$^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

and analysis

State transition matrix

Sylvester's formula

Lagrange formula

forced evolutio

Similarity transformati

Diagonalisation

Modai matrix

Aalto University

Linear time-invariant systems: Dynamics Process Automation (CHEM-E7140), 2019-2020

Francesco Corona

Chemical and Metallurgical Enigineering School of Chemical Engineering

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrang

Force-free and

Similarity

transformat

Diagonalisatio

Modal matrix

Transition matrix

Representation and analysis

LTI systems - Dynamics

CHEM-E7140 2019-2020

Representation and analysis

Representation and analysis

Consider a linear and stationary system of order n, in state-space representation

- \rightsquigarrow Let p be the number of outputs
- \rightarrow Let r be the number of inputs

$$\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$$

 $A(n \times n)$, $B(n \times r)$, $C(p \times n)$ and $D(p \times r)$ are (constant) system matrices

- $\rightarrow x(t)$ is the state vector (n components)
- $\rightarrow \dot{x}(t)$ is the derivative of the state vector (n components)
- $\rightarrow u(t)$ is the input vector (r components)
- $\rightarrow u(t)$ is the output vector (p components)

CHEM-E7140 2019-2020

Representation and analysis

matrix
Some properties

Sylvester's formu

Lagrange

forced evolution

Similarity transformat:

Diagonalisation

Modal matrix

Transition matri

Representation and analysis (cont.)

The analysis problem: Determine the behaviour of state x(t) and output y(t) for $t \geq t_0$

- We are given the input function u(t), for $t \ge t_0$
- We are given the initial state $x(t_0)$

The solution for $t \geq t_0$, for an initial state $x(t_0)$ and an input $u(t \geq t_0)$

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$y(t) = \underbrace{Ce^{A(t-t_0)}x(t_0) + C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{Cx(t)} + Du(t)$$

The solution is known as the Lagrange formula

• Based on the state transition matrix, e^{At}

CHEM-E7140 2019-2020

Representation and analysis

Force-free and forced evolution

Note that we can write the state solution x(t), for $t \geq t_0$, as the sum of two terms

$$x(t) = \underbrace{e^{A(t-t_0)}x(t_0)}_{x_u(t)} + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{x_f(t)}$$
$$= x_u(t) + x_f(t)$$

- \rightarrow The force-free evolution of the state, $x_u(t)$
- \rightarrow The forced evolution of the state, $x_f(t)$

The force-free evolution of the state, from the initial condition $x(t_0)$

- \rightarrow $e^{A(t-t_0)}$ indicates the transition from $x(t_0)$ to x(t)
- → In the absence of contribution from the input

The forced evolution of the state, from the contribution of input u(t)

 \rightarrow In the absence of an initial condition $x(t_0)$

CHEM-E7140 2019-2020

Representation and analysis

$\begin{array}{c} {\rm State\ transition} \\ {\rm matrix} \end{array}$

Some properties

-

formula

Force-free and forced evolution

Similarity

010101011101

Diagonansatio.

Modal matrix

Transition matri:

The state transition matrix

LTI systems - Dynamics

CHEM-E7140 2019-2020

Representation and analysis

$\begin{array}{c} {\rm State\ transition} \\ {\rm matrix} \end{array}$

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

transformatic

Diagonalisation

Modal matrix

The state transition matrix

Consider a square $(n \times n)$ matrix A, the exponential $e^{\mathbf{A}}$ is also a square $(n \times n)$ matrix

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

The state transition matrix is a matrix exponential e^{At}

 \leadsto Its elements are functions of time

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange

Force-free and

forced evolution

Diagonansation

m ...

The state transition matrix (cont.)

The exponential function

Let z be some scalar, by definition its exponential is a scalar

$$e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{z^k}{k!}$$

The series always converges

The matrix exponential

Let A be a $(n \times n)$ matrix, by definition its exponential is a $(n \times n)$ matrix

$$e^A = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{A^k}{k!}$$

The series always converges

CHEM-E7140 2019-2020

State transition matrix

The state transition matrix (cont.)

The product of several matrices

The product of A and B is only possible when the matrixes are compatible

• Number of columns of A must equal the number of rows of B

The same applies to the product of several matrixes

$$\underbrace{M}_{(m\times n)} = \underbrace{A_1}_{(m\times m_1)} \underbrace{A_2}_{(m_1\times m_2)} \cdots \underbrace{A_{k-1}}_{(m_{k-2}\times m_{k-1})} \underbrace{A_k}_{(m_{k-1}\times n)}$$

Powers of a matrix

Let A be an order-n square matrix

The k-th power of matrix A is defined as the n-order matrix A^k

$$A^k = \underbrace{AA \cdots A}_{k \text{ times}}$$

Special cases,

$$A^{k=0} = I, A^{k=1} = A$$

Some properties

Sylvester's formula

formula

Force-free and forced evolution

Similarity

Diagonalisatio

Modal matrix

Transition matr

The state transition matrix (cont.)

Definition

The state transition matrix

Consider the state-space model with $(n \times n)$ matrix A

$$\begin{array}{c|c} u(t) & \dot{x}(t) = Ax(t) + Bu(t) \\ \hline y(t) = Cx(t) + Du(t) \\ \hline \\ \text{System} \\ \end{array} \begin{array}{c|c} \dot{x}(t) & = Ax(t) + Bu(t) \\ \hline y(t) & = Cx(t) + Du(t) \\ \hline \end{array}$$

The state transition matrix is the $(n \times n)$ matrix e^{At}

$$e^{At} = \sum_{k=0}^{\infty} \frac{A^k t^k}{k!}$$

The state transition matrix is well defined for any square matrix A

• (The series always converges)

CHEM-E7140 2019-2020

Representation and analysis

 $\begin{array}{c} {\rm State\ transition} \\ {\rm matrix} \end{array}$

Some properties

Sylvester's formul

Lagrange formula

Force-free and forced evolution

Similarity

transformatio

Modal matrix

Transition matrix

The state transition matrix (cont.)

