1

# Supplementary file of "Joint Service Caching and Task Allocation in Digital Twin-Enabled Mobile Edge Computing Systems: A Bilevel Optimization Approach"

Qijie Qiu, Lingjie Li, *Member, IEEE*, Zhijiao Xiao, Qiuzhen Lin, *Member, IEEE*, Zhong Ming, and Gary G. Yen *Fellow, IEEE*.

### I. SUPPLEMENTARY TABLES

# TABLE A. 1 ALGORITHM SETTINGS.

|            | Parameters                     | <b>Common Parameters</b>                              |
|------------|--------------------------------|-------------------------------------------------------|
| BiSCTA     | $N=5, c=1.49, \beta=20,$       | Population Size=100,<br>Iteration=200,<br>Runtimes=20 |
|            | $W_{max}$ =0.9, $W_{min}$ =0.5 |                                                       |
| GA, BiGA   | CR=0.8, MR=0.05                |                                                       |
| PSO, BiPSO | c1=2.0, c2=2.0,                |                                                       |
|            | $W_{max}$ =0.9, $W_{min}$ =0.5 |                                                       |
| CSO, BiCSO | θ=0.1                          |                                                       |

## II. SUPPLEMENTARY EXPERIMENTS

### A. Performance Comparisons with Other Methods

To further validate the performance of our proposed BiSCTA, several state-of-the-art algorithms are also implemented, including SCTOA [1], NSGAIII-ASF&WD [2], and TOCC [3]. Specifically, SCTOA is a heuristic design [1], where service caching decisions are done through the Least Recent Used (LRU) algorithm [4] and each task selects the most economical decision for offloading. Moreover, NSGAIII-ASF&WD and TOCC are two advanced meta-heuristic algorithms proven to be efficient in solving the joint service caching and task allocation problem, as shown in [2] and [3]. NSGAIII-ASF&WD is a non-dominated sorting genetic algorithm that employs an achievement scalar function and a k-nearest neighbor weighted distance-based mating selection strategy. Meanwhile, TOCC is a multi-objective evolutionary algorithm developed under the decomposition framework (MOEA/D) via the Tchebycheff weight aggregation method [5]. Note that the parameters of all comparison algorithms can be found in the original works [1]-[3]. All comparison algorithms are run independently 20 times and the average results are recorded. The performance comparison results are shown in Fig. A. 1.

### REFERENCES

 Z. Liao, G. Yin, X. Tang, and P. Liu, "A cooperative community-based framework for service caching and task offloading in multi-access edge computing," *IEEE Transactions on Network and Service Management*, vol. 21, no. 3, pp. 3224–3235, 2024.





Fig. A. 1. Experimental results of BiSCTA compared to peer algorithms.

- [2] Z. Cui, X. Shi, Z. Zhang, W. Zhang, and J. Chen, "Many-objective joint optimization of computation offloading and service caching in mobile edge computing," *Simulation Modelling Practice and Theory*, vol. 133, p. 102917, 2024.
- [3] P. Wang, Y. Wang, J. Qiao, and Z. Hu, "Traffic-aware optimization of task offloading and content caching in the internet of vehicles," *Applied Sciences*, vol. 13, no. 24, p. 13069, 2023.
- [4] S. Wen, D. Qin, T. Lv, L. Ge, and X. Yang, "Traffic identification algorithm based on improved LRU," in 2020 7th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). IEEE, 2020, pp. 157–159.
- [5] Q. Zhang and H. Li, "MOEA/D: A multiobjective evolutionary algorithm based on decomposition," *IEEE Transactions on Evolutionary Computa*tion, vol. 11, no. 6, pp. 712–731, 2007.