Course 2BA1: Hilary Term 2003 Section 6: Ordinary Differential Equations

David R. Wilkins

Copyright © David R. Wilkins 2001–2003

Contents

6	\mathbf{Ord}	linary Differential Equations	1
	6.1	Ordinary Differential Equations	1
	6.2	Homogeneous Linear Differential Equations	2
	6.3	Inhomogeneous Linear Differential Equations	4
	6.4	Linear Differential Equations of the First Order	4
	6.5	Homogeneous Linear Differential Equations of the Second Or-	
		der with Constant Coefficients	6
	6.6	Inhomogeneous Linear Differential Equations of the Second	
		Order with Constant Coefficients	11
	6.7	Initial Value Problems	15
	6.8	Boundary Value Problems	16
	6.9	Higher Order Linear Differential Equations with Constant Co-	
		efficients	16

6 Ordinary Differential Equations

6.1 Ordinary Differential Equations

An ordinary differential equation is an equation of the form

$$F\left(x, y, \frac{dy}{dx}, \dots, \frac{d^n y}{dx^n}\right) = 0,$$

where F is some function of n+2 real variables. Such an equation determines a variable y as a function of an independent variable x. Such a differential equation is said to be of order n if it involves no derivatives of y of orders

higher than n and if the nth derivative of y occurs non-trivially in the equation

A differential equation of order n may often be expressed in the form

$$\frac{d^n y}{dx^n} = G\left(x, y, \frac{dy}{dx}, \dots, \frac{d^{n-1}y}{dx^{n-1}}\right)$$

in which the *n*th derivative of y is expressed as a function of y itself and the first n-1 derivatives of y.

We shall investigate the solutions of certain specific types of differential equations.

6.2 Homogeneous Linear Differential Equations

A homogeneous linear differential equation of order n is a differential equation of the form

$$a_0(x)y + \sum_{j=1}^n a_j(x) \frac{d^j y}{dx^j} = 0,$$

where a_0, a_1, \ldots, a_n are functions of the independent variable x, and where a_n is not the zero function. We shall assume furthermore that these functions a_0, a_1, \ldots, a_n are suitably well-behaved (i.e., that they satisfy appropriate continuity and differentiability conditions). We may express such a differential equation in the form

$$Ly=0$$
.

where L is the differential operator of order n given by

$$a_0(x) + \sum_{j=1}^n a_j(x) \frac{d^j}{dx^j}.$$

Such a differential operator takes any n-times differentiable function y of x to the function Ly, where

$$Ly = a_0(x)y + \sum_{j=1}^{n} a_j(x) \frac{d^j y}{dx^j}.$$

If y is any n-times differentiable function of x, and if A is any real number, then L(Ay) = A(Ly). Also $L(y_1 + y_2) = Ly_1 + Ly_2$ for any n-times differentiable functions y_1 and y_2 . It follows that

$$L(A_1y_1 + A_2y_2) = A_1(Ly_1) + A_2(Ly_2)$$

for all n-times differentiable functions y_1 and y_2 , and for all real numbers A_1 and A_2 . It follows that if y_1 and y_2 are solutions of the homogeneous linear differential equation Ly = 0 then so is $A_1y_1 + A_2y_2$ for any real numbers A_1 and A_2 .

Definition Functions $y_1, y_2, \dots y_n$ of the variable x are said to be *linearly dependent* if there exist constants c_1, c_2, \dots, c_n , not all zero, such that

$$c_1 y_1 + c_2 y_2 + \dots + c_n y_n = 0.$$

Functions y_1, y_2, \ldots, y_n are said to be *linearly independent* if they are not linearly dependent.

It follows directly from this definition that two functions y_1 and y_2 of x are linearly independent if neither is a constant multiple of the other.

It can be proved that if y_1, y_2, \ldots, y_n are n linearly independent solutions of a homogeneous linear differential equation

$$a_0(x)y + \sum_{j=1}^{n} a_j(x) \frac{d^j y}{dx^j} = 0,$$

of order n, where a_0, a_1, \ldots, a_n are well-behaved functions of x, and if a_n is everywhere non-zero, then any solution y of this differential equation is of the form

$$y = A_1 y_1 + A_2 y_2 + \dots + A_n y_n$$

where A_1, A_2, \ldots, A_n are arbitrary constants.

