CHPS0742

OPTIMISATION

COURS 2

OPTIMISATION LINÉAIRE

Pierre Delisle Département de Mathématiques et Informatique Septembre 2018

Plan de la séance

- Principe général de l'optimisation linéaire
- Résolution de problèmes
 - Méthode géométrique
 - Algorithme du simplexe
- Dualité
- Dégénérescence et cyclage
- Problème dual-réalisable

Notions de base

 Soit un phénomène économique y, résultant de plusieurs effets élémentaires

$$e_{1}^{2}, e_{2}^{2}, \dots e_{n}^{2}$$

 Si l'on suppose que les effets élémentaires sont additifs, on a

$$y = e_1 + e_2 + \dots + e_n$$

 De plus, si l'on suppose que chacun des effets élémentaires e; est proportionnel à sa cause x; on peut écrire

$$y = a_1 x_1 + a_2 x_2 + \dots + a_n x_n$$

- a₁, a₂, ..., aₙ étant les coefficients de proportionnalité
- Cette égalité est du premier degré par rapport aux variables : c'est une fonction linéaire

Notions de base

- Dans beaucoup de problèmes, les m + 1 En limitant supérieurement ou effets sont tous proportionnels aux causes (au moins de façon suffisamment approchée)
- Le problème peut alors se décrire uniquement au moyen de formes linéaires

$$y_1 = a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n$$

 $y_m = a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n$
 $y_{m+1} = a_{m+1,1} x_1 + a_{m+1,2} x_2 + \dots + a_{m+1,n} x_n$

inférieurement les m premiers effets

$$y_1 > b_1; y_2 > b_2; ...; y_m > b_m$$

 C'est-à-dire en écrivant m contraintes, on permet l'optimisation du (m+1)e effet

maximiser
$$y_{m+1}$$

 C'est la fonction économique du problème

Notions de base

- Les m contraintes, si elles sont compatibles, délimitent dans un espace à n dimensions (autant que de variables) un polytope convexe à l'intérieur ou à la périphérie duquel se trouve(nt) le (ou les) point(s) dont les coordonnées ($x_1, x_2, ..., x_n$) satisfont aux contraintes
- Objet de l'optimisation linéaire
 - Résoudre le problème d'optimisation qui consiste à maximiser une fonction linéaire (la fonction économique) dans le domaine ainsi défini
- On peut résoudre les petits problèmes par la méthode géométrique (méthode graphique)

Méthode géométrique - Exemple à deux variables

- Une usine fabrique deux sortes de produits
 - p_1 et p_2
- À l'aide de deux machines
 - m_1 et m_2
- Chaque produit à fabriquer doit passer successivement sur les deux machines dans un ordre indifférent et pendant les temps suivants

	p_1	p_2
m_1	30	20
m_2	40	10

- La machine *m*₁ est disponible 6000 min/mois
- La machine *m*₂ est disponible 4000 min/mois
- Le profit réalisé sur une unité du produit p_1 est de 400 euros
- Le profit réalisé sur une unité du produit p_2 est de 200 euros
- On veut trouver le plan de fabrication mensuel qui maximise le profit

Méthode géométrique - Exemple à trois variables

- Une usine peut fabriquer, sur une machine donnée travaillant 45 heures, 3 produits différents p₁, p₂ et p₃
- Le profit net en produisant chaque produit
 - 4 euros pour p_1
 - 12 euros pour p_2
 - 3 euros pour p_3
- Rendement de la machine
 - 50 produits par heure pour p_1
 - 25 produits par heure pour p_2
 - 75 produits par heure pour p_3

- Une étude de marché indique que les possibilités de vente ne dépassent pas
 - 1000 produits *p*1
 - 500 produits *p*2
 - 1500 produits *p*3

 Problème : répartir la capacité de production entre les trois produits de sorte à maximiser le profit

Illustration d'un problème à 3 variables

Limites de la méthode géométrique

 C'est embêtant de résoudre un problème à plus de 3 variables par la méthode géométrique!

