2019~2020 学年第1学期期末考试试卷

《模拟电子技术基础 1》(B 卷 共 5 页)

(考试时间: 2020年01月09日)

题号	 1 1	111	四	五	六	七	成绩	核分人签字
得分								

- 一、单项选择题(每个空 1分,共15分)
- 1、在以下电路中,输入电阻最小的是()电路,输出电阻最小的是()电路。 8、通用型集成运放中选用差动放大电路的原因是()。

- 2、单管共射极放大电路, 高频时放大倍数下降, 主要是因为()的影响。
 - A. 输入电容 C_1 、输出电容 C_2
- B. 极间电容 Cb'e、Cb'c
- C. 射极旁路电容 *C*e
- D. 极间电容 C_{gs} 、 C_{ds}
- 3、某场效应管的输出特性曲线如图(1)所示,它是()。

 - A. N 沟道耗尽型 MOS 管 B. P 沟道耗尽型 MOS 管

 - C. N沟道增强型 MOS 管 D. P沟道增强型 MOS 管

图 (1)

- 图 (2)
- 4、某场效应管的转移特性如图(2)所示,它是()。
 - A. N 沟道结型管

- B. P 沟道结型管
- C. N沟道耗尽型 MOS 管 D. P沟道耗尽型 MOS 管

- 5、场效应管是一个电压控制型器件,它的控制作用用参数()表示。
- C. μ_r D. r_{ce} Α. Β \mathbf{B} . $\mathbf{g}_{\mathbf{m}}$
- 6、若某单管共射极放大电路的下限频率和上限频率分别为 ft. 和 fn, 其值是指中频区的 电压放大倍数下降()时对应的截止频率。
 - A. 0.6 倍
- B. 0.7 倍 C. 0.8 倍 D. 0.9 倍
- 7、二极管不具有以下哪个特点()。
 - A. 单向导电性
- **B.** 击穿特性 **C.** 线性特性 **D.** 电容效应
- - A. 克服温漂

- B. 提高输入电阻
- C. 稳定放大倍数
- D. 提高共模放大倍数
- 9、用恒流源取代差动放大器中的公共发射极电阻 $R_{
 m e}$,单端输出电路的 ()。
 - A. 差模放大倍数数值增大
- B. 抑制共模信号能力增强
- C. 差模输入电阻增大 D. 差模输出电阻减小
- 10、对于理想运算放大器,无论工作在线性区还是非线性区,总满足()。
 - **A.** $u_1 \approx u \neq 0$ **B.** $u_1 \approx u \approx 0$ **C.** $i_1 \approx i \neq 0$ **D.** $i_2 \approx i \approx 0$

- 11、用三极管或场效应管构成的电流源电路的特点是()。
 - A. 交流电阳很小,直流电阳很小 B. 交流电阳很大,直流电阳很大

 - C. 交流电阻很小,直流电阻很大 D. 交流电阻很大,直流电阻很小
- 12、差动放大电路的差模信号是指两个输入端信号的(),共模信号是指两个输入端 信号的()。
- A. 和 B. 差值 C. 平均值 D. 差值的一半

- 13、在交流放大电路中要求能够输出稳定电流的同时有较小的输入电阻,应采用(负反馈。
 - A. 电压并联 B.电流并联 C.电压串联 D.电流串联

- 二、(10分)电路各部分如图所示。
- (1) 在图上连接各节点, 使之成为完整的电路;
- (2) 变压器二次侧输出波形 u_2 如图所示,将电容所在支路开路时,画出二极管 D_1 的两端电压波形;
- (3) 该电路正常工作时,计算电容两端电压 U_{01} ;
- (4) 若电容两端输出电压 U_{01} 为 9V,试分析电路可能发生的故障。

- 三、(20分)已知某三极管放大电路如图所示, β =60, $U_{\rm BE}$ =0.7V。
- (1) 不忽略 U_{BE} , 求静态工作点 Q (I_B , I_C $\not D$ U_{CE});
- (2) 画出中频区交流小信号等效电路,求出 \hat{A}_{i} 、 R_{o} 及 R_{i} 。

四、(16分)放大电路如图(a)和(b)所示,设运放均为理想运放。

- (1) 分别指出图中的级间交流反馈支路,并判断交流反馈类型;
- (2) 估算电压放大倍数 $A_{\text{uf}} = u_0/u_i$ 的表达式;

五、(10分)电路如图所示,其中功率晶体管饱和压降可以忽略。试回答以下问题:

(1)若输入电压有效值为 12V,求输出功率 P_0 、电源提供功率 P_V 、两个功率管总管耗 P_T ;

- (2) 若输入电压达到能提供最大不失真的输出,求最大输出功率 P_{omax} ;
- (3) 说明图中 D_1 和 R_w 的作用。

六、(14分)分析以下电路。

1、(5分)电路如图所示,设 A 为理想运放,模拟乘法器的相乘因子 k>0。 试求出 u_0 与 u_i 的运算关系以及对输入信号极性的要求。

2、(9分)由理想运放组成的 BJT 电流放大系数 β 的测试电路如图所示,运放均工作在线性区,设 BJT 的 $U_{\rm BE}$ =0.7V。

- (1) 求 BJT 的 c、b、e 各极的电位值;
- (2) 若电压表读数为 200mV, 试求 BJT 的 β 值。

七、(15分)电路如图所示。设运算放大器为理想器件。

- 1、波形产生电路如图。
- (1) A1、A2各组成哪种基本电路?
- (2) 对应画出 u_{01} 和 u_{0} 随时间 t 变化的电压波形图,并标出电压幅度值。

2、试用相位平衡条件分别判断图(a)、(b)所示电路能否产生正弦波振荡。电路中 C_1 、 C_2 可视为交流短路。

