Data Warehousing and OLAP

Toon Calders t.calders@tue.nl

Where innovation starts

Motivation

- « Traditional » relational databases are geared towards online transaction processing:
 - bank terminal
 - flight reservations
 - student administration
- Decision support systems have different requirements

Transaction Processing

Transaction processing

- Operational setting
- Up-to-date = critical
- Simple data
- Simple queries; only « touch » a small part of the database

Flight reservations

- ticket sales
- do not sell a seat twice
- reservation, date, name
- Give flight details of X, List flights to Y

Transaction Processing

- Database must support
 - simple data
 - tables
 - simple queries
 - select from where ...
 - consistency & integrity CRITICAL
 - concurrency
- Relational databases, Object-Oriented, Object-Relational

Decision Support

Decision support

- Off-line setting
- « Historical » data
- Summarized data
- Integrate different databases
- Statistical queries

Flight company

- Evaluate ROI flights
- Flights of last year
- # passengers per carrier for destination X
- Passengers, fuel costs, maintenance info
- Average % of seats sold/month/destination

PART I Concepts

Outline

Online Analytical Processing

- Data Warehouses
- Conceptual model: Data Cubes
- Query languages for supporting OLAP
 - SQL extensions
 - MDX
- Database Explosion Problem

Data Warehouse

A decision support DB maintained separately from the operational databases.

Why Separate Data Warehouse?

- Different functions
 - DBMS— tuned for OLTP
 - Warehouse—tuned for OLAP
- Different data
 - Decision support requires historical data
- Integration of data from heterogeneous sources

Three-Tier Architecture

Three-Tier Architecture

- Extract-Transform-Load
 - Get data from different sources; data integration
 - Cleaning the data
 - Takes significant part of the effort (up to 80%!)
- Refresh
 - Keep the data warehouse up to date when source data changes

Three-Tier Architecture

- Data storage
 - Optimized for OLAP
 - Specialized data structures
 - Specialized indexing structures
- Data marts
 - common term to refer to "less ambitious data warehouses"
 - Task oriented, departmental level

OLAP

- OLAP = OnLine Analytical Processing
 - Online = no waiting for answers
- OLAP system = system that supports analytical queries that are dimensional in nature.

Outline

Online Analytical Processing

- Data Warehouses
- Conceptual model: Data cubes
- Query languages for supporting OLAP
 - SQL extensions
 - MDX
- Database Explosion Problem

Examples of Queries

- Flight company: evaluate ticket sales
 - give total, average, minimal, maximal amount
 - per date: week, month, year
 - by destination/source port/country/continent
 - by ticket type
 - by # of connections
 - ...

Common Characteristics

- One (or few) special attribute(s): amount
 - → measure
- Other attributes: select relevant regions
 - → dimensions
- Different levels of generality (month, year)
 - hierarchies
- Measurement data is summarized: sum, min, max, average
 - → aggregations

Supermarket Example

Evaluate the sales of products

 What are the measure and dimensional attributes, where are the hierarchies?

Why Dimensions?

Multidimensional view on the data

Cross Tabulation

- Cross-tabulations are highly useful
 - Sales of clothes June → August '06

Product: color

Date:month,
June→August
2006

	Blue	Red	Orange	Total
June	51	25	158	234
July	58	20	120	198
August	65	22	51	138
Total	174	67	329	570

Extension of Cross-Tables to multiple dimensions

Aggregated

Conceptual notion

Blue Red Total Orange 234 25 June Data Points/ Aggregated 1st level of aggregation July 198 w.r.t. X-dim 138 August 22 329 570 Total 67 74

w.r.t. Y-dim

w.r.t. X and Y

Technische Universit

Eindhoven

Dimensions

Aggregated

- 1) #TV's sold in the 2Qtr?
- 2) Total sales in 3Qtr?
- 3) #products sold in France Ireland this year
 - 4) #PC's in Ireland in 2Qtr?

France

Germany

sum

In the back, at the bottom, second column

- 1) #ŤV's sold in the 2Qtr?
- 2) Total sales in 3Qtr?
- 3) #products sold in France Ireland this year
- 4) #PC's in Ireland in 2Qtr? France

Germany

sum

Outline

Online Analytical Processing

- Data Warehouses
- Conceptual model: Data cubes
- Query languages for supporting OLAP
 - SQL extensions
 - MDX
- Database Explosion Problem

Operations with Data Cubes

 What operations can you think of that an analyst might find useful? (e.g., store)

Operations with Data Cubes

- What operations can you think of that an analyst might find useful? (e.g., store)
 - only look at stores in the Netherlands
 - look at cities instead of individual stores
 - look at the cross-table for product-date
 - restrict analysis to 2006, product O1
 - go back to a finer granularity at the store level

Roll-Up

- Move in one dimension from a lower granularity to a higher one
 - store → city
 - cities → country
 - product → product type
 - Quarter → Semester

Roll-Up

Roll-Up

Drill-down

- Inverse operation
- Move in one dimension from a higher granularity to a lower one
 - city → store
 - country → cities
 - product type → product
- Drill-through:
 - go back to the original, individual data records

