Arduino Student Attendance Tracker (RFID)

A PROJECT REPORT SUBMITTED TO GOA UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF BCA

BY

Joel Aaron John Dsouza

Jayesh Sanjay Kambali

Avinash K Mahato

Levon Mario Rodrigues

Gaspar Fernandes

Harehan Hassim Shaikh

Ashton Joaquim Dias

Ian James Lobo

Pratik Prashant Amonkar

Ms Shreesha P.J. (Internal Guide)

Mr. Rohan Kerkar (**Project Coordinator**)

Dr. Cedric Silveria (**Principal**)

DECLARATION OF CANDIDATES

We declare that this project titled "Arduino Student Attendance Tracker" have been prepared by us and has not been formed for any rewards, diploma or any other degree in Goa University or elsewhere.

SEAT NO.	NAME	SIGNATURE
	Joel Aaron John Dsouza	
	Jayesh Sanjay Kambali	
	Avinash K Mahato	
	Levon Mario Rodrigues	
	Gaspar Fernandes	
	Harehan Hassim Shaikh	
	Ashton Joaquim Dias	
	Ian James Lobo	
	Pratik Prashant Amonkar	

Don Bosco College, Panaji Affiliated to Goa University

CERTIFICATE

This is to certify that project on

"Arduino Student Attendance Tracker"

has been successfully completed by

Joel Aaron John Dsouza Jayesh Sanjay Kambali Avinash K Mahato Levon Mario Rodrigues Gaspar Fernandes Harehan Hassim Shaikh Ashton Joaquim Dais Ian James lobo Pratik Prashant Amonkar

Studying in T.Y.B.C.A during the academic year 2023-2024,

The project has been carried out under the supervision of the Internal Guide.

Ms Shreesha P.J.	Mr. Rohan Kerkar	Dr. Cedric Silveria
(Internal Guide)	(Project Coordinator)	(Principal)
	External Examiner	

Place: Panaji, Goa

Date:

TABLE OF CONTENT

SR	CONTENT	Pg. No.
NO.		
1	INTRODUCTION	05-07
2	EXISTING SYSTEM	08-09
3	PROPOSED SYSTEM	09-10
4	ENTITY RELATIONSHIP DIAGRAM	10-11
5	ACTIVITY DIAGRAM	12-16
6	CIRCUITS	17-18
7	CLASS DIAGRAM	19-20
8	USE CASE DIAGRAM	21-22
9	HARDWARE SETUP	23-27
10	DATABASE DESIGN	28-35
11	SOFTWARE REQUIREMENT SPECIFICATION	36-37
12	SOFTWARE AND HARDWARE REQUIREMENT	38-48
	SPECIFICATION	
13	VALIDATION TEST REPORT	49-56
14	SYSTEM INTEGRATION REPORT	57-61
15	USER MANUAL	62-67
16	FUTURE ENHANCEMENTS	68-69
17	BIBLIOGRAPHY	70-71
18	APPENDICES	72-78
17	GANTT CHART	79-80

INTRODUCTION

In today's fast-paced educational world, keeping track of student attendance is crucial for school operations. But the traditional methods, like paper-based lists, often lead to mistakes and extra work for teachers. That's why we're excited to introduce the "SmartTrack". Our main goal is to create a smart system that uses special cards (like ID cards) and modern web technology to make attendance-taking easy, accurate, and hassle-free. Imagine a school where teachers don't have to waste time calling out names and marking attendance on paper. Instead, students just enter their classrooms, tap their id card, and their attendance is automatically recorded. This means fewer mistakes, less paperwork, and more time for teaching and learning. By using technology to solve this everyday problem, we aim to make school life better for everyone involved.

OBJECTIVE

It provides Automated tracking that is when students come to school and use their special cards, their attendance will be instantly recorded. A simple website that teachers, students, and parents can use to check attendance records and get important information easily.

By this new system, we aim to reduce errors and make sure attendance records are always accurate and with this system, teachers won't have to spend as much time on attendance, so they can focus on teaching and helping students. It will provide useful reports and graphs that show attendance patterns, helping schools make better decisions. This system will allow teachers, students and parents to work together and stay informed about attendance easily and other school related stuff.

