

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408 748-3585 • FAX (510) 489-6372

March 2, 2012

Fortress Technologies 2 Technology Park Drive Westford, MA 01886

Dear John Pacheco,

Enclosed is the EMC Wireless test report for compliance testing of the Fortress Technologies, ES2440 as tested to the requirements of Title 47 of the CFR, Ch. 1 (10-1-06 ed.), Title 47 of the CFR, Part 15, Subpart B, Industry Canada ICES-003 Issue 4 February 2004 for Unintentional Radiators and Part 15.407, Industry Canada RSS-210, Issue 8, December 2010 for Intentional Radiators.

Thank you for using the services of MET Laboratories, Inc. If you have any questions regarding these results or if MET can be of further service to you, please feel free to contact me.

Sincerely yours, MET LABORATORIES, INC.

Jennifer Warnell

Documentation Department

Reference: (\Fortress Technologies\EMC32466A-FCC407 Rev. 1 (UNII3))

Certificates and reports shall not be reproduced except in full, without the written permission of MET Laboratories, Inc.

MET Laboratories, Inc. Safety Certification - EMI - Telecom Environmental Simulation 914 WEST PATAPSCO AVENUE • BALTIMORE, MARYLAND 21230-3432 • PHONE (410) 354-3300 • FAX (410) 354-3313 33439 WESTERN AVENUE • UNION CITY, CALIFORNIA 94587 • PHONE (510) 489-6300 • FAX (510) 489-6372 3162 BELICK STREET • SANTA CLARA, CALIFORNIA 95054 • PHONE (408 748-3585 • FAX (510) 489-6372

Electromagnetic Compatibility Criteria Test Report

for the

Fortress Technologies Model ES2440

Tested under

the Certification Rules
contained in
Title 47 of the CFR, Part 15, Subpart B and
ICES-003 Issue 4 February 2004
for Unintentional Radiators
and
Title 47 of the CFR, Part 15.407 and
Industry Canada RSS-210, Issue 8, December 2010
for Intentional Radiators

MET Report: EMC32466A-FCC407 Rev. 1 (UNII3)

March 2, 2012

Prepared For:

Fortress Technologies 2 Technology Park Drive Westford, MA 01886

> Prepared By: MET Laboratories, Inc. 914 W. Patapsco Ave. Baltimore, MD 21230

Electromagnetic Compatibility Criteria Test Report

for the

Fortress Technologies Model ES2440

the Certification Rules
contained in
Title 47 of the CFR, Part 15, Subpart B and
ICES-003 Issue 4 February 2004
for Unintentional Radiators
and
Title 47 of the CFR, Part 15.407 and
Industry Canada RSS-210, Issue 8, December 2010
for Intentional Radiators

Jeffrey Pratt, Project Engineer Electromagnetic Compatibility Lab Jennifer Warnell
Documentation Department

Engineering Statement: The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of Parts 15B, 15.407, of the FCC Rules and ICES-003 and RSS-210 of the Industry Canada rules under normal use and maintenance.

Shawn McMillen, Wireless Manager Electromagnetic Compatibility Lab

Report Status Sheet

Revision	Report Date	Reason for Revision	
Ø	January 5, 2012	Initial Issue.	
1	March 2, 2012	Revised to reflect engineer corrections.	

Table of Contents

I.	Executive Summary	1
	A. Purpose of Test	
	B. Executive Summary	2
II.	Equipment Configuration	3
	A. Overview	
	B. References	5
	C. Test Site	5
	D. Description of Test Sample	<i>.</i>
	E. Equipment Configuration	
	F. Support Equipment	
	G. Ports and Cabling Information	
	H. Mode of Operation	
	I. Modifications	
	a) Modifications to EUT	8
	b) Modifications to Test Standard	8
	J. Disposition of EUT	
III.	Electromagnetic Compatibility Criteria for Unintentional Radiators	9
	§ 15.107(a) Conducted Emissions Limits	
	§ 15.109(a) Radiated Emissions Limits	
IV.	Electromagnetic Compatibility Criteria for Intentional Radiators	
	§ 15.203 Antenna Requirement	
	§ 15.207 Conducted Emissions Limits	
	§ 15.403(c) 26dB Bandwidth	
	§ 15.407(a) RF Power Output	
	§ 15.407(a)(1)(2) Peak Power Spectral Density	
	§ 15.407(a)(6) Peak Excursion Ratio.	
	§ 15.407(b) Undesirable Emissions	
	a) EIRP	
	§ 15.407(f) RF Exposure	
	§ 15.407(g) Frequency Stability	
	RSS-GEN Receiver Spurious Emissions	
V.	Test Equipment	
VI.	Certification & User's Manual Information	
	A. Certification Information	
	B. Label and User's Manual Information	
VII.	ICES-003 Procedural & Labeling Requirements	125

List of Tables

Table 1. Executive Summary of EMC Part 15.407 ComplianceTesting	2
Table 2. EUT Summary	
Table 3. References	5
Table 4. Equipment Configuration	7
Table 5. Support Equipment	7
Table 6. Ports and Cabling Information	
Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a) (b) and	
15.207(a)	
Table 8. Conducted Emissions - Voltage, AC Power, Phase Line, Test Results	
Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line, Test Results	
Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)	14
Table 11. Radiated Emissions, Test Results, FCC Limits, 30 MHz – 1 GHz	
Table 12. Radiated Emissions, Test Results, ICES-003 Limits, 30 MHz – 1 GHz	16
Table 13. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)	20
Table 14. Conducted Emissions - Voltage, AC Power, Phase Line, Test Results	21
Table 15. Conducted Emissions - Voltage, AC Power, Neutral Line, Test Results	22
Table 16. Occupied Bandwidth, Test Results, 802.11a	
Table 17. Occupied Bandwidth, Test Results, 802.11n 20 MHz	25
Table 18. Occupied Bandwidth, Test Results, 802.11n 40 MHz	25
Table 19. Output Power Requirements from §15.407	36
Table 20. RF Power Output, Test Results	37
Table 20. RF Power Output, Test Results, Sector Antenna	37
Table 21. Power Spectral Density, 802.11a, Test Results	49
Table 21. Power Spectral Density, 802.11a, Test Results, Sector Antenna	49
Table 22. Peak Excursion Ration, Test Results, 802.11a	60
Table 23. Peak Excursion Ration, Test Results, 802.11n 20 MHz	60
Table 24. Peak Excursion Ration, Test Results, 802.11n 40 MHz	61
Table 25. Restricted Bands of Operation.	
Table 26. Spurious Emission Limits for Receivers	113
Table 27. Test Equipment List	117

List of Figures

Figure 1. Occupied Bandwidth Test Setup	
Figure 2. Peak Power Output Test Setup	
Figure 3. Peak Power Spectral Density Test Setup	48
T ' A . CDL A.	
List of Plots	
Plot 1. Conducted Emission, Phase Line Plot	
Plot 2. Conducted Emission, Neutral Line Plot	
Plot 3. Radiated Emissions, Pre-Scan, FCC Limits, 30 MHz – 1 GHz	
Plot 4. §15.207 Conducted Emissions, Phase Line Plot	
Plot 5. §15.207 Conducted Emissions, Neutral Line Plot	
Plot 6. Occupied Bandwidth, 802.11a, 5745 MHz	
Plot 7. Occupied Bandwidth, 802.11a, 5785 MHz	
Plot 9. Occupied Bandwidth, 802.11n 20 MHz, Port A, 5745 MHz	
Plot 10. Occupied Bandwidth, 802.11n 20 MHz, Port A, 5745 MHz	
Plot 11. Occupied Bandwidth, 802.11n 20 MHz, Port A, 5805 MHz	
Plot 12. Occupied Bandwidth, 802.11n 20 MHz, Port B, 5745 MHz	
Plot 13. Occupied Bandwidth, 802.11n 20 MHz, Port B, 5785 MHz	
Plot 14. Occupied Bandwidth, 802.11n 20 MHz, Port B, 5805 MHz	
Plot 15. Occupied Bandwidth, 802.11n 40 MHz, Port A, 5755 MHz	
Plot 16. Occupied Bandwidth, 802.11n 40 MHz, Port A, 5785 MHz	
Plot 17. Occupied Bandwidth, 802.11n 40 MHz, Port A, 5795 MHz	
Plot 18. Occupied Bandwidth, 802.11n 40 MHz, Port B, 5755 MHz	
Plot 19. Occupied Bandwidth, 802.11n 40 MHz, Port B, 5785 MHz	
Plot 20. Occupied Bandwidth, 802.11n 40 MHz, Port B, 5795 MHz	
Plot 21. 99% Occupied Bandwidth, 802.11a, 5745 MHz	
Plot 22. 99% Occupied Bandwidth, 802.11a, 5785 MHz.	
Plot 23. 99% Occupied Bandwidth, 802.11a, 5805 MHz.	
Plot 24. 99% Occupied Bandwidth, 802.11n 20 MHz, Port A, 5745 MHz	
Plot 25. 99% Occupied Bandwidth, 802.11n 20 MHz, Port A, 5785 MHz	
Plot 26. 99% Occupied Bandwidth, 802.11n 20 MHz, Port A, 5805 MHz	
Plot 27. 99% Occupied Bandwidth, 802.11n 20 MHz, Port B, 5745 MHz	
Plot 28. 99% Occupied Bandwidth, 802.11n 20 MHz, Port B, 5785 MHz	33
Plot 29. 99% Occupied Bandwidth, 802.11n 20 MHz, Port B, 5805 MHz	33
Plot 30. 99% Occupied Bandwidth, 802.11n 40 MHz, Port A, 5755 MHz	34
Plot 31. 99% Occupied Bandwidth, 802.11n 40 MHz, Port A, 5785 MHz	34
Plot 32. 99% Occupied Bandwidth, 802.11n 40 MHz, Port A, 5795 MHz	34
Plot 33. 99% Occupied Bandwidth, 802.11n 40 MHz, Port B, 5755 MHz	35
Plot 34. 99% Occupied Bandwidth, 802.11n 40 MHz, Port B, 5785 MHz	35
Plot 35. 99% Occupied Bandwidth, 802.11n 40 MHz, Port B, 5795 MHz	
Plot 36. Conducted Output Power, 802.11a, 5745 MHz	
Plot 37. Conducted Output Power, 802.11a, 5785 MHz	
Plot 38. Conducted Output Power, 802.11a, 5805 MHz	
Plot 39. Conducted Output Power, 802.11n 20 MHz, Port A, 5745 MHz	
Plot 40. Conducted Output Power, 802.11n 20 MHz, Port A, 5785 MHz	
Plot 41. Conducted Output Power, 802.11n 20 MHz, Port A, 5805 MHz	
Plot 42. Conducted Output Power, 802.11n 20 MHz, Port B, 5745 MHz	
Plot 43. Conducted Output Power, 802.11n 20 MHz, Port B, 5785 MHz	
Plot 44. Conducted Output Power, 802.11n 20 MHz, Port B, 5805 MHz	
Plot 45. Conducted Output Power, 802.11n 40 MHz, Port A, 5755 MHz	
Plot 46. Conducted Output Power, 802.11n 40 MHz, Port A, 5785 MHz	
Plot 47. Conducted Output Power, 802.11n 40 MHz, Port A, 5795 MHz	41