Il faudra alors utiliser d'autres méthodes (dont une sera vue dans quelques instants)

Formulation standard d'un problème d'optimisation linéaire

■ Maximiser une forme linéaire de *n* variables

$$X_1, X_2, \ldots, X_n$$

 Les variables étant soumises à m contraintes linéaires

$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i}, \qquad i = 1, ..., m$$

Et aux n contraintes de non-négativité

$$x_{i} \geq 0$$
, $j = 1, \dots n$

Ramener les « variantes » à la formulation standard:

- Minimiser une fonction f revient à maximiser -f
 - Minimum de f = -Maximum de -f
- Transformer une inégalité de type « ≥ » en une inégalité de type « ≤ »
 - On la multiplie par -1
- Égalité $\alpha = \theta$
 - Revient aux 2 inégalités $\alpha \leq \theta$ et $-\alpha \leq -\theta$
- On remplace une variable x contrainte à être négative ou nulle par -x
- On exprime une variable x qui n'a pas de signe imposé par la différence de deux variables positives ou nulles

• $x = x^{+} - x$ avec $x^{+} \ge 0$ et $x \ge 0$

Généralisation

- Pour un problème d'optimisation linéaire de *n* variables, *m* contraintes et *n* contraintes de non-négativité
 - L'ensemble des points de \mathbb{R}^n (espace vectoriel réel de dimension n) de coordonnées $x_1, ..., x_n$ (par rapport à une base déterminée) et vérifiant les m + n contraintes détermine ce qu'on appelle un polytope convexe ...
 - ... ou, lorsque la distance de ces points à l'origine est bornée, un polyèdre convexe appelé polyèdre des contraintes

- Les *n*-uplets $(x_1, ..., x_n)$ qui satisfont les contraintes s'appellent solutions réalisables du problème
 - Ce sont les coordonnées des points intérieurs au polyèdre de contraintes
- On peut prouver le théorème suivant
 - On considère une forme linéaire des n variables x₁, ..., x_n, soumises à des contraintes linéaires. Son maximum, qui existe si cette forme est majorée, <u>est atteint au moins en un sommet du polyèdre des contraintes</u>
- Le principe de l'algorithme du simplexe
 - Passer itérativement d'un sommet du polyèdre des contraintes à un sommet adjacent de façon à augmenter la valeur de la fonction à optimiser jusqu'à trouver un sommet où le maximum est atteint

ALGORITHME DU SIMPLEXE

Exemple à 2 variables

Algorithme du simplexe

- Proposé en 1948 par Georges Dantzig (mathématicien américain)
- Permet la détermination d'une solution optimale d'un programme linéaire
- Consiste à progresser de sommet en sommet sur le polyèdre des solutions réalisables de façon à améliorer à chaque fois la fonction économique

À partir de la formulation standard

- Introduction de <u>variables d'écart</u> positives ou nulles
 - Mesurent, pour chaque ressource, l'écart entre la quantité initialement disponible et la quantité consommée par le plan donné par les variables initiales du problème
- Réécriture des contraintes du problème sous forme d'équations
- Création du dictionnaire I

- Le polyèdre des contraintes est alors limité dans ℝ² par les droites (hyperplans pour un plus grand nombre de dimensions)
 - $x_1 = 0$, $x_2 = 0$, $x_3 = 0$, $x_4 = 0$
- Les variables x_3 et x_4 sont exprimées comme fonctions affines des variables x_1 et x_2
 - On dit que les variables x_3 et x_4 sont actuellement les <u>variables de base</u>...
 - ... et que les variables x_1 et x_2 sont actuellement les variables hors-base

Solution basique

- On s'intéresse alors à ce qu'on appelle la solution basique associée au dictionnaire
 - C'est la solution obtenue en donnant la valeur 0 à toutes les variables hors-base
 - Les valeurs des variables de base en découlent
- Les 4 variables ayant des valeurs non négatives dans cette solution basique, ce dictionnaire est <u>réalisable</u>
 - Correspond au point de coordonnées (0,0)
 - Sommet du polyèdre (ici polygone) des contraintes
 - Donne la valeur 0 à z (autrement dit, on ne fait rien)

Base de la méthode du simplexe

Remarque

- Si, en choisissant une variable x; hors-base de coefficient strictement positif, on fait croître celle-ci à partir de 0 (les autres variables hors-base restant nulles), la valeur correspondante de la fonction z croît
- On pourrait alors choisir x_1 ou x_2
 - On choisit x_2
 - Gardant x_1 à 0, on cherche à augmenter x_2 au maximum, en conservant la propriété que le point M de \mathbb{R}^2 de coordonnées $(0,x_2)$ reste dans le polyèdre des contraintes
 - On se déplace sur une arête du polyèdre issue de (0,0)