As for the conclusion, the "SmartTrack" project aims to make attendance management a breeze by using technology that's user-friendly and efficient. Our goal is to help schools run smoothly, reduce stress for teachers, and create a more connected school community.

EXISTING SYSTEM & LIMITATIONS

In some advanced educational institutions, RFID technology is already being utilized for certain purposes, such as access control to restricted areas or library book tracking. However, the full potential of RFID technology is not often harnessed for comprehensive attendance tracking.

LIMITATIONS

Limited Read Range: Many existing RFID systems suffer from a limited read range, requiring students to be in close proximity to the reader for accurate tracking. This can result in missed scans and incomplete attendance records.

Interference Sensitivity: Traditional RFID systems are susceptible to interference from other electronic devices or materials, leading to unreliable readings and potential data inaccuracies.

Costly Infrastructure: Implementing and maintaining RFID systems can be expensive, particularly when deploying multiple readers and tags across large campuses. This cost may not be feasible for institutions with limited budgets.

Privacy Concerns: Concerns about privacy and data security are prevalent with traditional RFID technology, as it allows for the constant monitoring of students' movements. This can lead to resistance or opposition from students and faculty.

Maintenance Requirements: Traditional RFID systems require regular maintenance to ensure proper functioning, including software updates, tag replacements, and troubleshooting technical issues.

PROPOSED SYSTEM

In our proposed system, we are aiming to expand the use of RFID (Radio Frequency Identification) technology specifically for attendance tracking, creating a dedicated "SmartTrack" attendance tracker. This system aims to revolutionize how attendance is recorded, managed, and analysed, providing numerous benefits over the existing RFID technology.

RFID Reader Integration: Our system utilizes RFID reader modules to efficiently scan RFID cards or tags carried by individuals, ensuring quick and accurate attendance tracking.

User Authentication: We implement a robust user authentication system, allowing students, faculty, and staff to authenticate themselves using their RFID tags or cards. This ensures secure and reliable identification of individuals within the system.

Real-time Monitoring: Our system provides real-time monitoring of attendance data, enabling administrators to access up-to-date information on attendance status and trends. This real-time visibility enhances accountability and enables proactive intervention when necessary

Attendance Reports: We offer comprehensive attendance reporting capabilities, allowing administrators to generate detailed reports on attendance records. These reports can be customized to provide daily, weekly, or monthly summaries, offering valuable insights into attendance patterns and trends over time.

Assignment Management: Teachers can assign assignments to students through the system's website, streamlining the assignment distribution process and promoting academic engagement.

Leave Request System: Students have the ability to request leave directly to teachers through the website, simplifying the leave management process and ensuring efficient communication between students and faculty.

KEY FEATURES

- RFID Reader: Utilize an RFID reader module to scan RFID cards or tags carried by individuals.
 - User Authentication: Implement a system to authenticate users (e.g., students, employees) using their RFID tags/cards.
- Real-time Monitoring: Provide real-time monitoring of attendance data to
- Attendance Reports: Generate detailed attendance reports, including daily, weekly, or monthly summaries.

ENTITY RELATIONSHIP DIAGRAM

ACTIVITY DIAGRAMS

Class Activity

Login Form

Assignment Form

Attendance Report Form

Attendance Login Form

Student Adding Form

CLASS DIAGRAM

USE CASE DIAGRAM

HARDWARE SETUP

Schematic Diagram

Circuits


```
Serial Monitor X

Message (Enter to send message to 'Arduino Uno' on 'COM5')

Message (Enter to send message to 'Arduino Uno' on 'COM5')

Message (Enter to send message to 'Arduino Uno' on 'COM5')
```

The image depicts the Arduino Integrated Development Environment (IDE), a software application used for writing, compiling, and uploading code to Arduino boards.it presents a new, blank sketch titled "sketch_mar10a.ino," serving as a starting point for developing an Arduino program. The sketch consists of two essential functions: setup() and loop(). The setup() function is executed only once when the Arduino board is powered on or reset, and it is used to initialize variables, configure pin modes, start communication with libraries or external devices, and perform any one-time setup tasks.