Plot 48.	Conducted Output Power, 802.11n 40 MHz, Port B, 5755 MHz	42
	Conducted Output Power, 802.11n 40 MHz, Port B, 5785 MHz	
	Conducted Output Power, 802.11n 40 MHz, Port B, 5795 MHz	
	Conducted Output Power, 802.11a, 5745 MHz, Sector Antenna	
	Conducted Output Power, 802.11a, 5785 MHz, Sector Antenna	
	Conducted Output Power, 802.11a, 5805 MHz, Sector Antenna	
	Conducted Output Power, 802.11n 20 MHz, Port A, Sector Antenna, 5745 MHz	
	Conducted Output Power, 802.11n 20 MHz, Port A, Sector Antenna, 5785 MHz	
	Conducted Output Power, 802.11n 20 MHz, Port A, Sector Antenna, 5805 MHz	
	Conducted Output Power, 802.11n 20 MHz, Port B, Sector Antenna, 5745 MHz	
	Conducted Output Power, 802.11n 20 MHz, Port B, Sector Antenna, 5785 MHz	
	Conducted Output Power, 802.11n 20 MHz, Port B, Sector Antenna, 5805 MHz	
	Conducted Output Power, 802.11n 40 MHz, Port A, Sector Antenna, 5755 MHz	
	Conducted Output Power, 802.11n 40 MHz, Port A, Sector Antenna, 5785 MHz	
	Conducted Output Power, 802.11n 40 MHz, Port A, Sector Antenna, 5795 MHz	
	Conducted Output Power, 802.11n 40 MHz, Port B, Sector Antenna, 5755 MHz	
	Conducted Output Power, 802.11n 40 MHz, Port B, Sector Antenna, 5785 MHz	
	Conducted Output Power, 802.11n 40 MHz, Port B, Sector Antenna, 5795 MHz	
	Peak Spectral Density, 802.11a, 5745 MHz	
	Peak Spectral Density, 802.11a, 5785 MHz	
	Peak Spectral Density, 802.11a, 5805 MHz.	
	Peak Spectral Density, 802.11n 20 MHz, Port A, 5745 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port A, 5785 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port A, 5805 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port B, 5745 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port B, 5785 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port B, 5805 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port A, 5755 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port A, 5785 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port A, 5795 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port B, 5755 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port B, 5785 MHz	
	Peak Spectral Density, 802.11ii 40 MHz, Port B, 3/93 MHz Peak Spectral Density, 802.11a, 5745 MHz, Sector Antenna	
	Peak Spectral Density, 802.11a, 5745 MHz, Sector Antenna	
	Peak Spectral Density, 802.11a, 5765 MHz, Sector Antenna	
	Peak Spectral Density, 802.11a, 3003 MHz, Sector Antenna, 5745 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port A, Sector Antenna, 5745 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port A, Sector Antenna, 5805 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port B, Sector Antenna, 5745 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port B, Sector Antenna, 5785 MHz	
	Peak Spectral Density, 802.11n 20 MHz, Port B, Sector Antenna, 5805 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port A, Sector Antenna, 5755 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port A, Sector Antenna, 5785 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port A, Sector Antenna, 5795 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port B, Sector Antenna, 5755 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port B, Sector Antenna, 5785 MHz	
	Peak Spectral Density, 802.11n 40 MHz, Port B, Sector Antenna, 5795 MHz	
	Peak Excursion, 802.11a, 5745 MHz	
Plot 67.	Peak Excursion, 802.11a, 5785 MHz	62
Plot 68.	Peak Excursion, 802.11a, 5805 MHz	62
Plot 69.	Peak Excursion, 802.11n 20 MHz, Port A, 5745 MHz	63
	Peak Excursion, 802.11n 20 MHz, Port A, 5785 MHz	
Plot 71.	Peak Excursion, 802.11n 20 MHz, Port A, 5805 MHz	63
Plot 72.	Peak Excursion, 802.11n 20 MHz, Port B, 5745 MHz	64
Plot 73.	Peak Excursion, 802.11n 20 MHz, Port B, 5785 MHz	64
	Peak Excursion, 802.11n 20 MHz, Port B, 5805 MHz	
Plot 75.	Peak Excursion, 802.11n 40 MHz, Port A, 5755 MHz	65

Plot 76.	Peak Excursion, 802.11n 40 MHz, Port A, 5785 MHz	65
	Peak Excursion, 802.11n 40 MHz, Port A, 5795 MHz	
	Peak Excursion, 802.11n 40 MHz, Port B, 5755 MHz	
	Peak Excursion, 802.11n 40 MHz, Port B, 5785 MHz	
	Peak Excursion, 802.11n 40 MHz, Port B, 5795 MHz	
	Radiated Spurious, 802.11a, 5745 MHz, 30 MHz – 1 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5745 MHz, 1 GHz – 7 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5745 MHz, 7 GHz – 18 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5745 MHz, 18 GHz – 40 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5785 MHz, 30 MHz – 1 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5785 MHz, 1 GHz – 7 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5785 MHz, 7 GHz – 18 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5785 MHz, 18 GHz – 40 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5805 MHz, 30 MHz – 1 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5805 MHz, 1 GHz – 7 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5805 MHz, 7 GHz – 18 GHz, Omni Antenna	
	Radiated Spurious, 802.11a, 5805 MHz, 18 GHz – 40 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 30 MHz – 1 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 1 GHz – 7 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 7 GHz – 18 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 18 GHz – 40 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 30 MHz – 1 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 1 GHz – 7 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 7 GHz – 18 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5783 MHz, 18 GHz – 40 GHz, Ollini Antenna	
	2. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 50 MHz – 1 GHz, Omni Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 1 GHz – 7 GHz, Ollin Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 7 GHz – 18 GHz, Ohmi Antenna	
	5. Radiated Spurious, 802.11n 20 MHz, 5755 MHz, 30 MHz – 1 GHz, Omni Antenna	
	5. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 1 GHz – 7 GHz, Omni Antenna	
	7. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 7 GHz – 18 GHz, Omni Antenna	
	3. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 18 GHz – 40 GHz, Omni Antenna	
	2. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 30 MHz – 1 GHz, Omni Antenna	
	D. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 1 GHz – 7 GHz, Omni Antenna	
	. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 7 GHz – 18 GHz, Omni Antenna	
	2. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 18 GHz – 40 GHz, Omni Antenna	
Plot 113	3. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 30 MHz – 1 GHz, Omni Antenna	79
Plot 114	Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 1 GHz – 7 GHz, Omni Antenna	80
Plot 115	5. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 7 GHz – 18 GHz, Omni Antenna	80
Plot 116	5. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 18 GHz – 40 GHz, Omni Antenna	80
Plot 117	7. Radiated Spurious, 802.11a, 5745 MHz, 30 MHz – 1 GHz, Sector Antenna	81
Plot 118	3. Radiated Spurious, 802.11a, 5745 MHz, 1 GHz – 7 GHz, Sector Antenna	81
	2. Radiated Spurious, 802.11a, 5745 MHz, 7 GHz – 18 GHz, Sector Antenna	
	D. Radiated Spurious, 802.11a, 5745 MHz, 18 GHz – 40 GHz, Sector Antenna	
	. Radiated Spurious, 802.11a, 5785 MHz, 30 MHz – 1 GHz, Sector Antenna	
	2. Radiated Spurious, 802.11a, 5785 MHz, 1 GHz – 7 GHz, Sector Antenna	
	S. Radiated Spurious, 802.11a, 5785 MHz, 7 GHz – 18 GHz, Sector Antenna	
	Radiated Spurious, 802.11a, 5785 MHz, 18 GHz – 40 GHz, Sector Antenna	
	5. Radiated Spurious, 802.11a, 5805 MHz, 30 MHz – 1 GHz, Sector Antenna	
	5. Radiated Spurious, 802.11a, 5805 MHz, 1 GHz – 7 GHz, Sector Antenna	
	7. Radiated Spurious, 802.11a, 5805 MHz, 7 GHz – 18 GHz, Sector Antenna	
	3. Radiated Spurious, 802.11a, 5805 MHz, 18 GHz – 40 GHz, Sector Antenna	
	2. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 30 MHz – 1 GHz, Sector Antenna	
	 Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 1 GHz – 7 GHz, Sector Antenna Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 7 GHz – 18 GHz, Sector Antenna 	
	2. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 7 GHz – 18 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 18 GHz – 40 GHz, Sector Antenna	
1101133	. Indiance openious, 502.1111 20 191112, 5755 191112, 50 191112 - 1 0112, 500001 Annuma	

Plot 134.	Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 1 GHz – 7 GHz, Sector Antenna	86
Plot 135.	Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 7 GHz – 18 GHz, Sector Antenna	87
	Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 18 GHz – 40 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 30 MHz – 1 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 1 GHz – 7 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 7 GHz – 18 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 18 GHz – 40 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 30 MHz – 1 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 1 GHz – 7 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 7 GHz – 18 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 18 GHz – 40 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 30 MHz – 1 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 1 GHz – 7 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 7 GHz – 18 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 18 GHz – 40 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 30 MHz – 1 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 1 GHz – 7 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 7 GHz – 18 GHz, Sector Antenna	
	Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 18 GHz – 40 GHz, Sector Antenna	
	EIRP, 802.11a, 5745 MHz, Band Edge, Omni Antenna	
	EIRP, 802.11a, 5805 MHz, Band Edge, Omni Antenna	
	EIRP, 802.11n 20 MHz, 5745 MHz, Band Edge, Omni Antenna	
	EIRP, 802.11n 20 MHz, 5805 MHz, Band Edge, Omni Antenna	
	EIRP, 802.11n 40 MHz, 5755 MHz, Band Edge, Omni Antenna	
	EIRP, 802.11n 40 MHz, 3793 MHz, Band Edge, Onlin Antenna	
	EIRP, 802.11a, 5805 MHz, Band Edge, Sector Antenna	
	EIRP, 802.11a, 3803 MHz, Band Edge, Sector Antenna.	
	EIRP, 802.11n 20 MHz, 5805 MHz, Band Edge, Sector Antenna.	
	EIRP, 802.11n 40 MHz, 5755 MHz, Band Edge, Sector Antenna	
	EIRP, 802.11n 40 MHz, 5795 MHz, Band Edge, Sector Antenna	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ -20°C, 120 V	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ -10°C, 120 V	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 0°C, 120 V	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 10°C, 120 V	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 20°C, 108 V	
Plot 170.	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 20°C, 120 V	102
Plot 171.	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 20°C, 132 V	103
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 30°C, 120 V	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 40°C, 120 V	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 50°C, 120 V	
	Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 55°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ -20°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ -10°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 0°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 10°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 20°C, 108 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 20°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 20°C, 132 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 30°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 40°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 50°C, 120 V	
	Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 55 °C, 120 V	
	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ -20 C, 120 V	
	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 0°C, 120 V	
	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 10°C, 120 V	
	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 20°C, 108 V	
/ - •		

Plot 192.	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 20°C, 120 V	110
Plot 193.	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 20°C, 132 V	111
Plot 194.	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 30°C, 120 V	111
Plot 195.	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 40°C, 120 V	111
Plot 196.	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 50°C, 120 V	112
Plot 197.	Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 55°C, 120 V	112
Plot 198.	Receiver Spurious Emission, 5.8 GHz, 30 MHz – 1 GHz, Port A	114
Plot 199.	Receiver Spurious Emission, 5.8 GHz, 1 GHz – 18 GHz, Port A	114
Plot 200.	Receiver Spurious Emission, 5.8 GHz, 30 MHz – 1 GHz, Port B	114
Plot 201.	Receiver Spurious Emission, 5.8 GHz, 1 GHz – 18 GHz, Port B.	115

List of Terms and Abbreviations

AC	Alternating Compat	
AC ACF	Alternating Current Antenna Correction Factor	
	Calibration	
Cal		
d	Measurement Distance	
dB	Decibels	
dBμA	Decibels above one microamp	
dBμV	Decibels above one microvolt	
dBμA/m	Decibels above one microamp per meter	
dBμV/m	Decibels above one microvolt per meter	
DC	Direct Current	
E	Electric Field	
DSL	Digital Subscriber Line	
ESD	Electrostatic Discharge	
EUT	Equipment Under Test	
f	Frequency	
FCC	Federal Communications Commission	
GRP	Ground Reference Plane	
Н	Magnetic Field	
НСР	Horizontal Coupling Plane	
Hz	H ert z	
IEC	International Electrotechnical Commission	
kHz	kilohertz	
kPa	kilopascal	
kV	kilovolt	
LISN	Line Impedance Stabilization Network	
MHz	Megahertz	
μ H	microhenry	
μ	microfarad	
μs	microseconds	
PRF	Pulse Repetition Frequency	
RF	Radio Frequency	
RMS	Root-Mean-Square	
TWT	Traveling Wave Tube	
V/m	Volts per meter	
VCP	Vertical Coupling Plane	

I. Executive Summary

A. Purpose of Test

An EMC evaluation was performed to determine compliance of the Fortress Technologies ES2440, with the requirements of Part 15, §15.407. All references are to the most current version of Title 47 of the Code of Federal Regulations in effect. In accordance with §2.1033, the following data is presented in support of the Certification of the ES2440. Fortress Technologies should retain a copy of this document which should be kept on file for at least two years after the manufacturing of the ES2440, has been **permanently** discontinued.

