (Distant, 1908)
Blue Rock Pigeon	Columba livia (Gmelin) 1789	Columbidae	Columbiformes	Ant Solenopsis geminate (Fabricius, 1804)
Blue-tailed Bee-eater	Merops philippinus (Linnaeus) 1766	Meropidae	Coraciiformes	Grasshopper Atractomorphalata (Mochulsky, 1866)
Brahminy Kite	Haliaster Indus (Boddaert) 1783	Accipitridae	Accipitriformes	Rice bugs <i>Leptocorisaoratoria</i> (Fabricius, 1764)
Bronze- winged Jacana	Metopidius indicus (Latham) 1790	Jacanidae	Charadriiformes	Larva, worms, and ants
Cattle Egret	Bubulcus ibis (Linnaeus) 1758	Ardeidae	Pelecaniformes	Rice leaf folder Cnaphalocrocismedinalis (Guenee, 1859)

Table 18.2 (continued)

Common name	Scientific name	Family	Order	Target insect species
Common Myna	Acridotheres tristis (Linnaeus) 1758	Sturnidae	Passeriformes	Swarming caterpillar <i>Spodoptera</i> mauritia (Boisduval) 1833
Common Sandpiper	Acititishy poleucos (Linnaeus) 1758	Scolopacidae	Charadriiformes	Worms, larvae
Darter	Plotus anhinga (Linnaeus) 1766	Anhingidae	Suliformes	Larvae
House Crow	Corvus splendens (Vieillot) 1817	Corvidae	Passeriformes	Ant Solenopsis geminate (Fabricius, 1804), Brown planthopper Nilaparvatalugens (Stal, 1854), Stink bugs Nezaraviridula (Linnaeus, 1758)
Eurasian Collared- Dove	Streptopelia decaocto (Frivaldszky) 1838	Columbidae	Columbiformes	Ant <i>Solenopsis geminate</i> (Fabricius, 1804)
Common Greenshank	<i>Tringa nebularia</i> (Gunnerus) 1767	Scolopacidae	Charadriiformes	Larvae
Grey Wagtail	Motacilla cinerea (Tunstall) 1771	Motacillidae	Passeriformes	Ant <i>Solenopsis geminate</i> (Fabricius, 1804), larvae, worms
Indian Pond Heron	Ardeola grayii (Sykes) 1832	Ardeidae	Pelecaniformes	Damselfly <i>Agriocnemispygmaea</i> (Rambur, 1842), Dragonfly <i>Sympetrum flaveolum</i> (Selys, 1854)
Indian Roller	Coracias benghalensis (Linnaeus) 1758	Coraciidae	Coraciiformes	Grasshopper <i>Atractomorphalata</i> (Mochulsky, 1866) Green leafhopper <i>Nephotetixvirescens</i> (Distant, 1908)
Little Egret	Egretta garzetta (Linnaeus) 1766	Ardeidae	Pelecaniformes	Damselfly <i>Agriocnemispygmaea</i> (Rambur, 1842), Dragonfly <i>Sympetrum flaveolum</i> (Selys, 1854)
Indian Peafowl	Pavo cristatus (Linnaeus) 1758	Phasianidae	Galliformes	Cutworm Spodoptera litura (Fabricius, 1775), Rice caseworm Nymphuladepunctalis (Guenee) 1854, Rice hispa Dicladispaarmigera (Oliver) 1808

Table 18.2 (continued)

Common name	Scientific name	Family	Order	Target insect species
Grey- headed Swamphen Moorhen	Porphyrio poliocephalus (Latham) 1801	Rallidae	Gruiformes	Worms, larvae
Red-wattled Lapwing	Vanellus indicus (Boddaert) 1783	Charadriidae	Charadriiformes	Cutworm Spodoptera litura (Fabricius, 1775), Rice caseworm Nymphuladepunctalis (Guenee) 1854, Rice hispaDicladispaarmigera (Oliver) 1808
Spotted Munia	Lonchura punctulata (Linnaeus) 1758	Estrildidae	Passeriformes	Ants and small insects
Spotted Owlet	Athene brama (Temminck) 1821	Strigidae	Strigiformes	Cutworm <i>Spodoptera litura</i> (Fabricius, 1775), Grasshopper <i>Atracto morphalata</i> (Mochulsky, 1866)
Tricolored Munia	Lonchura malacca (Linnaeus) 1766	Estrildidae	Passeriformes	Ants and small insects
Eurasian Whimbrel	Numenius phaeopus (Linnaeus) 1758	Scolopacidae	Charadriiformes	Larvae
White- breasted Waterhen	Amaurornis phoenicurus (Pennant) 1769	Rallidae	Gruiformes	Larvae
White- browed Wagtail	Motacilla maderaspatensis (Gmelin) 1789	Motacillidae	Passeriformes	orthopterans, caterpillars, and spiders
White- throated Kingfisher	Halcyon smyrnensis (Linnaeus) 1758	Alcedinidae	Coraciiformes	Ants, larvae, and small insects

18.3.2 Birds-insects relationship in other crop fields

Insectivorous birds have a broad range of eating preferences, from chasing insects to digging in the dirt and woodlands. Approximately 60% of known species are insectivorous [43]. About 545 species of birds use agricultural areas for food and other activities, and 25 species have been observed to harm crops and fruits. The majority of the identified species are insectivorous [44]. Sturnidae and Turdidae starlings and thrushes eat a lot of insects and other arthropods [4]. These insects provide vital protein and other nutrients to newborn birds. The bird population in the Ludhiana district was studied while sowing maize, in which the results showed that species diversity (H'), species richness, and uniformity (E) were 2.53, 17, and 0.89, respectively [45]. Similar research was done in the boll formation stages of the cotton field, in which 26 bird species were documented [27]. Fourteen insectivorous/omnivorous species used T-perches to forage insect pests in the adjacent cotton plants. In the wheat fields of Ludhiana, Punjab, 19 different species of birds from five orders, 11 families, and 13 genera were identified. Bird species recorded in various states of India through agroecosystem studies were elucidated as a map (Figure 18.4).

During wheat harvest, the bird population showed successive patterns that connected to plant types [46]. In 1762, the Common Myna Acridotheres tristis was imported in Mauritius to control the red locust, Nomadacris septemtasciata. Several investigations on red locust gut content analyses have demonstrated that many birds rely on insect pests for food, which includes Brahminy Starling Rosy Starling, Gray-headed Starling, Yellow Wagtail, Spotted Owlet, etc. Some omnivores, including the Black-throated weaver bird, Baya Weaver, Large Grey Babbler, House sparrow, and Babbler species, eat insects and perform a dual function. For example, the barn owl eats only rodents, but the Spotted Owlet mostly feeds on Coleopteran and Lepidopteran adults. Several studies have attempted to measure the function of birds in pest management [47].

There are 14 bird species that were identified as Helicoverpa armigera predators in chickpea cropping systems, reducing the larval population by 73% and increasing crop output. Aside from direct predation, these birds cause natural epizootics by spreading germs and viruses in the host insect habitat. Bacillus popillae var. Holotrichiea causes milky sickness in Holotrichia consanguinea. It was also found that Myna and house sparrow feed on both healthy and infected H. armigera larvae, aiding the spread of NPV [48]. Drongo feces contain high amounts of NPV poly occlusion bodies (POBs) @ 7×10^8 POBs per gram of feces. Raptors eat 60–70% orthopterans. Adults with young ones may hunt on 20 mice per day; hence, raptors are the best rodent pest-controlling bird. The Spotted Owlet eats insects (54%), followed by rodents (36%), micro mammals (10%), and unidentified vertebrates (10%). The relative number of insects was greatest, with Orthoptera (24%) followed by Coleoptera (19%) and Dermaptera (11%) [49].

Figure 18.4: Bird species recorded in various states of India by agroecosystem studies.

An exclusive study on strawberries found that 3.8% of insect damage was reduced by an insectivorous bird [50]. In a comparative study of food preference among plowed and unplowed crop fields of pigeon pea, sorghum, maize, and cow pea, the maximum number of birds was recorded in unplowed fields and the least insectivorous birds were recorded in sorghum. In sorghum, H. armigera was the most preferred species [51]. Jungle babbler (Turdoides striatus), a widely spread subtropical insectivorous passerine, is considered beneficial to an agroecosystem, as they devour voraciously on insect matter, especially Helicoverpa armigera. The Manila tamarind, Tamarind Pithecolobium dulce attracts significant numbers of Rosy Starling, which suppressed *H. armigera* and *Spodoptera litura* in summer groundnut, but the adjacent region without manila trees showed an increased prevalence of such pests, requiring pesticide treatment. Mulberry fruits also have an ecological role in keeping insectivorous (beneficial) birds in the neighboring agricultural system. The Salvadora persica fruit attracts 18 bird species and aids in the natural management of *H. armigera* [52]. The Cattle egret is an essential bird predator in agricultural cropping systems, capturing insect pests, forming an integral part of IPM. In wheat

crop, the role of birds in the natural regulation of a polyphagous lepidopteran pest, H. armigera, was studied in Gujarat, which concluded that the birds preferred insects over maturing wheat grains [53]. The potential of insectivorous birds to regulate the pests in woody and fruit crops has been evaluated in Spain by exclusion study and artificial nesting. The result shows that Great tit (Parus major) and sparrows (Passer domesticus and P. montanus) increased over time and controlled the Greater wax moth and sentinel caterpillars. It was found that Great tits (Parus major) reduced the insect damage by 19% and increased fruit yield by 66% in commercial apple orchards [53]. By providing nest boxes to insectivorous birds in Californian vineyards, the population of Beet armyworms (Spodoptera exigua) was reduced by 3.5 times [54]. In Costa Rica, birds reduced half an infestation of coffee berry borer beetles (Hypothenemus hampei) [55]. In Indonesia's bird and bat exclusion study, 31% increased pest abundance, decreasing final crop yield [56]. Several workers have also reported that natural enemies like predatory birds and insectivorous birds help in control of fruit pests such as aphids, mites, psyllids, and leaf miners by natural enemies [57].