In the provided image, the setup() function is empty, with a comment prompting the user to add their setup code within this function. The loop() function is the core of the Arduino program, continuously executing in an infinite loop until the board is powered off or reset. It is designed to hold the main code that carries out the desired functionality of the Arduino project. In the image, the loop() function is also empty, with a comment instructing the user to insert their main code within this function

The image shows the Arduino IDE (Integrated Development Environment), which is a software used for writing, compiling, and uploading code to Arduino microcontroller boards. The left panel displays various options such as "Verify/Compile," "Upload," "Upload Using Programmer," and others for managing the code and interacting with the connected Arduino board. The middle panel is the code editor where you write your Arduino sketches (programs). The bottom panel is the Serial Monitor, which allows you to send and receive data from the Arduino board via serial communication.

The right panel shows a list of installed libraries, which are collections of code that provide additional functionality for your Arduino projects. Libraries can be added to extend the functionality of your Arduino projects, such as controlling displays, sensors, or communication protocols. The Serial Monitor allows you to send and receive data from the Arduino board, which is useful for debugging and monitoring purposes. The Arduino IDE provides a user-friendly environment for programming and interacting with Arduino boards, making it easier to create various projects and prototypes.

The image shows the Arduino IDE (Integrated Development Environment) with a basic Arduino sketch open. At the top, you can see the "Select Board" dropdown menu, which allows you to choose the Arduino board you're using for your project. In the dropdown, the "Arduino Uno" board is currently selected, along with the "COM5" port, which is the serial communication port the board is connected to. The code editor displays a template sketch with two main functions: setup() and loop(). The setup() function is executed once when the Arduino board is powered on or reset.

The loop() function contains the main code that runs repeatedly in an infinite loop. The commented lines in the code provide guidance on where to add your own code. To run your Arduino sketch, you first need to select the appropriate board and port from the "Tools" menu. Then, you can write your code within the setup() and loop() functions, adding any necessary libraries or variables. After writing your code, you can compile it by clicking the "Verify/Compile" button or pressing Ctrl+R. If there are no errors, you can upload the compiled code to the Arduino board by clicking the "Upload" button or pressing Ctrl+U. Once uploaded, the Arduino board will execute your code, with the setup() function running once and the loop() function repeating indefinitely.

The image shows the Arduino IDE with a sketch named "sketch_mar10a.ino" open in the code editor. The sketch follows the standard Arduino program structure, with a setup() function and a loop() function. The setup() function is where you put your one-time initialization code, which runs once when the Arduino board starts up or is reset. The loop() function is where you place your main code, which will run repeatedly in an infinite loop. The commented lines in the code provide guidance on where to add your specific code for the setup() and loop() functions.

At the top of the IDE, you can see the "Arduino Uno" board is selected, indicating that the code will be compiled and uploaded for an Arduino Uno board. The "Upload" button is visible, which allows you to compile and upload the code to the connected Arduino board. In the bottom panel, you can see the Serial Monitor, which is a tool for sending and receiving data over the serial communication between the Arduino board and the computer. The Serial Monitor shows a message "1a80f07e", which could be data transmitted by the Arduino board, or possibly a random value displayed when the Serial Monitor is first opened.

DATABASE DESIGN

Table name-assignment

Description-

Primary key- assignment_id

ATTRIBUTES	DATA TYPE	DESCRIPTIO N	CONSTRAINT S
assignment_id	Int(11)	Id of the assignment	No
due_date	date	Submission date	No
assignment_information	longtext	Details of the assignment	No
sub_id	Int(11)	Id of the subject	No

Table name-attendance

Description-

Primary key- attendance_id

ATTRIBUTES	DATA TYPE	DESCRIPTION	CONSTRAINT S
attendance_id	Int(11)	Id of the attendence	No
attendence_date_time	datetime	Date and time of the attendence	No
attendance_data	longtext	Absent or present data	No
stud_id	Int(11)	Id of student	No