B. Executive Summary

The following tests were conducted on a sample of the equipment for the purpose of demonstrating compliance with Part 15, §15.407, in accordance with Fortress Technologies, purchase order number 0003235. All tests were conducted using measurement procedure ANSI C63.4-2003.

FCC Reference	Industry Canada Reference	Description	Results
15.107	ICES-003 Issue 4	Conducted Emissions	Compliant
15.109	February 2004	Radiated Emissions	Compliant
15.203	RSS-GEN 7.1.4	Antenna Requirements	Compliant
15.205/15.209	2.2	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	
15.207	RSS-GEN 7.2.2; RSS-210 2.2	AC Conducted Emissions 150KHz – 30MHz Compliant	
15.403 (c)	A8.2	26dB Occupied Bandwidth	Compliant
15.407 (a)(1), (2), (3)	A9.2(3)	Conducted Transmitter Output Power	Compliant
15.407 (a)(1), (2), (3), (5)	A9.2(3)	Power Spectral Density	Compliant
15.407 (a)(6)	A8.2	Peak Excursion	Compliant
15.407 (b)(1), (2), (5), (6)	A9.3(4)	Undesirable Emissions	Compliant
15.407(f)	RSS-GEN	RF Exposure	Compliant
15.407(g)	2.1	Frequency Stability	Compliant

Table 1. Executive Summary of EMC Part 15.407 ComplianceTesting

II. Equipment Configuration

A. Overview

MET Laboratories, Inc. was contracted by Fortress Technologies to perform testing on the ES2440, under Fortress Technologies's purchase order number 0003235.

This document describes the test setups, test methods, required test equipment, and the test limit criteria used to perform compliance testing of the Fortress Technologies ES2440.

The results obtained relate only to the item(s) tested.

Model(s) Tested:	ES2440		
Model(s) Covered:	ES2440		
	Primary Power: 120 VAC, 60 Hz FCC ID: WYK-ES2440 IC: 8190A-ES2440		
EUT	Type of Modulations:	OFDM	
Specifications:	Equipment Code:	NII	
	Dools DE Outmut Dovices	MHz	Power
	Peak RF Output Power:	5745 MHz	15.57 dBm
	EUT Frequency Ranges:	5745 – 5805 MHz	
Analysis:	The results obtained relate only to the item(s) tested.		
	Temperature: 15-35° C		
Environmental Test Conditions:	Relative Humidity: 30-60%		
	Barometric Pressure: 860-1060 mbar		
Evaluated by:	Jeff Pratt		
Report Date(s):	March 2, 2012		

Table 2. EUT Summary

B. References

CFR 47, Part 15, Subpart B	Electromagnetic Compatibility: Criteria for Radio Frequency Devices	
CFR 47, Part 15, Subpart E	Unlicensed National Information Infrastructure Devices (UNII)	
RSS-210, Issue 8, December 2010	Low-power License-exempt Radiocommunications Devices (All Frequency Bands): Category I Equipment	
ICES-003, Issue 4 February 2004 Electromagnetic Compatibility: Criteria for Radio Frequency Devices		
ANSI C63.4:2003	Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical And Electronic Equipment in the Range of 9 kHz to 40 GHz	
ANSI/NCSL Z540-1-1994	Calibration Laboratories and Measuring and Test Equipment - General Requirements	
ANSI/ISO/IEC 17025:2000	General Requirements for the Competence of Testing and Calibration Laboratories	

Table 3. References

C. Test Site

All testing was performed at MET Laboratories, Inc., 914 W. Patapsco Ave., Baltimore, MD 21230. All equipment used in making physical determinations is accurate and bears recent traceability to the National Institute of Standards and Technology.

Radiated Emissions measurements were performed in a 3 meter semi-anechoic chamber (equivalent to an Open Area Test Site). In accordance with §2.948(a)(3), a complete site description is contained at MET Laboratories.

D. Description of Test Sample

The Fortress Technologies ES2440, Equipment Under Test (EUT), is a quad radio access point/bridge. It embeds four COTS high power radios and three Ethernet ports in a ruggedized enclosure. The radios operate in accordance to the 802.11a, 802.11b, 802.11g, and 802.11n standards.

The ES2440 is intended to provided outdoor mobile connectivity in a secure manner both wired and wirelessly.

Photograph 1. Fortress Technologies ES2440

E. Equipment Configuration

Ref. ID	Name / Description	Model Number	Serial Number
1	Fortress High Capacity Infrastructure Mesh Point	ES2440	11022261

Table 4. Equipment Configuration

F. Support Equipment

Fortress Technologies supplied support equipment necessary for the operation and testing of the ES2440. All support equipment supplied is listed in the following Support Equipment List.

Ref. ID	Name / Description	Name / Description Manufacturer				
1	PoE Adapter	Phihong	POE61U-560DG			
5	5.8GHz Omni Antenna	Ubiquiti	AMO-5G10			
6	5.8GHz Sector Antenna	PCTel	SP4959 16XP90			

Table 5. Support Equipment

G. Ports and Cabling Information

Ref. ID	Port Name on EUT	Cable Description	Qty.	Length (m)	Shielded (Y/N)	Termination Point
1	ANT1A, ANT1B, ANT2A, ANT2B, ANT3A, ANT3B, ANT4A, ANT4B	Antenna	8	1	Y	-
2	DC Power	Provides power	1	-	N	-
3	Ethernet 1/WAN/POE Ethernet 2 Ethernet 3	Standard RJ45 CAT5 Ethernet Cable	3	-	N	-
4	Serial	Standard RJ45 serial cable	1	-	N	-
	GPS	GPS antenna	1	-	N	-

Table 6. Ports and Cabling Information

H. Mode of Operation

The ES2440 can operate in 802.11a, 802.11b, 802.11g, and 802.11n modes. These modes may be configured using the UI of the product. Additionally, these modes may be entered by using ART, the Atheros Radio Test tool. This is a standard tool provide by Atheros for directly manipulating and configuring their chips during testing and manufacturing.

I. Modifications

a) Modifications to EUT

No modifications were made to the EUT.

b) Modifications to Test Standard

No modifications were made to the test standard.

J. Disposition of EUT

The test sample including all support equipment submitted to the Electro-Magnetic Compatibility Lab for testing was returned to Fortress Technologies upon completion of testing.

III. Electromagnetic Compatibility Criteria for Unintentional Radiators

Electromagnetic Compatibility Criteria

§ 15.107 Conducted Emissions Limits

Test Requirement(s):

15.107 (a) Except for Class A digital devices, for equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals.

15.107 (b) For a Class A digital device that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in Table 7. Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminals. The lower limit applies at the band edges.

Frequency range	Class A Cond (dB)		*Class B Conducted Limits (dBµV)		
(MHz)	Quasi-Peak	Average	Quasi-Peak	Average	
* 0.15- 0.45	79	66	66 - 56	56 - 46	
0.45 - 0.5	79	66	56	46	
0.5 - 30	73	60	60	50	

Note 1 — The lower limit shall apply at the transition frequencies.

Note 2 — The limit decreases linearly with the logarithm if the frequency in the range 0.15 MHz to 0.5 MHz.

* -- Limits per Subsection 15.207(a).

Table 7. Conducted Limits for Radio Frequency Devices calculated from FCC Part 15 Subsections 15.107(a) (b) and 15.207(a)

Test Results: The EUT was compliant with the Class A requirement(s) of this section. Measured emissions were

below applicable limits.

Test Engineer(s): Jeff Pratt

Test Date(s): 10/26/11

Conducted Emissions - Voltage, AC Power

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.158	50.21	0	50.21	79	-28.79	42.13	0	42.13	66	-23.87
0.238	43.17	0.01	43.18	79	-35.82	37.86	0.01	37.87	66	-28.13
0.476	42.62	0	42.62	79	-36.38	37.98	0	37.98	66	-28.02
0.715	38.38	0	38.38	73	-34.62	33.1	0	33.1	60	-26.9
0.318	39.87	0	39.87	79	-39.13	34.91	0	34.91	66	-31.09
0.635	37.81	0	37.81	73	-35.19	33.36	0	33.36	60	-26.64

Table 8. Conducted Emissions - Voltage, AC Power, Phase Line, Test Results

Plot 1. Conducted Emission, Phase Line Plot

Conducted Emissions - Voltage, AC Power

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.238	41.73	0.01	41.74	79	-37.26	38.52	0.01	38.53	66	-27.47
0.477	42.14	0	42.14	79	-36.86	41.22	0	41.22	66	-24.78
0.158	50.36	0	50.36	79	-28.64	43.74	0	43.74	66	-22.26
0.557	38.85	0	38.85	73	-34.15	37.66	0	37.66	60	-22.34
0.634	38.48	0	38.48	73	-34.52	37.08	0	37.08	60	-22.92
0.318	39.36	0	39.36	79	-39.64	37.3	0	37.3	66	-28.7

Table 9. Conducted Emissions - Voltage, AC Power, Neutral Line, Test Results

Plot 2. Conducted Emission, Neutral Line Plot

Conducted Emission Limits Test Setup

Photograph 2. Conducted Emissions, Test Setup

Radiated Emission Limits

§ 15.109 Radiated Emissions Limits

Test Requirement(s):

15.109 (a) Except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the Class B limits expressed in Table 10.

15.109 (b) The field strength of radiated emissions from a Class A digital device, as determined at a distance of 10 meters, shall not exceed the Class A limits expressed in Table 10.

	Field Strength (dBµV/m)						
Frequency (MHz)	§15.109 (b), Class A Limit (dBμV) @ 10m	§15.109 (а),Class В Limit (dВµV) @ 3m					
30 - 88	39.00	40.00					
88 - 216	43.50	43.50					
216 - 960	46.40	46.00					
Above 960	49.50	54.00					

Table 10. Radiated Emissions Limits calculated from FCC Part 15, §15.109 (a) (b)

Test Procedures:

The EUT was placed on a non-metallic table, 80 cm above the ground plane inside a semi-anechoic chamber. The method of testing and test conditions of ANSI C63.4 were used. An antenna was located 3 m from the EUT on an adjustable mast. A pre-scan was first performed in order to find prominent radiated emissions. For final emissions measurements at each frequency of interest, the EUT was rotated and the antenna height was varied between 1 m and 4 m in order to maximize the emission. Measurements in both horizontal and vertical polarities were made and the data was recorded. Unless otherwise specified, measurements were made using a quasi-peak detector with a 120 kHz bandwidth.

Test Results:

The EUT was compliant with the Class A requirement(s) of this section. Measured emissions were below applicable limits.