Insectivorous birds, which decrease the number of leaf-eating insects, can enhance forest tree growth by reducing leaf damage [58]. Insectivorous birds and bats are considered effective arthropod predators in the tropical agricultural ecosystem [59]. Insect pests from the order Coleoptera and Lepidoptera (especially immature form) are effectively reduced by the bird population buildup across different habitat types [60]. Thirty-eight species of insectivorous birds belonging to 17 families under 26 genera were recorded at the maize agroecosystem in the Bengaluru region [61]. Insectivorous bird activity was also recorded in Bt and Non-Bt maize crops, and it was observed that higher insectivorous birds are under organic systems, large woodlots, dense trees, and thick hedgerows. The well-known insect pests of cacao, the cacao pod borer, and Helopeltis bugs were not affected by bat and bird exposure. The main reason appeared to be that the pod borer spends most of its immature stages hidden inside the pod and, therefore, is not a visible prey [62]. Nocturnal arthropods strongly declined in abundance due to exposure to nocturnal predators, including birds [63]. Likewise, organic farming is associated with increased insectivorous bird numbers, largely due to high spatial and habitat heterogeneity in the cultivated units benefiting insectivorous over granivorous birds [64]. Generalist species are favored because conventional farming reduces habitat quality by homogenizing landscapes [65]. Insectivorous bird species and their target insects in other crops are listed in Table 18.3.

18.4 Economic worthiness of insectivorous birds

Alternative use of synthetic chemicals and insectivorous birds may provide an environmentally sound and economically viable alternative in many agroecological cropping systems [70]. Birds can economically benefit crop plants across the tropical and

Table 18.3: Insectivorous bird species and their target insects in other crops [9, 10, 61, 66–69].

Common insectivorous birds	Scientific name	Target insects	Crops
Ashy Prinia	Prinia socialis	Aphis gossypii; Hymenoptera and Hemiptera insects	Guava; Cotton
Asian Brown Flycatcher	Muscica padauurica	Different species of insects	Different species of crops
Asian Palm-Swift	Cypsiurus balasiensis	Aerial insectivore; Preys insects on flight	Different species of crops
Asian Paradise (Flycatcher)	Terpsiphone paradisi	Different species of insects	Different species of crops
Barn Swallow	Hirundo rustica	Different species of flies, including horn flies, face flies, horse flies; leafhoppers, grasshoppers, wasps, crickets, moths, and beetles	Horn flies, face flies, and horse flies are domestic animals' pests, whereas crickets are household pests. Moths, beetle, leafhoppers, and polyphagous are pests of different crops.
Black-Backed Kingfisher or the oriental dwarf kingfisher	Ceyx erithaca	katydid	Household pest
Black-Billed Cuckoo	Coccyzus erythropthalmus	Tent caterpillar nest, Malacosoma	Pest of an urban and foreign tree.
Blackbirds	Turdus merula	Diamond-Back Moth	Cruciferous vegetable
Black-Cheeked Woodpecker	Melanerpes pucherani	Wasp	Generalized predator
Black Drongo	Dicrurus macrocercus	Pod borer larvae – Helicoverpa armigera	Pigeon pea, chickpea, maize, and sorghum
Black-Rumped Flameback	Dinopium benghalense	Stem borers (moths and beetles)	Cardamom, coffee, and cocoa
Blue-Cheeked Bee-Eater	Merops superciliosus	Vanessa adult	Generalized predator

Table 18.3 (continued)

Common insectivorous birds	Scientific name	Target insects	Crops
Blue-Throated Flycatcher	Cyornisru beculoides	Wide range of insect species	Different species of crops
Boat-Tailed Blackbird (Green-Tailed Grackle)	Quiscalus major	Cabbage Looper	Cabbage
Botteri's Sparrow	Peucaea botterii	Helicoverpa Spp,	Polyphagous pest
Brain fever bird or Indian Hawk Cuckoo	Hierococcyx varius	Cricket – Gryllodes melanocephalus, Weaver ant – Oecophylla smaragdina, Cotton stainer – Dysdergus superstitious, Sand burrowing insect – Schyzodactylus monstruosu, Adult and larva of Agrotis ipsilon, Cotton stainer nymphs beetle – Anomala, Mole cricket – Gryllotalpa, Tobacco grasshopper – Attractographa	Guava, jackfruit, sapota (chiku), paddy, ragi, sorghum, tobacco, and cotton
Brewer's Blackbird, Baltimore Oriole, English Sparrow (house sparrow), Warbling Vireo	Euphagus cyanocephalus, Icterus galbula, Passer domesticus, Vireo gilvus	Rose Weevil, Canker Worm	Rose, Deciduous forest, shade forest, and ornamental trees
Bronze Grackle (Common Grackle), Yellow-Headed Blackbird, English Sparrow (house sparrow), Vesper Sparrow, Migrant Shrike (Loggerhead Shrike)	Quiscalus quiscula, Xanthocephalus xanthocephalus, Passer domesticus, Pooecetes gramineus, Lanius ludovicianus	Armyworm	Polyphagous
Cattle Egret	Bubulcus ibis	Spodoptera, Helicoverpa	Sunflower, groundnut, and potato
California Gull	Larus californicus	Mormon Cricket	Household pest

Table 18.3 (continued)

Common insectivorous birds	Scientific name	Target insects	Crops
Cedar Bird (Cedar Waxwing)	Bombycilla cedrorum	Elm Leaf Beetle	Leaf-chewing insect of an elm tree
Chin-Spot Puffback	Batis molitor	Tree looper	Pest of forest tree and fruit crop
Chippy (Chipping Sparrow)	Spizella passerina	Cabbage Worm, Pea Louse	Cabbage, pea
Common Hoopoe/ Eurasian Hoopoe	Upupa epops	Mole cricket – Gryllotalp, Sand burrowing insect – Schyzodactylus monstruosu, Adult and larva of Agrotis ipsilon and spilosoma obliqua	Pulse crops like chickpea, pigeon pea; oilseed crops like castor, sunflower, and groundnut
Common Iora	Aegithina tiphia	Variety of insect species and spiders	Different species of crops
Common tailorbird	Orthotomus sutorius	Aphids	Mustard, guava, cotton, cowpea, and beans
Crow (Am. Crow), Robin (American Robin)	Turdus migratorius	White Grub (June beetle)	Sugarcane, groundnut, and many other crops
Crow Blackbird (Common Grackle)	Quiscalus mexicanus	Periodical Cicada	Loudest insect
Eurasian Blackbird	Turdus merula	Wide species range	Different species of crops
Forest Wagtail	Dendronanthus indicus	Wide insect species range	Different species of crops
Grasshopper Sparrow, Greater Roadrunner, American Kestrel, Common Black Hawk, Corn Bunting, Lesser Kestrel, Lilac Breasted Roller	Ammodramus savannarum, Geococcyx californianus, Falco sparverius, Buteogallus anthracinus, Emberiza calandra, Falco naumanni, Coracias caudatus	Grasshopper	Pest of many crops

Table 18.3 (continued)

Common insectivorous birds	Scientific name	Target insects	Crops
Great Grey Shrike	Lanius excubitor	Insect species belongs to Orthoptera, Hymenoptera, Lepidoptera, Coleoptera, and Heteroptera	Different species of crops
Great Tit	Parus major	Helicoverpa armigera and other Lepidoptera insects; Also insects belonging to Orthoptera, Neuroptera, Coleoptera, Heteroptera, Myriapoda, Formicidae, Gasteropoda; larvae belonging to Symphita	Cotton, sorghum, pulses, groundnut, tomato
Greenish Warbler	Phylloscopus trochiloides	Diverse insect targets	Different species of crops
Grey Wagtail	Motacilla cinerea	Plutellama culipennis, Brevicoryne brassicae and Aphis craccivora,	Cotton, Cabbage, peas, field bean, and guava
Hairy Woodpecker	Leuconotopicus villosus	Cecropia Moth, Tussock Moth	Polyphagous, Blueberry
Indian Crow	Corvus plendens	Borer – Adisuraatkinsoni, sand borrowing insect – Schyzodactylusmonstruosu, Cricket – Brachytripsachattinu, Darkling beetle – Opatrum sp., Mole cricket – Gryllotalpa	Tomato, field beans, groundnut, sorghum, millets, cotton, pulses
Indian roller	Coracias benghalensis	Rhinoceros beetle – Oryctus rhinoceros, Mole cricket – Gryllotalpa	Groundnut, ragi, pigeon pea, cotton, cucurbits, Guava
Indian wren warbler, fledglings	Prinia inornata	Hairy caterpillars, aphids, defoliators	Ragi, millets, groundnut, pulses

