Лабораторная работа №7

Графики в Octave

Демидова Екатерина Алексеевна

Содержание

1	Цель работы	4	
2	Задание	5	
3	Теоретическое введение	6	
4	Выполнение лабораторной работы 4.1 Параметрические графики 4.2 Полярные координаты 4.3 Грфики неявных функций 4.4 Комплексные числа 4.5 Специальные функции	8 8 10 11 12	
5	Выводы	14	
Сп	Список литературы		

Список иллюстраций

4.1	График трёх периодов циклоиды радиуса 2	8
4.2	График улитки Паскаля в координатах xy	9
4.3	График улитки Паская в полярных координатах	9
4.4	График кривой. заданной в неявном виде	10
4.5	График касательной к окружности	11
4.6	Основные арифметические операции с комплексными числами .	11
4.7	График в комплексной плоскости	12
4.8	Нахождение корня из отрицательного числа	12
4.9	Графии $\Gamma(x+1)$ и $n!$	13
4.10	Графии $\Gamma(x+1)$ и $n!$ без вертикальным асимптот	13

1 Цель работы

Научиться строить графики разных функций в Octave.

2 Задание

- Построить параметрический графики
- Построить график в полярных координатах
- Построить график неявной функции
- Построить график в комплексной области
- Построить график специальной функции

3 Теоретическое введение

Дадим определение GNU Octave. GNU Octave — свободная программная система для математических вычислений, использующая совместимый с MATLAB язык высокого уровня [1].

На официальном сайте Octave даётся следующая характеристика этого научного языка программирования[]:

- Мощный синтаксис, ориентированный на математику, со встроенными инструментами 2D/3D-графики и визуализации.
- Бесплатное программное обеспечение, работающее на GNU/Linux, macOS, BSD и Microsoft Windows.
- Вставка, совместимая со многими скриптами Matlab

Приведём некоторые примеры использования Octave[2]:

1. Решение систем уравнений с помощью операций линейной алгебры над векторами и матрицами.

2. Визуализация данных с помощью высокоуровневых графических команд в 2D и 3D.

```
x = -10:0.1:10; # Create an evenly-spaced vector from -10..10
y = sin (x); # y is also a vector
plot (x, y);
title ("Simple 2-D Plot");
xlabel ("x");
ylabel ("sin (x)");
```

4 Выполнение лабораторной работы

4.1 Параметрические графики

Построим график трёъ периодов циклоиды радиуса 2. Поскольку период 2π , зададим параметр в пределах $0 \le t \le 6\pi$ для трёх полных циклов. Определим t как вектор в этом диапазоне, затем вычислим x и y(рис. [4.1]).

Рис. 4.1: График трёх периодов циклоиды радиуса 2

4.2 Полярные координаты

Определим независимую переменную θ , а затем вычислим r. Чтобы построить график x и y, используем стандартное преобразование координат, затем построим график в осях xy.

Построим улитку Паскаля(рис. [4.2]).

Рис. 4.2: График улитки Паскаля в координатах xy

Построим этот же график в полярных координаха, используя фуекцию polar(рис. [4.3]).

Рис. 4.3: График улитки Паская в полярных координатах

4.3 Грфики неявных функций

Построим функцию, неявно определённую уравнением вида:

$$f(x,y) = 0$$

Для этого используем функцию ezplot. Будем строить кривую, заданную уравнением:

$$-x^2 - xy + x + y^2 - y = 1$$

Чтобы определить функцию в неявном виде, вычтем 1 из обеих частей уравнения. Зададим функцию в виде λ -функции (рис. [4.4]).

Рис. 4.4: График кривой. заданной в неявном виде

Найдём уравнение касательной к графику окружности:

$$(x-2)^2 + y^2 = 25$$

в точке (-1,4)

Сначала построим круг, затем продиффиринцировав функцию в точке (-1,4) найдём коэффициент наклона касательной, который равен $\frac{4}{4}$. Таким образом,

уравнение касательной будет иметь вид:

$$y = \frac{3}{4}x + \frac{19}{4}$$

Построим график (рис. [4.5]).

Рис. 4.5: График касательной к окружности

4.4 Комплексные числа

Зададим комплексные числа и выполним основные арифметические операции с ними (рис. [4.6]).

Рис. 4.6: Основные арифметические операции с комплексными числами

Построим график в комплексной плоскости, используя команду compass(рис.[4.7]).

Рис. 4.7: График в комплексной плоскости

Вычислим $\sqrt[3]{-8}$. Делая это обычным образом сталкнёмся с неожиданным ответом, не равным -2. Для того чтобы получить действительный корень используем функцию nthroot(puc. [4.8]).

Рис. 4.8: Нахождение корня из отрицательного числа

4.5 Специальные функции

Построим функции $\Gamma(x+1)$ и n! на одном графике(рис. [4.9]).

Рис. 4.9: Графии $\Gamma(x+1)$ и n!

Уберём вертикальные асимптоты из графика в районе отрицательных чисел, для этого разделем область значений(рис. [4.10]).

Рис. 4.10: Графии $\Gamma(x+1)$ и n! без вертикальным асимптот

5 Выводы

В результате выполнения работы научились строить графики разных функций в Octave.

Список литературы

- 1. GNU Octave [Электронный ресурс]. Free Software Foundation, 2023. URL: https://octave.org/.
- 2. GNU Octave Documentation [Электронный ресурс]. Free Software Foundation, 2023. URL: https://docs.octave.org/latest/.