Table name-class

Description-

Primary key- class_id

ATTRIBUTES	DATA TYPE	DESCRIPTION	CONSTRAINTS
class_id	Int(11)	Id of the class	No
name	Varchar(30)	Name of class	No
start_id	Date	Class start date	No
end_id	Date	Class end date	No
teacher	Int(11)	Id of Teacher	No

Table name-student

Description-

Primary key-student_id

ATTRIBUTES	DATA TYPE	DESCRIPTION	CONSTRAINTS
student_id	Int(11)	Id of the student	No
Name	Varchar(40)	Name of the student	No
Email	Varchar(225)	Email of the student	No
Password	Varchar(225)	Password of the student	No
rf_id	Varchar(225)	Rfid of the student	No
phone_no	bigint(20)	Phone no. of the student	No
leave_reaquest	longtext	Student requests leave	No
clss_id	Int(11)	Id of class	No

Table name-subject

Description-

Primary key-subject_id

ATTRIBUTES	DATA TYPE	DESCRIPTION	CONSTRAINTS
subject_id	Int(11)	Id of the subject	No
name	Varchar(30)	Name of the subject	No
teacher	Int(11)	Id of Teacher	No
class	Int(11)	Id of class	No

Table name-submits

Description-

Primary key-stu_id, ass_id

ATTRIBUTES	DATA TYPE	DESCRIPTION	CONSTRAINTS
stu_id	Int(11)	Id of student	No
ass_id	Int(11)	Id of assignment	No
date	Date	Date of assigment	No
fileName	Varchar(225)	File name of assignment	No

Table name-teacher

Description-

Primary key-teacher_id

ATTRIBUTES	DATA TYPE	DESCRIPTION	CONSTRAINTS
teacher_id	Int(11)	Id of the teacher	No
Name	Varchar(30)	Name of the	No
		teacher	
phone_no	bigint(20)	Phone no. Of	No
		teacher	
Email	Varchar(225)	Email of teacher	No
password	Varchar(225)	Password of	No
		teacher	
join_date	Date	Join date of the	No
		teacher	
Subject	Varchar(225)	Id of the Subject	No

SOFTWARE REQUIREMENT SPECIFICATIONS

- a. Tools
- Java/html/CSS for website
- Arduino script (INO based on C++)
- External libraries if required.
- b. Platform
- VS Code
- Arduino IDE
- c. Hardware and software requirements Hardware:
- Arduino UNO Board
- R305/R307 RFID Sensor
- Connecting Wires
- Breadboard

d.Software:

- VS Code
- Arduino IDE
- Xampp

SOFTWARE AND HARDWARE REQUIREMENT FOR DEVELOPMENT

HARDWARE-

- Arduino UNO Board
- R305/R307 RFID Sensor
- Connecting Wires
- Breadboard

SOFTWARE-

- VS Code
- Arduino IDE
- Xampp

HARDWARE-

Arduino UNO Board

The Arduino Uno R3 Compatible Board is a microcontroller board which is based on the ATmega328. Arduino Uno has 14 digital input or output pins(where 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic resonator, a USB connection, a power jack, an ICSP header, and a reset button. It has everything needed to support the microcontroller, you need to simply connect it to a computer with a USB cable or power it with an AC-to-DC adapter or battery to get started.

RFID, or Radio-Frequency Identification, is a technology that uses wireless communication to identify and track objects or people. RFID sensors typically consist of two main components: an RFID reader and an RFID tag.

RFID Reader (R305/R307?): The RFID reader is a device that emits radio waves to communicate with RFID tags. It can read the information stored on the RFID tags and, in some cases, write new data to them.

Connecting Wires

Male to female jumper wires are an essential component for any electronic prototyping and testing project. They allow for easy and convenient interconnection between components without the need for soldering. These jumper wires male to female come in groups or cables with connectors or pins at each end and are commonly used for connecting FRC pins, Header pins, Berg pins, and other components.