Table 18.3 (continued)

Common insectivorous birds	Scientific name	Target insects	Crops
Jack snipe (Wilson's Snipe)*, Curlews, Upland plover (Upland Sandpiper), Plovers, Quail (No. Bobwhite), Prai-Rie Chicken, Blackbirds, Yellow- Headed Blackbird, Bobolink, Western meadow lark, Orioles, Sparrows, Robin (American Robin)	Lymnocryptes minimus, Numenius spp, Bartramia longicauda, Colinus virginianus, Tympanuchus cupid, Turdus merula, Xanthocephalus xanthocephalus, Dolichonyx oryzivorus, Sturnella neglecta, Icterus, Turdus migratorius	Rocky Mountain Locust	Polyphagous
Large-Billed Leaf Warbler	Phylloscopus magnirostris	Many species of insects	
Little Green Bee-Eater	Merops orientalis	Aphis craccivora, Pieris brassicaae; Apis florea, A. mellifera, A. dorsata and A. cerana.	Pea, cabbage, cauliflower
Little Swift	Apus affinis	Aerial insectivore; Insects belong to Diptera, Hymenoptera, Hemiptera, and Homoptera	Different species of crops
Magnolia Warbler	Setophaga magnolia	Spruce budworm,	Pest of Spruce
Myna adults	Acridotheres tristis	Ash weevil-Myllocerous discolor, Weaver ant - Oecophylla smaragdina, Driver ant - Dorylu, Rice grasshopper, beetle - Anomola, Darkling beetle	Pigeon pea, paddy, jackfruit, guava, sapota (chiku), custard apple
Myna Fledglings	Acridotheres tristis	Insect species of Orthoptera, Lepidoptera, Coleoptera, Hymenoptera, <i>Trichoplusia</i> , and other defoliators	Sunflower, cotton, pigeon pea, maize, sorghum

Table 18.3 (continued)

Common insectivorous birds	Scientific name	Target insects	Crops
Myrtle Warbler, Blackpoll Warbler, Oregon Chickadee (Black-Capped Chickadee)	Setophaga coronata, Setophaga striata, Poecile atricapilla	Plant lice (Aphids)	Polyphagous
Oriental Honey Buzzard	Pernis ptilorhyncus	Larvae of Paper wasps – <i>Polistes</i> spp.	Generalized predator
Paddy Field Pipit	Anthus rufulus	Diverse insect species	Different species of crops
Paddy field Warbler	Acrocephalusa gricola	Diverse insect species	Different species of crops
Pied Bushchat	Saxicola caprata	Helicoverpa armigera and other insects	Sorghum, Pulses, cotton, groundnut, and tomato
Red-Rumped Swallow	Hirundo daurica	Various insect species belong to Hymenoptera, Homoptera, Coleoptera, and Diptera	Different species of crops
Red-Shafted Flicker (N. Flicker)	Colaptes auratus cafer	Codling Moth	Different species of crops
Red-Throated Pipit	Anthus cervinus	Different insects	Different species of crops
Road Runner	Geococcyx californianus (the greater roadrunner) Geococcyx velox (The lesser roadrunner)	Passion-Vine Caterpillar	Passion flower
Rose-Breasted Grosbeak Cliff Swallow	Pheucticus ludovicianus	Potato Beetle	Potato and sweet potato
Rufous Woodpecker	Celeus brachyurus	Diversified target species	Different species of crops
Oriental Magpie Robin	Copsychus saularis	Helicoverpa armigera and other insects	Sorghum, pulses, cotton, groundnut, and tomato

Table 18.3 (continued)

Common insectivorous birds	Scientific name	Target insects	Crops
Starling, Western Meadowlark	Sturnus vulgaris, Sturnella neglecta	Cutworms	Cereals and vegetables
Tawny Flanked Prinia	Prinia subflava	Aerial insectivore; Insects belonging to Hemiptera and Hymenoptera	Different species of crops
Thick-Billed Warbler	Acrocephalus aedon	Diversified insect species	Different species of crops
Tickell's Blue Flycatcher	Cyornis tickelliae	Diverse insect species	Different species of crops
Valley Quail (CA Quail)	Callipepla californica	Black Olive Scale	Olive
Verditer Flycatcher	Eumyias thalassinus	Wide range of insects	Different species of crops
Western Crow (Am. Crow)	Corvus brachyrhynchos	Climbing Cutworm	Maize
Western Meadowlark	Sturnella neglecta	Coulee Cricket	Household pest
White-Bellied Fantail	Rhipidura euryura	Wide range of insects	
White-Breasted Nuthatch	Sitta carolinensis	Pear Psylla	Pear
White-Browed Fantail	Rhipidura aureola	Wide range of insects	
White-Crowned Sparrow	Zonotrichia leucophrys	Aphis (Rose Aphid)	Rose
Wire-Tailed Swallow	Hirundo smithii	Flies including horn flies, face flies, horse flies, leafhoppers, grasshoppers, crickets, moths, beetles, wasps.	Different species of crops
Wood shrike	Tephrodornis pondicerianus	Diverse insect targets	Different species of crops
Yellow-Billed Cuckoo	Coccycus americanus		

Table 18.3 (continued)

Common insectivorous birds	Scientific name	Target insects	Crops
Yellow-Billed CuckooBaltimore Oriole, English Sparrow (House Sparrow), Cedar Bird (Cedar Waxwing), Yellow Warbler, Robin (American Robin), Blue Jay, Orchard Oriole	Coccyzus americanus, Icterus galbula, Passer domesticus, Bombycilla cedrorum, Setophaga petechial, Turdus migratorius	Walnut Caterpillar, Forest Tent Caterpillar, Catalpa Sphinx, Orchard Tent Caterpillar	Walnut, forest tree, Catalpa, trees
Yellow-Billed Cuckoo, Kingbird (E. Kingbird), Great-Crested Flycatcher, Phoebe (E. Phoebe), Wood-Pewee (E. Wood-Pewee), Orchard Oriole, Baltimore Oriole, English Sparrow (House Sparrow), Chippy (Chipping Sparrow), Field Sparrow, Song Sparrow, Chewink (E. Towhee), Cardinal, Scarlet Tanager, Cedar Bird (Cedar Waxwing), Red-Eyed Vireo, Warbling Vireo, Yellow Warbler, Catbird (Grey Catbird), Carolina Wren	Colaptes auratus cafer, Tyrannus tyrannus, Myiarchus crinitus, Sayornis phoebe, Contopus sordidulus, Icterus spurius, Passer domesticus, Spizella passerine, Spizella pusilla, Melospiza melodia, Pipilo erythrophthalmus, Cardinalis cardinalis, Piranga olivacea, Bombycilla cedrorum, Vireo olivaceus, Vireo gilvus, Setophaga petechial, Dumetella carolinensis, Thryothorus ludovicianus	Leaf-miner	Polyphagous
White-Browed Wagtail	Motacilla madaraspatensis	Aphis craccivora, Plutellama culipennis and Brevicoryne brassicae	Peas, field beans, cabbage, guava, and cotton
White-Naped Tit	Machlolophus nuchalis	Pod Borer/American Bollworm – <i>Helicoverpa</i> armigera	Sorghum, cotton, groundnut, and pulses
White Wagtail	Motacilla alba	Plutellama culipennis, Aphis craccivora and Brevicoryne brassicae,	Peas, field beans, cabbage, guava, and cotton

temperate zones [71]. It has also been estimated that the expenditure on bird ranges adds between 100-400 billion USD per annum to the world's economy and showed birds were responsible for increased production of coffee worth US\$310/ ha by controlling coffee berry borer, Hypothenemus hampei through bird predating [55]. In addition, birds saved farmers from post-harvest costs of removing mummified almonds and gave a positive net return of AUD 25-275/ ha averaged across almond orchards [72]. Based on gut contents analysis, it was observed that each bird consumes around 2,100 Casebearer larvae, estimated to add the worth of US\$2900 to the pecan industry [73].

Tropical studies revealed that the success of birds as predators of insect pests in agricultural landscapes is correlated with native forest proximity. Lemon-bellied white-eye (Zosterops chloris) occurs in both forest habitats and coffee plantations, and it plays an important role in suppressing insect pests population in a coffee plantation, and the pest control is enhanced when it is planted at forest proximity [15]. The cabbage looper population has been reduced by 21%, and in broccoli too, insectivorous birds have reduced the two-caterpillar species [74]. Birds killed an average of 41% of overwintering codling moths, Cydia pomenella, in walnut orchards [75]. Various studies reported that between 13–99% of the overwintering stage of Codling Moth were consumed by birds, especially near the habitat. The setting of nest boxes increases the density of Great Tits (a relative of chickadees), thereby increasing apple yields by 66% [7, 76]. Birds help reduce olive fruitflies in pupae stages. They consume 65-71% of the pupae in the soil. Dark-Eyed Juncos in large flocks of 50 to 150 birds consume large numbers of insects, as it was found that 23,000 to 70,000 Pear Psylla females, with a potential to produce around 7 to 23 million eggs, were preyed on by the birds. Another study of gut contents analysis of Black-Capped Chickadees, Red-Breasted, and Golden-Crowned Kinglets Nuthatches contained large numbers of winter psyllas [77]. Installation of bird nest boxes has greatly increased the abundance of Western Bluebirds and their ability to insects predation in the vineyards. The highest removal of insects, i.e., 59%, was seen closest to the bird boxes. DNA analysis of fecal matter showed that birds were not consuming natural enemy insects as only 3% of the natural enemies were reported in their diet [54]. Songbirds reduced the population of alfalfa weevils by over 33% [78]. Birds reduced corn insect pests by 34-98% in different studies. Birds were estimated to reduce 20-26% of leaf damaging grasshoppers in millet [79]. Examination of fecal matter collected from the active mud cavity previously nested by birds reported 18-84% of pest insects and around 34-70% of cutworms in the fecal analysis [80]. In feeding trials using nonparasitized and parasitized Armyworms, preference of birds was tested, and it was seen that birds strongly preferred the larger nonparasitized insects than the parasitized ones [28]. Birds reduced grasshoppers selectively in different sites by 25-55% [81, 82]. When pest abundance ranged from medium to high, European Starlings ate 40-60% of pasture grubs [83]. Releasing wild falcons in New Zealand vineyards reduces pests by 78-83% and grape damage by 55-95% [84]. Pest reduction by various birds and crops is listed in Table 18.4.