Not convenient to determine the state transition matrix starting from its definition

 \rightarrow One exception is when A is (block-)diagonal

The matrix exponential of block-diagonal matrixes

Consider any block-diagonal matrix A, we have

$$A = \begin{bmatrix} A_1 & 0 & \cdots & 0 \\ 0 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & A_q \end{bmatrix} \qquad \leadsto \quad e^A = \begin{bmatrix} e^{A_1} & 0 & \cdots & 0 \\ 0 & e^{A_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{A_q} \end{bmatrix}$$

The matrix exponential of diagonal matrixes (as special case)

For any diagonal $(n \times n)$ matrix A, we have

$$A = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \qquad \leadsto \quad e^A = \begin{bmatrix} e^{\lambda_1} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & e^{\lambda_n} \end{bmatrix}$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Lagrange

Force-free and

Similarity

Model metric

Modal matrix

The state transition matrix (cont.)

Example

Consider the state-space model with the (2×2) diagonal matrix A

$$A = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}$$

We are interested in the corresponding state transition matrix

We have.

$$e^{At} = \begin{bmatrix} e^{(-1)t} & 0\\ 0 & e^{(-2)t} \end{bmatrix}$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Transition matrix

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Transition matrix

Some properties

State transition matrix

CHEM-E7140 2019-2020

Some properties

Properties

We state without proof some fundamental results about a state transition matrix e^{At} → They are needed to derive Lagrange formula

Derivative of the state transition matrix

Consider the state transition matrix e^{At}

We have.

$$\frac{\mathrm{d}}{\mathrm{d}t}e^{At} = Ae^{At} = e^{At}A$$

By using the derivative property, we have that A commutes with e^{At} (This result is important)

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisatio

Modal matrix

Properties (cont.)

Proposition

Composition of two state transition matrices

Consider the two state transition matrices e^{At} and $e^{A\tau}$, we have

$$e^{At}e^{A\tau} = e^{A(t+\tau)}$$

Proposition

Inverse of the state transition matrix

Let e^{At} be a state transition matrix, its inverse $(e^{At})^{-1}$ is matrix e^{-At}

$$e^{At}e^{-At} = e^{-At}e^{At} = I$$

A state transition matrix e^{At} is always invertible (non-singular)

• Even if A were singular

 $^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

and analysis

matrix

Some properties

Sylvester's formul

Lagrange

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Properties (cont.)

Matrix inverse

Consider a square matrix A of order n

We define the **inverse** of A the square matrix of order n, A^{-1}

$$A^{-1}A = AA^{-1} = I$$

The inverse of matrix A exists if and only if A is non-singular

• When the inverse exists, it is also unique

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Transition matrix

Sylvester's formula

The state transition matrix

CHEM-E7140 2019-2020

and analysis

matrix

Sylvester's formula

Lagrange

formula Force-free

forced evolution

transformation

Diagonalisation

Transition matri

Sylvester's expansion

We determine the analytical expression of the state transition matrix $e^{\mathbf{A}t}$

- The procedure is known as Sylvester expansion
- (Does not require computing the infinite series)
- There are also other procedures (later)

Proposition

The Sylvester's expansion

Let A be a $(n \times n)$ matrix and let the corresponding state transition matrix be e^{At}

We have,

$$e^{At} = \sum_{i=0}^{n-1} \beta_i(t)A^i = \beta_0(t)I + \beta_1(t)A + \beta_2(t)A^2 + \dots + \beta_{n-1}(t)A^{n-1}$$

The coefficients β_i of the expansion are appropriate functions of time

- → They can be determined by solving a set of linear equations
- \rightarrow There is a finite number (n) of them

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange

forced evolution

transformation

Diagonalisation

Modal matrix

Sylvester's expansion (cont.)

We show how to determine the coefficients when A has eigenvalues of multiplicity one

We will not consider the other cases, because rather involved and tedious to derive

- \leadsto Matrix ${\bf A}$ has complex eigenvalues (with multiplicity larger one)
- \longrightarrow Matrix **A** has complex eigenvalues (with multiplicity one)
- \leadsto Eigenvalues of **A** have multiplicity larger than one

CHEM-E7140 2019-2020

Representation and analysis

State transi matrix

Some properties

Sylvester's formula

Lagrange

Force-free and

Similarity

D: 11 (1

Modal matrix

m ...

Sylvester's expansion (cont.)

Eigenvalues with multiplicity one

Let matrix A have distinct eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$

$$e^{At} = \sum_{i=0}^{n-1} \beta_i(t)A^i = \beta_0(t)I + \beta_1(t)A + \beta_2(t)A^2 + \dots + \beta_{n-1}(t)A^{n-1}$$

The *n* unknown functions $\beta_i(t)$ are those that solve the system

$$\Rightarrow \begin{cases}
\frac{1\beta_{0}(t) + \lambda_{1}\beta_{1}(t) + \lambda_{1}^{2}\beta_{2}(t) + \dots + \lambda_{1}^{n-1}\beta_{n-1}(t) = e^{\lambda_{1}t} \\
\frac{1\beta_{0}(t) + \lambda_{2}\beta_{1}(t) + \lambda_{2}^{2}\beta_{2}(t) + \dots + \lambda_{2}^{n-1}\beta_{n-1}(t) = e^{\lambda_{2}t} \\
\dots \\
\frac{1\beta_{0}(t) + \lambda_{n}\beta_{1}(t) + \lambda_{n}^{2}\beta_{2}(t) + \dots + \lambda_{n}^{n-1}\beta_{n-1}(t) = e^{\lambda_{n}t}
\end{cases}$$

CHEM-E7140 2019-2020

and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

forced evolution

Diagonalisation

Modal matrix

Transition matrix

Sylvester's expansion (cont.)

Or, equivalently, in matrix form

$$V\beta = \eta$$

• The vector of unknowns

$$\Rightarrow \beta = \begin{bmatrix} \beta_0(t) & \beta_1(t) & \cdots & \beta_{n-1}(t) \end{bmatrix}^T$$

• The coefficients matrix¹

$$V = \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \cdots & \lambda_1^{n-1} \\ 1 & \lambda_2 & \lambda_2^2 & \cdots & \lambda_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & \lambda_n & \lambda_n^2 & \cdots & \lambda_n^{n-1} \end{bmatrix}$$

• The known vector

$$\rightsquigarrow \quad \eta = \begin{bmatrix} e^{\lambda_1 t} & e^{\lambda_2 t} & \cdots & e^{\lambda_n t} \end{bmatrix}^T$$

¹A matrix in this form is known as Vandermonde matrix.