Test Engineer(s):

Ben Taylor

Test Date(s):

08/17/11

Radiated Emissions Limits Test Results, Class A

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuV)	Antenna Correction Factor (dB) (+)	Cable Loss (dB) (+)	Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
55.791583	109	Н	3.17	18.18	7.44	0.23	10.46	15.39	39.00	-23.61
55.791583	11	V	1.02	36.23	7.44	0.23	10.46	33.44	39.00	-5.56
200.04008	158	Н	1.39	14.54	12.99	0.23	10.46	17.30	43.50	-26.20
200.04008	207	V	1.06	25.18	12.99	0.23	10.46	27.94	43.50	-15.56
600.05078	81	Н	1.17	26.84	19.50	1.17	10.46	37.05	46.40	-9.35
600.05078	89	V	1.05	26.07	19.50	1.17	10.46	36.28	46.40	-10.12
639.40882	349	Н	1.45	17.26	19.99	1.17	10.46	27.96	46.40	-18.44
639.40882	253	V	1.05	18.79	19.99	1.17	10.46	29.49	46.40	-16.91
733.38482	59	Н	1.34	27.58	20.90	1.50	10.46	39.52	46.40	-6.88
733.38482	89	V	1.02	24.75	20.90	1.50	10.46	36.69	46.40	-9.71
957.56513	202	Н	1.01	17.42	23.10	1.72	10.46	31.78	46.40	-14.62
957.56513	350	V	1.05	13.38	23.10	1.72	10.46	27.74	46.40	-18.66

Table 11. Radiated Emissions, Test Results, FCC Limits, 30 MHz - 1 GHz

Plot 3. Radiated Emissions, Pre-Scan, FCC Limits, 30 MHz – 1 GHz

Frequency (MHz)	EUT Azimuth (Degrees)	Antenna Polarity (H/V)	Antenna HEIGHT (m)	Uncorrected Amplitude (dBuV)	Antenna Correction Factor (dB) (+)	Cable Loss (dB) (+)	Distance Correction Factor (dB) (-)	Corrected Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
55.791583	109	Н	3.17	18.18	7.44	0.23	10.46	15.39	40.00	-24.61
55.791583	11	V	1.02	36.23	7.44	0.23	10.46	33.44	40.00	-6.56
200.04008	158	Н	1.39	14.54	12.99	0.23	10.46	17.30	40.00	-22.70
200.04008	207	V	1.06	25.18	12.99	0.23	10.46	27.94	40.00	-12.06
600.05078	81	Н	1.17	26.84	19.50	1.17	10.46	37.05	47.00	-9.95
600.05078	89	V	1.05	26.07	19.50	1.17	10.46	36.28	47.00	-10.72
639.40882	349	Н	1.45	17.26	19.99	1.17	10.46	27.96	47.00	-19.04
639.40882	253	V	1.05	18.79	19.99	1.17	10.46	29.49	47.00	-17.51
733.38482	59	Н	1.34	27.58	20.90	1.50	10.46	39.52	47.00	-7.48
733.38482	89	V	1.02	24.75	20.90	1.50	10.46	36.69	47.00	-10.31
957.56513	202	Н	1.01	17.42	23.10	1.72	10.46	31.78	47.00	-15.22
957.56513	350	V	1.05	13.38	23.10	1.72	10.46	27.74	47.00	-19.26

Table 12. Radiated Emissions, Test Results, ICES-003 Limits, 30 MHz – 1 GHz

Radiated Emission Limits Test Setup

Photograph 3. Radiated Emission, Test Setup

IV. Electromagnetic Compatibility Criteria for Intentional Radiators

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.203 Antenna Requirement

Test Requirement:

§ 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The structure and application of the EUT were analyzed to determine compliance with Section 15.203 of the Rules. Section 15.203 states that the subject device must meet at least one of the following criteria:

- a.) Antenna must be permanently attached to the unit.
- b.) Antenna must use a unique type of connector to attach to the EUT.
- c.) Unit must be professionally installed. Installer shall be responsible for verifying that the correct antenna is employed with the unit.

Results: The EUT as tested is compliant the criteria of §15.203. The unit will be professionally installed.

Test Engineer(s): Jeff Pratt

Test Date(s): 10/18/11

Type	Gain	Manufacturer	Model
Omni	10 dBi	Ubiquiti Networks	AMO-5G10
Sector	15.5 dBi	PCTEL, Inc.	SP4959-16XP90

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.207 Conducted Emissions Limits

Test Requirement(s):

§ 15.207 (a): For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 Ω line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency range	§ 15.207(a), Conducted Limit (dBµV)				
(MHz)	Quasi-Peak	Average			
* 0.15- 0.45	66 - 56	56 - 46			
0.45 - 0.5	56	46			
0.5 - 30	60	50			

Table 13. Conducted Limits for Intentional Radiators from FCC Part 15 § 15.207(a)

Test Procedure:

The EUT was placed on a 0.8 m-high wooden table inside a semi-anechoic chamber. The EUT was situated such that the back of the EUT was 0.4 m from one wall of the vertical ground plane, and the remaining sides of the EUT were no closer than 0.8 m from any other conductive surface. The EUT was powered from a 50 Ω /50 μ H Line Impedance Stabilization Network (LISN). The EMC receiver scanned the frequency range from 150 kHz to 30 MHz. Conducted Emissions measurements were made in accordance with ANSI C63.4-1992 "Methods and Measurements of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9kHz to 40 GHz". The measurements were performed over the frequency range of 0.15 MHz to 30 MHz using a 50 Ω /50 μ H LISN as the input transducer to an EMC/field intensity meter.

Test Results:

The EUT was found to comply with the requirement(s) of this section. Measured emissions were below applicable limits.

Test Engineer(s): Ben Taylor

Test Date(s): 10/26/11

Conducted Emissions - Voltage, AC Power

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.1569	53.36	0	53.36	65.63	-12.27	43.66	0	43.66	55.63	-11.97
0.3995	43.6	0	43.6	57.86	-14.26	38.08	0	38.08	47.86	-9.78
0.5584	41	0	41	56	-15	35.6	0	35.6	46	-10.4
0.7148	39.1	0	39.1	56	-16.9	33.57	0	33.57	46	-12.43
3.66	42.31	0.03	42.34	56	-13.66	37.52	0.03	37.55	46	-8.45
4.475	42.82	0.08	42.9	56	-13.1	39.42	0.08	39.5	46	-6.5

Table 14. Conducted Emissions - Voltage, AC Power, Phase Line, Test Results

Plot 4. §15.207 Conducted Emissions, Phase Line Plot

Frequency (MHz)	Uncorrected Meter Reading (dBuV) QP	Cable Loss (dB)	Corrected Measurement (dBuV) QP	Limit (dBuV) QP	Margin (dB) QP	Uncorrected Meter Reading (dBuV) Avg.	Cable Loss (dB)	Corrected Measurement (dBuV) AVG	Limit (dBuV) AVG	Margin (dB) AVG
0.1584	53.42	0	53.42	65.55	-12.13	44.62	0	44.62	55.55	-10.93
0.2385	44.18	0.01	44.19	62.15	-17.96	38.39	0.01	38.4	52.15	-13.75
0.398	42.8	0	42.8	57.9	-15.1	41	0	41	47.9	-6.9
0.5568	39.35	0	39.35	56	-16.65	39.44	0	39.44	46	-6.56
3.66	43.13	0.03	43.16	56	-12.84	42.03	0.03	42.06	46	-3.94
4.881	42.25	0.1	42.35	56	-13.65	41.96	0.1	42.06	46	-3.94

Table 15. Conducted Emissions - Voltage, AC Power, Neutral Line, Test Results

Plot 5. §15.207 Conducted Emissions, Neutral Line Plot

Photograph 4. §15.207 Conducted Emissions, Test Setup

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 403(c) 26dB Bandwidth

Test Requirements: § 15.403 (c): Operation under the provisions of this section is limited to frequency hopping and

digitally modulated intentional radiators that comply with the following provisions:

Test Procedure: The transmitter was set to the mid channel at the highest output power and connected to the

spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using a RBW approximately equal to 1% of the total emission bandwidth, VBW > RBW. The $26 \ dB$ Bandwidth was measured and recorded. The measurements

were repeated at the low and high channels.

Test Results Equipment complies with § 15.407 (c). The 26 dB Bandwidth was determined from the plots on the

following pages.

Test Engineer(s): Jeff Pratt

Test Date(s): 09/14/11

Figure 1. Occupied Bandwidth Test Setup

Occupied Bandwidth								
Mode	Frequency (MHz)	Measured 26 dB Bandwidth (MHz)	99 % Bandwidth (MHz)					
	5745	20.711	16.6108					
802.11a	5785	21.231	16.6246					
	5805	21.224	16.4928					

Table 16. Occupied Bandwidth, Test Results, 802.11a

Occupied Bandwidth								
Mode	Frequency (MHz)	Measured 26 dB Bandwidth (MHz)	99 % Bandwidth (MHz)					
	5745	21.583	17.6900					
802.11n 20MHz Port A	5785	21.510	17.7500					
	5805	21.924	17.7108					
	5745	20.427	17.7375					
802.11n 20MHz Port B	5785	21.096	17.7387					
	5805	22.392	17.7331					

Table 17. Occupied Bandwidth, Test Results, 802.11n 20 MHz

Occupied Bandwidth								
Mode	Frequency (MHz)	Measured 26 dB Bandwidth (MHz)	99 % Bandwidth (MHz)					
	5755	41.990	36.1640					
802.11n 40MHz Port A	5785	41.697	35.7092					
	5795	43.298	36.2786					
	5755	43.609	35.9563					
802.11n 40MHz Port B	5785	41.973	36.2562					
	5795	41.346	36.1754					

Table 18. Occupied Bandwidth, Test Results, 802.11n 40 MHz

Occupied Bandwidth, 802.11a

Plot 6. Occupied Bandwidth, 802.11a, 5745 MHz

Plot 7. Occupied Bandwidth, 802.11a, 5785 MHz

Plot 8. Occupied Bandwidth, 802.11a, 5805 MHz

Occupied Bandwidth, 802.11n 20 MHz, Port A

Plot 9. Occupied Bandwidth, 802.11n 20 MHz, Port A, 5745 MHz

Plot 10. Occupied Bandwidth, 802.11n 20 MHz, Port A, 5785 MHz

Plot 11. Occupied Bandwidth, 802.11n 20 MHz, Port A, 5805 MHz

Occupied Bandwidth, 802.11n 20 MHz, Port B

Plot 12. Occupied Bandwidth, 802.11n 20 MHz, Port B, 5745 MHz

Plot 13. Occupied Bandwidth, 802.11n 20 MHz, Port B, 5785 MHz

Plot 14. Occupied Bandwidth, 802.11n 20 MHz, Port B, 5805 MHz

Occupied Bandwidth, 802.11n 40 MHz, Port A

Plot 15. Occupied Bandwidth, 802.11n 40 MHz, Port A, 5755 MHz

Plot 16. Occupied Bandwidth, 802.11n 40 MHz, Port A, 5785 MHz

Plot 17. Occupied Bandwidth, 802.11n 40 MHz, Port A, 5795 MHz

Occupied Bandwidth, 802.11n 40 MHz, Port B

Plot 18. Occupied Bandwidth, 802.11n 40 MHz, Port B, 5755 MHz

Plot 19. Occupied Bandwidth, 802.11n 40 MHz, Port B, 5785 MHz

Plot 20. Occupied Bandwidth, 802.11n 40 MHz, Port B, 5795 MHz

99% Occupied Bandwidth, 802.11a

Plot 21. 99% Occupied Bandwidth, 802.11a, 5745 MHz

Plot 22. 99% Occupied Bandwidth, 802.11a, 5785 MHz

Plot 23. 99% Occupied Bandwidth, 802.11a, 5805 MHz

99% Occupied Bandwidth, 802.11n 20 MHz, Port A

Plot 24. 99% Occupied Bandwidth, 802.11n 20 MHz, Port A, 5745 MHz

Plot 25. 99% Occupied Bandwidth, 802.11n 20 MHz, Port A, 5785 MHz

Plot 26. 99% Occupied Bandwidth, 802.11n 20 MHz, Port A, 5805 MHz

99% Occupied Bandwidth, 802.11n 20 MHz, Port B

Plot 27. 99% Occupied Bandwidth, 802.11n 20 MHz, Port B, 5745 MHz

Plot 28. 99% Occupied Bandwidth, 802.11n 20 MHz, Port B, 5785 MHz

Plot 29. 99% Occupied Bandwidth, 802.11n 20 MHz, Port B, 5805 MHz

99% Occupied Bandwidth, 802.11n 40 MHz, Port A

Plot 30. 99% Occupied Bandwidth, 802.11n 40 MHz, Port A, 5755 MHz

Plot 31. 99% Occupied Bandwidth, 802.11n 40 MHz, Port A, 5785 MHz

Plot 32. 99% Occupied Bandwidth, 802.11n 40 MHz, Port A, 5795 MHz

99% Occupied Bandwidth, 802.11n 40 MHz, Port B

Plot 33. 99% Occupied Bandwidth, 802.11n 40 MHz, Port B, 5755 MHz

Plot 34. 99% Occupied Bandwidth, 802.11n 40 MHz, Port B, 5785 MHz

Plot 35. 99% Occupied Bandwidth, 802.11n 40 MHz, Port B, 5795 MHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15. 407(a) (1), (2) RF Power Output

Test Requirements: §15.407(a) (1), (2): The maximum output power of the intentional radiator shall not exceed the following:

Digital Transmission Systems (MHz)	Output Limit (mW)
5150-5250	50
5250-5350	250

Table 19. Output Power Requirements from §15.407

\$15.407(a) (3): For the band 5.725–5.825 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 1 W or 17 dBm + 10 log B, where B is the 26-dB emission bandwidth in MHz.

