GAN-based Anomaly Detection on FashionMNIST

Andrea Ferrari and Syrine Enneifer

Dataset: FashionMNIST

.Ten classes, each representing a different category of clothes (e.g. shoes, blouses, etc).

→ Normal input data

Sampled from one class

→ Anomaly input data

Sampled from the rest (i.e. 9 classes)

Our approach

Reconstruction based approach:

- Generator reconstructs normal input image with little to no noise
- Generator reconstructs anomaly input image with higher noise
- → To achieve this, adversarial training is introduced through 2 discriminators, who will predict whether the image is original or reconstructed.

GAN-based Anomaly Detection in Imbalance Problems, by Junbong Kim, Kwanghee Jeong, Hyomin Choi, and Kisung Seo

Model architecture

Loss functions

For this task, a total of different **8** losses are used to train our GAN :

- 6 for training the **generator**
- 1 for training the normal discriminator
- 1 for training the anomaly discriminator

→ Total loss function is a weighted combination of these loss functions.

Generator

Variation of a U-net[1]

We do not use "max pooling" but strided convolution.

We have 4 convolutional layer, followed by 4 up-convolutions.

[1]: U-Net: Convolutional Networks for Biomedical Image Segmentation, by Olaf Ronneberger, Philipp Fischer, and Thomas Brox

Discriminator

- First return is probability of the image being real or fake
- Second return is probability of the corresponding image patch being real or fake

Results

Main metric to evaluate performance in our case is the **AUROC** score

 \rightarrow around 0.99155 in our case

Baselines

- → Autoencoder trained on normal images (AUROC score = 0.8758)
- → Random baseline (AUROC score = 0.49765)

Visualization of experimental results

Normal:

Anomaly:

Confusion Matrices

Conclusions

Our model reached optimal results, getting extremely close to our reference paper 'GAN-based Anomaly Detection in Imbalance Problems' [3] that we tried to implement.

The model was very effective at distinguishing normal images from anomalous.

[3]: http://intlab.skuniv.ac.kr/paper/GAN-based_ Anomaly_Detection_in_Imbalance_Problems.pdf