Und jetzt Aufgabentyp 6. Die Königsdisziplin der LGS. Jetzt gibt es auch noch Parameter in den LGS.

Aufgabe 1. Berechne für das parametrische LGS die Anzahl der Lösungen und die Lösungsmenge in Abhängigkeit des Parameters $p \in \mathbb{R}$.

$$5x_1 + 2x_2 = 4$$
$$5x_1 + px_2 = p$$

Lösung: (a)

$$\left(\begin{array}{cc|c} 5 & 2 & 2 \\ 5 & p & p \end{array}\right)$$

Der Trick ist, sich nicht von dem p verwirren zu lassen. Man geht so vor wie immer beim Lösen, nur dass man statt einer schönen Zahl einen Parameter mitschleppt. Also erstmal Dreieckstufenform herstellen.

$$\left(\begin{array}{cc|c} 5 & 2 & 2 \\ 5 & p & p \end{array}\right) \quad -I \quad \Rightarrow \quad \left(\begin{array}{cc|c} 5 & 2 & 2 \\ 0 & p-2 & p-2 \end{array}\right)$$

Was interessiert uns? Uns interessieren, besondere p Werte an denen etwas spannendes passiert. Spannend heißt, in diesem Fall, eine Nullzeile und entsprechende b Werte die zu Widersprüchen führen oder eben nicht.

Wir stellen fest bei p=2 passiert etwas Interessantes.

Fall p=2

Wir haben eine Nicht-Nullzeile, also Rang r=1. Es gibt zwei Variblen n. Das ergibt ein Defekt d=n-r=2-1=1. Für diesen Fall gibt es unendlich viele Lösungen.

$$\begin{pmatrix} 5 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
$$x_2 = t, \quad t \in \mathbb{R}$$

$$5x_1 + 2x_2 = 5x_1 + 2t = 2$$
$$x_1 = \frac{2 - 2t}{5}$$

$$\Rightarrow \mathbb{L} = \{ \begin{pmatrix} \frac{2}{5} \\ 0 \end{pmatrix} + t \begin{pmatrix} -\frac{2}{5} \\ 1 \end{pmatrix} : t \in \mathbb{R} \}$$

Fall $p \neq 2$:

Rang r=2, da es zwei Nicht-Nullzeilen gibt in der Dreieckstufenform. Dementsprechend ist. Da es genau so viele Variablen wie Ränge gibt (r=n) existiert eine eindeutige Lösung.

$$(p-2)x_2 = (p-2) \Rightarrow x_2 = 1$$

Wir dürfen das (p-2) hier übrigens nur wegkürzen, weil wir den Fall p=2 an der Stelle ausschließen. Sonst würden wir ja durch 0 teilen!

$$5x_1 + 2x_2 = 2 \Rightarrow 5x_1 + 2 = 2 \Rightarrow x_1 = 0$$

$$\Rightarrow \mathbb{L} = \{ \begin{pmatrix} 0 \\ 1 \end{pmatrix} \}$$

Zusammengefasst:

- 1. Dreiecksstufenform herstellen
- 2. Fälle für p heraussuchen, die Nullzeilen erzeugen oder Widersprüche in b erzeugen
- 3. Jeden Fall auf Lösbarkeit untersuchen
- 4. Lösungsmenge berechnen/aufschreiben