The male to female jumper wires, in particular, have a male pin on one end and a female connector on the other, making them suitable for a wide range of projects that require connecting components with different types of pins or connectors. One popular use for these jumper wires is with microcontrollers such as the Arduino These boards have a series of pins that control various components and sensors and with the help of male to female jumper wires, these pins can easily be connected to other components on a breadboard or in a circuit.

Breadboard

A breadboard consists of plastic block holding a matrix of electrical sockets of a size suitable for gripping thin connecting wire, component wires or the pins of transistors and integrated circuits (ICs). The sockets are connected inside

the board, usually in rows of five sockets.

SOFTWARE-

VS Code

Visual Studio Code is a source-code editor that can be used with a variety of programming languages, including C, C#, C++, Fortran, Go, Java, JavaScript, Node. js, Python, Rust, and Julia. It is built on the Electron framework, which is used to develop Node.

The Arduino IDE (Integrated Development Environment) is a software application used for writing, compiling, and uploading code to Arduino-compatible microcontrollers. It provides a user-friendly interface and a set of tools to simplify the process of programming Arduino boards.

Xampp

XAMPP is a free and open-source cross-platform web server solution stack package developed by Apache Friends, consisting mainly of the Apache HTTP Server, MariaDB database, and interpreters for scripts written in the PHP and Perl programming languages. Since most actual web server deployments use the same components as XAMPP, it makes transitioning from a local test server to a live server possible.

VALIDATION TEST REPORT

Validation is the process of evaluating a system of components during or at the end of the development process to determine whether it satisfied specific requirements. The output produced by given activity represents the goal to be satisfied by that activity hence it is necessary to have validation for each output.

Test validation is a procedure that demonstrates that a test is job-related and correlates to onthe-job performs. So validations involved actual testing can be done after the verification is completed. Hence verification is a process evaluating a component or system to determine whether the products of given development stages satisfying the condition imposed at the start of the phase.

Validation is the process of checking in order to check whether they are working according to the requirements or not in the validations they give preference.

Validation is correctness of a component or system with respect to their requirements. For this purpose the validation testing is the responsibility of the tester and all the tests done in the box testing will be treated as validation tests.

♥ Smart Track

Log in to your Account

Welcome back! Please, enter your information

Email	
Password	
	Ø
Remember me	Forgot Password
Log In	
Smart Track	
) Failed Invalid username or pas	ssword ×
Failed Invalid username or pas	
	your
Log in to	your int
Log in to Accou	your unt se, enter your
Log in to Accou	your unt se, enter your
Log in to Accou Welcome back! Plea informati	your unt se, enter your
Log in to Accou Welcome back! Plea informati	your unt se, enter your
Log in to Accou Welcome back! Plea informati	your unt se, enter your
Log in to Accol Welcome back! Plea informati	your unt se, enter your
Accol Welcome back! Plea	your int se, enter your on
Log in to Accol Welcome back! Plea informati	your unt se, enter your
Log in to Accol Welcome back! Plea informati	your int se, enter your on

Report-1

Project-Arduino student attendance tracker

Module-login page

Functional specification-login for the user

Test date-

Test objective-to validate login page form

TEST	EVENT	INPUT DATA	EXPECTED	ACTUAL	RESULT
CASE			DATA	OUTPUT	
NO					
1	Enter the	Username=""	Should	Display warning	Success
	"Username"		display	Message	
			warning	"Failed invalid	
			message	username or	
				password"	
2	Enter the	Password=""	Should	Display warning	Success
	"password"		display	Message	
			warning	"Password	
			message	cannot be empty"	

Password change form

Report-2

Project- Arduino student attendance tracker

Module-password reset

Functional specification-password rest for the user

Test date-

Test objective-to validate password reset form

TEST	EVENT	INPUT	EXPECTED	ACTUAL	RESULT
CASE		DATA	DATA	OUTPUT	
NO					
1	Enter the	Email=""	Should	"email	success
	"current email"		display	cannot be	
			warning	empty"	
2	Enter the	Current	Should	"wrong	success
	"current	password=""	display	password"	
	password"		warning		
3	Enter the "new	New	Should	"password	success
	password"	password=""	display	cannot be the	
			warning	same"	
4	Enter "confirm	Confirm new	Should	"password	success
	new password"	password=""	display	does not	
		·,	warning	match"	