Example Let

$$y_1 = e^x$$
, $y_2 = e^{2x}$, $y_3 = e^{3x}$.

The functions y_1 , y_2 and y_3 are linearly independent, since there do not exist real numbers c_1 , c_2 and c_3 which are not all zero and which have the property that $c_1e^x + c_2e^{2x} + c_3e^{3x} = 0$. The functions y_1 , y_2 and y_3 are also solutions of the homogeneous linear differential equation

$$\frac{d^3y}{dx^3} - 6\frac{d^2y}{dx^2} + 11\frac{dy}{dx} - 6y = 0.$$

The general solution of this differential equation is therefore of the form

$$y = A_1 e^x + A_2 e^{2x} + A_3 e^{3x}$$
.

where A_1 , A_2 , A_3 are arbitrary constants.

6.3 Inhomogeneous Linear Differential Equations

A inhomogeneous linear differential equation of order n is a differential equation of the form

$$a_0(x)y + \sum_{j=1}^{n} a_j(x) \frac{d^j y}{dx^j} = f(x),$$

where a_0, a_1, \ldots, a_n and f are functions of the independent variable x, and where a_n and f are not the zero function. If y_P is a particular solution of such a differential equation then all solutions of this equation are of the form $y_P + y_C$, where y_C satisfies the corresponding homogeneous differential equation

$$a_0(x)y_C + \sum_{j=1}^n a_j(x) \frac{d^j y_C}{dx^j} = 0.$$

The solution y_P of the inhomogeneous differential equation is referred to as a particular integral of that equation, and the function y_C is referred to as a complementary function.

6.4 Linear Differential Equations of the First Order

We shall describe a method for solving differential equations of the form

$$\frac{dy}{dx} + p(x)y = r(x).$$

Such an equation is a homogeneous linear first order differential equation if r(x) = 0 for all x. It is inhomogeneous if the function r is not everywhere zero.

Consider the function q(x) where

$$q(x) = \exp\left(\int p(x) dx\right).$$

(Here $\exp u = e^u$ for all real numbers u, and $\int p(x) dx$ denotes some indefinite integral of the function p.) On applying the Chain Rule and the Fundamental Theorem of Calculus, we find that

$$\frac{d}{dx}q(x) = \exp\left(\int p(x) \, dx\right) \frac{d}{dx} \int p(x) \, dx = q(x)p(x).$$

Thus

$$p(x) = \frac{q'(x)}{q(x)},$$

where

$$q'(x) = \frac{dq(x)}{dx}.$$

It follows that a function y of x is a solution of the differential equation

$$y'(x) + p(x)y(x) = r(x).$$

if and only if

$$q(x)y'(x) + q'(x)y(x) = q(x)r(x).$$

But

$$q(x)y'(x) + q'(x)y(x) = \frac{d}{dx}(q(x)y(x)).$$

It follows that the function y satisfies the differential equation

$$y'(x) + p(x)y(x) = r(x)$$

if and only if

$$q(x)y(x) = \int q(x)r(x) dx + C,$$

where C is a constant of integration. The general solution of the differential equation

$$\frac{dy}{dx} + p(x)y = r(x).$$

is thus given by

$$y(x) = \frac{1}{q(x)} \int q(x)r(x) dx + \frac{C}{q(x)}.$$

The function q is referred to as an integrating factor for the differential equation.

Example Consider the differential equation

$$\frac{dy}{dx} + cy = 0,$$

where c is a constant. If we set p(x) = c then a suitable indefinite integral of the constant function p is the function sending x to cx, and thus we may take $q(x) = e^{cx}$ as an integrating factor for the differential equation. The general solution of the differential equation is then given by

$$y(x) = \frac{C}{q(x)} = Ce^{-cx}.$$

Example Consider the differential equation

$$\frac{dy}{dx} + cy = x.$$

The general solution then has the form

$$y(x) = \frac{1}{q(x)} \int q(x)r(x) dx + \frac{C}{q(x)},$$

where $q(x) = e^{cx}$ and r(x) = x. Using the method of Integration by Parts, we find that

$$\int_0^x q(s)r(s) ds = \int_0^x se^{cs} ds = \left[\frac{1}{c}se^{cs}\right]_0^x - \frac{1}{c}\int_0^x e^{cs} ds$$
$$= \frac{x}{c}e^{cx} - \frac{1}{c^2}(e^{cx} - 1).$$