CHEM-E7140 2019-2020

and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrang

Force-free and forced evoluti

Similarity

Di-----

Diagonalisation

Modai matrix

Sylvester's expansion (cont.)

$$\eta = \begin{bmatrix} e^{\lambda_1 t} & e^{\lambda_2 t} & \cdots & e^{\lambda_n t} \end{bmatrix}$$

The components of vector η are functions of time, $e^{\lambda t}$

- \rightarrow Functions $e^{\lambda t}$ are the modes of matrix A
- \rightarrow Mode $e^{\lambda t}$ associates with eigenvalue λ

Each element of e^{At} is a linear combination of such modes

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

forced evolution

Similarity

Diagonalisatio

Modal matrix

Tunnaltian matul

Sylvester expansion (cont.)

Example

Consider the (2×2) matrix A, we want to determine e^{At}

$$A = \begin{bmatrix} -1 & 1\\ 0 & -2 \end{bmatrix}$$

Matrix A is triangular, the eigenvalues correspond to the diagonal elements

Matrix A has 2 distinct eigenvalues

$$\rightsquigarrow \lambda_1 = -1$$

$$\rightarrow \lambda_2 = -2$$

To determine e^{At} , we write the system

$$\begin{cases} 1\beta_0(t) + \lambda_1 \beta_1(t) = e^{\lambda_1 t} \\ 1\beta_0(t) + \lambda_2 \beta_1(t) = e^{\lambda_2 t} \end{cases} \longrightarrow \begin{cases} \beta_0(t) + (-1)\beta_1(t) = e^{(-1)t} \\ \beta_0(t) + (-2)\beta_1(t) = e^{(-2)t} \end{cases}$$

 $^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrang

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Transition matrix

Sylvester's expansion (cont.)

By simple manipulation, we get

$$\Rightarrow \begin{cases} \beta_0(t) = 2e^{-t} - e^{-2t} \\ \beta_1(t) = e^{-t} - e^{-2t} \end{cases}$$

Thus,

$$e^{At} = \beta_0(t)I_2 + \beta_1(t)A = (2e^{-t} - e^{-2t})\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (e^{-t} - e^{-2t})\begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}$$
$$= \begin{bmatrix} e^{-t} & (e^{-t} - e^{-2t}) \\ 0 & e^{-2t} \end{bmatrix}$$

CHEM-E7140 2019-2020

Representation and analysis

State transitior matrix

Some properties

Sylvester's formula

Lagrang

Force-free an

Similarity

Diagonalisation

Modal matrix

Transition matrix

Each element of e^{At} is a linear combination of the two modes, e^{-t} and e^{-2t}

CHEM-E7140 2019-2020

Sylvester's formula

Sylvester's expansion (cont.)

Eigenvalues and eigenvectors

Let $\lambda \in \mathcal{R}$ be some scalar and let $v \neq 0$ be some $(n \times 1)$ column vector

Consider a square matrix A of order n, suppose that the identify holds

$$Av = \lambda v$$

The scalar λ is called an eigenvalue of A

The vector v is called the associated eigenvector

Consider a square matrix A of order n whose elements are real numbers

Matrix A has n (not necessarily distinct) eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$

- They can be real numbers or conjugate-complex pairs
- If $\lambda_i \neq \lambda_i$ for $i \neq j$, A has multiplicity one

CHEM-E7140 2019-2020

Representation and analysis

matrix

some properties

Sylvester's formula

Lagrang formula

Force-free and forced evolution

forced evolution

Diagonalisation

Modal matrix

Transition matri

Sylvester's expansion (cont.)

Eigenvalues of triangular and diagonal matrices

Let matrix $A = \{a_{i,j}\}$ be a triangular or a diagonal matrix

• The eigenvalues of A are the n diagonal elements $\{a_{i,i}\}$

CHEM-E7140 2019-2020

Sylvester's formula

Sylvester's expansion (cont.)

Characteristic polynomial

The characteristic polynomial of a square matrix A of order n

• The *n*-order polynomial in the variable s

$$P(s) = \det\left(sI - A\right)$$

Computing eigenvalues and eigenvectors

The eigenvalues of matrix A of order n solve its characteristic polynomial

$$\rightarrow$$
 The roots of the equation $P(s) = \det(sI - A) = 0$

Let λ be an eigenvalue of matrix A

Each eigenvector v associated to it is a non-trivial solution to the system

$$(\lambda I - A)v = 0$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Sylvester's form

formula

forced evolution

Similarity

Diagonalisatio

Modal matrix

Tecnoltics metals

Sylvester's expansion (cont.)

Systems of linear equations

Consider a system of n linear equations in n unknowns Ax = b

- \rightarrow A is a $(n \times n)$ matrix of coefficients
- \rightarrow b is a $(n \times 1)$ vector of known terms
- \rightarrow x is a $(n \times 1)$ vector of **unknowns**

If A is non-singular, the system admits one and only one solution

If matrix A is singular, let M = [A|b] be a $[n \times (n+1)]$ matrix

- If rank(A) = rank(M), system has infinite solutions
- If rank(A) < rank(M), system has no solutions

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Tennsition metals

Sylvester's expansion (cont.)

Matrix rank

The rank of a $(m \times n)$ matrix A is equal to the number of columns (or rows) of the matrix that are linearly independent, rank(A)

Matrix kernel or null space

Consider a $(m \times n)$ matrix A, we define its **null space** or **kernel**

$$\ker(A) = \left\{ x \in R^n | A\mathbf{x} = 0 \right\}$$

It is the set of all vectors $x \in \mathbb{R}^n$ that left-multiplied by A produce the null vector

The set is a vector space, its dimension is called the **nullity** of matrix A, null(A)

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and

Similarity

Diagonalisation

Modal matrix

m ...