Test Procedure: The transmitter was connected to a calibrated Spectrum analyzer. The EUT was measured at the

low, mid and high channels of each band with the data rate that produced the highest output power.

Test Results: Equipment complies with the Peak Power Output limits of § 15.401(a) (2)

Test Engineer(s): Jeff Pratt

Test Date(s): 09/09/11

Figure 2. Peak Power Output Test Setup

Channel (MHz)	Mode / Mod. Type	Port 1A Conducted Power (dBm)	Port 1A Conducted Power (mW)	Port 1B Conducted Power (dBm)	Port 1B Conducted Power (mW)	Summed Conducted Power (mW)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Limit (dBm)	Margin (dB)
5745	802.11a	14.94	31.1888958			31.188896	14.94	10	26	-11.06
5785	802.11a	14.05	25.4097271			25.409727	14.05	10	26	-11.95
5805	802.11a	13.4	21.8776162			21.877616	13.4	10	26	-12.6
5745	802.11n HT20	12.73	18.7499451	12.39	17.33804	36.087985	15.5736263	10	26	-10.4263737
5785	802.11n HT20	12.29	16.943378	11.75	14.9623566	31.905735	15.0386875	10	26	-10.9613125
5805	802.11n HT20	12.22	16.6724721	11.42	13.8675583	30.54003	14.8486947	10	26	-11.1513053
5755	802.11n HT40	12.95	19.7242274	11.85	15.3108746	35.035102	15.4450339	10	26	-10.5549661
5785	802.11n HT40	11.77	15.0314197	11.93	15.595525	30.626945	14.8610367	10	26	-11.1389633
5795	802.11n HT40	10.68	11.6949939	11.36	13.6772883	25.372282	14.0435953	10	26	-11.9564047

Table 20. RF Power Output, Test Results

Channel (MHz)	Mode / Mod. Type	Port 1A Conducted Power (dBm)	Port 1A Conducted Power (mW)	Port 1B Conducted Power (dBm)	Port 1B Conducted Power (mW)	Summed Conducted Power (mW)	Summed Conducted Power (dBm)	Antenna Gain (dBi)	Limit (dBm)	Margin (dB)
5745	802.11a	14.51	28.2487997			28.2488	14.51	15.5	20.5	-5.99
5785	802.11a	13.5	22.3872114			22.387211	13.5	15.5	20.5	-7
5805	802.11a	13.41	21.9280494			21.928049	13.41	15.5	20.5	-7.09
5745	802.11n HT20	12.83	19.1866874	12.11	16.2554876	35.442175	15.4952037	15.5	20.5	-5.00479635
5785	802.11n HT20	12.59	18.1551566	11.3	13.4896288	31.644785	15.0030216	15.5	20.5	-5.49697844
5805	802.11n HT20	11.53	14.2232879	11.18	13.121999	27.345287	14.3688248	15.5	20.5	-6.13117516
5755	802.11n HT40	12.04	15.9955803	11.42	13.8675583	29.863139	14.7513545	15.5	20.5	-5.7486455
5785	802.11n HT40	11.24	13.3045442	11.93	15.595525	28.900069	14.6089888	15.5	20.5	-5.89101117
5795	802.11n HT40	11.3	13.4896288	10.61	11.5080039	24.997633	13.9789888	15.5	20.5	-6.52101117

Table 21. RF Power Output, Test Results, Sector Antenna

Conducted Output Power, 802.11a

Plot 36. Conducted Output Power, 802.11a, 5745 MHz

Plot 37. Conducted Output Power, 802.11a, 5785 MHz

Plot 38. Conducted Output Power, 802.11a, 5805 MHz

Conducted Output Power, 802.11n 20 MHz, Port A

Plot 39. Conducted Output Power, 802.11n 20 MHz, Port A, 5745 MHz

Plot 40. Conducted Output Power, 802.11n 20 MHz, Port A, 5785 MHz

Plot 41. Conducted Output Power, 802.11n 20 MHz, Port A, 5805 MHz

Conducted Output Power, 802.11n 20 MHz, Port B

Plot 42. Conducted Output Power, 802.11n 20 MHz, Port B, 5745 MHz

Plot 43. Conducted Output Power, 802.11n 20 MHz, Port B, 5785 MHz

Plot 44. Conducted Output Power, 802.11n 20 MHz, Port B, 5805 MHz

Conducted Output Power, 802.11n 40 MHz, Port A

Plot 45. Conducted Output Power, 802.11n 40 MHz, Port A, 5755 MHz

Plot 46. Conducted Output Power, 802.11n 40 MHz, Port A, 5785 MHz

Plot 47. Conducted Output Power, 802.11n 40 MHz, Port A, 5795 MHz

Conducted Output Power, 802.11n 40 MHz, Port B

Plot 48. Conducted Output Power, 802.11n 40 MHz, Port B, 5755 MHz

Plot 49. Conducted Output Power, 802.11n 40 MHz, Port B, 5785 MHz

Plot 50. Conducted Output Power, 802.11n 40 MHz, Port B, 5795 MHz

Conducted Output Power, 802.11a, Sector Antenna

Plot 51. Conducted Output Power, 802.11a, 5745 MHz, Sector Antenna

Plot 52. Conducted Output Power, 802.11a, 5785 MHz, Sector Antenna

Plot 53. Conducted Output Power, 802.11a, 5805 MHz, Sector Antenna

Conducted Output Power, 802.11n 20 MHz, Port A, Sector Antenna

Plot 54. Conducted Output Power, 802.11n 20 MHz, Port A, Sector Antenna, 5745 MHz

Plot 55. Conducted Output Power, 802.11n 20 MHz, Port A, Sector Antenna, 5785 MHz

Plot 56. Conducted Output Power, 802.11n 20 MHz, Port A, Sector Antenna, 5805 MHz

Conducted Output Power, 802.11n 20 MHz, Port B, Sector Antenna

Plot 57. Conducted Output Power, 802.11n 20 MHz, Port B, Sector Antenna, 5745 MHz

Plot 58. Conducted Output Power, 802.11n 20 MHz, Port B, Sector Antenna, 5785 MHz

Plot 59. Conducted Output Power, 802.11n 20 MHz, Port B, Sector Antenna, 5805 MHz

Conducted Output Power, 802.11n 40 MHz, Port A, Sector Antenna

Plot 60. Conducted Output Power, 802.11n 40 MHz, Port A, Sector Antenna, 5755 MHz

Plot 61. Conducted Output Power, 802.11n 40 MHz, Port A, Sector Antenna, 5785 MHz

Plot 62. Conducted Output Power, 802.11n 40 MHz, Port A, Sector Antenna, 5795 MHz

Conducted Output Power, 802.11n 40 MHz, Port B, Sector Antenna

Plot 63. Conducted Output Power, 802.11n 40 MHz, Port B, Sector Antenna, 5755 MHz

Plot 64. Conducted Output Power, 802.11n 40 MHz, Port B, Sector Antenna, 5785 MHz

Plot 65. Conducted Output Power, 802.11n 40 MHz, Port B, Sector Antenna, 5795 MHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(a)(1), (a)(2) Peak Power Spectral Density

Test Requirements: § 15.407(a)(3), (a)(2): The peak power spectral density shall not exceed 17 dBm in any 1-MHz

band in the frequency band 5.725GHz to 5.825GHz.

Test Procedure: The transmitter was connected directly to a Spectrum Analyzer through an attenuator. The power

level was set to the maximum level on the EUT. The RBW was set to 1MHz and the VBW was set to 3MHz. The method of measurement SA-1 from 789033 D01 UNII General Test Procedures v01

was used.

Test Results: Equipment complies with the peak power spectral density limits of § 15.407(a)(1), (a)(2). The peak

power spectral density was determined from plots on the following page(s).

Test Engineer(s): Jeff Pratt

Test Date(s): 09/09/11

Figure 3. Peak Power Spectral Density Test Setup

Channel (MHz)	Mode/Modulation Type	Port 1A Spectral Density (dBm)	Port 1A Spectral Density (mW)	Port 1B Spectral Density (dBm)	Port 1B Spectral Density (mW)	Summed Spectral Density (mW)	Summed Spectral Density (dBm)	Antenna Gain (dBi)	Limit (dBm)	Margin (dB)	GUI
5745	802.11a	3.965	2.491724			2.491724	3.965	10	13	-9.035	20
5785	802.11a	3.248	2.112516			2.112516	3.248	10	13	-9.752	20
5805	802.11a	2.329	1.709622			1.709622	2.329	10	13	-10.671	20
5745	802.11n HT20	1.83	1.524053	1.227	1.326478	2.850531	4.549257	10	13	-8.45074	20
5785	802.11n HT20	1.168	1.308579	-0.033	0.99243	2.301009	3.619184	10	13	-9.38082	20
5805	802.11n HT20	1.059	1.276145	0.457	1.110964	2.387109	3.778722	10	13	-9.22128	20
5755	802.11n HT40	-1.768	0.66558	-2.233	0.597998	1.263578	1.01602	10	13	-11.984	20
5785	802.11n HT40	-2.501	0.562212	-2.44	0.570164	1.132376	0.539907	10	13	-12.4601	20
5795	802.11n HT40	-1.801	0.660541	-1.57	0.696627	1.357168	1.326336	10	13	-11.6737	20

Table 22. Power Spectral Density, 802.11a, Test Results

Channel (MHz)	Mode/Modulation Type	Port 1A Spectral Density (dBm)	Port 1A Spectral Density (mW)	Port 1B Spectral Density (dBm)	Port 1B Spectral Density (mW)	Summed Spectral Density (mW)	Summed Spectral Density (dBm)	Antenna Gain (dBi)	Limit (dBm)	Margin (dB)	GUI
5745	802.11a	3.034	2.010944			2.010944	3.034	15.5	7.5	-4.466	17
5785	802.11a	2.803	1.906777			1.906777	2.803	15.5	7.5	-4.697	18
5805	802.11a	2.079	1.613987			1.613987	2.079	15.5	7.5	-5.421	17
5745	802.11n HT20	1.615	1.450441	1.629	1.455124	2.905565	4.632306	15.5	7.5	-2.86769	17
5785	802.11n HT20	0.687	1.171386	0.778	1.19619	2.367575	3.743038	15.5	7.5	-3.75696	17
5805	802.11n HT20	0.201	1.04737	-0.488	0.893717	1.941087	2.880449	15.5	7.5	-4.61955	17
5755	802.11n HT40	-2.457	0.567937	-2.63	0.545758	1.113695	0.467661	15.5	7.5	-7.03234	17
5785	802.11n HT40	-2.777	0.527594	-3.031	0.497622	1.025217	0.108157	15.5	7.5	-7.39184	18
5795	802.11n HT40	-2.993	0.501996	-3.409	0.456142	0.958138	-0.18572	15.5	7.5	-7.68572	17

