1. Inéquations du premier degré à une inconnue

On peut ajouter un même nombre à chaque membre d'une inégalité pour obtenir ainsi une inégalité équivalente :

$$a < b \Leftrightarrow a + c < b + c$$

Exemples •
$$x+4 \le 5$$
 $x-3 > 0$

a, b et c sont trois nombres tels que a < b. Donc :

$$a - b < 0 \Leftrightarrow a - b + \underbrace{c - c}_{=0} < 0 \Leftrightarrow a + c - (b + c) < 0 \Leftrightarrow \boxed{a + c < b + c}$$

Propriété 2

On multiplie ou on divise les deux membres d'une inégalité par un même nombre k non nul :

- si
$$k > 0$$
, alors : $\alpha < b \Leftrightarrow k\alpha < kb$;

$$- si k < 0$$
, alors: $a < b \Leftrightarrow ka > kb$.

Exemples •
$$3x + 4 < 2$$
 $\frac{x}{-2} + 6 \geqslant 0$

On considère trois nombres a, b et k tels que a > b.

a - b est donc un nombre positif.

On rappelle que le produit de deux nombres de même signe est positif, négatif sinon.

$$\begin{array}{ccc} \underline{\text{Si } k > 0} & \underline{\text{Si } k < 0} \\ k(a - b) > 0 & k(a - b) < 0 \\ \Leftrightarrow ka - kb > 0 & \Leftrightarrow ka - kb < 0 \\ \Leftrightarrow ka > kb & \Leftrightarrow ka < kb \end{array}$$

2. Résolution de problèmes

Exemple • Dans un club de gym, deux formules sont proposées :

Formule A: abonnement mensuel de $18 \in$ et $5 \in$ la séance.

Formule B: abonnement mensuel de $30 \in$ et $3 \in$ la séance.

Déterminer par le calcul le nombre de séances minimum pour lequel la formule B est plus avantageuse.

Voici les étapes de la résolution d'un problème en utilisant les inéquations :

1°) choix de l'inconnue;

2°) trouver l'inéquation correspondant au problème;

3°) résolution de l'inéquation;

4°) réponse au problème.