Lagrange formula

LTI systems - Dynamics

CHEM-E7140 2019-2020

and analysis

matrix

Sylvester's formula

Lagrange formula

force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

Lagrange formula

We can now prove the solution to the analysis problem for MIMO systems

• Lagrange formula

Theorem

Lagrange formula

Consider the state-space representation of a time-invariant linear system of order n

$$\begin{array}{c|c}
u(t) & \dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\end{array}$$

$$\begin{cases}
\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\end{cases}$$
System

The solution for $t \geq t_0$, for an initial state $x(t_0)$ and an input $u(t \geq t_0)$

$$x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$y(t) = Ce^{A(t-t_0)}x(t_0) + C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix Some properties

Lagrange formula

Force-free and forced evolution

Similarity transforms

Diagonalisation

Modal matrix

Lagrange formula (cont.)

Proof

By left-multiplying the state equation $\dot{x}(t) = Ax(t) + Bu(t)$ by e^{-At} , we get

$$e^{-At}\dot{x}(t) = e^{-At}Ax(t) + e^{-At}Bu(t)$$

The resulting state equation can be rewritten,

$$e^{-At}\dot{x}(t) - e^{-At}Ax(t) = e^{-At}Bu(t)$$

Then, by using the result on the derivative of the state transition matrix²,

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-At} x(t) \Big] = e^{-At} \dot{x}(t) - e^{-At} Ax(t)$$
$$= e^{-At} Bu(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[e^{-At} x(t) \right] = e^{-At} \left[\frac{\mathrm{d}}{\mathrm{d}t} x(t) \right] + \left[\frac{\mathrm{d}}{\mathrm{d}t} e^{At} \right] x(t) = e^{-At} \dot{x}(t) - e^{-At} Ax(t).$$

²Derivative of the state transition matrix

$\substack{\text{CHEM-E7140}\\2019-2020}$

Representation and analysis

State transition matrix

Lagrange formula

Force-free and

Similarity

Diagonalisatio

Modal matrix

Lagrange formula (cont.)

$$\frac{\mathrm{d}}{\mathrm{d}t} \Big[e^{-At} x(t) \Big] = e^{-At} Bu(t)$$

By integrating between t_0 and t, we obtain

$$\left[e^{-A\tau}x(\tau)\right]_{t_0}^t = \int_{t_0}^t e^{-A\tau}Bu(\tau)d\tau$$

That is,

$$e^{At}x(t) - e^{-At_0}x(t_0) = \int_{t_0}^t e^{-A\tau}Bu(t)d\tau$$

Thus,

$$e^{-At}x(t) = e^{-At_0}x(t_0) + \int_{t_0}^{t} e^{-A\tau}Bu(t)d\tau$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Lagrange formula

Force-free and forced evolution

Similarity

transformat

Diagonalisation

Modal matrix

Lagrange formula (cont.)

$$e^{-At}x(t) = e^{-At_0}x(t_0) + \int_{t_0}^t e^{-A\tau}Bu(t)$$

The first Lagrange formula is obtained by multiplying both sides by e^{At}

$$\rightarrow x(t) = e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)\mathrm{d}\tau$$

The second formula is obtained by substituting x(t) in the output equation

$$y(t) = Cx(t) + Du(t)$$

$$\hookrightarrow C\left[\underbrace{e^{A(t-t_0)}x(t_0) + \int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{x(t)}\right] + Du(t)$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Dylvester s forma

formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Modal matrix

Force-free and forced evolution

Lagrange formula

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisatio

Diagonamauto

Modai matrix

Force-free and forced evolution

$$x(t) = \underbrace{e^{A(t-t_0)}x(t_0)}_{x_u(t)} + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{x_f(t)}$$

We can write the state solution (for $t \geq t_0$) as the sum of two terms

$$\Rightarrow \quad x(t) = x_u(t) + x_f(t)$$

- \rightarrow The force-free evolution of the state, $x_u(t)$
- \rightarrow The forced evolution of the state, $x_f(t)$

CHEM-E7140 2019-2020

Force-free and forced evolution

Force-free and forced evolution (cont.)

$$x(t) = \underbrace{e^{A(t-t_0)}x(t_0)}_{x_u(t)} + \underbrace{\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau}_{x_f(t)}$$

The force-free evolution of the state, from the initial condition $x(t_0)$

- \rightarrow $e^{A(t-t_0)}$ indicates the transition from $x(t_0)$ to x(t)
- → In the absence of contribution from the input

The forced evolution of the state

$$\Rightarrow x_f(t) = \int_{t_0}^t e^{A(t-\tau)} Bu(\tau) d\tau = \int_0^{t-t_0} e^{At} Bu(t-\tau) d\tau$$

- \rightarrow The contribution of $u(\tau)$ to state x(t)
- \rightsquigarrow Through a weighting function, $e^{A(t-\tau)}B$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Transition matri

Force-free and forced evolution (cont.)

$$y(t) = \underbrace{Ce^{A(t-t_0)}x(t_0)}_{y_u(t)} + \underbrace{C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)}_{y_f(t)}$$

We can write the output solution (for $t \geq t_0$) as the sum of two terms

$$\rightarrow y(t) = y_l(t) + y_f(t)$$

- \rightarrow The force-free evolution of the output, $y_u(t)$
- \rightarrow The forced evolution of the output, $y_f(t)$

CHEM-E7140 2019-2020

Force-free and forced evolution

Free and forced evolution (cont.)

$$y(t) = \underbrace{Ce^{A(t-t_0)}x(t_0)}_{y_u(t)} + \underbrace{C\int_{t_0}^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)}_{y_f(t)}$$

The force-free evolution of the output, from initial condition $y(t_0) = Cx(t_0)$

$$y_u(t) = Ce^{A(t-t_0)}x(t_0) = Cx_u(t)$$

The forced-evolution of the output

$$\Rightarrow y_f(t) = C \int_{t_0}^t e^{A(t-\tau)} Bu(\tau) d\tau + Du(t) = Cx_f(t) + Du(t)$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisatio

26 2 2 2 2 2

m ...