Pivoting

- Change the dimensions that are "displayed"; select a cross-tab.
 - look at the cross-table for product-date
 - display cross-table for date-customer

Pivoting

- Change the dimensions that are "displayed"; select a cross-tab.
 - look at the cross-table for product-date
 - display cross-table for date-customer

Sales	Date					
		1st sem	2 nd sem	Total		
	Ireland	20	23	43		
Country	France Germany	126 56	138 48	264 104		
	Total	202	209	411		

Slice & dice

Roll-up on multiple dimensions at once

Select

Select

- Select a part of the cube by restricting one or more dimensions
 - restrict analysis to Ireland and VCR

Outline

Online Analytical Processing

- Data Warehouses
- Conceptual model: Data cubes
- Query languages for supporting OLAP
 - SQL extensions
 - MDX
- Database Explosion Problem

Extended Aggregation

- SQL-92 aggregation quite limited
 - Many useful aggregates are either very hard or impossible to specify
 - Data cube
 - Complex aggregates (median, variance)
 - binary aggregates (correlation, regression curves)
 - ranking queries ("assign each student a rank based on the total marks")
- SQL:1999 OLAP extensions

Representing the Cube

Special value « null » is used:

Sales	Date			
		1st sem	2 nd sem	Total
	Ireland	20	23	43
	France	126	138	264
Country	Germany	56	48	104
	Total	202	209	411

Representing the Cube

Special value « null » is used:

Date	Country	Sales
1st semester	Ireland	20
1st semester	France	126
1st semester	Germany	56
1st semester	null	202
2nd semester	Ireland	23
2nd semester	France	138
2nd semester	Germany	48
2nd semester	null	209
null	Ireland	43
null	France	264
null	Germany	104
null	null	411

echnische Universiteit Eindhoven Jniversity of Technology

Group by Cube

group by cube:

```
select item-name, color, size, sum(number) from sales group by cube(item-name, color, size)
```

Computes the union of eight different groupings of the sales relation:

```
{ (item-name, color, size), (item-name, color), (item-name, size),(color, size),(item-name), (color),(size), () }
```


Group by Cube

 Relational representation of the date-country-sales cube can be computed as follows:

```
select semester as date, country, sum(sales) from sales group by cube(semester,country)
```

- grouping() and decode() can be applied to replace "null" by other constant:
 - decode(grouping(semester), 1, 'all', semester)

Group by Rollup

 rollup construct generates union on every prefix of specified list of attributes

```
select item-name, color, size,sum(number) from sales group by rollup(item-name, color, size)
```

```
Generates union of four groupings:
{ (item-name, color, size), (item-name, color), (item-name), () }
```


Group by Rollup

- Rollup can be used to generate aggregates at multiple levels.
- E.g., suppose *itemcategory*(*item-name*, *category*) gives category of each item.

```
select category, item-name, sum(number)
from sales, itemcategory
where sales.item-name = itemcategory.item-name
group by rollup(category, item-name)
```

gives a hierarchical summary by item-name and by category.

Group by Cube & Rollup

- Multiple rollups and cubes can be used in a single group by clause
 - Each generates set of group by lists, cross product of sets gives overall set of group by lists

Example

```
select item-name, color, size, sum(number) from sales group by rollup(item-name), rollup(color, size)
```

```
generates the groupings
{item-name, ()} X {(color, size), (color), ()}
=
{ (item-name, color, size), (item-name, color), (item-name),(color, size), (color), () }
```


MDX

- Multidimensional Expressions (MDX) is a query language for cubes
 - Supported by many data warehouses
 - Input and output are cubes

```
SELECT { [Measures].[Store Sales] } ON COLUMNS, { [Date].[2002], [Date].[2003] } ON ROWS FROM Sales
WHERE ( [Store].[USA].[CA] )
```


II.2 Data storage and indexing

- How is the data stored?
 - relational database (ROLAP)
 - Specialized structures (MOLAP)
- How can we speed up computation?
 - Indexing structures
 - bitmap index
 - join index

Implementation

Nowadays systems can be divided in three categories:

- ROLAP (Relational OLAP)
 - OLAP supported on top of a relational database
- MOLAP (Multi-Dimensional OLAP)
 - Use of special multi-dimensional data structures
- HOLAP: (Hybrid)
 - combination of previous two

ROLAP

- Typical database scheme:
 - star schema
 - fact table is central
 - links to dimensional tables
 - Extensions:
 - snowflake schema
 - dimensions have hierarchy/extra information attached
 - Star constellation
 - multiple star schemas sharing dimensions

Example of a Star Schema

Example of a Snowflake Schema

Example of Fact Constellation

This Lecture

- How is the data stored?
 - Relational database (ROLAP)
 - Specialized structures (MOLAP)
- How can we speed up computation?
 - Indexing structures
 - bitmap index
 - join index

MOLAP

- Not on top of relational database
 - most popular design
 - specialized data structures
 - Multicubes vs Hypercubes
 - Not all subcubes are materialized