Using this function as an indefinite integral of q(x)r(x), we find that the general solution of the differential equation is given by

$$y(x) = \frac{1}{e^{cx}} \left(\frac{x}{c} e^{cx} - \frac{1}{c^2} (e^{cx} - 1) \right) + \frac{C}{e^{cx}}$$
$$= \frac{x}{c} - \frac{1}{c^2} (1 - e^{-cx}) + Ce^{-cx}.$$

where C is an arbitrary constant. We may write this general solution in the simpler form

$$y(x) = \frac{x}{c} - \frac{1}{c^2} + Ae^{-cx},$$

where A is an arbitrary constant. The constants A and C in these two forms of the general solution are related by the equation

$$A = C + \frac{1}{c^2}.$$

6.5 Homogeneous Linear Differential Equations of the Second Order with Constant Coefficients

We discuss the general solution of differential equations of the form

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0,$$

where a, b and c are real numbers, and $a \neq 0$. We write

$$y' = \frac{dy}{dx}, \quad y'' = \frac{d^2y}{dx^2}.$$

We shall show the solutions of the differential equation ay'' + by' + cy = 0 are determined by the roots of the *auxiliary polynomial* $as^2 + bs + c$ determined by the differential equation.

We begin our investigation of the solutions of these differential equations by showing that functions specified by the equations

$$y = e^{rx}$$
, $y = xe^{rx}$, $y = e^{px}\sin qx$, $y = e^{px}\cos qx$,

satisfy differential equations of the given form for appropriate values of the constants a, b and c.

First suppose that $y = e^{rx}$. Then

$$y' = re^{rx} = ry$$
, $y'' = r^2e^{rx} = r^2y$,

and hence

$$ay'' + by' + cy = (ar^2 + br + c)y.$$

It follows that $y = e^{rx}$ is a solution of the differential equation ay'' + by' + cy = 0 if and only if $ar^2 + br + c = 0$.

Next suppose that $y = xe^{rx}$. Then

$$y' = (rx+1)e^{rx}, \quad y'' = (r^2x+2r)e^{rx},$$

and hence

$$ay'' + by' + cy = (ar^2 + br + c)xe^{rx} + (2ar + b)e^{rx}.$$

It follows that $y = xe^{rx}$ is a solution of the differential equation ay'' + by' + cy = 0 if and only if

$$ar^2 + br + c = 0$$
 and $2ar + b = 0$.

Next suppose that $y = e^{px} \sin qx$. Then

$$y' = pe^{px}\sin qx + qe^{px}\cos qx$$

and

$$y'' = (p^2 - q^2)e^{px}\sin qx + 2pqe^{px}\cos qx.$$

It follows that

$$ay'' + by' + cy = (a(p^2 - q^2) + bp + c)e^{px}\sin qx + (2apq + bq)e^{px}\cos qx.$$

The right hand side of this equation must be zero for all real values of x in order that $y = e^{px} \sin qx$ satisfy the differential equation ay'' + by' + cy = 0. It follows that this differential equation is satisfied if and only if

$$a(p^2 - q^2) + bp + c = 0$$
 and $2apq + bq = 0$.

Finally suppose that $y = e^{px} \cos qx$. Then

$$ay'' + by' + cy = (a(p^2 - q^2) + bp + c) e^{px} \cos qx - (2apq + bq)e^{px} \sin qx.$$

It follows that the differential equation ay'' + by + cy = 0 is satisfied by the function $y = e^{px} \cos qx$ if and only if

$$a(p^2 - q^2) + bp + c = 0$$
 and $2apq + bq = 0$.

These results may be interpreted with the aid of standard results concerning the roots of quadratic polynomials which are collected in the following theorem.

Lemma 6.1 Let a, b and c be real numbers, with $a \neq 0$. The roots of the quadratic polynomial $as^2 + bs + c$ are given by the formula

$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

A real number r is a repeated root of this polynomial if and only if

$$ar^2 + br + c = 0$$
 and $2ar + b = 0$.