Table 18.4: Pest insects and other invertebrates managed with beneficial birds.

Crop	Insectivorous birds	Target insect and other arthropod pests	Benefits by insectivores bird	Reference
Vegetable cr	ops			
Broccoli	Red-Crested Cardinals	Trichoplusia ni and Artogeia larvae	More insectivores bird activity	[74]
	Swallows and Sparrows	Aphids, Caterpillars, and Flea Beetles		[85]
	Wild Birds in South Korea	Aphids		[86]
	Savanna Sparrows	Experimental Cabbage Loopers	Pest reduction by 49%	[87]
Beetroot	W. Bluebirds, Chipping Sparrows, Am. Goldfinches, and other insect-eating birds	Beet Armyworms	Reduced Pest by 58%; and consumed around 3% natural Enemies	[54]
Dried Beans	Sparrows, Baya's, Mynahs, and Black Drongos	Bollworm/Pod Borer	Insects damage by 84%, thereby Increasing in yield by 71%;	[88]
Fruit crops				
Apples	CA Scrub and Stellar's Jays, Am. Robins, EU Starlings, Ruby-Crowned Kinglets, N. Flickers, Downy Woodpeckers, Oak Titmice, Brewer's Blackbirds, and Chestnut-Backed Chickadees	Live Experimental Codling Moth Larvae	Reduction of overwintering egg 77–91%;	
	EU Robins, Common Blackbirds, EU Blackcaps, EU Wrens, Great and EU Blue Tits	Aphids, Apple Blossom Weevils, and other arthropods	Reduction in Aphid and natural enemy population	[89]
	Great Tits	Codling Moths	Reduction in pest damage by 11–14% and overwintering pest by 90% thereby increasing yield by 66%	[76]

Table 18.4 (continued)

Crop	Insectivorous birds	Target insect and other arthropod pests	Benefits by insectivores bird	Reference
Cacao	Indonesia Birds Including Flowerpeckers, Sunbirds, and White Eeyes	Arthropods	Yield increased by 31%	[76]
Olives	Birds of Greece	Olive Fruit Flies	Reduced overwintering Pupae by 65–71	[90]
Strawberries	Insect-eating birds (e.g., Black Phoebes, Pacific- Slope Flycatchers), and fruit-eating birds (e.g., House Finches, Am. Robin, EU Starling)	Mainly Lygus Bugs, but also Leaf-rollers and Slugs	, Reduced insect damage [50]	
Wine Grapes	Great Tits, House and Tree Sparrows	Greater Wax Moth Caterpillars.	Reduced one-third pest population	[53]
Foodgrain cro	pps			
Corn	Red-Winged Blackbirds	EU Corn Borers	Reduced damage 20% and overwintering Pest by 64–82%	[91]
	Red-Winged Blackbirds	Corn Rootworm Beetles	Reduced insect damage by 50% in early stage of planting but caused 80% crop damage later on	[92]
	Downy Woodpeckers	Corn Borers	Reduction in overwintering insects stages by 34%	[93]
Millet	Senegalese Birds, Including Cattle Egrets, Sparrows, Rollers, Buzzards	Senegalese Grasshoppers	20–26% Pest population has been reduced	[79]
	Grackles, Yellow-Headed Blackbirds, Chipping Sparrows, Bluebirds, Prairie Hens, and EU Starlings	Armyworms	40 avian Species with a significant amount of Armyworms in their gut had been removed	[94]

Table 18.4 (continued)

Crop	Insectivorous birds	Target insect and other arthropod pests	Benefits by insectivores bird	Reference
Wheat	Horned Larks and McCown's Longspur	Pale Western Cut Worms, Grasshoppers, Ants, and Beetles	3 Gut contents revealed 4–70% of Caterpillars	[95]
Commercial	crops			
Coffee	Guatemalan Birds Foraging on Insects	Coffee-Berry Borers and other arthropods	Reduced insect pest by 64–80% and foliage damage by 28%;	[96]
Cotton	Ugandan Birds	Experimental Caterpillars	Catches 2-4% insects per day	[97]
	Most important birds: Orioles, Black Bird, Meadlowlarks, Painted Buntings, Quail, Morning Doves, and Mockingbirds	Cotton boll Weevils	28 bird species found with significant amount of boll Weevils in their gut	[97]
Rapeseed and Oilseeds	Ethiopian Birds	Cabbage Flea Beetles, Aphids, Lepidopteran Skeletonizers and Chewing Larvae	Birds decrease leaf damage	[98]
	Common Swifts, Barn Swallows, and House Martins	Cabbage Seedpod Weevils and Pollen Beetle Pests	18-84% of prey consumed crop- damaging pest	[99]
Oil Palm	Oriental Magpie Robin, Ashy Tailor Birds, and Greater Coucal	Several Caterpillars	Reduced damage at an early stage in plants	[98]
Tea	Indian Birds (Asian Pied Starling, Chestnut-Tailed Starling, Jungle Myna, and Red-Vented Bulbul	Geometrid Looper Caterpillars	Reduction in pest populations	[98]
Tobacco	Common Grackles	Tobacco Hornworm	Eaten away 50-100% of insects pest	[98]
	Am. Crows, Mockingbirds, E. Bluebirds, and House Sparrows	Tobacco Hornworm	Reduction in 40-50% of insect populations	[100]

18.5 Improving the population of insectivorous birds

The availability of various resources such as perching trees, nesting trees, and substrates near human inhabitation may encourage insectivorous bird species to inhabit and reproduce. Nest boxes may greatly enhance the insectivorous bird population in the absence of cavities. Using palm and coconut leaf stumps as bird perches in rice fields has boosted insectivorous bird visits. Birds that nest in cavities have specific nest box needs. Similarly, the widespread use of nest boxes may minimize the requirement for chemical spraying and its associated costs in an integrated pest control system. Species-specific box placement should be varied. Various studies created nest boxes for Indian Myna, Brahminy Starling, Bank Myna, Blue Jay, Spotted Owlet, Magpie Robin, and Indian Robin. Bird nest boxes for bug-eating birds may help reduce agricultural pest numbers and avoid pest out breaks. Fixing perches @50/ha in chickpea boosted the effectiveness of predatory birds, including Drongo, Mynas, and sparrow. Some nest specifications for various species are listed in Table 18.5.

Table 18.5: Nest specifications of various bird species (inches).

Species	Diameter of entrance	Entrance height above the bottom	Depth of cavity	Bottom of cavity
Kestrel	3.0	12-14	14-18	8 × 8
Woodpecker	1.25	6-8	8-10	4 × 4
Myna	2.5	14-16	16-18	7 × 7
Blue Jay	2.0	9–12	12-15	6 × 6
House Sparrow	1.0	5-6	6-8	4 × 4
Indian Robin	1.5	7-8	8-10	5 × 5
Swallows	1.5	4-5	6	5 × 5

To improve the insectivorous bird population and replace the chemical usage, peak insect infestation periods may use a combo of bird releases and bio-pesticides. A long-term, comprehensive strategy is needed in this respect, requiring more scientific studies. Chemical recommendations should be based on detailed data on residual levels. Collaborative work of entomologists, ornithologists, and extension agents is needed in technology transmission.

18.6 Birds as a menace to crops and their control

While insectivorous birds have more beneficial and less detrimental consequences, granivorous birds have a more detrimental effect on economic crop and fruit yield. Some farmers employ illegal methods of killing birds using agrochemicals. Other strategies like the wrapping method, reflective bird scaring ribbon, high-density cropping, mechanical bird scare, and herbal repellents (Figure 18.5) are also used not directly to harm bird life. A description of various bird control methods is listed in Table 18.6.

Figure 18.5: Methods for controlling birds in agricultural fields.

18.7 Constraints and uncertainties in the use of birds as insect control

The use of various birds as an agent to control the insects is unreliable, in some cases, as it can cause crop damage, which includes in the ecosystem disservices by birds [101] (Figure 18.6). Ecosystem disservices, or those features of an ecosystem that have a detrimental effect on people, may disproportionately influence conservation choices of farmers. Birds, in particular, might have broader impacts on crops, ranging from beneficial to detrimental. Therefore, it is critical to measure them scientifically. For example, birds may be profuse on farms next to natural areas and help the ecology by eating pests. Birds are opportunistic feeders, and they show facultative responses to a sudden increase in the prey [102]. The major constraint is that the bird species would indirectly consume the beneficial and the potential agents of natural controllers of pest arthropods like a dragonfly, damselfly, and yellow banded wasps

Table 18.6: Various methods for controlling birds in agricultural fields.