- À partir du dictionnaire actuel (I), on peut voir les contraintes sur l'augmentation de x₂
 - Les variables x_3 et x_4 doivent rester ≥ 0
- La variable la plus contraignante (ici x_3) représente la première droite (hyperplan) rencontrée (d'équation $x_3 = 0$)
 - Nouveau sommet du polyèdre des contraintes
 - Intersection des droites d'équation $x_1 = 0$ et $x_3 = 0$
- Il faut alors faire un changement de dictionnaire en échangeant les rôles de x₂ et x₃

Changement de dictionnaire

- À partir du dernier dictionnaire (I), on utilise l'équation associée à x_3 pour exprimer x_2 en fonction de x_1 et x_3
 - On remplace ensuite x_2 par cette expression dans les autres équations du dictionnaire, ce qui donne le dictionnaire II
 - On dit qu'on a fait entrer x₂ en base et qu'on a fait sortir x₃ de la base ...
 - ... ou que x_2 est *variable entrante* et x_3 est *variable sortante*
 - Les variables de base sont maintenant x_2 et x_4
 - Les variables hors-base sont maintenant x_1 et x_3
 - Nouvelle solution basique (obtenue en annulant les variables hors-base)
 - Nouvelle solution réalisable plus intéressante

Solution optimale?

- Dans la nouvelle expression de la fonction z, on voit que la variable x₁ a un coefficient strictement positif
 - Cela veut dire que l'augmentation de x₁ fera croitre encore la fonction économique z : la solution actuelle n'est pas optimale
 - Il faut donc répéter le processus \rightarrow on fait entrer x_1 en base et on parcourt ainsi une nouvelle arête du polyèdre des contraintes
 - À partir des contraintes, on fait sortir x_4 de la base
 - Ce qui mène au dictionnaire III et à une nouvelle solution basique

- À partir du dictionnaire III, dans la nouvelle expression de la fonction économique z, on voit que les variables x₃ et x₄ ont toutes les deux un coefficient négatif
 - Augmenter x₃ ou x₄ ne fera plus croître la fonction économique
 - La solution est donc optimale → l'algorithme est terminé
- Interprétation
 - Il faut fabriquer 40 unités de *p*1
 - Il faut fabriquer 240 unités de *p*2
 - Il ne reste plus de minutes sur la machine *m*1
 - Il ne reste plus de minutes sur la machine *m*2
 - Le profit net est de 64 000 euros

Algorithme du simplexe - Exemple à 4 variables

- Une fabrique d'objets en terre cuite produit des cendriers, des cruches, des bols et des vases
- La fabrication de chacun des objets nécessite un certain nombre d'heures de moulage, de cuisson et de peinture
- La vente de ces objets rapporte un certain bénéfice

	Cendrier	Bol	Cruche	Vase
Moulage	2	4	5	7
Cuisson	1	1	2	2
Peinture	1	2	3	3
Bénéfice	7	9	18	17

- L'entreprise dispose quotidiennement de 42 heures de moulage, 17 heures de cuisson et 24 heures de peinture
- Établir un plan de fabrication de façon à maximiser le chiffre d'affaires

Prix dual

- À chaque contrainte d'un programme linéaire, on peut associer un nombre appelé prix dual
 - Accroissement de la fonction économique lorsque varie le second membre de la contrainte considérée
- À l'optimum, la solution du programme et les prix duaux vérifient un ensemble de relations qui constituent les *conditions d'optimalité*
- Exemple

■ On considère le problème (*P*) :

Maximiser
$$\sum_{j=1}^{n} c_{j} x_{j}$$
Sous les contraintes
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} & \text{pour } i = 1, \dots, m \\ x_{j} \geq 0 & \text{pour } j = 1, \dots n \end{cases}$$

• S'il existe m réels y_i positifs ou nuls tels que, pour tout j = 1, ..., n:

$$\sum_{i=1}^{m} a_{ij} y_{i} \geq c_{j}$$

• alors on a, pour toute solution réalisable $(x_1, ..., x_n)$ de (P)

■ D'où:

$$\sum_{j=1}^{n} \mathbf{c}_{j} X_{j} \leq \sum_{i=1}^{m} b_{i} Y_{i}$$

 et cette dernière quantité donne donc un majorant de la fonction objectif

$$\sum_{j=1}^{n} c_{j} x_{j} \leq \sum_{j=1}^{n} \left(\sum_{i=1}^{m} a_{ij} y_{i} \right) x_{j} = \sum_{i=1}^{m} \left(\sum_{j=1}^{n} a_{ij} x_{j} \right) y_{i} \leq \sum_{i=1}^{m} b_{i} y_{i}$$

■ Le problème dual (*D*) du problème (*P*) s'écrit :

