CS 577- Intro to Algorithms

Dynamic Programming (Part 3)

Dieter van Melkebeek

September 29, 2020

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Examples

- Computing Fibonacci numbers
- Weighted interval scheduling
- Knapsack problem
- ► RNA secondary structure

Paradigm

Recursive approach such that:

- 1. The number of distinct subproblems in the recursion tree is small.
- 2. Each of those subproblems is solved only once.

Examples

- Computing Fibonacci numbers
- ► Weighted interval scheduling
- Knapsack problem
- ► RNA secondary structure
- ► Sequence alignment / Edit distance

Subproblems – 1D tables

Computing Fibonacci numbers: Fib(k): kth Fibonacci number F_k 0 ≤ k ≤ n

▶ Weighted interval scheduling: OPT(k): max total weight achievable w/ meetings $\{k, \ldots, n\}$ $1 \le k \le n+1$

Subproblems – 2D tables

Nnapsack problem: OPT(k, w): max total value achievable with items $\{k, \ldots, n\}$ and weight limit w 1 < k < n + 1 and 0 < w < W

▶ RNA secondary structure: OPT(i,j): max number of bonds that can be formed in R[i,j] $1 \le i \le j \le n$

A = CCGUCUGB = GCUCGC

A = CCGUCUGB = GCUCGC

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

$$A = CCGUCUG$$

 $B = GCUCGC$

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

```
CCGUCUG
GCUCGC
```

$$A = CCGUCUG$$

 $B = GCUCGC$

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

$$A = CCGUCUG$$

 $B = GCUCGC$

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

▶ Edit distance d(A, B): minimum number of edits (deletions, substitutions, insertions) to transform A into B

CCGUCUG

$$A = CCGUCUG$$

 $B = GCUCGC$

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

```
CCGUCUG [insert C at end]
CCGUCUGC
```

$$A = CCGUCUG$$

 $B = GCUCGC$

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

```
CCGUCUG [insert C at end]
CCGUCUGC [delete last U]
CCGUCGC
```

```
A = CCGUCUG
B = GCUCGC
```

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

```
CCGUCUG [insert C at end]
CCGUCUGC [delete last U]
CCGUCGC [delete first G]
CCUCGC
```

```
A = CCGUCUG
B = GCUCGC
```

► Alignment of *A* and *B* minimizing the number of misses (non-matches and mismatches)

```
CCGUCUG [insert C at end]
CCGUCUGC [delete last U]
CCGUCGC [delete first G]
CCUCGC [replace first C by G]
GCUCGC
```

Problem Specifications

Sequence alignment

Input: strings A[1, ..., n] and B[1, ..., m]

Ouput: alignment of A and B that minimizes the total

number of misses (deletions, substitutions, insertions)

Problem Specifications

Sequence alignment

Input: strings A[1, ..., n] and B[1, ..., m]

Ouput: alignment of A and B that minimizes the total

number of misses (deletions, substitutions, insertions)

Edit distance

Input: strings A[1, ..., n] and B[1, ..., m]

Ouput: d(A, B) (= OPT(A, B))

Consider alignment at the end.

► Case 1: Delete A[n]

Consider alignment at the end.

► Case 1: Delete *A*[*n*] Penalty: 1

```
▶ Case 1: Delete A[n]
Penalty: 1
Remains to solve problem for A[1, ..., n-1] and B[1, ..., m]
```

Consider alignment at the end.

```
Case 1: Delete A[n]
Penalty: 1
Remains to solve problem for A[1,..., n - 1] and B[1,..., m]
```

► Case 2: Insert B[m]

Consider alignment at the end.

```
Case 1: Delete A[n]
Penalty: 1
Remains to solve problem for A[1, ..., n-1] and B[1, ..., m]
```

Case 2: Insert B[m] Penalty: 1

```
Case 1: Delete A[n]
Penalty: 1
Remains to solve problem for A[1, ..., n-1] and B[1, ..., m]
```

```
► Case 2: Insert B[m]
Penalty: 1
Remains to solve problem for A[1, ..., n] and B[1, ..., m-1]
```

```
Case 1: Delete A[n]
Penalty: 1
Remains to solve problem for A[1, \ldots, n-1] and B[1, \ldots, m]
```

- ► Case 2: Insert B[m]Penalty: 1 Remains to solve problem for A[1, ..., n] and B[1, ..., m-1]
- ► Case 3: Align A[n] and B[m]

```
Case 1: Delete A[n]
Penalty: 1
Remains to solve problem for A[1, ..., n-1] and B[1, ..., m]
```

- ► Case 2: Insert B[m]Penalty: 1 Remains to solve problem for A[1, ..., n] and B[1, ..., m-1]
- ► Case 3: Align A[n] and B[m]Penalty: 1 if $A[n] \neq B[m]$, 0 otherwise

- ► Case 1: Delete A[n]Penalty: 1 Remains to solve problem for A[1, ..., n-1] and B[1, ..., m]
- ► Case 2: Insert B[m]Penalty: 1 Remains to solve problem for A[1, ..., n] and B[1, ..., m-1]
- ► Case 3: Align A[n] and B[m]Penalty: 1 if $A[n] \neq B[m]$, 0 otherwise Remains to solve problem for A[1, ..., n-1] and B[1, ..., m-1]