Free and forced evolution (cont.)

$$\begin{array}{c}
u(t) \\
\downarrow \\
x(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\end{array}$$

System

Note that for $t_0 = 0$, we have

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}Bu(\tau)d\tau$$

$$y(t) = Ce^{At}x(0) + C\int_0^t e^{A(t-\tau)}Bu(\tau)d\tau + Du(t)$$

CHEM-E7140 2019-2020

Representation and analysis

State transiti matrix

Sylvester's formula

Lagrange

formula Force-free and

forced evolution

transformation

Diagonalisatio

Modal matrix

Free and forced evolution (cont.)

Example

Consider a linear time-invariant system with the state-space representation,

$$\begin{cases} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} &= \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ y(t) &= \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \end{cases}$$

We want to determine the state and the output evolution for $t \geq 0$

- We consider the input signal $u(t) = 2\delta_{-1}(t)$
- We consider the initial state $x(0) = (3,4)^T$

The state transition matrix for this state-space representation,

$$e^{At} = \begin{bmatrix} e^{-t} & (e^{-t} - e^{-2t}) \\ 0 & e^{-2t} \end{bmatrix}$$

We computed it earlier

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

m-----

Free and forced evolution (cont.)

The force-free evolution of the state, for $t \geq 0$

$$\Rightarrow x_u(t) = e^{At}x(0) = \begin{bmatrix} e^{-t} & (e^{-t} - e^{-2t}) \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \begin{bmatrix} (7e^{-t} - 4e^{-2t}) \\ 4e^{-2t} \end{bmatrix}$$

That is,

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Tenneltion mets

Free and forced evolution (cont.)

The force-free evolution of the output, for $t \geq 0$

$$y_u(t) = Cx_u(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} (7e^{-t} - 4e^{-2t}) \\ 4e^{-2t} \end{bmatrix} = 14e^{-t} - 4e^{-2t}$$

That is,

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisatio:

Modal matrix

Transition matri

Free and forced evolution (cont.)

The forced evolution of the state, for $t \geq 0$

$$x_f(t) = \int_0^t e^{At} Bu(t-\tau) d\tau = \int_0^t \begin{bmatrix} e^{-\tau} & (e^{-\tau} - e^{-2\tau}) \\ 0 & e^{-2\tau} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} 2d\tau$$

$$= 2 \int_0^t \begin{bmatrix} (e^{-\tau} - e^{-2\tau}) \\ e^{-2\tau} \end{bmatrix} d\tau = 2 \begin{bmatrix} \int_0^t (e^{-\tau} - e^{-2\tau}) d\tau \\ \int_0^t e^{-2t} d\tau \end{bmatrix}$$

$$= 2 \begin{bmatrix} (1 - e^{-t}) - 1/2(1 - e^{-2t}) \\ 1/2(1 - e^{-2t}) \end{bmatrix} = \begin{bmatrix} (1 - 2e^{-t} + e^{-2t}) \\ (1 - e^{-2t}) \end{bmatrix}$$

CHEM-E7140 2019-2020

Force-free and forced evolution

Free and forced evolution (cont.)

Since D = 0, the forced evolution of the output for $t \geq 0$

$$y_f(t) = Cx_f(t) = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} (1 - 2e^{-t} + e^{-2t}) \\ (1 - e^{-2t}) \end{bmatrix} = 3 - 4e^{-t} + e^{-2t}$$

That is,

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

modul matrix

Similarity transformation

LTI systems - Dynamics

CHEM-E7140 2019-2020

and analysis

matrix

Some properties

Lagrange

Force-free and forced evolution

Similarity

Diagonalisatio

Modal matrix

Similarity tranformation

The form of the state space representation depends on the choice of states

• The choice is not unique

There is an infinite number of different representations of the same system

- They are all related by a similarity transformation
- These transformations allow flexibility in the analysis
- We can change to easier system representations

The state matrix can be set to a canonical form

- → Diagonal form
- → Jordan form

~→ ••

CHEM-E7140 2019-2020

transformation

Similarity tranformation (cont.)

Similarity transformation

Consider the state-space representation of a linear time-invariant system of order n

$$\begin{array}{c|c} u(t) & \dot{x}(t) = Ax(t) + Bu(t) \\ \hline y(t) = Cx(t) + Du(t) \\ \end{array} \begin{array}{c|c} y(t) & \\ \hline \end{array} \\ \begin{array}{c|c} \dot{x}(t) = Ax(t) + Bu(t) \\ \hline \\ y(t) = Cx(t) + Du(t) \\ \end{array}$$

System

- x(t) and $\dot{x}(t)$, state vector and its derivative (n components)
- u(t), input vector (r components)
- y(t), output vector (p components)

Let vector z(t) be related to x(t) by a linear transformation P, x(t) = Pz(t)

P is any $(n \times n)$ non-singular matrix of constants, its inverse always exists

• We have $z(t) = P^{-1}x(t)$

Transformation/matrix P is called similarity transformation/matrix

CHEM-E7140 2019-2020

and analysis

State transitio matrix

Some properties
Sylvester's formula

Lagrange

Force-free and forced evolution

Similarity transformation

Diagonalisatio

Modal matrix

Transition matri

Similarity tranformation (cont.)

Proposition

Similar representation

Consider the state-space representation of a linear time-invariant system of order n

$$\begin{array}{c}
u(t) \\
\downarrow \\
y(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\end{array}$$

 $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ y(t) = Cx(t) + Du(t) \end{cases}$

System

Let P be some transformation matrix such that x(t) = Pz(t)

Vector z(t) satisfies the new state-space representation

$$\begin{array}{c}
\underline{u(t)} \quad x(t) = A'x(t) + B'u(t) \\
y(t) = C'x(t) + D'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t) \\
y(t) = C'z(t) + D'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t) \\
y(t) = C'z(t) + D'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t) \\
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t) \\
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)
\end{array}$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + B'u(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + A'z(t)$$

$$\begin{array}{c}
\dot{z}(t) = A'z(t) + A'z(t$$

CHEM-E7140 2019-2020

Representation and analysis

matrix

Some properties

Lagrange

formula

Force-free and forced evolution

forced evolution

transformation
Diagonalisation

Modal matrix

Transition matri

Similarity tranformation (cont.)