Methods	Methodology	Advantages	Crops
Wrapping method	A leaf was wrapped around the cob in two or three loops and secured by a loose knot in the last loop near the top. The objective was to disguise a cob in a leaf.	This procedure is less tedious than scaring and does not need any materials.	Maize
Reflective bird scaring ribbon	The reflective ribbon is a polyester film with a red and silver metallic coating. It is made of a polyester sheet, 1.5 cm wide and 15–20 m long strips. They are attached parallel to the crop at 0.5 m height above the crop using bamboo poles and strings at 5 m intervals. It should be orientated north or south to gain more sunshine.	The use of ribbons to scare birds is extremely successful and acceptable to farmers.	Cumbu and other millets
High- density cropping	Planting the crops with close row and plant spacing	High-density sorghum (fodder crop) and maize planting minimized the grain damage caused by parakeets and other birds. This approach increased the yield, while simultaneously providing fodder.	Sorghum and maize
Mechanical bird scare	Mechanical It is small machinery, and a basic sound generator works on 1 kilogram of bird scare calcium carbide and water for 24 h. This approach efficiently covers 1-hectare areas.	To prevent habituation, vary the firing frequency, location, and direction.	Maize and other grains
Herbal and chemical repellents	Bird damage was reduced in maize and sorghum cropping systems using 200 ml/L Neem cake mixture and 10% Tobacco leaf decoction. A 10% sorghum spray during the lactation stage reduced avian harm. Copperoxychloride (3 gm/kg seed) reduces bird seedling losses in maize, chickpea, sunflower, and peanut. During the milky stage of sunflower, to repel the insects, the heads are covered with aluminum foil-covered paper plates and sprayed with egg solution @20 ml/lit. Using organic manures like FYM enhances the microclimate and attracts insectivorous birds.	Easy to use	Sorghum, maize, pulses

[103]. When birds prey more on beneficial predatory arthropod insects than on pest species (intraguild predation), they may harm farmers by reducing crop productivity. A soybean field study conducted in Illinois (USA) discovered that plants with birds have far less insect damage to their leaves than in control plots, but their influence on yield was not significant. Thus, the data indicated no net benefit or loss on the productivity of the crop [104].

Constraints in using birds for insect control

Figure 18.6: Constraints and uncertainties in using birds as biocontrol agents.

Furthermore, studies conducted in Tamil Nadu Agricultural University farms, India, suggested employing the birds, an effective pest biocontrol agent, but not much information is available on their yield losses quantification [9]. Hence, more scientific studies on the ecosystem services and disservices of birds must be done in agricultural ecosystems, with various cropping systems in different agroclimatic regions and seasons.

Syrphid flies and lady beetles are natural enemies of the pest aphid of cereal crops, especially at the high-density times of aphids. These are natural enemies eaten away by insectivorous Eurasian Tree Sparrows (Passer montamus) [105]. Birds are considered as vectors of disease-causing enteric pathogens such as Salmonella enterica. It was evident that migrating Sandhill cranes were causative agents of the outbreak of Campylobacter in peas [106]. Bird species may adversely affect the cultivars by damaging the crop intraguild predators, leading to economic losses [107].

18.8 Impact of agriculture expansion on bird population

The expansion and intensification of agriculture, such as increased mechanization and high use of chemical pesticides, ultimately affect the birds of croplands. Studies conducted by Tamil Nadu Agricultural University, India, found that many bird visits occurred in organic rice fields rather than conventional chemical-sprayed rice fields [9, 10]. Several studies showed that agriculture-dependent birds are harmed due to the use of pesticides. It is evidenced that insecticides used on rice seeds in nurseries killed Ruddy Shelduck, Lesser-whistling Duck, and Spot-billed ducks. The Indian Peafowl have faced a high degree of threats due to poison baits. The extinction of scavenging birds, such as the vulture and decline of crow and granivorous birds may be attributable to the lingering effects of agrochemicals. The disappearance of several insectivorous birds (Drongos, Bee-eaters) and nesting failure in raptors have been documented at pesticide-contaminated locations in Ambala, Bharatpur, Morena, Thrissur, Parambikulam, Coimbatore, and Andhra Pradesh [108].

Similarly, the pelican population in Karnataka decreased by 2000 [109], and the breeding population of Sarus crane in Bharatpur, Rajasthan, was also found to decline. The presence of different residual levels of organochlorine were detected in several tissues and eggs of bird species, including large Egret, large cormorant, Indian shag, Darter, Grey heron, Cattle egret, and Painted stork [110, 111]. In Corbett National Park, the Himalayan Grey-headed Fishing Eagle has failed to reproduce due to varying levels of pesticide residues [111, 112]. Between 1987 and 1990, Aldrin application on the wheat fields killed 50 collared doves and a few blue rock pigeons in Bharatpur, Madhya Pradesh, and Aldrin residues were found in the gastrointestinal tract of a Sarus crane and a Collared dove. Embryonic maldevelopment, behavioral aberrations in breeding, and physiological disturbances are all impacts. Organophosphate and carbamate compounds could affect singing, attentiveness, and disrupted nesting behavior. So maintaining the balance between deterring predators and encouraging insectivorous birds may be implemented. Several key practices are briefly mentioned below. Some recent studies revealed that these birds were contaminated by chemical residues such as polychlorinated hydrocarbons and dioxins [113–116]. This leads to thinning of eggshells, immature growth of young ones, habitat destruction, food availability, and breeding resources reduction, and finally, mortality [117]. The extensive use of Second Generation Anticoagulant Rodenticide (SGARS) affects nontarget species like Red Kites and barn owls by transfer through the food chain, causing potentially lethal levels of nearly about 30% [118]. According to the studies, extensive large-scale ranching and shifting cultivation of slash and burn agriculture practices adversely affect the birds and allow migration to various habitats other than particular agricultural croplands [119]. This decline in bird population may also occur due to the intentional monoculture of commercial cultivation like biofuel crops [120]. The positive effects of birds as insect control on

farmlands can be improved by promising methods such as bird netting, natural habitats of hedgerows, etc. However, the major implied constraint is that these methods are expensive and make it difficult for widespread application by the farmers.

18.9 Research gaps

18.9.1 Need for advanced studies

Molecular methods should be used in ecological studies of bird and insect relationships. For example, quantifying net impacts and characterizing bird diets using molecular methods may help us understand agroecosystem ecology and its relationship with birds and insects [70, 103]. However, lack of funding and fewer researchers on this science are also major problems in conducting advanced research.

18.9.2 Need for crop-specific and regional studies

Very little research on net impacts has been done on various crop species and locations. It is uncertain that previous generalizable studies on birds across various agroecosystems are usually exaggerate the ecosystem services by birds, but it can be quantified when additional research is undertaken across croplands and geographies [103]. Researchers will not make universal advice but must, instead, adjust their results to each agroecosystem [103, 121].

18.9.3 Need for realistic studies

Studies from the period of economic ornithology typically tell us the role of birds as biocontrol agents, as interpreted by the presence of a pest in a bird's stomach as proof of pest population control [70, 103]. The role of a few bird species in pest control is uncertain to farmers. Conversely, several species implicated as pest control agents may harm crops or devour beneficial arthropods. Many diet studies (molecular or otherwise) will be required to understand better, how different species adjust their diets in various agricultural environments throughout the year.

18.9.4 Need for economic studies

However, a farmer may opt to repel hazardous birds, if the cost of the damage surpasses the expense of the deterrent strategy. In this situation, netting barriers,

falconry, or raptor perches may help reduce bird damage. However, before using bird deterrents, a farmer must determine their cost-effectiveness [103, 122]. Birds may soon be included in regional IPM programs, as more research is being done on their benefits and drawbacks. The emerging science of molecular food analysis will aid researchers in determining which birds contribute to net impacts and in what agricultural scenarios.

18.9.5 Need for collaborative work

Researchers must work closely with stakeholders to acquire relevant data for critical decision-making phases (e.g., adoption, planning, intervention, assessment) [103, 121]. The decline of economic ornithology is due to a lack of practical advice and stakeholder participation [69, 70]. To maintain stakeholder support, admit when to use and when birds cannot be used as biological control agents. For example, blueberries and cherries are high-energy foods for various fruit-eating birds [103, 123]. In some cases, rather than improving services, it may be required to investigate techniques to reduce disservices (e.g., bird netting or falconry). Generalizing some bird species as beneficial or pests may not be fair, without any scientific assessment. Collaborating with farmers, landowners, and other stakeholders to convey this context-specific knowledge is critical. Scientists must work closely with farmers, landowners, and other stakeholders to guarantee the delivery of ecosystem services by birds (e.g., insect control) [103, 124].

18.9.6 Planning and policy to incorporate in IPM

Though many studies on birds have already been done, it is unclear how avians as biological control agents fit into IPM plans. Using natural enemy measures to integrate arthropod natural enemies into IPM decision-making in wheat, soybean, and walnut cropping systems may give promising results [103, 125, 126]. From economic ornithology to bird net effects and ecosystem services, the study of birds in agroecosystems has to be evolved. In addition, this research might provide valuable information on how certain bird populations affect specific crops in specific places [103].

