Doing our supply/demand contribution graph properly

Which influencer has the most influence?

November 4, 2024

Purpose: When I did the original note for the classification of sectors and being the *originator* of a supply or demand shock, I thought we could do a similar graph to Shapiro's inflation graph showing contributions of demand and supply with our classifications directly. Based on our last meeting, it became clear that this was incorrect. If a sector (like oil) is the source of a supply shock *everywhere* we need to have the right approach to capture this.

Here is what I would suggest in order to operationalize this. Note that I will use the same notation of matrices that we have in our other notes – Ω is the share of intermediates row sources from column, γ is the intermediate share of sales for each industry.

- 1. Start by writing a function that produces the graphs. This function should take as inputs the following:
 - π_t CPI inflation ($T \times 1$ total time series)
 - E Expenditure weights by sector (P x T) where P is the number of products and T is the number of time periods. Note that $1_P'E = 1_T'$ the sum of expenditure weights over the product/industry dimension P is 1.
 - A Demand shock matrix *D* (*P* x *T*) where entries are between 0 and 1. If an entry is 0.75 for sector 3 in 2000Q1, then it means that in 2000Q1, sector 3 was 75% affected by a demand shock and 25% affected by a supply shock.
 - A matrix of sectoral inflations Π ($P \times T$) where ($1'_P(E \cdot \Pi) \approx \pi_t$) noting that 1_P is a $P \times 1$ vector of ones and $A \cdot B$ means the elementwise multiplication of A and B.

Note that there might be more inputs I have forgotten.

This function will then plot CPI inflation as a line, then calculate $1_P'(D \cdot E \cdot \Pi)$ and plot it as a bar and call it the "demand contribution to CPI". For supply bars it will calculate $1_P'((1-D) \cdot E \cdot \Pi)$.

2. Use this function to replicate the Shapiro classification. In this case entries of *D* will either be 1 or 0.

¹What I mean by this math is if you take the expenditure shares and scale them by inflation in each product/industry and then sum over products/industries, you should get CPI inflation and it should be close to the first input.

- 3. Next we will use this function to implement our classification. We will get a initial matrix \tilde{D} from our procedure. This however only characterizes the sectors based on the *initial* source of the shock (supply of demand). What we want is to calculate the influence of these shocks throughout the economy. To do this let's do the following:
 - (a) We should already have a classification where if P_{VA} (price of value added) and <u>real</u> quantity (i.e. real production and not sales) both rise/fall in industry i at time t, we say $\tilde{D}_{i,t} = 1$. If instead P_{VA} and quantity move in opposite directions, we say $\tilde{D}_{i,t} = 0.2$
 - (b) Next we want to calculate the influence of this onto prices.³ To find that first let us calculate the following $\Theta \equiv (I diag(\underline{\gamma})\Omega)^{-1} = (I \Delta)^{-1}$. Note that $\Theta \neq \Xi$ because $\Xi = (I \Delta')^{-1}$. Θ is also a $P \times P$ matrix.
 - (c) Next we should calculate the influence shares of P_{VA} movements onto output prices (and therefore sectoral inflation). However doing so is a little tricky because even though Θ is constant, the value added prices vary over time.
 - (d) Next calculate $\theta_t \equiv \Theta \cdot (\log(\underline{P}_{VA,t}) \otimes 1_P')$ where $\underline{P}_{VA,t}$ is a $P \times 1$ matrix when doing this multiplication.⁴ Note that we need to do this for every time period $t = [1, \ldots, T]$. Note also that θ_t is a $P \times P$ matrix (and the we have T of these).
 - (e) Calculate the column sum of $\underline{\kappa}_t = 1_p' \theta_t$. Note that $\underline{\kappa}_t$ should be 1 by P.
 - (f) Influence is calculated by $\lambda_t \equiv diag(1/\underline{\kappa}_t)\theta_t$. This is a $P \times P$ matrix and there are T of them one for each t. Since Λ_t is an influence share, the column-sum should be 1: $1_P'\lambda = 1_P$ or summing over rows within a column should be 1.
 - (g) Calculate the input D one column at a time. That is if \underline{D}_t is the t^{th} column of D and $\underline{\tilde{D}}_t$ is the t^{th} column of D, then it is calculated as: $\underline{D}_t \equiv \lambda_t \underline{\tilde{D}}_t$. Note that since λ_t is $P \times P$ and D_t is $P \times 1$, each D_t is $P \times 1$.
 - (h) Finally concatenate the \underline{D}_t s to get:

$$\mathbf{D} = \begin{bmatrix} \underline{D}_1 & \dots & \underline{D}_T \end{bmatrix}$$

4. Before using *D* as an input we should verify that all entries are between 0 and 1. Let me know if any are negative – this might be possible and we need to think about what to do in that case.

²Tony can you please check we are doing the classification this way?

³Ben, note that if we wanted to do the influence on quantities we would need to do something a little different to this. Let me know if you want the math for that.

 $^{^4\}otimes$ represents the kronecker product but effectively all I want is P repetitions of the vector $\log(\underline{P}_{VA,t})$ so that all rows have the same number in them.