Carlos Fernandez-Granda

Research focus: Machine learning for high-dimensional signal processing

Problems of interest: Denoising, segmentation, and classification of images, video and sensor data

Applications: Medicine, scientific imaging, climate

ML models for regression

Motivation

Data-driven sub-grid parameterization

Estimate *missing term* in climate model from available coarse-scale quantities

Motivation

Data-driven sub-grid parameterization

Estimate *missing term* in climate model from available coarse-scale quantities

This is a regression problem!

Regression

Goal: Estimate response (or dependent variable)

Data: Several observed variables, known as features (or covariates, or independent variables)

Toy regression problem

Optimal estimate in mean squared error?

Conditional mean

Why don't we just compute the conditional mean?

Why don't we just compute the conditional mean?

Assume we have 5 features with 100 possible values each

How many conditional averages do we need to estimate?

Why don't we just compute the conditional mean?

Assume we have 5 features with 100 possible values each

How many conditional averages do we need to estimate? 10¹⁰!

Why don't we just compute the conditional mean?

Assume we have 5 features with 100 possible values each

How many conditional averages do we need to estimate? 10¹⁰!

This is known as the curse of dimensionality

Assumption: Relationship between response and features is linear

Gradient of the regression function is constant

► Handcrafted nonlinear features + linear model

- ► Handcrafted nonlinear features + linear model
- ► Kernel methods

- ► Handcrafted nonlinear features + linear model
- ► Kernel methods
- Neural networks

- ► Handcrafted nonlinear features + linear model
- ► Kernel methods
- Neural networks
- ► Tree-based methods

Partition feature domain recursively

Assign estimate to each set in the partition

Good news:

Bad news:

Good news: Interpretable

Bad news:

Good news: Interpretable

Bad news: Tend to overfit

Ensembling

General principle in machine learning:

Averaging output of different models is very helpful

Why?

Ensembling

General principle in machine learning:

Averaging output of different models is very helpful

Why? Errors approximately cancel out if models are independent

Naive ensembling: Bagging

Idea: Build many trees and average them

To build the trees randomly sample from training data (bootstrapping)

Naive ensembling: Bagging

Idea: Build many trees and average them

To build the trees randomly sample from training data (bootstrapping)

Problem: Tree outputs are very correlated

Key idea: Improve bagging via randomization

Key idea: Improve bagging via randomization

Use **random subset** of features at each node while building trees to avoid correlations

Key idea: Improve bagging via randomization

Use **random subset** of features at each node while building trees to avoid correlations

Good news: Better generalization

Key idea: Improve bagging via randomization

Use **random subset** of features at each node while building trees to avoid correlations

Good news: Better generalization

Bad news: Less interpretable

Key idea: Choose trees sequentially to minimize cost function (e.g. mean squared error)

Key idea: Choose trees sequentially to minimize cost function (e.g. mean squared error)

Regularization is often applied to avoid overfitting

Key idea: Choose trees sequentially to minimize cost function (e.g. mean squared error)

Regularization is often applied to avoid overfitting

Good news: Better generalization than bagging (and often random forests)

Key idea: Choose trees sequentially to minimize cost function (e.g. mean squared error)

Regularization is often applied to avoid overfitting

Good news: Better generalization than bagging (and often random forests)

Bad news: Also not very interpretable

Empirical performance

XGBoost typically outperforms other ML methods (including deep networks) for real-world problems with up to hundreds of features

Empirical performance

XGBoost typically outperforms other ML methods (including deep networks) for real-world problems with up to hundreds of features

But tree-based methods do not scale to higher-dimensional signals (images, video, audio...)