Types of Matrices with Expressions

Here is a summary of important matrices, their defining expressions, and examples:

ere is a summary of important matrices, their defining expressions, and examples:		
Matrix Type	Expression / Condition	Example
Row Matrix	Only one row: $A = [a_1 \ a_2 \ \dots \ a_n]$	$A = [2 \ 5 \ 7]$
Column Matrix	Only one column: $A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$	$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$
Square Matrix	Rows = Columns: $A \in M_{n \times n}$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
Zero (Null) Matrix	All entries zero: $A = 0$	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
Diagonal Matrix	$a_{ij} = 0 \text{ for } i \neq j$	$ \begin{bmatrix} 4 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2 \end{bmatrix} $
Scalar Matrix	Diagonal with equal elements: $a_{ii} = k$	5 0 0 5
Identity Matrix	$a_{ii} = 1, \ a_{ij} = 0 \text{ for } i \neq j$	$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Upper Triangular	$a_{ij} = 0 \text{ for } i > j$	$\begin{bmatrix} 2 & 3 & 1 \\ 0 & 5 & 7 \\ 0 & 0 & 6 \end{bmatrix}$
Lower Triangular	$a_{ij} = 0 \text{ for } i < j$	4 0 0 8 5 0 2 9 7
Symmetric Matrix	$A^T = A$	$\begin{bmatrix} 1 & 3 & 2 \\ 3 & 4 & -1 \\ 2 & -1 & 5 \end{bmatrix}$
Skew-Symmetric	$A^T = -A$	$ \begin{bmatrix} 0 & -2 & 3 \\ 2 & 0 & -4 \\ -3 & 4 & 0 \end{bmatrix} $
Orthogonal Matrix	$AA^T = I$	$\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$
Idempotent Matrix	$A^2 = A$	$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$
Involutory Matrix	$A^2 = I$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$
Singular Matrix	$\det(A) = 0$	2 4 1 2
Non-Singular Matrix	$\det(A) \neq 0$	$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$
Hermitian Matrix	$A^* = A$ (complex conjugate transpose)	$\begin{bmatrix} 2 & 3+i \\ 3-i & 4 \end{bmatrix}$
Skew-Hermitian	$A^* = -A$	$\begin{bmatrix} 0 & 2+i \\ -2+i & 0 \end{bmatrix}$