Table 23. Power Spectral Density, 802.11a, Test Results, Sector Antenna

Peak Power Spectral Density, 802.11a

Plot 66. Peak Spectral Density, 802.11a, 5745 MHz

Plot 67. Peak Spectral Density, 802.11a, 5785 MHz

Plot 68. Peak Spectral Density, 802.11a, 5805 MHz

Peak Power Spectral Density, 802.11n 20 MHz, Port A

Plot 69. Peak Spectral Density, 802.11n 20 MHz, Port A, 5745 MHz

Plot 70. Peak Spectral Density, 802.11n 20 MHz, Port A, 5785 MHz

Plot 71. Peak Spectral Density, 802.11n 20 MHz, Port A, 5805 MHz

Peak Power Spectral Density, 802.11n 20 MHz, Port B

Plot 72. Peak Spectral Density, 802.11n 20 MHz, Port B, 5745 MHz

Plot 73. Peak Spectral Density, 802.11n 20 MHz, Port B, 5785 MHz

Plot 74. Peak Spectral Density, 802.11n 20 MHz, Port B, 5805 MHz

Peak Power Spectral Density, 802.11n 40 MHz, Port A

Plot 75. Peak Spectral Density, 802.11n 40 MHz, Port A, 5755 MHz

Plot 76. Peak Spectral Density, 802.11n 40 MHz, Port A, 5785 MHz

Plot 77. Peak Spectral Density, 802.11n 40 MHz, Port A, 5795 MHz

Peak Power Spectral Density, 802.11n 40 MHz, Port B

Plot 78. Peak Spectral Density, 802.11n 40 MHz, Port B, 5755 MHz

Plot 79. Peak Spectral Density, 802.11n 40 MHz, Port B, 5785 MHz

Plot 80. Peak Spectral Density, 802.11n 40 MHz, Port B, 5795 MHz

Peak Power Spectral Density, 802.11a, Sector Antenna

Plot 81. Peak Spectral Density, 802.11a, 5745 MHz, Sector Antenna

Plot 82. Peak Spectral Density, 802.11a, 5785 MHz, Sector Antenna

Plot 83. Peak Spectral Density, 802.11a, 5805 MHz, Sector Antenna

Peak Power Spectral Density, 802.11n 20 MHz, Port A, Sector Antenna

Plot 84. Peak Spectral Density, 802.11n 20 MHz, Port A, Sector Antenna, 5745 MHz

Plot 85. Peak Spectral Density, 802.11n 20 MHz, Port A, Sector Antenna, 5785 MHz

Plot 86. Peak Spectral Density, 802.11n 20 MHz, Port A, Sector Antenna, 5805 MHz

Peak Power Spectral Density, 802.11n 20 MHz, Port B, Sector Antenna

Plot 87. Peak Spectral Density, 802.11n 20 MHz, Port B, Sector Antenna, 5745 MHz

Plot 88. Peak Spectral Density, 802.11n 20 MHz, Port B, Sector Antenna, 5785 MHz

Plot 89. Peak Spectral Density, 802.11n 20 MHz, Port B, Sector Antenna, 5805 MHz

Peak Power Spectral Density, 802.11n 40 MHz, Port A, Sector Antenna

Plot 90. Peak Spectral Density, 802.11n 40 MHz, Port A, Sector Antenna, 5755 MHz

Plot 91. Peak Spectral Density, 802.11n 40 MHz, Port A, Sector Antenna, 5785 MHz

Plot 92. Peak Spectral Density, 802.11n 40 MHz, Port A, Sector Antenna, 5795 MHz

Peak Power Spectral Density, 802.11n 40 MHz, Port B, Sector Antenna

Plot 93. Peak Spectral Density, 802.11n 40 MHz, Port B, Sector Antenna, 5755 MHz

Plot 94. Peak Spectral Density, 802.11n 40 MHz, Port B, Sector Antenna, 5785 MHz

Plot 95. Peak Spectral Density, 802.11n 40 MHz, Port B, Sector Antenna, 5795 MHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(a)(6) Peak Excursion Ratio

Test Requirements: § 15.407(a)(6): For digitally modulated systems, the peak excursion of the modulation envelope to

the peak transmit power shall not exceed 13dB across any 1MHz bandwidth of the emission

bandwidth whichever is less.

Test Procedure: The method of measurement from 789033 D01 UNII General Test Procedures v01 was used. The

EUT was connected directly to the spectrum analyzer through cabling and attenuation. The 1st trace on the spectrum analyzer was set to RBW=1MHz, VBW=3MHz. The peak detector mode was used and the trace max held. The 2nd trace on the spectrum analyzer was set to a RBW=1MHz, VBW=30

KHz. The detector mode was set to sample detector.

The Peak Excursion Ratio was determined from the difference between the maximum found in each

trace.

Test Results: Equipment complies with the peak excursion ratio limits of § 15.407(a)(6). The peak excursion ratio

was determined from plots on the following page(s).

Test Engineer(s): Jeff Pratt

Test Date(s): 09/09/11

Peak Excursion Ration									
Mode	Frequency (MHz)	Excursion Ratio (dB)	Limit (dBm)	Margin (dB)					
	5745	10.293	13	2.707					
802.11a	5785	10.068	13	2.932					
	5805	10.376	13	2.624					

Table 24. Peak Excursion Ration, Test Results, 802.11a

Peak Excursion Ration								
Mode	Frequency (MHz)	Excursion Ratio (dB)	Limit (dBm)	Margin (dB)				
	5745	10.304	13	2.696				
802.11n 20 MHz Port A	5785	10.083	13	2.917				
TOITA	5805	10.229	13	2.771				
002.11 20.344	5745	9.979	13	3.021				
802.11n 20 MHz Port B	5785	10.634	13	2.366				
Tortb	5805	10.371	13	2.629				

Table 25. Peak Excursion Ration, Test Results, 802.11n 20 MHz

Peak Excursion Ration					
Mode	Frequency (MHz)	Excursion Ratio (dBm)	Limit (dBm)	Margin (dB)	
802.11n 40 MHz Port A	5755	10.440	13	2.560	
	5785	10.375	13	2.625	
	5795	10.490	13	2.510	
802.11n 40 MHz Port B	5755	9.756	13	3.244	
	5785	10.622	13	2.378	
	5795	10.728	13	2.272	

Table 26. Peak Excursion Ration, Test Results, 802.11n 40 MHz

Peak Excursion Ratio, 802.11a

Plot 96. Peak Excursion, 802.11a, 5745 MHz

Plot 97. Peak Excursion, 802.11a, 5785 MHz

Plot 98. Peak Excursion, 802.11a, 5805 MHz

Peak Excursion Ratio, 802.11n 20 MHz, Port A

Plot 99. Peak Excursion, 802.11n 20 MHz, Port A, 5745 MHz

Plot 100. Peak Excursion, 802.11n 20 MHz, Port A, 5785 MHz

Plot 101. Peak Excursion, 802.11n 20 MHz, Port A, 5805 MHz

Peak Excursion Ratio, 802.11n 20 MHz, Port B

Plot 102. Peak Excursion, 802.11n 20 MHz, Port B, 5745 MHz

Plot 103. Peak Excursion, 802.11n 20 MHz, Port B, 5785 MHz

Plot 104. Peak Excursion, 802.11n 20 MHz, Port B, 5805 MHz

Peak Excursion Ratio, 802.11n 40 MHz, Port A

Plot 105. Peak Excursion, 802.11n 40 MHz, Port A, 5755 MHz

Plot 106. Peak Excursion, 802.11n 40 MHz, Port A, 5785 MHz

Plot 107. Peak Excursion, 802.11n 40 MHz, Port A, 5795 MHz

Peak Excursion Ratio, 802.11n 40 MHz, Port B

Plot 108. Peak Excursion, 802.11n 40 MHz, Port B, 5755 MHz

Plot 109. Peak Excursion, 802.11n 40 MHz, Port B, 5785 MHz

Plot 110. Peak Excursion, 802.11n 40 MHz, Port B, 5795 MHz

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(b)(1),(2), (5), (6) Undesirable Emissions

Test Requirements: § **15.407(b)(1),(2), (5), (6)**; §**15.205:** Emissions outside the frequency band.

§ 15.407(b)(1): In any 1MHz bandwidth outside the frequency band 5.15-5.25GHz in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power shall not exceed -27dBm.

§ 15.407(b)(2): In any 1MHz bandwidth outside the frequency band 5.25-5.35GHz in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power shall not exceed -27dBm.

§ 15.407(b)(6): Radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a).

§15.205(a): Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42–16.423	399.9–410	4.5–5.15
1 0.495–0.505	16.69475–16.69525	608–614	5.35–5.46
2.1735–2.1905	16.80425–16.80475	960–1240	7.25–7.75
4.125–4.128	25.5–25.67	1300–1427	8.025–8.5
4.17725–4.17775	37.5–38.25	1435–1626.5	9.0–9.2
4.20725-4.20775	73–74.6	1645.5–1646.5	9.3–9.5
6.215-6.218	74.8–75.2	1660–1710	10.6–12.7
6.26775–6.26825	108–121.94	1718.8–1722.2	13.25–13.4
6.31175–6.31225	123–138	2200–2300	14.47–14.5
8.291-8.294	149.9–150.05	2310–2390	15.35–16.2
8.362-8.366	156.52475–156.52525	2483.5–2500	17.7–21.4
8.37625-8.38675	156.7–156.9	2655–2900	22.01–23.12
8.41425–8.41475	162.0125–167.17	3260–3267	23.6–24.0
12.29–12.293	167.72–173.2	3332–3339	31.2–31.8
12.51975–12.52025	240–285	3345.8–3358 36.	43–36.5
12.57675–12.57725	322–335.4	3600-4400	(²)

Table 27. Restricted Bands of Operation

Test Procedure:

The EUT was placed on a 0.8m acrylic table inside a semi-anechoic chamber. The transmitter was set to transmit on low, mid, and high channels. The table was rotated 360 degrees and the height of the receiving antenna was varied between 1m and 4m to maximize spurious emissions.

For frequencies between 30 MHz and 1 GHz, a peak detector was used with a resolution bandwidth of 100 kHz. For frequencies above 1 GHz, an average detector was used with a resolution bandwidth of 1 MHz. Measurements were made on frequencies up to 40 GHz. When emissions were found within restricted bands, their field strength was measured to determine compliance with the 15.209 limit.

The equation EIRP= $E+20 \log D-104.77$ was used to convert between field strength and equivalent isotropic radiated power (EIRP), where E is the measured field strength in dBuV/m and d was the measurement distance in meters.

Test Results: The EUT was found compliant with the requirement(s) of this section. Measured emissions were

below applicable limits.

Test Engineer(s): Jeff Pratt

Test Date(s): 10/1/11

Radiated Spurious Emissions Limits, 802.11a, Omni Antenna

Plot 111. Radiated Spurious, 802.11a, 5745 MHz, 30 MHz – 1 GHz, Omni Antenna

Plot 112. Radiated Spurious, 802.11a, 5745 MHz, 1 GHz - 7 GHz, Omni Antenna

Plot 113. Radiated Spurious, 802.11a, 5745 MHz, 7 GHz – 18 GHz, Omni Antenna

Plot 114. Radiated Spurious, 802.11a, 5745 MHz, 18 GHz – 40 GHz, Omni Antenna

Plot 115. Radiated Spurious, 802.11a, 5785 MHz, 30 MHz - 1 GHz, Omni Antenna

Plot 116. Radiated Spurious, 802.11a, 5785 MHz, 1 GHz - 7 GHz, Omni Antenna

Plot 117. Radiated Spurious, 802.11a, 5785 MHz, 7 GHz – 18 GHz, Omni Antenna

Plot 118. Radiated Spurious, 802.11a, 5785 MHz, 18 GHz - 40 GHz, Omni Antenna

Plot 119. Radiated Spurious, 802.11a, 5805 MHz, 30 MHz - 1 GHz, Omni Antenna

Plot 120. Radiated Spurious, 802.11a, 5805 MHz, 1 GHz - 7 GHz, Omni Antenna

Plot 121. Radiated Spurious, 802.11a, 5805 MHz, 7 GHz – 18 GHz, Omni Antenna

Plot 122. Radiated Spurious, 802.11a, 5805 MHz, 18 GHz – 40 GHz, Omni Antenna

Radiated Spurious Emissions Limits, 802.11n 20 MHz, Omni Antenna

Plot 123. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 30 MHz – 1 GHz, Omni Antenna

Plot 124. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 1 GHz - 7 GHz, Omni Antenna

Plot 125. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 7 GHz - 18 GHz, Omni Antenna

Plot 126. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 18 GHz – 40 GHz, Omni Antenna

Plot 127. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 30 MHz - 1 GHz, Omni Antenna

Plot 128. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 1 GHz – 7 GHz, Omni Antenna

Plot 129. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 7 GHz – 18 GHz, Omni Antenna

Plot 130. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 18 GHz – 40 GHz, Omni Antenna

