						- '		•	
	(Following Paper	ID and Roll No. to	be	fille	d in	y	our	COMPANY	
-	Answer Books)								
-	Paper ID: 199414	Roll No.	T	П	Т	Γ	П	_	_

B.TECH.

Theory Examination (Semester-IV) 2015-16

DISCRETE MATHEMATICS

Time: 3 Hours

Printed Pages: 4

Max. Marks: 100

EOE-048/NOE-048

Section-A

- Q.1. Attempt all parts. All parts carry equal marks. Write answer of each part in short. $(2\times10=20)$
 - (a) What do you mean by cyclic group explain with example.
 - (b) Define Power set and find power set of $A = \{\emptyset, \{\emptyset\}\}\$
 - (c) What do you mean by Invertible function?
 - (d) Distinguish between Tree and Graph.
 - (e) Define the absorption and identity law of logic.
 - (f) What do you mean by hasse diagram? Draw the hasse diagram of D_{24} .

(1) P.T.O. 2405/**110**/62/1550

- (g) All asymmetric relation is antisymmetric or not. Justify your answer with help of suitable example.
- (h) Show that $p \to (p \to q)$ is contingency.
- (i) What do you mean by bounded lattice and complete lattice?
- (j) Prove that $p \rightarrow q \equiv \sim q \rightarrow \sim p$

Section-B

Q.2. Attempt any five questions from this section.

 $(10 \times 5 = 50)$

(a) Solve the recurrence relation by the method of generating function

$$a_{n}$$
 - $9a_{n-1}$ + $20a_{n-2}$ = 0 a_{0} = -3, a_{1} = 1

- (b) Rewrite the negation of following argument using quantifier variable and predicate symbol
 - (i) All birds can fly
 - (ii) Some men are genius
 - (iii) Some number are not rational
 - (iv) There is a student who likes mathematics but not history.

(2)

- (c) Show that if (L,\subseteq,\cup,\cap) is a lattice, then (L,\supseteq,\cap,\cup) is also a lattice .Also, show that the Cartesian product of two lattice is a lattice.
- (d) Let G be a group and let a, $b \in G$ be any elements. Then
 - (i) $(a^{-1})^{-1}=a$
 - (ii) $(ab)^{-1}=a^{-1}b^{-1}$
- (e) (i) Let f:R→R and Let g:R→R, where R is the set of real numbers .find fog and gof, where f(x) =x² and g(x) = x+4. State whether these function are injective, surjective and bijective.
 - (ii) If R is an equivalence relation in a set A, then prove that R-1 ≤s also an equivalence relation.
- (f) State and proof Pigeon hole principle. If there are 15 students in a class then at least how many are born on same day of a week.
- (g) Define a distributive lattice. Show that the element of lattice (N, \leq) where N is the set of positive Integer and $a \leq b$ if and only if a divides b. satisfy the distributive property.
- (h) Convert the following into CNF
 - (a) $\sim (PV Q) \leftrightarrow (P\Lambda Q)$
 - (b) $P\Lambda (P \rightarrow Q)$

(3)

P.T.O.

Section-C

Note: Attempt any two questions from this section.

 $(15 \times 2 = 30)$

- Q.3. (a) Prove Lagrange's theorem that states "for any finite group G the order of every group H divides the order of G".
 - (b) Prove that every cyclic group is an abelian group.
 - (c) Show that the set [0,1] of all real numbers is not a countable set.
- Q.4. Explain the following term with example:
 - (a) Homomorphism and Isomorphism Graph
 - (b) Euler Graph and Hamiltonian Graph
 - (c) Bipartite and Complete Bipartite Graph
- Q.5. (a) Prove by principle of mathematical induction that:

P (n): $10^{n}+3.4^{n+2}+5$ is divisible by 9.

(a) Prove that in a Set A, B, C

(i)
$$A - (B \cup C) = (A-B) \cap (A-C)$$

(ii)
$$A - (B \cap C) = (A-B) \cup (A-C)$$

(b) Construct the truth table for

$$p \rightarrow [(p \ V \ r) \land \sim (p \leftrightarrow \sim r)]$$

(4)

2405/110/62/1550