18.10 Future scope and perspectives

Studying the agroecosystem of birds through ecosystem services and disservices allows us to revisit the insights given in economic ornithology developed in earlier days. However, the current studies on birds in insect control need several changes.

First, there is a strong need to conduct advanced studies in molecular biology, regionally specific, crop-specific, and agroecosystem-specific studies. The studies should also report the realistic scenario of using birds as biocontrol of insects without bias and exaggeration. Finally, economic analysis should be done to know the feasibility of the birds as biocontrol agents, especially in changing climatic conditions. After the economic analysis, the planning and policy to incorporate in IPM should be done, if it is economically feasible (Figure 18.7).

Figure 18.7: Future scope, perspectives, and research gaps in biocontrol of insects by birds.

18.11 Conclusion

Birds provide various ecosystem services; among them, one of the most important services is insect and pest regulation. As a consequence of their usefulness to farmers, it is advocated that most birds in the agro-environment should be protected, since they are beneficial in one way or another. It is vital to organize periodic awareness programs on the importance of birds to benefit farmers in maximizing their profits. It should also be made clear to people that they should not cause harm to perch and nesting areas. An artificial perch will be placed amid crops to attract more birds to the region, and this will be done in future. Maintaining biofencing in the agricultural farm lands may shelter many bird species that serve as insect predators. In order to minimize reliance on chemical fertilizers and pesticides, it is necessary to encourage the use of biological fertilizers and biological control agents, as this approach will not cause harm to birds. More research on nesting performance of commercially important bird species, breeding time, and the coincidence of these with the crop stages is the need of the hour, as this vital ecosystem service is highly underexplored scientifically. It is the right time for fruitful research to be carried out on this aspect in order to include insectivorous birds as a vital component in the Integrated Pest Management system.

Work contribution

G. K. Dinesh, Writing – first draft, data visualization, Software; B. Priyanka, Writing – first draft; Archana Anokhe, Writing - first draft; P. T. Ramesh, Writing - review and editing; R. Venkitachalam, Writing - review and editing; K. S. Keerthana Sri, Writing - review and editing; S. Abinaya, Writing - review and editing; V. Anithaa, Writing - review and editing; R. Soni, Writing - review and editing.

References

- [1] Ali S. Ornithology in India: its past, present and future (Sunder Lal Hora memorial lecture). Proceedings of Indian National Science Academy 1971, B37, 99-113.
- [2] Dhindsa MS, Saini HK. Agricultural ornithology: An Indian perspective. Journal of Biosciences 1994, 19, 391-402.
- Asokan S, Ali AMS, Manikannan R. Diet of three insectivorous birds in Nagapattinam District, [3] Tamil Nadu, India-a preliminary study. Journal of Threatened Taxa 2009, 1(6), 327-330.
- [4] Nyffeler M, Şekercioğlu ÇH, Whelan CJ. Insectivorous birds consume an estimated 400-500 million tons of prey annually. Science Nature 105, 472018.
- [5] Linden VMG, Grass I, Joubert E, Tscharntke T, Weier SM, Taylor PJ. Ecosystem services and disservices by birds, bats and monkeys change with macadamia landscape heterogeneity. Journal of Applied Ecology 2019, 56, 2069-2078.
- [6] Sekercioglu CH. Increasing awareness of avian ecological function. Trends in Ecology & Evolution 2006, 21, 464-471.
- [7] Mols CMM, Visser ME, Great tits (Parus major) reduce caterpillar damage in commercial apple orchards PLoS One 2007, 2, e202.
- [8] Millennium Ecosystem Assessment, MEA. Ecosystems and human well-being. Synthesis (Stuttq), 2005.
- [9] Dinesh GK, Ecology of birds and insects in organic and inorganic rice ecosystem. Coimbatore, Tamil Nadu Agricultural University, 2017.
- [10] Dinesh GK, Ramesh PT, Chitra N, Sugumaran MPP. Ecology of birds and insects in organic and conventional (In-Organic) rice ecosystem. International Journal of Current Microbiology and Applied Sciences 2018, 7, 1769-1779.
- [11] Symes CT, Venter SM, Perrin MR. Afromontane forest avifauna of the eastern Soutpansberg mountain range, Northern Province, South Africa. South African For Journal 2000, 189, 71-80.
- [12] Symes CT, Perrin MR. The habitat and associated bird assemblages of the grey-headed parrot poicephalus fuscicollis suahelicus in Limpopo Province, South Africa. Ostrich-Journal African Ornithol 2008, 79, 9-22.
- [13] Rusch A, Chaplin-Kramer R, Gardiner MM, Hawro V, Holland J, Landis D, Thies C, Tscharntke T, Weisser WW, Winqvist C. Agricultural landscape simplification reduces natural pest

- control: A quantitative synthesis. Agriculture Ecosystems and Environment 2016, 221, 198-204.
- [14] Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F, Gratton C, Hunt L, Ives A, Jonsson M, Larsen A. When natural habitat fails to enhance biological pest control-Five hypotheses. Biological Conservation 2016, 204, 449-458.
- [15] Maas B, Tscharntke T, Saleh S, Dwi Putra D, Clough Y. Avian species identity drives predation success in tropical cacao agroforestry. Journal of Applied Ecology 2015, 52, 735-743.
- [16] Puig-Montserrat X, Torre I, López-Baucells A, Guerrieri E, Monti MM, Ràfols-García R, Ferrer X, Gisbert D, Flaquer C. Pest control service provided by bats in Mediterranean rice paddies: Linking agroecosystems structure to ecological functions. Mammalian Biology 2015, 80, 237-245.
- [17] Mitsch WJ, Gosselink JG. The value of wetlands: Importance of scale and landscape setting. Ecological Economics 2000, 35, 25-33.
- [18] Government of India. State of Indian agriculture 2015-16. New Delhi, 2016.
- [19] Frolking S, Yeluripati JB, Douglas E. New district-level maps of rice cropping in India: A foundation for scientific input into policy assessment. Field Crops Research 2006, 98, 164-177.
- [20] Edirisinghe JP, Bambaradeniya CNB. Rice fields: An ecosystem rich in biodiversity. Journal of the National Science Foundation Sri Lanka 2006, 34(2), 57-59
- [21] Sundar KSG, Subramanya S. Bird use of rice fields in the Indian subcontinent. Waterbirds 2010, 33, 44-70.
- [22] Bambaradeniya CNB, Fonseka KT, Ambagahawatte CL. A preliminary study of fauna and flora of a rice field in Kandy, Sri Lanka. Ceylon Journal of Science (Biological Sciences) 1998, 25,
- [23] Ponraman G, Anbalagan S, Dinakaran S. Diversity of aquatic insects in irrigated rice fields of South India with reference to mosquitoes (Diptera: Culicidae). Journal of Entomology and Zoology Studies 2016, 4, 252-256.
- [24] Pierluissi S. Breeding waterbirds in rice fields: A global review. Waterbirds 2010, 33, 123-132.
- [25] Pierluissi S, King SL, Kaller MD. Waterbird nest density and nest survival in rice fields of southwestern Louisiana. Waterbirds 2010, 33, 323-330.
- [26] Dhindsa MS, Toor HS. Feeding ecology of three sympatric species of Indian weaverbirds in an intensively cultivated area. In: Granivorous birds in agricultural landscape. Pinowski J, Summers-Smith JD, eds. Warsaw, PWN-Polish Scientific Publishers, 1990, 217-236.
- [27] Kler TK, Singh T. Potential of reflective ribbons and cob wrapping methods as birds deterrents in maturing maize. Pestology 2007, 31, 62-64.
- [28] Jones GA, Sieving KE, Jacobson SK. Avian diversity and functional insectivory on north-central Florida farmlands. Conservation Biology 2005, 19, 1234-1245.
- [29] Dickson JG, Segelquist CA. Breeding bird populations in pine and pine-hardwood forests in Texas. Journal of Wildlife Management 1979, 43, 549-555.
- [30] Ali S. The book of Indian birds (Salim Ali centenary edition). Oxford University press, 1996.
- [31] Nathan SPC, Rajendran B. Bird fauna of the rice crop ecosystem in Pondicherry region. Journal of the Bombay Natural History Society 1982, 79, 204-205.
- [32] Ali S, Ripley SD. Handbook of the birds of India and Pakistan Compact edition Oxford UnivPress BNHS, MumbaiAli, SSD Ripley (1995)PictGuidto Birds Indian Subcontinent Oxford UnivPress BNHS, Mumbai Baskaran, ST (1992)Sighting Dusky Horned Owl Newsl Birdwatchers. 1983, 32, 10.
- [33] Roberts TJ. The Birds of Pakistan (Volume 1): Regional Studies and Non-passeriformes. USA, Oxford University Press, 1991.

