Research on High School Math Exercise Recommendation Based on Graph Neural Network

Wangzhihui Mei

University of Wollongong maywzh@gmail.com

March 23, 2021

Exercise Recommendation

Wangzhihui Mei

Introduction

Research Backgro

Existing Problems

Research Core

Proposed Model

ercise Knowledg

Overview

Introduction
 Research Background
 Existing Problems
 Research Cores

- 2. Proposed Model Exercise Knowledge Labelling
- 3. Result

Exercise Recommendation

Wangzhihui Mei

Introduction

Research Backgrou Existing Problems

rtesearch Cores

Proposed Mode

rcise Knowledge elling

Recul

Background

- Knowledge State Monitoring
- Learning Resource Recommendation
- High School Math

Exercise Recommendation

Wangzhihui Mei

meroduction

Research Background

Danasah Cana

Proposed Mode

ercise Knowledg

Danul

Problems

Disorganized exercise Exercises lacking knowledge tags Knowledge evaluation Description of second item Exercise recommendation Description of third item

Exercise Recommendation

Wangzhihui Mei

Introduction

Existing Problems

Rosearch Core

Proposed Model

rcise Knowledge

Recul

Research Cores

Exercise knowledge labelling

A multi-knowledge point labeling algorithm for high school mathematics exercises based on bidirectional LSTM (Bi-LSTM) [1] and graph convolutional neural network (GCN) [3].

Knowledge tracing

A knowledge tracing model based on Transformer [5] architecture with graph attention network embedding.

Exercise recommendation

A mathematical exercise recommendation model based on Matching-Ranking [4] algorithm.

Exercise Recommendation

Wangzhihui Mei

Introd

Research Background Existing Problems

Research Cores

Proposed

ercise Knowledg elling

Exercise Knowledge Labelling

Architecture

Exercise Recommendation

Wangzhihui Mei

Introduction

Research Backgrou Existing Problems

Proposed Model

Exercise Knowledge Labelling

Resul

Figure: Model architecture

Exercise Knowledge Labelling

Modules

- 1. BERT [2] Embedding Layer
- 2. Attentional Bi-LSTM Text Representation
- 3. GCN-based Classifier

Exercise Recommendation

Wangzhihui Mei

Introduction

Research Backgrour Existing Problems

Proposed Mode

Exercise Knowledge Labelling

Danil

Exercise Recommendation Wangzhihui Mei

Introductio

Existing Problems

Proposed Model

Exercise Knowledge Labelling

Knowledge Tracing

Exercise Recommendation

Wangzhihui Mei

Introduction

Research Backgrou
Existing Problems

roposed Model

Exercise Knowledge Labelling

Danul

Exercise Recommendation

Labelling

Block 1 content

Block 2

content

Block 3

content

Exercise Recommendation

Wangzhihui Mei

Exercise Knowledge

Table

Table: Table caption

Treatments	Response 1	Response 2
Treatment 1	0.0003262	0.562
Treatment 2	0.0015681	0.910
Treatment 3	0.0009271	0.296

Exercise Recommendation

Wangzhihui Mei

Introduc

Research Backgroun Existing Problems

Proposed Model

Exercise Knowledge Labelling

Theorem

Exercise Recommendation

Wangzhihui Mei

Introd

Research Backgroun
Existing Problems

Proposed Model

Exercise Knowledge Labelling

Result

Theorem (Mass-energy equivalence)

 $E = mc^2$

Figure

Exercise Recommendation

Wangzhihui Mei

Uncomment the code on this slide to include your own image from the same directory as the template .TeX file.

References I

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang. Improving sentiment analysis via sentence type classification using bilstm-crf and cnn.

Expert Systems with Applications, 72:221–230, 2017.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language understanding, 2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.

arXiv preprint arXiv:1609.02907, 2016.

Exercise Recommendation

Wangzhihui Mei

Introdi

Research Backgrour

Research Core

Proposed Mode

ercise Knowledg belling

References II

Context-based matching and ranking of web services for composition.

IEEE Transactions on Services Computing, 2(3):210–222, 2009.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin.

Attention is all you need.

arXiv preprint arXiv:1706.03762, 2017.

Exercise Recommendation

Wangzhihui Mei

Introduction

Research Backgroun Existing Problems

Research Core

Proposed Model

rcise Knowledge

Exercise Recommendation

Wangzhihui Mei

Introduction

Research Backgrour
Existing Problems

Proposed Model

ercise Knowled

Result

The End