Plot 131. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 30 MHz - 1 GHz, Omni Antenna

Plot 132. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 1 GHz – 7 GHz, Omni Antenna

Plot 133. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 7 GHz – 18 GHz, Omni Antenna

Plot 134. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 18 GHz - 40 GHz, Omni Antenna

Radiated Spurious Emissions Limits, 802.11n 40 MHz, Omni Antenna

Plot 135. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 30 MHz – 1 GHz, Omni Antenna

Plot 136. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 1 GHz - 7 GHz, Omni Antenna

Plot 137. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 7 GHz - 18 GHz, Omni Antenna

Plot 138. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 18 GHz – 40 GHz, Omni Antenna

Plot 139. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 30 MHz - 1 GHz, Omni Antenna

Plot 140. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 1 GHz – 7 GHz, Omni Antenna

Plot 141. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 7 GHz – 18 GHz, Omni Antenna

Plot 142. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 18 GHz – 40 GHz, Omni Antenna

Plot 143. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 30 MHz - 1 GHz, Omni Antenna

Plot 144. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 1 GHz – 7 GHz, Omni Antenna

Plot 145. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 7 GHz – 18 GHz, Omni Antenna

Plot 146. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 18 GHz – 40 GHz, Omni Antenna

Radiated Spurious Emissions Limits, 802.11a, Sector Antenna

Plot 147. Radiated Spurious, 802.11a, 5745 MHz, 30 MHz - 1 GHz, Sector Antenna

Plot 148. Radiated Spurious, 802.11a, 5745 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 149. Radiated Spurious, 802.11a, 5745 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 150. Radiated Spurious, 802.11a, 5745 MHz, 18 GHz – 40 GHz, Sector Antenna

Plot 151. Radiated Spurious, 802.11a, 5785 MHz, 30 MHz - 1 GHz, Sector Antenna

Plot 152. Radiated Spurious, 802.11a, 5785 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 153. Radiated Spurious, 802.11a, 5785 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 154. Radiated Spurious, 802.11a, 5785 MHz, 18 GHz - 40 GHz, Sector Antenna

Plot 155. Radiated Spurious, 802.11a, 5805 MHz, 30 MHz - 1 GHz, Sector Antenna

Plot 156. Radiated Spurious, 802.11a, 5805 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 157. Radiated Spurious, 802.11a, 5805 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 158. Radiated Spurious, 802.11a, 5805 MHz, 18 GHz – 40 GHz, Sector Antenna

Radiated Spurious Emissions Limits, 802.11n 20 MHz, Sector Antenna

Plot 159. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 30 MHz – 1 GHz, Sector Antenna

Plot 160. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 161. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 162. Radiated Spurious, 802.11n 20 MHz, 5745 MHz, 18 GHz – 40 GHz, Sector Antenna

Plot 163. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 30 MHz – 1 GHz, Sector Antenna

Plot 164. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 165. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 166. Radiated Spurious, 802.11n 20 MHz, 5785 MHz, 18 GHz – 40 GHz, Sector Antenna

Plot 167. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 30 MHz - 1 GHz, Sector Antenna

Plot 168. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 169. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 170. Radiated Spurious, 802.11n 20 MHz, 5805 MHz, 18 GHz - 40 GHz, Sector Antenna

Radiated Spurious Emissions Limits, 802.11n 40 MHz, Sector Antenna

Plot 171. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 30 MHz - 1 GHz, Sector Antenna

Plot 172. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 173. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 174. Radiated Spurious, 802.11n 40 MHz, 5755 MHz, 18 GHz – 40 GHz, Sector Antenna

Plot 175. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 30 MHz - 1 GHz, Sector Antenna

Plot 176. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 177. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 178. Radiated Spurious, 802.11n 40 MHz, 5785 MHz, 18 GHz – 40 GHz, Sector Antenna

Plot 179. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 30 MHz - 1 GHz, Sector Antenna

Plot 180. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 1 GHz - 7 GHz, Sector Antenna

Plot 181. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 7 GHz – 18 GHz, Sector Antenna

Plot 182. Radiated Spurious, 802.11n 40 MHz, 5795 MHz, 18 GHz - 40 GHz, Sector Antenna

EIRP EIRP, 802.11a, Omni Antenna

Plot 183. EIRP, 802.11a, 5745 MHz, Band Edge, Omni Antenna

Plot 184. EIRP, 802.11a, 5805 MHz, Band Edge, Omni Antenna

EIRP, 802.11n 20 MHz, Omni Antenna

Plot 185. EIRP, 802.11n 20 MHz, 5745 MHz, Band Edge, Omni Antenna

Plot 186. EIRP, 802.11n 20 MHz, 5805 MHz, Band Edge, Omni Antenna

EIRP, 802.11n 40 MHz, Omni Antenna

Plot 187. EIRP, 802.11n 40 MHz, 5755 MHz, Band Edge, Omni Antenna

Plot 188. EIRP, 802.11n 40 MHz, 5795 MHz, Band Edge, Omni Antenna

EIRP, 802.11a, Sector Antenna

Plot 189. EIRP, 802.11a, 5745 MHz, Band Edge, Sector Antenna

Plot 190. EIRP, 802.11a, 5805 MHz, Band Edge, Sector Antenna

EIRP, 802.11n 20 MHz, Sector Antenna

Plot 191. EIRP, 802.11n 20 MHz, 5745 MHz, Band Edge, Sector Antenna

Plot 192. EIRP, 802.11n 20 MHz, 5805 MHz, Band Edge, Sector Antenna

EIRP, 802.11n 40 MHz, Sector Antenna

Plot 193. EIRP, 802.11n 40 MHz, 5755 MHz, Band Edge, Sector Antenna

Plot 194. EIRP, 802.11n 40 MHz, 5795 MHz, Band Edge, Sector Antenna

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(f) RF Exposure

RF Exposure Requirements: §1.1307(b)(1) and §1.1307(b)(2): Systems operating under the provisions of this section

shall be operated in a manner that ensures that the public is not exposed to radio frequency

energy levels in excess of the Commission's guidelines.

RF Radiation Exposure Limit: §1.1310: As specified in this section, the Maximum Permissible Exposure (MPE) Limit

shall be used to evaluate the environmental impact of human exposure to radiofrequency (RF) radiation as specified in Sec. 1.1307(b), except in the case of portable devices which

shall be evaluated according to the provisions of Sec. 2.1093 of this chapter.

MPE Limit Calculation: EUT's operating frequencies @ 5725-5825 MHz; highest conducted power = 15.574 dBm (peak) therefore, Limit for Uncontrolled exposure: 1 mW/cm² or 10 W/m²

Gain of Antenna @ 5GHz = 10 dBi

Equation from page 18 of OET 65, Edition 97-01

 $S = PG / 4\pi R^2$ or $R = \int PG / 4\pi S$

where, $S = Power Density (mW/cm^2)$

P = Power Input to antenna (36.088 mW)

G = Antenna Gain (10)

R = Radius (20 cm)

 $S = (36.088 * 10)/(4*3.14*20^2) = 0.072 \text{ mW/cm}^2$

Gain of Sector Antenna @ 5GHz = 15.5 dBi

Highest Conducted Power with Sector Antenna = 15.5 dBm

 $S = Power Density (mW/cm^2)$

P = Power Input to Antenna (35.48 dBm)

G = Numeric Antenna Gain (35.48)

R = Radius (20 cm)

 $S = (35.48 * 35.48)/(4 * 3.14 * 20^2) = 0.241 \text{ mW/cm}^2$

Electromagnetic Compatibility Criteria for Intentional Radiators

§ 15.407(g) Frequency Stability

Test Requirements: § 15.407(g): Manufacturers of U-NII devices are responsible for ensuring frequency stability such

that an emission is maintained within the band of operation under all conditions of normal operation

as specified in the user's manual.

Test Procedure: The EUT was placed in a temperature chamber and connected directly to a spectrum analyzer

through an attenuator. The resolution bandwidth was set to 1 MHz with an average detector and the span was set to encompass the complete frequency band. The transmitter was set to transmit on the low and high channels. Markers were used to measure the channels to ensure that the entire emission was contained within the frequency band. The temperature was varied between the minimum and maximum temperature (-20° C and $+55^{\circ}$ C) at increments of 10° C and the measurements were repeated. At ambient temperature ($+20^{\circ}$ C), the input voltage was varied between +/-10% of the nominal input voltage and the measurements were repeated. Measurements

were repeated for each frequency band.

Test Results: The EUT was found compliant with the requirements of §15.407(g).

Test Engineer(s): Jeff Pratt

Test Date(s): 09/20/11

Frequency Stability, 802.11a

Plot 195. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ -20°C, 120 V

Plot 196. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ -10°C, 120 V

Plot 197. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 0°C, 120 V

Plot 198. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 10°C, 120 V

Plot 199. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 20° C, 108 V

Plot 200. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 20°C, 120 V

Plot 201. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 20°C, 132 V

Plot 202. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 30° C, 120 V

Plot 203. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 40°C, 120 V

Plot 204. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 50°C, 120 V

Plot 205. Frequency Stability, 802.11a, 5725 MHz - 5825 MHz @ 55° C, 120 V

Frequency Stability, 802.11n 20 MHz

Plot 206. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ -20°C, 120 V

Plot 207. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ -10°C, 120 V

Plot 208. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 0°C, 120 V

Plot 209. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 10°C, 120 V

Plot 210. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 20° C, 108 V

Plot 211. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 20°C, 120 V

Plot 212. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 20°C, 132 V

Plot 213. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 30° C, 120 V

Plot 214. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 40°C, 120 V

Plot 215. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 50° C, 120 V

Plot 216. Frequency Stability, 802.11n 20 MHz, 5725 MHz - 5825 MHz @ 55° C, 120 V

Frequency Stability, 802.11n 40 MHz

Plot 217. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ -20°C, 120 V

Plot 218. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ -10°C, 120 V

Plot 219. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 0°C, 120 V

Plot 220. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 10°C, 120 V

Plot 221. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 20° C, 108 V

Plot 222. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 20°C, 120 V

Plot 223. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 20°C, 132 V

Plot 224. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 30° C, 120 V

Plot 225. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 40°C, 120 V

Plot 226. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 50° C, 120 V

Plot 227. Frequency Stability, 802.11n 40 MHz, 5725 MHz - 5825 MHz @ 55° C, 120 V

Electromagnetic Compatibility Criteria for Intentional Radiators

RSS-GEN Receiver Spurious Emissions

Test Requirement: The following receiver spurious emission limits shall be complied with:

a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 28.

Spurious Frequency (MHz)	Field Strength (microvolt/m at 3 metres)		
30-88	100		
88-216	150		
216-960	200		
Above 960	500		

Table 28. Spurious Emission Limits for Receivers

b) If a conducted measurement is made, no spurious output signals appearing at the antenna terminals shall exceed 2 nanowatts per any 4 kHz spurious frequency in the band 30-1000 MHz, or 5 nanowatts above 1 GHz.

Test Procedure: The receiver spurious emissions were tested in compliance with the limits of Table 12. The testing

was performed conducted.

Test Results: The EUT was compliant with the Receiver Spurious Emission limits of this requirement.

Test Engineer(s): Jeff Pratt

Test Date(s): 10/04/11

Plot 228. Receiver Spurious Emission, 5.8 GHz, 30 MHz – 1 GHz, Port A

Plot 229. Receiver Spurious Emission, 5.8 GHz, 1 GHz - 18 GHz, Port A

Plot 230. Receiver Spurious Emission, 5.8 GHz, 30 MHz - 1 GHz, Port B

Plot 231. Receiver Spurious Emission, 5.8 GHz, 1 GHz – 18 GHz, Port B

IV. Test Equipment

Test Equipment

Calibrated test equipment utilized during testing was maintained in a current state of calibration per the requirements of ANSI/NCSL Z540-1-1994 and ANSI/ISO/IEC 17025:2000.