A complex number of the form p+iq for some real numbers p and q is a root of the quadratic polynomial $as^2 + bs + c$ if and only if

$$a(p^2 - q^2) + bp + c = 0$$
 and $2apq + bq = 0$.

Proof The formula for the roots of a quadratic polynomial is well-known. A real number r is a repeated root of the quadratic polynomial if and only if

$$as^{2} + bs + c = a(s - r)^{2} = as^{2} - 2ars + ar^{2}$$

and therefore r is a repeated root of the polynomial if and only if

$$b = -2ar$$
, $c = ar^2$.

But

$$ar^{2} + br + c = (2ar + b)r + (c - ar^{2}).$$

and therefore r is a repeated root of the polynomial if and only if $ar^2+br+c=0$ and 2ar+b=0.

If p and q are real numbers, and if s = p + iq then $s^2 = p^2 - q^2 + 2ipq$ and hence

$$as^{2} + bs + c = a(p^{2} - q^{2}) + bp + c + i(2apq + bq),$$

and therefore $as^2 + bs + c = 0$ if and only if

$$a(p^2 - q^2) + bp + c = 0$$
 and $2apq + bq = 0$,

as required.

Let a, b, c, p, q and r be real numbers with $a \neq 0$. We see that $y = e^{rx}$ is a solution of the differential equation ay'' + by' + cy = 0 if and only if r is a root of the quadratic polynomial $as^2 + bs + c$. Moreover $y = xe^{rx}$ is a solution of this differential equation if and only if r is a repeated root of this quadratic polynomial. Also $y = e^{px} \sin qx$ and $y = e^{px} \cos qx$ are solutions of this differential equation if and only if p + iq is a root of the polynomial $as^2 + bs + c = 0$.

Two solutions y_1 and y_2 of a linear differential equation are linearly independent if and only if neither is a constant multiple of the other. It is a fact that if y_1 and y_2 are two linearly independent solutions of a homogeneous linear second order ordinary differential equation whose coefficients are well-behaved functions of x then the general solution of that equation is of the form $y = Ay_1 + By_2$, where A and B are arbitrary constants.

The results that we have already verified enable us to write down the general solutions of second order differential equations of the form ay'' + by' + cy = 0.

Theorem 6.2 Let a, b and c be real numbers, with $a \neq 0$. The solutions of the differential equation

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = 0,$$

are determined by the roots of the auxiliary polynomial $as^2 + bs + c$ as follows:—

(i) if $b^2 > 4ac$ then the auxiliary polynomial $as^2 + bs + c$ has two real roots r_1 and r_2 , and the general solution of the differential equation is given by

$$y = Ae^{r_1x} + Be^{r_2x},$$

where A and B are constants;

(ii) if $b^2 = 4ac$ then the auxiliary polynomial $as^2 + bs + c$ has a repeated root r, and the general solution of the differential equation is given by

$$y = (Ax + B)e^{rx}$$
,

where A and B are constants;

(iii) if $b^2 < 4ac$ then the auxiliary polynomial $as^2 + bs + c$ has two non-real roots p+iq and p-iq (where p and q are real numbers), and the general solution of the differential equation is given by

$$y = e^{px} \left(A \sin qx + B \cos qx \right),$$

where A and B are constants.

Proof In each case the specified general solution is a linear combination of two functions which are linearly independent and which we know to be solutions of the differential equation.

Example Consider the differential equation

$$\frac{d^2y}{dx^2} - 11\frac{dy}{dx} + 24y = 0.$$

The auxiliary polynomial associated to this equation is the quadratic polynomial $s^2 - 11s + 24$. This polynomial has two real roots with values 3 and 8. The general solution of this differential equation is therefore of the form

$$y = Ae^{3x} + Be^{8x},$$

where A and B are arbitrary real constants.

Example Consider the differential equation

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0.$$

The auxiliary polynomial associated to this equation is the quadratic polynomial $s^2 + 4s + 4$. This polynomial has a repeated real root with values -2. The general solution of this differential equation is therefore of the form

$$y = (Ax + B)e^{-2x},$$

where A and B are arbitrary real constants.