Subproblems

$$\mathsf{OPT}(i,j) = d(A[1,\ldots,i],B[1,\ldots,j])$$

Subproblems

OPT
$$(i,j) = d(A[1,...,i], B[1,...,j])$$

0 \le i \le n \text{ and } 0 \le j \le m

Subproblems

OPT
$$(i,j) = d(A[1,...,i], B[1,...,j])$$

0 \le i \le n \text{ and } 0 \le j \le m

Recursive case

$$\mathsf{OPT}(i,j) =$$

Subproblems

```
OPT(i,j) = d(A[1,...,i], B[1,...,j])
0 \le i \le n \text{ and } 0 \le j \le m
```

Recursive case

```
\begin{split} \mathsf{OPT}(i,j) &= \mathsf{min}(\\ 1 + \mathsf{OPT}(i-1,j) \text{ [deletion, only for } i \geq 1]\\ 1 + \mathsf{OPT}(i,j-1) \text{ [insertion, only for } j \geq 1]\\ (1 - \delta_{A[i],B[j]}) + \mathsf{OPT}(i-1,j-1) \text{ [alignment, only for } i,j \geq 1])\\ \mathsf{where} \ \delta_{a,b} &\doteq \left\{ \begin{array}{l} 1 & \text{if } a = b\\ 0 & \text{otherwise} \end{array} \right. \end{split}
```

Subproblems

```
\mathsf{OPT}(i,j) = d(A[1,\ldots,i],B[1,\ldots,j]) 

0 \le i \le n \text{ and } 0 \le j \le m
```

Recursive case

$$\begin{split} \mathsf{OPT}(i,j) &= \mathsf{min}(\\ 1 + \mathsf{OPT}(i-1,j) \text{ [deletion, only for } i \geq 1]\\ 1 + \mathsf{OPT}(i,j-1) \text{ [insertion, only for } j \geq 1]\\ (1 - \delta_{A[i],B[j]}) + \mathsf{OPT}(i-1,j-1) \text{ [alignment, only for } i,j \geq 1])\\ \mathsf{where} \ \delta_{a,b} &\doteq \left\{ \begin{array}{l} 1 & \text{if } a = b\\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Base case:
$$OPT(0,0) = 0$$

Subproblems

```
OPT(i,j) = d(A[1,...,i], B[1,...,j])
0 \le i \le n \text{ and } 0 \le j \le m
```

Recursive case

$$\begin{split} \mathsf{OPT}(i,j) &= \mathsf{min}(\\ 1 + \mathsf{OPT}(i-1,j) \text{ [deletion, only for } i \geq 1]\\ 1 + \mathsf{OPT}(i,j-1) \text{ [insertion, only for } j \geq 1]\\ (1 - \delta_{A[i],B[j]}) + \mathsf{OPT}(i-1,j-1) \text{ [alignment, only for } i,j \geq 1])\\ \mathsf{where} \ \delta_{a,b} &\doteq \left\{ \begin{array}{l} 1 & \text{if } a = b\\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Base case:
$$OPT(0,0) = 0$$

Answer: OPT(n, m)

Complexity Analysis

Complexity Analysis

Time

- \triangleright O(1) per cell
- \triangleright O(nm) cells
- ► O(nm) total

Space

- $ightharpoonup O(\min(n, m))$ for edit distance
- \triangleright O(nm) for alignment

Reducing Space Complexity for Alignment

Reducing Space Complexity for Alignment

- ▶ Need to find shortest path from (0,0) to (n,m).
- Path must touch column m/2 somewhere, say in row i^* .
- \triangleright Once we know i^* , remains to find:
 - (a) shortest path from (0,0) to $(i^*, m/2)$, and
 - (b) shortest path from $(i^*, m/2)$ to (n, m).

Both (a) and (b) are instances of the same problem.

- ▶ To find i^* compute for each $i \in [n]$:
 - (a) f(i): length of shortest path from (0,0) to (i,m/2)
 - (b) g(i): length of shortest path from (i, m/2) to (n, m)

Then set i^* to an $i \in [n]$ that minimizes f(i) + g(i).

- As f(i) = OPT(i, m/2), all of f can be computed in time O(nm) and space O(n) using original algorithm.
- ▶ Same applies to g by symmetry (reverse direction of edges).
- ▶ Thus, i^* can be computed in time O(nm) and space O(n).

Recursion Tree – space analysis

Recursion Tree – space analysis

- ightharpoonup O(n+m) for path [global]
- ightharpoonup O(n) for computing i^* [local, reused]
- ightharpoonup O(1) per level of recursion [recursion stack]
- ► Total: $O(n+m) + O(n) + O(\log m) = O(n+m)$

Recursion Tree – time analysis

Recursion Tree – time analysis

Consider instance of dimension $n \times m$

- ▶ local work: *c* · *n* · *m*
- ▶ dimension of children: $i^* \times m/2$ and $(n i^*) \times m/2$
- local work at children:

$$c \cdot i^* \cdot m/2 + c \cdot (n-i^*) \cdot m/2 = c \cdot (i^* + (n-i^*)) \cdot m/2 = \frac{1}{2} c \cdot n \cdot m$$

► Total: O(nm)