MET Asset #	Equipment	Manufacturer	Model	Last Cal Date	Cal Due Date
1T4771	SPECTRUM ANALYZER	AGILENT	E4446A	6/25/2011	6/25/2012
1T4442	PRE-AMPLIFIER, MICROWAVE	MITEQ	AFS42- 01001800- 30-10P	SEE NOTE	
1T4612	SPECTRUM ANALYZER	AGILENT TECHNOLOGIES	E4407B	10/27/2010	10/27/2011
1T4483	ANTENNA; HORN	ETS-LINDGREN	3117	7/19/2011	7/19/2012
1T4752	PRE-AMPLIFIER	MITEQ	JS44- 18004000- 35-8P	SEE NOTE	
1T4745	ANTENNA, HORN	ETS-LINDGREN	3116	10/4/2011	10/4/2012
1T4394	ISOLATION TRANSFORMER	TOPAZ	91005-31	SEE NOTE	
1T4751	ANTENNA – BILOG	SUNOL SCIENCES	JB6	11/3/2010	11/3/2011
1T4728	PROGRAMMABLE AC POWER SOURCE	QUADTECH	31010	SEE NOTE	
1T4409	EMI RECEIVER	ROHDE & SCHWARZ	ESIB7	6/14/2011	6/14/2012
1T4568	RADIATING NOISE SOURCE	MET LABORATORIES	N/A	SEE NOTE	
1T4565	LISN (24 AMP)	SOLAR ELECTRONICS	9252-50-R- 24-BNC	10/28/2010	10/28/2011
1T4563	LISN (24 AMP)	SOLAR ELECTRONICS	9252-50-R- 24-BNC	10/6/2010	10/6/2011
1T2109	RECEIVER, EMI, RECEIVER SECTION	HEWLETT PACKARD	85462A	1/7/2011	1/7/2012
1T4414	MICROWAVE PRE-AMPLIFIER	A.H. SYSTEMS INC.	PAM-0118	SEE NOTE	
1T2108	RECEIVER, EMI, FILTER SECTION	HEWLETT PACKARD	85460A	1/7/2011	1/7/2012
1S2602	DFS SIGNAL GENERATOR	NATIONAL INSTRUMENTS	NIPXI-1042	SEE NOTE	
1T4502	COMB GENERATOR	COM-POWER	CGC-255	10/6/2010	10/6/2011
1T4634	THERMO/HYGRO/BAROMETER	CONTROL COMPANY	02-401	3/11/2010	3/11/2012
1T4758	THERMO-HYGROMETER	CONTROL COMPANY	4040	5/21/2010	5/21/2012
1T4505	TEMPERATURE CHAMBER	TEST EQUITY	115	11/29/2010	11/29/2011

Table 29. Test Equipment List

Note: Functionally tested equipment is verified using calibrated instrumentation at the time of testing.

A. Certification Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart I — Marketing of Radio frequency devices:

§ 2.801 Radio-frequency device defined.

As used in this part, a radio-frequency device is any device which in its operation is capable of Emitting radio-frequency energy by radiation, conduction, or other means. Radio-frequency devices include, but are not limited to:

- (a) The various types of radio communication transmitting devices described throughout this chapter.
- (b) The incidental, unintentional and intentional radiators defined in Part 15 of this chapter.
- (c) The industrial, scientific, and medical equipment described in Part 18 of this chapter.
- (d) Any part or component thereof which in use emits radio-frequency energy by radiation, conduction, or other means.

§ 2.803 Marketing of radio frequency devices prior to equipment authorization.

- (a) Except as provided elsewhere in this chapter, no person shall sell or lease, or offer for sale or lease (including advertising for sale or lease), or import, ship or distribute for the purpose of selling or leasing or offering for sale or lease, any radio frequency device unless:
 - (1) In the case of a device subject to certification, such device has been authorized by the Commission in accordance with the rules in this chapter and is properly identified and labeled as required by §2.925 and other relevant sections in this chapter; or
 - (2) In the case of a device that is not required to have a grant of equipment authorization issued by the Commission, but which must comply with the specified technical standards prior to use, such device also complies with all applicable administrative (including verification of the equipment or authorization under a Declaration of Conformity, where required), technical, labeling and identification requirements specified in this chapter.
- (d) Notwithstanding the provisions of paragraph (a) of this section, the offer for sale solely to business, commercial, industrial, scientific or medical users (but not an offer for sale to other parties or to end users located in a residential environment) of a radio frequency device that is in the conceptual, developmental, design or preproduction stage is permitted prior to equipment authorization or, for devices not subject to the equipment authorization requirements, prior to a determination of compliance with the applicable technical requirements provided that the prospective buyer is advised in writing at the time of the offer for sale that the equipment is subject to the FCC rules and that the equipment will comply with the appropriate rules before delivery to the buyer or to centers of distribution.

- (e)(1) Notwithstanding the provisions of paragraph (a) of this section, prior to equipment authorization or determination of compliance with the applicable technical requirements any radio frequency device may be operated, but not marketed, for the following purposes and under the following conditions:
 - (i) Compliance testing;
 - (ii) Demonstrations at a trade show provided the notice contained in paragraph (c) of this section is displayed in a conspicuous location on, or immediately adjacent to, the device;
 - (iii) Demonstrations at an exhibition conducted at a business, commercial, industrial, scientific or medical location, but excluding locations in a residential environment, provided the notice contained in paragraphs (c) or (d) of this section, as appropriate, is displayed in a conspicuous location on, or immediately adjacent to, the device:
 - (iv) Evaluation of product performance and determination of customer acceptability, provided such operation takes place at the manufacturer's facilities during developmental, design or pre-production states; or
 - (v) Evaluation of product performance and determination of customer acceptability where customer acceptability of a radio frequency device cannot be determined at the manufacturer's facilities because of size or unique capability of the device, provided the device is operated at a business, commercial, industrial, scientific or medical user's site, but not at a residential site, during the development, design or pre-production stages.
- (e)(2) For the purpose of paragraphs (e)(1)(iv) and (e)(1)(v) of this section, the term *manufacturer's facilities* includes the facilities of the party responsible for compliance with the regulations and the manufacturer's premises, as well as the facilities of other entities working under the authorization of the responsible party in connection with the development and manufacture, but not the marketing, of the equipment.
- (f) For radio frequency devices subject to verification and sold solely to business, commercial, industrial, scientific and medical users (excluding products sold to other parties or for operation in a residential environment), parties responsible for verification of the devices shall have the option of ensuring compliance with the applicable technical specifications of this chapter at each end user's location after installation, provided that the purchase or lease agreement includes a proviso that such a determination of compliance be made and is the responsibility of the party responsible for verification of the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 2, Subpart J — Equipment Authorization Procedures:

§ 2.901 Basis and Purpose

- (a) In order to carry out its responsibilities under the Communications Act and the various treaties and international regulations, and in order to promote efficient use of the radio spectrum, the Commission has developed technical standards for radio frequency equipment and parts or components thereof. The technical standards applicable to individual types of equipment are found in that part of the rules governing the service wherein the equipment is to be operated. In addition to the technical standards provided, the rules governing the service may require that such equipment be verified by the manufacturer or importer, be authorized under a Declaration of Conformity, or receive an equipment authorization from the Commission by one of the following procedures: certification or registration.
- (b) The following sections describe the verification procedure, the procedure for a Declaration of Conformity, and the procedures to be followed in obtaining certification from the Commission and the conditions attendant to such a grant.

§ 2.907 Certification.

(a) Certification is an equipment authorization issued by the Commission, based on representation and test data submitted by the applicant.

(b) Certification attaches to all units subsequently marketed by the grantee which are identical (see Section 2.908) to the sample tested except for permissive changes or other variations authorized by the Commission pursuant to Section 2.1043.

¹ In this case, the equipment is subject to the rules of Part 15. More specifically, the equipment falls under Subpart B (of Part 15), which deals with unintentional radiators.

§ 2.948 Description of measurement facilities.

- (a) Each party making measurements of equipment that is subject to an equipment authorization under Part 15 or Part 18 of this chapter, regardless of whether the measurements are filed with the Commission or kept on file by the party responsible for compliance of equipment marketed within the U.S. or its possessions, shall compile a description of the measurement facilities employed.
 - (1) If the measured equipment is subject to the verification procedure, the description of the measurement facilities shall be retained by the party responsible for verification of the equipment.
 - (i) If the equipment is verified through measurements performed by an independent laboratory, it is acceptable for the party responsible for verification of the equipment to rely upon the description of the measurement facilities retained by or placed on file with the Commission by that laboratory. In this situation, the party responsible for the verification of the equipment is not required to retain a duplicate copy of the description of the measurement facilities.
 - (ii) If the equipment is verified based on measurements performed at the installation site of the equipment, no specific site calibration data is required. It is acceptable to retain the description of the measurement facilities at the site at which the measurements were performed.
 - (2) If the equipment is to be authorized by the Commission under the certification procedure, the description of the measurement facilities shall be filed with the Commission's Laboratory in Columbia, Maryland. The data describing the measurement facilities need only be filed once but must be updated as changes are made to the measurement facilities or as otherwise described in this section. At least every three years, the organization responsible for filing the data with the Commission shall certify that the data on file is current.

Label and User's Manual Information

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart A — General:

§ 15.19 Labeling requirements.

- (a) In addition to the requirements in Part 2 of this chapter, a device subject to certification or verification shall be labeled as follows:
 - (1) Receivers associated with the operation of a licensed radio service, e.g., FM broadcast under Part 73 of this chapter, land mobile operation under Part 90, etc., shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference.

(2) A stand-alone cable input selector switch, shall bear the following statement in a conspicuous location on the device:

This device is verified to comply with Part 15 of the FCC Rules for use with cable television service.

(3) All other devices shall bear the following statement in a conspicuous location on the device:

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

- (4) Where a device is constructed in two or more sections connected by wires and marketed together, the statement specified under paragraph (a) of this section is required to be affixed only to the main control unit.
- (5) When the device is so small or for such use that it is not practicable to place the statement specified under paragraph (a) of this section on it, the information required by this paragraph shall be placed in a prominent location in the instruction manual or pamphlet supplied to the user or, alternatively, shall be placed on the container in which the device is marketed. However, the FCC identifier or the unique identifier, as appropriate, must be displayed on the device.

§ 15.21 Information to user.

The users manual or instruction manual for an intentional or unintentional radiator shall caution the user that changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

The following is extracted from Title 47 of the Code of Federal Regulations, Part 15, Subpart B — Unintentional Radiators:

§ 15.105 Information to the user.

(a) For a Class A digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at own expense.

(b) For a Class B digital device or peripheral, the instructions furnished the user shall include the following or similar statement, placed in a prominent location in the text of the manual:

Note: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a residential environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

ICES-003 Procedural & Labeling Requirements

From the Industry Canada Electromagnetic Compatibility Advisory Bulletin entitled, "Implementation and Interpretation of the Interference-Causing Equipment Standard for Digital Apparatus, ICES-003" (EMCAB-3, Issue 2, July 1995):

"At present, CISPR 22: 2002 and ICES technical requirements are essentially equivalent. Therefore, if you have CISPR 22: 2002 approval by meeting CISPR Publication 22, the only additional requirements are: to attach a note to the report of the test results for compliance, indicating that these results are deemed satisfactory evidence of compliance with ICES-003 of the Canadian Interference-Causing Equipment Regulations; to maintain these records on file for the requisite five year period; and to provide the device with a notice of compliance in accordance with ICES-003."

Procedural Requirements:

According to Industry Canada's Interference Causing Equipment Standard for Digital Apparatus ICES-003 Issue 4, February 2004:

Section 6.1: A record of the measurements and results, showing the date that the measurements

were completed, shall be retained by the manufacturer or importer for a period of at least five years from the date shown in the record and made available for examination

on the request of the Minister.

Section 6.2: A written notice indicating compliance must accompany each unit of digital apparatus

to the end user. The notice shall be in the form of a label that is affixed to the apparatus. Where because of insufficient space or other constraints it is not feasible to affix a label to the apparatus, the notice may be in the form of a statement in the user's

manual.

Labeling Requirements:

The suggested text for the notice, in English and in French, is provided below, from the Annex of ICES-003:

This Class [²] digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe [¹] est conforme à la norme NMB-003 du Canada.

² Insert either A or B but not both as appropriate for the equipment requirements.

End of Report