École supérieure de la statistique et de l'analyse de l'information

Année : 2023 - 2024	Nature : Examen				
Diplôme : Ingénieur	Session : Principale				
Filière: Statistique & Apply 1-e	Date : 01/2024 Heure :				
Classe: ING-GIN-3-1, ING-GIN-3-2	Nombre de pages : 5				
Module : Statistiques pour la qualité	Documents : Non Autorisés				
Enseignant(e): Marwa HASNI	Calculatrice : Autorisée				

Exercice 1

1. Que peut-on dire à propos de la capabilité de ces processus ?

Remplissez ce tableau brièvement

Description de l'évolution de la production	Décision (poursuivre la production, réglage requis			
	Description de l'évolution de la production			

Exercice 2

L'entreprise ABC veut suivre un procédé de production par carte de contrôle, la caractéristique suivie est une cote de 10.30 +0.28/-0.29.

Le responsable qualité a choisi comme carte de contrôle le couple moyenne-étendue.

Tableau 1 fournit les résultats de prélèvement de 10 échantillons pendant 10 jours de taille 6.

1	2	3	4	5	6	7	8	9	10
10,50	10,31	10,37	10,34	10,64	10,39	10,40	10,43	10.54	
10,44	10,14	10,24	10,54	10.50		10,10	10,43	10,51	10,52
	-		10,54	10,58	10,69	10,28	10,32	10,19	10,20
10,32	10,55	10,33	10,35	10,65	10,57	10,42	10,43	10,39	
10,29	10,36	10,33	10,55	10,66	10.41			10,39	10,57
10,35	10.40	1	-	10,00	10,41	10,46	10,37	10,33	10,41
	10,40	10,21	10,34	10,67	10,44	10,48	10,14	10,08	10.46
10,41	10,40	10,53	10.53				_	10,08	10,46
		10,53	10,62	10,18	10,29	10,17	10,16	10,53	

- 1. Tracez la carte des moyennes et des étendues. Donnez leur type et justifiez
- Calculez les limites de contrôle pour les deux cartes. Utilisez le tableau en annexe 1 pour les constantes
- 3. Analysez la stabilité de ce procédé. Justifiez votre réponse
- 4. Si ce process était centré, Comment vous jugez sa capabilité ?
- Comment vous jugez la qualification du processus de production à la 5^{ème} journée ainsi que son comportement par la suite.
- Calculez le pourcentage des pièces non conformes. Utilisez le tableau en annexe 2 pour les constantes
- 7. Analysez le centrage de la distribution.