Example Consider the differential equation

$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0.$$

The auxiliary polynomial associated to this equation is the quadratic polynomial $s^2 - 4s + 5$. This polynomial has a pair of non-real roots with values 2 + i and 2 - i. The general solution of this differential equation is therefore of the form

$$y = Ae^{2x}\sin x + Be^{2x}\cos x,$$

where A and B are arbitrary real constants.

6.6 Inhomogeneous Linear Differential Equations of the Second Order with Constant Coefficients

We now discuss the general solution of an *inhomogenous linear differential* equation of the second order with constant coefficients. Such a differential equation is of the form

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x),$$

where a, b and c are real numbers, and $a \neq 0$.

Suppose that y_P is some function of the variable x which satisfies this differential equation. Let y be any twice-differentiable function of the variable x, and let $y_C = y - y_P$. Then

$$a\frac{d^{2}y_{C}}{dx^{2}} + b\frac{dy_{C}}{dx} + cy_{C} = a\frac{d^{2}y}{dx^{2}} + b\frac{dy}{dx} + cy - a\frac{d^{2}y_{P}}{dx^{2}} - b\frac{dy_{P}}{dx} - cy_{P}$$
$$= a\frac{d^{2}y}{dx^{2}} + b\frac{dy}{dx} + cy - f(x).$$

It follows that the function y satisfies the inhomogeneous differential equation

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x),$$

if and only if y_C satisfies the corresponding homogeneous differential equation

$$a\frac{d^2y_C}{dx^2} + b\frac{dy_C}{dx} + cy_C = 0,$$

We see therefore that, once a particular solution y_P of the inhomogeneous differential equation has been found, any other solution of the inhomogeneous differential equation may be obtained by adding to y_P a solution y_C of the corresponding homogeneous differential equation. The function y_P is referred to as a particular integral of the inhomogeneous differential equation, and the function y_C is referred to as the complementary function. Any solution y of the given inhomogeneous differential equation

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x),$$

is the sum of the particular integral y_P , which satisfies the same differential equation, and a complementary function y_C , which satisfies the corresponding homogeneous linear differential equation

$$a\frac{d^2y_C}{dx^2} + b\frac{dy_C}{dx} + cy_C = 0.$$

Example Let us find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 10y = x^2.$$

We first find a particular integral of this equation. Examination of this equation shows that it might be sensible to look for a particular integral which is a quadratic polynomial in x of the form $px^2 + qx + r$, where the coefficients p, q and r are chosen appropriately. Now if $y = px^2 + qx + r$ then

$$\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 10y = 10px^2 + (10q + 14p)x + 10r + 7q + 2p.$$

If the right hand side of this equation is to equal x^2 , then p, q and r must be chosen so as to satisfy the equations

$$10p = 1$$
, $10q + 14p = 0$, $10r + 7q + 2p = 0$.

The solution of these equations is given by

$$p = \frac{1}{10}$$
, $q = -\frac{7}{50}$, $r = -\frac{39}{500}$.

We conclude that a particular integral y_P of the differential equation is given by

$$y_P = \frac{1}{10}x^2 - \frac{7}{50}x - \frac{39}{500}.$$

The complementary function y_C must satisfy the differential equation

$$\frac{d^2y_C}{dx^2} + 7\frac{dy_C}{dx} + 10y_C = 0.$$

The roots of auxiliary polynomial $s^2 + 7s + 10$ associated to this differential equation are -2 and -5. The complementary function y_C is then of the form

$$y_C = Ae^{-2x} + Be^{-5x}.$$

where A and B are arbitrary real constants. The general solution of the differential equation

$$\frac{d^2y}{dx^2} + 7\frac{dy}{dx} + 10y = x^2$$

is then

$$y = \frac{1}{10}x^2 - \frac{7}{50}x - \frac{39}{500} + Ae^{-2x} + Be^{-5x}.$$

Remark Suppose that one is seeking a particular integral of an inhomogeneous differential equation of the form

$$a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x),$$

where f(x) is a polynomial in x, and $c \neq 0$. There will exist a particular integral y_P of the form $y_P = g(x)$, where g(x) is a polynomial in x of the same degree as f(x). Let

$$f(x) = p_0 + p_1 x + p_2 x^2 + \dots + p_n x^n$$
, $g(x) = q_0 + q_1 x + q_2 x^2 + \dots + q_n x^n$,

If we equate coefficients of powers of x on both sides of the differential equation

$$a\frac{d^2}{dx^2}g(x) + b\frac{d}{dx}g(x) + cg(x) = f(x),$$

we obtain a system of simultaneous linear equations which determine the coefficients q_0, q_1, \ldots, q_n of the polynomial g(x) in terms of the coefficients p_0, p_1, \ldots, p_n of the polynomial f(x). This enables us to find a particular integral of the differential equation.