Proof

By taking the time-derivative of x(t) = Pz(t),

$$\Rightarrow \dot{x}(t) = P\dot{z}(t)$$

By substituting x(t) and $\dot{x}(t)$ into the state-space representation,

$$\Rightarrow \begin{cases} P\dot{z}(t) = APz(t) + Bu(t) \\ y(t) = CPz(t) + Du(t) \end{cases}$$

Pre-multiply the state equation by P^{-1} , to complete the proof

CHEM-E7140 2019-2020

transformation

Similarity tranformation (cont.)

$$\begin{array}{c}
u(t) \\
\downarrow x(t) = A'x(t) + B'u(t) \\
y(t) = C'x(t) + D'u(t)
\end{array}$$

$$\begin{cases}
\dot{z}(t) = A'z(t) + B'u(t) \\
y(t) = C'z(t) + D'u(t)
\end{cases}$$
System

We obtained a different state-space representation of the same dynamical system

- Input u(t) and output y(t) are left unchanged
- The new state is indicated by z(t)

There is an infinite number of non-singular matrixes P that could be used

Thus, there is also an infinite number of equivalent representations

$$\rightsquigarrow A' = P^{-1}AP$$

$$\rightsquigarrow B' = P^{-1}B$$

$$\leadsto C' = CP$$

$$\leadsto D' = D$$

CHEM-E7140 2019-2020

transformation

Similarity tranformation (cont.)

Consider a linear time-invariante system with state-space representation $\{A, B, C, D\}$

$$\begin{cases} \begin{bmatrix} \dot{x_1}(t) \\ \dot{x_2}(t) \end{bmatrix} = \overbrace{\begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}}^A \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \overbrace{\begin{bmatrix} 0 \\ 1 \end{bmatrix}}^B u(t) \\ \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}}_C \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \underbrace{\begin{bmatrix} 1.5 \\ 0 \end{bmatrix}}_D u(t) \end{cases}$$

Consider the similarity transformation of the state using the matrix P

$$\begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}}_{z_2(t)} \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix}$$

What is the $\{A', B', C', D'\}$ state-space representation for state z(t)

CHEM-E7140 2019-2020

Representation and analysis

matrix

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

Similarity tranformation (cont.)

We have,

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad \rightsquigarrow \quad P^{-1} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$$

Since $z(t) = P^{-1}x(t)$, we have

$$\begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} x_2(t) \\ x_1(t) - x_2(t) \end{bmatrix}$$

The second component of z is the difference between first and second component of x \longrightarrow The first component of z simply equals the second component of x

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Lagrange

Force-free and forced evolution

Similarity transformation

Diagonalisatio

Model metriv

Transition matrix

Similarity tranformation (cont.)

In addition, we can calculate the state-space representation

$$A' = P^{-1}AP = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 & -1 \\ -2 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 2 & -1 \end{bmatrix}$$

$$B' = P^{-1}B = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$C' = CP = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$$

$$D' = D = \begin{bmatrix} 1.5 \\ 0 \end{bmatrix}$$

matrix

Some properties

Sylvester's formu

formula

Force-free and forced evolution

Similarity transformation

Diagonalisation

Modal matrix

Similarity tranformation (cont.)

Proposition

Similarity and state transition matrix

Consider the state matrix $A' = P^{-1}AP$ from some similarity transformation P

The corresponding state transition matrix,

$$e^{A't} = P^{-1}e^{At}P$$

Proof

Note that

$$(A')^k = \underbrace{(P^{-1}AP) \cdot (P^{-1}AP) \cdots (P^{-1}AP)}_{k \text{ times}} = P^{-1}\underbrace{AA \cdots A}_{k \text{ times}} P = P^{-1}A^k P$$

Thus, by definition

$$e^{A't} = \sum_{k=0}^{\infty} \frac{(A')^k t^k}{k!} = \sum_{k=0}^{\infty} \frac{(P^{-1}A^k P)t^k}{k!} = P^{-1} \Big(\sum_{k=0}^{\infty} \frac{A^k t^k}{k!} \Big) P = P^{-1} e^{At} P$$

CHEM-E7140 2019-2020

and analysis

matrix

Sylvester's formula

Lagrange

formula

forced evolutio

Similarity transformation

Diagonalisation

Modal matrix

Transition matr

Similarity tranformation (cont.)

We show how two similar state-space representations describe the same IO relation

Proposition

Invariance of the IO relationship by similarity

Consider two similar state-space representations of a linear time-invariant system

$$\rightarrow$$
 {A, B, C, D} and {A', B', C', D'}

 \rightarrow P is the transformation matrix

Suppose that the system be subjected to some known input u(t)

The two representations produce the same forced response

$$\rightsquigarrow y_f(t)$$

CHEM-E7140 2019-2020

Representation and analysis

matrix

Some properties

Lagrange

formula Force-free

forced evolutio

transformation

Diagonalisation

Tenneltion metal

Similarity tranformation (cont.)

Proof

Consider the Lagrange formula

The forced response of the second representation due to input u(t)

$$y_f(t) = C' \int_{t_0}^t e^{A'(t-\tau)} B' u(\tau) d\tau + Du(t)$$

$$= CP \int_{t_0}^t \underbrace{P^{-1} e^{A(t-\tau)} P}_{e^{A'(t-\tau)}} \underbrace{P^{-1} B}_{B'} u(\tau) d\tau + Du(t)$$

$$= C \int_{t_0}^t e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$

This response corresponds to that of the first SS representation

$$y_f(t) = C \int_{t_0}^t e^{A(t-\tau)} Bu(\tau) d\tau + Du(t)$$

transformation

Similarity tranformation (cont.)

Invariance of the eigenvalues under similarity transformations

Matrix A and $P^{-1}AP$ have the same characteristic polynomial

Proof

The characteristic polynomial of matrix A'

$$\det(\lambda I - A') = \det(\lambda I - P^{-1}AP) = \det(\lambda \underbrace{P^{-1}P}_{I} - P^{-1}AP)$$
$$= \det[P^{-1}(\lambda I - A)P] = \det(P^{-1})\det(\lambda I - A)\det(P)$$
$$= \det(\lambda I - A)$$

The last equality is obtained from $det(P^{-1})det(P) = 1$

A and A' share the same characteristic polynomial

Thus, also the eigenvalues are the same

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formu

Lagrang

Force-free and forced evolution

forced evolution

transformation
Diagonalisation

Modal matrix

Transition matr

Similarity tranformation (cont.)