- [34] Brooke RK, Crowe TM. The birds of Pakistan Volume 2 Passeriformes, 1994.
- [35] Srinivasulu B, Srinivasulu C, Rao VV, Koteshwarulu C, Nagulu V. Avian use of paddy agroecosystem. Pavo 1997, 35, 75-84.
- [36] Henry GM. A guide to the birds of Sri Lanka. Oxford University Press, 1998.
- [37] Borad CK, Aeshita M, Parasharya BM. Conservation of the avian biodiversity in paddy (Oryza sativa) crop agroecosystem. Indian Journal of Agricultural Sciences 2000, 70, 378-381.
- [38] Bambaradeniya CNB, Edirisinghe JP, De Silva DN, Gunatilleke CVS, Ranawana KB, Wijekoon S. Biodiversity associated with an irrigated rice agro-ecosystem in Sri Lanka. Biodiversity Conservation 2004, 13, 1715-1753.
- [39] Grimmett R, Inskipp C, Inskipp T. Birds of the Indian subcontinent: India, Pakistan, Sri Lanka, Nepal, Bhutan, Bangladesh and the Maldives. Bloomsbury Publishing, 2016.
- [40] Subramanya S. Non-random foraging in certain bird pests of field crops. Journal of Biosciences 1994, 19, 369-380.
- [41] MacArthur RH. Geographical ecology: Patterns in the distribution of species. Princeton University Press, 1984.
- [42] Pithon JA, Moles R, O'Halloran J. The influence of coniferous afforestation on lowland farmland bird communities in Ireland: Different seasons and landscape contexts. Landscape Urban Plan 2005, 71, 91-103.
- [43] Morse DH. The insectivorous bird as an adaptive strategy. Annual Review of Ecology Evolution and Systematics 1971, 2, 177-200.
- [44] Losey JE, Vaughan M. The economic value of ecological services provided by insects. Bioscience 2006, 56, 311–323.
- [45] Kler TK, Kumar M, Dhatt JS. Study on the population of house sparrow passer domesticus in urban and rural areas of Punjab. International Journal of Advanced Research 2015, 3, 1339-1344.
- [46] Kler TK. Adaptability of 'T'-perches by insectivorous birds in Bt cotton fields. Pestology 2007,
- [47] Singh M. Bird composition, diversity and foraging guilds in agricultural landscapes: A case study from eastern Uttar Pradesh, India. Journal of Threatened Taxa 2021, 13, 19011-19028.
- [48] Shera PS, Arora R. Biointensive integrated pest management for sustainable agriculture. In: Singh B, Arora R, Gosal SS, eds. Biological and Molecular Approaches in Pest Management, Jodhpur, India, Scientific Publishers, 373-429.
- [49] Rutz C. Assessing the breeding season diet of goshawks Accipiter gentilis: Biases of plucking analysis quantified by means of continuous radio-monitoring. Journal of Zoology 2003, 259, 209-217.
- [50] Gonthier DJ, Sciligo AR, Karp DS, Lu A, Garcia K, Juarez G, Chiba T, Gennet S, Kremen C. Bird services and disservices to strawberry farming in Californian agricultural landscapes. Journal of Applied Ecology 2019, 56, 1948-1959.
- [51] Bharucha B, Padate GS. Assessment of beneficial role of an insectivorous bird, jungle babbler (Turdoides striatus) predation, on Helicoverpa armigera infesting pigeon pea (Cajanus cajan). Crop Acta Agronomica 2010, 59, 228–235.
- [52] Sri, NR, in: Chandel, BS ed. Latest trends in zoology and entomology sciences. New Delhi, India, AkiNik publications, 2018, 145.
- [53] Rey Benayas JM, Meltzer J, de Las Heras-bravo D, Cayuela L. Potential of pest regulation by insectivorous birds in Mediterranean woody crops. PLoS One 2017, 12, e0180702.
- [54] Jedlicka JA, Greenberg R, Letourneau DK. Avian conservation practices strengthen ecosystem services in California vineyards. PLoS One 2011, 6, e27347.
- [55] Karp DS, Mendenhall CD, Sandí RF, Chaumont N, Ehrlich PR, Hadly EA, Daily GC. Forest bolsters bird abundance, pest control and coffee yield. Ecology Letters 2013, 16, 1339-1347.

- [56] Maas B, Clough Y, Tscharntke T. Bats and birds increase crop yield in tropical agroforestry landscapes. Ecology Letters 2013, 16, 1480-1487.
- [57] Saunders ME, Peisley RK, Rader R, Luck GW. Pollinators, pests, and predators: Recognizing ecological trade-offs in agroecosystems. Ambio 2016, 45, 4-14.
- [58] Marquis RJ, Whelan CJ. Insectivorous birds increase growth of white oak through consumption of leaf-chewing insects. Ecology 1994, 75, 2007-2014.
- [59] Morrison EB, Lindell CA. Birds and bats reduce insect biomass and leaf damage in tropical forest restoration sites. Ecological Applications 2012, 22, 1526–1534.
- [60] Bael S, Philpott SM, Greenberg R, Bichier P, Barber NA, Mooney KA, Gruner DS. Birds as predators in tropical agroforestry systems. Ecology 2008, 89, 928-934.
- [61] Rajashekara S, Venkatesha MG. Insectivorous bird communities of diverse agro-ecosystems in the Bengaluru region. India Journal of Entomology and Zoology Studies 2014, 2, 142-155.
- [62] Wielgoss A, Clough Y, Fiala B, Rumede A, Tscharntke T. A minor pest reduces yield losses by a major pest: Plant-mediated herbivore interactions in Indonesian cacao. Journal of Applied Ecology 2012, 49, 465-473.
- [63] Meyer CFJ, Schwarz CJ, Fahr J. Activity patterns and habitat preferences of insectivorous bats in a West African forest-savanna mosaic. Journal of Tropical Ecology 2004, 20, 397-407.
- [64] Chamberlain DE, Wilson JD, Fuller RJ. A comparison of bird populations on organic and conventional farm systems in southern Britain. Biological Conservation 1999, 88, 307-320.
- [65] Wilson JD, Evans AD, Grice PV. Bird conservation and agriculture. Cambridge University Press Cambridge, 2009.
- [66] Sridhara S. Vertebrate pests in agriculture scientific publishers. New Delhi, India, 2016.
- [67] Gandhi T, Birds W. Animals and agriculture: Conflict and coexistence in India the Orient Blackswan. New Delhi, India, 2015.
- [68] CSIR. The Wealth of India: Birds, 1948.
- [69] Evenden MD. The laborers of nature: Economic ornithology and the role of birds as agents of biological pest control in North American agriculture, ca1880-1930. For Conservation History 1995, 39, 172-183.
- [70] Whelan CJ, Şekercioğlu CH, Wenny DG. Why birds matter: From economic ornithology to ecosystem services. Journal of Ornithology 2015, 156, 227-238.
- [71] Classen A, Peters MK, Ferger SW, Helbig-Bonitz M, Schmack JM, Maassen G, Schleuning M, Kalko EKV, Böhning-Gaese K, Steffan-Dewenter I. Complementary ecosystem services provided by pest predators and pollinators increase quantity and quality of coffee yields. Proceedings of the Royal Society B: Biological Sciences 2014, 281, 20133148.
- [72] Luck GW, Spooner PG, Watson DM, Watson SJ, Saunders ME. Interactions between almond plantations and native ecosystems: Lessons learned from north-western Victoria. Ecological Management and Restoration 2014, 15, 4-15.
- [73] Whitcomb WH. Tall Timbers Conf Ecol Anim Control Habitat Manage Proc, 1971.
- [74] Hooks CRR, Pandey RR, Johnson MW. Impact of avian and arthropod predation on lepidopteran caterpillar densities and plant productivity in an ephemeral agroecosystem. Ecological Entomology 2003, 28, 522-532.
- [75] Heath SK. Avian diversity, pest-reduction services, and habitat quality in an intensive temperate agricultural landscape: how effective is local biodiversity enhancement? University of California, Davis 2018.
- [76] Mols CMM, Visser ME. Great tits can reduce caterpillar damage in apple orchards. Journal of Applied Ecology 2002, 39, 888-899.
- [77] Odell TT. Bulletin: Number 549: The Food of Orchard Birds with Special Reference to the Pear Psylla, 1927.

