Simmune and Its Support to SBML and SBML packages

Fengkai Zhang, Bastian Angermann and Martin Meier-Schellersheim

Computational Biology Unit

Laboratory of Systems Biology

National Institute of Allergy and Infectious Disease

National Institutes of Health, USA

Outline

- Simmune infrastructure and work flow
- Simmune graphical representations
- Simmune: (Yeast Model)
 - Simmune Modeler
 - Simmune CellDesigner
 - Simmune Simulator
- SBML support

Simmune Structure and Workflow

Graphical Representation of Simmune Models *Molecule: Component, binding sites, features*

Graphical Representation of Simmune Models Complex Species

Graphical Representation of Simmune Models Complex

Simmune and SBML COMBINE, Paris 2013 6

Graphical Representation of Simmune Models *Reaction*

Simmune Modeler: Yeast Model: Molecules

Simmune Modeler: Yeast Model: Complex Species

Simmune Modeler: Yeast Model: Complex

Simmune Modeler: Yeast Model: Reaction

Simmune CellDesigner: Yeast Geometry: Cell

Simmune CellDesigner: Yeast Geometry: Flexible Cell Shape Configuration

Simmune CellDesigner: Yeast Geometry: Oganelle

Simmune CellDesigner: Yeast Geometry: Regions

Simmune Simulation: Yeast: Initial Condition

Simmune Simulation: Yeast: Simulation Setup

Simmune Simulation: Yeast: Time Plot

Simmune Simulation: Yeast: Concentration Distribution

Simmune Simulation: Yeast: Line Configuration

Simmune Simulation: Yeast: Concentration Line Profile

Simmune SBML Support

Simmune SBML Support

Support SBML Packages:

- SBML-Multi: Rule based models (Under development)
- SBML-Spatial: Geometry
 (Able to be supported with multi?)

Other:

SED-ML (in consideration)

Simmune

- Rule-based spatially resolved models of cellular signaling networks
- Implemented with Qt, boost, fortran, OpenGL, VTK, libSBML
- Can run on Linux, Mac and Windows
- Standard alone and distributed (in progress)
- Free for academic use and available for download at:
 http://www.niaid.nih.gov/labsandresources/labs/aboutlabs/lsb/
 Pages/simmuneproject.aspx

Acknowledgements

Members of

Laboratory of Systems Biology (LSB)

National Institute of Allergy and Infectious Disease (NIAID)

National Institutes of Health (NIH), USA

- Simmune Users
- This work was supported by the Intramural Research Program of the US National Institute of Allergy and Infectious Diseases of the National Institutes of Health.