Two similar representations have the same modes, the modes characterise the dynamics

The modes are therefore independent of the representation

 \leadsto This is important

Similarity tranformation (cont.)

Example

Consider two similar state-space representations of a linear time-invariant system

$$A = \begin{bmatrix} -1 & 1\\ 0 & -2 \end{bmatrix}$$
$$A' = \begin{bmatrix} -2 & 0\\ 2 & -1 \end{bmatrix}$$

The similarity transformation matrix

$$P = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$$

We are interested in the eigenvalues and modes of the system

Matrix A and A have two eigenvectors

- $\lambda_1 = -1$
- $\lambda_2 = -2$

The system modes are e^{-t} and e^{-2t}

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

01011010111100

${\bf Diagonalisation}$

Modal matrix

Transition matri:

Diagonalisation

LTI systems - Dynamics

$^{\rm CHEM\text{-}E7140}_{2019\text{-}2020}$

State transition

matrix

Sulvester's forms

Lagrange

force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Transition matr

Diagonalisation

We consider a special similarity transformation \mathbf{P} , we seek for a diagonal matrix A'

- → A state-space representation with a diagonal state matrix
- → Diagonal canonical form
- $\rightsquigarrow \Lambda = A' = P^{-1}AP$

Consider the linear time-invariant system with a single input (and, say, single output)

$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \vdots \\ \dot{x}_n(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} u(t)$$

The evolution of the *i*-th component of the state vector

$$\Rightarrow$$
 $\dot{x}_i(t) = \lambda_i x_i(t) + b_i u(t)$

State derivatives are not related to other components

CHEM-E7140 2019-2020

Diagonalisation

Diagonalisation (cont.)

We think of a system with diagonal matrix A as a collection of sub-systems

- Each sub-system is described by a single state component
- → Each state component evolves independently
- The representation is decoupled
- \rightarrow *n* first-order subsystems

The characteristic polynomial of the system for the *i*-th component

$$\rightsquigarrow$$
 $P_i(s) = (s - \lambda_i)$

This subsystem has mode e

We show how to determine a similarity transformation into a diagonal form

• A somehow special similarity transformation matrix

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formula

Lagrange

Force-free and

Similarity

Modal matrix

Modal matrix

Diagonalisation

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formul

Lagrange formula

Force-free and forced evolution

Cimilarity

Diagonalisation

Modal matrix

Modal matrix

Diagonalisation (cont.)

Definition

Modal matrix

Consider a system in state-space representation with $(n \times n)$ matrix A

- Let v_1, v_2, \ldots, v_n be a set of all the eigenvectors of matrix A
- Suppose that they correspond to eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$

Suppose that eigenvectors in this set are linearly independent

We define the **modal matrix** of A as the $(n \times n)$ matrix V

$$V = \left[v_1 | v_2 | \cdots | v_n\right]$$

CHEM-E7140 2019-2020

Representation and analysis

matrix

Some properties Sylvester's formul

Lagrange

Force-free and forced evolution

Similarity

Diagonalisatio

Modal matrix

Transition matri

Diagonalisation (cont.)

If a matrix A has n distinct eigenvalues λ , then the modal matrix A always exists

• As its n eigenvectors \mathbf{v} are linearly independent

Distinct eigenvalues

Let **A** be a *n*-order matrix whose *n* eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_n$ are distinct

Then, there is a set of n linearly independent eigenvectors

• Vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ form a basis for \mathcal{R}^n

CHEM-E7140 2019-2020

and analysis

State transition matrix

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

D: 1: .:

Diagonalisation

Modal matrix

Diagonalisation (cont.)

Example

Consider a state-space representation of a linear time-invariant system with matrix A

$$A = \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix}$$

We are interested in the modal matrix V of A

The eigenvalues and eigenvectors of A

$$\rightarrow$$
 $\lambda_1 = 1$ and $v_1 = \begin{bmatrix} 1 & -1 \end{bmatrix}^T$

$$\rightarrow \lambda_2 = 5 \text{ and } v_2 = \begin{bmatrix} 1 & 3 \end{bmatrix}^T$$

The modal matrix V,

$$V = \begin{bmatrix} v_1 | v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$

CHEM-E7140 2019-2020

Modal matrix

Diagonalisation (cont.)

$$V = \begin{bmatrix} v_1 | v_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$$

It is important to note that the eigenvectors are determined up to a scaling constant

- (Plus, the ordering of the eigenvalues is arbitrary)
- There can be more than one modal matrix

These two modal matrices of matrix A are equivalent

$$V' = \begin{bmatrix} 2v_1 | 3v_2 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ -2 & 9 \end{bmatrix}$$
$$V'' = \begin{bmatrix} v_2 | v_1 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 3 & -1 \end{bmatrix}$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisation

Modal matrix

Transition matri

Diagonalisation (cont.)

Consider a matrix A with some eigenvalues λ that have multiplicity ν larger than one

• The modal matrix V exists if and only if to each eigenvalue λ_i with multiplicity ν_i is possible to associate ν_i linearly independent eigenvectors $\{v_{i,1}, v_{i,2}, \dots, v_{i,\nu_i}\}$

This is not always possible

But, ...

If a matrix admits a modal matrix, then it can be diagonalised

• (This is what matters to us)

matrix

Sylvester's formula

Lagrange formula

forced evolut

Similarity

Diagonalisation

Modal matrix

Diagonalisation (cont.)

Example

Consider a state space representation of a linear time-invariant system with matrix A

$$A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

Its only eigenvalue $\lambda = 2$ has multiplicity $\nu = 2$

Its eigenvectors are obtained by solving the system $[\lambda I - A]v = 0$

$$\begin{bmatrix} 2I-A \end{bmatrix} v = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \rightsquigarrow \quad \begin{cases} 0=0 \\ 0=0 \end{cases}$$

We can choose any two linearly independent eigenvectors for λ

• As the equation is satisfied for any value of a and b

A modal matrix with the eigenvectors from the canonical basis

$$\rightsquigarrow V = \begin{bmatrix} v_1 | v_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Matrix
Some properties

Sylvester's formula

Lagrange

forced evoluti

Similarity

Diagonalisatio

Modal matrix

Transition matri

Diagonalisation (cont.)