Example Let us find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \sin x.$$

First we seek a particular integral of this equation. Now

if
$$y = \sin x$$
 then $y'' - 6y' + 9y = 8\sin x - 6\cos x$,

if
$$y = \cos x$$
 then $y'' - 6y' + 9y = 8\cos x + 6\sin x$.

Thus if

$$y_P = \frac{1}{50} \left(4\sin x + 3\cos x \right)$$

then $y_P'' - 6y_P' + 9y_P = \sin x$, and thus y_P is a particular integral of the inhomogeneous differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \sin x.$$

The complementary function y_C is then a solution of the corresponding homogeneous differential equation $y_C'' - 6y_C' + 9y = 0$. The associated auxiliary

polynomial $s^2 - 6s + 9$ has a repeated root, whose value is 3. The complementary function y_C is then given by $y_C = (Ax + B)e^{3x}$, where A and B are real constants. The general solution of the differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \sin x$$

is then given by

$$y = \frac{1}{50} (4\sin x + 3\cos x) + (Ax + B)e^{3x}.$$

Example Let us find the general solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = xe^{3x}.$$

Examination of this differential equation suggests that it might be sensible to look for a particular integral of the form $y_P = (p + qx)e^{3x}$, where p and q are appropriately chosen real constants. Now if $y_P = (p + qx)e^{3x}$ then

$$y'_P = (3p + q + 3qx)e^{3x}, \quad y''_P = (9p + 6q + 9qx)e^{3x},$$

and thus

$$y_P'' - 2y_P' + 5y_P = (8p + 4q + 8qx)e^{3x}.$$

Thus $y_P'' - 2y_P' + 5y_P = xe^{3x}$ if and only if $p = -\frac{1}{16}$ and $q = \frac{1}{8}$. A particular integral y_P of the differential equation is thus given by

$$y_P = \frac{1}{16}(2x - 1)e^{3x}.$$

The complementary function y_C satisfies the differential equation $y_C'' - 2y_C' + 5y_C = 0$. The roots of the associated auxiliary polynomial $s^2 - 2s + 5$ are 1 + 2i and 1 - 2i. The complementary function y_C is therefore of the form

$$y_C = Ae^x \sin 2x + Be^x \cos 2x.$$

where A and B are arbitrary real constants. The general solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = xe^{3x}$$

is thus given by

$$y = \frac{1}{16}(2x - 1)e^{3x} + Ae^x \sin 2x + Be^x \cos 2x.$$

6.7 Initial Value Problems

In an *initial value problem* concerning a second order differential equation

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}\right) = 0,$$

the value of the solution $y(x_0)$ and its first derivative $y'(x_0)$ are prescribed for some value x_0 of the independent variable x. Such a problem may be solved by first finding the general solution of the differential equation, and then choosing the constants in this general solution so as to ensure that the solution y and its first derivative y' have the required values when $x = x_0$.

Example Let us find the solution of the differential equation

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 5y = xe^{3x}.$$

for which y(0) = 0 and y'(0) = 1. We have seen that the general solution of this differential equation is given by

$$y = \frac{1}{16}(2x - 1)e^{3x} + Ae^x \sin 2x + Be^x \cos 2x.$$

The derivative of this general solution is then given by

$$y' = \frac{1}{16}(6x - 1)e^{3x} + (A - 2B)e^x \sin 2x + (B + 2A)e^x \cos 2x.$$

We therefore require that

$$0 = y(0) = -\frac{1}{16} + B, \quad 1 = y'(0) = -\frac{1}{16} + B + 2A,$$

and thus

$$A = \frac{1}{2}, \quad B = \frac{1}{16}.$$

The solution of the initial value problem is thus given by

$$y = \frac{1}{16}(2x - 1)e^{3x} + \frac{1}{2}e^x \sin 2x + \frac{1}{16}e^x \cos 2x.$$

