# Zestaw zadań nr 4 z Podstaw Elektrotechniki i Elektroniki

## Zad. 1

Wyznaczyć równanie stanu  $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$  obwodu.

Dane:

$$R_1 = R_2 = 2 \Omega$$

$$L = 1 H$$

$$C = 0.5 F$$



# Zad. 2

Określić przebieg  $u_c(t)$  w stanie nieustalonym w obwodzie po przełączeniu.

Dane:

$$R_1 = 100 \Omega$$

$$R_2 = 300 \Omega$$

$$C = 1000 \mu F$$

$$e(t) = 20 \text{ V}$$



### Zad. 3

Obliczyć transformatę odwrotną Laplace'a dla funkcji:

a) 
$$X(s) = \frac{s+5}{(s+1)(s+2)(s+8)}$$

b) 
$$X(s) = \frac{s}{(s+1)^2(s+2)}$$

c) 
$$X(s) = \frac{s+2}{s^2+2s+20}$$

### Zad 4.

Wyznaczyć przebiegi  $u_C(t)$  oraz  $i_L(t)$  w stanie nieustalonym w obwodzie po przełączeniu.

Dane:

$$i(t) = 2\sqrt{2}\sin(t + 90^\circ)$$

$$R = 1/2 \Omega$$

$$L = 1 H$$

$$C = 1 F$$



#### Zad. 5

Wyznaczyć przebiegi napięć na kondensatorach w stanie nieustalonym po przełączeniu w obwodzie.

Dane:

$$e_1(t) = 100 \text{ V}$$

$$e_2(t) = 200 \text{ V}$$

$$e_3(t) = 50 \text{ V}$$

$$R_1 = 100 \Omega$$

$$R_2 = 200 \Omega$$

$$C_1 = 50 \ \mu F$$

$$C_2 = 100 \ \mu F$$



#### Zad. 6

Określić częstotliwość drgań własnych powstałych w stanie nieustalonym w obwodzie szeregowym RLC, jeśli L = 10mH, C = 1 $\mu$ F, R = 100  $\Omega$ . Jak zmieni się ta częstotliwość, jeśli R = 10  $\Omega$ ?