Example

Consider a state space representation of a linear time-invariant system with matrix A

$$A = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$$

Its only eigenvalue $\lambda = 2$ has multiplicity $\nu = 2$

Its eigenvectors are obtained by solving the system $[\lambda I - A]v = 0$

$$[2I-A]v = \begin{bmatrix} 0 & -1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \leadsto \quad \begin{cases} -b = 0 \\ 0 = 0 \end{cases}$$

As b = 0, we can choose only one linearly independent eigenvector for λ

$$v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

Matrix A does not admit a modal matrix

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formul

Lagrange formula

Force-free and forced evolution

Similarity

Diagonalisatio

Modal matrix

Transition mat

Diagonalisation (cont.)

Proposition

Diagonalisation

Consider a state-space representation of a linear time-invariant system with matrix \boldsymbol{A}

Let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be its eigenvalues and $V = [v_1 | v_2 | \cdots | v_n]$ one of its modal matrices

Let Λ be the state matrix M transformed according to $\Lambda = V^{-1}AV$

 $\rightsquigarrow \Lambda$ is diagonal

CHEM-E7140 2019-2020

Representation and analysis

State transitio matrix

Some properties

Sylvester's form

Lagrange formula

Force-free an forced evolut

Similarity

transformation

Modal matrix

Modal matrix

Transition matrix

Diagonalisation (cont.)

Example

Consider a linear time-invariant system with matrixes $\{A, B, C, D\}$

$$\begin{cases} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1.5 \\ 0 \end{bmatrix} u(t) \end{cases}$$

We are interested in a diagonal representation by similarity

We can compute the eigenvalues and eigenvectors of A

•
$$\lambda_1 = -1$$
 and $v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

•
$$\lambda_2 = -2$$
 and $v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

CHEM-E7140 2019-2020

and analysis

matrix

Some properties

Lagrange

Force-free and forced evolutio

Similarity

Diagonalisation

Modal matrix

Transition matri

Diagonalisation (cont.)

Then, we can determine a modal matrix and its inverse

$$V = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
$$V^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

From the similarity transformation expressions, we get

$$A' = V^{-1}AV = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} -1 & -2 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix} = \Lambda$$
$$B' = V^{-1}B = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
$$C' = CV = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & -2 \end{bmatrix}$$
$$D' = D = \begin{bmatrix} 1.5 \\ 0 \end{bmatrix}$$

CHEM-E7140 2019-2020

Representation and analysis

matrix

Some properties

Sylvester's formula

Lagrange formula

Force-free and forced evolution

Similarity

To 11 11

Modal matrix

Transition matrix

State transition matrix by diagonalisation

Diagonalisation

CHEM-E7140 2019-2020

Representation and analysis

matrix

Some properties

Sylvester's formul

Lagrange

Force-free and forced evolutio

forced evolution

Diagonalisatio

Modal matrix

Transition matrix

State transition matrix by diagonalisation

We show a procedure alternative to Sylvester's formula for the state transition matrix

- \bullet We assume a linear time-invariant state-space system representation
- ullet We assume that the state matrix A can be diagonalised

CHEM-E7140 2019-2020

Representation and analysis

State transitio matrix

Some properties
Sylvester's formul

Lagrange

Force-free

Similarity

Modal matr

Transition matrix

Transition matrix by diagonalisation (cont.)

Proposition

State transition matrix by diagonalisation

Consider a $(n \times n)$ state matrix A and let $\lambda_1, \lambda_2, ..., \lambda_n$ be its eigenvalues

Suppose that A admits the modal matrix V

We have for the state transition matrix

$$e^{At} = Ve^{\Lambda t} V^{-1} = V \begin{bmatrix} e^{\lambda_1 t} & 0 & \cdots & 0 \\ 0 & e^{\lambda_2 t} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{\lambda_n t} \end{bmatrix} V^{-1}$$

Because we have a diagonal state matrix

$$\Lambda = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix}$$

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Sylvester's formu

Lagrange formula

forced evolut

Similarity transforms

Diagonalisation

Modal matrix

Transition matrix

State transition matrix by diagonalisation (cont.)

Proof

We have shown that the identity holds (see similarity and state transition $\mathrm{matrices}^3)$

$$e^{\Lambda t} = V^{-1} e^{At} V$$

To complete the proof, multiply both sides by V on the left and by V^{-1} on the right

³Given $A' = P^{-1}AP$, we have $e^{A't} = P^{-1}e^{At}P$.

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties Sylvester's formula

Lagrange

Force-free and forced evolution

Similarity

transformatio

Diagonalisation

Transition matrix

State transition matrix by diagonalisation (cont.)

Example

Consider a linear time-invariant system with matrixes $\{A, B, C, D\}$

$$\begin{cases} \begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t) \\ \begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} 1.5 \\ 0 \end{bmatrix} u(t) \end{cases}$$

We are interested in computing the state transition matrix e^{At}

CHEM-E7140 2019-2020

Representation and analysis

State transition matrix

Some properties

Lagrange

Force-free and

Similarity

Disconsideration

Modal matrix

Transition matrix

State transition matrix by diagonalisation (cont.)

We have already computed the modal matrix of A and its inverse, V and V^{-1}

$$V = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
$$V^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$

Thus, we have

$$e^{At} = V \begin{bmatrix} e^{\lambda_1 t} & 0 \\ 0 & e^{\lambda_2 t} \end{bmatrix} V^{-1} = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & 0 \\ 0 & e^{-2t} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} e^{-t} & e^{-t} \\ 0 & -e^{-2t} \end{bmatrix} = \begin{bmatrix} e^{-t} & (e^{-t} - e^{-2t}) \\ 0 & e^{-2t} \end{bmatrix}$$

This is the same result we determined by using the Sylvester expansion