Example. Compute the integral $\iint_R x^2 + y^2 dA$ where R is the region below.

Example. Compute the integral $\iint_R x^2 + y^2 dA$ where R is the region below.

Polar coordinate.

2 Change to Polar Coodinates in a Double Integral If f is continuous on a polar rectangle R given by $0 \le a \le r \le b$, $\alpha \le \theta \le \beta$, where $0 \le \beta - \alpha \le 2\pi$, then

$$\iint\limits_{\mathcal{B}} f(x, y) dA = \int_{\alpha}^{\beta} \int_{a}^{b} f(r \cos \theta, r \sin \theta) r dr d\theta$$

EXAMPLE 2 Find the volume of the solid bounded by the plane z = 0 and the paraboloid $z = 1 - x^2 - y^2$.

More complicated region:

3 If f is continuous on a polar region of the form

$$D = \{(r, \theta) \mid \alpha \leq \theta \leq \beta, \ h_1(\theta) \leq r \leq h_2(\theta)\}$$

then

$$\iint\limits_{D} f(x, y) dA = \int_{\alpha}^{\beta} \int_{h_{1}(\theta)}^{h_{2}(\theta)} f(r \cos \theta, r \sin \theta) r dr d\theta$$

EXAMPLE 3 Use a double integral to find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.

EXAMPLE 4 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$, above the *xy*-plane, and inside the cylinder $x^2 + y^2 = 2x$.