Теория автоматов и формальных языков Контекстно-свободные языки: LR-анализ

Лектор: Екатерина Вербицкая

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ»

06 ноября 2020

В предыдущей серии

- Нисходящий анализ
- Алгоритм синтаксического анализа LL(1)
- LL(k) грамматики и языки

Восходящий синтаксический анализ

- Начинаем с символов входной строки, строим дерево вывода до стартового нетерминала
- СҮК один из примеров восходящего синтаксического анализа

Восходящий анализ: LR

- Left-to-right, Right-most вывод
- Разрешен предпросмотр
- Предиктивен
- Обрабатывает леворекурсивные грамматики
- Достаточно хорош для используемых на практике языков

LR-анализ

- Используют:
 - Входной буфер (откуда читается входная строка)
 - ▶ Стек (для промежуточных данных)
 - Таблицы анализатора (управляет процессом разбора)
 - Разные модификации используют разные таблицы
 - ★ Таблица определяет "мощность" анализатора
- Оперирует состояниями
- Работает за O(n), где n длина входной строки

Таблица LR-анализатора

Управляет процессом разбора

		t	 \$		В	
13		Si	 r _k		j	

- s_i shift
- r_k reduce
- *j* − goto
- acc accept

LR(0) анализ

- Разбирает наименьший класс языков
- Использует LR(0) пункты: $A o lpha \cdot eta$, где A o lpha eta правило грамматики
- Множества LR(0) пунктов суть состояния анализатора

Closure

Используется при вычислении множеств LR(0) пунктов, которые могут быть применены на данном этапе во время синтаксического анализа

- Все пункты из I в closure(I)
- Если $A \to \alpha \cdot B\beta \in closure(I)$ и $B \to \gamma$ правило грамматики, то $B \to \cdot \gamma \in closure(I)$

Пример closure

$$S' o S$$
 $S o AA$
 $A o aA \mid b$
 $closure(\{S' o \cdot S\}) = \{ S' o \cdot S$
 $S o \cdot AA$
 $A o \cdot aA$
 $A o \cdot b$
 $closure(\{A o a \cdot A\}) = \{ A o a \cdot A$
 $A o \cdot aA$
 $A o \cdot aA$
 $A o \cdot b$
 $A o \cdot aA$
 $A o \cdot b$

goto

goto(I,X) — передвигаем точку за символ X во всех пунктах в I

Если $A \to \alpha \cdot X \beta \in I$, добавляем $closure(\{A \to aX \cdot \beta\})$ в goto(I,X)

Пример goto

$$S' o S$$
 $S o AA$
 $A o aA \mid b$
 $I = \{ S' o \cdot S \\ S o \cdot AA \\ A o \cdot aA \\ A o \cdot b \}$
 $S o A o A o A o A$

Автомат LR(0)-анализатора

- Состояния множества пунктов
- Переходы по символам грамматики
- Начальное состояние $closure(\{S' o \cdot S\})$
- Следующие состояния считаются при помощи goto(I,X)

Пример LR(0)-автомата

Таблица LR(0)-анализатора

- По горизонтали: состояния
- По вертикали: терминалы + \$ + нетерминалы
- асс в ячейку, соответствующую стартовому состоянию и \$
- s_i в ячейку (j,t), если в автомате есть переход из состояния j по терминалу t в состояние i
- i в ячейку (j, N), если в автомате есть переход из состояния j по нетерминалу N в состояние i
- ullet r_k в ячейку (j,t), если в состоянии j есть пункт A o lpha-, где A o lpha-k-ое правило грамматики, t терминал грамматики

Таблица LR(0)-анализатора

	а	Ь	\$	A	S
0	<i>s</i> ₃	<i>S</i> ₄		2	1
1			асс		
2	<i>s</i> ₃	<i>S</i> ₄		5	
3	<i>s</i> ₃	<i>S</i> ₄		6	
4	<i>r</i> ₃	<i>r</i> ₃	<i>r</i> ₃		
5	r_1	r_1	r_1		
6	<i>r</i> ₂	<i>r</i> ₂	<i>r</i> ₂		

Таблица SLR(1)-анализатора

 r_k в ячейку (j,t), если в состоянии j есть пункт $A \to \alpha \cdot$, где $A \to \alpha - k$ -ое правило грамматики, $t \in FOLLOW(A)$

	а	b	\$	<i>A</i>	S
0	<i>s</i> ₃	<i>S</i> ₄		2	1
1			асс		
2	<i>s</i> ₃	<i>S</i> ₄		5	
3	<i>s</i> ₃	<i>S</i> ₄		6	
4	<i>r</i> ₃	<i>r</i> ₃	<i>r</i> ₃		
5			r_1		
6	<i>r</i> ₂	<i>r</i> ₂	<i>r</i> ₂		

Пример синтаксического анализа SLR(1)

	а	b	\$	A	S
0	s 3	<i>S</i> ₄		2	1
1			асс		
2	s 3	<i>S</i> ₄		5	
3	<i>s</i> ₃	<i>S</i> ₄		6	
4	<i>r</i> ₃	<i>r</i> ₃	<i>r</i> ₃		
5			r_1		
6	<i>r</i> ₂	<i>r</i> ₂	<i>r</i> ₂		

Строка: *aabb*\$

Стек: 0, a, 3, a, 3, b, 4, A, 6, A, 6, A, 2, b, 4, A, 5, S, 1

Canonical LR

Пункты дополняются множеством предпросмотра (lookahead):

$$A \to \alpha \cdot \beta, \{\gamma_0, \ldots, \gamma_n\}$$

- A o lpha eta правило грамматики
- $\gamma_0, \ldots, \gamma_n$ терминалы
- Множество предпросмотра терминалы, которые должны встретиться в выведенной строке сразу после строки, выводимой из данного правила

Closure in CLR

- Все пункты из I в closure(I)
- Если $A \to \alpha \cdot B\beta, \{\gamma_0, \dots, \gamma_n\} \in closure(I)$ и $B \to \delta$ правило грамматики, то $B \to \cdot \delta, \{FIRST(\beta\gamma_0), \dots, FIRST(\beta\gamma_n)\} \in closure(I)$

Goto in CLR

Если
$$A \to \alpha \cdot X\beta, \{\overline{\gamma_i}\} \in I$$
 , добавляем $closure(\{A \to aX \cdot \beta, \{\overline{\gamma_i}\}\})$ в $goto(I,X)$

Пример CLR автомата

Таблица CLR-анализатора

 r_k в ячейку (j,γ_i) , если в состоянии j есть пункт $A \to \alpha \cdot , \{\gamma_0,\dots,\gamma_n\}$, где $A \to \alpha - k$ -ое правило грамматики

	()	\$	5
0	<i>s</i> ₁		<i>r</i> ₂	3
1	<i>s</i> ₂	<i>r</i> ₂		4
2	<i>s</i> ₂	<i>r</i> ₂		5
3			асс	
4		<i>s</i> ₆		
5		<i>s</i> ₆		
6	<i>s</i> ₁		<i>r</i> ₂	8
7	<i>s</i> ₂	<i>r</i> ₂		9
8			r_1	
9		r_1		