- [78] Kross SM, Kelsey TR, McColl CJ, Townsend JM. Field-scale habitat complexity enhances avian conservation and avian-mediated pest-control services in an intensive agricultural crop. Agriculture Ecosystems and Environment 2016, 225, 140-149.
- [79] Axelsen JA, Petersen BS, Maiga IH, Niassy A, Badji K, Ouambama Z, Sonderskov M, Kooyman C. Simulation studies of Senegalese grasshopper ecosystem interactions II: The role of egg pod predators and birds. International Journal of Pest Management 2009, 55, 99-112.
- [80] Bumelis KH. Niche segregation among three sympatric species of swallows in southern Ontario, 2020.
- [81] Joern A. Experimental study of avian predation on coexisting grasshopper populations (Orthoptera: Acrididae) in a sandhills grassland. Oikos 1986, 46(2), 243-249.
- [82] Joern A. Variable impact of avian predation on grasshopper assemblies in sandhills grassland. Oikos 1992, 64(3), 458-463.
- [83] East R, Pottinger RP. Starling (Sturnus vulgaris L.) predation on grass grub (Costelytra zealandica (White), Melolonthinae) populations in Canterbury. New Zealand Journal of Agricultural Research 1975, 18, 417-452.
- [84] Kross SM, Tylianakis JM, Nelson XJ. Effects of introducing threatened falcons into vineyards on abundance of passeriformes and bird damage to grapes. Conservation Biology 2012, 26, 142-149.
- [85] Smith RK, Pullin AS, Stewart GB, Sutherland WJ. Effectiveness of predator removal for enhancing bird populations. Conservation Biology 2010, 24, 820-829.
- [86] Martin-Albarracin VL. Amico GC. Simberloff D. Nuñez MA. Impact of non-native birds on native ecosystems: A global analysis. PLoS One 2015, 10, e0143070.
- [87] Strandberg JO. Predation of cabbage looper, Trichoplusia ni, pupae by the striped earwig, Labidura riparia, and two bird species. Environmental Entomology 1981, 10, 712-715.
- [88] Gopali JB, Raju T, Mannur DM, Suhas Y. Bird perches for sustainable management of pod borer, Helicoverpa armigera (Hubner) in chickpea ecosystem. Karnataka Journal of Agricultural Sciences 2009, 22, 541-543.
- [89] García D, Miñarro M, Martínez-Sastre R. Birds as suppliers of pest control in cider apple orchards: Avian biodiversity drivers and insectivory effect. Agriculture Ecosystems and Environment 2018, 254, 233-243.
- [90] Ramadan-Jaradi G, Ramadan-Jaradi M. Olive Groves' avifauna in Lebanon: The composition of bird species and the importance of the inter-relation olive ecosystem and bird diversity. Chief Ed ProfrKhaled HAbu-Elteen 2021, 8, 23-28.
- [91] Bendell BE, Weatherhead PJ, Stewart RK. The impact of predation by red-winged blackbirds on European corn borer populations. Canadian Journal of Zoology 1981, 59, 1535-1538.
- [92] Bollinger EK, Caslick JW. Red-winged Blackbird predation on northern corn rootworm beetles in field corn. Journal of Applied Ecology 1985, 22(1), 39-48.
- [93] Fye RE. Temperatures near the surface of cotton leaves. Journal of Economic Entomology 1972, 65, 1209-1210.
- [94] Walton WR. The True Army Worm and Its Control US Government Printing Office, 1916.
- [95] Mcewen LC, Deweese LR, Schladweiler P. Bird predation on cutworms (Lepidoptera: Noctuidae) in wheat fields and chlorpyrifos effects on brain cholinesterase activity. Environmental Entomology 1986, 15, 147-151.
- [96] Railsback SF, Johnson MD. Effects of land use on bird populations and pest control services on coffee farms. Proceedings of the National Academy of Sciences 2014, 111, 6109-6114.
- [97] Howe N, Della Porta S, Recchia H, Funamoto A, Ross H. "This bird can't do it 'cause this bird doesn't swim in water": Sibling teaching during naturalistic home observations in early childhood. Journal of Cognition and Development 2015, 16, 314-332.

- [98] Mcewen LC, Deweese LR, Schladweiler P, Stewart RE, Thurston R, Prachuabmoh O, Sinu PA, Koh LP, Orłowski G, Karg J, Karg G, Lemessa D, Hambäck PA, Hylander K. Avian pest control in tea plantations of sub-Himalayan plains of Northeast India: Mixed-species foraging flock matters. Biology Control 2011, 58, 362-366.
- [99] Orłowski G, Karg J, Karg G. Functional invertebrate prey groups reflect dietary responses to phenology and farming activity and pest control services in three sympatric species of aerially foraging insectivorous birds. PLoS One 2014, 9, e114906.
- [100] Stewart RE. Breeding Birds of North Dakota Tri-college center for environmental studies Fargo, ND, 1975.
- [101] Smith OM, Kennedy CM, Echeverri A, Karp DS, Latimer CE, Taylor JM, Wilson-Rankin EE, Owen JP, Snyder WE. Complex landscapes stabilize farm bird communities and their expected ecosystem services. Journal of Applied Ecology 2022, 59(4), 927-941.
- [102] Avery ML. Birds in Pest management. In: Pimental D, Ed. Encyclopedia of Pest management. New York, Marcel Dekker, 104-106.
- [103] Garcia K, Olimpi EM, Karp DS, Gonthier DJ. The Good, the bad, and the risky: Can birds be incorporated as biological control agents into integrated pest management programs? Journal of Integrated Pest Management 2020, 11, 11.
- [104] Garfinkel M, Fuka ME, Minor E, Whelan CJ. When a pest is not a pest: Birds indirectly increase defoliation but have no effect on yield of soybean crops. Ecological Applications 2022, 32(4), e2527.
- [105] Peichar L. Clough Y. Ekroos I. Nicholas KA. Olsson OLA. Ram D. Tschumi M. Smith HG. Net effects of birds in agroecosystems. Bioscience 2018, 68, 896–904.
- [106] Ormerod SJ, Watkinson AR. Birds and agriculture-editor's introduction. Journal of Applied Ecology 2000, 37(5), 699-705.
- [107] Martin EA, Reineking B, Seo B, Steffan-Dewenter I. Natural enemy interactions constrain pest control in complex agricultural landscapes. Proceedings of the National Academy of Sciences 2013, 110, 5534-5539.
- [108] Hamisi RA, Warui CM, Njoroge P. Nesting success of sharpe's longclaw (Macronyx sharpei Jackson, 1904) around the grasslands of lake Ol'bolossat Nyandarua, Kenya. Journal of Threatened Taxa 2022, 14, 20461-20468.
- [109] Kannan V, Manakadan R. The status and distribution of Spot-billed Pelican Pelecanus philippensis in southern India. Forktail 2005, 21, 9.
- [110] Dhananjayan V, Jayakumar S, Muralidharan S. Assessment of exposure and effect of organochlorine pesticides on birds in India. Research Review AJ Toxicology 2011, 1, 17-23.
- [111] Dhananjayan V, Ravichandran B. Organochlorine pesticide residues in foodstuffs, fish, wildlife, and human tissues from India: historical trend and contamination status. In Environmental deterioration and human health. Dordrecht, Springer, 2014, 229-262.
- [112] Naoroji R. Contamination in egg shells of Himalayan grey-headed fishing eagle ichthyaetus nana plumbea in Corbett National Park, India. Journal of the Bombay Natural History Society 1997, 94, 398-400.
- [113] Tela M, Cresswell W, Chapman H. Pest-removal services provided by birds on subsistence farms in south-eastern Nigeria. PLoS One 2021, 16, e0255638.
- [114] Tue NM, Goto A, Fumoto M, Nakatsu S, Tanabe S, Kunisue T. Nontarget screening of organohalogen compounds in the liver of wild birds from Osaka, Japan: specific accumulation of highly chlorinated POP homologues in raptors. Environmental Science & Technology 2021, 55(13), 8691-8699.
- [115] Arya AK, Singh A, Bhatt D. Pesticide applications in agriculture and their effects on birds: an overview. Contaminants. In Agriculture and Environment: Health Risks and Remediation 2019, 5(10), 129-137.

- [116] Reindl AR, Falkowska L. Food source as a factor determining birds' exposure to hazardous organic pollutants and egg contamination. Marine and Freshwater Research 2019, 71, 557-568.
- [117] Morelli F. Quantifying effects of spatial heterogeneity of farmlands on bird species richness by means of similarity index pairwise. International Journal of Biodiversity 2013, 2013.
- [118] Langford KH, Reid M, Thomas KV. The occurrence of second generation anticoagulant rodenticides in non-target raptor species in Norway. Science of the Total Environment 2013, 450, 205-208.
- [119] Grass I, Lehmann K, Thies C, Tscharntke T. Insectivorous birds disrupt biological control of cereal aphids. Ecology 2017, 98, 1583-1590.
- [120] Uden DR, Allen CR, Mitchell RB, McCoy TD, Guan Q. Predicted avian responses to bioenergy development scenarios in an intensive agricultural landscape. Gcb Bioenergy 2015, 7, 717-726.
- [121] Chaplin-Kramer R, O'Rourke M, Schellhorn N, Zhang W, Robinson BE, Gratton C, Rosenheim JA, Tscharntke T, Karp DS. Measuring what matters: Actionable information for conservation biocontrol in multifunctional landscapes. Frontiers in Sustainable Food Systems 2019, 60.
- [122] Spurr EB, Coleman JD. Cost-effectiveness of bird repellents for crop protection. In Proceedings of the 13th Australasian Vertebrate Pest Conference, 2-6 May 2005, Wellington, New Zealand, 227-233.
- [123] Hannay MB, Boulanger JR, Curtis PD, Eaton RA, Hawes BC, Leigh DK, Rossetti CA, Steensma KMM. Lindell CA. Bird species and abundances in fruit crops and implications for bird management. Crop Protection (Guildford, Surrey) 2019, 120, 43-49.
- [124] Geertsema W, Rossing WAH, Landis DA, Bianchi FJJA, Van Rijn PC, Schaminée JHJ, Tscharntke T, Van Der Werf W. Actionable knowledge for ecological intensification of agriculture. Frontiers in Ecology and the Environment 2016, 14, 209-216.
- [125] Giles KL, McCornack BP, Royer TA, Elliott NC. Incorporating biological control into IPM decision making. Current Opinion in Insect Science 2017, 20, 84-89.
- [126] Mace KC, Mills NJ. Connecting natural enemy metrics to biological control activity for aphids in California walnuts. Biology Control 2017, 106, 16-26.