Minimiser
$$\sum_{j=1}^{m} b_{i} y_{j}$$
Sous les contraintes
$$\sum_{j=1}^{m} a_{ij} y_{j} \ge c_{j} \quad \text{pour } j = 1, \dots, n$$

$$y_{i} \ge 0 \quad \text{pour } i = 1, \dots m$$

- Le problème (P) prend alors le nom de problème primal
- Pour toute solution réalisable $y_1^*, ..., y_m^*$ du dual (i.e. satisfaisant les contraintes de (D)),

$$\sum_{i=1}^{m} b_{i} y_{i}^{*}$$

 est un majorant de la fonction objectif du problème primal

- De la définition du problème dual, on déduit la proposition suivante :
 - Soient (x₁*, x₂*,..., x_n*) une solution réalisable du problème primal ...
 - ... et $(y_1^*, y_2^*, ..., y_m^*)$ une solution réalisable du problème dual. On a :

$$\sum_{j=1}^{n} \mathbf{c}_{j} \mathbf{x}_{j}^{*} \leq \sum_{i=1}^{m} \mathbf{b}_{i} \mathbf{y}_{i}^{*}$$

- De plus, si les deux quantités sont égales, alors
 - $(x_1^*, x_2^*, \dots, x_n^*)$ constituent une solution optimale du problème primal
 - $(y_1^*, y_2^*, \dots, y_m^*)$ constituent une solution optimale du problème dual

Application

- La considération du problème dual permet de vérifier qu'une solution optimale a été trouvée par l'algorithme du simplexe pour un problème donné
- Exemple
- À partir de la proposition, on peut affirmer que 147 est l'optimum du problème primal
 - On a trouvé une solution réalisable du dual qui donne à la fonction objectif du dual ...
 - ... la même valeur que la solution trouvée par le primal donnait à la fonction objectif du primal
 - Certificat d'optimalité de la solution trouvée par le primal

Théorème de la dualité

- Si le problème primal a une solution optimale
 - $X_1^*, X_2^*, \dots, X_n^*$
- Alors le problème dual a une solution optimale
 - $y_1^*, y_2^*, \dots, y_m^*$
- Et

$$\sum_{j=1}^{n} \mathbf{c}_{j} \mathbf{x}_{j}^{*} = \sum_{i=1}^{m} \mathbf{b}_{i} \mathbf{y}_{i}^{*}$$

Si le problème primal admet une solution optimale et si l'expression de la fonction objectif du primal dans le dernier dictionnaire obtenu par la méthode du simplexe s'écrit :

$$z = z^* + \sum_{k=1}^{n+m} d_k x_k$$

(où x_{n+i} représente la ième variable d'écart)

• Alors une solution optimale du problème dual est donnée par $y_i^* = -d_{n+i}$

Signification économique du dual

- b_i: la quantité totale de la ressource i
- a_{ij}: nombre d'unités de la ressource i consommées par la fabrication d'une unité de produit j
- x_i : nombre d'unités du produit j fabriquées
- c_i : valeur unitaire du produit j
- La relation à l'optimum :

$$z^* = \sum_{j=1}^n c_j x_j = \sum_{i=1}^m b_i y_i$$

- Induit que y_i représente la « valeur unitaire » de la ressource i
 - Prix que l'on serait prêt à payer pour obtenir une unité supplémentaire de la ressource i

- Une personne étrangère à l'entreprise souhaite acquérir les ressources de l'entreprise
- Elle doit proposer un prix tel que ce soit plus intéressant pour l'entreprise de lui vendre ses ressources que de fabriquer elle-même ses produits (c_j est le profit escompté sur le produit j)
- a_{ij} représentant la quantité de ressource i requise pour fabriquer une unité du produit j,

$$\sum_{i=1}^{m} a_{ij} y_{i}$$

 Représente la somme à dépenser pour acquérir les ressources nécessaires à la fabrication d'une unité du produit j

Exemple

- Le fabricant d'objet de terre cuite a la possibilité de faire faire à ses ouvriers de peinture quelques heures supplémentaires à un taux horaire t
- A-t-il intérêt ou non à utiliser cette possibilité ?

Solution

- On appelle u le nombre d'heures supplémentaires pour la peinture (on suppose u assez petit pour ne pas sortir du polyèdre des contraintes)
- La variation du second membre (ressources) est (0, 0, u)
- La solution optimale du problème dual est (0,3,4)
- La variation de la fonction objectif est donc égale à 4<u>u</u>
 - Variation du chiffre d'affaires que le patron peut espérer de <u>u</u> heures supplémentaires
 - Mais ce n'est pas un bénéfice net parce qu'elles lui coûteront t * u euros
- Il a donc intérêt à donner des heures supplémentaires dès que le taux de rémunération horaire $t \le 4$ euros (!!!)