Report-3

Project- Arduino student attendance tracker

Module- Mark attendance

Functional specification- mark present/absent for user

Test date-

Test objective-to validate RFID

TEST	EVENT	INPUT	EXPECTED	ACTUAL	RESULT
CASE		DATA	DATA	OUTPUT	
NO					
1	Scan RFID tag	rfid=""	Should display	'Failed to start RFID	success
			warning	scan'	

SYSTEM INTEGRATION TEST REPORT

System integration means that all components of the system are integrated and tested as a single unit.

Integration testing is at testing of the interface. It can be divided into 2 types, namely

- •Component or subsystem integration
- •Final integration testing or system integration

The main aim is that optimization of integrating components and testing this approach is also called big bang integration. It reduces testing efforts and removes the duplication in testing

System integration using the big bang approach is well suited in the product development scenario where the majority of the components are already available and stable and very few components are added or modified.

LOGIN PAGE

This page provides the user to login to their account

♥ Smart Track

Log in to your Account

Welcome back! Please, enter your information

Email	
Password	<i>⊗</i>
Remember me	Forgot Password?
Log	In

STUDENT PAGE

The student page contains the attendance information and student profile

Leave approval and assignments

Contains the leave approval and assignments for the student page

TEACHER PAGE

The teacher page contains class, assignment and parents communication

USER MANUAL

MANUAL FOR STUDENT

MANUAL FOR TEACHER

FUTURE ENHANCEMENT

- Integration with Student ID Systems: Explore integrating the RFID attendance system with the existing student ID system. This integration can streamline various processes, such as library access, meal plans, and campus security.
- Mobile App Compatibility: Develop a dedicated mobile application that complements the web-based interface. The app can offer additional features such as push notifications for attendance updates, reminders for upcoming events, and access to personalized academic information.
- Geolocation Integration: Integrate geolocation technology to enhance the accuracy of attendance tracking. By combining RFID data with GPS information, the system can verify that students are physically present within designated school premises during attendance recording.
- Enhanced Student Engagement Features: Develop interactive features within the student portal to promote student engagement and participation. This may include forums for academic discussion, event calendars, and personalized learning resources based on individual attendance patterns.
- Integration with Learning Management Systems (LMS): Integrate the RFID attendance system with existing Learning Management Systems used by schools. This integration can facilitate seamless data exchange, allowing educators to correlate attendance data with academic performance metrics and tailor instructional strategies accordingly.

BIBLIOGRAPHY

Sites to refer-

https://www.youtube.com

https://www.webslesson.com

https://github.com

APPENDICES

GANTT CHART

TASK NAME	START DATE	END DATE	DURATIO N
"Arduino Student Attendance Tracker"	16/07/2023	10/03/2024	238
Analysis	19/07/2023	13/08/2023	25
Scope of the project	19/07/2023	13/08/2023	25
Software Requirement Specification	19/07/2023	13/08/2023	25
Feasibility Study	19/07/2023	13/08/2023	25
Analysis Complete	19/07/2023	13/08/2023	25
Design	17/09/2023	30/09/2023	13
ERD	18/09/2023	28/09/2023	10
Activity Diagram	20/09/2023	27/09/2023	7
Use Case Diagram	20/09/2023	27/09/2023	7
Complete	27/09/2023	30/09/2023	3
Implementation	15/10/2023	22/01/2024	99
User Interface	15/10/2023	17/10/2023	2
Coding	05/11/2023	22/11/2023	17
Database	07/11/2023	26/11/2023	19
Hardware Assembly	04/01/2024	11/01/2024	7
Software Setup	16/01/2024	22/01/2024	6
Testing	10/02/2024	08/03/2024	27
Unit Testing	15/02/2024	21/02/2024	6
Validation Testing	23/02/2024	27/02/2024	4
Integration Testing	23/02/2024	27/02/2024	4
Arduino Response	26/02/2024	08/03/2024	11