6.8 Boundary Value Problems

In an boundary value problem concerning a second order differential equation

$$F\left(x, y, \frac{dy}{dx}, \frac{d^2y}{dx^2}\right) = 0,$$

the value of the solution is prescribed for two values x_0 and x_1 of the independent variable x. Such a problem may be solved by first finding the general solution of the differential equation, and then choosing the constants in this general solution so as to ensure that the solution y has the required value when $x = x_0$ and when $x = x_1$.

Example Let us find the solution of the differential equation

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \sin x.$$

for which y(0) = 0 and $y(\pi) = 0$. We have seen that the general solution of this differential equation is given by

$$y = \frac{1}{50} (4\sin x + 3\cos x) + (Ax + B)e^{3x}.$$

The values of the general solution at x=0 and $x=\pi$ are given by

$$y(0) = \frac{3}{50} + B$$
, $y(\pi) = -\frac{3}{50} + (A\pi + B)e^{3\pi}$.

We are seeking the solution with $y(0) = y(\pi) = 0$. We therefore require that

$$A = \frac{3}{50\pi}e^{-3\pi} + \frac{3}{50\pi}, \quad B = -\frac{3}{50}.$$

The solution of the boundary value problem is therefore obtained by substituting these values of A and B into the general solution of the differential equation.

6.9 Higher Order Linear Differential Equations with Constant Coefficients

We describe the general solution of a homogeneous linear differential equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0$$

with constant coefficients a_0, a_1, \ldots, a_n . The general solution of such a differential equation is of the form

$$A_1y_1 + A_2y_2 + \cdots + A_ny_n$$

where A_1, A_2, \ldots, A_n are arbitrary real constants and y_1, y_2, \ldots, y_n are linearly independent solutions determined by the roots of the associated *auxiliary polynomial*

$$a_n s^n + a_{n-1} s^{n-1} + \dots + a_1 s + a_0.$$

We shall describe the form of the solutions determined by real and by non-real roots of the auxiliary polynomial.

A real root r of this auxiliary polynomial of multiplicity m determines m linearly independent solutions of the differential equation. These are given by $y = x^{j-1}e^{rx}$ for each integer j between 1 and m. In particular $y = e^{rx}$ is a solution of the differential equation for each real root r of the auxiliary polynomial.

A pair of non-real roots p+iq and p-iq, each of multiplicity m, determines 2m linearly independent solutions of the differential equation, with a pair

$$y = x^{j-1}e^{px}\sin qx$$
 and $y = x^{j-1}e^{px}\cos qx$

of solutions for each integer j between 1 and m.

Example Consider the differential equation

$$\frac{d^3y}{dx^3} - 3\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - y = 0.$$

The auxiliary polynomial of this differential equation is the cubic polynomial $s^3 - 3s^2 + 3s - 1$. This polynomial may be written in the form $(s - 1)^3$, and thus has a repeated root with value 1 and multiplicity 3. Therefore the general solution of the differential equation is given by

$$y = (A + Bx + Cx^2)e^x.$$

This may be verified by showing that the functions e^x , xe^x and x^2e^x are solutions of the differential equation. (These functions are obviously linearly independent.)

The general solution y of an inhomogenous linear differential equation

$$a_n \frac{d^n y}{dx^n} + a_{n-1} \frac{d^{n-1} y}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = f(x)$$

of order n may be expressed as the sum of a particular integral y_P , which satisfies the given equation, and a complementary function y_C , which satisfies the homogeneous differential equation

$$a_n \frac{d^n y_C}{dx^n} + a_{n-1} \frac{d^{n-1} y_C}{dx^{n-1}} + \dots + a_1 \frac{dy_C}{dx} + a_0 y_C = 0.$$

If y_1, y_2, \ldots, y_n are n linearly independent solutions of this homogeneous equation, then the general solution of the inhomogeneous equation is of the form

$$y = y_P + A_1 y_1 + A_2 y_2 + \dots + A_n y_n,$$

where A_1, A_2, \ldots, A_n are arbitrary constants.