SYNTHÈSE DES DÉFINITIONS

Synthèse des définitions

- Soit un problème d'optimisation linéaire mis sous forme standard
 - Tout n-uplet de valeurs $(x_1^*, x_2^*, ..., x_n^*)$ satisfaisant les contraintes est une <u>solution réalisable</u>
 - La fonction z est dite *fonction objectif* ou *fonction économique*
 - Les variables x_1, \dots, x_n sont appelées <u>variables de décision</u> ou <u>variables de choix</u>
 - Les variables X_{n+1} , ..., X_{n+m} sont appelées <u>variables d'écart</u>
 - Une solution réalisable qui maximise la fonction objectif est dite <u>solution optimale</u>
 - Si un problème de programmation linéaire n'admet aucune solution, il est dit *infaisable*
 - Si un problème de programmation linéaire admet des solutions réalisables mais n'a pas de valeur optimale, il est dit non borné
 - Une solution réalisable que l'on peut exprimer à l'aide d'un dictionnaire est dite solution de base réalisable
 - Un dictionnaire est un système d'équations linéaires liant $x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m}$ et z et satisfaisant les deux propriétés suivantes
 - Les équations constituant un dictionnaire quelconque doivent exprimer z et m des n+m variables (les m variables de base) en fonction des n autres variables (les n variables hors-base)
 - Tout dictionnaire est algébriquement équivalent au dictionnaire définissant les variables d'écart et la fonction objectif (le premier dictionnaire lorsqu'on commence au point (0, ..., 0)

CAS PARTICULIERS

Dégénérescence et cyclage

Dictionnaire initial non-réalisable

Dégénérescence

- Dégénérescence de 1ère espèce
 - Coefficient d'une variable hors-base à 0 dans le dictionnaire
 - On peut alors faire entrer cette variable dans la base (plus grand coefficient non négatif)
 - La fonction objectif n'augmente alors pas
 - Correspond au cas où la fonction économique est parallèle à l'hyperplan associé à une des contraintes
- Dégénérescence de 2e espèce
 - Valeur nulle pour au moins l'une des variables de base
 - Correspond au cas où il passe, par un des sommets au moins, un ou plusieurs hyperplans supplémentaires

- La dégénérescence peut induire un phénomène de cyclage
 - On retrouve un dictionnaire déjà rencontré

- Théorème de Bland
 - Il ne peut y avoir de cyclage lorsque, à toute itération effectuée à partir d'un dictionnaire dégénéré, on choisit les variables entrante et sortante comme celles du plus petit indice parmi les candidats possibles
 - Permet de toujours éviter le cyclage

Dictionnaire initial non réalisable

- Dans certains cas, un problème admet des solutions réalisables, mais le dictionnaire initial n'est pas réalisable
 - Origine non réalisable, certains b_i négatifs
- Il existe une méthode permettant de ramener le problème à un dictionnaire réalisable en utilisant une variable artificielle (méthode à deux phases)
- Dans certains cas, on peut utiliser le dual
- Problème dual-réalisable
 - L'utilisation du problème dual permet de résoudre un problème de programmation linéaire où la solution nulle n'est pas réalisable
 - Il faut que les coefficients c_j de la fonction objectif du problème écrit sous forme standard soient tous négatifs
 - Un tel problème est dit <u>dual-réalisable</u>
 - Exemple

Accélérer la méthode du simplexe

- On peut utiliser d'autres formalismes pour accélérer la méthode du simplexe
 - Forme du pivot
 - Forme matricielle

- On peut aussi utiliser un ordinateur!
 - GNU Linear Programming Kit (GLPK)
 - IBM ILOG CPLEX Optimization Studio (CPLEX)
 - General Algebraic Modeling System (GAMS)
 - •

Conclusion

- L'optimisation c'est...
 - 1. Analyse d'un problème de décision à résoudre
 - 2. Modélisation du problème
 - Formulation mathématique du problème → représentation simplifiée du problème réel
 - 3. Résolution du problème
 - Application d'un algorithme approprié → mise en œuvre logicielle
 - 4. Analyse des résultats
 - Décisions, retour sur le modèle, ajout d'expertise

PROCHAIN COURS:

GRAPHES